computing

Max-C

QAOA

algorithm
Applying QAOA t

Example - the

How to determi

Relation to Quantu

Adiabatic Algorithm

My result

Found patterns Fractional error

Conclusions and Future

Quantum Approximate Optimization Algorithm

Performance on Max-Cut using Heuristic Parameter determination

Joost Bus

Delft University of Technology, the Netherlands

23 July 2020

Supervisors

Matthias Möller Carmina G. Almudever

Quantum

Max-Cı

QAQA

The general algorithm Applying QAOA 1 Max-Cut

Example -Diamond g

the parameters?
Relation to Quantu

My results
Found patterns

Conclusion and Future Research

Overview

- 1 Quantum computing
- 2 Max-Cut
- 3 QAOA

The general algorithm

Applying QAOA to Max-Cut

Example - the Diamond graph

How to determine the parameters?

Relation to Quantum Adiabatic Algorithm

4 My results

Found patterns Fractional error

5 Conclusions and Future Research

Quantum computing

Max-Cu

OAOA

algorithm
Applying QAOA t

Example - the

Diamond graph

the parameters?

Relation to Qua

iviy results

Fractional err

Conclusion and Future Research

Why Quantum Computing?

- Medicine
- Chemistry
- Cryptography
- Optimization

Quantum computing

Max-Cut

QAOA

algorithm
Applying QAOA

Example - the Diamond grapl

How to determi

Relation to Qu

Adiabatic Algor

My results

Found patterns Fractional erro

Conclusion and Future Research

Are we there yet?

The current state of Quantum Computers

- 10 ~ 100 qubits
- Limited connectivity
- Non-negligible error rates
- No error correction

Quantum computing

Max-Cut

QAOA

algorithm
Applying QAOA

Example -

How to determi

the parameters

Adiabatic Algori

My results

Found patterns

Fractional erro

and Future Research

Are we there yet?

The current state of Quantum Computers

- 10 ~ 100 qubits
- Limited connectivity
- Non-negligible error rates
- No error correction

Do current devices still have useful applications?

Quantum computing

Max-Cu

OAOA

algorithm
Applying QAOA

Example - the

How to determi

Relation to Quant

My resul

Found pattern

Conclusion and Future Research

Are we there yet?

Do current devices still have useful applications?

Quantum computing

Max-Cu

$\bigcirc \triangle \bigcirc \triangle$

The general algorithm
Applying QAOA to

Example - the

Diamond graph

Relation to Quantum

Adiabatic Algorithm

My result

Found patterns

Conclusions and Future

Quantum Computing - The basics

Quantum computing

Max-Cu

QAOA

algorithm
Applying QAOA

Example - the

How to determ

Relation to Quantu

My result

Found pattern Fractional erro

Conclusion and Future Research

Quantum Computing - The basics

One quantum bit or qubit can be described as a **superposition**, or (linear) combination of two states with corresponding **amplitudes**

$$|\psi\rangle = \alpha_1|0\rangle + \alpha_2|1\rangle \tag{1}$$

Quantum computing

Max-Cu

QAOA

algorithm

Applying QAOA

Example - the Diamond graph

How to determine the parameters?

My reculte

Found pattern

Conclusions and Future Research

Quantum Computing - The basics

One quantum bit or qubit can be described as a **superposition**, or (linear) combination of two states with corresponding **amplitudes**

$$|\psi\rangle = \alpha_1|0\rangle + \alpha_2|1\rangle \tag{1}$$

Similarly, for a two qubit system we the system is described with four amplitudes.

$$|\alpha_1|00\rangle + |\alpha_2|01\rangle + |\alpha_3|10\rangle + |\alpha_4|11\rangle$$
 (2)

Quantum computing

Max-Cu

QAOA

algorithm
Applying QAOA

Example - the Diamond graph

the parameters?

