最小项

例1 F(A,B,C,D)=ABC+BD+ABCD 与或式(积之和)

与项

最大项

 $\sqrt[h]{2}$ $F(A,B,C,D)=(A+C)(\overline{A}+B+D)(A+\overline{B}+C+\overline{D})$

或与式(和之积)

或项

与或式 (积之和) 与最小项表达式

例如: z(a,b,c) = ab + ac ← 与或式

最小项表达式

= ab(c+c) + a(b+b)c = abc + abc + abc + abc

<u>与或式</u>:逻辑表达式为几个与项的和称为与或式,又称 为积之和表达式。

最小项: 在一个n个自变量的逻辑函数中,最小项是包含着n个变量的一个"与项",在此"与项"中,每个变量以原变量或反变量的形式出现一次。

思考题:对于一个n个自变量的逻辑函数,最多 有多少"最小项"?

最小项表达式: 当与或式中所有与项均为"最小项"时 称为最小项表达式。

或与式(和之积表达式)和最大项表达式

例如: $z(a,b,c) = (\overline{a}+b+c)(\overline{a}+b+\overline{c})(a+b+c)(a+\overline{b}+c)$

最大项表达式

或与式:逻辑表达式为几个或项的积称为或与式,又称为和之积表达式。

最大项: 在一个n个自变量的逻辑函数中,包含n个变量的或项,在此或项中,每个变量以原变量或反变量的形式出现一次,此或项称为最大项。

最大项表达式: 当或与式中所有或项为最大项时称为最 大项表达式。

真值表和最小项、最大项的关系

逻辑函数的最小 项表达式和最大项表 达式是唯一的。

			<u>.</u>			
	行号	a	b	c	z	
	0	0	0	0	0	-a+b+c
$a \overline{b} c \rightarrow$	1	0	0	1	1	
	2	0	1	0	0	$-a+\overline{b}+c$
$\frac{-}{a}bc$	3	0	1	1	1	
	4	1	0	0	0	-a+b+c
	5	1	0	1	0	-a+b+c
$a b \bar{c} \rightarrow$	6	1	1	0	1	
<i>a b c</i> →	7	1	1	1	1	

$$z = abc + abc + abc + abc = m_1 + m_3 + m_6 + m_7 = \sum m(1,3,6,7)$$
$$z = (a+b+c)(a+\bar{b}+c)(\bar{a}+b+c)(\bar{a}+b+\bar{c})$$

$$= M_0 M_2 M_4 M_5 = \Pi M(0,2,4,5)$$

最小项和最大项的含义:

最小项: n个变量最多可构成2ⁿ个最小项, 而在这2ⁿ个最小项中, 同时只能有一个最小项取值为1即值为1的"与项"个数最少。

$$z(a,b,c) = abc + abc + abc + abc$$

最小项和最大项的含义:

最大项: n个变量最多可构成2ⁿ个最大项,而在这2ⁿ个最大项中,同时只能有一个最大项取值为0,其余均为1,即值为1的"或项"个数最多。

$$z(a,b,c) = (\overline{a}+b+c)(\overline{a}+b+\overline{c})(a+b+c)(a+\overline{b}+c)$$

最小项与最大项的关系

- 所有最小项之和恒为1。
- 任意两个不同最小项之积恒 为0。
- 所有最大项之积恒为0。
- 任意两个不同最大项之和恒 为1。
- 标号相同的最大项和最小项 互为反函数。
- 任一含有n-k个变量的积 (和) 项均包含有2^k个最小 (大) 项

$$\sum_{i=0}^{2^{n}-1} m_{i} = 1$$

$$m_i m_j = 0$$

$$i \neq j$$

$$\prod_{i=0}^{2^{n}-1} M_{i} = 0$$

$$M_i + M_j = 1$$
 $i \neq j$

$$\overline{m_i} = M_i$$

(如何解释?)

最小项表达式与最大项表达式的关系

已知:
$$z(a,b,c,d) = \Sigma m(0,1,2,3,7,8,9,10,11,14)$$

有:	$z(a, b, c, d) = \Pi M(4, 5, 6, 12, 13, 15)$

 $z(a, b, c, d) = \Sigma m(4, 5, 6, 12, 13, 15)$

$$z(a, b, c, d) = \Pi M(0, 1, 2, 3, 7, 8, 9, 10, 11, 14)$$

鸻	a	b	С	d	Z
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

逻辑图 (由若干逻辑图形符号构成的电路图)

• 与或式对应的逻辑图

$$z = ab + \overline{ac} = \overline{ab} \cdot \overline{ac}$$

• 或与式对应的逻辑图

$$z = (a+b)(a+c) = (a+b)+(a+c)$$

例1 半加器 (HA) 的逻辑图

$$\sum (x, y) = \prod M(0, 3) = (x + y)(\overline{x} + \overline{y}) = \sum m(1, 2) = \overline{x}y + x\overline{y}$$

$$CO(x, y) = xy = \overline{x} + \overline{y}$$

Х	у	СО	Σ
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

例2 分析电路

\boldsymbol{x}	у	z
0	0	0
0	1	1
1	0	1
1	1	0

$$u = vx$$

$$w = \overline{vy}$$

$$z = \overline{uw} = \overline{vx} \cdot \overline{vy} = vx + vy$$

$$= (\overline{x} + \overline{y})(x + y) = \overline{xy} + x\overline{y}$$

逻辑功能: 异或门

例3 分析电路

ci _i	x _i	y _i	COi	Σ
0	0	0	0	0
0	0	_1	0	1
0	1	О	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$\Sigma' = a_i \oplus b_i$$

$$\Sigma_{i} = \Sigma' \oplus CI_{i} = a_{i} \oplus b_{i} \oplus CI_{i} = a_{i}b_{i}CI_{i} + a_{i}b_{i}CI_{i} + a_{i}b_{i}CI_{i} + a_{i}b_{i}CI_{i}$$

$$\overline{CO}_i = \overline{x \cdot y} = \overline{a_i b_i} \overline{\Sigma'CI_i} = a_i b_i + \Sigma'CI_i = a_i b_i + (a_i \oplus b_i)CI_i$$

$$= a_i b_i + (a_i b_i + a_i b_i)CI_i = a_i b_i + a_i b_iCI_i + a_i b_iCI_i = a_i b_i + a_iCI_i + b_iCI_i$$

逻辑功能:全加器

为什么?

逻辑化简

逻辑化简的目的: 节省原器件, 提高可靠性

例:

电路的价格: 11

电路的价格(门电路输

入端的个数): 30

逻辑化简的方法:

• 公式法: 凭经验及对布尔代数公式的灵活运用

• 图解法: 用卡诺图,适用于变量数少于6个的情况。

• 计算机辅助化简: 如用EWB仿真软件。

卡诺图

鸻	a	b	С	d	z
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	1
15	1	1	1	1	0

52年,E.W.Veitch (维奇)提出

53年,M.Karnaugh (卡诺)将方框外 二进制码排列改格 雷码,从而使相邻 两格之间只有一个

变量不同

方框内是因 变量z的值

Z(a,b,c,d)

Z(a,b,c,d)

真值表与卡诺图

三变量情况:

a	b	. c	z
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

例1 $z(a,b,c,d) = \Sigma m(1,2,3,4,8,9,10,11,12)$

例2 $y(a,b,c,d,e) = \Pi M(0,1,2,6,8,9,16,17,18,22,24,25)$

