

Collision resistance

Introduction

Recap: message integrity

So far, four MAC constructions:

```
PRFs - NMAC : basis of HMAC (this segment)

PMAC: a parallel MAC
```

```
randomized MAC Carter-Wegman MAC: built from a fast one-time MAC
```

This module: MACs from collision resistance.

Collision Resistance

```
Let H: M \rightarrowT be a hash function (|M| >> |T|)
A <u>collision</u> for H is a pair m_0, m_1 \in M such that:
H(m_0) = H(m_1) and m_0 \neq m_1
```

A function H is <u>collision resistant</u> if for all (explicit) "eff" algs. A: $Adv_{CR}[A,H] = Pr[A outputs collision for H]$ is "neg".

Example: SHA-256 (outputs 256 bits)

MACs from Collision Resistance

Let I = (S,V) be a MAC for short messages over (K,M,T) (e.g. AES) Let H: $M^{big} \rightarrow M$

Def: $I^{big} = (S^{big}, V^{big})$ over (K, M^{big}, T) as:

$$S^{big}(k,m) = S(k,H(m))$$
; $V^{big}(k,m,t) = V(k,H(m),t)$

Thm: If I is a secure MAC and H is collision resistant then I^{big} is a secure MAC.

Example: $S(k,m) = AES_{2-block-cbc}(k, SHA-256(m))$ is a secure MAC.

MACs from Collision Resistance

```
S^{big}(k, m) = S(k, H(m)); V^{big}(k, m, t) = V(k, H(m), t)
```

Collision resistance is necessary for security:

Suppose adversary can find $m_0 \neq m_1$ s.t. $H(m_0) = H(m_1)$.

Then: Sbig is insecure under a 1-chosen msg attack

step 1: adversary asks for $t \leftarrow S(k, m_0)$

step 2: output (m_1, t) as forgery

Protecting file integrity using C.R. hash

Software packages:

package name F_n

When user downloads package, can verify that contents are valid

H collision resistant ⇒ attacker cannot modify package without detection

no key needed (public verifiability), but requires read-only space

End of Segment

Collision resistance

Generic birthday attack

Generic attack on C.R. functions

Let H: M \rightarrow {0,1}ⁿ be a hash function (|M| >> 2ⁿ)

Generic alg. to find a collision in time $O(2^{n/2})$ hashes

Algorithm:

- 1. Choose $2^{n/2}$ random messages in M: $m_1, ..., m_2^{n/2}$ (distinct w.h.p)
- 2. For $i = 1, ..., 2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, got back to step 1.

How well will this work?

The birthday paradox

Let $r_1, ..., r_n \in \{1,...,B\}$ be indep. identically distributed integers.

Thm: when
$$n = 1.2 \times B^{1/2}$$
 then $Pr[\exists i \neq j: r_i = r_j] \ge \frac{1}{2}$

Proof: (for <u>uniform</u> indep. r_1 , ..., r_n)

$$\Pr\left[\exists i \neq j: r_i = r_j\right] = 1 - \Pr\left[\forall i \neq j: r_i \neq r_j\right] = 1 - \left(\frac{B-1}{B}\right) \left(\frac{B-2}{B}\right) \cdots \left(\frac{B-n+1}{B}\right) = 1 - \frac{n-1}{B} \left(1-\frac{1}{B}\right) = 1 - \frac{n-1}{B} \left($$

$$P_{r}\left[\exists_{1} \neq j: r_{i} = r_{j}\right] = 1 - P_{r}\left[\forall_{i} \neq j: r_{i} \neq r_{j}\right] = 1 - \left(\frac{B-1}{B}\right)\left(\frac{B-2}{B}\right) \cdots \left(\frac{B-N+1}{B}\right) = 1 - \frac{N-1}{I}\left(1 - \frac{1}{B}\right) \geqslant 1 - \frac{N-1}{I}e^{-iB} = 1 - e^{-iB}\frac{\sum_{i=1}^{N}i}{\sum_{i=1}^{N}i} \geqslant 1 - e^{-N^{2}/2B}$$

$$1 - x \leq e^{-x}$$

$$1 - x \leq e^{-x}$$

$$\frac{N^{2}}{2B} = 0.72$$
Dan Bo

Generic attack

- H: $M \rightarrow \{0,1\}^n$. Collision finding algorithm:
- 1. Choose $2^{n/2}$ random elements in M: $m_1, ..., m_2^{n/2}$
- 2. For i = 1, ..., $2^{n/2}$ compute $t_i = H(m_i) \in \{0,1\}^n$
- 3. Look for a collision $(t_i = t_i)$. If not found, got back to step 1.

