第一章 线性规划简介

- •1.5 对偶线性规划
- •1.6 对偶单纯形方法
- •1.7 灵敏度分析简介

1.5 对偶线性规划

$$\min f = c^T x$$
 $\max g = y^T b$ (LP) $\begin{cases} Ax \geq b \\ x \geq 0 \end{cases}$ 対偶 (DP) $\begin{cases} y^T A \leq c^T \\ y \geq 0 \end{cases}$

原问题 (求极小)	对偶问题 (求极大)
n个变量	n 个约束条件
m个约束条件	m 个变量
第k个约束取 \geq	$第k$ 个变量 $y_k \ge 0$
第k个约束取 $=$	第 k 个变量 y_k 无符号约束
第i个变量 x_i 无符号约束	第i个约束取=
第i个变量 $x_i \geq 0$	第i个约束取≤

表1.5-1

例1. 写出线性规划问题的对偶问题.

$$\min f = 4x_1 + 6x_2 - 5x_3$$

$$\begin{cases} x_1 - x_2 + 5x_3 & \ge 2 \\ -3x_1 + x_2 - 4x_3 & = -1 \\ x_1 \ge 0, x_3 & \ge 0 \end{cases}$$

解:该问题的对偶问题为

$$\max g = 2y_1 - y_2$$

$$\begin{cases} y_1 - 3y_2 & \le 4 \\ -y_1 + y_2 & = 6 \\ 5y_1 - 4y_2 & \le -5 \\ y_1 \ge 0 \end{cases}$$

例2. 写出线性规划问题的对偶问题.

$$\max f = 3x_1 + x_2 - 2x_3$$

$$\begin{cases} x_1 - 2x_2 - x_3 &= 8 \\ 2x_1 + x_2 - 3x_3 &\geq 9 \\ x_1 \geq 0, x_2 \geq 0 \end{cases}$$

解:该问题等价于

对偶问题为

$$\max f = 3x_1 + x_2 - 2x_3$$

$$\min g = 8y_1 - 9y_2$$

$$\begin{cases} x_1 - 2x_2 - x_3 &= 8 \\ -2x_1 - x_2 + 3x_3 &\le -9 \\ x_1 \ge 0, x_2 &\ge 0 \end{cases}$$

$$\begin{cases} y_1 - 2y_2 & \ge 3 \\ -2y_1 - y_2 & \ge 1 \\ -y_1 + 3y_2 & = -2 \\ y_2 \ge 0 \end{cases}$$

例3. 某企业生产两种产品 A_1, A_2 ,需要利用三种原材料 B_1, B_2, B_3 . 原材料的月供应量,生产一吨产品所消耗的原材料数量以及单位产品价格如下表所示. 设生产的产品 A_1, A_2 均可在市场销售.

- 1. 企业应如何安排月生产计划,才能使总收益最大?
- 2. 假设另一个公司想从该企业购买三种原材料,那么应该如何制定原材料价格,才能使双方获益?

	A_1	A_2	原料月供应量 (吨)
B_1	1	1	150
B_2	2	3	240
B_3	3	2	300
单位产品价格(万元/吨)	2.4	1.8	

表1.5-2

解: 1. 假设该企业每月生产 A_1, A_2 为 x_1, x_2 吨. 为使总收益最大,需求解线性规划问题

$$\max f = 2.4x_1 + 1.8x_2$$

$$\begin{cases} x_1 + x_2 & \leq 150 \\ 2x_1 + 3x_2 & \leq 240 \\ 3x_1 + 2x_2 & \leq 300 \\ x_1 \geq 0, x_2 \geq 0 \end{cases}$$

2. 假设另一家公司以每吨 y_1, y_2, y_3 万元购买全部的原料 B_1, B_2, B_3 ,有

$$\min g = 150y_1 + 240y_2 + 300y_3$$

$$\begin{cases} y_1 + 2y_2 + 3y_3 & \ge 2.4 \\ y_1 + 3y_2 + 2y_3 & \ge 1.8 \\ y_1 \ge 0, y_2 \ge 0, y_3 & \ge 0 \end{cases}$$

两个问题为对偶问题!

