

Funktionen mehrerer Variablen

FS 2024 - Prof. Dr. Bernhard Zgraggen Autoren:

Laurin Heitzer, Flurin Brechbühler

https://github.com/P4ntomime/funktionen-mehrerer-variablen

1 Dimensionen, Schnitte und Kontouren

1.1 Dimensionen

$$f: \mathbb{D}_f(\subseteq \mathbb{R}^m) \longrightarrow \mathbb{W}_f(\subseteq \mathbb{R}^n)$$

- Anzahl Dimensionen von \mathbb{D}_f , wobei $m \in \mathbb{N}$
- Anzahl Dimensionen von \mathbb{W}_f , wobei $n \in \mathbb{N}$

wenn Output vektoriell

∆ Variablen sind abhängig von einander!

Multi-Variat:

f ist "Multi-Variat", wenn:

f ist nicht "Multi-Variat", wenn: • Input und Output Skalare sind

- Input mehrdimensional ist
- Output mehrdimensional ist
- Input und Output mehrdimensional sind

1.1.1 Raumzeit

Raum 3D
$$(x; y; z) \mathbb{R}^3$$

Zeit 1D $(t) \mathbb{R}^1$ $\mathbb{R}^1 \times \mathbb{R}^3 = \text{Raumzeit 4D } (t; x; y; z)$

1.1.2 Stationärer Fall

$$t \to \infty \to \text{Stationär}$$

$$T(x; y; z) \frac{\Delta T}{\Delta t} \to 0$$

1.1.3 Einheitsvektoren (Koordinatenvektoren)

$$\hat{x} = \vec{i} = \hat{i} = \vec{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\hat{y} = \vec{j} = \hat{j} = \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\hat{z} = \vec{k} = \hat{k} = \vec{e_3} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

1.2 Schnitte

Schnitt = Restriktion \rightarrow Teilmenge vom Definitionsbereich \mathbb{D}_f

1.2.1 Partielle Funktion

- Nur **eine** Variable ist frei! (wählbar)
- Alle anderen Variablen sind fix! $\bigwedge \mathbb{W}_f$ Analyse!

Beispiel: Schnitte

x-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur x,z-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y_0; f(x; y_0))$
- x-Wert ist variabel
- y-Wert ist fixiert $\Leftrightarrow y_0 = 2$

v-Linien

- Fläche wird geschnitten mit Ebene die parallel zur y,z-Ebene liegt.
- Bestehen aus den (x; y; z) Punkten $(x_0; y; f(x_0; y))$
- x-Wert ist fixiert $\Leftrightarrow x_0 = 3$
- y-Wert ist variabel

1.2.2 Bedingungen

Initialbedingungen Beziehen sich auf die Zeit

Randbedingungen Beziehen sich auf räumliche Ebenen

1.3 Kontouren, Levelsets, Niveaulinien, Höhenlinen, ...

Bei Kontouren, Levelsets, Niveaulinien oder Höhenlinien ist der Output der Funktion f konstant.

$$\vec{y} = \vec{f}(\vec{x}) = \text{const. wobei } \vec{x} \subset \mathbb{D}_f$$

Beispiel: Höhenlinien

Kontouren (Höhenlinien)

- Fläche wird geschnitten mit einer Ebene, die parallel zur x,y-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y; f(x; y) = z_0)$
- x-Wert ist variabel
- v-Wert ist variabel
- z-Wert ist fixiert $\Leftrightarrow z_0 = 3$

2 Ableitungen, DGL und Gradienten (bi-variat)

$$f: \mathbb{D}_f \subseteq \mathbb{R}^2 \to \mathbb{W}_f \subseteq \mathbb{R}$$
 skalar

2.1 Partielle Ableitung

Ableitung einer Partiellen Funktion.

