# Comunicações por Computadores Trabalho Prático 1

# Trabalho realizado por:

Francisco Pinto Lameirão Luís Miguel Moreira Ferreira Pedro Dantas da Cunha Pereira

PL 3 - Grupo 8



A97504 Francisco Lameirão



A95111 Luís Ferreira



A97396 Pedro Dantas

Universidade do Minho

# $\mathbf{\acute{I}ndice}$

|   | Exercícios Parte 1 | 2  |
|---|--------------------|----|
|   | 1.1 Exercício 1    |    |
|   | 1.2 Exercício 2    |    |
|   | 1.3 Exercício 3    |    |
|   | 1.4 Exercício 4    | 6  |
| 2 | Exercícios Parte 2 | 8  |
|   | 2.1 Exercício 1    | 8  |
| 3 | Conclusões         | 12 |

## 1 Exercícios Parte 1

#### 1.1 Exercício 1

**Enunciado:** De que forma as perdas e duplicações de pacotes afetaram o desempenho das aplicações? Que camada lidou com as perdas e duplicações: transporte ou aplicação? Responda com base nas experiências feitas e nos resultados observados.

Resposta: Neste caso de estudo, quando ocorrem perdas de pacotes e existe uma tentativa da recuperação dos mesmos, acaba por se verificar o envio de pacotes duplicados que, em torno, contribuem para um intervalo de tempo de envio mais elevado, visto que o próprio número total de pacotes também aumenta. Como consequência, o desempenho das aplicações acaba por piorar, visto que o seu tempo de execução total será mais elevado do que o normal.

```
PING 10.4.4.1 (10.4.4.1) 56(84) bytes of data.
64 bytes from 10.4.4.1: icmp_seq=1 ttl=61 time=1.43 ms
64 bytes from 10.4.4.1: icmp_seq=2 ttl=61 time=0.471 ms
64 bytes from 10.4.4.1: icmp_seq=3 ttl=61 time=2.98 ms
64 bytes from 10.4.4.1: icmp_seq=4 ttl=61 time=0.623 ms
64 bytes from 10.4.4.1: icmp_seq=5 ttl=61 time=3.41 ms
64 bytes from 10.4.4.1: icmp_seq=6 ttl=61 time=1.06 ms
64 bytes from 10.4.4.1: icmp_seq=7 ttl=61 time=0.810 ms
64 bytes from 10.4.4.1: icmp_seq=8 ttl=61 time=0.526 ms
64 bytes from 10.4.4.1: icmp_seq=9 ttl=61 time=3.46 ms
64 bytes from 10.4.4.1: icmp_seq=10 ttl=61 time=0.691 ms
64 bytes from 10.4.4.1: icmp_seq=11 ttl=61 time=2.83 ms
64 bytes from 10.4.4.1: icmp_seq=12 ttl=61 time=0.668 ms
64 bytes from 10.4.4.1: icmp_seq=13 ttl=61 time=2.70 ms
64 bytes from 10.4.4.1: icmp_seq=14 ttl=61 time=0.508 ms
64 bytes from 10.4.4.1: icmp_seq=15 ttl=61 time=3.19 ms
64 bytes from 10.4.4.1: icmp_seq=16 ttl=61 time=1.05 ms
64 bytes from 10.4.4.1; icmp_seq=17 ttl=61 time=0.811 ms
64 bytes from 10.4.4.1: icmp_seq=18 ttl=61 time=0.690 ms
64 bytes from 10.4.4.1: icmp_seq=19 ttl=61 time=3.19 ms
64 bytes from 10.4.4.1: icmp_seq=20 ttl=61 time=0.562 ms
 -- 10.4.4.1 ping statistics
20 packets transmitted, 20 received, 0% packet loss, time 19152ms
rtt min/avg/max/mdev = 0.471/1.583/3.463/1.150 ms
```

Figure 1: Ping Portatil1

```
(10.4.4.1) 56(84) bytes of data.
  bytes from 10.4.4.1: icmp_seq=1 ttl=61 time=11
   bytes from 10.4.4.1: icmp_seq=2 ttl=61 time=5.70
  bytes from 10.4.4.1: icmp_seq=3 ttl=61 time=6.
                        icmp_seq=4 ttl=61 time=5
   bytes from 10.4.4.1:
              10.4.4.1:
              10.4.4.1:
                        icmp_seq=6 ttl=61
              10.4.4.1:
                        icmp_seq=7 ttl=61 time=5
              10.4.4.1:
                        icmp_seq=10 ttl=61 time=6
              10.4.4.1:
                                     t.t.1=61
                        icmp_seq=11
                                            time=
              10.4.4.1:
                        icmp_seq=12
                                    ttl=61 time=6
              10.4.4.1:
                                                    28
                                                         (DUP!)
                        icmp_seq=12
                                    ttl=61
                                            time=8
                                                      ms
              10.4.4.1:
                        icmp_seq=14 ttl=61
                                                    74 ms
         from
                                            time:
              10.4.4.1:
                        icmp_seq=15
                                    ttl=61
         from
                                            time=6
              10.4.4.1:
                        icmp_seq=16
                                    ttl=61
                                            time:
                                                      ms
              10.4.4.1:
                        icmp_seq
                                     ttl=61
                                            time=6
              10.4.4.1:
                        icmp_seq=18
                                    ttl=61
              10.4.4.1: icmp_seq=19 ttl=61 time=5.83
  bytes from
64 bytes from 10.4.4.1: icmp_seq=20 ttl=61 time=6.55
   10.4.4.1 ping statistics
20 packets transmitted, 17 received, +1 duplicates, 15% packet loss, time 19085ms
rtt min/avg/max/mdev = 5.374/6.406/11.095/1.211 ms
```

Figure 2: Ping PC1

Em relação à camada à qual será atribuída a tarefa de lidar com as perdas e duplicações dos pacotes, podemos dizer que esta estará dependente do tipo de protocolo de transporte a ser utilizado.

**UDP:** No caso de ser escolhido um protocolo no qual se utilize um formato UDP, será a camada de aplicação a responsável pelos problemas de perda e duplicação de pacotes. Isto porque o formato em questão considera como fator principal a velocidade à qual os pacotes são enviados, ignorando possíveis erros nos mesmos, sendo que, caso exista de facto algum erro, o pacote em questão é apenas descartado.

TCP: Caso seja utilizado o protocolo TCP, a camada responsável pelos problemas referidos será a camada de transporte, visto que, ao contrário do formato UDP, este dá prioridade à deteção e correção de erros em relação à velocidade à qual os pacotes são enviados. Quando é encontrado algum tipo de erro, dá-se uma tentativa de retransmissão dos pacotes.

