Topics Covered Topic 1 - 8 Topic 2 Insertion Sort

```
INSERTION-SORT (A)

1 for j=2 to A.length

2 key=A[j]

3 /\!\!/ Insert A[j] into the sorted sequence A[1\mathinner{.\,.} j-1].

4 i=j-1

5 while i>0 and A[i]>key

6 A[i+1]=A[i]

7 i=i-1

8 A[i+1]=key
```

- Best Case runtime: $\Theta(n)$
- Worst Case Run-Time: $\Theta(n^2)$

Loop Invariants

A formal property that is true at the start of each iteration.

- Initialization : True prior to the first iteration
- Maintenance: true prior to the given iteration, then it remains true before the next iteration
- Termination: loop terminates and gives a useful property to show that the algorithm is correct

Divide and Conquer

- Divide: the problem into sub smaller instances
- Conquer: solve the problems recursively
- Combine: subproblem into the solution of the original

Merge-Sort

```
MERGE-SORT (A, p, r)

1 if p < r

2 q = \lfloor (p+r)/2 \rfloor

3 MERGE-SORT (A, p, q)

4 MERGE-SORT (A, q+1, r)

5 MERGE (A, p, q, r)
```

• Best Case: $\Theta(n \log n)$

• Worst Case: $\Theta(n \log n)$

Recursion Tree Analysis

$$T(n) = c$$
 if $n = 1$
= $2T(\frac{n}{2}) + cn$ if $n > 1$

Topic 3

Algorithm	Worst-case running time	Average-case/expected running time
Insertion sort	$\Theta(n^2)$	$\Theta(n^2)$
Merge sort	$\Theta(n \lg n)$	$\Theta(n \lg n)$
Heapsort	$O(n \lg n)$	_
Quicksort	$\Theta(n^2)$	$\Theta(n \lg n)$ (expected)
Counting sort	$\Theta(k+n)$	$\Theta(k+n)$
Radix sort	$\Theta(d(n+k))$	$\Theta(d(n+k))$
Bucket sort	$\Theta(n^2)$	$\Theta(n)$ (average-case)

Asymptotic Bounds

- \bullet O $\approx \leq,$ upper bound, worst case
- $\Omega \approx \geq$, best case, lower bound
- $\Theta \approx =$, no better or no worse
- o ≈

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

ω ≈>

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

• theorem 3.1 $f(n) = \Theta(g(n))$ iff f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Transitivity:

- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n))$.
- f(n) = O(g(n)) and $g(n) = O(h(n)) \Rightarrow f(n) = O(h(n))$.
- $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n)) \Rightarrow f(n) = \Omega(h(n))$.
- f(n) = o(g(n)) and $g(n) = o(h(n)) \Rightarrow f(n) = o(h(n))$.
- $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n)) \Rightarrow f(n) = \omega(h(n))$.

Reflexivity:

- $f(n) = \Theta(f(n))$
- f(n) = O(f(n))
- $f(n) = \Omega(f(n))$
- What about o and ω?

Symmetry:

- $f(n) = \Theta(g(n))$ iff $g(n) = \Theta(f(n))$
- Should any others be here? Why or why not?

Transpose Symmetry:

- f(n) = O(g(n)) iff $g(n) = \Omega(f(n))$
- f(n) = o(g(n)) iff $g(n) = \omega(f(n))$