Package 'EigenR'

April 28, 2024

Type Package
Title Complex Matrix Algebra with 'Eigen'
Version 1.3.0
Author Stéphane Laurent
Maintainer Stéphane Laurent < laurent_step@outlook.fr>
Description Matrix algebra using the 'Eigen' C++ library: determinant, rank, inverse, pseudo-inverse, kernel and image, QR decomposition, Cholesky decomposition, Schur decomposition, Hessenberg decomposition, linear least-squares problems. Also provides matrix functions such as exponential, logarithm, power, sine and cosine. Complex matrices are supported.
License GPL-3
<pre>URL https://github.com/stla/EigenR</pre>
<pre>BugReports https://github.com/stla/EigenR/issues</pre>
Depends R (>= $3.0.2$)
Imports Rcpp (>= 1.0.5)
LinkingTo Rcpp, RcppEigen (>= 0.3.4.0.0)
Encoding UTF-8
RoxygenNote 7.3.1
SystemRequirements C++ 17
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-04-28 21:20:02 UTC
R topics documented:
Eigen_absdet

Eigen_absdet

Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_ls Eigen_p Eigen_p Eigen_C																		
Eigen_in Eigen_is Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_lo Eigen_p Eigen_p Eigen_r Eigen_r Eigen_r Eigen_r Eigen_s Eigen_si Eigen_si																		20
Eigen_in Eigen_is Eigen_is Eigen_k Eigen_k Eigen_k Eigen_lo Eigen_p Eigen_p Eigen_p Eigen_r Eigen_r Eigen_r Eigen_r Eigen_s Eigen_si Eigen_s	natrix			٠	 •	 	 •	 •	 ٠	 •	 •	٠	•	 •	•	 •	•	19
Eigen_in Eigen_in Eigen_in Eigen_in Eigen_k Eigen_lo Eigen_lo Eigen_p Eigen_p Eigen_p Eigen_r Eigen_r Eigen_r Eigen_r Eigen_r Eigen_s Eigen_si																		18
Eigen_in Eigen_is Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_lo Eigen_p Eigen_p Eigen_p Eigen_r Eigen_r Eigen_r Eigen_rs Eigen_s	•																	17
Eigen_ir Eigen_is Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_ls Eigen_p Eigen_p Eigen_p Eigen_ra Eigen_ra Eigen_ra																		17
Eigen_ir Eigen_is Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_ls Eigen_p Eigen_p Eigen_p Eigen_r Eigen_r Eigen_r																		16
Eigen_in Eigen_is Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_lo Eigen_p Eigen_p Eigen_C Eigen_C																		16
Eigen_in Eigen_in Eigen_in Eigen_k Eigen_k Eigen_lo Eigen_ls Eigen_p Eigen_p Eigen_p Eigen_C	ank																	15
Eigen_ii Eigen_is Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_ls Eigen_p Eigen_p	ange																	15
Eigen_ir Eigen_is Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_ls Eigen_p Eigen_p	QR																	14
Eigen_ir Eigen_is Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_lo	ow																	13
Eigen_ir Eigen_is Eigen_is Eigen_k Eigen_k Eigen_lo Eigen_lo	oinverse .				 	 												13
Eigen_ir Eigen_is Eigen_is Eigen_is Eigen_k Eigen_lo	sSolve				 	 												12
Eigen_ir Eigen_is Eigen_is Eigen_is Eigen_k Eigen_k	ogabsdet .				 	 				 								11
Eigen_ir Eigen_is Eigen_is Eigen_is Eigen_k	og				 	 				 						 		11
Eigen_ii Eigen_is Eigen_is Eigen_is	kernelDime	nsio	ı.		 	 												10
Eigen_ir Eigen_is Eigen_is	kernel																	9
Eigen_ir Eigen_is	sSurjective																	9
Eigen_ir	sInvertible																	8
•																		8
Figen L	_																	7
-	exp Hassanbarg																	7
U —	det																	6
•	cosh																	5
•	cos																	4

Description

Absolute value of the determinant of a real matrix.

