Characteristic classes

A characteristic doss for real or complex vector bundles (or for real toph. rec. bundler of rank k) assigns to each such $E \to B$ a coh. class $c(E) \in H^+(B;R)$, some R, may depend on c. (only depends on iso. class of E B) which is norther in E in the sense that: f $f:A \to B$ controls one, we get a pullback bundle f^*E , and $c(f^*E) = f^*(c(E))$.

A $f^*(A;R)$ $f^*: H^*(B;R) \to H^*(A;R)$.

By the existence of classifying mys for vector hindles, such a class c is determined on all $E \rightarrow B$ by knowing

•(if complex rank k bundley)
$$\hat{C} := c\left(E_{fact}^{k,C}\right) \in H^{\bullet}(Bu(k);R) = H^{\bullet}(G_{k}(\mathbb{C}^{\infty});R)$$
.

Bu(k)

(for any other E , $E=f^{*}E_{fact}$ for some $f:B\to Bu(k)$ unique up to homotopy, so instructly faces $c(E):=f^{*}\hat{C}$.)

• (if real rank k bandles)
$$\hat{C} := C(E^{k,R}) \in H^{*}(BO(k);R) = H^{*}(G_{k}(R^{so});R)$$
.

Obs: If $E \ni B$ is tann, then $E \equiv p^{*}R^{k}$ (or $p^{*}C^{k}$ if cplk. case) when $p : B \Rightarrow pt$
 $\Rightarrow C(E) = p^{*}(C(R^{k}))$ is hard, in some that it's either O or a non-zero multiple of unit in H° .

We conclude if $c(E)$ is not taund in each a sense $H^{\circ}(pt) = \begin{cases} R & \text{deg } O \\ O & \text{otherwise} \end{cases}$.

Cres non-zero in some degree TO , then $TO(R^{so}) = TO(R^{so})$.

 $TO(R^{so}) = TO(R^{so}) = TO(R^{so})$.

First examples:

(1) The first Strefel-Whitney dass of a real line bundle $L \longrightarrow X$ (gives a class $w_{2}(L) \in H^{2}(X; \mathbb{Z}/2)$):

In $BO(2) = G_{2}(\mathbb{R}^{\infty}) = \mathbb{RP}^{\infty}$, there exists a unique non-zero element $h \in H^{2}(\mathbb{RP}^{\infty}; \mathbb{Z}/2) \cong \mathbb{Z}/2$.

Define $w_{2}(L) = H^{\infty}(\mathbb{RP}^{\infty}; \mathbb{Z}/2) \cong \mathbb{Z}/2$.

There was $L \to X$ classify by $X^{\frac{1}{2}} = H^{\infty}(I_{10}, L = f^{*}L_{but})$, we get a definition $W_{2}(L) := f^{*}(h) \in H^{2}(X; \mathbb{Z}/2) \xrightarrow{C} H^{\infty}(H_{1}(X; \mathbb{Z}), \mathbb{Z}/2) = H^{\infty}(\pi_{1}(X), \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ Therefore $H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2) = H^{2}(X; \mathbb{Z}/2)$ The

(2) The first them class of a complex line bundle L -> X (gues a class Cx(L) & H2(X; Z)):

In $BU(1) = G_1(\mathbb{C}^{\infty}) = \mathbb{CP}^{\infty}$, note $H^{\bullet}(\mathbb{CP}^{\infty}; \mathbb{Z}) \cong \mathbb{Z}[h]$ with |h|=2 and is particular $H^{2}(\mathbb{CP}^{\infty}) \cong \mathbb{Z}$.

We want to declare $G_1(L_{tot}) = a$ generate of $H^2(\mathbb{CP}^\infty)$, but which are? (two chooses, so far h is only defined as a choice of generate of H^2). The choice is a converter, but we need to fix are.

We'll use the following facts to fix an iso. $H^2(\mathbb{CP}^{\infty}; \mathbb{Z}) \cong \mathbb{Z}$.

· a complex vector space \/ @ Of finite denension has a comment onertition when thought of us a rect vector space:

Namely if v1, -, vn is a basis over C declare "complex-overteten" of V/p to be overteten induced by (v1, iv1, v2, iv2, --, vn, ivn).

obs: If sump vs & v2, in real and basis show need to sump (vs, ivs) -/ (v4, iv2) ~> everteten induced by some overteten.

