Федеральное государственное автономное образовательное учреждение высшего образования «Научно-образовательная корпорация ИТМО»

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия

Отчёт по лабораторной работе №5

По дисциплине «Методы оптимизации» (4 семестр)

Студент:

Дениченко Александр Р3212

Практик:

Селина Елена Георгиевна

Задание 1

Данные

$$\begin{cases}
-2x_1 - 3x_2 - > \min, \\
2x_1 - 3x_2 \ge 12, \\
x_1 + x_2 \ge 2, \\
3x_1 + 6x_2 \le 24, \\
x_1, x_2 \ge 0
\end{cases}$$

Решить задачу линейного программирования графическим методом.

Изобразим на плоскости допустимое множество X данной задачи (треугольник) и одну из линий уровня целевой функции (чёрный цвет, где функция задана: $-2x_1 - 3x_2 = -14$).

Антиградиент

$$-\nabla f(x) = (2,3) = \overline{e}$$

указывает направление убывания функции. Совершая параллельный перенос линии уровня вдоль напрвления находим её крайнее положение.

В этом положении прямая проходит через вершину с координатами (8, 0). Поэтому целевая функция f(x) принимает единственное значение в точке x = (8, 0).

$$f^* = -2 \cdot 8 - 3 \cdot 0 = -16$$

Задание 2

Даны матрица А и векторы с и b. Решить каноническую задачу линейного программирования

$$f(x) = cx - > max$$

при ограничениях

$$Ax = b, x \ge 0$$

с помощью симплекс-метода.

$$c = (0, 1, -6, 1, -3), b = (9, 14, 3)$$

$$A = \begin{pmatrix} 6 & 1 & 1 & 2 & 1 \\ -1 & 0 & -1 & 7 & 8 \\ 1 & 0 & 2 & 1 & 1 \end{pmatrix}$$

Перепишем в удобный вид

$$f(x) = x_2 - 6x_3 + x_4 - 3x_5$$

$$\begin{cases}
6x_1 + x_2 + x_3 + 2x_4 + x_5 = 9 \\
-x_1 - x_3 + 7x_4 + 8x_5 = 14 \\
x_1 + 2x_3 + x_4 + x_5 = 3 \\
x_i \ge 0, \ x_i = 1, ..., 5
\end{cases}$$

Ищем начальное базисное решение: Столбец 2 является частью единичной матрицы. Переменная пусть х2 входит в начальный базис.

Таблица 1: Начальная симплекс-таблица

базис	x_1	x_3	x_4	x_5	b
x_2	6	1	2	1	9
?	-1	-1	7	8	14
?	1	2	1	1	3

В качестве ещё одной базисной переменной берём х1.

Таблица 2: Добавление в базис х1

базис	x_1	x_3	x_4	x_5	b
x_2	6	1	2	1	9
x_1	-1	-3	7	8	14
?	1	2	1	1	3

Преобразование: Делим строку 2 на -1. Из строк 1, 3 вычитаем строку 2, умноженную на соответствующий элемент в столбце 1.

Таблица 3: Преобразование для х1

базис	x_3	x_4	x_5	b
x_2	-5	44	49	93
x_1	1	-7	-8	-14
?	1	8	9	17

В качестве ещё одной базисной переменной берём х3.

Таблица 4: Добавление в базис х3

базис	x_3	x_4	x_5	b
x_2	-5	44	49	93
x_1	1	-7	-8	-14
x_3	1	8	9	17

Преобразование: Делим строку 3 на -1. Из строк 1, 2 вычитаем строку 3, умноженную на соответствующий элемент в столбце 3.

Таблица 5: Преобразование для х3

базис	x_4	x_5	b
x_2	84	94	178
x_1	-15	-17	-31
x_3	8	9	17

В столбце в присутствуют отрицательные значения. Максимальное по модулю $|b|_{max}=31$ находится в строке 2. Максимальный по модулю элемент в 2 строке 17 находится в столбце 5. Тогда в качестве базисной переменной х1 берём х5.

Преобразование: Делим строку 2 на -17. Из строк 1, 3 вычитаем строку 2, умноженную на соответствующий элемент в столбце 5.

