Teoria Axiomática dos Conjuntos

Beatriz de Faria, 11201810015

Abril, 2021

1 Exercício 6.26.

$1.1 \quad (\Rightarrow)$

Temos:

$$\exists f: a \to \omega: \forall \alpha, \alpha' \in a(\alpha \neq \alpha' \Rightarrow f(\alpha) \neq f(\alpha'))$$

Seja $b \subseteq \omega$ um conjunto tal que:

$$\beta \in b \Leftrightarrow \exists \alpha \in a : f(\alpha) = \beta$$

Sejam, ainda, $c = \omega \setminus b$ e $g: c \to a$ uma função tal que, fixado um $p \in a$:

$$\forall \gamma \in c(q(\gamma) = p)$$

Construa a função $h:\omega\to a$ da seguinte maneira:

$$\begin{cases} h(x) = f^{-1}(x) \text{ se } x \in b \\ h(x) = g(x) \text{ se } x \in c \end{cases}$$

Como f é uma função, f^{-1} nos garante que $\forall \alpha \in a \exists x \in \omega : h(x) = \alpha$.

$1.2 \quad (\Leftarrow)$

Temos, por hipótese que:

$$\exists g : \omega \in a : \operatorname{im}(g) = a$$

Ou seja:

$$\forall x \in a \exists \alpha \in \omega : g(\alpha) = x$$

Para cada $x \in a$, seja

$$\beta := \bigcap \alpha$$

Onde $\alpha \in \omega \land g(\alpha) = x$. Seja $\gamma = \bigcup \beta$, vamos provar que $f := g_{\gamma} \upharpoonright^{-1} (\alpha)$. Note que, como $\gamma \subseteq \omega$, $f : a \to \gamma$, portanto, $f : a \to \omega$ com im $(f) = \gamma$. Vamos provar que f é injetora, para tanto, fixe $x, y \in a$ quaisquer.

$$f(x) = \beta = \bigcap \alpha$$

$$f(y) = \beta' = \bigcap \alpha'$$

Se $x \neq y$ e $\bigcap \alpha = \bigcap \alpha'$, então, seja $p \in \bigcap \alpha$, pela nossa definição de $\bigcap \alpha$:

$$g(p) = x$$

E como $\bigcap \alpha = \bigcap \alpha'$

$$q(p) = y$$

$$q(p) = x \neq y = q(p)$$

Portanto q não é uma função, o que contradiz nossa hipótese.

q.e.d

2 Exercício 6.32.

Queremos mostrar que existe uma função bijetora $\phi:\wp(a)\to^a 2$ sendo o conjunto:

$${}^a\!2=\{f\subseteq a\times 2: f\text{ \'e uma funç\~ao de a em 2}\}$$

Para tanto, vamos mostrar que existem funções injetoras $g: \wp(a) \to {}^a 2$ e $h: {}^a 2 \to \wp(a)$, e a existência de $\phi(x)$ será garantida pelo teorema de Cantor-Bernstein.

2.1 $\wp(a) \lesssim^a 2$

Fixe $x, y \in \wp(a)$ arbitrários e seja $g : \wp(a) \to {}^a 2$ definida da seguinte maneira:

$$g(\alpha) = f : \alpha \to 2$$

Sendo f uma função arbitrária do conjunto 2. Note que, sejam $x, y \in \wp(a)$

$$g(x) = f: x \to 2 \land g(y) = f: y \to 2$$

$$\therefore f(x) \neq f(y)$$

Se tem uma coisa que aprendi com essa matéria é desenhar certas coisas kk porém, aqui eu desenhei uma coisa e escrevi outra. Digo, pela minha intuição gráfica isso está errado porque podemos ter que f(x) e f(y) são as funções constantes iguais a 2 (por exemplo). Porém, a quantidade de pares ordenados em f(x) é maior que a de f(y) se x > y, e aí faz sentido elas serem diferentes.

2.2 $^{a}2 \lesssim \wp(a)$

Sejam $f, f' \in {}^{a}2$, defina:

Talvez eu não saiba escrever essa função em linguagem matemática, então, vou por extenso

Dado um par ordenado $(x,y): xfy \in m, n \in a$ com $m \neq n \neq x \neq m,$ a função que construiremos h(f) levará

$$\begin{cases} (x,y) \to x \text{ se y} = 0\\ (x,y) \to m \text{ se y} = 1\\ (x,y) \to n \text{ se y} = 2 \end{cases}$$

Note que, se a possui menos de 3 elementos, y não pode tomar seus 3 valores, portanto, nesse caso particular, defina x, m como os valores que a função assume. Além disso, quando y não assume o valor 0 teremos que h(f) para y=1 será x (e se y não assume nem 0 nem 1, o valor de h será x quando y=2). O importante é que o x apareça em algum momento

Para cada $f \in {}^{a}2$ defina h'(h(f)) como $\bigcup h(f)$. Ou seja, a união de todos os valores nos quais foram levados nossos pares ordenados. Note que, se $f \neq f'$, existe, pelo menos, um par ordenado em f que não está em f' (estou supondo isto sem perca de generalidade). Assim

$$h'(h(f)) \neq h'(h(f'))$$

e como h'(h(f)) é uma função, temos o que queríamos.

q.e.d

3 Exercício 7.20.

Fixe um ordinal α qualquer e seja β tal que $\alpha < \beta$

3.1 Caso 1. $\beta = 0$

Isto não pode ocorrer pois acarretaria em $\alpha \in \emptyset$, o que é um absurdo.

