Mathematics

Robin Adams

April 4, 2024

Contents

Ι	Ca	tegory Theory	7
1	Four	ndations	9
2	2.1 2.2 2.3 2.4 2.5	Preorders Monomorphisms and Epimorphisms Sections and Retractions Isomorphisms Initial and Terminal Objects	11 12 12 14 15 15
3	Fun 3.1	ctors Comma Categories	17 17
II	\mathbf{G}	roup Theory	19
4	Sem	igroups	21
5	Mor	noids	23
6	Gro 6.1	ups Order of an Element	25 28
	6.2	Generators	31
7	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	up Homomorphisms Subgroups Kernel Inner Automorphisms Direct Products Free Groups Normal Subgroups Quotient Groups Cosets Congruence	33 35 36 37 38 38 41 42 46 50
	7.10	Cyclic Groups	51

7.11 Commutator Subgroup 7.12 Presentations 7.13 Index of a Subgroup 7.14 Cokernels 7.15 Cayley Graphs	51 51 52 53 54
8 Abelian Groups 8.1 The Category of Abelian Groups	55 59 60 63
9 Group Actions 9.1 Group Actions 9.2 Category of G-Sets	65 68
III Ring Theory	71
10 Rngs 10.1 Commutative Rngs	73 75 75 75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	77 78 80 82
12 Ring Homomorphisms 12.1 Products	83 85
13 Subrings 13.1 Centralizer	87 87 87
14 Monoid Rings 14.1 Polynomials 14.2 Laurent Polynomials 14.3 Power Series	89 89 91 91
15 Ideals 15.1 Characteristic	93 95 95
16 Integral Domains	97
17 Unique Factorization Domains	99

5

18 Principal Ideal Domains	101
19 Euclidean Domains	103
20 Division Rings	105
21 Simple Rings	107
22 Reduced Rings	109
23 Boolean Rings	111
IV Field Theory 24 Fields	113 115
V Linear Algebra	117

6 CONTENTS

Part I Category Theory

Foundations

This is a placeholder — I am not sure what foundation I want to use for this project yet. I will try to work in a way which is foundation-independent. What I do could be formalized in ZFC, ETCS, or some other system. I will assume the usual set theoretic constructions as needed. Sets will be defined up to bijection only.

Categories

Definition 2.1 (Category). A category C consists of:

- A class $|\mathcal{C}|$ of *objects*. We write $A \in \mathcal{C}$ for $A \in |\mathcal{C}|$.
- For any objects A, B, a set C[A, B] of morphisms from A to B. We write $f: A \to B$ for $f \in C[A, B]$.
- For any object A, a morphism $id_A : A \to A$, the *identity* morphism on A.
- For any morphisms $f: A \to B$ and $g: B \to C$, a morphism $g \circ f: A \to C$, the *composite* of f and g.

such that:

Associativity Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have $h \circ (g \circ f) = (h \circ g) \circ f$

Left Unit Law For any morphism $f: A \to B$, we have $id_B \circ f = f$.

Right Unit Law For any morphism $f: A \to B$, we have $f \circ id_A = f$.

Proposition 2.2. The identity morphism on an object is unique.

PROOF: If i and j are identity morphisms on A then $i = i \circ j = j$. \square

Example 2.3 (Category of Sets). The *category of sets* **Set** has objects all sets and morphisms all functions.

Definition 2.4 (Endomorphism). In a category \mathcal{C} , an *endomorphism* on an object A is a morphism $A \to A$. We write $\operatorname{End}_{\mathcal{C}}(A)$ for $\mathcal{C}[A, A]$.

Definition 2.5 (Opposite Category). For any category C, the *opposite* category C^{op} is the category with the same objects as C and

$$\mathcal{C}^{\mathrm{op}}[A,B] = \mathcal{C}[B,A]$$

2.1 Preorders

Definition 2.6 (Preorder). A preorder on a set A is a relation \leq on A that is reflexive and transitive.

A preordered set is a pair (A, \leq) such that \leq is a preorder on A. We usually write A for the preordered set (A, \leq) .

We identify any preordered set A with the category whose objects are the elements of A, with one morphism $a \to b$ iff $a \le b$, and no morphism $a \to b$ otherwise.

Example 2.7. For any ordinal α , let α be the preorder $\{\beta : \beta < \alpha\}$ under \leq .

Definition 2.8 (Discrete Preorder). We identify any set A with the *discrete* preorder (A, =).

2.2 Monomorphisms and Epimorphisms

Definition 2.9 (Monomorphism). In a category, let $f: A \to B$. Then f is a monomorphism or monic iff, for every object X and morphism $x, y: X \to A$, if fx = fy then x = y.

Definition 2.10 (Epimorphism). In a category, let $f: A \to B$. Then f is a *epimorphism* or *epi* iff, for every object X and morphism $x, y: B \to X$, if xf = yf then x = y.

Proposition 2.11. The composite of two monomorphism is monic.

```
Proof:
```

```
\begin{array}{l} \langle 1 \rangle 1. \ \ \text{Let:} \ \ f: A \rightarrowtail B \ \text{and} \ \ g: B \rightarrowtail C \ \text{be monic.} \\ \langle 1 \rangle 2. \ \ \text{Let:} \ \ x,y: X \to A \\ \langle 1 \rangle 3. \ \ \text{Assume:} \ \ g \circ f \circ x = g \circ f \circ y \\ \langle 1 \rangle 4. \ \ f \circ x = f \circ y \\ \langle 1 \rangle 5. \ \ x = y \\ \hline \\ \end{array}
```

Proposition 2.12. The composite of two epimorphisms is epi.

Proof: Dual. \square

Proposition 2.13. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is monic then f is monic.

PROOF: If $f \circ x = f \circ y$ then gfx = gfy and so x = y. \square

Proposition 2.14. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is epi then g is epi.

Proof: Dual.

Proposition 2.15. A function is a monomorphism in **Set** iff it is injective.

```
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is monic then f is injective.
   \langle 2 \rangle 1. Assume: f is monic.
   \langle 2 \rangle 2. Let: x, y \in A
   \langle 2 \rangle 3. Assume: f(x) = f(y)
   \langle 2 \rangle 4. Let: \overline{x}, \overline{y}: 1 \to A be the functions such that \overline{x}(*) = x and \overline{y}(*) = y
   \langle 2 \rangle 5. \ f \circ \overline{x} = f \circ \overline{y}
   \langle 2 \rangle 6. \ \overline{x} = \overline{y}
       Proof: By \langle 2 \rangle 1.
   \langle 2 \rangle 7. x = y
\langle 1 \rangle 3. If f is injective then f is monic.
   \langle 2 \rangle 1. Assume: f is injective.
   \langle 2 \rangle 2. Let: X be a set and x, y : X \to A.
   \langle 2 \rangle 3. Assume: f \circ x = f \circ y
            Prove: x = y
   \langle 2 \rangle 4. Let: t \in X
            PROVE: x(t) = y(t)
   \langle 2 \rangle 5. f(x(t)) = f(y(t))
   \langle 2 \rangle 6. \ x(t) = y(t)
       Proof: By \langle 2 \rangle 1.
Proposition 2.16. A function is an epimorphism in Set iff it is surjective.
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is an epimorphism then f is surjective.
   \langle 2 \rangle 1. Assume: f is an epimorphism.
   \langle 2 \rangle 2. Let: b \in B
   \langle 2 \rangle 3. Let: x,y:B\to 2 be defined by x(b)=1 and x(t)=0 for all other
                     t \in B, y(t) = 0 for all t \in B.
   \langle 2 \rangle 4. \ x \neq y
   \langle 2 \rangle 5. x \circ f \neq y \circ f
   \langle 2 \rangle 6. There exists a \in A such that f(a) = b.
\langle 1 \rangle 3. If f is surjective then f is an epimorphism.
   \langle 2 \rangle 1. Assume: f is surjective.
   \langle 2 \rangle 2. Let: x, y : B \to X
   \langle 2 \rangle 3. Assume: x \circ f = y \circ f
            PROVE: x = y
   \langle 2 \rangle 4. Let: b \in B
            PROVE: x(b) = y(b)
   \langle 2 \rangle 5. Pick a \in A such that f(a) = b
   \langle 2 \rangle 6. \ x(f(a)) = y(f(a))
   \langle 2 \rangle 7. \ x(b) = y(b)
```

Proposition 2.17. In a preorder, every morphism is monic and epi.

PROOF: Immediate from definitions. \square

2.3 Sections and Retractions

Definition 2.18 (Section, Retraction). In a category, let $r:A\to B$ and $s:B\to A$. Then r is a retraction of s, and s is a section of r, iff $r\circ s=\mathrm{id}_B$.

Proposition 2.19. Every identity morphism is a section and retraction of itself.

PROOF: Immediate from definitions.

Proposition 2.20. Let $r, r': A \to B$ and $s: B \to A$. If r is a retraction of s and r' is a section of s then r = r'.

Proof:

$$r = r \circ id_A$$

 $= r \circ s \circ r'$
 $= id_B \circ r'$
 $= r'$

Proposition 2.21. Let $r_1: A \to B$, $r_2: B \to C$, $s_1: B \to A$ and $s_2: C \to B$. If r_1 is a retraction of s_1 and r_2 is a retraction of s_2 then $r_2 \circ r_1$ is a retraction of $s_1 \circ s_2$.

Proof:

$$r_2 \circ r_1 \circ s_1 \circ s_2 = r_2 \circ \mathrm{id}_B \circ s_2$$

= $r_2 \circ s_2$
= id_C

Proposition 2.22. Every section is monic.

Proof:

 $\langle 1 \rangle 1$. Let: $s: A \to B$ be a section of $r: B \to A$. $\langle 1 \rangle 2$. Let: $x, y: X \to A$ satisfy sx = sy. $\langle 1 \rangle 3$. rsx = rsy $\langle 1 \rangle 4$. x = y

Proposition 2.23. Every retraction is epi.

Proof: Dual.

Proposition 2.24. In Set, every epimorphism has a retraction.

PROOF: By the Axiom of Choice. \Box

Example 2.25. It is not true in general that every monomorphism in any category has a section. nor that every epimorphism in any category has a retraction.

In the category 2, the morphism $0 \le 1$ is monic and epi but has no retraction or section.

2.4 **Isomorphisms**

Definition 2.26 (Isomorphism). In a category C, a morphism $f: A \to B$ is an isomorphism, denoted $f: A \cong B$, iff there exists a morphism $f^{-1}: B \to A$, the inverse of f, such that $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

An automorphism on an object A is an isomorphism between A and itself. We write $Aut_{\mathcal{C}}(A)$ for the set of all automorphisms on A.

Objects A and B are isomorphic, $A \cong B$, iff there exists an isomorphism between them.

Proposition 2.27. The inverse of an isomorphism is unique.

Proof: Proposition 2.20. \square

Proposition 2.28. For any object A we have $id_A : A \cong A$ and $id_A^{-1} = id_A$.

PROOF: Since $id_A \circ id_A = id_A$ by the Unit Laws. \square

Proposition 2.29. If $f : A \cong B$ then $f^{-1} : B \cong A$ and $(f^{-1})^{-1} = f$.

Proof: Immediate from definitions.

Proposition 2.30. If $f:A\cong B$ and $g:B\cong C$ then $g\circ f:A\cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof: From Proposition 2.21. \square

Definition 2.31 (Groupoid). A *groupoid* is a category in which every morphism is an isomorphism.

2.5 **Initial and Terminal Objects**

Definition 2.32 (Initial Object). An object I in a category is *initial* iff, for any object X, there is exactly one morphism $I \to X$.

Example 2.33. The empty set is the initial object in **Set**.

Definition 2.34 (Terminal Object). An object T in a category is terminal iff, for any object X, there is exactly one morphism $X \to T$.

Example 2.35. Every singleton is terminal in **Set**.

Proposition 2.36. If I and J are initial in a category, then there exists a unique isomorphism $I \cong J$.

Proof:

- $\langle 1 \rangle 1$. Let: i be the unique morphism $I \to J$.
- $\langle 1 \rangle 2$. Let: i^{-1} be the unique morphism $J \to I$. $\langle 1 \rangle 3$. $i \circ i^{-1} = \operatorname{id}_J$

PROOF: Since there is only one morphism $J \to J$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_I$

Proof: Since there is only one morphism $I \to I$.
Proposition 2.37. If S and T are terminal in a category, then there exists a unique isomorphism $S \cong T$.
Proof: Dual.

Functors

Definition 3.1 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- for every object $A \in \mathcal{C}$, an object $FA \in \mathcal{D}$
- for any morphism $f: A \to B: \mathcal{C}$, a morphism $Ff: FA \to FB: \mathcal{D}$

such that:

- $Fid_A = id_{FA}$
- $F(g \circ f) = Fg \circ Ff$

Definition 3.2 (Identity Functor). For any category C, the *identity functor* $1_C: C \to C$ is defined by

$$1_{\mathcal{C}}A = A$$
$$1_{\mathcal{C}}f = f$$

Definition 3.3 (Constant Functor). Given categories \mathcal{C} , \mathcal{D} and an object $D \in \mathcal{D}$, the constant functor $K^{\mathcal{C}}D : \mathcal{C} \to \mathcal{D}$ is the functor defined by

$$K^{\mathcal{C}}DC = D$$
$$K^{\mathcal{C}}Df = \mathrm{id}_{D}$$

3.1 Comma Categories

Definition 3.4 (Comma Category). Let $F: \mathcal{C} \to \mathcal{E}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors. The *comma category* $F \downarrow G$ is the category with:

• objects all pairs (C, D, f) where $C \in \mathcal{C}, D \in \mathcal{D}$ and $f : FC \to GD : \mathcal{E}$

• morphisms $(u,v):(C,D,f)\to (C',D',g)$ all pairs $u:C\to C':\mathcal{C}$ and $v:D\to D':\mathcal{D}$ such that the following diagram commutes:

$$FC \xrightarrow{f} GD$$

$$\downarrow_{Fu} \qquad \downarrow_{Gv}$$

$$FC' \xrightarrow{g} GD'$$

Definition 3.5 (Slice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The *slice category* over A, denoted \mathcal{C}/A , is the comma category $1_{\mathcal{C}} \downarrow K^{\mathbf{1}}A$.

Definition 3.6 (Coslice Category). Let C be a category and $A \in C$. The *coslice category* over A, denoted $C \setminus A$, is the comma category $K^1A \downarrow 1_C$.

Definition 3.7 (Pointed Sets). The *category of pointed sets* \mathbf{Set}_* is the coslice category $\mathbf{Set} \setminus 1$.

Part II Group Theory

Semigroups

Definition 4.1 (Semigroup). A *semigroup* consists of a set S and an associative binary operation \cdot on S.

Monoids

Definition 5.1 (Monoid). A *monoid* consists of a semigroup M such that there exists $e \in M$, the *unit*, such that, for all $x \in M$, we have xe = ex = x.

We identify a monoid M with the category with one object whose morphisms are the elements of M, with composition given by \cdot .

Proposition 5.2. The identity in a group is unique.

Proof: Proposition 2.2.

Groups

Definition 6.1 (Group). Let \mathcal{C} be a category with finite products. A *group* (object) in \mathcal{C} consists of an object $G \in \mathcal{C}$ and morphisms

$$m: G^2 \to G, e: 1 \to G, i: G \to G$$

such that the following diagrams commute.

$$G^{3} \xrightarrow{m \times \operatorname{id}_{G}} G^{2}$$

$$\downarrow \operatorname{id}_{G} \times m \qquad \downarrow m$$

$$G^{2} \xrightarrow{m} G$$

$$1 \times G \xrightarrow{e \times \operatorname{id}_{G}} G^{2} \qquad G \times 1 \xrightarrow{\operatorname{id}_{G} \times e} G^{2}$$

$$\stackrel{\cong}{\longrightarrow} \downarrow m \qquad \stackrel{\cong}{\longrightarrow} G$$

$$G \xrightarrow{\Delta} G^{2} \xrightarrow{\operatorname{id}_{G} \times i} G^{2} \qquad G \xrightarrow{\Delta} G^{2} \xrightarrow{i \times \operatorname{id}_{G}} G^{2}$$

$$\downarrow m \qquad \downarrow \qquad \downarrow m$$

$$1 \xrightarrow{e} G \qquad 1 \xrightarrow{e} G$$

Definition 6.2 (Group). We write just 'group' for 'group in **Set**. Thus, a group G consists of a set G and a binary operation $\cdot: G^2 \to G$ such that \cdot is associative, and there exists $e \in G$, the *identity* element of the group, such that:

- For all $x \in G$ we have xe = ex = x
- For all $x \in G$, there exists $x^{-1} \in G$, the *inverse* of x, such that $xx^{-1} = x^{-1}x = e$.

The *order* of a group G, denoted |G|, is the number of elements in G if G is finite; otherwise we write $|G| = \infty$.

Proposition 6.3. The inverse of an element is unique.

PROOF: If i and j are inverses of x then i = ixj = j. \square

Example 6.4. • The *trivial* group is $\{e\}$ under ee = e.

- \mathbb{Z} is a group under addition
- $\bullet \ \mathbb{Q}$ is a group under addition
- $\mathbb{Q} \{0\}$ is a group under multiplication
- \mathbb{R} is a group under addition
- $\mathbb{R} \{0\}$ is a group under multiplication
- \mathbb{C} is a group under addition
- $\mathbb{C} \{0\}$ is a group under multiplication
- $\{-1,1\}$ is a group under multiplication
- For any category \mathcal{C} and object $A \in \mathcal{C}$, we have $\operatorname{Aut}_{\mathcal{C}}(A)$ is a group under $gf = f \circ g$.

For A a set, we call $S_A = \operatorname{Aut}_{\mathbf{Set}}(A)$ the symmetric group or group of permutations of A.

- For $n \geq 3$, the dihedral group D_{2n} consists of the set of rigid motions that map the regular n-gon onto itself under composition.
- Let $SL_2(\mathbb{Z})=\left\{\left(\begin{array}{cc}a&b\\c&d\end{array}\right):a,b,c,d\in\mathbb{Z},ad-bc=1\right\}$ under matrix multiplication.
- The quaternionic group Q_8 is the group

$$\{1, -1, i, -i, j, -j, k, -k\}$$

with multiplication table

Example 6.5. • The only group of order 1 is the trivial group.

• The only group of order 2 is \mathbb{Z}_2 .

- The only group of order 3 is \mathbb{Z}_3 .
- There are exactly two groups of order 4: \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ under (a, b)(c, d) = (ac, bd).

Proposition 6.6 (Cancellation). Let G be a group. Let $a, g, h \in G$. If ag = ah or ga = ha then g = h.

PROOF: If ag = ah then $g = a^{-1}ag = a^{-1}ah = h$. Similarly if ga = ha. \square

Proposition 6.7. Let G be a group and $g, h \in G$. Then $(gh)^{-1} = h^{-1}g^{-1}$.

PROOF: Since $qhh^{-1}q^{-1} = e$. \square

Definition 6.8. Let G be a group. Let $g \in G$. We define $g^n \in G$ for all $n \in \mathbb{Z}$ as follows:

$$g^{0} = e$$

 $g^{n+1} = g^{n}g$ $(n \ge 0)$
 $g^{-n} = (g^{-1})^{n}$ $(n > 0)$

Proposition 6.9. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$g^{m+n} = g^m g^n \ .$$

Proof:

 $\langle 1 \rangle 1$. For all $k \in \mathbb{Z}$ we have $g^{k+1} = g^k g$

 $\langle 2 \rangle 1$. For all $k \ge 0$ we have $g^{k+1} = g^k g$

PROOF: Immediate from definition.

 $\langle 2 \rangle 2$. $g^{-1+1} = g^{-1}g$

PROOF: Both are equal to e.

 $\langle 2 \rangle 3$. For all k > 1 we have $g^{-k+1} = g^{-k}g$

Proof:

$$g^{-k+1} = (g^{-1})^{k-1}$$

$$= (g^{-1})^{k-1}g^{-1}g$$

$$= (g^{-1})^k g$$

$$= g^{-k}g$$

 $\langle 1 \rangle 2$. For all $k \in \mathbb{Z}$ we have $g^{k-1} = g^k g^{-1}$

PROOF: Substitute k = k - 1 above and multiply by g^{-1} .

 $\langle 1 \rangle 3. \ g^{m+0} = g^m g^0$

PROOF: Since $g^m g^0 = g^m e = g^m$.

 $\langle 1 \rangle 4$. If $g^{m+n} = g^m g^n$ then $g^{m+n+1} = g^m g^{n+1}$

Proof:

$$\begin{split} g^{m+n+1} &= g^{m+n}g \\ &= g^m g^n g \\ &= g^m g^{n+1} \end{split} \tag{$\langle 1 \rangle 1$)}$$

$$\langle 1 \rangle 5. \text{ If } g^{m+n} = g^m g^n \text{ then } g^{m+n-1} = g^m g^{n-1}$$
 Proof:
$$g^{m+n-1} g = g^{m+n} \qquad (\langle 1 \rangle 1)$$

$$= g^m g^n$$

$$\therefore g^{m+n-1} = g^m g^n g^{-1}$$

$$= g^m g^{n-1} \qquad (\langle 1 \rangle 2)$$

Proposition 6.10. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$(g^m)^n = g^{mn} .$$

Proof:

 $\langle 1 \rangle 1. \ (g^m)^0 = g^0$

PROOF: Both sides are equal to e.

