## 4 Fuzzy riadenie

4.1 Fuzzy riadenie všeobecného typu

## Výroba cementu



## Výroba cementu



### Riadenie cementárne







## Problémy pri riadení

- nedostatočné teoretické znalosti dejov technol. procesu
- zle merateľné veličiny, veľké časové konštanty, veľké dopravné oneskorenie
- neexistencia exaktného matematického modelu
- z týchto dôvodov sa riadenie realizuje ručne na základe empirických informácií a skúseností
- každé aj malé zhoršenie kvality riadenia prináša straty energie alebo zhoršenie kvality produktu

## Riadenie pomocou fuzzy logiky

- verbálny model procesu vytvorený na základe skúseností technológov a dlhodobo získavaných dát - rekonštrukcia nemerateľných veličín
- verbálny model riadenia vytvorený na základe skúseností operátorov a technológov
- báza pravidiel riadenia bola upresňovaná pozorovaním činnosti skúsených operátorov a vyhodnocovaním procesných dát a akčných zásahov
- riadiaci systém je schopný nepretržite a neomylne realizovat' "naučenú" riadiacu stratégiu, optimalizovat', rýchlo reagovat'...

## Príklad pravidiel modelu cementárne :

Ak hnací moment je A a jeho zmena je B a teplota výstupných plynov je C potom zmena koncentrácie O<sub>2</sub> je D a zmena prietoku vzduchu je E kde A,B,C,D,E ... P,Q,R sú fuzzy hodnoty (malý, stredný, veľký, veľmi veľký...)

## Príklad pravidiel riadenia:

Ak zmena koncentrácie  $O_2$  je P a teplota v strednej zóne je Q potom zvýšenie hnacieho momentu je R

## Riadenie križovatky



## Pravidlá riadenia križovatky (príklad)

- Ak v smere 1a čaká veľmi veľa áut (VV)
  a v ostatných smeroch čaká málo alebo veľmi málo alebo
  nula áut (M alebo VM alebo N) pusti smer 1a na stredne
  dlho (S)
- Ak v smere 1a nečaká VV áut ...
- a.t.d'. ...





## Regulácia výšky hladiny v nádrži



### Fuzzy regulátor výšky hladiny

#### vstupy



Hladina v nádrži



zmena hladiny

#### výstup



zmena prítokového ventilu

#### If (odchylka is vysoka) then (ventil is zavri\_vela) (1)

- If (odchylka is trocha\_vysoka) them (ventil is trocha\_zavri) (1)
- If (odchylka is dobra) then (ventil is nezmen) (1)
- 4. If (odchylka is trocha\_nizka) then (wentil is trocha\_otvor) (1)
- If (odchylka is nizka) then (ventil is otvor vela) (1)

#### báza pravidiel na jednoduché riadenie

## Niektoré iné aplikácie fuzzy riadenia

- Supervízorové riadenie čističiek vody
- Riadenie pohyblivého ramena raketoplánu
- Riadenie rakiet
- Riadenie Metra
- Riadenie biotechnologických procesov
- ABS
- Diagnostika porúch
- Spotrebná elektronika
- ...

## 4.2 Fuzzy PID regulátory

## Poznámky ku konvenčným PID regulátorom

#### PID regulátor

$$u(t) = K \left[ e(t) + \frac{1}{T_i} \int e(t) dt + T_d \frac{de(t)}{dt} \right]$$

#### Polohový PSD regulátor

$$u_k = K \left[ e_k + \frac{T}{T_i} \sum_{j=1}^{k-1} e_j + \frac{T_d}{T} \Delta e_k \right]$$

$$u_k = K \left[ e_k + \frac{T}{T_i} \sum_{j=1}^{k-1} e_j + \frac{T_d}{T} \Delta e_k \right]$$

$$u_{k-1} = K \left[ e_{k-1} + \frac{T}{T_i} \sum_{j=1}^{k-2} e_j + \frac{T_d}{T} \Delta e_{k-1} \right]$$

odčítaním dostaneme

$$\Delta u_k = u_k - u_{k-1} = K \left[ \Delta e_k + \frac{T}{T_i} e_{k-1} + \frac{T_d}{T} \Delta^2 e_k \right]$$

prírastok akčného zásahu za jednu periódu riadenia

$$u_{k} = u_{k-1} + \Delta u_{k} = u_{k-1} + K \left[ \Delta e_{k} + \frac{T}{T_{i}} e_{k-1} + \frac{T_{d}}{T} \Delta^{2} e_{k} \right]$$

