Data Engineering

Lecture 5: Regular expressions and Automatas

Languages

An alphabet is a set of symbols:

Or "words"

Sentences are strings of symbols:

0,1,00,01,10,1,...

A language is a set of sentences:

 $L = \{000,0100,0010,..\}$

- <u>Languages</u>: "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols"
- N. Chomsky, Information and Control, Vol 2, 1959

Alphabet

An alphabet is a finite, non-empty set of symbols

- We will use the symbol A to denote an alphabet
- Examples:
 - Binary: $A = \{0,1\}$
 - All lower case letters: A = {a,b,c,..z}
 - Alphanumeric: A = {a-z, A-Z, 0-9}
 - DNA molecule letters: A = {a,c,g,t}

•

Strings

A string or word is a finite sequence of symbols chosen from Σ

• Empty string is ε (or "epsilon")

• Length of a string w, denoted by "|w|", is equal to the number of (non- ε) characters in the string

•
$$E.g.$$
, $x = 010100$ $|x| = 6$

•
$$x = 01 \epsilon 0 \epsilon 1 \epsilon 00 \epsilon$$
 $|x| = ?$

Operations

Given two strings x and y, the following operations over them are defined:

- Concatenation: xy
- Alternation: x|y
- Kleene star: x^* denotes the smallest superset of the set described by x that contains ε and is closed under string concatenation.

(i.e. It is the set of all strings that can be made by concatenating any finite number of elements in x.)

Note: To avoid extra parentheses it is assumed the priority: Kleene star > concatenation > alternation.

Regular expression

A regular expression (RE) over an alphabet A is defined recursively as follows:

- 1) ε is a regular expression.
- 2) Each symbol of A is a regular expression.
- 3) If e1 and e2 are regular expressions.
 - (e1) | (e2) is a regular expression.
 - (e1) (e2) is a regular expression.
 - (e1)* is a regular expression.
- 4) There are not other regular expressions that the ones constructed with rules (1)-(3).

Regular expression

A regular expression (RE) over an alphabet A is defined recursively as follows:

- 1) ε is a regular expression.
- 2) Each symbol of A is a regular expression.
- 3) If e1 and e2 are regular expressions.
 - (e1) | (e2) is a regular expression.
 - (e1) (e2) is a regular expression.
 - (e1)* is a regular expression.
- 4) There are not other regular expressions that the ones constructed with rules (1)-(3).

```
Example: The regular expression (a|b)*abb can generate {abb, aabb, baabb, aaabb, ababb, bbabb, aaaabb,...}

* Kleene star
```

Finite Automata

A finite automata is a quintuple $M=(Q,A,D,q_0,F)$

- Q es is a finite set -set of states-.
- A is an alphabet –Input alphabet-.
- D is an application D : Q x A \rightarrow Q (given an state and a symbol from the alphabet produces a new state).
- q_0 is an element of Q, -initial state-.
- F is a subset of Q -set of final states-.

Important

Given a regular expression it exists a finite automata able to recognize its language.

(Also, given a finite automata, it can be expressed as a regular expression).

Today goals

- Understand the conversion between regular expressions and Non-Deterministic Finite Automatas (NFA).
- Understand the conversion between NFA y Deterministic Finite Automatas (DFA).
- Being able to convert a regular expression into a DFA.
- Understand the conversión between a NFA and a minimal DFA.

Planing

RE → **NFA** (Thompson construction)

Build a **NFA** for each term in the **RE**

Combine them following the patterns marked by the operators.

NFA → **DFA** (Subset construction)

Build a **DFA** that simulates the **NFA**

DFA → Minimal **DFA**

Brzozowski algorithm's

$DFA \rightarrow RE$

Join all the paths from s_0 to a final state

Planing

RE → **NFA** (Thompson construction)

Build a NFA for each term in the RE

Combine them following the patterns marked by the operators.

