JEE (MAIN)-2019 (Online) Phase-2

(Physics, Chemistry and Mathematics)

Time: 3 hrs. M.M.: 360

Important Instructions:

- 1. The test is of **3 hours** duration.
- 2. The Test Booklet consists of **90** questions. The maximum marks are **360**.
- 3. There are *three* parts in the question paper A, B, C consisting of **Physics**, **Chemistry** and **Mathematics** having 30 questions in each part of equal weightage.
- 4. Each question is allotted 4 (four) marks for each correct response. ¼ (one-fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 5. There is only one correct response for each question.

PART-A: PHYSICS

 One mole of an ideal gas passes through a process where pressure and volume obey the

relation
$$P = P_0 \left[1 - \frac{1}{2} \left(\frac{V_0}{V} \right)^2 \right]$$
. Here P_0 and V_0 are

constants. Calculate the change in the temperature of the gas if its volume changes from V_0 to $2V_0$.

- (1) $\frac{1}{4} \frac{P_0 V_0}{R}$
- (2) $\frac{5}{4} \frac{P_0 V_0}{R}$
- (3) $\frac{1}{2} \frac{P_0 V_0}{R}$
- (4) $\frac{3}{4} \frac{P_0 V_0}{R}$

2. The correct figure that shows, schematically, the wave pattern produced by superposition of two waves of frequencies 9 Hz and 11 Hz, is:

3. A spaceship orbits around a planet at a height of 20 km from its surface. Assuming that only gravitational field of the planet acts on the spaceship, what will be the number of complete revolutions made by the spaceship in 24 hours around the planet?

[Given: Mass of planet = 8×10^{22} kg,

Radius of planet = 2×10^6 m,

Gravitational constant G = $6.67 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$]

- (1) 17
- (2) 13
- (3) 11
- (4) 9

4. A plane is inclined at an angle α = 30° with respect to the horizontal. A particle is projected with a speed u = 2 ms⁻¹, from the base of the plane, making an angle θ = 15° with respect to the plane as shown in the figure. The distance from the base, at which the particle hits the plane is close to :

 $(Take g = 10 ms^{-2})$

- (1) 18 cm
- (2) 20 cm
- (3) 14 cm
- (4) 26 cm

- A bullet of mass 20 g has an initial speed of 1 ms⁻¹, just before it starts penetrating a mud wall of thickness 20 cm. If the wall offers a mean resistance of 2.5×10^{-2} N, the speed of the bullet after emerging from the other side of the wall is close to:
 - $(1) 0.4 \text{ ms}^{-1}$
- $(2) 0.7 \text{ ms}^{-1}$
- $(3) 0.3 \text{ ms}^{-1}$
- (4) 0.1 ms⁻¹

- The time dependence of the position of a particle of mass m = 2 is given by $\vec{r}(t) = 2t\hat{i} - 3t^2\hat{j}$. Its angular momentum, with respect to the origin, at time t = 2 is :
 - (1) $-34(\hat{k}-\hat{i})$ (2) $48(\hat{i}+\hat{j})$
- - (3) 36 k
- $(4) 48 \hat{k}$

The figure represents a voltage regulator circuit using a Zener diode. The breakdown voltage of the Zener diode is 6 V and the load resistance is, R_L = 4 k Ω . The series resistance of the circuit is $R_i = 1 \text{ k}\Omega$. If the battery voltage $V_{\rm B}$ varies from 8 V to 16 V, what are the minimum and maximum values of the current through Zener diode?

- (1) 0.5 mA; 6 mA
- (2) 0.5 mA; 8.5 mA
- (3) 1.5 mA; 8.5 mA (4) 1 mA; 8.5 mA

A metal coin of mass 5 g and radius 1 cm is fixed to a thin stick AB of negligible mass as shown in the figure. The system is initially at rest. The constant torque, that will make the system rotate about AB at 25 rotations per second in 5 s, is closed to:

- (1) $4.0 \times 10^{-6} \text{ Nm}$
- (2) $7.9 \times 10^{-6} \text{ Nm}$
- (3) $2.0 \times 10^{-5} \text{ Nm}$
- (4) $1.6 \times 10^{-5} \text{ Nm}$

11. A cubical block of side 0.5 m floats on water with 30% of its volume under water. What is the maximum weight that can be put on the block without fully submerging it under water?

