Utorok: 16.00

Vzorové riešenie 3. zadania

SYNTÉZA SEKVENČNÝCH LOGICKÝCH OBVODOV

Navrhnite synchrónny sekvenčný obvod so vstupom x a výstupom y s nasledujúcim správaním: na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť (postupnosti sa môžu prekrývať, v tomto prípade 1010101 je možné chápať ako dve postupnosti). Vlastné riešenie overte progr. prostriedkami ESPRESSO a LogiSim (príp LOG alebo FitBoard).

Úlohy:

- 1) V pamäťovej časti použite minimálny počet preklápacích obvodov JK-PO.
- 2) Navrhnuté B-funkcie v tvare MDNF overte programom pre ESPRESSO. Pri návrhu B-funkcií klaďte dôraz na skupinovú minimalizáciu funkcií.
- 3) Optimálne riešenie (treba zhodnotiť, ktoré riešenie je lepšie a prečo) vytvorte obvod s členmi NAND (výhradne NAND, t.j. ani žiadne NOT).
- 4) Výslednú schému nakreslite v simulátore LogiSim (príp. LOG alebo FitBoard) a overte simuláciou.
- 5) Riešenie vyhodnoť te (zhodnotenie zadania, postup riešenia, vyjadrenie sa k počtu logických členov).

Utorok: 16.00

Riešenie

Zadaná postupnosť: 101000

Prechodová tabuľka pre automat typu Moore

	Nový stav		Y	Čo je
stav	x=0	x=1		splnené?
S0	S0	S 1	0	Nič
S 1	S2	S 1	0	"1"
S2	S 0	S 3	0	"10"
S 3	S4	S 1	0	"101"
S4	S5	S 3	0	"1010"
S5	S6	S 1		"10100"
S 6	S0	S 1	1	"101000"

Zostrojíme prechodový graf stavového automat typu Moore.

Prechodový graf typu Moore (hodnota hrany reprezentuje hodnotu vstupnej premennej):

Kódovanie stavov

			z3		
		z 2	·		
	S 0	S2	S3	S1	
z 1	S4	S6	X	S5	

Stav	Z1Z2Z3
S0	000
S 1	001
S2	010
S 3	011
S4	100

Utorok: 16.00

S5	101
S6	110

Prechodová tabuľka pre automat MOOR po dosadení zakódovaných stavov

	Nový	stav	Y	Čo je
stav	x=0	x=1		splnené?
000	000	001	0	Nič
001	010	001	0	"1"
010	000	011	0	"10"
011	100	001	0	"101"
100	101	011	0	"1010"
101	110	001	0	"10100"
110	000	001	1	"101000"

Budiace funkcie pre D preklápacie obvody (D-PO) a výstupná funkcia

			z3	
		z 2		_
_	000	000	100	010
z 1	101	000	XXX	110
	011	001	XXX	001
X	001	011	001	001
		D1,D2,D3	}	
			z3	
		z2		_

				Z3	
			z2		
		0	0	1	0
Z	1	1	0	X	1
		0	0	X	0
X		0	0	0	0
			D1		_

			z3	
		z2		_
	0	0	0	1
z 1	0	0	X	1
	1	0	X	0
X	0	1	0	0
D2				

			z3	
		z2		_
_	0	0	0	0
z 1	1	0	X	0
1 1	1	1	X	1
X	1	1	1	1
		D3		

Utorok: 16.00

			z3		
		z2		_	
	0	0	0	0	
z 1	0	0	X	0	
	0	1	X	0	
X	0	0	0	0	
Y = X.Z1.Z2					

Budiace funkcie pre JK preklápacie obvody (JK-PO)

z->Z	J	K
0->0	0	X
0->1	1	X
1-> <u>0</u>	X	1
1-> <u>1</u>	X	<u>0</u>

			<u>Z3</u>	
		Z 2		_
_	X	1	1	X
Z1	X	1	X	X
	X	1	X	X
X	X	0	1	X

Utorok: 16.00

$$K2 = Z1 + Z3 + !X$$

			Z 3				
		Z 2					
_	0	0	X	X			
Z 1	1	0	X	X			
	1	1	X	X			
X	1	1	X	X			
J3 = X + Z1.!Z2							

			Z 3				
		Z2		_			
	X	X	1	1			
Z 1	X	X	X	1			
	X	X	X	0			
X	X	X	0	0			
K3 = !X							

Riešenia sú rovnaké.

Espresso

```
# vstup
.i 4
.06
.ilb X Z1 Z2 Z3
.ob J1 K1 J2 K2 J3 K3
.type\,fr
.p 16
0000 0-0-0-
0001 0-1-0-
0010 0-0-0-
0011 1-0-0-
0100 -0-1-0
0101 -0-0-1
0110 -1-1-1
0111 -----
1000 0-1-1-
1001 0-1-1-
1010 0-0-1-
1011 0-1-1-
1100 -1-0-0
1101 -1-1-0
1110 -1-1-0
1111 -----
.e
# vystup
J1 = (!X\&Z2\&Z3);
```

K1 = (Z2) / (X);

Utorok: 16.00

$$J2 = (X \& !Z2) / (!X \& !Z2 \& Z3) / (X \& Z3);$$
 $K2 = (!X \& !Z3) / (Z2) / (X \& Z3);$
 $J3 = (X);$

$$K3 = (!X\&Z2) / (!X\&!Z2\&Z3);$$

Prepis na NAND s využitím Shefferovej operácie:

$$J1 = \overline{X}.Z2.Z3 = ((X\uparrow)\uparrow Z2\uparrow Z3)\uparrow ((X\uparrow)\uparrow Z2\uparrow Z3)$$

$$K1 = Z2 + X = ((Z2\uparrow)\uparrow (X\uparrow))$$

$$J2 = X.Z1 + \overline{X}.Z3 = (X\uparrow Z1)\uparrow ((X\uparrow)\uparrow Z3)$$

$$K2 = (\overline{X}.\overline{Z3}) + Z2 + (X.Z3) = ((X\uparrow)\uparrow (Z3\uparrow))\uparrow (Z2\uparrow)\uparrow (X\uparrow Z3)$$

$$J3 = X$$

$$K3 = (\overline{X}.Z2) + (\overline{X}.\overline{Z2}.Z3) = ((X\uparrow)\uparrow Z2)\uparrow ((X\uparrow)\uparrow (Z2\uparrow)\uparrow Z3)$$

$$Y = X.Z1.Z2 = (X\uparrow Z1\uparrow Z2)\uparrow (X\uparrow Z1\uparrow Z2)$$

Vyjadrenie k počtu logických členov obvodu: 15 členov NAND a 3 preklápacie obvody JK Vyjadrenie k počtu vstupov do logických členov obvodu: 47 (34 v kombinačnej časti a 13 v pamäťovej časti

Utorok: 16.00

Schéma:

Zhodnotenie

Zhodnotenie Navrhli sme synchrónny sekvenčný obvod so vstupom x a výstupom y tak, že na výstupe Y bude 1 vždy vtedy, ak sa (zo začiatočného stavu) vo vstupnej postupnosti vyskytne postupnosť s tým, že postupnosti sa môžu prekrývať. Použili sme automat typu Moore. V pamäťovej časti sme použili minimálny počet JK-PO obvodov. Riešenie sme overili prostriedkami ESPRESSO a simuláciou v programe LOGISIM. Výsledný obvod má 15 logických členov NAND, a 47 vstupov (34 v kombinačnej časti a 13 v pamäťovej)