Simulation Design for a Partially Linear Model

Let

$$y_i = d_i + x'_i(c_y\theta_0) + u_i,$$

$$d_i = \frac{\exp\{x'_i(c_d\theta_0)\}}{1 + \exp\{x'_i(c_d\theta_0)\}} + v_i,$$

where $v_i \sim N(0,1)$, $u_i \sim N(0,1)$, u_i and v_i are independent, $p = dim(x_i) = 250$, the covariates $x_i \sim N(0,\Sigma)$ with $\Sigma_{kj} = (0.5)^{|j-k|}$, and the sample size n = 200. θ_0 is a $p \times 1$ vector with elements set as $\theta_{0,j} = (1/j)^2$ for $j = 1, \ldots, p$. c_d and c_y are scalars that control the strength of the relationship between the controls, the outcome, and the treatment variable d_i . We can try several different combinations of c_d and c_y , setting

$$c_d = \sqrt{\frac{(\pi^2/3)R_d^2}{(1 - R_d^2)\theta_0'\Sigma\theta_0}}, \ c_y = \sqrt{\frac{R_y^2}{(1 - R_y^2)\theta_0'\Sigma\theta_0}},$$

for different combinations of $R_d^2 \in \{0, 0.1, 0.5, 0.9\}$ and $R_y^2 \in \{0, 0.1, 0.5, 0.9\}$.