Analysis of Algorithms

SY Computer

Introduction

Algorithm:

An Algorithm is a finite sequence of instructions, each of which has a clear meaning and can be performed with a finite amount of effort in a finite length of time.

We represent algorithm using a pseudo language that is a combination of the constructs of a programming language together with informal English statements.

Every algorithm must satisfy the following criteria:

- Input: there are zero or more quantities, which are externally supplied;
- Output: at least one quantity is produced
- Definiteness: each instruction must be clear and unambiguous;
- Finiteness: if we trace out the instructions of an algorithm, then for all cases the algorithm will terminate after a finite number of steps;
- **Effectiveness:** every instruction must be sufficiently basic that it can in principle be carried out by a person using only pencil and paper. It is not enough that each operation be definite, but it must also be feasible.

Performance Analysis

- The performance of a program is the amount of computer memory and time needed to run a program.
- 1. Time Complexity
- 2. Space Complexity
- How to compare Algorithms?
- 1. Execution time
- Number of statements executed
- 3. Running time Analysis

Time Complexity

The time needed by an algorithm expressed as a function of the size of a problem is called the time complexity of the algorithm.

The time complexity of a program is the amount of computer time it needs to run to completion.

Time Complexity is mainly of 3 Types:

- 1. Best Case
- 2. Worst Case
- 3. Average Case

Space Complexity

- The space complexity of a program is the amount of memory it needs to run to completion. The space need by a program has the following components:
- <u>Instruction space</u>: Instruction space is the space needed to store the compiled version of the program instructions.
- <u>Data space</u>: Data space is the space needed to store all constant and variable values.
- <u>Environment stack space</u>: used to save information needed to resume execution of partially completed functions.
- The space requirement S(P) of any algorithm P may therefore be written as, $S(P) = c + S_p$ (Instance characteristics) where "c" is a constant.

Complexity of Algorithms

• The complexity of an algorithm M is the function f(n) which gives the running time and/or storage space requirement of the algorithm in terms of the size "n" of the input data.

- Approaches to calculate Time/Space Complexity:
 - 1. Frequency count/Step count Method
 - 2. Asymptotic Notations (Order of)

Frequency count/Step count Method

Rules:

- 1. For comments, declaration count = 0
- return and assignment statement count = 1
- 3. Ignore lower order exponents when higher order exponents are present Ex. Complexity of following algo is as follows:

$$f(n) = 6n^3 + 10n^2 + 15n + 3 \implies 6n^3$$

4. Ignore constant multipliers

$$6n^3 \Rightarrow n^3$$
$$f(n) = O(n^3)$$

Example 1: sum of n values of an array

```
Algorithm sum (int a[], int n

s = 0;
for(i=0; i<n; i++)
{
    s=s + a[i];
}
return s;</pre>
```

Time Complexity
? 1
2 n
□ 1
☐ 2n+3
f(n) = O(n)

Example 2:Addition of two square Matrices of dimension $n \times n$

```
Algorithm addMat (int a[][], int b[][])
{ int c[][];
  for(i=0; i<n; i++) {
    for(j=0; j<n; j++) {
      c[i][j] = a[i][j] + b[i][j]
    }
}</pre>
```


Example 3: Multiplication of two Matrices of dimension $n \times n$

```
Algorithm matMul (int a[][], int b[][])
{ int c[][];
  for(i=0; i<n; i++) {
     for(j=0; j<n; j++) {
      c[i][j] = 0;
      for(k=0; k<n; k++){
           c[i][j] += a[i][k] * b[k][j]
```

Time Complexity
? n+1
? n×(n+1)
\square n×n
$n \times n \times n$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$f(n) = O(n^3)$

Space Complexity		
$a[][] = n^2 \text{ words}$		
$b[][] = n^2 \text{ words}$		
$c[][] = n^2 \text{ words}$		
i= 1 word		
j= 1 word		
k=1 word		
n= 1 word		
$3n^2+4$		
Space complexity =		
$O(n^2)$		

Example: loops

```
for(i=0; i<n; i++) {
    statements;
```

Time Complexity

? n+1

? n

f(n) = 2n+1f(n) = O(n)

2.

