Discrete Mathematics(H)

Southern University of Science and Technology Mengxuan Wu 12212006

Assignment 2

Mengxuan Wu
Q.1
(a)
True.
Proof. Assume there exists two sets A_1 and A_2 that $A_1 = A - B$ and $A_2 = A \cap B$. Therefore, we have $A_2 \neq \emptyset$, $A_1 \cap A_2 = \emptyset$, and $A_1 \cup A_2 = A$. Since $A_2 \neq \emptyset$, there exists an element $x \in A_2$. Since $A_2 = A \cap B$, we have $x \in A$. Also, since $A_1 \cap A_2 = \emptyset$, we have $x \notin A_1$. Therefore, we can find an element $x \in A$ that $x \notin A_1$. Hence, we can infer that A_1 is a true subset of A . Equivalently, we can say that $(A - B) \subset A$.
(b)
True.
Proof. According to the commutative law, the statement on the right side of the implication $A \cap B = B \cap A$ is a tautology. Therefore, the whole statement is always true. \square
(c)
False.
Disproof. For the sets A and B that $A=B=\{1,2\},$ we have $A\subseteq B.$ However, $ A\cup B =2\not\geq 2 A =4.$

Q.2

The "Barber's paradox" can be stated as:

$$\exists x (Barber(x) \rightarrow \forall y (\neg Shaves(y,y) \leftrightarrow Shaves(x,y)))$$

When we let y be the barber himself, we have:

$$\exists x (Barber(x) \rightarrow \neg Shaves(x, x) \leftrightarrow Shaves(x, x))$$

Since the statement on the right side of the implication is a contradiction, the whole statement can only be true when the statement on the left side of the implication is false, which means there does not exist a barber.

Q.3

(1)

(a)

Since there is no element in an empty set, we cannot find any a + b pair. Therefore, the result of pairwise addition is still an empty set.

$$\mathbb{N} \oplus \emptyset = \emptyset$$

(b)

$$\mathbb{N} \oplus \mathbb{N} = \{0, 1, 2, \cdots\} = \mathbb{N}$$

(c)

$$\mathbb{N}^+ \oplus \mathbb{N}^+ = \{2, 3, 4, \cdots\} = \mathbb{N} \setminus \{0, 1\}$$

(d)

$$\mathbb{N}^+ \otimes \mathbb{N}^+ = \{1, 2, 3, \cdots\} = \mathbb{N}^+$$

(2)

$$\{x|x \text{ is positive multiple of } 4\} = E \otimes E$$

 $\{x|x \text{ is positive multiple of } 8\} = E \otimes E \otimes E$

(3)

$$\{z^2\} = (S \oplus S) \cap S$$

Q.4

(1)

Proof.

$$(B - A) \cup (C - A) = (B \cap \overline{A}) \cup (C \cap \overline{A})$$
$$= (B \cup C) \cap \overline{A}$$
$$= (B \cup C) - A$$

(2)

Proof.

$$(A \cap B) \cap \overline{(B \cap C)} \cap (A \cap C) = A \cap (B \cap C) \cap \overline{(B \cap C)}$$
$$= A \cap \emptyset$$
$$= \emptyset$$

Q.5

(a)

$$A = \{x \mid 0 \le x \le 1 \text{ and } x \in \mathbb{R}\}$$

$$B = \{x \mid 1 \le x \le 2 \text{ and } x \in \mathbb{R}\}$$

Therefore, $A \cap B = \{1\}$, which is finite.

(b)

$$A = \{x \mid 0 \le x \le 1 \text{ and } x \in \mathbb{R}\} \cup \mathbb{Z}$$
$$B = \{x \mid 2 \le x \le 3 \text{ and } x \in \mathbb{R}\} \cup \mathbb{Z}$$

Therefore, $A \cap B = \mathbb{Z}$, which is countably infinite.

(c)

$$A = B = \mathbb{R}$$

Therefore, $A \cap B = \mathbb{R}$, which is uncountable.

We can find that

$$A \oplus B = (A \cup B) - (A \cap B)$$

(a)

$$A = \{x \mid 0 < x \le 1 \text{ and } x \in \mathbb{R}\}$$

$$B = \{x \mid 0 \le x < 1 \text{ and } x \in \mathbb{R}\}$$

Therefore, $A \oplus B = \{0, 1\}$, which is finite.

