Sources of Water

[☐] Water has different physical, chemical and biological Impurities which can cause problems in both domestic and industrial applications.

Impurities in water

- Physical: Inorganic such as clay, sand
 - Organic such as oil globules, vegetable/animal matter
 - Colloidal such as Fe(OH)₃, Complex proteins, amines
- > Chemical: Anions such as Cl⁻, SO₄²⁻, CO₃²⁻, HCO₃⁻, NO₃⁻
 - Cations such as Ca²⁺, Mg²⁺, Na⁺, K⁺, Fe³⁺, Al³⁺
 - Dissolved gases such as O₂, N₂, CO₂, H₂S, NH₃
- Biological: Microorganisms such as algae, fungi, bacteria
 (Pathogenic causing Malaria, diarrhoea, typhoid etc.)

☐ <u>Hardness of Water</u>

- ➤ Hardness of water is the characteristic of preventing lather formation of water with soap.
- ➤ This is a common quality of water which contains dissolved compounds of calcium and magnesium and, sometimes, other divalent and trivalent metallic elements

> Symptoms of Hard Water include

- Stiff, dingy laundry
- Mineral deposits on dishes and glassware
- High energy costs, possibly due to scale build-up in pipes and on appliances
- Scale build up in sinks, tubs, faucets etc.

Hard water

➤ Hard water on treatment with soap (Stearic or palmitic acid salts of sodium or potassium) causes white **precipitate formation** of calcium or magnesium stearate or palmitate. Precipitation of the soap prevents lathering at first.

> Types of Hardness

a) **Temporary**:

- Due to dissolved **bicarbonates** of calcium and magnesium and **carbonates** of iron and other heavy metals. Hence it is also called as **carbonate** hardness.
- Can be easily removed by boiling where CO₂ gas gets expelled removing the hardness.

Ca(HCO₃)₂
$$\xrightarrow{\text{Heat}}$$
 CaCO₃ \downarrow + H₂O + CO₂ exchange processes.
Mg(HCO₃)₂ $\xrightarrow{\text{Heat}}$ Mg(OH)₂ \downarrow + CO₂

b) **Permanent:**

- Due to dissolved chlorides and sulphates of calcium and magnesium. Also called as non-carbonate hardness.

- Can be removed through zeolite, Lime-soda, ion-exchange processes.

Hardness Scale

mg/L & ppm	Classification
Less than 17.1	Soft
17.1 - 60	Slightly Hard
60 - 120	Moderately Hard
120 - 180	Hard
over 180	Very Hard

Measurement of hardness of water

- Hardness of water is measured in parts per millions (ppm) as calcium carbonate equivalents.
- Reasons for expressing hardness in CaCO₃ equivalents:
 - its molecular weight is 100; equivalent weight is 50.
 - it is the most common insoluble impurity in water.

Hardness in terms of Equivalents of CaCO
$$_3$$
 =
$$\frac{\text{Mass of Hardness}}{\text{Equivalent Weight of CaCO}_3} \times \text{Equivalent Weight of CaCO}_3$$

Calculate the temporary hardness in terms of calcium carbonate equivalents in a water sample containing 12.2 mg Ca(HCO₃)₂. Given that at. Wt. of Ca=40 amu, O=16 amu, C=12 amu, H=1 amu. (Ans.: 7.53 mg)