[Take, density of water = 10³ kg/m³]

- (1) 30.1 kg
- (2) 46.3 kg
- (3) 87.5 kg
- (4) 65.4 kg

- 9. In a Young's double slit experiment, the ratio of the slit's width is 4:1. The ratio of the intensity of maxima to minima, close to the central fringe on the screen, will be:
 - (1) $(\sqrt{3}+1)^4:16$
- (2) 4:1
- (3) 25:9
- (4) 9:1

10. Two radioactive substances A and B have decay constants 5λ and λ respectively. At t = 0, a sample has the same number of the two nuclei. The time taken for the ratio of the

number of nuclei to become $\left(\frac{1}{e}\right)^2$ will be :

- (1) $\frac{1}{2\lambda}$
- $(2) \ \frac{1}{4\lambda}$
- (3) $\frac{1}{\lambda}$
- (4) $\frac{2}{\lambda}$

12. The graph shows how the magnification m produced by a thin lens varies with image distance v. What is the focal length of the lens used?

- (1) $\frac{b^2}{ac}$
- (2) $\frac{b^2c}{a}$
- (3) $\frac{a}{c}$
- $(4) \frac{b}{c}$

13. In Li⁺⁺, electron in first Bohr orbit is excited to a level by a radiation of wavelength λ . When the ion gets deexcited to the ground state in all possible ways (including intermediate emissions), a total of six spectral lines are observed. What is the value of λ ?

(Given: $h = 6.63 \times 10^{-34} \, \text{Js}$; $c = 3 \times 10^8 \, \text{ms}^{-1}$)

- (1) 11.4 nm
- (2) 12.3 nm
- (3) 9.4 nm
- (4) 10.8 nm

14. Two blocks A and B of masses m_A = 1 kg and m_B = 3 kg are kept on the table as shown in figure. The coefficient of friction between A and B is 0.2 and between B and the surface of the table is also 0.2. The maximum force F that can be applied on B horizontally, so that the block A does not slide over the block B is:

[Take g = 10 m/s^2]

- (1) 40 N
- (2) 12 N
- (3) 16 N
- (4) 8 N

15. In free space, a particle A of charge 1 μ C is held fixed at a point P. Another particle B of the same charge and mass 4 μ g is kept at a distance of 1 mm from P. If B is released, then its velocity at a distance of 9 mm from P is :

$$\left[\text{Take } \frac{1}{4\pi \in_0} = 9 \times 10^9 \text{ Nm}^2\text{C}^{-2}\right]$$

- (1) 2.0×10^3 m/s
- (2) 3.0×10^4 m/s
- (3) 1.5×10^2 m/s
- (4) 1.0 m/s

16. Water from a tap emerges vertically downwards with an initial speed of 1.0 ms⁻¹. The cross-sectional area of the tap is 10⁻⁴ m². Assume that the pressure is constant throughout the stream of water and that the flow is streamlined. The cross-sectional area of stream, 0.15 m below the tap would be:

 $(Take g = 10 ms^{-2})$

- (1) $1 \times 10^{-5} \text{ m}^2$
- (2) $5 \times 10^{-5} \text{ m}^2$
- (3) $5 \times 10^{-4} \text{ m}^2$
- (4) $2 \times 10^{-5} \text{ m}^2$

- 17. When heat Q is supplied to a diatomic gas of rigid molecules, at constant volume its temperature increases by ΔT . The heat required to produce the same change in temperature, at a constant pressure is:
 - (1) $\frac{3}{2}Q$
- (2) $\frac{2}{3}$ Q
- (3) $\frac{7}{5}$ Q
- (4) $\frac{5}{3}$ Q

18. A simple pendulum of length L is placed between the plates of a parallel plate capacitor having electric field E, as shown in figure. Its bob has mass m and charge q. The time period of the pendulum is given by:

- $(1) 2\pi \sqrt{\frac{L}{g \frac{qE}{m}}}$
- $(2) 2\pi \sqrt{\frac{L}{g + \frac{qE}{m}}}$
- $(3) \quad 2\pi \sqrt{\frac{L}{\sqrt{g^2 + \left(\frac{qE}{m}\right)^2}}}$
- (4) $2\pi \sqrt{\frac{L}{\sqrt{g^2 \frac{q^2 E^2}{m^2}}}}$

- 19. A source of sound S is moving with a velocity of 50 m/s towards a stationary observer. The observer measures the frequency of the source as 1000 Hz. What will be the apparent frequency of the source when it is moving away from the observer after crosssing him? (Take velocity of sound in air is 350 m/s)
 - (1) 857 Hz
- (2) 1143 Hz
- (3) 807 Hz
- (4) 750 Hz