(b)

$$A = \{x \mid 0 \le x \le 1 \text{ and } x \in \mathbb{R}\} \cup \mathbb{Z}$$
$$B = \{x \mid 0 \le x \le 1 \text{ and } x \in \mathbb{R}\} \cup \mathbb{Z}^+$$

Therefore, $A \oplus B = \{0, -1, -2, \dots\}$, which is countably infinite.

(c)

$$A = \{x \mid x \ge 0 \text{ and } x \in \mathbb{R}\}$$

$$B = \{x \mid x < 0 \text{ and } x \in \mathbb{R}\}$$

Therefore, $A \oplus B = \mathbb{R}$, which is uncountable.

Q.7

(a)

Type ii.

The function is not a one-to-one function, since f(-1) = f(1) = 2. The function is also not an onto function, since there is no $x \in \mathbb{Z}$ that f(x) = -1.

(b)

Type i.

It is not a function since f(3) is not defined.

(c)

Type v.

The function is a one-to-one function, since $f(x) = f(y) \leftrightarrow 8 - 2x = 8 - 2y \leftrightarrow x = y$. The function is also an onto function, since for any $y \in \mathbb{R}$, we can find an $x = \frac{8-y}{2} \in \mathbb{R}$ that $f(x) = 8 - 2x = 8 - 2 \cdot \frac{8-y}{2} = y$.

(d)

Type iii.

The function is not a one-to-one function, since f(1) = f(1.5) = 2. The function is an onto function, since for any $y \in \mathbb{Z}$, we can find an $x = y - 1 \in \mathbb{R}$ that $f(x) = \lfloor x + 1 \rfloor = |y| = y$.

(e)

Type i.

It is not a function since f(0.5) is not defined.

(f)

Type iv.

The function is a one-to-one function, since $f(x) = f(y) \leftrightarrow x + 1 = y + 1 \leftrightarrow x = y$. The function is not an onto function, since there is no $x \in \mathbb{Z}^+$ that f(x) = 1.

Q.8

Proof by contradiction.

It's obvious that the *identity function* 1_A is a one-to-one and onto function.

Assume f is not a one-to-one function, then there exists $x_1, x_2 \in A$ that $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. Therefore, we have $g(f(x_1)) = g(f(x_2))$, which means $g \circ f$ is not a one-to-one function. This contradicts the fact that 1_A is a one-to-one function.

Assume g is not an onto function, then there exists $y \in A$ that for any x, $g(x) \neq y$. Therefore, we have $g(f(x)) \neq y$, which means $g \circ f$ is not an onto function. This contradicts the fact that 1_A is an onto function.

Q.9

(a)

False.

Disproof.

f does not must be a one-to-one function.

For example, let f(x) be defined as $1 \mapsto 1, 2 \mapsto 1, 3 \mapsto 1$. Then f is not a one-to-one function.

We assume g(x) is defined as $1 \mapsto 1$, which is a one-to-one function, and $A = \{1\}$, $B = \{1, 2, 3\}$, $C = \{1\}$. Then $f \circ g$ is defined as $1 \mapsto 1$, which is also a one-to-one function.

(b)

True.

Proof by contradiction.

Assume g is not a one-to-one function, then there exists $x_1, x_2 \in A$ that $x_1 \neq x_2$ and $g(x_1) = g(x_2)$.

Therefore, we have $f(g(x_1)) = f(g(x_2))$, which means $f \circ g$ is not a one-to-one function. This contradicts the fact that $f \circ g$ is a one-to-one function.

(c)

True.

Proof by contradiction.

This proof is the same as the proof in (b).

 (\mathbf{d})

True.

Proof by contradiction.

Assume f is not an onto function, then there exists $y \in C$ that for any $x \in B$, $f(x) \neq y$. Therefore, for any $x \in A$, we have $f(g(x)) \neq y$, which means $f \circ g$ is not an onto function.

(e)

False.

Disproof.

g does not have to be an onto function.

For example, let g(x) be defined as $1 \mapsto 1, 2 \mapsto 1, 3 \mapsto 1$ with $A = \{1, 2, 3\}, B = \{1, 2\}$. Then g is not an onto function.

We assume f(x) is defined as $1 \mapsto 1, 2 \mapsto 1$ and $C = \{1\}$. Then $f \circ g$ is defined as $1 \mapsto 1, 2 \mapsto 1, 3 \mapsto 1$ with $A = \{1, 2, 3\}, C = \{1\}$, which is an onto function. \square

Q.10

Proof by cases.

