Diabetes Dataset Review and ML Model Building

1. Introduction

This notebook performs data preprocessing, model building, and analysis on Dataset #1 (Diabetes Dataset)

2. Importing libraries and loading the Dataset:

```
# Install necessary libraries (Run only once)
!pip install pandas matplotlib seaborn markdown2 weasyprint
# Import libraries
import pandas as pd # Data manipulation
import matplotlib.pyplot as plt # Data visualization
import seaborn as sns # Statistical data visualization
Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (2.2.2)
     Requirement already satisfied: matplotlib in /usr/local/lib/python3.11/dist-packages (3.10.0)
    Requirement already satisfied: seaborn in /usr/local/lib/python3.11/dist-packages (0.13.2)
    Collecting markdown2
      Downloading markdown2-2.5.3-py3-none-any.whl.metadata (2.1 kB)
    Collecting weasyprint
       Downloading weasyprint-65.0-py3-none-any.whl.metadata (3.7 kB)
    Requirement already satisfied: numpy>=1.23.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (2.0.2)
    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.2)
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas) (2025.2)
    Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.3.1)
    Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (0.12.1)
    Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (4.57.0)
    Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (1.4.8)
    Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (24.2)
    Requirement already satisfied: pillow>=8 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (11.1.0)
    Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.11/dist-packages (from matplotlib) (3.2.3)
    Collecting pydyf>=0.11.0 (from weasyprint)
      Downloading pydyf-0.11.0-py3-none-any.whl.metadata (2.5 kB)
    Requirement already satisfied: cffi>=0.6 in /usr/local/lib/python3.11/dist-packages (from weasyprint) (1.17.1)
    Collecting tinyhtml5>=2.0.0b1 (from weasyprint)
      Downloading tinyhtml5-2.0.0-py3-none-any.whl.metadata (2.9 kB)
    Requirement already satisfied: tinycss2>=1.4.0 in /usr/local/lib/python3.11/dist-packages (from weasyprint) (1.4.0)
    Collecting cssselect2>=0.8.0 (from weasyprint)
      Downloading cssselect2-0.8.0-py3-none-any.whl.metadata (2.9 kB)
    Collecting Pyphen>=0.9.1 (from weasyprint)
       Downloading pyphen-0.17.2-py3-none-any.whl.metadata (3.2 kB)
    Requirement already satisfied: pycparser in /usr/local/lib/python3.11/dist-packages (from cffi>=0.6->weasyprint) (2.22)
    Requirement \ already \ satisfied: \ we bencodings \ in \ /usr/local/lib/python 3.11/dist-packages \ (from \ cssselect 2>= 0.8.0-) we asyprint) \ (0.5.1)
    Collecting brotli>=1.0.1 (from fonttools[woff]>=4.0.0->weasyprint)
      Downloading Brotli-1.1.0-cp311-cp311-manylinux 2 17 x86 64.manylinux2014 x86 64.whl.metadata (5.5 kB)
    Collecting zopfli>=0.1.4 (from fonttools[woff]>=4.0.0->weasyprint)
       Downloading zopfli-0.2.3.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.9 kB)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas) (1.17.0)
    Downloading markdown2-2.5.3-py3-none-any.whl (48 kB)
                                                - 48.5/48.5 kB 590.1 kB/s eta 0:00:00
    Downloading weasyprint-65.0-py3-none-any.whl (297 kB)
                                                297.9/297.9 kB 6.5 MB/s eta 0:00:00
    Downloading cssselect2-0.8.0-py3-none-any.whl (15 kB)
    Downloading pydyf-0.11.0-py3-none-any.whl (8.1 kB)
    Downloading pyphen-0.17.2-py3-none-any.whl (2.1 MB)
                                                2.1/2.1 MB 25.9 MB/s eta 0:00:00
    Downloading tinyhtml5-2.0.0-py3-none-any.whl (39 kB)
    Downloading Brotli-1.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.9 MB)
                                                2.9/2.9 MB 21.5 MB/s eta 0:00:00
    Downloading zopfli-0.2.3.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (850 kB)
                                                850.6/850.6 kB 17.1 MB/s eta 0:00:00
    Installing collected packages: brotli, zopfli, tinyhtml5, Pyphen, pydyf, markdown2, cssselect2, weasyprint
    Successfully installed Pyphen-0.17.2 brotli-1.1.0 cssselect2-0.8.0 markdown2-2.5.3 pydyf-0.11.0 tinyhtml5-2.0.0 weasyprint-65.0 zopfli-0
# dataset 1
```

import pandas as pd

```
# Use the RAW URL, not the repository URL
url = "https://raw.githubusercontent.com/AsmaShaikhTMU/Projects/main/diabetes_prediction_dataset.csv"
# Read the CSV file directly from GitHub
df = pd.read_csv(url)
# Display the first few rows
df.head()
```

→		gender	age	hypertension	heart_disease	smoking_history	bmi	HbA1c_level	blood_glucose_level	diabetes
	0	Female	80.0	0	1	never	25.19	6.6	140	0
	1	Female	54.0	0	0	No Info	27.32	6.6	80	0
	2	Male	28.0	0	0	never	27.32	5.7	158	0
	3	Female	36.0	0	0	current	23.45	5.0	155	0
	4	Male	76.0	1	1	current	20.14	4.8	155	0

3. Cleaning and Preprocessing the Dataset:

```
# Display dataset shape (Rows, Columns)
print("Dataset Shape:", df.shape)
→ Dataset Shape: (100000, 9)
# Check for missing values
print("\nMissing Values Count:")
print(df.isnull().sum())
     Missing Values Count:
     gender
                            0
     hypertension
                            0
     heart_disease
     smoking\_history
     HbA1c_level
     blood_glucose_level
                            a
     diabetes
                            0
     dtype: int64
# Display dataset info (column types, null values, memory usage)
print("\nDataset Info:")
df.info()
# Check for duplicate rows
print("\nDuplicate Rows Count:", df.duplicated().sum())
# Print missing values per column
missing_per_column = df.isnull().sum()
total_missing = missing_per_column.sum() # Calculate total missing values
print(f"\nTotal Missing Values in Dataset: {total_missing}")
<del>_</del>_
     Dataset Info:
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 100000 entries, 0 to 99999
     Data columns (total 9 columns):
     # Column
                              Non-Null Count
                                                Dtype
     0
         gender
                              100000 non-null object
     1
         age
                              100000 non-null float64
         hypertension
                              100000 non-null int64
                              100000 non-null int64
         heart_disease
                              100000 non-null object
         smoking_history
                               100000 non-null float64
                               100000 non-null float64
         HbA1c level
         blood_glucose_level 100000 non-null int64
         diabetes
                              100000 non-null int64
     dtypes: float64(3), int64(4), object(2)
     memory usage: 6.9+ MB
```

```
Duplicate Rows Count: 3854

Total Missing Values in Dataset: 0
```

3,854 duplicate rows exist in a dataset of 100,000 rows, they make up about 3.85% of the data

There are no missing values

Note that Categorical Columns (gender, and smoking_history) object needs one-Hot Encoding or Label Encoding

Numerical Columns for age, bmi, HbA1c_level, blood_glucose_level: Scaling Method is probably needed.

