Привилигированная информация и дистиляция моделей

Грабовой Андрей Валериевич

Московский физико-технический институт

МФТИ, г. Долгопрудный

Вероятностная интерпретация дистилляции моделей

Цель: предложить вероятностную постановку задачи дистилляции моделей глубокого обучения на основе существующих методов дистилляции и привилегированного обучения.

Задачи

- Поставить вероятностную задачу дистилляции для задачи классификации и регрессии.
- Провести теоретический анализ предложенной вероятностной постановки задачи для линейных моделей.

Исследуемая проблема

Снижение размерности пространства параметров моделей глубокого обучения.

Метод решения

Предлагается поставить вероятностную постановку задачи дистилляции моделей глубокого обучения. В качестве базовой дистилляции предлагается использовать методы предложенные Дж. Хинтоном и В. Вапником.

Список литературы

- Грабовой А. В., Стрижов В. В. Анализ моделей привилегированного обучения и дистилляции // Автоматика и Телемеханика (на рассмотрении)
- Christopher Bishop, Pattern Recognition and Machine Learning, 2016.
- 3 Lopez-Paz D., Bottou L., Scholkopf B., Vapnik V. Unifying Distillation and Privileged Information // In International Conference on Learning Representations. Puerto Rico, 2016.
- Minton G., Vinyals O., Dean J. Distilling the Knowledge in a Neural Network // NIPS Deep Learning and Representation Learning Workshop. 2015.
- **6** Madala H., Ivakhnenko A. Inductive Learning Algorithms for Complex Systems Modeling. Boca Raton: CRC Press Inc., 1994.

Введения

Когда возникает задача:

- изменение признакового описания объектов;
- использования информации из "будущего";
- уменьшение сложности модели;
- использования нескольких типо признаков.

Сам слайд мне не нравится нужно переписать... Что сюда интересное можно придумать?

<u>Необходимые</u> понятия

Definition

Дистилляция модели — уменьшение сложности модели путем выбора модели в множестве более простых моделей с использованием ответов более сложной модели.

Definition

Привилегированная информация — множество признаков, которые доступны только в момент выбора модели, но не в момент тестирования.

Definition

Учитель — фиксируемая модель, ответы которой используются при выборе модели ученика.

Definition

Ученик — модель, которая выбирается согласно какого-либо критерия.

Постановка задачи обучения с учителем

Задано:

- $\mathbf{0}$ множество объектов $\mathbf{\Omega}$, где $|\mathbf{\Omega}|=m$;
- $oldsymbol{0}$ множество объектов $oldsymbol{\Omega}^*$, где $|oldsymbol{\Omega}^*|=m^*$;
- \bullet множество целевых переменных \mathbb{Y} , причем $\mathbf{y}_i = \mathbf{y}(\omega_i)$;
- \bullet отображение $\varphi: \Omega \to \mathbb{R}^n$, обозначим $\mathbf{x}_i = \varphi(\omega_i)$;
- \bullet отображение $\varphi^*: \mathbf{\Omega}^* \to \mathbb{R}^{n^*}$, обозначим $\mathbf{x}_i^* = \varphi^*(\omega_i)$.

Введем множество объектов, для которых известна привилигированя информапия:

 $\mathcal{I} = \{1 \le i \le m |$ для i-го объекта задана привилегированная информация $\},$

а множество индексов объектов, для которых не известна привилегированная информация, обозначим $\{1,\cdots,m\}\setminus \mathcal{I}=\bar{\mathcal{I}}.$

Постановка задачи обучения с учителем

Пусть на множестве привилегированных признаков задана функция учителя $\mathbf{f}(\mathbf{x}^*)$:

$$\mathbf{f}: \mathbb{R}^{n^*} \to \mathbb{Y}^*$$
.

Заметим:

- **1** множество $\mathbb{Y}^* = \mathbb{Y}$ для задачи регрессии;
- $m{@}$ множество \mathbb{Y}^* является единичным симплексом \mathcal{S}_K в пространстве размерности K для задачи классификации.

Для удобства введем обозначения: $\mathbf{f}(\mathbf{X}^*) = \mathbf{S}$.

