

Álgebra de Boole e Simplificação de Circuitos Lógicos

- Nesta apresentação serão vistos os postulados e propriedades e formas canônicas de expressões booleanas
- Além disso, serão vistas duas forma de simplificar circuitos
 - Fatoração
 - Diagramas de Veitch-Karnaugh

Motivação

- Como visto, os circuitos lógicos correspondem (executam) expressões booleanas, as quais representam problemas no mundo real
- □ Porém, os circuitos gerados por tabelas verdade muitas vezes admitem simplificações, o que reduz o número de portas lógicas; essa redução diminui o grau de dificuldade na montagem e custo do sistema digital

Motivação

- O estudo da simplificação de circuitos lógicos requer o conhecimento da álgebra de Boole, por meio de seus postulados, propriedades, equivalências, etc
- De fato, na álgebra de Boole encontram-se os fundamentos da eletrônica digital de circutos

Constantes, Variáveis e Expressões

- Existem apenas duas constantes booleanas
 - 0 (zero)
 - 1 (um)
- □ Uma variável booleana é representada por letra e pode assumir apenas dois valores (0 ou 1)
 - Exemplos: A, B, C
- Uma expressão booleana é uma expressão matemática envolvendo constantes e/ou variáveis booleanas e seu resultado assume apenas dois valores (0 ou 1)
 - Exemplos:
 - ❖ S = A.B.
 - ❖ S = A+B.C

Postulados & Propriedades

- Na álgebra booleana há postulados (axiomas) a partir dos quais são estabelecidas várias propriedades
- Existem várias propriedades da negação (complemento, inversor), adição (porta E) e soma (porta OU)
- Estas propriedades podem ser verificadas como equivalências lógicas
- Para demonstrar cada uma, basta utilizar as tabelas-verdade, constatando a equivalência

Postulados

- Complemento
 - Se A=0 então Ā=1
 - Se A=1 então Ā=0
- Notações alternativas

$$\bar{A} = A'$$

$$\bar{A} = -A$$

Adição

$$0 + 0 = 0$$

$$-0+1=1$$

$$-1+0=1$$

Multiplicação

$$-0.0 = 0$$

Propriedades

Propriedade	Complemento	Adição	Multiplicação
		A + 0 = A	A . 0 = 0
ldoptidodo	<u>–</u> de Ā = A	A + 1 = 1	A . 1 = A
Identidade	A=A	A + A = A	$A \cdot A = A$
		A + Ā = 1	A . Ā = 0
Comutativa		A + B = B + A	A . B = B . A
Associativa		A+(B+C) = (A+B)+C = A+B+C	A.(B.C) = (A.B).C = A.B.C
Distributiva		A+(B.C) = (A+B) . (A+C)	A.(B+C) = A.B + A.C

Propriedades

- Absorção
 - A + (A.B) = A
 - A. (A+B) = A
- Outras Identidades
 - $A + \bar{A} \cdot B = A + B$
 - (A+B).(A+C) = A + B.C
- De Morgan
 - (A.B)' = $\bar{A} + \bar{B}$
 - (A+B)' = Ā . B
- □ De Morgan se estende para *n* variáveis
 - (A.B. n)' = \bar{A} + \bar{B} + ... + \bar{n}
 - (A+B+ ... +n)' = $\bar{A} \cdot \bar{B} \cdot ... \cdot \bar{n}$

Exercício

- Mostre, usando simplificação por postulados e propriedades, ou seja, por transformações algébricas que:
 - A+A.B = A
 - A.(A+B) = A

Solução

$$\triangle$$
 A+A.B = A

$$= A.(1+B)$$

$$= A.(1)$$

$$\triangle$$
 A.(A+B) = A

$$= (A.A) + (A.B)$$

$$= A + (A.B)$$

distributiva

identidade da adição

identidade da multiplicação

distributiva

identidade da multiplicação

pela prova do exercício acima

Exercício

- Idem ao exercício anterior
 - $-A + \bar{A}.B = A + B$
 - (A+B).(A+C) = A + B.C

Solução

$$\triangle$$
 A + \bar{A} .B = A + B

•
$$A + \bar{A}.B = (A + \bar{A}.B)$$
"

$$= (\bar{A} \cdot (\bar{A} \cdot B)')' = (\bar{A} \cdot (A + \bar{B}))'$$

$$= (\bar{A}.A + \bar{A}.\bar{B})'$$

$$= (0 + \bar{A}.\bar{B})'$$

$$= (\bar{A}.\bar{B})'$$

$$= A + B$$

identidade do complemento

De Morgan

distributiva

identidade da multiplicação

identidade da adição

De Morgan

$$\triangle$$
 A + \bar{A} .B = A + B

• A +
$$\bar{A}$$
.B = (A + \bar{A}).(A+ B) distributiva α + β . γ = (α + β).(α + γ)

$$= 1.(A+B)$$

$$= A + B$$

Solução

$$(A+B).(A+C) = A + B.C$$
 $(A+B).(A+C)$

$$\bullet (A+B).(A+C)$$

$$\blacksquare$$
 = A + A.(C+B) + B.C distributiva

$$\blacksquare$$
 = A.(1 + (C+B)) + B.C distributiva

Simplificação de Expressões Booleanas

- Usando a álgebra booleana é possível simplificar expressões
- Como cada circuito corresponde a uma expressão, simplificações de expressões significam em simplificações de circuitos
- Há duas formas para simplificar expressões
 - Fatoração
 - Mapas de Veitch-Karnaugh
- Veremos, a seguir, o processo de fatoração

