Dérivation

1 Dérivabilité en un point

1.1 **Définition**

Définition 1 (Taux d'accroissement et dérivée en un point)

Soit I un intervalle; $f: I \to \mathbb{R}$ et $x_0 \in I$.

$$I \setminus \{x_0\} \rightarrow \mathbb{R}$$

- $x \mapsto \frac{f(x) f(x_0)}{x x_0}$ est appelé • La fonction
- On dit que f est **dérivable en** x_0 lorsque ce taux d'accroissement admet une limite finie en x_0 . On définit alors :

$$f'(x_0) =$$

Cette quantité est appelée dérivée de f en x_0 .

Dessin:

Remarque 1

Alternativement, f est dérivable en x_0 si et seulement si la limite suivante existe et est finie :

$$f'(x_0) =$$

(Il suffit de poser le changement $x = x_0 + h$ i.e $h = x - x_0$: on a $(x \to x_0) \iff (h \to 0)$)

Exercice 1

Considérons la fonction racine carrée : $\forall x \in \mathbb{R}_+, f(x) = \sqrt{x}$.

- 1. Montrer que f est dérivable en tout $x_0 > 0$ et que $f'(x_0) = \frac{1}{2\sqrt{x_0}}$.
- 2. Montrer que f n'est pas dérivable en 0.

Remarque 2

En pratique pour vérifier qu'une fonction est dérivable, on préfèrera (cf. plus loin dans ce chapitre) :

- Utiliser la dérivabilité des fonctions usuelles.
- Utiliser le Théorème de prolongement de la dérivée.

En dernier recours, on pourra étudier la limite du taux d'accroissement comme on vient de le faire!

Proposition 1 (Dérivabilité implique continuité)

Si une fonction f est dérivable en x_0 , alors elle est continue en x_0 .

Preuve rapide : $f(x) - f(x_0) =$

Ainsi
$$\lim_{x\to x_0} (f(x)-f(x_0))=0$$
, c'est à dire $\lim_{x\to x_0} f(x)=f(x_0)$, d'où la continuité en x_0 .

Remarques 3

- Ainsi, la fonction $x \mapsto \lfloor x \rfloor$ n'est pas dérivable en $k \in \mathbb{Z}$ car elle n'est pas continue en ce point! (En revanche, elle est dérivable partout ailleurs, de dérivée nulle).
- Bien-sûr une fonction continue en un point n'y est pas forcément dérivable! La fonction $x \mapsto \sqrt{x}$ est continue mais pas dérivable en 0.

lacktriangle Définition 2 (Dérivée à gauche / droite en un point)

Soit I un intervalle; $f: I \to \mathbb{R}$ et $x_0 \in I$.

On dit que f est dérivable à gauche (resp. à droite) en x_0 lorsque son taux d'accroissement y admet une limite finie à gauche (resp. à droite). On note alors :

$$f'_g(x_0) =$$
 et $f'_d(x_0) =$

▶ Proposition 2 (Lien dérivée à gauche / à droite / "tout court")

Soit I un intervalle ; $f:I\to\mathbb{R}$ et $x_0\in I$ qui n'est pas une extrémité de I. On a l'équivalence :

$$f$$
 est dérivable en $x_0 \iff$

Dans ce cas la dérivée est égale à cette valeur commune : $f'(x_0) =$

Preuve de la Proposition 2:

C'est une conséquence immédiate du Théorème 1 du chapitre "Limites de fonctions".

Exercice 2

1. Soit f la fonction valeur absolue : $\forall x \in \mathbb{R}, \ f(x) = |x|$. Montrer que f n'est pas dérivable en 0.

1.3 Interprétation graphique : tangente

Proposition 3 (Dérivée et tangente)

• Si f est dérivable en x_0 , la courbe représentative de f admet une tangente au point d'abscisse x_0 L'équation de cette tangente est :

 $f'(x_0)$ est appelé le

de la tangente au point d'abscisse x_0 .

- Si $\lim_{x \to x_0} \frac{f(x) f(x_0)}{x x_0} = \pm \infty$, la courbe représentative de f admet une au point d'abscisse x_0 . L'équation de cette tangente est :
- Si f est seulement dérivable à gauche ou à droite en x_0 , on parle de "demi-tangente" (verticale).

