波関

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

COTD 207/08, 197/09, 207/16, 209/14, 209/18, 209/44, 211/16, 211/22, 211/26, 211/42, 211/46, 211/56, 211/60, 211/62, 211/74, 213/74, 215/12, 217/06, 295/16, 295/26, 309/20, 317/60, 317/62, 319/18, 319/20, 333/64, C07C 307/06, A61K 31/195, 31/215, 31/275, 31/335, 31/36, 31/38, 31/40, 31/435, 31/44, 31/445, 31/47, 31/495, 31/535

A1

(11) 国際公開番号

WO97/19919

(43) 国際公開日

1997年6月5日(05.06.97)

(21) 国際出願番号

PCT/JP96/03520

(22) 国際出願日

1996年12月2日(02.12.96)

(30) 優先権データ

特願平7/312407

1995年11月30日(30.11.95)

(74) 代理人

弁理士 湯浅恭三, 外(YUASA, Kyozo et al.) 〒100 東京都千代田区大手町二丁目2番1号 新大手町ビル206区 湯浅法律特許事務所 Tokyo, (JP)

(71) 出願人(米国を除くすべての指定国について) シー・アンド・シー・リサーチ・ラボラトリーズ (C&C RESEARCH LABORATORIES)[KR/KR] キョンギド、ファソングン、テアンウブ、アンニョリ146-141

Kyunggi-do, (KR) (72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

原村昌幸(HARAMURA, Masayuki)[JP/JP]

羽石 剛(HANEISHI, Tsuyoshi)[JP/JP]

黑丸精則(KUROMARU, Kiyonori)[JP/JP]

〒412 静岡県御殿場市駒門1丁目135番地

中外製薬株式会社内 Shizuoka. (JP)

(81) 指定国 AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CU, CZ, EE, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, RO, RU, SD, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告審

(54) Title: SULFAMIDE DERIVATIVES

(54)発明の名称 スルファミド誘導体

(57) Abstract

Sulfamide derivatives represented by general formula (1) or pharmacologically acceptable salts or hydrates thereof, characterized in that they have an excellent antithrombin activity and are useful as drugs for, e.g., the treatment of thrombosis, capable of oral administration, and reduced in side effects, wherein R₁ represents hydrogen, lower alkyl, or amino-protective group; R2 represents optionally substituted and fused nitrogenous heterocycle; R₃ represents a group represented by A-(CH₂)_m-, hydrogen, or optionally substituted lower alkyl (where A represents optionally substituted aryl, optionally substituted and fused heterocycle, or optionally substituted lower cycloalkyl, m is an integer of 0 to 6, and the moiety represented by -(CH₂)_m - may have at least one substituent); R4 represents hydrogen or lower alkyl; and R5 represents a group represented $-C(=NR_6)NH_2$, $-NH-C(=NR_6)NH_2$, or $-(CH_2)_n$

-NHR₆ (where R₆ represents hydrogen, lower alkyl, hydroxy, acyl, acyloxy, lower alkoxy, lower alkoxycarbonyl, lower alkoxycarbonyloxy, or lower hydroxyalkylcarbonyloxy, n is an integer of 0 to 2, and the moiety represented by -(CH2), - may have at least one substituent).

一般式(1)

(式中、R」は水素原子、低級アルキル基またはアミノ保護基を示し、R2は置 換基を有していてもよく、また縮合されていてもよい窒素原子含有の複素環を示 し、 R_3 は基 $A-(CH_2)_m-$ 、水素原子または置換されていてもよい低級アル キル基を示す。ここでAは置換されていてもよいアリール基,置換されていても よく、また縮合されていてもよい複素環または置換されていてもよい低級シクロ アルキル基を、mは0~6の整数を示す。またー(CH₂) m-部分は1個以上の 置換基で置換されていてもよい。R。は水素原子または低級アルキル基を示し、 R₅ は基-C (=NR₆) NH₂、基-NH-C (=NR₆) NH₂ または基-(CH₂) _n-NHR₆ を、ここでR₆ は水素原子、低級アルキル基、水酸基、ア シル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低 級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキ シ基を示し、nは $0\sim2$ の整数を示す。また $-(CH_2)$ 。-の部分は1個以上の 置換基で置換されていてもよい)で表されるスルファミド誘導体もしくはその製 薬上許容しうる塩またはその水和物は、優れた抗トロンビン活性を示し、抗血栓 治療剤等の医薬として有用で、しかも経口投与可能で副作用が少ないという特徴 を有している。

情報としての用途のみ

\(\)

明 細 書 スルファミド誘導体

技術分野

本発明は一般式(1)

(式中、 R_1 は水素原子、低級アルキル基またはアミノ保護基を示し、 R_2 は置 5 換基を有していてもよく、また縮合されていてもよい窒素原子含有の複素環を示 し、R₃ は基A-(CH₂)_m-、水素原子または置換されていてもよい低級アル キル基を示す。ここでAは置換されていてもよいアリール基、置換されていても よく、また縮合されていてもよい複素環または置換されていてもよい低級シクロ アルキル基を、mは0~6の整数を示す。また $-(CH_2)_m-$ 部分は1個以上の 10 置換基で置換されていてもよい。R4 は水素原子、低級アルキル基またはアミノ 保護基を示し、R₅ は基一C (=NR₆) NH₂、基一NH-C (=NR₆) NH₂ または基一 (CH_2) $_n$ - NHR_6 を、ここで R_6 は水素原子、低級アルキル基、 水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボ ニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカル 15 ポニルオキシ基を示し、nは0~2の整数を示す。また-(CH₂),-の部分は 1個以上の置換基で置換されていてもよい)で表される新規なスルファミド誘導 体に関し、さらに詳しくは抗トロンビン阻害活性を有するスルファミド誘導体も しくはその製薬上許容しうる塩または水和物およびそれらを有効成分として含有 することを特徴とする医薬組成物に関する。 20

10

15

20

血栓は凝集した血小板とフィブリンからなり、狭心症や心筋梗塞などの虚血性 心疾患、脳梗塞などの脳血管障害、動脈血栓塞栓症、肺塞栓症などの静脈血栓症 や汎発性血管内血液凝固症候群 (DIC) などの発生や増悪に関与する。

抗血栓薬はアスピリン、ジピリダモール、アプロスタジル等の抗血小板薬とワーファリン、ヘパリン、アルガトロバン等の抗凝固薬に分類され、このうち抗血小板薬の多くは経口薬であるが、その効果については疑問が多い。一方、抗凝固薬のほうは経口薬としてはワーファリンのみで、ビタミンKに拮抗することで凝固因子の産生を阻害するが、皮膚壊死や催奇形性作用などの副作用があり、また薬物相互作用が多い。したがって、ワーファリンとは作用機序が異なる経口抗凝固薬の出現が臨床の場で望まれている。

トロンビンは血液凝固の最終ステップの活性因子で、フィブリノーゲンに作用し、フィブリンを生成する。トロンビン阻害薬にはアルガトロバン、トリペプチド(D-Phe-Pro-Arg-Hの合成誘導体)やヒルジンが挙げられるが、いずれも注射剤であり、血栓症の治療や予防には長期投与が可能な経口薬が望ましい。

従来、血栓形性には血小板凝集が重要であると考えられ、抗血小板薬が汎用されてきた。しかし最近になって、トロンビンが受容体を介して血小板凝集を強力に誘発することが明らかになり、抗トロンビン薬はトロンビン受容体の活性化を阻害することで血小板凝集も抑制すると報告されている(医学のあゆみ、167、484(1993); Journal of Biological Chemistry [ジャーナル オブ バイオロジカル ケミストリー], 268, 4734(1993); 同268, 15605(1993)等参照)。

また経皮的冠状動脈形成術(PTCA)数時間後の血管平滑筋でトロンビン受容体の発現が10倍以上になるとの報告もあり、従来治療法がなかった再狭窄の予防に抗トロンビン阻害薬が使用できる可能性がある。したがって、経口可能で副作用の少ないトロンビン阻害薬はその開発が早急に望まれているのが実状である。

本発明者等は上記の課題に鑑み、経口可能で副作用の少ない抗トロンビン薬について鋭意研究を重ねた結果、特定のスルファミド誘導体が優れた効果を示すことを見出し、本発明に至った。

5 すなわち、本発明は一般式(1)

(式中、 R_1 は水素原子、低級アルキル基またはアミノ保護基を示し、 R_2 は置 換基を有していてもよく、また縮合されていてもよい窒素原子含有の複素環を示 し、R₃ は基A-(CH₂)。-、水素原子または置換されていてもよい低級アル キル基を示す。ここでAは置換されていてもよいアリール基、置換されていても よく、また縮合されていてもよい複素環または置換されていてもよい低級シクロ 10 アルキル基を、mは0~6の整数を示す。また-(CH₂) m-部分は1個以上の 置換基で置換されていてもよい。R4 は水素原子、低級アルキル基またはアミノ 保護基を示し、R₅ は基一C(=NR₆)NH₂、基一NH-C(=NR₆)NH₂ または基一(CH_2)。-NHR。を、ここでR。は水素原子、低級アルキル基、 水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボ ニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカル ボニルオキシ基を示し、nは0~2の整数を示す。また-(CH₂)。-の部分は 1個以上の置換基で置換されていてもよい)で表される新規なスルファミド誘導 体に関し、さらに詳しくは抗トロンビン阻害活性を有するスルファミド誘導体も しくはその製薬上許容しうる塩または水和物およびそれらを有効成分として含有 することを特徴とする医薬組成物に関する。

10

15

20

25

本発明において、特に限定がない場合は次の用語は以下の意味を示す。

低級アルキル基とは、炭素数1~6、好ましくは炭素数1~4の直鎖または分岐鎖状のアルキル基を意味し、例えばメチル基、エチル基、nープロピル基、iープロピル基、nープチル基、iーブチル基、sーブチル基、tーブチル基等が挙げられる。

低級アルコキシ基とは、炭素数1~6、好ましくは炭素数1~4の直鎖または 分岐鎖状のアルキルオキシ基を意味し、例えばメトキシ基、エトキシ基、nープロポキシ基、iープロポキシ基、nーブトキシ基、iープトキシ基、sープトキシ基、tーブトキシ基等が挙げられる。

アミノ保護基とは、一般式(1)の合成過程において、R,が結合するアミノ 基を保護できる基であればよく、一般的に使用できるアミノ保護基が用いられる。 このようなアミノ保護基としては、例えばホルミル基、アセチル基、ベンゾイル 基、トリフルオロアセチル基、ベンジルオキシカルボニル基、メトキシカルボニ ル基、tープトキシカルボニル基、フタロイル基、ベンジル基、トシル基等が挙 げられ、好ましくは t ープトキシカルボニル基が挙げられる。

また、置換されていてもよいアミノ基とは、置換基として前述のアミノ保護基のほか、水酸基、置換されていてもよい低級アルキル基、置換されていてもよいアシル基、例えば置換されていてもよい低級アルコキシカルボニル基もしくは置換されていてもよい低級アルキルアミノカルボニル基、置換されていてもよいアリール基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環基、置換されていてもよいシクロアルキルオキシ基、置換されていてもよいシクロアルキルオキシ基、置換されていてもよいシリル基等が1個以上置換されていてもよいでもよいカルボニルでミノ基、エチルアミノ基、アセチルアミノ基、ジメチルアミノカルボニルアミノ基、フェニルアミノ基、アセチルアミノ基、ジメチルアミノカルボニルアミノ基、フェニルアミノ基、

pートルエンスルポニルアミノ基、メタンスルホニルアミノ基、4ーピペリジニルアミノ基、シクロヘキシルアミノ基、シクロペンチルアミノ基、シクロプロピルアミノ基などが挙げられ、好ましくはメチルアミノ基、エチルアミノ基、アセチルアミノ基、pートルエンスルホニルアミノ基、メタンスルホニルアミノ基、シクロプロピルアミノ基等が挙げられる。

5

10

15

20

置換されていてもよい低級アルキル基とは、置換基として、ハロゲン原子、水 酸基、チオール基、置換されていてもよいアミノ基、置換されていてもよいアシ ル基、例えば置換されていてもよい低級アルコキシカルボニル基もしくは置換さ れていてもよい低級アルキルアミノカルボニル基、ニトロ基、シアノ基、置換さ れていてもよいアリール基、置換されていてもよいスルホニル基、置換されてい てもよく、また縮合されていてもよい複素環基、置換されていてもよいカルボキ シル基、置換されていてもよい低級アルコキシ基、置換されていてもよいシクロ アルキル基、置換されていてもよいシクロアルキルオキシ基、置換されていても よいアリールオキシ基、置換されていてもよい低級アルキルチオ基、置換されて いてもよく、また縮合されていてもよい複素環オキシ基、置換されていてもよい シクロアルキルチオ基、置換されていてもよく、また縮合されていてもよい複素 環チオ基、置換されていてもよいアリールチオ基、置換されていてもよいスルホ ニルオキシ基、置換されていてもよいシリル基等が1個以上置換されていてもよ い低級アルキル基を意味し、例えば、2-(ピロリジン-1-イルカルボニル) エチル基、3-フェニルー2-(ピロリジン-1-イルカルボニル)-n-プロ ピル基、3,3,-ジフェニルーnープロピル基、2,2ージフェニルエチル基、 2-シクロヘキシルオキシエチル基等が挙げられ、好ましくは3-フェニル-2 - (ピロリジン-1-イルカルボニル) - n - プロピル基、3, 3 - ジフェニル - n - プロピル基、2.2 - ジフェニルエチル基等が挙げられる。

25 また置換されていてもよい低級アルコキシ基とは、置換基として前記の低級アルキル基で示したものと同様な基が置換された低級アルコキシ基を意味し、例えば、フルオロメトキシ基、フルオロエトキシ基、ペンジルオキシ基等が挙げられる。

アリール基とは芳香族炭化水素から水素原子1個を除いた基であり、例えば、フェニル基、トリル基、ナフチル基、キシリル基、ビフェニル基、アントリル基、フェナントリル基等が挙げられ、好ましくはフェニル基、ナフチル基等が挙げられる。

置換されていてもよいアリール基とは、前記のアリール基の任意の水素原子が 5 1個以上の置換されていてもよい低級アルキル基、置換されていてもよい低級ア ルコキシ基、ハロゲン原子、水酸基、チオール基、置換されていてもよいアミノ 基、置換されていてもよいアシル基、置換されていてもよい低級アルキルチオ基、 ニトロ基、シアノ基、置換されていてもよいアリール基、置換されていてもよい アリールアルキル基、置換されていてもよいアリールオキシ基、置換されていて 10 もよいスルホニル基、置換されていてもよいカルボキシル基、置換されていても よい低級アルキルスルホニル基、置換されていてもよい低級アルキルスルホニル アミノ基、置換されていてもよく、また縮合されていてもよい複素環基、置換さ れていてもよいシクロアルキルチオ基、置換されていてもよいスルホニルオキシ 基、置換されていてもよいアリールチオ基、置換されていてもよいシリル基、置 15 換されていてもよく、また縮合されていてもよい複素環オキシ基、置換されてい てもよく、また縮合されていてもよい複素環チオ基等で置換されていてもよい基 を意味し、例えばoーメチルフェニル基、m-ヒドロキシフェニル基、p-カル ボキシルフェニル基、2ーフェネチルフェニル基、2、3ージメトキシフェニル 基、2-メチルー4-アミノフェニル基、フェノキシフェニル基、3-フェネチ 20 ルフェニル基、5-シアノナフチル基、4-アミノ-1-ナフチル基、6-ヒド ロキシー1ーナフチル基、3ーメトキシフェニル基、2ーメトキシフェニル基、 2-エトキシフェニル基、2-ベンジルフェニル基、3-プロモー1ーナフチル 基、6-メトキシー1-ナフチル基、1-ナフチル基、2-ナフチル基等が挙げ られ、好ましくは2-フェネチルフェニル基、6-ヒドロキシー1-ナフチル基、 25 3-ブロモー1-ナフチル基、2、3-ジメトキシフェニル基等が挙げられる。 置換されていてもよいシクロアルキル基とは、炭素数3~7、好ましくは4~ 6のシクロアルキル基の任意の水素原子が、1個以上の置換基で置換されていて

もよい基を示し、産換基の例としては、前記のアリール基と同様の基を示す。このような例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロペキシル基、1-フルオロシクロプロピル基、2ーペンジルシクロペキシル基、2ーアミノシクロペンチル基、2ーカルボキシシクロペンチル基、2ー(6-メトキシー1、4-ベンゾキノン)等が挙げられ、好ましくはシクロペキシル基等が挙げられる。

5

10

15

20

25

置換されていてもよく、また縮合されていてもよい窒素原子含有複素環とは、 ヘテロ原子として1個以上の窒素原子を含有し、さらに酸素原子、イオウ原子等 のヘテロ原子を含有していてもよい、3~7員環の飽和または不飽和の複素環を 意味し、さらに3~7員環の他の芳香環、複素環、シクロアルキル環が1個以上 縮合していてもよい。環上の炭素原子に結合する任意の水素原子は、1個以上の 置換基で置換されていてもよく、このような置換基の例は、前述のアリール基の 置換基と同様のものが挙げられる。窒素原子含有複素環の例としては、例えばア ジリジン環、アゼチジン環、ピロール環、ピロリン環、ピロリジン環、インドー ル環、インドリン環、イソインドール環、オクタヒドロインドール環、カルバゾ ール環、ピリジン環、ピペリジン環、キノリン環、ジヒドロキノリン環、テトラ ヒドロキノリン環、デカヒドロキノリン環、イソキノリン環、テトラヒドロイソ キノリン環、デカヒドロイソキノリン環、キノロン環、アクリジン環、フェナン トリジン環、ベンゾキノリン環、ピラゾール環、イミダゾール環、イミダゾリン 環、イミダゾリジン環、ベンゾイミダゾール環、ピリダジン環、ピリミジン環、 ピラジン環、ピペラジン環、ベンゾジアジン環、トリアゾール環、ベンゾトリア ゾール環、トリアジン環、テトラゾール環、テトラジン環、プリン環、キサンチ ン環、テオフィリン環、グアニン環、プテリジン環、ナフチリジン環、キノリジ ン環、キヌクリジン環、インドリジン環、オキサゾール環、ベンゾオキサゾール 環、イソオキサゾール環、オキサジン環、フェノキサジン環、チアゾール環、チ アゾリジン環、ベンゾチアゾール環、イソチアゾール環、チアジン環、オキサジ アゾール環、オキサジアジン環、チアジアゾール環、チアジアジン環、ジチアジ ン環、モルホリン環等が挙げられ、このうち、ピペリジン環、ピペラジン環、イ

ソキノリン環、アトラヒドロイソキノリン環等が好ましい。置換基を有するものとしては、例えばN-アセチルピペラジン環、N-p-トルエンスルホニルピペラジン環、4-メチルピペリジン環等が好ましい例として挙げられる。

また、置換されていてもよく、また縮合されていてもよい複素環とは、ヘテロ 原子として1個以上の窒素原子、酸素原子またはイオウ原子を含有している3~ 5 7員環の飽和または不飽和の複素環を意味し、さらに3~7員環の他の芳香環、 複素環、シクロアルキル環が1個以上縮合していてもよい。環上の炭素原子に結 合する任意の水素原子は、1個以上の置換基で置換されていてもよく、このよう な置換基の例は、前述のアリール基の置換基と同様のものが挙げられる。このよ うな複素環の例としては、前述の窒素原子含有複素環のほかに、例えばピラン環、 10 フラン環、テトラヒドロピラン環、テトラヒドロフラン環、チオフェン環、ベン ゾチオフェン環、ジヒドロベンゾチオフェン環、ベンゾフラン環、イソベンゾフ ラン環、クロマン環、クロメン環、ジベンゾフラン環、イソクロマン環、フェノ キサチン環、キサンチン環、チアンスレン環、ベンゾジオキサン環、ベンゾジオ キソラン環、チオラン環等が挙げられ、好ましくはベンゾチオフェン環が挙げら 15 れる。

アシル基とは、カルボン酸のカルボキシル基の〇日を除いた基であり、例えばホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、オキサリル基、マロニル基、スクシニル基、ベンゾイル基、トルオリル基、ナフトイル基、フタロイル基、ピロリジンカルボニル基等が挙げられる。また、置換されていてもよいアシル基とは、置換基として低級アルキル基、その他前記低級アルキル基で示したものと同様な基で置換されたアシル基を意味し、例えば、置換されていてもよい低級アルキルカルボニル基、置換されていてもよい低級アルキルアミノカルボニル基、置換されていてもよい低級アルキルアミノカルボニル基、置換されていてもよい低級アルキルカルボニル基、アミノカルボニル基、置換されていてもよい低級アルキルカルボニル基等が挙げられる。

20

25

アシルオキシ基とは、アシル基に酸素原子が結合した基を意味し、例えばアセトキシ基、ベンゾイルオキシ基等が挙げられる。

25

低級アルコークカルボニル基とは、低級アルコキシ基にカルボニル基が結合した基を意味し、アルコキシ部分の炭素数が1~6、好ましくは1~4の基を示す。例えば、メトキシカルボニル基、エトキシカルボキル基、ロープロポキシカルボニル基、iープトキシカルボニル基、iープトキシカルボニル基、sープトキシカルボニル基、sープトキシカルボニル基、ナーブトキシカルボニル基等が挙げられ、好ましくはメトキシカルボニル基、エトキシカルボニル基等が挙げられる。

低級アルコキシカルボニルオキシ基とは、低級アルコキシカルボニル基に酸素原子が結合した基で、アルコキシ部分の炭素数が1~6、好ましくは1~4の基を示す。例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、ロープロポキシカルボニルオキシ基、iープロポキシカルボニルオキシ基、ロープトキシカルボニルオキシ基、iープトキシカルボニルオキシ基、sープトキシカルボニルオキシ基、tープトキシカルボニルオキシ基等が挙げられ、好ましくはメトキシカルボニルオキシ基、エトキシカルボニルオキシ基等が挙げられる。

15 ヒドロキシアルキルカルボニルオキシ基とは、前記の低級アルキル基に1個以上の水酸基が置換した基にカルボニルオキシ基(COO)が結合した基を示し、例えばヒドロキシメチルカルボニルオキシ基、2-ヒドロキシエチルカルボニルオキシ基、2.3-ジヒドロキシプロピルカルボニルオキシ基等のアルキル部分の炭素数が1~6、好ましくは1~4の基が挙げられる。

