Malware Analysis Report

Obfuscated_Outlook Malware

Tcketron | Feb 25

Table of Contents

Table	e of Contents	
	utive Summary	
High-	Level Technical Summary	4
	rare Composition	
srv	rupdate.exe	5
crt	1.crt:	6
Basic	Static Analysis	8
	Dynamic Analysis	
	nced Static Analysis	
	nced Dynamic Analysis	
	ators of Compromise	
Ne	twork Indicators	11
Ho	st-based Indicators	12
Rules	s & Signatures	13
	ndices	
	Yara Rules	
B.	Callback URLs	15
C.	Decompiled Code Snippets	16

Executive Summary

SHA256	Mal.js	cd120334fa25495b2e63ead2cb652a5fd2e3bf46285f6eb25ae464754ec67083
hash		
SHA256	Second.html	7bfe8480439b3848145845ebd08804ca5d9a9978372aafa28817d508f43618a9
hash		
SHA256	Third.js	4ddc2c0405bf864d64c285a382bc0e101fa25bc4a392c661d6d13ca64192789f
hash	-	

Obfuscated_Outlook is a data-extraction malware package identified Feb 6th, 2025. It as an obfuscated JavaScript dropper that runs in the browser. Following a successful fishing attempt, the file unpacks an html document that retrieves an obfuscated JavaScript file. The final JavaScript file is confirmed malicious but has not been fully deobfuscated as of Feb 15th, 2025. Despite this, packet captures of the final file indicates network reconaissance for potential bots to add to a botnet. Symptoms of infection include beaconing to URLs listed in Appendix B and an outlook mail loading screen.

YARA rules can be found in Appendix A. Analying the sample and the two following payloads have been submitted to VirusTotal with the following results:

mal.js - 9/60 vendors detected, with the threat label "trojan.cryxos"

Second.html - 0/60 vendors detected; no vendors flagged URL as malicious

Third.js - 1/60 vendors detected, with the threat label "HEUR:Trojan.Script.Generic"

High-Level Technical Summary

First, the embedded mal.js file will execute when a user visits a phishing webpage sent to their email address, using the email address as a unique identifier. After deobfuscating itself, it will perform a document.write() method with the html file (second.html), changing the webpage to mimic the outlook loading page. Second.html will then attach the user's email address as a query parameter to the third.js file embedded in the html page to perform data extraction and may establish persistence.

Malware Composition

This malware consists of the following components:

File Name	SHA256 Hash
Mal.js	a3dfe5f49273b807aac2499cf8697c7158d78b6021a7b881c20b378fe6a22fc6
Second.html	9be6d46319f20fc371eb7b261b87f054219839ccf3d5b807a17e8ecd23b445fe
Third.js	5ead699b243a483a3304bde7d3e43c0d4767e65bcded9fc6e81e06b1129b000a

Mal.js

The initial embedded JavaScript in a malicious webpage sent as a phishing email to potential victims.

This file contains the obfuscated code for second.html and the base64-encoded email address of the user, which is used to identify the information attempting to be extracted. The code performs a document.write() method in an IIFE (Immediately Invoked Function Expression) to change the user's webpage to second.html.

Based on the VirusTotal label "trojan.cryxos", this malware shows itself in the form of an alarming browser notification that would provide a phone number to call. However, I believe that in this scenario when the user clicks on the link sent to their email, it immediately starts the chain that leads to the third.js file, which makes it appear as though outlook is attempting to reload the page, whilst extracting user data.

```
<
```

Fig 1: Console output of Second.html after being deobfuscated inside of Mal.js

Second.html:

This html page cleans the query parameter of the email address first seen in mal.js, loads specific versions of different JavaScript imports anonymously, and loads the malicious JavaScript attach_bootstrap.min.js (Third.js) From the following webpage: "hxxps://1419993777-1317754460.cos.ap-singapore.myqcloud.com/attach%2Fbootstrap.min.js".