My results

Found patterns Fractional erro

and Future Research

Quantum Computing - The basics

One quantum bit or qubit can be described as a **superposition**, or (linear) combination of two states with corresponding **amplitudes**

$$|\psi\rangle = \alpha_1|0\rangle + \alpha_2|1\rangle \tag{1}$$

Similarly, for a two qubit system we the system is described with four amplitudes.

$$\alpha_1|00\rangle + \alpha_2|01\rangle + \alpha_3|10\rangle + \alpha_4|11\rangle$$
 (2)

In general, we need 2^n amplitudes to describe an n qubit system and some say the system is in 2^n states "at the same time". Hence the exponential power of the quantum computer.

$$\alpha_1|0\ldots 0\rangle + \cdots + \alpha_{2^n}|1\ldots 1\rangle$$
 (3)

Quantum computing

Max-Cu

QAQA

The general algorithm Applying QAOA

Example - the

Diamond graph

Relation to Quanti

Adiabatic Algorithm

Found patterns

Conclusion and Future Research

Quantum Computing - The basics

However, we are not able to measure the amplitudes directly. Upon measurement, the system **collapses** into *one* classical state with probability related to the magnitude of the corresponding amplitude.

Quantum computing

TTTG/C

QAOA

algorithm
Applying QAOA

Example - the

Diamond graph

the parameters?

Relation to Quant Adiabatic Algorith

My results
Found patterns

Fractional erro

and Future Research

Quantum Computing - The basics

Example with 2 qubits

Given the following system

$$\alpha_1|00\rangle + \alpha_2|01\rangle + \alpha_3|10\rangle + \alpha_4|11\rangle$$
 (4)

we find the following results with their corresponding probabilities

State	Amplitude	Probability
00	α_1	$ \alpha_1 ^2$
01	$lpha_2$	$ \alpha_2 ^2$
10	$lpha_{3}$	$ \alpha_3 ^2$
11	$lpha_{ t 4}$	$ \alpha_4 ^2$

Quantum computing

Max-Cu

QAO/

The general algorithm Applying QAOA

Example - the

Diamond graph

Relation to Quantu

Adiabatic Algorithm

Found patterns

Conclusion and Future Research

Quantum Computing - The basics

So the amplitudes have a special meaning: the squared magnitude signifies the probability of a particular state. We can change the amplitudes by applying gates, which are descibed by (unitary) matrices.

Quantum computing

Quantum Computing - The basics

So the amplitudes have a special meaning: the squared magnitude signifies the probability of a particular state. We can change the amplitudes by applying gates, which are descibed by (unitary) matrices.

Quantum

Max-Cut

OAOA

The general algorithm
Applying QAOA to

Example - the

How to determin

Relation to Quantu

Adiabatic Algorithm

My result

Fractional error

Conclusions and Future

The Max-Cut problem

computing

Max-Cut

QAOA

algorithm
Applying QAOA 1

Example - the

How to determine

Relation to Quantu

Adiabatic Algorithm

My result

Fractional erro

Conclusions
and Future

We would like to find a **bipartition** that maximizes the following **cost function**

$$C = \sum_{i \in S, j \in \bar{S}} w_{i,j} \tag{5}$$

Quantun

Max-Cut

QAOA

algorithm
Applying QAOA 1

Example - the

How to determine

Relation to Quantu

Relation to Quantur Adiabatic Algorithm

Found patterns Fractional error

Conclusions and Future Research

We would like to find a **bipartition** that maximizes the following **cost function**

$$C = \sum_{i \in S, j \in \bar{S}} w_{i,j} \tag{5}$$

Equivalently, we can use a **binary string** to represent the bipartition

$$C = \sum_{\{i,j\}} \frac{w_{i,j}}{2} (1 - z_i z_j) \tag{6}$$

where
$$\mathbf{z} \in \{-1,1\}^n$$
 and $z_i = \begin{cases} 1, & \text{if } i \in S \\ -1, & \text{if } i \in \overline{S} \end{cases}$

