CURRICULUM - 2023 **C -23**

DIPLOMA IN COMMUNICATION & COMPUTER NETWORKING

STATE BOARD OF TECHNICAL EDUCATION & TRAINING
ANDHRA PRADESH

PREAMBLE

Technical Education is a key driver of economic development and plays a crucial role in providing individuals with the skills and knowledge necessary to thrive in the workplace. As technological advancements continue to reshape industries and create new opportunities, it is critical that technical education curricula remain relevant and up-to-date.

The curriculum has been designed with this in mind, with a focus on practical skills, critical thinking, and problem-solving. We believe that these skills are essential for success in both academic and professional spheres. The revamping of the technical education curriculum is made with collaborative effort from educators, industry experts, policymakers, and students.

At the heart of the curriculum, is the belief that the technical education should be **student-centered**, empowering learners to take ownership of their learning and pursue their passions. We aim to create a learning environment that is safe, supportive, and nurturing, where every student has the opportunity to reach their fullest potential. We acknowledge that learning is a lifelong journey, and our curriculum is designed to provide a solid foundation for continued growth and development. We hope that our students will not only leave with a diploma but with employability and passion for learning.

The State Board of Technical Education and Training, (SBTET) AP, has been offering Diploma programmes to meet the above said aspirations of the stake holders: industries, students, academia, parents and the society at large. **The Curriculum should be flexible, adaptable, and responsive to the changing needs of the industry and society.** As such, it has been the practice of SBTET, A.P., to keep the curriculum abreast with the advances in technology through systematic and scientific analysis of current curriculum and bring out an updated revised version at regular intervals.

The design of Curriculum C-23 was started in the month of January - 2023. Feedback was collected from all stake holders: Students, Lecturers, Senior Lecturers, Head of Sections and Principals for all programmes for this purpose. Accordingly, a workshop was convened on 15th February 2023 by Smt. C. Naga Rani, I.A.S, Director of Technical Education & Chairperson, SBTET, AP to discuss on revamping of C-20 curriculum to meet the needs of industries and for improvement of placements.

The meeting was attended by Sri. Saurab Gaur, I.A.S, Principal Secretary, Skill Development & Training, Smt. Lavanya Veni, I.A.S, Director, Employment & Training. Thirteen Representatives from Industries and Fourteen Academicians from Higher Level Institutions and officials of ITI, Skill Development, CTE & SBTET attended the workshop.

Smt. C Naga Rani, I.A.S., Commissioner of Technical Education while addressing in the workshop, emphasized the necessity of industrial training and on-hand experience, that the students need to undergo to support the industries and the Gaps in the Curriculum need to be fixed to make the students passionate to work in the industry in order to support economy of the country. The committees of each branch consisting of experts from Industries, Higher Level Institutions and Faculty of Polytechnics are informed to study the possibility of incorporating the following aspects while preparation of the curriculum so as to improve employability.

- To bring out industry oriented Diploma Engineers.
- Internet of Things (IoT) for all branches
- Theoretical & Practical subjects 50: 50 Ratio
- Industry 4.0 concepts.
- 5G Technology.
- Critical Thinking (Quantitative Aptitude, Data Interpretation, Quantitative reasoning etc) to face the written tests conducted by the industries during placements.

In continuation, series of workshops with subject experts followed in the subsequent weeks for thorough perusal for preparation of draft curriculum. Also, the suggestions received from representatives from various industries, academic experts from higher level institutions, subject experts from Polytechnics, have been recorded, validated for incorporation into the **Curriculum C-23**. Finally, the draft curriculum was sent to academicians of higher-level institutions, industrial experts for Vetting.

The design of new Curricula C-23 for different diploma programmes has thus been finalised with the active participation of the members of the faculty teaching in the Polytechnics of Andhra Pradesh, and duly reviewed by Expert Committee constituted of academicians and representatives from industries. Thus, the primary objective of the curriculum change is to produce employable diploma holders in the country by correlating the growing needs of the industries with relevant academic input.

The outcome-based approach as given by NBA guidelines has been followed throughout the design of this curriculum and designed to meet the requirements of NBA Accreditation, too.

The Revised Curriculum i.e., Curriculum-2023 (C-23) is approved by 45th Academic Committee of SBTET, A.P for its implementation with effect from Academic Year 2023-24. Also, the SBTET, A.P under the aegis of the Department of Technical Education, Andhra Pradesh in it's 62nd Board Meeting held on 13-07-2023 (vide item no: 17) Approved to update the Polytechnic Curriculum C-23 with effect from the academic year 2023-2024 onwards after revamping the present C-20 curriculum, to meet the latest industrial technological developments including Industry 4.0 concepts.

2. HIGHLIGHTS OF CURRICULUM C-23

The following Courses/ Topics are incorporated in this curriculum C-23 as per the suggestions received from Industrial Experts, Faculty of Higher Level Institutions and Polytechnics to improve the Employability Skills of the Polytechnic Students.

- 1. Duration of course for regular Diploma and for sandwich Diploma is 3 years and $3\frac{1}{2}$ years respectively.
- 2. The Curriculum is prepared in Semester Pattern. However, First Year is maintained as Year-wise pattern.

- 3. 6 Months Industrial training has been introduced for 3 years Diploma Courses and 1 year Industrial Training is introduced for 3 ½ years Sandwich Diploma courses.
- 4. As suggested by industry expert, Updated subjects relevant to the industry are introduced in all the Diploma courses.
- 5. The policy decisions taken at the State and Central level with regard to environmental science are implemented by including relevant topics in Chemistry. This is also in accordance with the Supreme Court guidelines issued in Sri Mehta's case.
- 6. Keeping in view the increased need of communication skills which is playing a major role in the success of Diploma Level students in the Industries, emphasis is given for learning and acquiring listening, speaking, reading and writing skills in English. Further as emphasized in the meetings, Communication Skills lab and Life Skills lab are continuing for all the branches.
- 7. Industrial visits for students at least once in a year. Industrial seminar by industrial experts in each year /Semester
- 8. Upon reviewing the existing C-20 curriculum, it is found that the Practical content is found to have more weightage than the Theory content. In C-23 curriculum, more emphasis is given to the practical content in Laboratories and Workshops, thus strengthening the practical skills.
- 9. With increased emphasis for the student to acquire Practical skills, the course content in all the subjects is thoroughly reviewed and structured as outcome based than the conventional procedure based.
- 10. Curricula of Laboratory and Workshops have been thoroughly revised based on the suggestions received from the industry and faculty, for better utilization of the equipment available in the Polytechnics. The experiments /exercises that are chosen for the practical sessions are identified to confirm to the field requirements of industry.
- 11. Student Centric activity(Library, Mini project, Sports, Preparation for placements, Reporting etc) are introduced in each year/semester with a weightage of 03 periods per week.
- 12. A new concept Study on Societal problems is introduced to resolve village level issue in during summer vacation after completion of 1 st year at near by village .A Mini Project Report is to be submitted by the student

3. ACKNOWLEDGEMENTS

The Members of the working group are grateful to Smt C. Naga Rani I.A.S., Commissioner of Technical Education & Chairman of SBTET, for continuous guidance and valuable inputs during process of revising, modifying and updating the Curriculum C-20 to Curriculum C-23.

We are grateful to Sri. S. Suresh Kumar, I.A.S, Principal Secretary, Skills Development & Training for his valuable suggestions to bring the revamped curriculum C-23 in to a final form to meet latest Industry 4.0 concepts.

We are grateful to Sri. Saurab Gaur, I.A.S, former Principal Secretary, Skills Development & Training who actively participated in the Industry-Academia workshop

conducted on 15th February, 2023 and offered valuable suggestions and insights into the learning needs and preferences so that the curriculum is engaging, inclusive, and effective.

It is pertinent to acknowledge the support of the following in the making of Curriculum C-23. A series of workshops in different phases were conducted by SBTET, AP, Guntur involving faculty from Polytechnics, Premier Engineering Colleges & representatives from various Industries and Dr. C. R. Nagendra Rao, Professor & Head, NITTTR-ECV to analyse the Previous C-20 Curriculum and in designing of C-23 Curriculum, is highly appreciated and gratefully acknowledged.

We also extend our sincere thanks to Sri K.V. Ramana Babu, Secretary, SBTE&T, Andhra Pradesh, Sri K.Vijaya Bhaskar, Former Secretary, SBTET, Andhra Pradesh, Sri. V.Padma Rao, Joint Director of Technical Education, officials of Directorate of Technical Education and the State Board of Technical Education, Andhra Pradesh and all teaching fraternity from the Polytechnics who are directly or indirectly involved in preparation of the curricula.

4. RULES AND REGULATIONS OF C-23 CURRICULUM

4.1 Duration and pattern of the courses

All the Diploma programs run at various institutions are of AICTE approved 3 years or 3½ years duration of academic instruction. All the Diploma courses are run on year wise pattern in the first year, and the remaining two or two & half years are run in the semester pattern. In respect of few courses like Diploma in Bio-Medical course, the training will be in the seventh semester. Run-through system is adopted for all the Diploma Courses, subject to eligibility conditions.

4.2 Procedure for Admission into the Diploma Courses:

Selection of candidates is governed by the Rules and Regulations laid down in this regard from time to time.

- a) Candidates who wish to seek admission in any of the Diploma courses will have to appear for the Common Entrance Test for admissions into Polytechnics (POLYCET) conducted by the State Board of Technical Education and Training, Andhra Pradesh, Vijayawada. Only the candidates satisfying the following requirements will be eligible to appear for the Common Entrance Test for admissions into Polytechnics (POLYCET).
 - a. The candidates seeking admission should have appeared for S.S.C examination, conducted by the Board of Secondary Education, Andhra Pradesh or equivalent examination thereto, at the time of applying for the Common Entrance Test for admissions into Polytechnics (POLYCET). In case of candidates whose results of their Qualifying Examinations is pending, their selection shall be subject to production of proof of their passing the qualifying examination in one attempt or compartmentally at the time of admission.
 - b. Admissions are made based on the merit obtained in the Common Entrance Test (POLYCET) and the reservation rules stipulated by the Government of Andhra Pradesh from time to time.
 - c. For admission into the following Diploma Courses for which entry qualification is 10+2, candidates need not appear for POLYCET. A separate notification will be issued for admission into these courses.
 - i). D.HMCT ii).D. Pharmacy

4.3 Medium of Instruction

The medium of instruction and examination shall be English.

4.4 Permanent Identification Number (PIN)

A cumulative / academic record is to be maintained of the Marks secured in sessional work and end examination of each year for determining the eligibility for promotion etc., A Permanent Identification Number (PIN) will be allotted to each admitted candidate to maintain academic records.

4.5 Number of Working Days Per Semester / Year:

- a) The Academic year for all the Courses shall be in accordance with the Academic Calendar.
- b) The Working days in a week shall be from Monday to Saturday
- c) There shall be 7 periods of 50 minutes duration each on all working days.
- d) The minimum number of working days for each semester / year shall be 90 / 180 days excluding examination days. If this prescribed minimum is not achieved due to any reason, special arrangements shall be made to conduct classes to complete the syllabus.

4.6 Eligibility (Attendance to Appear for the End Examination)

- a) A candidate shall be permitted to appear for the end examination in all subjects, if he or she has attended a minimum of 75% of working days during the year/Semester.
- b) Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester or 1st year may be granted on medical grounds.
- c) A stipulated fee shall be payable towards condonation for shortage of attendance.
- d) Candidates having less than 65% attendance shall be detained.
- e) Students whose shortage of attendance is not condoned in any semester / $1^{\rm st}$ year and not paid the condonation fee in time are not eligible to take their end examination of that class and their admissions shall stand cancelled. They may seek re-admission for that semester / $1^{\rm st}$ year when offered in the next subsequent academic semester/year.

For INDUSTRIAL TRAINING:

- i) During Industrial Training the candidate shall put in a minimum of 90% attendance.
- ii) If the student fails to secure 90% attendance during industrial training, the student shall reappear for 6 months industrial training at his own expenses.

4.7 Readmission

Readmission shall be granted to eligible candidates by the respective Principal/ Regional Joint Director.

a) (i) Within 15 days after commencement of class work in any semester (Except Industrial Training).

- (ii) For Industrial Training: before commencement of the Industrial training.
- b) Within 30 days after commencement of class work in any year (including D. Pharmacy course or first year course in Engineering and Non-Engineering Diploma streams). Otherwise, such cases shall not be considered for readmission for that semester / year and are advised to seek readmission in the next subsequent eligible academic year.
- c) The percentage of attendance of the readmitted candidates shall be calculated from the first day of beginning of the regular class work for that year / Semester, as officially announced by CTE/SBTET but not from the day on which he/she has actually reported to the class work.

4.8 Scheme of Evaluation

a) First Year

Theory Courses: Each Course carries Maximum marks of 80 with an end examination of 3 hours duration, along with internal assessment for Maximum of 20 marks. (Sessional marks). However, there are no minimum marks prescribed for sessionals.

Laboratory Courses: There shall be 40/20 Marks for internal assessment i.e. sessional marks for each practical Course with an end examination of 3 hours duration carrying 60/30 marks. However, there are no minimum marks prescribed for sessional.

b) III, IV, V, VI and VII Semesters:

Theory Courses: End semester evaluation shall be of 3 hours duration and for a maximum of 80 marks.

Laboratory Courses: Each Course carry 60/30 marks of 3 hours duration 40/20 sessional marks.

4.9 Internal Assessment Scheme

a) Theory Courses: Internal assessment shall be conducted for awarding Sessional marks on the dates specified. Three-unit tests shall be conducted for I year students and two Unit Tests for semesters. The details are presented below.

	Type of Assessment	Weightage
S.		Assigned
No.		
(i)	Testing of knowledge through mid-examination for	40
	year/sem as (Mid-1+Mid-2+Mid3) or (Mid-1 + Mid-2)	
(ii)	Assignments	5
(iii)	Dynamic Learning activities: Project Work/ Seminar/Techfest/Group Discussion, Quizzes etc./Extra-curricular activities/NSS/NCC/ IPSGM/Cleaning & Greening of Campus etc.	5
	TOTAL	50

Internal Assessment shall be of 90 minutes duration and for a maximum of 40 marks for each test.

At least one assignment should be completed for each unit which carries 10 marks. The total assignment marks should be reduced to 5.

The dynamic learning activity is to be conducted which carries 10 marks. The total marks should be reduced to 5.

The total $50\ \text{marks}$ assigned to internal assignment is to be scaled down to $20\ \text{marks}$.

b) Practical Courses:

(i) Drawing Courses:

The award of Sessional marks for internal Assessment shall be as given in the following table:

	Distribution of Marks for the Internal Assessment Marks								
Fi	rst Yea	r (Total:40 Marks)	Semesters (Total:40 Marks)						
Max:20 Marks Max:20 Marks			Max:20 Marks	Max:20 Marks					
From	the	From the Average of	From the Average of	From the Average of					
Average	of	Assessment of Regular	TWO Unit Tests.	Assessment of Regular					
THREE	Unit	Class work Exercises.		Class work Exercises.					
Tests.									

- For first year engineering drawing each unit test will be conducted for a duration of 2 hours with maximum marks of 40.
- ➤ (Part A: 4 questions x 5 marks = 20 Marks; Part -B: 2 questions x 10 marks = 20 marks).
- > For the semester drawing examinations, Two Unit tests shall be conducted as per the Board End Examination Question Paper Pattern.
- ➤ All Drawing exercises are to be filed in serial order and secured for further scrutiny by a competent authority

(ii) Laboratory Courses:

- (a) Student's performance in Laboratories / Workshop shall be assessed during the year/ semester of study for 40 marks in each practical Course.
- **(b)** Evaluation for Laboratory Courses, other than Drawing courses:
- i. Instruction (teaching) in laboratory courses (except for the course on Drawing) here after shall be task/competency based as delineated in the Laboratory sheets, prepared by SBTET, AP & NITTTR- ECV and posted in SBTET website.
- ii. Internal assessment for Laboratory shall be done on the basis of task/s performed by the student as delineated in the laboratory sheets, prepared by SBTET, AP & NITTTR- ECV and posted in AP, SBTET website.
- iii. Question paper for End semester Evaluation shall also be task/s based and shall be prepared and distributed by SBTET as done in case of theory courses be prepared as per SBTET rules in vogue.

- c) Internal assessment in Labs / workshops / Survey field work etc., during the course of study shall be done and sessional marks shall be awarded by the concerned Teacher.
- d) For practical examinations, except in drawing, there shall be two examiners. External examiner shall be appointed by the Principal in consultation with respective Head of Section preferably choosing a qualified person from in the order of preference.
 - i) Nearby Industry
 - ii) Govt / Semi Govt organization like R & B, PWD, PR, Railways, BSNL, APSRTC, APSEB etc.
 - iii) Govt / University Engg College.
 - iv) HoD/Senior Lecture (Selection Grade-II) from the Govt. Polytechnic Internal examiner shall be the person concerned with internal assessment as in (c) above. The end examination shall be held along with all theory papers in respect of drawing.
- e) Question Paper for Practicals: Question paper should cover (the experiments / exercise prescribed to test various) skills like handling, manipulating, testing, trouble shooting, repair, assembling and dismantling etc., from more than one experiment / exercise
- f) Records pertaining to internal assessment marks of both theory and practical Courses are to be maintained for official inspection.
- g) In case of Diploma programs having Industrial Training, Internal Assessment and Summative Evaluation, shall be done as illustrated in the following table:

Assessment no	Upon completion of	Ву	Based on	Max Marks	
1	12 weeks	1. The faculty concerned (Guide) and 2. Training in	Learning outcomes as given in the scheme of assessment ,for	120	
2	22 weeks	charge (Mentor) of the industry	Industrial Training	120	
3. Final		1.The faculty member	1. Demonstration of any one of the skills listed in learning outcomes	30	
summative Evaluation	24 week	concerned, 2.HoD concerned and 3.An external examiner	2.Training Report 3.Viva Voce	10	
TOTAL					

h) Each staff member including Head of Section shall be assigned a batch of students 10 to 15 for making assessment during industrial training.

4.10 Minimum Pass Marks

a) Theory Examination:

For passing a theory Course, a candidate has to secure a minimum of 35% in end examination and a combined minimum of 35% of both Sessional and end examination marks put together.

b) Practical Examination:

For passing a practical Course, a candidate has to secure a minimum of 50% in end examination and a combined minimum of 50% of both sessional and practical end examination marks put together. In case of D.C.C.P., the pass mark for typewriting and short hand is 45% in the end examination. There are no sessional marks for typewriting and Shorthand Courses of D.C.C.P course.

C) Industrial Training:

- I. Monitoring: Similar to project work each teacher may be assigned a batch of 10-15 students irrespective of the placement of the students to facilitate effective monitoring of students learning during industrial training.
- II. Assessment: The Industrial training shall carry 300 marks and pass marks is 50% in assessments at industry (first and second assessment) and final summative assessment at institution level put together i.e. 150 marks out of 300 marks. And also student has to secure 50% marks in final summative assessment at institution level.
- III. In-Plant Industrial Training for 3-Year Diploma (C-23) Courses is scheduled as per the Academic Calendar of the SBTET every year.

4.11. Provision for Improvement

Improvement is allowed only after he / she has completed all the Courses from First Year to Final semester of the Diploma.

- a) Improvement is allowed in any 4 (Four) Courses of the Diploma.
- b) The student can avail of this improvement chance **ONLY ONCE**, that too within the succeeding two examinations after the completion of Diploma. However, the duration including Improvement examination shall not exceed **FIVE** years from the year of first admission.
- c) No improvement is allowed in Practical / Lab Courses or Project work or Industrial Training assessment. However, improvement in drawing Course(s) is allowed.
- d) If improvement is not achieved, the marks obtained in previous Examinations hold good.
- e) Improvement is not allowed in respect of the candidates who are punished under Mal-practice in any Examination.
- f) Examination fee for improvement shall be paid as per the notification issued by State Board of Technical Education and Training from time to time.
- g) All the candidates who wish to appear for improvement of performance shall deposit the original Marks Memos of all the years / Semesters and also original Diploma Certificate to the Board. If there is improvement in performance of the current examination, the revised Memorandum of marks and Original Diploma Certificate will be issued, else the submitted originals will be returned.