Fatoração

- Consiste na aplicação dos postulados e propriedades da álgebra booleana, com o objetivo de simplificar a expressão
- Por exemplo

$$\blacksquare$$
 S = A.B.C + A.C' + A.B'

$$\blacksquare$$
 = A.(B.C + (C' + B')) associativa

$$\blacksquare$$
 = A.(B.C + (C.B)') De Morgan

$$\blacksquare$$
 = A.(B.C + (B.C)') comutativa

Fatoração

- Portanto,
 - A.B.C + A.C' + A.B' = A
- Essa expressão
 mostra a importância
 da simplificação de
 expressões e a
 consequente
 minimização do
 circuito, sendo o
 resultado final igual ao
 da variável A

Circuito antes da simplificação

Circuito após simplificação

Exercício

- □ Simplifique as expressões
 - S = A'.B'.C' + A'.B.C' + A.B'.C
 - $S = \bar{A}.\bar{B} + \bar{A}.B$

Solução

- Simplifique as expressões
 - S = A'.B'.C' + A'.B.C' + A.B'.C

$$S = \bar{A}.\bar{B} + \bar{A}.B$$

$$\Rightarrow = \bar{A}.(1)$$

Exercício

- □ Simplifique as expressões
 - S = A'.B'.C' + A'.B.C + A'.B.C' + A.B'.C' + A.B.C'
 - $S = (A+B+C).(\bar{A}+\bar{B}+C)$

Solução

```
\Box S = A' B' C' + A' B C + A' B C' + A B' C' + A B C'
                          = A'.B'.C' + A'.B.C + A'.B.C' + A.B'.C' + A.B.C'
                          = A'.B.C + (A'.B' + A'.B + A.B' + A.B).C'
                          = A'.B.C + (A'.B' + A'.B + A.B' + A.B).C'
                          = A'.B.C + (A'.(B' + B) + A.(B' + B)).C'
                          = A'.B.C + (A'.(1) + A.(1)).C'
                          = A'.B.C + (A' + A).C'
                          = A'.B.C + (1).C'
                          = A'.B.C + C'
                                                                                                                                                                                                                      identidade X+(X'.Y) = X+Y
                          = A'B+C'
S = (A+B+C).(\bar{A}+\bar{B}+C)
                          = A.\overline{A} + A.\overline{B} + A.C + B.\overline{A} + B.\overline{B} + B.C + C.\overline{A} + C.\overline{B} + C.C
                          = 0 + A.\bar{B} + A.C + B.\bar{A} + 0 + B.C + C.\bar{A} + C.\bar{B} + C
                          = A.\bar{B} + B.\bar{A} + A.C + B.C + C.\bar{A} + C.\bar{B} + C.\bar{B
                          = A.\bar{B} + B.\bar{A} + C.(A + B + \bar{A} + \bar{B} + 1)
                          = A.\bar{B} + B.\bar{A} + C.(1)
                          = A\bar{B} + B\bar{A} + C
```

Formas Normais (Canônicas)

- Toda expressão booleana pode ser escrita em uma forma padronizada, denominada forma normal ou forma canônica
- Duas formas normais são
 - Forma Normal Conjuntiva (FNC), Produto de Somas ou Produto de Maxtermos
 - Forma Normal Disjuntiva (FND), Soma de Produtos ou Soma de Mintermos

Maxtermos e Mintermos

- Maxtermos (ou maxitermos)
 - Variável com valor 0 é deixada intacta
 - Variável com valor 1 é alterada pela sua negação
 - Variáveis de uma mesma linha são conectadas por + (adição)
- Mintermos (ou minitermos)
 - Variável com valor 1 é deixada intacta
 - Variável com valor 0 é alterada pela sua negação
 - Variáveis de uma mesma linha são conectadas por . (multiplicação)

Α	В	С	Maxtermo	Mintermo
0	0	0	A+B+C	Ā.Ē.Ĉ
0	0	1	A+B+Ō	Ā.Ē.C
0	1	0	A+Ē+C	Ā.B.Ē
0	1	1	A+Ē+Ō	Ā.B.C
1	0	0	Ā+B+C	A.Ē.Ĉ
1	0	1	Ā+B+Ō	A.Ē.C
1	1	0	Ā+Ē+C	A.B.Ō
1	1	1	Ā+Ē+Ō	A.B.C

Forma Normal Disjuntiva

- Mintermo (ou minitermo) é o termo produto associado à cada linha da tabela verdade, no qual todas as variáveis de entrada estão presentes
- Dado um dado mintermo, se substituirmos os valores das variáveis associadas, obteremos 1
- Porém, se substituirmos nesse mesmo mintermo quaisquer outras combinações de valores, obteremos 0
- Dessa forma, se quisermos encontrar a equação para uma função a partir de sua tabela verdade, basta montarmos um OU entre os mintermos associados aos 1s da função