Expected number of iteration ≈ 2

Running time: $O(2^{n/2})$ (space $O(2^{n/2})$)

Sample C.R. hash functions:

Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

^{*} best known collision finder for SHA-1 requires 2⁵¹ hash evaluations

Quantum Collision Finder

	Classical algorithms	Quantum algorithms
Block cipher E: K × X → X exhaustive search	O(K)	O(K ^{1/2})
Hash function H: M → T collision finder	O(T ^{1/2})	O(T ^{1/3})

End of Segment

Collision resistance

The Merkle-Damgard Paradigm

Collision resistance: review

Let H: M \rightarrow T be a hash function (|M| >> |T|)

A <u>collision</u> for H is a pair m_0 , $m_1 \in M$ such that: $H(m_0) = H(m_1)$ and $m_0 \neq m_1$

Goal: collision resistant (C.R.) hash functions

Step 1: given C.R. function for **short** messages, construct C.R. function for **long** messages

The Merkle-Damgard iterated construction

Given $h: T \times X \longrightarrow T$ (compression function)

we obtain $H: X^{\leq L} \longrightarrow T$. H_i - chaining variables

PB: padding block

If no space for PB add another block

MD collision resistance

Thm: if h is collision resistant then so is H.

Proof: collision on $H \Rightarrow$ collision on h

Suppose H(M) = H(M'). We build collision for h.

$$\begin{aligned} |V| &= H_0 \quad , \quad H_1 \quad , \dots \quad , \quad H_t \quad , \quad H_{t+1} = H(M) \\ |V| &= H_0' \quad , \quad H_1' \quad , \dots \quad , \quad H_{r}' \quad H_{r+1}' = H(M') \end{aligned} \qquad \Rightarrow \qquad \begin{aligned} |IV| &= H_0' \quad , \quad H_1' \quad , \dots \quad , \quad H_{r}' \quad H_{r+1}' = H(M') \\ |H| &= H_0' \quad , \quad H_1' \quad , \dots \quad , \quad H_{r+1}' = H(M') \end{aligned} \Rightarrow \qquad \begin{aligned} |IV| &= H_0' \quad , \quad H_1' \quad , \quad \dots \quad , \quad H_{r+1}' = H(M') \\ |H| &= H_0' \quad , \quad H_1' \quad , \quad \dots \quad , \quad H_{r+1}' = H(M') \end{aligned} \Rightarrow \qquad \begin{aligned} |IV| &= H_0' \quad , \quad H_1' \quad , \quad \dots \quad , \quad H_{r+1}' = H(M') \\ |H| &= H_1' \quad , \quad \dots \quad , \quad H_{r+1}' = H(M') \end{aligned} \Rightarrow \qquad \begin{aligned} |IV| &= H_0' \quad , \quad H_1' \quad , \quad \dots \quad , \quad H_{r+1}' = H(M') \\ |H| &= H_1' \quad , \quad \dots \quad , \quad H_{r+1}' = H(M') \end{aligned} \Rightarrow \qquad \begin{aligned} |IV| &= H_1' \quad , \quad \dots \quad , \quad H_{r+1}' \quad , \quad \dots \quad , \quad$$

IIF
$$H_1 \neq H'_r$$
 or $M_1 \neq M'_r$ or $PB \neq PB'$

The have a collision on h .

Stop

Otherwise Suppose $H_t = H'_r$ and $M_t = M'_r$ and PB = PB'Then: $h(H_{t-1}, M_{t-1}) = H_t = H'_t = h(H'_{t-1}, M'_{t-1})$ If $\begin{bmatrix} H_{4-1} \neq H'_{4-1} \\ \text{or} \\ M_{4-1} \neq M'_{4-1} \end{bmatrix}$ then we have a collision on h. Stop. stherwise, H_+,=H_+, and M_t=M_t' and M_{t-1}=M_{t-1}'. Therate all the way to beginning and either:

[1] Find collision on h or cannot happen

because MM

[2] Vi: M; = M;

Dan Rone

Dan Rone

Dan Rone ⇒ To construct C.R. function,
suffices to construct compression function

End of Segment

Collision resistance

Constructing Compression Functions

The Merkle-Damgard iterated construction

Thm: h collision resistant ⇒ H collision resistant

Goal: construct compression function $h: T \times X \longrightarrow T$

Compr. func. from a block cipher

E: $K \times \{0,1\}^n \longrightarrow \{0,1\}^n$ a block cipher.

