Exercise: Finding a Perpendicular Vector

A

Table of contents

1 A

A

- $\bullet \ \, https://www.youtube.com/watch?v=vNePhmCMnbU$
- $\bullet \ \ https://www.youtube.com/watch?v=P3Y8OWkiUts$

Part I Math | Practical

2 Practice 1: Vectors

2.1 Exercise: Finding a Perpendicular Vector

Context:

In linear algebra, two vectors are perpendicular (or orthogonal) if their dot product is zero. In this exercise, you will find a vector in \mathbb{R}^2 that is perpendicular to a given vector.

Given:

Let $\mathbf{v} = [2, 3]$.

Tasks:

1. Find a Perpendicular Vector:

• Find a non-zero vector $\mathbf{w} = [x, y]$ such that \mathbf{v} and \mathbf{w} are perpendicular.

2. Verification:

• Show that your chosen vector \mathbf{w} indeed satisfies the condition $\mathbf{v} \cdot \mathbf{w} = 0$.

3. Unit Perpendicular Vector:

• Find a unit vector in the direction of \mathbf{w} by computing $\frac{\mathbf{w}}{\|\mathbf{w}\|}$, where $\|\mathbf{w}\|$ is the Euclidean norm of \mathbf{w} .

4. Bonus Discussion:

• Explain why there are infinitely many vectors perpendicular to ${\bf v}$ and describe the general form of all such vectors.

2.2 Exercise: Finding the Closest Word with 2D Embeddings

Context:

In NLP, words can be represented as vectors. Here, each word is represented by a 2-dimensional vector. By comparing these vectors using Euclidean distance and cosine similarity, you can determine which word is "closer" in meaning.

Given Word Embeddings:

• cheese: [1, 2]

• mushroom: [3, 1]

• tasty: [2, 2]

Tasks:

1. Euclidean Distance:

- a. Compute the Euclidean distance between tasty and cheese.
- b. Compute the Euclidean distance between tasty and mushroom.
- c. Which word is closer to tasty based on the Euclidean distance?

2. Cosine Similarity:

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

- a. Compute the cosine similarity between **tasty** and **cheese** using the formula above.
- b. Compute the cosine similarity between tasty and mushroom.
- c. Based on cosine similarity, which word is closer to tasty?

3. Discussion:

- Compare the outcomes from the Euclidean distance and cosine similarity calculations.
- Discuss why one metric might be preferred over the other in different NLP applications.

Note

Cool video by 3blue1brown discussing word vectors (embeddings)

2.3 Exercise: Linear transformation matrix power

Tasks: 1. Matrix Power:

- Compute the matrix power of the following matrix A to the power of n:

$$A = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$$

- What does the result represent in terms of linear transformations?