Chapitre 35

Familles sommables

35	Familles sommables	1
	35.2 Reformulation	2
	35.5 Croissance de la somme	2
	35.8 Lien avec les séries à termes positifs	
	35.10Invariance de la somme d'une série à termes positifs par permutation des termes	
	35.12Restriction	3
	35.13Preque linéarité	
	35.14Sommation par paquets	
	35.16Théorème de Fubini positif	
	35.17Exemple	
	35.18Exemple	
	35.19Exemple	
	35.25 Caractérisation de la sommabilité par les parties réelles et imaginaires, parties positives et négatives	
	35.27 Caractérisation de la somme par les ϵ	
	35.28Linéarité	
	35.29Intégalité triangulaire	
	35.31 Associativité pour les familles sommables	
	35.33Produit de familles sommables	
	35.34Exemple	
	35.35Exemple	
	35.36Exemple	

35.2 Reformulation

Soit $\sum a_n$ une séries à termes positifs. Alors $\sum_{n\geq 0} a_n$ est bien définie dans \mathbb{R}_+ et

$$\sum_{n>0} a_n = \sup \left\{ \sum_{k \in J} a_k, J \in \mathcal{P}_f(\mathbb{N}) \right\}$$

En notant, pour $n \in \mathbb{N}, S_n = \sum_{k=0}^n a_k$, on a:

$$S_n \xrightarrow[n \to +\infty]{} \sum_{k>0}^{a_k}$$

Or pour tout $n \in \mathbb{N}$, $S_n \in \left\{ \sum_{k \in J} a_k \mid J \in \mathcal{P}_f(\mathbb{N}) \right\}$. Donc $\sum_{k \geq 0} a_k \leq \sup \left\{ \sum_{k \in J} a_k \mid J \in \mathcal{P}_f(\mathbb{N}) \right\} = S$. Par ailleurs, pour $J \in \mathcal{P}_f(\mathbb{N})$, on pose $N = \max J$ et $J \subset \llbracket 0, N \rrbracket$ et :

$$\sum_{k \in J} a_k \le \sum_{k=0}^N a_k \le \sum_{k>0} a_k$$

Par définition de la borne supérieure :

$$S \leq \sum_{k \geq 0} a_k$$

Donc:

$$\sum_{k>0} a_k = S$$

Croissance de la somme 35.5

Soit $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles à valeurs dans $\overline{\mathbb{R}}_+$. Si pour tout $i\in I, a_i\leq b_i$, alors

$$\sum_{i \in I} a_i \le \sum_{i \in I} b_i$$

Soit $J \in \mathcal{P}_f(I)$. Comme:

$$\forall i \in J, a_i < b_i$$

Alors:

$$\sum_{i \in j} a_i \le \sum_{i \in I} i \in Jb_i \le \sum_{i \in I} b_i$$

 $\sum_{i \in I} b_i \text{ est un majorant de } \left\{ \sum_{i \in J} a_i \mid J \in \mathcal{P}_f(I) \right\}.$

Par définition:

$$\sum_{i \in I} a_i \le \sum_{i \in I} b_i$$

35.8 Lien avec les séries à termes positifs

Propostion 35.8

Soit $\sum a_n$ une séries à termes positifs.

- 1. On a $\sum_{n=0}^{+\infty} a_n = \sum_{n \in \mathbb{N}} a_n$ (le terme de gauche correspond à la somme de la série tandis que le terme de droite à la somme de la famille sommable).
- 2. En particulier, $\sum a_n$ converge si et seulement si la famille $(a_n)_{n\in\mathbb{N}}$ est sommable.
- 1. (35.2)
- 2. Théorème de la Limite Monotone

35.10 Invariance de la somme d'une série à termes positifs par permutation des termes

Corollaire 35.10

Soit $\sum a_n$ une série à termes positifs et $\sigma \in S_{\mathbb{N}}$. Alors

$$\sum_{n=0}^{+\infty} a_n = \sum_{n=0}^{+\infty} a_{\sigma(n)}$$

Cette égalité reste vraie dans $\overline{\mathbb{R}}_+$.

Soit $\sigma \in \mathcal{S}_{\mathbb{N}}$.

