Digital Integrated Circuit Lecture 22 Combinational Circuit Design

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 21

- SPICE MOSFET modes
 - -Level 1
 - -Level 3
 - -BSIM
 - Neural compact model

9.1 Introduction

9.1. Introduction (1)

- Combinational circuit
 - Its outputs depend only on the present inputs.
 - Its building blocks are logic gates.
- Sequential circuit (Ch. 10)
 - It has memory.
 - Its building blocks are registers and latches.

9.1. Introduction (2)

- Static CMOS gates
 - They use complementary NMOS and PMOS networks to drive 0 and 1 outputs, respectively.
 - It is robust, fast, energy-efficient, and easy to design.
- Other circuit families
 - Ratioed circuits
 - Dynamic circuits
 - Pass-transistor circuits

9.1. Introduction (3)

What makes a circuit fast?

$$t_{pd} \propto \frac{C}{I} \Delta V$$

- -We need:
- -Low capacitance (C)
- High current (I)
- -Small swing (ΔV)
- NMOS is preferred.
 - Static CMOS has a relatively large logical effort, due to the PMOS transistors.

9.2 Circuit Families

9.2. Circuit families (1)

- Consider a multiplexer. (D0, D1, and S)
 - It can be expressed as

$$Y = D0 \cdot \bar{S} + D1 \cdot S$$

-So, in general, we need a circuit to compute F = AB + CD.

9.2. Circuit families (2)

- Static CMOS
 - DeMorgan's law

$$\frac{\overline{A \cdot B} = \overline{A} + \overline{B}}{A + B} = \overline{A} \cdot \overline{B}$$

- Bubble pushing
- Design a circuit to compute F = AB + CD.

(a)

Fig. 9.2(a)

GIST Lecture

9.2. Circuit families (3)

Static CMOS

$$F = AB + CD = \overline{\overline{AB} \cdot \overline{CD}}$$

Fig. 9.2

9.2. Circuit families (4)

Using a compound gate (Recall L2.

$$F = AB + CD = \overline{\overline{AB} \cdot \overline{CD}}$$

9.2. Circuit families (5)

Logical effort of compound gates

$$Y = \frac{A \square B + C}{A \square B + C}$$

$$Y = \frac{A \square B + C \square D}{A \square B + C \square D}$$

$$\begin{array}{c|c}
A \longrightarrow \overline{4} & B \longrightarrow \overline{4} \\
C \longrightarrow \overline{4} & Y \\
A \longrightarrow \overline{2} & C \longrightarrow \overline{1} \\
B \longrightarrow \overline{2} & \overline{2} & \overline{2} & \overline{2} \\
\end{array}$$

$$g_A = 3/3$$

 $p = 3/3$

$$g_A = 6/3$$

 $g_B = 6/3$
 $g_C = 5/3$
 $p = 7/3$

$$g_A = 6/3$$

 $g_B = 6/3$

$$g_C = 6/3$$

 $g_D = 6/3$
 $p = 12/3$

GIST Lecture

$$Y = \frac{\text{Complex AOI}}{A\square(B+C)+D\square E}$$

$$g_A = 5/3$$

$$g_B = 8/3$$

$$g_{\rm C} = 8/3$$

$$g_D = 8/3$$

$$g_E = 8/3$$

$$p = 16/3$$

9.2. Circuit families (6)

- Input order
 - Consider the falling output transition. (One input holds a stable 1.)
 - If input B rises later, the Elmore delay is 7RC.
 - If input A rises later, the Elmore delay is 6RC.

If one signal is known to arrive later than the others, connect the latest signal to the inner input.

9.2. Circuit families (7)

- Asymmetric gates
 - In this example, suppose that A is most critical.
 - The circuit is optimized for input-to-output delay at the expense of reset.

Fig. 9.7

9.2. Circuit families (8)

- Skewed gates
 - Skewed gates favor one edge over another.
 - In this example, suppose that the rising output of the inverter is most critical.
 - -Then, we may downsize the noncritical NMOS transistor.
 - Improvement of the critical transition at the expense of noncritical one

9.2. Circuit families (9)

- Best P/N ratio?
 - Assume that the PMOS has μ times higher resistance.
 - -Then,

$$t_{pdf} = (P+1)$$

$$t_{pdr} = (P+1)\frac{\mu}{P}$$

$$t_{pd} = \frac{1}{2}(P+1)\left(1 + \frac{\mu}{P}\right)$$

- When we have $P=\mu$, t_{pd} becomes $(\mu+1)$.
- When we have $P = \sqrt{\mu}$, t_{pd} becomes $\frac{1}{2} (\sqrt{\mu} + 1)^2$.
- Area, power, and reliability should be considered.

Thank you!