RESPUESTAS A LOS EJERCICIOS DE GEOMETRÍA

MANUAL DE INGRESO 2025

Agradecemos a los docentes que colaboraron en la elaboración del presente documento donde figuran las respuestas de los ejercicios correspondientes a Geometría.

Casco, Paola Elizabeth; Céspedes, Luis Marcelo; De Pietri Gisele; Medici, Graciela; Wilson, María Florencia; De Pietri, Gisele; Marcovecchio, Claudia; Vallejos, Claudio, Suelves, Nadia, Furchi Nahuel, Ursino Elsa.

MÓDULO 2: ELEMENTOS DE GEOMETRÍA PLANA.

Eiercicio 4:a) 540°

b) 1440°

c) 2160°

Eiercicio 5:a) 18 lados

b) 5 lados

Eiercicio 6 36°

Ejercicio 7: Eneágono

a) Dodecágono

b) Icoságono

c) Triángulo equilátero

Ejercicio 9 Perímetro: 61,1 cm

Ejercicio 10: Lado: 37,2 cm

Ejercicio 14: a) siempre b) nunca c) a veces d) a veces

<u>Ejercicio 15</u> a) $\sqrt{53}$ b) 3,6m c) AB= $2\sqrt{55}$ cm d) faltan 7,84 metros, costo total: \$41,76 e) 12,94 metros f) 10 unidades g) 100 m

Ejercicio 16 A=(2;4), B=(6;0), C=(0;-1), D=(-4;3) c) perímetro= 30cm

<u>Ejercicio17</u> a) $E=G=48^{\circ}$ $F=H=132^{\circ}$ b) HG=EF=160cm, FG=EH=80cm c) $H=F=127^{\circ}$ $E=G=53^{\circ}$ d) $H=111^{\circ}$ $G=69^{\circ}$

Ejercicio 18 c) ab=31cm bc=55cm Área= 1705cm² d) 10 m y 4 m

Ejercicio 19 a) $d=12\sqrt{2}$ b) radio=6,5cm c) B=D=20 ° A=C=160 °

Ejercicio 20 Área=621,86cm²

Ejercicio 21 a) altura:4cm b) perímetro:26cm

Ejercicio 22 r = 1,193662 , l = 3,75 y w = 2,387324

Ejercicio 23 Lado cuadrado=Diámetro circ. =12cm Área círculo=113,04 $cm^2=36\pi cm^2$ Long circ.=37,68cm = $12\pi cm$ b) $\overline{DB}=\sqrt{288}cm=12\sqrt{2}cm=16,97cm$

Ejercicio 24 Área de la figura $\left(4 - \frac{1}{4}\pi\right)cm^2$

Las soluciones de los PROBLEMAS DE APLICACIÓN las encontrarás en el archivo llamado "GEOMETRIA soluciones Problemas de Aplicación MODULO 2 "

MÓDULO 3 MOVIMIENTOS Y SEMEJANZA

<u>Ejercicio 1</u>: Existe una R $(O, \pm 59^{\circ})$ que transforma al cuadrilátero ABCD en otro cuadrilátero ABCD

Ejercicio 3 Al octógono ABCDEFGH se le aplico una R(O, -98°) para obtener el A'B'C'D'E'F'G'H'.

Ejercicio 4

b)

b)
$$\overline{A'B'} = \sqrt{4^2 + 5^2} \cong \sqrt{41} = 6{,}403$$
 $A'=(5;4)$ $B'=(1;-1)$ $C'=(-1;5)$

Ejercicio 7 coordenadas: C = (3, 3); D = (5, 2); E = (3, 0); C' = (3, 3); D' = (2, 5); E' = (0, 3)

Las coordenadas de los puntos se invierten salvo el que pertenece al eje de simetría que permanecen igual.

Ejercicio 8 coordenadas A=(1, 3); B=(4, 4); C=(4, 1); D=(0, 1); A'=(-1, -3); B=(-4, -4); C=(-4, -1); D=(0, -1)

Ejercicio 16 b) A= (-7, 2); B= (-3, 2); C= (0, -2); D= (-2, -5); A'= (-4, 1); B= (0, 1); C= (3, -3); D= (1, -6)

Ejercicio 17

a) Simetría axial de eje JK b) NMHG c) R (F; +90°) d) Simetría de centro G

e) Traslación de vector \overrightarrow{LE} f) Simetría axial de eje GN g) JRQK h) LGHI

Ejercicio 18: a) 3 b) 9

Ejercicio 19: a) 54 cm² b) 1,5 cm²

Ejercicio 20: a) 1,8 cm de ancho y 4,2 cm de alto b) 148Km

c) largo 480 m y ancho 360 m

Problema Nº 1. 1,38 m

Problema Nº 4: E= 1:0,72

<u>Problema N^o 5</u>: No hay figuras semejantes, los lados no son proporcionales.

