Schur Weyl Duality and The Frobenius Formula

James Harbour

February 23, 2024

Abstract

In this paper we exposit one of the fundamental results linking representation theory and algebraic combinatorics called Schur-Weyl duality. It provides a dictionary between the representation theory of finite symmetric groups and the representation theory of the general linear group of a finite dimensional complex vector space. Through this dictionary, we obtain representation theoretic constructions of many aspects of symmetric function theory, including Schur functions, Kostka numbers, and internal/external products on the symmetric function ring.

Contents

1	\mathbf{Rep}	presentation Theory Background
	1.1	Group Representations
	1.2	Character Theory and Orthogonality Relations
	1.3	Fundamental Examples
2	Rep	presentations of S_n
	2.1	Partitions, Young Diagrams, and Tabloids
		Construction of Specht Modules
		Alternative Construction
	2.4	Results on Specht Modules
3	Ren	presentations of $GL(V)$
		Schur Functors

1 Representation Theory Background

1.1 Group Representations

Definition 1.1.1. A representation of a group G is a pair (π, V) where V is a \mathbb{C} -vector space and $\pi: G \to \mathrm{GL}(V)$ is a group homomorphism.

Definition 1.1.2. A morphism between two representations (π, V) and (ρ, W) of a group G is a linear map $T: V \to W$ such that $T\pi(g) = \rho(g)T$ for all $g \in G$.

1.2 Character Theory and Orthogonality Relations

1.3 Fundamental Examples

2 Representations of S_n

[FH91]

2.1 Partitions, Young Diagrams, and Tabloids

.

Definition 2.1.1. Given $\lambda \vdash n$, the Ferrers diagram of shape λ is the set $\{(i,j) \in \mathbb{N}^2 : j \in \mathbb{N}, 1 \leq i \leq \lambda_j\}$ depicted as points in \mathbb{R}^2 . The Young diagram of shape λ is depicted identically to the Ferrers diagram except the points are replaced with squares. The size of the diagram is the number of entries, namely n. We depict the case $(5,2,1) \vdash 8$ below.

Definition 2.1.2. Given $\lambda \vdash n$ and a Young diagram of shape λ , a semi-standard Young tableau of shape λ is a filling of the boxes of the Young diagram with positive integers such that

- the entries are weakly increasing along rows,
- the entries are strictly increasing up columns.

A semi-standard Young tableau of size n is said to be standard if the elements of $\{1, \ldots, n\}$ each appear exactly once in the tableau. We write $SSYT(\lambda)$ and $SYT(\lambda)$ for the sets of semi-standard and standard Young tableaux of shape λ . Given a semi-standard Young tableau \mathcal{T} , the weight of \mathcal{T} is a function $\alpha = \alpha_{\mathcal{T}} : \mathbb{N} \to \mathbb{N}$ given by

$$\alpha(i) := \text{number of times } i \text{ appears in } \mathcal{T}.$$

Note that $\alpha(i) = 0$ for sufficiently large i, so we may write $x^{\alpha} = x_1^{\alpha(1)} x_2^{\alpha(2)} \cdots$ and obtain a valid monomial. We write $SSYT(\lambda, \alpha)$ for the set of semi-standard Young tableaux of shape λ and weight α .

Definition 2.1.3. Given $\lambda \vdash n$, a λ -tableau is simply a filling of the boxes of the Young diagram of shape λ with the elements of $\{1, \ldots, n\}$ without repetition (and no other restrictions). Denote the set of λ -tableaux by $YT(\lambda)$. Note that $S_n \curvearrowright YT(\lambda)$ by permuting labels.

Definition 2.1.4. Given $\lambda \vdash n$, define an equivalence relation \sim on $YT(\lambda)$ by $\mathcal{T} \sim \mathcal{T}'$ if and only if \mathcal{T}' can be obtained from \mathcal{T} by permuting the entries of each row. An equivalence class with respect to this relation is called a λ -tabloid. If \mathcal{T} is a λ -tableau, we write $\{\mathcal{T}\}$ for the corresponding λ -tabloid. Finally, we write $Tab(\lambda) := YT(\lambda)/\sim$ for the set of λ -tabloids. Note that the action of S_n on λ -tableaux descends to an action on λ -tabloids.

