графы

А. Задание графа

4 c, 1024 MB

Ориентированный граф задан списком ребер. Требуется вывести его же в виде списка смежности.

Входные данные

В первой строке заданы числа n и m — количество вершин и ребер графа ($1 \le n, m \le 100000$). Далее следуют m строк вида $u_i \ v_i$, обозначающие, что в графе есть ребро из $u_i \ v_i \ (1 \le u_i, v_i \le n)$.

Выходные данные

Выведите на первой строке количество вершин в графе $m{n}$, а затем $m{n}$ строк, на $m{i}$ -й из которых через пробел записаны: число $m{k}$ — количество исходящих ребер из $m{i}$ -й вершины, и еще $m{k}$ чисел — номера концов этих ребер в порядке возрастания.

В	ходные данные	
	3	
1	2	
1	3	
2	3	
В	ыходные данные	
3		
	2 3	
	2 3 3	

В	ходные данные
3	3
1	
2	3
3	1
В	ыходные данные
B	ыходные данные
_	597 963
3	2

В. Компоненты связности

4 c, 1024 MB

Дан неориентированный граф из \boldsymbol{n} вершин и \boldsymbol{m} ребер. Требуется покрасить каждую вершину в какой-либо цвет от $\boldsymbol{1}$ до \boldsymbol{n} , чтобы цвета вершин совпадали тогда и только тогда, когда они друг из друга достижимы.

Входные данные

В первой строке даны числа n и m ($1 \le n, m \le 1000000$). Дальше в m строках перечислены попарно разлисные пары вершин графа u_i, v_i , между которыми есть ребро ($1 \le u_i, v_i \le n$).

Выходные данные

Выведите $m{n}$ чисел через пробел — $m{i}$ -е число равно цвету $m{i}$ -й вершины.

вх	одные	данные	
3 2	2		
1 2	2		
2 3	3		

выходные данные	
1 1 1	
входные данные	

1 2 Выходные данные 1 1 2

С. Предки в дереве

4 c, 1024 MB

Дано подвешенное дерево из n вершин за вершину номер 1. Требуется ответить на m запросов вида u v — правда ли, что вершина u является предком вершины v в этом дереве?

Входные данные

В первой строке входного файла заданы число $m{n}$ — количество вершин, и число $m{m}$ — количество запросов ($1 \le n, m \le 1000000$). Во второй строке дано $m{n} - 1$ число $m{p_i}$ — номера предков всех вершин, начиная со второй ($1 \le m{p_i} \le n$).

Далее в m строках перечислены пары чисел u_i v_i — номера вершин, для которых надо ответить на запрос ($1 \le u_i, v_i \le n$).

Выходные данные

Выведите m строк, на каждой из которых «1», если в соответствующем запросе u_i является предком v_i , и «0» иначе (без кавычек).

В	входные данные	
	3	
1	. 2	
	2	
1	3	
2	3	
В	выходные данные	
1		
1		
1		

входные данные			
3 3			
1 1			
1 2			
2 1			
2 3			
выходные данные			
1			
0			
0			

D. Цикл в графе

4 c, 1024 Mb

Дан ориентированный граф на n вершинах и m ребрах. Требуется проверить, есть ли в нем цикл, и вывести его, если он есть.

Входные данные

В первой строке входного файла заданы числа \boldsymbol{n} и \boldsymbol{m} (

 $1 \leq n, m \leq 1000000$). Затем в m строках заданы пары чисел $u_i \ v_i$, означающие, что в графе есть ребро из u_i в $v_i \ (1 \leq u_i, v_i \leq n)$.

Выходные данные

Выведите «-1» (без кавычек), если в графе нет цикла, или сам цикл, если он есть: на первой строке — его длину, на второй — вершины цикла в порядке их следования в графе.

