第1章

ベクトルと座標

移動の表現としてのベクトル

平面上のある点の位置を表すのに、よく使われるのが直交座標系である。 直交座標系では、x軸と y軸を垂直に張り、

- 原点 O からの x 軸方向の移動量(x 座標)
- 原点 O からの y 軸方向の移動量(y 座標)

という 2 つの数の組で点の位置を表す。

「位置の特定」という視点

「移動」という視点

座標とは、「x 軸方向の移動」と「y 軸方向の移動」という 2 回の移動を行った結果である。 右にどれくらい、上にどれくらい、という考え方で平面上の「位置」を特定しているわけだ が、単に「移動」を表したいだけなら、点から点へ向かう矢印で一気に表すこともできる。

ある地点から別のある地点への「移動」を表す矢印をベクトルという。

ベクトルが示す、ある地点からこのように移動すれば、この地点にたどり着く…といった「移動」の情報は、相対的な「位置関係」を表す上で役に立つ。

平行移動してもベクトルは同じ

座標は「位置」を表すものだが、ベクトルは「移動」を表すものにすぎない。

座標は「原点からの」移動量によって位置を表すが、ベクトルは始点の位置にはこだわらない。

たとえば、次の 2 つのベクトルは始点の位置は異なるが、同じ向きに同じだけ移動している 矢印なので、同じベクトルとみなせる。

このような「同じ向きに同じだけ移動している矢印」は、平面内では平行な関係にある。 つまり、平行移動して重なる矢印は、同じベクトルとみなすことができる。

移動の合成とベクトルの分解

ベクトルは、各方向への移動の合成として考えることもできる。

純粋に「縦」と「横」に分解した場合は直交座標の考え方によく似ているが、必ずしも直交 する方向のベクトルに分解する必要はない。

高次元への対応:数ベクトル

2次元以上の空間内の「移動」を表すには、「縦」と「横」などといった 2 方向だけでなく、 もっと多くの方向への移動量を組み合わせて考える必要がある。

また、4次元を超えてしまうと、矢印の描き方すら想像がつかなくなってしまう。それは、 方向となる軸が多すぎて、どの方向に進むかを表すのが難しくなるためだ。

そこで、一旦「向き」の情報を取り除くことで、高次元に立ち向かえないかと考える。 移動を表す矢印は「どの方向に進むか」と「どれくらい進むか」という向きと大きさの情報 を持っているが、その「どれくらい進むか」だけを取り出して並べよう。

こうして単に「数を並べたもの」もベクトルと呼ぶことにし、このように定義したベクトルを数ベクトルという。

数を並べるとき、縦と横の2通りがある。それぞれ列ベクトル、行ベクトルとして定義する。

★ def - 列ベクトル

数を縦に並べたものを列ベクトルという。

$$oldsymbol{a} = (a_i) = egin{pmatrix} a_1 \ a_2 \ dots \ a_n \end{pmatrix}$$

★ def - 行ベクトル

数を横に並べたものを行べクトルという。

$$\boldsymbol{a}=(a_i)=\begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

単に「ベクトル」と言った場合は、列ベクトルを指すことが多い。

行ベクトルは、列ベクトルを横倒しにしたもの(列ベクトルの転置)と捉えることもできる。

♣ theorem - 転置による行べクトルの表現

行べクトルは、列ベクトル α を転置したものとして表現できる。

$$oldsymbol{a}^ op = egin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix}$$

ベクトルの和

ベクトルによって数をまとめて扱えるようにするために、ベクトルどうしの演算を定義したい。

ベクトルどうしの足し算は、同じ位置にある数どうしの足し算として定義する。

★ def - ベクトルの和

2 つの n 次元ベクトル a と b の和を次のように定義する。

$$\mathbf{a} + \mathbf{b} = (a_i) + (b_i) = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix}$$

i 番目の数が a と b の両方に存在していなければ、その位置の数どうしの足し算を考えることはできない。

そのため、ベクトルの和が定義できるのは、同じ次元を持つ(並べた数の個数が同じ)ベクトルどうしに限られる。

移動の合成としてのイメージ

数ベクトルを「どれくらい進むか」を並べたものと捉えると、同じ位置にある数どうしを足 し合わせるということは、同じ向きに進む量を足し合わせるということになる。

たとえば、x 軸方向に a_1 、y 軸方向に a_2 進んだ場所から、さらに x 軸方向に b_1 、y 軸方向に b_2 進む…というような「移動の合成」を表すのが、ベクトルの和である。

