Composite scores

2024-08-15

```
knitr::opts chunk$set(echo = TRUE)
library(readx1)
library(tidyr)
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.2.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.2.3
library(gt)
data1 <- read excel("/Users/hamid/Documents/UC Berkeley/URAP/Garden</pre>
Questionnaire Dataset/GardenQues/Separate.xlsx")
## New names:
## • `` -> `...413`
## • `` -> `...414`
## • `` -> `...415`
## • `` -> `...416`
# Using binary columns to generate a score
month_columns <- data1[, c("16. January", "16. February", "16. March", "16.
April",
                            "16. May", "16. June", "16. July", "16. August",
                            "16. September", "16. October", "16. November",
"16. December")]
# Compute the Lean Month Count
data1$Lean Month Count <- rowSums(month columns, na.rm = TRUE)</pre>
# Compute the Lean Month Score
```

```
data1$Lean Month Score <- ifelse(data1$`No Lean Months` == 1, 12, 12 -</pre>
data1$Lean Month Count)
# Create the Food Security score
data1 <- data1 %>%
  mutate(
    Food Security score = (Lean Month Score / 3) +
      (`HFIAS Inverse Score` * 4 / 21) +
      ifelse(`30. Do you grow vegetables?` == "Yes", 1, 0)
  )
control_group <- data1 %>% filter(`Household # (Code)` < 200)</pre>
target_group <- data1 %>% filter(`Household # (Code)` >= 200)
# Define the control and target groups
control group fs <- data1 %>% filter(`Household # (Code)` < 200)</pre>
target group fs <- data1 %>% filter(`Household # (Code)` >= 200)
# Add group labels to the dataset
control_group_fs <- control_group_fs %>% mutate(Group_FS = "Control")
target_group_fs <- target_group_fs %>% mutate(Group_FS = "Target")
# Combine the datasets
combined data fs <- bind rows(control group fs, target group fs)
# Plot the combined density plot with mean and median lines
ggplot(combined_data_fs, aes(x = Food_Security_score, color = Group_FS)) +
  geom_density(size = 1, trim=TRUE) +
  scale color manual(values = c("Control" = "#D2B48C", "Target" = "#FFA07A"))
+ # Consistent colors
  labs(title = "Food Security Score by Group",
       x = "Food Security Score",
       y = "Density") +
  theme_minimal() +
  geom vline(aes(xintercept = mean(Food Security score[Group FS ==
"Control"], na.rm = TRUE),
                 color = "Control"), linetype = "dashed", size = 1) +
  geom vline(aes(xintercept = median(Food Security score[Group FS ==
"Control"], na.rm = TRUE),
                 color = "Control"), linetype = "solid", size = 1) +
  geom vline(aes(xintercept = mean(Food Security score[Group FS == "Target"],
na.rm = TRUE),
                 color = "Target"), linetype = "dashed", size = 1) +
  geom vline(aes(xintercept = median(Food Security score[Group FS ==
"Target"], na.rm = TRUE),
                 color = "Target"), linetype = "solid", size = 1) +
  scale x continuous(limits = c(0, 10))
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
```

Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.