 $\langle 1 \rangle 2$. If $(g^m)^n = g^{mn}$ then $(g^m)^{n+1} = g^{m(n+1)}$.

Proof:

$$(g^m)^{n+1} = (g^m)^n g^m$$
 (Proposition 6.9)
= $g^{mn} g^m$
= g^{mn+m} (Proposition 6.9)

 $=g^{mn+m}$ $\langle 1 \rangle 3$. If $(g^m)^n=g^{mn}$ then $(g^m)^{n-1}=g^{m(n-1)}$.

Proof:

$$(g^{m})^{n} = g^{mn}$$

$$\therefore (g^{m})^{n-1}g^{m} = g^{mn-m}g^{m}$$
 (Proposition 6.9)
$$\therefore (g^{m})^{n-1} = g^{mn-m}$$
 (Cancellation)

Definition 6.11 (Commute). Let G be a group and $g, h \in G$. We say g and h commute iff gh = hg.

Definition 6.12. Let G be a group. Given $g \in G$ and $A \subseteq G$, we define

$$gA = \{ga : a \in A\}, \qquad Ag = \{ag : a \in A\}.$$

Given sets $A, B \subseteq G$, we define

$$AB = \{ab : a \in A, b \in B\}$$
.

6.1 Order of an Element

Definition 6.13 (Order). Let G be a group. Let $g \in G$. Then g has finite order iff there exists a positive integer n such that $g^n = e$. In this case, the order of g, denoted |g|, is the least positive integer n such that $g^n = e$.

If g does not have finite order, we write $|g| = \infty$.

Proposition 6.14. Let G be a group. Let $g \in G$ and n be a positive integer. If $g^n = e$ then |g| | n.

Proof:

 $\langle 1 \rangle 1$. Let: n = q|g| + d where $0 \le d < |g|$

PROOF: Division Algorithm.

 $\langle 1 \rangle 2$. $g^d = e$

Proof:

$$\begin{split} e &= g^n \\ &= g^{q|g|+d} \\ &= (g^{|g|})^q g^d \\ &= e^q g^d \\ &= g^d \end{split} \tag{Propositions 6.9, 6.10}$$

 $\langle 1 \rangle 3.$ d=0

PROOF: By minimality of |g|.

 $\langle 1 \rangle 4. \ n = q|g|$

Corollary 6.14.1. Let G be a group. Let $g \in G$ have finite order and $n \in \mathbb{Z}$. Then $g^n = e$ if and only if |g| | n.

Proposition 6.15. Let G be a group and $g \in G$. Then $|g| \leq |G|$.

Proof:

 $\langle 1 \rangle 1$. Assume: w.l.o.g. G is finite.

 $\langle 1 \rangle 2$. Pick i, j with $0 \le i < j \le |G|$ such that $g^i = g^j$.

PROOF: Otherwise $g^{\overline{0}}$, g^1 , ..., $g^{|G|}$ would be |G|+1 distinct elements of G.

 $\langle 1 \rangle 3. \ g^{j-i} = e$

 $\langle 1 \rangle 4$. g has finite order and $|g| \leq |G|$

PROOF: Since $|g| \le j - i \le j \le |G|$.

٦

Proposition 6.16. Let G be a group. Let $g \in G$ have finite order. Let $m \in \mathbb{N}$. Then

$$|g^m| = \frac{\operatorname{lcm}(m,|g|)}{m} = \frac{|g|}{\gcd(m,|g|)}$$

Proof: Since for any integer d we have

$$g^{md} = e \Leftrightarrow |g| \mid md$$
 (Corollary 6.14.1)
$$\Leftrightarrow \operatorname{lcm}(m, |g|) \mid md$$

$$\Leftrightarrow \frac{\operatorname{lcm}(m, |g|)}{m} \mid d$$

and so $|g^m| = \frac{\text{lcm}(m,|g|)}{m}$ by Corollary 6.14.1. \square

Corollary 6.16.1. If g has odd order then $|g^2| = |g|$.

Proposition 6.17. Let G be a group. Let $g, h \in G$ have finite order. Assume gh = hg. Then |gh| has finite order and

$$|gh| \mid \operatorname{lcm}(|g|, |h|)$$

PROOF: Since $(qh)^{\operatorname{lcm}(|g|,|h|)} = q^{\operatorname{lcm}(|g|,|h|)}h^{\operatorname{lcm}(|g|,|h|)} = e$. \square

Example 6.18. This example shows that we cannot remove the hypothesis that gh = hg.

In $GL_2(\mathbb{R})$, take

$$g = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \qquad h = \left(\begin{array}{cc} 0 & 1 \\ -1 & -1 \end{array} \right) \ .$$

Then |g| = 4, |h| = 3 and $|gh| = \infty$.

Proposition 6.19. Let G be a group and $g, h \in G$ have finite order. If gh = hgand gcd(|g|, |h|) = 1 then |gh| = |g||h|.

Proof:

 $\langle 1 \rangle 1$. Let: N = |gh| $\langle 1 \rangle 2$. $g^N = (h^{-1})^N$

$$\langle 1 \rangle 2. \ q^N = (h^{-1})^N$$

 $\langle 1 \rangle 3. \ q^{N|g|} = e$

 $\begin{array}{ll} \langle 1 \rangle 4. & |g^N| \mid |g| \\ \langle 1 \rangle 5. & h^{-N|h|} = e \end{array}$

 $\langle 1 \rangle 6. |g^N| |h|$

 $\langle 1 \rangle 7$. $|g^N| = 1$

PROOF: Since gcd(|g|, |h|) = 1.

 $\langle 1 \rangle 8. \ g^N = e$

 $\langle 1 \rangle 9$. |g| | N

 $\langle 1 \rangle 10. \ h^{-N} = e$

 $\langle 1 \rangle 11. |h| |N$

 $\langle 1 \rangle 12$. N = |g||h|

Proof: Using Proposition 6.17.

Proposition 6.20. Let G be a finite group. Assume there is exactly one element $f \in G$ of order 2. Then the product of all the elements of G is f.

PROOF: Let the elements of G be g_1, g_2, \ldots, g_n . Apart from e and f, every element and its inverse are distinct elements of the list. Hence the product of the list is ef = f. \square

Proposition 6.21. Let G be a finite group of order n. Let m be the number of elements of G of order 2. Then n-m is odd.

PROOF: In the list of all elements that are not of order 2, every element and its inverse are distinct except for e. Hence the list has odd length. \square

Corollary 6.21.1. If a finite group has even order, then it contains an element of order 2.

Proposition 6.22. Let G be a group and $a, g \in G$. Then $|aga^{-1}| = |g|$.

PROOF: Since

$$(aga^{-1})^n = e \Leftrightarrow ag^n a^{-1} = e$$
$$\Leftrightarrow g^n = e \qquad \Box$$

Proposition 6.23. Let G be a group and $g, h \in G$. Then |gh| = |hg|.

PROOF: Since $|gh| = |ghgg^{-1}| = |hg|$. \square

Proposition 6.24. Let G be a group of order n. Let k be relatively prime to n. Then every element in G has the form x^k for some x.

 $\langle 1 \rangle 1$. PICK integers a and b such that an + bk = 1.

- $\langle 1 \rangle 2$. Let: $g \in G$
- $\langle 1 \rangle 3.$ $g = (g^b)^k$

Proof:

$$g = g \cdot (g^n)^{-a} \qquad (g^n = e)$$
$$= g^{1-an}$$
$$= g^{bk}$$

6.2 Generators

Definition 6.25 (Generator). Let G be a group and $a \in G$. We say a generates the group iff, for all $x \in G$, there exists an integer n such that $x^n = a$.

Example 6.26. $SL_2(\mathbb{Z})$ is generated by

$$s = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \qquad t = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

Proof:

- $\langle 1 \rangle 1$. Let: $H = \langle s, t \rangle$
- $\langle 1 \rangle 2$. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & q \\ 0 & 1 \end{pmatrix} \in H$.

PROOF: It is t^q .

 $\langle 1 \rangle 3$. For all $q \in \mathbb{Z}$ we have $\begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix} \in H$.

Proof:

$$st^{-q}s^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -q \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 1 & -q \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix}$$

$$\langle 1 \rangle 4$$
.

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & q \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a & qa+b \\ c & qc+d \end{pmatrix}$$

 $\langle 1 \rangle 5$.

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ q & 1 \end{array}\right) = \left(\begin{array}{cc} a+qb & b \\ c+qd & d \end{array}\right)$$

 $\langle 1 \rangle$ 6. For any $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$, if c and d are both nonzero, then there exists $N \in H$ such that the bottom row of MN has one entry the same as M and one entry with smaller absolute value.

PROOF: From $\langle 1 \rangle 4$ and $\langle 1 \rangle 5$ taking q = -1.

 $\langle 1 \rangle 7$. For any $M \in \mathrm{SL}_2(\mathbb{Z})$, there exists $N \in H$ such that MN has a zero on the bottom row.

Proof: Apply $\langle 1 \rangle 6$ repeatedly.

 $\langle 1 \rangle 8$. Any matrix in $SL_2(\mathbb{Z})$ with a zero on the bottom row is in H.

$$\langle 2 \rangle 1. \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \in H$$
PROOF: $\langle 1 \rangle 2$

$$\langle 2 \rangle 2. \left(\begin{array}{cc} -1 & b \\ 0 & -1 \end{array} \right) \in H$$

PROOF: It is $s^2 \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ since $s^2 = -I$.

$$\langle 2 \rangle 3. \left(\begin{array}{cc} a & 1 \\ -1 & 0 \end{array} \right) \in H$$

PROOF: It is $\begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} s$.

$$\langle 2 \rangle 4. \left(\begin{array}{cc} a & -1 \\ 1 & 0 \end{array} \right) \in H$$

PROOF: It is $s^2 \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} s$.

 $\langle 1 \rangle 9$. Every matrix in $\operatorname{SL}_2(\mathbb{Z})$ is in H.

Group Homomorphisms

Definition 7.1 (Homomorphism). Let G and H be groups. A (group) homomorphism $\phi: G \to H$ is a function such that, for all $x, y \in G$,

$$\phi(xy) = \phi(x)\phi(y) .$$

Proposition 7.2. Let G and H be groups with identities e_G and e_H . Let $\phi: G \to H$ be a group homomorphism. Then $\phi(e_G) = e_H$.

PROOF: Since $\phi(e_G) = \phi(e_G e_G) = \phi(e_G) \phi(e_G)$ and so $\phi(e_G) = e_H$ by Cancellation. \square

Proposition 7.3. Let $\phi: G \to H$ be a group homomorphism. For all $x \in G$ we have $\phi(x^{-1}) = \phi(x)^{-1}$.

PROOF: Since $\phi(x)\phi(x^{-1}) = \phi(xx^{-1}) = \phi(e_G) = e_H$.

Proposition 7.4. Let G, H and K be groups. If $\phi: G \to H$ and $\psi: H \to K$ are homomorphisms then $\psi \circ \phi: G \to K$ is a homomorphism.

PROOF: For $x, y \in G$ we have $\psi(\phi(xy)) = \psi(\phi(x)\phi(y)) = \psi(\phi(x))\psi(\phi(y)) \ .$

Proposition 7.5. Let G be a group. Then $id_G : G \to G$ is a group homomorphism.

PROOF: For $x, y \in G$ we have $id_G(xy) = xy = id_G(x)id_G(y)$. \square

Proposition 7.6. Let $\phi: G \to H$ be a group homomorphism. Let $g \in G$ have finite order. Then $|\phi(g)|$ divides |g|.

PROOF: Since $\phi(g)^{|g|} = \phi(g^{|g|}) = e$. \square

Definition 7.7 (Category of Groups). Let **Grp** be the category of groups and group homomorphisms.

Example 7.8. There are 49487365402 groups of order 1024 up to isomorphism.

Proposition 7.9. A group homomorphism $\phi: G \to H$ is an isomorphism in **Grp** if and only if it is bijective.

Proof:

 $\langle 1 \rangle 1$. Assume: ϕ is bijective.

PROVE: ϕ^{-1} is a group homomorphism.

 $\langle 1 \rangle 2$. Let: $h, h' \in H$

$$\langle 1 \rangle 3. \ \phi(\phi^{-1}(hh')) = \phi(\phi^{-1}(h)\phi^{-1}(h'))$$

PROOF: Both are equal to hh'.

$$\langle 1 \rangle 4. \ \phi^{-1}(hh') = \phi^{-1}(h)\phi^{-1}(h')$$

Corollary 7.9.1.

$$D_6 \cong C_3$$

PROOF: The canonical homomorphism $D_6 \to C_3$ is bijective. \square

Corollary 7.9.2.

$$(\mathbb{R}, +) \cong (\{x \in \mathbb{R} : x > 0\}, \cdot)$$

PROOF: The function that maps x to e^x is a bijective homomorphism. \square

Proposition 7.10. The trivial group is the zero object in **Grp**.

PROOF: For any group G, the unique function $G \to \{e\}$ is a group homomorphism, and the only group homomorphism $\{e\} \to G$ maps e to e_G . \square

Proposition 7.11. For any groups G and H, the set $G \times H$ under (g,h)(g',h') = (gg',hh') is the product of G and H in **Grp**.

Proof:

- $\langle 1 \rangle 1$. $G \times H$ is a group.
 - $\langle 2 \rangle 1$. The multiplication is associative.

PROOF: Since $(g_1, h_1)((g_2, h_2)(g_3, h_3)) = ((g_1, h_1)(g_2, h_2))(g_3, h_3) = (g_1g_2g_3, h_1h_2h_3).$

 $\langle 2 \rangle 2$. (e_G, e_H) is the identity.

PROOF: Since $(g, h)(e_G, e_H) = (e_G, e_H)(g, h) = (g, h)$.

 $\langle 2 \rangle 3$. The inverse of (g,h) is (g^{-1},h^{-1}) .

PROOF: Since $(g,h)(g^{-1},h^{-1})=(g^{-1},h^{-1})(g,h)=(e_G,e_H).$

 $\langle 1 \rangle 2$. $\pi_1 : G \times H \to G$ is a group homomorphism.

PROOF: Immediate from definitions.

 $\langle 1 \rangle 3$. $\pi_2 : G \times H \to H$ is a group homomorphism.

PROOF: Immediate from definitions.

 $\langle 1 \rangle 4$. For any group homomorphism $\phi : K \to G$ and $\psi : K \to H$, the function $\langle \phi, \psi \rangle : K \to G \times H$ where $\langle \phi, \psi \rangle (k) = (\phi(k), \psi(k))$ is a group homomorphism.

Proof:

$$\langle \phi, \psi \rangle (kk') = (\phi(kk'), \psi(kk'))$$

$$= (\phi(k)\phi(k'), \psi(k)\psi(k'))$$

$$= (\phi(k), \psi(k))(\phi(k'), \psi(k'))$$

$$= \langle \phi, \psi \rangle (k) \langle \phi, \psi \rangle (k')$$

7.1. SUBGROUPS 35

7.1 Subgroups

Definition 7.12 (Subgroup). Let (G, \cdot) and (H, *) be groups such that H is a subset of G. Then H is a subgroup of G iff the inclusion $i: H \hookrightarrow G$ is a group homomorphism.

Proposition 7.13. *If* (H, *) *is a subgroup of* (G, \cdot) *then* * *is the restriction of* \cdot *to* H.

PROOF: Given $x, y \in H$ we have $x * y = i(x * y) = i(x) \cdot i(y) = x \cdot y$.

Example 7.14. For any group G we have $\{e\}$ is a subgroup of G.

Proposition 7.15. Let G be a group. Let H be a subset of G. Then H is a subgroup of G iff H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$.

Proof:

 $\langle 1 \rangle 1$. If H is a subgroup of G then H is nonempty.

PROOF: Since every group has an identity element and so is nonempty.

- $\langle 1 \rangle 2$. If H is a subgroup of G then, for all $x, y \in H$, we have $xy^{-1} \in H$. PROOF: Easy.
- $\langle 1 \rangle 3$. If H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$, then H is a subgroup of G.
 - $\langle 2 \rangle 1$. Assume: *H* is nonempty.
 - $\langle 2 \rangle 2$. Assume: $\forall x, y \in H.xy^{-1} \in H$
 - $\langle 2 \rangle 3. \ e \in H$

PROOF: Pick $x \in H$. We have $e = xx^{-1} \in H$.

 $\langle 2 \rangle 4. \ \forall x \in H.x^{-1} \in H$

PROOF: Given $x \in H$ we have $x^{-1} = ex^{-1} \in H$.

 $\langle 2 \rangle$ 5. H is closed under the restriction of \cdot

PROOF: Given $x, y \in H$ we have $xy = x(y^{-1})^{-1} \in H$.

 $\langle 2 \rangle 6$. H is a group under the restriction of \cdot

PROOF: Associativity is inherited from G and the existence of an identity element and inverses follows from $\langle 2 \rangle 3$ and $\langle 2 \rangle 4$.

 $\langle 2 \rangle 7$. The inclusion $H \hookrightarrow G$ is a group homomorphism.

PROOF: For $x, y \in H$ we have i(xy) = i(x)i(y) = xy.

Corollary 7.15.1. The intersection of a set of subgroups of G is a subgroup of G.

Corollary 7.15.2. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of H. Then $\phi^{-1}(K)$ is a subgroup of G.

Proof:

```
\langle 1 \rangle 1. \ \phi^{-1}(K) is nonempty.
```

PROOF: Since $e \in \phi^{-1}(K)$.

 $\langle 1 \rangle 2$. Let: $x, y \in \phi^{-1}(K)$

$$\begin{array}{ll} \langle 1 \rangle 3. & \phi(x), \phi(y) \in K \\ \langle 1 \rangle 4. & \phi(x)\phi(y)^{-1} \in K \\ \langle 1 \rangle 5. & \phi(xy^{-1}) \in K \\ \langle 1 \rangle 6. & xy^{-1} \in \phi^{-1}(K) \\ \sqcap \end{array}$$

Corollary 7.15.3. Let $\phi: G \to H$ be a group homomorphism. Let K be a subgroup of G. Then $\phi(K)$ is a subgroup of H.

Proof:

```
\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } x,y \in \phi(K) \\ \langle 1 \rangle 2. & \text{Pick } a,b \in K \text{ such that } x = \phi(a) \text{ and } y = \phi(b) \\ \langle 1 \rangle 3. & xy^{-1} = \phi(ab^{-1}) \\ \langle 1 \rangle 4. & xy^{-1} \in \phi(K) \\ & & & & & & & \\ & & & & & & \\ & & & & & \\ \end{array}
```

Proposition 7.16. Let G be a subgroup of \mathbb{Z} . Then there exists $d \geq 0$ such that $G = d\mathbb{Z}$.

Proof:

 $\langle 1 \rangle 1$. Assume: w.l.o.g. $G \neq \{0\}$ Proof: Since $\{0\} = 0\mathbb{Z}$.

 $\langle 1 \rangle 2$. Let: d be the least positive element of G.

Prove: $G = d\mathbb{Z}$

PROOF: If $n \in G$ then $-n \in G$ so G must contain a positive element.

 $\langle 1 \rangle 3. \ G \subseteq d\mathbb{Z}$

 $\langle 2 \rangle 1$. Let: $n \in G$

 $\langle 2 \rangle 2$. Let: q and r be the integers such that n = qd + r and $0 \le r < d$.

 $\langle 2 \rangle 3. \ r \in G$

PROOF: Since r = n - qd.

 $\langle 2 \rangle 4. \ r = 0$

Proof: By minimality of d.

 $\langle 2 \rangle 5. \ n = qd \in d\mathbb{Z}$

 $\langle 1 \rangle 4. \ d\mathbb{Z} \subseteq G$

7.2 Kernel

Definition 7.17 (Kernel). Let $\phi: G \to H$ be a group homomorphism. The *kernel* of ϕ is

$$\ker \phi = \{ g \in G : \phi(g) = e \} .$$

Proposition 7.18. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a subgroup of G.

Proof: Corollary 7.15.2. \square

Proposition 7.19. Let $\phi: G \to H$ be a group homomorphism. Then the inclusion $i : \ker \phi \hookrightarrow G$ is terminal in the category of pairs $(K, \alpha : K \to G)$ such that $\phi \circ \alpha = 0$.

Proof:

- $\langle 1 \rangle 1. \ \phi \circ i = 0$
- $\langle 1 \rangle 2$. For any group K and homomorphism $\alpha : K \to G$ such that $\phi \circ \alpha = 0$, there exists a unique homomorphism $\beta: K \to \ker \phi$ such that $i \circ \beta = \alpha$.

