Lecture 2

of
EEE201

CMOS Digital Integrated Circuits

Department of Electrical & Electronic Engineering Xi'an Jiaotong-Liverpool University (XJTLU)

Thursday, 20th September 2018

□ Properties of Silicon

- semiconductor crystal
- > energy band diagram
 - conduction & valence bands
- charge carriers
- electron & hole concentrations

Digital ICs on Silicon CMOS

(silicon semiconductor)

□ Digital ICs are predominantly fabricated on **silicon** wafers, using **CMOS** technology in particular.

	IIIA	IVA	VA	VIA
	5 10.811	6 12.01115	7 14.0067	8 15.9994
	В	C	N	O
	Boron	· Carbon · ·	Nitrogen	Oxygen
	13 26.9815	28.086	30.9738	16 32.064
	Al	Si	P	S
IIB	Aluminum	Silicon	Phosphorus	Sulfur
30 65.37	31 69.72	72.59	33 74.922	78.96
1000000		32	33	-
Zn	Ga	Ge	As	Se
		7.7		155.275
Zn	Ga	Ge	As	Se
Zn Zinc 112 40	Gallium	Germanium	As Arsenic	Se Selenium
Zn Zinc 48	Gallium 49	Ge Germanium 50	As Arsenic 51 121.75	Se Selenium 52 127.60
Zn Zinc 48 112.40 Cd	Ga Gallium 114.82 In	Ge Germanium 50 118.69 Sn	As Arsenic 51 121.75 Sb	Se Selenium 127.60 Te
Zn Zinc 48 112.40 Cd Cadmium 200.59	Ga Gallium 114.82 In Indium 204.37	Ge Germanium 50 118.69 Sn Tin 207.19	As Arsenic 51 121.75 Sb Antimony 208 980	Se Selenium 127.60 Te Tellurium

- ➤ Silicon is a group IV element in the Periodic Table (in the 3rd row ⇒ what does this tell?)
- Each silicon atom has in its outmost shell four electrons (or called valence electrons).
- Silicon is an *elemental* semiconductor.
- > 1s²2s²2p⁶3s²3p² & atomic number

(arrangements of atoms)

☐ Silicon of very high purity with the almost perfect *crystalline* structure is needed for making digital ICs like microprocessors.

an electron

- ➢ By crystalline structure or simply called crystal, it means that the atoms forms chemical bonds with each other in a periodic arrangement in space.
- ➤ In *crystalline* silicon, each atom forms covalent bonds with four other neighbouring atoms.

n: R. C. Jaeger & T. N. Blalock, *Microelectronic Circuit Design*, 4e, © 2010 McGraw-Hill, USA.

(crystal structure)

- □ Crystalline silicon semiconductor has a <u>diamond</u> <u>crystal structure</u>.
 - > 3-dimensional lattice & representation by a unit cell

> lattice constant a

Circuit Design, 4e, © 2010 McGraw-Hill, USA.

(energy levels of single atoms)

- □ According to quantum mechanics, discrete energy levels exist in an atom for electrons surrounding the nucleus of the atoms. From: S.O. Kasap, Optoelectronics and Photonics: Principles and Practices, 2nd Edition, © 2013 Pearson Education, USA.
 - > Electrons tend to occupy the available states of lowest energy levels.
 - ➤ With the diagram shown here, the state of the lowest energy level is labelled 1s which can allow occupancy of two electrons at most.
 - ➤ At the energy level of 2p or 3p, only six electrons can be allowed at maximum.
 - ➤ Silicon's case?

Xi'an Jiaotong-Liverpool University

西交利物浦大學

(energy levels of atoms in a crystal)

- ☐ In a single atom, the energy levels for its electrons are *discrete*.
- ☐ In the case of a large number of atoms but *isolated* (i.e. no interaction with each other), the energy levels for the electrons are still *discrete*.

□ What happens to the energy levels when the atoms are brought together as a crystal?

(formation of energy bands)

- ☐ In a silicon crystal, there are about 10²³ atoms forming chemical bonds with each other.
- □ The discrete energy levels are combined to form energy bands.
 From: S.O. Kasap, Optoelectronics and Photonics: Principles and

Energy

Conduction band E_C $E_G = \text{energy bandgap}$ E_V Valence band

10²³ ×10²³ atoms in a crystal

Vacuum level E = 0 2p 2s 10^{23} isolated atoms 1sXi'an Jiaotong-Liverpool University

Practices, 2nd Edition, © 2013 Pearson Education, USA.

(energy band diagram)

■ Energy band diagrams are essential to understand the electronic properties of semiconductors (including silicon).

A typical energy band diagram for a semiconductor consists of a conduction band at the top and a valence band at the bottom with a band gap in between the two bands.

西交利物浦大學

(conduction band)

☐ The **conduction band** has mostly vacant states i.e. the band is only partially occupied by electrons.

- At temperature above 0 K,
 electrons in the conduction
 band can freely move around
 from one vacancy to another.
- Note that the horizontal axis of the energy band diagram represents position.