#### 1.2 Exercício 2

Enunciado: Obtenha a partir do wireshark, ou desenhe manualmente, um diagrama temporal para a transferência de file1 por FTP. Foque-se apenas na transferência de dados [ftp-data] e não na conexão de controlo, pois o FTP usa mais que uma conexão em simultâneo. Identifique, se aplicável, as fases de início de conexão, transferência de dados e fim de conexão. Identifique também os tipos de segmentos trocados e os números de sequência usados quer nos dados como nas confirmações.

#### Resposta:

FTP: O protocolo FTP poderá ser executado em modo passivo ou modo ativo, sendo a escolha entre estes dois modos feita com base em quem inicia a conexão entre cliente e servidor. Neste protocolo, é utilizado um par de conexões entre servidor e cliente, sendo que a primeira conexão a ser criada é a conexão com a porta 21 do servidor e a segunda

com a porta 20 do servidor. Após a abertura da porta 21 dos servidores é iniciada a escuta das conexões de entrada do cliente. Os clientes realizam a conexão com a porta 21 dos servidores remotos, de modo a iniciar as transferências de ficheiros. A porta 20 é necessária para garantir que estas transferências são, de facto, realizadas.

Modo Passivo: Caso seja o cliente a iniciar a conexão de dados, o protocolo FTP será executado em modo passivo. Isto significa que apenas o servidor será necessário portas para o tráfego de dados. De modo a evitar problemas de segurança, a maioria dos servidores utilizam uma conexão FTP passiva.

Modo Ativo: No caso da conexão de dados ser iniciada pelo servidor, a conexão FTP será executada em modo ativo. Isto traduz-se na necessidade de tanto o servidor como o cliente abrirem portas de modo a receber tráfego.



Figure 3: Diagrama Temporal FTP

| 383 474.073527754 10.4.4.1 | 10.1.1.1 | TCP 74 20 → 41503 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACI   |
|----------------------------|----------|---------------------------------------------------------------|
| 384 474.073713496 10.1.1.1 | 10.4.4.1 | TCP 74 41503 → 20 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MS   |
| 385 474.074049475 10.4.4.1 | 10.1.1.1 | TCP 66 20 → 41503 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2   |
| 386 474.074051308 10.4.4.1 | 10.1.1.1 | FTP 130 Response: 150 Opening BINARY mode data connection for |
| 387 474.074998407 10.1.1.1 | 10.4.4.1 | TCP 66 39572 → 21 [ACK] Seq=112 Ack=391 Win=64256 Len=0 TS    |
| 388 474.075549504 10.4.4.1 | 10.1.1.1 | FTP-DA 290 FTP Data: 224 bytes (PORT) (RETR file1)            |
| 389 474.075553181 10.4.4.1 | 10.1.1.1 | TCP 66 20 - 41503 [FIN, ACK] Seq=225 Ack=1 Win=64256 Len=0    |
| 390 474.075825017 10.1.1.1 | 10.4.4.1 | TCP 66 41503 → 20 [ACK] Seq=1 Ack=225 Win=65024 Len=0 TSval   |
| 391 474.075825378 10.1.1.1 | 10.4.4.1 | TCP 66 41503 → 20 [FIN, ACK] Seq=1 Ack=226 Win=65024 Len=0    |
| 392 474.076073038 10.4.4.1 | 10.1.1.1 | TCP 66 20 → 41503 [ACK] Seq=226 Ack=2 Win=64256 Len=0 TSva:   |
| 393 474.076074932 10.4.4.1 | 10.1.1.1 | FTP 90 Response: 226 Transfer complete.                       |

Figure 4:

Tal como podemos verificar nas imagens apresentadas anteriormente, a conexão iniciase com o envio de um segmento TCP SYN por parte do servidor, indicando quais os números de sequência a ser sincronizados de modo a iniciar a conexão. Assim que recebido pelo cliente, é dada uma resposta pelo mesmo, através do envio de um segmento TCP SYN e uma trama ACK de forma a confirmar a receção do segmento anteriormente enviado pelo servidor. Seguidamente, o servidor envia também uma trama ACK de modo a confirmar a receção do SYN enviado pelo cliente. Após o estabelecimento e a verificação desta conexão, é então inicializada a fase de transmissão, sendo que esta começa com o envio dos dados pretendidos por parte do servidor.

Finalmente, passamos para a fase de ... que começa com o envio de um segmento TCP FIN, de modo a informar o cliente que todos os dados foram enviados. Como resposta, o cliente envia uma trama ACK e um segmento TCP FIN com uma trama ACK adicional, referente ao TCP FIN enviado pelo servidor anteriormente. Finalmente, é enviada uma última trama ACK pelo servidor, indicando o sucesso na receção do segmento TCP FIN enviado pelo cliente.

#### 1.3 Exercício 3

**Enunciado:** Obtenha a partir do *wireshark*, ou desenhe manualmente, um diagrama temporal para a transferência de *file1* por TFTP. Identifique, se aplicável, as fases de início de conexão, transferência de dados e fim de conexão. Identifique também os tipos de segmentos trocados e os números de sequência usados quer nos dados como nas confirmações.

#### Resposta:

Como é possível verificar nas imagens abaixo apresentadas, inicialmente é enviado um Read Request ao servidor por parte do cliente. Após isto, o servidor envia um pacote no qual estão contidos os dados que pretende enviar. Finalmente, o cliente envia uma trama ACK de modo a confirmar o sucesso da receção dos dados.



Figure 5: Diagrama Temporal TFTP

```
1519,4608812.
                                                                                                                                                                                                         Data Packet, Block: 1
    1123 1519.4608812...
1124 1519.4615311...
1125 1520.5427506...
1126 1520.7163504...
                                                                                                                                                                                                   46 Acknowledgem
90 Hello Packet
                                                                                                              224.0.0.5
                                                     10.4.4.254
                                                                                                                                                                     OSPE
                                                                                                                                                                                                   78 Hello Packet
                                                                                                                                                                                                  78 Hello Packet
78 Hello Packet
42 Who has 10.4.4.1? Tell 10.4.4.254
42 Who has 10.4.4.254? Tell 10.4.4.1
42 10.4.4.1 is at 00:00:00:aa:00:14
    1127 1522,7167424
                                                      10.4.4.254
                                                                                                              224.0.0.5
                                                                                                                                                                      OSPE
                                                    00:00:00_aa:00:10
00:00:00_aa:00:14
00:00:00_aa:00:14
    1128 1524.6011804...
1129 1524.6014519...
1130 1524.6014540...
                                                                                                             00:00:00_aa:00:14
00:00:00_aa:00:10
00:00:00_aa:00:10
                                                                                                                                                                     ARP
ARP
ARP
Frame 1122: 56 bytes on wire (448 bits), 56 bytes captured (448 bits) on interface veth1.3.eb, id 0 Ethernet II, Src: 00:00:00:00 aa:00:10 (00:00:00:aa:00:10), Dst: 00:00:00 aa:00:14 (00:00:00:aa:00:14) Internet Protocol Version 4, Src: 10.1.1.1, Dst: 10.4.4.1 User Datagram Protocol, Src Port: 51665, Dst Port: 69 Trivial File Transfer Protocol
```

Figure 6: Captura TFTP

No protocolo TFTP, todas as transferências são iniciadas através de um pedido de leitura de um ficheiro (ou de escrita no mesmo), sendo que este mesmo pedido será também utilizado como pedido de conexão. Caso o pedido seja aceite por parte do servidor, é estabelecida a conexão entre servidor e cliente e o ficheiro será transmitido através de blocos com 512 bytes, sendo este um limite de tamanho fixo. Na eventualidade de o tamanho do pacote ser superior a 512 bytes, este sofrerá fragmentação, sendo então enviados vários pacotes com o mesmo limite de tamanho.

