Partitions of a Set and Stirling Numbers

Scribe: Sophia Pentakalos, Sophia Wang

Date: Tuesday, February, 12 2019

1 Partitions of a Set

Problem 1. How many ways can a set of 4 elements be partitioned into 2 non-empty sets?

Solution The possible sets are:

Therefore, there are 7 total ways.

Definition. The number of ways to partition a set of n elements into k nonempty subsets is the Stirling number of the second kind. Stirling numbers of the second kind are denoted by S(n,k) or ${a \brace b}$.

2 Stirling Numbers

Preliminary/Base Cases:

$$S(1,1) = 1$$
 $S(n,1) = 1$ $S(0,0) = 1$

Claim: $S(n,2) = 2^{n-1} - 1$

Proof. Consider: $A = \{0,1\}^n$. $|A| = 2^n$ This will be the *characteristic function* of membership in the two subsets S_0 , S_1 . Now 1^n and 0^n are not valid partitions because they leave an empty set. So we now have $|A| - 2 = 2^n - 2$ mappings. But, we're double counting because order in a subset is irrelevant. So our count is $\frac{2^n-2}{2} = \boxed{2^{n-1}-1}$.

Claim: $S(n, n-1) = \binom{n}{2}$

Proof. Choose 2 elements from n, put them in a set, and put every other element in a singleton set.

Definition. *The recursive definition of Stirling Numbers:*

 $S(n,k) = S(n-1,k-1) + S(n-1,k) \cdot k$ This is because it includes the two cases where element n is by either itself, $\{n\}$ (S(n-1,k-1)), or in a pre-existing set, of which there are k, giving us $S(n-1,k) \cdot k$.

Stirling Numbers of the Second Kind, S(n, k):

n k	1	2	3	4	5	6	7
1	1	0	0	0	0	0	0
2	1	1	0	0	0	0	0
3	1	3	1	0	0	0	0
4	1	7	6	1	0	0	0
5	1	15	25	10	1	0	0
6	1	31	90	65	15	1	0
7	1	63	301	350	140	21	1

Balls and Urns

Balls and Urns	No restrictions	≤ 1 per urn	≥ 1 per urn	
labeled into labeled	U^B	$U^{\underline{B}}$	U! * S(B, U)	
unlabeled into labeled	$\begin{pmatrix} U \\ B \end{pmatrix}$	$\binom{U}{B}$	$\begin{pmatrix} U \\ B-U \end{pmatrix}$	
labeled into unlabeled	$\sum_{n=1}^{U} S(B,n)$	[B≤U]	S(B,U)	