On attempting to reify a few of the things we may mean by "consciousness" with code

Josh Joseph, Dhaval Adjodah, Joichi Ito Massachusetts Institute of Technology jmjoseph@mit.edu

Why attempt to reify philosophy with code

- Lots of what philosophers think a lot about show up in CS/AI research
 - Mind, awareness, imagination, reasoning, consciousness, etc.
- CS/AI could benefit from a deeper understanding of philosophy
- Possibly benefit philosophy by bringing code-style concreteness
 - (TBD)

(Disclaimer: our backgrounds are CS/AI)

 Muehlhauser, Shlegeris: A Software Agent Illustrating Some Features of an Illusionist Account of Consciousness

An agent that observes the world and uses a theorem prover to answer

questions asked of it

from shlegeris.com

```
Q: What's 2 + 2?
Q: Suppose there are two agents Bob and Jane, do they have the same qualia associated with every color?
Both that statement and its negation are possible.
Q: For all y, does there exist an x such that x = y + 1?
Yes.
Q: For all two agents, do they see colors the same?
Both that statement and its negation are possible.
0: Are your memories at timestep 0 and 1 of the same color?
Yes.
0: Are you seeing the same color now as you saw at timestep 0?
Q: Is it possible for an agent to have an illusion of red?
Q: Is it possible for you to have the illusion that Buck is experiencing a color?
Yes.
Q: Is it possible for Buck to have an illusion that he is having the experience of redness?
```

™from https://github.com/bshlgrs/consciousness/blob/master/README.md

- Searle's view of the relationship between consciousness and brain states
 - Consciousness is causally reducible to brain states but consciousness is ontologically irreducible to brain states

- Searle's view of the relationship between consciousness and brain states
 - Consciousness is causally reducible to brain states but consciousness is ontologically irreducible to brain states
 - ...what does that mean?

- Searle's view of the relationship between consciousness and brain states
 - Consciousness is causally reducible to brain states but consciousness is ontologically irreducible to brain states
 - ...what does that mean?
- Generally is some confusion
 - Enough disagreement that Searle wrote the paper: "Why I'm Not a Property Dualist"

What we're not doing

- Trying to propose a cognitive architecture
- Trying to propose a new AI or machine learning algorithm
- Trying to claim that the software agent is conscious
- Trying to convince anyone these are the correct/best/most useful definitions of mental states and brain states
- Trying to convince anyone Searle is right or wrong

What we're trying to do

- Create a software agent that is consistent with Searle's view on consciousness
 - (or at least a simplified version of Searle's view)

What we're trying to do

- Create a software agent that is consistent with Searle's view on consciousness
 - (or at least a simplified version of Searle's view)
- (Hopefully) gain a bit deeper understanding of what we may mean by consciousness, brain states, causal reduction, and ontological reduction along the way

Software Engineering, 101

- Requirements what must the agent do
- Design how will we build an agent to meet the requirements
- Implementation the built agent consistent with the design

- Consciousness is causally reducible to brain states
- Consciousness is ontologically irreducible to brain states

- Brain state
 - The full physical-chemical state of the brain and nervous system
 - Third person, objective

- Brain state
 - The full physical-chemical state of the brain and nervous system
 - Third person, objective
- Internal state
 - Representations, goals, rewards, observations, actions, etc.
 - Subjective

Brain state

- The full physical-chemical state of the brain and nervous system
- Third person, objective

Internal state

- Representations, goals, rewards, observations, actions, etc.
- Subjective

Mental state

- Beliefs, desires, thoughts, perceptions, emotions, knowledge, etc.
- First person, subjective

Brain state

- The full physical-chemical state of the brain and nervous system
- Third person, objective

Internal state

- Representations, goals, rewards, observations, actions, etc.
- Subjective

Mental state

- Beliefs, desires, thoughts, perceptions, emotions, knowledge, etc.
- First person, subjective

Conscious mental state

- A mental state in which it is "something it's like to be in"
- First person, subjective character of experience, phenomenal

- Searle's view
 - Consciousness is causally reducible to brain states
 - Consciousness is ontologically irreducible to brain states

- Searle's view
 - Consciousness is causally reducible to brain states
 - Consciousness is ontologically irreducible to brain states
- V2
 - Conscious mental states are casually reducible to brain states
 - Conscious mental states are ontologically irreducible to brain states

