Spatial Geostatistical Model

John Tipton

February 14, 2014

1 Full Dimensional Model Statement

1.1 Data Model

$$oldsymbol{y}_t = oldsymbol{H}_t oldsymbol{X} oldsymbol{eta}_t + oldsymbol{\eta}_t + oldsymbol{\epsilon}_t$$

1.2 Process Model

$$\begin{array}{ll} \boldsymbol{\beta}_t \sim N(\mathbf{0}, \boldsymbol{\Sigma}_{\beta}) & \boldsymbol{\Sigma}_{\beta} = \sigma_{\epsilon}^2 \boldsymbol{D}_{\gamma} & \boldsymbol{D}_{\gamma} = diag(\gamma_1^2, \dots, \gamma_{\tau}^2) \\ \boldsymbol{\eta}_t \sim N(0, \boldsymbol{\Sigma}_{\eta}) & \boldsymbol{\Sigma}_{\eta} = \sigma_{\eta}^2 \boldsymbol{R}(\phi) & \boldsymbol{R}(\phi) = \exp\left(-\boldsymbol{D}_t/\phi\right) \\ \boldsymbol{\epsilon}_t \sim N(0, \boldsymbol{\Sigma}_{\epsilon}) & \boldsymbol{\Sigma}_{\epsilon} = \sigma_{\epsilon}^2 \boldsymbol{I}_{n_t} \end{array}$$

1.3 Parameter Model

$$\sigma_{\beta}^{2} \sim IG(\alpha_{\beta}, \beta_{\beta})$$

$$\sigma_{\eta}^{2} \sim IG(\alpha_{\eta}, \beta_{\eta})$$

$$\sigma_{\epsilon}^{2} \sim IG(\alpha_{\epsilon}, \beta_{\epsilon})$$

$$\phi \sim IG(\alpha_{\phi}, \beta_{\phi})$$

where I_{n_t} is the identity matrix of size $n_t \times n_t$ where τ is the number of parameters in β_t and n_t is the number of samples of y_t at time t and D_t is the distance matrix between locations observed at time t. Define $\Sigma = \Sigma_{\eta} + \Sigma_{\epsilon}$

2 Posterior

$$\prod_{t=1}^T [\boldsymbol{\beta}_t, \boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2, \sigma_{\eta}^2, \sigma_{\epsilon}^2, \phi | \boldsymbol{y}_t] \propto \prod_{t=1}^T [\boldsymbol{y}_t | \boldsymbol{\beta}_t, \sigma_{\eta}^2, \phi, \sigma_{\epsilon}^2] [\boldsymbol{\beta}_t | \boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2] [\boldsymbol{\mu}_{\beta}] [\sigma_{\beta}^2] [\sigma_{\epsilon}^2] [\phi]$$

3 Full Conditionals

3.1 Full Conditional for β_t

$$\begin{split} \text{For } t &= 1, \dots, T, \\ & [\boldsymbol{\beta}_t | \cdot] \propto [\boldsymbol{y}_t | \boldsymbol{\beta}_t, \sigma_{\eta}^2, \sigma_{\epsilon}^2, \boldsymbol{\phi}] [\boldsymbol{\beta}_t | \boldsymbol{\mu}_{\beta}, \sigma_{\beta}^2] \\ & \propto e^{-\frac{1}{2}} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)_e^{-\frac{1}{2}} (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta})^T \boldsymbol{\Sigma}_{\beta}^{-1} (\boldsymbol{\beta}_t - \boldsymbol{\mu}_{\beta}) \\ & \propto e^{-\frac{1}{2}} \{\boldsymbol{\beta}_t^T (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}^{-1} \boldsymbol{H}_t \boldsymbol{X} + \boldsymbol{\Sigma}_{\beta}^{-1}) \boldsymbol{\beta}_t - 2 \boldsymbol{\beta}_t^T (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}^{-1} \boldsymbol{y}_t + \boldsymbol{\Sigma}_{\beta}^{-1} \boldsymbol{\mu}_{\beta}) \} \end{split}$$

which is Normal with mean $\boldsymbol{A}^{-1}\boldsymbol{b}$ and variance \boldsymbol{A}^{-1} where

$$\boldsymbol{A}^{-1} = (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}^{-1} \boldsymbol{H}_t \boldsymbol{X} + \boldsymbol{\Sigma}_{\beta}^{-1})^{-1}$$
$$\boldsymbol{b} = (\boldsymbol{X}^T \boldsymbol{H}_t^T \boldsymbol{\Sigma}^{-1} \boldsymbol{y}_t + \boldsymbol{\Sigma}_{\beta}^{-1} \boldsymbol{\mu}_{\beta})$$

