BASE DE DADOS

Álgebra Relacional

Teórico-Práticas Ano Lectivo 2016/2017

Objetivos

- 1. Propósito da Álgebra Relacional
- 2. Operadores da Álgebra Relacional
 - Operadores Unários;
 - > Operadores Binários.
- 3. Exercício

Propósito da Álgebra Relacional

- * Álgebra Relacional é descrição formal de como uma base de dados relacional opera.
- ★ É constituída por um conjunto de operadores
 - Atuam sobre as relações (uma ou mais);
 - Produzem relações como resultados;
 - Podem ser combinados para construir expressões mais complexas.
- * Álgebra é fechada
 - > Todos os operadores recebem uma relação e devolvem outra relação;
 - > Interrogação é simplesmente a composição de vários operadores.

Operadores Relacionais

- * Operadores relacionais Unários operam numa relação:
 - Seleção;
 - Projeção;
 - > Renomeação.
- * Operadores Relacionais Binários operam em pares de relações:

Operações sobre conjuntos

- Diferença;
- União;
- > Intersecção
- Produto Cartesiano;
- Divisão;
- > Join.

Operadores Relacionais Unários - SELEÇÃO

- * A seleção (denotada por **6** (Sigma)) é utilizada para selecionar um subconjunto de registos a partir de uma relação baseada numa condição de seleção:
 - A condição seleção atua como um filtro;
 - Mantém apenas os registos que satisfazem a condição de seleção;
 - Os registos que satisfazem a condição são selecionados enquanto os outros registos são descartados (filtrados).

δ <condição de seleção> (Relação 1)

utilizado para denotar o operador seleção

expressão booleana (condicional) especificada sobre os atributos de relação R

Operadores Relacionais Unários - SELECT **Exemplo**

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54
Pedro	34	80

δ_{idade≥34} (Aluno)

nome	idade	peso
João	34	80
Helena	54	54
Pedro	34	80

$\sigma_{idade=peso}(Aluno)$

nome	idade	peso
Helena	54	54

Operadores Relacionais Unários - PROJEÇÃO

 A Projeção (denotada por π (pi)) toma uma relação inicial e origina outra relação cujo esquema é reduzido ao conjunto de atributos presentes na lista de atributos>

π sta de atributos> (Relação 1)

Operadores Relacionais Unários - PROJEÇÃO **Exemplo**

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54
Pedro	34	80

π peso(Aluno)

peso
80
70
54

π nome, idade(Aluno)

nome	idade
João	34
Ana	29
Helena	54
Pedro	34

registos repetidos são eliminados.

Operadores Relacionais Unários – SELECT E PROJEÇÃO

★ Como o resultado de uma expressão de álgebra relacional é uma relação, podemos substituir uma expressão onde seja esperada uma relação.

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54
Pedro	34	80

 $\pi_{\text{nome}}(\delta_{\text{idade=peso}}(Aluno))$

nome Helena

Operadores Relacionais Unários - Renomeação

- * A Renomeação (denotada por p (rho)) é utilizada para renomear
 - o nome da relação;
 - o nome dos atributos da relação;
 - nome da relação e nomes dos atributos.

nomes novos dos atributos

Operadores Relacionais Unários - Renomeação

Exemplo

ρ_{ALUNOISEP} (Aluno)

ρ_(nomeisep, idadeisep, pesoisep) (Aluno)

P_{Alunolsep} (nomeisep, idadeisep, pesoisep) (Aluno)

Indicada para ser utilizada quando uma relação é usada mais do que uma vez para responder à consulta.

Operadores Relacionais Binários - DIFERENÇA

- * A Diferença (R S) define uma relação que contém os registos que estão em R e não estão na S.
- ★ Para que uma operação R S possa ser aplicada, é necessário que:
 - R e S tenham o mesmo número de atributos;
 - Os domínios dos atributos correspondentes devem ser o mesmo.

Relação 3 = (Relação1 - Relação2)

Operadores Relacionais Binários – DIFERENÇA

Exemplo

AlunoISEP

nome	idade	peso
João	34	80
Ana	29	70
Carla	22	60

Aluno - AlunoISEP

nome	idade	peso
Helena	54	54
Pedro	34	80

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54
Pedro	34	80

AlunoISEP - Aluno

nome	idade	peso
Carla	22	60

Operadores Relacionais Binários - UNIÃO

- ★ A União é denotada por U como na teoria dos conjuntos. Ela retorna a união (conjunto de união) de duas relações compatíveis.
- **★** Para que uma operação **RUS** possa ser aplicada, é necessário que:
 - R e S tenham o mesmo número de atributos;
 - Os domínios dos atributos correspondentes devem ser o mesmo.
- * Como em todas as operações de conjunto, os duplicados são eliminados.

