大一上学期高数期末考试

—、 .	单项选择题	(本大题有4小题,	每小题4分	, 共16分)
-------------	-------	-----------	-------	---------

1. 设
$$f(x) = \cos x(x + |\sin x|)$$
,则在 $x = 0$ 处有(). (A) $f'(0) = 2$ (B) $f'(0) = 1$ (C) $f'(0) = 0$ (D) $f(x)$ 不可导.

$$(\Delta) f'(0) = 2$$

(B)
$$f'(0)=1$$
 (C) $f'(0)=0$

$$(\mathbf{D})$$
 $f(x)$ 不可导.

$$(A)$$
 $\alpha(x)$ 与 $\beta(x)$ 是同阶无穷小,但不是等价无穷小; (B) $\alpha(x)$ 与 $\beta(x)$ 是等价无穷小;

(C)
$$\alpha(x)$$
 是比 $\beta(x)$ 高阶的无穷小; 无穷小.

(D)
$$\beta(x)$$
 是比 $\alpha(x)$ 高阶的

3. 若
$$F(x) = \int_0^x (2t - x) f(t) dt$$
 , 其中 $f(x)$ 在区间上 $(-1,1)$ 二阶可导且 $f'(x) > 0$, 则 () .

(A) 函数
$$F(x)$$
 必在 $x=0$ 处取得极大值:

(B) 函数
$$F(x)$$
 必在 $x=0$ 处取得极小值;

(C) 函数
$$F(x)$$
 在 $x=0$ 处没有极值,但点 $(0,F(0))$ 为曲线 $y=F(x)$ 的拐点:

(D)函数
$$F(x)$$
在 $x=0$ 处没有极值,点 $(0,F(0))$ 也不是曲线 $y=F(x)$ 的拐点。

4. 设
$$f(x)$$
是连续函数, $f(x) = x + 2 \int_0^1 f(t) dt$, 则 $f(x) = ($

(A)
$$\frac{x^2}{2}$$
 (B) $\frac{x^2}{2} + 2$ (C) $x-1$ (D) $x+2$

二、填空题(本大题有4小题,每小题4分,共16分)

$$\lim_{x\to 0} (1+3x)^{\frac{2}{\sin x}} = \underline{\qquad}.$$

6. 已知
$$\frac{\cos x}{x}$$
是 $f(x)$ 的一个原函数 则 $\int f(x) \cdot \frac{\cos x}{x} dx =$

7.
$$\lim_{n\to\infty} \frac{\pi}{n} (\cos^2 \frac{\pi}{n} + \cos^2 \frac{2\pi}{n} + L + \cos^2 \frac{n-1}{n} \pi) = \underline{\hspace{1cm}}$$

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x^2 \arcsin x + 1}{\sqrt{1 - x^2}} dx =$$

8.
$$-\frac{1}{2}$$

9. 设函数
$$y = y(x)$$
 由方程 $e^{x+y} + \sin(xy) = 1$ 确定,求 $y'(x)$ 以及 $y'(0)$.

10. 求
$$\int \frac{1-x^7}{x(1+x^7)} dx$$
.

- g'(x) 并讨论 g'(x) 在 x=0 处的连续性.
- 13. 求微分方程 $xy' + 2y = x \ln x$ 满足 $y(1) = -\frac{1}{9}$ 的解.
- 四、 解答题(本大题10分)
- **14.** 已知上半平面内一曲线 y = y(x) $(x \ge 0)$, 过点 (0,1), 且曲线上任一点 $M(x_0, y_0)$ 处切线斜率数值上等于此曲线与 x 轴、 y 轴、直线 $x = x_0$ 所围成 面积的 2 倍与该点纵坐标之和, 求此曲线方程.

五、解答题(本大题10分)

- 15. 过坐标原点作曲线 $y = \ln x$ 的切线,该切线与曲线 $y = \ln x$ 及 x 轴围 成平面图形 D.
 - (1) 求 D 的面积 A; (2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积
- 六、证明题(本大题有2小题,每小题4分,共8分)
- **16.** 设函数 f(x) 在 [0,1] 上连续且单调递减,证明对任意的 $q \in [0,1]$,

$$\int_{0}^{q} f(x) dx \ge q \int_{0}^{1} f(x) dx$$

17. 设函数 f(x) 在 $[0,\pi]$ 上连续,且 $\int_{0}^{\pi} f(x) dx = 0$. $\int_{0}^{\pi} f(x) \cos x dx = 0$ 证明: $\Phi(0,\pi)$ 内至少存在两个不同的点 ξ_1 , ξ_2 , $\Phi(\xi_1) = f(\xi_2) = 0$. (提

示: 设
$$F(x) = \int_{0}^{x} f(x) dx$$

- 一、单项选择题(本大题有 4 小题, 每小题 4 分, 共 16 分)
- 1, D 2, A 3, C 4, C
- 二、填空题(本大题有4小题,每小题4分,共16分)

5.
$$e^6$$
 . 6. $\frac{1}{2}(\frac{\cos x}{x})^2 + c$. 7. $\frac{\pi}{2}$. 8. $\frac{\pi}{3}$.

