Tic Tac Toe

于11月 26, 2018由SWRhapsody发布

Introduction

刚开学这一个月真是好忙啊,我都没什么时间来写博客。这几天看了点 Reinforcement Learning 相关的知识写个小总结。因为我自己的专业不是这方面所以为了避免瞎讲,我无法在这篇博客涉及太多的概念。大部分概念可以在 Reference 中看。

Code

Tic Tac Toe!

Reinforcement Learning是机器学习的一部分,这篇博文的目标是用 Reinfocement Learning 实现个玩 Tic Tac Toe 的游戏AI,完整的代码[7],我大部分的代码都是参照[2]。

我们先写个 Board 来作为一个游戏场地

```
import numpy as np
   import pandas as pd
3
4
   class Game:
5
       def __init__(self, row, col):
6
           self.row_size = row
7
           self.col_size = col
8
           # 0 for not end
9
           # 1 for winer is first player
10
           # 2 for winer is second player
11
           # 3 for tie
12
           self.end = 0
13
           self.board = np.zeros((self.row_size, self.col_size))
14
           self.size = self.board.size
           self.mapping = {0: " ", 1: "X", -1: "0"}
15
16
17
18
       def DrawCharForItem(self, item):
19
           # 0 for ' '
20
           # 1 for 'X'
21
           # -1 for '0'
           return self.mannina[item]
```

```
poara =
28
                 {} | {} | {}
29
30
                 {} | {} | {}
31
32
                 {} | {} | {}
            """.format(*items)
33
34
            print(board)
35
36
        def CheckWin(self):
37
            result = \Pi
38
39
            for i in range(self.row_size):
40
                result.append(np.sum(self.board[i, :]))
41
            for i in range(self.col_size):
42
                result.append(np.sum(self.board[:, i]))
43
44
            result.append(0)
45
            for i in range(0, self.col_size):
                result[-1] += self.board.item((i, i))
46
47
            result.append(0)
48
            for i in range(0, self.row_size):
49
                result[-1] += self.board.item((i, self.row_size - 1 - i))
50
51
            for i in result:
52
                if i == 3:
53
                    self.end = 1
54
                    return self.end
55
                if i == -3:
56
                    self.end = 2
57
                    return self.end
58
            sum = np.sum(np.abs(self.board))
59
            if sum == self.size:
60
                self.end = 3
            return self.end
61
62
63
       def End(self):
64
            return self.end
65
       def Step(self, order, action):
66
67
            if action[0] < 0 or action[0] > self.row_size-1 or action[1] < 0 or action[1] > self.column{1}{c}
68
                print("x or y invalid")
69
                return True
70
            if self.board[action[0], action[1]] != 0:
                print("this palce has already been taken")
71
72
                return True
73
            self.board[action[0], action[1]] = order
74
            self.CheckWin()
75
            self.Print()
76
            return False
```

接下来写个Agent类作为我们的AI。

```
1 class Agent
```

现在来介绍下我们这个AI的核心公式([8])

不过在编码这公式之前我们需要一个数据结构来存储我们的收益。

定义一个 state 来存储收益。这个 state 是一个 row*col 的数组,这个数组存放当前情况下每一格的收益。

```
1 state, 当前情况下走 (0,1) 这个点的收益是 1.30938546e-07
2 [[ 1.30938546e-07 -4.93034771e-07 1.51138875e-04]
3 [-6.41862293e-08 -2.77494609e-08 -5.18934185e-07]
4 [-2.61877061e-07 -4.96284826e-05 2.59479593e-07]]
```

我们在定义一个字典来存每一种情况下的 state,为每一种情况生成一个hash,这个hash作为字典的 key

```
1
   def ComputeHash(board):
2
       board_ = board.flatten().tolist()
3
       return "".join([str(i) for i in board_])
4
5
   class Agent:
6
       def __init__(self, name, exploration_rate=0.33, learning_rate=0.5, discount_factor=0.01):
7
           self.states = {}
8
           # states stack
9
           self.state_order = []
10
           self.learning_rate = learning_rate
11
           self.exploration_rate = exploration_rate
12
           self.discount_factor = discount_factor
13
           self.name = name
```

这样我们的公式就变成了这样

接着定义一个reward函数,对于什么时候给予奖励有多种选择[9],在这个AI中我们选择在出现赢家的时候给予奖励。

```
class Agent:
2
       def set_state(self, board, action):
3
           hash = ComputeHash(board)
4
           self.state_order.append((hash, action))
5
6
       def OnReward(self, reward):
7
           hash, action = self.state_order.pop()
8
           if hash not in self.states:
               self.states[hash] = np.zeros((BOARD_ROWS, BOARD_COLS))
9
10
           self.states[hash].itemset(action,reward)
11
12
           while self.state_order:
13
               hash_prev, action_prev = self.state_order.pop()
               reward *= self.discount_factor
```

```
self.states[hash_prev] = np.zeros((BOARD_ROWS, BOARD_COLS))
reward = self.learn_by_temporal_difference(reward, hash, hash_prev).item(action)
self.states[hash_prev].itemset(action,reward)

hash = hash_prev
action = action_prev
```

这里 state_order 是我们存所走过的每一步的一个栈,存的是 (state的hash,这一步的坐标)。这个函数的组要目的是把计算出的收益存储在 self.states 中。

