INTERNET ACADEMY

Institute of Web Design & Software Services

ネットワーク実践

パケットトレーサー

できること

- PCやルータのアイコンを接続してネットワーク構築をシミュレーションできる
- 構築したネットワークを保存し、他人に配布できる
- 現実のネットワークでは大きなトラブルになる設定も試せる
- シミュレーションモードで障害時の動作を確認できる

できないこと

- Packet Tracerのソフト外の実際のルータなどとの接続
- 全てのCiscoのコマンドが使えるわけではない (CCNAレベルであれば9割程度使える)

OSI参照モデルの7層

データ伝送のルールを7段階に分けた理論的なモデル

L7	アプリケーション層	アプリケーションごとのサービスを 提供する	
L6	プレゼンテーション層	データの形式を決める	内容
L5	セッション層	データをやり取りする順序を管理する る	
L4	トランスポート層	データを通信相手に確実に届ける	步派
L3	ネットワーク層	伝送ルートや宛先を決める	11/11/
L2	データリンク層	隣接機器への伝送を管理する	伝送
L1	物理層	電気・機器的なデータ伝送を行う	

TCP/IPモデル

インターネットで実際に利用されているプロトコル群

L7	アプリケーション層		
L6	プレゼンテーション層	HTTP、SMTP、POP、FTP など	内容
L5	セッション層	~ —	
L4	トランスポート層	TCP、UDP	形式
L3	ネットワーク層	IP、ARP	ハンエク
L2	データリンク層	イーサネット、PPPなど	伝送
L1	物理層	1 一 ソイツ ト、 ドドパム こ	

ネットワーク機器の種類

受信した電気信号を受信したポート以外に送り出す集線装置。

ハブ

出典: IPA

https://www2.edu.ipa.go.jp/

OSI 参照モデルの 第1層 (物理層) で動作する

- ・全ての機器に送ってしまう
- ・特定の機器にだけに送れない
- ・各コンピュータは自分宛以外のデータは捨てる

2つ以上のセグメントをつなぐ集線装置。

スイッチングハブまたはL2スイッチ、L3スイッチなどがある。

別々のネットワークにもできる

L2スイッチ

出典: NETGEAR

https://www.netgear.jp/product

s/details/GS108E.html

OSI 参照モデルの 第2層(データリンク層) で動作する

異なるネットワークを中継し、経路選択(ルーティング)をする機器。

ルーターの特徴

- IPアドレスを覚えて行き先やルートを 決める
- ・使われる場所
 - LAN同士を中継する場所
 - LANとWANを中継する場所
 - WAN同士を中継する場所
 - ****WAN···Wide Area Network**

ルーター

出典: YAMAHA

https://network.yamaha.com/ products/routers/rtx5000/index

OSI 参照モデルの 第3層(ネットワーク層) で動作する

ルーターが使われる場所

LAN同士を中継する場所

それぞれネットワークアドレスが異なる

ルーターが使われる場所

LANとWANを中継する場所

WAN同士を中継する場所

ルーティングとは

どのネットワークを経由して宛て先まで行くか決めること。 ルーターが連携して最適なルートを判断して経路を決める。

ルーティングとは

メトリック

最適なルートを決めるための判断基準。

(良いルートはメトリックが低い、悪いルートはメトリックが高いという。)

メトリックの要素

- ホップ数(途中で通過するルーターの数
- 回線のスピード
- 回線の混雑度
- 回線の信頼度(エラーの少なさ)

内部と外部のネットワークをつなぐ役割をする機器。

ネットワーク基礎

コンピュータ間で通信する際、送信側ではL7→6→5→4→3→2→1の順番に 処理を行う。各層で処理した情報はヘッダとしてデータの前に付加されていく。 このように上位層の処理情報を包み込んでいくことを、カプセル化という。

※FCS…受信したフレームに誤りがないかどうかを調べるためのヘッダ

インターネット・アカデミーの許可無く対外的に参照・配布しないようお願い申し上げます。
Copyright © INTERNET ACADEMY All rights reserved.

一方受信側では、受信した電気信号をL1→2→3→4→5→6→7の順で処理します。 各レイヤでヘッダを取り外し、最終的には受信側のコンピュータのアプリケー ション上でもとのデータを受け取れる。これを非カプセル化という。

※FCS…受信したフレームに誤りがないかどうかを調べるためのヘッダ

インターネット・アカデミーの許可無く対外的に参照・配布しないようお願い申し上げます。
Copyright © INTERNET ACADEMY All rights reserved.

振り返り

PDU

コンピュータ間の通信において使用されるデータの単位のことで、各レイヤで異なる。レイヤ2の機器のスイッチなどではフレーム転送、レイヤ3の機器のルータなどではパケット転送などと言われる。

L7	
L6	データ
L5	
L4	セグメント
L3	パケット
L2	フレーム
L1	ビット

ルーティング

異なるネットワークにパケットを送信するときに最適な配達 経路を決めることです。経路選択、経路制御とも呼ぶ。

ネットワーク層で動作するルーターやL3スイッチで動作し、 宛先の通信機器までパケットを届ける。

ルータは、自身がもつルーティングテーブル上の情報に基づいてパケットをルーティングする。

インターネット・アカデミーの許可無く対外的に参照・配布しないようお願い申し上げます。
Copyright © INTERNET ACADEMY All rights reserved.