Exemples

• Comme $\exp'(0) = \exp(0) = 1$, la courbe représentative de exp admet la tangente d'équation y = x+1 au point d'abscisse 0.

✓ Dessin :

• La limite du taux d'accroissement de $x \mapsto \sqrt{x}$ en 0 vaut $+\infty$. La courbe représentative admet donc une demi-tangente verticale en 0.

✓ Dessin :

2 Fonctions dérivables, calcul de dérivées

2.1 Définitions

Définition 3 (Fonction dérivable sur un intervalle)

Soit I un intervalle et $f: I \to \mathbb{R}$.

On dit que f est dérivable sur I lorsque f est dérivable en tout point $x_0 \in I$.

Dans de cas, on peut introduire la fonction dérivée de f, c'est à dire l'application :

$$f': \begin{array}{ccc} I & \to & \mathbb{R} \\ x & \mapsto & f'(x). \end{array}$$

L'ensemble des fonctions dérivables sur I est noté

ou parfois plus simplement

Remarques 4

- On étend naturellement cette définition à une fonction définie sur domaine plus général, (souvent une union d'intervalles). Par exemple, on dira que $f: x \mapsto \frac{1}{x}$ est dérivable sur $\mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[$.
- Petite subtilité dans la définition :

Si f est définie sur un segment [a,b], dire que f est dérivable sur [a,b] revient à dire :

- f est dérivable en tout $x_0 \in]a, b[$
- f est dérivable à droite en a, dérivable à gauche en b.

On pourrait ainsi affirmer que la fonction valeur absolue est dérivable sur [-1,0] et dérivable sur [0,1]. Pour autant, elle n'est pas dérivable [-1,1] (car pas dérivable en 0)!

- D'après la Proposition 1, une fonction dérivable sur I est automatiquement continue sur I. On a ainsi l'inclusion : $D(I,\mathbb{R}) \subset C(I,\mathbb{R})$. L'inclusion réciproque est bien-sûr fausse.
- La dérivée de f en au point x peut également se noter $\frac{df(x)}{dx}$.

Attention!

La dérivée de la fonction f au point x se note bien f'(x) et non "f(x)'"!

Pour exprimer la dérivée de l'expression $x^3 + 2e^{x^2}$ par exemple, il faut écrire :

On évitera à tout prix la notation $(x^3 + 2e^{x^2})'$ qui n'a aucun sens !!

Si l'on veut s'économiser d'introduire une fonction f, on pourra à la rigueur écrire :

Définition 4 (Classe C^1)

Soit I un intervalle et $f: I \to \mathbb{R}$.

On dit que f est de classe C^1 sur I lorsque

On note $\mathcal{C}^1(I,\mathbb{R})$ l'ensemble des fonctions de classe \mathcal{C}^1 sur I. Autrement dit :

$$\mathcal{C}^1(I,\mathbb{R}) =$$

Remarque 5

On ainsi les inclusions : $C^1(I,\mathbb{R}) \subset D(I,\mathbb{R}) \subset C(I,\mathbb{R})$. Les inclusions réciproques sont fausses.

2.2 Dérivées de fonctions usuelles

Proposition 4 (Dérivabilité des fonctions usuelles (admis))

Les fonctions "usuelles" (que l'on s'apprête à lister) sont dérivables sur les domaines appropriés. Plus précisément, elles sont même de classe C^1 sur leur domaine de dérivabilité.

f(x)	Domaine de définition	Domaine de dérivabilité	f'(x)
$C\ (constante)$			
$x^n \ (n \in \mathbb{N}^*)$			
$\frac{1}{x^n} \ (n \in \mathbb{N}^*)$			
$x^{\alpha} \ (\alpha \in \mathbb{R} \setminus \mathbb{Z})$			
\sqrt{x}			
e^x			
$\ln(x)$			
$\sin(x)$			
$\cos(x)$			
$\tan(x)$			
$\arctan(x)$			

Remarques 6

• Si l'on retient que $\frac{d}{dx}(x^{\alpha}) = \alpha x^{\alpha-1}$, on peut retrouver l'expression des dérivées de :

$$x \mapsto x^n$$
 (prendre $\alpha = n$), $x \mapsto \frac{1}{x^n}$ (prendre $\alpha = -n$), $x \mapsto \sqrt{x}$ (prendre $\alpha = 1/2$).

