

Prof. Dr.-Ing. Florian Schäfer

PB 12-1: Planung und Entwurf von Straßen

(Verkehrswesen 1)

V03: Linienführung im Lageplan

Wintersemester 2018/19

V03: Linienführung im Lageplan

- 1. Kreisbogen und Krümmungsband
- Geometrie der Klothoide
- 3. Anwendung der Lageplanelemente für Autobahnen
- 4. Anwendung der Lageplanelemente für Landstraßen
- 5. Anwendung der Klothoidenlineale

Gerade

L_G = Länge der Geraden

Kreis

R = Radius des Kreises

L_B = Länge des Kreisbogens

α = Winkel Richtungsänderung

Länge des Kreisbogens:

$$L_{B} = \frac{R \cdot \pi \cdot \alpha[gon]}{200} = R \cdot \alpha[rad]$$

$$L_{B} = 2 \cdot R \cdot \arcsin\left(\frac{Kreissehne}{2 \cdot R}\right)$$

Darstellung im Krümmungsband

Elementfolge Gerade - Kreisbogen

Lageplan:

Krümmungsbild:

Kreisbögen mit gleichem Krümmungssinn (Korbbogen)

Kreisbögen mit entgegen gesetztem Krümmungssinn

Praktische Fahrlinie

Zweiteiliger Korbbogen

Klothoide als Übergangsbogen

Mathematische Funktion, bei der die Krümmung linear zunimmt.

$$X = \int_{0}^{L} \cos \frac{L^{2}}{2 \cdot R^{2}} dL$$

$$Y = \int_{0}^{L} \sin \frac{L^{2}}{2 \cdot R^{2}} dL$$

Lageplan und Krümmungslinie der Klothoide

Geometrie der Klothoide

 $A^2 = R \times L$

 $\tau = A^2 / 2 R^2$ [rad]

 $\Delta R \approx L^2 / 24 R [m]$

ΔR = Tangentenabrückung (keine geschlossene Lösung möglich)

[nach RAA 2008]

Klothoide als Lageplanelement

Verbindung	gebräuchlich	zu vermeiden
Gerade mit Kreisbögen	einfache Klotoide	Korbklotoide
zwei Kreisbögen	Wendeklotoide R A A A A A A A A A A A A A A A A A A	
zwei Geraden nur mit Über- gangsbogen	Eiklotoide P P P P P P P P P P P P P P P P P P P	Scheitelklotoide

Wendelinie (Kreis-Klothoide-Klothoide-Kreis)

Wendeklothoide

Kreisbogenabstand D bei symmetrischer Wende- oder Eiklothoide

$$D = A^4 / (24 * R^{3})$$

mit
$$R' = (R_1 * R_2) / (R_1 + R_2)$$

bei Wendeklothoide

mit
$$R' = (R_1 * R_2) / (R_1 - R_2)$$

bei Eiklothoide

gilt nur, wenn $A_1 = A_2$

2. A₁≠A₂(unsymmetrisch)

Anforderungen an Geraden nach RAA

• $\max L[m] = 2.000 m$

• min L [m] = 400 m bei gleichsinnig gekrümmten Kurven

Anforderungen an Kreisbögen nach RAA

Mindestradien und Mindestlängen:

Entwurfsklasse	min R [m]	min L [m]	
EKA 1 A	900	75	
EKA 1 B	720	73	
EKA 2	470	55	
EKA 3	280	33	

• im Anschluss an eine Gerade mit L > 500 m: R_{min} = 1.300 m

• Radienrelation (für $R_1 \le 1.500$ m): $R_1/R_2 \le 1.5$

Anforderungen an Übergangsbögen (Klothoiden) nach RAA

Relation Radius und Klothoidenparameter: R/3 ≤ A ≤ R

Mindestparameter:

Entwurfsklasse	min A [m]
EKA 1 A	300
EKA 1 B	240
EKA 2	160
EKA 3	90

• bei Wendeklothoiden: Relation (für $A_2 \le 300$ m): $A_1 \le 1.5 \cdot A_2$

Anwendungsformen der Klothoide nach RAA

 Verzicht auf Übergangsbögen nur bei geringer Winkeländerung der Kurve (γ < 10 gon) möglich. Dann Mindestlänge des Kreisbogens L_{min} = 300 m

Anforderungen an Geraden nach RAL 2012

- $\max L[m] = 1.500 m$
- Zwischengerade bei gleichsinnig gekrümmten Kurven

EKL 1-3 min L [m] =
$$600 \text{ m}$$

EKL 4 min L [m] = 400 m

 bei gegensinnig gekrümmten Kurven

$$\max L[m] = 0.08 \times (A1 + A2)$$

 Zulässige Radien im Anschluss an eine Gerade:

Anforderungen an Kreisbögen nach RAL 2012

Entwurfs- klasse	Radienbereiche R [m]	Mindestlängen von Kreisbögen min L [m]	
EKL 1	≥ 500	70	
EKL 2	400 – 900	60	
EKL 3	300 – 600	50	
EKL 4	200 – 400	40	

• Empfohlene Mindestradien dürfen in begründeten Ausnahmefällen bei EKL 2 - 4 um bis zu 15 % unterschritten werden.

