Statistical report: Malnutrition exacerbates pathogenesis of sand fly-transmitted *Leishmania donovani*

Johannes S. P. Doehl

2024-05-22

Summary

Main Body

Software and packages

All the statistics presented in the manuscript "Malnutrition exacerbates pathogenesis of sand fly-transmitted *Leishmania donovani*" and in this appendix were produced in RStudio version 2024.4.2.764 [31]. We used R version 4.4.1 [27] and the following R packages: aod v. 1.3.3 [19], betareg v. 3.2.0 [6, 10, 16], bookdown v. 0.40 [36, 37], car v. 3.1.2 [8], caret v. 6.0.94 [17], effectsize v. 0.8.9 [4], emmeans v. 1.10.3 [18], epitools v. 0.5.10.1 [3], ggpubr v. 0.6.0 [13], grid v. 4.4.1 [28], Hmisc v. 5.1.3 [11], janitor v. 2.2.0 [7], knitr v. 1.48 [39, 38, 40], lmtest v. 0.9.40 [43], MASS v. 7.3.61 [33], metan v. 1.18.0 [24], moments v. 0.14.1 [15], multcomp v. 1.4.25 [12], nlme v. 3.1.165 [26, 25], pastecs v. 1.4.2 [9], performance v. 0.12.0 [21], pROC v. 1.18.5 [29], pwrss v. 0.3.1 [5], rcompanion v. 2.4.36 [23], rmarkdown v. 2.27 [41, 42, 2], rstatix v. 0.7.2 [14], sjmisc v. 2.8.10 [20], tidyverse v. 2.0.0 [35], tiff v. 0.1.12 [32], WRS2 v. 1.1.6 [22]. For the creation of this appendix, the author made use of Rmarkdown [1]. The original codes for this appendix are available as Rmarkdown files through the author's github portal².

Figure 1

Panel b and c

Data analysis

Figure 1 b and c present the outcome variable of total Myeloid_cells counts and separately, Neutrophils and Monocytes counts from N=60, 60, 60 pools of single cell suspensions, respectively, prepared from BALB/c mouse ears infected with *Leishmania donovani* by needle or sand flies (SF) delivery at 24 h and

¹R package citations were managed using the 'grateful' package [30], while inter-package function name conflicts were managed with the 'conflicted' package [34]

²https://github.com/joedoehl/Malnutrition-exacerbates-pathogenesis-of-sand-fly-transmitted-Leishmania-donovani.git

72 h post sand fly bites. Please, refer to the methods section of the publication for more details on sample preparation. Note that different mice were sampled at 24 h and 72 h post infection, which meant that this dataset satisfied the independence of data points and therefore, did not represent a repeatedly measured dataset. With the time point variable (Time_point), this dataset contained two more predictor variables: Mouse "Diet" (well-nourished [WN], malnourished [MN]) and infection "Route" (uninfected control, needle delivery [Needle], sand fly delivery [SF]). Based on this information, a three-way analysis was indicated.

Thus, we assessed the data for compliance with assumptions for a three-way ANOVA:

- Data normality
- Homogeneity of variance
- No significant outliers

Initial assumption assessment indicated that data transformation was required to meet assumptions for a three-way ANOVA. Thus, we settled for a Box-Cox power transformation of all datasets presented in this figure. Thus, data distribution and variance appear different in the main figure in the publication from the once that were used in the analysis post transformation.

Assumption analyses

Data normality The assessment of the transformed data distribution for each group was conducted by Shpiro-Wilks test and QQ-plot for counts of Myeloid_cells, Neutrophils and Monocytes separately. Note that all groups of all datasets consisted of N=5 pools of mouse ear single-cell suspensions, which made it difficult to assess data distribution reliably by Shapiro-Wilks test.

Myeloid_cells In spite of assessment limitations due to small group sizes, We concluded based on Shpiro-Wilks test (Table 1) and QQ-pots (Fig.1b-c-1) that all groups of the dataset were approximately normal distributed.

Appendix Table 1Myeloid cells: Univariate Shapito-Wilks test results

Diet	Route	Time_point	variable	statistic	p	Outcome
WN	Ctrl	24_h	Counts	0.9919	0.9860	ns
WN	Ctrl	72_h	Counts	0.9919	0.9860	ns
MN	Ctrl	24_h	Counts	0.9378	0.6502	ns
MN	Ctrl	72_h	Counts	0.9378	0.6502	ns
WN	Needle	24_h	Counts	0.8543	0.2084	ns
WN	Needle	72_h	Counts	0.9022	0.4219	ns
MN	Needle	24_h	Counts	0.8424	0.1716	ns
MN	Needle	72_h	Counts	0.9791	0.9298	ns
WN	SF	24_h	Counts	0.7891	0.0659	ns

WN	SF	72_h	Counts	0.7877	0.0641	ns
MN	SF	24_h	Counts	0.9207	0.5344	ns
MN	SF	72_h	Counts	0.9947	0.9933	ns

Fig.1b-c-1: QQ-plots of myeloid cell counts split into groups by predictor variables

Neutrophils In spite of assessment limitations due to small group sizes, We concluded based on Shpiro-Wilks test (Table 2) and QQ-pots (Fig.1b-c-2) that all groups of the dataset were approximately normal distributed.

Appendix Table 2 Neutrophils: Univariate Shapito-Wilks test results

Diet	Route	Time_point	variable	statistic	p	Outcome
WN	Ctrl	24_h	Counts	0.9133	0.4879	ns
WN	Ctrl	72_h	Counts	0.9133	0.4879	ns
MN	Ctrl	24_h	Counts	0.9609	0.8144	ns
MN	Ctrl	72_h	Counts	0.9609	0.8144	ns

WN	Needle	24_h	Counts	0.8948	0.3818	ns
WN	Needle	72_h	Counts	0.9849	0.9590	ns
MN	Needle	24_h	Counts	0.8150	0.1068	ns
MN	Needle	72_h	Counts	0.9745	0.9032	ns
WN	SF	24_h	Counts	0.7958	0.0748	ns
WN	SF	72_h	Counts	0.9210	0.5361	ns
MN	SF	24_h	Counts	0.8692	0.2632	ns
MN	SF	72_h	Counts	0.9840	0.9547	ns

Fig.1b-c-2: QQ-plots of neutrophil counts split into groups by predictor variables

Monocytes In spite of assessment limitations due to small group sizes, We concluded based on Shpiro-Wilks test (Table 3) and QQ-pots (Fig.1b-c-3) that all groups of the myeloid cell dataset were approximately normal distributed.

Appendix Table 3 Monocytes: Univariate Shapito-Wilks test results

Diet	Route	Time_point	variable	statistic	p	Outcome
WN	Ctrl	24_h	Counts	0.8597	0.2271	ns
WN	Ctrl	72_h	Counts	0.8597	0.2271	ns
MN	Ctrl	24_h	Counts	0.8517	0.1999	ns
MN	Ctrl	72_h	Counts	0.8517	0.1999	ns
WN	Needle	24_h	Counts	0.8945	0.3803	ns
WN	Needle	72_h	Counts	0.9625	0.8250	ns
MN	Needle	24_h	Counts	0.9079	0.4552	ns
MN	Needle	72_h	Counts	0.9435	0.6907	ns
WN	SF	24_h	Counts	0.9944	0.9927	ns
WN	SF	72_h	Counts	0.8455	0.1806	ns
MN	SF	24_h	Counts	0.9226	0.5466	ns
MN	SF	72_h	Counts	0.9595	0.8048	ns

Fig.1b-c-3: QQ-plots of monocyte counts split into groups by predictor variables

Homogeneity of variance The assessment of homogeneity of variance was also conducted for myeloid cell, neutrophil and monocyte counts separately. We employed a Levene's test for the whole model for

each dataset. The p-value for the test suggested that the assumption of homogeneity of variance held for Myeloid_cells (p=0.5236), held for Neutrophils (p=0.0502), and held for Monocytes (p=0.7728).

Outliers It can be difficult to determine outliers in small datasets reliably as the analysis is dependent on the interquartile range of the data per group. We attempted it anyway and found 8 outliers in the Myeloid_cells dataset (Table 4), 5 outliers in the Neutrophils dataset (Table 5), and 3 outliers in the Monocytes dataset (Table 6).

Appendix Table 4 Myeloid cells: List of possible outliers

Diet	Route	Time_point	is.outlier	is.extreme
MN	Ctrl	24_h	TRUE	FALSE
MN	Ctrl	24_h	TRUE	FALSE
MN	Ctrl	72_h	TRUE	FALSE
MN	Ctrl	72_h	TRUE	FALSE
WN	Needle	72_h	TRUE	TRUE
MN	Needle	72_h	TRUE	FALSE
MN	Needle	72_h	TRUE	FALSE
WN	SF	24_h	TRUE	TRUE

Appendix Table 5 Neutrophils: List of possible outliers

Diet	Route	Time_point	is.outlier	is.extreme
11/NI	NT 11 -	70 1	TDLIE	EALCE
WN	Needle	72_h	TRUE	FALSE
MN	Needle	24_h	TRUE	TRUE
WN	SF	24_h	TRUE	TRUE
WN	SF	24_h	TRUE	FALSE
WN	SF	72_h	TRUE	FALSE

Appendix Table 6 Monocytes: List of possible outliers

Diet	Route	Time_point	is.outlier	is.extreme
WN	Ctrl	24_h	TRUE	FALSE
WN	Ctrl	72_h	TRUE	FALSE
WN	Needle	72_h	TRUE	FALSE

Three-way analysis

Myeloid_cells Based on the assumption analysis, we decided to apply a Robust three-way ANOVA to the Myeloid_cells dataset to determine the effects of "Diet", infection "Route" and time post infection ("Time_point") on the Myeloid_cells count per pooled ear single-cell suspension (Table 7). The test output showed that only the "Route" predictor was a statistically significant factor, while the interaction between Time_point and Diet was statistically significant, too.

Appendix Table 7 Myeloid cells: Robust three-way ANOVA

Predictors	value	p.value	sig.
Diet	0.0048	0.9500	ns
Route	29.5689	0.0007	***
Time_point	0.0447	0.8390	ns
Diet:Route	0.7681	0.7120	ns
Diet:Time_point	7.4482	0.0230	*
Route:Time_point	0.2226	0.9040	ns
Diet:Route:Time_point	7.4542	0.0720	+

We looked for main effects by splitting the data by each predictor separately and analyzed the respective remaining two predictor by a Robust two-way ANOVA. The results showed that, after adjustment of p-values for multiple tests, only the "Route" predictor produced statistically significant p-values, regardless of whether the data was split by "Diet" or "Time-point" (Table 8). This suggested that the only predictor of impact on cell counts was the route of infection.

Appendix Table 8Myeloid cells: Robust two-way ANOVA

Grouper	Predictor	value	p.value	Sig.	p.value.adj	sig.
Grouped	by Route					
Ctrl	Diet	0.7025	0.415	ns	0.5810	ns
Ctrl	Time_point	0.0000	0.999	ns	0.9990	ns
Ctrl	Diet:Time_point	0.0000	0.999	ns	0.9990	ns
Needle	Diet	0.1500	0.707	ns	0.8248	ns
Needle	Time_point	0.4370	0.523	ns	0.6510	ns
Needle	Diet:Time_point	6.7428	0.024	*	0.1008	ns
SF	Diet	0.4354	0.527	ns	0.6510	ns
SF	Time_point	0.0015	0.971	ns	0.9990	ns
SF	Diet:Time_point	4.1861	0.069	+	0.1701	ns

Grouped	by Diet					
WN	Route	28.0464	0.001	***	0.0105	*
WN	Time_point	5.2407	0.032	*	0.1120	ns
WN	Route:Time_point	2.5384	0.326	ns	0.5444	ns
MN	Route	19.2056	0.003	**	0.0210	*
MN	Time_point	3.5769	0.076	+	0.1701	ns
MN	Route:Time_point	2.5075	0.337	ns	0.5444	ns
Grouped	by Time_point					
24_h	Diet	4.6264	0.050	*	0.1500	ns
24_h	Route	17.3213	0.004	**	0.0210	*
24_h	Diet:Route	2.3091	0.368	ns	0.5520	ns
72_h	Diet	3.3991	0.081	+	0.1701	ns
72_h	Route	29.3554	0.001	***	0.0105	*
72_h	Diet:Route	5.2718	0.112	ns	0.2138	ns

For the analysis of the simple simple main effect for each respective predictor, we performed Robust one-way ANOVA with individual predictors of the data split by the other two predictors. The output showed yet again that after the adjustment of p-values for multiple tests, only the "Route" predictor produce statistically significant p-values (Table 9). Here, the differences were observed in the well-nourished group (WN) at 24 h post infection and for the malnourished group at 72 h post infection.

Appendix Table 9 Myeloid cells: Robust one-way ANOVA

Predictor_1	Predictor_2	Effect	test	df1	df2	p.value	effsize	p.value.adj	sig.
Predictor: Ti	me_point								
Ctrl	WN	Time_point	0.0000	1	8.0000	1.0000	0.0000	1.0000	ns
Ctrl	MN	Time_point	0.0000	1	8.0000	1.0000	0.0000	1.0000	ns
Needle	WN	Time_point	3.5282	1	5.5647	0.1132	0.7337	0.2033	ns
Needle	MN	Time_point	3.6121	1	6.2598	0.1041	0.9017	0.2033	ns
SF	WN	Time_point	4.8246	1	7.5253	0.0614	0.7261	0.1965	ns
SF	MN	Time_point	1.3003	1	5.2694	0.3033	0.5259	0.4412	ns
Predictor: D	iet								
24_h	Ctrl	Diet	0.3512	1	7.8195	0.5702	0.2800	0.6516	ns
24_h	Needle	Diet	10.1859	1	5.9402	0.0191	0.9926	0.1017	ns
24_h	SF	Diet	0.6400	1	4.9962	0.4600	0.3842	0.6134	ns
72_h	Ctrl	Diet	0.3512	1	7.8195	0.5702	0.2800	0.6516	ns
72_h	Needle	Diet	1.5616	1	6.7245	0.2532	0.5753	0.4051	ns

72_h	SF	Diet	7.3397	1	7.8679	0.0271	0.8992	0.1084	ns
Predictor	: Route								
24_h	WN	Route	12.5661	2	7.4933	0.0040	0.9018	0.0323	*
24_h	MN	Route	2.9293	2	7.5513	0.1144	0.6507	0.2033	ns
72_h	WN	Route	3.3900	2	7.9569	0.0861	0.6194	0.2033	ns
72_h	MN	Route	12.7031	2	7.4981	0.0039	0.7858	0.0323	*

For the pairwise comparison, we applied a Linear contrast expression. The output showed that at 24 h post infection, the sand fly infection route was statistically significant from the control and needle inoculum in the well-nourished (WN) group (Table 10). At 72 h, the sand fly infection route was statistically significant from the control in the malnourished group. Further, statistically significant difference were observed between well-nourished and malnourished mice inoculated by needle at 24 h post infection and infected by sand fly at 72 h post infection.

Appendix Table 10 Myeloid cells: Pairwise comparison by Linear Contrast Expression

Predictor_1	Predictor_2	Group	Group.1	psihat	ci.lower	ci.upper	p.value	Sig.
Predictor: Ti	me_point							
Ctrl	WN	24_h	72_h	0.0000	-0.0224	0.0224	1.0000	ns
Ctrl	MN	24_h	72_h	0.0000	-0.0261	0.0261	1.0000	ns
Needle	WN	24_h	72_h	0.0169	-0.0055	0.0394	0.1132	ns
Needle	MN	24_h	72_h	-0.0285	-0.0647	0.0078	0.1041	ns
SF	WN	24_h	72_h	0.0197	-0.0012	0.0406	0.0614	+
SF	MN	24_h	72_h	-0.0190	-0.0611	0.0231	0.3033	ns
Predictor: Diet								
24_h	Ctrl	WN	MN	0.0062	-0.0182	0.0306	0.5702	ns
24_h	Needle	WN	MN	0.0261	0.0060	0.0461	0.0191	*
24_h	SF	WN	MN	0.0131	-0.0290	0.0552	0.4600	ns
72_h	Ctrl	WN	MN	0.0062	-0.0182	0.0306	0.5702	ns
72_h	Needle	WN	MN	-0.0193	-0.0561	0.0175	0.2532	ns
72_h	SF	WN	MN	-0.0256	-0.0474	-0.0037	0.0271	*
Predictor: Re	oute							
24_h	WN	Ctrl	Needle	-0.0103	-0.0350	0.0144	0.2350	ns
24_h	WN	Ctrl	SF	-0.0403	-0.0666	-0.0140	0.0040	**
24_h	WN	Needle	SF	-0.0300	-0.0502	-0.0098	0.0040	**
24_h	MN	Ctrl	Needle	0.0096	-0.0225	0.0416	0.4028	ns
24_h	MN	Ctrl	SF	-0.0334	-0.0888	0.0220	0.1542	ns

24_h	MN	Needle	SF	-0.0430	-0.0983	0.0123	0.1421	ns
72_h	WN	Ctrl	Needle	0.0066	-0.0253	0.0385	0.5523	ns
72_h	WN	Ctrl	SF	-0.0206	-0.0498	0.0087	0.1060	ns
72_h	WN	Needle	SF	-0.0272	-0.0595	0.0050	0.1060	ns
72_h	MN	Ctrl	Needle	-0.0189	-0.0665	0.0287	0.2597	ns
72_h	MN	Ctrl	SF	-0.0524	-0.0828	-0.0219	0.0031	**
72_h	MN	Needle	SF	-0.0335	-0.0804	0.0135	0.0936	+

Neutrophils Based on the assumption analysis, we decided to apply a Robust three-way ANOVA to the Neutrophils dataset to determine the effects of "Diet", infection "Route" and time post infection ("Time_point") on the Neutrophils count per pooled ear single-cell suspension (Table 11). The test output showed that only the "Route" predictor was a statistically significant factor, while the interaction between Time_point and Diet was statistically significant, too. Thus, Neutrophils followed the same pattern as the overarching Myeloid_cells category.

Appendix Table 11 Neutrophils: Robust three-way ANOVA

Predictors	value	p.value	sig.
Diet	0.1394	0.720	ns
Route	23.0377	0.004	**
Time_point	4.3763	0.065	+
Diet:Route	0.0479	0.979	ns
Diet:Time_point	4.0582	0.074	+
Route:Time_point	5.4366	0.150	ns
Diet:Route:Time_point	1.9427	0.458	ns

We looked for main effects by splitting the data by each predictor separately and analyzed the respective remaining two predictor by a Robust two-way ANOVA. After adjustment of p-values for multiple tests, We observed statistically significant differences between 24 h and 72 h post infection, when the data was split by infestation route; in well-nourished group for Route, Time_point and their interaction, as much as for infection route in the malnourished group, when the data was split by "Diet"; and for infection routes at 24 h post infection, when the data was split by Time_point (Table 12).

Appendix Table 12 Neutrophils: Robust two-way ANOVA

Groupe	er Predictor	value	p.value	Sig.	p.value.adj	sig.
Group	ed by Route					
Ctrl	Diet	0.3205	0.583	ns	0.8745	ns

Ctrl	Time_point	0.0000	0.999	ns	0.9990	ns
Ctrl	Diet:Time_point	0.0000	0.999	ns	0.9990	ns
Needle	Diet	0.1839	0.678	ns	0.8899	ns
Needle	Time_point	0.0428	0.841	ns	0.9812	ns
Needle	Diet:Time_point	3.7795	0.078	+	0.1638	ns
SF	Diet	0.0473	0.834	ns	0.9812	ns
SF	Time_point	16.1728	0.003	**	0.0126	*
SF	Diet:Time_point	5.0287	0.053	+	0.1237	ns
Grouped	by Diet					
WN	Route	68.7607	0.001	***	0.0053	**
WN	Time_point	31.4785	0.001	***	0.0053	**
WN	Route:Time_point	34.6536	0.001	***	0.0053	**
MN	Route	13.4578	0.009	**	0.0315	*
MN	Time_point	0.0021	0.964	ns	0.9990	ns
MN	Route:Time_point	1.9351	0.423	ns	0.6833	ns
Grouped	by Time_point					
24_h	Diet	4.6992	0.050	*	0.1237	ns
24_h	Route	37.4309	0.001	***	0.0053	**
24_h	Diet:Route	0.9951	0.644	ns	0.8899	ns
72_h	Diet	1.3219	0.267	ns	0.5097	ns
72_h	Route	8.1667	0.046	*	0.1237	ns
72_h	Diet:Route	2.1155	0.395	ns	0.6833	ns

For the analysis of the simple simple main effect for each respective predictor, we performed Robust one-way ANOVA with individual predictors of the data split by the other two predictors. The output showed statistically significant p-values for the sand fly inoculation in the well-nourished group for the Time_point predictor and at 24 h post infection in the well-nourished group for the infection route (Table 13).

Appendix Table 13 Neutrophils: Robust one-way ANOVA

Predictor_1	Predictor_2	Effect	test	df1	df2	p.value	effsize	p.value.adj	sig.
Predictor: 7	Predictor: Time_point								
Ctrl	WN	Time_point	0.0000	1	8.0000	1.0000	0.0000	1.0000	ns
Ctrl	MN	Time_point	0.0000	1	8.0000	1.0000	0.0000	1.0000	ns
Needle	WN	Time_point	4.1593	1	6.4828	0.0840	0.8107	0.2240	ns
Needle	MN	Time_point	1.0452	1	5.6120	0.3486	0.4543	0.5706	ns
SF	WN	Time_point	76.4341	1	5.6989	0.0002	1.0898	0.0013	**

SF	MN	Time_point	0.9078	1	5.5609	0.3803	0.3810	0.5706	ns
Predictor: I	Diet								
24_h	Ctrl	Diet	0.1603	1	5.3717	0.7043	0.1989	0.8050	ns
24_h	Needle	Diet	7.1359	1	7.4476	0.0302	1.0777	0.1609	ns
24_h	SF	Diet	2.0228	1	4.2581	0.2239	0.5190	0.4478	ns
72_h	Ctrl	Diet	0.1603	1	5.3717	0.7043	0.1989	0.8050	ns
72_h	Needle	Diet	0.7151	1	6.4714	0.4279	0.3795	0.5706	ns
72_h	SF	Diet	4.0661	1	7.7816	0.0795	0.7530	0.2240	ns
Predictor: R	Route								
24_h	WN	Route	78.7826	2	7.3614	< 0.0001	0.9442	0.0002	***
24_h	MN	Route	3.9055	2	6.8243	0.0740	0.7267	0.2240	ns
72_h	WN	Route	0.9855	2	7.8365	0.4152	0.4338	0.5706	ns
72_h	MN	Route	2.7786	2	7.2716	0.1269	0.5443	0.2901	ns

For the pairwise comparison, we applied a Linear contrast expression. The output showed that at 24 h post infection, there were statistically significant differences at 24 h post infection between the well-nourished and malnourished groups for the needle inoculum and at 72 h post infection for the sand fly inoculation (Table 14). Further, we observed differences in the well-nourished group at 24 h post infection between the sand fly inoculum and both, the control and needle inoculum. For the malnourished group we observed statistically significant p-values at 72 h post infection between the sand fly inolculum and the control group.

Appendix Table 14Neutrophils: Pairwise comparison by Linear Contrast Expression

Predictor_1	Predictor_2	Group	Group.1	psihat	ci.lower	ci.upper	p.value	Sig.			
Predictor: Ti	Predictor: Time_point										
Ctrl	WN	24_h	72_h	0.0000	-1.2773	1.2773	1.0000	ns			
Ctrl	MN	24_h	72_h	0.0000	-3.0375	3.0375	1.0000	ns			
Needle	WN	24_h	72_h	1.3539	-0.2416	2.9494	0.0840	+			
Needle	MN	24_h	72_h	-1.0936	-3.7554	1.5683	0.3486	ns			
SF	WN	24_h	72_h	4.1934	3.0045	5.3822	0.0002	***			
SF	MN	24_h	72_h	1.1910	-1.9272	4.3091	0.3803	ns			
Predictor: D	iet										
24_h	Ctrl	WN	MN	0.4045	-2.1397	2.9487	0.7043	ns			
24_h	Needle	WN	MN	1.4936	0.1874	2.7999	0.0302	*			
24_h	SF	WN	MN	1.6467	-1.4926	4.7860	0.2239	ns			
72_h	Ctrl	WN	MN	0.4045	-2.1397	2.9487	0.7043	ns			

72_h	Needle	WN	MN	-0.9538	-3.6657	1.7581	0.4279	ns
72_h	SF	WN	MN	-1.3556	-2.9135	0.2023	0.0795	+
Predictor	r: Route							
24_h	WN	Ctrl	Needle	-1.3581	-2.8960	0.1798	0.0309	*
24_h	WN	Ctrl	SF	-4.9856	-6.3932	-3.5781	0.0001	****
24_h	WN	Needle	SF	-3.6276	-4.8538	-2.4014	0.0001	****
24_h	MN	Ctrl	Needle	-0.2689	-3.6094	3.0716	0.8036	ns
24_h	MN	Ctrl	SF	-3.7434	-8.1407	0.6539	0.0534	+
24_h	MN	Needle	SF	-3.4745	-7.5673	0.6183	0.0534	+
72_h	WN	Ctrl	Needle	-0.0042	-2.1190	2.1106	0.9953	ns
72_h	WN	Ctrl	SF	-0.7923	-2.5263	0.9418	0.4595	ns
72_h	WN	Needle	SF	-0.7881	-2.9489	1.3727	0.4595	ns
72_h	MN	Ctrl	Needle	-1.3625	-5.3495	2.6245	0.3412	ns
72_h	MN	Ctrl	SF	-2.5524	-5.9102	0.8053	0.1555	ns
72_h	MN	Needle	SF	-1.1900	-4.6858	2.3059	0.3412	ns

Monocytes Based on the assumption analysis, we decided to apply a Robust three-way ANOVA to the Monocytes dataset to determine the effects of "Diet", infection "Route" and time post infection ("Time_point") on the Monocytes count per pooled ear single-cell suspension (Table 15). The test output showed that only the "Route" predictor was a statistically significant factor. No statistically significant interaction between any predictors was observed.

Appendix Table 15 Monocytes: Robust three-way ANOVA

Predictors	value	p.value	sig.
Diet	0.4677	0.5100	ns
Route	47.2342	0.0001	****
Time_point	3.5637	0.0760	+
Diet:Route	6.4411	0.0830	+
Diet:Time_point	2.4362	0.1370	ns
Route:Time_point	3.9590	0.1950	ns
Diet:Route:Time_point	2.2057	0.3830	ns

We looked for main effects by splitting the data by each predictor separately and analyzed the respective remaining two predictor by a Robust two-way ANOVA. The results showed that, after adjustment of p-values for multiple tests, only the "Route" predictor produced statistically significant p-values, regardless of whether the data was split by "Diet" or "Time-point" (Table 16). This suggested that the only predictor of impact on cell counts was the route of infection. No statistically significant interactions were observed at this level.

Appendix Table 16Monovytes: Robust two-way ANOVA

Grouper	Predictor	value	p.value	Sig.	p.value.adj	sig.
Grouped	by Route					
Ctrl	Diet	5.2338	0.037	*	0.1110	ns
Ctrl	Time_point	0.0000	0.999	ns	0.9990	ns
Ctrl	Diet:Time_point	0.0000	0.999	ns	0.9990	ns
Needle	Diet	0.0138	0.909	ns	0.9990	ns
Needle	Time_point	6.2017	0.027	*	0.0945	+
Needle	Diet:Time_point	4.8351	0.047	*	0.1234	ns
SF	Diet	0.7354	0.413	ns	0.5964	ns
SF	Time_point	0.7811	0.399	ns	0.5964	ns
SF	Diet:Time_point	0.8265	0.387	ns	0.5964	ns
Grouped	by Diet					
WN	Route	36.6533	0.001	***	0.0070	**
WN	Time_point	0.0245	0.878	ns	0.9990	ns
WN	Route:Time_point	0.0477	0.978	ns	0.9990	ns
MN	Route	32.3071	0.001	***	0.0070	**
MN	Time_point	5.9000	0.025	*	0.0945	+
MN	Route:Time_point	5.5106	0.107	ns	0.2043	ns
Grouped	by Time_point					
24_h	Diet	3.9779	0.065	+	0.1517	ns
24_h	Route	21.9364	0.002	**	0.0105	*
24_h	Diet:Route	1.6608	0.478	ns	0.6274	ns
72_h	Diet	0.6652	0.426	ns	0.5964	ns
72_h	Route	46.8385	0.001	***	0.0070	**
72_h	Diet:Route	6.2872	0.078	+	0.1638	ns

For the analysis of the simple simple main effect for each respective predictor, we performed Robust one-way ANOVA with individual predictors of the data split by the other two predictors. The output showed that after the adjustment of p-values for multiple tests, only the "Route" predictor produce statistically significant p-values in the malnourished group at 72 h post infection (Table 17).

