

Molecular characterization of Streptococcus pneumoniae strains isolated from invasive disease in the pre- and post-PCV10 periods in Brazil, 2005 to 2015

Samanta C G Almeida¹, Paulina A. Hawkins², Ana Paula Cassiolato¹, Ueslei J Dias¹, Rebecca A Gladstone³, Stephanie W Lo³, Maria da Gloria Carvalho⁴, Lesley McGee⁴, Stephen D Bentley³, Robert F Breiman², Maria Cristina C Brandileone¹ and Global Pneumococcal Sequencing Consortium

¹ National Laboratory of Meningitis and Pneumococcal Infections, Center of Bacteriology, Institute Adolfo Lutz, São Paulo, Brazil; ² Emory University, Atlanta, GA, USA; ³ Infection Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK; and ⁴ Respiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA

Background and aims

In Brazil, PCV10 was introduced in the National Immunization Program for children up to 2 years of age in 2010. Institute Adolfo Lutz (IAL) is the national reference laboratory for meningitis and pneumococcal diseases and performs laboratory-based epidemiological surveillance in the country. The aim of this study was to evaluate the genetic diversity among pneumococcal strains isolated in Brazil during 2005-2015.

Methods

A random sample of 863 isolates was selected from a collection of 9,996 invasive pneumococcal strains, 376 pre-PCV10 (2011-2015) introduction. All isolates were serotyped by Quellung and antimicrobial resistance was determined by microdilution following the CLSI recommendations. Of these 863 isolates, 451 were whole-genome sequenced by the Sanger Institute as part of the Global Pneumococcal Sequencing project (www.pneumogen.net); serotype and sequence type were determined using the CDC Streptococcus laboratory pneumococcal typing pipeline. The remaining 412 isolates were characterized by MLST, using primers published on PubMLST (https://pubmlst.org/spneumoniae/). Clonal complex were identified using the BURST algorithm (http://eburst.mlst.net/v3/mlst_datasets/).

Results

A total of 245 sequence types (ST) were identified, organized in 41 clonal complexes (CC). Pre-PCV10 introduction, the most common CC were CC156 (n=45) and CC193 (n=24), mainly associated with serotypes 14 (90.7%), 19A (91.0%) and 18C (91.6%), respectively. **Post-PCV10**, CC320/19A isolates (n=98, 20.1%) became the most common lineage. The proportion of CC156/14 and CC62/19A isolates decreased from 15.4% to 4.9% (p<0.001) and from 10.9% to 4.7% (p<0.001), respectively. High penicillin resistance was mainly related with CC320, CC156, CC276 and CCN14. The Multi-Drug Resistance to at least 3 different classes of antibiotics, MDR) was mainly related with CC320, CC156, CC276, CCN5 and CCN14.

Figure 1: S. pneumoniae serotypes distribution in Pre-PCV10 (2005-2010) and Post-PCV10 (2011-2015) periods.

Mininum spanning tree drawn by Bionumerics software showing the genetic structure of S.pneumoniae from invasive pneumococcal disease isolated in Pre-PCV10 (2005-2010) and Post-PCV10 (2011-2015) periods in Brazil for clonal complexes (CC) with STs with more than 2 isolates. Figure A, CCs and serotypes in both periods; Figure B, Penicillin resistance and Figure C, MDR. The size of the circle is proportional to the number of isolates in each CC.

СС	ST	n	Pre-PCV10	Post-PCV10	Serotypes (n)
62	53	9	2	7	8 (9)
	62	6	1	5	11A (6)
	1118	23	18	5	19A (23)
	2260 2878	1 1 <i>1</i>	10	1	19A (1)
	2878	14 9	10 6	4 3	19A (14)
	2880 3308	9 1	O	3 1	19A (9) 33F (1)
	5480	1	1	1	19A (1)
	7034	2	1	1	19A (1) 19A (2)
	9799	1	1	1	19A (2) 19A (1)
	9837	6	1	5	19A (6)
	9838	1	-	1	19A (1)
	9940	1		1	19A (1)
	9941	1	1		19A (1)
	9942	1	1		19A (1)
	9943	3	2	1	19A (3)
	11325	1	1		19F (1)
	12574	1		1	8 (1)
156	66	21	8	13	14 (8), 9N (11), 19A (1), 19F (1
	67	1	1		15A (1)
	73	4	1	3	15A (4)
	737	3	1	2	7C (6)
	2216	1	-	1	15A (1)
	11327	6	2	4	13 (4), 19A (1), 19F (1)
	12487	2	2		14 (2)
	12837	2 2	1	27	14 (1)
156	156 162	82 2	55 2	27 1	14 (73) , 9V (8), 19A (1)
	162 1556	3 1	2 1	1	9V (3) 1 <i>4</i> (1)
	2335	1 1	1		14 (1) 14 (1)
	2335 9668	1	1	1	9V (1)
	12505	1	1	1	9v (1) 14 (1)
	12506	1	1		14 (1)
	12507	1	1		14 (1)
	12508	1	1		14 (1)
	12839	1	1		14 (1)
	156~	1		1	14 (1)
	156~~	1		1	14 (1)
177	51	1	1		19F (1)
	177	3	3		19F (3)
	646	1	_	1	19F (1)
	3013	1	1		19F (1)
	12510	1	1		19F (1)
	12512	1	1		19F (1)
193	12513	1		1	19F (1)
193	193 1228	21	20	1	18C (19); 18B (2)
	1358	1 1	1	1	15A (1) 18C (1)
	11324	1	1		18C (1)
	12517	1	1		18C (1)
	12838	1	1		18C (1)
	193~	1	_	1	11A (1)
320	202	1	1		19A (1)
	236	2	2		19F (2)
	237	1		1	19A (1)
	271	1		1	19F (1)
	320	97	9	88	19A (96), 19F (1)
	1451	3		3	19A (3)
	2323	2		2	19F (2)
	4768	1		1	19A (1)
	8202	1	1		19A (1)
	8549	1		1	19A (1)
	8884	1		1	19A (1)
	9796	1	•	1	19A (1)
	11326	2	2	4	19F (2)
	11485 11486	1		1	19A (1)
	11486 11936	1		1 1	19A (1)
338	338	1 18	11	<u>1</u> 7	19A (1) 23F (16), 15B (1), NT (1)
550	387	1	11	1	23F (10), 13B (1), NT (1) 19A (1)
	791	3	2	1	23F (3)
	1131	1	1		19A (1)
	2777	8	2	6	6C (8)
	3163	1	1		23F (1)
	4559	1	1		23F (1)
	11318	1		1	6B (1)
	11323	2	2		6C (2)
	11329	1	1		23F (1)
	11334	1		1	6C (1)
	11335	1		1	6C (1)
	12835	1	1		23F (1)
	338~	1		1	23A (1)
N5*	315	7	5	2	6B (6), 19A (1)
	386	12	2	10	6C (10), 6B (2)
	11315	3	2	1	6B (3)
N14*	90	15	12	3	6B (14), 19A (1)

~, new ST submitted at PubMLST; * CC with predicted founder=none determined by BURST algorithm, they received "N" denomination and a sequential number 1 to 23.

Conclusions

These isolates show considerable genetic diversity among pneumococcal strains circulating in Brazil. An expansion of the CC320/19A lineage was observed after vaccine introduction, while CC62/19A lineage decreased significantly. The CC156/14 lineage, which was the most predominant in pre-PCV10, decreased in post-PCV10 as well.