Proposition 7.20. Let $\phi: G \to H$ be a group homomorphism. Then the following are equivalent:

- 1. ϕ is monic.
- 2. $\ker \phi = \{e\}$
- 3. ϕ is injective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is monic.
 - $\langle 2 \rangle 2$. Let: $i : \ker \phi \hookrightarrow G$, $j : \{e\} \hookrightarrow \ker \phi \hookrightarrow G$ be the inclusions.
 - $\langle 2 \rangle 3. \ \phi \circ i = \phi \circ j$
 - $\langle 2 \rangle 4. \ i = j$
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: $\ker \phi = \{e\}$
 - $\langle 2 \rangle 2$. Let: $x, y \in G$
 - $\langle 2 \rangle 3$. Assume: $\phi(x) = \phi(y)$

 - $\langle 2 \rangle 4. \quad \phi(xy^{-1}) = e$ $\langle 2 \rangle 5. \quad xy^{-1} \in \ker \phi$ $\langle 2 \rangle 6. \quad xy^{-1} = e$

 - $\langle 2 \rangle 7. \ x = y$
- $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

Proof: Easy.

Proposition 7.21. A group homomorphism is an epimorphism if and only if it is surjective.

Inner Automorphisms 7.3

Proposition 7.22. Let G be a group and $g \in G$. The function $\gamma_g : G \to G$ defined by $\gamma_g(a) = gag^{-1}$ is an automorphism on G.

Proof:

 $\langle 1 \rangle 1$. γ_q is a homomorphism.

Proof:

$$\gamma_g(ab) = gabg^{-1}$$

$$= gag^{-1}gbg^{-1}$$

$$= \gamma_g(a)\gamma_g(b)$$

 $\langle 1 \rangle 2$. γ_q is injective.

PROOF: By Cancellation.

 $\langle 1 \rangle 3$. γ_q is surjective.

PROOF: Given $b \in G$, we have $\gamma_g(g^{-1}bg) = b$.

Definition 7.23 (Inner Automorphism). Let G be a group. An *inner automorphism* on G is a function of the form $\gamma_g(a) = gag^{-1}$ for some $g \in G$. We write Inn(G) for the set of inner automorphisms of G.

Proposition 7.24. Let G be a group. The function $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ that maps g to γ_g is a group homomorphism.

PROOF: Since
$$\gamma_{qh}(a) = ghah^{-1}g^{-1} = \gamma_q(\gamma_h(a))$$
. \square

Corollary 7.24.1. Inn(G) is a subgroup of $Aut_{Grp}(G)$.

7.4 Direct Products

Definition 7.25 (Direct Product). The *direct product* of groups G and H is their product in Grp.

7.5 Free Groups

Proposition 7.26. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G,j) where G is a group and j is a function $A \to G$, with morphisms $f:(G,j)\to (H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

- $\langle 1 \rangle 1$. Let: W(A) be the set of words in the alphabet whose elements are the elements of A together with $\{a^{-1}: a \in A\}$.
- $\langle 1 \rangle$ 2. Let: $r: W(A) \to W(A)$ be the function that, given a word w, removes the first pair of letters of the form aa^{-1} or $a^{-1}a$; if there is no such pair, then r(w) = w.
- $\langle 1 \rangle 3$. Let us say that a word w is a reduced word iff r(w) = w.
- $\langle 1 \rangle 4$. For any word w of length n, we have $r^{\lceil \frac{n}{2} \rceil}(w)$ is a reduced word. PROOF: Since we cannot remove more than n/2 pairs of letters from w.

(1)5. Let: $R:W(A) \to W(A)$ be the function $R(w) = r^{\lceil \frac{n}{2} \rceil}(w)$, where n is the length of w.

- $\langle 1 \rangle 6$. Let: F(A) be the set of reduced words.
- $\langle 1 \rangle 7$. Define $\cdot : F(A)^2 \to F(A)$ by $w \cdot w' = R(ww')$

 $\langle 1 \rangle 8$. · is associative.

PROOF: Both $w_1 \cdot (w_2 \cdot w_3)$ and $(w_1 \cdot w_2) \cdot w_3$ are equal to $R(w_1 w_2 w_3)$.

- $\langle 1 \rangle 9$. The empty word is the identity element in F(A)
- $\langle 1 \rangle 10$. The inverse of $a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}$ is $a_n^{\mp 1} \cdots a_2^{\mp 1} a_1^{\mp 1}$. $\langle 1 \rangle 11$. Let: $j: A \to F(A)$ be the function that maps a to the word a of length
- $\langle 1 \rangle 12$. Let: G be any group and $k: A \to G$ any function.
- (1)13. The only morphism $f: (F(A), j) \to (G, k)$ in \mathcal{F}^A is $f(a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}) = k(a_1)^{\pm 1} k(a_2)^{\pm 1} \cdots k(a_n)^{\pm 1}$.

Definition 7.27 (Free Group). For any set A, the free group on A is the initial object (F(A), i) in \mathcal{F}^A .

Proposition 7.28. $i: A \to F(A)$ is injective.

Proof:

- $\langle 1 \rangle 1$. Let: $x, y \in A$
- $\langle 1 \rangle 2$. Assume: $x \neq y$

PROVE: $i(x) \neq i(y)$

- $\langle 1 \rangle 3$. Let: $f: A \to C_2$ be the function that maps x to 0 and all other elements
- $\langle 1 \rangle 4$. Let: $\phi : F(A) \to C_2$ be the group homomorphism such that $f = \phi \circ i$.
- $\langle 1 \rangle 5. \ f(x) \neq f(y)$
- $\langle 1 \rangle 6. \ \phi(i(x)) \neq \phi(i(y))$
- $\langle 1 \rangle 7. \ i(x) \neq i(y)$

Proposition 7.29.

$$F(0) \cong \{e\}$$

PROOF: For any set A, the unique group homomorphism $\{e\} \to A$ makes the following diagram commute.

Proposition 7.30. The free group on 1 is \mathbb{Z} with the injection mapping 0 to 1.

PROOF: Given any group G and function $a:1\to G$, the required unique homomorphism $\phi: \mathbb{Z} \to G$ is defined by $\phi(n) = a(0)^n$. \square

Proposition 7.31. For any sets A and B, we have that F(A + B) is the coproduct of F(A) and F(B) in **Grp**.

Proof:

- $\langle 1 \rangle 1$. Let: $i_A: A \to F(A), i_B: B \to F(B), j: A+B \to F(A+B)$ be the canonical injections.
- $\langle 1 \rangle$ 2. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 3.$ Let: G be any group and $f: F(A) \to G, \ g: F(B) \to G$ any group homomorphisms.
- $\langle 1 \rangle 4$. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.
- $\langle 1 \rangle$ 5. Let: $k: F(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h.$
- $\langle 1 \rangle$ 6. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.
- $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Definition 7.32 (Subgroup Generated by a Group). Let G be a group and A a subset of G. Let $\phi: F(A) \to G$ be the unique group homomorphism such that $\phi(a) = a$ for all $a \in A$. The subgroup *generated* by A is

$$\langle A \rangle := \operatorname{im} \phi$$

Proposition 7.33. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the set of all elements of the form $a_1^{\pm 1} a_2^{\pm 1} \cdots a_n^{\pm 1}$ (where $n \geq 0$) such that $a_1, \ldots, a_n \in A$.

PROOF: Immediate from definitions.

Corollary 7.33.1. Let G be a group and $g \in G$. Then

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \} .$$

Proposition 7.34. Let G be a group and A a subset of G. Then $\langle A \rangle$ is the intersection of all the subgroups of G that include A.

Proof: Easy.

Definition 7.35 (Finitely Generated). Let G be a group. Then G is *finitely generated* iff there exists a finite subset A of G such that $G = \langle A \rangle$.

Proposition 7.36. Every subgroup of a finitely generated free group is free.

PROOF: TODO.

Proposition 7.37. F(2) includes subgroups isomorphic to the free group on arbitrarily many generators.

PROOF: TODO

Proposition 7.38.

$$[F(2), F(2)] \cong F(\mathbb{Z})$$

PROOF: TODO

7.6 Normal Subgroups

Definition 7.39 (Normal Subgroup). A subgroup N of G is *normal* iff, for all $g \in G$ and $n \in N$, we have $gng^{-1} \in N$.

Example 7.40. Every subgroup of Q_8 is normal.

Proposition 7.41. Let G be a group and N a subgroup of G. Then the following are equivalent.

- 1. N is normal.
- 2. $\forall g \in G.gNg^{-1} \subseteq N$
- 3. $\forall g \in G.gNg^{-1} = N$
- 4. $\forall g \in G.gN \subseteq Ng$
- 5. $\forall g \in G.gN = Ng$

Proof:

 $\langle 1 \rangle 1$. $1 \Leftrightarrow 2$

PROOF: Immediate from definitions.

 $\langle 1 \rangle 2$. $2 \Rightarrow 3$

PROOF: If 2 holds then we have $gNg^{-1} \subseteq N$ and $g^{-1}Ng \subseteq N$ hence $N = gNg^{-1}$.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 2$

PROOF: Trivial.

 $\langle 1 \rangle 4$. $2 \Leftrightarrow 4$

Proof: Easy.

 $\langle 1 \rangle 5$. $3 \Leftrightarrow 5$

Proof: Easy.

Proposition 7.42. Let $\phi: G \to H$ be a group homomorphism. Then $\ker \phi$ is a normal subgroup of G.

PROOF: Given $g \in G$ and $n \in \ker \phi$ we have

$$\phi(gng^{-1}) = \phi(g)\phi(n)\phi(g)^{-1}$$
$$= \phi(g)\phi(g)^{-1}$$
$$= e$$

and so $qnq^{-1} \in \ker \phi$. \square

7.7 Quotient Groups

Definition 7.43. Let G be a group. Let \sim be an equivalence relation on G. Then we say that \sim is *compatible* with the group operation on G iff, for all $a, a', g \in G$, if $a \sim a'$ then $ga \sim ga'$ and $ag \sim a'g$.

Proposition 7.44. Let G be a group. Let \sim be an equivalence relation on G. Then there exists an operation $\cdot : (G/\sim)^2 \to G/\sin$ such that

$$\forall a, b \in G.[a][b] = [ab]$$

iff \sim is compatible with the group operation on G. In this case, G/\sim is a group under \cdot and the canonical function $\pi: G \to G/\sim$ is a group homomorphism, and is universal with respect to group homomorphisms $\phi: G \to G'$ such that if $a \sim a'$ then $\phi(a) = \phi(a')$.

Proof: Easy. \square

Definition 7.45 (Quotient Group). Let G be a group. Let \sim be an equivalence relation on G that is compatible with the group operation on G. Then G/\sim is the quotient group of G by \sim under [a][b]=[ab].

Proposition 7.46. Let G be a group and H a subgroup of G. Then H is normal if and only if there exists a group K and homomorphism $\phi: G \to K$ such that $H = \ker \phi$.

PROOF: One direction is given by Proposition 7.42. For the other direction, take K = G/H and ϕ to be the canonical map $G \to G/H$. \square

Definition 7.47 (Modular Group). The modular group $PSL_2(\mathbb{Z})$ is $SL_2(\mathbb{Z})/\{I, -I\}$.

Proposition 7.48.
$$\operatorname{PSL}_2(\mathbb{Z})$$
 is generated by $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$.

PROOF: By Example 6.26.

Proposition 7.49 (Roger Alperin). $PSL_2(\mathbb{Z})$ is presented by $(x, y|x^2, y^3)$.

Proof:

7.7. QUOTIENT GROUPS

$$\langle 1 \rangle 1. \text{ Let: } x = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right)$$

$$\langle 1 \rangle 2. \text{ Let: } y = \left(\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array} \right)$$

$$\langle 1 \rangle 2$$
. Let: $y = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$

 $\langle 1 \rangle 3$. Define an action of $PSL_2(\mathbb{Z})$ on $\mathbb{R} - \mathbb{Q}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} r = \frac{ar+b}{cr+d} .$$

 $\langle 2 \rangle 1$. Given $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{PSL}_2(\mathbb{Z})$ and r irrational we have $\frac{ar+b}{cr+d}$ is irrational.

 $\langle 3 \rangle 1$. Assume: for a contradiction $\frac{ar+b}{cr+d} = \frac{p}{q}$ where p and q are integers

$$\langle 3 \rangle 2$$
. $aqr + bq = cpr + dp$

$$\langle 3 \rangle 3$$
. $(aq - cp)r = dp - bq$

$$\langle 3 \rangle 4$$
. $aq = cp = dp - bq = 0$

$$\langle 3 \rangle 5$$
. $adq - cdp = 0$

$$\langle 3 \rangle 6$$
. $cdp - cbq = 0$

$$\langle 3 \rangle 7$$
. $(ad - cb)q = 0$

PROOF: Since ad - cb = 1.

$$\langle 3 \rangle 8. \ \ q = 0$$

$$\langle 3 \rangle 9$$
. Q.E.D.

PROOF: This contradicts $\langle 3 \rangle 1$.

$$\langle 2 \rangle 2$$
. $-Ir = r$

PROOF: Since $-Ir = \frac{-r}{-1} = r$. $\langle 2 \rangle 3$. Given $A, B \in \mathrm{PSL}_2(\mathbb{Z})$ we have A(Br) = (AB)r.

Proof:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{bmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} r \end{bmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \frac{er + f}{gr + h}$$

$$= \frac{a \frac{er + f}{gr + h} + b}{c \frac{er + f}{gr + h} + d}$$

$$= \frac{a(er + f) + b(gr + h)}{c(er + f) + d(gr + h)}$$

$$= \frac{(ae + bg)r + (af + bh)}{(ce + dg)r + (cf + dh)}$$

$$= \begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} r$$

$$= \begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{bmatrix} r$$

 $\langle 1 \rangle 4$.

$$yr = 1 - \frac{1}{r}$$

 $\langle 1 \rangle 5$.

$$y^{-1}r = \frac{1}{1-r}$$

PROOF: Since
$$y^{-1} = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$

 $\langle 1 \rangle 6$.

PROOF: Since
$$yx = \begin{pmatrix} -1 & -1 \\ 0 & -1 \end{pmatrix}$$
.

 $\langle 1 \rangle 7$.

$$y^{-1}xr = \frac{r}{1+r}$$

PROOF: Since $y^{-1}x = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

- $\langle 1 \rangle 8$. If r > -1 is positive then yxr is positive.
- $\langle 1 \rangle 9$. If r is positive then $y^{-1}xr$ is positive.
- $\langle 1 \rangle 10$. If r < -1 then $y^{-1}xr$ is positive.
- $\langle 1 \rangle 11$. If r is negative then yr is positive.
- $\langle 1 \rangle 12$. If r is negative then $y^{-1}r$ is positive.
- $\langle 1 \rangle 13$. No product of the form

$$(y^{\pm 1}x)(y^{\pm 1}x)\cdots(y^{\pm 1}x)$$

with one or more factors can equal the identity.

PROOF: If the last factor is (yx), then the product maps numbers in (-1,0) to positive numbers. If the last factor is $(y^{-1}x)$, then the product maps numbers < -1 to positive numbers.

 $\langle 1 \rangle 14$. No product of the form

$$(y^{\pm 1}x)(y^{\pm 1}x)\cdots(y^{\pm 1}x)y^{\pm 1}$$

with one or more factors can equal the identity.

PROOF: The product maps negative numbers to positive numbers.

$$\langle 1 \rangle 15$$
. PSL₂(\mathbb{Z}) is presented by $(x, y | x^2, y^3)$.

Corollary 7.49.1. $PSL_2(\mathbb{Z})$ is the coproduct of C_2 and C_3 in Grp.

Theorem 7.50. Every group homomorphism $\phi: G \to H$ may be decomposed as

$$G \longrightarrow G/\ker \phi \stackrel{\cong}{\longrightarrow} \operatorname{im} \phi \longrightarrow H$$

Proof: Easy. \square

Corollary 7.50.1 (First Isomorphism Theorem). Let $\phi : G \to H$ be a surjective group homomorphism. Then $H \cong G / \ker \phi$.

Proposition 7.51. Let H_1 be a normal subgroup of G_1 and H_2 a normal subgroup of G_2 . Then $H_1 \times H_2$ is a normal subgroup of $G_1 \times G_2$, and

$$\frac{G_1 \times G_2}{H_1 \times H_2} \cong \frac{G_1}{H_1} \times \frac{G_2}{H_2} \ .$$

PROOF: $\pi \times \pi: G_1 \times G_2 \twoheadrightarrow G_1/H_1 \times G_2/H_2$ is a surjective homomorphism with kernel $H_1 \times H_2$. \square

45

Example 7.52.

$$\mathbb{R}/\mathbb{Z} \cong S^1$$

PROOF: Map a real number r to $(\cos r, \sin r)$. The result is a surjective group homomorphism with kernel \mathbb{Z} . \sqcup

Proposition 7.53. Let H be a normal subgroup of a group G. For every subgroup K of G that includes H, we have H is a normal subgroup of K, and K/H is a subgroup of G/H. The mapping

 $u: \{subgroups \ of \ G \ including \ H\} \rightarrow \{subgroups \ of \ G/H\}$

with u(K) = K/H is a poset isomorphism.

PROOF:

- $\langle 1 \rangle 1$. If K is a subgroup of G that includes H then H is normal in K.
- $\langle 1 \rangle 2$. If K is a subgroup of G that includes H then K/H is a subgroup of G/H.
- $\langle 1 \rangle 3$. If $H \subseteq K_1 \subseteq K_2$ then $K_1/H \subseteq K_2/H$.
- $\langle 1 \rangle 4$. If $K_1/H = K_2/H$ then $K_1 = K_2$
 - $\langle 2 \rangle 1$. Assume: $K_1/H = K_2/H$
 - $\langle 2 \rangle 2$. $K_1 \subseteq K_2$
 - $\langle 3 \rangle 1$. Let: $k \in K_1$
 - $\langle 3 \rangle 2. \ kH \in K_2/H$
 - $\langle 3 \rangle 3$. PICK $k' \in K_2$ such that kH = k'H

 - $\langle 3 \rangle 4. \ kk'^{-1} \in H$ $\langle 3 \rangle 5. \ kk'^{-1} \in K_2$
 - $\langle 3 \rangle 6. \ k \in K_2$
 - $\langle 2 \rangle 3$. $K_2 \subseteq K_1$

Proof: Similar.

- $\langle 1 \rangle$ 5. For any subgroup L of G/H, there exists a subgroup K of G that includes H such that L = K/H.
 - $\langle 2 \rangle 1$. Let: L be a subgroup of G/H.
 - $\langle 2 \rangle 2$. Let: $K = \{k \in G : kH \in L\}$
 - $\langle 2 \rangle 3$. K is a subgroup of G.

PROOF: Given $k, k' \in K$ we have $kH, k'H \in L$ hence $kk'^{-1}H \in L$ and so $kk'^{-1} \in K$.

 $\langle 2 \rangle 4$. $H \subseteq K$

PROOF: For all $h \in H$ we have $hH = H \in L$.

 $\langle 2 \rangle 5$. L = K/H

PROOF: By definition.

Proposition 7.54 (Third Isomorphism Theorem). Let H be a normal subgroup of a group G. Let N be a subgroup of G that includes H. Then N/H is normal in G/H if and only if N is normal in G, in which case

$$\frac{G/H}{N/H}\cong \frac{G}{N}$$

Proof:

- $\langle 1 \rangle 1$. If N/H is normal in G/H then N is normal in G.
 - $\langle 2 \rangle 1$. Assume: N/H is normal in G/H.
 - $\langle 2 \rangle 2$. Let: $g \in G$ and $n \in N$.
 - $\langle 2 \rangle 3. \ gng^{-1}H \in N/H$
 - $\langle 2 \rangle 4$. Pick $n' \in N$ such that $gng^{-1}H = n'H$
 - $\langle 2 \rangle 5$. $gng^{-1}n'^{-1} \in H$
 - $\langle 2 \rangle 6. \ gng^{-1}n'^{-1} \in N$ $\langle 2 \rangle 7. \ gng^{-1} \in N$
- $\langle 1 \rangle 2$. If N is normal in G then N/H is normal in G/H and $(G/H)/(N/H) \cong$ G/N.
 - $\langle 2 \rangle 1$. Assume: N is normal in G.
 - $\langle 2 \rangle 2$. Let: $\phi: G/H \to G/N$ be the homomorphism $\phi(gH) = gN$
 - $\langle 3 \rangle 1$. If gH = g'H then gN = g'N

PROOF: If $gg'^{-1} \in H$ then $gg'^{-1} \in N$.

 $\langle 3 \rangle 2. \ \phi((gH)(g'H)) = \phi(gH)\phi(g'H)$

PROOF: Both are gg'N.

- $\langle 2 \rangle 3$. ϕ is surjective.
- $\langle 2 \rangle 4$. $\ker \phi = N/H$
- $\langle 2 \rangle 5. \ (G/H)/(N/H) \cong G/N$

PROOF: By the First Isomorphism Theorem.

Proposition 7.55 (Second Isomorphism Theorem). Let H and K be subgroups of a group G. Assume that H is normal in G. Then:

- 1. HK is a subgroup of G, and H is normal in HK.
- 2. $H \cap K$ is normal in K, and

$$\frac{HK}{H} \cong \frac{K}{H \cap K} \ .$$

Proof:

 $\langle 1 \rangle 1$. HK is a subgroup of G.

PROOF: Since $hkh'k' = hh'(h'^{-1}kh')k' \in HK$.