Appendix Table 17
Monocytes: Robust one-way ANOVA

Ctrl WN Time_point 0.0000 1 8.0000 1.0000 0.0000 1.0000 ns Ctrl MN Time_point 0.0000 1 8.0000 1.0000 0.0000 1.0000 ns Needle WN Time_point 0.0512 1 6.2708 0.8281 0.1320 1.0000 ns Needle MN Time_point 9.3895 1 5.7100 0.0236 0.9343 0.0942 + SF WN Time_point 0.0010 1 7.9009 0.9756 0.0126 1.0000 ns SF MN Time_point 0.9577 1 6.3626 0.3635 0.5490 0.5287 ns Predictor: Diet 24_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 24_h SF Diet 0.6169 1 7.0286 0.1496 0.5569 0.2659 ns <tr< th=""><th>Predictor:</th><th>Time_point</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>	Predictor:	Time_point								
Needle WN Time_point 0.0512 1 6.2708 0.8281 0.1320 1.0000 ns Needle MN Time_point 9.3895 1 5.7100 0.0236 0.9343 0.0942 + SF WN Time_point 0.0010 1 7.9009 0.9756 0.0126 1.0000 ns SF MN Time_point 0.9577 1 6.3626 0.3635 0.5490 0.5287 ns Predictor: Diet 24_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 24_h SF Diet 0.0009 1 4.8921 0.9767 0.0196 1.0000 ns 72_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns	Ctrl	WN	Time_point	0.0000	1	8.0000	1.0000	0.0000	1.0000	ns
Needle MN Time_point 9.3895 1 5.7100 0.0236 0.9343 0.0942 + SF WN Time_point 0.0010 1 7.9009 0.9756 0.0126 1.0000 ns SF MN Time_point 0.9577 1 6.3626 0.3635 0.5490 0.5287 ns Predictor: Diet 24_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 24_h Needle Diet 6.5185 1 7.9850 0.0341 0.8413 0.1090 ns 24_h SF Diet 0.0009 1 4.8921 0.9767 0.0196 1.0000 ns 72_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns <	Ctrl	MN	Time_point	0.0000	1	8.0000	1.0000	0.0000	1.0000	ns
SF WN Time_point 0.0010 1 7.9009 0.9756 0.0126 1.0000 ns SF MN Time_point 0.9577 1 6.3626 0.3635 0.5490 0.5287 ns Predictor: Diet 24_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 24_h Needle Diet 6.5185 1 7.9850 0.0341 0.8413 0.1090 ns 24_h SF Diet 0.0009 1 4.8921 0.9767 0.0196 1.0000 ns 72_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns 72_h SF Diet 2.6348 1 6.9154 0.1491 0.6089 0.2659 ns	Needle	WN	Time_point	0.0512	1	6.2708	0.8281	0.1320	1.0000	ns
SF MN Time_point 0.9577 1 6.3626 0.3635 0.5490 0.5287 ns Predictor: Diet 24_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 24_h Needle Diet 6.5185 1 7.9850 0.0341 0.8413 0.1090 ns 24_h SF Diet 0.0009 1 4.8921 0.9767 0.0196 1.0000 ns 72_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns 72_h SF Diet 2.6348 1 6.9154 0.1491 0.6089 0.2659 ns Predictor: Route 24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.06	Needle	MN	Time_point	9.3895	1	5.7100	0.0236	0.9343	0.0942	+
Predictor: Diet 24_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 24_h Needle Diet 6.5185 1 7.9850 0.0341 0.8413 0.1090 ns 24_h SF Diet 0.0009 1 4.8921 0.9767 0.0196 1.0000 ns 72_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns 72_h SF Diet 2.6348 1 6.9154 0.1491 0.6089 0.2659 ns Predictor: Route 24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.0622 + 24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 </td <td>SF</td> <td>WN</td> <td>Time_point</td> <td>0.0010</td> <td>1</td> <td>7.9009</td> <td>0.9756</td> <td>0.0126</td> <td>1.0000</td> <td>ns</td>	SF	WN	Time_point	0.0010	1	7.9009	0.9756	0.0126	1.0000	ns
24_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 24_h Needle Diet 6.5185 1 7.9850 0.0341 0.8413 0.1090 ns 24_h SF Diet 0.0009 1 4.8921 0.9767 0.0196 1.0000 ns 72_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns 72_h SF Diet 2.6348 1 6.9154 0.1491 0.6089 0.2659 ns Predictor: Route 24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.0622 + 24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 ns 72_h	SF	MN	Time_point	0.9577	1	6.3626	0.3635	0.5490	0.5287	ns
24_h Needle Diet 6.5185 1 7.9850 0.0341 0.8413 0.1090 ns 24_h SF Diet 0.0009 1 4.8921 0.9767 0.0196 1.0000 ns 72_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns 72_h SF Diet 2.6348 1 6.9154 0.1491 0.6089 0.2659 ns Predictor: Route 24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.0622 + 24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 ns 72_h WN Route 7.7990 2 7.5548 0.0145 0.6443 0.0776 +	Predictor:	Diet								
24_h SF Diet 0.0009 1 4.8921 0.9767 0.0196 1.0000 ns 72_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns 72_h SF Diet 2.6348 1 6.9154 0.1491 0.6089 0.2659 ns Predictor: Route 24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.0622 + 24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 ns 72_h WN Route 7.7990 2 7.5548 0.0145 0.6443 0.0776 +	24_h	Ctrl	Diet	2.6169	1	7.0286	0.1496	0.5569	0.2659	ns
72_h Ctrl Diet 2.6169 1 7.0286 0.1496 0.5569 0.2659 ns 72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns 72_h SF Diet 2.6348 1 6.9154 0.1491 0.6089 0.2659 ns Predictor: Route 24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.0622 + 24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 ns 72_h WN Route 7.7990 2 7.5548 0.0145 0.6443 0.0776 +	24_h	Needle	Diet	6.5185	1	7.9850	0.0341	0.8413	0.1090	ns
72_h Needle Diet 1.3637 1 7.6805 0.2779 0.5236 0.4446 ns 72_h SF Diet 2.6348 1 6.9154 0.1491 0.6089 0.2659 ns Predictor: Route 24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.0622 + 24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 ns 72_h WN Route 7.7990 2 7.5548 0.0145 0.6443 0.0776 +	24_h	SF	Diet	0.0009	1	4.8921	0.9767	0.0196	1.0000	ns
72_h SF Diet 2.6348 1 6.9154 0.1491 0.6089 0.2659 ns Predictor: Route 24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.0622 + 24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 ns 72_h WN Route 7.7990 2 7.5548 0.0145 0.6443 0.0776 +	72_h	Ctrl	Diet	2.6169	1	7.0286	0.1496	0.5569	0.2659	ns
Predictor: Route 24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.0622 + 24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 ns 72_h WN Route 7.7990 2 7.5548 0.0145 0.6443 0.0776 +	72_h	Needle	Diet	1.3637	1	7.6805	0.2779	0.5236	0.4446	ns
24_h WN Route 9.5871 2 7.8674 0.0078 0.8982 0.0622 + 24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 ns 72_h WN Route 7.7990 2 7.5548 0.0145 0.6443 0.0776 +	72_h	SF	Diet	2.6348	1	6.9154	0.1491	0.6089	0.2659	ns
24_h MN Route 4.6108 2 7.4049 0.0501 0.7502 0.1335 ns 72_h WN Route 7.7990 2 7.5548 0.0145 0.6443 0.0776 +	Predictor:	Route								
72_h WN Route 7.7990 2 7.5548 0.0145 0.6443 0.0776 +	24_h	WN	Route	9.5871	2	7.8674	0.0078	0.8982	0.0622	+
-	24_h	MN	Route	4.6108	2	7.4049	0.0501	0.7502	0.1335	ns
72_h MN Route 14.2513 2 7.7234 0.0026 0.7890 0.0409 *	72_h	WN	Route	7.7990	2	7.5548	0.0145	0.6443	0.0776	+
	72_h	MN	Route	14.2513	2	7.7234	0.0026	0.7890	0.0409	*

For the pairwise comparison, we applied a Linear contrast expression. The output showed that at 24 h post infection, the sand fly infection route was statistically significant from the control and needle inoculum in the well-nourished (WN) group (Table 18). At 72 h, the sand fly infection route was statistically significant from the control in the malnourished group. Further, statistically significant difference were observed between well-nourished and malnourished mice inoculated by needle at 24 h post infection and infected by sand fly at 72 h post infection for the needle and sand fly inoculum, respectively.

Appendix Table 18Monocytes: Pairwise comparison by Linear Contrast Expression

Predictor_1	Predictor_2	Group	Group.1	psihat	ci.lower	ci.upper	p.value	Sig.
Predictor: T	ime_point							
Ctrl	WN	24_h	72_h	0.0000	-0.0791	0.0791	1.0000	ns
Ctrl	MN	24_h	72_h	0.0000	-0.1169	0.1169	1.0000	ns
Needle	WN	24_h	72_h	-0.0114	-0.1337	0.1108	0.8281	ns
Needle	MN	24_h	72_h	-0.1838	-0.3324	-0.0352	0.0236	*
SF	WN	24_h	72_h	0.0009	-0.0646	0.0664	0.9756	ns
SF	MN	24_h	72_h	-0.0633	-0.2195	0.0928	0.3635	ns

Predictor:	Diet							
24_h	Ctrl	WN	MN	0.0700	-0.0322	0.1722	0.1496	ns
24_h	Needle	WN	MN	0.0908	0.0088	0.1728	0.0341	*
24_h	SF	WN	MN	0.0018	-0.1515	0.1551	0.9767	ns
72_h	Ctrl	WN	MN	0.0700	-0.0322	0.1722	0.1496	ns
72_h	Needle	WN	MN	-0.0816	-0.2439	0.0807	0.2779	ns
72_h	SF	WN	MN	-0.0624	-0.1535	0.0287	0.1491	ns
Predictor:	Route							
24_h	WN	Ctrl	Needle	-0.0393	-0.1416	0.0629	0.2879	ns
24_h	WN	Ctrl	SF	-0.1324	-0.2246	-0.0401	0.0089	**
24_h	WN	Needle	SF	-0.0930	-0.1863	0.0002	0.0276	*
24_h	MN	Ctrl	Needle	-0.0185	-0.1522	0.1152	0.6868	ns
24_h	MN	Ctrl	SF	-0.2005	-0.4060	0.0049	0.0418	*
24_h	MN	Needle	SF	-0.1820	-0.3834	0.0194	0.0418	*
72_h	WN	Ctrl	Needle	-0.0507	-0.2096	0.1081	0.3508	ns
72_h	WN	Ctrl	SF	-0.1315	-0.2271	-0.0359	0.0109	*
72_h	WN	Needle	SF	-0.0807	-0.2388	0.0774	0.2280	ns
72_h	MN	Ctrl	Needle	-0.2023	-0.4017	-0.0030	0.0258	*
72_h	MN	Ctrl	SF	-0.2638	-0.4067	-0.1210	0.0018	**
72_h	MN	Needle	SF	-0.0615	-0.2581	0.1351	0.3639	ns

Statistical power

Considering the small group N=5 and the low occurrence of statistical significant outcomes, it stood to reason that the study design was statistically underpowered by necessity to keep animal number and costs manageable. Thus, we performed a retrospective power analysis on the data by cell-type group to explore this.

Effect size estimation based on partial eta² Effect sizes were calculated by predictor and the different potential interaction combinations of them. Appendix tables 19 to 21 show the respective effect sizes. Note that upper ends of the confidence intervals were automatically set to 1 for this type of calculation. Large effect sizes reflected statistically meaningful differences in the data analysis. The partial eta² values from the effect size calculation were then used to the retrospective power calculations.

Appendix Table 19 Myeloid cells: Effect size estimation

Parameter	Eta2_partial	CI_low	CI_high	Effect_size	Effect Size
Diet	0.0073	0.0000	1	very small	very small
Route	0.5033	0.3277	1	large	large

Time_point	0.0017	0.0000	1	very small	very small
Diet:Route	0.0398	0.0000	1	small	small
Diet:Time_point	0.1270	0.0174	1	small	medium
Route:Time_point	0.0125	0.0000	1	very small	small
Diet:Route:Time_point	0.0689	0.0000	1	small	medium

Appendix Table 20 Neutrophils: Effect size estimation

Parameter	Eta2_partial	CI_low	CI_high	Effect_size	Effect Size
Diet	0.0041	0.0000	1	very small	very small
Route	0.5220	0.3496	1	large	large
Time_point	0.1716	0.0398	1	medium	large
Diet:Route	0.0016	0.0000	1	very small	very small
Diet:Time_point	0.1087	0.0101	1	small	medium
Route:Time_point	0.2980	0.1175	1	large	large
Diet:Route:Time_point	0.0645	0.0000	1	small	medium

Appendix Table 21 Monocytes: Effect size estimation

Parameter	Eta2_partial	CI_low	CI_high	Effect_size	Effect Size
Diet	0.0204	0.0000	1	small	small
Route	0.4711	0.2909	1	large	large
Time_point	0.0894	0.0035	1	small	medium
Diet:Route	0.0775	0.0000	1	small	medium
Diet:Time_point	0.0668	0.0000	1	small	medium
Route:Time_point	0.0733	0.0000	1	small	medium
Diet:Route:Time_point	0.0476	0.0000	1	small	small

Retrospective minimum total sample size estimation for 80% power The accepted rule of thumb is to have at least 80% (0.8 as ratio) statistical power in once data. For small mean differences within data of a high level of complexity, this is often hard to achieve, because of cost and ability to manage large sample sizes. For Myeloid_cells, only the predictor(s) "Route" and in interaction(s) "Diet:Time_point" resulted in optimal sample sizes that were within the total sample size of N=60, 60, 60 (Appendix table 22). The large proposed sample sizes for "Diet" and "Time_point" on their own suggested little statistically significant difference between groups by individual predictor. Thus, the most meaningful predictor for Myeloid_cells counts was the route of infection; by needle, sand fly, or no-infection (control).

Appendix Table 22Myeloid Cells: Minimum optimal sample size calculation

Effect	power	n.total	ncp	df1	df2
Diet					
Diet	0.8	1067	7.863	1	1064.116
Route					
Route	0.8	14	13.197	2	10.022
Time_point					
Time_point	0.8	4599	7.852	1	4596.543
Diet:Route					
Diet	0.8	192	7.931	1	185.328
Route	0.8	236	9.762	2	229.489
Diet:Route	0.8	236	9.762	2	229.489
Diet:Time_point					
Diet	0.8	57	8.149	1	52.006
Time_point	0.8	57	8.149	1	52.006
Diet:Time_point	0.8	57	8.149	1	52.006
Route:Time_point					
Route	0.8	762	9.673	2	755.924
Time_point	0.8	621	7.873	1	614.181
Route:Time_point	0.8	762	9.673	2	755.924
Diet:Route:Time_point					
Diet	0.8	109	8.008	1	96.268
Route	0.8	134	9.876	2	121.519
Time_point	0.8	109	8.008	1	96.268
Diet:Route	0.8	134	9.876	2	121.519
Diet:Time_point	0.8	109	8.008	1	96.268
Route:Time_point	0.8	134	9.876	2	121.519
Diet:Route:Time_point	0.8	134	9.876	2	121.519

Similar observation were made for Neutrophils counts, but here "Time_point" was a more meaningful predictor. Alongside "Route", proposed sample sizes were well within the total sample size of N=60, 60, 60 (Appendix Table 23).

Appendix Table 23Neutrophils: Minimum optimal sample size calculation

Effect	power	n.total	ncp	df1	df2
Diet					
Diet	0.8	1929	7.857	1	1926.454
Route					
Route	0.8	13	13.507	2	9.366
Time_point					
Time_point	0.8	40	8.266	1	37.898
Diet:Route					
Diet	0.8	4780	7.852	1	4773.506
Route	0.8	5868	9.640	2	5861.611
Diet:Route	0.8	5868	9.640	2	5861.611
Diet:Time_point					
Diet	0.8	67	8.098	1	62.403
Time_point	0.8	67	8.098	1	62.403
Diet:Time_point	0.8	67	8.098	1	62.403
Route:Time_point					
Route	0.8	27	11.202	2	20.386
Time_point	0.8	22	8.975	1	15.140
Route:Time_point	0.8	27	11.202	2	20.386
Diet:Route:Time_point					
Diet	0.8	117	7.996	1	104.054
Route	0.8	144	9.858	2	131.079
Time_point	0.8	117	7.996	1	104.054
Diet:Route	0.8	144	9.858	2	131.079
Diet:Time_point	0.8	117	7.996	1	104.054
Route:Time_point	0.8	144	9.858	2	131.079
Diet:Route:Time_point	0.8	144	9.858	2	131.079

For Monocytes counts, "Diet" became a more meaningful predictor, although it would still have required a 6.3 times larger total sample size tan was available for the study (Appendix Table 24). "Time_point" was about as meaningful as it had been for the Myeloid_cells. Thus, only "Route" was a meaningful predictor that had on its own proposed sample sizes within the total sample size of N=60, 60, 60.

Appendix Table 24 Monocytes: Minimum optimal sample size calculation

	ower	n.total	non	1.01	
		11.10141	ncp	df1	df2
Diet					
Diet	0.8	380	7.889	1	377.085
Route					
Route	0.8	15	12.722	2	11.281
Time_point					
Time_point	0.8	82	8.042	1	79.941
Diet:Route					
Diet	0.8	96	8.021	1	89.461
Route	0.8	118	9.898	2	111.798
Diet:Route	0.8	118	9.898	2	111.798
Diet:Time_point					
Diet	0.8	112	7.991	1	107.66
Time_point	0.8	112	7.991	1	107.66
Diet:Time_point	0.8	112	7.991	1	107.66
Route:Time_point					
Route	0.8	125	9.882	2	118.891
Time_point	0.8	102	8.010	1	95.238
Route:Time_point	0.8	125	9.882	2	118.891
Diet:Route:Time_point					
Diet	0.8	159	7.953	1	146.953
Route	0.8	196	9.794	2	183.745
Time_point	0.8	159	7.953	1	146.953
Diet:Route	0.8	196	9.794	2	183.745
Diet:Time_point	0.8	159	7.953	1	146.953
Route:Time_point	0.8	196	9.794	2	183.745
Diet:Route:Time_point	0.8	196	9.794	2	183.745

Retrospective calculation of statistical power in our data analysis The observations from the retrospective minimum sample size calculation was reflected in the power calculation for our data. For Myeloid_cells counts, only "Route" and the interaction of "Diet:Time_point" had sufficient statistical power to have a change to find statistically meaning differences in the data (Appendix Table 25).

Appendix Table 25 Myeloid Cells: Statistical power of data

Time_point Time_point 0.061 60 0.102 Diet:Route Diet 0.341 60 2.487	1 2 1	58 57 58
Diet 0.1 60 0.443 Route 1 60 60.805 Time_point Time_point 0.061 60 0.102 Diet:Route Diet 0.341 60 2.487	1	57
Route Route 1 60 60.805 Time_point 0.061 60 0.102 Diet:Route Diet 0.341 60 2.487	1	57
Route 1 60 60.805 Time_point 0.061 60 0.102 Diet:Route 0.341 60 2.487	1	58
Time_point Time_point 0.061 60 0.102 Diet:Route Diet 0.341 60 2.487	1	58
Time_point 0.061 60 0.102 Diet:Route 0.341 60 2.487		
Diet:Route Diet 0.341 60 2.487		
Diet 0.341 60 2.487	1	<i>5.1</i>
	1	<i>5</i> 1
		54
Route 0.259 60 2.487	2	54
Diet:Route 0.259 60 2.487	2	54
Diet:Time_point		
Diet 0.827 60 8.73	1	56
Time_point 0.827 60 8.73	1	56
Diet:Time_point 0.827 60 8.73	1	56
Route:Time_point		
Route 0.108 60 0.762	2	54
Time_point 0.138 60 0.762	1	54
Route:Time_point 0.108 60 0.762	2	54
Diet:Route:Time_point		
Diet 0.542 60 4.438	1	48
Route 0.431 60 4.438	2	48
Time_point 0.542 60 4.438	1	48
Diet:Route 0.431 60 4.438	2	48
Diet:Time_point 0.542 60 4.438	1	48
Route:Time_point 0.431 60 4.438	2	48
Diet:Route:Time_point 0.431	2	48

For Neutrophils counts, "Route" and "Time_points as much as their interaction had >80% statistical power, while the interaction "Diet:Time_point" was close to 80% statistical power (Appendix Table 26).

Appendix Table 26 Neutrophils: Statistical power of data

Effect power n.total ncp df1 df2 Diet 0.078 60 0.244 1 58 Route 1 60 65.534 2 57 Time_point 0.934 60 12.431 1 58 Diet:Route 0.061 60 0.099 1 54 Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Time_point 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Route:Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513						
Diet 0.078 60 0.244 1 58 Route 1 60 65.534 2 57 Time_point 0.934 60 12.431 1 58 Diet:Route 0.061 60 0.099 1 54 Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Time_point 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Route:Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.999 60 25.473 2 54 Diet:Route:Time_point 0.995 60 25.473 2 54 Diet:Route 0.405 60 4.134 1 48 Route 0.405	Effect	power	n.total	ncp	df1	df2
Route 1 60 65.534 2 57 Time_point Time_point 0.934 60 12.431 1 58 Diet:Route 0.061 60 0.099 1 54 Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Time_point 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Route:Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.999 60 25.473 2 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 1 48	Diet					
Route 1 60 65.534 2 57 Time_point Time_point 0.934 60 12.431 1 58 Diet:Route 0.061 60 0.099 1 54 Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Time_point 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Route:Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.995 60 25.473 2 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 1 48	Diet	0.078	60	0.244	1	58
Time_point 0.934 60 12.431 1 58 Diet:Route 0.061 60 0.099 1 54 Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Time_point 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Route:Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.999 60 25.473 2 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 1 48 Diet:Route	Route					
Time_point 0.934 60 12.431 1 58 Diet:Route 0.061 60 0.099 1 54 Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Time_point 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Route:Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.995 60 25.473 2 54 Diet:Route 0.405 60 4.134 1 48 Route 0.405 60 4.134 1 48 Diet:Route <	Route	1	60	65.534	2	57
Diet:Route Diet:Route Diet:Route Diet:Route Diet:Route Diet:Route Diet:Route Diet:Route Diet:Time_point Diet Diet:Time_point Diet Diet:Time_point Diet:Route:Time_point Diet:Route:Time_point Diet:Route:Time_point Diet:Route:Time_point Diet:Route:Time_point Diet:Route:Time_point Diet:Route:Time_point Diet:Route Diet:Route Diet:Route Diet:Route Diet:Route Diet:Route Diet:Route Diet:Time_point Diet:Route Diet:Time_point Diet:Time_point	Time_point					
Diet 0.061 60 0.099 1 54 Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Time_point 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.999 60 25.473 2 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route:Route 0.405 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_poin	Time_point	0.934	60	12.431	1	58
Route 0.057 60 0.099 2 54 Diet:Route 0.057 60 0.099 2 54 Diet:Time_point Diet 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Route:Time_point Route 0.995 60 25.473 2 54 Time_point 0.995 60 25.473 2 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 1 48 Diet:Route 0.405 60 4.134 1 48 Diet:Time_point 0.513 60 4.134 1 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.513 60 </td <td>Diet:Route</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Diet:Route					
Diet:Route 0.057 60 0.099 2 54 Diet:Time_point 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Diet:Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.999 60 25.473 2 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 1 48 Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 1 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.513 60 4.134 1 48 Route	Diet	0.061	60	0.099	1	54
Diet: Time_point 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Diet: Time_point 0.758 60 7.317 1 56 Route: Time_point Route 0.995 60 25.473 2 54 Time_point 0.995 60 25.473 1 54 Route: Time_point 0.995 60 25.473 2 54 Diet: Route: Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 1 48 Diet: Route 0.405 60 4.134 1 48 Diet: Time_point 0.513 60 4.134 1 48 Diet: Time_point 0.513 60 4.134 1 48 Route: Time_point 0.513 60 4.134 1 48 Route: Time_point 0.513 60 4.134	Route	0.057	60	0.099	2	54
Diet 0.758 60 7.317 1 56 Time_point 0.758 60 7.317 1 56 Diet:Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.995 60 25.473 1 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 1 48 Diet:Route 0.405 60 4.134 1 48 Diet:Time_point 0.513 60 4.134 1 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.513 60 4.134 1 48 Route	Diet:Route	0.057	60	0.099	2	54
Time_point 0.758 60 7.317 1 56 Diet:Time_point 0.758 60 7.317 1 56 Route:Time_point Route 0.995 60 25.473 2 54 Time_point 0.999 60 25.473 1 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 1 48 Diet:Route 0.405 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.505 60 4.134 2 48	Diet:Time_point					
Diet:Time_point 0.758 60 7.317 1 56 Route:Time_point 0.995 60 25.473 2 54 Time_point 0.999 60 25.473 1 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 2 48 Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Diet	0.758	60	7.317	1	56
Route: Time_point Route 0.995 60 25.473 2 54 Time_point 0.999 60 25.473 1 54 Route: Time_point 0.995 60 25.473 2 54 Diet:Route: Time_point Diet 0.513 60 4.134 1 48 Route 0.405 60 4.134 2 48 Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Time_point	0.758	60	7.317	1	56
Route 0.995 60 25.473 2 54 Time_point 0.999 60 25.473 1 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 2 48 Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Diet:Time_point	0.758	60	7.317	1	56
Time_point 0.999 60 25.473 1 54 Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point Diet 0.513 60 4.134 1 48 Route 0.405 60 4.134 2 48 Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Route:Time_point					
Route:Time_point 0.995 60 25.473 2 54 Diet:Route:Time_point 0.513 60 4.134 1 48 Route 0.405 60 4.134 2 48 Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Route	0.995	60	25.473	2	54
Diet:Route:Time_point Diet 0.513 60 4.134 1 48 Route 0.405 60 4.134 2 48 Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Time_point	0.999	60	25.473	1	54
Diet 0.513 60 4.134 1 48 Route 0.405 60 4.134 2 48 Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Route:Time_point	0.995	60	25.473	2	54
Route 0.405 60 4.134 2 48 Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Diet:Route:Time_point					
Time_point 0.513 60 4.134 1 48 Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Diet	0.513	60	4.134	1	48
Diet:Route 0.405 60 4.134 2 48 Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Route	0.405	60	4.134	2	48
Diet:Time_point 0.513 60 4.134 1 48 Route:Time_point 0.405 60 4.134 2 48	Time_point	0.513	60	4.134	1	48
Route:Time_point 0.405 60 4.134 2 48	Diet:Route	0.405	60	4.134	2	48
	Diet:Time_point	0.513	60	4.134	1	48
Diet:Route:Time_point 0.405 60 4.134 2 48	Route:Time_point	0.405	60	4.134	2	48
	Diet:Route:Time_point	0.405	60	4.134	2	48

Similar to Myeloid_cells counts, for Monocytes counts, "Route" was the only predictor that produce >80% statistical power on its own, but not in any interaction with "Diet" and/or "Time_point" (Appendix Table 27).

Appendix Table 27 Monocytes: Statistical power of data

Effect power n.total ncp df1 df2 Diet 0.196 60 1.249 1 58 Route 1 60 53.449 2 57 Time_point Time_point 0.665 60 5.888 1 58 Diet:Route Diet 0.597 60 5.041 1 54 Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Route 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Diet:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.571 60 4.747 2 54 Diet:Route:Time_point 0.460 60 4.747						
Diet 0.196 60 1.249 1 58 Route 1 60 53.449 2 57 Time_point 0.665 60 5.888 1 58 Diet:Route Diet 0.597 60 5.041 2 54 Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Time_point 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.747 2 54 Time_point 0.571 60 4.747 2 54 Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.304 60 3.002 1 48	Effect	power	n.total	ncp	df1	df2
Route 1 60 53.449 2 57 Time_point 0.665 60 5.888 1 58 Diet:Route 0.597 60 5.041 1 54 Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Time_point 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.571 60 4.747 2 54 Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 1 48 Diet:Route 0.3	Diet					
Route 1 60 53.449 2 57 Time_point 0.665 60 5.888 1 58 Diet:Route 0.597 60 5.041 1 54 Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Time_point 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.571 60 4.747 2 54 Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 1 48 Diet:Route 0.3	Diet	0.196	60	1.249	1	58
Time_point Diet:Route Diet 0.597 60 5.041 1 54 Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Time_point 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.747 2 54 Time_point 0.571 60 4.747 2 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.397 60 3.002 1 48 Diet:Route 0.304 60	Route					
Time_point 0.665 60 5.888 1 58 Diet:Route 0.597 60 5.041 1 54 Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Time_point 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Diet:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.747 2 54 Time_point 0.571 60 4.747 2 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 1 48 Diet:Route 0.304 60 3.002 1 48 Diet:Time_point	Route	1	60	53.449	2	57
Diet:Route 0.597 60 5.041 1 54 Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Time_point 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.747 2 54 Time_point 0.571 60 4.747 2 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.304 60 3.002 1 48 Route 0.304 60 3.002 1 48 Diet:Route 0.304 60 3.002 1 48 Diet:Time_point	Time_point					
Diet 0.597 60 5.041 1 54 Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Time_point 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Route:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.571 60 4.747 2 54 Time_point 0.460 60 4.747 1 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point	Time_point	0.665	60	5.888	1	58
Route 0.484 60 5.041 2 54 Diet:Route 0.484 60 5.041 2 54 Diet:Time_point 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Diet:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.460 60 4.747 2 54 Time_point 0.571 60 4.747 1 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48 Route:Time_po	Diet:Route					
Diet:Route 0.484 60 5.041 2 54 Diet:Time_point 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Diet:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.460 60 4.747 2 54 Time_point 0.571 60 4.747 1 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 1 48 Diet:Route 0.304 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.397 60 3.002 2 48 Route:Ti	Diet	0.597	60	5.041	1	54
Diet:Time_point Diet 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Diet:Time_point 0.531 60 4.294 1 56 Route:Time_point Route 0.460 60 4.747 2 54 Time_point 0.460 60 4.747 2 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point Diet:Route 0.304 60 3.002 1 48 Diet:Route 0.304 60 3.002 1 48 Diet:Time_point 0.304 60 3.002 1 48 Route:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Route	0.484	60	5.041	2	54
Diet 0.531 60 4.294 1 56 Time_point 0.531 60 4.294 1 56 Diet:Time_point 0.531 60 4.294 1 56 Route:Time_point Route 0.460 60 4.747 2 54 Time_point 0.460 60 4.747 1 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.397 60 3.002 2 48 Route:Time_point 0.304 60 3.002 2	Diet:Route	0.484	60	5.041	2	54
Time_point 0.531 60 4.294 1 56 Diet:Time_point 0.531 60 4.294 1 56 Route:Time_point Route 0.460 60 4.747 2 54 Time_point 0.571 60 4.747 1 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 2 48 Diet:Route 0.304 60 3.002 1 48 Diet:Time_point 0.397 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48 Route:Time_point 0.304 60 3.002 2 48	Diet:Time_point					
Diet:Time_point 0.531 60 4.294 1 56 Route:Time_point 0.460 60 4.747 2 54 Time_point 0.571 60 4.747 1 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 2 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Diet	0.531	60	4.294	1	56
Route: Time_point Route 0.460 60 4.747 2 54 Time_point 0.571 60 4.747 1 54 Route: Time_point 0.460 60 4.747 2 54 Diet:Route: Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 2 48 Time_point 0.397 60 3.002 1 48 Diet: Route 0.304 60 3.002 2 48 Diet: Route 0.304 60 3.002 2 48 Diet: Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 2 48 Route: Time_point 0.397 60 3.002 2 48 Diet: Time_point 0.397 60 3.002 2 48 Route: Time_point 0.397 60 3.002 2 48	Time_point	0.531	60	4.294	1	56
Route 0.460 60 4.747 2 54 Time_point 0.571 60 4.747 1 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point Diet 0.397 60 3.002 1 48 Route 0.304 60 3.002 2 48 Time_point 0.304 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Diet:Time_point	0.531	60	4.294	1	56
Time_point 0.571 60 4.747 1 54 Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point Diet 0.397 60 3.002 1 48 Route 0.304 60 3.002 2 48 Time_point 0.397 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Route:Time_point					
Route:Time_point 0.460 60 4.747 2 54 Diet:Route:Time_point 0.397 60 3.002 1 48 Route 0.304 60 3.002 2 48 Time_point 0.397 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Route	0.460	60	4.747	2	54
Diet:Route:Time_point Diet 0.397 60 3.002 1 48 Route 0.304 60 3.002 2 48 Time_point 0.397 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Time_point	0.571	60	4.747	1	54
Diet 0.397 60 3.002 1 48 Route 0.304 60 3.002 2 48 Time_point 0.397 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Route:Time_point	0.460	60	4.747	2	54
Route 0.304 60 3.002 2 48 Time_point 0.397 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Diet:Route:Time_point					
Time_point 0.397 60 3.002 1 48 Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Diet	0.397	60	3.002	1	48
Diet:Route 0.304 60 3.002 2 48 Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Route	0.304	60	3.002	2	48
Diet:Time_point 0.397 60 3.002 1 48 Route:Time_point 0.304 60 3.002 2 48	Time_point	0.397	60	3.002	1	48
Route:Time_point 0.304 60 3.002 2 48	Diet:Route	0.304	60	3.002	2	48
	Diet:Time_point	0.397	60	3.002	1	48
Diet:Route:Time_point 0.304 60 3.002 2 48	Route:Time_point	0.304	60	3.002	2	48
	Diet:Route:Time_point	0.304	60	3.002	2	48

Conclusion

In conclusion, it can be said that the infection route (needle, sand fly, or uninfected) was the primary difference maker with respect to observed Myeloid_cells, Neutrophils and Monocytes counts in pooled mouse ear single-cell suspensions. It is of note that the nutritional status of the individuals did not have a detectable impact on the observed cell counts in the site of infection.

