Schaltung 1

Gegeben ist die Schaltung gemäß Abbildung 2 mit der Spannungsquelle $U_0 = 8 V$ und den Widerständen $R_1 = 24 \Omega$ und $R_2 = 72 \Omega$.

a) Wie groß ist die Spannung U_A an den Klemmen a-a'?

- b) Wie groß ist der Strom an der Klemme *a*, wenn die Schaltung an den Klemmen *a-a'* kurzgeschlossen wird? (4 Punkte)
- c) Stellen Sie die Schaltung durch eine Ersatzspannungsquelle (reale Spannungsquelle) dar! Zeichnen Sie die Ersatzschaltung und geben Sie deren charakteristische Größen an! (4 Punkte)
- d) An den Klemmen der obigen Schaltung wird ein Verbraucher mit der Angabe ("6V / 2W") angeschlossen. Berechnen Sie die tatsächlich im Verbraucher umgesetzte Leistung! (4 Punkte)

Schaltung 2

Gegeben ist eine Schaltung gemäß nebenstehender Abbildung 2a: Abbildung 2a mit der Spannungsquelle $U_I = 3,6~V$, den Widerständen $R_I = 3~k\Omega$, $R_2 = 0,6~k\Omega$ und $R_3 = 1,2~k\Omega$ sowie einem Schalter S. Der Schalter S befindet sich zunächst in der Position 'a'.

- a) Zeichnen Sie ein vereinfachtes Schaltbild für den Fall, dass sich der Schalter in der Position 'a' befindet!
 (2 Punkte)
- b) Berechnen Sie für diesen Fall der Gesamtwiderstand der Schaltung aus R_1 , R_2 und R_3 (2 Punkte)
- c) Welcher Gesamtwiderstand ergibt sich aus R_1 , R_2 und R_3 für die Schalterposition 'b' ? (2 Punkte)
- d) Geben Sie für **beide** Schalterpositionen jeweils die Leerlaufspannung und den Kurzschlussstrom bezüglich der Klemme k-k' an! (2,5 Punkte)

Schaltung 3

Gegeben ist eine Schaltung gemäß nebenstehender Abbildung mit der Stromquelle I_1 und den Widerständen $R_1 = 1 \ k\Omega$, $R_2 = 1 \ k\Omega$ und $R_L = 3 \ k\Omega$.

- a) Berechnen Sie aus den Widerstände R_1 , R_2 und R_L den Gesamtwiderstand R_{ges} bezüglich der Klemmen k-k'! (1,5 Punkte)
- b) Welche Spannung U_L ergibt sich, wenn die Stromquelle $I_l = 7 \text{ mA}$ liefert? (1 Punkte)

Die Schaltung wird gemäß nebenstehender Abbildung durch eine Spannungsquelle $U_2 = 1,4$ V ergänzt.

- c) Wandeln Sie zunächst die Reihenschaltung U_2 , R_2 in eine reale Stromquelle um! (3 Punkte)
- d) Berechnen Sie die Spannung U_L ! (3 Punkte)