基礎数理演習課題 9

21716070 縫嶋慧深

2020年7月7日

0.1

次の値を求めて下さい。

(1)
$$\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$
$$\sin^{-1}-\frac{1}{\sqrt{2}}=-\frac{\pi}{4}$$

(1)
$$\sin^{-1}\left(-\frac{1}{\sqrt{2}}\right)$$
 (2) $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ (3) $\tan^{-1}0$ $\tan^{-1}0 = 0$ $\sin^{-1}-\frac{1}{\sqrt{2}} = -\frac{\pi}{4}$ $\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$

(4)

(6)

(3)
$$\tan^{-1} 0$$
 $\tan^{-1} 0 = 0$

0.2

次の関数の導関数を求めて下さい。

(1)
$$f(x) = \cos x \cos^{-1} x$$

$$f'(x) = -\sin x \cdot \cos^{-1} x + \cos x \cdot \left(-\frac{1}{\sqrt{1-x^2}}\right)$$

$$f(x) = \frac{\tan^{-1} x}{1+x^2}$$

$$f'(x) = \frac{(1+x^2) \cdot \frac{1}{1+x^2} - \tan^{-1} x \cdot 2x}{(1+x^2)^2}$$

$$= -\sin x \cos^{-1} x - \frac{\cos x}{\sqrt{1-x^2}}$$

$$= \frac{1-2x \tan^{-1} x}{(1+x^2)^2}$$

$$f'(x) = \frac{1+x^2}{(1+x^2) \cdot \frac{1}{1+x^2} - \tan^{-1} x \cdot 2x}}$$
$$= \frac{1-2x \tan^{-1} x}{(1+x^2)^2}$$

(3)
$$f(x) = \sqrt{x^3 + 1}$$

 $f'(x) = \frac{3x^2}{2\sqrt{x^3 + 1}}$

$$f(x) = x \sin^3 x$$

$$f'(x) = \sin^3 x + x \cdot 3 \sin^2 x \cos x$$

$$= \sin^2 x (\sin x + 3x \cos x)$$

 $f(x) = (2x+3)^x \quad (x > -2)$

(5)
$$f(x) = x^{\frac{1}{x}} \quad (x > 0)$$
$$y = x^{\frac{1}{x}} \quad \text{と置く。}$$
両辺の自然対数を取ると、
$$logy = logx^{\frac{1}{x}}$$
$$= \frac{logx}{x}$$
両辺を x で微分すると、

$$y = (2x+3)^x$$
 と置く。
両辺の自然対数を取ると、
$$logy = log(2x+3)^x$$
$$= xlog(2x+3)$$

$$\frac{y'}{y} = \frac{1 - \log x}{x^2}$$
$$y' = y \cdot \frac{1 - \log x}{x^2}$$
$$= x^{\frac{1}{x}} \left(\frac{1 - \log x}{x^2}\right)$$

両辺を
$$x$$
で微分すると、

$$\frac{y'}{y} = \log(2x+3) + x \cdot \frac{2}{2x+3}$$

$$= \log(2x+3) + \frac{2x}{2x+3}$$

$$y' = y \cdot \left\{ \log(2x+3) + \frac{2x}{2x+3} \right\}$$

$$= (2x+3)^x \left\{ \log(2x+3) + \frac{2x}{2x+3} \right\}$$

1

次の関数を2次導関数まで求め、極値を求めて下さい。また、変曲点を求めて下さい。

(1)	
	$f(x) = x^3 - 3x^2 + 4$
	$f'(x) = 3x^2 - 6x = 3x(x-2)$
	f''(x) = 6x - 6 = 6(x - 1)
	$f'(x) \ge 0 \Leftrightarrow 3x(x-2) \ge 0$
	$\Leftrightarrow x \le 0, 2 \le x$
	$f''(x) \ge 0 \iff 6(x-1) \ge 0$
	$\Leftrightarrow x \ge 1$

x		0		1		2	
f'(x)	+	0	_	_	_	0	+
f''(x)	_	_	_	0	+	+	+
f(x)		4		2		0	
(極土植、f(0) _ 4							

(2)	
()	$f(x) = x \log x$
	真数条件より、 $x > 0$
	$f'(x) = \log x + 1$
	$f''(x) = \frac{1}{x}$
	$f'(x) \ge 0 \iff \log x \le -1$
	$\Leftrightarrow \ x \ge \frac{1}{e}$
	$f''(x) \ge 0 \iff \frac{1}{x} \ge 0$
	$\Leftrightarrow x > 0$

	x	(0)		$\frac{1}{e}$		(∞)
	f'(x)	/	_	0	+	
	f''(x)	/	+	+	+	
	f(x)	(0)		$-\frac{1}{e}$		(∞)
(<u>-</u>						

 $\left\{ \begin{array}{ll} 極大値: なし \\ 極小値: f\left(rac{1}{e}
ight) = -rac{1}{e} \\ 変曲点: なし \end{array} \right.$