Overview of Isabelle/HOL

Isabelle	generic theorem prover

Isabelle	generic theorem prover
Standard ML	implementation language

Isabelle/HOL	Isabelle instance for HOL
Isabelle	generic theorem prover
Standard ML	implementation language

ProofGeneral	(X)Emacs based interface
Isabelle/HOL	Isabelle instance for HOL
Isabelle	generic theorem prover
Standard ML	implementation language

HOL = Higher-Order Logic

HOL = Higher-Order Logic HOL = Functional programming + Logic

HOL = Higher-Order Logic HOL = Functional programming + Logic

HOL has

- datatypes
- recursive functions
- logical operators $(\land, \longrightarrow, \forall, \exists, \dots)$

HOL = Higher-Order Logic HOL = Functional programming + Logic

HOL has

- datatypes
- recursive functions
- logical operators $(\land, \longrightarrow, \forall, \exists, \dots)$

HOL is a programming language!

HOL = Higher-Order Logic HOL = Functional programming + Logic

HOL has

- datatypes
- recursive functions
- logical operators $(\land, \longrightarrow, \forall, \exists, \ldots)$

HOL is a programming language!

Higher-order = functions are values, too!

Syntax (in decreasing priority):

```
form ::= (form) | term = term | \neg form 
| form \land form | form \lor form | form \longrightarrow form 
| \forall x. form | \exists x. form
```

Syntax (in decreasing priority):

```
form ::= (form) | term = term | \neg form 
| form \land form | form \lor form | form \longrightarrow form 
| \forall x. form | \exists x. form
```

Scope of quantifiers: as far to the right as possible

Syntax (in decreasing priority):

$$form ::= (form) | term = term | \neg form$$

$$| form \land form | form \lor form | form \longrightarrow form$$

$$| \forall x. form | \exists x. form$$

Scope of quantifiers: as far to the right as possible

•
$$\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$$

Syntax (in decreasing priority):

$$form ::= (form) | term = term | \neg form$$

$$| form \land form | form \lor form | form \longrightarrow form$$

$$| \forall x. form | \exists x. form$$

Scope of quantifiers: as far to the right as possible

- $\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$
- $A = B \wedge C \equiv (A = B) \wedge C$

Syntax (in decreasing priority):

$$form ::= (form) | term = term | \neg form$$

$$| form \land form | form \lor form | form \longrightarrow form$$

$$| \forall x. form | \exists x. form$$

Scope of quantifiers: as far to the right as possible

- $\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$
- $A = B \wedge C \equiv (A = B) \wedge C$
- $\forall x. Px \land Qx \equiv \forall x. (Px \land Qx)$

Syntax (in decreasing priority):

$$form ::= (form) | term = term | \neg form$$

$$| form \land form | form \lor form | form \longrightarrow form$$

$$| \forall x. form | \exists x. form$$

Scope of quantifiers: as far to the right as possible

- $\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C$
- $A = B \wedge C \equiv (A = B) \wedge C$
- $\forall x. Px \land Qx \equiv \forall x. (Px \land Qx)$
- $\forall x. \exists y. P x y \land Q x \equiv \forall x. (\exists y. (P x y \land Q x))$

Abbreviation: $\forall x y. P x y \equiv \forall x. \forall y. P x y$

Abbreviation: $\forall x y. P x y \equiv \forall x. \forall y. P x y \quad (\forall, \exists, \lambda, ...)$

Abbreviation: $\forall x y. P x y \equiv \forall x. \forall y. P x y \quad (\forall, \exists, \lambda, ...)$

Hiding and renaming:

$$\forall x y. (\forall x. P x y) \land Q x y \equiv \forall x_0 y. (\forall x_1. P x_1 y) \land G x_0 y$$

Abbreviation: $\forall x y. P x y \equiv \forall x. \forall y. P x y \quad (\forall, \exists, \lambda, ...)$

Hiding and renaming:

$$\forall x y. (\forall x. P x y) \land Q x y \equiv \forall x_0 y. (\forall x_1. P x_1 y) \land G x_0 y$$

Parentheses:

• \land , \lor and \longrightarrow associate to the right: $A \land B \land C \equiv A \land (B \land C)$

Abbreviation: $\forall x y. P x y \equiv \forall x. \forall y. P x y \quad (\forall, \exists, \lambda, ...)$

Hiding and renaming:

$$\forall x y. (\forall x. P x y) \land Q x y \equiv \forall x_0 y. (\forall x_1. P x_1 y) \land G x_0 y$$