#### Prírastkový (rýchlostný) PSD regulátor

$$\Delta u = f(e, \Delta e, \Delta^2 e)$$
;  $u_k = u_{k-1} + \Delta u$ 

$$u_k = K \left[ e_k + \frac{T}{T_i} \sum_{j=1}^{k-1} e_j + \frac{T_d}{T} \Delta e_k \right]$$

#### Polohový PSD regulátor

# Modifikácia derivačného člena PID algoritmu



$$u_k = K \Bigg[ e_k + \frac{T}{T_i} \sum_{j=1}^{k-1} e_j + \frac{T_d}{T} \Delta e_k \Bigg] \qquad \text{Klasický PSD}$$

$$\Delta e_k = e_k - e_{k-1} = (w - y_k) - (w - y_{k-1}) = y_{k-1} - y_k = -\Delta y_k$$

$$u_k = K \left[ e_k + \frac{T}{T_i} \sum_{j=1}^{k-1} e_j - \frac{T_d}{T} \Delta y_k \right] \qquad \text{Upraven\'{y} PSD}$$

$$\frac{de}{dt} = \frac{-dy}{dt}$$
 pre spojitý prípad

$$u(t) = K \left[ e(t) + \frac{1}{T_i} \int e(t) dt - T_d \frac{dy(t)}{dt} \right]$$
 Upravený PID



### Klasický PID



#### **Upravený PID**

Analógia tohoto zapojenia sa doporučuje pri FUZZY regulátoroch

## Fuzzy - PID regulátory

## Vstupmi fuzzy PID regulátorov sú obyčajne

- e(t), y(t),  $e_k$ ,  $y_k$
- de(t)/dt, -dy(t)/dt,  $\Delta e_k$ ,  $-\Delta y_k$  $d^2e(t)/dt$ ,  $-d^2y(t)/dt$ ,  $\Delta^2e_k$ ,  $\Delta^2y_k$ ,
- $\int e(t)dt$ ,  $\Sigma e_k$

prípadne iné veličiny podľa typu aplikácie ako poruchy, žiadané hodnoty, pomocné informácie ...

## Výstupy fuzzy PID regulátorov sú vo forme

- absolútnej (polohovej): výstup z FS je priamo u(t) resp. u(k)
- alebo prírastkovej (rýchlostnej): výstup z FS je

$$\frac{du\ (t)}{dt}$$
 resp.  $\Delta u(k)$  (du) vstup do riadeného systému je  $u(k) = u(k-1) + \Delta u(k)$   $u(k) = \int \frac{du}{dt} \, dt$ 

## Fuzzy PD polohový



If e is A and de is B then u is C



#### If e is NS and de is PB then u is PS



| de/e | NB | NS | ZE | PS | PB |
|------|----|----|----|----|----|
| NB   | NB | NB | NS | NS | ZE |
| NS   | NB | NS | NS | ZE | PS |
| ZE   | NS | NS | ZE | PS | PS |
| PS   | NS | ZE | PS | PS | PB |
| PB   | ZE | PS | PS | PB | PB |
| 29   |    |    |    |    | 9  |

## **Fuzzy PI rýchlostný**



If e is A and de is B then du is C  $u(t)=\int du(t)dt$  resp. u(k)=u(k-1)+du(k)

## Fuzzy PI polohový



#### If e is A and ie is B then u is C

ie = 
$$\int e(t) dt$$
 resp. ie =  $\sum e$ 

## Fuzzy PID regulátor s 3-D bázou pravidiel



If e is A and de is B and d<sup>2</sup>e is C then du is D

| de/e | NB | NS | ZE | PS | PB |     |
|------|----|----|----|----|----|-----|
| NB   | NB | NB | NS | NS | ZE |     |
| NS   | NB | NS | NS | ZE | PS | d²e |
| ZE   | NS | NS | ZE | PS | PS | u e |
| PS   | NS | ZE | PS | PS | PB |     |
| PB   | ZE | PS | PS | PB | PB |     |

