Операции сдвига и циклического сдвига

20

Обзор главы

В разделе	Вы найдете	на стр.
20.1	Операции сдвига	20–2
20.2	Операции циклического сдвига	20–6

20.1. Операции сдвига

Описание

С помощью операций сдвига Вы можете побитно сдвинуть налево или направо содержимое младшего слова АККU 1 или содержимое всего аккумулятора. Сдвиг на п битов влево умножает содержимое аккумулятора на 2^n , сдвиг на п битов вправо делит содержимое аккумулятора на 2^n . Таким образом, если, например, Вы сдвигаете двоичный эквивалент десятичного числа 3 на 3 бита влево, то в аккумуляторе получается двоичный эквивалент десятичного числа 24. Если Вы сдвигаете двоичный эквивалент десятичного тисла 24. В сли Вы сдвигаете двоичный эквивалент десятичного тисла 24. В сли Вы сдвигаете двоичный эквивалент десятичного числа 24. В сли Вы сдвигаете двоичный эквивалент десятичного числа 4.

Число, следующее за операцией сдвига или записанное в младшем байте младшего слова АККU 2, указывает, на сколько битов должен быть произведен сдвиг. Разряды, освобождаемые операцией сдвига, заполняются нулями или сигнальным состоянием знакового бита ("0" - для положительных чисел, "1" - для отрицательных). Последний сдвинутый бит загружается в бит A1 слова состояния (см. 9.1). Биты A0 и OV слова состояния сбрасываются в "0". Вы можете анализировать бит A1 с помощью операций перехода.

Операции сдвига абсолютны, т.е. их выполнение не зависит ни от каких определенных условий. Они не влияют на результат логической операции.

Операции сдвига: числа без знака

Следующие операции сдвигают побитно влево или вправо содержимое младшего слова AKKU 1:

- SLW: Сдвинуть слово (16 бит) влево
- SRW: Сдвинуть слово (16 бит) вправо

Следующие операции сдвигают все содержимое АККИ 1 побитно влево или вправо:

- SLD: Сдвинуть двойное слово (32 бита) влево
- SRD: Сдвинуть двойное слово (32 бита) вправо

Во всех случаях освободившиеся битовые разряды заполняются нулями.

Сдвинуть влево слово (16 бит):

Следующий пример программы и рис. 20–1 показывают, как работает операция SLW. В таблице 20–1 Вы найдете обзор всех операций сдвига.

SLW

AWL	Объяснение
L MW10	Загрузить содержимое меркерного слова MW10 в младшее слово AKKU 1.
	Сдвинуть биты в младшем слове АККИ 1 на 6 разрядов влево.
SLW 6	
	Передать содержимое младшего слова АККU 1 в меркерное слово MW20.
T MW20	

Рис. 20-1. Сдвиг битов в младшем слове АККИ 1 на шесть битов влево

Сдвинуть вправо двойное слово (32 бита): SRD

Следующий пример программы и рис. 20–2 показывают, работает операция SRD. В таблице 20–1 Вы найдете обзор всех операций сдвига.

AWL	Объяснение
L +3	Загрузить значение +3 в АККU 1.
L MD10	Загрузить содержимое двойного меркерного слова MD10 в AKKU 1. Старое содержимое AKKU 1 (+3) сдвигается в AKKU 2.
SRD	Сдвинуть биты в AKKU 1 на три бита вправо.
T MD20	Передать содержимое АККU 1 в двойное меркерное слово MD20.

Рис. 20-2. Сдвиг битов АККИ 1 на три разряда вправо

Операции сдвига: числа со знаком

Операция SSI - Сдвинуть целое число со знаком (16 бит) сдвигает побитно вправо содержимое младшего слова АККИ 1 включая знак.

Операция SSD - Сдвинуть целое число со знаком (32 бита) сдвигает побитно вправо

все содержимое АККИ 1 включая знак.

Знаковый бит копируется в освободившиеся битовые разряды.

Сдвинуть целое число со знаком (16 бит): SSI

Следующий пример программы и рис. 20–3 показывают, как работает операция SSI. В таблице 20–1 Вы найдете обзор всех операций сдвига.

AWL	Объяснение
L MW10	Загрузить содержимое меркерного слова MW10 в младшее слово AKKU 1.
SSI 4	Сдвинуть биты в младшем слове АККИ 1 включая знак на четыре разряда вправо.
	Передать содержимое младшего слова АККU 1 в меркерное слово MW20.
T MW20	

Рис. 20-3. Сдвиг битов младшего слова АККИ 1 включая знак на четыре разряда вправо

