ex8_sebastian_pineda

July 1, 2019

1 Distributed Data Analytics

2 Exercise Sheet 8

2.1 Sebastian Pineda Arango Mtr. Nr. 246098

Note: In the code folder, the HTML file deploys all the tables correctly, while in the PDF, some tables are cut.

2.2 Exercise 1: Apache Spark Basics

2.2.1 Part a) Basic Operations on Resilient Distributed Dataset

1. In [1]: #find spark import findspark findspark.init() #import spark context from pyspark import SparkContext sc = SparkContext("local", "First App") In [43]: #creating objects a = ["spark", "rdd", "python", "context", "create", "class"] b = ["operation", "apache", "scala", "lambda", "parallel", "partition"] In [44]: #creating RDD a_RDD = sc.parallelize(a).map(lambda x: (x,1)) b_RDD = sc.parallelize(b).map(lambda x: (x,1)) In [45]: a_RDD.leftOuterJoin(b_RDD).collect() Out[45]: [('python', (1, None)), ('class', (1, None)), ('spark', (1, None)), ('rdd', (1, None)), ('context', (1, None)), ('create', (1, None))]

```
In [46]: a_RDD.rightOuterJoin(b_RDD).collect()
Out[46]: [('scala', (None, 1)),
          ('parallel', (None, 1)),
          ('partition', (None, 1)),
          ('operation', (None, 1)),
          ('apache', (None, 1)),
          ('lambda', (None, 1))]
  2.
In [47]: def count_ch(RDD_words, ch):
             """This functions counts how many times ch
                 appers in RDD_words"""
             count= RDD_words.map(lambda x: list(x)) \
                       .flatMap(lambda x: x) \
                       .filter(lambda x: x==ch)\
                       .count()
             return count
         #counting "s" in the list of words
         count1 = count_ch(sc.parallelize(a), "s")
         count2 = count_ch(sc.parallelize(b), "s")
         print("Count in list a:", count1)
         print("Count in list b:", count2)
Count in list a: 3
Count in list b: 1
  3.
In [48]: def count_ch2(RDD_words, ch):
             """Counts ch in RDD_words using aggregate"""
             seqOp = (lambda x, y : (x[0]+y, x[1]+1))
             combOp = (lambda x,y : (x[0]+y[0], x[1]+y[1]))
             count = RDD_words.map(lambda x: list(x)) \
                         .flatMap(lambda x: x) \
                         .filter(lambda x: x==ch) \
                         .aggregate(("",0), seqOp, combOp)
             return count
```

```
#counting "s" in the list of words
        count1 = count_ch2(sc.parallelize(a), "s")
        count2 = count_ch2(sc.parallelize(b), "s")
        print("Count in list a:", count1[1])
        print("Count in list b:", count2[1])
Count in list a: 3
Count in list b: 1
2.2.2 Part b) Basic Operations on Resilient Distributed Dataset
In [2]: #importing SQL context
       import pyspark as ps
       sqlContext = ps.SQLContext(sc)
In [58]: #reading the file and its schema
        df = sqlContext.read.json("students.json")
        df.printSchema()
root
 |-- course: string (nullable = true)
 |-- dob: string (nullable = true)
 |-- first_name: string (nullable = true)
 |-- last_name: string (nullable = true)
 |-- points: long (nullable = true)
 |-- s_id: long (nullable = true)
In [59]: #describing the file
        df.describe(["points"]).show()
+----+
                  points|
|summary|
+----+
 count
   mean | 11.736842105263158 |
| stddev|3.3307007147839007|
  min
    max
                       19|
+----+
In [60]: #finding the average
        import pyspark.sql.functions as f
```

mean_points = df.agg(f.avg("points"))