パケットを破棄しないために・・・ デフォルトルートの設定

通信は「ベストエフォート」の概念で成り立っている。目的地にたどり着けないパケットが、インターネット上で永遠にループすることを避けるため「知らないネットワークに送るときは、必ずここに送る」という宛先を設定する。これをデフォルトルートという。

(通常ネットワークの境界にある IPアドレスを設定する)

宛先ネットワーク アドレス	次の送り先ルーター
192.168.1.0	自分のインターフェース
192.168.2.0	自分のインターフェース
192.168.3.0	192.168.2.2
その他のネットワーク	192.168.2.2

ネットワーク5 に送りたい 192.168.1.0 ルーターA

ルーティングの書き方

導入したばかりのルーターは、まっさらな状態なためルーティングテーブルを学習させる必要がある。

新規ルーター (以降Rと表記)

方法1 手動学習方式

スタティックルーティング(静的)方式

方法 2 自動学習方式

ダイナミックルーティング(動的)方式

スタティックルーティング

管理者が宛先ネットワークへの最適なルートを手動で設定したルートのこと。それぞれのルータのインターフェイスにIPアドレスと有効化(no shutdown)の設定をする。

現状、端末AからBにパケットを送信しても届かない。

なぜならR1のルーティングテーブルには、宛先IPアドレス

「192.168.2.10」に該当する宛先ルートが存在しないからである。

スタティックルーティングの設定(1)

振り返り

R1にスタティックルートの設定をする方法を見てみよう。

上記設定により、端末A→Bではパケットが届くようになる。 しかし、 R2のルーティングテーブルへの設定はしていないため、 端末B→Aへは届けられない。端末BからAの通信をするためには、R2に 「192.168.0.0/24」の宛先ルートを学習させる必要がある。

スタティックルーティングの設定(2)

振り返り

R2にスタティックルートの設定をする方法を見てみよう。

R2でもスタティックルートを設定することで、端末A⇔B間で通信できるようになる。このようにスタティックルートは、双方向に設定する必要ある。(コンピュータ間の通信は双方向通信が前提のため、片側だけのパケットが送信できても通信として成り立たない)

モードの遷移

各ユーザーによって機器への操作可能範囲を制限することで、 セキュリティを確保している。

モードの遷移(コマンド)

各ユーザーによって機器への操作可能範囲を制限することで、 セキュリティを確保している。

スタティックルーティング実践

まずはアイコンを配置しましょう。2811を選びましょう。(他でも可)

スタティックルーティング実践(1)

まずはアイコンを配置しましょう。ケーブルはUTPクロスケーブルです。

スタティックルーティング実践(2)

PC-A

各種IPを設定します。

スタティックルーティング実践(3)

PC-B

各種IPを設定します。

スタティックルーティング実践(3)

R1

各種 I P を設定します。「no」を入力してください。yesにした場合はいったん削除して再度アイコンを配置しましょう。

インタ

スタティックルーティング実践(4)

R1

ホスト名を設定します。

```
Press RETURN to get started!

Router>en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #host
Router(config) #hostname R1
R1(config)#
```

スタティックルーティング実践(5)

R1

インターフェースを有効化します

```
Router>en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #host
Router(config) #hostname R1
R1(config)#int fa0/0
R1(config-if)#no shut

R1(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
%LINKPROTO-5-UPDOWN: Line Protocol on Interface FastEthernet0/0, changed
```

スタティックルーティング 目標

今回のネットワーク構成です。

fa 0/0 は192.168.0.254にします

R1

インターフェース0/0にIPアドレスを設定します。 つづいて、

インターフェース0/1の設定をします。

```
%LINKPROTO-5-UPDOWN: Line Protocol on Interface FastEthernet0/0, changed R1(config-if)#ip add R1(config-if)#ip address 192.168.0.254 255.255.255.0 R1(config-if)#exit R1(config)#int fa 0/1 R1(config-if)#no shut R1(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up R1(config-if)#
```

スタティックルーティング 目標

今回のネットワーク構成です。

fa 0/1 は192.168.1.254にします

R1

インターフェース0/1にIPアドレスを設定します。

```
R1(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

R1(config-if)#ip add
R1(config-if)#ip address 192.168.1.254 255.255.255.0
R1(config-if)#
```

R2

ルーター2の設定に移ります。ホスト名を設定します。

```
Press RETURN to get started!

Router>en
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #host
Router(config) #hostname R2
R2(config)#
```

R2

R2(config-if)#

インターフェース0/1の設定をします。

```
Router(config) #hostname R2
R2(config)#int fa0/1
R2(config-if)#no shut

R2(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up
%LINKPROTO-5-UPDOWN: Line Protocol on Interface FastEthernet0/1, changed
```

スタティックルーティング 目標

今回のネットワーク構成です。

fa 0/1 は192.168.1.253にします

R2

インターフェース0/1にIPアドレスを設定します。

つづいて、

インターフェース<mark>0/0の設定</mark>をします。

%LINKPROTO-5-UPDOWN: Line Protocol on Interface FastEthernet0/0, changed

R2(config-if)#ip add

R2(config-if)#ip address 192.168.1.253 255.255.255.0

R2(config-if)#exit

R2(config)#int fa 0/0

R2(config-if)#no shut

R2(config-if)#

%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up

%LINKPROTO-5-UPDOWN: Line Protocol on Interface FastEthernet0/0, changed

スタティックルーティング 目標

今回のネットワーク構成です。

fa 0/0 は192.168.2.254にします

R2

インターフェース0/0にIPアドレスを設定します。

```
%LINKPROTO-5-UPDOWN: Line Protocol on Interface FastEthernet0/0, changed R2(config-if)#ip add R2(config-if)#ip address 192.168.2.254 255.255.255.0 R2(config-if)#^Z Ctrl + Z %SYS-5-CONFIG_I: Configured from console by console
```

