

## Faculty of Applied Sciences B.Sc. in Computing

Academic Year 2022/2023 2<sup>nd</sup> Semester

COMP123 - 121/122

**Data Communications** 

# Data Encoding and Modulation

# Signal Encoding Techniques

- Both analog and digital data can be encoded as either analog or digital signals.
- The particular encoding chosen depends on the specific requirements.
- Encoding techniques include NRZ, Manchester, AM, FM, PM, ASK, PSK, etc..



#### (a) Encoding onto a digital signal



(b) Modulation onto an analog signal

# Digital Data and Signals

- The process of converting digital data to digital signals is called <u>line coding</u>.
- digital signal
  - discrete, discontinuous voltage pulses
  - each pulse is a signal element
  - binary data encoded into signal elements





# Line Coding and Decoding



## Signal Element versus Data Element



a. One data element per one signal element (r = 1)



c. Two data elements per one signal element (r = 2)



b. One data element per two signal elements  $\left(r = \frac{1}{2}\right)$ 



d. Four data elements per three signal elements  $\left(r = \frac{4}{3}\right)$ 

# **Line Coding Schemes**



# Terminology

- unipolar all signal elements have the same sign
- polar one logic state represented by positive voltage and the other by negative voltage
- data rate rate of data (R) transmission in bits per second
- duration or length of a bit time taken for transmitter to emit the bit (1/R)
- modulation rate rate at which the signal level changes, measured in baud = signal elements per second.

# **Key Data Transmission Terms**

| Term                              | Units                                                                                                      | Definition                                                                    |
|-----------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Data element                      | Bits                                                                                                       | A single binary one or zero                                                   |
| Data rate                         | Bits per second (bps)                                                                                      | The rate at which data elements are transmitted                               |
| Signal element                    | Digital: a voltage pulse of constant amplitude Analog: a pulse of constant frequency, phase, and amplitude | That part of a signal that occupies the shortest interval of a signaling code |
| Signaling rate or modulation rate | Signal elements per second (baud)                                                                          | The rate at which signal elements are transmitted                             |

# Interpreting Signals

### need to know:

- timing of bits when they start and end
- signal levels

### factors affecting signal interpretation:

- signal to noise ratio (SNR)
- data rate
- bandwidth
- encoding scheme



# Unipolar Scheme – NRZ (Non-Return-to-Zero)

- Positive voltage defines bit 1 and the zero voltage defines bit 0
- The signal does not return to zero at the middle of the bit



# Nonreturn to Zero-Level (NRZ-L)

- easiest way to transmit digital signals is to use two different voltages for 0 and 1 bits
- voltage constant during bit interval
  - no transition (no return to zero voltage)
  - absence of voltage for 0, constant positive voltage for 1
  - more often, a negative voltage represents one value and a positive voltage represents the other (NRZ-L)

# Non-return to Zero Inverted (NRZ-I)

- Non-return to zero, invert on ones
- constant voltage pulse for duration of bit
- data encoded as presence or absence of signal transition at beginning of bit time
  - transition (low to high or high to low) denotes binary 1
  - no transition denotes binary 0
- example of <u>differential encoding</u>
  - data represented by <u>changes</u> rather than levels
  - more reliable to detect a transition in the presence of noise than to compare a value to a threshold
  - easy to lose sense of polarity

# Comparison of NRZ-L and NRZ-I



O No inversion: Next bit is 0

Inversion: Next bit is 1

## NRZ Pros & Cons



### **Pros**

- easy to engineer
- make efficient use of bandwidth

used for magnetic recording



### Cons

- presence of a dc component
- lack of synchronization capability

not often used for signal transmission

# Manchester Encoding

- transition in middle of each bit period
- midbit transition serves as clock and data
- low to high transition represents a 1
- high to low transition represents a 0
- used by IEEE 802.3



# Differential Manchester Encoding

- midbit transition is only used for clocking
- transition at start of bit period representing 0
- no transition at start of bit period representing 1
  - this is a differential encoding scheme
- used by IEEE 802.5



**Assume** 

low

# Comparison of Manchester and Differential Manchester Encoding



Assume
high
preceding
level

# Alternative Mark Inversion (AMI)

- A neutral zero voltage represents binary 0
- Binary 1s are represented by <u>alternating</u> positive and negative voltages
- Commonly used for long distance communication



# Pseudoternary

- A variation of AMI
- A neutral zero voltage represents binary 1
- Binary 0s are represented by <u>alternating</u> positive and negative voltages



Assume the previous 0 is with low level.