- Standardization (for Logistic Regression, SVM,K-Means, KNN, PCA)
- Min-Max Scaling (Best for Neural Networks)

Target Column (diabetes) is binary (0 or 1)

```
# Display summary statistics of numerical columns
print("\nSummary Statistics:")
display(df.describe())
```


Summary Statistics:

	age	hypertension	heart_disease	bmi	HbA1c_level	blood_glucose_level	diabetes
count	100000.000000	100000.00000	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000
mean	41.885856	0.07485	0.039420	27.320767	5.527507	138.058060	0.085000
std	22.516840	0.26315	0.194593	6.636783	1.070672	40.708136	0.278883
min	0.080000	0.00000	0.000000	10.010000	3.500000	80.000000	0.000000
25%	24.000000	0.00000	0.000000	23.630000	4.800000	100.000000	0.000000
50%	43.000000	0.00000	0.000000	27.320000	5.800000	140.000000	0.000000
75%	60.000000	0.00000	0.000000	29.580000	6.200000	159.000000	0.000000
max	80.000000	1.00000	1.000000	95.690000	9.000000	300.000000	1.000000

4. Exploration of Data

✓ I Univariate Analysis:

✓ Gender

```
# Count occurrences of each gender category
gender_counts = df['gender'].value_counts()
print(gender_counts)
→ gender
               58552
     Female
     Male
               41430
     Name: count, dtype: int64
# Remove 'Other' category from gender Since "Other" has very few occurrences (only 18 records out of ~100,000)
df = df[df['gender'] != 'Other']
num_var = list(df['gender'].value_counts().values)
labels = list(df['gender'].value_counts().index)
count_dict = dict(enumerate(num_var))
print(num_var)
print(labels)
    [np.int64(58552), np.int64(41430)]
     ['Female', 'Male']
```

```
# Count occurrences of each gender category
gender_counts = df['gender'].value_counts()

# Data for the pie chart
labels = gender_counts.index.tolist()  # Extract unique gender labels
sizes = gender_counts.values  # Extract corresponding counts
colors = ['#1f77b4', '#ff7f0e', '#2ca02c']  # Assign colors
explode = (0, 0, 0.1) if 'Other' in labels else (0, 0)  # Slightly separate 'Other' if it exists

# Create the pie chart
plt.figure(figsize=(6, 6))
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.2f%%', startangle=140, explode=explode)
plt.title("Percentage of Gender Distribution in Dataset")
plt.legend(labels, loc="upper right")
plt.show()
```


Percentage of Gender Distribution in Dataset

*The dataset has 58.56% Female individuals, which forms the majority.

✓ Age

```
# prompt: age
import matplotlib.pyplot as plt
#age
# Create a histogram of the 'age' column
plt.figure(figsize=(8, 6))
sns.histplot(df['age'], bins=20, kde=True) # kde=True adds a kernel density estimate curve
plt.title('Distribution of Age')
plt.xlabel('Age')
plt.ylabel('Frequency')
plt.show()
```


*The dataset includes all age groups, ensuring diversity in the sample. The age distribution is fairly even. There's a higher frequency of individuals near age 80.

✓ Hypertension

prompt: hypertension
df['hypertension'].value_counts()

		count
	hypertension	
	0	92497
	1	7485

dtype: int64

```
# Count occurrences of each hypertension category
hypertension_counts = df['hypertension'].value_counts()

# Data for the pie chart
labels = ['No Hypertension', 'Hypertension']
sizes = [hypertension_counts[0], hypertension_counts[1]] # Extract counts
colors = ['#1f77b4', '#ff7f0e'] # Custom colors for clarity
explode = (0, 0.1) # Slightly separate "Hypertension" slice for emphasis

# Create the pie chart
plt.figure(figsize=(6, 6))
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.2f%%', startangle=140, explode=explode)
plt.title("Percentage of Patients with Hypertension")
plt.legend(labels, loc="upper right")
plt.show()
```


Percentage of Patients with Hypertension

*Hypertension is relatively rare in the dataset, with only about 7.03% of individuals affected

→ Heart Disease

```
# prompt: heart_disease
df['heart_disease'].value_counts()
```


count

heart_disease	
0	96040
1	3942

dtype: int64

```
# Count occurrences of each heart disease category
heart_disease_counts = df['heart_disease'].value_counts()

# Data for the pie chart
labels = ['No Heart Disease', 'Heart Disease']
sizes = [heart_disease_counts[0], heart_disease_counts[1]] # Extract counts
colors = ['#1f77b4', '#ff7f0e'] # Custom colors for clarity
explode = (0, 0.1) # Slightly separate "Heart Disease" slice for emphasis

# Create the pie chart
plt.figure(figsize=(6, 6))
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.2f%%', startangle=140, explode=explode)
plt.title("Percentage of Patients with Heart Disease")
plt.legend(labels, loc="upper right")
plt.show()
```

₹

Percentage of Patients with Heart Disease

*Heart disease is relatively rare in this dataset, with only ~3.91% of individuals affected. This indicates a highly imbalanced dataset, which can negatively impact machine learning models. Possible Solutions are SMOTE, undersampling, or class weighting technique. Accuracy alone is not a good metric—F1-score, Precision-Recall, and AUC-ROC

Smoke History

```
# Count occurrences of each smoking history category
smoking_counts = df['smoking_history'].value_counts().reset_index()
smoking_counts.columns = ['Smoking History', 'Count']
# Calculate frequency (percentage)
smoking_counts['Frequency (%)'] = (smoking_counts['Count'] / df.shape[0]) * 100
# Display the table
print(smoking_counts)
       Smoking History
₹
                        Count Frequency (%)
               No Info
                        35810
                                   35.816447
     1
                 never
                        35092
                                   35.098318
     2
                         9352
                                    9.353684
                former
                         9286
                                    9,287672
     3
               current
     4
           not current
                         6439
                                    6.440159
                         4003
                                    4.003721
```

**35.81% of the records have no smoking history information. Former smokers (9.35%), current smokers (9.28%), and not current (6.44%) are relatively low.

```
# Grouping smoking categories into broader groups (former, current, Not Current, and ever into one "Smoked" category).
df["smoking_grouped"] = df["smoking_history"].replace({
    "No Info": "Unknown",
    "never": "Never Smoked",
    "former": "Smoked",
    "current": "Smoked",
    "not current": "Smoked",
    "ever": "Smoked",
}

# Count occurrences of each new category
smoking_counts = df["smoking_grouped"].value_counts().reset_index()
smoking_counts.columns = ["Smoking Group", "Count"]
# Calculate percentage
smoking_counts["Frequency (%)"] = (smoking_counts["Count"] / df.shape[0]) * 100
```

1

2

```
# Display the results
print(smoking_counts)
      Smoking Group
                     Count
                            Frequency (%)
                     35810
            Unknown
```