FND: Exemplo

□ S é uma funç de entrada A	cão das variáveis . B e C	Situação	Α	В	С	S	Mintermo
	e (A,B,C) para os	0	0	0	0	0	
quais S=1 en situações 2, 3	contram-se nas 3, 5 e 6	1	0	0	1	0	
	s associados a	2	0	1	0	1	Ā.B.Ē
•	ões (ou seja, os são mostrados na	3	0	1	1	1	Ā.B.C
	essão em soma	4	1	0	0	0	
de produtos ((FND) para S será stes produtos	5	1	0	1	1	A.Ē.C
	•	6	1	1	0	1	A.B.Ō
A.B.Ō		7	1	1	1	0	

Forma Normal Conjuntiva

- Maxtermo (ou maxitermo) é o termo soma associado à cada linha da tabela verdade, no qual todas as variáveis de entrada estão presentes
- Dado um dado maxtermo, se substituirmos os valores das variáveis associadas, obteremos 0
- Porém, se substituirmos nesse mesmo maxtermo quaisquer outras combinações de valores, obteremos 1
- Dessa forma, se quisermos encontrar a equação para uma função a partir de sua tabela verdade, basta montarmos um E entre os maxtermos associados aos 0s da função

FNC: Exemplo

	S é uma função das variáveis de entrada A, B e C	Situação	Α	В	С	S	Maxtermo
	Os valores de (A,B,C) para os	0	0	0	0	0	A+B+C
	quais S=0 encontram-se nas situações 0, 1, 4 e 7	1	0	0	1	0	A+B+Ō
	Os maxtermos associados a	2	0	1	0	1	
	essas condições (ou seja, os maxtermos 0) são mostrados na tabela ao lado	3	0	1	1	1	
	Logo, a expressão em produto	4	1	0	0	0	Ā+B+C
_	de somas (FNC) para S será o E entre estas somas	5	1	0	1	1	
	$S = (A+B+C) \cdot (A+B+\bar{C}).$	6	1	1	0	1	
	(Ā+B+C) . (Ā+Ē+Ē)	7	1	1	1	0	Ā+Ē+Ĉ

Simplificação a partir da Forma Normal

□ Uma vez obtida a forma normal de uma função booleana, é possível simplificá-la por meio de manipulação algébrica, respeitando os postulados e propriedades da álgebra booleana, com visto anteriormente

Mapas de Veitch-Karnaugh

- Alternativamente ao método de simplificação algébrico por fatoração, há outro método de simplificação baseado na identificação visual de grupos de mintermos que podem ser simplificados
- Para tanto, é necessário que os mintermos sejam dispostos de maneira conveniente, em tabelas conhecidas como diagramas ou mapas de Veitch-Karnaugh

Diagrama de Veitch-Karnaugh para 2 Variáveis

- Em um mapa de Veitch-Karnaugh, há uma região própria para cada linha da tabela verdade
- Essas regiões são os locais ondem devem ser colocados os valores que a expressão S assume nas diferentes possibilidades
- Para obter a expressão simplificada por meio do diagrama
 - Agrupar as regiões onde S=1 no menor número possível de pares (diagonais não são permitidas no agrupamento de pares)
 - As regiões onde S=1 que não puderem ser agrupadas em pares são consideradas isoladamente

Situação	Α	В	S
0	0	0	
1	0	1	
2	1	0	
3	1	1	

	Ē	В
Ā	Ā B 0 0 Situação 0	Ā B 0 1 Situação 1
Α	A B 1 0 Situação 2	AB 11 Situação 3

Diagrama de Veitch-Karnaugh para 2 Variáveis

- A tabela verdade mostra o estudo de uma função
- A expressão booleana da função S obtida da tabela verdade usando mintermos é
 - $S = \bar{A}.B + A.\bar{B} + A.B$
- Obtenha uma expressão equivalente, simplificada usando mapa de Veitch-Karnaugh

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

	Ē	В
Ā		
Α		

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

	Ē	В
Ā	0	1
Α	1	

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

	Ē	В
Ā	0	1
Α	1	1

- Agora tentamos agrupar as regiões onde S=1 no menor número possível de pares
- Um par é o conjunto de duas regiões onde S=1 que tem um lado em comum, ou seja, são vizinhos

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

- Agora tentamos agrupar as regiões onde S=1 no menor número possível de pares
- Um par é o conjunto de duas regiões onde S=1 que tem um lado em comum, ou seja, são vizinhos
- Um mesmo valor 1 pode pertencer a mais de um par

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

- Então, escrevemos a expressão de cada par, ou seja, a região que o par ocupa no diagrama
- O par 1 ocupa a região A=1, então sua expressão é A
- O par 2 ocupa a região onde B=1, sendo sua expressão B
- Neste caso, nenhum 1 ficou isolado, ou seja, fora dos pares
- Basta então somar os resultados de cada par
 - S = Par 1 + Par 2
 - S = A + B