Attention cependant au domaine de définition/dérivabilité qui n'est pas le même que pour $x \mapsto x^{\alpha}$!

 \bullet Si l'on admet ces différentes expressions, les "limites usuelles en 0" s'obtiennent en fait comme la limite d'un taux d'accroissement en 0!

- Avec
$$f(x)=e^x$$
, l'égalité $\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=f'(0)$ donne : $\lim_{x\to 0}\frac{e^x-1}{x}=1$.

- Avec
$$f(x) = \sin(x)$$
, l'égalité $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = f'(0)$ donne : $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$.

De même en choisissant $f(x) = \ln(1+x)$, $\tan(x)$, $(1+x)^{\alpha}$.

2.3 Dérivée et opérations

Proposition 5 (Dérivée de sommes, produits, quotients)

Soient u et v deux fonctions dérivables (resp. de classe C^1) sur un même intervalle I. Alors :

• La fonction u + v est dérivable (resp. de classe C^1) sur I et

$$\forall x \in I, \ (u+v)'(x) =$$

• Pour tout $\lambda \in \mathbb{R}$, (λu) est dérivable (resp. de classe \mathcal{C}^1) sur I et

$$\forall x \in I, \ (\lambda u)'(x) =$$

 \bullet La fonction $u\,v$ est dérivable (resp. de classe $\mathcal{C}^1)$ sur I et

$$\forall x \in I, (u v)'(x) =$$

 \bullet Si v ne s'annule pas sur I, alors $\frac{u}{v}$ est dérivable (resp. de classe \mathcal{C}^1) sur I et

$$\forall x \in I, \ \left(\frac{u}{v}\right)'(x) =$$

Remarque 7

En combinant les deux premiers résultats, on obtient, pour u, v dérivables et $a, b \in \mathbb{R}$:

$$(au + bv)' =$$
 (linéarité de la dérivation)

Exemple

Si pour tout $x \in \mathbb{R}$ on définit $f(x) = 3\sin(x) - 2\cos(x) + 4e^x$, alors f est dérivable sur \mathbb{R} et

$$\forall x \in \mathbb{R}, \ f'(x) =$$

★ Théorème 1 (Dérivée d'une composition ("Chain Rule"))

Soit $u \in D(I, \mathbb{R})$ (resp. $C^1(I, \mathbb{R})$) et $g \in D(J, \mathbb{R})$ (resp $C^1(J, \mathbb{R})$) avec $u(I) \subset J$.

Alors $g \circ u \in D(I, \mathbb{R})$ (resp. $\mathcal{C}^1(I, \mathbb{R})$) et on a l'expression :

$$\forall x \in I, \ (g \circ u)'(x) =$$

Preuve:

Cas particuliers usuels : (à connaître ou savoir retrouver en 5 secondes)

f(x)	f'(x)
$u(x)^{\alpha}$	
$\sqrt{u(x)}$	

f(x)	•)	f'(x)
$e^{u(x)}$;)	
$\ln(u(x))$	x))	

(On applique la "chain rule" pour dériver l'expression f(x) = g(u(x)) avec $g(x) = x^n$, x^{α} , \sqrt{x} , e^x , $\ln(x)$!)

Remarque 8

Pour dériver une expression de la forme $f(x) = u(x)^{v(x)}$, toujours revenir à l'expression l'exponentielle :

$$f(x) = u(x)^{v(x)} = e^{v(x)\ln(u(x))}$$
 puis utiliser la "chain rule".

₩ Méthode : Dérivabilité d'une fonction "élémentaire"

Après avoir déterminé le domaine de dérivabilité D d'une fonction f(souvent égal au domaine de définition...), on pourra souvent annoncer :

"f est dérivable/de classe \mathcal{C}^1 sur D comme somme/produit/quotient/composée de fonctions usuelles".

♠ Exercice 3

Déterminer le domaine de dérivabilité des fonctions suivantes, puis calculer leur dérivée.