スタティックルーティング実践

ここまでで準備ができました。

ここからスタティックルーティングです。

R2

どのような設定になったか、確認します。

%LINKPROTO-5-UPDOWN: Line Protocol on Interface FastEthernet0/0, changed

R2#show ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2,

* - candidate default, U - per-user static route, o - ODR,

P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.1.0/24 is directly connected, FastEthernet0/1

192.168.2.0/24 is directly connected, FastEthernet0/0

R1から見た場合

インターネット・アカデミーの許可無く対外的に参照・配布しないようお願い申し上げます。
Copyright © INTERNET ACADEMY All rights reserved.

PC-Aは、まだPC-Bと通信できません。

R1 は、192.168.2.0のネットワークへの行き方を知らないためです。

インターネット・アカデミーの許可無く対外的に参照・配布しないようお願い申し上げます。
Copyright © INTERNET ACADEMY All rights reserved.

R2から見た場合

インターネット・アカデミーの許可無く対外的に参照・配布しないようお願い申し上げます。
Copyright © INTERNET ACADEMY All rights reserved.

同様に、PC-Bは、まだPC-Aと通信できません。

R2 は、192.168.0.0のネットワークへの行き方を知らないためです。

R2では分からない範囲

R2が分かる範囲

R2

いよいよスタティックルートの設定です。

```
R2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R2(config)#ip route 192.168.0.0 255.255.255.0 192.168.1.254
R2(config)#^Z
R2# 宛先 ネクストホップ
%SYS-5-CONFIG_I: Configured from console by console
```

R2

確認してみましょう。「S」の表示があります。

```
R2#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
    D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
    N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
    E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
    i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2,
    * - candidate default, U - per-user static route, o - ODR,
    P - periodic downloaded static route
```

Gateway of last resort is not set

```
192.168.0.0/24 [1/0] via 192.168.1.254
192.168.1.0/24 is directly connected, FastEthernet0/1
192.168.2.0/24 is directly connected, FastEthernet0/0
```

R1

R1も確認してみましょう。まだ「S」が表示がありません。

```
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2,
      * - candidate default, U - per-user static route, o - ODR,
      P - periodic downloaded static route
Gateway of last resort is not set
      192.168.0.0/24 is directly connected, FastEthernet0/0
      192.168.1.0/24 is directly connected, FastEthernet0/1
```

R1

R1もスタティックルートを設定します。

R1

確認してみましょう。「S」の表示があります。

```
R1#show ip route
```

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2,

* - candidate default, U - per-user static route, o - ODR,

P - periodic downloaded static route

Gateway of last resort is not set

C 192.168.0.0/24 is directly connected, FastEthernet0/0

C 192.168.1.0/24 is directly connected, FastEthernet0/1

192.168.2.0/24 [1/0] via 192.168.1.253

PC-A

PC-Aから、PC-Bにpingが通じるか確認しましょう。

```
C:\frac{4}{2} \text{ping 192.168.2.10}
Pinging 192.168.2.10 with 32 bytes of data:
Reply from 192.168.2.10: bytes=32 time<lms TTL=126
Ping statistics for 192.168.2.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
```

PC-B

PC-Bから、PC-Aにpingが通じるか確認しましょう。

```
Packet Tracer PC Command Line 1.0
C:\frac{4}{ping 192.168.0.10}
Pinging 192.168.2.10 with 32 bytes of data:
Reply from 192.168.0.10: bytes=32 time<lms TTL=126
Ping statistics for 192.168.0.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 3ms, Average = 1ms
```

R1

「ショーラン」でも確認しましょう。R2でも確認できます。

```
Interfece fastEthernet0/0
ip address 192.168.0.254 255.255.255.0
duplex auto
                             show run (=show running-config)
speed auto
Interfece fastEthernet0/1
ip address 192.168.0.254 255.255.255.0
duplex auto
speed auto
Interfece Vlan1
no ip address
shutdown
ip classless
ip route 192.168.2.0 255.255.255.0 192.168.1.253
Ip flow-export version 9
```

RIP インターネット・アカデミーの許可無く対外的に参照・配布しないようお願い申し上げます。 Copyright © INTERNET ACADEMY All rights reserved.