Quantum

Max-Cut

The general algorithm

Applying QAOA

Example - the Diamond grapl

How to determ the parameters

Relation to Quant

Adiabatic Algorithm

Found pattern

Conclusions and Future Research

The Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm is designed to tackle combinatorial optimization problems. In general, these can be specified with n bits and m clauses. The aim is to satisfy as many clauses as possible

$$C = \sum_{\alpha=1}^{m} C_{\alpha} \tag{7}$$

where $C_{\alpha} = \begin{cases} 1, & \text{if clause } C_{\alpha} \text{ is satisfied} \\ 0, & \text{if clause } C_{\alpha} \text{ is } \textit{not satisfied} \end{cases}$

)uantum

Max-Cut

QAOA

The general algorithm Applying QAOA

Example - the

Diamond graph

Relation to Qua

Adiabatic Algorit

My result

Fractional erro

Conclusion and Future Research

Schematic of the QAOA circuit

Figure adapted from Zhou et al. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices (2018)

Quantum

Max-Cut

QAQA

The general algorithm

Max-Cut

Diamond graph

the parameters?

Adiabatic Algorith

My result

Fractional err

Fractional erri

and Future Research

The Quantum Part

Figure adapted from Zhou et al. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices (2018)

Quantum computing

Max-Cu

QAOA The general

algorithm Applying QAOA t

Example - th

How to determ

the parameters

Adiabatic Algor

My results

Found patterns

Fractional erro

and Future Research

We start from $|+\rangle^{\otimes n}$ which is the **equal superposition** over all 2^n bit strings (or equivalently bipartitions)

$$|+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle \tag{8}$$

Quantum computing

Max-Cu

QAOA The general

algorithm Applying QAOA 1

Example - tl

How to determ

Relation to Quantur

Adiabatic Algorithm

Found patterns

Conclusions and Future

We start from $|+\rangle^{\otimes n}$ which is the **equal superposition** over all 2^n bit strings (or equivalently bipartitions)

$$|+\rangle^{\otimes n} = \frac{1}{\sqrt{2^n}} \sum_{\mathbf{x} \in \{0,1\}^n} |\mathbf{x}\rangle \tag{8}$$

So the amplitude of every bit string is the same

Quantum

Max-Cu

QAOA The general

algorithm Applying QAOA t

Example - the

How to determi

Relation to Qu

Adiabatic Alg

iviy result:

Fractional error

Conclusions and Future Research

Next we alternately apply two gates, the **cost unitary** and the **mixer unitary**, derived from two Hamiltonians.

We repeat this *p* times

Quantum

Max-Cut

QAOA The general

algorithm Applying QAOA

Example - the

Diamond graph

the parameters

Relation to Quant Adiabatic Algorith

My results

Found patterns Fractional erro

Conclusion and Future Research

First of the two being the **cost unitary**. This unitary is derived from the **cost Hamiltonian** that encodes the objective function \mathcal{C}

$$H_C \equiv \hat{C} = \begin{bmatrix} C(0,\dots,0) & & & \\ & \ddots & & \\ & & C(1,\dots,1) \end{bmatrix}$$
(9)

Quantum computing

Max-Cut

QAOA The general

algorithm Applying QAOA 1

Example - the

How to determi

the parameter

Relation to Qu Adiabatic Algo

Mariana

e .

Fractional error

Conclusions and Future Research

From the cost Hamiltonian we derive the cost unitary

$$H_C \longrightarrow U(H_C, \gamma)$$
 (10)

with

$$U(H_C, \gamma) = e^{-i\gamma H_C} \tag{11}$$

for some real parameter $\gamma \in \mathbb{R}$

Quantum

Max-Cut

QAOA The general

algorithm Applying QAOA t

Example - the

How to determ

Relation to Qua

Adiabatic Algorith

Found patterns

Conclusions and Future Research

Secondly, the **mixer unitary**, derived from the **mixer Hamiltonian**

$$H_B = \sum_{k=1}^n \sigma_x^{(k)} \tag{12}$$

with $\sigma_x^{(k)}$ is the Pauli-X gate applied to the kth qubit, which is also called the quantum NOT-gate

$$\sigma_{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \tag{13}$$

Quantum

Max-Cut

QAOA The general

algorithm Applying QAOA t

Max-Cut Evample the

Diamond graph

the parameters

Relation to Qu

NA.