1.5.2 对偶线性规划的性质

- (1) 对称性:对偶问题的对偶是原问题.
- (2) 弱对偶定理: 若 x_0 是原问题的可行解, y_0 是对偶问题的可行解. 那么 $c^T x_0 \ge y_0^T b$, 即 $f(x_0) \ge g(y_0)$

证明: y_0 满足 $y_0^T A \le c^T$. 因为 $x_0 \ge 0$, 所以 $y_0^T A x_0 \le c^T x_0$, 有 $y_0^T b \le c^T x_0$.

- (3) 无界性定理:若原问题(对偶问题)有可行解,但无最优解,则其对偶问题(原问题)无可行解.
- $(2) \Rightarrow (3)$

(4) 最优性定理: 若原问题(LP)和对偶问题(DP)有可行解 x_0 和 y_0 ,且 $c^T x_0 = y_0^T b$,那么 x_0 和 y_0 分别是(LP)和(DP)的最优解.

证明:任取(LP)的可行解x.由弱对偶性定理, $c^Tx \ge y_0^Tb = c^Tx_0$. 所以 x_0 是(LP)的最优解.

(5) 强对偶定理: 若原问题有最优解, 那么对偶问题也有最优解, 且目标函数最优值相等.

证明: (LP)问题有最优解,所以存在可行基 B, 对应的基础可行解为 $x_0 = (x_B^T, x_N^T)^T$, 满足 $x_N = 0, x_B = B^{-1}b \geq 0$. (LP)最优值为: $c^Tx_0 = c_B^Tx_B = c_B^TB^{-1}b$.

令 $y_0 = (B^{-1})^T c_B$, 有: $y_0^T A = c_B^T B^{-1} A \le c^T$ (不等式对应单纯性表T(B)目标函数行变量的系数) , 所以 y_0 是(DP)的可行解, 对应的函数值 $y_0^T b = c^T x_0$.

例4.已知线性规划问题

$$\max f = x_1 + x_2$$

$$\begin{cases}
-x_1 + x_2 + x_3 & \leq 2 \\
-2x_1 + x_2 - x_3 & \leq 1 \\
x_1 \geq 0, x_2 \geq 0, x_3 \geq 0
\end{cases}$$

试用对偶理论证明上述线性规划问题无最优解.

证明: 对偶问题为

$$\min g = 2y_1 + y_2$$

$$\begin{cases}
-y_1 - 2y_2 & \ge 1 \\
y_1 + y_2 & \ge 1 \\
y_1 - y_2 & \ge 0 \\
y_1 \ge 0, y_2 & \ge 0
\end{cases}$$

由第1个约束条件和非负条件,可知对偶问题无可行解.故原问题虽然有可行解,但无最优解.

1.6 对偶单纯形法

定义:考虑(LP)问题: $\min f = c^T x$

$$\begin{cases}
Ax &= b \\
x & \geq 0
\end{cases}$$

假设B是一个基,并且满足条件: $c_B^T B^{-1} A - c^T \le 0$. 那么得到(DP)问题 $\max g = y^T b$

$$\left\{ \begin{array}{lll} y^T A & \leq & c^T \end{array} \right.$$

的一个可行解: $y = (B^{-1})^T c_B$. 我们称B为问题(LP)的一个对偶可行基.

注:由定义,若B是标准形式(LP)问题的一个对偶可行基,那么

• B给出(DP)问题的一个可行解.

• 在单纯形表T(B)中(以 $B = [P_1 \ P_2 \ \cdots \ P_m]$ 为例), $b_{0i} \leq 0, i = 1, 2, \cdots, n$.

		x_1	x_2	• • •	x_m	x_{m+1}	 x_n	
f	b_{00}	0	0		0	$b_{0(m+1)}$	 b_{0n}	\leq (
x_1	b_{10}	1	0		0	$b_{1(m+1)}$	 b_{1n}	
x_2	b_{20}	0	1		0	$b_{2(m+1)}$	 b_{2n}	
÷	:	•	•		•	÷	 :	
x_m	b_{m0}	0	0		1	$b_{m(m+1)}$	 b_{mn}	

而系数 $b_{j0}, j = 1, 2, \dots, m$ 的符号不定. 我们称 $b_{j0}, j = 1, 2, \dots, m$ 为*对偶单纯形法的检验数*.

