Alapfogalmak

Bilicz-Horváth

2021. február 8.

Megadjuk a változó, a jel, a rendszer, és a hálózat fogalmának értelmezését

Telek

A folyamatok mérhető mennyiségei a fizikai mennyiségek. Egy **változó** egy fizikai mennyiség matematikai leírása. Egy **jel** a változó azon részének matematikai leírása, amely a számunkra lényeges információt hordozza. A továbbiakban a változó és a jel fogalmát nem különböztetjük meg.

A tárgy keretében a jel mindig egyetlen független változó által meghatározott. Ennek neve idő, amelyet folytonos idejű esetben t-vel (pl. x(t)), diszkrét idejű esetben k-val fogunk jelölni.

Jelek osztályozása

Időfüggés tekintetében megkülönböztetünk folytonos idejű (FI) jeleket:

$$x(t), -\infty < t < \infty \quad \text{vagy } t \in \mathbb{R},$$

ahol *t* gyakran a köznapi értelemben vett fizikai időt jelenti, amelynek egysége a szekundum:

$$[t] = s$$
 (szekundum);

illetve diszkrét idejű (DI) jeleket:

$$x[k], k = ..., -2, -1, 0, 1, 2, ... \text{ vagy } k \in \mathbb{Z}.$$

A k-adik diszkrét időpillanatra a k. ütem elnevezés is használatos.

Értékkészlet tekintetében egy x jel folytonos értékű, ha x bármilyen valós vagy komplex értéket felvehet (természetes megszorításokkal, pl. a konkrét jel nem lehet nagyobb egy bizonyos értéknél, vagy csak pozitív értékű lehet stb.), míg egy x jel diszkrét értékű vagy kvantált, ha az csak meghatározott b_i értékeket vehet fel. A folytonos idejű és folytonos értékű jeleket gyakran analóg, a diszkrét idejű és kvantált jeleket digitális jelnek is szokás nevezni. A tárgyban csak folytonos értékű jelekkel foglalkozunk, a kvantálás hatását később szaktárgyak keretében ismerjük meg. A jelek besorolását az 1. ábra szemlélteti.

Egy jel **belépő**, ha értéke t ill. k negatív értékeire azonosan nulla. Az 1. ábra jelei közül a bal felső belépő, a többi nem belépő.

Rendszerek

A **rendszer** egy fizikai objektum modellje, amely fizikai változókkal leírható. Ezen változók közül egy vagy több lehet adott, ezek

1. ábra: Jelek csoportosítása

a rendszer bemenő jelei vagy gerjesztései, egyet vagy többet pedig meg akarunk határozni, ezek a rendszer kimenő jelei vagy válaszai. A fizikai változókat a hozzájuk rendelt jellel, az objektumot pedig a rendszerrel írjuk le.

Matematikai értelemben a rendszernek a gerjesztés(ek)re gyakorolt hatását egy transzformációval jellemezhetjük, amely az adottnak tekintett gerjesztő jel(ek)hez válaszjel(ek)et rendel. A tárgyban egybemenetű, egy-kimenetű (angolul Single Input, Single Output, SISO) rendszerek vizsgálatára szorítkozunk. Egy ilyen rendszer u = u(t) ill. u = u[k] gerjesztéséhez egy y = y(t) ill. y = y[k] választ rendel, amely leképezést az *y operátor* (transzformáció) írja le:

$$y=\mathcal{Y}\left\{ u\right\} .$$

A rendszerek osztályozása

A tárgyban kitüntetett szerepet játszanak az alábbi általános rendszertulajdonságok:

• **Linearitás**: Egy rendszer akkor lineáris, ha a $y = \mathcal{Y}\{u\}$ gerjesztésválasz kapcsolatában szereplő ${\mathcal Y}$ operátor lineáris, más szóval a rendszerre érvényes a szuperpozíció elve.

Formálisan, ha a rendszer gerjesztése tetszőleges u_a és u_b gerjesztő jelek szuperpozíciója, akkor a linearitás megköveteli, hogy

2. ábra: A rendszer

Ebből következik, hogy lineáris rendszerekre speciálisan

$$\mathcal{Y}\left\{ cu\right\} =c\mathcal{Y}\left\{ u\right\}$$

teljesül, emiatt az u = 0 gerjesztéshez y = 0 válasz kell, hogy tartozzon.

$$\mathcal{Y}\left\{c_{a}u_{a}+c_{b}u_{b}\right\}=c_{a}\mathcal{Y}\left\{u_{a}\right\}+c_{b}\mathcal{Y}\left\{u_{b}\right\}$$

teljesüljön, minden $c_a \in \mathbb{R}$, $c_b \in \mathbb{R}$ mellett.

Ha a rendszer nem lineáris, akkor nemlineáris rendszernek nevezzük. Utóbbiakkal a JR2 keretében foglalkozunk.

• Invariancia: egy rendszer akkor (idő)invariáns, ha a gerjesztés időbeli eltolása csak egy ugyanakkora időbeli eltolást okoz a válaszban. Formálisan a rendszer akkor invariáns, ha

$$y(t) = \mathcal{Y}\left\{u(t)\right\} \Rightarrow y(t - T_0) = \mathcal{Y}\left\{u(t - T_0)\right\}$$

tetszőleges $T_0 \in \mathbb{R}$ esetén. Röviden, a gerjesztés-válasz kapcsolat időfüggetlen. A nem invariáns rendszer variáns.

A tárgyban kitüntetett szerepet játszanak a lineáris, invariáns rendszerek. Ezeknek angol rövidítése Linear, Time Invariant (LTI).

3. ábra: Egy invariáns rendszer gerjesztés-válasz kapcsolatának szemléltetése

- **Kauzalitás**: a rendszer *kauzális*, ha az $y(t_1)$ válasz az u(t) gerjesztésnek csak olyan értékeitől függ, amelyekre $t < t_1$ teljesül. Röviden, a rendszer válasza csak a gerjesztés múltbeli értékeitől függ, a rendszer nem képes "jósolni", követi a fizikai világban tapasztalt ok-okozati összefüggéseket. Ha a rendszer nem kauzális, akkor akauzális. A 3. ábrán illusztrált rendszer kauzális.
- Stabilitás: egy lineáris, invariáns rendszer akkor és csak akkor gerjesztés-válasz stabilis, ha **tetszőleges** korlátos u gerjesztéshez

Az angol terminológia a belépő jel és a kauzális rendszer megnevezésére is a causal kifejezést használja, magyarul azonban ezt élesebben megkülönböztetjük.

Később további stabilitásfogalmakat is megismerünk majd.

korlátos y válasz tartozik. A nem stabil rendszert labilis vagy instabil rendszernek nevezzük.

• **Dinamika**: egy rendszer akkor **memóriamentes**, ha a t_1 időpillanatban a válaszjele csak a gerjesztésnek ugyanezen t_1 időpillanatbeli értékétől függ. Ellenkező esetben a rendszer dinamikus.

Hálózatok

A hálózat komponensek összekapcsolásából áll. Minden komponenshez egy vagy több változó van hozzárendelve. A hálózatot a komponensek viselkedését leíró karakterisztikák, másrészt az összekapcsolási szabályokat leíró összekapcsolási kényszerek határozzák meg. A tárgyban kétféle hálózattal fogunk találkozni:

- A Kirchhoff-típusú hálózatok komponensei a kétpólusok (4. ábra), amelyeket két változó, a feszültség (u) és az áram (i) jellemez, amelyek általában a t idő függvényei. A komponensek karakterisztikái a feszültség és az áram kapcsolatát írják le, az összekapcsolási kényszereket pedig Kirchhoff áram- és feszültségtörvénye adja. A kétpóluson feltüntetett nyilak a változók referenciairányát jelölik.
- **Jelfolyamhálózatok**: ezekkel a JR2 tárgyban foglalkozunk majd.

Memóriamentes pl. az $y(t) = u^2(t)$, dinamikus pl. az

$$y(t) = \int_{-\infty}^{t} u(\tau)d\tau$$

gerjesztés-válasz kapcsolatú rendszer.

4. ábra: Kétpólus

Kirchhoff-típusú hálózat által reprezentált rendszer

A villamos hálózatban található forrás (adott/előírt u_s feszültségű feszültségforrás, illetve i_s áramú áramforrás) forrásmennyiségét tekintjük a hálózat által reprezentált rendszer gerjesztésének, míg a hálózat egy tetszőleges, kijelölt kétpólusának feszültségét vagy áramát a rendszer válaszjelének (5. ábra). Ügyeljünk rá, hogy az u a hálózatban egy feszültséget, a rendszerben a rendszer gerjesztő jelét jelöli, ami feszültség és áram is lehet.

Egy villamos példán keresztül szemléltetjük a modellezés lépéseit (6. ábra). Egy akkumulátoros zseblámpa izzóján átfolyó áramot határozzuk meg. Magát a fizikai objektumot az a) ábra mutatja, a bal oldalon az akkumulátort, a jobb oldalon az izzólámpát tüntettük fel. A b) ábra mutatja az általunk felállított hálózati modellt. Az akkumulá-

5. ábra: Kirchhoff-típusú hálózat és az általa reprezentált rendszer

tort, amely nem ideális feszültségforrásnak tekinthető, egy ideális, u_b forrásfeszültségű feszültségforrás, és egy R_b belső ellenállás soros eredőjével modellezhetjük (ún. Thévenin-generátor, lásd később). Az izzólámpát egy R értékű lineáris ellenállásként vesszük figyelembe. Keressük a körben folyó *i* áramot, ami egyben az izzólámpa árama is. Az Ohm-törvény alapján

$$i = \frac{1}{R + R_b} u_b. \tag{1}$$

A c) ábrán a hálózat által reprezentált rendszer sematikus rajza látható. A rendszer u gerjesztése az u_b forrásfeszültség, a rendszer yválaszjele a hálózatban kijelölt i áram. Ebben az egyszerű példában egyszerűen meg is adhatjuk a rendszer explicit gerjesztés-válasz kapcsolatát:

$$y = \frac{1}{R + R_h} u.$$
(2)

6. ábra: Példa a Kirchhoff-típusú hálózat által reprezentált rendszerre

A hálózati modellben elhanyagoltunk több fizikai jelenséget: a valóságos izzólámpa ellenállása nő a rajta átfolyó áram növekedésével (nemlineáris komponens); az akkumulátor folyamatosan merül, így az u_b folyamatosan csökken, és az akkumulátor öregedésével a belső ellenállás is nő (nem invariáns komponens), stb.

Ezért a modell nem jól írná le az elemlámpa áramát a közvetlenül a bekapcsolást követően, vagy ha órákon át vizsgálnánk a rendszert. Helyes viszont a modell bekapcsolt állapotban egy rövid ideig. A mérnöki gyakorlatban igyekszünk a legegyszerűbb, de a vizsgált probléma szempontjából helyes modellt megalkotni.

A villamos hálózatok alaptörvényei

Bilicz-Horváth

2021. február 10.

Ebben a fejezetben tárgyaljuk a villamos alapmennyiségeket (feszültség, áramerősség, ellenállás), valamint a villamos hálózatokat alkotó kétpólusok legfontosabb jellemzési szempontjait. Megfogalmazzuk a Kirchhoff-törvényeket, amelyek a kétpólusok összekapcsolási kényszereit fejezik ki. A hálózatra felírható egyenletek egy része a hálózatot alkotó kétpólusok karakterisztikáiból, más része pedig a Kirchhoff-törvényekből áll. Megvizsgáljuk, hogy az egyes egyenlettípusokból mennyit lehet és kell egy hálózatra felírni, és foglalkozunk a megoldhatóság kérdésével. Végül szólunk a villamos hálózat gráfreprezentációjáról.

A villamos hálózatok alaptörvényei

A Kirchhoff-típusú hálózatokra (ún. koncentrált paraméterű villamos hálózatokra) is igaz, hogy a hálózatot azt alkotó komponensek karakterisztikái és az összekapcsolási kényszerek együttesen határozzák meg. A következőkben áttekintjük a villamos hálózatokat felépítő komponensek, a kétpólusok (két kivezetéssel rendelkező elemek) jellemzését, és az összekapcsolási kényszereket leíró Kirchhoff-törvényeket, amelyek a kétpólusok változóit, a feszültségeket és az áramokat írják le.

Villamos alapmennyiségek

 Az áramerősség. Az elektromos töltések mozgása az elektromos áram. Ha egy felületen (pl. egy vezető keresztmetszetén) Δt idő alatt ΔQ töltés áramlik át, akkor határátmenetet képezve megkapjuk az áram kifejezését:

$$i(t) = \frac{dQ}{dt}.$$

Az áram irányát a pozitív töltések mozgásának irányával azonosítjuk.

 A feszültség. Az elektromos töltéseknek az elektromos térben való mozgatásához munkát kell végezni. Ez a munka az elektromos energia, amit a tárgyban w(t)-vel jelölünk. Az elektromos feszültséget a tér két pontja, illetve két kapocs (legyen A és B) között értelmezzük: az u_{AB} feszültség mérőszáma az a munka, amely egy dQ töltésű próbatöltésnek A pontból B pontba mozgatásához szükséges:

$$u_{AB} = \frac{dw_{AB}}{dQ}.$$

Az áramerősség SI mértékegysége $[i] = A \quad \text{(Amper)}.$

A feszültség egysége $[u] = V \quad \text{(Volt)}.$

• A teljesítmény. Tudjuk, hogy a teljesítmény az egységnyi idő alatt végzett munka,

$$p(t) = \frac{dw(t)}{dt}.$$

Láttuk, hogy dw(t) = u(t)dQ. Formálisan dt-vel osztva

$$\frac{dw(t)}{dt} = u(t)\frac{dQ}{dt} = u(t)i(t),$$

így a pillanatnyi teljesítmény kifejezése

$$p(t) = u(t)i(t)$$

A pillanatnyi teljesítmény a két alapvető – és a gyakorlatban könnyen megmérhető – villamos mennyiséggel kifejezhető.

A teljesítmény egysége

$$[p] = W$$
 (Watt).

Semmilyen fizikai rendszer nem lehet végtelen nagy teljesítmény forrása, ezért a teljesítmény mindig véges.

Villamos kétpólusok

A Kirchhoff-típusú hálózatok alapvető komponensei a kétpólusok. Minden kétpólushoz hozzárendelhetjük a rajta átfolyó i=i(t) áramot és a pólusai között fellépő u=u(t) feszültséget, amelyek általánosságban időtől függő (időben változó) mennyiségek lehetnek. Az áram nyila a pozitív töltések feltételezett áramlási irányát (az ún. technikai áramirányt) jelöli, a feszültség nyila a nagyobbnak feltételezett potenciálú pólustól a kisebb felé mutat. A kétpóluson feltüntetett nyilak a változóknak nem a tényleges irányát jelölik (sok esetben azt számítás nélkül nem is tudnánk előre megmondani), hanem a – gyakran önkényesen felvett – ún. referenciairányukat jelölik. A komponensek pólusai a hálózat csomópontjaiban egyesíthetők.

A KÉTPÓLUSOK karakterisztikája

a kétpóluson átfolyó áram és a kapcsokon fellépő feszültség kapcsolatát leíró összefüggés.

Ennek alakja lehet

$$u = \mathcal{U}\{i\}$$
 ill. $i = \mathcal{I}\{u\}$

ún. explicit forma (valamely változóra kifejezhető) összefüggés. Bizonyos kétpólusokat viszont csak

$$\mathcal{F}\{u,i\}=0$$

alakú ún. *implicit* karakterisztikával jellemezhetünk, mert az explicit karakterisztikák egyike sem fejezhető ki.

A kétpólusok csoportosítása

A források olyan kétpólusok, amelyeknek vagy a feszültsége, vagy az árama ismert (adott):

$$u = u_s(t), \quad i = i_s(t),$$

ahol $u_s(t)$ a feszültségforrás forrásfeszültsége, $i_s(t)$ az áramforrás forrásárama.

1. ábra: Kétpólus

2. ábra: a) feszültségforrás, b) áramfor-

A KÉTPÓLUS **lineáris**, ha érvényes rá a szuperpozíció elve, vagyis a kétpólust leíró $\mathcal U$ ill. $\mathcal I$ operátor *lineáris*. Ha például létezik a kétpólus feszültségét az árama ismeretében kifejező $\mathcal U$ operátor, akkor azzal a linearitás feltétele

lineáris kétpólus
$$\Leftrightarrow \mathcal{U}\left\{c_a i_a + c_b i_b\right\} = c_a \cdot \mathcal{U}\left\{i_a\right\} + c_b \cdot \mathcal{U}\left\{i_b\right\}$$
(1)

Ha a szuperpozíció elve nem érvényesül, a szóban forgó kétpólus nemlineáris. A lineáris kétpólusok és források összekapcsolásából álló hálózatot lineáris hálózatnak nevezzük.

Lineáris kétpólus az ellenállás, amelynek karakterisztikája az Ohm-törvény:

$$R = \frac{u}{i},$$

ahol R a rezisztencia (vagy ellenállás). Az ellenállás SI egysége

$$[R] = \Omega$$
 (ohm).

A KÉTPÓLUS rezisztív (memóriamentes), ha a kétpólust leíró operátorok függvények, vagyis a kétpólus feszültsége egy rögzített t_0 időpillanatban csak az áramának t_0 -beli értékétől függ, vagy fordítva, pl.

$$u(t_0) = \mathcal{U}\{i(t_0)\} = U(i(t_0), t_0).$$

A nemrezisztív kétpólus dinamikus. A dinamikus komponensek karakterisztikájában gyakran integrális viszonyban állnak a mennyiségek, ami arra utal, hogy ezek a komponensek energiatárolásra képesek. Például a kondenzátor dinamikus komponens, karakterisztikája

$$i_{\mathcal{C}}(t) = C \frac{du_{\mathcal{C}}}{dt} \equiv Cu_{\mathcal{C}}', \tag{2}$$

illetve

$$u_C(t) = \frac{1}{C} \int_{-\infty}^{t} i_C(\tau) d\tau, \tag{3}$$

ahol C a kondenzátort jellemző kapacitás, melynek egysége [C] = F(farad).

A KÉTPÓLUS invariáns, ha változóinak kapcsolatát (a karakterisztikát) az időbeli eltolás nem befolyásolja. Formálisan

$$\mathcal{U}\{i(t)\} = u(t) \Rightarrow \mathcal{U}\{i(t-T_0)\} = u(t-T_0)$$

tetszőleges T₀ eltolás mellett. A továbbiakban csak invariáns kétpólusokat tárgyalunk.