平行四辺形の法則

[Todo 1: 平行移動しても同じベクトルなので…]

ベクトルの差:逆向きにしてから足す

「Todo 2: irobutsu-linear-algebra 2.1.2 ベクトルの差]

矢に沿った移動で考える

[Todo 3: 手持ちの画像を参考に、和と差の両方について書く]

ベクトルのスカラー倍

「どれくらい進むか」を表す数たち全員に同じ数をかけることで、向きを変えずにベクトルを 「引き伸ばす」ことができる。

ここで向きごとにかける数を変えてしまうと、いずれかの方向に多く進むことになり、ベクトルの向きが変わってしまう。そのため、「同じ」数をかけることに意味がある。

そこで、ベクトルの定数倍(スカラー倍)を次のように定義する。

★ def - ベクトルのスカラー倍

n 次元ベクトル a の k 倍を次のように定義する。

$$koldsymbol{a} = k(a_i) = egin{pmatrix} ka_1 \ ka_2 \ dots \ ka_n \end{pmatrix}$$

線形結合

ベクトルを「引き伸ばす」スカラー倍と、「つなぎ合わせる」足し算を組み合わせることで、 あるベクトルを他のベクトルを使って表すことができる。

このように、スカラー倍と和のみを使った形を一次結合もしくは線形結合という。

基底:座標を復元する

3 次元までのベクトルは、矢印によって「ある点を指し示すもの」として定義できる。 しかし、4 次元以上の世界に話を広げるため、ベクトルを単に「数を並べたもの」として再 定義した。「数を並べたもの」としてのベクトルを、数ベクトルと呼んでいる。

さて、2次元平面や3次元空間で点を指し示すためのもう一つの概念として、座標がある。

座標は、x 軸方向にこのくらい進み、y 軸方向にこのくらい進む…というように、「進む方向」と「進む長さ」によって表現される。

単なる数の並びである数ベクトルでは、「進む方向」については何も記述されていない。

$$\binom{3}{2}$$

しかし、「進む方向」を表すベクトル \mathbf{a}_1 , \mathbf{a}_2 を新たに用意すれば、一次結合によって「進む方向」と「進む長さ」を持つベクトルを作ることができる。

$$\mathbf{x} = 3\mathbf{a}_1 + 2\mathbf{a}_2$$

 $m{a}_1$ と $m{a}_2$ のように、座標を復元するために向きの情報を付け加えるベクトルを、基底と呼ぶことにする。(厳密には「基底」と呼ぶための条件はいろいろあるが、それについては後々解説していく。)

基底が変われば座標が変わる

先ほどの例では、直交座標による点 (3,2) をベクトルの一次結合 $\mathbf{x}=3\mathbf{a}_1+2\mathbf{a}_2$ で表現するために \mathbf{a}_1 と \mathbf{a}_2 を用意した。

 $m{a}_1$ を $m{x}$ 軸方向の長さ $m{1}$ のベクトル、 $m{a}_2$ を $m{y}$ 軸方向の長さ $m{1}$ のベクトルとすれば、 $m{a}_1$ を $m{3}$ 倍、 $m{a}_2$ を $m{2}$ 倍して足し合わせることで、点 $m{(5,4)}$ を指し示すベクトル $m{x}$ を作ることが できる。

ここで、一次結合の式 $\mathbf{x}=3\mathbf{a}_1+2\mathbf{a}_2$ は変えずに、 \mathbf{a}_1 と \mathbf{a}_2 を変更すると、 \mathbf{x} が指し示す点も変わってしまう。

 $\mathbf{z} = 3\mathbf{a}_1 + 2\mathbf{a}_2$

(6, 8)

