Scholar No. / Roll No.	2	4	G	0	3	ユ			

Maulana Azad National Institute of Technology Bhopal Department of Physics

II Sem. Mid-Term Exam. April-2025

Semester - II (Session 2024-25)

B. Tech. (Sections: F, G, H, I & J)

Subject Code: PHY-24102

Subject: Physics

Time: 1 Hr

Max. Marks: 20

Date: 02/04/2025

Note: Attempt all questions

Q. No.	Questions	Marks	COs
la.	What do you understand by missing order spectra in a transmission grating?	1	CO1
1b.	A semiconductor acts as an insulator at $T = 0$ K. Explain.	1	COI
1c.	What is de-Broglie hypothesis? Estimate the de Broglie wavelength of an electron accelerated	1 + 1	CO1
	from rest through a potential difference of 100 V.		
2a.	Derive an expression for the intensity distribution in Fraunhofer diffraction through a single slit,	3 + 2	CO2
	with a suitable diagram. Additionally, explain the conditions for the formation of maxima and		-
	minima in the diffraction pattern.		
2b.	In Newton's rings experiment using sodium light, what is the order of the dark ring whose	2	CO3
	diameter is twice that of the 4th dark ring?		CO4
2c.	Light is normally incident on a diffraction grating that is 0.5 cm wide and contains 2500 lines.	2	
	Determine the angular separation between the two closely spaced sodium spectral lines, with		
	wavelengths 5890 Å and 5896 Å, in the first order $(m = 1)$ diffraction spectrum.		
3a.	Write down the Fermi-Dirac (FD) distribution function and plot it for T = 0 K, and finite	2 + 1	CO3
	temperatures $T_1 > T_2 > T_3$. Define Fermi energy.		
3b.	A Germanium (Ge) semiconductor is doped with an acceptor impurity at a concentration of	2	CO4
	10 ¹⁵ atoms/cm ³ . Given that the hole mobility is 1800 cm ² /V.s, calculate the resistivity (ρ) of the		
	material. (Given: Charge of an electron $q = 1.6 \times 10^{-19}$ C).		
3c.	Explain whether the functions (i) $\psi(x) = \exp(x^2)$ and (ii) $\psi(x) = \cot(x)$ are valid wave	2	CO5
	functions in quantum mechanics. Justify your answer based on the necessary conditions for an		
	acceptable wave function.		