AD-762 441

INTERACTIONS AMONG THE VARIOUS PHENOMENA INVOLVED IN THE DESIGN OF DYNAMIC AND ROTARY MACHINERY AND THEIR EFFECTS IN RELIABILITY. VOLUME II: RESEARCH DATA

Dimitri Kececioglu, et al Arizona University

Prepared for:

Office of Naval Research

31 August 1972

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 AD 762441

FIFTH TECHNICAL REPORT

VOL. II - RESEARCH DATA

INTERACTIONS AMONG THE VARIOUS
PHENOMENA INVOLVED IN THE DESIGN
OF DYNAMIC AND ROTARY MACHINERY
AND THEIR EFFECTS ON RELIABILITY

OFFICE OF NAVAL RESEARCH
CONTRACT NOOO14-67-A-0209-0002

AUGUST 31, 1972

ENGINEERING EXPERIMENT STATION
COLLEGE OF ENGINEERING
THE UNIVERSITY OF ARIZONA
TUCSON, ARIZONA DISTRIBUTION STATEMENT A

Approved for pulse release:
Dishibuton Unlimited 327

Fifth Technical Report

1 September 1971 - 31 August 1972

INTERACTIONS AMONG THE VARIOUS PHENOMENA

INVOLVED IN THE DESIGN OF DYNAMIC AND

ROTARY MACHINERY AND THEIR EFFECTS IN RELIABILITY

VOL. LI - RESEARCH DATA

by

Dr. Dimitri Kececioglu Professor and Principal Investigator

and

Louie B. Chester Chester F. Nolf, Jr. Joe D. Stultz Anu Vaze

Aerospace and Mechanical Engineering Department

Engineering Experiment Station College of Engineering The University of Arizona Tucson, Arizona 85721

for

Office of Naval Research Arlington, Va.

Contract N00014-67-A-0209-0002

31 August 1972

Approved for public release;
Distribution Unlimited

Reproduction in whole or in part is permitted for any purpose of the United States Government.

VOLUME II - RESEARCH DATA

TABLE OF CONTENTS

		Page
7.0	APPENDICES	185
	APPENDIX A PROGRAM WIEDEMANN (MODIFIED)	186
	APPENDIX B PROGRAM WIEDEMANN (UNMODIFIED)	
-	APPENDIX C PROGRAM CYTOFR (UPDATED)	190
	APPENDIX D PROGRAM WEIBULL	208
•	APPENDIX E PDP-8 STAIRCASE REDUCTION	225
•	APPENDIX F PDP-8 GOODMAN DIAGRAM PROGRAM	226
	APPENDIX G PDP-8 VON MISES-HENCKY REDUCTION PROGRAM · · ·	227
	APPENDIX H PDP-8 AXIAL STAIRCASE REDUCTION PROGRAM . · · ·	228
	APPENDIX I PDP-8 AXIAL LOAD PROGRAM	229
8.0	DETAILED TEST DATA	230
•	8.1 WIRE FATIGUE MACHINE DATA	23.1
	8.2 WIEDEMANN EATIGUE MACHINE	. 324
•	8.3 AXIAL FATIGUE MACHINE DATA	. 369
9.0	REDUCED TEST DATA	383
	9.1 WIRE FATIGUE MACHINE DATA	384
	9.2 WIEDEMANN FATIGUE MACHINE DATA	444
	9.3 AXIAL FATIGUE MACHINE DATA	473
10.0	DISTRIBUTION LIST	493

VOLUME II

LIST OF FIGURES

	Page
9,1-1	Calibration Chart of Stress Vs. Measured Strain for Calibration of Fatigue Research Machines (See Table 9)
9.1-2	Cycles-to-Failure distribution of Group No. 129 using Wire Fatigue Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed alternating stress level of 67,700 psi. Bend angle 19.5 degrees. Coast-down cycles 100 393
9.1-3	Cycles-to-failure distribution of Group No. 129 using Wire Fatigue Machine No. 1 for 35 specimens of .040 in. dimaeter AISI 4130 steel wire. Fixed alternating stress level of 67,700 psi. Bend angle 19.5 degrees. Coast down cycles 100 394
9.1-4	Cycles-to-failure distribution, SL = 67700 psi, Group No. 129
9.1-5	Cycles-to-failure distribution of Group No. 130, using Wire Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed alternating stress level of 70,000 psi. Bend angle 20.0 degrees. Coast down cycles 200 396
9.1-6	Cycles-to-failure distribution of Group No. 130 using Wire Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed alternating stress level of 70,000 psi. Bend angle 20.0 degrees. Coast down cycles 200 397
9.1-7	Cycles-to-failure distribution, Group 130, SL 70,000 psi
9.1-8	Cycles-to-failure distribution of Group No. 131 using Wire Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed alternating stress level of 72,500 psi. Bend angle 20.5 degrees. Coast down cycles 100 399

LIST OF FIGURES (Cont.)		Page
9.1-9	Cycles-to-failure distribution of Group No. 131 using Wire Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed alternating stress level of 72,500 psi. Bend angle 20.5 degrees. Coast down cycles 100	400
9.1-10	Cycles-to-failure distribution, Group 131, SL = 72,500 psi	401
9.1-11	Cycles-to-failure distribution of Group No. 132 using Wire Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed alternating stress level of 74,700 psi. Bend angle 21.0 degrees. Coast down cycles 200	. 402
9.1-12	Cycles-to-failure distribution of Group No. 132 using Wire Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed alternating stress level of 74,700 psi. Bend angle 21.0 degrees. Coast down cycles 200	403
9.1-13	Cycles-to-failure distribution, Group 132, SL = 74,700 psi	404
9.1-14	Cycles-to-failure distribution of Group No. 133, using Wire Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed alternating stress level of 77,800 psi. Bend angle 21.5 degrees. Coast down cycles 200	405
9.1-15	Cycles-to-failure distribution of Group No. 133 using Wire Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed alternating stress level of 77,800 psi. Bend angle 21.5 degrees. Coast down cycles 200	406
9.1-16	Cycles-to-failure distribution, Group 133, SL = 77,800 psi	407
9.1-17	Cycles-to-failure distribution of Group No. 136 using Wire Fatigue Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 64,500 psi. Bend angle 17.0 degrees. Coast down cycles 100	408
9.1-18	Cycles-to-failure distribution of Group No. 136 using Wire Fatigue Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed Alternating stress level of 64,500 psi. Bend angle	. 409

LIST OF	FIGURES (Cont.)	Page
9.1-19	Cycles-to-failure distribution, SL = 64,500 psi, Group 136	410
9.1-20	Cycles-to-failure distribution of Group No. 137 using Wire Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 67,200 psi. Bend angle 17.5 degrees. Coast down cycles 100	411
9.1-21	Cycles-to-failure distribution of Group No. 137 using Wire Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 67,200 psi. Bend angle 17.5 degrees. Coast down cycles 100	412
9.1-22	Cycles-to-failure distribution, Group 137, SL = 67,200 psi	413
9.1-23	Cycles-to-failure distribution of Group No. 138 using Wire Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 69,200 psi. Bend angle 18.0 degrees. Coast down cycles 200	414
9.1-24	Cycles-to-failure distribution of Group No. 138 using Wire Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 69,200 psi. Bend angle 18.0 degrees. Coast down cycles 200	415
9.1-25	Cycles-to-failure distirbution, Group 138, SL = 69,200 psi	416
9.1-26	Cycles-to-failure distribution of Group No139 Using Wire Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 72,300 psi. Bend angle 18.5 degrees. Coast down cycles 200	. 417
9.1-27	Cycles-to-failure distribution of Group No. 139 using Wire Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 72,300 psi. Bend angle 18.5 degrees. Coast down cycles 200	418
9.1-28	Cycles-to-failure distribution, Group 139,	419

-

LIST OF	FIGURES (Cont.)	Page
9.1-29	Cycles-to-failure distribution of Group No. 143 using Wire Machine No. 3 for 35 specimens of .040 in. diameter AISI 1018 steel wire. Fixed alternating stress level of 57,200 psi. Bend angle 15.5 degrees. Coast down cycles 200	420
9.1-30	Cycles-to-failure distribution of Group No. 143 using Wire Machine No. 3 for 35 specimens of .040 in. diameter AISI 1018 steel wire. Fixed alternating stress level of 57,200 psi. Bend angle 15.5 degrees. Coast down cycles 200	421
9.1-31	Cycles-to-failure distribution, Group 143, SL = 57,200 psi	422
9.1-32	Cycles-to-failure distribution of Group No. 144 using Wire Machine No. 3 for 35 specimens of .040 in. diameter AISI 1018 steel wire. Fixed alternating stress level of 60,000 psi. Bend angle 16.0 degrees. Coast down cycles 100	423
9.1-33	Cycles-to-failure distribution of Group No. 144 using Wire Machine No. 3 for 35 specimens of .040 in. diameter AISI 1018 steel wire. Fixed alternating stress level of 60,000 psi. Bend angle 16.0 degrees. Coast down cycles 100	424
9.1-34	Cycles-to-failure distribution, Group 144, SL = 60,000 psi	425
9.1-35	Cycles-to-failure distribution of Group No. 145 using Wire Machine No. 3 for 35 specimens of .040 in. diameter AISI 1018 steel wire. Fixed alternating stress level of 62,800 psi. Bend angle 16.5 degrees. Coast down cycles 200	. 426
9.1-36	Cycles-to-failure distribution of Group No. 145 using Wire Machine No. 3 for 35 specimens of .040 in. diameter AISI 1018 steel wire. Fixed alternating stress level of 62,800 psi. Bend angle 16.5 degrees. Coast down cycles 200	427
9.1-37	Cycles-to-failure distribution, Group 145,	428

LIST OF	FIGURES (Cont.)	Page
9.1-40	Cycles-to-failure distribution of Group No. 150 using Wire Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 73,500 psi. Bend angle 20.5 degrees. Coast down cycles 100	429
9.1-41	Cycles-to-failure distribution of Group No. 150 using Wire Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 73,500 psi. Bend angle 20.5 degrees. Coast down cycles 100	430
9.1-42	Cycles-to-failure distribution, SL = 73,500 psi, Group 150	431
9.1-43	Cycles-to-failure distribution of Group No. 151 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 78,100 psi. Bend angle 21.5 degrees. Coast down cycles 100	432
9.1-44	Cycles-to-failure distribution of Group No. 151 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 78,100 psi. Bend angle 21.5 degrees. Coast down cycles 100	433
9.1-45	Cycles-to-failure distribution, SL = 78,100 psi, Group 151	434
9.1-46	Cycles-to-failure distribution of Group No. 152 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diamter AISI 4340 steel wire. Fixed alternating stress level of 80,100 psi. Bend angle 22.0 degrees. Coast down cycles 100	435
9.1-47	Cycles-to-failure distribution of Group No. 152 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 80,100 psi. Bend angle 22.0 degrees. Coast down cycles 100	. 436
9.1-48	Cycles-to-failure distribution, Group 152, SL = 80,100 psi	. 437
9.1-49	Cycles-to-failure distribution of Group No. 153 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 84,700 psi. Bend angle 23.0 degrees. Coast down cycles 100	. 438

9.1-50	Cycles-to-failure distribution of Group No. 153 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 84,700 psi. Bend angle 23.0 degrees. Coast down cycles 100	439
9.1-51	Cycles-to-failure distribution, SL = 84,700, Group 135	440
9.1-52	Cycles-to-failure distribution of Group No. 154 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 90,000 psi. Bend angle 24.0 degrees. Coast down cycles 100	441
9.1-53	Cycles-to-failure distribution of Group No. 154 using Wire Fatigue Machines No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 90,000 psi. Bend angle 24.0 degrees. Coast down cycles 100	442
9.1-54	Cycles-to-failure distribution, SL = 90,000 psi, Group 154	443
9.2-1	Cycles-to-failure distribution of Group No. 89 using the Wiedemann Fatigue Machine for 36 specimens of .0937 in. notch diameter and .125 in notch radius AISI 4130 steel rod. Fixed alternating stress level of 75,000 psi	445
9.2-2	Cycles-to-failure distribution of Group No. 89 using the Wiedemann Fatigue Machine for 36 specimens of .0937 in. notch diameter and .125 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 75,000 psi	, 44(
9.2-3	Cycles-to-failure distribution, SL = 75,000, Group 89	447
9.2-4	Cycles-to-failure distribution of Group No. 90 using the Wiedemann Fatigue Machine for 37 specimens of .0937 in. notch diameter and .125 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 85.000 psi	448

LIST OF	FIGURES (Cont.)		Page
9.2-5	Cycles-to-failure distribution of Group No. 90 using the Wiedemann Fatigue Machine for 37 specimens of .0937 in. notch diameter and .125 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 85,000 psi	• •	449
9.2-6	Cycles-to-failure distribution, SL = 85,000 psi, Group 90		450
9.2-7	Cycles-to-failure distribution of Group No. 91 using the Wiedemann Fatigue Machine for 37 speciaens of .0937 in. notch diameter and .125 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 90,000	• •	451
9.2-8	Cycles-to-failure distribution of Group No. 91 using the Wiedemann Fatigue Machine for 37 specimens of .0937 in. notch diameter and .125 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 90,000		452
9.2-9	Cycles-to-failure distribution, SL = 95,000 psi, Group 91		453
9.2-10	Cycles-to-failure distribution of Group No. 93 using the Wiedemann Fatigue Machine for 35 specimens of .0937 in. notch diameter and .250 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 70,000 psi	• •	. 454
9.2-12	Cycles-to-failure distribution, SL = 70,000 psi, Group 93	• •	. 456
9.2-13	Cycles-to-failure distribution of Group No. 94 using the Wiedemann Fatigue Machine for 35 specimens of .0937 in. notch diameter and .250 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 80,000 psi	• (. 457
9.2-14	Cycles-to-failure distribution of Group No. 94 using the Wiedemann Fatigue Machine for 35 specimens of .0937 in. notch diameter and .250 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 80,000 psi	• •	. 458
9.2-15	Cycles-to-failure distribution, SL = 80,000 psi,		450

LIST OF F	IGURES (Cont.)	Page
9.2-16	Cycles-to-failure distribution of Group No. 95 using the Wiedemann Fatigue Machine for 34 specimens of .0937 in. notch diameter and .250 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 95,000 psi	. 460
9.2-17 ·	Cycles-to-failure distribution of Group No. 95 using the Wiedemann Fatigue Machine for 34 specimens of .0937 in. notch diameter and .250 in. notch radius AISI 4130 steel rod. Fixed alternating stress level of 95,000 psi	. 461
9.2-18	Cycles-to-failure distribution, SL = 95,000 psi, Group 95	. 462
9.2-19	Endurance strength data for AISI 1038 steel rod, Group No. 162, groove diameter d = 0.2700 in., groove radius r = 0.31 in. with cut-off at 3 x 106 cycles	. 464
9.2-20	Endurance strength data for AISI 1038 rod, Group No. 163, groove diameter d = 0.2700 in., groove radius r = 0.062 in. with cut-off at 3 x 10 cycles	, 466
9.2-21	Endurance strength data for AISI 1038 steel rod, Group No. 164, groove diameter d = 0.2700 in., groove radius r = 0.125 in. with cut-off at 3 x 10 cycles	. 468
9.2-22	Endurance strength data for AISI 1038 steel rod, Group No. 165, groove diameter d = 0.2700 in., groove radius r = 0.250 in., cut-off at 3 x 10 cycles	. 470
9.2-23	Endurance strength data for AISI 1038 steel rod, Group No. 166, groove diameter d = 0.2700 in., groove radius r = 1.87 in. with cut-off at 3 x 10 cycles	. 472
9.31	Staircase plot of endurance strength data for Group 159, AISI 1018 steel specimens, d = 0.075 in. and groove radius = 2.70 in. tested at	A ***
	stress ratio $r_{ij} = 1.0 \dots \dots \dots \dots \dots$	475

1

LIST OF	FIGURES (Cont.)	Page
9.3-2	Staircase plot of endurance strength data for Group 160, AISI 1018 steel specimens, d = 0.075 in., and groove radius = 2.70 in., tested at a stress ratio r _s = 2.0	477
9.3-3	Staircase plot of endurance strength data for Group 161, AISI 1018 steel specimens, d = 0.075 in., and groove radius = 2.70 in., tested at a stress ratio of infinity	. 479
9.3-4	Staircase plot of endurance strength data for Group 63, AISI 4130 steel specimens, d = 0.048 in., groove radius = 2.70 in., tested at stress	
	ratio r = 0.2	. 485

VOLUME II

LIST OF TABLES

	Page
8,1-1	Wire Fatigue Research Machines
8.1-2	Wire Fatigue Research Machines
8.1-3	Wire Fatigue Research Machines
8.1-4	Wire Fatigue Research Machines
8.1-5	Static calibration data for Wire Fatigue Research Machine calibration specimen
8.1-6	Cycles-to-failure data of Group No. 129 using Wire Fatigue Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed Aleternating stress level of 67.7 Kpsi. Bend angle 19.5° Coast- down cycles 200
8.1-7	Cycles-to-failure data of Group No. 130 using Wire Fatigue Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed Alternating stress level of 70,000 psi. Bend angle 20°. Coast-down cycles 200
8.1-8	Cycles-to-failure data for Group No. 131 using Wire Fatigue Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed Alternating stress level of 72,500 psi. Bend angle 20.5°. Coast-down cycles 200
8.1-9	Cycles-to-failure data of Group No. 132 using Wire Fatigue Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed Alternating stress level of 74,700 psi. Bend angle 21.0°. Coast-down cycles 200
8.1-10	Cycles-to-failure data of Group No. 133 using Wire Fatigue Machine No. 1 for 35 specimens of .040 in. diameter AISI 4130 steel wire. Fixed Alternating stress level of 77,800 psi. Bend angle 21.5°. Coast-down cycles 200
8.1-11	Static ultimate strength test data of Group No. 134 using the Riehle Machine 35 specimens of AISI 4130 steel

LIST OF T	ABLES (Cont.)	Page
8.1-12	Test data for hardness and ultimate strength elongation of Group No. 134. 35 specimens of AISI 4130 steel. D = .040 in.; L = 10 in	284
8.1-13	Cycles-to-failure data of Group No. 136 using Wire Fatigue Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed Alternating stress level of 64,500 psi. Bend angle 17°. Coast-down cycles 200	286
8.1-14	Cycles-to-failure data of Group No. 137 using Wire Fatigue Machine No. 2 for 35 specimens of 0.40 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 67,200 psi. Bend angle 17.5° Coast-down cycles 200	. 288
8.1-15	Cycles-to-failure data of Group No. 138 using Wire Fatigue Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 69,200 psi. Bend angle 18.0°. Coast-down cycles 200	290
8.1-16	Cycles-to-failure data of Group No. 139 using Wire Fatigue Machine No. 2 for 35 specimens of .040 in. diameter AISI 1038 steel wire. Fixed alternating stress level of 72,300 psi. Bend angle 18.5°. Coast-down.cycles 200	292
8.1-17	Static ultimate strength test data of Group No. 141 using the Riehle Machine, 35 specimens of AISI 1038 steel	. 294
8.1-18	·Test data for hardness and ultimate strength elongation of Group No. 141. 35 specimens of AISI 1038 steel, D = .040 in.; L = 10 in	. 296
8.1-19	Cycles-to-failures data of Group No. 143 using Wire Fatigue Machine No. 3 for 35 specimens of .040 in. diameter ASIS 1018 steel wire. Fixed alternating stress level of 57,200 psi. Bend angle 15.5°. Coast-down cycles 200	z . 298
8.1-20	Cycles-to-failures data of Group No. 144 using Wire Fatigue Machine No. 3 for 35 specimens of .040 in. diameter AISI 1018 steel wire. Fixed alternating stress level of 60,000 psi. Bend angle 16.0°.	200

LIST OF	TABLES (Cont.)	Page
8.1-21	Cycles-to-failure data of Group No. 145 using Wire Fatigue Machine No. 3 for 35 specimens of .040 in. diameter AISI 1018 steel wire. Fixed alternating stress level of 62,800 steel wire. Bend angle 16.5° Coast-down cycles 200	. 302
8.1-22	Static ultimate strength test data of Group No. 148 using the Riehle Machine, 35 specimens of AISI 1018 steel	304
8.1-23	Test data for hardness and ultimate strength elongation of Group No. 148. 35 specimens of AISI 1018 steel. D = .040 in.; L = 10 in	306
8.1-24	KHN hardness data for Group No. 148-2 using Tukon Micro-Hardness Tester for 10 specimens of .040 in. diameter. AISI 1018 steel wire	308
8.1-25	Cycles-to-failure data of Group No. 155 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 73,500 psi. Bend angle 20.5°. Coast-down cycles 200	. 309
8.1-26	Cycles-to-failure data of Group No. 151 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 78,100 psi. Bend angle 21.5°. Coast-down cycles 100	. 311
8.1-27	Cycles-to-failure data of Group No. 152 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 80,100 psi. Bend angle 22.0°. Coast-down cycles 100	. 313
8.1-28	Cycles-to-failure data of Group No. 153 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in. diameter AISI 4340 steel wire. Fixed alternating stress level of 84,700 psi. Bend angle 23.0°. Coast-down cycles 200	. 315
8.1-29	Cycles-to-failure data of Group No. 154 using Wire Fatigue Machine No. 4 for 35 specimens of .040 in diameter AISI 4340 steel wire. Fixed alternating stress level of 90,000 psi. Bend angle 24.0°.	317

LIST OF	TABLES (Cont.) Page
8.1-30	Static ultimate strength test data of Group No. 155 using the Riehle Machine, 35 specimens of AISI 4340 steel
8.1-31	Test data for hardness and ultimate strength elongation of Group No. 155. 35 specimens of AISI 4340 steel. D = .040 in.; L = 10 in 321
8.1-32	KHN hardness data for Group No. 155-2 using Tukon Micro-Hardness Tester for 10 specimens of .040 in. diameter AISI 4340 steel wire
8.2-1	Cycles-to-failure data of Group No. 89 using the Wiedemann Machine. 36 specimens of AISI 4130 steel rod of test section diameter, d = .0937 in., Radius, r = .125 in. Upper added pan load = 15.79 lbs Alternating stress = 75,000 psi
8.2-2	Inspection data for critical and major characteristics of Group No. 89. 36 specimens of AISI 4130 steel D = .375 in.; L = 3.50 in
8.2-2	Inspection data for critical and major characteristics of Group No. 90. 37 specimens of AISI 4130 steel D = .375 in.; L = 3.5 in
8.2-4	Cycles-to-failure data of Group No. 90 using the Wiedemann Machine. 37 specimens of AISI 4130 steel rod of test section diameter, d = .0937 in., Radius, r = .125 in. Upper added pan load = 15.44 lbs. Alternating stress = 85,000 psi
8.2-5	<pre>Inspection data for critical and major characteristics of Group No.91. 35 specimens of AISI 4130 steel D = .375 in.; L = 3.50 in. , Prawing No. 200 333</pre>
8.2-6	Cycles-to-failure data of Group No. 91 using the Wiedemann Machine. 37 specimens of AISI 4130 steel rod of test section diameter, d = .0937 in., Radius, r = .125 in. Upper added pan load = 15.10 lbs Alternating stress = 95,000 psi
8.2-7	Inspection data for critical and major characteristics of Group No. 93. 35 specimens of AISI 4130 steel D = .375 in.; L = 3.50 in. Drawing No. 200 337

•	LIST OF	FABLES (Cont.)	Page
	8 2-8	Cycles-to-failure data of Group No. 93 using the Wiedemann Machine. 35 specimens of AISI 4130 steel rod of test section diameter, d = .0937 in., Radius, r = .250 in. Upper added pan load = 15.96 lbs. Alternating stress = 70,000 psi	. 339
	8.2-9	Inspection data for critical and major characteristics of Group No. 94. 35 specimens of AISI 4130 steel D = .37 in.; L = 3.50 in. Drawing No. 200	
	8.2-10	Cycles-to-failure data of Group No. 94 using the Wiedemann Machine. 35 specimens of AISI 4130 steel rod of test section diameter, d = .0937 in., Radius, r = .250 in. Upper added pan load = 15.621 lbs. Alternating stress = 80,000 psi	. 343
	8.2-11	Cycles-to-failure data of Group No. 95 using the Wiedemann Machine. 34 specimens of AISI 4130 steel rod of test section diameter, d = .0937 in., Radius, r = .250 in. Upper added pan load = 15.10 lbs. Alternating stress = 95,000 psi	. 345
_	8.2-12	<pre>Inspection data for critical and major characteristics of Group No. 95. 34 specimens of AISI 4130 steel D = .375 in.; L = 3.00 in. Drawing No. 200</pre>	
	8.2-13	Staircase method data of Group No. 162 using the R. R. Moore Machine. 35 specimens of AISI 1038 steel rod with test section diameter d = .2700 in., Radius, r = .031 in. Cutoff at 3 x 10 ⁶ cycles	·. 349
	8.2-14	Inspection data for critical and major characteristics of Group No. 162. 38 specimens of AISI 1038 steel, $D = .375$ in.; $L = 2.75$ in. Drawing No. 200.	
•	8.2-15	Staircase method data of Group No. 163 using the R. R. Moore Machine. 37 specimens of AISI 1038 steel rod with test section diameter, $d = .2700$ in., Radius, $r = .062$ in., Cutoff at 3 x 10^6 cycles	
	8.2-16	Inspection data for critical and major characteristics of Group No. 163. 37 specimens of AISI 1038 steel. D = .375 in.; L = 2.75 in. Drawing No. 200	
	8.2-17	Staircase method data of Group No. 164 using the R. R. Moore Machine. 37 specimens of AISI 1038 steel rod with test section diameter, d = 0.2700 in., Radius, r = 0.125 in. Cutoff at 3 x 10° cycles.	. 357

LIST OF T	TABLES (Cont.)	age
8.2-18	Inspection data for critical and major characteristics of Group No. 164. 37 specimens of AISI 1038 steel. D = .375 in.; L = 2.75 in. Drawing No. 200	. 359
8.2-19	Staircase method data of Group No. 165 using the R. R. Moore Machine. 36 specimens of AISI 1038 steel rod with test section diameter, $d = .2700$ in., Radius $r = .250$ in. Cutoff at 3 x 10^6 cycles	. 361
8.2-20	Inspection data for critical and major characteristics of Group No. 165. 36 specimens of AISI 1038 steel. D = .375 in.; L = 2.75 in. Drawing No. 200	. 363
8.2-21	Staircase method data of Group No. 166 using the R. R. Moore Machine. 35 specimens of AISI 1038 steel rod with test section diameter, d = .2700 in., Radius r = 1.87 in. Cutoff at 3 x 10 cycles	. 365
8.2-22	<pre>Inspection data for critical and major characteristics of Group No. 166. 35 specimens of AISI 1038 steel. D = .373 in.; L = 2.75 in. Drawing No. 200</pre>	. 367
8.3-1	Static ultimate strength test data of Group No. 156 using the Tinius Olsen Machine. 35 specimens of AISI 1018 steel	. 270
8:3-2	Test data for hardness and ultimate strength elongation.of Group No. 156. 35 specimens of AISI 1018 steel. D = .373 in.; L = 9.0 in. + 1/16. Drawing No. 100	372
8.3-3	Staircase method data of Group No. 159 using the Axial Fatigue Machine. 35 specimens of AISI 1018 steel rod with test section diameter, $d=0.075$ in., Radius $r=2.70$ in. Stress ratio $r=1.0$. Cutoff at 2 x 10 cycles	374
8.3-4	Staircase method data of Group No. 160 using the Axial Fatigue Machine. 35 specimens of AISI 1018 steel rod with test section diameter, $d=0.075$ in., Radius $r=2.70$ in. Stress ratio $r=2.0$. Cutoff at 2×10^6 cycles	376
8.3-5	Staircase method data of Group No. 161 using the Axial Fatigue Machine. 36 specimens of AISI 1018 steel rod with test section diameter, $d = 0.075$ in., Radius $r = 2.70$ in. Stress ratio $r_s = \infty$. Cutoff at 2×10^6 cycles	378
_		٠. ٠

LIST OF	TABLES (Cont.) . Page	<u>e</u>
8.3-6	Staircase method data of Group No. 63 using the Axial Fatigue Machine. 25 specimens of AISI 4130 steel rod with test section diameter, d = 0.047 in., Radius r = 2.70 in. Stress ratio r = 0.2. Cutoff at 2 x 10 ⁶ cycles	0
9.1-1	Angle of deflection vs. mean measured strain in Wire Fatigue Research Machine calibration specimen for each one of the four machines 38	5
9.1-2	Summary of static axial calibration data for the 0.040 in. Diameter wire specimen used in calibrating the Wire Fatigue Machine	7 6
9.1-3	Calculation of the standard deviation for strain for each stress level given in Table 7	7
9.1-4	Static axial stress versus measured strain for the Wire specimen used in calibrating the Wire Fatigue Research Machines. Mean wire diameter - D = .04063 in	39
9.1-5	Actual specimen stress versus test specimen deflection angle for each Wire Fatigue Research Machine 39	0
9.1-6	Reduced data for Group 87, AISI 1038 steel. Wire Fatigue Machine No. 2)1
9.2-1	Reduced data for Group 162, AISI 1038 steel. Wiedemann Fatigue Machine	53
9.2-2	Reduced data for Group 163, AISI 1038 steel. Wiedemann Fatigue Machine	55
9.2-3	Reduced data for Group 164, AISI 1038 steel. Wiedemann Fatigue Machine	57
9.2-4	Reduced data for Group 165, AISI 1038 steel, Wiedemann Fatigue Machine	59
9.2-5	Reduced data for Group 166, AISI 1038 steel. Wiedemann Fatigue Machine	71
9.3-1	Reduced data for Group 159, AISI 1018 steel. Axial Fatigue Machine	74
9.3-2 ·	Reduced data for Group 160, AISI 1018 steel. Axial Fatigue Machine	76

LIST OF	TABLES (Co	ont.)	Page
9.3-3		data for Group 161, AISI 1018 steel. Fatigue Machine	478
9.3-4.		data for Group 32, AISI 4130 steel. Fatigue Machine	480
9.3-5		data for Group 33, AISI 4130 steel. Fatigue Machine	481
9.3-6		data for Group 34, AISI 4130 steel. Fatigue Machine	482
9.3-7		data for Group 62, AISI 4130 steel. Fatigue Machine	483
9.3-8		data for Group 63, AISI 4130 steel. Fatigue Machine	484
9.3-9		data for Group 64, AISI 4130 steel. Fatigue Machine	486
9.3-10		data for Group 111, AISI 1038 steel. Fatigue Machine	487
9.3-11		data for Group 112, AISI 1038 steel. Fatigue Machine	488
9.3-12		data for Group 1'3, AISI 1038 steel. Fatigue Machine	489
9.3-13		data for Group 114, AISI 1038 steel. Fatigue Machine	490
9.3-14		data for Group 115, AISI 1038 steel.	401

7.0 APPENDICES

APPENDIX A

PROGRAM WIEDEMANN (MODIFIED MACHINE)

```
PROGRAM WIEDEMA (INPUT, OUTPUT, TAPE 5 = INPUT)
C LOADING PROGRAM FOR WIEDEMANN FATIGUE TEST MACHINE
C CALCULATION OF UPPER PAN LOAD SCHEDULE
C INITIALIZE STRESS CONCENTRATION DATA
C DETERMINE TEST SPECIMEN SECTION DIAMETER
      D = .0937
C PRINT TABLE HEADINGS
      3 PRINT 7
      7 FORMAT (1H1.7X, *RAD*.5X, *CKF*, 8X, *SN*, 8X, *SU*, 6X, *WUPA*)
C INITIALIZE UNNOTCHED STRESS TO ZERO
      SU = 00000.
      READ(5,1) RAD, QEST, CKT
    1 FORMAT(3F10.3)
C COMPUTE REQUIRED UPPER PAN ADDED LOAD FOR AN APPLIED STRESS
    4 WUPA = 18.39 - ((SU)*(D**3))/23.73
C CALCULATE EFFECTS OF STRESS CONENCTRATION
C CALCULATE FATIGUE THEORETICAL STRESS COMCENTRATION FACTOR
    2 \text{ CKF} = (QEST*(CKF-1.0)) + 1.0
C CALCULATE NOTCHED SPECIMEN ENDURANCE STRENGTH # THEORETICAL
      SN = SU*CKF
      PRINT 8, RAD, CKF, SN, SU, WUPA
    8 FORMAT(1X.2F10.0,F10.2)
C INCREMENT STRESS IN STEPS OF 1000 PSI
      SU = SU + 1000.
      IF(SU.LE.60000.) GO TO 4
      IF(I.GE.5) GO TO 19
    9I = I
      GO TO 3
   10 STOP
      END
```

RAD	CKF	SN	SU	WUPA
1.470	1.000	1000	1005	18.34
1.770	j "nn.;	2000	1000	14.36
1.870	1.000	3000	2000	19.32
1.476	1.000	4000 4000	3000	18.29
1.576	1,000	5600	400n	14.25
1. 76	1.000	5000	50(H	14.22
1.270	1,000	7000	5000 7000	18.18
1.870	1,000	8000	7000	18.15
1.470	1.000	9000	3000 G000	18.11
1.270	1.000	10000	9000 1000	18.08
1.070	1.000	11000	10000	18.04
1.470	1.000	12000	11000	18.01
1.870	1.000	13000	12000	17.47
1.970	1.000	14000	13000	17.94
1.970	1.000	15000	14000	17.90
1.976	1.000	16000	15000	17.87
1.279	1.00)	17006	16000	17.84
1.270	1.000	18900	17000	17.80
1.270	1.000	19000	19000	17.77
1.870	1.003	80000	1.9000	17.73
1.870	1.000	21000	20000	17.70
1.470	1.000	22000	5100u	17.66
1.070	1.000	23696	2300a	17.63
1. 70	1.000	24000	2300n	17.59
1.270	1.000	25000	24(1) ₁₎	17.56
1.870	1,050	26000	2500(i	17.52
1.970	1.000	27000	26000	17.49
1.276	1.000	28000 28000	27000	17.45
1.570	1.000	59000	28000	17.42
1.970	1.020	30000	29000 2000	17.38
1.270	1.000	31000	30000 31000	17.35
1.270	1.000	32000	31000	17.32
1.470	1.00 /	33000	32000	17.28
1.070	1.000	34000	33000 34000	17.25
1.470	1.363	5000	35009	17.21
1.470	1,000	36000	35000	17.18
1.870	1.000	37000	37000	17.14
1.270	1.000	38000	38000	17.11
1.970	1.000	39000	39000	17.07
1.270	1.00)	40046	40000 40000	17.04
1.510	1,965	41900	41000	17.00
1.470	1,000	42000	42000	16.47
1.270	1,000	43000	43000	16.93
1.870	1.000	44000	44000	16.90
1.970	1.000	45000	45000 45000	16.86
1.070	1.000	46000	45000	16.83
1.870	1.000	47000	47000	16.80
1.470	1.000	48000	48000	16.76
			40000	16.73

APPENDIX B

PROGRAM WIEDEMANN

(UNMODIFIED MACHINE)

```
PROGRAM RRMOORE (INPUT, OUTPUT, TAPE 5 = INPUT, TAPE 6 = OUTPUT)
C LOADING PROGRAM FOR RRMOORE FATIGUE TEST MACHINE
C INITIALIZE STRESS CONCENTRATION DATA
C DETERMINE TEST SPELCIMEN SECTION DIAMETER
      D = .2700
C PRINT TABLE HEADINGS
    3 WRITE(6,8)
    8 FORMAT (1H1,6X,*R4D*,6X,*CKF*,8X,*SN*,8X,*SU*,6X,*WPA*/)
C INITIALIZE UNNOTCHED STRESS TO ZERO
      SU = 00000.
      READ(5,1) RAD, CKF
    1 FORMAT (2F10.3)
C COMPUTE REQUIRED ADDED PAN LOAD FOR AN APPLIED STRESS
    4 WPA = ((3.1416 * (D**3.) * SU)/64.) - 9.76
C CALCULATE NOTVEH SPECIMEN ENDURANCE STRENGTH - THEORETICAL
      SN = SU * CKF
      WRITE(6,9) RAD, CKF, SN, SU, WPA
    9 FORMAT (1X,2F9.3,2F10.0,F10.2)
C INCREMENT STRESS IN STEPS OF 1000 PSI
      SU = SU + 1000.
      IF(SU.LE.95000.) GO TO 4
      IF(I.GE.5) GO TO 10
   11 \ 1 = I+1
      GO TO 3
   10 STOP
```

END

RAD CKF SN	Su	WPA
.031 1.510 0	•	
.031 1.510 1510	•	-9.76
.031 1.510 3020	1000	-8.79
•031 1-510 4520	2000	- 7.83
M.031 1.510 6040	3000	~ 6.86
•031 1.510 7550	4000	-5.90
·031 1·510 9060	5000	-4.93
•031 1•510 10570	6000	-3.96
•031 1.510 12080	7000	-3.00
.031 1.510 13590	8000	-2.03
•031 1-510 15100	9000	-1.06
·031 1·510 16610	10000	10
.031 1.510 18120	11000	•87
021	12000	1.83
17033	13000	2.80
021	14000	3.77
(2)	15000	4.73
An. 24100	16000	5.70
222010	17000	6.67
77100	18000	7.63
(2)	19000	8.60
021	20000	9.56
31/10	21000	10.53
0.22	22000	11.50
001	23000	12.46
30240	24000	13.43
01130	25000	14.39
0.13	26000	15.36
001	27000	16.33
1101	28000	17.29
43/70	29000	18.26
071	30000	19.23
40010	31000	20.19
0.21	32000	21.16
(12)	33000	22.12
777	34000	23.09
0.21	35000	24.06
001	36000	25.02
0.21	37000	25.99
0.11	38000	26.96
021	39000	27.92
No.1	40000	28.89
AA1	41000	29.85
03720	42000	30.82
021 04730	43000	31.79
0.11	44000	32.75
01750	45000	33.72
•031 1.510 69460	46.000	34.68

,

APPENDIX C

PROGRAM CYTOFR (Updated)

This program calculates estimates of the mean and standard deviation of the cycles-to-failure data for both the normal and the lognormal distributions, and calculates the moment coefficients of skewness and kurtosis. It also performs the Chi-squared and the Kolmogorov-Smirnov goodness-of-fit tests.

The program has been updated since it was previously reported.

The main program was revised to incorporate a sort routine to preclude the necessity for manually ordering the data inputs. Subroutine CHISQA (Chi-squared test) was modified to provide for automatic combining of cells at the tails of the distribution when the end cells do not contain at least five failure data points. Subroutine GRAPH was added to the program to plot a histogram of the cycles-to-failure data based on the cell widths and number of failure data points per cell computed by the CHISQA subroutine. The theoretical distribution curve represented by the parameters estimated by the main program is sketched and superimposed over the histogram. The plotting of the histogram and of the distribution is done by the Cal-Comp plotter from an output tape generated by the computer.

The data deck for operating program CYTOFR is in three logical sections per problem. The first section consists of two cards. Card one consists of three titles, while card two specifies the parameters necessary for the statistical calculations in CYTOFR.

The second, logical section is a variable number of cards, each specifying up to eight data points for analysis.

Section three provides parameters for plotting the normal and lognormal distributions. The first card is a parameter list for the normal distribution plot, followed by exactly six cards of footnotes. Next is a parameter list card for the lognormal distribution.

Multiple prob. As may be executed by stacking complete data sets behind each other. A list of important variables and symbols in program CYTOFR using Fortran language follows:

List of Definitions for Program to fit Normal and Log-Normal Distributions to Cycles-to-Failure Data (PROGRAM CYTOFR)

Main Program:

NDATA = DATA = number of observations.

STRLY = stress level in psi.

AKURCY = accuracy to which cycles-to-failure data are known.

RATIO = stress ratio

X(I) = cycles-to-failure data

CUMFRQ(I) = cumulative frequency of each X(I); ie, number of X's less than or equal to X(I).

PCAREA(I) = CUMFRQ(I)/NDATA

Subroutine to calculate the mean and standard deviation of the cycles-to-failure data (SUBROUTINE MEAN)

SIGMA = sum of the X(I)'s

XMEAN = average of the X(I)'s

TOP2 = $\sum_{i=1}^{\eta} (X(I) - XMEAN)^2$

DEV = standard deviation of the X(I)'s

Function subroutine to find the area under the normal curve (FUNCTION PROB(X)).

X = abscissa value for which corresponding area
is desired.

PROB = desired area.

Subroutine for Chi-square goodness-of-fit test (SUB-ROUTINE CHISQA).

K = number cells.

XMAX = largest value of cycles-to-failure.

XMIN = smallest value of cycles-to-failure.

CSV = cell starting value.

CEV = cell end value.

CLB = cell lower bound.

CUB = cell upper bound.

FREQ(J) = number of observations in J^{th} cell.

REQAREA(J) = expected value of J^{th} cell.

CHISQR = total Chi-square value.

U(I) = Chi-square value of Ith cell.

Subroutine for Kolmogorov-Smirnov test (SUBROUTINE DTEST).

ARUNCN = area under standard normal curve from - to Z(I).

DSTAT(I) = absolute difference between the data cumulative frequency and the hypothesized cumulative frequency.

XMEAN = average of the X(I)'s.

DEV = standard deviation of the X(I)'s

PROB(T) = area under the standard normal curve from -T to +T.

Subroutine to calculate the moment coefficients of skewness and kurtosis (SUBROUTINE ALPHA).

ALPHA3 = moment coefficient of skewness.

ALPHA4 = moment coefficient of skewness.

VAR =
$$\sum_{i=i}^{n} (X(i) - \underline{X})^2$$

TOP3
$$= \sum_{i=i}^{\eta} (X(I) - X)^3$$

SKEW = third moment of the data.

STDEV = biased estimator for standard deviation.

TOP4 =
$$\sum_{i=i}^{n} (X(I)-X)^4$$

TKURT = fourth moment of the data.

DATA DECK STRUCTURE

Card	Columns	Description
1	1-20	Twenty character descriptive title to appear at the top of each printed output page.
	21-40	Twenty character descriptive title of the input data will appear on printed output, as well as the X-axis label for both slots.
	41-50	Unit of data measurement (cycles, inches, etc.).
2	1-10	Number of data points on following card(s). Must have a decimal point.
	11-20	Stress level. Must have a decimal point.
	21-30	Stress ratio. Must have a decimal point.
	31-40	Accuracy. Must have a decimal point.
3 to n**	1-10, 11-20,, 71-80	Data points, punched eight per card until all points are exhausted. Must have decimal points.
n + 1	1-10	The letters "NORMAL" followed by four blank spaces.
	11-20	Length of the X-axis in inches. If zero or blank, 6.0 is assumed. Decimal point is necessary.
	21-30	Length of the X-axis in inches. If zero or blank, 5.0 is assumed; if greater than 5.0, 5.0 is assumed. Decimal point is necessary.

