Let X be the set

$$\{\infty\}\coprod\mathbb{N}\coprod(\mathbb{N}\times\mathbb{N})$$

and consider the topology τ_{Arens} generated by

$$\{(a,b) : (a,b) \in \mathbb{N} \times \mathbb{N}\}$$

$$B_{n,i} = \{n\} \cup \{(n,k) : k \ge i\}$$

$$W_m = \{\infty\} \cup (\bigcup_{m \ge j} B_{m,1} \setminus \{(m,b_1), ...(m,b_{s_m})\})$$

This says the pairs are all isolated points, and open sets around n contain all but finitely many pairs with first coordinate n. Finally, the s_m are some finite numbers, depending on m, so an open set containing ∞ all but finitely many of all but finitely many columns.

Definition 1. The Arens space is (X, τ_{Arens}) .

Claim 1. In the Arens space, the sequential closure operator is not idempotent. That is, the equation scl(scl(A)) = scl(A) is **not** true.

Proof. Let $A = \mathbb{N} \times \mathbb{N}$. For any fixed n, we have the sequence $x_i = (n, i)$, which converges to $n \in \mathbb{N}$ (by definition of $B_{n,i}$).

On the other hand, no sequence in $\mathbb{N} \times \mathbb{N}$ can converge to ∞ . Suppose $x_i = (a_i, b_i)$ did so. There must be a subsequence $x_{i,j}$ with a_{ij} going to infinity, otherwise we could remove the finitely many columns appearing in the sequence and get an open set around ∞ which does not contain the sequence. Then, form an open set W_m by setting $s_m = 1$ for all m, and removing (m, b_{ij}) whenever $a_{ij} = m$. Since the a_{ij} go to infinity, the sequence cannot eventually be contained in the neighborhood.

It is clear that $x_i = i$ converges to ∞ .

Therefore,

$$scl(\mathbb{N} \times \mathbb{N}) = \mathbb{N} \cup \mathbb{N} \times \mathbb{N}$$

but

$$scl(scl(\mathbb{N}\times\mathbb{N}))=\{\infty\}\cup\mathbb{N}\cup\mathbb{N}\times\mathbb{N}$$

Definition 2. A space (X, τ) is called **Frechét-Urysohn** if the sequential closure operator is idempotent.

Definition 3. A set A is called **sequentially closed** if the limit of any sequence in A is also in A.

Definition 4. A topological space (X, τ) is called **sequential** if every sequentially closed subset is closed.

Claim 2. The Arens space is sequential.

Proof. Say A is a sequentially closed set, so we must show A is closed. Consider the n for which $\{(n,i)\} \cap A$ is infinite. For any such n, we have $n \in A$ since this gives a convergent sequence. If there are only finitely many such n, then the complement of A is open: if N is the maximum such n, then W_{N+1} (minus finitely many pairs in each column) is most of the complement, and for any n that doesn't appear, some $B_{n,k}$ will cover all but finitely many of the column. Everything in the complement not in one of these sets is a pair (a,b), so any union of them will be open. Thus the complement of A is open, and A is closed.

Let us give an alternate proof:

Claim 3. Any first countable space is sequential.

Proof. Suppose A is a sequentially closed set, and pick x in the closure of A. This means every open set containing x intersects A (otherwise x would be in the interior of the complement of A). Since X is first countable, there is a (descending) sequence U_i of open sets containing x such that any neighborhood V of x contains some U_i . Pick a sequence $a_i \in U_i \cap A$, and we claim $\lim_{i\to\infty} a_i = x$, thus $x \in A$, and A is closed.

Claim 4. The quotient of a sequential space is sequential.

Proof. This is maybe easier to do with the idea of 'sequentially open': Say a set A is **sequentially open** if, whenever (x_i) converges to $x \in A$, there is some N such that $x_n \in A$ for all $n \geq N$. One checks that a set is sequentially open if and only if its complement is sequentially closed, and a space is sequential if and only if every sequentially open set is open.

Suppose $A \subseteq Y$ is a sequentially open set, where $f: X \to Y$ is the projection mapping of a quotient. Then $f^{-1}(A)$ is sequentially open in X: if (x_i) is a sequence converging to $x \in f^{-1}(A)$, then $(y_i) = (f(x_i))$ is a sequence in Y with $\lim_{x \to \infty} (y_i) = f(x) \in A$. Since A is sequentially closed, for some N we have $y_n \in A$ whenever $n \geq N$. This means $x_n \in f^{-1}(A)$ for $n \geq N$,

so $f^{-1}(A)$ is sequentially open. Since X is sequential, this means $f^{-1}(A)$ is open, hence A is open in the quotient topology on Y.

Now, we present the Arens space as a quotient of a first countable space. Let

$$Y = \left\{ (a, b) \in \mathbb{R}^2 : a = \frac{1}{i}, b = \frac{1}{j}, i, j \in \mathbb{N}_+ \right\} \cup \left\{ (\frac{1}{i}, 0) : i \in \mathbb{N}_+ \right\}$$
$$\cup \left\{ (\frac{1}{i}, -1) \right\} \cup \left\{ (0, -1) \right\}$$

with the equivalence relation

$$(\frac{1}{i},0) \sim (\frac{1}{i},-1)$$

Claim 5. The Arens space is homeomorphic to Y/\sim .

Remark 1. It is **not** true that the quotient of a first countable space is first countable. We have seen this with the 'infinite wedge of circles', namely \mathbb{R}/\mathbb{Z} (this is the topological quotient, under the equivalence relation $x \sim y$ if x = y or if $x, y \in \mathbb{Z}$, not the group-theoretic quotient).