Numerical Differentiation and Integration

• Given data $(x_k, f(x_k))$ k = 0,1,2,...,n

• Estimate the derivatives: e.g., from measured distances, estimate the velocity/acceleration, i.e., given a set of (t,x) values, find dx/dt, d^2x/dt^2

➤ Numerical Differentiation

• Estimate the integral: e.g., from measured flow velocities in a pipe, estimate discharge, i.e., given a set of (r,v) values, find $\int_{0}^{R} 2\pi v dr$

➤ Numerical Integration

Numerical Differentiation

Estimate the derivatives of a function from given data

$$(x_k, f(x_k))$$
 $k = 0,1,2,...,n$

- Start with the first derivative
- Simplest: The difference of the function values at two consecutive points divided by the difference in the x values
- Finite Difference: The analytical derivative has zero Δx , but we use a finite value
- What if we want more accurate estimates?

First Derivative

- For simplicity, let us use f_i for $f(x_i)$
- Assume that the x'^s are arranged in increasing order $(x_n>x_{n-1}>...>x_0)$.
- For estimating the first derivative at x_i :

- Forward difference:
$$f'_{i} = \frac{f_{i+1} - f_{i}}{x_{i+1} - x_{i}}$$

- Backward difference:
$$f_i' = \frac{f_i - f_{i-1}}{x_i - x_{i-1}}$$

- Central difference:
$$f_i' = \frac{f_{i+1} - f_{i-1}}{x_{i+1} - x_{i-1}}$$

First Derivative

- Most of the times, the function is "measured" at equal intervals
- Assume that $x_n x_{n-1} = x_{n-1} x_{n-2} = \dots = x_1 x_0 = h$
- Then, the first derivative at x_i :
 - -Forward difference: $f_i' = \frac{f_{i+1} f_i}{h}$
 - -Backward difference: $f_i' = \frac{f_i f_{i-1}}{h}$
 - -Central difference: $f'_i = \frac{f_{i+1} f_{i-1}}{2h}$

- What is the error in these approximations?
- As an example, if the exact function is a straight line, the estimate would have no error
- For forward difference, use Taylor's series:

$$f_{i+1} = f_i + hf'(x_i) + \frac{h^2}{2}f''(x_i) + \dots + \frac{h^m}{m!}f^{[m]}(x_i) + \frac{h^{m+1}}{(m+1)!}f^{[m+1]}(\zeta_f)$$

$$\zeta_f \in (x_i, x_{i+1})$$

 ζ_f is a point in the forward interval (x_i, x_{i+1})

• We use $f'(x_i)$ to denote the exact value of the derivative at x_i (the estimation is f'_i)

Truncating at the linear term

$$f_{i+1} = f_i + hf'(x_i) + \frac{h^2}{2}f''(\zeta_f)$$

Which implies that

$$f'(x_i) = \frac{f_{i+1} - f_i}{h} - \frac{h}{2} f''(\zeta_f)$$

 The error in the forward difference approximation is, therefore,

$$f'(x_i) - f'_i = -\frac{h}{2}f''(\zeta_f)$$

- Since the error is proportional to h, the method is called O(h) accurate.
- Similarly, the error in backward difference is obtained by expansion of f_{i-1} , as

$$f'(x_i) = \frac{f_i - f_{i-1}}{h} + \frac{h}{2}f''(\zeta_b)$$

$$f'(x_i) - f'_i = \frac{h}{2} f''(\zeta_b)$$

 ζ_b is a point in the backward interval, (x_{i-1}, x_i)

• The error in central difference is obtained by expansion of both f_{i+1} and f_{i-1} , as

$$f_{i+1} = f_i + hf'(x_i) + \frac{h^2}{2}f''(x_i) + \frac{h^3}{6}f'''(\zeta_f)$$

$$f_{i-1} = f_i - hf'(x_i) + \frac{h^2}{2}f''(x_i) - \frac{h^3}{6}f'''(\zeta_b)$$

Using intermediate value theorem

$$f'(x_i) = \frac{f_{i+1} - f_{i-1}}{2h} - \frac{h^2}{6} f'''(\zeta_c)$$
$$f'(x_i) - f'_i = -\frac{h^2}{6} f'''(\zeta_c)$$

 ζ_c is a point in the interval, (x_{i-1}, x_{i+1})

- Clearly, the method is $O(h^2)$ accurate.
- If we reduce the step size by half, the error in the estimation by forward or backward difference should reduce by half, but that in central difference should reduce to one-fourth
- The presence of the derivatives in the error expression complicates this simple deduction!
- Note that the error in the forward/backward differences has the second derivative, while that in central difference has the third.

