Spatially-Dependent Reliable Shortest Path Problem

Vishal Kanna Anand, Andrew Constantinescu, Sugumar Prabhakaran Course Instructor: Prof. Jonathan Kelly 2022/04/21

Introduction & Motivation

- **Objective**: solve the spatially-dependent reliable shortest path problem (SD-RSPP)
 - RSPP is variation of shortest path problem where weights have probability distribution
 - o numerous approaches exist to solve RSPP (ex. genetic algorithm, lagrangian relaxation, monte-carlo simulation, etc.)

Motivation and applications:

- SD-RSPP is a better problem formulation for certain real-world applications
- o global route-planning for self-driving cars, Google Maps, network routing

Approaches used in our project:

- Mixed-Integer Programming (MIP) model
- Hierarchical Multi-criteria A* (SDRSP-HA*) algorithm

Literature Review

- Frank H (1969) Shortest paths in probabilistic graphs
 - Mirchandani PB (1976) Shortest distance and reliability of probabilistic networks
- Sivakumar RA, Batta R (1994) The variance-constrained shortest path problem.
 - Sen S, Pillai R, Joshi S, Rathi AK (2001) A mean-variance model for route guidance in advanced traveler information systems.
 - Lozano L, Medaglia AL (2013) On an exact method for the constrained shortest path problem.
- Chen A, Ji Z (2005) Path finding under uncertainty
 - Nie YM, Wu X (2009) Shortest path problem considering on-time arrival probability.
 - Ji Z, Kim YS, Chen A (2011) Multi-objective-reliable path finding in stochastic networks with correlated link costs:

Background and Notation

Spatially-Dependent Reliable Shortest Path (SD-RSP) Problem-

uncertainty of a link is dependent on the uncertainty of neighbouring links

Notation

- N: set of nodes, with $N = \{1, 2, \dots, n\}$
- A: set of links a_{ij} : link from node i to node j
- $T_{ij} = (t_{ij}, \sigma_{ij})$: normal distribution of travel-time for a_{ij}
- r, s: start and end nodes respectively
- α: User defined confidence level:
- ($\alpha > 0.5$: risk-averse, $\alpha = 0.5$: risk-neutral, $\alpha < 0.5$ risk-seeking)
- k: spatial dependency factor

	a_{12}	a_{13}	a_{14}	a_{23}	a_{35}	a_{45}	
a_{12}	[2	0	0	0	0	0]	
a_{13}	-1	1	0	0	0	0	
a_{14}	-1	-0.5	1	0	0	0	L
a_{23}	2	-1	-0.3	2	0	0	— Parlament Maria
a_{35}	0.3	1.5	-0.4	2	6	0	Iink travel-time variance: $(\sigma_{ij})^2 = 2$
a_{45}	$\lfloor -0.2$	-0.6	0.5	-0.4	-1.5	$1 \rfloor$	54.14.152. (O _{ij}) 2

Figure 1: Example Directed-Arc Network Graph, G = (N, A)

Problem Formulation

• The three main equations for the SD-RSPP formulation are:

Mean path travel-time (from node
$$\emph{r}$$
 to node \emph{s}):
$$t_u^{rs} = \sum_{m=1}^{\lambda} (t_{ij})^m \tag{1}$$

Standard deviation of path travel-time (
$$r$$
 to s):
$$\sigma_u^{rs} = \sqrt{\sum_{m=1}^{\lambda} (\sigma^m)^2 + \sum_{n=1}^{k} \sum_{m=1}^{\lambda-n} 2 \text{cov}(a^m, a^{m+n})}$$
 (2)

Figure 2: Inverse CDF (Φ^{-1}) vs. confidence (α)

Inverse CDF path travel-time (
$$r$$
 to s): $\Phi_{rs,u}^{-1}(\alpha)=t_u^{rs}+z_\alpha\sigma_u^{rs}$

 Note: the inverse CDF is non-additive and cannot be solved with dynamic programming:

$$(\Phi_{rs}^{-1}(\alpha) \neq \Phi_{rj}^{-1}(\alpha) + \Phi_{js}^{-1}(\alpha))$$

(3)

Figure 3: Inverse CDF is non-additive

Mixed Integer Programming (MIP) Model

Objective
$$\min_{x_{ij}} \Phi^{-1}(\alpha) = \min_{x_{ij}} (t_u + z_{\alpha} \sigma_u)$$
 (4)

$\min_{x_{ij}} \sum_{a_{ij} \in A} (t_{ij} \cdot x_{ij}) + z_{\alpha} \cdot \sqrt{\sum_{a_{ij} \in A} (\sigma_{a})^{2} \cdot x_{ij} + 2 \cdot \sum_{a_{ij} \in A} \sum_{b_{kl} \in A} (\sigma_{ab} \cdot x_{ij} \cdot x_{kl})} \quad \text{(4.a)}$

subject to: variance covariance

Decision
$$x_{ij} \in \{0,1\}, \quad \forall a_{ij} \in A$$
 (5)

