Discussion 2

- Induction proof
- Asymptotic Notation and Execution Time

1. Use mathematical induction to show that: $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all nonnegative integer n

1. Use mathematical induction to show that: $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all nonnegative integer n

Base case. For n = 0, we have LHS = $2^0 = 1$ and RHS = $2^1 - 1 = 1$ = LHS

1. Use mathematical induction to show that: $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all nonnegative integer n

Base case. For n=0, we have LHS = $2^0=1$ and RHS = $2^1-1=1=1$ LHS Inductive step. Assume the claim holds for n=k, that is: $\sum_{i=0}^{k} 2^i = 2^{k+1}-1$

Prove it holds for n = k + 1, that is: $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

1. Use mathematical induction to show that: $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all nonnegative integer n

Base case. For n=0, we have LHS = $2^0=1$ and RHS = $2^1-1=1=1$ LHS Inductive step. Assume the claim holds for n=k, that is: $\sum_{i=0}^k 2^i=2^{k+1}-1$

Prove it holds for
$$n = k + 1$$
, that is: $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

LHS = $\sum_{i=0}^{k+1} 2^i$

= $\sum_{i=0}^{k} 2^i + 2^{k+1}$

= $2^{k+1} - 1 + 2^{k+1}$ (apply inductive assumption)

= $2 \cdot 2^{k+1} - 1 = 2^{k+2} - 1 = \text{RHS}$

1. Use mathematical induction to show that: $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all nonnegative integer n

Base case. For n=0, we have LHS = $2^0=1$ and RHS = $2^1-1=1=1$ LHS Inductive step. Assume the claim holds for n=k, that is: $\sum_{i=0}^k 2^i=2^{k+1}-1$

Prove it holds for
$$n = k + 1$$
, that is: $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$

LHS = $\sum_{i=0}^{k+1} 2^i$

= $\sum_{i=0}^{k} 2^i + 2^{k+1}$

= $2^{k+1} - 1 + 2^{k+1}$ (apply inductive assumption)

= $2 \cdot 2^{k+1} - 1 = 2^{k+2} - 1 = \text{RHS}$

Conclusion. The claim holds for n = k + 1. From the base case and the inductive step, the claim holds for $n \ge 0$

2. Use mathematical induction to show that: $2 \cdot 4^n \ge n2^n + 3^{n+1}$ for all integer $n \ge 3$

2. Use mathematical induction to show that: $2 \cdot 4^n \ge n2^n + 3^{n+1}$ for all integer $n \ge 3$

Base case. For n = 3, we have LHS = $2 \cdot 4^3 = 128$, RHS = $3 \cdot 2^3 + 3^{3+1} = 24 + 81 = 105$. Since 128 > 105, the base case holds.

2. Use mathematical induction to show that: $2 \cdot 4^n \ge n2^n + 3^{n+1}$ for all integer $n \ge 3$

Base case. For n = 3, we have LHS = $2 \cdot 4^3 = 128$, RHS = $3 \cdot 2^3 + 3^{3+1} = 24 + 81 = 105$. Since 128 > 105, the base case holds.

Inductive step. Let k be any integer such that $k \ge 3$. Assume the inequality holds for n = k, that is: $2 \cdot 4^k \ge k2^k + 3^{k+1}$

Prove it holds for n = k + 1, that is: $2 \cdot 4^{k+1} \ge (k+1)2^{k+1} + 3^{k+2}$

2. Use mathematical induction to show that: $2 \cdot 4^n \ge n2^n + 3^{n+1}$ for all integer $n \ge 3$

Base case. For n = 3, we have LHS = $2 \cdot 4^3 = 128$, RHS = $3 \cdot 2^3 + 3^{3+1} = 24 + 81 = 105$. Since 128 > 105, the base case holds.

Inductive step. Let k be any integer such that $k \ge 3$. Assume the inequality holds for n = k, that is: $2 \cdot 4^k \ge k2^k + 3^{k+1}$

Prove it holds for n = k + 1, that is: $2 \cdot 4^{k+1} \ge (k+1)2^{k+1} + 3^{k+2}$ LHS = $2 \cdot 4^{k+1}$ = $4 \cdot 2 \cdot 4^k$ $\ge 4 \cdot (k2^k + 3^{k+1})$ (apply inductive assumption) = $4 \cdot k2^k + 4 \cdot 3^{k+1}$ $\ge 2 \cdot 2 \cdot k2^k + 3 \cdot 3^{k+1} = 2 \cdot k2^{k+1} + 3^{k+2}$ $\ge (k+1)2^{k+1} + 3^{k+2}$ (because $2k \ge k + 1$, for $k \ge 1$)

2. Use mathematical induction to show that: $2 \cdot 4^n \ge n2^n + 3^{n+1}$ for all integer $n \ge 3$

Base case. For n = 3, we have LHS = $2 \cdot 4^3 = 128$, RHS = $3 \cdot 2^3 + 3^{3+1} = 24 + 81 = 105$. Since 128 > 105, the base case holds.

