

2011 Specialist Mathematics Trial Exam 1 SolutionsFree download from www.itute.com ©Copyright 2011 itute.com

Q1a
$$y = \sqrt{3} \cos^{-1} \left(\frac{x}{2}\right)$$

Q1b

From the graph, $\int_{-\sqrt{3}}^{\sqrt{3}} \sqrt{3} \cos^{-1} \left(\frac{x}{2} \right) dx = area \text{ under graph}$ $= area \text{ of rectangle} = 2\sqrt{3} \times \frac{\pi\sqrt{3}}{2} = 3\pi$

Q2a A(-2,1,0), B(-1,2,-2) and C(0,-3,4) $\overrightarrow{OA} = -2\widetilde{i} + \widetilde{j}$, $\overrightarrow{OB} = -\widetilde{i} + 2\widetilde{j} - 2\widetilde{k}$, $\overrightarrow{OC} = -3\widetilde{j} + 4\widetilde{k}$ $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \widetilde{i} + \widetilde{j} - 2\widetilde{k}$, $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = \widetilde{i} - 5\widetilde{j} + 6\widetilde{k}$ $\overrightarrow{BC} \neq \overrightarrow{mAB}$, .: A, B and C are not collinear.

Q2b
$$\overrightarrow{OA} = -2\widetilde{i} + \widetilde{j}$$
, $\overrightarrow{OB} = -\widetilde{i} + 2\widetilde{j} - 2\widetilde{k}$, $\overrightarrow{OC} = -3\widetilde{j} + 4\widetilde{k}$, $\overrightarrow{OA} - 2\overrightarrow{OB} - \overrightarrow{OC} = 0$... \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OC} are linearly dependent. Hence the three position vectors are coplanar.

Q2c Let \hat{b} be a unit vector in the direction of \overrightarrow{OB} and \hat{c} a unit vector in the direction of \overrightarrow{OC} .

$$\hat{b} = \frac{1}{3} \left(-\widetilde{i} + 2\widetilde{j} - 2\widetilde{k} \right), \ \hat{c} = \frac{1}{5} \left(-3\widetilde{j} + 4\widetilde{k} \right)$$

A vector that bisects the angle between \overrightarrow{OB} and \overrightarrow{OC} is $\widetilde{d} = \hat{b} + \hat{c} = -\frac{1}{3}\widetilde{i} + \frac{1}{15}\widetilde{j} + \frac{2}{15}\widetilde{k}$.

Q3
$$\{z: 1 \le z + \overline{z} \le 2\} \cap \{z: 1 \le |z - 1 + i| \le 2\}.$$

Q4a

Refer to the diagram above, $|iz - z| = \sqrt{2}$.

Q4b
$$\arg(iz-z) = \theta + \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4} + \theta$$

Q4c
$$z = \cos \theta + i \sin \theta$$
, $iz = -\sin \theta + i \cos \theta$

$$\therefore iz - z = (-\sin \theta - \cos \theta) + i(\cos \theta - \sin \theta)$$

From parts **a** and **b**,

$$iz - z = \sqrt{2}cis\left(\frac{3\pi}{4} + \theta\right) = \sqrt{2}\cos\left(\frac{3\pi}{4} + \theta\right) + i\sqrt{2}\sin\left(\frac{3\pi}{4} + \theta\right)$$

$$\therefore \cos\theta - \sin\theta = \sqrt{2}\sin\left(\frac{3\pi}{4} + \theta\right)$$

Q5a
$$\tilde{r} = \frac{t}{2}\tilde{i} + (49t - 4.9t^2)\tilde{j}$$
, $\tilde{r} = \frac{1}{2}\tilde{i} + (49 - 9.8t)\tilde{j}$

At
$$t = 0$$
, $\tilde{r} = \frac{1}{2}\tilde{i} + 49\tilde{j}$

:: initial speed =
$$|\tilde{r}| = \sqrt{0.5^2 + 49^2} \approx 49 \text{ ms}^{-1}$$

Q5b
$$\tilde{a} = \tilde{r} = -9.8\tilde{j}$$
 a constant vector

Q5c
$$\tilde{r} = \frac{t}{2}\tilde{i} + (49t - 4.9t^2)\tilde{j}$$

At t = 0, $\tilde{r} = 0$ and the \tilde{j} -component of \tilde{r} is 0.