このことから、

座標は使っている基底の情報とセットでないと意味をなさない

ものだといえる。

標準基底による直交座標系の構成

座標という数値の組は、使っている基底とセットでないと意味をなさないものである。 逆にいえば、

「こういう基底を使えば、このようなルールで座標を表現できる」

という考え方もできる。つまり、基底によって座標系を定義するということだ。

前の章で見た例を一般化して考えてみよう。

 e_1 を x 軸方向の長さ 1 のベクトル、 e_2 を y 軸方向の長さ 1 のベクトルとすれば、 e_1 を x 倍、 e_2 を y 倍して足し合わせたベクトル xe_1+ye_2 で、2 次元直交座標系での点 (x,y) を指し示すことができる。

このとき、 e_1 と e_2 は、各方向の 1 目盛に相当する。

これらをまとめて \mathbb{R}^2 上の標準基底と呼び、 $\{e_1, e_2\}$ と表す。(\mathbb{R}^2 とは、実数の集合である数直線 \mathbb{R} を 2 本用意してつくった、2 次元平面を表す記号である。)

点 (x,y) を指し示す xe_1+ye_2 というベクトルは、直交座標による点の表現が「x 軸方向の移動」と「y 軸方向の移動」という 2 回の移動を行った結果であることをうまく表現している。

直交座標系をベクトルの言葉で言い換えると、

直交座標系は、標準基底である各ベクトル e_1 と e_2 を軸として、平面上の点の位置を標準基底の一次結合の係数 x と u の組で表す仕組み

だといえる。

座標は点の位置を表す数の組のことで、<mark>座標系</mark>は点の位置を数の組で表すための仕組み (ルール) のことをいう。

基底を変えれば違う座標系を作れる

直交座標系は、標準基底という互いに直交するベクトルを基底に使っていたが、座標系を表現するにあたって必ずしも基底ベクトルが直交している必要はない。

座標系を基底ベクトルを使って捉え直しておくと、基底を取り替えることで、目的の計算に 都合のいい座標系を作ることができる。

たとえば、次のように歪んだ空間を記述するための座標系を作ることも可能である。

ベクトルの次元

n 個の成分からなるベクトルは、n 次元ベクトルと呼ばれる。 ここで、「次元」とは何だろうか?

数ベクトルは、進む方向の数だけ「どれくらい進むか」を表す数値を並べたものとして導入 した。

ここで、「進む方向」の情報は基底によって付け加えることができ、基底はいわば座標軸に対応する。

2 次元平面座標系は x 軸と y 軸という x 和という x 和という x 和という x 和という x 和という x 和となる方向がいくつあるか)に対応する。

次元とは、1 つの基底を構成するベクトルの本数

方向の数だけ移動量を並べた数ベクトルは、次元の数だけ成分を持つことになる。これが、n 個の成分からなるベクトルが n 次元ベクトルと呼ばれることに対する、ひとつの解釈である。

基底にできるベクトルの条件

座標系では、空間内(たとえば 2 次元空間であれば平面上)のあらゆる点を表すことができ、 それらの点はベクトルで指し示す形でも表現できる。

基底が「座標系を設置するための土台」となるなら、基底とは、あらゆるベクトルを表すための材料とみなすことができる。

では、基底として使えるベクトルとは、どのようなベクトルだろうか?

基底とは過不足ない組み合わせ

まず、座標系とは、次の条件を当たり前に満たすものである。

- i. あらゆる点を表すことができる
- ii. 1 つの点の表し方は一通りである

数ベクトルは基底が決まれば座標として使えるので、座標系の条件をベクトルの言葉に言い 換えると、

- i. 基底が決まれば、その線形結合であらゆるベクトルを表せる
- ii. 基底が決まれば、1 つのベクトルの線形結合は一通りに定まる

つまり、空間内のすべてのベクトルを表現する上で、基底は不十分であってはいけないし、 無駄があってもいけない。

不十分を考える(2次元平面の例)

たとえば、2次元座標系を表現するにあたって、必ずしも基底ベクトルが直交している必要 はない。

しかし、平行なベクトルは明らかに基底(座標軸の土台)として使うことはできない。

x 軸と y 軸が平行だと、(x,y) の組で平面上の点を表すことはできない。

2 次元平面 ℝ² 上の点やベクトルは、2 つの方向を用意しないと表せないのだから、基底となるベクトルは互いに平行でない必要がある。

無駄を考える(2次元平面の例)