对偶单纯形法算法:

- 0. 取定(LP)问题的一个对偶可行基 $B = \begin{bmatrix} P_{i_1} & P_{i_2} & \cdots & P_{i_m} \end{bmatrix}$. 在表T(B)中有: $b_{0j} \leq 0, j = 1, 2, \cdots, n$
- 1. 如果 $b_{i0} \geq 0, i = 1, 2, \dots, m$, 那么问题在

$$\begin{cases} x_{j_i} = b_{i0}, & i = 1, 2, \dots, m \\ x_j = 0, & j \neq j_1, \dots, j_m \end{cases}$$

取到最优值,算法终止.否则,转至2.

2. 如果存在 $b_{r0} < 0(0 \le r \le m)$, 而 $b_{rj} \ge 0, j = 1, 2, \dots, n$, 那么(LP)无可行解. 算法终止. 否则,转至3.

- 3. 设 $\theta = \min\{\frac{b_{0i}}{b_{ri}}|b_{ri} < 0, 1 \le i \le n\} = \frac{b_{0k}}{b_{rk}}$,取 b_{rk} 为旋转元,转至4.
- 4. 取基 $B' = \begin{bmatrix} P_{i_1}, & \cdots & P_{i_{r-1}}, & P_k, & P_{i_{r+1}}, & \cdots & P_{i_m} \end{bmatrix}$. 做初等行变换,把 b_{rk} 所在第k列变为标准单位向量:

$$\begin{cases} b'_{rj} = \frac{b_{rj}}{b_{rk}}, & j = 0, 1, \dots, n \\ b'_{ij} = b_{ij} - \frac{b_{rj}}{b_{rk}} b_{ik}, & 0 \le j \le n, 0 \le i \ne r \le m \end{cases}$$

得到单纯形表T(B'). 返回步骤1.

例5. 用对偶单纯形法求解

$$\min f = 3x_1 + 4x_2$$

$$\begin{cases} x_1 + 2x_2 & \ge & 5 \\ 3x_1 + x_2 & \ge & 6 \\ x_1 + x_2 & \ge & 4 \\ x_1 \ge 0, x_2 & \ge & 0 \end{cases}$$

解:标准形式为

$$\min f = 3x_1 + 4x_2$$

$$\begin{cases} x_1 + 2x_2 - x_3 &= 5 \\ 3x_1 + x_2 - x_4 &= 6 \\ x_1 + x_2 - x_5 &= 4 \\ x_i \ge 0, i &= 1, 2, \dots, 5 \end{cases}$$

 $B = \begin{bmatrix} P_3 & P_4 & P_5 \end{bmatrix}$ 为基,但不是可行基. 此时非基变量 x_1, x_2 , 下 $f - 3x_1 - 4x_2 = 0$, 系数均为负,故B是对偶可行基.

 $T(B_1)$

		x_1	x_2	x_3	x_4	x_5
f	0	-3	-4	0	0	0
x_3	-5	-1	-2	1	0	0
x_4	-6	-3	-1	0	1	0
x_5	-4	-1	-1	0	0	1

 $T(B_2)$

		x_1	x_2	x_3	x_4	x_5
f	6	0	-3	0	-1	0
x_3	-3	0	$-\frac{5}{3}$	1	$-\frac{1}{3}$	0
x_1	2	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	0
x_5	-2	0	$-\frac{2}{3}$	0	$-\frac{1}{3}$	1

$$b_{20} = -6 < 0$$

$$\theta = \min\{\frac{b_{01}}{b_{21}}, \frac{b_{02}}{b_{22}}\}\$$

$$= \min\{\frac{-3}{-3}, \frac{-4}{-1}\}\$$

$$= \frac{-3}{-3}$$

$$B_2 = \begin{bmatrix} P_3 & P_1 & P_5 \end{bmatrix}$$

做初等行变换,使得单纯形表中新的基变量 x_1 所在列为标准单位向量:

