Neural networks

Sparse coding - definition

UNSUPERVISED LEARNING

Topics: unsupervised learning

- Unsupervised learning: only use the inputs $\mathbf{x}^{(t)}$ for learning
 - automatically extract meaningful features for your data
 - leverage the availability of unlabeled data
 - add a data-dependent regularizer to trainings

- We will see 3 neural networks for unsupervised learning
 - restricted Boltzmann machines
 - autoencoders
 - sparse coding model

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangleright we can reconstruct the original input $\mathbf{x}^{(t)}$ as well as possible
- More formally:

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}||_{2}^{2} + \lambda ||\mathbf{h}^{(t)}||_{1}$$

- we also constrain the columns of **D** to be of norm I
 - otherwise, ${f D}$ could grow big while ${f h}^{(t)}$ becomes small to satisfy the prior
- > sometimes the columns are constrained to be no greater than I

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangleright we can reconstruct the original input ${f x}^{(t)}$ as well as possible
- More formally: reconstruction error

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}||_{2}^{2} + \lambda ||\mathbf{h}^{(t)}||_{1}$$

- we also constrain the columns of **D** to be of norm I
 - otherwise, ${f D}$ could grow big while ${f h}^{(t)}$ becomes small to satisfy the prior
- > sometimes the columns are constrained to be no greater than I

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangleright we can reconstruct the original input ${f x}^{(t)}$ as well as possible
- More formally: reconstruction error

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}^{(t)}||_{2}^{2} + \lambda ||\mathbf{h}^{(t)}||_{1}$$
reconstruction $\widehat{\mathbf{x}}^{(t)}$

- we also constrain the columns of **D** to be of norm I
 - otherwise, ${f D}$ could grow big while ${f h}^{(t)}$ becomes small to satisfy the prior
- > sometimes the columns are constrained to be no greater than I

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangleright we can reconstruct the original input ${f x}^{(t)}$ as well as possible
- More formally: reconstruction error sparsity penalty $\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$ reconstruction $\widehat{\mathbf{x}}^{(t)}$
 - ightharpoonup we also constrain the columns of ${f D}$ to be of norm ${f I}$
 - otherwise, ${f D}$ could grow big while ${f h}^{(t)}$ becomes small to satisfy the prior
 - > sometimes the columns are constrained to be no greater than I

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - we can reconstruct the original input $\mathbf{x}^{(t)}$ as well as possible
- More formally: reconstruction error sparsity penalty $\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$ reconstruction version sparsity control
 - we also constrain the columns of **D** to be of norm I
 - otherwise, ${f D}$ could grow big while ${f h}^{(t)}$ becomes small to satisfy the prior
 - > sometimes the columns are constrained to be no greater than I

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangleright we can reconstruct the original input $\mathbf{x}^{(t)}$ as well as possible
- More formally: reconstruction error sparsity penalty $\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$ reconstruction version sparsity control
 - D is equivalent to the autoencoder output weight matrix
 - ightharpoonup however, $\mathbf{h}(\mathbf{x}^{(t)})$ is now a complicated function of $\mathbf{x}^{(t)}$
 - encoder is the minimization $\mathbf{h}(\mathbf{x}^{(t)}) = \arg\min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$

Topics: dictionary

• Can also write $\widehat{\mathbf{x}}^{(t)} = \mathbf{D} \ \mathbf{h}(\mathbf{x}^{(t)}) = \sum_{\substack{k \text{ s.t.} \\ h(\mathbf{x}^{(t)})_k \neq 0}} \mathbf{D}_{\cdot,k} \ h(\mathbf{x}^{(t)})_k$

- we also refer to **D** as the dictionary
 - in certain applications, we know what dictionary matrix to use
 - often however, we have to learn it

Topics: dictionary

• Can also write $\widehat{\mathbf{x}}^{(t)} = \mathbf{D} \ \mathbf{h}(\mathbf{x}^{(t)}) = \sum_{\substack{k \text{ s.t.} \\ h(\mathbf{x}^{(t)})_k \neq 0}} \mathbf{D}_{\cdot,k} \ h(\mathbf{x}^{(t)})_k$

- we also refer to **D** as the dictionary
 - in certain applications, we know what dictionary matrix to use
 - often however, we have to learn it