## Comparison of AMI and Pseudoternary



# Biphase Pros and Cons



#### **Pros**

- synchronization on midbit transition (self clocking)
- has no dc component
- has error detection

### Cons

- at least one transition per bit time and may have two
- maximum modulation rate is twice NRZ
- requires more bandwidth

## Example: A Stream of Binary Ones at 1Mbps



## Comparison of Polar and Bipolar Schemes

#### Nonreturn to Zero-Level (NRZ-L)

0 = high level

1 = low level

#### Nonreturn to Zero Inverted (NRZI)

0 =no transition at beginning of interval

1 = transition at beginning of interval

#### Bipolar-AMI

0 = no line signal

1 = positive or negative level, alternating for successive ones

#### **Pseudoternary**

0 = positive or negative level, alternating for successive zeros

1 = no line signal

#### Manchester

0 = transition from high to low in middle of interval

1 = transition from low to high in middle of interval

#### Differential Manchester

Always a transition in middle of interval

0 = transition at beginning of interval

1 = no transition at beginning of interval



# Multilevel Scheme – Two Binary One Quaternary (2B1Q)

- Multiple data bits are sent per signal element to increase date rate
- 2B1Q encodes 2-bit patterns as one signal element belonging to a four-level signal
- Can send data 2 times faster than NRZ-L
- Used in DSL technology

# Multilevel Scheme – Two Binary One Quaternary (2B1Q)



Previous level: Previous level: positive negative

| Next<br>level | Next<br>level |
|---------------|---------------|
| +1            | -1            |
| +3            | -3            |
| -1            | +1            |
| -3            | +3            |
|               | level         |

Transition table

# Digital-to-Analog Conversion



## Types of Digital-to-Analog Conversion



# Digital Data, Analog Signal

### **Encoding Techniques**

# Amplitude shift keying (ASK)

 used to transmit digital data over optical fiber

# Frequency shift keying (FSK)

most common form is binary FSK (BFSK)

# Phase shift keying (PSK)

 phase of carrier signal is shifted to represent data

- main use is public telephone system
  - has frequency range of 300Hz to 3400Hz
  - uses modem (modulatordemodulator)

# **Amplitude Shift Keying**

- encode 0/1 by different carrier amplitudes
  - usually have one amplitude zero
- susceptible to sudden gain changes
- inefficient
- used for:



- up to 1200bps on voice grade lines
- very high speeds over optical fiber



# Implementation of Binary ASK





# Binary Frequency Shift Keying

- two binary values represented by two different frequencies (near carrier)
- less susceptible to error than ASK
- used for:

- $s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary } 1\\ A\cos(2\pi f_2 t) & \text{binary } 0 \end{cases}$
- up to 1200bps on voice grade lines
- high frequency radio
- even higher frequency on LANs using coaxial cable



# Implementation of BFSK



 VCO – Higher voltage gives higher frequency carrier, while lower voltage produces lower frequency carrier.

# Multiple FSK (MFSK)

- each signalling element represents more than one bit
- more than two frequencies used
- more bandwidth efficient
- more prone to error



# Phase Shift Keying (PSK)

- phase of carrier signal is shifted to represent data
- binary PSK
  - two phases represent two binary digits
- differential PSK
  - phase shifted relative to previous transmission rather than some reference signal



$$s(t) = \begin{cases} A\cos(2\pi f_c t) \\ A\cos(2\pi f_c t + \pi) \end{cases}$$
$$= \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

# Implementation of BPSK/BASK





# **Modulation Techniques**



$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary } 1\\ 0 & \text{binary } 0 \end{cases}$$

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

$$s(t) = \begin{cases} A\cos(2\pi f_c t) \\ A\cos(2\pi f_c t + \pi) \end{cases}$$
$$= \begin{cases} A\cos(2\pi f_c t) & \text{binary } 1 \\ -A\cos(2\pi f_c t) & \text{binary } 0 \end{cases}$$

# Quadrature PSK (QPSK)

- more efficient use if each signal element represents more than one bit
  - uses phase shifts separated by multiples of  $\pi/2$  (90°)
  - each element represents two bits
  - split input data stream in two and modulate onto carrier and phase shifted carrier
- can use 8 phase angles (8PSK) and more than one amplitude (QAM)
  - 9600bps modem uses 12 angles, four of which have two amplitudes

### **QPSK**



# Implementation of QPSK



#### Quadrature Amplitude Modulation (QAM)

- QAM used on asymmetric digital subscriber line (ADSL) and some wireless
- combination of ASK and PSK
- logical extension of QPSK  $s(t) = d_1(t)\cos 2\pi f_c t + d_2(t)\sin 2\pi f_c t$
- send two different signals simultaneously on same carrier frequency
  - use two copies of carrier, one shifted 90°
  - each carrier is ASK modulated
  - two independent signals over same medium
  - demodulate and combine for original binary output

## Concept of Constellation Diagram

 A constellation diagram can help us define the amplitude and phase of a signal element



### **Examples of Constellation Diagrams**



- Can you draw a constellation diagram for 16 QAM?
- What about 8PSK?