接下来我们定义 exploit 和 explore 函数

```
class Agent:
2
        def exploit(self, board):
3
            state_value = self.states[ComputeHash(board)]
4
            x, y = np.where(state_value == state_value.max())
5
            best_choices = [(a, b) \text{ for } a, b \text{ in } zip(x, y)]
6
            return best_choices[np.random.choice(len(best_choices))]
7
8
        def explore(self, board):
9
            x, y = np.where(board == 0)
10
            vacant = [(a, b) \text{ for } a, b \text{ in } zip(x, y)]
11
            return vacant[np.random.choice(len(vacant))]
```

最后定义个用来选择走那一步的函数,何时选择探索具体可以参考[5]中的2.2

```
class Agent:
1
2
       def SelectMove(self, board):
3
           action = None
4
           exploration = np.random.random() < self.exploration_rate</pre>
5
           if exploration or hash not in self.states:
                print("%s exploit" % self.name)
6
7
                action = self.explore(board)
8
           else:
9
                print("%s exploit" % self.name)
10
                action = self.exploit(board)
11
           # update state
12
           self.set_state(board, action)
13
           return action
```

训练下这个AI

```
def Train(round, bot1, bot2):
2
       win_trace = pd.DataFrame(data=np.zeros(
3
            (round, 2)), columns=["bot1", "bot2"])
4
       for i in range(round):
5
           print("-"*100)
6
           print("Round:{}".format(i+1))
7
           game = Game(BOARD_ROWS, BOARD_COLS)
8
           turn = 1
9
           while game.End() == 0:
10
                if turn == 1:
11
                    action = bot1.SelectMove(game.board)
12
                    game.Step(1, action)
13
                    turn = 2
14
                else:
15
                    action = bot2.SelectMove(game.board)
```

```
21
               bot2.0nReward(-1)
22
               win_trace.set_value(i, 'bot1', 1)
23
           elif game.End() == 2:
24
               bot1.0nReward(-1)
25
               bot2.0nReward(1)
26
               win_trace.set_value(i, 'bot2', 1)
27
       return win_trace
28
29 if __name__ == "__main__":
30
       bot1 = Agent("bot1")
31
       bot2 = Agent("bot2")
32
       Train(5000, bot1, bot2)
```

最后跟它玩下

```
Bot first!
   bot1 exploit
3
4
                | | X
5
6
                7
8
                9
10 Your turn(enter x,y):1,1
11
12
                 | | X
13
14
                 101
15
                \perp
16
17
18 bot1 exploit
19
20
                 | | X
21
22
                 | 0 |
23
24
                 | X
26 Your turn(enter x,y):1,2
27
                 28
29
30
                 | 0 | 0
31
32
                | | X
33
34 bot1 exploit
35
36
                 | | X
37
38
               X \mid 0 \mid 0
39
40
                | X
41
42 Your turn(enter x,y):0,1
43
44
                 I O I X
```

```
51
52
                       I O I X
53
54
                    X \mid 0 \mid 0
55
56
                     X \mid X
57
58
    Your turn(enter x,y):2,1
59
60
                       \mid 0 \mid X
61
62
                     X \mid 0 \mid 0
63
64
                     X \mid O \mid X
65
66 You win
```

尝试了比较多的次数,只有一次训练出来的智商过关(结果忘保存结果)。感觉训练的次数不够并且需要把规则教给AI,不然训练的速度太慢。

Reference

- [1] https://en.wikipedia.org/wiki/Reinforcement_learning
- [2] https://github.com/AmreshVenugopal/tic_tac_toe/blob/master/Tic%20tac%20toe.ipynb
- [3] https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/blob/master/chapter01/tic_tac_toe.py
- [4] https://en.wikipedia.org/wiki/Temporal_difference_learning
- [5] http://tokic.com/www/tokicm/publikationen/papers/AdaptiveEpsilonGreedyExploration.pdf
- [6] https://detailed.af/a-game-of-tic-tac-toe/
- [7] https://github.com/lceware/blog_code/blob/master/2018/tic_tac_toe.py
- [8] http://incompleteideas.net/book/the-book.html
- [9] https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419

分类: UNCATEGORIZED

0条评论

发表评论

名称*

电子邮件*

网站

在想些什么?

发表评论

近期文章

携程Apollo YAML 反序列化

CVE-2020-5410

CodeQL部分源码简读

服务器与网关的不一致

文章归档

2020年8月

2020年6月

2020年5月

2020年3月

2020年1月

2019年12月

2019年11月

2019年8月

2019年7月

2019年5月

2019年4月

2019年1月

2018年11月

2018年10月

2018年9月

2018年4月

2018年3月

2018年2月

2018年1月

分类目录

cryptography

Exercise

Exploit

HackTheBox

Penetration Test

Uncategorized

相关文章

UNCATEGORIZED

WordPress Social Warfare XSS

Introduction Plugin name: Social Wa 阅读更多...

UNCATEGORIZED

自动化程序修复

Automatic patch generation Introduc 阅读更多...

Criminology

Introduction 网络安全也要学习犯罪学了吗,每次写这类文章都 阅读更多...

ABOUT

Hestia |由ThemeIsle开发