Never Smoked

Smoked

35092

29080

Smoked" category (29.09%) Includes former, current, and ever smokers

35.816447

35.098318

29.085235

BMI

```
# prompt: BMI
#print(df.head())
# Set figure size
plt.figure(figsize=(12, 5))
# Create a boxplot for BMI to show outliers
plt.subplot(1, 2, 1) # 1 row, 2 columns, position 1
sns.boxplot(x=df['bmi'], color='lightblue')
plt.title("Boxplot of BMI (Showing Outliers)")
plt.ylabel("BMI")
# Create a violin plot for BMI to show distribution and outliers
plt.subplot(1, 2, 2) # 1 row, 2 columns, position 2
sns.violinplot(x=df['bmi'], color='lightcoral')
plt.title("Violin Plot of BMI (Showing Outliers)")
plt.ylabel("BMI")
# Show the plots
plt.tight_layout()
plt.show()
```


Boxplot: Most BMI values fall between 15 to 35. The median BMI (center line in the box) appears around 25-30. Outliers extend far beyond the usual BMI range

Violin Plot: The most common BMI values (likely between 20 and 30). The long tails suggest the presence of extreme values.

```
# Set style without grid
sns.set_style("white")
# Plot histogram with kernel density estimate
plt.figure(figsize=(6, 5))
sns.histplot(df['bmi'], bins=30, kde=True, color='lightblue', edgecolor='black')
```

```
# Customize plot
plt.title("BMI Distribution", fontsize=14)
plt.xlabel("bmi")
plt.ylabel("Count")

# Remove grid
plt.grid(False)

# Display plot
plt.tight_layout()
plt.show()
```


50000 S 30000 20000 10000 20 40 60 80 bmi

```
original_count = df['bmi'].count()
print(f"Original BMI count: {original_count}")
# Step 2: Define outlier bounds using IQR (Interquartile Range)
Q1 = df['bmi'].quantile(0.25)
Q3 = df['bmi'].quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Step 3: Filter out BMI outliers
\label{lower_bound} $$ df_bmi_filtered = df[(df['bmi'] >= lower_bound) & (df['bmi'] <= upper_bound)] $$
# Step 4: Check count after removing outliers
filtered_count = df_bmi_filtered['bmi'].count()
print(f"BMI count after removing outliers: {filtered_count}")
# Optional: Show how many were removed
print(f"Number of outliers removed: {original_count - filtered_count}")
→ Original BMI count: 99982
     BMI count after removing outliers: 92897
     Number of outliers removed: 7085
# 1. Calculate IQR
Q1 = df['bmi'].quantile(0.25)
Q3 = df['bmi'].quantile(0.75)
IQR = Q3 - Q1
lower\_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# 2. Clip BMI values (winsorization, not removal)
df['bmi'] = df['bmi'].clip(lower=lower_bound, upper=upper_bound)
```

```
# 3. Print BMI summary after clipping
print("BMI Summary After Outlier Clipping:")
print(df['bmi'].describe())
# 4. Plot Boxplot and Violin Plot side by side
plt.figure(figsize=(12, 5))
# Boxplot
plt.subplot(1, 2, 1)
sns.boxplot(x=df['bmi'], color='lightblue')
plt.title("Boxplot of BMI After Outlier Clipping")
plt.xlabel("BMI")
plt.ylabel("")
# Violin plot
plt.subplot(1, 2, 2)
sns.violinplot(x='bmi', data=df, color='lightcoral')
plt.title("Violin Plot of BMI After Outlier Clipping")
plt.xlabel("BMI")
plt.ylabel("")
plt.tight_layout()
plt.show()
```

→ BMI Summary After Outlier Clipping: 99982.000000 count mean 26.991610 std 5.671332 min 14.705000 25% 23.630000 50% 27.320000 75% 29.580000 38.505000 max

Name: bmi, dtype: float64

Boxplot of BMI After Outlier Clipping

HbA1c_level

```
# prompt: HbA1c_level
# Get the range of HbA1c levels
hbA1c_min = df['HbA1c_level'].min()
hbA1c_max = df['HbA1c_level'].max()
```

```
# Define HbA1c categories
hbA1c_bins = [0, 5.7, 6.4, float('inf')]
# Categorize patients based on HbA1c levels
df['HbA1c_Category'] = pd.cut(df['HbA1c_level'], bins=hbA1c_bins, labels=hbA1c_labels, include_lowest=True)
# Count occurrences in each category
hbA1c_counts = df['HbA1c_Category'].value_counts().reset_index()
hbA1c_counts.columns = ['HbA1c Category', 'Count']
# Calculate percentage
hbA1c_counts['Percentage (%)'] = (hbA1c_counts['Count'] / df.shape[0]) * 100
# Display the results
print(f"HbA1c levels range from {hbA1c_min}% to {hbA1c_max}%.\n")
print(hbA1c_counts)
→ HbA1c levels range from 3.5% to 9.0%.
                HbA1c Category Count Percentage (%)
                                         46.270329
    0
          ≤ 5.7% (Non-Diabetic)
                               46262
       5.7% - 6.4% (Prediabetic)
                               32926
                                          32,931928
              ≥ 6.5% (Diabetic) 20794
                                          20.797744
```

*categorizes HbA1c levels into Non-Diabetic, Prediabetic, and Diabetic groups and calculates their proportions

```
# HbA1c_level :
base_color = sns.color_palette()[0]
sns.countplot(data = df, x = df['HbA1c_level'], color='lightblue');
```



```
import matplotlib.pyplot as plt
# Plotting the histogram for HbA1c Categories (American Diabetes Association - ADA)
plt.figure(figsize=(8, 5))
sns.countplot(x='HbA1c_Category', data=df, hue='HbA1c_Category', palette='pastel', legend=False) # Set hue and legend
plt.title('Distribution of HbA1c Categories')
plt.xlabel('HbA1c Category')
plt.ylabel('Number of Patients')
plt.xticks(rotation=0)
plt.show()
```


Distribution of HbA1c Categories


```
# Plot a boxplot for HbA1c level distribution
plt.figure(figsize=(6, 5))
sns.boxplot(x=df['HbA1c_level'], color="lightblue")
plt.title("HbA1c Level Distribution (Boxplot)")
plt.xlabel("HbA1c Level")
plt.show()
```


HbA1c Level Distribution (Boxplot)

✓ Blood Glucose Level

```
# Count occurrences of each Blood Glucose Level
blood_glucose_distribution = df['blood_glucose_level'].value_counts().reset_index()
blood_glucose_distribution.columns = ['Blood Glucose Level', 'Count']
```

Display the distribution table
print(blood_glucose_distribution)

		Blood	Glucose	Level	Count
	0			130	7794
	1			159	7756
	2			140	7730
	3			160	7708
	4			126	7700
	5			145	7679

```
4/11/25, 9:08 PM
```

```
7599
6
                      200
7
                      155
                            7575
8
                             7110
9
                       80
                             7105
10
                      100
                             7025
11
                      158
                            7024
                             6900
12
                       85
13
                      280
                             729
14
                      300
                              674
15
                      240
                              636
                      260
                              635
16
17
                      220
                              603
```

```
# Set Seaborn style
sns.set(style="white")

# Create bar plot with sorted blood glucose levels
plt.figure(figsize=(8, 5))
sns.countplot(x='blood_glucose_level', data=df, color='skyblue')

# Customize axis and title
plt.title("Blood Glucose Level Distribution by Count", fontsize=14)
plt.xlabel("blood_glucose_level (mg/dL)")
plt.ylabel("count")
plt.xticks(rotation=45)

plt.tight_layout()
plt.show()
```