A források nemlineáris komponensek.

3. ábra: Az ellenállás

Az ellenállás rezisztív (ahogy a tulajdonság elnevezése is utal rá), és lineáris. Egy tipikus nemlineáris rezisztív komponens a dióda, amelynek karakterisztikája

$$i = I_0 \exp\left(\frac{u}{U_0} - 1\right)$$

jellegű (I_0 és U_0 az eszközt jellemző állandók). A rezisztív komponensek karakterisztikáját gyakran grafikusan (is) megadhatjuk

4. ábra: A kondenzátor

A KÉTPÓLUS **passzív**, ha bármelyik összetartozó u, i párra a w(t)munkafüggvény nemnegatív:

passzív kétpólus
$$\Leftrightarrow w(t) = \int\limits_{-\infty}^{t} p(\tau) d\tau \ge 0, \ \forall t$$
 (4)

Ha ez nem áll fenn, akkor a kétpólus aktív. A passzivitás azt jelenti, hogy az adott kétpólus semmilyen körülmények között nem termelhet villamos energiát. A passzivitás speciális eseteként nonenergikus az a kétpólus, amelynek a teljesítménye azonosan nulla:

nonenergikus kétpólus
$$\Leftrightarrow p(t) \equiv 0$$

A munkafüggvény elnevezése mögött az a megfontolás áll, hogy a $W(t_1,t_2)$ függvény megadja a kétpólus által a $[t_1,t_2]$ időintervallumban fogyasztott villamos energiát az alábbi formában:

$$W(t_1, t_2) = w(t_2) - w(t_1)$$

A Kirchhoff-törvények

Kirchhoff-típusú hálózatban az összekapcsolási kényszereket Gustav Kirchhoff német fizikus 1845-ben írta le. A kétpólusok pólusai a hálózat csomópontjaiban egyesíthetők. Jelölje a hálózatban levő kétpólusok számát *b* (*branch*), a csomópontok számát pedig *n* (*node*). Kirchhoff áramtörvénye a töltésmegmaradás, feszültségtörvénye az energiamegmaradás elvéből származtatható. Az 5. ábra hálózatában általános kétpólusokat tüntettünk fel (b = 5), és bekereteztük a három csomópontot (n = 3).

Kirchhoff áramtörvénye

Válasszunk a hálózatban egy zárt felületet, amelyen a kétpólusok áramai legfeljebb egyszer folynak át. Kirchhoff I. törvénye értelmében az áramok algebrai összege bármely ilyen zárt felületre, minden időpontban nulla:

$$\sum_{k} i_k(t) = 0$$
, minden zárt felületre, $\forall t$

A 6. ábra hálózatában találomra felvettük az áramok referenciairányát, és bejelöltünk három zárt görbét (az a és c 1-1 csomópontot, a b görbe két csomópontot is magában foglal). Az ezekre vonatkozó áramtörvények:

a:
$$i_1 + i_2 + i_3 = 0$$

b: $i_1 + i_3 + i_4 + i_5 = 0$
c: $-i_1 - i_4 - i_3 - i_5 = 0$ (5)

Az R > 0 értékű ellenállás passzív kétpólus: az u = Ri karakterisztika alapján $p = ui = Ri^2 \ge 0$, ha R > 0, emiatt $w \ge 0$ is biztosan teljesül.

A passzivitásnak elégséges feltétele, hogy a kétpólus teljesítménye nemnega-

$$p(t) \ge 0 \Leftarrow w(t) \ge 0$$
,

azonban ez csak rezisztív kétpólusok esetén szükséges feltétel is egyben.

Az ellenállásal modellezhetjük az elektronikában használt ellenállás nevű alkatrészt, amely a betáplált elektromos teljesítményt hővé alakítja. De ellenállással modellezhetjük egy mobiltelefon-antenna ún. sugárzási ellenállását is. Az antenna a betáplált elektromos teljesítményt (részben) elektromágneses sugárzás formájában adja le.

5. ábra: Példahálózat

A zárt felületből kifolyó áramokat tekintjük pozitívnak, az oda befolyó áramókat negatívnak.

6. ábra: Példa Kirchhoff áramtörvényére

Látható, hogy a b) és a c) felületre felírható egyenletek nem függetlenek egymástól, jelen esetben a két egyenlet egymásnak ellentettje. Egy n csomópontot tartalmazó összefüggő hálózatra r = n - 1 független áramtörvény írható fel. A hálózatra felírható áramtörvények egy olyan rendszerét, amely a maximális számú független egyenletet tartalmaz, az áramtörvények fundamentális rendszerének nevezzük.

Az áramtörvények egy fundamentális rendszerét kapjuk, ha egy kivétellel minden csomópontra felírjuk az áramtörvényt, azonban bizonyos feladatokban ennél célszerűbb választással is élhetünk.

Kirchhoff feszültségtörvénye

A hálózatban a hurok egy irányított, zárt görbe, amely a hurok által érintett kétpólusokon úgy halad át, hogy egyik kétpólust sem tartalmazza egynél többször. Kirchhoff 2. törvénye értelmében bármely hurokra a hurkot alkotó kétpólusok feszültségeinek algebrai összege bármely időpillanatban nulla:

$$\sum_{k} u_k(t) = 0$$
, a hurok feszültségeire, $\forall t$

A 7. ábrán a példahálózatra felvettünk három irányított hurkot. A hozzájuk tartozó feszültségtörvények:

(i):
$$u_1 - u_4 - u_2 = 0$$

(ii): $u_4 - u_5 = 0$
(iii): $u_2 + u_5 - u_3 = 0$

Felvehetünk továbbá egy hurkot úgy, hogy az az 1., 4., 5., és 3. kétpólusokon haladjon át, pozitív irányítással. Az erre vonatkozó feszültségtörvény:

$$u_1 - u_4 + u_5 - u_3 = 0 (7)$$

Jól látható, hogy utóbbi egyenlet nem független a korábbiaktól: az (i) és a (iii) egyenlet összeadásával is előáll. A hálózatra felírható független feszültségtörvények száma is korlátozott. Egy n számú csomópontot és b számú kétpólust tartalmazó, összefüggő hálózatban l = b - r = b - n + 1 független feszültségtörvény írható fel. A feszültségtörvények egy maximális számú független egyenletet alkotó rendszerét a feszültségtörvények fundamentális rendszerének nevezzük. A fundamentális rendszer előállítható például úgy, hogy mindegyik új hurok tartalmazzon egy olyan kétpólust, amely a meglevő hurkokban még nem szerepelt.

Tellegen tétele

Egy tetszőleges, b számú kétpólust tartalmazó hálózatban minden kétpólus 1-1 ágfeszültséggel, illetve ágárammal jellemezhető. Jelölje $u'_1, u'_2, \dots u'_h$ a kétpólusok feszültségeinek egy rendszerét, amelyek

A hurok által érintett kétpólus feszültségét pozitív előjellel vesszük figyelembe, ha iránya megegyezik a hurok irányításával, különben pedig negatív előjellel.

7. ábra: Példa Kirchhoff feszültségtörvénvére

Itt l a hurkok számára, angolul loop-ra utal.

Ha a hálózat gráfja síkba rajzolható, akkor az "ablaktábla-módszerrel" választott hurkok maximális számú független feszültségtörvényre vezetnek. A 7. ábrán ezzel a módszerrel vettük fel az (i)-(iii) hurkokat.

kielégítik Kirchhoff feszültségtörvényének egy fundamentális rendszerét. Jelölje a hálózat ágáramainak egy rendszerét $i''_1, i''_2, \dots i''_h$, amelyek kielégítik Kirchhoff áramtörvényének egy fundamentális rendszerét. Tellegen tétele szerint

$$\sum_{k=1}^b u_k' \cdot i_k'' = 0.$$

A tétel akkor is igaz, ha az u'_i és i''_i értékek nem ugyanahhoz a gerjesztéshez tartoznak, sőt, a tétel akkor is igaz, ha két különböző hálózatból vesszük az u'_i és i''_i értékeket mindaddig, amíg a két hálózat topológiája (gráfja) megegyezik.

A tétel abban a speciális esetben, ha $u'_k = u_k$ és $i''_k = i_k$ ugyanannak a kétpólusnak ugyanabban a hálózatban ugyanarra a gerjesztésre vonatkozó értéke, akkor $p_k = u_k \cdot i_k$ a kétpólus teljesítményét adja, Tellegen tétele pedig a teljesítmény-egyensúlyt (vagy az energiamegmaradás elvét) fogalmazza meg a hálózatra:

$$\sum_{k=1}^{b} u_k \cdot i_k = \sum_{k=1}^{b} p_k = 0.$$

A hálózatot alkotó kétpólusok által fogyasztott és termelt teljesítmény összege minden pillanatban nulla.

A hálózati egyenletek teljes rendszere

Az n csomópontú, b számú kétpólusból álló hálózatban összesen 2b számú ismeretlen változó van, mert minden kétpólust két mennyiség, a hozzá tartozó u_k ágfeszültség és az i_k ágáram jellemzi. A hálózatszámítási feladatokban ezen ismeretlenek közül egy vagy több ismert (adott), így a hálózatban levő feszültségforrások feszültsége, illetve áramforrások árama adott, a többi ismeretlen mennyiséget pedig ki szeretnénk számítani. Ezekkel együtt összesen 2b számú független egyenletre van szükségünk. Ebből b számú egyenletet a b számú kétpólus karakterisztikája jelent, a maradék b számú egyenletet pedig a Kirchhoff-törvények alkalmazásával kell előállítanunk. Az áramtörvények fundamentális rendszere n csomópontú hálózatban r = n - 1 független egyenletet, a feszültségtörvények fundamentális rendszere l = b - r = b - n + 1 független egyenletet eredményez. Összesen valóban n-1+b-n+1=b számú független Kirchhoff-egyenletet írhatunk fel. Ezt az egyenletrendszert nevezzük a hálózati egyenletek teljes rendszerének. Ha ez a 2b ismeretlenes egyenletrendszer megoldható, akkor megkapjuk az összes keresett feszültséget és áramot. Ha az egyenletrendszernek nincs megoldása, akkor a hálózat nem reguláris, nem tekintjük egy fizikai rendszer helyes modelljének. Lineáris hálózatban a megoldás egyértelmű, nemlineáris komponenst tartalmazó hálózatban több megoldás is lehetséges.

PÉLDA: A 8. ábra hálózatában b = 4 kétpólus és n = 3 csomópont található. A hálózati egyenletek teljes rendszerét b = 4 karakterisztika, r = n - 1 = 2 áramtörvény és l = b - n + 1 = 4 - 3 + 1 = 2feszültségtörvény alkotja, összesen 2b = 8 független egyenlet:

$$u_1 = u_s$$
 (adott) áramtv.: fesz. tv.: $i_2 = Ri_2$ (Ohm-tv.) $i_3 = i_s$ (adott) $i_1 + i_2 = 0$ $u_1 - u_3 - u_2 = 0$ $u_4 = 2Ri_4$ (Ohm-tv.) $i_3 + i_4 - i_2 = 0$ $u_3 - u_4 = 0$

PÉLDA NEMREGULÁRIS HÁLÓZATRA: A 9. ábrán látható hálózatban a karakterisztikák, illetve az áramforrások közös csomópontjára

8. ábra: Példa a hálózati egyenletek teljes rendszerére

9. ábra: Példa nemreguláris hálózatra

felírható áramtörvény:

$$u_1 = Ri_1$$
 (Ohm-tv.)
 $i_2 = i_{s,2}$ (adott) áramtv.:
 $i_3 = i_{s,3}$ (adott) $i_3 + i_4 - i_2 = 0$
 $i_4 = i_{s,4}$ (adott)

Ez a négy egyenlet azonban ellentmondásra vezet: a három előírt forrásáram nem feltétlenül elégíti ki az áramtörvényt (pl. ha $i_{s,2} =$ 2 A, $i_{s,3} = 3$ A, $i_{s,4} = 4$ A, akkor nyilván nem teljesülhet $i_3 + i_4 - i_2 =$ 0). A példabeli hálózat tehát nem reguláris, a hálózati egyenletek teljes rendszere nem oldható meg, vagy nem egyértelmű a megoldás annak ellenére, hogy lineáris a hálózat.

A HÁLÓZAT EGYENLETEK TELJES RENDSZERE a gyakorlatban túl sok ismeretlen bevezetését igényli, ezért sem kézi számításhoz, sem komplex hálózatok gépi analíziséhez nem skálázható előnyösen. Meg fogunk ismerni olyan számítási eljárásokat, amelyek lényegesen kevesebb ismeretlen bevezetését igénylik.

A hálózat gráfja

A Kirchhoff-típusú hálózathoz kézenfekvő módon hozzárendelhető a hálózat irányított gráfja: a hálózat csomópontjai a gráf csúcsaival, a hálózat komponensei pedig a gráf éleivel reprezentálhatók. Ez a gráf-reprezentáció egyfelől lehetővé teszi, hogy a hálózati egyenletek felírására szisztematikus, jól programozható eljárásokat alkalmazzunk (ez a hálózatanalízis-szoftverek alapja). Másfelől pedig gráfelméleti módszerekkel igazolható a fundamentális áramtörvény- ill. feszültségtörvény-rendszer számosságára közölt fenti eredmény is. A hálózat gráfjával azonban a továbbiakban nem foglalkozunk.

Általában, ha a hálózatban található kizárólag áramforrások alkotta zárt felület (vágat), vagy a kizárólag feszültségforrások alkotta hurok, akkor a hálózat nem reguláris. Feszültségforrások párhuzamos, ill. áramforrások soros kapcsolása ilyen elrendezést alkot.

3. Rezisztív hálózatok analízise

Bilicz-Horváth

2021. február 19.

A hálózatanalízisben a Kirchhoff-egyenletek teljes rendszerének felírása helyett hatékonyabb módszereket is találhatunk: általános esetben a csomóponti potenciálok módszere és a hurokáramok módszere, kifejezetten lineáris hálózatokban a szuperpozíció elvének kihasználása jóval hatékonyabb, akár kézi számítás, akár gépi hálózatanalízis során. Ebben az előadásban ezeket a módszereket ismerjük meg, egyelőre rezisztív hálózatok példáján keresztül.

Rezisztív hálózatok

Az új hálózatszámítási eljárásokat a lineáris, rezisztív hálózatok körében vezetjük be, és később lineáris dinamikus, majd – a szuperpozíció módszere kivételével, amely csak lineáris hálózatokban érvényes – nemlineáris hálózatokban is alkalmazni fogjuk. A lineáris rezisztív hálózatban források és lineáris rezisztív kétpólusok vannak, a rezisztív kétpólusok nem tárolnak energiát, és gyakran a gerjesztések időben állandó mennyiségek: *egyenfeszültségek*, illetve *egyenáramok*. Ha a továbbiakban hangsúlyozni kívánjuk, hogy időben állandó mennyiségekkel dolgozunk, akkor azt nagybetűs jelöléssel emeljük ki: $u_s(t) = U_s$, ill. $i_s(t) = I_s$. A hálózat feszültségeit és áramait egy lineáris, *algebrai* egyenletrendszer megoldásaként kapjuk. Ismétlésképpen tekintsük át az eddig megismert lineáris, rezisztív kétpólusokat, és a karakterisztikájuk grafikus ábrázolását. Az 1. ábra

Az algebrai egyenletet azért hangsúlyozzuk, mert a dinamikus hálózatokat differenciálegyenletek, ill. azok rendszerei írják le.

1. ábra: a: feszültségforrás, b: áramforrás

a) részén a feszültségforrás karakterisztikája látható: a kétpólus feszültsége minden pillanatban az előírt (állandó, vagy időben változó) feszültség, i áramának értékét pedig a csatlakozó hálózat alakítja ki. A b) ábrán az áramforrás látható: árama minden pillanatban az előírt i_s forrásáram, feszültségét pedig a csatlakozó hálózat alakítja ki. A 2. ábrán az ellenállás és karakterisztikája látható. Az a) ábrán az R ellenállás (rezisztencia) paraméterrel megfogalmazva, a b) ábrán

2. ábra: a: ellenállás, b: vezetés (figyeljünk az u - i tengelyek felcserélésére!)

pedig az ellenállás reciprokának, a G vezetés (konduktancia) segítségével megfogalmazva. Mindkét felírásban origón átmenő lineáris az összefüggés a feszültség és az áram között.

Hálózati egyenletek

Az előző előadásban megismertük a hálózati egyenletek teljes rendszerét, amelyben az n csomópontú, b kétpólust tartalmazó hálózat minden változóját (1-1 feszültség, ill. áram) leíró 2b változóhoz szükséges 2b független egyenletet a következőképpen állítjuk fel: a b számú kétpólus b karakterisztikája, r = n - 1 Kirchhoff-áramtörvény és l = b - r = b - n + 1 Kirchhoff-feszültségtörvény. Ez a séma alkalmazható rezisztív hálózatokban is. Továbbra is probléma az ismeretlenek nagy száma.

Az ismeretlenek száma megfelezhető, ha a hálózati egyenletek felírása során a b számú karakterisztika alapján behelyettesítjük minden kétpólus feszültségét vagy áramát, és csak a másik mennyiséget tartjuk meg változóként. Ezzel az ismeretlenek száma legfeljebb b-re csökken, majd az adódó egyenletrendszer megoldása után az esetleg szükséges további változókat a karakterisztikába visszahelyettesítve számítjuk. Ezt nevezzük a hálózati egyenletek egy redukált rendszerének.

A 3. ábrán látható hálózatban az áramtörvényt a két bejelölt csomópontra, a feszültségtörvényt a két bejelölt hurokra írjuk fel úgy, hogy az egyenletekben bekeretezett tagokat a karakterisztikából azonnal be is helyettesítjük:

$$i_{1} + i_{2} = 0$$

$$-i_{2} + \left[i_{s}\right] + \left[\frac{u_{4}}{2R}\right] = 0$$

$$\left[u_{s}\right] - u_{3} - \left[Ri_{2}\right] = 0$$

$$u_{3} - u_{4} = 0$$

Az egyenletrendszer valóban redukált rendszer, az ismeretlenek: i_1, i_2, u_3, u_4 , összesen b számú ismeretlen.

A konduktancia egysége

$$[G] = S$$
 (siemens)

Ritkán előfordul az ohm megfordítása \mho (mho) szimbólum is.

