МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (государственный университет)

Лабораторная работа 2.2.3

ИЗМЕРЕНИЕ ТЕПЛОПРОВОДНОСТИ ВОЗДУХА ПРИ АТМОСФЕРНОМ ДАВЛЕНИИ

Составитель: Попов П.В.

Из лаборатории не выносить!

Электронная версия доступна на сайте кафедры общей физики physics.mipt.ru/S_II/lab

Долгопрудный 2019

Измерение теплопроводности воздуха при атмосферном давлении

Цель работы: измерить коэффициент теплопроводности воздуха при атмосферном давлении в зависимости от температуры.

В работе используются: цилиндрическая колба с натянутой по оси нитью; термостат; вольтметр и амперметр (цифровые мультиметры); эталонное сопротивление; источник постоянного напряжения; реостат (или магазин сопротивлений).

Теоретические сведения

Tennonposoдность — это процесс передачи тепловой энергии от нагретых частей системы к холодным за счёт xaomuчeckozo движения частиц среды (молекул, атомов и т.п.). В газах теплопроводность осуществляется за счёт непосредственной передачи кинетической энергии от быстрых молекул к медленным при их столкновениях. Перенос тепла описывается sakohom $tilde{Dybe}$, утверждающим, что плотность потока энергии $\vec{q} = \frac{BT}{M^2}$ (количество теплоты, переносимое через единичную площадку в единицу времени) пропорциональна градиенту температуры $tilde{V}$?

$$\vec{q} = -\kappa \cdot \nabla T,\tag{1}$$

где к $\left[\frac{\mathrm{B}\mathrm{T}}{\mathrm{m}\cdot\mathrm{K}}\right]$ — коэффициент теплопроводности.

Молекулярно-кинетическая теория даёт следующую оценку * для коэффициента теплопроводности газов:

$$\kappa \sim \lambda \bar{v} \cdot nc_V,$$
 (2)

где λ — длина свободного пробега молекул газа, $\bar{v} = \sqrt{\frac{8k_{\rm B}T}{\pi m}}$ —средняя скорость их теплового движения, n — концентрация (объёмная плотность) газа,

 $^{^*}$ См. *Н.А. Кириченко* «Термодинамика, статистическая и молекулярная физика», п. 5.5. Отметим, что формула (2) даёт лишь оценку *по порядку величины*, а также правильную *функциональную* зависимость. Часто в учебной литературе приводится формула с численным коэффициентом 1/3 ($\kappa = \frac{1}{3} \lambda \bar{v} \cdot nc_V$). Корректное значение этого коэффициента зависит от закона взаимодействия между молекулами и не может быть вычислено методами общей физики (при этом строгая газокинетическая теория даёт в 2–2,5 большее значение, см. напр., *В.П. Силин* «Введение в кинетическую теорию газов»). С практической точки зрения (2) содержит плохо поддающуюся прямому измерению величину λ , что является еще одной причиной нецелесообразности использования коэффициента 1/3.

 $c_V = \frac{i}{2} k_{\rm B}$ — его теплоёмкость при постоянном объёме в расчёте на одну молекулу (i — эффективное число степеней свободы молекулы).

Длина свободного пробега может быть оценена как $\lambda=1/n\sigma$, где σ — эффективное сечение столкновений молекул друг с другом*. Тогда из (2) видно, что коэффициент теплопроводности газа не зависит от плотности газа и *определяется только его температурой*. В простейшей модели твёрдых шариков $\sigma=$ const, и коэффициент теплопроводности пропорционален корню абсолютной температуры: $\kappa \propto \bar{v}/\sigma \propto \sqrt{T}$. На практике эффективное сечение $\sigma(T)$ следует считать медленно убывающей функцией T (почему?).

Рассмотрим стационарную теплопроводность в цилиндрической геометрии (см. рис. 1). Пусть тонкая нить радиусом r_1 и длиной L помещена на оси цилиндра радиусом r_0 . Температура стенок цилиндра T_0 поддерживается постоянной. Пусть в нити выделяется некоторая тепловая мощность Q [Вт]. Если цилиндр длинный ($L\gg r_0$), можно пренебречь теплоотводом через его торцы. Тогда все параметры газа можно считать зависящими только от расстояния до оси системы r. Вместо (1) имеем

Рис. 1. Геометрия задачи

$$q = -\kappa \frac{dT}{dr}. (3)$$

В *стационарном* состоянии полный поток тепла через любую цилиндрическую поверхность радиуса r площадью $S=2\pi rL$ должен быть одинаков и равен Q=qS:

$$Q = -2\pi r L \cdot \kappa \frac{dT}{dr} = \text{const.}$$
 (4)

