SIN251 - Organização de Computadores

Aula 07 - Circuitos Sequenciais

Sumário

Bibliografia

Flip-flop

Registradores

Contadores

Exercícios

Bibliografia

- TARNOFF, David. Computer Organization and Design Fundamentals, 1. Ed., 2007. (PDF no PVAnet)
 - → Capítulo 10

- Circuitos combinatórios implementam funções essenciais para um computador digital.
 - A saída do circuito depende apenas da entrada corrente.
 - Com exceção da memória ROM, não proveem informação de estado ou memória.

- Circuitos sequenciais:
 - Uma forma mais complexa de circuito lógico digital.

- Circuitos sequenciais:
 - Uma forma mais complexa de circuito lógico digital.
 - A saída do circuito sequencial depende da entrada corrente...
 - E também dos valores anteriores da entrada.

- Circuitos sequenciais:
 - Uma forma mais complexa de circuito lógico digital.
 - A saída do circuito sequencial depende da entrada corrente...
 - E também dos valores anteriores da entrada.
 - Ou seja: A saída do circuito sequencial depende da entrada corrente e do estado do circuito.

- Circuitos sequenciais:
 - Uma forma mais complexa de circuito lógico digital.
 - A saída do circuito sequencial depende da entrada corrente...
 - E também dos valores anteriores da entrada.
 - Ou seja: A saída do circuito sequencial depende da entrada corrente e do estado do circuito.
- A forma mais simples de circuito sequencial é chamada de **flip-flop**.

Flip-flops

- Existe uma variedade de flip-flops.
- Todos compartilham duas propriedades:

Flip-flops

- Existe uma variedade de flip-flops.
- Todos compartilham duas propriedades:
 - O flip-flop é biestável.
 - É um circuito que possui dois estados estáveis
 - Na ausência de um sinal de entrada, permanece nesse estado.
 - Pode funcionar como uma memória de 1 bit.

Flip-flops

- Existe uma variedade de flip-flops.
- Todos compartilham duas propriedades:
 - O flip-flop é biestável.
 - É um circuito que possui dois estados estáveis
 - Na ausência de um sinal de entrada, permanece nesse estado.
 - Pode funcionar como uma memória de 1 bit.
 - O flip-flop possui duas saídas
 - Uma tem sempre o valor complementar da outra.
 - Geralmente rotuladas como Q e Q'.

Diagrama de tempo do flip-flop S-R

(a) Tabela característica

Entradas correntes	Estado corrente	Próximo estado
SR	Q_n	Q _{n+1}
00	0	0
00	1	1
01	0	0
01	1	0
10	0	1
10	1	1
11	0	_
11	1	_

(a) Tabela característica

Entradas correntes	Estado corrente	Próximo estado	
SR	Q_n	Q _{n+1}	
00	0	0	
00	1	1 0 0 1 1	
01	0		
01	1		
10	0		
10	1		
11	0	_	
11	1	-	

(b) Tabela característica simplificada

5	R	Qn+1	
0	0	Q_n	
0	1	0	
1	0	1	
1	1	_	

Exemplo

(a) Tabela característic

Entradas correntes	Estado corrente	Próximo estado	
SR	Q_n	Q _{n+1}	
00	0	0	
00	1	1	
01	0	0	
01	1	0	
10	0	1	
10	1	1	
11	0	_	
11	1	_	

(b) Tabela característica simplificada

S	R	Q _{n+1}	
0	0	Qn	
0	1	0	
1	0	1	
1	1	_	

(c) Resposta para uma série de entradas

					_					
t	0	1	2	3	4	5	6	7	8	9
S	1	0	0	0	0	0	0	0	1	0
R	0	0	0	1	0	0	1	0	0	0
Q_{n+1}	1	1	1	0	0	0	0	0	1	1

- A saída do flip-flop S-R muda depois de um breve atraso, em resposta a uma mudança na entrada.
 - Operação assíncrona.

- A saída do flip-flop S-R muda depois de um breve atraso, em resposta a uma mudança na entrada.
 - Operação assíncrona.
- Eventos em um computador digital são sincronizados por um pulso de relógio (Clock).
 - Operações síncronas.