báza pravidiel : 5x5x5=125 pravidiel

## Fuzzy PI + fuzzy PD regulátor



If e is A and de is B then  $du_1$  is E

If e is C and de is D then  $u_2$  is F

## Fuzzy PD + klasický I regulátor



## Základné typy fuzzy - PID regulátorov

#### zhrnutie

| typ regulátora    | vstupy                  | dim. BP | výstup | použitie |
|-------------------|-------------------------|---------|--------|----------|
| P                 | е                       | 1       | u      | *        |
| I - prírastkový   | е                       | 1       | du     | *        |
| PD - polohový     | e, de                   | 2       | u      | **       |
| PI - prírastkový  | e, de                   | 2       | du     | **       |
| PI - polohový     | e, ie                   | 2       | u      |          |
| PID - polohový    | e, ie, de               | 3       | u      |          |
| PID - prírastkový | e, de, d <sup>2</sup> e | 3       | du     | *        |
| PD pol.+PI prír.  | e,de                    | 2       | u,du   | **       |
| PD pol. + I klas. | e,de                    | 2       | и      | **       |

## Manuálny návrh fuzzy - PID regulátorov

# Určenie rozsahu (univerza) lingvistických premenných



| de/e | NB | NS | ZE | PS | PB |
|------|----|----|----|----|----|
| NB   | NB | NB | NS | NS | ZE |
| NS   | NB | NS | NS | ZE | PS |
| ZE   | NS | NS | ZE | PS | PS |
| PS   | NS | ZE | PS | PS | PB |
| PB   | ZE | PS | PS | PB | PB |

# Určenie rozsahu e(t) e=w-y



$$y \in (y_{min}; y_{max}) \rightarrow e \in ((y_{min}-y_{max}); (y_{max}-y_{min}))$$
  
 $e \in (-1;1)$ 

## v prípade preregulovania



Určenie rozsahu de(t), d<sup>2</sup>e(t) – z dynamiky systému (poruchy)

Určenie rozsahu u(t) – z iného regulátora, alebo kvalifikovaný odhad



# Experimentálny spôsob tvorby bázy pravidiel



Ak e je kladná veľká a de je nulová potom u je kladné veľké (skok žiad.hod → prudké rozbehnutie systému)

Ak e je kladná malá a de je záporná veľká potom u je záporné malé (pribrzdenie aby nenastalo preregulovanie)

# "Napodobenie" iného typu regulátora



Regulačný priebeh iného typu regulátora



- 1: ak e je PB a de je ZE u je PB (300) (skok žiadanej hodnoty, systém je ešte v kľude)
  - 2: ak e je PB a de je NS u je PM (100) (systém sa rozbehol)

- 4: ak e je PM a de je NB u je PS (15) (maximálna rýchlosť)
- 5: ak e je ZE a de je ZE u je PVS (1) (ustálený stav)

. . .

# Približný prepočet PID na fuzzy-PID regulátor

# Bez ujmy na všeobecnosti predpokladajme konkrétny prípad **F-PD reg.** (F-PI reg) :





PD reg: 
$$\mathbf{u(t)=P.e(t)+D.de(t)}$$
 ( + I.ie(t) )

nech P=D=I=1



"Kvázi-lineárna báza pravidiel"

### Príklad: F-PD regulátor

$$u(t) = P.e(t) + D.de(t)$$
  $P = 0.5$ ;  $D = 0.2$ 

#### Nech

$$y \in (0; 1) \rightarrow e \in (-1; 1); de \in (-0,5; 0,5)$$
  
 $e = \{N; Z; P\} = \{-1; 0; 1\}$   
 $de = \{N; Z; P\} = \{-0.5; 0; 0.5\}$ 

#### Predpokladajme trojuholníkové, symetrické a rovnomerne rozložené funkcie prísl.



FS Sugeno: if  $x_1$  is A and  $x_2$  is B then u is  $c_0 + c_1.x_1 + c_2.x_2$  if  $x_1$  is A and  $x_2$  is B then u is c

kde A,B sú fuzzy množiny a  $c_0, c_1, c_2, c$  sú konštanty.



FS Mamdani: if e is P and de is Z then u is  $P_1$  kde  $P_i$ ,  $N_i$  a Z sú fuzzy množiny.

