AMENDMENTS TO THE CLAIMS

The following Listing of Claims will replace all prior versions, and listings of claims in the application.

- 1. (CURRENTLY AMENDED) A pharmaceutical composition comprising:
 - a pharmaceutically acceptable carrier, adjuvant or vehicle; and
 - a therapeutically effective amount of a compound having the structure:

or pharmaceutically acceptable salt thereof;

wherein \mathbf{R}_1 and \mathbf{R}_2 are each independently hydrogen, halogen, -CN, -S(O)₁₋₂R^{1A}, -NO₂, -COR^{1A}, -CO₂R^{1A}, -NR^{1A}C(=O)R^{1B}, -NR^{1A}C(=O)OR^{1B}, -CONR^{1A}R^{1B}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{1A}; wherein W is independently -O-, -S- or -NR^{1C}-, wherein each occurrence of R^{1A}, R^{1B} and R^{1C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R₁ and R₂, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R₃ is hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or a prodrug moiety or an oxygen protecting group;

 R_4 is halogen, $-OR^{4A}$, $-OC(=O)R^{4A}$ or $-NR^{4A}R^{4B}$; wherein R^{4A} and R^{4B} are independently hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; a prodrug moiety, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety;

 \mathbf{R}_5 is hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

 \mathbf{R}_6 is hydrogen, halogen, -CN, -S(O)₁₋₂R^{6A}, -NO₂, -COR^{6A}, -CO₂R^{6A}, -NR^{6A}C(=O)R^{6B}, -NR^{6A}C(=O)OR^{6B}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{6A}; wherein W is independently -O-, -S- or -NR^{6C}-, wherein each occurrence of R^{6A}, R^{6B} and R^{6C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or

U.S.S.N. 10/551,152

Page 2 of 24

heteroaryl moiety; or R₆ and R_c, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

 R_a and each occurrence of R_b are independently hydrogen, halogen, -CN, -S(O)_{1.2}R^{a1}, -NO₂, -COR^{a1}, -CO₂R^{a1}, -NR^{a1}C(=O)R^{a2}, -NR^{a1}C(=O)OR^{a2}, -CONR^{a1}R^{a2}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{a1}; wherein W is independently -O-, -S- or -NR^{a3}-, wherein each occurrence of R^{a1}, R^{a2} and R^{a3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

 $\mathbf{R_c}$ is hydrogen, halogen, -CN, -S(O)₁₋₂R^{c1}, -NO₂, -COR^{c1}, -CO₂R^{c1}, -NR^{c1}C(=O)R^{c2}, -NR^{c1}C(=O)R^{c2}, -CONR^{c1}R^{c2}; an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{c1}; wherein W is independently -O-, -S- or -NR^{c3}-, wherein each occurrence of R^{c1}, R^{c2} and R^{c3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_c and R₆, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

n is an integer from 1 to 5;

 X_1 is O, S, NR^{X1} or $CR^{X1}R^{X2}$; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or a nitrogen protecting group;

Q is hydrogen, halogen, -CN, -S(O)₁₋₂R^{Q1}, -NO₂, -COR^{Q1}, -CO₂R^{Q1}, -NR^{Q1}C(=O)R^{Q2}, -NR^{Q1}C(=O)OR^{Q2}, -CONR^{Q1}R^{Q2}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{Q1}; wherein W is independently -O-, -S- or -NR^{Q3}-, wherein each occurrence of R^{Q1}, R^{Q2} and R^{Q3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; and

 Y_1 and Y_2 are independently hydrogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or $-WR^{Y1}$; wherein W is independently -O-, -S- or $-NR^{Y2}$ -, wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or Y_1 and Y_2 together with the carbon atom to which they are attached form a moiety having the structure:

$$\underbrace{\begin{array}{c} \text{v.v.} \\ \text{v.v.} \\ \text{O} \end{array}}_{\text{r.v.}} \underbrace{\begin{array}{c} \text{R}^{Y1} \\ \text{R}^{Y2} \end{array}_{\text{r.v.}} \underbrace{\begin{array}{c} \text{R}^{Y1} \\ \text{R}^{Y1} \end{array}_$$

U.S.S.N. 10/551,152

Page 3 of 24

whereby the composition is formulated for administration to a subject at a dosage between about 0.1 mg/kg to about 50 mg/kg of body weight.

with the proviso that the compound does not have the following structure:

- 2. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 50 mg/kg of body weight.
- 3. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 40 mg/kg of body weight.
- 4. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 40 mg/kg of body weight.
- 5. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 30 mg/kg of body weight.
- 6. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 5 mg/kg to about 30 mg/kg of body weight.
- 7. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 30 mg/kg of body weight.
- 8. (ORIGINAL) The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 20 mg/kg of body weight.

