Bootstrap Confidence Intervals

Bradley Efron

Efron and Tibshirani "Introduction to the Bootstrap" Chapman and Hall, Chapters 12–14 and 22

• EXACT CONFIDENCE INTERVALS

Binomial, Poisson, Normal correlation, ratio of normal

means

• APPROXIMATE CONFIDENCE INTERVALS "Standard Interval"

• BOOTSTRAP APPROXIMATE CONFIDENCE INTERVALS

Poisson (.05, .95) Confidence Limits, X = 7

Bootstrap

• Length =
$$L + R$$
 • Shape = R/L

• Shape =
$$R/L$$

Actual Probabilities

	Length	Shape	$\widehat{\theta}_{\mathrm{lo}}$	$\widehat{\theta}_{\rm up}$	
Standard:	8.7	1.00	.012	.091	
Bootstrap:	9.1	1.64	.048	.047	
Exact:	9.0	1.63	.05	.05	
			1		
	\Pr	$\operatorname{ob}_{\hat{ heta}_{\mathbf{lo}}}\{X\}$	≥ 7	$\operatorname{Prob}_{\hat{ heta}}$	$\{X \le 7\}$

Spatial Test Data, n=26 children

A 48 36 20 29 42 42 20 42 22 41 45 14 6 0 33 28 34 4 32 24 47 41 24 26 30 41 B 42 33 16 39 38 36 15 33 20 43 34 22 7 15 34 29 41 13 38 25 27 41 28 14 28 40

CORRELATION COEFFICIENT

$$\widehat{\theta}$$
 = Sample correlation between A and B = .821

• Normal Theory Confidence Limits

	$\widehat{ heta}_{ ext{lo}}$	$\widehat{\theta}_{\rm up}$	Length	Shape
Standard:	.716	.926	.21	1.00
Bootstrap:	.668	.901	.23	.52
Exact:	.665	.902	.24	.52

• Actual probabilities for Standard Endpoints:

$$\text{Prob}_{.716}\{\hat{\theta} > .821\} = .090$$
 $\text{Prob}_{.926}\{\hat{\theta} < .821\} = .012$

One-Sample Problems

•
$$F \longrightarrow \mathbf{x} = (x_1, x_2, \dots, x_n) \longrightarrow \widehat{\theta} = t(\mathbf{x})$$
Unknown probability data: random sample Statistic of

distribution

of size n from F

interest

• Spatial Data: n = 26, $x_i = (A_i, B_i)$, $\mathbf{x} = \text{data matrix}$ (26×2)

$$\widehat{\theta} = \text{sample corr} \quad t(\mathbf{x}) = \frac{\Sigma (A_i - \bar{A})(B_i - \bar{B})}{[\Sigma (A_i - \bar{A})^2 \Sigma (B_i - \bar{B})^2]^{1/2}}$$

• Bootstrap

$$\widehat{F} \longrightarrow \mathbf{x}^* = (x_1^*, x_2^*, \cdots, x_n^*) \longrightarrow \widehat{\theta}^* = t(\mathbf{x}^*)$$

estimate of bootstrap data: random bootstrap replication sample of size n from \widehat{F}

of $\widehat{\theta}$

Nonparametric: \widehat{F} = empirical distribution of the data $(x_1^*, x_2^*, \dots, x_n^*)$ are sampled WITH replacement from $\{x_1, x_2, \dots, x_n\}$

2000 nonparametric bootstrap replications of correlation coeff for Spatial data

- $\hat{\sigma} = .066$
- 45% of the $\hat{\theta}^*$ values $<\hat{\theta}$

NORMAL THEORY BOOTSTRAP

- ullet Take \widehat{F} to be the bivariate normal distribution that best fits the data (MLE).
- $\widehat{F} \to \mathbf{x}^* = (x_1^*, x_2^*, \dots, x_n^*)$ is random sample of size n from \widehat{F} .

- $\hat{\sigma} = .070$ (Compared to .066 nonparametrically)
- 46% of the 2000 $\widehat{\theta}^*$'s $< \widehat{\theta}$.

