Vision Transformer Adapter for Dense Predictions

Zhe Chen^{1,2*}, Yuchen Duan^{2,3*}, Wenhai Wang², Junjun He², Tong Lu¹, Jifeng Dai^{2,3}, Yu Qiao²

¹Nanjing University, ²Shanghai Al Laboratory, ³Tsinghua University

Transformer

- Remarkable success in a broad range of computer vision fields
 - Due to dynamic modeling capability & attention mechanism
- Surpassing CNN models and reaching SOTA performance in many vision tasks
- Types: Plain ViT, Its hierarchical variants

Its hierarchical variants

Plain Transformer (ViT)

- No assumption of input data
 - Can use massive multi-modal data for pre-training (Image, text, video, ...)
 - Encourages the model to learn semantic-rich representations
- However, defects in dense predictions compared to vision-specific transformers
 - Lacking image-related prior knowledge results in lower performance

- 💡 Idea : Plain ViT + Adapter
- Goal
 - Develop an adapter to close the performance gap between the plain ViT and vision-specific backbones for dense prediction tasks
- Inspired by the adapters in the NLP field
- result : ViT-Adapter

Overall Architecture of ViT-Adapter

Adapter in NLP field(Neil Houlsby et al.)

Concurrent work

- Yanghao Li et al., ViTDet
 - Employed some upsampling and downsampling modules to adapt the plain ViT for object detection
- Weakness

 Apply ImageNet supervised pre-training and fine-tune for 36 epochs
 - Under regular training settings, their detection performance is still inferior to recent models
 it is still challenging to design a powerful dense prediction task adapter for ViT

Yanghao Li et al.

ViTDet

ViT-adapter

- Pre-training-free additional network
 - Can efficiently adapt the plain ViT to downstream dense prediction tasks without modifying its original architecture
- Adapter: introduce the vision-specific inductive biases into the plain ViT
 - Spatial prior module
 - Spatial feature injector
 - Multi-scale feature extractor

Overall Architecture

Plain ViT (pre-trained)

- Use original architecture
 - Patch embedding: 16x16 non-overlapping patches
 - Feature resolution is reduced to 1/16 of the original image
 - Consist of N blocks (each block contain the 'L/N' encoder layers)

Adapter

- Contains 3 types of module
 - Spatial prior module
 - Spatial feature injector
 - Multi-scale feature extractor
- Injector & Extractor
 - Adopt sparse attention(default : Xizhou Zhu et al.) to reduce computational cost

Adapter: Spatial Prior Module

- Model the local spatial contexts of images parallel with the patch embedding layer
- Standard convolutional stem: three conv. and max-pooling
 - Input: Image 0

 - Output: Feature pyramid $\{F_1, F_2, F_3\}$ (D-dim. feature maps with resolutions of 1/8, 1/16, and 1/32) Feature pyramid: be flattened and concatenated into feature tokens F_{sp}^{-1} rightarrow passed to Injector

Adapter: Spatial Feature Injector

- Inject the spatial priors into ViT
 - $\bigcirc \qquad \text{Method: cross-attention (equation: } \hat{\mathcal{F}}_{\mathrm{vit}}^i = \mathcal{F}_{\mathrm{vit}}^i + \gamma^i \mathrm{Attention}(\mathrm{norm}(\mathcal{F}_{\mathrm{vit}}^i), \mathrm{norm}(\mathcal{F}_{\mathrm{sp}}^i)))$
- Input for i-th block of the ViT
 - Query: input feature F_{vit}^{i}
 - Key, Value: spatial feature F_{sp}ⁱ
 - $\circ \quad \gamma^i \in R^D$: balance the attention layer's output and the F_{vit}^{i}
 - Initialized with 0
 - Ensures that F_{vit} will not be modified drastically due to the injection of F_{sp} making better use of the pre-trained weights of ViT