- $\langle 1 \rangle 2$. H is normal in HK.
- $\langle 1 \rangle 3$. $H \cap K$ is normal in K and $HK/H \cong K/(H \cap K)$

PROOF: The function that maps k to kH is a surjective homomorphism $K \rightarrow$ HK/H with kernel $H \cap K$. Surjectivity follows because $hkH = hkh^{-1}H$.

See also Proposition 7.70 for a result that holds even if H is not normal.

7.8 Cosets

Proposition 7.56. Let G be a group. Let \sim be an equivalence relation on G such that, for all $a, b, g \in G$, if $a \sim b$ then $ga \sim gb$. Let $H = \{h \in G : h \sim e\}$. 7.8. COSETS 47

Then H is a subgroup of G and, for all $a, b \in G$, we have

$$a \sim b \Leftrightarrow a^{-1}b \in H \Leftrightarrow aH = bH$$
.

```
Proof:
```

```
\langle 1 \rangle 1. \ e \in H
\langle 1 \rangle 2. For all x, y \in H we have xy^{-1} \in H.
   \langle 2 \rangle 1. Assume: x \sim e and y \sim e.
   \langle 2 \rangle 2. e \sim y^{-1}
       PROOF: Since yy^{-1} \sim ey^{-1}.
   \langle 2 \rangle 3. \ xy^{-1} \sim e
       Proof: Since xy^{-1} \sim ey^{-1} \sim e.
\langle 1 \rangle 3. If a \sim b then a^{-1}b \in H.
   PROOF: If a \sim b then a^{-1}b \sim a^{-1}a = e.
\langle 1 \rangle 4. If a^{-1}b \in H then aH = bH.
   \langle 2 \rangle 1. Assume: a^{-1}b \in H
   \langle 2 \rangle 2. bH \subseteq aH
       PROOF: For any h \in H we have bh = aa^{-1}bh \in aH.
   \langle 2 \rangle 3. aH \subseteq bH
       PROOF: Similar since b^{-1}a \in H.
\langle 1 \rangle 5. If aH = bH then a \sim b.
   \langle 2 \rangle 1. Assume: aH = bH
   \langle 2 \rangle 2. Pick h \in H such that a = bh.
   \langle 2 \rangle 3. \ b^{-1}a = h
   \langle 2 \rangle 4. \ b^{-1}a \in H
   \langle 2 \rangle 5. \ b^{-1}a \sim e
   \langle 2 \rangle 6. a \sim b
       PROOF: a = bb^{-1}a \sim be = b.
```

Definition 7.57 (Coset). Let G be a group and H a subgroup of G. A *left coset* of H is a set of the form aH for $a \in G$. A *right coset* of H is a set of the form Ha for some $a \in G$.

We write G/H for the set of all left cosets of H, and $G\backslash H$ for the set of all right cosets of H.

Proposition 7.58.

$$G/H \cong G \backslash H$$

PROOF: The function that maps aH to Ha^{-1} is a bijection. \square

Proposition 7.59. Let G be a group and H a subgroup of G. Define \sim_H on G by: $a \sim b$ iff $a^{-1}b \in H$. This defines a one-to-one correspondence between the subgroups of G and the equivalence relations \sim on G such that, for all $a,b,g \in G$, if $a \sim b$, then $ga \sim gb$. The equivalence class of a is aH.

Proof:

 $\langle 1 \rangle 1$. For any subgroup H, we have \sim_H is an equivalence relation on G.

 $\langle 2 \rangle 1$. \sim is reflexive.

PROOF: For any $a \in G$ we have $a^{-1}a = e \in H$.

 $\langle 2 \rangle 2$. \sim is symmetric.

PROOF: If $a^{-1}b \in H$ then $b^{-1}a \in H$.

 $\langle 2 \rangle 3$. \sim is transitive.

PROOF: If $a^{-1}b \in H$ and $b^{-1}c \in H$ then $a^{-1}c = (a^{-1}b)(b^{-1}c) \in H$.

 $\langle 1 \rangle 2$. If $a \sim_H b$ then $ga \sim_H gb$.

PROOF: If $a^{-1}b \in H$ then $(ga)^{-1}(gb) = a^{-1}g^{-1}gb = a^{-1}b \in H$.

 $\langle 1 \rangle 3$. For any equivalence relation \sim on G such that, whenever $a \sim b$, then $ga \sim gb$, there exists a subgroup H such that $\sim = \sim_H$.

Proof: Proposition 7.56.

 $\langle 1 \rangle 4$. The \sim_H -equivalence class of a is aH.

Proof:

$$a \sim b \Leftrightarrow a^{-1}b \in H$$
$$\Leftrightarrow \exists h \in H.a^{-1}b = h$$
$$\Leftrightarrow \exists h \in H.b = aH$$
$$\Leftrightarrow b \in aH$$

Proposition 7.60. Let G be a group and H a subgroup of G. Define \sim_H on G by: $a \sim b$ iff $ab^{-1} \in H$. This defines a one-to-one correspondence between the subgroups of G and the equivalence relations \sim on G such that, for all $a, b, g \in G$, if $a \sim b$, then $ag \sim bg$. The equivalence class of a is Ha.

Proof: Similar.

Proposition 7.61. Let G be a group and H be a subgroup of G. Define \sim_L and \sim_R on G by:

$$a \sim_L b \Leftrightarrow a^{-1}b \in H, \qquad a \sim_R b \Leftrightarrow ab^{-1} \in H.$$

Then $\sim_L = \sim_R$ if and only if H is normal.

Proof:

- $\langle 1 \rangle 1$. If $\sim_L = \sim_R$ then H is normal.
 - $\langle 2 \rangle 1$. Assume: $\sim_L = \sim_R$
 - $\langle 2 \rangle 2$. Let: $h \in H$ and $g \in G$
 - $\langle 2 \rangle 3. \ g \sim_L gh^{-1}$
 - $\langle 2 \rangle 4$. $g \sim_R gh^{-1}h$
 - $\langle 2 \rangle 5. \ ghg^{-1} \in H$
- $\langle 1 \rangle 2$. If H is normal then $\sim_L = \sim_R$.
 - $\langle 2 \rangle 1$. Assume: H is normal.
 - $\langle 2 \rangle 2$. If $a \sim_L b$ then $a \sim_R b$.
 - $\langle 3 \rangle 1$. Assume: $a \sim_L b$
 - $\langle 3 \rangle 2. \ a^{-1}b \in H$
 - $\langle 3 \rangle 3$. $aa^{-1}ba^{-1} \in H$
 - $\langle 3 \rangle 4. \ ba^{-1} \in H$

7.8. COSETS 49

 $\langle 3 \rangle$ 5. $a \sim_R b$ $\langle 2 \rangle$ 3. If $a \sim_R b$ then $a \sim_L b$. PROOF: Similar.

Corollary 7.61.1. Let G be a group and H be a normal subgroup of G. Define \sim on G by $a \sim b$ iff $a^{-1}b \in H$. Then G/\sim is a group under [a][b]=[ab].

Definition 7.62 (Quotient Group). Let G be a group and H be a normal subgroup of G. The quotient group G/H is G/\sim where $a\sim b$ iff $a^{-1}b\in H$, under [a][b]=[ab] or (aH)(bH)=abH.

Corollary 7.62.1. Let H be a normal subgroup of a group G. For every group homomorphism $\phi: G \to G'$ such that $H \subseteq \ker \phi$, there exists a unique group homomorphism $\overline{\phi}: G/H \to G'$ such that the following diagram commutes.

Proposition 7.63. $\mathbb{Z}/n\mathbb{Z}$ has exactly n elements.

PROOF: Every integer is congruent to one of $0, 1, \ldots, n-1$ by the division algorithm, and no two of them are conguent to one another, since if $0 \le i < j < n$ then 0 < j - i < n. \square

Proposition 7.64. Let m and n be integers with n > 0. The order of m in $\mathbb{Z}/n\mathbb{Z}$ is $\frac{n}{\gcd(m,n)}$.

PROOF: By Proposition 6.16 since the order of 1 is n. \square

Proposition 7.65. The integer m generates $\mathbb{Z}/n\mathbb{Z}$ if and only if gcd(m,n)=1.

Proof: By Proposition 7.64.

Corollary 7.65.1. If p is prime then every non-zero element in $\mathbb{Z}/p\mathbb{Z}$ is a generator.

Proposition 7.66.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z})\cong S_3$$

PROOF: Every permutation of $\{(1,0),(0,1),(1,1)\}$ gives an automorphism of $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}$. \square

Example 7.67. Not all monomorphisms split in Grp.

Define $\phi: \mathbb{Z}/3\mathbb{Z} \to S_3$ by

$$\phi(0) = id_3, \qquad \phi(1) = (1 \ 3 \ 2), \qquad \phi(2) = (1 \ 2 \ 3).$$

Then ϕ is monic but has no retraction.

For if $r: S_3 \to \mathbb{Z}/3\mathbb{Z}$ is a retraction, then we would have

$$r(1\ 2) + r(2\ 3) = 1,$$
 $r(2\ 3) + r(1\ 2) = 2$

which is impossible.

Proposition 7.68. Let G be a group, H a subgroup of G, and $g \in G$. The function that maps h to gh is a bijection $H \cong gH$.

PROOF: By Cancellation. \square

Proposition 7.69. Let G be a group, H a subgroup of G, and $g \in G$. The function that maps h to hg is a bijection $H \cong Hg$.

PROOF: By Cancellation. \square

Proposition 7.70. Let H and K be finite subgroups of a group G. Then

$$|HK| = \frac{|H||K|}{|H \cap K|} .$$

Proof:

- $\langle 1 \rangle 1$. Let: $f : \{ hK : h \in H \} \to H/(H \cap K)$ be the function $f(hK) = h(H \cap K)$ Proof: This is well-defined because if hK = h'K then $h^{-1}h' \in H \cap K$ so $h(H \cap K) = h'(H \cap K)$.
- $\langle 1 \rangle 2$. f is injective.

PROOF: If $h(H \cap K) = h'(H \cap K)$ then hK = h'K.

 $\langle 1 \rangle 3$. f is surjective.

PROOF: Clear.

 $\langle 1 \rangle 4$.

$$\frac{|HK|}{|K|} = \frac{|H|}{|H \cap K|}$$

7.9 Congruence

Definition 7.71 (Congruence). Given integers a, b, n with n positive, we say a is congruent to b modulo n, and write $a \equiv b \pmod{n}$, iff $a + n\mathbb{Z} = b + n\mathbb{Z}$ in $\mathbb{Z}/n\mathbb{Z}$.

Proposition 7.72. Given integers a, b, n with n positive, we have $a \equiv b \pmod{n}$ iff $n \mid a - b$.

PROOF: By Proposition 7.56.

Proposition 7.73. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $a + b \equiv a' + b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid (a' + b') - (a + b)$. \square

Proposition 7.74. If $a \equiv a' \mod n$ and $b \equiv b' \mod n$ then $ab \equiv a'b' \mod n$.

PROOF: If $n \mid a' - a$ and $n \mid b' - b$ then $n \mid a'b' - ab = a'(b' - b) + (a' - a)b$. \square

7.10 Cyclic Groups

Definition 7.75 (Cyclic Group). The *cyclic* groups are \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ for positive integers n.

Proposition 7.76. If m and n are positive integers with gcd(m,n) = 1 then $C_{mn} \cong C_m \times C_n$.

PROOF: The function that maps x to $(x \mod m, x \mod n)$ is an isomorphism. \square

Proposition 7.77. Let G be a group and $g \in G$. Then $\langle g \rangle$ is cyclic.

PROOF: If g has finite order then $\langle g \rangle \cong C_{|g|}$, otherwise $\langle g \rangle \cong \mathbb{Z}$. \square

Proposition 7.78. Every finitely generated subgroup of \mathbb{Q} is cyclic.

Proof:

```
\langle 1 \rangle 1. Let: G = \langle a_1/b, \dots, a_n/b \rangle where a_1, \dots, a_n, b are integers with b > 0 \langle 1 \rangle 2. Let: a = \gcd(a_1, \dots, a_n) \langle 1 \rangle 3. G = \langle a/b \rangle
```

Corollary 7.78.1. \mathbb{Q} is not finitely generated.

7.11 Commutator Subgroup

Definition 7.79 (Commutator Subgroup). Let G be a group. The *commutator* subgroup [G, G] is the subgroup generated by the elements of the form $aba^{-1}b^{-1}$.

Proposition 7.80. The commutator subgroup is normal.

PROOF: Since
$$ga_1b_1a_1^{-1}b_1^{-1}a_2b_2a_2^{-1}b_2^{-1}\cdots a_nb_na_n^{-1}b_n^{-1}g^{-1}$$

= $(ga_1g^{-1})(gb_1g^{-1})(ga_1g^{-1})^{-1}(gb_1g^{-1})^{-1}\cdots (ga_ng^{-1})(gb_ng^{-1})(ga_ng^{-1})^{-1}(gb_ng^{-1})^{-1}$.

7.12 Presentations

Definition 7.81 (Presentation). A presentation of a group G is a pair (A, R) where A is a set and $R \subseteq F(A)$ is a set of words such that

$$G \cong F(A)/N(R)$$

where N(R) is the smallest normal subgroup of F(A) that includes R.

Example 7.82. • The free group on a set A is presented by (A, \emptyset) .

- S_3 is presented by $(x, y|x^2, y^3, xyxy)$.
- $(a, b \mid a^2, b^2, (ab)^n)$ is a presentation of D_{2n} .

• $(x, y \mid x^2y^{-2}, y^4, xyx^{-1}y)$ is a presentation of Q_8 .

Proposition 7.83 (Word Problem). Let (A, R) be a presentation of the group G. Let $w_1, w_2 \in F(A)$ be two words. Then it is undecidable in general if $w_1N(R) = w_2N(R)$ in G.

Definition 7.84 (Finitely Presented). A group is *finitely presented* iff it has a presentation (A, R) where both A and R are finite.

Proposition 7.85. Let (A|R) be a presentation of G and (A'|R') a presentation of H. Assume w.l.o.g. A and A' are disjoint. Then the group G*G' presented by $(A \cup A'|R \cup R')$ is the coproduct of G and G' in \mathbf{Grp} .

Proof:

- $\langle 1 \rangle 1$. Let: $\kappa_1 : G \to G * G'$ and $\kappa_2 : G' \to G * G'$ be the unique homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 2$. Let: $\phi: G \to H$ and $\psi: G' \to H$ be any homomorphisms.
- $\langle 1 \rangle 3$. Let: $[\phi, \psi] : F(A \cup A') \to H$ be the unique homomorphism such that ...
- $\langle 1 \rangle 4. \ R \cup R' \subseteq \ker[\phi, \psi]$
- $\langle 1 \rangle$ 5. $[\phi, \psi]$ factors uniquely through the morphism $F(A \cup A') \to G * G'$

7.13 Index of a Subgroup

Definition 7.86 (Index). Let G be a group and H a subgroup of G. The *index* of H in G, denoted |G:H|, is the number of left cosets of H in G if this is finite, otherwise ∞ .

Theorem 7.87 (Lagrange's Theorem). Let G be a finite group and H a subgroup of G. Then

$$|G| = |G:H||H|.$$

PROOF: G/H is a partition of G into |G:H| subsets, each of size |H|. \square

Corollary 7.87.1. For p a prime number, the only group of order p is C_p .

PROOF: Let G be a group of order p and $g \in G$ with $g \neq e$. Then $|\langle g \rangle|$ divides p and is not 1, hence is p, that is, $G = \langle g \rangle$. \square

Theorem 7.88 (Cauchy's Theorem). Let G be a finite group. If p is prime and $p \mid |G|$ then G has a subgroup of order p.

Proposition 7.89. Let G be a group. Let K be a subgroup of G and H a subgroup of K. If |G:H|, |G:K| and |K:H| are all finite then

$$|G:H| = |G:K||K:H|$$
 .

```
Proof:
\langle 1 \rangle 1. Let: G/K = \{g_1 K, g_2 K, \dots, g_m K\}
\langle 1 \rangle 2. Let: K/H = \{k_1 H, k_2 H, \dots, k_n H\}
\langle 1 \rangle 3. \ G/H = \{ g_i k_j H : 1 \le i \le m, 1 \le j \le n \}
    \langle 2 \rangle 1. Let: g \in G
    \langle 2 \rangle 2. PICK i such that gK = g_i K
    \langle 2 \rangle 3. \ g^{-1}g_i \in K
    \langle 2 \rangle 4. PICK j such that g^{-1}g_iH = k_jH
    \langle 2 \rangle 5. \ g^{-1}g_i k_j \in H
    \langle 2 \rangle 6. \ gH = g_i k_j H
\langle 1 \rangle 4. If g_i k_j H = g_{i'} k_{j'} H then i = i' and j = j'.
    \langle 2 \rangle 1. Assume: g_i k_j H = g_{i'} k_{j'} H
    \langle 2 \rangle 2. g_i K = g_{i'} K
    \langle 2 \rangle 3. \ i = i'
    \langle 2 \rangle 4. k_i H = k_{i'} H
    \langle 2 \rangle 5. \ j = j'
```

7.14 Cokernels

Proposition 7.90. Let $\phi: G \to H$ be a homomorphism between groups. Then there exists a group K and homomorphism $\pi: H \to K$ that is initial with respect to all homomorphism $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proof:

- $\langle 1 \rangle 1$. Let: N be the intersection of all the normal subgroups of H that include im ϕ .
- $\langle 1 \rangle 2$. Let: K = H/N and π be the canonical homomorphism.
- $\langle 1 \rangle 3$. Let: $\pi \circ \phi = 0$
- $\langle 1 \rangle 4$. Let: $\alpha: H \to L$ satisfy $\alpha \circ \phi = 0$
- $\langle 1 \rangle 5$. im $\phi \subseteq \ker \alpha$
- $\langle 1 \rangle 6$. $N \subseteq \ker \alpha$
- $\langle 1 \rangle 7.$ There exists a unique $\overline{\alpha}: H/\operatorname{im} \phi \to L$ such that $\overline{\alpha} \circ \pi = \alpha$ \Box

Definition 7.91 (Cokernel). For any homomorphism $\phi: G \to H$ in **Grp**, the *cokernel* of ϕ is the group coker ϕ and homomorphism $\pi: H \to \operatorname{coker} \phi$ that is initial among homomorphisms $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Example 7.92. It is not true that a homomorphism with trivial cokernel is epi. The inclusion $\langle (1\ 2) \rangle \hookrightarrow S_3$ has trivial cokernel but is not epi.

7.15 Cayley Graphs

Definition 7.93 (Cayley Graph). Let G be a finitely generated group. Let A be a finite set of generators for G. The Cayley graph of G with respect to A is the directed graph whose vertices are the elements of G, with an edge $g_1 \to g_2$ labelled by $a \in A$ iff $g_2 = g_1 a$.

Proposition 7.94. G is the free group on A iff the Cayley graph with respect to A is a tree.

PROOF: Both are equivalent to saying that the product of two different strings of elements of A and/or their inverses are not equal. \square

Chapter 8

Abelian Groups

Definition 8.1 (Abelian Group). A group is *Abelian* iff any two elements commute.

In an Abelian group G, we often denote the group operation by +, the identity element by 0 and the inverse of an element g by -g. We write ng for g^n ($g \in G$, $n \in \mathbb{Z}$).

Example 8.2. Every group of order ≤ 4 is Abelian.

Example 8.3. For any positive integer n, we have $\mathbb{Z}/n\mathbb{Z}$ is an Abelian group under addition.

Example 8.4. S_n is not Abelian for $n \geq 3$. If $x = \begin{pmatrix} 1 & 2 \end{pmatrix}$ and $y = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix}$ then $xy = \begin{pmatrix} 2 & 3 \end{pmatrix}$ and $yx = \begin{pmatrix} 1 & 3 \end{pmatrix}$.

Example 8.5. There are 42 Abelian groups of order 1024 up to isomorphism.

Proposition 8.6. Let G be a group. If $g^2 = e$ for all $g \in G$ then G is Abelian.

PROOF: For any $g, h \in G$ we have

$$ghgh = e$$
∴ $hgh = g$ (multiplying on the left by g)
∴ $hg = gh$ (multiplying on the right by h)

Proposition 8.7. Let G be a group. Then G is Abelian if and only if the function that maps g to g^{-1} is a group homomorphism.

Proof

 $\langle 1 \rangle 1.$ If G is Abelian then the function that maps g to g^{-1} is a group homomorphism.

PROOF: Since $(gh)^{-1} = h^{-1}g^{-1} = g^{-1}h^{-1}$.

 $\langle 1 \rangle 2$. If the function that maps g to g^{-1} is a group homomorphism then G is Abelian.

PROOF: Since $gh = (g^{-1})^{-1}(h^{-1})^{-1} = (g^{-1}h^{-1})^{-1} = hg$.

Proposition 8.8. Let G be a group. Then G is Abelian if and only if the function that maps g to g^2 is a group homomorphism.

Proof:

 $\langle 1 \rangle 1.$ If G is Abelian then the function that maps g to g^2 is a group homomorphism.

PROOF: Since $(gh)^2 = g^2h^2$.

 $\langle 1 \rangle 2$. If the function that maps g to g^2 is a group homomorphism then G is Abelian.