Inductive step. Let k be any integer such that $k \ge 3$. Assume the inequality holds for n = k, that is: $2 \cdot 4^k \ge k2^k + 3^{k+1}$

Prove it holds for n = k + 1, that is: $2 \cdot 4^{k+1} \ge (k+1)2^{k+1} + 3^{k+2}$ LHS = $2 \cdot 4^{k+1}$ = $4 \cdot 2 \cdot 4^k$ $\ge 4 \cdot (k2^k + 3^{k+1})$ (apply inductive assumption) = $4 \cdot k2^k + 4 \cdot 3^{k+1}$ $\ge 2 \cdot 2 \cdot k2^k + 3 \cdot 3^{k+1} = 2 \cdot k2^{k+1} + 3^{k+2}$ $\ge (k+1)2^{k+1} + 3^{k+2}$ (because $2k \ge k + 1$, for $k \ge 1$)

Conclusion. The claim holds for n = k + 1. From the base case and the inductive step, the claim holds for n > 0

3. We define a sequence U_n as follows:

$$U_0 = U_1 = 1$$

$$U_n = \frac{1}{8} U_{n-1}^2 + \frac{1}{8} U_{n-2} + 1 \quad \text{for } n \ge 2$$

Use mathematical induction to prove that: $U_n < 2$ for $n \ge 0$

3. We define a sequence U_n as follows:

$$U_0 = U_1 = 1$$

$$U_n = \frac{1}{8} U_{n-1}^2 + \frac{1}{8} U_{n-2} + 1 \quad \text{for } n \ge 2$$

Use mathematical induction to prove that: $U_n < 2$ for $n \ge 0$

Base case. For n = 0, we have $U_0 = 1 < 2$ and for n = 1, $U_1 = 1 < 2$

3. We define a sequence U_n as follows:

$$U_0 = U_1 = 1$$

$$U_n = \frac{1}{8} U_{n-1}^2 + \frac{1}{8} U_{n-2} + 1 \quad \text{for } n \ge 2$$

Use mathematical induction to prove that: $U_n < 2$ for $n \ge 0$

Base case. For n=0, we have $U_0=1<2$ and for n=1, $U_1=1<2$

Inductive step. Assume the claim holds for $n \le k$. Prove it holds for n = k + 1, that is: $U_{k+1} < 2$

3. We define a sequence U_n as follows:

$$U_0 = U_1 = 1$$

$$U_n = \frac{1}{8} U_{n-1}^2 + \frac{1}{8} U_{n-2} + 1 \quad \text{for } n \ge 2$$

Use mathematical induction to prove that: $U_n < 2$ for $n \ge 0$

Base case. For n = 0, we have $U_0 = 1 < 2$ and for n = 1, $U_1 = 1 < 2$

Inductive step. Assume the claim holds for
$$n \leq k$$
. Prove it holds for $n = k+1$, that is: $U_{k+1} < 2$ LHS $= U_{k+1} = \frac{1}{8} U_k^2 + \frac{1}{8} U_{k-1} + 1$ $< \frac{1}{8} \cdot 2^2 + \frac{1}{8} \cdot 2 + 1$ (apply inductive assumption for $n = k$ and $n = k-1$) $= \frac{7}{4} < 2 = \text{RHS}$

3. We define a sequence U_n as follows:

$$U_0 = U_1 = 1$$

$$U_n = \frac{1}{8} U_{n-1}^2 + \frac{1}{8} U_{n-2} + 1 \quad \text{for } n \ge 2$$

Use mathematical induction to prove that: $U_n < 2$ for $n \ge 0$

Base case. For n = 0, we have $U_0 = 1 < 2$ and for n = 1, $U_1 = 1 < 2$

Inductive step. Assume the claim holds for
$$n \leq k$$
. Prove it holds for $n = k+1$, that is: $U_{k+1} < 2$ LHS $= U_{k+1} = \frac{1}{8} \ U_k^2 + \frac{1}{8} \ U_{k-1} + 1$ $< \frac{1}{8} \cdot 2^2 + \frac{1}{8} \cdot 2 + 1$ (apply inductive assumption for $n = k$ and $n = k-1$) $= \frac{7}{4} < 2 = \text{RHS}$

Conclusion. The claim holds for n = k + 1. From the base case and the inductive step, the claim holds for $n \ge 0$

1. Give an *O* estimate for the number of operations (where an operation is an addition or a multiplication) used in this segment of an algorithm.

$$t := 0$$

for $i := 1$ to 3
for $j := 1$ to 4
 $t := t + i*j$

1. Give an *O* estimate for the number of operations (where an operation is an addition or a multiplication) used in this segment of an algorithm.

$$t := 0$$
for $i := 1$ to 3

for $j := 1$ to 4

$$t := t + i*j$$

executes 12 times

1. Give an *O* estimate for the number of operations (where an operation is an addition or a multiplication) used in this segment of an algorithm.

$$t := 0$$
for $i := 1$ to 3

for $j := 1$ to 4

$$t := t + i*j$$

executes 12 times

The number of operations is O(1). Specifically, there are 24 additions and multiplications.