Food Security Score by Group


```
# Function to calculate quartiles and other statistics
calculate quartiles <- function(data, variable) {</pre>
  data %>%
    summarise(
      Min = min(!!sym(variable), na.rm = TRUE),
      Lower_Quartile = quantile(!!sym(variable), 0.25, na.rm = TRUE),
      Median = median(!!sym(variable), na.rm = TRUE),
      Third_Quartile = quantile(!!sym(variable), 0.75, na.rm = TRUE),
      Max = max(!!sym(variable), na.rm = TRUE),
      Mean = mean(!!sym(variable), na.rm = TRUE),
      SD = sd(!!sym(variable), na.rm = TRUE)
}
# Calculate statistics for total group
total_stats <- calculate_quartiles(data1, "Food_Security_score") %>%
  mutate(Group = "Total")
# Calculate statistics for control group
control_stats <- calculate_quartiles(control_group_fs, "Food_Security_score")</pre>
```

```
%>%
  mutate(Group = "Control")
# Calculate statistics for target group
target_stats <- calculate_quartiles(target_group_fs, "Food_Security_score")</pre>
%>%
  mutate(Group = "Target")
# Combine all statistics into one table
quartile_table <- bind_rows(total_stats, control_stats, target_stats)</pre>
# Reorder columns to have Group first
quartile table <- quartile table %>% select(Group, everything())
# Create a well-formatted table using gt
quartile table gt <- quartile table %>%
  gt() %>%
 tab_header(
   title = "Food Security Score Summary Statistics",
    subtitle = "Descriptive statistics for Total, Control, and Target groups"
  ) %>%
  cols label(
    Group = "Group",
   Min = "Minimum",
   Lower Quartile = "Lower Quartile",
   Median = "Median",
   Third_Quartile = "Upper Quartile",
   Max = "Maximum",
   Mean = "Mean",
    SD = "Standard Deviation"
  ) %>%
  fmt number(
    columns = vars(Min, Lower Quartile, Median, Third Quartile, Max, Mean,
SD),
    decimals = 2
  ) %>%
  tab_style(
    style = cell_borders(
      sides = c("top", "bottom"),
      color = "black",
     weight = px(1)
    ),
   locations = cells title(groups = c("title", "subtitle"))
  ) %>%
  tab style(
    style = cell_borders(
     sides = "all",
      color = "gray",
     weight = px(1)
```

```
locations = cells body()
  ) %>%
  tab style(
    style = cell text(weight = "bold"),
    locations = cells_column_labels()
  ) %>%
  tab options(
   table.border.top.color = "black",
   table.border.bottom.color = "black",
   table.font.size = 12,
   heading.align = "center"
  )
## Warning: Since gt v0.3.0, `columns = vars(...)` has been deprecated.
## • Please use `columns = c(...)` instead.
# Print the formatted gt table
quartile_table_gt
```

Table 1: Food Security Score Summary Statistics Descriptive statistics for Total, Control, and Target groups

Group	Minimum	Lower Quartile	Median	Upper Quartile	Maximum	Mean	Standard Deviation
Total	2.05	5.93	7.10	7.76	9.00	6.80	1.49
Control	2.05	4.45	5.38	6.13	9.00	5.37	1.43
Target	4.86	6.95	7.33	8.07	9.00	7.52	0.89

```
#health and nutrition score generation
data1 <- data1 %>%
  mutate(
    Health and nutrition score = (`MDDW Score` * 4 / 5) *
      ifelse(`15. How many meals a day does the family usually eat?` == "2
Meals", 1,
             ifelse(`15. How many meals a day does the family usually eat?`
%in% c("3 Meals", "4 Meals"), 1.25, NA))
  )
# Define the control and target groups
control_group_hn <- data1 %>% filter(`Household # (Code)` < 200)</pre>
target_group_hn <- data1 %>% filter(`Household # (Code)` >= 200)
# Add group labels to the dataset
control group hn <- control group hn %>% mutate(Group HN = "Control")
target group hn <- target group hn %>% mutate(Group HN = "Target")
# Combine the datasets
combined data hn <- bind rows(control group hn, target group hn)
# Plot the combined density plot with mean and median lines
ggplot(combined data hn, aes(x = Health and nutrition score, color =
```

```
Group HN)) +
  geom density(size = 1, trim=TRUE) +
  scale_color_manual(values = c("Control" = "#D2B48C", "Target" = "#FFA07A"))
+ # Consistent colors
  labs(title = "Nutrition Score by Group",
       x = "Health and Nutrition Score",
       y = "Density") +
  theme minimal() +
  geom_vline(aes(xintercept = mean(Health_and_nutrition_score[Group_HN ==
"Control"], na.rm = TRUE),
                 color = "Control"), linetype = "dashed", size = 1) +
  geom vline(aes(xintercept = median(Health and nutrition score[Group HN ==
"Control"], na.rm = TRUE),
                 color = "Control"), linetype = "solid", size = 1) +
  geom_vline(aes(xintercept = mean(Health_and_nutrition_score[Group_HN ==
"Target"], na.rm = TRUE),
                 color = "Target"), linetype = "dashed", size = 1) +
  geom vline(aes(xintercept = median(Health and nutrition score[Group HN ==
"Target"], na.rm = TRUE),
                 color = "Target"), linetype = "solid", size = 1) +
  scale_x continuous(limits = c(0, 10))
```

