

What is claimed is:

1. A method for manufacturing a semiconductor device comprising the steps of:

forming a semiconductor film over a substrate;
cleaning a surface of a semiconductor film; and
applying a laser beam to said semiconductor film to
form a crystalline semiconductor film in a nitrogen
atmosphere.

2. A method according to claim 1, wherein said
cleaning is performed by using HF aqueous solution or an
aqueous solution containing HF and H₂O₂.

3. A method according to claim 1, wherein said laser
beam has an energy density of 100 to 500 mJ/cm².

4. A method for manufacturing a semiconductor device comprising the steps of:

forming a semiconductor film over a substrate;
cleaning a surface of said semiconductor film;
preheating said semiconductor film; and

Subj A

applying a laser beam to said semiconductor film to form a crystalline semiconductor film in a nitrogen atmosphere.

5. A method according to claim 4, wherein said cleaning is performed by using HF aqueous solution or an aqueous solution containing HF and H₂O₂.

Subj A

6. A method according to claim 4, wherein said laser beam has an energy density of 100 to 500 mJ/cm².

7. A method for manufacturing a semiconductor device comprising the steps of:

Subj A

forming a semiconductor film over a substrate;
cleaning a surface of said semiconductor film;
preheating said semiconductor film in an atmosphere containing oxygen and nitrogen; and
applying a laser beam to said semiconductor film to form a crystalline semiconductor film in a nitrogen atmosphere.

8. A method according to claim 7, wherein said cleaning is performed by using HF aqueous solution or an aqueous solution containing HF and H₂O₂.

Sub A

9. A method according to claim 7, wherein said laser beam has an energy density of 100 to 500 mJ/cm².

10. A method for manufacturing a semiconductor device comprising the steps of:

forming a semiconductor film over a substrate;
cleaning a surface of said semiconductor film;
preheating said semiconductor film to form an oxide film on a surface of said semiconductor film; and
applying a laser beam to said semiconductor film to form a crystalline semiconductor film in a nitrogen atmosphere.

11. A method according to claim 10, wherein said cleaning is performed by using HF aqueous solution or an aqueous solution containing HF and H₂O₂.

Sub A

12. A method according to claim 10, wherein said laser beam has an energy density of 100 to 500 mJ/cm².

13. A method for manufacturing a semiconductor device comprising the steps of:

forming a crystalline semiconductor film over a substrate;

Spec 1

cleaning a surface of said crystalline semiconductor film; and

applying a laser beam to said crystalline semiconductor film to improve crystallinity of said crystalline semiconductor film in a nitrogen atmosphere.

14. A method according to claim 13, wherein said cleaning is performed by using HF aqueous solution or an aqueous solution containing HF and H₂O₂.

15. A method according to claim 13, wherein said laser beam has an energy density of 100 to 500 mJ/cm².

16. A method for manufacturing a semiconductor device comprising the steps of:

forming a crystalline semiconductor film over a substrate;

cleaning a surface of said crystalline semiconductor film;

preheating said crystalline semiconductor film; and applying a laser beam to said crystalline semiconductor film to improve crystallinity of said crystalline semiconductor film in a nitrogen atmosphere.

Solv A12

17. A method according to claim 16, wherein said cleaning is performed by using HF aqueous solution or an aqueous solution containing HF and H₂O₂.

Solv A12

18. A method according to claim 16, wherein said laser beam has an energy density of 100 to 500 mJ/cm².

Solv A12

19. A method for manufacturing a semiconductor device comprising the steps of:

forming a semiconductor film over a substrate;
cleaning a surface of said semiconductor film;
forming an oxide film on a surface of said semiconductor film; and
applying a laser beam to said semiconductor film to form a crystalline semiconductor film in the air.

Solv A12

20. A method according to claim 19, wherein said laser beam is a linear laser beam.

Solv A12

21. A method according to claim 19, wherein said laser beam has an energy density of 100 to 500 mJ/cm².

Solv A12

22. A method according to claim 19, wherein said oxide film has a thickness of 20-40Å.

Sole A/5

23. A method for manufacturing a semiconductor device comprising the steps of:

forming a semiconductor film over a substrate;

cleaning a surface of said semiconductor film by using HF aqueous solution or an aqueous solution containing HF and H₂O₂;

forming an oxide film on a surface of said semiconductor film; and

applying a laser beam to said semiconductor film to form a crystalline semiconductor film in the air.

24. A method according to claim 23, wherein said laser beam is a linear laser beam.

Sole A/6

25. A method according to claim 23, wherein said laser beam has an energy density of 100 to 500 mJ/cm².

26. A method according to claim 23, wherein said oxide film has a thickness of 20-40Å.