## Advanced Algorithm Design and Analysis CSc 140

#### **Midterm 1 Review**

Instructor: Hady Ahmady Phoulady

## General Advice for Study

- Understand how the algorithms are working
  - Work through the examples we did in class
  - "Narrate" for yourselves the main steps of the algorithms in a few sentences
- Know when or for what problems the algorithms are applicable
- Do not memorize algorithms

### Asymptotic notations

- A way to describe behavior of functions in the limit
  - Abstracts away low-order terms and constant factors
  - How we indicate running times of algorithms
  - Describe the running time of an algorithm as n goes to ∞
- O notation: asymptotic "less than": f(n) "≤" g(n)
- Ω notation: asymptotic "greater than": f(n) "≥" g(n)
- Θ notation: asymptotic "equality": f(n) "=" g(n)

#### Exercise

 Order the following 6 functions in increasing order of their growth rates:

```
- n\log n, \log^2 n, n^2, 2^n, \sqrt{n}, n.
```

```
log^2n
\sqrt{n}
n
nlogn
n^2
2^n
```

## Running Time Analysis

#### Algorithm Loop1(n)

```
p=1
for i = 1 to 2n
p = p*i
```

O(n)

Algorithm Loop2(n)

```
p=1
for i = 1 to n^2
p = p*i
```

 $O(n^2)$ 

## Running Time Analysis

#### Algorithm Loop3(n)

```
s=0
for i = 1 to n
for j = 1 to i
s = s + 1
```

 $O(n^2)$ 

#### Recurrences

- **Def.:** Recurrence = an equation or inequality that describes a function in terms of its value on smaller inputs, and one or more base cases
- Recurrences arise when an algorithm contains recursive calls to itself
- Methods for solving recurrences
  - Substitution method
  - Iteration method
  - Recursion tree method
  - Master method
- Unless explicitly stated choose the simplest method for solving recurrences

#### Master's method

Used for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where,  $a \ge 1$ , b > 1, and f(n) > 0

Compare f(n) with  $n^{\log_b a}$ :

Case 1: if 
$$f(n) = O(n^{\log_b a - \epsilon})$$
 for some  $\epsilon > 0$ , then:  $T(n) = \Theta(n^{\log_b a})$ 

Case 2: if 
$$f(n) = \Theta(n^{\log_b a})$$
, then:  $T(n) = \Theta(n^{\log_b a} \lg n)$ 

Case 3: if 
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$
 for some  $\epsilon > 0$ , and if

 $af(n/b) \le cf(n)$  for some c < 1 and all sufficiently large n, then:

$$\mathsf{T}(\mathsf{n}) = \Theta(\mathsf{f}(\mathsf{n}))$$

regularity condition

#### Exercise

• 
$$T(n) = 2T\left(\frac{n}{3}\right) + \frac{n}{2}$$

- Solve using the recursion tree method
- Solve using the substitution method
- Solve using the iteration method
- Solve using the Master theorem

O(n)

## Sorting

Insertion sort

– Design approach: incremental

Sorts in place: Yes

- Best case:  $\Theta(n)$ 

- Worst case:  $\Theta(n^2)$ 

Bubble Sort

– Design approach: incremental

Sorts in place: Yes

- Running time:  $\Theta(n^2)$ 

## **Analysis of Insertion Sort**

| INSERTION-SORT(A)                               | cost                  | times                      |
|-------------------------------------------------|-----------------------|----------------------------|
| <b>for</b> j ← 2 <b>to</b> n                    | <b>c</b> <sub>1</sub> | n                          |
| <b>do</b> key ← A[ j ]                          | $c_2$                 | n-1                        |
| Insert A[ j ] into the sorted sequence A[1 j    | -1] <b>O</b>          | n-1                        |
| $i \leftarrow j - 1$ $\approx n^2/2$ comparison | S C <sub>4</sub>      | n-1                        |
| while i > 0 and A[i] > key                      | <b>C</b> <sub>5</sub> | $\sum_{j=2}^{n} t_j$       |
| <b>do</b> A[i + 1] ← A[i]                       | <b>c</b> <sub>6</sub> | $\sum_{j=2}^{n} (t_j - 1)$ |
| i ← i − 1 ≈ $n^2/2$ exchange                    | cs c <sub>7</sub>     | $\sum_{j=2}^{n} (t_j - 1)$ |
| A[i + 1] ← key                                  | c <sub>8</sub>        | n-1                        |

