Практическая работа № 2 «Проверка статистических гипотез и построение интервальных оценок»

Цель работы: выяснить, можно ли принять выдвинутую в практической работе \mathbb{N}_{2} 1 гипотезу H_{0} о нормальном распределении генеральной совокупности, используя критерий Пирсона, при уровне значимости, равном 0,01. Определить 90%-е доверительные интервалы для истинного среднего значения и истинной дисперсии величины X.

Теоретические сведения.

Основная и альтернативная гипотезы.

Статистической называют гипотезу о виде неизвестного распределения или о параметрах известного распределения на основе выборочных данных.

Нулевой (основной) называют выдвинутую гипотезу H_0 . Конкурирующей (альтернативной) называют гипотезу H_1 , которая противоречит основной. В случае, когда основная гипотеза H_0 отвергается, принимается альтернативная гипотеза H_1 .

Гипотеза H_0 принимается или отвергается с помощью *критериев согласия*. При этом вывод об истинности или ложности гипотезы H_0 делается на основе выборочных данных, т.е. только с некоторой вероятностью. При этом может быть отвергнута истинная гипотеза или принята ложная гипотеза. В первом случае говорят, что сделана ошибка первого рода, а во втором — ошибка второго рода.

Пусть событие A состоит в том, что принимается гипотеза H_0 . Тогда событие \overline{A} - гипотеза H_0 отвергается. Вероятность сделать ошибку 1-го рода называется уровнем значимости и обозначается через α , т.е. $\alpha = P(\overline{A}/H_0)$. Вероятность сделать ошибку 2-го рода обозначается через β , т.е. $\beta = P(A/\overline{H}_0)$, а число β называется мощностью критерия.

Замечание. Обычно уровень значимости задают достаточно малым, чаще всего $\alpha = 0.05$ или $\alpha = 0.01$. Из возможных критериев выбирается самый мощный, т.е. критерий с минимальной вероятностью ошибки 2-го рода.

Критерии согласия. Общая схема проверки статистических гипотез.

Для проверки выдвинутой основной гипотезы H_0 выбирается критерий согласия. Суть проверки гипотезы H_0 по критерию согласия состоит в том,

что выбирается некоторая статистика $\zeta_n(x_1, x_2, ..., x_n)$, закон распределения которой известен в предпопложении, что гипотеза H_0 истинна.

По статистике критерия $\zeta_n(x_1,x_2,...,x_n)$ и заданному уровню значимости множество вещественных чисел разбивают на две части. Одну из них - \overline{D} называют критической областью, другую – D называют областью принятия гипотезы.

Критическая область может быть односторонней (правосторонней или левосторонней). В этом случае критерий согласия называется *односторонним*.

Для определения односторонней критической области достаточно найти критическую точку t_{α} - квантиль, разделяющий области D и \overline{D} . Если критическая область правосторонняя, то квантиль t_{α} определяется из соотношения

$$P\{\zeta_n > t_\alpha/H_0\} = \alpha,$$

где $P\{\zeta_n > t_\alpha/H_0\}$ - вероятность события $\zeta_n \in \overline{D}$ при условии, что гипотеза H_0 верна. Если критическая область левосторонняя, то квантиль t_α определяется из соотношения $P\{\zeta_n < t_\alpha/H_0\} = \alpha$.

Критическая область может быть двусторонней. В этом случае критерий называется *двусторонним*.

Если критическая область двусторонняя, то определяют t_{α}^{π} и t_{α}^{π} - левую и правую границы критической области из условия

$$P\{\zeta_n < t_\alpha^{\pi}/H_0\} = P\{\zeta_n > t_\alpha^{\pi}/H_0\} = \frac{\alpha}{2}.$$

Гипотеза H_0 принимается, если $\zeta_n(x_1, x_2, ..., x_n) \in D$. Гипотеза H_0 отвергается, если $\zeta_n(x_1, x_2, ..., x_n) \in \overline{D}$.

Проверка гипотезы о законе распределения случайной величины на основе критерия Пирсона.

Если используется критерий Пирсона, то в качестве статистики $\zeta_n(x_1,x_2,...,x_n)$ выбирается функция выборочных данных $\chi^2_{\text{набл}}$, которая вычисляется по формуле

$$\chi^{2}_{\text{набл}} = \sum_{i=1}^{l} \frac{(n_i - np_i)^2}{np_i},\tag{1}$$

где p_i — вероятности попадания случайной величины X в интервал $I_i = [a_{i-1}, a_i); l$ — количество интервалов статистического ряда; n_i - количества выборочных значений, попавших в интервал I_i ; n — объем выборки.

