Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data

Eduardo Elias Ribeiro Junior ^{1 2} Walmes Marques Zeviani ¹ Wagner Hugo Bonat ¹ Clarice Garcia Borges Demétrio ²

¹Statistics and Geoinformation Laboratory (LEG-UFPR) ²Department of Exact Sciences (ESALQ-USP)

26th July 2017

<jreduardo@usp.br> | <edujrrib@gmail.com>

Outline

- 1. Background
- 2. Reparametrization
- 3. Case studies
- 4. Final remarks

1

Background

Count data

Number of times an event occurs in the observation unit.

Random variables that assume non-negative integer values.

Let *Y* be a counting random variable, so that y = 0, 1, 2, ...

Examples in experimental researches:

- number of grains produced by a plant;
- number of fruits produced by a tree;
- number of insects on a particular cell;
- others.

Poisson model and limitations

GLM framework (NELDER; WEDDERBURN, 1972)

- Provide suitable distribution for a counting random variables;
- Efficient algorithm for estimation and inference;
- Implemented in many software.

Poisson model

▶ Relationship between mean and variance, E(Y) = var(Y);

Main limitations

- ▶ Overdispersion (more common), E(Y) < var(Y)
- ▶ Underdispersion (less common), E(Y) > var(Y)

COM-Poisson distribution

Probability mass function (SHMUELI et al., 2005) takes the form

$$\Pr(Y = y \mid \lambda, \nu) = \frac{\lambda^{y}}{(y!)^{\nu} Z(\lambda, \nu)}, \qquad Z(\lambda, \nu) = \sum_{j=0}^{\infty} \frac{\lambda^{j}}{(j!)^{\nu}}, \tag{1}$$

where $\lambda > 0$ and $\nu \geq 0$.

- Moments are not available in closed form;
- Expectation and variance can be closely approximated by

$$E(Y) \approx \lambda^{1/\nu} - \frac{\nu - 1}{2\nu}$$
 and $var(Y) \approx \frac{\lambda^{1/\nu}}{\nu}$

with accurate approximations for $\nu \le 1$ or $\lambda > 10^{\nu}$ (SHMUELI et al., 2005; SELLERS; BORLE; SHMUELI, 2012).

COM-Poisson regression models

Model definition

▶ Modelling the relationship between $E(Y_i)$ and x_i indirectly (SELLERS; SHMUELI, 2010);

$$Y_i \mid \boldsymbol{x}_i \sim \text{COM-Poisson}(\lambda_i, \nu)$$

 $\eta(E(Y_i \mid \boldsymbol{x}_i)) = \log(\lambda_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}$

Main goal

Propose a reparametrization in order to model the expectation of the response variable as a function of the covariate values directly. 2

Reparametrization

Reparametrized COM-Poisson

Reparametrization

• Introduced new parameter μ , using the mean approximation

$$\mu = \lambda^{1/\nu} - \frac{\nu - 1}{2\nu} \quad \Rightarrow \quad \lambda = \left(\mu + \frac{(\nu - 1)}{2\nu}\right)^{\nu};$$

 Precision parameter is taken on the log scale to avoid restrictions on the parameter space

$$\phi = \log(\nu) \Rightarrow \phi \in \mathbb{R}$$

Probability mass function

▶ Replacing λ and ν as function of μ and ϕ in Equation 1

$$\Pr(Y = y \mid \mu, \phi) = \left(\mu + \frac{e^{\phi} - 1}{2e^{\phi}}\right)^{ye^{\phi}} \frac{(y!)^{-e^{\phi}}}{Z(\mu, \phi)}.$$

Study of the moments approximations

Figure: Quadratic errors for moments approximation. Dotted lines representing the restriction for good approximations by (SHMUELI et al., 2005).

COM-Poisson_µ distribution

Figure: Shapes of the COM-Poisson distribution for different parameter values.

COM-Poisson μ regression models

Model definition

▶ Modelling relationship between $E(Y_i)$ and x_i directly

$$Y_i \mid \boldsymbol{x}_i \sim \text{COM-Poisson}_{\mu}(\mu_i, \phi)$$

$$\log(E(Y_i \mid \boldsymbol{x}_i)) = \log(\mu_i) = \boldsymbol{x}_i^{\top} \boldsymbol{\beta}$$

Estimation and Inference

- Parameter estimates are obtained by numerical maximization of the log-likelihood function (by BFGS algorithm);
- Standard errors for regression coefficients are obtained based on the observed information matrix;
- ► Confidence intervals for $\hat{\mu}_i$ are obtained by delta method.

3

Case studies

Artificial defoliation in cotton phenology

Aim: to assess the effects of five defoliation levels on the bolls produced at five growth stages;

Design: factorial 5×5 , with 5 replicates;

Experimental unit: a plot with 2 plants;

Factors:

- Artificial defoliation (des): 0, 0.25, 0.5, 0.75, 1
- ► Growth stage (est): vegetative, flower bud, blossom, fig, cotton boll

Response variable: Total number of cotton bolls;

Model specification

Linear predictor: following Zeviani et al. (2014)

▶ $\log(\mu_{ij}) = \beta_0 + \beta_{1j} \text{def}_i + \beta_{2j} \text{def}_i^2$ *i* varies in the levels of artificial defoliation; *j* varies in the levels of growth stages.

