DEPARTMENT OF OCEAN ENGINEERING

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

A QUASI-STATIC DESIGN MODEL FOR SYNTHETIC MARINE TOWLINES

by

WALTER NOEL PROCTOR

OE SM (ME) COURSE XIII-A JUNE, 1984

Thesis P944275

A QUASI-STATIC DESIGN MODEL FOR SYNTHETIC MARINE TOWLINES

by

WALTER NOEL PROCTOR

B.S., University of Kansas (1975)

Submitted to the Department of
Ocean Engineering
in Partial Fulfillment of the
Requirements of the Degrees of

OCEAN ENGINEER

and

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1984

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1984

The author hereby grants to the United States Government and its agencies permission to reproduce and to distribute copies of this thesis in whole or in part.

Thesis P944275

A OUASI-STATIC DESIGN MODEL FOR SYNTHETIC MARINE TOWLINES

by

WALTER NOEL PROCTOR

Submitted to the Department of
Ocean Engineering on May 11, 1984
in Partial Fulfillment of the Requirements
of the Degree of Ocean Engineer and
of Master of Science in Mechanical Engineering

ABSTRACT

A model of the elongation characteristics of a double braid nylon rope is presented as an aid to sizing a marine towline. The material and structural elongation properties are combined and modeled as being the sum of a non-elastic permanent elongation and a load dependent elastic elongation. The loading range of practical interest is examined and a design factor of safety, with both an upper and lower bound, is established. The lower bound is incorporated to limit relative movement between structural elements in an attempt to control internal abrasion. The upper bound is imposed to stay within the safe working load and total elongation limits of the rope. The governing equations for the towline are then solved within these constraints for a typical submarine towing system to provide a towline capable of sustaining the hydrodynamic loads due to the resistances of the submarine and the towline. It is shown that the resistance of a typical towline may be of the same order of magnitude as the resistance of the towed vessel and cannot be neglected. solution results in a recommended towline diameter and breaking strength which is then examined under possible loading conditions other than those selected for the initial design. It is shown that a significant portion of the operating envelope is outside the limits obtained from the factor of safety analysis and that a nylon towline may be vulnerable to significant internal abrasion, especially if the line is oversized. Alternate materials are discussed but not analyzed due to the lack of experimental data which could support a functional model of elastic elongation behavior.

Thesis Supervisor: Dr. Stanley Backer

Title: Professor of Mechanical Engineering

Thesis Reader: Dr. Michael S. Triantafyllou

Title: Associate Professor of Ocean Engineering

ACKNOWLEDGEMENTS

I am truly indebted to many people for their contributions to this thesis and the educational experience that preceded it. I hope that those who have occasion to read it will recognize that their suggestions and concern are greatly appreciated.

Special thanks go to my wife Rita, daughter Kate, and son George for the many sacrifices that they have made over the last three years and especially during the period that this thesis was being written.

Captain D. V. Burke provided invaluable support in completing the curriculum that led to the thesis. Captain W. F. Searle, Jr., USN(ret) was influential in the selection of the topic and provided many valuable references.

This thesis was completed under the patient supervision of Professor Stanley Backer; for these efforts I offer my sincere appreciation, but I must also acknowledge that his influence on my overall education will be carried far beyond the submission of this document.

I am deeply appreciative to Dorothy Eastman, who endured many last minute revisions and managed to turn a jumble of rough drafts into a single professionally typed document.

Table of Contents

				Page
Abstrac	t			1a
Acknowledgements				
Table of Contents				3
List of	Figur	es		5
List of Tables				8
List of	Symbo	ls		9
Chapter	I.	Intro	oduction	12
Chapter	II.	Elone	gation Characteristics	14
		2.1	Background	14
		2.2	Load-Elongation Characteristics	15
		2.3	Elastic-Elongation Model	17
		2.4	Comparison with Data	22
Chapter	III.	Facto	or of Safety	28
		3.1	Definition	28
		3.2	Range	28
		3.3	Dynamic Amplification Factor	30
Chapter	IV.	Quas	i-Static Model	31
		4.1	Towing Configuration	31
		4.2	Governing Equations	33
		4.3	Method of Solution	38
Chapter	V.	Off-I	Design Analysis	44
		5.1	Low-Load Operations	44
		5.2	Surface Towing	50
		5.3	Flow-Induced Oscillations	52
		5.4	Dry verse Wet-Nylon Function	53

Chapter VI.	Conclusions				
	6.1	Controlling Material Characteristics	57		
	6.2	Controlling Structural Characteristics	57		
	6.3	Controlling Load Parameters	58		
	6.4	Summary	58		
References			59		
Appendices			61		
	Α.	Surface Towing Results	61		
	в.	Effect of Increased Normal Drag	63		
	c.	Bounds of Wet and Dry Functions	66		
	D.	Program Listing	76		
	Ε.	Sample of Program Output	85		

.

List of Figures

Figure	<u>Title</u>
1a	Typical Load-Elongation Behavior of New and Unused Ropes
1b	Typical Rope Stabilization Profile
2a	Plot of Elastic Elongation Design Models for Double Braid Nylon Rope
2b	Plot of Cyclic Elastic Elongation Data for Double Braid Nylon Rope
3	Comparison of Elastic Elongation Design Models with Data for Double Braid Nylon Rope
4	Apparent Stiffness of Double Braid Nylon Rope
5a and	5b Comparison of Design Models and Apparent Spring Constant as Reported by Bitting
6	Comparison of Design Models with Dry Rope Data Reported by Gibson and Wolfe
7	Comparison of Design Models with Wet Rope Data Reported by Gibson and Wolfe
8	Assumed Submerged Towing System Config-uration
9	Differential Element of Towline
10a	Towline Profile at the Design Point
10b7	Towline Tension at the Design Point
10c	Specific Tension at the Design Point
10d	Elastic Elongation at the Design Point
10e	Variation in Local Diameter at the Design Point
10f	Local Angle at the Design Point
11a	Resistance of the Notional Submarine as a Function of Velocity
11b	Depth Required to Maintain 3% Minimum Specific Tension as a Function of Velocity
11c	Initial Towline Angle as a Function of Velocity
11d	Maximum Specific Tension as a Function of Velocity
11e	Vertical Towline Tension as a Function of Velocity
12a	Local Reynolds Number along the Towline at the Design Point

Local Normal Velocity along the Towline at 12b the Design Point Local Diameter along the Towline at the 12c Design Point Towline Profiles for 3, 6, 9, and 12 Knot A1 Surface Towing Conditions Towline Angles for 3, 6, 9, and 12 Knot A2 Surface Towing Conditions Specific Tensions for 3, 6, 9, and 12 Knot A3 Surface Towing Conditions Elastic Elongations for 3, 6, 9, and 12 A4 Knot Surface Towing Conditions B1 Towline Profiles for a Design Point Towing Condition with Normal Drag Coefficients of 1.2, 1.5, 2.0, and 2.5 B2 Towline Tensions for a Design Point Towing Condition with Normal Drag Coefficients of 1.2, 1.5, 2.0, and 2.5 Specific Tensions for a Design Point Towing **B3** Condition with Normal Drag Coefficients of 1.2, 1.5, 2.0, and 2.5 B4 Elastic Elongations for a Design Point Towing Condition with Normal Drag Coefficients of 1.2, 1.5, 2.0, and 2.5 Local Diameters for a Design Point Towing **B5** Condition with Normal Drag Coefficients of 1.2, 1.5, 2.0, and 2.5 B6 Local Angles for a Design Point Towing Condition with Normal Drag Coefficients of 1.2, 1.5, 2.0, and 2.5 C1 Comparison of Towline Profiles for the DNF and WNF at the Design Point C2 Comparison of Towline Tensions for the DNF and WNF at the Design Point C3 Comparison of Specific Tensions for the DNF and WNF at the Design Point C4 Comparison of Elastic Elongations for the DNF and WNF at the Design Point C5 Comparison of Local Diameters for the DNF and WNF at the Design Point C6 Comparison of Local Angles for the DNF and WNF at the Design Point C7 Comparison of Local Normal Velocities for the DNF and WNF at the Design Point

Comparison of Local Tangential Velocities C8 for the DNF and WNF at the Design Point Comparison of Local Reynolds Numbers for C9 the DNF and WNF at the Design Point Comparison of Local Normal and Tangential C10 Drag Forces for the DNF and WNF at the Design Point C11 Comparison of Towline Profiles for the DNF and WNF in a Deep, 600 ft, Slow, 3 Knot Towing Configuration Comparison of Towline Tensions for the DNF C12 and WNF in a Deep, 600 ft., Slow, 3 Knot Towing Configuration Comparison of Specific Tensions for the DNF C13 and WNF in a Deep, 600 ft, Slow, 3 Knot Towing Configuration C14 Comparison of Elastic Elongations for the DNF and WNF in a Deep, 600 ft, Slow, 3 Knot Towing Configuration C15 Comparison of Local Diameters for the DNF and WNF in a Deep, 600 ft, Slow, 3 Knot Towing Configuration. C16 Comparison of Local Angles for the DNF and WNF in a Deep, 600 ft, Slow, 3 Knot Towing Configuration C17 Comparison of Local Normal Flow Velocities for the DNF and WNF in a Deep, 600 ft, Slow, 3 Knot Towing Configuration C18 Comparison of Local Tangential Flow Velocities for the DNF and WNF in a Deep, 600 ft, Slow, 3 Knot Towing Configuration C19 Comparison of Local Reynolds Numbers for the DNF and WNF in a Deep, 600 ft, Slow, 3 Knot Towing Configuration C20 Comparison of Local Normal and Tangential Drag Forces for the DNF and WNF in a Deep, 600 ft, Slow, 3 Knot Towing Configuration

List of Tables

Table	Title		
1	Design Point Geometry and Constraints	31	
2	Recommended Towline Size	40	
3	Notional Surface Resistances	51	

LIST OF SYMBOLS

A1

- Empirically determined constant

 A_0

- New-wet cross-sectional area of rope at T_n

Aw

- Wet cross-sectional area of towline

В

- Buoyancy of towline per unit length

Bs

- Average breaking strength

 B_{m} b

- Minimum guaranteed breaking strength

Cn or CD

- Beam of towed vessel

C₊

- Normal drag coefficient of towline

C

- Tangential drag coefficient of towline

d, dw - Arbitrary constant

load T

- New-dry diameter of rope at To

đ

- Diameter of towline at T - Diameter of rope under arbitrary

- New-wet elemental length at To

ds, dsw

- Wet working elemental length at T,

ds

- Elemental length under arbitrary load T

DNF

- Dry-Nylon elastic elongation Function

DNC е

- Dry-Nylon design curve

 $e_r = \Delta L_r / L_0$

- Elemental elastic elongation under arbitrary load T

 $e_h = \Delta L_h / L_r$

- Residual strain

- Hysteresis strain

 $e_{W} = \Delta L_{W} / L_{W}$

- Working strain

 $e_p = \Delta L_p / L_0 = (\Delta L_r + \Delta l_p) L_0$

- Non-elastic strain

 $e_e = \Delta L_w / L_0$

- Elastic strain

 $e_{t} = (\Delta L_{r} + \Delta L_{n} + \Delta L_{w}) / I_{0}$

- Total strain

FS

- Factor of safety (design factor)

Ft

- Tangential drag per unit length of towline

Fn FCS g Kap Kaps 1 Lo Lw L_r m MFSN PI R_{+} S T Tah Tav TD To

 T_w

- Normal drag per unit length of towline

- Control surface force

- Gravitational constant

- Apparent spring constant of towline

- Specific apparent spring constant of towline

- Length of towed vessel

- Base length - length of new, dry, unused rope measured at the base load

- Working length - length of rope measured at base load immediately after fifty cycles of loading to the working load. The working length can be effected by the conditions of use and for each case the wet or dry condition should be specified

- Recovered length - length of the rope measured at the base load after the rope has been subjected to fifty cycles at the working load, is completely unloaded and left in a relaxed state for thirty minutes, and then reloaded to To

- Empirically determined exponent

- Marine factor of safety for double braid nylon rope

- Constant, 3.14159

- Resistance of towed vessel in lbs.

- Wet length of towline under arbitrary load

- Arbitrary tension in towline

- Horizontal tension component at towed vessel

- Vertical tension component at towed vessel

- Depth of towed vessel

- Base load = 200 d²lbs (d is the new rope diameter in inches)

- Working load, Lb - a load representative of the application. For standard tests 20% of the rope average breaking strength is used

U - Velocity of tow system - Velocity of local current V - Relative velocity of towline with V respect to the water Vn - Normal component of relative velocity - Tangential component of relative V₊ velocity - Towline weight per unit length W - Horizontal coordinate X - Vertical (depth) coordinate Z ΔLr - Residual elongation - The portion of elongation which is not recoverable (also called Permanent Elongation) ΔL_h - Hysteresis - That portion of the elongation which is recovered over a period of time. Note: this is not the hysteresis loop, but is a definition adopted by the cordage industry ΔL_{W} - Working elongation - That portion of the elongation which immediately recovers when load is removed (also called Elastic Elongation) ΔL_n - Non-elastic elongation - The amount of extension which exists when load is removed but no time is given for hysteresis recovery. It is the sum of residual and hysteresis elongation AL+ - Total stretch - The entire length change in a rope when placed under a given load (cyclic or otherwise), and includes the residual, hysteresis and working elongations Φ - Local angle of towline with respect to the horizontal τ - Specific tension (T/B_c) - Mass density of towline, 2.209 slugs/ft3 for nylon - Mass density of sea water, 2 slugs/

ft³

Pw

Chapter I

INTRODUCTION

A current problem in ocean engineering is the incorporation of synthetic rope into lifting, handling, mooring, and towing systems. The high strength-to-weight ratios, the energy absorption characteristics, and the flexibility and ease in handling are all features offered by synthetic rope that are not common to wire rope or natural fiber rope. The adaptation of these characteristics to marine engineering problems can result in improved system safety and performance if the design is well executed. The design of an efficient shipto-ship towing system requires an analysis which brings together those material and structural characteristics needed to sustain the static and dynamic loads imposed by the connected vessels as they respond to the excitation of the ocean environment.

One of the most important design elements of the towing system is the ability to absorb dynamic loads and dissipate energy without damaging system components or degrading system performance. This can be accomplished through employment of mechanical tensioning devices, steel/chain catenaries, synthetic towlines and, in some special cases, the use of the control surfaces on the towed vessel. The application of a synthetic towline is the most universal of these methods as it is easily adapted to both scheduled and emergency tows. The resort to synthetic rope on such occasions has been common for several years, but has recently been discouraged, and even forbidden by the U. S. Navy in scheduled military tows, and by Lloyds of London for insured commercial tows. Both of these actions were apparently the result of the unacceptably high failure rate of synthetic towlines and the resulting There are many possible causes of towline failures. While it is not the intent of this thesis to address them all, we submit that failure rates can be reduced and conditions leading to failure can be more accurately predicted by improved design processes.

This thesis will address the incorporation of synthetic rope into the marine towing system. Nylon, polyester, polypropylene, and Kevlar are the four primary fibers used to make synthetic rope, each with distinct mechanical characteristics capable of improving the system being designed. However, such variations in characteristics also require that slightly different methods be used in the analysis. Nylon will be used here as the base material for the presentation because it encompasses the vast majority of the ropes presently in use. Even though the methods to be suggested will be adaptable to other materials, it will be imperative that differences in mechanical characteristics be accounted for. In addition, the structure of the rope will be limited to 2-in-l double braid since it is a torque-free structure and offers the highest breaking strength for a given material and size when compared to the other common commercial rope structures.

This design process will present a method of predicting the elastic behavior of a nylon towline, examine the effects of the design "factor of safety", present a quasi-static preliminary design and examine the sensitivity of the design to each of the design parameters. This process of examining the interaction between material properties, loading conditions, and design methodology will lead to the preliminary sizing of the synthetic rope and to subsequent improvements of the tow system through trade-offs between design parameters.

