Podstawy fizyki kwantowej

Lista zadań 4 – Spin

Andrzej Więckowski

Macierze Pauliego można przedstawić w następującej postaci:

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 $\sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ $\sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Definicja operatora spinu: $S^i = \frac{1}{2}\hbar\sigma_i$. Rozważamy cząstki o spinie $S = \frac{1}{2}$.

- 1. Pokazać, że:
 - (a) $Tr(\sigma_i) = 0$;
 - (b) $\det(\sigma_i) = -1$;
 - (c) $i\sigma_x \sigma_y \sigma_z = 1$.
- 2. Sprawdzić następujące relacje:

(a)
$$[\sigma_i, \sigma_i] = 2i\varepsilon^{ijk}\sigma_k$$
;

(b)
$$\{\sigma_i, \sigma_i\} = 2\delta_{ij}$$
.

- 3. Udowodnić, że $\sigma_i \sigma_i = \delta_{ij} + i \varepsilon^{ijk} \sigma_k$.
- 4. Pokazać, że $S^2 = \frac{3}{4} = S(S+1)$.
- 5. Definiujemy operatory drabinkowe $S^{\pm} = S^{x} \pm iS^{y}$, pokazać, że;

(a)
$$[S^+, S^-] = 2S^z$$
;

(b)
$$[S^z, S^{\pm}] = \pm S^{\pm}$$
;

(c)
$$S^2 = \vec{S} \cdot \vec{S} = (S^x)^2 + (S^y)^2 + (S^z)^2 = \frac{1}{2}(S^+S^- + S^-S^+) + (S^z)^2$$
.

- 6. Stany $|\uparrow\rangle$, $|\downarrow\rangle$ są stanami własnymi operatora S^z . Sprawdzić działanie S^{\pm} na $|\uparrow\rangle$, $|\downarrow\rangle$.
- 7. Układ jest opisany danym hamiltonianem $\hat{H} = \Delta S^x + J(S^+S^- + S^-S^+)$:
 - (a) Wyznaczyć energie oraz stany własne tego hamiltonianu;
 - (b) Rozwiązać równanie Schrödingera $\hat{H}|\psi(t)\rangle=i\hbar\frac{\mathrm{d}}{\mathrm{d}t}|\psi(t)\rangle$, gdzie warunki początkowe $|\psi\rangle=a|\uparrow\rangle+b|\downarrow\rangle$ to: $|\psi(t=0)\rangle=|\uparrow\rangle$ (podpowiedź: aby rozwikłać układ równań różniczkowych policz pochodną jednego równania, aby otrzymać drugą pochodną \ddot{a} , a następnie dokonaj podstawienia $a=\mathrm{e}^{\lambda t}$).

1