1 概率统计基本概念 8

1.4 组合计数: 十二路

著名组合学家 Gian-Carlo Rota (1932-1999)提出了组合计数十二路(The Twelvefold Way). 考虑两个集合的函数映射 $f:[N] \to [M]$, 其中 |N| = n 以及 |M| = m,考虑无任何约束,1-1单射,满射三个条件下函数映射的个数.

该问题被Knuth进一步简化为将n个(相同/不同)的球放入m个(相同/不同)的箱子, 有多少种不同的放法. 首先给出结论, 后面一一解释.

每个箱子中球的个数	不限	≤ 1	≥ 1
n个不同的球, m 个不同的箱子	m^n	$(m)_n$	m!S(n,k)
n个相同的球, m个不同的箱子	$\binom{n+m-1}{n}$	$\binom{m}{n}$	$\binom{n-1}{m-1}$
n个不同的球, m个相同的箱子	$\sum_{k=1}^{m} S(n,k)$	$\left\{ \substack{1,n \leq m \\ 0,n > m} \right.$	S(n,m)
n个不同的球, m 个相同的箱子	$\sum_{k=1}^{m} p_k(n)$	$\begin{cases} 1, n \le m \\ 0, n > m \end{cases}$	$p_m(n)$

1.4.1 排列,组合与多重组合

$$\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{(n)_r}{r!}.$$

下面将组合的概念进行推广.

多重组合: 有n个不同的元素, 分成k个不同的组, 每组依次为 n_1, n_2, \cdots, n_k 个元素, 即 $n_1 + n_2 + \cdots + n_k = n$, 共有

$$\binom{n}{n_1, n_2, \dots, n_k} = \binom{n}{n_1} \binom{n - n_1}{n_2} \cdots \binom{n - n_1 - n_2 - \dots - n_{k-1}}{n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}$$

种方法, 称 $\binom{n}{n_1, n_2, \dots, n_k}$ 为多重组合, 本质上有 $\binom{n}{r} = \binom{n}{r, n-r}$.

多重组合的另一种解释: n个元素分别属于k个不同的类, 每个类的元素个数分别为 n_1, n_2, \ldots, n_k , 如果同类元素之间不可分辨, 现将n个元素排成一列, 有 $\binom{n}{n_1, n_2, \ldots, n_k}$ 种不同的排列方法. 组合与多项式系数之间有如下关系:

$$(x+y)^n = \sum_{i=0}^n \binom{n}{i} x^i y^{n-i}$$

$$(x_1 + x_2 + \dots + x_k)^n = \sum_{\substack{\frac{k \otimes n_i \ge 0 \quad (i \in [n])}{n_1 + n_2 + \dots + n_k = n}} \binom{n}{n_1 n_2 \dots n_k} x_1^{n_1} x_2^{n_2} \dots x_k^{n_k}$$

根据排列组合, 有如下结论:

1 概率统计基本概念 9

每个箱子中球的个数	不限	≤ 1	≥ 1
<i>n</i> 个不同的球, <i>m</i> 个不同的箱子	m^n	$(m)_n$	
n个相同的球, m个不同的箱子		$\binom{m}{n}$	

1.4.2 整数的有序分解

研究方程 $x_1 + x_2 + \cdots + x_k = n$ 有多少个非负整数解. 该问题等价于将n个相同的球放入k个箱子中,每个箱子中分别有 x_1, x_2, \ldots, x_k 个球, $x_i \ge 0$,有多少种不同的放法.

针对这个问题, 考虑下面一个对应关系: 将n条竖线|和k-1个*排列成一排, 在最后加入一个*. 如下例所示:

$$\underbrace{|||}_{x_1} *|| * \cdots * \underbrace{|||||}_{x_i} * \cdots |||| *$$

第i个*和第i – 1个*之间的竖线个数表示 x_i 的值,而第1个*之前的竖线个数表示 x_1 的值.可以发现方程 $x_1+x_2+\cdots+x_k=n$ 与这种排列之间存在一一对应关系,因此方程 $x_1+x_2+\cdots+x_k=n$ 有

$$\binom{n+k-1}{k-1} = \binom{n+k-1}{n}$$

种非负整数解.

例如: 方程 $x_1 + x_2 + x_3 = 10$ 有 $\binom{12}{2}$ 种非负整数解.

推广. 求方程 $x_1 + x_2 + \cdots + x_k = n \ (k \le n)$ 有多少种正整数解.

解. 令 $\tilde{x}_1 = x_1 - 1$, $\tilde{x}_2 = x_2 - 1$, \cdots , $\tilde{x}_k = x_k - 1$, 方程 $x_1 + x_2 + \cdots + x_k = n$ ($k \le n$)有多少种正整数解等价于方程 $\tilde{x}_1 + \tilde{x}_2 + \cdots + \tilde{x}_k = n - k$ 有多少种非负整数解. 根据上面的结论有

$$\binom{n-k+k-1}{k-1} = \binom{n-1}{k-1} = \binom{n-1}{n-k}$$

种正整数解.

推广. 求不等式 $x_1 + x_2 + \cdots + x_k = n \ (k \le n)$ 有多少种非负整数解.