ルータで設定したルーティングプロトコルによって、他のルーターから自動的にルートを取得すること。ダイナミックルートの情報は、ルータで設定されたルーティングプロトコルの動作に従って他のルータに対して自動的に通知される。

また、ネットワークの状態に変化があった場合、他に有効な宛先ルートがあれば自動的にそのルートに切り替わる。

ルーティング情報を学習するアルゴリズム

- ①ディスタンスベクターアルゴリズム
- ②リンクステートアルゴリズム
- ③パスベクターアルゴリズム

RIP

ASとプロトコル

AS (Autonomous System)

「自律システム」とも呼ばれ、統一された管理ポリシーによって運営されるネットワーク群 (ルータの集合体) のこと。

インターネットを多数のASの集合体として階層化し、ルーティングプロトコルで相互接続することにより、経路の数を削減できる。

IGP & EGP

IGP (Interior Gateway Protocols)

AS内で経路情報を交換する。同じプロトコルが稼動するルータでも、違うASに設置されたルータ同士は情報交換することはできない。ディスタンスベクター型とリンクステート型のプロトコルがこれにあたる。

EGP (Exterior Gateway Protocol)

AS間で経路情報を交換するプロトコル。EGPには「BGP」と「EGPs」の 2つの経路制御プロトコルがあるが、現在「EGPs」は使用されておらず、 BGPのみが使用されている。パスベクター型プロトコルがこれにあたる。

インターネット・アカデミーの許可無く対外的に参照・配布しないようお願い申し上げます。
Copyright © INTERNET ACADEMY All rights reserved.

ディスタンスベクターアルゴリズムとは

振り返り

ルータが保持しているルーティングテーブルを、隣接するルータに一方的に流すことで、互いのルーティングテーブルを作成する方法。

特徵

- 1. 経路表そのものを交換
- 2. 局所的に情報を交換
- 3. 経路表を比較して選択

代表的なプロトコル RIP

ホップ数(宛先ネットワークに到達するまでに経由するルータの数)によって最適な経路を判断するプロトコル。30秒に一度、テーブル全体を隣接ルータに通知する。

R2(config)# router rip R2(config-router)# network 192.168.1.0 R2(config-router)# network 172.16.0.0

R1(config)# router rip R1(config-router)# network 192.168.0.0 R1(config-router)# network 192.168.1.0 R3(config)# router rip R3(config-router)# network 172.16.0.0

代表的なプロトコル RIP

振り返り

ホップ数(宛先ネットワークに到達するまでに経由するルータの数)によって最適な経路を判断するプロトコル。30秒に一度、テーブル全体を隣接ルータに通知する。

ホスト名はGUIでも変えられます。

それぞれのルーターにIPを設定しましょう。

IPはGUIでも設定できます。

Copyright © INTERNET ACADEMY All rights reserved.

IPはGUIでも設定できます。

インターネット・アカデミーの許可無く対外的に参照・配布しないようお願い申し上げます。
Copyright © INTERNET ACADEMY All rights reserved.

IPは全て設定してno shutdownするとグリーンになります。

RIPの実践(1)

RA

RAの状況確認しましょう。

```
RA>en
RA#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M -mob
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF i
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA extern
      E1 - OSPF external type 1, E2 - OSPF external type 2,
       I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia
       * - candidate default, U - per-user static route, o -
       P - periodic downloaded static route
Gateway of last resort resort is not set
    192.168.1.0/24 is directly connected, FastEthernet0/0
    192.168.4.0/24 is directly connected, FastEthernet0/1
RA#
```

RIPの実践 目標

RA → RB → RCと通信している際に、断線が起きた場合・・・

RIPの実践 目標

RA → **RD** → **RC** に動的にルート変更できるかを確認する

RIPの実践(2)

RA

RAにRIPの設定。

```
RA#
RA#en
RA#conf t
Enter configuration commands, one per line. End
RA(config)#route
RA(config)#router rip
RA(config-router)#net
RA(config-router)#network 192.168.1.0
RA(config-router)#network 192.168.4.0
RA(config-router)#
```

どの情報を周囲に知らせるかを指定

RIPの実践(3)

RA

まだRAのルーティングテーブルに変化は無し。

教えているが、教えてもらっていないため。

```
RA#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M -mob
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF i
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA extern
      E1 - OSPF external type 1, E2 - OSPF external type 2,
       I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia
      * - candidate default, U - per-user static route, o -
       P - periodic downloaded static route
Gateway of last resort resort is not set
    192.168.1.0/24 is directly connected, FastEthernet0/0
     192.168.4.0/24 is directly connected, FastEthernet0/1
RA#
```

RIPの実践(4)

RB

RBにもRIPの設定。自分の知っている情報を周囲に教える。

```
RB#en
RB#conf t
Enter configuration commands, one per line. End
RB(config)#route
RB(config)#router rip
RB(config-router)#net
RB(config-router)#network 192.168.1.0
RB(config-router)#network 192.168.2.0
RB(config-router)#
```

RIPの実践(5)

RC

RCにもRIPの設定。自分の知っている情報を周囲に教える。

```
RC>en
RC#conf t
Enter configuration commands, one per line. End
RC(config)#route
RC(config)#router rip
RC(config-router)#net
RC(config-router)#network 192.168.2.0
RC(config-router)#network 192.168.3.0
RC(config-router)#
```

RIPの実践(6)

RD RDにもRIPの設定。自分の知っている情報を周囲に教える。

```
RD>en
RD#conf t
Enter configuration commands, one per line. End
RD(config)#route
RD(config)#router rip
RD(config-router)#net
RD(config-router)#network 192.168.3.0
RD(config-router)#network 192.168.4.0
RD(config-router)^Z
```

いったん設定完了。

RIPの実践(7)

