Total No. of Questions : 8]	26	SEAT No.:	
P3939		[Total No. of	

[5462] - 661

M.E. (E&TC) VLSI & Embedded Systems DIGITAL CMOS DESIGN

	(2017 Pattern) (Semester - I)	
Time: 3	B Hours] [Max. M	1arks :50
	ions of the condidates:	<i>[u/ N3 . 50</i>
1)	Answer any five questions.	
2)	Assume Suitable data if necessary.	
3)	Neat diagrams must be drawn wherever necessary.	
4)	Use of nonprogrammable calculator is allowed.	
Q1) a)	With the help of diagram & typical dimensions, explain cross se CMOS Inverter. Comment on the doping concentrations & polylayer.	
b)	What is need of technology scaling? Explain the types of characteristics in detail.	& their [5]
Q2) a)	Derive the expression for power delay product. How is it useful designer?	al to the [5]
b)	Explore multistage logic network & delays.	[5]
Q3) a)	Explore equivalent circuit of MOSFET. Explain the gm, Cgs significance.	& their [4]
b)	, , ,	[4]
c)	What is need of transient analysis?	[2]
Q4) a)	Explain various RC delay models in brief. Comment on their acc	uracies. [4]
b)	With the help of mathematical analysis, explain the need of trasizing.	ansistor [4]
c)	Write note on design margin.	[2]

Q 5)	a)	Draw a logic circuit involving dynamic hazards & explain the waveforms. [4]
	b)	Design five input CMOS NAND & NOR gates. Compare w.r.t.area, dissipation & delay. [4]
	c)	Why hazards are not so serious in synchronous machines? [2]
Q6)	a)	Design CMOS logic for $P = ABCDE + F + G + H$. Comment on area & propagation delay. [4]
	b)	Draw FSM diagram & write HDL code for tea/coffee vending machine. Assume suitable data. [4]
	c)	Design 4:1 mux using transmission gates. Compare with conventional method. [2]
Q 7)	a)	What are merits of differential circuits? Explore sense amplifier based circuit in detail. [4]
	b)	Compare at least three logic families in detail. [4]
	c)	Write note on techniques of low power design. [2]
Q8)	a)	What is merit of dynamic circuit? Explain with schematic. [4]
	b)	Explain in brief about materials involved in performance improvement. Give at least two examples. [4]
	c)	Write note on high speed design. [2]
		Give at least two examples. Write note on high speed design. [4]