20 ハロゲン原子とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。

低級アルキルスルホニル基とは、前記の低級アルキル基にスルホニル基が結合した基で、炭素数1~6、好ましくは1~4のものが挙げられ、例えばメチルスルホニル基、エチルスルホニル基、nープロピルスルホニル基、iープロピルスルホニル基等が挙げられる。

またアリールスルホニル基とは、前配のアリール基にスルホニル基が結合した 基を意味し、例えばフェニルスルホニル基、ナフチルスルホニル基等が好ましい 例として挙げられる。

15

置換されていてもよい低級アルキルスルホニル基および置換されていてもよいアリールスルホニル基は、前記低級アルキルスルホニル基及びアリールスルホニル基の炭素原子に結合する任意の水素原子が1個以上の置換基で置換されていてもよい基を示し、置換基の例としては前記アリール基の置換基として記載したものと同様のものが挙げられる。このような例としては、例えば、pートルエンスルホニル基、トリフルオロメタンスルホニル基等が挙げられる。

置換されていてもよいアミノスルホニル基とは、前記の置換されていてもよいアミノ基にスルホニル基が結合した基で、例えばメチルアミノスルホニル、ベンジルアミノスルホニル基等が挙げられる。

10 置換されていてもよい低級アルコキシスルホニル基とは、前記の置換されていてもよい低級アルコキシ基にスルホニル基が結合した基を意味し、例えばメトキシスルホニル基、ベンジルオキシスルホニル基等が好ましい例として挙げられる。

置換されていてもよいシクロアルキルオキシスルホニル基とは、置換されていてもよいシクロアルキル基に、酸素原子を介して、スルホニル基が結合した基を 意味し、例えばシクロヘキシルオキシスルホニル基、シクロペンチルオキシスル ホニル基等が挙げられる。

置換されていてもよいシクロアルキルスルホニル基とは、前記の置換されていてもよいシクロアルキル基にスルホニル基が結合した基で、例えばシクロヘキシルスルホニル基、シクロペンチルスルホニル基等が挙げられる。

20 置換されていてもよく、また縮合されていてもよい複素環スルホニル基とは、 置換されていてもよい複素環基にスルホニル基が結合した基を意味し、例えば4 ーキノリルスルホニル基、8ーテトラヒドロキノリルスルホニル基等が好ましい 例として挙げられる。

さらに、置換されていてもよいスルホニル基とは、置換されていてもよい低級 アルキルスルホニル基、置換されていてもよいシクロアルキルスルホニル基、置換されていてもよいシクロアルキルオキシスルホニル基、置換されていてもよい アミノスルホニル基、置換されていてもよく、縮合されていてもよい複素環スルホニル基、置換されていてもよい低級アルコキシスルホニル基あるいは置換され

10

15

20

25

ていてもよいアナールスルホニル基を示す。

置換されていてもよいカルボキシル基とは、前記の置換されていてもよいアシル基にオキシ基が結合した基を意味し、例えばメチルカルボニルオキシ基、エチルカルボニルオキシ基、イソプロピルカルボニルオキシ基、フェニルカルボニルオキシ基、シクロヘキシルカルボニルオキシ基等が挙げられる。

低級アルコキシアルキル基とは、前記の低級アルコキシ基に低級アルキル基が結合した基を意味し、例えばメトキシメチル基、メトキシエチル基、 t ープトキシメチル基、1ーエトキシエチル基、1ー (イソプロポキシ) エチル基等が挙げられる。また低級アルコキシアルキル基のアルコキシ基またはアルキル基の部分は、前記のアルキル基で示した置換基と同様な基で置換されていてもよい。

低級ヒドロキシアルキル基とは、前記の低級アルキル基に1個以上の水酸基が置換された基を意味し、例えばヒドロキシメチル基、2ーヒドロキシエチル基、1ーヒドロキシエチル基、3ーヒドロキシーnープロピル基、2、3ージヒドロキシーnーブチル基等が挙げられる。また、低級ヒドロキシアルキル基のアルキル基の部分は、前記アルキル基で示した置換基と同様な基で置換されていてもよい。

低級アミノアルキル基とは、前記の置換されていてもよいアミノ基に前記低級アルキル基が結合した基を意味し、例えば t ーブチルアミノメチル基、アミノメチル基、2ーアミノエチル基、ベンジルアミノメチル基、メチルアミノメチル基、2ーメチルアミノエチル基等が挙げられる。また、低級アミノアルキル基のアルキル基の部分は、前記アルキル基で示した置換基と同様な基で置換されていてもよい。

低級カルボキシルアルキル基とは、前記の置換されていてもよいカルボキシル 基に前記の低級アルキル基が結合した基で、例えばアセチルオキシメチル基、2 - アセチルオキシエチル基、エチルカルボニルオキシメチル基、シクロヘキシルカルボニルオキシメチル基、シクロプロピルカルボニルオキシメチル基、イソプロピルカルボニルオキシメチル基等が挙げられる。また低級カルボキシルアルキル基のアルキル基の部分は、前記アルキル基で示した置換基と同様な基で置換さ

15

25

低級カルボニルアミノアルキル基とは、前記の置換されていてもよいアシル基 に前記低級アミノアルキル基が結合した基を意味し、例えばアセチルアミノメチ ル基、 t ープチルオキシカルボニルアミノメチル基、エチルカルボニルアミノメ チル基、アセチルアミノエチル基、ベンジルオキシカルボニルアミノエチル基等 が挙げられる。また、低級カルボニルアミノアルキル基のアミノ基またはアルキ ル基の部分は、前記アルキル基で示した置換基と同様な基で置換されていてもよ い。

置換されていてもよい低級アルキルチオ基とは、前記の置換されていてもよい 10 低級アルキル基にチオ基が結合した基で、例えばメチルチオ基、エチルチオ基、 イソプロピルチオ基、 t ーブチルチオ基等が挙げられる。

置換されていてもよいシクロアルキルチオ基とは、前記の置換されていてもよいシクロアルキル基にチオ基が結合した基を意味し、例えばシクロプロビルチオ基、シクロブチルチオ基、シクロペンチルチオ基、シクロペキシルチオ基等が挙げられる。

置換されていてもよいアリールチオ基とは、前記の置換されていてもよいアリール基にチオ基が結合した基で、例えばフェニルチオ基、1ーナフチルチオ基、2ーナフチルチオ基等が挙げられる。

置換されていてもよく、縮合されていてもよい複素環チオ基とは、前記の置換 されていてもよく、また縮合されていてもよい複素環基にチオ基が結合した基を 意味し、例えば4ーキノリルチオ基、8ーテトラヒドロキノリルチオ基等が挙げられる。

置換されていてもよいスルホニルオキシ基とは、前記の置換されていてもよい スルホニル基にオキシ基が結合した基で、例えばpートルエンスルホニルオキシ 基、メタンスルホニルオキシ基等が挙げられる。

置換されていてもよいシクロアルキルオキシ基とは、前記の置換されていてもよいシクロアルキル基にオキシ基が結合した基で、例えばシクロプロピルオキシ基、シクロベンチルオキシ基、4-アミノシクロヘキシルオキシ基等が挙げられ

る。

5

10

置換されていてもよく、また縮合されていてもよい複素環オキシ基とは、前記の置換されていてもよく、縮合されていてもよい複素環基にオキシ基が結合した基を意味し、例えば4ーキノリルオキシ基、8ーテトラヒドロキノリルオキシ基等が挙げられる。

置換されていてもよいシリル基とは、前記の置換されていてもよい低級アルキル基または置換されていてもよいアリール基が、同一または異なる1~3個結合したシリル基を示し、例えばトリメチルシリル基、トリエチルシリル基、tーブチルジメチルシリル基、tーブチルジフェニルシリル基、トリイソプロピルシリル基等が挙げられる。

またー(CH_2)。一部分およびー(CH_2)。一部分で置換されていてもよい置換基としては、前記アリール基の置換基として記載したものと同様のものが挙げられる。

本発明化合物は製薬上許容しうる塩を形成することができ、この様な塩としては、例えば塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硝酸塩、リン酸塩等の無機酸塩、コハク酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、乳酸塩、酒石酸塩、クエン酸塩、酢酸塩、グリコール酸塩、メタンスルホン酸塩、トルエンスルホン酸塩等の有機酸塩等を挙げることができる。また本発明化合物及びその製薬上許容しうる塩は水和物を形成することもできる。さらに本発明化合物は各種の立体構造をとることができ、例えば不斉炭素原子を中心に考えた場合、その絶対配置はD体、L体、DL体のいずれでもよく、これらの化合物も本発明に含まれる。特に、一般式(1)中の置換フェニルアラニン残基中の不斉炭素原子の絶対配置はL体が望ましい。

一般式(1)で表される化合物において、R3のAが置換されていてもよいア リール基、例えばベンジル基、ナフチル基等を示す化合物、特にR3が1ーナフ チルメチル、2ーフェネチルベンジル基、3ープロモナフチル基、1ーイソキノ リル基、2、3ージメトキシベンジル基または6ーヒドロキシナフチル基である 化合物は医薬として特に優れた効果を示し、本発明の一部を構成する。

10

15

また一般式(1)において、R2が基(2)~(6)

$$(CH_{2})p_{r}(R_{7})sub \qquad (CH_{2})r \qquad B \qquad (CH_{2})r (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2$$

(式中、(R₇) ・・・は基(2)~(6)中の炭素原子に結合する1個以上の任意 の水素原子が、同一または相異なるR、で置換されていてもよいことを意味し、 R,は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、 置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合され ていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換 されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されて いてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキル スルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシア ルキル基、低級ヒドロキシアルキル基、低級アミノアルキル基、低級カルポキシ ルアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原 子、硫黄原子またはNR。を示し、ここでR。は水素原子、置換されていてもよ い低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換され ていてもよいアシル基、置換されていてもよいスルボニル基、置換されていても よく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、 $0\sim5$ の整数を示すが、ただし、p+qが1. 2. 3. 4または5のいずれかで あり、rおよびsは同一または異なって、 $0\sim5$ の整数を示すが、ただしr+s

5

10

さらに一般式 (1) において、 R_5 が-C ($=NR_6$) NH_2 (式中、 R_8 は水 素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ 基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級とドロキシアルキルカルボニルオキシ基を示す)である化合物、特に-C (=NH) NH_2 である化合物も好ましい態様として挙げられる。

さらにまた上記で示した R_2 、 R_3 及び R_5 の好ましい置換基を同時に2つまたは3つ持つ化合物は特に好ましい化合物として挙げられる。

15 次に一般式(1)で表されるスルファミド誘導体の製造方法について説明する。本発明化合物は、目的とする化合物に適した反応の組合せにより製造することができ、以下に代表的な反応スキームを式示するが、以下の方法のみに限定されるものではない。

(式中、 R_1 、 R_3 、 R_4 、 R_6 、 R_7 、 $(R_7)_{110}$ 、B、p及びqは前記と同一の意味を示し、 R_2 。は水素原子または低級アルキル基を、 R_5 。は低級アルキル基を、Xはハロゲン原子、水酸基、アルカンスルホニル基、アリールスルホニル基等の脱離基を示す)。

上記反応スキームにおいて、一般式(1)、(11)、(12)、(13)、(14)、(15)、(16)、(17)及び(18)は文献未記載の新規化合物である。一般式(3)の化合物は、例えば特表平5-503300号公報に記載された方法と同様にして製造することができる。

一般式(10)の化合物は、一般式(9)の化合物及び一般式(19)の化合物の縮合反応を行うことにより得られる。ここで用いられる縮合反応としては、例えば通常用いられる活性エステル法、酸無水物法、アジド法、酸クロライド法、各種縮合剤等、ペプチド合成の基礎と実験(1985年、丸善発行)に示された方法等が挙げられる。用いられる縮合剤としては、N,N'ージシクロヘキシルカルボジイミド(DCC)、水溶性カルボジイミド(WSCI)、カルボニルジイミダゾール(CDI)、ジフェニルホスホリルアジド(DPPA),Bop試薬、Pybop試薬等、通常用いられる試薬があげられる。一般式(19)の化合物は通常、一般式(9)の化合物に対して、1.0~10.0当量、好ましくは1.0~5.0当量用いる。

一般式(11)の化合物は、一般式(9)の化合物より、適当な溶媒中、塩基の存在下あるいは不存在下において適当なアルコール類及び例えばクロロスルホニルイソシアネート等のイソシアネート類を反応させることによってカルバメート化合物を得る。ここで用いられる溶媒としては、テトラヒドロフラン、ジオキサン、ジクロロメタン、酢酸エチル等が挙げられ、また塩基としては、トリエチルアミン、ピリジン等の有機塩基が挙げられる。またアルコール類としては、tーブチルアルコール、ベンジルアルコール等が用いられ、またクロロスルホニルイソシアネートの代わりに、ホスゲン等を用いて反応に供することもできる。この反応は通常、-80~30℃の温度条件下、0.1~24時間の反応で行うことができる。この反応において、用いられるイソシアネート類は、通常、一般式

(9) の化合物に対して、 $1.0\sim5.0$ 当量、好ましくは $1.0\sim1.2$ 当量用いられ、アルコール類は、 $1.0\sim5.0$ 当量、 $1.0\sim1.2$ 当量用いられる。得られたカルバメート化合物は、脱保護を行うことによりアミン化合物に導くことができる。

5 一般式(12)の化合物は、上記の一般式(11)の化合物を得た時と同様の 反応を一般式(10)の化合物から行うか、もしくは上記一般式(10)の化合物を得た時と同様の縮合反応を一般式(11)の化合物から行うことにより得る ことができる。

一般式(13)の化合物は、一般式(11)の化合物から通常用いられるアル キル化、アリール化反応によって得られる。すなわち、適当な溶媒中、ジエトキ 10 シアザジカルボキシレート(DEAD)-トリフェニルホスフィン等により活性 化した一般式(20)で示されるアルコール類(Xが水酸基である場合)を、ま たは塩基の存在あるいは不存在下で一般式(20)で示されるハライド化合物等 (Xがハロゲン原子等である場合)を反応させることにより得られる。アルコー ル類である一般式(20)の化合物としては、例えばメタノール、エタノール、 15 ーナフタレンメタノール、3ープロモー1ーナフタレンメタノール、2ーフェネ チルベンジルアルコール等、好ましくは2.3-ジメトキシベンジルアルコール、 1ーナフタレンメタノール、2ーフェネチルベンジルアルコール等が挙げられ、 ハライド化合物である一般式 (20) の化合物としては、例えばベンジルブロミ 20 ド、1ーナフチルメチルブロミド等、好ましくはベンジルブロミド等が挙げられ る。この工程で使用される溶媒としては、ジクロロメタン、クロロホルム、テト ラヒドロフラン、ベンゼン等が挙げられ、ハライド化合物等を反応させる場合に 用いてもよい塩基としては、水素化ナトリウム、炭酸カリウム、炭酸水素ナトリ ウム等が挙げられる。反応温度は、-80~100℃、反応時間は1~240時 25 間の範囲で行うことができる。また一般式(20)の化合物は通常、一般式(1 1) の化合物に対して、 $1.0\sim5.0$ 当量の範囲で用いることができる。

一般式(14)の化合物は、上記一般式(11)の化合物から一般式(13)

の化合物を得た場合と同様の反応を、一般式(12)の化合物から供することにより、または上記一般式(9)の化合物から一般式(10)の化合物を得た場合と同様の縮合反応を、一般式(13)から行うことにより製造することができる。一般式(15)の化合物は、適当な溶媒中、塩基の存在あるいは不存在下で、一般式(14)の化合物に硫化水素を反応させることにより得ることができる。ここで用いられる溶媒としては、ピリジン、メタノール、エタノール、ロープロ

5

20

25

ここで用いられる溶媒としては、ピリジン、メタノール、エタノール、nープロパノール、iープロパノール等が挙げられ、塩基を用いる場合の塩基としては、ピリジン、トリエチルアミン、ジエチルアミン等が挙げられる。反応温度は0~100℃、反応時間は1~72時間の範囲で行うことができる。

一般式(16)の化合物は、一般式(15)の化合物から適当な溶媒中、塩基の存在あるいは不存在下で、アルキルハライド類を反応させることにより製造することができる。アルキルハライド類としては、例えばヨウ化メチル、ヨウ化エチル等、好ましくはヨウ化メチル等が挙げられる。この工程で使用できる溶媒としては、アセトン、メタノール、アセトニトリル、テトラヒドロフラン等が挙げられ、塩基を使用する場合は、ピリジン、トリエチルアミン、ジエチルアミン等の塩基を用いることができる。反応は0~100℃の温度条件下、0.1~10時間で行うことができる。またここで使用するアルキルハライド類は一般式(9)の化合物に対して、1.0~20.0当量の範囲で用いることができる。

一般式(17)の化合物は、一般式(14)の化合物に低級アルコール溶媒中、強酸を付すことにより得ることができる。ここで用いられる低級アルコール溶媒とは、メタノール、エタノール、nープロパノール、iープロパノール等が挙げられる。また強酸としては塩酸、硫酸、硝酸、酢酸、pートルエンスルホン酸、メタンスルホン酸等、あるいはこれらの混酸を使用することができる。強酸は一般式(14)の化合物に対して、1~1000当量、好ましくは100~300当量で用いることができる。反応温度は-30~30℃、反応時間は1~48時間の範囲で行うことができる。

一般式(1)の化合物は、適当な溶媒中、一般式(16)の化合物にアンモニウム塩類またはアルキルアンモニウム塩類を反応させるか、一般式(17)の化

合物にアンモニ)を反応させることによって得られる。ここで使用されるアンモニウム塩類としては、例えばヒドロキシアンモニウムアセテート等が挙げられ、通常一般式(16)の化合物に対して、1.0~2.0当量用いられる。アルキルアンモニウム塩類としては、例えばメチルアンモニウムアセテート等が挙げられ、通常一般式(16)の化合物に対して、1.0~2.0当量の範囲で使用できる。この工程における反応温度は $0\sim100$ ℃、反応時間は $1\sim72$ 時間の範囲で行うことができる。

また本発明化合物の一部を構成する一般式(18)の化合物は、一般式(14)の化合物から通常行われる還元反応を行うことにより製造することができる。ここで用いられる還元反応としては、例えば白金、パラジウム、炭素ーパラジウム、炭素一白金、ラネーニッケル等の触媒存在下で水素を添加させる方法または塩化スズ、亜鉛、硫化ナトリウム、アルミニウムアマルガム、塩化第1クロム、ナトリウムチオスルフェート、ナトリウムボロハイドライド、リチウムアルミニウムハイドライド等の通常用いられる還元剤を使用して還元させる方法が挙げられる。この工程における反応温度は一80~100℃、反応時間は1~72時間の範囲で行うことができる。

10

15

20

このようにして得られる一般式(1)の化合物は抽出、結晶化、再結晶、各種 クロマトグラフィー等の通常の化学操作により単離精製することができる。本発 明化合物は適当な賦形剤、希釈剤、補助剤、湿潤剤、滑沢剤、担体等、その他香 料、着色剤、甘味剤、芳香剤、保存剤等と共に製剤化することができる。例えば 顆粒剤、細粒剤、散剤、錠剤、カブセル剤、シロップ剤、液剤、懸濁剤、乳剤、 凍結乾燥剤等の経口または静脈内、筋肉内あるいは皮下投与等の注射剤として使 用することができる。またパップ剤、軟膏剤等に剤型化し、経皮吸収剤としても 使用することができる。さらにまた坐剤としても使用できる。

ができる。液体製剤においてはゼラチンのような吸収されうる物質のカブセル中に含ませてもよい。非経口投与の製剤、すなわち注射剤、坐剤等の製造に用いられる溶剤または懸濁剤としては、例えば水、プロピレングリコール、ポリエチレングリコール、ベンジルアルコール、オレイン酸エチル、レシチン等が挙げられる。坐剤に用いられる基剤としては、例えばカカオ脂、乳化カカオ脂、ラウリン脂、ウィテップゾール等が挙げられる。製剤の調製方法は常法によればよい。

本発明化合物をヒトに投与する場合は、患者の年齢、性別、病体、体重、症状、体質等により適宜選択する必要があるが、通常一般式(1)の化合物として1日 0. $1\sim1800$ mg、好ましくは $1\sim600$ mgの範囲を、1日1回または適当な間隔をおいて $2\sim3$ 回に分けて投与してもよいし、間欠投与してもよい。

<u>実施例</u>

5

10

以下に本発明を参考例及び実施例を挙げて、さらに詳細に説明するが、本発明はこれらに何ら限定されるものではない。

15 参考例1

<u>Nα-(tert-プチルオキシカルボニル)-3-シアノフェニルアラニン</u> -4-アセチルピペラジドの合成

Nα-(tert-ブチルオキシカルボニル)-3-シアノフェニルアラニン
2. 45g(8. 44mmol:1.0eq)をジクロロメタン30ml及び酢酸エチル30mlに溶解し、水溶性カルボジイミド塩酸塩(WSCI)3.2g
(16.9mmol:2.0eq)及びアセチルピペラジン1.19g(9.28mmol:1.1eq)を加え、そのまま2.5日間撹はんする。水を加えジクロロメタンにで抽出する。有機相を飽和炭酸水素ナトリウム水溶液及び希塩酸にて洗浄し、つづいて水洗浄を行う。無水硫酸ナトリウムにで乾燥し、減圧下で溶媒を除去する。残留物をカラムクロマトグラフィー(和光C-200:移動相ジクロロメタン→ジクロロメタン中メタノール2.5%→5%→7.5%)して、Nα-(tert-ブチルオキシカルボニル)-3-シアノフェニルアラニンー4-アセチルピペラジド2.31g(5.78mmol:収率68%)を得る。

NMR (CDC $_3$) δ 值: 1. 40 (9H, s) 2. 09 (3H, d J = 4. 95Hz) 2. 92~3. 27 (2H, m) 3. 33~3. 72 (8H, m) 4. 82 (1H, br) 5. 39 (1H, br) 7. 33~7. 56 (4H, m)

5 参考例 2

10

3-シアノフェニルアラニン-4-アセチルピペラジド塩酸塩の合成

 $N\alpha-(tert-ブチルオキシカルボニル) -3-シアノフェニルアラニン <math>-4-$ アセチルピペラジド2. $31g(5.78\,mmol:1.0eq)$ をジクロロメタン $25\,ml$ に溶解し、氷冷下トリフルオロ酢酸 $25\,ml$ を加え、そのまま16時間撹はんする。減圧下で溶媒を除去し、トルエンにて共沸した後、残留物に4N-塩酸-ジオキサン溶液を加え、減圧下で溶媒を除去する。メタノールを加え共沸した後、エーテルを加え固体を析出させる。析出物を濾取し、洗浄後、乾燥すると3-シアノフェニルアラニン-4-アセチルピペラジド塩酸塩 $2.2g(5.3\,mmol:収率92\%)$ を得る。

