1. Sean $\Sigma = \{@,!,\%\}$ y $f: \{1,2,3,4,5\} \times \mathbb{N} \times \{@,\%\}$ dada por

$$f(x, y, \alpha) = \begin{cases} \alpha^R & \text{si } |\alpha| > y, \\ \subset_{t=3}^{t=x+y} & \alpha^{t.x} & \text{si } |\alpha| \le y. \end{cases}$$

Pruebe que f es Σ -pr.

2. Recordemos que dados $x, y \in \mathbb{N}$ decimos que x es multiplo de y cuando y divide a x. Para $x, y \in \mathbb{N}$, definimos el mínimo común múltiplo de x e y como el menor elemento del conjunto $\{z \in \mathbb{N} : z \text{ es múltiplo de } x \text{ y de } y\}$. Lo denotaremos con $\operatorname{mcm}(x, y)$. Sea $G = \lambda xy[\operatorname{mcm}(x, y)]$; note que G tiene dominio \mathbb{N}^2 . Pruebe que G es \emptyset -pr.

Puede usar sin demostración que las siguientes funciones son Σ-pr.: $\lambda xy[x.y] \lambda xy[x+y] \lambda x\alpha[\alpha^x] \lambda xy[x \le y]$ $\lambda xy[x=y] \lambda \alpha \beta[\alpha \beta]$. Enuncie cada lema que aplique en la resolución de los ejercicios.