4.12. Rules of Promotion From 1ST YEAR TO 3rd, 4th, 5th, 6th and 7th Semesters:

A) For Diploma Courses of 3 Years duration

- i). A candidate shall be permitted to appear for first year examination provided he / she puts in 75% attendance (which can be condoned on Medical grounds up to 10%) and pay the examination fee.
- ii) A candidate shall be promoted to 3rd semester if he/she puts the required percentage of attendance in the first year and pays the examination fee. A candidate who could not pay the first year examination fee has to pay the promotion fee as prescribed by State Board of Technical Education and Training, AP from time to time before commencement of 3rd semester.
- A candidate is eligible to appear for the 3rd semester examination if he/she puts the required percentage of attendance in the 3rd semester and pays the examination fee.
- iii) A candidate shall be promoted to 4th semester provided he/she puts the required percentage of attendance in the 3rd semester and pay the examination fee. A candidate, who could not pay the 3rd semester exam fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training AP from time to time before commencement of 4th semester. A candidate is eligible to appear for the 4th semester examination if he/she puts the required percentage of attendance in the 4th semester and pays the examination fee.
- iv) A candidate shall be promoted to 5th semester provided he / she puts the required percentage of attendance in the 4th semester and pays the examination fee. A candidate, who could not pay the 4th semester examination fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 5th semester.
 - A candidate is eligible to appear for the 5^{th} semester examination if he/she puts the required percentage of attendance in the 5^{th} semester and pays the examination fee.
- v) A candidate shall be sent to Industrial training / VI semester provided he/she puts in the required percentage of attendance in the 5th semester and pay the examination fee/ promotion fee as prescribed by SBTET.
 A candidate is eligible to appear for Industrial Training assessment (Seminar/Viva-voce) puts the required percentage of attendance, i.e., 90% in 6th semester Industrial Training.

For IVC & ITI Lateral Entry students:

- i.) A candidate shall be permitted to appear for Third Semester examination provided he / she puts in 75% attendance (which can be condoned on Medical grounds up to 10%) and pay the examination fee for Third semester.
- ii) A candidate shall be promoted to 4th semester provided he/she puts the required percentage of attendance in the 3rd semester and pay the examination fee. A candidate, who could not pay the 3rd semester exam fee, has to pay the

promotion fee as prescribed by State Board of Technical Education and Training AP from time to time before commencement of 4th semester.

A candidate is eligible to appear for the 4th semester examination if he/she puts the required percentage of attendance in the 4th semester and pays the examination fee.

ii) A candidate shall be promoted to 5th semester provided he / she puts the required percentage of attendance in the 4th semester and pays the examination fee. A candidate, who could not pay the 4th semester examination fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 5th semester.

A candidate is eligible to appear for the 5th semester examination if he/she puts the required percentage of attendance in the 5th semester and pays the examination fee.

iii) A candidate shall be sent to Industrial training / VI semester provided he/she puts in the required percentage of attendance in the 5th semester and pay the examination fee/ promotion fee as prescribed by SBTET.

A candidate is eligible to appear for Industrial Training assessment (Seminar/Viva-voce) puts the required percentage of attendance, i.e., 90% in 6th

B) For Diploma Courses of 3 ½ Years duration (MET/CH/CHPP/CHPC/CHOT/TT):

semester Industrial Training and pays the examination fee.

- i. A candidate shall be permitted to appear for 1st year examination provided he / she puts in 75% attendance (which can be condoned on Medical grounds upto 10%) i.e. attendance after condonation on Medical grounds should not be less than 65% and pay the examination fee.
- ii. A candidate shall be promoted to 3^{rd} semester if he/she puts the required percentage of attendance in the 1^{st} year and pays the examination fee. A candidate who could not pay the 1^{st} year examination fee has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 3^{rd} semester.
- iii. A candidate shall be promoted to 4th semester provided he/she puts the required percentage of attendance in the 3rd semester and pay the examination fee. A candidate, who could not pay the 3rd semester exam fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 4th semester.
 - A candidate is eligible to appear for the 4th semester exam if he/she puts the required percentage of attendance in the 4^{th} semester

For IVC & ITI Lateral Entry students:

- a) Puts the required percentage of attendance in the 4th semester
- iv. A candidate shall be promoted to 5th semester industrial training provided he / she puts the required percentage of attendance in the 4th semester and pays the examination fee. A candidate, who could not pay the 4th semester examination fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 5th semester.

- v. Promotion from 5th to 6th semester is automatic (i.e., from 1st spell of Industrial Training to 2nd spell) provided he/she puts the required percentage of attendance, which in this case ie.,90 % of attendance and attends for the VIVA-VOCE examination at the end of training.
- vi. A candidate shall be promoted to 7th semester provided he / she puts the required percentage of attendance in the 6th semester and pays the examination fee. A candidate, who could not pay the 6th semester examination fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 7th semester.
- vii. A candidate shall be promoted to 7th semester of the course provided he/she has successfully completed both the spells of Industrial Training.
 - A candidate is eligible to appear for 7th semester examination if he/she
 - a) Puts in the required percentage of attendance in the 7th semester

For IVC & ITI Lateral Entry students:

a) Puts in the required percentage of attendance in the 7 th semester.

C) For Diploma Courses of 3 ½ Years duration (BM):

The same rules which are applicable for conventional courses also apply for this course. The industrial training in respect of this course is restricted to one semester (6 months) after the 6^{th} semester (3 years) of the course.

- i. A candidate shall be permitted to appear for first year examination provided he / she puts in 75% attendance (which can be condoned on Medical grounds upto 10%) i.e. attendance after condonation on Medical grounds should not be less than 65% and pay the examination fee.
- ii. A candidate shall be promoted to 3rd semester if he/she puts the required percentage of attendance in the first year and pays the examination fee. A candidate who could not pay the first year examination fee has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 3rd semester.
- iii. A candidate shall be promoted to 4th semester provided he/she puts the required percentage of attendance in the 3rd semester and pay the examination fee. A candidate who could not pay the 3rd semester examination fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 4th semester.
 - A candidate is eligible to appear for the 4th semester examination if he/she
 - a) Puts in the required percentage of attendance in the 4th semester

For IVC & ITI Lateral Entry Students:

A candidate is eligible to appear for the 4^{th} semester examination if he/she puts the required percentage of attendance in the 4^{th} semester

iv. A candidate shall be promoted to 5th semester provided he / she puts the required percentage of attendance in the 4th semester and pays the examination fee. A candidate, who could not pay the 4th semester examination fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 5th semester.

A candidate is eligible to appear for the 5th semester exam if he/she

a) Puts in the required percentage of attendance in the 5th semester.

For IVC & ITI Lateral Entry students:

- a) Puts in the required percentage of attendance in the 5th semester.
- v. A candidate shall be promoted to 6th semester provided he/she puts in the required percentage of attendance in the 5th semester and pays the examination fee.

A candidate who could not pay the 5th semester examination fee, has to pay the promotion fee as prescribed by State Board of Technical Education and Training from time to time before commencement of 6th semester.

A candidate is eligible to appear for 6th semester examination

a) Puts in the required percentage of attendance in 6th semester

IVC & ITI Lateral Entry students:

- a) Puts in the required percentage of attendance in 6th semester.
- vi. A candidate shall be promoted to 7th semester provided he/she puts in the required percentage of attendance in 6th semester and pay the examination fee. A candidate, who could not pay the 6th semester examination fee, has to pay the promotion fee prescribed by SBTET from time to time before commencement of the 7th semester (Industrial Training).

A candidate is eligible to appear for 7th semester Industrial Training assessment (Seminar/Viva-voce) if he/she

a) Puts in the required percentage of attendance, ie., 90% in 7th semester Industrial Training.

For IVC & ITI Lateral Entry students:

a) Puts in the required percentage of attendance, i.e., 90% in 7th semester Industrial Training.

4.13. Students Performance Evaluation

Successful candidates shall be awarded the Diploma under the following divisions of pass.

- a) First Class with Distinction shall be awarded to the candidates who secure an overall aggregate of 75% marks and above.
- b) First Class shall be awarded to candidates who secure overall aggregate of 60% marks and above and below 75% marks.
- c) Second Class shall be awarded to candidates who secure a pass with an overall aggregate of below 60%.
 - i. The Weightage of marks for various year/Semesters which are taken for computing overall aggregate shall be 25% of I year marks + 100% of 3rd and subsequent Semesters.
 - ii. In respect IVC & ITI Lateral Entry candidates who are admitted directly into diploma course at the 3rd semester (i.e., second year) level the aggregate of (100%) marks secured at the 3rd and subsequent semesters of study shall be

taken into consideration for determining the overall percentage of marks secured by the candidates for award of class/division.

d) Second Class shall be awarded to all students, who fail to complete the Diploma in the regular 3 years/ 3 ½ years and four subsequent examinations from the year of first admission.

4.14. EXAMINATION FEE SCHEDULE:

The examination fee should be as per the notification issued by State Board of Technical Education and Training, AP from time to time.

4.15. Structure of Examination Question Paper:

I. Formative assessment (Internal examination)

a) For theory Courses:

Three-unit tests for first year and two-unit tests for semesters shall be conducted with a duration of 90 minutes for each test for maximum marks of 40. It consists of part A and Part B.

Part A contains five questions and carries 16 marks. Among these five questions first question consists of four objective items like one word or phrase answer/filling-in the blanks/true or false etc with one mark for each question. The other four questions are short answer questions and carry three marks each.

Part B carries 24 marks and consists of three questions with internal choice ie., Either/Or type, and each question carries 8 marks.

The sum of marks of 3 tests for I year and 2 tests for semesters including assignments and Dynamic learning activities (50 marks) shall be reduced to 20 marks in each Course for arriving at final sessional marks.

b) For drawing Courses:

For I year:

Three-unit tests with duration of 90 minutes and for maximum marks of 40 marks shall be conducted for first year. It consists of part A and Part B.

Part A consists four questions for maximum marks of 16 and each question carries four marks (4×4 marks=16 marks).

Part B carries maximum marks of 24 and consists of five questions while the student shall answer any three questions out of these five questions. Each question in this part carries a maximum mark of 8, (3×8 marks=24 marks).

The sum of marks obtained in 3-unit test marks shall be reduced to 20 marks for arriving at final sessional marks. Remaining 20 marks are awarded by the Course teacher based on the student's performance during regular class exercise.

For semester: Two-unit tests with duration of 90 minutes and for maximum marks of 40 marks shall be conducted. The sum of marks obtained in 2-unit test marks shall be reduced to 20 marks for arriving at final sessional marks. Remaining 20

marks are awarded by the Course teacher based on the student's performance during regular class exercise.

c) For Laboratory /workshop: 50% of total marks for the Course shall be awarded based on continuous assessment of the student in laboratory/workshop classes and the remaining 50% shall be based on the sum of the marks obtained by the students in two tests.

II. Summative assessment (End examination)

The question paper for theory examination is patterned in such a manner that the Weightage of periods/marks allotted for each of the topics for a particular Course be considered. End Examination paper is of 3 hours duration.

a) Each theory paper consists of Section 'A' and 'B'

Section 'A' with Max marks of 30, contains 10 short answer questions. All questions are to be answered and each carry 3 marks, i.e., $10 \times 3 = 30$.

Section 'B' with Max marks of 50 contains 8 essay type questions. Only 5 questions are to be answered and each carry 10 marks, i.e., Max. Marks: $5 \times 10 = 50$.

Thus, the total marks for theory examination shall be: 80.

b) For Engineering Drawing Course (107) consist of section 'A' and section 'B'.

Section 'A' with max marks of 20, contains four (4) questions. All questions in section 'A' are to be answered to the scale and each carries 5 marks, ie. 4 x 5=20.

Section 'B' with max marks of 40, contains six (6) questions. The student shall answer any four (4) questions out of the above six questions and each question carries 10 Marks, i.e., $4 \times 10 = 40$.

c) Practical Examinations

For Workshop practice and Laboratory Examinations, Each student has to pick up a question paper distributed by Lottery System.

Max. Marks for an experiment / exercise : 50
Max. Marks for VIVA-VOCE : 10
Total Max. Marks : 60

In case of practical examinations with 50 marks, the marks shall be distributed as

Max. Marks for an experiment / exercise : 25
Max. Marks for VIVA-VOCE : 05
Total Max. Marks : 30

In case of any change in the pattern of question paper, the same shall be informed sufficiently in advance to the candidates.

d) Note: Evaluation for Laboratory Courses, other than Drawing courses:

- I. Instruction (teaching) in laboratory courses (except for the course on Drawing) hereafter shall be task/competency based as delineated in the Laboratory sheets, prepared by SBTET, AP and posted in its website.
- II. Internal assessment for Laboratory shall be done on basis of task/s performed by the student as delineated in the laboratory sheets, prepared by SBTET, AP and posted in its website.
- III. Question paper for End semester Evaluation shall be prepared as per SBTET rules in vogue.

4.16. ISSUE OF MEMORONDUM OF MARKS

All candidates who appear for the end examination will be issued memorandum of marks without any payment of fee. However candidates who lose the original memorandum of marks have to pay the prescribed fee to the Secretary, State Board of Technical Education and Training, A.P. for each duplicate memo from time to time.

4.17. MAXIMUM PERIOD FOR COMPLETION OF DIPLOMA PROGRAMMES:

Maximum period for completion of the diploma courses is twice the duration of the course from the date of First admission (includes the period of detention and discontinuation of studies by student etc) failing which they will have to forfeit the claim for qualifying for the award of Diploma (They will not be permitted to appear for examinations after that date). This rule applies for all Diploma courses of 3 years and $3\frac{1}{2}$ years of engineering and non-engineering courses.

4.18. ELIGIBILITY FOR AWARD OF DIPLOMA

A candidate is eligible for award of Diploma Certificate if he / she fulfil the following academic regulations.

- i. He / She pursued a course of study for not less than $3/3 \frac{1}{2}$ academic years & not more than 6/7 academic years.
- ii. He / she have completed all the Courses.

 Students who fail to fulfil all the academic requirements for the award of the Diploma within 6 / 7 academic years from the year of admission shall forfeit their seat in the course & their seat shall stand cancelled.

For IVC & ITI Lateral Entry students:

- i. He / She pursued a course of study for not less than 2 / 2 $\frac{1}{2}$ academic years & not more than 4 / 5 academic years.
- ii. He / she has completed all the Courses.

 Students who fail to fulfil all the academic requirements for the award of the Diploma within 4 / 5 academic years from the year of admission shall forfeit their seat in the course & their seat shall stand cancelled.

4.19. ISSUE OF PHOTO COPY OF VALUED ANSWER SCRIPT, RECOUNTING& REVERIFICATION:

A) FOR ISSUE OF PHOTO COPIES OF VALUED ANSWER SCRIPTS

- A candidate desirous of applying for Photo copy of valued answer script/s should apply within prescribed date from the date of the declaration of the result.
- II. Photo copies of valued answer scripts will be issued to all theory Courses and Drawing Course (s).
- III. The Photo copy of valued answer script will be dispatched to the concerned candidate's address as mentioned in the application form by post.
- IV. No application can be entertained from third parties.

B) FOR RE-COUNTING (RC) and RE-VERIFICATION(RV) OF THE VALUED ANSWER SCRIPT

- A candidate desirous of applying for Re-verification of valued answer script should apply within prescribed date from the date of the declaration of the result.
- ii. Re-verification of valued answer script shall be done for all theory Courses' and Drawing Course(s).
- iii. The Re-verification committee constituted by the Secretary, SBTETAP with Course experts shall re-verify the answer scripts.

I. RE-COUNTING

The Officer of SBTET will verify the marks posted and recount them in the already valued answer script. The variations if any will be recorded separately, without making any changes on the already valued answer script. The marks awarded in the original answer script are maintained (hidden).

II. RE-VERIFICATION

- (i) The Committee has to verify the intactness and genuineness of the answer script(s) placed for Re-verification.
- (ii) Initially single member shall carry out the re-verification.
- (iii) On re-verification by single member, if the variation is less than 12% of maximum marks, and if there is no change in the STATUS in the result of the candidate, such cases will not be referred to the next level ie., for 2-Tier evaluation.
- (iv) On re-verification by a single member, if the variation is more than 12% of maximum marks, it will be referred to 2-Tier evaluation.
- (v) If the 2-Tier evaluation confirms variation in marks as more than 12% of maximum marks, the variation is considered as follows:
 - a) If the candidate has already passed and obtains more than 12% of the maximum marks on Re-verification, then the variation is considered.
 - b) If the candidate is failed and obtains more than 12% of the maximum marks on Re-verification and secured pass marks on reverification, then the status of the candidate changes to PASS.
 - c) If a candidate is failed and obtains more than 12% of the maximum marks on Re-verification and if the marks secured on re-verification are still less than the minimum pass marks, the status of the candidate remain FAIL only.
- (vii) After Re-verification of valued answer script the same or change if any therein on Re-verification, will be communicated to the candidate.

(viii) On Re-verification of Valued Answer Script if the candidate's marks are revised, the fee paid by the candidate will be refunded or else the candidate has to forfeit the fee amount.

Note: No request for Photo copies/ Recounting /Re-verification of valued answer script would be entertained from a candidate who is reported to have resorted to Malpractice in that examination.

4.20. Mal Practice Cases:

If any candidate resorts to Mal Practice during examinations, he / she shall be booked and the Punishment shall be awarded as per SBTETAP rules and regulations in vogue.

4.21. Discrepancies/ Pleas:

Any Discrepancy /Pleas regarding results etc., shall be represented to the SBTETAP within one month from the date of issue of results. Thereafter, no such cases shall be entertained in any manner.

4.22. Issue of Duplicate Diploma

If a candidate loses his/her original Diploma Certificate and desires a duplicate to be issued he/she should produce written evidence to this effect. He / she may obtain a duplicate from the Secretary, State Board of Technical Education and Training, A.P., on payment of prescribed fee and on production of an affidavit signed before a First Class Magistrate (Judicial) and non-traceable certificate from the Department of Police. In case of damage of original Diploma Certificate, he / she may obtain a duplicate certificate by surrendering the original damaged certificate on payment of prescribed fee to the State Board of Technical Education and Training, A.P.

In case the candidate cannot collect the original Diploma within 1 year from the date of issue of the certificate, the candidate has to pay the penalty prescribed by the SBTET AP from time to time.

4.23. Issue of Migration Certificate and Transcripts:

The Board on payment of prescribed fee will issue these certificates for the candidates who intend to prosecute Higher Studies in India or Abroad.

4.24. General

- i. The Board may change or amend the academic rules and regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students, for whom it is intended, with effect from the dates notified by the competent authority.
- ii. All legal matters pertaining to the State Board of Technical Education and Training, AP are within the jurisdiction of Mangalagiri.
- iii. In case of any ambiguity in the interpretation of the above rules, the decision of the Secretary, SBTET, A.P is final.

FIRST YEAR

DIPLOMA IN COMMUNICATION AND COMPUTER NETWORKING ENGINEERING SCHEME OF INSTRUCTIONS AND EXAMINATION

CURRICULUM-2023

(FIRST YEAR)

			ruction ds/Week	Total	Sc	heme Of Exa	minations	
Sub Code	Name of the Subject	Theory	Practical	Periods Per Year	Duration (hrs)	Sessional Marks	End Exam Marks	Total Marks
		Т	HEORY SUBJE	CTS				
CCN-101	English-l	3	1	90	3	20	80	100
CCN-102	Engineering Mathematics - I	5	-	150	3	20	80	100
CCN-103	Engineering Physics	3	-	90	3	20	80	100
CCN-104	Engineering Chemistry and Environmental studies	3	-	90	3	20	80	100
CCN-105	Basics of Communication and Computer Networking Engineering	5	-	150	3	20	80	100
CCN-106	Programming in C	5	1	150	3	20	80	100
		PR	ACTICAL SUB.	IECTS				
CCN-107	Engineering Drawing	-	3	180	3	40	60	100
CCN-108	Programming in C Lab		6	180	3	40	60	100
CCN-109	Physics Lab		1.5	45	1.5	20	30	50
CCN-110	Chemistry Lab	-	1.5	45	1.5	20	30	50
CCN-111	Computer Fundamentals Lab		3	90	3	40	60	100
	ACTIVITIES		3	90				
	Total	23	19		-			1000

CCN-101,102,103,104,107,109,110 common with DCME branch.