Panel e and f

Data analysis

Figure 1 e and f present the same samples as shown in figure 1b and c with added difference that only IL1B⁺ cells were counted. Again, the outcome variable of total IL1B⁺ Myeloid_cells counts and separately, IL1B⁺ Neutrophils and Monocytes counts from *N*=40, 40, 40 pools of single cell suspensions, respectively, prepared from BALB/c mouse ears infected with *Leishmania donovani* by needle or sand flies (SF) delivery at 24 h and 72 h post sand fly bites. Please, refer to the methods section of the publication for more details on sample preparation. Note that different mice were sampled at 24 h and 72 h post infection, which meant that this dataset satisfied the independence of data points and therefore, did not represent a repeatedly measured dataset. With the time point variable (Time_point), this dataset contained two more predictor variables: Mouse "Diet" (well-nourished [WN], malnourished [MN]) and infection "Route" (uninfected control, needle delivery [Needle], sand fly delivery [SF]). Based on this information, a three-way analysis was indicated.

Thus, we assessed the data for compliance with assumptions for a three-way ANOVA:

- Data normality
- Homogeneity of variance
- No significant outliers

Initial assumption assessment indicated that data transformation was required to meet assumptions for a three-way ANOVA only for the Neutrophils counts. Thus, we settled for a Box-Cox power transformation. Conversely, Monocytes did not need to be transformed to apply a Robust three-way ANOVA, while Neutrophils were analyzed by Simple linear regression post Box-Cox power transformation. The data transformation resulted in different data distributions and variances than appear in the main figure in the publication.

Assumption analyses

Data normality The assessment of the transformed data distribution for each group was conducted by Shpiro-Wilks test and QQ-plot for counts of Myeloid_cells, Neutrophils and Monocytes separately. Note that all groups of all datasets consisted of N=5 pools of mouse ear single-cell suspensions, which made it difficult to assess data distribution reliably by Shapiro-Wilks test.

Myeloid_cells In spite of assessment limitations due to small group sizes, we concluded based on Shpiro-Wilks test (Table 28) and QQ-pots (Fig.1e-f-1) that not all groups of the dataset were approximately normal distributed.

Appendix Table 28Myeloid cells: Univariate Shapito-Wilks test results

Diet	Route	Time_point	variable	statistic	p Outcome
------	-------	------------	----------	-----------	-----------

WN	Needle	24_h	Counts	0.9773	0.9198	ns
WN	Needle	72_h	Counts	0.9486	0.7275	ns
MN	Needle	24_h	Counts	0.8686	0.2608	ns
MN	Needle	72_h	Counts	0.9146	0.4960	ns
WN	SF	24_h	Counts	0.7364	0.0222	sig.
WN	SF	72_h	Counts	0.8934	0.3742	ns
MN	SF	24_h	Counts	0.8915	0.3649	ns
MN	SF	72_h	Counts	0.9664	0.8520	ns

Fig.1e-f-1: QQ-plots of myeloid cell counts split into groups by predictor variables

Neutrophils In spite of assessment limitations due to small group sizes, We concluded based on Shpiro-Wilks test (Table 29) and QQ-pots (Fig.1e-f-2) that all groups of the dataset were approximately normal distributed.

Appendix Table 29 Neutrophils: Univariate Shapito-Wilks test results

Diet	Route	Time_point	variable	statistic	p	Outcome
WN	Needle	24_h	Counts	0.9664	0.8514	ns
WN	Needle	72_h	Counts	0.9196	0.5271	ns
MN	Needle	24_h	Counts	0.9650	0.8420	ns
MN	Needle	72_h	Counts	0.8507	0.1967	ns
WN	SF	24_h	Counts	0.9704	0.8776	ns
WN	SF	72_h	Counts	0.9251	0.5632	ns
MN	SF	24_h	Counts	0.9265	0.5725	ns
MN	SF	72_h	Counts	0.9361	0.6383	ns

Fig.1e-f-2: QQ-plots of neutrophil counts split into groups by predictor variables

Monocytes In spite of assessment limitations due to small group sizes, We concluded based on Shpiro-Wilks test (Table 30) and QQ-pots (Fig.1e-f-3) that all groups of the myeloid cell dataset were approximately normal distributed.

Appendix Table 30 Monocytes: Univariate Shapito-Wilks test results

Diet	Route	Time_point	variable	statistic	p	Outcome
WN	Needle	24_h	Counts	0.9542	0.7674	ns
WN	Needle	72_h	Counts	0.8933	0.3740	ns
MN	Needle	24_h	Counts	0.9561	0.7806	ns
MN	Needle	72_h	Counts	0.8828	0.3221	ns
WN	SF	24_h	Counts	0.8563	0.2151	ns
WN	SF	72_h	Counts	0.9219	0.5422	ns
MN	SF	24_h	Counts	0.9430	0.6874	ns
MN	SF	72_h	Counts	0.8849	0.3319	ns

Fig.1e-f-3: QQ-plots of monocyte counts split into groups by predictor variables

Homogeneity of variance The assessment of homogeneity of variance was also conducted for myeloid cell, neutrophil and monocyte counts separately. We employed a Levene's test for the whole model for

each dataset. The p-value for the test suggested that the assumption of homogeneity of variance held for Myeloid_cells (p=0.5389), held for Neutrophils (p=0.401), and was rejected for Monocytes (p=0.0011).

Outliers It can be difficult to determine outliers in small datasets reliably as the analysis is dependent on the interquartile range of the data per group. We attempted it anyway, but increased the coefficient from 1.5 to 3 for less stringency. We found 6 outliers in the Myeloid_cells dataset (Table 31), 2 outliers in the Neutrophils dataset (Table 32), and 1 outliers in the Monocytes dataset (Table 33).

Appendix Table 31 Myeloid cells: List of possible outliers

Diet	Route	Time_point	is.outlier	is.extreme
MN	Needle	24_h	TRUE	TRUE
MN	Needle	72_h	TRUE	FALSE
WN	SF	24_h	TRUE	TRUE
WN	SF	24_h	TRUE	TRUE
MN	SF	72_h	TRUE	FALSE
MN	SF	72_h	TRUE	FALSE

Appendix Table 32 Neutrophils: List of possible outliers

Diet	Route	Time_point	is.outlier	is.extreme
MN	Needle	24_h	TRUE	FALSE
MN	Needle	24_h	TRUE	FALSE

Appendix Table 33 Monocytes: List of possible outliers

Diet	Route	Time_point	is.outlier	is.extreme
MN	SF	72_h	TRUE	FALSE

Three-way analysis

Myeloid_cells Based on the assumption analysis, we decided to apply a Simple linear regression to the Myeloid_cells dataset to determine the effects of "Diet", infection "Route" and time post infection ("Time_point") on the Myeloid_cells counts per pooled ear single-cell suspension (Table 34). The appropriateness of the Simple linear regression was confirmed by checking the model residuals for normal distribution (Shapiro-Wilks test: 0.771; Fig.1e-f-4).

Fig.1e-f-4: QQ-plots of monocyte counts split into groups by predictor variables

The test output of the Simple linear regression showed that only the "Route" and "Time_point" predictors were statistically significant factors, while the interaction between Time_point and Diet was statistically significant, too. The importance of the "Time_point" predictor was a significant difference for the IL1B⁺ Myeloid_cells counts, compared to observations in figure 1b & c, when IL1B⁺ was not considered.

Appendix Table 34Myeloid cells: Robust three-way ANOVA

Predictors	Df	Sum Sq	Mean Sq	F value	Pr(>F)	sig.
Diet	1	0.0056	0.0056	1.1286	0.2960	ns
Route	1	0.4567	0.4567	91.9654	< 0.0001	****
Time_point	1	0.0750	0.0750	15.1095	0.0005	***
Diet:Route	1	0.0016	0.0016	0.3309	0.5692	ns
Diet:Time_point	1	0.0585	0.0585	11.7781	0.0017	**
Route:Time_point	1	0.0069	0.0069	1.3874	0.2475	ns
Diet:Route:Time_point	1	0.0080	0.0080	1.6065	0.2141	ns

As we performed a Simple linear regression, we were not able to analyze main and simple simple effects of predictors, but moved immediately to perform a pairwise comparison. We applied a Estimated marginal means analysis and the output showed that at 24 h post infection, the sand fly infection route was statistically significant from the control and needle inoculum in the well-nourished (WN) group (Table 37). At 72 h, the sand fly infection route was statistically significant from the control in the malnourished group. Further, statistically significant difference were observed between well-nourished and malnourished mice inoculated by needle at 24 h post infection and infected by sand fly at 72 h post infection.

Appendix Table 37Myeloid cells: Pairwise comparison by Estimated marginal means analysis

Pairing	estimate	SE	df	t.ratio	p.value	sig.
WN Needle 24_h - MN Needle 24_h	0.0682	0.0446	32	1.5309	0.9831	ns
WN Needle 24_h - WN SF 24_h	-0.2245	0.0446	32	-5.0377	0.0005	***
WN Needle 24_h - MN SF 24_h	-0.1871	0.0446	32	-4.1991	0.0056	**
WN Needle 24_h - WN Needle 72_h	0.1651	0.0446	32	3.7043	0.0221	*
WN Needle 24_h - MN Needle 72_h	0.0239	0.0446	32	0.5358	1.0000	ns
WN Needle 24_h - WN SF 72_h	-0.0634	0.0446	32	-1.4230	0.9935	ns
WN Needle 24_h - MN SF 72_h	-0.1225	0.0446	32	-2.7488	0.2399	ns
MN Needle 24_h - WN SF 24_h	-0.2928	0.0446	32	-6.5686	< 0.0001	****
MN Needle 24_h - MN SF 24_h	-0.2554	0.0446	32	-5.7300	0.0001	****
MN Needle 24_h - WN Needle 72_h	0.0969	0.0446	32	2.1734	0.6547	ns
MN Needle 24_h - MN Needle 72_h	-0.0443	0.0446	32	-0.9951	1.0000	ns
MN Needle 24_h - WN SF 72_h	-0.1317	0.0446	32	-2.9539	0.1513	ns
MN Needle 24_h - MN SF 72_h	-0.1907	0.0446	32	-4.2797	0.0044	**
WN SF 24_h - MN SF 24_h	0.0374	0.0446	32	0.8386	1.0000	ns
WN SF 24_h - WN Needle 72_h	0.3896	0.0446	32	8.7421	< 0.0001	****
WN SF 24_h - MN Needle 72_h	0.2484	0.0446	32	5.5735	0.0001	***
WN SF 24_h - WN SF 72_h	0.1611	0.0446	32	3.6147	0.0282	*
WN SF 24_h - MN SF 72_h	0.1020	0.0446	32	2.2889	0.5592	ns
MN SF 24_h - WN Needle 72_h	0.3522	0.0446	32	7.9034	< 0.0001	****
MN SF 24_h - MN Needle 72_h	0.2110	0.0446	32	4.7349	0.0012	**
MN SF 24_h - WN SF 72_h	0.1237	0.0446	32	2.7761	0.2262	ns
MN SF 24_h - MN SF 72_h	0.0646	0.0446	32	1.4503	0.9915	ns
WN Needle 72_h - MN Needle 72_h	-0.1412	0.0446	32	-3.1685	0.0900	+
WN Needle 72_h - WN SF 72_h	-0.2285	0.0446	32	-5.1274	0.0004	***
WN Needle 72_h - MN SF 72_h	-0.2876	0.0446	32	-6.4531	< 0.0001	****
MN Needle 72_h - WN SF 72_h	-0.0873	0.0446	32	-1.9588	0.8172	ns
MN Needle 72_h - MN SF 72_h	-0.1464	0.0446	32	-3.2846	0.0671	+
WN SF 72_h - MN SF 72_h	-0.0591	0.0446	32	-1.3258	0.9976	ns

Neutrophils Based on the assumption analysis, we decided to apply a Robust three-way ANOVA to the Neutrophils dataset to determine the effects of "Diet", infection "Route" and time post infection ("Time_point") on the Neutrophils count per pooled ear single-cell suspension (Table 38). The test output showed that, as for Myeloid_cells counts, "Route" and "Time_point" were both statistically significant predictors, while here, their interaction was also statistically meaningful.

Appendix Table 38 Neutrophils: Robust three-way ANOVA

Predictors	value	p.value	sig.
Diet	0.6656	0.4400	ns
Route	37.4846	0.0001	****
Time_point	211.6458	0.0010	***
Diet:Route	0.0973	0.7640	ns
Diet:Time_point	2.7393	0.1340	ns
Route:Time_point	11.3037	0.0080	**
Diet:Route:Time_point	0.3065	0.5960	ns

We looked for main effects by splitting the data by each predictor separately and analyzed the respective remaining two predictor by a Robust two-way ANOVA. After adjustment of p-values for multiple tests, we observed statistically significant differences for the "Time_point" variable, when the data was split by "Route" or by "Diet"; in well-nourished group for Route, Time_point and their interaction were statistically meaningful, while for the malnourished state, there was no meaningful interaction between these predictors when the data was split by "Diet"; and for "Route was only meaningful at 24 h post infection, when the data was split by Time_point (Table 39).

Appendix Table 39 Neutrophils: Robust two-way ANOVA

Grouper	Predictor	value	p.value	Sig.	p.value.adj	sig.				
Grouped by Route										
Needle	Diet	0.2902	0.603	ns	0.6784	ns				
Needle	Time_point	68.5031	0.001	***	0.0026	**				
Needle	Diet:Time_point	1.2155	0.297	ns	0.3819	ns				
SF	Diet	0.0001	0.993	ns	0.9930	ns				
SF	Time_point	159.7806	0.001	***	0.0026	**				
SF	Diet:Time_point	3.4747	0.086	+	0.1548	ns				
Grouped	Grouped by Diet									
WN	Route	55.4130	0.001	***	0.0026	**				
WN	Time_point	479.7172	0.001	***	0.0026	**				

WN	Route:Time_point	31.7623	0.001	***	0.0026	**		
MN	Route	12.4507	0.003	**	0.0068	**		
MN	Time_point	48.2204	0.001	***	0.0026	**		
MN	Route:Time_point	2.8633	0.110	ns	0.1800	ns		
Grouped by Time_point								
24_h	Diet	3.6650	0.085	+	0.1548	ns		
24_h	Route	57.8683	0.001	***	0.0026	**		
24_h	Diet:Route	0.0452	0.837	ns	0.8862	ns		
72_h	Diet	1.3260	0.272	ns	0.3766	ns		
72_h	Route	2.4858	0.140	ns	0.2100	ns		
72_h	Diet:Route	0.4236	0.528	ns	0.6336	ns		

For the analysis of the simple simple main effect for each respective predictor, we performed Robust one-way ANOVA with individual predictors of the data split by the other two predictors. The output showed "Time_point" post infestation was statistically significant across the board, while "Route" was only statistically significant during the 24 h time point. "Diet" played not significant role as a predictor (Table 40).

Appendix Table 40 Neutrophils: Robust one-way ANOVA

Predictor_1	Predictor_2	Effect	test	df1	df2	p.value	effsize	p.value.adj	sig.
Predictor: Time_point									
Needle	WN	Time_point	203.3793	1	5.9585	< 0.0001	1.1183	< 0.0001	****
Needle	MN	Time_point	14.4271	1	7.3720	0.0061	1.0154	0.0122	*
SF	WN	Time_point	280.9801	1	5.5483	< 0.0001	1.1235	< 0.0001	****
SF	MN	Time_point	35.7185	1	7.8502	0.0004	1.0791	0.0011	**
Predictor: Diet									
24_h	Needle	Diet	1.9911	1	4.5651	0.2226	0.7259	0.2945	ns
24_h	SF	Diet	1.7774	1	4.5402	0.2454	0.5247	0.2945	ns
72_h	Needle	Diet	0.1201	1	5.1645	0.7426	0.2162	0.7426	ns
72_h	SF	Diet	1.6983	1	6.9708	0.2339	0.7251	0.2945	ns
Predictor: Ro	oute								
24_h	WN	Route	236.8953	1	7.5189	< 0.0001	1.1347	< 0.0001	****
24_h	MN	Route	14.6124	1	7.4408	0.0058	1.0516	0.0122	*
72_h	WN	Route	0.9975	1	7.0332	0.3510	0.4008	0.3829	ns
72_h	MN	Route	1.5798	1	7.8076	0.2451	0.5136	0.2945	ns

For the pairwise comparison, we applied a Linear contrast expression. As all three factors where

dichotomous, the pairwise comparison reflected the one-way ANVOA results (Table 41).

Appendix Table 41 Neutrophils: Pairwise comparison by Linear Contrast Expression

Predictor_1	Predictor_2	Group	Group.1	psihat	ci.lower	ci.upper	p.value	Sig.		
Predictor: Time_point										
Needle	WN	24_h	72_h	2.7044	2.2396	3.1692	< 0.0001	****		
Needle	MN	24_h	72_h	2.0686	0.7938	3.3433	0.0061	**		
SF	WN	24_h	72_h	4.5783	3.8966	5.2600	< 0.0001	****		
SF	MN	24_h	72_h	3.4015	2.0847	4.7184	0.0004	***		
Predictor: D	Predictor: Diet									
24_h	Needle	WN	MN	0.4732	-0.4142	1.3606	0.2226	ns		
24_h	SF	WN	MN	0.5915	-0.5846	1.7676	0.2454	ns		
72_h	Needle	WN	MN	-0.1626	-1.3570	1.0319	0.7426	ns		
72_h	SF	WN	MN	-0.5853	-1.6481	0.4776	0.2339	ns		
Predictor: Ro	oute									
24_h	WN	Needle	SF	-2.1745	-2.5040	-1.8451	< 0.0001	****		
24_h	MN	Needle	SF	-2.0563	-3.3131	-0.7994	0.0058	**		
72_h	WN	Needle	SF	-0.3006	-1.0117	0.4104	0.3510	ns		
72_h	MN	Needle	SF	-0.7233	-2.0561	0.6095	0.2451	ns		

Monocytes Based on the assumption analysis, we decided to apply a Robust three-way ANOVA to the Monocytes dataset to determine the effects of "Diet", infection "Route" and time post infection ("Time_point") on the Monocytes count per pooled ear single-cell suspension (Table 42). As for Myeloid_cells and Neutrophils counts, "Route" and "Time_point" were statistically significant predictors. However, not significant interaction between predictors was observed for Monocytes counts.

Appendix Table 42 Monocytes: Robust three-way ANOVA

Predictors	value	p.value	sig.
Diet	1.1474	0.360	ns
Route	20.1101	0.006	**
Time_point	24.8237	0.003	**
Diet:Route	0.8115	0.428	ns
Diet:Time_point	0.0604	0.822	ns
Route:Time_point	4.6317	0.096	+
Diet:Route:Time_point	2.4210	0.200	ns

We looked for main effects by splitting the data by each predictor separately and analyzed the respective remaining two predictor by a Robust two-way ANOVA. After adjustment of p-values for multiple tests, we observed statistically significant differences for the "Time_point" variable, when the data was split by "Route" or by "Diet"; in well-nourished and mal-nourished groups we observed statistical significance for "Route" and "Time_point", while no significant interactions were observed when the data was split by "Diet"; and for "Route" was meaningful at both, 24 h and 72 h post infection, when the data was split by Time_point (Table 43). Overall, "Diet" played not meaning role as a predictor.

Appendix Table 43 Monovytes: Robust two-way ANOVA

Grouper	Predictor	value	p.value	Sig.	p.value.adj	sig.			
Grouped by Route									
Needle	Diet	0.0991	0.760	ns	0.7600	ns			
Needle	Time_point	25.6851	0.001	***	0.0045	**			
Needle	Diet:Time_point	5.7556	0.034	*	0.0680	+			
SF	Diet	0.6918	0.437	ns	0.4916	ns			
SF	Time_point	23.4448	0.001	***	0.0045	**			
SF	Diet:Time_point	1.2852	0.298	ns	0.3831	ns			
Grouped by Diet									
WN	Route	47.9950	0.001	***	0.0045	**			
WN	Time_point	68.8826	0.001	***	0.0045	**			
WN	Route:Time_point	1.9584	0.189	ns	0.2835	ns			
MN	Route	11.5996	0.010	**	0.0225	*			
MN	Time_point	12.2280	0.009	**	0.0225	*			
MN	Route:Time_point	6.4702	0.038	*	0.0684	+			
Grouped l	by Time_point								
24_h	Diet	0.3760	0.562	ns	0.5951	ns			
24_h	Route	20.4756	0.002	**	0.0060	**			
24_h	Diet:Route	1.8171	0.223	ns	0.3088	ns			
72_h	Diet	0.8951	0.373	ns	0.4476	ns			
72_h	Route	18.2554	0.002	**	0.0060	**			
72_h	Diet:Route	3.2974	0.105	ns	0.1718	ns			

For the analysis of the simple simple main effect for each respective predictor, we performed Robust one-way ANOVA with individual predictors of the data split by the other two predictors. The output showed "Time_point" post infestation was statistically significant across the board with the exception for malnourished individuals inoculated by needle, while "Route" was only statistically significant during the within the well-nourished group at either time point. "Diet" was only statistically significant for the needle inoculated groups at 72 h post infection (Table 44).

Appendix Table 44 Monocytes: Robust one-way ANOVA

Predictor_1	Predictor_2	Effect	test	df1	df2	p.value	effsize	p.value.adj	sig.	
Predictor: Ti	Predictor: Time_point									
Needle	WN	Time_point	24.2428	1	4.4410	0.0060	1.0016	0.0181	*	
Needle	MN	Time_point	4.1902	1	6.5974	0.0823	0.7082	0.1235	ns	
SF	WN	Time_point	46.2024	1	5.9611	0.0005	1.1175	0.0031	**	
SF	MN	Time_point	9.6448	1	4.8214	0.0280	0.9127	0.0528	+	
Predictor: Diet										
24_h	Needle	Diet	1.2696	1	7.4413	0.2949	0.4586	0.3538	ns	
24_h	SF	Diet	1.0760	1	4.5597	0.3514	0.4648	0.3834	ns	
72_h	Needle	Diet	12.7301	1	5.9683	0.0119	0.8820	0.0286	*	
72_h	SF	Diet	0.2225	1	5.3766	0.6557	0.3242	0.6557	ns	
Predictor: Re	oute									
24_h	WN	Route	19.9581	1	7.9596	0.0021	1.1520	0.0085	**	
24_h	MN	Route	9.8710	1	4.3690	0.0308	0.8864	0.0528	+	
72_h	WN	Route	58.1556	1	5.8388	0.0003	1.1400	0.0031	**	
72_h	MN	Route	1.7950	1	5.2796	0.2351	0.5765	0.3135	ns	

For the pairwise comparison, we applied a Linear contrast expression. As all three factors where dichotomous, the pairwise comparison reflected the one-way ANVOA results (Table 45).

Appendix Table 45 Monocytes: Pairwise comparison by Linear Contrast Expression

Predictor_1	Predictor_2	Group	Group.1	psihat	ci.lower	ci.upper	p.value	Sig.		
Predictor: Ti	Predictor: Time_point									
Needle	WN	24_h	72_h	99.6	45.5687	153.6313	0.0060	**		
Needle	MN	24_h	72_h	35.6	-6.0383	77.2383	0.0823	+		
SF	WN	24_h	72_h	140.0	89.5221	190.4779	0.0005	***		
SF	MN	24_h	72_h	225.6	36.7654	414.4346	0.0280	*		
Predictor: D	iet									
24_h	Needle	WN	MN	27.8	-29.8466	85.4466	0.2949	ns		
24_h	SF	WN	MN	-74.2	-263.5526	115.1526	0.3514	ns		
72_h	Needle	WN	MN	-36.2	-61.0582	-11.3418	0.0119	*		
72_h	SF	WN	MN	11.4	-49.4453	72.2453	0.6557	ns		

Predictor: Route									
24_h	WN	Needle	SF	-120.2	-182.2997	-58.1003	0.0021	**	
24_h	MN	Needle	SF	-222.2	-412.1896	-32.2104	0.0308	*	
72_h	WN	Needle	SF	-79.8	-105.5774	-54.0226	0.0003	***	
72_h	MN	Needle	SF	-32.2	-93.0104	28.6104	0.2351	ns	

Statistical power

Considering the small group N=5, it stood to reason that the study design was statistically underpowered by necessity to keep animal number and costs manageable. Thus, we performed a retrospective power analysis on the data by cell-type group to explore this.

Effect size estimation based on partial eta² Effect sizes were calculated by predictor and the different potential interaction combinations of them. Appendix tables 46 to 48 show the respective effect sizes. Note that upper ends of the confidence intervals were automatically set to 1 for this type of calculation. Large effect sizes reflected statistically meaningful differences in the data analysis. The partial eta² values from the effect size calculation were then used to the retrospective power calculations.

Appendix Table 46 Myeloid cells: Effect size estimation

Parameter	Eta2_partial	CI_low	CI_high	Effect_size	Effect Size
Diet	0.0125	0.0000	1	very small	small
Route	0.6490	0.4742	1	large	large
Time_point	0.3162	0.1108	1	large	large
Diet:Route	0.0001	0.0000	1	very small	very small
Diet:Time_point	0.0965	0.0000	1	small	medium
Route:Time_point	0.2078	0.0382	1	medium	large
Diet:Route:Time_point	0.0001	0.0000	1	very small	very small

Appendix Table 47 Neutrophils: Effect size estimation

Parameter	Eta2_partial	CI_low	CI_high	Effect_size	Effect Size
Diet	0.0330	0.0000	1	small	small
Route	0.5814	0.3864	1	large	large
Time_point	0.7717	0.6469	1	large	large
Diet:Route	0.0117	0.0000	1	very small	small
Diet:Time_point	0.0758	0.0000	1	small	medium
Route:Time_point	0.5408	0.3368	1	large	large

Appendix Table 48 Monocytes: Effect size estimation

Parameter	Eta2_partial	CI_low	CI_high	Effect_size	Effect Size
Diet	0.0241	0.0000	1	small	small
Route	0.5015	0.2911	1	large	large
Time_point	0.5500	0.3478	1	large	large
Diet:Route	0.0142	0.0000	1	very small	small
Diet:Time_point	0.0023	0.0000	1	very small	very small
Route:Time_point	0.2055	0.0370	1	medium	large
Diet:Route:Time_point	0.0983	0.0000	1	small	medium

Retrospective minimum total sample size estimation for 80% power The accepted rule of thumb is to have at least 80% (0.8 as ratio) statistical power in once data. For small mean differences within data of a high level of complexity, this is often hard to achieve, because of cost and ability to manage large sample sizes. For Myeloid_cells, the predictors "Route" and "Time_point" as much as the interaction "Diet:Time_point" resulted in optimal sample sizes that were within the total sample size of N=40, 40, 40 (Appendix table 49). The large proposed sample sizes for "Diet" on its own and within most of its interactions suggested little statistically significant difference between groups with respect to "Diet".

Appendix Table 49 Myeloid Cells: Minimum optimal sample size calculation

Effect	power	n.total	ncp	df1	df2
Diet					
Diet	0.8	620	7.873	1	617.5
Route					
Route	0.8	7	12.601	1	4.815
Time_point					
Time_point	0.8	20	8.832	1	17.095
Diet:Route					
Diet	0.8	64408	7.849	1	64403.09
Route	0.8	64408	7.849	1	64403.09
Diet:Route	0.8	64408	7.849	1	64403.09
Diet:Time_point					

Diet	0.8	76	8.065	1	71.503
Time_point	0.8	76	8.065	1	71.503
Diet:Time_point	0.8	76	8.065	1	71.503
Route:Time_point					
Route	0.8	33	8.422	1	28.106
Time_point	0.8	33	8.422	1	28.106
Route:Time_point	0.8	33	8.422	1	28.106
Diet:Route:Time_point					
Diet	0.8	83400	7.849	1	83391.34
Route	0.8	83400	7.849	1	83391.34
Time_point	0.8	83400	7.849	1	83391.34
Diet:Route	0.8	83400	7.849	1	83391.34
Diet:Time_point	0.8	83400	7.849	1	83391.34
Route:Time_point	0.8	83400	7.849	1	83391.34
Diet:Route:Time_point	0.8	83400	7.849	1	83391.34

Similar observation were made for Neutrophils counts, but here the interaction "Route:Time_point" was within the total sample size of N=40, 40 (Appendix Table 50). The involvement of "Diet" produced large minimum sample sizes again, suggesting that no true difference may be observed here with respect to "Diet".

