Estimación de Duración de Proyectos de Ciencia, Tecnología e Innovación

Generación y Evaluación de Múltiples Modelos de Regresión

ORIGEN DE DATOS

Proyectos de ciencia, tecnología e innovación

Son unidades estadísticas que incluyen los proyectos de I+D y/o de innovación (conjunto de actividades que se llevan a cabo para crear resultados CyT y/o innovativos en un tiempo determinado).

datos.gob.ar

https://datos.gob.ar/dataset/mincyt-proyectos-ciencia-tecnologia-e-innovacion

(2) 'datetime64[ns]', (7) 'float64', (3) 'int64', (7) 'object' 19.266 registros TOTAL

Pipeline

- Utilizamos Criterio de P99
- 'duración_días'
- 'año_inicio

Unificar Tablas de Proyectos Eliminar Columnas Poco Útiles Limpieza y Vinculación de Tablas Auxiliares

Análisis y Limpieza de NaNs Análisis y Eliminación de Out-Liers Generación de Variables Calculadas Análisis Gráfico y Numérico de Datos

- Variables
 Categóricas con
 Alta Cardinalidad
- Variables Poco Informativas

Análisis Gráfico

Análisis de Preferencia de Miembros por su Sexo. (En función del Sexo del Director del Proyecto)

Análisis Gráfico

Proporción de Proyectos de acuerdo a Área del Conocimiento y Año de Inicio

Año de Inicio

PairGrid de Relación Cantidad Total de Miembros vs Monto Total vs Duración (Discriminado por Institución)

Análisis

Gráfico

MACHINE LEARNING

MACHINE LEARNING

Resultados

Visualización de Predicciones de Cada Modelo Propuesto

1000

Etiquetas Reales

1500 2000

1000

Etiquetas Reales

1500 2000

	Train Score (R2)	Test MSE
Linear Regression	0.461494	167040.0
Ridge Regression	0.461409	236711.0
Lasso Regression	0.461444	248336.0
Elastic Regression	0.461396	297722.0
KNN Regression	0.541587	144424.0
SVR Regression	0.387586	243420.0
Random Forest Regression	0.637317	381204.0
Multi-Layer Percep. Regression	0.558808	227833.0

2500

2000

500

Predicciones 1000

CONCLUSIONES

- Ninguno de los modelos ha conseguido generar una predicción que esté alineada con la recta de correspondencia con los valores reales.
- ✓ Contrastar la performance de un modelo en train con su performance en test evidencia si un modelo consigue generalizar o no. No siempre el modelo con mejor performance en train tiene capacidad de generalizar en test.
- Esto se puede deber, o bien a que el caso en estudio es demasiado complejo para los modelos propuestos, o no contamos con suficientes variables / datos informativos para conseguir un mejor resultado.
- De tener que optar por uno de los modelos propuestos más arriba, nos quedaremos con KNN Regressor, pero lo ideal sería continuar trabajando con los datos y proponer un modelo que pueda abordar mejor el problema.

i MUCHAS GRACIAS!

