CIS 2101

Trees

Tree

(Illustration and Definition)

A tree is a collection of elements called nodes, one of which is distinguished as a root, along with the relation ("parenthood") that places a hierarchical structure on the nodes

Illustration

Prepared by chrisp

Exercise 1

- What are the nodes of the tree?
- 2. What is the root node?
- Parenthood:
 - a) Parent of 6?
 - b) Parent of 7?
- c) Parent of 1?

Recursive Definition of Tree

- A single node by itself is a tree. This node is also the root of the tree.
- Suppose n is a node and T₁, T₂, . . ., T_k are trees with roots n₁, n₂, . . . , n_k, respectively.

We can construct a new tree by making *n* the parent of nodes n₁, n₂, . . . , n_k.

In this tree, n is the root and T_1, T_2, \ldots, T_k are the **subtrees of the root**.

Nodes n_1, n_2, \ldots, n_k are called the children of node n.

Prepared by chrisp

5

Pacuraiva Dafi

Recursive Definition of Tree

- A single node by itself is a tree. This node is also the root of the tree.
- Suppose n is a node and T₁, T₂, ..., T_k are trees with roots n₁, n₂, ..., n_k, respectively.

We can construct a new tree by making n the parent of nodes n_1, n_2, \ldots, n_k .

In this tree, n is the root and $T_1, T_2, ..., T_k$ are the subtrees of the root.

Nodes n_1, n_2, \ldots, n_k are called the children of node n.

Prepared by chrisp

Path

The **path from** n_1 to node n_k is a sequence of nodes $(n_1, n_2, ..., n_k)$ in a tree such that n_i is the parent of n_{i+1} for $1 \le i < k$.

The *length of a path* is one less than the number of nodes in the path.

Illustration

Prepared by chrisp

Ancestor and Descendant

If there is a path from node a to node b, then a is an ancestor of b and b is a descendant of a.

Any node is both an ancestor and a descendant of itself.

Proper Ancestor is an ancestor of a node other than itself.

Proper Descendant is a descendant of a node other than itself.

Note: The root is the only node without a proper ancestor.

Illustration

Prepared by chrisp

Leaf, Null & Subtree

A <u>leaf</u> is a node with no proper descendants.

A <u>null tree</u> is a tree with no nodes. It is represented by the symbol (\(\triangle\)).

A <u>subtree of a tree</u> is a node, together with all its descendants.

Illustration

Prepared by chrisp

Height and Depth

The **height of a node** in a tree is the length of the longest path from that node to a leaf.

The **depth of a node** is the length of the unique path from the root to that node.

Illustration

Prepared by chrisp

Height and Depth

The height of a node in a tree is the length of the longest path from that node to a leaf.

The depth of a node is the length of the unique path from the root to that node.

Ordering of Sibling

The *left-to-right* ordering of <u>siblings</u> (children of the same node) can be extended to compare any two nodes that are not related by ancestor-descendant relationship.

The relevant rule is that:

if a and b are siblings, and
a is to the left of b, then
all the descendants of a are to the
left of all the descendants of b.

Illustration

Systematic Ordering of Nodes (Listings or Traversals)

- Preorder
- Postorder
- 3. Inorder

D

Preorder: A Recursive Definition

The **preorder listing** (or **preorder traversal**) of the nodes of tree T is:

- the root n of T

- followed by the nodes of T₁ in preorder,
 then the nodes of T₂ in preorder, and
 so on, up to the nodes of T_k in preorder.

Preorder Listing or Traversal

- the root n of T 5
- followed by the nodes of T_1 in preorder,
- then the nodes 3. 6, 3, 1 of T2 in preorder, and
- Up to the nodes of T₃ in preorder.

2, 8

Tree T

Preorder Listing: 5, 0, 6, 3, 1, 2, 8

2. Postorder: A Recursive Definition

The **postorder listing** (or **postorder traversal**) of the nodes of tree T is:

- the nodes of T₁ in postorder,
- then the nodes of T₂ in postorder, and
- so on, up to the nodes of T_k in postorder,
- all followed by root n of T

Postorder Listing or Traversal

- the nodes of T₁ in postorder,

Tree T

- then the nodes of T₂ in postorder, and
- 3, 1, 6
- 3. Up to the nodes of T₃ in postorder.
- 8, 2
- 4. All followed by the root n of T

Postorder Listing: 0, 3, 1, 6, 8, 2, 5

Inorder Listing or Traversal

- the nodes of T1 in inorder,
 - 0
- 5 followed by the root n of T
- then the nodes of T₂ in inorder, and
- 3, 6, 1
- Up to the nodes of T₃ in preorder. 4.
- 8, 2

Inorder Listing: 0, 5, 3, 6, 1, 8, 2

Traversal Summary

Preorder Listing: 5, 6, 2, 0

Inorder Listing: 6, 5, 2, 0

Postorder Listing: 6, 2, 0, 5

Prepared by chrisp

19

Labeled and Expression Trees

The label of a node is the value "stored" at the node and not the name of the node.

