

《信号与系统》复习课

陆超

清华大学电机系 2017年春季学期

课程内容

基础知识

信号与系统的 基本概念

线性时不变连 续时间系统的 时域分析

线性时不变离 散时间系统的 时域分析

连续信号 频域分析

连续周期信号的傅里叶级数

连续信号的傅 里叶变换

拉普拉斯变换

离散信号频域分析

离散周期信号的傅里叶级数

离散非周期信 号的离散时间 傅里叶变换

Z变换

重点内容!

综合应用 与设计

离散傅里叶变 换和快速傅里 叶变换

模拟和数字滤 波器设计

各部分内容

基本概念

- 典型信号
- 信号运算
- 系统分类

连续和离散系 统时域分析

- · 常微分方程和 差分方程的求 解
- 卷积

连续傅里叶和 拉氏变换

- 正交分解
- 周期信号的傅 里叶级数
- 傅里叶变换
- 拉普拉斯变换
- •相互关系
- 典型信号变换 和基本性质
- 误差分析

各部分内容

离散傅里叶和Z 变换

- 正交离散复 指数函数的 周期性
- 离散周期信 号的DFS
- 离散非周期 信号的DTFT
- Z变换
- •相互关系
- 基本性质
- 误差分析

拉普拉斯变换 和Z变换

- 相互关系
- •解时域方程
- 逆变换
- 系统函数与 频率响应特 性

DFT和FFT

- DFT
- 圆周时移和 圆周卷积
- FFT

模拟和数字滤 波器设计

- 模拟滤波器 设计
- 数字滤波器 设计

第1章 基本概念

f(t)

- 典型信号
 - 抽样信号
 - 冲激信号
 - 冲激偶信号
 - 单位冲激和冲激偶信号的性质
 - 三角与复指数信号

• 信号运算

一切变换都是相对于t 而言的! 最好按先翻缩再平移的顺序进行!

[例] 试画出f(4-2t)的波形

[解] 可有多种运算次序

- 系统分类
 - 线性系统和非线性系统
 - 均匀性和叠加性
 - 扩展意义上的线性系统
 - 时不变系统和时变系统
 - 因果系统和非因果系统

第2-3章 连续和离散系统时域分析

• 常微分方程和差分方程的求解

• 常微分方程和差分方程的求解

• 卷积

- 脉冲分量分解
- 图解法、列表法

$$r(t) = e(t) * h(t)$$
$$= \int_{-\infty}^{\infty} e(\tau)h(t - \tau) d\tau$$

$$r_d(n) = e_d(n) * h_d(n)$$

$$= \sum_{k=-\infty}^{\infty} e_d(k) h_d(n-k)$$

第4-6章 连续傅里叶和拉氏变换

- 正交分解和完备正交向量集
 - 正交分解与内积

$$c = \frac{\int_{t_1}^{t_2} \varphi_i(t) \varphi_j(t) dt}{\int_{t_1}^{t_2} \varphi_j^2(t) dt} = \frac{\langle \varphi_i(t), \varphi_j(t) \rangle}{\langle \varphi_j(t), \varphi_j(t) \rangle}$$

-三角函数集

 $1,\cos\omega_1 t,\sin\omega_1 t,\cos 2\omega_1 t,\sin 2\omega_1 t,...,\cos k\omega_1 t,\sin k\omega_1 t,...$

- 复指数函数集

...,
$$e^{-jk\omega_1t}$$
,..., $e^{-j2\omega_1t}$, $e^{-j\omega_1t}$, 1 , $e^{j\omega_1t}$, $e^{j2\omega_1t}$,..., $e^{jk\omega_1t}$,...

- 周期信号的傅里叶级数
 - 三角函数形式和复指数形式

$$F(k\omega_{1}) = \frac{1}{T_{1}} \int_{t_{0}}^{t_{0}+T_{1}} f(t) e^{-jk\omega_{1}t} dt$$

$$= \frac{1}{T_{1}} \int_{t_{0}}^{t_{0}+T_{1}} f(t) \cos k\omega_{1}t dt - j \frac{1}{T_{1}} \int_{t_{0}}^{t_{0}+T_{1}} f(t) \sin k\omega_{1}t dt$$

$$egin{align*} ig| F(k oldsymbol{\omega}_1) ig| &= rac{E au oldsymbol{\omega}_1}{2\pi} ig| \mathbf{Sa} igg(rac{k oldsymbol{\omega}_1 au}{2}igg) igg| igg(rac{E au oldsymbol{\omega}_1 au}{2\pi} igg) igg) igg(rac{E au oldsymbol{\omega}_1 au}{2\pi} igg) igg(rac{E au oldsymbol{$$

- 傅里叶变换
 - 周期信号到非周期信号: 幅值谱到密度谱

$$F(\omega) = \lim_{t_1 \to -\infty, t_2 \to \infty} \frac{2\pi F(k\omega_1)}{\omega_1} = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