Chapter II

ELONGATION CHARACTERISTICS

2.1 Background

To describe the elastic elongation characteristics of synthetic ropes requires the selection of the best working approximation to a complex mechanical structure comprised of a very large number of basic filament elements. Polymeric fiber elements are, in fact, viscoelastic in nature; any approximations that ignore time dependence are inherently inexact. Polymeric fibers subjected to a sustained load, such as the mean towing load, are known to creep. creep is reflected in an increase in nonrecoverable elongation and the fiber will eventually rupture; this creep rupture is a function of load amplitude and time under load. A fatigue failure model has been developed for predicting failure of low twist yarns based on creep rupture data from fibers [11], but this model has not yet been extended to marine rope level. The inclusion of the time factor in a truly viscoelastic model which could be matched with the complex time dependent excitation forces of the ocean environment cannot be done at this time.

The task is further complicated by the need to design towing systems requiring the use of large ropes which have not been extensively tested. Comparison of data which have been collected by various sources must be undertaken with caution [4], since test methods, environmental conditions, and specimen size and geometry greatly influence results obtained. Several ongoing development programs [8] are underway, focusing on various aspects of synthetic fiber rope behavior in the marine environment. When such programs have been completed, it should be possible to eliminate many of the unknowns that now hinder the design process. In the interim some uncertainties must be accommodated in the design methods used. One such method is presented here.

2.2 Load-Elongation Characteristics

It is essential that the elongation characteristics peculiar to synthetic ropes be understood at the outset. An introduction to the subject is here provided with the aid of Fig. 1. A more complete description can be found in [1, 2, and 3].

As a synthetic rope is loaded for the first time from T_0 to a working load $T_{\rm w}$, the load-elongation curve follows the path A-B of Fig. 1(a). If the load is then decreased to T_0 , the second portion of the curve B-C is traced; as the load is again increased to $T_{\rm w}$, the path C-D is formed and the typical hysteresis loop can be seen. The distance A-C represents the non-elastic elongation, $\Delta L_{\rm n}$, part of which would be recovered if the rope were allowed to relax for extended periods between cycles. Subsequent cycles will cause the hysteresis loop to migrate to the right as the non-elastic elongation is increased with each load cycle. The hysteresis loop "stabilizes" [1] at approximately fifty cycles and it is this loop that is used for design applications that require cyclic loading.

Figure 1(b) shows the first, tenth, and fiftieth cycles of a typical rope stabilization profile [1] with the pertinent components of the total elongation labeled. It can be seen that the total elongation is composed of the non-elastic elongation and the working elongation. These elongations can be converted to strains by dividing by a "reference" length and at this point extreme care should be taken when comparing data from different sources because the same "reference" length is not always used. For example, reference [1] defines working strain as the change in working length over the working length, where the working length is the base length L0 plus the non-elastic elongation ΔL_n . In contrast, reference [2] defines the working strain as the elastic change in length over the base length. The relation is:

$$e_{e} = e_{w} \times L_{w}/L_{0} \tag{1}$$

For nylon working between twenty and thirty percent of the

FIGURE 1a

TYPICAL LOAD-ELONGATION BEHAVIOR OF NEW AND UNUSED ROPES

FIGURE 1b
TYPICAL ROPE STABILIZATION PROFILE

average breaking strength, $B_{_{\rm S}}$, $L_{_{\rm W}}/L_{_{\rm 0}}$ is approximately 1.13 [1]. Another contrast is found in Reference [4], for the testing of wet single-point-mooring hawsers, where the reference length was measured at $T_{_{\rm 0}}$ with the rope wet. In this case, a direct conversion is not possible for nylon because of the shrinkage which causes the fiber to swell and the length to shorten. However, the author [4] states that the results of a few tests were re-analyzed and that the elasticity reported was about 1% above that based on the working length.

2.3 Elastic-Elongation Model

With these definitions it is proposed [1] that rope size can be eliminated from the stress-strain relation by dividing the actual tension, T, by the average rated breaking strength, B_s , to produce the specific tension, τ , which can then be related to the working strain by a function of the form:

$$\tau = A1 \times (e_w)^m \tag{2}$$

where Al and m are empirically determined constants and the rope has been stabilized with 50 load cycles at 20% of the breaking strength. For nylon in both the wet and dry condition, the function becomes:

$$\tau = 9.78 \text{ x } (e_w)^{1.93} \text{ (wet nylon)}$$
 (3)

$$\tau = 14.2 \times (e_w)^{1.71} \text{ (dry nylon)} \quad (4)$$

In addition to these functions, Reference [5] presents a design curve for a 2.5-inch double braid rope subjected to cyclic load conditions. Again, the design curve is based on data collected during the fifty-first cycle at 20% of $B_{\rm S}$. Reference [6] presents a "linearized (retention) equation" for nylon towlines which is size dependent; this function is presented as part of a towing system design report and the basis for the equation is not given. This report uses E for the elastic elongation of the towline in feet, and is:

$$E = (T \times L) / (7.4 \times 10^4 \times d^2)$$
 (5)

Since E is stated to be the elastic elongation, it is

assumed to be equivalent to $\Delta L_{\rm w}$. By rearranging the terms and dividing the tension with the rated breaking strength, to produce a function of specific tension for the given size rope, the equation can be compared with the above functions in the form:

$$E/L_0 = (T/B_S)/[(7.4 \times 10^4 \times d^2)/B_S]$$
 (6)

where it has been assumed that the length intended was the base length, L_0 . The results of this equation can now be plotted for ropes having diameters in the range of interest and compared to the size independent functions, equations (3) and (4).

In Fig. 2, a common "reference" length of L_0 has been established and for the functions given by McKenna [1], the data given by Flory [4], the typical design curve presented by Wong [5], and the linear function used in the towing system report [6], the respective elastic elongation curves are presented for approximate comparison. In Fig. 2a, curve (1) represents the wet nylon function, WNF, and curve (2) represents the dry nylon function, DNF, both of which are size independent, but based on data taken after the fiftieth load cycle to 20% B. Curve (3) represents the design curve, DNC, given by Wong for 2.5-inch diameter dry double braid nylon rope on the fifty-first cycle. Curves (L1.75) and (L 2.5) represent the "linearized (retention) equation" for 1.75- and 2.5-inch diameter ropes. It appears that the linear function is fairly accurate at low specific loads when compared to the dry nylon function and the dry nylon curve. In Fig. 2b, curves (4) through (9) represent data taken at 10, 100, 300, 1,000, 3,000, and 10,000 cycles [4] for 1.75-inch diameter pre-soaked double braid nylon ropes. These curves for presoaked double braid nylon ropes more closely follow the dry nylon function. The reaction of the pre-soaked ropes can be partially justified by assuming that the water is being squeezed out as the rope is cycled under load which results in increased friction between structural elements. would probably produce only small changes in the elastic

SAMSON ELASTIC ELONGATION

FIGURE 2a

PLOT OF ELASTIC ELONGATION DESIGN MODELS FOR DOUBLE BRAID NYLON ROPE

FIGURE 2b
PLOT OF CYCLIC ELASTIC ELONGATION DATA FOR DOUBLE BRAID NYLON
ROPE

-19-

behavior of the rope. It can also be assumed that the rope was beginning to dry out [4] from internal heat generation and exposure to the air during testing; approximately 2,500 cycles were applied each day [4]. Both of these factors would tend to shift the curves toward the dry nylon model, as they are shown in Figs. 2a and 3. In Fig. 3, curve (3) was eliminated because of the uncertainty in the original reference length and only the curves (5) and (8), representing 100 and 3,000 cycles, were retained from the pre-soaked cyclic load tests. Once again these are compared to the linear functions presently used to design some U. S. Navy tow systems.

Figure 4 presents the non-dimensional stiffness, i.e. the change in percent load with a change in percent elongation, and it is here that the validity of the linear approximations becomes questionable. If it is assumed that the curve (1) for wet nylon is closest to the actual rope behavior, then the linear approximation is valid only in the region of the 15% load range and that there is a deviation of between 30% and 50% when the linear function is compared to the wet nylon function, curve (1), for a cyclic load amplitude about the mean load of plus or minus 10%, as is evident when the respective values are compared at τ equal to 5% and Such a load amplitude could reasonably be expected under working conditions. In contrast, if it is assumed that the dry nylon function, curve (2), or the 100 and 3,000 cycle curves (5) and (8) approximate the real condition, then the linear approximation is accurate only very near a specific load of 5%, which should not represent normal working conditions.

Based on these comparisons no further consideration will be given to the linear approximation of the load-elongation behavior of nylon towlines, since it is apparent that both the elongation and the stiffness are very non-linear below 20% of B_s and it is in this region that we are most interested.

To this point, it has been assumed that a rope is completely stabilized by the fiftieth load cycle and that

FIGURE 3

COMPARISON OF ELASTIC ELONGATION DESIGN MODELS WITH DATA FOR DOUBLE BRAID NYLON ROPE

FIGURE 4
APPARENT STIFFNESS OF DOUBLE BRAID NYLON ROPE

further creep migration of the hysteresis loop will not be significant, except in the case where the rope is unloaded and allowed to recover slowly for an extended period, in which case the rope may need to be "broken-in" again. fiftieth cycle stability assumption is the basis for Eqs. (3) and (4) and for the proposed design curve [5], curve (3). In fact, the assumption is based on synthetic rope test standards [7]. This is not a true representation for an extremely high number of load cycles that could be expected during a towing operation (5,000 to 15,000 cycles per day) which may encompass several days of continuous operations where there is a variable but constantly applied mean load. The hysteresis loop actually has a nearly logarithmic migration [1], with the exceptions noted above, and the permanent elongation will continue to increase as the elastic elongation decreases. This is simply the manifestation of the viscoelastic properties of the nylon filaments and even though it cannot be quantified in the complex structure of a large rope, it must be accounted for. Referring to Fig. 2a, it can be seen that such a migration would cause the high cycle wet nylon curve (1) to shift again toward the low cycle dry nylon curve (2). Similar to the shift seen in Fig. 2b, as the number of cycles is increased from 10 cycles, curve (4) to 10,000 cycles curve (9).

2.4 Comparison with Data

For these reasons, the elastic elongation function for dry nylon, Eq. (4), will be used in this thesis, recognizing that it is:

- (1) Approximate,
- (2) Chosen to represent high cycle wet behavior.

Under conditions where a new towline was being installed for a specific task, it might be prudent to use the wet nylon function to predict initial load elongation behavior, providing a lower bound on load amplification and an upper bound on elongation. Then, to use the dry nylon curve to provide the upper bound on load amplification and lower bound

on elongation, the condition that could be expected after the towline had undergone a significant number of cycles.

The basic assumption thus far has been that the load elongation behavior can be normalized by dividing by the average rated breaking strength to eliminate the effects of changes in the size of the rope. This assumption was checked by comparing the predicted stiffness, using the function shown in Fig. 4, with an apparent spring constant, Kap, presented by Bitting [3]. This was done by dividing the apparent spring constant by the manufacturers published breaking strength to produce a specific apparent spring constant which is a function of frequency, f, mean load, T_m, and load amplitude, DT:

$$Kaps = Kap/B_{s}$$
 (7).

Bitting presents coefficients to be used in a Box-Behnken equation (7a) for the apparent spring constant for $\frac{1}{2}$ ", $\frac{3}{4}$ ", $\frac{1}{4}$ ", and $\frac{1}{4}$ " double braid nylon line:

$$Kap = B1 + B2 \times f^{2} + B3 \times Tm^{2} + B4 \times DT^{2} + B6 \times Tm + B7 \times DT + B8 \times f \times Tm + B9 \times x + F \times DT + B10 \times Tm \times DT$$
(7a).

All of these coefficients were obtained by testing the ropes in the wet condition and are considered to be valid only in the range of testing [3], which is for a specific load greater than 10%. The comparison is shown in Fig. 5, where it is seen that in the 20% load range the dry nylon function provides a good model for Bitting's ½", 1", and 1½" data. The departure of the 3/4" apparent spring constant cannot be explained at this time. Based on the relative magnitude of the coefficients in Eq. (7a), it is found that the apparent spring constant, Kap, is primarily a function of mean load, Tm, and load amplitude, DT. The frequency of loading, f, has a minimal effect within the range of interest. In Fig. 5a the maximum permissible frequency and load amplitude as given by Bitting were used to plot the curves, while in Fig.

COMPARISON OF DESIGN MODELS AND APPARENT SPRING CONSTANT AS REPORTED BY BITTING

STIFFNESS d(TAU)/de

STIFFNESS d(TAU)/de

FIGURE 5a

APPARENT STIFFNESS

FIGURE 5b

-24-

5b, the minimum permissible values, also given by Bitting, were used. A comparison of these two figures reflects the minimal effect of varying the frequency and load amplitude over the total valid range.

Further load elongation data were presented by Gibson and Wolfe [12] for 42" circumference double braid nylon rope tested in both the dry and wet condition. These data are presented in Figs. 6 and 7, where the wet and dry nylon functions have been added for comparison. It is interesting to note that these curves represent tensile tests where the specimens had been conditioned with 250 cycles to the base reference load, To, and then loaded in a tensile break test. This base reference load is a very small percentage of the breaking strength, but the elastic elongation in the lower load ranges remains in good agreement with the proposed model. From Fig. 6, it can be seen that the dry tensile specimen falls between the dry and wet functional models; further, the test results are very close to the dry-nylon functional model throughout the range of practical working loads. The wet tensile specimen shown in Fig. 7 is very close to the wet-nylon functional model in the lower load range and indicates good agreement with the lower bound stiffness referred to earlier. A second point that must be mentioned here is that the ropes tested by Gibson and Wolfe were manufactured by Wall Rope Works; this is significant in that all of the previous data were taken on ropes manufactured by Samson, and it was believed that there could be variations between different manufacturing companies. concern may still be valid, but based on this admittedly limited comparison, the variations may not be a major factor in the preliminary sizing phase of the design.

It should be noted at this point that polyester and polypropylene reaction with water at the molecular level is negligible, at temperatures commonly found in the ocean environment, and thus do not exhibit significant shrinkage or strength reduction when exposed to the marine environment. A single elastic elongation function may be sufficient to

COMPARISON OF DESIGN MODELS WITH DRY ROPE DATA REPORTED BY GIBSON AND WOLFE

COMPARISON OF DESIGN MODELS WITH WET ROPE DATA REPORTED BY GIBSON AND WOLFE

describe their behavior [1]. These functions are based on the stabilized rope and caution should be used when applying them directly to very high cycle loading conditions because of the possible continued creep migration of the hysteresis loop. Test data on large polyester and polypropylene is not yet available to attempt to verify either function.

Chapter III

FACTOR OF SAFETY

3.1 Definition

Modeling elastic elongation as a function of specific loading which requires that the working load be approximated and that the breaking strength of the rope be known, implies that the size of the rope is known apriori. This is not the case, since the objective of the design is to size properly the rope used in making the towline. An alternate approach is to obtain a nominal specific loading by defining an acceptable factor of safety. Defining the ratio of the breaking strength to the working load as the factor of safety, FS:

$$FS = B_S/T_W \tag{8}$$

which for nylon must be further modified to account for the reduction in breaking strength due to immersion in the marine environment. A range of 10% [3,4] to 20% [8,4] of breaking strength is commonly accepted with a value of 15% commonly used [1, 2, 6]. Using 15% here, the Marine Factor of Safety for nylon is defined as:

$$MFSN = 0.85 \times FS \tag{9}$$

This implies that the specific loading will be:

$$\tau = 1/FS = 0.85/MFSN$$
 (10).