Если основная гипотеза H_0 верна, то статистика $\chi^2_{\text{набл}}$ распределена асимптотически по закону χ^2 с m степенями свободы. Число степеней свободы определяется числом интервалов l и числом неизвестных параметров гипотетического (предполагаемого) распределения по формуле:

$$m = l - r - 1. \tag{2}$$

Табл.1

I_i	$[a_0, a_1)$	$[a_1, a_2)$	• • •	$[a_{l-1}, a_l)$	Σ
n_i	n_1	n_2	• • •	n_l	100

Если построен интервальный ряд (табл.1), построены гистограмма, полигон и теоретическая кривая, то проверка гипотезы о законе распределения генеральной совокупности по закону Пирсона производится следующим образом:

- 1. По виду гистограммы и теоретической кривой выдвигается основная гипотеза H_0 о виде распределения генеральной совокупности X. Альтернативная гипотеза H_1 заключается в том, что основная гипотеза H_0 не выполнена.
- 2. Перед использованием критерия Пирсона выясняется, в каждом ли интервале ряда количество наблюдений больше пяти. Если в каком-то интервале это не так, то его объединяют с одним из соседних интервалов. При этом количество интервалов l уменьшается, а количества соответствующих выборочных значений n_i складываются.
- 3. Далее вычисляются p_i вероятности попадания генеральной совокупности X в интервал $I_i = [a_{i-1}; a_i)$ по формулам:

$$p_i = P\{a_{i-1} \le \xi \le a_i\} = F(a_i) - F(a_{i-1}), i = 1, 2, \dots, l,$$
 (3)

где F(x) — гипотетическая функция распределения. При этом:

• если основная гипотеза H_0 состоит в том, что генеральная совокупность X распределена по нормальному закону, то вероятности p_i определяются по формулам

$$p_{i} = \Phi\left(\frac{a_{i} - \bar{x}}{\bar{s}}\right) - \Phi\left(\frac{a_{i-1} - \bar{x}}{\bar{s}}\right), i = 1, 2, \dots, l, \tag{4}$$

где \bar{x} — выборочное среднее, \bar{s} — несмещенное выборочное СКВО, $\Phi(*)$ - функция Лапласа, значения которой находятся из таблицы П.2.

• если основная гипотеза H_0 состоит в том, что генеральная совокупность X распределена равномерно на отрезке $[a_0,a_l]$, , то вероятности p_i определяются по формулам

$$p_i = \frac{1}{a_l - a_0} (a_i - a_{i-1}), i = 1, 2, \dots, l.$$
 (5)

4. После этого вычисляется статистика $\chi^2_{\text{набл}}$ по формуле (1). Статистика $\chi^2_{\text{набл}}$ распределена асимптотически по закону χ^2 с m степенями свободы. Число степеней свободы при этом равно $m=l_1-r-1$, где l_1 - новое число интервалов, r — число оцениваемых параметров. При этом, если выдвинута гипотеза о нормальном распределении, то оцениваемых параметров два — математическое ожидание и среднеквадратическое отклонение; если проверяется гипотеза о равномерном распределении на интервале (a,b), то оцениваемых параметров два: a и b.

Все вычисления удобно проводить, заполняя таблицу 2:

Табл.2

No	$[a_{i-1};a_i)$	n_i	p_i	np_i	$\frac{(n_i - np_i)^2}{n_i}$
					np_i
1	$[a_0, a_1)$	n_1	p_1	np_1	$\frac{(n_1 - np_1)^2}{np_1}$
2	$[a_1, a_2)$	n_2	p_2	np_2	$\boxed{(n_2 - np_2)^2}$
					np_2
•••	•••	•••	•••	•••	
l	$[a_{l-1},a_l)$	n_l	p_l	np_l	$\frac{(n_l - np_l)^2}{np_l}$
Σ	_	n	1	n	$\chi^2_{$ набл

Для вычисления границ критической области задается число α , называемое уровнем значимости и равное вероятности отвергнуть истинную гипотезу H_0 . Уровень значимости должен быть малым. Рекомендуется выбирать $\alpha = 0.01 - 0.05$.

