Recent research achievements

Boris Zolotov, МКН СП6ГУ

Advanced Mathematics

Friday, December 20

Incremental Voronoi Diagrams

Sublinear Explicit

Voronoi Diagram: basics

Voronoi diagram of $S=\{s_1,\ldots,s_N\}$: subdivision of the Euclidean plane, ${\rm dist}(q,s_i)<{\rm dist}(q,s_j),\quad j\neq i.$

(a) Voronoi diagram, Voronoi vertex, circle

(b) v is a paw of b

Dynamic VD setting

When we are inserting new site s_N , the graph of the VD undergoes operation called *flarb*.

Theorem (Allen et al. 2017)

The number of cells with combinatorial changes is $O(N^{\frac{1}{2}})$ amortized, there are a constant number of combinatorial changes per cell, cells with changes are connected.

Identifying changes

Theorem: Let g be a cell adjacent to f. Cell g needs to undergo changes \iff circle of either of its vertices that are paws of f encloses s_N . Allen et al. 2017

DCR structure (Allen et al. 2017)

Returns all k circles enclosing given point in $\tilde{O}(k)$. Addition and deletion of a circle in $\tilde{O}(1)$.

Big cells and small cells

Definition

A cell is *big* if it has size at least $N^{\frac{1}{4}}$. Otherwise it is *small*.

Small cells can be processed by brute force. For big cells we will need DCRs.

Ongoing research:

Õptimal-Time Incremental Voronoi Diagrams Previous research:

Polyhedra glued from regular pentagons

Gluings

Definition (Alexandrov 1950)

A *gluing* is a set of polygons equipped with a number of rules describing the way edges of these polygons must be glued to each other.

Alexandrov's Theorem

Theorem (Alexandrov 1950)

If a gluing is homeomorphic to a sphere and the sum of angles at each of its vertices is $\leq 360^{\circ}$, there \exists ! convex polyhedron that corresponds to this gluing.

Polyhedron Reconstruction

The proof of Alexandrov's theorem is non-constructive.

Each of the following problems is still open:

Alexandrov's Problem

Given a gluing $\mathcal T$ satisfying the conditions of Alexandrov's Theorem, find the convex polyhedron corresponding to it.

Cauchy Rigidity Problem (Demaine and O'Rourke 2007, 23.22)

A *poly-time* algorithm that takes as input edge lengths of a triangulated convex polyhedron, and outputs approximate coordinates of its vertices.

Skeleton Reconstruction Problem

A *poly-time* algorithm that, given a net satisfying the conditions of Alexandrov's Theorem, *finds the skeleton* of the convex polyhedron corresponding to it.

Edge-to-Edge Gluings of Regular Polygons

Maybe Alexandrov's Problem becomes easier, if we start building the gluings from similar simple blocks?

Definition

A gluing is *edge-to-edge* if every edge is glued to another entire edge.

Khramtcova and Langerman 2017

Polyhedra glued from regular pentagons

One can enumerate all gluings of pentagons. Here are all the polyhedra that can be obtained:

Zolotov et al. 2019

Precision of vertex location based on the approximation

Theorem

If $\mathcal{D}\gamma < \pi/2$, then each vertex of \mathcal{P} lies within an r-ball centered at the corresponding vertex of P, where

$$r = E^2 \cdot L \cdot 2\sin(\mathcal{D}\gamma/2) + E\mu.$$

 \mathcal{P} — convex polyhedron corresponding to a given net,

P — approximation of \mathcal{P} . \mathcal{D} — max degree of a vertex of P.

 μ — max edge discrepancy between P and \mathcal{P} ,

 γ — max face angle discrepancy.

Determining the shape from the gluing

Let pqr, sqr be adjacent faces of P. Are there edges ps, qr in P?

Assume pqr is not vertical and P lies below it. Consider three planes Π_1 , Π_2 , Π_3 tangent to $B_r(p)$, $B_r(q)$, $B_r(r)$.

Theorem

If s lies below Π_1 , Π_2 and Π_3 and the distance from s to each of the planes Π_1 , Π_2 and Π_3 is greater than r, then the edge qr must be in \mathcal{P} .

Implemented on Haskell.

Geometric methods can also be used.

Allen, S. R., Barba, L., Iacono, J., and Langerman, S. (2017). Incremental voronoi diagrams. *Discrete & Computational Geometry*, 58(4):822–848.

Demaine, E. and O'Rourke, J. (2007). Geometric folding algorithms. Cambridge University Press.

Khramtcova, E. and Langerman, S. (2017). Which convex polyhedra can be made by gluing regular hexagons? In *JCDCG*³.

Zolotov, B., Arseneva, E., and Langerman, S. (2019). A complete list of all convex shapes made by gluing regular pentagons. In XVIII Spanish Meeting on Computational Geometry, page 26–29, Girona, Spain.