NMR (DMSO) δ値: 2.08 (3H, s) 3.14~3.77 (10 H, m) 4.80 (1H, br) 7.42~7.87 (4H, m) 参考例3

 $N\alpha-(tert-ブチルオキシカルボニル)-4-シアノフェニルアラニン$ -4-アセチルピペラジドの合成

20 参考例 1 と同様にして、 $N\alpha$ - (tert-ブチルオキシカルボニル) -4 - シアノフェニルアラニン -4 - アセチルピペラジド 2 . 0 g (4 . 9 9 mm o 1 : 収率 7 3 %) を得る。

NMR (CDCl₃) δ 値: 1. 39 (9H, s) 2. 09 (3H, d J = 5. 94Hz) 2. 94~3. 73 (10H, m) 4. 84 (1H, br) 5. 32 (1H, br) 7. 32 (2H, d, J=8. 09Hz) 7. 5 8 (2H, d, J=8. 09Hz)

参考例4

25"

4-シアノフェニルアラニンー4-アセチルピペラジド塩酸塩の合成

参考例2と同様にして、4-シアノフェニルアラニン-4-アセチルピペラジド塩酸塩0.93g(3.1mmol:収率100%)を得る。

実施例1

5

 $N\alpha-(fert-ブチルオキシカルボニルアミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジドの合成$

窒素雰囲気下、クロロスルホニルイソシアネート2. 02g(14.3mmo 1:1.2 e q) をジクロロメタン20mlに溶解し、-40℃~-30℃とす る。ジクロロメタン20 mlに溶解したtert-ブタノール1.06 g (14.3 mmol: 1. 2 e q) をゆっくり滴下し、終了後、-40℃~-30℃で2. 5時間撹はんし、-78℃とする。ジクロロメタン100mlに溶解した3-シ 10 アノフェニルアラニンー4ーアセチルピペラジド塩酸塩 4g(11.9mmo 1:1. 0 e q) 及びトリエチルアミン4. 33g (4. 28mmo1:3. 6 e q)をゆっくりと滴下する。ゆっくりと反応温度を上げながら室温とし、その まま20時間撹はんする。飽和炭酸水素ナトリウム水溶液を加えジクロロメタン にて抽出する。有機相を希塩酸にて洗浄し、つづいて水洗浄を2回行う。無水硫 15 酸ナトリウムにて乾燥し、減圧下で溶媒を除去する。残留物をカラムクロマトグ ラフィー(和光C-200:移動相ジクロロメタン→ジクロロメタン中メタノー ν 2%) して、 $N\alpha$ - (tert-ブチルオキシカルボニルアミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド3.38g(7.05

NMR (CDC1₃) δ 値; 1. 46 (9H, s) 2. 09 (3H, d J = 2. 97Hz) 2. 95~3. 70 (10H, m) 4. 88 (1H, br) 6. 30 (1H, br) 7. 31~7. 60 (4H, m) 8. 45~9. 10 (1H, br)

25 実施例 2

mmol:収率59%)を得る。

20

 $N\alpha-(tert-ブチルオキシカルボニル(1-ナフチルメチル)アミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジドの合成$

 $N\alpha$ - (tert-ブチルオキシカルボニルアミノスルホニル) - 3 - シアノ

フェニルアラニンー4ーアセチルピペラジド200mg (0.42mmol:1.0 eq)をジクロロメタン2mlに溶解し、撹はんしながら1ーナフタレンメタノール66mg (0.42mmol:1.0 eq)及びトリフェニルフォスフィン110mg (0.42mmol:1.0 eq)を加える。ジクロロメタン1mlに溶解したジエチルアゾジカルボキシレート73mg (0.42mmol:1.0 eq)をゆっくり滴下し、終了後、室温にて、64時間撹はんする。減圧下で溶媒を除去し、残留物をカラムクロマトグラフィー(和光C-200:移動相ジクロロメタン→ジクロロメタン中酢酸エチル20%→50%→75%)して、Nαー(tertーブチルオキシカルボニル(1ーナフチルメチル)アミノスルホニル)-3-シアノフェニルアラニンー4ーアセチルピペラジド170mg (0.274mmol:収率65%)を得る。

NMR (CDC l_3) δ 値: 1. 40 (9H, s) 2. 04 (3H, d J = 7. 91Hz) 2. 50~3. 57 (10H, m) 4. 39 (1H, m) 5. 35 (2H, m) 6. 21 (1H, d J=7. 59Hz) 7. 27 ~8. 15 (11H, m)

実施例3

5

10

15

<u>Nα-(1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラ</u> ニンー4-アセチルピペラジドの合成

Nα-(tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノス
ルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド170mg
(0.274mmol:1.0eq)をジクロロメタン1ml及び飽和塩化水素
-エタノール溶液5mlに溶解し、20時間放置する。減圧下で溶媒を除去し、
得られたNα-(1-ナフチルメチルアミノスルホニル) -3-エトキシイミノ
カルボニルフェニルアラニン-4-アセチルピペラジド (Fab-Ms:566

(M+H))を飽和アンモニアーエタノール溶液5mlに溶解し、1週間放置する。減圧下で溶媒を除去し、残留物をカラムクロマトグラフィー(富士シリシア
DM1020:移動相酢酸エチルーメタノール20%→50%)して、Nα(1-ナフチルメチルアミノスルホニル) -3-アミジノフェニルアラニン-4

ーアセチルピペランド120mg (0.224mmol:収率82%) を得る。 Fab-Ms:537 (M+H)+

NMR (CDCl₃) δ値; 1. 95 (3H. brs) 2. 63~3. 60 (10H. m) 3. 83~4. 02 (1H. br) 4. 15~4. 32 (1H. br) 4. 35~4. 57 (1H. br) 6. 60~8. 10 (13H. m)

実施例4

5

$N\alpha - (ジメチルアミノスルホニル) - 3 - シアノフェニルアラニン - 4 - アセチルピペラジドの合成$

- 10 3 ーシアノフェニルアラニンー4ーアセチルピペラジド塩酸塩200mg(0.59mmol:1.0eq)をジクロロメタン20mlに溶解し、氷冷下ゆっくりジメチルスルファモイルクロライド84.7mg(0.59mmol:1.0eq)を滴下し、室温としながら16時間撹はんする。水を加え、ジクロロメタンにて抽出する。飽和炭酸水素ナトリウム水溶液、希塩酸、水にて順次洗浄し、
- 15 無水硫酸ナトリウムにて乾燥し、減圧下で溶媒を除去するとN α (ジメチルアミノスルホニル) 3-シアノフェニルアラニン- 4-アセチルピペラジド80 mg (0.2mmol:収率33%)を得る。

NMR (CDC1₃) δ 値; 2. 09 (3H, brd, J=5. 28Hz) 2. 66 (6H, brd, J=4. 94Hz) 3. 10~3. 81 (10H,

m) 4. 43 (1H, dd J=16. 83 7. 26Hz) 5. 65 (1 H, d, J=9. 57Hz) 7. 28 \sim 7. 68 (4H, m)

実施例5

<u>Nα-(ジメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-</u> アセチルピペラジドの合成

実施例3と同様にして、 $N\alpha-(i)$ メチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジド38mg (0.09mmol: 収率46%) を得る。

NMR (DMSO) δ 值: 1. 97 (3H, s) 2. 50 (6H, t. J=

1. 82 Hz) 2. $70 \sim 3$. 70 (10 H, m) 4. 40 (1 H, br)6. $70 \sim 7$. 25 (1 H, br) 7. $32 \sim 7$. 34 (2 H, d, J = 4. 62 Hz) 7. $60 \sim 7$. 68 (2 H, m)

<u>実施例 6</u>

 $N\alpha-(tert-ブチルオキシカルボニルアミノスルホニル)-4-シアノ$ フェニルアラニン-4-アセチルピペラジドの合成

実施例1と同様にして、 $N\alpha-$ (tert-ブチルオキシカルボニルアミノスルホニル)-4-シアノフェニルアラニン-4-アセチルピペラジド510mg(1.06mmol:収率71%)を得る。

NMR (CDCl₃) δ 值; 1. 46 (9H, s) 2. 09 (3H, d J=3. 96Hz) 3. 05 (2H, d, J=7. 26Hz) 3. 00~3. 20 (1H, br) 3. 25~3. 78 (7H, br) 4. 90 (1H, br) 6. 36 (1H, dd, J=18. 8 8. 58Hz) 7. 36 (2H, d, J=8. 09Hz) 7. 60 (2H, d, J=8. 09Hz) 8. 65 ~9. 25 (1H, br)

実施例7

Nα-(ベンジル(tert-ブチルオキシカルボニル) アミノスルホニル)
-4-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例 2 と同様にして $N\alpha$ - (ベンジル (tertーブチルオキシカルボニル)

7 アミノスルホニル) -4-シアノフェニルアラニン-4-アセチルピペラジド8 0 mg (0.14 mmol : 収率 <math>4.0%) を得る。

NMR (CDC1₃) δ値; 1. 44 (9H, s) 2. 07 (3H, brs) 2. 70~3. 63 (10H, m) 4. 28~4. 60 (1H, br) 4. 80 (2H, brs) 6. 23 (1H, brs) 7. 16~7. 70 (9H,

m

実施例8

Nα-(ベンジル(tert-ブチルオキシカルボニル)アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジドの合成 実施例2と同様にして $N\alpha$ -(ベンジル(tert-ブチルオキシカルボニル)アミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジド0. 8g(1. 4mmo1: 収率50%)を得る。

NMR (CDC1₃) δ値: 1.46 (9H, s) 2.08 (3H, s)

5 2. 55~3. 60 (10H, m) 4. 19~4. 42 (1H, m) 4. 7 5~4. 89 (2H, m) 6. 11 (1H, d, J=7. 26Hz) 7. 2 5~7. 71 (9H, m)

実施例9

 $N\alpha-$ (ペンジルアミノスルホニル) -4-アミジノフェニルアラニン-4-

10 アセチルピペラジドの合成

実施例3と同様にしてN α - (ベンジルアミノスルホニル) -4-アミジノフェニルアラニン-4-アセチルピペラジド52mg (0.107mmo1: 収率87%) を得る。

NMR (DMSO) δ 値: 1. 97 (3H, s) 2. 75~3. 85 (12 H, m) 4. 38 (1H, m) 7. 19~7. 90 (12H, m)

<u>実施例10</u>

15

25

 $N\alpha - (ベンジルアミノスルホニル) - 3 - アミジノフェニルアラニンー <math>4 - 7$ アセチルピペラジドの合成

実施例3と同様にしてN α -(ベンジルアミノスルホニル) -3-アミジノフェ 20 ニルアラニン-4-アセチルピペラジド600mg(1.23mmo1: 収率87%) を得る。

NMR (DMSO) δ 值; 1. 96 (3H, s) 2. 75~3. 60 (10 H, m) 3. 57 (1H, d. J=14. 84Hz) 3. 78 (1H, d. J=14. 85Hz) 4. 41 (1H, m) 6. 30~7. 43 (7H, m) 7. 55~7. 80 (2H, m)

実施例11

Nα-(tert-ブチルオキシカルボニル (2-ナフチルメチル) アミノス ルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例 2 と同味にして、 $N\alpha-(tert-ブチルオキシカルボニル(2-ナフチルメチル) アミノスルホニル) <math>-3-シアノフェニルアラニン-4-アセチルピペラジド170mg(0.27mmol:収率65%)を得る。$

NMR (CDC1₃) δ 値; 1. 47 (9H. s) 2. 24~2. 62 (2 5 H. m) 2. 73~3. 55 (8H. m) 3. 98~4. 24 (1H. m) 4. 99 (2H. d. J=2. 93Hz) 6. 28 (1H. brs) 7. 10~8. 00 (11H. m)

実施例12

 $N\alpha - (2-ナフチルメチルアミノスルホニル) - 3-アミジノフェニルアラ$ ニンー4-アセチルピペラジドの合成

実施例 3 と同様にして、 $N\alpha-(2-t)$ チルアミノスルホニル) -3 -アミジノフェニルアラニン-4- アセチルピペラジド116 mg (0.21 m mol: 収率78%) を得る。

Fab-Ms:537(M+H)+

15 NMR (DMSO) δ値; 1.96 (3H, s) 2.76~4.00 (10 H, m) 4.47 (1H, m) 7.32~7.92 (11H, m) 実施例13

 $N\alpha-(tert-プチルオキシカルボニル(2-シクロヘキシルエチル)アミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジドの合$

20 成

10

実施例 2 と同様にして、 $N\alpha-(tert-ブチルオキシカルボニル(2-シクロヘキシルエチル) アミノスルホニル) <math>-3-シアノフェニルアラニン-4-アセチルピペラジド200mg(0.34mmol:収率80%) を得る。$

NMR (CDC1₃) δ値; 0.80~1.78 (13H, m) 1.50

25 (9H, s) 2. 10 (3H, br) 2. 94~3. 70 (12H, m) 4. 68~4. 88 (1H, br) 6. 14~6. 30 (1H, br) 7. 40~7. 76 (4H, m)

実施例14

Nα-(2-シクロヘキシルエチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

実施例3と同様にして、 $N\alpha-(2-\nu)$ クロヘキシルエチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジド100mg(0.197mmol: 収率<math>58%)を得る。

Fab-Ms:507(M+H)+

NMR (DMSO) δ 値; 0. 60~0. 76 (13H, m) 1. 99 (3 H, s) 2. 28~3. 65 (12H, m) 4. 36~4. 50 (1H, m) 7. 24~7. 76 (4H, m)

10 実施例15

5

 $N\alpha-(tert-ブチルオキシカルボニル (3-フェニル-n-プロピル)$ アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジドの 合成

実施例2と同様にして、Nα-(tert-ブチルオキシカルボニル (3-フェニルーロープロピル) アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド250mg (0. 42mmol:収率99%) を得る。NMR (CDCl₃) δ値; 1. 47 (9H, s) 1. 80~2. 01 (2H, m) 2. 07 (2H, brd, J=4. 87Hz) 2. 54~2. 70 (2H, m) 2. 84~3. 67 (12H, m) 4. 46~4. 82 (1H, m) 5. 08 C 10 (1H, m) 7. 10 To 10 To

20 m) 5. 98~6. 10 (1H, m) 7. 10~7. 76 (9H, m) 実施例16

<u>Nα-(3-フェニル-n-プロピルアミノスルホニル)-3-アミジノフェ</u> ニルアラニン-4-アセチルピペラジドの合成

実施例3と同様にして、 $N\alpha-(3-7)$ ェニルーn-7ロピルアミノスルホニ 25 ル) -3-7ミジノフェニルアラニンー4-7セチルピペラジド130 mg (0.25 mm o 1: 収率60%)を得る。

Fab-Ms:515(M+H)+

NMR (DMSO) δ値: 1.53~1.70 (2H. m) 1.98 (3H.

s) 2. 30 2. 63 (2H. m) 2. $75\sim3$. 55 (12H. m) 4. 38 (1H. dd. J=7. 26 7. 26Hz) 7. $10\sim7$. 72 (9H. m)

実施例17

Nα-(tert-ブチルオキシカルボニル (2-フェニルベンジル) アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジドの合成実施例2と同様にして、Nα-(tert-ブチルオキシカルボニル (2-フェニルペンジル) アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド250mg (0.38mmol:収率92%) を得る。

NMR (CDC1₃) δ 値; 1. 36 (9H, s) 2. 09 (3H, brd, J=5. 61Hz) 2. 74~3. 57 (10H, m) 4. 60~4. 78 (3H, m) 6. 14 (1H, brd, J=8. 58Hz) 7. 18~7. 75 (13H, m)

実施例18

実施例 3 と同様にして、 $N\alpha-(2-7)$ に $\alpha-(2-7)$ に

20 Fab-Ms: 563 (M+H) +
NMR (DMSO) δ値; 1. 98 (3H, s) 2. 56~3. 88 (12
H, m) 4. 30~4. 45 (1H, m) 7. 10~7. 68 (13H, m)

実施例19

実施例 2 と同様にして、 $N\alpha-$ (tert-ブチルオキシカルボニル(3-フェ

ニルオキシベンシル) アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド230 mg (0.34 mm ol: 収率82%) を得る。 Fab-Ms:662 (M+H) +

NMR (CDC1₃) δ 値; 1. 42 (9H, s) 2. 07 (3H, brd, J=4. 39Hz) 2. 70~3. 60 (10H, m) 4. 38~4. 55 (1H, m) 4. 77 (2H, s) 6. 25 (1H, brd, J=7. 31Hz) 6. 80~7. 75 (13H, m)

実施例20

.5

10

<u>Nα-(3-フェニルオキシベンジルアミノスルホニル)-3-アミジノフェ</u> ニルアラニン-4-アセチルピペラジドの合成

実施例3と同様にして、 $N\alpha-(3-7)$ ェニルオキシベンジルアミノスルホニル) -3-7ミジノフェニルアラニン-4-7セチルピペラジド138mg (0. 24mmo1: 収268%) を得る。

Fab-Ms:579(M+H)+

NMR (DMSO) δ値; 1. 96 (3 H, s) 2. 74~3. 80 (12 H, m) 4. 30~4. 50 (1 H, m) 6. 80~7. 70 (15 H, m)

<u>実施例21</u>

NMR (CDCl₃) δ 值; 1. 47 (9H, s) 2. 04 (3H, d, J = 3. 90Hz) 2. 60~3. 78 (10H, m) 4. 10~4. 55 (1H, m) 4. 70~5. 04 (2H, m) 6. 25~6. 37 (1H, m) 7. 20~7. 88 (13H, m)

実施例22

Nα-(4-) ニールベンジルアミノスルホニル) -3-アミジノフェニルア ラニン-4-アセチルピペラジドの合成

実施例3と同様にして、 $N\alpha-(4-7)$ エールベンジルアミノスルホニル) -3-7ミジノフェニルアラニン-4-7 セチルピペラジド90 mg (0.16 m o 1: 収率3.8%)を得る。

Fab-Ms:563(M+H)+

NMR (DMSO) δ 値; 1. 96 (3H, s) 2. 64~3. 90 (12 H, m) 4. 34~4. 50 (1H, m) 7. 12~7. 80 (14H, m)

10 実施例23

5.

実施例2と同様にして、N α -(tert-ブチルオキシカルボニル(1-ナフチルメチル)アミノスルホニル)-3-シアノフェニルアラニンエチルエステ

15 ル245mg(0.46mmol:収率91%)を得る。

NMR (CDC1₃) δ 值; 1. 20 (3H, t, J=7. 10Hz) 1. 46 (9H, s) 2. 80~3. 02 (2H, m) 3. 75~3. 90 (1 H, m) 3. 92~4. 18 (2H, m) 5. 24 (1H, d, J=16. 49Hz) 5. 45 (1H, d, J=16. 50Hz) 5. 95 (1H, d,

20 J = 6.6 Hz) 7. 18~8. 18 (11H, m)

<u>実施例24</u>

 $N\alpha-(tert-ブチルオキシカルボニル(2-フェネチルベンジル)アミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジドの合成$

実施例2と同様にして、 $N\alpha-(tert-プチルオキシカルボニル(2-フェ25 ネチルベンジル)アミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジド340mg(0.50mmol:収率100%)を得る。$

NMR (CDC1₃) δ値; 1. 39 (9H, s) 2. 06 (3H, m) 2. 78~3. 67 (14H, m) 4. 56~4. 90 (3H, m) 6. 0

8 (1H, d, J-8. 28) 7. 05~7. 77 (13H. m)

実施例25

Nα-(2-フェネチルベンジルアミノスルホニル) -3-アミジノフェニル アラニン-4-アセチルピペラジドの合成

実施例3と同様にして、 $N\alpha-(2-7)$ (2-7) (2-7) (2-7) (2-7) (3-7) (3-7) (3-7) (3-7) (4-7)

Fab-Ms:591(M+H)+

NMR (DMSO) δ値; 1. 96 (3H, brs) 2. 70~4. 00

10 (16H, m) 4. 40~4. 55 (1H, br) 7. 04~7. 88 (1 4H, m)

<u>実施例26</u>

 $N\alpha-(tert-ブチルオキシカルボニル(2-フェニルベンジル)アミノスルホニル)-3-シアノフェニルアラニンエチルエステルの合成$

15 実施例 2 と同様にして、 $N\alpha$ - (tert-ブチルオキシカルボニル (2-フェニルベンジル) アミノスルホニル) - <math>3 - シアノフェニルアラニンエチルエステル 130 mg (0.22 mm o 1: 収率 44 %) を得る。

NMR (CDCl₃) δ 值; 1. 18 (3H, t, J=7. 31Hz) 1. 38 (9H, s) 3. 06 (2H, d, J=5. 85Hz) 4. 02~4.

