UCS1505 INTRODUCTION TO CRYPTOGRAPHIC TECHNIQUES

Jonathan Katz, Yehuda Lindell,
"Introduction to Modern Cryptography",
2nd Edition
(Chapman & Hall/CRC Cryptography and Network Security
Series), 2014

Course Objectives

- To understand the classical and symmetric cryptographic techniques
- To study about message authentication and hash functions
- To learn number theory fundamentals needed by cryptographic algorithms
- To understand the various key distribution and management schemes
- To understand the concepts of Public key cryptography and digital signatures.

Course Outcomes

- Describe and implement classical and symmetric ciphers (K2)
- Describe the authentication schemes and hash algorithms (K2)
- Understand the number theoretic foundations of cryptography (K3)
- Compare and contrast various public key cryptographic techniques (K5)
- Illustrate various public key cryptographic techniques (K3).

Cryptography (historically)

"...the art of writing or solving codes..."

- Historically, cryptography focused exclusively on ensuring private communication between two parties sharing secret information in advance using "codes" (aka private-key encryption)
- Historically, cryptography was an art
 - Heuristic, unprincipled design and analysis
 - Schemes proposed, broken, repeat...

Modern cryptography

- Much broader scope and deals with
 - Data integrity, authentication, protocols,
 - The public-key setting
 - Group communication
 - More-complicated trust models
 - Foundations (e.g., number theory, quantumresistance) to systems (e.g., electronic voting, blockchain, cryptocurrencies)

Modern cryptography

Design, analysis, and implementation of **mathematical techniques** for securing information, systems, and distributed computations against adversarial attack

- Cryptography is now much more of a science
 - Rigorous analysis, firm foundations, deeper understanding, rich theory

Cryptography (historically)

 Used primarily for military/government applications, plus a few niche applications in industry (e.g., banking)

Modern cryptography

- Cryptography is ubiquitous!
 - Password-based authentication, password hashing
 - Secure credit-card transactions over the internet
 - Encrypted WiFi
 - Disk encryption
 - Digitally signed software updates
 - Bitcoin

Basics

	Secrecy	Integrity
Private-key setting	Private-key encryption	Message authentication codes
Public-key setting	Public-key encryption	Digital signatures

Building blocks

- Pseudorandom (number) generators
- Pseudorandom functions/block ciphers
- Hash functions
- Number theory

Classical Cryptography

Classical cryptography

 Until the 1970s, relied exclusively on secret information (a key) shared in advance between the communicating parties

Private-key cryptography

 aka secret-key / shared-key / symmetric-key cryptography

Private-key encryption

Private-key encryption

- A private-key encryption scheme is defined by a message space \mathcal{M} and algorithms (Gen, Enc, Dec):
 - Gen (key-generation algorithm): outputs $k \in K$
 - Enc (encryption algorithm): takes key k and message $m \in \mathcal{M}$ as input; outputs ciphertext c

$$c \leftarrow Enc_k(m)$$

— Dec (decryption algorithm): takes key k and ciphertext c as input; outputs m or "error" m := Dec_k(c)

Correctness requirement: For all $m \in \mathcal{M}$ and k output by Gen, $Dec_{k}(Enc_{k}(m)) = m$

Kerckhoffs's principle

- The encryption scheme is not secret
 - The attacker knows the encryption scheme
 - The only secret is the key
 - The key must be chosen at random; kept secret
- Arguments in favor of this principle
 - Easier to keep key secret than algorithm
 - Easier to change key than to change algorithm
 - Standardization
 - Ease of deployment
 - Public scrutiny

Caesar's cipher.

- Julius Caesar encrypted by shifting the letters of the alphabet 3 places forward
- Immediate problem with this cipher is that the encryption method is fixed

The shift cipher

- Consider encrypting English text
- Associate 'a' with 0; 'b' with 1; ...; 'z' with 25
- $k \in \mathcal{K} = \{0, ..., 25\}$
- To encrypt using key k, shift every letter of the plaintext by k positions (with wraparound)
- Decryption just does the reverse

The shift cipher, formally

- M = {strings over lowercase English alphabet}
- Gen: choose uniform k∈{0, ..., 25}
- $\operatorname{Enc}_{k}(m_{1}...m_{t})$: output $c_{1}...c_{t}$, where $c_{i} := [m_{i} + k \mod 26]$
- $Dec_k(c_1...c_t)$: output $m_1...m_t$, where $m_i := [c_i k \mod 26]$

Can verify that correctness holds...

Is the shift cipher secure?

- No -- only 26 possible keys!
 - Given a ciphertext, try decrypting with every possible key
 - Only one possibility will "make sense"
 - (What assumptions are we making here?)
- Example of a "brute-force" or "exhaustive-search" attack
- An attack that involves trying every possible key.
- sufficient key-space principle:

Any secure encryption scheme must have a key space that is sufficiently large to make an exhaustive-search attack infeasible.