^{**}The notation 3rd to n is intended to mean from the third card to the nth card. In the case of 34 data points, the second section of data would stretch from the 3rd to 7th card .

Card	Columns	Description
	31-40	Minimum X-axis value. The plotting program may find it necessary to alter this value slightly. If absent or zero, a resonable maximum will be assumed. The decimal point is necessary.
	41-50	Minimum Y-axis value. This should be blank or 0.
	51-60	Maximum X-axis value. Follow same rules as minimum X-axis value.
	61-70	Maximum Y-axis value. If absent or zero, the plotting program will search for the smallest even number greater than (or equal to) the height of the tallest histogram block, an automatic adjustment will be made. The decimal point is necessary.
	71-80	Height of lettering on graph, if 0 < height < .15. Otherwise this parameter will be set to equal .15.
n + 2 tc n + 7	1-50	Footnotes punched as they will appear on the normal graph.
n + 8	1-10	The letters "LOG-NORMAL." Otherwise the same as card $n + 1$.

The program for CYTOFR listing in Fortran language follows:

```
PROGRAM CYTOFR (INPUT, OUTPUT, TAPE1=INPUT, TAPE2)
C----PROGRAM TO FIT NORMAL AND LOG-NORMAL CURVE TO DATA AND CHECK
C----GOODNESS OF FIT.
      COMMON CUMFRQ(100), NDATA, X(100), DEV, XHEAN, CLB(9), CUB(9), FREQ(9), K,
     1 CHISOR, TITLE (2), SUBTITL (2), CSV(9), CEV(9), PCAREA (100), DSTAT (100),
        AREA(9), REQAREA(9), EXFREO(9), U(9), Z(100), NX(100), DATA, AKURCY,
     3 XMAX, XHIN, PSI, CD, D, RATIO, XLENGTH, YLENGTH, YMAX, YHIN, XMA, XMI,
     4 HLETTEF, COM(3), W, ALPHA3, ALPHA4, FOOT (30), IT, SKS, UNIT
      INTEGER TITLE, SUBTITL, FOOT
      EXTERNAL PROP
C
C
      INITIALIZE PLOTTER
C
      CALL INITIAL (0,2,0,3,0)
710
      PRINT 1
C-----NDATA=DATA=NUMBER OF OBSERVATIONS
C----STRLV = STRESS LEVEL IN PSI.
      X=NUMBER OF CYCLES TO FAILURE
      READ 5JC, TITLE, SUBTITL, UNIT
  500 FORMAT (8410)
      IF(E)F(1)) 56,5
    5 READ 501.DATA, STPLEY, RATIO, AKURCY
  501 FORMAT(8F1G.0)
      NDATA=DATA
      READ 501, (X(T), I=1, NOATA)
C
C
      SORT X(I) TERMS IN ASCENDING ORDER.
      K=NDATA-1
      IF (K.LE.0) GO TO 30
      00 20 I=1,K
      I-ATACH=N
      ISTOP=0
      00 10 J=1.N
      IF(X(J).LE.X(J+1)) GO TO 10
      SAVE=X(J)
      X(J) = X(J+1)
      X(J+1) = SAVE
      ISTOP=ISTOP+1
   10 CONTINUE
      IF(ISTOP.EQ.O) GO TO 30
   2C CONTINUE
C
C
      SET CUMFRO(I) ARPAY
   30 DO 40 I=1, NDATA
   40 CUMFRQ(I)=I
C
      PESET SOME CUMFRO(I) ENTRYS IF X(I)=X(I+1) OCCURS
```

. _1

11

11

; }

```
00 50 I=2, NDATA
   FO CONTINUE
3----904844 = 9(N) OF OBSERVATIONS
      00 759 I=1, NOATA
759
      PCAREA(I) = CUMFRQ(I)/DATA
      PRINT 408.TITLE.SUBTITL
  40% FORMAT(*1*,55x,2A10,/,42x,*NORMAL DISTRIBUTION FITTED TO *,2A10,
     1///)
      IF (RATIO.ED.D.D) GO TO 414
      PRINT 462, STPLEV, RATIO
  402 FORMAT(29X, #STRESS LEVEL =*, F7.1, * PSI. *, 16X
     1,14HSTRESS EATIO =,F6.3//)
      GO TO 415
414
      PRINT 416, STRLEV
  416 FORMAT(29x, +STRESS LEVEL = +, F7, 1, + PSI, +, 16x
     1,234STRESS RATIO = INFINITY//)
  41F PRINT 464, SUSTITL
  404 FURMAT (56X, 2A10,/)
      PRINT 403, (X(I),I=1,NDATA)
  403 FORMAT(6F21.4)
      PRINT 3
      FORMAT (1HB)
      CALL MEAN
      CALL CHISTA
      CALL DIEST
      CALL ALPHA
      PEAD 502, IT, XLENGTH, YLENGTH, XM1, YMIN, XMA, YMAX, HLETTER
  502 FORMAT (A1,9X,7F10.0)
      READ SUZ, FOOT
  933 FOPMAT (5A10)
      IF (IT.NE.1HN) GO TO 57
      CALL GRAPH
   53 AKURCY=.09001
      DO 54 I=1, NOATA
      NX(I) = (ALOG(X(I)/20.) + ALOG(20.)) + 100006. + .5
      X(I) = NX(I)
      X(I) = X(I)/100003.
54
      PRINT 1, TITLE
    1 FORMAT(*1*,55X,2A10)
      PRINE 4C1, SUBTITE
  461 FORMAT(39X,*LOG-NORMAL DISTRIBUTION FITTED TO *,2A10,///)
      IF (RATIO.EQ.D.B) GC TO 417
      PRINT 402, STRLEV, RATIO
      60 TO 418
      PRINT 416, STRLEV
  #18 PRINT 2, SURTITL
    2 FORMAT (49X, *LOGS OF THE *, 4A10,/)
      PRINT 413, (X(I), I=1, NDATA)
```

```
413 FORMAT(6(8X,F12.4))
      PRINT 3
      CALL MEAN
      CALL CHISTA
      CALL DIEST
      CALL ALFHA
      READ 502, IT, XLENGTH, YLENGTH, XHI, YMIN, XMA, YMAX
      IF (IT.NE.1HL) GO TO 57
      CALL GRAPH
      GO TO 718
   56 CALL PLOT (0.,0.,999)
      CALL EXIT
   57 CALL PLOT (0.,0.,999)
      STOP 1111
      END
      SUBROUTINE MEAN
C----SUBROUTINE TO CALCULATE THE MEAN AND STANDARD DEVIATION OF DATA.
      COMMON CUMFRQ(100), NDATA, X(100), DEV, XMEAN, CLB(9), CUB(9), FREG(9), K,
     1 CHISQR, TITLE (2), SUBTITL (2), CSV(9), CEV(9), PCAREA (100), DSTAT (100),
       AREA(9), REDAREA(9), EXFREQ(9), U(9), Z(100), NX(100), DATA, AKURCY,
       XMAX, XMIN, PSI, CD, D, R, XLENGTH, YLENGTH
      SIGMA= C.O
      DO 3 I=1, NDATA
      SIGMA=SIGMA+ X(I)
      XMEAN = SIGMA/DATA
      TOP2 = 0.0
      DO 9 I=1,NDATA
      TOP2 = TOP2 + (X(I) - XMEAN)**2
      DEV =30RT(TOP2/(DATA - 1.0))
      PRINT 14. XMEAN
      PRINT 15. DEV
   14 FORMAT (10Y, *SAMPLE MEAN =*, F14.4)
   15 FORMAT(10X, *STO. DEVIATION=*, F12.4)
      RETURN
      END
      FUNCTION PROB(X)
C----THIS SURPOUTINE GIVES AREA UNDER NORMAL CURVE FROM -Z TO +Z
      WITH AN ACCURACY OF 0.00005
C----Z VALUE GIVEN BY CALLING PPOGRAM MUST BE A POSITIVE NUMBER.
      IF (X-1.2) 11, 11, 12
11
      XSQ= X*X
      PROS= 0.79788455*X*(0.99999774-XSQ*(0.16659433-XSQ*(0.024638310-XS
     10*C.9023974867)))
      RETURN
12
      IF(X-2.9) 13,14,14
13
      XSQ=X*X
      PR09=1.0
      PTERM=1.0
      FACTOR=1.0
```

į

```
000747=3.3
      PTEP 4=-PTERM*XSO/(2.0*FACTOR)
373
      TEPM=PTFRM/QDDINT
      PROB=PROP+TERM
      IF( ABS (TERM) - 0.00007 ) 80,90,90
90
      FACTUR =FACTOR+1.0
      0.01TMTCQU=TMTQQO
      GO TO 970
      PRO3=0.79788455*X*PROB
30
      RETURN
      RECX SQ= 1.0 / (X*X)
14
      PROB= 1.0 - 0.79788453*EXP(-X*X/2.0)/X*(1.0-RECXSQ*(1. -PECXSQ*(3.
     1 - RECXSO*(15. - RECXSQ*105. ))))
      RETURN
      END
      SUBROUTINE CHISOA
C----SJBPOUTINE TO FIT A HISTOGRAM TO THE DATA AND PERFORM THE CHI-SQUA
C----TEST FOR THE NORMAL OR LOG-NORMAL DISTRIBUTIONS.
      COMMON CUMFFQ(130), NDATA, X(100), DEV, XMEAN, CLB(9), CUB(9), FREQ(9), K,
     1 CHISQR, TITLE(2), SUBTITL(2), CSV(9), CEV(9), PCAREA(100), DSTAT(100),
        AREA(9), REGAREA(9), EXFREG(9), U(9), Z(100), NX(100), DATA, AKURCY,
     3 XMAX,XMIN,PSI,CD,D,R,XLENGTH,YLENGTH,YMAX,YMIN,XMA,XMI,H,COM(3),W
      DIMENSION XFREO(9)
      CHISQR= .0
C----TO DETERMINE THE NUMBER OF CLASS INTERVALS, K
      K= 1
             +3.3 *ALOG10(DATA)
      REALK=K
C----IN OPDER TO DETERMINE THE RANGE, FIND X (MAX) AND X (MIN)
      X44X=X(1)
      XMIN = X(1)
      00 17 I=1,NDATA
      IF ( Y(I) \cdot GT \cdot XMAX ) XMAX = X(I)
17
      IF(X(I).LT. XMIN) XMIN=X(I)
       RANGE - XMAX- XMIN
C-----TO DETERMINE THE CLASS INTERVAL WIDTH, W
C----FOUTINE TO POUND OFF CLASS WIDTH TO SAME NUMBER OF PLACES AS THE A
      DIVIDE = 1.0/AKURCY
   20 KW=(((RANGE+AKURCY)/PEALK)+.5*AKURCY)*DIVIDE
      F<1 = KW
      W = RK1/DIVIDE
      00 22 I=1,K
      A = T
      B = 0.5*AKUPGY
      CSV(I) = XMIN+(A-1.0) + W
      CEV(I) = CSV(I) + W + AKURGY
      CL3(I) = CSV(I) - B
      CJR(I) = CEV(I)+R
55
      GEV(K) = XMAX
      GUB(K) = GEV(K) + B
      DO 23 J=1,K
```

```
XF2=0(J)=0.0
23
       F7E0(J)=0.0
       NO 24 I=1, NDATA
       00 24 J=1,K
       IF (X(I) \cdot GE \cdot CLB(J) \cdot AND \cdot X(I) \cdot LT \cdot CUB(J)) FREQ(J) = FREQ(J) + 1.0
24
       CONTINUE
       00 25 J=1,K
   25 XFREQ(J)=FREQ(J)
       Y= 0.
       PRINT 62, XMAX
       PRINT 63, XHIV
       PRINT 65.W
C----CHI-SQUARE TEST
   26 PRINT 41
      PRINT 406
      00 33 I=1.K
      Z(I)=( CUR(I)- XMEAN) / DEV
      T= 435( Z(I) )
30
      AREA(I) = PROB(T)/2.0
      REGAREA(1) = 0.5 - AREA(1)
       MANU=K-1
      DO 32 I=2, MANU
      M= I-1
      IF( (Z(I).GE.0.0.AND.Z(M).GE.0.6).OR.( Z(I).LE.0.0.AND.Z(M).LE.0.
     1 ) GC TO 31
      REDAPEA(I) = AREA(I) + APEA(M)
      GQ TO 32
31
      REGAREA(I) = ABS(AREA(I)-AREA(M))
32
      CONTINUE
      REDAREA(K) = 0.5-AREA(K-1)
      DO 80 M=1,K
   SC EXFREQ(M)=DATA*REGAREA(M)
      I=1
2420 IF(FREQ(I).GE.5.) GO TO 2430
      EXFREQ(I+1) = EXFREQ(I+1) + EXFREQ(I)
      FREQ(I+1) = FREQ(I+1) + FREQ(I)
      J=I
      DO 2425 L=1,J
      EXFREQ(L)=0.
2+25 FREQ(L)=0.
      I=I+1
      GO TO 2420
2+30 I=K
2440 IF(FRED(I).GE.5.) GO TO 2450
     EXFREQ(I-1)=EXFREQ(I-1)+EXFREQ(I)
     FREQ(I-1) = FREQ(I-1) + FREQ(I)
     00 2445 L=I,K
     EXFREQ(L)=0.
2445 FREQ(L)=0.
```

1.

I=I-1

```
50 TO 2443
 2480 CONTINUE
      00 45 4=1.K
      U(M) =0.C
      IF(EXFREQ(M).IO.3.) GO TO 85
      U(H) = ((EXFREQ(H) + FREQ(H)) + FREQ(H))
   35 CONTINUE
      DO 90 M=1.K
   90 CHISOR=CHISQR+U(K)
C----TO PRINT THE TABLE FOR CHI-SQUARE TEST
      99 33 I=1.K
33
      PRINT 34,I,CLR(I),CUR(I), EXFREQ(I),FREQ(I),U(I)
      PPINT 35. CHISOR
      00 150 I=1.K
  150 FREQ(I) = XFREQ(I)
   62 FORMAT (10X, *MAXIMUM VALUE=*, F13.4)
   63 FORMAT(10X*MINIMUM VALUE=*,F13.4)
   65 FOPMAT(10X, *CLASS WIDTH=*, F15.4)
      FORMAT (1HD)
41
406
      FORMAT (8X,5H CELL.10X,10HLOWER CELL,11X,13HUPPER CELL,13X,3HEXPEC
     1TED.13X,840BSEPVED.13X,11HCHI-SQUARED/8X,6HNUMBEP,13X,5HBOUNDARY,
     213X, SHROUNDARY, 13X, 9HFREQUENCY, 12X, 9HFREQUENCY, 12X, 13HVALUE OF CE
     3LL/)
   34 FORMAT (10X, 12, F20, 4, 4, 521, 4)
   35 FORMAT(*0*,77X,*TOTAL GHI+SQUARED VALUE =*,F13,4)
      RETURN
      CND
      SUBROUTINE DIEST
C----SUBROUTINE TO CALCULATE THE KOLMOGOROV-SMIRNOV D-VALUES.
      COMMON CUMFRO(188), NDATA, X(188), DEV, XMEAN, GL8(9), CUB(9), FREQ(9), K,
     1 CHISGR, TITLE (2), SUBTITL (2), CSV(9), CEV(9), PCAREA (100), DSTAT (100),
        AREA(9), REDAREA(9), EXFREQ(9), U(9), 7(100), NX(100), DATA, AKURCY,
     3 XMAX,XMIN,PSI,CD,D,R,XLENGTH,YLENGTH,YMAX,YMIN,XMA,XMI,
     4 4, COM(3), W, ALPHA3, ALPHA4, FOOT (30), IT, SKS
      INTEGER TITLE.SURTITL
      00 706 I=1, NDATA
      7(1) = (X(I) - XMEAN)/DEV
      IF (Z(I)) 703, 704, 705
703
      T = ABS(Z(I))
C----ARNON=AREA UNDER THE NORMAL CURVE TO LEFT OF Z FOR NEGATIVE Z.
      A^{P}UNCN = (1.9-PROB(T))/2.0
      DSTAT(I) = APUNCN - PCAPEA(I)
      60 TO 706
704
      DSTAT(I) = .5 - PCAREA(I)
      GO TO 766
765
      T = 7(I)
C----ARUNCP=APEA UNDER THE NORMAL CURVE TO LEFT OF 7 FOR POSITIVE Z.
      AKUNCP = PROB(T)/2.0 + .500
      DSTAT(I) =
                    (APUNCP - PCAREA(I))
      CONTINUE
76ô
```

```
DO 93 I=1.NDATA
   30 OSTAT(I)=ABS(OSTAT(I))
      SKS=DSTAT(1)
      ATAON, S=I OCL ON
      IF (DSTAT(I).GT.SKS) SKS=DSTAT(I)
  100 CONTINUE
      PRINT 708, SUSTITL
      PRINT 707, (DSTAT(I), I=1, NDATA)
  707 FORMAT(FF20.5)
703
      FORMAT (//40x,53H D VALUES FOR KOLHOGOROV-SMIRNOV GOODNESS OF FIT
     1TEST,/,44x,*LISTED IN THE SAME ORDER AS *, 2A10,/)
      RETURN
      END
      SUBROUTINE ALPHA
      COMMON CUMFRQ(100), NDATA, X(100), DEV, XMEAN, CLB(9), CUB(9), FREQ(9), K,
     1 CHISOR, TITLE(2), SUBTITL(2), CSV(9), CEV(9), PCAREA(100), DSTAT(100),
        AREA(9), REQAREA(9), EXFREQ(9), U(9), Z(100), NX(100), DATA, AKURCY,
        XMAX,XMIN,PSI,CD,D,RATIO,XLENGTH,YLENGTH,YMAX,YMIN,XMA,XMI,
     + H, COM(3), W, ALPHA3, ALPHA4, FOOT(30), IT, SKS
C----SUBROUTINE TO CALCULATE THE COEFFICIENTS OF SKEWNESS AND KURTOSIS
C----CALCULATE THE THIRD MOMENT OF THE DATA (SKEWNESS)
      TOP3 = 0.0
      VAR = 0.0
      00 710 I =1, NOATA
      VAR = VAR + (X(I) - XMEAN) **2
710
      T0P3 = T0P3 + (X(I) - XMEAN) + 3
      SKEH = TOP3 / DATA
      STDEV = SQRT(VAR/DATA)
C----ALPHA3 = MOMENT COEFFICIENT OF SKEWNESS.
      ALPHA3 = SKEN/(STDEV**3)
C----CALCULATE THE FOURTH MOMENT OF THE DATA (KURTOSIS).
      TOP+ = [.]
      00 711 1 = 1, NDATA
      TOP4 = TOP4 + (X(I) - XMEAN)**4
711
      TKURT = TOP4 / DATA
C----ALPHA4 = MOMENT COEFFICIENT OF KURTOSIS.
      ALPHA4 = TKURT/(STDEV**4)
      PRINT 712
      PRINT 713
      PRINT 714, ALPHA3, ALPHA4
      FORMAT (///19x, 39HMOMENT COEFFICIENT OF SKEWNESS (ALPHA3), 18x, 39HM
712
     10MENT COEFFICIENT OF KURTOSIS (ALPHA4)/)
  713 FORMAT(21X,*FOR NORMAL DISTRIBUTION ALPHA3 = 0.0*,21X,*FOR NORMAL
     10ISTRIBUTION ALPHA4 = 3.0*,/)
      FORMAT (28x,25HFOR ABOVE DATA---ALPHA3 =F6.3,26x,25HFOR ABOVE DATA
714
     1~--4LPHA4 =, F6.3)
      RETURN
      END
      SUBROUTINE GRAPH
      COMMON CUMFRQ(100), NDATA, X(100), DEV, XMEAN, CLB(9), CU3(3), FREQ(9), K,
```

~4

```
1 GHITOF, TITLE (2) . SUBTITL (2) , CSV(9) , CEV(9) , PGAPE & (133) , PSTAT (160) ,
      2 6864(9), REQAPEA(9), EXFREQ(9), U(9), Z(100), NX(100), DATA, AKUROY,
      3 XMAX, XMIN, PSI, CD, D, P, XLENGTH, YLENGTH, YMAX, YMIN, XMA, XMI,
      4 H, 30M(3), W, ALPHA3, ALPHA4, FOOT (30), IT, SKS, UNIT
       DETERMINE DEFAULTS OR SPECIFIED PARAMETERS
       IF (XLE NOTH. EQ. O.) XLENGTH=6.
       IF (YLENGTH.EQ. 0.) YLENGTH=5.
       IF (YLENGTH.GT.5.) YLENGTH=5.
       90 1 I=1.K
       IF(YMAX.LT.FREQ(I)) YMAX=FREQ(I)
     1 CONTINUE
       I=YYAX
       IF((1/2*2).NE.I) YMAX=YMAX+1.
     6 \times 110 = XMIN - 0.10 * (XMAX - XMIN)
     8 IF (XMIN .LT. 0.3) XMIN = 0.9
       NIMY-XAMX= FICX
       H = 3.15
C
C
      DEFERMINE SCALING FACTORS
      XSCALE = (XMAX - XMIN) / XLENGTH
      YSCALE = YMAX / YLENGTH
      E = IFIX(ALOG10(XMAX - XMIN))
      STP = 16.3 ** E
C
C
      LOCATE PLOTTER PEN
      CALL PLOT(XL=NGTH+2.,0.,-3)
      GALL PLCT(C. .-11.,-3)
      CALL PLCT (0.,5.,-3)
C
C
      CONSTRUCT Y-AXIS
      CALL PLOT (0., YLENGTH, 2)
      DIV=1./YSCALE
   21 IF()IV.GE.(2.*H)) GO TO 22
      DIA=5.*LIA
      GO TO 21
   22 STED=DIV
      YY = 0.
   23 CALL PLOT (.05, YY, 3)
      CALL PLCT (-.05, YY, 2)
      YY=YY*YSC4LE
      CALL NUMBER (-.3, YY, H, YN, 0.,-1)
      YY=YY+STEP
      IF(YY.LE.(YLENGTH+.01)) GO TO 23
      YY=(YLENGTH-3.75)/2.
      IF (YY.LT.0.) YY=G.
      CALL SYMBOL (-.4, YY, H, 30HF REQUENCY/CLASS INTERVAL WIDTH, 90., 36)
```

```
CONSTRUCT, DRAW, AND LAREL X-AXIS
  CALL PLOT (0.,0.,3)
   IF (IT.EQ.1HL) GO TO 25
  XMIN=IFIX(XMIN/STP)
   XMAX=IFIX(XMAX/STP+1.0)
   XSCALE = ( XMAX - XMIN ) / XLENGTH * STP
25 XDIF=XMAX-XMIN
   DIV=10.*XDIF/XLENGTH
   IF (XMIN.EQ.O.) GO TC 26
   CALL PLOT (.3,0.,2)
   CALL PLCT (.35,0..3)
   CALL PLCT (XLENGTH, 0.,2)
   CALL PLOT (.35,.05,3)
   CALL PLOT (.25, -. 05, 2)
   CALL PLOT (.3, -. 05,3)
   CALL PLOT (.4,.05,2)
   GO TO 28
26 CALL PLOT (XLENGTH, 0., 2)
28 IF(DIV.LT.12.7) GO TO 30
   DIV=DIV/10.
   GO TO 28
30 DIV=DIV/10.
   IF(OIV.LT.0.2) DIV=DIV*10.
32 CALL NUMBER (0.,-.2,H,0.,0.,0)
   XX = 0.
   00 35 I=1,25
   XX=XX+1./DIV
   1F(XX.GT.XLENGTH) 40,33
33 CALL PLOT (XX,.65,3)
   CALL PLOT (XX,-.05,2)
   XN=XMIN+I*XDIF/(DIV*XLENGTH)
   IF(IT. £0.1HL) GO TO 37
   CALL NUMBER (XX-.1,-.2,H,XN,0.,0)
35 CONTINUE
40 00 41 I=1,2
   IF (SURTITL (I).EO.1H ) GO TO 42
41 CONTINUE
   I=2
   GO TO 43
37 CALL NUMBER (XX-.2,-.2,H,XN,0.,2)
   GO TO 35
42 I=I-1
43 XX=(XLENGTH-I)/2.
   I=I*10
   CALL SYMBOL (XX,-.5,.15,SUBTITL(1),0.,I)
   IF(IT.EQ.1HL) GO TO 46
   IF(STP.LT.1.01) GO TO 48.
   CALL WHERE (XX.YY)
   CALL SYMBOL (XX, -. 5, H, 5H X 10, 0., 5)
```

C

```
TALL AHERE (XX, YY)
       CALL NUMBER (XX+H, YY+.5*H, .5*H, E, 0.,-1)
 C
 C
       CONSTRUCT AND DRAW HISTOGRAM
       GO TO 48
    46 DO 47 I=1,K
       CLP(I) = (CLB(I) - XMIN) /XSCALE
    47 CUP(I)=(CUP(I)-XMIN)/XSCALE
       60 TO 32
    48 [0 58 I=1,K
       CLF(I) = ((CLR(I)/STP)-XMIN)/(XSCALE/STP)
    50 GUR(I) = ((GUP(I)/STP)-XHIN)/(XSCALE/STP)
    52 CALL PLOT (CL3(1),0.,3)
       50 35 I=1,K
       Y=FREG(I)/YSCALE
       GALL PLOT (CLB(I),Y,2)
       CALL PLOT (CUB(I), Y, 2)
    54 CALL PLOT (CUB(I),0.,2)
    55 CONTINUE
i c
       COMPUTE AND DRAW NORMAL CURVE ONE POINT AT A TIME
    60 STEP=XDIF#STP/100.
       IF (IT.EQ.1HL) STEP=STEP/STP
       C=1./(PEV*2.53665)
       NIMY=XX
       IF(IT._C.1HN) XX=XMIN*STC
       CALL PLOT(6.,9.,3)
       00 100 T=1,100
       Y=C+EXP(-.5+(XX-XMEAN)++2/DEV++2)/YSCALE+ND/TA+W
       XU=(XX-XMIN*STP)/XSCALE
       IF (IT.EG. 1HL) XU=(XX-XMIN)/XSCALE
       IF(KU.GT.20.) GO TO 186
       IF (XMIN. ED. 0.) 80,70
    70 IF(XU.GE.J.4) 80,90
    80 CALL PLOT (XU,Y,2)
       GO TO 108
    90 CALL PLOT (XU,Y,3)
   190 XY=XX+STEP
       OTHER ALPHA-NUMERIC COMMENTARY
 Û
   136 CALL PLOT(C.,-1.,-3)
       CALL SYMBOL (0.,0.,+,11HMEAN VALUE:,0.,11)
       CALL SYMPOL(0.,-2.*H,H,19HSTANDARD DEVIATION:,0.,19)
       CALL SYMBOL (0.,-4.*H,H,24HKOLMOGOROV-SMIRNOV TEST:,0.,24)
       CALL WHERE (XX,YY)
       XX = XX + H
       CALL SYMBOL (0.,-6.*H,H,17HCHI-SQUARED TEST:,0.,17)
       CALL SYMBOL (0.,-8.*H,H,9HSKEWNESS:,0.,9)
```

```
CALL SYMBOL(9.,-10.*H,H,9HKURTOSIS:,0.,9)
    IF(IT.EC.1HN) CALL NUMBER (XX,0.,H,XMEAN,0.,1)
    IF(IT. ED. 1HL) CALL NUMBER(XX, 0., H, XMEAN, 0., 3)
    CALL WHERE (XIN, YY)
    XIN=XIN+2,*H
    IF(IT.EG.1HN) CALL NUMBER(XX,-2.*H,H,DEV.0.,1)
    IF(IT. EQ. 1HL) CALL NUMBER(XX,-2.*H,H,DEV,8.,3)
    CALL NUMBER(XX,-4.*H,H,SKS,9.,3)
    CALL NUMBER(XX,-6.*H,H,CHISOR, 0.,3)
    CALL NUMBER (XX.-8. #H. H. ALPHA3, 0., 3)
    CALL NUMBER(XX,-10.*H,H,ALPHA4,0.,3)
    CALL SYMBOL (XIV, 0., H, UNIT, 0., 10)
    CALL SYPROL (XIN.-2.*H,H,UNIT, 0., 10)
    CALL SYMBOL(0.,-14.*H,H,F00T(1),6.,50)
    CALL SYMBOL(0.,-16.*H,H,FOOT(6),0.,50)
    CALL SYMBOL(0.,-18.*H,H,FOOT(11),0.,56)
    CALL SYMBOL(0.,-20.*H,H,F00T(16),0.,50)
    CALL SYMROL(0.,-22.*H,H,F00T(21),0.,50)
    CALL SYMBOL(0.,-24.*H,H,F00T(26),3.,50)
    CALL PLOT(XLENGTH+2.,0.,3)
    IF(IT.EQ.1HL) GO TO 150
    XX=(XLENGTH-3.75)/2.
    IF(XX.LT.9.) XX=9.
    CALL SYMBOL (XX,6.25, H, 30 HNORMAL DISTRIBUTION PARAMETERS, 0., 30)
150 XX=(XLENGTH-4.25)/2.
    IF(XX.LT.g.) XX=g.
   CALL SYMBOL (XX,6.25, H, 34HLOG NORMAL DISTFIBUTION PARAMETERS, 0.,
   1 34)
   RETURN
  END
```

APPENDIX D

PROGRAM WEIBULL

This program calculates the three Weibull distribution parameters $(\beta, \eta, \text{ and } \gamma)$ from cycles-to-failure data. It uses those parameters to calculate cycle life for 99% and 90% reliability with a 90% confidence interval. It also performs the Chi-squared and Kolmogorov-Smirnov goodness-of-fit tests.

The program input consists of:

- 1. A header card to identify the data block.
- 2. A set of data cards (in increasing order of cycles-to-failure)
- 3. Trailer card to separate data blocks.

The input format for the header card is:

- a. Columns 2-7 date code in alphameric format
- b. 8-9 blank
- c. 10-40 run identification in alphameric format
- d. 41-46 number of data (sample size) in fixed point format
- e. 48-52 minimum life increment in fixed point format
- f. 55-80 not used

Example:

Dec 71 WEIBULL SL = 100,000 SR = Infinity 35 100

The input format for the data cards is:

- a. Columns 2-7 cycles to failure in fixed point format
- b. 9-15 component life in fixed point format (same as for individual fatigue life tests).

- c. 20-23 date code (prints out only) in alphameric format
- d. 25-27 number of suspensions in fixed point format (either failures just removed from test, or remaining good items when testing by groups).
- e. 28-31 blank.
 - 32-35 test code in alphameric format (Note: 28-42 simply prints as punched and can all be left blank or used as comments space).
 - 36-39 lot code in alphameric format.
 - 40-43 blank.
 - 44-80 not used.

The input format for the trailer card is:

a. Columns 1-8 not used.

9-12 punched: - 1.0 in floating point format.

13-80 not used.

By use of the trailer card, the program is written to process as many sets of data as desired. An end of file card is used to signal the end of the last data deck.

Following is a list of important variables and symbols used in program WEIBULL:

Main Program:

NDAT = number of data points

W = NDATA + NODATA = DATA = W = V = J = K = FNZ = NODAT

IACTL = cycles of test at which a failure occurs

IX=Z = cycles of life of specimen at failure

MINL = IACTL

INCR = minimum life increment

C = cumulative life increment

R = median rank

 $R_1 = \log(\log) \text{ median rank}$

 $Q_1 = \log (X - G)$

 $B_1 = B = weibull slope, \beta$

BETA = inverse of slope

 $E_1 = E = goodness of fit of regression line$

 G_1 = minimum life parameter, γ

U = median life

ETA = scale parameter = η

CG = plus confidence interval

ONE = 1% life = 99% reliability

CONE = upper confidence limit on 1% life

CONM = lower confidence limit on 1% life

TEN = 10% life = 90% reliability

CTEN = upper confidence limit on 10% life

CTENM = lower confidence limit on 10% life

CU = upper confidence limit on median life (U)

CUM = lower confidence limit on median life

Subroutine for Kolmogorov-Smirnov Test (Subroutine DTEST)

Z(I) = Weibull cumulative frequency distribution

CUMFREQ(I) = cumulative observations (number of failures)

PERCF(I) = data cumulative frequency as percentage of failures

DSTAT(I) = absolute difference between the data cumulative frequency
and the hypothesized cumulative frequency

Subroutine for Chi-squared test (Subroutines CHISQA and CHISQB)

K = number of cells

XMAX = largest value of cycles to failure

XMIN = smallest value of cycles to failure

CSV = cell starting value

CEV = cell end value

CLB = cell lower bound

CUB = cell upper bound

FREQ(J) = number of observations in J^{th} cell

REQAREA(J) = expected value of Jth cell (percentage)

EXFREQ(J) = expected number of observations

The program WEIBULL listing in Fortran language follows:

```
C----WEISULL
C----WEIHULL
C----WEIBULL
     PROGRAM WEIBULL (INPUT, OUTPUT, TAPEZ INPUT, TAPE3 = OUTPUT,
     1 TAPE1. TAPE4. TAPE5. PLOTETAPE1)
     DIMENSION Y(100) , FREQ(9) , CLB(9) , CUB(9) , DSTAT(100) , CUMFRQ(100) ,
     1 PERCF (100)
     COMMON/N4/ X+ R
     COMMON /N5/ TACTL: IX, Al, A2, NOR, A3, A4, A5, A6
  1
     K = 0
     I = 0
      ICOUN = 0
      110D = 0
      XPREV = 0.0
     RPREV = 0.0
     REWIND 4
                             та мак — мендитического XIIII — — — му напожения потрежения объекторительной потолятильной потолятильной потол
     PEWIND 5
     READ (2:10) NODAT, INCR:M
     IF (EUF (2)) 83.80
  10 FORMAT (40H
  80
     IF (NODAT-50) 82,83,83
  82
     WRITE (3.40)
     FORMAT (5H1DATE, 15x, 9HRUN IDENT )
      WRITE (3.10)
     READ (2:20) IACTL: IX. Al. A2. NOR. A3. A4. A5. A6.
   20 FORMAT (17, 1x, 17, 1x, 2A4, 13, 4A4, F16,6)
      IF (IX) 4, 3, 2
      J = J + 1
  2
      K = K + 1
      I = 1 + 1
      Y(I) = IACTL
      IF (NOR) 6, 6, 5
  6
      NOR = 1
      NOD = NOD + NOR
      WRITE (4) IACTL, IX, A1, A2, NOR, A3, A4, A5, A6
      GO TO 7
  4 IF (NODAT = NOD) 8, 9, 8
         ERROR STOP - NO. OF DATA NOT CORRECT
      WRITE (3,30) NODAT, NOD
  30
      FORMAT (22HINO. OF DATA INCORRECT
                                        /1H0, 16, 5x, 16 / 1H1)
      REWIND 4
      GO TO 83
      REWIND 4
      WRITE (3,220) NODAT: J. INCR.M.
      FORMAT (1H0,4X,11HNO. OF DATA 16,10X,13H NO. OF FAIL 16,10X,
     115H MIN LIFE INCR 16,5X,5H M = ,16//)
      WRITE (3,230)
```

*

```
230 FORMAT (2X, 6HACTUAL, 3X, 4HCOMP, 56x, 4HCOMP)
   13X,4HLIFE ,4X,4HLIFE ,9H P DATE ,4H NOR,6X,10HTEST LOT
   211X-11HMEDIAN RANK-8X-4HLIFE //)
    Z = 0.0
    W = NODAT
     NDATA = NODAT
  NODATA = NODAT
     DATA = NOUAT
   . AKURCY = 1.
    V = W
     READ (4)
              IACTL, IX, A1, A2, NOR, A3, A4, A5, A6
     REWIND 4
    MINL = IACTL
     FNZ = J
     IF (MINL - 1) 11, 11, 12
 11 MINL = 1
     INCR = 1
     GO TU 13
 \frac{12 \text{ MINL} = \text{MINL} = 1}{13 \text{ Rl} = 1.0 = 2.44(-1.0/W) + (1.0 = 2.44(1.0 = 1.0/W))/(W = 1.0)}
     REWIND 4
  ...D0 14 I = 1. K
     READ (4)
              IACTL, IX, A1, A2, NOR, A3, A4, A5, A6
     X = IX
 16 IF(I = 1) 18, 18, 19
19 IF(XPREV) 18, 18, 21
21 R1 = RPREV
 18 K1 = NOR
     DO SS KS= 1 . K1
    V = V = 1.0
     RINV=1.0+(W-1.0)*(R1-1.0+2.0**(-1.0/W))/(2.0**(1.0*1.0/W)-1.0)
 Z = RINV + (W + 1.0 - RINV)/(1.0 + V)
   R = 0.
     GO TU 15
    IF(I - 1) 24, 24, 23
 17
 23 IF (XPREV) 26, 26, 24
 Z = Z + (W + 1.0 + Z)/(1.0 + V)
 26 R=1.0-2.0**(-1.0/W)+((Z-1.0)/ (W-1.0))*(2.0**(1.0-1.0/W)-1.0)
  V = V - 1.0
 15 XPREV = X
     RPREV = R
    WRITE (3.241) IACTL. IX. Al. AZ. NOR. A3. A4. A5. A6.R.X
 241 FORMAT(1X,17,1X,17,1X,2A4,1X,13,3X,4A4,F16,6,F12.0)
     ICOUN = ICOUN + 1
    IF (ICOUN - 68) 14. 41. 41
 41 ICOUN # 0
     WRITE (3,400)
 400 _ FORMAT_(1H1)_
  14 WRITE (5) X, R
  REWIND 4
```

```
REWIND S.
                         E1 = 0.0
                         IF(Y(1) .LE. 1000) GO TO 117
                     IF (Y(1) GT. 1000 AND. Y(1) LE. 10000) GO TO 116
                          IF(Y(1) \cdot GT \cdot 10000) INCR = 10000
                         60 TO 127
          116_INCR_= 1000
                          GO TO 127
          117 \text{ INCR} = 100
                        IF(M .GT. 1000) M = M ~ 1000
        127 El = 0.0
                        DO 27 KN=M, MINL, INCR
                        QSUM = 0.0
                       RSUM # 0.0
                                                                                                                      The production of the distribution of the contract of the cont
                        QSOS = 0.0
                        RSOS = 0.0
                        PROD = 0.0
                                                                                  as var production. He see he reconstruction and subjects a many database as required a grant company and applications and an extension of the contract of the 
                        G = KN - 1
                        D0 28 I = 1, K
                       READ (5) X.R
                        IF(X) 28, 28, 29
        29 IF(x = 6) 31, 31, 32
.C=====
                                    NEGATIVE ARGUMENT IN LOG. FUNCTION
C <----
  31 WRITE (3,100)
                        FORMAT(1H1,26HNEG, ARG. IN LOG. FUNCTION /,1H1)
     100
                        GO TO 83
         32 \cdot Q1 = ALOG(X = G)
                        IF(R) 31, 31, 34
                                   NEGATIVE ARGUMENT IN LOG FUNCTION.
.C+=+==
         34 R1= ALOG(ALOG(1.0/(1.0 - R)))
                        QSUM = QSUM + Q1
                        RSUM = RSUM + R1
                        QSOS = QSOS + QI + QI
                        RSOS = RSOS + R1 * R1
                        PROD = PROD + Q1 * R1
        SB CONTINUE
           REWIND 5
                        B = (FNZ + PROD - QSUM + RSUM)/(FNZ + QSOS - QSUM + QSUM)
                        A = (RSUM - B * QSUM) / FNZ
                     C = SQRT ((FNZ * QSOS - QSUM * QSUM) * (FNZ * RSOS - RSUM * RSUM)
                        E = (FNZ*PROD - QSUM * RSUM)/C
IF(E - E1) 37, 36, 36
         G1 = G
                        81 = 8
                        Al = A
```

```
27 CONTINUE
   37 \text{ M} = 6 + 1 - INCR
  39 IF (INCR = 1000) 38.117.116
   38 ARG = EXP ( -A1)
      BETA = 1.0/81
     ETA = (0.99967*ARG)**BETA
      U = G1 + (0.69315*ARG)**BETA
      ONE = G1 + (0.01005*ARG)**BETA
   TEN = G1 + (0.105*ARG) **BETA
      B = B1 + (1.0 + 1.163 / SQRT(W))
      CG = G1 + .5 + (U - G1) + (4.32159 + + (1.0/8) - 0.074 + + (1.0/8)) / (with (1.0/8))
    CONST = (1.645 + U) / (SORT(W) + 0.69315 ++ BETA)
      FACT = CONST * 10.010038 * (0.995E=02**BETA/81)
      CONE = ONE + FACT
     CONH = ONE - FACT
    EACT = CONST + 3.1924748 + (0.104360++BETA/81)
     CTEN = TEN + FACT
     CTENM . TEN - FACT
   EACT = CONST + 0.69315++BETA/(B1 + 0.69315)
     CU = U + FACT
     CUM = U - FACT
    WRITE (3.450) B1. E1. ETA. G1.CG. ONE. CONE. CONM.
     WRITE (3,451) TEN, CTEN, CTENM, U. CU. CUM
450 FORMAT (// 12X,13HWEIBULL SLOPE,5X,15HGOODNESS OF FIT ,5X,
  -115HSCALE PARAMETER./5X.3F20.5.//
    213X,12HMINIMUM LIFE ,11X,9HPLUS CONF./
    35X,2F20.5,//
49X+16HONE PERCENT LIFE +11X+9HPLUS CONF +10X+10HMINUS CONF +/
   55X,3F20.5 //)
451 FORMAT (1H+,9X,16HTEN PERCENT LIFE,11X,9HPLUS CONF.10X.
   111H MINUS CONF ./5X,3F20.5.//
   214X.11HMEDIAN LIFE :11X.9HPLUS CONF :10X. 10HMINUS CONF :/
   35X,3F20.5 //)
  .. CALL DIEST (Y.81.G1.U.NODATA.DSTAT.PERCF.CUMERC.ETA.SKSTAT)
    CALL CHISQA (Y, DATA, NDATA, PROB, AKURCY, XMEAN, DEV, Z, GI, BI, ETA, FREQ,
   1 XMAX, XMIN, CLB, CUB, NUMINTS, CELLWD)
    CALL CHISQB (Y.NDATA.GI.BI.ETA.CHISQR)
    CALL GRAPH (FREQ, XMAX, XMIN, CLB, CUB, SKSTAT, CHISQR, 81, ETA, G1, NDATA,
    I NUMINTS, CELLWD)
    GO TO 1
83 CALL PLOT (0.0, 0.0, 999)
    CALL EXIT
    END.
```

```
SUBROUTINE DIEST (Y.BI.GI.U.NODATA.DSTAT.PERCF.CUMFRQ.ETA.SKSTAT)
      DIMENSION Z(100) . Y(100) . DSTAT(100) . PERCE(100) . CUMERO(100)....
CCC
      SUBROUTINE TO CALCULATE THE KOLMOGOROV-SMIRNOW D=VALUES
      DO 500 I=1.NODATA
      Z(I) = 1.0 - EXP (-(((Y(I)-G1)/ETA)**B1))
 500 CONTINUE
C
Ç
      SET CUMFRQ(2) ARRAY
C
      DO 501 I=1.NODATA
      CUMFRQ(I) = I
 501
      PERCF = F(N) OF THE NUMBER OF DATA
C
      DO 502 I=1.NODATA
 502
      PERCF(I) = CUMFRQ(I)/NODATA
      DO 503 I=1, NODATA
      DSTAT(I) = Z(I) - PERCE(I)
 503
      PRINT 520
      PRINT 521 (DSTAT(I) . I=1 . NODATA)
      FORMAT (6(10X.F16.5))
 521
 520
      FORMAT (//40X,53H D VALUES FOR KOLMOGOROV-SMIRNOV GOODNESS OF FIT
     17EST/41X,52H(LISTED IN THE SAME ORDER AS CYCLES-TO-FAILURE DATA)/)
      SKSTAT = U.O.
      DO 10 I=1.NODATA
      IF (ABS (DSTAT (I)) .GT. SKSTAT) SKSTAT = ABS (DSTAT (I))
   10 CONTINUE
      PRINT 400, SKSTAT
  400 FORMAT(//+10X+*KOLMOGOROV-SMIRNOV TEST RESULT = *+F8.5./)
    RETURN
      END
```

```
SUBROUTINE CHISGA (X, DATA, NDATA, PROB, AKURCY, XMEAN, DEV, Z
           1.G1.H1.ETA.FREQ.XMAX.XMIN.CLB.CUB.K.W)
C----SUBROUTINE TO FIT A HISTOGRAM TO THE DATA AND PERFORM THE CHI-SQUA
.C----TEST FOR THE WEIBULL DISTRIBUTION
             DIMENSION X(50). CSV(9). CEV(9). CLB(9). CUB(9).
           1REQAREA(9), AREA(9), EXFREQ(9),
                                                                                     FREQ(9). U(9)
             CHISQR= .0
C----TO DETERMINE THE NUMBER OF CLASS INTERVALS.K
             K = 1.0 + 3.3*ALOG10(DATA)
             REALK=K
C----IN ORDER TO DETERMINE THE RANGE FIND X (MAX) AND X (MIN)
             XMAX=X(1)
             XMIN=X(1)
             DO 17 I=1.NDATA
             IF ( \chi(I) \cdot GT \cdot \chi MAX ) \chi MAX = \chi(I)
17
             IF(X(I)/LT. XMIN) XMIN=X(I)
    RANGE XMAX- XMIN
C----TO DETERMINE THE CLASS INTERVAL WIDTH, W
C----ROUTINE TO ROUND OFF CLASS WIDTH TO SAME NUMBER OF PLACES AS THE A
             DIVIUE = 1.0/AKURCY
             KW = (((RANGE+AKURCY)/REALK)+.5*AKURCY)*DIVIDE
             RK1 = KW
             W = RK1/DIVIDE
                                                          his wild deployed any later against a depth of the second property appropriate with the second of the second second of the second second of the second second second of the second secon
             PRINT 141
             PRINT 241
          PRINT 177. NDATA. Gl. Bl. ETA
             PRINT 41
             PRINT 62, XMAX
                                                                       PRINT 63.XMIN
             PRINT 65.W
              B = U.5#AKURCY
                                                                     DO 22 I=1.K
              A=I
              CSV(I) = XMIN + (A=1.0) + W
         CEV(L)= CSV(L)+W-AKURCY
              CLB(I) = CSV(I) - B
              CUB(I) = CEV(I) + B
    55 CONTINUE
              CEV(K) = XMAX
              CUB(K) = CEV(K) + B
             DO 23 J=1.K
 23
              FREQ(J)=0.0
              DO 24 I=1, NDATA
              DO 24_J=12K_____
              IF(X(I) \cdot GE \cdot CLB(J) \cdot AND \cdot X(I) \cdot LE \cdot CUB(J)) FREQ(J) = FREQ(J) + 1.0
              CONTINUE
 Cegare-CHI-SQUARE TEST
              PRINT 406
              DO 30 I=1.K
              AREA(I) = 1.0 = EXP(-((CUB(I)-GI)/ETA'+BI))
```

