Classification non hiérarchiques (centres mobiles)

Cours 5

Introduction

 L'algorithme des centres mobiles vise à classer une population en k classes. Cela se fait de manière automatique ; il n'y a pas de lien hiérarchique dans les regroupements contrairement à l'algorithme CAH. Il est le mieux adapté aux très grands tableaux de données.

Méthode des centres mobiles

- Partition en k classes
- Avantages : Permettent la classification d'ensembles volumineux.
- Inconvénients : On impose au départ le nombre de classes.

Méthode des centres mobiles

- **1ère étape** : choix de centres c_i et partition associée (les c_i sont choisis au hasard).
 - La classe E_{ci} est formée de tous les points plus proches de c_i que de tout autre centre.
- 2ème étape : calcul des centres de gravité de chaque classe
 - → définition d'une nouvelle partition.
- Itération de la 2ème étape jusqu'à la stabilité des classes.

Méthode des centres mobiles

Exemple:

Etape 0

Choix des centres c_1 c_2

Etape 1

Constitution de classes autour des centres c_1 et c_2 Classe 1 : points plus proches de c_1 que de c_2 Classe 2 : points plus proches de c_2 que de c_1

Exemple:

Etape 2

Calcul des centres de gravité des 2 classes formées à l'étape 1 g₁ g₂

Définition de nouvelles classes autour des centres de gravité

Etape 3

Calcul des centres de gravité des classes formées à l'étape 2. Nouvelle définition des classes autour de ces centres → STABILITE

Conclusion

- La classification des individus dépend du choix des centres initiaux. Plusieurs méthodes existent pour choisir judicieusement ces centres.
- L'expérience montre que le nombre d'itérations nécessaires est en général faible.