POSETS & LATTICES .. , verify (Zt, 1) is a poset? for reflexive 2/2 is possible for anti-symmetric .. (Zt,) is a poset for transity stisfies 4. Verity (Z, //). Reflexivity Anti- Symmetric Yes 10/1 = 1 -1/1 = -1--1/-1:1 - i. Not antisymmetri (Z,/) is not a poset book its violating anti-symm. property * similarly. verify (P(s), E) is a Poset? where P(s) is powerset of s? 3= {0, b, c} P(s) = { p, fa], 163, fe}, fa, b}, fb, c}, fe, a], fa, b, e}]. It is a POSET.

* comporability.

(2) in (Z1, 1); consider (2, 4) EZ1 are they conform Yes, because 4/2 is possible.

consider (3,5) ¿ Z', they aren't comparable because

3/5 - not pour - incomparable clemen 5/3 -> ~ ~

* Total Ordered Set.

Consider the POSET (S, <), if every 2 element of s are comparable, then s is called as total ordered set or CHAIN.

eg > (Z, <=) is a POSET as well as Totally Ordered set.

consider (Z+,/) - POSET.

Not a Totally Ordered set because 3/5 not divisible 5/3 -

NOTE

Sometimes, the subset of an Ordered Set, may be a totally ordered set. 3

A = { 2, 6, 12, 36}

Now, for (A, 1) tis a total ordered set.

& Every Total ordered Set is a Poset best the converse may not be Frue

& Lexicographic Ordering.

* HASSE DIAGRAM.

piagram. In this diagram, the vertices represent

Let (x,y) ES,

ares

renti

ent

+

then y is immediate successor of x if there doesn't exist any element z in before $x & y > x \leq z & z \leq y$

Also, x is called immediate predecessor

g. Let $\alpha = \{1, 2, 3, 4, 5, 6\}$ & / is the po related on α . Draw House diagram.

Crearly (x,/) is a POSET.

the consider $S = \{a, b, c\}$. Draw Hasse Diagram for $\{P(s), \underline{C}\}$.

Q. Draw the typese Diagram of (A, 1) $A = \{1, 3, 9, 27, 81\}.$

a Describe the ordered pairs in the relat" determined by the

(1,1) (2,2) (3,3) (4,4) (1,3) (2,3) (3,4) (1,4) (2,4)

(1) (2,2) (3,3) (4,4) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4).

* SPECIAL ELEMENTS OF POSETS :-

· Maximal Element:

An element a is called maximal element of Fosti P' if No element of P strictly succeeds 'a'.

aninimal Flement:

An element 'à is called minimal element if there is no predecessor to a'.

Diagram (2)

Maximul Minimal

1,2

Dig. III

Max Min

81

Diag (1)

Max Min

Min

Min

Min

· Greatest Element:

4,6,5

An element a belongs to P is greatest element if element in P preceeds a.

· Least Element:

An element <u>b</u> belongs to P is called Least element if every element in P enceeds b.

A The greatest & least elements it exists, they are Unique.

Q. Find the least & greatest elements of (Z', 1) A Least no. - 1. Greatest element - NA: clearly 1/n 4 n ∈ Z t :. I is the least element but we can't find a tre integer which is div, by all tre integers & hence there is no greatest element. S. Identify maximal, minimal, greatest & least from the foll, Hasse diagram: Least Greatest Maxi Mini (a) 27 g 27 27 (6) Nil. 12,18 2,3 Nil Nil . a, b ·el

11

11,

WELL ORDERED SET:-

In a POSET (P, <), if every subset of P has

學 (N, <=)

(Z, <=) is not a well ordered set because
its subset Z doesn't contain least element

UPPER & LOWER BOUND :-

is called Upper bound of B if u succeeds every element of B i.e $x \le u + x \in B$.

bound of B it 'l' preceeds every element of B ie la < x + x & B.

bounds.

Least Upper Bound: (LUB) or SUPREMUM.

An element a EA is called least UB of B if

(ii) a ≤ a' where a' is other upper bounds of B.

Greatest Lower Bound :

An element a E A is called GLB of B if in a is a LB & all other LBs a' preceeds 'a'. i'e a' < a.

INFIMUM

9. In a POSET. A = (11.15.4.8.6.2.8.9.10]. 1) no integer in A which is dividey both 12, 23 THE ME - 1. as I is the element notich divides 217. Mence, GLB is also 1. UE - 6 LUB - 6 18 - 1. GLB - 1

* Consider B = {1,2,3}

* consider fr, 2, 43.

UB - A, 8 LUB - A.

LE - 1 GLE - 1.

Q. Find the GLB & LUB of set B1 = {3,9,12} & B2 = {1,2,4,5,10} if they exist in the poset (2+,1).

> LUB - (36) 81 GLB -> (3)

LUB -> (20) 82 918 - 1

Q. Consider the FOSET defined by the form. Masse diagram

B1 = { 1, 2} find B2 = { 3, 4, 5 } (i) LB & UB of RIEB? (ii) CYLB & LUB of B1 & B2

$$B1 \rightarrow UB$$
 $3, 4, 5,$
 $6, 7, 8$
 EB
 $CUB \rightarrow 3,$
 $CUB \rightarrow 3,$

we observe that 1 & 2 are related to 3,4,5,6,7,8 which are UBs of B1. & LUB is 3.

Bà {3,4,53.

LATTICE.

A POSET (P, <) is called as a lattice if every 2 elements of subset of P has both LUB & GLB. i.e if LUB & GLB exist for every {x, y} in P.

we denote
$$x \vee y = lub(n, y) \vee \neg join$$

$$x \wedge y = glb(n, y) \wedge \neg meet$$

every chain is a lattice since any 2 elements x, y are comparable. We can observe than

$$x \vee y = \text{lub}(x, y) = y$$

$$x \wedge y = \text{glb}(x, y) = x$$

A consider the powerset (P(s), =). 1

It is a lattice booz if $(A,B) \in S$ then UB of $\{A,B\}$, is subset of s while contains both A&B & the LUB & AUB belonging to P(S).

Similarly we can show that the GLB is the intersect of A&B.

Consider POSET (Z[†],/), it is Lattice book any UB of fa, b} is nothing but an element which is divisible by both A & Brutich is a common multiple of A & B. & the LUB will be LCM of A & B.

Similarly, the greatest LB will be GCD or HCF.

6 V 4 = 12

614 = 2

For. Masse Diagram is Lattice or not?

de le construct the closere tables for LUB (V) & GLB (A) as shown below.

V	α	Ь	C	4	
a	a	b	C	d.	
Ь	Ь	b	<u>C</u>	d	
С	C	C	C	4	
4	1				

A a 6 d a 0 a 6 b 6 b a C bc O c d d 6 a

so the greet diagram

1/	a	10.	C	.d	e	f	9
a	a	b	C	d	e	f	9
b	b	6	mod	d	4	F	9
	6	d b	C	d	e	F	9-
, d	d						
e	e	e	e	ϵ	e	3	9
1	f		f	f	of.	f	3
	9		9	9	9	9	7
\$	1	9					

1		1						
	1	a	6	e	d	e	f3	*
	a		A	4	a	a	2 8	ar :
	ь	a	6	b				
	(
	d							
	6	a	b		d			
	1	a	Ь	C .	d	- 41	3 7	
	/*							