20. A 2 mW laser operates at a wavelength of 500 nm. The number of photons that will be emitted per second is:

[Given Planck's constant h = 6.6×10^{-34} Js, speed of light c = 3.0×10^8 m/s]

- (1) 2×10^{16}
- (2) 1.5×10^{16}
- (3) 1×10^{16}
- (4) 5×10^{15}

- 21. Space between two concentric conducting spheres of radii a and b (b > a) is filled with a medium of resistivity ρ . The resistance between the two spheres will be:
 - (1) $\frac{\rho}{4\pi} \left(\frac{1}{a} \frac{1}{b} \right)$ (2) $\frac{\rho}{2\pi} \left(\frac{1}{a} \frac{1}{b} \right)$

 - (3) $\frac{\rho}{2\pi} \left(\frac{1}{a} + \frac{1}{b} \right)$ (4) $\frac{\rho}{4\pi} \left(\frac{1}{a} + \frac{1}{b} \right)$

22. In an experiment, brass and steel wires of length 1 m each with areas of cross section 1 mm² are used. The wires are connected in series and one end of the combined wire is connected to a rigid support and other end is subjected to elongation. The stress required to produce a net elongation of 0.2 mm is,

[Given, the Young's Modulus for steel and brass are, respectively, 120 × 109 N/m² and $60 \times 10^9 \text{ N/m}^2$

- (1) $1.8 \times 10^6 \text{ N/m}^2$ (2) $1.2 \times 10^6 \text{ N/m}^2$
- (3) $4.0 \times 10^6 \text{ N/m}^2$
- (4) $0.2 \times 10^6 \text{ N/m}^2$

- 23. A coil of self inductance 10 mH and resistance 0.1 Ω is connected through a switch to a battery of internal resistance $0.9~\Omega$. After the switch is closed, the time taken for the current to attain 80% of the saturation value is: [take ln5 = 1.6]
 - (1) 0.002 s
- (2) 0.324 s
- (3) 0.103 s
- (4) 0.016 s

24. The magnitude of the magnetic field at the center of an equilateral triangular loop of side 1 m which is carrying a current of 10 A is:

[Take μ_0 = $4\pi \times 10^{-7} \text{ NA}^{-2}$]

- **(1)** 18 μT
- (2) $1 \mu T$
- (3) 3 μT
- (4) 9 μT

- 25. A square loop is carrying a steady current I and the magnitude of its magnetic dipole moment is m. If this square loop is changed to a circular loop and it carries the same current, the magnitude of the magnetic dipole moment
 - (1) $\frac{2 \, \text{m}}{\pi}$

of circular loop will be:

- (2) $\frac{4 \text{ m}}{\pi}$
- (3) $\frac{\mathbf{m}}{\pi}$

 $(4) \frac{3 \text{ m}}{\pi}$

- 26. A submarine experiences a pressure of 5.05×10^6 Pa at a depth of d_1 in a sea. When it goes further to a depth of d_2 , it experiences a pressure of 8.08×10^6 Pa. Then $d_2 d_1$ is approximately (density of water = 10^3 kg/m³ and acceleration due to gravity = 10 ms^{-2}):
 - (1) 600 m
- (2) 500 m
- (3) 300 m
- (4) 400 m

- 27. The elastic limit of brass is 379 MPa. What should be the minimum diameter of a brass rod if it is to support a 400 N load without exceeding its elastic limit?
 - (1) 0.90 mm
 - (2) 1.16 mm
 - (3) 1.00 mm
 - (4) 1.36 mm

- 28. Light is incident normally on a completely absorbing surface with an energy flux of 25 Wcm⁻². If the surface has an area of 25 cm², the momentum transferred to the surface in 40 min time duration will be:
 - (1) $3.5 \times 10^{-6} \text{ Ns}$
 - (2) $6.3 \times 10^{-4} \text{ Ns}$
 - (3) $5.0 \times 10^{-3} \text{ Ns}$
 - (4) $1.4 \times 10^{-6} \text{ Ns}$

29. A solid sphere of mass M and radius R is divided into two unequal parts. The first part

has a mass of $\frac{7 \text{ M}}{8}$ and is converted into a

uniform disc of radius 2R. The second part is converted into a uniform solid sphere. Let I_1 be the moment of inertia of the disc about its axis and I_2 be the moment of inertia of the new sphere about its axis. The ratio I_1/I_2 is given by :

- (1) 140
- (2) 185
- (3) 285
- (4) 65

- (1) $[M^{-2}L^{-2}T^6A^3]$
- (2) $[M^{-1}L^{-2}T^4A^2]$
- (3) $[M^{-2}L^0T^{-4}A^{-2}]$
- (4) $[M^{-3}L^{-2}T^8A^4]$

30. In the formula X = 5YZ², X and Z have dimensions of capacitance and magnetic field, respectively. What are the dimensions of Y in SI units?

