flatball (aka frisbee™) 6dof

Table of Contents

NOTES	1
Begin simulations from scratch (i.e. clean workspace)	1
Initial conditions	2
FrisbeeODE.m @ 5Hz - CandP ~2003	2
FrisbeeODE.m @ 100Hz - CandP ~2003	7
flatball_6dof_eqom.m @ 100Hz - misc	. 13
flatball 6dof @ 1kHz - misc	
work-in-progress	

Validation exercise for implementation of Crowther and Potts 6dof equations of motion as a simulink model.

NOTES

- Frisbee.m modified to accept Y0 and dt as inputs to support testing
- running Frisbee @ 5Hz misses lots of dynamics
- running Frisbee @ 100Hz resembles flatball_6dof_eqom much closer
- flatball_6dof_eqom is an amalgamation of published papers by CandP as well as FrisbeeODE.m
- flatball_6dof is a simulink model that implements the same ODEs as flataball_6dof_eqom, uses table lookups for aero coefficients
- trajectory plots are ENU, state vector is NED
- [x y z, phi theta psi, u v w, p q r] state vector

misc dot protolabs at gmail dot com

Begin simulations from scratch (i.e. clean workspace)

```
clc;
close all;
startup;

% initialize ambient conditions and disc properties
flatball_6dof_init;

misc: ... creating physical constants container C
misc: ... creating physical quantity container Q
misc: ... publish options set in pub_opts
misc: ... beep is off
```

Initial conditions

```
% f2302 per hummel MS Thesis - 2003
% https://www.researchgate.net/
publication/253842372_Simulation_of_Frisbee_Flight
% Y0 = [-0.90 -0.63 -0.91, -0.07 0.21 5.03, 13.42 -0.41 0.001, -14.94 -1.48 54.25];
% f2302 per C&P ISEA 2007
% https://www.researchgate.net/
publication/225330184_Simulation_of_a_spinstabilised_sports_disc
% Y0 = [-0.90 -0.63 -0.91, -0.07 0.21 5.03, 4.48 12.52 1.84, -26.25 -5.19 52.85];
% launch conditions per pg13 C&P ISEA 2007
% https://www.researchgate.net/
publication/225330184_Simulation_of_a_spinstabilised_sports_disc
Y0 = [0 0 -1, 0 15*C.DEG2RAD 0, 15 0 0, 0 0 (2*15*0.29/disc.d)];
```

FrisbeeODE.m @ 5Hz - CandP ~2003

Frisbee(Y0, 0.20);
toc(tic0);
close all;

Elapsed time is 4.362109 seconds.

FrisbeeODE.m @ 100Hz - CandP ~2003

```
Frisbee( Y0, 1e-2);
toc( tic0);
close all;
```


Elapsed time is 10.140464 seconds.

flatball_6dof_eqom.m @ 100Hz - misc

```
flatball_6dof_eqom;
toc( tic0);
close all;
```


Elapsed time is 13.188313 seconds.

flatball_6dof @ 1kHz - misc

```
% open model and run simulation
sys = 'flatball_6dof';
open_system( sys);

simout = sim( sys);

% post process and generate plots
tsc = flatball_6dof_post( simout.logsout, disc, amb);
flatball_6dof_plots;
toc( tic0);
```


Elapsed time is 24.613998 seconds.

work-in-progress

```
% pitch_sweep;
% toc( tic0);
% roll_sweep;
% toc( tic0);
```

Published with MATLAB® R2021b