 σ induit une bijection $\mathcal{P}_f(\mathbb{N}) \to \mathcal{P}_f(\mathbb{N})$; $J \mapsto \sigma(J)$ de $\{\sum_{i \in J} | J \in \mathcal{P}_f(\mathbb{N}) \}$ sur $\{\sum_{i \in I} a_{\sigma(i)} | J \in \mathcal{P}_f(\mathbb{N}) \}$. Ces deux ensembles ont donc la même borne supérieure. Donc :

$$\sum_{i\in\mathbb{N}} a_i = \sum_{i\in\mathbb{N}} a_{\sigma(i)}$$

Soit:

$$\sum_{i=0}^{+\infty} a_i = \sum_{i=0}^{+\infty} a_{\sigma(i)} (35.8)$$

35.12 Restriction

Propostion 35.12

Soit $(a_i)_{i\in I}$ une famille d'éléments de $\overline{\mathbb{R}}_+$. Soit $J\subset I$, alors :

$$\sum_{i \in J} a_i \le \sum_{i \in I} a_i$$

Comme $\mathcal{P}_f(J) \subset \mathcal{P}_f(I)$:

$$\left\{ \sum_{j \in K} a_j \mid K \in \mathcal{P}_f(J) \right\} \subset \left\{ \sum_{j \in K} a_j \mid K \in \mathcal{P}_f(I) \right\}$$

Donc (Chapitre 9):

$$\sum_{i \in J} a_i \le \sum_{i \in I} a_i$$

35.13 Preque linéarité

Propostion 35.13

Soit (a_i) et (b_i) deux familles d'éléments de $\overline{\mathbb{R}}_+$ et $(\lambda, \mu) \in \overline{\mathbb{R}}_+^2$. On a

$$\sum_{i \in I} (\lambda a_i + \mu b_i) = \lambda \sum_{i \in I} a_i + \mu \sum_{i \in I} b_i$$

On rappelle (Chapitre 9) que :

$$\sup(aA + bB) = a\sup A + b\sup B$$

 $(a \ge 0, b \ge 0 \text{ et sup } A, \sup B \text{ existent}).$

35.14 Sommation par paquets

Théorème 35.14

Soit I un ensemble quelconque et $I=\bigsqcup_{k\in K}I_k$ un recouvrement disjoint de I. Soit $a=(a_i)_{i\in I}$ une famille d'éléments de $\overline{\mathbb{R}}_+$. Alors

$$\sum_{i \in I} a_i = \sum_{k \in K} \left(\sum_{i \in I_k} a_i \right)$$

— Montrons que
$$\sum_{i \in I} a_i \le \sum_{k \in K} \left(\sum_{i \in I_k} a_i \right)$$
:

Soit $J \in \mathcal{P}_f(I)$.

Pour tout $k \in K$, on note $J_k = J \cap I_k$.

Ainsi, $J_k \in \mathcal{P}_f(I_k)$ et :

$$\bigsqcup_{k \in K} J_k = \bigsqcup_{k \in K} (J \cap I_k)$$

$$= J \cap \bigsqcup_{k \in K} I_k$$

$$= J \cap I$$

$$= J$$

On pose également $L = \{k \in K, J_k \neq \emptyset\}.$

Alors $L \in \mathcal{P}_f(K)$ et :

$$\bigsqcup_{k \in L} J_k = \bigsqcup_{k \in K} J_k = J$$

Les ensembles étant finis :

$$\sum_{i \in J} a_i = \sum_{k \in L} \sum_{i \in J_k} a_i \le \sum_{k \in L} \sum_{i \in I_k} a_i \le \sum_{k \in K} \sum_{i \in I_k} a_i$$

Par définition de la borne supérieure :

$$\sum_{i \in I} a_i \le \sum_{k \in K} \sum_{i \in I_k} a_i$$

— On prouve $\sum_{k \in K} \sum_{i \in I_k} a_i \leq \sum_{i \in I} a_i$.

Soit $L \in \mathcal{P}_f(K)$.