При использовании односторонней критической области:

По заданному уровню значимости α и числу степеней свободы m из таблицы распределения χ^2 (см. табл. А.3) определяют границу односторонней критической области $\chi^2_{\rm kp} = \chi^2_{m,\alpha}$ так, что $\alpha = P\{\chi^2_{\rm haбл} > \chi^2_{\rm kp}/H_0\}$.

Гипотеза о выбранном законе распределения генеральной совокупности принимается, если $\chi^2_{\text{набл}} \leq \chi^2_{\text{кp}}$.

Если $\chi^2_{\text{набл}}$ попадает в критическую область, т.е. $\chi^2_{\text{набл}} > \chi^2_{\text{кр}}$, то гипотеза отвергается и принимается альтернативная гипотеза: распределение генеральной совокупности не совпадает с гипотетическим распределением.

Интервальные оценки параметров распределения.

В качестве оценок случайных величин могут использоваться выборочные значения и доверительные интервалы. Выборочные значения позволяют получить лишь точечные оценки интересующего параметра, при этом не приводятся никакие сведения о том, насколько близки выборочные величины к истинным значениям оцениваемого параметра. Более полный и надежный способ оценивания параметров случайных величин заключается в определении интервала (а не единичного точечного значения), который с определенной степенью достоверности включает в себя значение оцениваемо параметра. Рассмотрим случай, когда среднее значение \bar{x} выборки объема N зарегистрированных значений случайной величины X используется в качестве оценки истинного среднего значения μ_x . Практически полезнее находить для истинного среднего значения μ_x такой интервал, например, $\bar{x} \pm d$, в котором с некоторой степенью достоверности будет заключено истинное среднее значение. Это интервал можно найти, если известно выборочное распределение используемой в качестве оценки выборочной величины.

При оценке среднего значения доверительный интервал для μ_{x} можно получить по известной величине \bar{x} , используя следующее соотношение

$$\left(\bar{x} - \frac{\sigma_{\chi} z_{\alpha/2}}{\sqrt{N}}\right) \le \mu_{\chi} < \left(\bar{x} + \frac{\sigma_{\chi} z_{\alpha/2}}{\sqrt{N}}\right). \tag{6}$$

Если величина σ_x неизвестна, то доверительный интервал для μ_x можно получить по известным выборочным величинам \bar{x} и s

$$\left(\bar{x} - \frac{st_{n;\alpha/2}}{\sqrt{N}}\right) \le \mu_{x} < \left(\bar{x} + \frac{st_{n;\alpha/2}}{\sqrt{N}}\right),\tag{7}$$

где n=N-1, $z_{1-\alpha/2}=-z_{\alpha/2}$, $t_{n;1-\alpha/2}=-t_{n;\alpha/2}$. Доверительная вероятность, соответствующая приведенному выше интервалу, составляет $(1-\alpha)$. Следовательно, статистический вывод можно сформулировать следующим образом: «истинное значение μ_x попадает в указанный интервал с доверительной вероятностью $(1-\alpha)$ », или как часто говорят, «с доверительной вероятностью $100(1-\alpha)$ %». Аналогичные статистические выводы можно сделать для оценок любых параметров, если известно соответствующее выборочное распределение. Например, доверительный интервал для дисперсии σ_x^2 , соответствующий доверительной вероятности $(1-\alpha)$ при выборочной дисперсии s^2 , вычисленной по выборке объема N, составляет

$$\left[\frac{ns^2}{\chi_{n;\alpha/2}^2} \le \sigma_{\chi}^2 < \frac{ns^2}{\chi_{n;1-\alpha/2}^2}\right]. \tag{8}$$

Описание работы.

- 1. Проверка нулевой гипотезы по критерию Пирсона
- 2. Вычисление интервальных оценок параметров распределения
 - 2.1 Доверительный интервал для математического ожидания
 - 2.2 Доверительный интервал для среднеквадратического отклонения

П.2. Значения функции Лапласа $\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt$