7.7

```
IF (I .EQ. 1) GO TO 51
     IF (1 .GT. 1 .AND. I .LT. K) GO TO 52
   REGAREA(K) = 1.0 - AREA(K)
    GO TO 30
    REGAREA(I) = AREA(I)
     GO TO 30
 52 REGAREA(I) = AREA(I+1)
    CONTINUE
 30
 76 DO 80 M = 1,K
     EXFREQ(M)=DATA#REQAREA(M)
     U(M)=(( EXFREQ(M)=FREQ(M))++2)/EXFREQ(M)
     CHISQR=CHISQR+U(M)
C----TO PHINT THE TABLE FOR CHI-SQUARE TEST
88 DO 33 I. z 1.K
     PRINT 34, I, CLB(I), CUB(I), EXFREQ(I), FREQ(I), U(I)
PRINT 35. CHISOR
     FORMAT( 10X, 14HMAXIMUM VALUE=,F15.6)
62
63
     FORMAT( 10x, 14HMINIMUM VALUE=, F15.6)
     FORMAT( 10X. 12HCLASS WIDIHA. F17.6)
65
     FORMAT(1H0)
41
     FORMAT (8X.5H CELL.10X.10HLOWER CELL.11X.10HUPPER CELL.13X.8HEXPEC
1406
    1TED.13X.8HOBSERVED.13X.11HCHI-SQUARED/BX.6HNUMBER.17X.8HBOUNDWRY.
    213X, 8HBOUNDARY, 13X, 9HFREQUENCY, 12X, 9HFREQUENCY, 12X, 13HVALUE OF CE
    3LL/)
34
     FORMAT (10x.12.5F21.6)
35
     FORMAT (1H0,81x,25HTOTAL CHI-SQUARED VALUE =.F10.6//)
141 FORMAT (1H0,70X, *CHI-SQUARED TEST*,//)
241 FORMAT (1HO + TOX + *FIXED CELL WIDTHS* + //)
     FORMAT (1H0, 10X, *INPUTS = *, 110, 3F15, 3+/)
177
 78 CONTINUE
     RETURN ...
     END
```

```
SUBROUTINE CHISQB (X, NDATA, G1, B1, ETA, CHISQR)
    2EXFREQ(9), U(9)
  ---SUBROUTINE TO FIT A HISTOGRAM TO THE DATA AND PERFORM THE
C----CHI-SQUARED TEST FOR THE WEIBULL DISTRIBUTION
    PRINT 341
    CHISUR = 0.0
   1 = 0
    DO 26 K=5,NDATA.5
    J = J+1
  IF (K \cdot EQ \cdot 5) \cdot CLB(J) = X(1)
    IF (K .GT. 5 .AND. K .LT. NDATA) CL8 (J) = CUB(J-1)
   I = (NDATA=K)
    IF(L.NE.0) AREA(J)=1.0=EXP(+(((CUB(J)+G1)/ETA)*+B1))
    IF(L.EQ.0) AREA(J) =1.0
  FREQUITES.0
    IF(J.EQ.I) REGAREA(J) =AREA(J)
    IF(J.GT.1:AND.L.NE.O) REGAREA(J) =AREA(J=1)
   __IE_(J_oLI_o5)_G0_T0_27______
    GO TO 26
 27 IF(L.NE.0) J#J+1
  ___CUB(J)=X(NDATA)_
    CL8(J) = CUB(J-1)
    REGAREA(J)=1.0-AREA(J-1)
  IF(LNE+0) FREQ(J) = L
  26 CONTINUE
    I * J
.....DO_25_J#1<sub>F</sub>I______
    EXFREQ(J) = NDATA*REQAREA(J)
 25 CONTINUE
. . . K_=____
 62 I = 1
2420 IF (EXFREQ(I) .GE. 5.) GO TO 2430
  EXEREQ(1+1) = EXEREQ(1+1) + EXEREQ(1)
    FREQ(I+1) = FREQ(I+1) + FREQ(I)
    J = I
 00 2425 L=1.J
                         EXFREQ(L) = 0.
2425 FREQ(L) = 0.
    1311
    GO TU 2420
2430 I = K
    IF (EXEREQ(I) GE. 5.) GO TO 2450
    EXFREQ(I=1) = EXFREQ(I=1) + EXFREQ(I)
    FREQ(I-1) = FREQ(I+1) + FREQ(I)
   DO 3445 L=I.K
    EXFREQ(L) = 0.
2445 FREQ(L) = 0.
```

```
I = 1-1
     GO TU 2440
2450 CONTINUE
     DO. 85 MalaK ...
     U(M) = 0.0
     IF (EXFREQ(M) .EQ. 0.) GO TO 85
     U(M) = ((EXFREQ(M) - FREQ(M)) **2/EXFREQ(M))
  85 CONTINUE
     CHISQR = 0.0
     DO 90 M=1,K
 90 CHISOR = CHISOR + U(M)
     J = K
  88 DO 33 I = 1 \cdot J
    PRINT 34.1.CLB(I).CUB(I). EXFREQ(I).FREQ(I).U(I)
.33.
     PRINT 35, CHISQR
     FORMAT (10X,12,5F21.6)
34
35.
    FORMAT (1HD 81X 25HTOTAL CHI SQUARED VALUE = F10.6)
  341 FORMAT(1H0,65X, *VARIABLE WELL WIDTHS*,//)
     CONTINUE
    RETURN
      END
```

```
SUBRUUTINE GRAPH (FREQ.XMAX.XMIN.CLB.CUB.SKS.CHISOR.BETA.ETA.
   1 GAMMA . NDATA . K . CELLWD)
    DIMENSION FREQ(9), CLB(9), CUB(9)
    INTEGER FOOT (30) SUBTITL (2)
    LOGICAL NITIAL
    DATA NITIAL / .TRUE. /
    READ PLOT CARD
C
    READ12:400) IPLOI:SUBTITL:IPEN
 400 FOR-MAT (4A10)
    IF(EOF(2)) 999,3
 3 IF (IPLOT NE THWEIBULL) GO TO 999
    IF (NITIAL) 4.5
   4 NITIAL = .FALSE.
  PEN = 0.3
    IF (IPEN .EQ. 10HBALL POINT) PEN = 0.0
    CALL INITIAL (0.1.PEN.0)
  5 READ (2,401) FOOT
 401 FORMAT (5A10)
C ... DETERMINE DISTANCES.
   2 XLENGTH = 6.0
 YLENGTH = 5.0
    H = 0.15
    YMAX = 0.0
    .00 l I=1..K.
    IF(YMAX.LT.FREQ(I)) YMAX=FREQ(I)
   1 CONTINUE
    FRINGE = 0.40#NDATA
    FRINL = 0.25*NDATA
    IF (YMAX .GE. FRINL .AND. YMAX .LT., FRINGE) GO TO 7
    IF (YMAX &GE. FRINGE) YMAX * IFIX (YMAX + FRINGE)
    GO TO 6
  7 YMAX = IFIX(YMAX + FRINL)
 6 CONTINUE
    I=YMAX
    IF((1/2*2).NE.I) YMAX=YMAX+1.
   xMIN = xMIN - 0.10 * (xMAX - xMIN)
    XDIF = XMAX - XMIN
    DETERMINE SCALING FACTORS
    XSCALE = (XMAX - XMIN) / XLENGTH
    YSCALE = YMAX / YLENGTH
    E = IFIX(ALOG10(XMAX - XMIN))
    STP = 10.0 ## E
```

```
CALL PLOT (XLENGTH+2..0...3)
     CALL PLOT (" . , =11 . , =3)
     CALL PLOT (0.,5.,-3)
Э.
     CONSTRUCT Y-AXIS
     CALL PLOT (0. YLENGTH, 2)
    DIV#1./YSCALE
  21 IF(DIV.GE.(2.*H)) GO TO 22
     VIO**2*AIO
     GO_TO_21_
                   22 STEP=DIV
     YYXU.
  23 CALL PLOT 1.05, YY. 31
     CALL PLOT (-.05, YY, 2)
     YN=YY*YSCALE
    CALL NUMBER (-. 3. YY. H. YN. O. . -1)
     YY=YY+STEP
     IF(YY.LE.(YLENGTH+.01)) GO TO 23
     YY=1YLENGTH-3.751/2.
     IF (YY.LT.0.) YY=0.
     CALL SYMBOL (-.4, YY, H, 30 HFREQUENCY/CLASS INTERVAL WIDTH, 90., 30)
.C.
C
     CONSTRUCT, DRAW, AND LABEL X-AXIS
٠C
     CALL PLOT (0.+0.+3)
     XMIN=IFIX(XMIN/STP)
     XMAX = IFIX(XMAX / STP + 1.0)

XOIF = XMAX = XMIN

XSCALE = XOIF / XLENGTH + STP
     DIV=10. #XDIF/XLENGTH
     IF (XMIN.EQ.0.) GO TO. 26
     CALL PLOT (.3.0.,2)
     CALL PLOT (.35,0.,3)
     CALL PLOT (XLENGTH.O. . 2)
     CALL PLOT (.35,.05,3)
     CALL PLOT (.25,-.05,2)
     CALL PLOT (-3**-05*3)
     CALL PLOT (.4,.05,2)
     GO TO 28
  26 CALL PLOT (XLENGTH,0.,2)
  28 IF (DIV.LT.12.7) GO TO 30
     DIV=DIV/10.
    _GO _IU__28...
                            gra Managahnin nagahin aragahin aragahin aragah di marangah yar hagi hisafin ini maraga yar K
  30 DIV=DIV/10.
     IF(DIV.LT.0.2) DIV=DIV#10.
  32 CALL NUMBER (0 . - . 2. H. O . O . O)
     XX=0.
     DO 35 I=1,25
   XX=XX+1./DIV
     IF (XX.GT.XLENGTH) 40,33
```

```
33 CALL PLOT (XX,.05,3)
   CALL PLOT (XX = . 05 . 2)
    XN=XMIN+I+XDIF/(DIV+XLENGTH)
    CALL NUMBER {XX-.1+-.2+H+XN+0.+0}
35 CONTINUE
 40 DO 41 I=1,2
    IF(SUBTITL(I).EQ.1H) GO TO 42
      41 CONTINUE
       ___I=2__
         GO TU 43
      42 I=I-1
     43 XX=(XLENGTH=I)/2.
         I=I#10
         CALL SYMBOL (XX,-.5,.15,SUBTITL(1),0.,1)
      IE(SIP.LI.1.01) GO TO 48
         CALL WHERE (XX, YY, IFAKE)
         CALL SYMBOL (XX .- . 5 . H . 5 H X 10 . 0 . . 5)
        CALL WHERE (XX. YY. IFAKE)
         CALL NUMBER (XX+H, YY+.5+H, .5+H, E.O., -1)
  C CONSTRUCT AND DRAW HISTOGRAM
      48 DO 50 I=1.K
        CLB(1)=((CLB(1)/STP)-XMIN)/(XSCALE/STP)
      50 CUB(1)=((CUB(1)/STP)-XMIN)/(XSCALE/STP)
      52 CALL PLOT (CLB(1),0.,3)
       _00_55_I=1.K
         Y=FREQ(I)/YSCALE
         CALL PLOT (CLB(I), Y, 2)
        CALL PLOT (CUB(I), Y. 2)
      54 CALL PLOT (CUB(I),0.,2)
      55 CONTINUE
         COMPUTE AND DRAW NORMAL CURVE ONE POINT AT A TIME
      60 STEP = XDIF * STP / 150.0
         XX = XMIN * STP
         CALL PLOT(0.,0.,3)
        EACT = EXP(-BETA)
         CHK = EXP(-1.0)
         IF (BETA .LT. 1.0) YSCALE#YSCALE#EACT/CHK
        BE = BETA / ETA
         IDOIT = 2HNO
         00\ 100\ I = 1,150
         IF (GAMMA .GT. XX) GO TO 100
         Z = (XX + GAMMA) / ETA
         Y = BE + Z ++ (BETA - 1.0) + EXP( - 1.0 + Z ++ BETA).
```

```
Y = Y / YSCALE * NDATA * CELLWD
          XU=(XX-XMIN#STP)/XSCALE
          IF (IDOIT .EQ. 2HNO) 60 TO 90
         IF (XU.GY.20.) GO TO 100
          IF (XMIN.EQ.0.) 80,70
       70 IF(XU-GE-0.4) 80,90
       80 CALL PLOT (XU.Y.2)
          GO TO 100
       90 CALL PLOT (XU,Y,3)
          IDOIT = 3HYES
      100 XX=XX+STEP
    C
          OTHER ALPHA-NUMERIC COMMENTARY
      130 CALL PLOT(0.,-1.,-3)
   CALL SYMBOL (0.0,0,0,+,24HKOLMOGOROV-SMIRNOV TEST:,0.0.24)
   CALL WHERE (XX. YY. JEAKE)
   XX=XX+H
  , CALL SYMBOL (0.0,-2.0*H,H,17HCHI-SQUARED TEST:,0.0,17)
   CALL SYMBOL (0.0,-4.0*H.H.21HWEIBULL SLOPE (BETA):.0.0.21)
   CALL SYMBOL (0.0.-6.0*H,H,21HMINIMUM LIFE (GAMMA):.0.0,21)
   CALL SYMBOL (0.0,-8.04H+H,22HSCALE PARAMETER (ETA):,0.0,22)
   CALL NUMBER (XX.O.O.H.SKS.O.O.3)
   CALL NUMBER (XX.-2.0*H,H,CHISQR,0.0.3)
   CALL NUMBER (XX+-4.0*H+H+8ETA+0.0+3)
   CALL NUMBER (XX+=6.0+H+H+GAMMA+0.0+=1)
   CALL NUMBER (XX, =8.0*H, H, ETA, 0.0, =1)
   CALL SYMBOL (0.,-14.*H,H,FOOT(1),0.,50)
   CALL SYMBOL (0. +=16. #H+H+FOOT (6) +0. +50)
   CALL SYMBOL (0.,-18.*H.H.FOOT (11).0.,50)
   CALL SYMBOL (0., -20. *H, H, FOOT (16), 0., 50)
   CALL SYMBOL (0 . . -22 . *H. H. FOOT (21) . 0 . . 50)
   CALL SYMBOL (0 .. - 24 . *H . H . FOOT (26) . 0 . . 50)
   XX=(XLENGTH-3.75)/2.
   IE(XX-LI-0-) XX=0.
   CALL SYMBOL (XX,6,25,H,31HWEIBULL DISTRIBUTION PARAMETERS,0,0,31)
999 RETURN
   END .
```

C-FOCAL, 1969

04.40 S B = B+CU 2*NI

```
01.10 A "MINIMUM STRESS LEVEL", YP, !
01.20 A "STRESS INCREMENT", DP, !
01.30 A "NO OF SPECIMENS", NS, !
01.40 T "IF TEST IS BASED ON FAILURES THE CODE IS O", !
01.50 T "IF BASED ON SUCCESSES THE CODE IS 1", !
01.60 A "WHAT IS THE CODE?", Co, !
01.70 A "NO OF STRESS LEVELS IN TEST", I, !, !
01.74 \text{ S CU} = 0
01.75 S A = 0
01.76 SB = 0
01.77 T 'NO OF SPEC IN EACH LEVL STARTING FROM THE 2ND LOWEST", !
01.80 \text{ FOR J} = 1, 1, I-1; DO 4.0
02.10 \text{ S SD} = 1.62*DP*((NS*B-A+2)/NS 2+0.029)
02.20 IF (CO) 2.3,2.3,2.4
02.30 \text{ S MU} = \text{YP+DP*}(A/\text{NS}-.5)
02.35 GOTO 2.7
02.40 S MU = YP+DP*(A/NS-.5)
02.70 T %10.03 "MEAN", MU, !, "STD DL"", SD, !
02.80 Q
04.10 A NI, !
04.20 \text{ S CU} = \text{CU+1}
04.30 S A = A+CU*NI
```

APPENDIX - F

PDP-8 PROGRAM TO FIND POINTS ON THE GERBER PARABOLA AND THE VON MISES-HENCKY ELLIPSE FOR A GIVEN MATERIAL AND STRESS RATIO

Symbols:

 $r_s = R = Stress ratio$

 $S_u = SU = Mean of static ultimate strength$

 $S_e = SE = Mean of endurance strength$

 $S_{m_A} = ME = Mean stress corresponding to <math>S_{V_A}$.

 $S_{V_e} = SV = Stress vector mean on von Mises-Hencky$ ellipse for stress ratio, r_s .

 $S_{m_p} = MP = Mean stress corresponding to <math>S_{v_p}$.

 $S_{V_{\overline{D}}}$ = SP = Stress vector mean on Gerber parabola for stress ratio, rs.

01.10 A "STRESS RATIO", R, !

01.20 A "SU", SU, ! 01.30 A "SE", SE, !

01.40 S A=FSQT((SE+2)+(R+2)*(SU+2))

01.50 S ME=SU*SE/A

01.60 S AE=R*ME

01.70 S SV=FSQT((ME+2)+(AE+2))

01.80 S B=FSQT((R 2)*(SU+4)/(SE+2)+4*(SU+2))

01.90 S MP=(-R/2)*((SU+2)/SE)+B/2

02.10 S AP = R*MP

02.20 S SP=FSQT((AP+2)+(MP+2))

02.30 T % 9.5, ME, AE, SV,! MP, AP, SP,!!

02.40 GO TO 1.10

APPENDIX - G

PDP-8 PROGRAM TO FIND THE ESTIMATE OF THE MEAN
STRENGTH, THE CORRESPONDING MEAN AND ALTERNATING
LOADS, AND A SUITABLE MEAN LOAD INCREMENT USING
THE VON MISES-HENCKY FAILURE CRITERION

* W A C-FOCAL, 1969

```
01.10 A "DIAMETER",D,!
01.20 A "STRESS INCREMENT",IS,!
01.30 A "ULTIMATE STRENGTH",SU,!
01.40 A "ENDURANCE STRENGTH",SE,!
01.50 A "STRESS RATIO",R,!
01.60 S A=3.1416*(D+2)/4
01.70 S SM=(SE*SU)/FSQT(((SU+2)*(R+2)) + (SE+2))
01.80 S PM=SM*A

02.10 S IM=IS/FSQT(1 + (R+2))
02.20 S IP = IM*A
02.30 T " MEAN STRESS STRESS INC MEAN LOAD LOAD INC.",!!
02.50 GO TO 1.50
```

APPENDIX - H

PDP-8 PROGRAM TO FIND THE MEAN AND ALTERNATING

LOAD STEPS FOR STRESS RATIOS, $r_S = \infty$, FOR

STAIRCASE TESTING WITH THE AXIAL

FATIGUE RELIABILITY RESEARCH MACHINE

Symbols:

 $S_{y} = Stress vector$

 $S_n = Mean stress$

 S_a = Alternating stress

PM = Mean load

PA = Alternating load

*W A C-FOCAL, 1969

01.10 A "DIAMETER",D,!

01.20 A "STRESS RATIO",R,!

01.25 A "MAX MEAN LOAD", PM,!

01.30 S A = 3.1416*D+2/4

01.35 T A SV "," SM "," PM "," SA "," PA",!

02.10 S PM = PM-1

02.15 S SM = PM/A

02.20 S SA = SM*R

02.25 S PA = SA*A

02.30 S SV = SM*FSQT(1+(R+2))

02:40 T %9.03, SV, SM, PM, SA, PA,!!

02.50 GO TO 2.10

APPENDIX - I

PDP-8 PROGRAM TO CALCULATE THE LOAD FOR STAIRCASE TESTING AT THE STRESS RATIO, $r_S = \infty$, FOR THE AXIAL FATIGUE RELIABILITY

RESEARCH MACHINE

```
*W A
C-FOCAL, 1969
01.10 A "DIAMETER",D,!
01.20 A "ULTIMATE STRENGTH", SU,!
01.30 A "STRESS INCREMENT", IS,!
01.35 S SM=0
01.40 S PM=0
01.45 S SE=0.45*SU
01.50 \text{ S A}=3.1416*(D+2)/4
01.55 S P=SE*A
01.60 S IPA=IS*A
01.65 T "LOAD", %9.03, P,!
01.70 T "LOAD INCREMENT", %9.03, IPA,!
01.75 A "ROUNDED ALT LOAD", P,!
01.80 A "ROUNDED ALT LOAD INC", PAI,!
02.10 S SA=P/A
02.20 S SI=PAI/A
02.30 S SA=SA+6*SI
02.40 S P=P+6*PAI
02.50 T " DIA
                     SV
                                   PA
                                          SM
                                               PM",!!!
                            SA
02.60 FOR I=1,1,11; DO 3.0
03.10 S SA=SA-SI
03.20 S P=P-PAI
03.30 S SV=SA
03.40 T %7.03, D, SV, SA, P, SM, PM,!!
```

8.0 DETAILED TEST DATA

This section contains the detailed test data which were used in the analyses discussed in Section 2 to determine the results and conclusions of Sections 3 and 4. Included are the calibration and experimental data for the Wire Fatigue Machines, Wiedemann Fatigue Machines, and the Axial Fatigue Machine.

8.1 WIRE FATIGUE MACHINE DATA

Table 8.1-1 Wire Fatigue Research Machines

lui no	Estique Ma	china No	1		Group No. 1	
1	Wire Fatigue Machine No. 1 Group No. 1					
1	Wire Diameter .040 in. Date Feb. 26, 1972 Material AISI 4340 Deflection Angle 4 deg					
i					Dellection A	igre4deg.
Kemar	KS;					
NO.	Pan	Axial	1		B.L.H. Strain	
	Weight	Stress		(reference)	Ind. Reading	Strain Micro in/in
<u> </u>		(P/A)				
1	<u> </u>	ļ		,250	1,390	140
2				,295	1,435	140
3		•	1	,295	1,420	125
4				,295	1,435	140
5				,295	1,435	140
6				,305	1,450	145
7	•		1	,305	1,430	125 ·
8				,305	1,445	140
9				,305	1,445	140
10			1	,310	1,450	140
	<u> </u>					
		Maan	Mageine	od Strain -	137.5 µ-in/in	
		lical I	"Gapure	u Strain =	137.3 μ-11/11	•
 						
]					
 					 	
		ļ				
<u> </u>	<u> </u>	<u> </u>				

Table 8.1-1 Continued

Wire	Fatigue Mad	chine No	1	•	Group No	1	
Wire	Diameter	.040	_in.	Date_Feb. 26, 1972			
Mater	ial AISI	4340		_	Deflection Ar	gle <u>8</u>	_deg.
Remar	ks:						
<u></u>					•		
NO.	Pan Weight	Axial Stress (P/A)			B.L.H. Strain Ind. Reading	Measure Strain Micro i	•
1				1,250	1,545	295	
2				1,295	1,585	290	
3				1,295	1,565	270	
4				1,295	1,580	285	
5				1,295	1,580	285	
6				1,305	1,585	280	
7				1,305	1,570	265	
8				1,305	1,590	285	
9		***************************************		1,305	1,575-	270	
10				1,310	1,590	280	

				,			
		Mean Me	easur	red Strain =	280.5 p-in/in		
			_				
	1	1					

Table 8.1-1 Continued

Wire !	Fatigue Mac	thine No. 1	··-	Group No	L		
Wire	Diameter	in	•	Date Feb. 26, 1972			
	Material AISI :40 Deflection Angle 12 deg.						
	ks:			•			
NO.	Pan Weight		B.L.H. Strain Ind. Reading (reference)		Measured Strain Micro in/in		
1			1,250	1,790	540		
2			1,295	1,820	525		
3			1,295	1,750	455		
4	-		1,295	1,805	510		
5			1,295	1,760	465		
6	٠.		1,305	1,810	505		
7			1,305	1,765	460 .		
8			1,305	1,805	500		
9			1,305	1,770	465		
10			1,310	1,820 .	510		
				/			
		Mean Mea	sured Strain =	493.5 μ-in/in	•		
					,		
	<u> </u>						

Table 8.1-1 Continued

Wire Fatigue Machine No. 1					Group No	1	
Wire Diameter .040 in.			in.	Date Feb. 26, 1972			
Mate	rial AISI	4340			Deflection Ar	ngle <u>16</u> deg.	
Reman	rks:						
NO.	Pan Weight	Axial Stress (P/A)	Ind	.il. Strain . Reading eference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in	
1				1,250	2,160	910	
2				L,295	2,160	865	
3		•		1,295	2,125	830	
4				1,295	2,160	865	
5	9			1,295	2,130	835	
6				1,305	2,170	865	
7	<u> </u>			1,305	2,135	830	
8				1,305	2,155	850	
9				1,305	2,125	820	
10				1,310	2,170	810	
			Me	an Measured	Strain = 848	u-in/in.	
		,					

Table 8.1-1 Continued

Fatigue Ma	chine No	1	_	Group No1	
Diameter	.040	in	•	Date Feb. 26	, 1972
ialAISI	4340	•		Deflection Ar	ngle <u>la</u> deg.
ks:					
·				•	
Pan Weight	Axial Stress (P/A)				Measured Strain Micro in/in
		,	1,250	2,335	1,085
			1,295	2,330	1,035
			1,295	2,300	1,005
			1,295	2,325	1,030
			1,295	2,315	1,020
,			1,305	2,335	1,030
<u> </u>			1,305	2,310	1,005
			1,305	2,305	1,000
	<u> </u>		1,305	2,315	1,010
<u> </u>			1,310	2,340	1,030
 	 				
	-				
			Maan Maasurad	Strain = 1 02	E w in/in
			rican ricasureu	<u> </u>	<u> </u>
,				·	
		·			
			×		
	Diameter_ ialAISI ks: Pan	Diameter .040 ial AISI 4340 ks: Pan Axial Weight Stress	ial AISI 4340 ks: Pan Axial Weight Stress	Diameter .040 in. ial_AISI 4340 ks: Pan	Diameter .040 in. Date Feb. 26 ial_AISI 4340 Deflection And Ind. Reading (reference) Reight Stress (P/A) B.L.H. Strain Ind. Reading (reference) Ind. Reading Ind. Reading Ind. Reading 1,250 2,335 1,295 2,330 1,295 2,300 1,295 2,325 1,295 2,315 1,305 2,315 1,305 2,310 1,305 2,315 1,305 2,315 1,305 2,315

Table 8.1-1 Continued

Kire	Fatigue Mad	chine No	1	Group No. 1			
Wire	Diameter	.040	_in.		Date Feb. 26, 1972		
Mater	ial_AISI_	4340	<u></u>		Deflection An	ngle <u>20</u> deg.	
	ks:	···					
					····		
NO.	Pan Weight	Axial Stress (P/A)	Ind		B.L.H. Strain Ind. Reading	Measured Strain Micro in/in	
1			1	,250	2,505	1,255	
2			1	,295	2,500	1,205	
3			1	,295	2,480	1,185	
4	<u> </u>		1	,295 ´	2,510	1,215	
5			1	,295	2,490	1,195	
6_	·.		1	,305	2,505	1,200	
7	•			,305	2,485	1,180	
8				,305	2,505	1,200	
9				,305	2,490	1,185	
10				,310	2,510 .	1,200	
	ļ <u>. </u>						
				·			
	<u> </u>					ļ	
-	ļ						
 	 		Mea	m Measured	Strain 1,202	μ-in/in.	
	 				 		
	 					<u> </u>	
	1	<u> </u>					

.

. -

Table 8.1-1 Continued

Kire	Fatigue Mad	chine No1		Group No. 1		
Wire	Diameter	.040	_in.	Date_Feb. 26, 1972		
Mater	ial <u>AISI 4</u>	340		Deflection Ar	igle 22 deg.	
Remar	ks:	····				
NO.	Pan Keight	Axial Stress (P/A)	B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Neasured Strain Micro in/in	
1			1,250	2,675	1,425	
2			1,295	2,660	1,365	
3		•	1,295	2,655	1,360	
4			1,295	2,665	1,370	
5			1,295	2,655	1,360	
6			1,305	2,670	1,365	
7	<u> </u>		1,305	2,650	1,345	
8			1,305	2,660	1,355	
9			1,305	2,655-	1,350	
10			1,310	2,670	1,360	
<u> </u>						
	<u> </u>					
			Mean Measured	Strain = 1365	5 μ-in/in.	
		·				

Table 8.1-1 Continued

Wire !	Fatigue Mad	hine No. 1		•	Group No	l
Wire !	Diameter	.040	_in.		Date Feb. 26	. 1972
Mater:	ialAISI_	4340		-	Deflection Ar	ngle 24 deg.
Remar	ks:					
<u> </u>		 			·	
NO.	Pan Weight	Axial Stress (P/A)			B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,250	2,820	1,570
2				1,295	2,815	1,520
3				1,295	-2,820	1,525
4				1,29Š	2,835	1,540
5				1,295	2,820	1,525
6				1,305	2,835	1,530
7	•			1,305	2,825	1,520
8				1,305	2,825	1,520
9				1,305	2,825	1,520
10				1,310	2,840	1,530
<u></u>						
				·····		
				•		
				Mean Measured	Strain 1,530	μ - in/in
<u></u>				·		
		l	J			

Table 8.1-1 Continued

Wire	Fatigue Mac	hine No. 1		Group No. 1	
Wire	Diameter	.040	_in. ´	Date Feb. 26	, 1972
Mater	ial <u>AISI</u>	4340		Deflection Ar	ngle <u>26</u> deg.
Remar	ks:	<i></i>			
NO.	Pan Weight	Axial Stress (P/A)	B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured, Strain Micro in/in
1			1,250	2,980	1,730
2			1,295	2,980	1,685
3			1,295	2,985	1,690
4			1,295	2,985	1,690
5			1,295	2,985	1,690
6	٠,	7.	1,305	2,985	1,680
7			1,305	2,990	1,635
8			1,305	2,940	1,635
9			1,305	2,985	1,680
10			1,310	2,985 .	1,675
<u> </u>					
ļ			·		
			Mean Measured	Strain 1,679	μ - in/in.
<u> </u>		,			
<u></u>			•		
1					

×

Table 8.1-2 Wire Fatigue Research Machines

Kire	Wire Fatigue Machine No. 2 Group No. 2							
Nire	Diameter	.040	_in.		Date Feb. 26	5, 1972		
Mater	ial AISI	1340 Steel		_	Deflection A	ngle 4 deg.		
Remar	ks:							
NO.	Pan	Axial			B.L.H. Strain			
	Weight	Stress (P/A)	1	nd. Reading (reference)	ind. Keading	Strain Micro in/in		
1				1,060	1,145	85		
2				1,110	1,250	140		
3		<u> </u>		1,110	1,240	130		
4	ļ			1,120	1,250	130		
5				1,120	1,250	130		
6_	<u> </u>			1,115	1,260	145		
7_				1,115	1,240	125		
8				1,105	. 1,255	150		
9				1,105	1,225	120		
10			_	1,100	1,240	140		
				· · · · · · · · · · · · · · · · · · ·				
<u> </u>						,		
ļ								
	·		1	Mean Measured	Strain = 116.	5 u - in/in		
	· · · · · · · · · · · · · · · · · · ·	,						
L			_					

j

...

Table 8.1-2 Continued

Kire	Fatigue Mad	chine No	2					
Nire	Diameter	.040	_in.	Date_Feb_ 26, 1972				
Mater	ial AISI	4340 Stee1		Deflection Ar	ngle <u>g</u> deg.			
Reman	ks:							
	.	·						
NO.	Pan Weight	Axial' Stress (P/A)		B.L.H. Strain Ind. Reading	Measured Strain Micro in/in			
1			1,060	1,310	250			
2			1,110	1,420	310			
3			1,110	1,385	275			
4			1,120	1,400	280			
5			1,120	1,390	270			
6	•		1,115	1,400	285			
7	·		1,115	1,370	255 ·			
8			.1,105	1,400	2 9 5			
9			1,105	1,355-	250			
10			1,100	1,375 .	275			

			·					
			Mean Measured	Strain = 274.5	μ - in/in.			
,	<u> </u>							

Table 8 .1-2 Continued

Wire Fatigue Machine No. 2 Group No. 2							
Wire !	Diameter	.040	_in	١.	Date Feb. 26	5, 1972	
Mater.	ial <u>AISI 43</u>	340 Stee1		-	Deflection Ar	igle <u>12</u> deg.	
1	ks:	···					
		<u>.</u>					
NO.	Pan Weight	Axial Stress (P/A)		B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured . Strain Micro in/in	
1				1,060	1,665	605	
2				1,110	1,760	650	
3				1,110	1,715	605	
4				1,120	1,775	655	
5				1,120	1,705	585	
6_				1,115	1,780	665	
7	•			1,115	1,725	610	
8				1,105	1,720	615	
9				1,105	1,690	585	
10				1,100	1,735	635	
		· · · · · · · · · · · · · · · · · · ·					
<u> </u>			···				
	<u> </u>						
				Mean Measured	Strain = 621	μ - în/în.	
						<u> </u>	

Table 8.1-2 Continued

Kire	Fatigue Mad	chine No	2		Group No.	2
Kire	Diameter	.040	_in.		Date Feb. 20	5, 1972
Mater	ial AISI 4	340 Steel	· 	-	Deflection Ar	ngle <u>16</u> deg.
Remar	ks:					
	·					
NO.	Pan Weight	Axial Stress (P/A)	In		B.L.H. Strain Ind. Reading	Mcasured Strain Micro in/in
1				1,060	2,050	990
2				1,110	2,140	1,030
3				1,110	2,095	985
4	,			1,120	2,155	1,035
5				1,120	2,090	970
6	·.			1,115	2,115	1,000
7	<u> </u>			1,115	2,110	995
8				1,105	2,110	1,005
9				1,105	2,065	960
10				1,100	2,140 .	1,040
				·		
 			_			
<u> </u>			_			
ļ 	<u> </u>		M	ean Measured	Strain = 1,00	l μ ~ în/în
<u></u>						

Table 8.1-2 Continued

Wire	Fatigue Mad	chine No.	2	_	Group No. 2	
Wire	Diameter	.040	_in.		Date Feb. 2	6, 1972
Mater	ial AISI 4	340 Steel		_	Deflection Ar	ngle <u>18</u> deg.
ł	ks:					
NO.	Pan Weight	Axial Stress (P/A)			B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,060	2,235	1,175
2				1,110	2,310	1,200
3		•		1,110	2,275	1,165
4				1,120	2,320	1,200
5				1,120	2,265	1,145
6				1,115	2,320	1,205
·7				1,115	2,285	1,170
8				1,105	2,275	1,170
9				1,105	2,240	1,135
10				1,100	2,290	1,190
<u></u>						
<u> </u>						
		<u> </u>		Mean Measured	 Strain = 1,17	5.5 μ - in/in.
}						
	ļ	ļ		•		

	 				*	
L	<u> </u>					

Table 8.1-2 Continued

Wire	Fatigue Mad	chine No	2		Group No	2
Nire	Diameter	.040	•	Date Feb. 26, 1972		
Mater	ial <u>AISI 4</u>	340 Steel			Deflection A	ngle <u>20</u> deg.
Remar	ks:					·
					•	
NO.	Pan	Axial			B.L.H. Strain Ind. Reading	Measured Strain
	Keight	Stress (P/A)		(reference)	ind. Reading	Micro in/in
1				1,060	2,425	1,365
2				1,110	2,485	· 1,375
3				1,110	2,450	1,340
4				1,120	2,480	1,360
5				1,120	2,450	1,330
6				1,115	2,470	1,355
7				1,115	2,465	1.350
8				1,105	2,435	1,330
9]	1,105	2,415	1,305
10				1,100	2,450	1,350
ļ						
				·····		
				•		
				Mean Measured	Strain = 1,34	6 u - in/in.
						, 2
			·			
]			
L				x		

,

,

Table 8.1-2 Continued

Wire	Fatigue Ma	chine No	2		Group No	2
Kire	Diameter	.040	in	•	Date Feb. 26	, 1972
Mate	rial AISI 4:	340 Steel			Deflection Ar	ngle 22 deg.
	rks:					
NO.	Pan Weight	Axial Stress			B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
<u></u>	 	(P/A)				
1				1,069	2,595	1,535
2	<u> </u>	ļ		1,110	2,630	1,520
3	<u> </u>	<u> </u>		1,110	2,630	1,520
4				1,120	2,640	1,520
5				1,120	2,635	1,515
6	<u> </u>			1,115	2,650	1,535
7	•			1,115	2,625	1,510
8				1,105	2,610	1,505
9				1,105	2,600	1,495
10				1,100	2,615	1,515
						•
				Mean Measured	Strain = 1,51	7 µ - in/in.
		·				
				•		

.

