NOTES ON STOCHASTIC FEJÉR MONOTONICITY

NICHOLAS PISCHKE^a, THOMAS POWELL^b

^a Department of Mathematics, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289 Darmstadt, Germany,

^b Department of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom,

E-mails: trjp20@bath.ac.uk, pischke@mathematik.tu-darmstadt.de

Abstract.

Keywords:

MSC2020 Classification:

1. Very slight reformulation of Nicholas' Discord notes

Lemma 1.1. For $p \in P$ let $(U_{p,n})$ be a nonnegative supermartingale and suppose furthermore that Ψ is a function satisfying

$$\exists n \leqslant \Psi(\varepsilon) \, \exists p \, (\mathbb{E}[U_{p,n}] < \varepsilon)$$

for all $\varepsilon > 0$. Let (X_n) and $(Y_{n,m})$ be nonnegative stochastic processes.

(a) If π_1 is such that

$$\mathbb{E}[U_{p,n}] < \pi_1(\varepsilon) \to \mathbb{E}[X_n] < \varepsilon$$

then $\mathbb{E}[X_n] \to 0$ with rate $\phi_1(\varepsilon) := \Psi(\pi_1(\varepsilon))$.

(b) If π_2 is such that almost surely

$$U_{p,n} < \pi_2(\varepsilon) \to X_n < \varepsilon$$

then $X_n \to 0$ almost surely with rate $\phi_2(\lambda, \varepsilon) := \Psi(\lambda \cdot \pi_2(\varepsilon))$.

(c) If π_3 is such that

$$\mathbb{E}[U_{p,n}], \mathbb{E}[U_{p,m}] < \pi_3(\varepsilon) \to \mathbb{E}[Y_{n,m}] < \varepsilon$$

then $Y_{m,n} \to 0$ with rate $\phi_3(\varepsilon) := \Psi(\pi_3(\varepsilon))$.

(d) If π_4 is such that almost surely

$$U_{n,n}, U_{n,m} < \pi_4(\varepsilon) \to Y_{n,m} < \varepsilon$$

then $Y_{n,m} \to 0$ almost surely with rate $\phi_4(\lambda, \varepsilon) := \Psi(\lambda \cdot \pi_4(\varepsilon)/2)$.

Proof. For (a), fix $\varepsilon > 0$ and let $N \leqslant \Psi(\pi_1(\varepsilon))$ and $p \in P$ be such that $\mathbb{E}[U_{p,N}] < \pi_1(\varepsilon)$. For $n \geqslant \Psi(\pi_1(\varepsilon))$ we have $\mathbb{E}[U_{p,n}] \leqslant \mathbb{E}[U_{p,N}] < \pi_1(\varepsilon)$ and thus $\mathbb{E}[X_n] < \varepsilon$. Part (c) is proven similarly.

For (d) we use Ville's inequality: Let $N \leq \Psi(\lambda \cdot \pi_4(\varepsilon)/2)$ and $p \in P$ be such that $\mathbb{E}[U_{p,n}] < \lambda \cdot \pi_4(\varepsilon)/2$. Then

$$\mathbb{P}\left(\exists n \geqslant \phi_4(\lambda, \varepsilon)(U_{p,n} \geqslant \pi_4(\varepsilon))\right) \leqslant \frac{\mathbb{E}[U_{p,N}]}{\pi_4(\varepsilon)} < \frac{\lambda}{2}$$

and thus

$$\mathbb{P}(\exists m, n \geqslant \phi_4(\lambda, \varepsilon)(Y_{m,n} \geqslant \varepsilon)) \leqslant 2\mathbb{P}\left(\exists n \geqslant \phi_4(\lambda, \varepsilon)(U_{p,n} \geqslant \pi_4(\varepsilon))\right) < \lambda$$

Part (b) is proven similarly.

Date: April 17, 2025.