making better use of the pre-trained weights of Vil

Adapter: Multi-Scale Feature Extractor

- Extract multi-scale features
 - $\textbf{Method: cross-attention (equation: } \hat{\mathcal{F}}_{\mathrm{sp}}^{i} = \mathcal{F}_{\mathrm{sp}}^{i} + \operatorname{Attention}(\operatorname{norm}(\mathcal{F}_{\mathrm{sp}}^{i}), \operatorname{norm}(\mathcal{F}_{\mathrm{vit}}^{i+1})), \quad \mathcal{F}_{\mathrm{sp}}^{i+1} = \hat{\mathcal{F}}_{\mathrm{sp}}^{i} + \operatorname{FFN}(\operatorname{norm}(\hat{\mathcal{F}}_{\mathrm{sp}}^{i})))$
- Input for i-th block of the ViT
 - Query: spatial feature F_{sp} i Key, Value: input feature F_{vit} i

Object Detection & Instance Segmentation: Settings

- Test backbone's performance using various detector
- Detector
 - Mask R-CNN (Kaiming He et al., ICCV 2017)
 - Cascade Mask R-CNN (Zhaowei Cai & Nuno Vasconcelos, TPAMI 2019)
 - ATSS (Shifeng Zhang et al., CVPR 2020)
 - o GFL (Xiang Li et al., NeurIPS 2020)
- Dataset: MS COCO 2014
- Edit L-layer ViT (to save time and memory)
 - Use 14x14 window attention except for layers spaced at an interval of L/4
- ETC.
 - AdamW optimizer(learning rate 1e-4, weight decay 0.05)
 - Training schedule: 1x(12 epochs), 3x(36 epochs)

Object Detection & Instance Segmentation: Results

- Pre-trained weights
 - ViT-T/S/B: DeiT released ImageNet-1K weights
 - ViT-L: ImageNet-22K weights from Steinet et al.

Method	#Param					schedu AP ₅₀				CNN 3			
	(M)	AP	AP 50	AP 75	AP	AP 50	AP 75	AP	AP 50	AP 75	AP	AP ₅₀	AP 75
PVT-Tiny (Wang et al., 2021)	32.9	36.7	59.2	39.3	35.1	56.7	37.3	39.8	62.2	43.0	37.4	59.3	39.9
PVTv2-B1 (Wang et al., 2022a)	33.7	41.8	64.3			61.2					40.8	64.0	43.8
ViT-T (Li et al., 2021b)	26.1	35.5	58.1	37.8	33.5	54.9	35.1	40.2	62.9	43.5	37.0	59.6	39.0
ViTDet-T (Li et al., 2022b)	26.6	35.7	57.7	38.4	33.5	54.7	35.2	40.4	63.3	43.9	37.1	60.1	39.3
ViT-Adapter-T (ours)	28.1	41.1	62.5	44.3	37.5	59.7	39.9	46.0	67.6	50.4	41.0	64.4	44.1
PVT-Small (Wang et al., 2021)	44.1	40.4	62.9	43.8	37.8	60.1	40.3	43.0	65.3	46.9	39.9	62.5	42.8
PVTv2-B2 (Wang et al., 2022a)	45.0	45.3	67.1	49.6	41.2	64.2	44.4	47.8	69.7	52.6	43.1	66.8	46.7
Swin-T (Liu et al., 2021b)	47.8	42.7	65.2	46.8	39.3	62.2	42.2	46.0	68.1	50.3	41.6	65.1	44.9
ConvNeXt-T (Liu et al., 2022)	48.1	44.2	66.6	48.3	40.1	63.3	42.8	46.2	67.9	50.8	41.7	65.0	44.9
Focal-T (Yang et al., 2021)	48.8	44.8	67.7	49.2	41.0	64.7	44.2	47.2	69.4	51.9	42.7	66.5	45.9
ViT-S (Li et al., 2021b)	43.8	40.2	63.1	43.4	37.1	59.9	39.3	44.0	66.9	47.8	39.9	63.4	42.2
ViTDet-S (Li et al., 2022b)	45.7	40.6	63.3	43.5	37.1	60.0	38.8	44.5	66.9	48.4	40.1	63.6	42.5
ViT-Adapter-S (ours)	47.8	44.7	65.8	48.3	39.9	62.5	42.8	48.2	69.7	52.5	42.8	66.4	45.9
PVTv2-B5 (Wang et al., 2022a)	101.6	47.4	68.6	51.9	42.5	65.7	46.0	48.4	69.2	52.9	42.9	66.6	46.2
Swin-B (Liu et al., 2021b)	107.1	46.9	-	-	42.3	-	-	48.6	70.0	53.4	43.3	67.1	46.7
ViT-B (Li et al., 2021b)			65.7			62.6							44.4
ViTDet-B (Li et al., 2022b)	121.3												44.5
ViT-Adapter-B (ours)	120.2	47.0	68.2	51.4	41.8	65.1	44.9	49.6	70.6	54.0	43.6	67.7	46.9
ViT-L [†] (Li et al., 2021b)	337.3	45.7	68.9	49.4	41.5	65.6	44.6	48.3	70.4	52.9	43.4	67.9	46.6
ViTDet-L [†] (Li et al., 2022b)	350.9	46.2	69.2	50.3	41.4	65.8	44.1	49.1	71.5	53.8	44.0	68.5	47.6
ViT-Adapter-L [†] (ours)	347.9	48.7	70.1			67.0				56.5	46.0	70.5	49.7

