

Armed Forces College of Medicine AFCM

CARBON DIOXIDE TRANSPORT

Prof. Abdelrahman Fahmy

INTENDED LEARNING OBJECTIVES (ILOs)

By the end of this lecture the student will be able to:

- 1. List forms in which carbon dioxide is transported in the blood.
- 2. Illustrate the carbon dioxide dissociation curve: shape and shifts
- 3. List the typical values of carbon dioxide content and partial pressures in blood
- 4. Describe Gas movement in pulmonary and systemic capillaries; chloride shift
- 5. Compare Bohar and Haldane effects

CARBON DIOXIDE (CO₂) TRANSPORT

- \bullet Arterial blood contain 48 ml CO_{2} / 100 ml blood at a tension of 40 mmHg
- Venous blood contain 52 ml CO₂ / 100 ml blood at a tension of 45 mmHg.

So every 100 ml blood carries 4 ml from tissues which known as tidal CO₂

• Tidal CO₂

It is the amount of CO₂ added by the tissues to every 100 cc of arterial blood to be changed into Venus blood (4 ml of

CARBON DIOXIDE (CO₂) TRANSPORT

1) Physical 7% dissolved in plasma

2) Chemical 93%:

a) Carbamino compounds 23%

CO₂ combined with Hb and plasma proteins

CO2 in the blood reacts with water to form carbonic acid.

Carbonic anhydrase enzyme which is found in many cells including RBCs, accelerates the reaction:

$$CO_2 + H_2O \qquad H_2CO_3$$

Figure 41-13. Transport of carbon dioxide in the blood.

Guyton and Hall, 2016

CHLORIDE SHIFT

Movement of CI- ions into or out of RBCs, to compensate for the movement of HCO3- ions to maintain electrical neutrality.

ca = Carbonic anhydrase

Lauralee Sherwood, 2016

Effect of chloride shift

 CO_2 entering the blood is converted to HCO_3^- in RBCs by carbonic anhydrase enzyme, most of this HCO_3^- moves out of RBC into plasma in exchange for Cl^- to maintain electrical neutrality.

So net result of Cl shift:

3 substances, which increase in both RBCs and plasma:

1-CO₂ 2- Carbamino compounds 3-HCO₃-.

2 substances that increase in RBCs and decrease in plasma: 1-C1⁻ 2-H₂O.

So *hematocrit value* is more in *venus blood* due to increase size of RBCs.

PHYSIOLOGICAL CO₂ DISSOCIATION CURVE (0)

It represent the relationship between total CO₂ content and PCO₂

It is the line which connects between:

Point A (Venous blood):

 $PCO_2 = 45 \text{ mmHg}$

 CO_2 content = 52cc

Guyton and Hall, 2016

Point B (arterial blood):

 $P_{NC}Q_{\text{eye}} = 40 \text{ mmHg}.$

Comparison between O₂ and CO₂ curves:

- CO₂ content curve is **linear.**
- The CO₂ content of blood is **more than twice** the O₂ content of the blood because of greater solubility in blood.
- CO₂ curve is much **steeper** i.e. much larger changes occur for the same changes in partial pressure.
- Over-ventilation of parts of lung can remove CO₂ to compensate for the underventilation of other parts of lungs (such compensation can not occur for O₂).

Prof.Abdelrahman Fahmy

O₂, CO₂ and H⁺ interaction

Bohr effect:

It is the effect of CO_2 and H^+ on Hb binding with O_2 Binding of CO_2 and H^+ with Hb will decrease Hb affinity to O_2 , Shiftting of oxyhaemoglobin curve to the right

Haldane effect:

It is the effect of O_2 on Hb binding with CO_2 and H⁺

Increasing Hb oxygen (HbO₂) saturation decreases blood CO₂ binding capacity.

Lecture Quiz

1. The main form of carbon dioxide transported in the blood is:

- A. Physically dissolved in plasma.
- B. Carbamino compound.
- C. Carbonic acid.
- D. Bicarbonate.

Lecture Quiz

2. The net result of chloride shift is:

- A. CO₂ increases in plasma & decreases in RBCs.
- B. Electrical neutrality of RBCs is disturbed.
- C. Haemotocrit value is more in venous blood.
- D. Carbamino compounds are decreased in RBCs.
- E. Decease HCO₃- in RBCs and Plasam

SUGGESTED TEXTBOOKS

- 1. Guyton and Hall textbook of medical physiology, thirteenth edition 2016, Elsevier, chapter 41, from page 534 to 536
- 2. Ganong's Review of Medical Physiology, twenty-fifth edition 2016, McGraw-Hill Education, chapter 35, from page 643 to 641
- 3. Lauralee Sherwood Human Physiology: From Cells to Systems, Ninth edition 2016. CENGAGE, chapter 13, from page 476 to 477

Thank You