Nutrition Score by Group


```
# Calculate statistics for total group
total stats health nutrition <- calculate quartiles(data1,
"Health_and_nutrition_score") %>%
  mutate(Group = "Total")
# Calculate statistics for control group
control_stats_health_nutrition <- calculate_quartiles(control_group_hn,</pre>
"Health and nutrition score") %>%
  mutate(Group = "Control")
# Calculate statistics for target group
target stats health nutrition <- calculate quartiles(target group hn,
"Health_and_nutrition_score") %>%
  mutate(Group = "Target")
# Combine all statistics into one table
quartile_table_health_nutrition <- bind_rows(total_stats_health_nutrition,
control_stats_health_nutrition, target_stats_health_nutrition)
# Reorder columns to have Group first
quartile_table_health_nutrition <- quartile_table_health_nutrition %>%
select(Group, everything())
# Create a well-formatted table using gt
quartile table health nutrition gt <- quartile table health nutrition %>%
  gt() %>%
  tab header(
   title = "Health and Nutrition Score Summary Statistics",
    subtitle = "Descriptive statistics for Total, Control, and Target groups"
  ) %>%
  cols_label(
    Group = "Group",
   Min = "Minimum",
   Lower_Quartile = "Lower Quartile".
   Median = "Median",
   Third_Quartile = "Upper Quartile",
   Max = "Maximum",
   Mean = "Mean",
    SD = "Standard Deviation"
  ) %>%
  fmt number(
    columns = vars(Min, Lower_Quartile, Median, Third_Quartile, Max, Mean,
SD),
    decimals = 2
  ) %>%
  tab style(
    style = cell borders(
      sides = c("top", "bottom"),
     color = "black",
```

```
weight = px(1)
    ),
    locations = cells_title(groups = c("title", "subtitle"))
  ) %>%
  tab_style(
    style = cell_borders(
     sides = "all",
      color = "gray",
     weight = px(1)
    ),
    locations = cells body()
  ) %>%
  tab_style(
    style = cell_text(weight = "bold"),
    locations = cells_column_labels()
  ) %>%
  tab_options(
   table.border.top.color = "black",
   table.border.bottom.color = "black",
   table.font.size = 12,
    heading.align = "center"
  )
## Warning: Since gt v0.3.0, `columns = vars(...)` has been deprecated.
## • Please use `columns = c(...)` instead.
# Print the formatted at table
quartile_table_health_nutrition_gt
```

