Lineare Algebra 1 – WS 2024/25

Übungsblatt 3-13.11.2024

Aufgabe 1

Untersuchen Sie, ob die folgenden Vektoren in \mathbb{R}^d eine Basis bilden:

(a)
$$d=2, \mathbf{v}_1 = \begin{pmatrix} 1\\1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1\\-1 \end{pmatrix},$$

(b)
$$d = 3, \mathbf{v}_1 = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix},$$

(c)
$$d = 3, \mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ 13 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 0 \\ 2 \\ -3 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 0 \\ 0 \\ -5 \end{pmatrix},$$

(d)
$$d = 3, \mathbf{v}_1 = \begin{pmatrix} 4 \\ 6 \\ 8 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}, \mathbf{v}_4 = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}.$$

Aufgabe 2

Wir betrachten die Gerade $g = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \, | \, 3x + 4y = 5 \right\}$ im \mathbb{R}^2 . Zeigen Sie, dass $\|\overrightarrow{OP}\| \ge 1$ für jeden

Punkt $P \in g$ gilt. Bestimmen Sie einen Punkt $Q \in g$ so, dass $\|\overrightarrow{OQ}\| = 1$ (dabei ist natürlich $O = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$).

Aufgabe 3

- (a) Es seien $a, b, c \in \mathbb{R}$ mit $(a,b) \neq (0,0)$, und $g = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid ax + by = c \right\}$ die entsprechende Gerade in \mathbb{R}^2 . Beweisen Sie, dass der Vektor $\mathbf{n} = \begin{pmatrix} a \\ b \end{pmatrix}$ orthogonal zu g ist.
- (b) Zeigen Sie: Sind $a, b, c, a', b', c' \in \mathbb{R}$ mit $(a, b) \neq (0, 0)$ und $(a', b') \neq (0, 0)$, so beschreiben die zwei Gleichungen

$$ax + by = c$$
 und $a'x + b'y = c'$

genau dann die gleiche Gerade in \mathbb{R}^2 , wenn es ein $\mu \in \mathbb{R} \setminus \{0\}$ gibt, so dass

$$(a',b',c') = \mu \cdot (a,b,c)$$

gilt.

Aufgabe 4

Es seien \mathbf{a}, \mathbf{b} zwei linear unabhängige Vektoren in \mathbb{R}^d mit $d \in \{2, 3\}$ und $\mathbf{w} = \|\mathbf{b}\|\mathbf{a} + \|\mathbf{a}\|\mathbf{b}$. Zeigen Sie mit Hilfe des inneren Produkts, dass \mathbf{w} den Winkel zwischen \mathbf{a} und \mathbf{b} halbiert.

Aufgabe 5

Es seien

$$g_1 = \left\{ \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} : \lambda \in \mathbb{R} \right\}, \qquad g_2 = \left\{ \begin{pmatrix} -5 \\ 0 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 5 \\ -4 \end{pmatrix} : \lambda \in \mathbb{R} \right\}.$$

- (a) Bestimmen Sie einen Vektor \mathbf{n} , der normal auf g_1 und g_2 steht.
- (b) Bestimmen Sie den Abstand zwischen den beiden Geraden g_1 und g_2 , d.h., bestimmen Sie

$$\min\{\|\overrightarrow{PQ}\|: P \in g_1, Q \in g_2\}.$$

Aufgabe 6

(Satz 2.5.b der VO bzw. Satz 3.5b im Kappel–Skriptum) Es sei (\mathcal{P}, V) ein affiner Raum der Dimension 3. Weiters seien $P \in \mathcal{P}$ und V_2 ein zweidimensionaler reeller Vektorraum von Vektoren in V. Beweisen Sie, dass es genau eine Ebene E mit $P \in E$ und $V_E = V_2$ gibt, nämlich

$$E = \{X \in \mathcal{P} \,|\, \overrightarrow{PX} \in V_2\}.$$