3.2 Range

Factor of safety values range from 1.5 [9], for single-point-mooring hawsers, to 9 [10] for general applications. For double braid nylon rope being used in high-cycle towing applications, there are several considerations which can be used to narrow this range.

It has been found that tensile fatigue failure (due to creep) is not so great a problem when ropes are cycled below 30% of breaking strength, if the minimum load is allowed to

go to zero during each cycle. It has also been shown that the rope can be cycled as high as 60% of breaking strength if the minimum load is never allowed to reach zero and will survive a comparable number of cycles. A load of 3% of breaking strength is cited [3,9] as an acceptable lower limit in this case. McKenna [1] recommends that the maximum load never exceed 30% of breaking strength for safety and that cyclic loads not exceed 20% of breaking strength.

There are also indications that under fast dynamic loading conditions, the rope will stiffen and have an apparent modulus several times that obtained from moderate cyclic load tests, magnification factors of 3 to 4 are cited by Bitting [3]. While McKenna [1] states, "Loading rates should not exceed 5% of the breaking strength per second with a delay of no less than ten seconds between cycles to approach a normal response", in towing applications, the delay between cycles will be dictated by sea state and heading, and it may not be possible to meet the ten-second recommended minimum, while a properly sized towline could remain below a load rate of 5% of breaking strength per second augmented by adjusting the speed of the towing vessel. In the event of the occurrence of a fast-dynamic load, the larger diameter rope, having a higher breaking strength and greater stiffness, would significantly increase the load transmitted to the other components of the system if a dynamic stiffness of 3 to 4 times were realized. Stiffness is also known to increase with extended exposure to water; this increase can be as high as 99% [3] with a concurrent strength loss of 50%.

The towing hawser will be a substantial investment and those used by the U. S. Coast Guard are expected to last for up to five years, during which time it is often exposed to water. The very nature of marine towing is one of cyclic loading and the possibility of minimum loads that approach zero cannot be excluded (such as a low speed tow in a high sea state). The combination of these constraints imply that loads should be kept below 30% of breaking strength, but that the minimum design load should be greater than 3% of breaking

strength range to limit the possibility of zero minimum cyclic load conditions. Thus, by examining the behavior of double braid nylon rope, a range for the factor of safety and the acceptable specific loading has been established:

$$3 \le FS \le 30$$
 (11)

$$3.5 \le MFSN \le 35$$
 (12)

$$3\% <= \tau <= 29\%$$
 (13).

Note that the lower limit is maintained to account for the apparent effects of internal abrasion, caused by relative motion between the structural elements of the rope. Maintaining a minimum load has the effect of tightening the total structure and reducing the structural relaxation which results in the major component of relative motion.

3.3 Dynamic Load Amplification Factor

The upper limit, as stated, must include both the static and dynamic loads. In a quasi-static preliminary design the dynamic loads can be accounted for through the use of an assumed dynamic amplification factor. The magnitude of this dynamic amplification factor must be selected for each individual towing configuration based on an analysis of the relative accelerations between the towing and the towed vessels. For a towing system where the towed body is a submerged submarine, which is not excited by waves, the only source of dynamic loading is from the towing vessel. Under these conditions Kline and Blockwick [6] use a dynamic amplification factor of two which is based on towship motions obtained from scale model testing.

The range for τ can now be used in conjunction with the elastic-elongation function, curve (2) of Fig. 3, with predicted loads and displacements to size properly the required towline in diameter and length. This is done by modifying the upper limit by dividing by the appropriate dynamic amplification factor, which will be taken as two for the purpose of this presentation:

$$3\% <= \tau <= 15\%$$
 (13a).

Chapter IV

QUASI-STATIC MODEL

4.1 Towing Configuration

A marine towing evolution in the presence of waves is obviously a dynamic environment and an exact evaluation of the loads imposed on the components of the towing system would include a combination of the static loads, due to the steady motion of the towed vessel through the water, and the dynamic loads of the time-varying wave excitation. Dynamic analysis of the towing system is an area of current research and is beyond the scope of this presentation. A quasi-static approach will be used here, with the application of the dynamic amplification factor imposed on the specific loading to account for wave excitation.

The model will be developed around an assumed towline profile for a submerged towing operation similar to that shown in Fig. 8. The towed vessel, at Point A, will be modeled as a notional submarine having dimensions as shown in Table 1.

TABLE 1

Design Point Geometry and Constraints

Dimensions		Design Constraints
Length 200	ft.	Maximum Submerged Towing Ve- locity 15 knots
Beam 25	ft.	Design Tow Depth 200 ft.
		Maximum Vertical Tension T 15,000 lbs.
		Nominal Vertical Tension Tan 7,000 lbs.

Thus, the horizontal component of the towline tension at Point A, T_{ah}, can be calculated from the resistance equations given by Jackson [13]. For a specific design the desired depth and speed of tow would be dictated by operational requirements. In this notional case a maximum tow velocity of 15 knots with a design tow depth of 200 ft. will be assumed

ASSUMED SUBMERGED TOWING SYSTEM CONFIGURATION

FIGURE 8

as a design point. Under actual towing conditions the vertical component of the towline tension must be compensated for by a countering force on the control surfaces. The range of possible control surface forces would depend upon the flow velocity, the size of the control surface, and the angle of deflection. Since these conditions would be specific to each case, a maximum vertical tension component, $T_{\rm av}$, of 15,000 lbs will be assumed with an optimum value of 7,000 lbs during normal operations at the design point velocity of 15 knots.

For a given tow velocity, U, the actual velocity of the towed vessel and towline relative to the water, V, would be the algebraic sum of the towship velocity and the current velocity, v. It will be assumed that the local current velocity is small compared to the velocity of the towline through the water and that the relative velocity is equal to the towship velocity. It is recognized that this is a weak assumption for actual operations which could be conducted under conditions where the current velocity may be of the same order of magnitude as the towing velocity. However, if the correct relative velocity were known, it could be used in place of the towing velocity to improve the design.

4.2 Governing Equations

By removing an arbitrary element from the towline, as in Fig. 9, and establishing a local coordinate system which is everywhere normal and tangential to the towline axis, the governing equations will be:

$$dT/ds = (W-B) \times SIN(\Phi) + F_{t}$$
 (14)

$$T \times d(\Phi)/ds = (W-B) \times COS(\Phi) - F_n$$
 (15)

where T is the effective tension, as shown in Eq. (15a), which includes the hydrostatic pressure acting on the local cross-sectional area:

$$T = T_{w} + \rho \times g \times z \times A_{w}$$
 (15a)

The hydrostatic component is included here to offset the equivalent opposing pressure term in the elemental buoyancy.

DIFFERENTIAL ELEMENT OF TOWLINE

FIGURE 9

The effective tension, T, is the appropriate tension to be used in elastic elongation calculations because it accounts for the Poisson effect of the hydrostatic pressure. However, it remains an approximation because it is applied to the total rope volume as if it were a linear elastic solid cylinder. The working tension, $T_{\rm w}$, should be used in calculating the specific load in the cases where strength limitations are of greater concern than total elongation, or for cases where the depth is great enough to make the pressure contribution significant. For the rope sizes and the depths of interest in this preliminary design the hydrostatic component is considered to be negligible, i.e. on the order of 0.4% of $B_{\rm S}$, and the effective tension will be accepted as the working tension. This results in a more correct elongation model and a conservative strength model.

F_n and F_t are, respectively, the normal and tangential hydrodynamic drag forces, defined as:

$$F_{n} = \frac{1}{2} \times \rho_{w} \times C_{n} \times d \times V_{n}^{2}$$
 (16)

$$F_{t} = \frac{1}{2} \times \rho_{w} \times C_{t} \times PI \times d \times V_{t}^{2}$$
 (17)

The equations are further simplified by defining the weight in water as:

$$W_W = (W-B) = P_{\frac{1}{4}} \times d^2 \times g \times (\rho_{\ell} - \rho_{W})$$
 (18)

The magnitude of the drag coefficients, C_n and C_t , is also an area of current synthetic line research and, again, approximations as found in Newman [14] and Springston [18] for the condition that flow-induced vibrations are not significant, are:

$$C_{\rm p} = 1.0$$
 (19)

$$C_{t} = (0.03 \text{ to } 0.05) \times C_{n}$$
 (20)

The mean values will be used in this preliminary design,

$$C_{n} = 1.0$$
 (19a)

$$C_{+} = 0.04$$
 (20a)

The use of thses values implies the assumption that flow-induced vibrations are not significant. The validity of this assumption will be examined after a preliminary design has been completed and the position of the towline relative to the flow has been approximated.

Where vortex shedding is present, and excites towline motions normal to free-stream velocity, the normal
drag coefficient has been found to be as high as 3.0 [16].
This condition is usually found when the flow field is
nearly uniform and normal to the axis of the test cable
and, as such, would probably be minimal during towing operations. The frictional drag has not been measured during such
flow conditions, and the effect of flow-induced vibrations
on the frictional drag coefficient is not known.

A reference condition of near zero velocity with a minimal tension of T_0 will be assumed for an elemental length of ds_0 and diameter d_0 . This diameter is equivalent to the new rope diameter and with its new-dry breaking strength, B_s , would be the criteria by which the rope would be ordered prior to incorporation into the towing system.

When immersed in water, the nylon will "shrink", causing the length to decrease. Recent measurements taken from active U.S. Coast Guard towlines showed an average shrinkage of approximately 5%. This will be the value used in the presentation where the new-dry length will be reduced by 5% to produce the wet reference length. Once installed into the

towing system and subjected to the cyclic loads, the permanent elongation, and thus the working length, of the line will be established. As previously stated, the permanent elongation for wet double braid nylon is approximately 13% at a load of 20% of B_s . Further, if it is assumed that the double braid structure does not contain a significant amount of trapped air when loaded to T_0 , the assumption of incompressibility can be used in conjunction with the permanent elongation to provide the following relation between the reference length, ds_0 , and the working length, ds_v :

$$ds_{xx} = 1.13 \times ds_0$$
 (21)

$$A_{w} \times ds_{w} = A_{0} \times ds_{0}$$
 (22)

$$d_{W} = d_{0} \times (1/1.13)^{0.5}$$
 (23)

The elemental working length, ds_w , will be used throughout this thesis as the basis for local elastic elongation. The resulting relation for elastic elongation is given by:

$$e = (ds - ds_w)/ds_w$$
 (24)

$$ds = ds_0 \times 1.13 \times (1 + e)$$
 (25)

A second application of incompressibility combined with an assumption of small elastic elongation, less than 15%, as cited in [1] and [10], leads to the final equations needed to express the local diameter, d, as a function of the original diameter, d_0 :

$$A_{w} \times ds_{w} = A \times ds \tag{26}$$

$$PI/4 \times d_W^2 \times ds_W = PI/4 \times d^2 \times ds$$
 (27)

$$d^2 = d_W^2 \times ds_W/ds \tag{28}$$

$$d = d_{w}/(1 + e)^{1/2}$$
 (29)

where for small e:

$$(1 + e)^{1/2} = (1 + e/2)$$
 (30)

$$d = d_{w}/(1 + e/2)$$
 (31)

$$d = d_0 \times [(1/1.13)^{0.5}/(1 + e/2)]$$
 (32)

Substitution of these relations and the relative velocity, V, into the governing equations leads to a system of equations which must be satisfied by any valid model of the towline:

$$dT/ds = W_W \times SIN(\Phi) + F_+$$
 (33)

$$T \times d(\Phi)/ds = W_W \times COS(\Phi) - F_n$$
 (34)

$$F_{n} = \frac{1}{2} \times \rho_{w} \times C_{n} \times d_{0} \times [(1/1.13)^{0.5}/(1 + e/2)] \times \times V^{2}SIN^{2} (\phi) \times ds_{0} \times 1.13 \times (1 + e/2)$$
(35)

$$F_{t} = \frac{1}{2} \times \rho_{w} \times C_{t} \times PI \times d_{0} \times [(1/1.13)^{0.5}/(1 + e/2)]$$

$$\times V^{2} \times COS^{2}(\Phi) \times ds_{0} \times 1.13 \times (1 + e)$$
(36)

$$W_{W} = PI/4 \times d_{0}^{2} \times [(1/1.13)^{0.5}/(1 + e/2)]^{2} \times \times g \times (\rho_{0} - \rho_{W}) \times ds_{0} \times 1.13 \times (1 + e)$$
(37)

4.3 Method of Solution

The solution of these equations will be achieved with an iterative numerical scheme using the drag at the towed body, the initial length of the towline, and the specified minimum specific tension as the boundary conditions for a viable solution. A range of feasible towline angles is assumed at Point A, Fig. 8. The resistance of the towed body is either supplied as an input, or calculated, and the initial tension, at point A, is then provided by the relation:

$$T = R_{+}/COS(\Phi)$$
 (38)

This tension is then multiplied by the minimum specific loading, obtained from the factor-of-safety analysis, to provide the desired breaking strength of the towline:

$$B_{s} = T \times \tau_{\min}$$
 (39)

Using regression analysis from the double braid nylon rope specification [10], the required breaking strength can be related to a nominal diameter in the form:

$$d_0 = (B_S/34148.5)^{0.5258}$$
 (40)

where B_s is in lbs. and d_0 is in inches. This is an approximate relation which has a maximum error of 7%. However, the diameter and the breaking strength that result from the preliminary design will not coincide with standard available sizes; in which case, the next higher standard size should be used, provided that both the diameter and breaking strength exceed the values obtained from the design model.

Rearranging Eq. (4) produces a relationship for the local elongation as a function of the local specific tension:

$$e = 0.2119 \times \tau^{0.5848}$$
 (41)

For each assumed angle Eqs. (39) and (40) are solved for each element, ds, along the length of the line. The local diameter and elongation are then used as inputs for Eqs. (33) through (37). The change in depth as a function of elemental length and local angle is then calculated over the length of the towline by the geometric relation:

$$z(j) = z(j - 1) + ds_0 \times SIN(\Phi)_{(j-1)} \times 1.13 \times (1 + e)$$
 (42)

The system of equations is iterated until z(j) is equal to the desired depth of tow. A new breaking strength and diameter is calculated each time, with the final values being those that satisfy the initial design constraints. A Fortran program which can be used for preliminary sizing is shown in Appendix D. The results of this program for the design point given in Table 1 are presented in Fig. 10.

The actual towline profile is shown in Fig. 10a. The profile is nearly flat due to the minimal difference between the densities of sea water and nylon, and due to the normal drag force which tends to lift the towline. The variation in tension along the length is shown in Fig. 10b, where it

can be seen that the total increase of 20,000 lbs. due to the hydrodynamic drag is of the same order of magnitude as the drag of the towed vessel. Figure 10c shows the local specific tension for the quasi-static model, the minimum specific tension of 10% was an input parameter, and the resulting maximum specific tension is approximately 16.5%. This is slightly greater than the desired 15% limit given in Eq. (13a), but still leaves approximately 12% of the breaking strength to account for dynamic loading and to remain within the limits of Eq. (13).

Figure 10d shows the elastic elongation which has a local maximum of approximately 7%. When added to the 13% permanent elongation, the total elongation of 20% is 4% less than the elongation at break cited in [10] and approximately 7% to 10% less than that cited by Flory [4] for cyclic load tests.

The reduction in diameter due to local elongation is shown in Fig. 10e, and the local angle with respect to the horizontal is shown in Fig. 10f.

A typical output from the design program is given in Appendix E. For the selected design point and the notional submarine, the recommendation for a 1200-ft towline is given in Table 3. Using the recommended size we conclude that the best standard size is a 10-inch circumference, double braid nylon rope with dimensions also shown in Table 2. Further analysis of the towing system will be based on this standard size.

TABLE 2

Recommended Towline Size

Recommended Size
Diameter 3.22"
B 320,000 lbs.

Standard Size
Diameter 3.25"
B_S 322,000 lbs.