#### 1.4 Exercício 4

**Enunciado:** Compare sucintamente as quatro aplicações de transferência de ficheiros que usou nos seguintes pontos (i) uso da camada de transporte; (ii) eficiência; (iii) complexidade; (iv) segurança;

#### Resposta:

#### (i) Uso da Camada de Transporte

- **SFTP** Protocolo TCP;
- FTP Protocolo TCP;
- **TFTP** Protocolo UDP;
- **HTTP** Protocolo TCP;

#### (ii) Eficiência

- SFTP Semelhante ao FTP, mas como tem os dados encriptados é mais segura;
- FTP O protocolo FTP utiliza acknowldges de modo a confirmar e garantir a transmissão dos segmentos. No entanto, o facto de ter de esperar pelos referidos acknowledges para continuar acaba por baixar o nível de eficiência deste protocolo.
- **TFTP** Visto que o TFTP usa o protocolo UDP, é considerado menos viável, tendo em conta que, sem o uso de *acknowledges*, é impossível confirmar a receção dos segmentos enviados. Caso seja bem sucedido, é mais rápido que o protocolo FTP, no entanto, a maioria das vezes existe a necessidade de retransmissão dos pacotes múltiplas vezes.
- HTTP Permite que vários HTTP requests sejam enviados numa única ligação TCP sem ser preciso esperar pelas respostas individuais de cada um.

#### (iii) Complexidade

- SFTP Este protocolo permite gestão, acesso e transferência de dados. Estas funcionalidades têm todas custos de processamento elevados, pelo que o protocolo é considerado bastante complexo.
- FTP O protocolo FTP suporta a possibilidade de existirem vários pedidos de transferência em paralelo, nos quais se realiza uma nova conexão de dados em cada transferência. Isto leva a que existam diferentes velocidades de transferência. Tendo em conta a frequência com a qual estas novas conexões são criadas, o protocolo FTP é considerado bastante complexo.

- TFTP É uma alternativa do protocolo FTP, sendo uma versão mais "trivial" (tal como indicado no nome) e simples. Posto isto, é também um protocolo com menos funcionalidades que o FTP, para além de utilizar o protocolo UDP ao invés do protocolo TCP. Com todos estes fatores em mente, podemos afirmar que é um protocolo com um nível de complexidade baixo.
- HTTP Implementa uma garantia de confiança, escalabilidade e encerramento de sistemas. Por ter todas estas capacidades assumimos que se trata de um protocolo bastante complexo.

### (iv) Segurança

- SFTP Sendo que este protocolo usa SSH (Secure Shell), podemos afirmar que se trata de um protocolo bastante seguro. Isto porque o SSH utiliza uma arquitetura em camadas, nas quais a camada de transporte (com auxílio do protocolo TCP/IP) fornece encriptação, autenticação do servidor e proteção da integridade dos dados, e a camada de autenticação tem como objetivo gerir a autenticação dos clientes.
- FTP Conhecido por falhas na segurança, pois não fornece encriptação de dados. Assim sendo, qualquer pessoa é capaz de capturar pacotes na rede e obter assim nomes de utilizadores, palavras-passe, etc. Isto faz com que o protocolo FTP seja considerado muito inseguro.
- TFTP Não fornece autenticação. Assim sendo, não protege dados que se pretendam transferir, fazendo com que este não seja um protocolo seguro.
- HTTP É um protocolo da camada de aplicação e é frequentemente usado para transferências de dados na Internet. Apesar disto, atendendo ao facto de que a informação é representada em texto e não é encriptada, os dados podem ser alterados.

# 2 Exercícios Parte 2

### 2.1 Exercício 1

**Enunciado:** Com base no trabalho realizado, tanto na parte I como na parte II, identifique para cada aplicação executada, qual o protocolo de aplicação, o protocolo de transporte, porta de atendimento e *overhead* de transporte.

### Resposta:

| Comando<br>Usado (Apli-<br>cação) | Protocolo de<br>Aplicação (se<br>aplicável) | Protocolo de<br>Transporte (se<br>aplicável) | Porta de<br>Atendimento<br>(se aplicável) | Overhead de transporte em bytes (se aplicável) |
|-----------------------------------|---------------------------------------------|----------------------------------------------|-------------------------------------------|------------------------------------------------|
| wget, lynx ou<br>via browser      | НТТР                                        | TCP                                          | 80                                        | 20                                             |
| ssh, sftp                         | SSH                                         | TCP                                          | 22                                        | 20                                             |
| ftp                               | FTP                                         | TCP                                          | 21                                        | 20                                             |
| Tftp                              | TFTP                                        | UDP                                          | 69                                        | 8                                              |
| telnet                            | Telnet                                      | TCP                                          | 23                                        | 20                                             |
| nslookup ou<br>dig                | DNS                                         | UDP                                          | 53                                        | 8                                              |
| Ping                              | Ping                                        | -                                            | -                                         | -                                              |
| Traceroute                        | Traceroute                                  | UDP                                          | 33437                                     | 8                                              |
| Outras:                           |                                             |                                              |                                           |                                                |