mean_points.show()

```
----+
       avg(points)|
+----+
|11.736842105263158|
+----+
  1.
In [61]: #imputing the column "points"
        df = df.na.fill(mean_points.first()[0], ["points"])
        df.describe(["points"]).show()
+----+
|summary|
                  points
+----+
  count
                      20|
   meanl
                    11.7
| stddev|3.246050231475656|
    min
    max
                      19|
+----+
  2.
In [62]: #imputing the columns "dob" and "last name"
        df = df.na.fill("unknown", ["dob"])
        df = df.na.fill("--",["last_name"])
        df.show()
                                 dob|first_name|last_name|points|s_id|
            course
|Humanities and Art| October 14, 1983|
                                          Alan|
                                                    Joe|
                                                            10|
                                                                  1 l
  Computer Science | September 26, 1980 |
                                        Martin|
                                                            17|
                                                                  2|
                                                Genberg
    Graphic Design
                       June 12, 1982|
                                         Athur|
                                                 Watson
                                                            16|
                                                                  31
    Graphic Design
                       April 5, 1987|
                                      Anabelle
                                                            12|
                                                                  4|
                                                 Sanberg
                    November 1, 1978|
        Psychology|
                                          Kira | Schommer |
                                                            11|
                                                                  5 l
          Business|
                    17 February 1981 | Christian
                                                 Kiriam|
                                                            10|
                                                                  6|
  Machine Learning
                      1 January 1984|
                                       Barbara|
                                                 Ballard|
                                                            14|
                                                                  7|
     Deep Learning
                    January 13, 1978|
                                                            10|
                                          John|
                                                                  81
  Machine Learning
                    26 December 1989|
                                        Marcus
                                                  Carson
                                                            15 l
                                                                  9|
           Physics|
                    30 December 1987|
                                         Marta|
                                                 Brooks
                                                            11|
                                                                10|
    Data Analytics|
                       June 12, 1975
                                         Holly | Schwartz |
                                                            12|
                                                                 11|
```

April

Black

Irene| Bradley|

12|

13 l

11|

13|

July 2, 1985|

July 22, 1980|

Computer Science

Computer Science

```
Informatics|
                       May 18, 1987|
                                       Rosiel
                                               Norman
                                                         9l 15l
         Business|
                    August 10, 1984|
                                                          7 | 16 |
                                      Martin
                                               Steele
  Machine Learning | 16 December 1990 |
                                                         9 17
                                       Colin | Martinez |
    Data Analytics
                           unknown
                                     Bridget|
                                                Twain
                                                          6l 18l
         Business|
                       7 March 1980
                                     Darlene|
                                                Mills
                                                         19 | 19 |
    Data Analytics
                       June 2, 1985
                                     Zachary
                                                             201
+----+
  3.
In [63]: import datetime
       def change_date(date):
           """This functions correct the format of the date and
           outputs the format mm-dd-yyyy"""
           d = date[0].replace(",", "")
           if d[0].isdigit():
               return datetime.datetime.strptime(d, "%d %B %Y").strftime("%m-%d-%Y")
           elif d =="unknown":
               return "unknown"
           else:
               return datetime.datetime.strptime(d, "%B %d %Y").strftime("%m-%d-%Y")
In [65]: #changing the date
       date2 = df.select("dob").rdd.map(lambda x: (change_date(x),) ).toDF(["date2"])
        date2 = date2.withColumn("id", f.monotonically_increasing_id())
        df = df.withColumn("id", f.monotonically_increasing_id())
        #appending the new changed date
        df2 = df.join(date2, "id", "inner").drop("id")
       df2.show()
 -----
           coursel
                              dob|first_name|last_name|points|s_id|
+----+
|Humanities and Art| October 14, 1983|
                                                         10|
                                        Alan
                                                  Joe|
                                                              1 | 10 - 14 - 1983 |
  Computer Science|September 26, 1980|
                                      Martin| Genberg|
                                                         17|
                                                              2|09-26-1980|
    Graphic Design
                      June 12, 1982
                                       Athur|
                                              Watson
                                                         16|
                                                              3 | 06 - 12 - 1982 |
    Graphic Design
                      April 5, 1987|
                                                         12|
                                    Anabelle | Sanberg |
                                                              4|04-05-1987|
       Psychology | November 1, 1978 |
                                        Kira| Schommer|
                                                         11|
                                                              5|11-01-1978|
         Business | 17 February 1981 | Christian | Kiriam |
                                                         10|
                                                              6 | 02 - 17 - 1981 |
  Machine Learning
                     1 January 1984|
                                     Barbara | Ballard |
                                                         141
                                                              7 | 01 - 01 - 1984 |
     Deep Learning
                   January 13, 1978
                                        Johnl
                                                         10|
                                                              8|01-13-1978|
```