PART-B: CHEMISTRY

- 1. The correct statement is :
 - (1) Zincite is a carbonate ore.
 - (2) Zone refining process is used for the refining of titanium.
 - (3) Aniline is a froth stabilizer.
 - (4) Sodium cyanide cannot be used in the metallurgy of silver.
- 2. The pH of a 0.02 M NH_4CI solution will be [given $K_b(NH_4OH) = 10^{-5}$ and log2 = 0.301]
 - (1) 2.65
 - (2) 5.35
 - (3) 4.35
 - (4) 4.65

- 3. The INCORRECT statement is:
 - (1) The spin-only magnetic moments of $[Fe(H_2O)_6]^{2+}$ and $[Cr(H_2O)_6]^{2+}$ are nearly similar.
 - (2) The gemstone, ruby, has Cr³⁺ ions occupying the octahedral sites of beryl.
 - (3) The spin-only magnetic moment of $[Ni(NH_3)_4(H_2O)_2]^{2+}$ is 2.83 BM.
 - (4) The color of $[CoCl(NH_3)_5]^{2+}$ is violet as it absorbs the yellow light.

- 4. Number of stereo centers present in linear and cyclic structures of glucose are respectively:
 - (1) 5 & 5
 - (2) 4 & 4
 - (3) 5 & 4
 - (4) 4 & 5

6. Which one of the following graphs between molar conductivity (Λ_m) versus \sqrt{C} is correct?

- 5. The difference between ΔH and ΔU ($\Delta H \Delta U$), when the combustion of one mole of heptane(I) is carried out at a temperature T, is equal to :
 - (1) -3RT
 - (2) 4RT
 - (3) 3RT
 - (4) -4RT

- 7. The crystal field stabilization energy (CFSE) of $[Fe(H_2O)_6]Cl_2$ and $K_2[NiCl_4]$, respectively, are :
 - (1) –2.4 $\Delta_{\rm o}$ and –1.2 $\Delta_{\rm t}$
 - (2) $-0.6\Delta_{o}$ and $-0.8\Delta_{t}$
 - (3) $-0.4\Delta_{o}$ and $-0.8\Delta_{t}$
 - (4) $-0.4\Delta_{o}$ and $-1.2\Delta_{t}$

8. For the reaction,

$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g),$$

 $\Delta H = -57.2 \text{ kJ mol}^{-1} \text{ and } K_c = 1.7 \times 10^{16}.$

Which of the following statement is INCORRECT?

- (1) The equilibrium constant is large suggestive of reaction going to completion and so no catalyst is required.
- (2) The addition of inert gas at constant volume will not affect the equilibrium constant.
- (3) The equilibrium will shift in forward direction as the pressure increases.
- (4) The equilibrium constant decreases as the temperature increases.

- A hydrated solid X on heating initially gives a monohydrated compound Y. Y upon heating above 373 K leads to an anhydrous white powder Z. X and Z, respectively are:
 - (1) Baking soda and dead burnt plaster.
 - (2) Baking soda and soda ash.
 - (3) Washing soda and soda ash.
 - (4) Washing soda and dead burnt plaster.

- 10. Which of these factors does not govern the stability of a conformation in acyclic compounds?
 - (1) Angle strain
 - (2) Steric interactions
 - (3) Electrostatic forces of interaction
 - (4) Torsional strain

- 11. The highest possible oxidation states of uranium and plutonium, respectively, are :
 - (1) 6 and 7