U.S.S.N. 10/551,152

Page 4 of 24

- 9. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 20 mg/kg of body weight.
- 10. (ORIGINAL) The composition of claim 1, wherein the dosage is 10 mg/kg or greater of body weight.

11. **(ORIGINAL)** The composition of claim 1, wherein:

 $\mathbf{R_1}$ and $\mathbf{R_2}$ are each independently hydrogen or substituted or unsubstituted lower alkyl; or $\mathbf{R_1}$ and $\mathbf{R_2}$, taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R₃ is hydrogen, or substituted or unsubstituted lower alkyl or aryl; a prodrug moiety or an oxygen protecting group;

 R_4 is halogen, $-OR^{4A}$, $-OC(=O)R^{4A}$ or $-NR^{4A}R^{4B}$; wherein R^{4A} and R^{4B} are independently hydrogen, or substituted or unsubstituted lower alkyl; a prodrug moiety, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or R_4 , taken together with the carbon atom to which it

is attached forms a moiety having the structure: $(A_{N_{1}}, A_{N_{2}}, A_{N_{3}}, A_{N_{4}}, A_{$

 R_5 and R_6 are each independently hydrogen or substituted or unsubstituted lower alkyl; or R_6 and R_c , taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

 R_a and each occurrence of R_b are independently hydrogen, halogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety, or $-WR^{a1}$; wherein W is independently -O-, -S- or -NR^{a3}-, wherein each occurrence of R^{a1} , and R^{a3} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b , taken together, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R_c is hydrogen, halogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety, or –WR^{c1}; wherein W is independently -O-, -S- or -NR^{c3}-, wherein each occurrence of R^{c1} and R^{c3} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl

U.S.S.N. 10/551,152

Page 5 of 24

moiety; or R_c and R₆, taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

n is an integer from 1 to 5;

 X_1 is O, S, NR^{X_1} or $CR^{X_1}R^{X_2}$; wherein R^{X_1} and R^{X_2} are independently hydrogen, halogen, substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, or a nitrogen protecting group;

Q is hydrogen, halogen, -CN, -S(O)₁₋₂R^{Q1}, -NO₂, -COR^{Q1}, -CO₂R^{Q1}, -NR^{Q1}C(=O)R^{Q2}, -NR^{Q1}C(=O)R^{Q2}, -CONR^{Q1}R^{Q2}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or -WR^{Q1}; wherein W is independently -O-, -S- or -NR^{Q3}-, wherein each occurrence of R^{Q1}, R^{Q2} and R^{Q3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

 \mathbf{Y}_1 and \mathbf{Y}_2 are independently hydrogen, an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or $-WR^{Y1}$; wherein W is independently -O-, -S- or $-NR^{Y2}$ -, wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or \mathbf{Y}_1 and \mathbf{Y}_2 together with the carbon atom to which they are attached form a moiety

having the structure:
$$N_{A}^{AA} = 0$$
, $N_{A}^{AA} = 0$.

12. (ORIGINAL) The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, and the compound has one of the following structures:

wherein R_1 - R_6 , Y_2 , X_1 , n and Q are as defined in claim 1; W is O or NH; and R^{Y_1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety.

13. (ORIGINAL) The composition of claim 1, wherein R_a , R_b and R_c are each hydrogen, Q is a carbonyl-containing moiety and the compound has one of the following structures:

U.S.S.N. 10/551,152

Page 6 of 24

wherein R₁-R₆, Y₂, X₁, and n are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; and Alk is a substituted or unsubstituted C₀. 6alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl.

14. (ORIGINAL) The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, n is 3 and the compound has one of the following structures:

$$R^{Y1}W_{0}$$
 $R^{Y1}W_{0}$
 $R^{Y1}W_{0}$

wherein R_1 - R_6 , Y_2 , Q and X_1 are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety.