20 13 (1H, m) 4. 12 (2H, q, J=6.82Hz) 4. 77 (2H, dd, J=26.8 17.06Hz) 5. 95 (1H, d, J=6.82Hz) 7. 16~7.60 (13H, m)

<u>実施例27</u>

 $N\alpha - (tert-ブチルオキシカルボニル (3-フェニルオキシベンジル)$

25. アミノスルホニル) - 3 - シアノフェニルアラニンエチルエステルの合成 実施例2と同様にして、Nα-(tert-ブチルオキシカルボニル(3-フェニルオキシベンジル) アミノスルホニル) - 3 - シアノフェニルアラニンエチルエステル270mg(0.46mmol:収率93%) を得る。 NMR (CDC $_3$) δ 值: 1. 20 (3H, t, J=7. 07Hz) 1. 44 (9H, s) 2. 90~3. 14 (2H, m) 3. 88~4. 00 (1 H, m) 4. 04~4. 10 (2H, q, J=7. 31Hz) 4. 77 (2 H, dd, J=43. 4 15. 6Hz) 5. 97 (1H, d, J=6. 35 Hz) 6. 80~7. 60 (13H, m)

実施例28

5

$N\alpha-(tert-ブチルオキシカルボニル(2-フェネチルベンジル)アミノスルホニル)-3-シアノフェニルアラニンエチルエステルの合成$

実施例 2 と同様にして、 $N\alpha-(tert-ブチルオキシカルボニル(2-フェ ネチルベンジル) アミノスルホニル) <math>-3-シアノフェニルアラニンエチルエス テル 180 mg(0.30 mmol:収率 61%) を得る。$

NMR (CDC1₃) δ 值; 1. 16 (3H, t, J=7. 07Hz) 1. 36 (9H, s) 2. 72~3. 05 (6H, m) 3. 90~4. 00 (1 H, m) 4. 09 (2H, q, J=7. 31Hz) 4. 73 (2H, d, J

= 3.41 Hz) 5.87 (1H, d, J=6.82 Hz) 7.00~7. 53 (13H, m)

実施例29

$N\alpha-(tert-ブチルオキシカルボニル(4-フェニルベンジル)アミノ$ スルホニル) -3-シアノフェニルアラニンエチルエステルの合成

実施例 2 と同様にして、 $N\alpha$ - (tert-ブチルオキシカルボニル <math>(4-フェニルベンジル) アミノスルホニル) - 3-シアノフェニルアラニンエチルエステル230mg <math>(0.40mmol: 収率81%) を得る。

NMR (CDC1₃) δ 值; 1. 15 (3H, t, J=7. 09Hz) 1. 51 (9H, s) 2. 90~3. 10 (2H, m) 3. 88 (1H, dd,

J=5. 94 5. 94Hz) 4. 00~4. 09 (2H, m) 4. 85 (2H, dd, J=64. 33 15. 51Hz) 5. 92 (1H, d, J=6. 6Hz) 7. 28~7. 70 (13H, m)

実施例30

WO 97/19919 PCT/JP96/03520

Nα-(tert-ブチルオキシカルボニル (3-フェニル-2-(ピロリジン-1-イルカルボニル) -n-プロピル) アミノスルホニル) -3-シアノフェニルアラニンエチルエステルの合成

フェニルアラニンエチルエステル200mg(0.5mmol:1.0eq)を 5 ジクロロメタン2m1に溶解し、撹はんしながら3-フェニルー2ー(ピロリジ ンー1ーイルカルボニル)-nープロピルアルコール117mg (0.5mmo1:1.0eq) 及びトリフェニルフォスフィン92mg (0.5mmol:1. 0 e q) を加える。ジクロロメタン1 m l に溶解したジエチルアゾジカルボキシ レート87mg (0.5mmol:1.0eq)をゆっくり滴下し、終了後、室 10 温にて、5日間撹はんする。<math>60 に加熱し5時間撹はんし、さらに溶媒をクロロホルムに代え、5時間還流撹はんする。減圧下で溶媒を除去し、残留物をカ ラムクロマトグラフィー(和光C-200:移動相 酢酸エチル:n-ヘキサン 1:1→2:1)して、 $N\alpha-$ (tert-ブチルオキシカルボニル(3-フェ ニルー2ー (ピロリジンー1ーイルカルボニル) ーnープロピル) アミノスルホ 15 ニル) -3-シアノフェニルアラニンエチルエステル45mg (0.073mm 01:収率15%)を得る。

実施例31

20

 $N\alpha - (tert-ブチルオキシカルボニル (3, 3-ジフェニル-<math>n-$ プロピル) アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジドの合成

実施例 2 と同様にして、 $N\alpha$ - (tert-ブチルオキシカルボニル (3.3 - ジフェニル- n - プロピル) アミノスルホニル) - <math>3 - シアノフェニルアラニ

ンー4ーアセチルピペラジド68mg (0. 10mmol:収率24%)を得る。

Fab-Ms:696(M+Na)+

NMR (CDCl₃) δ値; 1. 51 (9H, s) 2. 00~2. 13 (2 5 H, m) 2. 28~2. 47 (2H, m) 2. 80~3. 62 (12H, m) 3. 88~4. 00 (1H, m) 4. 64~4. 80 (1H, m) 6. 1 5~6. 27 (1H, m) 7. 14~7. 80 (14H, m)

<u>実施例32</u>

 $N\alpha - (tert-ブチルオキシカルボニル (3, 3-ジフェニル-n-プロピル) アミノスルホニル) - 3-シアノフェニルアラニンエチルエステルの合成 実施例 2 と同様にして、<math>N\alpha - (tert-ブチルオキシカルボニル (3, 3-ジフェニル-n-プロピル) アミノスルホニル) - 3-シアノフェニルアラニンエチルエステル 2 1 9 mg (0, 37 mm o l: 収率 7 4 %) を得る。 Fab-Ms: 614 (M+Na) +$

NMR (CDC1₃) δ 値: 1. 15 (3H, t, J=7. 09Hz) 1. 46 (9H, s) 2. 28~2. 41 (2H, m) 3. 06~3. 20 (2H, m) 3. 52~3. 65 (2H, m) 3. 93 (1H, t, J=7. 76Hz) 4. 01~4. 17 (2H, m) 4. 24 (1H, dd, J=13. 26. 27) 5. 92 (1H, d, J=7. 26Hz) 7. 15~7. 5

6 (14H, m)

実施例33

 $N\alpha - (tert-ブチルオキシカルボニル (2, 2-ジフェニルエチル) アミノスルホニル) <math>-3-シアノフェニルアラニン-4-アセチルピペラジドの合成$

 $N\alpha-(tert-ブチルオキシカルボニルアミノスルホニル)-3-シアノフェニルアラニン-4-アセチルピペラジド200mg(0.43mol:1.0eq)をクロロホルム4mlに溶解し、撹はんしながら2.2-ジフェニルエタノール256mg(1.29mmol:3.0eq)及びトリフェニルフォス$

WO 97/19919 PCT/JP96/03520

フィン238mg (1.29mmol:3.0eq)を加える。クロロホルム1 mlに溶解したジエチルアゾジカルボキシレート225mg (1.29mmol:3.0eq)をゆっくり滴下し、終了後、5時間還流撹はんする。減圧下で溶媒を除去し、残留物をカラムクロマトグラフィー(和光C-200:8動相 ジクロルメタン:酢酸エチル $1:1\rightarrow 2:3\rightarrow 1:2$)して、 $N\alpha-(tert-ブチルオキシカルボニル(2.2-ジフェニルエチル)アミノスルホニル)ー3ーシアノフェニルアラニンー4ーアセチルピペラジド255mg (0.38mmol:収率90%)を得る。$

NMR (CDCl₃) δ 値; 1. 56 (9H, s) 2. 03 (3H, d, J = 7. 92Hz) 2. 55~3. 81 (14H, m) 5. 10~5. 28 (1H, br) 7. 32~7. 70 (14H, m)

実施例34

15

 $N\alpha-(tert-ブチルオキシカルボニル (2-メトキシメトキシベンジル)$ アミノスルホニル) -3-カルボチオアミドフェニルアラニン-4-アセチルピペラジドの合成

 $N\alpha-(tert-ブチルオキシカルボニル(2-メトキシメトキシベンジル)$ アミノスルホニル) -3-シアノフェニルアラニン-4-アセチルピペラジド390mg(0、62mmo1)のピリジン3m1とトリエチルアミン6m1の混合溶液に、室温下流化水素ガスを30分間パブリングしたのち3日間放置する。

反応溶液に水40mlおよび酢酸エチル40mlを加え、2NHClを加えて水層をpH4にした後に、分液する。有機層は1NHClついで水で洗浄した後に無水硫酸ナトリウム上乾燥後、減圧留去し、得られた残渣をカラムクロマトグラフィー(富士シリシア化学NH-DM-1020:移動相酢酸エチル中メタノール9%)して、Nα-(tert-ブチルオキシカルボニル(2-メトキシメトキシベンジル)アミノスルホニル)-3-カルボチオアミドフェニルアラニンー4-アセチルピペラジド301mg(0、45mmol:収率73%)を得る。NMR(CDC13) δ値:1、40(9H、s) 2、08(3H、s)2、99~3、80(10H、m) 3、48(3H、s) 4、72~4、9

WO 97/19919 PCT/JP96/03520

 $5 (3 \text{ H, m}) 5.18 (1 \text{ H, d} J=7 \text{ Hz}) 5.21 (1 \text{ H, d} J=7 \text{ Hz}) 6.16 (1 \text{ H, brd} J=8 \text{ Hz}) 6.96 \sim 7.70 (10 \text{ H, m})$

実施例35

 $N\alpha-(tert-プチルオキシカルボニル(2-メトキシメトキシベンジル)$ アミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジド の合成

Nαー(tertーブチルオキシカルボニル(2ーメトキシメトキシベンジル)アミノスルホニル)-3ーカルボチオアミドフェニルアラニン-4ーアセチルピペラジド165mg(0、25mmol)のアセトン2mlけん濁液に、ヨウ化メチル353mgを加えて、50分加熱還流する。反応液を減圧留去し、得られた残渣にメタノール2mlと酢酸アンモニウム29mgを加えて4時間加熱還流したのちに反応液を減圧留去し、得られた残渣をカラムクロマトグラフィー(富士シリシア化学NH-DM-1020:移動相酢酸エチル中メタノール9%のち塩化メチレン中メタノール9%)して、Nαーtertーブチルオキシカルボニル(2ーメトキシメトキシベンジル)アミノスルホニル)-3ーアミジノフェニルアラニン-4ーアセチルピペラジド101mg(0、16mmol:収率63%)を得る。

NMR (DMSO) δ値: 1、29 (9H、s) 1、97 (3H、s) 2、
20 85~3、60 (10H、m) 3、36 (3H、s) 4、58 (1H、m)
4、71 (2H、s) 5、20 (2H、s) 6、93~8、31 (12H、m)

実施例36

 $N\alpha - (2-ヒドロキシベンジル) アミノスルホニルー <math>3-アミジノフェニルア$ 3-2-4-7-2+ 3-2-7-2+ 3-2-7

Nαー(tertーブチルオキシカルボニル(2ーメトキシメトキシベンジル) アミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジド のメタノール1ml溶液に4NHCl酢酸エチル溶液1mlを加えて、17時間 5

室温にて撹拌する。反応液を減圧留去し、N α -(2-ヒドロキシベンジル)アミノスルホニルー3-アミジノフェニルアラニンー4-アセチルピペラジド塩酸塩を得る。NMR(DMSO) δ 値;1、97(3H、s) 2、80~3、80(12H、m) 4、50~4、60(1H、m) 6、71~9、48(15H、m)。このうちの17mg(0、032mmol)を残し、他の部分をカラムクロマトグラフィー(富士シリンア化学NH-DM-1020:移動相塩化メチレン中メタノール20%)して、N α -(2-ヒドロキシベンジル)アミノスルホニルー3-アミジノフェニルアラニンー4-アセチルピペラジド53mg(0、106mmol:収率あわせて90%)を得る。

10 NMR (DMSO) δ値; 1、94 (3H、s) 2、50~3、60 (10 H、m) 3、84 (2H、s) 4、45~4、47 (1H、m) 5、00 ~6、60 (6H、br) 6、69~7、72 (8H、m) 実施例 3 7

 $N\alpha - (tert-ブチルオキシカルボニル <math>(1-ナフチルメチル)$ アミノスル ホニル) -3-シアノフェニルアラニン 4-メタンスルホニルピペラジドの合成

 $N\alpha-(tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル) -3-シアノフェニルアラニンエチルエステル 6.46g(12.02mmol)をエタノール40mlに溶解し、2N-NaOH40mlを加える。室温にて16時間撹拌する。減圧下で溶媒を除去し、クエン酸を加え<math>pH=3\sim4$ まで酸性化し固体を析出する。上層液を除去し、酢酸エチル:水:メタノール=30:10:1の混合液を加えた後、酢酸エチル層のみを分け、無水酢酸ナトリウムにて乾燥する。減圧下で溶媒を除去し、 $N\alpha-(tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル) -3-シアノフェニルアラニン 5.74g(94%)を得る。$

1N-NMR (CDCl₃) δ 值: 1. 34 (9H. s) 3. 01~3. 1 6 (2H. m) 4. 01 (1H. t, J=5. 4Hz) 5. 34 (2H. s) 7. 34~7. 94 (11H. m)

5

10

得られた $N\alpha$ (tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスルホニル) -3-シアノフェニルアラニン 1g (1.962mmol) をジクロロメタン50mlに溶解し、氷冷下、ジメチルアミノピリジン480mg (3.924mmol)、1-エチルー3ー (3-ジメチルアミノプロピル) ーカルボジイミド塩酸塩753mg (3.924mmol)、1-メタンスルホニルピペラジン塩酸塩591mg (2.945mmol)を加え、3時間撹拌する。水を加えてジクロロメタンにて抽出し、飽和炭酸水素ナトリウム水溶液および希塩酸にて洗浄し、つづいて水洗浄を行う。無水酢酸ナトリウムにて乾燥し、減圧下で溶媒を除去する。残留物をカラムクロマトグラフィー(移動相 酢酸エチル:n-ヘキサン=1:1)にて精製すると、 $N\alpha-$ (tert-ブチルオキシカルボニル(1-ナフチルメチル)アミノスルホニル) -3-シアノフェニルアラニン 4-メタンスルホニルピペラジド 300mg (23%) を得る。

以下同様にして得ることができる。

	Steven		
実施仍	. Structure	MS	NMR (δ value)
37	O ₂ CH ₃		CDCL ₃ : 1.34(9H.s) 2.17-2.23(1H.m) 2.60(3H.s) 2.64-2.67(2H.m) 2.77-2.97(5H.m) 3.45-3.48(2H.m) 4.32-4.34(1H.m) 5.28(2H.m) 6.08(1H.d,J=7.80Hz) 7.19-7.50(8H.m) 7.76-8.02(3H.m)
38	Oz CN Oz CN Box H		CDCL ₃ : 1.40(9H,s) 2.76-3.52(10H,m) 4.50-4.53(1H,m) 5.36(2H,s) 7.38-8.07(12H,m)
39	ON PH PHOCE		CDCL ₃ : 0.81-1.01(4H,m) 1.42(9H,s) 2.49-2.73(2H,m) 2.87-2.93(3H,m) 3.20-3.58(6H,m) 4.32(1H,bs) 5.37(2H,q,J=13.1Hz) 6.03(1H,d,J=7.7Hz) 7.36-8.14(11H,m)
40	O ₂ CN O ₂ CN Boc H		CDCL ₃ : 1.42(9H,s) 2.45-3.18(8H,m) 2.83(6H,s) 3.30-3.56(2H,m) 4.29-4.31(1H,m) 5.27-5.43(2H,m) 6.06(1H,d,J=7.4Hz) 7.30-8.14(11H,m)

実施例	Structure	MS	NMR (δ value)
41	O ₂ CN B _{oc} H	·	CDCL ₃ : 1.41(9H,s) 2.65-3.51(10H,m) 3.73(3H,s) 4.32(1H,q,J=13.3) 5.33-5.37(2H,m) 6.02(1H,d,J=7.5Hz) 7.30-8.10(11H,m)
42	CN O ₂ O ₃ O ₄ COOCH ₃	·	CDCL ₃ : 1.42(9H,s) 1.78-1.86(1H,m) 2.15-2.97(7H,m) 3.14(2H,s) 3.40-3.65(2H,m) 3.74(3H,s) 4.28-4.34(1H,m) 5.32-5.37(2H,m) 6.11(1H,d,J=7.4Hz) 7.32-8.18(11H,m)
43	O ₂ CN Boc H		CDCL ₃ : 1.42(9H,s) 2.46-2.75(2H,m) 2.85-2.92(3H,m) 3.22-3.58(5H,m) 4.27-4.31(1H,m) 5.27-5.44(2H,m) 6.07(1H,d,J=7.5Hz) 7.27-8.15(11H,m)
44	O ₂ CN O ₂ CN Boc H		CDCL ₃ : 1.25-1.53(6H,m) 1.43(9H,s) 2.68-2.72(2H,m) 2.80-2.82(1H,m) 2.89-2.92(1H,m) 3.17-3:25(1H,m) 3.50-3.57(1H,m) 4.33-4.35(1H,m) 5.26-5.38(2H,m) 6.21(1H,d,J=7.3Hz) 7.30-8.11(11H,m)

実施例	. Structure	MS	NMR (δ value)
45	O ₂ Poc H		CDCL ₃ : 1.30(4.5H,s) 1.40(4.5H,s) 2.29-4.72(9H,m) 5.20-5.34(2H,m) 6.17(0.5H,d,J=7.4Hz) 6.26(0.5H,d,J=7.4Hz) 7.17-7.88(15H,m)
46	O ₂ CN O ₃ CH ₃		CDCL ₃ : 1.44(9H,S) 1.96-2.55(4H,m) 2.27(3H,d,J=10.2Hz) 2.83-3.03(4H,m) 3.45-3.71(4H,m) 4.24-4.36(1H,m) 5.31-5.36(2H,m) 7.36-8.10(11H,m)
47	O ₂ CN O ₂ CN O ₃ CN Boc H		CDCl ₃ : 1.41(9H,s), 1.48(9H,s) 2.65 - 2.70(3H,m) 2.82-2.92(2H,m) 3.01-3.18(2H,m) 3.32-3.44(3H,m) 4.32(1H,q,J=6.9Hz) 5.35(2H,q,J=13.0Hz) 6.09(1H,d,J=7.5Hz) 7.30-8.10(11H,m)
48	O ₂ COOEi		CDCL ₃ : 0.90(3H,LJ=6.63Hz) 1.43(9H,s) 2.61-2.70(3H,m) 2.83-2.96(2H,m) 3.13-3.26(2H,m) 3.34-3.51(3H,m) 4.14-4.22(2H,m) 4.31-4.38(1H,m) 5.32-5.39(2H,m) 6.16(1H,d,J=7.38Hz) 7.29-7.39(3H,m) 7.50-7.61(5H,m) 7.85-8.11(3H,m)

	St.		
実施例	Structure	MS	NMR (δ value)
49	CN ON PHONE		CD ₁ OD: 1,4219H.s) 2.80-2.98(5H.m) 3.30-3.33(2H.m) 3.49-3.56(2H.m) 3.61-3.70(1H.m) 4.41-4.46(1H.m) 5.29-5.40(2H.m) 6.26-6.28(1H.m) 6.58(1H.d.)=8.54Hz) 6.72-6.74(1H.m) 7.35-7.38(3H.m) 7.31-7.58(5H.m) 7.84-7.91(2H.m) 8.09-8.24(2H.m)
50	O ₂ CN O ₂ CH ₃		CDCL ₃ : 1.44(9H.s) 2.07-2.13(3H.m) 2.25(3H.s) 2.31-2.36(1H.m) 2.64-2.70(1H.m) 2.82-2.99(3H.m) 3.37-3.61(2H.m) 4.36-4.39(1H.m) 5.29-5.45(2H.m) 6.13-6.16(1H.m) 7.32-7.41(3H.m) 7.52-7.59(5H.m) 7.84-7.92(2H.m) 8.09-8.13(1H.m)
51	CN O2 DO2 BOCH		CDCL ₁ : 1.34(9H _{.5}) 2.28-2.31(1H,m) 2.67-2.97(7H,m) 3.54-3.58(2H,m) 4.30-4.33(1H,m) 5.20-5.37(2H,m) 6.08(1H _{.d.J} =7.48H _{.z.}) 6.74-6.86(3H,m) 7.19-7.27(5H,m) 7.43-7.52(5H,m) 7.76-7.84(2H,m) 7.99-8.04(1H,m)
52	SO ₂ CF ₃		CDCL ₃ : 1.32(9H,s) 2.63-2.87(6H,m) 2.98-3.22(4H,m) 4.35-4.38(1H,m) 5.22-5.36(2H,m) 6.02(1H,d,J=7.89Hz) 7.20-7.34(3H,m) 7.45-7.51(5H,m) 7.76-8.00(3H,m)

実施例	Structure		
53	O ₂ Soc H O ₂ S	MS	NMR (δ value) CDCL ₁ : 1.329H,s) 1.82-1.86(1H,m) 2.54-2.57(1H,m) 2.69-1.73(2H,m) 2.82-2.87(2H,m) 2.98-3.01(2H,m) 3.32-3.36(1H,m) 3.62-3.65(1H,m) 4.36-4.40(1H,m) 5.26-5.39(2H,m) 6.12(1H,brs) 7.19-7.21(4H,m) 7.51-7.70(9H,m) 7.84-8.05(3H,m)
54	ON PHONE PHO		CDCL ₃ : 1.44(9H,s) 2.41-2.45(1H,m) 2.73-2.78(1H,m) 2.83(6H,m) 2.87-2.99(5H,m) 3.11-3.18(2H,m) 3.51-3.55(2H,m) 4.38-4.41(1H,m) 5.30-5.45(2H,m) 6.05(1H,d,J=7.62Hz) 7.30-7.42(3H,m) 7.53-7.61(5H,m) 7.86-7.94(2H,m) 8.09-8.12(1H,m)
55	O ₂ Boc H O ₂ S CH ₃		CDCL ₃ : 1.33(9H.s) 1.85-1.90(1H,m) 2.49(3H.s) 2.59-2.69(3H,m) 2.78-2.87(3H,m) 2.91-2.96(1H,m) 3.38-3.41(1H,m) 3.59-3.63(1H,m) 4.33-4.36(1H,m) 5.26-5.41(2H,m) 5.95(1H,d,J=7.68Hz) 7.19-7.26(4H,m) 7.39-7.42(2H,m) 7.52-7.61(6H,m) 7.84-7.95(2H,m) 8.08-8.12(1H,m)
56 _{.,}	O ₂ S _{E1}	-	CDCL ₃ : 1.36(3H.t.J-7.44Hz) 1.44(9H.s) 2.37-2.41(1H.m) 2.61-2.78(2H.m) 2.82-2.96(5H.m) 3.02-3.18(2H.m) 3.52-3.55(2H.m) 4.34-4.37(1H.m) 5.33-5.40(2H.m) 6.01(1H.d.J=7.69Hz) 7.30-7.42(3H.m) 7.51-7.61(5H.m) 7.87-7.97(2H.m) 8.10-8.14(1H.m)