Если перепад температуры $\Delta T = T_1 - T_0$ между нитью и стенками цилиндра мал ($\Delta T \ll T_0$), то в (4) можно пренебречь изменением теплопроводности от температуры в пределах системы, положив $\varkappa \approx \varkappa(T_0)$. Тогда разделяя переменные в (4) и интегрируя от радиуса нити до радиуса колбы, получим

$$Q = \frac{2\pi L}{\ln \frac{r_0}{r_*}} \kappa \cdot \Delta T. \tag{5}$$

^{*} Эффективное сечение рассеяния (сечение столкновений) σ —величина, характеризующая вероятность существенного отклонения налетающих частиц при взаимодействии с некоторым рассеивающим центром. В общем случае она определяется как отношение полного потока рассеянных частиц к плотности потока падающих $\sigma = dN_{\rm pac}/j_{\rm nag}dt$, и имеет размерность площади. Для одинаковых твёрдых шариков $\sigma = \pi d^2$, где d — диаметр шарика.

Видно, что поток тепла через систему пропорционален разности температур в ней (*закон Ньютона*).

Оценка времени установления равновесия. При изменении параметров системы (температуры или мощности нагрева) система переходит в новое стационарное состояние не сразу, а в течение некоторого времени τ . Оценим значение τ по порядку величины. Рассмотрим для простоты плоский слой толщиной a и сечением S, заполненный газом при постоянном давлении. Пусть температура одной из граней выросла на некоторую величину ΔT . Это вызовет поток тепла через систему, который можно оценить по закону Фурье как $q \sim \kappa \frac{\Delta T}{a}$. Для того, чтобы весь слой прогредся на ΔT , в него должно поступить тепло $nSa \cdot c_P \Delta T$, где c_P — теплоёмкость при постоянном давлении (в расчёте на одну молекулу). С другой стороны, поступившее за время τ тепло можно вычислить как $qS\tau = \kappa \frac{\Delta T}{a}S\tau$. Приравнивая, находим искомую оценку времени перехода к стационарному состоянию:

$$au \sim \frac{a^2}{\chi}$$
, где $\chi = \frac{\kappa}{nc_P}$. (6)

Коэффициент χ , равный отношению теплопроводности \varkappa к теплоёмкости единицы объёма nc_P , называют memnepamyponpoводностью среды. Он отвечает за скорость изменения температуры при теплопередаче. Для воздуха при нормальных условиях $\chi\sim 0.2$ см $^2/c$, так что при характерном размере $a\sim 1$ см имеем характерное время $\tau\sim 5$ с.

Таким образом, можно ожидать, что в условиях опыта равновесие будет заведомо устанавливаться в течение нескольких десятков секунд. Более точная оценка потребовала бы решения уравнения теплопроводности с учётом геометрии задачи. В рамках данной работы необходимости прибегать к подобным расчётам нет.

Пределы применимости теории. Укажем пределы применимости закона Фурье (1). В газах он может нарушаться, когда характерные масштабы задачи приближаются к длине свободного пробега молекул (см. работу 2.2.2). Это, в частности, приводит к тому, что температура нити может отличаться от температуры окружающего её газа (*температурный скачок*). В данной работе такого рода отклонениями можно пренебречь, поскольку при атмосферном давлении длина свободного пробега составляет порядка $\lambda \sim 10^{-5}$ см, что заведомо меньше наименьшего размера системы — радиуса нити.

Также возможны и другие механизмы теплопередачи: *конвекция* и *излучение*. Известно, что в поле тяжести конвекция возникает при достаточно боль-

шом вертикальном перепаде температур. Для её минимизации установка расположена вертикально (градиент температуры имеет место только в горизонтальном направлении).

Вклад излучения может стать существенным при значительном перегреве нити относительно стенок. Оценить мощность излучения можно по закону Стефана—Больцмана:

$$Q_{\text{MSJI}} = \epsilon S \sigma_{\text{S}} (T_1^4 - T_0^4) \approx 4 \epsilon S \sigma_{\text{S}} T_0^3 \Delta T, \tag{7}$$

где S — площадь поверхности нити, $\sigma_S = 5,67 \cdot 10^{-8}$ Вт/(м² К³) — постоянная Стефана–Больцмана, ϵ — безразмерный коэффициент «черноты», зависящий от материала излучающей поверхности (для большинства металлов можно для оценки принять $\epsilon \sim 0,1 \div 0,2$). Предлагаем самостоятельно проверить, что в условиях опыта вкладом излучения можно пренебречь.

