2013—2014 学年第一学期《医科数学 C》试卷

2014年1月2日

	2011 — 1 /1 2							
1	11	111	四	五.	六	总	分	

得 分 一 一、填空题(共 6 道小题,每小题 3 分,满分 18 分)

1. 设
$$f(x) = \begin{cases} (1-x)^{\frac{k}{x}}, & x > 0, \\ e^{x-1}, & x \le 0, \end{cases}$$
 在 $x = 0$ 点处连续,则常数 $k =$ ______.

2. 设
$$f'(x_0)$$
 存在,且 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{\Delta x} = 4$,则 $f'(x_0) = \underline{\hspace{1cm}}$.

3. 函数
$$y = 3x^4 - 4x^3 + 1$$
的凸区间为_____.

4.
$$\int_{-1}^{1} \frac{1+x^3}{1+x^2} dx = \underline{\hspace{1cm}}$$

5. 由曲线
$$y = \frac{1}{4}x^2$$
, $y = 1$ 及 $x = 0$ 所围图形绕 y 轴旋转一周而成的旋转体体积为_____.

6. 设
$$D = \{(x, y) | x^2 + y^2 \le 4\}$$
,将二重积分 $\iint_D f(\sqrt{x^2 + y^2}) dxdy$ 化为极坐标形式的累次积分为

二、选择题(共6 道小题,每小题3 分,满分18分)

- 1. 曲线 $y^3 3xy + x^3 1 = 0$ 在点 (0,1) 处的切线方程为 ().
- (A). y = x+1; (B). y = -x+1; (C). y = x-1; (D). y = -x-1.
- 2. 若点 $x = x_0$ 是函数 y = f(x) 的极值点,则().
- (A). 必有 $f'(x_0)$ 存在且等于零; (B). 必有 $f'(x_0)$ 存在但不等于零;
- (C). 如果 $f'(x_0)$ 存在则必等于零; (D). 如果 $f'(x_0)$ 存在则必不等于零. (共 6 页 第 1 页)

- 3. 如果 f(x) 的导数为 $\cos x$,则 f(x) 的一个原函数为 ().
- (A). $1 + \sin x$; (B). $1 \sin x$; (C). $1 + \cos x$; (D). $1 \cos x$.

- 4. 下列反常积分发散的是(
- (A). $\int_{1}^{+\infty} \frac{1}{1+x^2} dx$; (B). $\int_{1}^{+\infty} \frac{1}{x^2} dx$; (C). $\int_{0}^{1} \frac{1}{\sqrt{x}} dx$; (D). $\int_{-1}^{1} \frac{1}{x^2} dx$.

- 5. 方程 $y'' = \sin x$ 的通解是().
- (A). $y = \cos x + C_1 x + C_2$; (B). $y = -\sin x + C_1 x + C_2$;
- (C). $y = -\sin x + C_1$;

- (D). $y = -\sin x + C_1 x$.
- 6. 函数 f(x,y) 在点 P(x,y) 的某一邻域内具有一阶连续的偏导数是函数 f(x,y) 在该点可微 的().
- (A). 必要条件,但不是充分条件; (B). 充分必要条件;
- (C). 充分条件,但不是必要条件; (D). 既不是充分条件,也不是必要条件.

三、计算下列各题 (共 5 道小题,每小题各 6 分,满分 30 分)

1. 当 $x \to 0$ 时,试将无穷小量 $\int_0^x \frac{t^2}{\sqrt{4+t^2}} dt$ 与 $x - \sin x$ 进行阶的比较.

(共 6 页 第 2 页)

$$2. 求积分 \int \frac{x^3}{\sqrt{x^2 - 1}} \, \mathrm{d}x.$$

3. 求积分
$$\int_0^2 \frac{1}{(x^2+4)^{\frac{3}{2}}} dx$$
.

4. 求积分
$$\int_0^3 \frac{1}{(x-2)^2} dx$$
.

5. 求累次积分 $\int_0^{\frac{\pi}{2}} dy \int_y^{\sqrt{\frac{\pi y}{2}}} \frac{\sin x}{x} dx$.

得 分

四、 (共 2 道小题,每小题 6 分,满分 12 分)

1. 设 $z = f(xe^y, x)$, 其中 f 具有连续偏导数, 求 $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$.

2. 由方程 $\cos^2 x + \cos^2 y + \cos^2 z = 1$ 确定函数z = f(x, y), 求 d z .

(共 6 页 第 4 页)

得 分

五、(共1 道小题,满分8分)

求微分方程 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos^2 y}{e^{-y} - x \cos^2 y}$ 的通解.

1. 求函数 $f(x) = \int_0^{x^2} (2-t)e^{-t} dt$ 的极值.

2. 确定常数 k ,使曲线 $y=x^2$ 与直线 x=k , x=k+2 , y=0 所围成的平面图形面积最小.

(共6页 第6页)