PROOF: Since we have $(gh)^2 = ghgh = g^2h^2$ and so hg = gh.

Proposition 8.9. Let G be a group. Then G is Abelian if and only if the homomorphism $\gamma: G \to \operatorname{Aut}_{\mathbf{Grp}}(G)$ is the trivial homomorphism.

Proof:

 $\langle 1 \rangle 1$. If G is Abelian then γ is trivial.

PROOF: Since $\gamma_q(a) = gag^{-1} = a$.

 $\langle 1 \rangle 2$. If γ is trivial then G is Abelian.

PROOF: If $\gamma_g(a) = gag^{-1} = a$ for all g and a then ga = ag for all g, a.

Proposition 8.10. Let G be an Abelian group. Let $g, h \in G$. If g has maximal finite order in G, and h has finite order, then |h| |g|.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction $|h| \nmid |g|$.
- $\langle 1 \rangle 2$. Pick a prime p such that $|g| = p^m r$, $|h| = p^n s$ where $p \nmid r$, $p \nmid s$ and m < n.
- $\langle 1 \rangle 3. |g^{p^m} h^s| = p^n r$

Proof: Proposition 6.19.

- $\langle 1 \rangle 4$. $|g| < |g^{p^m} h^s|$
- $\langle 1 \rangle 5$. Q.E.D.

PROOF: This contradicts the maximality of |g|.

Proposition 8.11. Given a set A and an Abelian group H, the set H^A is an Abelian group under

$$(\phi + \psi)(a) = \phi(a) + \psi(a) \qquad (\phi, \psi \in H^A, a \in A) .$$

Proof:

- $\langle 1 \rangle 1. \ \phi + (\psi + \chi) = (\phi + \psi) + \chi$
- $\langle 1 \rangle 2. \ \phi + \psi = \psi + \phi$
- $\langle 1 \rangle 3$. Let: $0: A \to H$ be the function 0(a) = 0.
- $\langle 1 \rangle 4. \ \phi + 0 = 0 + \phi = \phi$

$$\langle 1 \rangle$$
5. Given $\phi : A \to H$, define $-\phi : A \to H$ by $(-\phi)(a) = -(\phi(a))$. $\langle 1 \rangle$ 6. $\phi + (-\phi) = (-\phi) + \phi = 0$

Proposition 8.12. Given a group G and an Abelian group H, the set Grp[G, H]is a subgroup of H^G .

Proof:

 $\langle 1 \rangle 1$. Given $\phi, \psi : G \to H$ group homomorphisms, we have $\phi - \psi$ is a group homomorphism.

Proof:

$$(\phi - \psi)(g + g') = \phi(g + g') - \psi(g + g')$$

$$= \phi(g) + \phi(g') - \psi(g) - \psi(g')$$

$$= \phi(g) - \psi(g) + \phi(g') - \psi(g')$$

$$= (\phi - \psi)(g) + (\phi - \psi)(g')$$

Proposition 8.13. Let G be a group. The following are equivalent.

- 1. Inn(G) is cyclic.
- 2. Inn(G) is trivial.
- 3. G is Abelian.

PROOF:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: $Inn(G) = \langle \gamma_g \rangle$
 - $\langle 2 \rangle 2$. g commutes with every element of G
 - $\langle 3 \rangle 1$. Let: $x \in G$
 - $\langle 3 \rangle 2$. PICK $n \in \mathbb{Z}$ such that $\gamma_x = \gamma_g^n \langle 3 \rangle 3$. $\forall y \in G.xyx^{-1} = g^nyg^{-n}$

 - $\langle 3 \rangle 4$. $xgx^{-1} = g$
 - $\langle 2 \rangle 3. \ \gamma_g = \mathrm{id}_G$
- $\langle 1 \rangle 2$. $2 \Rightarrow 3$
 - $\langle 2 \rangle 1$. Assume: $\forall g \in G. \gamma_q = \mathrm{id}_G$
 - $\langle 2 \rangle 2$. Let: $x, y \in G$
 - $\langle 2 \rangle 3. \ \gamma_x(y) = y$
 - $\langle 2 \rangle 4$. $xyx^{-1} = y$
 - $\langle 2 \rangle 5$. xy = yx
- $\langle 1 \rangle 3. \ 3 \Rightarrow 2$

PROOF: If xy = yx for all x, y then $\gamma_x(y) = y$ for all x, y.

 $\langle 1 \rangle 4. \ 2 \Rightarrow 1$

Proof: Easy.

Corollary 8.13.1. If $Aut_{Grp}(G)$ is cyclic then G is Abelian.

Proposition 8.14. Every subgroup of an Abelian group is normal.

PROOF: Let G be an Abelian group and N a subgroup of G. Given $g \in G$ and $n \in N$ we have $gng^{-1} = n \in N$. \square

Proposition 8.15. For any group G, the group G/[G,G] is Abelian.

PROOF: For any $g, h \in G$ we have

$$gh(hg)^{-1} \in [G, G]$$
$$\therefore gh[G, G] = hg[G, G]$$

Proposition 8.16. Let G be a finite Abelian group. Let p be a prime divisor of |G|. Then G has an element of order p.

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the result holds for all groups smaller than G.
- $\langle 1 \rangle 2$. Pick $g \in G \{0\}$.
- $\langle 1 \rangle 3$. PICK an element $h \in \langle g \rangle$ with prime order q.
- $\langle 1 \rangle 4$. Case: q = p

PROOF: h is the required element.

- $\langle 1 \rangle 5$. Case: $q \neq p$
 - $\langle 2 \rangle 1$. PICK $r \in G$ such that $r + \langle h \rangle$ has order p in $G/\langle h \rangle$.

PROOF: By induction hypothesis since $|G/\langle h \rangle| = |G|/q$.

- $\langle 2 \rangle 2. \ pr \in \langle h \rangle$
- $\langle 2 \rangle 3$. Pick k such that pr = kh
- $\langle 2 \rangle 4$. pqr = e
- $\langle 2 \rangle 5$. qr has order p.

Corollary 8.16.1. For n an odd integer, any Abelian group of order 2n has exactly one element of order 2.

PROOF: If x and y are distinct elements of order 2 then $\langle x,y\rangle=\{e,x,y,xy\}$ has size 4 and so 4 | 2n which is a contradiction. \square

Example 8.17. It is not true that, if G is a finite group and $d \mid |G|$, then G has an element of order d. The quaternionic group has no element of order d.

Proposition 8.18. If G is a finite Abelian group and $d \mid |G|$ then G has a subgroup of size d.

Proof:

- $\langle 1 \rangle 1$. Assume: as induction hypothesis the result is true for all d' < d.
- $\langle 1 \rangle 2$. Assume: w.l.o.g. $d \neq 1$.
- $\langle 1 \rangle 3$. PICK a prime p such that $p \mid d$.
- $\langle 1 \rangle 4$. Pick an element $g \in G$ of order p.
- $\langle 1 \rangle 5. \ d/p \mid |G/\langle g \rangle|$
- $\langle 1 \rangle 6$. Pick a subgrop H of $G/\langle g \rangle$ of size d/p.
- $\langle 1 \rangle 7$. $\pi^{-1}(H)$ is a subgroup of G of size d.

Proposition 8.19. Let (G, \cdot) be a group. Let $\circ : G^2 \to G$ be a group homomorphism such that (G, \circ) is a group. Then \circ and \cdot coincide, and G is Abelian.

Proof:

 $\langle 1 \rangle 1$. For all $g_1, g_2, h_1, h_2 \in G$ we have

$$(g_1g_2) \circ (h_1h_2) = (g_1 \circ h_1)(g_2 \circ h_2)$$

 $\langle 1 \rangle 2$. $e \circ e = e$

Proof:

$$e \circ e = (ee) \circ (ee)$$

= $(e \circ e)(e \circ e)$

Hence $e \circ e = e$ by Cancellation.

 $\langle 1 \rangle 3$. e is the identity of (G, \circ)

 $\langle 1 \rangle 4$. For all $g, h \in G$ we have

$$g \circ h = gh$$

Proof:

$$g \circ h = (ge) \circ (eh)$$
$$= (g \circ e)(e \circ h)$$
$$= gh$$

 $\langle 1 \rangle$ 5. For all $g, h \in G$ we have gh = hg.

PROOF:

$$gh = (e \circ g)(h \circ e)$$
$$= (eh) \circ (ge)$$
$$= h \circ g$$
$$= hg$$

Corollary 8.19.1. If $(G, m : G^2 \to G, e : 1 \to G, i : G \to G)$ is a group object in **Grp** then m is the multiplication of G, e(*) is the identity of G, $i(g) = g^{-1}$, and G is Abelian.

Conversely, if (G, m) is any Abelian group, then (G, m, e, i) is a group object in **Grp** where e(*) = e and $i(g) = g^{-1}$.

8.1 The Category of Abelian Groups

Definition 8.20 (Category of Abelian Groups). Let **Ab** be the full subcategory of **Grp** whose objects are the Abelian groups.

Proposition 8.21. If $(G, m: G^2 \to G, e: 1 \to G, i: G \to G)$ is a group object in **Ab** then m is the multiplication of G, e(*) is the identity of G, $i(g) = g^{-1}$, and G is Abelian.

Conversely, if (G, m) is any Abelian group, then (G, m, e, i) is a group object in **Ab** where e(*) = e and $i(g) = g^{-1}$.

PROOF: Immediate from Corollary 8.19.1.

Definition 8.22 (Direct Sum). Given Abelian groups G and H, we also call the direct product of G and H the direct sum and denote it $G \oplus H$.

Proposition 8.23. Given Abelian groups G and H, the direct sum $G \oplus H$ is the coproduct of G and H in \mathbf{Ab} .

PROOF:

- $\langle 1 \rangle 1$. Let: $\kappa_1 : G \to G \oplus H$ be the group homomorphism $\kappa_1(g) = (g, e_H)$.
- $\langle 1 \rangle 2$. Let: $\kappa_2 : H \to G \oplus H$ be the group homomorphism $\kappa_2(h) = (e_G, h)$.
- $\langle 1 \rangle$ 3. Given group homomorphism $\phi : G \to K$ and $\psi : H \to K$, define $[\phi, \psi] : G \oplus H \to K$ by $[\phi, \psi](g, h) = \phi(g) + \psi(h)$.
- $\langle 1 \rangle 4$. $[\phi, \psi]$ is a group homomorphism.

Proof:

$$\begin{split} [\phi,\psi]((g,h)+(g',h')) &= [\phi,\psi](g+g',h+h') \\ &= \phi(g+g')+\psi(h+h') \\ &= \phi(g)+\phi(g')+\psi(h)+\psi(h') \\ &= \phi(g)+\psi(h)+\phi(g')+\psi(h') \\ &= [\phi,\psi](g,h)+[\phi,\psi](g',h') \end{split}$$

 $\langle 1 \rangle 5. \ [\phi, \psi] \circ \kappa_1 = \phi$

Proof:

$$[\phi, \psi](\kappa_1(g)) = [\phi, \psi](g, e_h)$$
$$= \phi(g) + \psi(e_H)$$
$$= \phi(g) + e_K$$
$$= \phi(g)$$

 $\langle 1 \rangle 6. \ [\phi, \psi] \circ \kappa_2 = \psi$

Proof: Similar.

 $\langle 1 \rangle$ 7. If $f: G \oplus H \to K$ is a group homomorphism with $f \circ \kappa_1 = \phi$ and $f \circ \kappa_2 = \psi$ then $f = [\phi, \psi]$.

Proof:

$$f(g,h) = f((g,e_H) + (e_G,h))$$
$$= f(\kappa_1(g)) + f(\kappa_2(h))$$
$$= \phi(g) + \psi(h)$$

Theorem 8.24. Every finitely generated Abelian group is a direct sum of cyclic groups.

PROOF: TODO

8.2 Free Abelian Groups

Proposition 8.25. Let A be a set. Let \mathcal{F}^A be the category whose objects are pairs (G,j) where G is an Abelian group and j is a function $A \to G$, with morphisms $f:(G,j)\to (H,k)$ the group homomorphisms $f:G\to H$ such that $f\circ j=k$. Then \mathcal{F}^A has an initial object.

Proof:

- $\langle 1 \rangle 1$. Let: $\mathbb{Z}^{\oplus A}$ be the subgroup of \mathbb{Z}^A consisting of all functions $\alpha : A \to \mathbb{Z}$ such that $\alpha(a) = 0$ for only finitely many $a \in A$.
- $\langle 1 \rangle 2$. Let: $i: A \to \mathbb{Z}^{\oplus A}$ be the function such that i(a)(b) = 1 if a = b and 0 if $a \neq b$.
- $\langle 1 \rangle 3$. Let: G be any Abelian group and $j: A \to G$ any function.
- $\langle 1 \rangle 4$. The unique homomorphism $\phi : \mathbb{Z}^{\oplus A} \to G$ required is defined by $\phi(\alpha) = \sum_{a \in A} \alpha(a) j(a)$

Definition 8.26 (Free Abelian Group). For any set A, the *free Abelian group* on A is the initial object $(F^{ab}(A), i)$ in \mathcal{F}^A .

Proposition 8.27. For any sets A and B, we have that $F^{ab}(A+B)$ is the coproduct of $F^{ab}(A)$ and $F^{ab}(B)$ in **Grp**.

Proof:

- $\langle 1 \rangle 1$. Let: $i_A: A \to F^{ab}(A), i_B: B \to F^{ab}(B), j: A+B \to F^{ab}(A+B)$ be the canonical injections.
- $\langle 1 \rangle 2$. Let: κ_1 , κ_2 be the unique group homomorphisms that make the diagram above commute.
- $\langle 1 \rangle 3.$ Let: G be any group and $f: F^{ab}(A) \to G, \ g: F^{ab}(B) \to G$ any group homomorphisms.
- $\langle 1 \rangle 4$. Let: $h: A+B \to G$ be the unique function such that $h \circ k_1 = f \circ i_A$ and $h \circ k_2 = g \circ i_B$.
- $h \circ k_2 = g \circ i_B$. $\langle 1 \rangle 5$. Let: $k: F^{ab}(A+B) \to G$ be the unique group homomorphism such that $k \circ j = h$.
- $\langle 1 \rangle 6$. k is the unique group homomorphism such that $k \circ \kappa_1 \circ i_A = f \circ i_A$ and $k \circ \kappa_2 \circ i_B = g \circ i_B$.
- $\langle 1 \rangle 7$. k is the unique group homomorphism such that $k \circ \kappa_1 = f$ and $k \circ \kappa_2 = g$.

Proposition 8.28. For A and B finite sets, if $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

Proof:

- $\langle 1 \rangle 1$. For any set C, define \sim on $F^{ab}(C)$ by: $f \sim f'$ iff there exists $g \in F^{ab}(C)$ such that f f' = 2g.
- $\langle 1 \rangle 2$. For any set C, \sim is an equivalence relation on $F^{\mathrm{ab}}\left(C\right)$.
- $\langle 1 \rangle 3$. For any set C, we have $F^{ab}(C) / \sim$ is finite if and only if C is finite, in which case $|F^{ab}(C)| / \sim |=2^{|C|}$.

PROOF: There is a bijection between $F^{ab}(C) / \sim$ and the finite subsets of C, which maps f to $\{c \in C : f(c) \text{ is odd}\}.$

 $\langle 1 \rangle 4$. If $F^{ab}(A) \cong F^{ab}(B)$ then $A \cong B$.

PROOF: If
$$|F^{ab}(A)/\sim| = |F^{ab}(B)/\sim|$$
 then $2^{|A|} = 2^{|B|}$ and so $|A| = |B|$.

Proposition 8.29. Let G be an Abelian group. Then G is finitely generated if and only if there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \to G$ for some n.

Proof:

 $\langle 1 \rangle 1$. If G is finitely generated then there exists a surjective homomorphism $\mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n.

PROOF: Let $G = \langle a_1, \dots, a_n \rangle$. Define $\phi : \mathbb{Z}^{\oplus n} \twoheadrightarrow G$ by $\phi(i_1, \dots, i_n) = i_1 \cdot a_1 + \dots + i_n \cdot a_n$.

 $\langle 1 \rangle 2$. If there exists a surjective homomorphism $\phi : \mathbb{Z}^{\oplus n} \twoheadrightarrow G$ for some n then G is finitely generated.

PROOF: G is generated by $\phi(1,0,\ldots,0),\ \phi(0,1,0,\ldots,0),\ \ldots,\ \phi(0,\ldots,0,1).$

Proposition 8.30. Let A be a set. Let $i: A \hookrightarrow F(A)$ be the free group on A. Then $\pi \circ i: A \to F(A)/[F(A), F(A)]$ is the free Abelian group on A.

Proof:

- $\langle 1 \rangle 1$. Let: G be an Abelian group and $f: A \to G$ a function.
- $\langle 1 \rangle 2$. Let: $g: F(A) \to G$ be the unique group homomorphism such that $g \circ i = f$.
- $\langle 1 \rangle 3. \ [F(A), F(A)] \subseteq \ker g$

PROOF: For all $x, y \in F(A)$ we have $g(xyx^{-1}y^{-1}) = g(x) + g(y) - g(x) - g(y) = 0$

 $\langle 1 \rangle 4$. Let: h: F(A)/[F(A),F(A)] be the unique group homomorphism such that $h \circ \pi = g$.

 $\langle 1 \rangle$ 5. h is the unique group homomorphism such that $h \circ \pi \circ i = f$.

Corollary 8.30.1. Let A and B be sets. Let F(A) and F(B) be the free groups on A and B respectively. If $F(A) \cong F(B)$ then $A \cong B$.

Proof: Proposition 8.28. \square

8.3. COKERNELS 63

8.3 Cokernels

Proposition 8.31. Let $\phi: G \to H$ be a homomorphism between Abelian groups. Then there exists an Abelian group K and homomorphism $\pi: H \to K$ that is initial with respect to all homomorphism $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proof:

```
\langle 1 \rangle 1. Let: K=H/\operatorname{im} \phi and \pi be the canonical homomorphism. \langle 1 \rangle 2. Let: \pi \circ \phi = 0 \langle 1 \rangle 3. Let: \alpha: H \to L satisfy \alpha \circ \phi = 0 \langle 1 \rangle 4. im \phi \subseteq \ker \alpha
```

 $\langle 1 \rangle$ 5. There exists a unique $\overline{\alpha}: H/\operatorname{im} \phi \to L$ such that $\overline{\alpha} \circ \pi = \alpha$

Definition 8.32 (Cokernel). For any homomorphism $\phi: G \to H$ in \mathbf{Ab} , the cokernel of ϕ is the Abelian group coker ϕ and homomorphism $\pi: H \to \operatorname{coker} \phi$ that is initial among homomorphisms $\alpha: H \to L$ such that $\alpha \circ \phi = 0$.

Proposition 8.33. $\pi: H \to \operatorname{coker} \phi$ is initial among functions $f: H \to X$ such that, for all $x, y \in H$, if $x + \operatorname{im} \phi = y + \operatorname{im} \phi$ then f(x) = f(y).

Proof: Easy. \square

Proposition 8.34. Let $\phi: G \to H$ be a homomorphism of Abelian groups. Then the following are equivalent.

- ϕ is an epimorphism.
- $\operatorname{coker} \phi$ is trivial.
- ϕ is surjective.

Proof:

```
\langle 1 \rangle 1. 1 \Rightarrow 2

\langle 2 \rangle 1. Assume: \phi is epi.

\langle 2 \rangle 2. Let: \pi: H \to \operatorname{coker} \phi be the canonical homomorphism.

\langle 2 \rangle 3. \pi \circ \phi = 0 \circ \phi

\langle 2 \rangle 4. \pi = 0
```

 $\langle 2 \rangle$ 5. coker $\phi = \operatorname{im} \pi$ is trivial.

\2,0,0,0

 $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

PROOF: If $\operatorname{coker} \phi = H/\operatorname{im} \phi$ is trivial then $\operatorname{im} \phi = H$.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

PROOF: If it is surjective then it is epi in **Set**.

Ш

Chapter 9

Group Actions

9.1 Group Actions

Definition 9.1 (Action). Let G be a group. Let A be an object of a category C. A (left) action of G on A is a group homomorphism $G \to \operatorname{Aut}_{\mathcal{C}}(A)$. It is faithful or effective iff it is injective.

Proposition 9.2. Let A be a set. An action of the group G on the set A is given by a function $\cdot : G \times A \to A$ such that

- $\forall a \in A.ea = a$
- $\forall g, h \in G. \forall a \in A. (gh)a = g(ha)$

Proof: Just unfolding definitions.

Example 9.3. Left multiplication defines a faithful action of any group on its own underlying set.

In fact, for any subgroup H of a group G, left multiplication defines an action of G on G/H.

Corollary 9.3.1 (Cayley's Theorem). Every group G is a subgroup of a symmetric group, namely $\operatorname{Aut}_{\mathbf{Set}}(G)$.

Example 9.4. Conjugation $g * h = ghg^{-1}$ is an action of any group on its own underlying set.

Definition 9.5 (Transitive). An action of a group G on a set A is transitive iff, for all $a, b \in A$, there exists $g \in G$ such that ga = b.

Example 9.6. Left multiplication of a group G is a transitive action of G on G.