Table 2: Health and Nutrition Score Summary Statistics

Group	Minimum	Lower Quartile	Median	Upper Quartile	Maximum	Mean	Standard Deviation
Total	2.40	5.00	6.00	7.00	9.00	5.75	1.32
Control	2.40	4.00	5.30	6.00	9.00	5.12	1.41
Target	4.00	5.00	6.00	7.00	9.00	6.06	1.16

```
# Part 3: Illness score (8 if "No Illness", otherwise 8 minus sum of
illnesses, divided by 2)
illness score = ifelse(`No Illness` == 1, 8,
                           (8 - rowSums(select(., `Malaria`, `Respiratory
diseases/cough`, `Diarrheal diseases`, `Tuberculosis`,
                                                `HIV-AIDS`, `Cholera`,
`Chronic (diabetes, heart disease, cancer, hypertension/blood pressure)`,
                                               `Ulcers`), na.rm =
TRUE)))*0.5,
    # Part 4: Income sources (divided by 3)
    income_sources_score = rowSums(select(.,
                                           65. Sales of vegetables from my
garden`, `65. Farm sales - food`,
                                          `65. Farm sales - commercial`, `65.
Farm sales - animals`.
                                          `65. Small business`, `65. Day
labor wages`), na.rm = TRUE),
    # Part 5: Vegetable practices (divided by 2)
    vegetable_practice_score = rowSums(select(., `Nursery bed preparation`,
`Transplanting to raised beds`, `Use of compost`,
                                               `Use of natural/botanical
pesticide`, `Mulching`, `Companion/intercropping`,
                                               Seed removal/saving ...
`Rainwater harvesting`), na.rm = TRUE) / 2,
    # Combine all parts to create the resilience score
    resilience_score = water_sources_score + assets_score + illness_score +
income sources score + vegetable practice score
# Define the control and target groups
control_group_resilience <- data1 %>% filter(`Household # (Code)` < 200)</pre>
target_group_resilience <- data1 %>% filter(`Household # (Code)` >= 200)
# Add group labels to the dataset
control group resilience <- control group resilience %>%
mutate(Group_Resilience = "Control")
target_group_resilience <- target_group_resilience %>%
mutate(Group Resilience = "Target")
# Combine the datasets
combined data resilience <- bind rows(control group resilience,
target_group_resilience)
# Plot the combined density plot with mean and median lines
```

```
ggplot(combined data resilience, aes(x = resilience score, color =
Group Resilience)) +
  geom_density(size = 1, trim=TRUE) +
  scale_color_manual(values = c("Control" = "#D2B48C", "Target" = "#FFA07A"))
+ # Consistent colors
  labs(title = "Resilience Score by Group",
       x = "Resilience Score",
       y = "Density") +
  theme_minimal() +
  geom_vline(aes(xintercept = mean(resilience_score[Group_Resilience ==
"Control"], na.rm = TRUE),
                 color = "Control"), linetype = "dashed", size = 1) +
  geom_vline(aes(xintercept = median(resilience_score[Group_Resilience ==
"Control"], na.rm = TRUE),
                 color = "Control"), linetype = "solid", size = 1) +
  geom_vline(aes(xintercept = mean(resilience_score[Group_Resilience ==
"Target"], na.rm = TRUE),
                 color = "Target"), linetype = "dashed", size = 1) +
  geom vline(aes(xintercept = median(resilience score[Group Resilience ==
"Target"], na.rm = TRUE),
                 color = "Target"), linetype = "solid", size = 1) +
scale_x_{continuous}(limits = c(0, 20))
```

Resilience Score by Group


```
# Calculate statistics for total group
total stats resilience <- calculate quartiles(data1, "resilience score") %>%
  mutate(Group = "Total")
# Calculate statistics for control group
control stats resilience <- calculate quartiles(control group resilience,</pre>
"resilience_score") %>%
  mutate(Group = "Control")
# Calculate statistics for target group
target stats resilience <- calculate quartiles(target group resilience,
"resilience score") %>%
  mutate(Group = "Target")
# Combine all statistics into one table
quartile_table_resilience <- bind_rows(total_stats_resilience,</pre>
control_stats_resilience, target_stats_resilience)
# Reorder columns to have Group first
quartile_table_resilience <- quartile_table_resilience %>% select(Group,
everything())
# Create a well-formatted table using gt
quartile table resilience gt <- quartile table resilience %>%
  gt() %>%
  tab_header(
   title = "Resilience Score Summary Statistics",
    subtitle = "Descriptive statistics for Total, Control, and Target groups"
  ) %>%
  cols label(
    Group = "Group",
   Min = "Minimum",
   Lower_Quartile = "Lower Quartile",
   Median = "Median",
   Third_Quartile = "Upper Quartile",
   Max = "Maximum",
   Mean = "Mean",
    SD = "Standard Deviation"
  ) %>%
  fmt number(
    columns = vars(Min, Lower Quartile, Median, Third Quartile, Max, Mean,
SD),
    decimals = 2
  ) %>%
  tab style(
    style = cell borders(
     sides = c("top", "bottom"),
     color = "black",
   weight = px(1)
```

```
locations = cells title(groups = c("title", "subtitle"))
  ) %>%
  tab_style(
    style = cell borders(
      sides = "all",
      color = "gray",
     weight = px(1)
    ),
    locations = cells body()
  ) %>%
  tab style(
    style = cell_text(weight = "bold"),
    locations = cells_column_labels()
  ) %>%
  tab options(
    table.border.top.color = "black",
   table.border.bottom.color = "black",
   table.font.size = 12,
   heading.align = "center"
  )
## Warning: Since gt v0.3.0, `columns = vars(...)` has been deprecated.
## • Please use `columns = c(...)` instead.
# Print the formatted gt table
quartile table resilience gt
```

