

S4 Non-Linear Data Structures: Tree and Binary Tree

Dr. Rajib Ranjan Maiti CSIS Dept, Hyderabad Campus

Data Structures and Algorithms Design (Merged-SEZG519/SSZG519)

S4 Tree and Binary Tree

Content of L-3

- 3.1. Trees
 - 3.1.1. Terms and Definition
 - 3.1.2. Tree ADT
 - 3.1.3. Applications
- 3.2. Binary Trees
 - 3.2.1. Properties
 - 3.2.2. Representations (Vector Based and Linked)
 - 3.2.3. Binary Tree traversal (In Order, Pre Order, Post Order)
 - 3.2.4. Applications

So far we studied

- Linear data structure:
 - A type of data structure where elements are arranged in a sequential order, and each element has a unique predecessor and successor (except for the first and last elements).
- E.g.: Array, Linked List, Stack, Queue

Non-linear data structure

- A non-linear data structure
 - A type of data structure in which elements are not organized sequentially, but can be connected in various ways.
- E.g. Tree, Graph

Tree

- Node:
 - Each element in the tree is a node. Each node can have child nodes connected to it.
- Parent and child:
 - A node that is directly connected to another node is considered the parent of that node. Conversely, the connected node is the child of the parent node.
 - E.g. 7 is parent node, 2,10,6 are its child nodes.

- Leaf node:
 - A node with no children is called a leaf node. e.g., 2,10,5,11,4 are its leaf nodes.
- Root:
 - A node which has no parent is called a root node. e.g., 1
 is the root node.

• Level:

• Level is the rank of the hierarchy and root node is termed as in level 0. If a node is at level x, then its parent is at level x-1 and its child nodes are at level x+1. e.g. Node 10 is at level 2.

Height:

• Maximum number of nodes that is possible in a path from root node to a leaf node is the height of a tree. e.g. Height of tree in example = 4

• Degree:

• Maximum number of child nodes possible for a node is called degree. e.g., Degree is 3 in example.

• Sibling:

• The nodes which have the same parent are called siblings. E.g. 2, 10, and 6 are siblings.

- Level:
 - Level is the rank of the hierarchy and root node is termed as in level 0. If a node is at level x, then its parent is at level x-1 and its child nodes are at level x+1. e.g. Node 10 is at level 2.
- Height:
 - Maximum number of nodes that is possible in a path from root node to a leaf node is the height of a tree. e.g. Height of tree in example = 4
- Degree:
 - Maximum number of child nodes possible for a node is called degree. e.g., Degree is 3 in example.
- Sibling:
 - The nodes which have the same parent are called siblings. E.g. 2, 10, and 6 are siblings.

Representation of File systems

innovate achieve lead

Applications of tree data structure

Representation organizational hierarchies

Binary Search Tree for efficient search

Tree for parsing and evaluation of expression

innovate achieve lead

Applications of tree data structure

Representation of the syntax of source code

Decision tree

Types of Tree

- Binary Tree
- Binary Search Tree
- Heap tree
- AVL Tree
- B-Tree
- Red-black Tree

Binary Tree

• A binary tree is a tree structure in which each node has at most two children.

Full Binary Tree

A full binary tree is a binary tree in which every node has either zero or two children.

Complete Binary Tree

A complete binary tree is a binary tree in which all levels except last level have maximum number of possible nodes. Moreover, nodes in last level are appear as far left as possible.

- Max no. of nodes at x^{th} level = 2^x
- Max no. of nodes in a binary tree of height $h = 2^h 1$
- Min no. of possible nodes in binary tree of height h = h
- Max no. of leaf nodes in a binary tree of height $h = 2^{h-1}$
- No. of edges in a binary tree with n number nodes = n 1
- No. of leaf nodes in a binary tree with n no. of internal node (degree = 2) = n + 1

innovate achieve lead

Properties of a binary tree

- Height of a complete binary tree with n number of nodes = $[log_2(n+1)]$
- Total number of binary tree with n nodes = $\frac{1}{n+1} 2nCn$
- Max no. of levels of binary tree with n nodes = n 1
- Min no. of levels of binary tree with n nodes = $[log_2(n+1) - 1]$

Array representation of Binary Tree innovated

lead

- Left child of ith node is at (2*i) index.
- Right child of ith node is at ((2*i)+1) index.
- Parent of ith node is at $\left\lfloor \frac{i}{2} \right\rfloor$.