3.2 Full Conditional for σ_{η}^2

$$\begin{split} [\sigma_{\eta}^2|\cdot] &\propto \prod_{t=1}^T [\boldsymbol{y}_t|\boldsymbol{\beta}_t, \sigma_{\eta}^2, \phi, \sigma_{\epsilon}^2][\sigma_{\eta}^2] \\ &\propto (\prod_{t=1}^T |\boldsymbol{\Sigma}|^{-\frac{1}{2}}) e^{-\frac{1}{2}\sum_{t=1}^T (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t) (\sigma_{\eta}^2)^{-\alpha_{\eta} + 1} e^{-\frac{\beta_{\eta}}{\sigma_{\eta}^2}} \\ &\propto |\boldsymbol{\Sigma}|^{-\frac{T}{2}} e^{-\frac{1}{2}\sum_{t=1}^T (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_t - \boldsymbol{H}_t \boldsymbol{X} \boldsymbol{\beta}_t) (\sigma_{\eta}^2)^{-\alpha_{\eta} + 1} e^{-\frac{\beta_{\eta}}{\sigma_{\eta}^2}} \end{split}$$

which can be sampled using a Metropolis-Hastings step

3.3 Full Conditional for σ_{ϵ}^2

$$\begin{split} &[\sigma_{\epsilon}^{2}|\cdot] \propto \prod_{t=1}^{T} [\boldsymbol{y}_{t}|\boldsymbol{\beta}_{t}, \sigma_{\eta}^{2}, \boldsymbol{\phi}, \sigma_{\epsilon}^{2}][\boldsymbol{\beta}_{t}|\sigma_{\eta}^{2}, \boldsymbol{\gamma}][\sigma_{\epsilon}^{2}] \\ &\propto (\prod_{t=1}^{T} |\boldsymbol{\Sigma}|^{-\frac{1}{2}}) e^{-\frac{1}{2}\sum_{t=1}^{T} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t}\boldsymbol{X}\boldsymbol{\beta}_{t})^{T}\boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t}\boldsymbol{X}\boldsymbol{\beta}_{t})|_{\boldsymbol{\Sigma}_{\boldsymbol{\beta}}} |^{-\frac{1}{2}} e^{-\frac{1}{2}\sum_{t=1}^{T} \boldsymbol{\beta}_{t}^{T}\boldsymbol{\Sigma}_{\boldsymbol{\beta}}^{-1} \boldsymbol{\beta}_{t} (\sigma_{\epsilon}^{2})^{-\alpha_{\epsilon}+1} e^{-\frac{\beta_{\epsilon}}{\sigma_{\epsilon}^{2}}} \\ &\propto |\boldsymbol{\Sigma}|^{-\frac{T}{2}} e^{-\frac{1}{2}\sum_{t=1}^{T} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t}\boldsymbol{X}\boldsymbol{\beta}_{t})^{T}\boldsymbol{\Sigma}^{-1} (\boldsymbol{y}_{t} - \boldsymbol{H}_{t}\boldsymbol{X}\boldsymbol{\beta}_{t})|_{\boldsymbol{\Sigma}_{\boldsymbol{\beta}}} |^{-\frac{1}{2}} e^{-\frac{1}{2}\sum_{t=1}^{T} \boldsymbol{\beta}_{t}^{T}\boldsymbol{\Sigma}_{\boldsymbol{\beta}}^{-1} \boldsymbol{\beta}_{t} (\sigma_{\epsilon}^{2})^{-\alpha_{\epsilon}+1} e^{-\frac{\beta_{\epsilon}}{\sigma_{\epsilon}^{2}}} \end{split}$$

which can be sampled using a Metropolis-Hastings step

3.4 Full Conditional for ϕ

$$\begin{split} [\phi|\cdot] &\propto \prod_{t=1}^{T} [y_t|\beta_t, \sigma_{\eta}^2, \phi, \sigma_{\epsilon}^2][\phi] \\ &\propto \prod_{t=1}^{T} |\mathbf{\Sigma}|^{-\frac{1}{2}} e^{-\frac{1}{2}} (\mathbf{y}_t - \mathbf{H}_t \mathbf{X} \boldsymbol{\beta}_t)^T \mathbf{\Sigma}^{-1} (\mathbf{y}_t - \mathbf{H}_t \mathbf{X} \boldsymbol{\beta}_t) \phi^{-\alpha_{\phi} + 1} e^{-\frac{\beta_{\phi}}{\phi}} \\ &\propto |\mathbf{\Sigma}|^{-\frac{T}{2}} e^{-\frac{1}{2}} \sum_{t=1}^{T} (\mathbf{y}_t - \mathbf{H}_t \mathbf{X} \boldsymbol{\beta}_t)^T \mathbf{\Sigma}^{-1} (\mathbf{y}_t - \mathbf{H}_t \mathbf{X} \boldsymbol{\beta}_t) \phi^{-\alpha_{\phi} + 1} e^{-\frac{\beta_{\phi}}{\phi}} \end{split}$$

which can be sampled using a Metropolis-Hastings step

Full Conditional for λ^2

$$[\lambda^2|\cdot] \propto \prod_{t=1}^T \prod_{j=1}^\tau (\lambda^2) e^{-\frac{\lambda^2/2}{1/\gamma_j^2}} (\frac{\lambda^2}{2})^{\alpha_\lambda - 1} e^{-\beta_\lambda (\lambda^2/2)}$$
$$\propto (\frac{\lambda^2}{2})^{\alpha_\lambda + \tau - 1} e^{-\lambda^2 (\beta_\lambda + \sum_{j=1}^\tau \gamma_j^2/2)}$$

which is Gamma $(\alpha_{\lambda} + \tau, \beta_{\lambda} + \sum_{j=1}^{\tau} \gamma_{j}^{2}/2)$

4 Posterior Predictive Distribution

The posterior predictive distribution for \boldsymbol{y}_t is sampled a each MCMC iteration k by

$$\boldsymbol{y}_t^{(k)} \sim N(\boldsymbol{H_t}\boldsymbol{X}\boldsymbol{\beta}_t^{(k)}, \boldsymbol{\Sigma}^{(k)})$$