Таблица П

	0	1	2	3 .	4	5	6	7	8	9
0,0	0,000	00399	. 00798	01197	01595	01994	02392	02790	03188	0358
0,1	03983	04380	04776	05172	05567	05962	06356	06749	07142	07533
0,2	07926	08317	08706	09095	09483	09871	10257	10642	11026	11409
0,3	11791	12172	12552	12930	13307	13683	14058	14431	14803	15173
0,4	15542	15910	16276	16640	17003	17364	17724	18082	18439	18793
0,5	19146	19497	19847	20194	20540	20884	21226	21566	21904	22240
0,6	22575	22907	23237	23565	23891	24215	24537	24857	25175	25490
0,7	25804	26115	26424	26730	27035	27337	27637	27935	28230	28524
0,8	28814	29103	29389	29673	29955	30234	30511	30785	31057	31327
0,9	31594	31859	32121	32381	32639	32894	33147	33398	33646	33891
1,0	34134	34375	34614	34850	35083	35314	35543	35769	35993	36214
1,1	36433	36650	36864	37076	37286	37493	37698	37900	38100	38298
1,2	38493	38686	38877	39065	39251	39435	39617	39796	39973	40147
1,3	40320	40490	40658	40824	40988	41149	41309	41466	41621	41774
1,4	41924	42073	42220	42364	42507	42647	42786	42922	43056	43189
1,5	43319	43448	43574	43699	43822	43943	44062	44179	44295	44408
1,6	44520	44630	44738	44845	44950	45053	45154	45254	45352	45449
1,7	45543	45637	45728	45818	45907	45994	46080	46164	46246	46327
1,8	46407	46485	46562	46638	46712	46784	46856	46926	46995	47062
1,9	47128	47193	47257	47320	47381	47441	47500	47558	47615	47670
2,0	47725	47778	47831	47882	47932	47982	48030	48077	48124	48169
2,1	48214	48257	48300	48341	48382	48422	48461	48500	48537	48574
2,2	48610	48645	48679	48713	48745	48778	48809	48840	48870	48899
2,3	48928	48956	48983	49010	49036	49061	49086	49111	49134	49158
2,4	49180	49202	49224	49245	49266	49286	49305	49324	49343	49361
2,5	49379	49396	49413	49430	49446	49461	49477	49492	49506	49520
2,6	49534	49547	49560	49573	49585	49598	49609	49621	49632	49643
2,7	49.653	49664	49674	49683	49693	49702	49711	49720	49728	49736
2,8	49744	49752	49760	49767	49774	49781	49788	49795	49801	49807
2,9	49813	49819	49825	49831	49836	49841	49846	49851	49856	49861
	3,0	0,49	865	3,4		0,49966		3,8	0,499	
	3,1	0,49	903	3,5		0,49977		3,9	0,499	
LLGO	3,2	0,49	931	3,6		0,49984		4,0	0,499	
	3,3	0,49	952	3,7		0,49989		5,0	0,499	