実施	列 Structure	MS	NMR (δ value)
57	O ₂ O _N O _{NH₂}		CDCl ₃ : 1.44(9H,s) 2.62-2.95(5H,m) 3.12-3.51(5H,m) 3.92-3.97(3H,m) 4.38(1H,brs) 5.35-5.46(2H,m) 5.98(1H,d,J=7.57Hz) 7.31-7.41(3H,m) 7.51-7.60(5H,m) 7.87-7.95(2H,m) 8.13-8.15(1H,m)
58	O ₂ CN O ₂ CN B _{0C} H		CDCL ₃ : 1.45(9H,s) 1.81-1.98(1H,m) 2.52-2.61(1H,m) 2.86-3.01(3H,m) 3.30-3.33(3H,m) 3.50-3.88(4H,m) 4.10-4.32(1H,m) 5.32-5.41(2H,m) 6.09-6.27(1H,m) 7.36-7.43(3H,m) 7.50-7.59(5H,m) 7.83-7.90(2H,m) 8.06-8.12(1H,m)
59	O ₂ CN Boc H CH ₃		CDCL ₃ : 0.85-0.95(3H,m) 1.20-1.65(4H,m) 2.25-3.00(5H,m) 4.20-4.50(2H,m) 5.20-5.40(2H,m) 6.10-6.30(1H,m) 7.25-8.15(11H,m)
60	O ₂ CN Boc H CH ₃		CDCL ₃ : 0.89(3H,d,J=6.46) 1.20-1.65(14H,m) 2.75-3.15(4H,m) 4.20-4.55(2H,m) 5.20-5.55(3H,m) 6.15-6.35(1H,m) 7.25-8.15(11H,m)

実施例	Structure	MS	AIAMP (S. COLLOS)
61	O ₂ CN O ₂ CN Boc H		NMR (δ value) CDCL ₃ : 1.40(9H;s) 1.70-2.35(4H,m) 2.80-3.20(4H,m) 3.60-3.85(2H,m) 4.45-4.55(1H,m) 5.35-5.45(2H,m) 6.0(1H,d,J=7.77) 7.25-8.15(11H,m)
62	O ₂ COOMe		CDCL ₃ : 1.25-1.85(14H,m) 2.25-2.85(4H,m) 3.65(3H,s) 4.15-4.40(2H,m) 5.20-5.45(2H,m) 6.05-6.15(1H,m) 7.20-8.15(11H,m)
63	HN OEt O2 HCI HCI CH3	Mass(ESI): 566(M+H)*	DMSO-d ₆ : 1.45(3H,t,J=6.97Hz) 2.00(3H,s), 2.89(1H,bs) 3.00(1H,bs) 3.10-3.90(9H,m) 4.11(1H,d,J=13.9Hz) 4.50-4.70(3H,m) 7.36-7.62(7H,m) 7.71(1H,d,J=7.02Hz) 7.83-7.94(4H,m) 8.24(1H,bs), 11.40(1H,bs) 12.26(1H,bs)
64	O ₂ O ₂ O ₃ O _{CH₃}		CDCL ₃ : 1.36(9H.s), 1.97(3H.s) 2.15-2.21(1H.m) 2.43-2.47(1H.m) 2.51-2.57(1H.m) 2.69-3.01(4H.m) 3.28-3.40(1H.m) 3.28-3.40(1H.m) 4.29-4.33(1H.m) 5.23-5.27(2H.m) 6.01-6.04(1H.m) 6.28-6.46(3H.m) 6.93-6.96(1H.m) 7.40-7.51(4H.m) 7.72-7.82(2H.m) 7.97-8.01(1H.m)

実施	例 Structure	мѕ	NMR (δ value)
65	O ₂ H H ₂		COCL.: 1.36(9H.at. 1.97(3H.a) 2.13-2.21(1H.m) 2.43-2.47(1H.m) 2.51-2.57(1H.m) 2.51-2.57(1H.m) 2.69-3.01(4H.m) 3.60-3.70(2H.m) 4.29-4.33(1H.m) 5.21-5.27(2H.m) 6.01-6.04(1H.m) 6.32-6.46(1H.m) 6.32-6.96(1H.m) 7.40-7.51(4H.m) 7.72-7.82(2H.m)
			¥-
			-
- :			

実施例.6 6

実施例3と同様にして、 $N\alpha-(1-t)$ カーカー アミジノフェニルアラニン 4-x タンスルホニルピペラジド 195 mg (74%) を得る。

以下同様にして得ることができる。

	Short		
実施例	Structure	MS	NMR (δ value)
66	HN NH ₂ O ₂ O ₃ H H H H SO ₂ CH ₃	Mass(ESI): 573(M+H)*	CD ₃ OD: 2.31-2.37(1H,m) 2.59(3H,s) 2.68-2.90(6H,m) 3.03-3.11(1H,m) 3.27-3.51(3H,m) 4.19-4.38(3H,m) 7.29-7.99(11H,m)
67	HN_NH ₂ O ₂ NH H H H H H H H H H H H H H H H H H H	Mass(ESI): 523(M+H)+	
68	HN NH2	Mass(ESI): 563(M+H) ⁺	CD ₃ OD: 0.69-0.74(4H,m) 1.62-1.81(1H,m) 2.73-3.03(4H,m) 3.20-3.52(6H,m) 4.20-4.42(3H,m) 7.20-7.95(11H,m)
69	HN NH ₂ O ₂ S N H	Mass(ESI): 566(M+H)*	CD ₃ OD: 2.44-3.36(10H,m) 2.68(6H,s) 3.76(1H,bs) 4.21-4.41(3H,m) 7.19-8.02(11H,m)

実施例	Structure Structure	MS	NMR (δ value)
70	HN NH ₂ O ₂ O ₃ O OCH ₃	Mass(ESI): 553(M+H)*	1 771-377/104-1
71	HN_NH ₂ O ₂ O ₃ O CONH ₂	Mass(ESI): 552(M+H) ⁺	CD ₃ OD: 1.79-2.32(4H,m) 2.69-2.87(2H,m) 2.78(2H,s) 3.09-3.50(4H,m) 4.23-4.42(3H,m) 7.23-8.03(11H,m)
72	HN NH ₂	Mass(ESI): 496(M+H)*	CD ₃ OD: 2.64-3.50(10H,m) 4.20-4.41(3H,m) 7.22-7.98(11H,m)
73	HN NH ₂ O ₂ O ₃ H H	Mass(ESI): 494(M+H)*	CD ₃ OD: 1.19-1.52(6H,m) 2.65-2.71(1H,m) 2.83-2.90(1H,m) 3.11-3.42(4H,m) 4.23-4.41(3H,m) 7.27-7.99(11H,m)

実施例	Structure	MS	NMR (δ value)
74	HN NH ₂	Mass(ESI): 542(M+H)*	CD ₃ OD: 2.19-2.95(4H,m) 3.38-3.77(2H,m) 4.03-4.46(5H,m) 7.01-7.99(15H,m)
75	HN NH ₂ O ₂ O ₃ CH ₃	Mass(ESI): 523(M+H)*	CD ₃ OD: 1.98-3.55(12H,m) 1.98(3H,d,J=12.7Hz) 4.28-4.39(3H,m) 7.34-8.08(11H,m)
.76	HN NH2	Mass(ESI): 495(M+H)*	CD ₃ OD: 1.90-1.98(2H,m) 2.31-2.38(1H,m) 2.45-2.57(2H,m) 2.70-2.73(1H,m) 2.83-2.86(1H,m) 3.01-3.37(3H,m) 4.19-4.42(3H,m) 7.24-7.98(11H,m)
77	HN_NH ₂ O ₂ O ₃ O ₄ COOEt		CD ₃ OD: 1.14(3H,t,J=7.08) 2.63-2.71(2H,m) 2.75-2.81(1H,m) 2.95-3.03(2H,m) 3.09-3.30(5H,m) 3.99(2H,q,J=7.10) 4.20-4.40(3H,m) 7.17-7.48(8H,m) 7.78-7.99(3H,m)

実施例		MS	NMR (δ value)
78	HN NH2		CD ₃ OD: 2.71-2.90(3H,m) 3.04-3.10(2H,m) 3.19-3.43(5H,m) 4.20-4.38(3H,m) 6.56-6.58(2H,m) 7.16-7.47(9H,m) 7.68-7.75(2H,m) 7.95-7.99(2H,m)
79	HN NH ₂ O ₂ O ₃ CH ₃		CD ₃ OD: 1.65-1.70(1H,m) 1.99(3H,s) 2.10-2.15(3H,m) 2.75-2.82(2H,m) 2.97-3.06(1H,m) 3.20-3.31(3H,m) 4.24-4.40(3H,m) 7.29-7.51(8H,m) 7.71-7.82(2H,m) 7.99-8.02(1H,m)
80	HN_NH ₂ O ₂ O ₃ O ₄ O ₄ O ₄ O ₅ O ₇ O ₇ O ₈	Mass(ESI): 571(M+H)*	CD ₃ OD: 2.28-2.32(1H,m) 2.75-2.91(5H,m) 3.25-3.45(4H,m) 4.21-4.41(3H,m) 6.72-6.77(3H,m) 7.09-7.48(10H,m) 7.70-7.80(2H,m) 7.98-8.01(1H,m)
81	HN_NH ₂ O ₂ O ₂ O ₃ O ₄ O ₄ O ₅ O ₂ O ₅	Mass(ESI): 627(M+H) ⁺	TFA-d: 2.69-2.94(2H,m) 3.20-3.65(8H,m) 4.49-4.61(3H,m) 7.28-7.39(4H,m) 7.47-7.54(4H,m) 7.79-7.87(3H,m)

実施例		MS	NMR (δ value)
82	HN NH ₂ O ₂ S N H O ₂ O ₂ O ₂ O ₃ O ₄ O ₅ O ₅ O ₆ O ₇ O ₈ O	Mass(ESI): 635(M+H)*	CD ₃ OD: 2.24-2.27(1H,m) 2.66-2.82(5H,m) 3.22-3.41(4H,m) 4.31-4.36(3H,m) 7.22-7.59(13H,m) 7.79-7.97(3H,m)
83	HN NH ₂ O ₂ H H O ₂ O ₂ O ₃ O ₄ O ₅ O ₅ O ₅ O ₇ O ₈	Mass(ESI): 602(M+H) ⁺	CD ₃ OD: 2.48-2.52(1H,m) 2.66(6H,s) 2.71-2.82(2H,m) 2.88-2.95(3H,m) 3.21-3.36(4H,m) 4.30-4.46(3H,m) 7.35-7.52(8H,m) 7.73-7.81(2H,m) 7.98-8.03(1H,m)
84	HN NH ₂ O ₂ S N O H H H O ₂ CH ₃	Mass(ESI): 649(M+H) ⁺	DMSO-d ₆ : 1.58-1.61(1H,m) 2.18-2.22(1H,m) 2.43(3H,s) 2.50-2.59(2H,m) 2.80-2.87(4H,m) 3.62-3.69(2H,m) 3.97-4.44(3H,m) 7.16-7.22(3H,m) 7.36-7.55(8H,m) 7.66(1H,s) 7.84-7.97(3H,m)
. 85	HN NH ₂ O ₂ N H H O ₂ SEI	Mass(ESI): 587(M+H) ⁺	CD ₃ OD: 1.11-1.16(3H,m) 2.56-2.60(1H,m) 2.75-2.80(2H,m) 2.88-2.94(4H,m) 3.01-3.08(1H,m) 3.22-3.30(2H,m) 3.42-3.49(2H,m) 4.21-4.42(3H,m) 7.26-7.37(4H,m) 7.43-7.49(4H,m) 7.73-7.82(2H,m) 7.98-8.02(1H,m)

実施例	Structure	T	
×1017	. Gradiale	MS	NMR (δ value)
86	HN NH ₂ O ₂ NH ₃ NH ₃	Mass(ESI): 566(M+H)*	CD ₃ OD: 2.66-2.70(1H,m) 2.81-2.85(2H,m) 2.99-3.03(1H,m) 3.20-3.37(6H,m) 4.21-4.41(3H,m) 7.17-7.36(4H,m) 7.42-7.48(4H,m) 7.70-7.78(2H,m) 7.99-8.02(1H,m)
87	HN NH ₂ O ₂ N H H ₃ CO	Mass(ESI): 510(M ⁺)	CD ₃ OD: 1.77-1.79(1H,m) 2.64-2.90(4H,m) 3.00-3.10(3H,m) 3.28-3.43(2H,m) 3.52-3.70(2H,m) 4.01-4.35(3H,m) 7.25-7.49(8H,m) 7.70-7.80(2H,m) 7.94-7.98(1H,m)
88	HN_NH ₂ O ₂ H H H CH ₃	Mass(ESI): 508(M+H) ⁺	CD ₃ OD: 0.80-0.98(3H,m) 1.10-1.55(5H,m) 2.25-2.95(5H,m) 3.50-3.75(1H,m) 3.95-4.45(4H,m) 7.05-8.05(11H,m)
89	HN_NH ₂ O ₂ O ₃ CH ₃	Mass(ESI): 508(M+H)*	CD ₃ OD: 0.70-0.95(3H,m) 1.15-1.60(5H,m) 1.90-2.85(5H,m) 3.45-3.70(1H,m) 3.95-4.65(4H,m) 7.05-8.05(11H,m)

実施?	Structure Structure	MS	NMR (δ value)
90	HN NH ₂	Mass(ESI): 508(M+H)*	CD ₃ OD: 1.15-1.45(4H.m) 2.70-2.95(4H.m) 3.30-3.45(1H.m) 4.15-4.80(4H,m) 7.15-8.05(11H,m)
91	HN NH ₂ O ₂ O ₃ O ₄ O ₄ O ₅ O ₇ O ₇ O ₈	Mass(ESI): 566(M+H)*	CD ₃ OD: 1.15-1.65(8H,m) 2.30-2.85(4H,m) 3.50-3.75(1H,m) 3.85-4.40(6H,m) 7.10-8.10(11H,m)
92	HN_NH ₂ O ₂ O ₃ H H COOH	Mass(ESI): 538(M+H) ⁺	CD ₃ OD: 1.20-1.70(5H,m) 2.25-2.90(4H,m) 3.55-3.65(1H,m) 4.05-4.45(4H,m) 7.20-8.15(11H,m)
93	HN_NHCH ₃ O ₂ H H O CH ₃	Mass(ESI): 550(M) ⁺	CD ₃ OD: 1.91(3H,d,J=13.2Hz) 2.60-2.90(6H,m) 2.95-3.38(7H,m) 4.17(1H,t,J=12.85Hz) 4.26-4.40(2H,m) 7.11(1H,m) 7.23(1H,m) 7.32-7.49(6H,m) 7.70-7.81(2H,m) 7.97-8.04(1H,m)

			*
実施例	Structure	MS	NMR (δ value)
94	HON NH ₂ O ₂ S H H O CH ₃	Mass(ESI): 552(M)* 575(M+Nu)*	DMSO-d _n ; 1.98(3H,bs) 2.78-3.00(3H,m) 3.09-3.24(2H,m) 3.28-3.59(5H,m and nH ₂ O) 3.90-4.02(1H,m) 4.20-4.32(1H,m) 4.44(1H,4,J=8.13Hz) 5.83(2H,bs) 7.25-7.43(4H,m) 7.45-7.63(6H,m) 7.86(1H,d,J=8.1Hz) 7.92-8.03(2H,m) 9.64(1H,s)
95	O ₂ · HCI	Mass(ESI): 524(M+H) ⁺	CD ₃ OD: 2.06(3H,d,J=8.5Hz) 2.78-3.79(11H,m) 4.06(2H,s) 4.51-4.60(2H,m) 7.17-8.12(11H,m)
96	NH ₂ O ₂ C ₃ C ₄	Mass(ESI): 510(M+H) ⁺	CDCL ₃ : 1.98(3/2H,s), 2.04(3/2H,s) 2.77-2.92(3H,m) 3.03-3.26(4H,m) 4.37-4.40(1H,m) 4.57-4.60(2H,m) 4.67-4.69(1H,m) 5.54-5.58(1H,m) 6.40-6.52(3H,m) 7.02-7.04(1H,m) 7.44-7.47(2H,m) 7.55-7.61(2H,m)

実施例97

 $N\alpha-(tert-ブチルオキシカルボニル (3-フェニル-n-プロピル) アミノスルホニル) <math>-3-シアノフェニルアラニン (2-エトキシカルボニル)$ ピペリジドの合成

5 実施例 2 と同様にして、 $N\alpha$ - (tert-ブチルオキシカルボニル (3-フェニル-<math>n-プロピル) アミノスルホニル) - 3-シアノフェニルアラニン (2-エトキシカルボニル) ピペリジドを得る。

以下同様にして得ることができる。

实施例	Structure	146	NO.5 15 15
97	CN CO ₂ Et	MS	NMR (δ value) CDCl ₃ 1.24-4.73 (23H, m) 1.48 (9H, s) 6.06-7.55 (10H, m)
98	CN CO ₂ Et		CDCl ₁ 1.19 (3H, t, J=7Hz) 1.47 (9H, s) 1.94 (2H, m) 2.63 (2H, m) 3.15 (2H, m) 3.62-3.65 (2H, m) 4.11 (2H, m) 5.92 (1H, d, J=7Hz) 7.17-7.58 (10H, m)
99	CN CO₂Et BocH		CDCl ₃ 1.25-4.76 (17H, m) 1.48 (9H, s) 5.21 -5.43 (2H, m) 6.11-8.11 (12H, m)
100	CN CO₂EI		CDCl ₃ 1.46 (9H, s) 1.21-5.30 (23H, m) 6.05-7.56 (10H, m)

冥施伊	Structure		
	, on soldie	MS	NMR (δ value)
101	CN Boch CO ₂ EI		CDCl ₁ 1.23-5.38 (19H, m) 1.43 (9H, s) 6.01-8.17 (12H, m)
102	CN N-Ac BocMe		CDCl ₃ 1.38 (9H, s) 2.04 (3H, s) 2.60-3.60 (13H, m) 5.10-5.25 (1H, m) 5.44 (2H, s) 7.30-8.05 (12H, m)
103	CN CN Pac	-	CDCl ₃ 1.19-1.32 (6H, m) 2.02, 2.05 (3H, s each) 2.60-3.80 (15H, m)
104	CN N-Ac Boch		CDCl ₃ 1.33 (9H, s) 2.10 (3H, s) 2.90-3.70 (10H, m) 4.75-4.95 (1H, m) 5.33 (2H, s) 5.10-6.40 (1H, br) 7.30-8.00 (8H, m) 8.16 (1H, d, J=8.3Hz) 8.90 (1H, d, J=4.2Hz)

実施例	Structure	MS	NMR (δ value)
105	CN CN N-Ac Me H	FAB-MS 534 (M+H ⁺)	CDCl ₃ 1.95, 2.06 (3H, sach s) 2.53 (3H, s) 2.40-3.75 (10H, m)
	*		
	. •		
		-	

実施例	Structure		
A 17	Outdougle	MS	NMR (δ value)
106	CN Poet Boch		CDCl ₁ 1.20-1.26 (3H, m) 1.38 (9H, s) 2.89-3.07 (2H, m) 3.76-3.86 (1H, m) 4.07-4.49 (6H, m) 5.70 (1H, d, J=5.94Hz) 7.19-7.53 (14H, m)
107	MeO CN Boch NAC		CDCl ₃ 1.40 (9H, s) 2.09 (3H, brs) 2.90-3.70 10H, m) 3.81 (3H, s) 4.68-4.83 (3H, m) 6.22-6.25 (1H, m) 6.87-7.67 (8H, m)
108	EIO CN NAC BOCH		CDCl ₃ 2.07, 2.09 (3H, each s) 1.37-1.41 (12H, m) 2.80-3.70 (10H, m) 4.12 (2H, q, J=7.14Hz) 4.75-4.98 (3H, m) 6.05-6.18 (1H, m) 6.82-7.71 (8H, m)
- 109	MeQ CN NAC Booth		CDCl ₃ 1.47 (9H, s) 2.07 (3H, s) 2.63-3.49 (10H, m) 3.81 (3H, s) 4.22-4.28 (1H, m) 4.71-4.85 (2H, m) 5.05-6.08 (1H, m) 5.87-7.57 (8H, m)

实施例	Structure	NC.	,
110	MeO CN MeO Ac BocH	MS	NMR (δ value) CDCl ₃ 1.43 (9H, s) 2.07-2.08 (3H, m) 2.76-3.70 (10H, m) 3.84 (3H, s) 3.87 (3H, s) 4.55-4.60 (1H, m) 4.87 (2H, dd, J=16.16, 34.64Hz) 6.07 (1H, d, J=7.26Hz) 6.89-7.55 (7H, m)
111	CN CN NAC Booth		CDCl ₃ 1.34 (9H, s) 2.07, 2.09 (3H, each s) 2.88-3.62 (10H, m) 4.03 (2H, s) 4.62-4.80 (3H, m) 6.06 (1H, d, J=8.25Hz) 7.03-7.70 (13H, m)
112	CN N-Ac BocH		CDCl ₃ 1.06, 1.09 (3H, each s) 2.09 (3H, s) 3.00-3.80 (10H, m) 5.15-5.40 (1H, m) 5.48 (1H, d, J=18Hz) 5.58 (1H, d, J=18Hz) 7.40-8.10 (10H, m) 8.45-8.65 (1H, q)
113	CN OEI BocH		CDCl ₃ 1.23 (3H, t, J=7.25Hz) 1.41 (9H, s) 3.02-3.05 (2H, m) 4.02-4.09 (3H, m) 4.75 (2H, dd, J=16.83, 20.13Hz) 5.90 (1H, d, J=6.95Hz) 7.06-7.54 (13H, m)

実施例	Structure	MS	NMR (δ value)
114	CN CN WAC Booth		CDCl ₃ 1.32 (9H, s) 2.04 (23H, s) 2.94-3.91 (14H, m) 4.76 (1H, br) 6.00 (1H, br) 7.08-8.09 (10H, m)
115	MeO OMe CN OMe NAC Boch		CDCl ₃ 1.47 (9H, s) 2.10 (3H, s) 2.83-4.86 (13H, m) 3.84 (3H, s) 3.85 (3H, s) 6.02 (1H, br) 6.60-7.58 (6H, m)
116	PH Boch	·	CDCl ₃ 1.50, 1.51 (9H, each s) 1.60-4.86 (25H, m) 7.23-7.59 (10H, m)
117	CN NAC Boch		CDCl ₃ 1.46 (9H, s) 1.98, 2.03 (3H, sach s) 2.74-3.69 (16H, m) 4.62 (1H, br) 6.13 (1H, br) 7.00-8.13 (10H, m)

