

planetmath.org

Math for the people, by the people.

Levy-Desplanques theorem

Canonical name LevyDesplanquesTheorem

Date of creation 2013-03-22 15:34:50 Last modified on 2013-03-22 15:34:50

Owner Andrea Ambrosio (7332) Last modified by Andrea Ambrosio (7332)

Numerical id

Author Andrea Ambrosio (7332)

Entry type Theorem Classification msc 15-00

A strictly diagonally dominant matrix is non-singular. In other words, let $A \in \mathbb{C}^{n,n}$ be a matrix satisfying the property

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}| \quad \forall i;$$

then $det(A) \neq 0$.

Proof: Let $\det(A) = 0$; then a non-zero vector \mathbf{x} exists such that $A\mathbf{x} = \mathbf{0}$; let M be the index such that $|x_M| = \max(|x_1|, |x_2|, \cdots, |x_n|)$, so that $|x_j| \le |x_M| \quad \forall j$; we have

 $a_{M1}x_1 + a_{M2}x_2 + \cdots + a_{MM}x_M + \cdots + a_{Mn}x_n = 0$ which implies:

 $|a_{MM}| |x_{M}| = |a_{MM}x_{M}| = \left| \sum_{j \neq M} a_{Mj}x_{j} \right| \leq \sum_{j \neq M} |a_{Mj}| |x_{j}| \leq |x_{M}| \sum_{j \neq M} |a_{Mj}|$ that is

 $|a_{MM}| \le \sum_{j \ne M} |a_{Mj}|,$

in contrast with strictly diagonally dominance definition.□

Remark: the Levy-Desplanques theorem is equivalent to the well-known Gerschgorin circle theorem. In fact, let's assume Levy-Desplanques theorem is true, and let A a $n \times n$ complex-valued matrix, with an eigenvalue λ ; let's apply Levy-Desplanques theorem to the matrix $B = A - \lambda I$, which is singular by definition of eigenvalue: an index i must exist for which $|a_{ii} - \lambda| = |b_{ii}| \le \sum_{j \neq i}^n |b_{ij}| = \sum_{j \neq i}^n |a_{ij}|$, which is Gerschgorin circle theorem. On the other hand, let's assume Gerschgorin circle theorem is true, and let A be a strictly diagonally dominant $n \times n$ complex matrix. Then, since the absolute value of each disc center $|a_{ii}|$ is strictly greater than the same disc radius $\sum_{j \neq i}^n |a_{ij}|$, the point $\lambda = 0$ can't belong to any circle, so it doesn't belong to the spectrum of A, which therefore can't be singular.