Требуется выбрать модель ученика $\mathbf{g}(\mathbf{x})$ из множества:

$$\mathfrak{G} = \{ \mathbf{g} | \mathbf{g} : \mathbb{R}^n \to \mathbb{Y}^* \}.$$

Для задачи классификации множество \mathfrak{G} может быть параметрическим семейством функций линейных моделей:

$$\mathfrak{G}_{\mathrm{lin,cl}} = \left\{ \mathbf{g} ig(\mathbf{W}, \mathbf{x} ig) | \mathbf{g} ig(\mathbf{W}, \mathbf{x} ig) = \mathbf{softmax} ig(\mathbf{W} \mathbf{x} ig), \quad \mathbf{W} \in \mathbb{R}^{n imes K}
ight\}.$$

Постановка задачи: Хинтон

Рассматривается:

- \bullet привилегированная информация $\mathcal{I} = \{1, 2, \cdots, m\};$
- **②** классификация $\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m, \mathbf{x}_i \in \mathbb{R}^n, y_i \in \mathbb{Y} = \{1, \dots, K\}.$

Обозначим y_i — класс объекта, а \mathbf{y}_i вектор вероятности для i-го объекта. Параметрическое семейство учителя и ученика:

$$\mathfrak{F}_{\text{cl}} = \left\{ \mathbf{f} | \mathbf{f} = \operatorname{softmax}(\mathbf{v}(\mathbf{x})/T), \quad \mathbf{v} : \mathbb{R}^n \to \mathbb{R}^K \right\},$$

$$\mathfrak{G}_{\text{cl}} = \left\{ \mathbf{g} | \mathbf{g} = \operatorname{softmax}(\mathbf{z}(\mathbf{x})/T), \quad \mathbf{z} : \mathbb{R}^n \to \mathbb{R}^K \right\},$$

где \mathbf{z}, \mathbf{v} — это дифференцируемые параметрические функции заданной структуры, T — параметр температуры.

Параметр температуры T имеет следующие свойства:

- lacktriangled при T o 0 получаем вектор, в котором один из классов имеет единичную вероятность;
- \mathbf{Q} при $T \to \infty$ получаем равновероятные классы.

Функция оптимизации: Хинтон

Функция потерь \mathcal{L} в которой учитывается перенос информации от модели учителя \mathbf{f} к модели ученика \mathbf{g} имеет следующий вид:

$$\mathcal{L}_{st}(\mathbf{g}) = -\sum_{i=1}^{m} \sum_{k=1}^{K} y_i^k \log \mathbf{g}(\mathbf{x}_i) \big|_{T=1}$$
 исходная функция потерь
$$-\sum_{i=1}^{m} \sum_{k=1}^{K} \mathbf{f}(\mathbf{x}_i) \big|_{T=T_0} \log \mathbf{g}(\mathbf{x}_i) \big|_{T=T_0},$$
 слагаемое дистилляция

где $\cdot\big|_{T=t}$ обозначает, что параметр температуры T в предыдущей функции равняется t.

Получаем оптимизационную задачу:

$$\hat{\mathbf{g}} = \arg\min_{\mathbf{g} \in \mathfrak{G}_{cl}} \mathcal{L}_{st}(\mathbf{g}).$$

Постановка задачи: Вапник

Рассматривается:

- **①** привилегированная информация $\mathcal{I} = \{1, 2, \cdots, m\};$
- **②** классификация $\mathcal{D} = \{(\mathbf{x}_i, \mathbf{x}_i^*, y_i)\}_{i=1}^m, \mathbf{x}_i \in \mathbb{R}^n, \mathbf{x}_i^* \in \mathbb{R}^{n^*}, y_i \in \{1, \cdots, K\}.$

Параметрическое семейство учителя и ученика:

$$\mathfrak{F}_{\mathrm{cl}}^* = \left\{ \mathbf{f} | \mathbf{f} = \operatorname{softmax} \left(\mathbf{v}^* \left(\mathbf{x}^* \right) / T \right), \quad \mathbf{v}^* : \mathbb{R}^{n^*} \to \mathbb{R}^K \right\},$$

$$\mathfrak{G}_{\mathrm{cl}} = \left\{ \mathbf{g} | \mathbf{g} = \operatorname{softmax} \left(\mathbf{z} \left(\mathbf{x} \right) / T \right), \quad \mathbf{z} : \mathbb{R}^n \to \mathbb{R}^K \right\},$$

где \mathbf{z},\mathbf{v}^* — это дифференцируемые параметрические функции заданной структуры, T— параметр температуры.

