MOSCOW AREAS CLASSIFICATION FOR THE PURPOSE OF APARTMENTS PURCHASE

Oleg Adamovich May 20, 2020

INTRODUCTION

- Moscow is a biggest city in Russia, officially with 8+ million people providing tons of information
- Data has a high variety like Ratings and Reviews, venue types
- The data has a potential to cluster the areas to select neighborhoods which have similar features
- Clustering can assist ones decision as in selection as well in narrowing down the area of search

https://www.irn.ru/rating/moscow/

Metro names vs cost per sq. m information

	Рейтинг районов и метро по уровню цен на жильё, руб./кв.м. (www.irn.ru)							
Nº	изм районы	метро	Апр 20	Map 20				
□ 1	Остоженка	Кропоткинская, Парк культуры	403 710	+1,0%				
□ 2	Якиманка	Новокузнецкая, Полянка, Третьяковская	384 385	+1,0%				
□ 3	Арбат	Александровский сад, Арбатская, Библиотека имени Ленина, Боровицкая, Смоленская	370 425	+1,2%				
□ 4	Центр Москвы	Китай-город, Кузнецкий мост, Лубянка, Охотный ряд, Площадь Революции, Театральная	361 844	+1,5%				
П г	TX	Manuscone Dominion Terrore Housenes	745 007	0.70/				

Data example from different providers

ForthSquare – 3 Schools

Google Maps – 7 Schools

Google Maps have more data available –

Source for the data

https://api.hh.ru/metro/1

{"id":"1","name":"Mocквa","lines":[{"id":"8","hex_color":"FFCD1C","name":"Калининская" {"id":"8.107","name":"Перово","lat":55.75098,"lng":37.78422,"order":2},{"id":"8.158","Ильича","lat":55.747115,"lng":37.680726,"order":5},{"id":"8.78","name":"Марксистская",[{"id":"2.558","name":"Ховрино","lat":55.8777,"lng":37.4877,"order":0},{"id":"2.674","стадион","lat":55.838978,"lng":37.487515,"order":3},{"id":"2.30","name":"Войковская","

Metro names vs coordinates

Metro station coordinates – central points to get the data from Google Maps API

Metro station can be divided into 4 different classes based on cost

usr	park_usr	school_usr	stadium_usr	tourist_attraction_usr	university_usr	zoo_usr	amusement_park_avr	aquarium_avr	art_gallery_avr	café_avr	bank_avr
50	4355	325	745	46	80	71	NaN	NaN	4	4.34438	3.67742
241	8501	362	NaN	10052	63	203	NaN	NaN	5	4.19598	3.16828
547	5028	330	225	11	39	NaN	NaN	NaN	NaN	4.33205	3.2375
122	11789	145	NaN	27	40	NaN	NaN	NaN	NaN	4.37893	3.96078
690	740	159	744	174	416	NaN	NaN	4	NaN	4.29594	3.32552
292	13696	2104	179	5033	415	NaN	NaN	1	4.53878	4.39695	3.02553
317	9934	2277	4	14098	459	NaN	NaN	2.5	4.54591	4.40789	2.7409
638	107776	451	NaN	190257	262	NaN	NaN	3.5	4.735	4.43518	3.40393
15	5321	246	NaN	46	56	NaN	NaN	4.8	NaN	4.39742	3.46538
358	23654	220	1	147	19	NaN	NaN	4.8	NaN	4.38683	2.88772
388	20101	288	23	116	67	NaN	NaN	4.8	NaN	4.39474	2.95676
27	17981	158	11	116	143	NaN	NaN	NaN	NaN	4.39526	2.97304
960	10403	304	0	1966	1334	NaN	NaN	NaN	4.84	4.37147	2.90905
330	8393	469	5611	1902	1354	NaN	NaN	4.7	4.6	4.38894	3.23805
707	15445	443	5611	2071	972	NaN	NaN	4.7	4.59452	4.3772	3.39266
480	7076	348	6884	339	249	NaN	NaN	4.7	4.76818	4.36598	2.53163
328	33825	323	247	8517	480	7628	NaN	NaN	4.54935	4.43442	2.97943
339	37540	534	569	22401	1041	7628	NaN	NaN	4.58591	4.41554	3.21917
383	55138	585	569	159514	1089	7642	NaN	3.5	4.59072	4.43533	3.38034
235	115057	591	NaN	191807	1114	17	NaN	4.19818	4.69392	4.42229	3.41232
4											+

[Aquarium, art_gallery, bakery, bank, bar, bus_station, c afé, car_repair, clothing_store, doctor, electronics_stor e, gym, home_goods_store, hospital, laundry, library, m ovie_theater, museum, park, pharmacy, primary_sch ool, restaurant, school, secondary_school, spa, stadium, store, supermarket, tourist_attraction, university, zoo].