NFA → **DFA** (Subset construction)

Build a **DFA** that simulates the **NFA**

DFA → Minimal **DFA**

Brzozowski algorithm's

$DFA \rightarrow RE$

Join all the paths from s_0 to a final state

RE → **NFA** (Thompson)

Two stepes:

- 1) For each symbol and operators, there is a **NFA** pattern.
- 2) We join each of these patterns with \mathcal{E} -transitions in precedent order and we adjust the final states.

RE → **NFA** (Thompson)

Two stepes:

- 1) For each symbol and operators, there is a **NFA** pattern.
- 2) We join each of these patterns with \mathcal{E} -transitions in precedent order and we adjust the final states.

IMPORTANT: Remember the preference in REs -1) Parenthesis, 2) Kleene star, 3) concatenation, 4) alternation-.

Build a NFA for a (b | c)*:

Step 1: Build the patterns for a, b, c

Build a NFA for a (b | c)*:

Step 1: Build the patterns for a, b, c

Step 2: Join the elements and add the ε transitions to build b | c

Build a NFA for a (b | c)*:

Step 1: Build the patterns for a, b, c

Step 2: Join the elements and add the ε transitions to build b | c

Steo 3: Join the elements and add the ε transitions to build (b | c)*

Build a NFA for a (b | c)*:

Step 4: Join the elements and add the ε transitions to build a (b | c)*

Build a NFA for a (b | c)*:

Step 4: Join the elements and add the ε transitions to build a (b | c)*

Note: In an easy case like this, we would have probably designed something like this in a direct way. $\bigcirc_{b.c}$

Build a NFA for a (b | c)*:

Step 4: Join the elements and add the ε transitions to build a (b | c)*

Note: In an easy case like this, we would have probably designed something like this in a direct way. $\bigcirc_{b,c}$

But, don't do it!

Always follow the steps. Learn the 4 basis patterns and apply them!

Always remember:

IMPORTANT: Remember the preference in REs -1) Parenthesis, 2) Kleene star, 3) concatenation, 4) alternation-.

RE \rightarrow NFA –example 2-

Build a NFA for ((ab)* | c)d:

Step 1: Build the patterns

for a, b, c, d

Build a NFA for ((ab)* | c)d:

Step 1: Build the patterns

for a, b, c, d

Step 2: ab

Build a NFA for ((ab)* | c)d:

Step 1: Build the patterns

for a, b, c, d

Step 2: ab

Step 3: (ab)*

Build a NFA for ((ab)* | c)d:

Always remember:

IMPORTANT: Remember the preference in REs -1) Parenthesis, 2) Kleene star, 3) concatenation, 4) alternation-.

Planing

RE → **NFA** (Thompson construction)

Build a **NFA** for each term in the **RE**

Combine them following the patterns marked by the operators.

NFA → **DFA** (Subset construction)

Build a **DFA** that simulates the **NFA**

DFA → Minimal **DFA**

Brzozowski algorithm's

$DFA \rightarrow RE$

Join all the paths from s_0 to a final state

A DFA is a special case of NFA such as:

- DFA does not have ε transitions
- Transiciones in DFAs have a single value

A DFA is a special case of NFA such as:

- DFA does not have ε transitions
- Transiciones in DFAs have a single value

We start building the NFA, as it has a more obvious relation with the Regular Expression (RE).

A DFA is a special case of NFA such as:

- DFA does not have ε transitions
- Transiciones in DFAs have a single value

We start building the NFA, as it has a more obvious relation with the Regular Expression (RE).

In Thompson construction, the ε transitions were joining two **DFA**s to create a **NFA**.

A DFA is a special case of NFA such as:

- DFA does not have ε transitions
- Transiciones in DFAs have a single value

We start building the NFA, as it has a more obvious relation with the Regular Expression (RE).

In Thompson construction, the ε transitions were joining two **DFA**s to create a **NFA**.

Luckily: Any NFA can be simulated by a DFA.