平行な 2 つのベクトルは、互いに互いをスカラー倍で表現できてしまう。このようなベクトルの組は基底にはできない。

$$a_2 = ka_1$$

この平行な 2 つのベクトル $\{a_1, a_2\}$ に加えて、これらに平行でないもう 1 つのベクトル a_3 を用意すれば、 a_1 と a_3 の線型結合か、 a_2 と a_3 の線型結合かのどちらかで、平面上の他のベクトルを表現できるようになる。

しかし、 $m{a}_2$ は結局 $m{a}_1$ のスカラー倍($m{a}_1$ と $m{a}_3$ の線型結合の特別な場合)で表現できてしまうのだから、「他のベクトルを表す材料」となるベクトルの組を考える上で、 $m{a}_2$ は無駄なベクトルだといえる。

2次元平面を表現するには 2本の座標軸があれば十分なように、基底とは、「これさえあれば他のベクトルを表現できる」という、必要最低限のベクトルの組み合わせにしたい。

基底の候補の中に、互いに互いを表現できる複数のベクトルが含まれているなら、その中の 1 つを残せば十分である。

ここまでの考察から、あるベクトルの組を基底として使えるかどうかを考える上で、「互いに 互いを表現できるか」という視点が重要になることがわかる。

- 互いに線型結合で表現できるベクトルだけでは不十分
- 互いに線型結合で表現できるベクトルが含まれていると無駄がある

ベクトルの組の「互いに互いを表現できるか」に着目した性質を表現する概念として、<mark>線型</mark> **従属と線型独立**がある。

● 線型従属:互いに互いを表現できるベクトルが含まれていること

● **線型独立**:互いに互いを表現できない、独立したベクトルだけで構成されていること

線形従属

ベクトルの組を考え、どれか 1 つのベクトルがほかのベクトルの線形結合で表せるとき、それらのベクトルの組は線形従属であるという。

≥ def - 線形従属

k 個のベクトル $\{a_1,\ldots,a_k\}$ が線形従属であるとは、少なくとも 1 つは 0 でない k 個の係数 $\{c_1,\ldots,c_k\}$ を用意すれば、それらを使った線形結合を零ベクトル o にできることをいう。

$$c_1\boldsymbol{a}_1+c_2\boldsymbol{a}_2+\cdots+c_k\boldsymbol{a}_k=\boldsymbol{o}$$

たとえば、 c_1 が 0 でないとき、線形結合を零ベクトルにできるということは、次のような式変形ができることになる。

$$\boldsymbol{a}_1 = -\frac{c_2}{c_1}\boldsymbol{a}_2 - \frac{c_3}{c_1}\boldsymbol{a}_3 - \cdots - \frac{c_k}{c_1}\boldsymbol{a}_k$$

つまり、ベクトル **a**₁ をほかのベクトルの線形結合で表せている。

「従属」という言葉を味わう

自分自身をほかのベクトルを使って表現できるということは、ほかのベクトルに依存している る(従っている)ということになる。

たとえば、 $m{a}_1$ と $m{a}_2$ の線形結合で表せるベクトル $m{a}_3$ は、 この $m{2}$ つのベクトル $m{a}_1$, $m{a}_2$ に従っているといえる。

$$a_3 = 2a_1 + a_2$$

しかし、「 $m{a}_3$ が $m{a}_1$, $m{a}_2$ に従っている」という一方的な主従関係になっているわけではない。その逆もまた然りである。

なぜなら、次のような式変形もできるからだ。

$$a_2 = a_3 - 2a_1$$

この式で見れば、今度は \boldsymbol{a}_2 が \boldsymbol{a}_1 , \boldsymbol{a}_3 に従っていることになる。

このように、線形従属とは、「どちらがどちらに従う」という主従関係ではなく、ベクトルの 組の中での相互の依存関係を表すものである。

線形独立

線形従属は、いずれかのベクトルをほかのベクトルで表現できること、つまり基底の候補と しては無駄が含まれている。そこで、その逆を考える。

互いに互いを表現できるような無駄なベクトルが含まれておらず、各々が独立している(無 関係である)ベクトルの組は<mark>線形独立</mark>であるという。

★ def - 線形独立

k 個のベクトル $\{a_1,\ldots,a_k\}$ が線形独立であるとは、k 個の係数 $\{c_1,\ldots,c_k\}$ がすべて 0 であるときしか、それらを使った線形結合を零ベクトル o にできないことをいう。

$$c_1 \boldsymbol{a}_1 + \cdots + c_k \boldsymbol{a}_k = \boldsymbol{o} \Longrightarrow c_1 = \cdots = c_k = 0$$