# výstupné funkcie príslušnosti - trojuholníkové



## výstupné funkcie príslušnosti - "singletony"



#### BP pre 7 vstupných fun. prísl. pre vstupy e a de:

| e / de | NB | NM | NS | ZE | PS | PM              | PB |
|--------|----|----|----|----|----|-----------------|----|
| NB     | NB | NB | NB | NB | NM | NS              | ZE |
| NM     | NB | NB | NB | NM | NS | ZE              | PS |
| NS     | NB | NB | NM | NS | ZE | PS              | PM |
| ZE     | NB | NM | NS | ZE | PS | PM              | PB |
| PS     | NM | NS | ZE | PS | PM | PB              | PB |
| PM     | NS | ZE | PS | PM | PB | PB              | PB |
| PB     | ZE | PS | PM | PB | PB | PB <sup>*</sup> | PB |

Tab.4 Kvázi-lineárna báza pravidiel s ohraničením akčného zásahu

N – negatívny B – Big (veľký)

P – pozitívny M – Medium (stredný)

ZE – Zero (nula) S – Small (malý)

Báza pravidiel s ohraničením výstupu

# Ladenie prvkov bázy pravidiel

| de/e | NB | NS | ZE | PS | PB |
|------|----|----|----|----|----|
| NB   | NB | NB | NS | NS | ZE |
| NS   | NB | NS | NS | ZE | PS |
| ZE   | NS | NS | ZE | PS | PS |
| PS   | NS | ZE | PS | PS | PB |
| PB   | ZE | PS | PS | PB | PB |

Kvázi-lineárna báza pravidiel

| de/e | NB | NS | ZE | PS | PB |
|------|----|----|----|----|----|
| NB   | NB | NS | ZE | ZE | ZE |
| NS   | NB | NS | NS | ZE | PS |
| ZE   | NS | ZE | ZE | PS | PB |
| PS   | ZE | ZE | PS | PB | PB |
| PB   | ZE | ZE | PS | PB | PB |

Nelineárna báza pravidiel (po aplikácii znalostí - nelinearity objektu riadenia)

# Ladenie funkcií príslušností



zmena typu, pridávanie/uberanie, naklápanie, presúvanie, rozťahovanie/zužovanie

# Mapa sektorov bázy pravidiel



U: ustálený stav

**Zóna 0:** e aj de sú malé, systém je takmer stabilný, prvky

tejto zóny tlmia systém okolo ustáleného stavu

Zóna 1,3: prvky tejto zóny môžu urýchľovať dynamiku

regulačného obvodu

Zóna 2,4: prvky týchto zón sa pri bežných systémoch málo

vyskytujú a málokrát sa používajú

# Kroky návrhu FR



# 4.3 Fuzzy systém v inej funkcii v regulačnom obvode ako feedback regulátor

- Kompenzácia poruchových veličín
- Korekcia akčného zásahu iného regulátora
- Feed-forward regulátor
- Adaptačný mechanizmu pre konvenčný regulátor
- Iné ...

# Kompenzácia poruchovej veličiny



Ak porucha je A potom kompenzácia je C

Ak porucha je A a zmena poruchy je B potom kompenzácia je C

## Korekcia poruchového (parazitného) prítoku do nádrže



# Korekcia akčného zásahu (klasického) regulátora



Ak e je A a de je B potom korekcia u je D

Ak e je A a de je B a dde je C potom korekcia u je D ....

- Význam: 1. Potlačenie preregulovania
  - 2. Skrátenie doby regulácie
  - 3. Potlačenie porúch ...



Ak e je veľká a de je nulová potom zväčši akčný zásah PID reg. (skok žiad.hod. → prudké rozbehnutie systému)

Ak e je malá a de je veľká potom zmenši akčný zásah PID reg. (pribrzdenie aby nenastalo preregulovanie)

Ak de je záporná a dde je záporná potom zväčši akčný zásah PID Ak de je kladná a dde je kladná potom zväčši akčný zásah PID (detekcia poruchy  $\rightarrow$  potlačenie poruchy)

# Dopredný fuzzy korekčný člen



# A mnohé iné aplikácie ...

Keď máme k dispozícii znalosti formulovateľné rečou (lingvisticky).