The subset construction createa a DFA that simulates a given NFA

Two basic functions:

- $Move(s_i, a)$ is the set of states that can be reached from s_i applying a
- $FollowEpsilon(s_i)$ is the set of states that can be reached from s_i applying ε

The subset construction createa a DFA that simulates a given NFA

Algorithm:

- 1) Derive the initial state of the **DFA** from the state n_0 of the **NFA**
 - 1a) Add all the states that can be reached from n_0 applying \mathcal{E} :

```
d_0 = FollowEpsilon (\{n_0\})
```

We define $\mathbf{D} = \{ d_0 \}$

The subset construction createa a DFA that simulates a given NFA

Algorithm:

- 1) Derive the initial state of the **DFA** from the state n_0 of the **NFA**
 - 1a) Add all the states that can be reached from n_0 applying \mathcal{E} :

```
d_0 = FollowEpsilon (\{n_0\})
We define \mathbf{D} = \{d_0\}
```

2) For $\alpha \in \Sigma$ (alphabet), compute *FollowEpsilon* (*Move*(d_o , α)): 2a) If this operation defined a new state, we add it to **D**

The subset construction createa a DFA that simulates a given NFA

Algorithm:

- 1) Derive the initial state of the **DFA** from the state n_0 of the **NFA**
 - 1a) Add all the states that can be reached from n_0 applying \mathcal{E} :

```
d_0 = FollowEpsilon (\{n_0\})
We define \mathbf{D} = \{d_0\}
```

- 2) For $\alpha \in \Sigma$ (alphabet), compute *FollowEpsilon* (*Move*(d_0 , α)): 2a) If this operation defined a new state, we add it to **D**
- 3) Iterate until it is not possible to add any new state.

NFA → DFA –example 1-

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0			

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3$		
		$n_4 n_6 n_9$		

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3 n_4 n_6 n_9$	None	None

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$ \begin{array}{c} n_1 n_2 n_3 \\ n_4 n_6 n_9 \end{array} $	None	None
d_1	$n_1 n_2 n_3$ $n_4 n_6 n_9$			

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3 n_4 n_6 n_9$	None	None
d_1	$n_1 n_2 n_3 n_4 n_6 n_9$	None		

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3 n_4 n_6 n_9$	None	None
d_1	$n_1 n_2 n_3$ $n_4 n_6 n_9$	None	$n_5 n_8 n_9$ $n_3 n_4 n_6$	

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3 n_4 n_6 n_9$	None	None
d_1	$n_1 n_2 n_3$ $n_4 n_6 n_9$	None	$n_5 n_8 n_9$ $n_3 n_4 n_6$	$n_7 n_8 n_9$ $n_3 n_4 n_6$

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3 n_4 n_6 n_9$	None	None
d_1	$n_1 n_2 n_3$ $n_4 n_6 n_9$	None	$n_5 n_8 n_9$ $n_3 n_4 n_6$	$n_7 n_8 n_9$ $n_3 n_4 n_6$
d_2	$n_5 n_8 n_9$ $n_3 n_4 n_6$			

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3$ $n_4 n_6 n_9$	None	None
d_1	$n_1 n_2 n_3$ $n_4 n_6 n_9$	None	$n_5 n_8 n_9$ $n_3 n_4 n_6$	$n_7 n_8 n_9$ $n_3 n_4 n_6$
d_2	$n_5 n_8 n_9$ $n_3 n_4 n_6$			
d_3	$n_7 n_8 n_9$ $n_3 n_4 n_6$			

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3 n_4 n_6 n_9$	None	None
d_1	$n_1 n_2 n_3$ $n_4 n_6 n_9$	None	$n_5 n_8 n_9$ $n_3 n_4 n_6$	$n_7 n_8 n_9$ $n_3 n_4 n_6$
d_2	$n_5 n_8 n_9$ $n_3 n_4 n_6$	None		
d_3	$n_7 n_8 n_9 n_3 n_4 n_6$	None		