- A saída do flip-flop S-R muda depois de um breve atraso, em resposta a uma mudança na entrada.
 - Operação assíncrona.
- Eventos em um computador digital são sincronizados por um pulso de relógio (Clock).
 - Operações síncronas.
- No flip-flop S-R com relógio
 - As entradas S e R passam pelas portas NOR somente durante o pulso do relógio.

Flip-flop D

- No flip-flop tipo S-R a condição R=1, S=1 deve ser evitada.
 - Problema!

- No flip-flop tipo S-R a condição R=1, S=1 deve ser evitada.
 - Problema!
- No flip-flop tipo D essa condição é evitada utilizando um inversor
 - Garantindo que as entradas das duas portas AND tenham valor complementar uma da outra.

- No flip-flop tipo S-R a condição R=1, S=1 deve ser evitada.
 - Problema!
- No flip-flop tipo D essa condição é evitada utilizando um inversor
 - Garantindo que as entradas das duas portas AND tenham valor complementar uma da outra.
- Flip-flop tipo D também é chamado de flip-flop de dados:
 - Funciona com uma célula de armazenamento de 1 bit.
 - A saída Q é sempre igual a entrada D mais recente.

- Possui duas entradas como o flip-flop S-R
 - Porém, todas as combinações de valores de entrada são válidas.

- Possui duas entradas como o flip-flop S-R
 - Porém, todas as combinações de valores de entrada são válidas.
- Para as entradas J=0 e K=0
 - A saída permanece estável.

- Possui duas entradas como o flip-flop S-R
 - Porém, todas as combinações de valores de entrada são válidas.
- Para as entradas J=0 e K=0
 - A saída permanece estável.
- Para as entradas J=1 e K=0
 - A saída se torna 1 (set).

- Possui duas entradas como o flip-flop S-R
 - Porém, todas as combinações de valores de entrada são válidas.
- Para as entradas J=0 e K=0
 - A saída permanece estável.
- Para as entradas J=1 e K=0
 - A saída se torna 1 (set).
- Para as entradas J=0 e K=1
 - A saída se torna 0 (reset)

- Possui duas entradas como o flip-flop S-R
 - Porém, todas as combinações de valores de entrada são válidas.
- Para as entradas J=0 e K=0
 - A saída permanece estável.
- Para as entradas J=1 e K=0
 - A saída se torna 1 (set).
- Para as entradas J=0 e K=1
 - A saída se torna 0 (reset)
- Para as entradas J=1 e K=1
 - Condição inválida para o flip-flop S-R
 - O valor da saída é invertido (toogle)
 - Se Q=0, Q se torna 1, e vice-versa.

Flip-flops básicos

Nome	Símbolo gráfico	Tabela	caracte	rística
S-R	S Q	S 0 0 1 1	0 1 0 1	O _{n+1} O _n 0 1
J-K	J Q	J 0 0 1 1	K 0 1 0	Q _{n+1} Q _n 0 1 Q _n
D	D Q	D 0 1	O _{n+1} 0 1	

Registradores

Registradores

- Registradores:
 - São elementos essenciais da CPU (Unidade Central de Processamento).

Registradores

- Registradores:
 - São elementos essenciais da CPU (Unidade Central de Processamento).
 - Circuito digital usado para armazenar 1 ou mais bits de dados.

Registradores

- Registradores:
 - São elementos essenciais da CPU (Unidade Central de Processamento).
 - Circuito digital usado para armazenar 1 ou mais bits de dados.
 - Dois tipos básicos:
 - Registradores Paralelos
 - Registradores de Deslocamento

- Registrador paralelo
 - Conjunto de memórias de 1 bit.
 - Podem ser lidas ou escritas simultaneamente.
 - Usado para armazenar dados.

Registrador paralelo de 8 bits

• Construído com flip-flops S-R.

Registrador paralelo de 8 bits

- Construído com flip-flops S-R.
- <u>Sinal de Controle</u>: Habilitação de entrada de dados
 - Controla a escrita no registrador pelas linhas de sinal D11 a D18.
 - Linhas de sinal D11 a D18 podem constituir a saída de um MUX.
 - Dados de varias fontes podem ser carregados no Registrador.