Found patterns

Conclusion

and Future Research

Analogous to the cost unitary we derive the **mixer unitary** is derived from the mixer Hamiltonian

$$H_B \longrightarrow U(H_B, \beta)$$
 (14)

the mixer unitary is given by

$$U(H_B, \beta) = e^{-i\beta H_B} \tag{15}$$

for some real parameter $\beta \in \mathbb{R}$

Quantum

Max-Cut

QAOA The general

algorithm
Applying QAOA to

Max-Cut

How to determ

the paramete

Relation to Q Adiabatic Alg

My result

Found pattern

Conclusions and Future Research

In the end we prepared the parametrized state

$$|\gamma,\beta\rangle = U(H_B,\beta_p)U(H_C,\gamma_p)\dots\underbrace{U(H_B,\beta_1)U(H_C,\gamma_1)}_{\text{one layer}}|+)^{\otimes n}$$

$$p \text{ layers}$$
(16)

after which we measure the outcome.

Quantum computing

Max-Cut

QAOA

The general algorithm Applying QAOA

Example - the

How to determ

the parameters?

Relation to Quantu

Adiabatic Algorith

My result

Found patterns Fractional erro

Conclusions and Future Research

The goal: maximize the expectation value

Our aim is to prepare a state such that the **expectation value** of the cost Hamiltonian is maximized

$$F_{p}(\gamma,\beta) = \langle \gamma,\beta | H_{C} | \gamma,\beta \rangle \tag{17}$$

for some sequences of parameters

$$\gamma = (\gamma_1, \ldots, \gamma_p)$$

$$\boldsymbol{\beta} = (\beta_1, \ldots, \beta_p)$$

Quantum computing

IVIAX C

QAOA

Applying QAOA to

Max-Cut

Diamond gra

How to determ

Relation to Quanti

Adiabatic Algorithi

My resul

Found pattern Fractional erro

and Future

Applying QAOA to Max-Cut

We translate the objective function into a Hamiltonian

$$C = \sum_{\{i,j\}} w_{i,j} (1 - z_i z_j)$$
 (18)

$$\downarrow
H_C = \sum_{\{i,j\}} w_{i,j} \left(I - \sigma_z^{(i)} \sigma_z^{(j)} \right)$$
(19)

computing

NA --- C--

QAOA

Applying QAOA to

Max-Cut

Diamond grap

How to determ the parameters

Relation to Quanti

Adiabatic Algorith

My resul

Found pattern: Fractional erro

Conclusions and Future Research

Applying QAOA to Max-Cut

We translate the objective function into a Hamiltonian

$$C = \sum_{\{i,j\}} w_{i,j} (1 - z_i z_j)$$
 (18)

$$H_C = \sum_{\{i,j\}} w_{i,j} \left(I - \sigma_z^{(i)} \sigma_z^{(j)} \right) \tag{19}$$

Using the fact σ_z has eigenvalues 1 and -1. Here $\sigma_z^{(i)}$ denotes the Pauli-Z matrix applied to the ith qubit.

$$\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \tag{20}$$

computing

Max-Cut

QAOA

Applying QAOA to

Max-Cut

Diamond grapl

the parameters

Relation to Quant Adiabatic Algorith

My result

Found patterns Fractional erro

Conclusion and Future Research

Applying QAOA to Max-Cut

We can construct the necessary unitaries with local operators

$$U(H_C, \gamma) = e^{-i\gamma H_C} = \prod_{\{i,j\} \in E} e^{-i\gamma w_{i,j}(1 - \sigma_z^{(i)} \sigma_z^{(j)})}$$
(21)

$$U(H_B, \beta) = e^{-i\beta H_B} = \prod_{k \in V} e^{-i\beta \sigma_x^{(k)}}$$
 (22)

Note that the circuit is dependent on the graph G = (V, E)

Now we are set to construct the circuit for Max-Cut!