$NFA \rightarrow DFA$ –example 1-

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3 n_4 n_6 n_9$	None	None
d_1	$n_1 n_2 n_3$ $n_4 n_6 n_9$	None	$n_5 n_8 n_9 n_3 n_4 n_6$	$n_7 n_8 n_9$ $n_3 n_4 n_6$
d_2	$n_5 n_8 n_9$ $n_3 n_4 n_6$	None	d_2	d_3
d_3	$n_7 n_8 n_9$ $n_3 n_4 n_6$	None	d_2	d_3

Final states (they contain n_9)

States		FollowEpsilon (Move(s,*)		
DFA	NFA	а	b	С
d_0	n_0	$n_1 n_2 n_3 n_4 n_6 n_9$	None	None
d_1	$n_1 n_2 n_3$ $n_4 n_6 n_9$	None	$n_5 n_8 n_9$ $n_3 n_4 n_6$	$n_7 n_8 n_9$ $n_3 n_4 n_6$
d_2	$n_5 n_8 n_9$ $n_3 n_4 n_6$	None	d_2	d_3
d_3	$n_7 n_8 n_9$ $n_3 n_4 n_6$	None	d_2	d_3

Transition Table for the DFA

The **DFA for** $\underline{a} (\underline{b} | \underline{c})^*$ is

	а	b	С
d_0	d_1	None	None
d_1	None	d_2	d ₃
d_2	None	d_2	d_3
<i>d</i> ₃	None	d_2	d ₃

- Much smaller than the **NFA** (no ε transitions).
- All transitions are deterministic.
- The skeleton is similar to that of the NFA

States		FollowEpsilon (Move(s,*)				
DFA	NFA	a	b	С	d	
d_0	$S_0 S_1 S_2 S_3$ $S_7 S_9 S_{10}$					

States		FollowEpsilon (Move(s,*)				
DFA	NFA	a	b	С	d	
d_0	$S_0 S_1 S_2 S_3$ $S_7 S_9 S_{10}$	S_3S_4	None	$S_8S_9S_{10}$	S ₁₁	

States		FollowEpsilon (Move(s,*)				
DFA	NFA	a	b	С	d	
d_0	$S_0 S_1 S_2 S_3$ $S_7 S_9 S_{10}$	S_3S_4	None	$S_8 S_9 S_{10}$	S ₁₁	
d_1	S_3S_4					
d_2	$S_8 S_9 S_{10}$					
d_3	S ₁₁					

States		FollowEpsilon (Move(s,*)				
DFA	NFA	a	b	С	d	
d_0	$S_0 S_1 S_2 S_3$ $S_7 S_9 S_{10}$	S_3S_4	None	$S_8 S_9 S_{10}$	S ₁₁	
d_1	S_3S_4	None	$S_2 S_5 S_6$ $S_9 S_{10}$	None	None	
d_2	$S_8 S_9 S_{10}$					
d_3	S ₁₁					

States		FollowEpsilon (Move(s,*)			
DFA	NFA	a	b	С	d
d_0	$S_0 S_1 S_2 S_3$ $S_7 S_9 S_{10}$	S_3S_4	None	$S_8 S_9 S_{10}$	S ₁₁
d_1	S_3S_4	None	$S_2 S_5 S_6$ $S_9 S_{10}$	None	None
d_2	$S_8 S_9 S_{10}$	None	None	None	S ₁₁
d_3	S ₁₁				

Compute the DFA from the following NFA:

States		FollowEpsilon (Move(s,*)				
DFA	NFA	a	b	С	d	
d_0	$S_0 S_1 S_2 S_3$ $S_7 S_9 S_{10}$	S_3S_4	None	$S_8 S_9 S_{10}$	S ₁₁	
d_1	S_3S_4	None	$S_2 S_5 S_6$ $S_9 S_{10}$	None	None	
d_2	$S_8 S_9 S_{10}$	None	None	None	S ₁₁	
d_3	S ₁₁	None	None	None	None	

 d_3 is the final state, as it contains S_{11}

States		FollowEpsilon (Move(s,*)			
DFA	NFA	a	b	С	d
d_0	$S_0 S_1 S_2 S_3$ $S_7 S_9 S_{10}$	S_3S_4	None	$S_8 S_9 S_{10}$	S ₁₁
d_1	S ₃ S ₄	None	$S_2 S_5 S_6$ $S_9 S_{10}$	None	None
d_2	$S_8 S_9 S_{10}$	None	None	None	S ₁₁
d_3	S ₁₁	None	None	None	None
d_4	$S_2 S_5 S_6$ $S_9 S_{10}$	d_1	None	None	<i>d</i> ₃

