Correction DL 2 : suite récurrente et acc. finis

On considère les fonctions f et g définies sur $]0; +\infty[$ par : $\forall x > 0, \quad | f(x) = 2 - \frac{1}{2}\ln(x),$

 $\begin{vmatrix} u_0 = 1 & | g(x) = f(x) - x. \\ \forall n \in \mathbb{N}, & u_{n+1} = f(u_n). \end{vmatrix}$ On considère aussi la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

1. (Calculer les limites suivantes : $\lim_{x\to 0^+} g(x)$ et $\lim_{x\to +\infty} g(x)$.)

On a
$$\forall x > 0$$
, $g(x) = 2 - \frac{1}{2} \ln(x) - x$.
On trouve donc les limites :

On trouve donc les limites:

:→+∞ 3 () /		
limite en	0_{+}	$+\infty$
$\frac{-\frac{1}{2}\ln(x)}{2-x}$	$+\infty$ 2	$-\infty$ $-\infty$
$\overline{g(x) = 2 - x - \frac{1}{2}\ln(x)}$	$+\infty$	$-\infty$

- **2.** (Calculer g'(x) pour tout $x \in]0; +\infty[$ puis dresser le tableau des variations de g sur $]0; +\infty[$.)
 - Dérivation

On a
$$\forall x > 0$$
, $g(x) = 2 - \frac{1}{2} \ln(x) - x$. Cette expression est \mathcal{C}^{∞} sur $]0; +\infty[$. Il vient $g'(x) = -\frac{1}{2x} - 1 = -\frac{2x+1}{2x}$.

▶ Variations de q

On a $\forall x > 0$, g'(x) < 0, donc la fonction g est strictement décroissante sur $]0; +\infty[$.

3. **a)** (Prouver que l'équation g(x) = 0 admet une unique solution, notée α , sur $[0; +\infty[$.)

La fonction g est : \rightarrow continue sur $]0; +\infty[$

• strictement décroissante sur $]0; +\infty[$

D'après le théorème de la bijection monotone sur $]0;+\infty[$, la fonction g réalise une bijection : $]0; +\infty[\rightarrow]\lim_{\longrightarrow} f; \lim_{\longrightarrow} f[=]-\infty; +\infty[= \mathbb{R}.$

En particulier, le réel 0 admet un unique antécédent $\alpha = g^{-1}(0) \in [0; +\infty[$ par g.

b) (Justifier que: $\alpha \in [1; e]$.)

On a:
$$g(1) = 2 - \frac{1}{2}\ln(1) - 1 = 1 \geqslant 0$$

•
$$g(e) = 2 - \frac{1}{2}\ln(e) - e = \frac{3}{2} - e \le 0 \ (car \ e > 2 > \frac{3}{2}).$$

Ainsi g change de signes sur l'intervalle [1; e], donc s'y annule. On a donc bien $\alpha \in [1; e]$.

Rédaction alternative (plus élégante?)

Ainsi, on a $g(e) \leq 0 \leq g(1)$, donc par décroissance $(de\ g^{-1}): 1 \leq g^{-1}(0) = \alpha \leq e$.

c) (Vérifier que $f(\alpha) = \alpha$.)

On a $g(\alpha) = f(\alpha) - \alpha = 0$, donc $f(\alpha) = \alpha$. (Le réel α est l'unique point fixe de f.)

- **4.** (Calculer f'(x) pour tout $x \in]0; +\infty[$ et préciser les variations de la fonction f.)
 - Dérivation

On a $\forall x > 0$, $f(x) = 2 - \frac{1}{2} \ln(x)$. Cette expression est \mathcal{C}^{∞} sur $]0; +\infty[$. Il vient $f'(x) = -\frac{1}{2x}$.

- ▶ Variations de f. Pour x > 0, f'(x) < 0, donc f est strict décroissante sur $]0; +\infty[$.
- **5**. a) (Montrer que $\forall x \in [1; e]$, on a $f(x) \in [1; e]$.)

Pour $x \in [1; e]$, par décroissance de f, l'encadrement $1 \leqslant x \leqslant e$ donne $f(e) \leqslant f(x) \leqslant f(1)$.