Функция потерь:

$$\mathcal{L}_{st}(\mathbf{g}) = -\sum_{i=1}^{m} \sum_{k=1}^{K} y_i^k \log \mathbf{g}(\mathbf{x}_i) \big|_{T=1} - \sum_{i=1}^{m} \sum_{k=1}^{K} \mathbf{f}(\mathbf{x}_i^*) \big|_{T=T_0} \log \mathbf{g}(\mathbf{x}_i) \big|_{T=T_0},$$

где $\cdot\big|_{T=t}$ обозначает, что параметр температуры T в предыдущей функции равняется t.

Двухэтапная модель обучения: Вапник

Требуется построить модель, которая использует привилегированную информацию \mathbf{x}_i^* при поиске оптимальной модели $\mathbf{g} \in \mathfrak{G}_{\mathrm{cl}}$. Рассматривается двухэтапная модель обучения:

- $oldsymbol{0}$ выбираем оптимальную модель учителя $\mathbf{f} \in \mathfrak{F}_{\mathrm{cl}}^*;$
- $oldsymbol{arrho}$ выбираем оптимальную модель ученика $\mathbf{g} \in \mathfrak{G}_{\mathrm{cl}}$ используя дистилляцию.

Модель ученика — это функция, которая минимизирует \mathcal{L}_{st} .

Модель учителя — это функция, которая минимизирует кросс–энтропийную функции ошибки:

$$\mathcal{L}_{th}(\mathbf{f}) = -\sum_{i=1}^{m} \sum_{k=1}^{K} y_i^k \log \mathbf{f}(\mathbf{x}_i^*).$$

Вероятностное обоснование

Принцип максимума правдоподобия:

$$\hat{\mathbf{g}} = \arg \max_{\mathbf{g} \in \mathfrak{G}} \prod_{i=1}^{N} p(\mathbf{y}_{i} | \mathbf{x}_{i}, \mathbf{g}).$$

Вероятностные предположения:

- lacktriangle задано распределение целевой переменной $p(\mathbf{y}_i|\mathbf{x}_i,\mathbf{g});$
- $oldsymbol{0}$ задано совместное распределение целевой переменной и ответов модели учителя $p(\mathbf{y}_i, \mathbf{s}_i | \mathbf{x}_i, \mathbf{g});$
- **3** для всех $\omega \in \Omega^*$ элементы $\mathbf{y}(\omega)$ и $\mathbf{s}(\omega)$ являются зависимыми величинами, так как ответы учителя должны коррелировать с истинными ответами для одних и тех же объектов;
- $oldsymbol{0}$ если $|\Omega^*| = 0$ то решение должно соответствовать решению максимума правдоподобия.

Совместное правдоподобие истинных меток и меток учителя:

$$p(\mathbf{Y}, \mathbf{S} | \mathbf{X}, \mathbf{g}, \mathcal{I}) = \prod_{i \in \mathcal{I}} p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) \prod_{i \in \mathcal{I}} p(\mathbf{y}_i, \mathbf{s}_i | \mathbf{x}_i, \mathbf{g}).$$

Максимум правдоподобия истинных меток и меток учителя

Совместное правдоподобие истинных меток и меток учителя:

$$p\big(\mathbf{Y},\mathbf{S}|\mathbf{X},\mathbf{g},\mathcal{I}\big) = \prod_{i \notin \mathcal{I}} p\big(\mathbf{y}_i|\mathbf{x}_i,\mathbf{g}\big) \prod_{i \in \mathcal{I}} p\big(\mathbf{y}_i,\mathbf{s}_i|\mathbf{x}_i,\mathbf{g}\big).$$