Registrador paralelo de 8 bits

- Construído com flip-flops S-R.
- <u>Sinal de Controle</u>: Habilitação de entrada de dados
 - Controla a escrita no registrador pelas linhas de sinal D11 a D18.
 - Linhas de sinal D11 a D18 podem constituir a saída de um MUX.
 - Dados de varias fontes podem ser carregados no Registrador.
- Sinal de Controle: Habilitação de saída de dados
 - Controla a leitura do registrador pelas linhas de sinal D01 a D08.

Registrador paralelo de 8 bits

- Construído com flip-flops S-R.
- <u>Sinal de Controle</u>: Habilitação de entrada de dados
 - Controla a escrita no registrador pelas linhas de sinal D11 a D18.
 - Linhas de sinal D11 a D18 podem constituir a saída de um MUX.
 - Dados de varias fontes podem ser carregados no Registrador.
- <u>Sinal de Controle</u>: Habilitação de saída de dados
 - Controla a leitura do registrador pelas linhas de sinal D01 a D08.
- <u>Sinal de controle</u>: Reset
 - Atribui valor zero ao registrador
 - Note que isso não seria fácil utilizando flip-flops tipo D.

Registradores paralelo de 8 bits

Linhas de saída

- Registrador de deslocamento:
 - Transfere a informação de entrada serialmente.

- Registrador de deslocamento:
 - Transfere a informação de entrada serialmente.
 - Construído com flip-flops S-R com relógio.

- Registrador de deslocamento:
 - Transfere a informação de entrada serialmente.
 - Construído com flip-flops S-R com relógio.
 - A cada pulso do relógio (Clock) os dados são deslocados uma posição para a direita
 - O bit mais à direita é transferido para a saída

- Registrador de deslocamento:
 - Transfere a informação de entrada serialmente.
 - Construído com flip-flops S-R com relógio.
 - A cada pulso do relógio (Clock) os dados são deslocados uma posição para a direita
 - O bit mais à direita é transferido para a saída

- Utilizações:
 - Interface para dispositivos de E/S seriais.

Registrador de deslocamento de 5 bits

Contadores

Contador

- É um registrador cujo valor é facilmente incrementado em 1 módulo a capacidade do registrador
- Um registrador com n flip-flops pode contar até 2n 1.
- Quando o contador ultrapassa o seu valor máximo, o seu valor volta para 0.

Contadores

- Contador
 - É um registrador cujo valor é facilmente incrementado em 1 módulo a capacidade do registrador
 - Um registrador com n flip-flops pode contar até 2n 1.
 - Quando o contador ultrapassa o seu valor máximo, o seu valor volta para 0.
- Exemplo de Contador: O Contador de Instruções de Programa da CPU.
 - Também denominado Contador de Programa (PC).

Contadores

- Contador
 - É um registrador cujo valor é facilmente incrementado em 1 módulo a capacidade do registrador
 - Um registrador com n flip-flops pode contar até 2n 1.
 - Quando o contador ultrapassa o seu valor máximo, o seu valor volta para 0.
- Exemplo de Contador: O Contador de Instruções de Programa da CPU.
 - Também denominado Contador de Programa (PC).
- Dois tipos de Contadores:
 - Assíncronos:
 - Relativamente lentos
 - A saída de um flip-flop dispara uma mudança no flip-flop seguinte.
 - Síncronos :
 - Mais rápido do que o assíncrono. Por isso utilizado nas CPUs.
 - O estado de todos os flip-flops são atualizados simultaneamente.

- Exemplo de um contador assíncrono de 4 bits.
 - Implementado usando flip-flops J-K.
 - O diagrama de tempo não mostra os atrasos de propagação do sinal.
 - A saída mais a esquerda (Q0) é o bit menos significativo.
 - Pode ser estendido para número arbitrário de bits.
 - Encadear mais flip-flops.

- Exemplo de um contador assíncrono de 4 bits.
 - Implementado usando flip-flops J-K.
 - O diagrama de tempo não mostra os atrasos de propagação do sinal.
 - A saída mais a esquerda (Q0) é o bit menos significativo.
 - Pode ser estendido para número arbitrário de bits.
 - Encadear mais flip-flops.
- O contador é incrementado dentro de cada pulso do relógio.
- As entradas J e K são mantidas igual a 1.
 - Quando ocorre um pulso do relógio, saída Q é invertida (toogle).