Soit, pour $k \in L, J_k \in \mathcal{P}_f(I_k)$. $\bigsqcup_{k \in L} J_k$ est donc une partie finie de I.

$$\underbrace{\sum_{k \in L} \sum_{i \in J_k} a_i}_{\text{car} \coprod J_k \text{ est fini}} \leq \sum_{i \in I} a_i$$

En utilisant un nombre fini de fois la définition de la borne supérieure :

$$\sum_{k \in L} \sum_{i \in I_k} a_i \le \sum_{i \in I} a_i$$

Toujours par définition de la borne supérieure :

$$\sum_{k \in K} \sum_{i \in I_k} a_i \le \sum_{i \in I} a_i$$

35.16 Théorème de Fubini positif

Corollaire 35.16

Soit I et J deux ensembles quelconques et $(a_{i,j})_{(i,j)\in I\times J}$ une famille de réels positifs. Alors

$$\sum_{i \in I} \sum_{j \in J} a_{i,j} = \sum_{(i,j) \in I \times J} a_{i,j} = \sum_{j \in J} \sum_{i \in I} a_{i,j}$$

$$\bigsqcup_{j \in J} I \times \{j\} = I \times J = \bigsqcup_{i \in I} \{i\} \times J$$

On conclut avec le théorème de sommation par paquets.

35.17 Exemple

Exemple 35.17

Montrer que
$$\sum_{n\geq 2} (\zeta(n) - 1) = 1$$
.

 $\left(\frac{1}{k^n}\right)_{n\geq 2,k\geq 2}$ est une famille de \mathbb{R}_+ .

$$\begin{split} \sum_{n\geq 2} \left(\sum_{k\geq 1} \frac{1}{k^n} - 1\right) &= \sum_{n\geq 2} \left(\sum_{k\geq 2} \frac{1}{k^n}\right) \\ &= \sum_{k\geq 2} \left(\sum_{n\geq 2} \frac{1}{k^n}\right) \text{ (Fubini positif)} \\ &= \sum_{k\geq 2} \left(\frac{1}{k^2} \frac{1}{1 - \frac{1}{k}}\right) \text{ (progresion géométrique)} \\ &= \sum_{k\geq 2} \frac{1}{k^2 - k} \\ &= \sum_{k\geq 2} \left(\frac{1}{k - 1} - \frac{1}{k}\right) \text{ (DES)} \\ &= 1 \text{ (télescopage)} \end{split}$$

35.18 Exemple

Exemple 35.18

Montrer que:

$$\sum_{n \ge 1} \frac{n}{2^n} = 2$$

 $\left(\frac{1}{2^n}\right)_{1 < k < n}$ est une famille de \mathbb{R}_+ .

$$\sum_{n\geq 1} \frac{n}{2^n} = \sum_{n\geq 1} \sum_{k=1}^n \frac{1}{2^k}$$

$$= \sum_{1\leq k\leq n} \frac{1}{2^n}$$

$$= \sum_{k\geq 1} \left(\sum_{n\geq k} \frac{1}{2^n}\right) \text{ (Fubini positif)}$$

$$= \sum_{k\geq 1} \frac{1}{2^k} \frac{1}{1-\frac{1}{2}} \text{ (progresion géométrique)}$$

$$= \sum_{k\geq 1} \frac{1}{2^{k-1}}$$

$$= 2$$

35.19 Exemple

Exemple 35.19

Pour quelles valeurs de $\alpha \in \mathbb{R}$ la somme $\sum_{p,q \in \mathbb{N}^*} \frac{pq}{(p+q)^{\alpha}}$ est-elle réelle?

 $\left(\frac{pq}{(p+q)^{\alpha}}\right)_{p,q\geq 1}$ est une famille de réels positifs.

$$\begin{split} \sum_{p\geq 1, q\geq 1} \frac{pq}{(p+q)^{\alpha}} &= \sum_{d\geq 1} \sum_{p=0}^d \frac{p(d-p)}{d^{\alpha}} \text{ (sommation par paquets)} \\ &= \sum_{d\geq 2} \sum_{p=0}^d \frac{p(d-p)}{d^{\alpha}} \\ &= \sum_{d\geq 2} \sum_{p=0}^d \left(\frac{p}{d^{\alpha-1}} - \frac{p^2}{d^{\alpha}}\right) \\ &= \sum_{d\geq 2} \left(\frac{d(d+1)}{2d^{\alpha-1}} - \frac{d(d+1)(2d+1)}{6d^{\alpha-1}}\right) \text{ (sommes usuelles)} \\ &= \sum_{d\geq 2} \frac{d+1}{d^{\alpha-1}} (3d-2d-1) \\ &= \sum_{d\geq 2} \frac{d^2-1}{6d^{\alpha-1}} \end{split}$$