(2) 7 and 6

(3) 6 and 4

(4) 4 and 6

- 12. The correct option among the following is:
 - (1) Colloidal medicines are more effective because they have small surface area.
 - (2) Colloidal particles in lyophobic sols can be precipitated by electrophoresis.
 - (3) Brownian motion in colloidal solution is faster if the viscosity of the solution is very high.
 - (4) Addition of alum to water makes it unfit for drinking.
- 13. The major product obtained in the given reaction is :

$$CH_3$$
 CH_2 CH_2 CH_3 CH_3

- 14. The number of pentagons in C_{60} and trigons (triangles) in white phosphorus, respectively, are:
 - (1) 20 and 3
 - (2) 12 and 3
 - (3) 12 and 4
 - (4) 20 and 4
- 15. For the reaction of $\rm H_2$ with $\rm I_2$, the rate constant is 2.5 × 10⁻⁴ dm³ mol⁻¹ s⁻¹ at 327°C and 1.0 dm³ mol⁻¹ s⁻¹ at 527°C. The activation energy for the reaction, in kJ mol⁻¹ is :

 $(R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1})$

- (1) 150
- (2) 59
- (3) 72
- (4) 166

16. The major product 'Y' in the following reaction is:

$$CI \xrightarrow{EtONa} X \xrightarrow{HBr} Y$$

$$(1) HO \qquad (2) Br$$

17. The major product 'Y' in the following reaction is:

$$\begin{array}{c} \text{Ph} & \text{CH}_3 \\ \text{NaOCI} \rightarrow \text{X} & \text{(i) SOCI}_2 \\ \text{(ii) aniline} \rightarrow \text{Y} \end{array}$$

18. 1 g of a non-volatile non-electrolyte solute is dissolved in 100 g of two different solvents A and B whose ebullioscopic constants are in the ratio of 1:5. The ratio of the elevation in their

boiling points, $\frac{\Delta T_{b}\left(\mathbf{A}\right)}{\Delta T_{b}\left(\mathbf{B}\right)}$, is :

- (1) 1:5
- (2) 10:1
- (3) 5:1
- (4) 1:0.2

19. Compound $A(C_9H_{10}O)$ shows positive iodoform test. Oxidation of A with $KMnO_4/KOH$ gives acid $B(C_8H_6O_4)$. Anhydride of B is used for the preparation of phenolphthalein. Compound A is:

(3) O
$$CH_3$$
 (4) $CH_2 - C - H$ CH_3

- 20. The ratio of the shortest wavelength of two spectral series of hydrogen spectrum is found to be about 9. The spectral series are :
 - (1) Paschen and Pfund
 - (2) Brackett and Pfund
 - (3) Lyman and Paschen
 - (4) Balmer and Brackett

21. The correct match between Item-I and Item-II is:

	Item-I		Item – II
(a)	High density polythene	(I)	Peroxide catalyst
(b)	Polyacrylonitrile	(11)	Condensation at high temperature
			and pressure
(c)	Novolac	(III)	Ziegler – Natta
			Catalyst
(d)	Nylon 6	(IV)	Acid or base
			catalyst

(1) (a)
$$\rightarrow$$
 (III), (b) \rightarrow (I), (c) \rightarrow (IV), (d) \rightarrow (II)

(2) (a)
$$\rightarrow$$
 (III), (b) \rightarrow (I), (c) \rightarrow (II), (d) \rightarrow (IV)

(3) (a)
$$\rightarrow$$
 (IV), (b) \rightarrow (II), (c) \rightarrow (I), (d) \rightarrow (III)

- 22. Air pollution that occurs in sunlight is:
 - (1) Fog
- (2) Oxidising smog
- (3) Acid rain
- (4) Reducing smog
- 23. The increasing order of nucleophilicity of the following nucleophiles is :
 - (a) CH₃CO₂[©]
- (b) H₂O
- (c) CH₃SO₃[⊙]
- (d) OH
- (1) (d) < (a) < (c) < (b)
- (2) (b) < (c) < (d) < (a)
- (3) (a) < (d) < (c) < (b)
- (4) (b) < (c) < (a) < (d)

- 24. The correct order of the first ionization enthalpies is:
 - (1) Mn < Ti < Zn < Ni (2) Ti < Mn < Zn < Ni

 - (3) Ti < Mn < Ni < Zn (4) Zn < Ni < Mn < Ti
- 25. The noble gas that does NOT occur in the atmosphere is:
 - (1) Ne
- (2) Kr
- (3) He
- (4) Ra
- 26. Which of the following is NOT a correct method of the preparation of benzylamine from cyanobenzene?
 - (1) (i) $SnCl_2 + HCl(gas)$
- (ii) NaBH_₄

