Modern Regression

Jean-Luc Bouchot

School of Mathematics and Statistics Beijing Institute of Technology jlbouchot@bit.edu.cn

Spring 2021

Regularization and model selection

Outline

Regularization and model selection

Remark 2.1

As seen from the height/weight dataset, it is, if one wishes, possible to fit perfectly the data.

Theorem 2.1 (Lagrange Interpolation - Admitted)

Let $\{(x_i, y_i)\}_{1 \le i \le n}$ be n samples of a given phenomenon.

Assuming $x_i \neq x_j$ for all $i \neq j$, then there exists a degree n-1 polynomial P_n such that the approximation error is $0: P_n(x_i) = y_i$ for all $1 \leq i \leq n$.

Remark 2.2

Assume the underlying model is indeed a polynomial one: what happens if the samples are noisy?

Example 2.1

Assume the following data are given

Target	Predictor	Noisy target		
-0.5	-2.5	-0.492		
1	-1	0.936		
2.5	0.5	2.542		
4	2	4.011		

- \bullet Compute the estimations using polynomial features of degree 0 up to 3 (included)
- 2 Compute the approximation errors for each of the polynomial features.

Remark 2.3
This gives the following results:

Noiseless $ \begin{vmatrix} d = 0 & 1.75 & 0 & 0 & 0 & 3.354 \\ d = 1 & 2 & 1 & 0 & 0 & 0 \\ d = 2 & 2 & 1 & 0 & 0 & 0 \\ d = 3 & 2 & 1 & 0 & 0 & 0 \\ d = 0 & 1.749 & 0 & 0 & 0 & 3.354 \\ d = 1 & 2.001 & 1.008 & 0 & 0 & 0.026 \end{vmatrix} $		Degree features	Coef 0	Coef 1	Coef 2	Coef 3	Error with	true
Noiseless d = 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Noiseless	d = 0	1.75	0	0	0	3.354	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		d = 1	2	1	0	0	0	
d = 0		d=2	2	1	0	0	0	
d = 1 2 001 1 008 0 0 0 0.026		d = 3	2	1	0	0	0	
d = 1 2.001 1.008 0 0 0.026		d = 0	1.749	0	0	0	3.354	
	Noisy	d = 1	2.001	1.008	0	0	0.026	
d = 2 $\begin{vmatrix} 1.989 & 1.001 & 0.005 & 0 \\ 0.033 \end{vmatrix}$		d=2	1.989	1.001	0.005	0	0.033	
d = 3 2.006 1.079 -0.007 -0.016 0.078		d = 3	2.006	1.079	-0.007	-0.016	0.078	

Example 2.2

We reiterate the same idea, with the following data:

Predictor	Noisier target	Noisiest target
-2.5	-0.502	0.013
-1	0.922	1.204
0.5	2.608	2.473
2	3.896	4.220

Remark 2.4 We obtain the following results:

	Degree features	Coef 0	Coef 1	Coef 2	Coef 3	Error with	true
Noisy	d = 0	1.749	0	0	0	3.354	
	d = 1	2.001	1.008	0	0	0.026	
	d=2	1.989	1.001	0.005	0	0.033	
	d = 3	2.006	1.079	-0.007	-0.016	0.078	
Noisier	d = 0	1.731	0	0	0	3.354	
	d = 1	1.979	0.992	0	0	0.047	
	d=2	2.021	0.984	-0.015	0	0.082	
	d = 3	2.05	1.129	-0.040	-0.033	0.169	
Noisiest	d = 0	1.978	0	0	0	3.385	
	d = 1	2.209	0.926	0	0	0.518	
	d = 2	2.039	0.957	0.062	0	0.588	
	d = 3	2.017	0.870	0.077	0.020	0.595	

Example 2.3

Looking back at the solution we have obtained, we notice the following: let $\beta(d)$ denotes the (d+1)-dimensional vector of coefficients obtained in the regression, its norm is

	$\ \beta(0)\ $	$\beta(1)$	$\ \beta(2)\ $	$\ \beta(3)\ $
Noiseless	1.75	2.236	2.236	2.236
Noisy	1.749	2.241	2.230	2.278
Noisier	1.731	2.214	2.248	2.347
Noisiest	1.977	2.395	2.253	2.196

Example 2.4

Let us try on a bigger training set: 20 sampling points uniformly spaced, the target values are computed from a noisy linear model. We let d vary from 0 to 25.

Definition 2.1

The ridge regression is a regression problem which penalizes heavy coefficients. It is expressed as

$$\widehat{\boldsymbol{\beta}} := \mathop{\rm argmin}_{\boldsymbol{\beta} \in \mathbb{R}^D} \| \boldsymbol{X} \boldsymbol{\beta} - \mathbf{y} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_2^2,$$

where $X \in \mathbb{R}^{n \times D}$ denotes the data matrix and $\mathbf{y} \in \mathbb{R}^n$ the target (dependent) variables.

Proposition 2.1

The Ridge Regression approach is equivalent to the following constrained optimization problem

$$\widehat{\beta} = \operatorname*{argmin}_{\beta \in \mathbb{R}^D} \|X\beta - \mathbf{y}\|_2^2$$
subject to $\|\beta\|_2^2 \le \tau$,

for a certain value of τ which depends on λ .