1

ı

Table 8.1-2 Continued

Nire	Fatigue Mad	chine No. 2		Group No. 2	
Nire	Diameter	.040	in.	Dáte Feb. 26	, 1972
Mater	ial AISI	4340 Steel	N	Deflection Ar	ngle <u>24</u> deg.
Remar	ks:				
					·
NO.	Pan Weight	Axial Stress (P/A)	B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1			1,060	. 2,765	1,705
2			1,110	2,800	1,690
3			1,110	2,800	1,690
4			1,120	2,810	1,690
5			1,120	2,810	1.690
6	٠.		1,115	2,820	1,705
7			1,115	2,790	1,675
8			1,105	2,760	1,655
9			1,105	2,775	1,670
10			1,100	2,290 .	1,690
<u></u>					
<u> </u>					
			·		
			Mean Measured	Strain = 1,68	б µ - in/in.
<u></u>					
	<u> </u>				
		}		}	

Table 8.1-2 Continued

Nire	Fatigue Mad	chine No.	2	_	Group No.	2
Ī	Diameter				Date Feb. 26	
)	ial_AISI 4					ngle 26 deg.
I	ks:				•	
					•	
NO.	Pan Weight	Axial Stress (P/A)		B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,060	2,915	1,855
2		J		1,110	2,915	1,805
3				1,110	2,945	1,835
4				1,120	2,945	1,825
5				1,120	2,965	1,845
6				1,115	2,965	1,850
7				1,115	2,965	1,850
_8				. 1,105	2,965	1,860
9				1,105	2,910	1,805
10_				1,100	2,910	1,810
				~~		
L						
<u> </u>						
L						·
<u> </u>				Mean Measured	Strain = 1,83	ι _υ - in/in.
ļ						
					,	

				•		

Table 8.1-3 Wire Fatigue Research Machines

Kire	Fatigue Mad	chine No. 3		Group No. 3	
1	_	.040 i		Date Feb. 26	. 1972
1		340 Steel			ngle 4 deg.
i	ks:			•	
	البعد البعديد				
NO.	Pan Weight	Axiəl Stress (P/A)	B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1			1,330	. 1,460	130
2		·	1,385	1,530	145
3			1,385	1,525	140
4			1,405	1,545	140
5			1,405	1,540	135
6	•		1,415	1,555	140
7			1,415	1,545	130
8			1,420	1,565	145
9			1,420	1,555	135
10			1,420	1,570 .	150
	<u> </u>				
<u> </u>					
			Mean Measured	Strain = 139	u - in/in.
			,		

Kire	Fatigue Mad	chine No	3	Group No. 3		
Wire	Diameter	.040	_in.	Date_Feb. 26	, 1972	
Mater	ial AISI 4	340 Steel		Deflection Ar	ngle g deg.	
ł	ks:	···				
						
NO.	Pan Weight	Axial Stress (P/A)	B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain . Micro in/in	
1			1,330	1,700	370	
_ 2			1,385	1,725	340	
3		•	1,385	1,700	315	
4			1,405	1,740	335	
55			1,405	1,700	295	
6			1,415	1,750	335	
7_			1,415	1,695	280	
88			1,420	1,750	330	
			1,420	1,715	295	
10_			1,420	1,755	335	
<u>.</u>		,				
				,		
			Mean Measured	Strain = 323	n = in/in.	
}						

Table 8.1-3 Continued

Wire	Fatigue Ma	chine No	3		Group No	3
Nire	Dîameter_	.040	_in.		Date_Feb. 26	
Mater	ial <u>AISI</u>	4340 Steel	•			ngle <u>12</u> deg.
Remar	ks:					
					-	
NO.	Pan	Axial	B.L.II. S	Strain	B.L.H. Strain	Measured.
NO.	Weight	Stress			Ind. Reading	Strain
	8	(P/A)	(refer	ence)		Micro in/in
			1,330		2,075	745
2			1,385		2,080	695
3			1,385		2,065	680
4			1,405		2,080	675
5			1,405		2,070	665
6	<u> </u>		1,415		2,100	675
7	<u> </u>		1,415		2,075	660
8			. 1,420		2,095	675
9			1,420		2,080	660
10			1,420		2,100	680
ļ						
	ļ					:
			Mean Me	<u>asure</u> d	Strain = 681	u- în/în.
					<u> </u>	
<u> </u>						•

Table 8.1-3 Continued

Wire	Fatigue Mad	chine No	3		Group No. 3	
Wire	Diameter	.040	_in	· •	Date Feb. 20	6. 1972
Matex	ial AISI 4	340 Steel	•	_	Deflection A	ngle <u>16</u> deg.
Remar	ks:					
				·····		
NO.	Pan Weight	Axial Stress (P/A)		B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,330	. 2,395	1,065
2		,		1,385	2,410	1,025
3				1,385	2,400	1,015
4				1,405	2,415	1,010
5				1,405	2,410	1,005
6	·.			1,415	2,420	1,005
7	<u> </u>			1,415	2,410	995 -
8				1,420	2,430	1,010
9				1,420	2,410	990
10				1,420	2,425 .	1,005
<u> </u>			·			
<u></u>	ļ					·
<u> </u>				Mean Measured	Strain = 1,01	2.5 µ - in/in.
<u></u>	<u> </u>					
			, -			

Table 8.1-3 Continued

Kire	Fatigue Mad	chine No.	3		Girup No	3
Nire :	Diameter	.040	in.	•	Date Feb. 26	, 1972
Mater	ial AISI 4	340 Steel		_	Deflection A	ngle 18 deg.
1	ks:					
NO.	Pan Weight	Axial Stress (P/A)		B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,330	2,550	1,220
2		-		1,385	2,570	1,185
3		•		1,385	2,565	1,180
4				1,405	2,575	1,170
5				1,405	2,575	1,170
6	·			1,415	2,580	1,165
7				1,415	2,570	1,155
88				1,420	2,585	1,165
9				1,420	2,585	1,165
10				1,420	2,595	1,175
<u> </u>						
ļ						
				. · · · · · · · · · · · · · · · · · · ·		
			ļ	Mean Measured	Strain = 1,17	5 μ - in/in.
	<u> </u>					
	ļ			·		
1		(Į	_		

Table 8.1-3 Continued

Wire	Fatigue Mac	hine No3			Group No	3
Wire	Diameter	.040	in.		Date Feb. 26	. 1972
Mater:	ial AISI	4340 Steel		_		ngle 20 deg.
	ks:					
					•	:
NO.	Pan Weight	Axial Stress (P/A)			B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,330	2,725	1,395
2		<u>.</u>		1,385	2,740	1,355
3		,		1,385	2,730	1,345
4				1,405	2.,740	1,335
5				1,405	2,745	1,340
6				1,415	2,750	1,335
7				1,415	2,740	1,325
8		·		1,420	2,750	1,330
9				1,420	2,750	1,330
10				1,420	2,755	1,335
<u> </u>				Mean Measured	Strain = 1,34	2.5 u - în/in.
	<u> </u>					
)			•		

; -

.

ī

Table 8.1-3 Continued

103.00	Eations No.				
WITE	rachgue mai	chine No. 3		Group No	
Nire	Diameter	.040	in.	Date Feb. 26	, 1972
Mater	ial_AISI 4	1340 Steel		Deflection Ar	igle 22 deg.
Remar	ks:				
NO.	Pan	Axial		B.L.H. Strain	
NU.	Weight	Stress	Ind. Reading	Ind. Reading	Strain
		(P/A)	(reference)		Micro in/in
1			1,330	- 2,890	1,560
_ 2			1,385	2,900	1,515
3			1,385	2,890	1,505
4			1,405	2,895	1,490
5			1,405	2,900	1,495
6	• •		1,415	2,905	1,490
7_			1,415	2,900	1,485
8	,		1,420	2,910	1,490
9			1,420	2,905	1,485
10			1,420	2,915 .	1,495
			Mean Measured	Strain = 1,50	l μ ~ in/in.
			<u>.</u>		,
				<u> </u>	
,					

<u>_</u>

Table 8.1-3 Continued

Wire	Fatigue Mac	hine No3	3	Group No. 3	
Kire	Diameter	.040	_in.	Date Feb. 26	, 1972
Mater	ial AISI 4	340 Steel		Deflection Ar	ngle <u>24</u> deg.
Remar	ks:				
					:
NO.	Pan Weight	Axial Stress (P/A)		B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1			1.330	3,045	1,715
2			1,385	3,065	1,680
3		•	1,385	. 3,050	1,665
4			1,405	3,060	1,655
5			1,405	3,060	1,655
6			1,415	3,070	1,655
7 .			1,415	3,060	1,645
8			1,420	3,065	1,645
9			1,420	3,075	1,655
10			1,420	3,080	1,660
·					
			Mean Measure	d Strain = 1,66	3 μ - in/in.
		•			

<u>ن</u>-ز

Table 8.1-3 Continued

Wire	ire Fatigue Machine No. 3 Group No. 3						
Wire	Diameter	.040	_in	l•	Date_Feb. 26	5, 1972	
Mater	ial AISI 4	340 Steel	·	 -	Deflection Ar	ngle <u>26</u> deg.	
1	ks:					· ·	
					•		
NO.	Pan Weight	Axial Stress (P/A)		B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in	
1				1,330	3,210	1,880	
2				1,385	3,210	1,825	
3				1,385	3,200	1,815	
4				1,405	3,200	1,795	
5				1,405	3,220	1,815	
6				1,415	3,220	1,805	
7	•			1,415	3,215	1,800	
8				1,420	3,215	1,795	
9				1,420	3,225	1,805	
10			·	1,420	3,225	1,805	
				Mean Measured	Strain = 1,8	14 μ - in/in.	
				,			

Ć

Table 8.1-4 Wire Fatigue Research Machines

Wire	Fatigue Ma	chine No	4	•	Group No	4
Nire	Diameter_	.040	_in.		Date Feb. 26	, 1972
ì	•	340 Steel	•		Deflection Ar	ngle 4 deg.
Remar	ks:					
NO.	Pan Weight	Axial Stress (P/A)			B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,210	. 1,335	125
2				1,280	1,395	115
3				1,280	1,385	105
4				1,295	1,410	115
5				1,295	1,405	110
6	•.			1,300	1,415	115
7	•			1,300	1,410	110
8				1,310	1,420	110
9				1,310	1,410	'00
10				1,310	1,420 .	110
		<u> </u>				
<u> </u>			\			
				Mean Measured	Strain = 111.	5 μ in/in.
					•	

--

٠.

. ,

-

•

Table 8.1-4 Continued

Wire :	Fatigue Mad	chine No	4	Group No. 4	
Nire	Diameter	.040	_in.	Dáte Feb. 26	, 1972
Mater	ial AISI 4	340 Stee1		Deflection A	ngle <u>8</u> deg.
Remar	ks:				
					,
NO.	Pan Weight	Axial Stress (P/A)		n B.L.H. Strain Ind. Reading	Measured Strain Micre in/in
1			1,210	1,485	275
2			1,280	1,535	255
3		•	1,280	- 1,560	280
4			1,295	1,550	255
5			1,295	1,565	270
6			1,300	1,550	250
7	·		1,300	1,555	255
8			1,310	1,560	250
9			1,310	1,580	270
10			1,310	1,555	245
<u> </u>					
			Mean Measur	ed Strain = 260.	5 μ - in/in.
		·			

Table 8.1-4 Continued

Wire	Fatigue Mad	chine No. 4			Group No. 4	
Nire	Diameter	.040	_in.		Date_Feb. 2	6_1972
•	ial AISI 4				Deflection Ar	igle 12 deg.
i	ks:					
					. •	
NO.	Pan Weight	Axial Stress (P/A)			B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,210	1,780	570
2				1,280	1,825	545
3				1,280	1,815	535
4				1,295	1,860	565
5				1,295	1,830	535
6	<u> </u>			1,300	1,860	560
7	·			1,300	1,835	535
8				1,310	1,860	550
9	<u> </u>			1,310	1,840	530
10				1,310	1,860	540
				•		
			ŀ	Mean Measured	Strain = 546.	5 μ - in/in.
			J	, , , , , , , , , , , , , , , , , , ,		1

Table 8.1-4 Continued

Wire :	Fatigue Mad	chine No	1		Group No.	4
Nire	Diameter	.040	_in.		Date Feb. 26	1972
Mater	igle <u>16</u> deg.					
1	ks:			·		
NO.	Pan Weight	Axial Stress (P/A)	1		B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,210	. 2,130	920
2				1,280	2,155	875
3				1,280	2,160	880
4				1, 295	2,170	875
5	<u> </u>			1,295	2,175	880
6	·.			1,300	2,175	875
7	<u> </u>			1,300	2,175	875
8				1,310	2,190	880
9				1,310	2,180	870
10_				1,310	2,180 ·	870
<u> </u>				Mean Measured	Strain = 880	u ~ in/in.
				•		
				4		

Table 8.1-4 Continued

kire	Fatigue Mac	chine No	4	•	Group No. 4	
Nire :	Diameter	.040	_in.	,	Date Feb. 26,	1972
Material AISI 4340 Steel Deflection Angle						
Remar	ks:					•
					<u> </u>	
NO.	-Pan Weight	Axial Stress (P/A)	1		B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1	-			1,210	2,295	1,085
2		×		1,280	2,335	1,055
3		•		1,280	2,355	1,075
4				1,295	2,355	1,060
5				1,295	2,330	1,035
6				1,300	2,360	1,060
7				1,300	2,340	1,040
8				1,310	2,375	1,065
9				1,310	2,345	1,035
10				1,310	2,365	1,055
	,					
				Mean Measured	Strain = 1056	5 μ- in/in.
				ng pinnag Vancordovall Skold Sun-monghismas (pada S		
			. }			

Table 8.1-4 Continued

Wire	Fatigue Mad	chine No.	4		Group No.	
Wire	Diameter	.040	_in.		Date Feb. 26	, 1972
Mater	ialAISI_	4340 Steel			Deflection Ar	gle 20 deg.
Remar	ks:					
			<u></u>			
ΝО.	Pan Weight	Axial Stress (P/A)	I		B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,210	2,460	1,250
2				1,280	2,500	1,220
3				1,280	2,510	1,230
4				1,295	2,525	1,230
5	<u> </u>			1,295	2,500	1,205
6	<u> </u>			1,300	2,520	1,220
7	<u> </u>			1,300	2,495	1,195
8_				1,310	2,535	1,225
9				1,310	2,510	1,200
10	<u> </u>			1,310	2,525 ·	1,215
				,,		
				······································		
Ì				·		
<u> </u>			1	Mean Measured	Strain = 1219	μ in/in.
<u> </u>			_	·		
<u> </u>				<u></u>		
				•		
1		1	1			

Table 8.1-4 Continued

Wire	Fatigue Ma	chine No	4	Group No	4
Wire	Diameter_	.040	in.	Date_Feb_26	1972
3	rial_AISI_4				ngle <u>22</u> deg.
	rks:				
NO.	Pan	Axial	B.L.H. Strai	in B.L.H. Strain	Measured
1 10.	Weight	Stress		Ind. Reading	Strain
		(P/A)	(reference))	Micro in/in
1			1,210	2,630	1,420
2	<u> </u>		1,280	2,650	1,370
3		•	1,280	2.665	1,385
4			1,295	2,675	1.380
5			1,295	2,650	1,355
6_			1,300	2,670	1.370
7			1,300	2,665	1,365
8			1,310	2,690	1,380
99	<u> </u>		1,310	2,665	1,355
10			1,310	2,675	1,365
<u>.</u>					
ļ					
			Mean Measur	ed Strain = 1374	5 u - in/in.
					,
			,		

Table 8.1-4 Continued

Wire	Fatigue Mad	chine No	4		Group No. 4	
Kire	Diameter	.040	_in	•	Date Feb. 26	5, 1972
Mater	ial <u>AISI 4</u>	340 Steel			Deflection Ar	ngle <u>24</u> deg.
1	ks:					
NO.	Pan Weight	Axial Stress (P/A)		B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in
1				1,210	.2,800	1,590
2				1,280	2,815	1,535
3		•		1,280	2,830	1,550
4				1,295	2,835	1,540
5				1,295	2,820	1,525
6	•			1,300	2,835	1,535
7				1,300	2,825	1,525
8				1,310	2,850	1,540
9				1,310	2,835	1,525
10				1,310	2,840 .	1,530
}						
			-			
· .				Mean Measured	Strain = 1539	5 u - in/în.
			·····			
<u></u>						

Table 8.1-4 Continued

Wire	Fatigue Ma	chine No /	<u> </u>	Group No	4
Wire	Diameter_	.040	in.	Date_Feb_26	5, 1972
	•	4340 Steel		Deflection Ar	ngle <u>26</u> deg
	ks:				·
•				•	
NO.	Pan	Axial	1	B.L.H. Strain	•
NU.	Weight	Stress	Ind. Reading	Ind. Reading	Strain
	6	(P/A)	(reference)		Micro in/in
1.	,	1	1,210	2,950	1,740
2			1,280	2,950	1,670
3	,		1,280	2,990	1,710
4		1	1,295	2,990	1,695
5			1,295	2,980	1,685
6			1,300	2,980	1,680
7	•		1,300	3,010	1,710
8		_	. 1,310	3,010	1,700
9			1,310	2,995	1,685
10			1,310	2;995	1,685
					v
		,			
			Mean Measurad	Strain = 1696	u - in/in
			,		
			1	1	L

Table 8.1-5 Static Calibration Data for Wire Fatigue Research Machine Calibration Specimen

Wire !	Wire Fatigue Machine No. Group No. 1						
Wire !	Wire Diameter 040 in. Date 12/13/71						
Mater	ial AISI 43	40 Steel ·		Deflection Ar			
Remar	ks: Static	Axial Load Te	st for Calibra	tion Specimen			
		•		•			
NO.	· Pan Weight	Axial Stress (P/A)	B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in		
1	0.00	0.00	3804		0.00		
2	7.00	5,573	3804	3830	26		
3	10.50	8,360	3804	3875	71		
4	14.00	11,146	3804	3921	117		
5	17.50	13.933	3804	3972	168		
6	21.00	16,720	3804	4019	215		
7	24.50	19,506	3804	4069	265		
8	28.00	22,293	3804	4121	317		
9	31.50	25,080	3804	4175	371		
10	35.00	27,866	3804	4227	423		
11	35.00	27,866	3801	4227	426		
12	31.50	25,080	3801	4175	374		
13	28.00	22,293	3801	4124	323		
14	24.50	19,506	3801	4073	272		
15	21.00	16,720	3801	4023	222		
16	17.50	13,933	3801	3975	174		
17	14.00	11,146	3801	3922	121		
18	10.50	8,360	3801	3870	69		
19	7.00	5,573	3801	3829	28		
20	0.00	0	3801		0.00		

Table 8.1-5 Continued

Wire	Wire Fatigue Machine No. Group No2						
Wire Diameter .040 in. Date 1/2/13/71							
l		340 Steel		Deflection A	ngledeg.		
			st for Calibra	tion Specimen			
NO.	Pan Keight	Axial Stress (P/A)	1	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in		
1	0.00	0.00	3802		0.00		
2	7.00	5,573	3802	3827	25		
3	10.50	8,360	3802	3869	67		
4	14.00	11,146	3802	3918	116		
5	17.50	13,933	3802	3968	166		
6	21.00	16,720	3802	4015	213		
7	24.50	19,506	3802	4062	260 -		
8	28.00	22,293	3802	4118	316		
9	31,50	25,080	3802	4179	368		
10	35.00	27,866	3802	4222 .	420		
11	35.00	27,866	3798	4222	424		
12	31.50	25,080	3798	4170	. 372		
13	28.00	22,293	3798	4118	320		
14	24.50	19,506	3798	4070	272		
15	21.00	16,720	3798	4017	219		
16	17.50	13,933	3798	3968	170 ·		
17	14.00	11,146	3798	3916	118		
18.	10.50	8,360	3798	3870	72		
19	7.00	5,573	3798	3825	27		
20	0.00	0	3798		0.00		

;

11

Ì.,

.

Table 8.1-5 Continued

Wire	Wire Fatigue Machine No. Group No. 3							
Wire Diameter .040 in. Date 12/14/71								
1	MaterialAISI 4340 Steel Deflection Angle deg.							
1	Remarks: Static Axial Load Test for Calibration Specimen							
	•							
NO.	. Pan Weight	Axial Stress (P/A)	B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in			
1	0.00	0.00	3810		0.00			
2	7.00	5,573	3810	3835	25			
3	10.50	8,360	3810	3879	69			
4	14.00	11,146	3810	3925	115			
`5	17.50	13,933	3810	3975	165			
6	21.00	16,720	3810	4022	212			
7	24.50	19,506	3810	4071	261			
8	28.00	22,293	. 3810	4121	311			
9	31.50	25,080	3810	4174	364			
_10	35.00	27,866	3810	4221	411			
11	35.00	27,866	3800	4225	414			
12	31.50	25,080	3800	4174	374			
15_	28.00	22,293	3800	4121	321			
14	24.50	19,506	3800	4072	272			
15	21.00	16,720	3800	4023	223			
16	17.50	13,933	3800	3973	173			
17	14.00	11,146	3800	3972	122			
18	10.50	8,360	3800	3875	75			
19	7.00	5,573	3800	3829	29			
20	0.00	0.00	3800	ver age 400 des	0.00			

Table 8.1-5 Continued

Wire	Wire Fatigue Machine No. Group No. 4						
Wire	Wire Diameter .040 in. Date 12/14/71						
Mater	Material AISI 4340 Steel Deflection Angle deg.						
Remar	ks: Static	Axial Load Te	est for Calibra	tion Specimen			
NO.	Pan Weight	Axial Stress (P/A)	B.L.H. Strain Ind. Reading (reference)	B.L.H. Strain Ind. Reading	Measured Strain Micro in/in		
1	0.00	0.00	3800	,	0.00		
2	7.00	5,573	3800	3828	28		
3	10.50	8,360	3800	3875	75		
4	14.00	11,146	3800	3921	121		
5	17.50	13,933	3800	3969	169		
6	21.00	16,720	3800	4018	218		
7	24.50	19,506	3800	4070	270 -		
8	28.00	22,293	3800	4120	320		
9	31.50	25,080	3800	4174	374		
10	35.00	27,866	3800	4226 .	426		
11	35.00	27,866	3796	4226	430		
12	31.50	25,080	3796	4174	378		
13	28.00	22,293	3796	4120	324		
14	24.50	19,506	3796	4072	276		
15	21.00	16,720	3796	4021	225		
16	17.50	13,933	3796	3970	174		
17	14.00	11,146	3796	3918	122		
18	10.50	8,360	3796	3872	76		
19	7.00	5,573	3796 .	3825	29		
20	0.00	0.00	3796		0.000		

Table 8.1-6 Cycles-to-Failure Data of Group No. 129 Using Wire Fatigué Machine No. 1 for 35 Specimens of .040 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 67.7 Kpsi. Bend Angle 19.5 Coast-Down Cycles 200 .*

	Opera	COT. CHEC NOI	_	
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
May 1	1	732,700	4.5469	
2	2	408,400	4.4531	
2	3	465,400	4.4219 .	ж.
2	4	726,500	4.5312	
3	5	400,300	4.3594	
3	6	365,100	4.3750	
4	7	1,371,400	4.5312	
5	8	1,152,700	4.0000	
8	9	571,700	4.9062	
8	10	384,500	4.5625	
9	11	158,300	4.9688	
9	12	511,200	4.5000	
9	13	940,500	4.5625	
10	14	940,400	5.1250	
10	15	505,200	4.1875	
10	16	1,376,600	4.4062	
12	17	456,900	4.2031	
12	18	608,300	4.6562	
15	19	643,000	4.3438	
15	20	483,900	4.5938	
15	21	715,200	4.0000	
15	22	270,600	4.9219	
15	23	372,300	4.7188	
16	24	395,900	5.0625	
16	25	831,400	4,6250	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-6 Cycles-to-Failure Data of Group No. 129 Using Wire Fatigue Machine No. 1 for 35 Specimens of .040 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 67.7 Kpsi. Bend Angle 19.5 Coast-Down Cycles 200 .*

	Onera	tor: Chet No	lf	`
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
19	26	855,600	4.3438	
22	27	545, 800	5.2814	
23	28	1,218,200	4.3906	
24	29	1,463,500	4.7657	
25	30	957,300	4.8281	<u> </u>
26	31	832,800	4.0938	
26	32	1,225,800	4.0625	
30	33	615,300	4.0781	
30	34	1,447,500	4.4219	
31	35	1,677,300	4.3281	٠
·				
				,
			,	
			,	
<u></u>				
			<i>.</i>	
				•
				•

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-7 Cycles-to-Failure Data of Group No. 130 Using Wire Fatigue Machine No. 1 for 35 Specimens of .040 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 70,000 psi. Bend Angle 20.° Coast-Down Cycles 200 .*

	Opera	ror: cher not	-4-	
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
July	1	419,600	4.000G	
2	2	818,700	4.0469	
.2	3	1,321,600	4.3594	
5.	4	332,600	4.0000	
_5	5	557,500	5.0312	•
.6	6	713,600	4.5000	
6	7	287,400	4.6219	W 47
7	.8	451,500	5.2188	
7	9	875,800	4.1562	
88	10	213,400	4.5312	\^-
8	11	287,600	4.8125	
88	12.	412,900	5.3125	
9	-13	286,500	4.4062	
12	14	369,200	4.3594	
12	15	381,700	5.4375	
13	16	968,100	4.2969	-
13	17	303,200	4.4062	
13	18	346,200	4.5625	
14	19	592,100	. 4:3281	
14	20	684,200	4.3750	
15	21	573,500	4.500	
15	22	362,500	4.7656	-
17	23	582,800	3.9062	
17	24	136,700	4.9375	
18	25.	376,800	4.0000	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-7 Cycles-to-Failure Data of Group No. 130 Using Wire Fatigue Machine No. 1 for 35 Specimens of .040 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 70,000 psi. Bend Angle 20.º Coast-Down Cycles 200 .*

P	Opera	tor: Chet Noli	: 	
Date of Test	Spec. No.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
July	26	627,100	4.4688	
19	27	299,600	4.6875	
19	28	369,300	4.0938	
20.	29	215,900	4.1094	
20	30	278,300	3.9375	
20	31	568,500	4.8125	, , , , , , , , , , , , , , , , , , ,
21	32	348,700	4.1250	
21	33	608,300	4.6719	
22	34	321,600	3.9844	
24	35	182,400	4.6875	
				,
	·			
				
 	}			
	<u> </u>	-		
<u> </u>	ļ			
				
}				
			<u> </u>	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-8 Cycles-to-Failure Data of Group No. 131 Using Wire Fatigue Machine No. 1 for 35 Specimens of 0.40 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 72,500 psi. Bend Angle 20.5° Coast-Dewn Cycles 200 .*

	Uperat	or: Chet Noi	I	
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
June 72 22	1	384,100	4.8906	
23	2	141.800	5.1094	
23	3	392,106	4.4375	
23.	4	220,500	4.2969	
24	5	186,600	5.0000	•
<i>'</i> 24	6	100,300	5.1875	•
.24	7.	181,000	4.5312	
26	. 8	476,400	4.5000	
26	9	150,600	4.7812	
27	10	151,700	4.7812	
2."	11	433,700	5.2412	
28	12	469,100	4.5469	
28	-13	143,200	4.1093	
29	14	289,800	4.4062	
29	15	201,900	5.0000	•
29	16	272,600	4.8438	
29	17	113,800	4.7969	
30	18	693,000	4.9062	
July 72		<u> </u>	. ,	
1	19	433,400	4.5000	
3	20	657,200	4.0156	
3	21	158,200	5.2188	
3	22	164,000	5.0938	
5	23	342,100	4.4375	
5	24	318,300	. 4.5938	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-8 Cycles-to-Failure Data of Group No. 131 Using Wire Fatigue Machine No. 1 for 35 Specimens of 0.40 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 72,500 psi. Bend Angle 20.5° Coast-Down Cycles 200 .*

h	Opera:	tor: Chet Nol	f .	
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
12	25	451,600	5.1562	
12	26	108,200	4.5312	
13	27	301,800	4.2188	•
14	28	229,500	4.7188	
14	29	99,500	4,8438	
14	30	200,900	5,0000	
15	. 31	365,100	4.2188	
17	32	163,600	4.9062	
17	33	167,300	4.7812	
17	34	226,600	4.5000	
17	35	301,600	4.2188	
	<u> </u>			
	 		,	
	<u> </u>			
	<u> </u>			
}	ļ			
 	-			
	ļ			
ļ				
	 			
				
			<u> </u>	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-9 Cycles-to-Failure Data of Group No. 132 Using Wire Fatigue Machine No. 1 for 35 Specimens of .040 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 74,700 psi. Bend Angle 21.0° Coast-Down Cycles 200 .*

Oper- ator	Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
e.N.	July 24	1	207,100	4.6250	And the second s
	25	2	146,800	4.5312	
	25	3	104,700	4.2500	
	25	4	190,500	4.9219	
	25	5	224,800	4.7344	
	26	6	178,700	5.2656	
	26	7	137,800	5.0312	
	26	8	125,700	4.8906	
	27	9	237,700	5.0312	
	27	10	108,400	5.0000	
	27	11	191,700	4.5000	
	27	12	115,900	4.9219	
	28	13	127,400	5.1719	
	28	14	214,000	3.8750	
	28	15	73,100	4.6250	
	30	16	102,200	4.4062	
	31	17	101,400	4.9062	
	31	18	140,900	5.3750	
	31	19	173,700	4.7500	
	31	20	100,400	4.7656	
	31	21	369,800	4.5312	
	Aug.	22	100,500	4.6875	
	1	23	214,400	4.8281	
	1	24	119,800	4.9375	
¥	1	25	179,900	4.2969	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-9 Cycles-to-Failure Data of Group No. 132 Using Wire Fatigue Machine No. 1 for 35 Specimens of .040 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 74,700 psi. Bend Angle 21.0° Coast-Down Cycles 200 .*

			····		
Oper- ator	Date of Test	Spec. No.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
C.N.	Aug.	26	197,400	4.8906	
	2	27	115,900	4.6875	
	3	28	140,600	4.5156	
·	8	29	177,500	4.9062	
	8	30	121,700	4.7500	
	8	31	104,300	4.9375	,
	8	32	93,300	4.4375	
	9	33	117,800	4.9531	
	9	34	138,400	4.7812	
y	9	35	215,200	5.0312	•
	<u> </u>				
		<u> </u>			
		 			
	 		 		
		 			
			<u> </u>	<u> </u>	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-10 Cycles-to-Failure Data of Group No. 133 Using Wire Fatigue Machine No. 1 for 35 Specimens of .040 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 77,800 psi. Bend Angle 21.5° Coast-Down Cycles 200 .*

Oper- ator	Date or Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
Oct.77 C.N.	1	1	56,900	5.0938	
	1	2	105,400	5.1250	-
	1	3	125,100	4,5312	
	. 2	3	93,800	4.8281	
	2	5	247,100	4.6719	
	3	6	76,700	4.5312	
	3	7	71,800	4.5938	
	4	8 .	133,400	4.4375	
	4	9	137,500	4.5000	·
	5	10	84,900	5.2188	•
	5	11	111,300	4.5625	
	5	12	257,200	4.6719	
	6	13	137,100	5.0312	
	7	14	78,400	4.9375	
	7	15	120,200	4.4219	
	g	16	289,000	4.0469	
	9	17	106,300	4.9219	
	9	18	194.200	5.2812	
	10	19	96,200	4.9688	
	10	20	102,100	4.9375	
	11	21.	196,900	5.2500	
	12	22	185,500	4.9062	
	12	23	197,200	5.1875	
	13	24	135,400	4.7812	
	.13	25	112,700	5.1562	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-10 Cycles-to-Failure Data of Group No. 133 Using Wire Fatigue Machine No. 1 for 35 Specimens of .040 in. Diameter AISI 4130 Steel Wire. Fixed Alternating Stress Level of 77,800 psi. Bend Angle 21.5° Coast-Down Cycles 200 .*

		T	T	<u> </u>	***************************************
Oper- ator	Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
C.N.	13	26	211,200	4.8438	
	16	27	195,000	4.4531	
8	16	28	148,400	4.5136	
	. 16	29	114,600	4.7969	
	ì7_	30	143,400	5.2031	
	17	31	107,300	4.0625	,
	17	32	141,500	4.6250	
	18	33	49,500	4.7812	
	18	34	300,300	5.0000	
	18	35	74,200	5.2500	
			ļ		
	nama f firstinger, program as a				
		ļ			

^{*} Subract from counter reading 200 $\,$ cycles and enter in "Cycles to Failure" column.

Machine Riehle Using the Static Ultimate Strength Test Data of Group No. 134 35 Specimens of AISI 4130 Steel. 8.1-11 Table

Ţ

Date of	Test: April	il 22, 1972	2							
Specimen Number	Original Diameter in.	Original Cross Section 2 Area in.	Yield Load 1bs	Yield Stress psi	Ultimate Load Ibs	Ultimate Stress psi	Breaking Load 1bs	Breaking Diameter in.	Breaking Area in.	Breaking Stress psi
	.0401	. 001262			109	042 30	6			
2	.0401	,001262				2/24/20	22	.0401	,001262	78,446
23	0401	001265			901	8/4.58	97	.0401	,001262	76,862
	0401	202100			110	87, 163	96	,0401	.001262	76,069
L	10,00	797100			110	87,163	98	.0401	.001262	77,654
2	.0401	.001262			109	86,370	93	.0401	.001262	73, 692
9	.0401	.001262			107	84,786	96	.0401	.001262	76.060
7	.0401	.001262			109	86,370	96	1040	001262	20000
8	.0401	.001262			111	87,955	99	0401	001262	70,00
6	.0399	.001249			110	88.070	86	0200	061240	10,440
10	.0400	.001256			-	87.579	66	0410	001256	70,407
11	.0401	.001262			{·	87,955	áô	2000	00100	10,023
12	.0401	.001262				000	3 8	10401	.001202	77,654
13	.0400	001256			T	80,370	99	.0401	.001262	78,446
14	.0400	001256			†	6/5/2	94	.0400	.001256	74,840
15	.0400	.001256			111	85,987	94	.0400	.001256	74,840
16	.0401	.001262				60,373	66	.0400	.001256	78,821
17	0402	20100		+	1	87,955	101	.0401	.001262	80,031
10	7040	207700		+	112	88,748	86.	.0402	.001268	77,287
70	.0401	.001262			112	88,748	100	.0401	.001262	79,239
ET.	.0401	.001262			109	86,370	94	.0401	.001262	74.484
20	.0401	.001262			113	89,540	101	0401	+	120 08
21	.0401	.001262			107	84,786	97	.0401	+	28 . 698 91
									\dashv	

Machine Richle -1 -Using the Table 8.1-11 Static Ultimato Strength Test Data of Group No. 134 35 Specimens of AISI 4130 Steel.

Date of	Date of Tust: April 22, 1972	1 22, 1972								•
Specimen Number	Original Diamoter in.	Original Cross Section 2	Yield Load lbs	Yield Stress psi	Ultimate Load lbs	Ultimate Stress psi	Breaking Load 1bs	Breaking Diameter in.	Breaking Area in.	Breaking Stress psi
1										
77	.0401	.001262			108	85,578	95	.0401	.001262	75.277
23	.0401	.001262			113	89,540	66	.0401	.001262	78.446
. 24	.0401	.001262			111	87,955	66	.0401	.001262	78.446
25	.0401	.001262		·	112	88,748	102	.0401	.001262	80.824
26	.0403	.001274			111	87,127	100	.0403	.001274	78.492
27	.0400	.001256			108	85,987	98	.0400	.001256	78 025
28	.0401	.001262		÷	111	87,955	100	0401	001262	70 270
29 .	.0401	.001262			109	86,370	96	.0401	001262	76 060
30	.0401	.001262			112	88,748	102	0401	001262	80,000
31	.0401	.001262			112	88,748	98	.0401	001262	77 654
32	.0402	.001268			110	86,750	66	.0402	1	78 075
33	.0401	.001262			110	87,163	97.	0401	十	76 862
34	.0401	.001262			109	86.370	101	1040	001262	200,00
35	.0401	.001262			113	89.540	96	0401	001062	75 060
									7007	600 (6)
						-	+			
		 -			1		1			
								-		
									,	
									<u> </u>	
		-								
							 			28
						7			_	13

Table 81-12 Test Data for Hardness and Ultimate Strength
Elongation of Group No. 134. 35 Specimens of
AISI 4130 Steel. D = .040 in. ; L = 10 in.
Drawing No. ; Date of Test April 22, 1972

		CHARACTERI	STIC	
Specimen Number	Rockwell Hardness Scale	Brinell Hardness BHN	ΔL on . 8 in. Gage Length	Elongation %
1			.9219	11.523
2			9375	11.718
3			.8750	10,937
4			.8437	10.546
5			.71.87	8.984
6.		<u> </u>	.9375	11.718
7			.8594	10.742
8			1.0625	13.281
9	,		.8125	10.156
10			.9531	11.914
11			.9375	11.718
12			1.2187	15.234
13			1.0938	13.671
14	•		.8437	10.546
15			.9687	12,109
16			.9062	11.328
17			.9375	11.718
18	·		.9531	11.914
19			.8281	10.351
20 ·			.9687	12.109
21			.8125	10.156
22			.9062	11.328
23			1.0625	13.381
24			1.1719	14.648
25			1.1875	14.843

Table 8.1-12 Test Data for Hardness and Ultimate Strength
Elongation of Group No. 134. 35 Specimens of
AISI 4130 Steel. D = .040 in. ; L = 10 in.
Brawing No. ; Date of Test April 22, 1972

		CHARACTERI	STIC	
Specimen Number	Rockwell Hardness Scale	Brinell Hardness BHN	ΔL on 8 in. Gage Length	Elongation %
26		,	.9687	12.109
27			.8750	10.937
28			1.0312	12.890
29			1.0312 -	12.890
30			.8437	10.546
31			1,0000	12.500
32		,	.9531	11.914
33			1.0312	10.890
34			.8906	11.132
35			.8906	11.132
			<u> </u>	
			`	
<u> </u>			}	· · · · · · · · · · · · · · · · · · ·
	 			
		 		
<u> </u>		<u> </u>		
				·
				٠.

Table 8.1-13 Cycles-to-Failure Data of Group No. 136 Using Wire Fatigue Machine No. 2 for 35 Specimens of .040 in. Diameter AISI 1038 Steel Wire. Fixed Alternating Stress Level of 64,500 psi. Bend Angle 17 Coast-Down Cycles 200 .*

Operator: Chet Nolf Date Spec. Cycles-to-Break Length Remarks from Scribed of No. Failure End inches Test May 10 515,200 4.7812 10 2 4.9219 327,800 11 3 515,600 4.7188 -4 11 826,000 4.6406 12 5 391,500 5,0000 12 6 1,316,500 4.5000 15 7 4.9062 228,900 15 8 4,8438 400,000 15 99 843,500 4.5625 16 10 4.6875 196,100 16 11 4.8125 340,000 12 4.6094 18 677,600 454,800 4,8438 19 13 22 14 413,400 4.2500 22 15 372,000 4.7969 23 16 4,5938 732,600 24 17 4.5000 1,651,000 25 18 995,300 4.4219 26 19 666,200 4.6719 30 20 637,300 4.5000 30 21 4.9688 1,166,600 31 22 667,300 4.4688 June 4,0000 263,800 23 24 1,438,500 4.8906

245,700

25

5.0000

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-13 Cycles-to-Failure Data of Group No. 136 Using Wire
Fatigue Machine No.2 for 35 Specimens of .040
in. Diameter AISI 1038 Steel Wire. Fixed Alternating
Stress Level of 64,500 psi. Bend Angle 17
Coast-Down Cycles 200 .*

Operators Chet Nolf Date Spec. Cycles-to-Break Length Remarks of from Scribed Failure No. Test End inches 4.7188 26 280,700 27 4.7812 536,300 6 28 651,600 4.3594 29 4.7031 731,800 30 512,700 4,7656 31 673,500 4,1250 . 9 32 4.5312 454,400 9 33 4.9062 434,700 12 34 585,000 5.2188 13 35 151,200 4.9687

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-14 Cycles-to-Failure Data of Group No. 137 Using Wire Fatigue Machine No. 2 for 35 Specimens of 0.40 in. Diameter ATSI 1038 Steel Wire. Fixed Alternating Stress Level of 67,200 psi. Bend Angle 17.5° Coast-Down Cycles 200 .*

Operator: Chet Nolf Date Spec. Cycles-to-Break Length Remarks from Scribed of No. Failure End inches Test June 72 782,500 4.9531. 27 27 2 776,100 5.1406 3 27 237,900 5.1250 27 4 209,800 5.0000 27 5 635,800 5.3125 28 6 243,100 4.6875 28 7 799,500 5.0468 29 8 267,000 4.1250 9 30 4.8125 483,700 10 30 299.800 5.0468 243,100 4.8593 11 12 213,700 4.8750 4.3750 3 13 224,600 3 14 267,000 4.9375 5 15 305,500 5.4219 5 16 426,800 4.7500 6 17 614,700 4.0000 4.7031 7 18 381,300 7 19 486,700 4.8125 20 8 497,500 4.1250 9 21 4.9531 164,300 10 22 329,400 5.1562 10 23 269,200 4.7969 1.1 24 394,600 5.1094 25 11 439,000 4..9375

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-14 Cycles-to-Failure Data of Group No. 137 Using Wire Fatigue Machine No. 2 for 35 Specimens of .040 in. Diameter AISI 1038 Steel Wire. Fixed Alternating Stress Level of 67,200 psi. Bend Angle 17.5° Coast-Down Cycles 200 .*

	Operat	tor: Chet Nol	f	
Date of Test	Spec. No.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
12	26	201,600	5.1562	
12	27	97,000	4.7500	
12	28	143,300	5.0312	
12.	29	178,100	4.9531	
13.	30.	390,000	4.7188	•
13	31	495,000	4.8215	•
13	32	215,600	4.8281	
14	33	394,700	4.8906	
14	34	235,100	5.0469	
14	35	190,700	• 4,5938	
	·		,	
				,
L				
			•	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-15 Cycles-to-Failure Data of Group No. 138 Using Wire Fatigue Machine No. 2 for 35 Specimens of .040 in. Diameter AISI 1038 Steel Wire. Fixed Alternating Stress Level of 69,200 psi. Bend Angle 18.0° Coast-Down Cycles 200 .*

Oper- ator	Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remèrks
Chet	July 17	1	204,000	5.0000	
	17	2	291,400	5.0156	
	17	3	163,200	5.0469	
	17	4	105,400	5.0156	·
	17	5	214,400	5.1094	
	18	6	90,800	5.1250	
	18	7	444,800	4.6250	
	18	8	207,200	4.8125	
	18	è	140,000	4.7656	
	19	10	150,300	4.8906	•
	19	11	301,800	4.3906	
	19	12	388,000	4.6250	
	20	13	556,200	4.7188	
	20	14	207,400	5,0000	
	20	15	336,100	. 4.8438	
	21	16	834,500	4.6562	
	24	17	348,400	5.0469	
	24	18	129,700	4,7812	
	_24	19	221,300	4.8594	
	25	20	208,700	4.7188	
	25	21	214,200	4.7344	
	25	22	163,500	4.7969	
	25	23	276,600	4.7031	
	26	24	177,200	4.1250	
	.26	25	107,300	4.7500	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-15 Cycles-to-Failure Data of Group No. 138 Using Wire Fatigue Machine No. 2 for 35 Specimens of .040 in. Diameter AISI 1038 Steel Wire. Fixed Alternating Stress Level of 69,200 psi. Bend Angle 18.0° Coast-Down Cycles 200 .*

Oper- ator	Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
Chet	26	26	220,000	4.8594	
	27	27	168,900	4.9375	
	27	28	197,700	4.7812	
	27	29	164,400	5.0625	
	27	30	142,400	5.0781	
	28	31	123,400	5.0000	
	28	32	181,600	4.5938	
	28	33	258,500	4.5625	
	30	34	158,600	4.8906	
	31	35	167,800	5,0000	
		ļ			
		ļ	·		
<u> </u>				ļ	
ļ					
		<u> </u>			
		ļ	<u> </u>		
L					

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-16 Cycles-to-Failure Data of Group No. 139 Using Wire Fatigue Machine No. 2 for 35 Specimens of .040 in. Diameter AISI 1038 Steel Wire. Fixed Alternating Stress Level of 72,300 psi. Bend Angle 18.5° Coast-Down Cycles 200 .*

Oper- ator	Date of Test	Spec. No.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
C.N.	July 72 31	1	110,900	5.0000	-
	31	2	213,400	5.3125	
	31	3 .	351,300	4.6562	
	Aug. 72 1	4	121,400	4.9062	
	1	55	83,700	5.2031	
	1	6	124,700	4.7656	
	1	7	118,400	5.0781	_
	2	8	140,100	5.0000	
	2	9	95,400	4.8281	
	3	10	98,400	5.0469	
	3	11	105,500	5.2500	
	8	12	130,900	5.0000	
	8	13	108,100	4.8750	
	8	14	240,100	5.0000	
	9	15	104,800	4.9062	
	9	16	369,700	4.5000	
	9	17	250,900	4.8750	
	10	18	215,500	4.7969	
	10	19	200,600	4.8750	
	10	20	154,000	4.6094	
	11	21	137,000	4.3438	
	11	22	191,900	4.6250	
	14	23	338,500	4.3438	
	14	24	232,900	4.7344	,
	16	25	281,000	4.7500	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-16 Cycles-to-Failure Data of Group No. 139 Using Wire Fatigue Machine No. 2 for 35 Specimens of .040 in. Diameter AISI 1038 Steel Wire. Fixed Alternating Stress Level of 72,300 psi. Bend Angle 18.5° Coast-Down Cycles 200 .*

Oper- ator	Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
C.N.	16	26	97,400	5.2812	
	17	27	180,000	4.7500	
	17	28	199,600	4.7500	
	17	29	108,700	4.8750	
	18	30	250,700	4.6719	
	18	31	116,200	5.1250	
	21	32	172,300	4.6875	-
	21	33	248,600	4.8125	· ·
	22	34	165,700	4.6719	
	22	35	119,400	4.6719	•
		•			

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" celumn.