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

- A expressão de S obtida por mapa de Veitch-Karnaugh é
 - S = A + B
- Como é possível notar, essa é a expressão de uma porta OU, pois a tabela verdade também é da porta OU
- Outro ponto importante é que a expressão obtida diretamente da tabela verdade
 - $S = \bar{A}.B + A.\bar{B} + A.B$
- é visivelmente maior que a expressão minimizada

Situação	Α	В	S
0	0	0	0
1	0	1	1
2	1	0	1
3	1	1	1

Exercício

- Dada a tabela ao lado, obtenha a expressão de S diretamente da tabela, usando mintermos
- A seguir, transporte a tabela para o diagrama de Veitch-Karnaugh e obtenha a expressão simplificada

Situação	Α	В	S
0	0	0	1
1	0	1	1
2	1	0	1
3	1	1	0

	Ē	В
Ā		
Α		

Solução

- Dada a tabela ao lado, obtenha a expressão de S diretamente da tabela, usando mintermos
 - $S = \bar{A}.\bar{B} + \bar{A}.B + A.\bar{B}$
- A seguir, transporte a tabela para o diagrama de Veitch-Karnaugh e obtenha a expressão simplificada
 - S = Par 1 + Par 2
 - $S = \bar{A} + \bar{B}$
- Nota-se que a tabela verdade é a de uma porta NAND, cuja expressão é S=(A.B)'
- Aplicando De Morgan na expressão encontrada, tem-se
 - $S = \bar{A} + \bar{B} = (A.B)'$

Situação	Α	В	S
0	0	0	1
1	0	1	1
2	1	0	1
3	1	1	0

Diagrama de Veitch-Karnaugh para 3 Variáveis

- De forma análoga para 2 variáveis, com 3 variáveis também há uma região própria para cada linha da tabela verdade em um mapa de Veitch-Karnaugh
- Para obter a expressão simplificada por meio do diagrama
 - Agrupar as regiões onde S=1 no menor número possível de quadras
 - Em seguida, agrupar as regiões onde S=1 no menor número possível de pares
 - As regiões onde S=1 que não puderem ser agrupadas em quadras ou pares são consideradas isoladamente

Situação	Α	В	С	S
0	0	0	0	
1	0	0	1	
2	0	1	0	
3	0	1	1	
4	1	0	0	
5	1	0	1	
6	1	1	0	
7	1	1	1	

	Ē		E	3
Ā	Ā Ā Ō Ō	Ā Ē C	Ā B C	Ā B Ō
	O O O	0 0 1	0 1 1	0 1 0
	Situação O	Situação 1	Situação 3	Situação 2
Α	A B C	A B C	A B C	A B Ĉ
	1 0 0	1 0 1	1 1 1	1 1 0
	Situação 4	Situação 5	Situação 7	Situação 6
·	Ō	C		Ō

Quadras

Pares (1/2)

Pares (2/2)

Quadra e Pares nas Extremidades

Note que a região marcada corresponde a uma quadra, mesmo não estando contígua no diagrama

- A expressão extraída diretamente da tabela verdade para S é
 - S = Ā.B.C + Ā.B.C +
 Ā.B.C + A.B.C + A.B.C
- Como antes, o diagrama é preenchido com cada situação da tabela verdade

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

- A expressão extraída diretamente da tabela verdade para S é
 - S = Ā.B.C + Ā.B.C +
 Ā.B.C + A.B.C + A.B.C
- Como antes, o diagrama é preenchido com cada situação da tabela verdade

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

- A expressão extraída diretamente da tabela verdade para S é
 - S = Ā.B.C + Ā.B.C +
 Ā.B.C + A.B.C + A.B.C
- Como antes, o diagrama é preenchido com cada situação da tabela verdade

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	Ē	3	E	3
Ā	1	0		
Α				
'	Ō	(Ō

- A expressão extraída diretamente da tabela verdade para S é
 - S = Ā.B.C + Ā.B.C + Ā.B.C + A.B.C + A.B.C
- Como antes, o diagrama é preenchido com cada situação da tabela verdade

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	Ē	3	E	3
Ā	1	0		1
Α				
'	Ō	(Ō

- A expressão extraída diretamente da tabela verdade para S é
 - S = Ā.B.C + Ā.B.C +
 Ā.B.C + A.B.C + A.B.C
- Como antes, o diagrama é preenchido com cada situação da tabela verdade

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

	Ē	3	E	3
Ā	1	0	1	1
Α				
'	Ō	(Ĉ

- A expressão extraída diretamente da tabela verdade para S é
 - S = Ā.B.C + Ā.B.C +
 Ā.B.C + A.B.C + A.B.C
- Como antes, o diagrama é preenchido com cada situação da tabela verdade

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	Ē	3	E	3
Ā	1	0	1	1
Α	1			
'	Ō	(Ĉ

- A expressão extraída diretamente da tabela verdade para S é
 - S = Ā.B.C + Ā.B.C +
 Ā.B.C + A.B.C + A.B.C
- Como antes, o diagrama é preenchido com cada situação da tabela verdade

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	Ē	3	E	3
Ā	1	0	1	1
Α	1	0		
'	Ō	(Ō

- A expressão extraída diretamente da tabela verdade para S é
 - S = Ā.B.C + Ā.B.C +
 Ā.B.C + A.B.C + A.B.C
- Como antes, o diagrama é preenchido com cada situação da tabela verdade