(valence band)

☐ The valence band has almost all the states filled by electrons, with only some vacancies left.

- When the **electrons** around the vacancies move to fill up the vacant states, it is as if the vacancies move in position.
- □ The vacancies in the valence band are called holes.

(hole motion in valence band)

■ While **electrons** carry **negative charge**, the **vacancies** in the **valence band** behave as if electrons are missing at certain positions.

From: S.O. Kasap, Optoelectronics and Photonics: Principles and Practices, 2nd Edition, © 2013 Pearson Education, USA.

☐ As a result, the movement of electrons filling up the small number of **vacancies** in the **valence band** behaves as if vacancies carry positive charge.

(charge carriers)

□ The electrons are the negative charge carriers in the conduction band while holes the positive charge carriers in the valence band.

- □ Both types of charge carriers can contribute to an electrical current in semiconductor.
 - Note that we are not interested in the holes (i.e. vacancies) in the conduction band and electrons in the valence band.

(energy bandgap)

■ Between the **conduction band** and the **valence band**, there is a span of energy range in which there are no states for electrons.

- □ It is called the energy band-gap of the semiconductor.
 Usually, no electrons exist in the bandgap.
 - > In silicon, the energy bandgap is about 1.1 eV (i.e. 1.76×10^{-19} J) at room temperature.

(no charge carriers at 0 K)

□ At the absolute temperature of <u>0 K</u>, all electrons will occupy states of the lowest energy state.

Energy Conduction band E_C E_V Valence band

- In semiconductor, it means the valence band is completely occupied by electrons and the conduction band has all states vacant.
 - > There are neither electrons in the conduction band nor holes in the valence band.
 - ➤ implication?

(influence of thermal energy)

□ At temperature T > 0 K, some electrons in the valence band can gain enough energy to overcome the bandgap and get to the conduction band.

Energy

- □ At T = 300 K (room temperature) for example, some electrons are in the conduction band and some holes in the valence band.
 - Note the equal number of electrons and holes in this case.
 - ➤ Why?

(electrical conduction)

- ☐ The **electrical properties** of semiconductor is determined by the number of electrons and holes as the charge carriers, respectively in the conduction band and valence band.
- □ The number of <u>negative</u> charge carriers (i.e. electrons) per unit volume is usually denoted by <u>n</u> while <u>positive</u> charge carriers (i.e. holes) by <u>p</u>.
- □ If we can control *n* and/or *p*, we can control the electrical properties of semiconductor.
 - control by the temperature?
 - ➤ conduction at T = 0 K, 87 K, 300 K?

(energy band edges)

- ☐ In drawing the **energy band diagram**, it can be simplified to a few lines:
 - \succ an upper horizontal straight line labelled E_c which represents the band edge of the conduction band;
 - \succ a lower horizontal straight line labelled E_{ν} which represents the band edge of the valence band.
 - \triangleright Usually, a third horizontal straight line labelled E_F (called Fermi level) may be drawn, which is in the bandgap.

E _C	>	Its vertical location indirectly
L C		indicates the relative number of
E _F		electrons (in the conduction band)
F		and holes. Xi'an Jiaotong-Liverpool University 西交利的消入學
L ₁ /		

(creating states in the bandgap)

- □ The charge carrier concentration (*n* or *p*) can be engineered by a process called doping.
- By doping a semiconductor, a small amount of a selected impurity element is introduced to the semiconductor.

- ➤ With silicon as the group IV element, the impurity elements are usually either from group III or V.

(doping by donor dopants)

- ☐ By doping, it effectively creates some states (with electrons) in the bandgap (in the band diagram).
 - > The impurity element used for doping is called the dopant.
 - \succ The dopant is usually selected such that that it creates states close to either of the band edges (E_C or E_V).

➤ In silicon, doping with phosphorous (P) will create some states at an energy level close to

 E_{C}

(doping by donor dopants)

- \square With states at energy level E_D close to E_C , electrons in the created states can gain thermal energy and get to the conduction band.
 - > Once the excited electrons get to the conduction band, they can move around quite freely.

- ➤ This increases the number of electrons in the conduction band.
- \rightarrow **n** is made larger (typically 10⁵ times or more).

(doping by acceptor dopants)

- The electrical conduction can also be improved by doping a small amount of impurity element that creates <u>vacant</u> states at an energy level close to E_V .
 - > The dopant in this case is called the acceptor dopant.

➤ Electrons in valence band can gain thermal energy and get to the created states to fill up the vacancies.

 E_C

(states from acceptor dopants)

(doping by acceptor dopants)

- ☐ As the excited electrons fill up the vacancies in the created states in the bandgap, they cannot move around, because the states are relatively small in number and fixed in space.
- ☐ However, holes are created in the valence band.

 E_C

> The holes can move around in the valence band.

(states from acceptor dopants)

 $E_A - N_A$ $E_V - N_A$ Holes

 \Rightarrow **p** is made larger (10⁵ times or more).