Using the Richle 8.1-17 Static Ultimate Strength Test Data of Group No. 141 35 Specimens of AISI 1038 Steel. Table

Machine

	cu ·	Π	\neg		Ι	Γ-	T	7	γ	т—		_	-	7	·								294
	Breaking Stress psi		65,164	63,555	63.055	63.055	65,481	59,822	65,481	66,289	63.864	64.360	63,055	63.055	63.864	64,360	62.247	64.987	62.247	64.175	65,481	65,481	65,359
	Breaking Area, in.		.001243	.001243	.001237	.00143	.001237	.001237	.001237	.00137	001227	001243	.001237	.001237	.001237	.011243	.001237	.001230	.001237	.001231	.001237	.001237	.001224
	Breaking Diameter in.		.0398	.0398	.0397	.0398	.0397	.0397	.0397	.0397	0397	0.398	.0397	.0397.	.0397	.0398	.0397	.0296	.0397	,0396	.0397	.0397	.0395
	Breaking Load 1bs		81	70	78	81	81	74	81	82	7.9	80	78	78	79	80	7.7	08	77	79	81	81	80
	Ultimate Stress psi		19.046	74,014	74,373	78,037	75,181	74,373	80,032	79,223	75,990	78,841	76,798	77,607	77,607	75,623	75,990	77,985	74,373	79,200	79,223	77,607	79,248
	Ultimate Load lbs	00	33	92	92	97	93	92	66	98	94	86	95	96	96	94	94	96	92	95	98	96	97
	Yield Stress psi			·	,										·				-				
	Yield Load lbs																						
il 8, 1972	Original Cross Section 2 Area in.	276100	2000	.001243	.001237	.001243	.001237	.001237	.001237	.001237	.001237	.001243	.001237	.001237	.001237	.001243	.001237	.001231	.001237	.001231	.001237	.001237	.001224
Test: April	Original Diameter in.	.0398	0200	. 0860.	.0397	.0398	.0397	.0397	.0397	.0397	.0397	.0398	.0397	.0397	.0397	.0398	.0397	.0396	.0397	.0396	.0397	.0397	.0395
Date of 1	Specimen Number		2		3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21

Machine Rich1e Using the Static Ultimate Strength Test Data of Group No. 141 35 Specimens of AISI 1038 Steel. Table 8.1-17

April
Original Yield Cross Load Section 2 1bs
- []
.001243
.001231
.001237
.001243
.001237
.001237
.001231
.001231
.001237
.001237
.001237
.001231
.001237
.001243

Table 8.1-18 Test Data for Hardness and Ultimate Strength

Clongation of Group No. 141. 35 Specimens of
AISI 1038 Steel. D = .040 in. ; L = 10 in.

Drawing No. ; Date of Test April 8, 1972

		CHARACTERI	STIC	
Specimen Number	Rockwell Hardness Scale	Brinel1 Hardness BHN	ΔL on 8 in. Gage Length	Elongation %
1			1.8437	23.046
2			1,6562	20.703
3			1.5625	19.531
4			1.7500	21-875
5	,	,	1.8437	23.046
6.			1.3437	16.796
7			1.9375	24,218
8			1.8594	23.242
9			1.5000	18.750
10			1.7500	21.875
11			1.7187	21.484
12			1.5000	18.750
13			1.5000	18,750
14			1.5625	19,531
_15			1.5937	19.921
16			1.6562	20.703
17	· · · · · · · · · · · · · · · · · · ·		1,7969	22,460
18	•		1.7500	21.875
19			1.9687	24.609
20 -			1.8750	23.437
21			1.6250	20.312
22			1.7187	21.484
23			1.6094	20.117
24			1.5312	19.147
· 25			1.6250	20.312

Table 8.1-18 Test Data for Hardness and Ultimate Strength
Elongation of Group No. 141. 35 Specimens of
AISI 1038 Steel. D = .040 in. ; L = 10 in.
Drawing No. ; Date of Test April 8, 1972