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	Ē	ġ	E	3
Ā	1	0	1	1
Α	1	0		1
·	Ō	(Ō

- A expressão extraída diretamente da tabela verdade para S é
 - S = Ā.B.C + Ā.B.C +
 Ā.B.C + A.B.C + A.B.C
- Como antes, o diagrama é preenchido com cada situação da tabela verdade

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	Ē	3	Е	3
Ā	1	0	1	1
Α	1	0	0	1
	Ō	С		Ō

 Agora tentamos agrupar as regiões onde S=1 no menor número possível de quadras

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

	Ē	3	Е	3
Ā	1	0	1	1
Α	1	0	0	1
	Ō	С		Ō

- Agora tentamos agrupar as regiões onde S=1 no menor número possível de quadras
- No exemplo, tem-se a quadra C̄
- Como nenhuma quadra adicional pode ser encontrada, tentamos localizar agora o menor número de pares
 - Não devem ser considerados os pares já incluídos em quadras
 - Contudo, pode acontecer de um par ser composto por um 1 externo e outro interno a uma quadra

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

- Agora tentamos agrupar as regiões onde S=1 no menor número possível de quadras
- No exemplo, tem-se a quadra C̄
- Como nenhuma quadra adicional pode ser encontrada, tentamos localizar agora o menor número de pares
 - Não devem ser considerados os pares já incluídos em quadras
 - Contudo, pode acontecer de um par ser composto por um 1 externo e outro interno a uma quadra
- No exemplo, tem-se o par Ā.B.

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

- Agora tentamos agrupar as regiões onde S=1 no menor número possível de quadras
- 💶 No exemplo, tem-se a quadra Ĉ
- Como nenhuma quadra adicional pode ser encontrada, tentamos localizar agora o menor número de pares
 - Não devem ser considerados os pares já incluídos em quadras
 - Contudo, pode acontecer de um par ser composto por um 1 externo e outro interno a uma quadra
- No exemplo, tem-se o par Ā.B
- Por último, resta considerar termos isolados, que não foram agrupados nem em quadras, nem em pares
- No exemplo, não temos nenhum termo isolado

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

- Agora, basta somar as expressões referentes às quadras, pares e termos isolados
- No exemplo, temos
 - Quadra C̄
 - Par Ā.B
- A expressão final minimizada é

$$S = \bar{C} + \bar{A}.B$$

- Comparando com a expressão antes da minimização, é possível notar a redução do número de portas e operações necessárias para obter-se o mesmo resultado
 - S = $\bar{A}.\bar{B}.\bar{C} + \bar{A}.B.\bar{C} + \bar{A}.B.C + A.\bar{B}.\bar{C} + A.B.\bar{C}$

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	1
5	1	0	1	0
6	1	1	0	1
7	1	1	1	0

Exercício

 Minimizar o circuito que executa a tabela verdade ao lado

Situação	Α	В	С	S
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Exercício

- Minimizar o circuito que executa a tabela verdade ao lado
- Lembrar de agrupar as quadras, depois os pares e por últimos os termos isolados

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0
	0 0 0 0 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

	Ē	3	E	3
Ā	0	1	1	0
Α	1	1	0	1
	Ĉ	С		Ĉ

Solução

- Minimizar o circuito que executa a tabela verdade ao lado
- Lembrar de agrupar as quadras, depois os pares e por últimos os termos isolados
- Nesse caso, há apenas 3 pares
 - Ā.C
 - A.B̄
 - A.C̄
- Portanto, a expressão minimizada é
 - $S = \overline{A}.C + A.\overline{B} + A.\overline{C}$

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0
	0 0 0 0 1 1	0 0 0 0 0 1 0 1 1 0 1 0	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

Solução

- Minimizar o circuito que executa a tabela verdade ao lado
- Lembrar de agrupar as quadras, depois os pares e por últimos os termos isolados
- Nesse caso, há apenas 3 pares
 - Ā.C
 - A.B̄
 - A.C̄
- Portanto, a expressão minimizada é

•
$$S = \bar{A}.C + A.\bar{B} + A.\bar{C}$$

- Poderíamos também ter agrupado da seguinte maneira, gerando a expressão
 - $S = \bar{A}.C + \bar{B}.C + A.\bar{C}$
- Essas duas expressões, sintaticamente diferentes, são semanticamente equivalentes, pois possuem o mesmo comportamento em cada situação da tabela verdade

Situação	Α	В	С	S
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	0

Exercício

- Simplifique a expressão, utilizando diagrama de Veitch-Karnaugh
 - S = Ā.B.C + Ā.B.C + Ā.B.C +
 A.B.C + A.B.C

Solução

- Simplifique a expressão, utilizando diagrama de Veitch-Karnaugh
 - S = Ā.B.C + Ā.B.C + Ā.B.C + A.B.C
 + A.B.C
- Após a minimização, obtém-se
 - $S = C + \bar{A}.\bar{B}$

Situaç	ão	Α	В	С	S
0		0	0	0	1
1		0	0	1	1
2		0	1	0	0
3		0	1	1	1
4		1	0	0	0
5		1	0	1	1
6		1	1	0	0
7		1	1	1	1