RA

RAのルーティングテーブルを見ると、ルートが追加されている。

```
RA#
RA#show ip route
codes: C - connected, S - static, I - IGRP, <u>R - RIP</u>, M - mobile, B-
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 -OSPF NSSA external type 1, N2 -OSPF NSSA external type 2
      E1 - OSPF external type 1,E2 - OSPF external type 2, E - EGP
      I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS
      * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route
Gateway of last resort is not set
    192.168.1.0/24 is directly connected, FastEthernet0/0
    192.168.2.0/24 [120/1] via 192.168.1.2, 00:00:07, FastEthernet0/0
    192.168.3.0/24 [120/1] via 192.168.4.1, 00:00:19, FastEthernet0/1
    192.168.4.0/24 is directly connected FastEthernet0/1
```

RIPの実践(8)

RAからRC(192.168.2.2)に対して連続PINGを打つ

```
RA#ping
Protocol [ip]:
Target IP address: 192.168.2.2
Repeat count [5]: 200
Datagram size [100]:
Timeout in seconds [2]:
Extended commands [n]:
Sweep range of sizes [n]:
```

通信できている場合は !!!! 通信できていない場合は

RIPの実践(9)

RA

200回PINGを実行している間に、ケーブルを抜いてみる

RIPの実践(10)

RA

いったん不通になる、しばらくすると、ルートが変わって通信できる

断線

復活

RIPの実践(11)

RA

RA - RB 間が不通になると、RIPによって動的に経路が変わる

```
RA#
RA#show ip route
codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B-BGH
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 -OSPF NSSA external type 1, N2 -OSPF NSSA external type 2
      E1 - OSPF external type 1,E2 - OSPF external type 2, E - EGP
      I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS int
      * - candidate default, U - per-user static route, o - ODR
      P - periodic downloaded static route
Gateway of last resort is not set
    192.168.2.0/24 [120/2] via 192.168.4.1, 00:00:23, FastEthernet0/1
R
    192.168.3.0/24 [120/1] via 192.168.4.1, 00:00:23, FastEthernet0/1
R
    192.168.4.0/24 is directly connected FastEthernet0/1
```

今回の宛先

どこを経由するか

RIPの実践(12)

RA 再度接続して、PINGしてみてもOK

OSPF インターネット・アカデミーの許可無く対外的に参照・配布しないよう お願い申し上げます。 Copyright © INTERNET ACADEMY All rights reserved.

ルータが保持している自身のリンク(インタフェース)の情報を、隣接するルータに渡す方法。ネットワーク上の他ルータのリンク情報をすべて保持する。他のルータのリンク情報と自身のリンク情報を集めたものをLSDB(Link State DataBase)という。

このLSDBからShortest Path Firstアルゴリズムという計算 によって、目的ネットワークまでの最適ルートを選択する。

特徴

- 1. 接続情報を交換
- 2. 全域的に情報を交換
- 3. 接続情報からトポロジを再構成

代表的なプロトコル OSPF

隣接ルータとHelloパケットをマルチキャストで交換することでネイバー 関係を確立する。互いの存在を確認するために定期的にHelloパケットを 送受信することで情報を自動学習し、LSDBを作成する。

リンクステートデータベース(LSDB)										
ルータ	А		В		С		D		Е	
コスト	Bまで	3	Aまで	3	Bまで	1	Aまで	1	Dまで	3
	Dまで	1	Cまで	1	Eまで	5	Bまで	1	Cまで	5
			Dまで	1			Eまで	3		

OSPFの仕組み

OSPFにおける「最適経路」は、コストが最小値となるルートのこと。 目的ルータまでのコストが、最小の経路を選択し、通信をする。 LSDBを計算した結果、下記のツリー構造ができる。

ルータAの最適ルートのツリー構造

この仕組みにより、大規模で複雑化したネットワークにも対応ができる。 また最大ホップ数の制限もない。

しかし設定がRIPよりも難しいので知識が必要。

OSPFの実践

概要:マルチベンダに対応、AD値は110、メトリックはコスト

補足:ネイバー関係を構築できるかどうかが重要

エリア I Dを一致させる

Helloタイマー(10秒)/Deadタイマー(4倍で40秒)

OSPFの実践 前提

パスベクターアルゴリズムとは

それぞれのルータが到達可能なネットワークのエントリに加えて、各ネットワークまでの経路情報(AS番号、ASパス)を保持して通信をする方法。

特徴

- 1. 様々な属性(attribute)が付いている
- 2. 経路がどのAS を経由していくか列挙する
- 3. インターネット上の全経路を扱う
- 4. 比較的遅い経路収束

OSPFの実践 目標

RA → RB → RCと通信している際に、断線が起きた場合・・・

OSPFの実践 目標

RA → **RD** → **RC** に動的にルート変更できるかを確認する

OSPFの実践(1)

RA

RACOSPFの設定をする

```
RA>en
                   プロセスIDを付ける。OSPFの設定を
RA#conf t
Enter configuration co 識別するためのID
                                            th C
RA(config)#route
RA(config)#router ospf 1
RA(config-router)#net
RA(config-router)#network 192.168.1.0 0.0.0.255 area 0
RA(config-router)#network 192.168.4.0 0.0.0.255 area 0
RA(config-router)#^z
アドバタイズしたいネットワークを指定
                               エリアは、共通のプロトコルを
                              使用して経路情報をやりとりす
                               るルータのグループのこと。
                              小規模の場合はゼロのみ。
```

OSPFの実践(2)

RB

RBにOSPFの設定をする

```
RB>en
RB#conf t
Enter configuration commands, one per line. End
RB(config)#route
RB(config)#router osp
RB(config)#router ospf 1
RB(config-router)#net
RB(config-router)#net
RB(config-router)#network 192.168.1.0 0.0.0.255 area 0
RB(config-router)#network 192.168.2.0 0.0.0.255 area 0
RB(config-router)#^Z
```

