EE2000 Logic Circuit Design

Lecture 2 – Karnaugh Map and Quine-McCluskey (QM) Method

hackthedeveloper.com

What have we learnt so far?

- 1.1 Basic Logic Gates
- 1.2 Logic Circuit, Truth Table and Boolean Expression
- 1.3 Sum of Products vs Product of Sums and Canonical Form
- 1.4 Simplification using Boolean Algebra
 - Based on experience
 - Trial and error

Any systematic approach?

What will you learn?

- 2.1 What is Karnaugh map
- 2.2 Simplify a Boolean Function using Karnaugh map
- 2.3 Simplify a Boolean function with Don't Care cases
- 2.4 Simplify a Boolean Function using Quine-McCluskey method
- 2.5 Simplify Boolean Functions (Multiple Outputs) by identifying common terms

2.1 Karnaugh Map

- In 1953, Maurice Karnaugh introduced a map method known as Karnaugh map (K-map)
- A straightforward procedure for minimizing Boolean functions in a tabular form
- Graphical representation of a truth table
- Minterm is used in the cell of the K-map
- n-variable function has 2ⁿ cells:
 - Two-variable K-map has 4 cells
 - Three-variable K-map has 8 cells
 - Four-variable K-map has 16 cells

Two-variable K-map

Minterm representations

Plotting Functions in K-map

 $f(a, b) = \Sigma m(0, 3)$ Canonical form (contains Minterm)

or

Put a 0 or leave blank for those minterms not included in the function

Put a 1 in the corresponding cells

f(a, b) = a'b' + ab' Function must be formed by Minterm

or

Functions represented graphically with corresponding minterm cells labeled to value 1

Example

Simplify
$$f(a, b) = \sum m(0, 1, 3)$$

Adjacency:
$$a'b + ab = b$$

Many ways to group them. Which is the best solution?

Three-variable K-map

- ➤ Cells are not organized in numerical order.
- ➤ Only 1-bit difference between two adjacent cells.
- ➤ Why?

Gray code in K-map

➤ Adjacent cells have 1-bit (1-variable) difference only

a'bc' and abc'

Forming a pair of adjacent binary combinations with neighboring cells.

$$a'bc' + abc' = bc'(a' + a) = bc'$$

Rule of thumb: Group adjacent 1's on the map to form the simplified product terms.

Simplification of Product Terms

Example: Simplify $f(a, b, c) = \sum m(6, 7)$

This group contains both 0 and 1 for *c* (i.e. no longer depends on *c*, depends on *a* and *b* only)

Using Boolean Albegra: Variable difference f(a, b, c) = abc' + abc = ab (adjacency)

Whenever we group two adjacent cells on the map, they can form a product term with one less variables!

More Examples

$$f(a, b, c) = abc' + ab'c'$$

= ac' (adjacency)

We can even group adjacent 1's across the edges:

$$f(a, b, c) = a'b'c' + ab'c'$$

= $b'c'$ (adjacency)

Also one-variable difference!

Wrap Around Adjacency

What If We do not use Gray Code?

We can group these two adjacent 1's:

$$f(a, b, c) = a'bc' + abc'$$

= bc'

But not these two: Incorrect arrangement

Horizontal vs Vertical K-map

Label rows with first variable, columns with the others

Although there are different ways drawing the K-Maps, we use the same method to group the adjacent 1's!

Vertical orientation of three-variable K-map

Four-variable K-map

Note the Gray code order of the rows and columns

Wrap-around Adjacency

Imagine the Map as...

Group of 2 adjacent cells

$$f(a, b, c, d) = b'cd$$

Group of 4 adjacent cells

$$f(a, b, c, d) = b'd$$

Across 4 corners:

$$f(a, b, c, d) = b'd'$$

Are These Adjacent Cells?

Diagonal?

Magic square?

Group of 8 adjacent cells

$$f(a, b, c, d) = d'$$

Summary

- ➤ Booleans function to be minimized by K-map are always in Canonical SOP or POS (will discuss later) form
- > Arrange cells in 1-bit difference
- \triangleright Group adjacent cells in group size of 2^n , e.g. 2, 4, 8
- ➤ Apply adjacency law

2.2 Minimization using Karnaugh Map

- \triangleright Group adjacent cells in group size of 2^n , e.g. 2, 4, 8
- > Rules:
 - 1. Find the fewest groups that can cover all cells marked with 1s.
 - 2. The groups should be as large as possible.
- ➤ Goal:
 - 1. Reduce the number of product terms to minimum
 - 2. Save the cost

Example

Simplify $f(a, b, c) = \sum m(0, 1, 2, 3, 4, 5)$

Which solution is better?

