# WLAN / 802.11 (II)

### I. Objectives

The objectives of this practical work are:

- Observe authentication and association processes
- Understand how information is exchanged on an 802.11 network
- Become familiar with network observation and diagnostic tools

#### II. Duration

This work should last one class, practical component (1h15)

#### III. Equipment

This Work will use:

- 1. 2x Cisco Access Point (AP)
- 2. 1x laboratory PC per work group (STA C), with Linux
- 3. The Wireshark application installed at STA C for capturing and analysing network traffic
- 4. 2x student terminals with WLAN/802.11 interface (STA A and STA B)

### IV. Diagram



Figure 1: Network diagram for experimentation

Each AP has one SSID configured in the 2.4GHz WLAN band and has DHCPv4 server functionality, assigning IP addresses in the indicated range, as shown in the following table; one AP has open security while the other is secured:

|                 | AP1                          | AP2                                          |
|-----------------|------------------------------|----------------------------------------------|
| SSID            | ComMoveis.33 <b>0</b> .2400  | ComMoveis.33 <b>1</b> .2400                  |
| Channel         | Channel <b>3</b> (2.422 MHz) | Channel <b>7</b> (2.442 MHz)                 |
| Security        | Open                         | Authentication: WPAv2<br>Encryption: AES-CCM |
|                 |                              | Password: "Lab.Com.WiFi"                     |
| IPv4 addressing | 10.0. <b>1</b> .[100-200]/24 | 10.0. <b>2</b> .[100-200]/24                 |
|                 | Server: 10.0. <b>1.2</b> /24 | Server: 10.0. <b>2.2</b> /24                 |

Table 1: WLANs configuration

# 1) Experimentation: Procedures

#### A. Authentication and Association

- 1) Restart capture (STA C) in Wireshark on the WLAN network interface (wlpxs0 interface)
- 2) Connect STA A to SSID1 ('ComMoveis.330.2400') and stop the capture.
- Configure a display filter for authentication, association and confirmation request frames (see fig. 2)
  - View the STA A authentication and association process in the capture and note the sequence number of these messages in the Wireshark capture.
  - Observe the Acknowledgment process.
  - Compare the body of Authentication and Association messages.



Figure 2

- 4) Change the viewing filter for DHCP packets and observe the message exchange; note the IP address assigned to STA A
  - Relate chronologically these messages to previous ones by comparing the sequence numbers in the capture.

#### B. Data transfer

- 5) Restart capture in Wireshark on the WLAN network interface (wlpxs0 interface)
- 6) From STA A, ping the AccessPoint in use (10.0.2.1) for a few seconds (e.g. 10 seconds)
  - Although pings were successful on your machine (STA A), Wireshark may miss and replicate some of these
    packets.
- 7) Stop the capture and filter ICMP (ping) and ARP type packets in the view, analyzing the message exchanges.
  - Select one of these packages and, in the details area, note the frame and subframe type.
  - Look at the various encapsulations used until you get to the ICMP or ARP packet and explain them.



Figure 3

- 8) Now filters RTS, CTS and ICMP packets (fc.type = 1 and subtype = 11 or 12):
  - Check the packet exchange pattern between ICMP Echo Request requests and ICMP Echo Reply responses.
  - Note the type and subtype of captured frames.
  - Note the DS status flag of both Echo Request and Reply messages.



Figure 4

- 9) Place the STC on the 2.4GHz channel in your room (3 or 7); Restart capture in Wireshark on the WLAN network interface (wlpxs0 interface)
- 10) Connect STA B to the SSID of the same channel (authentication will not be requested)
  - Repeat applying a display filter to DHCP packets and note the address assigned to that station.
- 11) Ping from station STA A to STA B for a few seconds (e.g. 10 secs) and stop capturing
  - Filter RTS, CTS and ICMP packets



Figure 5

- Check the packet exchange pattern between ICMP Echo Request requests and ICMP Echo Reply responses; what differences do you find to the ping performed previously? Analyze based on observation of the following fields present in the 802.11 frame header:
  - DS Status and
  - Receiver, Transmitter, Destination and Source Address.

|             | Echo Req 1 | Echo Req 2 | Echo Rep 1 | Echo Rep 2 |
|-------------|------------|------------|------------|------------|
|             | STA - AP   | AP - STB   | STB - AP   | AP - STA   |
| Receiver    |            |            |            |            |
| Transmitter |            |            |            |            |
| Destination |            |            |            |            |
| Source      |            |            |            |            |

#### C. Association with security and disassociation (STA A)

For the following procedures, AP2 and SSID 2 will be used, with the following characteristics:

| AP2                                                                  |  |  |
|----------------------------------------------------------------------|--|--|
| ComMoveis.331.2400                                                   |  |  |
| Channel <b>7</b> (2.442 MHz)                                         |  |  |
| Authentication: WPAv2; Encryption: AES-CCM; Password: "Lab.Com.WiFi" |  |  |
| 10.0. <b>2</b> .[100-200]/24                                         |  |  |
| Server: 10.0. <b>2.2</b> /24                                         |  |  |

Table 2: AP2/SSID2 configuration

- 1) Add the key in Wireshark to be able to decrypt the contents of the packets:
  - Edit → Preferences → ieee802.11 → Enable decryption → edit → '+' → key-type=wpa-pwd → key=Lab.Com.WiFi
- 2) Change STA C to channel 7 (2.422 MHz).
- 3) Restart capture on the WLAN network (wlp5s0 interface).
- 4) Connect STA A to SSID 2 ('CMAP3.331.2400'); go back to STA C and stop the capture
  - Note the EAPoL (EAP over LAN) 4-Way Handshake process used with WPAv2 and the parameters exchanged



Figure 6

- 5) Restart capture on the WLAN network (wlp5s0 interface).
- 6) Return STA A to SSID 1 and stop capturing.
  - Note the single disassociation message.



