Práctico 8: Derivadas parciales y diferenciabilidad.

1. Calcular las derivadas parciales de cada una de las siguientes funciones f = f(x, y), especificando en cuáles puntos las derivadas existen.

$$ax^{\alpha} + by^{\beta} \qquad \frac{3x}{y} + \frac{4y}{x} \qquad x^{2}y^{3/2} \qquad \operatorname{arctan}(xy)$$
$$\log\left(x + \frac{y}{x^{2}}\right) \qquad e^{y}\operatorname{sen}(x) \qquad \operatorname{máx}\{|x|, |y|\} \qquad \operatorname{máx}\{x^{2}, y^{3}\}$$

2. Calcular las derivadas parciales de primer y segundo orden de las siguientes funciones f = f(x, y).

(a)
$$xy$$
 (b) $\log(xy)$ (c) $\sin(x^2 + y^2)$

- 3. Verificar que la función $u(x,t) = e^{-a^2k^2t}\sin(kx)$ satisface la ecuación del calor: $u_t = a^2u_{xx}$.
- 4. Estudiar la continuidad de cada función y la existencia de las derivadas direccionales respectivas.

(a)
$$f(x,y) = \begin{cases} (xy)/(\sqrt{x^2 + y^2}) & \text{si } (x,y) \neq (0,0) \\ a & \text{si } (x,y) = (0,0) \end{cases}$$

(b) $f(x,y) = \begin{cases} (e^{xy} - 1)/x & \text{si } x \neq 0 \\ y & \text{si } x = 0 \end{cases}$
(c) $f(x,y) = \begin{cases} x^3/y & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases}$
(d) $f(x,y) = \begin{cases} xy \sin \frac{1}{x} \cos \frac{1}{y} & \text{si } xy \neq 0 \\ a & \text{si } xy = 0 \end{cases}$
(e) $f(x,y) = \begin{cases} x^3 & \text{si } y \geq 1 \\ x^3y^2 & \text{si } y < 1 \end{cases}$

5. Consideremos $f: \mathbb{R}^2 \to \mathbb{R}$ tal que:

$$f(x,y) = \begin{cases} 1 & \text{si } 0 < y < x^2 \\ 0 & \text{en otro caso} \end{cases}$$

Probar que exiten todas las derivadas direccionales de f en (0,0), pero sin embargo f no es continua en (0,0). En otras palabras derivar respecto a cualquier dirección no garantiza la continuidad en el punto.

6. Representar gráficamente la siguiente función $f: \mathbb{R}^2 \to \mathbb{R}$ bosquejando las curvas de nivel.

$$f(x,y) = \begin{cases} 0 & \text{si } y \le x^2 \text{ o } 2x^2 \le y \\ |x| & \text{si } x^2 < y < 2x^2 \end{cases}$$

Demostrar que f es continua y que existen todas las derivadas direccionales en (0,0) y que, sin embargo, f no es diferenciable en dicho punto.

7. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ la función dada por

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{x} + e^{xy} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

Estudiar la continuidad y la diferenciabilidad de f en los puntos (0,0), (0,1) y (1,0), hallando, si existen, las derivadas parciales.

- 8. ¿Existe alguna función $f: \mathbb{R}^2 \to \mathbb{R}$ de clase C^2 tal que $f_x(x,y) = e^{x+y}$ y $f_v(x,y) = \cos(xy)$?
- 9. Sea $f: \mathbb{R}^2 \mapsto \mathbb{R}$ definida como

$$f(x,y) = (x^2 + y^2) \sin \frac{1}{x^2 + y^2} \text{ si } (x,y) \neq (0,0), \quad f(0,0) = 0$$