Appendix Table 50Neutrophils: Minimum optimal sample size calculation

Effect	power	n.total	ncp	df1	df2
Diet					
Diet	0.8	232	7.915	1	229.662
Route					
Route	0.8	9	11.256	1	6.104
Time_point					
Time_point	0.8	6	17.344	1	3.132
Diet:Route					
Diet	0.8	665	7.872	1	660.599
Route	0.8	665	7.872	1	660.599
Diet:Route	0.8	665	7.872	1	660.599
Diet:Time_point					
Diet	0.8	98	8.013	1	93.677

Time_point	0.8	98	8.013	1	93.677
Diet:Time_point	0.8	98	8.013	1	93.677
Route:Time_point					
Route	0.8	10	11.518	1	5.78
Time_point	0.8	10	11.518	1	5.78
Route:Time_point	0.8	10	11.518	1	5.78
Diet:Route:Time_point					
Diet	0.8	347	7.894	1	338.278
Route	0.8	347	7.894	1	338.278
Time_point	0.8	347	7.894	1	338.278
Diet:Route	0.8	347	7.894	1	338.278
Diet:Time_point	0.8	347	7.894	1	338.278
Route:Time_point	0.8	347	7.894	1	338.278
Diet:Route:Time_point	0.8	347	7.894	1	338.278

For Monocytes counts, the same observations were true as for Myeloid_cells counts with the exception that "Diet" did not have a major detrimental effect on predicted minimum sample size for the three way interaction ("Diet:Route:Time_point"; Appendix Table 51).

Appendix Table 51 Monocytes: Minimum optimal sample size calculation

Effect	power	n.total	ncp	df1	df2
Diet					
Diet	0.8	320	7.897	1	317.655
Route					
Route	0.8	11	10.197	1	8.134
Time_point					
Time_point	0.8	9	10.786	1	6.826
Diet:Route					
Diet	0.8	547	7.877	1	542.2
Route	0.8	547	7.877	1	542.2
Diet:Route	0.8	547	7.877	1	542.2
Diet:Time_point					
Diet	0.8	3455	7.853	1	3450.162
Time_point	0.8	3455	7.853	1	3450.162

Diet:Time_point	0.8	3455	7.853	1	3450.162
Route:Time_point					
Route	0.8	33	8.413	1	28.521
Time_point	0.8	33	8.413	1	28.521
Route:Time_point	0.8	33	8.413	1	28.521
Diet:Route:Time_point					
Diet	0.8	75	8.083	1	66.118
Route	0.8	75	8.083	1	66.118
Time_point	0.8	75	8.083	1	66.118
Diet:Route	0.8	75	8.083	1	66.118
Diet:Time_point	0.8	75	8.083	1	66.118
Route:Time_point	0.8	75	8.083	1	66.118
Diet:Route:Time_point	0.8	75	8.083	1	66.118

Retrospective calculation of statistical power in our data analysis The observations from the retrospective minimum sample size calculation was reflected in the power calculation for our data. For Myeloid_cells counts, only "Route" and "Time_point" and the interaction of "Diet:Time_point" had sufficient statistical power to have a change to find statistically meaning differences in the data (Appendix Table 52).

Appendix Table 52 Myeloid Cells: Statistical power of data

Effect	power	n.total	ncp	df1	df2
Diet					
Diet	0.107	40	0.508	1	38
Route					
Route	1	40	73.967	1	38
Time_point					
Time_point	0.987	40	18.501	1	38
Diet:Route					
Diet	0.051	40	0.005	1	36
Route	0.051	40	0.005	1	36
Diet:Route	0.051	40	0.005	1	36
Diet:Time_point					
Diet	0.521	40	4.273	1	36
Time_point	0.521	40	4.273	1	36

Diet:Time_point	0.521	40	4.273	1	36
Route:Time_point					
Route	0.883	40	10.492	1	36
Time_point	0.883	40	10.492	1	36
Route:Time_point	0.883	40	10.492	1	36
Diet:Route:Time_point					
Diet	0.05	40	0.004	1	32
Route	0.05	40	0.004	1	32
Time_point	0.05	40	0.004	1	32
Diet:Route	0.05	40	0.004	1	32
Diet:Time_point	0.05	40	0.004	1	32
Route:Time_point	0.05	40	0.004	1	32
Diet:Route:Time_point	0.05	40	0.004	1	32

For Neutrophils counts, "Route" and "Time_points as much as their interaction had >80% statistical power, while the interaction "Diet:Time_point" was close to 80% statistical power (Appendix Table 53).

Appendix Table 53 Neutrophils: Statistical power of data

Effect	power	n.total	ncp	df1	df2
Diet					
Diet	0.207	40	1.367	1	38
Route					
Route	1	40	55.554	1	38
Time_point					
Time_point	1	40	135.188	1	38
Diet:Route					
Diet	0.103	40	0.474	1	36
Route	0.103	40	0.474	1	36
Diet:Route	0.103	40	0.474	1	36
Diet:Time_point					
Diet	0.422	40	3.281	1	36
Time_point	0.422	40	3.281	1	36
Diet:Time_point	0.422	40	3.281	1	36
Route:Time_point					

Route	1	40	47.107	1	36
Time_point	1	40	47.107	1	36
Route:Time_point	1	40	47.107	1	36
Diet:Route:Time_point					
Diet	0.153	40	0.912	1	32
Route	0.153	40	0.912	1	32
Time_point	0.153	40	0.912	1	32
Diet:Route	0.153	40	0.912	1	32
Diet:Time_point	0.153	40	0.912	1	32
Route:Time_point	0.153	40	0.912	1	32
Diet:Route:Time_point	0.153	40	0.912	1	32

Similar to Neutrophils counts, for Monocytes counts, "Route" and "Time_points as much as their interaction had >80% statistical power, while the interaction"Diet:Time_point" was close to 80% statistical power (Appendix Table 54).

Appendix Table 54 Monocytes: Statistical power of data

Effect	power	n.total	ncp	df1	df2
Diet					
Diet	0.163	40	0.988	1	38
Route					
Route	1	40	40.247	1	38
Time_point					
Time_point	1	40	48.886	1	38
Diet:Route					
Diet	0.115	40	0.577	1	36
Route	0.115	40	0.577	1	36
Diet:Route	0.115	40	0.577	1	36
Diet:Time_point					
Diet	0.06	40	0.091	1	36
Time_point	0.06	40	0.091	1	36
Diet:Time_point	0.06	40	0.091	1	36
Route:Time_point					
Route	0.879	40	10.347	1	36
Time_point	0.879	40	10.347	1	36

Route:Time_point	0.879	40	10.347	1	36					
Diet:Route:Time_point										
Diet	0.526	40	4.362	1	32					
Route	0.526	40	4.362	1	32					
Time_point	0.526	40	4.362	1	32					
Diet:Route	0.526	40	4.362	1	32					
Diet:Time_point	0.526	40	4.362	1	32					
Route:Time_point	0.526	40	4.362	1	32					
Diet:Route:Time_point	0.526	40	4.362	1	32					

Conclusion

In conclusion, it can be said that the infection route (needle, sand fly, or uninfected) as much as the time point of data collection (24 h vs. 72 h) were the primary difference makers with respect to observed Myeloid_cells, Neutrophils and Monocytes counts in pooled mouse ear single-cell suspensions when IL1B⁺ was considered. It is of note that the nutritional status of the individuals did not have a detectable impact on the observed IL1B⁺ cell counts in the site of infection.

Panel h

Here, we are presenting the relative fold difference in the heme oxygenase-1 (HO-1) protein levels in well-nourished (WN) and malnourished (MN) BALB/s mice infected with *Leishmania donovani* parasites via the sand fly route or uninfected. Heat-shock protein 90 (Hsp90) was used as a house-keeping gene control for the Western blot loading control and well-nourished control (WN Ctrl) mice served as a HO-1 concentration reference. Three Western blots were produced with different pooled samples as biological replicas. To normalize the band intensity readings, we first normalized the Hsp90 loading controls by dividing them with the value for WN Ctrl Hsp90 for each Western blot separately. We then divided the HO-1 readings by the normalized Hsp90 readings for each sample lane, respectively. Fold change differences were then calculated by dividing all normalized HO-1 readings with the normalized WN Ctrl HO-1 reading for each Western blot separately. The resulted in all WN Ctrl HO-1 readings to be set to 1. As this eliminated any data variance in WN Ctrl group, it was treated as the baseline reference and thus, was disconsidered from the statistical analysis.

The remaining three groups, well-nourished sand fly infected (WN SF), malnourished control (MN Ctrl) and mal-nourished sand fly infected (MN SF) were analyzed by the Kruskal-Wallis test, were analyzed by Kruskal-Wallis test followed post hoc by the Dunn's test for pairwise comparison. The output showed a p-value of 0.148, which was not statistically significant. The pairwise comparison by Dunn's test confirmed that no statistically significant differences were observed between WN SF, MN Ctrl and MN SF

.

Appendix Table 55
Dunn's test

group1	group2	n1	n2	statistic	p	p.adj	p.adj.signif
MN_CTRL	MN_SF	3	3	1.9379	0.0526	0.1579	ns
MN_CTRL	WN_SF	3	3	0.7454	0.4561	0.4661	ns
MN_SF	WN_SF	3	3	-1.1926	0.2330	0.4661	ns

It is of not that the median fold difference of the MN Ctrl group was 2.766 higher than that of the WN Ctrl group, showing that more HO-1 was present in malnourished mice prior to infection, but that did not seem to have a profound impact on the median HO-1 fold differences compared to the WN Ctrl reference post infection by sand fly for malnourished compared to well-nourished mice(WN SF: 6.379, MN SF: 8.088).

Figure 2

Panel a

Data analysis

We analysed the frequency of *Leishmania donovani* dissemination to the draining lymph node in a total of *N*=32 well-nourished (WN) and malnourished (MN) BALB/c mice infected intradermally either by "needle" injection or sand fly bite (SF) (*N*: MN_Needle=8, MN_SF=8, WN_Needle=8, WN_SF=8) by contingency table analysis and logistic regression.

Contingency table

Due to the small sample sizes, there were several expected counts <5, why we opted for the Fisher's Exact test, which had the added benefit of exact p-value calculation. The analysis rendered a p-value of 0.444, suggesting no statistically significant difference between groups. This was confirmed by the pairwise Fisher's Exact test corrected by the Benjamin-Hochberg method (Appendix table 56).

Appendix Table 56 Pairwise Fisher's Exact test

group1	group2	n	estimate	p	conf.low	conf.high	alternative	p.adj	p.adj.signif
MN_Needle	MN_SF	16	Inf	1.000	0.0256	Inf	two.sided	1	ns
MN_Needle	WN_Needle	16	0.2605	0.569	0.0040	4.4010	two.sided	1	ns
MN_Needle	WN_SF	16	0.4516	1.000	0.0064	10.7913	two.sided	1	ns
MN_SF	WN_Needle	16	0.0000	0.200	0.0000	2.2053	two.sided	1	ns
MN_SF	WN_SF	16	0.0000	0.467	0.0000	5.2059	two.sided	1	ns
WN_Needle	WN_SF	16	1.7346	1.000	0.1359	28.9942	two.sided	1	ns

We observed 3.84-fold and 2.21-fold reduction in parasite dissemination events in well-nourished animals infected by needle and sand fly, respectively, compared to malnourished, needle inoculated ones, but the 95% confidence intervals were so large that 1 was included, suggesting that this decreased occurrence in dissemination was not statistically significant (Appendix table 57). However, applying a retrospective statistical power calculation showed that the sample size was to small to detect a meaningful difference here and thus, our statistical power was well below the standard 80% (Appendix table 58), but larger sample sizes were prohibitive due to cost and loss of life.

Appendix Table 57Odds Ratios

Groups	estimate	lower	upper	p.value
MN_Needle	1.0000	NA	NA	NA
MN_SF	Inf	0.0256	Inf	1.0000
WN_Needle	0.2605	0.0040	4.4010	0.5692
WN_SF	0.4516	0.0064	10.7913	1.0000

Appendix Table 58 Retrospective Power Calculation

	Calculation for					
Parameters	Sample size	Statistical power				
Statistical power	0.8	0.367				
Total n	86	32				
Degrees of freedom	3	3				
Non-centrality parameter	10.903	4.103				
Type I error rate	0.05	0.05				
Type II error rate	0.2	0.633				

Logistic regression

We applied a logistic regression model to the same data and assessed the two predictor variables "Diet" and "Route" without an interaction term to assess individual predictor contribution to the outcome. The data output showed that infection route did not have much impact on whether parasites made it to the draining lymph nodes or not (p=0.3472), suggesting a mere 2.57-fold increase in probability of parasite dissemination when sand flies were used (Appendix table 59), which was equivalent to a small effect size (Appendix table 60). Conversely, although not reaching statistical significance either, there was an indication in the data, that "Diet" affects parasites capacity to disseminate to the draining lymph nodes as the p-value approached statistical significance (p=0.0949), indicating a 7.19-fold increase in the probability of parasite dissemination (Appendix table 59), which was equivalent to a large effect size (Appendix table

60). Even so, neither predictor achieved statistical significance according to Wald test (Appendix table 61).

Appendix Table 59 Logistic regression output

Groups	Estimate	lower CI	upper CI	Std. Error	partial.R2	z value	Pr(> z)	sig.
(Intercept)	0.3582	-0.9967	1.7994	0.6888	0.0000	0.5200	0.6030	ns
DietMN	1.9727	-0.0533	5.0210	1.1813	0.1206	1.6699	0.0949	+
RouteSF	0.9452	-0.9604	3.1423	1.0055	0.0340	0.9400	0.3472	ns

Appendix Table 60 Odds Ratios

Predictor	OR	2.5 %	97.5 %	Effect_size
(Intercept)	1.4307	0.3691	6.0459	very small
DietMN	7.1900	0.9481	151.5553	large
RouteSF	2.5733	0.3827	23.1574	small

Appendix Table 61 Wald test

Predictor	chi2	df	P
Diet	2.79	1	0.0949
Route	0.88	1	0.3472

However, although none of the predictors was statistically significant in the logistic regression model, did not mean that they had no meaningful biological effect. A retrospective sample size and power calculation with the study data showed that the study was well underpowered for the logistic regression, as it was already for the contingency table analysis (Appendix table 62). The proposed minimum total sample size that permit both predictor a chance to identify a meaningful statistical different by this calculation was 382, which was ~12-times of the study's sample size, which was prohibitive due to cost and excessive loss of life. Even so, there was a good indication of potential biological significance with respect to nutritional status. Considering the predicted probability of parasite dissemination, it can be seen that being malnourished increased the probability of parasite dissemination (Appendix table 63). The large confidence intervals, however, did not render statistical significance, which does not exclude biological significance. Even the route of infection showed at least in the well-nourished model a considerable increase in predicted probability of parasite dissemination from needle to sand fly inoculation. Thus, the lack of statistical power and high data variance prevented the obtainment of statistical significance.

Appendix Table 62 Retrospective power analyses

Calculation	Predictor	Beta0	Beta1	R-square	alpha	Power	TotalN	NCP	Alternative
Sample_size	Diet	1.466	1.973	0.034	0.05	0.80	144	2.606	not equal
Sample_size	Route	1.466	0.945	0.121	0.05	0.80	382	2.752	not equal
Power	Diet	0.358	1.973	0.034	0.05	0.48	32	1.908	not equal
Power	Route	0.358	0.945	0.121	0.05	0.19	32	1.117	not equal

Appendix Table 63 Predicted probability of parasite dissemination

Diet	Route	fit	se.fit	Predicted_Probability	lower_CI	upper_CI
WN	Needle	0.3582	0.6888	0.5886	0.2706	0.8466
WN	SF	1.3034	0.8107	0.7864	0.4291	0.9475
MN	Needle	2.3309	1.0825	0.9114	0.5521	0.9885
MN	SF	3.2761	1.2532	0.9636	0.6942	0.9968

Panel b

Data analysis

We analysed the frequency of *Leishmania donovani* dissemination to the spleen in a total of *N*=92 well-nourished (WN) and malnourished (MN) BALB/c mice infected intradermally either by "needle" injection or sand fly bite (SF) (*N*: MN_Needle=23, MN_SF=23, WN_Needle=23, WN_SF=23) by contingency table analysis and logistic regression.

Contingency table

Here, we opted for the Chi-square test as assumptions held. The analysis rendered a p-value of 0.0742, suggesting no statistically significant difference between groups. This was confirmed by the pairwise Chi-square test corrected by the Benjamin-Hochberg method (Appendix table 64).

Appendix Table 64 Pairwise Chi-square test

n	group1	group2	statistic	p	df	p.adj	p.adj.signif
46	MN_Needle	MN_SF	3.7829	0.0518	1	0.155	ns
46	MN_Needle	WN_Needle	0.0000	1.0000	1	1.000	ns
46	MN_Needle	WN_SF	0.0000	1.0000	1	1.000	ns
46	MN_SF	WN_Needle	4.9730	0.0257	1	0.154	ns

46	MN_SF	WN_SF	2.6960	0.1010	1	0.202	ns
46	WN_Needle	WN_SF	0.1027	0.7490	1	1.000	ns

However, while we observed a 1.21-fold reduction in parasite dissemination events in well-nourished animals infected by needle, compared to malnourished, needle inoculated ones, we also observed an increase in parasite dissemination both, malnourished and well-nourished mice, infected by sand fly bite, but only the malnourished group had significantly higher odds of dissemination (Appendix table 65). Applying a retrospective statistical power calculation showed that the sample size was to small to detect a meaningful statistical difference here and thus, our statistical power was somewhat below the standard 80% (Appendix table 66), but larger sample sizes were prohibitive due to cost and loss of life.

Appendix Table 65
Odds Ratios

Groups	estimate	lower	upper	p.value
MN_Needle	1.0000	NA	NA	NA
MN_SF	8.3203	1.2566	227.4435	0.047
WN_Needle	0.8255	0.2294	2.9144	1.000
WN_SF	1.2305	0.3296	4.7180	1.000

Appendix Table 66 Retrospective Power Calculation

	Calculation for					
Parameters	Sample size	Statistical power				
Statistical power	0.8	0.585				
Total n	145	92				
Degrees of freedom	3	3				
Non-centrality parameter	10.903	6.93				
Type I error rate	0.05	0.05				
Type II error rate	0.2	0.415				

Logistic regression

We applied a logistic regression model to the same data and assessed the two predictor variables "Diet" and "Route" without an interaction term to assess individual predictor contribution to the outcome. The data output showed that infection route had much more impact on whether parasites made it to the spleen or not (p=0.0524) than to the draining lymph nodes (Fig.2a). However, we observed a mere 2.76-fold increase in probability of parasite dissemination when sand flies were used for infection (Appendix table 67), which was equivalent to a small effect size (Appendix table 68). There was also little indication

in the data, that "Diet" on its own affected parasite capacity to disseminate to the spleen, indicating a mere 2.15-fold increase in the probability of parasite dissemination (Appendix table 67), which was equivalent to a small effect size (Appendix table 68). Thus, neither predictor on its own achieved statistical significance according to Wald test (Appendix table 69). However, re-running the logistic regression model with an interaction term showed that the interaction between "Diet" and "Route" had much more potency than either predictor on its own, already hinted at by the odds ratios from the chi-square analysis, even though, the interaction term did not achieve statistical significance (Appendix table 70).

Appendix Table 67 Logistic regression output

Groups	Estimate	lower CI	upper CI	Std. Error	partial.R2	z value	Pr(> z)	sig.
(Intercept)	0.3695	-0.3890	1.1548	0.3897	0.0000	0.9482	0.3430	ns
DietMN	0.7640	-0.2277	1.8143	0.5156	0.0233	1.4817	0.1384	ns
RouteSF	1.0166	0.0186	2.0970	0.5241	0.0403	1.9396	0.0524	+

Appendix Table 68
Odds Ratios

Predictor	OR	2.5 %	97.5 %	Effect_size
(Intercept)	1.4470	0.6778	3.1733	very small
DietMN	2.1470	0.7964	6.1365	small
RouteSF	2.7638	1.0188	8.1414	small

Appendix Table 69
Wald test

Predictor	chi2	df	P
Diet	2.20	1	0.1384
Route	3.76	1	0.0524

Appendix Table 70Logistic regression with interaction output

Groups	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	0.6286	0.4378	1.4358	0.1510
DietMN	0.1981	0.6301	0.3143	0.7533
RouteSF	0.4128	0.6459	0.6392	0.5227
DietMN:RouteSF	1.8515	1.2914	1.4338	0.1516

A retrospective sample size and power calculation with the study data showed that the study was well underpowered for the logistic regression, as it was already for the contingency table analysis (Appendix table 71). The proposed minimum total sample size that permit both predictor a chance to identify a meaningful statistical different by this calculation was 397, which was ~4-times of the study's sample size, which was prohibitive due to cost and excessive loss of life. Even so, there was a good indication of potential biological significance with respect to interaction between "Diet" and "Route" of infection. Considering the predicted probability of parasite dissemination, it can be seen that parasite transmission by sand fly bite increased the predicted probability of parasite dissemination from needle inoculation for either nutritional status, respectively, which significant for well-nourished mice as can be seen from the confidence intervals (Appendix table 72). "Diet" on its own had a bigger impact on parasite dissemination for needle inoculation. Thus, there are good indications here that parasite transmission by sand fly had a meaningful biological effect on the probability of parasite dissemination to the spleen, which was aided by nutritional status more so for the needle inoculation than for the sand fly transmission.

Appendix Table 71 Retrospective power analyses

Calculation	Predictor	Beta0	Beta1	R-square	alpha	Power	TotalN	NCP	Alternative
Sample_size	Diet	1.157	0.764	0.040	0.05	0.80	397	2.773	not equal
Sample_size	Route	1.157	1.017	0.023	0.05	0.80	246	2.751	not equal
Power	Diet	0.369	0.764	0.040	0.05	0.37	92	1.641	not equal
Power	Route	0.369	1.017	0.023	0.05	0.56	92	2.114	not equal

Appendix Table 72 Predicted probability of parasite dissemination

Diet	Route	fit	se.fit	Predicted_Probability	lower_CI	upper_CI
WN	Needle	0.3695	0.3897	0.5913	0.4027	0.7564
WN	SF	1.3861	0.4557	0.8000	0.6208	0.9071
MN	Needle	1.1335	0.4333	0.7565	0.5706	0.8790
MN	SF	2.1502	0.5268	0.8957	0.7535	0.9602

Panel c

Here, we present the parasite counts per isolated draining lymph node according to qPCR as a measure of parasite dissemination to the organ. To analyze this data, we had to re-scale it, due to the occurrence of zero-values in instances of no detection, by dividing all value by the smallest non-zero value in the dataset. This resulted in a approximate Poisson / negative binomial distribution, which allowed the convenient analysis of the re-scaled and rounded counts by the appropriate models for these distributions.

We analyzed a total of N=32 BALB/c mice (WN_Needle=8, WN_SF=8, MN_Needle=8, MN_SF=8). These were the same mice as analyzed in figure 2a for parasite dissemination events. Here, we quantified

parasite burden per isolated draining lymph node. For the data analysis we tested several Poisson and negative binomial-type regression models. Based on the Akaike information criterion (AIC) we selected a standard negative_binomial regression model for the data analysis post data re-scaling. The model fitted the data well producing no statistically significant departure from 1 for its dispersion ratio (dispersion_ratio: 0.9701, p_value: 0.632) and showing a reasonable pseudo-R² (Nagelkerke (Cragg and Uhler): 0.412452). The model output showed that both, "Diet" and "Route" were statistically significant predictors, but there was no statistically significant interaction between these two predictors (Appendix table 73).

Appendix Table 73 Negative binomial regression model output

Predictors	Estimate	Std. Error	z value	Pr(> z)	sig.
(Intercept)	2.7568	0.5315	5.1868	< 0.0001	****
DietWN	-1.7918	0.7776	-2.3041	0.0212	*
RouteSF	2.0715	0.7470	2.7729	0.0056	**
DietWN:RouteSF	0.5977	1.0762	0.5554	0.5786	ns

The pairwise comparison based on the estimated marginal means showed that well-nourished needle inoculated BALB/c mice had statistically significantly less parasites in the draining lymph nodes than all other groups (Appendix table 74) and clearly clustered on its own (Appendix table 75). On the other hand, malnourished needle inoculated and well-nourished sand fly transmitted infection were comparable in their degree of parasite dissemination. Also, malnourished and well-nourished sand fly transmitted infection clustered together. Together, this data suggested that sand fly transmitted infections had statistically significant higher degree of parasite dissemination for each nutritional state, while malnourishment also exacerbated parasite dissemination. Ultimately, the effects of both variables seemed additive, but the regression model did not support this hypothesis, suggesting that either effect acted independently of one another.

Appendix Table 74Pairwise comparison based on estimated marginal means

Predictor pairs	estimate	SE	df	z.ratio	p.value	sig.
MN Needle - WN Needle	1.7918	0.7776	Inf	2.3041	0.0318	*
MN Needle - MN SF	-2.0715	0.7470	Inf	-2.7729	0.0111	*
MN Needle - WN SF	-0.8775	0.7486	Inf	-1.1721	0.2411	ns
WN Needle - MN SF	-3.8632	0.7732	Inf	-4.9967	< 0.0001	****
WN Needle - WN SF	-2.6692	0.7746	Inf	-3.4458	0.0017	**
MN SF - WN SF	1.1940	0.7439	Inf	1.6050	0.1302	ns

Appendix Table 75Pairwise comparison letter code

Diet	Route	emmean	SE	df	asymp.LCL	asymp.UCL	.group
WN	Needle	0.9651	0.5676	Inf	-0.4527	2.3828	a
MN	Needle	2.7568	0.5315	Inf	1.4293	4.0844	b
WN	SF	3.6343	0.5271	Inf	2.3177	4.9509	bc
MN	SF	4.8283	0.5249	Inf	3.5171	6.1395	c

Panel d

Here, we present the parasite counts per isolated spleen according to qPCR as a measure of parasite dissemination to the organ. To analyze this data, we had to re-scale it, due to the occurrence of zero-values in instances of no detection, by dividing all value by the smallest non-zero value in the dataset. This resulted in a approximate Poisson / negative binomial distribution, which allowed the convenient analysis of the re-scaled and rounded counts by the appropriate models for these distributions.

We analyzed a total of *N*=92 BALB/c mice (WN_Needle=23, WN_SF=23, MN_Needle=23, MN_SF=23). These were the same mice as analyzed in figure 2a for parasite dissemination events. Here, we quantified parasite burden per isolated draining lymph node. For the data analysis, we tested several Poisson and negative binomial-type regression models. Based on the Akaike information criterion (AIC), we selected a standard negative_binomial regression model for the data analysis. The model fit of the data was moderate, producing no statistically significant departure from 1 for its dispersion ratio (dispersion_ratio: 1.3039, p_value: 0.392), but producing only a pseudo-R² of 0.178589 (Nagelkerke (Cragg and Uhler)). The model output showed that "Diet" was the only statistically significant predictors, with "Route" and the interaction term producing no statistically significant result (Appendix table 76).

Appendix Table 76Negative binomial regression model output

Predictors	Estimate	Std. Error	z value	Pr(> z)	sig.
(Intercept)	2.9095	0.3223	9.0285	< 0.0001	****
DietWN	-0.9391	0.4598	-2.0424	0.0411	*
RouteSF	0.3943	0.4549	0.8669	0.3860	ns
DietWN:RouteSF	-1.0005	0.6535	-1.5310	0.1258	ns

The pairwise comparison based on the estimated marginal means showed that different nutritional statuses generally produced statistical significance, with the exception of malnourished and well-nourished needle inoculation, which was close to the significance threshold, though (Appendix table 77). In particular, well-nourished sand fly transmitted infection clustered away from malnourished mice, regardless of infection route (Appendix table 78). Conversely, parasite dissemination in sand fly transmitted infections

in malnourished BALB/c mice were clearly more efficient than in an well-nourished setting. Contrary to the draining lymph nodes, parasite dissemination to the spleen was clearly determined by the animals nutritional state, whether than infection route.

Appendix Table 77Pairwise comparison based on estimated marginal means

Predictor pairs	estimate	SE	df	z.ratio	p.value	sig.
MN Needle - WN Needle	0.9391	0.4598	Inf	2.0424	0.0617	+
MN Needle - MN SF	-0.3943	0.4549	Inf	-0.8669	0.3860	ns
MN Needle - WN SF	1.5452	0.4652	Inf	3.3213	0.0027	**
WN Needle - MN SF	-1.3334	0.4589	Inf	-2.9054	0.0073	**
WN Needle - WN SF	0.6061	0.4692	Inf	1.2919	0.2357	ns
MN SF - WN SF	1.9395	0.4644	Inf	4.1764	0.0002	***

Appendix Table 78Pairwise comparison letter code

Diet	Route	emmean	SE	df	asymp.LCL	asymp.UCL	.group
WN	SF	1.3643	0.3355	Inf	0.5262	2.2024	a
WN	Needle	1.9705	0.3279	Inf	1.1514	2.7895	ab
MN	Needle	2.9095	0.3223	Inf	2.1046	3.7144	bc
MN	SF	3.3039	0.3211	Inf	2.5019	4.1058	c

Panel e

Here, we investigated the lymph node barrier function in well-nourished and malnourished BALB/c mice infected with *Leishmania donovani* parasite via sand fly bites. The accumulation of intradermally injected 10,000 kDa-Dextran in the draining lymph nodes 72 h post sand fly bite were analyzed by Flow cytometry. We analyzed a total of *N*=19 BALB/c mice (MN_SF=9, WN_SF=10). For the data analysis, we tested Poisson and negative binomial regression models of the normalized cell counts, or beta regression after conversion of percentiles to ratios. Based on the Akaike information criterion (AIC), we selected a beta_regression model for the data analysis post data re-scaling. The model fit of the data was reasonable producing no statistically significant departure from 1 for its dispersion ratio (0.9284), but producing only a pseudo-R² of 0.1987. The model output showed that "Diet" was a statistically significant predictors (Appendix table 79) and its inclusion made the model distinct from the null model (Appendix table 80), showing that statistically significantly more Dextran was retained in draining lymph nodes from well-nourished BALB/c mice.