"An ELEMENT is to a LIST as a LABEL is to a TREE."

- A Labeled Tree is a tree whose nodes have labels.
- An <u>Expression Tree</u> is a tree where every leaf is labeled by an operand and consists of that operand alone and every interior node is labeled by an operator.

Prepared by offriga

29

A + B

Leaves: Operands (ex. A and B) Inode: Operators(ex. +)

Expression Tree

The above expression tree represents the arithmetic expression (a + b)*(c - d), where n₁, n₂, . . ., n₇ are the names of the nodes, and the operands & operators are the labels.

Forms of writing Expression

- Prefix Notation is the listing of labels in preorder
- Infix Notation is the listing of labels in inorder
- Postfix Notation is the listing of labels in postorder

Determine the following:

- 1. Prefix Notation
- 2. Infix Notation
- 3. Postfix Notation

Prepared by chrisp

-

Forms of writing Expression

- Prefix Notation is the listing of labels in preorder
- Infix Notation is the listing of labels in inorder
- Postfix Notation is the listing of labels in postorder

Determine the following:

- 1. Prefix Notation
- 2. Infix Notation
- 3. Postfix Notation

Determine the following:

- 1) Prefix
- 2) Infix
- Postfix

//Research:

Polish Notation Reverse Polish Notation

Prepared by chrisp

Given the mathematical Expression, draw the expression tree

Mathematical Expression #1: (a+b)*(c-d)

Mathematical Expression #2:

Forms of writing Expression

- Prefix Notation is the listing of labels in preorder
- Infix Notation is the listing of labels in inorder
- Postfix Notation is the listing of labels in postorder

Determine the following:

- Prefix Notation
- 2. Infix Notation
- 3. Postfix Notation

Mathematical Expression: (a+b)*(c-d)

Determine the following:

- 1) Prefix: * + a b c d
- 2) Infix: a + b * c d
- 3) Postfix: ab+cd-*

//Research:

Polish Notation

Reverse Polish Notation

ADT Tree Operations

- PARENT(n, T). This function returns the parent of node n in tree T. If n is the root, which has no parent, ∧ is returned.
- LEFTMOST_CHILD(n,T). This returns the leftmost child of node n in tree T and returns ∧ if n is a leaf.
- RIGHT_SIBLING(n,T). This returns the right sibling of node n in tree T. Right sibling is defined to be the node r having the same parent p as node n and node r lies immediately to the right of node n in the ordering of the children of node p.

Prepared by chrisp

ADT Tree Operations

- LABEL(n,T). This returns the label of node n in tree T.
- CREATEi(v, T₁,T₂,...,T_i). Makes a new root r with label v and gives it i children, which are the roots of T₁,T₂,...,T_i, in order from left to right
- ROOT(T). This returns the node that is the root of tree T, or ∧ if T is a null tree
- INITIALIZE(T). This prepares the tree so that it will be used for the first time.
- MAKENULL(T). This makes tree T be an empty tree.

A Recursive Preorder listing function

void PREORDER(node n, Tree T)

```
{ /* List the labels of the descendants of n in preorder */
    node c;
    print(LABEL(n,T));
    c = LEFTMOST_CHILD(n,T);
    while (c <> ^)
    {
        PREORDER(c,T);
        c = RIGHT_SIBLING(c,T);
    }
} /* function PREORDER */
```

Prepared by chrisp

27

Implementations of Trees

- 1. Parent Pointer Representation
- 2. Representation of Trees by LISTS of CHILDREN

1. Parent Pointer Representation

(Illustration)

Prepared by chrisp

1. Parent Pointer Representation (Description)

- An Array Representation of Trees
- This representation is the simplest representation of tree T that supports the PARENT operation
- T[x] = y, if node y is the parent of node x;
 - T[x] = -1, if node x is the root node; and
 - T[x] = -2, if node x is not a node in the tree

2. Representation of Trees by List of Children (Illustration)

2. Representation of Trees by List of Children (Illustration)

2. Representation of Trees by List of Children (Illustration)

noc	
}*List;	
typedef }Tree;	struct { Header[SIZE]; Root;

typedef struct node {

Exercise 5

- 1. Write an appropriate definition of the datatypes Tree and node using the representation of trees by List of children. Include macro definition for the size of the array.
- Write the code for each of the following:
 - a) node LEFTMOST_CHILD(node n, Tree T)
 - b) node PARENT(node n, Tree T)