2.2 Construction of Specht Modules

Young diagrams will give projection operators $P_{\lambda}: \mathbb{C}[S_n] \to \mathbb{C}[S_n]$ which commute with the action of S_n , whence the image $P_{\lambda}(\mathbb{C}[S_n])$ gives a subrepresentation of the regular representation. These subrepresentations will end up being precisely the irreducible representations of S_n . Throughout this section, $\lambda \vdash n$ will be fixed.

Definition 2.2.1. Given a λ -tableau \mathcal{T} , define the row group $R_{\mathcal{T}}$ to be the subgroup of S_n which permutes only the labels in the rows of \mathcal{T} and the column group $C_{\mathcal{T}}$ as the subgroup which permutes only the labels in the columns of \mathcal{T} .

Now we may define the Young row and column symmetrizers in $\mathbb{C}[S_n]$ by

$$a_{\mathcal{T}} := \sum_{\sigma \in R_{\mathcal{T}}} \sigma, \qquad b_{\mathcal{T}} := \sum_{\sigma \in C_{\mathcal{T}}} \operatorname{sgn}(\sigma)\sigma.$$
 (1)

Note that for $\mathcal{T} \in YT(\lambda)$, the corresponding tabloid is precisely the orbit of \mathcal{T} under its row group, i.e.

$$\{\mathcal{T}\} = R_{\mathcal{T}}\mathcal{T} = \{\sigma\mathcal{T} \in YT(\lambda) : \sigma \in R_{\mathcal{T}}\}.$$

Now let M^{λ} be the free \mathbb{C} -vector space over the set of λ -tabloids. Extending the action $S_n \curvearrowright Tab(\lambda)$ linearly to all of M^{λ} , we obtain a $\mathbb{C}[S_n]$ -module structure on M^{λ} . For $T \in YT(\lambda)$, the element $e_T \in M^{\lambda}$ given by

$$e_{\mathcal{T}} := b_{\mathcal{T}} \cdot \{\mathcal{T}\} = \sum_{\sigma \in C_{\mathcal{T}}} \operatorname{sgn}(\sigma) \{\sigma \mathcal{T}\}$$

is called the polytabloid associated to \mathcal{T} . Let S^{λ} be the subspace of M^{λ} generated by all polytabloids, namely

$$S^{\lambda} := \operatorname{Span}_{\mathbb{C}} \{ e_{\mathcal{T}} : \mathcal{T} \in YT(\lambda) \}.$$

Claim. S^{λ} is a $\mathbb{C}[S_n]$ -submodule of M^{λ} .

Proof of Claim. Fix $\sigma \in S_n$. We first show that $C_{\sigma \mathcal{T}} = \sigma C_{\mathcal{T}} \sigma^{-1}$. Indeed, if T_i is the set of entries for the *i*th column of \mathcal{T} , then $\sigma(T_i)$ is the entries for the *i*th column of $\sigma \mathcal{T}$. Now it suffices to note that $\tau \in S_n$ stabilizes T_i if and only if $\sigma \tau \sigma^{-1}$ stabilizes $\sigma(T_i)$. Using this identity, we compute

$$\sigma b_{\mathcal{T}} = \sum_{\gamma \in C_{\mathcal{T}}} \operatorname{sgn}(\gamma) \sigma \gamma \stackrel{\tau = \sigma \gamma \sigma^{-1}}{=} \sum_{\tau \in \sigma C_{\mathcal{T}} \sigma^{-1}} \operatorname{sgn}(\sigma^{-1} \tau \sigma) \tau \sigma = \sum_{\tau \in C_{\sigma \mathcal{T}}} \operatorname{sgn}(\tau) \tau \sigma = b_{\sigma \mathcal{T}} \sigma.$$

Now we apply σ to the generators of S^{λ} and find

$$\sigma \cdot e_{\mathcal{T}} = \sigma \cdot (b_{\mathcal{T}} \cdot \{\mathcal{T}\}) = (\sigma b_{\mathcal{T}}) \cdot \{\mathcal{T}\} = b_{\sigma \mathcal{T}} \{\sigma \mathcal{T}\} = e_{\sigma \mathcal{T}}.$$

As S_n stabilizes S^{λ} , the claim follows.

Definition 2.2.2. The $\mathbb{C}[S_n]$ -module S^{λ} as defined above is the Specht module corresponding to λ .

Example 2.2.1 (Sign Representation). Consider the partition $\lambda = (1, 1, ..., 1)$ of n. Since each row of λ has one element, the λ -tabloids are the same as λ -tableaux.