Markl

Psychology

7 February 1986

Weberl

12 | 14 |

Marcus| Carson|

15 l

9|12-26-1989|

Machine Learning | 26 December 1989 |

	Physics	30 December 1987	Marta	Brooks	11	10 12-30-1987
	Data Analytics	June 12, 1975	Holly	Schwartz	12	11 06-12-1975
	Computer Science	July 2, 1985	April	Black	11	12 07-02-1985
	Computer Science	July 22, 1980	Irene	Bradley	13	13 07-22-1980
	Psychology	7 February 1986	Mark	Weber	12	14 02-07-1986
	Informatics	May 18, 1987	Rosiel	Norman	9	15 05-18-1987
	Business	August 10, 1984	Martin	Steele	7	16 08-10-1984
	Machine Learning	16 December 1990	Colin	Martinez	9	17 12-16-1990
	Data Analytics	unknown	Bridget	Twain	6	18 unknown
	Business	7 March 1980	Darlene	Mills	19	19 03-07-1980
	Data Analytics	June 2, 1985	Zachary		10	20 06-02-1985
+-	+		+	+	+	+

4.

In [63]: #number of seconds in a year = 31536000
 #creating the age column by substracting current date with the Date of Birth coumn
 df2 = df2.withColumn("age", ((f.unix_timestamp(f.current_date())-f.unix_timestamp(f.current_date()))