Course Code	Course Title	No. of Periods/Week	Total No. of Periods	Marks for FA	Marks for SA
CCN-101	English	3	90	20	80

	Time Schedule						
S.no.	Title of the Unit	Periods allotted	Weightage of Marks	No. of Short answer questions	No. of Long Answer questions	Mapping of COs	
1	English for Employability	8			1	CO1, CO2, CO3, CO4, CO5	
2	Living in Harmony	8	16	2		CO1, CO2, CO3, CO4, CO5	
3	Connect with Care	8				CO1, CO2, CO3, CO4, CO5	
4	Humour for Happiness	8	26	2	2	CO1, CO2, CO3, CO4, CO5	
5	Never Ever Give Up!	8	10		1	CO1, CO2, CO3, CO4, CO5	
6	Preserve or Perish	9		1		CO1, CO2, CO3, CO4, CO5	
7	The Rainbow of Diversity	8	23		2	CO1, CO2, CO3, CO4, CO5	
8	New Challenges -Newer Ideas	8		2		CO1, CO2, CO3, CO4, CO5	
9	The End Point First	8	19	1	1	CO1, CO2, CO3, CO4, CO5	
10	The Equal Halves	8		1		CO1, CO2, CO3, CO4, CO5	
11	Dealing with Disaster	9	16	1	1	CO1, CO2, CO3, CO4, CO5	
	Total	90	110	30	80		

	- To improve grammatical knowledge and enrich vocabulary.
Course Objectives	- To develop effective reading, writing and speaking skills.
	- To comprehend themes related to Personality, Society, Environment to exhibit Universal Human Values.

CO No. Course Outcomes

CO1	Learn and apply various grammatical concepts to communicate in academic, professional and everyday situations
CO2	Use appropriate vocabulary in various contexts
CO3	Read and comprehend different forms of academic, professional and general reading material
CO4	Communicate effectively in speaking and writing in academic, professional and everyday situations.
CO5	Display human values by applying the knowledge of themes related to Self, Society, Environment, Science and Technology for holistic development and harmonious living through communication.

CO-PO Matrix

CCN-101	Course Tit	le: English Numb	er of Course Outc	omes: 5	No. of Periods: 90		
POs	Mapped CO No.	CO Periods Add Column 1 Number	dressing PO in Percentage	Level of Mapping (1,2,3)	Remarks		
PO1			_		however, the language		
PO2			activities make use of the content from Science and Technology r to the programme to enhance English communication skills.				
PO3							
PO4							
PO5	CO5	16	18%	Level 1	Up to 20%: Level 1		
PO6	CO1, CO2, CO3, CO4,	52	58%	Level 3	21%-50%: Level 2 >50%: Level 3		
PO7	CO1, CO2, CO3, CO4,CO5	22	24%	Level 2			

Level 3 – Strongly Mapped, Level 2- Moderately Mapped; Level 1- Slightly Mapped Learning Outcomes

1. English for Employability

- 1.1. Perceive the need for improving communication in English for employability
- 1.2. Use adjectives and articles effectively while speaking and in writing
- 1.3. Write simple sentences

2. Living in Harmony

- 2.1. Develop positive self-esteem for harmonious relationships
- 2.2. Use affixation to form new words
- 2.3. Use prepositions and use a few phrasal verbs contextually

3. Connect with Care

- 3.1. Use social media with discretion
- 3.2. Speak about abilities and possibilities
- 3.3. Make requests and express obligations
- 3.4. Use modal verbs and main verbs in appropriate form
- 3.5. Write short dialogues about everyday situations

4. Humour for Happiness

- 4.1. Realize the importance of humour for a healthy living
- 4.2. Improve vocabulary related to the theme
- 4.3. Inculcate reading and speaking skills
- 4.4. Frame sentences with proper Subject Verb agreement
- 4.5. Understand the features of a good paragraph and learn how to gather ideas as a preliminary step for writing a good paragraph.

5. Never Ever Give Up!

- 5.1. Learn to deal with failures in life
- 5.2. Use the present tense form for various every day communicative functions such as speaking and writing about routines, professions, scientific descriptions and sports commentary
- 5.3. Write paragraphs with coherence and other necessary skills

6. Preserve or Perish

- 6.1. Understand the ecological challenges that we face today and act to save the environment.
- 6.2. Narrate / Report past events and talk about future actions
- 6.3. Develop vocabulary related to environment
- 6.4. Write e-mails

7. The Rainbow of Diversity

- 7.1. Appraise and value other cultures for a happy living in multi-cultural workspace
- 7.2. Understand the usage of different types of sentences
- 7.3. Ask for or give directions, information, instructions
- 7.4. Use language to express emotions in various situations
- 7.5. Write letters in various real life situations

8. New Challenges - Newer Ideas

- 8.1. Understand the functional difference between Active Voice and Passive Voice
- 8.2. Use Passive Voice to speak and write in various contexts
- 8.3. Understand the major parts and salient features of an essay
- 8.4. Learn about latest innovations and get motivated

9. The End Point First!

- 9.1. Understand the importance of setting goals in life
- 9.2. Report about what others have said both in speaking and writing
- 9.3. Write an essay following the structure in a cohesive and comprehensive manner
- 9.4. Apply the words related to Goal Setting in conversations and in life

10. The Equal Halves

- 10.1. Value the other genders and develop a gender-balanced view towards life
- 10.2. Identify the use of different conjunctions in synthesising sentences
- 10.3. Write various types of sentences to compare and contrast the ideas
- 10.4. Apply the knowledge of sentence synthesis in revising and rewriting short essays
- 10.5. Develop discourses in speech and writing

11. Dealing with Disasters

- 11.1. be aware of different kinds of disasters and the concept of disaster management
- 11.2. Generate vocabulary relevant to disaster management and use it in sentences
- 11.3. Analyze an error in a sentence and correct it
- 11.4. Learn and write different kinds of reports

Textbook: 'INTERACT' (A Text book of English for I Year Engineering Diploma Courses) - by SBTET, AP Reference Books:

Martin Hewings: Advanced Grammar in Use, Cambridge University Press Murphy, Raymond: English Grammar in Use, Cambridge University Press Sidney Greenbaum: Oxford English Grammar, Oxford University Press

Wren and Martin (Revised by N.D.V. Prasad Rao): English Grammar and Composition, Blackie ELT

Books, S. Chand and Co.

Sarah Freeman: Strengthen Your Writing, Macmillan

Course Code	Course Title	No. of Periods/week	Total No. of periods	Marks for FA	Marks for SA
CCN-102	Engineering Mathematics-I	5	150	20	80

TIME SCHEDULE

S.No.	Chapter	No. of	Marks	Short	Essay	COs	
		Periods	Allotted	type	type	mapped	
		Unit - I: A	lgebra			•	
1	Functions	6	3	1	0	CO1	
2	Partial Fractions	5	3	1	0	CO1	
3	Matrices and Determinants	20	16	2	1	CO1	
		Unit - II: Trigo	onometry				
4	Trigonometric Ratios	2	0	0	0	CO2	
5	Compound Angles	5	3	1	0	CO2	
6	Multiple and Submultiple angles	8	3	1	0	CO2	
7	Transformations	6	5	0	1/2	CO2	
8	Inverse Trigonometric		-	0	1/2	CO2	
	Functions	6	5				
9	Trigonometric Equations	6	5	0	1/2	CO2	
10	Properties of triangles	5	5	0	1/2	CO2	
11	Complex Numbers	6	3	1	0	CO2	
	Uni	it III: Co-ordin	ate Geometr	у		•	
12	Straight Lines	5	3	1	0	CO3	
13	Circles	6	5	0	1/2	CO3	
14	Conic Sections	12	5	0	1/2	CO3	
	Un	it – IV: Differe	ntial Calculus	5			
15	Limits and Continuity	6	3	1	0	CO4	
16	Differentiation	28	23	1	2	CO4	
	Unit -	- V: Applicatio	ns of Derivati	ives			
17	Geometrical Applications	4	5	0	1/2	CO5	
18	Physical Applications	6	5	0	1/2	CO5	
19	Maxima and Minima	4	5	0	1/2	CO5	
20	Errors and Approximations	4	5	0	1/2	CO5	
	Total 150 110 8						
			Marks	30	80		

Course Objectives	(i)	To apply the principles of Algebra, Trigonometry and Co-ordinate Geometry to real-time problems in engineering.
Course Cajectives	(ii)	To comprehend and apply the concept of Differential Calculus in engineering applications.

	CO1	Identify functions as special relations, resolve partial fractions and
		solve problems on matrices and determinants.
	CO2	Solve problems using the concept of trigonometric functions, their
		inverses and complex numbers.
Course Outcomes	CO3	Find the equations and properties of straight lines, circles and conic
		sections in coordinate system.
	CO4	Evaluate the limits and derivatives of various functions.
	CO5	Find solutions for engineering problems using differentiation.

Learning Outcomes:

UNIT - I

C.O. 1 Identify functions, resolve partial fractions and solve problems on matrices and determinants.

- **L.O.** 1.1 Define Set, Ordered pair and Cartesian product of two sets examples.
 - 1.2 Explain Relations and Functions examples
 - 1.3 Find Domain & Range of functions simple examples.
 - 1.4 Define one-one and onto functions.
 - 1.5 Find the inverse of a function simple examples.
 - 1.6 Define rational, proper and improper fractions of polynomials.
 - 1.7 Explain the procedure of resolving proper fractions of the types mentioned below into partial fractions

i)
$$\frac{f(x)}{(ax+b)(cx+d)}$$
 ii)
$$\frac{f(x)}{(ax+b)^2(cx+d)}$$

- 1.8 Define a matrix and order of a matrix.
- 1.9 State various types of matrices with examples (emphasis on 3rd order square matrices).
- 1.10 Compute sum, difference, scalar multiplication and product of matrices. Illustrate the properties of these operations such as commutative, associative and distributive properties with examples and counter examples.
- 1.11 Define the transpose of a matrix and state its properties examples.
- 1.12 Define symmetric and skew-symmetric matrices with examples. Resolve a square matrix into a sum of symmetric and skew-symmetric matrices and provide examples.
- 1.13 Define determinant of a square matrix; minor, co-factor of an element of a 3x3 square matrix with examples. Expand the determinant of a 3 x 3 matrix using Laplace expansion formula. State and apply the properties of determinants to solve problems.
- 1.14 Distinguish singular and non-singular matrices. Define multiplicative inverse of a matrix and list properties of adjoint and inverse. Compute adjoint and multiplicative inverse of a square matrix.

1.15 Solve a system of 3 linear equations in 3 unknowns using Cramer's rule and matrix inversion method.

UNIT - II

C.O. 2 Solve problems using the concept of trigonometric functions, their inverses and complex numbers.

- **L.O.** 2.1 Define trigonometric ratios of any angle List the values of trigonometric ratios at specified values.
 - 2.2 Draw graphs of trigonometric functions Explain periodicity of trigonometric functions.
 - 2.3 Define compound angles and state the formulae of $sin(A\pm B)$, $cos(A\pm B)$, $tan(A\pm B)$ and $cot(A\pm B)$.
 - 2.4 Give simple examples on compound angles to derive the values of $\sin 15^{\circ}$, $\cos 15^{\circ}$, $\sin 75^{\circ}$, $\cos 75^{\circ}$, $\tan 15^{\circ}$, $\tan 75^{\circ}$ etc.
 - 2.5 Derive identities like $sin(A+B) sin(A-B) = sin^2 A sin^2 B$ etc.
 - 2.6 Solve simple problems on compound angles.
 - 2.7 Derive the formulae of multiple angles 2A, 3A etc and sub multiple angle A/2 in terms of angle A of trigonometric functions.
 - 2.8 Derive useful allied formulae like $\sin^2 A = (1 \cos 2A)/2$ etc.
 - 2.9 Solve simple problems using the multiple and submultiple formulae.

Syllabus for Unit test-I completed

- 2.10 Derive the formulae on transforming sum or difference of two trigonometric ratios in to a product and vice versa examples on these formulae.
- 2.11 Solve problems by applying these formulae to sum or difference or product of two terms.
- 2.12 Explain the concept of the inverse of a trigonometric function by selecting an appropriate domain and range.
- 2.13 Define inverses of six trigonometric functions along with their domains and ranges.
- 2.14 Derive relations between inverse trigonometric functions so that the given inverse trigonometric function can be expressed in terms of other inverse trigonometric functions with examples.
- 2.15 State various properties of inverse trigonometric functions and identities like $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$, etc.
- 2.16 Apply formulae like $\tan^{-1} x + \tan^{-1} y = \tan^{-1} \left(\frac{x+y}{1-xy}\right)$, where $x \ge 0, y \ge 0, xy < 1$ etc. to solve Simple problems.
- 2.17 Explain what is meant by solution of trigonometric equations and find the general solutions of $\sin x = k$, $\cos x = k$ and $\tan x = k$ with appropriate examples.
- 2.18 Solve models of the type a $\sin^2 x + b \sin x + c=0$ and a $\sin x + b \cos x=c$.
- 2.19 State sine rule, cosine rule, tangent rule and projection rule and solve a triangle using these formulae.
- 2.20 List various formulae for the area of a triangle with examples.
- 2.21 Define a complex number, its modulus, conjugate, amplitude and list their properties.
- 2.22 Define arithmetic operations on complex numbers with examples.
- 2.23 Represent the complex number in various forms like modulus-amplitude (polar) form, Exponential (Euler) form with examples.

Find the equations and properties of straight lines, circles and conic sections in coordinate system.

- L.O. 3.1 Write different forms of a straight line general form, point-slope form, slopeintercept form, two-point form, intercept form and normal form (or perpendicular form).
 - 3.2 Find distance of a point from a line, acute angle between two lines, intersection of two non-parallel lines and distance between two parallel lines.
 - 3.3 Define locus of a point and circle.
 - 3.4 Write the general equation of a circle and find its centre and radius.
 - 3.5 Find the equation of a circle, given (i) centre and radius, (ii) two ends of the diameter (iii) three non collinear points of type (0,0) (a,0), (0, b).
 - 3.6 Define a conic section Explain the terms focus, directrix, eccentricity, axes and latusrectum of a conic with illustrations.
 - 3.7 Find the equation of a conic when focus, directrix and eccentricity are given.
 - 3.8 Describe the properties of Parabola, Ellipse and Hyperbola in standard forms whose axes are along the co-ordinate axes and solve simple examples on these conics.

Syllabus for Unit test-II completed

C.O.4 Evaluate the limits and derivatives of various functions.

- L.O. 4.1 Explain the concept of limit and meaning of $\lim_{x\to a} f(x) = l$ and state the properties of limits.

 - 4.2 Evaluate the limits of the type $\lim_{x \to a} \frac{f(x)}{g(x)}$ and $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ 4.3 State the Standard limits $\lim_{x \to a} \frac{x^n a^n}{x a}$, $\lim_{x \to a} \frac{\sin x}{x}$, $\lim_{x \to 0} \frac{\tan x}{x}$, $\lim_{x \to 0} \frac{a^x 1}{x}$, $\lim_{x \to 0} \frac{e^x 1}{x}$, $\lim_{x \to 0} (1 + x)^{\frac{1}{x}}$, $\lim_{x \to \infty} \left(\frac{1}{x} \right)^x$ (without proof) and solve simple problems using these standard limits.
 - 4.4 Explain the concept of continuity of a function at a point and on an interval
 - 4.5 State the concept of derivative of a function y = f(x) – definition, first principle as $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ and also provide standard notations to denote the derivative of a function.
 - 4.6 Explain the significance of derivative in scientific and engineering applications.
 - Find the derivative of standard algebraic, logarithmic, exponential and trigonometric 4.7 functions using the first principle.
 - Find the derivatives of inverse trigonometric, hyperbolic and inverse hyperbolic 4.8 functions.
 - State the rules of differentiation of sum, difference, scalar 4.9 multiplication, product and quotient of functions with simple illustrative examples.
 - 4.10 Explain the method of differentiation of a function of a function (Chain rule) with illustrative examples.
 - 4.11 Explain the method of differentiation of parametric functions with examples.
 - 4.12 Explain the procedure for finding the derivatives of implicit functions with examples.
 - 4.13 Explain the need of taking logarithms for differentiating some functions of $[f(x)]^{g(x)}$ type examples on logarithmic differentiation.

- 4.14 Explain the concept of finding the second order derivatives with examples.
- 4.15 Explain the concept of functions of several variables, finding partial derivatives and difference between the ordinary and partial derivatives with simple examples.
- 4.16 Explain the concept of finding second order partial derivatives with simple problems.

C.O. 5 Evaluate solutions for engineering problems using differentiation

- **L.O.** 5.1 State the geometrical meaning of the derivative Explain the concept of derivative to find the slopes of tangent and normal to a given curve at any point on it with examples.
 - 5.2 Find the equations of tangent and normal to to a given curve at any point on it simple problems.
 - 5.3 Explain the derivative as a rate of change in distance-time relations to find the velocity and acceleration of a moving particle with examples.
 - 5.4 Explain the derivative as a rate measurer in the problems where the quantities like areas, volumes vary with respect to time- illustrative examples.
 - 5.5 Define the concept of increasing and decreasing functions Explain the conditions to find points where the given function is increasing or decreasing with illustrative examples.
 - 5.6 Explain the procedure to find the extreme values (maxima or minima) of a function of single variable- simple problems for quadratic and cubic polynomials.
 - 5.7 Apply the concept of derivatives to find the errors and approximations simple problems.

Syllabus for Unit test-III completed

CO/PO - Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	3				3	2	2
CO2	3	3	2	2				3	2	2
CO3	3	3	2	2				3	2	2
CO4	3	3	3	3				3	3	3
CO5	3	3	3	3				3	3	3
Avg.	3	2.8	2.4	2.6				3	2.4	2.4

3 = Strongly mapped (High), 2 =moderately mapped (Medium), 1 =slightly mapped (Low)

Note: The gaps in CO/PO mapping can be met with appropriate activities as follows:

For PO5: Appropriate quiz programmes may be conducted at intervals and duration as decided by concerned faculty.

For PO6: Seminars on applications of mathematics in various engineering disciplines are to be planned and conducted.

For PO7: Plan activities in such a way that students can visit the Library to refer standard books on Mathematics and access the latest updates in reputed national and international journals. Additionally, encourage them to attend seminars and learn mathematical software tools.

PO-CO - Mapping strength

		CO periods addres	sing PO in	Level	
PO No	Mapped with CO no	column	1	(1,2 or 3)	Remarks
		No	%	(1,2 01 3)	
1	CO1, CO2, CO3, CO4,	150	100%	3	
	CO5	(31+44+23+34+18)	100%	3	>40% Level 3
2	CO1, CO2, CO3, CO4,	80	53.3%	3	Highly
2	CO5	(8+23+12+22+15)	J3.3/0	3	addressed
3	CO1, CO2, CO3, CO4,	CO1, CO2, CO3, CO4, 61 40.6%		3	25% to 40%
3	CO5	(9+14+9+14+15)	40.076	3	Level 2
4	CO1, CO2, CO3, CO4,	61	40.6%	3	Moderately
4	CO5	(14+9+9+14+15)	40.076	3	addressed
PSO 1	CO1, CO2, CO3, CO4,	150	100%	3	5% to 25%
F30 1	CO5	(31+44+23+34+18)	100%	3	Level 1 Low
PSO 2	CO1, CO2, CO3, CO4,	62	41.3%	3	addressed
P30 2	CO5 (10+14+9+14+15) 41.3%		3	<5% Not	
PSO 3	CO1, CO2, CO3, CO4,	62	41.3%	3	addressed
F3U 3	CO5	(10+14+9+14+15)	41.3/0	3	

COURSE CONTENT

Unit-I Algebra

1. Functions:

Definitions of Set, Ordered pair, Cartesian product of two sets, Relations, Functions, Domain & Range of functions – One-one and onto functions, inverse of a function.

2. Partial Fractions:

Definitions of rational, proper and improper fractions of polynomials. Resolve rational fractions (proper fractions) into partial fractions covering the types mentioned below.

i)
$$\frac{f(x)}{(ax+b)(cx+d)}$$
 ii)
$$\frac{f(x)}{(ax+b)^2(cx+d)}$$

3. Matrices:

Definition of a matrix, types of matrices - Algebra of matrices, equality of two matrices, sum, difference, scalar multiplication and product of matrices. Transpose of a matrix, Symmetric, skew-symmetric matrices - Determinant of a square matrix, minor and cofactor of an element, Laplace's expansion, properties of determinants - Singular and non-singular matrices, Adjoint and multiplicative inverse of a square matrix-System of linear equations in 3 variables-Solutions by Cramer's rule and Matrix inversion method.