(a)
$$f(x) = \frac{2x}{\sqrt{x^2 + 1}}$$

(a)
$$f(x) = \frac{2x}{\sqrt{x^2 + 1}}$$
 (b) $g(x) = \left(\frac{4x - 1}{x + 1}\right)^3$ (c) $h(x) = (1 - x^2)^{\sin(x)}$

(c)
$$h(x) = (1 - x^2)^{\sin(x)}$$

2.4 Dérivée d'une bijection réciproque

★ Théorème 2 (Dérivée de la réciproque)

Soit f une fonction continue et strictement monotone sur I. On note J = f(I).

(On sait d'après le Théorème de la bijection que f réalise une bijection de I dans J. De plus, la bijection réciproque $f^{-1}: J \to I$ est continue et strictement monotone.

Si f est dérivable sur I et si f' ne s'annule pas sur I, alors f^{-1} est dérivable sur J et

$$\forall x \in J, \ (f^{-1})'(x) =$$

Preuve partielle:

Admettons que f^{-1} soit bien dérivable. On sait que pour tout $x \in J$, $f(f^{-1}(x)) = x$.

En dérivant on obtient $\frac{d}{dx}(f(f^{-1}(x))) = 1$, c'est à dire :

$$(f^{-1})'(x) \times f'(f^{-1}(x)) = 1$$
 et donc $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$.

Exercice 4

Retrouver la formule donnant la dérivée de arctan.

Remarque 9

Si jamais f' s'annule en un point $x_0 \in I$, alors dans ce cas f^{-1} n'est pas dérivable en $y_0 = f(x_0)$. Sa courbe représentative y admet une tangente verticale.

ℰ Exercice 5

On considère la fonction cube : $\forall x \in \mathbb{R}, f(x) = x^3$.

- 1. Montrer que f réalise une bijection de $\mathbb R$ dans $\mathbb R$.
- 2. Montrer que f^{-1} est dérivable sur \mathbb{R}^* et calculer sa dérivée.
- 3. Dessiner les courbes représentatives de f et f^{-1} .

٠	3 Propriétés des fonctions dérivables sur un intervalle
9	3.1 Théorème de Rolle
	Lemme (Extremum et dérivée)
	Soient $a, b \in \mathbb{R}$ tels que $a < b$.
	Soit f une fonction continue sur $[a, b]$, dérivable sur $]a, b[$.
	Si f atteint son maximum/minimum en un point $x_0 \in]a,b[$, alors
	✓ Dessin :
	Remarque 10
	Ce résultat reste vrai pour un minimum/maximum local, du moment que celui-ci est bien atteint dans l'intérieur de l'intervalle (et pas à une extrémité!)

Preuve:

n suppose que Alors Dessin:		
Dessin:		
Remarque 11		
n tel réel c peut ne pas être unique.		
reuve:		
Exercice 6		
oit $f: \mathbb{R} o \mathbb{R}$ une fonction dérivable et	p-périodique $(p > 0)$.	
ontrer que f' s'annule une infinité de		

3.2 Théorèmes des accroissements finis

★ Théorème 4 (Égalité des accroissements finis (EAF))

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit f une fonction continue sur un segment [a, b], dérivable sur [a, b].

Alors

✓ Dessin:

Remarques 12

- $\frac{f(b)-f(a)}{b-a}$ est le taux d'accroissement de f entre a et b. Il peut s'interpréter comme la pente de la "corde" tendue entre les points (a,f(a)) et (b,f(b)).
- ullet Comme pour le Théorème de Rolle, un tel réel c peut ne pas être unique.
- En particulier, lorsque f(a) = f(b), on obtient f'(c) = 0 et on retrouve le Théorème de Rolle.

Preuve:

Une conséquence importante et souvent utile est l'inégalité des accroissements finis :

★ Théorème 5 (Inégalité des accroissements finis (IAF))

Soient $a, b \in \mathbb{R}$ tels que a < b.

Soit f une fonction continue sur un segment [a, b], dérivable sur [a, b].

- 1 Version "minorant/majorant": S'il existe $m, M \in \mathbb{R}$ tels que $\underline{m \leqslant f' \leqslant M}$ sur]a, b[, alors
- 2 Version "valeur absolue" : S'il existe K > 0 tel que $|f'| \le K$ sur]a,b[, alors (fonctionne aussi si a > b)

Preuve:

₩ Méthode : Repérer une utilisation de l'IAF

Lorsque l'on demande de montrer une inégalité qui met en jeu un écart entre deux valeurs prises par une fonction (un "accroissement" f(b) - f(a)), c'est bien souvent l'IAF qui permet de conclure!

