Transitioning into an endemic phase in Singapore

Group A+PLZ!

ZHU BANGYUAN - Logistic Regression Model
LI JINGYUAN - Data Preparation
YANG PEISHI - Background & Exploration
YU LINYAN - Visualisation

TABLE OF CONTENTS

01. INTRODUCTION 02. PROGRAMME

LOGISTIC

O3. REGRESSION

MODEL

ERRORO4. ANALYSIS &CONCLUSION

Background

- Record high daily covid cases
- Strain on limited healthcare system
- Rising number of deaths
- Urgent and prolonged threat to Singapore's health and well-being

Problem

How will Singapore's Covid-19 cases trend in the near future?

Solution

Daily Confirmed Cases

New Recoveries

Daily Deaths

Predict number of Covid-19 cases in the near future

Objective

Aid in the planning and development of measures during the Covid-19 endemic

Data Set

Data Set used: Covid-19 Singapore Statistics

Data Source: data.world

To begin the analysis, we extracted our data set from https://data.world/hxchua/covid-19-singapore/workspace/file?filename=Covid-19+SG.xlsx and imported the data into Excel as Covid-19 SG.csv.

Firstly, a read_csv command is performed in Jupyter to breifly look at the dataset

Out[2]:

	Date	DailyConfirmed	NewRecoveries	False Positives Found	Daily Discharged	Passed but not due to COVID	Cumulative Discharged		Still Hospitalised	DailyDeaths	Phase	Cumulative Vaccine Doses	Cumulative Individuals Vaccinated
0	2020-	1	0	NaN	0	0	0	0	1	0	NaN	NaN	NaN
Ĭ	01-23		ŭ	11011	Ů	Ū	ŭ	Ů	•	0	14014	14014	110.11
1	2020- 01-24	2	0	NaN	0	0	0	0	3	0	NaN	NaN	NaN
2	2020- 01-25	1	0	NaN	0	0	0	0	4	0	NaN	NaN	NaN
3	2020- 01-26	0	0	NaN	0	0	0	0	4	0	NaN	NaN	NaN
4	2020- 01-27	1	0	NaN	0	0	0	0	5	0	NaN	NaN	NaN

Λ

BASIC

covidData.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 647 entries, 0 to 646 Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	Date	647 non-null	object
1	DailyConfirmed	647 non-null	int64
2	NewRecoveries	647 non-null	int64
3	False Positives Found	538 non-null	float64
4	Daily Discharged	647 non-null	int64
5	Passed but not due to COVID	647 non-null	int64
6	Cumulative Discharged	647 non-null	int64
7	Discharged to Isolation	647 non-null	int64
8	Still Hospitalised	647 non-null	int64
9	DailyDeaths	647 non-null	int64
10	Tested positive demise	647 non-null	int64
11	Daily Imported	647 non-null	int64
12	Daily Local transmission	647 non-null	int64
13	Local cases residing in dorms MOH report	581 non-null	float64

covidData.shape

(647, 33)

covidData.dtypes

Date	object
DailyConfirmed	int64
NewRecoveries	int64
False Positives Found	float64
Daily Discharged	int64
Passed but not due to COVID	int64
Cumulative Discharged	int64
Discharged to Isolation	int64
Still Hospitalised	int64
DailyDeaths	int64
Tested positive demise	int64
Daily Imported	int64
Daily Local transmission	int64
Local cases residing in dorms MOH report	float64
Local cases not residing in doms MOH report	float64
Intensive Care Unit (ICU)	int64
General Wards MOH report	float64
In Isolation MOH report	float64
Total Completed Isolation MOH report	float64

covidData.describe()

	DailyConfirmed	NewRecoveries	False Positives Found	Daily Discharged	Passed but not due to COVID	Cumulative Discharged	Discharged to Isolation	Still Hospitalised	DailyDeaths
count	647.000000	647.000000	538.000000	647.000000	647.000000	647.000000	647.000000	647.000000	647.000000
mean	301.840804	251.698609	0.148699	251.735703	0.009274	49004.109737	3408.401855	310.046368	0.610510
std	737.282571	631.793962	2.323110	631.760759	0.095926	28362.766902	6545.023173	527.849517	2.309574
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	-16.000000	0.000000
25%	12.000000	11.000000	0.000000	11.000000	0.000000	39619.000000	90.500000	13.000000	0.000000
50%	31.000000	25.000000	0.000000	25.000000	0.000000	58214.000000	248.000000	83.000000	0.000000
75%	191.000000	175.500000	0.000000	175.500000	0.000000	61281.500000	3552.000000	349.500000	0.000000
max	5324.000000	4348.000000	41.000000	4348.000000	1.000000	162873.000000	31166.000000	4229.000000	18.000000
8 rows	× 29 columns								

```
def covidDataNum(covidData):
    covidDataNum = pd.DataFrame(covidData["Date"]])
    covidDataNum["DailyConfirmed"] = covidData["DailyConfirmed"]
    covidDataNum["NewRecoveries"] = covidData["NewRecoveries"]
    covidDataNum["DailyDeaths"] = covidData["DailyDeaths"]
    for col in ["DailyConfirmed", "NewRecoveries", "DailyDeaths"]:
        covidDataNum.loc[:, col] = covidDataNum[col].astype(float)
    return covidDataNum
```

