## Javi-plots-2

#### 2022-04-29

## Libraries

```
library("tidyverse")
                                    ----- tidyverse 1.3.1 --
## -- Attaching packages -----
## v ggplot2 3.3.5
                  v purrr
                            0.3.4
## v tibble 3.1.6 v dplyr
                            1.0.8
         1.2.0 v stringr 1.4.0
## v tidyr
## v readr
          2.1.2
                  v forcats 0.5.1
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
Loading Data
large_dataset <- read_tsv(file = "../data/02_large_w_meta_clean.tsv")</pre>
## Rows: 218 Columns: 25054
## -- Column specification ------
## Delimiter: "\t"
         (4): id, disease, sex, acc_num
## dbl (25050): age, 5S_rRNA, 7SK, 7SK:ENSG00000260682, A1BG, A1BG-AS1, A1CF, A...
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
treatment_dataset <- read_tsv(file = "../data/02_treatment_w_meta_clean.tsv")</pre>
## Rows: 38 Columns: 25233
## -- Column specification ------
## Delimiter: "\t"
## chr
         (3): id, sex, acc_num
## dbl (25229): age, disease_duration, 5S_rRNA, 7SK, 7SK:ENSG00000260682, A1BG,...
## lgl
         (1): treatment
##
## i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
logfold_treatment <- read_tsv(file = "../data/03_treatment_log2fc.tsv")</pre>
## Rows: 19 Columns: 25228
## -- Column specification -------
## Delimiter: "\t"
## chr
       (1): id
```

```
## dbl (25227): 5S_rRNA, 7SK, 7SK:ENSG00000260682, A1BG, A1BG-AS1, A1CF, A2M, A...
##
i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

## Fold change normal with normal mean

Using the mean of normal patients expression for each gene (Is this really an appropriate way to compare data?)

#### Calculating the mean

selecting only normal samples, transposing the dataset, calculating the mean for each gene

## log fold change (using Mads code)

## $FC = Normal/Normal\_mean$

```
logfold_normal <- normal_dataset %>%
  rowwise() %>%
  mutate("Normal_2fc_1" = log2(normal_tissue_1+1)-log2(mean_reads+1),
         "Normal_2fc_2" = log2(normal_tissue_2+1)-log2(mean_reads+1),
         "Normal_2fc_3" = log2(normal_tissue_3+1)-log2(mean_reads+1),
         "Normal_2fc_4" = log2(normal_tissue_4+1)-log2(mean_reads+1),
         "Normal_2fc_5" = log2(normal_tissue_5+1)-log2(mean_reads+1),
         "Normal_2fc_6" = log2(normal_tissue_6+1)-log2(mean_reads+1),
         "Normal_2fc_7" = log2(normal_tissue_7+1)-log2(mean_reads+1),
         "Normal 2fc 8" = log2(normal tissue 8+1)-log2(mean reads+1),
         "Normal_2fc_9" = log2(normal_tissue_9+1)-log2(mean_reads+1),
         "Normal_2fc_10" = log2(normal_tissue_10+1)-log2(mean_reads+1),
         "Normal_2fc_11" = log2(normal_tissue_11+1)-log2(mean_reads+1),
         "Normal_2fc_12" = log2(normal_tissue_12+1)-log2(mean_reads+1),
         "Normal_2fc_13" = log2(normal_tissue_13+1)-log2(mean_reads+1),
         "Normal_2fc_14" = log2(normal_tissue_14+1)-log2(mean_reads+1),
         "Normal_2fc_15" = log2(normal_tissue_15+1)-log2(mean_reads+1),
         "Normal_2fc_16" = log2(normal_tissue_16+1)-log2(mean_reads+1),
         "Normal_2fc_17" = log2(normal_tissue_17+1)-log2(mean_reads+1),
         "Normal_2fc_18" = log2(normal_tissue_18+1)-log2(mean_reads+1),
         "Normal_2fc_19" = log2(normal_tissue_19+1)-log2(mean_reads+1),
         "Normal_2fc_20" = log2(normal_tissue_20+1)-log2(mean_reads+1),
         "Normal_2fc_21" = log2(normal_tissue_21+1)-log2(mean_reads+1),
         "Normal_2fc_22" = log2(normal_tissue_22+1)-log2(mean_reads+1),
         "Normal_2fc_23" = log2(normal_tissue_23+1)-log2(mean_reads+1),
         "Normal_2fc_24" = log2(normal_tissue_24+1)-log2(mean_reads+1),
         "Normal 2fc 25" = log2(normal tissue 25+1)-log2(mean reads+1),
```

## Fold change normal with baseline RA (RA pre)

#### Join RA baseline and normal data

## log fold change (using Mads code)

#### $FC = Baseline\_RA/Normal$