Case 1: $c \le x < c + \frac{1}{3}$ for some $c \in \mathbb{Z}$.

$$LHS = \lfloor 3x \rfloor$$

$$= 3c$$

$$RHS = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$$

$$= c + c + c$$

$$= 3c$$

Case 2: $c + \frac{1}{3} \le x < c + \frac{2}{3}$ for some $c \in \mathbb{Z}$.

$$LHS = \lfloor 3x \rfloor$$

$$= 3c + 1$$

$$RHS = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$$

$$= c + c + (c + 1)$$

$$= 3c + 1$$

Case 3: $c + \frac{2}{3} \le x < c + 1$ for some $c \in \mathbb{Z}$.

$$LHS = \lfloor 3x \rfloor$$

$$= 3c + 2$$

$$RHS = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$$

$$= c + (c+1) + (c+1)$$

$$= 3c + 2$$

Q.11

$$\sum_{k=1}^{n} [k^3 - (k-1)^3] = n^3 - (n-1)^3 + (n-1)^3 - (n-2)^3 + \dots + 2^3 - 1^3 + 1^3 - 0^3$$

$$= n^3 - 0^3$$

$$= n^3$$

$$\sum_{k=1}^{n} [k^3 - (k-1)^3] = \sum_{k=1}^{n} [3k^2 - 3k + 1]$$

$$= 3\sum_{k=1}^{n} k^2 - 3\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1$$

$$= 3\sum_{k=1}^{n} k^2 - 3 \cdot \frac{n(n+1)}{2} + n$$

Therefore, we have

$$n^{3} = 3\sum_{k=1}^{n} k^{2} - 3 \cdot \frac{n(n+1)}{2} + n$$

$$\sum_{k=1}^{n} k^{2} = \frac{n(n+1)}{2} - \frac{n}{3} + \frac{n^{3}}{3}$$

$$= \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{k=1}^{n} [k^4 - (k-1)^4] = n^4 - (n-1)^4 + (n-1)^4 - (n-2)^4 + \dots + 2^4 - 1^4 + 1^4 - 0^4$$

$$= n^4 - 0^4$$

$$= n^4$$

$$\sum_{k=1}^{n} [k^4 - (k-1)^4] = \sum_{k=1}^{n} [4k^3 - 6k^2 + 4k - 1]$$

$$= 4\sum_{k=1}^{n} k^3 - 6\sum_{k=1}^{n} k^2 + 4\sum_{k=1}^{n} k - \sum_{k=1}^{n} 1$$

$$= 4\sum_{k=1}^{n} k^3 - 6 \cdot \frac{n(n+1)(2n+1)}{6} + 4 \cdot \frac{n(n+1)}{2} - n$$

Therefore, we have

$$n^{4} = 4\sum_{k=1}^{n} k^{3} - 6 \cdot \frac{n(n+1)(2n+1)}{6} + 4 \cdot \frac{n(n+1)}{2} - n$$

$$\sum_{k=1}^{n} k^{3} = \frac{n^{4} + n(n+1)(2n+1) - 2n(n+1) + n}{4}$$

$$= \frac{n^{2}(n+1)^{2}}{4}$$

Q.13

$$\sum_{k=0}^{m} \lfloor \sqrt{k} \rfloor = \lfloor \sqrt{0} \rfloor + \lfloor \sqrt{1} \rfloor + \lfloor \sqrt{2} \rfloor + \dots + \lfloor \sqrt{m} \rfloor$$
$$= (1^{2} - 0^{2}) \times 0 + (2^{2} - 1^{2}) \times 1 + (3^{2} - 2^{2}) \times 2 + \dots$$

Let $n = \lfloor \sqrt{m} \rfloor$, we have

$$\begin{split} \sum_{k=0}^{m} \lfloor \sqrt{k} \rfloor &= (1^2 - 0^2) \times 0 + (2^2 - 1^2) \times 1 + \dots + (n^2 - (n-1)^2) \cdot (n-1) \\ &+ (m - n^2 + 1) \cdot n \\ &= \sum_{k=0}^{n-1} [(k+1)^2 - k^2] \cdot k + (m - n^2 + 1) \cdot n \\ &= \sum_{k=0}^{n-1} [2k^2 + k] + (m - n^2 + 1) \cdot n \\ &= \frac{2n(n-1)(2n-1)}{6} + \frac{n(n-1)}{2} + (m - n^2 + 1) \cdot n \\ &= \frac{n(n-1)(4n+1)}{6} + (m - n^2 + 1) \cdot n \\ &= -\frac{n(n-1)(2n+5)}{6} + mn \\ &= -\frac{\lfloor \sqrt{m} \rfloor (\lfloor \sqrt{m} \rfloor - 1)(2\lfloor \sqrt{m} \rfloor + 5)}{6} + m \lfloor \sqrt{m} \rfloor \end{split}$$

Q.14

Proof.

