平成 29 年度 春定期末試験問題・解答

試験実施日 平成 30 年 1月 25 日 3 時限

出題者記入欄

試 験 科 目 名 微分法	出題者名佐藤弘康		
試 験 時 間 <u>60</u> 分	平常授業	美日<u>木</u>曜日<u>3</u>時限	
持ち込みについて 可	√ (\ □)	可、不可のいずれかに○印をつけ 持ち込み可のものを○で囲んでください	
教科書 · 参考書 · ノート その他 ((手書きのみ	・コピーも可) ・電卓 ・辞書)	
本紙以外に必要とする用紙	解答用紙_	0 枚 計算用紙 0 枚	
通信欄			

受験者記入欄

学	科	学 年	クラス	学籍番号	氏	名

採点者記入欄

採 点 欄	評価

次の関数を微分しなさい.

(1)
$$y = \frac{x^4}{2} - \frac{x^3}{9} + \frac{x^2}{4}$$

$$(2) \ y = (3 - 2x)^9$$

$$(3) \ y = \sqrt{x-1}$$

$$(4) \ y = \frac{1}{\sqrt{3-x}}$$

(5)
$$y = \sqrt{x^3 - x^2 + 3}$$

$$(6) \ y = 1 + \sin^2 x$$

(7)
$$y = e^{2x+1}$$

$$(8) \ y = \log(3x - 4)$$

(9)
$$y = \frac{3x+1}{2x^2-1}$$

(10)
$$y = \frac{x}{\sqrt{2x-1}}$$

 $oxed{2}$ $(\log f(x))' = rac{f'(x)}{f(x)}$ を利用して、関数 $f(x) = 2^x$ の導関数 f'(x) を求めなさい.

 $y = \cos x \ (0 \le x \le \pi)$ の逆関数の導関数は、

$$\left(\cos^{-1} x\right)' = -\frac{1}{\sqrt{1 - x^2}}$$

である. これを利用して、関数 $f(x) = \cos^{-1}(2x+1)$ の 導関数 f'(x) を求めなさい.

1	次の問に答えなさい
4	1人の回に合んなせい

(1) 関数 f(x) = 2x - 5 に対し, $f^{-1}(3)$ の値を求めなさい.

(2) 関数 g(x) の逆関数 $g^{-1}(x)$ が存在し, $g^{-1}(3)=-2$ であるとする. このとき, g(-2) の値を求めなさい.

5 対数関数 $y = \log x$ (ただし, x > 0) は増加関数か減少 関数か答えなさい. また, その理由も述べなさい.

6 関数 $f(x) = x^3 - 3x^2 - 9x + 2$ の増減を調べなさい. また, 極値を求めなさい.

7 以下の文章を読んで、下の各問に答えなさい.

微分可能な関数 f(x) と数 x = a に対し,

$$g(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 \qquad (*)$$

を f(x) の x = a の近傍での 2 次近似式とよぶ. g(x) は、

$$f(a) = g(a), \quad f'(a) = g'(a), \quad f''(a) = g''(a)$$
 (#)

を満たす 2 次関数と特徴付けることができる. なお, (*) の右辺の第 2 項までの 1 次式は, f(x) の x=a における (あ) の方程式である.

次に、(*) を用いて $\sqrt{1.2}$ の近似値を求める方法について述べる。 $f(x)=\sqrt{1+x}$ とおくと、 $\sqrt{1.2}=f(\boxed{(\mathcal{P})}$) である。 f(x) の x=0 の近傍での 2 次近似式 g(x) は

$$f(0) = 1$$
, $f'(0) =$ (イ) , $f''(0) =$ (ウ)

より,

$$g(x) = 1 + \boxed{(\mathbf{I})}$$

となる. よって,

$$\sqrt{1.2} = f(\boxed{ (\mathcal{P}) }) \approx g(\boxed{ (\mathcal{P}) }) = \boxed{ (1)}$$

と近似値が得られる.

(1) **(あ)** に当てはまる最も適切な語句を答えなさい. ただし, 「1 次近似式」ではない.

(あ)

(2) (ア) \sim (オ) に当てはまる数または式を答えなさい.

(ア)

(1)

(ウ)

(工)

(オ)

(3) x=a の近傍での 3 次近似式は、(\sharp) および f'''(a)=g'''(a) を満たす 3 次関数 g(x) のことである。 $f(x)=\sqrt{1+x}$ の x=0 の近傍での 3 次近似式を利用して $\sqrt{1.2}$ の近似値を計算しなさい。

(計算用紙)