- 三、解答题(本大题有5小题,每小题8分,共4
- 9. 解:方程两边求导

$$e^{x+y}(1+y') + c \cos(xy) + y =$$

$$y'(x) = -\frac{e^{x+y} + y\cos(xy)}{e^{x+y} + x\cos(xy)}$$

 $x = 0, y = 0, y'(0) = -1$

10.
$$M : u = x^7 \quad 7x^6 dx = du$$

原式 =
$$\frac{1}{7} \int \frac{(1-u)}{u(1+u)} du = \frac{1}{7} \int (\frac{1}{u} - \frac{2}{u+1}) du$$

= $\frac{1}{7} (\ln|u| - 2\ln|u+1|) + c$
= $\frac{1}{7} \ln|x^7| - \frac{2}{7} \ln|1+x^7| + C$

11. 解:
$$\int_{-3}^{1} f(x)dx = \int_{-3}^{0} xe^{-x}dx + \int_{0}^{1} \sqrt{2x - x^{2}}dx$$
$$= \int_{-3}^{0} xd(-e^{-x}) + \int_{0}^{1} \sqrt{1 - (x - 1)^{2}}dx$$
$$= \left[-xe^{-x} - e^{-x} \right]_{-3}^{0} + \int_{-\frac{\pi}{2}}^{0} \cos^{2}\theta d\theta (x - 1 = \sin\theta)$$
$$= \frac{\pi}{4} - 2e^{3} - 1$$

12.
$$\mathbf{M}$$
: $\mathbf{H} f(0) = 0$, $\mathbf{M} g(0) = 0$.

$$g(x) = \int_{0}^{1} f(xt)dt = \frac{\int_{0}^{x} f(u)du}{x}$$

$$(x \neq 0)$$

$$g'(x) = \frac{xf(x) - \int_{0}^{x} f(u)du}{x^{2}} \qquad (x \neq 0)$$

$$g'(0) = \lim_{x \to 0} \frac{\int_{0}^{x} f(u)du}{x^{2}} = \lim_{x \to 0} \frac{f(x)}{2x} = \frac{A}{2}$$

$$\lim_{x \to 0} g'(x) = \lim_{x \to 0} \frac{xf(x) - \int_{0}^{x} f(u)du}{x^{2}} = A - \frac{A}{2} = \frac{A}{2}, \quad g'(x) \in x = 0$$
处连续。

13.
$$\mathbf{M} \colon \frac{dy}{dx} + \frac{2}{x} y = \ln x$$

$$y = e^{-\int_{x}^{2} dx} \left(\int e^{\int_{x}^{2} dx} \ln x dx + C \right)$$

$$= \frac{1}{3} x \ln x - \frac{1}{9} x + C x^{-2}$$

$$y(1) = -\frac{1}{9} C = y = \frac{1}{3} x \ln x - \frac{1}{9} x$$

14. 解: 由已知且
$$y' = 2 \int_0^x y \, dx + y$$
,

将此方程关于x求导得y'' = 2y + y'

特征方程: $r^2-r-2=0$ 解出特征根: $r_1=-1$, $r_2=2$.

其通解为 $y = C_1 e^{-x} + C_2 e^{2x}$

代入初始条件 y(0) = y'(0) = 1, 得 $C_1 = \frac{2}{3}$, $C_2 = \frac{1}{3}$

故所求曲线方程为: $y = \frac{2}{3}e^{-x} + \frac{1}{3}e^{2x}$

五、解答题(本大题10分)

15. 解: (1)根据题意, 先设切点为 $(x_0, \ln x_0)$, 切线方程: $y - \ln x_0 = \frac{1}{x_0}(x - x_0)$

由于切线过原点,解出 $x_0 = e$,从而切线方程为: $y = \frac{1}{e}x$

 $A = \int_{0}^{1} (e^{y} - ey) dy = \frac{1}{2}e - 1$ 则平面图形面积

 $V_1 = \frac{1}{3}\pi e^2$ (2) 三角形绕直线 x = e 一周所得圆锥体体积记为 V_1 ,则 曲线 $y = \ln x$ 与 x 轴及直线 x = e 所围成的图形绕直线 x = e 一周所得旋转体体积为 V_2

$$V_2 = \int_{0}^{1} \pi (e - e^{y})^2 dy$$

16. 证明:
$$\int_{0}^{q} f(x) dx - q \int_{0}^{1} f(x) dx = \int_{0}^{q} f(x) dx - q (\int_{0}^{q} f(x) dx + \int_{q}^{1} f(x) dx)$$

$$= (1-q) \int_{0}^{q} f(x) dx - q \int_{0}^{1} f(x) dx$$

$$\stackrel{\xi_1 \in [0,q]}{=} q(1-q)f(\xi_1) - q(1-q)f(\xi_2) \stackrel{f(\xi_1) \geq f(\xi_2)}{\geq} 0$$

故有:

$$\int_{0}^{q} f(x) dx \ge q \int_{0}^{1} f(x) dx$$
证毕。

 $F(x) = \int_{0}^{x} f(t)dt , 0 \le x \le \pi$ 证: 构造辅助函数: 。其满足在 $[0,\pi]$ 上连续, 在 $[0,\pi]$ 上可导。F'(x) = f(x),且 $[0,\pi]$ 1

由题设,有 $0 = \int_0^\pi f(x)\cos x dx = \int_0^\pi \cos x dF(x) = F(x)\cos x \Big|_0^\pi + \int_0^\pi \sin x \cdot F(x) dx$,

 $\int_0^\pi F(x) \sin x dx = 0$ 有 $\int_0^\pi F(x) \sin x dx = 0$,由积分中值定理,存在 $\xi \in (0,\pi)$,使 $F(\xi) \sin \xi = 0$ 即 $F(\xi) = 0$

综上可知 $F(0)=F(\xi)=F(\pi)=0$, $\xi\in(0,\pi)$.在区间 $[0,\xi]$, $[\xi,\pi]$ 上分别应用罗尔定理,知存在

 $\xi_1 \in (0,\xi) \text{ at } \xi_2 \in (\xi,\pi)$, $\notin F'(\xi_1) = 0 \text{ Bt } F'(\xi_2) = 0$, $\notin f(\xi_1) = f(\xi_2) = 0$.