Target variable diabetes

```
#Target variable diabetes
labels = list(df['diabetes'].value_counts().index)
num_var = list(df['diabetes'].value_counts().values)
print(labels)

# Count occurrences of diabetic vs non-diabetic cases
diabetes_counts = df['diabetes'].value_counts().to_dict() # Convert to dictionary to avoid KeyError

# Ensure both labels exist in the correct order
sizes = [diabetes_counts.get(0, 0), diabetes_counts.get(1, 0)] # Handles cases where values might be missing
labels = ['Non-Diabetic', 'Diabetic']
colors = ['#1f77b4', '#ff7f0e'] # Custom colors for clarity
explode = (0, 0.1) # Slightly separate "Diabetic" slice for emphasis
```

```
# Create the pie chart
plt.figure(figsize=(6, 6))
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.2f%%', startangle=140, explode=explode)
plt.title("Percentage of Diabetic vs Non-Diabetic Patients")
plt.legend(labels, loc="upper right")
plt.show()
```


Percentage of Diabetic vs Non-Diabetic Patients

**Given that diabetic cases about 8.5% of the dataset (high imbalance), the best approach should enhance the minority class representation.

Method 1: oversampling with SMOTE.

Method 2: Class Weight Adjustment in Models helps the model give more importance to the minority class.

Method 3: Use Recall & F1 Score for Model Evaluation (recall to ensure diabetic cases are detected and F1-score to balance precision & recall (instead of accuracy)**

```
# Distribution plots for all variables
variables = ['bmi', 'diabetes', 'blood_glucose_level', 'HbA1c_level', 'hypertension', 'age', 'heart_disease']
plt.figure(figsize=(12, 10))
for i, var in enumerate(variables, 1):
    plt.subplot(3, 3, i)
    sns.histplot(df[var], kde=True, bins=30)
    plt.title(f"Distribution of {var}")
plt.tight_layout()
plt.show()
```


BMI is right-skewed distribution.

HbA1c Level is uneven distribution.

The age distribution appears relatively uniform but with peaks around 60-80 years. A higher count of older individuals suggests a dataset focused on age-related health conditions.

There is a notable imbalance, with far fewer cases of heart disease.*

II. Bivariate Analysis

In this section, the relationships between two variables and if possible, create new features combining them for better visualization

```
#Correlation heatmap
plt.figure(figsize=(8, 6))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap='coolwarm', fmt=".2f", linewidths=0.5)
plt.title("Feature Correlation Heatmap")
plt.show()
```

^{**}Blood Glucose is multi-modal distribution.

Diabetes Correlation:

Blood Glucose Level (0.42): Strongest correlation - diabetes is diagnosed based on high blood sugar.

HbA1c Level (0.40): Strong correlation with diabetics.

Age (0.26): Moderate correlations

Hypertension (0.20):Moderate correlations

BMI (0.21): Moderate correlations

✓ 1. HbA1c level vs. diabetes:

Question: What percentage of individuals with HbA1c levels above 6.5% have diabetes?

HbA1c_level

A hemoglobin A1C (HbA1C) test is a blood test that shows what your average blood sugar (glucose) level was over the past two to three months. we will create a new feature bassed on the value of (HbA1C)

HbA1c level initial diagnosis

- 1. < 5.7 Normal
- 2. 5.7 6.4 Prediabetes
- 3. greater or equal 6.5 Diabetes

Resource: https://www.cdc.gov/diabetes/managing/managing-blood-sugar/a1c.html

```
# Calculate percentage of individuals with HbA1c > 6.5% who have diabetes

diabetic_hba1c = df[(df['HbA1c_level'] > 6.5) & (df['diabetes'] == 1)].shape[0]

total_hba1c_above_6_5 = df[df['HbA1c_level'] > 6.5].shape[0]

if total_hba1c_above_6_5 > 0:
    percentage_diabetic_hba1c = (diabetic_hba1c / total_hba1c_above_6_5) * 100
    print(f"Percentage of individuals with HbA1c > 6.5% who have diabetes: {percentage_diabetic_hba1c:.2f}%")
```

```
else:
    print("No individuals with HbAlc > 6.5% in the dataset.")

Percentage of individuals with HbAlc > 6.5% who have diabetes: 36.82%

plt.figure(figsize=(8, 6))
sns.boxplot(x="diabetes", y="HbAlc_level", data=df, hue="diabetes", palette={0: "#1f77b4", 1: "#ff7f0e"}, legend=False)
plt.xticks([0, 1], ['Non-Diabetic', 'Diabetic'])
plt.title("HbAlc Level Distribution in Diabetic vs. Non-Diabetic Patients")
plt.xlabel("Diabetes Status")
plt.ylabel("HbAlc Level")
plt.show()
```


2. bmi vs diabetes:

Question: Does BMI above 30 increase the likelihood of diabetes by more than 50% compared to normal-weight individuals?

BMI Category

- =< 18.5 Underweight
- 18.5 24.9 Normal
- 25 29.9 Overweight
- · Greater than 30 Obesity

https://my_clevelandclinic.org/health/diagnostics/12363-blood-glucose-test https://www.cdc.gov/diabetes/basics/getting-tested.html

```
# Compute correlation matrix using actual column names
correlation_matrix = df[['bmi', 'diabetes', 'blood_glucose_level', 'HbA1c_level']].corr()
print("Correlation Matrix:\n", correlation_matrix)

Correlation Matrix:
```