Topics: dictionary

• Can also write $\widehat{\mathbf{x}}^{(t)} = \mathbf{D} \ \mathbf{h}(\mathbf{x}^{(t)}) = \sum_{\substack{k \text{ s.t.} \\ h(\mathbf{x}^{(t)})_k \neq 0}} \mathbf{D}_{\cdot,k} \ h(\mathbf{x}^{(t)})_k$

- we also refer to **D** as the dictionary
 - in certain applications, we know what dictionary matrix to use
 - often however, we have to learn it

Neural networks

Sparse coding - inference (ISTA algorithm)

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangle we can reconstruct the original input ${f x}^{(t)}$ as much as possible
- More formally: reconstruction error sparsity penalty $\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$ reconstruction version sparsity control
 - ▶ **D** is equivalent to the autoencoder output weight matrix
 - lacktriangle however, $\mathbf{h}(\mathbf{x}^{(t)})$ is now a complicated function of $\mathbf{x}^{(t)}$
 - encoder is the minimization $\mathbf{h}(\mathbf{x}^{(t)}) = \arg\min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$

Topics: inference of sparse codes

- Given \mathbf{D} , how do we compute $\mathbf{h}(\mathbf{x}^{(t)})$
 - we want to optimize $l(\mathbf{x}^{(t)}) = \frac{1}{2}||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$ w.r.t. $\mathbf{h}^{(t)}$

we could use a gradient descent method:

$$\nabla_{\mathbf{h}^{(t)}} l(\mathbf{x}^{(t)}) = \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(\mathbf{h}^{(t)})$$

Topics: inference of sparse codes

For a single hidden unit:

$$\frac{\partial}{\partial h_k^{(t)}} l(\mathbf{x}^{(t)}) = (\mathbf{D}_{\cdot,k})^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(h_k^{(t)})$$

- issue: L1 norm not differentiable at 0
 - very unlikely for gradient descent to ''land'' on $\,h_k^{(t)}=0\,$ (even if it's the solution)
- lacktriangleright solution: if $h_k^{(t)}$ changes sign because of L1 norm gradient, clamp to 0
- each hidden unit update would be performed as follows:
 - $h_k^{(t)} \longleftarrow h_k^{(t)} \alpha(\mathbf{D}_{\cdot,k})^{\top} (\mathbf{D} \mathbf{h}^{(t)} \mathbf{x}^{(t)})$
 - if $\operatorname{sign}(h_k^{(t)}) \neq \operatorname{sign}(h_k^{(t)} \alpha \lambda \operatorname{sign}(h_k^{(t)}))$ then: $h_k^{(t)} \Longleftarrow 0$
 - else: $h_k^{(t)} \longleftarrow h_k^{(t)} \alpha \lambda \operatorname{sign}(h_k^{(t)})$

Topics: inference of sparse codes

For a single hidden unit:

$$\frac{\partial}{\partial h_k^{(t)}} l(\mathbf{x}^{(t)}) = (\mathbf{D}_{\cdot,k})^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(h_k^{(t)})$$

- issue: LI norm not differentiable at 0
 - very unlikely for gradient descent to 'land'' on $\,h_k^{(t)}=0\,$ (even if it's the solution)
- ightharpoonup solution: if $h_k^{(t)}$ changes sign because of L1 norm gradient, clamp to 0
- each hidden unit update would be performed as follows:
 - $\quad \quad h_k^{(t)} \longleftarrow h_k^{(t)} \alpha(\mathbf{D}_{\cdot,k})^\top (\mathbf{D} \ \mathbf{h}^{(t)} \mathbf{x}^{(t)})$ bupdate from reconstruction
 - if $\operatorname{sign}(h_k^{(t)}) \neq \operatorname{sign}(h_k^{(t)} \alpha \lambda \operatorname{sign}(h_k^{(t)}))$ then: $h_k^{(t)} \Longleftarrow 0$
 - else: $h_k^{(t)} \longleftarrow h_k^{(t)} \alpha \lambda \operatorname{sign}(h_k^{(t)})$

Topics: inference of sparse codes

For a single hidden unit:

$$\frac{\partial}{\partial h_k^{(t)}} l(\mathbf{x}^{(t)}) = (\mathbf{D}_{\cdot,k})^{\top} (\mathbf{D} \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) + \lambda \operatorname{sign}(h_k^{(t)})$$