Таблица 20-1. Обзор операций сдвига

Операция	Задейство- ванная область	Направ- ление	Указание количества разрядов, на которые должен быть произведен сдвиг	Освобо- дившиеся разряды заполня- ются	Диапазон сдвига ¹⁾
SLW n	Младшее слово АККU 1	влево	в команде	0	n=0 до 15
SLW	Младшее слово АККU 1	влево	в младшем байте младшего слова АККU 2	0	0 до 255 ²)
SLD n	AKKU 1	влево	в команде	0	n=0 до 32
SLD	AKKU 1	влево	в младшем байте младшего слова АККU 2	0	0 до 255 ³)
SRW n	Младшее слово АККU 1	вправо	в команде	0	n=0 до 15
SRW	Младшее слово АККU 1	вправо	в младшем байте младшего слова АККU 2	0	0 до 255 ²)
SRD n	AKKU 1	вправо	в команде	0	n=0 до 32
SRD	AKKU 1	вправо	в младшем байте младшего слова АККU 2	0	0 до 255 ³)
SSI n	Младшее слово АККU 1	вправо	в команде	знаковым битом	n=0 до 15
SSI	Младшее слово АККU 1	вправо	в младшем байте младшего слова АККU 2	знаковым битом	0 до 255 ⁴)
SSD n	AKKU 1	вправо	в команде	знаковым битом	n=0 до 32
SSD	AKKU 1	вправо	в младшем байте младшего слова АККU 2	знаковым битом	0 до 255 ⁵)

¹⁾ Если количество разрядов, на которые необходимо произвести сдвиг, равно 0, то операция не выполняется.

²⁾ При значении, большем 16, результат функции сдвига равен W#16#0000 и A1 = 0.

³⁾ При значении, большем 32, результат функции сдвига равен DW#16#0000_0000 и A1 = 0.

⁴⁾ При значении, большем 15, результат функции сдвига равен в зависимости от знакового бита (0 или 1) W#16#0000 и A1 = 0 или W#16#FFFF и A1 = 1.

⁵⁾ При значении, большем 31, результат функции сдвига равен в зависимости от знака числа битов, подлежащих сдвигу, $DW#16#0000_0000$ (A1 = 0) или $DW#16#FFFF_FFFF$ (A1 = 1).

20.2. Операции циклического сдвига

Описание

С помощью операций циклического сдвига Вы можете побитно циклически сдвигать все содержимое АККU 1 направо или налево. Операции циклического сдвига выполняют функции, подобные описанным в разделе 20.1 функциям сдвига. Однако, освободившиеся разряды заполняются сигнальными состояниями битов, выдвигаемых из аккумулятора.

Число, следующее за операцией циклического сдвига, или значение в младшем байте младшего слова АККU 2 указывает, на сколько разрядов должен быть произведен циклический сдвиг.

В зависимости от операции циклический сдвиг выполняется через бит A1 в слове состояния (см. гл. 9.4). Бит A0 в слове состояния сбрасывается в "0".

В Вашем распоряжении имеются следующие операции циклического сдвига:

- RLD: Сдвинуть циклически налево двойное слово (32 бита).
- RRD: Сдвинуть циклически направо двойное слово (32 бита).
- RLDA: Сдвинуть циклически налево АККU 1 через индикатор А1 (32 бита).
- RRDA: Сдвинуть циклически направо АККU 1 через индикатор А1 (32 бита).

Если число битов, на которое нужно произвести сдвиг, равно 0, то операция не выполняется.

Таблица 20-2. Обзор операций циклического сдвига

Операция	Сдвигать через A1?	Направление	Указание, на сколько разрядов нужно произвести сдвиг	Диапазон сдвига
RLD n	нет	влево	в команде	n=0 до 32
RLD	нет	влево	в младшем байте младшего слова АККU 2	0 до 255
RRD n	нет	вправо	в команде	n=0 до 32
RRD	нет	вправо	в младшем байте младшего слова АККU 2	0 до 255
RLDA	да	влево	-	1 (фиксировано)
RRDA	да	вправо	-	1 (фиксировано)

Сдвинуть циклически влево двойное слово (32 бита): RLD В таблице 20–2 Вы найдете обзор всех операций циклического сдвига. Следующий пример программы и рис. 20–4 показывают, как работает операция RLD.

AWL	Объяснение
L MD10	Загрузить содержимое двойного меркерного слова MD10 в AKKU 1.
RLD 3	Сдвинуть циклически биты в АККИ 1 на три разряда влево.
T MD20	Передать содержимое АККU 1 в двойное меркерное слово MD20.

Сдвинуть циклически вправо двойное слово (32 бита): RRD Следующий пример программы и рис. 20–5 показывают, как работает операция RRD.

AWL	Объяснение	
L +3	Загрузить значение +3 в АККU 1.	
L MD10	Загрузить содержимое двойного меркерного слова MD10 в AKKU 1. Старое содержимое AKKU 1 (+3) сдвигается в AKKU 2.	
RRD	Сдвинуть циклически биты в АККИ 1 на три разряда вправо.	
T MD20	Передать содержимое AKKU 1 в двойное меркерное слово MD20.	

Рис. 20-5. Циклический сдвиг битов АККИ 1 на три разряда вправо

Циклический сдвиг Следующий пример программы и рис. 20–6 показывают, как работает **АККU 1 влево через** операция RLDA. **индикатор A1**

Рис. 20-6. Циклический сдвиг АККU 1 через бит A1 слова состояния на 1 бит влево

Циклический сдвиг AKKU 1 вправо через индикатор A1

Операция RRDA работает аналогично операции RLDA; единственное отличие состоит в том, что сдвиг происходит в другом направлении.