DEPTH IN FT.

FIGURE 10a
TOWLINE PROFILE AT THE DESIGN POINT

TOWLINE TENSION AT THE DESIGN POINT -41-

FIGURE 10c SPECIFIC TENSION AT THE DESIGN POINT

FIGURE 10d
ELASTIC ELONGATION AT THE DESIGN POINT
-42-

LOCAL DIAMETER

FIGURE 10e
VARIATION IN LOCAL DIAMETER AT THE DESIGN POINT

FIGURE 10f
LOCAL ANGLE AT THE DESIGN POINT

Chapter V

OFF-DESIGN ANALYSIS

5.1 Low-Load Operations

The initial selection of a design point has been the basis for calculating the preliminary size of the towline. These design point conditions are most often chosen to represent the worst case loading conditions and thus should result in the selection of a rope size capable of sustaining both the static and dynamic loads associated with extended towing operations. This engineering philosophy is valid for most of the commonly used materials in marine engineering and, indeed, provides a good starting point for polymeric materials. However, some polymeric materials (in this case, nylon), exhibit vastly different behavior when the loading regime is varied from that chosen as a design point. A complete preliminary design must also include an examination of off-design performance.

Some investigators [11] have recently found that the combination of relative movement between the structural elements of the rope and exposure to water can radically alter the abrasion characteristics of nylon filaments; the number of cycles to failure in laboratory experiments is an order of magnitude lower for wet-nylon yarns as compared to drynylon yarns. With comparable normal pressures and relative motion the same trend could be expected within the structure of the rope when it is immersed in water. This behavior has, in fact, been shown by Flory [4] in field experiments with eight-strand plaited nylon ropes of the size that could be used for towing vessels with a displacement less than 200 These abrasion effects have also been reported by Bitting [17] in double-braid nylon ropes used as deep water buoy moorings. He notes that the ropes were subjected to low amplitude cyclic loads for extended periods, precisely the condition that the lower specific load limit is meant to avoid.

It is obviously impossible to preclude exposure to water in a marine towing system. Thus the only parameters that can be varied to limit the abrasion effects are the material, the local normal pressure, and the extent of relative movement. At some point in the future nylon may be replaced by polyester, or some other material, but this is at best several years away and may not happen at all, if other polyester characteristics, such as elasticity and temperature sensitivity, negate the possible gains in abrasion resistance. The remaining parameters (normal pressure and relative movement) can be somewhat controlled in the lower load regime by controlling the tension in the towline. However, these two parameters are not independent and cannot be considered separately. As the tension is reduced, the normal pressure between structural elements is also reduced and at some point the frictional forces will be too small to prevent the relaxation of the braided or twisted structure, thus allowing a greater degree of relative movement between the elements. During the next increasing load cycle the motion will be reversed and it is in this loading regime that abrasion resistance may have a pronounced effect. The lower specific load limit of 3% was imposed in the factor of safety analysis to account for this effect, but this limit only entered the design point analysis in an indirect manner by choosing a lower specific load limit of 10% in an attempt to stay above the 3% minimum during off-design operations. It is during slow speed submerged or surface towing operations that the lower limit becomes important.

In the submarine towing scenario used here the effects of varying the tow velocity are depicted in Figs. 11a through 11e. The initial tension in the towline at the connection point on the submarine is a function of velocity, which controls the hydrodynamic drag of the submarine, and depth of tow which dictates the initial angle of the towline. If, for the moment, we ignore the physical limitations of depth of tow and the vertical component of the towline tension, the depth of the submarine, in theory, can be

adjusted to create an angle which maintains a minimum t of 3% in the towline which may inhibit the internal abrasion. The resistance of the notional submarine as a function of velocity is shown in Fig. 11a, and the tow depth that would maintain the required minimum specific tension is shown in Fig. 11b. The resulting initial towline angle is shown in Fig. 11c. As expected, the angle approaches a maximum of 90° as the velocity approaches zero; at this point, the depth of tow is equal to the stretched length of the towline. Figure 11d depicts the variation of τ along the towline, and it can be seen that the maximum value at the surface tow point is well below the limit given in the factor of safety analysis. However, at this point we must invoke reality and examine the vertical component of the towline tension which must be countered by the control surfaces of the submarine. the forces acting on the control surfaces are also a function of flow velocity, there will be a physical minimum speed and maximum depth of operation for each case. If, for the purpose of illustration, we assume that the control surface force is a V-squared function of the form:

$$F_{CS} = C \times V^2 \tag{43}$$

For the notional submarine C is 67 and the control surface limit is reached between 7 and 8 knots, as shown in Fig. 11e. This translates into a depth limit of approximately 400 feet in Fig. 11b.

The depth of tow is further limited by the maximum operational depth of the specific submarine being towed; the designer would thus have to impose this limit of Fig. 11b. The resulting maximum depth; either the operational depth limit, or the control surface limit, would then reflect the minimum velocity that would maintain the required minimum specific loading.

The decrease in the abrasion resistance of nylon when exposed to water has been well documented. However, it should be emphasized that the exact magnitude of the lower limit for

RESISTANCE OF THE NOTIONAL SUBMARINE AS A FUNCTION OF VELOCITY

FIGURE 11a

DEPTH REQUIRED TO MAINTAIN 3% MINIMUM SPECIFIC TENSION AS A FUNCTION OF VELOCITY

INITIAL TOWLINE ANGLE AS A FUNCTION OF VELOCITY

MAXIMUM SPECIFIC TENSION AS A FUNCTION OF VELOCITY

VELOCITY VS. VERT. TENSION COMP.

FIGURE 11e

VERTICAL TOWLINE TENSION AS A FUNCTION OF VELOCITY

a particular rope structure is not yet established. Continuing research into the wet abrasion characteristics of nylon may either raise or lower the limit in relation to the 3% of breaking strength cited by Bitting and used here. In general terms, it can be stated that any increase in the limit would only further restrict the operating envelope and any slight decrease would offer only minimal gains because the limit is already very low.

5.2 Surface Towing

It is highly unlikely that all submarine towing operations would be conducted with the submarine below the surface of the water. While entering and leaving port, or during emergency situations, the submarine would most probably be on the surface. Analysis of this scenario requires a knowledge of the positioning of the towing hardware on the bow of the submarine. If the tow point is above the water, the scope is short, and the towline is kept taut, the hydrodynamic drag of the towline would not be a factor, and the initial towline angle would be very nearly zero. In this case, the minimum tension is equal to the drag of the submarine and would be below the 3% minimum when the drag of the towed vessel is less than 3% of the breaking strength of the towline. the notional submarine and the 3.25"-diameter towline, this would occur at a tow speed of approximately 7 knots. is significant since all towing operations in restricted waters and during many emergency conditions would be conducted at less than 7 knots.

For the case where the tow point is below the surface of the water, a depth of five feet is assumed here, hydrodynamic drag on the towline must be accounted for. Since the towline is nearly parallel to the velocity vector, only the tangential drag component will be significant. Figures A1 through A4 in Appendix A, present the plots for towline profiles, towline angle, specific tensions, and elastic elongations at various towing velocities for surface towing with a submerged tow point. At 3 knots, Fig. A3 shows that the specific

tension is everywhere less than 3% and Fig. A4 shows that the elastic elongation is less than 2%. This is precisely the condition that would exist in most cases for entering and leaving port and it is a condition where abrasion could be significant. The same characteristics are shown for a tow velocity of 6 knots. The initial τ of 2.8% is just below the recommended minimum and depicts an acceptable towing condition. At 9 knots τ has increased to an average value of 10% with an associated average elastic elongation of 5.7%; both of these values are acceptable, but they are now approaching the maximum limit for total elongation, 24%, where the elastic elongation at the towing vessel is added to the assumed permanent elongation of 13%. The 12-knot curve is above the upper limit for τ (Eq. (13a)), and represents the maximum surface towing velocity for calm water where dynamic loads are not significant.

TABLE 3
Notional Surface Resistances

Velocity	in knots	Resistance in pounds
3		4,000
6		9,000
9		30,000
12		60,000
15		75,000

The surface resistance characteristics given in Table 3 have been assumed for a notional submarine; an actual towing analysis would be based on known resistance data, or scale model tests. The notional submarine used here simply illustrates the possibility that a towline sized for a submerged velocity of 15 knots may be more severely limited for surface towing conditions. Here, we have an approximate surface maximum of 10 knots which could decrease even further if the assumed dynamic amplification factor was not large enough to account for wave excitation of both the towing and towed vessels.

5.3 Flow-Induced Oscillations

Flow-induced oscillations of long cylinders in a fluid medium is a dynamic phenomenon which has been investigated by, among others, Sarpkaya [15], for a stationary bluff body, and by Vandiver [16] for long flexible cylinders. Consideration in a quasi-static analysis is only to the extent that such vibrations have been reported to increase the normal drag coefficient by as much as 200% from 1.0 to a maximum of 3.0. Such increases have been measured in laboratory and field experiments where the flow was normal to the axis of the cylinder and under the following conditions:

- i. $R_n \le 10^5$ ii. Spatially uniform cylinders
- iii. Spatially uniform flows
- iv. Low modal density.

Under these conditions it is possible to approximate the normal drag coefficient with some degree of confidence by using an empirical relation proposed by Griffin and modified by Vandiver in the form:

$$C_n = C_{no} \times [1+1.043(2Y_{rms}/d)^{0.65}]$$
 (44)

where Cno is the rigid cylinder normal drag coefficient that has been used to this point and Yrms is the RMS amplitude of cable vibration. If, for a worst case, we assume that the towline can be approximated by the above conditions and that the amplitude of vibration is $0.7 \times \Delta$, similar to that reported for the pipe by Vandiver [16], we find that the C_n maximum is 2.8. A normal drag coefficient of this magnitude would obviously result in a substantial increase in the size of the towline which would be capable of sustaining the maximum loads at the end connected to the towing vessel. Since the resistance of the towed vessel would remain the same for a given speed, it would also make it much harder to remain above the lower load limit at that end of the towline.

The Reynolds number, R_n, for the actual towline is shown in Fig. 12a. It has been calculated, based on the local

normal velocity, Fig. 12b and the local diameter, Fig. 12c. From these figures we see that the first and second conditions, $R_{\rm n}$ <= 10^5 and a spatially uniform cylinder, have met, but that the third condition, spatially uniform flow, is not met. Since the flow field is not uniform, we expect a very short vortex correlation length with a random vibration response [16]. Under these conditions, the amplitude of vibration and the associated drag are substantially reduced. $C_{\rm n}$ approaches $C_{\rm no}$ and a magnitude of 1.0 to 1.2 is found to be a good approximation for sizing the towline.

Figures Bl through B6, showing the effects on the required size and the equilibrium condition due to increasing the normal drag coefficient from that assumed for design, i.e. to a maximum of 2.5, are presented in Appendix B for the design point of 15 knots and 200 feet. In practice one would probably purchase the standard commercial size above that recommended by the design. A design based on a C_n of 1.2 would result in a 10-inch circumference towline, as was already recommended using a C_n of 1.0. In contrast, a design based on a C_n of 2.5 would result in the selection of a 12inch circumference towline. This variation is not minor, since the increase in B is of the order of 40% and it would become impossible to keep the specific load above the lower limit for slow speed tows or during any configuration where flow-induced vibrations decreased or stopped and the normal drag coefficient decreased to approximately 1.0.

For all cases, the tangential drag coefficient was assumed to be constant at 0.04.

5.4 Dry- Versus Wet-Nylon Function

Earlier we examined the elastic elongation characteristics of double braid nylon and reached the conclusion that under high cycle load conditions the DNF better represented the data presented in the literature. It was also stated that the WNF would be more appropriate for a new line being placed in a towing system, and that it would provide an upper

FIGURE 12a

LOCAL REYNOLDS NUMBER ALONG THE TOWLINE AT THE DESIGN POINT

FIGURE 12b
LOCAL NORMAL VELOCITY ALONG THE TOWLINE AT THE DESIGN POINT

FIGURE 12c

LOCAL DIAMETER ALONG THE TOWLINE AT THE DESIGN POINT

limit on in-service elongation. However, the point at which the design switches from the WNF to the DNF has not been established. From Figs. 2b and 3 it would appear that this change could be made as early as the first few hundred cycles, but cyclic elongation data for double braid nylon rope used in marine towing systems is very limited, and a conservative approach would be to use the WNF for the first few thousand cycles. This translates into 4 to 8 hours of towing under normal operating conditions. The implications of using the WNF are presented in Appendix C, for operations at or near the 15-knot and 200-foot design point, and for slow speed, deeper operations at 3 knots and 600 feet.

As might be expected, the towline profile, towline tension, and specific tension are practically the same for both the DNF and the WNF, Figs. C1 through C3, and C11 through C13. In contrast, the elastic elongation in Figs. C4 and C14 show a significant increase when the WNF is used. Because of the increase in elongation there is a concurrent decrease in local diameter as shown in Figs. C5 and C15. At the design point, the maximum elastic elongation is approximately 13%, which, when combined with the assumed permanent elongation of 13%, implies a total elongation of 26%. This is an unacceptable value which leaves little or no elongation margin for dynamic loads. It indicates that a new towline has an operating point substantially below that of a used, but undamaged, towline.

The remaining figures show only minor effects from the increased elongation, and it can be concluded that upper range of the operating envelope is limited by local elongation rather than strength, as reflected in the specific loading and thus the factor of safety. However, it can also be concluded from these figures that a towline size based on the WNF, which would be substantially larger, would be very prone to the effects of internal abrasion, since it would continually operate at much smaller specific loads. The specific loading conditions shown in Fig. C13 would be typical of such operations even at higher towing speeds.

Chapter VI

CONCLUSIONS

6.1 Controlling Material Characteristic

In the preceding discussion it has become apparent that recent research [11] which has revealed the susceptibility of wet nylon to abrasion and the apparent greater dominance of this characteristic under low load conditions [17] is the most severe constraint on designing a nylon towline to operate over a wide range of loading conditions in the marine environment. It is theoretically possible to increase the size of a towline to account for larger static or dynamic loads, or to account for a greater degree of uncertainty, but, because of internal abrasion that has been observed in nylon lines, such a design approach simply changes the mechanism by which the towline fails and does not decrease the likelihood of failure.

6.2 Controlling Structural Characteristic

The controlling structural characteristic in this design model is the assumed form of the elastic elongation function. The DNF and the WNF result in significantly different elongation behavior. Because of established abrasion characteristics of wet nylon, neither function can be used to produce a conservative design over the total projected loading regime of a marine towline. Both of these functions are based on a minimal number of cycles and even though they appear to bound cyclic load data presented by other authors (for what are assumed to be wet testing conditions), it is noted that there are no truly wet tests where the rope has been continuously immersed in water, available for comparison. As a result, the applicability of the elastic elongation function to very high cycle wet loading conditions is questionable. Future research may provide better models which result in a much less constrained design. Until this research has been completed, some form of the elongation

behavior presented here must be used in conjunction with an experienced seaman's knowledge of what has worked well in the past.

6.3 Controlling Loading Parameter

A review of Figs. C2 and C10 shows that the appreciable increase in tension along the towline is primarily due to the frictional (tangential) drag of the towline. The magnitude of F₊ is a reflection of the tangential drag coefficient, C₊. The value of C_{t} used here was suggested by Triantafyllou and supported by Springston [15], and is probably very close to the actual value, but it appears that there are very little data specifically for the frictional characteristics of synthetic ropes. It would require only relatively small variations of C+ to produce a fairly significant change in the maximum local loading and the associated maximum local elongation. This change would be beneficial if C+ were found to be less than that used here and would be detrimental if it were found to be greater. In either case, it would substantially improve the confidence in the final selection of the rope size.

