$\frac{\partial u}{\partial t} = \alpha dt , u(0) = u_0$ $\frac{\partial u}{\partial t} = \alpha dt , u(0) = u(0)$ $\frac{\partial u}{\partial t} = \alpha dt , u(0) = u(0)$ $\frac{\partial u}{\partial t} = \alpha dt , u(0) = u(0)$ $\frac{\partial u}{\partial t} = \alpha dt , u(0) = u(0)$ $\frac{\partial u}{\partial t} = \alpha dt , u(0) = u(0)$ $\frac{\partial u}{\partial t} = \alpha dt , u(0) = u(0)$ $\frac{\partial u}{\partial t} = \alpha dt , u(0) = u(0)$

Si $\Delta t > \frac{1}{d}$ y d < 0= el producto (1+ $d \Delta t$) es menor a levo

fonc Por t'se-19lo $\Delta t = 1.1$ = $U_k = (1 - \alpha \cdot 1.1)^k U_0 \Delta t$ Ly (1- $\alpha \cdot 1.1$) es regativo

Osca que se la Positive Para

K Pat tim y regative

Para K impar