|   | 118 47.031933427                     |                       | 10.0.2.15                  | DINO        | 74 40642                                                                                 |  |  |  |
|---|--------------------------------------|-----------------------|----------------------------|-------------|------------------------------------------------------------------------------------------|--|--|--|
| Γ | 119 47.032228866                     |                       | 193.136.9.240              | TCP         | 74 48642 - 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACH                                  |  |  |  |
|   | 120 47.048114105                     |                       | 10.0.2.15                  | TCP         | 60 80 → 48642 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=0 MS                                  |  |  |  |
|   | 121 47.048155861                     |                       | 193.136.9.240              | TCP         | 54 48642 → 80 [ACK] Seq=1 Ack=1 Win=64240 Len=0                                          |  |  |  |
| * | 122 47.048812168                     |                       | 193.136.9.240              | HTTP<br>TCP | 215 GET /disciplinas/CC-LEI/ HTTP/1.1                                                    |  |  |  |
|   | 123 47.049237788                     |                       | 10.0.2.15                  | TCP         | 60 80 → 48642 [ACK] Seq=1 Ack=162 Win=65535 Len=0                                        |  |  |  |
|   | 124 47.066874776                     |                       | 10.0.2.15                  |             | 1514 80 → 48642 [PSH, ACK] Seq=1 Ack=162 Win=65535 Len=14                                |  |  |  |
|   | 125 47.066895263<br>126 47.068606137 |                       | 193.136.9.240              | TCP         | 54 48642 - 80 [ACK] Seq=162 Ack=1461 Win=62780 Len=0                                     |  |  |  |
|   | 127 47.068625773                     |                       | 10.0.2.15<br>193.136.9.240 | TCP<br>TCP  | 4434 80 → 48642 [ACK] Seq=1461 Ack=162 Win=65535 Len=4386                                |  |  |  |
|   | 128 47.069020086                     |                       | 193.136.9.240              | HTTP        | 54 48642 - 80 [ACK] Seq=162 Ack=5841 Win=61320 Len=0                                     |  |  |  |
| + | 129 47.069026698                     |                       | 193.136.9.240              | TCP         | 3233 HTTP/1.1 200 OK (text/html)<br>54 48642 → 80 [ACK] Seq=162 Ack=9020 Win=58400 Len=0 |  |  |  |
|   | 130 47.071775519                     |                       | 193.136.9.240              | TCP         | 54 48642 → 80 [FIN, ACK] Seq=162 Ack=9020 Win=62780 Ler                                  |  |  |  |
|   | 131 47.072252682                     |                       | 10.0.2.15                  | TCP         | 60 80 → 48642 [ACK] Seq=9020 Ack=163 Win=65535 Len=0                                     |  |  |  |
|   | 132 47.088045906                     |                       | 10.0.2.15                  | TCP         | 60 80 → 48642 [FIN, ACK] Seq=9020 Ack=163 Win=65535 Len                                  |  |  |  |
|   | 133 47.088069468                     |                       | 193.136.9.240              | TCP         | 54 48642 → 80 [ACK] Seq=163 Ack=9021 Win=62780 Len=0                                     |  |  |  |
| _ |                                      | PcsCompu 06:03:48     | RealtekU 12:35:02          | ARP         | 42 Who has 10.0.2.2? Tell 10.0.2.15                                                      |  |  |  |
|   | 135 52.254885276                     |                       | PcsCompu 06:03:48          | ARP         | 60 10.0.2.2 is at 52:54:00:12:35:02                                                      |  |  |  |
|   | 136 57.715306589                     |                       | 193.136.152.72             | NTP         | 90 NTP Version 4, client                                                                 |  |  |  |
| 4 | 100 07.710000000                     | 10.0.2.10             | 130.130.132.72             | 1411        | 30 MT Version 4, crient                                                                  |  |  |  |
| 4 |                                      |                       |                            |             | <u> </u>                                                                                 |  |  |  |
|   | [Stream index: 0]                    |                       |                            |             |                                                                                          |  |  |  |
|   | [TCP Segment Len:                    |                       |                            |             |                                                                                          |  |  |  |
|   |                                      | 1 (relative sequence) | ence number)               |             |                                                                                          |  |  |  |
|   |                                      | (raw): 3204793634     |                            |             |                                                                                          |  |  |  |
|   |                                      |                       | ive sequence number)]      |             |                                                                                          |  |  |  |
|   |                                      | umber: 1 (relative    | e ack number)              |             |                                                                                          |  |  |  |
|   | Acknowledgment number (raw): 192002  |                       |                            |             |                                                                                          |  |  |  |
|   |                                      | er Length: 20 bytes   | (5)                        |             |                                                                                          |  |  |  |
|   | Flags: 0x018 (PSF                    | H. ACK1               |                            |             | ŀ                                                                                        |  |  |  |