Quantum

May Cur

OAOA

algorithm
Applying QAOA t

Example - the

Diamond graph

the parameters?

Relation to Quantum Adiabatic Algorithm

Found pattern

Fractional erro

and Future Research

Example - the Diamond graph

Quantum computing

Mary Cont

OAOA

algorithm
Applying QAOA

Example - the Diamond graph

How to determi

Relation to Quanti

Adiabatic Algorithm

My result

Found patterns Fractional error

Conclusion and Future

Example - the circuit

Quantum computing

Max-Cut

QAQA

algorithm
Applying QAOA 1

Example - the

Diamond graph

the parameters?

Relation to Quant Adiabatic Algorith

Mv resul

Found pattern

Conclusions and Future

Example - the optimal cut

Note that the optimal cut is $S = \{0, 2\}, \overline{S} = \{1, 3\}$ or in terms of a binary string 0101 or 1010

Quantum computing

May Cut

QAOA

algorithm
Applying QAOA 1

Example - the Diamond graph

How to determine the parameters?

Relation to Quantum Adiabatic Algorithm

My result

Found patterns Fractional error

Conclusion and Future

Example - Maximizing the expectation value

 $p=1, F_1 = 3.24$

Quantum computing

May Cut

QAOA

algorithm
Applying QAOA 1

Example - the Diamond graph

How to determine the parameters?

Relation to Quantum Adiabatic Algorithm

My resul

Found patterns Fractional erro

Conclusions and Future

Example - Maximizing the expectation value

 $p=1, F_1 = 3.24$

 $p=2, F_2 = 3.39$

 $=3, F_3 = 3.87$

Quantum computing

. Maria Cont

QAQA

algorithm
Applying QAOA 1

Example - the Diamond graph

How to determine the parameters?

Adiabatic Algorithm

My result

Found patterns Fractional erro

Conclusions and Future

Example - Maximizing the expectation value

10

 $p=1, F_1 = 3.24$

 $p=2, F_2 = 3.39$

(uantum

Max-Cut

QAQA

The general algorithm Applying QAOA

Example -

How to determine

the parameters?

Relation to Quanti

Managedia

Found patter Fractional en

Conclusion

Determining the parameters $\gamma, oldsymbol{eta}$

Figure: Schematic of the QAOA circuit using VQE optimization.¹

¹Figure adapted from Zhou et al. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices (2018)

Quantum

Max-Cut

QAQA

The general algorithm Applying QAOA

Example - the

Diamond graph

Relation to Quantum

Adiabatic Algorithm

Found natter

Fractional erro

Conclusions and Future

Relation to Quantum Adiabatic Algorithm

Figure adapted from Verdon et al. A quantum algorithm to train neural networks using low-depth circuits (2017)

)uantum

compacin

$\bigcirc \land \bigcirc \land$

algorithm
Applying QAOA

Example - the

Diamond graph

the parameters?