Usage

Eigen_absdet(M)

Arguments

M a *real* square matrix

Value

The absolute value of the determinant of M.

Eigen_chol 3

Note

'Eigen_absdet(M)' is not faster than 'abs(Eigen_det(M))'.

Examples

```
set.seed(666L)
M <- matrix(rpois(25L, 1), 5L, 5L)
Eigen_absdet(M)</pre>
```

Eigen_chol

Cholesky decomposition of a matrix

Description

Cholesky decomposition of a symmetric or Hermitian matrix.

Usage

```
Eigen_chol(M)
```

Arguments

М

a square symmetric/Hermitian positive-definite matrix or SparseMatrix, real/complex

Details

Symmetry is not checked; only the lower triangular part of M is used.

Value

The upper triangular factor of the Cholesky decomposition of M.

```
M <- rbind(c(5,1), c(1,3))
U <- Eigen_chol(M)
t(U) %*% U # this is `M`
# a Hermitian example:
A <- rbind(c(1,1i), c(1i,2))
( M <- A %*% t(Conj(A)) )
try(chol(M)) # fails
U <- Eigen_chol(M)
t(Conj(U)) %*% U # this is `M`
# a sparse example
M <- asSparseMatrix(diag(1:5))
Eigen_chol(M)</pre>
```

4 Eigen_cos

Eigen_complexSchur

Complex Schur decomposition

Description

Complex Schur decomposition of a square matrix.

Usage

```
Eigen_complexSchur(M)
```

Arguments

М

real or complex square matrix

Details

See Eigen::ComplexSchur.

Value

A list with the T and U matrices.

Examples

```
library(EigenR)
M <- cbind(c(3, 2i, 1+3i), c(1, 1i, 1), c(5, 0, -2i))
schur <- Eigen_complexSchur(M)
T <- schur$T
U <- schur$U
M - U %*% T %*% t(Conj(U))</pre>
```

Eigen_cos

Matrix cosine

Description

Matrix cosine of a real or complex square matrix.

Usage

```
Eigen_cos(M)
```

Arguments

М

a square matrix, real or complex

Eigen_cosh 5

Value

The matrix cosine of M.

Examples

```
library(EigenR)
M <- toeplitz(c(1,2,3))
cosM <- Eigen_cos(M)
sinM <- Eigen_sin(M)
cosM %*% cosM + sinM %*% sinM # identity matrix</pre>
```

Eigen_cosh

Matrix hyperbolic cosine

Description

Matrix hyperbolic cosine of a real or complex square matrix.

Usage

```
Eigen_cosh(M)
```

Arguments

М

a square matrix, real or complex

Value

The matrix hyperbolic cosine of M.

```
library(EigenR)
M <- toeplitz(c(1,2,3))
Eigen_cosh(M)
(Eigen_exp(M) + Eigen_exp(-M)) / 2 # identical</pre>
```

6 Eigen_exp

Eigen_det

Determinant of a matrix

Description

Determinant of a real or complex matrix.

Usage

```
Eigen_det(M)
```

Arguments

М

a square matrix or SparseMatrix, real or complex

Value

The determinant of M.

Examples

```
set.seed(666)
M <- matrix(rpois(25, 1), 5L, 5L)
Eigen_det(M)
# determinants of complex matrices are supported:
Eigen_det(M + 1i * M)
# as well as determinants of sparse matrices:
Eigen_det(asSparseMatrix(M))
Eigen_det(asSparseMatrix(M + 1i * M))</pre>
```

Eigen_exp

Exponential of a matrix

Description

Exponential of a real or complex square matrix.

Usage

```
Eigen_exp(M)
```

Arguments

М

a square matrix, real or complex

Value

The exponential of M.

Eigen_Hessenberg 7

Eigen_Hessenberg

Hessenberg decomposition

Description

Hessenberg decomposition of a square matrix.