Contador assíncrono de 4 bits

- Contador assíncrono
 - Desvantagem: o atraso na atualização do contador é proporcional ao tamanho do mesmo.
 - Por esse motivo, a CPU utiliza contadores síncronos.

- Contador assíncrono
 - Desvantagem: o atraso na atualização do contador é proporcional ao tamanho do mesmo.
 - Por esse motivo, a CPU utiliza contadores síncronos.
- Contador síncrono
 - Os estados de todos os flip-flops do contador são alterados ao mesmo tempo

- Para construir um contador síncrono de 3 bits:
 - São necessários três flip-flops J-K.
 - As saídas serão denominadas A, B e C.
 - C é o bit menos significativo.

- Para construir um contador síncrono de 3 bits:
 - São necessários três flip-flops J-K.
 - As saídas serão denominadas A, B e C.
 - C é o bit menos significativo.
- Construir a tabela verdade
 - Relaciona as entradas e saídas dos flip-flops J-K.
 - Construída com base nas tabelas verdade de um único flip-flop
 J-K.
 - As tabelas verdade são mostradas no slide seguinte.

Та	Tabela de funcionamento Flip-Flop JK										
J	K	Q(n+1)	Ação								
0	0	Q(n)	Sem troca								
0	1	0	Reset								
1	0	1	Set								
1	1	Q'(n)	Complemento								

 Inicialmente é preciso saber o funcionamento do Flip-Flop JK

Та	Tabela de funcionamento Flip-Flop JK										
J	K	Q(n+1)	Ação								
0	0	Q(n)	Sem troca								
0	1	0	Reset								
1	0	1	Set								
1	1	Q'(n)	Complemento								

	Tabela de ativação Flip-Flop JK									
Q(n)	Q(n+1)	J	K							
0	0	0	X							
0	1	1	X							
1	0	X	1							
1	1	X	0							

- Inicialmente é preciso saber o funcionamento do Flip-Flop JK
- A partir da tabela de funcionamento do Flip-Flop JK é possível inferir dois estados, passado e futuro, bem como quais entradas J e K são necessárias para que o estado futuro (Q_{n+1}) ocorra a partir do estado corrente (Q_n)

Та	Tabela de funcionamento Flip-Flop JK										
J	K	Q(n+1)	Ação								
0	0	Q(n)	Sem troca								
0	1	0	Reset								
1	0	1	Set								
1	1	Q'(n)	Complemento								

	Tabela de ativação Flip-Flop JK									
Q(n)	Q(n+1)	J	K							
0	0	0	X							
0	1	1	X							
1	0	Х	1							
1	1	X	0							

- Inicialmente é preciso saber o funcionamento do Flip-Flop JK
- A partir da tabela de funcionamento do Flip-Flop JK é possível inferir dois estados, passado e futuro, bem como quais entradas J e K são necessárias para que o estado futuro (Q_{n+1}) ocorra a partir do estado corrente (Q_n)
- Cada Flip-Flop JK é capaz de armazenar 1 bit, como queremos criar um contador de 3 bits, serao necessários 3 Flip-Flops

Та	Tabela de funcionamento Flip-Flop JK										
J	K	Q(n+1)	Ação								
0	0	Q(n)	Sem troca								
0	1	0	Reset								
1	0	1	Set								
1	1	Q'(n)	Complemento								

Tabela de ativação Flip-Flop JK									
Q(n) Q(n+1) J K									
0	0	0	Χ						
0	1	1	X						
1	0	Χ	1						
1	1	X	0						

 Montamos uma tabela contendo o estado presente e futuro dos 3 Flip-Flops JK necessários (3 bits), onde o Flip-Flop C é o menos significativo

	Pres	ente		Futuro			Entradas de cada				a		
	Q((n)			Q(n	+1)		Flip-Flop JK					
#	Qa	Qb	Qc	#	Qa	Qb	Qc	Ja	Ka	Jb	Kb	Jc	Kc
0	0	0	0										
1	0	0	1										
2	0	1	0										
3	0	1	1										
4	1	0	0										
5	1	0	1										
6	1	1	0										
7	1	1	1										

Та	Tabela de funcionamento Flip-Flop JK										
J	K	Q(n+1)	Ação								
0	0	Q(n)	Sem troca								
0	1	0	Reset								
1	0	1	Set								
1	1	Q'(n)	Complemento								