これで、RAとRBはネイバー関係ができた。

OSPFの実践(3)

RB

RBのネイバー情報を表示

RBはもともと

192.168.4.0の情報は知らなかったが、

RA(192.168.1.1)とネイバー関係が

結べたため、情報が得られた

(Neighbor IDはRAが持っているIPアドレスの中で数値が 最大のものがIDとして採用される)

OSPFの実践(4)

RC

RCにOSPFの設定をする

```
RC*conf t
Enter configuration commands, one per line. End
RC(config)#router ospf 1
RC(config-router)#net
RC(config-router)#network 192.168.2.0 0.0.0.255 area 0
RC(config-router)#network 192.168.3.0 0.0.0.255 area 0
RC(config-router)#^Z
```

OSPFの実践(5)

RD

RDにOSPFの設定をする

```
RD>en
RD#conf t
Enter configuration commands, one per line. End
RD(config)#router ospf 1
RD(config-router)#net
RD(config-router)#network 192.168.3.0 0.0.0.255 area 0
RD(config-router)#network 192.168.4.0 0.0.0.255 area 0
RD(config-router)#
```

OSPFの実践(6)

RA

RAに経路情報を表示

```
RA#show ip route

codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B-BGH

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 -OSPF NSSA external type 1, N2 -OSPF NSSA external type 2

E1 - OSPF external type 1,E2 - OSPF external type 2, E - EGP

I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS int

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route
```

Gateway of last resort is not set

```
C 192.168.1.0/24 is directly connected,
D 192.168.2.0/24 [110/2] via 192.168.1.2, 00:04:16, FastEthernet0/0
D 192.168.3.0/24 [110/2] via 192.168.4.1, 00:00:01, FastEthernet0/1
D 192.168.4.0/24 is directly connected, FastEthernet0/1
```

直接接続(c)以外にも、OSPF(O)が表示された

OSPFの実践(7)

RA

RAのネイバー情報を表示

OSPFの実践 目標

RA → **RD** → **RC** に動的にルート変更できるかを確認する

OSPFの実践(8)

RAからRC(192.168.2.2)に対して連続PINGを打つ

```
RA#
RA#ping
Protocol [ip]:
Target IP address: 192.168.2.2
Repeat count [5]: 200
Datagram size [100]: 200回ping実行
Timeout in seconds [2]:
Extended commands [n]:
Sweep range of sizes [n]:
```

OSPFの実践(9)

RA

200回PINGを実行している間に、ケーブルを抜いてみる

OSPFの実践(10)

RA

OSPFによって動的に経路が変わり、通信できた

断線

復活

OSPFの実践(11)

RA

RAの経路情報を確認する

```
RA#show ip route
codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B-BGH
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 -OSPF NSSA external type 1, N2 -OSPF NSSA external type 2
      E1 - OSPF external type 1,E2 - OSPF external type 2, E - EGP
      I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS
       * - candidate default, U - per-user static route, o - ODR
                     ownloaded static route
```

RBへの直接接続がない

way of last resort is not set

```
<u>192.168.2.0/24</u> [110/3] via<u>192.168.4.1</u>, 00:00:27, FastEthernet0/0
  92.168.3.0/24 [110/2] via 192<mark>4</mark>168.4.1, 00:02:30, FastEthernet0/1
   2.168.4.0/24 is directly co
                                     cted, FastEthernet0/1
```

今回の宛先がある ネットワーク

RDを経由

OSPFの実践(12)

RA

再度接続して、PINGしてみてもOK

OSPFの実践(13)

RA

経路情報を表示する。RBを経由してRCに行くルートがある。

```
RA#show ip route
codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B-BGH
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 -OSPF NSSA external type 1, N2 -OSPF NSSA external type 2
       E1 - OSPF external type 1,E2 - OSPF external type 2, E - EGP
       I - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2 ia - IS-IS
int
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
     192.168.1.0/24 is directly connected,
\mathsf{C}
     192.168.2.0/24 [110/2] via 192.168.1.2, 00:04:16, FastEthernet0/0
0
    192.168.3.0/24 [110/2] via 192.168.4.1, 00:00:01, FastEthernet0/1
    192.168.3.0/24 is directly connected, FastEthernet0/1
```

HSRP インターネット・アカデミーの許可無く対外的に参照・配布しないよう お願い申し上げます。 Copyright © INTERNET ACADEMY All rights reserved. 114

HSRP

Hot Standby Router Protocol (HSRP) とは、**デフォルト ゲートウェイを冗長化**するためのシスコ独自のプロトコル。

物理的には2台あるルータを、論理的(仮想的)には1台の ルータに見せ、障害時に通信を遮断させない仕組み。

背景

企業ネットワークは「動いていて当たり前」という前提で構築される。そのためネットワークを2重化するなど、万が一の事態でも稼働させる構造を持たせ「冗長性」を確保することが重要である。

マスターのルータに障害が起きたときなどに…

マスターのルータに障害が起きたときなどに…

デフォルトゲートウェイの冗長化によって通信ができる

- 1. HSRPグループを作成して、ルータを参加させる
- 2. HSRPグループで使用する仮想IPアドレスを作成する
- 3.
- 4.