2000 normal-theory bootstrap replications of correlation, spatial data

Percentile Interval: (.690, .908)

Exact: (.665, .902)

BC_a Method

• Instead of .05 and .95 percentiles of the bootstrap distribution, use $\alpha_{.05}$ and $\alpha_{.95}$ percentiles, where

$$\alpha_{.95} = \Phi \left(\hat{z}_0 + \frac{\hat{z}_0 + 1.645}{1 - \hat{a}(z_0 + 1.645)} \right)$$

- $\Phi(z)$ is standard normal cdf $\int_0^z \exp\{-t^2/2\}dt/\sqrt{2\pi}$
- \hat{z}_0 = "bias-correction" = Φ^{-1} (proportion of $\hat{\theta}^*$'s $< \hat{\theta}$) $= \Phi^{-1}(\frac{914}{2000}) = -.108 \text{ for normal bootstraps.}$ $\uparrow_{.457}$
- \hat{a} = "acceleration" = .000 for normal bootstraps (= .035 nonparametric)
- If $\hat{z}_0 = \hat{a} = 0$ then $BC_a = \text{percentile method}$
- If also bootstrap histogram normal, then $BC_a = \text{Standard}$
- For normal theory spatial data $\alpha_{.05} = 032$ $\alpha_{.95} = .924$

Acceleration \hat{a}

• Standard interval is based on asymptotic approximation

- BC_a allows for non-normal distributions, biased estimates, and non-constant variance.
- \bullet "â" is a measure of how quickly variance is changing

• Let
$$\widehat{\theta}_{(i)} = t(\mathbf{x}_{(i)})$$
 where
$$\mathbf{x}_{(i)} = (x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$$

Then

$$\hat{a} = \frac{\Sigma[\widehat{\theta}_{(\cdot)} - \widehat{\theta}(i)]^3}{6[\Sigma(\widehat{\theta}_{(\cdot)} - \widehat{\theta}_{(i)})^2]^{3/2}} \quad \text{where} \quad \theta_{(\cdot)} = \frac{\Sigma\widehat{\theta}_i}{n}$$

(nonparametric)

Second-Order Accuracy

 \bullet Each side of exact interval has .05 probability of not covering the true θ

• Standard interval has non-coverage probabilities

$$.05 + \frac{c}{\sqrt{n}}$$

"first order accurate"

• BC_a interval has non-coverage probabilities

$$.05 + \frac{c}{n}$$

"second order accurate"

(both parametric and nonparametric)

BOOTSTRAP-T Intervals

• Suppose

$$F \to \mathbf{x} \quad \stackrel{\widehat{\theta}}{\longrightarrow} \hat{\theta} = t(\mathbf{x}) \text{ estimate of } \theta$$

$$\widehat{\sigma} = s(\mathbf{x}) \text{ estimate of } \widehat{\theta} \text{ sterr}$$

- Define $T = \frac{\widehat{\theta} \theta}{\widehat{\sigma}}$
- Let $T^{(.05)}$ and $T^{(.95)}$ be percentiles of T
- Then (.05, .95) confidence interval for θ is $(\widehat{\theta}_{lo}, \widehat{\theta}_{up})$,

$$\widehat{\theta}_{\mathrm{lo}} = \widehat{\theta} - T^{(.95)} \widehat{\sigma}$$
 $\widehat{\theta}_{\mathrm{up}} = \widehat{\theta} - T^{(.05)} \widehat{\sigma}$

• If $\widehat{\theta} = \bar{x}$, $\widehat{\sigma} = [\Sigma(x_i - \bar{x})^2/n(n-1)]^{\frac{1}{2}}$ then get Student's t.

Bootstrap-T

$$\widehat{F} \longrightarrow \mathbf{x}^* \qquad \widehat{\theta}^* = t(\mathbf{x}^*) \qquad T^* = \frac{\widehat{\theta}^* - \widehat{\theta}}{\widehat{\sigma}^*}$$

- \bullet Distribution of T^* values gives bootstrap percentiles $T^{*(.05)},\,T^{*(.95)}$
- Use

$$\widehat{\theta}_{\text{lo}} = \widehat{\theta} - T^{*(.95)} \widehat{\sigma}$$
 $\widehat{\theta}_{\text{up}} = \widehat{\theta} - T^{*(.05)} \widehat{\sigma}$

• Spatial Correlation Example, $\hat{\sigma} = (1 - \hat{\theta}^2)/\sqrt{26}$:

	$\widehat{\theta}_{\mathbf{lo}}$	$\widehat{\theta}_{\mathtt{up}}$	$\widehat{ heta}_{ ext{lo}}$	$\widehat{\theta}_{\rm up}$
Boot-T	.653	.905	.627	.905
$BC_a(ABC)$.668	.901	.675	.892
Exact	.665	.902	?	?
Standard	.716	.926	.726	.916
	Normal Theory		Nonpa	rametric

• Boot-T is 2nd order accurate.