Relation to Quantum

Adiabatic Algorithm

My result

Found patter Fractional er

Conclusion: and Future Research

Relation to Quantum Adiabatic Algorithm

Figure: Optimal parameter patterns for unweighted 3-regular graphs with 16 nodes²

²Zhou et al. Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices (2018)

Quantum computing

Max-Cut

OAOA

algorithm
Applying QAOA

Example - the Diamond gran

How to determi

Relation to Quantum

Adiabatic Algorithm

My results
Found patterns

Conclusion and Future

Exploiting the relation to QAA - the INTERP method

Find local optimum

Calculate initial parameters for next p using interpolation

Increment p and repeat until desired depth

Quantum

May Cut

$\bigcirc \land \bigcirc \land$

algorithm
Applying QAOA t

Example - the

Diamond graph

Relation to Quantum

Adiabatic Algorithm

Found pattern

Conclusion:

Exploiting the relation to QAA - the INTERP method

Find local optimum

Calculate initial parameters for next p using interpolation

Calculate initial parameters for desired depth

May Cu

QAOA

algorithm
Applying QAOA 1

Example - the Diamond graph

How to determi

Relation to Quantum

Adiabatic Algorithm

My results
Found patterns
Fractional erro

Conclusions and Future Research

- 1 analysis on INTERP method on different graphs
 - cyclic graphs
 - 3-regular graphs, weighted and unweighted
 - Erdős-Rényi graphs
- ② benchmark against Goemans-Williamson, the best known classical approximation algorithm
- 3 polynomial time

computing

May Cut

 \bigcirc

algorithm

Example - the

Diamond graph

the parameters?

Adiabatic Algorithm

My resul

Found patterns

Conclusions and Future Research

Found patterns

Quantum

Max-Cu

ΟΔΟΔ

The general algorithm Applying QAOA

Example - the

Diamond graph

Relation to Quant

Adiabatic Algorit

iviy result

Found patterns
Fractional error

Conclusion and Future Research

Unweighted 3-regular graphs

Fractional error 1 - r decays exponentially with p

The horizontal lines indicate the average performance of the classical Goemans-Williamson

uantum

May Cut

QAQA

The general algorithm
Applying QAOA

Example - the

How to determin

Relation to Quan Adiabatic Algorit

My result

Found patterns Fractional error

Conclusions and Future

Weighted 3-regular graphs

Fractional error 1-r decays exponentially with \sqrt{p}

The horizontal lines indicate the average performance of the classical Goemans-Williamson

Similar relations were found for the Erdős-Rényi graphs

computing

Max-Cu

QAOA

The general algorithm
Applying QAOA 1

Example - the Diamond graph

How to determine

Relation to Quant Adiabatic Algorith

My result

Found patterns Fractional error

Conclusions and Future Research

Conclusions

- INTERP beats the classical Goemans-Williamson for relatively low p ≈ 7 for small graphs
- The method needs a lot of function evaluations to determine good angles
- However, this number increases polynomially with p and n so it might offer advantages for large graphs

computing

Max-Cut

QAOA

The general algorithm
Applying QAOA

Example - the Diamond graph

How to determine the parameters?

Relation to Quant Adiabatic Algorith

My result

Fractional erro

Conclusions and Future Research

Conclusions

- INTERP beats the classical Goemans-Williamson for relatively low p ≈ 7 for small graphs
- The method needs a lot of function evaluations to determine good angles
- However, this number increases polynomially with p and n so it might offer advantages for large graphs

Quantum computing

Max-Cu

QAQA

The general algorithm Applying QAOA 1

Example - the Diamond graph

the parameters? Relation to Quant

Adiabatic Algorith

Found nattern

Fractional erro

Conclusions and Future Research

Conclusions

- INTERP beats the classical Goemans-Williamson for relatively low p ≈ 7 for small graphs
- The method needs a lot of function evaluations to determine good angles
- However, this number increases polynomially with p and n so it might offer advantages for large graphs

Quantum computing

May Cu

QAQA

algorithm
Applying QAOA to

Max-Cut Example - the

Diamond graph

the parameter

Relation to Quantum Adiabatic Algorithm

My roculty

Count control

Fractional erro

Conclusions and Future Research

Thank you!

Questions?

Time complexity

In Zhou et al. (2018) it was claimed the INTERP method is polynomial in p, and since the quantum circuit has depth 3m + n, we find that the complete INTERP method is polynomial in both n and p, but is this true in practice?

