```
def new_t(fn, x, tol=1e-8, n_iter=100):
    for i in range(n_iter):
        xnew=x- fn[0](x)/fn[1](x)
        if abs(xnew-x) < tol: break
        x=xnew
    return xnew, i

y=[lambda x: x*4 - x -10, lambda x: 4*x*3 - 1]
x, n=new_t(y, 1.5)
print("the root is %f at %d iteration" %(x,n))</pre>
```

the root is 3.333006 at 99 iteration

```
f=lambda x:x**3+4*(x**2)-10
f1=lambda x:x**2-3
f2=lambda x:x**3-x-1
f3=lambda x:x**3+1 import
math import sympy as eq
q=eq.symbols("x")
f=q**3+4*(q**2)-10
f1=q**2-3 f2=q**3-q-1
f3=q**3+1
der=eq.Derivative(f)
der=der.doit()
der1=eq.Derivative(f1)
der1=der1.doit()
der2=eq.Derivative(f2)
der2=der2.doit()
der3=eq.Derivative(f3)
der3=der3.doit()
```

```
MUHAMMAD UMAR KHAN
10619
NC LAB#05
print(der) print(der1)
print(der2)
print(der3)
fd=lambda x:3*x**2 + 8*x
fd1 =lambda x:2*x fd2=
lambda x:3*x**2 - 1 fd3=
lambda x:3*x**2 def
NewR(fun,fun1,x,to,niter):
for it in range(niter):
    a=x-(fun(x)/fun1(x))
if abs(a-x)<to:
break
          else:
x=a
  return a,it x=float(input("enter x: ")) print("No# Function Derivative interval
tol
          no. of iterations root") tol=0.01 tol2=0.001 tol3=0.0001 niter=20
an, iterations = NewR(f, fd, x, tol, niter) print("1 x^{**}3+4*(x^{**}2)-10 3*x^{**}2+8*x 1.5
",tol,"
            ",iterations,"
                                ",an) an,iterations=NewR(f,fd,x,tol2,niter) print("
x**3+4*(x**2)-10 3*x**2 + 8*x 1.5 ",tol2,"
                                                        ",iterations,"
                                                                             ",an)
an, iterations=NewR(f,fd,x,tol3,niter) print(" x^{**}3+4*(x^{**}2)-10 \ 3*x^{**}2+8*x \ 1.5
",tol3," ",iterations,"
                            ",an)
an, iterations = NewR(f1, fd1, x, tol, niter)
```

print(" x**2-3

2*x

1.5

",tol,"

",iterations,"

",an)

MUHAMMAD UMAR KHAN

10619

NC LAB#05

an, iterations = NewR(f1, fd1, x, tol2, niter)

an, iterations = NewR(f1, fd1, x, tol3, niter)

an, iterations = NewR(f2, fd2, x, tol, niter)

an, iterations = NewR(f2, fd2, x, tol2, niter)

an, iterations = NewR(f2, fd2, x, tol3, niter)

an,iterations=NewR(f3,fd3,x,tol,niter)

an,iterations=NewR(f3,fd3,x,tol2,niter)

an,iterations=NewR(f3,fd3,x,tol3,niter)