- 1. HSRPグループを作成して、ルータを参加させる
- 2. HSRPグループで使用する仮想IPアドレスを作成する
- 3.
- 4.

- 1. HSRPグループを作成して、ルータを参加させる
- 2. HSRPグループで使用する仮想IPアドレスを作成する
- 3. マスタールータが選出される(プライオリティによる)
- 4. マスタールータが稼働し、バックアップは待機する

HSRP 前提

HSRP設定前

PCAから、PCBに向けてpingが通る状態。 そしてデフォルトゲートウェイを冗長化したい

HSRP実践(1)

RA

RAの左側に対してHSRPの設定

HSRP実践(2)

RA

RAの左側に対してのHSRPの

インターフェーストラッキングの設定

インターフェーストラッキング

ダウンした時にHSRPプライオリティ値を小さくして アクティブルータを切り替える機能のこと

%HSRP-6-STATECHANGE: FastEthernet0/0 Grp 1 stat

RA(config-if)#standby 1 track fa 0/1

追跡するよ

追跡対象

減算値。デフォルトは10。 ここでは指定していないので10 が設定される

HSRP プライオリティの設定

HSRP実践(3)

RA

RAの右側に対してのHSRPの設定

```
RA(config-if)#int fa 0/1
RA(config-if)#st
RA(config-if)#standby 2 ip 10.1.1.252
RA(config-if)#standby 2 priority 100
RA(config-if)#standby 2 preempt

%HSRP-6-STATECHANGE: FastEthernet0/1 Grp 2 state Standby ->
Active

RA(config-if)#standby 2 track fa 0/0
RA(config-if)#standby 2 track fa 0/0
RA(config-if)#^Z

fa 0/0の監視して、ダウンしたら
```

RAの方が完了。次は、RBも同様に設定

fa 0/0の監視して、タワンしたら プライオリティを10下げる

HSRP実践(4)

RB RBの左側に対してのHSRPの設定

```
RB>en
RB#conf t
Enter configuration commands, one per line.
                                       Virtual Routerの設定
RB(config)#int fa 0/0
RB(config-if)#standby 1 ip 192.168.1.252
%HSRP-6-STATECHANGE: FastEthernet0/0 Grp 1 state
Standby
                                     プライオリティ95
                               (先ほど設定した100の方が優先されるように低く設定)
RB(config-if)#standby 1 pri
RB(config-if)#standby 1 priority
                               95
RB(config-if)#standby 1 pree
RB(config-if)#standby 1 preempt
                                      RBの方でもfa 0/1の監視して、
                                      ダウンしたらプライオリティを
RB(config-if)#standby 1 tra
                                      10下げる
RB(config-if)#standby 1 track fa 0/1
```

HSRP実践(5)

RB RBの右側に対してのHSRPの設定

```
RB(config)#int fa 0/1
RB(config-if)#stna
RB(config-if)#sta
RB(config-if)#standby 2 ip 10.1.1.252
RB(config-if)#standby 2 priority 95
RB(config-if)#standby 2 preempt
RB(config-if)#standby 2 track
%HSRP-6-STATECHANGE: FastEthernet0/0 Grp
Standby
RB(config-if)#<mark>standby 2 track fa 0/0</mark>
```

RBの方も完了。次はPCの設定。

HSRP実践(7)

PC-A PC-Aのデフォルトゲートウェイを変更

HSRP実践(8)

PC-B PC-Bのデフォルトゲートウェイを変更

HSRP実践(9)

PC-A PC-Bにpingを送信

```
C: \>
  C: \>ping 10.1.1.1
  Pinging 10.1.1.1 with 32 bytes of date:
  Reply from 10.1.1.1: bytes=32 time=2ms TTL=127
  Ping statistics 10.1.1.1:
       Packets: Sent = 4, Received =4, Lost = 0 (0% Loss),
  Approximate round trip times in milli-seconds:
      Minimum = 0ms, Maximum = 2ms, Average = 0ms
 C:\ >
Top
```

HSRP実践(10)

PC-A どういう経路でPC-Bに到達しているか確認

```
C: \ > tracert 10.1.1.1

Tracing route to 10.1.1.1 over a maximum of 30 hops:

1 1 ms 1 ms 0 ms 192.168.1.254
2 0 ms 0 ms 1 ms 10.1.1.1

Trace complete.
```

ここから障害試験をしてみましょう。 では、一緒にやってみましょう。

右上のルートの障害が起きた、という前提

今回はケーブルを抜いてみましょう

右上のルートの障害が起きた、という前提

今回はケーブルを抜いてみましょう。 デフォルトゲートウェイの冗長化によってスタンバイしていたルー タが稼働すれば成功

HSRP実践(11)

PC-A もう一度、PC-Bにpingを送信(まずは届くかどうか)

```
C: \>
 C: \ \ ping 10.1.1.1
 Pinging 10.1.1.1 with 32 bytes of date:
  Reply from 10.1.1.1: bytes=32 time=2ms TTL=127
  Reply from 10.1.1.1: bytes=32 time=2ms TTL=127
  Reply from 10.1.1.1: bytes=32 time=2ms TTL=127
  Reply from 10.1.1.1: bytes=32 time=2ms TTL=127
 Ping statistics 10.1.1.1:
       Packets: Sent = 4, Received =4, Lost = 0 (0% Loss),
 Approximate round trip times in milli-seconds:
      Minimum = 0ms, Maximum = 2ms, Average = 0ms
 C:\ >
Top
```