- (2) H_2/Ni
- (3) (i) LiAIH₄
- (ii) H₃O⁺
- (4) (i) HCI/H₂O
- (ii) NaBH₄

27. The minimum amount of O₂(g) consumed per gram of reactant is for the reaction:

(Given atomic mass : Fe = 56, O = 16, Mg = 24, P = 31, C = 12, H = 1)

- (1) $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$
- (2) 4Fe(s) + $3O_2(g) \rightarrow 2Fe_2O_3(s)$
- (3) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(I)$
- (4) $P_4(s) + 5O_2(g) \rightarrow P_4O_{10}(s)$

28. Points I, II and III in the following plot respectively correspond to

(V_{mn}: most probable velocity)

- (1) V_{mp} of N_2 (300 K); V_{mp} of O_2 (400 K); V_{mp} of H_2 (300 K)
- (2) V_{mp} of H_2 (300 K); V_{mp} of N_2 (300 K); V_{mp} of O_2 (400 K)
- (3) V_{mp} of N_2 (300 K); V_{mp} of H_2 (300 K); V_{mp} of O_2 (400 K)
- (4) V_{mp} of O_2 (400 K); V_{mp} of N_2 (300 K); V_{mp} of H_2 (300 K)

- 29. The correct statements among (a) to (d) are:
 - (a) Saline hydrides produce H₂ gas when reacted with H₂O.
 - (b) Reaction of LiAIH₄ with BF₃ leads to B₂H₆.
 - (c) PH₃ and CH₄ are electron rich and electron precise hydrides, respectively.
 - (d) HF and ${\rm CH_4}$ are called as molecular hydrides.
 - (1) (a), (c) and (d) only.
 - (2) (c) and (d) only.
 - (3) (a), (b) and (c) only.
 - (4) (a), (b), (c) and (d).

- 30. In chromatography, which of the following statements is INCORRECT for $R_{\rm f}$?
 - (1) The value of R_f cannot be more than one.
 - (2) Higher R_f value means higher adsorption.
 - (3) R_f value is dependent on the mobile phase.
 - (4) R_f value depends on the type of chromatography.

PART-C: MATHEMATICS

1. Let $f(x) = \log_e(\sin x)$, $(0 < x < \pi)$ and $g(x) = \sin^{-1}(e^{-x})$, $(x \ge 0)$. If α is a positive real number such that $a = (\log)'(\alpha)$ and $b = (\log)(\alpha)$, then :

(1)
$$a\alpha^2 - b\alpha - a = 1$$

(2)
$$a\alpha^2 + b\alpha + a = 0$$

(3)
$$a\alpha^2 - b\alpha - a = 0$$

(4)
$$a\alpha^2 + b\alpha - a = -2\alpha^2$$

2. The angles A, B and C of a triangle ABC are in A.P. and a : b = 1 : $\sqrt{3}$. If c = 4 cm, then the area (in sq.cm) of this triangle is :

(1)
$$\frac{2}{\sqrt{3}}$$

(2)
$$4\sqrt{3}$$

(3)
$$2\sqrt{3}$$

(4)
$$\frac{4}{\sqrt{3}}$$

3. The sum of the real roots of the equation

$$\begin{vmatrix} x & -6 & -1 \\ 2 & -3x & x-3 \\ -3 & 2x & x+2 \end{vmatrix} = 0$$
, is equal to :

If z and w are two complex numbers such that |zw| = 1 and $arg(z) - arg(w) = \frac{\pi}{2}$, then:

$$(1) \quad z\overline{w} = \frac{1-i}{\sqrt{2}}$$

(2)
$$\overline{z}w = i$$

(3)
$$z\overline{w} = \frac{-1+i}{\sqrt{2}}$$
 (4) $\overline{z}w = -i$

(4)
$$\overline{z}w = -i$$

The locus of the centres of the circles, which touch the circle, $x^2 + y^2 = 1$ externally, also touch the y-axis and lie in the first quadrant, is:

(1)
$$y = \sqrt{1+2x}$$
, $x \ge 0$ (2) $x = \sqrt{1+4y}$, $y \ge 0$

(2)
$$x = \sqrt{1+4y}, y \ge 0$$

(3)
$$\mathbf{x} = \sqrt{1+2y}$$
, $\mathbf{y} \ge 0$ (4) $\mathbf{y} = \sqrt{1+4x}$, $\mathbf{x} \ge 0$

