1. What is the value of

$$3 + \frac{1}{3 + \frac{1}{3 + \frac{1}{3}}}$$
?

- (A) $\frac{31}{10}$ (B) $\frac{49}{15}$ (C) $\frac{33}{10}$ (D) $\frac{109}{33}$ (E) $\frac{15}{4}$

(E) 5

- 2. The sum of three numbers is 96. The first number is 6 times the third number, and the third number is 40 less than the second number. What is the absolute value of the difference between the first and second numbers?
 - (A) 1
- (B) 2
- (C) 3
- (D) 4
- 3. Five rectangles, A, B, C, D, and E, are arranged in a square as shown below. These rectangles have dimensions 1×6 , 2×4 , 5×6 , 2×7 , and 2×3 , respectively. (The figure is not drawn to scale.) Which of the five rectangles is the shaded one in the middle?

- (A) A
- (B) B
- (C) C
- (D) D
- (E) E
- 4. The least common multiple of a positive integer n and 18 is 180, and the greatest common divisor of n and 45 is 15. What is the sum of the digits of n?
 - (A) 3
- (B) 6
- (C) 8
- (D) 9
- (E) 12
- 5. The taxicab distance between points (x_1, y_1) and (x_2, y_2) in the coordinate plane is given by $|x_1 - x_2| + |y_1 - y_2|$. For how many points P with integer coordinates is the taxical distance between P and the origin less than or equal to 20?
 - (A) 441
- (B) 761
- (C) 841
- (D) 921
- (E) 924
- 6. A data set consists of 6 (not distinct) positive integers: 1, 7, 5, 2, 5, and X. The average (arithmetic mean) of the 6 numbers equals a value in the data set. What is the sum of all possible values of X?
 - (A) 10
- (B) 26
- (C) 32
- (D) 36
- (E) 40

7. A rectangle is partitioned into 5 regions as shown. Each region is to be painted a solid color—red, orange, yellow, blue, or green—so that regions that touch are painted different colors, and colors can be used more than once. How many different colorings are possible?

- (A) 120
- **(B)** 270
- (C) 360
- **(D)** 540
- **(E)** 720

8. The infinite product

$$\sqrt[3]{10}\cdot\sqrt[3]{\sqrt[3]{10}}\cdot\sqrt[3]{\sqrt[3]{\sqrt[3]{10}}}\cdots$$

evaluates to a real number. What is that number?

- **(A)** $\sqrt{10}$
- **(B)** $\sqrt[3]{100}$
- (C) $\sqrt[4]{1000}$
- **(D)** 10
- **(E)** $10\sqrt[3]{10}$
- 9. On Halloween 31 children walked into the principal's office asking for candy. They can be classified into three types: Some always lie; some always tell the truth; and some alternately lie and tell the truth. The alternaters arbitrarily choose their first response, either a lie or the truth, but each subsequent statement has the opposite truth value from its predecessor. The principal asked everyone the same three questions in this order.
 - "Are you a truth-teller?" The principal gave a piece of candy to each of the 22 children who answered yes.
 - "Are you an alternater?" The principal gave a piece of candy to each of the 15 children who answered yes.
 - "Are you a liar?" The principal gave a piece of candy to each of the 9 children who answered yes. How many pieces of candy in all did the principal give to the children who always tell the truth?
 - (A) 7
- **(B)** 12
- (C) 21
- **(D)** 27
- **(E)** 31
- 10. How many ways are there to split the integers 1 through 14 into 7 pairs so that in each pair the greater number is at least 2 times the lesser number?
 - (A) 108
- **(B)** 120
- (C) 126
- **(D)** 132
- **(E)** 144
- 11. What is the product of all real numbers x such that the distance on the number line between $\log_6 x$ and $\log_6 9$ is twice the distance on the number line between $\log_6 10$ and 1?
 - **(A)** 10
- **(B)** 18
- (C) 25
- **(D)** 36
- (\mathbf{E}) 81

13.	Let \mathcal{R} be the region in the complex plane consisting of all complex numbers z that can be written as the sum of complex numbers z_1 and z_2 , where z_1 lies on the segment with endpoints 3 and $4i$, and z_2 has magnitude at most 1. What integer is closest to the area of \mathcal{R} ?
	(A) 13 (B) 14 (C) 15 (D) 16 (E) 17
14.	What is the value of $(\log 5)^3 + (\log 20)^3 + (\log 8)(\log 0.25)$, where all logarithms have base 10? (A) $\frac{3}{2}$ (B) $\frac{7}{4}$ (C) 2 (D) $\frac{9}{4}$ (E) 3
15.	The roots of the polynomial $10x^3 - 39x^2 + 29x - 6$ are the height, length, and width of a rectangular box (right rectangular prism). A new rectangular box is formed by lengthening each edge of the original box by 2 units. What is the volume of the new box?
	(A) $\frac{24}{5}$ (B) $\frac{42}{5}$ (C) $\frac{81}{5}$ (D) 30 (E) 48