- The forward/backward differences are exact for a linear function, central difference is exact for a quadratic function
- How to get more accurate forward difference?
- In addition to i and i+1, use i+2 also

- Use a quadratic interpolating polynomial and find its slope at i
- Or, combine two lower order estimates
- Or, use Taylor's series expansion, which will provide an error estimate also

First Derivative: Quadratic interpolation

Using Newton's divided difference

$$f_2(x) = f_i + (x - x_i) \frac{f_{i+1} - f_i}{h} + (x - x_i)(x - x_{i+1}) \frac{\frac{f_{i+2} - f_{i+1}}{h} - \frac{f_{i+1} - f_i}{h}}{2h}$$

• Derivative at x_i

$$\frac{f_{i+1} - f_i}{h} + (-h) \frac{\frac{f_{i+2} - f_{i+1}}{h} - \frac{f_{i+1} - f_i}{h}}{2h} = \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h}$$

Combine two estimates: Richardson Extrapolation

• O(h) accurate:
$$f'(x_i) = \frac{f_{i+1} - f_i}{h} + O(h)$$

• Write
$$f'(x_i) = \frac{f_{i+1} - f_i}{h} + E + O(h^2)$$

• and
$$f'(x_i) = \frac{f_{i+2} - f_i}{2h} + 2E + O(h^2)$$

• Eliminate E:
$$2f'(x_i) - f'(x_i) = 2\frac{f_{i+1} - f_i}{h} - \frac{f_{i+2} - f_i}{2h}$$
$$f'(x_i) = \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h} + O(h^2)$$

First Derivative: Taylor's series

$$f_{i+1} = f_i + hf'(x_i) + \frac{h^2}{2}f''(x_i) + \frac{h^3}{6}f'''(x_i) + \frac{h^4}{4!}f''''(\zeta_{f1})$$

$$f_{i+2} = f_i + 2hf'(x_i) + \frac{4h^2}{2}f''(x_i) + \frac{8h^3}{6}f'''(x_i) + \frac{16h^4}{4!}f''''(\zeta_{f1})$$

$$\zeta_{f1} \in (x_i, x_{i+1}) \text{ and } \zeta_{f2} \in (x_i, x_{i+2})$$

Eliminate the 2nd derivative

$$4f_{i+1} - f_{i+2} = 3f_i + 2hf'(x_i) - \frac{4h^3}{6}f'''(x_i) + O(h^4)$$

$$f'(x_i) = \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h} + \frac{h^2}{3}f'''(x_i) + O(h^3)$$

Taylor's series

• $O(h^2)$ accurate

$$f_i' = \frac{-3f_i + 4f_{i+1} - f_{i+2}}{2h}$$

Error:
$$-\frac{h^2}{3}f''(x_i) + O(h^3)$$

General Method:

$$f'_{i} = \frac{1}{h} \left(c_{i} f_{i} + c_{i+1} f_{i+1} + c_{i+2} f_{i+2} \right)$$

$$= \frac{c_{i} + c_{i+1} + c_{i+2}}{h} f_{i} + \left(c_{i+1} + 2c_{i+2} \right) f'(x_{i}) + \frac{h}{2} \left(c_{i+1} + 4c_{i+2} \right) f''(x_{i})$$

$$+ \frac{h^{2}}{6} \left(c_{i+1} + 8c_{i+2} \right) f'''(x_{i}) + \dots$$

• Equate coefficients:
$$c_i + c_{i+1} + c_{i+2} = 0$$
 => -3/2,2,-1/2 $c_{i+1} + 2c_{i+2} = 1$

Backward difference

• Similarly, for backward difference, $O(h^2)$ accurate:

$$\begin{split} f_i' & = \frac{1}{h} \Big(c_i f_i + c_{i-1} f_{i-1} + c_{i-2} f_{i-2} \Big) \\ & = \frac{c_i + c_{i-1} + c_{i-2}}{h} f_i - \Big(c_{i-1} + 2c_{i-2} \Big) f'(x_i) + \frac{h}{2} \Big(c_{i-1} + 4c_{i-2} \Big) f''(x_i) \\ & - \frac{h^2}{6} \Big(c_{i-1} + 8c_{i-2} \Big) f'''(x_i) + \dots \end{split}$$