Ugyanarra a hálózatra sokféle redukált rendszert írhatunk fel attól függően, hogy mely változókat fejezzük ki a karakterisztikákkal

3. ábra: Példahálózat a hálózategyenletek redukált rendszerére A példa egyenletrendszerét átrendezzük úgy, hogy a gerjesztés jellegű tagok a jobb oldalra kerüljenek:

$$\left. \begin{array}{l} i_1+i_2=0 \\ -i_2+\frac{1}{2R}u_4=-i_s \\ -u_3-Ri_2=-u_s \\ u_3-u_4=0 \end{array} \right\}$$

A LINEÁRIS REZISZTÍV hálózat reguláris, ha a hálózati egyenletrendszer egyértelműen megoldható. Mind a teljes, mind a redukált rendszer egy algebrai egyenletrendszerre vezet, amelynek általános alakja

$$Ax = g$$

ahol x az ismeretlen feszültségekből, illetve áramokból képzett oszlopvektor, g a gerjesztéseket tartalmazó vektor, A pedig egy négyzetes együtthatómátrix.

A hálózat akkor és csak akkor reguláris, ha az A mátrix invertálható. Ekkor a megoldás

$$x = A^{-1}g$$
.

A на́Lózati egyenletek redukált rendszere továbbra is nagyon sok ismeretlenes egyenletrendszerek kezelését igényli. A továbbiakban olyan praktikus hálózatszámítási eljárásokat ismertetünk, amelyek lényegesen kisebb méretű egyenletrendszerre vezetnek.

A csomóponti potenciálok módszere

A módszer alkalmazásához új ismeretleneket, a csomópontokhoz rendelhető potenciálokat vezetünk be. Válasszuk ki a hálózat egy csomópontját, és tekintsük ezt bázis- vagy referencia-csomópontnak, és rendeljük ehhez a $\varphi_0=0$ potenciálértéket. A hálózat maradék r = n - 1 csomópontjához rendeljünk $\varphi_1, \varphi_2, \cdots, \varphi_{n-1}$ ismeretlen csomóponti potencálokat. A fizikából ismert potenciál értelmezésének megfelelően a hálózat ágfeszültségei kifejezhetők a megfelelő csomóponti potenciálok különbségeként. Az előjelkonvenciót a 4. ábra példáján szemléltethetjük. Néhány ágfeszültség kifejezése:

$$u_1 = \varphi_1 - \varphi_0 = \varphi_1$$
; $u_2 = \varphi_1 - \varphi_2$; $u_3 = \varphi_1 - \varphi_0 = \varphi_1$

HA AZ ÁGFESZÜLTSÉGEKET csomóponti potenciálok különbségeként fejezzük, ki akkor Kirchhoff feszültségtörvénye automatikusan teljesül. Ezért a feszültségtörvények felírása nem hordoz többletinformációt, a fundamentális hurokrendszer felállítását és a feszültségtörvények felírását mellőzhetjük.

A CSOMÓPONTI potenciálok módszerében általánosságban Kirchhoff áramtörvényét írjuk fel az r = n - 1 ismeretlen potenciálú csomópontra. A rezisztív kétpólusok áramára a 5. ábrán összefoglalt szabályok vonatkoznak.

• Az ellenálláson folyó áramot az Ohm-törvény alapján fejezzük ki, szimmetrikus referenciairányok mellett $u = \varphi_p - \varphi_q$, amivel $i = \frac{u}{R} = \frac{\varphi_p - \varphi_q}{R}$.

A példában ezek a vektorok/mátrixok

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_k \end{pmatrix} = \begin{pmatrix} i_1 \\ i_2 \\ u_3 \\ u_4 \end{pmatrix};$$

$$g = \begin{pmatrix} g_1 \\ \vdots \\ g_k \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ -1 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & \frac{1}{2R} \\ 0 & -R & -1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}$$

4. ábra: A csomóponti potenciálok értelmezése

Tekintsük például az u_1, u_2, u_4 hurkot. Fejezzük ki a feszültségtörvényt:

$$u_1 - u_4 - u_2 =$$

$$(\varphi_1 - \varphi_0) - (\varphi_2 - \varphi_0) - (\varphi_1 - \varphi_2) = 0$$

- Az áramforrás árama adott, változatlan formában jelenik meg az áramtörvényben. A szokásos előjelkonvenciót követve továbbra is a csomópontból/vágatból kifolyó áramot tekintjük pozitívnak.
- Az előírt feszültségű feszültségforrás kapcsolatot teremt a két pólusának a potenciálja között: ha a feszültségnyíl "hegyénél" a potenciál φ_q értékű, akkor a másik pólus potenciálja ehhez van kötve, $\varphi_v + u_s$ értékű. Gyakran el tudjuk kerülni, hogy a feszültségforrás bármelyik pólusára egyenletet kelljen felírnunk, ha viszont egyenletet kell felírnunk, akkor figyelembe kell vennünk, hogy a forráson egy ismeretlen i_u áram folyik, amelynek értékére nem vonatkozik karakterisztika. Ezt új ismeretlenként be kellene vezetnünk, és a feszültségforrás pólusaira felírt áramtörvényekben figyelembe kellene vennünk. Ezt elkerülhetjük azzal, ha nem a pólusokhoz tartozó csomópontokra írunk fel 1-1 egyenletet, hanem a forrást magában foglaló, két csomópontból álló vágatra írunk fel egyetlen áramtörvényt. Az i_u áram nem metszi ezt a vágatot, ezért az egyenletben nem kell szerepeltetnünk, az ismeretlenek számát nem növeli, ha pedig szükséges a kiszámítása, utólag külön megtehető (lásd alább). Ezzel a módszerrel tehát a két csomópontból álló vágatra egyetlen egyenletet írunk fel, de a két csomópont csak egy ismeretlen potenciált tartalmaz, ezért az egy egyenlet elegendő.

A felírandó csomóponti egyenletek száma tehát legfeljebb r = n - 1, de az egyenletek száma a hálózatban levő feszültségforrások számával csökkenthető.

HA A FESZÜLTSÉGFORRÁSOK áramára nem vezettünk be új ismeretlent, akkor azok az összes potenciál meghatározását követően egy-egy áramtörvényből kiszámíthatók. Ezt illusztrálja a 7. ábra: ha a φ potenciált már meghatároztuk, egy következő lépésben felírjuk az áramtörvényt az u_s potenciálú csomópontra is, amelyben a φ mennyiség már *ismert*. Innen kifejezhető a keresett i_u áram.

A csomóponti potenciálok módszere nem csak a kézi számításokban hatékony módszer, de a gépi hálózatanalízis szoftverek is ezen a módszeren alapulnak, ezekben is definiálni kell a referencia-("föld")-pontot. Ennek megfelelően az általuk szolgáltatott elsődleges eredmények is csomóponti potenciálok. A módszer értelemszerűen nemlineáris hálózatokban is alkalmazható.

A hurokáramok módszere

A hálózati egyenletek rendszerének mérete csökkenthető fiktív (fizikai jelentéssel nem bíró) ún. hurokáramok bevezetésével is. A b számú kétpólust és n csomópontot tartalmazó hálózatban felveszünk egy

5. ábra: Az áramtörvények felírása

6. ábra: Példa a csomóponti potenciálok módszerére

A 6. ábra hálózatában az alsó csomópontot referencia-csomópontnak választjuk, a másik kettő közül az egyik potenciálja a feszültségforrás által adott kényszer miatt ismert, u_s , csak a bejelölt φ potenciál ismeretlen. Az erre vonatkozó áramtörvény (a sor elején érdemes megadni, hogy melyik csomópontra vonatkozik az egyenlet):

$$\varphi: \quad \frac{\varphi - u_s}{R_2} + \frac{\varphi - 0}{R_4} + i_s = 0$$

Az egyenlet megoldása elemi átrendezéssel

$$\varphi = \frac{R_4}{R_2 + R_4} (u_s - R_2 i_s)$$

7. ábra: A feszültségforrás áramának meghatározása

l = b - r = b - n + 1 számú hurkot tartalmazó fundamentális hurokrendszert, és minden hurokhoz egy benne körbe folyó $i_{h,1}, i_{h,2}, \dots, i_{h,l}$ hurokáramot rendelünk. A k. kétpólus (tényleges) i_k ágárama a rajta átfolyó összes hurokáram értékének előjeles összege.

A 8. ábrán látható, síkba rajzolható hálózatban az "ablaktáblamódszernek" megfelelően felvettük a fundamentális hurokrendszert, és bevezettük a hurkokhoz tartozó $i_{h,p}$ hurokáramokat. A kétpólusok tényleges áramai ezekkel kifejezve

$$i_{1} = i_{h,1}$$

$$i_{2} = i_{h,3} - i_{h,1}$$

$$i_{3} = -i_{h,3}$$

$$i_{4} = i_{h,2} - i_{h,1}$$

$$i_{5} = i_{h,3} - i_{h,2}$$

A MÓDSZER a csomóponti potenciálok módszerének duális sémája: alkalmazása során Kirchhoff feszültségtörvényeit írjuk fel a hurkokra, az áramtörvény pedig mindig automatikusan teljesül, ha az ágáramokat hurokáramokkal fejezzük ki. Ezért az áramtörvények nem hordoznak új információt, azokat külön nem kell felírnunk. A feszültségtörvények felírásakor az alábbiak alapján járunk el:

- Az ellenállások áramát kifejezzük a rajtuk áthaladó hurokáramok algebrai összegeként, az ellenállás feszültségét az Ohm-törvény alapján írjuk fel. A p. hurokra felírt feszültségtörvényben a p. hurok irányításával megegyezően felvett hurokáramokat számítjuk pozitív előjellel.
- A feszültségforrások adott feszültségét előjelhelyesen vesszük figyelembe: ha a forrásfeszültség referenciairánya egyezik a hurok irányításával, akkor pozitív előjellel tüntetjük fel.
- Az áramforrások esetén az is forrásáram adott, azonban az áramforráson eső ismeretlen u_i feszültség szerepel (előjelhelyesen) a vonatkozó hurokegyenletben. Emiatt *u_i*-t járulékos ismeretlenként fel kell vennünk. Ehhez egy további egyenletet kapunk annak a kényszernek a kihasználásával, hogy az áramforráson áthaladó hurokáramok algebrai összege az i_s forrásáramot adja.

A gyakorlatban fundamentális hurokrendszer felvétele során arra törekszünk, hogy a hálózatban levő áramforrások mindegyike csak 1-1 hurokban szerepeljen. Ha ugyanis az áramforráson egyetlen hurokáram halad át, akkor a forrásáram maga azonosítható ezzel a hurokárammal, és az ismeretlen hurokáramok száma eggyel csökken. Ekkor arra a hurokra nem szükséges sem egyenletet felírnunk, sem

Az u_s-re vonatkozó áramtörvény:

$$u_s: \quad i_u + \frac{u_s - \varphi}{R_2} + \frac{u_s - \varphi_0}{R_3} = 0$$

Szokás a hurokáramokat $j_1, j_2, \dots j_l$ jelöléssel is ellátni.

8. ábra: A hurokáramok bevezetése

A középső csomópontra felírt áramtörvény például

$$-i_2 + i_4 + i_5 = -(i_{h,3} - i_{h,1}) + + (i_{h,2} - i_{h,1}) + (i_{h,3} - i_{h,2}) \equiv 0.$$

9. ábra: A hurokáramok alkalmazási szabályai

az áramforrás feszültségét új ismeretlenként bevezetnünk. Ha szükséges, az összes ismeretlen hurokáram meghatározását követően, egy második lépésben, további feszültségtörvényekből meghatározhatók az áramforrás feszültségei. Az ismeretlenek, és a felírandó egyenletek száma tehát *l*-nél annyival kevesebb, ahány áramforrás áramát tudjuk hurokáramnak választani.

A fenti elveket illusztrálja a 10. ábra hálózata. Itt b = 5, n = 3, amiből a fundamentális hurokrendszer hurokjainak száma l=b - n + 1 = 3. Ha nem az "ablaktábla-módszer" szerint, hanem pl. az ábrán látható módon veszünk fel hurokrendszert, az áramforráson csak egy hurok megy keresztül, ezért árama hurokáramként használható. Az ismeretlenek száma 3 helyett csak kettő, $i_{h,1}$ és $i_{h,2}$. Az áramforrás feszültségét nem vesszük fel ismeretlenként, és a hozzá tartozó hurokra sem írunk fel egyenletet, mert a másik két hurokra felírható két független feszültségtörvény elegendő a két ismeretlen hurokáram meghatározásához, a következőképpen:

$$i_{h,1}:$$
 $u_s + R_4(i_{h,1} + i_s) + R_2i_{h,1} = 0$
 $i_{h,2}:$ $u_3 + R_3i_{h,2} = 0$

Ha mégis szükségünk van az áramforrás i_u feszültségére, a két másik hurokáram meghatározását követően az i_s hurokra felírunk egy feszültségtörvényt, amelyben az $i_{h,1}$ és $i_{h,2}$ már ismert mennyiségek (11. ábra). A példában

$$i_s: u_i + R_4(i_s + i_{h,1}) = 0 \rightarrow u_i = \dots$$

Gyakori elvi hiba, hogy olyan hurokrendszert választunk, amely ugyan lefedi a hálózat minden kétpólusát, de nem maximális. Így kisebb méretű egyenletrendszerre jutunk, amely egyértelműen megoldható, de a megoldás helytelen lesz. Ezért mindig célszerű azzal kezdeni a számolást, hogy kiszámoljuk a fundamentális hurokrendszer méretét. A 12. ábra hálózatában n=4, b=6, így l=3 hurokból

áll a fundamentális hurokrendszer. Az ábrán látható módon sikerül lefedni minden kétpólust két hurokárammal, amelyek közül az

10. ábra: Példa a hurokáramok módszerére

Az egyenletrendszer megoldása:

$$i_{h,1} = -\frac{1}{R_2 + R_4} (u_s + R_4 i_s)$$

 $i_{h,2} = -\frac{1}{R_2} u_s$

Ezzel a hálózat minden árama és feszültsége meghatározható.

11. ábra: Az áramforrás feszültségének kiszámítása

12. ábra: Hiányos hurokrendszer

egyiket ráadásul az áramforrás áramával tudjuk azonosítani. Így – látszólag – egyetlen ismeretlen hurokárammal kell számolnunk:

$$i_{h,1}: -u_s + R_1 i_{h,1} + R_3 (i_{h,1} + i_s) + R_4 i_{h,1} = 0$$

amelyből az $i_{h,1}$ könnyen kiszámítható, azonban az így kapott megoldás hibás. A hurokáramok módszere is alkalmazható nemlineáris hálózatban.

A szuperpozíció elve

Lineáris hálózatokban érvényes a szuperpozíció elve. Ennek kihasználásával egy speciális hálózatszámítási eljárást írhatunk le, amelynek elvi jelentősége is van, de bizonyos esetekben a kézi hálózatszámítást is egyszerűbbé teszi (ha pl. csomóponti analízis helyett elemi módszerekkel, pl. feszültség- vagy áramosztással célt érünk). Ha egy lineáris hálózat egynél több független forrást tartalmaz, akkor a hálózat minden egyes árama ill. feszültsége úgy számítható, hogy meghatározzuk az egyes források által létrehozott feszültséget vagy áramot, és ezeket előjelesen összegezzük (szuperponáljuk). Ha a hálózatban S számú forrás van, akkor egy u_k feszültség felírható

$$u_k = \sum_{j=1}^{S} u_k^{(j)}$$

alakban. Az $u_k^{(j)}$ számítása során a j. forrást tekintjük aktívnak, a többi forrást dezaktivizáljuk, a forrásmennyiségüket nullának tekintjük. Az u_s feszültségforrás dezaktivizálása $u_s = 0$ karakterisztikájú kétpólust eredményez, aminek a hálózatelméletben külön neve is van: ez a *rövidzár*. Az i_s áramforrás dezaktivizálása $i_s = 0$ karakterisztika, aminek kétpólusként a neve szakadás. Előbbit egy R=0 értékű, utóbbit egy $R = \infty$ (G = 0) ellenállásnak is tekinthetjük.

A 15. ábrán illusztráljuk a módszert. A középső hálózatban egy feszültségosztásra, a jobb oldali hálózatban egy áramosztásra vezethető vissza a megoldás.

A helyes megoldáshoz például felvehetnénk egy tovább ih.2 hurokáramot a feszültségforrás, R₁ és R₂ által alkotott hurokra.

13. ábra: Források dezaktivizálása

14. ábra: a: rövidzár, b: szakadás

15. ábra: Példa a szuperpozíció módszerének alkalmazására

A Wheatstone-féle hídkapcsolás

A 16. ábrán látható elrendezésben R_1 , R_2 , R_3 , R_4 ellenállások alkotta ún. hídkapcsolás, a rezisztív Wheatstone-híd látható. Az elnevezés a geometriai elrendezésre utal. A hidat tápláló feszültségforrással sorba kapcsolva szerepel egy R₀ ellenállás, ami a tápláló generátor véges (nem nulla) belső ellenállását jelképezheti (lásd az 5. előadás anyagát). A híd ún. átlójában egy ideális árammérőt tüntettünk fel. Az

árammérő helyett egy feszültségmérőt is használhatunk. A hálózat áramainak és feszültségeinek kiszámítása a hálózat látszólagos egyszerűsége ellenére nem vezethető vissza egyszerűsített módszerekre, hanem csomóponti vagy hurokanalízist célszerű végezni. Azonban a hídkapcsolásoknál kitüntetett szerepet játszik a kiegyenlített hídkapcsolás, amikor a híd átlójában nem folyik áram, mert az A és B csomópontok ekvipotenciálisak. Ebben az esetben a híd átlójában nem folyik áram, függetlenül attól, hogy mi alkotja a híd átlóját, jelen esetben az árammérőt és az R ellenállást kiegyenlített esetben nem kell figyelembe venni. A híd kiegyenlítettségének feltétele 1-1 feszültségosztás alapján meghatározható: a hidat tápláló u_0 feszültséget az $R_1 - R_2$ ellenállások, ill. az $R_3 - R_4$ ellenállások ugyanolyan arányban Az ideális árammérő belső ellenállása zérus (rövidzárként viselkedik, hogy ne zavarja meg annak a körnek az áramát, amelybe beiktatták). A valós árammérő (pl. egy multiméter) egy ideális árammérő és egy ellenállás soros kapcsolásával modellezhető, ezt a célt szolgálhatja az R ellenállás. Az ideális feszültségmérő belső ellenállása végtelen (szakadásként viselkedik, hogy ne befolyásolja a mért feszültséget). A valós feszültségmérőt egy ideális feszültségmérő és egy vele párhuzamosan kapcsolt belső ellenállás eredőjeként modellezhetjük.