В	входные данные	
3		
1		
2		
3		
В	ходные данные	
3		
1	3	

В	входные данные	
3	3	
1	2	
1	3	
2	3	
В	ыходные данные	
- 1	1	

Е. Минимальное расстояние

4 c, 1024 MB

Дан **неориентированный граф** на **n** вершинах и **m** ребрах и выделена вершина с номером **1**. Требуется найти для каждой вершины минимальную длину пути в графе от нее до вершины **1**. Если пути между этими вершинами нет, считайте расстояние равным **—1**.

Входные данные

В первой строке заданы числа n и m ($1 \le n, m \le 1000000$), далее в m строках перечислены пары вершин u_i v_i , задающие ребра ($1 \le u_i, v_i \le n$).

Выходные данные

Требуется вывести в одну строку через пробел \boldsymbol{n} чисел — кратчайшие расстояния от соответствующей вершины до вершины номер $\boldsymbol{1}$.

входные данные			
3	3		
1	2		
2	3		
3	1		
В	ыходные	данные	
0	1 1		

В	ходные данные
4	4
1	2
1	3
3	4
2	4
В	ыходные данные
0	1 1 2

F. Добраться до столицы

4 c, 1024 Mb

Страна состоит из **n** городов и **m** дорог. Города пронумерованы числами от **1** до **n**. Город с номером **s** является столицей. Все дороги односторонние, проход по каждой дороге стоит ровно **1** золотой. Требуется найти минимальные стоимости проезда от каждого города до столицы.

Входные данные

В первой строке файла записаны три целых числа — n, s и m (количество городов, номер столичного города и количество дорог).

В следующих m строках записаны пары чисел. Пара чисел (a,b) означает, что есть дорога из города a в город b.

Ограничения: $1 \le n \le 10^5, 0 \le m \le 10^5$.

Выходные данные

Выведите \boldsymbol{n} чисел — минимальные стоимости проезда от городов до столицы. Если от какого-то города не существует ни одного пути до столицы, выведите -1.

В	входные данные			
3	2	2		
1	2			
2	3			
В	ых	одны	е данные	
1	0	-1		

G. Топологическая сортировка

4 с, 1024 МБ

Дан ориентированный невзвешенный граф. Необходимо построить его топологическую сортировку.

Входные данные

В первой строке входного файла даны два натуральных числа \boldsymbol{n} и \boldsymbol{m} ($1 \leq \boldsymbol{n} \leq 100\,000$, $0 \leq \boldsymbol{m} \leq 100\,000$) — число вершин и рёбер в графе соответственно. Далее в \boldsymbol{m} строках перечислены рёбра графа. Каждое ребро задаётся парой чисел — номерами начальной и конечной вершин соответственно.

Выходные данные

Выведите любую топологическую сортировку графа в виде последовательности номеров вершин. Если граф невозможно топологически отсортировать, выведите -1.

В	входные данные		
6	6		
1	2		
3	2		
4	2		
2	5		
6	5		
4	6		
В	ыходные данные		
4	6 3 1 2 5		

Н. Мосты

4 c, 1024 Mb

Дан неориентированный граф, не обязательно связный, но не содержащий петель и кратных рёбер. Требуется найти все мосты в нём.

Входные данные

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и рёбер графа соответственно ($1\leqslant n\leqslant 20\,000, 1\leqslant m\leqslant 200\,000$).

Следующие m строк содержат описание рёбер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1 \leqslant b_i, e_i \leqslant n)$.

Выходные данные

Первая строка выходного файла должна содержать одно натуральное число \boldsymbol{b} — количество мостов в заданном графе. На следующей строке выведите \boldsymbol{b} целых чисел — номера рёбер, которые являются мостами, в возрастающем порядке. Рёбра нумеруются с единицы в том порядке, в котором они заданы во входном файле.

В	содные данные
6	7
6	2
2	
3	4
1	3
4	5
4	6
5	6
В	иходные данные
1	
3	

І. Компоненты реберной двусвязности

6 c, 1024 MB

Компонентой реберной двусвязности графа $\langle V, E \rangle$ называется подмножество вершин $S \subset V$, такое что для любых различных u и v из этого множества существует не менее двух реберно не пересекающихся путей из u в v.