Appendix Table 79Beta regression model output

Predictors	Estimate	Std. Error	z value	Pr(> z)	sig.
(Intercept)	-1.2997	0.2663	-4.8806	< 0.0001	****
DietWN	0.7628	0.3418	2.2315	0.0256	*

Appendix Table 80 Beta regression model output

#Df	LogLik	Df	Chisq	Pr(>Chisq)	sig.
3	10.1577	NA	NA	NA	?
2	7.8903	-1	4.5349	0.0332	*

As the only predictor variable was dichotomous, there was strictly no need for a pairwise comparison. But we performed one anyway to ensure that the approach via estimated marginal means was comparable to the model output. The pairwise comparison based on the estimated marginal means showed that different nutritional statuses produced statistical significance comparable to the model output (Appendix table 81 & Appendix table 82). This supported the hypothesis that malnourishment resulted in a breakdown of the lymph node barrier, which could explained the increased parasite dissemination to the spleen in malnourished mice.

Appendix Table 81
Pairwise comparison based on estimated marginal means

Predictor pairs	estimate	SE	df	z.ratio	p.value	sig.
MN - WN	-0.1547	0.0674	Inf	-2.2944	0.0218	*

Appendix Table 82 Pairwise comparison letter code

Diet	emmean	SE	df	asymp.LCL	asymp.UCL	.group
MN	0.2142	0.0448	Inf	0.1137	0.3147	a
WN	0.3689	0.0516	Inf	0.2534	0.4845	b

Panel f

Whereas figure 2e looked at the retention of Dextran in draining lymph nodes, here, we investigated the accumulation of intradermally injected 10,000 kDa-Dextran in the spleen 72 h post sand fly bite, which made it passed the lymph node barrier. The samples were also analyzed by Flow cytometry. We analyzed

a total of *N*=19 BALB/c mice (MN_SF=9, WN_SF=10). This were the same mice as in figure 2e. For the data analysis, we tested Poisson and negative binomial regression models of the normalized cell counts, or beta regression after conversion of percentiles to ratios. Based on the Akaike information criterion (AIC), we selected a beta_regression model for the data analysis post data re-scaling. The model fit of the data was reasonable producing no statistically significant departure from 1 for its dispersion ratio (1.119), producing a pseudo-R² of 0.893. The model output showed that "Diet" was a statistically significant predictors (Appendix table 83) and its inclusion made the model distinct from the null model (Appendix table 84), showing that statistically significantly more Dextran accumulated in spleens from malnourished BALB/c mice.

Appendix Table 83Beta regression model output

Predictors	Estimate	Std. Error	z value	Pr(> z)	sig.
(Intercept)	-3.2827	0.0485	-67.7093	< 0.0001	****
DietWN	-0.9373	0.0862	-10.8747	< 0.0001	****

Appendix Table 84Beta regression model output

#Df	LogLik	Df	Chisq	Pr(>Chisq)	sig.
3	78.0812	NA	NA	NA	?
2	58.7547	-1	38.6529	< 0.0001	****

As the only predictor variable was dichotomous, there was strictly no need for a pairwise comparison. But we performed one anyway to ensure that the approach via estimated marginal means was comparable to the model output. The pairwise comparison based on the estimated marginal means showed that different nutritional statuses produced statistical significance comparable to the model output (Appendix table 85 & Appendix table 86). In agreement with the data from figure 2e, this data further supported the hypothesis that malnourishment resulted in a breakdown of the lymph node barrier, which could explained the increased parasite dissemination to the spleen in malnourished mice observed in figures 2c-d.

Appendix Table 85Pairwise comparison based on estimated marginal means

Predictor pairs	estimate	SE	df	z.ratio	p.value	sig.
MN - WN	0.0217	0.002	Inf	11.0138	< 0.0001	****

Appendix Table 86Pairwise comparison letter code

Diet	emmean	SE	df	asymp.LCL	asymp.UCL	.group
WN	0.0145	0.0010	Inf	0.0122	0.0168	a
MN	0.0362	0.0017	Inf	0.0324	0.0400	b

Figure 3

Panel a

Data analysis

In figure 3a, we present the longitudinal weekly observation of mouse body weight post *Leishmania donovani* infection, either by needle inoculation (needle), sand fly transmission (SF) or not at all (control). Information of a total of *N*=45 BALB/c mice (WN_Control: 8, MN_Control: 8, WN_Needle: 7, MN_Needle: 7, WN_SF: 8, MN_SF: 7) over the course of 22 weeks are shown here; "Week_0" being the weight before shipment, "Week_6" being the first week post-infection, and "Week_22" being the final week before the termination of the experiment.

Fig.3a: This an extended version of the main figure 3a from the publication showing as well the pre-infection time-points. The dotted line marked the point of mouse infection.

We would need to analyze the data with a three-way approach to account for the three predictors, "Time_point" was the within-subject factor, while "Diet" and "Route" were the between-subject factors in the analysis with "Weight_g" being the dependent outcome variable.

For a three-way mixed ANOVA, we had to assess the data for compliance with assumptions:

- Data normality
- Homogeneity of variance
- No significant outliers

Initial assumption assessment indicated that the Gaussian distribution assumption was not met along with the occurrence of several extreme outliers. Data transformation by Box-Cox power transformation reduced the magnitude of violation, although it did not completely remove it. Either way, we present the analysis of the assumption assessment with the transformed data below. Thus, data distribution and variance appear different in the main figure in the publication from the once that were used in the analysis post transformation.

Assumption analyses

Data normality The assessment of the untransformed data distribution for each group was conducted by Shpiro-Wilks test and QQ-plot after splitting the data by all three predictors. Note that all groups consisted of *N*=WN_Control: 8, MN_Control: 8, WN_Needle: 7, MN_Needle: 7, WN_SF: 8, MN_SF: 7 individuals, which made groups too small to assess data distribution reliably by Shapiro-Wilks test. In spite of this, we performed the analyses by Shapiro-Wilks test (Table 87) and QQ-pots (Fig.3a-1) and found deviations from normality.

Appendix Table 87Univariate Shapito-Wilks test results

Diet	Route	Time_point	variable	statistic	p	Outcome
Pre-I						
WN	Control	Week_0	Counts	0.7729	0.0146	sig.
MN	Control	Week_0	Counts	0.9118	0.3671	ns
WN	Needle	Week_0	Counts	0.6644	0.0015	sig.
MN	Needle	Week_0	Counts	0.8181	0.0615	ns
WN	SF	Week_0	Counts	0.7823	0.0184	sig.
MN	SF	Week_0	Counts	0.8333	0.0860	ns
WN	Control	Week_1	Counts	0.8468	0.0884	ns
MN	Control	Week_1	Counts	0.9006	0.2923	ns
WN	Needle	Week_1	Counts	0.9335	0.5814	ns
MN	Needle	Week_1	Counts	0.9593	0.8128	ns
WN	SF	Week_1	Counts	0.8352	0.0673	ns
MN	SF	Week_1	Counts	0.8678	0.1774	ns

WN	Control	Week_2	Counts	0.8406	0.0764	ns
MN	Control	Week_2	Counts	0.8894	0.2309	ns
WN	Needle	Week_2	Counts	0.9363	0.6056	ns
MN	Needle	Week_2	Counts	0.8935	0.2932	ns
WN	SF	Week_2	Counts	0.8253	0.0531	ns
MN	SF	Week_2	Counts	0.9515	0.7437	ns
WN	Control	Week_3	Counts	0.8942	0.2558	ns
MN	Control	Week_3	Counts	0.9273	0.4919	ns
WN	Needle	Week_3	Counts	0.8753	0.2065	ns
MN	Needle	Week_3	Counts	0.8073	0.0483	sig.
WN	SF	Week_3	Counts	0.8960	0.2656	ns
MN	SF	Week_3	Counts	0.9739	0.9249	ns
WN	Control	Week_4	Counts	0.9525	0.7363	ns
MN	Control	Week_4	Counts	0.9198	0.4281	ns
WN	Needle	Week_4	Counts	0.9146	0.4285	ns
MN	Needle	Week_4	Counts	0.8741	0.2016	ns
WN	SF	Week_4	Counts	0.9291	0.5079	ns
MN	SF	Week_4	Counts	0.9746	0.9292	ns
WN	Control	Week_5	Counts	0.9659	0.8639	ns
MN	Control	Week_5	Counts	0.8773	0.1773	ns
WN	Needle	Week_5	Counts	0.9319	0.5674	ns
MN	Needle	Week_5	Counts	0.8583	0.1463	ns
WN	SF	Week_5	Counts	0.9314	0.5289	ns
MN	SF	Week_5	Counts	0.9633	0.8463	ns
Post-	Infestion					
WN	Control	Week_6	Counts	0.9440	0.6508	ns
MN	Control	Week_6	Counts	0.9299	0.5147	ns
WN	Needle	Week_6	Counts	0.9699	0.8976	ns
MN	Needle	Week_6	Counts	0.8327	0.0848	ns
WN	SF	Week_6	Counts	0.9879	0.9911	ns
MN	SF	Week_6	Counts	0.9779	0.9487	ns
WN	Control	Week_7	Counts	0.9637	0.8444	ns
MN	Control	Week_7	Counts	0.9139	0.3825	ns
WN	Needle	Week_7	Counts	0.9147	0.4296	ns
MN	Needle	Week_7	Counts	0.9199	0.4688	ns
WN	SF	Week_7	Counts	0.9801	0.9632	ns
MN	SF	Week_7	Counts	0.9295	0.5467	ns
WN	Control	Week_8	Counts	0.9699	0.8969	ns
MN	Control	Week_8	Counts	0.9504	0.7148	ns
WN	Needle	Week_8	Counts	0.9015	0.3402	ns

MN	Needle	Week_8	Counts	0.8640	0.1643	ns
WN	SF	Week_8	Counts	0.9431	0.6420	ns
MN	SF	Week_8	Counts	0.8841	0.2453	ns
WN	Control	Week_9	Counts	0.9563	0.7743	ns
MN	Control	Week_9	Counts	0.9378	0.5895	ns
WN	Needle	Week_9	Counts	0.8770	0.2135	ns
MN	Needle	Week_9	Counts	0.9078	0.3810	ns
WN	SF	Week_9	Counts	0.9499	0.7105	ns
MN	SF	Week_9	Counts	0.9522	0.7493	ns
WN	Control	Week_10	Counts	0.9366	0.5777	ns
MN	Control	Week_10	Counts	0.9605	0.8145	ns
WN	Needle	Week_10	Counts	0.9026	0.3472	ns
MN	Needle	Week_10	Counts	0.9179	0.4533	ns
WN	SF	Week_10	Counts	0.9133	0.3782	ns
MN	SF	Week_10	Counts	0.9534	0.7606	ns
WN	Control	Week_11	Counts	0.9437	0.6478	ns
MN	Control	Week_11	Counts	0.9641	0.8477	ns
WN	Needle	Week_11	Counts	0.9074	0.3782	ns
MN	Needle	Week_11	Counts	0.8722	0.1940	ns
WN	SF	Week_11	Counts	0.9294	0.5107	ns
MN	SF	Week_11	Counts	0.9553	0.7771	ns
WN	Control	Week_12	Counts	0.9587	0.7981	ns
MN	Control	Week_12	Counts	0.9428	0.6389	ns
WN	Needle	Week_12	Counts	0.9434	0.6696	ns
MN	Needle	Week_12	Counts	0.9293	0.5452	ns
WN	SF	Week_12	Counts	0.9507	0.7186	ns
MN	SF	Week_12	Counts	0.9283	0.5365	ns
WN	Control	Week_13	Counts	0.9768	0.9453	ns
MN	Control	Week_13	Counts	0.9050	0.3205	ns
WN	Needle	Week_13	Counts	0.9768	0.9426	ns
MN	Needle	Week_13	Counts	0.9225	0.4887	ns
WN	SF	Week_13	Counts	0.9049	0.3195	ns
MN	SF	Week_13	Counts	0.9002	0.3323	ns
WN	Control	Week_14	Counts	0.9521	0.7323	ns
MN	Control	Week_14	Counts	0.8924	0.2464	ns
WN	Needle	Week_14	Counts	0.9310	0.5592	ns
MN	Needle	Week_14	Counts	0.9140	0.4244	ns
WN	SF	Week_14	Counts	0.8788	0.1834	ns
MN	SF	Week_14	Counts	0.9498	0.7279	ns
WN	Control	Week_15	Counts	0.9124	0.3715	ns
MN	Control	Week_15	Counts	0.8167	0.0431	sig.

WN	Needle	Week_15	Counts	0.7351	0.0088	sig.
MN	Needle	Week_15	Counts	0.9505	0.7338	ns
WN	SF	Week_15	Counts	0.9126	0.3729	ns
MN	SF	Week_15	Counts	0.9603	0.8210	ns
WN	Control	Week_16	Counts	0.8604	0.1212	ns
MN	Control	Week_16	Counts	0.8289	0.0578	ns
WN	Needle	Week_16	Counts	0.7123	0.0050	sig.
MN	Needle	Week_16	Counts	0.9455	0.6885	ns
WN	SF	Week_16	Counts	0.8795	0.1861	ns
MN	SF	Week_16	Counts	0.9444	0.6783	ns
WN	Control	Week_17	Counts	0.8210	0.0478	sig.
MN	Control	Week_17	Counts	0.8694	0.1487	ns
WN	Needle	Week_17	Counts	0.8980	0.3190	ns
MN	Needle	Week_17	Counts	0.9786	0.9522	ns
WN	SF	Week_17	Counts	0.8581	0.1149	ns
MN	SF	Week_17	Counts	0.9189	0.4612	ns
WN	Control	Week_18	Counts	0.8087	0.0354	sig.
MN	Control	Week_18	Counts	0.9667	0.8713	ns
WN	Needle	Week_18	Counts	0.8892	0.2706	ns
MN	Needle	Week_18	Counts	0.9528	0.7550	ns
WN	SF	Week_18	Counts	0.8360	0.0686	ns
MN	SF	Week_18	Counts	0.9453	0.6869	ns
WN	Control	Week_19	Counts	0.8965	0.2689	ns
MN	Control	Week_19	Counts	0.9282	0.4996	ns
WN	Needle	Week_19	Counts	0.6529	0.0011	sig.
MN	Needle	Week_19	Counts	0.9179	0.4532	ns
WN	SF	Week_19	Counts	0.8780	0.1801	ns
MN	SF	Week_19	Counts	0.9285	0.5383	ns
WN	Control	Week_20	Counts	0.8508	0.0971	ns
MN	Control	Week_20	Counts	0.9540	0.7517	ns
WN	Needle	Week_20	Counts	0.7695	0.0202	sig.
MN	Needle	Week_20	Counts	0.9215	0.4808	ns
WN	SF	Week_20	Counts	0.8922	0.2453	ns
MN	SF	Week_20	Counts	0.9223	0.4875	ns
WN	Control	Week_21	Counts	0.9517	0.7285	ns
MN	Control	Week_21	Counts	0.9221	0.4467	ns
WN	Needle	Week_21	Counts	0.8350	0.0893	ns
MN	Needle	Week_21	Counts	0.9039	0.3553	ns
WN	SF	Week_21	Counts	0.8391	0.0737	ns
MN	SF	Week_21	Counts	0.9255	0.5133	ns
WN	Control	Week_22	Counts	0.9688	0.8884	ns

MN	Control	Week_22	Counts	0.9392	0.6311	ns
WN	Needle	Week_22	Counts	0.8309	0.0816	ns
MN	Needle	Week_22	Counts	0.9453	0.6865	ns
WN	SF	Week_22	Counts	0.8552	0.1075	ns
MN	SF	Week_22	Counts	0.9137	0.4219	ns

Fig.3a-1: QQ-plots of myeloid cell counts split into groups by predictor variables

Homogeneity of variance The assessment of homogeneity of variance was conducted by Levene's test for the dataset split by the within-subject factor ("Time_point"). The analysis output showed that assumption of homogeneity between groups held for each week (Table 88).

Appendix Table 88Assessment of homogeneity of variance by week

Weeks p.i.	df1	df2	statistic	p	sig.
Pre-Infection	n				
Week_0	5	39	0.5518	0.7360	ns
Week_1	5	39	1.2268	0.3151	ns
Week_2	5	39	0.4165	0.8344	ns
Week_3	5	39	0.3987	0.8467	ns
Week_4	5	39	0.8811	0.5029	ns
Week_5	5	39	0.6984	0.6279	ns
Post-Infesti	on				
Week_6	5	39	1.0550	0.3998	ns
Week_7	5	39	1.1844	0.3344	ns
Week_8	5	39	0.8324	0.5347	ns
Week_9	5	39	0.4061	0.8416	ns
Week_10	5	39	0.5260	0.7551	ns
Week_11	5	39	0.3293	0.8922	ns
Week_12	5	39	0.5888	0.7084	ns
Week_13	5	39	0.2664	0.9287	ns
Week_14	5	39	0.1285	0.9850	ns
Week_15	5	39	0.8254	0.5393	ns
Week_16	5	39	1.5470	0.1979	ns
Week_17	5	39	1.6538	0.1688	ns
Week_18	5	39	0.9135	0.4824	ns
Week_19	5	39	0.7931	0.5612	ns
Week_20	5	39	0.9508	0.4595	ns
Week_21	5	39	0.2343	0.9451	ns
Week_22	5	38	0.3294	0.8921	ns

Outliers It can be difficult to determine outliers in small datasets reliably as the analysis is dependent on the interquartile range of the data per group. We attempted it anyway and found a total of 53 hypothetical outliers of which 7 were classed as extreme (Table 89).

Appendix Table 89List of possible outliers

Diet	Route	Time_point	is.outlier	is.extreme
Pre-Infection				
WN	Control	Week_0	TRUE	FALSE
WN	Control	Week_1	TRUE	FALSE
MN	Control	Week_1	TRUE	FALSE
MN	Control	Week_1	TRUE	TRUE
MN	Needle	Week_1	TRUE	FALSE
WN	SF	Week_1	TRUE	FALSE
MN	Control	Week_2	TRUE	FALSE
MN	Control	Week_2	TRUE	TRUE
WN	SF	Week_2	TRUE	FALSE
WN	SF	Week_2	TRUE	FALSE
MN	SF	Week_2	TRUE	FALSE
WN	Control	Week_3	TRUE	FALSE
MN	Control	Week_3	TRUE	FALSE
MN	Control	Week_3	TRUE	FALSE
MN	Needle	Week_3	TRUE	FALSE
WN	SF	Week_3	TRUE	FALSE
MN	SF	Week_3	TRUE	FALSE
MN	Control	Week_4	TRUE	FALSE
MN	Control	Week_4	TRUE	FALSE
MN	Needle	Week_4	TRUE	TRUE
WN	SF	Week_4	TRUE	FALSE
MN	Control	Week_5	TRUE	TRUE
MN	Control	Week_5	TRUE	FALSE
WN	SF	Week_5	TRUE	FALSE
WN	SF	Week_5	TRUE	FALSE
Post-	Infestion			
MN	Control	Week_6	TRUE	FALSE
MN	Control	Week_6	TRUE	FALSE
WN	SF	Week_9	TRUE	FALSE
WN	Needle	Week_10	TRUE	FALSE
WN	Needle	Week_11	TRUE	FALSE
WN	SF	Week_11	TRUE	FALSE
WN	Needle	Week_12	TRUE	FALSE
WN	Needle	Week_14	TRUE	FALSE
MN	Control	Week_15	TRUE	FALSE

WN	Needle	Week_15	TRUE	FALSE
WN	SF	Week_15	TRUE	FALSE
MN	SF	Week_15	TRUE	FALSE
MN	Control	Week_16	TRUE	FALSE
WN	Needle	Week_16	TRUE	TRUE
MN	Control	Week_17	TRUE	FALSE
WN	Needle	Week_17	TRUE	FALSE
MN	Control	Week_18	TRUE	FALSE
WN	Needle	Week_18	TRUE	FALSE
WN	Needle	Week_19	TRUE	TRUE
MN	Needle	Week_19	TRUE	FALSE
WN	Needle	Week_20	TRUE	TRUE
MN	Needle	Week_20	TRUE	FALSE
WN	Needle	Week_21	TRUE	FALSE
MN	Needle	Week_21	TRUE	FALSE
MN	Control	Week_22	TRUE	FALSE
MN	Control	Week_22	TRUE	FALSE
WN	Needle	Week_22	TRUE	FALSE
MN	Needle	Week_22	TRUE	FALSE

Three-way analysis

Based on the assumption analysis, we decided to apply a Robust three-way ANOVA to the dataset to determine the effects of "Diet", infection "Route" and time post infection ("Time_point") on mouse weight over time (Table 90). The test output showed that all three individual predictors were a statistically significant, while only the two two-way interactions with "Diet" were statistically significant. There was no statistically significant three-way interaction.

Appendix Table 90 Robust three-way mixed ANOVA

Predictors	value	p.value	sig.
Diet	4726.0759	0.0001	****
Route	53.7814	0.0001	****
Time_point	15104.9064	0.0010	***
Diet:Route	155.4204	0.0010	***
Diet:Time_point	4280.0234	0.0010	***
Route:Time_point	106.9048	0.0010	***
Diet:Route:Time_point	204.8501	0.0010	***

We looked for main effects by splitting the data by te within-subject factor ("Time_point") and analyzed

the remaining two predictor ("Diet" and "Roue") by a Robust two-way ANOVA. The results showed that both predictors, "Diet" and "Route", produced statistically significant p-values. While "Diet" had always statistical significance with the exception of "Week_0", which was unsurprising considering the large gap in body weight between well-nourished and malnourished mice otherwise throughout the observation period (Fig. 3a). "Route" was only a statistically significant predictor between "Week_9" and "Week_17", and the interaction term was statistically significant between "Week_7" and "Week_18" (Table 91). This suggested that the effects of the Route" of infection were only observed for a limited period of time post infection, while the effects of "Diet" were predefined at the point of infection. The interaction suggests that within one or both dietary groups statistically significant differences were observed due to infection route.

Appendix Table 91 Robust two-way ANOVA

Weeks p.i. Predictor		value	p.value	Sig.
Pre-Infection	on			
Week_0	Diet	0.6436	0.429	ns
Week_0	Route	4.8913	0.116	ns
Week_0	Diet:Route	0.5024	0.786	ns
Week_1	Diet	83.2007	0.001	***
Week_1	Route	5.6282	0.088	+
Week_1	Diet:Route	2.2941	0.349	ns
Week_2	Diet	128.0593	0.001	***
Week_2	Route	2.6197	0.298	ns
Week_2	Diet:Route	2.3070	0.342	ns
Week_3	eek_3 Diet		0.001	***
Week_3	Route	1.5396	0.484	ns
Week_3	k_3 Diet:Route 2		0.335	ns
Week_4	Diet	192.4720	0.001	***
Week_4	Route	0.3976	0.826	ns
Week_4	Diet:Route	6.0356	0.073	+
Week_5	Diet	212.5551	0.001	***
Week_5	Route	0.4535	0.804	ns
Week_5	Diet:Route	5.4285	0.091	+
Post-Infesti	on			
Week_6	Diet	262.5681	0.001	***
Week_6	Route	2.5042	0.313	ns
Week_6	Diet:Route	6.2856	0.064	+
Week_7	Diet	330.1662	0.001	***
Week_7	Route	5.1005	0.106	ns

Week 7	Diet:Route	7.2688	0.045	*
Week_8	Diet	263.7557	0.001	***
Week_8	Route	4.9514	0.110	ns
Week_8	Diet:Route	7.9498	0.034	*
Week_9	Diet	335.2713	0.001	***
Week 9	Route	8.9642	0.023	*
Week 9	Diet:Route	9.4158	0.019	*
Week_10	Diet	304.2046	0.001	***
Week_10	Route	6.7550	0.053	+
Week_10	Diet:Route	9.4577	0.019	*
Week_11	Diet	378.3575	0.001	***
Week_11	Route	10.0779	0.016	*
Week_11	Diet:Route	16.3481	0.002	**
Week_12	Diet	326.4604	0.001	***
Week_12	Route	12.5730	0.006	**
Week_12	Diet:Route	14.7796	0.003	**
Week_13	Diet	302.1738	0.001	***
Week_13	Route	13.4748	0.005	**
Week_13	Diet:Route	14.6520	0.004	**
Week_14	Diet	208.9694	0.001	***
Week_14	Route	10.6331	0.013	*
Week_14	Diet:Route	13.2573	0.005	**
Week_15	Diet	231.8533	0.001	***
Week_15	Route	10.0367	0.017	*
Week_15	Diet:Route	11.3226	0.011	*
Week_16	Diet	210.5225	0.001	***
Week_16	Route	8.7925	0.026	*
Week_16	Diet:Route	11.9954	0.009	**
Week_17	Diet	177.0197	0.001	***
Week_17	Route	7.6225	0.040	*
Week_17	Diet:Route	11.2424	0.011	*
Week_18	Diet	208.5641	0.001	***
Week_18	Route	3.5529	0.204	ns
Week_18	Diet:Route	11.4103	0.011	*
Week_19	Diet	230.7852	0.001	***
Week_19	Route	4.5003	0.139	ns
Week_19	Diet:Route	3.4689	0.212	ns
Week_20	Diet	259.4895		***
Week_20	Route	2.0155		ns
Week_20	Diet:Route			ns
Week_21	Diet	227.8845	0.001	***

Week_21	Route	0.7795	0.689	ns
Week_21	Diet:Route	4.3443	0.143	ns
Week_22	Diet	215.7785	0.001	***
Week_22	Route	2.1574	0.367	ns
Week_22	Diet:Route	7.1401	0.048	*

For the analysis of the simple simple main effect for each respective between-subject factor, we performed Robust one-way ANOVA with individual between-subject factor of the data split by the other two predictors. The results showed that "Diet" caused statistically significant differences with the exception of "Week_0", which prior to the assignment of special diets (Table 92). "Route only showed occasionally statistical significant difference; most commonly between"Week_6" and "Week_18", which was only associated with the malnourished group (Table 93).