Exercício

- Simplifique a expressão, utilizando diagrama de Veitch-Karnaugh
- Tente montar o diagrama sem escrever a tabela verdade
 - $S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.B.C$

Exercício

- Simplifique a expressão, utilizando diagrama de Veitch-Karnaugh
- Tente montar o diagrama sem escrever a tabela verdade
 - $S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.B.C$

	Ē		В		
Ā	Ā.Ē.Ĉ		Ā.B.C	Ā.B.Ō	
Α			A.B.C		
!	Ĉ	(Ĉ	

Solução

- Simplifique a expressão, utilizando diagrama de Veitch-Karnaugh
 - $S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.B.C$
- Após a minimização, obtém-se
 - $S = \bar{A}.\bar{C} + B.C$

Situação	Α	В	С	S
0	0	0	0	1
1	0	0	1	0
2	0	1	0	1
3	0	1	1	1
4	1	0	0	0
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

	Ē	3	В		
Ā		0	(1)	, _ , - 	
Α	0	0	1 1	0	
'	Ō	(Ĉ	

Diagrama de Veitch-Karnaugh para 4 Variáveis

Diagrama de Veitch-Karnaugh para 4 Variáveis

 Como antes, há uma região para cada linha na tabela verdade

Situação	Α	В	С	D	S
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
10	1	0	1	0	
11	1	0	1	1	
12	1	1	0	0	
13	1	1	0	1	
14	1	1	1	0	
15	1	1	1	1	

	Ō		(
Ā	Ā Ē Ō Ō 0 0 0 0 Situação 0	Ā Ē Ĉ D 0 0 0 1 Situação 1	Ā Ē C D 0 0 1 1 Situação 3	Ā Ē C Ū 0 0 1 0 Situação 2	Ē
A	Ā B Ō Ū 0 1 0 0 Situação 4	Ā B Ō D 0 1 0 1 Situação 5	Ā B C D 0 1 1 1 Situação 7	Ā B C D 0 1 1 0 Situação 6	D
^	A B C D 1 1 0 0 Situação 12	AB Ĉ D 1 1 0 1 Situação 13	A B C D 1 1 1 1 Situação 15	A B C D 1 1 1 0 Situação 14	В
Α	A B C D 1 0 0 0 Situação 8	A B C D 1 0 0 1 Situação 9	A B C D 1 0 1 1 Situação 11	A B C D 1 0 1 0 Situação 10	Ē
	Đ	Г)	Ď	I

Oitavas

Quadras (1/3)

Quadras (2/3)

Quadras (3/3)

Pares (1/4)

Pares (2/4)

Pares (3/4)

Pares (4/4)

 Simplifique a expressão usando mapa de Veitch-Karnaugh

S = Ā.B.C.D + Ā.B.C.D
 Ā.B.C.D + Ā.B.C.D + —
 Ā.B.C.D + A.B.C.D +
 A.B.C.D + A.B.C.D +
 A.B.C.D + A.B.C.D +
 A.B.C.D

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D
 Ā.B.C.D + Ā.B.C.D +
 Ā.B.C.D + A.B.C.D +
 A.B.C.D + A.B.C.D +
 A.B.C.D + A.B.C.D +
 A.B.C.D
- Transpondo para o diagrama, temos o diagrama ao lado

	(Ō	C	_	
Ā	0	1	1	1	Ē
А	0	1	1	0	B
A	1	1	1	0	B
	1	1	1	0	Ē
	Ď	[Đ	_

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D
 Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D
- Transpondo para o diagrama, temos o diagrama ao lado
- Localizando oitavas

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D
 Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D
- Transpondo para o diagrama, temos o diagrama ao lado
- Localizando oitavas, quadras

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D
 Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D
- Transpondo para o diagrama, temos o diagrama ao lado
- Localizando oitavas, quadras e pares
- Observe que não existem elementos isolados neste exemplo
- A expressão simplificada é
 - $S = D + A.\bar{C} + \bar{A}.\bar{B}.C$

 Simplifique a expressão usando mapa de Veitch-Karnaugh

+ A.B.C.D + A.B.C.D

Simplifique a expressão usando mapa de Veitch-Karnaugh

 \blacksquare S = $\bar{A}.\bar{B}.\bar{C}.D$ + $\bar{A}.\bar{B}.C.D$

+ Ā.B.C.D + Ā.B.C.D +

+ Ā.B.C.D + Ā.B.C.D +

+ A.B.C.D + A.B.C.D

	Ċ	5	(
Ā		Ā.Ē.Ĉ.D	Ā.Ē.C.D		Ē
	Ā.B.Ō.Ō	Ā.B.Ō.D	Ā.B.C.D	Ā.B.C.Ū	1
A			A.B.C.D		В
				A.B.C.D	Ē
l	Ď	[)	Ď	

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + + Ā.B.C.D + + A.B.C.D + +
 A.B.C.D + A.B.C.D
- Não há oitavas possíveis
- Há duas quadras

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + + Ā.B.C.D + +
 A.B.C.D + Ā.B.C.D + +
 A.B.C.D + A.B.C.D
- Não há oitavas possíveis
- Há duas quadras, um par

