陀螺

定轴转动中的旋转轴为刚体对称轴

只有转动轴为刚体的对称轴,

*L*与或平行

 m_1 向我们运动, m_2 远离我们, 当 m_1 和 m_2 相同,合角动量沿z.

陀螺

$$\vec{M} = \frac{d\vec{L}}{dt}$$

定点支持力矩为0,忽略摩擦力矩,则重力矩 $\vec{M}=\vec{r}\times m\vec{g}$

角动量改变量 $d\vec{L}$ = $\vec{M}dt$ = $(\vec{r} \times m\vec{g})dt$

 $\vec{L}//\vec{r}$

而 $\vec{dL} = \vec{L}_f - \vec{L}_i = \vec{M}dt$,因此 $d\vec{L} \perp \vec{r}$, $d\vec{L} \perp m\vec{g}$ 因而 $\vec{dL} \perp \vec{L}$

因此 \vec{L} 大小不变 $\left(\left|\vec{L}_{F}\right| = \left|\vec{L}_{i}\right|\right)$,仅改变方向(进动)

右手定则显示 $\vec{M} = \vec{r} \times \vec{F} = \vec{r} \times m\vec{g}$ 在xy平面

 $\Delta \vec{L}$ 的方向平行于力矩 \vec{M}

陀螺仪

力矩导致角动量变化dL平行于力矩矢量。 陀螺仪的轴在dt时间内变化角度d**ø**

$$d\phi = \frac{dL}{L} = \frac{\sum \tau_{\text{ext}} dt}{L} = \frac{(Mgr_{\text{CM}}) dt}{L}$$

$$L = I\omega$$

$$\omega_p = \frac{d\phi}{dt} = \frac{Mgr_{\text{CM}}}{I\omega}$$

地球的进动

章动

质量分布非中心对称,除进动 (φ角)外, 还有章动(θ角)。

平衡陀螺

转子,内环,外环与质心重合,重力矩为0,角动量守恒。

陀螺惯性导航系统

陀螺仪的应用

通过产生特定方向角动量,改变空间飞行器的方向。

振动

振动

振动: 周期性的运动

股市行情

地震波

周期性的运动让我们找出规律

振动现象

心跳

听(20-20kHz)、说

看、颜色

振动

一维弹簧振子

和位移方向相反的力总是将质点拉向平衡位置,形成周期运动

弹簧谐振子

谐振子:

F = -kx

$$F = -kx^2$$

$$F = -kx^3$$

$$F = -k_1 x - k_2 x^2 - \dots$$

谐振子

$$f = -kx, m\frac{d^2x}{dt^2} = -kx$$

运动方程:

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

引入
$$w_0^2 = \frac{k}{m}$$

$$\frac{d^2x}{dt^2} = -w_0^2x$$

$$\frac{dx}{dt} = -w_0 A \sin(w_0 t + \varphi_0)$$

$$\frac{d^2 x}{dt^2} = -w_0^2 A \cos(w_0 t + \varphi_0) = -w_0^2 x$$

$$x(t) = A\cos(w_0 t + \varphi_0)$$

简谐运动

$$x(t) = A\cos(w_0 t + \varphi_0)$$

 w_0 本征角频率,只与k和m相关

$$w_0 = \sqrt{\frac{k}{m}}$$

频率
$$f_0 = \frac{w_0}{2\pi}$$

w₀单位rad/s

Tines with large mass m: low frequency f = 128 Hz

Tines with small mass m: high frequency f = 4096 Hz

谐振子振荡的频率和振幅无关

$$x(t) = A\cos(w_0 t + \varphi_0)$$

$$w_0 = \sqrt{\frac{k}{m}}$$

$$\frac{d^2x}{dt^2} = -w_0^2x$$

相位

$$x(t) = A\cos(w_0 t + \varphi_0)$$

 φ_0 : 初始相位

A 振幅

周期
$$T = 1/f_0 = \frac{2\pi}{w_0} = 2\pi\sqrt{\frac{m}{k}}$$

简谐运动

初始条件t=0时的 (x_0, v_0) 决定振幅A和相位 φ_0

$$t = 0$$

$$x_0 = A\cos(\varphi_0)$$

$$v_0 = \frac{dx}{dt}|_{t=0} = -Aw_0\sin(\varphi_0)$$

$$A = \sqrt{x_0^2 + \frac{v_0^2}{w_0^2}}, \varphi_0 = -\arctan\frac{v_0}{x_0 w_0}$$

$$x(t) = A\cos(w_0 t + \varphi_0)$$

简谐运动

不同频率 (周期)

不同振幅

不同相位

思考

右图是实验上,测量一个弹簧 的周期T的平方和质量的关系。

拟合为一条直线,但是直线并不能过原点,这是什么原因?

$$T = 2\pi \sqrt{\frac{m}{k}}$$

简谐运动

谐振子模型: 经典和量子物理中许多问题的严格或近似模型

$$\frac{d^2x}{dt^2} + w_0^2 x = 0$$

单摆

$$I\frac{d^2\theta}{dt^2} = M_z$$

$$I = ml^2$$
 $M_z = -mgl\sin\theta$

因此:

$$\frac{d^2\theta}{dt^2} + \frac{g}{l}\sin\theta = 0$$

$$\sin \theta = \theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} + \dots$$

 $\sin \theta \approx \theta$, 当 θ 较小时($\theta < 0.4 rad$)