$\rm EE1101-Signals$ and Systems – Jan - May 2017

End Semester Examination

Name:	Section: KJ UK DV VV Roll:

Instructions; Use pen only; For the objective type questions, answer on the question paper itself; Return the question paper along with your answer script.

_	01.		. •	[0.0]
T	Objective	tvpe	questions	1201

	Objective type questions [20]
1.	Starting with $f(t)$, we are to arrive at $f(at - b)$ by shifting and scaling. We can either scale by and then shift by, or shift by and then scale by [2]
2.	A function $f(t)$ is non-zero only on $t = [2,3)$, linearly decreasing from 1 at $t = 2$ to 0 at $t = 3$. Express this function in terms of functions $t, u(t)$ or their shifted/scaled versions:
3.	Given that a smooth function $\phi(t)$ has $\phi(0) = 2$, the value of $\int_{-\infty}^{-1} \phi(t) \delta(t) dt$ is [1]
4.	The function $f(t) = \alpha \exp(-\alpha t)$ approaches a dirac delta function $\delta(t)$, if (circle the correct answer(s)): (a) $\alpha \to 0$, (b) $\alpha \to \infty$, (c) $t \to \infty$, (d) none of the above. [1]
5.	They system $y(t) = \exp(x(t))$ is BIBO <u>stable/unstable</u> , and the output to an input $x(t) = tu(t)$ is <u>bounded/unbounded</u> . (Circle the correct answers) [1]
6.	The discrete signal $x[n] = cos(2\pi f n)$ is periodic if f is [1]
7.	For a memoryless LTI system, the ratio between $y(t)$ and $x(t)$ is: (a) constant, (b) time-dependent, (c) requires more information to be provided, (d) $\delta(t)$. (circle the correct answer(s))[1]
8.	For a complex Fourier series to represent a real signal, the condition on the Fourier series coefficient is [1]
9.	The periodic function $x(t) = \ln(t)$ defined over a period $0 < t \le 1$, does not have Fourier series representation because it does not satisfy the specific condition of
10.	If an audio signal is connected across a series R-C circuit and the output is taken across the resistor, which frequencies are enhanced? (a) Low, (b) High, (c) All equally enhanced, (d) All equally suppressed. [1]

11.	If $X(j\omega)\longleftrightarrow x(t)$ denotes a Fourier pair, then complete the following Fourier pair: $\frac{dX(j(\omega-\omega_o))}{d\omega}\longleftrightarrow x(t)$
	[1]
12.	The ideal low pass filter with cut-off ω_c has impulse response $h(t) = \underline{\hspace{1cm}}$
	This is not realizable because [2]
13.	For $x(t) = -\exp(-at)u(-t)$ and $a > 0$, the Fourier transform of $x(t)$ exists/doesn't exist
	(circle the correct answer). If it exists, it is, and if not, this is why:
	[2].
14.	Given a transfer function $H(s) = s/[(s+a)(s+b)]$, with $a > 0 > b$, of the three possible ROCs
	for this function, which of them is causal? [1]
15.	In solving a n^{th} order ordinary differential equation initial value problem, the number of initial
	conditions required is: (a) 1, (b) n , (c) $n-1$, (d) n^2 . [1]
16.	Consider the bilateral Laplace transform of $x(t)$ to be $X(s)$, which is known to be a rational
	function, with poles and zeroes strictly in the left half plane. The final value of such a function,
	$x(\infty)$, is [1]