Filtering Variational Quantum Eigensolver

Kevin Joven, Bao Bach, Saaketh Rayaprolu Mentor: Gabriel Marin Sanchez

ICTP - Quantinuum Hackathon

April 23, 2023

Visualizing F-VQE

$$|\psi(heta_0)
angle
ightarrow |\psi(heta_1)
angle pprox F_ au |\psi(heta_0)
angle
ightarrow \cdots
ightarrow |\psi(heta_T)
angle pprox F_ au |\psi(heta_{T-1})
angle pprox F_ au^T |\psi(heta_0)
angle$$

Visualizing F-VQE

Quantinuum F-VQE April 23, 2023 3/23

Approach to project

Approach to project

Approach to project

- Generation of Random Instances of Max Cut
- Cost function and bounds
- Implementation of F-VQE using QuJax (exact gradients)
- Ansatz development (expressibility)
- Implementation of F-VQE via parameter shift rule and circuit sampling

$$\frac{\partial \mathcal{C}_t(\boldsymbol{\theta})}{\partial \theta_j} \bigg|_{\boldsymbol{\theta}_{t-1}} = -\frac{\langle F_t \rangle_{\psi_{t-1}^{j+}} - \langle F_t \rangle_{\psi_{t-1}^{j-}}}{4\sqrt{\langle F_t^2 \rangle_{\psi_{t-1}}}}$$

$$C = \sum_{n=1}^{N} \omega_{n_1,n_2} * (g(n_1) \oplus g(n_2))$$

Quantinuum F-VQE April 23, 2023 5/23

Exploration and Analysis

- Study of different ansatz & problem sizes for generality and scalability
- Attempts of various filtering functions for best performance
- Exploration of changes in constant and variable Tau values and learning rates
- Comparison of F-VQE performance between noiseless and noisy backends

MaxCut Graph Generation

- Simple Combinatorial Optimization problem
- Straightforward cost function to generate
- Can be mapped easily to QUBO
- Black Box function rather than Hamiltonian

Ansatz

Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms

Sukin Sim, 1, 2, * Peter D. Johnson, 2 and Alán Aspuru-Guzik 2, 3, 4, 5, †

ANSATZ 2

Expressibility of the circuits

- Successful convergence with few qubits.
- Decreasing convergence time with scalability.
- Expressibility to faster convergence trade with simulation time.

Expressibility of the circuits

Max number of Qubits?

- Different Ansatz:
- Tests based on # parameters:
- Different number of layers:
- Fast convergence rate:

Building F-VQE

What about the filters?

Scalability of Composite Filter Functions

- Tested combinations of inverse, exponential, and cosine filter functions
- No composite filter function converged for 9+ qubits
- Inverse was most efficient of pure filter functions
- Inverse Exponential was best composite filter, converging for 7 qubits

Comparison of different Tau values

- Tested constant Tau values of 0.01, 0.1, 0.25, 1, 3, 5
- Tested variable Taus both decreasing and increasing as GS probability increases
- Higher Taus converge faster
- Difference larger as qubit count increases
- Variable Tau provided <u>no</u> <u>difference</u> up to 19 qubits

Comparison of constant learning rates

- Tested constant LR values between 0 and 1
- The best performing learning rate is about 0.35
- High learning rates over-adjust, don't converge
- Rates higher than 1.57 $(\pi/2)$ converge to probability 0

Comparison of variable (adaptive) learning rates

- Tested decrease of LR proportional to probability and prob^2 (best)
- Higher learning rate values are able to converge smoothly
- Maximum converging LR a function of # qubits
- LR up to 0.9 converges at 19 qubits

Max number of qubits with different learning rate

For the noisy simulation, our team used the noise model of IBMO-Hanoi

- Simulation with 3, 5, 7, 9 and 11 qubits for proposed Ansatzs
- Study noise effect on adaptive learning rate method

Noisy simulation with 3 qubits

Noisy simulation with 5 qubits

Noisy simulation with 7 qubits

Noisy simulation with 9 qubits

Noisy simulation with 11 qubits

From the noisy simulation, we can see that:

- Our system is not affected much by noise
- Shallow ansatz in a noisy environment can still converge
- Our system can potentially scale to higher number of qubits
- Further analysis of adaptive LR can work to cancel out the noise

Conclusion

- Displayed the versatility of FVQE
- Proposed a **new approach** to smooth convergence.
- Demonstrated that robustness for noise backend allowed for higher qubit simulations.

Questions?

Questions?

References

- [1] Sim, S., Johnson, P. D., & Aspuru-Guzik, A. (2019). Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms. Advanced Quantum Technologies, 2(12), 1900070.
- [2] Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028.
- [3] L.Zhou, et al., Quantum Approximate Optimization Algorithms: Performance, Mechanism, and Implementation on Near-Term Devices. Arxiv e-prints, art. Arxiv:1812.01041 (2018).
- [4] D. Amaro, et al., Filtering Variational Quantum Algorithms for Combinatorial Optimization, Quantum Sci. Technol. 7, 015021 (2022)
- [5] Samuel Duffield, et al., qujax: Simulating quantum circuits with JAX, 2022, https://github.com/CQCL/qujax.
- [6] Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., & Duncan, R. (2020). t| ket): a retargetable compiler for NISQ devices. Quantum Science and Technology, 6(1), 014003.