covidDataNum = covidDataNum(covidData)
covidDataNum

	Date	DailyConfirmed	NewRecoveries	DailyDeaths
0	2020-01-23	1.0	0.0	0.0
1	2020-01-24	2.0	0.0	0.0
2	2020-01-25	1.0	0.0	0.0
3	2020-01-26	0.0	0.0	0.0
4	2020-01-27	1.0	0.0	0.0
				·
642	2021-10-26	3277.0	2856.0	10.0
643	2021-10-27	5324.0	3172.0	10.0
644	2021-10-28	3432.0	4348.0	15.0
645	2021-10-29	4248.0	3011.0	16.0
646	2021-10-30	3112.0	3912.0	14.0

647 rows x 4 columns

DAILY CONFIRMED

NEW RECOVERIES

DAILY DEATHS

CUMULATIVE DATA

```
|: covidData DailyConfirmed = pd.DataFrame(covidData["DailyConfirmed"])
  covidData_NewRecoveries = pd.DataFrame(covidData["NewRecoveries"])
  covidData DailyDeaths = pd.DataFrame(covidData["DailyDeaths"])
  covidData_CumConfirmed = pd.DataFrame(covidData_DailyConfirmed["DailyConfirmed"])
  covidData CumConfirmed["CumConfirmed"] = covidData DailyConfirmed["DailyConfirmed"].cumsum()
  covidData_CumRecoveries = pd.DataFrame(covidData_NewRecoveries["NewRecoveries"])
  covidData CumRecoveries["CumRecoveries"] = covidData NewRecoveries["NewRecoveries"].cumsum()
  covidData_CumDeaths = pd.DataFrame(covidData_DailyDeaths["DailyDeaths"])
  covidData CumDeaths["CumDeaths"] = covidData DailyDeaths["DailyDeaths"].cumsum()
  def covidData Cum(covidData):
      covidData Cum = pd.DataFrame(covidData[["Date"]])
      covidData Cum["CumConfirmed"] = covidData CumConfirmed["CumConfirmed"]
      covidData_Cum["CumRecoveries"] = covidData_CumRecoveries["CumRecoveries"]
      covidData Cum["CumDeaths"] = covidData CumDeaths["CumDeaths"]
      for col in ["CumConfirmed", "CumRecoveries", "CumDeaths"]:
          covidData_Cum.loc[:, col] = covidData_Cum[col].astype(float)
      return covidData Cum
  covidData Cum = covidData Cum(covidData)
  covidData Cum
```

	Date	CumConfirmed	CumRecoveries	CumDeaths
0	2020-01-23	1.0	0.0	0.0
1	2020-01-24	3.0	0.0	0.0
2	2020-01-25	4.0	0.0	0.0
3	2020-01-26	4.0	0.0	0.0
4	2020-01-27	5.0	0.0	0.0
•••				
642	2021-10-26	179175.0	148406.0	340.0
643	2021-10-27	184499.0	151578.0	350.0
644	2021-10-28	187931.0	155926.0	365.0
645	2021-10-29	192179.0	158937.0	381.0
646	2021-10-30	195291.0	162849.0	395.0
647 r	ows × 4 colu	umns		

 \triangle

CUMULATIVE

```
fig = plt.figure()
plt.suptitle("COVID-19 Statistics for Singapore (Starting 2020-01-23) Part2")
sb.lineplot(data=covidData_Cum)
plt.show()
```

DAILY

```
fig = plt.figure()
plt.suptitle("COVID-19 Statistics for Singapore (Starting 2020-01-23) Part1")
sb.lineplot(data=covidDataNum)
plt.show()
```


DATA PREPARATION

d0 = datetime(2021, 6, 14)
d1 = datetime(2021, 10, 30)
delta = d1 - d0
print(delta.days+1)