The **Davies-Meyer** compression function: $h(H, m) = E(m, H) \oplus H$

Thm: Suppose E is an ideal cipher (collection of |K| random perms.).

Finding a collision h(H,m)=h(H',m') takes $O(2^{n/2})$ evaluations of (E,D).

Best possible!!

Suppose we define h(H, m) = E(m, H)

Then the resulting h(.,.) is not collision resistant:

to build a collision (H,m) and (H',m') choose random (H,m,m') and construct H' as follows:

- O H'=D(m', E(m,H)) = E(m',H') E(m,H)
- \bigcirc H'=E(m', D(m,H))
- \bigcirc H'=E(m', E(m,H))
- \bigcirc H'=D(m', D(m,H))

Other block cipher constructions

Let $E: \{0,1\}^n \times \{0,1\}^n \longrightarrow \{0,1\}^n$ for simplicity

Miyaguchi-Preneel: $h(H, m) = E(m, H) \oplus H \oplus m$ (Whirlpool)

 $h(H, m) = E(H \oplus m, m) \oplus m$

total of 12 variants like this

Other natural variants are insecure:

$$h(H, m) = E(m, H) \oplus m \qquad (HW)$$

Case study: SHA-256

- Merkle-Damgard function
- Davies-Meyer compression function
- Block cipher: SHACAL-2

Provable compression functions

Choose a random 2000-bit prime p and random $1 \le u, v \le p$.

For
$$m,h \in \{0,...,p-1\}$$
 define

$$h(H,m) = u^H \cdot v^m \pmod{p}$$

<u>Fact:</u> finding collision for h(.,.) is as hard as solving "discrete-log" modulo p.

Problem: slow.

End of Segment

Collision resistance

HMAC:

a MAC from SHA-256

The Merkle-Damgard iterated construction

Thm: h collision resistant ⇒ H collision resistant

Can we use H(.) to directly build a MAC?

MAC from a Merkle-Damgard Hash Function

H: X^{≤L} → **T** a C.R. Merkle-Damgard Hash Function

Attempt #1: $S(k, m) = H(k \parallel m)$

This MAC is insecure because:

- Given H(k || m) can compute H(w || k || m || PB) for any w.
- Given H(k | m) can compute H(k | m | l w) for any w.
- Given H(k∥m) can compute H(k∥m ll PB ll w) for any w.
 - \bigcirc Anyone can compute H(k | m) for any m.

Standardized method: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash function.

example: SHA-256; output is 256 bits

Building a MAC out of a hash function:

HMAC: $S(k, m) = H(k \oplus \text{opad } || H(k \oplus \text{ipad } || m))$

HMAC in pictures

Similar to the NMAC PRF.

main difference: the two keys k_1 , k_2 are dependent

HMAC properties

Built from a black-box implementation of SHA-256.

HMAC is assumed to be a secure PRF

- Can be proven under certain PRF assumptions about h(.,.)
- Security bounds similar to NMAC
 - Need $q^2/|T|$ to be negligible $(q \ll |T|^{\frac{1}{2}})$

In TLS: must support HMAC-SHA1-96

End of Segment

Collision resistance

Timing attacks on MAC verification

Warning: verification timing attacks [L'09]

Example: Keyczar crypto library (Python) [simplified]

```
def Verify(key, msg, sig_bytes):
    return HMAC(key, msg) == sig_bytes
```

The problem: '==' implemented as a byte-by-byte comparison

Comparator returns false when first inequality found

Warning: verification timing attacks [L'09]

Timing attack: to compute tag for target message m do:

Step 1: Query server with random tag

Step 2: Loop over all possible first bytes and query server.

stop when verification takes a little longer than in step 1

Step 3: repeat for all tag bytes until valid tag found

Defense #1

Make string comparator always take same time (Python):

```
return false if sig_bytes has wrong length
result = 0
for x, y in zip( HMAC(key,msg) , sig_bytes):
    result |= ord(x) ^ ord(y)
return result == 0
```

Can be difficult to ensure due to optimizing compiler.

Defense #2

Make string comparator always take same time (Python):

```
def Verify(key, msg, sig_bytes):
    mac = HMAC(key, msg)
    return HMAC(key, mac) == HMAC(key, sig_bytes)
```

Attacker doesn't know values being compared

Lesson

Don't implement crypto yourself!

End of Segment