Unit-II Trigonometry

4. Trigonometric ratios:

Definition of trigonometric ratios of any angle, values of trigonometric ratios at specified values, draw graphs of trigonometric functions, periodicity of trigonometric functions.

5. Compound angles:

Formulas of $sin(A\pm B)$, $cos(A\pm B)$, $tan(A\pm B)$, $cot(A\pm B)$, and related identities.

6. Multiple and sub multiple angles:

Formulae for trigonometric ratios of multiple angles 2A, 3A and sub multiple angle A/2.

7. Transformations:

Transformations of products into sums or differences and vice versa.

8. Inverse trigonometric functions:

Definition, domains and ranges-basic properties.

9. Trigonometric equations:

Concept of a solution, principal value and general solution of trigonometric equations:

Sinx =k, cosx= k, tanx =k, where k is a constant. Solutions of simple quadratic equations and equations of type a sin x + b cos x=c.

10. Properties of triangles:

Relations between sides and angles of a triangle- sine rule, cosine rule, tangent rule and projection rule-area of a triangle.

11. Complex Numbers:

Definition of a complex number, modulus, conjugate and amplitude of a complex number - Arithmetic operations on complex numbers - Modulus-Amplitude (polar) form, Exponential form (Euler form) of a complex number.

UNIT-III

Coordinate geometry

- **12 Straight lines:** Various forms of a straight line Angle between two lines, perpendicular distance from a point, intersection of non-parallel lines and distance between parallel lines.
- **13. Circle:** Locus of a point, Circle definition Circle equation given (i) centre and radius, (ii) two ends of a diameter (iii) three non-collinear points of type (0,0), (a,0), (0, b) General equation of a circle –its centre and radius.
- **14.** Definition of a conic section Equation of a conic when focus, directrix and eccentricity are given Properties of parabola, ellipse and hyperbola in standard forms.

UNIT-IV

Differential Calculus

- **15. Concept of Limit-** Definition and Properties of Limits and Standard Limits Continuity of a function at a point.
- **16. Concept of derivative-** Definition (first principle)- different notations Derivatives of standard algebraic, logarithmic, exponential, trigonometric, inverse trigonometric, hyperbolic and inverse hyperbolic functions Derivatives of sum, difference, scalar multiplication, product, quotient of functions Chain rule, derivatives of parametric functions, derivatives of implicit functions, logarithmic differentiation Second order derivatives Functions of several variables, first and second order partial derivatives.

UNIT-V

Applications of Derivatives

- 17. Geometrical meaning of the derivative, equations of tangent and normal to a curve at any point.
- **18.** Physical applications of derivatives Velocity, acceleration, derivative as a rate measurer.
- **19.** Applications of the derivative to find the extreme values Increasing and decreasing functions, maxima and minima for quadratic and cubic polynomials.
- **20.** Absolute, relative and percentage errors Approximate values due to errors in measurements.

Textbook:

Engineering Mathematics-I, a textbook for first year diploma courses, prepared & prescribed by SBTET, AP.

Reference Books:

- 1. Shanti Narayan, A Textbook of matrices, S.Chand&Co.
- 2. Robert E. Moyer & Frank Ayers Jr., Schaum's Outline of Trigonometry, 4th Edition, Schaum's Series.
- 3. G.B.Thomas, R.L.Finney, Calculus and Analytic Geometry, Addison Wesley, 9th Edition, 1995.
- 4. Frank Ayers & Elliott Mendelson, Schaum's Outline of Calculus, Schaum's Series.
- 5. M. Vygodsky, Mathematical Handbook, Mir Publishers, Moscow.

Unit Test Syllabus

Unit Test	Syllabus
Unit Test-I	From L.O. 1.1 to L.O. 2.9
Unit Test-II	From L.O. 2.10 to L.O. 3.8
Unit Test-III	From L.O.4.1 to L.O. 5.7

Course code	Course Title	No. of Periods per week	Total No. of Periods	Marks for FA	Marks for SA
CCN-103	Engineering Physics	3	90	20	80

TIME SCHEDULE

S.No	Major topics	No. of Periods	Weightage of Marks	Short Answer type (3 marks)	Essay type (10 marks)	COs mapped
1.	Units and measurements	09	03	1		CO1
2.	Statics	11	13	1	1	COI
3.	Gravitation	12	20	1	2	
4.	Concepts of energy	10	13	1	1	CO2
5.	Thermal physics	10	13	1	1	CO3

6.	Sound	12	16	2	1	
7.	Electricity &Magnetism	13	16	2	1	
8.	Modern physics	13	16	2	1	CO4
	Total:	90	110	10	8	

	Course title: Engineering Physics							
(1) To understand the basic concepts of physics for various Engineering applications as required for industries.								
Course objectives	(2) To equip the students with the scientific advances in technology and make the student suitable for any industrial or scientific organization.							

	CO1	Familiarize with various physical quantities, their SI units and errors in measurements; understand the concepts of vectors and various forces in statics.
201727	CO2	Understand the concepts of gravitation with reference to applications in satellites, provide the knowledge of various forms of energy and their working principles.
COURSE OUTCOMES	CO3	Familiarize with the knowledge of transmission of heat and gas laws; provide the knowledge on musical sound and noise as pollution and also the concepts of echo and reverberation.
	CO4	Provide basic knowledge of electricity and concepts of magnetism and magnetic materials; familiarize with the advances in Physics such as photoelectric ell, optical fibers, semiconductors, superconductors and nanotechnology.

CO-PO Mapping Strength

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	1			2	2		2
CO2	3	2	2	2	2		2	1		2
CO3	2		1		2		1		1	1
CO4	3	2	3	2	2		3	2		2

Course code Common - 103	Enginee No of Cou	No of periods 90			
POs	Mapped with CO No	iods addres Col 1 NO	ssing PO in %	vel 1,2,3	remarks
PO1	CO1,CO2,CO3,CO4	44	48.9 %	3	>40% level 3
PO2	CO1,CO2, CO4	11	12.2%	1	(highly addressed)
PO3	CO1, CO2,CO3, CO4	10	11.1%	1	25% to 40% level 2
PO4	CO1, CO2,CO4	8	8.9%	1	(moderately addressed)
PO5	CO2,CO3, CO4	8	8.9%	1	5% to 25% level 1 (Low
PO6					addressed)
PO7	CO1, CO2, CO3, CO4	9	10.0%	1	< 5% (not addressed)

3 = strongly mapped, 2 = moderately mapped, 1 = slightly mapped

Note: The gaps in CO and PO mapping will be achieved by one or more appropriate activities from the following.

(i) Seminars (ii) Tutorials (iii) Guest Lecturers (iv) Assignments (v) Quiz competitions (vi) Industrial visits (vii) Tech fest (viii) Mini project

(ix) Group discussions (x) Virtual classes (xi) Library visit for e-books

Learning outcomes

Upon completion of the course the student shall be able to

1.0 Understand the concept of units and measurements

- 1.1 Explain the concept of units
- 1.2 Define the terms
 - a) Physical quantity b) Fundamental physical quantities and
 - c) Derived physical quantities
- 1.3 Define unit
- 1.4 Define fundamental units and derived units
- 1.5 State SI units with symbols for fundamental and some derived quantities
- 1.6 State Multiples and Submultiples in SI system
- 1.7 State rules of writing S.I units
- 1.8 State advantages of SI units
- 1.9 What are direct and indirect measurements
- 1.10 Define accuracy and least count
- 1.11 Define error in measurement
- 1.12 Define absolute, relative and percentage errors with their formulae
- 1.13 Solve simple problems on absolute, relative and percentage errors

2.0 Understand the concepts of statics

- 2.1 Explain the concept of Vectors
- 2.2 Define scalar and vector quantities with examples
- 2.3 Represent vectors geometrically
- 2.4 Define the types of vectors (equal, negative, unit, co-initial, co-planar, position vector)
- 2.5 Resolve the vector into rectangular components
- 2.6 State and explain triangle law of addition of vectors
- 2.7 Define concurrent forces, co-planar forces and equilibrant.
- 2.8 State and explain Lami's theorem
- 2.9 State the parallelogram law of addition of forces with diagram.
- 2.10 Write the expressions for magnitude and direction of resultant (no derivation)
- 2.11 Illustrate parallelogram law with examples (i) flying of bird and (ii) working of sling.
- 2.12 Define moment of force and couple.
- 2.13 Write the formulae and S.I units of moment of force and couple.
- 2.14 Solve simple problems on (i) Resolution of force and
 - (ii) Parallelogram law of forces (finding R, α and θ).

3.0 Understand the concepts of Gravitation

- 3.1 State and explain Newton's universal law of gravitation.
- 3.2 Define G and mention its value.
- 3.3 Explain the acceleration due to gravity (g)
- 3.4 Explain the factors affecting the value of g
- 3.5 Derive the relationship between g and G.
- 3.6. State and explain the Kepler's laws of planetary motion
- 3.7 Define a satellite.
- 3.8 What are natural and artificial satellites, Give examples.
- 3.9 Define orbital velocity and write its formula.
- 3.10 Define escape velocity and write its formula.
- 3.11 Write a brief note on Polar satellites.

- 3.12 Write a brief note on Geo-stationary satellites.
- 3.13 Mention the applications of artificial satellites.
- 3.14 Solve simple problems on (i) Newton's law of gravitation and (ii) calculation of orbital and escape velocities.

4.0 Understand the concepts of Energy.

- 4.1 Define work done and energy. Mention their SI units.
- 4.2 List various types of energy.
- 4.3 Define P.E with examples. Write its equation.
- 4.4 Define K.E with examples. Write its equation.
- 4.5 Derive relationship between K.E and momentum.
- 4.6 State the law of conservation of energy. Give various examples.
- 4.7 Write a brief note on solar energy.
- 4.8 Explain the principle of solar thermal conversion.
- 4.9 Explain the principle of photo voltaic effect
- 4.10 Solve simple problems on (i) work done (ii) P.E & K.E and (iii) Relation between K.E & momentum.

5.0 Understand the concepts of thermal physics

- 5.1 Define the concepts of heat and temperature
- 5.2 State different modes of transmission of heat
- 5.3 Explain conduction, convection and radiation with two examples each.
- 5.4 State and explain Boyle's law
- 5.5 Define absolute zero temperature
- 5.6 Explain absolute scale of temperature
- 5.7 State the relationship between degree Celsius, Kelvin and Fahrenheit temperatures
- 5.8 State Charle's law and write its equation
- 5.9 State Gay-Lussac's law and write its equation
- 5.10 Define ideal gas
- 5.11 Derive ideal gas equation
- 5.12 Explain why universal gas constant (R) is same for all gases in nature
- 5.13 Calculate the value of R for 1 gram mole of gas.
- 5.14 Solve simple problems on (i) Inter conversion of temperatures between °C, K and F (ii) Gas laws and (iii) Ideal gas equation.

6.0 Understand the concepts of Sound

- 6.1 Define the term sound
- 6.2 Define longitudinal and transverse waves with one example each
- 6.3 Explain the factors which affect the velocity of sound in air
- 6.4 Distinguish between musical sound and noise
- 6.5 Explain noise pollution and state SI unit for intensity of sound
- 6.6 Explain source s of noise pollution
- 6.7 Explain effects of noise pollution
- 6.8 Explain methods of minimizing noise pollution
- 6.9 Define Doppler effect.
- 6.10 List the Applications of Doppler effect
- 6.11 Define reverberation and reverberation time
- 6.12 Write Sabine's formula and name the physical quantities in it.
- 6.13 Define echoes and explain the condition to hear an echo.
- 6.14 Mention the methods of reducing an echo
- 6.15 Mention the applications of an echo

- 6.16 What are ultrasonics
- 6.17 Mention the applications of ultra sonics, SONAR
- 6.18 Solve simple problems on echo

7.0 Understand the concepts of Electricity and Magnetism

- 7.1 Explain the concept of P.D and EMF
- 7.2 State Ohm's law and write the formula
- 7.3 Explain Ohm's law
- 7.4 Define resistance and specific resistance. Write their S.I units.
- 7.5 State and explain Kichoff's first law.
- 7.6 State and explain Kirchoff's second law.
- 7.7 Describe Wheatstone bridge with legible sketch.
- 7.8 Derive an expression for balancing condition of Wheatstone bridge.
- 7.9 Describe Meter Bridge experiment with necessary circuit diagram.
- 7.10 Write the formulae to find resistance and specific resistance in meter bridge
- 7.11 Explain the concept of magnetism
- 7.12 What are natural and artificial magnets (mention some types)
- 7.13 Define magnetic field and magnetic lines of force.
- 7.14 Write the properties of magnetic lines of force
- 7.15 State and explain the Coulomb's inverse square law of magnetism
- 7.16 Define magnetic permeability
- 7.17 Define para, dia, ferro magnetic materials with examples
- 7.18 Solve simple problems on (i) Ohm's law (ii) Kirchoff's first law (iii) Wheatstone bridge (iv) meter bridge and (v) Coulomb's inverse square law

8.0 Understand the concepts of Modern physics

- 8.1 State and explain Photo-electric effect.
- 8.2 Write Einstein's Photo electric equation and name the physical quantities in it.
- 8.3 State laws of photo electric effect
- 8.4 Explain the Working of photo electric cell
- 8.5 List the Applications of photoelectric effect
- 8.6 Recapitulate refraction of light and its laws
- 8.7 Define critical angle
- 8.8 Explain the Total Internal Reflection
- 8.9 Explain the principle and working of Optical Fiber
- 8.10 List the applications of Optical Fiber
- 8.11 Explain the energy gap based on band structure
- 8.12 Distinguish between conductors, semiconductors and insulators based on energy gap
- 8.13 Define doping
- 8.14 Explain the concept of hole
- 8.15 Explain the types of semiconductors , Intrinsic and extrinsic
- 8.16 Explain n-type and p-type semiconductors
- 8.17 Mention the applications of semiconductors
- 8.18 Define superconductor and superconductivity
- 8.19 List the applications of superconductors
- 8.20 Nanotechnology definition, nano materials and applications

1. Units and measurements

Introduction — Physical quantity — Fundamental and Derived quantities — Fundamental and derived units - SI units — Multiples and Sub multiples — Rules for writing S.I. units-Advantages of SI units — Direct and indirect measurements — Accuracy and least count — Errors: Absolute, relative and percentage errors—Problems.

2. Statics

Scalars and Vectors— Representation of a vector - Types of vectors - Resolution of vector into rectangular components — Triangle law of vectors — Concurrent forces - Lami's theorem - Parallelogram law of forces : Statement, equations for magnitude and direction of resultant, examples — Moment of force and couple — Problems.

3. Gravitation

Newton's law of gravitation and G - Concept of acceleration due to gravity (g) - Factors affecting the value of g - Relation between g and G- Kepler's laws - Satellites: Natural and artificial - Orbital velocity and escape velocity - Polar and geostationary satellites - Applications of artificial satellites - Problems.

4. Concepts of energy

Work done & Energy-Definition and types of energy - potential energy - kinetic energy-- K.E and momentum relation — Law of Conservation of energy, examples - Solar energy, principles of thermal and photo conversion — Problems.

5. Thermal physics

Modes of transmission of heat – Expansion of Gases - Boyle's law – Absolute scale of temperature - Thermometric scales and their inter conversion - Charle's law - Gay-Lussac's law - Ideal gas equation - Universal gas constant (R) - Problems.

Sound

Sound - Nature of sound - Types of wave motion, Longitudinal and transverse — Factors affecting the velocity of sound in air - musical sound and noise - Noise pollution — Causes & effects - Methods of reducing noise pollution - Doppler effect - Echo- Reverberation -Reverberation time-Sabine 's formula — Ultrasonics & applications — SONAR - Problems.

7. Electricity & Magnetism

Concept of P.D and EMF - Ohm's law and explanation-Specific resistance - Kirchoff's laws — Wheat stone's bridge - Meter bridge.

Natural and artificial magnets – magnetic field and magnetic lines of force – Coulomb's inverse square law – Permeability – Magnetic materials – Para, dia, ferro – Examples – Problems.

8. Modern Physics

Photoelectric effect – laws of photoelectric effect – photoelectric cell – Applications of photoelectric cell - Total internal reflection - Fiber optics - Principle and working of an optical fiber - Applications of optical fibers – Semiconductors: Based on Energy gap – Doping – Hole - Intrinsic and extrinsic semiconductors (n-type & p-type) – Applications of semiconductors – Superconductivity – applications – Nanotechnology definition, nano materials, applications.

REFERENCES

1. Intermediate physics - Volume - I & 2

2. Unified physics Volume 1, 2, 3 and 4

3. Concepts of Physics, Vol 1 & 2

4. Text book of physics Volume I & 2

5. Fundamentals of physics

6. Text book of applied physics

7. NCERT Text Books of physics

Telugu Academy (English version)

Dr. S.L Guptha and Sanjeev Guptha

H.C. Verma

Resnick & Halliday

Brijlal & Subramanyam

Dhanpath Roy

Class XI & XII Standard

$8. \ \ e\text{-books/e-tools/websites/Learning Physics software/eLMS}$

Table showing the scope of syllabus to be covered for unit tests

Unit test	Learning outcomes to be covered
Unit test - 1	From 1.1 to 3.14
Unit test - 2	From 4.1 to 6.18
Unit test - 3	From 7.1 to 8.20

Course code	Course Title	No. of Periods per week	Total No. of Periods	Marks for FA	Marks for SA
CCN-104	Engineering Chemistry and Environmental Studies	3	90	20	80

Time Schedule

S.No	Unit Title/Chapter	No of Periods	Weightage of marks	Question distribu Essay		Mappe d with CO
1	Fundamentals of Chemistry	14	21	1½*	2	CO1
	Fundamentals of Chemistry	14	21	1/2	2	COI
2	Solutions, Acids and Bases	16	21	1½*	2	CO1
3	Electrochemistry	12	13	1	1	CO2
4	Corrosion	8	13	1	1	CO2
5	Water Treatment	8	13	1	1	CO3
6	Polymers & Engineering materials.	12	13	1	1	CO4
7	Fuels	6	3	0	1	CO4
8	Environmental Studies	14	13	1	1	CO5

Total	90	110	8	10	

To familiarize with the concepts of chemistry involved in the process of various Engineering Industrial Applications. To know the various natural and man-made environmental issues and concerns with an interdisciplinary approach that include physical, chemical, biological and socio cultural aspects of environment. to reinforce theoretical concepts by conducting relevant experiments/exercises

	CO1		Explain Bohr's atomic model, chemical bonding, mole concept, acids and bases, P ^H and Buffer solutions.						
	CO2		Explain electrolysis, Galvanic cell, batteries and corrosion						
	CO3	Explain the	e chemistry inv	olved in th	ne treatm	ent of hardness in water.			
Course Outcomes	CO4	Explain the methods of preparation and applications of Polymers and Elastomers, chemical composition and applications of Alloys, Composite Materials, Liquid Crystals, Nano Materials and Fuels.							
	CO5	controlling	Explain Global impacts due to air pollution, causes, effects and controlling methods of water pollution and understand the environment, forest resources, e-Pollution and Green Chemistry Principles.						
	Engineering. Chemistry and Environmental studies No of Course Outcomes:5					No Of periods 90			
POs	Mapped with CO		CO periods addressing PO in Col	%	Level 1,2,3	remarks			

	No of	Course Outco	No Of periods 90						
POs	Mapped with CO No	CO periods addressing PO in Col NO. 1	%	Level 1,2,3	remarks				
PO1	CO1,CO2,CO3	42	46.7 %	3					
PO2	CO2,CO3	16	17.8%	1	>40% level 3 (highly				
PO3	CO4	12	13.3%	1	addressed) 25% to 40%				
PO4	CO4	6	6.7%	1	level 2(moderately addressed) 5% to 25%				
PO5	CO5	14	15.5%	1	level 1 (Low addressed) <				
PO6	-	-	-	-	5%(not addressed)				
PO7	-	-	-	-					

COs-POs mapping strength (as per given table)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-
CO2	3	1	-	-	-	-	-	-	-	-
CO3	3	1	-	-	-	-	-	-	-	-
CO4	-	-	1	1	-	-	-	-	-	-
CO5	ı	-	ı	ı	1	-	ı	ı	ı	-

Average	3	1	1	1	1	-	-	-	-

3=strongly mapped 2= moderately mapped 1= slightly mapped

Note: The gaps in CO and PO mapping will be achieved by one or more appropriate activities from the following:

i) Seminars ii) Tutorials iii) Guest Lectures iv) Assignments v) Quiz competitions vi) Industrial visit vii) Tech Fest viii) Mini project ix) Group discussions x) Virtual classes xi) Library visit for e-books

Model Blue Print with Weightage for Blooms category and questions for each chapter and COs mapped

*One question of 10 marks should be given with 50% weightage from unit title 1and 2

Upon completion of the course, the student shall be able to learn out

ENGINEERING CHEMISTRY AND ENVIRONMENTAL STUDIES

1.0 Atomic structure

- 1.1 Explain the charge, mass of fundamental particles of an atom (electron, proton and neutron) and the concept of atomic number and mass number.
- 1.2 State the Postulates of Bohr's atomic theory and its limitations.
- 1.3 Explain the significance of four Quantum numbers and draw the atomic structures of Silicon and Germanium.
- 1.4 Define Orbital of an atom and draw the shapes of s,p and d-orbitals.
- 1.5 Explain 1. Aufbau principle, 2. Pauli's exclusion principle 3. Hund's principle.
- 1.6 Write the electronic configuration of elements up to atomic number 30.
- 1.7 Explain the significance of chemical bonding.
- 1.8 Explain the Postulates of Electronic theory of valency.
- 1.9 Define and explain Ionic and Covalent bonds with examples of NaCl, *H₂,*O₂ and *N₂.(* Lewis dot method).
- 1.10 List out the Properties of Ionic compounds and covalent compounds and distinguish between their properties.