- issue: LI norm not differentiable at 0
 - very unlikely for gradient descent to 'land'' on $h_k^{(t)}=0$ (even if it's the solution)
- lacktriangleright solution: if $h_k^{(t)}$ changes sign because of L1 norm gradient, clamp to 0
- each hidden unit update would be performed as follows:

$$\begin{array}{l} -h_k^{(t)} & \longleftarrow h_k^{(t)} - \alpha (\mathbf{D}_{\cdot,k})^\top (\mathbf{D} \ \mathbf{h}^{(t)} - \mathbf{x}^{(t)}) \\ - & \text{if } \operatorname{sign}(h_k^{(t)}) \neq \operatorname{sign}(h_k^{(t)} - \alpha \ \lambda \ \operatorname{sign}(h_k^{(t)})) \ \text{then: } h_k^{(t)} & \longleftarrow 0 \\ - & \text{else: } h_k^{(t)} & \longleftarrow h_k^{(t)} - \alpha \ \lambda \ \operatorname{sign}(h_k^{(t)}) \end{array} \right\} \ \text{update from reconstruction}$$

Topics: ISTA (Iterative Shrinkage and Thresholding Algorithm)

- This process corresponds to the ISTA algorithm:
 - initialize $\mathbf{h}^{(t)}$ (for instance to 0)
 - while $\mathbf{h}^{(t)}$ has not converged
 - $\mathbf{h}^{(t)} \longleftarrow \mathbf{h}^{(t)} \alpha \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} \mathbf{x}^{(t)})$
 - $-\mathbf{h}^{(t)} \iff \operatorname{shrink}(\mathbf{h}^{(t)}, \alpha \lambda)$
 - ightharpoonup return $\mathbf{h}^{(t)}$

- Here $\operatorname{shrink}(\mathbf{a}, \mathbf{b}) = [\dots, \operatorname{sign}(a_i) \, \max(|a_i| b_i, 0), \dots]$
- Will converge if $\frac{1}{\alpha}$ is bigger than the largest eigenvalue of $\mathbf{D}^{\mathsf{T}}\mathbf{D}$

Topics: ISTA (Iterative Shrinkage and Thresholding Algorithm)

- This process corresponds to the ISTA algorithm:
 - initialize $\mathbf{h}^{(t)}$ (for instance to 0)
 - while $\mathbf{h}^{(t)}$ has not converged
 - $\mathbf{h}^{(t)} \longleftarrow \mathbf{h}^{(t)} \alpha \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} \mathbf{x}^{(t)})$
 - $-\mathbf{h}^{(t)} \iff \operatorname{shrink}(\mathbf{h}^{(t)}, \alpha \lambda)$
 - ightharpoonup return $\mathbf{h}^{(t)}$

- Here $\operatorname{shrink}(\mathbf{a}, \mathbf{b}) = [\dots, \operatorname{sign}(a_i) \, \max(|a_i| b_i, 0), \dots]$
- Will converge if $\frac{1}{\alpha}$ is bigger than the largest eigenvalue of $\mathbf{D}^{\mathsf{T}}\mathbf{D}$

Topics: ISTA (Iterative Shrinkage and Thresholding Algorithm)

- This process corresponds to the ISTA algorithm:
 - initialize $\mathbf{h}^{(t)}$ (for instance to 0)
 - lacktriangle while $\mathbf{h}^{(t)}$ has not converged
 - $\mathbf{h}^{(t)} \longleftarrow \mathbf{h}^{(t)} \alpha \mathbf{D}^{\top} (\mathbf{D} \mathbf{h}^{(t)} \mathbf{x}^{(t)})$
 - $-\mathbf{h}^{(t)} \iff \operatorname{shrink}(\mathbf{h}^{(t)}, \alpha \lambda)$
 - ightharpoonup return $\mathbf{h}^{(t)}$

this is $\mathbf{h}(\mathbf{x}^{(t)})$

- Here $\operatorname{shrink}(\mathbf{a}, \mathbf{b}) = [\dots, \operatorname{sign}(a_i) \, \max(|a_i| b_i, 0), \dots]$
- Will converge if $\frac{1}{\alpha}$ is bigger than the largest eigenvalue of $\mathbf{D}^{\mathsf{T}}\mathbf{D}$