	bmi	diabetes	blood_glucose_level	HbA1c_level
bmi	1.000000	0.209684	0.090496	0.081491
diabetes	0.209684	1.000000	0.419587	0.400696
blood_glucose_level	0.090496	0.419587	1.000000	0.166831
HbA1c level	0.081491	0.400696	0.166831	1.000000

```
# Visualize correlation matrix
plt.figure(figsize=(8, 6))
sns.heatmap(correlation_matrix, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Matrix: BMI, Diabetes, Blood Glucose, HbA1c")
plt.show()
```



```
# Define obesity threshold
df['Obese'] = df['bmi'] > 30
# Calculate diabetes risk for obese vs. non-obese
obese_diabetes_rate = df[df['Obese']]['diabetes'].mean()
non_obese_diabetes_rate = df[~df['Obese']]['diabetes'].mean()
print(f"Diabetes rate in obese individuals: {obese_diabetes_rate:.2%}")
print(f"Diabetes rate in non-obese individuals: {non_obese_diabetes_rate:.2%}")
    Diabetes rate in obese individuals: 18.03%
     Diabetes rate in non-obese individuals: 5.58%
# Plot
plt.figure(figsize=(6, 4))
sns.barplot(x=['Non-Obese', 'Obese'],
            y=[non_obese_diabetes_rate, obese_diabetes_rate],
            color='skyblue')
# Labels and title
plt.ylabel("Diabetes Prevalence")
plt.title("Diabetes Prevalence by BMI Category")
plt.tight_layout()
plt.show()
```



```
# Define BMI categories
bmi_bins = [0, 18.5, 24.9, 29.9, float('inf')]
bmi_labels = ['Underweight', 'Normal', 'Overweight', 'Obesity']
df['BMI_Category'] = pd.cut(df['bmi'], bins=bmi_bins, labels=bmi_labels, include_lowest=True)
# Calculate percentage of diabetics in each BMI category
bmi_diabetes_counts = df.groupby('BMI_Category', observed=True)['diabetes'].mean() * 100
# Create a structured table
bmi_table = pd.DataFrame({
    'BMI Category': bmi_labels,
    'Prediction': [f"{bmi_diabetes_counts.get(category, 0):.2f}% have diabetes" for category in bmi_labels]
})
# Display the table
print(bmi_table)
       BMI Category
                                Prediction
     0 Underweight
                       0.75% have diabetes
             Normal
                       3.84% have diabetes
         Overweight
                      7.25% have diabetes
            Obesity 17.92% have diabetes
# drow pie chart for each ['weight_type']
plt.figure(figsize = [12,12]);
# Assuming 'bmi' is used to determine weight type
# Define BMI categories and corresponding weight types
bmi_bins = [0, 18.5, 24.9, 29.9, float('inf')]
weight_types = ['Underweight', 'Normal', 'Overweight', 'Obesity']
# Create a new 'weight_type' column based on BMI categories
df['weight_type'] = pd.cut(df['bmi'], bins=bmi_bins, labels=weight_types, include_lowest=True)
plt.subplot(2,2,1);
plt.pie(df[df['weight_type'] == 'Underweight']['diabetes'].value_counts().values, labels = ['no diabetes', 'diabetes'],
       autopct='%1.2f%%', startangle = 45);
plt.title('Underweight')
plt.legend();
plt.subplot(2,2,2);
plt.pie(df[df['weight_type'] == 'Normal']['diabetes'].value_counts().values, labels = ['no diabetes', 'diabetes'],
       autopct='%1.2f%%',startangle = 45);
plt.title('Normal')
plt.legend();
plt.subplot(2,2,3);
plt.pie(df[df['weight_type'] == 'Overweight']['diabetes'].value_counts().values, labels = ['no diabetes', 'diabetes'],
       autopct='%1.2f%%',startangle = 45);
plt.title('Overrweight')
plt.legend();
plt.subplot(2,2,4);
```


→ 3. blood_glucose_level vs diabetes

Question: What is the mean blood glucose level for diabetic vs. non-diabetic individuals?

Glucose levels can be categorized as follows: • ≤ 99 mg/dL: Normal • 100 – 125 mg/dL: Prediabetic • ≥ 126 mg/dL: Diabetic

Resources: https://www.cdc.gov/diabetes/basics/getting-tested.html

```
# Calculate mean blood glucose level for diabetic vs. non-diabetic individuals
mean_glucose_diabetic = df[df['diabetes'] == 1]['blood_glucose_level'].mean()
mean_glucose_non_diabetic = df[df['diabetes'] == 0]['blood_glucose_level'].mean()

print(f"Mean Blood Glucose Level for Diabetic Individuals: {mean_glucose_diabetic:.2f}")

print(f"Mean Blood Glucose Level for Non-Diabetic Individuals: {mean_glucose_non_diabetic:.2f}")

Mean Blood Glucose Level for Diabetic Individuals: 194.09
Mean Blood Glucose Level for Non-Diabetic Individuals: 132.85
```

```
# Calculate mean blood glucose level for diabetic vs. non-diabetic individuals
median_glucose_diabetic = df[df['diabetes'] == 1]['blood_glucose_level'].median()
median_glucose_non_diabetic = df[df['diabetes'] == 0]['blood_glucose_level'].median()
print(f"median Blood Glucose Level for Diabetic Individuals: {median_glucose_diabetic:.2f}")
print(f"median Blood Glucose Level for Non-Diabetic Individuals: {median glucose non diabetic:.2f}")
⇒ median Blood Glucose Level for Diabetic Individuals: 160.00
     median Blood Glucose Level for Non-Diabetic Individuals: 140.00
# Define Blood Glucose Level categories
glucose_bins = [0, 99, 125, float('inf')]
glucose_labels = ['≤ 99', '100 - 125', '≥ 126']
df['Glucose_Category'] = pd.cut(df['blood_glucose_level'], bins=glucose_bins, labels=glucose_labels, include_lowest=True)
# Calculate percentage of diabetics in each Blood Glucose Level category
glucose_diabetes_counts = df.groupby('Glucose_Category', observed=True)['diabetes'].mean() * 100
# Create a structured table
glucose_table = pd.DataFrame({
    'Blood Glucose Level': glucose labels,
    'Prediction': [f"{glucose_diabetes_counts.get(category, 0):.2f}% have diabetes" for category in glucose_labels]
})
# Display the table
print(glucose_table)
₹
       Blood Glucose Level
                                      Prediction
                            0.00% have diabetes
                     ≤ 99
                 100 - 125 0.00% have diabetes
                    ≥ 126 11.83% have diabetes
# Step 1: Convert to numeric and handle errors
df['blood_glucose_level'] = pd.to_numeric(df['blood_glucose_level'], errors='coerce')
# Step 2: Drop rows with missing glucose values (optional)
df = df.dropna(subset=['blood_glucose_level'])
# Step 3: Define glucose bins and labels
glucose_bins = [0, 99, 125, float('inf')]
blood_glucose_level_labels = ['normal', 'prediabetes', 'diabetes']
# Step 4: Create categorized column
df['blood_glucose_level_cat'] = pd.cut(df['blood_glucose_level'],
                                       bins=glucose_bins,
                                       labels=blood_glucose_level_labels,
                                       include_lowest=True)
# Step 5: Plot pie charts
plt.figure(figsize=(14, 6))
categories = ['normal', 'prediabetes', 'diabetes']
for i, cat in enumerate(categories):
   plt.subplot(1, 3, i + 1)
   subset = df[df['blood_glucose_level_cat'] == cat]['diabetes']
   counts = subset.value_counts()
   labels = ['no diabetes' if val == 0 else 'diabetes' for val in counts.index]
   plt.pie(counts.values, labels=labels, autopct='%1.2f%%', startangle=45)
   plt.title(f'Blood Glucose = {cat}')
plt.tight_layout()
plt.show()
```


all patients with diabetes have high sugar test result (> 126)

Double-click (or enter) to edit

```
# Define Blood Glucose Level categories
glucose_bins = [0, 99, 125, float('inf')]
glucose_labels = ['≤ 99', '100 - 125', '≥ 126']
df['Glucose_Category'] = pd.cut(df['blood_glucose_level'], bins=glucose_bins, labels=glucose_labels, include_lowest=True)

# Plot a bar chart for blood glucose categories (Fixing FutureWarning)
plt.figure(figsize=(6, 5))
sns.countplot(x="Glucose_Category", data=df, hue="Glucose_Category", palette="pastel", legend=False)
plt.title("Distribution of Patients Across Blood Glucose Levels")
plt.xlabel("Blood Glucose Level (mg/dL)")
plt.ylabel("Number of Patients")
plt.show()
```


all patients with diabetes have high sugar test result (> 126)

```
\# Plot the distribution of Blood Glucose Levels vs. Diabetes Status plt.figure(figsize=(10, 6))
```

```
sns.boxplot(x=df['diabetes'], y=df['blood_glucose_level'], hue=df['diabetes'], palette="coolwarm", legend=False)

# Set plot labels and title
plt.title("Relationship Between Blood Glucose Level and Diabetes Status")
plt.xlabel("Diabetes Status (0 = No, 1 = Yes)")
plt.ylabel("Blood Glucose Level (mg/dL)")

# Show the plot
plt.show()
```