Determination of feasibility depends on resources, Time

Example

- Ciphertext uryybjbeyq
- Try every possible key...
 - tqxxaiadxp
 - spwwzhzcwo
 - **—** ...
 - helloworld

mono-alphabetic substitution cipher

 In the mono-alphabetic substitution cipher the key also defines a map on the alphabet, but the map is now allowed to be arbitrary subject only to the constraint that it be one-toone

```
abcdefghijklmnopqrstuvwxyz
XEUADNBKVMROCQFSYHWGLZIJPT
```

tellhimaboutme

Assuming the English alphabet is being used, the key space is of size $26! = 26 \cdot 25 \cdot 24 \cdot \cdot \cdot 2 \cdot 1$, or approximately 2^8 , and a brute-force attack is infeasible but not secure.

 mono-alphabetic substitution cipher can then be attacked by utilizing statistical properties of the English language.

Try this

 JGRMQOYGHMVBJWRWQFPWHGFFDQGFPFZRKBEEBJIZQQOCIBZKLFAFGQVFZFW WEOGWOPFGFHWOLPHLRLOLFDMFGQWBLWBWQOLKFWBYLBLYLFSFLJGRMQBOL WJVFPFWQVHQWFFPQOQVFPQOCFPOGFWFJIGFQVHLHLROQVFGWJVFPFOLFHGQ VQVFILEOGQILHQFQGIQVVOSFAFGBWQVHQWIJVWJVFPFWHGFIWIHZZRQGBABHZ QOCGFHX

Improved attack on the shift cipher

• Let p_i , with $0 \le p_i \le 1$, denote the frequency of the *i*th letter in normal English text

$$\sum_{i=0}^{25} p_i^2 \approx 0.065$$

- Let qi denote the frequency of the ith letter of the alphabet in this ciphertext; i.e., q_i is simply the number of occurrences of the *i*th letter of the alphabet in the ciphertext divided by the length of the ciphertext.
- If the key is k, then p_i should be roughly equal to q_{i+k} for all i because the ith letter is mapped to the (i + k)th letter.

$$I_j \stackrel{\text{def}}{=} \sum_{i=0}^{25} p_i \cdot q_{i+j}$$

Improved attack on the shift cipher

- For each value of $j \in \{0,...,25\}$, then we expect to find that $i_k \approx 0.065$ (where k is the actual key),
- Whereas i_j for j != k will be different from 0.065.
- This leads to a key-recovery attack that is easy to automate
- Compute I_j for all j, and then output the value k for which I_k is closest to 0.065.

Poly-alphabetic shift cipher - The Vigenère cipher

- The key is now a *string*, not just a character
- To encrypt, shift each character in the plaintext by the amount dictated by the next character of the key
 - Wrap around in the key as needed
- Decryption just reverses the process

tellhimaboutme cafecafeca veqpjiredozxoe

The Vigenère cipher

- Size of key space?
 - If keys are 14-character strings over the English alphabet, then key space has size $26^{14} \approx 2^{66}$
 - If variable length keys, even more...
 - Brute-force search infeasible
- Is the Vigenère cipher secure?

ABCDEFGHIJKLMNOPQRSTUVWXYZ BCDEFGHIJKLMNOPQRSTUVWXYZA CDEFGHIJKLMNOPQRSTUVWXYZAB DEFGHIJKLMNOPQRSTUVWXYZABC EFGHIJKLMNOPQRSTUVWXYZABCD FGHIJKLMNOPQRSTUVWXYZABCDE GHIJKLMNOPQRSTUVWXYZABCDEF HIJKLMNOPQRSTUVWXYZABCDEFG IJKLMNOPQRSTUVWXYZABCDEFGH JKLMNOPQRSTUVWXYZABCDEFGHI KLMNOPQRSTUVWXYZABCDEFGHIJ LMNOPQRSTUVWXYZABCDEFGHIJK MNOPQRSTUVWXYZABCDEFGHIJKL NOPQRSTUVWXYZABCDEFGHIJKLM OPQRSTUVWXYZABCDEFGHIJKLMN PQRSTUVWXYZABCDEFGHIJKLMNO QRSTUVWXYZABCDEFGHIJKLMNOP RSTUVWXYZABCDEFGHIJKLMNOPQ STUVWXYZABCDEFGHIJKLMNOPQR TUVWXYZABCDEFGHIJKLMNOPQRS UVWXYZABCDEFGHIJKLMNOPQRST VWXYZABCDEFGHIJKLMNOPQRSTU WXYZABCDEFGHIJKLMNOPQRSTUV XYZABCDEFGHIJKLMNOPQRSTUVW YZABCDEFGHIJKLMNOPQRSTUVWX ZABCDEFGHIJKLMNOPQRSTUVWXY