Topics: coordinate descent for sparse coding inference

- ISTA updates all hidden units simultaneously
 - this is wasteful if many hidden units have already converged

- · Idea: update only the "most promising" hidden unit
 - > see coordinate descent algorithm in
 - Learning Fast Approximations of Sparse Coding. Gregor and Lecun, 2010.
 - ightharpoonup this algorithm has the advantage of not requiring a learning rate lpha

Neural networks

Sparse coding - dictionary update with projected gradient descent

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangle we can reconstruct the original input ${f x}^{(t)}$ as much as possible
- More formally: reconstruction error sparsity penalty $\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$ reconstruction version sparsity control
 - ▶ **D** is equivalent to the autoencoder output weight matrix
 - lacktriangle however, $\mathbf{h}(\mathbf{x}^{(t)})$ is now a complicated function of $\mathbf{x}^{(t)}$
 - encoder is the minimization $\mathbf{h}(\mathbf{x}^{(t)}) = \arg\min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$

Topics: dictionary update (algorithm 1)

Going back to our original problem

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} l(\mathbf{x}^{(t)}) = \min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})||_{2}^{2} + \lambda ||\mathbf{h}(\mathbf{x}^{(t)})||_{1}$$

- Let's assume $\mathbf{h}(\mathbf{x}^{(t)})$ doesn't depend on \mathbf{D} (which is false)
 - we must minimize

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})||_{2}^{2}$$

we must also constrain the columns of **D** to be of unit norm

Topics: dictionary update (algorithm I)

- · A gradient descent method could be used here too
 - > specifically, this is a projected gradient descent algorithm
- While D hasn't converged
 - perform gradient update of D

$$\mathbf{D} \longleftarrow \mathbf{D} + \alpha \frac{1}{T} \sum_{t=1}^{T} (\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})) \mathbf{h}(\mathbf{x}^{(t)})^{\top}$$

- renormalize the columns of **D**
 - for each column $\mathbf{D}_{\cdot,j}$:

$$\mathbf{D}_{\cdot,j} \longleftarrow \frac{\mathbf{D}_{\cdot,j}}{||\mathbf{D}_{\cdot,j}||_2}$$

Neural networks

Sparse coding - dictionary update with block-coordinate descent

Topics: dictionary update (algorithm 2)

Going back to our original problem

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} l(\mathbf{x}^{(t)}) = \min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})||_{2}^{2} + \lambda ||\mathbf{h}(\mathbf{x}^{(t)})||_{1}$$

- Let's assume $\mathbf{h}(\mathbf{x}^{(t)})$ doesn't depend on \mathbf{D} (which is false)
 - we must minimize

$$\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \frac{1}{2} ||\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})||_{2}^{2}$$

we must also constrain the columns of **D** to be of unit norm

Topics: dictionary update (algorithm 2)

- An alternative is to solve for each column $D_{\cdot,j}$ in cycle:
 - \blacktriangleright setting the gradient for $\mathbf{D}_{.,j}$ to zero, we have

$$0 = \frac{1}{T} \sum_{t=1}^{T} (\mathbf{x}^{(t)} - \mathbf{D} \mathbf{h}(\mathbf{x}^{(t)})) h(\mathbf{x}^{(t)})_{j}$$

$$0 = \sum_{t=1}^{T} \left(\mathbf{x}^{(t)} - \left(\sum_{i \neq j} \mathbf{D}_{\cdot,i} h(\mathbf{x}^{(t)})_{i} \right) - \mathbf{D}_{\cdot,j} h(\mathbf{x}^{(t)})_{j} \right) h(\mathbf{x}^{(t)})_{j}$$

$$\sum_{t=1}^{T} \mathbf{D}_{\cdot,j} h(\mathbf{x}^{(t)})_{j}^{2} = \sum_{t=1}^{T} \left(\mathbf{x}^{(t)} - \left(\sum_{i \neq j} \mathbf{D}_{\cdot,i} h(\mathbf{x}^{(t)})_{i} \right) \right) h(\mathbf{x}^{(t)})_{j}$$

$$\mathbf{D}_{\cdot,j} = \frac{1}{\sum_{t=1}^{T} h(\mathbf{x}^{(t)})_{j}^{2}} \sum_{t=1}^{T} \left(\mathbf{x}^{(t)} - \left(\sum_{i \neq j} \mathbf{D}_{\cdot,i} h(\mathbf{x}^{(t)})_{i} \right) \right) h(\mathbf{x}^{(t)})_{j}$$