This is the html page that is written to the user's browser, replacing their previous page. This document by itself is empty, with only a few commented paragraphs inside of the <head> and <body> tags. The true webpage is hidden inside of Third.js, where it is unscrambled and presented while it extracts user data.

Third.js:

Third.js creates the facade of the outlook mail loading screen, while running in the background. This file has not been fully deobfuscated yet, but it appears to grab and exfiltrate user information such as passwords, keys, and tokens, and make POST requests to the address "hxxps://ableg.filevaultaccounting.com/next.php". This address is currently unreachable, and the output of the "whois" command on the domain is attached below. The third.js file sends MDNS, SSDP, and WS-Discovery requests.

Fig 2: Webpage created by Third.js

```
Domain Name: FILEVAULTACCOUNTING.COM
Registry Domain ID: 2952171139_DOMAIN_COM-VRSN
Registrar WHOIS Server: whois.publicdomainregistry.com
Registrar URL: www.publicdomainregistry.com
Updated Date: 2025-01-20T12:48:58Z
Creation Date: 2025-01-20T12:43:40Z
Registrar Registration Expiration Date: 2026-01-20T12:43:40Z
Registrar: PDR Ltd. d/b/a PublicDomainRegistry.com
Registrar IANA ID: 303
Domain Status: clientTransferProhibited https://icann.org/epp#clientTransferProhibited
Registry Registrant ID: Not Available From Registry
Registrant Name: Ewan Thomson
Registrant Organization:
Registrant Street: 630 S Llewellyn Ave
Registrant City: Dallas
Registrant State/Province: Texas
Registrant Postal Code: 75208
Registrant Country: US
Registrant Phone: +1.5309378406
Registrant Phone Ext:
Registrant Fax:
Registrant Fax Ext:
Registrant Email: contact@filecloudservices.com
Registry Admin ID: Not Available From Registry
Admin Name: Ewan Thomson
Admin Organization:
Admin Street: 630 S Llewellyn Ave
Admin City: Dallas
Admin State/Province: Texas
Admin Postal Code: 75208
Admin Country: US
Admin Phone: +1.5309378406
Admin Phone Ext:
Admin Fax:
Admin Fax Ext:
Admin Email: contact@filecloudservices.com
Registry Tech ID: Not Available From Registry
Tech Name: Ewan Thomson
Tech Organization:
Tech Street: 630 S Llewellyn Ave
Tech City: Dallas
Tech State/Province: Texas
Tech Postal Code: 75208
Tech Country: US
Tech Phone: +1.5309378406
Tech Phone Ext:
Tech Fax:
Tech Fax Ext:
Tech Email: contact@filecloudservices.com
Name Server: ignacio.ns.cloudflare.com
Name Server: teagan.ns.cloudflare.com
DNSSEC: Unsigned
Registrar Abuse Contact Email: abuse-contact@publicdomainregistry.com
Registrar Abuse Contact Phone: +1.2013775952
URL of the ICANN WHOIS Data Problem Reporting System: http://wdprs.internic.net/
>>> Last update of WHOIS database: 2025-02-26T17:29:05Z <<<
```

Fig 3: Whois output of hxxps://ableg.filevaultaccounting.com

Static Analysis

Mal.js:

Multiple obfuscation techniques, including: masking variable & function names Self-redefining functions
Lazy initialization of variables
Direct interaction with DOM objects 'shift' and 'push' operations
Complicated math operations

Also contained a Base64-encoded email address

Second.html:

Similar obfuscation techniques

Cleaning the query parameter of the web URL and placing the value into a variable Importing a script from:

hxxps://1419993777-1317754460.cos.ap-singapore.myqcloud.com

Third.js:

This file is a whopping 550KB, which is very large for a normal JavaScript file Around 180KB of the file is scrambled html/css code

Suspicious variable names: email, token, key, keyGlobal, numberSms, numberTelp Similar obfuscation techniques as mal.is, including:

Multiple direct interactions with DOM objects

Self-redefining functions

Obfuscated loops

'shift' and 'push' operations

Complicated math operations

POST requests to "hxxps://ableg.filevaultaccounting.com/next.php"

Dynamic Analysis

Mal.js:

Putting console.log() statements inside of the file and placing the file as a <script> tag of an html document displayed the deobfuscated **Second.html** file (Fig. 1).