Экспериментальная установка

Схема установки приведена на рис. 2. На оси полой цилиндрической трубки с внутренним диаметром $2r_0\sim 1$ см размещена металлическая нить диаметром $2r_1\sim 0,05$ мм и длиной $L\sim 40$ см (материал нити и точные геометрические размеры указаны в техническом описании установки). Полость трубки заполнена воздухом (полость через небольшое отверстие сообщается с атмосферой). Стенки трубки помещены в кожух, через которых пропускается вода из термостата, так что их температура t_0 поддерживается постоянной. Для предотвращения конвекции трубка расположена вертикально.

Рис. 2. Схема установки

Металлическая нить служит как источником тепла, так и датчиком температуры (термометром сопротивления). По пропускаемому через нить постоянному току I и напряжению U на ней вычисляется мощность нагрева по закону Джоуля—Ленца:

и сопротивление нити по закону Ома:

 $R = \frac{U}{I}$

Сопротивление нити является однозна $\frac{1}{2}$ функцией её температуры R(t). Эта зависимость может быть измерена с помощью термостата по экстраполя-

ции мощности нагрева к нулю $Q \to 0$, когда температура нити и стенок совпадают $t_1 \approx t_0$. Альтернативно, если материал нити известен, зависимость его удельного сопротивления от температуры может найдена по справочным данным.

Для большинства металлов относительное изменение сопротивления из-за нагрева невелико: при изменении температуры на $\Delta t=1$ °C относительное изменение сопротивления нити $\frac{\Delta R}{R}$ может составлять приблизительно от 0,2% до 0,6% (в зависимости от её материала). Следовательно, измерение R важно провести с высокой точностью. Желательно, чтобы методика измерений и чувствительность приборов обеспечивали измерение тока и напряжения с относительной погрешностью, не превышающей 0,1% (т.е. необходимо уверенно измерять 4–5 значащих цифр, что вполне реально при использовании современных цифровых мультиметров).

На рис. 3 приведены два варианта электрической схемы установки.

Рис. 3. Варианты электрических схем измерения сопротивления нити и мощности нагрева: а) с двумя мультиметрами, б) с одним вольтметром и эталонным сопротивлением.

В схеме рис. За для измерения напряжения и тока используется два мультиметра, работающие в режимах вольтметра и амперметра соответственно. Подключение к нити $R_{\rm H}$ осуществляется по *четырёхпроводной схеме*. По двум проводам (токовая пара I_{+} и I_{-}) через сопротивление пропускается измерительный ток, а два других (потенциальная пара U_{+} и U_{-}) используются для параллельного подключения вольтметра. Сопротивление R_{3} используется в качестве балластного для предотвращения перегорания нити. Заметим, что при такой схеме внутреннее сопротивление приборов и сопротивление подводящих проводов практически не влияет на измерения: сопротивление амперметра не влияет на результат вовсе, а сопротивление вольтметра составляет

обычно 1–100 МОм, что при $R_{\rm H} \sim 10$ Ом вносит относительную ошибку не более 10^{-5} .

Схема рис. Зб предусматривает использование одного вольтметра и эталонного сопротивления $R_{\rm 3}\sim 10$ Ом (точное значение $R_{\rm 3}$ и его класс точности указаны в техническом описании установки), включённого последовательно с нитью. В положении переключателя 2 вольтметр измеряет напряжение на нити, а в положении 1 — напряжение на $R_{\rm 3}$, пропорциональное току через нить. Для исключения влияния контактов и подводящих проводов эталонное сопротивление $R_{\rm 3}$ также необходимо подключать в цепь по четырёхпроводной схеме.

Ток в цепи в обеих схемах регулируется с помощью реостата или магазина сопротивлений $R_{\rm m}$, включённого последовательно с источником напряжения.

Методика измерений. Принципиально неустранимая систематическая ошибка измерения температуры с помощью термометра сопротивления возникает из-за необходимости пропускать через резистор (нить) измерительный ток. Чем этот ток выше, тем с большей точностью будет измерен как он сам, так и напряжение. Однако при этом квадратично возрастает выделяющаяся на резисторе мощность $O = UI = I^2 R$. Следовательно, температура резистора становится выше, чем у объекта, температуру которого надо измерить. Измерения же при малых токах не дают достаточной точности (в частности, из-за существенного вклада термоэлектрических явлений в проводниках и контактах). Эта проблема решается построением нагрузочной кривой — зависимости измеряемого сопротивления R от выделяющейся в нём мощности R(Q), с последующей экстраполяцией к нулевой мощности $Q \to 0$ для определения сопротивления $R_0 \equiv R(0)$, при котором его температура равна температуре измеряемого объекта. Кроме того, в данной работе измерение нагрузочных кривых позволяет в ходе эксперимента получить температурную зависимость сопротивления нити, так как при $Q \to 0$ температура нити равна температуре термостата ($T \approx T_0$).