2.0 Solutions, Acids and Bases

- 2.1 Define the terms 1. Solution, 2. Solute and 3. Solvent.
- 2.2 Classify solutions based on solubility.
- 2.3 Define the terms 1. Atomic weight, 2. Molecular weight and 3. Equivalent weight. Calculate Molecular weight and Equivalent weight of the given acids (HCl, H₂SO₄, H₃PO₄) Bases (NaOH, Ca(OH)₂, Al(OH)₃ and Salts (NaCl, Na₂CO₃, CaCO₃).
- 2.4 Define mole and solve numerical problems on mole concept.
- 2.5 Define molarity, normality and solve numerical problems on molarity and normality.
 - a) Calculate the Molarity or Normality, if weight of solute and volume of solution are given.
 - b) Calculate the weight of solute, if Molarity or Normality with volume of solution are given.
 - c) Problems on dilution to convert high concentrated solutions to low concentrated solutions.
- 2.6 Explain Arrhenius theory f Acids and Bases and give its limitations.
- 2.7 Define ionic product of water, pH and solve numerical problems on pH (Strong Acids and Bases).
- 2.8 Define buffer solution and classify buffer solutions with examples. Give its applications.

3.0 Electrochemistry

- 3.1 Define the terms 1. Conductor 2. Semiconductor 3. Insulator, 4. Electrolyte 5. Non–electrolyte. Give two examples each.
- 3.2 Distinguish between Metallic conduction and Electrolytic conduction.
- 3.3 Explain electrolysis by taking an example of used NaCl and list out the applications of

- electrolysis.
- 3.4 Define Galvanic cell. Explain the construction and working of Galvanic cell.
- 3.5 Distinguish between electrolytic cell and galvanic cell.
- 3.6 Define battery and list the types of batteries with examples.
- 3.7 Explain the construction, working and applications of i) Dry cell (Leclanche cell), ii) Lead storage battery, iii) Lithium-Ion battery and iv) Hydrogen-Oxygen fuel cell.

4.0 Corrosion

- 4.1 Define the term corrosion.
- 4.2 state the Factors influencing the rate of corrosion.
- 4.3 Describe the formation of (a) composition cell (b) stress cell (c) concentration cell during corrosion.
- 4.4 Define rusting of iron and explain the mechanism of rusting of iron.
- 4.5 Explain the methods of prevention of corrosion by
 - (a)Protective coatings (anodic and cathodic coatings).
 - (b) Cathodic protection (Sacrificial anode process and Impressed-voltage process).

5.0 Water Treatment

- 5.1 Define soft water and hard water with respect to soap action.
- 5.2 Define and classify the hardness of water.
- 5.3 List out the salts that causing hardness of water (with Formulae).
- 5.4 State the disadvantages of using hard water in industries.
- 5.5 Define Degree of hardness and units of hardness (mg/L and ppm).
- 5.6 Solve numerical problems on hardness.
- 5.7 Explain the methods of softening of hard water by (i) Ion-exchange process and (ii) Reverse Osmosis process.
- 6.0 Polymers & Engineering materials.

A) Polymers

- 6.1 Explain the concept of polymerization.
- 6.2 Describe the methods of polymerization (a) addition polymerization of ethylene (b) condensation polymerization of Bakelite (Only flowchart).
- 6.3 Define plastic. Explain a method of preparation and uses of the following plastics:
 - 1. PVC 2. Teflon 3. Polystyrene 4. Nylon 6,6.
- 6.4 Define elastomers. Explain a method of preparation and applications of the following:
 - 1. Buna- S 2. Neoprene.

B) Engineering Materials

- 6.5 Define an alloy. Write the composition and applications of the following:
 - 1. Nichrome 2. Duralumin 3. Stainless Steel.
- 6.6 Define Composite Materials and give any two examples. State their Properties and applications.
- 6.7 Define Liquid Crystals and give any two examples. State their Properties and applications.
- 6.8 Define Nano Materials and give any two examples. State their Properties and applications.

7.0 Fuels

- 7.1 Define the term fuel.
- 7.2 Classify the fuels based on occurrence.
- 7.3 Write the composition and uses of the following:
 - 1. LPG 2. CNG 3. Biogas 4. Power alcohol
- 7.4 Write the commercial production of Hydrogen as future fuel. Give its advantages and disadvantages.

8.0 ENVIRONMENTAL STUDIES

- 8.1 Explain the scope and importance of environmental studies.
- 8.2 Define environment. Explain the different segments of environment.
 - 1.Lithosphere 2. Hydrosphere 3. Atmosphere 4. Biosphere
- 8.3 Define the following terms:

- Pollutant 2.Pollution 3.Contaminant 4. Receptor 5. Sink 6. Particulates 7. Dissolved oxygen (DO) 8. Threshold Limit Value (TLV) 9. BOD 10.COD 11. Eco system 12. Producers 13. C on s um e rs 14. Decomposers with examples.
- 8.4 State the renewable and non-renewable energy sources with examples.
- 8.5 State the uses of forest resources.
- 8.6 Explain the causes and effects of deforestation.
- 8.7 Define air pollution and explain its Global impacts 1. Greenhouse effect, 2. Ozone layer depletion and 3. Acid rain.
- 8.8 Define Water pollution. Explain the causes, effects and controlling methods of Water pollution.
- 8.9 Define e-Pollution, State the sources of e-waste. Explain its health effects and control methods.
- 8.10 Define Green Chemistry. Write the Principles and benefits of Green Chemistry.

COURSE CONTENT

ENGINEERING CHEMISTRY AND ENVIRONMENTAL STUDIES

1. Fundamentals of Chemistry

Atomic Structure: Introduction - Fundamental particles — Bohr's theory — Quantum numbers — Atomic structure of Silicon and Germanium - Orbitals, shapes of s, p and d orbitals - Aufbau's principle - Hund's rule - Pauli's exclusion Principle - Electronic configuration of elements.

Chemical Bonding: significance—Electronic theory of valency- Types of chemical bonds — Ionic and covalent bond with examples—Properties of Ionic and Covalent compounds.

2. Solutions, Acids and Bases

Solutions: Types of solutions - Mole concept – Numerical problems on mole concept -Methods of expressing concentration of a solution – Molarity and Normality – Numerical problems on molarity and normality.

Acids and Bases: Arrhenius theory of acids and bases — Ionic product of water- pH—Numerical problems on pH—Buffer solutions — Classification- applications.

3. Electrochemistry

Conductors, semiconductors, insulators, electrolytes and non-electrolytes – Electrolysis of fused NaCl–Applications of electrolysis - Galvanic cell – Battery-Types- Dry Cell (Leclanche Cell), Lead- Storage battery- Lithium-Ion battery - Hydrogen-Oxygen Fuel cell.

4. Corrosion

Introduction - Factors influencing corrosion - Composition, Stress and Concentration Cells—Rusting of iron and its mechanism — Prevention of corrosion by Protective Coating methods, Cathodic Protection methods.

5. Water treatment

Introduction— Soft and Hard water— Causes of hardness— Types of hardness— Disadvantages of hard water — Degree of hardness (ppm and mg/lit) — Numerical problems on hardness—Softening methods—Ion-Exchange process—Reverse Osmosis process.

6. Polymers & Engineering materials

Polymers:

Concept of polymerization – Types of polymerization – Addition, condensation with examples – Plastics - Preparation and uses of i).PVC ii) Teflon iii) Polystyrene and iv) Nylon 6,6.

Elastomers: Preparation and application of i)Buna-s and ii) Neoprene.

Engineering Materials:

Alloys- Composition and applications of i) Nichrome, ii) Duralumin and iii) Stainless Steel.

Composite Materials- Properties and applications.

Liquid Crystals- Properties and applications.

Nano Materials- Properties and applications.

7. Fuels

Definition and classification of fuels – Composition and uses of i) LPG ii) CNG iii) Biogas and iv) Power alcohol – Hydrogen as a future fuel-production- advantages and disadvantages.

8. ENVIRONMENTAL STUDIES

Scope and importance of environmental studies — Environment - Important terms related to environment—Renewable and non-renewable energy sources—Forest resources — Deforestation — Air pollution—Global impacts on environment —Water pollution — causes — effects — control measures- e-Pollution —Sources of e-waste - Health effects - Control methods - Green Chemistry-Principles -Benefits.

Table specifying the scope of syllabus to be covered for Unit Test- 1, Unit Test- 2 and Unit Test-3

Unit Test	Learning outcomes to be covered
Unit Test – 1	From 1.1 to 2.8
Unit Test – 2	From 3.1 to 5.7
Unit Test – 3	From 6.1 to 8.10

REFERENCE BOOKS

1. Telugu Academy Intermediate chemistry Vol. 1&2

Jain & Jain
 O.P. Agarwal, Hi-Tech.
 D.K.Sharma
 A.K. De
 Engineering Chemistry
 Engineering Chemistry
 Engineering Chemistry

Course code	Course Title	No. of Periods/Weeks	Total No. of periods	Marks for FA	Marks for SA
CCN-105	Basics of Communication and Computer Networking Engineering	4	120	20	80

Time Schedule

S.No.	Chapter/Unit title	No. of	Weightage	Short	Essay	COs
		Periods	of Marks	Type	Туре	mapped
1	Fundamentals of	15	16	2	1	CO1, CO3,
1	Computers	13				CO4
2	Programming	15	21	2	1 ½	CO2
	Methodology	13	21	۷	1 /2	COZ
3	Operating System	25	21	2	1 ½	CO1, CO3
	basics	25	21		1 /2	
	Computer Hardware					CO1, CO4,
4	and Networking	35	26	2	2	CO1, CO4,
	Basics					603

5	Basics of Data structures and Emerging Trends in Computer Technologies	30	26	2	2	CO2, CO4
	Total	120	110	10	8	
			Marks	30	80	

	Upon completion of the course the student shall be able to							
i) know the fundamentals of Computers.								
Course Objectives	ii) familiarize programming methodologies like algorithms and flowcharts							
	iii) understand Operating system basics							
	iv) To familiarize basics of data structures and Emerging Technologies							

	At the	At the end of the course the student able to learn following:					
	CO1	CCN-105.1	Explain computer fundamentals				
Course Outcomes	CO2	CCN-105.2	Explain various flowchart, algorithm				
	CO3	CCN-105.3	Apply the features of Basic Computer operating systems				
	CO4	CCN-105.4	Explain functioning of various Hardware components and Network communication in computers				
	CO5	CCN-105.5	Explain basics of data structures and emerging technologies in communication and computer network engineering.				

Learning Outcomes:

1.0 Fundamentals of Digital Computer

- 1.1. Define various terms related to computers Computer, Hardware, Software, Firmware, High Level Language , Low Level Language
- 1.2. Draw and explain block diagram of a computer in detail
- 1.3. Describe the current family of CPUs used in Computers.
- 1.4. State the use of storage devices used in a computer.
- 1.5. List the two types of memory used in a computer.
- 1.6. State the importance of cache memory.
- 1.7. Explain the generations of computers.
- 1.8. Classification of computers based on a) size, b) processor.
- 1.9. State the importance of binary number system for use in Digital Computers

2.0 Implement Programming Methodology.

2.1. State the different steps involved in problem solving.

- 2.2. Define algorithm.
- 2.3. List four characteristics of algorithm.
- 2.4. Define a program
- 2.5. Differentiate between program and algorithm.
- 2.6. State the steps involved in algorithm development.
- 2.7. Differentiate between algorithm and flowchart.
- 2.8. Develop algorithms for simple problems.
- 2.9. Draw the symbols used in flowcharts.
- 2.10. Draw flowcharts for simple problems.

3.0 Operating Systems basics

- 3.1. Describe the need for an operating system.
- 3.2. List the various operating systems used presently.
- 3.3. List and explain
 - 3.3.1. Types of DOS commands
 - 3.3.2. Any 10 Internal Commands
 - 3.3.3. Any 5 External Commands
 - 3.3.4. Features of Windows desktop.
 - 3.3.5. Components of a Window.
- 3.4. State the function of each component of a Window.
- 3.5. Describe the Method of starting a program using start button
- 3.6. Explain usage of maximize, minimize, restore down and close buttons.
- 3.7. State the meaning of a file, folder.
- 3.8. Describe the Method of viewing the contents of hard disk drive using Explorer
- 3.9. Describe the Method of finding a file using search option.
- 3.10. Use control panel for
 - 3.10.1. installing and uninstalling software
 - 3.10.2. installing and uninstalling hardware
 - 3.10.3. Changing the system date and time
 - 3.10.4. Installing a printer
- 3.11. Explain Drive space using system tool option of Accessories group
- 3.12. Explain Disk defragmentation using System tools
- 3.13. Explain the procedure for changing resolution, color, appearance, screensaver options of the display

4.0 Computer Hardware, communication and Networking Basics

- 4.1 Hardware Basics
 - 4.1.1 Identify hardware used for I/P, O/P & inside computer case, system board components used for communication among devices
 - 4.1.2 Software 3 types of Software: ROM BIOS, OS, application software
 - 4.1.3 Explain Functions of BIOS
 - 4.1.4 Explain boot process
 - 4.1.5 Explain POST and important beep codes
 - 4.1.6 Describe about different connectors.
- 4.2 Computer Communication Basics
 - 4.2.1. Define Data communications
 - 4.2.2. Explain the four fundamental characteristics of Data communication.
 - 4.2.3.List the components of the Data communications.
 - 4.2.4. Explain different ways of representing Data.
 - 4.2.5. Explain Modes of communication (simplex, half-duplex, and full-duplex)

4.3 Networking Basics

4.3.1 Explain meaning of a computer network.

- 4.3.2 Describe the concept of a Local Area Network, Wide Area Network
- 4.3.3 Compare Internet and Intranet
- 4.3.4 Describe about internet service provider.
- 4.3.5 Explain the role of a modem in accessing the Internet.
- 4.3.6 Describe address format and IP address
- 4.3.7 What is browser and List various browsers
- 4.3.8 Explain the role of search engines with examples.
- 4.3.9 Explain Internet Security.

5.0 Basics of data structures and Emerging Computer Technologies.

- 5.1. Overview of Data Structures
 - 5.1.1. Define Data structures.
 - 5.1.2. Classify Data Structures.
 - 5.1.3. Stack Concepts (Definition, operations, Applications)
 - 5.1.4. Queue Concepts (Definition, operations, Applications)
 - 5.1.5.List (Definition, Types-Single, Double, Circular, Operations-Insertion, Deletion, Search, Sort)
 - 5.1.6. Define the terms Searching and sorting
 - 5.1.7. Illustrate Linear search
 - 5.1.8. List various sorting techniques
 - 5.1.9. List the applications of searching and sorting.
- 5.2.1.Define the terms Tree, Binary Tree, Graph, Root, Internal node, Sibling node, LeafNode, Degree of a Node and Height of Tree
- 5.1.10. List the application of trees and graphs.

5.2. Introduction to Cloud fundamentals in Network Administration

- 5.2.1. Introduction to AWS
 - 5.2.1.1. AWS IAM Identity and Access Management
 - 5.2.1.2. AWS VPC Virtual Private Cloud
 - 5.2.1.3. AWS EC2 Elastic Cloud Computing
 - 5.2.1.4. AWS EC2 Load balancing
- 5.2.2. Introduction to Azure
 - 5.2.2.1. Azure Cloud services Configuration
 - 5.2.2.2. List Azure services
 - 5.2.2.3. List Core Azure services
 - 5.2.2.4. List Azure Identities and Governance

5.3. Basics of Ethical Hacking

- 5.3.1. Define Ethical Hacking and List the categories of Hackers
- 5.3.2.Describe Roles and responsibilities of Ethical Hackers
- 5.3.3.List and explain the phases in Ethical Hacking and Explain Penetrate testing

5.4. Introduction about Security threats in Networking

- 5.4.1 Backdoor
- 5.4.2 Logic Bomb
- 5.4.3 Trojan Horse
- 5.4.4 Virus
- 5.4.5 Worms

COURSE CONTENT

1.0 Fundamentals of Digital Computer

Block diagram of a digital computer, functional parameters of CPU, Clock speed and word length, Functional blocks of a CPU: ALU and Control unit, types of memory RAM, ROM, purpose of cache memory

2.0 Programming Methodology.

Steps involved in problem solving - Define algorithm, Program - Characteristics of algorithm - Differentiate between program and algorithm- Steps involved in algorithm development - Differentiate algorithm and flowchart - Algorithms for simple problems - Symbols used in flowcharts -Flowcharts for simple problems.

3.0 Understand Operating Systems

Need for an operating system - List the various operating systems - Types of commands, Internal & External Commands Features of Windows desktop - Components of a Window - Function of each component of a Window - Method of starting a program using start button -Maximize, minimize, restore down and close buttons- Meaning of a file and folder -Viewing the contents of hard disk drive using explorer -Finding a file - Formatting a floppy disk using explore option - Installing and uninstalling new software using control panel - installing and un installing a new hardware using control panel - Drive space - disk defragmentation - Installing a printer - Changing resolution, colour, appearance and screensaver options of the display - Changing the system date and time

4.0 Computer Hardware and Networking Basics

Hardware Basics- I/P, O/P - inside computer case- system board components - 3 types of Software - BIOS- boot process - POST - different connectors.

Data Communication -characteristics-components-Data Representation-Modes of communication. Networking Basics - computer network - Local Area Network - Wide Area Network - Compare Internet and Intranet - internet service provider - role of a modem - address format and IP address - browser - search engines with examples -Describe Internet Security.

5.0 Basics of Data structures and Emerging Computer Technology

Overview of Data Structures-Definition-Classification- concepts of Stacks, Queues, Lists, Trees and Graphs.

Introduction to Cloud fundamentals in Network Administration- AWS-Azure
Basics of Ethical Hacking - categories of Hackers - Penetrate testing -Roles and responsibilities of Ethical Hackers- phases in Ethical Hacking

REFERENCE BOOKS

- 1. Information Technology Curtin.
- 2. Computer Science Theory & Application E. Balaguruswamy, B. Sushila
- 3. Introduction to Computers (Special Indian Edition) Peter Norton
- 4. https://aws.amazon.com/
- 5. https://learn.microsoft.com/en-us/certifications/azure-fundamentals/
- 8. Data Structures using 'C' Tanenbaumlangsam and Augonstein (PHI).