Let A be a countable set and B be a subset of A, denoted by $B \subseteq A$.

Case 1: B is finite:

Then B is obviously countable.

Case 2: B is infinite:

Since B is a subset of A, the mapping f(x) = x from B to A is a one-to-one function. Hence, $|B| \leq |A| = |\mathbb{N}^+|$.

Let $A = \{a_1, a_2, a_3, \dots\}$. For every $a_n \in B$, assume a_n is the *m*th element in B, then we can define a mapping $g(m) = a_n$ from \mathbb{N}^+ to B, which is also a one-to-one function. Hence, $|B| \geq |\mathbb{N}^+|$.

Therefore, we have $|B| = |\mathbb{N}^+|$, which means B is countable.

Q.15

Proof.

If the sets are finite, then it is obviously true.

If the sets are infinite, since |A| = |B| and |B| = |C|, we can find a one-to-one function f_1 from A to B and a one-to-one function f_2 from B to C. Therefore, the mapping $f_2 \circ f_1$ from A to C is also a one-to-one function.

Also, we can find a one-to-one function g_1 from B to A and a one-to-one function g_2 from C to B. Therefore, the mapping $g_1 \circ g_2$ from C to A is also a one-to-one function.

Hence, we have |A| = |C|.

Proof.

If the sets are finite, then it is obviously true.

If the sets are infinite, since $|A| \leq |B|$ and $|B| \leq |C|$, we can find a one-to-one function f_1 from A to B and a one-to-one function f_2 from B to C. Therefore, the mapping $f_2 \circ f_1$ from A to C is also a one-to-one function.

Hence, we have $|A| \leq |C|$.

Q.17

True.

Proof by contradiction.

Let us assume A-B is a countable set. Let $A-B=\{a_1,a_2,a_3,\cdots\}$ and $B=\{b_1,b_2,b_3,\cdots\}$, we can find such mapping f:

$$f(a_n) = n$$
$$f(b_n) = -n$$

Since $(A - B) \cup B = A$, f is a mapping from A to $\mathbb{Z} \setminus \{0\}$. We can infer that $|A| \leq |\mathbb{Z}|$. Therefore, A is a countable set, which contradicts the fact that A is an uncountable set.

Q.18

Proof.

Let $A = \{x \mid x \in [0, 1] \text{ and } x \in \mathbb{R}\} \text{ and } B = \{x \mid x \in (0, 1) \text{ and } x \in \mathbb{R}\}.$

Mapping f(x) = x from B to A is a one-to-one function. Therefore, $|B| \leq |A|$.

Mapping $g(x) = \frac{x}{2} + \frac{1}{4}$ from A to B is a one-to-one function. Therefore, $|A| \leq |B|$.

Using the Schröder-Bernstein theorem, we have |A| = |B|. Equivalently, we can say that [0,1] and (0,1) have the same cardinality.

Q.19

Proof.

First, we show that $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = O(x^n)$.

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$\leq |a_n| x^n + |a_{n-1}| x^{n-1} + \dots + |a_1| x + |a_0|$$

$$\leq (|a_n| + |a_{n-1}| + \dots + |a_1| + |a_0|) x^n$$

$$= c \cdot x^n$$

We can conclude that:

$$|f(x)| \le c \cdot x^n$$

Then, we show that $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \Omega(x^n)$.

$$|f(x)| = |a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0|$$

$$= |a_n + a_{n-1} x^{-1} + \dots + a_1 x^{1-n} + a_0 x^{-n}| \cdot x^n$$

$$\ge ||a_n| - |a_{n-1} x^{-1} + \dots + a_1 x^{1-n} + a_0 x^{-n}|| \cdot x^n$$

 $|a_{n-1}x^{-1} + \cdots + a_1x^{1-n} + a_0x^{-n}|$ approaches 0 as x approaches infinity. Since $a_n \neq 0$, we can find a c that $0 < c < |a_n|$ and $|a_n| - |a_{n-1}x^{-1} + \cdots + a_1x^{1-n} + a_0x^{-n}| \ge c$ when x is large enough. Therefore, we have:

$$|f(x)| \ge c \cdot x^n$$

Therefore, we have $f(x) = \Theta(x^n)$.

