Syntax-Based Decoding

Philipp Koehn

2 April 2015

flashback: syntax-based models

Synchronous Context Free Grammar Rules

• Nonterminal rules

$$NP \rightarrow DET_1 NN_2 JJ_3 \mid DET_1 JJ_3 NN_2$$

Terminal rules

$$N o maison \mid house$$
 NP $o la maison bleue \mid the blue house$

Mixed rules

$$NP \rightarrow la \ mais on \ JJ_1 \mid \ the \ JJ_1 \ house$$

Extracting Minimal Rules

Extracted rule: $S \rightarrow X_1 X_2 \mid PRP_1 VP_2$

DONE — note: one rule per alignable constituent

decoding

Syntactic Decoding

Inspired by monolingual syntactic chart parsing:

During decoding of the source sentence, a chart with translations for the $O(n^2)$ spans has to be filled

German input sentence with tree

Purely lexical rule: filling a span with a translation (a constituent in the chart)

Purely lexical rule: filling a span with a translation (a constituent in the chart)

Purely lexical rule: filling a span with a translation (a constituent in the chart)

Complex rule: matching underlying constituent spans, and covering words

Complex rule with reordering

Bottom-Up Decoding

- For each span, a stack of (partial) translations is maintained
- Bottom-up: a higher stack is filled, once underlying stacks are complete

Chart Organization

- Chart consists of cells that cover contiguous spans over the input sentence
- Each cell contains a set of hypotheses¹
- Hypothesis = translation of span with target-side constituent

¹In the book, they are called chart entries.

Naive Algorithm


```
Input: Foreign sentence \mathbf{f} = f_1, ... f_{l_f}, with syntax tree
Output: English translation e
 1: for all spans [start,end] (bottom up) do
      for all sequences s of hypotheses and words in span [start,end] do
 2:
         for all rules r do
 3:
           if rule r applies to chart sequence s then
 4:
             create new hypothesis c
 5:
             add hypothesis c to chart
 6:
           end if
 7:
        end for
 8:
      end for
 9.
10: end for
11: return English translation e from best hypothesis in span [0,l_f]
```

Stack Pruning

- Number of hypotheses in each chart cell explodes
- Dynamic programming (recombination) not enough
- ⇒ need to discard bad hypotheses e.g., keep 100 best only
 - Different stacks for different output constituent labels?
 - Cost estimates
 - translation model cost known
 - language model cost for internal words known
 - \rightarrow estimates for initial words
 - outside cost estimate?
 (how useful will be a NP covering input words 3–5 later on?)

Naive Algorithm: Blow-ups

• Many subspan sequences

for all sequences *s* of hypotheses and words in span [start,end]

• Many rules

for all rules r

• Checking if a rule applies not trivial

rule r applies to chart sequence s

 \Rightarrow Unworkable

Solution

- Prefix tree data structure for rules
- Dotted rules
- Cube pruning

storing rules efficiently

Storing Rules

- First concern: do they apply to span?
 - → have to match available hypotheses and input words
- Example rule

$$NP \rightarrow X_1 \text{ des } X_2 \mid NP_1 \text{ of the } NN_2$$

- Check for applicability
 - is there an initial sub-span that with a hypothesis with constituent label NP?
 - is it followed by a sub-span over the word des?
 - is it followed by a final sub-span with a hypothesis with label NN?
- Sequence of relevant information

$$NP \bullet des \bullet NN \bullet NP_1 of the NN_2$$

Trying to cover a span of six words with given rule

 $NP \bullet des \bullet NN \rightarrow NP: NP of the NN$

das Haus des Architekten Frank Gehry

First: check for hypotheses with output constituent label NP

das	Haus	des	Architekten	Frank	Gehry

Found NP hypothesis in cell, matched first symbol of rule

	NP				
das	Haus	des	Architekten	Frank	Gehrv

Matched word des, matched second symbol of rule

	NP				
das	Haus	des	Architekten	Frank	Gehrv

Found a NN hypothesis in cell, matched last symbol of rule

	NP			NN	
das	Haus	des	Architekten	Frank	Gehry

Matched entire rule → apply to create a NP hypothesis

NP						
	NP			NN		
das	Haus	des	Architekten	Frank	Gehry	

Look up output words to create new hypothesis (note: there may be many matching underlying NP and NN hypotheses)

NP: the house of the architect Frank Gehry							
NP: t	he house		NN: as	rchitect Frank C	Gehry		
das	Haus	des	Architekten	Frank	Gehry		

Checking Rules vs. Finding Rules

- What we showed:
 - given a rule
 - check if and how it can be applied
- But there are too many rules (millions) to check them all
- Instead:
 - given the underlying chart cells and input words
 - find which rules apply

Prefix Tree for Rules

Highlighted Rules

dotted rules

Dotted Rules: Key Insight

• If we can apply a rule like

$$p \rightarrow A B C \mid x$$

to a span

• Then we could have applied a rule like

$$q \rightarrow A B \mid y$$

to a sub-span with the same starting word

⇒ We can re-use rule lookup by storing A B • (dotted rule)

Finding Applicable Rules in Prefix Tree

Covering the First Cell

Looking up Rules in the Prefix Tree

Taking Note of the Dotted Rule

Checking if Dotted Rule has Translations

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree 38

Add to Span's List of Dotted Rules

Moving on to the Next Cell

Looking up Rules in the Prefix Tree

Taking Note of the Dotted Rule

Checking if Dotted Rule has Translations

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree 45

Add to Span's List of Dotted Rules

More of the Same

Moving on to the Next Cell

Covering a Longer Span

Cannot consume multiple words at once All rules are extensions of existing dotted rules Here: only extensions of span over das possible

Extensions of Span over das

Looking up Rules in the Prefix Tree

Taking Note of the Dotted Rule

Checking if Dotted Rules have Translations 53

Applying the Translation Rules

Looking up Constituent Label in Prefix Tree 55

Add to Span's List of Dotted Rules

Even Larger Spans

Extend lists of dotted rules with cell constituent labels

span's dotted rule list (with same start)
plus neighboring
span's constituent labels of hypotheses (with same end)

Reflections

- ullet Complexity $O(rn^3)$ with sentence length n and size of dotted rule list r
 - may introduce maximum size for spans that do not start at beginning
 - may limit size of dotted rule list (very arbitrary)
- Does the list of dotted rules explode?
- Yes, if there are many rules with neighboring target-side non-terminals
 - such rules apply in many places
 - rules with words are much more restricted

Difficult Rules

- Some rules may apply in too many ways
- Neighboring input non-terminals

$$VP \rightarrow gibt X_1 X_2 \mid gives NP_2 to NP_1$$

- non-terminals may match many different pairs of spans
- especially a problem for hierarchical models (no constituent label restrictions)
- may be okay for syntax-models
- Three neighboring input non-terminals

$$VP \rightarrow trifft X_1 X_2 X_3 heute \mid meets NP_1 today PP_2 PP_3$$

will get out of hand even for syntax models