Theorem 1.2. Let (X,d) be a metric space, $F: X \to \mathbb{R}$ be such that $\operatorname{zer}(F) \neq \emptyset$, and $\phi: X \times X \to \mathbb{R}$ be some a distance function. Let (x_n) be a sequence of functions $\Omega \to X$ such that $\phi(x_n, p)$, $d(x_n, x_m)$ and $F(x_n)$ are real-valued (nonnegative) random variables. We suppose that (x_n) is quasi-Fejér monotone in the sense that

$$\mathbb{E}[\phi(x_{n+1}, p) \mid \mathcal{F}_n] \leqslant (1 + a_n)\phi(x_n, p) + c_n$$

for all $p \in \text{zer}(F)$ and $n \in \mathbb{N}$, where $\phi(x_n, p)$, a_n and c_n are adapted to (\mathcal{F}_n) , and K > 0 and χ satisfy

$$\prod_{i=0}^{\infty} (1 + \mathbb{E}[a_i]) < K \quad and \quad \sum_{i=\xi(\varepsilon)}^{\infty} \mathbb{E}[c_i] < \varepsilon$$

for all $\varepsilon > 0$. Finally, suppose that

• $F(x_n)$ has liminf modulus Φ in the sense that

$$\forall \varepsilon > 0 \,\forall N \,\exists n \in [N; \Phi(\varepsilon, N)] (\mathbb{E}[F(x_n)] < \varepsilon)$$

 \bullet F possesses a modulus of ϕ -regularity in the sense that

$$\forall \varepsilon > 0 \,\forall n \, \left(\mathbb{E}[F(x_n)] < \rho(\varepsilon) \to \exists p \in \operatorname{zer}(F) \, \left(\mathbb{E}[\phi(x_n, p)] < \varepsilon \right) \right)$$

 \bullet ϕ is uniformly triangular with modulus in the sense that

$$\forall \varepsilon > 0 \ \forall p \in \operatorname{zer}(F) \ \forall m, n \ (\phi(x_n, p), \phi(x_m, p) < \theta(\varepsilon) \to d(x_n, x_m) < \varepsilon)$$

Then $\mathbb{E}\left[\operatorname{dist}\phi(x_n,\operatorname{zer}(F))\right]\to 0$ with rate

$$\phi(\varepsilon) := \Psi(\varepsilon/K)$$

also dist $\phi(x_n, \text{zer}(F)) \to 0$ almost surely with rate

$$\phi'(\lambda, \varepsilon) := \Psi(\lambda \varepsilon / K)$$

and finally (x_n) is almost surely Cauchy with rate

$$\psi(\lambda, \varepsilon) := \Psi\left(\frac{\lambda \cdot \theta(\varepsilon)}{2K}\right)$$

where

$$\Psi(\varepsilon) := \Phi(\rho(\varepsilon/2), \xi(\varepsilon/2))$$

Proof. Apply Lemma 1.1 with

$$U_{p,n} := \frac{\phi(x_n, p)}{\tilde{a}_{n-1}} + \mathbb{E}\left[\sum_{i=n}^{\infty} \frac{c_i}{\tilde{a}_i} \mid \mathcal{F}_n\right] \quad \text{for} \quad \tilde{a}_i := \prod_{i=0}^{j} (1 + a_j)$$

This is a supermartingale by the quasi Fejér monotoncity property, more precisely:

$$\mathbb{E}[U_{p,n+1} \mid \mathcal{F}_n] = \mathbb{E}\left[\frac{\phi(x_{n+1}, p)}{\tilde{a}_n} + \mathbb{E}\left[\sum_{i=n+1}^{\infty} \frac{c_i}{\tilde{a}_i} \mid \mathcal{F}_{n+1}\right] \mid \mathcal{F}_n\right]$$

$$\leq \frac{\mathbb{E}[\phi(x_{n+1}, p) \mid \mathcal{F}_n]}{\tilde{a}_n} + \mathbb{E}\left[\left[\sum_{i=n+1}^{\infty} \frac{c_i}{\tilde{a}_i} \mid \mathcal{F}_{n+1}\right] \mid \mathcal{F}_n\right]$$

$$= \frac{\mathbb{E}[\phi(x_{n+1}, p) \mid \mathcal{F}_n]}{\tilde{a}_n} + \mathbb{E}\left[\sum_{i=n+1}^{\infty} \frac{c_i}{\tilde{a}_i} \mid \mathcal{F}_n\right]$$

$$\leq \frac{\phi(x_n, p)}{\tilde{a}_{n-1}} + \frac{c_n}{\tilde{a}_n} + \mathbb{E}\left[\sum_{i=n+1}^{\infty} \frac{c_i}{\tilde{a}_i} \mid \mathcal{F}_n\right] = U_{p,n}$$