実施例	. Structure		
失而仍	. On doldie	MS	NMR (δ value)
118	CN CN WAC BOCH	*	CDCl ₁ 1.33 (9H, s) 2.04(3H, s) 2.82-3.63 (12H, m) 3.83-4.00 (2H, m) 4.82 (1H, m) 6.15 (1H, d, J=8.25Hz) 7.30-8.15 (11H, m)
119	OP OP NAC	× •	CDCl ₃ 1.36 (9H, s) 2.03 (3H, s) 2.85-3.70 (12H, m) 3.80-4.05 (2H, m) 4.78-4.90 (1H, m) 6.15-6.28 (6H, m) 7.25-7.88 (11H, m)
120	CN OH WHAC BOCH	FAB-MS 695(M+H*)	CDCl ₃ 1.51 (9H, s) 1.50-1.80(4H,m) 2.09 (3H, s) 2.44-4.03 (19H, m) 4.82-4.90(1H, m) 6.20-6.35(1H, m) 7.08-7.62 (9H, m)
121	NO ₂ CN NAC BOCH		CDCl ₃ 1.42 (9H, s) 2.09 (3H, s) 2.90-3.75 (12H, m) 3.75-3.95 (2H, m) 4.82 (1H, br) 6.08 (1H, br) 7.40-7.65 (6H, m) 8.05-8.15 (2H, m)

		,	
実施伊	Structure	MS	NMR (δ value)
122	Boc H CH ₃		CDCl ₃ 1.40 (9H, s) 2.04,2.05 (3H, eachs) 2.72-3.65 (13H, m) 4.63-4.71 (1H, m) 6.40-6.53 (1H, m) 7.28-8.10 (10H, m)
123	NHBoc CN AC Boch		CDCl ₃ 1.32 (9H, s) 1.51 (9H, s) 2.09 (3H, s) 2.70-3.90 (14H, m) 4.85-5.00 (1H, m) 5.90-6.00 (1H, m) 6.80-7.80 (9H, m)
124	B Boc H OEi		CDCl ₃ 1.18(3H,t,d=7.10Hz) 1.47 (9H, s) 2.90-3.10 (2H, m) 3.85-4.20 (3H, m) 5.31 (2H, dd,J= 16.66,45.69Hz) 5.90 (1H, d,J=6.60Hz) 7.25-8.05 (10H, m)
125	Boch Boch		CDCl ₃ 1.39 (9H, s) 1.52 (9H, s) 1.65-2.00 (2H, br) 2.08 (3H,S) 2.80-3.95 (15H, m) 4.85-5.00 (1H,m) 5.90-6.10 (1H, br) 6.90-7.85 (8H, m)

実施例	Structure	MS	NMR (δ value)		
126	CN NAC Boc H		CDCl ₃ 1.44 (9H, s) 2.13 (3H, s) 2.20-4.05 (22H, m) 5.12 (1H, br) 7.25-7.60 (5H, m)		
127	CN CN NAC NAC Boc H	·	CDCl ₃ 1.49 (9H, s) 2.08 (3H, s) 2.60-3.60 (10H, m) 4.20-4.40 (2H, m) 4.71 (2H, m) 5.97-7.58 (10H, m)		
128	CN CN NAC Booch		CDCl ₃ 1.49 (9H, s) 2.07 (3H, s) 2.50-3.60 (10H, m) 4.15-4.45 (5H,m) 4.60-4.80 (2H, m) 5.95-6.10 (1H, m) 6.80-7.05 (3H, m) 7.30-7.70 (4H, m)		
129	CN NAC Boch NO ₂		CDCl ₃ 1.44 (9H, s) 2.11 (3H, s) 2.95-3.80 (10H, m) 4.78 (1H, br) 5.07 (2H, m) 6.13 (2H, s) 6.20 (1H, br) 6.96 (1H, br) 7.43-7.60 (5H, m)		

:	実施例	Structure	MS	NMR (δ value)
	130	CN NAC Boc H		CDCl ₁ 1.20-2.00 (6H, m) 1.45, 1.49 (9H, each s) 2.11 (3H, s) 3.00-4.10 (15H, m) 4.85-5.05 (1H, m) 6.00-6.40 (1H, m) 7.40-7.58 (4H, m)
	131	O ₂ N NAC Boc H		CDCl ₃ 1.45 (9H, s) 2.10 (3H, s) 2.90-3.71 (10H, m) 4.61-4.87 (3H, m) 6.06 (1H, brs) 7.39-7.88 (7H, m)
]	.32	CN SOCH NAC		CDCl ₃ 1.42, 1.43 (9H, s) 2.00-2.15 (3H, m) 2.90-4.50 (15H, m) 4.80-5.00 (1H, br) 6.05-6.20 (1H, m) 6.86 (4H,s) 7.35-7.65 (4H, m)
1	33	OMe Boch NAC		CDCl ₃ 1.55, 1.56 (9H, s) 1.581, 2.04 (3H, s) 2.10-3.55 (10H, m) 4.04, 4.07 (3H,s) 4.30-4.50 (1H, m) 5.00-5.25 (2H,m) 6.05-6.25 (1H, m) 7.15-7.65 (6H, m) 7.70-7.90 (2H, m)

→ • • •	Structure NS NAD (5 1)				
実施例	Structure	MS	NMR (δ value)		
134	CN OO NAC Boch		CDCl ₃ 1.20-1.90 (10H, m) 1.48 (9H, s) 2.10 (3H, s) 3.00-3.80 (15H, m) 4.92 (1H, m) 6.14 (1H, m) 7.39-7.58 (4H, m)		
135	MOMO O NAC		CDCl ₃ 1.41 (9H, s) 2.10 (3H, s) 2.90-3.65 (10H, m) 3.48 (3H, s) 4.70-5.23 (5H, m) 6.06 (1H, d) 6.96-7.58 (8H, m)		
136	MeO OMe CN NAC BocH		CDCl ₃ 1.48 (9H, s) 2.09 (3H, s) 2.60-3.62 (10H, m) 3.89 (6H, s) 4.75 (2H, dd, J=34, 14Hz) 6.04 (1H, brs) 6.81-7.62 (7H, m)		
137	F Booth NAC	2 m. 12	CDCl ₃ 1.47 (9H, s) 2.11 (3H, s) 3.00-3.70 (10H, m) 4.85-5.00 (1H, br) 4.93 (2H, s) 5.94 (1H, br) 7.44-7.57 (4H, m)		

実施	Structure Structure	MS	NMR (δ value)
138	MeO NAC		CDCI, 1.43 (9H, s) 2.11 (3H, s) 2.85-3.75 (10H, m) 3.96 (3H, s) 4.50-4.95 (3H, m) 6.01 (1H, br) 6.90-7.20 (2H, m) 7.40-7.65 (4H, m) 7.83 (1H, d, J=8.3Hz)
139	Mea CN NAC Boch		CDCl ₃ 1.43 (9H, s) 2.04 (3H, s) 2.36-3.62 (10H, m) 3.95 (3H, s) 4.12-4.33 (1H, m) 5.29 (2H, dd, J=42, 17Hz) 7.12-8.10 (10H, m)
140	TBDMSQ CN NAC Boch		CDCl ₃ 0.03 (6H, s) 1.03 (9H, s) 1.42 (9H, s) 2.08 (3H, s) 2.34-3.66 (10H, m) 5.13-5.43 (2H, m) 5.98 (1H, brs) 7.08-8.10 (10H, m)
141	CO₂Me CN NAC BocH	1 2 2 3 4 4	CDCl ₃ 1.42 (9H, s) 2.09 (3H, s) 2.80-3.80 (10H, m) 3.93 (3H, s) 45-4.65 (1H, br) 8.85 (2H, s) 0.00 (1H, br) 41-8.04 (8H, m)

実施例142

Nα-(アミノスルホニル) - 3-アミジノフェニルアラニン-4-アセチルピペラジドの合成

実施例3 と同様にして、 $N\alpha-(r > 1)$ スルホニル) -3-r > 3 フェニル アラニン -4-r セチルピペラジドを得る。

以下同様にして得ることができる。

実施的	Structure	MS	NMR (δ value)
142	H ₂ N NH	FAB-MS 397(M+H*	DMSO-d ₆ 1.95 (3H, s) 2.58-3.56 (10H, m) 4.40-4.56 (1H, m) 6.60-7.70 (7H, m) 8.31 (5H, s)
143	H ₂ N_NH CO ₂ EI		DMSO-d ₆ 1.16-4.38 (23H, m) 6.77-8.31 (14H, m)
144	H ₂ N_NH CO ₂ EI	FAB-MS 433(M+H ⁺)	DMSO-d ₆ 1.12 (3H, t, J=7Hz) 1.49 (2H, m) 2.14-4.09 (9H, m) 6.86-8.31 (14H, m)
145	H ₂ N_NH OO CO ₂ H	FAB-MS 405(M+H*)	DMSO-d ₆ 1.43-3.96 (9H, m) 6.74-12.80 (15H, m)

		Υ	
実施例	Structure	MS	NMR (δ value)
146	H ₂ N NH OEi H H		DMSO-d ₆ 2.90-4.47 (6H, m) 4.83 (2H, dd, J=16.5, 32.7Hz) 6.62 (1H, d, J=6.59Hz) 7.19 (1H, dd, J=7.59, 7.59Hz) 7.20-8.25 (10H, m)
147	H ₂ N_NH H ₂ N_NH	-	DMSO-d ₆ 2.50-4.37 (6H, m) 6.40-7.70 (14H, m)
148	H ₂ N NH		DMSO-d ₆ 2.78-4.44 (8H, m) 6.65-8.00 (15H, m)
149	H ₂ N NH OEt		DMSO-d ₆ 2.76-4.50 (12H, m) 6.72-7.96 (15H, m)

	実施例	Structure	MS	NMR (δ value)
	150	H ₂ N_NH NHOEt		DMSO-d ₆ 2.74-4.52 (8H, m) 7.03-8.00 (15H, m)
	151	H ₂ N NH CO ₂ Et	FAB-MS 566(M+H ⁺)	DMSO-d ₆ 1.13-4.46 (19H, m) 6.90-8.35 (16H, m)
	152	H ₂ N NH CO ₂ Et	FAB-MS 544(M+H ⁺)	DMSO-d ₆ 1.13-5.16 (23H, m) 6.86-8.31 (14H, m)
1	53	H ₂ N NH CO ₂ EI	FAB-MS 566(M+H ⁺)	DMSO-d ₆ 1.03-5.19 (19H, m) 7.01-8.31 (16H, m)

実施例	Structure		
		MS	NMR (δ value)
154	H ₂ N NH CO ₂ H H H H	FAB-MS 516(M+H ⁻)	DMSO-d ₆ 1.23-4.49 (18H, m) 6.84-9.38 (15H, m)
155	H ₂ N_NH OO ₂ H	FAB-MS 538(M+H ⁺)	DMSO-d ₆ 1.23-4.61 (14H, m) 7.20-12.38 (17H, m)
156	H ₂ N NH H H CO ₂ H	FAB-MS 516(M+H ⁺)	DMSO-d ₆ 1.23-4.95 (18H, m) 6.92-10.20 (15H, m)
157	H ₂ N_NH OO ₂ H	FAB-MS 538(M+H*)	DMSO-d ₆ 0.87-4.95 (14H, m) 7.31-9.15 (17H, m)

	St		
実施例	Structure	MS	NMR (δ value)
158	H ₂ N NH N-Ac H Me	FAB-MS 551(M+H*)	DMSO-d ₆ 1.93, 1.96 (3H, each s) 2.75-3.60 (13H, m) 4.15-4.35 (2H, br) 4.97 (1H, t, J=7.4Hz) 7.20-7.80 (9H, m) 7.80-8.00 (2H, m) 8.06 (1H, d, J=7.9Hz)
159	H ₂ N_NH H ₂ N_NH		DMSO-d ₆ 1.38-1.80 (4H, m) 2.61-4.15 (15H, m) 6.93-8.30 (9H, m)
160	H ₂ N ₁ NH H ₂ N ₁ NH		DMSO-d ₆ 2.05-2.09 (2H, m) 2.69-4.11 (9H, m) 7.12-7.66 (14H, m)
. 161	H ₂ N ₁ NH N-Ac H	FAB-MS 453(M+H*)	DMSO-d ₆ 0.97-1.49 (6H, m) 1.96 (3H, s) 2.69-3.60 (15H, m) 4.77-4.83 (1H, m) 7.34-7.89 (4H, m)

700 to 151	Structure		
実施例	Structure	MS	NMR (δ value)
162	H ₂ N NH N-AC	FAB-MS 538(M+H*)	DMSO-d ₆ 1.98 (3H, s) 2.70-3.60 (10H, m) 4.02 (1H, d, J=16Hz) 4.23 (1H, d, J=16Hz) 4.50 (1H, t, J=7.3Hz) 7.25-7.85 (9H, m) 7.94 (1H, d, J=8.3Hz) 8.03 (1H, d, J=8.3Hz) 8.31 (3H, s) 8.84 (1H, d, J=4.6Hz)
163	H ₂ N ₁ NH N-Ac Me H	FAB-MS 551(M+H*)	DMSO-d ₆ 1.95, 1.97 (3H, each s) 2.29 (3H, s) 2.70-3.60 (10H, m) 4.15-4.65 (3H, m) 7:25-8.25 (12H, m)
164	H H OEi	FAB-MS 495(M+H ⁺)	DMSO-d ₆ 1.03-1.23 (5H, m) 2.72-4.09 (8H, m) 7.12-7.65 (14H, m)
165	MeO H ₂ N NH MeO N-AC	FAB-MS 517(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.81-3.55 (11H, m) 3.69-3.85 (4H, m) 4.41-4.44 (1H, m) 6.87-7.66 (8H, m)

実施例	Structure	MS	ÑMR (δ value)
166	EIO H2N NH H H H	FAB-MS 531(M+H*)	DMSO-d ₆ 1.33 (3H, t, J=6.95Hz) 1.95 (3H, s) 2.82-3.60 (10H, m) 3.81 (2H, dd, J=15.5, 15.2Hz) 4.30 (1H, q, J=6.82Hz) 4.41-4.45 (1H, m) 6.86-7.65 (8H, m)
167	MeO H ₂ N NH NAC	FAB-MS 517(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.77-3.76 (16H, m) 4.37-4.43 (1H, m) 6.77-7.68 (8H, m) 8.29 (5H, s)
168	MeO H ₂ N NH MeO Ac	FAB-MS 547(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.85-3.87 (18H, m) 4.35-4.53 (1H, m) 6.87-7.66 (7H, m) 8.29 (5H, s)
169	H ₂ N NH	FAB-MS 577(M+H*)	DMSO-d ₆ 1.97 (3H, s) 2.81-4.10 (14H, m) 4.42-4.45 (1H. m) 7.13-8.30 (18H, m)

=+-/54	Christian	T	
実施例	. Structure	MS	NMR (δ value)
170	H ₂ N NH N-Ac N H H	FAB-MS 538(M+H*)	DMSO-d ₆ 1.96 (3H, s) 2.75-3.60 (10H, m) 4.29 (1H, d, J=15Hz) 4.45-4.60 (2H, m) 7.25-7.40 (2H, m) 7.40-7.90 (8H, m) 7.99 (1H, d, J=7.9Hz) 8.17 (1H, d, J=8.2Hz) 8.31 (2H, s) 8.41 (1H, d, J=5.6Hz)
171	H ₂ N NH OEI	FAB-MS 495(M+H ⁺)	DMSO-d ₆ 1.08 (3H, t, J=7.42Hz) 2.81-4.29 (9H, m) 6.93-7.98 (13H, m) 8.30 (5H, s)
172	H ₂ N NH	FAB-MS 540(M+H*)	DMSO-d ₆ 1.94 (3H, s) 2.78-3.60 (14H, m) 4.36 (1H, d, J=7Hz) 6.94-7.66 (15H, m)
173	MeQ OMe H ₂ N NH MeQ OMe NAC	FAB-MS 577(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.76-3.71 (21H, m) 4.38 (1H, m) 6.51-7.69 (11H, m)

	実施例	Structure	MS	NMR (δ value)
	174	H ₂ N_NH NAC PH H H	FAB-MS 570(M+H*)	DMSO-d ₆ 1.96 (3H, s) 1.40-4.00 (26H, m) 4.42 (1H, m) 6.65-8.29 (9H, m)
	175	H ₂ N NH NAC	FAB-MS 554(M+H ⁺)	DMSO-d ₆ 1.67 (2H, m) 1.96 (3H, s) 2.50-3.50 (15H, m) 4.38 (1H, br) 6.92-8.30 (14H, m)
	176	H ₂ N NH OF AC H H	FAB-MS 551(M+H*)	DMSO-d ₆ 1.96 (3H, s) 2.75-3.55 (14H, m) 4.40 (1H, m) 7.23-8.10 (11H, m)
1	77	H ₂ N_NH OO NAC H H	FAB-MS 551(M+H ⁺)	DMSO-d ₆ 1.95 (3H, s) 2.80-3.55 (14H, m) 4.30 -4.45(1H, m) 7.00-7.90 (11H, m)

实施例	Structure		
		MS	NMR (δ value)
178	H2N-NH H2N-NH	FAB-MS 612(M+H*	DMSO-d ₆ 1.40-1.77 (14H, m) 1.97 1.99(3H, eachs) 2.40-3.60 (19H, m) 4.30-4.45 (1H, m) 7.03-7.85 (9H, m)
179	H ₂ N NH NO ₂ N Ac	FAB-MS 546(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.60-3.60 (14H, m) 4.30-4.45 (1H, m) 6.90-7.40 (4H, m) 7.50-7.70 (4H, m) 8.00-8.15 (2H, m)
180	H ₂ N NH CH ₃	FAB-MS 615,617 (M+H ⁺)	DMSO-d ₆ 2.00(3H, s) 2.85-4.60 (13H, m) 7.30-8.20 (10H, m)
181	NH ₂ H H	FAB-MS- 516(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.40-3.60 (15H, m) 4.39 (1H, brs) 4.95 (1H, brs) 6.15-6.45 (3H, m) 6.90 (1H, t, J=7.6Hz) 7.15-7.75 (6H, m)

	実施例	Structure	MS	NMR (δ value)
	182	H ₂ N NH B H H OEi	FAB-MS 533,535 (M+H ⁺)	DMSO-d ₆ 1.17 (3H. t, J=7.21Hz) 2.80-3.25 (3H, m) 3.95-4.48 (4H, m) 4.86 (2H, dd, J=16.33 35.13Hz) 7.20-8.35 (15H, m)
·	183	H ₂ N NH N-AC	FAB-MS 542(M+H*)	DMSO-d ₆ 1.50-1.90 (2H, m) 1.97 (3H, s) 2.40-3.60 (15H, m) 4.30-4.55 (1H, br) 6.35-6.50 (2H, m) 6.75-6.85 (2H, m) 7.20-8.10 (6H, m)
	184	H ₂ N NH NAC	FAB-MS 510(M+H*)	DMSO-d ₆ 1.97 (3H, s) 2.20-3.70 (22H, m) 4.40 (1H, m) 7.00-8.30 (9H, m)
1	85	H ₂ N_NH NAC	FAB-MS 531(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.70-3.80 (12H, m) 4.39 (1H, m) 5.97 (2H, s) 6.60-8.30 (12H, m)

实施例	Structure	MS	NMR (δ value)
186	H ₂ N_NH NAC	FAB-MS 545(M+H+	DMSO-d ₆ 1.96 (3H, s) 2.70-3.80 (12H, m)
187	H ₂ N NH NAC NO ₂	FAB-MS 576(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.70-3.80 (10H, m) 4.08 (2H, s) 4.43 (1H, t, J=7Hz) 6.23 (2H, s) 5.75-7.65 (11H, m)
188	H ₂ N NH NAC	FAB-MS 495(M+H*)	DMSO-d ₆ 0.90-1.80 (6H, m) 1.97 (3H, s) 2.40-3.60 (14H, m) 3.82 (1H, d, J=11Hz) 4.39 (1H, t, J=7Hz) 5.75-7.65 (9H, m)
189	O ₂ N NAC:	FAB-MS 567(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.70-3.93 (13H, m) 4.41 (1H, t, J=7Hz) 7.25-7.94 (7H, m)

実施仍	Structure	MS	NMR (δ value)
190	H ₂ N_NH NAC	FAB-MS 545(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.60-3.70 (12H, m) 3.80-3.95 (1H, m) 4.05-4.30 (2H, m) 4.43 (1H, t, J=7.3Hz) 6.70-6.95 (4H, br) 7.20-7.90 (5H, m)
191	H ₂ N_NH NAC	FAB-MS 587(M+H*)	DMSO-d ₆ 1.35 (3H, t, J=7Hz) 1.96 (3H, s) 2:70-3.60 (10H, m) 3.90-4.30 (4H, m) 4.46 (1H, t, J=7.4 Hz) 7.10-8.00 (10H, m)
192	H ₂ N_NH NAC		DMSO-d ₆ 1.10-1.80 (10H, m) 1.97 (3H, s) 2.50-3.45 (15H, m) 4.40 (1H, t, J=7.5Hz) 6.90-7.70 (9H, m)
193	H ₂ N NH HO QO NAC		DMSO-d ₆ 1.94 (3H, s) 2.50-3.60 (10H, m) 3.84 (2H, s) 4.45-4.47 (1H, m) 5.00-6.60 (6H, br) 5.69-7.72 (8H, m)

实施例	Structure	MS	NMR (δ value)
194	MeO Me H ₂ N NH NAC		DMSO-d ₆ 1.96 (3H, s) 2.76-3.60 (13H, m) 3.71 (3H, s) 3.73 (3H, s) 4.38 (1H, brs) 6.60-7.78 (7H, m)
195	H ₂ N NH F A N N N N N N AC F F F H H		DMSO-d ₆ 1.97 (3H, s) 2.80-3.80 (10H, m) 3.80 (1H, d, J=15Hz) 3.89 (1H, d, J=15Hz) 4.40 (1H, br) 6.00-7.20 (5H, br) 7.31-7.66 (4H, m)
196	MeO NAC	•	DMSO-d ₆ 1.97 (3H, s) 2.70-3.90 (12H, m) 3.92 (3H, s) 4.40 (1H, t, J=7.6Hz) 6.96 (1H, d, J=8.3 Hz) 6.80-7.10 (2H, br) 7.16 (1H, s) 7.25-7.40 (2H, m) 7.83 (1H, d, J=8.3Hz)
197	H ₂ N_NH MeO NAC		DMSO-d ₆ 1.96 (3H, s) 2.87-3.70 (11H, m) 3.80-3.95 (4H, m) 4.17 (1H, d, J=14Hz) 4.44 1H, t, J=7Hz) 7.13-7.93 (10H, m)