- $\boxed{1}$ Repérer à quelle fonction f et sur quel segment [a,b] appliquer l'IAF.
- 2 Affirmer que f est continue sur [a, b], dérivable sur [a, b] (ou, bien souvent, carrément dérivable sur [a, b], ce qui implique la continuité).
- $\fbox{3}$ Déterminer des <u>constantes</u> m et M ou bien une <u>constante</u> K telles que

$$\forall t \in]a,b[, \ m \leqslant f'(t) \leqslant M \quad \text{ ou bien } \quad \forall t \in]a,b[, \ |f'(t)| \leqslant K.$$

4 En déduire l'inégalité voulue avec l'IAF.

Exercice 7

- 1. Montrer: $\forall n \in \mathbb{N}^*, \ \frac{1}{n+1} \leqslant \ln(n+1) \ln(n) \leqslant \frac{1}{n}.$
- 2. Montrer: $\forall x \in \mathbb{R}, |\sin(x)| \leq |x|$

L'IAF est un outil très puissant dans de nombreux contextes, notamment l'analyse de suites récurrentes.

ℰ Exercice 8

On considère une suite $(u_n)_{n\geqslant 0}$ définie par : $u_0\geqslant 0$ et $\forall n\in\mathbb{N},\ u_{n+1}=\sqrt{1+u_n}$.

Notons $f: \begin{bmatrix} -1, +\infty[& \to & \mathbb{R} \\ x & \mapsto & \sqrt{x+1} \end{bmatrix}$ la fonction associée à cette récurrence.

- 1. Donner le tableau de variation de f. En déduire que pour tout $n \in \mathbb{N}$, u_n est bien défini et $u_n \ge 0$.
- 2. Montrer que f admet un unique point fixe $\alpha \in \mathbb{R}_+$ que l'on déterminira.
- 3. Établir l'inégalité : $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$.
- 4. En déduire que $\forall n \in \mathbb{N}, |u_n \alpha| \leq \frac{1}{2^n} |u_0 \alpha|$ puis déterminer $\lim_{n \to +\infty} u_n$.
- 5. On choisit $u_0 = 1$ de sorte que $|u_0 \alpha| \le 1$: ainsi on a $\forall n \in \mathbb{N}, |u_n \alpha| \le \frac{1}{2^n}$.

Compléter la fonction approx_alpha pour qu'elle renvoie une valeur approchée de α à eps près.

```
import numpy as np

def approx_alpha(eps) :
    u = .....;    n = .....
    while (1/2)**n > eps :
        u = .......
        n = .......
    return(u)
```

•	3.3 Conséquence importante de l'EAF : Prolongement dérivable
	Théorème 6 (Prolongement de la dérivée)
	Soit I un intervalle de $\mathbb{R}, f: I \to \mathbb{R}$ et $x_0 \in I$. On suppose que :
	•
	Alors f est dérivable en x_0 et $f'(x_0) = A$ insi f est de classe C^1 sur I tout entier.
	Preuve:
l	

Exercice 9

On considère la fonction $f: \begin{array}{ccc} \mathbb{R}_* & \to & \mathbb{R} \\ x & \mapsto & e^{-\frac{1}{x^2}} \end{array}$

Montrer que f est prolongeable en une fonction C^1 sur \mathbb{R} .

3.4 Conséquence importante de l'EAF : Dérivée et sens de variation

Terminons par un des intérêts fondamentaux de la dérivée (utilisé depuis le lycée) : le signe de la dérivée nous renseigne sur le sens de variation de f!

★ Théorème 7 (Dérivée et monotonie)

Soit f une fonction dérivable sur un intervalle I. On a les équivalences :

• f est croissante sur $I \iff$

• f est décroissante sur $I \iff$

• f est constante sur $I \iff$

Preuve:

Montrons l'équivalence du premier point (les autres points sont similaires).

• Si f est croissante sur I, alors on note que pour tout $x_0, x \in I$ avec $x \neq x_0$,

Si $x > x_0$, $\frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$, si $x < x_0$, $\frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$, donc dans tous les cas $\frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$.