6.4 Summary

One possible method of selecting the size of a double braid nylon rope for a marine towline has been presented here. This method is primarily based on behavior characteristics presented in the literature. It was not possible to reach a definitive conclusion because the model was eventually controlled by assumed values for the minimum acceptable loading condition and the appropriate hydrodynamic frictional drag coefficient. These assumed values have a basis in the literature, but further research is needed to establish their exact magnitudes for synthetic ropes of various materials and/or constructions.

REFERENCES

- 1. McKenna, H.A. and Wong, R.K., "SYNTHETIC FIBER ROPE, PROPERTIES AND CALCULATIONS RELATING TO MOORING SYSTEMS", DEEPWATER MOORING AND DRILLING, ASME, Dec. 2-7, 1979.
- 2. Paul, Walter, "Review of Synthetic Fiber Ropes", <u>United</u>
 States Coast Guard Academy Research Project, August 1970.
- 3. Bitting, K.R., "THE DYNAMIC BEHAVIOR OF NYLON AND POLY-ESTER LINE", United States Coast Guard, Department of Transportation, Report No:CG-D-39-80, April 1980.
- 4. Flory, J.F., "D.C.I.M.F. HAWSER TEST PROGRAM: FINAL REPORT", Oil Companies International Marine Forum, December 31, 1981.
- 5. Wong, R., "STRENGTH, ELONGATION AND ENERGY ABSORPTION OF SYNTHETIC FIBER ROPES", SAMSON OCEAN SYSTEMS, Report No. 8-81, February 5, 1981.
- 6. Kline, J. and Blockwick, T., "DOLPHIN (AGSS-555) SUB-MERGED AND SURFACE TOWING DESIGN STUDY", COMMANDER NAVAL SEA SYSTEMS COMMAND, Department of the Navy, Washington, D.C. 20362, Technical Report No. 238, May 1980.
- 7. Cordage Institute, "Standard Test Methods for Three Strand Twisted, Eight Strand Plaited, Twelve Strand Single Braid and Double Braid Ropes", Cordage Institute, Washington, D.C., April 1979.
- 8. McKenna, H.A., "Developments in Fiber Rope Technology", Samson Ocean Systems, BOSTON, MA. 02110 (NO DATE).
- 9. Woehleke, S.P., and Flory, J.F., "Hawser Systems Design for Single Point Moorings", Offshore Technology Conference, OTC 3156, May 1978.
- 10. "SAMSON ROPE MANUAL", Samson Ocean Systems, Inc., Third Edition, March 1, 1982.
- 11. Backer, et al., "Deterioration of Synthetic Fiber Rope During Marine Usage", Summary Progress Report Project R/T-11, January 1982 June 1983, M.I.T. Rope Project.
- 12. Gibson, R.T., and Wolfe, H.D., "Final Report on Synthetic Rope Evaluation", Naval Oceanographic Office, Bay Saint Louis, Missouri 39520, Contract N62306-81-C-0106, January 9, 1984.
- 13. Jackson, H.A., Capt., USN (ret), "Submarine Design Notes", Revised May, 1982 (UNPUBLISHED).

- 14. Newman, J.H., "Marine Hydrodynamics", M.I.T. Press, Cambridge, MA and London, England, Copyright 1977.
- 15. Sarpkaya, T., "Vortex-Induced Oscillations", J. of Applied Mechanics, Vol. 46, pp. 241, 2, June, 1979.
- 16. Vandiver, J.K., "Drag Coefficients of Long Flexible Cylinders", Offshore Technology Conference, OTC 4490, May 5, 1983.
- 17. Bitting, K.R., "Strength Reduction in Nylon Double Braid Line", The Coast Guard Engineer's Digest, C6 133, Vol. 23, No. 222, Spring 1984.
- 18. Springston, G.B., "Generalized Hydrodynamic Loading Functions for Bare and Faired Cable Configurations", Naval Ship Research Center, Washington, D.C. 20007, Report 2424, June 1967.

FIGURE A1

TOWLINE PROFILE

3.25%, 3,6,9,12 KTS, CD 1.0 DNF SURF. 0 -1 -2 12--3 -4 -5 -6 DEPTH IN FT. -8 6 -13 -15 -16 -17 -18 -19 -20 -0.2 0.4 0.6 0.8 (Thousands)
POSITION IN FT. 1.2 0 1 1.4

FIGURE A2

0.05

TOWLINE ANGLE 3.25", 3,6,9,12 KTS, CD 1.0 DNF SURF.

FIGURE A3

FIGURE B1

TOWLINE PROFILE

SIZES FOR CD 1 2 1 5 2 0 2 5 15KIS DN

FIGURE B2

FIGURE B3

SPECIFIC TENSION (TAU) SIZES FOR CD 1.2,1.5,2.0,2.5 15KTS DNF 0.2 0.19 0.18 0.17 0.16 1.2 & 1.5 0.15 0.14 0.13 0.12 0.11 0.1 1.2 0.2 0.4

(Thousands)
POSITION IN FT.

FIGURE B4 ELASTIC ELONGATION SIZES FOR CD 1.2,1.5,2.0,2.5 15KTS DNF 0.08 0.078 0.076 0.074 0.072 1.2 & 1.5 0.07 0.068 0.066 0.064 0.062 0.06 0.058 0.056 0.054 0.052 0.05 ٥ 0.2 0.4 1.2 1.4

FIGURE B5

LOCAL DIAMETER

SIZES FOR CD 1.2,1.5,2.0,2.5 15KTS DNF 3.1 3.09 3.08 3.07 3.06 3.05 3.04 3.03 2.0 DIA. IN INCHES 3.02 3.01 3 -1.5 2.99 2.98 2.97 2.96 2.95 2.94 2.93 2.92 2.91 2.9 0.6 0.8 (Thousands) POSITION IN FT. 1.2 1.4 0.4 0.2 0

FIGURE B6

LOCAL ANGLE

FIGURE C1

TOWLINE PROFILE

3.25" DIA. 15 KTS. CD 1.0, DNF & WNF 0 -10 -20 -30 -40 -50 -60 -70 DNF-DEPTH IN FT. -80 -90 WNF -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 0.6 0.8 (Thousands)
POSITION IN FT. 0.2 0.4 1.2 1.4 0 1

FIGURE C2

TOWLINE TENSION

3.25" DIA. 15 KTS. CD 1.0, DNF & WNF 60 58 56 54 52 50 DNF 48 46 WNF 44 42 40 38 36 34 32 30 -0.6 0.8 (Thousands) POSITION IN FT. 0.2 1.2 1.4 0 0.4 1

FIGURE C3

FIGURE C4 ELASTIC ELONGATION 3.25" DIA. 15 KTS. CD 1.0, DNF & WNF 0.15 0.14 0.13 WNF 0.12 ELONGATION 0.11 0.1 0.09 0.08 DNF 0.07 0.06 0.05 D.6 0.8 (Thousands) POSITION IN FT. 1.2 0 0.2 0.4 1.4 0.6

FIGURE C5

LOCAL DIAMETER

FIGURE C6

FIGURE C7

LOCAL NORMAL VELOCITY

3 25" 15 KIS CD 10 DNE 4 WNE

FIGURE C8

FIGURE C9

LOCAL REYNOLDS NUMBER

FIGURE C10

FIGURE C11

TOWLINE PROFILE

FIGURE C12

TOWLINE TENSION

FIGURE C13

SPECIFIC TENSION (TAU)

FIGURE C14

FIGURE C15

LOCAL DIAMETER

FIGURE C16

FIGURE C17

LOCAL NORMAL VELOCITIES

FIGURE C18

LOCAL REYNOLDS NUMBER 3.25", 3 KTS. 600 FT. CD 1.0, DNF & WNF 80 70 60 RN (Thousands) 50 -RNw=RNd 40 30 20 -0.2 0.4 0.6 1.2 0 0.8 1 (Thousands) POSITION IN FT.

FIGURE C20 LOCAL DRAG FORCES 3.25%, 3 KTS. 600 FT. CD 1.0, DNF & WNF 7 6 5 F IN LBS. 4 FNw = FNd 3 2 FTw=FTd 1 0 -1 1.2 0.2 0.4 0.6 8.0 (Thousands)
POSITION IN FT.

APPENDIX D

D1 C	Design Program
000000	THIS PROGRAM IS USED TO PREDICT THE SIZE OF A DOUBLE BRAID NYLON ROPE WHICH CAN BE USED AS A MARINE TOWLINE THE ALGORITHM IS BASED ON A SUBMARINE TOWING SYSTEM WHERE THE DESIGN POINT IS FOR A SUBMERGED TOWING CONDITION AT A PREDETERMINED DEPTH AND SPEED
C	FREDEISRMINED DEFIN AND STEED
00000	INPUT PARAMETERS CONSIST OF THE GEOMETRY OF THE TOWED VESSEL, THE LENGTH OF THE DESIRED TOWLINE AND THE DESIRED MINIMUM LOAD AS A PERCENTAGE OF THE RATED BREAKING STRENGTH, A MINIMUM VALUE OF 00 TO 01 IS STRONGLY RECOMMENDED TO AVOID POOR OFF-DESIGN BEHAVIOR
C	IMPLICIT RBAL(L-M) DIMBNSION B(1200),T(1200),PHI(1200),Z(1200),X(1200),Y(250),ST(25
	1 0),DI(1200),TH(1200)
C	THE VALUE CHOSEN FOR CD HERE IS 10, THIS PARAMETER HAS A
CCC	SIGNIFICANT EFFECT ON THE UPPER LOAD LIMIT AND SHOULD BE CHOSEN WITH CARE
C	WIIII OARD
	DATA RHOW,RHOL,PI,CD/2.0,2.209,3.141593,1.0/
	WRITE(*,101)
	RBAD(*,102) L WRITB(*,103)
	RBAD(*,102) D
	WRITE(*,105)
	READ(*,102) VK
	WRITB(*,104) RBAD(*,102) TD
	WRITB(*,106)
	RBAD(*,107) IL
	WRITE(*,108) READ(*,102) SLMIN
С	RBAD(1,102) SEMIN
C	THE FOLLOWING LINE ASSUME A CONSTANT SHRINKAGE OF 5% FOR NYLON
	SHRK=FLOAT(IL)-05*FLOAT(IL)
	CT=0.04*CD
С	IL=INT(SHRK)
C	A1 THRU RT PROVIDE AN APPROXIMATION OF THE INITIAL TENSION IN THE TOWLINE FROM THE RESISTANCE OF THE SUBMARINE
C	
	$A1 = (VK^*L^*1 69)/.0000129$
	A2=(ALOG10(A1)-2)**2 A3=L/D-1 3606
	A4 = .075/A2 + .0008 + .000789/A3
	A5=PI*D**2*A3*A4


```
A6=A5+9+001*L*D
      DHP=.00872*VK**3*A6
      RT=(DHP*550)/(16886*VK)
      WRITE(*,200) RT
C
C
      THE INITIAL ANGLES ARE SET EQUAL TO THE MAXIMUM PHYSICALLY
      POSSIBLE FOR THIS TOWING GEOMETRY
C
C
      TAU1=SLMIN
      UPHI=PI/2 -.01
      LPHI=.01
      DS=1
15
      MPHI=(UPHI+LPHI)/2.
      TAU=TAU1
C
      INITIAL BREAKING STRENGTH AND DIA BASED ON SAMSON DATA
C
C
      BSL=RT/(SLMIN*COS(MPHI))
      DIL=(BSL/341485)**.5258
C
C
      HYDROSTATIC COMPONENT OF TENSION
C
      TH(1)=.3491*TD*DIL**2
      DO 10 I=1,3
C
C
      INITIAL EFFECTIVE TENSION AS A FCN OF ANGLE
C
      IF(I-2) 51,52,53
51
      T(1)=RT/COS(LPHI)
      PHI(1)=LPHI
      GO TO 55
52
      T(1)=RT/COS(UPHI)
      PHI(1)=UPHI
      GO TO 55
      T(1)=RT/COS(MPHI)
53
      PHI(1)=MPHI
C
C
      INITIAL BLASTIC BLONGATION FROM DNF
C
55
      B(1)=.2119*(TAU1)**.5848
      DI(1)=DIL^*.941/(1+E(1)/2)
      Z(1)=0
      X(1)=0
      TB=B(1)
C
C
      BEGIN ITERITIVE SOLN OF GOVN EQN
C
      DO 20 J=2,IL
C
```


C BSTABLISH SIMPSONS MULTIPLIERS FOR TOTAL BLONGATION C IF((2*INT(J/2))LT.J) TFAC=2IF((2*INT(J/2))BQJ)TFAC=4IF(JBQIL) TFAC=1 IN=1 C LOCAL BLAS BLONG B(J)=.2119*(TAU)**5848TB=TB+E(J)*TFAC C LOCAL DIA. $DI(J)=DIL^*.941/(1+B(J)/2)$ C LOCAL WEIGHT IN WATER WB=PI/4*(DI(J)/12)**2*32.2*(1+B(J))*(RHOL-RHOW)*113C LOCAL NORMAL DRAG FORCE FD1=.5*RHOW*CD*(DI(J)/12)*(VK*1 6886)**2 FD2=SIN(PHI(J-IN))**2*(1+B(J))*1.13FD=FD1*FD2 C LOCAL TANGENTIAL DRAG FORCE FT1=.5*RHOW*CT*PI*(DI(J)/12.)*(VK*1 6886)**2 FT2=COS(PHI(J-IN))**2*(1+B(J))*1.13FT=FT1*FT2 C LOCAL ANGLE PHI(J)=PHI(J-IN)+DS/T(J-IN)*(-FD+WB*COS(PHI(J-IN)))C DEPTH OF BLEMENT Z(J)=Z(J-IN)+DS*SIN(PHI(J-IN))*(1+B(J))*1.13LOCAL HYDROSTATIC TENSION C TH(J)=0.3491*(TD-Z(J))*DI(J)**2C LOCAL BFFECTIVE TENSION T(J)=T(J-IN)+DS*(FT+WB*SIN(PHI(J-IN)))TAU=T(J)/BSL X(J)=X(J-IN)+DS*COS(PHI(J-IN))*(1+B(J))*1.13JM=JC CHECK FOR IMPOSSIBLE SOLUTIONS IF((Z(J)-TD).GT.10.) GO TO 59 IF((TD-Z(J))GT(2*TD))GO TO 59 20 CONTINUE C CHECK FOR SOLUTION BASED ON FINAL DEPTH AT STRETCHED LENGTH 59 IF(I-2) 61,62,63 61 SZL=Z(JM)SXL=X(JM)FZL=TD-SZL C BRROR CONDITION ON LOWER ANGLE IF(FZLLT 0) GO TO 1000 GO TO 10 62 SZU=Z(JM)SXU=X(JM)FZU=TD-SZU C BRROR CONDITION ON UPPER ANGLE IF(FZUGT 0) GO TO 1010