Now defining

$$\Psi(\varepsilon) := \Phi(\rho(\varepsilon/2), \xi(\varepsilon/2))$$

there exists some $n \in [\xi(\varepsilon/2); \Psi(\varepsilon)]$ such that $\mathbb{E}[F(x_n)] < \rho(\varepsilon/2)$ and thus $\mathbb{E}[\phi(x_n, p)] < \varepsilon/2$ for some $p \in \text{zer}(F)$, so that (using $\tilde{a}_i \ge 1$)

$$\mathbb{E}[U_{p,n}] \leqslant \mathbb{E}[\phi(x_n, p)] + \mathbb{E}\left[\mathbb{E}\left[\sum_{i=n}^{\infty} c_i \mid \mathcal{F}_n\right]\right] = \mathbb{E}[\phi(x_n, p)] + \sum_{i=n}^{\infty} \mathbb{E}[c_i] < \varepsilon$$

Applying Lemma 1.1 (a) and (b) to $X_n := \operatorname{dist} \phi(x_n, \operatorname{zer}(F))$, observing that for any $p \in \operatorname{zer}(F)$

$$\frac{X_n}{K} \leqslant \frac{\phi(x_n, p)}{K} \leqslant \frac{\phi(x_n, p)}{\tilde{a}_{n-1}} \leqslant U_{p,n}$$

and so setting $\pi_1(\varepsilon) := \varepsilon/K$, we get the first two rates. Applying Lemma 1.1 (d) to $Y_{n,m} := d(x_n, x_m)$, noting that

$$U_{p,n}, U_{p,m} < \frac{\theta(\varepsilon)}{K} \to \phi(x_n, p), \phi(x_m, p) < \theta(\varepsilon) \to d(x_n, x_m) < \varepsilon$$

thus setting $\pi_4(\varepsilon) := \theta(\varepsilon)/K$, we get the final rate.

2. A STOCHASTIC MANN SCHEME IN HILBERT SPACES

This is based on a very rough study of Combettes.

Suppose we are now working in some Hilbert space, and let $T: X \to X$ be a nonexpansive operator such that $fix(T) \neq \emptyset$ with modulus of regularity in expectation ρ satisfying

$$\forall \varepsilon > 0 \,\forall n \, \left(\mathbb{E}[\|Tx - x\|] < \rho(\varepsilon) \to \exists p \in \mathrm{fix}(T) (\mathbb{E}[\|x - p\|] < \varepsilon) \right)$$

Suppose that x_0 and e_n are random variables and define

$$x_{n+1} = (1 - \lambda_n)x_n + \lambda_n(Tx_n + e_n)$$

where $\sum \lambda_i(1-\lambda_i) = \infty$. We also suppose that (\mathcal{X}_n) is a filtration such that x_n is \mathcal{X}_n -measurable. We first observe that (x_n) is quasi-Fejér monotone w.r.t $\operatorname{fix}(T)$ for $a_n := 0$ and $c_n := \lambda_n \mathbb{E}[e_n \mid \mathcal{X}_n]$ as for any $p \in \operatorname{fix}(T)$ we have

$$\mathbb{E}[\|x_{n+1} - p\| \mid \mathcal{X}_n] \leq \mathbb{E}[(1 - \lambda_n) \|x_n - p\| + \lambda_n \|Tx_n - p\| + \lambda_n \|e_n\| \mid \mathcal{X}_n]$$