Method	$\mathrm{AP^bAP^b_{50}}$	$\mathrm{AP^{b}_{75}}$	#P	Method	$\mathrm{AP^bAP^b_{50}}$	AP ₇₅ #P			
Cascade Mask R-CNN 3	8×+MS sch	edule		ATSS 3×+MS schedule					
Swin-T (Liu et al., 2021b)	50.5 69.3	54.9	86M	Swin-T (Liu et al., 2021b)	47.2 66.5	51.3 36M			
Shuffle-T (Huang et al., 2021b)				Focal-T (Yang et al., 2021)	49.5 68.8	53.9 37M			
PVTv2-B2 (Wang et al., 2022a)51.1 69.8	55.3	83M	PVTv2-B2 (Wang et al., 2022a)49.9 69.1	54.1 33M			
Focal-T (Yang et al., 2021)	51.5 70.6	55.9	87M	ViT-S (Li et al., 2021b)	45.2 64.8	49.0 32M			
ViT-S (Li et al., 2021b)	47.9 67.1	51.7	82M	ViT-Adapter-S (ours)	49.6 68.5	54.0 36M			
ViT-Adapter-S (ours)	51.5 70.1	55.8	86M	GFL 3×+MS so	chedule				
Swin-B (Liu et al., 2021b)	51.9 70.9	57.0	145M	Swin-T (Liu et al., 2021b)	47.6 66.8	51.7 36M			
Shuffle-B (Huang et al., 2021b)	52.2 71.3	57.0	145M	PVTv2-B2 (Wang et al., 2022a	50.2 69.4	54.7 33M			
ViT-B (Li et al., 2021b)	50.1 69.3	54.3	151M	ViT-S (Li et al., 2021b)	46.0 65.5	49.7 32M			
ViT-Adapter-B (ours)	52.1 70.6	56.5	158M	ViT-Adapter-S (ours)	50.0 69.1	54.3 36M			

Various Backbone + MASK R-CNN

Various backbone + Various Detector

Object Detection & Instance Segmentation: Results

- With Multi-Modal Pre-training
 - Study the effect of multimodal pre-training
 - Fine-tune the ViT-Adapter-B with Mask R-CNN using different pre-trained weights
 - ViT-adapter gain performance with multimodal pre-training
 - Our method can easily derive considerable benefits from advanced multimodal pre-training (which is difficult for vision-specific models)