GO TO 10 63 SZM = Z(JM)SXM = X(JM)FZM=TD-SZM CHECK FOR DEPTH SOLN CLOSE TO SURFACE C IF(ABS(FZM)LT.1) GO TO 90 10 CONTINUE CHECK TO SEE IF LIMITS ARE ON OPPOSITE SIDES OF SOLN C C IF NOT WRITE BRROR MESSAGE IF((FZU*FZL).GT.0.) GO TO 80 DPHI=UPHI-LPHI C BRROR CHECK ON ANGLES IF (DPHIEQ.0) GO TO 95 C CHECK FOR SOLN BASED ON CONVERGING ANGLES IF(DPHILT.0.001) GO TO 90 MODIFY UPPER OR LOWER ANGLE LIMIT FOR NEXT ITERATION C IF((FZU*FZM)GT.0) UPHI=MPHI IF((FZL*FZM)GT.0) LPHI=MPHI SCREEN WRITE TO MONITOR CONVERGENT BEHAVIOR C WRITE(*,260) FZL,FZM,FZU,LPHI,MPHI,UPHI START NEXT ITERATION IF NEEDED C GO TO 15 90 SLMAX=T(JM)/BSL TE=(DS/3.*TE+13*FLOAT(IL))/FLOAT(IL) C WRITE FINAL SOLN TO DATA FILE OPEN(16,FILB='TOWNYLON DAT',STATUS='NEW') WRITE(16,225) VK,RT,TD,IL,TB WRITE(16,220) DIL, BSL, SLMIN, SLMAX WRITE(16,230) IV=5DO 30 K=1,IL,IV IF(T(K) LE.O.) GOTO 30 Y(K)=Z(K)-TDST(K)=T(K)/BSLWRITE(16,240) B(K), T(K), TH(K), ST(K), DI(K), PHI(K), Y(K), X(K)30 CONTINUE CLOSE(16) GO TO 95 WRITE(*,210) 80 WRITE(*,260) FZL,FZM,FZU,LPHI,MPHI,UPHI FORMAT('FZL ', E9.2, 'FZM ', E9.2, 'FZU ', E9.2, 'LPHI ', E11.4,' 260 1 MPHI ',B11 4,' UPHI ',B11 4/) FORMAT('INPUT LENGTH OF TOWED VESSEL :') 101 102 FORMAT(F6.2) FORMAT('INPUT DIAMETER OF TOWED VESSEL :') 103 104 FORMAT(' INPUT DESIGN DEPTH OF TOW ') FORMAT('INPUT DESIRED DESIGN VELOCITY IN KNTS ') 105 FORMAT('INPUT LENGTH OF TOWLINE TO THE NEAREST 10 FT, AS AN INT 106 1EGER :')

FORMAT('INPUT DESIRED MINIMUM SPECIFIC LOADING AT TOWED VESSEL 108 1 ?) FORMAT('RESISTANCE IN LBF 2,F102) 200 FORMAT('ANGLE NOT WITHIN RANGE OF INITIAL ESTIMATE") 210 FORMAT('ROPE DIAMETER IN INCHES 'F64' NEW-DRY BREAKING STR 220 1ENGTH LBS : F10.2/ 'MINIMUM SPECIFIC LOAD : F6.3.' MAXIMUM SPEC 21FIC LOAD ',F63) FORMAT('TOW VELOCITY ', F61,' RESISTANCE ', F81,' TOW DEPTH 225 1',F61/' TOWLINE LENGTH 3,16,' TOTAL BLONGATION 3,F83) FORMAT('BLONGATION TENSION THYDRO TAU DIA Α **INGLE** DEPTH REACH') FORMAT('',F65,4X,F103,1X,F103,2X,F65,4X,F64,3X,F64,2X,F8 240 1.3.3X.F93) FORMAT(' '2F6.2) 250 GO TO 95 1000 WRITE(*,270) FZL 270 FORMAT('LOWER LIMIT IS ABOVE WATERLINE ', B146) GO TO 95 1010 WRITE(*,280) FZU FORMAT('UPPPER LIMIT IS BELOW WATERLINE ', B146) 280 95 END

D2. Analysis Program

C THIS PROGRAM IS USED TO ANALYSE THE OFF-DESIGN PERFORMANCE C OF A PRE-SIZED NYLON TOWLINE, IT CALCULATES BOTH THE DNF AND C WNF LIMITS FOR HIGH CYCLE AND NEW BEHAVIOR RESPECTIVELY C C THERE ARE TWO DATA FILES. ONE FOR DNF BEHAVIOR AND ONE FOR C WNF BEHAVIOR: GENERAL DATA IS INCLUDED AS A HEADER IN THE C WNF OUTPUT FILE C C THE DRAG OF THE VESSEL BEING TOWED MUST BE KNOWN AND PROVIDED C AS INPUT TO THE PROGRAM

C

107

FORMAT(16)

THE OUTPUT INCLUDES THE LOCAL REYNOLDS NUMBER, NORMAL AND TANGENTIAL VELOCITIES FOR LOCAL FLOW CHARACTERISTICS

C

IMPLICIT REAL(L-M)
DIMENSION E(2,1200),T(2,1200),PHI(2,1200),Z(2,1200),X(2,1200)
DIMENSION Y(2,250),ST(2,250),DI(2,1200),SLMAX(2),TE(2)
DIMENSION FD(2,1200),FT(2,1200),VN(2,1200),VT(2,1200),RN(2,1200)
DIMENSION TH(2,1200)
DATA RHOW,RHOL,PI/2.0,2.209,3.141593/
WRITE(*,101)

RBAD(*,102) DIL WRITE(*,103) RBAD(*,102) BSL WRITE(*,105) RBAD(*,102) VK WRITE(*,104) RBAD(*,102) TD WRITE(*,106) RBAD(*,107) IL WRITE(*,108) RBAD(*,102) RT WRITE(*,109) RBAD(*,102) CD CT=0.04*CD SHRK=FLOAT(IL)-.05*FLOAT(IL) IL=INT(SHRK) FD(1,1)=0FD(2,1)=0FT(1,1)=0FT(2,1)=0DO 25 IJ=1,2 UPHI=PI/2.-.01 LPHI= 01-PI/2 DS=1TH(1,1)=.3491*TD*DIL**2TH(2,1)=TH(1,1)MPHI=(UPHI+LPHI)/2 DO 10 I=1,3 IF(I-2) 51,52,53 T(IJ,1)=RT/COS(LPHI) PHI(IJ,1)=LPHI GO TO 55 T(IJ,1)=RT/COS(UPHI) PHI(IJ,1)=UPHI **GO TO 55** T(IJ,1)=RT/COS(MPHI) PHI(IJ,1)=MPHI TAU1=T(IJ,1)/BSL TAU=TAU1 IF(IJ.BQ.1) B(IJ.1) = .307*(TAU1)**.518IF(IJ.BQ.2) B(IJ.1)=.2119*(TAU1)**.5848 $DI(IJ,1)=DIL^*.941/(1+B(IJ,1)/2)$ $Z(IJ_{1})=0.$ X(IJ,1)=0TE(IJ)=E(IJ,1)DO 20 J=2,IL IF((2*INT(J/2)).LT.J) TFAC=2. IF((2*INT(J/2)).BQ.J) TFAC=4 IF(J.BQ.IL) TFAC=1.

15

51

52

53

55


```
IN=1
      IF(IJ.EQ.1) E(IJ.J) = .307*(TAU)**.518
      IF(IJBQ2) B(IJJ) = 2119*(TAU)**.5848
      TB(IJ)=TB(IJ)+B(IJ,J)*TFAC
      DI(IJ_J)=DIL^*941/(1+B(IJ_J)/2)
      WB=PI/4.*(DI(IJ,J)/12)**2*322*(1+B(IJ,J))*(RHOL-RHOW)*113
      FD1=5*RHOW*CD*(DI(IJ,J)/12)*(VK*1 6886)**2
      FD2=SIN(PHI(IJ,J-IN))**2*(1+B(IJ,J))*113
      FD(IJ,J)=FD1*FD2
      FT1=.5*RHOW*CT*PI*(DI(IJ,J)/12.)*(VK*1 6886)**2
      FT2=COS(PHI(IJ,J-IN))**2*(1+B(IJ,J))*1.13
      FT(IJ,J)=FT1*FT2
      PHI(IJ,J)=PHI(IJ,J-IN)+DS/T(IJ,J-IN)*(-FD(IJ,J)+WB*
    1COS(PHI(IJ,J-IN)))
      Z(IJ_J)=Z(IJ_J-IN)+DS*SIN(PHI(IJ_J-IN))*(1+B(IJ_J))*1.13
      TH(IJ_J)=.3491*(TD-Z(IJ_J))*DI(IJ_J)**2
      T(IJ_J)=T(IJ_J-IN)+DS*(FT(IJ_J)+WB*SIN(PHI(IJ_J-IN)))
      TAU=T(IJ,J)/BSL
      X(IJ,J)=X(IJ,J-IN)+DS*COS(PHI(IJ,J-IN))*(1+B(IJ,J))*1.13
      JM=J
      IF((Z(IJ,J)-TD)GT.10.) GO TO 59
      IF((TD-Z(IJ,J)).GT.(2*TD)) GO TO 59
      CONTINUE
20
59
      IF(1-2) 61,62,63
61
       SZL=Z(IJ,JM)
      SXL=X(IJ,JM)
      FZL=TD-SZL
      IF(FZLLT.0) GO TO 1000
      GO TO 10
62
       SZU=Z(IJ,JM)
      SXU=X(IJ,JM)
      FZU=TD-SZU
      IF(FZUGT0) GO TO 1010
      GO TO 10
63
       SZM = Z(IJ,JM)
      SXM=X(IJ,JM)
      FZM=TD-SZM
      IF(ABS(FZM)LT.0.1) GO TO 90
10
      CONTINUE
      IF((FZU*FZL)GT0) GO TO 80
      DPHI=UPHI-LPHI
      IF (DPHIEQ 0) GO TO 95
      IF(DPHILT.0.0001) GO TO 90
      IF((FZU*FZM)GT 0.) UPHI=MPHI
       IF((FZL*FZM)GT0) LPHI=MPHI
       WRITE(*,260) FZL,FZM,FZU,LPHI,MPHI,UPHI
       GO TO 15
90
       SLMAX(IJ)=T(IJ,JM)/BSL
       SLMIN=T(IJ,1)/BSL
```



```
TB(IJ)=(DS/3 *TB(IJ)+13*FLOAT(IL))/FLOAT(IL)
25
      CONTINUE
      DO 35 II=1.2
      DO 45 JJ=1.IL
      VN(II,JJ)=VK*SIN(PHI(II,JJ))
      VT(II,JJ)=VK*COS(PHI(II,JJ))
      RN(II_JJ)=(VN(II_JJ)^*16889^*DI(II_JJ))/(147E-5^*12)
45
      CONTINUE
35
      CONTINUE
      OPEN(16 FILB='TOWANW DAT', STATUS='NEW')
      OPEN(17,FILE='TOWAND DAT',STATUS='NEW')
      OPBN(18.FILB='FVRW.DAT',STATUS='NEW')
      OPEN(19,FILE='FVRD.DAT',STATUS='NEW')
      WRITE(16,225) VK,RT,TD,IL,TE(1),TE(2),CD
      WRITE(16,220) DIL BSL SLMIN SLMAX(1) SLMAX(2)
      WRITE(18,225)VK,RT,TD,IL,TE(1),TE(2),CD
      WRITE(18,220)DIL, BSL, SLMIN, SLMAX(1), SLMAX(2)
      WRITE(18,232)
      WRITE(19,238)
      WRITE(16,230)
      WRITE(17,235)
      IV=10
      DO 30 K=1,IL,IV
      Y(1,K)=Z(1,K)-TD
      Y(2,K)=Z(2,K)-TD
      ST(1,K)=T(1,K)/BSL
      ST(2,K)=T(2,K)/BSL
      WRITE(16,240) B(1,K),T(1,K),TH(1,K),ST(1,K),DI(1,K),PHI(1,K),Y(
   11,K),X(1,K)
      WRITE(18,242) VN(1,K),VT(1,K),RN(1,K),FD(1,K),FT(1,K)
      WRITE(17,245) E(2,K),T(2,K),TH(2,K),ST(2,K),DI(2,K),PHI(2,K),Y(
   12,K),X(2,K)
      WRITE(19,242) VN(2,K),VT(2,K),RN(2,K),FD(2,K),FT(2,K)
30
      CONTINUE
      CLOSE(16)
      GO TO 95
      WRITE(*,210)
80
      WRITE(*,260) FZL,FZM,FZU,LPHI,MPHI,UPHI
260
      FORMAT( 'FZL ',E9.2, FZM ',E9.2, FZU ',E9.2, LPHI ',E11.4,'
    1 MPHI 'B114' UPHI 'B114/)
101
      FORMAT( 'INPUT DIAMETER OF TOWLINE ')
102
      FORMAT(F10.3)
103
      FORMAT( 'INPUT NDBS OF TOWLINE ')
      FORMAT( ' INPUT DESIGN DEPTH OF TOW ')
104
105
      FORMAT( 'INPUT DESIRED DESIGN VELOCITY IN KNTS ')
      FORMAT( ' INPUT LENGTH OF TOWLINE TO THE NEAREST 10 FT, AS AN INT
106
   1EGER !)
      FORMAT(16)
107
      FORMAT( 'INPUT RESISTANCE OF TOWED VESSEL :')
108
```


- 109 FORMAT('INPUT DESIRED DRAG COEFFICIENT, CD ')
- 210 FORMAT('ANGLE NOT WITHIN RANGE OF INITIAL BSTIMATE")
- 220 FORMAT('ROPB DIA IN INCHES 2,F64,' NEW-DRY BREAKING STRENGTH
 1 LBS 2,F10.2/ 'MINIMUM SPECIFIC LOAD 2,F63/' WE MAXIMUM SPECIF
 2IC LOAD 2,F63,' DE MAXIMUM SPECIFIC LOAD 2,F63)
- 225 FORMAT('TOW VELOCITY: ',F6.1,' RESISTANCE ?,F8.1,' TOW DEPTH 1:',F6.1,' TOWLINE LENGTH ',I6,' WE TOTAL BLONGATION ?,F8.3,' DE 2TOTAL BLONGATION ?,F8.3,' NORMAL DRAG COEFFICIENT ?,F8.4)
- 230 FORMAT(' WE BLONG WE TEN WE TH WE TAU WE DIA WE A INGLE WE DEPTH WE REACH')
- 232 FORMAT('',' VNW VTW RN FDW FTW')
- 235 FORMAT(' DE ELONG DE TEN WE TH DE TAU DE DIA DE A 1NGLE DE DEPTH DE REACH')
- 238 FORMAT('',' VND VTW RN FDD FTD')
- 240 FORMAT('',F6.5,4X,F10.3,1X,F8.3,3X,F6.5,4X,F6.4,3X,F6.4,2X,F8.13,4X,F9.3)
- 242 FORMAT('',F63,2X,F63,2X,B103,1X,F7.3,1X,F7.3)
- 245 FORMAT('',F65,4X,F103,1X,F83,3X,F65,4X,F64,3X,F64,2X,F8
 13,4X,F93)
 GO TO 95
- 1000 WRITE(*,270) FZL
- 270 FORMAT('LOWER LIMIT IS ABOVE WATERLINE! ',B14.6)
 GO TO 95
- 1010 WRITB(*,280) FZU
- 280 FORMAT('UPPPER LIMIT IS BELOW WATERLINE ', B14.6)
- 95 BND

TYPE AM122015. DAT

TOW VELOCITY: 15.0 RESISTANCE: 30970.0 TOW DEPTH: 200.0

TOWLINE LENGTH: 1149 WE TOTAL ELONGATION: 9.24

97 NORMAL DRAG COEFFICIENT: 1.9909 DE TOTAL ELONGATION 0.197 ROPE DIA IN INCHES: 3.2500 NEW-DRY BREAKING STRENGTH LDS: 322000.00