В исследуемом интервале температур ($20-70~^{\circ}$ С) зависимость сопротивления от температуры можно с хорошей точностью аппроксимировать линейной функцией:

$$R(t) = R_{273} \cdot (1 + \alpha t),$$
 (8)

где t — температура в [°C], R_{273} — сопротивление нити при температуре 0 °C и $\alpha=\frac{1}{R_{273}}\frac{dR}{dT}$ — температурный коэффициент сопротивления материала. Измерение зависимости (8) по данным для $Q\to 0$ позволит затем определять температуру нити t по значению её сопротивления R при произвольной мощности нагрева.

В работе предлагается провести измерения нагрузочных кривых R(Q) при нескольких различных температурах термостата T_0 . По пересечениям нагрузочных кривых с осью ординат получить температурную зависимость сопротивления нити от её температуры. По наклонам нагрузочных кривых, пользуясь формулой (5), определить значения коэффициента теплопроводности κ . Если точность измерения позволит, исследовать зависимость коэффициента теплопроводности от температуры термостата $\kappa(T_0)$.

ЗАДАНИЕ

Подготовка к эксперименту

1. Проведите предварительные расчёты параметров опыта. Приняв максимально допустимый перегрев нити относительно термостата равным $\Delta t_{\rm max}=10$ °C , оцените максимальную мощность нагрева $Q_{\rm max}$ [мВт], которую следует подавать на нить. Для оценки коэффициент теплопроводности воздуха примите равным $\kappa\sim25$ мВт/(м·К).

Зная приближенное значение сопротивления нити R (см. техническое описание установки), определите соответствующие значения максимального тока $I_{\rm max}$ и максимального напряжения $U_{\rm max}$ в нити. При дальнейших измерениях старайтесь не превышать эти значение. Это необходимо, чтобы избежать ненужного перегрева нити (остывание системы может происходить существенно дольше, чем нагрев). Существенное превышение максимальной мощности нагрева может привести к перегоранию нити и выводу из строя установки!

Внимание!

Во избежание перегорания нити запрещается увеличивать напряжение на источнике питания выше указанного на установке!

- 2. Подготовьте экспериментальную установку к работе:
 - проверьте, что измерительная цепь соответствует схеме рис. 3 (а или б);
 - на магазине сопротивлений (или на реостате) установите *максимальное* сопротивление $R_{\rm M}$ (чтобы ток в цепи при её замыкании был минимален);
 - включите вольтметр и амперметр (при наличии) и при необходимости настройте режимы их работы (по техническому описанию к установке);
 - включите источник питания; проверьте, что он работает в режиме источника напряжения, и что напряжение на нём не превышает максимально допустимое (указано на установке);

 включите термостат и убедитесь, что вода в нём находится при комнатной температуре (измеренной по комнатному термометру, расположенному по возможности ближе к экспериментальной установке); при необходимости нагрейте/охладите термостат.

Проведение измерений

3. При *комнатной* температуре термостата измерьте зависимость сопротивления нити R = U/I от подаваемой на неё мощности Q = UI — нагрузочную кривую R(Q).

Измерения проведите для 7–9 значений тока I через нить от 0 до $I_{\rm max}$. Рекомендуется подбирать такие токи, чтобы мощность нагрева $Q=I^2R$ возрастала равномерно в диапазоне от 0 до $Q_{\rm max}$. Ток следует наращивать монотонно, постепенно уменьшая сопротивление магазина сопротивлений (или реостата) $R_{\rm m}$. Перед фиксацией показаний дождитесь установления теплового равновесия: показания мультиметров должны быть стационарны (флуктуировать вблизи постоянного значения). При измерениях рекомендуется не только записывать показания мультиметров (напряжение U и ток I), но и сразу вычислять R и Q, чтобы контролировать мощность нагрева и температуру проволоки.

В процессе измерений контролируйте постоянство температуры термостата. Если за время измерений температура термостата изменилась более, чем на $0,1\,^{\circ}$ С, опыт рекомендуется переделать.