Relationship Between Blood Glucose Level and Diabetes Status 300 (1) 250 250 100 Diabetes Status (0 = No, 1 = Yes)

```
# Group data by blood glucose level and count diabetes cases
blood_glucose_summary = df.groupby('blood_glucose_level').agg(
    diabetes=('diabetes', 'sum'), # Count of diabetes cases
    total=('diabetes', 'count')  # Total instances per blood glucose level
).reset_index()
# Calculate the percentage of diabetes cases for each blood glucose level
blood_glucose_summary['percentage'] = (blood_glucose_summary['diabetes'] / blood_glucose_summary['total']) * 100
# Create a bar plot for Blood Glucose Level vs Percentage of Persons with Diabetes (Fixing FutureWarning)
plt.figure(figsize=(10, 6))
sns.barplot(x="blood_glucose_level", y="percentage", data=blood_glucose_summary, hue="blood_glucose_level", palette="coolwarm", legend=False
# Customize the plot
plt.title("Fig.12: Bar plot for Glucose Level vs Percentage of Persons with Diabetes")
plt.xlabel("Blood Glucose Level (mg/dL)")
plt.ylabel("Percentage of Diabetic Patients (%)")
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
plt.show()
```

₹

Fig.12: Bar plot for Glucose Level vs Percentage of Persons with Diabetes

• Patients with ['blood_glucose_level'] between 126 to 200, around 7.5 of them have already diabetes and that whose ['blood_glucose_level'] >= 220, all of then have accually diabetes.

Double-click (or enter) to edit

4. hypertension vs bmi

```
# Question: What is the average BMI for individuals with and without hypertension?
mean_bmi_hypertension = df[df['hypertension'] == 1]['bmi'].mean()
mean_bmi_no_hypertension = df[df['hypertension'] == 0]['bmi'].mean()
print(f"Mean BMI for individuals with Hypertension: {mean_bmi_hypertension:.2f}")
print(f"Mean BMI for individuals without Hypertension: {mean_bmi_no_hypertension:.2f}")
    Mean BMI for individuals with Hypertension: 30.01
     Mean BMI for individuals without Hypertension: 26.75
# Question: What is the median BMI for individuals with and without hypertension?
median_bmi_hypertension = df[df['hypertension'] == 1]['bmi'].median()
median_bmi_no_hypertension = df[df['hypertension'] == 0]['bmi'].median()
print(f"Median BMI for individuals with Hypertension: {median_bmi_hypertension:.2f}")
print(f"Median BMI for individuals without Hypertension: {median_bmi_no_hypertension:.2f}")
    Median BMI for individuals with Hypertension: 28.70
     Median BMI for individuals without Hypertension: 27.32
sns.boxplot(x=df['hypertension'], y=df['bmi'])
plt.title("BMI Distribution by Hypertension Status")
plt.show()
```


▼ 5. Age vs Heart Disease

```
Age & Diabetes: 0.272 (Moderate correlation)
Age & Hypertension: 0.260 (Moderate correlation)
Age & Heart Disease: 0.266 (Moderate correlation)
# Question: What is the median age of individuals with and without heart disease?
median_age_heart_disease = df[df['heart_disease'] == 1]['age'].median()
median_age_no_heart_disease = df[df['heart_disease'] == 0]['age'].median()
print(f"Median Age for individuals with Heart Disease: {median age heart disease:.2f}")
print(f"Median Age for individuals without Heart Disease: {median_age_no_heart_disease:.2f}")
    Median Age for individuals with Heart Disease: 70.00
     Median Age for individuals without Heart Disease: 41.00
# Comparing the age distribution of patients with and without heart disease.
# Create a boxplot to compare age distribution between patients with and without heart disease
plt.figure(figsize=(8, 6))
sns.boxplot(x="heart_disease", y="age", data=df, hue="heart_disease", palette={0: "#1f77b4", 1: "#ff7f0e"}, legend=False)
plt.xticks([0, 1], ['No Heart Disease', 'Heart Disease'])
plt.title("Age Distribution of Patients with and without Heart Disease")
plt.xlabel("Heart Disease Status")
plt.ylabel("Age")
plt.show()
```


Hypothesis Testing

T-test: Compare blood glucose levels between diabetic and non-diabetic individuals.

Use a T-Test when: Target (diabetic vs. non-diabetic patients). Continuous variable (e.g., blood glucose levels, BMI, HbA1c levels).

Since the p-value is much lower than 0.05, we reject the null hypothesis. There is a significant difference in blood glucose levels between diabetic and non-diabetic individuals. Blood glucose is a strong differentiator for diabetes.

Chi-Square Test: Check if hypertension and diabetes are significantly associated.

The Chi-Square Test is a statistical test used to determine whether there is a significant association between two categorical variables

```
contingency_table = pd.crosstab(df['hypertension'], df['diabetes'])
chi2_stat, p_value_chi2, dof, expected = stats.chi2_contingency(contingency_table)

print(f"Chi-Square Test Results (Hypertension vs Diabetes):")
print(f"Chi-Square Statistic: {chi2_stat:.4f}, P-Value: {p_value_chi2:.4f}")
print("Significant Association" if p_value_chi2 < 0.05 else "No Significant Association")
print("-" * 50)</pre>
```

```
Chi-Square Test Results (Hypertension vs Diabetes):
Chi-Square Statistic: 3909.5098, P-Value: 0.0000
Significant Association
```

There is strong statistical association between hypertension and diabetes. This means that individuals with hypertension are significantly more likely to have diabetes.