 $T(B_2)$

		x_1	x_2	x_3	x_4	x_5
f	6	0	-3	0	-1	0
x_3	-3	0	$-\frac{5}{3}$	1	$-\frac{1}{3}$	0
x_1	2	1	$\frac{1}{3}$	0	$-\frac{1}{3}$	0
x_5	-2	0	$-\frac{2}{3}$	0	$-\frac{1}{3}$	1

 $T(B_3)$

		x_1	x_2	x_3	x_4	x_5
f	$\frac{57}{5}$	0	0	$-\frac{9}{5}$	$-\frac{2}{5}$	0
x_2	$\frac{9}{5}$	0	1	$-\frac{3}{5}$	$\frac{1}{5}$	0
x_1	$\frac{7}{5}$	1	0	$\frac{1}{5}$	$-rac{2}{5}$	0
x_5	$-\frac{4}{5}$	0	0	$-\frac{2}{5}$	$-\frac{1}{5}$	1

$$b_{10} = -3 < 0$$

$$\theta = \min\{\frac{b_{02}}{b_{12}}, \frac{b_{04}}{b_{14}}\}$$

$$= \min\{\frac{-3}{-\frac{5}{3}}, \frac{-1}{-\frac{1}{3}}\}$$

$$= \frac{-3}{-\frac{5}{3}}$$

$$B_3 = \begin{bmatrix} P_2 & P_1 & P_5 \end{bmatrix}$$

做初等行变换,使得单纯形表中新的基变量 x_2 所在列为标准单位向量:

$$-\frac{3}{5}r_{1}$$

$$r_{0} + \frac{3}{3}r_{1}$$

$$r_{2} - \frac{3}{3}r_{1}$$

$$r_{3} + \frac{2}{3}r_{1}$$

 $T(B_3)$

		x_1	x_2	x_3	x_4	x_5
f	$\frac{57}{5}$	0	0	$-\frac{9}{5}$	$-\frac{2}{5}$	0
x_2	$\frac{9}{5}$	0	1	$-\frac{3}{5}$	$\frac{1}{5}$	0
x_1	$\frac{7}{5}$	1	0	$\frac{1}{5}$	$-\frac{2}{5}$	0
x_5	$-\frac{4}{5}$	0	0	$-\frac{2}{5}$	$\left(-\frac{1}{5}\right)$	1

 $T(B_4)$

		x_1	x_2	x_3	x_4	x_5
f	13	0	0	-1	0	-2
x_2	$\sqrt{1}$	0	1	-1	0	1
x_1	3 ≥	0 1	0	1	0	-2
x_4	4	0	0	2	1	-5

$$b_{30} = -\frac{4}{5} < 0$$

$$\theta = \min\{\frac{b_{03}}{b_{33}}, \frac{b_{04}}{b_{34}}\}$$

$$= \min\{\frac{-\frac{9}{5}}{-\frac{2}{5}}, \frac{-\frac{2}{5}}{-\frac{1}{5}}\}$$

$$= \frac{-\frac{2}{5}}{-\frac{1}{5}}$$

$$B_4 = \begin{bmatrix} P_2 & P_1 & P_4 \end{bmatrix}$$

做初等行变换,使得单纯形 表中新的基变量 x_4 所在列为 标准单位向量:

$$-5r_3$$

$$r_0 + \frac{2}{5}r_3$$

$$r_1 - \frac{1}{5}r_3$$

$$r_2 + \frac{2}{5}r_3$$

$$f_{\min} = 13$$

从以上求解过程可以看到对偶单纯形法有以下优点:

- 初始解可以是非可行解,只要检验数都为负数时就可以进行基的变换,这时不需要加入人工变量, 而进形两阶段方法, 因此有时可以简化计算.
- ●当变量多于约束条件,对这样的线性规划问题用对偶单纯形法计算可以减少计算工作量. 因此对变量较少,而约束条件很多的线性规划问题,可先将它变换成对偶问题,再用对偶单纯形法求解.