実施	Structure Structure	MS	NMR (δ value)
198	H ₂ N NH H ₂ N NAC	·	DMSO-d ₆ 1.97 (3H, s) 2.75-3.80 (11H, m) 3.90 (1H, d, J=15Hz) 4.20 (1H, d, J=15Hz) 4.45 (1H, t, J=7Hz) 7.00-7.95 (10H, m)
199	CO ₂ Me H ₂ N NH		DMSO-d ₆ 1.96 (3H, s) 2.75-3.79 (12H, m) 3.84 (3H, s) 4.40 (1H, m) 5.75-7.92 (13H, m)
200	H ₂ N_NH NAC		DMSO-d ₆ 1.96 (3H, s) 2.81-3.51 (10H, m) 3.90-4.26 (2H, m) 4.46 (1H, m) 7.53-8.31 (16H, m)
201	H ₂ N NH N-Ac	FAB-MS 591(M+H ⁺)	DMSO-d ₆ 1.96 (3H, s) 2.00-2.50 (2H, m) 2.75-3.50 (13H, m) 3.87-3.95 (1H, m) 4.46-4.42 (1H, m) 7.10-7.70 (14H, m)

実施例	Structure	MS	NMR (δ value)
202	H ₂ N NH N-AC	FAB-MS 577(M+H ⁺)	DMSO-d ₆ 1.97 (3H, s) 2.70-3.55 (13H, m) 3.98-4.03 (1H, m) 4.35-4.41 (1H, m) 7.05-8.00 (14H, m)
	·		
	'	·	·

WO 97/19919 PCT/JP96/03520

実施例203

 $N\alpha - (2, 3-ジメトキシベンジル) - 3-アミジノフェニルアラニン 4-ヒドロキシカルボニルメチルピペリジドの合成$

実施例36と同様にして、 $N\alpha-(2, 3-ジメトキシベンジル)-3-アミ ジノフェニルアラニン 4-ヒドロキシカルボニルメチルピペリジドを得る。$

以下同様にして得ることができる。

m45.774	Charles	T	
実施例	Structure	MS	NMR (δ value)
203	H ₂ N NH MeO OMe OO ₂ H	FAB-MS 562(M+H ⁺)	DMSO-d ₆ 0.30-4.50 (16H, m) 3.72 (3H, s) 3.78 (3H, s) 6.90-9.10 (12H, m) 12.00-12.40 (1H, br)
204	MeO OMe OO CO2Et	FAB-MS 591(M+H ⁺)	CDCl ₃ 1.25 (3H, t, J=7.1Hz) 2.04-3.52 (12H, m) 3.85 (6H, d, J=2.31 Hz) 4.01-4.19 (4H, m) 4.44 (1H, t, J=7.26Hz) 6.82-7.43 (7H, m)
205	MeO OMe CO ₂ H	FAB-MS 563(M+H ⁺)	DMSO-d ₆ 2.70-4.80 (21H, m) 6.82-8.05 (10H, m)
206	MeQ OMe OO CO ₂ Et	FAB-MS 610(M+H ⁺)	CDCl ₃ 1.19-1.35 (3H, m) 2.99-3.18 (3H, m) 3.64 - 4.70 (12H, m) 5.46-5.54 (1H, m) 6.62 - 7.64 (11H, m)

実施例	Structure	MS	NMR (δ value)
207	Mea OMe OO2H		
208	MeO OMe OO CO ₂ Et	FAB-MS 645(M+H ⁺)	CDCl ₃ 1.23-2.04 (11H, m) 2.41-3.62 (7H, m) 3.85 (6H, s) 4.03-4046 (8H, m) 6.80-7.51 (7H, m)
209	H ₂ N ₁ NH MeO OMe OO ₂ H	FAB-MS 618(M+H ⁺)	DMSO-d ₆ 1.65-4.50(27H, m) 6.80-7.85(10H, m)
210	Me OMe		

実施例。	Structure	MS	AIMO (Section)
211	MeO OMe OO H CO ₂ H	IVIO	NMR (δ value)
212	H ₂ N NH Mea OMe OH	FAB-MS 534(M+H ⁺)	DMSO-d ₆ 0.40-4.60 (16H, m) 3.68, 3.69, 3.70, 3.78 (6H, each s) 6.50-8.31 (13H, m)
213	H ₂ N_NH MeO OMe OOH	FAB-MS 520(M+H ⁺)	DMSO-d6 1.15-1.40(2H,br) 1.45-1.65(2H,br) 2.70-3.90(15H,m) 4.44(1H,t,J=7Hz) 6.80-7.15(5H,m) 7.20-7.40(2H,m) 7.50-7.70(2H,m)
214	H₂N NH OMe OMe OMe OMe		

实施符	Structure	MS	NMR (δ value)
215	Med OMe OH		·
216	MeO OMe NH ₂		
217	H ₂ N NH MeO OH NAC		
21,8	H₂N↓NH OMe OMe OMe OMe OMe		

実施例	. Structure	MS	NMR (δ value)
219	H₂N NH OMe OMe H H H H H H H H H H H H H		
220	Mea OMe OH		
221	H ₂ N_NH Mea OMe NH ₂		
222	Med OMe OO CO2Et		

实施例	Structure	MS	NMP (Singling)
223	MeO OMe OO OO2H	IVIO	NMR (δ value)
224	MeO OMe CO ₂ Et		-
225	H ₂ N NH MeO		
226	H₂N NH MeO OMe OMe OMe OMe		

実施例	Structure		
		MS	NMR (δ value)
227	H ₂ N_NH MeO OMe OH HOOH		
228	H ₂ N NH MeO OMe OMe OMe H H H		
229	H ₂ N_NH OMe OMe OMe OMe		
230	H ₂ N NH MeO	FAB-MS 577(M+H ⁺)	DMSO-d ₆ 1.96 (3H,s) 2.70-3.90 (21H,m) 4.42 (1H,t,J=7Hz) 6.76 (1H,d,J=8.6Hz) 6.93 (1H,d,J=8.6Hz) 7.25-7.40 (2H,m) 7.55-7.75 (2H,m)

実施例	Structure		
231	H ₂ N NH OMe OMe OMe OMe OMe OMe OMe OMe OMe OM	MS	. NMR (δ value)
232	OMe OMe NAC	FAB-MS 547(M+H ⁺)	DMSO-d ₆ 1.99 (3H, s) 2.80-3.50 (10H, m) 3.72 (3H, s) 3.76 (3H, s) 3.76-3.95 (2H, m) 4.43-4.55 (1H, m) 6.70-7.85 (7H, m)
233	MeO OMe OO CO2Et		DMSO-d ₆ 0.05-4.44 (18H, m) 1.16 (3H, t, J=7Hz) 3.70 (3H, s) 3.78 (3H, s) 6.60-8.31 (12H, m)
234	H ₂ N NH H ₂ N NAC OH	* .45	

灵施例	Structure	MS	NMR (δ value)
235	H ₂ N NH NAC		
236	H ₂ N_NH H ₂ N_NH H ₂ N_NAC		,
237	H ₂ N NH OH OH NAC		
238 [×]	H ₂ N NH H ₂ N NAC	e de S Antonio de Companyo de Comp Antonio de Companyo	

実施例	. Structure	MS	NMR (δ value)
239	H ₂ N_NH NAC		
240	H ₂ N_NH NAC		
241	H ₂ N NH OHOO NAC		
242	H ₂ N_NH H ₂ N_NAC		*

実施例	Structure	MS	NMR (δ value)
243	O ₂ N NAC		
244	O ₂ N NO ₂		
245	H ₂ N NH NAC OMe		
246	H ₂ N NH H ₂ N NH HH H NAC		

*** ***	Starrage Control of the Control of t	T	
実施例	Structure	MS	NMR (δ value)
247	H ₂ N NH OH NAC SMe		
248	H ₂ N NH NAC		
249	H ₂ N_NH HO NAC		
250	H ₂ N_NH ONNAC		

実施例	. Structure	MS	NMR (δ value)
251	Me OMe OMe Me COOH		
252	Mea OMe OOOEt	FAB-MS 590(M+H ⁺)	
253	H ₂ N NH COOH	FAB-MS 538(M+H ⁺)	DMSO-d ₆ 0.80-1.85 (6H, m) 2.20-3.80 (4H, m) 4.05-5.10 (4H, m) 7.05-8.00 (11H, m)
254	H ₂ N_NH COOMe	FAB-MS 552(M+H ⁺)	DMSO-d ₆ 0.80-1.90 (6H, m) 3.00-3.60 (7H, m) 4.20-4.80 (4H, m) 5.20-5.32 (1H, m) 7.15-8.00 (11H, m)

実施例	Structure	MS	NMR (δ value)
255	H ² N NH		
256	H ₂ N_NH COOE1	·	
257	H ₂ N_NH HO OH OH OH OH OH OH	FAB-MS 519(M+H ⁺)	DMSO-d ₆ 1.95 (3H, s) 2.60-4.60 (13H, m) 4.65-8.30 (7H, br) 6.47-6.65 (3H, m) 7.31-7.70 (4H, m)
258	H ₂ N_NH MeQ	FAB-MS 533(M+H ⁺)	DMSO-d ₆ 1.94 (3H, m) 2.50-3.91 (12H, m) 3.78 (3H, s) 4.00-8.31 (6H, br) 4.47 (1H, m) 6.64-6.85 (3H, m) 7.23-7.80 (4H, m)

75 de 10 10 10 10 10 10 10 10 10 10 10 10 10	Charles	T	
実施例	Structure	MS	NMR (δ value)
259	H ₂ N NH H ₂ N NH HO ₂ C NAC		DMSO-d ₆ 1.98 (3H, s) 2.50-4.90 (13H, m) 7.05-8.06 (13H, m) 9.20-10.00 (1H, br)
260	HCI H ₂ N NH HO H H H	FAB-MS 517(M+H ⁺)	DMSO-d ₆ 1.99 (3H, s) 2.80-4.60 (15H, m) 7.13-9.38 (14H, m)
261	H ₂ N_NH MeO OMe OH	FAB-MS 549(M+H ⁺)	DMSO-d ₆ 1.82-2.20 (2H, m) 2.30 (4H, t, J=5.94Hz) 2.76-3.00 (2H, m) 3.14-3.42 (2H, m) 3.45 (4H, t, J=5.94Hz) 3.71(3H,s),3.79(3H,s) 3.79 (2H, dd, J=14.7,36.8Hz) 4.38-4.50 (1H, m) 6.87-7.70 (7H, m)

<u>実施例262</u>

 $N\alpha-(tert-ブチルオキシカルボニル (1-ナフチルメチル) アミノスル ホニル) -3-シアノーL-フェニルアラニン-4-アセチルピペラジドの合成 実施例 <math>2$ と同様にして、 $N\alpha-(tert-ブチルオキシカルボニル (1-ナ フチルメチル) アミノスルホニル) -3-シアノーL-フェニルアラニン-4-アセチルピペラジドを得る。$

以下同様にして得ることができる。

実施例	Structure	MS	NMR (δ value)
262	CN QQ NAC Boc H		CDCl ₃ 1.41 (9H, s) 2.03, 2.07 (3H, each s) 2.50-3.60 (10H, m) 4.33 (1H, m) 5.36 (2H, m) 6.01 (1H, d, J=8Hz) 7.29-8.13 (11H, m)
263	COOMe Box H		CDCl ₃ 1.43 (9H, s) 1.37-1.80 (6H, m) 2.73-3.00 (4H, m) 3.69 (3H, s) 4.10-4.30(2H,m) 5.05-5.40 (3H, m) 6.36 (1H, d, J=6.93Hz) 7.24-8.20 (11H, m)
264	OMe OO NAC BOCH NAC		CDCl ₃ 1.43 (9H, s) 2.08, 2.09 (3H, each s) 2.88-3.67 (10H, m) 3.75(3H,s) 3.77(3H,s) 4.65-4.90 (3H, m) 6.20 (1H, d, J=7.59Hz) 6.73-6.88(3H,m) 7.40-7.75 (4H, m)
265	OMe OO CO ₂ Et		CDCl ₃ 0.20-4.93 (16H, m) 1.28 (3H, t, J=7Hz) 1.44, 1.45 (9H, each s) 3.84 (3H, s) 3.86 (3H, s) 4.14 (2H, q, J=7Hz) 6.14 (1H, m) 6.85-7.56 (7H, m)

実施例	Structure	MS	NMR (δ value)				
266	MeO OMe Boch OAc		CDCl ₃ 0.65-4.87 (28H, m) 3.83, 3.84, 3.86 (6H, each s) 6.10-6.19 (1H, m) 6.84-7.56 (7H, m)				
267	MOMO OMOMO O		CDCl ₃ 1.39 (9H, s) 2.08, 2.10 (3H, each s) 2.93-5.19 (17H, m) 3.49 (3H, s) 3.55 (3H, s) 6.15 (1H, d, J=8Hz) 6.90-7.58 (7H, m)				
268	OMOMO CN MeO SHOCH NAC		CDCl ₃ 1.40 (9H, s) 2.09 (3H, s) 2.90-5.11 (15H, m) 3.55 (3H, s) 3.85 (3H, s) 6.03 (1H, m) 6.86-7.58 (7H, m)				
269	Aca Boch NAC		CDCl ₃ 1.46 (9H, s) 2.09 (3H, s) 2.12 (3H, s) 2.80-3.65 (10H, m) 4.35-4.55 (12H, br) 4.79 (2H, m) 5.11 (2H, s) 5.99 (1H, br) 7.33-7.58 (4H, m)				

D4-164	Structure		<u> </u>
実施例	Structure	MS	NMR (δ value)
270	Med OMe OO CO2Et	·	CDCl ₃ 1.31(3H,t,J=7.1Hz) 1.44-3.58(21H, m) 3.86(6H,d,J=4.6Hz) 4.15-4.97 (5H, m) 6.11(1H,d,J=7.2Hz) 6.88-7.56 (7H, m)
271	MeO OMe OO ENO2C	·	CDCl ₃ 1.24-2.18 (19H, m) 2.50-3.04 (6H, m) 3.41-3.86 (8H, m) 4.14-4.99 (8H, m) 6.09-6.18 (2H, m) 6.85-7.65 (7H, m)
272	MeO OMe Boc H EtO ₂ C		CDCl ₃ 1.21-1.47 (12H, m) 2.99-3.20 (3H, m) 3.66-5.15 (13H, m) 6.80-7.60 (11H, m)
273	Med OMe OO HAC Med Boch		CDCl ₃ 1.42 (9H, s) 2.08, 2.09 (3H, each s) 2.85-3.70 (10H, m) 3.86 (3H, s) 3.88 (3H, s) 3.90 (3H, s) 4.65-4.95 (3H, m) 6.11 (1H, bs) 6.64 (1H,d,J=8.4Hz) 6.94 (1H,t,J=7.3Hz) 7.35-7.65 (4H, m)

	C)				
実施例	Structure	MS	NMR (δ value)		
274	Med OMe OMe Boch	,	CDCl ₃ 1.20-1.95(13H, m) 2.80-4.00(16H,m) 4.55-5.00 (3H, m) 6.14 (1H, t,J=8Hz) 6.80-6.95 (2H, m) 7.04 (1H, t,J=7.9Hz) 7.35-7.55 (4H, m)		
275	Mea OMe OO-TBDMS		CDCl ₃ 0.04 (6H, s) 0.88, 0.90 (9H, each s) 1.00-1.75(13H, m) 2.85-4.00(13H,m) 4.55-5.00 (3H, m) 6.15 (1H, d,J=7.3Hz) 6.80-7.15 (3H, m) 7.30-7.60 (4H, m)		
276	Med OMe OO CON OAC Booth		CDCl ₃ 1.44 (9H, s) 2.07 (3H, s) 2.30-2.52(4H,m) 2.75(2H,t,J=5.9Hz) 2.90-3.00(2H,m) 3.20-3.70(4H,m) 3.86(3H,s),3.84 (3H,s) 4.10-4.23(2H, m) 4.50-4.70(1H,m) 4.80-5.00 (2H, m) 6.10-6.20 (1H, m) 6.87-7.60 (7H, m)		
277	MeO OMe OOOEt		CDCl ₃ 0.83-1.07(3H,m) 1.22-1.38(3H,m) 1.45,1.41(9H, eachs) 1.67-2.00 (5H, m) 2.80-3.13(2H,m) 3.43-3.60(2H,m) 3.83(3H,s),3.85 (3H,s) 4.10-4.30(2H, m) 4.50-5.00(4H,m) 6.00-6.10 (1H, m) 6.85-7.63 (7H, m)		

試験例1

トロンビンおよびトリプシン阻害のICso値の測定

測定はマイクロタイタープレート上で、室温にて実施した。50%メタノールに溶解した各濃度の化合物20μlを、160μlの0.05Mトリス塩酸塩緩 衝液/0.125MNaCl(pH8.0、0.25mMの発色性基質NーベンソイルーPhe-Val-Arg-p-ニトロアニリドを含む)と混和した。次いで、20μlのヒトトロンビンあるいはウシトリプシン(それぞれ最終濃度0.5NIH単位/ml、1単位/ml)を添加し、酵素反応を開始させた。30分間のインキュベーション後、マイクロタイタープレートリーダーで405nmにおける吸光度を測定し、酵素による基質の分解を吸光度の増大として捉えた。阻 客剤のない場合の酵素活性を100%とし、酵素活性の50%阻害を生じる阻害剤濃度をICsoとした。結果を表1に示す。

表1

実施例	I C 50	(M)
·	トロンピン	トリプシン
3	4. 9 X 1 0 -9	3. 0 X 1 0 - ⁷
10	1. 9 X 1 0 -7	2. 7 X 1 0 - 8
1 2	2. 1 X 1 0 -8	2. 2 X 1 0 -7
1 4	2. 8 X 1 0 -8	2. 3 X 1 0 -7
16	3. 9 X 1 0 ⁻⁸	7. 7 X 1 0 -7
18	3. 6 X 1 0 -8	2. 3 X 1 0 - °
2 0	3. 3 X 1 0 -8	1. 4 X 1 0 -8
2 2	5. 6 X 1 0 -8	3. 4 X 1 0 - 6
2 5	6. 5 X 1 0 - °	4. 8 X 1 0 -7

表1(つづき)

実施例	I C ₅₀ (M)					
	トロンビン	トリプシン				
200	4. 6 X 1 0 -9	1. 3 X 1 0 - 7				
169	6. 9 X 1 0 -9	1. 5 X 1 0 - 7				
201	7. 2 X 1 0 -9	2. 4 X 1 0 - 7				
180	7. 3 X 1 0 -9	1. 1 X 1 0 - 7				
197	1. 0 X 1 0 -8	2. 0 X 1 0 - 7				
170	1. 6 X 1 0 -8	1. 1X10-7				
176	1. 8 X 1 0 -8	$4. 5 \times 10^{-7}$				
168	2. 3 X 1 0 -8	$4. \ 9 \times 10^{-7}$				

試験例2

5

雄性スプラグードウレイ(Sprague-Dawley)ラット($190\sim280g$ 、 $7\sim8$ 週齢、日本チャールズリバー社)を1 週間以上馴化した後、実験前日一日断食させた。水は自由摂取とした。部屋は温度 $24\pm2\%$ 、湿度 $55\pm5\%$ 、照明時間 $5:00\sim19:00$ とした。

血漿トロンピン時間 (TT) は、自動血液凝固測定装置 KC-10A (Amelung社)を用いて測定した。血液をクエン酸ナトリウム水溶液 (3.2%、血液 9 容量に対して1容量)と混和し、氷上保存、遠心分離して血漿を得た。血漿はTT測定まで-20℃に保存した。血漿をオーレン緩衝液 (ベーリンガー・

10 マンハイム社)で5倍希釈し、その100μ1を2分間、37℃でインキュベートし、ヒトトロンビン(100μ1、20NIH単位/m1トリス緩衝液、シグマ社)と混和する。最大300秒を限度として、37℃で凝固時間を測定した。同一検体を二重測定し、平均値を求めた。

被検化合物を塩酸酸性1%カルボキシセルロースナトリウム水溶液に溶解し、50mg/ml剤とした。ラットに被検化合物100mg/kg用量を経口投与により単回投与する。投与前および投与0.5、1、2、4時間後に血液標本(0.45ml)を左心室からクエン酸採取し、血漿TTを測定した。測定されたTT値から被検化合物投与前後でのTT値の比(TT ratio)を算出した。結果を表2に示す。

表2

		TT r	atio	
	0.5	1	2	4 (時間)
実施例3の化合物	4.3	6.7	1.9	1.2

産業上の利用可能性

本発明のスルファミド誘導体もしくはその製薬上許容しうる塩またはその水和 物は、優れた抗トロンビン活性を示し、しかも経口可能で副作用の少ない薬剤と して、抗血栓治療剤等の医薬として有効である。

請求の範囲

1. 一般式(1)

(式中、 R_1 は水素原子、低級アルキル基またはアミノ保護基を示し、 R_2 は置 換基を有していてもよく、また縮合されていてもよい窒素原子含有の複素環を示 し、 R_3 は基 $A-(CH_2)_n-$ 、水素原子または置換されていてもよい低級アル 5 キル基を示す。ここでAは置換されていてもよいアリール基、置換されていても よく、また縮合されていてもよい復素環または置換されていてもよい低級シクロ アルキル基を、mは0~6の整数を示す。また-(CH₂) m-部分は1個以上の 置換基で置換されていてもよい。R。は水素原子または低級アルキル基を示し、 R₅ は基-C (=NR₆) NH₂、基-NH-C (=NR₆) NH₂ または基-10 (CH_2) 。-NHR。を、ここでR。は水素原子、低級アルキル基、水酸基、ア シル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低 級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキ シ基を示し、nは $0\sim2$ の整数を示す。また $-(CH_2)$ $_n$ -の部分は1個以上の 置換基で置換されていてもよい)で表されるスルファミド誘導体もしくはその製 15 薬上許容しうる塩またはその水和物。

- 2. R₃ 中のAが置換されていてもよいアリール基である請求項1記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
- 3. R3中のAが置換されていてもよく、また縮合されていてもよい複素環 20 である請求項1記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

10

15

4. R₂ が以下の基(2)~(6)

$$(CH_{2})P (R_{7})sub \qquad (CH_{2})r \qquad B \qquad (CH_{2})r (CH_{2})s \qquad (CH_{2})r \qquad$$