16. ábra: A rezisztív Wheatstone-híd

A Wheatstone-híd gyakori alkalmazása ismeretlen ellenállások mérése, illetve ellenállás jellegű jelet szolgáltató érzékelők (pl. nyúlásmérő bélyegek, ellenállás-hőmérők) jelének feszültségvagy áramjellé alakítása.

osszák. Ez alapján

$$\frac{R_2}{R_1 + R_2} = \frac{R_3}{R_3 + R_4}$$

teljesülése esetén kiegyenlített a híd. Innen

$$i = 0 \Rightarrow R_1 R_4 = R_2 R_3, \quad \frac{R_1}{R_2} = \frac{R_3}{R_4}.$$

A kiegyenlítés feltétele független R_0 értékétől. Ha például a hidat egy ismeretlen értékű R_1 ellenállás értékének a meghatározására akarjuk felhasználni, akkor R_4 helyére egy kalibrált változtatható ellenállást (ún. potenciométert) kapcsolva R_1 értéke

$$R_1 = \frac{R_3}{R_4} R_2.$$

4. Rezisztív csatolt kétpólusok

Bilicz-Horváth

2021. február 24.

Csatolt kétpólusok

A hálózatelméletben sok fontos komponens két vagy több egymással összefüggő (csatolt) kétpólusként modellezhető. Ilyen például a kétvagy többtekercses transzformátor: a primer tekercs feszültsége függ a szekunder tekercs feszültségétől is. M számú csatolt kétpólushoz M feszültség és M áram rendelhető (1-1 feszültség és áram minden kétpólushoz). Az M kétpólusból álló csatolt kétpólus karakterisztikája M számú független egyenlet. Ezeknek az egyenleteknek általában egy explicit (vagy a feszültségre, vagy az áramra kifejezhető) alakját ismerjük. A tárgyban csak az M=2 (két csatolt kétpólus, csatolt kétpólus-pár) esetét tárgyaljuk. Általánosságban két csatolt kétpólus karakterisztikája például

$$\begin{cases} u_1 = \mathcal{U}_1(i_1, i_2) \\ u_2 = \mathcal{U}_2(i_1, i_2) \end{cases}$$

alakú lehet, ahol \mathcal{U}_1 és \mathcal{U}_2 egy-egy operátor. Összesen hatféle explicit karakterisztikát rendelhetünk két csatolt kétpólushoz, azonban adott kétpólusra ennél kevesebb karakterisztika lehet értelmezett. Csatolt rezisztív (nem dinamikus, memóriamentes) kétpólusok esetén – a csatolatlan kétpólusokhoz hasonlóan – $\mathcal{U}_1(i_1,i_2)=\mathcal{U}_1(i_1,i_2)$ egyszerűen egy függvény. A Kirchhoff-törvények nem függenek a komponensek karakterisztikáitól, ezért csatolt kétpólusokra is ugyanúgy érvényesek.

A CSATOLT KÉTPÓLUS teljesítményét kézenfekvő módon az azt alkotó kétpólusok teljesítményének összegeként értelmezhetjük:

$$p(t) = p_1(t) + p_2(t) = u_1(t)i_1(t) + u_2(t)i_2(t),$$

a kétpólus munkafüggvényét

$$w(t) = \int_{-\infty}^{t} p(\tau) d\tau$$

adja meg. A csatolt kétpólus passzív, ha

passzív
$$\Leftrightarrow w(t) \geq 0$$
.

Speciálisan, ha $p(t) \equiv 0$, a csatolt kétpólus is *nonenergikus*.

Rezisztív csatolt kétpólusok

A fenti keretben számos csatolt kétpólus definiálható. Az alábbiakban ezek közül összefoglaljuk azt a néhányat, amelynek elvi és/vagy gyakorlati jelentősége miatt a tárgyban használni fogunk.

Az ideális transzformátor (IT)

Az ideális transzformátor a fizika tárgyból is ismert, reális kéttekercses transzformátor legegyszerűbb modellje. Az IT paramétere az n áttétel, ami lehet pozitív vagy negatív is, és nem feltétlenül egész szám. A karakterisztika

$$u_1 = nu_2$$
$$i_2 = -ni_1$$

Az IT rajzjelén a pöttyök az áram referenciairányát jelölik ki: a felírt karakterisztika akkor érvényes, ha az áramok referenciairányát a pöttyöktől "távolodva" vesszük fel. Ha a referenciairányokat a pöttyökhöz képest nem szimmetrikusan vesszük fel, akkor a karakterisztikákban n helyére (-n) írandó.

Az IT teljesítménye kifejezhető a karakterisztika alapján

$$p = u_1 i_1 + u_2 i_2 = (n u_2) i_1 + u_2 (-n i_1) \equiv 0,$$

az IT nonenergikus (passzív) komponens. A fizikai csatolt tekercses transzformátorra is érvényes, hogy a primer tekercs teljesítménye és a szekunder tekercs teljesítménye egyenlő, a transzformátor veszteség nélkül változtatja meg a feszültségeket és áramokat.

Az ellenállással lezárt ideális transzformátor, mint kétpólus (2. ábra) egy R_B eredő ("bemeneti") ellenállással helyettesíthető:

$$R_B = \frac{u_1}{i_1} = \frac{n \cdot u_2}{-i_2/n} = n^2 \left(-\frac{u_2}{i_2}\right) = n^2 R,$$

amelyből látható, hogy az IT az ellenállást (és az impedanciát) az áttétel négyzetének arányában transzformálja.

A vezérelt források

A vezérelt források olyan csatolt kétpólusok, amelyekben az egyik kétpólus (a vezérlő kétpólus) feszültsége vagy árama határozza meg egy feszültség- vagy áramforrás forrásmennyiségét. Mind a vezérlő, mind a vezérelt kétpóluson szimmetrikus referenciairányokat veszünk fel, a felírt karakterisztikák erre az esetre érvényesek. Csak lineáris forrásokkal foglalkozunk, ekkor a négy lehetséges variáns

1. ábra: Az ideális transzformátor Az ideális transzformátor a hálózatelméletben egy definiált komponens, és nem a csatolt tekercspárral realizált transzformátor modellje. Ezért nem foglalkozunk azzal, hogy míg egy reális transzformátor nem működne időben állandó feszültségekkel és áramokkal, az ideális transzformátorként definiált komponens igen. Az áttétel értelmezése azonban megegyezik a fizikai transzformátor menetszám-áttételének (a tekercsek menetszám-arányának) értelmezésével.

2. ábra: Az ellenállással lezárt ideális transzformátor

Ez a tulajdonsága kihasználható a teljesítményillesztési feladatok megoldására, lásd a következő előadás anyagában.

(a vezérlő és a vezérelt feszültség is lehet feszültség és áram is) a következő:

A feszültségvezérelt feszültségforrás (FF, 3. ábra) karakterisztikája

$$u_2 = \mu u_1$$
,

ahol a kétpólus paramétere a μ dimenzió nélküli feszültségerősítési tényező. A másik karakterisztika-egyenlet

$$i_1 = 0$$
,

azonban ezt külön nem szoktuk felírni, ill. kihasználni. A vezérlő kétpólust (a szakadást) általában nem tüntetjük fel külön, csak bejelöljük a vezérlő feszültséget (hiszen a hálózat bármely két csomópontja között definiálható egy szakadás).

Ennek analógiájára bevezethetjük a másik három vezérelt forrást.

A feszültségvezérelt áramforrás (FÁ, 4. ábra) karakterisztikája

$$i_2 = gu_1$$
,

ahol a g paraméter neve átviteli (transzfer) konduktancia. A konduktancia arra utal, hogy a mennyiség vezetés dimenziójú: [g] = S, az "átviteli" jelző pedig arra, hogy az 1. kétpólus mennyiségét (feszültségét) a 2. kétpólus mennyiségébe (itt a feszültségébe) viszi át. A továbbiakban a vezetés dimenziójú átviteli mennyiségeket általában g-vel fogjuk jelölni.

Az áramvezérelt források hasonlóan definiálhatók, azzal a különbséggel, hogy a vezérlő kétpólus egy rövidzár, és a 2. karakterisztikaegyenlet az $u_1 = 0$.

Az áramvezérelt feszültségforrás (ÁF, 5. ábra) karakterisztikája

$$u_2 = ri_1$$
,

ahol r egy ellenállás dimenziójú mennyiség, az átviteli (transzfer) rezisztencia. A továbbiakban az ellenállás dimenziójú átviteli mennyiségeket r-el fogjuk jelölni. Végül az áramvezérelt áramforrás (ÁÁ, 6. ábra) karakterisztikája

$$i_2 = \alpha i_1$$
,

ahol α egy dimenzió nélküli mennyiség, a forrás áramerősítési tényezője. Mind a négy vezérelt forrásnál a vezérlő kétpólus teljesítménye zérus (a szakadás és a rövidzár is nonenergikus kétpólus), a teljesítmény a forrás teljesítménye:

$$p = u_2 i_2 ? 0$$

3. ábra: Feszültségvezérelt feszültségforrás

4. ábra: Feszültségvezérelt áramforrás

5. ábra: Áramvezérelt feszültségforrás

6. ábra: Áramvezérelt áramforrás

mivel i_2 tényleges iránya (nem az általunk felvett referenciairány) a forrásra csatlakozó hálózattól függően egybeeshet u2 irányával, vagy azzal ellentétes lehet (a vezérelt forrás az első esetben teljesítményt vesz fel, a második esetben teljesítményt ad le), a vezérelt forrás – a korábban tárgyalt független forrásokhoz hasonlóan – aktív komponens.

A vezérelt források egyrészt (legalább közelítőleg) megvalósíthatók elektronikus eszközökkel, erre példákat is fogunk látni. Másrészt pl. fizikai folyamatokat leképező Kirchhoff-hálózati modellekben is jól használhatók, az Elektronika tárgyakban a különféle tranzisztorok hálózati modelljeiben vezérelt forrásokat találunk.

A girátor

A girátor, mint definiált (hipotetikus) csatolt kétpólus bevezetését Tellegen javasolta a hálózatelméletben 1948-ban. A girátor (7. ábra) karakterisztikája

$$u_2 = ri_1$$
$$u_1 = -ri_2$$

A kétpólus r paraméterének neve a dimenziójára való tekintettel girációs rezisztencia. Ritkán használatos ennek reciproka, a g = 1/rgirációs konduktancia is. A girátor teljesítményét kifejezve

$$p = u_1 i_1 + u_2 i_2 = (-ri_2)i_1 + (ri_1)i_2 \equiv 0$$

a girátor tehát nonenergikus (egyben passzív) komponens.

A girátort egy R_2 ellenállással lezárva adódó kétpólus R_B eredő ellenállása (8. ábra)

$$R_B = \frac{u_1}{i_1} = \frac{-ri_2}{u_2/r} = -r^2 \left(\frac{i_2}{u_2}\right) = \frac{r^2}{R_2} = r^2 G_2,$$

ahol kihasználtuk, hogy a feltüntetett referenciairányok mellett

$$R_2 = -\frac{u_2}{i_2},$$

és $G_2 = 1/R_2$. Minél nagyobb R_2 , annál kisebb az eredő ellenállás. A girátort egy kondenzátorral lezárva adódó kétpólus (9. ábra) karakterisztikája

$$u_1 = -ri_2 = rCu_2' = \underbrace{r^2C}_{I}i_1',$$

ahol kihasználtuk, hogy a felvett referenciairányok mellett a kondenzátor árama és feszültsége között

$$i_2 = -Cu_2'$$

7. ábra: A girátor

8. ábra: Ellenállással lezárt girátor

9. ábra: Kondenzátorral lezárt girátor

összefüggés van. A kondenzátorral lezárt girátor úgy viselkedik, mint egy $L = r^2C$ induktivitású tekercs.

Gyakorlaton látni fogjuk, hogy a hárompólusú girátor ideális erősítővel realizálható, továbbá közelítőleg realizálható a girátor elektronikus eszközökkel is. A cirkulátor rádiófrekvenciákon (néhány 100 MHz... néhány 10 GHz frekvencián) közelítőleg megvalósítható speciális mágneses anyagok felhasználásával, illetve elektronikus áramkörökkel is.

A girátort használják analóg integrált áramkörökben induktivitások realizálására, mert félvezetős technikával a tekercs közvetlenül nem valósítható meg.

Az ideális erősítő

Az ideális erősítő egy végtelen erősítésű feszültségvezérelt feszültségforrás. A jelentőségét többek között az adja, hogy nagyon jó közelítéssel alkalmazható az elektronikában műveleti erősítő (operational amplifier, röviden op-amp) néven ismert áramkör leírására, amely az egyik legfontosabb integrált analóg elektronikai építőelem.

Az ideális erősítőre vonatkozó karakterisztikák (10. ábra):

$$u_1 = 0$$
$$i_1 = 0,$$

ami azt jelenti, hogy a két bemeneti (az erősítő bal oldalán feltüntetett) pólus ekvipotenciális, és nem folyik áram egyik bemeneti pólusba sem. A - jellel jelölt pólus az invertáló bemenete, a + jellel ellátott pedig a neminvertáló bemenet. Az ideális erősítő aktív komponens, mert bár a bemeneti kétpólus teljesítménye zérus, a kimeneti kétpólus feszültsége, illetve árama tetszőleges lehet (a csatlakozó hálózattól függően), így a teljesítménye lehet negatív is.

Figyeljük meg, hogy mindkét egyenlet a bemeneti póluspárra vonatkozik, a kimeneti póluspárra (az erősítő jobb oldalára rajzolt póluspárra) nem

10. ábra: Az ideális erősítő

vonatkozik karakterisztika!

Az ideális erősítő származtatása

Az ideális erősítőre felírt karakterisztikák jellege meglepőnek tűnhet. Ha azonban megvizsgáljuk az erősítőnek a reális feszültségvezérelt feszültségforrás (műveleti erősítő) alapján történő származtatását, jobban érthetővé válik. A 11. ábrán egy ideális feszültségvezérelt feszültségforrást tüntettük fel, amelynek feszültségerősítése -A értékű, ahol a negatív előjel arra utal, hogy a vezérlő feszültség valójában nem u_1 , hanem $-u_1$, amely az neminvertáló (+) és az invertáló (-) bemenet potenciáljának különbsége. u2 tehát nő, ha a (+) bemenet potenciálját növeljük, és csökken, ha a (-) bement potenciálját növeljük; ez a magyarázata a jelölésnek is.

A bemeneti kétpólus szakadás, ezért $i_1 = 0$ biztosan teljesül (2. karakterisztika-egyenlet). Az ideális erősítőben $A \to \infty$: a feszültségerősítési tényező végtelen nagy. Mivel $u_1 = -\frac{u_2}{A}$, ez matematikai értelemben indokolja, hogy véges u_2 érték mellett miért lesz $u_1 = 0$

11. ábra: Az ideális erősítő származtatása

(1. karakterisztika-egyenlet). Utóbbinak a fizikai magyarázata és egyben feltétele az, hogy a hálózatban ún. negatív visszacsatolás (negative feedback) legyen: a kimenet és az invertáló (-) bemenet között legyen egy kétpólus, amely (minden releváns frekvencián) gondoskodik arról, hogy a kimeneti feszültség változása visszahasson az invertáló bemenet potenciáljára (12. ábra).

A neminvertáló (+) pólus potenciálját változatlannak feltételezve, a kimenet potenciáljának emelkedésével együtt a visszacsatolás miatt az invertáló (-) bemenet potenciálja is emelkedik, az u_1 vezérlő feszültség csökken. A kimenet potenciálja addig nő, amíg a vezérlő oldalon beáll az $u_1 = 0$ egyensúlyi pont, azaz az invertáló bemenet potenciálja egyenlővé válik a neminvertáló bemenet potenciáljával. Az ideális erősítő a reális műveleti erősítő jó modellje olyan hálózatokban, amelyekben negatív visszacsatolás van (és az "erősebb", mint az esetleg szintén meglevő pozitív visszacsatolás).

Az invertáló erősítő

Az ideális erősítőt tartalmazó hálózatok analízise során az alábbi szabályokat követjük:

- A csomóponti potenciálok módszerét alkalmazzuk.
- A hálózat referencia-csomópontját ott vesszük fel, ahova az erősítő "4. pólusa" csatlakozik.
- Az erősítő kimeneti póluspárjára nem írunk fel a csomóponti analízis során áramtörvényt, mert nem vonatkozik karakterisztika a kimeneti póluspár áramára. Ezért az erősítő kimeneti pólusain folyó áramot új ismeretlenként fel kellene vennünk, ami nagyobb egyenletrendszerre vezetne.

A 3. pont miatt a kimenetre (és a referencia-csomópontra sem) írunk fel egyenletet, ha pedig az erősítő kimeneti áramára szükségünk van, egy utólagos lépésben tudjuk meghatározni. A fenti elveket a 13.

ábra hálózatában is érvényesítjük. A hálózat gerjesztése a feszültségforrás, a válasz pedig az R_t "terhelő" ellenállás u_{ki} feszültsége. Az erősítő bemeneti pólusai között nincs potenciálkülönbség, ezért, mivel a neminvertáló bemenet o potenciálon van, az invertáló bemenet

12. ábra: Negatív visszacsatolás

13. ábra: Az invertáló erősítő

potenciálja is ismert, szintén zérus. Egyedül az u_{ki} potenciál ismeretlen, azonban erre a csomópontra a fentiek értelmében nem érdemes csomóponti egyenletet felírni. Értelmes viszont az invertáló bemenetre felírni az áramtörvényt, annak ellenére, hogy ezen csomópont potenciálja tudottan zérus:

$$\frac{0 - u_{\text{be}}}{R_1} + \frac{0 - u_{\text{ki}}}{R_2} + 0 = 0,$$

mert az erősítő bemeneti árama az $i_1=0$ karakterisztika miatt nulla. Innen

$$u_{ki} = \underbrace{\left(-\frac{R_2}{R_1}\right)}_{0} u_{be}.$$

A hálózat a bejelölt kapcsok között egy feszültségvezérelt feszültségforrást realizál: uki a gerjesztő forrás feszültségével arányos, ahol az erősítést a két ellenállás arányának megválasztásával állíthatjuk be. Az u_{ki} értéke az R_t terhelő ellenállás értékétől függetlenül (amíg R > 0) a beállított érték lesz, a hálózat ideális (nulla belső ellenállású, lásd később) feszültségforrásként viselkedik. A negatív visszacsatolás révén a "végtelen" feszültségerősítésű ideális erősítőt véges erősítésű erősítővé alakítottuk.