Дан неориентированный граф. Требуется выделить компоненты реберной двусвязности в нем.

Входные данные

Первая строка входного файла содержит два натуральных числа n и m — количества вершин и ребер графа соответственно ($1\leqslant n\leqslant 20\,000, 1\leqslant m\leqslant 200\,000$).

Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается двумя натуральными числами b_i , e_i — номерами концов ребра $(1\leqslant b_i,e_i\leqslant n)$.

Выходные данные

В первой строке выходного файла выведите целое число \pmb{k} — количество компонент реберной двусвязности графа. Во второй строке выведите \pmb{n} натуральных чисел $\pmb{a_1}, \pmb{a_2}, \dots, \pmb{a_n}$, не превосходящих \pmb{k} , где $\pmb{a_i}$ — номер компоненты реберной двусвязности, которой принадлежит \pmb{i} -я вершина.

В	входные данные						
6	7						
	2						
2	3						
3	1						
1	4						
4	5						
	6						
	6						

Выходные данные2 1 1 2 2 2

Конденсация графа

4 c, 1024 Mb

Конденсацией графа G называется новый граф H, где каждой компоненте сильной связности в графе G соответствует вершина из графа H. Ребро vu в графе H есть тогда и только тогда, когда в графе G существует хотя бы одно ребро из соответствующей v компоненте сильной связности, в компоненту, соответствующую u.

Требуется найти количество ребер в конденсации ориентированного графа.

Примечание: конденсация графа не содержит кратных ребер.

Входные данные

Первая строка входного файла содержит два натуральных числа \boldsymbol{n} и \boldsymbol{m} — количество вершин и ребер графа соответственно ($\boldsymbol{n} \leq 10~000,~\boldsymbol{m} \leq 100~000$). Следующие \boldsymbol{m} строк содержат описание ребер, по одному на строке. Ребро номер \boldsymbol{i} описывается двумя натуральными числами $\boldsymbol{b_i}$, $\boldsymbol{e_i}$ — началом и концом ребра соответственно ($1 \leq \boldsymbol{b_i}$, $\boldsymbol{e_i} \leq \boldsymbol{n}$). В графе могут присутствовать кратные ребра и петли.

Выходные данные

Единственная строка выходного файла должна содержать одно число — количество ребер в конденсации графа.

входные данные	
4 4	
2 1	
3 2	
2 3	
4 3	
выходные данные	
2	

К. Планирование вечеринки

4 c, 1024 MB

Петя планирует вечеринку, это дело непростое. Одна из главных проблем в том, что некоторые его друзья плохо ладят друг с другом, а некоторые — наоборот. В результате у него есть множество требований, например: «Я приду только если придет Гена» или «Если там будет Марина, то меня там точно не будет».

Петя формализовал все требования в следующем виде: «[+-]name1 => [+-]name2», здесь «name1» и «name2» — имена двух друзей Пети, «+» означает, что друг придет в гости, «-» — что не придет. Например, выражение «Если Андрея не будет, то Даша не придет» записывается так: «-andrey => -dasha».

Помогите Пете составить хоть какой-нибудь список гостей, удовлетворяющий всем свойствам, или скажите, что это невозможно

Входные данные

В первой строке входного файла записаны числа n и m — число друзей Пети и число условий ($1 \le n, m \le 1000$). В следующих n строках записаны имена друзей. Имена друзей состоят из маленьких латинских букв и имеют длину не больше 10. В следующих m строках записаны условия.

Выходные данные

Выведите в первой строке число k — число друзей, которых нужно пригласить. В следующих k строках выведите их имена.

```
BXОДНЫЕ ДАННЫЕ

3 3
vova
masha
gosha
-vova => -masha
-masha => +gosha
+gosha => +vova

Выходные данные

2
vova
masha
```

```
входные данные

1 1
vova
-vova => +vova

выходные данные

1
vova
```

```
      входные данные

      2 4

      vova

      masha

      +vova => +masha

      +masha => -vova

      -vova => -masha

      -masha => +vova

      выходные данные

      -1
```

L. Остовное дерево

4 c, 1024 MB

Даны точки на плоскости, являющиеся вершинами полного графа. Вес ребра равен расстоянию между точками, соответствующими концам этого ребра. Требуется в этом графе найти остовное дерево минимального веса.