Let
$$49t - 4.9t^2 = 0$$
 and $t > 0$, .: $t = 10$ and $\tilde{r} = 5\tilde{i}$.

.: displacement $=5\tilde{i} - \tilde{0} = 5\tilde{i}$

Q5d
$$x = \frac{t}{2}$$
, .: $t = 2x$

$$y = 49t - 4.9t^2 = 49(2x) - 4.9(2x)^2$$

$$y = 98x - 19.6x^2, x \ge 0$$

Q6a
$$8x^3 - y^3 = 1 - 6xy^2 + 12x^2y$$

$$8x^3 - 12x^2y + 6xy^2 - y^3 = 1$$
, $(2x - y)^3 = 1$

$$2x - y = 1, \frac{dy}{dx} = 2$$

Q6b

Intercepts are
$$(0.5,0)$$
 and $(0,-1)$.

Q7a
$$f(x) = \frac{\log_e(x^2)}{|x|}$$
,

$$f'(x) = \frac{|x|(\frac{2}{x}) - \log_e(x^2) \times \frac{d|x|}{dx}}{x^2} = \begin{cases} \frac{-2 + \log_e(x^2)}{x^2}, & x < 0\\ \frac{2 - \log_e(x^2)}{x^2} & x > 0 \end{cases}$$

$$f'(-e) = \frac{-2 + \log_e(-e)^2}{(-e)^2} = 0$$

Q7b For
$$x < 0$$
, $f(x) = \frac{\log_e(x^2)}{|x|} = \frac{2\log_e|x|}{|x|} = -\frac{2\log_e|x|}{x}$

$$|x| \qquad |x| \qquad |x| \qquad x$$

$$\therefore \int_{-e}^{-1} f(x) dx = \int_{-e}^{-1} -\frac{2\log_e|x|}{x} dx$$

$$= \int_{-e}^{-1} -2u \frac{du}{dx} dx = \int_{1}^{0} -2u du$$

$$= \int_{0}^{1} 2u du = \left[u^2\right]_{0}^{0} = 1$$
Let $u = \log_e|x|$, $\frac{du}{dx} = \frac{1}{x}$

Q8a

Q8b
$$y = \cot x = \frac{\cos x}{\sin x}$$

$$\frac{dy}{dx} = \frac{(\sin x)(-\sin x) - (\cos x)(\cos x)}{\sin^2 x}$$

$$= \frac{-(\sin^2 x + \cos^2 x)}{\sin^2 x} = -\frac{1}{\sin^2 x}$$

$$= -\cos ec^2 x$$

$$\therefore f(x) = -\cos ec^2 x$$

Q9a

Q9b The sine rule: $\frac{T_1}{\sin 93^\circ} = \frac{300}{\sin 13^\circ}$

$$T_1 = \frac{300\sin 93^{\circ}}{\sin 13^{\circ}} \approx 1332 \text{ N}$$

Q10a $v = \pm \sqrt{10 - 8x - 2x^2}$, .: $\frac{1}{2}v^2 = 5 - 4x - x^2$

$$a = \frac{d}{dx} \left(\frac{1}{2} v^2 \right) = -4 - 2x$$

At
$$x = 0$$
, $a = -4$

Q10b Resultant force $F = ma = 0.2 \times^{-} 4 = -0.8 \text{ N}$

Q10c Maximum speed occurs when a = 0, i.e. -4 - 2x = 0

.: maximum speed = $\sqrt{10+16-8} = 3\sqrt{2} \text{ ms}^{-1}$.

Please inform mathline@itute.com re conceptual, mathematical and/or typing errors