Beispiel: Bi-Variate Funktion

$$f(x,y)$$
: y fixieren = const. = y_0 ; x einzige freie Variable

Notationen

1. Ordnung:
$$f(x; y_0) \Rightarrow \frac{\partial f}{\partial x} = f_x(x; y_0)$$

2. Ordnung: $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$
 $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$

2.1.1 Schwarz-Symmetrie

Wenn f_{xx} , f_{yy} , f_{xy} & f_{yx} stetig (sprungfrei) sind, dann gilt:

$$f_{xy} \stackrel{!}{=} f_{yx}$$

2.2 Gradient (Nabla-Operator)

Spaltenvektor mit partiellen Ableitungen

"Gradient"
$$\longrightarrow$$
 $\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \vdots \end{pmatrix}$ \triangleq Vektorfeld

2.3 Totale Ableitung

Für Fehlerrechnung benützt, da man hierbei die Abstände von (x; y; z) zu einem festen Punkt $(x_0; y_0; z_0)$ erhält. (relative Koordinaten)

$$D(f;(x_0,y_0,\ldots)): \mathbb{R}^2 \xrightarrow{} \mathbb{R}^1$$
; "gute Approximation"

$$f(x = x_0 + \Delta x; y = y_0 + \Delta y; ...) = (D_{11}; D_{12}) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + f(x_0; y_0) + R_1$$

Wobei R₁ dem "Rest" entspricht. (Ähnlich wie bei Taylorreihe)

$$\frac{R_1}{d = \sqrt{\Delta x^2 + \Delta y^2}} \rightarrow 0 \text{ ("gut", "schneller gegen 0 als } d")} \xrightarrow{y} \underbrace{\int_{\Delta y}^{P = (x, y)} \int_{\Delta x}^{P = (x, y)} A = (x_0; y_0)}_{\Delta x}$$

$$D(f;(x_0;y_0)) = \left(D_{11} = \frac{\partial f}{\partial x}(x_0;y_0); D_{12} = \frac{\partial f}{\partial y}(x_0;y_0)\right)$$
$$= (\nabla f)^{\text{tr}} \text{ wenn } \frac{\partial f}{\partial x}; \frac{\partial f}{\partial y} \text{ stetig bei } A$$

2.4 Linearapproximation (Tangential approximation)

$$f(x;y) \approx f(x_0;y_0) + D(f;(x_0;y_0)) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$
 linear in Δx und Δy

2.4.1 Tangentialebene

$$g(x; y) = f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$g(x;y) = f(x_0;y_0) + f_x(x_0;y_0) \cdot (x - x_0) + f_y(x_0;y_0) \cdot (y - y_0)$$

2.4.2 Tangentialer Anstieg (Totale Differential)

$$df \stackrel{!}{=} \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy \quad \text{bezüglich } A = \underbrace{(x_0; y_0)}$$

2.4.3 Differential-Trick (d f Trick)

$$\begin{pmatrix}
f = c = \text{const.} & | d(\ldots) \\
df = dc \stackrel{!}{=} 0
\end{pmatrix}$$

$$f_x dx + f_y dy = 0$$
 für Kontourlinier

2.4.4 Implizite (Steigungs-)Funktion

$$y'(x) = \frac{dy}{dx} = -\frac{f_x}{f_y \neq 0} \lor x'(y) = \frac{dx}{dy} = -\frac{f_y}{f_x \neq 0}$$
 $y = \frac{f_y}{f_x \neq 0} \lor y' = \frac{f_y}{f_x \neq 0} \lor x'(y) = \frac{f_x}{f_x \neq 0} \lor x'(y) = \frac{f_$

2.5 DGL

$$y' = \left(-\frac{f_x}{f_y}\right); \ y(x_0) = y_0$$

2.6 Richtungselement (Tangentiallinie an Kontouren)

$$\vec{r} = \left(dx = h; dy = y' dx = -\frac{f_x}{f_y} dx \right)^{\text{tr}}$$

2.7 Gradientenfeld ⊥ Kontouren

Skalarprodukt
$$\nabla f \bullet \begin{pmatrix} dx \\ dy = y' dx \end{pmatrix} \stackrel{!}{=} 0$$