Figure 7

# V. Useful links

### **WLAN**

- https://howiwifi.com/2020/07/13/802-11-frame-types-and-formats/
- https://howiwifi.com/2020/07/16/802-11-frame-exchanges/
- https://www.wifi-professionals.com/2019/01/4-way-handshake
- https://www.oreilly.com/library/view/80211-wireless-networks/0596100523/ch04.html

### Wireshark

https://wiki.wireshark.org/CaptureSetup/WLAN https://www.wireshark.org/docs/dfref/w/wlan.html

# VI. Wireshark usage and frame structure

# **Display filters**

- wlan.bssid == MAC AP
- wlan.ra == MAC addr; wlan.sa == MAC addr
- wlan.fc.type == n (0: management; 1: control; 2: data)
- wlan.fc.subtype == n (see table below)



# VII. 802.11 frames' structure and sub-types



Figure 9

| Type = 0 (Management)  |           | <b>Type = 1</b> (Control)        |           | <b>Type = 2</b> (Data)         |           |
|------------------------|-----------|----------------------------------|-----------|--------------------------------|-----------|
| Association request    | 0000 (0)  | , ,                              |           | Data                           | 0000 (0)  |
| Association response   | 0001 (1)  |                                  |           | Data + CF-ACK                  | 0001(1)   |
| Reassociation request  | 0010 (2)  |                                  |           | Data + CF-Poll                 | 0010 (2)  |
| Reassociation response | 0011 (3)  |                                  |           | Data + CF-ACK + CF-Poll        | 0011 (3)  |
| Probe request          | 0100 (4)  | Beamforming Report Poll 0100 (4) |           | Null (no data)                 | 0100 (4)  |
| Probe response         | 0101 (5)  | VHT/HE NDP Announcement          | 0101 (5)  | CF-ACK (no data)               | 0101 (5)  |
| Timing advertisement   | 0110 (6)  | Control Frame Extension          | 0110 (6)  | CF-Poll (no data)              | 0110 (6)  |
| Reserved               | 0111 (7)  | Control wrapper                  | 0111 (7)  | CF-ACK + CF-Poll (no data)     | 0111 (7)  |
| Beacon                 | 1000 (8)  | Block ACK Request                | 1000 (8)  | QoS Data                       | 1000 (8)  |
|                        |           | Block ACK                        | 1001 (9)  | QoS Data + CF-ACK              | 1001 (9)  |
| Disassociation         | 1010 (10) | PS-Poll                          | 1010 (10) | QoS Data + CF-Poll             | 1010 (10) |
| Authentication         | 1011 (11) | RTS                              | 1011 (11) | QoS Data + CF-ACK + CF-Poll    | 1011 (11) |
| Deauthentication       | 1100 (12) | CTS                              | 1100 (12) | QoS Null (no data)             | 1100 (12) |
| Action                 | 1110 (13) | ACK                              | 1101 (13) | Reserved                       | 1101 (13) |
|                        |           | CF-End                           | 1110 (14) | QoS CF-Poll (no data)          | 1110 (14) |
|                        |           | CF-END+CF-ACK                    | 1111 (15) | QoS CF-ACK + CF-Poll (no data) | 1111 (15) |

Table 3

# VIII. Channels and frequencies

# 2.4 GHz

| Channel | F <sub>0</sub> (MHz) | Frequency Range<br>(20 MHz) |
|---------|----------------------|-----------------------------|
| 1       | 2412                 | 2401–2423                   |
| 2       | 2417                 | 2406–2428                   |
| 3       | 2422                 | 2411–2433                   |
| 4       | 2427                 | 2416–2438                   |
| 5       | 2432                 | 2421–2443                   |
| 6       | 2437                 | 2426–2448                   |
| 7       | 2442                 | 2431–2453                   |
| 8       | 2447                 | 2436–2458                   |
| 9       | 2452                 | 2441–2463                   |
| 10      | 2457                 | 2446–2468                   |
| 11      | 2462                 | 2451–2473                   |
| 12      | 2467                 | 2456–2478                   |
| 13      | 2472                 | 2461–2483                   |
| 14      | 2484                 | 2473–2495                   |

Table 4



Figure 10

https://www.digikey.com/en/articles/compare-24-ghz-5-ghz-wireless-lan-industrial-applications

# 5GHZ

5 GHz Channel Allocations



Figure 11

https://www.ekahau.com/blog/channel-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-better-wi-fi/super-planning-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-practices-for-best-p