CMSC 441: Homework #2 Solutions

Monday, February 18, 2008

Parag Namjoshi

Exercise 4.1-1

Show that the solution of $T(n) = T(\lceil n/2 \rceil) + 1$ is $O(\lg n)$

Solution:

We guess that the solution is $T(n) = O(\lg n)$. We must prove that $T(n) \le c \lg n$ for appropriate c > 0. We start by assuming that this bound holds for $\lceil n/2 \rceil$, that is that $T(\lceil n/2 \rceil) \le c \lg(\lceil n/2 \rceil)$. Substituting into the recurrence yields

$$\begin{split} T(n) &\leq c \lg(\lceil n/2 \rceil) + 1 \\ &\leq c \lg(n/2) + 1 \\ &= c \lg n - c \lg 2 + 1 \\ &= c \lg n - c + 1 \\ &= c \lg n \end{split}$$

the last step holds as long as $c \ge 1$. For the base case, it suffices* to show that $T(2) \le c \lg 2$ for some $c \ge 1$. T(2) = T(1) + 1 or T(2) = 2 assuming T(1) = 1. Thus $T(2) \le c \lg 2$ if $c \ge 2$.

Exercise 4.1-2

We saw that the solution of $T(n) = 2T(\lfloor n/2 \rfloor) + n$ is $O(n \lg n)$. Show that the solution of this recurrence is also $\Omega(n \lg n)$. Conclude that the solution is $\Theta(n \lg n)$.

Solution:

We guess that the solution is $T(n) = \Omega(n \lg n)$. We must prove that $T(n) \ge cn \lg n$ for appropriate c > 0. We start by assuming that this bound holds for $\lfloor n/2 \rfloor$, that is that $T(\lfloor n/2 \rfloor) \ge c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)$. Substituting into the recurrence yields

$$\begin{split} T(n) &\geq 2c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor) + n \\ &\geq cn \lg(n/2) + n \\ &= cn \lg n - cn \lg 2 + n \\ &= c \lg n - cn + n \\ &= cn \lg n \end{split}$$

the last step holds as long as $c \ge 1$. For the base case, we must show that $T(2) \le c \lg 2$ and $T(3) \le c \lg 3^{\dagger}$ for some $c \ge 1$. T(2) = 2T(1) + 2 or T(2) = 4 assuming T(1) = 1. Similarly, T(3) = 2T(1) + 3 or T(2) = 5. Thus $T(2) \ge c \lg 2$ and $T(3) \ge c \lg 3$ if $c \le 1$.

Exercise 4.1–6

Solve the recurrence $T(n) = 2T(\sqrt{n}) + 1$ by making a change of variables. Your solution should be asymptotically tight. Do not worry about whether values are integral.

^{*}In this exercise, it is not necessary to show $T(3) \le c \lg 3$. Why?

[†]In this exercise, it is necessary to show $T(3) \le c \lg 3$ as well. Why?

${\bf Solution:}$

Let $m = \lg n$, thus,

$$T(2^m) = 2T(2^{m/2}) + 1,$$

We now rename $S(m) = T(2^m)$ to produce new recurrence

$$S(m) = 2S(m/2) + 1.$$

From the arguments on similar lines to first exercise, $S(m) = \Theta(m)$. Changing back to T(n) and resubstituting $m = \lg n$, $T(n) = \Theta(\lg n)$.