HSRP実践(12)

PC-A どういう経路でPC-Bに到達しているか確認

```
C: \>tracert 10.1.1.1

Tracing route to 10.1.1.1 over a maximum of 30 hops:

1 1 ms 0 ms 0 ms 192.168.1.253
2 3 ms 0 ms 1 ms 10.1.1.1

Trace complete.

もともとプライオリティが低かった方を通っている
```

どういう状況なのか、確認しましょう。

HSRP

いったんケーブルを元に戻しましょう。

HSRP実践(13)

RA

HSRPに関する詳細を表示する

マスタールータ(稼働している方) RA#show standby FastEthernet0/0 - Group 1 バーチャルルータのIPアドレス State is Active 13 state change, last state change 00:35:29 Virtual IP address is 192.168.1.252 Active virtual MAC address is 0000.0C07AC01 Local virtual MAC address is 0000.0C07AC01 (v1 default) Hello time 3 sec, hold time 10 sec バーチャルルータのMACアドレス Next hello sent in 0.206 secs Preemption enabled Active router is local Standby router is 192.168.1.253, priority 95 (expires in 7 se Priority 100 (default 100) Track interface FastEthwrnet0/1 state Up decrement 10 Group name is hsrp-Fa0/0-1 (default)

HSRP実践(13)

RA

HSRPに関する詳細を表示する

```
RA#show standby
FastEthernet0/0 - Group 1
 State is Active
   13 state change, last state change 00:35:29
 Virtual IP address is 192.168.1.252
 Active virtual MAC add
                       <u>ロー</u>カル(このルータ)がマスタールータ
   Local virtual MAC admissi
 Hello time 3 sec, hold time 10 sec
   Next hello sent in 0.206 secs
                                     RBの方がスタンバイルータ(待機)
 Preemption enabled
                                                  プライオリティ95
 Active router is local
 Standby router is 192.168.1.253, priority 95 (expires in 7 se
 Priority 100 (default 100)
 Track interface FastEthwrnet0/1 state Up decrement 10
 Group name is hsrp-Fa0/0-1 (default)
```

fa 0/1 が落ちたら、プライオリティを10減らす

HSRP実践(14)

RA

(再度ケーブルを抜いてください。その後show standby)

ネットワークトラッキング(監視)によって変化がある

```
RA#show standby
                             スタンバイルータ(待機している方)に変わった
FastEthernet0/0 - Group 1
 State is Standby
   17 state change, last state change 00:39:09
 Virtual IP address is 192.168.1.252
 Active virtual MAC address is 0000.0C07AC01
   Local virtual MAC address is 0000.0C07AC01 (v1 default)
 Hello time 3 sec, ho
   Next hello sent ir マスター(Active)ルータがlocalからRBのIPアドレスに変わった
 Preemption enabled
 Active router is 192.168.1.253, priority 95 (expires in 8 se
   MAC address is 0000.0C07.AC01
                                       自分がスタンバイルータである
 Standby router is local
 Priority 90 (default 100)
   Track interface FastEthwrnet0/1 state Up decrement 10
 Group name is hsrp-Fa0/0-1 (default)
                プライオリティが10減らされている
```

その他 インターネット・アカデミーの許可無く対外的に参照・配布しないよう お願い申し上げます。 Copyright © INTERNET ACADEMY All rights reserved.

140

代表的なプロトコル BGP

BGPはAS間の経路交換のためのプロトコル。BGPの経路情報には、あて 先に到達するまでに経由したAS番号のリスト(ASパス)が含まれており、 ASパスの短いものを最短ルートとして通常使用する。パスの操作により 柔軟な経路制御を行うこともできる。

1.1.1.2をネクストホップとするASパス [AS PATS: AS2] ← 最短経路

1.1.1.5をネクストホップとするASパス [AS PATS: AS5 AS2]

BGPの仕組み

BGPはルータ間でTCP接続を行い、経路情報を交換する。この経路情報を交換する隣接ルータを「ネイバー」や「ピア」と呼ぶ。経路情報は、それぞれのASで受信している経路を交換する。

AS1とAS2の経路交換イメージ。AS1は、AS2より「AS2」「AS3」「AS4」の3つの経路を受け取ることで、 AS2・ AS3・ AS4への経路をもつことになる。

BGPとAS番号

BGPでは、インターネット上での各ASを識別するためにAS番号を割り当てている。AS番号はICANNという組織が管理をし、日本ではJPNICやAPNICが割り当てをしている。ISP以外にも、大企業、学術研究機関なども1つのASが割り当てられている。

AS番号	AS番号の範囲	用途
グローバルAS番号	1 ~ 64511	インターネット全体で一意の AS番号
プライベートAS番号	64512~65535	組織内部で自由に使用できる AS番号

ダイナミックとスタティックの比較

	スタティック	ダイナミック
ルートの設定方法	管理者に手動で設定	ルーティングプロトコルに より動的に追加
ネットワーク状態 の変化時	宛先ルートに変化なし	宛先ルートが動的に更新さ れる
ルータの負荷	負荷は無い	ルーティングプロトコルで CPUとメモリをやや消費す る
管理者の負荷	ネットワークが大きい場合、 設定するルート数が大きく なり、設定の手間がある	複雑なネットワークにおいては、ルーティングプロトコルの深い知識が必要。