Method	Pre-train	$ \mathrm{AP^b} $	$\mathrm{AP^m}$
Swin-B (Mask R-CNN 3×+MS)	ImageNet-1K ImageNet-22K Multi-Modal	48.6 49.6 N/A	43.3 44.3 N/A
ViT-Adapter-B (Mask R-CNN 3×+MS)	ImageNet-1K ImageNet-22K Multi-Modal	49.6 50.5 51.2	43.6 44.6 45.3

Semantic Segmentation: Settings

- Test backbone's performance using various header
- Segmentation header
 - Semantic FPN (Alexander Kirillov et al., CVPR 2019)
 - UperNet (Tete Xiao et al., ECCV 2018)
- Dataset : ADE20K

Semantic Segmentation: Results

- Pre-trained Weights
 - Same as object detection exp.
- Settings for each header
 - FPN: settings of PVT(Wenhai Wang et al.) and train the models for 80k iterations
 - UperNet: the settings of Swin(Ze Liu et al.) to train it for 160k iterations.

Method	Pre-train	Coon Cina	Seman	tic FPN	80k	Upe	rNet 160)k
Wellod	rie-train	Crop Size	#Param	mIoU	+MS	#Param	mIoU	+MS
PVT-Tiny (Wang et al., 2021)	IN-1K	512×512	17.0M	36.6	37.3	43.2M	38.5	39.0
ViT-T (Li et al., 2021b)	IN-1K	512×512	10.2M	39.4	40.5	34.1M	41.7	42.6
ViT-Adapter-T (ours)	IN-1K	512×512	12.2M	41.7	42.1	36.1M	42.6	43.6
PVT-Small (Wang et al., 2021)	IN-1K	512×512	28.2M	41.9	42.3	54.5M	43.7	44.0
PVTv2-B2 (Wang et al., 2022a)	IN-1K	512×512	29.1M	45.2	45.7	-	-	-
Swin-T (Liu et al., 2021b)	IN-1K	512×512	31.9M	41.5	-	59.9M	44.5	45.8
Twins-SVT-S (Chu et al., 2021a)	IN-1K	512×512	28.3M	43.2	-	54.4M	46.2	47.1
ViT-S (Li et al., 2021b)	IN-1K	512×512	27.8M	44.6	45.8	53.6M	44.6	45.7
ViT-Adapter-S (ours)	IN-1K	512×512	31.9M	46.1	46.6	57.6M	46.2	47.1
Swin-B (Liu et al., 2021b)	IN-1K	512×512	91.2M	46.0	-	121.0M	48.1	49.7
Twins-SVT-L (Chu et al., 2021a)	IN-1K	512×512	103.7M	46.7	-	133.0M	48.8	50.2
ViT-B (Li et al., 2021b)	IN-1K	512×512	98.0M	46.4	47.6	127.3M	46.1	47.1
ViT-Adapter-B (ours)	IN-1K	512×512	104.6M	47.9	48.9	133.9M	48.8	49.7
Swin-B [†] (Liu et al., 2021b)	IN-22K	640×640	-	-	-	121.0M	50.0	51.7
Swin-L [†] (Liu et al., 2021b)	IN-22K	640×640	-	-	-	234.0M	52.1	53.5
ViT-Adapter-B [†] (ours)	IN-22K	512×512	104.6M	50.7	51.9	133.9M	51.9	52.5
ViT-Adapter-L [†] (ours)	IN-22K	512×512	332.0M	52.9	53.7	363.8M	53.4	54.4
ViT-Adapter-L [★] (ours)	MM	512×512	332.0M	54.2	54.7	363.8M	55.0	55.4

Various backbone + Various Detector

Comparisons With SOTA

- Combine our ViT-Adapter with SOTA detection/segmentation frameworks
 - o MM: multimodal pre-training, sup: supervised pre-training
 - Plain backbone detectors/segmenters can challenge the entrenched position of hierarchical backbones