Or, on a:
$$f(1) = 2 - \frac{1}{2}\ln(1) = 2 \in [1; e]$$

 $f(e) = 2 - \frac{1}{2}\ln(e) = \frac{3}{2} \in [1; e]$. Ainsi, pour $x \in [1; e]$, on a aussi $f(x) \in [1; e]$.

b) (Démontrer par récurrence que : $\forall n \in \mathbb{N}, 1 \leq u_n \leq e$.)

▶ Hypothèse de récurrence

Pour
$$n \in \mathbb{N}$$
, on considère l'hypothèse de récurrence : $1 \leq u_n \leq e$ (H_n)

► Initialisation On a bien :
$$u_0 = 1 \in [1; e]$$
 (H_0)

▶ **Hérédité** Soit $n \in \mathbb{N}$ un entier.

On suppose (H_n) soit : $1 \le u_n \le e$ D'après la question **5.a**) avec $x = u_n \in [1; e]$, on a aussi $f(x) = f(u_n) = u_{n+1} \in [1; e]$, soit : $1 \le u_{n+1} \le e$ (H_{n+1})

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

▶ héréditaire

On a donc bien pour tout
$$n \in \mathbb{N}$$
, $1 \leqslant u_n \leqslant e$ (H_n)

6. a) (Vérifier que : $\forall x \in [1; e], |f'(x)| \leq \frac{1}{2}.$)

Pour x > 0, on a $|f'(x)| = \left| -\frac{1}{2x} \right| = \frac{1}{2x}$. Donc pour $x \ge 1$, on a bien $|f'(x)| \le \frac{1}{2}$.

b) (Par l'inégalité des accroissements finis, déduire : $\forall x \in [1\,;e], \quad |f(x) - \alpha| \leqslant \frac{1}{2}\,|x - \alpha|$.)

On a vu que $\forall t \in [1; e], |f'(t)| \leq \frac{1}{2}$. Par l'inégalité des accroissements finis, pour $a, b \in [1; e]$, on a donc $|f(b) - f(a)| \leq \frac{1}{2} |b - a|$.

Entre les points $x \in [1; e]$ et α , il vient donc : $|f(x) - f(\alpha)| \leq \frac{1}{2}|x - \alpha|$

soit:
$$|f(x) - \alpha| \le \frac{1}{2} |x - \alpha| \operatorname{car} f(\alpha) = \alpha.$$

c) (En déduire que l'on a: $\forall n \in \mathbb{N}, |u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|$.)

On applique l'inégalité précédente avec $x = u_n \in [1; e]$. Il vient $|u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|$.

7. (Démontrer par récurrence que :
$$\forall n \in \mathbb{N}, \quad |u_n - \alpha| \leq \frac{e-1}{2^n}$$
.)

Hypothèse de récurrence

Pour $n \in \mathbb{N}$, on considère l'hypothèse de récurrence : $|u_n - \alpha| \leqslant \frac{e-1}{2^n}$. (H_n)

- ▶ Initialisation On a bien $|u_0 \alpha| \leq \frac{e 1}{2^0}$ (H_0) car $u_0 = 1$ et $\alpha \in [1; e]$.
- ▶ **Hérédité** Soit $n \in \mathbb{N}$ un entier.

On suppose (H_n) soit :

$$|u_n - \alpha| \leqslant \frac{e - 1}{2^n}.$$

Or d'après la question précédente, $|u_{n+1} - \alpha| \leq \frac{1}{2} |u_n - \alpha|$.

On applique (H_n) à droite, et il vient : $|u_{n+1} - \alpha| \leqslant \frac{1}{2} \frac{e-1}{2^n} = \frac{e-1}{2^{n+1}}$. (H_{n+1})

Conclusion

On a montré que l'hypothèse de récurrence (H_n) est \rightarrow initialisée

héréditaire

On a donc bien pour tout
$$n \in \mathbb{N}$$
, $|u_n - \alpha| \leqslant \frac{e-1}{2^n}$. (H_n)

8. (Prouver que la suite $(u_n)_{n\in\mathbb{N}}$ converge et préciser sa limite.)

On a montré la « majoration de l'erreur » : $\forall n \in \mathbb{N}, \quad |u_n - \alpha| \leqslant \frac{\mathrm{e} - 1}{2^n}, \text{ où } \frac{\mathrm{e} - 1}{2^n} \underset{n \to +\infty}{\longrightarrow} 0.$

Par le th. de convergence par encadrement (« des gendarmes » version valeur absolue) on a donc

$$|u_n - \alpha| \to 0$$
, soit $(u_n) \to \alpha$