for(i=n; i>0; i--) { statements; **Time Complexity**

? n+1

? n

f(n) = 2n+1

Example: loops

3.

```
for(i=1; i<n; i=i+2) {
    statements;
}</pre>
```

Time Complexity

? n+1

n/2

f(n) = 3n/2 + 1

f(n) = O(n)

4.

```
for(i=0; i<n; i++) {
    for(j=0; j<n; j++) {
        statements;
    }
}</pre>
```

Time Complexity

? n+1

 \square n(n+1)

 $?n \times n$

 $f(n) = 2n^2 + 2n + 1$

$$1 + 2 + 3 + 4 + \dots + n = n(n+1)/2$$

$$T(n) = 1 + 2 + 3 + 4 + \dots + n - 1 = \frac{(n-1)(n)}{2} = O(n^2)$$

Time Complexity			
i	j	statements	
0	0	0	
1	0	1	
	1	1	
2	0		
	1	2	
	2		
3	0		
	1	2	
	2	3	
	3		
• • •	•••		
N	0 to n-1	n	

=1+2+3+4+...+k>n
=
$$k(k+1)/2 > n$$

= $k^2 + k/2 > n$
 $\approx k^2 > n$
 $k = \sqrt{n} = O(n)$

Time Complexity			
i	p	statements	
1	0+1	1	
2	1+2	1	
3	1+2+3	1	
4	1+2+3+4	1	
5	1+2+3+4+5	1	
6	1+2+3+4+5+6	1	
k	1+2+3+4++k	???	

```
6. for(i=1; i<n; i=i*2) {
      statements;
    }
}</pre>
```

```
i>=n
i=2^k
2^k>=n
2^k=n
k=\log_2 n=O(\log_2 n)
```

Time Complexity			
i	statements		
1*2 ⁰	1		
1*2	1		
1*2*2	1		
1*2*2*2	1		
•••	•••		
2 ^k	1		

```
7. for(i=n; i>=1; i=i/2) {
     statements;
    }
}
```

$$i<1$$

$$n/2^{k} = 1$$

$$n=2^{k}$$

$$k = log_{2}n = O(log_{2}n)$$

Time Complexity
i
n
n/2
n/2 ²
$n/2^3$
n/2 ⁴
n/2 ^k

8.
 for(i=0; i*i<n; i++) {
 statements;
 }
}</pre>

$$k * k >= n$$

$$k^{2} = n$$

$$k = \sqrt{n}$$

$$k = \sqrt{n} = O(\sqrt{n})$$

Time Complexity		
i	statements	
1	1	
2	2 ²	
3	3 ²	
4	4 ²	
5	5 ²	
k	k ²	

for(i=1; i<n; i=i*2) { $p = log_2 n$ $p = log_2 n$ $T(n) = log_2 p$ $T(n) = log_2 log_2 n$

Rate of Growth

- Rate at which the running time increases as a function of input is called Rate of Growth.
- Example:

$$n^4 + 2n^2 + 100n + 500 \approx n^4$$

 n^4 , $2n^2$, 100n and 500 are individual cost of some functions and approximate to n^4 since n^4 is highest rate of growth.

Numerical Comparison of Different Algorithms

n	log2 n	n*log2n	n ²	n ³	2 ⁿ
1	0	0	1	1	2
2	1	2	4	8	4
4	2	8	16	64	16
8	3	24	64	512	256
16	4	64	256	4096	65,536
32	5	160	1024	32,768	4,294,967,296
64	6	384	4096	2,62,144	Note 1
128	7	896	16,384	2,097,152	Note 2
256	8	2048	65,536	1,677,216	???????

Asymptotic Notations:

- Asymptotic notations have been developed for analysis of algorithms.
- By the word asymptotic means "for large values of n"
- The following notations are commonly use notations in performance analysis and used to characterize the complexity of an algorithm:
 - 1. Big-OH(O)
 - 2. Big-OMEGA(Ω),
 - 3. Big–THETA (Θ)

Big O notation:

- This notation gives the tight upper bound of the given function
- Represented as:

$$f(n) = O(g(n))$$

that means, at larger values of n, upper bound of f(n) is g(n).