After shifting the hex array and deobfuscating it by performing bitwise-XOR operations, the code performs a document.write() method using the **Second.html** file as the new webpage to be displayed.

Second.html:

Second.html is used as the dropper for **Third.js** and sets the stage for the payload by also retrieving the exact versions of Third.js' dependencies.

Running Second.html on its own does not function properly, because the email value that would normally be passed from Mal.js is undefined. This error stops Third.js from running because there is no email to use as an identifier for the program. Manually inputting an email address allows the process to continue, resulting in the execution of Third.js.

Third.js:

Running Third.js displays a replica of the Microsoft Outlook loading screen while it executes in the background.

Due to the "hxxps://ableg.filevaultaccounting.com" domain not being available, the code cannot run without manual assistance.

After adding the domain to our local /etc/hosts file, we captured SSDP, MDNS, and WS-Discovery packets being sent across multicast addresses, likely being packaged and sent back to the ableg.filevaultaccounting.com domain.

Without knowing what "hxxps://ableg.filevaultaccounting.com/next.php" contains, based off current data it could be another payload that would be sent to detected devices for a botnet, used to establish persistence on the current machine, or both.

	-						1. 2
Source	Time	Destination	Protocol			Destination Port	
10.200.1.40	20.135234	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.208.234	20.136003	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.226.106	20.136206	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
10.200.1.40	21.136530	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.208.234	21.137045	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.226.106	21.137140	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
10.200.1.40	23.138158	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.208.234	23.138517	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.226.106	23.138617	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.208.234	18.450946	239.255.255.250	SSDP	133	52232	1900	M-SEARCH * HTTP/1.1
169.254.226.106	18.451063	239.255.255.250	SSDP	133	52234	1900	M-SEARCH * HTTP/1.1
10.200.1.40	18.451091	239.255.255.250	SSDP	133	52235	1900	M-SEARCH * HTTP/1.1
127.0.0.1	18.451168	239.255.255.250	SSDP	133	52236	1900	M-SEARCH * HTTP/1.1
169.254.208.234	18.454377	239.255.255.250	SSDP	165	52232	1900	M-SEARCH * HTTP/1.1
169.254.226.106	18.454402	239.255.255.250	SSDP	165	52234	1900	M-SEARCH * HTTP/1.1
10.200.1.40	18.454412	239.255.255.250	SSDP	165	52235	1900	M-SEARCH * HTTP/1.1
127.0.0.1	18.454434	239.255.255.250	SSDP	165	52236	1900	M-SEARCH * HTTP/1.1
169.254.208.234	18.461527	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	18.461654	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	18.461735	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	18.461851	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	18.591149	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	18.591252	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	18.591285	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	18.591366	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	18.849867	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	18.850366	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	18.850381	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	18.850429	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	19.366372	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	19.366426	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	19.366438	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	19.366489	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	20.398631	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	20.398789	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	20.398849	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	20.398984	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	21.452191	239.255.255.250	SSDP	133	52232	1900	M-SEARCH * HTTP/1.1
169.254.226.106	21.452264	239.255.255.250	SSDP	133	52234	1900	M-SEARCH * HTTP/1.1
10.200.1.40	21.452292	239.255.255.250	SSDP	133	52235	1900	M-SEARCH * HTTP/1.1
127.0.0.1	21.452360	239.255.255.250	SSDP	133	52236	1900	M-SEARCH * HTTP/1.1
169.254.208.234	21.456175	239.255.255.250	SSDP	165	52232	1900	M-SEARCH * HTTP/1.1
169.254.226.106	21.456197	239.255.255.250	SSDP	165	52234	1900	M-SEARCH * HTTP/1.1