Or:

$$\frac{d^2 - 1}{6d^{\alpha - 1}} \sim \frac{1}{6d^{\alpha - 3}}$$

D'après le TCSATTPE, la somme est finie si et seulement si $\alpha > 4$.

35.25 Caractérisation de la sommabilité par les parties réelles et imaginaires, parties positives et négatives

Théorème 35.5

- 1. Soit $(a_i)_{i\in I}$ une famille de réels. Alors $(a_i)_{i\in I}$ est sommable si et seulement si $(a_i^+)_{i\in I}$ et $(a_i^-)_{i\in I}$ le sont.
- 2. Soit $(a_i)_{i\in I}$ une famille de complexes. Alors $(a_i)_{i\in I}$ est sommable si et seulement si $(\operatorname{Re}(a_i))_{i\in I}$ et $(\operatorname{Im}(a_i))_{i\in I}$ le sont.
- 1. On rappelle que :

$$\forall i \in I, a_i = a_i^+ - a_i^-$$

 et :

$$\forall i \in I, 0 \le a_i^+ \le |a_i|$$
$$0 \le a_i^- \le |a_i|$$

Si (a_i) est sommable, alors $(a_i^+)_{i\in I}$ et $(a_i^-)_{i\in I}$ le sont aussi (35.24). Par ailleurs, d'après l'inégalité triangulaire :

$$\forall i \in I, |a_i| \le a_i^+ + a_i^-$$

Donc si $(a_i^+)_{i\in I}$ et $(a_i^-)_{i\in I}$ sont sommables, alors (a_i) est sommable (35.24) et (35.13).

2. Démonstration similaire.

35.27 Caractérisation de la somme par les ϵ

Propostion 35.27

Soit $(a_i)_{i\in I}\in \ell(I)$ et $S\in \mathbb{C}.$ Les assertions suivantes sont équivalentes :

$$1. S = \sum_{i \in I} a_i$$

2. pour tout $\epsilon > 0$, il existe $J_{\epsilon} \in \mathcal{P}_f(I)$ tel que pour tout $K \in \mathcal{P}_f(I)$ avec $J_{\epsilon} \subset K$:

$$\left| S - \sum_{i \in K} a_i \right| \le \epsilon$$

 \Rightarrow

On suppose que $S = \sum_{i \in I} a_i$ (avec (a_i) une famille de réels).

On décompose :

$$\forall i \in I, a_i = a_i^+ - a_i^-$$

Et:

$$S = \sum_{i \in I} a_i^+ - \sum_{i \in I} a_i^- = S^+ - S^-$$

On note également :

$$A_{+} = \left\{ \sum_{i \in J} a_{i}^{+} \mid J \in \mathcal{P}_{f}(I) \right\}$$
$$A_{-} = \left\{ \sum_{i \in J} a_{i}^{-} \mid J \in \mathcal{P}_{f}(I) \right\}$$

Soit $\epsilon > 0$.

 $S^+ - \frac{\epsilon}{2}$ ne majore pas A_+ , on choisit $J_{\epsilon}^+ \in \mathcal{P}_f(I)$ tel que :

$$S^+ - \frac{\epsilon}{2} < \sum_{i \in J_{\epsilon}^+} a_i^+$$

Pour les mêmes raisons, on choisit $J_{\epsilon}^- \in \mathcal{P}_f(I)$ tel que :

$$S^- - \frac{\epsilon}{2} < \sum_{i \in J_{\epsilon}^-} a_i^-$$

Pour tout $K \in \mathcal{P}_f(I)$ avec $K \supset J_{\epsilon} = J_{\epsilon}^+ \cup J_{\epsilon}^-$.