Figure 7: Captura Wget

| No. | Time              | Source                     | Destination             | Protocol     | Length      | Info                                        |
|-----|-------------------|----------------------------|-------------------------|--------------|-------------|---------------------------------------------|
| T   | 7 0.281864242     | 193.136.9.201              | 10.0.2.15               | TCP          | 60          | 22 → 36230 [ACK] Seq=1 Ack=42 Win=65535 Ler |
|     | 8 0.325336944     | 193.136.9.201              | 10.0.2.15               | SSHv2        | 95          | Server: Protocol (SSH-2.0-OpenSSH_8.9p1 Ubu |
|     | 9 0.325360454     | 10.0.2.15                  | 193.136.9.201           | TCP          | 54          | 36230 → 22 [ACK] Seq=42 Ack=42 Win=64199 L∈ |
|     | 10 0.326360312    | 10.0.2.15                  | 193.136.9.201           | SSHv2        | 1566        | Client: Key Exchange Init                   |
|     | 11 0.326597630    | 193.136.9.201              | 10.0.2.15               | TCP          | 60          | 22 - 36230 [ACK] Seq=42 Ack=1502 Win=65535  |
|     | 12 0.326597720    | 193.136.9.201              | 10.0.2.15               | TCP          | 60          | 22 - 36230 [ACK] Seq=42 Ack=1554 Win=65535  |
|     | 13 0.328408721    | 193.136.9.201              | 10.0.2.15               | SSHv2        |             | Server: Key Exchange Init                   |
|     | 14 0.328414661    | 10.0.2.15                  | 193.136.9.201           | TCP          |             | 36230 → 22 [ACK] Seq=1554 Ack=1122 Win=6372 |
|     | 15 0.330123306    | 10.0.2.15                  | 193.136.9.201           | SSHv2        |             | Client: Diffie-Hellman Key Exchange Init    |
|     | 16 0.330475742    | 193.136.9.201              | 10.0.2.15               | TCP          |             | 22 → 36230 [ACK] Seq=1122 Ack=1602 Win=6550 |
|     | 17 0.352068593    | 193.136.9.201              | 10.0.2.15               | SSHv2        |             | Server: Diffie-Hellman Key Exchange Reply,  |
|     | 18 0.352092434    | 10.0.2.15                  | 193.136.9.201           | TCP          |             | 36230 → 22 [ACK] Seq=1602 Ack=1718 Win=6372 |
|     | 19 0.354285742    | 10.0.2.15                  | 193.136.9.201           | SSHv2        |             | Client: New Keys                            |
|     | 20 0.354651079    | 193.136.9.201              | 10.0.2.15               | TCP          |             | 22 → 36230 [ACK] Seq=1718 Ack=1618 Win=6550 |
|     | 21 0.355036181    | 10.0.2.15                  | 193.136.9.201           | SSHv2        |             | Client: Encrypted packet (len=44)           |
|     | 22 0.355495800    | 193.136.9.201              | 10.0.2.15               | TCP          |             | 22 → 36230 [ACK] Seq=1718 Ack=1662 Win=6553 |
|     | 23 0.378152635    | 193.136.9.201              | 10.0.2.15               | SSHv2        |             | Server: Encrypted packet (len=44)           |
|     | 24 0.378177207    | 10.0.2.15                  | 193.136.9.201           | TCP          |             | 36230 → 22 [ACK] Seq=1662 Ack=1762 Win=6372 |
|     | 25 0.378666407    | 10.0.2.15                  | 193.136.9.201           | SSHv2        |             | Client: Encrypted packet (len=60)           |
|     | 26 0.378892826    | 193.136.9.201              | 10.0.2.15               | TCP          |             | 22 → 36230 [ACK] Seq=1762 Ack=1722 Win=6553 |
|     | 27 0.403401964    | 193.136.9.201              | 10.0.2.15               | SSHv2        |             | Server: Encrypted packet (len=52)           |
|     | 28 0.454036172    | 10.0.2.15                  | 193.136.9.201           | TCP          |             | 36230 → 22 [ACK] Seq=1722 Ack=1814 Win=6372 |
| 4   | 29 6 525314334    | 10 0 2 15                  | 193 136 9 201           | SSHv2        | 138         | Client: Encrypted packet (len=84)           |
|     | - SSM Vorsion 2 / | encryption:chacha20-poly13 | ASMononech com mac      | ··cimplicit> | compressio  | n:none)                                     |
| ,   | Packet Lengti     |                            | oogopenssii.com mac     | Timpiicit    | Combi essio | ii.liolie)                                  |
|     | Padding Lengt     |                            |                         |              |             |                                             |
|     |                   |                            |                         |              |             |                                             |
|     |                   | ode: Key Exchange Init (20 | )                       |              |             |                                             |
|     | → Algorithms      |                            | <i>'</i>                |              |             |                                             |
|     |                   | eed311ba4681392a956dc650   | 464c0bdf                |              |             |                                             |
|     | kex_alg           | orithms length: 265        |                         |              |             |                                             |
| 003 | o ff ff e8 b6 00  | 00 00 00 04 34 07 14 ee d  | 3 11 ba · · · · · · · · | .4           |             |                                             |
| 004 |                   | 6d c6 50 46 4c 0b df 00 0  |                         | FLOO         |             |                                             |
| 005 |                   | 32 35 35 31 39 2d 73 68 6  |                         | 19-sha25     |             |                                             |
| 006 |                   |                            |                         | 5519-sha     |             |                                             |
| 007 |                   | 69 62 73 73 68 2e 6f 72 6  |                         | sh.org,e     |             |                                             |
| 008 |                   | 68 61 32 2d 6e 69 73 74 7  |                         | -nistp25     |             |                                             |
| 009 | 36 2c 65 63 64    | 68 2d 73 68 61 32 2d 6e 6  | 9 73 74 6,ecdh-s        | ha2-nist     |             |                                             |
| 00a | 70 33 38 34 2c    | 65 63 64 68 2d 73 68 61 3  | 2 2d 6e p384,ecd        | h-sha2-n     |             |                                             |
| 00b | 69 73 74 70 35    | 32 31 2c 73 6e 74 72 75 7  | 0 37 36 istp521,        | sntrup76     |             |                                             |
| 00c |                   |                            |                         | sha512@o     |             |                                             |
| 00d | 70 65 6e 73 73    | 68 2e 63 6f 6d 2c 64 69 6  | 6 66 69 penssh.c        | om, diffi    |             |                                             |
| 00e | 65 2d 68 65 6c    | 6c 6d 61 6e 2d 67 72 6f 7  | 5 70 2d e-hellma        | n-group-     |             |                                             |
| 00f | 65 78 63 68 61    | 6e 67 65 2d 73 68 61 32 3  | 5 36 2c exchange        | -sha256,     |             |                                             |
| 010 | 64 69 66 66 69    | 65 2d 68 65 6c 6c 6d 61 6  | e 2d 67 diffie-h        | ellman-g     |             |                                             |
| 011 |                   |                            |                         | ha512, di    |             |                                             |
| 012 | 66 66 69 65 2d    | 68 65 6c 6c 6d 61 6e 2d 6  | 7 72 6f ffie-hel        | lman-gro     |             |                                             |
|     |                   |                            |                         |              |             |                                             |

