```
In [1]:  import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn
from sklearn import linear_model
```

Out[2]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	th
0	52	1	0	125	212	0	1	168	0	1.0	2	2	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	

Prediction: [0]

In [4]: ▶ #Random forest

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier

df = pd.read_csv("heart.csv")
    x = df.drop('target', axis=1)
    y= df['target']
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.
    kavya = RandomForestClassifier(n_estimators=100, criterion='entropy', kavya.fit(x_train, y_train)
    score=kavya.score(x_test, y_test)
    print(score)
```

0.9853658536585366

```
In [6]:
          # Naive Bayes
 In [9]:
          import pandas as pd
             from sklearn.model_selection import train_test_split
             from sklearn.naive_bayes import GaussianNB
             df = pd.read_csv("heart.csv")
             x = df.drop('target', axis=1)
             y= df['target']
             x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.
             kavya = GaussianNB()
             kavya.fit(x_train, y_train)
             score=kavya.score(x_test, y_test)
             print(score)
             0.8
In [10]:
          #SVM
In [11]:
          df = pd.read_csv("heart.csv")
             x = df.drop('target', axis=1)
             y= df['target']
             x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.
             kavya =SVC()
             kavya.fit(x_train, y_train)
             score=kavya.score(x_test, y_test)
             print(score)
             0.6829268292682927
In [12]:
          #Decision Tree
In [13]:
          ▶ | from sklearn.tree import DecisionTreeClassifier
             df = pd.read_csv("heart.csv")
             x = df.drop('target', axis=1)
             y= df['target']
             x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.
             kavya =DecisionTreeClassifier()
             kavya.fit(x_train, y_train)
             score=kavya.score(x_test, y_test)
             print(score)
             0.9853658536585366
          #KNN
In [14]:
```

0.7317073170731707

```
In [16]: ► #Logistic Regression
```

Accuracy Score: 0.7951219512195122

```
In []: ▶
```