Table 3: Resilience Score Summary Statistics

Group	Minimum	Lower Quartile	Median	Upper Quartile	Maximum	Mean	Standard Deviation
Total	4.25	7.38	8.56	10.25	13.12	8.75	1.99
Control	4.88	6.28	7.62	8.34	11.00	7.38	1.38
Target	4.25	8.25	9.62	10.78	13.12	9.43	1.90

```
"Alone" \sim 2,
      `4. Do you own farmland either alone or jointly with someone else?` ==
"Jointly" ~ 1,
     TRUE ~ 0
    ),
    # Part 3: Title deed for any land owned
    title deed score = ifelse(`6. Do you have a title deed for any land you
own? == "Yes", 1, 0),
    # Part 4: Name on the title deed
    name on deed score = ifelse(`7. Is your name on the title deed?` ==
"Yes", 1, 0),
    # Part 5: Decision on how to spend the garden income
    decision_on_income_score = case_when(
      `62. Who decides how the garden money is used?` == "I decide on my own
how to spend the garden income" ~ 2,
      `62. Who decides how the garden money is used?` == "I discuss how to
spend it with my husband/partner" ~ 1,
     TRUE ~ 0
    ),
    # Part 6: Confidence to take on new things
    confidence score = case when(
      `81. "I believe in myself and am confident to take on new things"` ==
"Yes, definitely" ~ 2,
     `81. "I believe in myself and am confident to take on new things"` ==
"Yes, somewhat" ~ 1,
     TRUE ~ 0
    ),
    # Part 7: Future goals and dreams
    goals and dreams score = case when(
      `82. "I have a full idea of my future goals and dreams" == "Yes,
definitely" ~ 2,
      `82. "I have a full idea of my future goals and dreams" == "Yes,
somewhat" \sim 1,
     TRUE ~ 0
    ),
    # Part 8: Feeling proud of oneself
    proud_of_self_score = case_when(
      `83. "On the whole, I feel proud of myself" `== "Yes, definitely" ~ 2,
     `83. "On the whole, I feel proud of myself" == "Yes, somewhat" ~ 1,
     TRUE ~ 0
    ),
   # Sum all parts to create the womens empowerment score
```

```
womens empowerment score = (coalesce(house ownership score, 0) +
      coalesce(farmland ownership score, 0) +
      coalesce(title_deed_score, 0) +
      coalesce(name on deed score, 0) +
      coalesce(decision on income score, ∅) +
      coalesce(confidence score, 0) +
      coalesce(goals and dreams score, 0) +
      coalesce(proud of self score, 0))*5/7
  )
# Define the control and target groups
control_group_empowerment <- data1 %>% filter(`Household # (Code)` < 200)</pre>
target_group_empowerment <- data1 %>% filter(`Household # (Code)` >= 200)
# Add group labels to the dataset
control_group_empowerment <- control_group_empowerment %>%
mutate(Group_Empowerment = "Control")
target_group_empowerment <- target_group_empowerment %>%
mutate(Group_Empowerment = "Target")
# Combine the datasets
combined_data_empowerment <- bind_rows(control_group_empowerment,
target_group_empowerment)
# Plot the combined density plot with mean and median lines
ggplot(combined data\ empowerment,\ aes(x = womens\ empowerment\ score,\ color =
Group Empowerment)) +
  geom density(size = 1, trim=TRUE) +
  scale_color_manual(values = c("Control" = "#D2B48C", "Target" = "#FFA07A"))
+ # Consistent colors
  labs(title = "Women's Empowerment Score by Group",
       x = "Women's Empowerment Score",
       y = "Density") +
  theme minimal() +
  geom vline(aes(xintercept = mean(womens empowerment score[Group Empowerment
== "Control"], na.rm = TRUE),
                 color = "Control"), linetype = "dashed", size = 1) +
  geom vline(aes(xintercept =
median(womens_empowerment_score[Group_Empowerment == "Control"], na.rm =
TRUE),
                 color = "Control"), linetype = "solid", size = 1) +
  geom vline(aes(xintercept = mean(womens empowerment score[Group Empowerment
== "Target"], na.rm = TRUE),
                 color = "Target"), linetype = "dashed", size = 1) +
  geom vline(aes(xintercept =
median(womens empowerment score[Group Empowerment == "Target"], na.rm =
TRUE),
```

```
color = "Target"), linetype = "solid", size = 1) +
scale_x_continuous(limits = c(0, 10))
```