Fig. 4: MDNS, SSDP, and WS-Discovery (shown as UDP) packets being sent through network

c?xml version="1.0" encoding="utf-8"><soap:Envelope xmlns:soap="http://www.w3.org/2003/05/soap-envelope" xmlns:uss="http://schemas.xmlsoap.org/ws/2006/04/discovery/wsa:Action>ntp://schemas.xmlsoap-org/ws/2006/04/discovery/wsa:Action>ntp://schemas.xmlsoap.org/ws/2006/04/discovery/wsa:Action>to-xwsa:MessageIDvarn:uuldifead3064-6a2d-4fc2-bb1d-add04bb3a8dd2
-bb1d-add04bb3a8dd2
-bb1d-add04bb3a8dd2
-bc2-bc3-add04bc3a8dd2
-bc3-add04bc3a8dd2
-bc4-add04bc3a8dd2
-bc4-add04bc3a8dd2
-bc4-add04bc3a8dd2
-bc4-add04bc3a8dd2
-bc4-add04bc3a8dd2
-bc4-add04bc3a8dd2
-bc5-add04bc3a8dd2
-bc5-add04bc3a8dd2
-bc5-add04bc3a8dd2
-bc6-add04bc3a8dd2
-bc6-add04bc3a8dd2
-bc6-add04bc3a8dd2
-bc6-add04bc3a8dd2
-bc6-add04bc3a8dd2
-bc6-add04bc3a8dd2
-bc6-add04bc3a8dd2
-bc7-scap:Envelope
-ccaptage -bc7-scap:Envelope</pre

Fig. 5: Closer look at WS-Discovery packet stream

Indicators of Compromise

Network-based Indicators

Network indicators include multicast WS-Discovery probes, as well as SSDP and MDNS requests used for network reconaissance.

Source	Time	Destination	♣ Protocol	Length	Source Port	Destination Port	Info
10.200.1.40	20.135234	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.208.234	20.136003	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR googlecast. tcp.local, "QM" question
169.254.226.106	20.136206	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR googlecast. tcp.local, "QM" question
10.200.1.40	21.136530	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.208.234	21.137045	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.226.106	21.137140	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
10.200.1.40	23.138158	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.208.234	23.138517	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.226.106	23.138617	224.0.0.251	MDNS	72	5353	5353	Standard query 0x0000 PTR _googlecasttcp.local, "QM" question
169.254.208.234	18.450946	239.255.255.250	SSDP	133	52232	1900	M-SEARCH * HTTP/1.1
169.254.226.106	18.451063	239.255.255.250	SSDP	133	52234	1900	M-SEARCH * HTTP/1.1
10.200.1.40	18.451091	239.255.255.250	SSDP	133	52235	1900	M-SEARCH * HTTP/1.1
127.0.0.1	18.451168	239.255.255.250	SSDP	133	52236	1900	M-SEARCH * HTTP/1.1
169.254.208.234	18.454377	239.255.255.250	SSDP	165	52232	1900	M-SEARCH * HTTP/1.1
169.254.226.106	18.454402	239.255.255.250	SSDP	165	52234	1900	M-SEARCH * HTTP/1.1
10.200.1.40	18.454412	239.255.255.250	SSDP	165	52235	1900	M-SEARCH * HTTP/1.1
127.0.0.1	18.454434	239.255.255.250	SSDP	165	52236	1900	M-SEARCH * HTTP/1.1
169.254.208.234	18.461527	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	18.461654	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	18.461735	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	18.461851	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	18.591149	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	18.591252	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	18.591285	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	18.591366	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	18.849867	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	18.850366	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	18.850381	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	18.850429	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	19.366372	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	19.366426	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	19.366438	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	19.366489	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	20.398631	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.226.106	20.398789	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
10.200.1.40	20.398849	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
127.0.0.1	20.398984	239.255.255.250	UDP	656	52737	3702	52737 → 3702 Len=624
169.254.208.234	21.452191	239.255.255.250	SSDP	133	52232	1900	M-SEARCH * HTTP/1.1
169.254.226.106	21.452264	239.255.255.250	SSDP	133	52234	1900	M-SEARCH * HTTP/1.1
10.200.1.40	21.452292	239.255.255.250	SSDP	133	52235	1900	M-SEARCH * HTTP/1.1
127.0.0.1	21.452360	239.255.255.250	SSDP	133	52236	1900	M-SEARCH * HTTP/1.1
169.254.208.234	21.456175	239.255.255.250	SSDP	165	52232	1900	M-SEARCH * HTTP/1.1
169.254.226.106	21.456197	239.255.255.250	SSDP	165	52234	1900	M-SFARCH * HTTP/1.1