MUHAMMAD UMAR KHAN

10619

NC LAB#05


```
In [5]: def NewR(fun,fun1,x,to,niter):
              for it in range(niter):
                   a=x-(fun(x)/fun1(x))
                   if abs(a-x)<to:
                       break
                   else :
                       x=a
              return a,it
In [6]: x=float(input("enter x: "))
          print("No# Function
                                           Derivative
                                                          interval tol
                                                                                    no. of iterations root")
          tol=0.01
          tol2=0.001
          tol3=0,0001
          niter=20
          an,iterations=NewR(f,fd,x,tol,niter)
          print("1 x**344*(x**2)-10 3*x**2 + 8*x 1.5
an,iterations=NewR(f,fd,x,tol2,niter)
print(" x**3+4*(x**2)-10 3*x**2 + 8*x 1.5
                                                                        ",tol,"
                                                                                        ",iterations,"
                                                                                                                     ",an)
          print(" x**3+4*(x**2)-10 3*x**2 an,iterations=NewR(f,fd,x,tol3,niter)
                                                                        ",tol2,"
                                                                                        ",iterations,"
                                                                                                                    ",an)
                      x**3+4*(x**2)-10 3*x**2 + 8*x 1.5
                                                                        ",tol3,"
                                                                                        ",iterations,"
                                                                                                                    ",an)
          an, iterations=NewR(f1, fd1, x, tol, niter)
                                                                        ",tol,"
                                                                                        ",iterations,"
                                                                                                                    ",an)
                                                            1.5
          an,iterations=NewR(f1,fd1,x,tol2,niter)
          an,iterations=NewR(f1,fd1,x,tol3,niter)
print(" x**2-3
                                                                        ",tol2,"
                                                                                         ",iterations,"
                                                            1.5
                                                                                                                     ",an)
                                                                        ",tol3,"
                                                                                        ",iterations,"
                                                                                                                    ",an)
          an,iterations=NewR(f2,fd2,x,tol,niter)
                                                                        ",tol,"
                                                                                        ".iterations."
                                                                                                                    ",an)
                       x**3-x-1
                                                           1.5
          an,iterations=NewR(f2,fd2,x,tol2,niter)
                                                                        ",tol2,"
                                                                                        ",iterations,"
                                                                                                                    ",an)
                      x**3-x-1
                                                            1.5
          an,iterations=NewR(f2,fd2,x,tol3,niter)
                                                                        ",tol3,"
                                                                                        ".iterations."
          print("
                      x**3-x-1
                                                           1.5
                                                                                                                    ", an)
          an,iterations=NewR(f3,fd3,x,tol,niter)
          print("4 x**3+1 3*x**2
an,iterations=NewR(f3,fd3,x,to12,niter)
                                                            1.5
                                                                        ",tol,"
                                                                                        ",iterations,"
                                                                                                                    ",an)
          print(" x**3+1 3*x**2
an,iterations=NewR(f3,fd3,x,tol3,niter)
                                                            1.5
                                                                        ",tol2,"
                                                                                        ",iterations,"
                                                                                                                    ",an)
                     x**3+1
                                                           1.5
                                                                        ",tol3,"
                                                                                        ",iterations,"
                                                                                                                    ",an)
```

MUHAMMAD UMAR KHAN 10619 NC LAB#05

ente	r x: 1.5					
No#	Function	Derivative	interval	tol	no. of iterations	root
1	$x^{**}3+4^{*}(x^{**}2)-10$	3*x**2 + 8*x	1.5	0.01	1	1.3652620148746266
	x**3+4*(x**2)-10	3*x**2 + 8*x	1.5	0.001	2	1.3652300139161466
	x**3+4*(x**2)-10	3*x**2 + 8*x	1.5	0.0001	2	1.3652300139161466
	x**2-3	2*x	1.5	0.01	2	1.7320508100147276
	x**2-3	2*x	1.5	0.001	2	1.7320508100147276
	x**2-3	2*X	1.5	0.0001	2	1.7320508100147276
3	x**3-x-1	3*x**2 - 1	1.5	0.01	2	1.3247181739990537
	x**3-x-1	3*x**2 - 1	1.5	0.001	2	1.3247181739990537
	x**3-x-1	3*x**2 - 1	1.5	0.0001	3	1.3247179572447898
4	x**3+1	3*x**2	1.5	0.01	13	-1.000005923086305
	x**3+1	3*x**2	1.5	0.001	14	-1.0000000000350826
	x**3+1	3*x**2	1.5	0.0001	14	-1.0000000000350826

S No.	Functions	Starting Interval	Tolerance	Total Iterations	Root
1.	x^3-x-1=0	1.5	0.01	2	1.324718
			0.001	2	1.324718
			0.0001	3	1.324718
	x^3+1=0	1.5	0.01	13	-1.000005
2.			0.001	14	-1.000000
			0.0001	14	-1.000000
	x^2-3=0	1.5	0.01	2	1.732051
3.			0.001	2	1.732051
			0.0001	2	1.732051
	x^3+4*x^2-10=0	1.5	0.01	1	1.365262
4.			0.001	2	1.365230
			0.0001	2	1.365230