Linear
$$\sum_{j \in SCS(i)} x_{ij} - \sum_{k \in PDS(i)} x_{ki} = 1, \quad \forall i = r$$
 (6)

$$\sum_{j \in SCS(i)} x_{ij} - \sum_{k \in PDS(i)} x_{ki} = 0, \quad \forall i \neq r; i \neq s$$
(7)

$$\sum_{j \in SCS(i)} x_{ij} - \sum_{k \in PDS(i)} x_{ki} = -1, \quad \forall i = s$$
(8)

```
# INITIALIZE GUROBI MIP MODEL
2 import qurobipy as qp
3 model = qp.Model("reliable shortest path")
24
        # DECISION VARIABLES
        x = model.addVars(A, vtype=qp.GRB.BINARY) # link-path incidence variables
        # additional variables to linearize objective function
        var = model.addVar(name='var')
        covariance = model.addVar(name='covariance')
        path var = model.addVar(name='path var')
        path std = model.addVar(name='path std')
33
        # CONSTRAINTS
34
        #enforce one-way direction of links from node i to node i for all links
35
        model.addConstrs(qp.quicksum(x[i.i] for i in G.successors(i))-
36
                        qp.quicksum(x[k,i] for k in G.predecessors(i)) == 1
37
                        for i in N if i == r)
38
        model.addConstrs(qp.quicksum(x[i,j] for j in G.successors(i))-
                        qp.quicksum(x[k,i] for k in G.predecessors(i)) == 0
39
40
                        for i in N if (i != r and i != s))
41
        model.addConstrs(gp.quicksum(x[i,j] for j in G.successors(i))-
42
                        qp.quicksum(x[k,i] for k in G.predecessors(i)) == -1
43
                        for i in N if i == s)
45
         # OBJECTIVE FUNCTION: path mean + z*sgrt(var + covar)
46
        z = norm.ppf(alpha) # inv. cdf of std norm. distr at alpha confidence
47
        path mean = qp.quicksum(t ij[a]*x[a] for a in A)
        var = qp.quicksum(cov matrix[idx[a],idx[a]]*x[a] for a in A)
49
        covariance = qp.quicksum(cov matrix[idx[a], idx[b]]*x[a]*x[b]
                            for a in A for b in A if a !=b)
52
        #linearize sort in objective function
53
        model.addConstr(path var == var + 2*covariance)
54
        model.addGenConstrPow(path var, path std, 0.5) # path std = sqrt(path var)
55
56
        model.setObjective(path mean+z*path std, qp.GRB.MINIMIZE)
                                                                    # obj. function
        model.optimize()
                                                                    # execute
```

SDRSP-HA*

Figure 4.1: Primal network.

Figure 4.2: Ground hierarchy H_g network for k=3.

Figure 4.3: Top hierarchy H_t network for k = 3.

Case Study

Figure 4.5: Primal network (G) used for algorithm experimentation.

	2	1	2	0	0	0	0	0	2	0	9	0	0	0	0	0	0	0	0	0	0
	1	0.1	2	0	0	0	0	0	2	0	9	0	0	0	0	0	0	0	0	0	0
	1	2	6	0	0	0	0	0	2	0	9	0	0	0	0	0	0	0	0	0	0
	0	0	0	0.5	0	0	0	0	2	0	9	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	2	0	0	0	2	0	9	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0.2	0	0	2	0	9	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	1	0	2	0	9	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0.1	2	0	9	0	0	0	0	0	0	0	0	0	0
	2	2	2	2	2	2	2	2	9	0	9	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	9	0	0	0	0	0	0	0	0	0	0
$G_{\Sigma} =$	9	9	9	9	9	9	9	9	9	9	2	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0.7	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.5	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.2	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.

SDRSP-HA* Algorithm Results:

Gurobi MIP Model Results:

Reliable Shortest Path	Probability of on-time expected arrival	Reliable Shortest Path	Probability of on-time expected arrival
$\hat{p}_v^{rs} = (1, 3, 5, 8, 10, 12, 14)$	$0 < \alpha < 0.374$	$\hat{p}_v^{rs} = (1, 3, 5, 8, 10, 12, 14)$	$0 < \alpha < 0.374$
$\hat{p}_u^{rs} = (1, 2, 6, 9, 11, 10, 12, 14)$	$0.374 \le \alpha \le \underline{0.780}$	$\hat{p}_u^{rs} = (1, 2, 6, 9, 11, 10, 12, 14)$	$0.374 \le \alpha \le \underline{0.850}$
$\hat{p}_w^{rs} = (1, 3, 7, 9, 11, 10, 12, 14)$	$\underline{0.780} \le \alpha \le 0.942$	$\hat{p}_w^{rs} = (1, 3, 7, 9, 11, 10, 12, 14)$	$0.850 \le \alpha \le 0.942$
$\hat{p}_x^{rs} = (1, 3, 7, 9, 11, 13, 14)$	$0.942 < \alpha < 1$	$\hat{p}_x^{rs} = (1, 3, 7, 9, 11, 13, 14)$	$0.942 < \alpha < 1$

Future Work

- How do these methods extend to large road networks?
- How does the spatial-influence factor k affect computational complexity?
- What if we had time-varying travel time distributions?