Attacking the Vigenère cipher

- Look at every 14th character of the ciphertext, starting with the first
 - Call this a "stream"
- Let α be the most common character appearing in this stream
- Most likely, α corresponds to the most common plaintext character (i.e., 'e')
 - Guess that the first character of the key is α 'e'
- Repeat for all other positions

Finding the key length

- The previous attack assumes we know the key length
 - What if we don't?
- Note: can always try the previous attack for all possible key lengths
 - # of key lengths << # keys</p>

Finding the key length

 When using the correct key length, the ciphertext frequencies {q_i} of a stream will be shifted versions of the {p_i}

- So
$$\Sigma q_i^2 \approx \Sigma p_i^2 \approx 0.065$$

 When using an incorrect key length, expect (heuristically) that ciphertext letters are uniform

- So
$$\Sigma q_i^2 \approx \Sigma (1/26)^2 = 1/26 = 0.038$$
 $S_\tau \approx \sum_{i=0}^{25} \left(\frac{1}{26}\right)^2 \approx 0.038$

• In fact, good enough to find the key length N that maximizes $\Sigma \, q_i^2$

Historically...

- Cryptography was an art
 - Heuristic design and analysis

- This isn't very satisfying
 - How do we know when a scheme is secure?

Modern cryptography

• In the late '70s and early '80s, cryptography began to develop into more of a *science*

Based on three principles that underpin most crypto work today

Core principles of modern crypto

- Formal definitions
 - Precise, mathematical model and definition of what security means
- Assumptions
 - Clearly stated and unambiguous
- Proofs of security
 - Move away from design-break-patch

Principles of Modern Cryptography

- Schemes are now developed and analyzed in a more systematic manner, with the ultimate goal being to give a rigorous proof that a given construction is secure.
- In order to articulate such proofs, one first need formal definitions that pin down exactly what "secure" means

Principle 1 – Formal Definitions Importance of definitions

- Definitions are essential for the design, analysis, and sound usage of crypto
- Developing a precise definition forces the designer to think about what they really want
 - What is essential and (sometimes more important) what is not
 - Often reveals subtleties of the problem

Importance of definitions -- design

If you don't understand what you want to achieve, how can you possibly know when (or if) you have achieved it?

Importance of definitions -- analysis

- Definitions enable meaningful analysis, evaluation, and comparison of schemes
 - Does a scheme satisfy the definition?
 - What definition does it satisfy?
 - Note: there may be multiple meaningful definitions!
 - One scheme may be less efficient than another, yet satisfy a stronger security definition

Importance of definitions -- usage

- Definitions allow others to understand the security guarantees provided by a scheme
- Enables schemes to be used as components of a larger system (modularity)
- Enables one scheme to be substituted for another if they satisfy the same definition

Two components of security definition

- A security definition has two components:
 - a security guarantee (or, from the attacker's point of view, what constitutes a successful attack) and a threat model.
- The security guarantee defines what the scheme is intended to prevent the attacker from doing.
- Threat model describes the power of the adversary, i.e., what actions the attacker is assumed able to carry out.

Secure encryption scheme guarantee

- It should be impossible for an attacker to recover the key
- It should be impossible for an attacker to recover the plaintext from the ciphertext
- It should be impossible for an attacker to recover any character of the plaintext from the ciphertext
- Regardless of any information an attacker already has, a ciphertext should leak no additional information about the underlying plaintext.

Threat model

- Ciphertext-only attack
- Known-plaintext attack
- Chosen-plaintext attack
- Chosen-ciphertext attack

Principle 2 – Precise Assumptions

- With few exceptions, cryptography currently requires computational assumptions
 - At least until we prove P ≠ NP (and even that would not be enough)

 Principle: any such assumptions should be made explicit and mathematically precise

Importance of clear assumptions

- Allow researchers to (attempt to) validate assumptions by studying them, should be examined and tested
- Allow meaningful comparison between schemes based on different assumptions
 - Useful to understand minimal assumptions needed
- Practical implications if assumptions are wrong

Enable proofs of security

Principle 3 – Proofs of Security

- Provide a rigorous proof that a construction satisfies a given definition under certain specified assumptions
 - Provides an iron-clad guarantee (relative to your definition and assumptions!)

 Proofs are crucial in cryptography, where there is a malicious attacker trying to "break" the scheme

Test your Understanding

- Using the English-language shift cipher (as described in the book), which of the following plaintexts could correspond to ciphertext AZC?
 - 1. can
 - 2. bad
 - 3. dog
 - 4. run

Summary

- Classical Ciphers
- Modern cryptography
- Symmetric Ciphers