Figure 8: Captura SSH

```
341 541.982821364 10.0.2.15
                                                                                                                                                                                                                                                                                                                                                                                                                         74 [TCP Retransmission] 40060 → 17071 [SYN] Seq=0 Win=6
60 17071 → 40060 [SYN, ACK] Seq=0 Ack=1 Win=65535 Len=6
54 40060 → 17071 [ACK] Seq=1 Ack=1 Win=64240 Len=0
                                                                                                                                                                                                                                        193.137.214.36
                342 541.999901216 193.137.214.36
343 541.999947317 10.0.2.15
                                                                                                                                                                                                                                       10.0.2.15
193.137.214.36
                                                                                                                                                                                                                                                                                                                                                            TCP
                                                                                                                                                                                                                                                                                                                                                            TCP
           343 541.99947317 10.0.2.15
345 542.090866304 193.137.214.36
346 542.090866304 193.137.214.36
346 542.018893580 193.137.214.36
347 542.018893580 193.137.214.36
349 542.018894111 193.137.214.36
349 542.018894111 193.137.214.36
350 542.019883736 10.0.2.15
351 542.020001212 10.0.2.15
351 542.020001212 10.0.2.15
352 542.022482090 193.137.214.36
353 542.034754031 193.137.214.36
354 556.543807886 193.137.214.36
357 556.543807886 193.137.214.36
357 556.543807886 193.137.214.36
358 556.543807886 193.137.214.36
358 556.54380780 10.0.2.15
359 556.543405290 10.0.2.15
369 556.54345545 10.0.2.15
361 556.544415290 10.0.2.15
361 556.544415290 10.0.2.15
                                                                                                                                                                                                                                                                                                                                                                                                                54 40060 - 17071 [ACK] Seq=1 Ack=1 Win=64240 Len=0
67 Request: REIR KEADME
60 21 - 56490 [ACK] Seq=621 Ack=104 Win=65535 Len=0
397 FTP Data: 343 bytes (PASV) (PASV)
54 40060 - 17071 [ACK] Seq=1 Ack=344 Win=63897 Len=0
60 17071 - 40060 [FIN, ACK] Seq=344 Ack=1 Win=65535 Len
119 Response: 150 Opening BINARY mode data connection fc
54 56490 - 21 [ACK] Seq=104 Ack=868 Win=64062 Len=0
54 40060 - 17071 [FIN, ACK] Seq=1 Ack=345 Win=63897 Len
60 17071 - 40060 [ACK] Seq=345 Ack=2 Win=65535 Len=0
78 Response: 226 Transfer complete.
54 56490 - 21 [ACK] Seq=104 Ack=710 Win=64062 Len=0
60 Request: QUIT
60 21 - 56490 [ACK] Seq=710 Ack=110 Win=65535 Len=0
68 Response: 221 Goodbye.
54 56490 - 21 [ACK] Seq=710 Ack=724 Win=64062 Len=0
60 21 - 56490 [FIN, ACK] Seq=724 Ack=110 Win=65535 Len=0
60 21 - 56490 [ACK] Seq=725 Ack=110 Win=65535 Len=0
60 21 - 56490 [ACK] Seq=725 Ack=110 Win=65535 Len=0
60 21 - 56490 [ACK] Seq=725 Ack=111 Win=65535 Len=0
60 90 NTP Version 4, Server
                                                                                                                                                                                                                                        10.0.2.15
                                                                                                                                                                                                                                       10.0.2.15
10.0.2.15
193.137.214.36
10.0.2.15
10.0.2.15
                                                                                                                                                                                                                                                                                                                                                         FTP-DA...
TCP
TCP
                                                                                                                                                                                                                                                                                                                                                         FTP
TCP
TCP
TCP
                                                                                                                                                                                                                                    10.0.2.15
193.137.214.36
193.137.214.36
10.0.2.15
10.0.2.15
193.137.214.36
193.137.214.36
10.0.2.15
                                                                                                                                                                                                                                                                                                                                                         FTP
TCP
FTP
TCP
                                                                                                                                                                                                                                                                                                                                                         FTP
TCP
TCP
TCP
TCP
                                                                                                                                                                                                                                       193.137.214.36
10.0.2.15
193.137.214.36
                                                                                                                                                                                                                                       10.0.2.15
91.189.91.157
10.0.2.15
Frame 344: 67 bytes on wire (536 bits), 67 bytes captured (536 bits) on interface enp0s3, id 0 Ethernet II, Src: PcsCompu_06:03:48 (08:00:27:06:03:48), Dst: RealtekU_12:35:02 (52:54:00:12:35:02) Internet Protocol Version 4, Src: 10.0.2.15, Dst: 193.137.214.36 Transmission Control Protocol, Src Port: 56490, Dst Port: 21, Seq: 91, Ack: 621, Len: 13 Source Port: 56490
                                  stinatio
                   [Stream index: 1]
[TCP Segment Len: 13]
Sequence number: 91
                                                                                                                                                  (relative sequence number)
```

Figure 9: Captura FTP

| No. | Time            | Source                     | Destination      | Protocol | Length Info                                    |
|-----|-----------------|----------------------------|------------------|----------|------------------------------------------------|
|     | 3 35.652951232  |                            | 10.0.2.15        | TCP      | 60 23 → 34478 [ACK] Seq=505 Ack=66 Win=65535 L |
|     | 4 35.669716977  | 193.136.9.33               | 10.0.2.15        | TELNET   | 60 Telnet Data                                 |
|     | 5 35.669730789  | 10.0.2.15                  | 193.136.9.33     | TCP      | 54 34478 → 23 [ACK] Seq=66 Ack=506 Win=63784 L |
|     | 6 36.048452891  | 10.0.2.15                  | 193.136.9.33     | TELNET   | 55 Telnet Data                                 |
|     |                 | 193.136.9.33               | 10.0.2.15        | TCP      | 60 23 → 34478 [ACK] Seq=506 Ack=67 Win=65535 L |
|     |                 | 193.136.9.33               | 10.0.2.15        | TELNET   | 60 Telnet Data                                 |
|     | 9 36.065855059  | 10.0.2.15                  | 193.136.9.33     | TCP      | 54 34478 → 23 [ACK] Seq=67 Ack=507 Win=63784 L |
|     | 0 36.194933446  | 10.0.2.15                  | 193.136.9.33     | TELNET   | 55 Telnet Data                                 |
|     | 1 36.195358704  | 193.136.9.33               | 10.0.2.15        | TCP      | 60 23 → 34478 [ACK] Seq=507 Ack=68 Win=65535 L |
|     | 2 36.221368738  | 193.136.9.33               | 10.0.2.15        | TELNET   | 60 Telnet Data                                 |
|     | 3 36.221387689  | 10.0.2.15                  | 193.136.9.33     | TCP      | 54 34478 → 23 [ACK] Seq=68 Ack=508 Win=63784 L |
|     | 4 36.262052334  |                            | 193.136.9.33     | TELNET   | 55 Telnet Data                                 |
|     | 5 36.262556461  | 193.136.9.33               | 10.0.2.15        | TCP      | 60 23 → 34478 [ACK] Seq=508 Ack=69 Win=65535 L |
|     | 6 36.311622122  | 193.136.9.33               | 10.0.2.15        | TELNET   | 60 Telnet Data                                 |
|     | 7 36.311655226  | 10.0.2.15                  | 193.136.9.33     | TCP      | 54 34478 → 23 [ACK] Seq=69 Ack=509 Win=63784 L |
|     |                 | 10.0.2.15                  | 193.136.9.33     | TELNET   | 56 Telnet Data                                 |
|     |                 | 193.136.9.33               | 10.0.2.15        | TCP      | 60 23 → 34478 [ACK] Seq=509 Ack=71 Win=65535 L |
|     | 0 36.920848897  |                            | 10.0.2.15        | TELNET   | 66 Telnet Data                                 |
|     | 1 36.920866907  | 10.0.2.15                  | 193.136.9.33     | TCP      | 54 34478 → 23 [ACK] Seq=71 Ack=521 Win=63784 L |
|     | 2 37.702957275  | 10.0.2.15                  | 193.136.9.33     | TELNET   | 55 Telnet Data                                 |
|     | 3 37.703404280  | 193.136.9.33               | 10.0.2.15        | TCP      | 60 23 → 34478 [ACK] Seq=521 Ack=72 Win=65535 L |
|     |                 | 10.0.2.15                  | 193.136.9.33     | TELNET   | 55 Telnet Data                                 |
|     | 5 38 197905326  |                            | 10 0 2 15        | TCP      | 60 23 → 34478 [ACK] Seg=521 Ack=73 Win=65535 I |
| 4   |                 |                            |                  |          |                                                |
|     | Acknowledgment  | number (raw): 21248509     |                  |          |                                                |
|     |                 | der Length: 20 bytes (5)   |                  |          |                                                |
|     | Flags: 0x018 (P |                            |                  |          |                                                |
|     | Window size val |                            |                  |          |                                                |
|     |                 | dow size: 637841           |                  |          |                                                |
|     |                 | aling factor: -2 (no windo | w scaling used)1 |          |                                                |
|     | Checksum: 0xd6d |                            |                  |          |                                                |
|     | [Checksum Statu |                            |                  |          |                                                |
|     | Jones Court     | 0. 00.1.100                |                  |          |                                                |