```
logfold_RA <- aux_dataset %>%
  rowwise() %>%
  mutate("RA_2fc_1" = log2(RA_pre_1+1)-log2(mean_reads+1),
         "RA 2fc 2" = log2(RA pre 2+1)-log2(mean reads+1),
         "RA_2fc_3" = log2(RA_pre_3+1) - log2(mean_reads+1),
         "RA_2fc_4" = log2(RA_pre_4+1)-log2(mean_reads+1),
         "RA_2fc_5" = log2(RA_pre_5+1) - log2(mean_reads+1),
         "RA_2fc_6" = log2(RA_pre_6+1)-log2(mean_reads+1),
         "RA_2fc_7" = log2(RA_pre_7+1) - log2(mean_reads+1),
         "RA_2fc_8" = log2(RA_pre_8+1)-log2(mean_reads+1),
         "RA_2fc_9" = log2(RA_pre_9+1)-log2(mean_reads+1),
         "RA_2fc_10" = log2(RA_pre_10+1) - log2(mean_reads+1),
         "RA_2fc_11" = log2(RA_pre_11+1) - log2(mean_reads+1),
         "RA_2fc_12" = log2(RA_pre_12+1) - log2(mean_reads+1),
         "RA_2fc_13" = log2(RA_pre_13+1) - log2(mean_reads+1),
         "RA_2fc_14" = log2(RA_pre_14+1) - log2(mean_reads+1),
         "RA_2fc_15" = log2(RA_pre_15+1) - log2(mean_reads+1),
         "RA_2fc_16" = log2(RA_pre_16+1)-log2(mean_reads+1),
         "RA_2fc_17" = log2(RA_pre_17+1)-log2(mean_reads+1),
         "RA_2fc_18" = log2(RA_pre_18+1)-log2(mean_reads+1),
         "RA 2fc 19" = log2(RA pre 19+1)-log2(mean reads+1)) %>%
  select(-starts_with("RA_p"), -mean_reads) %>%
```

```
pivot_longer(cols = starts_with("RA_2fc"), names_to = "id") %>%
pivot_wider(names_from = "Genes", values_from = "value")
```

# Heatplot differential expression between Baseline RA and normal values

```
logfold_RA_long <- logfold_RA %>%
  pivot_longer(cols = -c(id),
               names_to = "Genes"
               values_to = "log2fc")
logfold_RA_long %>% filter(log2fc >= 8 | log2fc <= -8) %>%
  ggplot(mapping = aes(x = id,
                       y = Genes,
                       fill = log2fc)) +
  geom_tile(alpha = 0.5) +
  scale_fill_gradient2(low = "blue",
                        mid = "white",
                        high = "red",
                        midpoint = 0) +
  theme_classic(base_size = 8) +
  theme(legend.position = "bottom",
        axis.text.x = element_text(angle = 45,
                                   hjust = 1))
```



## recreating Figure 2.B treatment paper

```
logfold_treatment <- logfold_treatment%>%
  mutate(Type = "RA post-tDMARD") %>%
  relocate(Type, .after = id)
```

## recreating Figure 2.B and 2.C treatment paper

Just checking if the FC(baseline/normal) are upregulated as expected

```
aux_dataset <- logfold_RA %>%
  select(id, "CD3D", "CTLA4", "MS4A1", "CD19", "IL10", "MMP13", "CLEC12A", "CLEC2B",
         "AURKA", "CD58") %>%
 pivot_longer(cols = -c(id),
              names_to = "Genes" ,
               values_to = "log2fc")
aux_dataset %>%
  ggplot(mapping = aes(x = Genes,
                       y = id,
                       fill = log2fc)) +
 geom_tile(alpha = 0.5) +
  scale_fill_gradient2(low = "blue",
                        mid = "white",
                        high = "red",
                        midpoint = 0) +
 theme_classic(base_size = 8) +
  theme(legend.position = "bottom",
        axis.text.x = element_text(angle = 45,
                                   hjust = 1))
```