(4)
$$y = \sqrt{1+4x}, x \ge 0$$

6. The sum $1+\frac{1+2}{1+2}+\frac{1+2+3}{1+2+3}+...$

$$+\frac{1^3+2^3+3^3+...+15^3}{1+2+3+...+15}-\frac{1}{2}(1+2+3+...+15)$$

is equal to:

The smallest natural number n, such that the coefficient of x in the expansion of

$$\left(x^2 + \frac{1}{x^3}\right)^n$$
 is ${}^nC_{23}$, is:

10. Let a, b and c be in G.P. with common ratio r, where a $\neq 0$ and $0 < r \le \frac{1}{2}$. If 3a, 7b and 15c are

the first three terms of an A.P., then the 4th term of this A.P. is:

- (1) $\frac{2}{3}a$
- (3) $\frac{7}{3}$ a
- (4) 5a

- If both the mean and the standard deviation of 50 observations x_1 , x_2 , ... x_{50} are equal to 16, then the mean of $(x_1-4)^2$, $(x_2-4)^2$, ... $(x_{50}-4)^2$
 - (1) 380
- (2) 480
- (3) 400
- (4) 525

- 11. The area (in sq. units) of the region bounded by the curves $y = 2^x$ and y = |x + 1|, in the first quadrant is:
 - (1) $\frac{3}{2} \frac{1}{\log_e 2}$ (2) $\frac{1}{2}$
 - (3) $\log_e 2 + \frac{3}{2}$ (4) $\frac{3}{2}$

- 9. If $\int x^5 e^{-x^2} dx = g(x)e^{-x^2} + c$, where c is a constant of integration, then g(-1) is equal to :
 - (1) -1

(3) 1

 $(4) -\frac{5}{2}$

- 12. A perpendicular is drawn from a point on the line $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{1}$ to the plane x + y + z = 3 such that the foot of the perpendicular Q also lies on the plane x - y + z = 3. Then the co-ordinates of Q are:
 - (1) (1, 0, 2)
- (2) (2, 0, 1)
- $(3) (4, 0, -1) \qquad (4) (-1, 0, 4)$

13. If the tangent to the curve $y = \frac{x}{x^2 - 3}$, $x \in \mathbb{R}$, $(\mathbf{x} \neq \pm \sqrt{3})$, at a point $(\alpha, \beta) \neq (0, 0)$ on it is

parallel to the line 2x + 6y - 11 = 0, then:

- (1) $|6\alpha + 2\beta| = 19$ (2) $|2\alpha + 6\beta| = 19$
- (3) $|6\alpha + 2\beta| = 9$ (4) $|2\alpha + 6\beta| = 11$

14. Let y = y(x) be the solution of the differential equation, $\frac{dy}{dx}$ + y tanx = 2x + x² tanx, x \in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, such that y(0) = 1.Then :

(1)
$$y\left(\frac{\pi}{4}\right) + y\left(-\frac{\pi}{4}\right) = \frac{\pi^2}{2} + 2$$

(2)
$$\mathbf{y}\left(\frac{\pi}{4}\right) - \mathbf{y}\left(-\frac{\pi}{4}\right) = \sqrt{2}$$

(3)
$$y'\left(\frac{\pi}{4}\right) + y'\left(-\frac{\pi}{4}\right) = -\sqrt{2}$$

(4)
$$\mathbf{y}'\left(\frac{\pi}{4}\right) - \mathbf{y}'\left(-\frac{\pi}{4}\right) = \pi - \sqrt{2}$$

- 15. Let a_1 , a_2 , a_3 , be an A.P. with a_6 = 2. Then the common difference of this A.P., which maximises the product $a_1 a_4 a_5$, is:
 - (1) $\frac{2}{3}$

- (3) $\frac{3}{2}$
- (4) $\frac{6}{5}$

- 16. If the plane 2x y + 2z + 3 = 0 has the distances $\frac{1}{3}$ and $\frac{2}{3}$ units from the planes $4x - 2y + 4z + \lambda = 0$ and $2x - y + 2z + \mu = 0$, respectively, then the maximum value of λ + μ is equal to:
 - (1) 13

(2) 15

(3) 5

(4) 9

- 17. If $\lim_{x\to 1} \frac{x^2 ax + b}{x-1} = 5$, then a + b is equal to:
 - (1) 5 (3) 1
- (2) -4

(4) -7

- 18. The number of real roots of the equation $5+|2^{x}-1|=2^{x}(2^{x}-2)$ is:
 - (1) 4