• we don't need to specify a learning rate to update $\mathbf{D}_{\cdot,j}$

Topics: dictionary update (algorithm 2)

- An alternative is to solve for each column $D_{\cdot,j}$ in cycle:
 - we can rewrite

$$\mathbf{D}_{\cdot,j} = \frac{1}{\sum_{t=1}^{T} h(\mathbf{x}^{(t)})_{j}^{2}} \sum_{t=1}^{T} \left(\mathbf{x}^{(t)} - \left(\sum_{i \neq j} \mathbf{D}_{\cdot,i} h(\mathbf{x}^{(t)})_{i} \right) \right) h(\mathbf{x}^{(t)})_{j}$$

$$= \frac{1}{\sum_{t=1}^{T} h(\mathbf{x}^{(t)})_{j}^{2}} \left(\left(\sum_{t=1}^{T} \mathbf{x}^{(t)} h(\mathbf{x}^{(t)})_{j} \right) - \sum_{i \neq j} \mathbf{D}_{\cdot,i} \left(\sum_{t=1}^{T} h(\mathbf{x}^{(t)})_{i} h(\mathbf{x}^{(t)})_{j} \right) \right)$$

$$= \frac{1}{A_{i,j}} (\mathbf{B}_{\cdot,j} - \mathbf{D} \mathbf{A}_{\cdot,j} + \mathbf{D}_{\cdot,j} A_{j,j})$$

this way, we only need to store:

-
$$\mathbf{A} \longleftarrow \sum_{t=1}^{T} \mathbf{h}(\mathbf{x}^{(t)}) \ \mathbf{h}(\mathbf{x}^{(t)})^{\top}$$

-
$$\mathbf{B} \longleftarrow \sum_{t=1}^{T} \mathbf{x}^{(t)} \mathbf{h}(\mathbf{x}^{(t)})^{\top}$$

Topics: dictionary update (algorithm 2)

- While D hasn't converged
 - lackbox for each column $\mathbf{D}_{\cdot,j}$ perform updates

$$\mathbf{D}_{\cdot,j} \longleftarrow \frac{1}{A_{j,j}} \left(\mathbf{B}_{\cdot,j} - \mathbf{D} \; \mathbf{A}_{\cdot,j} + \mathbf{D}_{\cdot,j} \; A_{j,j} \right)$$

-
$$\mathbf{D}_{\cdot,j} \longleftarrow rac{\mathbf{D}_{\cdot,j}}{||\mathbf{D}_{\cdot,j}||_2}$$

- This is referred to as a block-coordinate descent algorithm
 - ▶ a different block of variables are updated at each step
 - the "blocks" are the columns $\mathbf{D}_{\cdot,j}$

Neural networks

Sparse coding - dictionary learning algorithm

- For each $\mathbf{x}^{(t)}$ find a latent representation $\mathbf{h}^{(t)}$ such that:
 - lacktriangleright it is sparse: the vector $\mathbf{h}^{(t)}$ has many zeros
 - lacktriangle we can reconstruct the original input ${f x}^{(t)}$ as much as possible
- More formally: reconstruction error sparsity penalty $\min_{\mathbf{D}} \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$ reconstruction version sparsity control
 - ▶ **D** is equivalent to the autoencoder output weight matrix
 - lacktriangle however, $\mathbf{h}(\mathbf{x}^{(t)})$ is now a complicated function of $\mathbf{x}^{(t)}$
 - encoder is the minimization $\mathbf{h}(\mathbf{x}^{(t)}) = \arg\min_{\mathbf{h}^{(t)}} \frac{1}{2} ||\mathbf{x}^{(t)} \mathbf{D} \mathbf{h}^{(t)}||_2^2 + \lambda ||\mathbf{h}^{(t)}||_1$

Topics: learning algorithm (putting it all together)