Входные данные

Первая строка входного файла содержит натуральное число \boldsymbol{n} — количество вершин графа ($1 \leq n \leq 10~000$). Каждая из следующих \boldsymbol{n} строк содержит два целых числа $\boldsymbol{x_i}, \boldsymbol{y_i}$ — координаты \boldsymbol{i} -й вершины ($-10~000 \leq \boldsymbol{x_i}, \boldsymbol{y_i} \leq 10~000$). Никакие две точки не совпадают.

Выходные данные

Первая строка выходного файла должна содержать одно вещественное число — вес минимального остовного дерева.

входные данные					
2					
0 0					
1 1					
выходные данные					
1 4142135624					

М. Остовное дерево 2

4 c, 1024 MB

Требуется найти в связном графе остовное дерево минимального веса.

Входные данные

Первая строка входного файла содержит два натуральных числа \boldsymbol{n} и \boldsymbol{m} — количество вершин и ребер графа соответственно. Следующие \boldsymbol{m} строк содержат описание ребер по одному на строке. Ребро номер \boldsymbol{i} описывается тремя натуральными числами $\boldsymbol{b_i}$, $\boldsymbol{e_i}$ и $\boldsymbol{w_i}$ — номера концов ребра и его вес соответственно ($1 \leq b_i, e_i \leq n$, $0 \leq w_i \leq 100\,000$). $n \leq 200\,000, m \leq 200\,000$.

Граф является связным.

Выходные данные

Первая строка выходного файла должна содержать одно натуральное число — вес минимального остовного дерева.

В	XC	дные	данные		
4	4				
1	2	1			
2	3	2			
3	4	5			
4	1	4			
В	Ыλ	одные	данные		
7		(0420)	7940		

N. Кратчайший путь длины К

4 секунды, 1024 МБ

дан ориентированный граф. Найдите кратчайшие пути, состоящие из $m{K}$ рёбер, от $m{S}$ до всех вершин.

Входные данные

В первой строке дано целых четыре целых числа:

 $1\leqslant N, M\leqslant 10^4$ — количества вершин и рёбер, $0\leqslant K\leqslant 100$ — количество рёбер в кратчайших путях, $1\leqslant S\leqslant N$ — начальная вершина.

В последующих $m{M}$ строках даны тройки целых чисел $m{a_i}, m{b_i}, m{w}$ — начало и конец ребра, а также его вес (

 $1 \leqslant a_i, b_i \leqslant N, -10^5 \leqslant w \leqslant 10^5$

Выходные данные

Выведите ровно N чисел по одному в строке. i-е число — длина минимального пути из ровно K рёбер из S в i, или -1, если пути не существует.

B	входные данные						
3	3	1 1					
1	2	100					
2	3	300					
1	3	2					
BŁ	۲I	ходные данные					
-1							
10	0						
2							

```
входные данные
3 3 2 1
1 2 100
2 3 300
1 3 2
```

выходные данные -1 -1 400

О. Цикл отрицательного веса

4 c, 1024 MB

Дан ориентированный граф. Определите, есть ли в нем цикл отрицательного веса, и если да, то выведите его.

Входные данные

Во входном файле в первой строке число N ($1 \le N \le 100$) — количество вершин графа. В следующих N строках находится по N чисел — матрица смежности графа. Все веса ребер не превышают по модулю $10\,000$. Если ребра нет, то соответствующее число равно $100\,000$.

Выходные данные

В первой строке выходного файла выведите «YES», если цикл существует или «NO» в противном случае. При его наличии выведите во второй строке количество вершин в искомом цикле и в третьей строке — вершины входящие в этот цикл в порядке обхода.