• Disadvantages:

- Need expression for $\hat{\sigma}$ (or 2nd level bootstrap)
- Not trustworthy in nonparametric settings
- Not transformation invariant

Transformation Invariance

- Suppose we change parameter of interest from $\theta =$ correlation coefficient to $R = \sqrt{1 \theta^2}$.
- Then BC_a confidence interval changes in the obvious way:

$$\widehat{R}_{\mathrm{lo}} = \sqrt{1 - \widehat{\theta}_{\mathrm{lo}}^2}$$
 $\widehat{R}_{\mathrm{up}} = \sqrt{1 - \widehat{\theta}_{\mathrm{up}}^2}$

- Works for any monotone transformation.
- Exact intervals have same property.
- But standard intervals, Boot-T intervals don't.

Student Score Data

• n = 22 students have each taken 5 tests, but some of the scores are missing:

	Observed Data o				
	\mathbf{A}	В	С	D	\mathbf{E}
student					
1	?	63	65	70	63
	53	61	72	64	$^{73}_?$
$egin{array}{c} 2 \ 3 \end{array}$	51	67	65	65	?
4	? ? ?	69	53	53	53
5	?	69	61	55	45
6	?	49	62	63	62
7	44	61	52	62	?
4 5 6 7 8	49	41	61	49	62 ? ?
9	30	69	50	52	45
10	?	59	51	45	
11	?	40	56	54	?
12	42	60	54	49	?
13	?	63	53	54	51 ? ? ? ?
14	?	55	59	53	?
15	?	49	45	48	?
16	? 42 ? ? ? 17	53	57	43	51 ?
17	39	46	46	32	?
18	48	38	41	44	33
19	46	40	47	29	?
$\overline{20}$	30	34	43	46	18
$\frac{20}{21}$		30	32	35	21
$\frac{1}{2}$? ?	26	15	20	?

• Parameter of interest: $\theta = \text{maximum eigenvalue of covariance matrix of the 5 scores.}$

Estimate θ by $\widehat{\theta}$:

(a) Impute missing values in 22×5 data matrix \mathbf{x} by two-way additive model $\hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j$

- (b) Compute usual sample covariance matrix for the imputed data matrix.
- (c) Take its maximum eigenvalue.

•
$$\hat{\theta} = 633.2 \pm ?$$

- Nonparametric bootstrap analysis of $\widehat{\theta}$
- \bullet Bootstrap data matrix \mathbf{x}^* is obtained by resampling the rows of \mathbf{x} (including the question marks).
- Then $\widehat{\theta}^*$ is obtained from \mathbf{x}^* in same way that $\widehat{\theta}$ was obtained from \mathbf{x} .

• 2200 bootstraps of $\widehat{\theta}$ gave

$$\hat{\sigma} = 212.0$$

• (.05, .95) Confidence Limits for θ :

	$\widehat{ heta}_{ ext{lo}}$	$\widehat{\theta}_{\rm up}$
BC_a	379	1164
ABC	379	1172
Standard	284	982

• No gold standard

ABC Method

- Approximates the endpoints of BC_a interval analytically.
- Uses numerical 2nd derivatives in place of Monte Carlo.
- Needs 2n + 4 recomputations of $\widehat{\theta}$, rather than 2000.
- Works for "smooth" statistics $\widehat{\theta} = s(\mathbf{x})$.
- Standard interval requires $(\widehat{\theta}, \widehat{\sigma})$. ABC also needs

$$(\hat{a},\hat{z}_0,\hat{c})$$
 $(\hat{a},\hat{z}_0,\hat{c})$
"nonlinearity"

- Also an approximation to Bootstrap-T
- Need to write $\hat{\theta} = t(\mathbf{x})$ as function of bootstrap weights on sample points x_1, x_2, \dots, x_n . [e.g. $\bar{x}^* = \sum_i \frac{N_i}{n} x_i$].