$$\leq \|x_n - p\| + \lambda_n \mathbb{E}[\|e_n\| \mid \mathcal{X}_n]$$

where we note that both $(\|x_n - p\|)$ and $(\mathbb{E}[\|e_n\| \mid \mathcal{X}_n])$ are adapted to (\mathcal{X}_n) . Next we observe that (using $\|x + y\|^2 \le \|x\|^2 + \langle x \mid y \rangle + \|y\|^2$ and $\|\alpha x + (1 - \alpha)y\|^2 = \alpha \|x\|^2 + (1 - \alpha) \|y\|^2 - \alpha(1 - \alpha) \|x - y\|^2$)

$$\begin{aligned} & \|x_{n+1} - p\|^2 \\ &= \|(1 - \lambda_n)(x_n - p) + \lambda_n (Tx_n - p) + \lambda_n e_n\|^2 \\ &= \|(1 - \lambda_n)(x_n - p) + \lambda_n (Tx_n - p)\|^2 + 2\langle (1 - \lambda_n)(x_n - p) + \lambda_n (Tx_n - p), \lambda_n e_n \rangle + \lambda_n^2 \|e_n\|^2 \\ &\leq \|(1 - \lambda_n)(x_n - p) + \lambda_n (Tx_n - p)\|^2 + 2\lambda_n \|x_n - p\| \|e_n\| + \lambda_n^2 \|e_n\|^2 \\ &= \|x_n - p\| - \lambda_n (1 - \lambda_n) \|Tx_n - x_n\| + 2\lambda_n \|x_n - p\| \|e_n\| + \lambda_n^2 \|e_n\|^2 \end{aligned}$$

and therefore taking expectations

$$\lambda_{n}(1 - \lambda_{n})\mathbb{E}[\|Tx_{n} - x_{n}\|] \leq \mathbb{E}[\|x_{n} - p\|] - \mathbb{E}[\|x_{n+1} - p\|] + 2\lambda_{n}\mathbb{E}[\|x_{n} - p\|\|e_{n}\|] + \lambda_{n}^{2}\mathbb{E}[\|e_{n}\|^{2}]$$

$$\leq \mathbb{E}[\|x_{n} - p\|] - \mathbb{E}[\|x_{n+1} - p\|] + 2\lambda_{n}\sqrt{\mathbb{E}[\|x_{n} - p\|^{2}]\mathbb{E}[\|e_{n}\|^{2}]} + \lambda_{n}^{2}\mathbb{E}[\|e_{n}\|^{2}]$$

Now suppose that

- K > 0 is such that $\mathbb{E}[\|x_n p\|^2] < K$ for all $n \in \mathbb{N}$ and some $p \in fix(T)$.
- L > 0 is such that $\sum \lambda_n \sqrt{\mathbb{E}[\|e_n\|^2]} < L$
- ξ is a rate of convergence for $\sum \lambda_n \sqrt{\mathbb{E}[\|e_n\|^2]}$
- r is a rate of divergence for $\sum \lambda_n (1 \lambda_n)$ in the sense that

$$\forall N \in \mathbb{N}, x > 0 \left(\sum_{i=N}^{r(N,x)} \lambda_n (1 - \lambda_n) > x \right)$$

We also assume that $\mathbb{E}[\|e_n\|^2] \leq 1$ for all $n \in \mathbb{N}$ so that $\lambda_n^2 \mathbb{E}[\|e_n\|^2] \leq \lambda_n \sqrt{\mathbb{E}[\|e_n\|^2]}$. Then for this particular p we have

$$\lambda_{n}(1-\lambda_{n})\mathbb{E}[\|Tx_{n}-x_{n}\|] \leq \mathbb{E}[\|x_{n}-p\|] - \mathbb{E}[\|x_{n+1}-p\|] + 2\lambda_{n}\sqrt{\mathbb{E}[\|x_{n}-p\|^{2}]\mathbb{E}[\|e_{n}\|^{2}]} + \lambda_{n}^{2}\mathbb{E}[\|e_{n}\|^{2}]$$