Relação 3 = (Relação1 ∪ Relação2)

Operadores Relacionais Binários – UNIÃO

Exemplo

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54

Professor

nome	idade	peso
José	34	80
Maria	29	70

Aluno U Professor

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54
José	34	80
Maria	29	70

Operadores Relacionais Binários - INTERSECÇÃO

- ★ A Intersecção (denotada por ∩) define uma relação que consiste no conjunto de todos os registos que estão em ambos as relações.
- ★ Tal como na união, para que uma operação R ∩ S possa ser aplicada, é necessário que:
 - R e S tenham o mesmo número de atributos;
 - Os domínios dos atributos correspondentes devem ser o mesmo.

Relação 3 = (Relação1 ∩ Relação2)

A intersecção pode também ser expressa pela diferença:

$$R \cap S = R - (R - S)$$

Operadores Relacionais Binários – INTERSECÇÃO

Exemplo

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54

Professor

nome	idade	peso
João	34	80
Maria	29	70

Aluno ∩ **Professor**

nome	idade	peso	
João	34	80	

Operadores Relacionais Binários – PRODUTO CARTESIANO

- O Produto Cartesiano (denotado por x) combina registos de duas relações (quaisquer)
- Os registos da relação resultante
 - todas as combinações de registos possíveis entre as relações participantes

Relação 1 x Relação 2

Operadores Relacionais Binários – PRODUTO CARTESIANO

Exemplo

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54
Pedro	34	80

Notas

nome	disciplina	nota
João	Esoft	12
Helena	Esinf	8

Aluno X Notas

nome	idade	peso	nome	disciplina	nota
João	34	80	João	Esoft	12
João	34	80	Helena	Esinf	8
Ana	29	70	João	Esoft	12
Ana	29	70	Helena	Esinf	8
Helena	54	54	João	Esoft	12
Helena	54	54	Helena	Esinf	8
Pedro	34	80	João	Esoft	12
Pedro	34	80	Helena	Esinf	8

Operadores Relacionais Binários – DIVISÃO

- * O operador divisão é importante para expressar certos tipos de pesquisas, como exemplo "Pesquise o nome dos alunos que têm notas a **todas** as disciplinas ".
- * A palavra **todas** está normalmente associada à **divisão**.
- ★ Vamos definir a divisão através de um exemplo:
 - Considerando duas relações A e B, em que A tem dois campos (x e y) e B tem apenas um (y) com o mesmo domínio em A. Definimos a divisão A/B como o conjunto de todos os valores x, tais que para **todos** os y existentes em B existe um registo em A.

Operadores Relacionais Binários – DIVISÃO **Exemplo**

Α [sno	pno
	s1	p1
	s1	p2
	s1	р3
	s1	p4
	s2	p1
	s2	p2
	s3	p2
	s4	p2
	s4	p4

Operadores Relacionais Binários – JOIN

- ♣ O operador JOIN (denotado por ⋈) concatena registos relacionados de duas relações em registos únicos;
- ★ É derivado do produto cartesiano.
- * Equivalente à realização de uma seleção, usando o predicado como fórmula de seleção, aplicado ao produto cartesiano das duas relações.
- remove colunas duplicadas.
- * Existem vários tipos:
 - Theta join
 - > Equijoin (caso particular do Theta join)
 - Natural join
 - >

Operadores Relacionais Binários – THETA JOIN

- * Produz uma relação com todas as combinações possíveis entre os registos da relação 1 com a relação 2 condicionados pela <condição>.
- ★ O esquema produzido é a "soma" dos esquemas das relações iniciais (1 e
 2).

Relação1 condição> Relação2

Operadores Relacionais Binários – THETA JOIN

Exemplo

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54
Pedro	34	80

Notas

nome	disciplina	nota
João	Esoft	12
Helena	Esinf	8

Aluno ⋈ _{idade>34} Notas

nome	idade	peso	nome	disciplina	nota
Helena	54	54	João	Esoft	12
Helena	54	54	Helena	Esinf	8

Operadores Relacionais Binários – EQUI JOIN

- * Caso especial do theta Join, onde a condição contêm unicamente igualdades.
- * O esquema produzido é similar ao produto cartesiano, o qual contêm somente os registos que verificam a igualdade.
- ★ É equivalente a