1	2	3	4	5	6	7
11	9	13	8	10	12	14
1	2	3	4	5	6	7
11	NULL	12	NULL	NULL	NULL	13

- Max size of array = $2^n 1$
- Min size of array = $2^{\lceil log_2(n+1) \rceil} 1$

Linked List representation of Binary Tree

lc = link to left child
rc = link to right child

Array vs Linked List Representation

Array Representation

- ✓ Any node can be accessed by calculating index
- ✓ No storage needed for pointers
- × Empty entries may be there
- × Static representation

Linked List Representation

- × Traversal required
- × Storage needed for pointers
- ✓ No Empty entries
- ✓ Dynamic representation

Basic operations

- Insertion
- Deletion
- Traversal
- Merge

Search (Array representation)

SEARCH(rootind, key): Returns index of Key in tree

```
i ← rootind
```

if
$$A[i] = key then$$

Return i

else

if
$$2*i <= SIZE(A)$$
 then

SEARCH(2*i, key)

if
$$(2*i)+1 <= SIZE(A)$$
 then

SEARCH((2*i)+1, key)

else

Return -1

Insertion (Array representation)

Insert(key, object): Insert Object as left/right child of Key

```
ind \leftarrow SEARCH (1, key)
if ind = -1 then
         print "Search unsuccessful"
         Exit
else
         if A[2*ind] = NULL then
                   A[2*ind] \leftarrow object
         else if A[(2*ind) + 1] = NULL then
                   A[(2*ind) + 1] \leftarrow object
         else
                   print "Object cannot be inserted at desired location"
                   Exit
```


Deletion (Array representation)

```
Delete(key): Delete key object from tree if it is leaf
ind \leftarrow SEARCH (1, key)
if ind = -1 then
        print "Search unsuccessful"
        Exit
if A[2*ind] = NULL and A[(2*ind)+1] = NULL then
        A[ind] = NULL
else
        print "Key is not at leaf node"
        Exit
```


Homework

Write algorithms for Search, Insert, Delete for linked list representation of a binary tree.

Traversal (Linked List representation)

Preorder:

- Visit root node R
- Traverse left subtree of R
- Traverse right subtree of R

Inorder:

- Traverse left subtree of R
- Visit root node R
- Traverse right subtree of R

Postorder:

- Traverse left subtree of R
- Traverse right subtree of R
- Visit root node R

Traversal (Linked List representation)

Preorder: +-AB*C/EF

Inorder:
A-B+C*E/F

Postorder:
AB-CEF/*+

Traversal (Linked List representation)

$$(A-B) + (C*(E/F))$$

Traversal (Linked List representation)

inorder(root)

```
ptr ← root
if ptr ≠ NULL then
    inorder(ptr.left)
    print(ptr.data)
    inorder(ptr.right)
```

preorder(root)

postorder(root)

Traversal (Linked List representation)

preorder(root)

ptr ← root	11
1	9
if $ptr \neq NULL$ then	8
<pre>print(ptr.data)</pre>	10
preorder(ptr.left)	13
1	12
preorder(ptr.right)	14

Traversal (Linked List representation)

	•
ptr ← root	9
if ptr \neq NULL then	10
inorder(ntrleft)	11

inorder(ptr.left) print(ptr.data)

inorder(ptr.right)

inorder(root)

8

12

13

14

Traversal (Linked List representation)

<u>postoraer(root)</u>					
	,				

ptr ← root

if $ptr \neq NULL$ then

postorder(ptr.left)

postorder(ptr.right)

print(ptr.data)

8

10

9

12

14

13

11

Traversal (Linked List representation) **Non-recursive**

preorder(root)

```
PUSH(root)
while Stack.empty() = FALSE do
  ptr \leftarrow POP()
  if ptr \neq NULL then
    print(ptr.data)
    PUSH(ptr.right)
    PUSH(ptr.left)
```

inorder(root)

```
ptr ← root
while Stack.empty() = FALSE
       or ptr \neq NULL do
  if ptr \neq NULL then
    PUSH(ptr)
    ptr ← ptr.left
  else
    ptr \leftarrow POP ()
    print(ptr.data)
```

ptr ← ptr.right

postorder(root) homework

Formation of binary tree from traversals and traversals

We can form the binary tree from any two traversals.