· More gently, since GL(n,C) is converted, the large $GL(n,C) \longrightarrow GL(2n,R)$ lands in a converted composent of GL(2n)R, i.e., $GL(2n,R)^{\frac{1}{2}}$. [b/k it contains Id).

• In particular, complex unaufolds to comy conserved mentates of their target budle TM (thought of as a real bundle). - pick the explex eventation for every Total; ransmil.

Ore real dim. 2n.

To particular, for a opel. complex manifold, using equalence between homology overtators of an extens of its (consisted, but proved in many places), rededuce I a construct fundamental class.

(Q) GHzn (Q; Z).

- · So I a caronical [CP] = H2 (CP1; Z) & CP2 -> CP0, a caronical generation [CP2] = H2 (CP0; Z)
- · Defrie heH2 (CPD; Z) to be the generator with <h, [CP] > = +1.

Declare $c_{\underline{s}}(\frac{1}{2}):=-h$ where his the canonal generator above.

 \Rightarrow gives a defin for any \downarrow classified by $f: X \to \mathbb{C}P^{\infty}$ (so $f^*L_{fact} \cong L$), as: $c_{\perp}(L) := f^{+}(-h) \in H^{2}(X; \mathbb{Z}),$

Lenna: L2, L2 -> × colx. line budles, then $c_1(L_1 \otimes L_2) = c_2(L_1) + c_1(L_2) \in H^{2}(X; \mathbb{Z})$ (and some lemma holds for we in case of ead line budles of some proof; replace Cp by RP, etc.)

```
Pf: Say fi: X→ CP classifies Li (so fi*Ltut = Li) i=1,2.
       B define F= (fi, fz): X → CP × CP ,
           Let ni: CIP™ × CIP™ → CIP™ projected to ith factor, i=1,2, &
      set Litat: = π; Ltat -> Cpox Cpox Cpox (Rnly: For ay F F EQF:=(π, E) ω(η, F))

Obs: Li⊗L2 = F*(Ltat ⊗ Ltat  Ltat 
                   ( why? F*(Ltout) = F*(Ltout) @ F*(Lztout)
                                                                                                     = ((f, f2)* 11, * Ltant) @ ((f, f2)* 12 Ltant)
                                                                                                      = (f, * Ltat) & (f2 Ltat)
                                                                                                        = L,00/2.
     In CIPOx CIPO, we know H' (CIPOx CIPO; Z) = Z[h, hz], [h, l=/hz] = 2
Künneth.
                                                                                                                                                                   h_1 := \pi_1^* h, h_2 := \pi_2^* h, h consider
      which in degree Z is Z<hi>> 0 Z<hi>2.
                                                                                                                                                                             elevent as above.
  Claim: Co ( Litart & Litart) = -h, -h2.
If fre, then by Obs: c,(L,Ob2) = G(F*(L,tatol;tat)) = F*(-h,-h2)
                                              = (f_1 f_2)^* (\pi_1^* (-h) + \pi_2^* (-h)) = f_2^* (-h) + f_2^* (-h) = c_1 (h_1) + c_1 (h_2)_-
                                                                                                                                                                                                       so we'd be done.
Pf of claim: know c, (Ltat & Lztat) = ah, + bhz; need to pin dam a & b.
                           along Cpoxpt is Cpox Cpo:
                                    int Ltant = C & is litt = Lynn, so is ( Litet o Litet) = Ltant,
           and it: H2(CIP "x CIP") -> H2(CIP").
                              ix ca ( Ltat & Lztat) = ix (ah, +bh2) = ah
                                                                                                                                    \hat{j} \quad a = -1.
                                        cy (is ( Ltack @ (2 tack)) = cy ( Ltack) = - h.
     similarly, restainty along pt × (p) = (p) (p) k (p) b company >> b=-1 as desired = 1.
```

(More garlly, 7 K(A,n), & desses & & H"(K(A;n); A),

sit. [X, K(A,n]] >> H'(X; A) paper topic!)

(f) + >> f* & . >>

(cs rentioned in the list set of lecture notes).