# Lecture 1: Measurent and units.

### Recap:

- · Put Physical Science in context.
- · Demarcation problem: how to distinguish a scientific theory from a non-scientific one. La Karl Popper: falsifiability ontena.
- · Criterie for progress in science i.e how can theories improve
- · Theory: set of rules that allows us to make predictions about a physical system.

Predictions Comparison Real world
from atheory (collects da Mough experimentation.

measures different quantities

Predictions can be of two types:

- · Qualitative predictions: predictions about the quality of a system. More "subjective! e.g "It's sunny in ATX".
- · Quantitative predictions: preductions about a measurable number quantity. More "objective".

e.g " It's 90°F in ATX" ( ) -) snung.
" Humidity of 80 %" ) -) snung. " 25 % clouds".

Comment: it is a strong trend in suience to try to define qualities of a system by means of relations between quantifiable parts.

e.g quality: object in solid state.

for an object to be in solid state means that its atoms mantain a fixed position.



| e.g quality: co<br>color defines by t<br>light wave (or the                                                | the frequency of the                                       |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| · Every prediction in PS is a quantitative prediction about something that can be neasured by a number 1s. |                                                            |
| Natural question: how many quantities one out there to be veasured? What does it mean to measure them?     |                                                            |
| PSI Time                                                                                                   | indovertal quantities ed.  SI. Unit  Meter  Second  Kg  Kg |
| Tempere ture                                                                                               | Kilogram  Kelvin  Aupere  A                                |

Amount of substance | Mole | mol Lumius intensity | Candela | cd.

Measurement: To measure something means to compare it to some preestablished definition of the unit of what we want to measure.

=> we need to define each of the fundamental units.

#### Meter:

- 1791: defined as 1/10,000,000 of the distance from the equator to the northpole.

equator ? Lueter

- 1889: distance between two engraved lines on a platium-iridium bar.

= 1960: 1650 76.73 times the wavelength
of orange light emitted by Krypton atom.

wavelength

Description

Krypton atom

- 1983: distance traveled by light in vacuum in 1/299792458 of a second.

#### Second:

- 1967: defined as the time required for 9192631770 Cesium atom vibrations.
"Atomic chocks"

## Kilogram:

- 1889: defined to be the mass of a platimum-iridium splinder, housed at the International Bureau of Weights and Measures in Panis.