States	FollowEps	FollowEpsilon (Move(s,*)						
DFA	a	b	С	d				
d_0	S_3S_4	None	$S_8S_9S_{10}$	S ₁₁				
d_1	None	$S_2 S_5 S_6$ $S_9 S_{10}$	None	None				
d_2	None	None	None	S ₁₁				
d_3	None	None	None	None				
d_4	d_1	None	None	d_3				

Compute the DFA from the regular expression abc | bc | ab:

Compute the DFA from the regular expression abc | bc | ab:

We start by computing the NFA. As there are no parenthesis and no Kleene stars, we perform first the concatenations:

RE → DFA –example-

Compute the DFA from the regular expression abc | bc | ab:

We start by computing the NFA. As there are no parenthesis and no Kleene stars, we perform first the concatenations:

Finally, we perform the alternations

Note: I do not add the \mathcal{E} transitions at the –adding s_4 , s_7 , s_{10} as final states- due to there is nothing else to add to the NFA.

Compute the DFA from the regular expression abc | bc | ab:

States		FollowEpsilon (Move(s,*)			
DFA	NFA	a	b	С	d
d_0	$S_0 S_1 S_5 S_8$				

Compute the DFA from the regular expression abc | bc | ab:

States		FollowEpsilon (Move(s,*)			
DFA NFA		a	b	С	d
d_0	$S_0S_1S_5S_8$	S_2S_9	<i>S</i> ₆	None	None

Compute the DFA from the regular expression abc | bc | ab:

States		FollowEpsilon (Move(s,*)				
DFA	NFA	a	b	С	d	
d_0	$S_0S_1S_5S_8$	S_2S_9	<i>S</i> ₆	None	None	
d_1	S_2S_9					
d_2	S ₆					

Compute the DFA from the regular expression abc | bc | ab:

States		FollowEpsilon (Move(s,*)				
DFA	NFA	a	b	С	d	
d_0	$S_0S_1S_5S_8$	S_2S_9	S_6	None	None	
d_1	S_2S_9	None	<i>S</i> ₃	None	S ₁₀	
d_2	S_6					

Compute the DFA from the regular expression abc | bc | ab:

States		FollowEpsilon (Move(s,*)			
DFA	NFA	a	b	С	d
d_0	$S_0S_1S_5S_8$	S_2S_9	<i>S</i> ₆	None	None
d_1	S_2S_9	None	S ₃	None	S ₁₀
d_2	S_6	None	None	<i>S</i> ₇	None

Compute the DFA from the regular expression abc | bc | ab:

States		FollowEpsilon (Move(s,*)			
DFA	NFA	a	b	С	d
d_0	$S_0S_1S_5S_8$	S_2S_9	S_6	None	None
d_1	S_2S_9	None	S ₃	None	S ₁₀
d_2	<i>S</i> ₆	None	None	S ₇	None
d_3	<i>S</i> ₃				
d_4	S ₁₀				

Compute the DFA from the regular expression abc | bc | ab:

States		FollowEpsilon (Move(s,*)			
DFA	NFA	а	b	С	d
d_0	$S_0S_1S_5S_8$	S_2S_9	S_6	None	None
d_1	S_2S_9	None	S_3	None	S ₁₀
d_2	<i>S</i> ₆	None	None	S ₇	None
d_3	<i>S</i> ₃	None	None	S ₄	None
d_4	S ₁₀				

Compute the DFA from the regular expression abc | bc | ab:

States		FollowEpsilon (Move(s,*)			
DFA	NFA	a	b	С	d
d_0	$S_0S_1S_5S_8$	S_2S_9	S_6	None	None
d_1	S_2S_9	None	S ₃	None	S ₁₀
d_2	S_6	None	None	S ₇	None
d_3	S ₃	None	None	S ₄	None
d_4	S ₁₀	None	None	None	None

RE → DFA –example-

Compute the DFA from the regular expression abc | bc | ab:

States	FollowEpsilon (Move(s,*)				
DFA	a	b	С	d	
d_0	d_1	d_2	None	None	
d_1	None	d_3	None	d_4	
d_2	None	None	d_5	None	
d_3	None	None	d_6	None	
d_4	None	None	None	None	

Planing

RE → **NFA** (Thompson construction)

Build a **NFA** for each term in the **RE**

Combine them following the patterns marked by the operators.

NFA → **DFA** (Subset construction)

Build a **DFA** that simulates the **NFA**

DFA → Minimal **DFA**

Brzozowski algorithm's

$DFA \rightarrow RE$

Join all the paths from s_0 to a final state

Intuition:

 The subset construction method joins the prefixes that appear in the NFA.

Intuition:

 The subset construction method joins the prefixes that appear in the NFA.

As an example, for the regular expression abc | bc |bd:

Intuition:

 The subset construction method joins the prefixes that appear in the NFA.

As an example, for the regular expression abc | bc |bd:

In the NFA, Thompson's construction leave ε transitions between simple characters.

DFA

The subset construction method deletes ε transitions and join the patch for aa.

However, it leaves the duplicates tailes intact (bc in this case).

<u>Idea</u>:

To use the Subset Construction twice.

<u>Idea</u>:

To use the Subset Construction twice.

Given an NFA N we define:

- Reverse(N) is the NFA built by:
 - 1) Puting the initial state as final.
 - 2) Adding a new initial state with a ε transition to each previous final state.
 - 3) Rotating the rest of edges.

Reverse(N)

<u>Idea</u>:

To use the Subset Construction twice.

Given an NFA N we define:

- Reverse(N) is the NFA built by:
 - 1) Puting the initial state as final.
 - 2) Adding a new initial state with a ε transition to each previous final state.
 - 3) Rotating the rest of edges.
 - Subset(N) is the DFA resulting from applying the subset construction to N
 - Reachable(N) is the result to delete in N all the states that can not be reached from the initial state.

<u>Idea</u>:

To use the Subset Construction twice.

The minimal DFA for the NFA N is obtained as follows:

Reachable(Subset(Reverse(Reachable(Subset(Reverse(N)))))

DFA → minimal DFA –example-

Step 1

Apply subset construction to *Reverse(NFA)* in order to join the sufixes of the original NFA

DFA → minimal DFA –example--

Step 1

Apply subset construction to *Reverse(NFA)* in order to join the sufixes of the original NFA

Reachable(Subset(Reverse(N)))

DFA → minimal DFA –example--

Step 2

We apply again Reverse(\cdot), and we use the subset construction to join the prefixes of the original NFA

DFA → minimal DFA –example--

Step 2

We apply again Reverse(\cdot), and we use the subset construction to join the prefixes of the original NFA

Minimal DFA: Reachable(Subset (Reverse(Reachable(Subset(Reverse(N)))))

Planing

RE → **NFA** (Thompson construction)

Build a **NFA** for each term in the **RE**

Combine them following the patterns marked by the operators.

NFA → **DFA** (Subset construction)

Build a **DFA** that simulates the **NFA**

DFA → Minimal **DFA**

Brzozowski algorithm's

$DFA \rightarrow RE$

Join all the paths from s_0 to a final state

$DFA \rightarrow RE$

Possible paths from initial state to final state:

ad

abc

bc

$DFA \rightarrow RE$

Possible paths from initial state to final state:

ad

abc

bc

Then the regular expression is:

ad | abc | bc