(式中、(R₇) *usは基(2)~(6)中の炭素原子に結合する1個以上の任意 の水素原子が、同一または相異なるR、で置換されていてもよいことを意味し、 R,は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、 置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合され ていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換 されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されて いてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキル スルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシア ルキル基、低級ヒドロキシアルキル基、低級アミノアルキル基、低級カルボキシ ルアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原 子、硫黄原子またはNR。を示し、ここでR。は水素原子、置換されていてもよ い低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換され ていてもよいアシル基、置換されていてもよいスルホニル基、置換されていても よく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、 $0\sim5$ の整数を示すが、ただし、p+qは1, 2, 3, 4または5のいずれかで あり、rおよびsは同一または異なって、 $0\sim5$ の整数を示すが、ただしr+s

WO 97/19919 PCT/JP96/03520

は0, 1, 2, 3, 4または5のいずれかである)のいずれかで表される請求項1記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

5. R_s が-C ($=NR_s$) NH_2 (式中、 R_s は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示す)である請求項1記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

5

6. R_s 中のAが置換されていてもよいアリール基であり、かつ R_z が基(2) \sim (6)

10 (式中、(R₇)・・・・は甚(2)~(6)中の炭素原子に結合する1個以上の任意の水素原子が、同一または相異なるR₇で置換されていてもよいことを意味し、R₇は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合されていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換されていてもよいアシル基、置換されていてもよいアシルオキシ基、プロゲン原子、置換されていてもよい低級アルキルスルホニル基、置換されていてもよいに扱アルキルスルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシア

10

ルキル基、低級とドロキシアルキル基、低級アミノアルキル基、低級カルボキシルアルキル基、低級カルボニルアミノアルキル基を示す。 B は炭素原子、酸素原子、硫黄原子またはNR $_8$ を示し、ここでR $_8$ は水素原子、置換されていてもよい低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換されていてもよいアシル基、置換されていてもよいスルホニル基、置換されていてもよいアシル基、置換されていてもよい表に置換されていてもよい複素環を示し、p及び $_4$ は同一または異なって、 $_4$ の一多の整数を示すが、ただし、 $_4$ の一多の整数を示すが、ただし、 $_4$ の一多の整数を示すが、ただし、 $_4$ の一多の整数を示すが、ただし、 $_4$ の一多の整数を示すが、ただし、 $_4$ の一多の整数を示すが、ただし、 $_4$ を示し、 $_4$ ののですれかである)のいずれかである請求項1、 $_4$ とまたは4のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

7. R_3 中のAが置換されていてもよく、また縮合されていてもよい複素環であり、かつ R_2 が基(2) ~(6)

$$(CH_{2})p_{2}(R_{7})sub \qquad (CH_{2})r \qquad B \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})s \qquad (CH_{2})s \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})s$$

(式中、(R₇) には基(2)~(6)中の炭素原子に結合する1個以上の任意 の水素原子が、同一または相異なるR,で置換されていてもよいことを意味し、 R,は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、 置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合され

25

ていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換 されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されて いてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキル スルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシア ルキル基、低級ヒドロキシアルキル基、低級アミノアルキル基、低級カルボキシ 5 ルアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原 子、硫黄原子またはNR。を示し、ここでR。は水素原子、置換されていてもよ い低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換され ていてもよいアシル基、置換されていてもよいスルホニル基、置換されていても 10 よく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、 $0\sim5$ の整数を示すが、ただし、p+qが1, 2, 3, 4または5のいずれかで あり、rおよびsは同一または異なって、 $0\sim5$ の整数を示すが、ただしr+sは0, 1, 2, 3, 4または5のいずれかである。のいずれかである請求項1、 3または4のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはそ の水和物。 15

- 8. R_s 中のAが置換されていてもよいアリール基であり、かつ R_s が一C ($=NR_s$) NH_2 (式中、 R_s は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示す)である請求項1、2または5のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
- 9. R_s 中のAが置換されていてもよく、また縮合されていてもよい複素環であり、かつ R_s が-C ($=NR_s$) NH_2 (式中、 R_s は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示す)である請求項1、3または5のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
 - 10. R₂が基(2)~(6)

10

15

$$(CH_{2})P_{r}(R_{7})sub \qquad (CH_{2})r \qquad B \qquad (CH_{2})r (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})r \qquad (CH_{2})r \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})r \qquad (CH_{2})r \qquad (CH_{2})s \qquad (CH_{2})r \qquad$$

(式中、(R₇)。いは基(2)~(6)中の炭素原子に結合する1個以上の任意 の水素原子が、同一または相異なるR、で置換されていてもよいことを意味し、 R₇ は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、 置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合され ていてもよい復素環、酸素原子、水酸基、置換されていてもよいアシル基、置換 されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されて いてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキル スルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシア ルキル基、低級ヒドロキシアルキル基、低級アミノアルキル基、低級カルボキシ ルアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原 子、硫黄原子またはNR。を示し、ここでR。は水素原子、置換されていてもよ い低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換され ていてもよいアシル基、置換されていてもよいスルホニル基、置換されていても よく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、 $0\sim5$ の整数を示すが、ただし、p+qは1. 2. 3. 4または5のいずれかで あり、rおよびsは同一または異なって、 $0\sim5$ の整数を示すが、ただしr+sは0, 1, 2, 3, 4または5のいずれかである)のいずれかであり、かつ R_5

が一C (=NR₆) NH₂ (式中、R₆は水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキシ基を示す) である請求項1、4または5のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

11. R_3 中のAが置換されていてもよいアリール基であり、かつ R_2 が基(2) ~(6)

(式中、(R₇)。usは基(2)~(6)中の炭素原子に結合する1個以上の任意の水素原子が、同一または相異なるR₇で置換されていてもよいことを意味し、R₇は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合されていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換されていてもよいアシル基、置換されていてもよいアシル基、置換されていてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキルスルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシアルキル基、低級ヒドロキシアルキル基、低級アミノアルキル基、低級カルボキシルアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原

10

子、硫黄原子またはNR®を示し、ここでR®は水素原子、置換されていてもよい低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換されていてもよいアシル基、置換されていてもよいスルホニル基、置換されていてもよく、また縮合されていてもよい複素環を示し、p及び q は同一または異なって、 $0\sim5$ の整数を示すが、ただし、p+q は 1 、 2 、 3 、 4 または5 のいずれかであり、1 および1 は同一または異なって、1 の一方の整数を示すが、ただし1 に 1 のいずれかであり、1 のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

12. R_s 中のAが置換されていてもよく、また縮合されていてもよい復素環であり、かつ R_2 が基(2) \sim (6)

15 (式中、 (R_7) 。 は基(2)~(6)中の炭素原子に結合する1個以上の任意の水素原子が、同一または相異なる R_7 で置換されていてもよいことを意味し、 R_7 は置換されていてもよい低級アルキル基、置換されていてもよいアリール基、

置換されていてもよい低級アルコキシ基、置換されていてもよく、また縮合され ていてもよい複素環、酸素原子、水酸基、置換されていてもよいアシル基、置換 されていてもよいアミノ基、置換されていてもよいカルボキシル基、置換されて いてもよいアシルオキシ基、ハロゲン原子、置換されていてもよい低級アルキル スルホニル基、置換されていてもよいアリールスルホニル基、低級アルコキシア 5 ルキル基、低級ヒドロキシアルキル基、低級アミノアルキル基、低級カルボキシ ルアルキル基、低級カルボニルアミノアルキル基を示す。Bは炭素原子、酸素原 子、硫黄原子またはNR。を示し、ここでR。は水素原子、置換されていてもよ い低級アルキル基、アミノ保護基、置換されていてもよいアリール基、置換され ていてもよいアシル基、置換されていてもよいスルホニル基、置換されていても 10 よく、また縮合されていてもよい複素環を示し、p及びqは同一または異なって、 $0\sim5$ の整数を示すが、ただし、p+qは1, 2, 3, 4または5のいずれかで あり、r およびs は同一または異なって、 $0\sim5$ の整数を示すが、ただしr+sは0, 1, 2, 3, 4または5のいずれかである) のいずれかであり、かつ R_5 が一C(=NR₆)NH₂(式中、R₆は水素原子、低級アルキル基、水酸基、ア 15 シル基、アシルオキシ基、低級アルコキシ基、低級アルコキシカルボニル基、低 級アルコキシカルボニルオキシ基または低級ヒドロキシアルキルカルボニルオキ シ基を示す)である請求項1、3、4、5、7、9または10のいずれかに記載 の化合物もしくはその製薬上許容しうる塩またはその水和物。

- 20 13. R、がナフチルメチル基である請求項1、2、6、8または11のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
 - 14. R_2 が置換されていてもよいピペラジニル基または置換されていてもよいピペリジニル基である請求項1、4、6、7、10、11または12のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。
- - 16. R₅ が-C (=NH) NH₂ である請求項1、5、8、9、10、1

20

1または12のいずれかに記載の化合物もしくはその製薬上許容しうる塩またはその水和物。

- 17. $N\alpha (1-+77+)$ ルズチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
- 18. Na-(ペンジルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
- 19. $N\alpha-(2-ナフチルメチルアミノスルホニル)-3-アミジノフェ$ 10 ニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩または その水和物。
 - 20. $N\alpha-(2-\nu)$ クロヘキシルエチルアミノスルホニル) -3-アミジ ノフェニルアラニンー 4- アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
- - 22. $N\alpha-(2-7)$ エルペンジルアミノスルホニル) -3-7 ミジノフェニルアラニン-4-7 セチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
 - 23. $N\alpha-(3-7)$ エニルオキシベンジルアミノスルホニル) -3-7 ミジノフェニルアラニンー 4-7 セチルピペラジドもしくはその製薬上許容しうる 塩またはその水和物。
- 24. $N\alpha-(4-7ェニルベンジルアミノスルホニル) -3-アミジノフェ$ 25 ニルアラニンー4-アセチルピペラジドもしくはその製薬上許容しうる塩または その水和物。

たはその水和物。

- 26. $N\alpha-(2, 3-ジメトキシベンジルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。$
- 5 27. N α -(6-ヒドロキシー1-ナフチルメチルアミノスルホニル) 3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

 - 29. $N\alpha (3-4) + ($
- 30. N α -(2. 2-ジフェニルエチルアミノスルホニル) -3-アミ ジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる 塩またはその水和物。
 - 31. $N\alpha-(N-ベンジルピロリジン-2-イルーメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。$
- 32. N α -(3-メトキシベンジルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
- 33. Nα-(3-フェニル-2-(1-ピロリジニルカルボニル)-n-プロピルアミノスルホニル)-3-アミジノフェニルアラニン-4-アセチルピ 25 ペラジドもじくばその製薬上許容しうる塩またはその水和物。

WO 97/19919 PCT/JP96/03520

35. Nα-(2-+7+)ルー2-エチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

- 36 N α -(2-メトキシベンジルアミノスルホニル) -3-アミジノフェ ニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩または その水和物。
 - 37. $N\alpha-(4-ジヒドロキノリルメチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。$
- 10 38. Nα-(2-エトキシベンジルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
- 39. $N\alpha-(2-\nu)$ クロヘキシルオキシエチルアミノスルホニル) -3-アミジノフェニルアラニンー4-アセチルピペラジドもしくはその製薬上許容し うる塩またはその水和物。
 - 40. N α -(2-ベンジル(ベンジル) アミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
- 41. $N\alpha-(3,3-9)$ フェニルーn-7ロピルアミノスルホニル) -3 20 -アミジノフェニルアラニンー4-アセチルピペラジドもしくはその製薬上許容 しうる塩またはその水和物。
 - 42. $N\alpha-(1-+7+)$ ルメチルアミノスルホニル) -3-アミジノーL -フェニルアラニンー4ーアセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
- 43. N α -(3-プロモー1-ナフチルメチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。

- ーアミジノフェールアラニンー4-アセチルピペラジドもしくはその製薬上許容 しうる塩またはその水和物。
- 45. $N\alpha-(4-7)$ ペークリー $N\alpha-(4-7)$ ペークリー $N\alpha-(4-7)$ ペークリー $N\alpha-(4-7)$ パークリー $N\alpha-(4-7)$ パークリー
- 46. $N\alpha-(1-+)$ フェルエチルアミノスルホニル) -3-アミジノフェニルアラニン-4-アセチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
- 47. $N\alpha-(1-ナフチルメチルアミノスルホニル)-3-アミジノフェ$ 10 2-ルアラニン-4-メチルピペリジドもしくはその製薬上許容しうる塩またはその水和物。
 - 48. $N\alpha-(1-+7)$ ルステルアミノスルホニル) -3- アミジノフェニルアラニン-4- メチルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
- 49. N α -(1-ナフチルメチルアミノスルホニル) -3-アミジノフェニルアラニン-4-ホルミルピペラジドもしくはその製薬上許容しうる塩またはその水和物。
 - 50. $N\alpha (1-+) + (1$
- 20 製薬上許容しうる塩またはその水和物。
 - 51. $N\alpha-(1-t)$ アンスルメチルアミノスルホニル) -3- アミジノフェニルアラニン-4- メチルスルホニルピペラジドもしくはその製薬上許容しうる 塩またはその水和物。
- 52. $N\alpha-(1-+)$ フェルメチルアミノスルホニル) -3-アミジノフェ -25 ニルアラニン-4-フェニルスルホニルピペラジドもしくはその製薬上許容しう る塩またはその水和物。
 - 53. Nα-(1-ナフチルメチルアミノスルホニル)-3-アミジノフェニルアラニン-4-(p-トルエンスルホニル)ピペラジドもしくはその製薬上

54. N α -(1-ナフチルメチルアミノスルホニル) -3-アミジノフェニルアラニン-4-(2-テトラヒドロイソキノリル) ピペラジドもしくはその製薬上許容しうる塩またはその水和物。

56. 一般式 (7)

(式中、R1は水素原子、低級アルキル基またはアミノ保護基を示し、R21は水 素原子または低級アルキル基を示し、R3は基A - (CH2) a - , 水素原子また は置換されていてもよい低級アルキル基を示す。ここでAは置換されていてもよい いアリール基、置換されていてもよく、また縮合されていてもよい複素環または 置換されていてもよい低級シクロアルキル基を、mは0~6の整数を示す。また - (CH2) a - 部分は1個以上の置換基で置換されていてもよい。R4は水素原 子、低級アルキル基またはアミノ保護基を示し、R5は基-C(=NR6)NH2、 基-NH-C(=NR6)NH2または基-(CH2)a-NHR6を、ここでR6は 水素原子、低級アルキル基、水酸基、アシル基、アシルオキシ基、低級アルコキ シ基、低級アルコキシカルボニル基、低級アルコキシカルボニルオキシ基または 低級ヒドロキシアルキルカルボニルオキシ基を示し、nは0~2の整数を示す。 また-(CH2)a-の部分は1個以上の置換基で置換されていてもよい)で表さ れる化合物もしくはその製薬上許容しうる塩またはその水和物。

57. 一般式(8)

(式中、 R_1 は水素原子、低級アルキル基またはアミノ保護基を示し、 R_2 は水素原子または低級アルキル基を示し、 R_3 は基 $A-(CH_2)$ a-、水素原子または置換されていてもよい低級アルキル基を示す。ここでAは置換されていてもよいアリール基、置換されていてもよく、また縮合されていてもよい複素環または置換されていてもよい低級シクロアルキル基を、mは $0\sim6$ の整数を示す。また $-(CH_2)$ a-部分は1個以上の置換基で置換されていてもよい。 R_4 は水素原子、低級アルキル基またはアミノ保護基を示す)で表される化合物もしくはその製薬上許容しうる塩またはその水和物。

- 58. 請求項1~55のいずれかに記載された化合物もしくはその製薬上許 10 容しうる塩またはその水和物を有効成分として含有することを特徴とする医薬組 成物。
 - 59. 請求項1~55のいずれかに記載された化合物もしくはその製薬上許容しうる塩またはその水和物を有効成分として含有することを特徴とする抗トロンビン阻害剤。
- 15 60. 請求項1~55のいずれかに記載された化合物もしくはその製薬上許容しうる塩またはその水和物を有効成分として含有することを特徴とする抗血栓治療剤。

INTERNATIONAL SEARCH REPORT

International application No.

			PCT/	JP96/03520			
Int 46,	ASSIFICATION (CONTROL MATTER C. C16 C07D207/08, 09, 16, 56, 60, 62, 74, 213/74, 21 to International Patent Classification (IPC) or to be	15/12, 217/06,	295/16,	6, 22, 26, 42, 26, 309/20,			
B. FIE	LDS SEARCHED			······································			
Int	documentation searched (classification system followed . C1 ⁶ C07D207/08, 09, 16, 56, 60, 62, 74, 213/74, 21	209/14, 18, 4	4, 211/10 295/16,	6, 22, 26, 42, 26, 309/20,			
Documenta	tion searched other than minimum documentation to the	e extent that such documents	are included in t	ne fields searched			
Electronic d CAS	late base consulted during the international search (nam ONLINE	e of data base and, where pr	acticable, search (terms used)			
C. DOCL	MENTS CONSIDERED TO BE RELEVANT			· · · · · · · · · · · · · · · · · · ·			
Category*	Citation of document, with indication, where	appropriate, of the relevan	it passages	Relevant to claim No.			
A	WO, 95/23809, A (Eli Lilly September 8, 1995 (08. 09. Full descriptions & AU, 95 & ZA, 9501615, A & EP, 748	95), 18843, A		1 - 60			
A	JP, 7-278095, A (Eli Lilly October 24, 1995 (24. 10. Full descriptions & US, 54 & 670310, A & CA, 2143532,	95), 36229, A		1 - 60			
A	JP, 6-312973, A (Yamanouch Ltd.), November 8, 1994 (08. 11. Full descriptions (Family:	94),	cal Co.,	1 - 60			
A	JP, 60-56919, A (Societe det Industrielles de l'Ile-April 2, 1985 (02. 04. 85) Full descriptions & EP, 13 & DE, 3426154, A & FR, 255 & US, 4607047, A	de-France S.A. , 3830, A	cifiques),	1 - 60.			
X Further	documents are listed in the continuation of Box C.	See patent fam	nily annex.				
A" document to be of	rategories of cited documents: at defining the general state of the art which is not considered particular relevance	the principle or theo	ry underlying the in				
L" document cited to	ocument but published on or after the international filing date it which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other eason (as specified)	considered novel or step when the docum	cannot be consider nent is taken alone	daimed invention cannot be red to involve an inventive			
O" documen means	document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination						
the priori	t published prior to the international filing date but later than ty date claimed	"&" document member o					
	ctual completion of the international search uary 12, 1997 (12. 02. 97)	Date of mailing of the in February 2		h report (25. 02. 97)			
ame and ma	iling address of the ISA/	Authorized officer					
Japan	nese Patent Office			ł			
acsimile No.		Telephone No.					

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03520

ategory*	Cit	ation of	documen	nt, with in	dication, wh	ere appropria	te, of the re	elevant	passages		Releva	nt to cl	aim No
A	Dece Full	mber des	: 13, script	1994 cions	Bristol (13. 1 & EP, & CA, 2	2. 94)623596	, , A	Co.),		1	- 6	50
									,				
							•			-			
·													
	·.·		·, · · ·	·	- - 124		·v.		·				
			~ ,	· ;					ano				
							•						

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP96/03520

A. (Continuation) CLASSIFICATION OF SUBJECT MATTER

317/60, 62, 319/18, 20, 333/64, C07C307/06, A61K31/195, 215, 275, 335, 36, 38, 40, 435, 44, 445, 47, 495, 535

B. (Continuation) FIELDS SEARCHED

317/60, 62, 319/18, 20, 333/64, C07C307/06, A61K31/195, 215, 275, 335, 36, 38, 40, 435, 44, 445, 47, 495, 535

Form PCT/ISA/210 (extra sheet) (July 1992)

国際調査報告 国際出願番号 PCT/JP96/03520 発明の属する分野の分 《国際特許分類(IPC)) Int. Cl CO7D207/08, 09, 16, 14, 18, 44, 211/16, 22, 26, 42, 46, 56, 60, 62, 74, 237/4, 215/12, 217/06, 295/16, 26, 309/20, 317/60, 62, 319/18, 20, 333/64, C07C307/06. A61K31/195, 215, 275, 335, 36, 38, 40, 435, 44, 445, 47, 495, 535 調査を行った分野 調査を行った最小限資料(国際特許分類(IPC)) Int. C1 C07D207/08, 09, 16, 209/14, 18, 44, 211/16, 22, 26, 42, 46, 56, 60, 62, 74, 213/74, 215/12, 217/06, 295/16, 26, 309/20. 317/60, 62, 319/18, 20, 333/64, C07C307/06, A61K31/195, 215, 275, 335, 36, 38, 40, 435, 44, 445, 47, 495, 535 最小限資料以外の資料で調査を行った分野に含まれるもの 国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAS ONLINE 関連すると認められる文献 引用文献の 関連する カテゴリー* 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 請求の範囲の番号 Α WO, 95/23809, A (ELI LILLY AND COMPANY), 8. 9月. 1995 (08 1 - 6009. 95), 全文&AU, 9518843, A&ZA, 9501615, A&E P. 748333, A JP, 7-278095, A (イーライ・リリー・アンド・カンパニー), 24. 1 Α 1 - 600月. 1995 (24. 10. 95), 全文&US, 5436229, A&6703 10, A&CA, 2143532, A Α JP, 6-312973, A (山之内製薬株式会社), 8.11月, 1994 (08 1 - 60. 11. 94), 全文(ファミリーなし)

|×| C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す
- 「E」先行文献ではあるが、国際出願日以後に公表されたも
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)ニーニ
- 「〇」口頭による開示、使用、展示等に督及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

- 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理 論の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告の発送日 国際調査を完了した日 25.02.97 12.02.97 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 C 9159 日本国特許庁(ISA/JP) 冨永 保 郵便番号100 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3454

	C (続き).	関連すると認める文献	
	引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する
	A	JP, 60-56919, A (ソシエテ・デチュードウ・シャンテイフイツク・エ・	請求の範囲の番号
		アンデユストリエル・ドウ・リールドウフランス), 2. 4月. 1985 (02. 0 4. 85), 全文&EP, 133830, A&DE, 3426154, A&FR, 2	
		550447, A&US, 4607047, A	
	A	JP, 6-340619, A (ブリストルーマイヤーズ スクイブ カンパニー)	1 - 6 0
		13.12月.1994 (13.12.94), 全文&EP, 623596, A&A	1 00
ļ		U, 9461837, A&CA, 2122646, A	
			•
		·	
			·
	•		
	,		
	Ì		
	. [ļ
ľ	ļ	·	
		··	
L			