· Learning alternates between inference and dictionary learning

- While **D** has not converged
 - lacktriangleright find the sparse codes $\mathbf{h}(\mathbf{x}^{(t)})$ for all $\mathbf{x}^{(t)}$ in my training set with ISTA
 - update the dictionary:
 - $\mathbf{A} \longleftarrow \sum_{t=1}^{T} \mathbf{x}^{(t)} \ \mathbf{h}(\mathbf{x}^{(t)})^{\top}$
 - $\mathbf{B} \Longleftarrow \sum_{t=1}^{T} \mathbf{h}(\mathbf{x}^{(t)}) \ \mathbf{h}(\mathbf{x}^{(t)})^{\top}$
 - run block-coordinate descent algorithm to update ${f D}$
- Similar to the EM algorithm

Neural networks

Sparse coding - online dictionary learning algorithm

Topics: learning algorithm (putting it all together)

· Learning alternates between inference and dictionary learning

- While **D** has not converged
 - lacktriangleright find the sparse codes $\mathbf{h}(\mathbf{x}^{(t)})$ for all $\mathbf{x}^{(t)}$ in my training set with ISTA
 - update the dictionary:
 - $\mathbf{A} \longleftarrow \sum_{t=1}^{T} \mathbf{x}^{(t)} \ \mathbf{h}(\mathbf{x}^{(t)})^{\top}$
 - $\mathbf{B} \Longleftarrow \sum_{t=1}^{T} \mathbf{h}(\mathbf{x}^{(t)}) \ \mathbf{h}(\mathbf{x}^{(t)})^{\top}$
 - run block-coordinate descent algorithm to update ${f D}$
- Similar to the EM algorithm

Topics: online learning algorithm

- This algorithm is "batch" (i.e. not online)
 - ▶ single update of the dictionary per pass on the training set
 - lacktriangleright for large datasets, we'd like to update ${f D}$ after visiting each ${f x}^{(t)}$
- Solution: for each $\mathbf{x}^{(t)}$
 - ightharpoonup perform inference of $\mathbf{h}(\mathbf{x}^{(t)})$ for the current $\mathbf{x}^{(t)}$
 - update running averages of the quantities required to update **D**:
 - $\mathbf{B} \longleftarrow \beta \mathbf{B} + (1 \beta) \mathbf{x}^{(t)} \mathbf{h} (\mathbf{x}^{(t)})^{\top}$
 - $\mathbf{A} \longleftarrow \beta \mathbf{A} + (1 \beta) \mathbf{h}(\mathbf{x}^{(t)}) \mathbf{h}(\mathbf{x}^{(t)})^{\top}$
 - use current value of **D** as "warm start" to block-coordinate descent

SPARSE CODING

Topics: online learning algorithm

- Initialize **D** (not to 0!)
- While D hasn't converged
 - for each $\mathbf{x}^{(t)}$
 - infer code $\mathbf{h}(\mathbf{x}^{(t)})$
 - update dictionary

$$\mathbf{B} \longleftarrow \beta \mathbf{B} + (1 - \beta) \mathbf{x}^{(t)} \mathbf{h} (\mathbf{x}^{(t)})^{\top}$$

$$\checkmark \mathbf{A} \longleftarrow \beta \mathbf{A} + (1 - \beta) \mathbf{h}(\mathbf{x}^{(T+1)}) \mathbf{h}(\mathbf{x}^{(T+1)})^{\top}$$

- √ while D hasn't converged
 - \star for each column $\mathbf{D}_{\cdot,j}$ perform gradient update

$$\mathbf{D}_{\cdot,j} \longleftarrow \frac{1}{A_{j,j}} (\mathbf{B}_{\cdot,j} - \mathbf{D} \mathbf{A}_{\cdot,j} + \mathbf{D}_{\cdot,j} A_{j,j})$$

$$\mathbf{D}_{\cdot,j} \longleftarrow \frac{\mathbf{D}_{\cdot,j}}{||\mathbf{D}_{\cdot,j}||_2}$$

Online Dictionary Learning for Sparse Coding. Mairal, Bach, Ponce and Sapiro, 2009.

