

Travaux dirigés et TP n° 9 Codes Correcteurs

Codes correcteurs

Exercice 1 (Codeur Correcteur de parité transversale et longitudinale(64,49))

1. Compléter les données suivantes

						Bits	de	parité							Bits	de	parité
0	0	0	0	1	0	0			0	0	0	0	1		0	1	
1	0	0	1	0	0	1			1	0	0	1	0	0	1	1	
0	0	1	0	0	0	1	_		0	0	1	0		0	1	0	
0	1	0	1	0	1	0			0	1	0	1	0	1	0	1	
1	0	0	1	0	0	1	1		1	0	0	_	0	0	1	1	
0	0	1	0	0	0	1			0	0	1	0	0	0	1	0	
0	1	0	0	0	1	0			0	1	0	0	0	1	0	0	
					7	,			0	0	0	1	1	0	0	0	

2. Corriger les tableaux suivants

						Rite	e de	e parité							Bits	s de	parité							Rit	e d	e parité							Bits	de	parité
0	0	0	0	1	0		1	pante	0	0	0	0	1	0	0	1		0				1	0	0	1	e pante	0	0	0	0	1	0	0	1	
1	0	10	1	0	0	1	1		1	0	0	1	0	0	1	1		1	10	10	1	1	10	1	1		1	0	0	1	0	0	1	1	
0	0	1	0	0	0	1	0		0	0	1	0	0	0	1	0		0	10	1	1	1 0	10	1	0		0	0	1	1	0	0	1	0	!
	1	1	0	0	1	1	1		0	1	0	1	0	1	0	0	!		1	1	1	10	1		1		0	1	0	1	0	1	0	1	
1	1	<u> </u>	1	0	1	1	1	<u> </u>	1	0	0	1	0	0	1	1		1	1	10	1		1	1	1		1	1	0	1	0	0	1	1	!
0	0	1	0	0	0	1	0	-	0	0	1	0	0	0	1	0		0	10	1	1	1 0	10	1	0		0	0	1	0	0	0	1	0	
0	1	1	0	0	1	1	0	-	0	1	0	0	0	1	0	0			1	1		, 0	1	1	0		0	1	0	0	0	1	0	0	
0	0	0	1	1	0	0	_	-	0	0	0	1	1	0	0	0		0	0	0	1	1	0	0	1	_	0	0	0	1	1	0	0	0	
U	U	U	1	1	U	U	U	-				_	_			ī		0	U	U	1		U	U	1 +			1		1					
			!												-										!		+								

- 3. En différenciant les cas : le bit est dans les données", une somme de contrôle ou la somme de contrôle totale, calculer les distances de Hamming de codages proches.
- 4. Montrer que c'est un code 1-correcteur.
- 5. Donner une configuration comportant 2 erreurs non corrigibles.
- 6. Montrer que c'est un code 3-détecteur mais pas 4-détecteur.

Tableaux à annoter selon les besoins :

							Bits	s de parité							Bit	s d	e parité							Bit	s de	parité							Bits	de	parité
0	C)	0	0	1	0	0	1	0	0	0	0	1	0	0	1		0	0	0	0	1	0	0	1		0	0	0	0	1	0	0	1	
1	C)	0	1	0	0	1	1	1	0	0	1	0	0	1	1		1	. 0	0	1	0	0	1	1		1	0	0	1	0	0	1	1	
0	C)	1	0	0	0	1	0	0	0	1	0	0	0	1	C		0	0	1	0	0	0	1	0		0	0	1	0	0	0	1	0	
0	1	L	0	1	0	1	0	1	0	1	0	1	0	1	0	1		0	1	0	1	0	1	0	1		0	1	0	1	0	1	0	1	
1	C)	0	1	0	0	1	1	1	0	0	1	0	0	1	1		1	. 0	0	1	0	0	1	1		1	0	0	1	0	0	1	1	
0	T C)	1	0	0	0	1	0	0	0	1	0	0	0	1	C		0	0	1	0	0	0	1	0		0	0	1	0	0	0	1	0	
0	1	L	0	0	0	1	0	0	0	1	0	0	0	1	0	C		0	1	0	0	0	1	0	0		0	1	0	0	0	1	0	0	
0	C)	0	1	1	0	0	0	0	0	0	1	1	0	0	C		O	0	0	1	1	0	0	0		0	0	0	1	1	0	0	0	

7. Construire un CodeurParParite capable de rattraper une erreur.

Licence Informatique Info0603

Exercice 2 (Calculs sur $F_2(X)$ et class PolF2)

Soient les polynômes $(A(X) = X^4 + X^3 + X^2 + X, (B(X) = X^4 + X^2 + 1 \text{ et } C(X) = X^2 + 1 \text{ dans } F_2(X).$ Calculer A+B, A.B, B² et diviser A, puis B, par C (quotient et reste).

