Name:	
MATH 361	"You say impossible, but all I hear is, 'I'm
Spring 2024	possible.'"
HW 2: Due 02/01	— Ted Lasso, Ted Lasso

Problem 1. (10pts) bisection Problem 2. (10pts) newton
Problem 3. (10pts) secantmethod

Problem 4. (10pts) If $f: \mathbb{R} \to \mathbb{R}$ is a function, we say that p is a fixed point for f if f(p) = p.

- (a) If f(x) has a fixed point, explain why the graph of f(x) must intersect the line y = x.
- (b) Must all the fixed points for f(x) lie along the line y = x? Explain why or why not.

One method of finding a root for a function f(x) is fixed

(— Problem 4 Continued —)

Problem 5. (10pts) Watch 3Blue1Brown's video From Newton's method to Newton's fractal (which Newton knew nothing about) on YouTube and then being as detailed as possible, respond to the following:

- (a) What application of finding roots for polynomials did the video discuss to motivate Newton's method?
- (b) How did the domain for the functions P(z) the video considers differ from what we did in class?
- (c) What is the connection between Newton's method and fractals?
- (d) What was interesting or surprising to you in the video?