1.7 灵敏度分析简介

考虑线性规划问题

$$\min f = c^T x$$

$$\begin{cases}
Ax = b \\
x \ge 0
\end{cases}$$

现实问题中, 涉及的系数 a_{ij}, b_i, c_i 都是变量. 例如随市场供需的变化,原料的供应, 生产工艺的改进等,这些量会随时间变化.

问题:这些系数在什么范围内波动,可以保持最优解或最优基不变?

这类问题的研究称为灵敏度分析.

两个简单情形:

情形I. 假设A,c保持不变, $\bar{b}=b+(0,\cdots,\Delta b_k,\cdots,0)^T$,即仅第k个分量发生扰动 $\bar{b_k}=b_k+\Delta b_k$.假设原问题已经找到最优基B,那么 Δb_k 在什么范围内变化,可以保证B仍然是问题的最优基?

观察到: b 的变化,不会影响B作为问题的基,且单纯形表T(B)中的检验数 $b_{0i}, 1 \le i \le n$ 保持不变 $(c_B^T B^{-1} A - c^T$ 不变). 故B是否是仍是最优基,取决于 $B^{-1} \bar{b} \ge 0$ 是否仍然成立.

$$B^{-1}\bar{b} = B^{-1}b + B^{-1}\Delta b = B^{-1}b + B^{-1}\begin{bmatrix} 0\\ \vdots\\ \Delta b_k\\ \vdots\\ 0\end{bmatrix} \ge 0$$

这会引入m个关于 Δb_k 的不等式.

例6. 假设某工厂使用原料 B_1, B_2 生产三种产品 A_1, A_2, A_3 . 原料每月的供应量, 生产每万件产品需要原料的数量,以及每万件产品的价格如表所示.

- (1) 该厂应如何安排每月的生产,使总收益最大?
- (2) 假设原料 B_1 的供应量 $b_1 = 180$ 发生波动. 求波动 Δb_1 的范围, 使(1)所得的最优基保持不变.

原料	A_1	A_2	A_3	原料月供应量 (吨)
B_1	4	3	1	180
B_2	2	6	3	200
价格(万/万件)	12	5	4	

表1.5-3

解 (1) 设生产 A_i 的数量为 x_i . 需要求解问题为:

$$\max f = 12x_1 + 5x_2 + 4x_3$$

$$\begin{cases} 4x_1 + 3x_2 + x_3 & \leq 180 \\ 2x_1 + 6x_2 + 3x_3 & \leq 200 \\ x_1 \geq 0, x_2 \geq 0 \end{cases}$$

由单纯形法求得最优基 $B = \begin{bmatrix} P_1 & P_3 \end{bmatrix}$,单纯形表

		x_1	x_2	x_3	x_4	x_5
f'	-584	0	$-\frac{29}{5}$	0	$-\frac{14}{5}$	$-\frac{2}{5}$
x_1	34	1	$\frac{3}{10}$	0	$\frac{3}{10}$	$-\frac{1}{10}$
x_3	44	0	$\frac{9}{5}$	1	$-\frac{1}{5}$	$\frac{2}{5}$

$$\underline{\underline{}}$$
 $x_1 = 34, x_2 = 0, x_3 = 44, f_{\text{max}} = 584.$

$$B^{-1}\bar{b} = B^{-1}b + B^{-1} \begin{bmatrix} \Delta b_1 \\ 0 \end{bmatrix} \ge 0$$

注意到

$$B^{-1}b = \begin{bmatrix} 34 \\ 44 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} \frac{3}{10} & -\frac{1}{10} \\ -\frac{1}{5} & \frac{2}{5} \end{bmatrix}$$

得到线性不等式

$$\begin{cases} 34 + \frac{3}{10}\Delta b_1 & \geq 0 \\ 44 - \frac{1}{5}\Delta b_1 & \geq 0 \end{cases}$$

所以当 $-113\frac{1}{3} \le \Delta b_1 \le 220$, $B = \begin{bmatrix} P_1 & P_3 \end{bmatrix}$ 仍然是最优基.