	CHARACTERISTIC								
Specimen Number	Rockwell Hardness Scale	Brinell Hardness BHN	ΔL on 2 in. Gage Length	Elongation %					
26	v		1.6406	20.507					
27.			1.8125	22,656					
28			1.5156	18.945					
29			1,6406	20.507					
30			1.6875	21,093					
31			2.0156.	25,195					
32			1.5312	19.140					
33			1.6562	20.703					
34			1.5937	19,921					
35_			1.8906	23,632					
,									
···		ļ							
~~~									
***************************************				**************************************					

Table 8.1-19 Cycles-to-Failure Data of Group No. 143 Using Wire Fatigue Machine No. 3 for 35 Specimens of .040 in. Diameter AISI 1018 Steel Wire. Fixed Alternating Stress Level of 57,200 psi. Bend Angle 15.5° Coast-Bown Cycles 200 .*

<u></u>	0pera	tor: Chet Nol	I(	
Date of Test	Spec. No.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
May				
10		242,100	4.375)	
10	2	419,100	4.8281	
	3	668,200	ÿ.0312	
11	4	1.294.700	4,6250	•
12	5	419,400	/L.9219	
12	6	668,500	4.6875	+ v
15	7	357,500	4.6719	
15	8 -	368,900	4,4375	
15	9	478,400	5.0312	
16	10	381,400	4.7969	
17	11	1,265,700	4.1250	
18	12	1,664,000	4.6606	
19	13	682,600	4.0312	
22	14	908,500	4.3594	and the state of t
26	15	502,900	4,7031	
26	16	299,400	5.0312	
30	17	588,300	4.5938	
31	18	942,300	4.5781	
June	19	853,100	4.6406	
2	20	756,600	5.1250	
5	21	1,214,200	4.2656	
.5	22	293,300	4.6719	
7	23	348,300	4.5469	
7	24	423,400	4.9688	
8	25	1,141,700	4.2344	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-19 Cycles-to-Failure Data of Group No. 143 Using Wire Fatigue Machine No. 3 for 35 Specimens of .040 in. Diameter AISI 1018 Steel Wire. Fixed Alternating Stress Level of 57,200 psi. Bend Angle 15.5° Coast-Down Cycles 200 .*

	Opera	tor: Chet Nol	<u>f</u>	
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
July 21	26	1,877,400	4.5000	
24	27	1,124,900	4.3125	
24	28	779,000	4.8281	
25	29	361,000	4.9219	
25	30	1,046,900	4.5000	,
26	31	134,000	5 <b>.32</b> 50	
26	32	479,300	4.5000	
26	33	404,700	4.4375	
27	34	187,500	5.0312	
27	35	290,700	5.0000	
	<u> -</u>			
		<u> </u>		
	ļ	<u> </u>		
<b> </b>				
				•
				ومراقوه فالهدوا ومستور وبروان ومراهوا البهوات والتروي

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-20 Cycles-to-Failure Data of Group No. 144 Using Wire Fatigue Machine No. 3 for 35 Specimens of .040 in. Diameter AISI 1018 Steel Wire. Fixed Alternating Stress Level of 60,000 psi. Bend Angle 16.0° Coast-Down Cycles 200 .*

<del></del>	Operat	or: Chet Nol	I	
Date of Test	Spec. No.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
July 72		436,700	4.8125	,
1	22	405,400	4.1406	
. 3	3	326,300	4.92194.	
4	4	726,400	4.6250	
5	5	538,700	4.7344	
6	6	922,100	4,0000	
6	7	569,400	4.8281	<u> </u>
6	8	784,100	4.4688	
7	9	630,400	4.7500	
8	1¢.	256,400	· 4.7969	
10	11	1,160,700	4.5000	
10	12	419,300	4.5625 ⁻	
11	13	387.500	4.9219	
11	14	283,000	4.7969	
11	15	1,072,000	3.9375	
12.	16	417,600	4.5625	
12	17	368,100	4.6875	
12	18	529,700	4,6250	
12	19	436,900	5.0000	
13	20	646,000	4.3750	
13	21	478,600	4.7500	
13	22	378,000	4.6875	
13	23	493,600	4.5469	
14	24	501,800	4.7344	
14	25	268,200	4.7500	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-20 Cycles-to-Failure Data of Group No. 144 Using Wire Fatigue Machine No. 3 for 35 Specimens of .040 in. Diameter AISI 1018 Steel Wire. Fixed Alternating Stress Level of 60,000 psi. Bend Angle 16.0° Coast-Down Cycles 200 .*

<b></b>	Opera	tor: Chet No1	<u>f</u>	
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
14	26	1,161,500	4.7656	
17	27	907,900	4.7188	
18	28	392,900	5.0312	
18	29	404,500	4.5938	
18	30	601,500	4.9062	
19	31	476,200	4.8125	
19	32	490,700	4.0000	
20	33	447.200	4.7188	
20	34	328,600	4.6875	,
20	35	966,300	. 4.7031	
	<u> </u>			
	ļ			
	<del> </del>			
		<del> </del>		
	<del> </del>	<del> </del>		
	<del> </del>			
	<del> </del>			
	1	1	I	L

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-21 Cycles-to-Failure Data of Group No. 145 Using Wire Fatigue Machine No. 3 for 35 Specimens of .040 in. Dismeter AISI 1018 Steel Wire. Fixed Alternating Stress Level of 62,800 psi. Bend Angle 16.5° Coast-Down Cycles 200 .*

Oper- ator	Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
	July 72				
C.N.	28		535,600	4.5838	
	30	2	415,100	4.8125	
	31	3	228,500	4.7969	
<u> </u>	31	4	272,600	4.6250	
	31	5	169,300	4.8750	
	31	6	516,300	4.6875	
	Aug. 72	7	159,100	5.0000	
	1	8	141,000	5.2500	
	1	9	176,500	4.8750	
	1	10	251,500	4.6562	
	2	11	417,700	4.7188	
	2	12	159,900	4.5000	
	3	13	487,300	4.8750	
	3	14	187,200	4.8906	
	8	15	295,100	5.0469	
	8	16	162,000	4.9062	
	9	17	344,100	4.6250	
	9	18	398,400	4,9062	
	9	19	459,000	4.7188	
	10	20	308,300	4.7969	
	11	21	258,900	4,5000	
	11	22	259,900	4.6562	
	14	23	484,900	4.3750	
	14	24	519,800	4.7188	
	16	25	329,500	4.4062	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-21 Cycles-to-Failure Data of Group No. 145 Using Wire Fatigue Machine No. 3 for Specimens of .040 in. Diameter AISI 1018 Steel Wire. Fixed Alternating Stress Level of 62,800 psi. Bend Angle 16.5° Coast-Down Cycles 200 .*

Oper- ator	Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
C.N.	16	26	201,000	4.7500	
	17	27	720,900	4.8438	
	18	28	234,700	4.8281	
	21	29	433,100	4.8750	
	21	30	279,300	4.8125	
	22	31	171,700	4.5625	
	24	32	633,000	4.0000	_
	28	33	193,000	4.8281	
	28	34	265,400	4.7969	
	Sept.72	35	185.300	4.7500	
		<u> </u>	<u> </u>		
			<u> </u>		
		ļ			
L					

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

nchine

Mac	
Richle	
Using the	
148	
Group No.	
Data of	Steel.
2 Static Ultimate Strength Test Data of Group No. 148	ss Specimens of AISI 1018
8.1-22	
Table	

of T	Onte of Test: April	1 29. 1972								
. C =	Original Diameter in.	Original Cross Section 2	Yield Load lbs	Yield Stress psi	Ultimate Load Ibs	Ultimate Stress psi	Breaking Lond 1bs	Breaking Diameter in.	Breaking Area	Rreaking Stress
		THE THE								
	.0398	.001243			77	61,946	58	,0398	,001243	46.661
	.0398	.001243			77	61,946	61	.0398	.001243	49.074
	.0397	.001237			78	63,055	59	.0397	.001237	47.696
	.0396	.001231			78	63,363	9	.0396	.001231	48.740
	.0397	.001237			78	63,055	62	.0397	.001237	50,121
	.0393	.001212			76	62,706	59	.0393	.001212	48.679
[-	.0396	.001231			75	60,926	56	.0396	.001231	45.491
	.0398	.001243			76	61,142	59	.0398	.001243	47.465
	.0397	.001237			77	62,247	60	.0397	.001237	48.504
	.0396	.001231			. 76	61,738	52	.0396	.001231	42,242
	.0398	.001243			78	62,751	09	.0398	.001243	48,270
	.0398	.001243			78	62,751	61	.0398	.001243	49,074
	.0395	.001224			81	65,164	65	.0398	.001224	53,104
	.0397	.001237			80	64,672	63	.0397	.001237	50,929
	.0398	.001243			79	63,555	64	.0398	.001243	51.488
	.0396	.001231			26	64,175	09	.0396	.001231	48.740
- 1	.0398	.001243			9/	61,142	59	.0398	.001243	47.465
- 1	.0395	.001224			78	63,725	0.9	.0395	.001224	49.195
ŀ	.0396	.001231			78	63,363	61	.0396	001231	49.553
- 1	.0395	.001224			81	66,176	99	.0395	.001231	53.921
•	.0398	.001243			79 (6	63,555	09	.0398	.001243	48,270

Table 8.1-22 Static Ultimate Strength Test Data of Group No. 148 Using the Riehle 35 Specimens of AISI 1018 Steel.

Specimen	Ori	Original Cross	Yield Load	Yield	Ultimate Load	Ultimate Stress	Breaking	Breaking	Breaking	Breaking
Number	in.	Section 2 Area in.	1bs	psi	lbs		1bs	rameter in.	Area in.	Stress
22	.0395	.001224			V8	עב גבט				
23	.0398	.001243			T	666,60	70	. 0935	.001224	50.653
24	. 8620	.001243			T	04.360	61	.0398	.001243	49.074
25	.0398	277100			T	60,337	59	.0398	.001243	47,465
26	0.206	001221			1	61,946	99	.0398	.001243	48.270
27	2020	.001231			1	62,550	50	.0396	.001232	47,270
30	7600.	.001237	1	1	77	62,247	90	,0398	.001237	48.504
07	.0398	.001243			76	61,142	60	.0398	.001243	48.270
67	.0398	.001243			80	64,360	63	0.308	1	200
30	.0398	.001237				64 670			†	30,083
31	.0398	.001243			T	378-50	To a	0397	001237	49,312
22	0202	20000	+		78	62,751	59	.0398	.001243	47,465
	7650	.001237		-	76 (	61,438	. 59	.0397	.001237	47.696
25	.0396	.001231			79	64,175	62	.0396	t	276
34	.0397	.001237			79 6	63.864	15	0.40.7	十	201.202
35	.0397	.001237			75 6	60.630	50	0.02	†	49,512
								1650	, 00100	47,096
								+	+	
				+	+		+		į.	
	-	-		+						
+		1								
1	1	+								T
					•					30

305

Table 8.1-23 Test Data for Hardness and Ultimate Strength Elongation of Group No.143 . 35 Specimens of AISI 1018 Steei. D = .040 in. ; L = 10 in. Drawing No. ; Date of Test April 29, 1972

		CHARACTERI	STIC	
Specimen Number	Rockwell Hardness Scale	Brinell Hardness BHN	ΔL on 8 in. Gage Length	Elongation %
1			.9062	11.327
2			.8125	10.156
3			1.2343	15.428
4			.7500	9.375
5			1.0781	13.476
6			.9687	12.108
7		-	.8906	11.132
8			.9375	11.718
9			1.0156	12.695
10			.8437	10.546
11			.9843	12.303
12			1.1718	14.647
13			.8125	10.156
14			1.2656	15.820
15			1.3758	17.187
16			.7812	9,765
17			.9375	11.718
18			.8750	10.937
19			.8750	10.937
20			1.0315	12.893
21			1.2500	15.625
22			.9843	12.303
23			.8593	10.7412
24			1.1562	14.452
25			.9687	12,108

Table 8.1-23 Test Data for Hardness and Ultimate Strength
Elongation of Group No. 148. 35 Specimens of
AISI 1018 Steel. D = .040 in. ; L = 10 in.
Drawing No. ; Date of Test April 29, 1972

		CHARACTERI	STIC	
Specimen Number	Rockwell Hardness Scale	Brinell Hardness BHN	ΔL on 8 in. Gage Length	Elongation %
26			1.0156	12.695
27			1.1093	13.866
28			1.2812	16.015
29			1.1718	14.647
30			1.0312	12.890
31.			1.0468	13.085
32			.9687	12.108
33	-		1,0000	12.500
34			1.1250	14.062
35			.9062	11.327
	•			
				,
		<del> </del>		
L		1		

Table 8.1-24 KHN Hardness Data for Group No. 148-2 Using Tukon Micro-Hardness Tester For 10 Specimens of .040 in. Diameter. AISI 1018 Steel Wire.

	CHARACTERISTIC												
Specimen Number	KNOOP HARDNESS, KHN												
1	165	169	166										
2	166	159	166										
3	162	173	166										
44	166	174	169										
5	165	162	164										
	177	169	175										
7	175	188	182										
8	171	174	177										
9	174	175	169										
10	169	170	168										
			•										
	·												

Table 8.1-25 Cycles-to-Failure Data of Group No. 150 Using Wire Fatigue Machine No. 4 for 35 Specimens of .040 in. Diameter AISE 4340 Steel Wire. Fixed Alternating Stress Level of 75,500 psi. Bend Angle 20.5° Coast-Down Cycles 100 .*

	Opera	tor: Chet Not	_	
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
March72				
9	1	475,900	4.2188	
10	2	535,700	5.0000	
10	3	304,900	4.0938	
10	4	531,600	3.5200	•
10	5	345,000	4.5000	•
11	6	240,000	5.625	
12	7	410,900	4.6719	
13	8	334,100	5.4375	
13	9	335,100	`4.7969	
14	10	260,500	4.0000	
14	11	709,800	5.1250	
14	12	463,800	4.3200	
14	13	342,700	5.0156	
15	14	312,300	4.5781	
15	15	571,400	4.5200	
15	16	126,300	4.6094	
16	17	375,400	4.3438	
16	18	258,900	. 4.7812	
16	19	214,900	4.2656	
16	20	234,300	4.375	
16	21	200,900	4.0312	
17	22	413,200	5.0120	
17	23	441,200	3.9531	
19	24-	282,100	.5.0000	

^{*} Subract from counter reading 100  $\,$  cycles and enter in "Cycles to Failure" column.

Table 8.1-25 Cycles-to-Failure Data of Group No. 150 Using Wire Fatigue Machine No. 4 for 35 Specimens of .040 in. Diameter AISI 4340 Steel Wire. Fixed Alternating Stress Level of 73,500 psi. Bend Angle 20.5° Coast-Down Cycles 100 .*

•	Operat	or: Chet Nol	£								
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks							
20	25	190,500	5.1250								
20	26	316,400	4.2812								
21	27	519,300	4.4531								
21	28	394,700	4.3594								
21	29	341,400	5.4375								
22	30	659,500	4.0000								
23	31	559,700	5.0000								
23	32	316,200	4.6875								
24	33	345,400	4.5938 .								
Apri1											
4	34	635,200	4.2031								
4	35	809,900	4.5000								
		ļ	·								
	ļ										
	ļ										
	ļ										
			<del> </del>								
	ļ										
	<u></u>										
	ļ										
	<u> </u>	<u> </u>									

^{*} Subract from counter reading 100 cycles and enter in "Cycles to Failure" column.

Table 8.1-26 Cycles-to-Failure Data of Group No. 151 Using Wire Fatigue Machine No.4 for 35 Specimens of .040 in. Diameter AISI 4340 Steel Wire. Fixed Alternating Stress Level of 78,100 psi. Bend Angle21.5° Coast-Down Cycles 100 .*

Operator: Chet No1f Cycles-to-Remarks Spec. Break Length Date from Scribed of No. Failure End inches Test April 128,100 4.1875 1 2 1.5,600 5.1875 4 5 3 294,200 4.9219 5 4 355,000 5.0312 4.6719 5 5 216,300 5 6 270,300 4.3281 7 136,300 4.7344 5 4.4375 5 8 230,700 9 4.6250 6 302,200 10 . 222,500 4.1562 6 ٠6 11 255,500 4.3438 4.0000 6 12 510,900 4.4606 6 13 313,600 7 860,400 4.4375 14 15 243,900 4.3438 7 16 237,600 4.1875 17 4.2656 7 526,000 4.0469 18 8 171,300 19 223,400 4.8750 8 4.7812 20 166,200 5.1250 8 21 233,000 4.2188 8 22 310,500 10 23 278,300 4.9688 10 24 4.3750 335,300 10 153,500 4.0000 25

^{*} Subract from counter reading 100 cycles and enter in "Cycles to Failure" column.

Table 8.1-26 Cycles-to-Failure Data of Group No. 151 Using Wire Fatigue Machine No. 4 for 35 Specimens of .040 in. Diameter AISI 4340 Steel Wire. Fixed Alternating Stress Level of 78,100 psi. Bend Angle 21.5° Coast-Down Cycles 100 .*

	opera	tor: Chet Noli	·	
Date of Test	Spec.	Cycles-to- Failure	Remarks	
11	26	141,600	4.0000	
	27	360,900	4.4062	
11	28	180,200	4.9531	
11.	29	193,400	4.8750	
12	30	161,800	4.8125	•
12	31	753,700	4.8750	•
12	32	617,400	4.0000	
12	33	224,500	4.0000	
13	34	235,900	4.2500	
13	35	216,300	. 4.6719	
-	<u> </u>	ļ		
	ļ			
		ļ	<u> </u>	
<u> </u>				
	<u> </u>			
	ļ	,		

^{*} Subract from counter reading 100 cycles and enter in "Cycles to Failure" column.

Table 8.1-27 Cycles-to-Failure Data of Group No. 152 Using Wire Fatigue Machine No. 4 for 35 Specimens of .040 in. Diameter AISI 4340 Steel Wire. Fixed Alternating Stress Level of 80,100 psi. Bend Angle 22.0 Coast-Down Cycles 100 .*

Operator: Chet Nolf Cycles-to-Remarks Spec. Break Length Date from Scribed of No. Failure End inches Test April 185,800 4.2500 13 1 2 13 229,000 4.5312 13 3 254,000 4.0625 13 4 205,500 4.0469 5 4.5938 13 163,400 6 14 114 000 4.4219 14 7 382,000 4.4375 14 8 507,700 4.4844 14 9 114,700 4.1562 10 161,900 4.2969 14 4.3750 17 11 176,800 17 - 12 4.2188 536,200 17 13 679,500 4.8750 14 17 253,900 4.1562 15 148,800 18 4.7188 18 16 401,100 4.9844 17 87,500 4.5781 18 18 18 283,300 4.6562 19. 19 245,500 4.2344 19 20 215,000 4.3906 19 21 306,600 4.3906 19 22 227,400 4.7188 19 23 188,000 4.3125 19 24 241,000 3.8594 21 25 80,000 4.5312

^{*} Subract from counter reading 100 cycles and enter in "Cycles to Failure" column.

Table 8.1-27 Cycles-to-Failure Data of Group No. 152 Using Wire Fatigue Machine No. 4 for 35 Specimens of .040 in. Diameter AISI 4340 Steel Wire. Fixed Alternating Stress Level of 80,100 psi. Bend Angle 22.0 Coast-Down Cycles 100 .*

<b></b>	Opera	tor: Cuet Nor	I.	·
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
21	26	213,900	4.6094	
21	27	217,100	4.1462	
21	28	216,900	4.8438	
24	29	342,300	4.2188	
24	30	218,400	4.4062	
24	31	163,000	4.0156	
25	32	155,000	4.6250	
25	33	186,800	4.0938	·
25	34	170,700	4.0000 -	
26	35	422,400	4.3125	
			<u> </u>	
	<u> </u>			
	<u> </u>			
	<u> </u>			
	-			
	<u> </u>	<u> </u>		
	<u> </u>			
	<u> </u>			
	ļ			
			<u> </u>	

^{*} Subract from counter reading 100 cycles and enter in "Cycles to Failure" column.

Table 8.1-28 Cycles-to-Failure Data of Group No. 153 Using Wire
Fatigue Machine No. 4 for 35 Specimens of .040
in. Diameter AISI 4340 Steel Wire. Fixed Alternating
Stress Level of 84,700 psi. Bend Angle 23.0°
Coast-Down Cycles 200 .*

Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
April 72				
27	1	918,000	3.9688	
27	2	93,000	4.0000	. ,
27	3	223,400	4.2812	•
27	4	182,000	4.8595	
27	5	63,200	4.8438	
28	6	152,300	4.5624	
28	7	321,900	4.9219	
28	8	178,500	5.0000	
28	9	172,200	4.8281	
29	10	164 <b>,60</b> 0	4.7656	
29	11	130,900	4.1250	
May 72				
1	12	117,500	4.750	
1	13	187,500	4.2188	
1	14	150,900	4,3438	
1	15	143,200	4.6875	
11	16	116,100	4.7500	
1	17	206,400	5,0000	
2	18	198,400	4.5000	
2	19	175,000	4.4688	·
2	20	219,600	4.0312	
2	21	165,100	4.0469	
2	22	72,490	4.9219	
2	23	100,600	4.4219	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-28 Cycles-to-Failure Data of Group No. 153 Using Wire Fatigue Machine No. 4 for 35 Specimens of .040 in. Diameter AISI 4340 Steel Wire. Fixed Alternating Stress Level of 84,700 psi. Bend Angle 23.0° Coast-Down Cycles 200 .*

Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks.
3	24	150,200	4.0000	
3	25	222,800	5.1250	
.3	26	114,700	4.7969	
3	27	115,900	4.2656	
3	28	66,800	4.8906	
4	29	98,600	5.1562	
4	30	162,500	4.4688	
4	31	259,300	4.6094	
4	32	125,000	4.5000	
4	33	120,500	• 4.9375	
4	34	192,900	4.2969	
5	35	250,300	4.5625	
	ļ			
		<u> </u>	ļ	
	<u> </u>			

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-29 Cycles-to-Failure Data of Group No. 154 Using Wire 317
Fatigue Machine No. 4 for 35 Specimens of .040
in. Diameter AISI 4340 Steel Wire. Fixed Alternating
Stress Level of 90,000 psi. Bend Angle 24.0° .
Coast-Down Cycles 200 .*

<b></b>	Opera	tor: Chet No1	f	
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
May 5	1	105,200	4.0938	
5	2	116,500	5.0000	
.8	3	102,900	5.2500	
8	4	92,800	4.3906	
9	5	99,400	4.0000	•
9	6	127,600	4.2812	
9	7	108,500	5.0000	:
9	8	100,900	4.4062	
9	9	72,000	4.2031	·
9.	10	173,800	4.2188	
10	11	113,800	4.8594	
10	· 12	178,500	4.9688	
10	13	99,000	5.1250 ·	
10	14	94,500	4.6094	
10	15	91,100	4.0469	
11	16	93,700	5.0625	
11	17	98,900	4.5312	
11	18	70,100	5.0781	
11	19	155,600	4.8438	
11	20	196,200	4.4375	•
12	21	276,900	4.8281	
12	22	154,200	5.4375	
12	23	90,800	4.8281	
12	24	92,000	4.4375	Ţ
15	25	163,700	4.5625	

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Table 8.1-29 Cycles-to-Failure Data of Group No. 154 Using Wire 318 Fatigue Machine No. 4 for 35 Specimens of .040 in. Diameter AISI 4340 Steel Wire. Fixed Alternating Stress Level of 90,000 psi. Bend Angle 24.0° Coast-Down Cycles 200 .*

Operator: Chet Noif
---------------------

<del></del>	Opera	tor: Chet Nol	<u> </u>	_
Date of Test	Spec.	Cycles-to- Failure	Break Length from Scribed End inches	Remarks
15	26	184,100	4.2812	
15	27	317,200	4.0000	
15	28	283,300	4.0938	
16	29	120,800	4.4375	
16	30	142,700	5.0469	•
17	31	162,400	4.4375	•
17	32	248,000	4.8906	
17	33	148,300	4.8594	
18	34	243,100	4.3438	,
19	35	215,100	• 4.0000	
	<u> </u>			
	<u> </u>			
		<u> </u>		
	ļ			
<u> </u>	<u> </u>	ļ	<u> </u>	
			<u> </u>	
	<u> </u>			
	ļ			
	<u> </u>			
<u> </u>	<del> </del>			
}				

^{*} Subract from counter reading 200 cycles and enter in "Cycles to Failure" column.

Using the Riehle Table 8.1-30 Static Ultimate Strength Test Data of Group No. 155 35 Specimens of AISI 4340 Steel.

Machine

1972	
30,	
Apri1	
Test:	
οŧ	
Date	

	ц	7	1	1	Т	_		_	Τ-	_	_		r	_				·									3	319
	Breaking Stress nsi		000	505,05	94,044	92,199	94,828	92, 199	05 251	000 00	24,046	94,044	93,260	90 125	30,163	96,139	96,395	87,774	91 692	000 000	070 6	34,828	93,775	89,835	119 30	770,00	91,693	92,987
	Breaking Area in.		001276	0,2100	9777001	.001269	.001276	.001269	.001269	276100	077700	.001276	.001276	276100	. 2016/0	.001269	.001276	.001276	.001276	2,000	001076	7	.001269	.001269	2001276	十	7	.001269
	Breaking Diameter in.		.0403	200	.0405	.0402	.0403	.0402	.0402	2040	20.0	.0403	.0403	.0403		.0402	.0403	.0403	.0403	.0403	0407	Coto	0402	.0402	.0403	十	十	.0402
	Breaking Load 1b		116	120	021	117	121	117	121	121	250	120	119	115	122	122	123	112	117	121	121	315	118	114	122	137	/17	118
	Ultimate Stress psi		103,448	105.016	104 002	104 807	105,799	104,019	105,595	105,016	200 201	103,010	107,367	105,016	105 505	566,500	108,150	107,367	105,016	105,799	107.367	105 505	666,00	104,807	106,583	106 383	200	104,907
	Ultimate Load 1b		132	134	122	133	135	132	134	134	1 3 d	1	137	134	120	†	1	137	134	135 1	137	126	1.	133 1	136   1	135	1	1
	Yield Stress psi																	1										_
	Yield Load lb																											-
	Uriginal Cross Section 2 Area in	7.0.0	.001276	.001276	.001269	972100	0/2700	697100	.001269	.001276	.001276	922100	0/7100	.001276	.001269	.001276	220100	0/2700	927700.	.001276	.001276	.001269	001269	502100	.001276	.001269	.001269	
0	Original Diameter in.	0403	.0403	.0403	.0402	.0403	0400	2040	.0402	.0403	.0403	0403	20,0	.0403	.0402	.0403	0402	2010	.0493	.0403	.0403	.0402	0402	2040	.0403	.0402	.0402	
Specimon	Orcanica Original Diameter Number in.	-	7	2	3	4	ď	2			88	6	5	TOT	11	12	13	1	+	15	16	17	18	30	77	23	24	

Marketin Branch Street and Street and Street Street Street

T

T

T

Machine Reihle Using the 8.1-30 Static Ultimate Strength Test Data of Group No. 155 35 Specimens of AISI 4340 Steel. Table

			γ—			,	,		·	γ			<del>,</del>		<del>,</del>	·		 	 	320
	Breakine Stress psi	94,828	90,623	92,476	92,476	94,310	92,987	90,623	96,395	93,260	94,828	89,835	98,096	92,476	94,044					
	Breaking Area in.	.001276	.001269	.001276	.001276	.0012724	.001269	.001269	.001276	,001276	.001276	.001269	.0012724	.001276	.001276					
	Breaking Diameter in.	.0403	.0402	.0403	.0403	.0403	.0402	.0402	.0403	.0403	.0403	.0402	.0403	.0403	.0403					
	Breaking Load 1b	121	115	118	118	120	1.18	115	123	119	121	114	121	118	120					
	Ultimate Stress psi	105,016	104,019	106,583	103,448	105,313	107,171	104,019	107,367	106,583	107,367	104,807	104,527	104,232	105,016					
	Ultimate Load 1b	134	132	136	132	134	136	132	137	136	137	133	133	133	134		•		-	
	Yield Stress psi				,															
72	Yield Load 1b																			
il 30, 1972	Original Cross Section 2 Area in.	.001276	.001269	.001276	.001276	.0012724	.001269	.001269	.001276	.001276	.001276	.001269	.0012724	.001276	.001276					
Test: April	Original Diameter in.	.0403	.0402	.0403	.0403	.04025	.0402	.0402	.0403	.0403	.0403	.0402	.04025	.0403	.0403					
Date of 1	Specimen Number	25	26	27	28	29	30	31	32	33	34	36	37	39	40					

Table 8.1-31 Test Data for Hardness and Ultimate Strength
Elongation of Group No. 155. 35 Specimens of
AISI 4340 Steel. D = .040 in. ; L = 10 in.
Drawing No. ; Date of Test March 4, 1972

		CHARACTERI	STIC	
Specimen Number	Rockwell Hardness Scale	Brinell Hardness BHN	AL on 8 in. Gage Length	Elongation %
37			.8573	10.741
25			.7500	9.375
24			.7812	9.765
2			.6406	8.007
12			.8281	10.351
32			.7343	9.178
18			.7656	9.570
16			.8593	10.741
22			.7500	9.375
4			.7968	9.960
8			.8593	10.741
5			.8750	10.071
23			.6250	7.812
39		•	.7656	9.570
34			.6875	8.593
40			.8437	10.546
33			.7500	9.375
7			.8437	10.546
6			.7968	9.960
14			.5937	7.421
15			.8281	10.351
1			.7181	8.976
9			.7343	9.178
3			.6718	8.397
30			.7500	9.375

Table 8.1-31 Test Data for Hardness and Ultimate Strength
Elongation of Group No.155 . 35 Specimens of
AISI 4340 Steel. D = .040 in. ; L = 10 in.
Drawing No. ; Date of Test March 4, 1972

		CHARACTERI	STIC	
Specimen Number	Rockwell Hardness Scale	Brinell Hardness BHN	ΔL on 2 in. Gage Length	Elongation %
29			.6093	7.616
36			.6718	8.397
27			.6718	8.397
31			.7968	9.960
11			.7187	8.983
10			.7968	9.982
17			.3281	10.351
26			. 8593	10.741
13			.7343	9.178
28			.7968	9,960

Table 8.1-32 KHN Hardness Data for Group No. 155-2 Using Tukon Micro-Hardness Tester For 10 Specimens of .040 in. Diameter. AISI 4340Steel Wire.

	CI	IARACTERISTIC					
Specimen Number	knoop Hardness, khn						
1	201	186	207				
2	184	201	198				
3	212	196	201				
4	204	196	201				
5	200	197	204				
6	205	201	204				
7	197	198	208				
8	203	201	200				
9	201	200	207				
_10	202	202	205				
			203				
			<del> </del>				
			-				
		-	<del></del>				
		-	+				
		· · · · · · · · · · · · · · · · · · ·	+				
			-				
		-					
		<u> </u>	-				

8.2 WIEDEMANN FATIGUE MACHINE DATA

Table 8.2-1 Cycles-to-Failure Data of Group No. 89 Using the Wiedemann Machine. 36 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .125 in. Upper Added Pan Load = 15.79 lbs. Alternating Stress = 75,000 psi.

Date of Test	Specimen Number	Cycles-to-Failure	Remarks *
May 1972 10	7	149,000	F
11	25 -	161,000	F
11	29	211,000	F
11 .	35	337,000	F
11	23	291,000	F .
11	36	313,000	F
11	27	147,000	F
15	14	222,000	F
15	32	206,000	F
15	13	381,000	F
15	33	249,000	Ė
15	. 12	478,000	F
15	11	175,000	F
16	15	410,000	F
16	22	163,000	F
16	21	141,000	F
16	8	91,000	F
16	30	143,000	F
16	18	123,000	F
June 1972	16	170,000	F · .
6	10	345,000	F
6	1 :	680,000	F ·
6	28	253,000	F
. 6	26	122,000	F
6	24	157,000	F

^{*} F - Failure

NF - No Failure

Table 8.2-1 Cycles-to-Pailure Data of Group No. 89 Using the Wiedemann Machine. 36 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .125 in. Upper Added Pan Load = 15.79 lbs. Alternating Stress = 75,000 psi.

Date of Test	Specimen Number	Cycles-to-Failure	Remarks*
6	31	196,000	F
6	34	138,000	F
6	9	297,000	F
7	5	183,000	F
7	17	235,000	F
7	3	122,000	F
7	2	194,000	F
7 .	20	225,000	F
7	19	221,000	F
7	6	205,000	F
7	4	138,000	F
		•	
	•		
•			
		·	

^{*}F - Failure

NF - No Failure

Table 8.2-2 Inspection Data for Critical and Major Characteristics of Group No. 89 . 36 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.50 in. Drawing No. 200. ; Date of Inspection 4/1/72 .

Şpecimen .		d= .0937	r=	.13			rface	
Hardness Number		± .0005 in.	± .002 in.		Fi	nish u-in.		
1		.0937		G	0	4		
2		.0937						
3		.0937						
4		.0937						
5		.0934						
6		.0935						
7		.0940						
8		.0939			-			
9		.0939						
10		.0937						
11		.0937						
12		.0938						
13		.0940						
14		.0937						
15		.0939						
16		.0941						
17		.0933						
18		.0936						
19		.0937						
20		.0933						
21		.0940						
22		.0939						
23		.0939						
24		.0936						
25		.0937						

Table 8.2-2 Inspection Data for Critical and Major Characteristics of Group No. 89 . 36 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.50 in. Drawing No. 200 ; Date of Inspection 4/1/72 .

	CH.	ARACTERIS	FIC	
Specimen Number	Hardness	d= .0937 + .0005 in.	r= .125 + .002 - in.	Surface Finish p-in.
26		.0937	GO	4
27		.0937		
28		.0937		
29		.0937		
30	~	.0937		
31		.0935		
32		.0939		
33		.0937		
34	<u> </u>	.0935		
35		.0940		
36	<i>:</i>	.0937		
	,			
•				
		<u> </u>	1	

Table 8.2-3 Inspection Data for Critical and Major Characteristics of Group No. 90 . 37 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.5 in. Drawing No. 200 ; Date of Inspection April 3, 1972

·	CH.	ARACTERIST	rc.	
Specimen Number	Hardness	d=.0937 + .0005 in.	r= .125 + .002 - in.	Surface Finish p-in.
1		.0940`	.125	4
2		.0937		
3		.0938		
. 4		.0937		
5		.0940	,	
Ģ		.0939		
7		.0937		
8		.0937		
9		.0939		
10		.0940		
11		.0937		
. 12		.0940		
13		.0940		
14		.0937		
15	ĺ	.0939		
16		.0937		
17		.0937		
18		.0937		
19		.0937		
20		.0940		
21		.0937		
22		.0940		
23		.0939		
2,4		.0938		
25	•	.0939	<del>                                     </del>	

Table 8.2-3 Inspection Data for Critical and Major Characteristics of Group No. 90 . 37 Specimens of AISI 4130 Steel D = .375 in. ; L=3.5 in. Drawing No. 200 ; Date of Inspection April 3, 1972

	CH.	ARACTERIS'	ŗic		
Specimen	Hard: ss	d=	r=	Surface Finish	
Number		in.	in.	μ-in.	
26		.0937	.125	4	
27		.0940			
28		.0937		<u> </u>	
29		.0937			
30		.0937			
31		.0939			
<b>32</b> ,		.0939			
33		.0940			
34		.0937			
35		.0937			
36		.0937			
37		.0937			
	×				
·····					
		<u> </u>			
L					
:					
		1			
		<b> </b>			

Table 8.2-4 Cycles-to-Failure Data of Group No. 90 Using the Wiedemann Machine. 37 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .125 in. Upper Added Pan Load = 15.44 lbs. Alternating Stress = 85,000 psi.

Date of Test	Specimen Number	Cycles-to-Failure	Remarks*
May 1972 2	30	49,000	F
. 2	32	109,000	F
2	23	77,000	F
2	10	130,000	F
.2	12	67,000	· F
3 ,	26	123,000	·F
3	31	44,000	F. ·
. 3	. 16	87,000	F
3	19	30,000	<u> </u>
3	55	328,000	F
3	8	151,000	F
3	2	84,000	F
4	9	162,000	F ·
4	28	112,000	F
4	1.3	46,000	F
4	20	111,000	F
5	22	112,000	F
5	· 33	95,000	F
· 5	7	81,000	F .
5	36	47,000	F -
8	3	93,000	F
8	34	59,000	F .
8	6	45,000	F
. 8	29	113,000	F
8	. 37	158,000	F

Table 8.2-4 Cycles-to-Failure Data of Group No. 90 Using the Wiedemann Machine. 37 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .125 in. Upper Added Pan Load = 15.44 lbs. Alternating Stress = 85,000 psi.

Date of Test	Specimen Number	Cycles-to-Failure	Remarks *
8	27	187,000	F
8	17	91,000	F
9	25	80,000	F
9	15	133,000	F
9	11	116,000	F ·
99	11	77,000	F
10	18	106,000	F .
10	4	165,000	F
10	35	88,000	F
10	24	123,000	F
10	14	130,000	F.
10	. 21	107,000	F
	•		
:			

Table 8.2-5 Inspection Data for Critical and Major Characteristics of Group No. 91 . 35 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.50 in. Drawing No. 200 ; Date of Inspection April 4, 1972

	CHARACTERISTIC				
Specimen Number	Hardness	d= .0937 + .0005 in.	r= .125 + .002 - in.	Surface Finish p-in.	
26		.0937	.125	4	
27		.0937			
28		.0937			
29	_	.0937			
30		.0937			
31		.0937			
32		.0937			
33		.0937			
34		.0938			
35		.0937			
36		.0937			
37		.0937			
		<u> </u>			
<del></del>	<del>                                     </del>	<del> </del>	<del> </del>	<del></del>	

Table 8.2-5 Inspection Data for Critical and Major Characteristics of Group No. 91 . 36 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.50 in. Drawing No. 200 ; Date of Inspection April 4, 1972

	Ct	ARACTERIS	į.		<del></del>	
Specimen Number	Hardness	d= .0937 + .0005 in.	r= .12 + .002 - in	2	Fin	face ìsh -in.
1		.0937	.12	25		<del></del> -
2		.0938				
3 .		.0937				
4		.0937				
. 5		.0939				
6.		.0937				
7		.0937				
8		.0937				
9		.0937				
10		.0938				
11		.0937				
12		.0937				
13		.0937				
14		.0937				
15		.0937				
16		.0937				
17		.0937				
18		.0939	·	<u> </u>		
19		.0937				
20		.0935				
21		.0935				
22		.0937				
23		.0937				
24		.0939		-		
25		.0937	1			

Table 8.2-6 Cycles-to-Failure Data of Group No. 91 Using the Wiedemann Machine. 37 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .125 in. Upper Added Pan Load = 15.10 lbs. Alternating Stress = 95,000 psi.

Date of Test	Specimen Number	Cycles-to-Failure	Remark <i>\$</i>
April 1972 12	25	21,000	F
12	16	- 34,000	F
12	14	13,000	F
13	35	12,000	F
13	20	16,000	F
13	4	8,000	F
13	11	39,000	F
13	23	31,000	F
14	32	32,000	F
14	3	12,000	F
14	17	34,000	F
17	. 31	18,000	F
17	37	23,000	F
17	6	18,000	F
17	15	21,000	F
17	35	34,000	F
18	5	14,000	F
18	7	13,000	F
18	34	16,000	F
19	8	25,000	F ·
19	19	17,000	F
20	18	20,000	F
20	26	27,000	F
. 24	13	17,000	F
24	24	33,000	F

Table 8.2-6 Cycles-to-Failure Data of Group No. 91 Using the Wiedemann Machine. 37 Specimens of AISI 4130 Steel Pod of Test Section Diameter, d = .0937 in., Radius, r = .125 in. Upper Added Pan Load = 15.10 lbs. Alternating Stress = 95,000 psi.

Date of Test	Specimen Number	Cycles-to-Pailure	Remarks*
24	22	15,000	F
24	28	5,000	F
25	29	24,000	F
26	33	21,000	F
26	11	18,000	F .
26	9	16,000	F
26	10	18,000	F
28	2	17,000	F
28	27	22,000	F
28	12	25,000	F
May 1972 1	30	32,000	F
1	21	22,000	F
·	·		
	• • • • • • • • • • • • • • • • • • • •		
•			
•			
		·	
<del></del>			

Table 8.2-7 Inspection Data for Critical and Major Characteristics of Group No. 93 . 35 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.50 in. Drawing No. 200 ; Date of Inspection March 30, 1972

	С	ARACTERIS	ŗĭC	
Specimen Number	Hardness	d= .0937 + .0005 in.	r= .250 +.002 in.	Surface Finish p-in.
1		.0937	.250	4
2		.0936		
3 .		.0939		
4		.0940		
5′		.0937		
6.	,	.0937		
7	,	.0939		
8		.0936		
9		.0937		
10		.0939		
11		.0939		
12		.0937		
13		.0937		
14		.0937		
15		.0938		
16		.0937		
17		.0937		
18		.0937		
19 -		.0937		
20		.0937		
21		.0936		
22		.0937		
23		.0937		
24		.0940	1 .	
25		.0937		

Table 8.2-7 Inspection Data for Critical and Major Characteristics of Group No. 93 . 35 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.50 in. Drawing No. 200 ; Date of Inspection March 30, 1972

	CH.	ARACTERIS	ŗrc	
Specimen Number	Hardness	d= .0937 + .0005 —in.	r= .250 + .002 - in.	Surface Finish p-in.
26		.0937	.250	4
27		.0940		
28 .		.0937		
29	·	.0939		
30		.0934		
31.		.0936		
32	*	.0937		
33		.0940		
34		.0937		·
35		.0937		
	·			
		<u> </u>		
		<del> </del>		
ļ	<del> </del>	<del> </del>		
L	<u> </u>			

Table 8.2-8 Cycles-to-Failure Data of Group No. 93 Using the Wiedemann Machine. 35 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .250 in. Added Pan Load = 15.96 lbs. Alternating Stress = 70,000 psi.

Date of Test 1972	Specimen Number	Cycles-to-Failure	Remarks
4/3	29	37,000	F
4/3	21	52,000	F
4/3	16	53,000	F
4/3	24	67,000	F
4/3 .	19	60,000	F .
4/3	26	94,000	F
4/4	12	81,000	F
4/4	13	133,000	F
4/4	32	122,000	F
4/4	4	147,000	F
4/4	10	149,000	F
4/4	. 28	163,000	F
4/4	33	38,000	F
4/4	8	24,000	F,
4/5 <u>.</u> ·	20	36,000	F
4/5	25	34,000	F
4/6	-30	64,000	F
4/6	14	193,000	F
4/6	. 34	50,000	F
4/6	27	123,000	F
4/6	23	97,000	F
4/6	6	106,000	F
4/7 .	15	61,000	F
4/7	,22	116,000	F
4/7	9	45,000	F -

^{*}F = Failure

NF = No Failure

Table 8.2-8 Cycles-to-Failure Data of Group No. 93 Using the Wiedemann Machine. 35 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .250 in. Added Pan Load = 15.96 lbs. Alternating Stress = 70,000 Upner.

		•	·
Date of Test	Specimen Number	Cycles-to-Failure	Remarks *
4/7	31	16,000	F
4/7	18	60,000	F
4/11	5	35,000	F
4/11	. 17	17,000	F
4/11	7	28,000	F
4/11	11	66,000	F
4/11 "	3	57,000	F
4/11	1	63,000	F
4/11	2	87,000	F
4/11	35	142,000	F
*	,		
	• • • •		
•			
		•	
•			
_			
	<u> </u>		

Table 8.2-9 Inspection Data for Critical and Major Characteristics of Group No. 94 . 35 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.50 in. Drawing No. 200 ; Date of Inspection March 29, 1972.

·	CH	ARACTERIST	TIC	
Specimen	Hardness	d= .0937 + .0005	r= .250 + .002	Surface Finish
Number		in.	in.	υ-in.
1		.0939	GO	4
2		.0937		
		.0937		
4		.0937		
. 2.		.0933		
6.		.0938		
7		.0937		
8		.0937		
9		.0937		-1
10		.0938		
11 .		.0937		
12		.0938		
13		.0933		
14		.0937		
15		.0938		
16		.0937		
17		.0938		
18		.0937		
19		.0935		
20		.0937		
21		.0937		
22		.0940		
23		.0937		
24		.0938		
25		.0940		

Table 8.2-9 Inspection Data for Critical and Major Characteristics of Group No. 94 . 35 Specimens of AISI 4130 Steel D = .375 in. ; L = .350 in. Drawing No. 200 ; Date of Inspection March 29, 1972.

	CH	ARACTERIST	'IC	
Specimen Number	Hardness	d= .0937 + .0005 in.	r= .250 + .002 - in.	Surface Finish p-in.
26		.0937	GO	4
27		.0938		
28 .		.0937		
29	*	.0937		
. 30.		.0938		
31.	·	.0936		
32		.0937		
33		.0937		
34		.0937		
35		.0938		
				,
`				
,				
•				
<del></del>				
		\		
		<del> </del>	<del>                                     </del>	<del> </del>
· · · · · · · · · · · · · · · · · · ·		<del> </del>	<del> </del>	<del> </del>
	<u> </u>		<u> </u>	<u></u>

Table 8.2-10 Cycles-to-Failure Data of Group No. 94 Using the Wiedemann Machine. 35 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Rādius, r = .250 in. Upper Added Pan Load = 15.621bs. Alternating Stress = 80,000 psi.

Date of Test	Specimen Number	Cycles-to-Failure	Remarks
3/29	9	26,000	F
· 3/29	18	18,000	
3/29	5	16,000	F
3/29	. 17	28,000	F
3/30	13	19,000	F
3/30	26	12,000	F
3/30	27	19,000	F
3/30	29	23,000	F
3/30	15	29,000	F
3/30	4	27,000	F
3/30	22	31,000	F
3/30	26	16,000	F .
3/30	31	22,000	F
3/30	16	59,000	F .
3/30	35	31,000	F
3/31	19	29,000	F
3/31	·10	40,000	F
3/31	14	32,000	F
3/31	. 21	36,000	F
3/31	30	41,000	F
3/31	33	32,000	F
3/31	28	31,000	F
3/31 ·	7	19,000	F
3/31	.32	19,000	F
3/31	2	34,000	F

^{*} F = Failure

NF = No Failure .

Table 8.2-10 Cycles-to-Failure Data of Group No. 94 Using the Wiedemann Machine. 35 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .250 in.

Added Pan Load = 15.62 lbs. Alternating Stress = 80,000 Upper psi.

Date of Test 1972	Specimen Number	Cycles-to-Failure	Remarks
3/31	24	. 29,000	F
. 4/3	1	16,000	F
4/3	23	30,000	F
4/3	12	22,000	F ·
4/3	25	41,000	F
4/3	8	26,000 ⁻	F
4/3	3	26,000	F
4/3	34	21,000	F
4/3	11	16,000	F
4/3	6	40,000	· F
		·	
			<u>.</u>
<del></del>			
·	:		
,			
	x	*	*

^{*} F = Failure
NF = No Failure

Table 8.2-11 Cycles-to-Failure Data of Group No. 95 Using the Wiedemann Machine. 34 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .250 in. Upper Added Pan Load = 15.10 lbs. Alternating Stress = 95,000 psi.

Date of Test 1972	Specimen Number	Cycles-to-Failure	Remarks
3/10	18	8,000	F
- 3/10	15	7,000	F
3/10	10	5,000	F
3/10	21	9,000	
3/13 .	12	13,000	F
3/13	11	3,000	F
3/13	17	2,000	F
· 3/14	14	9,000	F
3/14	20	5,000	F
3/14	13	2,000	
3/14	. 4	3,000	F
3/15	22.	7,000	F ·
3/16	7 · ·	9,000	F
3/16	23	6,000	F
3/17 ·	34	11,000	F
3/17	3	5,000	F
3/17	33	6,000	F
3/17	31	4,000	F .
3/17	- 25	11,000	F
3/24	4	2,000	F
3/24	32	5,000	F .
3/24	26	11,000	F
3/24	27	3,000	F .
3/29	29	6,000	F
3/29	,2	4,000	F

^{*} F - Failure NF.= No Failure

Table 8.2-11 Cycles-to-Failure Data of Group No. 95 Using the Wiedemann Machine. 34 Specimens of AISI 4130 Steel Rod of Test Section Diameter, d = .0937 in., Radius, r = .250 in. Upper Added Pan Load = 15.TO lbs. Alternating Stress = 95,000 psi.

Date of Test	Specimen Number	Cycles-to-Failure	Remarks
3/29	30	3,000	F
- 3/29	24	4,000	F
3/29	1	10,000	F
3/29	9	2,000	F .
3/29	6	2,000	F
3/29	8	4,000	F
3/29	28	3,000	F
3.29	5	4,000	F
	,		
		-	
·			
		1	

^{*} F - Failure NF - No Failure

Table 8.2-12 Inspection Data for Critical and Major Characteristics of Group No. 95 . 34 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.00 in. Drawing No. 200 ; Date of Inspection 3/8/72 .

CHARACTER (STIC Specimen d= .0937 + .0005 in. .250" Surface r= .002 Finish Number in. μ-in. 1 .0941 GO 4 2 .0937 3 .0936 4 .0937 5 .0937 6 .0934 7 .0937 8 .0933 9 .0938 10 0939 0937 11 12 .0937 13 0937 14 .0940 15 .0938 0937 16 17 .0935 18 .0937 19 .0937 .0935 20 21 .0937 22 .0936 23 .0934 24 .0937 25 .0937

Table 8.2-12 Inspection Data for Critical and Major Characteristics of Group No. 95 . 34 Specimens of AISI 4130 Steel D = .375 in. ; L = 3.00 in. Drawing No. 200 ; Date of Inspection 3/8/72.

	СН	ARACTERIST	ıc	
Specimen Number	Hardness	d= ,0937" + .0005" in.	r= .250" + .002" - in.	Surface Finish p-in.
26		. 0935	GO	4
27		.0937		
28 -		.0933		-
29		.0940		
30		.0937		
31.		.0937		
32		.0937		
<b>33</b> .		.0937		
34		.0939	1	<b>\</b>
	<u> </u>			
L	İ		<u>}</u>	

Table 8.2-13 Staircase Method Data of Group No. 162 Using the P. R. Moore Machine. 35 Specimens of AISI 1038 Steel Rod with Test Section Diameter d = .2700 in., Radius r = .031 in. Cutoff at 3 x 10 cycles.

Date of Test	Spec. No.	Added Pan Load 1bs	Alternating Stress	Cycles of Operation x 10 ⁻⁵	Remarks*
1972 3/7	37	8.36	19,000	3,108,000	N F
3/8	13	10.29	21,000	9,101,000	N F
3/9	11	12.22	23,000	3,429,000	NF
3/9	27	14.15	25,000	1,280,000	F
3/10	9	12.22	23,000	3,000,000	NF .
3/16	14 :	14.15	25,000	1,438,000	F.
3/17	5 .	12.22	23,000	3,442,000	NF
3/17	4	14.15	25,000	802,000	F .
3/20	7	12.22	23,000	3,141,000	NF
3/21	6	14.15	25,000	1,347,000	F
3/21	25	12.22	23,000	3,560,000	NF
3/22	16	14.33	25,000	2,100,000	F .
3/23	1	12.22	. , 23,000	5,224,000.	NF
3/24	34	14.15	25,000	1,464,000	F
3/24	12	12.22	23,000	2,564,000	F
3/29	29	10.29	21,000	3,020,000	NF
3/29	24	12.22	23,000	3,183,000	NF
3/29:	15	14.15	25,000	1,285,000	F
3/30	26	12.22	23,000	·3,097,000	N F
3/30	19	14.15	25,000	1,294,000	F
3/30	35	12.22	23,000	3,190,000	N F
3/30	30	14.15	25,000	781,000	F
3/31	18	12.22	23,000	3,043,000	NF
3/31	36	14.15	25,000	1,748.000	F ·
4/1	31	12.22	23,000	3,128,000	NF
4/3	33	14.15	25,000	865,000	F

N F - No Failure F - Failure

Table 8.2-13 Staircase Method Data of Group No.162 Using the R. R. Moore Machine. 35 Specimens of AISI 1038 Steel Rod with Test Section Diameter, d = .2700 in., Radius r = .031 in. Cutoff at  $3x10^6$  cycles.

Date of Test	Spec. No.	Added Pan Load Ibs	Alternating Stress	Cycles of Operation x 10 ⁻⁵	Remarks*
1972 4/3	21	12.22	23,000	3,820,000	N F
4/3	10	14.15	25,000	1,049,000	F
4/4	23_	12.22	23,000	3,122,000	N.F.
4/4	22	14.15	25,000	1,585,000	F
4/4	20	12.22	23,000	3,273,000	NF
4/5	3	14.15	25,000	1,479,000	F
4/5	32	12.22	23,000	2,336,000	F
4/6	2 :	10.29	21,000	3,787,000	NF
4/6	38	12.22	23,000	3,113,000	N F
<u></u>		,			
	<u> </u>				
					,
		,			
					,
				:	

^{*} N F - No Failure F - Failure

Table 8.2-14 Inspection Data for Critical and Major Characteristics of Group No. 162. 38 Specimens of AISI 1038 Steel D = .375 in.; L = 2.75 in. Drawing No. 200 .

Operator: J.D.S. Date of Test: 3/7/72

	CH	ARACTERIST	TC	
Specimen	Hardness	d= .2700	r= .031	Surface Finish
Number		in.	in.	4 u-in.
1		.2700	မှ	4
2		.2700		
3		.2706		
4		.2700		
5		.2700		
6		.2700		
7		.2700		
8		.2700		
9		.2703		
10		.2700		
11		.2705		
12		.2700		
13		.2700		
14		.2700		
15		.2700		
16		.2703		
17		.2700		
18		.2702		
19		.2698		
20		.2699		
21		.2703		
22		.2700		
23		.2700		
24		.2705		
25		.2700		.   \