• 傅里叶级数

• 傅里叶变换

$$F(k\omega_{1}) = \frac{1}{t_{2} - t_{1}} \int_{t_{1}}^{t_{2}} f(t) e^{-jk\omega_{1}t} dt \qquad F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

$$f(t) = \sum_{k=-\infty}^{\infty} F(k\omega_{1}) e^{jk\omega_{1}t} \qquad f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

$$f(t) = c_0 + \sum_{k=1}^{\infty} c_k \cos(k\omega_1 t + \varphi_k) \quad f(t) = \int_0^{\infty} \frac{|F(\omega)|}{\pi} d\omega \cos[\omega t + \phi(\omega)]$$
$$= \sum_{k=-\infty}^{\infty} F(k\omega_1) e^{jk\omega_1 t} \qquad = \int_{-\infty}^{\infty} \frac{F(\omega)}{2\pi} d\omega \cdot e^{j\omega t}$$

时域周期, 频域离散

时域非周期, 频域连续

• 延拓周期信号的傅里叶变换

$$F_p(\omega) = F(\omega) \Delta_p(\omega)$$

$$=F(\omega)\omega_{1}\sum_{k=-\infty}^{\infty}\delta(\omega-k\omega_{1})=\omega_{1}\sum_{k=-\infty}^{\infty}F(\omega)\big|_{\omega=k\omega_{1}}\delta(\omega-k\omega_{1})$$

$$\begin{cases} F(s) = L[f(t)] = \int_{-\infty}^{\infty} f(t) e^{-st} dt \\ f(t) = L^{-1}[f(t)] = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s) e^{st} ds \end{cases}$$

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty f(t) e^{-st} dt$$

$$F(\omega) = \mathcal{F}[f(t)] = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$
 $F_b(s) = \mathcal{L}_b[f(t)] = \int_{-\infty}^{\infty} f(t) e^{-st} dt$ 《信号与系统》,清华大学电机系陆超

F(s)的模|F(s)|在平面上的变化

$$F(\omega) = \frac{\alpha + j\omega}{(\alpha + j\omega)^2 + \omega_0^2}$$

$$F(s) = \frac{(\alpha + \sigma) + j\omega}{\left[(\alpha + \sigma) + j\omega\right]^2 + \omega_0^2}$$

第7-9章 离散傅里叶和Z变换

• 正交离散复指数函数的周期性

$$e^{jn(2m\pi\pm\theta)} = e^{\pm jn\theta}$$

• 完备正交离散函数集: 在离散区间 $n_0 \le n \le n_0$ +N-1内

$$\left\langle e^{j\theta_{1}k_{1}n}, e^{j\theta_{1}k_{2}n} \right\rangle = \sum_{n=n_{0}}^{n_{0}+N_{1}-1} e^{j\theta_{1}(k_{1}-k_{2})n}$$

$$= \begin{cases} N_{1} & k_{1} - k_{2} = mN_{1} \\ 0 & k_{1} - k_{2} \neq mN_{1} \end{cases}$$

• 离散周期信号的DFS

$$X_{d}(k) = \text{DFS}[x_{d}(n)] = \sum_{n=0}^{N_{1}-1} x_{d}(n) e^{-j\theta_{1}kn}$$

$$x_{d}(n) = \text{IDFS}[X_{d}(k)] = \frac{1}{N_{1}} \sum_{k=0}^{N_{1}-1} X_{d}(k) e^{j\theta_{1}kn}$$

连续周期信号的 傅里叶级数

连续周期信号的 傅里叶变换

离散周期信号的 傅里叶级数_

冲激脉冲序列的 傅里叶变换

冲激脉冲抽样信号的 傅里叶级数

冲激脉冲抽样信号的 傅里叶变换

• 离散非周期信号的DTFT

$$X_d(e^{j\theta}) = \text{DTFT}[x_d(n)] = \sum_{n=-\infty}^{\infty} x_d(n) e^{-j\theta n}$$

$$x_d(n) = \text{IDTFT}[X_d(k)] = \frac{1}{2\pi} \int_{2\pi} X_d(e^{j\theta}) e^{j\theta n} d\theta$$

$$X_d(e^{j\theta}) = \sum_{n=-\infty}^{\infty} x_d(n)e^{-j\theta n} = \sum_{n=-2}^{2} e^{-j\theta n} = 1 + 2\cos\theta + 2\cos2\theta$$

• DTFT和连续非周期信号傅里叶变换的关系

四种形式信号傅立叶分析的比较

时 域域 散期 域域

Z变换

$$X_{db}(\mathbf{e}^{j\theta}) = \mathbf{DTFT} \left[x_d(n) r^{-n} \right] = \sum_{n=-\infty}^{\infty} x_d(n) r^{-n} \mathbf{e}^{-j\theta n}$$
$$x_d(n) r^{-n} = \mathbf{IDTFT} \left[X_{db}(\mathbf{e}^{j\theta}) \right] = \frac{1}{2\pi} \int_{2\pi} X_{db}(\mathbf{e}^{j\theta}) \mathbf{e}^{j\theta n} d\theta$$

DTFT
$$z = e^{j\theta}$$
 $z = e^{j\theta}$ $z = re^{j\theta}$ $z = re^{j\theta}$

• Z变换的收敛域

• Z变换和DTFT

• 典型信号变换和基本性质

连续傅 里叶变 换

对称特性

时域微分特性

频域微分特性

时域积分特性

拉普拉 斯变换

时域微分特性

频域微分特性

时域积分特性

初值定理

终值定理

DTFT

线性加权特性

.