Figure 10: Captura Telnet

| No. | Time              | Source            | Destination       | Protocol | Length Info       |                               |
|-----|-------------------|-------------------|-------------------|----------|-------------------|-------------------------------|
|     | 67 8.843765669    | 10.0.2.15         | 88.157.128.22     | NTP      | 90 NTP Version 4, | client                        |
|     | 68 8.852268528    | 88.157.128.22     | 10.0.2.15         | NTP      | 90 NTP Version 4, | server                        |
|     | 69 10.843314391   | 10.0.2.15         | 88.157.128.22     | NTP      | 90 NTP Version 4, |                               |
|     | 70 10.853584267   | 88.157.128.22     | 10.0.2.15         | NTP      | 90 NTP Version 4, | server                        |
|     | 71 12.843520623   | 10.0.2.15         | 88.157.128.22     | NTP      | 90 NTP Version 4, |                               |
|     | 72 12.854859251   | 88.157.128.22     | 10.0.2.15         | NTP      | 90 NTP Version 4, |                               |
|     | 73 14.843522490   |                   | 88.157.128.22     | NTP      | 90 NTP Version 4, |                               |
|     | 74 14.853932759   | 88.157.128.22     | 10.0.2.15         | NTP      | 90 NTP Version 4, |                               |
|     | 75 17.843544810   | 10.0.2.15         | 109.48.74.248     | NTP      | 90 NTP Version 4, |                               |
|     | 76 17.869145538   | 109.48.74.248     | 10.0.2.15         | NTP      | 90 NTP Version 4, |                               |
| _+  | 77 19.960203602   | 10.0.2.15         | 192.168.1.254     | DNS      |                   | 0x00ab A www.uminho.pt OPT    |
| -   | 78 19.971448756   | 192.168.1.254     | 10.0.2.15         | DNS      |                   | response 0x00ab A www.uminho. |
|     | 79 19.972377040   |                   | 192.168.1.254     | DNS      |                   | 0xcd94 AAAA www.uminho.pt OPT |
|     | 80 19.983773047   | 192.168.1.254     | 10.0.2.15         | DNS      |                   | response 0xcd94 AAAA www.umin |
|     | 81 20.071630720   | PcsCompu_06:03:48 | RealtekU_12:35:02 |          |                   | .2? Tell 10.0.2.15            |
|     | 82 20.072574569   | RealtekU_12:35:02 | PcsCompu_06:03:48 |          |                   | 52:54:00:12:35:02             |
|     | 83 57.844381041   |                   | 192.168.1.254     | DNS      |                   | 0xab63 A 1.ubuntu.pool.ntp.or |
|     | 84 57.844757299   |                   | 192.168.1.254     | DNS      |                   | 0x15a7 AAAA 1.ubuntu.pool.ntp |
|     | 85 57.912742227   | 192.168.1.254     | 10.0.2.15         | DNS      |                   | response 0xab63 A 1.ubuntu.po |
|     | 86 57.924336076   | 192.168.1.254     | 10.0.2.15         | DNS      |                   | response 0x15a7 AAAA 1.ubuntu |
|     | 87 57.924598140   | 10.0.2.15         | 194.117.47.44     | NTP      | 90 NTP Version 4, |                               |
|     | 88 57.940056318   | 194.117.47.44     | 10.0.2.15         | NTP      | 90 NTP Version 4, |                               |
| 4   | 89 61 843629059   | 10 0 2 15         | 194 117 47 44     | NTP      | 90 NTP Version 4  | client                        |
| 4   |                   |                   |                   |          |                   |                               |
| → D | omain Name System |                   |                   |          |                   |                               |
|     | Transaction ID:   |                   |                   |          |                   |                               |
| 1   | Flags: 0x0100 St  | tandard query     |                   |          |                   |                               |
|     | Questions: 1      |                   |                   |          |                   |                               |
|     | Answer RRs: 0     |                   |                   |          |                   |                               |
|     | Authority RRs: (  |                   |                   |          |                   |                               |
|     | Additional RRs:   | 1                 |                   |          |                   |                               |
|     | Queries           |                   |                   |          |                   |                               |

Figure 11: Captura NSLookUp

```
4 0.014054832
                                                          192.168.1.254
                                                                                                                                                                                   DNS
                                                                                                                                                                                                                                     112 Standard query response 0x/ce4 AAAA www.goog
                                                                                                                                                                                                                                   98 Echo (ping) request id=0x0001, seq=1/256, 1
98 Echo (ping) reply id=0x0001, seq=1/256, 1
98 Standard query 0x0dce PTR 67.201.250.142.in-
125 Standard query response 0x0dce PTR 67.201.25
87 Standard query 0xd1f5 PTR 67.201.250.142.in-
14 Standard query response 0xd1f5 PTR 67.201.25
98 Echo (ping) request id=0x0001, seq=2/512, t
98 Echo (ping) reply id=0x0001, seq=2/512, t
90 NTP Version 4, client
90 NTP Version 4, server
98 Echo (ping) request id=0x0001 sen=3/768 t
                                                                                                                                                                                    ICMF
                                                           142.250.201.67
               6 0.035128460
                                                         10.0.2.15
192.168.1.254
10.0.2.15
192.168.1.254
                                                                                                                                   192.168.1.254
                   0.035434210
                                                                                                                                                                                   DNS
              8 0.041080703
9 0.041640298
                                                                                                                                  10.0.2.15
192.168.1.254
                                                                                                                                                                                   DNS
            10 0.045099495
                                                                                                                                  10.0.2.15
                                                                                                                                                                                    DNS
                                                         10.0.2.15
142.250.201.67
10.0.2.15
193.136.152.71
                                                                                                                                 142.250.201.67
10.0.2.15
193.136.152.71
            11 1.016958323
                                                                                                                                                                                    TCMP
            12 1.043169481
13 1.952176980
14 1.961719128
                                                                                                                                  10.0.2.15
                                                                                                                                                                                    NTP
                                                                                                                                  142.250.201.67
10.0.2.15
194.117.47.42
10.0.2.15
            15 2.018705582
16 2.037875599
                                                         10.0.2.15
142.250.201.67
10.0.2.15
194.117.47.42
                                                                                                                                                                                   ICMP
ICMP
NTP
NTP
                                                                                                                                                                                                                                       98 Echo (ping) request id=0x0001, seq=3/768, t
98 Echo (ping) reply id=0x0001, seq=3/768, t
90 NTP Version 4, client
90 NTP Version 4, server
            17 2.952590438
18 2.962699728
                                                                                                                                                                                                                                      90 NTP Version 4, server
98 Echo (ping) request id=0x0001, seq=4/1024,
98 Echo (ping) reply id=0x0001, seq=4/1024,
90 NTP Version 4, client
90 NTP Version 4, server
98 Echo (ning) request id=0x0001 seq=5/1280
            19 3.021197997
20 3.040128708
21 3.952781304
                                                         10.0.2.15
142.250.201.67
10.0.2.15
                                                                                                                                 142.250.201.67
10.0.2.15
194.8.30.16
                                                                                                                                                                                   ICMP
ICMP
NTP
                                                         194.8.30.16
10 0 2 15
            22 3.969998937
23 4 022643695
                                                                                                                                  10.0.2.15
142 250 201 67
                                                                                                                                                                                    NTP
                                                                                                                                                                                    TCMP
     Frame 5: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface enp0s3, id 0
Ethernet II, Src: PcsCompu_06:03:48 (08:00:27:06:03:48), Dst: RealtekU_12:35:02 (52:54:00:12:35:02)
Internet Protocol Version: 4, Src: 10.0.2.15, Dst: 142.250.201.67
0100 ... = Version: 4
... 0101 = Header Length: 20 bytes (5)
            ... 0101 = Header Length: 20 bytes (5)
Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
Total Length: 84
Identification: 0xb49f (46239)
0000 52 54 00 12 35 02 08 00 27 06 03 48 08 00 45 00 0010 00 54 b4 97 40 00 40 01 21 bd 0a 00 02 07 8e fa 0020 c9 43 08 00 70 78 00 01 00 01 62 29 1b 65 00 00
                                                                                                                                                         · · b) · e
0050
0060
```