- Searle's view
 - Consciousness is causally reducible to brain states
 - Consciousness is ontologically irreducible to brain states
- V2
 - Conscious mental states are casually reducible to brain states
 - Conscious mental states are ontologically irreducible to brain states
- V1
 - Mental states are casually reducible to brain states
 - Mental states are ontologically irreducible to brain states

Searle's view

- Consciousness is causally reducible to brain states
- Consciousness is ontologically irreducible to brain states

• V2

- Conscious mental states are casually reducible to brain states
- Conscious mental states are ontologically irreducible to brain states

• V1

- Mental states are casually reducible to brain states
- Mental states are ontologically irreducible to brain states

• V0

- Internal states are casually reducible to brain states
- Internal states are ontologically irreducible to brain states

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Phenomena of type A are ontologically reducible to phenomena of type B if and only if A's are nothing but B's

Class-instance distinction

Class-instance distinction

Class-instance distinction

(C) Wine

• C White wine

White Burgundy

C Pouilly-Fuisse

Class-instance distinction

C Wine C White wine C Rose wine C Red wine C White Burgundy C Chenin Blanc C Chardonnay C Pinot Blanc C Sauvignon Blanc C Ice Wine C White Zinfandel C Beauiolais C Red Burgundy C Red Zinfandel C Pauillac C Margaux C St. Emillion C Graves C Red Bordeaux © Sauterne C Cabernet Franc C Cabernet Sauvignon C Medoc © Semillon C Pinot Noir C Chianti C Petite Syrah C Sancerre C Muscadet C Port C Sweet Reisling C Chablis C Dry Riesling

Class-instance distinction

(C) Wine C White wine C Rose wine C Red wine C White Burgundy C Chenin Blanc C Chardonnay C Pinot Blanc C Sauvignon Blanc C Ice Wine C White Zinfandel C Beaulolais C Red Burgundy C Red Zinfandel C Pauillac C Margaux C St. Emillion C Graves C Red Bordeaux © Sauterne C Cabernet Franc C Cabernet Sauvignon C Medoc C Semillon C Pinot Noir C Chianti C Petite Syrah C Sancerre C Muscadet C Port C Sweet Reisling C Chablis C Dry Riesling

- Class-instance distinction
- Type-token distinction

- Class-instance distinction
- Type-token distinction
 - "They drive the same car"
 - They drive the same car type
 - (a Toyota)
 - They drive the same car token
 - (the 2003 Toyota Corolla with VIN: 2QFBORHE4KP911561)

- Class-instance distinction
- Type-token distinction
 - "They drive the same car"
 - They drive the same car type
 - (a Toyota)
 - They drive the same car token
 - (the 2003 Toyota Corolla with VIN: 2QFBORHE4KP911561)
- Representing tokens of one type as tokens of another type

Case of wine

Images from:

- Class-instance distinction
- Type-token distinction
 - "They drive the same car"
 - They drive the same car type
 - (a Toyota)
 - They drive the same car token
 - (the 2003 Toyota Corolla with VIN: 2QFBORHE4KP911561)
- Representing tokens of one type as tokens of another type

C) Wine

- C White wine

White Burgundy

Images from:

- Class-instance distinction
- Type-token distinction
 - "They drive the same car"
 - They drive the same car type
 - (a Toyota)
 - They drive the same car token
 - (the 2003 Toyota Corolla with VIN: 2QFBORHE4KP911561)
- Representing tokens of one type as tokens of another type

C) Wine

- C White wine

White Burgundy

- Class-instance distinction
- Type-token distinction
 - "They drive the same car"
 - They drive the same car type
 - (a Toyota)
 - They drive the same car token
 - (the 2003 Toyota Corolla with VIN: 2QFBORHE4KP911561)
- Representing tokens of one type as tokens of another type

Images from:

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Phenomena of type A are ontologically reducible to phenomena of type B if and only if A's are nothing but B's

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Phenomena of type A are ontologically reducible to phenomena of type B if and only if A's are nothing but B's

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Agent requirements: unpacking Searle's view

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Phenomena of type A are causally reducible to phenomena of type B if and only if:

- the behavior of A's are entirely casually explained by the behavior of B's
- A's have no causal powers in addition to the powers of B's

Agent requirements: unpacking Searle's view

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Phenomena of type A are causally reducible to phenomena of type B if and only if:

- the behavior of A's are entirely casually explained by the behavior of B's
- A's have no causal powers in addition to the powers of B's