Updated Predictive Modeling

SUMMARY OF CODE

Double-click (or enter) to edit

import matplotlib.pyplot as plt

Create a list to store model results

pipeline = make_pipeline(preprocessor, model)
#Pipeline to combine preprocessing and modeling

cv_scores = cross_val_score(pipeline, X_train, y_train, cv=5)

for name, model in models.items():

import seaborn as sns

results = []

X = df.drop("diabetes", axis=1) # All input features y = df["diabetes"] # Target column from sklearn.model_selection import train_test_split, cross_val_score from sklearn.pipeline import make_pipeline from sklearn.compose import ColumnTransformer $from \ sklearn.preprocessing \ import \ Standard Scaler, \ One Hot Encoder$ from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.svm import SVC # Split your data X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Identify column types categorical = X.select_dtypes(include='object').columns numerical = X.select_dtypes(include='number').columns # Create column transformer preprocessor = ColumnTransformer([("num", StandardScaler(), numerical), ("cat", OneHotEncoder(handle_unknown='ignore'), categorical) # Define models with random_state where supported models = { "Logistic Regression": LogisticRegression(max_iter=1000, random_state=42), "KNN": KNeighborsClassifier(), # No random_state "Decision Tree": DecisionTreeClassifier(random_state=42), "Random Forest": RandomForestClassifier(random_state=42), "SVM": SVC(random_state=42) } from sklearn.metrics import accuracy score, precision score, recall score, f1 score from sklearn.metrics import fbeta_score # Needed for F2 Score import pandas as pd

#cross_val_score() on the training set to ensure every fold re-fits the encoder and scaler on the training part of that fold

#applies all transformations inside cross-validation (no data leakage and Only Training Folds Are Used to Fit the Encoder and Scaler)

#inside cross-validation: The model splits your data into 5 parts (tolds). In each round, it trains on 4 tolds and tests on 1. $pipeline.fit(X_train, y_train)$ y_pred = pipeline.predict(X_test) test_score = pipeline.score(X_test, y_test) results.append({ 'Model': name, 'Mean CV Score': cv_scores.mean(), 'Test Score': test_score, 'Accuracy': accuracy_score(y_test, y_pred), 'Precision': precision_score(y_test, y_pred, average='binary'), 'Recall': recall_score(y_test, y_pred, average='binary'), 'F1 Score': f1_score(y_test, y_pred, average='binary'), 'F2 Score': fbeta_score(y_test, y_pred, beta=2, average='binary') }) print(f"\n{name}") print(f"Mean CV Score: {cv_scores.mean():.4f}") print(f"Test Accuracy: {test_score:.4f}") print(f"Precision: {precision_score(y_test, y_pred):.4f}") print(f"Recall: {recall_score(y_test, y_pred):.4f}") print(f"F1 Score: {f1_score(y_test, y_pred):.4f}") print(f"F2 Score: {fbeta_score(y_test, y_pred, beta=2):.4f}") # Create results DataFrame results df = pd.DataFrame(results).set index('Model') print("\nii Results Table:\n", results_df) # Plot F1 Scores plt.figure(figsize=(10, 6)) sns.barplot(data=results_df.reset_index(), x='Model', y='F1 Score') plt.title("F1 Score Comparison Across Models") plt.xticks(rotation=45) plt.tight_layout() plt.show()


```
Logistic Regression
Mean CV Score: 0.9608
Test Accuracy: 0.9595
Precision:
               0.8790
Recall:
               0.6304
               0.7343
F1 Score:
F2 Score:
               0.6682
KNN
Mean CV Score: 0.9603
Test Accuracy: 0.9594
               0.9017
Precision:
Recall:
               0.6096
F1 Score:
               0.7274
F2 Score:
               0.6518
Decision Tree
```

Mean CV Score: 0.9519

Test Accuracy: 0.9518 Precision: 0.7221 Recall: 0.7437 F1 Score: 0.7327 F2 Score: 0.7392

Random Forest

Mean CV Score: 0.9697 Test Accuracy: 0.9687 Precision: 0.9423 Recall: 0.6896 0.7964 F1 Score: F2 Score: 0.7287

SVM

SVM

Mean CV Score: 0.9636 Test Accuracy: 0.9618 Precision: 0.9847 Recall: 0.5786 F1 Score: 0.7289 F2 Score: 0.6306

Results Table:

	Mean CV Score	Test Score	Accuracy	Precision	Recall	\
Model			-			
Logistic Regression	0.960805	0.959494	0.959494	0.879026	0.630423	
KNN	0.960318	0.959444	0.959444	0.901667	0.609577	
Decision Tree	0.951941	0.951843	0.951843	0.722101	0.743662	
Random Forest	0.969732	0.968695	0.968695	0.942263	0.689577	
SVM	0.963631	0.961794	0.961794	0.984660	0.578592	

F1 Score F2 Score Model Logistic Regression 0.734252 0.668219 0.727395 0.651807 Decision Tree 0.732723 0.739247 Random Forest 0.796357 0.728658

0.728886 0.630603

F1 Score Comparison Across Models

Logistic Redi

Decisio.

Model

```
# Plot F2 Scores
plt.figure(figsize=(10, 6))
sns.barplot(data=results_df.reset_index(), x='Model', y='F2 Score')
plt.title("F2 Score Comparison Across Models")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


F2 Score Comparison Across Models

The F2 score is a variation of the F1 score that puts more weight on recall than on precision. When recall is more important than precision, use F2.

Class	Classification Report: precision			f1-score	support
	0	0.96	0.99	0.98	18222
	1	0.90	0.61	0.73	1775
26611				0.06	19997
accur	acy			0.96	19997
macro	avg	0.93	0.80	0.85	19997
weighted	avg	0.96	0.96	0.96	19997

Classification Report: precision		Decision recall	support	
0	0.97	0.97	0.97	18222
1	0.72	0.74	0.73	1775
accuracy			0.95	19997
macro avg	0.85	0.86	0.85	19997

weighted avg 0.95 0.95 0.95 19997

<pre>Classific</pre>	ation Report: precision		f1-score	support
0 1	0.96 0.98	1.00 0.58	0.98 0.73	18222 1775
accuracy macro avg weighted avg	0.97 0.96	0.79 0.96	0.96 0.85 0.96	19997 19997 19997

Predicted label

Already done:

- 1. Cross-validation
- 2. Preprocessing pipelines
- 3. Model comparisons
- 4. Metric plots

plt.show()

5. F2 score integration

New Steps

- 1. Add confusion matrices per model
- 2. Try ROC-AUC curves
- 3. Start GridSearchCV for tuning
- #1 Confusion Matrices (per model) from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay for name, model in models.items(): pipeline = make_pipeline(preprocessor, model) pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) cm = confusion_matrix(y_test, y_pred) disp = ConfusionMatrixDisplay(confusion_matrix=cm) disp.plot(cmap='Blues') plt.title(f"Confusion Matrix: {name}") plt.show() from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay import matplotlib.pyplot as plt import numpy as np for name, model in models.items(): pipeline = make_pipeline(preprocessor, model) cv_scores = cross_val_score(pipeline, X_train, y_train, cv=5) pipeline.fit(X_train, y_train) y_pred = pipeline.predict(X_test) # Raw confusion matrix cm = confusion_matrix(y_test, y_pred) # Normalize by total sum to get percentages cm_percent = cm.astype('float') / cm.sum() * 100 # Or use axis=1 for row-wise # Round percentages for cleaner display cm_percent_rounded = np.round(cm_percent, 2) disp = ConfusionMatrixDisplay(confusion_matrix=cm_percent_rounded) disp.plot(cmap='Blues', values_format=".2f") plt.title(f"Confusion Matrix (%): {name}")