Figure 12: Captura Ping

| No. Time            | Source                                                 | Destination         | Protocol | Length      | Into                                         |
|---------------------|--------------------------------------------------------|---------------------|----------|-------------|----------------------------------------------|
| 1 0.000000000       | 10.0.2.15                                              | 192.168.1.254       | DNS      | 78          | Standard query 0x53db A cisco.di.uminho.pt   |
| 2 0.000371510       | 10.0.2.15                                              | 192.168.1.254       | DNS      | 78          | Standard query 0x5894 AAAA cisco.di.uminho.g |
| 3 0.837075292       | 192.168.1.254                                          | 10.0.2.15           | DNS      | 94          | Standard query response 0x53db A cisco.di.um |
| 4 0.837075693       | 192.168.1.254                                          | 10.0.2.15           | DNS      | 127         | Standard query response 0x5894 AAAA cisco.di |
| 5 0.838017261       | 10.0.2.15                                              | 193.136.19.254      | UDP      | 74          | 50616 → 33434 Len=32                         |
| 6 0.838251430       | 10.0.2.2                                               | 10.0.2.15           | ICMP     | 70          | Time-to-live exceeded (Time to live exceeded |
| 7 0.838582097       | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 33852 → 33435 Len=32                         |
| 8 0.838849765       | 10.0.2.2                                               | 10.0.2.15           | ICMP     |             | Time-to-live exceeded (Time to live exceeded |
| 9 0.838932314       | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 34181 → 33436 Len=32                         |
| 10 0.839154479      | 10.0.2.2                                               | 10.0.2.15           | ICMP     |             | Time-to-live exceeded (Time to live exceeded |
| 11 0.839235956      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 40832 → 33437 Len=32                         |
| 12 0.839624311      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 35945 → 33438 Len=32                         |
| 13 0.839888872      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 34269 → 33439 Len=32                         |
| 14 0.840149215      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 47392 → 33440 Len=32                         |
| 15 0.840409899      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 44189 → 33441 Len=32                         |
| 16 0.840685944      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 46827 → 33442 Len=32                         |
| 17 0.840953652      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 55118 → 33443 Len=32                         |
| 18 0.841218915      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 50780 → 33444 Len=32                         |
| 19 0.841482615      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 55905 → 33445 Len=32                         |
| 20 0.841957818      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 34205 → 33446 Len=32                         |
| 21 0.842225706      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 47029 → 33447 Len=32                         |
| 22 0.842488274      | 10.0.2.15                                              | 193.136.19.254      | UDP      |             | 53359 → 33448 Len=32                         |
| 23 A 842934768      | 10 0 2 15                                              | 193 136 19 254      | LIDP     | /4          | 33918 → 33449 Len=32                         |
|                     |                                                        |                     |          |             | · ·                                          |
|                     | on wire (592 bits), 74 b                               |                     |          |             |                                              |
|                     | PcsCompu_06:03:48 (08:00:                              |                     |          | ::35:02 (52 | :54:00:12:35:02)                             |
|                     | Version 4, Src: 10.0.2.15                              | , DST: 193.136.19.2 | 254      |             |                                              |
| 0100 = Ver          |                                                        |                     |          |             |                                              |
|                     | der Length: 20 bytes (5)<br>Services Field: 0x00 (DSCF | O. CCO. FCN. Not FC | Τ.\      |             |                                              |
| Total Length: 6     |                                                        | 2. C30, ECN: NOL-EC | .1)      |             |                                              |
|                     | 0xee7e (61054)                                         |                     |          |             |                                              |
|                     |                                                        |                     |          |             |                                              |
| 0000 52 54 00 12 35 |                                                        |                     |          |             |                                              |
| 0010 00 3c ee 7e 00 |                                                        |                     |          |             |                                              |
|                     | 9d 00 28 e1 ce 40 41 42 4                              |                     |          |             |                                              |
|                     | 4b 4c 4d 4e 4f 50 51 52 5                              |                     |          |             |                                              |
| 0040 56 57 58 59 5a | 5b 5c 5d 5e 5f                                         | VWXYZ[\]            | ^_       |             |                                              |
|                     |                                                        |                     |          |             |                                              |

Figure 13: captura Traceroute

# 3 Conclusões

Após a realização e conclusão deste trabalho prático, é seguro dizer que foi um ótimo projeto para aprofundar conceitos relativos aos diferentes protocolos estudados, sendo estes referentes tanto à camada de transporte como à camada de aplicação, para além de obtermos uma melhor perceção das vantagens e desvantagens que cada um destes protocolos traz, o que, por consequência, nos ajuda a perceber quando devem ser utilizados. O facto de conseguirmos analisar estes conceitos em tempo real, através do uso das ferramentas aconselhadas, torna toda a experiência mais simples e percetível.

Desta forma, consideramos que o fizemos um bom trabalho e esperamos poder vir a utilizar e aprofundar todos os conceitos estudados no futuro.