Q.20

Proof.

First, we show that $n \log n = O(\log n!)$.

$$2\log n! = 2(\log 1 + \log 2 + \dots + \log n)$$

$$= (\log 1 + \log n) + [\log 2 + \log(n - 1)] + \dots + (\log n + \log 1)$$

$$= \sum_{k=1}^{n} \log[k \cdot (n + 1 - k)]$$

$$= \sum_{k=\frac{n-1}{2}}^{\frac{1-n}{2}} \log[(\frac{n+1}{2} - k) \cdot (\frac{n+1}{2} + k)]$$

$$= \sum_{k=\frac{n-1}{2}}^{\frac{1-n}{2}} \log[(\frac{n+1}{2})^2 - k^2]$$

It's obvious that the term $(\frac{n+1}{2})^2 - k^2$ reach its maximum when k = 0, and reach its minimum when $k = \frac{n-1}{2}$ or $k = \frac{1-n}{2}$. Therefore, we have:

$$2\log n! = \sum_{k=\frac{n-1}{2}}^{\frac{1-n}{2}} \log[(\frac{n+1}{2})^2 - k^2]$$

$$\geq \sum_{k=\frac{n-1}{2}}^{\frac{1-n}{2}} \log[(\frac{n+1}{2})^2 - (\frac{n-1}{2})^2]$$

$$= \sum_{k=\frac{n-1}{2}}^{\frac{1-n}{2}} \log n$$

$$= n \log n$$

We can conclude that:

$$n \log n \le 2 \log n!$$

Then, we show that $n \log n = \Omega(\log n!)$.

$$n^n \ge n!$$

 $\log n^n \ge \log n!$
 $n \log n \ge \log n!$

Since $\log n! \le n \log n \le 2 \log n!$, we have $n \log n = \Theta(\log n!)$.

Q.21

(1)

Proof.

$$(\sqrt{2})^{\log_2 n} = 2^{\frac{1}{2}\log_2 n}$$

$$= 2^{\log_2 \sqrt{n}}$$

$$= \sqrt{n}$$

$$= O(\sqrt{n})$$

(2)

$$(\log n)^2$$
, $2^{\sqrt{\log_2 n}}$, $n(\log n)^{1001}$, $n^{1.0001}$, $(1.0001)^n$, n^n

Q.22

(1)

$$f(n) = O(g(n))$$

(2)

$$f(n) = \Omega(g(n))$$

(3)

$$f(n) = \Omega(g(n))$$

(4)

$$f(n) = O(g(n))$$

(5)

$$f(n) = \Theta(g(n))$$

(6)

$$f(n) = O(g(n))$$

(7)

$$f(n) = \Omega(g(n))$$

Q.23

(1)

True.

Proof.

Assume $T_1(n) \leq c_1 \cdot f(n)$ for $n \geq n_1$ and $T_2(n) \leq c_2 \cdot f(n)$ for $n \geq n_2$. Then we have $T_1(n) + T_2(n) \leq (c_1 + c_2) \cdot f(n)$ for $n \geq \max(n_1, n_2)$. Therefore, we have $T_1(n) + T_2(n) = O(f(n))$.

(2)

False.

Disproof.

Let $f(n) = n^2$, $T_1(n) = n^2$ and $T_2(n) = n$. Then we have $\frac{T_1(n)}{T_2(n)} = n$, which is not in O(1).

(3)

False.

Disproof.

Let
$$f(n) = n^2$$
, $T_1(n) = n^2$ and $T_2(n) = n$. Then $T_1(n)$ is not in $O(T_2(n))$.

A, C, and E.

Proof.

Let the 3SAT problem be L_0 .

Since the 3SAT problem is NP-complete, we can infer that for every L in NP, there exists a polynomial-time reduction f from L to L_0 . Equivalently, we have $L \leq_p L_0$ for every L in NP. Since L_0 is solvable in $O(n^8)$, we can infer that every L in NP is solvable in polynomial time, which means NP = P. Hence, A, C, and E are true.

Since the transformation function in f is in polynomial time but not necessarily in $O(n^8)$ time, we can't say that every L in NP is solvable in $O(n^8)$ time. Hence, B is false.

By limiting the input of the 3SAT problem, we can create another NP-complete problem L_1 that is solvable in $O(n^7)$ time. It's obvious the transformation function is in O(1) time. Therefore, we can infer that L_1 is solvable in $O(n^7)$ time, which is faster than $O(n^8)$ time. Hence, D is false.