

RAGHU HARSHA VARDHAN - CB.AI.U4AIM24135 VEDANG PRATAP SINGH - CB.AI.U4AIM24151 AYYAPPA HARSHA VARDHAN - CB.AI.U4AIM24155

INTRODUCTION

With the fast-changing world of today, tracking environmental parameters such as air conditions, temperature, and humidity is most important for wellness and sustainability.

Our goal is to develop working on building a smart Environmental Monitoring System (EMS) that unites smart sensors and AI-driven insights to discover patterns, predict changes in the environment using FNN, and offer valuable decision support.

OBJECTIVE

- Create an Environmental Monitoring System (EMS) to monitor important environmental parameters.
- Implement advanced sensors to monitor air quality, temperature, humidity, and other parameters.
- Apply AI and data analysis to identify patterns and forecast environmental changes.
- Offer real-time monitoring and alerts for proactive decisionmaking.
- Facilitate sustainability and public health through precise environmental insights.

PROBLEM STATEMENT

Traditional environmental monitoring is slow, manual, and lacks realtime data.

No early warning system for detecting harmful environmental changes. Inefficient decision-making due to delayed or incomplete data.

SOLUTION

Develop an AI-powered EMS with real-time sensors and an FNN-based prediction model which ensures early detection of environmental changes, enabling quick alerts and efficient decision-making.

METHODOLOGY

- 1. Sensor Integration Deploy environmental sensors to collect real-time data (e.g., temperature, humidity, air quality).
- 2. Data Collection & Preprocessing Continuously gather sensor data, clean and normalize it for Al processing.
- 3. Prediction Module Train the FNN to predict future environmental values based on historical sensor data.
- 4. Monitoring & Alerts Display current and predicted data on a dashboard and send alerts for abnormal conditions.
- 5. Testing & Optimization Evaluate model accuracy and optimize system performance using test datasets.
- 6. Deployment Implement the system in real-world locations for continuous monitoring and prediction.

MATERIALS REQUIRED

ML8511

DTH11

MQ-135

ESP32

FOR FIRST REVIEW

- using Arduino done a sample model
- Found the datasets related to our project

FOR SECOND REVIEW

- Used Esp32 instead of Arduino
- Used a FNN model for training and testing the dataset
- Converted the sensor values to proper units

RESULT

Thank You