Definition 9.7 (Orbit). Given an action of a group G on a set A and $a \in A$, the *orbit* of a is

$$O_G(a) := \{ga : g \in G\}$$
.

Proposition 9.8. Given an action of a group G on a set A, the orbits form a partition of A.

Proof:

 $\langle 1 \rangle 1$. Every element of A is in some orbit.

PROOF: Since $a \in O_G(a)$.

- $\langle 1 \rangle 2$. Distinct orbits are disjoint.
 - $\langle 2 \rangle 1$. Let: $a \in \mathcal{O}_G(b) \cap \mathcal{O}_G(c)$
 - $\langle 2 \rangle 2$. Pick $g, h \in G$ such that a = gb = hc.
 - $\langle 2 \rangle 3$. $O_G(b) \subseteq O_G(c)$

PROOF: For all $k \in G$ we have $kb = kg^{-1}hc$.

 $\langle 2 \rangle 4$. $O_G(c) \subseteq O_G(b)$ PROOF: Similar.

Proposition 9.9. Given an action of a group G on a set A and $a \in A$, the action is transitive on $O_G(a)$.

Proof:

 $\langle 1 \rangle 1$. The restriction of the action is an action on $O_G(a)$.

PROOF: Since g(ha) = (gh)a, the action maps $O_G(a)$ to itself.

 $\langle 1 \rangle 2$. The restricted action is transitive.

PROOF: Given $ga, ha \in \mathcal{O}_G(a)$, we have $ha = (hg^{-1})(ga)$.

Definition 9.10 (Stabilizer Subgroup). Given an action of a group G on a set A and $a \in A$, the *stabilizer subgroup* of a is

$$Stab_{G}(a) := \{g \in G : ga = a\} .$$

Proposition 9.11. Stabilizer subgroups are subgroups.

PROOF: If $g, h \in \operatorname{Stab}_G(a)$ then $gh^{-1}a = a$ so $gh^{-1} \in \operatorname{Stab}_G(a)$. \square

Proposition 9.12. Let G act on a set A. Let $a \in A$ and $g \in G$. Then

$$\operatorname{Stab}_{G}(ga) = g\operatorname{Stab}_{G}(a)g^{-1}$$
.

Proof:

$$h \in \operatorname{Stab}_G(ga) \Leftrightarrow hga = ga$$

 $\Leftrightarrow g^{-1}hga = a$
 $\Leftrightarrow g^{-1}hg \in \operatorname{Stab}_G(a)$
 $\Leftrightarrow h \in g\operatorname{Stab}_G(a)g^{-1}$

Corollary 9.12.1. Let G be an action on a set A and $a \in A$. If $\operatorname{Stab}_{G}(a)$ is normal in G, then for any $b \in \operatorname{O}_{G}(a)$ we have $\operatorname{Stab}_{G}(a) = \operatorname{Stab}_{G}(b)$.

Definition 9.13 (Free). An action of a group G on a set A is *free* iff, whenever ga = a, then g = e.

Example 9.14. The action of left multiplication is free.

Proposition 9.15. Let G be a group. Let H be a subgroup of G of finite index n. Then H includes a subgroup K that is normal in G and such that |G:K| divides gcd(|G|, n!).

```
PROOF:  \langle 1 \rangle 1. \text{ Let: } \sigma: G \to \operatorname{Aut}_{\mathbf{Set}} (G/H) \text{ be the action of left multiplication.}   \langle 1 \rangle 2. \text{ Let: } K = \ker \sigma   \langle 1 \rangle 3. K \subseteq H   \langle 2 \rangle 1. \text{ Let: } g \in K   \langle 2 \rangle 2. \sigma(g)(H) = H   \langle 2 \rangle 3. gH = H   \langle 2 \rangle 4. g \in H   \langle 1 \rangle 4. K \text{ is normal in } G.  PROOF: Proposition 7.42.  \langle 1 \rangle 5. |G:K| \mid |G|  PROOF: Lagrange's Theorem.  \langle 1 \rangle 6. |G:K| \mid n!  PROOF: Since G/K is a subgroup of \operatorname{Aut}_{\mathbf{Set}} (G/H).  \Box
```

Corollary 9.15.1. Let G be a finite group. Let H be a subgroup of G of index p where p is the smallest prime that divides |G|. Then H is normal in G.

Proof:

```
\begin{array}{ll} \text{$1$ koot.} \\ \langle 1 \rangle 1. & \text{PICK a subgroup } K \text{ of } H \text{ normal in } G \text{ such that } |G:K| \text{ divides } \gcd(|G|,p!). \\ \langle 1 \rangle 2. & |G:K| \text{ divides } p. \\ \langle 1 \rangle 3. & |G:H||H:K| \text{ divides } p. \\ \langle 1 \rangle 4. & |H:K| = 1 \\ \langle 1 \rangle 5. & H=K \\ \langle 1 \rangle 6. & H \text{ is normal.} \\ \end{array}
```

Corollary 9.15.2. Any subgroup of index 2 is normal.

Proposition 9.16. Let G be a group with finite set of generators A. Then left multiplication defines a free action of G on its Cayley graph.

PROOF: Easy since if $g_2 = g_1 a$ then $hg_2 = hg_1 a$. \square

Corollary 9.16.1. A free group acts freely on a tree.

Theorem 9.17. If a group G acts freely on a tree then G is free.

Corollary 9.17.1. Every subgroup of the free group on a finite set is free.

PROOF: If H is a subgroup of F(A) then left multiplication defines a free action of H on the Cayley graph of F(A), which is a tree. \square

9.2Category of G-Sets

Definition 9.18. Given a group G, let $G - \mathbf{Set}$ be the category with:

- objects all pairs (A, ρ) such that A is a set and $\rho: G \times A \to A$ is an action of G on A;
- morphisms $f:(A,\rho)\to(B,\sigma)$ are functions $f:A\to B$ that are (G-) equivariant, i.e.

$$\forall g \in G. \forall a \in A. f(\rho(g, a)) = \sigma(g, f(a))$$
.

Proposition 9.19. A G-equivariant function $f: A \to B$ is an isomorphism in G – **Set** if and only if it is bijective.

Proof:

 $\langle 1 \rangle 1$. Let: $f: A \to B$ be G-equivariant and bijective. PROVE: f^{-1} is G-equivariant.

 $\langle 1 \rangle 2$. Let: $g \in G$ and $b \in B$

 $\langle 1 \rangle 3. \ f^{-1}(gb) = gf^{-1}(b)$

Proof:

$$f(f^{-1}(gb)) = gb$$

= $gf(f^{-1}(b))$
= $f(gf^{-1}(b))$

Proposition 9.20. Let G be a group and A a transitive G-set. Let $a \in A$. Then A is isomorphic to $G/\operatorname{Stab}_G(a)$ under left multiplication.

Proof:

 $\langle 1 \rangle 1$. Let: $f: G/\operatorname{Stab}_G(a) \to A$ be the function $f(g\operatorname{Stab}_G(a)) = ga$.

 $\langle 2 \rangle 1$. Assume: $gStab_G(a) = hStab_G(a)$

Prove: ga = ha

 $\langle 2 \rangle 2. \ g^{-1}h \in \operatorname{Stab}_G(a)$ $\langle 2 \rangle 3. \ g^{-1}ha = a$

 $\langle 2 \rangle 4$. ha = qa

 $\langle 1 \rangle 2$. f is G-equivariant.

PROOF: Since $f(gh\operatorname{Stab}_G(a)) = gha = gf(h\operatorname{Stab}_G(a))$.

 $\langle 1 \rangle 3$. f is injective.

PROOF: If ga = ha then $g^{-1}h \in \operatorname{Stab}_G(a)$ so $g\operatorname{Stab}_G(a) = h\operatorname{Stab}_G(a)$.

 $\langle 1 \rangle 4$. f is surjective.

PROOF: Since for all $b \in A$ there exists $q \in G$ such that qa = b.

Corollary 9.20.1. If O is an orbit of the action of a finite group G on a set A, then O is finite and |O| divides |G|.

Corollary 9.20.2. Let H be a subgroup of G and $g \in G$. Then

$$G/H \cong G/(gHg^{-1})$$

in $G - \mathbf{Set}$.

PROOF: Taking A = G/H and a = gH. \square

Proposition 9.21. Given a family of G-sets $\{A_i\}_{i\in I}$, we have $\prod_{i\in I} A_i$ is their product in G – **Set** under

$$g\{a_i\}_{i\in I} = \{ga_i\}_{i\in I}$$
.

Proof: Easy.

Proposition 9.22. Given a family of G-sets $\{A_i\}_{i\in I}$, we have $\coprod_{i\in I} A_i$ is their product in G – **Set** under

$$g(i, a_i) = (i, ga_i)$$
.

Proof: Easy.

Proposition 9.23. Every finite G-set is a coproduct of G-sets of the form G/H.

PROOF: If $O(a_1), \ldots, O(a_n)$ are the orbits of the G-set A, then G is the coproduct of $G/\operatorname{Stab}_G(a_1), \ldots, G/\operatorname{Stab}_G(a_n)$. \square

Proposition 9.24. For any group G we have $G \cong \operatorname{Aut}_{G-\mathbf{Set}}(G)$ (considering G as a G-set under left multiplication).

Proof:

- $\langle 1 \rangle 1$. Define $\phi : G \to \operatorname{Aut}_{G-\mathbf{Set}}(G)$ by $\phi(g)(g') = g'g^{-1}$.
 - $\langle 2 \rangle 1$. Let: $g \in G$

PROVE: $\lambda g' \in G.g'g^{-1}$ is an automorphism of G in $G - \mathbf{Set}$.

 $\langle 2 \rangle 2$. $\phi(g)$ is G-equivariant.

PROOF: Since $\phi(g)(h_1h_2) = h_1h_2g^{-1} = h_1\phi(g)(h_2)$.

 $\langle 2 \rangle 3$. $\phi(g)$ is injective.

PROOF: By Cancellation.

 $\langle 2 \rangle 4$. $\phi(g)$ is surjective.

PROOF: For any $h \in G$ we ahev $h = \phi(g)(hg)$.

 $\langle 1 \rangle 2$. ϕ is a group homomorphism.

PROOF: $\phi(g_1g_2)(h) = hg_2^{-1}g_1^{-1} = \phi(g_1)(\phi(g_2)(h)).$

 $\langle 1 \rangle 3$. ϕ is injective.

PROOF: If $\phi(g) = \phi(g')$ then $g = \phi(g)(e) = \phi(g')(e) = g'$.

- $\langle 1 \rangle 4$. ϕ is surjective.
 - $\langle 2 \rangle 1$. Let: $\sigma \in \operatorname{Aut}_{G-\mathbf{Set}}(G)$
 - $\langle 2 \rangle 2$. Let: $g = \sigma(e)$

PROVE: $\sigma = \phi(g^{-1})$

 $\langle 2 \rangle 3. \ \sigma(h) = hg$

PROOF: $\sigma(h) = \sigma(he) = h\sigma(e) = hg$.

Part III Ring Theory

Rngs

Definition 10.1 (Ring). A rng consists of a set R and binary operations $+, \cdot : R^2 \to R$ such that:

- (R, +) is an Abelian group
- \bullet · is associative.
- The distributive properties hold: for all $r, s, t \in R$ we have

$$(r+s)t = rt + st,$$
 $r(s+t) = rs + rt.$

Example 10.2. • The zero rng is $\{0\}$.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are rngs.
- $2\mathbb{Z}$ is a rng.
- Given a rng R and natural number n, then the set $\mathfrak{gl}_n(R)$ of all $n \times n$ matrices with entries in R is a rng under matrix addition and matrix multiplication.
- For any set S, the power set $\mathcal{P}S$ is a rng under $A+B=(A\cup B)-(A\cap B)$ and $AB=A\cap B$.
- Given a rng R and a set S, then R^S is a rng under (f+g)(s)=f(s)+g(s) and (fg)(s)=f(s)g(s) for all $f,g\in R^S$ and $s\in S$.
- The set $\mathfrak{sl}_n(\mathbb{R}) = \{ M \in \mathfrak{gl}_n(\mathbb{R}) : \operatorname{tr} M = 0 \}$ is a rng.
- The set $\mathfrak{sl}_n(\mathbb{C}) = \{ M \in \mathfrak{gl}_n(\mathbb{C}) : \operatorname{tr} M = 0 \}$ is a rng.
- $\mathbb{Z}/n\mathbb{Z}$ is a rng.

• The ring \mathbb{H} of quaternions is \mathbb{R}^4 under the following operations, where we write (a, b, c, d) as a + bi + cj + dk:

$$(a+bi+cj+dk) + (a'+b'i+c'j+d'k) = (a+a') + (b+b')i$$

$$+ (c+c')j + (d+d')k$$

$$(a+bi+cj+dk)(a'+b'i+c'j+d'k) = (aa'-bb'-cc'-dd')$$

$$+ (ab'+ba'+cd'-dc')i$$

$$+ (ac'-bd'+ca'+db')j$$

$$+ (ad'+bc'-cb'+da')k$$

• For any Abelian group G, the set $\operatorname{End}_{\mathbf{Ab}}(G)$ is a ring under pointwise addition and composition.

Proposition 10.3. In any rng R we have

$$\forall x \in R. x0 = 0x = 0$$
.

Proof:

$$x0 = x(0+0)$$
$$= x0 + x0$$

and so x0 = 0 by Cancellation. Similarly 0x = 0.

Definition 10.4 (Zero Divisor). Let R be a rng and $a \in R$.

Then a is a *left-zero-divisor* iff there exists $b \in R - \{0\}$ such that ab = 0.

The element a is a right-zero-divisor iff there exists $b \in R - \{0\}$ such that ba = 0.

Example 10.5. 0 is a left- and right-zero-divisor in every non-zero rng. The zero rng is the only ring with no zero-divisors.

Proposition 10.6. Let R be a rng and $a \in R$. Then a is not a left-zero-divisor if and only if left multiplication by a is an injective function $R \to R$.

Proof:

- $\langle 1 \rangle 1$. If a is not a left-zero-divisor then left multiplication by a is injective.
 - $\langle 2 \rangle 1$. Assume: a is not a left-zero-divisor.
 - $\langle 2 \rangle 2$. Let: ab = ac
 - $\langle 2 \rangle 3$. a(b-c)=0
 - $\langle 2 \rangle 4$. b-c=0
 - $\langle 2 \rangle 5.$ b = c
- $\langle 1 \rangle 2$. If a is a left-zero-divisor then left multiplication by a is not injective.
 - $\langle 2 \rangle 1$. Pick $b \neq 0$ such that ab = 0.
 - $\langle 2 \rangle 2$. ab = a0 but $b \neq 0$

10.1 Commutative Rngs

Definition 10.7 (Commutative). A rng R is commutative iff $\forall x, y \in R.xy = yx$.

Example 10.8. • The zero rng is commutative.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are commutative.
- $2\mathbb{Z}$ is commutative.
- $\mathfrak{gl}_2(\mathbb{R})$ is not commutative.
- For any set S, the rng $\mathcal{P}S$ is commutative.
- If R is commutative then R^S is commutative.

10.2 Rng Homomorphisms

Definition 10.9. Let R and S be rngs. A rng homomorphism $\phi: R \to S$ is a function such that, for all $x, y \in R$, we have

$$\phi(x+y) = \phi(x) + \phi(y)$$
$$\phi(xy) = \phi(x)\phi(y)$$

Let **Rng** be the category of rngs and rng homomorphisms.

10.3 Quaternions

Definition 10.10 (Norm). The *norm* of a quaternion is defined by

$$N(a+bi+cj+dk) = a^2 + b^2 + c^2 + d^2$$
.

Rings

Definition 11.1 (Ring). A ring R is a rng such that there exists $1 \in R$, the multiplicative identity, such that

$$\forall x \in R.x1 = 1x = x$$
.

Example 11.2. • The zero rng is a ring with 1 = 0.

- \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are rngs.
- $2\mathbb{Z}$ is not a ring.
- If R is a ring then $\mathfrak{gl}_n(R)$ is a ring.
- For any set S, the rng PS is a ring with 1 = S.
- If R is a ring then R^S is a ring.
- $\mathfrak{sl}_n(\mathbb{R})$ is not a ring for n > 0.
- $\mathfrak{sl}_n(\mathbb{C})$ is not a ring for n > 0.
- $\mathfrak{so}_n\left(\mathbb{R}\right)=\left\{M\in\mathfrak{sl}_n\left(\mathbb{R}\right):M+M^T=0\right\}$ is not a ring.
- $\mathbb{Z}/n\mathbb{Z}$ is a ring.

Proposition 11.3. In any ring R, if 0 = 1 then R is the zero ring.

PROOF: For any $x \in R$ we have x = 1x = 0x = 0. \square

Proposition 11.4. In any ring we have (-1)x = -x.

PROOF: Since

$$x + (-1)x = 1x + (-1)x$$

= $(1 + (-1))x$
= $0x$
= 0

11.1 Units

Definition 11.5 (Left-Unit, Right-Unit). Let R be a ring and $a \in R$. Then a is a *left-unit* iff there exists $b \in R$ such that ab = 1. The element a is a *right-unit* iff there exists $b \in R$ such that ba = 1.

An element is a *unit* iff it is a left-unit and a right-unit.

Proposition 11.6. Let R be a ring and $a \in R$. Then a is a left-unit iff left multiplication by a is a surjective function $R \to R$.

Proof:

- $\langle 1 \rangle 1$. If a is a left-unit then left multiplication by a is surjective.
 - $\langle 2 \rangle 1$. Pick $b \in R$ such that ab = 1.
 - $\langle 2 \rangle 2$. For all $c \in R$ we have c = a(bc).
- $\langle 1 \rangle 2.$ If left multiplication by a is surjective then a is a left-unit.

PROOF: Immediate.

Proposition 11.7. Let R be a ring and $a \in R$. Then a is a right-unit iff right multiplication by a is a surjective function $R \to R$.

Proof: Similar.

Proposition 11.8. No left-unit is a right-zero-divisor.

Proof:

- $\langle 1 \rangle 1$. Assume: for a contradiction ab = 1 and ca = 0 where $c \neq 0$.
- $\langle 1 \rangle 2. \ c = 0$

PROOF:

$$0 = 0b$$

$$= cab$$

$$= c1$$

$$= c$$

 $\langle 1 \rangle 3$. Q.E.D.

PROOF: This is a contradiction.

Proposition 11.9. No right-unit is a left-zero-divisor.

Proof: Similar.

Proposition 11.10. The inverse of a unit is unique.

PROOF: If ba = 1 and ac = 1 then b = bac = c. \square

Proposition 11.11. The units of a ring form a group under multiplication.

Proof:

 $\langle 1 \rangle 1$. If a and b are units then ab is a unit.

PROOF: We have $b^{-1}a^{-1}ab = 1$ and $abb^{-1}a^{-1} = 1$.

11.1. UNITS 79

```
\langle 1 \rangle 2. 1 is a unit.

PROOF: Since 1 \cdot 1 = 1.

\langle 1 \rangle 3. If a is a unit then its inverse is a unit.

PROOF: Immediate from definitions.
```

Definition 11.12 (Group of Units). For any ring R, we write R^* for the group of the units of R under multiplication.

Example 11.13. The quaternionic group is a subgroup of \mathbb{H}^* .

Example 11.14. The norm is a group homomorphism $\mathbb{H}^* \to \mathbb{R}^+$ where \mathbb{R}^+ is the group of positive real numbers under multiplication with kernel isomorphic to $\mathrm{SU}_2(\mathbb{C})$. The isomorphism maps a quaternion a+bi+cj+dk to $\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$.

Theorem 11.15 (Fermat's Little Theorem). Let p be a prime number and a any integer. Then $a^p \equiv a \pmod{p}$.

PROOF: If $p \mid a$ then $a^p \equiv a \equiv 0 \pmod{p}$. Otherwise, we have $a^{p-1} \equiv 1 \pmod{p}$ by applying Lagrange's Theorem to $(\mathbb{Z}/p\mathbb{Z})^*$. \square

Example 11.16. It is not true that, if $n \mid |G|$, then G has a subgroup of order n. The group A_4 has order 12 but no subgroup of order 6.

Proposition 11.17. If p is prime then $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic.

```
Proof:
```

```
\langle 1 \rangle 1. LET: g be an element of maximal order in (\mathbb{Z}/p\mathbb{Z})^*.
```

 $\langle 1 \rangle 2$. For all $h \in (\mathbb{Z}/p\mathbb{Z})^*$ we have $h^{|g|} = 1$.

Proof: Proposition 8.10.

 $\langle 1 \rangle 3$. There are at most |g| elements x such that $x^{|g|} = 1$ in $\mathbb{Z}/p\mathbb{Z}$

 $\langle 1 \rangle 4$. $p-1 \leq |g|$

 $\langle 1 \rangle 5$. |g| = p - 1

 $\langle 1 \rangle 6$. g generates $(\mathbb{Z}/p\mathbb{Z})^*$.

Example 11.18. $(\mathbb{Z}/12\mathbb{Z})^*$ is not cyclic. Its elements are 1, 5, 7 and 11 with orders 1, 2, 2 and 2.