Problema Nº 6: 1800 manzanas

Problema N° 7 largo = 270 m y ancho = 160 m

Problema Nº 8 se obtiene 511,5 km y la real es de 508,7 km

MÓDULO 4 : TRIGONOMETRÍA

$$2)\frac{11}{6}\pi$$

$$3)\frac{2}{5}\pi$$

$$4) - \frac{1}{6}\pi$$

Ejercicio 1:
$$1)\frac{2}{9}\pi$$
 $2)\frac{11}{6}\pi$ $3)\frac{2}{5}\pi$ $4)-\frac{1}{6}\pi$ $5)\frac{1}{4}\pi+4\pi$

6)
$$-\frac{17}{180}\pi - 8\pi$$

Ejercicio 2 1) 135° 2) -630° 3) 150° 4) 114° 35′ 29,6″

5) 85° 56′ 37,21′′ 6)−15°

Ejercicio 3

CUADRANTE	ÁNGULO
Primero	$ \hat{b} $
Segundo	\hat{c},\hat{d},\hat{e}
Tercero	\hat{a},\hat{f}
Cuarto	

a)
$$S=19,19$$

Ejercicio 4 a) S=19,19 b)
$$\theta = 2 rad$$
 c) $r = 4$

c)
$$r = 4$$

Ejercicio 5: $A = 75.39cm^2$

Ejercicio 6: r = 4m

Ejercicio 7: a) $\theta = 22^{\circ} 11' 26,36''$ b) $A = 6,545cm^2$

Ejercicio 8: i) a) $\overline{EH} = \overline{FG} = 10 \ cm \ \overline{EF} = \overline{GH} = 24 \ cm$. b) $F\overline{O} = \text{radio} = \text{diagonal} \ /$

2=13 cm c) Área sector= $\frac{1}{2} \cdot \frac{1}{3} \cdot \pi \cdot 169 cm^2 = 88,488 cm^2$

ii) a) $\overline{AD} = \overline{BC} = 4 \ cm$, $\overline{AB} = \overline{DC} = 9 cm$

b) $30^{\circ} = \frac{1}{6}\pi$, Área sector circular $\frac{4}{3}\pi$ cm^2 , aprox 4,188 cm²

Ejercicio 10: a) $tg\ \hat{O} = 10$ b) $cotg\ \hat{O} = \frac{1}{10}$ c) $tg\ \hat{K} = \frac{1}{10}$ d) $cotg\ \hat{K} = 10$

Ejercicio 11: a)x=28 · cos $\hat{\theta}$ y=28 · sen $\hat{\theta}$ b) x=4 · tg $\hat{\theta}$ y= $\frac{4}{\cos \hat{\theta}}$

Ejercicio 12:

a)
$$\cos \hat{\theta} = \frac{4}{5}$$
; $\operatorname{tg} \hat{\theta} = \frac{3}{4}$; $\operatorname{cosec} \hat{\theta} = \frac{5}{3}$; $\operatorname{sec} \hat{\theta} = \frac{5}{4}$; $\operatorname{cotg} \hat{\theta} = \frac{4}{3}$

b)
$$sen\hat{\theta} = \frac{3\sqrt{5}}{7}$$
; $tg \hat{\theta} = \frac{3\sqrt{5}}{2}$; $cosec \hat{\theta} = \frac{7\sqrt{5}}{15}$; $sec \hat{\theta} = \frac{7}{2}$; $cotg \hat{\theta} = \frac{2\sqrt{5}}{15}$

c)
$$sen\hat{\theta} = \frac{\sqrt{3}}{2}$$
; $cos\hat{\theta} = \frac{1}{2}$; $cosec \hat{\theta} = \frac{2\sqrt{3}}{3}$; $sec \hat{\theta} = 2$; $cotg \hat{\theta} = \frac{\sqrt{3}}{3}$