Usage

```
Eigen_Hessenberg(M)
```

Arguments

М

real or complex square matrix

Details

See Eigen::HessenbergDecomposition.

Value

A list with the H and Q matrices.

Examples

```
library(EigenR)  M <- cbind(c(3, 2i, 1+3i), c(1, 1i, 1), c(5, 0, -2i)) \\ Eigen\_Hessenberg(M)
```

Eigen_inverse

Inverse of a matrix

Description

Inverse of a real or complex matrix.

Usage

```
Eigen_inverse(M)
```

Arguments

М

an invertible square matrix, real or complex

Value

The inverse matrix of M.

8 Eigen_isInvertible

Eigen_isInjective

Check injectivity

Description

Checks whether a matrix represents an injective linear map (i.e. has trivial kernel).

Usage

```
Eigen_isInjective(M)
```

Arguments

М

a matrix, real or complex

Value

A Boolean value indicating whether M represents an injective linear map.

Examples

```
set.seed(666L)
M <- matrix(rpois(35L, 1), 5L, 7L)
Eigen_isInjective(M)</pre>
```

Eigen_isInvertible

Check invertibility

Description

Checks whether a matrix is invertible.

Usage

```
Eigen_isInvertible(M)
```

Arguments

М

a matrix, real or complex

Value

A Boolean value indicating whether M is invertible.

```
set.seed(666L)
M <- matrix(rpois(25L, 1), 5L, 5L)
Eigen_isInvertible(M)</pre>
```

Eigen_isSurjective 9

Eigen_isSurjective C

Check surjectivity

Description

Checks whether a matrix represents a surjective linear map.

Usage

```
Eigen_isSurjective(M)
```

Arguments

М

a matrix, real or complex

Value

A Boolean value indicating whether M represents a surjective linear map.

Examples

```
set.seed(666L)
M <- matrix(rpois(35L, 1), 7L, 5L)
Eigen_isSurjective(M)</pre>
```

Eigen_kernel

Kernel of a matrix

Description

Kernel (null-space) of a real or complex matrix.

Usage

```
Eigen_kernel(M, method = "COD")
```

Arguments

М

a matrix, real or complex

method

one of "COD" or "LU"; the faster method depends on the size of the matrix

Value

A basis of the kernel of M. With method = "COD", the basis is orthonormal, while it is not with method = "LU".

See Also

Eigen_kernelDimension.

Examples

```
set.seed(666)
M <- matrix(rgamma(30L, 12, 1), 10L, 3L)
M <- cbind(M, M[,1]+M[,2], M[,2]+2*M[,3])
# basis of the kernel of `M`:
Eigen_kernel(M, method = "LU")
# orthonormal basis of the kernel of `M`:
Eigen_kernel(M, method = "COD")</pre>
```

Eigen_kernelDimension Dimension of kernel

Description

Dimension of the kernel of a matrix.

Usage

```
Eigen_kernelDimension(M)
```

Arguments

М

a matrix, real or complex

Value

An integer, the dimension of the kernel of M.

See Also

```
Eigen_isInjective, Eigen_kernel.
```

```
set.seed(666L)
M <- matrix(rpois(35L, 1), 5L, 7L)
Eigen_kernelDimension(M)</pre>
```

Eigen_log 11

Eigen_log

Logarithm of a matrix

Description

Logarithm of a real or complex square matrix, when possible.

Usage

```
Eigen_log(M)
```

Arguments

М

a square matrix, real or complex

Details

The logarithm of a matrix does not always exist. See matrix logarithm.

Value

The logarithm of M.

Eigen_logabsdet

Logarithm of the absolute value of the determinant

Description

Logarithm of the absolute value of the determinant of a real matrix.

Usage

```
Eigen_logabsdet(M)
```

Arguments

М

a real square matrix

Value

The logarithm of the absolute value of the determinant of M.

Note

'Eigen_logabsdet(M)' is not faster than 'log(abs(Eigen_det(M)))'.