Table 8.2-14 Inspection Data for Critical and Major Characteristics 352 of Group No. 162 . 38 Specimens of AISI 1038 Steel D = .375 in. ; L = 2.75 in. Drawing No. 200 .

Date of Test: 3/7/72 Operator: J.D.S.

				o _F c		
	СН	ARACTERIS	ŢIC.			
Specimen	Hardness	d= .2700	į	31	Sur Fin	face ish
Number		in.	ir	١	4 µ	-in.
26		.2705	GO		4	ļ
27		.2700				
28		.2705				
29		.2709				
· 30		.2700				
31		.2700				
32		.2705				
33		.2707				
34		.2700				
35		.2700				
36		.2700				
37		.2703				
38		.2700	V		,	
	<u> </u>		<del> </del>			
			<del> </del> -			<del></del>
i	1	1	1		- 1	

Table 8.2-15 Staircase Method Data of Group No. 163 Using the R. R. Moore Machine. 37 Specimens of AISI 1038 Steel Rod with Test Section Diameter, d = .2700 in., Radius r = .062 in. Cutoff at 3 x 106 cycles.

Date of Test	Spec. No.	Added Pan Load Ibs	Alternating Stress	Cycles of Operation	Remarks*
April 72		1.4 15	25 000	11 227 000	N. F.
7	32	14.15	25,000	11.223.000	N F
11	19	16.09	27,000	3,000,000	N F
11	33	18.02	29,000	702,000	F
12	26	16.09	27,000	12,248,000	N F
13	23	18.02	29,000	1,426,000	F
13	3	16.09	27,000	3,452,000	NF
14	30	18.02	29,000	1,481,000	F
14	5	16.09	27,000	3,000,000	NF
17	10	18.02	29,000	1,522,000	F
17	31	16.09	27,000	4,729,000	NF
18	11	18.02	29,000	1,194,000	F
18	2	16.09	27,000	639,000	F
19	1	14.15	25,000	3,138,000	NF
19	24	16.09	27,000	2,474,000	F
20	26	14.15	25,000	2,769,000	F
24	4	12.22	23,000	3,091,000	NF
24	8	14.15	25,000	2,269,000	F
25	25	12.22	23,000	9,397,000	NF
26	36	14.15	25,000	3,859,000	N F
26	27	16.09	27,000	3,465,000	NF
28	35	18.02	29,000	1,721,000	F
28	14	16.09	27,000	11,890,000	NF
May 72	37	18.02	29,000	1,881,000	F
1	12	16.09	27,000	1,386,000	F
2	34	14.15	25,000	3,045,000	NF
2	16	16.09	27,000	1,985,000	F

^{*} N F - No Failure

F - Failure

Table 8.2-15 Staircase Method Data of Group No. 163 Using the R. R. Moore Machine. 37 Specimens of AISI 1038 Steel Rod with Test Section Diameter, d=.2700 in., Radius r=.062 in. Cutoff at 3 x  $10^6$  cycles.

Date of Test	Spec. No.	Added Pan Load 1bs	Alternating Stress	Cycles of Operation	Remarks*
2	13	14.15	25,000	1,095,000	F
3	8	12.22	23,000-	3,122,000	NF
3 -	22	14.15	25,000	3,270,000	NF
3	9	16.09	27,000	1,412,000	F .
4	20	14.15	25,000	11,676,000	NF
5	15	16.09	27,000	3,101,000	NF .
5	21	18.02	29,000	2,280,000	F
8	7	15.09	27,000	3,369,000	N F
8	29	18.02	29,000	983,000	F
8	17	16.09	27,000	2,359,000	F
9	6	14.15	25,000	3,623,000	NF
		,			
					•
					•
					•

^{*} N F - No Failure

F - Failure

Table 8.2-16 Inspection Data for Critical and Major Characteristics of Group No. 163. 37 Specimens of AISI 1038 Steel D = .375 in. ; L = 2.75 in. Drawing No. 200 Drawing No. 200

Date of Test: 3/31/72 Operator: J.D.S.

l	CH	ARACTERIS'	rrc	
Specimen Number	Hardness	d= .2700 <u>⊀</u> .0005 in.	r= .062 ± .002 in.	Surface Finish 4 µ-in.
1		.2705	GO	4
2		£2705		
3		.2700		
4		.2700		
· 5		.2700		
6		.2700		
7		.2700		
8		.2700		
9		.2700		
10		.1700		
11		.2700		
12		.2700		
13		.2705		
14		.2700		
15		.2700		
16		.2703		
17		.2700		
18		.2703		
19		.2700		
20		.2700		
21		.2705		
22		.2700		
23		.2700		
24		.2700		
25		.2700		V

Table 8.2-16 Inspection Data for Critical and Major Characteristics 356 of Group No. 163. 37 Specimens of ATSI 1038Steel ; L = 2.75 in. D = .375 in. Drawing No. 200

> Operator: J.D.S. Date of Test: 3/31/72

	CH	ARACTERIST	rc	
Specimen Number	Hardness	d= .2700 + .0005 in.	r= .062 ± .002	Surface Finish
			in.	4 u-in.
26		.2700	GO	4
27		.2700		
. 28		. 2705		
29		.2700		
. 30		.2702		
31		.2700	_	
32		.2700		
33		•2700	· ·	
34		.2700		
35		.2700		
36		.2705		
37		.2700		<b>V</b>
		,	`	
		]		
				ľ
L	<u> </u>	<u> </u>	<u> </u>	

Table 8.2-17 Staircase Method Data of Group No. 164 Using the R. R. Moore Machine. 37 Specimens of AISI 1038 Steel Rod with Test Section Diameter, d = 0.2700 in., Radius r = 0.125 in. Cutoff at 3 x 100 cycles.

## Operator:

Date of Test	Spec. No.	Added Pan Load 1bs	Alternating Stress	Cycles of Operation	Remarks*
5/10/72	1 /	19.23	30,000	4,340,000	NF
5/11/72	22	21.16	32,000	949,000	F
5/11/72.	37	19.23	30,000	12,873,000	NF
5/12/72	21	21.16	32,000	623,000	F
5/15/72	34	19.23	30,000	3,137,000	NF
/15/72	13	21.16	32,000	3,773,000	NF ·
/15/72	14	23.09	34,000	1,153,000	F
/16/72	29	21.16	32,000	2,337,000	F
/16/72	23	19.23	30,000	2,095,000	F
/06/72	18	17.29	28,000	3,055,000	NF
6/06/72	9	19.23	30,000	313,000	F
/06/72	8	17.29	28,000	3,122,000	NF
/06/72	19	19.23	30,000	4,478,000	NF
/07/72	36	21.16	32,000	3,097,000	NF
0/07/72	15	23.09	34,000	705,000	.F
/07/72	24	21.16	32,000	1,251,000	F
/08/72	33	19.23	30,000	3,077,000	NF
/08/72	11	21.16	32,000	1,922,000	F
/09/72	25	19.23	30,000	3,546,000	NF .
10/72	31	21.16	32,000	1,722,000	F
11/72	17	19.23	30,000	2,900,000	F
6/12/72	7	17.29	28,000	3,121,000	NF
6/12/72	30	19.23	30,000	3,139,000	NF
12/72	32	21.16	32,000	1,249,000	F
6/12/72	35	19.23	30,000	2,126,000	F
/13/72	16	17.29	28,000	3,021,000	NF

^{*} N F - No Failure

F - Failure

Table 8.2-17 Staircase Method Data of Group No. 164 Using the R. R. Moore Machine. 37 Specimens of AISI 1038 Steel Rod with Test Section Diameter, d = 0.2700 in., Radius r = 0.125 in. Cutoff at 3 x 106 cycles.

Date of Test	Spec. No.	Added Pan Load 1bs	Alternating Stress	Cycles of Operation	Remarks*
6/13/72	4	19.23	30,000	2,430,000	F
5/13/72	27	17.29	28,000	8,084,000	NF
6/16/72	10	19.23	30,000	3,000,000	NF
5/16/72	3	21.16	37,000	946,000	F
5/19/72	26	19.23	30,000	2,740,000	F
5/20/72	5	17.29	28,000	3,057,000	NF
5/20/72	12	19.23	30,000	3,054,000	NF
5/20/72	2	21.16	32,,000	577,000	F
5/21/72	20	19.23	30,000	2,883,000	F
5/22/72	6	17.29	28,000	13,523,000	NF
5/23/72	20	19.23	30,000	3,239,000	NF
<u> </u>	<u>'</u>				
ļ					
<u>_</u>					
<b></b>	<u> </u>		· · · · · · · · · · · · · · · · · · ·		
· 	<u></u>	······································			
<u></u>					
					~
4				•	
		,			

^{*} N F - No Failure

F - Failure

Table 8.2-18 Inspection Data for Critical and Major Characteristics of Group No. 164 . 37 Specimens of AISI 1038 Steel D = .375 in. L = 2.75 in. Drawing No. 200 .

Date of Test: 3/7/72 Operator: J.D.S.

	CH	ARACTERIST	יוכ	
Specimen Number	Hardness	d= :2700 ± :0090	1250 ± .002	Surface Finish
		in.	in.	u-in.
1		.2695	GO	
2		.2703		
3		.2700		
4		.2700		
5		.2705	<u> </u>	
6		-2700		
7		.2700		
8		.2700	·	
9		.2705		
10		.2703		·
11		.2705	`	
12		.2705	,	
13		.2700		
14		.2700		
15		.2700		
16		.2700		
17		.2700		,
18		.2705		
19		.2702		
20		.2700		
21		.2704		
22	1	.2698		-
23	ŧ	.2700		
24		.2700		
25		.2700	1	

Table 8.2-18 Inspection Data for Critical and Major Characteristics of Group No. 164. 37 Specimens of AISI 1938 Steel D = .375 in. ; L = 2.75 in. Drawing No. 200 .

Date of Test: 3/7/72 Operator: J.D.S.

ru							
CHARACTERISTIC  d= 2700 r= .1250 Surface							
Hardness	d= .2700 ± .0090 in.	$r_{\frac{\pi}{2}}$ .1250 in.	Surface Finish µ-in.				
	.2695	GO					
	.2700						
	.2699						
	.2702		ŕ				
	•2705						
	.2700						
,	.2696						
	.2700						
	.2695						
	.2700	_					
	.2700						
	.2695	1					
<u> </u>							
·							
	<u> </u>	<u> </u>					
	<u> </u>						
		<u> </u>					
			,				
		Hardness d= .2700 ± .0090 in.  .2695 .2700 .2699 .2702 .2705 .2700 .2696 .2700 .2695 .2700 .2695 .2700 .2700	Hardness d= .2700 r= .1250 in.				

Table 8.2-19 Staircase Method Data of Group No. 165 Using the R. R. Moore Machine. 36 Specimens of AISI 1038 Steel Rod with Test Section Diameter, d = .2700 in., Radius r = .250 in. Cutoff at 3X10 cycles.

Date of Test	Spec. No.	Added Pan Load 1bs	Alternating Stress	Cycles of Operation	Remarks*
June 26	15	23.82	35,000	1,011,000	r
27	21	21.88	33,000	3,620,000	NF
27	18	23,82	35,000	959,000	F
28	11	21.88	33,000	3,411,000	NF .
28	25	23,82	35.000	1,105,000	F
29	1	21.88	33,000	1,006,000	F.
29	24	19.95	31,000	3,003,000	nf
29	.23	21.88	33,000	1,544,000	F
30	19	19.95	31,000	4,203,000	NF NF
July 3	22	21,88	33,000	3,100,000	. NF
3	26	23.82	35,000	1,423,000	F
3	34	21.88	33,000	1,329,000	Y
5	16	19.95	31,000	998,000	P.
5	14	18.02	29,000	3,163,000	NF
5	9	19.95	31,000	10,763,000	NF
6	17	21.88	33,000	2,725,060	<u> </u>
6	2	19.95	31,000	1,960,000	<b>F</b>
7	13	18.02	29,000	3,073,000	NF
7	8	19.95	31,000	9,115,000	nf
10	10	21.88	33,000	1,706,000	<u> </u>
10	.36	19.95	31,000	13,035,000	NF NF
11	6	21,88	33,000	1,459,000	E
	7	19.95	31,000	7,789,000	NF
12	20	21.88	33,000	3,042,000	<u>nf</u>
12	31	23.82 .	35,000	1,282,000	P
17	4	21.88	31,000	2,571,000	F

^{*} N F - No Failure F - Failure

- America

Table 8.2-19 Staircase Method Data of Group No. 165 Using the R. R. Moore Machine. 36 Specimens of AISI 1038 Steel Rod with Test Section Diaméter, d=.2700 in., Radius r=.250 in. Cutoff at  $3\times10^6$  cycles.

Date of Test	Spec. No.	Added Pan Load Ibs	Alternating Stress	Cycles of Operation	Remarks*
17	12	19.95	31,000	9,203,000	NF
18	27	21,88	33,000	2,283,000	ŗ,
19	5	19.95	31,000	3,052,000	ŅF
19	29	21,88	33,000	1,394,000	ŗ
20	3	19.95	31,000	5,061,000	nf
21	30	21.88	33,000	1,027,000	Y .
24	28	19.95	31,000	3,883,000	NF
34	33	21.88	33,000	1,083,000	<u> </u>
26	35	19.95	31,000	3,074,000	NF
26	32	21.88	33,000	1,005,000	<u>P</u>
					•
	ļ				
	<u> </u>				
<b> </b>	<del> </del>	<u> </u>			
	-		\		~~~
	<u> </u>				
	-				
	<u> </u>				
	<del> </del>	<u> </u>			
	-				
	-				
		<u> </u>			

^{*} N F - No Failure

F - Failure

Table 8.2-20 Inspection Data for Critical and Major Characteristics of Group No. 165 . 36 Specimens of AISI 1038 Steel D = .375 in. ; L = 2.75 in. Drawing No. 200 ; Date of Inspection 6/26/72

CHARACTERISTIC							
Specimen Number	Hardness	d= .2700 + .0010 in.	r= .2500 + .002 - in.	Surface Finish p-in.			
1		.2709	GO	4			
2		.2700					
3		.2705					
4		.2697					
. 5		.2700					
6		.2705					
7		.2700	,				
8		.2695					
9		,2698					
10		.2700					
11		.2708					
12		.2702					
13		.2700					
14		.2700					
15		,2700					
16		.2705					
17		,2693					
18		.2705					
19		.2700					
20		.2697					
21		.2698					
22		.2696					
23	,	.2700					
24		.2703					
25		.2700					

Table 8.2-20 Inspection Data for Critical and Major Characteristics 364 of Group No. 165 . Specimens of AISI 1038 Steel D = .375 in. ; L=2.75 in. Drawing No. 200 ; Date of Inspection 6/26/72 .

	CH	CHARACTERISTIC						
Specimen Number	Hardness	d=.2700 1.0010 in.	r=.250 002 in.	Surface Finish p-in.				
26		:2700	·G0	4				
27		.2703						
28		.2698						
29		.2695						
· 30		.2700						
31		.2700						
32		.2705						
33		.2702						
34		.2700						
35		.2695						
36		.2698						
•								
· · · · · · · · · · · · · · · · · · ·								
<del></del>								
			*					
		ļ						
			<u> </u>					

Table 8.2-21 Staircase Method Data of Group No. 166 Using the R. R. Moore Machine. 35 Specimens of AISI 1038 Steel Rod with Test Section Diameter, d=.2700 in., Radius r=1.87 in. Cutoff at  $3 \times 10^6$  cycles.

Date of Test	Spec. Ño.	Added Pan Load 1bs	Alternating Stress	Cycles of Operation x 10 ⁻⁵	Remarks*
July 72 27	2	26.72	38,000	1,061,000	F
28	5	24.77	36,000	3,011,000	NF
28	. 6	26.72	38,000	1,682,000	F
31	7	24.78	36,000	1,310,000	F
August 1	1	22.85	34,000	3,585,000	N F
2	. 3	24.78	36,000	3,072,000	N F
2	8	26.72	38,000	646,000	F
2	4	24.78	36,000	835,000	F
3	16	22.85	34,000	3,047,000	ΝĚ
3	11	24.78	36,000	11,784,000	NF
4	24	26.72	38,000	20,089,000	N F
7	29	28.65	40,000	3,072,000	NF
7	14	30,58	42,000	311,000	F
7	20	28,65	40,000	587,000	F
8	. 10	26.72	38,000	1,855,000	F
9	18	24.78	36,000	3,120,000	NF
9	19	26.72	38,000	733,000	F /
10	12	24.78	36,000	1,726,000	F
14	27	22.85	34,000	3,213,000	N F
15	32	24.78	36,000	3,521,000	N F
16	17	26.72	78,000	3,102,000	NF
18	9	28.65	40,000	655,000	Fン
22	31	<b>25.72</b>	38,000	3,492,000	NF
25	23	28,65	40,000	637,000	F
25 .	26	26.72	38,000	1,390,000	F
28	37	24.78	36,000	3,171,000	NF

^{*} N F - No Failure

r - railure

Table 8.2-21 Staircase Method Data of Group No. 166 Using the R. R. Moore Machine. 35 Specimens of AISI 1038 Steel Rod with Test Section Diameter d = .2700 in., Radius r = 1.87 in. Cutoff at 3 x 10 cycles.

Date of Test	Spec. No.	Added Pan Load 1bs	Alternating Stress	Cycles of Operation x 10 ⁻⁵	Remarks*
28	33	26.72	38,000	1,077,000	F
28	34	24.78	36,000	2,741,000	F
29 -	21	22.85	34,000	14,163,000	N F
30	25	24.78	36,000	4,233,000	NF
31	36	26.72	38,000	315,000	F
Sept.					•
5	40	24.78	36,000	3,003,000	NF
6	35	26.72	38,000	712,000	F
6	22	24.78	36,000	3,020,000	N F
8	30	26.72	38,000	1,122,000	F
10	13	24.72	36,000	4,212,000	N F
		· ·			
			, , , , , , , , , , , , , , , , , , ,		
<u> </u>					
	<u> </u>				
	ļ				<u> </u>
<u></u>					
-	<del> </del>				
-					

^{*} N F - No Failure

F Failure

Table 8.2-22 Inspection Data for Critical and Major Characteristics  $_{367}$  of Group No. 166 .  $_{35}$  Specimens of AISI 1038 Steel D = .373 in. ; L = 2.75 in. Drawing No. 200 .

Operator: Joe Stultz Date of Test: July 27, 1972

		r. Joe Stu.	100	are or	1050.	July	
	CHARACTERISTIC						
Specimen Number	Hardness	d= .2700 + .0010 in.	r= 1.8 + 002 - i	37 ? n	Fin:	Surface Finish p-in.	
		.2703	GC	)	4		
2		.2705					
3		.2700					
4		.2705			<u> </u>		
5		.2697				,	
6		.2700 ·			ļ		
7		.2700					
8		.2705					
9		.2702					
10		.2700					
11-		.2700					
12		2700	٤				
13		.2700					
14		.2705			<u> </u>		
15	•	BAD SPE	CIMEN				
16		.2700		"			
17		.2700					
18		.2700					
19		.2698					
20		.2700					
21		.2705					
22		,2697					
23		.2700					
2 <b>4</b>		.2705					
25		.2700		<u></u>		×	

Table 8.2-22 Inspection Data for Critical and Major Characteristics of Group No.166 . 35 Specimens of AISI 1038 Steel 0 = .373 in. ; L = 2.75 in. Drawing No. 200 .

Operator: Joe Stultz Date of Test: July 27, 1972

	Operato	or: Joe St	tultz Date of	Test: July			
	CHARACTERISTIC						
Specimen Number	Hardness	d= .2700 + .0010 -in.	r= 1.87 + 002 - in.	Surface Finish p-in.			
26		.2700	GO	4			
27		,2703					
28		BAD SP	ECIMEN				
29		.2708					
30		.2700					
31		.2705					
32		.2700					
33		2695					
34		.2700					
35		.2700					
36		.2700					
37		.2700		<u> </u>			
				<u> </u>			
				<u> </u>			
		<u> </u>	ļ	<u> </u>			
				<b> </b>			
<b></b>		· · · · · · · · · · · · · · · · · · ·					

8.3 AXIAL FATIGUE MACHINE DATA

7

*;

Using the Tinius Olsen Machine Static Ultimate Strength Test Data of Group No. 156 35 Specimens of AISI 1018 Steel. 8.3-1 Table

...

Date of	Test: 10-	10-24-70	Operator:	R. W.		Obser	Observer(s):			
Specimen		Original	۲۶۰۱۸	V:014	113					
•	Diameter	Cross	Load	Stress	Ultimate	Ultimate	Breaking	Breaking	Breaking	Breaking
Number	in.	Section 2		psi	1b	psi	1b	nameter in.	Area in.	Stress
7	.2500	.0491	2 250	200 37	300					
,	30.76			42,062	2,920	59,470	1,750	.122	.0117	149,573
3 6	75470	.0487	2,230	45,791	2,930	60,164	1,720	.1.9	.0111	154.055
٠	.2497	.0490	2,300	46,939	2,960	60,408	1,750	.121	.0115	159 17%
4	.2496	.0490	2,250	45,918	2,940	60.000	1.690	12%	222	4/4/767
5	.2497	,0490	2,260	46,122	2.940	60.000	1 730	101	1710.	139,669
9	.2493	.0487	2,260	46.407	2, 970	200 09	7,720	177.	.0115	149,565
7	.2494	.0487	2 240	76 005	2726-	000,000	1,730	+771	.0121	144,628
88	10%	1870	0476-	956 604	7,960	60,780	1,710	.121	.0115	148,696
	76470	,040°	2,270	46,612	2,960	60,780	1,710	.123	.0119	143.697
,	.2500	.0491	2,230	45,418	2,910	59,267	1,720	.122	0117	17.7 000
10	.2496	0670.	2,220	45,306	3.600	61.224	1 730	5		141, 000
H	.2500	.0491	2,210	45.010	2 0%0	50 070	25767	077	.0113	153,097
12	.2493	.0487	2.250	1,6 201	2,240	0/0/67	7,730	.122	.0117	149,573
13	27,07	0070	2216	107601	2,330	00, 164	1,730	.121	,0115	150,435
	• 273/	• 0430	2,270	46,327	2,980	60,816	1,740	.121	.0115	151 30%
14	.2503	.0491	2,300	46,843	2,970	69,489	1.690	125	0133	102,000
15	.2503	.0491	2,260	46,029	2,970	60.489	1,720	191	25.50	137,398
16	.2484	• 0484	2,270	46,901	2.950	60.331	1 720	100	CTTO	149,565
17	.2503	.0491	2.230	817 57	2 070	200,000	77/64	777.	•0115	149,565
18	2500	10,70	2 320	07160	6,570	90,489	1,730	, 124	.0121	142,925
10		+	6., LOU	43,381	2,900	59,063	1,720	.120	.0113	152.212
	. 2495	.0489	2,200	44,990	2,970	60,736	1,730	.122	.0117	147 863
20	.2494	.0488	2,200	45,082	3,000	61,475	1.730	199	1111	500674
21	.2489	• 0486	2,230	45,885	2,970	61,111	1.760	191	+	37
							20,164	• 127	-0110-	153,043

...

Using the Tinius Olsen Machine Static Ultimate Strength Test Data of Group No. 156 35 Specimens of AISI 1018 Steel. 8.3-1 Table

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Date of Test:	- [	10-24-70	Оре	Operator: .1	.R. W.	Obser	Observer(s).			
men.	Specimen Original	Original	Yield	Yield	Ultimate	Ultimate	25	Breaking	Breaking	Breaking
Number	in.	Section 2		Stress   psi	Load 1b	Stress	Load 1b	Diameter in.	Area in.	Stress
	.2497	0870	2 250	6.6 010						
	7636		2,2,0	40,012	2,970	60,736	1,770	.127	.0127	139.370
Ç	.2505	.0493	2,250	45,639	2,990	679,09	1,740	.122	20117	917 871
	.2492	• 0489	2,270	46,421	2,990	61.145	1 760	120		240,740
	.2494	.0488	2,220	45.492	2.980	61 066	1,000	77.	.0113	155,752
26	.2491	.0487	2.210	45, 380	2 980	27,000	1,730	121	.0115	152,174
	10,6			22.6	2000	167 (10	1,740	.124	.0121	143,802
	1647.	.0489	2,250	46,012	3,010	61,554	1.750	120	0113	157. 063
	.2486	• 0485	2,180	44,948	2,900	59,794	1.680	125	0193	136 561
	.2486	.0485	2,200	45,361	2.930	60 412	1 720		6440	430,383
	.2493	.0488	2 200	, s 000	2006	774 (20	1,760	ero.	.oiii	154,955
T			2026	47,004	4,300	60,656	1,760	.124	.0121	145,455
	****	• 0488	2,180	44,672	2,910	59,631	1,730	.124	1010	17.9 075
	.2491	.0487	2,180	44,764	2,930	60,164	1.690	.122	0117	277 777
	.2497	.0489	2,150	43,967	2.300	59.305	1 720	12:	13.00	***
	.2496	- 0489	2 210	701 37	000	2006	27/64	177.	0.115	149,565
T	2%01	$\dagger$	†	+27,424	4,380	60,941	1,730	.121	.0115	150,435
1	16434	1040	2,200	45,174	2,920	59,959	1,680	.117	.0108	155,555
_	<del></del>	~						<u>:</u>		
						•	-	-	-	_

Yield Stress

Mean* = 45,600 psi Std. Dev ** = 780 psi

* rounded to nearest 100 psi ** rounded to nearest 10 psi

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Ultimate Stress

Mean* = 60,400 psi Std. Dev.** = 630 psi

Breaking Stress

Mean* = 148,300 psi Std. Dev.** = 5,160 psi

Table 8.3-2 Test Data for Hardness and Ultimate Strength
Elongation of Group No. 156 35 Specimens of
AISI 1018 Steel. D = .373 in. ; L = 9.0 in. + 1/16
Drawing No. 100 ; Date of Test 10-22-70 .

		ĆHARACTERI	STIC	
Specimen Number	Rockwell Hardness B Scale	Brinell Hardness BHN	ΔL on 2 in. Gage Length	Elongation %
1	72	126	0.988	24.4
2	69	118	B.O.	
3	72	126	0.655	32.7
4	73	128	0.548	27.4
5	69	118	0.593	29.6
6	70	121	0.616	30.8
7	74	131	0.634	51,7
8	73	128	0.597	29.9
9	75	134	0.598	29.9
10	74	131	0.588	29.4
11	72	126	B.O.	
12	76	137	0.552	27.6
13	74	131	0.560	28.0
14	70	121	0.530	26.6
15	71	124	0.564	28.7
16	74	131	0.564	28.7
17	66	111	0.672	33.6
18	70	121	0.630	31.5
19	71	124	0,538	26.9
20	72	126	0.639	31.9
21	70 [.]	12-1	0.519	25,9
22	73	125	0.540	27.0
23	74	131	0.559	27.9
24	72	126	0.514	25.7
25	74	131	0.582	29.1

Table 8.3-2 Test Data for Hardness and Ultimate Strength
Elongation of Group No. 156 35 Specimens of
AISI 1018 Steel. D = .373 in. ; L = 9 in. + 1/16
Drawing No. 100 ; Date of Test 10-22-70 .

		CHARACTER1	STIC	
Specimen Number	Rockwell Hardness B Scale	Brinell Hardness BHN	ΔL on 2 in. Gage Length	Elongation %
26	- 74	131	0.543	27.2
27	73	128	0,.583	29.2
28	72	126	0.500	25.0
29	74	131	0.544	27.2
30	74	131	0.579	28.9
31	73	128	0.539	26.9
32	70	121	0.570	28.5
33	74	131	0.570	28.5
. 34	73	128	0.632	31.6
35	72	126	B.O.	
		•		

. Cutoff at 2 x 10⁶ Cycles. 35 Specimens of AISI 1018 Steel Rod with Test Section Diameter, d = 0.075 in., Staircase Method Data of Group No. 159. Using the Axial Fatigue Machine. Stress Ratio  $r_s = 1.0$ Radius r = 2.70 in. 8.3-3 Table

大き こうい

Remarks*	N FI	<u>L</u>	N E	N E	N 12	T.	EL.	N F	ĽL.	T Z	1 Z	N F	L	El .	±	u. 2	11	L Z	r z	T.
Oper- ator	77.74	1	$\frac{1}{1}$	1	1		1	1				1	1	1	1	1	$\frac{1}{2}$	1		7
Cycles of Operation	2.017.000	1,030,000	2.612,000	2,021,000	2,325,000	1,471,030	663,000	2,394,000	200,000	2,025,000	2,301,000	2 321 000	340,000	413,000	533,000	2,035,000	366,000	2,122,000	2,001,000	841,000
Stress Vector psi	30,096	31,057	30,096	31,057	32,017	32,978	32,017	31,057	.32,017	31,057	32,017	32,978	33,938	32,978	52,017	11,057	32,017	31,057	32,017	32,978
Alternating Stress psi	21,281	21,960	21,281	21,960	22,639	23,319	22,639	21.,950	22,639	21,960	22,639	23,319	23,998	23,319	22,639	21,960	22,639	21,960	22,639	23,319
Alternating Load lb	94	97	94	97	100	103	100	97	100	97	100	103	106	103	100	97	100	97	100	103
Mean Stress psi	21,281	21,960	21,281	2,,960	22,639	23,319	22,639	21,960	22,639	21,960	22,639	23,319	23,998	23,319	22,639	21,960	22,639	21,960	22,639	23,319
Mean Load 1b	94	97	94	97	100	103	100	97	100	97	100	103	106	103	100	2.6	100	97	100	103
Spec.	1	2	3	4	2	9	7	8	6	107	11	12	13	14	15	16	17	18	19	20
Date of Test	une 72	12	13	14	17	18	19	20	21	21	21	23	24	24	26	26	27	27	28	29

NF - No Failure F - Failure

. Cutoff at 2 x 10⁶ Cycles. 35 Specimens of AISI 1018 Steel Rod with Test Section Diameter, d = 0.075 in., Staircase Method Data of Group No. 159. Using the Axial Fatigue Machine. Radius r = 2.70 in. Stress Ratio  $r_s = 1.0$ Table 8.3-3

																	 	 3/5
Remarks*	2	Ľ	N E	N F	Ez	Z F	ſ <b>z</b> ,	H N	ᄄ	ᄄ	L Z	LZ	にって	Ŀ	Ľ.	L Z		
Oper- ator	N V															<b>-</b> >		
Cycles of Operation	841,000	650,000	2,347,000	3,133,000	211,000	2,061,000	452,000	2,439,000	1,328,000	137,000	2,004,000	2,717,000	2,437,000	1,849,000	1,719,000	2,934,000		
Stress Vector psi	32,978	32,017	31,057	32,017	32,978	32,017	32,978	32,017	32,978	32,017	31,057	32,017	32,978	33,938	32,978	32,017		
lternating Alternating Load Stress 1b psi	23,319	22,639	21,960	22,639	23.319	22,639	23,319	22,639	23,319	22,639	21,960	22,639	23,319	23,998	23,319	22,639		
Alternating Load 1b	103	100	97	100	103	100	103	100	103	100	97	100	103	106	103	100		
Meun Stress psi	23,319	22,639	21,960	22,639	23,319	22,639	23,319	22,639	23,319	22,639	21,960	22,639	23,319	23,998	23,319	22,639		
Mean Load 1b	103	100	97	100	103	100	103	100	103	100	97	100	103	106	103	100		
Spec. No.	20	21	22	23	24	25	56	27	28	29	30	31	32	33	34	35		
Date of Test	June 72 29	30		July 72	8	3	4	2	9	7	Sapt. 72	24	25	26	27	28		

* N F - No Failure F - Failure

T

The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Cutoff at 2 × 10⁶ Cycles. 35 Specimens of AISI 1018 Steel Rod with Test Section Diameter, d = 0.075 in., Staircase Method Data of Group No.160 . Using the Axial Fatigue Machine. Stress Ratio  $r_s = 2.0$ 2.70 in. II Su Radius 8.3-4 Table

<del></del>		<del>,</del>		··-,					<u></u> ,	<del></del> ,	<del>,</del>							,		3/6
Romarks*	NF	££.	Ľ.	Ľ Z	ĹŦ.	L N	L Z	ت	ſĿ.	ᄄ	L Z	L Z	L Z	ĮL.	ı z	t Z	t.	<u>.</u>	Ľ.	ㄸ
Oper- ator	E E	R.W.	R.W	א.₩.	R.W.	R.W.	R.W.	R.W.	R.W.	A.N.V.	A.N.V.	A.N.V.	A.N.A	A.N.V.	N.N. V	A.N.V	A.N.V	A.N.V	A.N.V	A.N.V
Cycles of Operation	7, 820, 000	881,000	671,000	2,385,000	646,000	2,346,000	2,459,000	119,000	568,100	304,000	4,917,000	2,633,000	2,462,000	638,000	2,472,000	3,245,000	315,000	582,000	93,000	247,000
Stress Vector psi	28,100	29,100	28,100	27,100	28,100	27,100	28,100	29,100	28,100	27,100	26,100	27,100	28,100	29,100	28,100	29,100	30,100	29,100	28,100	27,100
lternating Alternating Load Stress 1b psi	25,133	26,028	25,133	24,239	25,133	24,239	25,133	26,028	25,133	24,239	23,344	24,239	25,133	26,028	25,133	26,028	26,922	26,028	25,133	24,239
Alternating Load 1b	111.0	115.0	111.6	107.1	111.0	107.1	111.0	115.0	111.0	107.1	103.1	107.1	111.0	115.0	111.0	115.0	118.9	115.0	111.0	107.1
Mean Stress psi	12,567	13,014	12,567	12,120	12,567	12,120	12,567	13,014	12,567	12,120	11,672	12,120	12,567	13,014	12,567	13,014	13,461	13,014	12,567	12,120
Mean Load 1b	55,5	57.5	55.5	53.5	55.5	53.5	55.5	57.5	55.5	53.5	51,5	53.5	55.5	57.5	55.5	57.5	59.5	57.5	55.5	53.5
Spec. No.	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
Date of Test	Dec. 71 17	20	21	22	23	Jan.72	4	5	9	Feb 72	26	29	Mar. 72	2	3	4	17	18	May 72	22

* N F - No Failure F - Failure

. Cutoff at 2 x 10⁶ Cycles. 35 Specimens of AISI 1018 Steel Rod with Test Section Diameter, d = 0.075 in., Staircase Method Data of Group No.160 . Using the Axial Fatigue Machine. 2.0 Stress Ratio r_s = Radius r = 2.70 in. 8.3-4 Table

	1	T	T	T	T	T	Т	7		Γ-	T	Т	T	7				_	Т	<u> </u>	7		;
Remarks*				7.	L Z			_ F	i. Z				, .	N 15	NF			ţı					
Oper- ator			-	_		ANVE	ANVE	ANVINE	A.N.V.	A.N.V. F				A N N N	A.N.V. N	A.N.V. F	ANVF	A. N. V. R. B.		A.N.V. F	+		
Cycles of Operation				2.660.000	2,168,000	135.000	627,000	2,590,000	2,569,000	420 000			Π	T	T	301,000	1,692,000	2,269,100 A		4,096,000 A			
Stress Vector psi			001. 30	27 100	28 100	20,100	27,100	26,100	27,100	28,100	27,100	26 100	27 100	27,100	28,100	29,100	28,100	27,100	28.100	200			
Alternating Alternating Load Stress 1b psi			23.344	24.239	25 133	24 220	27 744	23,344	24,239	25.133	24.239	23, 334	020 70	25,123	27, 202	20,028	25.133	24,239	25,133	$\vdash$			
Alternating Load 1b			103.1	107.1	111.0	107.1	103.1	102 1	10/:1	111.0	107.1	103.1	107.1	111 0	115.0	111	111.0	10/.1	111.0				
Mean Stress psi			11,672	12,120	12,567	12,120	11,672	12,120	1,4	12,567	12,120	11,672	12,120	12,567	13.014	12 567	12 120	12,120	12,567				
Load 1b			51.5	53.5	55.5	53.5	51.5	53.5	מ ני	23.23	23.5	51.5	53.5	55.5	57.5	55.5	53.5		55.5	-		-	
Spec.			21	22	23	24	23	26	27	1	28	59	30	31	32	33	$\vdash$	+	3			-	
of Test			23	24	25	26	28	29	30	Jury 72	Aug. 72	2	6	10	11	1.1	13	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+				

* N F - No Failure F - Failure

36 Specimens of AISI 1018 Steel Rod with Test Section Diameter, d = 0.075 in., Cutoff at 2 x 10⁶ Cycles. Staircase Method Data of Group No. 161. Using the Axial Fatigue Machine. 8 Stress Ratio r_s = 2.70 in. Radius r = 8.3-5 Table

E · 本人をおる 日・日と日と様で

	1	T	T	1	T-	<del></del>	<del></del>	1	<del></del>	<del>"</del>	т-	<del></del>	<b>7</b> —	·	<del></del>	·		<del></del>		37	8
Remarks*	u 2	T Z	. u	n 2	L 2	Z 2	F	<u> </u>	, L: Z	. u	<u> </u>	<u> </u>	i N		E.	<u> </u>	<u> </u>		E 2	H.	
Oper- ator	3	] ,	R.W.				1	<u> </u>					1		<del> </del>					1	1
Cycles of Operation	2.855.000	2,689,000	000,689	7,695,000	2,637,000	2,699,000	20.000	585.000	7.645.000	5.235.000	178.000	681,000	2.593.000								1
Stress Vector psi	23,386	24,383	25.379	24,383	25,379	26.375	27, 371	26,375	25,379	26,375	27,371	26,375	25,379	26,375	25,379	24,383	25,379	26,375	25,379	26,375	A
Alternating Alternating Load Stress 1b psi	23,386	24,383	25.379	24,383	25,379	26,375	27,371	26,375	25,379	26,375	27,371	,26,375	25,379	26,375	25,379	24,383	25,379	26,375	25,379	26,375	
Alternating Load 1b	103.3	107.7	112,1	107.7	112.1	116.5	120.9	116.5	112.1	116.5	120.9	116.5	112.1	116.5	112.1	107.7	112.1	116.1	112.1	116.5	
Mean Stress psi	0																			· · · · · · · · · · · · · · · · · · ·	
Mean Load 1b	0																	<del> </del>		<b>-</b> →	9
Spec. No.	1	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	Ect lumb
Date of Test UCL	19	26	4	5	17	18	22	23	24	27	29	30	1,1	2	2	3	4	9	7	8	* N E N

F - No Failure

F - Failure

1

1

-

1.4

. Cutoff at  $2 \times 10^6$  Cycles. 36 Specimens of AISI 1018 Steel Rod with Test Section Diameter, d = 0.075 in., Staircase Method Data of Group No.161 . Using the Axial Fatigue Machine. 8 Radius r = 2.70 in. Stress Ratio  $r_s =$ 8.3-5 Table

	<del></del>	<del>,</del>	<u>,</u>			<b>.</b>	<del></del>										 	 37
Remarks*	Ľ	Ţ.	n 5	Ţ	. 2		1	ti Z	7	n n	ជ	1	N E	1 Z	- L	ii z		
Oper- ator	3	2	2	2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			2 2	> 2		<del>-</del>	) N		<del>-}</del>				
Cycles of Operation	469,000	1 415 000	2.109.000			2.012.000	320 000	2.899.000	1.763.000									
Stress Vector psi	27,371	26 275	25,379	26.375	25.379	26.375	27.371	26.375	27,371	26.375	27.371	26.375	25.379	26.375	27.371	26,375		
lternating Alternating Load Stress 1b psi	27,371	26.375	25,379	26,375	25,379	26.375	27,371	26,375	27,371	26,375	27,571	26.375	25,379	26.375	27,371	26,375		
Alternating Load 1b	120.9	116.5	112.1	116.5	112.1	116.5	120.9	116.5	120.9	116.5	120,9	116.5	112.1	116.5	120.9	116.5		
Mean Stress psi	0															•		
Mean Load 1b	0															->		
Spec. No.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36		
Date of Test	13	Aug. 72	16	17	19	20	21	22	24	Sept. 72	19	20	21	2	0ct. 72	ស		

*N F - No Failure F - Failure

Cutoff at 2 x 10⁶ Cycles. 25 Specimens of AISI 4130 Steel Rod with Test Section Diameter, d = 0.047 lh., Staircase Method Data of Group No. 63. Using the Axial Fatigue Machine. Stress Ratio  $r_s = 0.2$ r = 2.70 in. Radius 8.3-6 Table

															<del></del>	<u> </u>	٠		<del></del>	380
Remarks*	ц	E Z	N E	ţr	NE	п	N F	Ľ	ħ	n n	Ľ.	n n	ניה	NF	H N	ŭ	ב צ	д.	Ľ.	LZ
Oper- ator	W E B	1	$\frac{1}{1}$	1	1	1				-						$\frac{1}{2}$				->
Cycles of Operation	444,000	2,257,000	2,078,000	10,000	2, 325, 000	5,000	2.020,000	123,000	4 000	5,945,000	3,000	2,118,000	891,000	2,404,000	2,019,000	3,000	2,583,000	14,000	259,000	2,167,000
Stress Vector psi	81,128	78, 776	81,128	83,479	81,128	83,479	81,128	83,479	81, 128	78,776	81,128	78,776	81,128	78,776	81,128	83,479	81,128	83,479	81,128	78,776
ternating Alternating Load Stress 1b psi	15,910	15.449	15,910	16,371	15,910	16.371	15,910	16,371	15.910	15,449	15,910	15,449	15,910	15,449	15,910	16.371	15,910	16,371	15,910	15,449
Alternating Load 1b	27.6	26.8	27.6	28.4	27.6	28.4	27.6	28.4	27.6	26.8	27.6	26.8	27.6	26.8	27.6	28.4	27.6	28.4	27.6	26.8
Mean Stress psi	79,552	77,246	79,552	81,858	79,552	81,858	79,552	81,858	79,552	77,246	79,552	77,246	79,552	77,246	79,552	81,858	79,552	81,858	79,552	77,246
Mean Load 1b	138	134	138	142	138	142	138	142	138	134	138	134	138	134	138	142	138	142	138	134
Spec. No.	12	30,	31	16	&	11	5	6	7	20	36	37	24	15	19	23	46	42	25	41
S F	Feb. 71 27		Mar, $^{\prime 1}$	3	3	4	4	S	S	5	7	7	8	6	10	11	11	12	12	12

* NF - No Failure F - Failure

Secretary !

interest of

The second

大きな かったい

Cutoff at 2 x 10⁶ Cycles. 25 Specimens of AISI 4130 Steel Rod with Test Section Diameter, d = 0.047 in., Staircase Method Data of Group No. 63 . Using the Axial Fatigue Machine. Stress Ratio  $r_s = 0.2$ r = 2.70 in. Radius Table 8.3-6

						_										381
Remarks*	Ħ	NE	N F	(L	Ľ.		-	·			•		,	,		
Oper- ator	W. E. R	\ i			<b>-</b> ×											
Cycles of Operation	3,000	2,447,000	2 000 000	3,000	000 6											
Stress Vector psi	81,128	78,776	81,128	83,479	81.128		,									
tornating Alternating Load Stress 1b psi	15,910	15,449	15.910	16,371	15.910	,	à			,			-			
Alternating Load 1b	27.6	26.8	27.6	28.4	27.6		,		1							
Mean Stress psi	79,552	77,246	79,552	81,858	79,552											
Mean Load 1b	138	134	138	142	138											
Spec. Nc.	27	28	32	48	26								,			
Date of Test	13	15	16	17	17											

* NF - No Failure F - Failure

#### 9.0 REDUCED TEST DATA

This section presents the results of processing test data experimental test data with the data reduction and analysis computer programs. Calibration data are presented in summary tables with the parameters calculated for the normal distribution. Results of cyclesto-failure testing are shown in histogram overscribed with distribution curves for the normal, lognormal (base e), and Weibull distributions. The calculated distribution parameters and goodness-of-fit test results are listed below the curves.

9.1 WIRE FATIGUE MACHINE DATA

Table 9.1-1 Angle of Deflection Vs. Mean Measured Strain in Wire Fatigue Research Machine Calibration Specimen for Each One of the Four Machines.

Angle of Deflection		Mean Strain* - (u-in/in.)										
Degrees	Machine #1	Machine #2	Machine #3	Machine #4								
0	0	0	0	Ō								
4	137.5	116.5	139	111.5								
. 8	280.5	274.5	323	260.5								
12	493.5	621	681	546.5								
16	848	1,001	1012.5	880								
18	1,025	1175.5	1,175	1056.5								
20	1,202	1,346	1342.5	1,219								
22	1365.5	1,517	1,501	1374.5								
24	1,530	1,686	1,663	1539.5								
26	1,679	1,834	1,814	1,696								

^{*}Data came from Tables 1 thru 4.

Table 9.1-2 Summary of Static Axial Calibration Data For The 0.040 in. Diameter Wire Specimen Used in Calibrating the Wire Fatigue Machines.

Pan Weight 1b	Stress psi	Group #1 u - in/in			up #2 in/in	Grou µ -	p #3 in/in	Gro	up #4 in/in
		L*	UL**	L	UL .	L	UL	L	UL
0.00	0	0	0	0	0	0	0	G	0
7.00	5,499	26	28	25	27	25	29	28	29
10.50	8,248	71	69	67	72	69	75	75	76
14.00	10,997	117	121	116	118	115	122	121	122
17.50	13,746	168	174	166	170	165	173	169	174
21.00	16,496	215	222	213	219	212	223	218	225
24.50	19,245	265	272	260	272	261	272	270	276
28.00	21,995	317	323	316	320	311	321	320	324
31.50	⁻ 24,744	371	374	368	372	364	374	374	378
35.00	27,493	423	426	420	424	411	414	426	430

^{*}Loading cycle

^{**}Unloading cycle

Calculation of The Standard Deviation For Strain For Each Stress Level Given in Table 7. Table 9.1-3

Г	1	<del></del>	.	-			1	<del></del>			<del>-</del> -		
-	16,496 psi Strain in 11-15/12	$(x, -x)^2$	11 390	071 21	28 800	062.02		40.040	21,390	.140	43.890	=19.98	= 4.5
	Strain in "	(x' <u>x</u> )	-3.375	3.625	-5.375	.625	252 7	6/6.0-	4.625	- ,375	6.625	$\frac{\Sigma(X-\overline{X})^2}{n}$	Std.Dev. # 4.5
	ab ps. in u-in/in	$(x, -\overline{x})^2$	3.515	17.015	15.015	.015	27 76	20110=	9.765	.765	17.015	2.645	3.3
77 21	Strain in u-i	(x, -x)	-1.875	4.125	-3.875	.125	-4.875	201	3.123	875	4.125	$\Sigma(X-\overline{X})^{\frac{1}{2}}$	Std.Dev.=
nsi	Strain in u-in/in	$(x_1-\overline{x})^2$	4	4	6.	1	16	a	6	4	6	7 .	= 2.6
10.997 isu	Strain i	$(x_i - \overline{x})$	-2	2	-3	-1	4-	2	,	2	ະ	$\frac{\Sigma(X-\overline{X})^2}{\eta} =$	Std. Dev.
psi		$(x_i - \overline{x})^2$	. 5625	7.5625	22.5625	.0625	7.5625	10.5625		10.5625	18.0625	9.687	3.1
8,248.	Strain in	$(x_1 - \overline{x})$	75	-2.75	-2.75	.25	-2.75	3.25	100	3.63	4.25	$\frac{\Sigma(X-\overline{X})^2}{n} =$	Std.Dev.=
osi	Strain in u-in/in	$(x_1-x)^2$	1.265	.765	4.515	.015	4.515	3.515	765	60/.	3.515	2.358	:1.5
5,499 psi	Strain in	(x ₁ = x)	-1.125	,875	-2.125	125	-2.125	1.875	875	2/2	1.875	$\frac{\Sigma(x-\overline{x})^2}{n} =$	Std. Dev.=1.5

Table 9.1-3 Continued

27,493 psi	Strain in µ-in/in	$\overline{x}$ $(x_i - \overline{x})^2$		5 18.0625	5 3.0625	5 5.0625	5 115.5625	5 60.0625	5 18.0625	5 68.0625	$\frac{z(x-\overline{x})^2}{n} = 36.18$	Std.Dev. = 6.0
- 7	Stra	$(x_{i}-\overline{x})$	1.25	4.25	-1.75	2.25	-10.75	7.75	4.25	8.25	(-x)2	Std.
24,744 psi	Strain in µ-in/in	$(x_1-\overline{x})^2$	.765	4.515	15.01	.0156	62.01	4.515	4.515	39.51	= 16.356	н 4.0
24,74	Strain	$(x_1 - \overline{x})$	875	2.125	-3,875	.125	-7.875	2,125	2.125	6.125	$\frac{\Sigma(x-\overline{x})^2}{n}$	Std.Dev. = 4.0
o psi	Strain in u-in/in	$(x_1 - \overline{x})^2$	, <b>4</b>	16	<b>6</b>	1	64	4	Н	25	= 15.5	3.9
21,995 psi	Strain i	$(x_1 - \overline{x})$	-2	7	-3	г	8-	2	1	လ	$\frac{\Sigma(X-\overline{X})^2}{n}$	Std.Dev. = 3.9
19,245 psi	n p-in/in	$(x_{i}-\overline{x})^{2}$	12.25	12.25	72.25	12.25	56.25	12.25	2.25	56.25	= 29.5	= 5.4
19,245	Strain i	$(x_1-x)$	-3.5	3.5	-8.5	3.5	-7.5	3.5	1.5	7.5	$\frac{\Sigma(X-X)^2}{n}$	Std.Dev. = 5.4

Table 9.1-4 Static Axial Stress areas Measured Strain for The Wire Specimen Used in Calitating The Wire Fatigue Research Machines. Mean wire diameter  $\overline{D}$  = .040263 in.

Pan Weight Pounds	Static Stress psi	Mean Strain* μ - in/in	Standard Deviation of Strain μ - in/in
0	0	0	0
7.00	5,499	27	1.5
10.50	8,248	72	3.1
14.00	10,997	119	2.6
17.50	13,746	170	3.3
<b>21.00</b>	16,496	218	4.5 .
24.50	19,245	269	5.4
28.00	21,995	319	3.9
31.50	24 ,744	372	4.0
35.00	27,493	422	6.0

^{*}Average of values given in Table 9.1-5

Table 9.1-5 Actual Specimen Stress Versus Test Specimen Deflection Angle for Each Wire Fatigue Research Machine.

Angle of Deflection		Stress in psi Using The Mean Strain From Calibration And The Static Axial Stress Versus Strain Calibration Chart.									
Degree	Machine #1	Machine #2	Machine #3	Machine #4							
0	. 0	0	0	. 0							
4	11,882	10,714	11,965	10,442							
8	19,801	19,469	22,154	18,693							
12	31,597	38,657	41,980	34,532							
16	51,228	59,701	60,338	53,001							
18	61,030	69,365	69,337	62,775							
20	70,833	78,807	78,613	71,774							
22	79,887	88,277	87,391	80,385							
24	83,997	97,636	96,362	89,523							
26	97,248	105,832	104,725	98,190							

Table. 9.1-6 Reduced Data for Group 87 . AISI 1038 Steel, Wire Fatigue Machine No.2.

Staircase method at 2 x 10 cycles Specimen: D = 0.0626 Number of Useful Specimens: 69

Alternating Stress psi	i	n i Failures	in	i ² n _i
57,500	5	4	20	100 ·
55,000	4	8	32	128
52,500	3	13	39	117
50,000	2	4	8	16
47,500	1	3	3	3
45,000	0	1	. 0	0
		•		
	-	N = 33	A = 102	B = 364

d = stress increment = 2,500 psi

 $X_0 = 1$  owest stress level = 45,000 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N - 1/2] = 45,000 + 2,500 \left[ \frac{102}{33} - \frac{1}{2} \right]$$
  
 $\overline{X} = 51,477 \text{ psi } \approx 51,000 \text{ psi*}$ 

s = standard deviation (estimate)

s = 1.620 d[(NB-A²) /N² + 0.029] = 1.620 (2,500) 
$$\left[ \frac{(33) (364) - (102)^2}{(33)^2} + 0.029 \right]$$
  
s = 6,097.6 psi = 6,100 psi**

This information supersedes the information reported in Table 15.3.1.2.1, p. 392 of [IV].

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi



Fig. 9.1-1 Calibration Chart of Stress Vs. Measured Strain for Calibration of Fatigue Research Machines (See Table 9).

-



MEAN VALUE: 760785.7 CYCLES STANDARD DEVIATION: 392078.4 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.132
CHI-SQUARED TEST: 3.870
SKEWNESS: 0.692
KURTOSIS: 2.452

FIG. 9.1-2 CYCLES-TO-FAILURE DIST OF GROUP NO. 129
USING WIRE FATIGUE MACHINE NO. 1 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4130 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 67,700 PSI. BEND ANGLE
19.5 DEGREES. COAST-DOWN CYCLES 100.





MEAN VALUE: 13.408 CYCLES STANDARD DEVIATION: 0.541 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.058

CHI-SQUARED TEST: 2.208
SKEWNESS: -0.288

KURTOSIS: 2.805

FIG. 9.1-3 CYCLES-TO-FAILURE DIST OF CROUP NO. 129
USING WIRE FATIGUE MACHINE NO. 1 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4130 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 67,700 PSI. BEND ANGLE
19.5 DEGREES. COAST-DOWN CYCLES 100.





KOLMOGOROV-SMIRNOV TEST: 0.078 CHI-SQUARED TEST: 2.127 WEIBULL SLOPE (BETA): 1.725 MINIMUM LIFE (GAMMA): 99000 SCALE PARAMETER (ETA):

FIG. 9.1-4

CYCLES-TO-FAILURE DISTRIBUTION SL=67700 PSI GROUP=129

751226



MEAN VALUE: 481634.3 CYCLES

STANDARD DEVIATION: 254057.1 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.168

CHI-SQUARED TEST: 0.931

SKEWNESS: 1.299

KURTOSIS: 4.752

FIG. 9.1-5 CYCLES-TO-FAILURE DIST OF GROUP NO= 130
USING WISE MACHINE NO. 1 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4130 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 70,000 PSI. BEND ANGLE
20.0 DEGREES. COAST DOWN CYCLES 200





MEAN VALUE: 12.962 CYCLES STANDARD DEVIATION: 0.502 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.101

CHI-SQUARED TEST: 1.323

SKEWNESS: 0.065

KURTOSIS: 2.731

FIG. 9.1-6 CYCLES-TO-FAILURE DIST OF GROUP NO= 130
USING WIRE MACHINE NO. 1 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4130 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 70,000 PSI. BEND ANGLE
20.0 DEGREES. COAST DOWN CYCLES 200

#### WEIBULL DISTRIBUTION PARAMETERS



KOLMOGOROV-SMIRNOV TEST: 0.124

CHI-SQUARED TEST: 8.102

WEIBULL SLOPE (BETA): 1.638

MINIMUM LIFE (GAMMA): 101899

SCALE PARAMETER (ETA): 429638

FIG. 9.1-7

CYCLES-TO-FAILURE DISTRIBUTION

GROUP=130

SL=70000 PSI



MEAN VALUE: 276888.6 CYCLES

STANDARD DEVIATION: 152228.3 **CYCLES** 

KOLMOGOROV-SMIRNOV TEST: 0.165

CHI-SQUARED TEST: 1.624

SKEWNESS: 1.025

KURTOSIS: 3.491

FIG. 9.1-8 CYCLES-TO-FAILURE DIST OF GROUP NO. 131 USING WIRE MACHINE NO. 1 FOR 35 SPECIMENS OF .040 IN. DIAMETER AISI 4130 STEEL WIRE. FIXED ALTERNATING STRESS LEVEL OF 72,500 PSI. BEND ANGLE 20.5 DEGREES. COAST DOWN CYCLES 100.

CYCLES-TO-FAILURE X 10





MEAN VALUE:

12.393 CYCLES

STANDARD DEVIATION:

0.533 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.096

CHI-SQUARED TEST:

2.801

SKEWNESS:

0.146

KURTOSIS:

2.062

FIG. 9.1-9 CYCLES-TO-FAILURE DIST OF GROUP NO. 131
USING WIRE MACHINE NO. 1 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4130 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 72,500 PSI. BEND ANGLE
20.5 DEGREES. COAST DOWN CYCLES 100.





KOLMOGOROV-SMIRNOV TEST: 0.066

CHI-SQUARED TEST: 3.674

WEIBULL SLOPE (BETA): 1.134

MINIMUM LIFE (GAMMA): 90099

SCALE PARAMETER (ETA): 201481

FIG. 9.1-10

CYCLES-TO-FAILURE DISTRIBUTION

GROUP=131

SL=72500 PSI

#### NORMAL DISTRIBUTION PARAMETERS



MEAN VALUE:

151697.1 CYCLES

STANDARD DEVIATION:

59163.8 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.172

CHI-SQUARED TEST:

3.204

**SKEWNESS:** 

1,526

KURTOSIS:

6.232

