Algebraische Grundlagen der Informatik SoSe 2025

3030 2020

KAPITEL I: Komplexe Zahlen

1. Grundlagen

Dozentin: Prof. Dr. Agnes Radl

Email: agnes.radl@informatik.hs-fulda.de

Erinnerung: bisherige Zahlbereiche

- $\begin{array}{ll} \mathbb{N} = \{0,1,2,3,\ldots\} & \text{ "Menge der natürlichen Zahlen"} \\ \mathbb{N} = \{0,1,-1,2,-2,3,-3,\ldots\} & \text{ "Menge der ganzen Zahlen"} \\ \mathbb{N} = \left\{\frac{m}{n}:m,n\in\mathbb{Z},n\neq0\right\} & \text{ "Menge der rationalen Zahlen"} \\ \end{array}$
- $ightharpoonup \mathbb{R} = \mathsf{Menge}$ aller Dezimalzahlen "Menge der reellen Zahlen"

Erinnerung: bisherige Zahlbereiche

- $ightharpoonup \mathbb{N} = \{0,1,2,3,\ldots\}$ "Menge der natürlichen Zahlen"
- $ightharpoonup \mathbb{Z} = \{0,1,-1,2,-2,3,-3,\ldots\}$ "Menge der ganzen Zahlen"
- $ightharpoonup \mathbb{Q} = \left\{ rac{m}{n} : m, n \in \mathbb{Z}, n
 eq 0
 ight\}$ "Menge der rationalen Zahlen"
- $ightharpoonup \mathbb{R} = \mathsf{Menge}$ aller Dezimalzahlen "Menge der reellen Zahlen"

Bemerkung

- ▶ Die Gleichung x + 2 = 1 ist nicht in \mathbb{N} lösbar, aber in \mathbb{Z} .
- ▶ Die Gleichung 2x = 1 ist nicht in \mathbb{Z} lösbar, aber in \mathbb{Q} .
- ▶ Die Gleichung $x^2 = 2$ ist nicht in \mathbb{Q} lösbar, aber in \mathbb{R} .
- ▶ Die Gleichung $x^2 = -1$ ist nicht in $\mathbb R$ lösbar.

Definition

Unter der Menge der komplexen Zahlen $\mathbb C$ versteht man die Menge

Definition

Unter der Menge der komplexen Zahlen $\mathbb C$ versteht man die Menge

$$\mathbb{C} := \mathbb{R} \times \mathbb{R}$$
.

Die Addition "+", Subtraktion "–" und Multiplikation "·" zweier komplexer Zahlen (x,y) und (u,v) sind definiert durch

$$(x,y)+(u,v):=(x+u,y+v),$$

"Neutralelement" in
$$C$$
 ist $(0,0)$, denn $(x,y)+(0,0)=(x,y)$ für alle $(x,y)\in C$.

Definition

Unter der Menge der komplexen Zahlen $\mathbb C$ versteht man die Menge

$$\mathbb{C} := \mathbb{R} \times \mathbb{R}$$
.

Die Addition "+", Subtraktion "–" und Multiplikation "·" zweier komplexer Zahlen (x,y) und (u,v) sind definiert durch

$$(x,y)+(u,v):=(x+u,y+v),$$

$$(x,y)-(u,v):=(x-u,y-v),$$

Erinnerung an
$$\mathbb{R}$$
: $a_1b \in \mathbb{R}$
 $a \cdot b = 0 \longrightarrow a = 0$ oder $b = 0$

Gesucht: $(x_1y)\cdot (u_1v) = (0,0),$ (xu,yv) aber meder (x,y)=noch (u,v)=(0,0). $(\Lambda_10) \cdot (0_1\Lambda) = (\Lambda \cdot 0_1 \quad 0 \cdot \Lambda) = (0_10)_1$ aber $(\Lambda_10) \neq (0_10)_1 \quad (0_1\Lambda) \neq (0_10)_2$

Definition

Unter der Menge der komplexen Zahlen $\mathbb C$ versteht man die Menge

$$\mathbb{C} := \mathbb{R} \times \mathbb{R}$$
.