Table specifying the scope of syllabus to be covered for unit tests

Unit Test	Learning outcomes to be covered		
Unit test-1	From 1.1 to 3.3		
Unit test-2	From 3.4 to 4.1		
Unit test-3	From 4.2 to 5.4		

Course code	Course Title	No. of Periods/Weeks	Total No. of periods	Marks for FA	Marks for SA	
CCN-106	Programming in C	5	150	20	80	

Time Schedule

S.No.	Chapter/Unit title	No. of	Weightage	Short	Essay	COs
		Periods	of Marks	Type	Type	mapped

1	Introduction to C Language	20	16	2	1	CO1, CO2
2	Input and output statements, Operators and Expressions In C.	25	21	2	1 ½	CO1, CO2, CO3
3	Decision making, iterative and other control statements	40	21	2	1½	CO1, CO2, CO3
4	Arrays and strings, Structures and Unions	30	26	2	2	CO1, CO2, CO3
5	User defined functions, pointers, Dynamic memory allocation	35	26	2	2	CO1, CO2, CO3, CO4, CO5
	Total	150	110	10	8	
	Marks				80	

	Upon completion of the course the student shall be able to
Course Objectives	 Relate basics of programming language constructs using C Language Classify and implement data types, derived data types, pointers. Analyse and develop effective modular programming Construct mathematical, logical and scientific problems and real time applications using C-language

	Upon	Upon completion of the course the student shall be able to					
	CO1	CCN-106.1	Develop, compile and debug programs using C-fundamentals and different programming statements in C language.				
Course Outcomes	CO2	CCN-106.2	Use various operations using primary and derived data types in C.				
	CO3	CCN-106.3	Analyse programs using predefined functions, modules and recursive techniques				
	CO4	CCN-106.4	Write scientific and logical programs using pointers, file pointers				
	CO5	CCN-106.5	Develop programs using information passing				

Learning Outcomes

1.0 Introduction to C-Language

- 1.1 Describe the history of C-language, structure of C-language program
- **1.2** Describe the programming style of C language
- **1.3** Explain the steps involved in Editing, compiling, executing and debugging of C program
- **1.4** Describe character set, C-Tokens, Keywords, Identifiers, Constants, Variables
- 1.5 Define Data Type
- **1.6** Classify Data Types and explain them with examples.
- 1.7 Explain declaration of constants and variables
- **1.8** Explain initializing values to variables in declaration
- 1.9 Explain about user defined data types with a simple program
- **1.10** Explain the usage of type qualifiers

2.0 Input and output statements, Operators and Expressions in C

- **2.1** Explain the importance of Pre-processor Directive #include.
- **2.2** Define an operator, an expression
- 2.3 Explain
 - **2.3.1** Various arithmetic operators and explain the evaluation of arithmetic expressions with example.
 - **2.3.2** Various relational operators and discuss evaluation of relational expressions.
 - **2.3.3** Various logical operators and discuss evaluation of logical expressions.
- **2.4** Explain the difference between unary and binary operators.
- **2.5** Describe various assignment operators, increment and decrement operators.
- **2.6** Illustrate nested assignment.
- **2.7** Explain conditional operators with an example.
- 2.8 Explain
 - **2.8.1** Bit-wise operators and explain each with an example.
 - **2.8.2** Special operators with examples.
 - **2.8.3** Precedence and Associativity of operators.
- **2.9** Describe evaluation of compound expression.
- **2.10** Illustrate type conversion techniques.
- **2.11** Write sample programs by using all the operators.
- 2.12 Illustrate
 - **2.12.1** Reading a character using getch(),getche() and getchar().
 - **2.12.2** writing a character using putch(), putchar().
 - **2.12.3** Formatted input using scanf()& write sample programs using it.
 - **2.12.4** Formatted output using printf()& write sample programs using it.
- **2.13** Explain character functions.

3.0 Decision making, iterative and other control statements

- 3.1 Explain decision making statements and its need in programming
 - 3.2 Explain
 - **3.2.1** Simple if and if-else statement with syntax and sample program
 - **3.2.2** Nested if..else statements with syntax and sample program

- **3.2.3** if-else-if ladder with syntax and sample program
- **3.2.4** switch statement with syntax and sample program
- **3.3** State the importance of break statement with switch and illustrate
- **3.4** Compare
 - **3.4.1** Conditional operator with if-else statement
 - **3.4.2** if-else with switch statement
- **3.5** Define looping or iteration
- 3.6 List and explain iterative statements with syntax and examples
- **3.7** Compare different loop statements
- **3.8** What is nested loop and illustrate.
- **3.9** Explain the usage of goto, break and continue statements with loop statements
- **3.10** Differentiate break and continue statements.
- **3.11** Define structured programming.

4.0 Arrays, strings, Structures and Unions

- **4.1** Define Array
- **4.2** Explain
 - **4.2.1** Declaration and initialization of One Dimensional (1D) Array with syntax and sample programs.
 - **4.2.2** Accessing the elements in 1D-Array with sample programs.
 - **4.2.3** Reordering an array in ascending order.
- **4.3** Explain declaration and initialization and usage of two Dimensional (2D) Arrays.
- **4.4** Illustrate the concept of arrays with sample programs on matrix addition, subtraction and matrix multiplication
- **4.5** Define String
- **4.6** Explain
 - **4.6.1** Declare and initialize of String variables.
 - **4.6.2** gets() and puts()
 - **4.6.3** Reading and displaying of strings from terminal with sample programs.
 - **4.6.4** Explain about various String handling functions with sample programs.
- 4.7 Explain Character arithmetic.
- **4.8** Define a structure.
- **4.9** Explain
- **4.10** Initializing structure, declaring structure, Declaring Structure Variables.
- **4.11** Accessing of the structure members
- **4.12** Structure assignment.
- **4.13** How to find size of a structure.
- **4.14** Nested structure concept.
- **4.15** Structures containing arrays
- **4.16** Array of structures
- **4.17** Define Union, declare, initialize and use of union.
- **4.18** Distinguish between Structures and Unions
- **4.19** Write sample programs for all the concepts of structures and unions

5.0 User defined functions, pointers, file management and pre-processor directives

- **5.1** Explain
 - **5.1.1** Need of user defined functions
 - **5.1.2** Advantages of the functions

- **5.1.3** Elements of function
- **5.1.4** Return values and their types
- **5.2** Define a function call, function prototype
- **5.3** Explain
 - **5.3.1** Function declaration in programs
 - **5.3.2** Functions with no arguments and no return values with sample programs
 - **5.3.3** Functions with arguments with no return values with sample programs
 - **5.3.4** Functions with arguments with return values with sample programs
 - **5.3.5** Functions with no arguments with return values with sample programs
 - **5.3.6** Functions that return multiple values with sample programs
 - **5.3.7** Recursion with sample programs
 - **5.3.8** Passing arrays to functions with sample programs
 - **5.3.9** Structure as function arguments and structures as function values.
 - **5.3.10** Structures containing pointers.
 - **5.3.11** Self-referential structures with examples.
 - **5.3.12** Storage classes-auto, register, static, extern
 - **5.3.13** Scope, visibility and lifetime of variables in functions
- **5.4** Differentiate Local and External variables
- 5.5 Define Global variable
- **5.6** Discuss passing the global variables as parameters using sample programs
- **5.7** Explain
 - **5.7.1** Declaration and initialization of Pointers.
 - **5.7.2** Accessing the address of a variable using & operator
 - **5.7.3** Accessing the value of a variable through pointer
 - **5.7.4** Pointer Arithmetic
 - **5.7.5** Precedence of address and de-referencing operators.
 - **5.7.6** Relationship between arrays and pointers.
 - **5.7.7** Accessing array elements using pointers
 - **5.7.8** Pointers as function arguments
 - **5.7.9** Pointer arrays with examples.
- **5.8** Differentiate between address and de-referencing operators.
- **5.9** Explain
 - **5.9.1** Dynamic memory management functions with examples.
 - **5.9.2** Structures containing pointers.
 - **5.9.3** Pointer to structure.
 - **5.9.4** Self-referential structures with examples.
- **5.10** State Need of pre-processor directives.

COURSE CONTENT

- 1. **Introduction to C Language**: History of C language importance of C Define language structure of C language programming style of C language steps involved in executing the C program-Character set C Tokens Keywords and Identifiers- Constants and Variables Data Types and classification declaration of constants and variables-initializing values to variables-user defined data types-usage of type qualifiers.
- 2. **Input and output statements, Operators and Expressions in C:** Importance of Pre-processor #include-reading and writing a single character function- formatted input and output

- statements-operators-classification of operators-operator precedence and associativity-expressions and expression evaluation-type conversion techniques.
- **3.** Understand Decision making, iterative and other control statements: Simple if, if-else, if else ladder, nested if-else-switch statement else if, nested if, else if ladder, switch statements-Classification of various loop statements- while statement do.. while statement ram for loop statement nesting of loops- Comparisons of different loop statements -goto statement-break and continue statements -concept of structured programming
- 4. Understand Arrays and strings, basics of Structures and Unions: Arrays One Dimensional Arrays array programs -two Dimensional Arrays- programs on matrix Strings String handling functions Structure- Array of structures Nested structures- pointer to structure Self-referential structures Union and illustrate use of a union difference between Structures and Union
- 5. Understand User defined functions, basics of pointers, file management and pre-processor directives: Function user defined functions Advantages Recursion concept parameter passing –storage classes scope, visibility and lifetime of variables in functions- Local and External variables -Global variable- Pointer Differentiate address and de-referencing operators Pointer Arithmetic- precedence of address and de- referencing operators -
- 6. Relationship between Arrays and Pointers Pointers as Function Arguments Dynamic memory management-

REFERENCE BOOKS

Programming in ANSI C E.Balaguruswamy
 Programming with C Gottfried
 C The complete Reference
 Schildt
 Tata McGraw Hill
 Tata McGrawHill

Table specifying the scope of syllabus to be covered for unit tests

Unit Test	Learning outcomes to be covered		
Unit test-1	From 1.1 to 2.13		
Unit test-2	From 3.1 to 4.6		
Unit test-3	From 4.7 to 5.12		

Course code	Course Title	No. of periods /week	Total No. of periods	Marks for FA	Marks for SA
CCN-107	ENGINEERING DRAWING	3	90	40	60

S.No.	Chapter/Unit title	No. of Periods	Weightage of Marks	Short Type	Essay Type	COs mapped
1	Use of Drawing Instruments, Free Hand Lettering and	10	10	2	0	CO1, CO3, CO4

	Dimensioning					
	Practice					
	Principles of					
2	Geometric	15	15	1	1	CO2
	Constructions					
	Projections of points,					
3	lines, planes and	20	25	1	2	CO1, CO3
	solids					
4	Sectional Views	20	10	0	1	CO1, CO4,
_	Sectional views	20	10	U	1	CO5
5	Orthographic	25	20	0	2	CO2, CO4
	projection	23	20	U	2	002,004
	Total	90	80	4	6	
			Marks	20	40	

Course Objectives and Course Outcomes

Course Objectives	Upon completion of the course the student shall be able to understand the basic graphic skills and use them in preparation, reading and interpretation of engineering drawings.
	interpretation of engineering drawings.

	CO1	CN-107.1	Practice the use of engineering drawing instruments and Familiarise with the conventions to be followed in engineering drawing as per BIS
Course Outco mes	CO2	CN-107.2	Construct the i) basic geometrical constructions ii) engineering curves
ines	соз	CN-107.3	Visualise and draw the projections of i) Points ii) Lines iii) Regular Planes iv) Regular Solids
	CO4	CN-107.4	Visualise and draw the sectional views of components
	CO5	CN-107.5	Visualise and draw the orthographic projections of components

LEARNING OUTCOMES

Upon completion of the course the student shall able to

1.0 Use of Drawing Instruments, Free Hand Lettering and Dimensioning Practice

- 1.1 State the importance of drawing as an engineering communication medium
- 1.2 Select the correct instruments to draw the different lines / curves.
- 1.3 Use correct grade of pencil and other instruments to draw different types of lines and for different purposes
- 1.4 Identify the steps to be taken to keep the drawing clean and tidy.
- 1.5 Write titles using vertical and slopping (inclined) lettering and numerals of 7mm, 10mm and 14mm height.
- 1.6 Acquaint with the conventions, notations, rules and methods of dimensioning in engineering drawing as per the B.I.S.
- 1.7 Dimension a given drawing using standard notations and desired system of dimensioning.

2.0 Principles of Geometric Constructions

- 2.1 Practice the basic geometric constructions like i) dividing a line into equal parts
 - i) Exterior and interior tangents to the given two circles
 - ii) Tangent arcs to two given lines and arcs
- 2.2 Draw any regular polygon using general method when i) side length is given
 - i) Inscribing circle radius is given ii) describing circle radius is given
- 2.3 Draw the engineering curves like i) involute ii) cycloid

3.0 Projections of points, lines, planes and solids (All in first quadrant only)

- 3.1 Explain the basic principles of the orthographic projections
 - 3.2 Visualise and draw the projection of a point with respect to reference planes (HP & VP)
 - 3.3 Visualise and draw the projections of straight lines with respect to two reference Planes (up to lines parallel to one plane and inclined to other plane)
 - 3.4 Visualise and draw the projections of planes (up to planes perpendicular to one plane and inclined to other plane)
 - 3.5 Visualise and draw the projections of regular solids like Prisms, Pyramids, Cylinder, Cone (up to axis of solids parallel to one plane and inclined to other plane)

4.0 Sectional Views

- 4.1 Identify the need to draw sectional views.
- 4.2 Draw sectional views of regular solids by applying the principles of hatching.

5.0 Orthographic projection

5.1 Draw the orthographic views of an object from its pictorial drawing.

5.2 Draw the minimum number of views needed to represent a given object fully.

Competencies and Key competencies to be achieved by the student

S.No	Major topic	Key Competency
		 Explain the linkages between Engineering drawing and other subjects of study in Diploma course.
1.	Use of Drawing Instruments, Free	Select the correct instruments to draw various entities in different orientation
	Hand Lettering and Dimensioning Practice	 Write titles using sloping and vertical lettering and numerals as per B.I.S (Bureau of Indian standards)
		Dimension a given drawing using standard notations and desired system of dimensioning
2.	Geometrical construction	Dividing a line into equal parts, tangents to circles, Construct involute, cycloid from the given data.
3.	Projection of points, Lines, Planes & Solids	 Draw the projections of points, straight lines, planes & solids with respect to reference planes (HP& VP)
4.	Sectional Views	 Differentiate between true shape and apparent shape of section Apply principles of hatching. Draw simple sections of regular solids
5.	Orthographic Projection	Draw the minimum number of views needed to represent a given object fully.

COURSE CONTENTS:

NOTES: 1. B.I.S Specification should invariably be followed in all the topics.

2. A-3 Size Drawing Sheets are to be used for all Drawing Practice Exercises.

1.0 Use of Drawing Instruments, Free Hand Lettering and Dimensioning Practice

Explanation of the scope and objectives of the subject of Engineering Drawing . Its importance as a graphic communication -Need for preparing drawing as per standards – SP-46 –1988 – Mention B.I.S - Role of drawing in -engineering education - Basic Tools, tools for drawing – Mentioning of names under each classification and their brief description -Scales: Recommended scales reduced & enlarged -Lines: Types of lines, selection of line thickness - Selection of Pencils -Sheet Sizes: A0, A1, A2, A3, A4, A5, Layout of drawing sheets in respect of A0, A1, A3 sizes, Sizes of the Title block and its contents - Care and maintenance of Drawing Sheet,

Importance of lettering – Types of lettering -Guide Lines for Lettering Practicing of letters & numbers of given sizes (7mm, 10mm and 14mm)-Advantages of single stroke or simple style of lettering - Use of lettering stencils- Purpose of engineering Drawing, Need of B.I.S code in dimensioning -Shape description of an Engineering object -Definition of Dimensioning size description -Location of features, surface finish, fully dimensioned Drawing -Notations or tools of

dimensioning, dimension line extension line, leader line, arrows, symbols, number and notes, rules to be observed in the use of above tools -Placing dimensions: Aligned system and unidirectional system (SP-46-1988)-Arrangement of dimensions Chain, parallel, combined progressive, and dimensioning by co-ordinate methods-The rules for dimensioning standard, features "Circles (holes) arcs, angles, tapers, chamfers, and dimension of narrow spaces.

2.0 Geometric Constructions

Division of a straight line into given number of equal parts —Drawing interior and exterior tangents to two circles of given radii and centre distance-Drawing tangent arc of given radius to touch two lines inclined at given angle (acute, right and obtuse angles), Tangent arc of given radius touching a circle or an arc and a given line, Tangent arcs of radius R, touching two given circles internally and externally-Construction of any regular polygon by general method for given side length, inscribing circle radius and describing/superscripting circle radius - Involute, Cycloid, explanations as locus of a moving point, their engineering application, viz., Gear tooth profile, screw threads, springs etc. — their construction

3.0 Projection of points, lines and planes and Solids (All in first quadrant only)

Classification of projections, Observer, Object, Projectors, Projection, Reference Planes, Reference Line, Various angles of projections —Differences between first angle and third angle projections Projections of points -Projections of straight line —(a) Parallel to both the planes, (b)Perpendicular to one of the planes and (c) Inclined to one plane and parallel to other planes-Projections of regular planes-(a) Plane parallel to one of the reference planes, (b) Plane perpendicular to HP and inclined to VP and vice versa- Projections of regular solids- (a) Axis perpendicular to one of the planes, (b) Axis parallel to VP and inclined to HP and vice versa.

Unit Test	Learning Outcomes to be Covered
Unit Test – I	From 1.1 to 2.3
Unit Test – II	From 3.1 to 3.5
Unit Test – III	From 4.1 to 5.2

4.0 Sectional Views

Need for drawing sectional views – what is a sectional view - Hatching – Section of regular solids inclined to one plane and parallel to other plane

5.0 Orthographic Projections

Meaning of orthographic projection - Using a viewing box and a model — Number of views obtained on the six faces of the box, - Legible sketches of only 3 views for describing object - Concept of front view, top view, and side view sketching these views for a number of engineering objects - Explanation of first angle projection. — Positioning of three views in First angle projection - Projection of points as a means of locating the corners of the surfaces of an object — Use of meter line in drawing a third view when other two views are given - Method of representing hidden lines - Selection of minimum number of views to describe an object fully.

REFERENCE BOOKS

- 1 Engineering Graphics by P I Varghese (McGraw-hill)
- 2 Engineering Drawing by Basant Agarwal & C.M Agarwal (McGraw-hill)
- 3 Engineering Drawing by N.D.Bhatt.
- 4 T.S.M. & S.S.M on "Technical Drawing" prepared by T.T.T.I., Madras.
- 5 SP-46-1998 Bureau of Indian Standards.

Course Code	Course title	No of periods/week	Total no of periods	Marks for FA	Marks for SA
CCN-108	Programming in C Lab	06	180	40	60

S No	Chapter/ Unit Title	No. of Periods	COs Mapped
1.	Fundamentals and Input/Output statements	15	CO1, CO2
2.	Control statements	45	CO1, CO2, CO4
3.	Arrays, structures and unions	60	CO1, CO2, CO3, CO4
4.	User defined functions, storage classes, pointers	60	CO1,CO2,CO3,CO4,CO5, CO6
	Total	180	

	Upon	completion of the course the student shall be able to
	1.	Edit, compile and debug execution of C-Programs.
	2.	Learn the syntax of all the statements, keywords, user defied identifiers
		and usage of writing statements in C-Program.
COURSE OBJECTIVES	3.	Evaluate all the expressions using different primary types of data, derived
COOKSE OBJECTIVES		data, operators and with their precedence.
	4.	Write C-programs using I/O statements, decision making statements.
	5.	Write structured and modular C-programs.
	6.	Write C-programs to implement dynamic memory allocation using pointer
		concepts.

Course Outcomes		Upon completion of the course the student shall be able to	
CO 1	CCN-108.1	Perform Edit, compile and debug and execution of C-Programs.	
CO 2	CCN-108.2	Develop programs using different predefined functions, keywords, user defined identifiers.	
CO 3	CCN-108.3	Write different expressions using available C-operators and valid data supported by C-language.	
CO 4	CCN-108.4	Develop C-programs using control statements, array's, structures, unions.	
CO 5	CCN-108.5	Develop C-programs using user defined functions and recursion.	
CO 6	CCN-108.6	Develop C-programs to implement dynamic memory concept.	