course		dob	 first_name 	_	 points 	_	date2	age
Humanities and Art	October 14,	1983	Alan	Joe	10	1	 10-14-1983	35
Computer Science	September 26,	1980	Martin	Genberg	17	2	09-26-1980	38
Graphic Design	June 12,	1982	Athur	Watson	16	3	06-12-1982	37
Graphic Design	April 5,	1987	Anabelle	Sanberg	12	4	04-05-1987	32
Psychology	November 1,	1978	Kira	Schommer	11	5	11-01-1978	40
Business	17 February	1981	Christian	Kiriam	10	6	02-17-1981	38
Machine Learning	1 January	1984	Barbara	Ballard	14	7	01-01-1984	35 l
Deep Learning	January 13,	1978	John		10	8	01-13-1978	41
Machine Learning	26 December	1989	Marcus	Carson	15	9	12-26-1989	29
Physics	30 December	1987	Marta	Brooks	11	10	12-30-1987	31
Data Analytics	June 12,	1975	Holly	Schwartz	12	11	06-12-1975	44
Computer Science	July 2,	1985	April	Black	11	12	07-02-1985	34
Computer Science	July 22,	1980	Irene	Bradley	13	13	07-22-1980	38
Psychology	7 February	1986	Mark	Weber	12	14	02-07-1986	33
Informatics	May 18,	1987	Rosie	Norman	9	15	05-18-1987	32
Business	August 10,	1984	Martin	Steele	7	16	08-10-1984	34
Machine Learning	16 December	1990	Colin	Martinez	9	17	12-16-1990	28
Data Analytics	unl	nown	Bridget	Twain	6	18	unknown	null
Business	7 March	1980	Darlene	Mills	19	19	03-07-1980	39
Data Analytics	June 2,	1985	Zachary		10	20	06-02-1985	34

```
5.
```

```
std_points = df.agg(f.stddev("points"))
        std_points.show()
        std_pd = float(std_points.toPandas().iloc[0])
        mean_pd = float(mean_points.toPandas().iloc[0])
  -----+
|stddev_samp(points)|
  ----+
 3.246050231475656
+----+
In [69]: #setting the points which are greater then tandard deviation to 20
        df2 = df2.withColumn("new_points",f.when(f.col("points")-mean_pd> std_pd,20) \
                                   .otherwise(f.col("points")))
        df2.show()
                                   .+----+----
                                                                       date2|new_points|
           coursel
                               dob|first_name|last_name|points|s_id|
  |Humanities and Art| October 14, 1983|
                                          Alan
                                                    Joe
                                                            10|
                                                                 1|10-14-1983|
                                                                                     10 l
  Computer Science | September 26, 1980 |
                                                                 2|09-26-1980|
                                                                                     201
                                        Martin|
                                                Genberg |
                                                            17|
                       June 12, 1982|
                                                                                     201
    Graphic Design
                                         Athur|
                                                 Watson
                                                            16|
                                                                 3|06-12-1982|
    Graphic Design|
                       April 5, 1987|
                                      Anabelle|
                                                Sanberg
                                                            12|
                                                                 4|04-05-1987|
                                                                                     12|
        Psychology|
                    November 1, 1978|
                                          Kira | Schommer |
                                                            11|
                                                                                     11|
                                                                 5 | 11 - 01 - 1978 |
          Business
                    17 February 1981 | Christian
                                                 Kiriam|
                                                            10|
                                                                 6 | 02 - 17 - 1981 |
                                                                                     10|
  Machine Learning
                      1 January 1984|
                                       Barbara | Ballard |
                                                            14 l
                                                                 7 | 01 - 01 - 1984 |
                                                                                     141
     Deep Learning
                    January 13, 1978|
                                          John
                                                     --I
                                                            10|
                                                                 8|01-13-1978|
                                                                                     10|
  Machine Learning
                    26 December 1989|
                                        Marcus
                                                            15|
                                                                 9|12-26-1989|
                                                                                     201
                                                 Carson
           Physics|
                    30 December 1987|
                                         Marta|
                                                 Brooks
                                                            11|
                                                                10 | 12 - 30 - 1987 |
                                                                                     11|
    Data Analytics|
                       June 12, 1975|
                                                            12|
                                                                                     12|
                                         Holly | Schwartz |
                                                                11 | 06 - 12 - 1975 |
                       July 2, 1985|
  Computer Science
                                         April|
                                                  Black|
                                                            11|
                                                                12|07-02-1985|
                                                                                     11|
  Computer Science
                       July 22, 1980|
                                         Irene|
                                                Bradley
                                                            13|
                                                                13 | 07 - 22 - 1980 |
                                                                                     13|
        Psychology|
                     7 February 1986|
                                          Mark
                                                  Weberl
                                                            12 | 14 | 02 - 07 - 1986 |
                                                                                     121
       Informatics
                        May 18, 1987|
                                                 Norman
                                         Rosie
                                                            9 | 15 | 05 - 18 - 1987 |
                                                                                      9|
          Business
                     August 10, 1984|
                                        Martin|
                                                 Steelel
                                                            7 | 16 | 08 - 10 - 1984 |
                                                                                      7|
  Machine Learning
                    16 December 1990|
                                         Colin| Martinez|
                                                             9 | 17 | 12 - 16 - 1990 |
                                                                                      9|
    Data Analytics
                            unknown
                                       Bridget|
                                                  Twain
                                                             6 | 18 | unknown |
                                                                                      6|
          Business
                        7 March 1980
                                                                19|03-07-1980|
                                       Darlene|
                                                  Mills|
                                                            19|
                                                                                     20|
    Data Analytics
                       June 2, 1985
                                       Zachary
                                                            101
                                                                20 | 06-02-1985 |
                                                                                     10 l
```