Groups should be as large as possible!

Example

Simplify $f(a, b, c, d) = \sum m(0, 1, 2, 3, 4, 5, 7, 8, 10, 11, 15)$

Redundant Grouping

Three groups overlapped!

Too many overlaps!

Terminology

Implicant: A product term is an implicant such that the function is 1 whenever the product term is 1.

- In K-map, an implicant is a rectangle of 1, 2, 4, 8,... of 1's.

Terminology

Prime Implicant: An implicant that is not fully contained in any one other implicant.

Terminology

Essential Prime Implicant: If a minterm is included in only one prime implicant, that prime implicant is essential prime implicant.

Systematic Approach

- Rules:
 - 1. Find the fewest groups that can cover all cells marked with 1s.
 - 2. The groups should be as large as possible.
- > Approach:
 - 1. Determine all PIs.
 - 2. Select EPIs.
 - 3. Add PI to include the remaining minterm.

Previous Example

Select the essential prime implicants and no remaining minterms left!

$$f(a, b, c, d) = a'd + bd'$$

Previous Example

Select the essential prime implicants first

Still have a remaining minterm!

Previous Example

$$f(a, b, c, d) = a'b'c'd' + abc' + ab'c + bc'd + abd$$

$$f(a, b, c, d) = a'b'c'd' + abc' + ab'c + bc'd + acd$$

We can choose either or

or

Exercise

- 1. Identify all PIs.
- 2. Select all EPIs.
- 3. Add PIs of remaining minterms.

Exercise

- 1. Identify all PIs.
- 2. Select all EPIs.
- 3. Add PIs of remaining minterms.

Find all minimum sum of products expressions for the following K-map.

How about POS?

[Step 1] Group the 0s to obtain the complement of the *f* in SOP form

[Step2] Apply DeMorgan's Theorem to find *f* in POS form OR express them in Maxterm

Example

Simplify $f(a, b, c, d) = \Sigma m(0, 1, 2, 5, 8, 9, 10)$ in POS form

Fill the 1s and 0s into the map

Group the 0s using the same procedure as grouping the 1s

$$f'(a, b, c, d) = ab + cd + bd'$$

 $f(a, b, c, d) = (a'+b')(c'+d')(b'+d)$

2.3 Boolean Functions with Don't Care Cases

The output of Boolean functions are incompletely specified functions,

- For some input conditions, the outputs are unspecified
- Input condition has no effects to the function
- Output values are defined as don't Care
- Don't Care term can be minterm / maxterms
- Don't Care term indicates by an \times , d, ϕ or φ

Truth Table with Don't Care

а	b	f
0	0	0
0	1	1
1	0	1
1	1	X

What the table says is:

f is 0 if
$$(a = 0 \text{ AND } b = 0)$$

f is 1 if $(a = 0 \text{ AND } b = 1)$, or $(a = 1 \text{ AND } b = 0)$
f can be 0 or 1 if $(a = 1 \text{ AND } b = 1)$

$$f(a, b) = \Sigma m(1, 2) + \Sigma d(3)$$

а	b	f_1	f_2
0	0	0	0
0	1	1	1
1	0	1	1
1	1	0	1

Both f_1 or f_2 of table on the left are <u>acceptable</u>

$$f(a,b) = \Pi M(0) \Pi d(3)$$

Don't Care term in K-map

Which solution is better?

$$f = a'b + ab'$$

 f_2 implementation

2 groups f = a + b

Is it a Good Solution?