Exercice 3 (Classe PolF2)

Compléter le code des méthodes suivantes.

```
class PolF2(object):
             "Polynôme dans F2"
             def __init__(self,x):
                              11 11 11
                             Défini par une liste d' ElmntZnZ
                             >>> PolF2([ElmtZnZ(1,2),0,1,0,1])
                             PolF2([ElmtZnZ(1,2), ElmtZnZ(0,2), ElmtZnZ(1,2), ElmtZnZ(0,2), ElmtZnZ(1,2)])
                              >>> PolF2(0b1000110010) #Entier -> Polynome dans F2
                             PolF2([ElmtZnZ(0,2), ElmtZnZ(1,2), ElmtZnZ(0,2), ElmtZnZ(0,2), ElmtZnZ(1,2), ElmtZnZ(1,2), ElmtZnZ
                             >>> PolF2(0)
                             PolF2([ElmtZnZ(0,2)])
             def degre(self):
                              >>> PolF2(0b100011).degre()
             def distanceHamming(self,other):
                             >>> PolF2(0b100011).distanceHamming(PolF2(0b1100011))
             def __add__(self,other):
                             >>> PolF2(0b100011)+PolF2(0b1100011)
                             PolF2([ElmtZnZ(0,2), ElmtZnZ(0,2), ElmtZnZ(0
                              >>> PolF2(0b1100011)+ PolF2(0b100011)
                             PolF2([ElmtZnZ(0,2), ElmtZnZ(0,2), ElmtZnZ(0
             def __mul__(self,other):
                              >>> PolF2.monome(2)*PolF2.monome(1)
                             PolF2([ElmtZnZ(0,2), ElmtZnZ(0,2), ElmtZnZ(0,2), ElmtZnZ(1,2)])
             def __mod__(self,other):
                              11 11 11
                             >>> PolF2(0b11000101)%PolF2(0b11000)
                             PolF2([ElmtZnZ(1,2), ElmtZnZ(0,2), ElmtZnZ(1,2)])
             def __floordiv__(self,other):
                              >>> PolF2(0b11000101)//PolF2(0b11000)
                             PolF2([ElmtZnZ(0,2), ElmtZnZ(0,2), ElmtZnZ(0,2), ElmtZnZ(1,2)])
             def __int__(self):
                              >>> int(PolF2([ElmtZnZ(1,2), ElmtZnZ(0,2), ElmtZnZ(1,2)]))
                             5
```

Licence Informatique Info0603

Exercice 4 (Class Code Correcteur CRC8)

Construire le code des méthodes suivantes autour d'un codeur CRC ajoutant 1 octets 'correcteur' au bloc de 32bits.

```
class CodeurCRC8(CodeurCA):
 """CodeurCRC codant en 40bits des blocs 32bits avec CRC sur 8bits"""
def __init__(self,Pg=PolF2(0b110011011) ):
def blocCode(self,M,verbose=False):
     ", Renvoie M codeé en CRC avec un octet de plus"
     >>> print(f"0x{CodeurCRC8().blocCode(0xab345678):x}")
     0xab34567821
def estBlocValide(self,valc):
     >>> CodeurCRC8().estBlocValide(0xab34567821)
    True
     >>> CodeurCRC8().estBlocValide(0xab34567820)
def blocValideLePlusProche(self,valc,verbose=False):
     >>> print(f"0x{CodeurCRC8().blocValideLePlusProche(0xab34567821):x}")
     0xab34567821
     >>> print(f"0x{CodeurCRC8().blocValideLePlusProche(0xab35567821):x}")
     0xab34567821
def blocDecode(self,valc):
     >>> print(f"0x{CodeurCRC8().blocDecode(0xab34567821):x}")
     >>> print(f"0x{CodeurCRC8().blocDecode(0xbb34567821):x}")
     0xab345678
def blocAvecErreur(val,nbBits=32,nbErreurs=1):
     """Renvoie le bloc val avec nbErreurs bits changés"""
def binCode(self,monBinD,verbose=True,nbErreurs=0):
def binDecode(self,monBinC:Binaire603) ->Binaire603:
def testDistance(self,nmax=0x101):
 """Affiche la distance minimales entre les codage des blocs 0 ) nmax"""
def binDecode(self,monBinC:Binaire603)->Binaire603:
```