بسم الله الرحمن الرحيم

دانشکده مهندسی برق و کامپیوتر

بازیابی هوشمند اطلاعات - تمرین اول سید مهدی رضوی

استاد : خانم دکتر شاکری

مهر ماه ۱۴۰۲

فهرست مطالب

	تمرين	ن اول																				1
	تمرين	ن دوم																				1
•	تمرين	ن سوم																				١١
	تمرين	خ چهار	م																			١٢
	1.4	R1		 		•																١٢
	7.4	R2		 										. .								١٢
	٣.۴	R3		 																		۱۳

۱ تمرین اول

برای این تمرین ابتدا مقادیر متغیرهای \mathbf{b} و \mathbf{k} را با هم در پوشههای جداگانه مقایسه کردم و سپس به ارزیابی بهترینها پرداختم.

برای مقایسه بین پارامترهای مختلف b و k اسکریپتهایی نوشتم که نتایج حالات مختلف را در فایل های متناظر مینویسیم و سپس با معیارهای ذکر شده به ارزیابی میپردازیم.

				mahdi@Mal	hdiRazavi: ~/Documents	/bazvabi/runs/b	m25-version-1		_		- 11
File Edit View Search	Terminal Help								Office To	ry our Desktop VPN	Client connection, not just browser
210 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Free Download	Next time Settings
211 0.000	0.008	0.058	0.000	0.008	0.058	0.000	0.008	0.058	0.000	0.008	0.058
212 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
213 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000 214 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000 215 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000 217 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
218 0.000	0.006	0.069	0.000	0.006	0.069	0.000	0.006	0.069	0.000	0.006	0.069
219 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
223 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000 224 0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000 0.000	0.001	0.026	0.000	0.001	0.026	0.000	0.001	0.026	0.000	0.001	0.026
un-id	map	ndcg	p10								
/home/mahdi/[ocuments/ba	zyabi/runs/	bm25-versio		0.003 0.003		0.016 0.016	0.005 0.005			
/home/mahdi/[/home/mahdi/[0.003 0.003		0.016 0.016	0.005 0.005			
Sig-Test: ran nahdi@MahdiRa				9 5-version-1\$							
(n) 🔚 🖿 ' 🚺 👩	newline in .sh scrip	bm25-version-1	CA1.pdf 🤵	Sed Mohsen Esla 🕍 [/	home/mahdi/Do 🗐	galago-3.16 – Pi	and mahdi@MahdiRaz	bm25-version-1.sh	a bazyabi	EN en 🔄 🕃	🛕 🛜 📢 Tue Oct 24, 20

شكل ١: تابع امتيازدهي اول

با توجه به این که تابع اول مستقل از پارامترهای ذکر شده هستند ، در نتیجه نتایج کاملا مشابه هم خواهد بود و نتایج به میزان منحصربفرد بودن یا همان IDF عبارات مشترک متن و پرسوجو خواهد بود.

شكل ٢: تابع امتيازدهي دوم

با توجه به ضابطه تابع امتیازدهی به اسناد ، باز متوجه خواهیم شد که ضابطه مستقل از پارامتر b میباشد. از تغییرات متغیر k متوجه خواهیم شد که هر چه میزان این متغیر به ۱ نزدیکتر باشد ، نتایج جستجو بهتر خواهد بود. زیرا که تاثیر فراوانی عبارات مشترک را کمتر خواهد کرد .

شکل ۳: نتایج مرتبسازی با تابع امتیازدهی ۳

این روش نیز مانند روش اول مستقل از پارامترهای $b \in \mathbb{R}$ خواهد بود.

نتایج همگی مشابه هم خواهند بود. این روش در تلاش است که تاثیر طول اسناد ، تاثیر کمتری در نتایج نهایی داشته باشد. چرا که طبیعتا هر چه طول سند بیشتر باشد ، احتمال مرتبط بودن پرسوجو با آن بیشتر خواهد بود.

شکل ۴: نتایج مرتبسازی با تابع امتیازدهی ۴

ممانطور که در تصویر مشخص است ، بهترین نتایج مربوط به اجرای شماره ۳ میباشد. در این اجرا ما پارامترهای زیر را داشتهایم :

$$k = 1.75, b = 0.52$$

شکل ۵: نتایج مرتبسازی با تابع امتیازدهی ۵

در این روش طبق تصاویر نتایج مشاهده شده ، بهترین اجرای ما ،اجرای شماره ۷ خواهد بود. پارامترهای این اجرا عبارت خواهند و د ان :

$$b = 0.92, k = 18.75$$

از این آزمایش نتیجه میگیریم که با افزایش مقدار k احتمال موفقیت آمیزتر بودن آزمایش ما بیشتر است. زیرا با افزایش این مقدار k تاثیر عبارات بسیار تکرارشونده خیلی کم میشود.

شکل ۶: نتایج مرتبسازی با تابع امتیازدهی ۶

.ر این آزمایش با تغییر پارامترها بهترین آزمایش را در اجرای ۸ ام داشتیم.

k = 8.75, b = 0.82

تاثیر افزایش پارامتر b که بین صفر و یک است در این آزمایش به وضوح نشانداده شده است.