12. Let M be the midpoint of \overline{AB} in regular tetrahedron ABCD. What is $\cos(\angle CMD)$?

16. A triangular number is a positive integer that can be expressed in the form $t_n = 1 + 2 + 3 + \cdots + n$, for some positive integer n. The three smallest triangular numbers that are also perfect squares are $t_1 = 1 = 1^2$, $t_8 = 36 = 6^2$, and $t_{49} = 1225 = 35^2$. What is the sum of the digits of the fourth smallest triangular number that is also a perfect square?

(B) 9 (C) 12**(D)** 18 (A) 6 (E) 27

(A) $\frac{1}{4}$ (B) $\frac{1}{3}$ (C) $\frac{2}{5}$ (D) $\frac{1}{2}$ (E) $\frac{\sqrt{3}}{2}$

17. Suppose a is a real number such that the equation

$$a \cdot (\sin x + \sin(2x)) = \sin(3x)$$

has more than one solution in the interval $(0, \pi)$. The set of all such a can be written in the form $(p,q) \cup (q,r)$, where p, q, and r are real numbers with p < q < r. What is p + q + r?

(A) -4**(B)** -1 $(\mathbf{C}) 0$ **(D)** 1 **(E)** 4

18. Let T_k be the transformation of the coordinate plane that first rotates the plane k degrees counterclockwise around the origin and then reflects the plane across the y-axis. What is the least positive integer n such that performing the sequence of transformations $T_1, T_2, T_3, \ldots, T_n$ returns the point (1,0) back to itself?

(A) 359 (B) 360(C) 719 **(D)** 720 (E) 721

7 11 8 6 4 5 9 12 1 13 10 2 3

For how many of the 13! possible orderings of the cards will the 13 cards be picked up in exactly two passes?

- (**A**) 4082 (**B**) 4095 (**C**) 4096 (**D**) 8178 (**E**) 8191
- 20. Isosceles trapezoid ABCD has parallel sides \overline{AD} and \overline{BC} , with BC < AD and AB = CD. There is a point P in the plane such that PA = 1, PB = 2, PC = 3, and PD = 4. What is $\frac{BC}{AD}$?
 - (A) $\frac{1}{4}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{2}{3}$ (E) $\frac{3}{4}$
- 21. Let $P(x) = x^{2022} + x^{1011} + 1$. Which of the following polynomials is a factor of P(x)?
 - (A) $x^2 x + 1$ (B) $x^2 + x + 1$ (C) $x^4 + 1$ (D) $x^6 x^3 + 1$ (E) $x^6 + x^3 + 1$
- 22. Let c be a real number, and let z_1 and z_2 be the two complex numbers satisfying the equation $z^2 cz + 10 = 0$. Points z_1 , z_2 , $\frac{1}{z_1}$, and $\frac{1}{z_2}$ are the vertices of (convex) quadrilateral $\mathcal Q$ in the complex plane. When the area of $\mathcal Q$ obtains its maximum possible value, c is closest to which of the following?
 - (A) 4.5 (B) 5 (C) 5.5 (D) 6 (E) 6.5
- 23. Let h_n and k_n be the unique relatively prime positive integers such that

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \frac{h_n}{k_n}.$$

Let L_n denote the least common multiple of the numbers 1, 2, 3, ..., n. For how many integers n with $1 \le n \le 22$ is $k_n < L_n$?

- **(A)** 0 **(B)** 3 **(C)** 7 **(D)** 8 **(E)** 10
- 24. How many strings of length 5 formed from the digits 0, 1, 2, 3, 4 are there such that for each $j \in \{1, 2, 3, 4\}$, at least j of the digits are less than j? (For example, 02214 satisfies this condition because it contains at least 1 digit less than 1, at least 2 digits less than 2, at least 3 digits less than 3, and at least 4 digits less than 4. The string 23404 does not satisfy the condition because it does not contain at least 2 digits less than 2.)
 - (A) 500 (B) 625 (C) 1089 (D) 1199 (E) 1296

- 25. A circle with integer radius r is centered at (r, r). Distinct line segments of length c_i connect points $(0, a_i)$ to $(b_i, 0)$ for $1 \le i \le 14$ and are tangent to the circle, where a_i, b_i , and c_i are all positive integers and $c_1 \le c_2 \le \cdots \le c_{14}$. What is the ratio $\frac{c_{14}}{c_1}$ for the least possible value of r?

 - **(A)** $\frac{21}{5}$ **(B)** $\frac{85}{13}$ **(C)** 7 **(D)** $\frac{39}{5}$ **(E)** 17