Let \mathcal{T} be a λ -tableau. As \mathcal{T} has only one column, $C_{\mathcal{T}} = S_n$, whence $b_{\mathcal{T}} = \sum_{\gamma \in S_n} \operatorname{sgn}(\gamma) \gamma$ and consequently

$$\sigma e_{\mathcal{T}} = \sum_{\gamma \in S_n} \operatorname{sgn}(\gamma) \sigma \gamma \{\mathcal{T}\} = \sum_{\tau \in S_n} \operatorname{sgn}(\sigma^{-1}\tau) \tau \{\mathcal{T}\} = \operatorname{sgn}(\sigma) e_{\mathcal{T}} \quad \text{for all } \sigma \in S_n.$$

On the other hand, we know that $\sigma e_{\mathcal{T}} = e_{\sigma \mathcal{T}}$, so it follows that $S^{\lambda} = \mathbb{C}e_{\mathcal{T}}$ is the one-dimensional sgn representation.

Example 2.2.2 (Trivial Representation). Consider the partition $\lambda = (n)$ of n. Since there is one row of λ , all λ -tableaux are equivalent so there is only one λ -tableau. \mathcal{S} .

Each $e_{\mathcal{T}} = \{T\} = \{S\}$, so $S^{\lambda} = \mathbb{C}e_{\mathcal{S}}$ is one-dimensional. The action of σ is given by $\sigma e_{\mathcal{T}} = e_{\sigma \mathcal{T}} = e_{\mathcal{T}}$, so S^{λ} is the trivial representation of S_n .

Example 2.2.3 (Augmentation Subrepresentation). Consider the partition $\lambda = (n-1,1)$ of n. Observe that there are n distinct λ -tabloids, each corresponding to the integer in singular box on the 2nd row. Denote the tabloid with i in the 2nd row by t_i , so $Tab(\lambda) = \{t_1, \ldots, t_n\}$.

Let $V = \mathbb{C}\{v_1, \ldots, v_n\}$ be the standard representation of S_n (i.e. $\sigma v_i = v_{\sigma(i)}$). Observe that the map $L: V \to M^{\lambda}$ given by $L(v_i) = t_i$ is an isomorphism of $\mathbb{C}[S_n]$ -modules. The augmentation subrepresentation W of V is given by $W := \{\sum_{i=1}^n \alpha_i v_i : \sum_i \alpha_i = 0\}$. We claim that $S^{\lambda} \cong W$ as $\mathbb{C}[S_n]$ -modules. Fix $i \in \{1, \ldots, n\}$ and let \mathcal{T} be a λ -tableau such that $t_i = \{\mathcal{T}\}$. Let j be the integer below i on the tableau. Then the column

$$\begin{bmatrix} i \\ j \end{bmatrix} \dots$$

General form of \mathcal{T} when $t_i = \{\mathcal{T}\}$

group $C_{\mathcal{T}}$ is then of order 2 generated by the transposition $(i \ j)$.

$$e_{\mathcal{T}} = \sum_{\gamma \in C_{\mathcal{T}}} \operatorname{sgn}(\gamma) \gamma t_i = t_i - t_j.$$

Hence, one checks

$$S^{\lambda} = \text{Span}\{t_i - t_j : 1 \le i, j \le n, i \ne j\} = \text{Span}\{t_i - t_{i+1} : 1 \le i \le n - 1\}.$$

Moreover, $\{t_i - t_{i+1} : 1 \le i \le n-1\}$ gives a basis for S^{λ} . The restriction of L to W gives a vector space isomorphism $L: W \to S^{\lambda}$ as $\{v_i - v_{i+1}\}_{1 \le i \le n-1}$ gives a basis for W, so a basis gets mapped to a basis. Moreover, this map intertwines the S_n -action, so it produces $\mathbb{C}[S_n]$ -module isomorphism.

2.3 Alternative Construction

Fix a λ -tableau \mathcal{S} throughout this section, say the canonical one (increasing across rows and then moving up rows). Recall the row and column symmetrizers $a_{\lambda} := a_{\mathcal{S}}$, $b_{\lambda} := b_{\mathcal{S}}$ and define the Young symmetrizer

$$c_{\lambda} := a_{\lambda} \cdot b_{\lambda} \in \mathbb{C}[S_n].$$

Set $V_{\lambda} := \mathbb{C}[S_n]c_{\lambda}$. Define a map $T : \mathbb{C}[S_n]a_{\lambda} \to M^{\lambda}$ by $T(\sigma a_{\lambda}) = {\sigma S}$.