Definition:

Big O notation defined as $O(g(n)) = \{f(n): \text{ there exist positive constants c and no such that } \}$

$$0 \le f(n) \le c.g(n)$$
 for all $n > n_0$

Big Omega (Ω) notation:

- This notation gives the tight lower bound of the given function
- Represented as:

$$f(n) = \Omega(g(n))$$

that means, at larger values of n, lower bound of f(n) is g(n).

Definition:

Big Ω notation defined as $\Omega(g(n)) = \{f(n): \text{ there exist positive constants c and no such that } \}$

$$0 \le c. g(n) \le f(n) \text{ for all } n > n_0$$

Big Theta (θ) Notation:

- Average running time of an algorithm is always between lower bound and upper Bound
- Represented as:

$$f(n) = \theta(g(n))$$

that means, at larger values of n, lower bound of f(n) is g(n).

Definition:

Big θ notation defined as $\theta(g(n)) = \{f(n): \text{ there exist positive constants } c_1 \text{ and } c_2 \text{ and } n_o \text{ such that } 0 \le c_1. g(n) \le f(n) \le c_1. g(n) \text{ for all } n > n_0 \}$

Properties of Asymptotic Notations:

Transitivity:

Valid for O and Ω as well.

Reflexivity:

$$f(n) = \theta(f(n))$$

Valid for O and Ω as well.

Symmetry:

$$f(n) = \theta(g(n))$$
, iff $g(n) = \theta(f(n))$

Transpose Symmetry:

$$f(n) = \theta(g(n)) \text{ iff } g(n) = \Omega(f(n))$$

Examples:

1.
$$f(n) = n \& g(n) = n^2 \& h(n) = n^3$$

 $n = O(n^2)$; $n2 = O(n^3)$,
then $n = O(n^3)$

2. $f(n) = n^3 = O(n^3) = \theta(n^3) = \Omega(n^3)$

3.
$$f(n) = n^2 \& g(n) = n^2$$

then, $f(n) = \theta(n^2)$

4. $f(n) = n \& g(n) = \theta(n^2)$

4.
$$f(n) = n \& g(n) = \theta(n^2)$$

then $n = O(n^2) \& n^2 = \Omega(n)$

Properties of Asymptotic Notations:

Observations:

- 1. If f(n) = O(kg(n)) for any constant k > 0, then f(n) = O(g(n))
- 2. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $(f_1 + f_2)(n) = O(\max(g_1(n), g_2(n)))$
- 3. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$, then $f_1(n) f_2(n) = O(g_1(n), g_2(n))$
- 4. If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then $f(n) = \theta(g(n))$

- Recursion is an ability of an algorithm to repeatedly call itself until a certain condition is met.
- Such condition is called the base condition.
- The algorithm which calls itself is called a recursive algorithm.
- The recursive algorithms must satisfy the following two conditions:
 - 1. It must have the base case: The value of which algorithm does not call itself and can be evaluated without recursion.
 - 2. Each recursive call must be to a case that eventually leads toward a base case.

Recurrence Relation:

- An algorithm is said to be recursive if it can be <u>defined in terms of itself</u>.
- The running time of recursive algorithm is expressed by means of <u>recurrence</u> relations.
- A recurrence relation is an equation of inequality that describes a function in terms of its value on smaller inputs.
- It is generally denoted by T(n) where n is the size of the input data of the problem.
- The recurrence relation satisfies both the conditions of recursion, that is, it has both the base case as well as the recursive case.
 - The portion of the recurrence relation that $\underline{\text{does not contain }T}$ is called the base case of the recurrence relation and
 - The portion of the recurrence relation that <u>contains</u> T is called the recursive case of the recurrence relation.

$$T(n) = \begin{cases} d & ; n = 1 \\ T(n-1) + c & ; n > 1 \end{cases}$$

Example: Factorial

Factorial Algorithm:

Recursive Method:

```
Algorithm fact(n)
If (n<0) then return("error");</pre>
   else
If (n<2) then return(1);</pre>
   else
Return (n*fact(n-1);
End if
End if
End fact
```

$$T(n) = \begin{cases} d & ; n = 1 \\ T(n-1) + c & ; n > 1 \end{cases}$$

Iterative Method:

```
Algorithm fact(n)
If (n<0) then return("error");</pre>
    else
If (n<2) then return(1);</pre>
    else
prod=1;
End if
End if
For(i=n down to 0)
    do prod=prod*i
    end for
Return prod
End fact
```