Parentheses:

- \land , \lor and \longrightarrow associate to the right: $A \land B \land C \equiv A \land (B \land C)$
- $A \longrightarrow B \longrightarrow C \equiv A \longrightarrow (B \longrightarrow C) \not\equiv (A \longrightarrow B) \longrightarrow C$

Warning

Quantifiers have low priority and need to be parenthesized:

 $P \wedge \forall x. \ Q \ x \rightsquigarrow P \wedge (\forall x. \ Q \ x)$

Types and Terms

$$\tau ::= (\tau)$$

$$\mid bool \mid nat \mid \dots$$
 base types

```
	au::= (	au)
| bool | nat | \dots  base types
| a | b | \dots  type variables
```

```
\begin{array}{lll} \tau & ::= & (\tau) \\ & \mid & bool \mid & nat \mid \dots & base \ types \\ & \mid & 'a \mid ~'b \mid \dots & type \ variables \\ & \mid & \tau \Rightarrow \tau & total \ functions \end{array}
```

```
	au::= (	au)
| bool | nat | \dots  base types
| 'a | 'b | \dots  type variables
| 	au \Rightarrow 	au  total functions
| 	au \times 	au  pairs (ascii: *)
```

```
 \tau ::= (\tau) 
 \mid bool \mid nat \mid \dots  base types  \mid 'a \mid 'b \mid \dots  type variables  \mid \tau \Rightarrow \tau  total functions  \mid \tau \times \tau  pairs (ascii: *)  \mid \tau \text{ list}
```

Syntax:

Parentheses: $T1 \Rightarrow T2 \Rightarrow T3 \equiv T1 \Rightarrow (T2 \Rightarrow T3)$

```
term ::= (term)
| a  constant or variable (identifier)
| term \ term  function application
| \lambda x. \ term  function "abstraction"
```

```
term ::= (term)
| a | constant or variable (identifier)
| term term | function application
| \lambda x. term | function "abstraction"
| ... | lots of syntactic sugar
```

Syntax:

```
term ::= (term)
a \quad constant or variable (identifier)
term term \quad function application
\lambda x. term \quad function "abstraction"
constant or variable (identifier)
```

Examples: $f(gx)y h(\lambda x. f(gx))$

Syntax:

```
term ::= (term)
a constant or variable (identifier)
term term function application
\lambda x. term function "abstraction"
<math>term term function "abstraction"
term term function "abstraction"
```

Examples: $f(gx)y h(\lambda x. f(gx))$

Parantheses: $f a_1 a_2 a_3 \equiv ((f a_1) a_2) a_3$

λ -calculus on one slide

Informal notation: t[x]

λ -calculus on one slide

Informal notation: t[x]

Function application:
 f a is the call of function f with argument a

λ -calculus on one slide

Informal notation: t[x]

- Function application:
 f a is the call of function f with argument a
- Function abstraction: $\lambda x.t[x]$ is the function with formal parameter x and body/result t[x], i.e. $x \mapsto t[x]$.

λ -calculus on one slide

Informal notation: t[x]

- Function application:
 f a is the call of function f with argument a
- Function abstraction: $\lambda x.t[x]$ is the function with formal parameter x and body/result t[x], i.e. $x \mapsto t[x]$.
- Computation: Replace formal by actual parameter (" β -reduction"): $(\lambda x.t[x]) \ a \longrightarrow_{\beta} t[a]$

λ -calculus on one slide

Informal notation: t[x]

- Function application:
 f a is the call of function f with argument a
- Function abstraction: $\lambda x.t[x]$ is the function with formal parameter x and body/result t[x], i.e. $x \mapsto t[x]$.
- Computation: Replace formal by actual parameter (" β -reduction"): $(\lambda x.t[x]) \ a \longrightarrow_{\beta} t[a]$

Example: $(\lambda x. x + 5) 3 \longrightarrow_{\beta} (3+5)$

\longrightarrow_{β} in Isabelle: Don't worry, be happy

Isabelle performs β -reduction automatically Isabelle considers $(\lambda x.t[x])a$ and t[a] equivalent

Terms and Types

Terms must be well-typed

(the argument of every function call must be of the right type)

Terms and Types

Terms must be well-typed

(the argument of every function call must be of the right type)

Notation: $t :: \tau$ means t is a well-typed term of type τ .

Type inference

Isabelle automatically computes ("infers") the type of each variable in a term.