Die Addition "+", Subtraktion "–" und Multiplikation "·" zweier komplexer Zahlen (x,y) und (u,v) sind definiert durch

- (x,y)+(u,v):=(x+u,y+v),
- (x,y)-(u,v):=(x-u,y-v),
- $(x,y)\cdot (u,v):=(xu-yv,xv+yu).$

Definition

Unter der Menge der komplexen Zahlen $\mathbb C$ versteht man die Menge

$$\mathbb{C}:=\mathbb{R}\times\mathbb{R}$$

Die Addition "+", Subtraktion "–" und Multiplikation "·" zweier komplexer Zahlen (x, y) und (u, v) sind definiert durch

- (x, y) + (u, v) := (x + u, y + v),
- (x, y) (u, v) := (x u, y v),
- $(x,y)\cdot(u,v):=(xu-yv,xv+yu).$

In \mathbb{R} Neutralolement by gl. Multiplikation is 1 denn $x \cdot 1 = x$ für alle $x \in \mathbb{R}$. In \mathbb{C} Neutralelement by gl. Multiplikation is (1,0), denn $(x_1y) \cdot (1,0) = (x \cdot 1 - y \cdot 0, x \cdot 0 \cdot 1y \cdot 1) = (x \cdot 1)$

Beobachtungen

- ▶ Addition, Multiplikation sind kommutativ. (→ nachrechnen)
- ► Es gelten Assoziativ- und Distributivgesetz. (→ nachrechnen)
- ▶ (0,0) ist das "Neutralelement" der Addition, denn

$$(x,y)+(0,0)=(x+0,y+0)=(x,y).$$

ightharpoonup (1,0) ist das "Neutralelement" der Multiplikation, denn

$$(x,y)\cdot(1,0)=(x\cdot 1-y\cdot 0,x\cdot 0+y\cdot 1)=(x,y).$$

h R: 0 \$ 2 € R Neutralelement un 12 bzgl. Mutt. die Zahl, mid der 2 multipliziert werden muss, olamit 1 heraushommt Dann $w: \overline{z} = w \cdot \frac{1}{\overline{z}}$, $W_1 \overline{z} \in \mathbb{R}$, $\overline{z} \neq 0$. In C: Suche $\overline{z} \cdot \overline{z} \neq 0$. So dass $(x_1 y) \cdot (u_1 v) = (x_1 0)$. entralelement in C bzgl-Mulc.

Dann Division durch (xy) ist Multiplikation

mit (u,v).

$$(x_iy)\cdot(u_iv)=(xu-yv,xv+yu)$$

Beobachtung

Falls $(x, y) \neq (0, 0)$, dann ist

$$(x,y) \cdot \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$
$$= \left(x\frac{x}{x^2 + y^2} - y\frac{-y}{x^2 + y^2}, x\frac{-y}{x^2 + y^2} + y\frac{x}{x^2 + y^2}\right)$$

Division in C

Beobachtung

Falls $(x, y) \neq (0, 0)$, dann ist

$$(x,y) \cdot \left(\frac{x}{x^2 + y^2}, \frac{-y}{x^2 + y^2}\right)$$

$$= \left(x\frac{x}{x^2 + y^2} - y\frac{-y}{x^2 + y^2}, x\frac{-y}{x^2 + y^2} + y\frac{x}{x^2 + y^2}\right)$$

$$= (1,0).$$

Damit definiere nun die Division:

Definition

Falls $(u, v), (x, y) \in \mathbb{C}$ und $(x, y) \neq (0, 0)$, so definiert man

$$\frac{(u,v)}{(x,y)} := (u,v) \cdot \left(\frac{x}{x^2+y^2}, \frac{-y}{x^2+y^2}\right).$$

4

Einbettung von
$$\mathbb{R}$$
 in $\mathbb{C} = \mathbb{R} \times \mathbb{R}$

(-1,0) $(2,0) = (1,0)$

allgemein: $(x,0) + (y,0) = (x+y,0)$
 $(x,0) \cdot (y,0) = (x\cdot y - 0\cdot 0, x\cdot 0 + 0\cdot y) = (xy,0)$

$$(o_{1}x)+(o_{1}y)=(o_{1}x+y)$$

$$(o_{1}x)\cdot(o_{1}y)=(o_{2}x+y)$$

$$=(-x\cdot y, o)$$

$$R$$

Einbettung von $\mathbb R$ in $\mathbb C$

Beobachtung

Für alle $x_1, x_2 \in \mathbb{R}$ gilt:

- $(x_1,0)+(x_2,0)=(x_1+x_2,0)$
- $(x_1,0)\cdot(x_2,0)=(x_1x_2,0)$

Komplexe Zahlen der Form (x,0) werden also wie reelle Zahlen addiert und multipliziert.