3.2 Caso 2. $\beta = s(\gamma)$

Logo $\omega_{\beta} = h(\omega_{\gamma}).$

Como $\alpha < \beta$, temos que, $\alpha \le \gamma$. Logo, pela proposição 7.15:

$$\alpha \le \omega_{\alpha} \le \omega_{\gamma} \le h(\omega_{\gamma})$$

3.3 Caso 3. β é um ordinal limite não nulo

$$\omega_{\beta} = \sup_{\gamma \in \beta} \omega_{\gamma} = \bigcup_{\gamma \in \beta} \omega_{\gamma}$$

como $\alpha \leq \gamma$:

$$\omega_{\alpha} \subset \bigcup_{\gamma \in \beta} \omega_{\gamma} :: \omega_{\alpha} < \omega_{\beta}$$

q.e.d

4 Exercício 9.2.

$4.1 \quad (\Rightarrow)$

Seja (a, \leq) uma boa ordem e, suponha por absurdo que $\exists f : \omega \to a : \forall n \in \omega(f(s(n)) \triangleleft f(n))$. Fixe um $n \in \omega$ qualquer. Seja o conjunto γ tal que:

$$\begin{cases} f(n) \in \gamma \\ \forall f(n) \in \gamma (f(s(n)) \in \gamma) \end{cases}$$

Como (a, \leq) é uma boa ordem, $\exists m \in \wp(a) : \forall \alpha \in \wp(a) \ m$ é mínimo em α . Como isto vale $\forall \alpha$ em particular vale para $\gamma \in \wp(a)$. Logo, fixe um $m \in \gamma$ tal que m é mínimo. Temos que, m = f(i) para algum $i \in \omega$ e, como ω é indutivo $s(i) \in \omega$, portanto, $f(s(i)) \in \gamma$ e, pela nossa hipótese sobre f:

$$f(s(i)) \triangleleft f(i) = m$$

O que é um absurdo.

$4.2 \quad (\Leftarrow)$

Pelo lema de Kuratowski-Zorn temos que se (a, \leq) é uma ordem parcial tal que toda cadeia em (a, \leq) admite limitante inferior em (a, \leq) , então $\exists m \in a : m$ é minimal em (a, \leq) . Note que, como (a, \leq) é uma ordem total, se existir tal m, teremos que m é mínimo de (a, \leq) , que é o que queremos demonstrar.

Portanto, vamos provar que toda cadeia em (a, \leq) admite limitante inferior, com isso, o Lema de Kuratowski-Zorn nos garantirá que (a, \leq) é uma boa ordem. Suponha, por absurdo que $\exists \gamma \in a$ tal que γ não admite limitante inferior.

Fixe um $x \in \gamma$ qualquer. Temos que $\exists y : y \triangleleft x$ (note que, se ocorre y=x na ordem \leq , teríamos que x é um limitante inferior). Seja f uma função tal que:

$$\begin{cases} x = f(n), n \in \omega \\ y = f(s(n)), s(n) \in \omega \end{cases}$$

Note que isto contradiz nossa hipótese de que não existe tal f.

q.e.d

5 Exercício 9.23.

Primeiramente, vamos mostrar que $\forall n \in \omega \setminus \{0\} (|^n a| = |a|)$. Para tanto, vamos usar o principio da indução finita.

$$p(1)$$
: $x = s(\emptyset)$

$$|s(\emptyset)a| = |a|$$

Que, pela proposição 9.16 sabemos que é o mesmo que |a|.

Agora, se |xa| = |a|, então |s(x)a| = |a|. Tome $k^{\lambda} := |xa|$. Teremos que $k^{\lambda+1} = |s(x)a|$. Note que, pela proposição 9.16:

$$k^{\lambda+1} = k^{\lambda} \cdot k^1 = k^{\lambda} \cdot k$$

Além disso, pela proposição 9.18:

$$k^{\lambda} \cdot k = \max\{k^{\lambda}, k\}$$

Se $k = \max\{k^{\lambda}, k\}$ então:

$$|s(x)a| = k = |a|$$

Pela nossa definição de k. Se $k^{\lambda}=\max\{k^{\lambda},k\}$, temos, pela nossa hipótese de indução que:

$$|s(x)a| = k^{\lambda} = |xa| = |a|$$

Portanto, $|^n a| = |a|$. Logo, pela proposição 9.21:

$$\bigcup_{n \in \omega} |{}^{n}a| = |{}^{n}a| \cdot \sup_{x \in {}^{n}a} |x|$$

Note que, $\sup_{x\in {}^n a} |x| \le |{}^n a|$. Então, $\max\{|{}^n a|, \sup_{x\in {}^n a} |x|\} = |{}^n a|$, pois $x\in {}^n a$. Já vimos, pela nossa indução que $|{}^n a| = |a|$.

$$\therefore \bigcup_{n \in \omega} |^n a| = |^n a| \cdot \sup_{x \in {}^n a} |x| = |^n a| = |a|$$

q.e.d

6 Exercício 9.27.

Toda lista tem um que eu não consigo fazer : (não sei porque, quase sempre é o último.