Assignment 1 Exercises: 1

Exercise 13.1 Prove that for every $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} (2i - 1) = n^2.$$

Proof. Let $P(n): \sum_{i=1}^{n} (2i-1) = n^2$.

Base Case: Prove $P(1): \sum_{i=1}^{1} (2i-1) = 1^2$. 2(1) - 1 = 1 so 1 = 1, which is true.

Inductive Step: Assume $P(k): \sum_{i=1}^{k} (2i-1) = k^2$. Then we need to prove $P(k+1): \sum_{i=1}^{k+1} (2i-1) = (k+1)^2$. We begin on the left-hand side.

$$\sum_{i=1}^{k+1} (2i-1) = \sum_{i=1}^{k} (2i-1) + 2(k+1) - 1$$
$$= k^2 + 2k + 1$$
$$= (k+1)^2$$

But $(k+1)^2$ is the right-hand side, so we have proved P(k+1). Thus, by induction, P(n) is true for all $n \in \mathbb{N}$.

Exercise 13.2 Prove that for every $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$$

Proof.

Let
$$P(n): \sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}$$

Base Case: Prove $P(1): \sum_{i=1}^{1} \frac{1}{(2i-1)(2i+1)} = \frac{1}{2(1)+1}$. $\frac{1}{(2-1)(2+1)} = \frac{1}{3}$ so $\frac{1}{3} = \frac{1}{3}$, which is true.

Inductive Step: Assume $P(k): \sum_{i=1}^k \frac{1}{(2i-1)(2i+1)} = \frac{k}{2k+1}$. Then we need to prove

$$P(k+1): \sum_{i=1}^{k+1} \frac{1}{(2i-1)(2i+1)} = \frac{k+1}{2(k+1)+1}$$
 is true.

$$LHS = \sum_{i=1}^{k+1} \frac{1}{(2i-1)(2i+1)} = \sum_{i=1}^{k} \frac{1}{(2i-1)(2i+1)} + \frac{1}{[2(k+1)-1][2(k+1)+1]}$$

$$= \frac{k}{2k+1} + \frac{1}{(2k+1)(2k+3)}$$

$$= \frac{k(2k+3)+1}{(2k+1)(2k+3)}$$

$$= \frac{2k^2+3k+1}{(2k+1)(2k+3)}$$

$$= \frac{(2k+1)(k+1)}{(2k+1)(2k+3)}$$

$$= \frac{k+1}{2(k+1)+1} = RHS$$

Thus, since P(k+1) is true, we have proved the proposition by mathematical induction.

Exercise 13.3 Prove that for every $n \in \mathbb{N}$,

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Proof.

Let
$$P(n): \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Base Case: Prove $P(1): \sum_{i=1}^{1} i^2 = \frac{(1)(1+1)(2(1)+1)}{6}$. $1^2 = \frac{2(3)}{6}$, so P(1) is true.

Inductive Step: Assume $P(K): \sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6}$. Then we need to prove

$$P(k+1): \sum_{i=1}^{k+1} i^2 = \frac{(k+1)(k+1+1)(2(k+1)+1)}{6}$$
 is true.

$$LHS = \sum_{i=1}^{k+1} i^2 = \sum_{i=1}^{k} i^2 + (k+1)^2$$

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$

$$= \frac{k(k+1)(2k+1) + 6(k+1)^2}{6}$$

$$= \frac{(k+1)[k(2k+1) + 6(k+1)]}{6}$$

$$= \frac{(k+1)(2k^2 + 7k + 6)}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6}$$

$$= \frac{(k+1)(k+1)(2(k+1) + 1)}{6} = RHS$$

Thus, since P(k+1) is true when P(k) is true, and since P(1) is true, we have proved the proposition by mathematical induction.

Exercise 13.4 Prove that for every $n \in \mathbb{N}$, $n < 3^n$.

Proof. Let $P(n): n < 3^n$.

Base Case: Prove $P(1) : 1 < 3^1$. 1 < 3, so P(1) is true.

Inductive Step: Assume $P(k): k < 3^k$ is true. Then we need to prove $P(k+1): k+1 < 3^{k+1}$ is true.

$$RHS = k + 1 < 3^k + 1$$

Exercise 13.5 Let $a, x \in \mathbb{R}$, with $x \neq 1$. Prove that $\forall n \in \mathbb{N}$,

$$\sum_{i=0}^{n} x_i = \frac{1 - x^{n+1}}{1 - x}$$

Proof.

Let
$$P(n): \sum_{i=0}^{n} x_i = \frac{1-x^{n+1}}{1-x}$$

Base Case:

Prove
$$P(1)$$
:
$$\sum_{i=0}^{1} x_i = \frac{1 - x^{1+1}}{1 - x}$$
$$\sum_{i=0}^{1} x_i = \frac{1 - x^{1+1}}{1 - x}$$
$$x^0 + x^1 = \frac{1 - x^2}{1 - x}$$
$$1 + x = \frac{1 - x^2}{1 - x}$$
$$\frac{(1 + x)(1 - x)}{1 - x} = \frac{1 - x^2}{1 - x}$$
$$\frac{1 - x^2}{1 - x} = \frac{1 - x^2}{1 - x}$$

Thus, we have proved the base case.

Inductive Step:

Assume
$$P(k)$$
: $\sum_{i=0}^{k} x_i = \frac{1 - x^{k+1}}{1 - x}$ is true.
Prove $P(k+1)$: $\sum_{i=0}^{k+1} x_i = \frac{1 - x^{k+1+1}}{1 - x}$ is true.

$$LHS = \sum_{i=0}^{k+1} x_i = \sum_{i=0}^{k} x^i + x^{k+1}$$

$$= \frac{1 - x^{k+1}}{1 - x} + x^{k+1}$$

$$= \frac{1 - x^{k+1}}{1 - x} + (1 - x)x^{k+1}$$

$$= \frac{1 - x^{k+1} + x^{k+1} - x^{k+2}}{1 - x}$$

$$= \frac{1 - x^{k+2}}{1 - x} = RHS$$

Thus, since P(1) is true and P(k+1) is true if P(k) is true, we have proved the proposition.