A neminvertáló erősítő

A 14. ábra hálózatában a gerjesztés a neminvertáló bemenetre csatlakozik. Az $u_1 = 0$ karakterisztika miatt az invertáló bemenet potenciálja is u_{be} ; az egyetlen ismeretlen potenciál itt is u_{ki} . Az erősítő kimenetére nem írunk fel egyenletet, ismét az invertáló bemenetre vonatkozó áramtörvényt tudjuk felírni:

$$\frac{u_{\text{be}}}{R_1} + \frac{u_{\text{be}} - u_{\text{ki}}}{R_2} = 0,$$

ahonnan

$$u_{ki} = \underbrace{\left(1 + \frac{R_2}{R_1}\right)}_{>1} u_{be}.$$

Ez a hálózat is feszültségvezérelt feszültségforrást realizál, a visszacsatoló hálózat révén beállítható feszültségerősítési tényezővel, amely pozitív (sőt, 1-nél nagyobb) értékű, szintén az R_t értékétől függetlenül. Ráadásul a gerjesztő forrás árama zérus (mert az erősítő bemenetén nem folyik áram), ezért a forrás ún. üresjárási üzemállapotban (szakadás lezárás mellett) működik, az erősítő "nem terheli" a forrást. Ennek jelentőségét (előnyét) a generátorok tárgyalásakor fogjuk látni. Térjünk vissza az erősítő i_2 kimeneti áramának meghatározására (15.

A hálózat az elektronikában invertáló erősítő alapkapcsolásként ismert, ahol az invertálás az erősítés negatív előjelére utal.

A számítás nagyon jó közelítéssel a reális műveleti erősítő esetén is pontos. A valódi erősítő erősítése nagyon nagy (10000...100000-es nagyságrendű), de nem végtelen, és " nem jól kézben tartható", mert nagy a konkrét példányok gyártási szórása, hőmérsékletfüggése, stb. A negatív visszacsatolás hatására ezek a nem ideális hatások a gyakorlatban legtöbbször elhanyagolhatóvá válnak.

14. ábra: A neminvertáló erősítő

ábra)! Miután kiszámítottuk az u_{ki} értékét, egy utólagos lépésben már felírhatunk egy Kirchhoff-áramtörvényt a kimeneti csomópontra:

$$i_2 + \frac{u_{ki}}{R_t} + \frac{u_{ki} - u_{be}}{R_2} = 0; \quad \Rightarrow i_2 = \dots$$

Az ideális (és a reális műveleti-) erősítő "működését" szemlélteti, ha a neminvertáló erősítő példáján megvizsgáljuk a teljesítményviszonyokat. A terhelő ellenállás teljesítménye

$$p_t = \frac{u_{ki}^2}{R_t},$$

amely a terhelő ellenállás értékének csökkentésével tetszőlegesen nagy lehet. Az u_{be} feszültségforrás teljesítménye azonosan zérus, mert az erősítőbe nem folyik áram ($i_1 = 0$ a karakterisztika alapján). Ezért a terhelő ellenállás (és a visszacsatoló hálózat) teljesítményét csak az ideális erősítő szolgáltathatja: a kimeneten folyó i2 áram minden esetben olyan értéket vesz fel, hogy a kimeneti potenciál éppen u_{ki} legyen.

*További vicces fogalmak

Az ideális erősítő (és közelítőleg a negatívan visszacsatolt reális erősítő) két definiált hálózatelméleti komponens csatolásaként is felfogható. A bemeneti póluspár egy ún. nullátor, amelyre egyszerre igaz, hogy u = 0 és i = 0, tehát egyszerre rövidzár és szakadás is. A kimeneti póluspár pedig a hálózatelméletben norátorként ismert kétpólussal helyettesíthető, amelynek árama és feszültsége is tetszőleges lehet. A kialakuló feszültséget és áramot teljes mértékben a norátorra csatlakozó hálózat határozza meg, ahogy azt az előző szakaszokban láthattuk a gyakorlatban is. Az így definiált kétpólusok csatolásával előálló csatolt kétpólus a nullor.

Hálózatszámítási módszerek

Vizsgáljuk meg a 16. ábrán látható hálózatot a csomóponti potenciálok módszerével! A hálózatban b = 5 kétpólus van (a transzformátor 2 db kétpólusnak számít), és n = 5 csomópont. Az áramtörvények fundamentális rendszere r = n - 1 = 4 egyenletből áll, a csomóponti potenciálok módszerének alkalmazásához ennél eggyel kevesebb ismeretlen csomópontot ($\varphi_1, \varphi_2, \varphi_3$) kell bevezetnünk, mert a feszültségforrás két csomópont potenciálját összefüggésbe hozza egymással. A csomóponti potenciálokat az ábrán látható módon vettük fel. A transzformátor áramait szintén nem ismerjük, ezért az egyik póluspárjának az áramát (i) új ismeretlenként kényszerülünk bevezetni.

15. ábra: A neminvertáló erősítő kimeneti árama

A reális műveleti erősítő éppen ezért tápellátást igényel.

Ma is tanultunk valami hasznosat:)

16. ábra: Példahálózat csomóponti analízisre

A másik póluspár árama az IT karakterisztikája alapján azonnal kifejezhető; az áramok közötti összefüggésben levő negatív előjelet a jobb oldali áramirány megfordításával fejeztük ki. Összesen 4 ismeretlenünk mellett felírhatunk 3 csomóponti egyenletet. A szükséges 4. egyenletet az IT feszültségeire vonatkozó karakterisztikából kapjuk úgy, hogy a feszültségeket csomóponti potenciálok különbségeként írjuk fel. Eszerint

$$\begin{aligned} \varphi_1: & -i + \frac{\varphi_1 - \varphi_2}{R_1} = 0 \\ \varphi_2: & \frac{\varphi_2 - \varphi_1}{R_1} + \frac{\varphi_2 - \varphi_3}{R_2} - i_s = 0 \\ \varphi_3: & n \cdot i + \frac{\varphi_3 - \varphi_2}{R_2} + \frac{\varphi_3}{R_3} = 0 \\ IT: & u_s - \varphi_1 = n(u_s - \varphi_3) \end{aligned}$$

A négy független egyenletből meghatározható a három ismeretlen potenciál és az IT bal oldali póluspárjának az árama is.

A hurokáramok módszerének alkalmazásához a transzformátor egyik póluspárjának a feszültségét kényszerülünk új ismeretlenként bevezetni, a másik póluspár feszültségét a karakterisztika alapján célszerű ugyanezzel az ismeretlennel kifejezni. A hurokegyenletek mellett egy további egyenletet szolgáltat az IT áramaira vonatkozó karakterisztika-egyenlet, amelyben az áramokat a hálózat hurokáramaival fejezzük ki.

5. Összetett rezisztív kétpólusok helyettesítése

Bilicz-Horváth

2021. március 2.

Az alábbiakban belátjuk, hogy tetszőlegesen bonyolult, lineáris kétpólusokat tartalmazó, de független forrást nem tartalmazó kétpólusok egy eredő ellenállással helyettesíthetők, ha pedig független forrás(ok) is van(nak) a kétpólusban, akkor egy forrásból és egy belső ellenállásból álló kételemű helyettesítőkép (Thévenin- vagy Norton-generátor) alkalmazható. A helyettesítő generátorok fontos alkalmazását, a teljesítményillesztés problémáját is tárgyaljuk.

Összetett kétpólusok

A korábbiakban láttuk, hogy a rezisztív *elemi kétpólusok* (akár csatolatlan kétpólusok, mint az ellenállás vagy a független források, akár csatolt kétpólusok, mint az ideális transzformátor vagy a vezérelt források) feszültség-áram kapcsolata (karakterisztikája) lineáris: a független források kivételével az origón átmenő (homogén) lineáris függvény. Most olyan *összetett* kétpólusok karakterisztikáját vizsgáljuk, amelyet a felsorolt elemi kétpólusok tetszőlegesen bonyolult összekapcsolását tartalmazhatják. Megmutatjuk, hogy tetszőlegesen bonyolult lineáris kétpólus helyettesíthető egy egy- vagy kételemű helyettesítő kapcsolással, amelynek a karakterisztikája (u-i kapcsolata) megegyezik az összetett kétpólus karakterisztikájával.

Független forrást nem tartalmazó kétpólusok

Ha a kétpólusban csak rezisztív, lineáris kétpólusok találhatók, a kétpólus tehát lineáris, akkor a karakterisztikája biztosan átmegy az origón. Egyrészt független forrást nem tartalmaz, gerjesztés nélkül u=0 mellett biztosan i=0, és viszont; továbbá a lineáris kétpólus u-i kapcsolata biztosan egy lineáris összefüggés. Ezért a kétpólus egyetlen elemből álló helyettesítő képpel helyettesíthető, amelyben egyetlen ellenállás, az R_0 eredő ellenállás szerepel:

$$i = \frac{1}{R_0}u, \quad u = R_0i$$

Ahogy az ellenállás tárgyalásánál láttuk, $R_0 \ge 0$ esetén az ellenállás *passzív*, míg $R_0 < 0$ esetén aktív. Ezért kézenfekvő, hogy passzív kétpólusoknál az eredő ellenállás nemnegatív, míg aktív (pl. erősítőt vagy vezérelt forrást is tartalmazó) kétpólusoknál $R_0 < 0$ lehet.

Az eredő ellenállás fogalmát már használtuk korábban az ellenállások soros és párhuzamos eredőjének meghatározásakor. Két ellenál-

 ábra: Független forrást nem tartalmazó kétpólus karakterisztikája

lás soros eredőjét Kirchhoff feszültségtörvénye alapján számolhatjuk (2. ábra), figyelembe véve, hogy az áramtörvény értelmében a soros kapcsolás miatt mindkét ellenállás árama i:

$$u = u_1 + u_2 = i(\underbrace{R_1 + R_2}_{=R_0}).$$

Két ellenállás párhuzamos eredőjét az áramtörvény alapján számolhatjuk (3. ábra), figyelemben véve, hogy a feszültségtörvény értelmében a két párhuzamosan kapcsolt ellenállás u feszültsége egyenlő:

$$i = i_1 + i_2 = u \left(\frac{1}{R_1} + \frac{1}{R_2} \right),$$

$$R_0 = \frac{R_1 R_2}{R_1 + R_2} \equiv R_1 \times R_2.$$

Mindkét esetben igaz, hogy $R_1, R_2 \ge 0$ mellett $R_0 \ge 0$, a helyettesítő kép is passzív.

EGY MÁSIK PÉLDÁBAN vezérelt forrást (aktív komponenst) is tartalmaz a kétpólus (4. ábra). A hálózatra az áramtörvény

$$-i + \alpha i + \frac{u_2}{R_2} = 0$$
, $u_2 = R_2(1 - \alpha)i$

amivel

$$u = R_1 i + u_2 = R_1 i + (1 - \alpha) R_2 i,$$

 $u = \underbrace{[R_1 + R_2 (1 - \alpha)]}_{R_0} i,$

amely passzív ($R_0 \ge 0$), ha $\alpha \le \frac{R_1 + R_2}{R_2}$, ha $R_1, R_2 > 0$; különben pedig aktív.

Független forrást is tartalmazó kétpólusok

Ha a kétpólusban a lineáris rezisztív komponenseken kívül független forrás(ok) is van(nak), a kétpólus u - i kapcsolata továbbra is lineáris kell, hogy legyen, de elképzelhető, hogy u=0 mellett $i\neq 0$, vagy fordítva: a karakterisztika egy inhomogén (nem origón áthaladó) lineáris összefüggés:

$$u = U_0 + R_0 i$$
, $i = -\frac{U_0}{R_0} + \frac{1}{R_0} u$

A karakterisztikát két paraméter határozza meg (a meredekség és a tengelymetszet értéke). Mindkét alak alapján felrajzolhatunk 1-1 egyszerű, két elemű helyettesítő képet, amely egy tetszőlegesen bonyolult lineáris kétpólus helyettesítésére alkalmas.

2. ábra: Soros eredő ellenállás, mint helyettesítő kép

3. ábra: Párhuzamos eredő ellenállás, mint helyettesítő kép

4. ábra: Aktív kétpólus helyettesítése

5. ábra: Független forrást is tartalmazó kétpólus karakterisztikája

A Thévenin-generátor (Helmholtz, 1853; Thévenin, 1883) az $u = U_0 + R_0 i$ alakból adódik: az U_0 tagok egy $u_s = U_0$ feszültségű feszültségforrással, az R_0i tagot egy $R_s = R_0$ ellenállással realizáljuk; végül a feszültségek összegzése miatt a két komponens sorba kapcsolandó. Az így adódó kétpólus nagyon fontos kitüntetett szerepet játszik a villamosmérnöki gyakorlatban, a neve Thévenin-generátor vagy feszültséggenerátor (6. ábra). $R_s \rightarrow 0$ esetén a generátor egy feszültségforrásba megy át.

Vizsgáljuk meg a viszonyokat két extrém lezárás mellett! Ha a Thévenin-generátort szakadással zárjuk le (7. ábra), akkor i = 0, és

$$u = u_{sz} = u_s$$
,

mivel nem esik feszültség a belső ellenálláson. Ez az üzemállapot az *üresjárás*, a generátoron mérhető u_{sz} feszültség a generátor **üresjárási** (szakadási) feszültsége.

Ha a Thévenin-generátor kapcsait rövidre zárjuk (8. ábra), akkor a körben folyó áram a rövidzárási áram, értéke

$$i_{rz}=-\frac{u_s}{R_s},$$

ahol a negatív előjel akkor érvényes, ha az áram referenciairánya a bejelölt módon a generátoron szimmetrikus. A generátor belső ellenállása kifejezhető az üresjárási feszültség és a rövidzárási áram hányadosaként:

$$R_s = -\frac{u_{sz}}{i_{rz}}.$$

Ha az áram referenciairányát fordítva vesszük fel, akkor a két utóbbi formulában a negatív előjel értelemszerűen nem szerepel.

A Norton-Generátor (Mayer, 1926; Norton, 1926) az $i=-\frac{U_0}{R_0}+$ $\frac{1}{R_0}u$ kifejezés alapján rajzolható fel: az $i_s=-\frac{U_0}{R_0}$ tagnak egy áramforrás, a $\frac{1}{R_0}u$ tagnak egy $G_{\rm s}=\frac{1}{R_0}$ konduktanciájú ellenállás feleltethető meg. Az áramok összegzését a két komponens párhuzamos kapcsolásával fejezhetjük ki. Az így kapott kétpólus a 9. ábrán látható Norton-generátor vagy áramgenerátor. $G_s \rightarrow 0$ mellett a generátor egy áramforrásba megy át.

Vizsgáljuk ismét a viszonyokat a két extrém lezárás mellett! A rövidre zárt Norton-generátor belső ellenállását söntöli a rövidzár, ezért a rövidzárási áram egyenlő a forrásárammal (11. ábra):

$$i_{rz}=i_{s}$$
.

Üresjárásban (11. ábra) a kétpóluson mérhető üresjárási feszültség

$$u_{sz} = -R_s i_s$$
,

6. ábra: A Thévenin-generátor

7. ábra: A Thévenin-generátor üresjárásban (u_{sz} : üresjárási feszültség)

8. ábra: A Thévenin-generátor rövidzárásban (*i_{rz}*: rövidzárási áram)

9. ábra: A Norton-generátor

10. ábra: A Norton-generátor rövidzárásban (irz: rövidzárási áram)

ezzel a generátor belső ellenállása szintén

$$R_s = -\frac{u_{sz}}{i_{rz}}$$

alakban számítható.

A HELYETTESÍTŐ GENERÁTOROK TÉTELE ÉRTELMÉBEN egy tetszőleges, lineáris karakterisztikájú kétpólusok és források összekapcsolásából álló kétpólus helyettesíthető egy Thévenin- vagy egy Nortongenerátorral.

Az eddigiekben a generátor áramának referenciairányát a generátoron tételeztük fel szimmetrikusnak. Gyakran célszerűbb az áram referenciairányát a generátorra csatlakozó lezáráson szimmetrikusnak feltételezni (éppen ellentétes referenciairányt feltételezni). Az eredmények az utóbbi feltételezéssel is érvényesek, egyedül a belső ellenállás kiszámításánál szereplő negatív előjel marad el, az i-ukarakterisztika ábráját pedig tükrözni kell az u tengelyre. Ezt a konvenciót foglalja össze a 12. ábra.

Ezzel a konvencióval élve pl. a Thévenin-generátor karakterisztikája (később *munkaegyenesnek* is fogjuk nevezni) a 13. ábrán látható.

A helyettesítő generátorok paramétereinek meghatározása

A generátorokat három paraméterük, u_{sz} , i_{rz} és R_s jellemzi, ebből bármelyik kettő ismeretében egyértelműen adódik a harmadik paraméter. A paraméterek meghatározására két módszert használunk.

Az első módszernél tudjuk, hogy a Thévenin- és Norton-generátor karakterisztikája is egyenes, ezért a generátor karakterisztikáját két összetartozó u - i értékpár alapján fel tudjuk venni, mert erre a két pontra tudunk egyenest illeszteni. Számítástechnikailag előnyös a generátor üresjárási, illetve rövidzárási üzemállapotát vizsgálni. Az első módszer alkalmazása során az üresjárási feszültséget és a rövidzárási áramot számítjuk ki. Ezt a módszert illusztráljuk a 14. ábra hálózatában, ehhez a kétpólushoz keresünk helyettesítő generátort. Először az

11. ábra: A Norton-generátor üresjárásban (u_{sz} : üresjárási feszültség)

A tárgyban konzekvensen különbséget teszünk az ideális feszültségforrás (voltage source) és a feszültséggenerátor (Thévenin-generátor) között. Sok helyen azonban a feszültségforrást nevezik feszültséggenerátornak.