	Tabela de ativação Flip-Flop JK								
Q(n) Q(n+1) J K									
0	0	0	Χ						
0	1	1	X						
1	0	Χ	1						
1	1	Χ	0						

 Montamos uma tabela contendo o estado presente e futuro dos 3 Flip-Flops JK necessários (3 bits), onde o Flip-Flop C é o menos significativo

• O contador a ser implementado irá contar sequencialmente de 0 a 7 retornando a

0, então a sequência dos digitos futuros será a sequinte:

	Presente			Futuro			Entradas de cada				a		
	Q((n)			Q(n	+1)			F	lip-F	lop JK		
#	Qa	Qb	Qc	#	Qa	Qb	Qc	Ja	Ka	Jb	Kb	Jc	Kc
0	0	0	0	1	0	0	1						
1	0	0	1	2	0	1	0						
2	0	1	0	3	0	1	1						
3	0	1	1	4	1	0	0						
4	1	0	0	5	1	0	1						
5	1	0	1	6	1	1	0						
6	1	1	0	7	1	1	1						
7	1	1	1	0	0	0	0						

Ta	Tabela de funcionamento Flip-Flop JK									
J	K Q(n+1) Ação									
0	0	Q(n)	Sem troca							
0	1	0	Reset							
1	0	1	Set							
1	1	Q'(n)	Complemento							

Tabela de ativação Flip-Flop JK											
Q(n) Q(n+1) J K											
0	0	0	X								
0	1	1	X								
1	0	X	1								
1	1	X	0								

 Os valores em Qa, Qb e Qc correspondem à representação em binário do dígito, tanto no estado presente (Q_n) quanto no estado futuro (Q_{n+1})

	Presente				Fut			Entradas de cada				a	
	Q(n)				Q(n	+1)		Flip-Flop JK					
#	Qa	Qb	Qс	#	Qa	Qb	Qc	Ja	Ka	Jb	Kb	Jc	Kc
0	0	0	0	1	0	0	1						
1	0	0	1	2	0	1	0						
2	0	1	0	3	0	1	1						
3	0	1	1	4	1	0	0						
4	1	0	0	5	1	0	1						
5	1	0	1	6	1	1	0						
6	1	1	0	7	1	1	1						
7	1	1	1	0	0	0	0						

Та	ıbela de f	uncionamen	to Flip-Flop JK
J	K	Q(n+1)	Ação
0	0	Q(n)	Sem troca
0	1	0	Reset
1	0	1	Set
1	1	Q'(n)	Complemento

Tabela de ativação Flip-Flop JK											
Q(n)	Q(n+1)	J	K								
0	0	0	Χ								
0	1	1	X								
1	0	X	1								
1	1	Χ	0								

• Reparem que o estado futuro (Q_{n+1}) é sempre incrementado de 1 em relação ao estado corrente (Q_n) , com excessão ao dígito 7, que retorna à 0

	Presente O(n)				Fut			Entradas de cada Flip-Flop JK				a	
	Q(n)				Ų(Π	+1)			Г	Jih-L	-loh	JN	
#	Qa	Qb	Qс	#	Qa	Qb	Qc	Ja	Ka	Jb	Kb	Jc	Kc
0	0	0	0	1	0	0	1						
1	0	0	1	2	0	1	0						
2	0	1	0	3	0	1	1						
3	0	1	1	4	1	0	0						
4	1	0	0	5	1	0	1						
5	1	0	1	6	1	1	0						
6	1	1	0	7	1	1	1						
7	1	1	1	0	0	0	0						

Та	Tabela de funcionamento Flip-Flop JK										
J	K	Q(n+1)	Ação								
0	0	Q(n)	Sem troca								
0	1	0	Reset								
1	0	1	Set								
1	1	Q'(n)	Complemento								

	Tabela de ativação Flip-Flop JK									
Q(n) Q(n+1) J K										
0	0	0	X							
0	1	1	X							
1	0	X	1							
1	1	X	0							

- Utilizando os estado e futuro para cada Q:
 - Qa_{presente} e Qa_{futuro}
 - Qb_{presente} e Qb_{futuro}
 - Qc_{presente} e Qc_{futuro}

