Chapter 1

Pigeonhole Principle

Some Resource: Sami Assaf (432 videos)

Theorem 1 Let n, k be positive integers with n > k, Put n balls into k boxes in some what. Then must have at least 1 box with 2 balls Proof: Proceed by contradiction: Assume that each of the k boxes has at least 1 ball. Then the number of balls is at most k But we assumed there there are n balls and n > k. Contradiction

Example (doesn't use pigeonhole principle) Consider the numbers 1, 2, ..., 2n. Take any n+1 of them. Then among them there must be two which are relatively prime. Proof (sketch): If have n+1 numbers from 1, 2, 3, ..., 2n, then must have two consecutive numbers these are relatively prime.

Example (does use pigeonhole principle) Let A be a set of n+1 numbers chosen from 1, 2, 3, ..., 2n. Then there are always two numbers in A such that one divides the other. Soln Write each $a \in A$ as $a = 2^k m$ where m is odd and at most 2n-1. Call m the "odd part of a". Since A has n+1 elements, and there are only m possible odd parts, the pigeonhole principle implies that there are 2 numbers in A with the same odd part, so one of these numbers divides the other.

 $\begin{array}{ll} \textbf{\textit{Example}} & \text{Consider a sequence $a_1, a_2, ..., a_{mn+1}$ of $mn+1$ distinct real numbers.} \\ \text{Then there exists an increasing subsequence $a_{i_1} < a_{i_2} < ... < a_{i_{m+1}}$ (here $i_1 < i_2 < ... < i_{m+1}$) of length $m+1$ \textit{OR} A decreasing subsequence $a_{j_1} > a_{j_1} > ... > a_{j_{m+1}}$ (here $j_1 < j_2 < ... < j_{m+1}$) (or both) $\textit{Example}$ Consider the sequence $4,1,3,5,7,8,2,6$ The $3,7,8$ is an increasing subsequence $4,3,2$ is a decreasing subsequence $a_{j_1} > a_{j_2} < ... < a_{j_{m+1}} < a_{j_m} < a$

Remarks For a permutation Π let $I(\Pi)=$ the longest increasing subsequence of Π

- 1. If Π is a random permutation, then average of $I(\Pi)$ is asymptotic to $2\sqrt{n}$
- 2. $I(\Pi)$ has applications:
 - patience sorting
 - airline boarding

n = 3	$I(\Pi)$
1, 2, 3	3
1, 3, 2	2

... So the average of $I(\Pi)=2$ for n=3

$${\it Claim} \quad \lim_{n o \infty} rac{{
m average \ of \ } I(\Pi)}{2\sqrt{n}} = 1$$

Proof of claim For each number a_i let t_i = the length of the longest increasing subsequence starting at a_i . If $t_i \ge m+1$ for some i, then have an increasing subsequence of length m+1 and we're done.

 \pmb{Claim} So can assume $t_i \leq m$ for all i, so the function $f:a_i \to t_i$ maps $\{a_i,...,a_{mn+1}\} \to \{1,...,m\}$

By generalize pigeonhole principle, there is some $s \in \{1, ..., m\}$ so that $f(a_i) = s$ for n+1 numbers a_i . Let $a_{j_1}, a_{j_2}, ..., a_{j_n+1}$ $(j_1 < j_2 < ... < j_{m+1})$ be these numbers. Claim $a_{j_1} > a_{j_2} > ... > a_{j_{n+1}}$ is a decreasing subsequence of length n+1. To see this, assume to contrary that $a_{j_i} < a_{j_i+1}$. Then we'd have a length s increasing subsequence starting from $a_{j_{i+1}}$ so a length s+1 subsequence starting at a_{j_i} . Contradiction! Thus $a_{j_1} > a_{j_2} > ... > a_{j_{n+1}}$, and we're done

Remark The above proof used the "generalized pigeonholde principle" which states let n, m, r be positive integers such that n > rm. Put n balls into m boxes. Then some box must have at least r+1. (Pigeonhole principle is the special case where r=1) Proof Assume the contrary that each box has at most r balls. Then total number of balls is at rm but n > rm, a contradiction.

Who Cares? n cards 1, 2, n in some order so say: 4, 2, 3, 6, 5, 1, 7 We can cut into piles....