входные данные	
2	
0 -1	
-1 0	
выходные данные	
YES	
2	
2 1	

Р. Кратчайшие пути

4 c, 1024 Mb

Вам дан взвешенный ориентированный граф и вершина s в нём. Для каждой вершины графа u выведите длину кратчайшего пути от вершины s до вершины u.

Входные данные

Первая строка входного файла содержит три целых числа n, m, s — количество вершин и ребёр в графе и номер начальной вершины соответственно ($2 \le n \le 2\,000,\, 1 \le m \le 5\,000$).

Следующие m строчек описывают рёбра графа. Каждое ребро задаётся тремя числами— начальной вершиной, конечной вершиной и весом ребра соответственно. Вес ребра— целое число, не превосходящее 10^{15} по абсолютной величине. В графе могут быть кратные рёбра и петли.

Выходные данные

Выведите n строчек — для каждой вершины u выведите длину кратчайшего пути из s в u. Если не существует пути между s и u, выведите «*». Если не существует кратчайшего пути между s и u, выведите «-».

В	ход	ные	данные	b.		
6	7 1					
1	2 1	0				
2	3 5					
1	3 1	00				
3	5 7					
5	4 1	0				
4	3 -	18				
6	1 -	1				
В	ыхо	дные	даннь	ie		
0		1,741141	1977			
10)					
-						
-						
-						
*						

Q. Кратчайший путь

4 c, 1024 MB

Дан ориентированный взвешенный граф без ребер отрицательного веса. Найдите кратчайшее расстояние от одной заданной вершины до другой.

Входные данные

В первой строке входного файла три числа: n, s и f ($1 \le n \le 2000$, $1 \le s$, $f \le n$), где n — количество вершин графа, s — начальная вершина, а f — конечная. В следующих n строках по n чисел — матрица смежности графа, где -1 означает отсутствие ребра между вершинами, а любое неотрицательное число — присутствие ребра данного веса. Вес каждого ребра не превышает 10^9 . На главной диагонали матрицы всегда нули.

Выходные данные

Вывести искомое расстояние или - 1, если пути между указанными вершинами не существует.

входные данные					
3 1 2					
0 -1 2 3 0 -1					
-1 4 0					
выходные данные					
6					

R. Кратчайший путь-2

4 с, 1024 МБ

Дан неориентированный связный взвешенный граф. Найдите кратчайшее расстояние от первой вершины до всех вершин.

Входные данные

В первой строке входного файла два числа: n и m ($2 \le n \le 30000$, $1 \le m \le 400000$), где n — количество вершин графа, а m — количество ребер.

Следующие m строк содержат описание ребер. Каждое ребро задается стартовой вершиной, конечной вершиной и весом ребра. Вес каждого ребра — неотрицательное целое число, не превосходящее 10^4 .

Выходные данные

Выведите n чисел — для каждой вершины кратчашее расстояние до нее

В	входные данные						
4	5						
1	2	1					
1	3	5					
2	4	8					
3	4	1					
2	3	3					
В	Ы>	соднь	е данные				
0	1	4 5					

S. Флойд

4 с, 1024 МБ

Полный ориентированный взвешенный граф задан матрицей смежности. Постройте матрицу кратчайших путей между его вершинами. Гарантируется, что в графе нет циклов отрицательного веса.

Входные данные

В первой строке вводится единственное число N ($1 \le N \le 100$) — количество вершин графа. В следующих N строках по N чисел задается матрица смежности графа (j-ое число в i-ой строке — вес ребра из вершины i в вершину j). Все числа по модулю не превышают 100. На главной диагонали матрицы — всегда нули.

Выходные данные

Выведите N строк по N чисел — матрицу расстояний между парами вершин, где \mathbf{j} -ое число в \mathbf{i} -ой строке равно весу кратчайшего пути из вершины \mathbf{i} в \mathbf{j} .

```
Входные данные

4
0 5 9 100
100 0 2 8
100 100 0 7
4 100 100 0

Выходные данные

0 5 7 13
12 0 2 8
11 16 0 7
4 9 11 0
```