CS4780 Midterm

Fall 2018

NAME:		
Net ID:		
Email:		
I promise to abide by Cornell's Code	of Academic Integrity.	

Signature:

1 [??] General Machine Learning

Please identify if these statements are either True or False. Please justify your answer if false. Correct "True" questions yield 1 point. Correct "False" questions yield 2 points, one for the answer and one for the justification.

1. (T/F) As $n \to \infty$, the 1-NN error is no more than twice the error of the Bayes Optimal classifier.

2. (T/F) MLE can overfit the data if n (the number of training samples) is small. It tends to work well when n is large.

3. (T/F) Both, Gradient descent and Newton's method use only a 1st order approximation of the function to be minimized.

4. (T/F) If a data set is linearly separable, the Perceptron guarantees that you find a hyperplane but the SVM finds the maximum margin separating hyperplane.

5. (T/F) The best machine learning algorithm make no assumptions about the data.

6. (T/F) The k-NN classifier is not a linear classifier.

7.	(\mathbf{T}/\mathbf{F}) The k-NN algorithm can be used for classification, but not regression.
8.	(\mathbf{T}/\mathbf{F}) The order of the training points can affect the training time of the Perceptron algorithm.
9.	(\mathbf{T}/\mathbf{F}) Even on non-linearly-separable datasets, the Perceptron algorithm is guaranteed to converge in finite time.
10.	(\mathbf{T}/\mathbf{F}) In MAP, we find the maximizer of the posterior, so we need to find an expression for the posterior.
11.	(T/F) If you were to use the "true" Bayesian way of machine learning you would put a prior over the possible models and draw several modelsr randomly during training.
12.	(\mathbf{T}/\mathbf{F}) If the features are probabilistically dependent on each other, then the naive Bayes assumption cannot hold.

13.	(\mathbf{T}/\mathbf{F}) Logistic regression is a generative model.
14.	(\mathbf{T}/\mathbf{F}) The order of the training points can affect the convergence of the gradient descent algorithm
15.	(\mathbf{T}/\mathbf{F}) For gradient descent, higher learning rates guarantee faster convergence times.
16.	(\mathbf{T}/\mathbf{F}) For Adagrad, we use the same learning rate for all features.

2 [16] K-NN

In the lecture, we learn that K-NN algorithm is a distance-based algorithm. Consider that if we have different distance metric, will we get the different output of K-NN algorithm given the same data. Suppose we have following 2D dataset:

• Class +1 (blue): $\{(1,5)\}$

• Class -1 (yellow): $\{(4,4),(4,0)\}$

In this problem, we will study the difference between l_2 distance and Manhattan distance. For two points $\mathbf{x} = (x_1, x_2)$ and $\mathbf{z} = (z_1, z_2)$, l_2 distance is defined by

$$d_1(\mathbf{x}, \mathbf{z}) = \sqrt{(x_1 - z_1)^2 + (x_2 - z_2)^2},$$
(1)

and Manhattan distance is defined by

$$d_2(\mathbf{x}, \mathbf{z}) = |x_1 - z_1| + |x_2 - z_2|. \tag{2}$$

1. (4 pts) How will points $(1, \frac{3}{2})$ be classified when we use l_2 distance and the 1-NN classifier? If we use manhattan distance instead, will $(1, \frac{3}{2})$ be classified in the other class? Compute the distance between from $(1, \frac{3}{2})$ to those dataset with two different distance metrics and answer the questions.

2. (6 pts) Draw the decision boundary for the 1-NN classifier with l_2 distance.

3. (6 pts) Draw the decision boundary for the 1-NN classifier with Manhattan distance.

3 [16] Perception and SVM

4 [16] Maximum Likelihood Estimation

1. (6 pts) One observation x_0 is taken on a discrete random variable with probability mass function $f(x|\theta)$, where $\theta \in \{1, 2, 3\}$. Find the MLE of θ according to different x_0 and fill the blank in Table 2.

\overline{x}	f(x 1)	f(x 2)	f(x 3)
0	$\frac{1}{3}$	$\frac{1}{4}$	0
1	$\frac{1}{3}$	$\frac{1}{4}$	0
2	ŏ	$\frac{1}{4}$	$\frac{1}{4}$
3	$\frac{1}{c}$	$\frac{1}{4}$	$\frac{1}{2}$
4	$\frac{9}{6}$	$\overset{4}{0}$	$\frac{1}{4}$

Table 1: Probability Mass Function $f(x|\theta)$

x_0	0	1	2	3	4
MLE of θ					

Table 2: MLE Respect to x_0

2. (10 pts) Let x_1, \dots, x_n be iid random samples from the pdf

$$f(x|\theta) = \theta x^{-2}$$
 $,0 < \theta \le x < \infty$ (3)

(a) (4 pts) Write the likelihood function $L(\theta|x_1,\dots,x_n)$. (Hint: it is a function of $\min_i x_i$)

(b) (4 pts) Compute the MLE $\hat{\theta}$.

(c) (2 pts) Consider a specific case that n=5 and these five x_i are 3, 10, 6, 8, 4 respectively. What is the MLE $\hat{\theta}$ in this case.

5 [16] Naive Bayes

1.

6 [16] Gradient Descent

In this problem, we will see Gradient Descent can minimize the loss function

$$l(w) = (w - x)^2. (4)$$

1. (4 pts) Suppose at time t, we have x_t . Write the update formula for x_{t+1} using Gradient Descent when learning rate r < 1.

2. (6 pts) Notice that $\arg\min_x l(x) = a$. Prove that $\lim_{t\to\infty} |x_t - a| = 0$ for arbitrary starting points x_0 .

3. (6 pts) Find an example of loss function l(x), learning rate r < 1 such that $\exists x_0 \ l(x_1) > l(x_0)$, where x_1 is updated from x_0 by Gradient Descent.

True/False	
kNN	
Perception & SVM	
MLE	
NB	
Linear Classifier	
Gradient Descent	
TOTAL	