- If preorder traversal is given, the first node is *root node*.
- If postorder traversal is given, the last node is *root node*.
- Once root node is found, left subtree and right subtree are to be identified.
- Repeat same method for left subtree and right subtree.

Note: inorder is required to generate unique binary tree.

Preorder: 11, 9, 8, 10, 13, 12, 14

Inorder: 8, 9, 10, 11, 12, 13, 14

Root = 11 (From Preorder)

Left subtree contains 8, 9, 10 (From inorder)

Right subtree contains 12, 13, 14 (From inorder)

Preorder-Inorder

Preorder: 11, 9, 8, 10, 13, 12, 14

Inorder: 8, 9, 10, 11, 12, 13, 14

Subtree contains 8,9,10

Root node: 9 (From preorder)

Left subtree: 8 (From inorder)

Right subtree: 10 (From inorder)

Preorder-Inorder

Preorder: 11, 9, 8, 10, <u>13, 12, 14</u>

Inorder: 8, 9, 10, 11, <u>12, 13, 14</u>

Subtree contains 12,13,14

Root node: 13 (From preorder)

Left subtree: 12 (From inorder)

Right subtree: 14 (From inorder)

Postorder-Inorder

Postorder: 8, 10, 9, 12, 14, 13, 11

Inorder: 8, 9, 10, 11, 12, 13, 14

Root = 11 (From Postorder)

Left subtree contains 8, 9, 10 (From inorder)

Right subtree contains 12, 13, 14 (From inorder)

Postorder-Inorder

Postorder: <u>8, 10, 9, 12, 14, 13, 11</u>

Inorder: 8, 9, 10, 11, 12, 13, 14

Subtree contains 8,9,10

Root node: 9 (From postorder)

Left subtree: 8 (From inorder)

Right subtree: 10 (From inorder)

Postorder-Inorder

Postorder: 8, 10, 9, <u>12, 14, 13</u>, 11

Inorder: 8, 9, 10, 11, <u>12, 13, 14</u>

Subtree contains 12,13,14

Root node: 13 (From postorder)

Left subtree: 12 (From inorder)

Right subtree: 14 (From inorder)

Preorder: FBADCEGIH
Postorder: ACEDBHIGF

Root node: F (From preorder)

Left subtree: A, C, E, D, B (From preorder and postorder)

Right subtree: H I G (From preorder and postorder)

Preorder: FBADCEGIH
Postorder: ACEDBHIGF

Root node: B (From preorder)

Left subtree: A (From preorder and postorder)

Right subtree: C E D (From preorder and postorder)

Preorder: F B A D C E G I H Postorder: A C E D B H I G F

Root node: D (From preorder)

Left subtree: C (From preorder and postorder)

Right subtree: E (From preorder and postorder)

Preorder: FBADCEGIH

Postorder: A C E D B H I G F

Not possible to construct unique binary tree when preorder and postorder given.

Root node: G (From preorder)

Left subtree: I H (From preorder and postorder)

or

Right subtree: I H (From preorder and postorder)

innovate achieve lead

References

- 1. Algorithms Design: Foundations, Analysis and Internet Examples Michael T. Goodrich, Roberto Tamassia, 2006, Wiley (Students Edition)
- 2. Data Structures, Algorithms and Applications in C++, Sartaj Sahni, Second Ed, 2005, Universities Press
- 3. Introduction to Algorithms, TH Cormen, CE Leiserson, RL Rivest, C Stein, Third Ed, 2009, PHI

Any Question!!

Thank you!!

BITS Pilani

Hyderabad Campus