Instances of class A are causally reducible to objects of class B if and only if:

- the behavior of instances of A's are entirely casually explained by the behavior of instances of B's
- instances of A's have no causal powers in addition to the powers of the instances of B's

Agent requirements, VO

- Internal states are casually reducible to brain states
- Internal states are ontologically irreducible to brain states

Design decisions

- Design decisions
 - Environment and the agent's "physical" form

• OpenAI's LunarLander-v2

- Design decisions
 - Environment and the agent's "physical" form

- Design decisions
 - Environment and the agent's "physical" form
 - Internal state of the agent

- Design decisions
 - Environment and the agent's "physical" form
 - Internal state of the agent
 - Beliefs about itself relative to semantically important regions

- Design decisions
 - Environment and the agent's "physical" form
 - Internal state of the agent
 - Beliefs about itself relative to semantically important regions
 - Left of the flags, right of the flags, high above the ground, close to the ground, falling too fast

- Design decisions
 - Environment and the agent's "physical" form
 - Internal state of the agent
 - Beliefs about itself relative to semantically important regions
 - Left of the flags, right of the flags, high above the ground, close to the ground, falling too fast
 - Brain state of the agent

Neural networks

Neural networks

Neural networks

- Design decisions
 - Environment and the agent's "physical" form
 - Internal state of the agent
 - Beliefs about itself relative to semantically important regions
 - Left of the flags, right of the flags, high above the ground, close to the ground, falling too fast
 - Brain state of the agent

{High above the ground, right of the center falling too fast}

{High above the ground,

- Design decisions
 - Environment and the agent's "physical" form
 - Internal state of the agent
 - Beliefs about itself relative to semantically important regions
 - Left of the flags, right of the flags, high above the ground, close to the ground, falling too fast
 - Brain state of the agent

- Design decisions
 - Environment and the agent's "physical" form
 - Internal state of the agent
 - Beliefs about itself relative to semantically important regions
 - Left of the flags, right of the flags, high above the ground, close to the ground, falling too fast
 - Brain state of the agent
 - Our ontology

- Design decisions
 - Environment and the agent's "physical" form
 - Internal state of the agent
 - Beliefs about itself relative to semantically important regions
 - Left of the flags, right of the flags, high above the ground, close to the ground, falling too fast
 - Brain state of the agent
 - Our ontology
 - Layer weights of the neural network
 - Connectivity of the neural network
 - Activations of the neural network at time t
 - The agent's observation at time t
 - The agent's action at time t
 - The position and velocity of the agent at time t
 - Brain state at time t (set of layer weights, activations, and connectivity)
 - A region the agent believes it's in
 - Internal state at time t (set of regions the agent believes it's in)

brain_state_t falling too fast} recurrent_activation_t-1 recurrent_activation_t internal_state_t Layer 4 weights Activations 4 recurrent_activation_t to er 2 weights internal_state_t r 1 weights Activations 0 Activations 1 observ Layer 3 weights Activations 3 action_t

{High above the ground, right of the center falling too fast}

- Remaining questions
 - How will the agent learn to behave in the world?
 - How will brain states be "connected" to internal states?
 - How will the agent learn to recognize the correspondence between its internal states and its position/velocity?

Reinforcement learning

Reinforcement learning

- OpenAl's LunarLander-v2
 - The goal is to softly land between the flags
 - Episode finishes if the lander crashes or comes to rest, receiving additional -100 or +100 points
 - Each leg ground contact is +10
 - Firing the engines is a small negative reward
 - Small positive reward for smoother flight
 - Fuel is infinite
 - Four discrete actions available:
 - do nothing, fire left orientation engine, fire main engine, fire right orientation engine
- We used DQN to train the network

- Remaining questions
 - How will the agent learn to behave in the world?
 - Reinforcement learning
 - How will brain states be "connected" to internal states?
 - How will the agent learn to recognize the correspondence between its internal states and its position/velocity?

brain_state_t falling too fast} recurrent_activation_t-1 recurrent_activation_t internal_state_t 4 Activations 4 $recurrent_activation_t$ Layer to internal_state_t 7 \vdash Layer Layer observation_t \mathcal{C} action_t Layer

{High above the ground, right of the center falling too fast}

- Remaining questions
 - How will the agent learn to behave in the world?
 - Reinforcement learning
 - How will brain states be "connected" to internal states?
 - A function that converts between classes (types)
 - How will the agent learn to recognize the correspondence between its internal states and its position/velocity?