Simplify $f(a, b, c, d) = \Sigma m(1, 3, 7, 11, 15) + \Sigma d(0, 2, 5)$

cd ak	00	01	11	10
00	X	0	0	0
01	1	X	0	0
11	1	1	1	1
10	X	0	0	0

$$f(a, b, c, d) = a'b'd + cd$$

Other Solutions

- Identify PIs that must include all 1s but don't care term × is optional.
- 2. Use × when possible to create larger group size.
- 3. Select the EPIs first, then remaining PIs

$$f(a, b, c, d) = a'd + cd$$

Find all minimum sum of products and all minimum product of sums expressions for the following Boolean Function.

$$f(a,b,c,d) = \sum m(1,3,4,6,11) + \sum d(0,8,10,12,13)$$

ak cd	00	01	11	10
00	m_0	m ₄	m ₁₂	<i>m</i> ₈
01	<i>m</i> ₁	<i>m</i> ₅	m ₁₃	<i>m</i> ₉
11	<i>m</i> ₃	m ₇	<i>m</i> ₁₅	m ₁₁
10	m ₂	m_6	m ₁₄	<i>m</i> ₁₀

$$f(a,b,c,d) = \sum m(1,3,4,6,11) + \sum d(0,8,10,12,13)$$

$$f(a,b,c,d) = \sum m(1,3,4,6,11) + \sum d(0,8,10,12,13)$$

5-variable K-map

	V=0			
WX	00	01	11	10
00	m ₀	m ₁	m ₃	m ₂
01	m ₄	m ₅	m ₇	m ₆
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄
10	m ₈	m ₉	m ₁₁	m ₁₀

	V=1			
WX YZ	00	01	11	10
00	m ₁₆	m ₁₇	m ₁₉	m ₁₈
01	m ₂₀	m ₂₁	m ₂₃	m ₂₂
11	m ₂₈	m ₂₉	m ₃₁	m ₃₀
10	m ₂₄	m ₂₅	m ₂₇	m ₂₆

6-variable K-map

2.4 Quine-McCluskey (QM) Method

- Developed by W. V. Quine and E. J. McCluskey in 1956
- Functionally identical to Karnaugh map
- More efficient in computer algorithms
- Ease to handle large number of variables

For number of variables that is less than or equal to 4, we use K-map; otherwise, QM method will be more efficient.

Step 1: Partition (Group minterms by the number of 1's)

w	X	У	Z	Minterms
0	0	0	0	m_0
0	0	0	1	m_1
0	0	1	0	m_2
0	0	1	1	m_3
0	1	0	0	m_4
0	1	0	1	m_5
0	1	1	0	m_6
0	1	1	1	m_7
1	0	0	0	m_8
1	0	0	1	m_9
1	0	1	0	m_{10}
1	0	1	1	m_{11}
1	1	0	0	<i>m</i> ₁₂
1	1	0	1	<i>m</i> ₁₃
1	1	1	0	m ₁₄
1	1	1	1	<i>m</i> ₁₅

Minterms	wxyz
m_0	0000
m_1	0001
m_2	0010
m_4	0100
m_8	1000
m_3	0011
m_5	0101
m_6	0110
m_9	1001
m_{10}	1010
m ₁₂	1100
m_7	0111
m_{11}	1011
<i>m</i> ₁₃	1101
m ₁₄	1110
m_{15}	1111

Given in test and exam

Step 1: Partition (Group minterms by the number of 1's)

Simplify $f(a, b, c, d) = \Sigma m(1, 4, 5, 6, 8, 9, 10, 12, 14)$

Minterms	abcd
m_1	0001
m_4	0100
m_8	1000
m_5	0101
m_6	0110
m_9	1001
m_{10}	1010
m_{12}	1100
m_{14}	1110

- Combine adjacent group implicants into (n-1) variable implicants
- Mark the changed bit with "-" and tick the combined impicants

Minterms	abcd
m_1	0001 🗸
m_4	0100
m_8	1000
m_5	0101 🗸
m_6	0110
m_9	1001 🗸
m_{10}	1010
m_{12}	1100
m_{14}	1110

Minterms	abcd
m_1, m_5	0-01
m_1, m_9	-001

- Combine adjacent group implicants into (n-1) variable implicants
- Mark the changed bit with "-" and tick the combined impicants

Minterms	abcd
m_1	0001 🗸
m_4	0100 🗸
m_8	1000
m_5	0101 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010
m_{12}	1100 🗸
m_{14}	1110

Minterms	abcd
m_1, m_5	0-01
m_1, m_9	-001
m_4, m_5	010-
m_4, m_6	01-0
m_4, m_{12}	-100

- Combine adjacent group implicants into (n-1) variable implicants
- Mark the changed bit with "-" and tick the combined impicants