Figure 4

Host-based Indicators

The primary host-based indicator is a looping load page for Microsoft outlook, that is **not** your company's/Microsoft's domain.

Figure 2

Rules & Signatures

A full set of YARA rules is included in Appendix A.

Signatures:

Domains:

hxxps://1419993777-1317754460.cos.ap-singapore.myqcloud.com

hxxps://ableg.filevaultaccounting.com

Use of the meat-themed Lorem Ipsum:

In mollit excepteur, tenderloin cillum fugiat do ut ea reprehenderit dolore meatloaf.

Complicated Math functions:

 $parseInt(-parseFloat(RCn_yeaJJioeECC_AiSwP(0xb5)) \ / \ (Math.trunc(parseInt(0x2392)) \ + \ -0x7cb \ + \ -0x12 \ * \ Math.ceil(0x18b)))$

The domain ableg.filevaultaccounting.com /next.php is base64 encoded (YARA rule in Appendix A)

while(!![]) loops

Appendices

A. Yara Rules

```
Base64_Encoded_URL located at https://github.com/InQuest/yara-rules-vt by InQuest Labs
rule Base64_Encoded_URL
                    meta:
                                                                                                                  = "InQuest Labs"
                                          author
                                          description
                                                                                                                  = "This signature fires on the presence of Base64 encoded
URI prefixes (<a href="http://">http://</a> and <a href="https://">https://</a>) across any file. The simple presence of such
strings is not inherently an indicator of malicious content, but is worth further
investigation."
                                          created date = "2022-03-15"
                                          updated date = "2022-03-15"
                                          blog_reference = "InQuest Labs R&D"
                                           labs reference =
                                          labs_pivot
    '114366bb4ef0f3414fb1309038bc645a7ab2ba006ef7dc2abffc541fcc0bb687"
                     strings:
                                                                \frac{1}{x^2b} = \frac{1
z][\x2b\x2f-\x39A-Za-z][\x32GWm]h\x30dHA\x36Ly[\x2b\x2f\x38-\x39])/
                     $httpw = /(aAB\x30AHQAcAA\x36AC\x38AL[\x2b\x2f-\x39w-z]|[\x2b\x2f-\x39A-Za-
z][\x2b\x2f-\x39A-Za-z][\x31\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x2b\x2f-\x39A-Za-z][\x31\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x2b\x2f-\x39A-Za-z][\x31\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x2b\x39A-Za-z][\x31\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x2b\x39A-Za-z][\x31\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x2b\x39A-Za-z][\x31\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADoALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADOALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADOALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADOALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADOALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADOALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADOALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADOALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADOALwAv[\x35\x39BFJNRVZdhlptx]oAHQAdABwADAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAdABwADAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAdABwADAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAdABWADAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAdABWADAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAdABWADAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAdABWADAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAdABWADAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwAV[\x35\x39BFJNRVZdhlptx]oAHQAAALwA
 \x39A-Za-z]|[\x2b\x2f-\x39A-Za-z][\x32GWm]gAdAB\x30AHAAOgAvAC[\x2b\x2f\x38-
 \x39])/
                     \frac{1}{x^2b} = \frac{(aHR}x30cHM}x36Ly[x2b}x2fx38-x39][x2b}x2f-x39A-Za-x39]
z = \frac{1}{x^2b \cdot x^2f \cdot x^39A - Za - z} = \frac{1}{x^32GWm} \cdot \frac{x^38v \cdot x^2b \cdot x^2f \cdot x^39A - Za - z}{1}
                     \frac{1}{2}  \frac{1}{2} 
z][\x2b\x2f-\x39A-Za-
\x39A-Za-z][\x32GWm]gAdAB\x30AHAAcwA\x36AC\x38AL[\x2b\x2f-\x39w-z])/
                     condition:
                                                                 any of them and not (uint16be(0x0) == 0x4d5a)
```

