## Test di Calcolo Numerico



Ingegneria Informatica 29/07/2013

| C         | OGNOME |  |  | NOME |  |  |
|-----------|--------|--|--|------|--|--|
| MATRICOLA |        |  |  |      |  |  |
| RISPOSTE  |        |  |  |      |  |  |
| 1)        |        |  |  |      |  |  |
| 2)        |        |  |  |      |  |  |
| 3)        |        |  |  |      |  |  |
| 4)        |        |  |  |      |  |  |
| 5)        |        |  |  |      |  |  |

**N.B.** Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

## Test di Calcolo Numerico



Ingegneria Informatica 29/07/2013

1) Si vuole calcolare la funzione

$$f(x,y) = x \cdot y$$

nel punto  $P_0 = (\sqrt{2}, \sqrt{5}) \ (\sqrt{2} = 1.414213..., \sqrt{5} = 2.236067...).$ 

Si indichi un insieme di indeterminazione a cui appartiene  $P_0$ .

Supponendo di commettere un errore assoluto algoritmico  $|\delta_a| \leq 10^{-2}$  e di introdurre i dati con errori assoluti  $|\delta_x| \leq 10^{-2}$  e  $|\delta_y| \leq 10^{-2}$ , quale sarà il massimo errore assoluto  $|\delta_f|$ ?

- 2) Una matrice  $A \in \mathbb{C}^{3\times 3}$  ha autovalori  $\lambda_1 = 2$ ,  $\lambda_2 = -2$  e  $\lambda_3 = \sqrt{2}$ . Dire se le seguenti affermazioni sono vere:
  - a) A è convergente;
  - b)  $A^2$  è convergente;
  - c)  $A^{-1}$  è convergente;

Infine, determinare, se esistono, valori  $\alpha \in \mathbb{R}$  per i quali la matrice  $\alpha A^2$  risulta convergente.

3) Determinare i valori reali  $\alpha$  per i quali il sistema

$$\begin{pmatrix} 1 & \alpha \\ 1 & 2 \\ \alpha & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

ha soluzione unica nel senso dei minimi quadrati.

4) L'equazione

$$x^3 - 3x^2 + x + 1 = 0$$

ha soluzioni  $\alpha_1 = 1 - \sqrt{2}$ ,  $\alpha_2 = 1 + \sqrt{2}$  e  $\alpha_3 = 1$ .

Se si applica il metodo di Newton per approssimare tali soluzioni, quali ordini di convergenza si hanno?

5) Calcolare i pesi  $a_0$ ,  $a_1$  e  $a_2$  della formula di quadratura

$$J_2(f) = a_0 f(0) + a_1 f(3/2) + a_2 f(1)$$

che approssima l'integrale  $I(f) = \int_{-1}^{2} f(x)dx$  in modo da avere il massimo grado di precisione. Indicare il grado di precisione ottenuto.

## SOLUZIONE

1) Il punto  $P_0$  appartiene, per esempio, all'insieme di indeterminazione  $D = [1, 2] \times [2, 3]$ .

Risultando 
$$A_x = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial x} \right| = 3$$
 e  $A_y = \sup_{(x,y) \in D} \left| \frac{\partial f}{\partial y} \right| = 2$ , si ha

$$|\delta_f| \le |\delta_a| + A_x |\delta_x| + A_y |\delta_y| = 10^{-2} + 3 \times 10^{-2} + 2 \times 10^{-2} = 6 \times 10^{-2}$$
.

Assumendo, per esempio,  $P_1 = (1.41, 2.23)$  si ha  $f(P_1) = 3.14$  e  $f(P_0) = 3.162277...$ 

- 2) Le matrici A e  $A^2$  non sono convergenti avendo raggio spettrale maggiore di 1. La matrice  $A^{-1}$  risulta convergente essendo  $\rho(A^{-1}) = 1/\sqrt{2}$ . La matrice  $\alpha A^2$  è convergente se  $|\alpha| < 1/4$ .
- 3) La matrice dei coefficienti risulta di rango massimo (cioè 2) per ogni valore reale di  $\alpha$  per cui la soluzione nel senso dei minimi quadrati del sistema proposto è unica  $\forall \alpha \in \mathbb{R}$ .
- 4) Gli ordini di convergenza del metodo di Newton sono i seguenti:

$$\begin{cases} \alpha_1 \Longrightarrow p = 2 \\ \alpha_2 \Longrightarrow p = 2 \\ \alpha_3 \Longrightarrow p \ge 3 \end{cases}$$

5) Imponendo che la formula sia esatta per  $f(x) = 1, x, x^2$ , si ottengono i pesi

$$a_0 = \frac{5}{2},$$
  $a_1 = 2,$   $a_2 = -\frac{3}{2}.$ 

Il grado di precisione è m=2 poiché si ha  $E_2(x^3) \neq 0$ .