Verificamos na **tabela de ativação** qual J e K devem ser inseridos

	Presente				Fut	uro		Entradas de cada				a	
	Q(n)				Q(n	+1)		Flip-Flop JK					
#	Qa	Qb	Qc	#	Qa	Qb	Qс	Ja	Ka	Jb	Kb	Jc	Kc
0	0	0	0	1	0	0	1						
1	0	0	1	2	0	1	0						
2	0	1	0	3	0	1	1						
3	0	1	1	4	1	0	0						
4	1	0	0	5	1	0	1						
5	1	0	1	6	1	1	0						
6	1	1	0	7	1	1	1						
7	1	1	1	0	0	0	0						

Та	Tabela de funcionamento Flip-Flop JK										
J	Ação										
0	0	Q(n)	Sem troca								
0	1	0	Reset								
1	0	1	Set								
1	1	Q'(n)	Complemento								

	Tabela de ativação Flip-Flop JK									
Q(n) Q(n+1) J K										
0	0	0	Χ							
0	1	1	X							
1	0	X	1							
1	1	Χ	0							

- Utilizando os estado e futuro para cada Q:
 - Qa_{presente} e Qa_{futuro}
 - Qb_{presente} e Qb_{futuro}
 - Qc_{presente} e Qc_{futuro}

Verificamos na **tabela de ativação** qual J e K devem ser inseridos

	Presente				Fut	uro		Entradas de cada				ι	
	Q(n)				Q(n	+1)		Flip-Flop JK					
#	Qa	Qb	Qc	#	Qa	Qb	Qс	Ja	Ka	Jb	Kb	Jc	Kc
0	0	0	0	1	0	0	1	0	Χ	0	X	1	Χ
1	0	0	1	2	0	1	0	0	X	1	X	X	1
2	0	1	0	3	0	1	1	0	X	X	0	1	Χ
3	0	1	1	4	1	0	0	1	X	X	1	X	1
4	1	0	0	5	1	0	1	Χ	0	0	X	1	Χ
5	1	0	1	6	1	1	0	Х	0	1	X	X	1
6	1	1	0	7	1	1	1	Х	0	X	0	1	Χ
7	1	1	1	0	0	0	0	Χ	1	Χ	1	Χ	1

Mapas de Karnaugh

		BC							
	-	00	01	11	10				
J _a = BC	0			1					
a	1	d	d	d	d				

Presente				Futuro				Entradas de cada					
Q(n)				Q(n+1)				Flip-Flop JK					
#	Qa	Qb	Qc	#	Qa	Qb	Qc	Ja	Ka	Jb	Kb	Jc	Kc
0	0	0	0	1	0	0	1	0	X	0	X	1	X
1	0	0	1	2	0	1	0	0	X	1	X	X	1
2	0	1	0	3	0	1	1	0	X	X	0	1	Χ
3	0	1	1	4	1	0	0	1	X	X	1	X	1
4	1	0	0	5	1	0	1	X	0	0	X	1	Χ
5	1	0	1	6	1	1	0	X	0	1	X	X	1
6	1	1	0	7	1	1	1	X	0	X	0	1	Χ
7	1	1	1	0	0	0	0	X	1	Χ	1	X	1

1) Para cada um dos flip-flops, determine a saída Q (estado do flip-flop) no instante de tempo n+1, para a sequencia de entradas apresentadas no instante de tempo n.

A) Flip-flop S-R - (Equivale ao S-R c/ relógio se consideramos as entradas apenas com Clk = 1)

 n
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 R
 0
 1
 0
 0
 0
 0
 0
 1
 0
 0

 S
 1
 0
 0
 0
 1
 0
 0
 0
 1
 0

Qn+1

B) Flip-flop tipo D

 n
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 D
 0
 1
 1
 0
 0
 1
 0
 1
 1
 0

Qn+1

Continuação...

```
C) Flip-flop J-K
```

n	0	1	2	3	4	5	6	7	8	9
J	1	1	0	0	1	0	1	0	0	1
K	0	0	0	0	1	0	0	0	1	1

Qn+1

- •3) Construa um contador assíncrono de 5 bits.
 - -Desenhe o diagrama de tempo para contagem de 00000 a 11111.
 - •Lembre-se que o contador assíncrono é sensível à descida do clock.