Appendix Table 92 Robust one-way ANOVA

Time_point	Factor	Effect	test	df1	df2	p.value	effsize	CI_lower	CI_upper	Sig.
Split by Rou	te									
Week_0	Control	Diet	0.9463	1	13.9443	0.3472	0.3265	0.0009	0.7239	ns
Week_0	Needle	Diet	0.0742	1	8.1104	0.7921	0.0880	0.0018	0.8640	ns
Week_0	SF	Diet	0.0073	1	12.9968	0.9334	0.2208	0.0000	0.6874	ns
Week_1	Control	Diet	30.9197	1	10.5864	0.0002	0.9867	0.7579	1.1607	***
Week_1	Needle	Diet	33.6082	1	8.7119	0.0003	1.0360	0.9235	1.1585	***
Week_1	SF	Diet	19.4931	1	10.7930	0.0011	0.9022	0.5425	1.0997	**
Week_2	Control	Diet	46.6180	1	12.5452	< 0.0001	1.0575	0.9074	1.1649	****
Week_2	Needle	Diet	49.7907	1	10.7859	< 0.0001	1.0994	0.9863	1.2523	****
Week_2	SF	Diet	32.7851	1	11.8409	0.0001	0.9999	0.8331	1.1639	***
Week_3	Control	Diet	71.4565	1	12.4770	< 0.0001	1.0818	0.9760	1.1524	****
Week_3	Needle	Diet	66.2027	1	10.2527	< 0.0001	1.1338	1.0156	1.2552	****
Week_3	SF	Diet	50.8531	1	11.8824	< 0.0001	1.0649	0.9792	1.1777	****
Week_4	Control	Diet	87.8417	1	12.1493	< 0.0001	1.1032	1.0040	1.1413	****
Week_4	Needle	Diet	60.9978	1	10.2379	< 0.0001	1.1344	1.0132	1.2331	****
Week_4	SF	Diet	45.9854	1	11.0139	< 0.0001	1.0600	0.9189	1.1884	****
Week_5	Control	Diet	100.3686	1	12.7279	< 0.0001	1.1053	1.0363	1.1542	****
Week_5	Needle	Diet	56.4055	1	11.6501	< 0.0001	1.0898	0.9942	1.2567	****
Week_5	SF	Diet	58.6004	1	10.7527	< 0.0001	1.0839	0.9806	1.2003	****
Week_6	Control	Diet	88.8819	1	12.0825	< 0.0001	1.0922	1.0234	1.1534	****
Week_6	Needle	Diet	54.4571	1	11.9346	< 0.0001	1.0689	0.9799	1.2291	****
Week_6	SF	Diet	138.7395	1	12.9947	< 0.0001	1.1099	1.0636	1.1608	****
Week_7	Control	Diet	139.0888	1	9.6090	< 0.0001	1.1113	1.0622	1.1520	****

Week_7	Needle	Diet	79.5424	1	11.6833	< 0.0001	1.1279	1.0372	1.2009	****
Week_7	SF	Diet	115.0358	1	12.9933	< 0.0001	1.1055	1.0434	1.1664	****
Week_8	Control	Diet	108.6133	1	11.1301	< 0.0001	1.1069	1.0373	1.1390	****
Week_8	Needle	Diet	64.9819	1	11.9851	< 0.0001	1.1008	1.0198	1.1840	****
Week_8	SF	Diet	90.4757	1	12.9631	< 0.0001	1.0930	1.0282	1.1714	****
Week_9	Control	Diet	138.2405	1	12.6407	< 0.0001	1.0938	1.0567	1.1317	****
Week_9	Needle	Diet	59.2647	1	11.9764	< 0.0001	1.1281	1.0054	1.2280	****
Week_9	SF	Diet	156.4098	1	12.9750	< 0.0001	1.1141	1.0647	1.1674	****
Week_10	Control	Diet	142.1475	1	11.3023	< 0.0001	1.1193	1.0511	1.1490	****
Week_10	Needle	Diet	56.2825	1	11.9764	< 0.0001	1.1457	1.0089	1.2562	****
Week_10	SF	Diet	118.0082	1	12.9925	< 0.0001	1.0907	1.0405	1.1480	****
Week_11	Control	Diet	184.1228	1	12.2479	< 0.0001	1.0992	1.0666	1.1448	****
Week_11	Needle	Diet	59.3268	1	11.7074	< 0.0001	1.1027	1.0133	1.2393	****
Week_11	SF	Diet	158.6371	1	12.1492	< 0.0001	1.1072	1.0679	1.1475	****
Week_12	Control	Diet	124.1778	1	13.5899	< 0.0001	1.1083	1.0484	1.1454	****
Week_12	Needle	Diet	63.5146	1	11.9642	< 0.0001	1.1025	1.0221	1.2193	****
Week_12	SF	Diet	148.2799	1	12.9212	< 0.0001	1.1048	1.0781	1.1607	****
Week_13	Control	Diet	159.1247	1	12.9562	< 0.0001	1.1146	1.0659	1.1539	****
Week_13	Needle	Diet	43.9328	1	11.0735	< 0.0001	1.0647	0.9797	1.2014	****
Week_13	SF	Diet	124.1739	1	12.1224	< 0.0001	1.0937	1.0459	1.1608	****
Week_14	Control	Diet	81.6612	1	13.7559	< 0.0001	1.1121	1.0289	1.1862	****
Week_14	Needle	Diet	28.2635	1	11.9462	0.0002	1.1630	0.9098	1.2623	***
Week_14	SF	Diet	121.5173	1	12.1033	< 0.0001	1.0929	1.0455	1.1470	****
Week_15	Control	Diet	132.8303	1	11.5452	< 0.0001	1.1446	1.0555	1.1641	****
Week_15	Needle	Diet	26.5980	1	10.6701	0.0003	1.1250	0.8928	1.3944	***
Week_15	SF	Diet	127.4723	1	10.3884	< 0.0001	1.1094	1.0361	1.1579	****
Week_16	Control	Diet	100.3834	1	8.4872	< 0.0001	1.0950	1.0457	1.1333	****
Week_16	Needle	Diet	27.3372	1	11.9350	0.0002	1.1261	0.9201	1.2388	***
Week_16	SF	Diet	110.7167	1	11.2457	< 0.0001	1.0967	1.0502	1.1709	****
Week_17	Control	Diet	69.5823	1	8.7894	< 0.0001	1.0702	1.0164	1.1259	****
Week_17	Needle	Diet	25.4983	1	11.8638	0.0003	1.0843	0.8552	1.2132	***
Week_17	SF	Diet	104.7430	1	11.4557	< 0.0001	1.0962	1.0511	1.1639	****
Week_18	Control	Diet	108.3643	1	12.9680	< 0.0001	1.0997	1.0550	1.1702	****
Week_18	Needle	Diet	23.9856	1	11.6560	0.0004	1.0855	0.8390	1.2260	***
Week_18	SF	Diet	123.5300	1	7.7478	< 0.0001	1.0956	1.0486	1.1685	****
Week_19	Control	Diet	133.9525	1	12.8372	< 0.0001	1.0831	1.0591	1.1506	****
Week_19	Needle	Diet	46.3485	1	11.7773	< 0.0001	1.1568	0.9677	1.2498	****
Week_19	SF	Diet	82.2076	1	7.9091	< 0.0001	1.0804	1.0251	1.1832	****
Week_20	Control	Diet	157.5335	1	13.9259	< 0.0001	1.0929	1.0730	1.1631	****
Week_20	Needle	Diet	44.7878	1	10.7340	< 0.0001	1.1444	0.9522	1.2082	****
Week_20	SF	Diet	99.9882	1	7.8372	< 0.0001	1.0933	1.0481	1.1832	****

Week_21	Control	Diet	113.5715	1	13.8178	< 0.0001	1.0896	1.0582	1.1729	****
Week_21	Needle	Diet	33.1991	1	10.5972	0.0001	1.0890	0.8607	1.2207	***
Week_21	SF	Diet	121.3469	1	11.0681	< 0.0001	1.1009	1.0605	1.1678	****
Week_22	Control	Diet	136.2265	1	12.9780	< 0.0001	1.1126	1.0586	1.1811	****
Week_22	Needle	Diet	25.6731	1	11.1438	0.0003	1.0823	0.7903	1.2356	***
Week_22	SF	Diet	111.3334	1	10.6612	< 0.0001	1.0940	1.0386	1.1744	****
Split by Die	t									
Week_0	WN	Route	1.9588	2	12.8725	0.1808	0.4893	0.1490	0.8093	ns
Week_0	MN	Route	1.0762	2	12.1312	0.3713	0.4805	0.1011	0.8476	ns
Week_1	WN	Route	2.2567	2	13.2118	0.1435	0.5778	0.2353	0.9016	ns
Week_1	MN	Route	0.6409	2	12.6553	0.5431	0.4520	0.0778	0.9168	ns
Week_2	WN	Route	1.6924	2	13.2826	0.2215	0.5245	0.1950	0.8207	ns
Week_2	MN	Route	0.0597	2	12.6611	0.9423	0.3626	0.0496	0.9067	ns
Week_3	WN	Route	1.6823	2	12.8046	0.2245	0.5462	0.1318	0.8698	ns
Week_3	MN	Route	0.0564	2	12.3027	0.9454	0.3494	0.0647	0.9018	ns
Week_4	WN	Route	1.8918	2	12.7117	0.1909	0.5329	0.1169	0.8900	ns
Week_4	MN	Route	1.3314	2	12.1316	0.3001	0.5199	0.1351	0.9043	ns
Week_5	WN	Route	0.8912	2	12.7927	0.4342	0.4278	0.0860	0.8367	ns
Week_5	MN	Route	2.4199	2	12.2564	0.1301	0.5479	0.1046	0.8873	ns
Week_6	WN	Route	0.2057	2	12.9847	0.8167	0.3726	0.0547	0.7028	ns
Week_6	MN	Route	4.6012	2	12.5486	0.0317	0.7071	0.3539	0.9990	*
Week_7	WN	Route	1.3374	2	13.0307	0.2963	0.4659	0.0746	0.8409	ns
Week_7	MN	Route	6.6197	2	11.8250	0.0118	0.7229	0.4533	0.9427	*
Week_8	WN	Route	0.5185	2	13.2073	0.6070	0.3676	0.0697	0.7614	ns
Week_8	MN	Route	6.4573	2	12.2947	0.0121	0.7206	0.5076	0.9312	*
Week_9	WN	Route	0.0958	2	13.2133	0.9093	0.3300	0.0387	0.7494	ns
Week_9	MN	Route	9.4920	2	12.4183	0.0032	0.7882	0.6314	0.9290	**
Week_10	WN	Route	0.2026	2	13.3101	0.8191	0.3207	0.0838	0.7937	ns
Week_10	MN	Route	7.8905	2	11.8254	0.0067	0.7947	0.5708	0.9749	**
Week_11	WN	Route	0.2315	2	13.2266	0.7965	0.3586	0.1059	0.7313	ns
Week_11	MN	Route	11.6677	2	11.8647	0.0016	0.8443	0.7023	0.9919	**
Week_12	WN	Route	0.3790	2	13.2137	0.6918	0.3645	0.0436	0.7253	ns
Week_12	MN	Route	12.5813	2	12.6487	0.0010	0.8631	0.7246	1.0332	***
Week_13	WN	Route	0.3800	2	13.2733	0.6911	0.3427	0.0785	0.7311	ns
Week_13	MN	Route	11.0540	2	11.9483	0.0019	0.8523	0.7450	0.9947	**
Week_14	WN	Route	0.1990	2	13.0343	0.8220	0.2911	0.0397	0.7604	ns
Week_14	MN	Route	10.1230	2	12.6525	0.0024	0.8325	0.6854	1.0012	**
Week_15	WN	Route	1.2098	2	12.9990	0.3297	0.5001	0.1221	0.8663	ns
Week_15	MN	Route	6.6894	2	10.4184	0.0135	0.8531	0.5907	1.0766	*
Week_16	WN	Route	0.1823	2	13.0098	0.8354	0.3426	0.0731	0.7330	ns

Week_16	MN	Route	7.9104	2	9.3879	0.0097	0.9453	0.7688	1.1793	**
Week_17	WN	Route	0.1053	2	12.9985	0.9008	0.2752	0.0438	0.7046	ns
Week_17	MN	Route	7.7361	2	9.5588	0.0100	0.9891	0.7925	1.2656	*
Week_18	WN	Route	1.4892	2	11.5452	0.2659	0.4710	0.1032	0.8207	ns
Week_18	MN	Route	4.0466	2	10.9429	0.0484	0.8530	0.4328	1.1840	*
Week_19	WN	Route	0.1186	2	12.3347	0.8891	0.3585	0.0571	0.7342	ns
Week_19	MN	Route	2.5349	2	10.7215	0.1255	0.7664	0.2584	1.2106	ns
Week_20	WN	Route	0.3121	2	12.3417	0.7375	0.3788	0.0410	0.8568	ns
Week_20	MN	Route	1.7845	2	11.1498	0.2126	0.7201	0.1120	1.2486	ns
Week_21	WN	Route	0.9900	2	12.8920	0.3981	0.4395	0.0749	0.7919	ns
Week_21	MN	Route	1.2693	2	12.1936	0.3157	0.5648	0.1110	0.9098	ns
Week_22	WN	Route	1.1111	2	12.8371	0.3589	0.4654	0.1060	0.8061	ns
Week_22	MN	Route	2.6553	2	11.3155	0.1134	0.7444	0.4043	1.2335	ns

Appendix Table 93Robust one-way ANOVA - sig. summary

Time_point	Factor	Effect	test	df1	df2	p.value	effsize	CI_lower	CI_upper	Sig.
Week_6	MN	Route	4.6012	2	12.5486	0.0317	0.7071	0.3539	0.9990	*
Week_7	MN	Route	6.6197	2	11.8250	0.0118	0.7229	0.4533	0.9427	*
Week_8	MN	Route	6.4573	2	12.2947	0.0121	0.7206	0.5076	0.9312	*
Week_9	MN	Route	9.4920	2	12.4183	0.0032	0.7882	0.6314	0.9290	**
Week_10	MN	Route	7.8905	2	11.8254	0.0067	0.7947	0.5708	0.9749	**
Week_11	MN	Route	11.6677	2	11.8647	0.0016	0.8443	0.7023	0.9919	**
Week_12	MN	Route	12.5813	2	12.6487	0.0010	0.8631	0.7246	1.0332	***
Week_13	MN	Route	11.0540	2	11.9483	0.0019	0.8523	0.7450	0.9947	**
Week_14	MN	Route	10.1230	2	12.6525	0.0024	0.8325	0.6854	1.0012	**
Week_15	MN	Route	6.6894	2	10.4184	0.0135	0.8531	0.5907	1.0766	*
Week_16	MN	Route	7.9104	2	9.3879	0.0097	0.9453	0.7688	1.1793	**
Week_17	MN	Route	7.7361	2	9.5588	0.0100	0.9891	0.7925	1.2656	*
Week_18	MN	Route	4.0466	2	10.9429	0.0484	0.8530	0.4328	1.1840	*

For the pairwise comparison, we applied a Linear contrast expression. Since the "Diet" predictor only had two factor levels, the output showed the same result as the Robust one-way ANOVA above. For the "Route" predictor, the pairwise comparison presented a more detailed view at where statistically significant differences occurred (Table 94). As for the Robust one-way ANOVA above, all statistical significant differences were observed between "Week_6" and "Week_18" and were restricted to the malnourished groups (Table 95). The main differences between the malnourished groups resided primarily with the needle inoculated group from "Week_6" to "Week_14", who had more weight gain than either the malnourished control or sand fly infected groups. From "Week_15" onword, the average mouse weight for

the malnourished control group approached that or the needle group and statistical differences were now only observed compared to the malnourished sand fly infected group, that never seemed to gain weight post infection.

Appendix Table 94Pairwise comparison by Linear Contrast Expression

Time_point	Factor	Group	Group.1	psihat	ci.lower	ci.upper	p.value	Sig.	
Split by Route									
Week_0	Control	WN	MN	-0.0113	-0.0362	0.0136	0.3472	ns	
Week_0	Needle	WN	MN	-0.0032	-0.0301	0.0237	0.7921	ns	
Week_0	SF	WN	MN	-0.0008	-0.0216	0.0199	0.9334	ns	
Week_1	Control	WN	MN	1.1088	0.6678	1.5498	0.0002	***	
Week_1	Needle	WN	MN	1.0070	0.6121	1.4019	0.0003	***	
Week_1	SF	WN	MN	0.7394	0.3700	1.1089	0.0011	**	
Week_2	Control	WN	MN	1.2031	0.8210	1.5852	< 0.0001	****	
Week_2	Needle	WN	MN	1.0607	0.7290	1.3923	< 0.0001	****	
Week_2	SF	WN	MN	0.8588	0.5315	1.1860	0.0001	***	
Week_3	Control	WN	MN	1.4061	1.0452	1.7670	< 0.0001	****	
Week_3	Needle	WN	MN	1.1827	0.8599	1.5055	< 0.0001	****	
Week_3	SF	WN	MN	1.0654	0.7395	1.3913	< 0.0001	****	
Week_4	Control	WN	MN	1.5285	1.1736	1.8833	< 0.0001	****	
Week_4	Needle	WN	MN	1.0817	0.7741	1.3893	< 0.0001	****	
Week_4	SF	WN	MN	1.0296	0.6955	1.3637	< 0.0001	****	
Week_5	Control	WN	MN	1.4800	1.1601	1.7998	< 0.0001	****	
Week_5	Needle	WN	MN	1.0373	0.7354	1.3392	< 0.0001	****	
Week_5	SF	WN	MN	1.1033	0.7852	1.4215	< 0.0001	****	
Week_6	Control	WN	MN	1.4642	1.1260	1.8023	< 0.0001	****	
Week_6	Needle	WN	MN	1.0005	0.7049	1.2961	< 0.0001	****	
Week_6	SF	WN	MN	1.3728	1.1210	1.6245	< 0.0001	****	
Week_7	Control	WN	MN	1.5867	1.2853	1.8881	< 0.0001	****	
Week_7	Needle	WN	MN	1.1054	0.8345	1.3762	< 0.0001	****	
Week_7	SF	WN	MN	1.2398	0.9901	1.4895	< 0.0001	****	
Week_8	Control	WN	MN	1.5293	1.2068	1.8519	< 0.0001	****	
Week_8	Needle	WN	MN	0.9968	0.7274	1.2663	< 0.0001	****	
Week_8	SF	WN	MN	1.3011	1.0055	1.5967	< 0.0001	****	
Week_9	Control	WN	MN	1.5496	1.2641	1.8352	< 0.0001	****	
Week_9	Needle	WN	MN	1.0374	0.7437	1.3311	< 0.0001	****	
Week_9	SF	WN	MN	1.5182	1.2559	1.7805	< 0.0001	****	
Week_10	Control	WN	MN	1.5132	1.2348	1.7917	< 0.0001	****	
Week_10	Needle	WN	MN	0.9966	0.7071	1.2861	< 0.0001	****	

Week_10	SF	WN	MN	1.4703	1.1779	1.7628	< 0.0001	****
Week_11	Control	WN	MN	1.7096	1.4357	1.9835	< 0.0001	****
Week_11	Needle	WN	MN	1.0347	0.7412	1.3283	< 0.0001	****
Week_11	SF	WN	MN	1.6694	1.3810	1.9578	< 0.0001	****
Week_12	Control	WN	MN	1.6941	1.3671	2.0211	< 0.0001	****
Week_12	Needle	WN	MN	1.0008	0.7271	1.2745	< 0.0001	****
Week_12	SF	WN	MN	1.5285	1.2571	1.7998	< 0.0001	****
Week_13	Control	WN	MN	1.7818	1.4765	2.0870	< 0.0001	****
Week_13	Needle	WN	MN	1.0233	0.6838	1.3628	< 0.0001	****
Week_13	SF	WN	MN	1.6597	1.3356	1.9839	< 0.0001	****
Week_14	Control	WN	MN	1.5898	1.2118	1.9677	< 0.0001	****
Week_14	Needle	WN	MN	0.8714	0.5141	1.2287	0.0002	***
Week_14	SF	WN	MN	1.5966	1.2813	1.9118	< 0.0001	****
Week_15	Control	WN	MN	1.3339	1.0806	1.5871	< 0.0001	****
Week_15	Needle	WN	MN	0.9000	0.5145	1.2856	0.0003	***
Week_15	SF	WN	MN	1.6695	1.3417	1.9973	< 0.0001	****
Week_16	Control	WN	MN	1.3148	1.0152	1.6145	< 0.0001	****
Week_16	Needle	WN	MN	0.8993	0.5243	1.2743	0.0002	***
Week_16	SF	WN	MN	1.7211	1.3620	2.0801	< 0.0001	****
Week_17	Control	WN	MN	1.0999	0.8005	1.3993	< 0.0001	****
Week_17	Needle	WN	MN	0.9074	0.5154	1.2994	0.0003	***
Week_17	SF	WN	MN	1.6611	1.3056	2.0167	< 0.0001	****
Week_18	Control	WN	MN	1.3589	1.0769	1.6410	< 0.0001	****
Week_18	Needle	WN	MN	0.9492	0.5255	1.3729	0.0004	***
Week_18	SF	WN	MN	1.7918	1.4179	2.1656	< 0.0001	****
Week_19	Control	WN	MN	1.5472	1.2580	1.8364	< 0.0001	****
Week_19	Needle	WN	MN	1.2893	0.8758	1.7028	< 0.0001	****
Week_19	SF	WN	MN	1.7998	1.3412	2.2585	< 0.0001	****
Week_20	Control	WN	MN	1.7273	1.4320	2.0226	< 0.0001	****
Week_20	Needle	WN	MN	1.3372	0.8961	1.7784	< 0.0001	****
Week_20	SF	WN	MN	1.8728	1.4393	2.3063	< 0.0001	****
Week_21	Control	WN	MN	1.8837	1.5042	2.2633	< 0.0001	****
Week_21	Needle	WN	MN	1.3298	0.8195	1.8401	0.0001	***
Week_21	SF	WN	MN	1.8646	1.4923	2.2369	< 0.0001	****
Week_22	Control	WN	MN	1.7596	1.4338	2.0853	< 0.0001	****
Week_22	Needle	WN	MN	1.1723	0.6638	1.6807	0.0003	***
Week_22	SF	WN	MN	1.9461	1.5386	2.3537	< 0.0001	****
Split by Die	t							
Week_0	WN	Control	Needle	0.0125	-0.0130	0.0381	0.2999	ns
Week_0	WN	Control	SF	-0.0028	-0.0316	0.0259	0.7940	ns

WN	Needle	SF	-0.0154	-0.0387	0.0080	0.2847	ns
MN	Control	Needle	0.0206	-0.0171	0.0584	0.4743	ns
MN	Control	SF	0.0077	-0.0215	0.0368	0.4862	ns
MN	Needle	SF	-0.0130	-0.0487	0.0227	0.4862	ns
WN	Control	Needle	0.2286	-0.4120	0.8692	0.3497	ns
WN	Control	SF	0.4935	-0.1262	1.1133	0.1499	ns
WN	Needle	SF	0.2649	-0.3182	0.8481	0.3497	ns
MN	Control	Needle	0.1268	-0.2001	0.4536	0.4986	ns
MN	Control	SF	0.1242	-0.2112	0.4595	0.4986	ns
MN	Needle	SF	-0.0026	-0.3095	0.3043	0.9820	ns
WN	Control	Needle	0.1875	-0.3279	0.7030	0.3452	ns
WN	Control	SF	0.3592	-0.1556	0.8741	0.2437	ns
WN	Needle	SF	0.1717	-0.3048	0.6482	0.3452	ns
MN	Control	Needle	0.0451	-0.3173	0.4074	0.9116	ns
MN	Control	SF	0.0148	-0.3414	0.3711	0.9116	ns
MN	Needle	SF	-0.0303	-0.3601	0.2996	0.9116	ns
WN	Control	Needle	0.1814	-0.3168	0.6796	0.4229	ns
WN	Control	SF	0.3088	-0.1435	0.7612	0.2563	ns
WN	Needle	SF	0.1274	-0.2962	0.5510	0.4229	ns
MN	Control	Needle	-0.0420	-0.3777	0.2936	0.9443	ns
MN	Control	SF	-0.0319	-0.4463	0.3824	0.9443	ns
MN	Needle	SF	0.0101	-0.3856	0.4058	0.9443	ns
WN	Control	Needle	0.2594	-0.2276	0.7464	0.2569	ns
WN	Control	SF	0.3197	-0.1244	0.7638	0.2133	ns
WN	Needle	SF	0.0603	-0.3414	0.4620	0.6858	ns
MN	Control	Needle	-0.1874	-0.5063	0.1314	0.4015	ns
MN	Control	SF	-0.1792	-0.6052	0.2468	0.4015	ns
MN	Needle	SF	0.0082	-0.4045	0.4209	0.9562	ns
WN	Control	Needle	0.1664	-0.2682	0.6009	0.4755	ns
WN	Control	SF	0.1940	-0.2016	0.5895	0.4755	ns
WN	Needle	SF	0.0276	-0.3392	0.3943	0.8391	ns
MN	Control	Needle	-0.2763	-0.6135	0.0609	0.1326	ns
MN	Control	SF	-0.1827	-0.5918	0.2264	0.3615	ns
MN	Needle	SF	0.0936	-0.3203	0.5076	0.5426	ns
WN	Control	Needle	0.1055	-0.3411	0.5520	0.7466	ns
WN	Control	SF	0.0515	-0.3763	0.4794	0.7466	ns
WN	Needle	SF	-0.0539	-0.4140	0.3062	0.7466	ns
MN	Control	Needle	-0.3582	-0.7006	-0.0157	0.0336	*
MN	Control	SF	-0.0399	-0.3543	0.2746	0.7359	ns
MN	Needle	SF	0.3183	-0.0155	0.6521	0.0336	*
WN	Control	Needle	0.1199	-0.3041	0.5439	0.4544	ns
	MN MN MN WN WN MN	MN Control MN Needle WN Control WN Control WN Needle MN Control MN Needle MN Control MN Needle WN Control WN Control WN Needle MN Control WN Needle MN Control MN Needle MN Control MN Needle WN Control WN Control WN Control WN Control WN Needle MN Control WN Needle MN Control WN Needle MN Control MN Needle WN Control WN Control WN Needle WN Control WN Needle MN Control WN Needle MN Control WN Needle MN Control MN Needle WN Control WN Needle WN Control WN Needle WN Control WN Needle MN Control MN Needle WN Control MN Needle WN Control WN Needle WN Control WN Needle WN Control WN Needle NN Control WN Needle NN Control WN Needle NN Control WN Needle	MN Control SF MN Needle SF WN Control Needle WN Control SF WN Needle SF WN Needle SF MN Control Needle MN Control SF MN Needle SF MN Needle SF MN Needle SF MN Needle SF WN Control Needle WN Control SF WN Needle SF WN Needle SF MN Needle SF MN Control Needle MN Control Needle MN Control Needle MN Control SF MN Needle SF WN Control Needle WN Control SF WN Needle SF WN Control Needle WN Control SF MN Needle SF MN Control Needle MN Control Needle MN Control SF MN Needle SF WN Control Needle WN Control SF WN Needle SF WN Control Needle WN Control Needle WN Control SF MN Needle SF MN Control Needle MN Control Needle MN Control Needle WN Control Needle WN Control Needle WN Control Needle WN Control SF WN Needle SF WN Needle SF MN Control Needle WN Control Needle SF WN Needle SF WN Control Needle WN Control Needle SF WN Control Needle SF WN Control Needle	MN Control Needle 0.0206 MN Control SF 0.0077 MN Needle SF -0.0130 WN Control Needle 0.2286 WN Control SF 0.4935 WN Needle SF 0.2649 MN Control Needle 0.1268 MN Control Needle 0.1268 MN Control SF 0.2649 MN Control Needle 0.1268 MN Control Needle 0.1268 MN Control Needle 0.1242 MN Control SF 0.3592 WN Control SF 0.3592 WN Control SF 0.3592 WN Control SF 0.3592 WN Needle SF 0.0114 MN Control SF 0.0303 WN Control SF	MN Control Needle 0.0206 -0.0171 MN Control SF 0.0077 -0.0215 MN Needle SF -0.0130 -0.0487 WN Control Needle 0.2286 -0.4120 WN Control SF 0.4935 -0.1262 WN Needle SF 0.2649 -0.3182 MN Control Needle 0.1268 -0.2001 MN Control SF 0.2649 -0.3182 MN Control SF 0.0264 -0.2112 MN Control SF 0.0395 -0.3095 WN Control SF 0.3592 -0.1556 WN Control SF 0.3592 -0.1556 WN <	MN Control Needle 0.0206 -0.0171 0.0584 MN Control SF 0.0077 -0.0215 0.0368 MN Needle SF -0.0130 -0.0487 0.0227 WN Control Needle 0.2286 -0.4120 0.8692 WN Control SF 0.4935 -0.1262 1.1133 WN Needle SF 0.2649 -0.3182 0.8481 MN Control Needle 0.1268 -0.2001 0.4536 MN Control SF 0.1242 -0.2112 0.4595 MN Needle SF -0.0026 -0.3095 0.3043 WN Control SF 0.3592 -0.1556 0.8741 WN Control SF 0.3592 -0.1556 0.8741 WN Needle SF 0.0148 -0.3173 0.4074 MN Needle SF 0.01451 -0.3173 0.4074	MN Control Needle 0.0206 -0.0171 0.0584 0.4743 MN Control SF 0.0077 -0.0215 0.0368 0.4862 MN Needle SF -0.0130 -0.0487 0.0227 0.4862 WN Control Needle 0.2286 -0.4120 0.8692 0.3497 WN Control SF 0.4935 -0.1262 1.1133 0.1499 WN Needle SF 0.2649 -0.3182 0.8481 0.3497 MN Control SF 0.1268 -0.2010 0.4536 0.4986 MN Control SF 0.1222 -0.2112 0.4595 0.4986 MN Needle SF -0.0206 -0.3095 0.3043 0.9820 WN Control SF 0.10229 0.0700 0.3452 WN Control SF 0.01435 0.4313 0.9413 WN Control SF 0.01717<

Week_7	WN	Control	SF	0.2430	-0.1651	0.6510	0.3849	ns
Week_7	WN	Needle	SF	0.1231	-0.2224	0.4686	0.4544	ns
Week_7	MN	Control	Needle	-0.3614	-0.6311	-0.0918	0.0101	*
Week_7	MN	Control	SF	-0.1039	-0.3720	0.1641	0.3033	ns
Week_7	MN	Needle	SF	0.2575	-0.0528	0.5679	0.0623	+
Week_8	WN	Control	Needle	0.1235	-0.2994	0.5463	0.6560	ns
Week_8	WN	Control	SF	0.1682	-0.2749	0.6113	0.6560	ns
Week_8	WN	Needle	SF	0.0447	-0.3199	0.4094	0.7439	ns
Week_8	MN	Control	Needle	-0.4090	-0.7248	-0.0932	0.0117	*
Week_8	MN	Control	SF	-0.0600	-0.3788	0.2588	0.6141	ns
Week_8	MN	Needle	SF	0.3490	0.0006	0.6974	0.0262	*
Week_9	WN	Control	Needle	0.0432	-0.3508	0.4372	0.8865	ns
Week_9	WN	Control	SF	0.0626	-0.3172	0.4424	0.8865	ns
Week_9	WN	Needle	SF	0.0194	-0.3437	0.3825	0.8865	ns
Week_9	MN	Control	Needle	-0.4690	-0.7999	-0.1381	0.0032	**
Week_9	MN	Control	SF	0.0312	-0.2712	0.3335	0.7833	ns
Week_9	MN	Needle	SF	0.5002	0.1608	0.8396	0.0032	**
Week_10	WN	Control	Needle	0.0840	-0.3049	0.4729	0.8692	ns
Week_10	WN	Control	SF	0.0835	-0.3128	0.4798	0.8692	ns
Week_10	WN	Needle	SF	-0.0005	-0.3659	0.3649	0.9970	ns
Week_10	MN	Control	Needle	-0.4326	-0.7551	-0.1101	0.0061	**
Week_10	MN	Control	SF	0.0406	-0.2742	0.3554	0.7265	ns
Week_10	MN	Needle	SF	0.4732	0.1053	0.8411	0.0061	**
Week_11	WN	Control	Needle	0.0946	-0.2760	0.4651	0.7218	ns
Week_11	WN	Control	SF	0.0489	-0.3150	0.4128	0.7218	ns
Week_11	WN	Needle	SF	-0.0457	-0.3762	0.2848	0.7218	ns
Week_11	MN	Control	Needle	-0.5803	-0.9256	-0.2350	0.0021	**
Week_11	MN	Control	SF	0.0087	-0.3363	0.3537	0.9452	ns
Week_11	MN	Needle	SF	0.5891	0.1917	0.9864	0.0023	**
Week_12	WN	Control	Needle	0.0957	-0.3009	0.4923	0.7817	ns
Week_12	WN	Control	SF	0.1294	-0.2682	0.5269	0.7817	ns
Week_12	WN	Needle	SF	0.0336	-0.3029	0.3702	0.7901	ns
Week_12	MN	Control	Needle	-0.5976	-0.9609	-0.2343	0.0013	**
Week_12	MN	Control	SF	-0.0363	-0.3952	0.3225	0.7876	ns
Week_12	MN	Needle	SF	0.5613	0.2112	0.9114	0.0013	**
Week_13	WN	Control	Needle	0.0787	-0.3186	0.4761	0.6942	ns
Week_13	WN	Control	SF	0.1318	-0.2668	0.5304	0.6942	ns
Week_13	WN	Needle	SF	0.0531	-0.3059	0.4121	0.6942	ns
Week_13	MN	Control	Needle	-0.6798	-1.0978	-0.2617	0.0023	**
Week_13	MN	Control	SF	0.0098	-0.3851	0.4047	0.9464	ns
Week_13	MN	Needle	SF	0.6896	0.2244	1.1548	0.0023	**