Claim. The map T is an isomorphism of $\mathbb{C}[S_n]$ -modules.

Proof of Claim. We first show this map is well defined. If $\sigma a_{\lambda} = \tau a_{\lambda}$, then $\tau^{-1}\sigma$ fixes a_{λ} , whence $\tau^{-1}\sigma \in R_{\mathcal{S}}$ and consequently $\sigma\{\mathcal{S}\} = \tau\{\mathcal{S}\}$.

Since the action of S_n on λ -tableau is transitive, it follows that the map T is onto. On the other hand, suppose $\sum_{\sigma} \alpha_{\sigma} \sigma a_{\lambda} \in \ker(T)$. Then

$$0 = T(\sum_{\sigma} \alpha_{\sigma} \sigma a_{\lambda}) = \sum_{\sigma} \alpha_{\sigma} \{\sigma S\}.$$

Since M^{λ} is a free \mathbb{C} -module, it follows that $\sum_{\sigma} \alpha_{\sigma} \sigma = 0$. Lastly, if $\sigma, \gamma \in S_n$, then

$$\sigma T(\gamma a_{\lambda}) = \sigma \{\gamma S\} = \{\sigma \gamma S\} = T(\sigma \gamma s_{\lambda}).$$

Claim. The map T restricted to the submodule $\mathbb{C}[S_n]b_{\lambda}a_{\lambda}$ gives a $\mathbb{C}[S_n]$ -module isomorphism $\mathbb{C}[S_n]b_{\lambda}a_{\lambda}\cong S^{\lambda}$.

Proof of Claim. For $\sigma \in S_n$, we compute

$$T(\sigma b_{\lambda} a_{\lambda}) = \sum_{\tau \in C_{\mathcal{S}}} \operatorname{sgn}(\tau) T(\sigma \tau a_{\lambda}) = \sum_{\tau \in C_{\mathcal{S}}} \operatorname{sgn}(\tau) \{ \sigma \tau \mathcal{S} \}$$
$$= \sigma \sum_{\tau \in C_{\mathcal{S}}} \operatorname{sgn}(\tau) \{ \tau \mathcal{S} \} = \sigma e_{\mathcal{S}} = e_{\sigma \mathcal{S}}$$

Since S_n acts transitively on λ -tableaux, it follows that

$$T(\mathbb{C}[S_n]b_{\lambda}a_{\lambda}) = \operatorname{Span}_{\mathbb{C}}\{e_{\sigma S} : \sigma \in S_n\} = S^{\lambda}$$

By the proof of the previous claim, T is injective and intertwines the action of S_n , whence $T|_{\mathbb{C}[S_n]b_\lambda a_\lambda}$ furnishes an isomorphism of $\mathbb{C}[S_n]$ -modules as desired.

Proposition 2.3.1. Set $A = \mathbb{C}[S_n]$, so $V_{\lambda} = Aa_{\lambda}b_{\lambda} = Ac_{\lambda}$.

- 1. $V_{\lambda} \cong Ab_{\lambda}a_{\lambda}$.
- 2. V_{λ} is the image of the map from Aa_{λ} to Ab_{λ} given by right multiplication by b_{λ} .

2.4 Results on Specht Modules

Having obtained a few examples of Specht modules, we now show that $\{S^{\lambda} : \lambda \vdash n\}$ forms a complete set of non-isomorphic, irreducible representations of S_n . This is established by the combining the following three theorems.

Theorem 2.4.1. Given $\lambda \vdash n$, the Specht module S^{λ} is irreducible as a $\mathbb{C}[S_n]$ -module (i.e. an irreducible representation of S_n).

Theorem 2.4.2. If $\lambda, \mu \vdash n$ and $\lambda \neq \mu$, then $S^{\lambda} \ncong S^{\mu}$ as $\mathbb{C}[S_n]$ -modules.

Theorem 2.4.3. Every irreducible representation of S_n is ismorphic to S^{λ} for some $\lambda \vdash n$.

3 Representations of GL(V)

3.1 Schur Functors

Recall the

References

[FH91] William Fulton and Joe Harris. Representation theory. Vol. 129. Graduate Texts in Mathematics. A first course, Readings in Mathematics. Springer-Verlag, New York, 1991, pp. xvi+551.