Decision Tree - II

Learn Classification and Prediction via Data Mining

Contents

- 1. Conditional Inference Tree Algorithm
- 2. ctree() function in partykit
- 3. Decision Tree for Continuous & Categorical Independent variables

Conditional Inference Tree Algorithm

• Conditional Inference (CI) Tree algorithm can also be divided into three main steps:

Step 1: Test for Association

• The algorithm tests if any independent variables are associated with the given response variable, and chooses the variable that has the strongest association with the response, i.e. Variable with the smallest p-value based on permutation test is chosen

Conditional Inference Tree Algorithm

Step 2: Split Variables

- The algorithm makes a binary split in this variable, dividing the dataset into two subsets
- In case of a binary predictor with values A and B, one subset will contain all observations with value A, and the other will contain all cases with value B. If a variable has more levels, one group may have values A and B, and the other may contain observations with C
- If the variable is quantitative, the range of its values can be split into two, e.g. values from 0 to 100 can be split into two subsets: from 0 to 50 and from 51 to 100; OR 0-30 and 31 to 100, and so on.

Conditional Inference Tree Algorithm

Step 3: Repeat Until No Variables are Left

 The first two steps are repeated for each subset until there are no variables that are associated with the outcome at the pre-defined level of statistical significance. This is why the algorithm is called recursive.

Tests Used in CI Algorithm

- Conditional Inference algorithm can be used for Classification as well as Regression Models.
- Structure of the algorithm remains the same, tests used for checking variable association change as per variable type.

Dependent Variable	Independent Variables	Test
Categorical	Categorical	Chi-square
Continuous	Continuous	Correlation
Continuous	Categorical	ANOVA

Data Snapshot

EMPLOYEE CHURN DATA

	Dependent Variable	Independ Variab		}	
	sn status funct		gender source M external		
Columns	Description	Type	Measurement	Possible values	
sn	Serial Number	-	-	-	
status	= 1 If the Employee Left Within 18 Months of Joining = 0 Otherwise	Binary	1,0	2	
function	Employee Job Profile	Categorical	CS, FINANCE, MARKETING	3	
exp	Experience in Years	Categorical	<3,3-5,>5	3	
gender	Gender of the Employee	Categorical	M,F	2	
source	Whether the Employee was Appointed via Internal or External Links	categorical	external, internal	2	

CHAID-like Implementation in Package "partykit"

```
# Decision Tree Using Package "partykit"

library(partykit)
empdata<-read.csv("EMPLOYEE CHURN DATA.csv", header=T)

empdata$status<-as.factor(empdata$status)
empdata$function.<-as.factor(empdata$function.)
empdata$exp<-as.factor(empdata$exp)
empdata$gender<-as.factor(empdata$gender)
empdata$source<-as.factor(empdata$source)

ctree<-
partykit::ctree(formula=status~function +exp+gender+source)
```

- We are instructing R to use the improved version of ctree() from package "partykit" by specifying partykit::ctree() in the command.
- formula= specifies dependent and independent variables

Decision Tree in Package "partykit"

plot(ctree,type="simple")

Get an Edge!

In case of large data, default tree plot may end up looking congested and difficult to interpret. Adjust the aesthetics of the tree plot for better results. Add argument **gp** (graphical parameter) in the **plot()** function.

plot(ctree,type="simple", gp=gpar(cex=0.8))

We have used

gp=gpar()from

package grid to

decrease the text

size

Data Snapshot

BANK LOAN Independent Variables

		-		1	}	1
	SN	I AGE	EMPLOY	ADDRESS DEBT	INC CREDDEBT OTHD	EBT DEFAULTER
Columr		Descrip	tion	Type	Measurement	Possible Values
SN		Serial Nu	ımber		-	-
AGE		Age Gro	oups	Categorical	1(<28 years),2(28- 40 years),3(>40 years)	3
EMPLO)	Y	Number o customer w current en	orking at	Continuous	-	Positive value
ADDRES	S	Number of years customer staying at current address		Continuous	-	Positive value
DEBTING	C	Debt to Inco	me Ratio	Continuous	-	Positive value
CREDDE	3T	Credit to Debit Ratio		Continuous	-	Positive value
OTHDEB	3T	Other [Debt	Continuous	-	Positive value
DEFAULT	ER	Whether cu		Binary	1(Defaulter), 0(Non Defaulter)	2

Decision Tree for Continuous & Categorical Independent Variables

ctree() for Continuous Independent Variables

```
bankloan<-read.csv("BANK LOAN.csv", header=T)

str(bankloan)

str() is used to check the structure of all variables.

We convert DEFAULTER and AGE to factor variables using as.factor() as in our data these 2 variables are categorical.

# Output
```

Decision Tree for Continuous & Categorical Independent Variables

plot(bankctree, type="simple", gp=gpar(cex=0.7))

Interpretation

- AGE and
 OTHDEBT do
 not appear in the
 tree.
- 114 customers
 with DEBTIC
 >14.7, employed
 for ≤ 5 years are
 mainly
 DEFAULTERS

Quick Recap

CI Tree

• partykit::ctree() in package "partykit" yields conditional inference trees for continuous & categorical independent variables