12. ábra: Thévenin- és Norton-generátor összefüggései (szimmetrikus referenciairány a generátorra kapcsolt terhelésen)

13. ábra: Thévenin-generátor karakterisztikája (szimmetrikus referenciairány a generátorra kapcsolt terhelésen)

Ha azonban méréssel akarjuk egy generátor paramétereit meghatározni, érthető okból a generátor rövidre zárása a gyakorlatban nem mindig elfogadható opció. Sok esetben (pl. rádió-adóberendezések esetén) az üresjárás is károsíthatja a berendezést. üresjárási feszültséget számoljuk ki. Üresjárásban (szakadás lezárással, 15. ábra) i=0, emiatt az R_2 ellenálláson nem esik feszültség, az A kapocs potenciálja is egyenlő Φ-vel, és $u=u_{sz}=\Phi$. Az $u_{sz}=\Phi$ csomópontra felírható áramtörvény

$$\frac{u_{sz}-U_0}{R_1}+gu_{sz}=0,$$

amelyből a keresett üresjárási feszültség

$$u_{sz} = \frac{U_0}{1 + R_1 g}.$$

A rövidzárási áram számításához képzeletben rövidre zárjuk az AB kapcsokat (16. ábra) Ezzel u = 0, $i = i_{rz}$, és az A kapocs potenciálja egyenlő a B kapocséval, azaz nulla. Ismét a Φ potenciálú csomópontra írunk fel áramtörvényt, amelyben a vezérelt forrás árama nulla, mert az u vezérlő feszültség nulla (a vezérelt forrás szakadással helyettesíthető):

$$\frac{\Phi-U_0}{R_1}+\frac{\Phi}{R_2}=0,$$

ahonnan

$$\Phi = \frac{U_0 R_2}{R_1 + R_2},$$

(vagy észrevehetjük, hogy egyszerű feszültségosztásra jutottunk). A keresett rövidzárási áram

$$i_{rz} = -\frac{\Phi}{R_2} = -\frac{U_0}{R_1 + R_2},$$

a generátor belső ellenállása pedig

$$R_s = -\frac{u_{sz}}{i_{rz}} = \frac{R_1 + R_2}{1 + R_1 g}.$$

A GENERÁTOR BELSŐ ellenállását közvetlenül is meghatározhatjuk. Ekkor elegendő az üresjárási feszültség és a rövidzárási áram közül csak az egyiket kiszámolni. Tekintsük például a független forrást is tartalmazó kétpólus Thévenin-ekvivalensét (17. ábra). A célunk az R_0 belső ellenállás közvetlen meghatározása. A kétpólus linearitása miatt nyilvánvaló, hogy a dezaktivizált (független források deaktiválása révén nyert) kétpólus eredő ellenállása ugyanaz, mint az eredeti kétpólusé. Ezért a dezaktivizált kétpólus eredő ellenállása közvetlenül megadja a helyettesítő generátor belső ellenállását. A dezaktivizálás során a szokásos módon a független feszültségforrásokat rövidzárral, a független áramforrásokat szakadással helyettesítjük. A módszer elsősorban akkor célszerű, ha az eredő ellenállás számítása elemi lépésekkel, pl. soros-párhuzamos eredőkre visszavezetéssel kiszámolható.

14. ábra: Példa-kétpólus

15. ábra: Példa-kétpólus üresjárásban

16. ábra: Példa-kétpólus rövidzárban

17. ábra: Belső ellenállás közvetlen meghatározása

A teljesítményillesztés

Adott egy Thévenin-generátor, amelyre egy R_t terhelő (vagy lezáró) ellenállás csatlakozik (18. ábra). A feladat az R_t ellenállás értékének megválasztása úgy, hogy a terhelő ellenállás $p_t = -u \cdot i$ teljesítménye ("a generátorból kivehető teljesítmény") maximális legyen. A Thévenin-generátor paramétereit rögzítjük, és az R_t értékét tekintjük változónak (ezt hangsúlyozzuk a $p_t(R_t)$ írásmóddal is). A kérdésfelvetés értelmes, mert egyrészt $R_t \rightarrow 0$ értékekre az u feszültség nagyon kicsi, mert a forrásfeszültség a belső ellenálláson esik, így p_t is elenyésző. Ha $R_t \gg R_s$, akkor ugyan $u \approx u_s$, de a körben folyó i áram nagyon kicsi, ezért p_t szintén elenyésző. Ezért joggal várhatjuk, hogy találhatunk köztes R_t értéket, amelynél a p_t teljesítmény számottevő.

18. ábra: A teljesítményillesztés modell-

Az R_t ellenállás teljesítményének kifejezése

$$p_t(R_t) = -u \cdot i = R_t i^2 = R_t \left(\frac{-u_s}{R_s + R_t}\right)^2 = \frac{u_s^2 R_t}{(R_s + R_t)^2}.$$

A kifejezésnek szélsőértéke lehet, ahol a $p_t(R_t)$ kifejezés első deriváltja eltűnik.

$$\frac{dp_t(R_t)}{dR_t} = u_s^2 \frac{(R_s + R_t)^2 - 2R_t(R_s + R_t)}{(R_s + R_t)^4} = 0 \Leftrightarrow \boxed{R_t = R_s}$$

Az ellenállás teljesítménye (a generátorból kivehető teljesítmény) maximális, ha a terhelő ellenállás egyenlő a generátor belső ellenállásával. A lezárás ilyen értékű választását illesztett lezárásnak nevezzük. Illesztett esetben $u = u_s/2$, a lezáró ellenállás teljesítménye

$$p_{t,\text{max}} = p_t(R_s = R_t) = -\frac{u_s}{2} \cdot \frac{-u_s}{2R_s} = \frac{u_s^2}{4R_s},$$

Mivel a teljesítmény $p_t = i^2 R_t$ kifejezésében az áram négyzete szerepel, az eredményt nem befolyásolja, az i referenciairányának megválasztása.

Belátható, hogy a második derivált ebben a pontban negatív, a kifejezés maximumát találjuk meg.

és a szimmetria okán ugyanekkora a generátor belső ellenállásának is a teljesítménye. Ha a hatásfokot az ellenállás és a generátorban levő forrás teljesítményeinek hányadosaként definiáljuk,

$$\eta = \frac{p_t}{p_{\text{forrás}}},$$

akkor világos, hogy az illesztett esetben a hatásfok 50 %, mert a forrás teljesítményének a fele a terhelésen, a másik fele a belső ellenálláson jelenik meg. A 19. ábra folytonos görbéje mutatja a $p_t/p_{t,max}$

értékét az R_t/R_s függvényében. A görbe $R_t=R_s$ -ben eléri a maximumot, majd $R_t > R_s$ értékekre újra csökken. A szaggatott görbe a hatásfokot mutatja, amely az R_t növekedésével monoton nő, $R_s = R_t$ nél 50 %. A hatásfok kifejezése

$$\eta(R_t) = \frac{p_t}{p_{\text{forrás}}} = \frac{i^2 R_t}{i^2 (R_s + R_t)} = \frac{R_t / R_s}{1 + R_t / R_s}.$$

19. ábra: A generátorból kivehető teljesítmény és a hatásfok az R_t/R_s függvényében

A 19. ábra alapján érthető, hogy a kivehető teljesítmény maximalizálása és a hatásfok maximalizálása két különböző feladat. Egy rádióvevőantenna a vett elektromágneses jelet feszültségjellé alakítja. Az antenna Thévenin-generátorként is modellezhető, az antenna kialakításától függő belső ellenállással (tipikus érték pl. az $R_s = 50 \,\Omega$. A rádióvételben igyekszünk a maximális teljesítményt kinyerni az antennából, ezért teljesítményillesztésre törekszünk, a vevőberendezés lehetőleg R_s értékű bemeneti ellenállást mutat az antenna felé, a hatásfok másodlagos. Ezzel szemben egy autóakkumulátor, - ami szintén modellezhető Théveningenerátorként - belső ellenállása a 0.01 Ω nagyságrendjébe esik. A rá kapcsolt fogyasztók (az önindítómotort leszámítva) ennél nagyságrendekkel nagyobb ellenállásúak, $R_t/R_s \gg 1$. Ebben az esetben a hatásfok eleve nagy, és nem célunk az, hogy az akkumulátorból a maximális teljesítményt kivegyük. Ilvenkor az akkumulátorban hővé alakuló teljesítmény csekély.

6. Lineáris rezisztív kétkapuk jellemzése

Bilicz-Horváth

2021. március 8.

Többpólusú komponensek

Eddig kétpólusokkal foglalkoztunk. Akár csatolatlan, akár csatolt kétpólusok egy u feszültséggel és egy i árammal jellemezhetőek, amelyek között a karakterisztika teremt kapcsolatot. Abban a speciális esetben, ha a kétpólusban csak lineáris rezisztív komponensek találhatók, a karakterisztika pl. $u=R_0i$ ill. $u=U_0+R_0i$ helyettesítő képpel jellemezhető, ahol az utóbbi akkor érvényes, ha a kétpólusban független forrás(ok) is találhatók (1. ábra).

A hálózatelméletben foglalkozunk többpólusú eszközökkel is. A legegyszerűbb a ilyen komponens 2. ábrán látható *hárompólus*. A három póluson három áramot értelmezhetünk, azonban mindhárom pólust metsző vágatra Kirchhoff-áramtörvény értelmében az egyik pólus áramát meghatározza a másik kettő, pl.

$$i_0 = -(i_1 + i_2)$$

Hasonlóan, a három pólus között három feszültség értelmezhető, azonban ezek közül kettő egyértelműen meghatározza a harmadikat a feszültségtörvény értelmében. Ezért a hárompólust két pólus árama és két feszültség teljes mértékben jellemzi. A négy mennyiség közül formálisan bármelyik kettő választható függő változóként, ezeknek az értékét a két másik változó értékével ki tudjuk fejezni. A karakterisztika a négy változó közötti kapcsolatot leíró két egyenlet. Ha a hárompólus speciálisan rezisztív és lineáris, egy ilyen lehetséges karakterisztika például a következő:

$$u_1 = c_{11}i_1 + c_{12}u_2$$

$$i_2 = c_{21}i_1 + c_{22}u_2$$

Itt a c_{ij} konstansok értéke a hárompólus belső felépítésétől függ. Egy konkrét hárompólus esetén nem biztos, hogy minden kombináció létező leírást eredményez.

Az általános négypólusú komponens (*négypólus*, 3. ábra) hasonló gondolatmenet mentén három pólus áramával és három feszültséggel, összesen 6 változóval jellemezhető. A hat változó között három karakterisztika-egyenlet teremt kapcsolatot. A hat változó közül hármat független, a három másikat függő változónak tekinthetjük. A

1. ábra: A kétpólus

2. ábra: A hárompólus

3. ábra: A négypólus

Ha a négypólus lineáris és rezisztív, egy lehetséges karakterisztika az alábbi:

$$u_1 = c_{11}i_2 + c_{12}i_3 + c_{13}u_3$$

$$u_2 = c_{21}i_2 + c_{22}i_3 + c_{23}u_3$$

$$i_1 = c_{31}i_2 + c_{32}i_3 + c_{33}u_3$$

lineáris, rezisztív négypólus ezek szerint összesen kilenc paraméterrel jellemezhető. A gyakorlatban azonban egy fontos speciális eset az, amelyben a négy pólust két összetartozó póluspárként (ún. kapu) kezeljük, és mindkét kaput egy-egy kétpólus zárja le. Az így előálló speciális négypólus neve kétkapu (4. ábra). A lezáró kétpólusok garantálják, hogy a kaput alkotó két póluson folyó áram egyenlő. Ezért

4. ábra: A kétpólusokkal lezárt kétkapu, mint speciális négypólus

a kétkapu kevesebb paraméterrel írható le, mint az általános négypólus, rezisztív esetben 4 paraméter elegendő. A kétkaput jellemző négy változó (u_1, u_2, i_1, i_2) neve kapuváltozó. Azt is feltételezzük, hogy a kétkapuban nincsenek független források, hanem azok a lezáró kétpólusokban foglalhatnak helyet. A továbbiakban a lineáris, rezisztív kétkapuk jellemzésével foglalkozunk. A kétkapuk alkalmazási területeit a következő előadás tárgyalja majd. A 5. ábrán látható el-

5. ábra: Példa a kétkapu meg nem engedett lezárására

Fontos hangsúlyozni, hogy formailag egy csatolt kétpólus és egy kétkapu karakterisztikája megegyezik. Lényeges különbség azonban, hogy a kétkaput a karakterisztikája csak akkor jellemzi, ha mindkét kapuja egy-egy kétpólussal van lezárva. Egy csatolt kétpólus esetén mivel eleve kétpólusok alkotják – ilyen megkötés nincsen.

rendezésben a kétkapura kapcsolódó hálózat megsérti azt a feltételt, hogy a kapu két pólusán folyó áramok egyenlőek legyenek: $i_1 \neq i_1'$ és $i_2 \neq i'_2$, ezért ennek a hálózatnak az analízise nem végezhető el a kétkapu-paraméterek segítségével.

Kétkapu-karakterisztikák

A négy kapuváltozóból kettőt választhatunk független, kettőt függő változónak. Ennek megfelelően a két karakterisztika-egyenletnek $\binom{4}{2} = 6$ különböző alakja lehet. Ezt a hat karakterisztikát az alábbiakban tárgyaljuk, azonban egy konkrét kétkapu esetén nem garantálható, hogy mind a hat lehetséges karakterisztika létezik majd.

Az impedanciakarakterisztika

Az impedanciakarakterisztika a kétkapu feszültségeit fejezi ki a kétkapu áramainak segítségével. A függő változók tehát az u_1 , u_2 feszültségek, a független változók az i_1 , i_2 áramok:

$$u_1 = R_{11}i_1 + R_{12}i_2$$

$$u_2 = R_{21}i_1 + R_{22}i_2$$

$$(1)$$

Az R_{ii} ellenállás (rezisztencia) dimenziójú ($[R_{ii}] = \Omega$), a kétkapu felépítésére jellemző állandókat impedanciaparamétereknek nevezzük. Az impedanciakarakterisztika azt fejezi ki, hogy a kétkapu kapuáramai függetlenül előírhatók, és azok ismeretében a kapufeszültségek számíthatók. Ha az áramforrásokkal lezárt kétkapu nemreguláris hálózatra vezet, akkor az adott kétkapunak nem értelmezett az impedanciakarakterisztikája (6. ábra). Az egyes impedanciaparaméterek külön-külön is értelmezhetők. Az (1) első egyenletéből

$$R_{11} = \left. \frac{u_1}{i_1} \right|_{i_2 = 0},$$

ahol az $i_2 = 0$ feltétel értelme, hogy a szekunder kapu üresjárásban (szakadással lezárva) üzemel, miközben a primer kapun az i_1 áramot egy áramforrással "írjuk elő" (7. ábra). Ezért az R_{11} paramétert szokás "primer oldali üresjárási bemeneti rezisztencia" elnevezéssel illetni. Az R₂₂ paramétert a primer kapu üresjárása mellett kapjuk,

$$R_{22} = \left. \frac{u_2}{i_2} \right|_{i_1 = 0},$$

ezért a mennyiség neve szekunder oldali üresjárási bemeneti rezisztencia. Ugyancsak az első egyenlet alapján

$$R_{12} = \left. \frac{u_1}{i_2} \right|_{i_1 = 0},$$

aminek értelmezése "hátraviteli üresjárási átviteli rezisztencia", amelyben az üresjárás utal a primer kapu üresjárására ($i_1 = 0$, miközben a szekunder kapura áramforrást kapcsolunk). Az "átviteli" jelleg olyan mennyiséget jelent, ami eltérő kapukhoz tartozó kapuváltozók között teremt kapcsolatot, a hátravitel pedig a szekunder kapuról a primer kapura irányuló átvitelre utal. Az R₂₁ mennyiség ennek megfelelően előreviteli üresjárási átviteli rezisztencia.

Az admittanciakarakterisztika

Az admittancia- (vezetés-) paraméterek az áramokat, mint függő változókat a feszültségekkel fejezik ki:

$$i_1 = G_{11}u_1 + G_{12}u_2$$

$$i_2 = G_{21}u_1 + G_{22}u_2$$
(2)

Az elnevezés a fizika tárgyból már megismert, Z-vel jelölt impedancia nevű mennyiségre utal, ami az ellenállás általánosításának tekinthető szinuszos áramú hálózatokban. Ezt a félév második felében tárgyaljuk majd. A szakirodalomban az impedanciaparamétereket gyakran z_{ij} -vel vagy Z_{ij} -vel jelölik.

A (1) egyenletrendszert vektor-mátrix alakban is szokás írni:

$$\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \mathbf{R} \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}; \quad \mathbf{R} = \begin{pmatrix} R_{11} & R_{12} \\ R_{21} & R_{22} \end{pmatrix}.$$

6. ábra: Az impedanciakarakterisztika

7. ábra: Az R₁₁ paraméter értelmezése

Ezek az összefüggések a paraméterek mérésére vonatkozó utasításként is értelmezhetők: R_{11} méréséhez a szekunder kaput szakadásban hagyjuk, közben megmérjük az egységnyi áramot szolgáltató primer oldali áramforrás feszültségét.

A G_{ij} vezetés (konduktancia) dimenziójú ($[G_{ij}] = S$) állandókat admittanciaparamétereknek nevezzük. Az admittanciakarakterisztika létezik, ha a kétkapu mindkét kapufeszültsége függetlenül előírható, azaz mindkét kapura feszültségforrást kapcsolva reguláris hálózatot kapunk (8. ábra). Ellenkező esetben a karakterisztika az adott kétkapura nem értelmezett. Az egyes paraméterek külön-külön értelmezhetők, pl. (2) 1. egyenletéből

$$G_{11} = \frac{i_1}{u_1} \bigg|_{u_2=0}$$
,

ami a kétkapu primer kapujának bemeneti vezetését adja, miközben a szekunder kapu rövidzárban van ($u_2 = 0$, 9. ábra).

Az impedancia- és az admittanciakarakterisztika között érvényes összefüggés:

$$G = R^{-1}; \quad R = G^{-1},$$

ha mindkét mátrix létezik (egyik sem szinguláris). Azonban általában

$$R_{ij} \neq \frac{1}{G_{ii}}$$

már csak azért sem, mert az R_{ij} értékeket üresjárásban, a G_{ij} értékeket pedig rövidzárban értelmezzük.

A hibridkarakterisztika

A hibridkarakterisztikában a függő változók u_1 és i_2 :

Az egyenletekből kiolvashatóan $[H_{12}] = [H_{21}] = 1$ (dimenzió nélküli mennyiség), $[H_{11}] = \Omega$, és $[H_{22}] = S$. A paraméterek az előzőekhez hasonlóan értelmezhetők, pl.

$$H_{11} = \left. \frac{u_1}{i_1} \right|_{u_2 = 0},$$

azaz H₁₁ a rövidzárási bemeneti rezisztencia értékét adja. A karakterisztika létezik, ha a primer kapura áramforrást, a szekunder kapura feszültségforrást kapcsolva reguláris hálózathoz jutunk.