$$S^{+} - \frac{\epsilon}{2} < \sum_{i \in J_{\epsilon}^{+}} a_{i}^{+} \le \sum_{i \in K} a_{i}^{+}$$
$$S^{-} - \frac{\epsilon}{2} < \sum_{i \in J_{\epsilon}^{-}} a_{i}^{-} \le \sum_{i \in K} a_{i}^{-}$$

Et ainsi:

$$\left| S - \sum_{i \in K} a_i \right| = \left| S^+ - \sum_{i \in K} a_i^+ - S^- + \sum_{i \in K} a_i^- \right|$$

$$\leq \left| S^+ - \sum_{i \in K} a_i^+ \right| + \left| S^- - \sum_{i \in K} a_i^- \right|$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

 \leftarrow

SUpposons qu'il existe S et S' vérifiant la condition 2. Alors pour tout $\epsilon > 0$, n notant J_{ϵ} l'ensemble de l'assertion :

$$|S - S'| = |S - \sum_{i \in J_{\epsilon}} a_i + \sum_{i \in J_{\epsilon}} a_i - S'|$$

$$\leq 2\epsilon$$

Donc S = S'.

35.28 Linéarité

Théorème 35.28

L'ensemble $\ell^1(I)$ est un \mathbb{C} -espace vectoriel et $(a_i)_{i\in I} \to \sum_{i\in I} a_i$ est une forme linéaire sur $\ell^1(I)$.

Soit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

$$--- \ell^1(I) \subset \mathbb{K}^I.$$

$$--- \operatorname{Soit} (a_i), (b_i) \operatorname{dans} \ell^1(I), (\lambda, \mu) \in \mathbb{K}^2. \operatorname{On a} :$$

$$\sum_{i \in I} |\lambda a_i + \mu b_i| \le \sum_{i \in I} |\lambda| |a_i| + |\mu| |b_i|$$

$$\le |\lambda| \sum_{i \in I} |a_i| + |\mu| \sum_{i \in I} |b_i|$$

$$< +\infty$$

 $\begin{array}{l} \text{Donc } (\lambda a_i + \mu b_i)_{i \in I} \in \ell^1(I). \\ \text{— Soit } \epsilon > 0. \text{ Soit } J^a_\epsilon \in \mathcal{P}_f(I) \text{ tel que :} \end{array}$

$$\forall K \in \mathcal{P}_f(I), K > J_{\epsilon}^a, \left| \sum_{i \in I} a_i - \sum_{i \in K} a_i \right| < \epsilon$$

On pose $J_{\epsilon} = J_{\epsilon}^a \cup J_{\epsilon}^b$. On a alors, pour $K \in \mathcal{P}_f(I), K > J_{\epsilon}$:

$$\left| \lambda \sum_{i \in I} a_i + \mu \sum_{i \in I} b_i - \sum_{i \in K} (\lambda a_i + \mu b_i) \right| = \left| \lambda \sum_{i \in I} a_i - \lambda \sum_{i \in K} a_i + \mu \sum_{i \in I} b_i - \mu \sum_{i \in K} b_i \right|$$

$$\leq |\lambda| \left| \sum_{i \in I} a_i - \sum_{i \in K} a_i \right| + |\mu| \left| \sum_{i \in I} b_i - \sum_{i \in K} b_i \right|$$

$$\leq (|\lambda| + |\mu|)\epsilon$$

D'après (35.27), on a donc :

$$\sum_{i \in I} (\lambda a_i + \mu b_i) = \lambda \sum_{i \in I} a_i + \mu \sum_{i \in I} b_i$$

35.29 Intégalité triangulaire

Propostion 25.29

Si $(a_i)_{i\in I}$ est une famille sommable de complexes, alors

$$\left| \sum_{i \in I} a_i \right| \le \sum_{i \in I} |a_i|$$

On suppose que $(a_i)_{i\in I} \in \ell^1(I)(I,\mathbb{R})$.

