Stanislas Thème

Étude de $O(E) \backslash SO(E)$ Quarts de tour en dimension 4

PSI 2020-2021

_ _ _

Partie I : Étude de $O(E) \backslash SO(E)$

Soit E un espace vectoriel euclidien de dimension $3, f \in O(E) \setminus SO(E)$ et M sa matrice dans une base orthonormée \mathscr{B} .

- **1.** Soit u un vecteur non nul de E. Montrer que s'il existe $\lambda \in \mathbb{R}$ tel que $f(u) = \lambda u$, alors $\lambda \in \{-1, 1\}$.
- **2.** Soit $P(\lambda) = \det(M \lambda I_3)$.
 - a) Déterminer P(0).
 - **b)** Montrer que si $\lambda \in \mathbb{R}$ est une racine de P, alors $P(\lambda) \in \{-1, 1\}$.
 - c) Montrer que -1 est racine de P.
 - **d)** En déduire qu'il existe $u \in E$ non nul tel que f(u) = -u.
- **3.** Soit $u \in E$ un vecteur non nul tel que f(u) = -u. On pose $F = \text{Vect}\{u\}$ et s la réflexion par rapport à F^{\perp} . Montrer que $g = s \circ f$ est soit l'identité, soit une rotation d'axe F.
- **4.** On oriente F^{\perp} par u. Dans le cas où g n'est pas l'identité, on appelle θ l'angle de la rotation. Montrer que $\mathrm{Tr}(M)=2\cos\theta-1$ et que le signe de $\sin\theta$ est donné par celui de $\det(u,x,f(x))$, où $x\in F^{\perp}$ est un vecteur normé.
- **5.** Appliquer ces résultats à l'étude de f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $M = \frac{1}{3} \begin{pmatrix} 2 & 1 & -2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{pmatrix}$.

Partie II : Quarts de tour en dimension 4

Soit E un espace vectoriel euclidien de dimension 4. On note U l'ensemble des vecteurs normés de E. Un endomorphisme orthogonal q de E est

appelé quart de tour si $q^2 = -\operatorname{Id}$. On note Q l'ensemble des quarts de

tour de
$$E$$
. On note $M = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.

- **6.** Démontrer qu'un quart de tour transforme tout vecteur x de E en un vecteur orthogonal à x.
- **7. a)** Soit q un endomorphisme de E dont la matrice dans une base orthonormée est égale à M. Montrer que q est un quart de tour.
- **b)** On note $\mathscr{B}(q)$ l'ensemble des bases orthonormées de E dans lesquelles la matrice de q est égale à M. Montrer que quel que soit $u \in U$, il existe $(b_1, b_2, b_3, b_4) \in \mathscr{B}(q)$ telle que $b_1 = u$.
- **8.** Soit $q \in Q$ et $u \in U$. On note P le plan engendré par u et q(u).
 - a) Montrer que (u, q(u)) est une base orthonormée de P.
- **b)** Montrer que le plan P est invariant par q. Décrire géométriquement la restriction de q au plan P.
- c) Si v est un vecteur normé de P, il existe un nombre réel θ tel que $v = \cos(\theta)u + \sin(\theta)q(u)$. Déterminer les matrices de passage de la base (u, q(u)) à la base (v, q(v)) et de la base (v, q(v)) à la base (u, q(u)).
- **9.** Soit $q \in Q$ et $\alpha \in \mathbb{R}$. On pose $f = \cos(\alpha) \operatorname{Id} + \sin(\alpha) q$.
 - a) Montrer que f est un automorphisme orthogonal.
- **b)** Montrer que tout vecteur normé u est contenu dans un plan P invariant par f. Décrire géométriquement la restriction de f à P.
 - c) Déterminer le déterminant de f.