```
#2 ROC-AUC Curves
from sklearn.metrics import roc_curve, auc
for name, model in models.items():
    pipeline = make_pipeline(preprocessor, model)
    cv_scores = cross_val_score(pipeline, X_train, y_train, cv=5)
    pipeline.fit(X_train, y_train)
    if hasattr(pipeline[-1], "predict_proba"): # Some models like SVM with linear kernel may not
       y_scores = pipeline.predict_proba(X_test)[:, 1]
    else:
       y_scores = pipeline.decision_function(X_test)
    fpr, tpr, _ = roc_curve(y_test, y_scores)
    roc_auc = auc(fpr, tpr)
    plt.figure()
    plt.plot(fpr, tpr, label=f'{name} (AUC = {roc_auc:.2f})')
    plt.plot([0, 1], [0, 1], linestyle='--', color='gray')
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title(f"ROC Curve: {name}")
    plt.legend(loc="lower right")
    plt.grid(True)
    plt.show()
```



```
#3 GridSearchCV (start tuning) - Only Tune Random Forest
from sklearn.model_selection import GridSearchCV
param_grid = {
    'randomforestclassifier__n_estimators': [50, 100, 150],
    'randomforestclassifier__max_depth': [5, 10, 15]
pipeline = make pipeline(preprocessor, RandomForestClassifier(random state=42))
grid = GridSearchCV(pipeline, param_grid, cv=5, n_jobs=-1)
grid.fit(X_train, y_train)
print("Best parameters:", grid.best_params_)
print("Best cross-val score:", grid.best_score_)
# Evaluate best model
y_pred = grid.predict(X_test)
print("Test Accuracy:", accuracy_score(y_test, y_pred))
Best parameters: {'randomforestclassifier_max_depth': 5, 'randomforestclassifier_n_estimators': 50}
     Best cross-val score: 0.9721197724573358
     Test Accuracy: 0.9708456268440266
*Full Code to Get Best Hyperparameters + Classification Report for Random Forest:
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
import pandas as pd
# 1. Create pipeline
rf_pipeline = make_pipeline(preprocessor, RandomForestClassifier(random_state=42))
# 2. Define hyperparameter grid
param_grid = {
    'randomforestclassifier__n_estimators': [50, 100, 200],
    'randomforestclassifier__max_depth': [None, 5, 10],
    'randomforestclassifier__min_samples_split': [2, 5]
}
# 3. Run GridSearchCV
grid_search = GridSearchCV(
    rf_pipeline,
    param_grid,
    cv=5,
    scoring='f1',
   n_jobs=-1,
    verbose=1
grid_search.fit(X_train, y_train)
# 4. Best estimator and predictions
best_rf_model = grid_search.best_estimator_
y_pred_best = best_rf_model.predict(X_test)
# 5. Print best parameters
print("\n ☑ Best Hyperparameters for Random Forest:")
print(grid_search.best_params_)
# 6. Classification report
print(classification_report(y_test, y_pred_best))
Fitting 5 folds for each of 18 candidates, totalling 90 fits
     ☑ Best Hyperparameters for Random Forest:
      \{ \text{'randomforestclassifier\_max\_depth': 10, 'randomforestclassifier\_min\_samples\_split': 5, 'randomforestclassifier\_n\_estimators': 50} \} 
     Classification Report (Tuned Random Forest):
                  precision
                               recall f1-score support
```

0	0.97	1.00	0.98	18222
1	1.00	0.67	0.80	1775
accuracy			0.97	19997
macro avg	0.98	0.84	0.89	19997
weighted avg	0.97	0.97	0.97	19997

Start coding or generate with AI.

Summary:

- 1. Cleaned and split your diabetes dataset
- 2. Trained and compared 5 models using cross-validation
- 3. Evaluated key metrics: Accuracy, Precision, Recall, F1, and F2
- 4. Plotted all metrics + confusion matrices
- 5. Identified top 5 most important features using Random Forest
- 6. Built a simpler, faster model using only those top features
- 7. Tuned it with GridSearchCV → Best performance overall!

Feature Engineering

```
X = df.drop("diabetes", axis=1)
y = df["diabetes"]
# 2. Split the data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 3. Set up preprocessor
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler, OneHotEncoder
categorical = X.select_dtypes(include='object').columns
numerical = X.select_dtypes(include='number').columns
preprocessor = ColumnTransformer([
    ("num", StandardScaler(), numerical),
    ("cat", OneHotEncoder(handle_unknown='ignore'), categorical)
])
# 4. Train pipeline with Random Forest
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import RandomForestClassifier
pipeline = make_pipeline(preprocessor, RandomForestClassifier(random_state=42))
pipeline.fit(X_train, y_train)
# 5. Extract feature importances
model = pipeline.named_steps['randomforestclassifier']
importances = model.feature_importances_
# 6. Get feature names
all_feature_names = list(numerical)
if categorical.any():
    encoder = pipeline.named_steps['columntransformer'].named_transformers_['cat']
    all_feature_names += list(encoder.get_feature_names_out(categorical))
# 7. Create importance DataFrame
importances_df = pd.DataFrame({
    'Feature': all_feature_names,
    'Importance': importances
}).sort_values(by='Importance', ascending=False)
# 8. Show top 5 features
print(importances_df.head(5))
<del>_</del>
                    Feature Importance
                HbA1c_level
                               0.413342
       blood glucose level
                               0.319270
                               0.108556
```

```
0 age 0.107603
1 hypertension 0.015521
```

Smoking and gender have minor predictive value in your dataset.

This insight can guide you to build a smaller, faster model using just the top 4-5 features with minimal performance loss.

```
# 🥕 1. Retrain Model with Top 5 Feature
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import make_pipeline
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
# Use only top 5 important features
top_features = importances_df['Feature'].head(5).tolist()
X_{top5} = X[top_features]
# Train/test split
X_train_top5, X_test_top5, y_train_top5, y_test_top5 = train_test_split(X_top5, y, test_size=0.2, random_state=42)
# Preprocessor (only numerical here)
simpler_preprocessor = ColumnTransformer([
    ("num", StandardScaler(), top_features)
])
# Pipeline
simpler_pipeline = make_pipeline(simpler_preprocessor, RandomForestClassifier(random_state=42))
cv_scores = cross_val_score(simpler_pipeline, X_train_top5, y_train_top5, cv=5)
print("Mean CV Score:", cv_scores.mean())
simpler_pipeline.fit(X_train_top5, y_train_top5)
```



```
#Compare performance (accuracy, F1) between full vs top-5 models
# ℯ️ 1. Compare Full vs. Top-5 Model
from sklearn.metrics import accuracy_score, f1_score
# Predictions
y_pred_full = pipeline.predict(X_test)
y_pred_top5 = simpler_pipeline.predict(X_test_top5)
# Metrics
full_accuracy = accuracy_score(y_test, y_pred_full)
full_f1 = f1_score(y_test, y_pred_full)
top5_accuracy = accuracy_score(y_test_top5, y_pred_top5)
top5_f1 = f1_score(y_test_top5, y_pred_top5)
# Summary table
import pandas as pd
performance_comparison = pd.DataFrame({
    "Model": ["Full Model", "Top-5 Model"],
    "Accuracy": [full_accuracy, top5_accuracy],
    "F1 Score": [full_f1, top5_f1]
})
print(performance_comparison)
```

```
Model Accuracy F1 Score
0 Full Model 0.968695 0.796357
1 Top-5 Model 0.966595 0.786718
```

top-5 model performs nearly as well as the full model:

Just 0.2% drop in accuracy

Clight doorgood in E1 coord