Minterms	abcd
m_1	0001 🗸
m_4	0100 🗸
m_8	1000 🗸
m_5	0101 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010 🗸
$m_{12}^{}$	1100 🗸
<i>m</i> ₁₄	1110

Minterms	abcd
m_1, m_5	0-01
m_1, m_9	-001
m_4, m_5	010-
m_4, m_6	01-0
m_4, m_{12}	-100
m_8, m_9	100-
m_8, m_{10}	10-0
m_8, m_{12}	1-00

- Combine adjacent group implicants into (n-1) variable implicants
- Mark the changed bit with "-" and tick the combined impicants

Minterms	abcd
m_1	0001 🗸
m_4	0100 🗸
m_8	1000 🗸
m_5	0101 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010 🗸
<i>m</i> ₁₂	1100 🗸
m_{14}	1110 🗸

Minterms	abcd
m_1, m_5	0-01
m_1, m_9	-001
m_4, m_5	010-
m_4, m_6	01-0
m_4, m_{12}	-100
m_8, m_9	100-
m_8, m_{10}	10-0
m_8, m_{12}	1-00
m_6, m_{14}	-110
m_{10}, m_{14}	1-10
m_{12}, m_{14}	11-0

- Combine adjacent group implicants into (n-1) variable implicants
- Mark the changed bit with "-" and tick the combined impicants

Minterms	abcd
m_1	0001 🗸
m_4	0100 🗸
m_8	1000 🗸
m_5	0101 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010 🗸
<i>m</i> ₁₂	1100 🗸
<i>m</i> ₁₄	1110 🗸

Minterms	abcd
m_1, m_5	0-01
m_1, m_9	-001
m_4, m_5	010-
m_4, m_6	01-0 🗸
m_4, m_{12}	-100 🗸
m_8, m_9	100-
m_8, m_{10}	10-0
m_8, m_{12}	1-00
m_6, m_{14}	-110 🗸
m_{10}, m_{14}	1-10
m_{12}, m_{14}	11-0 🗸

Minterms	abcd
m_4, m_6, m_{12}, m_{14}	-1-0

- Combine adjacent group implicants into (n-1) variable implicants
- Mark the changed bit with "-" and tick the combined impicants

Minterms	abcd
m_1	0001 🗸
m_4	0100 🗸
m_8	1000 🗸
m_5	0101 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010 🗸
<i>m</i> ₁₂	1100 🗸
<i>m</i> ₁₄	1110 🗸

Minterms	abcd
m_1, m_5	0-01
m_1, m_9	-001
m_4, m_5	010-
m_4, m_6	01-0 🗸
m_4, m_{12}	-100 🗸
m_8, m_9	100-
m_8, m_{10}	10-0 ✔
m_8, m_{12}	1-00 🗸
m_6, m_{14}	-110 🗸
m_{10} , m_{14}	1-10 🗸
m_{12}, m_{14}	11-0 🗸

Minterms	abcd
m_4, m_6, m_{12}, m_{14}	-1-0
$m_8, m_{10}, m_{12}, m_{14}$	10

Step 3: Identify Prime Implicants (PIs)

-All unmarked terms

Minterms	abcd
m_1	0001 🗸
m_4	0100 🗸
m_8	1000 🗸
m_5	0101 🗸
m_{6}	0110 🕶
m_9	1001 🗸
m_{10}	1010 🗸
m_{12}	1100 🕶
m ₁₄	1110 🕶

Minterms	abcd
m_1, m_5	0-01 Pl ₃
m_1, m_9	-001 Pl ₄
m_4, m_5	010- PI ₅
m_4, m_6	01-0 🗸
m_4, m_{12}	-100 🗸
m_8, m_9	100- PI ₆
m_8, m_{10}	10-0 ✔
m_8, m_{12}	1-00 🗸
m_6, m_{14}	-110 🗸
m_{10}, m_{14}	1-10 🗸
m_{12}, m_{14}	11-0 🗸

Minterms	abcd
m_4, m_6, m_{12}, m_{14}	-1-0 PI ₁
$m_8, m_{10}, m_{12}, m_{14}$	10 Pl ₂