习题. 不等式 $x_1 + x_2 + x_3 \le 17$ 有多少种正整数解.

对于n个(相同/不同)的球放入m个(相同/不同)的箱子, 有如下结论:

每个箱子中球的个数	不限	≤ 1	≥ 1
n个相同的球, m 个不同的箱子	$\binom{n+m-1}{n}$		$\binom{n-1}{m-1}$

1.4.3 第二类Stirling数(The Stirling number of the second kind)

定义1.4. 将n个不同的元素分成k个非空的块(集合, Block<math>),不同的划分数称为第二类Stirling数,记为S(n,k)或 $\{ {n \atop k} \}$.

1 概率统计基本概念 10

这里以集合 $A = \{1, 2, 3\}$ 为例:

- 若分成1个非空的块,则有 $\{1,2,3\}$,此时S(3,1)=1;
- 若分成2个非空的块,则有 $\{\{1\},\{2,3\}\},\{\{2\},\{1,3\}\},\{\{3\},\{1,2\}\}$,此时S(3,2)=3;
- 若分成1个非空的块,则有 $\{\{1\},\{2\},\{3\}\}$,此时S(3,3)=1;

由定义可知S(n,n) = S(n,1) = 1.

下面考虑第二类Stirling数的递推关系, 将n个不同的元素分成k个非空的块, 如果最后一个元素n独立为一个块 $\{n\}$, 则其余元素构成k-1块, 即S(n-1,k)划分数; 如果元素n不独立成一个块 $\{n\}$, 则其余元素构成k块, 即S(n-1,k)划分数, 再将第n个元素放入k块中, 故有 $k\cdot S(n-1,k)$. 于是得到第二类Stirling数的递推关系:

$$S(n,k) = kS(n-1,k) + S(n-1,k-1).$$

第二类Stirling数的一般表达式为:

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} {k \choose i} (k-i)^{n}.$$

对于n个(相同/不同)的球放入m个(相同/不同)的箱子, 有如下结论:

每个箱子中球的个数	不限	≤ 1	≥ 1
n个不同的球, m个不同的箱子			m!S(n,k)
n个不同的球, m个相同的箱子	$\sum_{k=1}^{m} S(n,k)$	$\left\{ _{0,n>m}^{1,n\leq m}\right.$	S(n,m)

1.4.4 整数的无序分解(Partition)

将正整数n划分(partition)为k个部分,每个部分都是正数,且这些划分之间是无序的,即整数n有多少种不同的划分数,记为 $p_k(n)$.

这里以7的划分为例

k = 1	{7}	$p_1(7) = 1$
k = 2	$\{1,6\},\{2,5\},\{3,4\}$	$p_2(7) = 3$
k = 3	$\{1,1,5\},\{1,2,4\},\{1,3,3\},\{2,2,3\}$	$p_3(7) = 4$
k = 4	$\{1,1,1,4\},\{1,1,2,3\},\{1,2,2,2\}$	$p_4(7) = 3$
k = 5	$\{1,1,1,1,3\},\{1,1,1,2,2\}$	$p_5(7) = 2$
k = 6	$\{1,1,1,1,1,2\}$	$p_6(7) = 1$
k = 7	{1,1,1,1,1,1,1}	$p_7(7) = 1$

对于一般情况, 我们容易得到 $p_1(n) = p_n(n) = 1$. 将整数n划分成k个非空的部分, 等价于以下数学问题:

$$x_1 + x_2 + \dots + x_k = n$$
 s. t. $x_1 \ge x_2 \ge \dots \ge x_k \ge 1$.

2 条件概率与独立性 11

将整数n划分成k个非空的部分,考虑最后一个部分 $x_k = 1$ 时, $(x_1, x_2, \dots, x_{k-1})$ 是整数n-1的k-1部分的划分;当 $x_k > 1$ 时, $(x_1 - 1, x_2 - 1, \dots, x_{k-1} - 1, x_k - 1)$ 是整数n-k的k部分的划分.于是得到以下关于 $p_k(n)$ 的递推关系:

$$p_k(n) = p_{k-1}(n-1) + p_k(n-k).$$

进一步可以得到以下性质:

性质1.7. 有
$$\frac{\binom{n-1}{k-1}}{k!} \le p_k(n) \le \frac{\binom{n-1+k(k-1)/2}{k-1}}{k!}$$
.

性质1.8. 固定k, 随着 $n \to \infty$ 有 $P_k(n) \to \frac{n^{k-1}}{k!(k-1)!}$ 成立.

将n个相同的球, 分入m个相同的箱子, 每个箱子至少有1球, 一共有 $P_m(n)$ 种放法. 如果不限制每个箱子中球的个数, 那么有 $\sum_{k=1}^n$ 种放法. 至此完成十二路的证明.

对于n个(相同/不同)的球放入m个(相同/不同)的箱子, 有如下结论:

每个箱子中球的个数	不限	≤ 1	≥ 1
n个不同的球, m 个相同的箱子	$\sum_{k=1}^{m} p_k(n)$	$\left\{ \begin{matrix} 1,n \leq m \\ 0,n > m \end{matrix} \right.$	$p_m(n)$

2 条件概率与独立性

2.1 条件概率

2.2 独立性