139

139 rows × 4 columns

covidData_Cum_part = covidData_Cum.tail(139)
covidData_Cum_part

	Date	CumConfirmed	CumRecoveries	CumDeaths
508	2021-06-14	62381.0	61892.0	34.0
509	2021-06-15	62395.0	61909.0	34.0
510	2021-06-16	62419.0	61929.0	34.0
511	2021-06-17	62446.0	61958.0	34.0
512	2021-06-18	62462.0	61985.0	34.0
		••••		
642	2021-10-26	179175.0	148406.0	340.0
643	2021-10-27	184499.0	151578.0	350.0
644	2021-10-28	187931.0	155926.0	365.0
645	2021-10-29	192179.0	158937.0	381.0
646	2021-10-30	195291.0	162849.0	395.0

covidDataNum_part = covidDataNum.tail(139)
covidDataNum_part

	Date	DailyConfirmed	NewRecoveries	DailyDeaths
508	2021-06-14	25.0	25.0	0.0
509	2021-06-15	14.0	17.0	0.0
510	2021-06-16	24.0	20.0	0.0
511	2021-06-17	27.0	29.0	0.0
512	2021-06-18	16.0	27.0	0.0
642	2021-10-26	3277.0	2856.0	10.0
643	2021-10-27	5324.0	3172.0	10.0
644	2021-10-28	3432.0	4348.0	15.0
645	2021-10-29	4248.0	3011.0	16.0
646	2021-10-30	3112.0	3912.0	14.0

139 rows × 4 columns

Λ

DATA PREPARATION

```
split_rate = 0.75
demarcation_point = round((646 - 508) * 0.75)
initial cases = 62381.0
covid_cumconfirmed = covidData_Cum_part["CumConfirmed"]
train cases number = covid cumconfirmed[0:demarcation point]
train_day_time = len(train_cases_number)
train_xdata = np.array([ i for i in range(train_day_time) ])
train ydata = train cases number
test cases number = covid cumconfirmed[demarcation point:138]
test_day_time = len(test_cases_number)
test_xdata = np.array([ i+104 for i in range(test_day_time) ])
test_ydata = test_cases_number
plt.scatter(train xdata, train ydata, label='data',s=5)
plt.scatter(test_xdata, test_ydata, label='data',s=5)
```

LOGISTIC REGRESSION MODEL

```
plt.scatter(train_xdata, train_ydata, label='data')
plt.scatter(test_xdata, test_ydata, label='data')

x = np.linspace(0, len(train_xdata)+testdays+21)
y = func(x, *popt)

plt.plot(x, y + initial_cases, color='r', label='fit')
plt.xlabel('Day')
plt.ylabel('Number of Cases')
plt.title('Prediction')
plt.show()
```

```
plt.scatter(train_xdata, train_ydata, label='data')
plt.scatter(test_xdata, test_ydata, label='data')
testdays = 139 - demarcation_point

x = np.linspace(0, len(train_xdata)+testdays)
y = func(x, *popt)

plt.plot(x, y + initial_cases, color='r', label='fit')
plt.xlabel('Day')
plt.ylabel('Day')
plt.ylabel('Number of Cases')
plt.title('Simulation')
plt.show()
```


Δ

03. LOGISTIC REGRESSION MODEL

P: confirmed cases K: highest possible confirmed cases r: initial growth rate

P0: initial confirmed number

 \triangle

```
from scipy.optimize import curve_fit as curve_fit
def func(x, k, a, b):
 return k/(1+(k/b-1)*np. exp(-a*x))
popt, pcov = curve_fit(func, train_xdata, train_ydata - initial_cases, method='dogbox', \
                        bounds=([1000., 0.01, 10.], [5000000., 1.0, 1000.]))
k = popt[0]
a = popt[1]
b = popt[2]
```

 \triangle

Δ

04. **ERROR ANALYSIS &** CONCLUSION

200Kin 21 days \approx 10K/DAY

Error Analysis

Methodology: Model

Error Analysis

Endemic itself: Delta variant

Δ

Error Analysis

Factual: Vaccination

 \triangle

 \triangle

THANKS!

Time for Q&A

Group A+PLZ!

ZHU BANGYUAN - Logistic Regression Model

LI JINGYUAN - Data Preparation

YANG PEISHI - Background & Exploration

YU LINYAN - Visualisation

REFERENCES

- https://data.world/hxchua/covid-19-singapore/workspace/file?filename=Covid-1 9+SG.xlsx
- https://www.covid.gov.sg/unwell/overview
- https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da43
 03bc
- https://www.forbes.com/sites/siladityaray/2021/10/21/living-with-covid-strategy-under-threat-as-singapore-uk-face-sharp-rise-in-cases/?sh=76b0c6f73a77
- https://www.straitstimes.com/singapore/politics/longer-waiting-times-as-singapores-healthcare-capacity-impacted-by-recent
- https://www.iconfinder.com/icons/3030663/captures_collection_data_recopilation_n_sources_icon_
- https://thenounproject.com/term/development-policies/
- https://www.iconfinder.com/icons/5664262/analysis_chart_data_inspection_tren_d_icon
- https://www.moh.gov.sg