Image Pyramids

Computer Vision (CS0029)

Image Pyramid

- Multi-resolution image representation
- Useful for image coding/compression

Image Pyramids Operation: Theory

- Two fundamental operations
 - Approximately inverse of one another
 - Linear operations
- First operation: blur and sample the input image (create the pyramid)
- Second (reverse) operation: interpolate the blurred and sampled image to estimate the original
- First examine 1-D signal, then move on to images

Blurring/Sampling Operation

- First operation convolves input signal with a smoothing kernel, then samples the result
 - Blurring and sampling go together
- Blurring creates smoother version of original (reducing aliasing), containing fewer high-frequency components
- Thus can represent blurred data with fewer samples than in original
 - Sample blurred signal at every other value
- Original signal = Low-frequency + high-frequency info

Visualization

Pyramid Construction

- To create pyramid, repeat blurring and sampling on each resulting signal
 - Original signal s₁
 - Blur and sample s₁ to create s₂
 - Blur and sample s₂ to create s₃
 - And so on...
- Each successive level contains half as many sample values as the previous level
 - For an image, sampling every other row and column, each successive level contains one-quarter of the samples as the previous level

Interpolation (Reverse) Operation

- Approximate inverse of blurring/sampling operation
- Make an informed guess of original signal from the reduced signal
 - Approximate s_n from s_{n+1}
- First up-sample s_{n+1} to size of s_n
 - Place data from s_{n+1} into every other entry of a vector s_n
- Next interpolate new empty values between the given values
 - For example use the average of the given neighbor values

Error Signal as Laplacian Pyramid

- Error is difference between estimate (low-frequency) and original
 - Interpolated estimate and original
- Sequence of error signals forms the "error pyramid"
 - This error pyramid is called a Laplacian pyramid
- From error pyramid, we can reconstruct original signal s₁ without any error
 - Add interpolated s₂ and the error e₁
 - Error e₁ is the difference between s₁ and the interpolated s₂ to (s₁)
 - Low-frequency (s₂) + high-frequency (e₁)

1-D Pyramid Construction

Reconstruction

 Original signal can be recovered exactly by interpolation, then summing all the levels of the error pyramid

 Hence, only the error pyramid is needed to represent the original signal completely

- Why do this?
 - Useful for coding/compression

1-D Pyramid Reconstruction

Image

- No previous principles change when processing 2-D images
- Use Gaussian blurring (filtering)
 - G(m,n) = w(m)w(n)
 - where w = [0.25 0.5a, 0.25, a, 0.25, 0.25 5a]
- Sub-sample rows and columns
- Useful for image coding
- Applicable to progressive transmission

Gaussian Pyramid

Error Pyramid

Reconstruction

Compression and Coding

- Could just code the original image
 - But histogram of values is broad (not well suited to compression method)
- Error pyramid is useful
 - Multi-resolution representation of image
 - Information varies as descend in resolution
- Error signals are distributed over smaller range (around 0) than original image
 - Easier to compress (more compact) in lossless/lossy method
 - Can be represented very efficiently
- Quantization of error distribution further reduces data without perceptual loss
 - Divide range of pixel values into bins

Image Coding/Compression

Original

Image Coding/Compression

- Progressive image transmission
 - Coarse rendition of image sent first to give early impression of image content
 - Further transmissions provide image detail of progressively finer resolution
 - Can terminate transmission when user sees enough details
- Laplacian pyramid well suited for progressive image transmission
 - Topmost level of pyramid sent first (low resolution image)
 - Next lower level is then transmitted and added to the first, and so on
- On receiving end, see image steadily coming into focus