Base64_Encoded_Email located at https://github.com/tcketron/yara_rules/blob/main/Base64_Encoded_Email.yar

```
rule Base64 Encoded Email
                         meta:
                                                      author
                                                                                                               = "Tanner Ketron"
                                                     description = "Detects base64-encoded email addresses across any
file."
                                                      created_date = "2025-02-13"
                                                      updated_date = "2025-02-13"
                                                      reference = "Base64 encoding of emails can indicate obfuscation
techniques used in phishing, malware, or data exfiltration."
                          strings:
                                                      // Base64 patterns for common email structures (username@domain.tld)
                                                      b64_email_1 = /[A-Za-z0-9+\/=]{6}, @[A-Za-z0-9+\/=]{3}, \.[A-Za-z0-9+\/=]{3}, .[A-Za-z0-9+\/=]{3}, .[A-Za-z0-9+\
9+\/=]{2,6}/
                                                      b64_email_2 = /[A-Za-z0-9+\/=]{10}, @[A-Za-z0-9+\/=]{5}, \. [A-Za-z0-9+\/=]{5}, \. [A-Za-
9+\/=]{2,4}/
                                                       b64_email_3 = /[A-Za-z0-9+]{8}, @[A-Za-z0-9+]
9+\/=]{4,}\.(com|net|org|gov|edu|io|xyz|info)/
                           condition:
                                                      any of them
```

B. Malicious URLs

Domain	Port
hxxps://1419993777-1317754460.cos.ap-	443
singapore.myqcloud.com/attach%2Fbootstrap.min.js	
hxxps://ableg.filevaultaccounting.com/next.php	443

C. Deobfuscated Code Snippets

(get array, 933579), document[decode function reference(0xb6)](atob(decode function reference(0xbf))));

Fig 6: IIFE that checks order of args, then document.write() the Second.html file

```
const getURLParam = (paramName) => {
    paramName = paramName.replace(/[\[]/, '\\[']).replace(/[\]]/, '\\]');
    var regex = new RegExp('[\\?&]' + paramName + '=([^&\frac{1}{4}]*)');
    var match = regex.exec(location.search);
    return match === null ? '' : decodeURIComponent(match[1].replace(/\+/g, ' '));
}

// If the URL contains '?e=some_value', overwrite rh13z8jemt with the extracted value rh13z8jemt = getURLParam('e') === '' ? rh13z8jemt : getURLParam('e');
```

Fig 7: Cleanup function to ensure proper input of email address

```
(function(getEncodedArrayReference, constant_667665) {
   var getEncodedString_ShiftFunction = getEncodedString,
        encoded_array_reference = getEncodedArrayReference();
   while (!![]) {
        try {
            var shifted_array_value = -parseInt(getEncodedString_ShiftFunction(0x2699))
            if (shifted_array_value === constant_667665) {
                  console.log("Shifted array: " + shifted_array_value);
                  break;
            }
             else encoded_array_reference['push'](encoded_array_reference['shift']());
        } catch (_0xc9292c) {
                 encoded_array_reference['push'](encoded_array_reference['shift']());
        }
    }
} (getEncodedArray, -0x46e82 + -0x19f0c + -0x59 * -0x2eb7)); // Shift function, takes the

var count = 0x1626 + 0x1779 + 0x33 * -0xe5; // Count is equal to 0
let email, keyGlobal, token, numberSms, numberTelp;
```

Fig 8: Shift function of Third.js and declaration of some variables