Week_14	WN	Control	Needle	0.0949	-0.3429	0.5328	0.8851	ns
Week_14	WN	Control	SF	0.0816	-0.3189	0.4821	0.8851	ns
Week_14	WN	Needle	SF	-0.0133	-0.4111	0.3845	0.9282	ns
Week_14	MN	Control	Needle	-0.6234	-1.1087	-0.1382	0.0060	**
Week_14	MN	Control	SF	0.0884	-0.3834	0.5602	0.6188	ns
Week_14	MN	Needle	SF	0.7118	0.2609	1.1628	0.0029	**
Week_15	WN	Control	Needle	0.2235	-0.1577	0.6047	0.4048	ns
Week_15	WN	Control	SF	0.1138	-0.2296	0.4572	0.4053	ns
Week_15	WN	Needle	SF	-0.1097	-0.4595	0.2401	0.4053	ns
Week_15	MN	Control	Needle	-0.2103	-0.6700	0.2494	0.2131	ns
Week_15	MN	Control	SF	0.4494	0.0467	0.8521	0.0158	*
Week_15	MN	Needle	SF	0.6597	0.1356	1.1839	0.0143	*
Week_16	WN	Control	Needle	0.1005	-0.3643	0.5653	0.8588	ns
Week_16	WN	Control	SF	0.0285	-0.3980	0.4550	0.8588	ns
Week_16	WN	Needle	SF	-0.0720	-0.4872	0.3432	0.8588	ns
Week_16	MN	Control	Needle	-0.3150	-0.7167	0.0866	0.0478	*
Week_16	MN	Control	SF	0.4347	0.0119	0.8575	0.0243	*
Week_16	MN	Needle	SF	0.7498	0.2463	1.2532	0.0045	**
Week_17	WN	Control	Needle	0.0257	-0.4436	0.4950	0.8838	ns
Week_17	WN	Control	SF	-0.0446	-0.4711	0.3820	0.8838	ns
Week_17	WN	Needle	SF	-0.0703	-0.4944	0.3538	0.8838	ns
Week_17	MN	Control	Needle	-0.1668	-0.5930	0.2594	0.2738	ns
Week_17	MN	Control	SF	0.5167	0.1012	0.9322	0.0097	**
Week_17	MN	Needle	SF	0.6834	0.1699	1.1969	0.0097	**
Week_18	WN	Control	Needle	0.2123	-0.2339	0.6586	0.3239	ns
Week_18	WN	Control	SF	-0.0312	-0.3636	0.3013	0.7989	ns
Week_18	WN	Needle	SF	-0.2435	-0.6451	0.1581	0.3239	ns
Week_18	MN	Control	Needle	-0.1974	-0.6800	0.2852	0.2688	ns
Week_18	MN	Control	SF	0.4017	-0.0874	0.8907	0.0626	+
Week_18	MN	Needle	SF	0.5990	0.0178	1.1803	0.0452	*
Week_19	WN	Control	Needle	0.0355	-0.4149	0.4858	0.8431	ns
Week_19	WN	Control	SF	0.0648	-0.2929	0.4226	0.8431	ns
Week_19	WN	Needle	SF	0.0294	-0.3806	0.4394	0.8431	ns
Week_19	MN	Control	Needle	-0.2224	-0.6893	0.2444	0.2045	ns
Week_19	MN	Control	SF	0.3175	-0.2732	0.9083	0.2045	ns
Week_19	MN	Needle	SF	0.5399	-0.1059	1.1858	0.1208	ns
Week_20	WN	Control	Needle	0.1231	-0.2939	0.5401	0.7165	ns
Week_20	WN	Control	SF	0.0453	-0.2885	0.3791	0.7165	ns
Week_20	WN	Needle	SF	-0.0778	-0.4556	0.3000	0.7165	ns
Week_20	MN	Control	Needle	-0.2670	-0.8043	0.2703	0.2826	ns
Week_20	MN	Control	SF	0.1908	-0.3773	0.7588	0.3594	ns

Week_20	MN	Needle	SF	0.4578	-0.2003	1.1158	0.2396	ns
Week_21	WN	Control	Needle	0.2520	-0.2269	0.7309	0.5255	ns
Week_21	WN	Control	SF	0.0955	-0.3169	0.5080	0.5417	ns
Week_21	WN	Needle	SF	-0.1565	-0.6057	0.2927	0.5331	ns
Week_21	MN	Control	Needle	-0.3019	-0.9467	0.3428	0.3291	ns
Week_21	MN	Control	SF	0.0764	-0.4447	0.5976	0.6962	ns
Week_21	MN	Needle	SF	0.3784	-0.2771	1.0338	0.3291	ns
Week_22	WN	Control	Needle	0.2645	-0.2216	0.7507	0.3912	ns
Week_22	WN	Control	SF	0.0605	-0.3400	0.4611	0.6904	ns
Week_22	WN	Needle	SF	-0.2040	-0.6813	0.2733	0.3912	ns
Week_22	MN	Control	Needle	-0.3228	-0.9302	0.2847	0.2120	ns
Week_22	MN	Control	SF	0.2471	-0.2738	0.7679	0.2120	ns
Week_22	MN	Needle	SF	0.5698	-0.0941	1.2338	0.1082	ns

Appendix Table 95Pairwise comparison by Linear Contrast Expression - sig. summary

Predictor	Time_point	Factor	Group	Group.1	psihat	ci.lower	ci.upper	p.value	Sig.
Route	Week_6	MN	Control	Needle	-0.3582	-0.7006	-0.0157	0.0336	*
Route	Week_6	MN	Needle	SF	0.3183	-0.0155	0.6521	0.0336	*
Route	Week_7	MN	Control	Needle	-0.3614	-0.6311	-0.0918	0.0101	*
Route	Week_8	MN	Control	Needle	-0.4090	-0.7248	-0.0932	0.0117	*
Route	Week_8	MN	Needle	SF	0.3490	0.0006	0.6974	0.0262	*
Route	Week_9	MN	Control	Needle	-0.4690	-0.7999	-0.1381	0.0032	**
Route	Week_9	MN	Needle	SF	0.5002	0.1608	0.8396	0.0032	**
Route	Week_10	MN	Control	Needle	-0.4326	-0.7551	-0.1101	0.0061	**
Route	Week_10	MN	Needle	SF	0.4732	0.1053	0.8411	0.0061	**
Route	Week_11	MN	Control	Needle	-0.5803	-0.9256	-0.2350	0.0021	**
Route	Week_11	MN	Needle	SF	0.5891	0.1917	0.9864	0.0023	**
Route	Week_12	MN	Control	Needle	-0.5976	-0.9609	-0.2343	0.0013	**
Route	Week_12	MN	Needle	SF	0.5613	0.2112	0.9114	0.0013	**
Route	Week_13	MN	Control	Needle	-0.6798	-1.0978	-0.2617	0.0023	**
Route	Week_13	MN	Needle	SF	0.6896	0.2244	1.1548	0.0023	**
Route	Week_14	MN	Control	Needle	-0.6234	-1.1087	-0.1382	0.0060	**
Route	Week_14	MN	Needle	SF	0.7118	0.2609	1.1628	0.0029	**
Route	Week_15	MN	Control	SF	0.4494	0.0467	0.8521	0.0158	*
Route	Week_15	MN	Needle	SF	0.6597	0.1356	1.1839	0.0143	*
Route	Week_16	MN	Control	Needle	-0.3150	-0.7167	0.0866	0.0478	*
Route	Week_16	MN	Control	SF	0.4347	0.0119	0.8575	0.0243	*
Route	Week_16	MN	Needle	SF	0.7498	0.2463	1.2532	0.0045	**

Route	Week_17	MN	Control	SF	0.5167	0.1012	0.9322	0.0097	**
Route	Week_17	MN	Needle	SF	0.6834	0.1699	1.1969	0.0097	**
Route	Week_18	MN	Needle	SF	0.5990	0.0178	1.1803	0.0452	*

Conclusion

In conclusion, that "Diet" was the most potent predictor for mouse weight gain over time. Interestingly, between the well-nourished groups, we never observed statistically significant weight gains over time, suggesting that in that state, and conversely to the malnourished mouse groups, mouse weight was not affected by infection status or "Route" in well-nourished mice. These data support the hypothesis that the nutritional state of an individual can directly impact their weight before and during *Leishmania donovani* infection.

Panel b

Data analysis

We analysed a total of N=98 well-nourished (WN) and malnourished (MN) BALB/c mice for the frequency of a >=20% weight loss post-intradermal *Leishmania donovani* infection either by "needle" injection or sand fly bite (SF) (N: MN_Needle=20, MN_SF=34, WN_Needle=10, WN_SF=34) by contingency table analysis and logistic regression.

Contingency table

Due to the small sample sizes of some groups, there were several expected counts <5, why we opted for the Fisher's Exact test, which had the added benefit of exact p-value calculation. The analysis rendered a p-value of 0.00519, suggesting a statistically significant difference between groups. This was confirmed by the pairwise Fisher's Exact test corrected by the Benjamin-Hochberg method, although the only statistically significant difference was observed for well-nourished and malnourished sand fly infected mice (Appendix table 96).

Appendix Table 96 Pairwise Fisher's Exact test

group1	group2	n	estimate	p	conf.low	conf.high	alternative	p.adj	p.adj.signif
MN_Needle	MN_SF	54	2.7223	0.2910	0.4647	29.2690	two.sided	0.4360	ns
MN_Needle	WN_Needle	30	0.0000	0.5400	0.0000	10.8041	two.sided	0.6480	ns
MN_Needle	WN_SF	54	0.0000	0.1330	0.0000	3.0783	two.sided	0.3340	ns
MN_SF	WN_Needle	44	0.0000	0.1670	0.0000	1.8885	two.sided	0.3340	ns
MN_SF	WN_SF	68	0.0000	0.0049	0.0000	0.5050	two.sided	0.0295	*
WN_Needle	WN_SF	44	0.0000	1.0000	0.0000	Inf	two.sided	1.0000	ns

The observed odds ratios suggested that well-nourished BALB/c mice had a 0-fold likelihood of developing a >=20% weight loss due to *L. donovani* infection, regardless of the infection route (Appendix table 97). Conversely, malnourished animals did develop the weight loss post infection. Although the malnourished mice infected by sand fly bite, did show an increase a greater occurrence rate of >=20% weight loss compared to needle inoculated mice, that difference did not achieve statistical significance. Th retrospective sample and power calculations showed that our sample was sufficiently large enough at the total N to have sufficient power, the fact that the sample size per group were not equal (WN_needle only contained 10 mice) affected the actual test power (Appendix table 98). Either way, the contingency analysis suggested that "Diet", rather than infection "Route" was key in the occurrance of critical weight loss post infection.

Appendix Table 97
Odds Ratios

Groups	estimate	lower	upper	p.value
MN_Needle	1.0000	NA	NA	NA
MN_SF	2.7223	0.4647	29.2690	0.2912
WN_Needle	<0.0001	< 0.0001	10.8041	0.5402
WN_SF	<0.0001	< 0.0001	3.0783	0.1328

Appendix Table 98 Retrospective Power Calculation

	Calculation for					
Parameters	Sample size	Statistical power				
Statistical power	0.8	0.826				
Total n	93	98				
Degrees of freedom	3	3				
Non-centrality parameter	10.903	11.59				
Type I error rate	0.05	0.05				
Type II error rate	0.2	0.174				

Logistic regression

Due to the lack of events in the well-nourished group, logistic regression was not possible here as it rendered nonsensical data due to its dependence on the maximum likelihood estimation, which rendered an infinite estimate under these circumstance.

Panel c

Here, we analyzed the occurrence of ocular pathology following *Leishmania donovani* infection in well-nourished (WN) and malnourished (MN) BALB/c mice. A total of *N*=98 BALB/c mice (WN_Needle=10,

MN_Needle=20, MN_SF=34, WN_SF=34) were examined on a weekly bases post infection by either "needle" or sand fly (SF) route and occurrence of pathology was recorded as time-to-event data.

Survival analysis The data was analyzed by the Mantel-Haenszel's log-rank test by use of the survdiff() function from the survival package in R. The test output is shown in table 99, which was statistically significant (F(3)=95.73, <0.0001).

Appendix Table 99 Log-rank test

				Chi-Square	log-rank
Groups	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
WN_Needle	10	0	3.8551	3.8551	4.5619
WN_SF	34	0	13.1074	13.1074	23.3213
MN_Needle	20	2	7.5019	4.0351	5.4924
MN_SF	34	30	7.5356	66.9693	95.3186

The pairwise Mantel-Haenszel' log-rank test, which was adjusted by the Benjamin-Hochberg correction, showed that the malnourished, sand fly inoculated group was statistically significant from all other groups, while there was no statistically significant difference between the remaining three groups (Table 100).

Appendix Table 100 Pairwise Log-rank test

Groups	WN_Needle	WN_SF	MN_Needle
WN_SF	1.0000	NA	NA
MN_Needle	0.3733	0.0927	NA
MN_SF	< 0.0001	< 0.0001	< 0.0001

In fact, only malnourished animals developed ocular pathology post infection and the grand majority of these were inoculated by sand fly (Table 101), suggesting that sand flies significantly increase the occurrence of ocular pathology in malnourished hosts.

Appendix Table 101
Ocular pathology occurrence rate

	Well-n	ourished	Malno	urished
	Needle Sand fly		Needle	Sand fly
Group N	10	34	20	34
Ocular Pathology	0	0	2	30

Cox proportional hazards regression model We also explored the data by Cox proportional hazards regression. Due to the lack of events in the well-nourished group, we had to resort to Firth's penalized maximum likelihood bias reduction method for Cox regression. The output showed that both predictors, "Diet" and "Route", were statistically significant (Table 102).

Appendix Table 102Firth's penalized maximum likelihood bias reduction method for Cox regression

Groups	coef	se(coef)	exp(coef)	lower 0.95	upper 0.95	Chisq	p	sig.
DietMN	4.89	1.47	133.59	18.59	16969.83	62.67	< 0.0001	****
RouteSF	2.70	0.68	14.83	4.83	73.44	31.60	< 0.0001	****

The odds ratios suggested that "Diet" was a much more potent predictor for ocular pathology, than "Route", although both were statistically significant. Malnourished mice were about 133.6-times more likely to develop ocular pathology than well-nourished mice compared to sand fly inoculated mice being 14.8-times more likely to developed ocular pathology compared to the once inoculated by needle (Table 103).

Appendix Table 103
Odds ratios

Groups	AHR	2.5 %	97.5 %	p-value	sig.
DietMN	133.59	7.52	2373.94	< 0.0001	****
RouteSF	14.83	3.89	56.51	< 0.0001	****

The pairwise comparison clearly confirmed the observation of the log-rank test that the malnourished, sand fly inoculated group was statistically significantly different from the other three groups (Table 104 and 105). Here, the analysis also separated well-nourished needle inoculated mice from the other three groups, which may be due to the small samples.

Appendix Table 104
Pariwise comparison by estimated marginal means

Groups	estimate	SE	df	z.ratio	p.value	sig.
WN Needle - MN Needle	-4.89	1.47	Inf	-3.33	0.0051	**
WN Needle - WN SF	-2.70	0.68	Inf	-3.95	0.0005	***
WN Needle - MN SF	-7.59	1.64	Inf	-4.63	< 0.0001	****
MN Needle - WN SF	2.20	1.60	Inf	1.38	0.6697	ns
MN Needle - MN SF	-2.70	0.68	Inf	-3.95	0.0005	***

Appendix Table 105Pariwise comparison by estimated marginal means (letters)

Diet	Route	emmean	SE	df	asymp.LCL	asymp.UCL	.group
WN	Needle	0.00	0.00	Inf	0.00	0.00	a
WN	SF	2.70	0.68	Inf	1.00	4.40	b
MN	Needle	4.89	1.47	Inf	1.24	8.55	b
MN	SF	7.59	1.64	Inf	3.50	11.68	c

Panel d

Here, we present the parasite counts from several isolated tissues (brain, ears, eyes, liver, paw and spleen) according to qPCR as a measure of parasite dissemination to these tissues. To analyze the data, we had to re-scale it, due to the occurrence of zero-values in instances of no detection, by dividing all value by the smallest non-zero value in the dataset. This resulted in a approximate Poisson / negative binomial distribution, which allowed the convenient analysis of the re-scaled and rounded counts by the appropriate models for these distributions.

We analyzed a total of *N*=26, 38, 26, 26, 26, 85 BALB/c mice (MN_SF=9, WN_SF=10). These were the same mice as analyzed in figure 2a for parasite dissemination events. Here, we quantified parasite burden per isolated draining lymph node. For the data analysis we tested several Poisson and negative binomial-type regression models. Based on the dispersion factor we selected a standard negative_binomial regression model for the data analysis post data re-scaling. The model fitted the data well producing no statistically significant departure from 1 for its dispersion ratio (dispersion_ratio: c(1.1272, 2.1435, 1.3351, 1, 0.6729, 3.1538), p_value: c(0.616, 0.24, 0.416, 0.4608, 0.544, 0.08)) and showing a reasonable pseudo-R² (c(0.0578054, 0.377283, 0.248197, 0.312642, 0.156691, 0.273575)). The model output showed that both, "Diet" and "Route" were statistically significant predictors, but there was no statistically significant interaction between these two predictors.

We analyzed varying total N of the different tissue samples (Appendix table 106). Total N and group N were dependent on available animals. While the spleen was always collected, other tissue types were only considered later in the study, as to why their total N is much lower. In general, a zero-inflated negative binomial model was the fit our data, with the exception of eye and liver sample, where a zero-inflated Poisson and standard Poisson regression model fitted best, respectively.

Appendix Table 106 Summary information

Group N	Selected model	Overdispersion test
---------	----------------	---------------------

Tissue	Total N	MN_Needle	WN_SF	MN_SF	Type ¹	Model ²	Ratio	p_value	Pseudo R^2
Brain	26	7	8	11	zero-inf.	NB	1.1272	0.6160	0.0578
Ear	38	11	12	15	zero-inf.	NB	2.1435	0.2400	0.3773
Eye	26	7	8	11	zero-inf.	Poisson	1.3351	0.4160	0.2482
Liver	26	7	8	11	standard	Poisson	1.0000	0.4608	0.3126
Paw	26	7	8	11	zero-inf.	NB	0.6729	0.5440	0.1567
Spleen	85	17	32	36	zero-inf.	NB	3.1538	0.0800	0.2736

¹zero-inf. = zero-inflated

The summary of the best fitting model according to dispersion test, rather than AIC in this case, is shown in appendix table 107. In general, malnourished, needle inoculated moce served as the reference sample in the regression analysis.

Appendix Table 107 Model summary outputs

Predictors	Estimate	Std. Error	z value	Pr(> z)	sig.
Brain					
(Intercept)	3.5699	0.7886	4.5270	< 0.0001	****
DietMN_SF	-0.5966	0.9339	-0.6388	0.5230	ns
DietWN_SF	-1.3865	1.0766	-1.2879	0.1978	ns
Ear					
(Intercept)	1.6452	0.5816	2.8289	0.0047	**
DietMN_SF	1.7824	0.7586	2.3494	0.0188	*
DietWN_SF	4.0175	0.7953	5.0518	< 0.0001	****
Eye					
(Intercept)	-20.8473	18851.5363	-0.0011	0.9991	ns
DietMN_SF	21.1547	18851.5363	0.0011	0.9991	ns
DietWN_SF	21.8020	18851.5363	0.0012	0.9991	ns
Liver					
(Intercept)	-19.3026	3562.9263	-0.0054	0.9957	ns
DietMN_SF	18.6964	3562.9263	0.0052	0.9958	ns
DietWN_SF	17.2231	3562.9264	0.0048	0.9961	ns
Paw					
(Intercept)	-0.1928	2.9165	-0.0661	0.9473	ns
DietMN_SF	3.3461	1.8853	1.7748	0.0759	+

 $^{^{2}}$ NB = negative binomial

DietWN_SF	-1.5465	2.2330	-0.6926	0.4886	ns
Spleen					
(Intercept)	0.8303	0.6791	1.2227	0.2214	ns
DietMN_SF	4.2820	0.8167	5.2431	< 0.0001	****
DietWN_SF	0.4489	0.8374	0.5360	0.5919	ns

We applied a pairwise comparison based on the estimated marginal means for each tissue, respectively (Appendix table 107 and 108). The analysis showed no statistically significant difference between groups for the tissues brain, eye and liver. For the paw, we observed a statistically significant difference between well-nourished and malnourished sand fly inoculated mice, but the result may not be reliable due to the small sample size. For the ear samples we observed statistically significant difference between all pairs with the well-nourished, sand fly inoculated mice clustering most strongly away from either malnourished group. In case of the spleen, it was the malnourished, sand fly inoculated group that was statistically significantly different from the other two group, suggesting significantly higher and more frequent occurrence of parasites in that group.

Appendix Table 108
Pairwise comparison based on estimated marginal means

Predictor pairs	estimate	SE	df	z.ratio	p.value	sig.
Brain						
MN_Needle - MN_SF	0.5966	0.9339	Inf	0.6388	0.523	ns
MN_Needle - WN_SF	1.3865	1.0766	Inf	1.2879	0.523	ns
MN_SF - WN_SF	0.7899	0.9768	Inf	0.8087	0.523	ns
Ear						
MN_Needle - MN_SF	-1.7824	0.7586	Inf	-2.3494	0.0188	*
MN_Needle - WN_SF	-4.0175	0.7953	Inf	-5.0518	< 0.0001	****
MN_SF - WN_SF	-2.2352	0.7291	Inf	-3.0657	0.0033	**
Eye						
MN_Needle - MN_SF	-21.1547	18851.5363	Inf	-0.0011	0.9991	ns
MN_Needle - WN_SF	-21.8020	18851.5363	Inf	-0.0012	0.9991	ns
MN_SF - WN_SF	-0.6473	0.6414	Inf	-1.0093	0.9385	ns
Liver						
MN_Needle - MN_SF	-18.6964	3562.9263	Inf	-0.0052	0.9961	ns
MN_Needle - WN_SF	-17.2231	3562.9264	Inf	-0.0048	0.9961	ns
MN_SF - WN_SF	1.4733	1.0801	Inf	1.3640	0.5177	ns
Paw						
MN_Needle - MN_SF	-3.3461	1.8853	Inf	-1.7748	0.1139	ns

MN_Needle - WN_SF	1.5465	2.2330	Inf	0.6926	0.4886	ns
MN_SF - WN_SF	4.8926	2.0285	Inf	2.4119	0.0476	*
Spleen						
MN_Needle - MN_SF	-4.2820	0.8167	Inf	-5.2431	< 0.0001	****
MN_Needle - WN_SF	-0.4489	0.8374	Inf	-0.5360	0.5919	ns
MN_SF - WN_SF	3.8331	0.6678	Inf	5.7403	< 0.0001	****

Appendix Table 109
Pairwise comparison letter code

Predictor levels	emmean	SE	df	asymp.LCL	asymp.UCL	.group
Brain						
WN_SF	2.1834	0.8822	Inf	0.0713	4.2954	a
MN_SF	2.9733	0.6029	Inf	1.5300	4.4166	a
MN_Needle	3.5699	0.7886	Inf	1.6820	5.4577	a
Ear						
MN_Needle	1.6452	0.5816	Inf	0.2529	3.0374	a
MN_SF	3.4275	0.4872	Inf	2.2613	4.5938	b
WN_SF	5.6627	0.5424	Inf	4.3641	6.9612	c
Eye						
MN_Needle	-20.8473	18851.5363	Inf	-45151.0445	45109.3499	a
MN_SF	0.3074	0.5689	Inf	-1.0544	1.6692	a
WN_SF	0.9547	0.3263	Inf	0.1735	1.7360	a
Liver						
MN_Needle	-19.3026	3562.9263	Inf	-8548.8761	8510.2709	a
WN_SF	-2.0794	1.0000	Inf	-4.4734	0.3145	a
MN_SF	-0.6061	0.4082	Inf	-1.5835	0.3712	a
Paw						
WN_SF	-1.7393	2.8074	Inf	-8.4601	4.9816	a
MN_Needle	-0.1928	2.9165	Inf	-7.1748	6.7893	ab
MN_SF	3.1533	2.8624	Inf	-3.6992	10.0059	b
Spleen						
MN_Needle	0.8303	0.6791	Inf	-0.7954	2.4561	a
WN_SF	1.2792	0.4900	Inf	0.1062	2.4522	a
MN_SF	5.1123	0.4537	Inf	4.0262	6.1984	b

Panel e

Data analysis

We analysed the frequency of *Leishmania donovani* dissemination to several different tissues (brain, ears, eyes, liver, paw and spleen) in a total in a varying total *N* of well-nourished (WN) and malnourished (MN) BALB/c mice infected intradermally either by "needle" injection or sand fly bite (SF) by contingency table analysis and logistic regression (Appendix table 110). These are the same animals as presented in figure 3d. These analyses permitted looking at our data from another angle to fully comprehend the impact of infection route and state of nourishment.

Appendix Table 110 Sample size

Tissue	Total N	MN_Needle	MN_SF	WN_SF
Brain	26	7	11	8
Ear	38	11	15	12
Eye	26	7	11	8
Liver	26	7	11	8
Paw	26	7	11	8
Spleen	83	17	34	32

Contingency table

Due to the small sample sizes in most datasets, there were several expected counts <5, why we opted for the Fisher's Exact test, which had the added benefit of exact p-value calculation, for all tissues except the spleen, where the sample size was much larger and a Chi-square test was applied. Only the spleen showed a statistical significant difference (Appendix table 111).

Appendix Table 111 Contingency table analyses

Tissue	n	p	p.signif	Test
Brain	26	0.5410	ns	Fisher's Exact test
Ear	38	0.8870	ns	Fisher's Exact test
Eye	26	0.1120	ns	Fisher's Exact test
Liver	26	0.1750	ns	Fisher's Exact test
Paw	26	0.8360	ns	Fisher's Exact test
Spleen	83	0.0446	*	Chi-square test

Interestingly, the pairwise comparison did not show any statistical significant difference, even before adjusting p-values for multiple comparisons (Appendix table 112), suggesting that there is no difference between groups within any tissue in terms of dissemination success.

Appendix Table 112

Pairwise comparison

group	n	estimate	p	p.adj	p.adj.signif	
Brain - Fisher's Exact to	est					
MN_Needle - MN_SF	18	1.2926	1.0000	1.000	ns	
MN_Needle - WN_SF	15	0.4753	0.6190	0.928	ns	
MN_SF - WN_SF	19	0.3638	0.3700	0.928	ns	
Liver - Fisher's Exact te	est					
MN_Needle - MN_SF	18	Inf	0.1190	0.357	ns	
MN_Needle - WN_SF	15	Inf	1.0000	1.000	ns	
MN_SF - WN_SF	19	0.2678	0.3380	0.507	ns	
Paw - Fisher's Exact tes	t					
MN_Needle - MN_SF	18	2.1565	1.0000	1.000	ns	
MN_Needle - WN_SF	15	0.8660	1.0000	1.000	ns	
MN_SF - WN_SF	19	0.3997	0.6030	1.000	ns	
Spleen - Chi-square test	-					
MN_Needle - MN_SF	51	3.5406	0.0599	0.127	ns	
MN_Needle - WN_SF	49	0.0630	0.8020	0.802	ns	
MN_SF - WN_SF	66	2.9724	0.0847	0.127	ns	
Ear - Fisher's Exact test						
MN_Needle - MN_SF	26	1.4763	1.0000	1.000	ns	
MN_Needle - WN_SF	23	1.8241	0.6400	1.000	ns	
MN_SF - WN_SF	27	1.2398	1.0000	1.000	ns	
Eye - Fisher's Exact test						
MN_Needle - MN_SF	18	Inf	0.2450	0.368	ns	
MN_Needle - WN_SF	15	Inf	0.0769	0.231	ns	
MN_SF - WN_SF	19	2.5255	0.3770	0.377	ns	

Conversely, looking at the odds ratios, then malnourished, sand fly inoculated mice were significantly more likely to experience parasite dissemination to the spleen than malnourished, needle inoculated mice (Appendix table 113).

Appendix Table 113 Odds Ratios

Groups estimate lower	upper p.value sig.
-----------------------	--------------------

Brain					
MN_Needle	1.0000	NA	NA	NA	NA
MN_SF	1.2926	0.1220	13.1405	1.0000	ns
WN_SF	0.4753	0.0362	5.2820	0.6193	ns
Ear					
MN_Needle	1.0000	NA	NA	NA	NA
MN_SF	1.4763	0.1562	14.0607	1.0000	ns
WN_SF	1.8241	0.1648	26.9593	0.6404	ns
Eye					
MN_Needle	1.0000	NA	NA	NA	NA
MN_SF	Inf	0.2687	Inf	0.2451	ns
WN_SF	Inf	0.6991	Inf	0.0769	+
Liver					
MN_Needle	1.0000	NA	NA	NA	NA
MN_SF	Inf	0.4574	Inf	0.1193	ns
WN_SF	Inf	0.0225	Inf	1.0000	ns
Paw					
MN_Needle	1.0000	NA	NA	NA	NA
MN_SF	2.1565	0.1311	137.3685	1.0000	ns
WN_SF	0.8660	0.0096	78.3189	1.0000	ns
Spleen					
MN_Needle	1.0000	NA	NA	NA	NA
MN_SF	3.7196	1.0912	14.4367	0.0399	*
WN_SF	1.4147	0.4021	5.5178	0.7543	ns

However, applying a retrospective statistical power calculation showed that the sample size for most tissue was to small to detect a meaningful difference here and thus, our statistical power was well below the standard 80% for all tissues (Appendix table 114), but larger sample sizes were prohibitive due to cost and loss of life.