情形II. 假设新的约束条件被加入, 其余条件保持不变. 如何从原问题的最优基得到新问题的最优基?

例7. 在例6中,假设生产原料 B_3 由原先不限量,变为每月至多150吨. 该厂应如何安排每月生产,使总收益最大?

表1	.5-4
イ ス I	.0 T

原料	A_1	A_2	A_3	原料月供应量 (吨)
B_1	4	3	1	180
B_2	2	6	3	200
B_3	2	3	2	150
价格(万/万件)	12	5	4	

解:新问题的标准形式

$$\min f' = -12x_1 - 5x_2 - 4x_3$$

$$\begin{cases}
4x_1 + 3x_2 + x_3 + x_4 &= 180 \\
2x_1 + 6x_2 + 3x_3 + x_5 &= 200 \\
2x_1 + 3x_2 + 2x_3 + x_6 &= 150 \\
x_i \ge 0, i = 1, 2, \cdots, 6
\end{cases}$$

T(B)

		x_1	x_2	x_3	x_4	x_5
f'	-584	0	$-\frac{29}{5}$	0	$-\frac{14}{5}$	$-rac{2}{5}$
x_1	34	1	$\frac{3}{10}$	0	$\frac{3}{10}$	$-\frac{1}{10}$
x_3	44	0	$\frac{9}{5}$	1	$-\frac{1}{5}$	$\frac{2}{5}$

$$B = \begin{bmatrix} P_1 & P_3 \end{bmatrix}$$

		x_1	x_2	x_3	x_4	x_5	x_6
f'	-584	0	$-\frac{29}{5}$	0	$-\frac{14}{5}$	$-\frac{2}{5}$	0
x_1	34	1	$\frac{3}{10}$	0	$\frac{3}{10}$	$-\frac{1}{10}$	0
x_3	44	0	$\frac{9}{5}$	1	$-\frac{1}{5}$	$\frac{2}{5}$	0
x_6	-6	0	$-rac{6}{5}$	0	$-\frac{1}{5}$	$-\frac{3}{5}$	1

$$B' = \begin{bmatrix} P_1 & P_3 & P_6 \end{bmatrix}$$

B' 是基,不是可行基,但是对偶可行基!

T(B')

		x_1	x_2	x_3	x_4	x_5	x_6
f'	-584	0	$-\frac{29}{5}$	0	$-\frac{14}{5}$	$-\frac{2}{5}$	0
x_1	34	1	$\frac{3}{10}$	0	$\frac{3}{10}$	$-\frac{1}{10}$	0
x_3	44	0	$\frac{9}{5}$	1	$-\frac{1}{5}$	$\frac{2}{5}$	0
x_6	-6	0	$-\frac{6}{5}$	0	$-\frac{1}{5}$	$-\frac{3}{5}$	1

$$B' = \begin{bmatrix} P_1 & P_3 & P_6 \end{bmatrix}$$

对偶单纯形法

		x_1	x_2	x_3	x_4	x_5	x_6
f'	-580	0	-5	0	$-\frac{8}{3}$	0	$-\frac{2}{5}$
x_1	35	1	$\frac{1}{2}$	0	$\frac{1}{3}$	0	$-\frac{1}{6}$
x_3	40	0	1	1	$-\frac{1}{3}$	0	$\frac{2}{3}$
x_5	10	0	2	0	$\frac{1}{3}$	1	$-\frac{5}{3}$

$$B'' = \begin{bmatrix} P_1 & P_3 & P_5 \end{bmatrix}$$

$$x_1 = 35, x_2 = 0, x_3 = 40$$

$$f_{\rm max} = 580$$