Step 4: Generate PI chart

- Identify minterms that are covered by only 1 PI
- Identify essential PIs

$$f(a, b, c, d) = \Sigma m(1, 4, 5, 6, 8, 9, 10, 12, 14)$$

PI	Minterms	abcd	1	4	5	6	8	9	10	12	14
PI_1	m_4, m_6, m_{12}, m_{14}	-1-0									
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10									
PI ₃	m_1, m_5	0-01									
PI ₄	m_1, m_9	-001									
PI ₅	m_4, m_5	010-									
PI ₆	m_8, m_9	100-									

Step 4: Generate PI chart

- Identify minterms that are covered by only 1 PI
- Identify essential PIs

$$f(a, b, c, d) = \Sigma m(1, 4, 5, 6, 8, 9, 10, 12, 14)$$

PI	Minterms	abcd	1	4	5	6	8	9	10	12	14
PI_1	m_4, m_6, m_{12}, m_{14}	-1-0		Х		X				Х	Х
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10					Х		Х	Х	Х
PI ₃	m_1, m_5	0-01	X		Х						
PI ₄	m_1, m_9	-001	X					Х			
PI ₅	m_4, m_5	010-		Х	Х						
PI ₆	m_8, m_9	100-					X	X			

Step 4: Generate PI chart

- Identify minterms that are covered by only 1 PI
- Identify essential PIs

PI	Minterms	abcd	1	4	5	6	8	9	10	12	14
PI_1	m_4, m_6, m_{12}, m_{14}	-1-0		Х		X				Х	Х
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10					X		X	Х	Х
PI ₃	m_1, m_5	0-01	Х		Х						
PI ₄	<i>m</i> ₁ , <i>m</i> ₉	-001	X					Х			
PI ₅	m_4, m_5	010-		Х	Х						
PI ₆	<i>m</i> ₈ , <i>m</i> ₉	100-					Х	Х			

∴ PI₁ and PI₂ are essential PIs.

Step 5: Reduce PI chart

- Remove the rows of EPIs and the columns that covered by them

PI	Minterms	abcd	1	4	5	6	8	9	10	12	14
PI_1	m_4, m_6, m_{12}, m_{14}	-1-0		Х		X				Х	Х
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10					Х		X	X	Х
PI ₃	m_1, m_5	0-01	Х		X						
PI ₄	<i>m</i> ₁ , <i>m</i> ₉	-001	Х					Х			
PI ₅	m_4, m_5	010-		Х	X						
PI_6	m_8, m_9	100-					Х	Х			

Step 5: Reduce PI chart

- Remove the rows of EPIs and the columns that covered by them

PI	Minterms	abcd	1	5	9
PI ₃	m_1, m_5	0-01	X	X	
PI ₄	m_1, m_9	-001	X		Х
PI ₅	m_4, m_5	010-		X	
PI ₆	m_8, m_9	100-			Х

Solution 1

PI	Minterms	abcd	1	5	9
PI ₃	m_1, m_5	0-01	X	X	
PI ₄	m_1, m_9	-001	X		X

Solution 2

PI	Minterms	abcd	1	5	9
PI ₃	m_1, m_5	0-01	Х	Х	
PI ₆	m_8, m_9	100-			Х

Solution 3

PI	Minterms	abcd	1	5	9
PI ₄	m_1, m_9	-001	Х		Х
PI ₅	m_4, m_5	010-		Х	

Step 6: Express the Boolean Function

PI	Minterms	abcd
PI_1	m_4, m_6, m_{12}, m_{14}	-1-0
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10
PI ₃	m_1, m_5	0-01
PI ₄	m_1, m_9	-001

$$f(a, b, c, d) = PI_1 + PI_2 + PI_3 + PI_4$$

= $bd' + ad' + a'c'd + b'c'd$

PI	Minterms	abcd
PI ₁	m_4, m_6, m_{12}, m_{14}	-1-0
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10
PI ₃	m_1, m_5	0-01
PI ₆	m_8, m_9	100-

$$f(a, b, c, d) = PI_1 + PI_2 + PI_3 + PI_6$$

= $bd' + ad' + a'c'd + ab'c'$

PI	Minterms	abcd
PI ₁	m_4, m_6, m_{12}, m_{14}	-1-0
PI ₂	$m_8, m_{10}, m_{12}, m_{14}$	10
PI ₄	m_1, m_9	-001
PI ₅	<i>m</i> ₄ , <i>m</i> ₅	010-