Theorem 11.19 (Wilson's Theorem). A positive integer p is prime if and only if $(p-1)! \equiv 1 \pmod{p}$.

- $\langle 1 \rangle 1$. If p is prime then $(p-1)! \equiv 1 \pmod{p}$.
 - $\langle 2 \rangle 1$. Assume: p is prime.
 - $\langle 2 \rangle 2$. (p-1)! is the product of all the elements of $(\mathbb{Z}/p\mathbb{Z})^*$
 - $\langle 2 \rangle 3$. The only element of $(\mathbb{Z}/p\mathbb{Z})^*$ with order 2 is -1.
 - $\langle 2 \rangle 4$. $(p-1)! \equiv -1 \pmod{p}$

Proof: Proposition 6.20.

```
⟨1⟩2. If (p-1)! \equiv -1 \pmod{p} then p is prime. ⟨2⟩1. Assume: ( (p-1)! \equiv -1 \pmod{p}) ⟨2⟩2. Let: d be a proper divisor of p. Prove: d=1 ⟨2⟩3. d \mid (p-1)! ⟨2⟩4. d \mid 1 Proof: Since d \mid p \mid (p-1)! + 1. ⟨2⟩5. d=1
```

Proposition 11.20. If p and q are distinct odd primes then $(\mathbb{Z}/pq\mathbb{Z})^*$ is not cyclic.

```
Proof:
```

```
\begin{array}{l} \langle 1 \rangle 1. \ | (\mathbb{Z}/pq\mathbb{Z})^* | = (p-1)(q-1) \\ \langle 1 \rangle 2. \ \text{Let:} \ g \in (\mathbb{Z}/pq\mathbb{Z})^* \\ \quad \quad \text{Prove:} \ g \ \text{does not have order} \ (p-1)(q-1) \\ \langle 1 \rangle 3. \ g^{(p-1)(q-1)/2} \equiv 1 (\text{mod } p) \\ \langle 1 \rangle 4. \ g^{(p-1)(q-1)/2} \equiv 1 (\text{mod } q) \\ \langle 1 \rangle 5. \ pq \ | \ g^{(p-1)(q-1)/2} - 1 \\ \langle 1 \rangle 6. \ g^{(p-1)(q-1)/2} \equiv 1 (\text{mod } pq) \\ \langle 1 \rangle 7. \ |g| \ | \ (p-1)(q-1)/2 \\ \square \end{array}
```

Proposition 11.21. For any prime p, we have $\operatorname{Aut}_{\mathbf{Grp}}(C_p) \cong C_{p-1}$.

```
Proof:
```

```
\begin{split} &\langle 1 \rangle 1. \text{ Let: } \phi: \operatorname{Aut}_{\mathbf{Grp}}(C_p) \to (\mathbb{Z}/p\mathbb{Z})^* \text{ be the function } \phi(\alpha) = \alpha(1). \\ &\operatorname{PROOF: } \alpha(1) \text{ has order } p \text{ in } C_p \text{ and so is coprime with } p. \\ &\langle 1 \rangle 2. \ \phi \text{ is a homomorphism.} \\ &\operatorname{PROOF: } \phi(\alpha \circ \beta) = \alpha(\beta(1)) = \alpha(\beta(1)1) = \beta(1)\alpha(1) = \phi(\alpha)\phi(\beta) \\ &\langle 1 \rangle 3. \ \phi \text{ is injective.} \\ &\operatorname{PROOF: If } \phi(\alpha) = \phi(\beta) \text{ then for any } n \text{ we have } \alpha(n) = n\alpha(1) = n\phi(\alpha) = n\phi(\beta) = n\beta(1) = \beta(n). \\ &\langle 1 \rangle 4. \ \phi \text{ is surjective.} \\ &\operatorname{PROOF: For any } r \in (\mathbb{Z}/p\mathbb{Z})^* \text{ we have } r = \phi(\alpha) \text{ where } \alpha(n) = nr \operatorname{mod} p. \\ &\langle 1 \rangle 5. \ (\mathbb{Z}/p\mathbb{Z})^* \cong C_{p-1} \end{split}
```

11.2 Euler's ϕ -function

Proposition 11.22. For n a positive integer, we have $(\mathbb{Z}/n\mathbb{Z})^* = \{m \in \mathbb{Z}/n\mathbb{Z} : \gcd(m,n)=1\}.$

Proof:

$$m \in (\mathbb{Z}/n\mathbb{Z})^* \Leftrightarrow \exists a.am \equiv 1 \pmod{n}$$

 $\Leftrightarrow \exists a, b.am + bn = 1$
 $\Leftrightarrow \gcd(m, n) = 1$

Definition 11.23 (Euler's Totient Function). For n a positive integer, let $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^*|$.

Proposition 11.24. If n is an odd positive integer then $\phi(2n) = \phi(n)$.

Proof:

- $\langle 1 \rangle 1$. Let: n be an odd positive integer.
- $\langle 1 \rangle$ 2. For any integer m, if gcd(m,n) = 1 then gcd(2m+n,2n) = 1PROOF: For p a prime, if $p \mid 2m+n$ and $p \mid 2n$ then $p \neq 2$ (since 2m+n is odd) so $p \mid n$ and hence $p \mid m$, which is a contradiction.
- $\langle 1 \rangle 3$. For any integer r, if $\gcd(r,2n)=1$ then $\gcd(\frac{r+n}{2},n)=1$

PROOF: If $p \mid n$ and $p \mid \frac{r+n}{2}$ then $p \mid r+n$ so $p \mid r$ which is a contradiction.

 $\langle 1 \rangle 4$. The function that maps m to 2m+n is a bijection between $(\mathbb{Z}/n\mathbb{Z})^*$ and $(\mathbb{Z}/2n\mathbb{Z})^*$.

Theorem 11.25. For any positive integer n we have

$$\sum_{m>0,m|n}\phi(m)=n .$$

Proof:

- $\langle 1 \rangle 1$. Define $\chi : \{0, 1, \dots, n-1\} \to \{(m, d) : m > 0, m \mid n, d \text{ generates } \langle n/m \rangle \}$ by: $\chi(x) = (\gcd(x, n), x)$.
- $\langle 1 \rangle 2$. χ is injective.
- $\langle 1 \rangle 3$. χ is surjective.

PROOF: Given (m, d) such that d generates $\langle n/m \rangle$ we have $\chi(d) = (m, d)$.

 $\langle 1 \rangle 4$. $n = \sum_{m>0, m|n} \phi(m)$

PROOF: Since $\langle n/m \rangle \cong C_m$ and so has $\phi(m)$ generators.

Proposition 11.26. For any positive integers a and n, we have $n \mid \phi(a^n - 1)$.

PROOF: Since the order of a is n in $(\mathbb{Z}/(a^n-1)\mathbb{Z})^*$.

Theorem 11.27 (Euler's Theorem). For any coprime integers a and n we have $a^{\phi(n)} \equiv a \pmod{n}$.

PROOF: Immediate from Lagrange's Theorem.

Proposition 11.28.

$$|\operatorname{Aut}_{\mathbf{Grp}}(C_n)| = \phi(n)$$

PROOF: An automorphism α is determined by $\alpha(1)$ which is any element of order n, and g has order n iff $\gcd(g,n)=1$. \square

Example 11.29.

$$\operatorname{Aut}_{\mathbf{Grp}}(\mathbb{Z}) \cong C_2$$

PROOF: The only automorphisms are the identity and multiplication by -1. \Box

11.3 Nilpotent Elements

Definition 11.30 (Nilpotent). Let R be a ring and $a \in R$. Then a is nilpotent iff there exists n such that $a^n = 0$.

Proposition 11.31. Let R be a ring and $a, b \in R$. If a and b are nilpotent and ab = ba then a + b is nilpotent.

Proof:

 $\langle 1 \rangle 1$. PICK m and n such that $a^m = b^n = 0$.

 $\langle 1 \rangle 2$. $(a+b)^{m+n} = 0$

PROOF: Since $(a+b)^{m+n} = \sum_k \binom{m+n}{k} a^k b^{m+n-k}$ and every term in this sum is 0 since, for every k, either $k \ge m$ or $m+n-k \ge n$.

Proposition 11.32. m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$ if and only if m is divisible by all the prime factors of n.

Proof:

 $\langle 1 \rangle 1$. If m is nilpotent then m is divisible by all the prime factors of n.

 $\langle 2 \rangle 1$. Assume: $m^a \equiv 0 \pmod{n}$

 $\langle 2 \rangle 2$. For every prime p, if $p \mid n$ then $p \mid m^a$.

 $\langle 2 \rangle 3$. For every prime p, if $p \mid n$ then $p \mid m$.

 $\langle 1 \rangle 2$. If m is divisible by all the prime factors of n then m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

 $\langle 2 \rangle 1$. Assume: m is divisible by all the prime factors of n.

 $\langle 2 \rangle 2$. Let: a be the largest number such that $p^a \mid n$ for some prime p.

 $\langle 2 \rangle 3$. For every prime p that divides n we have $p^a \mid m^a$

 $\langle 2 \rangle 4$. $n \mid m^a$

 $\langle 2 \rangle 5$. $m^a \equiv 0 \pmod{n}$

 $\langle 2 \rangle 6$. m is nilpotent in $\mathbb{Z}/n\mathbb{Z}$.

П

Ring Homomorphisms

Definition 12.1 (Ring Homomorphism). Let R and S be rings. A *ring homomorphism* $\phi: R \to S$ is a rng homomorphism such that $\phi(1) = 1$.

Proposition 12.2. The zero-ring is terminal in Ring.

Proof: Easy.

Proposition 12.3. The ring \mathbb{Z} is initial in Ring.

Proof: Easy. \square

Proposition 12.4. Let R and S be rings and $\phi: R \to S$ be a rng homomorphism. If ϕ is surjective, then ϕ is a ring homomorphism.

Proof:

 $\langle 1 \rangle 1$. PICK $a \in R$ such that $\phi(a) = 1$

$$\langle 1 \rangle 2. \ \phi(1) = 1$$

Proof:

$$\phi(1) = \phi(1)\phi(a)$$

$$= \phi(1a)$$

$$= \phi(a)$$

$$= 1$$

Example 12.5. For any set S we have $\mathcal{P}S\cong (\mathbb{Z}/2\mathbb{Z})^S$ in **Ring** with the isomorphism

$$\phi: \mathcal{P}S \cong (\mathbb{Z}/2\mathbb{Z})^S$$

$$\phi(A)(s) = \begin{cases} 1 & \text{if } s \in A \\ 0 & \text{if } s \notin A \end{cases}$$

Example 12.6. The function $\mathbb{H} \to \mathfrak{gl}_4(\mathbb{R})$ that maps a + bi + cj + dk to

$$\begin{pmatrix}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{pmatrix}$$

is a monomorphism in **Ring**, as is the function $\mathbb{H} \to \mathfrak{sl}_2(\mathbb{C})$ that maps a + bi + cj + dk to

$$\left(\begin{array}{cc}
a+bi & c+di \\
-c+di & a-bi
\end{array}\right) .$$

Proposition 12.7. Ring homomorphisms preserve units.

PROOF: If uv = 1 then $\phi(u)\phi(v) = 1$. \square

Proposition 12.8. Let $\phi: R \to S$ be a ring homomorphism. Then the following are equivalent.

- 1. ϕ is a monomorphism.
- 2. $\ker \phi = \{0\}$
- 3. ϕ is injective.

Proof:

- $\langle 1 \rangle 1. \ 1 \Rightarrow 2$
 - $\langle 2 \rangle 1$. Assume: ϕ is a monomorphism.
 - $\langle 2 \rangle 2$. Let: $r \in \ker \phi$
 - $\langle 2 \rangle 3$. Let: $\operatorname{ev}_r : \mathbb{Z}[x] \to R$ be the unique ring homomorphism such that $\operatorname{ev}_r(x) = r$.
 - $\langle 2 \rangle$ 4. Let: ev₀ : $\mathbb{Z}[x] \to R$ be the unique ring homomorphism such that ev₀(x) = 0.
 - $\langle 2 \rangle 5. \ \phi \circ \text{ev}_r = \phi \circ \text{ev}_0$
 - $\langle 2 \rangle 6$. $ev_r = ev_0$
 - $\langle 2 \rangle 7. \ r = 0$
- $\langle 1 \rangle 2. \ 2 \Rightarrow 3$

Proof: Proposition 7.20.

 $\langle 1 \rangle 3. \ 3 \Rightarrow 1$

Proof: Easy.

П

Example 12.9. It is not true that every epimorphism in **Ring** is surjective. The inclusion $\mathbb{Z} \hookrightarrow \mathbb{Q}$ is an epimorphism but not surjective.

The same example shows that a ring homomorphism may be a monomorphism and an epimorphism but not be an isomorphism.

Example 12.10.

$$\operatorname{End}_{\mathbf{Ab}}\left(\mathbb{Z}\right)\cong\mathbb{Z}$$

The isomorphism maps any group endomorphism $\phi: \mathbb{Z} \to \mathbb{Z}$ to $\phi(1)$.

12.1. PRODUCTS 85

Example 12.11. The group of units of $\mathrm{End}_{\mathbf{Ab}}\left(G\right)$ is $\mathrm{Aut}_{\mathbf{Ab}}\left(G\right).$

Example 12.12. Let R be a ring. Then the function $\lambda:R\to\operatorname{End}_{\mathbf{Ab}}(R)$ defined by

$$\lambda(a)(b) = ab$$

is a ring monomorphism.

Proof: Easy.

12.1 Products

Proposition 12.13. Let R and S be rings. Then $R \times S$ is a ring under componentwise addition and multiplication, and this ring is the product of R and S in Ring.

Proof: Easy.

Subrings

Definition 13.1 (Subring). Let S be a ring. A *subring* of S is a ring R such that R is a subset of S and the inclusion $R \hookrightarrow S$ is a ring homomorphism.

Proposition 13.2. Let R and S be rings. Then R is a subring of S if and only if R is a subset of S, the unit 1 of S is an element of R, and the operations of R are the restrictions of the operations of S to R.

Proof: Easy.

Corollary 13.2.1. The zero ring is not a subring of any non-zero ring.

Proposition 13.3. Let $\phi: R \to S$ be a ring homomorphism. Then $\phi(R)$ is a subring of S.

Proof: Easy.

13.1 Centralizer

Definition 13.4 (Centralizer). Let R be a ring and $a \in R$. The *centralizer* of a is $\{r \in R : ar = ra\}$.

Proposition 13.5. The centralizer of a is a subring of R.

Proof: Easy.

13.2 Center

Definition 13.6 (Center). The *center* of a ring R is $\{x \in R : \forall y \in R.xy = yx\}$.

Proposition 13.7. The center of a ring is a subring.

Proof: Easy. \square

Proposition 13.8. Let R be a ring. The center of $\operatorname{End}_{\mathbf{Ab}}(R)$ is isomorphic to the center of R.

```
Proof:
```

Corollary 13.8.1. If R is a commutative ring then R is isomorphic to the center of $\operatorname{End}_{\mathbf{Ab}}(R)$.

Example 13.9. For n a positive integer we have $\mathbb{Z}/n\mathbb{Z} \cong \operatorname{End}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z})$. Since, for any $\phi \in \operatorname{End}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z})$ we have $\phi(m) = m\phi(1)$ and so the whole of $\operatorname{End}_{\mathbf{Ab}}(\mathbb{Z}/n\mathbb{Z})$ is the image of λ .

Monoid Rings

Definition 14.1 (Monoid Ring). Let R be a ring and M a monoid. Define R[M] to be the ring whose elements are the families $\{a_m\}_{m\in M}$ such that $a_m=0$ for all but finitely many $m\in M$, written

$$\sum_{m \in M} a_m m ,$$

under

$$\sum_{m} a_m m + \sum_{m} b_m m = \sum_{m} (a_m + b_m) m$$

$$\left(\sum_{m} a_m m\right) \left(\sum_{m} b_m m\right) = \sum_{m \in M} \sum_{m_1 m_2 = m} a_{m_1} b_{m_2} m$$

Example 14.2. Ring homomorphisms do not necessarily preserve zero-divisors. The canonical homomorphism $\pi: \mathbb{Z} \to \mathbb{Z}/6\mathbb{Z}$ maps the non-zero-divisor 2 to a zero-divisor.

14.1 Polynomials

Definition 14.3 (Polynomial). Let R be a ring. The ring of polynomials R[x] is $R[\mathbb{N}]$. We write

$$\sum_{n} a_n x^n \text{ for } \sum_{n} a_n n .$$

Concretely, a polynomial in R is a sequence (a_n) in R such that there exists N such that $\forall n \geq N.a_n = 0$. We write the polynomial as

$$\sum_{n=0}^{N-1} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{N-1} x^{N-1} .$$

We write R[x] for the set of all polynomials in R.

Define addition and multiplication on R[x] by

$$\sum_{n} a_n x^n + \sum_{n} b_n x^n = \sum_{n} (a_n + b_n) x^n$$
$$\left(\sum_{n} a_n x^n\right) \left(\sum_{n} b_n x^n\right) = \sum_{n} \sum_{i+j=n} a_i b_j x^n$$

A constant is a polynomial of the form $a + 0x + 0x^2 + \cdots$ for some $a \in R$. We write $R[x_1, \dots, x_n]$ for $R[x_1][x_2] \cdots [x_n]$.

Proposition 14.4. For any ring R, the set of polynomials R[x] is a ring.

Proof: Easy. \square

Definition 14.5 (Degree). The *degree* of a polynomial $\sum_n a_n x^n$ is the largest integer d such that $a_d \neq 0$. We take the degree of the zero polynomial to be $-\infty$.

Proposition 14.6. Let R be a ring and $f, g \in R[x]$ be nonzero polynomials.

$$deg(f+g) \le max(deg f, deg g)$$
.

PROOF: If $a_n + b_n \neq 0$ then $a_n \neq 0$ or $b_n \neq 0$. \square

Proposition 14.7. The function $i: n \to \mathbb{Z}[x_1, \ldots, x_n]$ that maps k to x_k is initial in the category with:

- objects all pairs $j: n \to R$ where R is a commutative ring and j a function
- morphisms $\phi:(j_1,R_1)\to (j_2,R_2)$ are ring homomorphisms $\phi:R_1\to R_2$ such that $\phi\circ j_1=j_2$.

PROOF: The unique morphism $(i, \mathbb{Z}[x_1, \dots, x_n]) \to (j, R)$ maps a polynomial p to $p(j(0), j(1), \dots, j(n-1))$. \square

Definition 14.8. Let R be a commutative ring. Given a polynomial $p \in R[x]$, the polynomial function $p: R \to R$ is the function given by: $p(r) = \alpha_r(p)$, where $\alpha_r: R[x] \to R$ is the unique ring homomorphism such that the following diagram commutes.

$$R[x] \xrightarrow{\alpha_r} R$$

$$x \uparrow \qquad r$$

$$1$$

Proposition 14.9. $\mathbb{Z}[x,y]$ is the coproduct of $\mathbb{Z}[x]$ and $\mathbb{Z}[y]$ in the category of commutative rings.

PROOF: Given ring homomorphisms $f: \mathbb{Z}[x] \to R$ and $g: \mathbb{Z}[y] \to R$, the required morphism $\mathbb{Z}[x,y] \to R$ maps p(x,y) to p(f(x),g(y)). \square

Example 14.10. $\mathbb{Z}[x,y]$ is not the coproduct of $\mathbb{Z}[x]$ and $\mathbb{Z}[y]$ in **Ring**. Given $f: \mathbb{Z}[x] \to R$ and $g: \mathbb{Z}[y] \to R$ with $f(x) \neq g(y)$, the mediating morphism $\mathbb{Z}[x,y] \to R$ cannot exist since it must map xy to both f(x)g(y) and g(y)f(x).

14.2Laurent Polynomials

Definition 14.11 (Laurent Polynomial). Let R be a ring. The ring of Laurent polynomials is the group ring $R[\mathbb{Z}]$. We write $\sum_{n\in\mathbb{Z}} a_n x^n$ for $\sum_n a_n n$.

Power Series 14.3

Definition 14.12 (Power Series). Let R be a ring. A power series in R is a sequence (a_n) in R. We write the power series as

$$\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \cdots$$

We write R[[x]] for the set of all power series in R. Define addition and multiplication on R[[x]] by

$$\sum_{n} a_n x^n + \sum_{n} b_n x^n = \sum_{n} (a_n + b_n) x^n$$
$$\left(\sum_{n} a_n x^n\right) \left(\sum_{n} b_n x^n\right) = \sum_{n} \sum_{i+j=n} a_i b_j x^n$$

Proposition 14.13. For any ring R, the set of power series R[[x]] is a ring.

Proof: Easy.

Proposition 14.14. A power series $\sum_n a_n x^n$ is a unit in R[[x]] if and only if a_0 is a unit in R.

