Linear System & Linear Transformation

Linear Equation

1. Linear equation is written as below:

$$a_1x_1 + a_2x_2 + ... + a_nx_n = b$$

- coefficients: $a_1, ..., a_n$
- 2. By using vector:

$$a^T x = b$$

Linear System

- 1. Linear system is a set of linear equations
 - a. 주어진 여러 feature를 이용하여 최종 값 b를 잘 예측하는 것이 목표 (= regression)
 - b. solution
 - i. use vector or matrix
 - matrix A is a collection of the coefficients
 - ii. use inverse matrix
 - the solution is uniquely obtained
 - iii. use non-invertible matrix
 - · the solution is infinite or not exist
- 2. Identity Matrix
 - a. written as I_n
- 3. Inverse Matrix
 - a. written as A^{-1}
 - b. not all of the matrices have inverse matrix
 - i. i.e., need a special condition to have an inverse matrix

$$AA^{-1} = A^{-1}A = I_n$$

- use determinant of A (= det A) such as ad-bc
- ii. defined only for square matrix

Linear Combinations

1. Linear combination is written as below:

$$c_1v_1 + ... + c_pv_p$$

- called a linear combination of $v_1,...,v_p$ with weights or coefficients $c_1,...,c_p$
- 2. Solution of linear system
 - a. by matrix

$$Ax = b$$

b. by vector

$$a_1x_1 + a_2x_2 + a_3x_3 = b$$

- · called a vector equation
- the solution exists only when b is contained in the span $\{a_1,a_2,a_3\}$
- 3. Span
 - a. Span $\{v_1,...,v_p\}$ is the set of all linear combinations of $v_1,...,v_p$
 - b. Span with different number of vectors
 - i. 2 3개의 벡터를 이용해서 span 되는 3차원 공간은 전체가 될 수 있음
 - ii. **3 4개의 벡터**를 이용해서 span 되는 **4차원 공간**은 전체가 되기에는 살짝 무리 가 있음
- 4. Column combination & Row combination
 - a. Column combination (default)
 - i. Coefficients are the right matrix
 - ii. Left matrix is bases

$$(AX)^T$$
: bases A , coefficients X

- b. Row combination
 - i. Coefficients are the left matrix

ii. Right matrix is bases

$$X^TA^T$$
: bases X^T , coefficients A^T

- 5. Sum of Rank-1 Outer Products
 - a. Regard the matrix as the collection of vectors
 - b. Perform outer product for each vectors from two different matrices
 - c. Sum up all the matrices generated by outer product

Linear Independence

- 1. Linear independence
 - a. If no v_j which is contained in the span $\{v_1,v_2,...,v_{j-1}\}$ for j=1,...,p is found, then $\{v_1,...,v_p\}$ is **linearly independent**
 - b. If there is only one solution for $x_1v_1+x_2v_2+...+x_pv_p=0=X$, then $\{v_1,...,v_p\}$ is **linearly independent**
- 2. Linear dependence
 - a. If at least one v_j which is contained in the span $\{v_1,v_2,...,v_{j-1}\}$ for j=1,...,p is found, then $\{v_1,...,v_p\}$ is **linearly dependent**
 - b. If at least one x_i is nonzero, i.e., there is other nontrivial solution for the above equation, then $\{v_1,...,v_p\}$ is **linearly dependent**

Subspace

- 1. Subspace H
 - a. Subset closed under the linear combination
 - b. Similar to span
- 2. Basis of a subspace (기저벡터)
 - a. A set of vectors that ssatisfies both of the following:
 - i. fully spans the given subspace H
 - ii. linearly independent (i.e., no redundancy)
 - b. Non-uniqueness

- i. 지금까지는 basis가 주어지고 span을 구했지만 여기서는 span이 먼저 주어지 고 basis를 찾아야함
- ii. using different basis means using different coefficients
 - · change of basis
 - eigendecomposition
- c. Standard basis

$$[1\ 0\ 0]^T, [0\ 1\ 0]^T, [0\ 0\ 1]^T$$

- 3. Dimension of subspace
 - a. The number of basis of a subspace H is called dimension
- 4. Column space, Rank
 - a. Column space
 - i. column space of a matrix A is the subspace spanned by the columns of A
 - ii. written as Col A
 - b. Rank
 - i. rank of a matrix A is the dimension of the column space of A
 - ii. written as rank A

Linear Transformation

- 1. Definition
 - a. domain (정의역): X
 - b. co-domain (공역): Y
 - c. image (상): y=f(x)
 - i. preimage (원상): $x=f^{-1}(y)$
 - d. range (치역): set of all images
 - e. 화살표는 하나의 x에 대하여 **한번만** 가능
- 2. Linear transformation
 - a. Transformation (or mapping) T is linear if:

$$T(cu + dv) = cT(u) + dT(v)$$

- e.g., y = 3x + 2 (c = 3, d = 4)
- $(1,2) \rightarrow 3 * 1 + 4 * 2 = 11 \rightarrow 3 * 11 + 2 = 35$
- $(1,2) \rightarrow (5,8) \rightarrow 3*5+4*8=47$
- 위 두 값이 다르기 때문에 선형변환이 아님
- b. Vector of linear transformation
 - i. transform n-dimensional vector to m-dimensional vector
- c. Matrix of linear transformation
 - i. written as a matrix-vector multiplication

$$T(x) = Ax, A = [T(e_1), ..., T(e_n)]$$

- matrix A는 가장 단순한 기저벡터를 넣었을 때 나온 결과물의 집합
- 3. Neural networks [link]
 - a. Affine layer (or frequent layer)
 - i. fc layer usually involve a bias term
 - ii. use linear transformation to deal with bias term

ONTO and ONE-TO-ONE

- 1. ONTO (전사)
 - a. co-domain (공역) = range (치역)
 - b. 어떠한 u값에 대해서도 최소한 한 개 이상의 화살표를 받아야함
 - c. NOT able to be ONTO
 - i. input dimension < output dimension
 - · e.g., GAN, decoder
- 2. ONE-TO-ONE (일대일)
 - a. 어떠한 y값에 대해서도 화살표를 한 개만 받아야함
 - b. NOT able to be ONE-TO-ONE
 - i. input dimension > output dimension
 - c. ONE-TO-ONE = linearly independent

3. Neural networks

- a. ONE-TO-ONE
 - i. unique people mapped to the same (over weighted, tall and smoking)
 - ii. may have information loss
- b. ONTO
 - i. (over weighted, tall and smoking) always exist

Reference

- 부분 공간 (subspace) 과 생성 (span) [link]
- A Span is Always a Subspace [link]
- Khan Academy [link]