

1/161



FIG. 1



FIG. 1A

3/61



FIG. 1B



FIG. 1C

30 ~

5 [16]



FIG. 2C

6(16)



7/16/



FIG. 2G



FIG. 2H

B / 16 /



FIG. 2I



FIG. 2J

9/161





FIG. 3D



FIG. 3E

111(16)



FIG. 4A

KEYBOARD



FIG. 4B



FIG. 4C

12/16/



13/161



FIG. 4E



FIG. 4F



FIG. 5A

15 / 14 /



FIG. 5B

16/161



FIG. 5C

17 / 161



FIG. 5D



FIG. 6A



F I G. 6B



FIG. 6C

21/161



FIG. 7A

22/161



FIG. 7B

23/161



FIG. 7C

24/161



FIG. 8A

25 / 161



FIG. 8B

26/161



FIG. 8C

27 / 61



FIG. 8D

28/161



29/161



FIG. 8F



FIG. 8G

30/161



FIG. 9A

31/161



FIG. 9B

32/161



FIG. 9C

33/161



FIG. 9D

34/161



FIG. 9E



FIG. 9F

FIG. 10A



FIG. 10B



FIG. 10C



FIG. 10D



36 / 161

FIG. 10E



FIG. 10F



37/161



FIG. 11A



FIG. 11B



FIG. 11C

38/161



FIG. 12A



FIG. 12B

39/161



FIG. 13A



FIG. 13B



FIG. 13C

40 / 16 /



A1/161



FIG. 15A1

42/16



FIG. 15A2

13/161

FIG. 15A3



AA/161



FIG. 15A4

454

45 | 16 |



FIG. 15B1

46/161



FIG. 15B2



FIG. 15C

47/161



FIG. 15D



FIG. 15E

48/161



FIG. 15F

49/161



FIG. 15G

50/161

$$\left. \begin{array}{l} E_0 = \overline{(B_1 + A_0)(C_3/C_{1.1})} \\ E_1 = (C_3/C_{1.2}) + B_1 \\ E_2 = (C_2/C_1)(T_1) \end{array} \right\}$$

FIG. 15H



FIG. 15I

51/161



FIG. 15J



FIG. 15K

52/161



FIG. 15L



FIG. 15M

| $C_3 / C_2$ | $A_2$ | $E_3$ | $C_2 / C_1$ |
|-------------|-------|-------|-------------|
| 0           | 0     | 0     | 0           |
| 0           | 1     | 1     | 0           |
| 1           | X     | 1     | 1           |

X: DON'T CARE (I.E.  $C_3 / C_2$  OVERRIDES  $A_2$ )

FIG. 15N

53/61



FIG. 15O



FIG. 16



FIG. 17

55/161



56/161



FIG. 20A1

57/161



FIG. 20A2

58/161



FIG. 20B

FIG. 20C



601171

(7)

THIRD CONTROL CIRCUIT  $C_3$  CONTINUES ACTIVATION OF LASER DIODE, SCANNING MOTOR, PHOTORECEIVING CIRCUIT, A/D CONVERSION CIRCUIT; DEACTIVATES SYMBOL DECODING MODULE; AND COMMENCES ACTIVATION DATA PACKET SYNTHESIS MODULE

W

UNDER  $C_3$  CONTROL DATA PACKET SYNTHESIS MODULE SETS PACKET NUMBER TO 1 AND INCREMENTS DATA PACKET GROUP NUMBER MODULE COUNTER

X

UNDER  $C_3$  CONTROL DATA PACKET SYNTHESIS MODULE CONSTRUCTS DATA PACKET CONSISTING OF SYMBOL CHARACTER DATA, TRANSMITTER NUMBER, DATA PACKET GROUP NUMBER, CHECK CHARACTER AND FRAMING CHARACTERS

Y

$C_3$  ACTIVATES DATA PACKET TRANSMISSION CIRCUIT

Z

UNDER  $C_3$  CONTROL DATA PACKET SYNTHESIS MODULE OUTPUTS PACKET TO DATA PACKET TRANSMISSION CIRCUIT

AA

$C_3$   
DETERMINES  
IS PACKET  
NUMBER < 3  
?