Az inverz hibridkarakterisztika

A hibridkarakterisztikában a függő változók i_1 és u_2 :

$$i_1 = K_{11}u_1 + K_{12}i_2 u_2 = K_{21}u_1 + K_{22}i_2$$
(4)

A (2) egyenletrendszert vektor-mátrix alakban is szokás írni:

$$\begin{pmatrix} i_1 \\ i_2 \end{pmatrix} = G \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}; \quad G = \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix}.$$

8. ábra: Az admittanciakarakterisztika

9. ábra: Az G₁₁ paraméter értelmezése Az elnevezés az impedancia reciprokára, az Y-al jelölt admittancia nevű mennyiségre utal, amelyet később fogunk megismerni. A szakirodalomban az admittanciaparamétereket gyakran y_{ij} -vel vagy Y_{ij} -vel jelölik.

10. ábra: A hibridkarakterisztika értelmezése

Emlékezzünk, hogy R₁₁ az üresjárási bemeneti rezisztencia.

A dimenziókat tekintve $[K_{11}] = S$, $[K_{22}] = \Omega$, és $[K_{12}] = [K_{21}] = 1$. A karakterisztika létezik, ha a primer kapu feszültségét, és a szekunder kapu áramát függetlenül előírhatjuk (11. ábra). A hibrid- és az inverzi hibridkarakterisztika között érvényes összefüggés:

$$K = H^{-1}; \quad H = K^{-1},$$

ha mindkét mátrix létezik.

Az eddig felsorolt négy karakterisztikát hibrid típusú karakterisztikának mondjuk, mert azokban a függő változók különböző kapukhoz tartoznak.

A lánc- és az inverz lánckarakterisztika

A két utolsó karakterisztika ún. lánc típusú karakterisztika: egyrészt a függő változók ugyanahhoz a kapuhoz tartoznak, másrészt a szekunder kapun az áram referenciairányát megfordítjuk a hibrid típusú karakterisztikákhoz képest (lánc-referenciairány, 12. ábra). Ennek előnyét a kétkapuk összekapcsolásánál (ún. lánckapcsolásánál) fogjuk látni.

Ezzel a konvencióval a lánckarakterisztika:

ahol az A_{ij} láncparaméterekre $[A_{11}] = [A_{22}] = 1$, $[A_{12}] = \Omega$ és $[A_{21}] =$ S. Ha a szekunder kapun a lánc-referenciairány helyett szimmetrikus referenciairányt veszünk fel, A_{12} és A_{22} előjele megváltozik. Az első egyenlet alapján például

$$A_{11} = \left. \frac{u_1}{u_2} \right|_{i_2 = 0},$$

amihez nem tudunk üresjárási vagy rövidzárási állapotban értelmes jelentést tulajdonítani (a szekunder kapu feszültségét kellene előírnunk, miközben ott szakadásnak kell lennie). A paraméterek reciprokának azonban van ilyen értelmezése, pl.

$$\left. \frac{1}{A_{11}} = \frac{u_2}{u_1} \right|_{i_2 = 0}$$

egy üresjárási átviteli feszültségerősítési tényező: a szekunder kapu üresjárásában a primer kapura feszültségforrást kapcsolva a szekunder kapu feszültségét mérjük.

Az utolsó, a gyakorlatban ritkán használatos karakterisztika az inverz lánckarakterisztika, amelynek alakja

$$u_2 = B_{11}u_1 + B_{12}i_1 i_2 = B_{21}u_1 + B_{22}i_1$$
(6)

11. ábra: Az inverz hibridkarakterisztika értelmezése

12. ábra: A lánc-referenciairány

Ha mindkét lánc típusú karakterisztika létezik, akkor

$$B = A^{-1}; \quad A = B^{-1}.$$

A kétkapu-paraméterek meghatározása

Egy. a gyakorlatban is fontos esetben ismert a kétkapu felépítése, és szükségünk van valamelyik kétkapu-paraméterrendszerre. Adott például a 13. ábra kétkapuja (egy π -tag), keressük ennek H_{11} paraméterét.

A H₁₁-et tartalmazó karakterisztika-egyenlet

$$u_1 = H_{11}i_1 + H_{12}u_2,$$

ahonnan

$$H_{11} = \left. \frac{u_1}{i_1} \right|_{u_2 = 0},$$

amelynek fizikai értelmezése: keressük a primer kapu feszültségét, ha a primer kapura áramot kényszerítünk, a szekunder kapu pedig rövidzárban van ($u_2 = 0$). Az ennek megfelelő lezárásokat zölddel jelöltük az ábrán. Az ábra alapján az R₃ ellenállást "söntöli" (rövidre zárja) a szekunder kapun levő rövidzár, u_1 és i_1 között R_1 és R_2 párhuzamos eredője adja a kapcsolatot:

$$u_1 = (R_1 \times R_2)i_1$$

amiből

$$H_{11} = \frac{R_1 R_2}{R_1 + R_2}.$$

Ez a módszer gyakran célravezető, ha csak 1-2 paramétert kell meghatároznunk, azonban a teljes karakterisztikát általában nem így célszerű számolni.

Az összes paraméter egyszerre meghatározható úgy, ahogy azt a 14. ábra kétkapuján demonstráljuk. Keressük a kétkapu admittanciakarakterisztikáját (*G*).

Az admittanciakarakterisztika alakja

$$i_1 = G_{11}u_1 + G_{12}u_2$$

$$i_2 = G_{21}u_1 + G_{22}u_2$$
(7)

A továbbiakban a karakterisztika független változóit (a példában u_1 és u_2) formálisan ismertnek tekintjük, és keressük azt a két összefüggést, amelyek révén i_1 és i_2 kifejezhető. A példában szereplő elrendezés szintén egy π -elrendezés, amelyet mindig a csomóponti potenciálok módszerével célszerű vizsgálni. A karakterisztikának megfelelően kiegészítjük a kétkaput a két feszültségforrással egy teljes hálózattá, a hálózat három csomóponti potenciálját pedig az ábrán

13. ábra: Példa a H_{11} hibridparaméter kiszámítására

14. ábra: Példa a G admittanciakarakterisztika kiszámítására

bejelölt módon vesszük fel. Az u_1 és az u_2 potenciálú csomópontra felírjuk az áramtörvényeket (az ellenállások a konduktanciájukkal adottak!):

$$u_1: -i_1 + G_1u_1 + G_2(u_1 - u_2) = 0 u_2: -i_2 + G_3u_2 + gu_1 + G_2(u_2 - u_1) = 0$$

A két egyenletből átrendezés után közvetlenül adódik a keresett karakterisztika, a G-paraméterek együttható-összehasonlítással kiolvashatók:

$$i_{1} = \underbrace{(G_{1} + G_{2})}_{G_{11}} u_{1} + \underbrace{(-G_{2})}_{G_{12}} u_{2}$$

$$i_{2} = \underbrace{(g - G_{2})}_{G_{21}} u_{1} + \underbrace{(G_{3} + G_{2})}_{G_{22}} u_{2}$$

Sok esetben a kétkapu valamely karakterisztikája ismert, és egy másik paraméterrendszerre van szükségünk. Az átszámítás egy lineáris egyenletrendszer megoldása, matematikai úton, elemi átalakításokkal elvégezhető, ha mindkét paraméterrendszer létezik. Példaképpen nézzük meg, hogyan lehet az impedanciakarakterisztika alapján a hibridkarakterisztika elemeit meghatározni! A kiindulási R és a keresett *H* karakterisztika:

$$u_1 = R_{11}i_1 + R_{12}i_2$$

$$u_2 = R_{21}i_1 + R_{22}i_2$$

$$u_1 = H_{11}i_1 + H_{12}u_2$$

$$i_2 = H_{21}i_1 + H_{22}u_2$$

$$(8)$$

A keresett karakterisztikában u_1 és i_2 a függő változók, a független változók, i_1 és u_2 értékét formálisan ismertnek tekintjük. A második kiindulási egyenletből közvetlenül kifejezhetjük i2-t:

$$i_2 = \underbrace{\left(-\frac{R_{21}}{R_{22}}\right)}_{H_{21}} i_1 + \underbrace{\frac{1}{R_{22}}}_{H_{22}} u_2$$

A másik egyenlet hosszadalmas számolás után adódik:

$$u_1 = \underbrace{\left(R_{11} - \frac{R_{12} \cdot R_{21}}{R_{22}}\right)}_{H_{11}} i_1 + \underbrace{\frac{R_{12}}{R_{22}}}_{H_{12}} u_2$$

Ha az átalakítás nem végezhető el (mint ebben a példában, ha R_{22} = 0), akkor a keresett karakterisztika nem létezik. A kézi számolás csak akkor vezet gyorsan eredményre, ha a kiindulási karakterisztikában több zérus elem van. Egyéb esetekben a konverzióhoz táblázatokat használunk (lásd tankönyv), vagy a Matlab szimbolikus toolboxát hívhatjuk segítségül. A példa megoldása Matlabbal:

```
syms R11 R12 R21 R22 u1 u2 i1 i2
Req1 = u1 == R11 * i1 + R12 * i2;
Req2 = u2 == R21 * i1 + R22 * i2;
[s_u1, s_i2] = solve([Req1, Req2], [u1, i2])
```

A megoldás:

```
s_u1 =
(R12*u2 + R11*R22*i1 - R12*R21*i1)/R22
s_i2 =
(u2 - R21*i1)/R22
```

ami megegyezik a kézi számolás eredményével.

7. A kétkapu-leírások alkalmazása

Bilicz-Horváth

2021. március 14.

Kétkapuk speciális tulajdonságai

A rezisztív kétkapuk három speciális tulajdonságát definiáljuk: a reciprok és a szimmetrikus kétkapuk egyszerűbben (kevesebb paraméterrel) jellemezhetőek, mint az általános kétkapuk. A passzivitás pedig a kétkapuk esetében is olyan lényeges tulajdonság, mint a kétpólusok esetén. A három tulajdonság eldöntésére szolgáló kritériumokat is tárgyalunk.

A reciprocitás

1. ábra: A reciprocitás definíciójához

A reciprocitás vizsgálatához végezzünk el egy (gondolat)kísérletet egy lineáris, rezisztív kétkapuval (1. ábra). Az (1) felső indexszel jelölt 1. kísérletben a kétkapu primer kapujára áramforrást kapcsolunk, a szekunder kapu üresjárásban van. A (2) felső indexes 2. kísérletben a lezárásokat felcseréljük: az áramforrás a szekunder kapura kerül. Ha az áramforrás forrásáramának változatlan értéke mellett az üresjárásban maradó kapun mérhető feszültség ugyanakkora, mint a másik kísérletben, akkor az adott kétkapu *reciprok*.

reciprok kétkapu:
$$i_1^{(1)} = i_2^{(2)} \Rightarrow u_2^{(1)} = u_1^{(2)}$$

A kísérlet fizikai értelmezése: az ideális feszültségmérő szakadásnak tekinthető, ezért a reciprocitás ezen definíciója szerint a kétkapu reciprok, ha az egyik kapura kapcsolt áramforrás és a másik kapura kapcsolt ideális feszültségmérő egymással felcserélhető, ugyanazt a feszültséget mérhetjük. Ezzel ekvivalens definíció vonatkozik a feszültségforrás és az ideális árammérő (rövidzár) felcserélhetőségére.

A RECIPROCITÁS rezisztív lineáris esetben egyértelműen eldönthető a kétkapu-karakterisztikák ismeretében. Ha például ismert és létezik a kétkapu impedanciakarakterisztikája, az 1. ábra (1) kísérletében $(i_2^{(1)}=0 \text{ miatt})$

$$u_2^{(1)} = R_{21} \cdot i_1^{(1)},$$

Emlékeztetőül az impedanciakarakterisztika kifejezése

$$u_1 = R_{11}i_1 + R_{12}i_2$$

$$u_2 = R_{21}i_1 + R_{22}i_2$$

a (2) kísérletben pedig ($i_1^{(2)} = 0$ miatt)

$$u_1^{(2)} = R_{12} \cdot i_2^{(2)}.$$

A jobb oldalakat egyenlővé téve a keresett feltétel

lineáris rezisztív kétkapu reciprok
$$\Leftrightarrow R_{12} = R_{21}$$

Míg az általános rezisztív kétkapu négy, a reciprok kétkapu mindössze három paraméterrel (R_{11} , $R_{12} = R_{21}$, R_{22}) jellemezhető. Igazolható, hogy csak ellenállásokat és ideális transzformátort tartalmazó kétkapu biztosan reciprok. Kivételesen más komponenseket (pl. vezérelt forrást) tartalmazó kétkapu is lehet reciprok.

A másik két gyakran használt paraméterrel hasonlóan adódik, hogy a reciprocitás feltétele

$$G_{12} = G_{21}, H_{12} = -H_{21}.$$

A szimmetria

A kétkapu szimmetriája a reciprocitásnál látott kísérlettel dönthető el (2. ábra). Ha a kísérletben nem csak a szakadások feszültségei,

2. ábra: A szimmetria definíciójához

hanem az áramforrásokon mérhető feszültség is egyenlő, akkor a kétkapu szimmetrikus is:

szimmetrikus kétkapu:
$$i_1^{(1)}=i_2^{(2)}\Rightarrow u_2^{(1)}=u_1^{(2)}$$
és $u_1^{(1)}=u_2^{(2)}$

A szimmetrikus kétkapu kapuinak szerepe felcserélhető, a két kapu egyenértékű. Az impedanciakarakterisztika ismeretében a szimmetriára is adható kritérium. Az $u_1^{(1)}=u_2^{(2)}$ feltétel teljesüléséhez

$$u_1^{(1)} = R_{11}i_1^{(1)},$$

$$u_2^{(2)} = R_{22}i_2^{(2)},$$

amiből

lineáris rezisztív kétkapu szimmetrikus
$$\Leftrightarrow R_{12} = R_{21}$$
 és $R_{11} = R_{22}$

A szimmetrikus kétkapu értelemszerűen reciprok is. A szimmetrikus felépítésű kétkapu pedig biztosan szimmetrikus, de nem szimmetrikus felépítésű kétkapu is lehet szimmetrikus. A szimmetrikus kétkapu 4 helyett mindössze kettő paraméterrel ($R_{11} = R_{22}$ és $R_{12} = R_{21}$) jellemezhető.

Két további kritérium:

$$G_{12} = G_{21}$$
 és $G_{11} = G_{22}$

$$H_{12} = -H_{21}$$
 és $\Delta_H = 1$,

ahol Δ_H a H hibridmátrix determinán-

A passzivitás

A kétkapu passzivitásának is az a feltétele, hogy a munkafüggvénye nem-negatív legyen: $w(t) \geq 0$. Rezisztív kétkapukra azonban itt is egyszerűbb feltételt adhatunk: a munkafüggvény nem-negatív, ha a kétkapu teljesítménye nem-negatív ($p(t) \ge 0$), mint a rezisztív kétpólusok esetén. A rezisztív kétkapu teljesítménye a kapuk teljesítményeinek az összege, szimmetrikus referenciairányok mellett

$$p(t) = u_1(t)i_1(t) + u_2(t)i_2(t).$$

A csak passzív komponenseket (R > 0 ellenállás, ideális transzformátor, girátor) tartalmazó kétkapu nyilvánvalóan passzív, míg az aktív komponenseket is tartalmazó általában aktív. A kétkapu is nonenergikus, ha $p(t) \equiv 0$. A passzivitás a karakterisztikák alapján egyértelműen eldönthető, pl. az impedanciakaraterisztika ismeretében belátható, hogy egy rezisztív, lineáris kétkapu akkor és csakis akkor passzív, ha

$$R_{11} \ge 0, R_{22} \ge 0$$
, és $R_{11} \cdot R_{22} \ge \left(\frac{R_{12} + R_{21}}{2}\right)^2$.

Kétkapuk helyettesítő kapcsolásai

Eddig elsősorban azt a feladatot vizsgáltuk, amelyben a kétkapu felépítésének ismeretében kell előállítanunk valamelyik kétkapukarakterisztikát (kétkapuk analízise). A gyakorlatban a fordított feladattal is szembesülünk: egy tevezési feladat eredményeként kapunk egy kétkapu-karakterisztikát, ami egy elvárt működést megvalósít, és ehhez keressük a lehető legegyszerűbb hálózati realizációt. Máskor a kétkapus jellemzést fizikai folyamatok "fekete doboz" jellegű leírására használjuk, pl. egy tranzisztor, mint kétkapu belső működését leíró bonyolult egyenletekhez társítunk egyszerű hálózati modellt. Ezen feladatok megoldásához használható helyettesítő kapcsolásokat tárgyalunk a következő fejezetben.

Reciprok kétkapuk helyettesítő kapcsolásai

A reciprocitás fogalmát azért is vezettük be, mert láttuk, hogy a reciprok rezisztív kétkapu három paraméterrel jellemezhető. Belátható, hogy tetszőleges rezisztív reciprok kétkapu helyettesíthető egy 3 ellenállásból álló T- vagy π - helyettesítő képpel. A három ellenállás értéke szintén három szabad paraméter, az elemértékek és a karakterisztika értékei közötti összefüggést az alábbi módon határozhatjuk meg.

A passzivitás feltétele egyébként mind a négy hibrid típusú karakterisztikával ugyanúgy fejezhető ki:

$$F_{11}\geq 0, F_{22}\geq 0,$$
 és $F_{11}\cdot F_{22}\geq \left(rac{F_{12}+F_{21}}{2}
ight)^2$, ahol F_{ij} lehet G_{ij} , R_{ij} , H_{ij} vagy K_{ij} is.

A T-TAG (3. ábra) szoros kapcsolatban van az R impedanciakarakterisztikával. Egészítsük ki ezért a T-tagot 1-1 áramforrással hálózattá! Nyilvánvaló, hogy az i₁ és i₂ áramok, az áramforrások áramai, hurokáramként használhatók, a hálózatot a hurokáramok módszerével célszerű vizsgálni. A két egyenlet:

$$i_1: -u_1 + R_a i_1 + R_b (i_1 + i_2) = 0$$

 $i_2: -u_2 + R_c i_2 + R_b (i_1 + i_2) = 0$

amelyből átrendezéssel adódik a kétkapu impedanciakarakterisztikája:

$$u_{1} = \underbrace{(R_{a} + R_{b})}_{R_{11}} i_{1} + \underbrace{R_{b}}_{R_{12}} i_{2}$$

$$u_{2} = \underbrace{R_{b}}_{R_{21}} i_{1} + \underbrace{(R_{c} + R_{b})}_{R_{22}} i_{2}$$

Látható, hogy a T-tagra is teljesül, hogy $R_{12} = R_{21}$. A feladat R_{ij} ismeretében az R_a , R_b , R_c ellenállásértékek meghatározása. A karakterisztikából kiolvasható összefüggések egy háromismeretlenes egyenletrendszerre vezetnek, amelynek megoldása adja a keresett elemértékeket:

$$R_a = R_{11} - R_{12} R_c = R_{22} - R_{21} R_b = R_{12} \equiv R_{21}$$
.