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + + A.B.C.D + + A.B.C.D + +
 A.B.C.D + A.B.C.D
- Não há oitavas possíveis
- Há duas quadras, um par e um elemento isolado
- Portanto, a expressão minimizada é
 - S = Ā.D + Ā.B + B.C.D +
 A.B.C.D

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D
 A.B.C.D

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D
 A.B.C.D

	Ċ	Ō	(
Ā	Ā.Ē.Ō.Ō	Ā.Ē.Ō.D		Ā.Ē.C.Ū	Ē
A	Ā.B.Č.D				D
^		A.B.Ō.D	A.B.C.D		В
Α	A.Ē.Ō.D	A.Ē.Ō.D		A.B.C.D	Ē
	Ď	Г		Ď	1

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + Ā.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D
 A.B.C.D + A.B.C.D + A.B.C.D

	Ċ	5	С				
Ā	1	1		1	B		
A		1					
Δ.		1	1		В		
Α	1	1		1	Ē		
	Ď)	Ď			

- Simplifique a expressão usando mapa de Veitch-Karnaugh
 - S = Ā.B.C.D + Ā.B.C.D +
 Ā.B.C.D + Ā.B.C.D + A.B.C.D
 + A.B.C.D + A.B.C.D + A.B.C.D Ā
 + A.B.C.D
- Não há oitavas possíveis
- Há duas quadras e um par
- Portanto, a expressão minimizada é
 - $S = \bar{C}.D + \bar{B}.\bar{D} + A.B.D$

- Nesse caso, para obter a expressão simplificada por meio do diagrama
 - Agrupar as regiões onde S=1 no menor número possível de hexas
 - Em seguida, agrupar as regiões onde S=1 no menor número possível de oitavas
 - Em seguida, agrupar as regiões onde S=1 no menor número possível de quadras
 - Em seguida, agrupar as regiões onde S=1 no menor número possível de pares
 - As regiões onde S=1 que não puderem ser agrupadas em oitavas, quadras ou pares são consideradas isoladamente
- No diagrama, os lados extremos opostos se comunicam, assim como um diagrama se sobrepõe ao outro

Situação	Α	В	С	D	Ε	S
0	0	0	0	0	0	
1	0	0	0	0	1	
2	0	0	0	1	0	
3	0	0	0	1	1	
4	0	0	1	0	0	
5	0	0	1	0	1	
6	0	0	1	1	0	
7	0	0	1	1	1	
8	0	1	0	0	0	
9	0	1	0	0	1	
10	0	1	0	1	0	
11	0	1	0	1	1	
12	0	1	1	0	0	
13	0	1	1	0	1	
14	0	1	1	1	0	
15	0	1	1	1	1	

Situação	Α	В	С	D	Ε	S
16	1	0	0	0	0	
17	1	0	0	0	1	
18	1	0	0	1	0	
19	1	0	0	1	1	
20	1	0	1	0	0	
21	1	0	1	0	1	
22	1	0	1	1	0	
23	1	0	1	1	1	
24	1	1	0	0	0	
25	1	1	0	0	1	
26	1	1	0	1	0	
27	1	1	0	1	1	
28	1	1	1	0	0	
29	1	1	1	0	1	
30	1	1	1	1	0	
31	1	1	1	1	1	

	Ē	5)	Ā	Α	Ĺ	5	[)	_
Ē	Ā B C D Ē 0 0 0 0 0 Situação 0	Ā B C D E 0 0 0 0 1 Situação 1	Ā Ē Ō D E 0 0 0 1 1 Situação 3	Ā Ē C D Ē 0 0 0 1 0 Situação 2	Ō	Ē	A B Ĉ D Ē 1 0 0 0 0 Situação 16	A B Ĉ D E 1 0 0 0 1 Situação 17	A B Ĉ D E 1 0 0 1 1 Situação 19	A B C D E 1 0 0 1 0 Situação 18	Ō
D	Ā Ē C Ū Ē 0 0 1 0 0 Situação 4	Ā Ē C Ē E 0 0 1 0 1 Situação 5	Ā Ē C D E 0 0 1 1 1 Situação 7	Ā Ē C D Ē 0 0 1 1 0 Situação 6	С		A B C D E 1 0 1 0 0 Situação 20	A B C D E 1 0 1 0 1 Situação 21	A B C D E 1 0 1 1 1 Situação 23	A B C D Ē 1 0 1 1 0 Situação 22	С
Б	Ā B C D Ē 0 1 1 0 0 Situação 12	Ā B C D E 0 1 1 0 1 Situação 13	Ā B C D E 0 1 1 1 1 Situação 15	Ā B C D Ē 0 1 1 1 0 Situação 14	C	Б	A B C D Ē 1 1 1 0 0 Situação 28	A B C D E 1 1 1 0 1 Situação 29	A B C D E 1 1 1 1 1 Situação 31	A B C D Ē 1 1 1 1 0 Situação 30	
В	Ā B Č Ď Ē 0 1 0 0 0 Situação 8	Ā B Č Ď E 0 1 0 0 1 Situação 9	Ā B Č D E 0 1 0 1 1 Situação 11	Ā B Č D Ē 0 1 0 1 0 Situação 10	Ō	В	A B Ĉ Ď Ē 1 1 0 0 0 Situação 24	A B Ĉ Ď E 1 1 0 0 1 Situação 25	A B Ĉ D E 1 1 0 1 1 Situação 27	A B Ĉ D Ē 1 1 0 1 0 Situação 26	Ō
	Ē	E	=	Ē	1		Ē	E	<u> </u>	Ē	ı