По окончании измерения нагрузочной кривой *установите минимальный ток* через нить, переведя значение магазина сопротивления на 10 кОм (или более). В дальнейшем возвращайте магазин сопротивлений в это положение после каждого измерения нагрузочной кривой.

- **4.** Проведите измерения нагрузочных кривых согласно п. 3 для 5–7 температур термостата в диапазоне от комнатной до 70 °C. Приступать к измерениям при новой температуре следует лишь после установления стационарного состояния. Контролировать стационарность температуры газа можно по напряжению U на нити, если пропускать через неё минимальный ток, не приводящий к сколь-нибудь значимому перегреву (например, $I \sim 0.05 I_{\rm max}$).
- **5.** После завершения измерений выключите блок питания и цифровые мультиметры. На магазине сопротивлений (реостате) $R_{\rm M}$ установите максимальное сопротивление. Для охлаждения термостата установите целевую температуру термостата 20 °C и откройте кран с холодной водой (питание термостата не выключать).

Обработка результатов измерений

- **6.** Для каждой температуры термостата постройте график зависимости сопротивления нити от мощности R(Q). Убедитесь в линейности полученных зависимостей. Проведите наилучшие прямые и определите точки их пересечения с осью ординат R_0 (при Q=0 температура нити совпадает с температурой термостата) и угловые коэффициенты наклона $\frac{dR}{dQ}$. Оцените погрешности найденных значений.
- **7.** Пользуясь значениями R_0 из п. 6 постройте график зависимости сопротивления нити от её температуры R(T). Убедитесь в линейности полученной зависимости. Постройте наилучшую прямую и определите её угловой коэффициент $\frac{dR}{dT}$. Оцените его погрешность.

Рекомендуется также определить температурный коэффициент сопротивления материала нити $\alpha = \frac{1}{R_{273}} \frac{dR}{dT}$ (здесь R_{273} — сопротивление при 0 °C) и сравнить его с табличным.

8. Используя угловой коэффициент температурной зависимости сопротивления $\frac{dR}{dT}$ из п. 7. и угловые коэффициенты нагрузочных прямых $\frac{dR}{dQ}$ из п. 6, вычислите наклон зависимости выделяющейся на нити мощности Q от её перегрева ΔT относительно стенок:

$$\frac{dQ}{d(\Delta T)} = \frac{dR}{dT} / \frac{dR}{dQ} \ .$$

Отсюда, с учётом формулы (5), найдите коэффициенты теплопроводности газа κ для каждой температуры термостата T_0 . Оцените погрешности полученных результатов.

9. Постройте график зависимости теплопроводности воздуха от температуры газа $\kappa(T)$. Сравните результаты с табличными данными.

Предполагая, что κ степенным образом зависит от абсолютной температуры T: $\kappa \propto T^{\beta}$, постройте график в двойном логарифмическом масштабе (в координатах $\ln \kappa(\ln T)$) и определите из него показатель степени β . Сравните результат с предсказанием теории, считая молекулы твёрдыми шариками.

Контрольные вопросы

- 1. Сформулируйте закон Фурье и укажите границы его применимости.
- 2. Получите оценку (2) для коэффициента теплопроводности идеального газа. Оцените теоретически значение теплопроводности, приняв газокинетический диаметр молекул равным $d \sim 3.5 \, \text{Å}$.
- 3. Что такое сечение столкновения? По экспериментальному значению коэффициента теплопроводности оцените сечение столкновений и газокинетический диаметр молекул воздуха. Зависит ли сечение столкновений от температуры газа?
- 4. Как теплопроводность газа зависит от его температуры и давления? Дайте качественное объяснение этим зависимостям.
- 5. По измеренному значению коэффициента теплопроводности оцените коэффициент вязкости воздуха. Сравните результат с табличным.
- 6. По измеренному значению теплопроводности κ определите температуропроводность воздуха χ и оцените время τ установления стационарного состояния в условиях опыта.
- 7. Перечислите приближения, сделанные при выводе основной расчётной формулы (5). Оцените, насколько хорошо эти приближения выполняются.
- 8. Уточните формулу (5), считая теплопроводность степенной функцией температуры $\kappa = \kappa_0 (T/T_0)^{\beta}$.
- Оцените максимальный относительный вклад теплопередачи за счёт излучения в условиях опыта.
- 10. Оцените вклад теплоотдачи через торцы системы.
- 11. Что такое нагрузочные кривые и для чего они используются в термометрии?
- 12. Какие преимущества даёт четырёхпроводная схема измерения сопротивления? Какие ещё схемы измерения сопротивления возможны?

13.04.2019