In [66]: #getting the standard deviation and mean of points

```
In [68]: #ploting histograms of the points
    import matplotlib.pyplot as plt
    %matplotlib inline

hists= df2.select("points").rdd.flatMap(lambda x: x).histogram(20)
    plt.bar(hists[0][:-1], hists[1])
    plt.grid()
    plt.xlabel("Points before change")
    plt.ylabel("Frequency")
```

Out[68]: Text(0,0.5,'Frequency')

2.3 Exercise 2: Apache Spark Basics

```
In [93]: #reading tags and printing first row
        data = sc.textFile("tags.dat")
        data.first()
Out[93]: '15::4973::excellent!::1215184630'
In [94]: #processing the rows with mappers
        df = data.map(lambda x: x.split("::")) \
                 .map(lambda x: (int(x[0]), int(x[1]), x[2], int(x[3])))
        df.first()
Out[94]: (15, 4973, 'excellent!', 1215184630)
In [95]: #transforming to DataFrame
        df = df.toDF(["UserID", "MovieID", "Tag", "Timestamp"])
        df.show(10)
|UserID|MovieID|
                           Tag | Timestamp |
+----+
                    excellent! | 1215184630 |
     15|
          4973|
    201
                      politics | 1188263867 |
          1747|
    20|
          1747|
                        satire | 1188263867 |
```

```
201
          2424 | chick flick 212 | 1188263835 |
    201
          2424
                       hanks | 1188263835 |
    20|
          2424
                         ryan|1188263835|
    20|
          2947
                       action|1188263755|
    201
                         bond | 1188263756 |
          2947
    20|
          3033|
                        spoof | 1188263880 |
    20|
          3033
                    star wars | 1188263880 |
+----+
only showing top 10 rows
```

1.

To separate the tags session, we create two flags: 1) change user (it means, the previous and current user are different) and 2) change session (It means, the difference between the last and current timestamp is greater than 30 mins. Base on those two flags, we create a SessionID that allows to identify different sessions in further processing.

UserID	MovieID	Tag Timestamp	TimestampLag	ChangeUser	ChangeSession SessionI
++ 15	4973	excellent! 1215184630	null	0	1
20	2947	action 1188263755	1215184630	1	1
20	2947	bond 1188263756	1188263755	01	01
20	7438	bloody 1188263801	1188263756	01	01
20	7438	kung fu 1188263801	1188263801	01	01
20	7438	Tarantino 1188263801	1188263801	01	01
20	2424	chick flick 212 1188263835	1188263801	01	01
20	2424	hanks 1188263835	1188263835	01	0
20	2424	ryan 1188263835	1188263835	01	01
20	1747	politics 1188263867	1188263835	01	01
20	1747	satire 1188263867	1188263867	01	01
20	3033	spoof 1188263880	1188263867	01	01
20	3033	star wars 1188263880	1188263880	0	01

	21	55253	NC-17	1205081488	1188263880	1	1	;
١	21	55247	R	1205081506	1205081488	0	0	;
	25	6709	Johnny Depp	1162147221	1205081506	1	1	4
	25	50	Kevin Spacey	1166101426	1162147221	0	1	
	31	6373	comedy of manners	1188263644	1166101426	1	1	(
	31	546	strangely compelling	1188263674	1188263644	0	0	(
	31	2116	Epic	1188263707	1188263674	0	0	(
4		+	·+					

only showing top 20 rows

2.

Now find the tags per session for every user (tag frequency). This is used to calculate the man and standard deviation of start frequency.

+	+	+	+		
SessionID UserID TagsPerSession					
+	+	+	+		
1	1	15	1		
1	2	20	12		
1	3	21	2		
1	4	25	1		
1	5	25	1		
1	6	31	5		
1	7	32	1		
1	8	39	5		
1	9	48	2		
1	10	49	15		
+	+	+	+		

only showing top 10 rows

3.

