细胞的通讯与信号转导

笔记源文件:<u>Markdown</u>,<u>长</u>图,<u>PDF</u>,<u>HTML</u>

1. 细胞通讯概述

1 信号转导概念(背诵):一个细胞发出信号,通过信号

2 细胞通讯的种类

1. 分泌型分子介导的细胞通讯

	自分泌	旁分泌	内分泌	神经传导
类型		***		神経遺居 突動河原 突動河原

2. 接触依赖的细胞通讯

3 细胞通讯一般过程

第一信使(配体) → 细胞膜受体 → 胞内信号分子(第二信使) → 信号级联反应 → 靶蛋白

學文本: $[L] + [R] = [LR(-定浓度)] \xrightarrow{-\underline{\mathsf{K}} \underline{\mathsf{M}} \underline{\mathsf{K}} \underline{\mathsf{M}}}$ Reaction

5 级联反应:相当于多级放大电路

2. G蛋白偶联受体(最常见受体)

2.1. G蛋白酶联受体结构

 α 螺旋7次穿膜,与G蛋白偶联

2.2. $G蛋白: G\alpha/G\beta/G\gamma$ 亚基异源三聚体

- 1 Gα能结合GTP/GDP,有GTP酶活性
- $2 G\alpha$ 蛋白亚基分类: $Gs/Gi/Gq/Gt/G_{12}/G_{13}$ 等
- 3 种类

活化	非活化
$\operatorname{GTP} + \operatorname{G} \alpha \to \operatorname{G} eta$ $\operatorname{G} \gamma$ 分离 \to 去结合下游分子	$\mathrm{GDP} + \mathrm{G}lpha o \mathrm{G}lpha/\mathrm{G}eta/\mathrm{G}\gamma$ 三聚

2.3. GPCR介导的信号通路

2.3.1. Gs-腺苷酸环化酶-cAMP-PKA通路

1 Gs蛋白激活:

受配体结合 \to Gs(G α 亚基)结合GTP脱离 \to 跑去活化腺苷酸环化酶 \to 活化的酶将ATP转化cAMP

- 2 Gi蛋白功能合Gs完全相
- 2 第二信使: 激活PKA(蛋白激酶) → 然后一系列反应如图

2.3.2. Gq-磷脂酶C(PLC)-IP3/DAG

第二信使是IP3和DAG

3. 酶联受体介导的信号通路

1 酶联受体:单次跨膜,激活后二聚,生长因子/细胞因子受体

2 酪氨酸激酶受体(RTK)信号通路:RTK-RAS-MAPK(蛋白激酶)通路

- 3 酪氨酸激酶受体(RTK)信号通路: PI3K-Akt(PKB)通路
 - 在葡萄糖代谢中的作用:增加膜上葡萄糖转运子数量,增强葡萄糖吸收;增强糖原合成

4. GPCR/RTK作用网络