Процентные точки распределения х2

P $[\chi_n^2 > \chi_{n;\alpha}^2] = \alpha$

Nowqays= \alpha \times \times

0.000 0.10201 0.0506 0.1035 0.5814 6.526 7.38 9.421 110. 0.1030 0.0352 0.584 6.526 7.78 9.49 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	00003	039	0,00016	000	0	0,0	-	0,0		0,01	00,00
6 0,872 1,24 1,69 2,17 2,83 12,02 14,07 16,01 18,48 20, 2,18 2,18 2,18 2,18 2,18 2,18 2,18 2,1	0717	2 ~	0,115 0,297 0,554		-000			1,9,7,		5,1,0	
3,05 3,82 4,57 5,88 17,28 19,68 21,92 24,73 26, 3,6,5 5,2,3 6,30 18,55 21,03 23,34 26,22 28, 4,61 5,01 5,50 7,79 19,81 23,68 24,74 27,69 29, 4,6 5,23 6,26 7,67 7,79 19,81 25,60 27,42 29,69 25,81 6,91 7,96 8,97 10,08 24,77 27,59 30,19 33,41 35,7,63 8,91 10,12 11,65 27,20 30,14 32,85 36,19 33,77 40, 10,26 11,69 13,09 11,59 11,59 13,42 36,73 3	676 989 34 73 16						000040	2,4,1,0,8,			18,55 20,28 21,96 23,59 25,19
5,81 6,91 7,96 9,31 23,54 26,30 28,85 32,00 33,41 35,77 27,59 30,19 33,41 35,77 7,61 33,41 33,41 33,41 33,41 33,71 33,41 33,41 33,71 33,41 33,41 33,41 33,71 33,41 33,71 33,41 33,75 34,11 33,75 34,11 33,75 34,11 33,75 34,11 33,75 34,11 34,17 37,57 41,14 32,81 33,17 34,11 34,17 37,57 41,14 32,81 36,78 36,19 33,41 33,75 41,41 36,81 36,19 33,41 33,75 34,11 34,17 37,57 41,41 36,78 36,7	60 60 60							25, 25,			
8,90 10,28 11,59 13,24 29,62 32,67 35,48 38,93 41,159 12,34 14,04 30,81 33,92 36,78 40,29 42,10,20 11,69 12,34 14,04 30,81 33,92 36,78 40,29 42,10,86 12,40 13,89 16,47 34,38 37,65 40,65 44,31 46,11,52 13,12 14,61 16,47 34,38 37,65 40,65 44,31 46,12,20 13,84 15,38 17,29 35,56 38,88 41,92 45,64 48,12,88 14,57 16,15 18,14 37,92 41,46 48,28 50,14,26 16,07 18,49 20,60 40,26 43,77 46,98 50,89 53,20 16,79 18,49 20,60 40,26 43,77 46,98 50,89 53,30 88,38 91,50 48,12 46,48 43,19 46,46 44,46 48,28 50,49 43,19 40,48 43,19 46,46 43,77 46,98 50,89 53,30 88,38 91,50 48,50 48,36 50,89 53,30 50,50 40,50 60,50	14 70 26 84 43					6000-6				32,33,37,37,37,37,37,37,37,37,37,37,37,37,	34,27 35,72 37,16 38,58 40,00
12, 20 13, 84 15, 38 17, 29 35, 56 38, 88 41, 92 45, 64 46, 12, 88 14, 57 16, 15 18, 11 36, 74 40, 11 43, 19 46, 96 49, 11, 26 16, 15, 31 16, 93 19, 42, 44, 46, 48, 28 55, 14, 26 16, 79 18, 49 20, 60 40, 26 43, 77 46, 98 50, 89 53, 22, 16 24, 43 26, 51 29, 05 51, 81 55, 76 59, 34 63, 69 66, 36, 36, 36, 36, 36, 36, 36, 36, 36,	03 64 889 52		8600-	00-00	-0,00,04						41,40 42,80 44,18 45,56 46,93
22,16 24,43 26,51 29,05 51,81 55,76 59,34 63,69 66, 87,48 40,48 43,19 46,46 779,08 83,30 88,38 91,	16 81 46 12 79		0,0,0,4,4	6,4000	8,76,55						48,29 49,64 50,99 52,34 53,67
00,32 31,38 33,70 1100,02 140,23146.5/1152,211158.95 63	71 53 85	0,00	2,16 7,48 6,92	43 48 58	26,51 43,19 95,70	05 46 62	81 40 23	76 08 57	59,34 83,30 152,21	63,69 88,38 58,95	66,77 91,95

Значения $\alpha=0,995$; 0,990; 0,975; 0,950 и 0,900 получают, пользуясь соотношением t_n : $1_{-\alpha}=-t_n$: α . 1 11360 | 2,338 | 2,617