12 Eigen_lsSolve

Examples

```
set.seed(666L)
M <- matrix(rpois(25L, 1), 5L, 5L)
Eigen_logabsdet(M)</pre>
```

Eigen_lsSolve

Linear least-squares problems

Description

Solves a linear least-squares problem.

Usage

```
Eigen_lsSolve(A, b, method = "cod")
```

Arguments

A a n*p matrix, real or complex

b a vector of length n or a matrix with n rows, real or complex

method the method used to solve the problem, either "svd" (based on the SVD decom-

position) or "cod" (based on the complete orthogonal decomposition)

Value

The solution X of the least-squares problem AX \sim = b (similar to lm.fit(A, b)\$coefficients). This is a matrix if b is a matrix, or a vector if b is a vector.

```
set.seed(129)
n <- 7; p <- 2
A <- matrix(rnorm(n * p), n, p)
b <- rnorm(n)
lsfit <- Eigen_lsSolve(A, b)
b - A %*% lsfit # residuals</pre>
```

Eigen_pinverse 13

Eigen_pinverse

Pseudo-inverse of a matrix

Description

Pseudo-inverse of a real or complex matrix (Moore-Penrose generalized inverse).

Usage

```
Eigen_pinverse(M)
```

Arguments

М

a matrix, real or complex, not necessarily square

Value

The pseudo-inverse matrix of M.

Examples

```
library(EigenR)
M <- rbind(
  toeplitz(c(3, 2, 1)),
  toeplitz(c(4, 5, 6))
)
Mplus <- Eigen_pinverse(M)
all.equal(M, M %*% Mplus %*% M)
all.equal(Mplus, Mplus %*% M %*% Mplus)
#' a complex matrix
A <- M + 1i * M[, c(3L, 2L, 1L)]
Aplus <- Eigen_pinverse(A)
AAplus <- A %*% Aplus
all.equal(AAplus, t(Conj(AAplus))) #' `A %*% Aplus` is Hermitian
AplusA <- Aplus %*% A
all.equal(AplusA, t(Conj(AplusA))) #' `Aplus %*% A` is Hermitian</pre>
```

Eigen_pow

Matricial power

Description

Matricial power of a real or complex square matrix, when possible.

Usage

```
Eigen_pow(M, p)
```

14 Eigen_QR

Arguments

M a square matrix, real or complex

p a number, real or complex, the power exponent

Details

The power is defined with the help of the exponential and the logarithm. See matrix power.

Value

The matrix M raised at the power p.

Eigen_QR

QR decomposition of a matrix

Description

QR decomposition of a real or complex matrix.

Usage

```
Eigen_QR(M)
```

Arguments

M a matrix, real or complex

Value

A list with the Q matrix and the R matrix.

```
M <- cbind(c(1,2,3), c(4,5,6))
x <- Eigen_QR(M)
x$Q %*% x$R</pre>
```

Eigen_range 15

Eigen_range

Range of a matrix

Description

Range (column-space, image, span) of a real or complex matrix.

Usage

```
Eigen_range(M, method = "QR")
```

Arguments

M a matrix, real or complex

method one of "LU", "QR", or "COD"; the "LU" method is faster

Value

A basis of the range of M. With method = "LU", the basis is not orthonormal, while it is with method = "QR" and method = "COD".

Eigen_rank

Rank of a matrix

Description

Rank of a real or complex matrix.

Usage

```
Eigen_rank(M)
```

Arguments

М

a matrix, real or complex

Value

The rank of M.

Eigen_sin

Eigen_realSchur

Real Schur decomposition

Description

Real Schur decomposition of a square matrix.

Usage

```
Eigen_realSchur(M)
```

Arguments

М

real square matrix

Details

See Eigen::RealSchur.

Value

A list with the T and U matrices.

Examples

```
library(EigenR)
M <- cbind(c(3, 2, 3), c(1, 1, 1), c(5, 0, -2))
schur <- Eigen_realSchur(M)
T <- schur$T
U <- schur$U
M - U %*% T %*% t(U)</pre>
```

Eigen_sin

Matrix sine

Description

Matrix sine of a real or complex square matrix.