FIG. 9.1-11 CYCLES-TO-FAILURE DIST OF GROUP NO= 132
USING WIRE MACHINE NO. 1 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4130 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 74,700 PSI. BEND ANGLE
21.0 DEGREES. COAST DOWN CYCLES 200





MEAN VALUE: 11.867 CYCLES STANDARD DEVIATION: 0.351 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.112
CHI-SQUARED TEST: 1.725
SKEWNESS: 0.496
KURTOSIS: 2.861

FIG. 9.1-12 CYCLES-TO-FAILURE DIST OF GROUP NO= 132
USING WIRE MACHINE NO. 1 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4130 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 74,700 PSI. BEND ANGLE
21.0 DEGREES. COAST DOWN CYCLES 200





KOLMOGOROV-SMIRNOV TEST: 0.114 CHI-SQUARED TEST: WEIBULL SLOPE (BETA): 1.642 MINIMUM LIFE (GAMMA): 65399 SCALE PARAMETER (ETA): 96714

FIG. 9.1-13

CYCLES-TO-FAILURE DISTRIBUTION GROUP=132

SL=74700 PSI

## NORMAL DISTRIBUTION PARAMETERS



MEAN VALUE:

141077.1 CYCLES

STANDARD DEVIATION:

64047.8 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.171

CHI-SQUARED TEST:

1.462

**SKEWNESS:** 

0.905

KURTOSIS:

3.091

FIG. 9.1-14 CYCLES-TO-FAILURE DIST OF GROUP NO= 133
USING WIRE MACHINE NO. 1 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4130 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 77.800 PSI. BEND ANGLE
21.5 DEGREES. COAST DOWN CYCLES 200





MEAN VALUE: 11.761 CYCLES

STANDARD DEVIATION: 0.445 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.086

CHI-SQUARED TEST: 0.464

SKEWNESS: 0.029

KURTOSIS: 2.497

FIG. 9.1-15 CYCLES-TO-FAILURE DIST OF GROUP NO= 133
USING WIRE MACHINE NO. 1 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4130 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 77.800 PSI. BEND ANGLE
21.5 DEGREES. COAST DOWN CYCLES 200





KOLMOGOROV-SMIRNOV TEST: 0.112 CHI-SQUARED TEST: 3.390 WEIBULL SLOPE (BETA): 1.670 MINIMUM LIFE (GAMMA): 39099 SCALE PARAMETER (ETA): 114833

FIG. 9.1-16

CYCLES-TO-FAILURE DISTRIBUTION GROUP=133 SL=77800 PSI





MEAN VALUE:

608431.4 CYCLES

7

STANDARD DEVIATION:

352142.8 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.165

CHI-SQUARED TEST:

0.828

SKEWNESS:

1.284

KURTOSIS:

4.315

FIG. 9.1-17 CYCLES-TO-FAILURE DIST. OF GROUP NO. 136
USING WIRE FATIGUE MACHINE NO. 2 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1038 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 64,500 PSI. BEND ANGLE
17.0 DEGREES. COAST-DOWN CYCLES 100.

# LOG NORMAL DISTRIBUTION PARAMETERS



MEAN VALUE:

13.168 CYCLES

STANDARD DEVIATION:

0.561 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.074

CHI-SQUARED TEST:

2.072

SKEWNESS:

-0.042

KURTOSIS:

2.704

FIG. 9-1-18 CYCLES-TO-FAILURE DIST. OF GROUP NO. 136
USING WIRE FATIGUE MACHINE NO. 2 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1038 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 64,500 PSI. BEND ANGLE
17.0 DEGREES. COAST-DOWN CYCLES 100.



-

-

]



KOLMOGOROV-SMIRNOV TEST: 0.102

CHI-SQUARED TEST: 3.708

WEIBULL SLOPE (BETA): 1.509

MINIMUM LIFE (GAMMA): 113600

SCALE PARAMETER (ETA): 549476

FIG. 9.1-19

CYCLES-TO-FAILURE DISTRIBUTION

SL=64500 PSI

GROUP=136





MEAN VALUE:

357925.7 CYCLES

STANDARD DEVIATION:

186783.7 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.168

CHI-SQUARED TEST:

3.907

SKEWNESS:

0.980

KURTOSIS:

3.137

FIG. 9.1-20 CYCLES-TO-FAILURE DIST OF GROUP NO. 137
USING WIRE MACHINE NO. 2 FOR
35 SPECIMENS OF .040 IN. DIAMFTER AISI
1038 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 67,200 PSI. BEND ANGLE
17.5 DEGREES. COAST DOWN CYCLES 100.



MEAN VALUE: 12.663 CYCLES STANDARD DEVIATION: 0.510 CYCLES KOLMOGRAV-SMIPNOV TEST: 0.180

KOLMOGOROV-SMIRNOV TEST: 0.109 CHI-SQUARED TEST: 3.034 SKEWNESS: 0.041

KURTOSIS: 2.497

FIG. 9.1-21 CYCLES-TO-FAILURE DIST OF GROUP NO. 137
USING WIRE MACHINE NO. 2 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1038 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 67.200 PSI. BEND ANGLE
17.5 DEGREES. COAST DOWN CYCLES 100.

## WEIBULL DISTRIBUTION PARAMETERS



KOLMOGOROV-SMIRNOV TEST: 0.127 CHI-SQUARED TEST: 4.044 WEIBULL SLOPE (BETA): 1.674

MINIMUM LIFE (GAMMA): 70099

SCALE PARAMETER (ETA): 323481

FIG. 9.1-22

CYCLES-TO-FAILURE DISTRIBUTION

GROUP=137

SL=67200 PSI



MEAN VALUE: 236162.9 CYCLES

STANDARD DEVIATION: 144220.2 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.255

CHI-SQUARED TEST: 6.637

SKEWNESS: 2-460

KURTOSIS: 10.014

FIG. 9.1-23 CYCLES-TO- FAILURE DIST OF GROUP NO. 138
USING WIRE MACHINE NO. 2 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1038 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 69,200 PSI. BEND ANGLE
18.0 DEGREES. COAST DOWN CYCLES 200.





MEAN VALUE: 12.248 CYCLES

STANDARD DEVIATION: 0.473 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.164 CHI-SQUARED TEST: 0.605

SKEWNESS: 0.834

KURTOSIS: 3.831

FIG. 9.1-24 CYCLES-TO- FAILURE DIST OF GROUP NO. 138
USING WIRE MACHINE NO. 2 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1038 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 69,200 PSI. BEND ANGLE
18.0 DEGREES. COAST DOWN CYCLES 200.



KOLMOGOROV-SMIRNOV TEST: 0.166

CHI-SQUARED TEST:

5.267

WEIBULL SLOPE (BETA):

1.328

MINIMUM LIFE (GAMMA):

83399

SCALE PARAMETER (ETA):

163986

FIG. 9.1-25

CYCLES-TO-FAILURE DISTRIBUTION

GROUP=138

SL=69200 PSI

#### NORMAL DISTRIBUTION PARAMETERS



MEAN VALUE:

176505.7 CYCLES

STANDARD DEVIATION:

77774.2 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.166

CHI-SQUARED TEST:

4.418

**SKEWNESS:** 

0.929

KURTOSIS:

2.997

FIG. 9-1-26 CYCLES-TO-FAILURE DIST OF GROUP NO= 139
USING WIRE MACHINE NO. 2 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1038 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 72.300 PSI. BEND ANGLE
18.5 DEGREES. COAST DOWN CYCLES 200





MEAN VALUE: 11.994 CYCLES

STANDARD DEVIATION: 0.416 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.135

CHI-SQUARED TEST: 4.574

SKEWNESS: 0.348

KURTOSIS: 1.985

FIG. 9.1-27 CYCLES-TO-FAILURE DIST OF GROUP NO= 139
USING WIRE MACHINE NO. 2 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1038 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 72.300 PSI. BEND ANGLE
18.5 DEGREES. COAST DOWN CYCLES 200





KOLMOGOROV-SMIRNOV TEST: 0.097

CHI-SQUARED TEST: 3.863

WEIBULL SLOPE (BETA): 1.204

MINIMUM LIFE (GAMMA): 80099

SCALE PARAMETER (ETA): 104054

FIG. 9.1-28

CYCLES-TO-FAILURE DISTRIBUTION

GROUP=139

SL=72300 PSI





MEAN VALUE: 13.246 CYCLES STANDARD DEVIATION: 0.631 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.106

CHI-SQUARED TEST: 2.436

SKEWNESS: -0.066

KURTOSIS: 2.397

FIG. 9.1-29 CYCLES-TO- FAILURE DIST OF GROUP NO. 143
USING WIRE MACHINE NO. 3 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1018 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 57,200 PSI. BEND ANGLE
15.5 DEGREES. COAST DOWN CYCLES 200.

### NORMAL DISTRIBUTION PARAMETERS



MEAN VALUE: 681940.0 CYCLES STANDARD DEVIATION: 427001.5 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.177

SKEWNESS: 1.034

CHI-SQUARED TEST:

KURTOSIS: 3.416

FIG. 9.1-30 CYCLES-TO- FAILURE DIST OF GROUP NO. 143
USING WIRE MACHINE NO. 3 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1018 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 57,200 PSI. BEND ANGLE
15.5 DEGREES. COAST DOWN CYCLES 200.

5.029

### WEIBULL DISTRIBUTION PARAMETERS



KOLMOGOROV-SMIRNOV TEST: 0.114 CHI-SQUARED TEST: 3.724 WEIBULL SLOPE (BETA): 1.415 MINIMUM LIFE (GAMMA): 98999 SCALE PARAMETER (ETA): 645345

FIG. CYCLES-TO-FAILURE DISTRIBUTION 9.1-31 GROUP=143 SL=57200 PSI





MEAN VALUE: 560405.7 CYCLES

STANDARD DEVIATION: 251043.6 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.192

SKEWNESS: 1.126

CHI-SQUARED TEST:

KURTOSIS: 3.245

FIG. 9.1-32 CYCLES-TO-FAILURE DIST OF GROUP NO. 144
USING WIRE MACHINE NO. 3 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1018 STEEL WIRE . FIXED ALTERNATING
STRESS LEVEL OF 60,000 PSI. BEND ANGLE
16.0 DEGREES. COAST DOWN CYCLES 100.

7.570





MEAN VALUE:

13.151 CYCLES

STANDARD DEVIATION:

0.409 **CYCLES** 

KOLMOGOROV-SMIRNOV TEST: 0.125

CHI-SQUARED TEST:

7.380

SKEWNESS:

0.466

KURTOSIS:

2.464

FIG. 9.1-33 CYCLES-TO-FAILURE DIST OF GROUP NO. 144 USING WIRE MACHINE NO. 3 FOR 35 SPECIMENS OF .040 IN. DIAMETER AISI 1018 STEEL WIRE . FIXED ALTERNATING STRESS LEVEL OF 60,000 PSI. BEND ANGLE 16.0 DEGREES. COAST DOWN CYCLES 100.





KOLMOGOROV-SMIRNOV TEST: 0.107

CHI-SQUARED TEST: 4.112

WEIBULL SLOPE (BETA): 1.303

MINIMUM LIFE (GAMMA): 238999

SCALE PARAMETER (ETA): 353483

FIG. 9.1-34

CYCLES-TO-FAILURE DISTRIBUTION

GROUP=144

SL=60000 PSI





MEAN VALUE: 321568.6 CYCLES STANDARD DEVIATION: 150632.0 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.153 CHI-SQUARED TEST: 3.037

SKEWNESS: 0.821 KURTOSIS: 2.824

FIG. 9.1-35 CYCLES-TO-FAILURE DIST OF GROUP NO= 145
USING WIRE MACHINE NO. 3 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1018 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 62.800 PSI. BEND ANGLE
16.5 DEGREES. COAST DOWN CYCLES 200



MEAN VALUE: 12.579 CYCLES STANDARD DEVIATION: 0.455 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.105 CHI-SQUARED TEST: 1.435 SKEWNESS: 0.205

KURTOSIS: 1.885

FIG. 9.1-36 CYCLES-TO-FAILURE DIST OF GROUP NO= 145
USING WIRE MACHINE NO. 3 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
1018 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 62.800 PSI. BEND ANGLE
16.5 DEGREES. COAST DOWN CYCLES 200



KOLMOGOROV-SMIRNOV TEST: 0.064

CHI-SQUARED TEST: 2.546

WEIBULL SLOPE (BETA): 1.111

MINIMUM LIFE (GAMMA): 135499

SCALE PARAMETER (ETA): 199629

FIG. 9.1-37

CYCLES-TO-FAILURE DISTRIBUTION

GROUP=145

SL=62800 PSI





MEAN VALUE:

394545.7 CYCLES

STANDARD DEVIATION:

158482.8 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.165

CHI-SQUARED TEST:

4.420

**SKEWNESS:** 

0.717

KURTOSIS:

2.993

FIG. 9.1-40 CYCLES-TO-FAITURE DIST OF GROUP NO. 150
USING WIRE MACHINE NO. 4 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4340 STEEL WIRE . FIXED ALTERNATING
STRESS LEVEL OF 73,500 PSI. BEND ANGLE
20.5 DEGREES. COAST DOWN CYCLES 100.



MEAN VALUE: 12.807 CYCLES STANDARD DEVIATION: 0.410 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.095
CHI-SQUARED TEST: 0.026
SKEWNESS: -0.236
KURTOSIS: 2.905

FIG. 9.1-41 CYCLES—TO—FAILURE DIST OF GROUP NO. 150
USING WIRE_MACHINE NO. 4 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4340 STEEL WIRE . FIXED ALTERNATING
STRESS LEVEL OF 73,500 PSI. BEND ANGLE
20.5 DEGREES. COAST DOWN CYCLES 100.

## WEIBULL DISTRIBUTION PARAMETERS



KOLMOGOROV-SMIRNOV TEST: 0.134 CHI-SQUARED TEST: 3.075

WEIBULL SLOPE (BETA): 2.230
MINIMUM LIFE (GAMMA): 69599

SCALE PARAMETER (ETA): 367757

FIG. 9.1-42

CYCLES-TO-FAILURE DISTRIBUTION

SL=73500 PSI

GROUP=150



MEAN VALUE: 292180.0 CYCLES

STANDARD DEVIATION: 169598.8 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.221

CHI-SQUARED TEST: 9.768

SKEWNESS: 1.912

KURTOSIS: 6.213

FIG. 9.1-43 CYCLES-TO-FAILURE DIST OF GROUP NO. 151
USING WIRE FATIGUE MACHINE NO. 4 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4340 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 78,100 PSI. BEND ANGLE
21.5 DEGREES. COAST-DOWN CYCLES 100.





MEAN VALUE: 12.465 CYCLES

STANDARD DEVIATION: 0.467 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.123

CHI-SQUARED TLST: 3.262

SKEWNESS: 0.860

KURTOSIS: 3.335

FIG. 9.1-44 CYCLES-TO-FAILURE DIST OF GROUP NO. 151
USING WIRE FATIGUE MACHINE NO. 4 FOR
35 SPECIMENS OF .040 IN. DIAMETER AIST
4340 STEEL WIRE. FIXED ALTERNATING
STRESS LLVLI OF 78,100 PSI. BEND ANGLE
21.5 DEGREES. COAST-DOWN CYCLES 100.



KOLMOGOROV-SMIRNOV TEST: 0.106

CHI-SQUARED TEST:

4.993

WEIBULL SLOPE (BETA):

1.123

MINIMUM LIFE (GAMMA):

123199

SCALE PARAMETER (ETA):

175551

FIG. 9.1-45

CYCLES-TO-FAILURE DISTRIBUTION

SL=78100 PSI

GROUP=151



MEAN VALUE: 248517.1 CYCLES

STANDARD DEVIATION: 130793.5 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.226

CHI-SQUARED TEST: 5.902

SKEWNESS: 1.524

KURTOSIS: 5.204

FIG. 9.1-46 CYCLES-TO-FAILURE DIST OF GROUP NO. 152
USING WIRE FATIGUE MACHINE NO. 4 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4340 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 80,100 PSI. BEND ANGLE
22.0 DEGREES, COAST-DOWN CYCLES 100.





MEAN VALUE: 12.309 CYCLES STANDARD DEVIATION: 0.478 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.131 CHI-SQUARED TEST: 2.967 SKEWNESS: 0.208 KURTOSIS: 3.130

FIG. 9.1-47 CYCLES-TO-FAILURE DIST OF GROUP NO. 152
USING WIRE FATIGUE MACHINE NO. 4 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4340 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 80.100 PSI. BEND ANGLE
22.0 DEGREES. COAST-DOWN CYCLES 100.





KOLMOGÚROV-SMIRNOV TEST: 0.328 69.373 CHI-SQUARED TEST: 0.559 WEIBULL SLOPE (BETA): 79899 MINIMUM LIFE (GAMMA): 429256 SCALE PARAMETER (ETA):

FIG. 9.1-48

CYCLES-TO-FAILURE DISTRIBUTION

GROUP=152

SL=80100 PSI



MEAN VALUE: 157314.3 CYCLES

STANDARD DEVIATION: 58475.9 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.081

CHI-SQUARED TEST: 0.288

SKEWNESS: 0.585

KURTOSIS: 3.241

FIG. 9-1-49 CYCLES-TO-FAILURE DIST OF GROUP NO. 153
USING WIRE FATIGUE MACHINE NO. 4 FOR
35 SPECIMENS OF .040 IN. DIAMETER AIST
4340 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 84,700 PSI. BEND ANGLE
23.0 DEGREES. COAST-DOWN CYCLES 100.



MEAN VALUE: 11.896 CYCLES

STANDARD DEVIATION: 0.388 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.067

CHI-SQUARED TEST: 0.824

SKEWNESS: -0.330

KURTOSIS: 2.643

FIG. 9.1-50 CYCLES-TO-FAILURE DIST OF GROUP NO. 153
USING WIRE FATIGUE MACHINE NO. 4 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4340 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 84.700 PSI. BEND ANGLE
23.0 DECREES. COAST-DOWN CYCLES 100.



...; . 3



KOLMOGOROV-SMIRNOV TEST: 0.059

CHI-SQUARED TEST: 1.227

WEIBULL SLOPE (BETA): 2.081

MINIMUM LIFE (GAMMA): 39099 SCALE PARAMETER (ETA):

134262

FIG. 9.1-51

CYCLES-TO-FAILURE DISTRIBUTION

SL=**847**00

GROUP=153





MEAN VALUE: 149548.6 CYCLES STANDARD DEVIATION: 72183.9 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.169

CHI-SQUARED TEST: 4.601

SKEWNESS: 1.440

KURTOSIS: 4.638

FIG. 9.1-52 CYCLES-TO-FAILURE DIST OF GROUP NO. 154
USING WIRE FATIGUE MACHINE NO. 4 FOR
35 SPECIMENS OF .040 IN. DIAMETER AISI
4340 STEEL WIRE. FIXED ALTERNATING
STRESS LEVEL OF 90.000 PSI. BEND ANGLE
24.0 DEGREES. COAST-DOWN CYCLES 100.





MEAN VALUE: 11.822 CYCLES STANDARD DEVIATION: C.423 CYCLES KOLMOGOROV-SMIRNOV TEST: 0.133 CHI-SQUARED TEST: 5.678 SKEWNESS: 0.632 KURTOSIS:

FIG. 9.1-53 CYCLES-TO-FAILURE DIST OF GROUP NO. 154 USING WIRE FATIGUE MACHINE NO. 4 FOR 35 SPECIMENS OF .040 IN. DIAMETER AISI 4340 STEEL WIRE. FIXED ALTERNATING STRESS LEVEL OF 90.000 PSI. BEND ANGLE 24.0 DEGREES. COAST-DOWN CYCLES 100.

2.607





KOLMOGOROV-SMIRNOV TEST: 0.102 CHI-SQUARED TEST: 7.581 WEIBULL SLOPE (BETA): 1.231 MINIMUM LIFE (GAMMA): 66100 SCALE PARAMETER (ETA): 90019

FIG. 9.1-54

CYCLES-TO-FAILURE DISTRIBUTION

SL=9**0**000 PSI

GROUP=154

9.2 WIEDEMANN FATIGUE MACHINE DATA

## NORMAL DISTRIBUTION PARAMETERS



MEAN VALUE:

229777.8 CYCLES

STANDARD DEVIATION:

118013.8 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.183

CHI-SQUARED TEST:

1.169

**SKEWNESS:** 

1.900

KURTOSIS:

7,284

FIG. 9.2-1

CYCLES-TO-FAILURE DIST OF GROUP NO. 89
USING THE WEIDEMANN FATIGUE MACHINE
FOR 36 SPECIMENS OF .0937 IN. NOTCH
DIAMETER AND .125 IN. NOTCH RADIUS AISI
4130 STEEL ROD. FIXED ALTERNATING
STRESS LEVEL OF 75000 PSI.





MEAN VALUE: 12.245 CYCLES

STANDARD DEVIATION: 0.434 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.095

CHI-SQUARED TEST: 0.508

SKEWNESS: 0.628

KURTOSIS: 3.155

FIG. 9.2-2

CYCLES-TO-FAILURE DIST OF GROUP NO. 89 USING THE WEIDEMANN FATIGUE MACHINE FOR 36 SPECIMENS OF .0937 IN. NOTCH DIAMETER AND .125 IN. NOTCH RADIUS AISI 4130 STEEL ROD. FIXED ALTERNATING STRESS LEVEL OF 75000 PSI.

### WEIBULL DISTRIBUTION PARAMETERS



KOLMOGOROV-SMIRNOV TEST: 0.106

CHI-SQUARED TEST: 4.389

WEIBULL SLOPE (BETA): 1.513

MINIMUM LIFE (GAMMA):

80800

SCALE PARAMETER (ETA): 164090

FIG. 9.2-3

CYCLES-TO-FAILURE DISTRIBUTION

SL=75000

GROUP=89





MEAN VALUE: 105837.8 CYCLES STANDARD DEVIATION: 53222.0 **CYCLES** 

KOLMOGOROV-SMIRNOV TEST: 0.143 CHI-SQUARED TEST: 2.610

SKEWNESS: 1.944

KURTOSIS: 9.326

FIG. 9.2-4 CYCLES-TO-FAILURE DIST OF GROUP NO. 90 USING THE WIEDEMANN FATIGUE MACHINE FOR 37 SPECIMENS OF .0937 IN. NOTCH DIAMETER AND .125 IN. NOTCH RADIUS AISI 4130 STEEL ROD. FIXED ALTERNATING STRESS LEVEL OF 85000 PSI.





MEAN VALUE:

11.461 CYCLES

STANDARD DEVIATION:

0.476 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.086

CHI-SQUARED TEST:

0.832

**SKEWNESS:** 

-0.175

KURTOSIS:

3.401

FIG. 9.2-5

CYCLES-TO-FAILURE DIST OF GROUP NO. 90 USING THE WIEDEMANN FATIGUE MACHINE FOR 37 SPECIMENS OF .0937 IN. NOTCH DIAMETER AND .125 IN. NOTCH RADIUS AISI 4130 STEEL ROD. FIXED ALTERNATING STRESS LEVEL OF 85000 PSI.

# WEIBULL DISTRIBUTION PARAMETERS



KOLMOGOROV-SMIRNOV TEST: 0.107

CHI-SQUARED TEST: 8.507

WEIBULL SLOPE (BETA): 1.825

MINIMUM LIFE (GAMMA): 19500

SCALE PARAMETER (ETA): 97719

FIG. 9.2-6

CYCLES-TO-FAILURE DISTRIBUTION

SL=85000 PSI

GROUP=90



MEAN VALUE:

21162.2 CYCLES

STANDARD DEVIATION:

8095.0

CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.138

CHI-SQUARED TEST:

2.873

**SKEWNESS:** 

0.374

KURTOSIS:

2.458

FIG. 9.2-7

CYCLES-TO-FAILURE DIST OF GROUP NO. 91
USING THE WEIDEMANN FATIGUE MACHINE
FOR 37 SPECIMENS OF .0937 IN. NOTCH
DIAMETER AND .125 IN. NOTCH RADIUS AISI
4130 STEEL ROD. FIXED ALTERNATING
STRESS LEVEL OF 90000.





MEAN VALUE:

9.880 CYCLES

STANDARD DEVIATION:

0.427 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.077

CHI-SQUARED TEST:

0.668

SKEWNESS:

-0.831

KURTOSIS:

4.341

FIG. 9.2-8 CYCLES-TO-FAILURE DIST OF GROUP NO. 91
USING THE WEIDEMANN FATIGUE MACHINE
FOR 37 SPECIMENS OF .0937 IN. NOTCH
DIAMETER AND .125 IN. NOTCH RADIUS AISI
4130 STEEL ROD. FIXED ALTERNATING
STRESS LEVEL OF 90000.





KOLMOGOROV-SMIRNOV TEST: 0.120

CHI-SQUARED TEST: 1.950

WEIBULL SLOPE (BETA): 2.786

MINIMUM LIFE (GAMMA): 0

SCALE PARAMETER (ETA): 23860

FIG. 9.2-9

CYCLES-TO-FAILURE DISTRIBUTION

SL=95000 PSI

GROUP=91



MEAN VALUE: 77500.0 **CYCLES CYCLES** STANDARD DEVIATION: 45797.6

KOLMOGOROV-SMIRNOV TEST: 0.192

CH'-SQUARED TEST: 4.128

SKEWNESS: 0.732

KURTOSIS: 2.601

FIG. 9.2-10 CYCLES-TO-FAILURE DIST OF CROUP NO. 93 USING THE WIEDEMANN FATIGUE MACHINE FOR 35 SPECIMENS OF .0937 TN. NOTCH DIAMETER AND .250 IN. NOTCH RADIUS AISI 4130 STEE! ROD. FIXED ALTERNATING STRESS LEVEL OF 70000 PSI.





MEAN VALUE: 11.077 CYCLES STANDARD DEVIATION: 0.639 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.078

CHI-SQUARED TEST: 0.574

SKEWNESS: -0.307

KURTOSIS: 2.438

FIG. 9.2-11

CYCLES-TO-FAILURE DIST OF GROUP NO. 9
USING THE WIEDEMANN FATIGUE MACHINE
FOR 35 SPECIMENS OF .0937 IN. NOTCH
DIAMETER AND .250 IN. NOTCH RADIUS AIS
4130 STEEL ROD. FIXED ALTERNATING
STRESS LEVEL OF 70000 PSI.





KOLMOGOROV-SMIRNOV TEST: 0.114 CHI-SQUARED TEST: 6.484 WEIBULL SLOPE (BETA): 1.444 MINIMUM LIFE (GAMMA): 10000 SCALE PARAMETER (ETA): 75545

FIG. 9.2-12

CYCLES-TO-FAILURE DISTRIBUTION SL=70000 PSI GROUP=93





MEAN VALUE: 10.157 CYCLES STANDARD DEVIATION: 0.346 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.097

CHI-SQUARED TEST: 1.931

SKEWNESS: -0.012

KURTOSIS: 2.691

FIG. 9.2-13 CYCLES-TO-FAILURE DIST OF GROUP NO. 94
USING THE WIEDEMANN FATIGUE MACHINE
FOR 35 SPECIMENS OF .0937 IN. NOTCH
DIAMETER AND .250 IN. NOTCH RADIUS AISI
4130 STEEL ROD. FIXED ALTERNATING
STRESS LEVEL OF 80000 PSI.



MEAN VALUE: 27314.3 CYCLES STANDARD DEVIATION: 9627.7 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.113

CHI-SQUARED TEST: 1.466

SKEWNESS: 0.978

KURTOSIS: 4.546

FIG. 9.2-14 CYCLES-TO-FAILURE DIST OF GROUP NO. 94
USING THE WIEDEMANN FATIGUE MACHINE
FOR 35 SPECIMENS OF .0937 IN. NOTCH
DIAMETER AND .250 IN. NOTCH RADIUS AISI
4130 STEEL ROD. FIXED ALTERNATING
STRESS LEVEL OF 80000 PSI.

## WEIBULL DISTRIBUTION PARAMETERS



KOLMOGOROV-SMIRNOV TEST: 0.090 CHI-SQUARED TEST: 4.731 WEIBULL SLOPE (BETA): 2.001 MINIMUM LIFE (GAMMA): 9300 SCALE PARAMETER (ETA): 20415

FIG. 9.2-15

CYCLES-TO-FAILURE DISTRIBUTION SL=80000 PSI GROUP=94



MEAN VALUE: 5588.2 CYCLES STANDARD DEVIATION: 3173.0 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.162

CHI-SQUARED TEST: 1.729

SKEWNESS: 0.696

KURTOSIS: 2.362

FIG. 9.2-16 CYCLES-TO-FAILURE DIST OF GROUP NO. 95
USING THE WIEDEMANN FATIGUE MACHINE
FOR 34 SPECIMENS OF .0937 IN. NOTCH
DIAMETER AND .250 IN. NOTCH RADIUS AISI
4130 STEEL ROD. FIXED ALTERNATING

STRESS LEVEL OF 95000 PSI.





MEAN VALUE:

8.467 CYCLES

STANDARD DEVIATION:

0.586 CYCLES

KOLMOGOROV-SMIRNOV TEST: 0.108

CHI-SQUARED TEST: 3.189

SKEWNESS: -0.023

KURTOSIS: 1.859

FIG. 9.2-17 CYCLES-TO-FAILURE DIST OF GROUP NO. 95
USING THE WIEDEMANN FATIGUE MACHINE
FOR 34 SPECIMENS OF .0937 IN. NOTCH
DIAMETER AND .250 IN. NOTCH RADIUS AISI
4130 STEEL ROD. FIXED ALTERNATING
STRESS LEVEL OF 95000 PSI.



KOLMOGOROV-SMIRNOV TEST: 0.085 CHI-SQUARED TEST: 0.751 WEIBULL SLOPE (BETA): 1.203 MINIMUM LIFE (GAMMA): 1500 SCALE PARAMETER (ETA): 4625

0

0.

FIG. 9.2-18 CYCLES-TO-FAILURE DISTRIBUTION SL=95000 PSI GROUP=95

CYCLES-TO-FAILURE X 10

Table 9.2-1 Reduced Data for Group 162, AISI 1038Steel. Wiedemann Fatigue Machine. See Table 8.2-13.

Number of Useful Specimens: 33

D = 0.375 in.Specimen geometry:

d = 0.2700 in.

r = 0.031 in.

Alternating Stress	i	n i Failures	in _i	i ² n _i
25,000 23,000	1 0	14 2 N = 16	14 0 A = 14	14 0 B = 14

d = stress increment = 2,000 psi

 $\chi_0 = 1$  lowest stress level = 23,000 psi

 $\overline{X}$  = mean (estimate)

 $\bar{X} = X_0 + d[A/N - 1/2] = 23,000 + 2,000 \left[\frac{14}{16} - \frac{1}{2}\right]$ 

 $\overline{X} = 23,750 \text{ psi} \approx 24,000 \text{ psi*}$ 

s = standard deviation (estimate) s = 1.620 d[ (NB-A²)/N² + 0.029] = 1.620(2,000)  $\left[\frac{16(14)-14^2}{16^2} + 0.029\right]$ 

psi ≅ 400

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi



Staircase Variable Nominal alternating stress in test section, Kpsi

Reduced Data for Group 163, AISI 1038 Steel. Windemann Table 9.2-2 Fatigue Machine. See Table 8.2-15

Staircase method at  $3 \times 10^6$  cycles

Number of Useful Specimens: 35

Specimen geometry: D = 0.375 in.

d = 0.2700 in.

r = 0.062 in

Alternating Stress psi	i	n _i Successes	in _i	i ² n _i
27,000	2	9	18	36
25,000	1	5	5	5
23,000	0	3	0	. 0
			,	
		N = 17	A = 23	B = 41

d = stress increment = 2,000 psi

lowest stress level = 23,000 psi

mean (estimate)

$$\overline{X} = X_0 + d A/N + 1/2 = 23,000 + 2,000 \left[ \frac{23}{17} + \frac{1}{2} \right]$$

= 26,706 psi

s = standard deviation (estimate)  
s = 1.620 d (NB-A²)/N² + 0.029 = 1.620(2,000) 
$$\left[\frac{(17 \times 41 - 23^2)}{17^2} + 0.029\right]$$

1,976 psi



Staircase Variable Mominal alternating stress in test section, Kpsi

Table 9.2-3 Reduced Data for Group 164, AISI 1038 Steel. Wiedemann Fatigue Machine. See Table 8.2-17.

Number of Useful Specimens: 37

Specimen geometry: D = 0.375

d = 0.2700 in.

r = 0.125in.

Alternating Stress	, i	n i Failures	în _i	i ² n
34,000 32,000 30,000	2 1 0	2 9 7	4 9 . 0	8 9 0
		N = 18	A = 13	B = 17

d = stress increment = 2,000 psi

 $X_0 = 1$  lowest stress level = 30,000 psi

 $\overline{X}$  = mean (estimate)

=  $X_0 + d[\Lambda/N - 1/2] = 30,000 + 2,000 [\frac{13}{18} - \frac{1}{2}]$ 

 $\bar{X} = 30,444 \text{ psi } \approx 30,000 \text{ psi*}$ 

s = standard deviation (estimate)

s = standard deviation [estimate] s = 1.620 d[ (NB-A²)/N² + 0.029] = 1.620(2,000)[ $\frac{(18x17 - 13^2)}{18^2}$  + 0.029]

s = 1,464 psi = 1,500 psi**

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi



Staircase Variable Mominal alternating stress in test section, Kpsi

Table 9.2-4 Reduced Data for Group 165, AISI 1038 Steel. Wiedemann Fatigue Machine. See Table 8.2-19.

Number of Useful Specimens: 35

Specimen geometry: D = 0.375

d = 0.2700 in.

r = 0.250in.

Alternating Stress	i	n i Successes	în	i ² n _i
33,000 31,000 29,000	2 1 0	4 11 2	8 - 11 0	16 11 0
		N = 17	A = 19	B = 27

d = stress increment = 2,000

 $X_0 = lowest stress level = 29,000 psi$ 

mean (estimate)

=  $X_0 + d[A/N + 1/2] = 29,000 + 2,000 [\frac{19}{17} + \frac{1}{2}]$ 

 $\overline{X} = 32,240 \text{ psi} = 32,000 \text{ rsi*}$ 

s = standard deviation (escimate)

 $s = 1.620 \text{ d[ (NB-A^2)/N}^2 + 0.029] = 1.620(2,000) \left[ \frac{(17x27 - 19^2)}{17^2} + 0.029 \right]$ 

s = 1,192 psi = 1,200 psi**

* Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi



Staircase Variable Mominal alternating stress in test section, Kpsi

Table. 9.2-5 Reduced Data for Group 166, AISI 1038 Steel. Wiedemann Fatigue Machine See Table 8.2-21.

Number of Useful Specimens: 35

Specimen geometry: D = 0.375 in.

d = 0.2700 in.= 1.870 in.

Alternating Stress psi	į	n _i Successes	in _i	i ² n _i
40,000 38,000 36,000 34,000	3 2 1 0	1 3 9 4	3 6 9 0	9 12 9 0
		N = 17	A = 18	B = 30

d = stress increment = 2,000 psi

 $X_0$  = lowest stress level = 34,000 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N + 1/2] = 34,000 + 2,000 [\frac{18}{17} + \frac{1}{2}]$$

 $\overline{X} = 37,118 \text{ psi}$ 

s = standard deviation (estimate)

s = standard deviation (estimate)  
s = 1.620 d[(NB-A²) /N² + 0.029] = 1.620(2,000)[
$$\frac{(17 \times 30 - 18^2)}{17^2}$$
 + 0.029]

s = 2.141 psi

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi



Nominal alternating stress in test section, Kpsi

Staircase Variable

groove diameter 106 cycles. . Graup No Endurance strength data for AISI 1038 : d = 0.2700 in., groove radius r = 1.87

9.3 AXIAL FATIGUE MACHINE DATA

Table 9.3-1 Reduced Data for Group 159, AISI 1018 Steel. Axial Fatique Machine, See Table 8.3-3.

Number of Useful Specimens: 35

Specimen geometry: D = 0.375 in.

d = 0.075 in.

r = 2.700 in.

Stress Ratio:  $r_e = 1.0$ 

Stress Ratio. I's = 1.0					
Stress Vector psi	i	n _i Failures	in _i	i ² n	
33,940	3	2 .	6	18	
32,980	2	.7	14	28	
32,020	1	6	6	6	
31,060	0	1	0	0	
		•			
			ļ.		
		<u> </u>			
		N = 16	A = 26	B = 52	

d = stress increment = 960 psi

 $X_0 = 1$  owest stress level = 31,060 psi

 $\overline{X}$  = mean (estimate)

 $\overline{X} = X_0 + d[A/N - 1/2] = 31,060 + 960[\frac{26}{16} - 0.5]$ 

 $\overline{X} = 32,140 \text{ psi} \approx 32,000 \text{ psi}*$ 

s = standard deviation (estimate)

 $s = 1.620 d[(NB-A^2)/N^2 + 0.029] = 1.620 \times 960[\frac{832 - 676}{256} + 0.029]$ 

s = 992.68 psi = 1,000 psi**

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi



Statrcase Variable Stress (Vector) in Test Section, Kpsi

. 9.3-1 Staircase plot of endurance strength data for Group 159, AISI 1018 steel specimens: 0.075 inches and grooveradius = 2.70 inches

9.3-2 Reduced Data for Group 160 AISI 1018 Steel. Axial Fatigue Machine, See Table 8.3-4.

Number of Useful Specimens: 35

Specimen geometry: D = 0.375in,

> d = 0.075in.

> r = 2.70in.

Stress Ratio: r =

Stress Ratio. I's - 2.0				
Stress Vector psi	· i	n _i Successes	in	i ² n _i
29,100	3	1	3	9
28,100	2	5	10	20
27,100	1	7	7	7
26,100	0	4	- 0	0
		•		(:
		N = 17	A = 20	B = 36

d = stress increment = 1,000 psi

X = lowest stress level = 26,100psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N + 1/2] = 26,100 + (2,000) \left[ \frac{20}{17} + \frac{1}{2} \right]$$

 $\overline{X} = 27,777 \text{ psi} = 28,000 \text{ psi*}$ 

s = standard deviation (estimate)

$$s = 1.620 \, \text{d} \left[ \, (\text{NB-A}^2) / \text{N}^2 + 0.029 \right] = 1.620 \, (1,000) \left[ \, \frac{17 \times 36 - (20)^6}{(17)^2} + 0.029 \right]$$

 $s = 1,235 psi \approx 1,200 psi**$ 

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi



Staircase Variable

endurance strength data for Group160, AISI 1018 steel specimens:  $\approx 2.70$  inches: tested at a stress ratio  $r_{\star} \approx 2.0$ grooveradius Staircase plot of . 9.3-2 Stairs 0.075 inches and

Table 9.3-3 Reduced Data for Group 161, AISI 1018 Steel. Axial Fatigue Machine, See Table 3.3-5.

Staircase method at  $2 \times 10^6$  cycles

Number of Useful Specimens: 36

Specimen geometry: i = 0.375 in,

d = 0.075 in.

r = 2.700 in.

Stress Ratio: r_S = ∞

			, <del></del>	
Stress Vector psi	i	n _i Failures	in	i ² n
1				
27,380	2	7	14	28
26,380	1	7	7	7
i		ì	^	
25,380	0	2	. 0	0
	•			
İ	1			
		N = 16	A = 21	B = 35
			,, - <b></b>	

d = stress increment = 1,000 psi

 $X_0$  = lowest stress level = 25,380 psi

 $\overline{X}$  = mean (estimate)

 $\overline{X} - X_0 + d[\Lambda/N - 1/2] = 25,380 + 1,000[\frac{21}{16} - 0.5]$ 

¥ = 26,192 psi = 26,000 psi*

s = standard deviation (estimate)

 $5 = 1.620 \text{ d} [(NB-A^2)/N^2 + 0.029] = 1.620[\frac{(560 - 441)}{256} + 0.029]$ 

s = 799.96 psi ≅ 800 psi**

* Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi



Staircase Variable Streas (Vector) in Test Section, Kpsi

endurance strength data for Group 161, AISI 1018 steel specimens: = 2,70 inches; tested at a stress ratio of infinity. 2,70 inches; groove radius οŕ Staircase plot 0.075 inches and 9.3-3

Table 9.3-4 Reduced Data for Group 32, AISI 4130 Steel. Axial Fatigue Machine.

Number of Useful Specimens: 27

Specimen geometry: D = 0.3750 in.

d = 0.0651 in.

r = 1.87in.

2.0 Stress Ratio: r =

ottoss hatto. Is				
Stress Vector psi	i	n. Successes	in _.	i ² n
45,665	3	1	3	9
43,650	2	·3	6	12
41,635	ì	7	. 7	7
39,620	0	2 .	0	0
		N = 13	A = 16	B = 28

d = stress increment = 2,015 psi

 $X_{O} = 1$  lowest stress level =39,620 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N + 1/2] = 39,620 + 2,015 \left[ \frac{16}{13} + \frac{1}{2} \right]$$

 $\overline{X} = 43107.5 \text{ psi} = 43,000 \text{ psi*}$ 

s = standard deviation (estimate)

s = 1.620 d[ (NB-A²)/N² + 0.029] = 1.62 (2,015) 
$$\left[ \frac{13 \times 28 - (16)^2 + 0.029}{(13)^2} + 0.029 \right]$$

s = 2,180.7 psi = 2,200 psi**

This information supersedes the information reported in Table 4-20, p. 298 of [ ].

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi

Table 9.3-5 Reduced Data for Group 33, ATSI 4130 Steel. Axial Fatigue Machine,

Staircase method at 2 x 106 cycles

Number of Useful Specimens: 23

Specimen geometry: D = 0.3750 in.

d = 0.0647 in.

r = 1.87 in.

Stress Ratio: r_c = 1.0

Stress Ratio: F = 110				
Stress Vector psi	i	n. Successes	in _i	i ² n _i
53,731	2	4	8	16
51,582	1	·2	2	2
49,433	0	4	, O	0
		N = 10	A = 10	B = 18

d = stress increment = 2,149 psi

 $X_0 = 1$  owest stress level = 49,433 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N + 1/2] = 49,433 + 2,149$$
  $\left[\frac{10}{10} + \frac{1}{2}\right]$   
 $\overline{X} = 52656.5.psi = 53,000 psi*$ 

s = standard deviation (estimate)

$$s = 1.620 \,d[ (NB-A^2)/N^2 + 0.029] = 1.62 (2,149) \left[ \frac{10 \times 18 - (10)^2 + 0.029}{(10)^2} + 0.029 \right]$$
  
 $s = 2,886.1 \,psi = 2,900 \,psi**$ 

This information supersedes the information reported in Table 4-2, p. 299 of [III].

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi

Table 9.3-6 Reduced Data for Group 34, AISI 4130 Steel. Axial Fatigue Machine,

Number of Useful Specimens: 26

Specimen geometry: i = 0.3750 in.

d = 0.0642 in.

r = 1.8700 in.

Stress Ratio: r = 0.4

Stress Vector psi	i	n _i Successes	in _i	i ² n _i
74,463	3	1	3	9
72,468	2	.3	6	12
70,473	1	5	5	5
68,478	0	3	. 0	0
		•		
		N = 12	A = 14	B = 26

d = stress increment = 1,995 psi

 $X_0 = 1$  owest stress level = 68,478 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N + 1/2] = 68,478 + 1,995 \left[ \frac{14}{12} + \frac{1}{2} \right]$$

 $\bar{X} = 71,803 \text{ psi} = 72,000 \text{ psi*}$ 

$$s = 1.620 d[ (NB-A^2)/N^2 + 0.029] = 1.62 (1,995) \left[ \frac{12 \times 26 - (14)^2}{(12)^2} + 0.029 \right]$$
  

$$s = 2,697.2 psi = 2,700 psi**$$

This information supersedes the information reported in . Table 4-22, p. 300 of [III].

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 p. 1

Table 9.3-7 Reduced Data for Group 62, AISI 4130 Steel Axial Fatigue Machine,

Number of Useful Specimens: 21

Specimen geometry: b = 0.373 in.

d = 0.0628 jn.

r = 1.87in.

Stress Ratio:

Stress Vector psi	i	n _i Fai! ures	ⁱⁿ i	i ² n _i
90,770 87,530	1 0	6 4	6 0	6 0
		N = 10	A = 6	B = 6

d = stress increment = 3,240 psi

 $X_0$  = lowest stress level = 87,530 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N - 1/2] = 87,530 + 3,240$$
  $\left[\frac{6}{10} - \frac{1}{2}\right]$ 

 $\overline{X} = 87,854 \text{ psi} \approx 88,000 \text{ psi*}$ 

s = standard deviation (estimate)

$$s = 1.620d[(NB-A^2)/N^2 + 0.029] = 1.62 (3,240)$$

$$s = 1.411.93psi = 1.400 psi**$$

$$(10)^2$$

s =1,411.93psi ≅ 1,400 psi**

$$\frac{10 \times 6 - (6)^2}{(10)^2} + 0.029$$

This information supersedes the information reported in Table 15.3.3.1.1, p. 461 of [IV]

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi

^{***} Run to check the results of Group 35 reported in Table 4-23, p. 101 of [IV].

Table 9.3-8 Reduced Data for Group 63, AISI 4130 Steel. Axial Fatigue Machine, See Table

Number of Useful Specimens: 25

Specimen geometry: D = 0.375

> d = 0.047in.

> r = 2.70in.

Stress Ratio =  $r_c = 0.2$ 

		5		
Stress Vector psi	i	n. Successes	in _i	i ² n
81,130	1	6	6	6
02,200	_	_		
		_		_
78,780	0 .	6	. 0	0
				į
		N = 12	A = 6	B = 6
	<u>L</u> _			

d = stress increment = 2,350 psi

 $X_0$  = lowest stress level = 78,780 psi

 $\overline{X}$  = mean (estimate)

 $\bar{\lambda} = x_0 + d[A/N + 1/2] = 73,780 + 2,350[\frac{6}{12} + \frac{1}{2}]$ 

 $\overline{X}$  = 81,130 psi = 81,000 psi*

s = standard deviation (estimate)

s = 1.620 d[(NB-A²)/N² + 0.029] = 1.620(2,350)[ $\frac{12 \times 6 - (6)^2}{(12)^2}$  + 0.029] s = 1062.15 psi = 1,100 psi**

s = 1062.15 psi = 1,100 psi**

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi

taircase plot of endurance strongth data for Group 63, AISI 4130 stee; specimens, = 0.048 in., groove radius = 2.70 in., tested at stress ratio  $r_{\rm s}$  = 0.2.

Staircase d = 0.048

9.3-4



78.8-81,1 Stress Vector in Test Section, kpsi Staircase Variable

Table 9.3-9 Reduced Data for Group 64, AISI 4130 Steel. Axial Fatigue Machine.

Staircase method at  $2 \times 10^6$  cycles

Number of Useful Specimens: 23

Specimen geometry: D = 0.375 in.

d = 0.0664 in.

r = 1.87 in.

Stress Ratio:

r_g = ∞

Stress Vector psi	i	n. Successes	în i	i ² n _i
40,310 37,431	1 0	3. 8	3 0	3 0 B = 3

d = stress increment = 2,879 psi

 $X_0 = 1$  owest stress level = 37,431 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N + 1/2] = 37,431 + 2,879$$
  $\left[\frac{3}{11} + \frac{1}{2}\right]$ 

 $\overline{X}$  = 39,655 psi = 40,000 psi* s = standard deviation (estimate)

$$s = 1.620d[(NB-A^2)/N^2 + 0.029] = 1.62 (2,879) \left[\frac{11 \times 3 - (3)^2}{(11)^2} + 0.029\right]$$
  
 $s = 1,060.3 \text{ psi} \approx 1,100 \text{ psi**}$ 

This information supersedes the information reported in Table 15.3.3.1.3, p. 465 of [IV]

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi

^{***} Run to check the results of Group 31 reported in Table 4-19, p. 297 of [ III ]

Table 9.3-10 Reduced Data for Group 111, AISI 1038 Steel. Axial Fatigue Machine.

Staircase method at 2  $\times$   $10^6$  cycles

Number of Useful Specimens: 35

Specimen geometry: D = 0.375 in.

d = 0.065 in.

r = 2.70 in.

Stress Ratio:  $r_c = 0.1$ 

Stress ratio. Is -					
Stress Vector psi	i	n i Failures	in _.	i ² n _i	
<del></del>					
59,320	2	6	12	24	
57,800	1	· 6	6	6	
56,280	0	5	0	0	
1					
		N = 17	A = 18	B = 30	

d = stress increment = 1,520 psi

 $X_0 = 1$  owest stress level = 56,280 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N - 1/2] = 56,280 + 1,520 \left[ \frac{18}{17} - \frac{1}{2} \right]$$

 $\overline{X}$  =57,129.4psi = 57,000 psi*

s = standard deviation (estimate)

s = 1.620 d[ (NB-A²)/N² + 0.029] = 1.62 (1,520) 
$$\left[\frac{17 \times 30 - (18)^2}{(17)^2} + 0.029\right]$$
  
s = 1,656.2psi = 1,700 psi**

This information supersedes the information reported in Table 15.3.3.2.1, p. 478 of [IV].

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi

Table 9.3-11Reduced Data for Group 112, AISI 1038 Steel. Axial Fatigue Machine.

Staircase method at  $2 \times 10^6$  cycles Number of Useful Specimens: 35

Specimen geometry: b = 0.375 in.

d = 0.068 in.

r = 2.70 in.

Stress Ratio: r_e = 0.4

	011000 M	1110. Is -	V 1 7	
Stress Vector psi	i	n. Successes	in _i	i ² n _i
50,800	2	5	10	20
48,800	1	10	10	10
46,800	0	2	. 0	0
				!
		N = 17	A = 20	B = 30

d = stress increment = 2,000 psi

 $X_{c_i}$  = lowest stress level = 46,800 psi

 $\overline{X}$  = mean (estimate)

 $\overline{X} = X_0 + d[A/N + 1/2] = 46,800 + 2,000 \left[ \frac{20}{17} + \frac{1}{2} \right]$ 

 $\overline{X} = 50,153 \text{ psi} \approx 50,000 \text{ psi*}$ 

s = standard deviation (estimate)

 $s = 1.620 d[ (NB-A^2)/N^2 + 0.029] = 1.62 (2,000) \left[ \frac{17 \times 30 - (20)^2 + 0.029}{(17)^2} \right]$ s = 1,327.2 psi = 1,300 psi**

This information supersedes the information reported in Table 15.3.3.2.2, p. 480 of [FV].

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi

Table 9.3-12Reduced Data for Group 113, AISI 1038 Steel. Axial Fatigue Machine.

Staircase method at 2 x  $10^6$  cycles

Number of Useful Specimens: 35

Specimen geometry: D = 0.375 in.

d = 0.075 in.

r = 2.70 in.

Stress Ratio:  $r_c = 1.0$ 

		JUZUU M	scio. is		
Stres Vecto psi		i	n. Successes	in _i	i ² n _i
41,30		4 3	1 .4	4 12	16 36
39,40	•	2	6	12	24
38,50	00	1	4	- 4	4
37,50	00	0	2 .	0	0
•					
			N = 17	A = 32	B = 80

d = stress increment = 950 psi

 $X_{O} = 1$  owest stress level = 37,500 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N + 1/2] = 37,500 + 950$$
 $\overline{X} = 39,763.2 \text{ psi} \approx 40,000 \text{ psi}*$ 

$$\left[\frac{32}{17} + \frac{1}{2}\right]$$

s = standard deviation (estimate)

$$s = 1.620 \,d[ (NB-A^2)/N^2 + 0.029] = 1.62 (950) \left[ \frac{17 \times 80 - (32)^2}{(17)^2} + 0.029 \right]$$
  
 $s = 1.833.9 \,psi \equiv 1.800 \,psi**$ 

This information supersedes the information reported in Table 15.3.3.2.3, p. 482 of  $\begin{bmatrix} IV \end{bmatrix}$ .

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi

Table 9.3-13 Reduced Data for Group 114, AISI 1038 Steel. Axial Fatigue Machine.

Staircase method at  $2 \times 10^6$  cycles Number of Useful Specimens: 35

Specimen geometry: D = 0.375 in.

d = 0.075 in.

r = 2.70 in.

Stress Ratio: r = 2.0

Scress Ratio: 1 =					
Stress Vector psi	i	n. Successes	in	i ² n _i	
34,500	4	1	4	16	
33,500	3	-6	18	54	
32,500	2	3	6	12	
31,500	1	5	. 5	5	
30,500	0	2 .	0	0	
,		N = 17	A = 33	B = 87	

d = stress increment = 1,000 psi

 $X_0 = 1$  owest stress level = 30,500 psi

 $\overline{X}$  = mean (estimate)

 $\overline{X} = X_0 + d[A/N + 1/2] = 30,500 + (1,000) \left[ \frac{33}{17} + \frac{1}{2} \right]$  $\overline{X} = 32,941 \text{ psi } \approx 33,000 \text{ psi*}$ 

s = standard deviation (estimate)

 $s = 1.620 \,d[(NB-A^2)/N^2 + 0.029] = 1.62 (1,000) \left[ \frac{17 \times 87 - (33)^2 + 0.029}{(17)^2} \right]$   $s = 2,233.1 \,psi = 2,200 \,psi**$ 

This information supersedes the information reported in Table 15.3.3.2.4, p. 484 of  $\lceil IV \rceil$ 

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi

Table 9.3-14 Reduced Data for Group115, AISI1038 Steel. Axial Fatigue Machine.

Staircase method at  $2 \times 10^6$  cycles

Number of Useful Specimens: 35

Specimen geometry:  $\dot{v} = 0.375$  in.

d = 0.075 in.

r = 2.70 in.

Stress Ratio: r_e = ∞

Stress Ratio: r = w					
Stress Vector psi	i	n Successes	in _i	i ² n _i	
31,674	3	5	15	45	
30,543	2	[*] 6	12	24	
29,412	1	5	. 5	5	
28,281	0	1 .	0	0	
		N = 17	A = 32	B = 74	

d = stress increment = 1,131 psi

X_o = lowest stress level = 28,281 psi

 $\overline{X}$  = mean (estimate)

$$\overline{X} = X_0 + d[A/N + 1/2] = 28,281 + (1,131) \left[ \frac{32}{17} + \frac{1}{2} \right]$$

 $\overline{X} = 30975.5 \text{ psi} \approx 31,000 \text{ psi*}$ 

s = standard deviation (estimate)

s = 1.620 d[ (NB-A²)/N² + 0.029] = 1.62 (1,131) 
$$\left[ \frac{17 \times 74 - (32)^2}{(17)^2} + 0.029 \right]$$
  
s = 1,536.7 psi = 1,500 psi**

This information supersedes the information reported in Table 15.3.3.2.5, p. 486 of [IV].

^{*} Rounded off to nearest 1,000 psi

^{**} Rounded off to nearest 100 psi