Appendix Table 114 Retrospective Power Calculation

	Calculation for				
Parameters	Sample size	Statistical power			
Brain					
Statistical power	0.8	0.161			

Total n	191	26
Degrees of freedom	2	2
Non-centrality parameter	9.635	1.315
Type I error rate	0.05	0.05
Type II error rate	0.2	0.839
Ear		
Statistical power	0.8	0.082
Total n	905	38
Degrees of freedom	2	2
Non-centrality parameter	9.635	0.405
Type I error rate	0.05	0.05
Type II error rate	0.2	0.918
Eye		
Statistical power	0.8	0.482
Total n	53	26
Degrees of freedom	2	2
Non-centrality parameter	9.635	4.745
Type I error rate	0.05	0.05
Type II error rate	0.2	0.518
Liver		
Statistical power	0.8	0.413
	0.8 63	0.413 26
Statistical power		
Statistical power Total n	63	26
Statistical power Total n Degrees of freedom	63 2	26 2
Statistical power Total n Degrees of freedom Non-centrality parameter	63 2 9.635	26 2 3.979
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate	63 2 9.635 0.05	26 2 3.979 0.05
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate	63 2 9.635 0.05	26 2 3.979 0.05
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Paw	63 2 9.635 0.05 0.2	26 2 3.979 0.05 0.587
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Paw Statistical power	63 2 9.635 0.05 0.2	26 2 3.979 0.05 0.587
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Paw Statistical power Total n	63 2 9.635 0.05 0.2	26 2 3.979 0.05 0.587 0.115 26
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Paw Statistical power Total n Degrees of freedom	63 2 9.635 0.05 0.2 0.8 313 2	26 2 3.979 0.05 0.587 0.115 26 2
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Paw Statistical power Total n Degrees of freedom Non-centrality parameter	63 2 9.635 0.05 0.2 0.8 313 2 9.635	26 2 3.979 0.05 0.587 0.115 26 2 0.802
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Paw Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate	0.8 313 2 9.635 0.05 0.2	26 2 3.979 0.05 0.587 0.115 26 2 0.802 0.05
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Paw Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type I error rate	0.8 313 2 9.635 0.05 0.2	26 2 3.979 0.05 0.587 0.115 26 2 0.802 0.05
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Paw Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type I error rate Spleen	63 2 9.635 0.05 0.2 0.8 313 2 9.635 0.05 0.2	26 2 3.979 0.05 0.587 0.115 26 2 0.802 0.05 0.885
Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Paw Statistical power Total n Degrees of freedom Non-centrality parameter Type I error rate Type II error rate Spleen Statistical power	63 2 9.635 0.05 0.2 0.8 313 2 9.635 0.05 0.2	26 2 3.979 0.05 0.587 0.115 26 2 0.802 0.05 0.885

Type I error rate	0.05	0.05
Type II error rate	0.2	0.4

The problem of the small and unequal sample sizes between groups became evident when we looked at the contingency table (Appendix table 115). Small counts in most cells, makes these analyses not very robust. But it needs to be noted that malnourished, sand fly inoculated mice experienced more frequently dissemination of parasites to other tissues than well-nourished, sand fly inoculated and malnourished needle inoculated mice. The latter had generally the lowest frequency of dissemination event, suggesting that a) parasite inoculation by sand fly bite increases the frequency of parasite dissemination, and that b) in the context of sand fly inoculation, malnourishment seems to further exacerbate the frequency of parasite dissemination.

Appendix Table 115 Odds Ratios

Dissemination	MN_Needle	MN_SF	WN_SF
Brain			
NO	3	4	5
YES	4	7	3
Ear			
NO	3	3	2
YES	8	12	10
Eye			
NO	7	8	4
YES	0	3	4
Liver			
NO	7	7	7
YES	0	4	1
Paw			
NO	6	8	7
YES	1	3	1
Spleen			
NO	12	13	20
YES	5	21	12

Logistic regression

We applied a logistic regression model to the same data and assessed the two predictor variables "Diet" and "Route" without an interaction term to assess individual predictor contribution to the outcome. The data output showed that infection by sand fly bite ("Route") was the statistically significant compared to needle inoculation only for the spleen. Malnourishment was close to being statistically significantly different from well-nourishment for the spleen, too. For all other tissues, there was no statistical significance observed (Appendix table 116).

Appendix Table 116 Logistic regression output

Groups Estimate lower CI upper CI Std. Error partial.R2 z value Pr(> z) sig. Brain (Intercept) -0.7828 -3.2570 1.6385 1.2286 0.0000 -0.6371 0.5241 ns DietMN 1.0704 -0.7742 3.0761 0.9624 0.0357 1.1123 0.2660 ns RouteSF 0.2719 -1.7200 2.2484 0.9880 0.0022 0.2752 0.7831 ns Ear (Intercept) 1.2040 -1.1368 3.7552 1.2145 0.0000 0.9913 0.3215 ns DietMN -0.2231 -2.3937 1.7544 1.0083 0.0013 -0.2213 0.8249 ns RouteSF 0.4055 -1.4841 2.3056 0.9354 0.0048 0.4335 0.6647 ns Eye (Intercept) -17.5852 NA 208.3362 2465.3259 0.0000 -0.0071 0.9943 ns RouteSF 17									
(Intercept) -0.7828 -3.2570 1.6385 1.2286 0.0000 -0.6371 0.5241 ns DietMN 1.0704 -0.7742 3.0761 0.9624 0.0357 1.1123 0.2660 ns RouteSF 0.2719 -1.7200 2.2484 0.9880 0.0022 0.2752 0.7831 ns Ear (Intercept) 1.2040 -1.1368 3.7552 1.2145 0.0000 0.9913 0.3215 ns DietMN -0.2231 -2.3937 1.7544 1.0083 0.0013 -0.2213 0.8249 ns RouteSF 0.4055 -1.4841 2.3056 0.9354 0.0048 0.4335 0.6647 ns Eye (Intercept) -17.5852 NA 208.3362 2465.3259 0.0000 -0.0071 0.9943 ns DietMN -0.9808 -3.0079 0.9169 0.9789 0.0411 -1.0019 0.3164 ns RouteSF 17.5852 NA 412.3	Groups	Estimate	lower CI	upper CI	Std. Error	partial.R2	z value	Pr(> z)	sig.
DietMN RouteSF 1.0704 0.2719 -0.7742 -1.7200 3.0761 0.9624 0.9880 0.0357 0.0022 1.1123 0.2660 ns ns RouteSF 0.2719 0.2719 -1.7200 0.2.2484 0.9880 0.0022 0.2752 0.7831 ns ns Ear (Intercept) 1.2040 1.368 3.7552 1.2145 0.0000 0.9913 0.3215 ns ns DietMN -0.2231 0.4055 0.4055 -1.4841 0.083 0.0013 0.0013 0.0213 0.8249 ns ns RouteSF 0.4055 0.4055 0.4841 0.3056 0.9354 0.0048 0.4335 0.6647 ns ns Eye (Intercept) 0.4055 0.4841 0.0083 0.0013 0.0004 0.4335 0.6647 ns ns DietMN 0.9808 0.30079 0.9169 0.9789 0.0000 0.0000 0.0071 0.9943 ns ns RouteSF 0.4050 0.4050 0.4050 0.4050 0.4050 0.4050 0.0000 0.0001 0.0001 0.9943 ns ns Liver (Intercept) 0.20524 0.8113 0.8113 0.4936 0.0000 0.0000 0.00052 0.9959 ns ns DietMN 0.4064 0.46360 0.46360 0.46360 0.0000 0.0000 0.0052 0.9963 ns ns Paw (Intercept) 0.27568 0.457.9217 0.4936 0.2147 0.0000 0.1852 0.0047 0.9963 ns ns Paw (Intercept) 0.8109 0.15137 0.9522 0.2148 0.0144 0.6361 0.5247 ns ns RouteSF 0.8109 0.15137 0.9522 0.2148 0.0174 0.6361 0.5247 ns	Brain								
RouteSF 0.2719 -1.7200 2.2484 0.9880 0.0022 0.2752 0.7831 ns Ear (Intercept) 1.2040 -1.1368 3.7552 1.2145 0.0000 0.9913 0.3215 ns DietMN -0.2231 -2.3937 1.7544 1.0083 0.0013 -0.2213 0.8249 ns RouteSF 0.4055 -1.4841 2.3056 0.9354 0.0048 0.4335 0.6647 ns Eye (Intercept) -17.5852 NA 208.3362 2465.3259 0.0000 -0.0071 0.9943 ns DietMN -0.9808 -3.0079 0.9169 0.9789 0.0411 -1.0019 0.3164 ns RouteSF 17.5852 AN 412.3356 4064.6328 0.1219 0.0071 0.9943 ns Liver (Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113	(Intercept)	-0.7828	-3.2570	1.6385	1.2286	0.0000	-0.6371	0.5241	ns
Colored Part Colo	DietMN	1.0704	-0.7742	3.0761	0.9624	0.0357	1.1123	0.2660	ns
(Intercept) 1.2040 -1.1368 3.7552 1.2145 0.0000 0.9913 0.3215 ns DietMN -0.2231 -2.3937 1.7544 1.0083 0.0013 -0.2213 0.8249 ns RouteSF 0.4055 -1.4841 2.3056 0.9354 0.0048 0.4335 0.6647 ns Eye (Intercept) -17.5852 NA 208.3362 2465.3259 0.0000 -0.0071 0.9943 ns DietMN -0.9808 -3.0079 0.9169 0.9789 0.0411 -1.0019 0.3164 ns RouteSF 17.5852 -313.1974 NA 2465.3258 0.1219 0.0071 0.9943 ns Liver (Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217	RouteSF	0.2719	-1.7200	2.2484	0.9880	0.0022	0.2752	0.7831	ns
DietMN -0.2231 -2.3937 1.7544 1.0083 0.0013 -0.2213 0.8249 ns RouteSF 0.4055 -1.4841 2.3056 0.9354 0.0048 0.4335 0.6647 ns Eye (Intercept) -17.5852 NA 208.3362 2465.3259 0.0000 -0.0071 0.9943 ns DietMN -0.9808 -3.0079 0.9169 0.9789 0.0411 -1.0019 0.3164 ns RouteSF 17.5852 -313.1974 NA 2465.3258 0.1219 0.0071 0.9943 ns Liver (Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 </td <td>Ear</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ear								
RouteSF 0.4055 -1.4841 2.3056 0.9354 0.0048 0.4335 0.6647 ns Eye (Intercept) -17.5852 NA 208.3362 2465.3259 0.0000 -0.0071 0.9943 ns DietMN -0.9808 -3.0079 0.9169 0.9789 0.0411 -1.0019 0.3164 ns RouteSF 17.5852 -313.1974 NA 2465.3258 0.1219 0.0071 0.9943 ns Liver (Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3	(Intercept)	1.2040	-1.1368	3.7552	1.2145	0.0000	0.9913	0.3215	ns
Eye (Intercept) -17.5852 NA 208.3362 2465.3259 0.0000 -0.0071 0.9943 ns DietMN -0.9808 -3.0079 0.9169 0.9789 0.0411 -1.0019 0.3164 ns RouteSF 17.5852 -313.1974 NA 2465.3258 0.1219 0.0071 0.9943 ns Liver (Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 <t< td=""><td>DietMN</td><td>-0.2231</td><td>-2.3937</td><td>1.7544</td><td>1.0083</td><td>0.0013</td><td>-0.2213</td><td>0.8249</td><td>ns</td></t<>	DietMN	-0.2231	-2.3937	1.7544	1.0083	0.0013	-0.2213	0.8249	ns
(Intercept) -17.5852 NA 208.3362 2465.3259 0.0000 -0.0071 0.9943 ns DietMN -0.9808 -3.0079 0.9169 0.9789 0.0411 -1.0019 0.3164 ns RouteSF 17.5852 -313.1974 NA 2465.3258 0.1219 0.0071 0.9943 ns Liver (Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522	RouteSF	0.4055	-1.4841	2.3056	0.9354	0.0048	0.4335	0.6647	ns
DietMN -0.9808 -3.0079 0.9169 0.9789 0.0411 -1.0019 0.3164 ns RouteSF 17.5852 -313.1974 NA 2465.3258 0.1219 0.0071 0.9943 ns Liver (Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	Eye								
RouteSF 17.5852 -313.1974 NA 2465.3258 0.1219 0.0071 0.9943 ns Liver (Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	(Intercept)	-17.5852	NA	208.3362	2465.3259	0.0000	-0.0071	0.9943	ns
Liver (Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	DietMN	-0.9808	-3.0079	0.9169	0.9789	0.0411	-1.0019	0.3164	ns
(Intercept) -20.9524 NA 412.3356 4064.6350 0.0000 -0.0052 0.9959 ns DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	RouteSF	17.5852	-313.1974	NA	2465.3258	0.1219	0.0071	0.9943	ns
DietMN 1.3863 -0.8113 4.4936 1.2392 0.0663 1.1187 0.2633 ns RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	Liver								
RouteSF 19.0065 -457.9217 NA 4064.6349 0.1852 0.0047 0.9963 ns Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	(Intercept)	-20.9524	NA	412.3356	4064.6350	0.0000	-0.0052	0.9959	ns
Paw (Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	DietMN	1.3863	-0.8113	4.4936	1.2392	0.0663	1.1187	0.2633	ns
(Intercept) -2.7568 -6.6469 0.2147 1.6637 0.0000 -1.6571 0.0975 + DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	RouteSF	19.0065	-457.9217	NA	4064.6349	0.1852	0.0047	0.9963	ns
DietMN 0.9651 -1.3351 4.0962 1.2654 0.0252 0.7627 0.4457 ns RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	Paw								
RouteSF 0.8109 -1.5137 3.9522 1.2748 0.0174 0.6361 0.5247 ns	(Intercept)	-2.7568	-6.6469	0.2147	1.6637	0.0000	-1.6571	0.0975	+
	DietMN	0.9651	-1.3351	4.0962	1.2654	0.0252	0.7627	0.4457	ns
Culcan	RouteSF	0.8109	-1.5137	3.9522	1.2748	0.0174	0.6361	0.5247	ns
Spieen	Spleen								
(Intercept) -1.8659 -3.3704 -0.4616 0.7357 0.0000 -2.5363 0.0112 *	(Intercept)	-1.8659	-3.3704	-0.4616	0.7357	0.0000	-2.5363	0.0112	*
DietMN 0.9904 0.0101 2.0112 0.5078 0.0350 1.9503 0.0511 +	DietMN	0.9904	0.0101	2.0112	0.5078	0.0350	1.9503	0.0511	+
RouteSF 1.3550 0.1458 2.6835 0.6387 0.0429 2.1217 0.0339 *	RouteSF	1.3550	0.1458	2.6835	0.6387	0.0429	2.1217	0.0339	*

The odds ratios were nonsensical for eye and liver here (Appendix table 117), as they were for the

contingency table analysis (Appendix table 113). Looking at the spleen, the infection route had a bigger impact on parasite dissemination than diet, although either odds ratio was statistically significant according to the 95% confidence intervals. For all other tissues, we did not obtain statistical significance.

Appendix Table 117
Odds Ratios

Groups	OR	2.5 %	97.5 %	Effect_size
Brain				
(Intercept)	0.457	0.038	5.147	small
DietMN	2.917	0.461	21.675	small
RouteSF	1.312	0.179	9.473	very small
Ear				
(Intercept)	3.333	0.321	42.743	small
DietMN	0.800	0.091	5.780	very small
RouteSF	1.500	0.227	10.031	very small
Eye				
(Intercept)	0.000	NA	3.01e+90	large
DietMN	0.375	0.049	2.502	small
RouteSF	4.34e+07	0.000	NA	large
Liver				
(Intercept)	0.000	NA	1.19e+179	large
DietMN	4.000	0.444	89.442	medium
RouteSF	1.80e+08	0.000	NA	large
Paw				
(Intercept)	0.064	0.001	1.240	large
DietMN	2.625	0.263	60.113	small
RouteSF	2.250	0.220	52.048	small
Spleen				
(Intercept)	0.155	0.034	0.630	medium
DietMN	2.692	1.010	7.472	small
RouteSF	3.877	1.157	14.636	medium

The Wald test confirmed the logistic regression result, stating that only the infection route was statistically significant for the spleen, with "Diet" close to reaching statistical significance (Appendix table 118).

Appendix Table 118
Wald test

Predictor	chi2	df	P	sig.
Brain				
Diet	1.2372	1	0.2660	ns
Route	0.0758	1	0.7831	ns
Ear				
Diet	0.0490	1	0.8249	ns
Route	0.1879	1	0.6647	ns
Eye				
Diet	1.0039	1	0.3164	ns
Route	< 0.0001	1	0.9943	ns
Liver				
Diet	1.2514	1	0.2633	ns
Route	< 0.0001	1	0.9963	ns
Paw				
Diet	0.5817	1	0.4457	ns
Route	0.4047	1	0.5247	ns
Spleen				
Diet	3.8037	1	0.0511	+
Route	4.5017	1	0.0339	*

However, although, in general, there was no statistically significance in the logistic regression model with the exception of the infection route in the spleen that did not mean that there was no meaningful biological effect. A retrospective sample size and power calculation with the study data showed that the study was well underpowered for the logistic regression for all tissues (Appendix table 119), as it had already been shown for the contingency table analysis (Appendix table 114). But larger sample sizes, in particular, as inideated by the sample size calculation, were prohibitive due to cost and loss of life.

Appendix Table 119 Retrospective power analyses

Predictor	Calculation	Beta0	Beta1	R-square	alpha	Power	TotalN	NCP	Alternative
Brain									
Diet	Sample_size	0.154	1.070	0.002	0.05	0.80	130	2.769	not equal
Route	Sample_size	0.154	0.272	0.036	0.05	0.80	1805	2.800	not equal
Diet	Power	-0.783	1.070	0.002	0.05	0.25	26	1.305	not equal

Route	Power	-0.783	0.272	0.036	0.05	0.06	26	0.323	not equal
Ear									
Diet	Sample_size	1.322	-0.223	0.005	0.05	0.80	3590	-2.799	not equal
Route	Sample_size	1.322	0.405	0.001	0.05	0.80	1314	2.793	not equal
Diet	Power	1.204	-0.223	0.005	0.05	0.06	38	-0.297	not equal
Route	Power	1.204	0.405	0.001	0.05	0.08	38	0.493	not equal
Eye									
Diet	Sample_size	-0.999	-0.981	0.122	0.05	0.80	260	-2.758	not equal
Route	Sample_size	-0.999	17.585	0.041	0.05	0.80	563119	2.286	not equal
Diet	Power	-17.585	-0.981	0.122	0.05	0.03	26	0.000	not equal
Route	Power	-17.585	17.585	0.041	0.05	0.00	26	0.009	not equal
Liver									
Diet	Sample_size	-1.435	1.386	0.185	0.05	0.80	101	2.747	not equal
Route	Sample_size	-1.435	19.006	0.066	0.05	0.80	1325232	2.286	not equal
Diet	Power	-20.952	1.386	0.185	0.05	0.02	26	0.000	not equal
Route	Power	-20.952	19.006	0.066	0.05	0.00	26	0.002	not equal
Paw									
Diet	Sample_size	-1.435	0.965	0.017	0.05	0.80	179	2.770	not equal
Route	Sample_size	-1.435	0.811	0.025	0.05	0.80	261	2.778	not equal
Diet	Power	-2.757	0.965	0.017	0.05	0.09	26	0.677	not equal
Route	Power	-2.757	0.811	0.025	0.05	0.07	26	0.556	not equal
Spleen									
Diet	Sample_size	-0.169	0.990	0.043	0.05	0.80	144	2.779	not equal
Route	Sample_size	-0.169	1.355	0.035	0.05	0.80	82	2.756	not equal
Diet	Power	-1.866	0.990	0.043	0.05	0.39	83	1.703	not equal
Route	Power	-1.866	1.355	0.035	0.05	0.68	83	2.389	not equal

Even so, there was a good indication of potential biological significance. Considering the predicted probability of parasite dissemination for most tissues, it can be seen that being malnourished and inoculated by a sand fly increased the probability of parasite dissemination for most tissue beyond the other conditions (Appendix table 120). With exception of the spleen, the large confidence intervals did not render statistical significance in all other tissues, which does not exclude biological significance, though.

Appendix Table 120 Predicted probability of parasite dissemination

Factors Diet	Route	fit	se.fit	Predicted_Probability	lower_CI	upper_CI
Brain						

	1	WN	SF	-0.5108	0.7303	0.3750	0.1254	0.7152
	2	MN	Needle	0.2877	0.7638	0.5714	0.2298	0.8563
	3	MN	SF	0.5596	0.6268	0.6364	0.3387	0.8567
Ear								
	1	WN	SF	1.6094	0.7746	0.8333	0.5228	0.9580
	2	MN	Needle	0.9808	0.6770	0.7273	0.4143	0.9095
	3	MN	SF	1.3863	0.6455	0.8000	0.5302	0.9341
Eye								
	1	WN	SF	0.0000	0.7071	0.5000	0.2001	0.7999
	2	MN	Needle	-18.5661	2465.3257	0.0000	0.0000	1.0000
	3	MN	SF	-0.9808	0.6770	0.2727	0.0905	0.5857
Liver								
	1	WN	SF	-1.9459	1.0690	0.1250	0.0173	0.5373
	2	MN	Needle	-19.5661	4064.6348	0.0000	0.0000	1.0000
	3	MN	SF	-0.5596	0.6268	0.3636	0.1433	0.6613
Paw								
	1	WN	SF	-1.9459	1.0690	0.1250	0.0173	0.5373
	2	MN	Needle	-1.7918	1.0801	0.1429	0.0197	0.5806
	3	MN	SF	-0.9808	0.6770	0.2727	0.0905	0.5857
Splee	n							
	1	WN	SF	-0.5108	0.3651	0.3750	0.2268	0.5510
	2	MN	Needle	-0.8755	0.5323	0.2941	0.1280	0.5419
	3	MN	SF	0.4796	0.3529	0.6176	0.4472	0.7634

Figure 4

Panel a

Panel b

Panel c

Panel d and e

Supplementary Figure 1

Panel a

Panel c

References

- [1] J. J. Allaire et al. *rmarkdown: Dynamic Documents for R*. 2024. URL: https://github.com/rstudio/rmarkdown.
- [2] JJ Allaire et al. *rmarkdown: Dynamic Documents for R*. R package version 2.27. 2024. URL: https://github.com/rstudio/rmarkdown.
- [3] Tomas J. Aragon. *epitools: Epidemiology Tools*. R package version 0.5-10.1. 2020. url: https://CRAN.R-project.org/package=epitools.
- [4] Mattan S. Ben-Shachar, Daniel Lüdecke, and Dominique Makowski. "effectsize: Estimation of Effect Size Indices and Standardized Parameters". In: *Journal of Open Source Software* 5.56 (2020), p. 2815. DOI: 10.21105/joss.02815³. URL: https://doi.org/10.21105/joss.02815.
- [5] Metin Bulus. *pwrss: Statistical Power and Sample Size Calculation Tools*. R package version 0.3.1. 2023. URL: https://CRAN.R-project.org/package=pwrss.
- [6] Francisco Cribari-Neto and Achim Zeileis. "Beta Regression in R". In: *Journal of Statistical Software* 34.2 (2010), pp. 1–24. doi: 10.18637/jss.v034.i02⁴.
- [7] Sam Firke. *janitor: Simple Tools for Examining and Cleaning Dirty Data*. R package version 2.2.0. 2023. URL: https://CRAN.R-project.org/package=janitor.
- [8] John Fox and Sanford Weisberg. *An R Companion to Applied Regression*. Third. Thousand Oaks CA: Sage, 2019. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
- [9] Philippe Grosjean and Frederic Ibanez. *pastecs: Package for Analysis of Space-Time Ecological Series*. R package version 1.4.2. 2024. URL: https://CRAN.R-project.org/package=pastecs.
- [10] Bettina Grün, Ioannis Kosmidis, and Achim Zeileis. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned". In: *Journal of Statistical Software* 48.11 (2012), pp. 1–25. DOI: 10.18637/jss.v048.i11⁵.
- [11] Frank E Harrell Jr. *Hmisc: Harrell Miscellaneous*. R package version 5.1-3. 2024. url: https://CRAN.R-project.org/package=Hmisc.

³https://doi.org/10.21105/joss.02815

⁴https://doi.org/10.18637/jss.v034.i02

⁵https://doi.org/10.18637/jss.v048.i11

- [12] Torsten Hothorn, Frank Bretz, and Peter Westfall. "Simultaneous Inference in General Parametric Models". In: *Biometrical Journal* 50.3 (2008), pp. 346–363.
- [13] Alboukadel Kassambara. *ggpubr: 'ggplot2' Based Publication Ready Plots*. R package version 0.6.0. 2023. URL: https://CRAN.R-project.org/package=ggpubr.
- [14] Alboukadel Kassambara. *rstatix: Pipe-Friendly Framework for Basic Statistical Tests*. R package version 0.7.2. 2023. URL: https://CRAN.R-project.org/package=rstatix.
- [15] Lukasz Komsta and Frederick Novomestky. *moments: Moments, Cumulants, Skewness, Kurtosis and Related Tests.* R package version 0.14.1. 2022. url: https://CRAN.R-project.org/package=moments.
- [16] Ioannis Kosmidis and Achim Zeileis. *Extended-Support Beta Regression for [0, 1] Responses*. Unpublished Manuscript. 2024.
- [17] Kuhn and Max. "Building Predictive Models in R Using the caret Package". In: *Journal of Statistical Software* 28.5 (2008), pp. 1–26. doi: 10.18637/jss.v028.i05⁶. url: https://www.jstatsoft.org/index.php/jss/article/view/v028i05.
- [18] Russell V. Lenth. *emmeans: Estimated Marginal Means, aka Least-Squares Means*. R package version 1.10.3. 2024. URL: https://CRAN.R-project.org/package=emmeans.
- [19] Lesnoff et al. *aod: Analysis of Overdispersed Data*. R package version 1.3.3. 2012. url: https://cran.r-project.org/package=aod.
- [20] Daniel Lüdecke. "sjmisc: Data and Variable Transformation Functions." In: *Journal of Open Source Software* 3.26 (2018), p. 754. doi: 10.21105/joss.00754⁷.
- [21] Daniel Lüdecke et al. "performance: An R Package for Assessment, Comparison and Testing of Statistical Models". In: *Journal of Open Source Software* 6.60 (2021), p. 3139. DOI: 10.21105/joss. 03139⁸.
- [22] Patrick Mair and Rand Wilcox. "Robust Statistical Methods in R Using the WRS2 Package". In: *Behavior Research Methods* 52 (2020). DOI: 10.3758/s13428-019-01246-w⁹.
- [23] Salvatore S. Mangiafico. *reompanion: Functions to Support Extension Education Program Evaluation*. version 2.4.36. Rutgers Cooperative Extension. New Brunswick, New Jersey, 2024. URL: https://CRAN.R-project.org/package=rcompanion/.
- [24] Tiago Olivoto and Alessandro Dal'Col Lúcio. "metan: An R package for multi-environment trial analysis". In: *Methods in Ecology and Evolution* 11.6 (2020), pp. 783–789. DOI: 10.1111/2041-210X.13384¹⁰.
- [25] José Pinheiro, Douglas Bates, and R Core Team. *nlme: Linear and Nonlinear Mixed Effects Models*. R package version 3.1-165. 2024. URL: https://CRAN.R-project.org/package=nlme.
- [26] José C. Pinheiro and Douglas M. Bates. *Mixed-Effects Models in S and S-PLUS*. New York: Springer, 2000. DOI: 10.1007/b98882¹¹.
- [27] R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria, 2024. URL: https://www.R-project.org/.

⁶https://doi.org/10.18637/jss.v028.i05

⁷https://doi.org/10.21105/joss.00754

⁸https://doi.org/10.21105/joss.03139

⁹https://doi.org/10.3758/s13428-019-01246-w

¹⁰https://doi.org/10.1111/2041-210X.13384

¹¹https://doi.org/10.1007/b98882

- [28] R Core Team. *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing. Vienna, Austria, 2024. URL: https://www.R-project.org/.
- [29] Xavier Robin et al. "pROC: an open-source package for R and S+ to analyze and compare ROC curves". In: *BMC Bioinformatics* 12 (2011), p. 77.
- [30] Francisco Rodriguez-Sanchez and Connor P. Jackson. *grateful: Facilitate citation of R packages*. 2023. URL: https://pakillo.github.io/grateful/.
- [31] RStudio Team. *RStudio: Integrated Development for R*. Type: Computer Program. RStudio, PBC., 2023. URL: http://www.rstudio.com/..
- [32] Simon Urbanek and Kent Johnson. *tiff: Read and Write TIFF Images*. R package version 0.1-12. 2023. URL: https://CRAN.R-project.org/package=tiff.
- [33] W. N. Venables and B. D. Ripley. *Modern Applied Statistics with S*. Fourth. ISBN 0-387-95457-0. New York: Springer, 2002. url: https://www.stats.ox.ac.uk/pub/MASS4/.
- [34] Hadley Wickham. *conflicted: An Alternative Conflict Resolution Strategy*. R package version 1.2.0. 2023. URL: https://CRAN.R-project.org/package=conflicted.
- [35] Hadley Wickham et al. "Welcome to the tidyverse". In: *Journal of Open Source Software* 4.43 (2019), p. 1686. DOI: 10.21105/joss.01686¹².
- [36] Yihui Xie. *bookdown: Authoring Books and Technical Documents with R Markdown*. Boca Raton, Florida: Chapman and Hall/CRC, 2016. ISBN: 978-1138700109. URL: https://bookdown.org/yihui/bookdown.
- [37] Yihui Xie. *bookdown: Authoring Books and Technical Documents with R Markdown*. R package version 0.40. 2024. URL: https://github.com/rstudio/bookdown.
- [38] Yihui Xie. *Dynamic Documents with R and knitr*. 2nd. ISBN 978-1498716963. Boca Raton, Florida: Chapman and Hall/CRC, 2015. URL: https://yihui.org/knitr/.
- [39] Yihui Xie. "knitr: A Comprehensive Tool for Reproducible Research in R". In: *Implementing Reproducible Computational Research*. Ed. by Victoria Stodden, Friedrich Leisch, and Roger D. Peng. ISBN 978-1466561595. Chapman and Hall/CRC, 2014.
- [40] Yihui Xie. *knitr: A General-Purpose Package for Dynamic Report Generation in R*. R package version 1.48. 2024. URL: https://yihui.org/knitr/.
- [41] Yihui Xie, J.J. Allaire, and Garrett Grolemund. *R Markdown: The Definitive Guide*. Boca Raton, Florida: Chapman and Hall/CRC, 2018. ISBN: 9781138359338. URL: https://bookdown.org/yihui/rmarkdown.
- [42] Yihui Xie, Christophe Dervieux, and Emily Riederer. *R Markdown Cookbook*. Boca Raton, Florida: Chapman and Hall/CRC, 2020. ISBN: 9780367563837. URL: https://bookdown.org/yihui/rmarkdown-cookbook.
- [43] Achim Zeileis and Torsten Hothorn. "Diagnostic Checking in Regression Relationships". In: *R News* 2.3 (2002), pp. 7–10. url: https://CRAN.R-project.org/doc/Rnews/.

¹²https://doi.org/10.21105/joss.01686