Recherche Opérationnelle et Apprentissage Automatique l'Ordonnancement

-- Projet Recherche et Développement

Alafate ABULIMITI

Structure

- Contexte
- Objectif
- Résumé l'approche proposé
- Développement
- Analyse des résultats
- Gestion de projet
- Conclusion

J1

J2

J3

J4

	M1	M2
J1	1	3
J2	8	3
J3	4	9
J4	9	4
J5	3	5

Machine 1

Machine 2

$$\min \quad \sum_{j=1}^{n} C_{2j}$$

	M1	M2
J1	1	3
J2	8	3
J3	4	9
J4	9	4
J5	3	5

 $J1 \rightarrow J5 \rightarrow J3 \rightarrow J4 \rightarrow J2$

Processing Time:

Le temp qu'un travail est fait sur une machine

Completion Time:

Le temp qu'une machine termine les travaux précédents

On définit :

- p_j: le temps de terminer le job i sur la **seule** machine j (j =1 ou 2) (processing time) x_{ij}: si job i est en position j → x_{ij} =1, sinon → x_{ij} =0 (j =1 ou 2) C_i: le temps de terminer le job i sur la machine j (j =1 ou 2) (completion time)

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad \forall j = 1, \dots, n$$
(2)
$$C_{1j} = C_{1,j-1} + \sum_{i=1}^{n} p_{1i} x_{ij} \quad \forall j = 2, \dots, n$$
(6)

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad \forall i = 1, \dots, n \qquad (3) \qquad C_{2j} \ge C_{1j} + \sum_{i=1}^{n} p_{2i} x_{ij} \qquad \forall j = 2, \dots, n$$

$$C_{11} = \sum_{i=1}^{n} p_{1i} x_{i1}$$

$$C_{2j} \ge C_{2,j-1} + \sum_{i=1}^{n} p_{2i} x_{ij} \quad \forall j = 2, \dots, n$$

$$C_{21} = C_{11} + \sum_{i=1}^{n} p_{2i} x_{ij}$$

$$(5) \qquad x_{ij} \in \{0, 1\}$$

$$(9)$$

$$C_{21} = C_{11} + \sum_{i=1}^{n} p_{2i} x_{i1}$$
 (5) $x_{ij} \in \{0, 1\}$

Optimisation

On définit:

- 1. r : Position de départ **aléatoire** dans la séquence
- 2. h : Taille aléatoire de la sous-séquence

$$x_{ij} = \bar{x}_{ij} \quad \forall i \notin \bar{S}(r; h), j \notin \{r, \dots, r+h-1\}. \tag{W}$$

exemple:

resource: «A matheuristic approach for the two-machine total completion time flow shop problem» Federico Della Croce · Andrea Grosso · Fabio Salassa

h = 5

Objectif

Problématique

- choix de r
- choix de h

Séquence de flowshop

Réseau de neurones entraîné

Modèle de "Traduction" : Seq2Seq

Les enjeux pour la traduction:

- Vocabulaire
 - Processing Time
 - Completion Time
 - 0/1
- Structure (Ordre)
 - Sequence (Ordre des travaux)
 - Fênetre

Construction les données:

- Input
 - Vecteur du [Processing Time, Completion Time] = un Job

Exemple: [4 10 4 10] Job 2 [5 17 9 27] Job 4....

- Noir: Processing Time
- Rouge: Completion Time
- Output
 - 0/1:1 présente la fenêtre

Exemple:

Seq 2 Seq (avec attention):

Construction de base d'apprentissage

Construction de base d'apprentissage

Configuration

Paramètres:

- nombre de neurones : 100
- profondeur : 1
- nombre de epoch par default :5000
- loss fonction : categorical crossentropy
- optimisateur : adam

Définition:

- loss: valeur de loss fonction
- val_loss = valeur de loss fonction pour la base de validation
- winAcc: précision pour la fenêtre
- outWinAcc : précision pour hors de la fenêtre
- val_winAcc : precision de base validation pour la fenêtre.
- val_outWinAcc : précision de base de validation pour hors de la fenêtre

Objectif: Le système peut bien apprendre 16 données. (loss = 0, winAcc = 1, outWinAcc = 0)

Objectif: Le système peut bien apprendre 16 données avec base de validation(6 données). (loss = 0, val_loss = 0, winAcc = 1, outWinAcc = 0, val_Acc = 1, val_outWinAcc = 0)

Objectif: Le système peut mieux apprendre 32 données avec base de validation (12 données).

Gestion de projet

- Github : gestion de versionning
- GanttProject : suivie des plannings
- Échanges avec mes encadrants
- Latex et Markdown pour rédiger les documents

Gestion de projet

Tâches réalisées

- Génération de la base d'apprentissage
- Construction des reséaux neurones
- Entraînement des réseaux neurones
- Test avec les différents scénarios
 - Différents hyperparamètre
 - Différents optimisateurs
 - Différents loss functions
 - Différents nombre de données
- Documents de test, d'installation et d'utilisation
- Rapport Finale

Gestion de projet

Gantt S10

Conclusion

- Compétences acquises : C, PYTHON, Gestion de projet, la recherche opérationnelle et Deep Learning.
- Continuation:
 - Mise en place les systèmes distribués
 - > Finalisation d'entraînement
 - Intégration dans la matheuristique
- Remerciement

Merci

Alafate ABULIMITI