NO

8

YES

UNDER  $C_3$  CONTROL DATA PACKET SYNTHESIS MODULE INCREMENTS DATA PACKET GROUP NUMBER

CC

$C_3$  ALLOWS  $T_5$  TO EXPIRE IN ORDER TO DELAY TRANSMISSION BASED ON LAST TWO DIGITS OF TRANSMITTER NUMBER

DD

FIG. 20D



FIG. 20E

62/161



\*: SYMBOL CHARACTER  
DATA IS DIFFERENT  
THAN DATA ELEMENT  
IN DECODED SYMBOL  
DATA BUFFER

FIG. 21

63/161



FIG. 22A1



FIG. 22A2

65/161

FIG. 22A3



66/161



FIG. 22A4

67/161



FIG. 22B

68/161

FIG. 22C



69/161.



FIG. 23A1

70/161



FIG. 23A2



FIG. 23B

FIG. 23C



73/161

(7)



74/161



F.I G. 23E

75/161



F I G. 24

76/161



F I G. 25A

77/161



FIG. 25B

78/161



FIG. 26



FIG. 27A



**FIG. 27B1**



FIG. 27B2

82/101



FIG. 27C

03/16/



\*: SYMBOL CHARACTER  
DATA IS DIFFERENT  
THAN DATA ELEMENT IN  
DECODED SYMBOL DATA  
BUFFER

FIG. 28



F I G. 29A1

85/161



FIG. 29A2

86/161

FIG. 29A3



87/161



FIG. 29A4

88/161



FIG. 29B

89/161



FIG. 29C

90/161

$$\left\{ \begin{array}{l} E_0 = \overline{(B1 + A_0)(C_3/C_{1-1})} \\ E_{IM} = E_{IPD} = E_{IAD} = \overline{(C_3/C_{1-2}) + B1} \\ E_L = \overline{[(C_3/C_{1-1}) + B1][B2]} \\ E_2 = \overline{(C_2/C_1)}(B1) \end{array} \right.$$

FIG. 29D

91/161



FIG. 30A1



FIG. 30A2



FIG. 30B



FIG. 30C



FIG. 30D



FIG. 30E



FIG. 30F1





FIG. 31A



FIG. 31B

101 / 161



FIG. 32A1



FIG. 32A2



FIG. 32B





FIG. 32D



FIG. 32E



FIG. 33A1



FIG. 33A2



FIG. 33B



FIG. 33C





FIG. 33E



FIG. 34A



FIG. 34B1



FIG. 34B2



FIG. 34C



FIG. 35A1



FIG. 35A2



FIG. 35B



FIG. 35C



FIG. 35D

122 / 161



F I G. 35E



FIG. 35F1



FIG. 35F2

125 / 161





FIG. 37

127 / 161



FIG. 38A



FIG. 38B



FIG. 38C

128/161



FIG. 39

129/161



FIG. 40A

FIG. 40B



FIG. 40C

FIG. 40D

$A_4=1$



FIG. 41A

130/161



FIG. 41B

$A_4=1$



FIG. 41C

131 / 161



FIG. 42A



FIG. 42B



FIG. 42C

132/161



FIG. 43A



792 FIG. 43B

FIG. 43C



FIG. 43D

FIG. 43 F



FIG. 43 E





FIG. 43G



FIG. 43A

135/161

Retracted configuration

793



FIG. 43 I

792

Projected Configuration

793



P16.43 J

792

136/161



FIG. 44 A1



FIG. 44 A2

137 / 161



F/G 45A1



F/G. 45A2

$E_0 = 1$

139/161

FIG. 45A3



FIG. 45A4



141/161



FIG. 45B



FIG.46A1



FIG 46A2



FIG. 46B

145/161



F16 46C1

146/161

7

THIRD CONTROL CIRCUIT  $C_3$  CONTINUES ACTIVATION OF LASER DIODE, SCANNING MOTOR, PHOTORECEIVING CIRCUIT, A/D CONVERSION CIRCUIT; DEACTIVATES SYMBOL DECODING MODULE; AND COMMENCES ACTIVATION DATA PACKET SYNTHESIS MODULE

W

UNDER  $C_3$  CONTROL, DATA PACKET SYNTHESIS MODULE CONSTRUCTS DATA PACKET CONSISTING OF SYMBOL CHARACTER DATA, TRANSMITTER NUMBER, DATA PACKET GROUP NUMBER, CHECK CHARACTER AND FRAMING CHARACTERS

X

IS IN-RANGE CONFIRMATION Signal  
 $A_5=1$  ?

