$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$	$\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$	0	$\frac{2 k^2 (6 k^2 r_5 + t_1 + 4 t_3)}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$
$\tau_{1^{}}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1-2t_3)}{(1+2 k^2) (3t_1t_3+2 k^2 r_5 (t_1+t_3))}$	$\frac{6 k^2 r_5 + t_1 + 4 t_3}{(1 + 2 k^2)^2 (3 t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	0	$-\frac{i\sqrt{2}k(6k^2r_5+t_1+4t_3)}{(1+2k^2)^2(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3+2k^2r_5(t_1+t_3)}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{(1 + 2 k^2) (3t_1 t_3 + 2 k^2 r_5 (t_1 + t_3))}$	0	$\frac{2ik(t_1-2t_3)}{(1+2k^2)(3t_1t_3+2k^2r_5(t_1+t_3))}$
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5 + kt_1)}{(1+k^2)^2t_1^2} \mid \frac{-2k^4r_5 + k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{lphaeta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$+\alpha\beta \frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+_{\alpha b}$	$^{\dagger 1} +^{\alpha}$	$\frac{1}{2} + \alpha$	$\dot{t}_1 + \alpha$	·2 †α

	$\sigma_{0}^{\#1}$	$ au_0^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\sharp 1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0^{+}}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

	$ au_{0}^{\#1}$	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$			#	1	1	3	I
2 _{t3}	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0		ints			0	0 == _x	
k 2 t ₃	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0		Source constraints	sd) ==	$+2ik\ \sigma_{1}^{\#2}{}^{\alpha}$	
	0	0	0		co ec	irre	0	īko	+ 2 <i>i</i>	
	0	0	$-\frac{1}{t_1}$		Sourc	SO(3) irreps	$\tau_{0}^{\#2} == 0$	$\tau_{0}^{\#1} - 2 \bar{l} k \sigma_{0}^{\#1} +$	$t_{1}^{\#2}\alpha$	

$f_{1^-}^{\#2} \alpha$	0	0	0	$\frac{1}{3}$ \bar{l} k $(t_1 - 2t_3)$	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3} k^2 (t_1 + t_3)$
$f_{1^{}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1-2t_3}{3\sqrt{2}}$	$\frac{t_1+t_3}{3}$	0	$-\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)\bigg 0$
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{1}{6} \left(6 k^2 r_5 + t_1 + 4 t_3 \right)$	$\frac{t_1-2t_3}{3\sqrt{2}}$	0	$-\frac{1}{3}ik(t_1-2t_3)$
$f_{1}^{\#1}{}_{\!$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#2}{}_+\alpha_\beta\;f_1^{\#1}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_5 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	$\int_{1}^{\#1} + \alpha^{\beta} \frac{k^2 r_5 - t^2}{4}$	$\int_{1}^{\#2} + \alpha \beta$	$a_1^{r\#1} + \alpha \beta$	$\omega_1^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{\#2} \dagger^{\alpha}$

	$\omega_{2}^{\#1}{}_{lphaeta}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{i k t_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	<u>t</u> 1 2

$\sigma_{2^-}^{\#1} _{lphaeta\chi}$	0	0	$\frac{2}{t_1}$
$\tau_{2}^{\#1}_{+\alpha\beta}$	1	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$		$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2+}^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

 $\tau_2^{\#1}\alpha\beta - 2ik \sigma_2^{\#1}\alpha\beta == 0$

Total #:

