Листок №30 13.04.2020

Предел

Бесконечность — не предел!

Buzz Lightyear, space ranger

Определение. Число A называется $npedeльной точкой последовательности <math>\{a_n\}$, если любая его ε -окрестность $D_{\varepsilon}(A)$ содержит бесконечно много членов этой последовательности.*

Задача 30.1. Приведите пример последовательности, которая имеет (а) ноль; (б) одну; (в) две; (г) N, для некоторого фиксированного $N \in \mathbb{N}$; (д) счётное количество предельных точек.

Определение. Число A называется *пределом* последовательности $\{a_n\}$, если в любой окрестности A содержатся все кроме конечного числа члены a_n . Обозначение: $A = \lim_{n \to +\infty} a_n$ или $a_n \to A$ при $n \to +\infty$.

Последовательность, у которой есть предел, называется cxodsumeucs, а у которой нет расходящейся.

Задача 30.2. Докажите, что $A = \lim_{n \to +\infty} a_n$ тогда и только тогда, когда существует такая бесконечно малая $\{\alpha_n\}$, что $a_n = A + \alpha_n$.

Задача 30.3. Докажите, что A — предел последовательности a_n тогда и только тогда, когда

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n > N \quad |a_n - A| < \varepsilon.$$

Задача 30.4. Докажите, что если $A = \lim_{n \to +\infty} a_n$, то последовательность $\{a_n\}$ имеет ровно одну предельную точку.

Задача 30.5. Докажите, что A — предельная точка последовательности $\{a_n\}$ тогда и только тогда, когда существует подпоследовательность $a_{n_k} \to A$ при $n_k \to +\infty$.

Определение. Последовательность $\{a_n\}$ называется $\phi y n \partial a m e n m a n b n o u, если для любого$ $\varepsilon > 0$ существует $N \in \mathbb{N}$ такое, что для любых n, m > N имеет место $|a_n - a_m| < \varepsilon$.

Задача 30.6 (*Критерий Коши*). Докажите, что $a: \mathbb{N} \to \mathbb{R}$ сходится если и только если является фундаментальной.

Задача 30.7. Приведите пример фундаментальной расходящейся $a: \mathbb{N} \to \mathbb{Q}$.

Задача 30.8 (Теорема Больцано-Вейерштрасса). Докажите, что в \mathbb{R} сходится любая ограниченная монотонная последовательность.

Задача 30.9. (а) Докажите, что всякая сходящаяся ограничена. (б) Приведите пример ограниченной расходящейся последовательности.

Задача 30.10. Пусть A — предел последовательности $\{a_n\}$. (a) Верно ли, что если A > 0, то все члены $\{a_n\}$, начиная с некоторого, положительны? (б) Докажите, что если в $\{a_n\}$ бесконечно много положительных и отрицательных членов, то A=0.

Задача 30.11. Последовательности $\{a_n\}$ и $\{b_n\}$ имеют пределы A и B соответственно. Докажите, что тогда

- (a) $\lim_{n \to +\infty} (a_n \pm b_n) = A \pm B;$ (6) $\lim_{n \to +\infty} (a_n b_n) = AB;$
- (в) если $B \neq 0$ и все элементы последовательности $\{b_n\}$ отличны от нуля, то $\lim_{n \to +\infty} \frac{a_n}{b_n} = \frac{A}{B}$.

$$D_{\varepsilon}(n,x) = \{(m,y) \in \mathbb{N} \times \mathbb{R} \mid |x-y| < \varepsilon\},\$$

^{*}На первый взгляд может показаться, что это определение не совпадает с определением из прошлого листочка. На самом деле, последовательность $\{a_n\}$ — множество не в \mathbb{R} , а в $\mathbb{N} \times \mathbb{R}$. Разумно определить ε -окрестность в этом пространстве так:

Листок №30 13.04.2020

Определение. Говорят, что почти все члены последовательности удовлетворяют некоторому условию, если существует лишь конечное число членов последовательности, не удовлетворяющих этому условию.

Задача 30.12. Пусть последовательности $\{a_n\}$ и $\{b_n\}$ сходятся. Докажите, что если почти для всех $n \in \mathbb{N}$ выполняется условие (a) $a_n = b_n$, то $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n$; (б) $a_n \geqslant b_n$, то $\lim_{n \to +\infty} a_n \geqslant \lim_{n \to +\infty} b_n$. (в) Останется ли верным последнее утверждение, если в нем все знаки нестрогого неравенства заменить на знаки строгого неравенства?

Задача 30.13 (Лемма о двух милиционерах). Пусть последовательности $\{a_n\}, \{b_n\}, \{c_n\}$ таковы, что почти для всех $n \in \mathbb{N}$ выполнено неравенство $a_n \leqslant c_n \leqslant b_n$ и $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = A$. Докажите, что тогда $\lim_{n \to +\infty} c_n = A$.

Задача 30.14. (a) Алиса записала определение последовательности, имеющей предел, следующим образом: « $\exists N \quad \forall \varepsilon > 0 \quad \forall n > N \quad |a_n - A| < \varepsilon$.» Опишите множество последовательностей, которые задает данное определение. (б) Выполните это же задание для определения Боба: « $\exists \varepsilon > 0 \quad \forall N \quad \forall n > N \quad |a_n - A| < \varepsilon$.»