MINIMUM SPECIFIC LOAD : 0.099

חומוחטח סרי						
WE MAXIMUM						
WE ELONG	WE TEN	WE TAU	₩E DIA	WE ANGLE	₩E DEPTH	WE REACH
.09231	31646.256	.99828	2.9233	9.2971	-200.000	9.999
.09262	31879.342	. 49944	2.9229	9.2947	-197.475	12.084
.99297	32112.682	.99973	2.9224	9.2923	-194.978	24.178
.99332	32346.270	.10945	2.9219	9.2991	-192.598	36.281
. 99357	32589.098	.10113	2.9214	9.1978	-190.064	48.394
.09402	32814.169	.10191	2.9299	9.1957	-187.647	69.516
.09437	33948.441	.10253	2.9204	9.1935	-185.254	72.646
.99472	33282.941	.19336	2.9299	9.1916	-182.885	84.795
.99596	33517.648	.18489	2.9195	9.1896	-199.549	96.934
.99541	33752.551	.10482	2.9199	0.1877	-178.217	199.991
.89575	33987.648	.19555	2.9185	9.1859	-175.917	121.255
.09609	34222.941	.10628	2.9189	Ø.1841	-173.638	133.428
.99643	34458.422	.10701	2.9176	Ø.1823	-171.381	145.608
.09678	34694.982	.19775	2.9171	9.1896	-169.144	157.797
.89712	34929.914	.10848	2.9166	9.1789	-156.926	169.992
.09746	35165.918	.19921	2.9162	0.1773	-164.729	182.196
.99779	35492.982	.19994	2.9157	9.1757	-162.550	194.496
.#9813	35638.406	.11968	2.9152	9.1742	-160.390	206.624
.69947	35874.887	.11141	2.9147	9.1727	-158.247	218.848
.09881	36111.516	.11215	2.9143	9.1712	-156.122	231.080
.39914	36348.293	.11288	2.9138	9.1698	-154.915	243.318
.09948	38585.215	.11362	2.9133	9.1684	-151.924	255.564
.99981	36822.277	.11435	2.9129	9.1679	-149.849	267.815
.19914	37959.477	.11599	2.9124	9.1657	-147.793	280.074
.16947	37296.813	.11583	2.9129	9.1644	-145.747	292.338
.19989	37534.281	.11657	2.9115	0.1631	-143.719	394.699
.10113	37771.871	.11739	2.9110	0.1618	-141.796	316.886
.19146	38909.586	.11894	2.9106	9.1596	-139.798	329.170
.19179	38247.422	.11879	2.9101	9.1594	-137.723	341.459
.10212	38485.379	.11952	2.9097	Ø.1583	-135.753	353.755
.10245	38723.453	.12026	2.9992	Ø.1571	-133.796	366.956
.10277	38961.641	.12100	2.9988	9.1569	-131.853	378.363
.19319	39199.938	.12174	2.9983	9.1549	-129.922	399.676
.19342	39438.344	.12248	2.9079	9.1538	-128.005	402.995
.10375	39676.859	.12322	2.9974	Ø.1528	-126.999	415.319
.19497	39915.480	.12396	2.9070	9.1518	-124.296	427.549
.19439	49154.293	.12479	2.9965	9.1598	-122.326	439.984
.19471	40393.031	.12544	2.9981	9.1498	-120.456	452.325
.10593	49631.957	.12619	2.9957	9.1483	-118.599	464.671
.10535	40870.980	.12693	2.9952	3.1479	-116.752	477.023
.10567	41119.162	.12767	2.9948	9.1469	-114.917	489.389
.10599	41349.313	.12841	2.9043	9.1469	-113.092	501.742

.19631	41588.617	.12916	2.9939	9.1451	-111.278	514.119
.19663	41828.012	.12999	2.9035	9.1443	109.475	526.482
.19694	42967.496	.13964	2.9939	9.1434	-197.692	538.869
.19725	42307.070	.13139	2.9926	0.1426	-195.899	551.242
.10757	42546.730	.13213	2.9922	9.1417	-194.125	563.639
.19798	42786.473	.13288	2.9017	9.1499	-192.362	576.023
.19829	43026.305	.13362	2.9013	9.1491	-199.698	588.429
.19851	43266.215	.13437	2.9009	0.1393	-98.863	699.823
.10882	43506.207	.13511	2.9984	Ø.1386	-97.128	613.230
.19913	43746.281	.13586	2.9999	9.1378	-95.481	625.642
.10944	43986.434	.13669	2.8996	9.1371	-93.683	638.059
.19975	44226.664	.13735	2.8992	9.1363	-91.974	659.481
.11996	44466.973	.13819	2.8987	9.1356	-99.274	662.997
.11037	44707.352	.13884	2.8983	9.1349	-88.582	675.338
.11068	44947.809	.13959	2.8979	9.1342	-86.898	687.774
.11698	45188.336	.14634	2.8975	0.1335	-85.222	799.214
.11129	45428.938	.14198	2.8970	0.1328	-83.555	712.659
.11159	45669.613	.14183	2.8966	Ø.1322	-81.895	725.108
.11199	45910.355	.14258	2.8962	0.1315	-80.243	737.562
.11220	46151.168	.14333	2.8958	9.1399	-78.598	759.929
.11250	46392.051	.14497	2.8954	9.1393	-76.961	762.483
.11281	46633.994	.14482	2.8959	9.1276	-75.332	774.950
.11311	46974.020	.14557	2.8946	0.1290	-73.799	787.421
.11341	47115.192	.14632	2.8941	9.1284	-72.094	799.897
.11371	47356.254	.14797	2.8937	Ø.1278	-79.486	912.377
.11481	47597.473	.14782	2.8933	9.1273	-68.884	824.862
.11431	47838.746	.14857	2.8929	9.1257	-67.290	837.351
.11461	48689.999	.14932	2.8925	Ø.1261	-65.702	849.844
.11491	48321.496	.15007	2.8921	9.1256	-64.121	862.341
.11520	48562.961	.15082	2.8917	9.1259	-62.546	874.843
.11559	48804.488	.15157	2.8913	9.1245	-60.978	887.348
.11589	49046.074	.15232	2.8989	Ø.1239	-59.416	899.858
.11609	49287.727	.15397	2.8905	0.1234	-57.960	912.372
.11639	49529.439	.15382	2.8991	9.1229	-56.319	924.890
.11668	49771.199	.15457	2.8897	Ø.1224	-54.766	937.412
.11697	50013.020	.15532	2.8893	Ø.1219	-53.229	949.939
.11727	50254.906	.15607	2.8889	0.1214	-51.697	962.469
.11756	59496.844	.15682	2.8885	0.1209	-50.171	975.003
.11785	59738.849	.15757	2.8881	Ø.1294	-48.55Ø	987.542
.11763	59989.891	.15833	2.8877	9.1199	-47.136	1999.984
		.15988	2.8873	0.1195		1912.639
.11843	51222.996 51465.160		2.8869	9.1173	-45.626 -44.123	1925.181
.11872		.15983	2.8865			1937.735
.11991	51797.375	.16959		9.1195	-42.524	
.11939	51949.645	.16133	2.8851	9.1181	-41.131 -30.443	1950.293
.11959	52191.969	.15299	2.8857	9.1176	-39.643	1962.855
.11987	52434.349	.16284	2.8853	9.1172	-38.161	1975.421
.12915	52576.773	.16359	2.8949	Ø.1158	-36.683	1097.991
.12945	52919.254	.16435	2.8845	9.1163	-35.211	1199.565
.12973	53161.781	.16519	2.8841	9.1159	-33.743	1113.142
.12102	53494.367	.16585	2.8838	9.1155	-32.281	1125.724
.12130	53647.999	.15651	2.8834	0.1151	-30.823	1138.309

.12159	53889.684	.16736	2.8839	9.1147	-29.370	1150.998
.12187	54132.418	.16811	2:8826	9.1143	-27.922	1163.499
.12215	54375.203	.16887	2.8922	9.1139	-26.478	1176.997
.12244	54618.335	.15962	2.8818	9.1135	-25.039	1188.687
.12272	54869.914	.17039	2.8814	9.1131	-23.695	1201.291
.12399	55103.844	.17113	2.8811	0.1127	-22.175	1213.898
.12328	55346.824	.17188	2.8897	9.1124	-20.749	1226.519
.12356	55589.852	.17264	2.8893	6.1129	-19.328	1239.125
.12384	55832.922	.17339	2.8799	9.1116	-17.911	1251.743
.12412	56976.939	.17415	2.8795	9.1112	-16.498	1264.366
.12448	56319.297	.17499	2.8792	9.1199	-15.099	1276.992
.12468	56562.422	.17566	2.8788	3.1105	-13.686	1289.621
.12495	56895.689	.17642	2.9784	9.1102	-12.286	1392.255
.12523	57948.984	.17717	2.8780	8.1998	-19.899	1314.891
.12551	57292.332	.17793	2.8777	9.1995	-9.498	1327.532
.12578	575 35.723	.17858	2.8773	0.1092	-8.119	1349.176
.12696	57779.164	.17944	2.8759	9.1988	-5.726	1352.823
.12533	58022.648	.18019	2.8765	9.1985	-5.345	1365.474
.12661	58266.176	.18395	2.8762	9.1982	-3.969	1378.129
.12588	58509.746	.18171	2.8758	9.1978	-2.596	1390.787
.12716	58753.359	.18246	2.8754	9.1975	-1.227	1403.449

\$ TYPE AD122015.DAT ...

DE ELONG	DE TEN	DE TAU	DE DIA	DE ANGLE	DE DEPTH	DE REACH
.05464	31721.846	.09852	2.9769	9.2182	-299.999	9.999
.95485	31949.996	.09922	2.9766	Ø.2155	-197.434	11.639
.05508	32178.429	.99993	2.9763	₫.213₫	-194.899	23.288
.05531	32497.199	.19964	2.9769	9.2195	-192.392	34.945
.05554	32636.849	.10135	2.9756	9.2081	-189.913	46.611
. 85576	32965.234	.19297	2.9753	0.2957	-187.461	58.285
.05599	33094.652	.19278	2.9750	9.2935	-185.935	69.968
.#5622	33324.297	.19349	2.9746	0.2013	-182.636	81.658
.95644	33554.169	.16421	2.9743	9.1991	-189.261	93.356
.05667	33784.238	.19492	2.9749	∌.1971	-177.919	195.961
.05690	34914.512	.19564	2.9737	9.1959	-175.582	116.774
.05712	34244.980	.19635	2.9733	9.1931	-173.278	129.494
.05735	34475.645	.19797	2.9730	Ø.1912	-170.995	140.221
.05757	34796.496	.19778	2.9727	Ø.1893	-168.735	151.954
.05779	34937.523	. 19859	2.9724	9.1875	-166.495	163.695
.05802	35168.727	.19722	2.9720	Ø.1858	-164.276	175.441
.95824	35466.698	.10994	2.9717	9.1849	-162.976	187.194
.#5846	35631.629	.11066	2:9714	9.1824	-159.897	198.954
.95869	35863.329	.11138	2.9711	Ø. 1897	-157.736	219.719
.95891	3605.329	.11219	2.9798	Ø.1792	-155.594	222.490
.05913	36327.156	.11282	2.9794	Ø.1776	-153.469	234.267
.05715	36559.293	.11252	2.9791	9.1776	-151.363	246.959
.95957		.11426	2.9698		-149.273	257.838
.95979	36791.574			9.1746		
	37923.988	.11478 .11579	2.9695	Ø.1732	-147.200	269.632
.06991	37254.535		2.9692	9.1718	-145.144 -143.184	281.431
.06023	37489.211	.11643	2.9688	9.1794		293.235
.06045	37722.016	.11715	2.9685	9.1691	-141.079	305.045
.06966	37954.945	.11787	2.9682	0.1577	-139.070	316.860
.96989	38187.996	.11869	2.9679	0.1665	-137.075	328.679
.06110	38421.164	.11932	2.9576	9.1652	-135.095	349.504
.96132	38654.445	.12004	2.9673	3.1643	-133.139	352.334
.95153	39897.844	.12977	2.9570	Ø.1628	-131.178	364.168
.96175	39121.348	.12149	2.9667	9.1616	-129.249	376.007
.06196	39354.961	.12222	2.9663	0.1695	-127.316	387.851
.06218	39588.676	.12295	2.9660	9.1593	-125.405	399.699
.96239	39822.496	.12367	2.9657	0.1582	-123.596	411.552
.05251	49956.419	.12445	2.9654	0.1571	-121.629	423.469
.96282	49299.426	.12513	2.9651	9.1561	-119.746	435.271
.06394	49524.535	.12585	2.9648	Ø.1550	-117.885	447.137
.96325	49758.745	.12658	2.9645	0.1549	-116.935	459.998
.96346	48993.843	.12731	2.9642	9.1539	-114.197	475.882
.06367	41227.430	.12804	2.9639	9.1521	-112.370	482.761
.96388	41461.996	.12876	2.9636	9.1511	-119.554	494.544
.06419	41696.469	.12949	2.9633	0.1592	-108.750	596.531
.96431	41931.117	.13022	2.9630	9.1492	-196.956	518.422
.96452	42165.848	.13095	2.9527	Ø. 1493	-105.172	530.317
.06473	42409.669	.13168	2.9624	9.1474	-193.399	542.216

.95494	42635.555	.13241	2.9621	3.1466	-191.636	554.119
.96515	42879.527	.13314	2.9618	9.1457	-99.883	546.024
.96535	43195.578	.13387	2.9515	0.1449	-99.140	577.936
.06556	43349.707	.13469	2.9612	3.1449	-96.496	589.850
.06577	43575.906	.13533	2.9699	0.1432	-94.682	591.768
.06598	43811.189	.13696	2.9606	9.1424	-92.967	513.699
.96619	44046.527	.13679	2.9693	0.1417	-91.261	625.616
.06639	44281.945	.13752	2.9699	9.1499	-89.564	637.545
.96669	44517.434	.13825	2.9597	0.1401	-87.876	649.478
.96689	44752.992	.13898	2.9594	0.1394	-86.196	661.414
.96791	44988.617	.13972	2.9591	Ø.1387	-84.525	673.354
.96721	45224.395	.14945	2.9588	Ø.1379	-82.863	685.297
.96742	45460.063	.14118	2.9585	0.1372	-81.298	697.244
.96762	45695.883	.14191	2.9582	9.1365	-79.562	799.194
.06783	45931.766	.14265	2.9579	9.1358	-77.923	721.147
.95893	46167.719	.14338	2.9574	9.1352	-76.293	733.194
.96824	46403.727	.14411	2.9574	6.1345	-74.570	745.965
.96844	46639.801	.14484	2.9571	0.1339	-73.954	757.929
.06864	46875.934	.14559	2.9568	Ø.1332	-71.446	765.996
.95884	47112.125	.14631	2.9565	9.1326	-69.846	789.965
. 96994	47348.375	.14704	2.9552	9.1329	-68.252	792.940
.96925	47584.684	.14778	2.9559	6.1313	-66.666	894.916
.96945	47821.947	.14851	2.9554	9.1397	-65.987	316.876
.06965	48057.469	.14925	2.9553	9.1391	-63.514	828.889
.04985	48293.941	.14998	2.9559	0.1296	-51.948	840.866
.97995	48530.477	.15072	2.9548	9.1299	-60.389	852.856
.07925	48767.963	. 15145	2.9545	9.1284	-58.837	864.849
.07945	49003.699	.15219	2.9542	Ø.1279	-57.291	876.844
.97965	49240.395	.15292	2.9539	Ø.1273	-55.752	888.843
.07934	49477.137	.15366	2.9536	9.1268	-54.218	969.345
.07104	49713.934	.15439	2.9533	∂.1252	-52.691	912.85#
.07124	49959.781	.15513	2.9531	Ø.1257	-51.179	924.858
.07144	50187.676	.15586	2.9528	0.1252	-49.655	934.869
.07163	50424.621	.15669	2.9525	Ø.1247	-48.146	948.884
.07183	59661.621	.15733	2.9522	9.1242	-46.643	969.961
.07203	50898.568	.15897	2.9519	Ø.1237	-45.146	972.921
.07222	51135.762	.15891	2.9517	Ø.1232	-43.454	984.944
.97242	51372.898	.15954	2.9514	Ø.1227	-42.168	996.969
.87262	51519.986	.16028	2.9511	Ø.1222	-40.688	1998.998
.97281	51847.320	.16192	2.9508	Ø.1217	-39.213	1921.939
.07301	52984.692	.16175	2.9505	9.1213	-37.743	1933.965
.07320	52321.926	.16249	2.9503	Ø.1208	-36.279	1945.192
.07339	52559.297	.16323	2.9500	Ø.1203	-34.820	1957.142
.87359	52796.711	.16326	2.9497	5.1199	-33.366	1949.185
.07378	53934.172	.16479	2.9494	Ø.1195	-31.917	1007.103
.07373	53271.489	.16544	2.9492	5.1175	-30.473	1993.289
.07417	53509.230	.16513	2.9489	9.1175 9.1196	-29.035	1195.332
.07436	53746.824	.16672	2.9485	9.1138 9.1132	-27.533	1117.385
.67455	53984.457	.16765	2.9493	Ø.1177	-26.172	1129.443
.97474	54222.133	.16839	2.9481	9.1173	-24.748	1141.593
.97493	54459.852	.16913	2.9478	Ø.1173	-23.328	1153.565
טודועו	044911097	110/10	2.7770	V. 1107	20.010	1100.000