Verhältnis aufeinander folgender Radien

nach RAL 2012 ("Radientulpe")

- EKL 1 EKL 3: guter Bereich anzustreben
- EKL 4: brauchbarer Bereich ausreichend

Anwendungsformen der Klothoide nach RAL 2012

- Relation Radius und Klothoidenparameter: R/3 ≤ A ≤ R
- bei unsymmetr. Wendeklothoiden: Relation: A₁/A₂ ≤ 1,5

Verzicht auf Klothoiden möglich (Flachbogen):

- bei großen Radien (R > 1.000 m) und/oder
- bei geringer Winkeländerung der Kurve (γ < 10 gon).

Dann Mindestlänge des Kreisbogens

- für EKL 1 und EKL 2: $L_{min} = 200 \text{ m}$
- für EKL 3: $L_{min} = 150 \text{ m}$
- für EKL 4: $L_{min} = 100 \text{ m}$

Verbindung	
Gerade mit Kreisbogen	einfache Klothoide
zwei Kreisbögen	Wendeklothoide □□□▷ □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
	8 8
	R = 8
	Eiklothoide

N D

Geeignete Lageplankurven nach RAL 2012

Bezeichnung Bild	Elementfolge Krümmungsband	Einsatzbedingungen	Bewertung	
Verbundkurve	$R \infty - A_1 R_1 - A_2 - = R$	Sie sollten symmetrisch $(A_1 \approx A_2)$ ausgebildet werden. Bei unsymmetrischer Ausbildung soll das Verhältnis $A_1:A_2 \leq 1,5$ betragen.	sehr gut	
Wendelinie	R = -A ₁ - R ₁ A ₂ - A ₃ - R ₂ A ₄ - R = =	Die Radienfolge ist nach Abschnitt $5.2.2^*$ abzustimmen. Beide Äste der Wendeklothoide sollten gleiche Parameter $(A_2 \approx A_3)$ aufweisen. Bei unsymmetrischer Ausbildung soll das Verhältnis $A_2:A_3 \le 1,5$ betragen. Zwischengeraden zwischen den beiden Ästen der Wendeklothoide dürfen die Länge $L_z \le 0,08 \cdot (A_2 + A_3)$ nicht überschreiten. Anderenfalls gelten beide Kurven als eigenständige Verbundkurven.	sehr gut	
Eilinie	R∞-A ₁ R ₁ -A ₂ R ₂ -A ₃ - Re	Die Kreisbögen liegen ineinander, sind verschieden groß, dürfen sich nicht berühren und nicht konzentrisch zueinander liegen. Die Radienfolge ist nach Abschnitt 5.2.2 abzustimmen. Der Richtungsänderungswinkel der Eiklothoide soll mindestens $\tau \geq 3,5$ gon betragen.	gut (Einsatz- bedingungen beachten)	
Flachbogen	R === R ₁ -R ===	Sie sind nur bei kleinen Richtungsänderungen (γ < 10 gon) und/oder großen Radien zulässig. Die Kurvenlängen sollten 200 m in den EKL 1 und EKL 2, 150 m in der EKL 3 und 100 m in der EKL 4 nicht unterschreiten. Die Querneigung soll im Scheitelbereich auf einer Länge von 60 m konstant bleiben.	befriedigend (Einsatz- bedingungen beachten)	
Scheitelklothoide	R = - ,AA ₂ -R ==	Sie sind nur bei kleinen Richtungsänderungen ($\gamma < 10$ gon) zulässig. Sie sollen symmetrisch ($A_1 \approx A_2$) ausgebildet werden. Die Kurvenlängen sollten 200 m in den EKL 1 und EKL 2, 150 m in der EKL 3 und 100 m in der EKL 4 nicht unterschreiten. Die Querneigung soll im Scheitelbereich auf	befriedigend (Einsatz- bedingungen beachten)	

einer Länge von 60 m konstant bleiben.

* Ziffer 5.2.2 = "Radientulpe"

Klothoidenlineale

- Maßstab 1:1000
- Normalsatz mit 22 Linealen von A = 20 (mm) bis A = 250 (mm)
- Verwendung entsprechend Maßstab:
 - bei 1:1.000, z.B. A = 20 => A = 20 m
 - bei 1:10.000, z.B. A = 20 => A = 200 m
 - Linealauswahl abhängig von Parameter A und Maßstab:

z.B. M 1:5.000, A = 100 m => Lineal A = 20

Anwendung bei gegebenem Radius R und Tangentenabrückung AR

- Wahl des Klothoidenparameters A
- Berechnung der Tangentenabrückung ΔR
- Parallele im Abstand ΔR
- Einpassen, so dass
 Kreisbogenradius auf
 Lineal an gleicher Stelle
 wie Kreisbogen auf dem
 Papier liegt.
- Dabei muss Gerade mit Geraden auf dem Lineal übereinstimmen.

Anwendung bei symmetrischer Wendeklothoide mit R1 und R2

- Wahl des Radius R₂
- Wahl des Klothoidenparameters A
- Berechnung des Kreisbogenabstandes D
- Paralleler Kreisabschnitt zu R₁ im Abstand D
- Zeichnen des Radius R₂ an Parallelkreis (tangential!)
- Einpassen, so dass Kreisbogenradien auf Lineal an gleicher Stelle wie Kreisbögen auf dem Papier liegen

Anwendung bei gleichgerichteter Eiklothoide mit R1 und R2

- Wahl des Radius R₂
- Wahl des Klothoidenparameters A
- Berechnung des Kreisbogenabstandes D
- Paralleler Kreisabschnitt zu R₁ im Abstand D
- Zeichnen des Radius R₂ an Parallelkreis (tangential!)
- Einpassen, so dass Kreisbogenradien auf Lineal an gleicher Stelle wie Kreisbögen auf dem Papier liegen