$$\leq \mathbb{E}[\|x_{n}-p\|] - \mathbb{E}[\|x_{n+1}-p\|] + (2\sqrt{K}+1)\lambda_{n}\sqrt{\mathbb{E}[\|e_{n}\|^{2}]}$$

and thus

$$\sum_{n=N}^{k} \lambda_n (1 - \lambda_n) \mathbb{E}[\|Tx_n - x_n\|] \leq \mathbb{E}[\|x_N - p\|] - \mathbb{E}[\|x_{k+1} - p\|] + (2\sqrt{K} + 1) \sum_{n=N}^{k} \lambda_n \sqrt{\mathbb{E}[\|e_n\|^2]} \leq \sqrt{K} + (2\sqrt{K} + 1)L$$

Now suppose that $\varepsilon > 0$ and that $\mathbb{E}[\|Tx_n - x_n\|] \ge \varepsilon$ for all $n \ge N$. Then we have

$$\varepsilon \sum_{n=N}^{k} \lambda_n (1 - \lambda_n) \leqslant \sum_{n=N}^{k} \lambda_n (1 - \lambda_n) \mathbb{E}[\|Tx_n - x_n\|] \leqslant \sqrt{K} + (2\sqrt{K} + 1)L$$

for all $k \in \mathbb{N}$, which is a contradiction for $k := r\left(N, \frac{\sqrt{K} + (2\sqrt{K} + 1)L}{\varepsilon}\right) =: \Phi_{r,K,L}(\varepsilon, N)$ and so $\Phi_{K,L}$ as just defined is a liminf modulus in the sense that

$$\forall \varepsilon > 0 \,\forall N \,\exists n \in [N; \Phi_{r,K,L}(\varepsilon, N)] (\mathbb{E}[\|Tx_n - x_n\|] < \varepsilon)$$

We have established the following:

Theorem 2.1. Let X be a Hilbert space and $T: X \to X$ a nonexpansive operator with modulus of regularity in expectation ρ in the sense that

$$\forall \varepsilon > 0 \,\forall n \, \left(\mathbb{E}[\|Tx - x\|] < \rho(\varepsilon) \to \exists p \in \text{fix}(T) (\mathbb{E}[\|x - p\|] < \varepsilon) \right)$$

Suppose that x_0 and (e_n) are X-valued random variables and define

$$x_{n+1} = (1 - \lambda_n)x_n + \lambda_n(Tx_n + e_n)$$

where $\sum \lambda_n(1-\lambda_n) = \infty$ with rate of divergence r. Suppose that K > 0 is a uniform upper bound on $(\mathbb{E}[\|x_n - p\|^2])$ for some $p \in \text{fix}(T)$, and L > 0 is such that

$$\sum \lambda_n \sqrt{\mathbb{E}[\|e_n\|^2]} < L$$

with rate χ . Then $\mathbb{E}[\operatorname{dist} ||x_n - \operatorname{fix}(T)||] \to 0$ with rate Ψ , also $\operatorname{dist} ||x_n - \operatorname{fix}(T)|| \to 0$ almost surely with rate $\phi(\lambda, \varepsilon) := \Psi(\lambda \varepsilon)$ and finally (x_n) is almost surely Cauchy with rate $\psi(\lambda, \varepsilon) := \Psi(\lambda \varepsilon/4)$ where

$$\Psi(\varepsilon) := r\left(\xi(\varepsilon/2), \frac{\sqrt{K} + (2\sqrt{K} + 1)L}{\rho(\varepsilon/2)}\right)$$

Proof. From Lemma 1.2, the above discussion, and noting a few things like $\mathbb{E}[\|e_n\|] \leq \sqrt{\mathbb{E}[\|e_n\|^2]}$ so that ξ is also a rate of convergence for $\sum \lambda_n \mathbb{E}[\|e_n\|]$. Note that

$$U_{p,n} := ||x_n - p|| + \sum_{i=n}^{\infty} \lambda_n \mathbb{E}[||e_n|| | \sigma(x_0, \dots, x_n)]$$

is the underlying supermartingale that governs almost sure convergence.

References