По формуле условной вероятности:

$$p(\mathbf{y}_i, \mathbf{s}_i | \mathbf{x}_i, \mathbf{g}) = p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) p(\mathbf{s}_i | \mathbf{y}_i, \mathbf{x}_i, \mathbf{g})$$

Получаем:

$$p(\mathbf{Y}, \mathbf{S} | \mathbf{X}, \mathbf{g}, \mathcal{I}) = \prod_{i \notin \mathcal{I}} p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) \prod_{i \in \mathcal{I}} p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) \prod_{i \in \mathcal{I}} p(\mathbf{s}_i | \mathbf{y}_i, \mathbf{x}_i, \mathbf{g}).$$

Заметим, что \mathbf{y}_i и \mathbf{s}_i зависимы только через переменную \mathbf{x}_i :

$$p(\mathbf{Y}, \mathbf{S} | \mathbf{X}, \mathbf{g}, \mathcal{I}) = \prod_{i \notin \mathcal{I}} p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) \prod_{i \in \mathcal{I}} p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) \prod_{i \in \mathcal{I}} p(\mathbf{s}_i | \mathbf{x}_i, \mathbf{g}).$$

Задача оптимизации

Совместное правдоподобие:

$$p(\mathbf{Y}, \mathbf{S} | \mathbf{X}, \mathbf{g}, \mathcal{I}) = \prod_{i \notin \mathcal{I}} p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) \prod_{i \in \mathcal{I}} p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) \prod_{i \in \mathcal{I}} p(\mathbf{s}_i | \mathbf{x}_i, \mathbf{g}).$$

Получаем оптимизационную задачу для поиска $\hat{\mathbf{g}}$:

$$\hat{\mathbf{g}} = \arg \max_{\mathbf{g} \in \mathcal{G}} \prod_{i \notin \mathcal{I}} p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) \prod_{i \in \mathcal{I}} p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) \prod_{i \in \mathcal{I}} p(\mathbf{s}_i | \mathbf{x}_i, \mathbf{g}).$$

Для удобства минимизируется логарифм:

$$\hat{\mathbf{g}} = \arg \max_{\mathbf{g} \in \mathcal{G}} \sum_{i \notin \mathcal{I}} \log p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) + (1 - \lambda) \sum_{i \in \mathcal{I}} \log p(\mathbf{y}_i | \mathbf{x}_i, \mathbf{g}) + \lambda \sum_{i \in \mathcal{I}} \log p(\mathbf{s}_i | \mathbf{x}_i, \mathbf{g}),$$

где параметр $\lambda \in [0,1]$ введен для взвешивания ошибок на истинных ответах и ошибок относительно ответов учителя.

Частный случай: классификация

Для задачи многоклассовой классификации рассматриваются следующие вероятностные предположения:

- $oldsymbol{0}$ рассматривается функция учителя $\mathbf{f} \in \mathfrak{F}_{\mathrm{cl}}^*;$
- $oldsymbol{0}$ рассматривается функция ученика следующего вида $\mathbf{g} \in \mathfrak{G}_{\mathrm{cl}};$
- $\ \ \,$ для истинных меток рассматривается категориальное распределение $p(y|\mathbf{x},\mathbf{g}) = \mathrm{Cat}(\mathbf{g}(\mathbf{x}))$, где $\mathbf{g}(\mathbf{x})$ задает вероятность каждого класса;
- для меток учителя введем плотность распределения

$$p(\mathbf{s}|\mathbf{x},\mathbf{g}) = C \prod_{k=1}^{K} g_k(\mathbf{x})^{s^k},$$

где g^k обозначает вероятность класса k, которую предсказывает модель ученика, а s^k — вероятность класса k, которую предсказывает модель учителя.

Частный случай: классификация

Theorem (Грабовой 2020)

Пусть вероятнось каждого класса отделима от нуля и единицы, то есть для всех k выполняется $1>1-\varepsilon>g_k(\mathbf{x})>\varepsilon>0$, тогда при

$$C = (-1)^K \frac{K^{K/2}}{2^{K(K-1)/2}} \prod_{k=1}^K g_k(\mathbf{x}) \log g_k(\mathbf{x})$$
 (1)

функция $p(\mathbf{s}|\mathbf{x},\mathbf{g}) = C \prod_{k=1}^{K} g_k(\mathbf{x})^{s^k}$ является плотностью распределения.