On écrit donc :

$$\forall i \in I, a_i = a_i^+ - a_i^-$$

 $|a_i| = a_i^+ + a_i^-$

Et ainsi:

$$\begin{split} \left| \sum_{i \in I} a_i \right| &= \left| \sum_{i \in I} a_i^+ - \sum_{i \in I} a_i^- \right| \\ &\leq \sum_{i \in I} a_i^+ + \sum_{i \in I} a_i^- \text{ (Inégalité triangulaire sur } \mathbb{R}) \\ &= \sum_{i \in I} (a_i^+ + a_i^-) \text{ (presque linéarité)} \\ &= \sum_{i \in I} |a_i| \end{split}$$

On suppose que $(a_i)_{i\in I} \in \ell^1(I)(I,\mathbb{C})$. Soit $J \in \mathcal{P}_f(I)$:

$$\left| \sum_{i \in J} a_i \right| \le \sum_{i \in J} |a_i|$$

$$\le \sum_{i \in J} |a_i|$$

On note $M = \sup \left\{ \left| \sum_{i \in J} a_i \right| \mid J \in \mathcal{P}_f(I) \right\}$ de tele sorte que $M \leq \sum_{i \in I} |a_i|$.

Montrons que $M = \left| \sum_{i \in I} a_i \right| = |S|$.

Pour $\epsilon > 0$, on choisit $J_{\epsilon} \in \mathcal{P}_f(I)$ tel que pour tout $K \in \mathcal{P}_f(I)$, $K \supset J_{\epsilon}$:

$$\left| |S| - \left| \sum_{i \in K} \right| \right| \le \left| S - \sum_{i \in K} a_i \right| < \epsilon$$

Ce qui permet de conclure :

$$M = |S|$$

35.31 Associativité pour les familles sommables

Théorème 35.31

Soit $(I_k)_{k \in K}$ un recouvrement disjoint de I. Soit $a = (a_i)_{i \in I}$ une famille de réels ou de complexes. Alors a est sommable si et seulement chaque $(a_i)_{i \in I_k}$ est sommable de somme s_k et de somme absolue t_k et si la famille $(t_k)_{k \in K}$ est sommable. Dans ce cas, (s_k) est également sommable et

$$\sum_{i \in I} a_i = \sum_{k \in K} s_k = \sum_{k \in K} \sum_{i \in I_k} a_i$$

— On traite la sommabilité.

D'après le théorème de sommation par paquets dans le cas positif (35.14) :

$$\sum_{i \in I} a_i = \sum_{k \in K} \sum_{i \in I_k} |a_i| = \sum_{k \in K} t_k \text{ (notations (35.31))}$$

i — Si $\sum_{i \in I} |a_i| < +\infty$ alors :

$$\sum_{k \in K} \sum_{i \in t_i} |a_i| < +\infty$$

Donc (t_k) est sommable.

Et $(a_i)_{i \in I_k}$ est sommable.

— Si $(a_i)_{i \in I_k}$ est sommable pour tout $k \in K$ et $(t_k)_{k \in K}$ est sommable, alors :

$$\sum_{k \in K} t_k < +\infty$$

Donc:

$$\sum_{i \in I} |a_i| < +\infty$$

Théorème 35.33

Soit $(a_i)_{i\in I}$ et $(b_j)_{j\in J}$ deux familles sommables. Alors $(a_ib_j)_{(i,j)\in I\times J}$ est sommable et

$$\sum_{(i,j)\in I\times J} a_i b_j = \left(\sum_{i\in I} a_i\right) \left(\sum_{j\in J} b_j\right)$$

35.33 Produit de familles sommables

— <u>Sommabilité</u>: On note $c_{ij} = a_i b_j$ pour tout $(i, j) \in I \times J$. On écrit $I \times J = \bigsqcup_{i \in I} \{i\} \times J$. On pose, pour $i \in I$:

$$t_i = \sum_{j \in J} |c_{ij}|$$

$$= \sum_{j \in J} |a_i||b_j|$$

$$= |a_i| \times \sum_{j \in J} |b_j| \text{ (presque linéarité)}$$

$$< +\infty \text{ ((}b_j) \text{ est sommable)}$$

Par ailleurs:

$$\sum_{i \in I} t_i = \sum_{i \in I} |a_i| \times \underbrace{\left(\sum_{j \in J}\right)}_{\in \mathbb{R}_+}$$

$$= \left(\sum_{j \in J} |b_j|\right) \times \sum_{i \in I} |a_i|$$

D'après le théorème de sommation par paquets (35.31), la famille $(c_{ij})_{(i,j)\in I\times J}$ est sommable. — Somme :

