TERMODINÂMICA (EQE-363) Prof. Frederico W. Tavares

- 1) Quantidades equimolares de A e B são alimentadas num tanque a 25 0 C. Sabendo-se que as pressões de vapor dos componentes puros a 25 0 C são iguais a $P_{A}^{sat}(bar) = 1$ e $P_{B}^{sat}(bar) = 3$, que a fase gasosa se comporta como gás ideal e que a fase líquida forma uma mistura **não ideal**, descrita através do modelo de Margules ($\ln \gamma_{A} = 4x_{B}^{2}$ e $\ln \gamma_{B} = 4x_{A}^{2}$), calcule a pressão de ponto de bolha desta mistura.
- 2) Utilizando as informações correspondentes à Questão 1, mostre como se calcularia as composições das fases correspondentes para que o sistema apresente 50% de vapor no interior do tanque.
- 3) Quantidades equimolares de A e B são alimentadas num tanque a 25 0 C. Sabendo-se que as pressões de vapor dos componentes puros a 25 0 C são iguais a $P_{A}^{sat}(bar) = 1$ e $P_{B}^{sat}(bar) = 2$, que a fase gasosa se comporta como gás ideal e que os componentes são imiscíveis na fase líquida, calcule a pressão e as composições de equilíbrio.
- 4) Uma corrente contendo 1 mol de A e 1 mol de inerte (I) entra num reator catalítico de leito fixo para formar B através da seguinte reação: A(g) \Leftrightarrow B(g), onde $\Delta G_{298K} = 600cal/mol$ e $\Delta H_{298K} \cong \Delta H_{596K} = 1200cal/mol$. Considerando o comportamento de gás ideal, onde a constante universal dos gáses é R = 2cal/gmolK, calcule as composições de A e B (y_A e y_B) em equilíbrio quando o reator opera a 596K e 2 bar.
- 6) (40 pontos) Uma mistura contendo 40%, em mols, de dissulfureto de carbono (1) e o restante de acetona (2) escoa numa tubulação industrial a 35 °C. Calcule a maior pressão de operação para que o sistema apresente apenas fase vapor. Dados:
- O comportamento da mistura é bem descrito pelo modelo de Margules ($\frac{G^E}{RT} = Ax_1x_2$).
- O sistema forma azeótropo a 35 0 C na composição de $y_{1}^{AZ} = 0,67$. $P_{1}^{SAT} = 0,7$ bar e $P_{2}^{SAT} = 0,5$ bar.
- 7) Uma mistura equimolar de A e B entra num reator e os componentes participam das seguintes reações a 450 K e 2 atm: A (g) \Leftrightarrow B (g) e B (g) \Leftrightarrow 2 D (g) . Considerando o comportamento de gás ideal e que só existem A, B e D dentro do sistema, calcule a composição de equilíbrio na saída do reator. Dados: Energias livres de Gibbs e calores de formação dos componentes a 400 K e 1 atm no estado de referência de gás ideal.

Compostos	$\Delta G_{\mathrm{f}}^{0}(\mathrm{cal/gmol})$	$\Delta H_{\mathrm{f}}^{0}(\mathrm{cal/gmol})$
A	20	40000
В	25	30000
D	15	50000

- 8) (40 pontos) Uma corrente industrial contem 30 % (em mols) de propano(1), 40 % (em mols) de n-hexano e o restante de um solvente especial (líquido iônico, cuja pressão de vapor pode ser considerada igual a zero) escoa a 300K. Dados: $P_1^{sat}(300K) = 68 \text{ kPa e } P_2^{sat}(300K) = 45 \text{ kPa e } P_3^{sat}(300K) = 0 \text{ kPa}$
- a) Calcule a menor pressão de operação para que o sistema apresente apenas fase líquida.
- b) Calcule as composições molares das fases para que a corrente apresente 30% de vapor.
- 9) Uma mistura de 20% de $\bf A$, 30% de $\bf B$ e o restante de inerte $\bf I$ entra num reator e os componentes participam das seguintes reações a 500 K e 4 atm: $\bf A$ (g) $\Leftrightarrow \bf B$ (g) e $\bf B$ (g) $\Leftrightarrow \bf 2$ $\bf D$ (s). Considerando o comportamento de gás ideal e que $\bf D$ é sólido dentro do sistema, calcule a composição da fase gasosa de equilíbrio na saída do reator.

Dados: Energias livres de Gibbs e calores de formação dos componentes a 400 K e 1 atm no estado de referência de gás ideal para os compostos A e B e no estado de sólido puro para D.

Compostos	$\Delta G_{\mathrm{f}}^{0}(\mathrm{cal/gmol})$	$\Delta H_{\mathrm{f}}^{0}(\mathrm{cal/gmol})$
Α	200	4000
В	250	3000
D	150	2500