Now we find the mean and the standard deviation of tags per user.

+	+					
UserID MeanTagsPerUser						
	++					
15	1.0					
20	12.0					
21	2.0					
25	1.0					
31	5.0					
32	1.0					
39	5.0					
48	2.0					
49	15.0					
75	1.0					
78	1.0					
109	2.7778					
127	26.0					
133	5.0					
146	4.9489					
147	2.0					
170	1.0					
175	1.0					
181	4.0					
190	6.5					
+	+					
only showing	top 20 rows					

In [104]: #standard deviation

StdTagsPerUser = TagsPerSession.groupBy("UserID").agg(f.stddev_pop("TagsPerSession"
.withColumnRenamed("stddev_pop(TagsPerSession)", "Std"
.withColumn("StdTagsPerUser", f.round("StdTagsPerUser")

StdTagsPerUser.show()

+	+	+				
UserID StdTagsPerUser						
+	+	+				
1	15	0.0				
1	20	0.01				
1	21	0.01				
1	25	0.0				
1	31	0.0				
1	32	0.0				
1	39	0.0				
1	48	0.0				
1	49	0.0				
1	75	0.01				
	78	0.01				

```
109|
                 3.08321
    127|
                    0.01
                    0.01
    133|
    146
                 8.9965|
                    0.0
    147 l
    170|
                    0.0
    175|
                    0.0
    181 l
                    0.0
                 6.0622|
    190|
only showing top 20 rows
```

4.

20|

Computing the mean and standard deviation across all users.

List of users with a mean tagging frequency within two standar deviation from the mean frequency of all users.

```
| 21|
| 25|
| 31|
| 32|
| 39|
| 48|
| 49|
| 75|
+----+
only showing top 10 rows
```

2.4 Bonus: Analysis of Movie Dataset Using Apache Spark Mapreduce

```
In [112]: import os
        import pyspark.sql.types as types
        data_schema = [types.StructField('userId', types.IntegerType(), True),
                     types.StructField('movieId', types.IntegerType(), True),
                     types.StructField('rating', types.DoubleType(), True),
                     types.StructField('timestamp', types.DoubleType(), True)]
        data = sqlContext.read.csv(os.path.join("ml-latest-small", "ratings.csv"), header=True
        data.show(3)
+----+
|userId|movieId|rating| timestamp|
+----+
     1|
           1 4.0 | 9.64982703E8 |
     1|
           3 | 4.0 | 9.64981247E8 |
     1|
           6| 4.0|9.64982224E8|
+----+
```

1.

67618

5.0

only showing top 3 rows

Finding the movie titles with the maximum average ratings (there are several of them: 256).

```
In [116]: MeanRatingPerMovie = data.groupBy("movieId").mean("rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating").orderBy(f.desc("avg(rating")
```

```
| 496| 5.0|
| 148| 5.0|
+----+
only showing top 5 rows
```

```
|movieId|avg(rating)|
+----+
| 148| 5.0|
| 496| 5.0|
| 67618| 5.0|
| 150554| 5.0|
| 142444| 5.0|
+----+
only showing top 5 rows
```

Movies with maximal avg rating: 296

2.

We see that the User with ID: 139 assigns the lowest average ratings among all the users that have more than 40 ratings.

```
+----+
|UserId|count(rating)| avg(rating)|
+----+
| 139| 194|2.1443298969072164|
| 153| 179| 2.217877094972067|
| 567| 385|2.2454545454545456|
+----+
only showing top 3 rows
```

3.

We see that the western movies have the hgihest average ratings.

2.5 References

- https://www.coursera.org/lecture/big-data-machine-learning/handling-missing-valuesin-spark-Goh1z
- "Learning PySpark" by Tomasz Drabas and Denny Lee
- https://spark.apache.org/docs/2.1.0/api/python/pyspark.sql.html
- https://www.analyticsvidhya.com/blog/2016/10/spark-dataframe-and-operations/