Method	Framework	Epoch	Backbone	0.0000000		val (+MS)				test-dev (+MS)	
			Pre-train	AP	AP^{m}	AP ^b	AP^{m}	AP	AP^{m}	AP ^b	AP^{m}
Swin-L	HTC++	72	IN-22K, sup	57.1	49.5	58.0	50.4	57.7	50.2	58.7	51.1
Focal-L	HTC++	36	IN-22K, sup	57.0	49.9	58.1	50.9	-	-	58.4	51.3
MViTv2-L	Cascade	50	IN-22K, sup	56.9	48.6	58.7	50.5	-	-	-	-
MViTv2-H	Cascade	50	IN-22K, sup	57.1	48.8	58.4	50.1	-	-	-	-
CBV2-Swin-L	HTC	36	IN-22K, sup	59.1	51.0	59.6	51.8	59.4	51.6	60.1	52.3
ViT-Adapter-L	HTC++	36	IN-22K, sup	56.6	49.0	57.7	49.9	57.4	50.0	58.4	50.7
Swin-L	HTC++	36	IN-1K, UM-MAE	57.4	49.8	58.7	50.9	-	-	-	-
ViTDet-L	Cascade	100	IN-1K, MAE	59.6	51.1	60.4	52.2	-	-	-	-
ViT-Adapter-L	HTC++	36	IN-22K, BEiT	58.4	50.8	60.2	52.2	58.9	51.3	60.4	52.5
ViT-Adapter-L	HTC++	36	MM [†] , BEiTv2	58.8	51.1	60.5	52.5	59.5	51.8	60.9	53.0

Method	Framework	Backbone		Crop	Iters	ADE2	0K val	#Param
		Pre-train	Pre-train	Size		mIoU	+MS	
Swin-L	Mask2Former	IN-22K, sup	-	640	160k	56.1	57.3	215M
Swin-L-FaPN	Mask2Former	IN-22K, sup	-	640	160k	56.4	57.7	217M
SeMask-Swin-L	Mask2Former	IN-22K, sup	-	640	160k	57.0	58.2	-
HorNet-L	Mask2Former	IN-22K, sup	-	640	160k	57.5	57.9	-
ViT-Adapter-L	Mask2Former	IN-22K, sup	-	640	160k	56.8	57.7	438M
BEiT-L	UperNet	IN-22K, BEiT	-	640	160k	56.7	57.0	441M
ViT-Adapter-L	UperNet	IN-22K, BEiT	-	640	160k	58.0	58.4	451M
BEiTv2-L	UperNet	IN-22K, BEiTv2	-	512	160k	57.5	58.0	441M
ViT-Adapter-L	UperNet	IN-22K, BEiTv2	-	512	160k	58.0	58.5	451M
ConvNeXt-XL*	Mask2Former	IN-22K, sup	COCO-Stuff, sup	896	80k	57.1	58.4	588M
Swin-L*	Mask2Former	IN-22K, sup	COCO-Stuff, sup	896	80k	57.3	58.3	434M
SwinV2-G	UperNet	IN-22K, sup	Ext-70M, sup	896	160k	59.3	59.9	3.0B
FD-SwinV2-G	UperNet	IN-22K, sup	Ext-70M, sup	896	160k	-	61.4	3.0B
Swin-L	Mask DINO	IN-22K, sup	Objects365, sup	-	160k	59.5	60.8	223M
ViT-Adapter-L	Mask2Former	IN-22K, BEiT	COCO-Stuff, sup	896	80k	59.4	60.5	571M
ViT-Adapter-L	Mask2Former	MM [†] , BEiTv2	COCO-Stuff, sup	896	80k	61.2	61.5	571M
BEiT-3 (w/ ViT-Adapter)	Mask2Former	MM, BEiT-3	COCO-Stuff, sup	896	80k	62.0	62.8	1.3B