### Analog Data, Digital Signal

- digitization is conversion of analog data into digital data which can then:
  - be transmitted using NRZ-L
  - be transmitted using code other than NRZ-L
  - be converted to analog signal
- analog to digital conversion done using a codec
  - Pulse Code Modulation (PCM)
  - Delta Modulation (DM)

## Digitizing Analog Data

- Analog data are first digitalized using PCM, DM, etc.
- Digital data are then modulated using ASK, FSK, PSK, QAM, etc.



## Three Components of PCM

- Step 1: <u>Sampling</u> → PAM signal
- Step 2: Quantizing → Quantized signal
- Step 3: <u>Encoding</u> → Digital data



### Sampling Theorem

- The analog signal is sampled at a regular interval, called sampling
- The inverse of the sampling interval is called sampling rate or sampling frequency
- If a signal is sampled at regular intervals at a rate higher than <u>twice</u> the highest signal frequency, the samples contain all information in original signal
- eg. 4000Hz voice data, requires 8000 samples per second

### To digitalize a sine wave



 $5*sin (2\pi 4t)$ 

Amplitude = 5

Frequency = 4 Hz

### A sine wave signal



 $5*sin(2\pi 4t)$ 

Amplitude = 5

Frequency = 4 Hz

Sampling rate = 256 samples/second

Sampling duration = 1 second

# An undersampled signal



 $sin(2\pi 8t)$ 

Amplitude = 1

Frequency = 8 Hz

Sampling rate = 8.5 samples/second

Sampling duration = 2 second

# Recovery of a Sampled Sine Wave for Different Sampling Rate



a. Nyquist rate sampling:  $f_s = 2 f$ 



b. Oversampling:  $f_s = 4 f$ 



c. Undersampling:  $f_s = f$ 

### Quantization

- Assume the maximum and minimum amplitudes of the PAM signal be  $V_{max}$  and  $V_{min}$
- We divide the range into L zones, each of height  $\triangle = (V_{max} V_{min})/L$
- We assign quantized values to 0 to L-1 to the midpoint of each zone
- We approximate the value of the sample amplitude to the quantized values.

### Quantization



## Delta Modulation (DM)

- Developed to reduce the complexity of PCM
- analog input is approximated by a staircase function
  - can move up or down one level ( $\delta$ ) at each sample interval
- has binary behavior
  - function only moves up or down at each sample interval
  - hence can encode each sample as single bit
  - 1 for up or 0 for down

#### The Process of Delta Modulation



# Delta Modulation Example



#### PCM verses Delta Modulation

- DM has simplicity compared to PCM but has worse SNR
- issue of bandwidth used
  - for good voice reproduction with PCM:
    - want 128 levels (7 bit) & voice bandwidth 4khz
    - need 8000 x 7 = 56kbps
- data compression can improve on this
- still growing demand for digital signals
- PCM preferred to DM for analog signals

### Analog Data, Analog Signals

- modulate <u>carrier frequency</u> with analog data
- why modulate analog signals?
  - higher frequency can give more efficient transmission (carrier frequency relates to antenna size)
  - permits frequency division multiplexing (discuss later)
- types of modulation:
  - Amplitude
  - Frequency
  - Phase

# Analog Data, Analog Signals



#### Modulation and Demodulation

- The conversion of digital signals to analog signals suitable for transmission is called modulation.
- The conversion of modulated analog signals to digital signals is called <u>demodulation</u>.
- A device that performs modulation and demodulation is called a <u>modem</u>.
- Both modems at the transmitter and receiver must use the same modulation methods.

# Amplitude Modulation (AM)

 Analog data is embedded in the envelop (amplitude) of the modulated signal





# Frequency Modulation (FM)

 Analog data is embedded in the <u>frequency</u> of the modulated signal



# Phase Modulation (PM)

Analog data is embedded in the <u>phase</u> of the modulated signal





### Summary

- Signal encoding techniques
  - digital data, digital signal
    - NRZ, multilevel binary, biphase, modulation rate
  - analog data, digital signal
    - PCM, DM
  - digital data, analog signal
    - ASK, FSK, BFSK, PSK
  - analog data, analog signal
    - AM, FM, PM