2.8 ?Wie heisst dieser Abschnitt?

$$s(t): P_0 + t \cdot \hat{v} \mid t \in \mathbb{R}$$

$$s(t): f(x_0 + t \cdot \hat{v}_1; y_0 + t \cdot \hat{v}_2)$$

$$\frac{\left(\begin{matrix} x \\ y \end{matrix}\right)}{\left(\begin{matrix} \frac{ds(t)}{dt} = \dot{s}(t) \end{matrix}\right)} : \quad t \mapsto \overbrace{\left(\begin{matrix} x_0 + t \cdot v_1 \\ y_0 + t \cdot v_2 \end{matrix}\right)}^{\left(\begin{matrix} x_0 + t \cdot v_1 \\ y_0 + t \cdot v_2 \end{matrix}\right)} \mapsto f(x, y)$$

2.9 Richtungs-Ableitung

$$\frac{\partial f}{\partial \hat{v}} \stackrel{!}{=} D(f; (x_0; y_0)) \cdot \hat{v} \stackrel{\text{Def.}}{\Leftrightarrow} \operatorname{grad}(f)^{\operatorname{tr}} \cdot \hat{v} = f_x \cdot v_1 + f_y \cdot v_2$$

Beispiel: Richtungs-Ableitung

$$\vec{x}: \vec{v} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \hat{e}_1 \quad \Rightarrow \quad \frac{\partial f}{\partial \hat{e}_1} = f_x \cdot 1 + f_y \cdot 0 = \underline{\underline{f}_x}$$

2.9.1 Spezialfälle

- $\alpha = \frac{\pi}{2} \Rightarrow \text{rechter Winkel}$ $\frac{\partial f}{\partial \hat{v}} \text{ extremal}$ $\alpha = 0 \text{ (max)}$: $\nabla f \cdot \hat{v} > 0 \Rightarrow \text{grad}(f) \text{ liegt auf } \hat{v}$ $\alpha = \pi \text{ (min)}$: $\nabla f \cdot \hat{v} < 0 \Rightarrow \text{grad}(f) \text{ liegt invers auf } \hat{v}$

3 Extrema von Funktionen (bi-variat)

3.1 Stationärbedingungen

- Nicht am Rand des Definitionsbereichs (\mathbb{D}_f)
- f muss differenzierbar sein

f lokal (relativ) extremal \Rightarrow horizontale Tangentialebene

3.1.1 Verallgemeinerung des Fermat-Prinzips

$$f(x_0; y_0) + \underbrace{df}_{0} = f(x_0; y_0) + \underbrace{f_x dx + f_y dy}_{0}$$

$$\Leftrightarrow f_x \stackrel{!}{=} 0 \land f_y \stackrel{!}{=} 0 \Leftrightarrow \operatorname{grad}(f) = \vec{0}$$

3.2 Hinreichende Bedingungen

Aus An1:
$$f'' > 0 | f'' < 0$$
 $min max$
Ausnahme: Sattelfläche

$$(v_1; v_2) \underbrace{\begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}}_{\text{Hess-Matrix (H)}} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

$$(v_1; v_2) \underbrace{\begin{pmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{pmatrix}}_{\text{Hess-Matrix (H)}} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \qquad \Delta > 0: \text{ Extremal stelle (max oder min)}$$

$$\Delta < 0: \text{ Sattel-Situation (nicht extremal)}$$

$$\Delta = 0: \text{ Unklar; Multi-Variate Taylor-Logik}$$

$$(\text{wenn mögl. vermeiden})$$

 $\Delta = \det(H) = f_{xx}f_{yy} - f_{yy}^2$

4 Ableitungen, Extrema (multi-variat)

5 Integration (bi-variat)

6 Integration (multi-variat)

7 Differenziation und Integration von Kurven

8 (Ober-)Flächenintegrale)

9 Vektoranalysis