

Escola de Ciências e Tecnologia

Departamento de Informática

Licenciatura de Engenharia Informática

Unidade curricular de Inteligência Artificial

Ano letivo 2020/2021

Relatório

4º Trabalho de Inteligência Artificial

Docentes

Professora Irene Pimenta Rodrigues

Discentes

José Santos nº43017

Ludgero Teixeira nº41348

Pedro Claudino nº39870

Évora, Junho de 2021

1. Descreva este problema na notação STRIPS. Indique o vocabulário (condições e acções) que usa.

```
% condições
% ligacao(c1, lisboa, porto) - significa que o c1 faz a ligação lisboa-porto
% ligacao(c2, lisboa, evora) - significa que o c2 faz a ligação lisboa-evora

% fluentes
% esta_cidade(obj, cidade) - 0 obj está na cidade
% esta_comboio(obj, c) - 0 obj está no comboio
% comboio_cidade(c, cidade) - 0 comboio está na cidade

% açoes
% entra_comboio(obj, c) - Obj entra no comboio
% sai_comboio(obj) - Obj sai do comboio
% move_comboio(c, cidade) - Comboio move
```

2. Represente o estado inicial e o estado final deste problema com o vocabulário definido na alínea anterior.

3. Considere que no estado 1: obj1, obj2 e obj3 estão em Lisboa. obj4 e obj5 estão em Évora. Represente o estado 1 e indique a solução do pop para ir do estado inicial ao estado 1

```
| ?- plano(P).

P = [s1-inicial, s24-move_comboio(c1,porto), s12-entra_comboio(obj1,c1), s25-move_comboio(c1,lisboa), s11-sai_comboio(obj1), s10-entra_comboio(obj1,c1), s9-sai_comboio(obj1), s8-entra_comboio(obj1,c1), s7-sai_comboio(obj1), s6-entra_comboio(obj1,c1), s5-sai_comboio(obj1), s4-entra_comboio(obj1,c1), s3-sai_comboio(obj1), s2-final] ?
```

4. Como é que um pop (planeador de ordem parcial) resolveria o problema de ir do estado inicial para o estado final: indique solução, os links, a restrições de ordem e os conflitos e a sua resolução.

Para a resolução desta alínea, foi necessário dividir o problema, em **estado_inicial**, **estado_intermédio** e **estado_final**,

Estado inicial → Estado intermédio

P = [s1-inicial,s13390-move_comboio(c1,porto),s16541-move_comboio(c2,evora),s16298-entra_comboio(obj4,c2),s16593-entra_comboio (obj5,c2),s4-entra_comboio(obj1,c1),s13391-move_comboio(c1,lisboa),s16542-move_comboio(c2,lisboa),s15633-sai_comboio(obj4),s16587-sai_comboio(obj5),s3-sai_comboio(obj1),s2-final] ? ■

Estado intermédio > Estado final

P = [s1-inicial,s380-entra_comboio(obj1,c2),s389-entra_comboio(obj3,c2),s4-entra_comboio(obj2,c1),s7-entra_comboio(obj4,c1),s381-move_comboio(c2,evora),s5-move_comboio(c1,porto),s3-sai_comboio(obj2),s382-sai_comboio(obj3),s6-sai_comboio(obj4),s8-sai_comboio(obj1),s2-final] ?

ameaca(s1,s383,s5,comboio cidade(c1,lisboa)) - exemplo de ameaça da 2ª parte

Estado inicial → Estado final

```
[s1-inicial, s13390-move comboio(c1,porto),
s16541-move comboio(c2,evora),
s16298-entra comboio(obj4,c2),
s16593-entra comboio(obj5,c2),
s4-entra comboio(obj1,c1),
s13391-move comboio(c1,lisboa),
s16542-move comboio(c2,lisboa),
s15633-sai comboio(obj4),
s16587-sai comboio(obj5),
s3-sai comboio(obj1),
s380-entra_comboio(obj1,c2),
s389-entra comboio(obj3,c2),
s4-entra comboio(obj2,c1),
s7-entra comboio(obj4,c1),
s381-move comboio(c2,evora),
s5-move comboio(c1,porto),
s3-sai comboio(obj2),
s382-sai_comboio(obj3),
s6-sai comboio(obj4),
s8-sai comboio(obj1),
s2-final]
s1 < s13390 < s16541 < s16298s16593 < s4 < s13391 < s16542 < s15633 < s16587 < s3 < s380 < s389 < s4 < s13391 < s16542 < s15633 < s16587 < s3 < s380 < s389 < s4 < s13391 < s16542 < s15633 < s16587 < s3 < s380 < s389 < s4 < s13391 < s16542 < s15633 < s16587 < s3 < s380 < s389 < s4 < s13391 < s16542 < s15633 < s16587 < s3 < s380 < s389 < s4 < s13391 < s16542 < s15633 < s16587 < s3 < s380 < s389 < s4 < s13391 < s16542 < s15633 < s16587 < s3 < s380 < s389 < s4 < s13391 < s16542 < s15633 < s16587 < s3 < s380 < s389 < s4 < s16587 < s3 < s389 < s4 < s16587 < 
<s7<s381<s5<s3<s382<s6<s8<s2
```