Intrinsic & Doped Silicon

(electron & hole concentrations)

- □ In **intrinsic** semiconductor (i.e. literally without doping), the electrons in the conduction band are equal in number of the holes in the valence band.
 - $> n = p = n_i$ (with the subscript *i* for intrinsic)
 - \triangleright In silicon, $n_i = 10^{10}$ cm⁻³ at room temperature.
 - > If silicon is doped by a donor dopant (e.g. phosphorous) with a dopant concentration N_D , $n \approx N_D$ at room temperature.
 - > If silicon is doped by an acceptor dopant (e.g. boron) with a dopant concentration N_A , $p \approx N_A$ at room temperature.

Semester 1, 2018/2019 by S.Lam@XJTLU

> Typical N_D and N_A can be 10^{15} cm⁻³ up to 10^{20} cm⁻³. EEE201 CMOS Digital Integrated Circuits

Doped Semiconductor

(relative positions of E_F)

- ☐ If silicon is doped by a donor dopant of a concentration N_D , $n \approx N_D$ at room temperature.
- ----- E_i
- ⇒ more electrons in the conduction band
- *E*_V-----
- \Rightarrow E_F is at a vertical position closer to E_C .
- ➤ The doped silicon is called an <u>n-type</u> semiconductor.
- ☐ If silicon is doped by an acceptor dopant of a concentration N_A , $p \approx N_A$ at room temperature.
- E_{c}

⇒ more holes in the valence band

- E_V_____E
- $\Rightarrow E_F$ is at a vertical position closer to E_V .
- The doped silicon is called a <u>p-type</u> semiconductor. EEE201 CMOS Digital Integrated Circuits

Electron & Hole Concentrations

(mass action law)

$$np = n_i^2 = N_C N_V \exp\left(-\frac{E_g}{k_B T}\right)$$

- □ The product of electron concentration and hole concentration, np, is a "constant", n_i^2 , which depends on the material properties N_c , N_v , E_g , and the temperature.
- ☐ If somehow *n* is increased (e.g. by doping), *p* must decrease to keep *np* "constant".
- □ This is known as mass action law which applies in thermal equilibrium and in the dark (i.e. no illumination).

Drift Current

(different drift but same current direction)

- □ There are two basic processes which cause electrons and holes to move in a semiconductor: drift and diffusion.
- Electrons and holes flow in opposite directions when under the influence of an electric field at different velocities
 - > resulting in **drift currents**
- ☐ The **drift currents** associated with electrons and holes are in the same direction.

From: Donald A. Neamen, *Microelectronics: Circuit Analysis & Design*, 4th edition, © 2010 McGraw-Hill, USA.

Drift Current

(conductivity & carrier concentration)

$$\mathbf{v}_{dn} = -\mu_n \mathbf{E}$$

 v_{dn} = **drift velocity** of the electrons;

 μ_n = electron drift mobility;

E = applied electric field;

 v_{dp} = drift velocity of holes;

 μ_p = hole drift mobility;

$$\sigma = en\mu_n + ep\mu_p$$

$$\mathbf{v}_{dp} = \boldsymbol{\mu}_{p} \mathbf{E}$$

From: Donald A. Neamen, *Microelectronics: Circuit Analysis* & *Design*, 4th edition,

© 2010 McGraw-Hill USA.

 $\begin{array}{ccc}
 & & & & \\
 & & & & \\
\hline
 & \overline{v}_{dn} & & & & \\
\hline
 & & & \\
\hline
 & & & & \\
\hline$

$$J_n = -env_{dn}$$
$$= en\mu_n E$$

(a)

$$J_p = epv_{dp}$$
$$= ep\mu_p E$$

 σ = conductivity; e = electronic charge (1.60 × 10⁻¹⁹ C);

n = concentration of free electrons;

p = concentration of free holes;

$$J = \sigma E = (1/\rho)E$$

Diffusion Current

(due to concentration gradient)

□ According to kinetic theory, particles flow from a region of high concentration to a region of lower concentration.

From: Donald A. Neamen, *Microelectronics: Circuit Analysis & Design*, 4th edition, © 2010 McGraw-Hill, USA.

Electron

diffusion

Electron diffusion

current density

> This is a statistical phenomenon and is known as **diffusion**.

Diffusion of electrons and holes occurs when there is a non-zero concentration gradient, resulting in diffusion currents:

$$J_n = eD_n \frac{dn}{dx}$$

$$J_p = -eD_p \frac{dp}{dx}$$

Diffusion Current

(relation between diffusion & drift)

- ☐ The diffusion current associated with the electrons flows in the opposite direction when compared to that of the holes.
- \square D_n and D_p are the carrier diffusion coefficients respectively for electrons and holes and they are related to the respective carrier mobility by the

Einstein relation: $\underline{D_n} = \underline{D_p} = \underline{D_p}$

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = \frac{k_B T}{e}$$

$$V_T \approx 26 \text{ mV}$$
at $T = 300 \text{ K}$

- ☐ The *total* current density is the sum of the **drift** and **diffusion** components.
 - > In most cases, either the diffusion or drift component dominates the current.

Xi'an Jiaotong-Liverpool University 西交利物浦大学