2. Give asymptotic running time for the pseudo code below using O notation.

for
$$i := n/2$$
 to n
 $x := 2x + 7$
for $j := 1$ to $3n$
 $x := 2x + 7$

2. Give asymptotic running time for the pseudo code below using O notation.

for
$$i := n/2$$
 to n
 $x := 2x + 7$
for $j := 1$ to $3n$
 $x := 2x + 7$

The first for loop runs n/2 + 1 times. The second for loop runs 3n times. Total: O(n)

3. Give asymptotic running time for the pseudo code below using O notation.

```
for i := 1 to n
j := 1
while j < n
print("boo")
j = 2j
```

3. Give asymptotic running time for the pseudo code below using O notation.

```
for i := 1 to n

j := 1

while j < n \longrightarrow j = 1, 2, 4, 8, ..., 2^k

print("boo")

j = 2j
```

3. Give asymptotic running time for the pseudo code below using O notation.

```
for i := 1 to n

j := 1

while j < n \longrightarrow j = 1, 2, 4, 8, ..., 2^k

print("boo")

j = 2j
```

Inner loop runs $O(\log n)$ times. Outer loop runs n times. Total: $O(n \log n)$

- 4. For the following pseudo-code, give:
- a. Exact value for the number of times "OK" is printed
- b. Asymptotic value for the number of times "OK" is printed using Θ notation

```
for i := 1 to n

for j := i to n

print("OK")
```

- 4. For the following pseudo-code, give:
- a. Exact value for the number of times "OK" is printed
- b. Asymptotic value for the number of times "OK" is printed using Θ notation

```
for i := 1 to n

for j := i to n

For any i, executes n - i + 1 times

print("OK")
```

- 4. For the following pseudo-code, give:
- a. Exact value for the number of times "OK" is printed
- b. Asymptotic value for the number of times "OK" is printed using Θ notation

for
$$i := 1$$
 to n

for $j := i$ to n

For any i , executes $n - i + 1$ times print("OK")

a. The number of times "OK":

$$T(n) = \sum_{i=1}^{n} (n-i+1) = \sum_{i=1}^{n} (n+1) - \sum_{i=1}^{n} i = n(n+1) - \frac{n(n+1)}{2} = \frac{n(n+1)}{2}$$

- 4. For the following pseudo-code, give:
- a. Exact value for the number of times "OK" is printed
- b. Asymptotic value for the number of times "OK" is printed using Θ notation

for
$$i := 1$$
 to n

for $j := i$ to n

For any i , executes $n - i + 1$ times

print("OK")

a. The number of times "OK":

$$T(n) = \sum_{i=1}^{n} (n-i+1) = \sum_{i=1}^{n} (n+1) - \sum_{i=1}^{n} i = n(n+1) - \frac{n(n+1)}{2} = \frac{n(n+1)}{2}$$

b.
$$T(n) = \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$$

- 4. For the following pseudo-code, give:
- a. Exact value for the number of times "OK" is printed
- b. Asymptotic value for the number of times "OK" is printed using Θ notation

for
$$i := 1$$
 to n

for $j := i$ to n

For any i , executes $n - i + 1$ times

print("OK")

a. The number of times "OK":

$$T(n) = \sum_{i=1}^{n} (n-i+1) = \sum_{i=1}^{n} (n+1) - \sum_{i=1}^{n} i = n(n+1) - \frac{n(n+1)}{2} = \frac{n(n+1)}{2}$$

b.
$$T(n) = \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$$

We have $1/2 n^2 + 1/2 n \le 1/2 n^2 + 1/2 n^2 = n^2$ for $n \ge 0 \Rightarrow T(n) = O(n^2)$

- 4. For the following pseudo-code, give:
- a. Exact value for the number of times "OK" is printed
- b. Asymptotic value for the number of times "OK" is printed using Θ notation

for
$$i := 1$$
 to n

for $j := i$ to n

For any i , executes $n - i + 1$ times

print("OK")

a. The number of times "OK":

$$T(n) = \sum_{i=1}^{n} (n-i+1) = \sum_{i=1}^{n} (n+1) - \sum_{i=1}^{n} i = n(n+1) - \frac{n(n+1)}{2} = \frac{n(n+1)}{2}$$

b.
$$T(n) = \frac{n(n+1)}{2} = \frac{1}{2}n^2 + \frac{1}{2}n$$

We have $1/2 n^2 + 1/2 n \le 1/2 n^2 + 1/2 n^2 = n^2$ for $n \ge 0 \Rightarrow T(n) = O(n^2)$

We also have $1/2 n^2 + 1/2 n \ge 1/2 n^2$ for $n \ge 0 \Rightarrow T(n) = \Omega(n^2)$

Conclusion: $T(n) = \Theta(n^2)$

Useful summation formulas:

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1} \text{ for } a \neq 1$$