たとえば、係数 c_1 が 0 でないとすると、

$$\boldsymbol{a}_1 = -\frac{c_2}{c_1}\boldsymbol{a}_2 - \frac{c_3}{c_1}\boldsymbol{a}_3 - \cdots - \frac{c_k}{c_1}\boldsymbol{a}_k$$

のように、 \mathbf{a}_1 をほかのベクトルで表現できてしまう。これでは線形従属である。

ほかの係数についても同様で、どれか 1 つでも係数が 0 でなければ、いずれかのベクトルをほかのベクトルで表現できてしまうのである。

このような式変形ができないようにするには、係数はすべて 0 でなければならない。

このように、線形独立には、互いに互いを表現できないようにする条件が課されているため、 線形独立なベクトルの組は無駄なベクトルを含まず、基底の候補となり得る。

線形結合の一意性の言い換え

基底にできるベクトルの条件は、次のようなものだった。

- i. 基底が決まれば、その線形結合であらゆるベクトルを表せる
- ii. 基底が決まれば、1 つのベクトルの線形結合は一通りに定まる

このうち、(ii) の条件について、2 次元平面のイメージにとどまらず一般的に考察してみよう。

- (ii) の条件は、次のように言い換えることができる。
 - ii. 同じ基底を用いた線形結合で表されるベクトルは、同じベクトルである

このことを数式で表すと、

$$x_1oldsymbol{a}_1+\cdots+x_noldsymbol{a}_n=x_1'oldsymbol{a}_1+\cdots+x_n'oldsymbol{a}_n\Longrightarrowegin{pmatrix} x_1\\ dots\\ x_n \end{pmatrix}=egin{pmatrix} x_1'\\ dots\\ x_n' \end{pmatrix}$$

となるが、これは実は $\mathbf{a}_1, \ldots, \mathbf{a}_n$ が線型独立であることを意味している。

なぜなら、 ⇒ の左側の等式を移項して、

$$(x_1 - x'_1)\boldsymbol{a}_1 + \cdots + (x_n - x'_n)\boldsymbol{a}_n = \boldsymbol{o}$$

ここで $u_i = x_i - x_i'$ とおくと、

$$u_1\boldsymbol{a}_1+\cdots+u_n\boldsymbol{a}_n=\boldsymbol{o}$$

また、 \Longrightarrow の右側の $x_i=x_i'$ という条件は、 $u_i=0$ と書き換えられるので、

$$\begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

すなわち、

$$u_1 = \cdots = u_n = 0$$

まとめると、

$$u_1 \boldsymbol{a}_1 + \cdots + u_n \boldsymbol{a}_n = \boldsymbol{o} \Longrightarrow u_1 = \cdots = u_n = 0$$

となり、これは線型独立の定義式そのものである。

♣ theorem 1.1 - 線型独立性における線形結合の一意性

線型独立性は、線形結合の一意性

$$c_1 \boldsymbol{a}_1 + \cdots + c_k \boldsymbol{a}_k = c'_1 \boldsymbol{a}_1 + \cdots + c'_k \boldsymbol{a}_k$$

 $\Longrightarrow c_1 = c'_1, \dots, c_k = c'_k$

と同値である。

この定理から、

線型独立性は、両辺の係数比較ができるという性質

であるとも理解できる。

また、基底となるベクトルの条件は、次のように言い換えられる。

基底となるベクトルは、

- i. その線形結合であらゆるベクトルを表せる
- ii. 線型独立である(線形結合が一意的である)