Data for analysis:

Num of venues of a type per Metro Num of reviews of venues for a selected type per Metro Average rating for venue type per Metro

ir	park_usr	school_usr	stadium_usr	tourist_attraction_usr	university_usr	zoo_usr	aquarium_avr	art_gallery_avr	café_avr	bank_avr	bus_station_avr	car_av
6	0.031480	0.142732	0.051450	0.000237	0.045767	0.009291	0.759340	0.714286	0.512160	0.605429	0.686096	0.6770
4	0.061449	0.158981	0.000000	0.051733	0.036041	0.026564	0.759340	1.000000	0.011969	0.391888	0.557257	0.5826
2	0.036345	0.144928	0.015539	0.000057	0.022311	0.000000	0.759340	0.877419	0.470615	0.420920	0.638718	0.7145
4	0.085216	0.063680	0.000000	0.000139	0.022883	0.000000	0.759340	0.877419	0.628630	0.724277	0.821144	0.7040
8	0.005349	0.069829	0.051381	0.000895	0.237986	0.000000	0.789474	0.877419	0.348911	0.457836	0.824076	0.5137
4	0.099001	0.924023	0.012362	0.025902	0.237414	0.000000	0.000000	0.868222	0.689385	0.332017	0.768366	0.6559
1	0.071808	1.000000	0.000276	0.072556	0.262586	0.000000	0.394737	0.870261	0.726242	0.212637	0.723324	0.6688
8	0.779055	0.198068	0.000000	0.979162	0.149886	0.000000	0.657895	0.924285	0.818221	0.490725	0.731820	0.7235
2	0.038463	0.108037	0.000000	0.000237	0.032037	0.000000	1.000000	0.877419	0.690946	0.516499	0.308450	0.6498
7	0.170982	0.096618	0.000069	0.000757	0.010870	0.000000	1.000000	0.877419	0.655255	0.274217	0.398600	0.5911
1	0.145299	0.126482	0.001588	0.000597	0.038330	0.000000	1.000000	0.877419	0.681936	0.303172	0.742853	0.7488
3	0.129975	0.069390	0.000760	0.000597	0.081808	0.000000	0.759340	0.877419	0.683663	0.310001	0.696620	0.7306
6	0.075198	0.133509	0.000000	0.010118	0.763158	0.000000	0.759340	0.954286	0.603470	0.283161	0.618831	0.7089
8	0.060668	0.205973	0.387500	0.009789	0.774600	0.000000	0.973684	0.885714	0.662378	0.421152	0.670206	0.7124
1	0.111644	0.194554	0.387500	0.010658	0.556064	0.000000	0.973684	0.884149	0.622794	0.485997	0.677912	0.4465
4	0.051149	0.152833	0.475414	0.001745	0.142449	0.000000	0.973684	0.933766	0.584979	0.124865	0.809415	0.7823
5	0.244503	0.141853	0.017058	0.043833	0.274600	0.998168	0.759340	0.871242	0.815662	0.312683	0.872689	0.5335
4	0.271356	0.234519	0.039296	0.115287	0.595538	0.998168	0.759340	0.881688	0.752032	0.413234	0.860372	0.6629
8	0.398563	0.256917	0.039296	0.820942	0.622998	1.000000	0.657895	0.883063	0.818748	0.480829	0.798900	0.1312
1	0.831685	0.259552	0.000000	0.987139	0.637300	0.002225	0.841627	0.912548	0.774774	0.494241	0.774143	0.0516

Data Preparation Workflow:

- Read all the data for Metro Station and merge into single DataFrame. Each Metro has a set of attributes Totally 235 Station and 58 attributes
- Fill in NaN with zeros or mean numbers
- Normalize data

Good visual correlation with the cost-based prices (slide 4)

K-means data clusterization was repeated separately for each cost class (Slides 7-10)

First cost data class **only**

Data cluster

Second cost data class only

Data cluster

Third cost data class only

Data cluster

Forth cost data class **only**

Data cluster

aquarium_tot -0.189368 store_usr -0.040680 school avr -0.166455 Clustering interpretation example (Class2) bank usr -0.221271 movie theater avr -0.043512 museum_tot -0.184204 spa_tot -0.255249 bank avr -0.054182 tourist attraction avr -0.191868 university_tot -0.299369 car_usr -0.080065 university_tot -0.192394 bank_tot -0.352206 aquarium tot -0.189368 café avr -0.231673

<u>Cluster 1</u>(Red)- More on entertainment rather than on cultural aspects.

<u>Cluster 2</u> (Cherry) –More of calm life with people preferred calm not very active life, with cafés spas, maybe more elderly people.

<u>Cluster 3</u> (Violet) –Class may reflect presence of different venues and high demand for the quality of those or low quality of the venues

<u>Cluster 4</u> (Blue) - Not enough venues in the areas but those which are available deliver good quality products.

<u>Cluster 5</u> (Gray) - The Class is with the focus on number universities, banks and some others while the negative attributes are less pronounced

Cluster 6 (Yellow) - more industrial, heavy urban areas.

CONCLUSION AND FUTURE DIRECTIONS

- Approach has a potential to predict whether and how much a player will improve
- Accuracy of the model can be potentially increased by incorporating more data like average car traffic maps, pollution/air quality, crime/fire statistics.
- The other area for improvement of existing model and data might be to understanding better the available data and of the impact of different pre-processing/normalization techniques.
- The analysis provided in this report is based on K-means clustering technique. Potentially more accurate clustering algorithms like DBSCAN.