A helyettesítő kép biztosan létezik, ha az impedanciakarakterisztika létezik.

A π -TAG a T-tag duális elrendezése, az ellenállásokat vezetésre, a csillagkapcsolást deltára cseréljük (4. ábra). A π -tag az admittanciakarakterisztikával van szoros kapcsolatban, ezért a kétkaput feszültségforrásokkal zárjuk le, a forrásokkal kiegészített kétkaput a csomóponti potenciálok módszerével vizsgáljuk.

Az alsó csomópont potenciálját zérusnak választva a másik két potenciál u_1 ill. u_2 , a két áramtörvény pedig

$$u_1: -i_1 + G_A u_1 + G_B (u_1 - u_2) = 0$$

 $u_2: -i_2 + G_C u_2 + G_B (u_2 - u_1) = 0$

amiből az admittanciakarakterisztika kiolvasható.

$$i_{1} = \underbrace{(G_{A} + G_{B})}_{G_{11}} u_{1} + \underbrace{(-G_{B})}_{G_{12}} u_{2}$$

$$i_{2} = \underbrace{(-G_{B})}_{G_{21}} u_{1} + \underbrace{(G_{C} + G_{B})}_{G_{22}} u_{2}$$

3. ábra: Reciprok kétkapu Thelyettesítőképe

Az így adódó elemértékek között bizonyos esetekben negatív értékek is szerepelhetnek. Negatív ellenállást egy vezérelt forrással "realizálhatunk".

4. ábra: Reciprok kétkapu π helyettesítőképe

Látható, hogy teljesül a reciprok kétkapura elvárt $G_{12} = G_{21}$ összefüggés. A helyettesítő kép elemértékeit az egyenletrendszer megoldásaként kapjuk:

$$G_A = G_{11} + G_{12}$$

$$G_C = G_{22} + G_{21}$$

$$G_B = -G_{12} \equiv -G_{21}$$

A π -helyettesítőkép létezik, ha az admittanciakarakterisztika létezik.

Természetes helyettesítő képek

Általános, nemreciprok kétkapuk helyettesítésére kézenfekvő módszer a realizálandó hibrid típusú karakterisztika közvetlen megvalósítása. Ehhez minden esetben két ellenállásra (ill. konduktanciára), és két vezérelt forrásra van szükség. Az R mátrixával adott kétkapu helyettesítése (5. ábra) az 1. egyenlet értelmében: (i) a primer kapu u_1 feszültsége két másik feszültség összege, azaz két kétpólus soros kapcsolásával realizálható, (ii) az $R_{11}i_1$ feszültséget egy R_{11} értékű ellenállással, (iii) az R₁₂i₂ feszültséget egy áramvezérelt feszültségforrással állíthatjuk elő. A szekunder kapu feszültsége ezzel analóg módon bontható fel. A helyettesítő kép elemértékei egyszerűen megfeleltet-

hetőek a karakterisztika értékeinek, ezért nevezzük természetesnek ezt az elrendezést.

A hibridkarakterisztikát realizáló természetes helyettesítő kép a 6. ábrán látható. Az első egyenletben két feszültség összegét ismét

kétpólusok soros kapcsolásával, a második egyenletben két áram összegét kétpólusok párhuzamos kapcsolásával valósítjuk meg. A primer kapu u_1 feszültségét egy H_{11} értékű ellenállás és egy, az u_2

Ellenpéldaként említjük az ideális transzformátort, mint kétkaput, amely ugyan a korábbi kijelentés értelmében reciprok, azonban sem az R, sem a Gkarakterisztikája nem létezik, ezért sem T-, sem π -taggal nem helyettesíthető.

5. ábra: Természetes helyettesítő kép R alapján. A karakterisztika egyenletei:

$$u_1 = R_{11}i_1 + R_{12}i_2 u_2 = R_{21}i_1 + R_{22}i_2$$

6. ábra: Természetes helyettesítő kép H alapján. A karakterisztika egyenletei:

$$u_1 = H_{11}i_1 + H_{12}u_2$$

$$i_2 = H_{21}i_1 + H_{22}u_2$$

feszültséggel vezérelt feszültségforrás állítja elő. A szekunder kapu i_2 áramát egy, az i_1 árammal vezérelt áramforrás és egy H_{22} értékű vezetés révén állítjuk elő. A másik két karakterisztikára érvényes természetes helyettesítő képek hasonló gondolatmenettel képezhetőek.

Hibrid T és hibrid π helyettesítő képek

A természetes helyettesítő képek hátránya, hogy két vezérelt forrást tartalmaznak. Az olyan (nemreciprok) kétkapukat, amelyeknek létezik az impedancia- vagy admittanciakarakterisztikája, helyettesíthetünk olyan, számítástechnikailag és megvalósítási szempontból is előnyösebb hálózatokkal, amelyek csak egy vezérelt forrást tartalmaznak három ellenállás mellett. Ezek a hibrid-T, illetve hibrid- π helyettesítő képek, amelyek ugyanúgy négy paraméterrel jellemezhetők, mint a nemreciprok kétkapu.

HA A KÉTKAPUNAK létezik az impedanciakarakterisztikája, helyettesíthetjük egy hibrid T-helyettesítő képpel, amelyben a három ellenállás valamelyikével sorba kapcsolódik egy vezérelt feszültségforrás. Egy ilyen képet mutat a 7. ábra.

A kétkaput két áramforrással hálózattá egészítjük ki, és az áramforrások i_1 , i_2 áramát hurokáramnak használjuk. A hálózatra felírható hurokegyenletek:

$$i_1: -u_1 + R_a i_1 + R_b (i_1 + i_2) + r_b i_1 = 0$$

 $i_2: -u_2 + R_c i_2 + R_b (i_1 + i_2) + r_b i_1 = 0$

átrendezve

$$u_{1} = \underbrace{(R_{a} + R_{b} + r_{b})}_{R_{11}} i_{1} + \underbrace{R_{b}}_{R_{12}} i_{2}$$

$$u_{2} = \underbrace{(R_{b} + r_{b})}_{R_{21}} i_{1} + \underbrace{(R_{c} + R_{b})}_{R_{22}} i_{2}$$

A helyettesítő kép négy elemértékére vonatkozó egyenletrendszer megoldása pedig

$$R_a = R_{11} - R_{21}$$

$$R_b = R_{12}$$

$$R_c = R_{22} - R_{12}$$

$$r_b = R_{21} - R_{12}$$

Látható, hogy reciprok kétkapura, ahol $R_{12} = R_{21}$, a hibrid T-tag egyszerű T-taggá egyszerűsödik, mert $r_b=0$ adódik (a forrás helyett rövidzár). Számos különféle hibrid T-tag definiálható (összesen 20): a vezérelt forrás bármelyik ágba beiktatható, a vezérlő mennyiség pedig a négy közül bármelyik kapuváltozó lehet.

7. ábra: Rezisztív kétkapu egy lehetséges hibrid T-helyettesítőképe

HA LÉTEZIK admittanciakarakterisztika, akkor a kétkapu valamelyik hibrid π -taggal is helyettesíthető. Ezek közül egy látható a 8. ábrán.

Az alsó csomópont potenciálját zérusnak választva a másik két potenciál u_1 ill. u_2 , a két áramtörvény pedig

$$u_1: -i_1 + G_A u_1 + G_B (u_1 - u_2) + g_B u_1 = 0$$

 $u_2: -i_2 + G_C u_2 + G_B (u_2 - u_1) - g_B u_1 = 0$,

amiből az admittanciakarakterisztika kiolvasható.

$$i_{1} = \underbrace{(G_{A} + G_{B} + g_{B})}_{G_{11}} u_{1} + \underbrace{(-G_{B})}_{G_{12}} u_{2}$$

$$i_{2} = \underbrace{(-G_{B} - g_{B})}_{G_{21}} u_{1} + \underbrace{(G_{C} + G_{B})}_{G_{22}} u_{2}$$

A helyettesítő kép elemértékeit az egyenletrendszer megoldásaként kapjuk:

$$G_A = G_{11} + G_{21}$$
 $G_B = -G_{12}$
 $G_C = G_{22} + G_{12}$
 $g_B = G_{12} - G_{21}$.

Kétpólusokkal lezárt kétkapuk

A kétkapus leírás egyik legfőbb előnye, hogy a kétkapu különböző lezárásai mellett egyszerűen meg lehet határozni a kapuáramokat és -feszültségeket. A gyakorlatban gyakran a kétkapunak legalább az egyik kapujára egy generátor (Norton- vagy Thévenin-generátor) csatlakozik, a másik kapura pedig egy "terhelő"-ellenállás. (Mindkét lezárás lehet egy-egy bonyolultabb kétpólus helyettesítő képe is.)

Hálózatszámítás kétkaput tartalmazó hálózatokban

A lezárt kétkapuk számításának elvét egy tipikus példán, a 9. ábrán látható hálózattal illusztráljuk. A hálózatban ismertlen a négy kapuváltozó (u_1, u_2, i_1, i_2) . A négy ismeretlen meghatározására négy

8. ábra: Rezisztív kétkapu egy lehetséges hibrid π -helyettesítőképe

9. ábra: Példa lezárt kétkapu számításá-

független egyenlet áll rendelkezésünkre. Példaképpen ismét az impedanciakarakterisztika ismeretében fejezzük ki a keresett mennyiségeket.

 $u_1 = u_s - R_s i_1$ (a primer oldali generátor karakterisztikája) $u_2 = -R_t i_2$ (a szekunder oldali lezárás karakterisztikája) $u_1 = R_{11}i_1 + R_{12}i_2$ (a kétkapu 1. egyenlete) $u_2 = R_{21}i_1 + R_{22}i_2$ (a kétkapu 2. egyenlete)

Ha a lezárásokkal kiegészített kétkapu reguláris hálózatot alkot, az egyenletrendszer egyértelműen megoldható. A lezárások karakterisztikájának felírásakor különösen ügyelni kell a referenciairányokra.

Bemeneti rezisztenciák számítása

A 10. ábra bal oldalán látható hálózatban az AB kétpólust a kétkapu és a szekunder kapura csatlakozó R_t ellenállás alkotja. A kétpólusban nincs független forrás, ezért biztos, hogy egy $R_{B,1}$ eredő ellenállással helyettesíthető, ahogy az ábra jobb oldalán látható. Az 1 index az első kapura utal. Ez az eredő ellenállás a lezárt kétkapunak a primer kapu felől mutatott bemeneti rezisztenciájának tekinthető. Ennek

10. ábra: Kétkapu primer oldali bemeneti rezisztenciájának értelmezése

definíciója értelemszerűen

$$R_{B,1} = \left(\frac{u_1}{i_1}\right)_{R_t}^{(1)},$$

ahol az (1) felső index az 1. kapura, az R_t alsó index pedig a szekunder kapu lezárására utal. Példaképpen nézzük a bemeneti rezisztencia számítását az impedanciakarakterisztika ismeretében. A szekunder kapu lezárására és a kétkapura vonatkozó három független egyenlet:

$$u_2 = -R_t i_2$$
 (a szekunder oldali lezárás karakterisztikája)
 $u_1 = R_{11} i_1 + R_{12} i_2$ (a kétkapu 1. egyenlete)
 $u_2 = R_{21} i_1 + R_{22} i_2$ (a kétkapu 2. egyenlete)

Az egyenletek továbbra is négy ismeretlen kapuváltozót tartalmaznak, azonban a célunk nem minden változó értékének meghatározása, hanem u_2 és i_2 eliminálása után az u_1/i_1 hányados meghatározása. Emlékezzünk, hogy korábban is találkoztunk a primer oldali bemeneti rezisztenciával, de csak olyan esetben, ha a szekunder kapun szakadás (R_{11} értelmezése) ill. rövidzár (H_{11} értelmezése) volt.

(Másképpen: a három egyenlet a három ismeretlenre, u_2 , i_2 és u_1/i_1 re elegendő). A három egyenletből a keresett u_1/i_1 viszonyt kifejezve

$$R_{B,1} = \left(\frac{u_1}{i_1}\right)_{R_t}^{(1)} = R_{11} - \frac{R_{12} \cdot R_{21}}{R_{22} + R_t}.$$
 (1)

A SZEKUNDER OLDALI bemeneti rezisztencia illusztrálására tekintsük a 11. ábrát. Az ábra bal oldali hálózatában a CD kétpólus (a primer kapura csatlakozó generátor és a kétkapu együttese) független forrást tartalmaz, ezért maga is egy (másik) Thévenin-generátorral helyettesíthető, amelynek a paramétereit jelölje u'_s és R'_s (általában $u_s \neq u'_s$, $R_s \neq R'_s$). A jobb oldali ábrán a CD kétpólust ezzel a Théveningenerátorral helyettesítettük. A szekunder kapura is kézenfekvő

$$R_{B,1} = \left(\frac{u_1}{i_1}\right)_{\infty}^{(1)} = R_{11}.$$

11. ábra: Kétkapu szekunder oldali bemeneti rezisztenciájának értelmezéséhez. A primer kapura csatlakozó generátor és a kétkapu együttesen alkotja a CD kétpólust, amelyet egy u'_s , R'_s paraméterű Thévenin-generátorral helyettesítünk.

módon értelmezhetjük a bemeneti rezisztenciát:

$$R_{B,2}=\left(\frac{u_2}{i_2}\right)_{R_s}^{(2)},$$

ami a CD pólusok felől nézve a kétpólus belső ellenállásaként értelmezhető. Az u'_s , R'_s paramétereket kétféleképpen is meghatározhatjuk, ahogy azt korábban a kétpólusok helyettesítésénél megismertük: (i) kiszámítjuk u_2 értékét a CD kétpólus üresjárásában, valamint i_2 értékét, ha a CD kapcsokat rövidre zárjuk; vagy (ii) meghatározzuk az előbbi kettő közül valamelyiket, és hozzá a dezaktivizált CD kétpólus belső ellenállását. A CD kétpólus dezaktivizálása az $u_s = 0$ feltétel érvényesítését jelenti, vagyis a keresett belső ellenállás éppen a fenti bemeneti rezisztenciával egyenlő:

$$R_{s}' = R_{B,2}.$$

Mindkét módszerrel ugyanarra az eredményre jutunk.

Lezért kétkapu átviteli mennyiségei

A kétpólusokkal lezárt kétkapu bemeneti rezisztenciái mellett gyakorlati jelentősége az olyan átviteli jellegű mennyiségeknek, amelyek

A CD kétpólusból kivehető teljesítmény maximális, ha $R_t = R_{B,2}$.

Az R_{B.2} szimmetriaokból (1) egyenletből a primer és a szekunder kapu szerepének cseréjével

$$R_{B,2} = \left(\frac{u_2}{i_2}\right)_{R_s}^{(2)} = R_{22} - \frac{R_{21} \cdot R_{12}}{R_{11} + R_s},$$

értékre adódna.

a szekunder kapura csatlakozó kétpólus feszültségét vagy áramát a primer kapu feszültségéhez, ill. áramához viszonyítják. Ilyen mennyiségek értelmezhetők a 9. ábra jelöléseit követve az alábbiak szerint:

$$H_u = \left(\frac{u_2}{u_1}\right)_{R_t}$$
 (feszültségátviteli tényező)
 $H_i = -\left(\frac{i_2}{i_1}\right)_{R_t}$ (áramátviteli tényező)
 $R_T = \left(\frac{u_2}{i_1}\right)_{R_t}$ (átviteli rezisztencia)
 $G_T = -\left(\frac{i_2}{u_1}\right)_{R_t}$ (átviteli konduktancia)

A formulákban a negatív előjellel azt tükrözi, hogy a terhelés i_t árama ellentétes az i_2 kapuárammal.

Kétkapuk lánckapcsolása

A lánc típusú karakterisztikák ismeretében két (vagy több) kétkapu lánckapcsolásából adódó "eredő" kétkapu karakterisztikája egyszerűen meghatározható. A 12. ábrán két, láncmátrixával adott kétkapu lánckapcsolása látható. A lánc-referenciairány előnye, hogy a bal

oldali kétkapu szekunder kapujának árama egyben a jobb oldali kétkapu primer kapujának áramaként is használható, ez az oka a láncreferenciairány választásának. Jelölje a kétkapuk közös kapujának változóit u_0 és i_0 . A bal oldali kétkapu lánckarakterisztikája

$$\begin{pmatrix} u_1 \\ i_1 \end{pmatrix} = A^{(1)} \begin{pmatrix} u_0 \\ i_0 \end{pmatrix},$$

a jobb oldalié pedig

$$\begin{pmatrix} u_0 \\ i_0 \end{pmatrix} = A^{(2)} \begin{pmatrix} u_2 \\ i_2 \end{pmatrix}.$$

Ha a feladat egy áramjelet szolgáltató szenzor jelének erősítése és feszültségjellé alakítása (pl. egy ún. transzimpedancia-erősítővel), akkor lényeges kérdés, hogy az adott R_t lezáró ellenálláson mekkora feszültséget hoz létre egységnyi áram a primer kapun. Éppen ezt fejezi ki az R_T paraméter.

Gyakran ezektől eltérően definiált átviteli mennyiségek is használatosak, pl. egy másik feszültségátviteli tényezőt eredményezne a 9. ábra hálózatában az $A_u = u_2/u_s$ hányadossal definiált mennyiség.

12. ábra: Kétkapuk lánckapcsolása. A szekunder kapu áramát a láncreferenciairánynak megfelelően vesszük fel. Az eredő láncmátrix:

$$A_{\rm ered\delta} = A^{(1)} \cdot A^{(2)}$$

A második egyenletet az elsőbe helyettesítve

$$\begin{pmatrix} u_1 \\ i_1 \end{pmatrix} = \underbrace{\left(A^{(1)} \cdot A^{(2)}\right)}_{A_{\text{ered}\delta}} \begin{pmatrix} u_2 \\ i_2 \end{pmatrix},$$

amiből látható, hogy a lánckapcsolásnál az eredő láncmátrix az összetevő kétkapuk láncmátrixának mátrixszorzataként adódik. (Ez igaz az inverz lánckarakterisztikára is). A mátrixszorzás nem kommutatív, ezért a szorzást olyan sorrendben kell elvégezni, amilyen sorrendben a kétkapuk egymás után vannak kapcsolva.