Women's Empowerment Score by Group


```
# Calculate statistics for total group
total_stats_women_empowerment <- calculate_quartiles(data1,</pre>
"womens empowerment_score") %>%
  mutate(Group = "Total")
# Calculate statistics for control group
control_stats_women_empowerment <-</pre>
calculate_quartiles(control_group_empowerment, "womens_empowerment_score")
%>%
  mutate(Group = "Control")
# Calculate statistics for target group
target stats women empowerment <-
calculate_quartiles(target_group_empowerment, "womens_empowerment_score") %>%
  mutate(Group = "Target")
# Combine all statistics into one table
quartile table women empowerment <- bind rows(total stats women empowerment,
control_stats_women_empowerment, target_stats_women_empowerment)
```

```
# Reorder columns to have Group first
quartile table women empowerment <- quartile table women empowerment %>%
select(Group, everything())
# Create a well-formatted table using gt
quartile table women empowerment gt <- quartile table women empowerment %>%
  gt() %>%
  tab header(
   title = "Women's Empowerment Score Summary Statistics",
    subtitle = "Descriptive statistics for Total, Control, and Target groups"
  ) %>%
  cols label(
    Group = "Group",
   Min = "Minimum",
   Lower Quartile = "Lower Quartile",
   Median = "Median",
   Third_Quartile = "Upper Quartile",
   Max = "Maximum",
   Mean = "Mean",
   SD = "Standard Deviation"
  ) %>%
  fmt number(
    columns = vars(Min, Lower_Quartile, Median, Third_Quartile, Max, Mean,
SD),
    decimals = 2
  ) %>%
  tab_style(
    style = cell_borders(
      sides = c("top", "bottom"),
      color = "black",
     weight = px(1)
    locations = cells_title(groups = c("title", "subtitle"))
  ) %>%
  tab style(
    style = cell_borders(
      sides = "all",
      color = "gray",
     weight = px(1)
    locations = cells body()
  ) %>%
  tab_style(
    style = cell_text(weight = "bold"),
    locations = cells column labels()
  ) %>%
  tab options(
    table.border.top.color = "black",
   table.border.bottom.color = "black",
 table.font.size = 12,
```

```
heading.align = "center"
)
### Warning: Since gt v0.3.0, `columns = vars(...)` has been deprecated.
## • Please use `columns = c(...)` instead.
# Print the formatted gt table
quartile_table_women_empowerment_gt
```