R1
$$\bowtie_{\mathbf{C}}$$
 R2

$$R = \sigma_c (R1 \times R2)$$

Operadores Relacionais Binários – EQUI JOIN

Exemplo

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54
Pedro	34	80

Notas

nome	disciplina	nota
João	Esoft	12
Helena	Esinf	8

Aluno Aluno.nome=Notas.nome Notas

nome	idade	peso	disciplina	nota
João	34	80	Esoft	12
Helena	54	54	Esinf	8

Operadores Relacionais Binários – NATURAL JOIN

- * Caso especial de Join em que as igualdades são especificadas em todos os campos que têm o mesmo nome nas duas relações.
- * No exemplo seguido as duas expressões seguintes são iguais:

$$R \bowtie S$$

$$S1 \bowtie_{R.sid=S.sid} R1$$

Operadores Relacionais Binários – NATURAL JOIN

Exemplo

Aluno

nome	idade	peso
João	34	80
Ana	29	70
Helena	54	54
Pedro	34	80

Notas

nome	disciplina	nota
João	Esoft	12
Helena	Esinf	8

Aluno⋈ **Notas**

nome	idade	peso	disciplina	nota
João	34	80	Esoft	12
Helena	54	54	Esinf	8

Álgebra Relacional - EXERCÍCIO

Médico(nMed, nomeM, especialidade)

nMed	nomeM	especialidade
21	João	Clinica Geral
12	Ana	Oftalmologia
13	Pedro	Ortopedia
8	Carlos	Pediatria

Paciente(<u>nBI</u>, nomeP, idade)

nBI	nomeP	idade
1	João	30
2	Ana	23
3	Carla	65

Consulta(nConsulta, data, nBI, nMed)

nConsulta	data	nBi	nMed
1	12/10/2015	1	21
2	13/10/2015	2	12
3	24/01/2016	1	12
4	24/01/2016	2	12
5	24/01/2016	3	21
6	17/03/2016	1	13

Álgebra Relacional - EXERCÍCIO

QUESTÕES:

- 1. Quais os pacientes com mais de 50 anos de idade?
- 2. Quais os nomes dos pacientes com menos de 50 anos de idade?
- 3. Quais os médicos que nunca realizaram consultas?
- 4. Quais os médicos que já consultaram todos os doentes da clínica?
- 5. Quais os nomes dos médicos e respectivas especialidades que realizaram consultas no dia 24/01/2016?
- 6. Qual o paciente com mais idade? (sem usar funções de agregação)

Outros operadores, tais como, agregação, agrupamento, ... não serão lecionados na disciplina

1. Quais os pacientes com mais de 50 anos de idade?

$$\sigma_{idade > 50}$$
 (Paciente)

nBI	nomeP	idade	
3	Carla	65	

2. Quais os nomes dos pacientes com menos de 50 anos de idade?

 π nomeP ($\sigma_{idade < 50}$ (Paciente))

nomeP
João
Ana

3. Quais os médicos que nunca realizaram consultas?

$$(\pi \text{ nMed(Medico)} - \pi \text{ nMed(Consulta)})$$

nMed 8

4. Quais os médicos que já consultarem todos os doentes da clínica?

 $(\pi_n)/(\pi_n)$ (Consulta))/ (π_n) (Paciente))

nMed	nBi

5. Quais os nomes dos médicos e respectivas especialidades que realizaram consultas no dia 24/01/2016?

(π nomeM, especialidade ($\sigma_{\text{data}} = "24/01/2016"$ (Consulta) \bowtie Medico))

nomeM	especialidade
João	Clinica Geral
Ana	Oftalmologia

6. Qual o paciente com mais idade? (sem usar funções de agregação)
2. Paciente X Pacı

1. ρ_{Pac1} (Paciente)

nBl	nomeP	idade
1	João	30
2	Ana	23
3	Carla	65

nBI	nomeP	idade	NBI	nomeP	idade
1	João	30	1	João	30
1	João	30	2	Ana	23
1	João	30	3	Carla	65
2	Ana	23	1	João	30
2	Ana	23	2	Ana	23
2	Ana	23	3	Carla	65
3	Carla	65	1	João	30
3	Carla	65	2	Ana	23
3	Carla	65	3	Carla	65

3. $\rho_{\text{MenorIdade}}(\pi_{\text{paciente.nBI,paciente.nome,paciente.idade}}(\sigma_{\text{paciente.id$

MenorIdade

BI	nome	idade
1	João	30
2	Ana	23
2	Ana	23

nBI	nomeP	idade	nBI	nomeP	idade
1	João	30	3	Carla	65
2	Ana	23	1	João	30
2	Ana	23	3	Carla	65

4. Paciente - MenorIdade

nBI	nomeP	idade
3	Carla	65