- 1. Faraway (1st edition) problem 5.4
- 2. Faraway (1st edition) problem <u>5.5</u>
- 3. Using the same covariates and response as in Faraway 5.4, use bootstrapping to check whether the usual estimate of the standard error for $\beta_{\text{GNP,deflator}}$ seems to estimate the variability appropriately. (Bootstrap the sample, not the residual.) Discuss what you see and any possible explanations.
- 4. In this problem we'll prove that, no matter the correlation structure of the covariates, variance of estimating a mean at a new $x \in \mathbb{R}^p$ can only increase when you add an additional covariate. You are welcome to collaborate in pairs or groups of three on this problem; if you choose to work in a group, please list your collaborators in your handed in HW.

We will consider two models: with and without X_j . Let $X \in \mathbb{R}^{n \times p}$ be the <u>full matrix of covariates</u> and X_{-j} be the <u>same matrix with the X_i column removed</u>. We will assume that the normal linear model holds in both cases, i.e. the true model for the response is

$$Y_i = \beta_1 X_{i1} + \dots + \beta_p X_{ip} + N(0, \sigma^2)$$

and we have $\beta_j = 0$ so that this model is true even with X_j removed. We'll write $\hat{\beta}$ for the fitted coefficients using all the covariates, and $\hat{\beta}_{-j}$ for the model using the p-1 covariates when X_j is removed. Note that $\hat{\beta}_{-j}$ is not the same as removing the entry j from the vector $\hat{\beta}$ —the values may have changed entirely.

If we predict the mean response at a new $x \in \mathbb{R}^p$, we would predict

$$\hat{y} = x_1 \hat{\beta}_1 + \dots + x_p \hat{\beta}_p = \mathbf{x}^{\mathsf{T}} \hat{\beta}.$$

For the reduced model, we would predict

$$\hat{y}_{-j} = x_1(\hat{\beta}_{-j})_1 + \dots + x_{j-1}(\hat{\beta}_{-j})_{j-1} + x_{j+1}(\hat{\beta}_{-j})_{j+1} + \dots + x_p(\hat{\beta}_{-j})_p = \underbrace{\mathbf{x}_{-j}^{\top}}_{\mathbf{j}} \hat{\beta}_{-j}$$
 where $\underbrace{x_{-j}}$ is the vector x with entry \underline{j} removed.

We will use a linear algebra result:

Lemma: For any positive definite matrix $\begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix}$, it holds that

$$\left(\begin{array}{cc} A & B \\ B^\top & C \end{array}\right)^{-1} \succeq \left(\begin{array}{cc} A^{-1} & 0 \\ 0 & 0 \end{array}\right).$$

Here $M \succeq N$ is the positive semidefinite ordering, defined on matrices M, N which are themselves positive <u>semidefinite</u>, with $M \succeq N$ equivalent to $M - N \succeq 0$, i.e. M - N is positive semidefinite.

You can use the fact that, for positive semidefinite and invertible M, N, it holds that $M \succeq N$ if and only if $M^{-1} \leq N^{-1}$.

- (a) Write down the variance of \hat{y} and of \hat{y}_{-j} , using matrix notation such as $X^{\top}X$ for short and clean answers.
- (b) Consider predicting the mean response value at a new $x \in \mathbb{R}^p$. Assuming the lemma is true, prove that $\operatorname{Var}(\hat{y}) \geq \operatorname{Var}(\hat{y}_{-i}).$
- (c) Prove that if X_j is orthogonal to X_k for every $k \neq j$, and $x_j = 0$, then the variances are in fact equal.
- (d) Now we'll prove the lemma. One simple way to do this is with a limiting argument—we'll prove that

$$\begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix}^{-1} \succeq \begin{pmatrix} \frac{1}{1+\epsilon}A^{-1} & 0 \\ 0 & 0 \end{pmatrix}. \tag{*}$$

If this is true for any $\epsilon > 0$ then taking a limit, the lemma will be true.

We'll break the proof into steps:

- i. Prove that if $\begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix}$ is positive semidefinite, then so is $\begin{pmatrix} \epsilon A & -B \\ -B^{\top} & \epsilon^{-1}C \end{pmatrix}$.

 ii. Using the previous step, prove that $\begin{pmatrix} \epsilon A & -B \\ -B^{\top} & c\mathbf{I} C \end{pmatrix} \succeq 0$ for a sufficiently large constant \underline{c} (you should specify \underline{c} in terms of the other quantities in the problem).
- iii. Using the previous step, prove that this implies $\begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix}^{-1} \succeq \begin{pmatrix} \frac{1}{1+\epsilon}A^{-1} & 0 \\ 0 & c^{-1}\mathbf{I} \end{pmatrix}$ and that this implies the equation marked with a (*) above.