3684 – Advanced Topics in Machine Learning, Spring 2022 Home Assignment #2b – LIME demonstration on image data

Lecturer: Dr. Leon Anavy Teaching Assistant: Mr. Alon Oring

General instructions:

- 1. Submission is **individual.**
- 2. Submission must include python code and a written report.
- 3. You may use external libraries. Specify all required libraries in a proper manner.
- 4. Your code must be reproducible. Code that will not run will result in a grade reduction.
- 5. Your report should be clear, coherent, and concise. The report should not exceed 10 pages.
- 6. Invest thoughts and considerations to the way you choose to present data and experimental results.
- 7. All figure and plots should include captions, labels and data units. Pay attention to data visualization guidelines.

Assignment tasks:

The goal of this assignment is to demonstrate the LIME method that was covered in class used to explain image classification models.

- 1. Choose a pretrained image classification model f to be explained. The model will be used as a black box. You only need to be able to classify new images using the model. You can use the following resource: https://pytorch.org/vision/stable/models.html
- 2. Choose 2-3 images to be classified and explained (x).
- 3. For each image perform the following:
 - a. Get the top 3 classes from the model f(x)
 - b. Interpretable (simplified) instances:
 - i. Generate interpretable versions of the images you chose by either splitting them to tiles or to super-pixels. You can use the CV2 package for that.
 - ii. Represent the interpretable instances as binary vectors. The entries of the vector correspond to inclusion/exclusion of the tiles/super pixels $x' \in \{0,1\}^{d'}$
 - c. Local dataset generation
 - i. Generate a set of random perturbations of the interpretable instances by uniformly choosing which parts to include $z' \in \{0,1\}^{d'}$
 - ii. For each generate interpretable instance, generate the corresponding image z and get its label (as a binary classification result for each of the three classes) f(z)
 - iii. Calculate the similarity of the perturbed instance from the original image $\pi_x(z)$
 - d. Fit a local surrogate model g and generate explanations
 - i. Fit a linear model with locally weighted loss (using π_x) and L_1 regularization on the generated dataset
- ii. Find and present the set of important features (super-pixels/tiles) for the prediction f(x) Summarize all your work in a scientific/professional report.

Class presentation:

If you have chosen this assignment as your class presentation assignment you are required to prepare a 20 minutes presentation in which you will need to showcase your work. You should cover all aspects of your work in the presentation.