Object Detection

Instance Segmentation

Ablation Study

- ViT vs. ViT-Adapter Feature
 - Fourier analysis as a toolkit for visualization
 - ViT-Adapter captures more high-frequency signals than the ViT baseline
 - Stride-8 feature map
 - ViT: blurry and coarse
 - ViT-Adapter: more fine-grained and have more local edges and textures
 - Our method grafts the merit of CNN for capturing high-frequency information to ViT

Ablation Study

- Ablation for Components
 - Gradually extend the ViT-S baseline to our ViT-Adapter-S
 - Add: directly resizing and adding the spatial features from SPM

Method		Compon Injector		Interaction Mode			
ViT-S (Li et al., 2021b)							43.8M
Variant 1	✓			Add			
Variant 2	✓	\checkmark		Attention	42.6	38.8	46.6M
ViT-Adapter-S (ours)	✓	\checkmark	\checkmark	Attention	44.7	39.9	47.8M

Number of Interactions

• N: num of Interaction(Injector & Extractor) blocks

\overline{N}	AP^{b}	$\mathrm{AP^m}$	#Param
0	40.2	37.1	43.8M
1	43.2	38.9	45.5M
2	43.9	39.4	46.2M
4	44.7	39.9	47.8M
6	44.7	39.8	49.4M

Ablation Study

- Attention Type
 - Show that our method is a general framework in which the attention mechanism is replaceable
 - Adopt ViT-Adapter-S as the basic model and study 4 different attention mechanisms
 - Deformable attention with linear complexity is more suitable for our adapter
 - Use deformable attention as the default configuration

Attention Mechanism	Complexity	AP^{b}	$\mathrm{AP^m}$	FLOPs	#Param	Train Time	Memory
Global Attention (Vaswani et al., 2017)	Quadratic	43.7	39.3	1080G	50.3M	1.61s	*19.0G
CSwin Attention (Dong et al., 2021)	Linear	43.5	39.2	456G	50.3M	0.56s	15.6G
Pale Attention (Wu et al., 2022a)	Linear	44.2	39.8	458G	50.3M	0.75s	17.4 G
Deformable Attention (Zhu et al., 2020)	Linear	44.7	39.9	403G	47.8M	0.36s	13.7G

Conclusion

- Explores a new paradigm, namely ViT-Adapter
 - Bridge the gap between the plain ViT and vision-specific transformers on dense prediction tasks
 - Flexibly inject image-related inductive biases into the ViT
 - Fraction Reconstruct fine-grained multi-scale features required by dense predictions
- Extensive experiments on various tasks
 - Show that our method can achieve comparable or even better performance than SOTA
 - Further derive considerable benefits from advanced multimodal pre-training

Limitations

- Need a lot of computation resource
 - When calculating cross-attention...
 - o If HW = 256×256 , HW/ 8^2 = 1024, HW/ 16^2 =256, HW/ 32^2 = 64

method	segmentor	pre-train	#param	#FLOPs	train time	train mem.	FPS	mIoU (ss)	mIoU (ms)
ViT-B	SETR-PUP [1]	IN-1K	98M	170G	0.16s/iter	9.5G	30.3	46.3	47.3
ViT-B	Semantic FPN [4]	IN-1K	98M	147G	0.15s/iter	5.6G	29.7	46.4	47.6
ViT-Adapter-B	Semantic FPN [4]	IN-1K	105M	183G	0.16s/iter	7.5G	26.7	47.9	48.9
ViT-L	SETR-PUP [1]	IN-22K	318M	425G	0.25s/iter	16.8G	14.0	48.6	50.1
ViT-L	Semantic FPN [4]	IN-22K	321M	414G	0.21s/iter	14.1G	15.5	51.5	52.0
$ViT\text{-}Adapter\text{-}L_{\mathrm{light}}$	Semantic FPN [4]	IN-22K	324M	445G	0.23s/iter	15.2G	13.5	52.7	53.5
ViT-Adapter-L	Semantic FPN [4]	IN-22K	332M	473G	0.25s/iter	16.0G	12.9	52.9	53.7

Q&A

Thank you