1. Fundamentals and Input / Output statements

- 1. Exercise on structure of C Program.
- 2. Exercise on Keywords and identifiers.
- 3. Exercise on constants and variables.
- 4. Execution of simple C program.
- 5. Exercise on operators and expressions.
- 6. Exercise on special operators.
- 7. Exercise on input and output of characters.
- 8. Exercise on formatted input and output.
- 9. Exercise on escape sequence characters.

2. Control statements

(Note: Every statement must be repeated with at least 5 different

applications)

- 1. Exercise on simple if statement.
- 2. Exercise on if..else statement.
- 3. Exercise on if..else..if ladder statement.
- 4. Exercise on switch statement.
- 5. Exercise on conditional operator comparing with ifelse statement.
- 6. Exercise on while statement.
- 7. Exercise on for statement.
- 8. Exercise on do. While statement.

3. Arrays, structures and unions

- 1. Exercise on one dimensional arrays
- 2. Exercise on two dimensional arrays
- 3. Exercise on strings
- 4. Exercise on structure
- 5. Exercise on union
- 6. Exercise on array of structures

4. User defined functions, storage classes, pointers.

- 1. Exercise on user-defined function
- 2. Exercise on storage classes
- 3. Exercise on parameter passing techniques
- 4. Exercise on recursion
- 5. Exercise on pointers

The competencies and key competencies to be achieved by the student

S.N	Name of the	Objectives	Key Competencies
о.	experiment		
1	Exercise on structure of C program	For a given C program, identify the different building blocks	Identify different building block in a C program
2	Exercise on Keywords and identifiers	For a given C program identify the keywords and identifiers	 Identify different keywords Check whether the keywords are in lowercase Differentiate identifiers and keywords
3	Exercise on constants and variables	For a given C program identify the constants and variables	 Identify the constants Identify the variables Declare variables with proper names

			Know the assignment of values to variables
4	Execution of simple C program	Execute a simple C program	 Know the assignment of variables Acquaint with C program editing Compile the program Rectify the syntactical errors Execute the program
5	Exercise on operators and expressions	Write a C program that uses different arithmetic operators	 Identify different arithmetic operators Build arithmetic expressions Identify the priorities of operators Evaluate arithmetic expression Compile the program Rectify the syntactical errors Execute the program Check the output for its correctness
6	Exercise on special operators	Write a C program that uses special operators	 Identify different special operators Build expressions using special operators Compile the program Rectify the syntactical errors Execute the program Check the output for its correctness
7	Exercise on input and output of characters	Write a C program for reading and writing characters	 Know the use of get char() function Know the use of put char() function Compile the program Rectify the syntactical errors Execute the program Check whether the correct output is printed for the given input
8	Exercise on formatted input and output	Write a C program using formatted input and formatted output	 Know the use of format string for different types of data in scan f() function Know the use of format string for different types of data in print f() function Check whether the data is read in correct format Check whether the data is printed in correct format
9	Exercise on Escape Sequence Characters	Write a C program using Escape Sequence Characters	 Know the use of Escape sequence characters Use the Escape sequence characters Check whether the data is read in correct format Rectify the syntax errors Check the output for correctness
10	Exercise on simple if statement	Write a C program using simple if statement	 Build a relational expression Use the if statement for decision making Rectify the syntax errors Check the output for correctness
11	Exercise on ifelse statement	Write a C program using ifelse statement	 Build a relational expression Use the ifelse statement for decision making Rectify the syntax errors Check the output for correctness
12	Exercise on elseif ladder statement	Write a C program using elseif ladder statement	Use elseif ladder statements with correct syntax

			A Pactify the syntax errors
			Rectify the syntax errorsDebug logical errors
			 Check the output for correctness
13	Exercise on switch	Write a C program using	 ❖ Check the output for correctness ❖ Use switch statement with correct syntax
13	statement	switch statement	 Identify the differences between switch and
	Statement	Switch statement	elseif ladder
			Rectify the syntax errors
			 Debug logical errors
			Check the output for correctness
14	Exercise on	Write a C program using (Build the three expressions for conditional
14	conditional operator	?:) conditional operator	operator
	conditional operator	: .) conditional operator	 Use conditional operator with correct syntax
			Rectify the syntax errors
			 Debug logical errors
			 Debug logical errors Differentiate conditional operator and
			ifelse statement
15	Exercise on while	Write a C program using	Build the termination condition for looping
10	statement	while statement	 Use while statement with correct syntax
	230000110		 Check whether correct number of iterations
			are performed by the while loop
			Rectify the syntax errors
			❖ Debug logical errors
16	Exercise on for	Write a C program using	Build the initial, increment and termination
	statement	for statement	conditions for looping
			Use for statement with correct syntax
			Rectify the syntax errors
			❖ Debug logical errors
			Check whether correct number of iterations
			are performed by the for loop
			Differentiate for and while statements
17	Exercise on dowhile	Write a C program using	Build the termination condition for looping
	statement	do statement	Use do statement with correct syntax
			Rectify the syntax errors
			❖ Debug logical errors
			Check whether correct number of iterations
			are performed by the while loop
			❖ Differentiate dowhile, while and for
			statements
18	Exercise on one	Write a C program to	Create a one-dimensional array with correct
	dimensional arrays	create and access one	syntax
		dimensional array	Store elements into array
			Read elements from array
			❖ Validate boundary conditions while
			accessing elements of array
			Rectify the syntax errors
			Debug logical errors
			Check for the correctness of output for the
			given input
19	Exercise on two	Write a C program to	Create a two-dimensional array with correct
	dimensional arrays	create and access two-	syntax
		dimensional array	Store elements into array

			 Read elements from array Validate boundary conditions while accessing elements of array Rectify the syntax errors Debug logical errors Check for the correctness of output for the given input
20	Exercise on strings	Write a C program for reading and writing strings	 Declare and initialize string variables Read strings from keyboard Print strings to screen
21	Exercise on structure	Write a C program using structure	 Define a structure with correct syntax Identify different members of a structure Declare a structure variable Access different members of structure Observe the size of the structure Rectify the syntax errors Debug logical errors Check for the correctness of output for the given input
22	Exercise on union	Write a C program using union	 Define a union with correct syntax Identify different members of a union Declare a union variable Access different members of union Observe the size of the union Rectify the syntax errors Debug logical errors Check for the correctness of output for the given input
23	Exercise on array of structures	Write a C program to create an array of structures and store and retrieve data from that array	 Define a structure with correct syntax Identify different members of a structure Declare a structure variable Create an array of structure Access individual element of the array of structure Access different members of structure Rectify the syntax errors Debug logical errors Check for the correctness of output for the given input
24	Exercise on user- defined function	Write a C program to define and call user- defined functions	 ❖ Identify the different parts of function declaration ❖ Define function with correct syntax ❖ Classify functions based on it parameters and return types ❖ Identify parameters passed ❖ Identify parameter passing method used ❖ Identify return value ❖ Rectify the syntax errors ❖ Debug logical errors

			Check for the correctness of output for the given input
25	Exercise on storage classes	Write a C program using different storage classes	 Know the use of different storage classes Use the different storage classes Check whether the scope of variables is correctly defined or not. Rectify the syntax errors Check the output for correctness
26	Exercise on parameter passing techniques	Write a C program using parameter passing techniques	 Know the use of parameter passing Use the different parameter passing techniques Check whether the parameters passed correctly or not. Rectify the syntax errors Check the output for correctness
27	Exercise on recursion	Write a C program using recursion	 Identify where recursive call is made in the function Validate the termination condition Rectify the syntax errors Debug logical errors Check for the correctness of output for the given input
28	Exercise on pointers	Write a C program using pointer data type	 Declare pointer variable Initialize pointer variable Access a variable through its pointer Rectify the syntax errors Debug logical errors Check for the correctness of output for the given input

Course Code	Course title	No of periods/week	Total no of periods	Marks for FA	Marks for SA
CCN-109	Engineering Physics Lab	03	45	40	60

	(1) To provide strong practical knowledge of Physics to serve		
	as a tool for various device applications in Engineering.		
Course objectives	(2) To enhance scientific skills of the students by incorporating		
	new experiments so as to enrich the technical expertise of the		
	students as required for industries.		

		1
		Improving accuracy in various measurements;
	CO1	understanding the nature of the forces keeping the body
		in equilibrium.
		Estimating the acceleration caused by the gravity of earth;
	CO2	Practical study of the concepts of refraction of light at
		curved/plane surface
		Understanding the pressure of the gas as function of its
COURSE	CO3	volume; study of the combined magnetic field of the earth
OUTCOMES		and an artificial magnet to estimate its pole strength;
		Estimating the velocity of sound in air through resonance
		phenomenon.
		Applying Kirch off's laws to evaluate the specific resistance
	CO4	of a wire; Study of exchange of heat from system to
		surrounding by graphical analysis; Conversion of light
		energy to micro currents as potential engineering
		application.

CO-PO MAPPING

СО	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	3	2	2	2	2	1	2
CO2	3		1	1	1	1	1
CO3	3	2			1		
CO4	3	2	2			1	2

CO-PO Mapping Strength

ırse code Common - 109	nmon - No of Course Objectives : 4				No of periods 45
POs	Mapped with CO No	CO perio addressi NO	ds ng PO in Col %	1,2,3	remarks
PO1	CO1,CO2,CO3,CO4	15	33.3 %	2	>40% level 3 (highly addressed)
PO2	CO1,CO3, CO4	8	17.8%	1	25% to 40% level 2
PO3	CO1, CO2, CO4	6	13.3%	1	(moderately addressed)
PO4	CO1, CO2	3	6.7%	1	5% to 25% level 1 (Low addressed)
PO5	CO1,CO2, CO3	5	11.1%	1	< 5% (not addressed)
PO6	CO1, CO2, CO4	3	6.7%	1	(
PO7	CO1, CO2, CO4	5	11.1%	1	

3 = strongly mapped, 2 = moderately mapped, 1 = slightly mapped

Note: The gaps in CO and PO mapping will be achieved by one or more appropriate activities from the following.

(i) Seminars (ii) Viva-voce (iii) Assignments

(iv) Quiz competitions (v) Industrial visits (vi) Tech fest (vii) Mini project

(viii) Group discussions (ix) Virtual labs (x) Library visit for e-books

ENGINEERING PHYSICS LAB

Subject Title : Engineering Physics Lab

Subject Code : Common-109

Periods per week : 03 Total periods per year : 45

TIMESCHEDULE

S.No	List of experiments	No.of Periods
1.	Vernier calipers	03
2.	Micrometer (Screw gauge)	03

3.	Verification of Lami's theorem using concurrent forces	03
4.	Determination of 'g' using simple pendulum	03
5.	Focal length and focal power of convex lens	03
6.	Refractive index of solid using travelling microscope	03
7.	Verification of Boyle's law using Quill tube	03
8	Determination of pole strength of the bar magnet through magnetic field lines	03
9	Resonance apparatus – Determination of velocity of sound in air	03
	Experiments for demonstration	
10	Meter bridge – Determination of resistance and specific resistance of a wire	03
11	Verification of Newton's law of cooling	03
12	Photo electric cell – Study of its characteristics	03
	Revision	06
	Test	03
	Total:	45

Learning Outcomes

Upon completion of the course the student shall be able to

- 1.0 Practice with Vernier calipers to determine the volumes of cylinder and sphere.
- 2.0 Practice with Screw gauge to determine thickness of a glass plate and cross sectional area of a wire.
- 3.0 Verify the Lami's theorem using concurrent forces.
- 4.0 Determine the value of acceleration due to gravity (g) using Simple Pendulum. To verify the result from I-T² graph.
- 5.0 Calculate the Focal length and focal power of convex lens using distant object method and U-V method. To verify the result from U-V graph and 1/U-1/V graph methods.
- 6.0 Determine the refractive index of a solid using travelling microscope
- 7.0 Verify the Boyle's law using Quill tube. To draw a graph between P and 1/l.
- 8.0 Determination of magnetic pole strength of a bar magnet by drawing magnetic lines of force and locating null points (either N N or N S method)
- 9.0 Determine the velocity of sound in air at room temperature and its value at zero degree Centigrade using resonance apparatus.
- 10.0 Determine the resistance and specific resistance of material of a wire using Meter Bridge
- 11.0 To verify the Newton's law of cooling.
- 12...0 To study the characteristics of photo electric cell.

Course Outcomes

S.No	List of experiments	No.of Periods	COs
1.	Vernier calipers	03	CO1
2.	Micrometer (Screw gauge)		COI
3.	Verification of Lami's theorem using concurrent forces	03	
4.	Determination of g using simple pendulum	03	602
5.	Focal length and power of convex lens	03	CO2
6.	Refractive index of solid using travelling microscope	03	
7.	Verification of Boyle's law using Quill tube	03	602
8	Determination of pole strength of the bar magnet through magnetic field lines		CO3
9	Resonance apparatus – Determination of velocity of sound in air	03	
10	Meter bridge – Determination of resistance and specific resistance of a wire		CO4
11	Verification of Newton's law of cooling 03		
12	Photo electric cell – Study of its characteristics	03	

Competencies and Key competencies to be achieved by the student

Name of the Experiment (Nu	Competencies	Key competencies
1 . Practice on Vernier Calipers (03)	 Find the Least count Fix the specimen in position Read the scales Calculate the physical quantities of given object 	 Read the scales Calculate the requisite physical quantities of given objects Calculating volumes of the cylinder and sphere
2. Practice on Screw gauge(03)	 Find the Least count Fix the specimen in position Read the scales Calculate thickness of glass plate and cross section of wire from radius 	 Read the scales Noting zero error Calculate thickness of given glass plate Calculate cross section of wire from radius

3. Verification of Lami's theorem forces(03)	 Making experimental set up Fix suitable weights Note the positions of threads on drawing sheet Find the angles between the concurrent forces Changing weights appropriately Verify Lami's theorem 	 Measuring angles between the forces Marking the directions forces on a paper Verifying Lami's theorem from the weights and easured angles tween the forces.
4. Simple pendulum(03)	 Fix the simple pendulum to the stand Adjust the length of pendulum Find the time for number of oscillations (say 20) Find the time period Calculate the acceleration due to gravity Draw I-T² graph 	 Find the time for number of oscillations Find the time period Calculate the acceleration due to gravity Verify form I-T² graph
5. Focal length and Focal power of convex lens (03)	 Fix the object distance Find the Image distance Calculate the focal length and power of convex lens Draw u-v and 1/u – 1/v graphs 	 Find focal length from distant object method. Calculate the focal length and power of convex lens Verify result from u-v and 1/u – 1/v graphs
6 Refractive index of solid using traveling microscope(03)	 Find the least count of Vernier on microscope Place the graph paper below microscope Read the scales 	 Reading the scales on Microscope. Fiding real and apparent thickness of the slab Calculate the refractive
7 . Boyle's law verification (03)	 Note the atmospheric pressure Fix the Quill tube to retort stand Find the length of air column Find the pressure of enclosed air Find and compare the calculated values of P x I 	 Fixing Quill tube in various positions on retort stand. Find the length of air column Find the pressure of enclosed air Find the values of Px I Verify Boyle's law.

8. Mapping of magnet lines of force (03)	 Draw magnetic meridian Place the bar magnet in N-N or N-S directions Draw magnetic lines of force Locate the neutral points 	 Draw the pattern of magnetic lines of force Locate the neutral points Calculating pole strength of the bar magnet
9. Velocity of sound in air – Resonance method (03)	 Arrange the resonance apparatus Adjust the reservoir level for booming sound Find the first and second resonanting lengths Calculate velocity of sound . 	 Adjust the reservoir level Find the first and second resonanting lengths Calculate velocity of sound at room temperature and at 0° C
10. Meter bridge(03)	 Make the circuit connections Find the balancing length Calculate unknown resistance Find the radius of wire Calculate the specific resistance 	 Making connections as per circuit diagram. Find the balancing length Calculate unknown resistance Calculate the specific resistance of the given wire
11. Verification of Newton's law of Cooling (03)	 Heating liquid in a beaker using a heating element Inserting thermometer in liquid in calorimeter Stirring liquid Measuring temperatures as a function of time using thermometer Plotting a cooling curve 	 Measuring temperature of a liquid as function of time. Plotting a cooling curve. Verifying Newton's law of cooling.
12. Photo electric cell – Study of its Characteristics (03)	 Experimental set up and making connections Veryfying intensity of light by varying distances between light source and photocell. Measuring Voltage and current values. 	 Making connections for experimental set up. Varying distances appropriately Measuring Voltage and current values. Study of V- I Characteristics form graph.

Scheme of Valuation for End Practical Examination:

Activity	Marks
For writing, Apparatus, formulae, least count (if applicable)	5
Procedure & precautions	5
Drawing Tables	3
Readings, calculations, graph (if applicable), reporting the findings	12
Viva-voce	5
Total marks	30

Course Code	Course title	No of periods/week	Total no of periods	Marks for FA	Marks for SA
CCN-110	Chemistry Laboratory	03	45	40	60

CO1	Operate and practice volumetric apparatus and preparation of
	standard solution.
CO2	Evaluate and judge the neutralization point in acid base titration.
CO3	Evaluate the end point of reduction and oxidation reaction.
CO4	Judge the stable end point of complex formation, stable
CO4	precipitation.
CO5	Judge operate and demonstrate and perform precise operations
203	with instrument for investigation of water pollution parameters.

urse code Common- 110	Chemi No	No. of periods: 45			
POs	ped with CO No.	O periods addressing PO in Col. No. 1	%	evel 1,2,3	Remarks
PO1	O1,CO2,CO3, CO4,CO5	12	.66	2	(highly addressed)
PO2	O1,CO2,CO3, CO4,CO5	9		1	40%
PO3					(moderately addressed)
PO4	O1,CO2,CO3, CO4,CO5	12	.66	2	
PO5	CO2,CO3, CO4,CO5	12	.66	2	(Low addressed)
PO6	-	-	-	-	ot addressed)
PO7	-	-	-	-	

COs-POs mapping strength (as per given table)

со	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	2	1	-	2	-	-	-	-	-	-
CO2	2	1	-	2	2	-	-	-	-	-
CO3	2	1	-	2	2	-	-	-	-	-
CO4	2	1	-	2	2	-	-	-	-	-
CO5	2	1	-	2	2	-	-	-	-	-

3=strongly mapped 2= moderately mapped 1= slightly mapped

Note: The gaps in CO and PO mapping will be achieved by one or more appropriate activities from the following: i) Seminars ii) Tutorials iii) Guest Lectures iv) Assignments v) Quiz competitions vi) Industrial visit vii) Tech Fest viii) Mini project ix) Group discussions x) Virtual classes xi) Library visit for e-books

TIME SCHEDULE

S.No	Name of the Experiment	No. of Periods	Mapped with COs
1.	a) Recognition of chemical substances and solutions used in the laboratory by senses.b) Familiarization of methods for Volumetric analysis.	03	CO1
2.	Preparation of Std.Na ₂ CO ₃ solution and making solutions of different dilutions	03	CO1
3.	Estimation of HCl solution using Std.Na ₂ CO ₃ solution.	03	CO2
4.	Estimation of NaOH using Std. HCl solution.	03	CO2
5.	Determination of acidity of water sample.	03	CO2
6.	Determination of alkalinity of water sample.	03	CO2

7.	Estimation of Mohr's Salt usingStd.KMnO _{4.} Solution.	03	CO3
8.	Estimation of Ferrous ion by using Std. K ₂ Cr ₂ O ₇ solution.	03	CO3
9.	Determination of total hardness of water sample using Std. EDTA solution.	03	CO4
10.	Estimation of Chlorides present in water sample by using Std. AgNO ₃ solution.	03	CO4
11.	Estimation of Dissolved Oxygen(D.O) in water sample by using Std. hypo solution.	03	CO5
12.	Determination of pH using pH meter	03	CO5
13.	Determination of conductivity of water and adjusting ionic strength required	03	CO5
14.	Determination of turbidity of water.	03	CO5
15.	Estimation of total solids present in water sample.	03	CO5
	Total:	45	

Objectives:

Upon completion of the course the student shall be able to

- 1.0 To identify the chemical compounds and solutions by senses.
- Practice volumetric measurements (using pipettes, measuring jars, volumetric flask, burettes) and gravimetric measurements (using different types of balances), making dilutions, etc.
 - 2.0 Practice making standard solutions with pre weighed salts and to make solutions of desired dilutions using appropriate techniques.
 - 3.0 Conduct titrations adopting standard procedures and using Std. Na₂CO₃ solution for estimation of HCI
 - 4.0 Conduct titrations adopting standard procedures and using Std. HCl solution for estimation of NaOH.
- 5.0 Conduct titrations adopting standard procedures to determine the acidity of given samples of water (One ground water and one surface / tap water, and rain water if available).
- 6.0 Conduct titrations adopting standard procedures to determine the alkalinity of given samples of water (One ground water and one surface / tap water).
 - 7.0 Conduct titrations adopting standard procedures and using Std.KMnO₄ solution for estimation of Mohr'sSalt.
 - 8.0 Conduct titrations adopting standard procedures and using Std.K₂Cr₂O₇ solution for estimation of Ferrous ion.
 - 9.0 Conduct titrations adopting standard procedures to determine the total hardness of given samples of water (One ground water and one surface / tap water) using Std. EDTA solution.
 - 10. Conduct titrations adopting standard procedures to determine the chlorides present in the given samples of water (One ground water and one surface / tap water) using Std. AgNO₃ solution.
 - 11. Conduct the test using titrimetric / electrometric method to determine. Dissolved Oxygen (D.O) in the given water samples (One sample from closed container and one from open container / tap water) by Std. Hypo solution.
 - 12. Conduct the test on given samples of water / solutions (like soft drinks, sewage, etc.) to determine their pH using standard pH meter.
 - 13. Conduct the test on given samples of water / solutions.
 - a) to determine conductivity.
 - b) to adjust the ionic strength of the sample to the desired value.
 - 14. Conduct the test on given samples of solutions (coloured and non-coloured) to determine their turbidity in NTU.
 - 15. Determine the total solids present in given samples of water (One ground water and one surface / tap water).