 $\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$

 $\tau_{1}^{\#1\alpha} == 0$

Lagrangian density	$-\frac{1}{3}t_1 \omega_i^{\alpha \prime} \omega_{\kappa \alpha}^{\ \ \kappa} + \frac{2}{3}t_3 \omega_i^{\alpha \prime} \omega_{\kappa \alpha}^{\ \ \kappa} - t_1 \omega_i^{\kappa \lambda} \omega_{\kappa \lambda}^{\ \prime} + f^{\alpha \beta} \tau_{\alpha \beta} + \omega^{\alpha \beta \chi} \sigma_{\alpha \beta \chi}^{\ \ -}$	$r_5\partial_i\omega^{\kappa\lambda}_{\kappa}\partial^i\omega_{\alpha}^{\alpha}-r_5\partial_\alpha\omega_{\alpha}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}+r_5\partial_\theta\omega_{\alpha}^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}-r_5\partial_\alpha\omega_{\alpha}^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}+$	$2 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} - \frac{1}{2} t_1 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\alpha}^{\ \theta} - \frac{1}{2} t_1 \partial^\alpha f_\lambda^{\ \theta} +$	$\frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{2}{3}t_{3}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{2}{3}t_{3}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+$	$\frac{2}{3}t_1\partial^\alpha f_{\kappa\alpha}\partial^\kappa f'_{\ \prime}-\frac{4}{3}t_3\partial^\alpha f_{\kappa\alpha}\partial^\kappa f'_{\ \prime}-\frac{1}{3}t_1\partial_\kappa f^\lambda_{\ \lambda}\partial^\kappa f'_{\ \prime}+\frac{2}{3}t_3\partial_\kappa f^\lambda_{\ \lambda}\partial^\kappa f'_{\ \prime}+$	$2t_{1} \omega_{ik\theta} \partial^{k} f^{i\theta} - \frac{1}{3} t_{1} \omega_{i\alpha}^{\alpha} \partial^{k} f'_{k} + \frac{2}{3} t_{3} \omega_{i\alpha}^{\alpha} \partial^{k} f'_{k} - \frac{1}{3} t_{1} \omega_{i\lambda}^{\lambda} \partial^{k} f'_{k} +$	$\frac{2}{3}t_3\;\omega_{_{1}\lambda}^{\lambda}\;\partial^{\kappa}f_{_{1}}+\frac{1}{2}t_1\partial^{\alpha}f_{_{\lambda}}^{\lambda}\;\partial^{\kappa}f_{_{\lambda}\alpha}^{\alpha}+\frac{1}{2}t_1\partial_{\kappa}f_{_{\lambda}}^{\lambda}\partial^{\kappa}f_{_{\lambda}}^{\beta}+\frac{1}{2}t_1\partial_{\kappa}f_{_{\lambda}}^{\beta}\partial^{\kappa}f_{_{\lambda}}^{\beta}-$	$\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\ \alpha}\partial^{\kappa}f_{\lambda\kappa} + \frac{2}{3}t_3\partial^{\alpha}f^{\lambda}_{\ \alpha}\partial^{\kappa}f_{\lambda\kappa} + r_5\partial_{\alpha}\omega_{\lambda}^{\ \alpha}_{\ \beta}\partial^{\lambda}\omega^{\theta\kappa}_{\ \kappa} - r_5\partial_{\theta}\omega_{\lambda}^{\ \alpha}_{\ \alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\ \kappa}$	
Lagrangia	$-\frac{1}{3}t_1\omega_n^{\alpha\prime}$	$r_5 \partial_i \omega^{K\lambda}_{k} \partial_i$	$2 r_5 \partial_\theta \omega_\lambda^{\ \alpha}$	$\frac{1}{3}t_1\omega_{\kappa\alpha}^{}$	$\frac{2}{3}t_1\partial^{\alpha}f_{\kappa\alpha}$	$2t_1 \omega_{IK\theta} \partial$	$\frac{2}{3}t_3\omega_{i\lambda}^{\ \ \lambda}\hat{c}$	$\frac{1}{3}t_1\partial^{\alpha}f^{\lambda}$	

 $\omega_{0^{\overline{-}1}}^{\#1}$

 $f_{0}^{\#1}$

 $\omega_{0}^{\#1}$

0

0

0

 $\sqrt{2} kt_3$

 $\omega_{0}^{#1}$ † $f_{0}^{#1}$ † $f_{0}^{#1}$ † $f_{0}^{#2}$ † $\omega_{0}^{#1}$ †

Massive particle $\frac{6t_1t_3(t_1+t_3)\cdot 3r_5(t_1^2+2t_3^2)}{2r_5(t_1+t_3)(\cdot 3t_1t_3+r_5(t_1+t_3))} > 0$ Pole residue: Polarisations: $\frac{3t_1t_3}{2r_5t_1+2r_5t_3} > 0$ Square mass: Spin: Odd Parity:

(No massless particles)