Nonparametric ABC Program in "S"

```
"abcnon" <-
function(tt, n, epsi = 0.001, alpha = c(.025, .05, .1, .16, .84, .9, .95, .975))
#abc for nonparametric problems, sample size n
#tt(P) is statistic in resampling form, where P[i] is weight on x[i]
        ep \leftarrow epsi/n; I \leftarrow diag(n); P0 \leftarrow rep(1/n,n)
        t0 < -tt(P0)
#calculate t. and t..
        t. <- t.. <- numeric(n)
        for (i in 1:n) { di <- I[i, ] - P0
                        tp <- tt(P0 + ep * di)
                        tm <- tt(P0 - ep * di)
                        t.[i] \leftarrow (tp - tm)/(2 * ep)
                        t..[i] \leftarrow (tp - 2 * t0 + tm)/ep^2
sighat <- sqrt(sum(t.^2))/n</pre>
       a \leftarrow (sum(t.^3))/(6 * n^3 * sighat^3)
       delta <- t./(n^2 * sighat)</pre>
       cq \leftarrow (tt(P0+ep*delta) -2*t0 + tt(P0-ep*delta))/(2*sighat*ep^2)
       bhat <- sum(t..)/(2 * n^2)
       curv <- bhat/sighat - cq</pre>
       z0 <- qnorm(2 * pnorm(a) * pnorm( - curv))</pre>
#calculate interval endpoints......
       Z <- z0 + gnorm(alpha)</pre>
       za <- Z/(1 - a * Z)^2
       stan <- t0 + sighat * gnorm(alpha)</pre>
       abc <- seq(alpha)
       for(i in seq(alpha)) abc[i] <- tt(P0 + za[i] * delta)</pre>
       lims <- cbind(alpha, abo, stan)
#output in list form.....
       list(lims=lims, stats=c(t0, sighat, bhat), cons=(c(a, z0, cq)), t.=t.)
}
```

• n = 8 subjects each given 3 hormone patches: Placebo, Approved, New.

• Blood levels of hormone:

				y	z
Patient	Placebo	Approved	New	App-Pla	New-App.
1.	9243	17649	16449	8406	-1200
2.	9671	12013	14614	23 42	2601
3.	11792	19979	17274	8187	-2705
4.	13357	21816	23798	8459	1982
5.	9055	13850	12560	4795	-1290
6.	6290	9806	10157	3516	351
7.	12412	17208	16570	4796	-638
8.	18806	29044	26325	10238	-2719
mean	11328	17671	17218	6342	-452

•
$$y = \text{Approved-Placebo}$$
 $z = \text{New-Approved}$

• Parameter of interest $\theta = E\{z\}/E\{y\}$

$$\bullet \ \widehat{\theta} = \frac{-452}{6342} = -.071 \pm ?$$

• Normal Theory: Assume $x_i = (y_i, z_i)$ bivariate normal vectors.

- $\bullet \quad \hat{\sigma} = .103.$
- 51.1% of $\hat{\theta}^*$ values $< \hat{\theta}$

Confidence Limits for θ

*I was a same of the same of t	$\widehat{ heta}_{ ext{lo}}$	$\widehat{\theta}_{\mathtt{up}}$	Length	Shape
Exact	249	.170	.42	1.36
BC_a	212	.115	.33	1.32
ABC	215	.111	.33	1.27
ABC_{CAL}	257	.175	.43	1.33
Standard	232	.089	.32	1.00

• "Third-order errors" in length of BC_a , ABC. $(O(n^{-\frac{3}{2}}))$

CALIBRATION

• Let $\widehat{\theta}[\alpha]$ be endpoint of level- α approximate confidence interval

$$\widehat{\theta}[.05] = \widehat{\theta}_{lo}, \ \widehat{\theta}[.95] = \widehat{\theta}_{up}$$

$$\beta(\alpha) = \operatorname{Prob}_F \{ \theta < \widehat{\theta}[\alpha] \}$$

$$\text{true coverage nominal coverage }$$

$$\operatorname{probability probability}$$

• If we knew for example that $\beta = .95$ corresponded to $\alpha = .98$ then we could set

$$\widehat{\theta}_{\rm up} = \widehat{\theta}[.98].$$

• Bootstrap Calibration

$$\hat{\beta}(\alpha) = \operatorname{Prob}_{\hat{F}} \{ \hat{\theta} < \hat{\theta}[\alpha]^* \}$$

(Proportion that bootstrap limit $\widehat{\theta}[\alpha^*]$ exceeds $\widehat{\theta}$)

Normal Theory Bootstrap Calibration of ABC

• Says that

$$.05 = \hat{\beta}[.0137]$$
 $.95 = \hat{\beta}[.9834]$

• ABC_{CAL} = $(\widehat{\theta}_{ABC}[.0137], \ \widehat{\theta}_{ABC}[.9834])$