Recurrence Relation:

- 1. Iterative Method / Substitution Method
- 2. Recurrence Tree
- 3. Master Method/ Master's Theorem

Recurrence Relation:

- 1. Iterative Method / Substitution Method
- 2. Recurrence Tree
- 3. Master Method/ Master's Theorem

Recurrence Relation:

- 1. Iterative Method / Substitution Method
- 2. Recurrence Tree
- 3. Master Method/ Master's Theorem

Master's Theorem:

- Dividing Functions
- Decreasing Functions

2. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the form:

$$T(n) = \begin{cases} aT\left(\frac{n}{b}\right) + f(n) & n > 1 \\ \theta(1) & n = 1 \end{cases}$$

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

$$T(n) = \begin{cases} aT\left(\frac{n}{b}\right) + f(n) & n > 1 \\ \theta(1) & n = 1 \end{cases}$$

```
Where, f\left(n\right)=\Theta\left(n^{k}\log^{p}n\right) and a\geq 1 \quad ; \quad k\geq 0 and p is a real number
```

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

$$T(n) = \begin{cases} aT\left(\frac{n}{b}\right) + f(n) & n > 1 \\ \theta(1) & n = 1 \end{cases}$$

Case 1: If
$$a>b^k$$
 or $\log_b a>k$ then, $T(n)=\Theta\left(n^{\log_b a}\right)$

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

Case 2: If
$$a=b^k$$
 or $\log_b a=k$ then,
$$A.] \ \ \text{If} \quad p>-1, \qquad \text{then}$$

$$T\left(n\right)=\Theta\left(n^{\log_b a}\log^{p+1}n\right) \quad \Rightarrow \theta\left(n^k\log^{p+1}n\right)$$

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

Case 2: If
$$a=b^k$$
 or $\log_b a=k$ then,
$$B.]. \quad If \qquad p=-1, \qquad \qquad then$$

$$T\left(n\right)=\Theta\left(n^{\log_b a}\log\log n\right) \qquad \Rightarrow \theta\left(n^k\log\log n\right)$$

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the

Case 2: If
$$a=b^k$$
 or $\log_b a=k$ then,
$$T\left(n\right)=\Theta\left(n^{\log_b a}\right) \qquad \Rightarrow \theta\left(n^k\right)$$

1. Dividing functions:

Master's method (for Dividing Functions) provides general method for solving recurrences of the form:

Case 3: If
$$a < b^k$$
 or $\log_b a < k$

A.] If $p \geq 0$ then $T(n) = \Theta\left(n^{\log_b a} \log^p n\right) \Rightarrow \theta\left(n^k \log^p n\right)$ B.] If p < 0 then $T(n) = \Theta\left(n^{\log_b a}\right) \Rightarrow \theta\left(n^k\right)$

Master's Theorem:

 $T(n) = 2T(\sqrt{n}) + \log n$

Exercise:

$$1 \cdot T(n) = 2T\left(\frac{n}{2}\right) + n^3 \log n$$

2. $T(n) = 2T\left(\frac{n}{2}\right) + \frac{n^3}{log^2n}$

Master's Theorem (for Decreasing Function)

Let T(n) be a function defined on positive n

$$T(n) = \begin{cases} c & \text{if } n \leq 1 \\ aT(n-b) + f(n) & \text{if } n > 1 \end{cases}$$

for some constants c, a>0, b>0, k where, $f(n) = O(n^k)$ then

$$T(n) = O(n^k)$$
 if $a < 1$
 $= O(n^{k+1})$ if $a = 1$
 $= O(n^k \cdot a^{\frac{n}{b}})$ if $a > 1$

Recurrence Relation:

- 1. Iterative Method / Substitution Method
- 2. Master Method/ Master's Theorem
- 3. Recurrence Tree Method

Recurrence Tree Method:

- Recurrence is converted into a tree
- Sum of cost of various nodes at each level is calculated, called pre-level cost then sum of pre-level cost is obtained to determine the total cost of all levels of recursion tree.

No. of

subproblems

• If recurrence relation is:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$
Cost incurred for dividing and combining

Size of subproblem

Then, f(n) is the root of tree, and each node should have 'a' children and Size of each child node is $\frac{1}{b}$ of parent node.