Neural networks

Sparse coding - ZCA preprocessing

PREPROCESSING

Topics: ZCA

- Before running a sparse coding algorithm, it is beneficial to remove "obvious" structure from the data
 - normalize such that mean is 0 and covariance is the identity (whitening)
 - ▶ this will remove 1st and 2nd order statistical structure

- ZCA preprocessing
 - let the empirical mean be $\hat{\mu}$ and the empirical covariance matrix be $\hat{\Sigma} = \mathbf{U}\Lambda\mathbf{U}^{\mathsf{T}}$ (in its eigenvalue/eigenvector representation)
 - ZCA transforms each input x as follows:
 - $\mathbf{x} \longleftarrow \mathbf{U} \, \Lambda^{-\frac{1}{2}} \, \mathbf{U}^{ op} (\mathbf{x} \widehat{\boldsymbol{\mu}})$

PREPROCESSING

Topics: ZCA

- After this transformation
 - the empirical mean is 0

$$\frac{1}{T} \sum_{t} \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top} (\mathbf{x}^{(t)} - \widehat{\boldsymbol{\mu}})$$

$$= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top} \left(\left(\frac{1}{T} \sum_{t} \mathbf{x}^{(t)} \right) - \widehat{\boldsymbol{\mu}} \right)$$

$$= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top} (\widehat{\boldsymbol{\mu}} - \widehat{\boldsymbol{\mu}})$$

$$= 0$$

PREPROCESSING

Topics: ZCA

- After this transformation
 - the empirical covariance matrix is the identity

$$\frac{1}{T-1} \sum_{t} \left(\mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top} (\mathbf{x}^{(t)} - \widehat{\boldsymbol{\mu}}) \right) \left(\mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top} (\mathbf{x}^{(t)} - \widehat{\boldsymbol{\mu}}) \right)^{\top}$$

$$= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top} \left(\frac{1}{T-1} \sum_{t} (\mathbf{x}^{(t)} - \widehat{\boldsymbol{\mu}}) (\mathbf{x}^{(t)} - \widehat{\boldsymbol{\mu}}) \right)^{\top} \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top}$$

$$= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top} \widehat{\Sigma} \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top}$$

$$= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top} \widehat{\Sigma} \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top}$$

$$= \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top} \mathbf{U} \Lambda \mathbf{U}^{\top} \mathbf{U} \Lambda^{-\frac{1}{2}} \mathbf{U}^{\top}$$

$$= \mathbf{I}$$

Neural networks

Sparse coding - feature extraction

FEATURE EXTRACTION

Topics: feature learning

- A sparse coding model can be used to extract features
 - given a labeled training set $\{(\mathbf{x}^{(t)}, y^{(t)})\}$
 - ightharpoonup train sparse coding dictionary only on training inputs $\{\mathbf{x}^{(t)}\}$
 - this yields a dictionary ${f D}$ from which to infer sparse codes ${f h}({f x}^{(t)})$
 - \blacktriangleright train favorite classifier on transformed training set $\{(\mathbf{h}(\mathbf{x}^{(t)}), y^{(t)})\}$

• When classifying test input \mathbf{x} , must infer its sparse representation $\mathbf{h}(\mathbf{x})$ first, then feed it to the classifier

FEATURE EXTRACTION

Topics: feature learning

When trained on handwritten digits:

Self-taught Learning: Transfer Learning from Unlabeled Data Raina, Battle, Lee, Packer and Ng.

FEATURE EXTRACTION

Topics: self-taught learning

- Self-taught learning:
 - when features trained on different input distribution
- Example:
 - train sparse coding dictionary on handwritten digits
 - use codes (features) to classify handwritten characters

$Digits \rightarrow English handwritten characters$			
Training set size	Raw	PCA	Sparse coding
100	39.8%	25.3%	39.7%
500	54.8%	54.8%	58.5 %
1000	61.9%	64.5%	65.3 %

Neural networks

Sparse coding - relationship with VI

RELATIONSHIP WITH VI

Topics: VI neurons vs. sparse coding

- Natural image patches:
 - > small image regions extracted from an image of nature (forest, grass, ...)

RELATIONSHIP WITH VI

Topics: VI neurons vs. sparse coding

- When trained on natural image patches
 - the dictionary columns ("atoms") look like edge detectors
 - each atom is tuned to a particular position, orientation and spatial frequency
 - VI neurons in the mammalian brain have a similar behavior

Emergence of simple-cell receptive field properties by learning a sparse code of natural images. Olshausen and Field, 1996.

RELATIONSHIP WITH VI

Topics: VI neurons vs. sparse coding

- Suggests that the brain might be learning a sparse code of visual stimulus
- Since then, many other models have been shown to learn similar features
 - they usually all incorporate a notion of sparsity

Emergence of simple-cell receptive field properties by learning a sparse code of natural images. Olshausen and Field, 1996.