Fazit

Jede reelle Zahl x kann also als komplexe Zahl (x,0) aufgefasst werden. In diesem Sinn ist

$$\mathbb{R}\subseteq\mathbb{C}$$
.

Wir verwenden meistens folgende Notation:

- \triangleright x statt (x,0)
- ▶ i statt (0,1)

Wir verwenden meistens folgende Notation:

- ► *x* statt (*x*, 0)
- ▶ i statt (0,1)

Wegen

$$(x,y) = (x,0) + (0,y) = (x,0) + (0,1) \cdot (y,0)$$

= $(0,y) \cdot (0,0) \cdot (0,0) \cdot (0,0)$
= $(0,y)$

Wir verwenden meistens folgende Notation:

- \triangleright x statt (x,0)
- ▶ i statt (0,1)

Wegen

$$(x,y) = (x,0) + (0,y) = (x,0) + (0,1) \cdot (y,0) = x + iy$$

schreiben wir

 \triangleright x + iy statt (x, y).

Wir verwenden meistens folgende Notation:

- ➤ *x* statt (*x*, 0)
- ▶ i statt (0,1)

Wegen

$$(x,y) = (x,0) + (0,y) = (x,0) + (0,1) \cdot (y,0) = x + iy$$

schreiben wir

$$\triangleright$$
 $x + iy$ statt (x, y) .

$$i^{2} = (0,1) \cdot (0,1)$$

$$= (0.0 - 1.1 / 1.0 + 0.1) = (-1.0) = -1$$
Defination

$$i^{2} = (0,1) \cdot (0,1) = (-1,0) = -1$$

$$(1+2i)(2+3i) \stackrel{\text{Distr.}}{=} 1 \cdot (2+3i) + 2i \cdot (2+3i)$$

$$= 2+3i+4i+6i^{2}$$

$$= (2,0) + (0,3) + (0,4) + (-6,0)$$

$$= (-4,7) = -4+7i$$

$$i^{2} = (0,1) \cdot (0,1) = (-1,0) = -1$$

$$(1+2i)(2+3i) \stackrel{\text{Distr.}}{=} 1 \cdot (2+3i) + 2i \cdot (2+3i)$$

$$= 2+3i+4i+6i^{2}$$

$$= -4+7i$$

▶ Darstellung von $\frac{1+2i}{2-3i}$ in der Form x + iy, $x, y \in \mathbb{R}$:

$$\frac{1+2i}{2-3i} \cdot \frac{2+3i}{2+3i} = \frac{(1+2i)\cdot(2+3i)}{2^2 - (3i)^2}$$

$$= \frac{-4+7i}{4-9i^2} = \frac{-4+7i}{4+9} = \frac{-4+7i}{13} = -\frac{4}{13} + \frac{7}{13}i$$

$$ightharpoonup$$
 $i^2 = (0,1) \cdot (0,1) = (-1,0) = -1$

$$(1+2i)(2+3i) \stackrel{\text{Distr.}}{=} 1 \cdot (2+3i) + 2i \cdot (2+3i)$$

$$= 2+3i+4i+6i^{2}$$

$$= -4+7i$$

▶ Darstellung von $\frac{1+2i}{2-3i}$ in der Form x+iy, $x,y \in \mathbb{R}$:

$$\frac{1+2\,\mathrm{i}}{2-3\,\mathrm{i}} = \frac{1+2\,\mathrm{i}}{2-3\,\mathrm{i}} \cdot \frac{2+3\,\mathrm{i}}{2+3\,\mathrm{i}} = \frac{-4+7\,\mathrm{i}}{13} = -\frac{4}{13} + \frac{7}{13}\,\mathrm{i} \,.$$