(2) 2

(3) 1

(4) 3

- 19. Lines are drawn parallel to the line 4x 3y + 2= 0, at a distance $\frac{3}{5}$ from the origin. Then which one of the following points lies on any of these lines?
 - (1) $\left(\frac{1}{4}, -\frac{1}{3}\right)$ (2) $\left(\frac{1}{4}, \frac{1}{3}\right)$

 - (3) $\left(-\frac{1}{4}, \frac{2}{3}\right)$ (4) $\left(-\frac{1}{4}, -\frac{2}{3}\right)$

- 22. Minimum number of times a fair coin must be tossed so that the probability of getting at least one head is more than 99% is:
 - (1) 8

(2) 6

(3) 5

(4) 7

- 20. Suppose that 20 pillars of the same height have been erected along the boundary of a circular stadium. If the top of each pillar has been connected by beams with the top of all its nonadjacent pillars, then the total number of beams is:
 - (1) 210
- (2) 180
- (3) 170
- (4) 190
- 21. A spherical iron ball of radius 10 cm is coated with a layer of ice of uniform thickness that melts at a rate of 50 cm³/min. When the thickness of the ice is 5 cm, then the rate at which the thickness (in cm/min) of the ice decreases, is:
 - (1) $\frac{5}{6\pi}$

- 23. If 5x + 9 = 0 is the directrix of the hyperbola $16x^2 - 9y^2 = 144$, then its corresponding focus

 - (1) $\left(\frac{5}{3}, 0\right)$ (2) $\left(-\frac{5}{3}, 0\right)$
 - (3) (-5, 0)
- (4) (5, 0)

24. Let λ be a real number for which the system of linear equations

$$x + y + z = 6$$

$$4x + \lambda y - \lambda z = \lambda - 2$$

$$3x + 2y - 4z = -5$$

has infinitely many solutions. Then λ is a root of the quadratic equation:

(1)
$$\lambda^2 + 3\lambda - 4 = 0$$
 (2) $\lambda^2 - \lambda - 6 = 0$

(2)
$$\lambda^2 - \lambda - 6 = 0$$

(3)
$$\lambda^2 + \lambda - 6 = 0$$
 (4) $\lambda^2 - 3\lambda - 4 = 0$

(4)
$$\lambda^2 - 3\lambda - 4 = 0$$

- (1) $\frac{1}{\sqrt{2}}$
- (2) $\frac{1}{2}$
- (3) 2
- (4) $\sqrt{2}$

25. The integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sec^{\frac{2}{3}} x \csc^{\frac{4}{3}} x dx$ is equal to :

- (1) $3^{\frac{7}{6}} 3^{\frac{5}{6}}$ (2) $3^{\frac{5}{3}} 3^{\frac{1}{3}}$
- (3) $3^{\frac{5}{6}} 3^{\frac{2}{3}}$ (4) $3^{\frac{4}{3}} 3^{\frac{1}{3}}$

27. The tangent and normal to the ellipse $3x^2 + 5y^2 = 32$ at the point P(2, 2) meet the xaxis at Q and R, respectively. Then the area (in sq. units) of the triangle PQR is:

- (1) $\frac{16}{3}$
- (2) $\frac{14}{3}$
- (4) $\frac{68}{15}$

29. If $\cos^{-1} x - \cos^{-1} \frac{y}{2} = \alpha$, where $-1 \le x \le 1$, $-2 \le y \le 2$,

 $x \! \leq \! \frac{y}{2}$, then for all x, y, $4x^2 \! - \! 4xy \, cos \alpha \! + y^2$ is equal to :

- (1) $2 \sin^2 \alpha$
- (2) $4 \sin^2 \alpha 2x^2y^2$
- (3) $4 \cos^2 \alpha + 2x^2y^2$
- (4) $4 \sin^2 \alpha$
- 28. The distance of the point having position vector $-\hat{i}+2\hat{j}+6\hat{k}$ from the straight line passing through the point (2, 3, -4) and parallel to the vector, $6\hat{i}+3\hat{j}-4\hat{k}$ is:
 - (1) 7

(2) $4\sqrt{3}$

(3) 6

(4) 2√13

- 30. The negation of the Boolean expression $\sim s \vee (\sim r \wedge s)$ is equivalent to :
 - (1) s ∧ r
 - (2) r
 - (3) ~ s ∧ ~ r
 - (4) s v r