$$\sum_{(i,j)\in I\times J} c_{ij} = \sum_{i\in I} \sum_{j\in J} a_i b_j \ (35.28)$$

$$= \sum_{i\in I} a_i \left(\sum_{j\in J} b_j\right)$$

$$= \left(\sum_{i\in I} a_i\right) \left(\sum_{j\in J} b_j\right) \ (35.28)$$

35.34 Exemple

Exemple 35.34

Montrer que la famille $\left(\frac{\sin(p+q)}{p^2q^2}\right)_{p,q\in\mathbb{N}^*}$ est sommable.

$$\begin{split} \sum_{p \geq 1, q \geq 1} \left| \frac{\sin(p+q)}{p^2 q^2} \right| &\leq \sum_{p \geq 1} \frac{1}{p^2 q^2} \\ &= \left(\sum_{p \geq 1} \frac{1}{p^2} \right) \left(\sum_{q \geq 1} \frac{1}{q^2} \right) \text{ (Fubini positif)} \\ &= \zeta(2)^2 \\ &< +\infty \end{split}$$

35.35 Exemple

Exemple 35.35

Montrer que pour tout $z \in \mathbb{C}$, la famille $(z^{ij})_{i,j \in N^*}$ est sommable si et seulement si |z| < 1.

— Si |z| < 1:

$$\begin{split} \sum_{i \geq 1, j \geq 1} |z|^{ij} &= \sum_{i \geq 1} \sum_{j \geq 1} |z^i|^j \text{ (Fubini positif)} \\ &= \sum_{i \geq 1} |z|^i \frac{1}{1 - |z|^i} \text{ (}|z^i| \neq 1\text{)} \\ &= \sum_{i \geq 1} \sum_{i \geq 1} \frac{|z|^i}{1 - |z|^i} \\ &\leq \sum_{i \geq 1} \frac{|z|^i}{1 - |z|} \text{ (}|z| < 1\text{)} \\ &= \frac{|z|}{(1 - |z|)^2} \end{split}$$

— Si $|z| \ge 1$:

$$\sum_{i\geq 1, j\geq 1} |z|^{ij} = \sum_{i\geq 1} \sum_{j\geq 1} |z^i|^j$$
$$= \sum_{i\geq 1} +\infty \ (|z^i| \geq 1)$$
$$= +\infty$$

35.36 Exemple

Exemple 35.36

Montrer que
$$\sum_{n \geq 1} \frac{(-1)^n}{n} \sum_{k \geq n} \frac{1}{k(k+1)} = -\frac{\pi^2}{12}$$
.

On note $(a_{n,k}) = \left(\frac{(-1)^n}{nk(k+1)}\right)_{1 \le n \le k}$.

$$\begin{split} \sum_{1 \leq n \leq k} |a_{n,k}| &= \sum_{1 \leq n \leq k} \frac{1}{nk(k+1)} \\ &= \sum_{n \geq 1} \frac{1}{n} \sum_{k \geq n} \frac{1}{k(k+1)} \\ &= \sum_{n \geq 1} \frac{1}{n} \sum_{k \geq n} \left(\frac{1}{k} - \frac{1}{k+1}\right) \\ &= \sum_{n \geq 1} \frac{1}{n^2} \\ &= \zeta(2) \\ &< +\infty \end{split}$$

La famille est donc sommable.

On a alors :

$$\sum_{1 \le n \le k} a_{n,k} = \sum_{n \ge 1} \frac{(-1)^n}{n} \sum_{k \ge n} \frac{1}{k(k+1)}$$

$$= \sum_{n \ge 1} \frac{(-1)^n}{n^2}$$

$$= \sum_{n \ge 1} \frac{1}{4n^2} - \sum_{n \ge 0} \frac{1}{(2n+1)^2}$$

$$= \frac{1}{4}\zeta(2) - \sum_{n \ge 1} \frac{1}{n^2} + \sum_{n \ge 1} \frac{1}{(2n)^2}$$

$$= -\frac{1}{2}\zeta(2)$$

$$= -\frac{\pi^2}{12}$$