Competencies and Key competencies to be achieved by the student

Name of the Experiment (No of Periods)	Competencies	Key competencies
Recognition of chemical substances and solutions. Familiarization of methods for Volumetric analysis. (03)	-	
Preparation of Std.Na ₂ CO ₃ solution and making solutions of different dilutions. (03)	 Weighing the salt to the accuracy of .01 mg. Measuring the water with volumetric flask, measuring jar, volumetric pipette and graduated pipette. Making appropriate dilutions. 	 Weighing the salt to the accuracy of 0.01 mg. Measuring the water with volumetric flask, measuring jar, volumetric pipette and graduated pipette. Making appropriate dilutions.
Estimation of HCl solution using Std. Na ₂ CO ₃ solution. (03) Estimation of NaOH using Std. HCl solution. (03) Determination of acidity of water sample. (03)	 Cleaning the glassware and rinsing with appropriate solutions. Making standard solutions. Measuring accurately the 	
Determination of alkalinity of water sample. (03) Estimation of Mohr's Salt usingStd.KMnO ₄ solution. (03) Estimation of Ferrous ion by using	 standard solutions and titrants. Filling the burette with titrant. Fixing the burette to the stand. Effectively Controlling the flow of the titrant. Identifying the end point. Making accurate observations. Calculating the results. 	 Making standard solutions. Measuring accurately the standard solutions and titrants. Effectively Controlling the flow of the titrant.
Std. K ₂ Cr ₂ O ₇ . solution (03) Determination of total hardness of water using Std. EDTA solution. (03) Estimation of Chlorides present in water sample using Std. AgNO ₃ solution (03) Estimation of Dissolved		 Identifying the end point. Making accurate observations.
Oxygen(D.O) in water sample (By titration method) (03) Determination of pH using pH meter. (03)	Familiarize with instrument.Choose appropriate 'Mode' /	Prepare standard solutions / buffers, etc.

Determination of conductivity of water and adjusting ionic strength to required level. (03)	'Unit'. Prepare standard solutions / buffers, etc. Standardize the instrument	 Standardize the instrument with appropriate standard solutions.
Determination of turbidity of water. (03)	with appropriate standard solutions. Plot the standard curve. Make measurements accurately. Follow Safety precautions.	 Plot the standard curve. Make measurements accurately.
Estimation of total solids present in water sample. (03)	 Measuring the accurate volume and weight of sample. Filtering and air drying without losing any filtrate. Accurately weighing the filter paper, crucible and filtrate. 	 Measuring the accurate volume and weight of sample. Filtering and air drying without losing any filtrate. Accurately weighing the filter paper, crucible and

SCHEME OF VALUATION

A) Writing Chemicals, apparatus, principle and procedure.
 B) Demonstrated competencies.
 Making standard solutions.
 Measuring accurately the standard solutions and titrants.
 Effectively controlling the flow of the titrant.
 Identifying the end point.

Making accurate observations.

C) Viva-voce. 5M

Total 30M

Course code	Course Title	No. of Periods/Weeks	Total No. of periods	Marks for FA	Marks for SA
CCN-111	Computer Fundamentals Lab	4	120	40	60

Time schedule:

S.No.	Chapter/Unit Title	No. of sessions each of 3 periods	No. of Periods	CO's Mapped
		duration		
1.	Computer hardware Basics	2	8	CO1
2.	Windows Operating System	2	8	CO1
3.	MS Word	8	32	CO2
4.	MS Excel	7	28	CO3
5.	MS PowerPoint	5	20	CO4
6	Adobe Photoshop	6	24	CO5
	Total periods	30	120	

Course	i)To know Hardware Basics
Objectives	ii) To familiarize operating systems
	iii) To use MS Office effectively to enable to students use these skills in future courses
	iv) To use Adobe Photoshop in image editing.

At the end of the course students will be able to

Course	CO1	CCN-111.1	Identify hardware and software components
Outcomes			
	CO2	CCN-111.2	Prepare documents with given specifications using word
			processing software
	CO3	CCN-111.3	Use Spread sheet software to make calculation and to draw
			various graphs / charts.
	CO4	CCN-111.4	Use Power point software to develop effective presentation
			for a given theme or topic.
	CO5	CCN-111.5	Edit digital or scanned images using Photoshop

Learning Outcomes:

I. Computer Hardware Basics

- 1. a)To Familiarize with Computer system and hardware connections
 - b.To Start and Shut down Computer correctly
 - c) To check the software details of the computer
- 2. To check the hardware present in your computer

II. Windows's operating system

- 3. To Explore Windows Desktop
- 4. Working with Files and Folders
- 5. Windows Accessories: Calculator Notepad WordPad MS Paint

III. Practice with MS-WORD

- 6. To familiarize with Ribbon layout of MS Word

 Home Insert- Page layout References Review- View.
- 7. To practice Word Processing Basics
- 8. To practice Formatting techniques
- 9. To insert a table of required number of rows and columns
- 10. To insert Objects, Clipart and Hyperlinks
- 11. To use Mail Merge feature of MS Word
- 12. To use Equations and symbols features

IV. Practice with MS-EXCEL

- 13. To familiarize with MS-EXCEL layout
- 14. To access and enter data in the cells
- 15. To edit a spread sheet- Copy, Cut, Paste, and selecting Cells
- 16. To use built in functions and Formatting Data
- 17. To create Excel Functions, Filling Cells
- 18. To enter a Formula for automatic calculations
- 19. To sort and filter data in table.
- 20. To present data using Excel Graphs and Charts.
- 21. To develop lab reports of respective discipline.
- 22. To format a Worksheet in Excel, Page Setup and Print

V. Practice with MS-POWERPOINT

- 23. To familiarize with Ribbon layout features of PowerPoint 2007.
- 24. To create a simple PowerPoint Presentation
- 25. To set up a Master Slide in PowerPoint
- 26. To insert Text and Objects
- 27. To insert a Flow Charts
- 28. To insert a Table
- 29. To insert a Charts/Graphs
- 30. To insert video and audio
- 31. To practice Animating text and objects
- 32. To Review presentation

VI. Practice with Adobe Photoshop

- 33. To familiarize withstandard toolbox
- 34. To edit a photograph.
- 35. To insert Borders around photograph.
- 36. To change Background of a Photograph.
- 37. To change colors of Photograph.
- 38. To prepare a cover page for the book in your subject area.
- 39. To adjust the brightness and contrast of the picture so that it gives an elegant look.
- 40. To type a word and apply the shadow emboss effects.

Key competencies:

Expt. No	Name of Experiment	Competencies	Key competencies
1 (a).	To familiarize with Computer system and hardware connections	 a. Identify the parts of a computer system: i). CPU ii). Mother Board iii) Monitor iv) CD/DVD Drive v) Power Switch vi) Start Button vii) Reset Button b. Identify and connect various peripherals c. Identify and connect the cables used with computer system d. Identify various ports on CPU and connect Keyboard & Mouse 	Connect cables to external hardware and operate the computer
1 (b).	To Start and Shut down Computer correctly	a. Log in using the passwordb. Start and shut down the computerc. Use Mouse and Key Board	a. Login and logout as per the standard procedure b. Operate mouse &Key Board
1 (c).	To Explore Windows Desktop	a. Familiarize with Start Menu, Taskbar, Icons and Shortcuts	a. Access application programs using Start menu

		b. Access application programs using Start menu, Task managerc. Use Help support	b. Use taskbar and Task manager
2.	To check the software details of the computer	a. Find the details of Operating System being used b. Find the details of Service Pack installed	Access the properties of computer and find the details
3.	To check the hardware present in your computer	 a. Find the CPU name and clock speed b. Find the details of RAM and Hard disk present c. Access Device manager using Control Panel and check the status of devices like mouse and key board d. Use My Computer to check the details of Hard drives and partitions e. Use the Taskbar 	a. Access device manager and find the details b. Type /Navigate the correct path and Select icon related to the details required
4.	Working with Files and Folders	a. Create folders and organizing files in different foldersb. Use copy / paste move commands to organize files and folders	a. Create files and folders Rename, arrange and search for the required folder/file
		 c. Arrange icons – name wise, size, type, Modified d. Search a file or folder and find its path e. Create shortcut to files and folders (in other folders) on Desktop f. Familiarize with the use of My Documents g. Familiarize with the use of Recycle Bin 	b. Restore deleted files from Recycle bin
5.	To use Windows Accessories: Calculator – Notepad – WordPad – MS Paint	 a. Familiarize with the use of Calculator b. Access Calculator using Run command c. Create Text Files using Notepad and WordPad and observe the difference in file size d. Use MS paint and create .jpeg, .bmp files using MS Paint 	 a. Use windows accessories and select correct text editor based on the situation. b. Use MS pain to create /Edit pictures and save in the required format.
6.	To familiarize with Ribbon layout of MS word. –	a. Create/Open a document	a. Create a Document and name

	Home – Insert- page layout- References- Review-View	 b. Use Save and Save as features c. Work on two Word documents simultaneously d. Choose correct Paper size and Printing options 	appropriately and save b. Set paper size and print options
7.	To practice Word Processing Basics	 a. Typing text b. Keyboard usage c. Use mouse (Left click / Right click / Scroll) d. Use Keyboard shortcuts e. Use Find and Replace features in MS- word f. Use Undo and Redo Features g. Use spell check to correct Spellings and Grammar 	 a. Use key board and mouse to enter/edit text in the document. b. Use shortcuts c. Use spell check/ Grammar features for autocorrections.
8.	To practice Formatting techniques	 a. Formatting Text b. Formatting Paragraphs c. Setting Tabs d. Formatting Pages e. The Styles of Word f. Insert bullets and numbers g. Themes and Templates h. Insert page numbers, header and footer 	 a. Format Text and paragraphs and use various text styles. b. Use bullets and numbers to create lists c. Use Templates / Themes d. Insert page numbers date, headers and footers
9.	To insert a table of required number of rows and columns	 a. Edit the table by adding the fields – Deleting rows and columns –inserting sub table –marking borders. Merging and splitting of cells in a Table b. Changing the background colour of the table c. Use table design tools d. Use auto fit – fixed row/ column height/length – Even distribution of rows / columns features e. Convert Text to table and Table to Text f. Use Sort feature of the Table to arrange data in ascending/descending order 	a. Insert table in the word document and edit b. Use sort option for arranging data.

10.	To Insert objects, clipart and Hyperlinks	 a. Create a 2-page document. &Insert hyperlinks and t Bookmarks. b. Create an organization chart c. Practice examples like preparing an Examination schedule notice with a hyperlink to Exam schedule table. 	a. Insert hyperlinks &Bookmarksb. Create organization charts/flow charts
11.	To Use Mail merge feature of MS Word	 a. Use mail merge to prepare individually addressed letters b. Use mail merge to print envelopes. 	Use Mail merge feature
12.	To use Equations and symbols features.	a. Explore various symbols available in MS Word b. Insert a symbol in the text c. Insert mathematical equations in the document	Enter Mathematical symbols and Equations in the word document
13.	To Practice with MS- EXCEL	a. Open /create an MS Excel spread sheet and familiarize with MS Excel 2007 layout like MS office Button b. Use Quick Access Toolbar-Title Bar- Ribbon-Worksheets- Formula Bar-Status Bar	a. Familiarize with excel layout and use b. Use various features available in toolbar
14.	To access and Enter data in the cells	 a. Move Around a Worksheets- Quick access -Select Cells b. Enter Data-Edit a Cell-Wrap Text-Delete a Cell Entry-Save a File-Close Excel 	a. Access and select the required cells by various addressing methods b. Enter data and edit
15.	To edit spread sheet Copy, Cut, Paste, and selecting cells	 a. Insert and Delete Columns and Rows-Create Borders-Merge and Center b. Add Background Color-Change the Font, Font Size, and Font Color c. Format text with Bold, Italicize, and Underline-Work with Long Text-Change a Column's Width 	Format the excel sheet
16.	To use built in functions and Formatting Data	 a. Perform Mathematical Calculations verify -AutoSum b. Perform Automatic Calculations-Align Cell Entries 	Use built in functions in Excel

17.	To enter a Formula for automatic calculations	 a. Enter formula b. Use Cell References in Formulae c. Use Automatic updating function of Excel Formulae d. Use Mathematical Operators in Formulae e. Use Excel Error Message and Help 	Enter formula for automatic calculations
18.	To Create Excel Functions, Filling Cells	a. Use Reference Operators b. Work with sum, Sum if, Count and Count If Functions c. Fill Cells Automatically	a. Create Excel sheets involving cross references and equations b. Use the advanced functions for conditional calculations
19.	To sort and filter data in table	a. Sort data in multiple columns b. Sort data in a row c. Sort data using Custom order d. Filter data in work sheet	a. Refine the data in a worksheet and keep it organized b. Narrow a worksheet by selecting specific choice
20.	To Practice Excel Graphs and Charts	a. Produce an Excel Pie Chart b. Produce c. Excel Column Chart	a. Use data in Excel sheet to Create technical charts and graphs Produce Excel Line Graph b. Produce a Pictograph in Excel
21.	To develop lab reports of respective discipline	Create Lab reports using MS Word and Excel	a. Insert Practical subject name in Header and page numbers in Footer
22.	To format a Worksheet in Excel, page setup and print	 a. Shade alternate rows of data b. Add currency and percentage symbols c. Change height of a row and width of a column d. Change data alignment e. Insert Headers and Footers f. Set Print Options and Print 	a. Format Excel sheet b. Insert headers &footers and print
23.	To familiarize with Ribbon layout &features of PowerPoint 2007.	Use various options in PowerPoint a. Home b. Insert c. Design d. Animation e. Slideshow f. View g. Review	Access required options in the tool bar

24.	To create a simple	a. Insert a New Slide into	a Create simple
	To create a simple PowerPoint Presentation	PowerPoint b. Change the Title of a PowerPoint Slide c. PowerPoint Bullets d. Add an Image to a PowerPoint Slide e. Add a Textbox to a PowerPoint slide	a. Create simple PowerPoint presentation with photographs/ClipArt and text boxes b. Use bullets option
25.	To Set up a Master Slide in PowerPoint and add notes	 a. Create a PowerPoint Design Template b. Modify themes c. Switch between Slide master view and Normal view d. Format a Design Template Master Slide e. Add a Title Slide to a Design Template f. The Slide Show Footer in PowerPoint f. Add Notes to a PowerPoint Presentation 	a. Setup Master slide and format b. Add notes
26.	To Insert Text and Objects	 a. Insert Text and objects b. Set Indents and line spacing c. Insert pictures/ clipart d. Format pictures e. Insert shapes and word art f. Use 3d features g. Arrange objects 	Insert Text and Objects Use 3d features
27.	To insert a Flow Chart / Organizational Charts	a. Create a Flow Chart in PowerPointb. Group and Ungroup Shapesc. Use smart art	Create organizational charts and flow charts using smart art
28.	To insert a Table	a. PowerPoint Tablesb. Format the Table Datac. Change Table Backgroundd. Format Series Legend	Insert tables and format
29.	To insert a Charts/Graphs	 a. Create 3D Bar Graphs in PowerPoint b. Work with the PowerPoint Datasheet c. Format a PowerPoint Chart Axis d. Format the Bars of a Chart e. Create PowerPoint Pie Charts f. Use Pie Chart Segments g. Create 2D Bar Charts in PowerPoint h. Format the 2D Chart e. Format a Chart Background 	Create charts and Bar graphs, Pie Charts and format.

30	To Insert audio & video	a Insert sounds in the clide	a Insert Sounds and
30.	To Insert audio & video, Hyperlinks in a slide Add narration to the slide	 a. Insert sounds in the slide and hide the audio symbol b. Adjust the volume in the settings c. Insert video file in the format supported by PowerPoint in a slide d. Use automatic and on click options 	 a. Insert Sounds and Video in appropriate format. b. Add narration to the slide c. Use hyperlinks to switch to different slides and files
		e. Add narration to the slide f. Insert Hyperlinks	
31.	To Practice Animation effects	a. Apply transitions to slides b. To explore and practice special animation effects like Entrance, Emphasis, Motion Paths &Exit	Add animation effects
32.	Reviewing presentation	a. Checking spelling and grammar b. Previewing presentation c. Set up slide show d. Set up resolution e. Exercise with Rehearse Timings feature in PowerPoint f. Use PowerPoint Pen Tool during slide show g. Saving h. Printing presentation (a) Slides (b) Hand-out	 a. Use Spell check and Grammar feature b. Setup slide show c. Add timing to the slides d. Setup automatic slide show
33	To familiarize withstandard toolbox	a. Open Adobe Photoshop b. Use various tools such as i. The Layer Tool ii. The Color & Swatches Tool iii. Custom Fonts & The Text Tool iv. Brush Tool v. The Select Tool vi. The Move Tool vii. The Zoom Tool viii. The Eraser ix. The Crop Tool x. The Fill Tool	photograph and save it in Photoshop
34	To edit a photograph	 a. Use the Crop tool b. Trim edges c. Change the shape and size of a photo d. Remove the part of photograph including graphics and text 	to edit image by using corresponding tools.

	T		
35	To insert Borders around photograph	 Start with a single background layer Bring the background forward Enlarge the canvas Create a border color Send the border color to the back Experiment with different colors 	create a border or frame around an image to add visual interest to a photo
36	To change Background of a Photograph	 a. open the foreground and background image b. Use different selection tools to paint over the image c. Copy background image and paste it on the foreground. d. Resize and/or drag the background image to reposition. e. In the Layers panel, drag the background layer below the foreground image layer. 	swap background elements using the Select and Mask tool and layers.
37	To change colors of Photograph	a. Change colors using: Color Replacement tool ii) Hue/Saturation adjustment layer tool	Able to control color saturation
38	To prepare a cover page for the book in subject area	 a. open a file with height 500 and width 400 for the cover page. b. apply two different colors to work area by dividing it into two parts using Rectangle tool. c. Copy any picture and place it on work area → resize it using free transform tool. d. Type text and apply color and style e. Apply effects using blended options 	Able to prepare cover page for the book
39	To adjust the brightness and contrast of picture to give an elegant look	 a. open a file b. Go to image → adjustments → Brightness/Contrast. f. adjust the brightness and contrast g. save the image 	Able to control brightness / contrast.

40	To type a word and apply	a. open a file	Able to apply shadow
	the shadow emboss	b. Select the text tool and type	emboss effects
	effects	text.	
		c. Select the typed text go to	
		layer→ layer style→ blended	
		option→ drop shadow,	
		inner shadow, bevel and	
		emboss→ contour→ satin→	
		gradient overlay	
		d. Save the image.	