10.3 The Dot Product

Def

If $\vec{a}=< a_1, a_2, a_3>$ and $\vec{b}=< b_{1,2}, b_3>$ then the dot product of \vec{a} and \vec{b} is the number $\vec{a}\cdot\vec{b}$ given by $\vec{a}\cdot\vec{b}$ given by $\vec{a}\cdot\vec{b}=a_1b_1+a_2b_2+a_3b_3$. While for 2 dimensional vectors, $< a_1, a_2>\cdot < b_1, b_2>=a_1b_1+a_2b_2$

Ex 1. Find the dot product

$$<2, 4>\cdot<3, -1>=2(3)+4(-1)=6-4=\boxed{2}$$
 $<-1, 7, 4>\cdot<6, 2, -\frac{1}{2}>=-1(6)+7(2)+4(-\frac{1}{2})=\boxed{6}$
 $(\vec{i}+2\vec{j}-3\vec{k})\cdot(2\vec{j}-\vec{k})=1(0)+2(2)+(-3)(-1)=\boxed{7}$

Properties

If \vec{a}, \vec{b} and \vec{c} are 3-dimensional vectors, and c is a scalar, then

$$\begin{split} \vec{a} \cdot \vec{a} &= |\vec{a}|^2 \\ \vec{a} \cdot \vec{b} &= \vec{b} \cdot \vec{a} \\ \vec{a} \cdot (\vec{b} + \vec{c}) &= \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} \\ (c\vec{a}) \cdot \vec{b} &= c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b}) \\ \vec{0} \cdot \vec{a} &= 0 \end{split}$$

Angle Between 2 Vectors

 $0 \le \theta \le \pi$. If \vec{a} and \vec{b} are parallel, then $\theta = 0$ or $\theta = \pi$

Theorem

If θ is the angle between the vectors \vec{a} and \vec{b} , then

$$\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \cos \theta$$

$\mathbf{Ex} \ \mathbf{2}$

If the vectors \vec{a} and \vec{b} have lengths 4 and 6, and the angle between them is $\frac{\pi}{3}$, find $\vec{a} \cdot \vec{b}$.

$$|\vec{a}| = 4, |\vec{b}| = 6$$
 $\vec{a} \cdot \vec{b} = 4(6)\cos\frac{\pi}{3} = 24(\frac{1}{2}) = \boxed{12}$

If
$$\theta = 0$$
, then $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|$ since $\cos 0 = 1$.

If
$$\theta = 0$$
, then $\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$ since $\cos 0 = -1$.

Projections

$$\vec{b} = \vec{PR}$$

$$\vec{a} = \vec{PR}$$

 $\vec{PR} = \vec{PS} + \vec{SR}$ Vector Projection of \vec{b} onto \vec{a} is proj $_{\vec{a}}\vec{b}$

Scalar projection \vec{b} onto \vec{a} or "component of \vec{b} along \vec{a} " ($\text{comp}_{\vec{a}}\vec{b}$) Since $\vec{a} \cdot \vec{b} = 1|\vec{a}||\vec{b}|\cos\theta$, comp $_{\vec{a}}\vec{b} = |\vec{b}|\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$

Ex 5

Find the scalar and vector projects of $\vec{b}=<1,1,2>$ onto $\vec{a}=<-2,3,1>$

$$\operatorname{comp}_{\vec{a}}\vec{b} = \frac{-2(1) + 3(1) + 1(2)}{\sqrt{(-2)^2 + (3)^2 + (1)^2}} = \boxed{\frac{3}{\sqrt{14}}}$$

Calculating Work

The work done bt a constant force f in moving an object through a distance d is W = FD. Suppose the constant force is a vector \vec{F} pointing in a direction different from the displacement vector \vec{D} . If the force moves the object from points $P \to Q$, then

$$W = (|\vec{F}| \cos \theta)$$
$$W = |\vec{F}| \vec{D} \cos \theta$$
$$W = \vec{F} \cdot \vec{D}$$

$\mathbf{E}\mathbf{x}$ 6

A force is given by a vector $\vec{F} = 3\vec{i} + 4\vec{j} + 5\vec{k}$ and moves a particle from the point P(2,1,0) to the point Q(4,6,2), find the work done.

$$\vec{D} = \vec{PQ} = <4-2, 6-1, 2-0>$$

= < 2, 5, 2 >

$$W = \vec{F} \cdot \vec{D} = 3(2) + 4(5) + 5(2)$$
$$= 6 + 20 + 10$$
$$= \boxed{30}$$