Table 4: Women's Empowerment Score Summary Statistics

Group	Minimum	Lower Quartile	Median	Upper Quartile	Maximum	Mean	Standard Deviation
Total	0.00	5.00	6.43	7.14	10.00	6.05	1.62
Control	0.00	4.29	5.36	6.43	7.86	5.11	1.83
Target	2.14	5.71	6.43	7.14	10.00	6.51	1.27

```
#combine scores to make a composite score
data1$composite_score = data1$Food_Security_score +
data1$Health_and_nutrition_score + data1$resilience_score +
data1$womens empowerment score
# Define the control and target groups
control_group_compositescore <- data1 %>% filter(`Household # (Code)` < 200)</pre>
target_group_compositescore <- data1 %>% filter(`Household # (Code)` >= 200)
# Add group labels to the dataset
control group compositescore <- control group compositescore %>% mutate(Group
= "Control")
target_group_compositescore <- target_group_compositescore %>% mutate(Group =
"Target")
# Combine the datasets
combined_data_compositescore <- bind_rows(control_group_compositescore,</pre>
target_group_compositescore)
# Plot the combined density plot with mean and median lines
ggplot(combined data compositescore, aes(x = composite score, color = Group))
  geom_density(size = 1, trim=TRUE) +
  scale_color_manual(values = c("Control" = "#D2B48C", "Target" = "#FFA07A"))
+ # Consistent colors
  labs(title = "Composite Score by Group",
       x = "Composite Score",
      y = "Density") +
  theme minimal() +
  geom_vline(aes(xintercept = mean(composite_score[Group == "Control"], na.rm
= TRUE),
                 color = "Control"), linetype = "dashed", size = 1) +
  geom vline(aes(xintercept = median(composite score[Group == "Control"],
na.rm = TRUE),
```

Composite Score by Group


```
# Calculate statistics for total group
total_stats_composite <- calculate_quartiles(data1, "composite_score") %>%
    mutate(Group = "Total")

# Calculate statistics for control group
control_stats_compositescore <-
calculate_quartiles(control_group_compositescore, "composite_score") %>%
    mutate(Group = "Control")

# Calculate statistics for target group
target_stats_compositescore <-
calculate_quartiles(target_group_compositescore, "composite_score") %>%
    mutate(Group = "Target")
```

```
# Combine all statistics into one table
quartile table composite <- bind rows(total stats composite,
control_stats_compositescore, target_stats_compositescore)
# Reorder columns to have Group first
quartile table composite <- quartile table composite %>% select(Group,
everything())
# Create a well-formatted table using at
quartile_table_composite_gt <- quartile_table_composite %>%
  gt() %>%
  tab_header(
   title = "Composite Score Summary Statistics",
    subtitle = "Descriptive statistics for Total, Control, and Target groups"
  ) %>%
  cols_label(
    Group = "Group",
   Min = "Minimum",
   Lower_Quartile = "Lower Quartile",
   Median = "Median",
   Third_Quartile = "Upper Quartile",
   Max = "Maximum",
   Mean = "Mean",
   SD = "Standard Deviation"
  ) %>%
  fmt number(
    columns = vars(Min, Lower Quartile, Median, Third Quartile, Max, Mean,
SD),
    decimals = 2
  ) %>%
  tab_style(
    style = cell_borders(
      sides = c("top", "bottom"),
      color = "black",
     weight = px(1)
    ),
   locations = cells_title(groups = c("title", "subtitle"))
  ) %>%
  tab style(
    style = cell borders(
      sides = "all",
     color = "gray",
     weight = px(1)
    ),
    locations = cells_body()
  ) %>%
  tab_style(
    style = cell_text(weight = "bold"),
   locations = cells column labels()
  ) %>%
```

```
tab_options(
   table.border.top.color = "black",
   table.border.bottom.color = "black",
   table.font.size = 12,
   heading.align = "center"
)

## Warning: Since gt v0.3.0, `columns = vars(...)` has been deprecated.

## • Please use `columns = c(...)` instead.

# Print the formatted gt table
quartile_table_composite_gt
```