- Remaining questions
 - How will the agent learn to behave in the world?
 - Reinforcement learning
 - How will brain states be "connected" to internal states?
 - A function that converts between types
 - How will the agent learn to recognize the correspondence between its internal states and its position/velocity?
 - Jointly optimize both the RL loss to act and the internal state labeling loss

Design, VO

- Remaining questions
 - How will the agent learn to behave in the world?
 - Reinforcement learning
 - How will brain states be "connected" to internal states?
 - A function that converts between types
 - How will the agent learn to recognize the correspondence between its internal states and its position/velocity?
 - Jointly optimize both the RL loss to act and the internal state labeling loss

```
loss = loss_rl + loss_internal_states
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
```

Quick review before moving to implementation

- Requirements, V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states
- Design, V0
 - Environment and the agent's "physical" form
 - Internal state of the agent (set of semantically important regions)
 - Brain state of the agent (neural network structure and activations)
 - Our ontology
 - Jointly optimize both the RL loss to act and the internal state labeling loss
 - Simple function to map recurrent_activation_t to internal_state_t

Implementation, VO

• Jupyter notebook time!

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are causally reducible to objects of class B if and only if:

- the behavior of instances of A's are entirely casually explained by the behavior of instances of B's
- instances of A's have no causal powers in addition to the powers of the instances of B's

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are causally reducible to objects of class B if and only if:

- the behavior of instances of A's are entirely casually explained by the behavior of instances of B's
- instances of A's have no causal powers in addition to the powers of the instances of B's

{High above the ground, right of the center falling too fast}

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are causally reducible to objects of class B if and only if:

 the behavior of instances of A's are entirely casually explained by the behavior of instances of B's

• instances of A's have no causal powers in addition to the powers of the instances of B's

brain_state_t

```
def recurrent_activations_to_internal_state(recurrent_activations):
    internal_state = set()

for activation, region in zip(recurrent_activations, regions):
    if activation > 0.5:
        internal_state.add(region.__name__)

return internal_state
```

{High above the ground, right of the center falling too fast}

```
recurrent_activation_t
to
internal_state_t
```

Activations 4

- V0
 - ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are causally reducible to objects of class B if and only if:

• the behavior of instances of A's are entirely casually explained by the behavior of instances of B's

• instances of A's have no causal powers in addition to the powers of the instances of B's

brain_state_t

def recurrent_activations_to_internal_state(recurrent_activations):
 internal_state = set()

for activation, region in zip(recurrent_activations, regions):
 if activation > 0.5:
 internal_state.add(region.__name__)

return internal_state

{High above the ground, right of the center falling too fast}

```
recurrent_activation_t
to
internal_state_t
```

Activations 4

- V0
 - ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- V0
 - ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- Layer weights of the neural network
- Connectivity of the neural network
- Activations of the neural network at time t
- The agent's observation at time t
- The agent's action at time t
- The position and velocity of the agent at time t
- Brain state at time t (set of layer weights, activations, and connectivity)
- A region the agent believes it's in
- Internal state at time t (set of regions the agent believes it's in)

- V0
 - ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irredu

Instances of class A are ontologically reduci if and only if instances of A's are nothing bu

Our ontology

- Layer weights of the neural network
- Connectivity of the neural network
- Activations of the neural network at time t
- The agent's observation at time t
- The agent's action at time t
- The position and velocity of the agent at time t
- Brain state at time t (set of layer weights, activations, and connectivity)
- A region the agent believes it's in
- Internal state at time t (set of regions the agent believes it's in)

CoursesOffered

- V0
 - ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- Layer weights of the neural network
- Connectivity of the neural network
- Activations of the neural network at time t
- The agent's observation at time t
- The agent's action at time t
- The position and velocity of the agent at time t
- Brain state at time t (set of layer weights, activations, and connectivity)
- A region the agent believes it's in
- Internal state at time t (set of regions the agent believes it's in)