d)
$$sen\hat{\theta} = \frac{\sqrt{2}}{2}$$
; $cos\hat{\theta} = \frac{\sqrt{2}}{2}$ tg $\hat{\theta} = 1$; $cosec \hat{\theta} = \sqrt{2}$; $sec \hat{\theta} = \sqrt{2}$

e)
$$sen\hat{\theta} = \frac{4\sqrt{3}}{7}$$
; $cos\hat{\theta} = \frac{1}{7} tg \hat{\theta} = 4\sqrt{3}$; $cosec \hat{\theta} = \frac{7\sqrt{3}}{12}$; $cotg \hat{\theta} = \frac{\sqrt{3}}{12}$

f)
$$sen\hat{\theta} = \frac{12}{13}$$
; $cos\hat{\theta} = \frac{5}{13} tg \hat{\theta} = \frac{12}{5}$; $sec \hat{\theta} = \frac{13}{5}$; $co tg \hat{\theta} = \frac{5}{12}$

Ejercicio 13

a) tg
$$\hat{\mu} = 0.255$$
; $co \text{ tg } \hat{\mu} = 3.923$

b)
$$\cos \hat{\beta} = 0.5$$
; $\sec \hat{\beta} = 2$

c)
$$sen \hat{\alpha} = 0.724$$
; $cosec \hat{\alpha} = 1.381$

d)
$$\cos \hat{\gamma} = 0.037$$
; $\sec \hat{\gamma} = 27.027$

Ejercicio 14: a)
$$\theta = 42^{\circ} 50' 37,11''$$
 b) $\theta = 45^{\circ} 0' 1''$ c) $\theta = 60^{\circ}$ d) $\theta = 83^{\circ} 6' 28,43'$ e) $\theta = 25^{\circ} 27' 16,01'$ f) $\theta = 88^{\circ} 0' 0,94'$

Ejercicio 15: a) 28,48km b)26,4km

Ejercicio 16: h = 73,72m

Ejercicio 17: No impactará (3.354,6 km)

Ejercicio 18: h = 1.801,28m

Ejercicio 19: $tierra - sol = 146.829.648.8 \ km$

Ejercicio 20 a)x = 46,18cm b) x = 57,73cm c) x = 50,96cm

d) x = 5.77cm

Ejercicio 21 h = 158,48m

Ejercicio 22 72º32'32'', 90º, 17º27'28''

Ejercicio 23 Ángulo de elevación: 38º51'12''

<u>Ejercicio 24</u> La altura que alcanza la escalera al estar totalmente abierta es de 4,53 m . La longitud tiene la escalera cuando está plegada es de 4,6 m

<u>Ejercicio 25</u>: a) 0.5 b) $-\frac{\sqrt{3}}{2}$ c) $\sqrt{3}$ d) $-\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3}$ e) $-\frac{\sqrt{3}}{2}$

f) 2

g) -2 h) -1 i) -1,5

Ejercicio 26:

26-1) a)
$$\cos\theta = -4/5$$
 $\tan\theta = -3/4$ $\cot\theta = -4/3$ $\sec\theta = -5/4$ $\csc\theta = 5/3$

d)
$$sen\theta = -3/5$$
 $cos\theta = 4/5$ $cotg\theta = -4/3$ $sec\theta = 5/4$ $cosec\theta = -5/3$

26-2) F F V V V F

Ejercicio 27 a)
$$\hat{B} = 60^{\circ} \quad \overline{AB} = 11.5 \quad \overline{BC} = 6.62$$

b)
$$\hat{B} = 50^{\circ} \overline{AB} = 7.78 \overline{BC} = 5.08$$

c)
$$\hat{A} = 84^{\circ}36'17''$$
 $\hat{B} = 57^{\circ}23'42''$ $\overline{AB} = 8,04$

d)
$$\hat{A} = 130^{\circ} \ \overline{AB} = 32,64 \ \overline{AC} = 22,32$$

e)
$$\hat{A} = 61^{\circ}1'42''$$
 $\hat{B} = 88^{\circ}58'36''$ $\hat{C} = 29^{\circ}59'42''$

$$\hat{A} = 33^{\circ} \quad \hat{C} = 27^{\circ} \quad \overline{AC} = 19.08$$

Ejercicio 28

Diagonal= $\sqrt{109} \cong 10.44$

Ejercicio 29

$$\hat{A} = 54^{\circ}30'31'' \quad \hat{B} = 95^{\circ}39'7'' \quad \hat{C} = 29^{\circ}50'22''$$

 $\text{Área} = 394.07 \text{m}^2$

Ejercicio 30

Distancia entre el barco y el punto A: 513,7m

Distancia entre el barco y el punto B: 391,77m

Distancia entre el barco y la costa: 363,24m

Ejercicio 31

Distancia entre A y B: 4.95 km.