$$f(a, b, c, d) = PI_1 + PI_2 + PI_4 + PI_5$$

= $bd' + ad' + b'c'd + a'bc'$

Verification by K-map

Simplify $f(a, b, c, d) = \Sigma m(1, 4, 5, 6, 8, 9, 10, 12, 14)$

$$f(a,b,c,d) = bd' + ad'$$
$$+a'bc' + b'c'd$$

$$f(a,b,c,d) = bd' + ad'$$
$$+a'c'd + b'c'd$$

$$f(a,b,c,d) = bd' + ad'$$
$$+a'c'd + ab'c'$$

Don't Care Case

Step 1-3 (Partition, Combine, List Pls): Include Don't Care minterms

Simplify $f(a, b, c, d) = \Sigma m(4, 8, 9, 10, 12, 15) + \Sigma d(2, 6, 13)$

Minterms	abcd
m_2	0010 🗸
m_4	0100 🕶
m_8	1000 🗸
m_6	0110 🗸
m_9	1001 🗸
m_{10}	1010 🕶
m_{12}	1100 🗸
<i>m</i> ₁₃	1101 🕶
<i>m</i> ₁₅	1111 🗸

Minterms	abcd
m_2, m_6	0-10 Pl ₂
m_2, m_{10}	-010 Pl ₃
m_4, m_6	01-0 Pl ₄
m_4, m_{12}	-100 PI ₅
m_8, m_9	100- 🗸
m_8, m_{10}	10-0 PI ₆
m_8, m_{12}	1-00 🗸
m_9, m_{13}	1-01
m_{12}, m_{13}	110- 🗸
m_{13}, m_{15}	11-1 PI ₇

Minterms	abcd		
m_8, m_9, m_{12}, m_{13}	1-0-Pl ₁		

Don't Care Case

Step 4: Generate PI chart

- Exclude Don't Care Minterms

Simplify $f(a, b, c, d) = \sum m(4, 8, 9, 10, 12, 15) + \sum d(2, 6, 13)$

PI	Minterms	abcd	4	8	9	10	12	15
PI_1	m_8, m_9, m_{12}, m_{13}	1-0-						
PI ₂	m_2, m_6	0-10						
PI ₃	m_2, m_{10}	-010						
PI ₄	m_4, m_6	01-0						
PI ₅	m_4, m_{12}	-100						
PI ₆	m_8, m_{10}	10-0						
PI ₇	m_{13}, m_{15}	11-1						

Step 5-6: Reduce PI chart & express the Boolean Function

Exercise (Don't Care Case)

Step 5-6: Reduce PI chart & express the Boolean Function

PI	Minterms	abcd	4	8	9	10	12	15
PI_1	m_8, m_9, m_{12}, m_{13}	1-0-		X	X		X	
PI ₂	m_2, m_6	0-10						
PI ₃	m_2, m_{10}	-010				Х		
PI ₄	m_4, m_6	01-0	Х					
PI ₅	m_4, m_{12}	-100	Х				Х	
PI ₆	m_8, m_{10}	10-0		Х		Х		
PI ₇	m_{13}, m_{15}	11-1						Х

PI	Minterms	abcd	

f(a,b,c,d)

Summary

$$f(a,b,c) = \sum m(2,3,7)$$

$$g(a,b,c) = \sum m(4,5,7)$$

$$f(a,b,c) = \sum m(2,3,7)$$

$$f(a,b,c) = a'b + bc$$

$$g(a,b,c) = \sum m(4,5,7)$$

$$g(a,b,c) = ab' + ac$$

$$f(a,b,c) = a'b + bc$$

$$g(a,b,c) = ab' + ac$$

12 gate inputs and 6 gates (how to reduce the cost?)

$$f(a,b,c) = \sum m(2,3,7)$$

$$f(a,b,c) = a'b + bc$$

$$g(a,b,c) = \sum m(4,5,7)$$

$$g(a,b,c) = ab' + ac$$

$$f(a, b, c) = \sum m(2,3,7)$$

$$f(a,b,c) = a'b + abc$$

$$g(a,b,c) = \sum m(4,5,7)$$

$$g(a,b,c) = ab' + abc$$

$$f(a,b,c) = a'b + abc$$

$$g(a,b,c) = ab' + abc$$

11 gate inputs and 5 gates!!!

Reduce the following functions that will use the least number of gates and gate inputs.

Reduce the following functions that will use the least number of gates and gate inputs.