Таблица 6: Преобразование для х5

x_1	x_4	b
$\frac{94}{17}$	$\frac{18}{17}$	$\frac{112}{17}$
$-\frac{1}{17}$	$\frac{15}{17}$	$\frac{31}{17}$
$\frac{9}{17}$	$\frac{1}{17}$	$\frac{10}{17}$
	$\frac{94}{17}$ $-\frac{1}{17}$	$ \begin{array}{c c} 94 \\ \hline 17 & 18 \\ \hline 17 & 15 \\ \hline 17 & 15 \\ \hline 17 & 17 \\ \end{array} $

Восстановим функцию:

$$f(x) = x_2 - 6x_3 + x_4 - 3x_5$$

$$f(x) = \left(-\frac{94}{17}x_1 - \frac{18}{17}x_4 + \frac{112}{17}\right) - 6\left(-\frac{9}{17}x_1 - \frac{1}{17}x_4 + \frac{10}{17}\right) + x_4 - 3\left(\frac{1}{17}x_1 - \frac{15}{17}x_4 + \frac{31}{17}\right) = -\frac{43}{17}x_1 + \frac{50}{17}x_4 - \frac{41}{17}x_4 + \frac{10}{17}x_4 +$$

Симплекс таблица:

Таблица 7: Добавление f

базис	x_1	x_4	b
x_2	$-\frac{94}{17}$	$-\frac{18}{17}$	$\frac{112}{17}$
x_5	$\frac{1}{17}$	$-\frac{15}{17}$	$\frac{31}{17}$
x_3	$-\frac{9}{17}$	$-\frac{1}{17}$	$\frac{10}{17}$
f	$-\frac{43}{17}$	$\frac{50}{17}$	$-\frac{41}{17}$

Критерий оптимальности не выполнен.

$$min\{\frac{112}{18}, \frac{31}{15}, 10\} = \frac{31}{15}$$

Тогда x_4 попадает в свободные, а x_5 в базисные.

$$x_5 = \frac{1}{17}x_1 - \frac{15}{17}x_4 + \frac{31}{17}$$

$$x_4 = \frac{1}{15}x_1 - \frac{17}{15}x_5 + \frac{31}{15}$$

$$x_2 = -\frac{94}{17}x_1 - \frac{18}{17}(\frac{1}{15}x_1 - \frac{17}{15}x_5 + \frac{31}{15}) + \frac{112}{17} = -\frac{28}{5}x_1 + \frac{6}{5}x_5 + \frac{22}{5}$$

$$x_3 = -\frac{9}{17}x_1 - \frac{1}{17}(\frac{1}{15}x_1 - \frac{17}{15}x_5 + \frac{31}{15}) + \frac{10}{17} = -\frac{8}{15}x_1 + \frac{1}{15}x_5 + \frac{7}{15}$$

$$f = (-\frac{28}{5}x_1 + \frac{6}{5}x_5 + \frac{22}{5}) - 6(-\frac{8}{15}x_1 + \frac{1}{15}x_5 + \frac{7}{15}) + (\frac{1}{15}x_1 - \frac{17}{15}x_5 + \frac{31}{15}) - 3x_5 = -\frac{7}{3}x_1 - \frac{10}{3}x_5 + \frac{11}{3}$$

Таблица 8: Формирование нового базиса

базис	x_1	x_5	b
x_2	$-\frac{28}{5}$	<u>6</u> 5	$\frac{22}{5}$
x_4	$\frac{1}{15}$	$-\frac{17}{15}$	$\frac{31}{15}$
x_3	$-\frac{8}{15}$	<u>6</u> 5	$\frac{7}{15}$
f	$-\frac{7}{3}$	$-\frac{10}{3}$	$\frac{11}{3}$

Критерий выполнен, ответ получен.

$$x_1 = 0, \ x_2 = \frac{22}{5}, \ x_3 = \frac{7}{15}, \ x_4 = \frac{31}{15}, \ x_5 = 0, \ f = \frac{11}{3}$$

Задание 3

Данные:

$$C = \left(-\frac{1}{3}, -\frac{1}{2}, 0, 0, 0\right)$$

$$b = \left(-3, -1, -5\right)$$

$$A = \begin{pmatrix} -4 & 2 & 0 & 0 & 2\\ 2 & -4 & 2 & 0 & 0\\ -2 & -2 & 0 & 2 & 0 \end{pmatrix}$$

Прямая задача:

$$max(CX|AX = b^T, x \ge 0)$$

$$\begin{cases}
-4x_1 + 2x_2 + 2x_5 = -3 \\
2x_1 - 4x_2 + 2x_3 = -1 \\
-2x_1 - 2x_2 + 2x_4 = -5
\end{cases}$$

$$f(x) = -\frac{1}{3}x_1 - \frac{1}{2}x_2 - > max$$

Построим двойственную задачу:

$$min(b\lambda|A^T\lambda \geq c^T, \ \lambda \geq 0)$$

$$A^T = \begin{pmatrix} -4 & 2 & -2 \\ 2 & -4 & -2 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \\ 2 & 0 & 0 \end{pmatrix}$$