Процентные точки t-распределения Стьюдента P $[t_n > t_{n;\alpha}] = \alpha$

Πποщαg6=α

	1							
0,005	63,657 9,925 5,841 4,604	3,707 3,499	3,355 3,250 3,169	3,055 3,012 2,977 2,947	2,921 2,898 2,878 2,861 2,861	2,831 2,819 2,807 2,797 2,787	2,779 2,771 2,763 2,756 2,756	2,660
0,010		3,365 3,143 2,998	2,896 2,821 2,764 2,718	2,681 2,624 2,602 2,602	2,588 2,532 2,533 2,533	2,518 2,508 2,500 2,492 2,485	2,479 2,473 2,467 2,462 2,457	2,423 2,390 2,358
0,025	12,706 4,303 3,182 2,776	2,571 2,447 2,365	2,262 2,228 2,228 2,228	2,179 2,160 2,145 2,131	2,120 2,110 2,101 2,093 2,086	2,080 2,074 2,069 2,064 2,060	2,056 2,052 2,048 2,045 2,045	2.021 2,000 1,980
0,050			1,833	1,782 1,771 1,761 1,761 1,753	1,746 1,740 1,734 1,729 1,725	1,721 1,717 1,714 1,714 1,711	1,706 1,703 1,701 1,699 1,697	1,684 1,671 1,658
0,10	3,078 1,886 1,638 1,533	1,476 1,440 1,415	1,383 1,372 1,363	1,356 1,350 1,345 1,341	1,337 1,333 1,320 1,328 1,325	1,323 1,321 1,319 1,318 1,318	1,315 1,314 1,313 1,313 1,310	1,303 1,296 1,289
e .	-264	ro 97°	10	12 13 15	16 17 19 20	22 23 22 24 25 25	26 27 29 30	40 60 120
	0,10 0,050 0,025 0,010	3,078 6,314 12,706 31,821 63, 1,638 2,920 4,303 6,965 9, 1,533 2,132 2,776 3,747 4 4,541 5,	3,078 6,314 12,706 31,821 6,965 1,638 2,920 4,303 6,965 1,533 2,132 2,776 3,787 1,476 2,015 2,571 3,143 1,415 1,895 2,365 2,998 1,415 1,895 2,365 2,998	3,078 6,314 12,706 31,821 63 1,638 2,920 4,303 6,965 9 9 1,638 2,132 2,776 3,747 1,476 2,015 1,895 2,365 2,998 1,383 1,383 1,833 2,228 2,228 2,764 3,1,363 1,796 2,201 2,718 3	3,078 6,314 12,706 31,821 6,965 1,688 2,930 4,303 6,965 1,638 2,353 3,82 4,541 1,533 2,132 2,776 3,747 1,440 1,943 2,447 3,143 1,397 1,805 2,306 2,306 1,387 1,812 2,228 2,764 1,371 1,36 1,370 1,771 2,160 2,681 1,341 1,771 2,145 2,692 1,341 1,341 1,753 2,131 2,160 2,602	3,078 6,314 12,706 3,821 1,886 2,920 4,303 6,965 1,638 2,353 3,182 4,541 1,638 2,312 2,776 3,747 1,476 2,015 2,571 3,365 1,440 1,943 2,447 3,143 1,397 1,895 2,365 2,998 1,387 1,895 2,266 2,896 1,372 1,812 2,228 2,764 1,356 1,782 2,217 2,718 1,356 1,782 2,179 2,681 1,341 1,753 2,145 2,620 1,345 1,761 2,145 2,620 1,346 1,753 2,131 2,620 1,341 1,740 2,145 2,620 1,341 1,740 2,145 2,620 1,341 1,740 2,101 2,567 1,333 1,740 2,101 2,567 1,328 1,725 2,093 2,528 1,328 1,725 2,093 2,528 2,093 2,528 2,528	3,078 6,314 12,706 31,821 1,886 2,920 4,303 6,965 1,638 2,353 3,182 4,541 1,638 2,353 3,182 4,541 1,476 2,015 2,776 3,747 1,445 1,943 2,447 3,143 1,445 1,895 2,365 2,998 1,397 1,895 2,262 2,896 1,372 1,812 2,228 2,764 1,372 1,782 2,179 2,681 1,356 1,771 2,160 2,681 1,341 1,740 2,145 2,624 1,341 1,740 2,145 2,557 1,341 1,740 2,145 2,567 1,341 1,740 2,145 2,567 1,341 1,774 2,101 2,552 1,325 1,721 2,086 2,528 1,325 1,721 2,094 2,492 1,319 1,714 2,069 2,506 1,318 1,714 2,060 2,682 1,318 1,714 2,064 2,492 1,318 1,714 2,064 2,492 1,318 1,714<	3,078 6,314 12,706 1,965 1,965 1,688 2,920 2,353 3,182 4,541 1,533 2,132 2,776 3,145 1,476 2,015 2,571 3,365 1,395 1,397 1,800 2,306 2,306 2,896 1,397 1,800 2,306 2,306 2,806 1,372 1,365 1,771 2,160 2,601 1,345 1,372 1,740 2,101 2,160 2,567 1,333 1,744 1,774 2,101 2,101 2,552 1,11 3,25 1,724 2,101 2,552 1,11 3,25 1,774 2,101 2,506 1,318 1,777 2,006 2,508 1,777 1,308 1,777 2,006 2,508 1,777 1,318 1,725 2,009 2,009 2,508 1,717 2,006 2,508 1,717 2,006 2,508 1,717 2,006 2,508 1,717 2,006 2,508 1,717 2,006 2,508 1,717 2,006 2,508 1,717 2,006 2,479 1,318 1,701 2,006 2,473 1,701 2,006 2,473 1,313 1,701 2,004 2,467 1,318 1,701 2,004 2,467 1,318 1,701 2,004 2,467 1,318 1,701 2,004 2,467 1,310 1,697 2,004 2,467 1,310 1,697 2,004 2,467 1,310