Proof:

- $\langle 1 \rangle 1$. If $\sum_n a_n x^n$ is a unit then a_0 is a unit. $\langle 2 \rangle 1$. Let: $\sum_n b_n x^n$ be the inverse of $\sum_n a_n x^n$.
 - $\langle 2 \rangle 2$. $a_0 b_0 = b_0 a_0 = 1$
- $\langle 1 \rangle 2$. If a_0 is a unit then $\sum_n a_n x^n$ is a unit. PROOF: Define the sequence (b_n) in R by

$$b_n = -a_0^{-1} \sum_{i=1}^n a_i b_{n-i}$$

 $b_n = -a_0^{-1} \sum_{i=1}^n a_i b_{n-i}$ Then $\sum_n b_n x^n$ is the inverse of $\sum_n a_n x^n$.

Ideals

Definition 15.1 (Left-Ideal). Let R be a ring.

A subgroup I of R is a *left-ideal* iff, for all $r \in R$, we have $rI \subseteq I$.

A subgroup I of R is a right-ideal iff, for all $r \in R$, we have $Ir \subseteq I$.

A subgroup I of R is a (two-sided) ideal iff it is a left-ideal and a right-ideal.

Example 15.2. In any ring, $\{0\}$ is an ideal.

Example 15.3. Let S be a set and $T \subseteq S$. Then $\{X \in \mathcal{P}S : X \subseteq T\}$ is an ideal in $\mathcal{P}S$.

Proposition 15.4. Let S be a finite set. Then every ideal in $\mathcal{P}S$ is of the form $\{X \in \mathcal{P}S : X \subseteq T\}$ for some $T \subseteq S$.

Proof:

- $\langle 1 \rangle 1$. Let: I be an ideal in $\mathcal{P}S$.
- $\langle 1 \rangle 2$. Let: $T = \bigcup I$
- $\langle 1 \rangle 3$. For all $i \in T$ we have $\{i\} \in I$.
 - $\langle 2 \rangle 1$. Let: $i \in T$
 - $\langle 2 \rangle 2$. Pick $X \in I$ such that $i \in X$
 - $\langle 2 \rangle 3. \ \{i\} = \{i\} \cap X \in I$
- $\langle 1 \rangle 4$. For all $X \subseteq T$ we have $X \in I$.

PROOF: If $X = \{x_1, ..., x_n\}$ then $X = \{x_1\} + \cdots + \{x_n\} \in I$.

Example 15.5. If S is an infinite set, then there is always an ideal in $\mathcal{P}S$ that is not of the form $\{X \in \mathcal{P}S : X \subseteq T\}$ for some $T \subseteq S$, namely the set of all finite subsets of S.

Proposition 15.6. Let $\phi: R \twoheadrightarrow S$ be a surjective ring homomorphism. Let J be an ideal in R. Then $\phi(J)$ is an ideal in S.

Proof:

```
\langle 1 \rangle 1. Let: j \in J and s \in S
Prove: s\phi(j), \phi(j)s \in \phi(J)
```

- $\langle 1 \rangle$ 2. PICK $r \in R$ such that $\phi(r) = s$ $\langle 1 \rangle$ 3. $rj, jr \in J$
- $\langle 1 \rangle 4. \ s\phi(j), \phi(j)s \in \phi(J)$

Example 15.7. We cannot remove the hypothesis that ϕ is surjective. Let $i: \mathbb{Z} \hookrightarrow \mathbb{Q}$ be the inclusion. Then $i(2\mathbb{Z}) = 2\mathbb{Z}$ is not an ideal in \mathbb{Q} .

Proposition 15.8. Let $\phi: R \to S$ be a ring homomorphism and I a (left-right-)ideal in S. Then $\phi^{-1}I$ is a (left-, right-)ideal in R.

Proof: Easy. \square

Corollary 15.8.1. Let $\phi: R \to S$ be a ring homomorphism. Then $\ker \phi$ is an ideal in R.

Definition 15.9 (Quotient Ring). Let I be an ideal in R. The quotient ring R/I is the quotient group R/I under

$$(a+I)(b+I) = ab+I .$$

This is well-defined as, if a + I = a' + I and b + I = b' + I then

$$a - a' \in I$$

$$b - b' \in I$$

$$\therefore ab - a'b \in I$$

$$a'b - a'b' \in I$$

$$\therefore ab - a'b' \in I$$

Proposition 15.10. Let I be an ideal in R. Then the canonical group homomorphism $\pi: R \to R/I$ is a ring homomorphism.

Proof: By construction. \square

Proposition 15.11. Let I be an ideal in a ring R. For every ring homomorphism $\phi: R \to S$ such that $I \subseteq \ker \phi$, there exists a unique ring homomorphism $\overline{\phi}: R/I \to S$ such that the following diagram commutes.

Proof: Easy.

Corollary 15.11.1. Every ring homomorphism $\phi: R \to S$ decomposes as follows.

Corollary 15.11.2 (First Isomorphism Theorem). Let $\phi: R \twoheadrightarrow S$ be a surjective ring homomorphism. Then

$$S \cong R/\ker \phi$$
.

Theorem 15.12 (Third Isomorphism Theorem). Let I and J be ideals in R with $I \subseteq J$. Then J/I is an ideal in R/I, and

$$\frac{R/I}{J/I} \cong R/J$$

PROOF: Since the function $R/I \to R/J$ that maps r+I to r+J is a surjective ring homomorphism with kernel J/I. \square

Corollary 15.12.1. Let $\phi: R \rightarrow S$ be a surjective ring homomorphism. Let J be an ideal in R. Then

$$\frac{S}{\phi(J)} \cong \frac{R}{\ker S + J}$$

Proposition 15.13. Let R be a ring and J an ideal in $\mathfrak{gl}_n(R)$. Let $A \in \mathfrak{gl}_n(R)$. Then $A \in J$ if and only if the matrices obtained by placing any entry of A in any position and zeros elsewhere all belong to J.

PROOF: Each such matrix can be obtained by pre- and post-multiplying A by matrices which have a single 1 and 0s elsewhere. Conversely, A is a sum of such matrices. \square

Corollary 15.13.1. Let R be a ring. Let J be an ideal in $\mathfrak{gl}_n(R)$. Let I be the set of all entries of elements of J. Then I is an ideal in R, and J is the set of all matrices whose entries are in I.

15.1 Characteristic

Definition 15.14 (Characteristic). The *characteristic* of a ring R is the non-negative integer n such that $n\mathbb{Z}$ is the kernel of the unique ring homomorphism $\mathbb{Z} \to R$.

Proposition 15.15. Let R be a ring. If the unit 1 has finite order in R, then its order is the characteristic of R; otherwise, the characteristic of R is 0.

Proof: Easy.

Example 15.16. The zero ring is the only ring with characteristic 1.

15.2 Nilradical

Definition 15.17 (Nilradical). Let R be a commutative ring. The *nilradical* of R is the set of all nilpotent elements.

Proposition 15.18. Let R be a commutative ring. The nilradical of R is an ideal in R.

PROOF: If $a^n = 0$ then for any b we have $(ba)^n = 0$. \square

Example 15.19. We cannot remove the assumption that R is commutative. In $\mathfrak{gl}_2(\mathbb{R})$ we have that $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is nilpotent but $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ is not.

Integral Domains

Definition 16.1 (Integral Domain). An integral domain is a non-trivial commutative ring with no nonzero zero-divisors.

Example 16.2. \mathbb{Z} , \mathbb{Q} , \mathbb{R} and \mathbb{C} are integral domains.

Proposition 16.3. $\mathbb{Z}/n\mathbb{Z}$ is an integral domain if and only if n is prime.

Proof:

$$n$$
 is prime $\Leftrightarrow \forall a, b \in \mathbb{Z}(n \mid ab \Rightarrow n \mid a \lor n \mid b)$
 $\Leftrightarrow \forall a, b \in \mathbb{Z}/n\mathbb{Z}(ab \cong 0 \pmod{n}) \Rightarrow a \cong 0 \pmod{n} \lor b \cong 0 \pmod{n})$
 $\Leftrightarrow \mathbb{Z}/n\mathbb{Z}$ is an integral domain

Proposition 16.4. In an integral domain, if $x^2 = 1$ then $x = \pm 1$.

PROOF: We have
$$x^2 - 1 = (x - 1)(x + 1) = 0$$
 so $x - 1 = 0$ or $x + 1 = 0$.

Proposition 16.5. Let R be an integral domain and $f, g \in R[x]$. Then

$$\deg(fg) = \deg f + \deg g$$

Proof:

- $\langle 1 \rangle 1.$ Let: $f = \sum_n a_n x^n$ and $g = \sum_n b_n x^n.$ $\langle 1 \rangle 2.$ Let: $d = \deg f$ and $e = \deg g.$
- $\langle 1 \rangle 3$. The d + eth term of fg is

$$a_d b_e x^{d+e}$$

which is non-zero.

$$\langle 1 \rangle 4$$
. For $n > d + e$ the *n*th term of fg is 0.

Corollary 16.5.1. Let R be a ring. Then R[x] is an integral domain if and only if R is an integral domain.

Proposition 16.6. Let R be a ring. Then R[[x]] is an integral domain if and only if R is an integral domain.

Proof:

 $\langle 1 \rangle 1$. If R[[x]] is an integral domain then R is an integral domain. Proof: Easy.

 $\langle 1 \rangle 2$. If R is an integral domain then R[[x]] is an integral domain.

 $\langle 2 \rangle 1$. Assume: R is an integral domain.

$$\langle 2 \rangle 2$$
. Let: $(\sum_n a_n x^n) (\sum_n b_n x^n) = 0$
 $\langle 2 \rangle 3$. $a_0 b_0 = 0$

 $\langle 2 \rangle 4$. $a_0 = 0$ or $b_0 = 0$

 $\langle 2 \rangle$ 5. Assume: w.l.o.g. $b_0 \neq 0$ PROVE: For all n we have $a_n = 0$

 $\langle 2 \rangle 6$. Assume: as induction hypothesis $a_0 = a_1 = \cdots = a_{n-1} = 0$

 $\langle 2 \rangle 7. \sum_{i=0}^{n} a_i b_{n-i} = 0$ $\langle 2 \rangle 8. \ a_n b_0 = 0$

 $\langle 2 \rangle 9. \ a_n = 0$

Proposition 16.7. Let R be a ring and S an integral domain. Every rng homomorphism $\phi: R \to S$ is a ring homomorphism.

Proof:

$$\phi(1) = \phi(1 \cdot 1)$$
$$= \phi(1)\phi(1)$$

and so $\phi(1) = 1$ by Cancellation. \square

Proposition 16.8. The characteristic of an integral domain is either 0 or a prime number.

Proof:

 $\langle 1 \rangle 1$. Let: D be an integral domain.

 $\langle 1 \rangle 2$. Let: n be the characteristic of D

 $\langle 1 \rangle 3$. Assume: $n \neq 0$

 $\langle 1 \rangle 4$. Assume: n = ab

 $\langle 1 \rangle 5$. ab = 0 in D

 $\langle 1 \rangle 6$. a = 0 or b = 0 in D

 $\langle 1 \rangle 7$. $n \mid a \text{ or } n \mid b$

 $\langle 1 \rangle 8$. One of a, b is 1 and the other is n.

Unique Factorization Domains

Example 17.1. \mathbb{Z} is a UFD.

Principal Ideal Domains

Example 18.1. \mathbb{Z} is a PID.

Euclidean Domains

Example 19.1. \mathbb{Z} is a Euclidean domain.

Division Rings

Definition 20.1 (Division Ring). A *division ring* is a ring in which every nonzero element is a two-sided unit.

Example 20.2. The quaternions form a division ring, with the inverse of a non-zero element a + bi + cj + dk being

$$\frac{1}{a^2 + b^2 + c^2 + d^2}(a - bi - cj - dk) .$$

Example 20.3. For any ring R, the ring of polynomials R[x] is not a division ring, since x has no inverse.

Proposition 20.4. Every centralizer in a division ring is a division ring.

PROOF: If ar = ra then $ra^{-1} = a^{-1}r$. \square

Proposition 20.5. A non-trivial ring R is a division ring if and only if its only left-ideals and right-ideals are $\{0\}$ and R.

Proof:

- $\langle 1 \rangle 1.$ If R is a division ring then the only left-ideals and right-ideals are $\{0\}$ and R.
 - $\langle 2 \rangle 1$. Assume: R is a division ring.
 - $\langle 2 \rangle 2$. The only left-ideals are $\{0\}$ and R.
 - $\langle 3 \rangle 1$. Let: I be a left-ideal that is not $\{0\}$. Prove: I=R
 - $\langle 3 \rangle 2$. Pick $a \in I \{0\}$
 - $\langle 3 \rangle 3$. PICK a left inverse b for a
 - $\langle 3 \rangle 4. \ 1 \in I$

PROOF: Since 1 = ba.

 $\langle 3 \rangle 5. I = R$

PROOF: For any $r \in R$ we have $r = r1 \in I$.

 $\langle 2 \rangle 3$. The only right-ideals are $\{0\}$ and R.

PROOF: Similar.

 $\langle 1 \rangle 2.$ If the only left-ideals and right-ideals are $\{0\}$ and R then R is a division ring. \Box

Proposition 20.6. Let K be a division ring and R a non-trivial ring. Every ring homomorphism $K \to R$ is injective.

Proof:

 $\langle 1 \rangle 1$. Let: $\phi : K \to R$ be a ring homomorphism.

Prove: $\ker \phi = \{0\}$

- $\langle 1 \rangle 2$. Let: $x \in \ker \phi$
- $\langle 1 \rangle 3$. Assume: for a contradiction $x \neq 0$.
- $\langle 1 \rangle 4. \ \phi(xx^{-1}) = 1$
- $\langle 1 \rangle 5. \ 0 = 1$
- $\langle 1 \rangle 6$. Q.E.D.

Proof: This contradicts the assumption that R is non-trivial.

Simple Rings

Definition 21.1 (Simple Ring). A non-trivial ring is R simple iff its only two-sided ideals are $\{0\}$ and R.

Example 21.2. For any simple ring R we have $\mathfrak{gl}_n\left(R\right)$ is simple, by Corollary 15.12.1.

Reduced Rings

Definition 22.1 (Reduced Ring). A ring is reduced iff it has no non-zero nilpotent elements.

Proposition 22.2. Let R be a commutative ring. Let N be its nilradical. Then R/N is reduced.

Proof:

```
\langle 1 \rangle 1. Let: r + N be nilpotent.
```

$$\langle 1 \rangle 2$$
. PICK n such that $(r+N)^n = N$

$$\langle 1 \rangle 3. \ r^n \in N$$

$$\langle 1 \rangle 4$$
. PICK k such that $(r^n)^k = 0$

$$\langle 1 \rangle 5. \ r^{nk} = 0$$

$$\langle 1 \rangle 6. \ r \in N$$

$$\begin{array}{l} \langle 1 \rangle 6. \ r \in N \\ \langle 1 \rangle 7. \ r + N = N \end{array}$$

Boolean Rings

Definition 23.1 (Boolean). A ring is *Boolean* iff $a^2 = a$ for every element a.

Example 23.2. For any set S, the ring $\mathcal{P}S$ is Boolean.

Proposition 23.3. Every non-trivial Boolean ring has characteristic 2.

PROOF: We have 4 = 2 and so 2 = 0. \square

Proposition 23.4. Every Boolean ring is commutative.

Proof:

$$(ab)^{2} = a = b$$

$$\therefore a^{2} + ab + ba + b^{2} = a + b$$

$$\therefore a + ab + ba + b = a + b$$

$$\therefore ab + ba = 0$$

$$\therefore ab = -ba$$

$$= ba$$
(Proposition 23.3)

Example 23.5. The only Boolean integral domain is $\mathbb{Z}/2\mathbb{Z}$. For, if D is a Boolean integral domain and $x \in D$, we have $x^2 = x$, so $x^2 - x = x(x - 1) = 0$ and so x = 0 or x = 1, i.e. $D = \{0, 1\}$.

Part IV Field Theory

Fields

Proof: Easy. \square

 $\langle 1 \rangle 3$. Z is non-trivial.

 $\langle 1 \rangle 1$. Let: R be a division ring. $\langle 1 \rangle 2$. Let: Z be the center of R.

Proof:

Example 24.2. \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.					
Proposition 24.3. Every field is an integral domain.					
Proof: By Propositions 11.8 and 11.9. \square					
Example 24.4. The converse does not hold: $\mathbb Z$ is an integral domain but not a field.					
Proposition 24.5. Every finite integral domain is a field.					
Proof: In a finite integral domain, multiplication by any non-zero element is injective, hence surjective. \Box					
Corollary 24.5.1. For any positive integer n, the following are equivalent:					
• n is prime.					
$ullet$ $\mathbb{Z}/n\mathbb{Z}$ is an integral domain.					
• $\mathbb{Z}/n\mathbb{Z}$ is a field.					
Theorem 24.6 (Wedderburn's Little Theorem). Every finite division ring is a field.					

Definition 24.1 (Field). A *field* is a non-trivial commutative division ring.

Proposition 24.7. Every subring of a field is an integral domain.

Proposition 24.8. The center of a division ring is a field.

```
Proof: Since 1 \in Z. \langle 1 \rangle 4. Z is commutative. \langle 1 \rangle 5. Z is a division ring. \langle 2 \rangle 1. Let: a \in Z \langle 2 \rangle 2. a^{-1} \in Z \langle 3 \rangle 1. Let: x \in R \langle 3 \rangle 2. ax = xa \langle 3 \rangle 3. xa^{-1} = a^{-1}x
```

Definition 24.9. For any prime p and positive integer r, define a multiplication on $(\mathbb{Z}/p\mathbb{Z})^r$ that makes this group into a field by:

Proposition 24.10. A commutative ring is a field if and only if it is simple.

Proof: Proposition 20.5.

Part V Linear Algebra

Definition 24.11. Let $GL_n(\mathbb{R})$ be the group of invertible $n \times n$ real matrices. $\mathrm{GL}_n(\mathbb{R})$ acts on \mathbb{R}^n by matrix multiplication.

Definition 24.12. Let $GL_n(\mathbb{C})$ be the group of invertible $n \times n$ complex matrices.

 $\mathrm{GL}_n(\mathbb{C})$ acts on \mathbb{C}^n by matrix multiplication.

Definition 24.13. Let $SL_n(\mathbb{R}) = \{M \in GL_n(\mathbb{R}) : \det M = 1\}.$

Proposition 24.14. $\mathrm{SL}_n(\mathbb{R})$ is a normal subgroup of $\mathrm{GL}_n(\mathbb{R})$.

PROOF: If det M = 1 then $\det(AMA^{-1}) = (\det A)(\det M)(\det A)^{-1} = 1$.

Proposition 24.15.

$$\operatorname{GL}_n(\mathbb{R})/\operatorname{SL}_n(\mathbb{R}) \cong \mathbb{R}^*$$

Definition 24.16. Let $SL_n(\mathbb{C}) = \{ M \in GL_n(\mathbb{C}) : \det M = 1 \}.$

Definition 24.17. Let $O_n(\mathbb{R}) = \{M \in GL_n(\mathbb{R}) : MM^T = M^TM = I_n\}.$

Proposition 24.18. The action of $O_n(\mathbb{R})$ on \mathbb{R}^n preserves lengths and angles.

Definition 24.19. Let $SO_n(\mathbb{R}) = \{ M \in O_n(\mathbb{R}) : \det M = 1 \}.$

Definition 24.20. Let $U_n(\mathbb{C}) = \{ M \in GL_n(\mathbb{C}) : MM^{\dagger} = M^{\dagger}M = I_n \}.$

Definition 24.21. Let $SU_n(\mathbb{C}) = \{M \in U_n(\mathbb{C}) : \det M = 1\}.$

Proposition 24.22. Every matrix in $SU_2(\mathbb{C})$ can be written in the form

$$\left(\begin{array}{ccc}
a+bi & c+di \\
-c+di & a-bi
\end{array}\right)$$

for some $a, b, c, d \in \mathbb{R}$ with $a^2 + b^2 + c^2 + d^2 = 1$.

PROOF:
$$\langle 1 \rangle 1. \text{ Let: } M = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathrm{SU}_2(\mathbb{C})$$
$$\langle 1 \rangle 2. \ M^{-1} = M^{\dagger}$$

$$/1\2 M^{-1} - M^{\dagger}$$

- $\langle 1 \rangle 5. \ \delta = \overline{\alpha} = a bi$
- $\langle 1 \rangle 6. \ \gamma = -\overline{\beta} = -c + di$

$$\langle 1 \rangle 7$$
. det $M = a^2 + b^2 + c^2 + d^2 = 1$

Corollary 24.22.1. $SU_2(\mathbb{C})$ is simply connected.

Corollary 24.22.2.

$$SO_3(\mathbb{R}) \cong SU_2(\mathbb{C})/\{I, -I\}$$

PROOF: The function that maps
$$\begin{pmatrix} a+bi & c+di \\ -c+di & a-bi \end{pmatrix}$$
 to $\begin{pmatrix} a^2+b^2-c^2-d^2 & 2(bc-ad) & 2(ac+bd) \\ 2(ad+bc) & a^2-b^2+c^2-d^2 & 2(cd-ab) \\ 2(bd-ac) & 2(ab+cd) & a^2-b^2-c^2+d^2 \end{pmatrix}$

is a surjective homomorphism with kernel $\{I, -I\}$. \sqcup

Corollary 24.22.3. The fundamental group of $SO_3(\mathbb{R})$ is C_2 .