Двойственная задача имеет вид:

$$g(\lambda) = -3\lambda_1 - \lambda_2 - 5\lambda_3 - > min$$

$$\begin{cases}
-4\lambda_1 + 2\lambda_2 - 2\lambda_3 \ge -\frac{1}{3} \\
2\lambda_1 - 4\lambda_2 - 2\lambda_3 \ge -\frac{1}{2} \\
2\lambda_2 \ge 0 \\
2\lambda_3 \ge 0 \\
2\lambda_1 > 0
\end{cases} -> \begin{cases}
-4\lambda_1 + 2\lambda_2 - 2\lambda_3 \ge -\frac{1}{3} \\
2\lambda_1 - 4\lambda_2 - 2\lambda_3 \ge -\frac{1}{2} \\
\lambda_{1,...,3} \ge 0
\end{cases}$$

$$min(-3\lambda_1 - \lambda_2 - 5\lambda_3) = -max(3\lambda_1 + \lambda_2 + 5\lambda_3)$$

Приведём к каноническому виду, введя дополнительные перменные λ_4, λ_5 :

$$\begin{cases}
-4\lambda_{1} + 2\lambda_{2} - 2\lambda_{3} - \lambda_{4} = -\frac{1}{3} \\
2\lambda_{1} - 4\lambda_{2} - 2\lambda_{3} - \lambda_{5} = -\frac{1}{2}
\end{cases} - > \begin{cases}
4\lambda_{1} - 2\lambda_{2} + 2\lambda_{3} + \lambda_{4} = \frac{1}{3} \\
-2\lambda_{1} + 4\lambda_{2} + 2\lambda_{3} + \lambda_{5} = \frac{1}{2}
\end{cases}$$

$$\lambda_{4} = -4\lambda_{1} + 2\lambda_{2} - 2\lambda_{3} + \frac{1}{3}$$

$$\lambda_{5} = 2\lambda_{1} - 4\lambda_{2} - 2\lambda_{3} + \frac{1}{2}$$

$$g'(\lambda) = 3\lambda_{1} + \lambda_{2} + 5\lambda_{3}$$

Таблица 9: Построение начальной симплекс таблицы

	λ_1	λ_2	λ_3	β
λ_4	-4	2	-2	$\frac{1}{3}$
λ_5	2	-4	-2	$\frac{1}{2}$
g'	3	1	5	0

Критерий оптимальности не выполнен

$$min(\frac{1}{6}, \frac{1}{4}) = \frac{1}{4}$$

 λ_3 попадает в базисные, а λ_5 попадает в свободные перменные.

$$\lambda_5 = 2\lambda_1 - 4\lambda_2 - 2\lambda_3 + \frac{1}{2}$$

$$\lambda_3 = \lambda_1 - 2\lambda_2 - \frac{1}{2}\lambda_5 + \frac{1}{4}$$

$$\lambda_4 = -4\lambda_1 + 2\lambda_2 - 2 \cdot (\lambda_1 - 2\lambda_2 - \frac{1}{2}\lambda_5 + \frac{1}{4}) + \frac{1}{2} = -6\lambda_1 + 6\lambda_2 + \lambda_5$$

$$g'(\lambda) = 3\lambda_1 + \lambda_2 + 5 \cdot (\lambda_1 - 2\lambda_2 - \frac{1}{2}\lambda_5 + \frac{1}{4}) = 8\lambda_1 - 9\lambda_2 - \frac{5}{2}\lambda_5 + \frac{5}{4}$$

Таблица 10: Симплекс таблица после смены базиса с λ_3

	λ_1	λ_2	λ_5	β
λ_4	-6	6	1	0
λ_3	1	-2	$-\frac{1}{2}$	$\frac{1}{4}$
g'	8	-9	$-\frac{5}{2}$	$\frac{5}{4}$

Критерий оптимальности не выполнен

$$min(0, -\frac{1}{4}) = -\frac{1}{4}$$

 λ_1 попадает в базисные, а λ_3 попадает в свободные перменные.

$$\lambda_3 = \lambda_1 - 2\lambda_2 - \frac{1}{2}\lambda_5 + \frac{1}{4}$$

$$\lambda_1 = 2\lambda_2 + \lambda_3 + \frac{1}{2}\lambda_5 - \frac{1}{4}$$

$$\lambda_4 = -6 \cdot (2\lambda_2 + \lambda_3 + \frac{1}{2}\lambda_5 - \frac{1}{4}) + 6\lambda_2 + \lambda_5 = -6\lambda_2 - 6\lambda_3 - 2\lambda_5 + \frac{3}{2}$$

$$g'(\lambda) = 3 \cdot (2\lambda_2 + \lambda_3 + \frac{1}{2}\lambda_5 - \frac{1}{4}) + \lambda_2 + 5\lambda_3 = 7\lambda_2 + 8\lambda_3 + \frac{3}{2}\lambda_5 - \frac{3}{4}$$