$$c_{i} + c_{i-1} + c_{i-2} = 0$$

$$c_{i-1} + 2c_{i-2} = -1$$

$$c_{i-1} + 4c_{i-2} = 0$$

$$f'_{i} = \frac{3f_{i} - 4f_{i-1} + f_{i-2}}{2h}$$

$$Error : \frac{h^{2}}{3} f''(x_{i}) + O(h^{3})$$

Central Difference

• And, for central difference, $O(h^4)$ accurate:

$$\begin{split} f_i' &= \frac{1}{h} \Big(c_{i-2} f_{i-2} + c_{i-1} f_{i-1} + c_i f_i + c_{i+1} f_{i+1} + c_{i+2} f_{i+2} \Big) \\ &= \frac{c_{i-2} + c_{i-1} + c_i + c_{i+1} + c_{i+2}}{h} f_i + \Big(-2c_{i-2} - c_{i-1} + c_{i+1} + 2c_{i+2} \Big) f'(x_i) \\ &+ \frac{h}{2} \Big(4c_{i-2} + c_{i-1} + c_{i+1} + 4c_{i+2} \Big) f''(x_i) + \frac{h^2}{6} \Big(-8c_{i-2} - c_{i-1} + c_{i+1} + 8c_{i+2} \Big) f'''(x_i) \\ &+ \frac{h^3}{24} \Big(16c_{i-2} + c_{i-1} + c_{i+1} + 16c_{i+2} \Big) f''''(x_i) + \dots \end{split}$$

$$c_{i-2} + c_{i-1} + c_i + c_{i+1} + c_{i+2} = 0$$

$$-2c_{i-2} - c_{i-1} + c_{i+1} + 2c_{i+2} = 1$$

$$4c_{i-2} + c_{i-1} + c_{i+1} + 4c_{i+2} = 0$$

$$-8c_{i-2} - c_{i-1} + c_{i+1} + 8c_{i+2} = 0$$

$$12h$$

$$12h$$

$$12h$$

$$16c_{i-2} + c_{i-1} + c_{i+1} + 8c_{i+2} = 0$$

$$16c_{i-2} + c_{i-1} + c_{i+1} + 16c_{i+2} = 0$$

$$16c_{i-2} + c_{i-1} + c_{i+1} + 16c_{i+2} = 0$$

$$16c_{i-2} + c_{i-1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

$$17c_{i-1} + c_{i+1} + c_{i+1} + 16c_{i+2} = 0$$

General formulation

In general, for the nth derivative

$$f_i^{[n]} = \frac{1}{h^n} \sum_{j=-n_b}^{n_f} c_{i+j} f_{i+j}$$

where, n_b is the number of backward grid points, and n_f , forward grid points.

Forward difference formulae $f_i^n = \frac{1}{h^n} \sum_{j=0}^{n_f} c_{i+j} f(x_{i+j})$

Accuracy	Derivative	c_i	C_{i+1}	C_{i+2}	C_{i+3}	$C_i + 4$	Error
O(h)	f_i'	-1	1				-hf"/2
	f_t''	1	-2	1			-hf'''
	$f_i^{\prime\prime\prime}$	-1	3	-3	1		$-3hf^{iv}/2$
	$f_i^{\mathrm{i} u}$	1	- 4	6	-4	1	$-2hf^{\gamma}$
$O(h^2)$	f_i'	-3/2	2	- 1/2			$h^2f^{\prime\prime\prime}/3$
	f_i''	2	-5	4	-1		$11h^2f^{iv}/12$
	$f_i^{\prime\prime\prime}$	-5/2	9	- 12	7	- 3/2	$7h^2f^{\nu}/4$
$O(h^3)$	f_i'	-11/6	3	- 3/2	1/3		$-h^3f^{i\nu}/4$
	f_i''	35/12	- 26/3	19/2	- 14/3	11/12	$-5h^3f^{\nu}/6$

Numerical Differentiation: Uneven spacing

What if the given data is not equally spaced

$$(x_k, f(x_k))$$
 $k = 0,1,2,...,n$

 Forward and backward difference formula for the first derivative will still be valid

$$f'_{i} = \frac{f_{i+1} - f_{i}}{x_{i+1} - x_{i}} \qquad f'_{i} = \frac{f_{i} - f_{i-1}}{x_{i}}$$

• Central difference? $f'_{i} = \frac{f_{i+1} - f_{i-1}}{x_{i+1} - x_{i-1}}$

• We may use it but error will NOT be $O(h^2)$