- V0
 - ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- Layer weights of the neural network
- Connectivity of the neural network
- Activations of the neural network at time t
- The agent's observation at time t
- The agent's action at time t
- The position and velocity of the agent at time t
- Brain state at time t (set of layer weights, activations, and connectivity)
- A region the agent believes it's in
- Internal state at time t (set of regions the agent believes it's in)

```
Internal state:
    ('I_am_high_above_the_ground', 'I_am_to_the_right_of_the_center', 'I_am_falling_too_fast')
```

```
v def I_am_high_above_the_ground(observation):
    return observation[1] > 0.5

v def I_am_low_to_the_ground(observation):
    return observation[1] <= 0.5

v def I_am_to_the_left_of_the_center(observation):
    return observation[0] > 0.

v def I_am_to_the_right_of_the_center(observation):
    return observation[0] <= 0.

v def I_am_falling_too_fast(observation):
    return observation[3] < -0.2</pre>
```

- V0
 - ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- Layer weights of the neural network
- Connectivity of the neural network
- Activations of the neural network at time t
- The agent's observation at time t
- The agent's action at time t
- The position and velocity of the agent at time t
- Brain state at time t (set of layer weights, activations, and connectivity)
- A region the agent believes it's in
- Internal state at time t (set of regions the agent believes it's in)

• V0

Internal state at time t (set of regions the agent believes it's in)

- ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

Our ontology Layer weights of the neural network Connectivity of the neural network Activations of the neural network The agent's observation at The agent's action at time t The position and velocity o Brain state at time t (set of A region the agent believes it's in

• V0

Internal state at time t (set of regions the agent believes it's in)

- ✓ Internal states are casually reducible to brain states
- ✓ Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

Our ontology Layer weights of the neural network Connectivity of the neural network Activations of the neural network The agent's observation at The agent's action at time t The position and velocity of Brain state at time t (set of) A region the agent believes it's in

- V0
 - ✓ Internal states are casually reducible to brain states
 - ✓ Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- Layer weights of the neural network
- Connectivity of the neural network
- Activations of the neural network at time t
- The agent's observation at time t
- The agent's action at time t
- The position and velocity of the agent at time t
- Brain state at time t (set of layer weights, activations, and connectivity)
- A region the agent believes it's in
- Internal state at time t (set of regions the agent believes it's in)

- V0
 - ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- Layer weights of the neural network
- Connectivity of the neural network
- Activations of the neural network at time t
- The agent's observation at time t
- The agent's action at time t
- The position and velocity of the agent at time t
- Brain state at time t
- A region the agent believes it's in
- Internal state at time t (set of regions the agent believes it's in)

- Bits
- Python objects
- Electrons
- Quarks
- ...

- V0
 - ✓ Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- Layer weights of the neural network
- Connectivity of the neural network
- Activations of the neural network at time t
- The agent's observation at time t
- The agent's action at time t
- The position and velocity of the agent at time t
- Brain state at time t (all of the bits contained in my computer)
- A region the agent believes it's in
- Internal state at time t (set of regions the agent believes it's in)

- Bits
- Python objects
- Electrons
- Quarks
- ..

- V0
 - ✓ Internal states are casually reducible to brain states
 - X Internal states are ontologically irreducible to brain states

Instances of class A are ontologically reducible to instances of class B if and only if instances of A's are nothing but instances B's

- Layer weights of the neural network
- Connectivity of the neural network
- Activations of the neural network at time t
- The agent's observation at time t
- The agent's action at time t
- The position and velocity of the agent at time t
- Brain state at time t (all of the bits contained in my computer)
- A region the agent believes it's in
- Internal state at time t (set of regions the agent believes it's in)

- Bits
- Python objects
- Electrons
- Quarks
- ..

Conclusion

- Searle's view
 - Consciousness is causally reducible to brain states
 - Consciousness is ontologically irreducible to brain states
- V2
 - Conscious mental states are casually reducible to brain states
 - Conscious mental states are ontologically irreducible to brain states
- V1
 - Mental states are casually reducible to brain states
 - Mental states are ontologically irreducible to brain states
- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Conclusion

brain states

```
def recurrent_activations_to_internal_state(recurrent_activations):
    internal_state = set()

for activation, region in zip(recurrent_activations, regions):
    if activation > 0.5:
        internal_state.add(region.__name__)

return internal_state
```

brain states ible to brain states

- V0
 - Internal states are casually reducible to brain states
 - Internal states are ontologically irreducible to brain states

Conclusion

- Download and play with the code yourself
 - github.com/Josh-Joseph/tsc-2019
- Disagree with our implementation?
 - Great! Open an issue and/or submit a pull request in GitHub
- Thoughts on other theories of mind/consciousness that may be particularly well suited for this type of approach?