شکل ۷: نتایج مرتبسازی با تابع امتیازدهی ۷

متاسفانه تغییری در نتایج آزمایشها مشاهده نشد. چون که آزمایشها مستقل از k میباشند ، متوجه خواهیم شد که تاثیر پارامتر k نیز بسیار ناچیز است.

۲ تمرین دوم

همانند سوال ۱ اسکریپتهای توابع امتیازدهی به اسناد را مینویسیم.

شكل ٨: تاثير تابع تبديل ١

متاسفانه تغییری در نتایج آزمایشها مشاهده نشد. چون که آزمایشها مستقل از k میباشند ، متوجه خواهیم شد که تاثیر پارامتر k نیز بسیار ناچیز است.

شكل ٩: تاثير تابع تبديل ٢

متاسفانه تغییری در نتایج آزمایشها مشاهده نشد. چون که آزمایشها مستقل از k میباشند ، متوجه خواهیم شد که تاثیر پارامتر k نیز بسیار ناچیز است.

۲ تمرین سوم

$$\vec{q_m} = \alpha \vec{q} + \frac{\beta}{D_r} \sum_{\vec{d_j} \in D_r} \vec{d_j} - \frac{\gamma}{D_n r} \sum_{\vec{d_j} \in D_n r} \vec{d_j}$$

در گام نخست پارامترها را طبق خواسته سوال برابر یک در نظر خواهیم گرفت.

$$\alpha = 1, \beta = 1, \gamma = 1 \tag{1}$$

سپس به محاسبه کوئری اصلاح شده میپردازیم.

$$\vec{q_0} = (0, 0, 0, 0, 1, 1, 1)$$

$$\vec{d_{R1}} = (0, 0, 0, 1, 0, 1, 2), \vec{d_{R2}} = (0, 0, 1, 0, 1, 1, 1)$$

$$\vec{d_{NR1}} = (1, 1, 1, 0, 1, 0, 0), \vec{d_{NR2}} = (1, 1, 0, 1, 1, 0, 0)$$

$$\vec{q_1} = \alpha \vec{q_0} + \frac{\beta}{D_r} \sum_{\vec{d_i} \in D_r} \vec{d_j} - \frac{\gamma}{D_{nr}} \sum_{\vec{d_i} \in D_{nr}} \vec{d_j}$$

$$\vec{q_1} = (0, 0, 0, 0, 0.5, 2, 2.5)$$

در درجهی اول بعد از محاسبه میزان شباهت کوئری اصلاح شده و داکیومنتها ، متوجه خواهیمشد که اسناد relevant فاصله قابلتوجهتری با اسناد non-relevant خواهند گرفت.

$$Sim(q_0, d_{R1}) = 3, Sim(q_0, d_{R2}) = 3, Sim(q_0, d_{NR1}) = 1, Sim(q_0, d_{NR2}) = 1$$

$$Sim(q_1, d_{R1}) = 7, Sim(q_1, d_{R2}) = 5, Sim(q_1, d_{NR1}) = 0.5, Sim(q_1, d_{NR2}) = 0.5$$

همچنین با توجه به بهبود میزان شباهت بین کوئری اول و دوم ، فاصله گرفتن اسناد مرتبط و نامرتبط ، به بهبود کوئری میپردازیم.

$$\vec{q_2} = \alpha \vec{q_1} + \frac{\beta}{D_r} \sum_{\vec{d} \in D_r} \vec{d_j} - \frac{\gamma}{D_{nr}} \sum_{\vec{d} \in D_{rr}} \vec{d_j}$$

$$\vec{q_2} = (0, 0, 0.35, 0.35, 0.85, 2.8, 3.7)$$

$$Sim(q_2, d_{R1}) = 13.9, Sim(q_2, d_{R2}) = 7.7, Sim(q_2, d_{NR1}) = 1.2, Sim(q_2, d_{NR2}) = 1.2$$

۴ تمرین چهارم

R1 \.

با توجه به این که در این سیستمها فقط یک پرسوجو داریم ، (m n=1) در نتیجه مقادیر MAP و GMAP با هم برابر خواهند بود.

$$Precision = \frac{3}{5}$$

$$Recall = \frac{3}{10}$$

$$P@4 = \frac{3}{5}$$

 $MAP = GMAP = Average - Precision_1 = 0.227$

R2 7.5

$$Precision = \frac{10}{20} = 0.5$$

$$Recall = \frac{10}{10} = 1$$

$$P@4 = \frac{2}{4} = 0.5, P@7 = \frac{3}{7}, P@12 = \frac{6}{12} = 0.5$$

$$R - Precision = \frac{5}{10} = 0.5$$

$$MAP = GMAP = \frac{1 + 0.5 + 0.5 + 0.5 + 0.5 + 0.5 + 0.54 + 0.53 + 0.56 + 0.5}{10} = 0.563$$

R3 7.5

$$Precision = \frac{5}{11}$$

$$Recall = \frac{5}{10} = 0.5$$

$$P@4 = \frac{2}{4}, P@7 = \frac{3}{7}$$

$$R - Precision = \frac{5}{10}$$

$$MAP = GMAP = Average - Precision_1 = \frac{1 + 0.5 + 0.6 + 0.5 + 0.5}{10} = 0.31$$