Z变换

线性加权特性

指数加权特性

初值定理

终值定理

相同部分

线性特性

尺度特性

奇偶虚实特性

时移特性

频移特性

时域卷积特性

频域卷积特性

拉普拉斯变换和Z变换

利用前面关系计算比较复杂,对于典型形式的连续信号,可采用变量替换的方法。

有连续因果信号: $x_a(t) = \sum_{i=1}^{M} A_i e^{p_i t} u_a(t)$ 其拉普拉斯变换: $X_a(s) = \mathcal{L}[x_a(t)] = \sum_{i=1}^{M} \frac{A_i}{s - p_i}$ 以 T_s 间隔对 $x_a(t)$ 抽样:

$$x_{d}(n) = x_{a}(nT_{s})$$

$$= \sum_{i=1}^{M} A_{i} e^{p_{i}nT_{s}} u_{a}(nT_{s})$$

$$= \sum_{i=1}^{M} A_{i}(e^{p_{i}T_{s}})^{n} u_{d}(n)$$

$$X_{d}(z) = \mathcal{Z}[x_{d}(n)]$$

$$= \sum_{i=1}^{M} \frac{A_{i}z}{z - e^{p_{i}T_{s}}}$$

S平面和Z平面的映射关系

s 平面: $s = \sigma + j\omega$ 映射关系: $s = (\ln z)/T_s$, $\sigma = (\ln r)/T_s$ $\omega = \theta/T_s$	z 平面: $z = re^{j\theta} (r > 0)$ 映射关系: $z = e^{sT_s}$, $r = e^{\sigma T_s}$, $\theta = \omega T_s$
虚轴, $\sigma = 0$, $s = j\omega$	单位圆, $r=1$, $z=e^{j\theta}$
左半平面, $\sigma < 0$	单位圆内, $r < 1$
右半平面, $\sigma > 0$	单位圆外, $r>1$
平行于虚轴的直线, $\sigma = \sigma_0$	圆, $r=r_0$
实轴, $\omega = 0$, $s = \sigma$	正实轴, θ = 0 , $z=r$
平行于实轴的直线, $\omega = \omega_0$	从原点出发的直线, $\theta = \theta_0$ 。 此为非单值映射, s 平面上的不同直线 $\omega = \omega_0 \pm 2m\pi/T_s$ 均映射为 z 平面上的同一直线 $\theta = \theta_0 \pm 2m\pi = \theta_0$

- 逆变换
 - -部分分式分解
 - 幂级数展开(Z变换)
- 解时域方程
 - 可分解为零状态和零输入响应
- 单位冲激或抽样响应与系统函数
- 零极点分布
- 频率响应特性

第10章 DFT和FFT

• DFT

$$X_{d}(k) = \text{DFT}[x_{d}(n)] = \sum_{n=0}^{N-1} x_{d}(n) e^{-j\frac{2\pi}{N}kn}$$

$$W_{N} = e^{-j\frac{2\pi}{N}} = \sum_{n=0}^{N-1} x_{d}(n)W_{N}^{kn} \qquad k = 0,1,2,\cdots N-1$$

$$x_{d}(n) = \text{IDFT}[X_{d}(k)] = \frac{1}{N} \sum_{k=0}^{N-1} X_{d}(k)e^{j\frac{2\pi}{N}kn}$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} X_{d}(k)W_{N}^{-kn} \quad k = 0,1,2,\cdots N-1$$

• 圆周时移

$$DFT[x_d((n-m))_N G_{dN}(n)] = W_N^{mk} X_d(k)$$

- 周期延拓
- 线时移
- 取主值

• 圆周卷积

$$x_d(n) \otimes h_d(n) = \sum_{m=0}^{N-1} x_d(m) h_d((n-m))_N G_{dN}(n)$$

- 其中一个序列反褶
- 把反褶后的序列周期延拓
- $= \sum_{m=0}^{N-1} h_d(m) x_d((n-m))_N G_{dN}(n)$
- 把反褶和延拓后的序列平移
- 两序列相乘、求和
- 取不同移位值,相乘、求和
- 圆周卷积和线卷积

• DFT: 利用了旋转因子的周期性和对称性

• 误差分析

- 混叠误差:
 - 不满足抽样定理
- 泄漏误差:
 - 非完整周期采样
 - 信号截断(加窗)

• 本课程所涉及各种频域变换的关系

第11章 模拟和数字滤波器设计

- 模拟滤波器设计
 - 巴特沃兹滤波器的设计: 由容差指标确定其阶 数和中心频率

- 数字滤波器:
 - 无限冲激响应滤波器IIR
 - 有限冲激响应滤波器FIR

- 模拟数字滤波器变换方法
 - 冲激响应不变法
 - 双线性变换

非常感谢同学们一个学期来的 支持和配合!

预祝大家考试顺利!