Usage

```
Eigen_sin(M)
```

Arguments

М

a square matrix, real or complex

Eigen_sinh 17

Value

The matrix sine of M.

Eigen_sinh

Matrix hyperbolic sine

Description

Matrix hyperbolic sine of a real or complex square matrix.

Usage

```
Eigen_sinh(M)
```

Arguments

М

a square matrix, real or complex

Value

The matrix hyperbolic sine of M.

Examples

```
library(EigenR)
M <- toeplitz(c(1,2,3))
Eigen_sinh(M)
(Eigen_exp(M) - Eigen_exp(-M)) / 2 # identical</pre>
```

Eigen_sqrt

Square root of a matrix

Description

Square root of a real or complex square matrix, when possible.

Usage

```
Eigen_sqrt(M)
```

Arguments

М

a square matrix, real or complex

Details

See matrix square root.

18 Eigen_UtDU

Value

A square root of M.

Examples

```
# Rotation matrix over 60 degrees:
M <- cbind(c(cos(pi/3), sin(pi/3)), c(-sin(pi/3), cos(pi/3)))
# Its square root, the rotation matrix over 30 degrees:
Eigen_sqrt(M)</pre>
```

Eigen_UtDU

'UtDU' decomposition of a matrix

Description

Cholesky-'UtDU' decomposition of a symmetric or Hermitian matrix.

Usage

```
Eigen_UtDU(M)
```

Arguments

Μ

a square symmetric/Hermitian positive or negative semidefinite matrix, real/complex

Details

Symmetry is not checked; only the lower triangular part of M is used.

Value

The Cholesky-'UtDU' decomposition of M in a list (see example).

```
x <- matrix(c(1:5, (1:5)^2), 5, 2)
x <- cbind(x, x[, 1] + 3*x[, 2])
M <- crossprod(x)
UtDU <- Eigen_UtDU(M)
U <- UtDU$U
D <- UtDU$D
perm <- UtDU$perm
UP <- U[, perm]
t(UP) %*% diag(D) %*% UP # this is `M`</pre>
```

SparseMatrix 19

SparseMatrix Sparse matrix

Description

Constructs a sparse matrix, real or complex.

Usage

```
SparseMatrix(i, j, Mij, nrows, ncols)
## S3 method for class 'SparseMatrix'
print(x, ...)
asSparseMatrix(M)
```

Arguments

i, j	indices of the non-zero coefficients
Mij	values of the non-zero coefficients; must be a vector of the same length as i and j or a single number which will be recycled
nrows, ncols	dimensions of the matrix
X	a SparseMatrix object
	ignored
М	a matrix, real or complex

Value

A list with the class ${\tt SparseMatrix}.$

```
set.seed(666)
( M <- matrix(rpois(50L, 1), 10L, 5L) )
asSparseMatrix(M)</pre>
```

Index

```
asSparseMatrix (SparseMatrix), 19
Eigen_absdet, 2
Eigen_chol, 3
Eigen_complexSchur, 4
Eigen_cos, 4
Eigen_cosh, 5
Eigen_det, 6
Eigen_exp, 6
Eigen_Hessenberg, 7
Eigen_inverse, 7
Eigen_isInjective, 8, 10
Eigen_isInvertible, 8
Eigen_isSurjective, 9
Eigen_kernel, 9, 10
Eigen_kernelDimension, 10, 10
Eigen_log, 11
Eigen_logabsdet, 11
Eigen_lsSolve, 12
Eigen_pinverse, 13
Eigen_pow, 13
Eigen_QR, 14
Eigen_range, 15
Eigen_rank, 15
Eigen_realSchur, 16
Eigen_sin, 16
Eigen_sinh, 17
Eigen_sqrt, 17
Eigen_UtDU, 18
print.SparseMatrix(SparseMatrix), 19
SparseMatrix, 3, 6, 19
```