Hexas (1)

Hexas (2)

Hexas (3)

Oitavas (1/10)

Oitavas (2/10)

Oitavas (3/10)

Oitavas (4/10)

Oitavas (5/10)

Oitavas (6/10)

Oitavas (7/10)

Oitavas (8/10)

Oitavas (9/10)

Oitavas (10/10)

Exemplo: Simplifique o Circuito representado pelo diagrama

	Ĺ	5	С)	Ā	А	Ĺ	Ō	[)	_
Ē	1	0	1	0	Ō	Ē	0	0	0	0	Ō
D	1	1	1	0		Б	0	1	0	1	
1	0	1	0	1	C		1	1	1	1	C
В	1	1	0	1	Ō	В	0	0	0	0	Ō
	Ē	E	<u> </u>	Ē	J		Ē	E	<u> </u>	Ē	_
											440

Exemplo: 2 Quadras

Exemplo: 2 Quadras, 5 Pares

Exercício

	Ĺ	5	[)	Ā	А	Í	Ō	[)	_
Ē	0	0	0	1	Ĉ	Ē	0	0	0	1	Ō
Б	0	1	1	1		Б	0	1	1	1	
Б	0	1	1	0	C	Б	0	1	1	0	C
В	1	0	0	0	Ĉ	В	1	0	0	0	Ĉ
	Ē	E	<u> </u>	Ē	_		Ē	E	=	Ē	_

Solução

Casos Sem Simplificação

- Seja a expressão
 - S = Ā.B + A.B
- Ao tentar simplificar a expressão pelo diagrama de Veitch-Karnaugh, nota-se que não é possível agrupar termos
- Nesse caso, a expressão dada já se encontra minimizada

O mesmo ocorre com	a
expressão	

$$S = A.B + \bar{A}.\bar{B}$$

Que também se encontra minimizada

	Ē	В
Ā	0	1
Α	1	0

	Ē	В
Ā	1	0
Α	0	1

Casos Sem Simplificação

- O mesmo ocorre nas duas situações seguintes, que também não admitem simplificação
- Estes casos também ocorrem para 4 ou mais variáveis de entrada

	Ē	3	E	3		Ē	3	E	3
Ā	0	1	0	1	Ā	1	0	1	0
Α	1	0	1	0	Α	0	1	0	1
	Ĉ	(<u> </u>	Ō	I	Ō	(Ö	Ō

Outra Maneira de Utilização

- Outra maneira de utilizar um diagrama Veitch-Karnaugh consiste em utilizar o complemento da expressão
- □ Assim, somente são considerados os casos onde a expressão S=0
 - Com isso, têm-se o complemento da função, que precisa, portanto, ser invertida
 - Isso corresponde a utilizar De Morgan

Diagrama de Veitch-Karnaugh pelo Complemento

 Usando o diagrama pelo método convencional, obtém-se

$$S = A + C$$

Α	В	С	S
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1
	0 0 0 0 1	0 0 0 0 0 1 0 1 1 0 1 0 1 1	0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0

Diagrama de Veitch-Karnaugh pelo Complemento

- Usando o diagrama pelo método convencional, obtém-se
 - S = A + C
- Usando o complemento, tem-se
 - $\overline{S} = \overline{A}.\overline{C}$
- Portanto,
 - $S = (\bar{A}.\bar{C})'$
- Aplicando-se De Morgan na expressão acima, tem-se
 - $S = (\bar{A}.\bar{C})' = A + C$

Situação	Α	В	С	S
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	1
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

	Ē	3	E	3
Ā		1	1	0
Α	1	1	1	1
	Ō	(Ĉ

Resumo

- Neste apresentação foram vistos os postulados e propriedades da álgebra de Boole
- É importante lembrar que qualquer expressão booleana pode ser escrita de forma padronizada, obtida a partir da tabela verdade
 - Produto de Maxtermos
 - Soma de Mintermos
- Uma vez obtida a expressão booleana de um circuito, é possível realizar simplificações que visam reduzir redução de custo de fabricação dos circuitos
 - Fatoração (simplificação algébrica)
 - Diagrama de Veitch-Karnaugh (simplificação visual)

Copyright© Apresentação 2012 por José Augusto Baranauskas Universidade de São Paulo

Professores são convidados a utilizarem esta apresentação da maneira que lhes for conveniente, desde que esta nota de *copyright* permaneça intacta.

Slides baseados em:

□Idoeta, I.V. & Capuano, F.G.; Elementos de Eletrônica Digital, 12ª. edição, Érica, 1987.

□E. Mendelson; Álgebra booleana e circuitos de chaveamento, McGraw-Hill, 1977.