图神经网络微地震定位

PB17071437 周俊伟

指导老师: 伍新明 教授

微地震定位方法

传统方法的缺点:

- 依赖人工拾取初至
- 依赖速度模型
- 计算量大

基于卷积神经网络方法的缺点:

● 没有利用检波器的位置信息

基于图神经网络的方法

图神经网络

图

- 结点集
- 边集
- 结点特征
- 结点标签
- 边标签, 图标签……
- ① 基于谱的图卷积网络
- ② 基于空间的图卷积网络
- ③ 图注意力网络

图神经网络 (KipFTN, Welling M. 2017)

图回归问题

结点特征:波形+检波器位置

定位网络

特征构造网络

采样聚合图神经网络 (GraphSAGE)

采样聚合图神经网络 GraphSAGE (Chiang W L et. al, 2019)

预测网络

最大值池化 Max Pooling

损失函数 预测值 标签值

数据集

- 2000 个地震
- 379 个检波器,与邻近 25 个检波器相连
- 1000 个数据点

● 2000 个图,每个图 379 个结点、 9475 条

● 划分训练集、验证集、测试集

震源、检波器分布图

结果

消融实验

模型 (m)	总误差 (m)	X 方向误差 (m)	Y 方向误差 (m)	水平误差 (m)	Z 方向误差 (m)
原模型	105.30	32.17	27.92	47.86	85.97
-LSTM	135.18	42.56	37.04	62.22	108.56
-Wave_Norm	148.12	46.37	42.87	70.57	118.23
-xyz_Copy	127.03	35.12	37.49	57.33	102.94
-Feat_MLP	123.34	34.03	33.11	52.89	101.71
-GAP	120.84	31.30	35.64	52.78	100.12
Weighted Loss	141.99	44.05	49.94	74.24	108.27

地理信息有效性分析

结论

- ① 提出基于图神经网络的定位方法,在合成数据集上的平均误差为 105.30m。
- ② 消融实验验证了各组件的有效性。
- ③ 该方法不依赖初至拾取和速度模型,计算效率高。