Type inference

Isabelle automatically computes ("infers") the type of each variable in a term.

In the presence of *overloaded* functions (functions with multiple types) not always possible.

Type inference

Isabelle automatically computes ("infers") the type of each variable in a term.

In the presence of *overloaded* functions (functions with multiple types) not always possible.

User can help with type annotations inside the term.

Example: f (x::nat)

Currying

Thou shalt curry your functions

Currying

Thou shalt curry your functions

- Curried: $f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$
- Tupled: $f' :: \tau_1 \times \tau_2 \Rightarrow \tau$

Currying

Thou shalt curry your functions

- Curried: $f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau$
- Tupled: $f' :: \tau_1 \times \tau_2 \Rightarrow \tau$

Advantage: partial application f a_1 with $a_1 :: \tau_1$

Terms: Syntactic sugar

Some predefined syntactic sugar:

- Infix: +, -, *, #, @, ...
- Mixfix: if _ then _ else _, case _ of, ...

Terms: Syntactic sugar

Some predefined syntactic sugar:

- Infix: +, -, *, #, @, ...
- Mixfix: if _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:

$$! \quad f x + y \equiv (f x) + y \not\equiv f (x + y) \qquad !$$

Base types: bool, nat, list

Type bool

Formulae = terms of type *bool*

Type bool

Formulae = terms of type bool

```
True :: bool False :: bool \land, \lor, ... :: bool \Rightarrow bool \Rightarrow bool \Rightarrow
```

Type bool

Formulae = terms of type bool

```
True :: bool False :: bool \land, \lor, ... :: bool \Rightarrow bool \Rightarrow bool \Rightarrow
```

if-and-only-if: =

Type nat

```
0 :: nat

Suc :: nat \Rightarrow nat

+, *, ... :: nat \Rightarrow nat \Rightarrow nat

:
```

Type nat

```
0 :: nat

Suc :: nat \Rightarrow nat

+, *, ... :: nat \Rightarrow nat \Rightarrow nat

:
```

Numbers and arithmetic operations are overloaded:

$$0,1,2,...$$
 :: 'a, $+$:: 'a \Rightarrow 'a \Rightarrow 'a

You need type annotations: 1 :: nat, x + (y::nat)

Type nat

```
0 :: nat
Suc :: nat ⇒ nat
+, *, ... :: nat ⇒ nat ⇒ nat
:
```

Numbers and arithmetic operations are overloaded:

$$0,1,2,...$$
 :: 'a, $+$:: 'a \Rightarrow 'a \Rightarrow 'a

You need type annotations: 1 :: nat, x + (y::nat)

... unless the context is unambiguous: Suc z

Type list

- []: empty list
- x # xs: list with first element x ("head")
 and rest xs ("tail")
- Syntactic sugar: $[x_1, \dots, x_n]$

Type list

- []: empty list
- x # xs: list with first element x ("head")
 and rest xs ("tail")
- Syntactic sugar: [x₁,...,x_n]

Large library:

hd, tl, map, length, filter, set, nth, take, drop, distinct, . . .

Don't reinvent, reuse!

→ HOL/List.thy

Isabelle Theories

Theory = Module

```
Syntax: theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- MyTh: name of theory. Must live in file MyTh. thy
- $ImpTh_i$: name of *imported* theories. Import transitive.

Theory = Module

```
Syntax: theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- MyTh: name of theory. Must live in file MyTh. thy
- *ImpTh*_i: name of *imported* theories. Import transitive.

```
Usually: theory MyTh imports Main
```

Proof General

An Isabelle Interface

by David Aspinall

Proof General

Customized version of (x)emacs:

- all of emacs (info: C-h i)
- Isabelle aware (when editing .thy files)
- mathematical symbols ("x-symbols")

X-Symbols

Input of funny symbols in Proof General

- via menu ("X-Symbol")
- via ascii encoding (similar to Land): \<and>, \<or>, ...
- via abbreviation: /\, \/, -->,

x-symbol	\forall	3	λ	П	\wedge	V	\longrightarrow	\Rightarrow
ascii (1)	\ <forall></forall>	\ <exists></exists>	\ <lambda></lambda>	\ <not></not>	/\	\/	>	=>
ascii (2)	ALL	EX	0\0	~	&			

(1) is converted to x-symbol, (2) stays ascii.

Finding theorems

- 1. Click on Find button
- 2. Input search pattern (e.g. "_ & True")

Demo: terms and types