Table 5: Composite Score Summary Statistics

Group	Minimum	Lower Quartile	Median	Upper Quartile	Maximum	Mean	Standard Deviation
Total	10.42	24.33	27.80	30.56	37.75	27.34	4.94
Control	10.42	20.23	23.30	26.00	33.86	22.97	4.43
Target	17.81	26.87	29.37	32.35	37.75	29.52	3.53

```
# Define the function to calculate the statistics for each score
calculate_statistics <- function(target_group, control_group, score) {</pre>
  target values <- target group[[score]]</pre>
  control_values <- control_group[[score]]</pre>
  # Remove NAs
  target values <- target values[!is.na(target values)]</pre>
  control values <- control values[!is.na(control values)]</pre>
  # Calculate means and standard deviations
  target_mean <- mean(target_values)</pre>
  target sd <- sd(target values)</pre>
  control_mean <- mean(control_values)</pre>
  control_sd <- sd(control_values)</pre>
  # Perform t-test
  t_test <- t.test(target_values, control_values, var.equal = TRUE)</pre>
  # Mean difference, t-statistic, and p-value
  mean_diff <- target_mean - control_mean</pre>
  t stat <- t test$statistic
  p_value <- t_test$p.value</pre>
  return(data.frame(
    Score = score,
    Target_Mean = target_mean,
    Target_SD = target_sd,
    Control Mean = control mean,
    Control_SD = control_sd,
```

```
Mean Difference = mean diff,
    T_Statistic = t_stat,
    P_Value = p_value
 ))
}
# Define the control and target groups
control_group <- data1 %>% filter(`Household # (Code)` < 200)</pre>
target group <- data1 %>% filter(`Household # (Code)` >= 200)
# List of scores to compare
scores <- c("Food_Security_score", "Health_and_nutrition_score",</pre>
"resilience_score", "womens_empowerment_score", "composite_score")
# Initialize an empty data frame to store the results
results_table <- data.frame()</pre>
# Loop through each score and calculate the statistics
for (score in scores) {
  stats <- calculate_statistics(target_group, control_group, score)</pre>
  results_table <- bind_rows(results_table, stats)</pre>
}
# Create a well-formatted table using gt
results_table_gt <- results_table %>%
  gt() %>%
  tab_header(
    title = "Comparison of Scores between Target and Control Groups",
    subtitle = "Mean, Standard Deviation, and T-Test Results"
  ) %>%
  cols_label(
    Score = "Score",
    Target_Mean = "Target Mean",
    Target_SD = "Target SD",
    Control_Mean = "Control Mean",
    Control_SD = "Control SD",
    Mean_Difference = "Mean Difference",
    T_Statistic = "T-Statistic",
    P Value = "P-Value"
  ) %>%
  fmt number(
    columns = vars(Target_Mean, Target_SD, Control_Mean, Control_SD,
Mean_Difference, T_Statistic, P_Value),
    decimals = 2
  ) %>%
  tab style(
    style = cell borders(
      sides = c("top", "bottom"),
     color = "black",
```

```
weight = px(1)
    ),
    locations = cells_title(groups = c("title", "subtitle"))
  ) %>%
  tab_style(
    style = cell_borders(
     sides = "all",
      color = "gray",
      weight = px(1)
    ),
   locations = cells_body()
  ) %>%
  tab_style(
    style = cell_text(weight = "bold"),
    locations = cells_column_labels()
  ) %>%
  tab_options(
   table.border.top.color = "black",
   table.border.bottom.color = "black",
   table.font.size = 12,
   heading.align = "center"
  ) %>%
  tab_style(
    style = cell text(color = "red"),
   locations = cells_body(columns = vars(P_Value), rows = P_Value < 0.05)</pre>
  )
## Warning: Since gt v0.3.0, `columns = vars(...)` has been deprecated.
## • Please use `columns = c(...)` instead.
## Since gt v0.3.0, `columns = vars(...)` has been deprecated.
## • Please use `columns = c(...)` instead.
# Print the formatted qt table
results_table_gt
```

Table 6: Comparison of Scores between Target and Control Groups Mean, Standard Deviation, and T-Test Results

Score	Target Mean	Target SD	Control Mean	Control SD	Mean Difference	T- Statistic	P- Value
Food_Security_score	7.52	0.89	5.37	1.43	2.15	11.29	0.00
Health_and_nutrition_score	6.06	1.16	5.12	1.41	0.94	4.36	0.00
resilience_score	9.43	1.90	7.38	1.38	2.06	6.82	0.00
womens_empowerment_score	6.51	1.27	5.11	1.83	1.40	5.46	0.00
composite_score	29.52	3.53	22.97	4.43	6.55	9.82	0.00