15. (ORIGINAL) The composition of claim 1, wherein R_a , R_b and R_c are each hydrogen, n is 3, Q is a carbonyl-containing moiety, and the compound has one of the following structures:

wherein R₁-R₆, X₁ and Y₂ are as defined in claim 1; W is O or NH; R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; and Alk is a substituted or unsubstituted C₀. 6alkylidene or C_{0.6}alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; and R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety.

- 16. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_1 and R_2 are each hydrogen.
- 17. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_5 and R_6 are each methyl.
- 18. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R₃ is lower alkyl.
- 19. (ORIGINAL) The composition of claim 18, wherein R₃ is methyl.
- 20. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein R_4 is OH, NH_2 or halogen.
- 21. (ORIGINAL) The composition of claim 13 or 15, wherein R_7 is lower alkyl.
- 22. (ORIGINAL) The composition of claim 21, wherein R_7 is methyl.
- 23. (PREVIOUSLY PRESENTED) The composition of claim 1, wherein Q has the structure:

U.S.S.N. 10/551,152

Page 8 of 24

$$R_{7/M_{M_{1}}}$$
 X X Z R_{8}

wherein R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R₈ is a substituted or unsubstituted carbocyclic, heterocyclic, aryl or heteroaryl moiety; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C_{0.6}alkylidene or C_{0.6}alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety; and pharmaceutically acceptable derivatives thereof.

24. (ORIGINAL) The composition of claim 23, wherein Q has the structure:

wherein R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R_8 is a substituted or unsubstituted carbocyclic, heterocyclic, aryl or heteroaryl moiety; and R^Y is hydrogen, halogen, $-OR^{Y1}$ or $-NR^{Y1}NR^{Y2}$; wherein R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

25. (PREVIOUSLY PRESENTED) The composition claim 13, wherein R_8 is one of:

wherein p is an integer from 0 to 5; q is 1 or 2, r is an integer from 1 to 6; each occurrence of R^{8A} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl, -(alkyl)aryl or -(alkyl)heteroaryl, -OR^{8C}, -SR^{8C}, -N(R^{8C})₂, -SO₂N(R^{8C})₂, -(C=O)N(R^{8C})₂, halogen, -CN, -NO₂, -(C=O)OR^{8C}, -N(R^{8C})(C=O)R^{8D}, wherein each occurrence of R^{8C} and R^{8D} is independently hydrogen, lower alkyl, lower heteroalkyl, aryl, heteroaryl, -(alkyl)aryl or -(alkyl)heteroaryl; and each occurrence of R^{8B} is independently hydrogen or lower alkyl.

26. (ORIGINAL) The composition of claim 25, wherein R_8 has the structure:

wherein R^{8B} is hydrogen or lower alkyl.

- 27. (PREVIOUSLY PRESENTED) The composition of claim 1 wherein n is 3.
- 28. (PREVIOUSLY PRESENTED) The composition of claim 12 wherein Y_1 is OR^{Y_1} and Y_2 is lower alkyl; wherein R^{Y_1} is hydrogen or lower alkyl.
- 29. (ORIGINAL) The composition of claim 28, wherein Y_1 is OH and Y_2 is CF_3 .

U.S.S.N. 10/551,152

Page 10 of 24

30. (ORIGINAL) The composition of claim 11 wherein R_a , R_b and R_c are each hydrogen, and the compound has one of the structures:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 , n and Q are as defined in claim 1; and Y_2 and R^{Y1} are independently hydrogen or lower alkyl.

31. (ORIGINAL) The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 and Q are as defined in claim 11; and Y_2 and R^{Y1} are independently hydrogen or lower alkyl.

32. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R_3 - R_6 and n are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -N R^{Z1} -, -CHO R^{Z1} , -CHN $R^{Z1}R^{Z2}$, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted $C_{0.6}$ alkylidene or $C_{0.6}$ alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CON R^{Z1} , OCON R^{Z1} , N $R^{Z1}NR^{Z2}$, N $R^{Z1}NR^{Z2}$ CO, N $R^{Z1}CO$, N

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal); or a substituted or unsubstituted C₀₋₆alkylidene or C₀₋₆alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

34. **(ORIGINAL)** The composition of claim 32 or 33, wherein –X-Y-Z together represents the moiety –CH₂-Y-CH₂-; wherein Y is –CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, C=O, C=S, C=N(R^{Y1}) or –CH(Hal); wherein Hal is U.S.S.N. 10/551,152