NO

YES

ARE DATA PACKET GROUP(S) STORED IN DATA PACKET GROUP BUFFER ?

NO

Z

YES

$C_3$  Control Module Generates Enable  $E_{11}=1$  Signal  
Reloading Buffered Data Packet Group(s)  
into Data Packet Transmission Circuit

AA

Control module  $C_3$  Generates Enable  
Signal  $E_{10}=1$  loading Currently  
Synthesized Data packet Group into  
Data packet transmission circuit

BB

11

FIG. 46 C2

147/161



FIG. 46 C 3

148 [6]



FIG 46 C4



FIG. 47





FIG U7A3

152/161



153/161



FIG. 47A4

154 / 161



FIG. 47B

155/161

PDF DATA Packet  
Transmission via  
2-WAY RF WITH Automatic  
RP-Range Dependent  
Control  
(2-D Reading  
Mode)



FIG. 48A(



FIG. M2A2



FIG. 48B



Fig. 48c1

159/161

7

THIRD CONTROL CIRCUIT  $C_3$  CONTINUES ACTIVATION OF LASER DIODE, SCANNING MOTOR, PHOTORECEIVING CIRCUIT, A/D CONVERSION CIRCUIT; DEACTIVATES SYMBOL DECODING MODULE; AND COMMENCES ACTIVATION DATA PACKET SYNTHESIS MODULE

W

UNDER  $C_3$  CONTROL, DATA PACKET SYNTHESIS MODULE CONSTRUCTS DATA PACKET CONSISTING OF SYMBOL CHARACTER DATA, TRANSMITTER NUMBER, DATA PACKET GROUP NUMBER, CHECK CHARACTER AND FRAMING CHARACTERS

X

IS IN-RF RANGE  
CONFIRMATION Signal  
 $A_5=1$  ?

ND

YES

ARE  
DATA PACKET  
GROUP(S) STORED  
IN DATA PACKET  
GROUP BUFFER

NO

YES

$C_3$  Control Module Generates Enable Signal  $E_{11}=1$   
Reloading Buffered Data Packet Group B  
into Data Packet Transmission Circuit

AA

Control Module  $C_3$  Generates Enable  
Signal  $E_{12}=1$  loading Currently  
Synthesized Data packet Group into  
Data packet transmission circuit

BB

11

FIG. 48C2

160/161



FIG. 48C3

161 / 161

8

66

**C<sub>3</sub> CONTINUES ACTIVATION OF SCANNING CIRCUIT, PHOTO-RECEIVING CIRCUIT USING C<sub>3</sub>/C<sub>1</sub> OVERRIDE; DEACTIVATES SYMBOL DECODING MODULE USING E<sub>4</sub>; DEACTIVATES THE DATA PACKET SYNTHESIS MODULE, DATA STORAGE UNIT, AND DATA TRANSMISSION CIRCUIT USING E<sub>5</sub>, E<sub>6</sub> AND E<sub>7</sub>, RESPECTIVELY; AND DISABLES DATA TRANSMISSION STATE INDICATOR USING E<sub>8</sub>=0**

DOES  
THIRD CONTROL  
CIRCUIT C<sub>3</sub> CONTINUE  
TO RECEIVE CONTROL  
ACTIVATION SIGNAL A<sub>1</sub>=1  
INDICATING AN OBJECT  
IS PRESENT  
?

44

NO

1

YES

II

**CONTROL MODULE C<sub>3</sub> REACTIVATES BAR CODE PRESENCE  
DETECTION CIRCUIT USING C<sub>3</sub>/C<sub>2</sub> OVERRIDE, RESETS AND  
RESTARTS TIMER T<sub>4</sub>, 0 < T<sub>4</sub> < 3 sec. AND STARTS TIMER T<sub>3</sub>,  
0 < T<sub>3</sub> < 5 sec.**

9

FIG. 48C4