Таблица 11: Симплекс таблица после смены базиса с λ_1

	λ_2 -6	λ_3 -6	λ_5	β
λ_4	-6	-6	-2	$\frac{3}{2}$
λ_1	2	1	$\frac{1}{2}$	$-\frac{1}{4}$
g'	7	8	$\frac{3}{2}$	$-\frac{3}{4}$

Критерий оптимальности не выполнен

$$\min(\frac{1}{4},\frac{1}{4})=\frac{1}{4}$$

 λ_2 попадает в базисные, а λ_4 попадает в свободные перменные.

$$\lambda_4 = -6\lambda_2 - 6\lambda_3 - 2\lambda_5 + \frac{3}{2}$$

$$\lambda_2 = -\lambda_3 - \frac{1}{6}\lambda_4 - \frac{1}{3}\lambda_5 + \frac{1}{4}$$

$$\lambda_1 = 2(-\lambda_3 - \frac{1}{6}\lambda_4 - \frac{1}{3}\lambda_5 + \frac{1}{4}) + \lambda_3 + \frac{1}{2}\lambda_5 - \frac{1}{4} = -\lambda_3 - \frac{1}{3}\lambda_4 - \frac{1}{6}\lambda_5 + \frac{1}{4}$$
$$g'(\lambda) = 7 \cdot (-\lambda_3 - \frac{1}{6}\lambda_4 - \frac{1}{3}\lambda_5 + \frac{1}{4}) + 8\lambda_3 + \frac{3}{2}\lambda_5 - \frac{3}{4} = \lambda_3 - \frac{7}{6}\lambda_4 - \frac{5}{6}\lambda_5 + 1$$

Таблица 12: Симплекс таблица после смены базиса с λ_2

	λ_3	λ_4	λ_5	β
λ_2	-1	$-\frac{1}{6}$	$-\frac{1}{3}$	$\frac{1}{4}$
λ_1	-1	$-\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{4}$
g'	1	$-\frac{7}{6}$	$-\frac{5}{6}$	1

Критерий оптимальности не выполнен

$$\min(\frac{1}{4}, -\frac{1}{4}) = -\frac{1}{4}$$

 λ_3 попадает в базисные, а λ_1 попадает в свободные перменные.

$$\lambda_1 = -\lambda_3 - \frac{1}{3}\lambda_4 - \frac{1}{6}\lambda_5 + \frac{1}{4}$$

$$\lambda_3 = -\lambda_1 - \frac{1}{3}\lambda_4 - \frac{1}{6}\lambda_5 + \frac{1}{4}$$

$$\lambda_2 = -(-\lambda_1 - \frac{1}{3}\lambda_4 - \frac{1}{6}\lambda_5 + \frac{1}{4}) - \frac{1}{6}\lambda_4 - \frac{1}{3}\lambda_5 + \frac{1}{4} = \lambda_1 + \frac{1}{6}\lambda_4 - \frac{1}{6}\lambda_5$$

$$g'(\lambda) = (-\lambda_1 - \frac{1}{3}\lambda_4 - \frac{1}{6}\lambda_5 + \frac{1}{4}) - \frac{7}{6}\lambda_4 - \frac{5}{6}\lambda_5 + 1 = -\lambda_1 - \frac{3}{2}\lambda_4 - \lambda_5 + \frac{5}{4}\lambda_5 + \frac{1}{4}\lambda_5 + \frac$$

Таблица 13: Симплекс таблица после смены базиса с λ_3

	λ_1	λ_4	λ_5	β
λ_2	1	$\frac{1}{6}$	$-\frac{1}{6}$	0
λ_3	-1	$-\frac{1}{3}$	$-\frac{1}{6}$	$\frac{1}{4}$
g'	-1	$-\frac{3}{2}$	-1	$\frac{5}{4}$

Критерий выполнен.

$$\lambda_1 = 0; \quad \lambda_2 = 0; \quad \lambda_3 = \frac{1}{4}; \quad \lambda_4 = 0; \quad \lambda_5 = 0 \quad g(\lambda) = \frac{5}{4}$$

$$f(x) = g(\lambda) = \frac{5}{4}$$

Перейдём к х.

$$X(A^{T}\lambda - C) = 0$$

$$A^{T}\lambda = \begin{pmatrix} -4 & 2 & -2\\ 2 & -4 & -2\\ 0 & 2 & 0\\ 0 & 0 & 2\\ 2 & 0 & 0 \end{pmatrix}$$