## Analysis of Bubble-Sort

Alg.: BUBBLESORT(A)

for  $i \leftarrow 1$  to length[A]

do for  $j \leftarrow length[A]$  downto i + 1

Comparisons: 
$$\approx n^2/2$$
 do if  $A[j] < A[j-1]$  Exchanges:  $\approx n^2/2$ 

then exchange  $A[j] \leftrightarrow A[j-1]$ 

$$T(n) = c_1(n+1) + c_2 \sum_{i=1}^{n} (n-i+1) + c_3 \sum_{i=1}^{n} (n-i) + c_4 \sum_{i=1}^{n} (n-i)$$

$$= \Theta(n) + (c_2 + c_2 + c_4) \sum_{i=1}^{n} (n-i)$$

$$\approx \sum_{i=1}^{n} (n-i) = \sum_{i=1}^{n} n - \sum_{i=1}^{n} i = n^2 - \frac{n(n+1)}{2} = \frac{n^2}{2} - \frac{n}{2}$$

$$T(n) = \Theta(n^2)$$

## Sorting

Selection sort

– Design approach: incremental

Sorts in place: Yes

- Running time:  $\Theta(n^2)$ 

Merge Sort

Design approach: divide and conquer

Sorts in place: No

- Running time:  $\Theta(nlgn)$ 

## **Analysis of Selection Sort**

```
Alg.: SELECTION-SORT(A)
                                                                times
                                                       cost
     n \leftarrow length[A]
                                                         C_1
    for j \leftarrow 1 to n - 1
         do smallest ← j
                                                                  n-1
                                                         C_3
for i \leftarrow j + 1 to n comparisons
                                                         C<sub>4</sub> \sum_{j=1}^{n-1} (n-j+1)
                                                         C_5 \sum_{i=1}^{n-1} (n-j)
                    do if A[i] < A[smallest]
≈n
                            then smallest \leftarrow i
                                                         C_6 \sum_{j=1}^{n-1} (n-j)
exchanges
               exchange A[j] → A[smallest]c<sub>7</sub>
                                                                  n-1
```

#### Analyzing Divide and Conquer Algorithms

- The recurrence is based on the three steps of the paradigm:
  - T(n) running time on a problem of size n
  - Divide the problem into a subproblems, each of size n/b: takes D(n)
  - Conquer (solve) the subproblems aT(n/b)
  - Combine the solutions C(n)

$$\Theta(1)$$
 if  $n \le c$   
 $T(n) = aT(n/b) + D(n) + C(n)$  otherwise

### MERGE-SORT Running Time

#### Divide:

- compute q as the average of p and r:  $D(n) = \Theta(1)$ 

#### Conquer:

recursively solve 2 subproblems, each of size n/2 ⇒
 2T (n/2)

#### Combine:

- MERGE on an n-element subarray takes Θ(n) time ⇒ C(n) = Θ(n)

$$\Theta(1)$$
 if  $n = 1$   
 $T(n) = 2T(n/2) + \Theta(n)$  if  $n > 1$ 

#### Quicksort

Quicksort

Partition the array A into 2 subarrays A[p..q] and A[q+1..r], – Idea: such that each element of A[p..q] is smaller than or equal

to each element in A[q+1..r]. Then sort the subarrays

recursively.

Design approach: Divide and conquer

– Sorts in place: Yes

Best case: ⊕(nlgn)

- Worst case:  $\Theta(n^2)$ 

Partition

Running time Θ(n)

• Randomized Quicksort  $\Theta(nlgn)$  – on average  $\Theta(n^2)$  – in the worst case

## **Analysis of Quicksort**

- Any ((a-1)n/a : n/a) splitting: ratio=((a-1)n/a)/(n/a) = a-1 it is a constant !!



#### The Heap Data Structure

- Def: A heap is a nearly complete binary tree with the following two properties:
  - Structural property: all levels are full, except possibly the last one, which is filled from left to right
  - Order (heap) property: for any node xParent(x)  $\ge x$  (max heap)



## Array Representation of Heaps

- A heap can be stored as an array A.
  - Root of tree is A[1]
  - Parent of  $A[i] = A[\lfloor i/2 \rfloor]$
  - Left child of A[i] = A[2i]
  - Right child of A[i] = A[2i + 1]
  - Heapsize[A] ≤ length[A]
- The elements in the subarray
   A[(\[ \ln/2 \]+1) .. n] are leaves
- The root is the max/min element of the heap





A heap is a binary tree that is filled in order

# Operations on Heaps (useful for sorting and priority queues)

– MAX-HEAPIFYO(Ign)

- BUILD-MAX-HEAP O(n)

HEAP-SORTO(nlgn)

- MAX-HEAP-INSERT O(lgn)

HEAP-EXTRACT-MAXO(Ign)

HEAP-INCREASE-KEYO(Ign)

- HEAP-MAXIMUM O(1)

You should be able to show how these algorithms
 perform on a given heap, and tell their running time