Получаем оптимизационную задачу:

$$\begin{split} \hat{\mathbf{g}} &= \arg\max_{\mathbf{g} \in \mathcal{G}} \sum_{i \notin \mathcal{I}} \sum_{k=1}^{K} y_i^k \log g_k \left(\mathbf{x}_i \right) \big|_{T=1} \\ &+ (1-\lambda) \sum_{i \in \mathcal{I}} \sum_{k=1}^{K} y_i^k \log g_k \left(\mathbf{x}_i \right) \big|_{T=1} + \lambda \sum_{i \in \mathcal{I}} \sum_{k=1}^{K} s_{i,k} \log g_k \left(\mathbf{x}_i \right) \big|_{T=T_0} \\ &+ \lambda \sum_{i \in \mathcal{I}} \sum_{k=1}^{K} \left(\log g_k \left(\mathbf{x}_i \right) \big|_{T=T_0} + \log \log \frac{1}{g_k \left(\mathbf{x}_i \right)} \big|_{T=T_0} \right). \end{split}$$

Частный случай: регрессия

Задача регрессии имеет вероятностные предположения:

lacktriangled рассматривается функция учителя $\mathbf{f} \in \mathfrak{F}_{rg}^*$:

$$\mathfrak{F}_{\mathrm{rg}}^* = \left\{\mathbf{f} | \mathbf{f} = \mathbf{v}^* \big(\mathbf{x}^* \big), \quad \mathbf{v}^* : \mathbb{R}^{n^*} \to \mathbb{R} \right\};$$

 $oldsymbol{2}$ рассматривается функция ученика $\mathbf{g} \in \mathfrak{G}_{\mathrm{rg}}$:

$$\mathfrak{G}_{\mathrm{rg}} = \left\{ \mathbf{g} | \mathbf{g} = \mathbf{z} \big(\mathbf{x} \big), \quad \mathbf{z} : \mathbb{R}^n \to \mathbb{R}^K \right\};$$

в истинные метки имеют нормальное распределение

$$p(y|\mathbf{x}, \mathbf{g}) = \mathcal{N}(y|\mathbf{g}(\mathbf{x}), \sigma);$$

4 метки учителя распределены

$$p(s|\mathbf{x}, \mathbf{g}) = \mathcal{N}(s|\mathbf{g}(\mathbf{x}), \sigma_s);$$

Оптимизационная задача:

$$\hat{g} = \arg\min_{g \in \mathcal{G}} \sum_{i \notin \mathcal{I}} \sigma^2 (y_i - \mathbf{g}(\mathbf{x}_i))^2$$

$$+ (1 - \lambda) \sum_{i \in \mathcal{I}} \sigma^2 (y_i - \mathbf{g}(\mathbf{x}_i))^2 + \lambda \sum_{i \in \mathcal{I}} \sigma_s^2 (s_i - \mathbf{g}(\mathbf{x}_i))^2.$$

Частный случай: регрессия

Оптимизационная задача:

$$\hat{g} = \arg\min_{g \in \mathcal{G}} \sum_{i \notin \mathcal{I}} \sigma^2 (y_i - \mathbf{g}(\mathbf{x}_i))^2 + (1 - \lambda) \sum_{i \in \mathcal{I}} \sigma^2 (y_i - \mathbf{g}(\mathbf{x}_i))^2 + \lambda \sum_{i \in \mathcal{I}} \sigma_s^2 (s_i - \mathbf{g}(\mathbf{x}_i))^2.$$

Theorem (Грабовой 2020)