線形従属や線型独立の定義では、

線形結合 = o

という関係式を考えた。以降、この関係式を線形関係式と呼ぶことにする。

≥ def - 線形関係式

ベクトル $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_k$ に対する等式

$$c_1\boldsymbol{a}_1+\cdots+c_k\boldsymbol{a}_k=\boldsymbol{o}$$

を、 $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_k$ の線形関係式という。

特に、 $c_1 = \cdots = c_k = 0$ として得られる線形関係式を自明な線形関係式という。 これ以外の場合、つまり $c_i \neq 0$ となるような i が少なくとも 1 つあるならば、これは非自明な線形関係式である。

線型独立・線形従属の性質

「Note 1: 基底の存在の章に移動予定]

線形従属なベクトルでは、その中の 1 つのベクトルが、他のベクトルの線形結合で表される

♣ theorem 1.2 - 線形結合によるベクトルの表現

 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \in K^n$ を線型独立なベクトルとする

 K^n のベクトル \boldsymbol{a} と $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m$ が一次従属であるとき、 \boldsymbol{a} は

 a_1, a_2, \ldots, a_m の線形結合で表される

すなわち、 $c_1, c_2, \ldots, c_m \in K$ を用いて次のように書ける

$$\mathbf{a} = c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \cdots + c_m \mathbf{a}_m$$

証明

 $oldsymbol{a}$, $oldsymbol{a}$ _1, . . . , $oldsymbol{a}_m$ が一次従属であるので、少なくとも $oldsymbol{1}$ つは $oldsymbol{0}$ でない係数 $oldsymbol{c}$, $oldsymbol{c}$ _1, $oldsymbol{c}$ _2, . . . , $oldsymbol{c}_m$ を用いて

$$c\mathbf{a} + c_1\mathbf{a}_1 + c_2\mathbf{a}_2 + \cdots + c_m\mathbf{a}_m = \mathbf{0}$$

が成り立つ

b = 0 c =

 a_1, a_2, \ldots, a_m が線型独立であることに矛盾する

よって、 $c \neq 0$ である

そのため、上式をcで割ることができ、aは

$$\boldsymbol{a} = -\frac{c_1}{c}\boldsymbol{a}_1 - \frac{c_2}{c}\boldsymbol{a}_2 - \cdots - \frac{c_m}{c}\boldsymbol{a}_m$$

という $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m$ の線形結合で表せる

♣ theorem - 非自明な線形関係式の存在と線形従属

ベクトルの集まりは、それらに対する非自明な線形関係式が存在するとき、そのと きに限り線形従属である

₩ 証明

ベクトルの集まりが線型独立であることは、それらに対する線形関係式はすべて自明 であるというのが定義である

それを否定すると、「自明でない線形関係式が存在する」となる

k=1 の場合に、次の定理が成り立つ

♣ theorem 1.3 - 単一ベクトルの線型独立性と零ベクトル

 a_1 が線型独立 $\iff a_1 \neq 0$

証明

 \Rightarrow

 a_1 が線型独立であるとする

すると、 \boldsymbol{a}_1 に対する線形関係式

$$c_1 a_1 = 0$$

が成り立つのは、 $c_1 = 0$ のときだけである

ここで、 $oldsymbol{a}_1=oldsymbol{0}$ と仮定すると、 $c_1oldsymbol{0}=oldsymbol{0}$ が成り立つので、 c_1 は任意の値をとることができる

これは、 $oldsymbol{a}_1$ に対する線形関係式が $c_1=0$ のときだけ成り立つという線型独立性の定義に反する

よって、 $\boldsymbol{a}_1 \neq \mathbf{0}$ である

 \leftarrow

 $a_1 \neq 0$ とする

このとき、もし \mathbf{a}_1 に対する線形関係式

$$c_1 a_1 = 0$$

が成り立つとしたら、 $oldsymbol{a}_1
eq oldsymbol{0}$ なので、 $oldsymbol{c}_1$ は必ず $oldsymbol{0}$ でなければならないしたがって、 $oldsymbol{a}_1$ に対する線形関係式は $oldsymbol{c}_1 = oldsymbol{0}$ のときだけ成り立つこれは、 $oldsymbol{a}_1$ が線型独立であることを意味する

.....

Zebra Notes

Туре	Number
todo	3
note	1