Page 13 of 24

Attorney Docket No. 2003080-0205

a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

35. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

wherein R_3 - R_6 and n are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is $-CHOR^{Y1}$, $-CHNR^{Y1}R^{Y2}$, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

wherein R_3 - R_6 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; R^{BB} is hydrogen or lower alkyl; and Y is $-CHOR^{Y1}$, $-CHNR^{Y1}R^{Y2}$, C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

wherein n, R_3 and R_4 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, $-OR^{Y1}$ or $-NR^{Y1}NR^{Y2}$; wherein R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

wherein R_3 and R_4 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, $-OR^{Y1}$ or $-NR^{Y1}NR^{Y2}$; wherein R^{Y1} and R^{Y2} are independently hydrogen, alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2} , taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

wherein R_3 - R_6 and n are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

40. (ORIGINAL) The composition of claim 11 wherein the compound has the structure:

wherein R_3 - R_6 are as defined in claim 11; Y_2 and R^{Y1} are independently hydrogen or lower alkyl; R_7 is a substituted or unsubstituted, linear or branched, cyclic or acyclic lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

41. (ORIGINAL) The composition of claim 11 wherein the compound has the following structure:

$$Y_1$$
 Y_2
 X_1
 $R_{5}H_{100}$
 R_{4}

or a pharmaceutically acceptable salt thereof;

wherein X₁ is CH₂, NH or O;

 Y_1 and Y_2 are independently OH, $C(R^{YI})_3$ or Y_1 and Y_2 taken together with the carbon atom to which they are attached are -C=0, wherein R^{YI} is halo;

U.S.S.N. 10/551,152

Page 19 of 24

R₆ is H or lower alkyl;

R₅ is H or lower alkyl;

R₄ is OH; and

R₃ is alkyl.

42. **(ORIGINAL)** The composition of claim 41 wherein the compound has one of the following structures:

- 43. (ORIGINAL) The composition of claim 1, wherein the compound is present in an amount effective to inhibit metastasis of tumor cells.
- 44. (ORIGINAL) The composition of claim 1, wherein the compound is present in an amount effective to inhibit angiogenesis.
- 45. (ORIGINAL) The composition of claim 1, further comprising a cytotoxic agent.
- 46. (ORIGINAL) The composition of claim 45, wherein the cytotoxic agent is an anticancer agent.
- 47. (ORIGINAL) The composition of claim 1, further comprising a palliative agent.
- 48. **(ORIGINAL)** A method for treating breast tumor metastasis in a subject comprising: administering to a subject in need thereof a therapeutically effective amount of the composition of claim 1.

U.S.S.N. 10/551,152

Page 20 of 24

- 49. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 1 mg/kg to about 50 mg/kg of body weight.
- 50. (ORIGINAL) The method of claim 48, wherein the dosage is between about 0.1 mg/kg to about 40 mg/kg of body weight.
- 51. (ORIGINAL) The method of claim 48, wherein the dosage is between about 1 mg/kg to about 40 mg/kg of body weight.
- 52. (ORIGINAL) The method of claim 48, wherein the dosage is between about 0.1 mg/kg to about 30 mg/kg of body weight.
- 53. (ORIGINAL) The method of claim 48, wherein the dosage is between about 1 mg/kg to about 30 mg/kg of body weight.
- 54. (ORIGINAL) The method of claim 48, wherein the dosage is between about 5 mg/kg to about 30 mg/kg of body weight.
- 55. (ORIGINAL) The method of claim 48, wherein the dosage is between about 0.1 mg/kg to about 20 mg/kg of body weight.
- 56. (ORIGINAL) The method of claim 48, wherein the dosage is between about 1 mg/kg to about 20 mg/kg of body weight.
- 57. (ORIGINAL) The method of claim 48, wherein the dosage is 10 mg/kg or greater of body weight.
- 58. (ORIGINAL) The method of claim 48 wherein in the composition, the compound has one of the following structures:

U.S.S.N. 10/551,152

Page 21 of 24

- 59. **(ORIGINAL)** The method of claim 58, wherein the composition is administered at a dosage between about 10 mg/kg to about 20 mg/kg of body weight.
- 60. (ORIGINAL) The method of claim 48, further comprising administering a cytotoxic agent.
- 61. (ORIGINAL) The method of claim 60, wherein the cytotoxic agent is an anticancer agent.
- 62. (ORIGINAL) The method of claim 48, further comprising administering a palliative agent.