En passant à la limite quand $x \to x_0$, on obtient $f'(x_0) \ge 0$. C'est valable pour tout $x_0 \in I$.

• Inversement, supposons $f' \ge 0$ sur I. Soient $a, b \in I$ avec $a \le b$.

Si a = b alors évidemment $f(a) \leq f(b)$.

Si a < b, en appliquant l'EAF sur le segment [a, b], on peut écrire $\frac{f(b) - f(a)}{b - a} = f'(c)$ avec un $c \in]a, b[$.

Comme $f'(c) \ge 0$, on en déduit que $f(b) - f(a) \ge 0$, c'est à dire $f(a) \le f(b)$.

On a bien montré que $a \leq b$ implique $f(a) \leq f(b)$: f est croissante sur I.

Remarque 13

Si l'intervalle est un segment I = [a, b], on peut remplacer l'hypothèse "f dérivable sur [a, b]" par "f continue sur [a, b] et dérivable sur [a, b]" et le résultat reste vrai.

A Attention!

Ce théorème devient faux si l'on ne se place pas sur un intervalle!

Exemple:
$$f: x \mapsto \frac{1}{x}$$
 est dérivable sur \mathbb{R}^* et $\forall x \in \mathbb{R}^*, \ f'(x) = -\frac{1}{x^2} < 0$.

Pour autant,
$$f$$
 n'est pas décroissante sur \mathbb{R}^* ! Par exemple, $f(-1) = -1 \leqslant f(1) = 1$.

En revanche on peut bien dire que f est décroissante sur les intervalles $]-\infty,0[$ et $]0,+\infty[$.

Exercice 10

$$\text{Montrer que pour tout } x \in \mathbb{R}^*, \quad \arctan(x) + \arctan\left(\frac{1}{x}\right) = \left\{ \begin{array}{ll} -\frac{\pi}{2} & \text{si } x < 0 \\ \frac{\pi}{2} & \text{si } x > 0 \end{array} \right..$$

★ Théorème 8 (Dérivée et stricte monotonie)

Soit f une fonction dérivable sur un intervalle I.

- ullet Si sur I, alors f est strictement croissante sur I.
- ullet Si sur I, alors f est strictement décroissante sur I.

On peut être plus précis :

- Si $f' \ge 0$ et f' ne s'annule qu'un nombre fini de fois sur I, alors f est strictement croissante sur I.
- Si $f' \leq 0$ et f' ne s'annule qu'un nombre fini de fois sur I, alors f est strictement décroissante sur I.

Preuve:

Si f' > 0 sur I, il suffit d'adapter la preuve du Théorème 7 (avec l'EAF) pour voir que a < b implique f(a) < f(b).

On admet le point "plus précis" pour le moment, par commodité.

Exemple

Une fonction strictement croissante peut quand même avoir une dérivée qui s'annule ponctuellement!

Par exemple $f: x \mapsto x^3$ est strictement croissante sur \mathbb{R} , pourtant $f': x \mapsto 3x^2$ s'annule en 0.

Évidemment, on utilise depuis bien longtemps ce lien entre signe de la dérivée et sens de variation, dès qu'il s'agit d'établir un tableau de variations!

Exercice 11

Déterminer le domaine de définition et établir le tableau de variation de la fonction définie par :

$$f(x) = \frac{x^2 - 2x - 1}{x(x - 1)}$$

À savoir faire à l'issue de ce chapitre :

- \bullet Justifier qu'une fonction est dérivable/de classe C^1 sur un domaine.
- Calculer rapidement une dérivée! (Somme/produit/quotient/composée...)
- Étudier la dérivabilité d'une fonction en un point particulier. (en pensant notamment au Théorème de prolongement de la dérivée)
- Calculer la dérivée d'une bijection réciproque.
- Utiliser l'inégalité des accroissements finis (IAF).

Pour suivre

- Repérer et utiliser le Théorème de Rolle.
- Repérer et utiliser l'égalité des accroissements finis (EAF).

 $\{ \ \bullet \ \mbox{Utiliser}$ spontanément l'IAF pour étudier certaines suites récurrentes.

Pour les ambitieux