PS Analysis 3 WS 2024/25

Übungszettel 8 (ODE)

Birgit Schörkhuber

ankreuzbar bis 07.01., 8:00

1. Blatt 8, Aufgabe 4

2. Beweisen Sie die Gronwall-Ungleichung in differentieller Form: Sei $I = [t_0, t_1)$ und seien $\alpha, \beta \in C(I)$. Erfüllt $\varphi \in C^1(I)$ die Ungleichung

$$\varphi'(t) \le \alpha(t) + \beta(t)\varphi(t), \quad \forall t \in I,$$

so folgt

$$\varphi(t) \le \varphi(t_0) e^{\int_{t_0}^t \beta(s) ds} + \int_{t_0}^t \alpha(s) e^{\int_s^t \beta(\tau) d\tau} ds, \quad \forall t \in I.$$

Hinweis: Setzen Sie $\gamma(t) := e^{-\int_{t_0}^t \beta(s)ds}$ und betrachten Sie $(\gamma \varphi)'$.

3. Für $A = (a_{ij}) \in \mathbb{C}^{d \times d}$ sei die Frobenius-Norm definiert als

$$||A|| := \sqrt{\sum_{i=1}^{d} \sum_{j=1}^{d} |a_{ij}|^2}.$$

Zeigen Sie:

(a) (Submultiplikativität) Für $A, B \in \mathbb{C}^{d \times d}$ gilt

$$||AB|| \le ||A|| ||B||.$$

(b) (Verträglichkeit mit der Euklidischen Norm) Für $A \in \mathbb{C}^{d \times d}$ und $x \in \mathbb{C}^d$ gilt

$$|Ax| \le ||A|||x||$$

mit
$$|x|^2 := \sum_{i=1}^d |x_i|^2$$
 für $x = (x_1, \dots, x_d)$.

(c) (Dreiecksungleichung) Für $A, B \in \mathbb{C}^{d \times d}$ gilt

$$||A + B|| \le ||A|| + ||B||.$$

4. Sei $\mathbb{C}^{d\times d}$ ausgestattet mit der Frobenius-Norm $\|\cdot\|.$ Zeigen Sie:

(a) Sind $(A_n)_{n\in\mathbb{N}}$, $(B_n)_{n\in\mathbb{N}}$ konvergente Folgen in $\mathbb{C}^{d\times d}$ und gilt $A_n\to A$ sowie $B_n\to B$ für $n\to\infty$, so folgt

$$A_n + B_n \to A + B, \qquad A_n B_n \to AB$$

für $n \to \infty$.

(b) $\|\cdot\|$ ist keine Operatornorm, d.h. es gibt keine Vektornorm $|\cdot|$ auf \mathbb{C}^d , so dass gilt

$$||A|| = \inf\{C > 0 : \forall x \in \mathbb{R}^d : |Ax| < C|x|\}.$$

Hinweis: Betrachten Sie die Einheitsmatrix.

5. Zeigen Sie: Sind $A,B\in\mathbb{C}^{d\times d}$ und gilt [A,B]=0, so gilt auch

$$e^{A+B} = e^A e^B.$$

6. Sei $A \in \mathbb{C}^{d \times d}, \ A = \mathrm{diag}(A_1, \dots, A_n)$ eine Blockdiagonalmatrix. Zeigen Sie, dass gilt

$$e^A = \operatorname{diag}(e^{A_1}, \dots, e^{A_n})$$