Alternative models:

- ▶ Poisson (μ_{ij});
- ► COM-Poisson ($\lambda_{ij} = \eta(\mu_{ij})$, ϕ)
- ► COM-Poisson_{μ} (μ_{ij} , ϕ)
- Quasi-Poisson (var(Y_{ij}) = $\sigma \mu_{ij}$)

Parameter estimates

Table: Parameter estimates (Est) and ratio between estimate and standard error (SE)

	Poisson		COM-Poisson		COM-F	Poisson _µ	Quasi-Poisson		
	Est	Est/SE	Est	Est/SE	Est	Est/SE	Est	Est/SE	
φ,σ			1.585	12.417	1.582	12.392	0.241		
$\dot{\beta}_0$	2.190	34.572	10.897	7.759	2.190	74.640	2.190	70.420	
β_{11}	0.437	0.847	2.019	1.770	0.435	1.819	0.437	1.726	
β_{12}	0.290	0.571	1.343	1.211	0.288	1.223	0.290	1.162	
β_{13}	-1.242	-2.058	-5.750	-3.886	-1.247	-4.420	-1.242	-4.192	
β_{14}	0.365	0.645	1.595	1.298	0.350	1.328	0.365	1.314	
β_{15}	0.009	0.018	0.038	0.035	0.008	0.032	0.009	0.036	
β_{21}	-0.805	-1.379	-3.725	-2.775	-0.803	-2.961	-0.805	-2.809	
β_{22}	-0.488	-0.861	-2.265	-1.805	-0.486	-1.850	-0.488	-1.754	
β_{23}	0.673	0.989	3.135	2.084	0.679	2.135	0.673	2.015	
β_{24}	-1.310	-1.948	-5.894	-3.657	-1.288	-4.095	-1.310	-3.967	
β_{25}	-0.020	-0.036	-0.090	-0.076	-0.019	-0.074	-0.020	-0.074	
LogLik	-255.803		-208.250		-208.398		<u> </u>		
AIC	533.606		440.500		440.795		_		
BIC	564.718		474.440		474.735		_		

Fitted curves

Figure: Curves of fitted values with 95% confidence intervals.

Additional results

▶ Empirical correlations between $\hat{\phi}$ and $\hat{\beta}$ estimators is approximately 0 for reparametrized model.

Table: Empirical correlations between dispersion and location parameters estimators.

	\hat{eta}_0	\hat{eta}_{11}	\hat{eta}_{12}	\hat{eta}_{13}	\hat{eta}_{14}	\hat{eta}_{15}	\hat{eta}_{21}	\hat{eta}_{22}	\hat{eta}_{23}	\hat{eta}_{24}	\hat{eta}_{25}
COM-Poisson COM-Poisson _µ											

► COM-Poisson fit was 34.347% slower than COM-Poisson_u;

4

Final remarks

Concluding remarks

Summary

- Over/under-dispersion needs caution;
- COM-Poisson is a suitable choice for these situations;
- ▶ The proposed reparametrization, COM-Poisson $_{\mu}$ has some advantages:
 - Simple transformation of the parameter space;
 - Full parametric approach;
 - Correlation between the estimators was practically null;
 - Faster for fitting;
 - ► Allows interpretation of the coefficients directly (like GLM-Poisson model).

Future work

- Simulation study to assess model robustness against distribution miss specification;
- Assess theoretical approximations for $Z(\lambda, \nu)$ (or $Z(\mu, \phi)$), in order to avoid the selection of sum's upper bound;
- ▶ Propose a double GLM based on the COM-Poisson $_{\mu}$ model.

Full-text article is available on ResearchGate (in portuguese) https://www.researchgate.net/publication/316880329

All codes (in R) and source files are available on GitHub https://github.com/jreduardo/rbras2017>

Acknowledgments

National Council for Scientific and Technological Development (CNPq), for their support.

References

NELDER, J. A.; WEDDERBURN, R. W. M. Generalized Linear Models. *Journal of the Royal Statistical Society. Series A (General)*, v. 135, p. 370–384, 1972.

SELLERS, K. F.; BORLE, S.; SHMUELI, G. The com-poisson model for count data: a survey of methods and applications. *Applied Stochastic Models in Business and Industry*, v. 28, n. 2, p. 104–116, 2012.

SELLERS, K. F.; SHMUELI, G. A flexible regression model for count data. *Annals of Applied Statistics*, v. 4, n. 2, p. 943–961, 2010. ISSN 19326157.

SHMUELI, G. et al. A useful distribution for fitting discrete data: Revival of the Conway-Maxwell-Poisson distribution. *Journal of the Royal Statistical Society. Series C: Applied Statistics*, v. 54, n. 1, p. 127–142, 2005.

ZEVIANI, W. M. et al. The Gamma-count distribution in the analysis of experimental underdispersed data. *Journal of Applied Statistics*, p. 1–11, 2014.