Ejercicio 32

a) Distancia Mateo -helicóptero

$$\overline{MH} = 689,4 \text{ m}$$

- **b**) Altura del helicóptero 584,6 m
- **c**) 12 cm

MÓDULO 5 ELEMENTOS DE GEOMETRÍA DEL ESPACIO.

Ejercicio 1: arista= 3,04 cm

Ejercicio 2 $V = 171\sqrt{57}$ cm³

Ejercicio 3 a) F-L; E-I; K-M; Q-N; P-J; R-O

b)
$$\overline{FG} - \overline{LG}$$
; $\overline{EF} - \overline{LI}$; $\overline{MH} - \overline{HK}$; $\overline{KQ} - \overline{NM}$; $\overline{QR} - \overline{ON}$; $\overline{EP} - \overline{IJ}$; $\overline{OP} - \overline{JR}$

Ejercicio 4 $A_T = 96\sqrt{3} \text{ cm}^2$; V= 144 cm³

Ejercicio 5 h= 90,22 cm

Ejercicio 6 $A_T = 1146,39 \text{ cm}^2$; $A_L = 96\sqrt{117} \cong 1038,39 \text{ cm}^2$; $V = 2592 \text{ cm}^3$

Ejercicio 7: $A_T = 54 \text{ cm}^2$; $V = 27 \text{cm}^2$

Ejercicio 8: Área lateral = 128 cm², altura = $4\sqrt{3}$, Volumen = $\frac{256}{3}\sqrt{3}$ cm³

Ejercicio 9: $A_T = 30\sqrt{3} cm^2$ $A_l = 27\sqrt{3} cm^2$; $V = 4\sqrt{15} cm^3$;

Ejercicio 10: A_T = 125,56 cm^2 ; V= 84,18 cm^3

<u>Ejercicio 11</u>: $V = 2593097,06 \, m^3$; La cantidad de tela necesaria para cubrir la pirámide es $85892,91 \, m^2$

Ejercicio 12: Si $h = \frac{r}{2}$ entonces $A_L = 2\pi r h = 2\pi r \frac{r}{2} = \pi r^2 = A_B$

Ejercicio 13: c) 108π

Ejercicio 14: a) $A_L = 14,29 \ cm^2$

b) altura = 7 cm , Volumen = $1575 \pi \ cm^3 \cong 4945,5 \ cm^3$

Ejercicio 15:a) La pintura habrá costado aproximadamente \$9590,65.

b) Vol cilindro= $147.6.\pi \approx 463.464 \, cm^3$

Ejercicio 16: $A_L = 107,40 \text{ cm}^2$; $A_T = 135,64 \text{ cm}^2$

Ejercicio 17: Al duplicarse la altura, el volumen se duplica. Al duplicarse el radio de la base el volumen se cuatriplica.

Ejercicio 18: $h \cong 8 \text{ cm}$; $g \cong 10 \text{ cm}$

Ejercicio 19: V= 2412,74 *cm*³

Ejercicio 20: $V \cong 523,6$ cm³

Ejercicio 21: $V = 1,62 cm^3$, $A \cong 6,7 cm^2$

Ejercicio 22: A= $706,50 \text{ } cm^2; \text{ V} = 1766,25 \text{ } cm^3$

PROBLEMAS VARIOS

Ejercicio 23 Área lateral: $25\sqrt{39}$ Área total = $25\sqrt{3}$. $(\sqrt{13}+1)$ Volumen = $\frac{250}{3}\sqrt{3}$

Ejercicio 25: 525 m³

Ejercicio 26: $V = 6912\pi \ cm^3$

Ejercicio 27: razón de los volúmenes = $\frac{\pi}{6}$

Ejercicio 28: a) 432 m³ b) 225 m³ c) 1332 m³

<u>Ejercicio 29</u> ii) a) 21 cm^2 b) 48 cm^2 c) 36 m^2 iii) a) 63 cm^3 b) 432 cm^3 c) 324 m^3

Ejercicio 30 a) pirámide triangular cuyas caras son triángulos rectángulos

b) 6

Ejercicio 31 $V = 64 \text{ cm}^3$

Ejercicio 32 e) 64