02-05 Lecture Introduction to DFAs Deterministic (Finite) automator. Conceptually, a machine that takes in an input string $x \in \Sigma^*$, and consumes symbols in x one by one from left to right, and outputs a Yes (Accept) or No (Reject) answer. O: states a, b: symbols ----: transitions. Assignment Project Exam Help Formally, a DFA M is a structure consisting of 5 components. M = (0, 5, 5), type $\frac{1}{2}$ /powcoder.com Q: a finite set of state We Chat powcoder 0, 1, 2, 3 } E: the input alphabet = {a, b} (a finite set of single symbols) s: the start state (alway a single start state) s = 0 $F: F \subseteq Q$, a set of final/accept states F = £3} $\delta : \mathbb{Q} \times \mathbb{Z} \longrightarrow \mathbb{Q}$ transition function 'may have multiple final states maps an ordered pair to a state. of tells which state to move to in response to an input d(q, a) = rif M is currently in state 9 and the current input symbol to consume is a, then M consumes the symbol and moves to state r. $|\Omega| \times |\Sigma|$ transitions: one transition out of each gell on each a $\in \Sigma$

$$\delta(0, a) = 1$$
 , $\delta(1, a) = 2$. $\delta(2, a) = 3$, $\delta(3, a) = 3$
 $\delta(0, b) = 0$, $\delta(1, b) = 1$, $\delta(2, b) = 2$, $\delta(3, b) = 3$

Specify a DFA

- 1) list all the components of the DFA
- 2 use a tablessignment Project Exam Help urite.

 to specify the start state write F beside https://powgoder.com

Add WeChat powcoder

\rightarrow 0		0	$\delta(0, \alpha) =$
1	2	ı	
2	3	2	

3 Use a Diagram. (For homeworks)

Operation mechanism.				
DAn input can be any string $X \in \mathbb{Z}^*$				
2) Starting from the start state s, the DFA M consumes symbols in \times				
One by one from left to right and moves to states according to				
the transition function δ				
3) When the machine consumes the last symbol in x and lands on				
some state p,				
- x is accepted (Yes) if $p \in F$				
- x is rejected (No) if p & F				
is rejection civity by y				
Example Assignment Project Exam Help				
https://powcoder.com				
b b a,b				
input string baabb Add WeChat powcoder				
baabb \rightarrow abb \longrightarrow bb \uparrow \circ				
b and of the string				

$$\frac{1}{2} \frac{1}{2} \frac{1}$$

input string aaab

$$\frac{-}{0}$$
 end of the string lands on state 3

Assignment Project Exam Help

agab is accepted (les) https://powcoder.com

Formally, we define a function chat powcoder to specify whether an input string is accepted or rejected by the DFA.

of mas a state q and a string x to a new state $\delta(q, x)$

Intuitively of is the multistep version of o

$$\delta(q, \varepsilon) = q$$
 \leftarrow stay put on inpui ε .

$$\widehat{\delta}(q, y\alpha) = \delta(\widehat{\delta}(q, y), \alpha)$$

the state M ends up in when started in state 9 and consuming all symbols in y according to the transition-function of

Def. A String X is accepted by the DFA M if $\widehat{\sigma}(s,x) \in F$ and is rejected - · · · · if $\widehat{\sigma}(s,x) \notin F$ S is the start state of M, F is the set of final States of M

(recognized)

Def. The language accepted by M is the set of (all) strings accepted by M. denoted as L(M), $L(M) = \{ x \in \mathbb{Z}^* \mid \delta(s,x) \in \mathbb{F} \}$

Def. A language $A \subseteq \Sigma^*$ is a regular language if A = L(M) for som Assirgnment Project Exam Help Meaning there exists a DFA M that satisfies the two conditions.

O $\forall x \in Anttps://powcoder.com$

2 V × & Add Weight powcoder

Example

 $A = \{x \in \{\alpha, b\}^{\frac{1}{2}} \mid x \text{ contains at least three as } \}$ M:

A is regular because there exists a DFA M] that accepts it. A = L(M)

Example:		
$A = \{xaaay \mid x, y \in \{a,b\}^*\}$		
A = $\{xaaay \mid x, y \in \{a,b\}^*\}$ = $\{z \in \{a,b\}^* \mid z \text{ contains a substring of thre. consecutive as }\}$		
J		
baab & A, babaaaab E A		
•		
A is regular because there exists a DFA M & that accepts it.		
M_{i}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Assignment Project Exam Help		
b		
the idea behind thethesign powcoder.com		
use the states to go unt the number of consecutive as the machine have read (consumed) so far.		
machine have read (consumed) so far.		
If M hasn't seen three as in a row and sees a b, M goes		
back to the start state (recounting)		
If M has seen three a's in a row, M stays in 3 no matter		
what symbol it sees (consumes) thereafter.		
J		