ANALYSIS PROGRAM DUTPUT

.07513	54697.609	.16987	2.9475	3.1165	-21.913	1165.631
.97532	54935.419	.17961	2.9473	9.1161	-29.593	1177.699
. 97551	55173.250	.17135	2.9479	0.1157	-17.098	1189.759
.97579	55411.133	.17298	2.9467	9.1153	-17.697	1291.843
.07589	55649.055	.17282	2.9464	9.1149	-16.300	1213.919
.07608	55897.016	.17356	2.9462	9.1146	-14.908	1225.998
.97627	56125.016	.17430	2.9459	9.1142	-13.520	1238.079
. 37646	56363.055	.17594	2.9456	9.1138	-12.136	1259.163
. 97654	55691.133	.17578	2.7454	Ø.1134	-10.757	1262.250
.07683	56839.259	.17652	2.9451	9.1131	-9.382	1274.339
.87782	57977.496	.17725	2.9448	9.1127	-8.919	1286.431
.97721	57315.602	.17809	2.9446	9.1124	-6.643	1298.525
.07740	57553.832	.17874	2.7443	Ø.1129	-5.280	1310.622
.07758	57792.102	.17948	2.9449	6.1117	-3.921	1322.722
.97777	58030.406	.18922	2.9438	ð.1113	-2.566	1334.824
.97796	58268.759	.18095	2.9435	9.1119	-1.215	1346.929

WET	DESIGN	₹ DATA					DRY DESIG	N DATA				
	15	72074	244									
	15 114 9	30970 0.24	299 9.1									
	97	1	v. i									
	3.25	322999										
	Ø. Ø99	SELUUU										
	Ø.183	Ø.182										
	VN	VT	RN	FN	FT	X	VN	VT	RN	FN	FT	X
	3.084	14.679	86399	9		g	3.246	14.544	92599	9		g
	3.949	14.687	85399	7.989	23.241	12.084	3.208	14.653	91400	8.695	22.745	11.639
	3.014	14.694	84399	7.81	23.267	24.178	3.17	14.661	99399	8.494	22.772	23.288
	2.981	14.791	83400	7.638	23.293	36.281	3.134	14.669	89300	8.3	22.799	34.945
	2.948	14.797	82500	7.474	23.317	48.394	3.399	14.676	88399	8.115	22.825	46.611
	2.917	14.714	61699	7.316	23.341	69.516	3.064	14.584	87300	7.937	22.85	58.285
	2.884	14.72	89799	7.164	23.363	72.646	3.031	14.691	86399	7.766	22.374	69.968
	2.856	14.726	79988	7.017	23.386	84.786	2.999	14.597	85499	7.602	22.897	81.653
	2.827	14.731	79999	5.877	23.497	96.934	2.967	14.794	84599	7.444	22.919	93.356
	2.799	14.736	78299	5.741	23.428	199.991	2.937	14.71	83699	7.293	22.941	195.961
	2.772	14.742	77599	6.611	23.448	121.255	2.907	14.716	82899	7.146	22.962	116.774
	2.745	14.747	75799	6.485	23.457	133.429	2.878	14.721	81900	7.996	22.982	128.494
	2.719	14.751	76999	6.364	23.486	145.698	2.85	14.727	81199	6.87	23.661	149.221
	2.694	14.756	75200	6.247		157.797	2.823	14.732	80300	6.74	23.02	151.954
	2.67	14.761	74599	6.134	23.522	169.992	2.796	14.737	79600	6.614	23.039	163.695
	2.646	14.765	73900	6.925		192.196	2.77	14.742	78800	6.492	23.056	175.441
	2.622	14.769	73299	5.92	23.556	194.406	2.745	14.747	78199	5.374	23.973	187.194
	2.599	14.773	72600	5.818	23.572	205.624	2.72	14.751	77499	6.261	23.99	198.954
	2.577	14.777	71988	5.719	23.588	218.848	2.696	14.756	76799	6.151	23.196	219.719
	2.555	14.791	71300	5.624	23.694	231.98	2.673	14.76	76999	6.945	23.122	222.49
	2.534	14.784	79799 74144	5.532	23.619	243.318	2.65	14.764	75499 747 <i>0</i> 4	5.943	23.137	234.267
	2.514 2.493	14.789 14.791	79199 69599	5.442 5.356	23.634 23.648	255.554 267.815	2.628 2.606	14.758 14.772	7479 0 74190	5.844 5.748	23.152 23.167	246.95 257.838
	2.474	14.795	59000	5.272	23.662	280.074	2.585	14.775	73500	5.654	23.181	269.632
	2.454	14.778	68499	5.191	23.676	292.338	2.564	14.779	72900	5.564	23.195	281.431
	2.435	14.801	67900	5.112	23.689	304.609	2.544	14.783	72399	5.477	23.298	293.235
	2.417		67499	5.036		316.886	2.524	14.786	71799	5.392		305.045
	2.399	14.897	66700	4.961		329.17	2.504	14.789	71299	5.31		316.86
	2.381	14.81	66399	4.889		341.459	2.485	14.793	79699	5.23		328.679
	2.364	14.813	65900	4.819		353.755	2.467	14.795	79100	5.153		340.594
	2.347	14.815	65400	4.751		366.056	2.449	14.799	69699	5.978	23.27	352.334
	2.331	14.818	64900	4.685	23.764	379.363	2.431	14.892	69100	5.004	23.282	364.168
	2.314	14.82	64499	4.621	23.775	399.676	2.413	14.995	68699	4.933	23.293	375.007
	2.299	14.823	64000	4.558	23.786	402.995	2.396	14.807	68199	4.954		397.851
	2.283	14.825	63699	4.497		415.319	2.38	14.81	67699	4.797		399.699
	2.268	14.328	53199	4.438		427.549	2.363	14.813	67199	4.732		411.552
	2.253	14.83	62700	4.381		439.984	2.347	14.815	66689	4.669		423.499
	2.238	14.832	62399	4.324		452.325	2.332	14.918	66299	4.697		435.271
	2.224	14.834	61999	4.27		464.671	2.316	14.82	65899	4.547	23.356	447.137
	2.21	14.836	61500	4.216		477.923	2.301	14.822	65399	4.488	23.365	459.008
	2.195	14.838	61199 Lazaa	4.155		489.38	2.297	14.825	649 <i>99</i>	4.431 4.375	23.375	479.382
	2.183	14.84	50700	4.114	23.887	501.742	2.272	14.827	64599	4.375	23.384	482.751

2.169	14.842	60300	4.865	23.879	514.11	2.258	14.929	64199	4.321	23.393	494.644
2.156	14.844	59999	4.917	23.888	526.482	2.244	14.831	63700	4.268	23.492	506.531
2.144	14.846	59499	3.97	23.897	538.86	2.23	14.833	63399	4.217	23.411	518.422
2.131	14.848	59200	3.924	23.906	551.242	2.217	14.835	62900	4.166	23.42	539.317
2.119	14.85	58999	3.879	23.915	563.63	2.294	14.837	62500	4.117	23.428	542.216
2.197	14.851	58599	3.835	23.924	576.023	2.191	14.839	62199	4.969	23.436	554.119
2.095	14.853	58200	3.793	23.933	598.42	2.178	14.841	61999	4.023	23.444	566.026
2.083	14.855	57999	3.751	23.941	699.823	2.165	14.843	61499	3.977	23.452	577.936
2.072	14.956	57500	3.71	23.949	613.23	2.153	14.845	61999	3.932	23.46	589.85
2.96	14.858	57200	3.671	23.958	625.642	2.141	14.846	69799	3.869	23.468	601.768
2.249	14.859	56999	3.632	23.966	638.059	2.129	14.848	69499	3.846	23.476	613.69
2.039	14.861	56699	3.594	23.974	556.481	2.118	14.85	60909	3.895	23.483	625.616
2.028	14.862	56399	3.556	23.982	662.907	2.195	14.851	59799	3.764	23.491	637.545
2.017	14.864	56999	3.52	23.989	675.338	2.995	14.353	59499	3.724	23.498	649.478
2.997	14.865	55788	3.485	23.997	687.774	2.084	14.855	59000	3.685	23.505	661.414
1.997	14.866	55499	3.45	24.005	700.214	2.973	14.856	58700	3.647	23.512	673.354
1.987	14.868	55199	3.416	24.012	712.659	2.962	14.858	59499	3.51	23.519	685.297
1.977	14.869	54899	3.382	24.92	725.198	2.952	14.859	58199	3.574	23.526	597.244
1.967	14.87	54599	3.35	24.927	737.562	2.042	14.36	57899	3.538	23.532	709.194
1.958	14.872	54399	3.318	24.934	750.02	2.931	14.862	57509	3.503	23.539	721.147
1.948	14.873	54099	3.286	24.941	762.483	2.021	14.863	57299	3.469	23.545	733.194
1.939	14.874	53799	3.256	24.948	774.95	2.012	14.865	57999	3.436	23.552	745.065
1.93	14.975	53599	3.226	24.055	787.421	2.002	14.866	56799	3.493	23.558	757.029
1.921	14.876	53299	3.196	24.862	799.897	1.992	14.867	56499	3.371	23.564	768.996
1.912	14.979	53999	3.167	24.069	812.377	1.983	14.868	56199	3.339	23.57	789.966
1.994	14.879	52799	3.139	24.975	824.862	1.974	14.87	55999	3.398	23.577	792.94
1.895	14.88	52599	3.111	24.082	837.351	1.965	14.871	55699	3.278	23.583	894.716
1.887	14.381	52299	3.984	24.998	847.844	1.956	14.872	55366	3.249	23.588	816.896
1.878	14.982	52000	3.957	24.095	862.341	1.947	14.873	55199	3.22	23.594	829.88
1.87	14.983	51800	3.931	24.101	874.843	1.938	14.874	54899	3.191	23.6	840.866
1.862	14.884	51588	3.995	24.197	887.348	1.929	14.875	54600	3.163	23.606	852.855
1.854	14.885	51300	2.98	24.114	899.858	1.921	14.876	54399	3.136	23.611	864.849
1.846	14.886	51199	2.955	24.12	912.372	1.913	14.878	54199	3.109	23.617	976.844
1.839	14.887	59999	2.931	24.125	924.89	1.994	14.879	53939	3.083	23.622	888.843
1.831	14.888	59799	2.997	24.132	937.412	1.896	14.88	53499	3.057	23.528	900.845
1.824	14.389	59499	2.384	24.138	949.939	1.888	14.881	53409	3.931	23.633	912.85
1.815	14.89	59299	2.361	24.144	962.469	1.881	14.882	53299	3.005	23.438	924.358
1.899	14.891	59999	2.838	24.15	975.003	1.873	14.883	52999	2.982	23.644	934.869
1.892	14.891	49366	2.816	24.156	987.542	1.865	14.884	52700	2.958	23.649	948.384
1.795	14.892	47690	2.794	24.161	1000.084	1.858	14.895	52500	2.934	23.654	
1.788	14.893	49493	2.773	24.167	1012.63	1.85	14.835	52300	2.911		972.921
1.781	14.894	49299	2.752		1025.181	1.843	14.386	52199	2.883		984.944
1.774	14.995	49999	2.731		1037.735	1.836	14.887	51999	2.886		996.969
1.767	14.896	48899	2.711		1959.293	1.828	14.888	51799	2.844		1998.798
1.761	14.896	48699	2.691		1062.855	1.921	14.389	51599	2.822		1021.03
1.754	14.897	48599	2.671		1975.421	1.814	14.89	51399	2.801		1933.965
1.748	14.899	48300	2.652		1987.991	1.898	14.891	51199	2.78		1045.102
1.741	14.879	48199	2.633		1100.565	1.891	14.892	50900	2.759		1057.142
1.735	14.899	47999	2.514		1113.142	1.794	14.892	50730	2.739		1069.185
1.729	14.9	47799	2.596		1125.724	1.788	14.893	59599	2.719		1081.231
1.723	14.791	47600	2.578	24.221	1138.309	1.781	14.894	59399	2.7	23.706	1973.28

1.717	14.991	47499	2.56	24.226 1150.898	1.775	14.895	59199	2.68	23.711 1105.332	
1.711	14.992	47299	2.542	24.232 1163.49	1.768	14.895	49999	2.661	23.715 1117.386	
1.795	14.903	47000	2.525	24.237 1176.997	1.762	14.396	49799	2.643	23.72 1129.443	
1.599	14.993	46999	2.508	24.242 1188.687	1.756	14.397	49500	2.624	23.724 1141.503	
1.593	14.984	46799	2.492	24.247 1291.291	1.75	14.898	49499	2.696	23.728 1153.565	
1.687	14.995	46500	2.475	24.252 1213.898	1.744	14.898	49299	2.589	23.733 1165.631	
1.682	14.995	46499	2.459	24.257 1226.51	1.738	14.899	49999	2.571	23.737 1177.699	
1.676	14.996	46299	2.443	24.261 1239.125	1.732	14.9	48999	2.554	23.741 1189.769	
1.571	14.907	46199	2.427	24.266 1251.743	1.726	14.9	48700	2.537	23.745 1201.843	
1.665	14.907	45999	2.412	24.271 1264.366	1.72	14.991	48500	2.52	23.75 1213.919	
1.66	14.908	45800	2.397	24.276 1276.992	1.714	14.992	48499	2.504	23.754 1225.998	
1.655	14.998	45699	2.382	24.281 1289.621	1.799	14.962	48299	2.498	23.758 1238.079	
1.649	14.999	45599	2.357	24.285 1302.255	1.703	14.993	49909	2.472	23.762 1250.153	
1.644	14.91	45399	2.352	24.27 1314.891	1.698	14.964	47933	2.456	23.766 1262.25	
1.639	14.91	45299	2.338	24.295 1327.532	1.592	14.994	47700	2.441	23.77 1274.339	
1.634	14.911	45666	2.324	24.299 1340.175	1.687	14.905	47639	2.425	23.774 1296.431	
1.529	14.911	44900	2.31	24.304 1352.823	1.582	14.905	47499	2.41	23.778 1298.525	
1.624	14.912	44769	2.296	24.308 1365.474	1.577	14.996	47300	2.395	23.782 1310.622	
1.519	14.912	44609	2.293	24.313 1379.129	1.571	14.997	47199	2.381	23.785 1322.722	
1.614	14.913	44500	2.269	24.317 1390.787	1.556	14.997	47999	2.367	23.789 1334.824	
1.61	14.913	44399	2.256	24.322 1493.449	1.551	14.998	46800	2.352	23.793 1345.929	

207084

Thesis P944275

Proctor

A quasi-static design model for synthetic marine towlines

Thesis P944275

Proctor

207084

A quasi-static design model for synthetic marine towlines. thesP944275
A quasi-static design model for syntheti

3 2768 001 93220 5
DUDLEY KNOX LIBRARY