Пусть множество $\mathcal G$ описывает класс линейных функций вида $\mathbf g(\mathbf x) = \mathbf w^\mathsf{T} \mathbf x$. Тогда решение оптимизационной задачи эквивалентно решению следующей задачи линейной регрессии $\mathbf y'' = \mathbf X \mathbf w + \boldsymbol \varepsilon, \ \boldsymbol \varepsilon \sim \mathcal N \big(\mathbf 0, \boldsymbol \Sigma \big)$, где $\mathbf \Sigma^{-1} = \operatorname{diag}(\boldsymbol \sigma')$ и $\mathbf y''$ имеют следующий вид:

$$egin{aligned} \sigma_i' &= egin{cases} \sigma^2, \ ecnu \ i
ot\in \mathcal{I} \ (1-\lambda) \ \sigma^2 + \lambda \sigma_s^2, \ u$$
наче $\mathbf{y}'' &= \mathbf{\Sigma} \mathbf{y}', \ y_i' &= egin{cases} \sigma^2 y_i, \ ecnu \ i
ot\in \mathcal{I} \ (1-\lambda) \ \sigma^2 y_i + \lambda \sigma_s^2 s_i, \ u$ наче $\end{array} \end{aligned}$

Вычислительный эксперимент

Вычислительный эксперимент состоит из следующих частей:

- эксперимент с выборкой FashionMNIST;
- эксперимент на синтетической выборке;
- 3 эксперимент на выборке Twitter Sentiment Analysis.

Выборка FashionMNIST

Зависимость кросс-этропии между истинными метками и предсказанными учеников вероятностями классов: а) на обучающей выборке; b) на тестовой выборке.

Синтетический эксперимент

Выборка построенная следующим образом:

$$\mathbf{W} = \left[\mathcal{N}(w_{jk}|0,1) \right]_{n \times K}, \qquad \mathbf{X} = \left[\mathcal{N}(x_{ij}|0,1) \right]_{m \times n},$$

$$\mathbf{S} = \operatorname{softmax}(\mathbf{X}\mathbf{W}), \qquad \mathbf{y} = \left[\operatorname{Cat}(y_i|\mathbf{s}_i) \right],$$

где функция softmax берется построчно. Строки матрицы ${f S}$ будем рассматривать как предсказание учителя, то есть учитель знает истинные вероятности каждого класса.

В эксперименте число признаков n=10, число классов K=3, для обучения было сгенерировано $m_{\rm train}=1000$ и $m_{\rm test}=100$ объектов.

Синтетический эксперимент: распределение классов

Сверху вниз: истинное распределение; без учителя; с учителем

Синтетический эксперимент: анализ параметра λ и T

Зависимость распределения по классам при разных параметрах λ и T

Выборка Twitter Sentiment Analysis

Выборка разделена на 1,18 миллиона твитов для обучения и 0,35 миллиона твитов для тестирования. В твитах была выполнена следующая предобработка:

- все твиты были переведены в нижний регистр;
- все никнеймы вида "@andrey" были заменены на токен "name";
- все цифры были заменены на токен "number".

Описание моделей:

- модель учителя: модель на основе Bi-LSTM с ≈ 30 миллионов настраиваемых параметров;
- модель ученика: модель на основе предобученной модели BERT с 1538 настраиваемых параметров.

Сводная таблица результатов вычислительного эксперимента

Dataset	Model	CrossEntropyLoss	Accuracy	StudentSize
FashionMnist	without teacher	$0,461 \pm 0,005$	0.841 ± 0.002	7850
	with teacher	$0,453 \pm 0,003$	0.842 ± 0.002	7850
Synthetic	without teacher	$0,225 \pm 0,002$	0.831 ± 0.002	33
	with teacher	$0,452 \pm 0,001$	0.828 ± 0.001	33
Twitter	without teacher	$0,501 \pm 0,006$	0.747 ± 0.005	1538
	with teacher	$0,489 \pm 0,003$	$0,764 \pm 0,004$	1538

Вывод

Сделано:

- поставлена вероятностная задача дистилляции моделей глубокого обучения;
- проведен теоретический анализ предложенной вероятностной задачи;
- 🔞 проведен вычислительный эксперимент для анализа предложенной модели.

Планируется:

- обобщить предложенный метод на случай задачи регрессии более корректно;
- $oldsymbol{0}$ использовать байесовский подход выбора моделей машинного обучения для решения данной задачи.