- a) Probar que existen derivadas parciales en todos los puntos y calcularlas.
- b) Probar que f es diferenciable.
- c) Probar que f no es de clase C^1 .
- 10. Sea $f: \mathbb{R}^2 \mapsto \mathbb{R}$ definida como $f(x,y) = x^3y$. Sean a = (0,0) y b = (1,2). Hallar ξ en el segmento [a,b] tal que $f(b) f(a) = df(\xi)(b-a)$.
- 11. Sean $f: V \subset \mathbb{R}^2 \to \mathbb{R}$ y $g: U \subset \mathbb{R}^2 \to V$, donde f es diferenciable y g esta definida por $g(\rho, \theta) = (\rho \cos(\theta), \rho \sin(\theta))$. Calcular $\frac{\partial f \circ g}{\partial \rho}$ y $\frac{\partial f \circ g}{\partial \theta}$
- 12. Se sabe que $f: \mathbb{R}^2 \to \mathbb{R}$ verifica $f_x(0,0) = 2$, $f_y(0,0) = -1$ y que f es diferenciable en el origen. Calcular $\frac{\partial f}{\partial v}(0,0)$ para v = (h,k) no nulo.
- 13. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ tal que se sabe lo siguiente:
 - $f(x,1) = x^3 + x^2, \forall x \neq 0$
 - $f(0,y) = y^2 2y + 1, \forall y \in \mathbb{R}$
 - $f(x, 1-x) = x, \forall x \neq 0$
 - *a*) Indique en qué puntos es posible hallar la derivada parcial respecto a *x* o respecto a *y*. En qué puntos es posible hallar el gradiente?
 - b) Calcular la derivada direccional en (0,1) respecto a v = (1,-1)
 - c) Indique en qué puntos se puede decir algo sobre la diferenciabilidad de f.
- 14. Se sabe que $f: \mathbb{R}^2 \to \mathbb{R}$ verifica f(x, x) = x, que f(0, y) = 0 para todo $x, y \in \mathbb{R}$ y que f es diferenciable en el origen. Calcular $f_x(0, 0)$.
- 15. Calcular la matriz Jacobiana en el punto a y el diferencial $df(a)(\Delta x, \Delta y)$ de las siguientes funciones:
 - a) $f(x,y) = e^{x+y} + 2\sin(2x-y)$, a = (0,0)
 - b) $f(x,y,z) = (e^{z+x+y}, x+y+2z), \quad a = (0,1,2)$
 - c) $f(x,y) = (e^{x+y}, \sin(2x-y), \log(1+y^2)), \quad a = (\pi,\pi)$
 - d) $f: \mathbb{R}^p \mapsto \mathbb{R}^q$, en $a \in \mathbb{R}^p$ fijo cualquiera; siendo $f(\mathbf{x}) = A \cdot \mathbf{x}$, donde A es una matriz $q \times p$ y \mathbf{x} se escribe como una matriz columna $p \times 1$.
 - e) $f(x,y) = \langle g(x,y), h(x,y) \rangle$ donde $g,h: \mathbb{R}^2 \to \mathbb{R}^2$ son funciones de clase C^1
- 16. Hallar, en cada caso, las matrices jacobianas de f, g, $f \circ g$ y $g \circ f$.
 - a) $f(u,v) = \left(\frac{12}{\log(u^2 + v^2)}, \arctan(u/v)\right), g(x,y) = (e^x \cos y, e^x \sin(y)).$
 - b) $f(u,v) = (u^2 v^2, 2uv), g(x,y) = (x\cos y, x\sin y).$
 - c) $f(u,v) = (e^u \cos v, e^u \sin v), g(x,y) = (\frac{x}{x^2+v^2}, \frac{-y}{x^2+y^2}).$
- 17. En cada caso hallar la ecuación del plano tangente a la gráfica de la función en el punto P.
 - $3x^2 + 4y^2$, P = (0, 1)
 - $2\cos(x-y) + 3\sin(x), P = (\pi, \pi/2)$
 - $2xy + e^{yx}x, P = (1, 1)$
- 18. Demostrar que todos los planos tangentes a la gráfica de la función f(x,y) = y h(y/x), en donde $h: \mathbb{R} \to \mathbb{R}$ es una función diferenciable, tienen un punto en común.

Ejercicios opcionales

- 1. Calcular en un punto genérico los planos tangentes a:
 - a) La Esfera
 - b) El Cono
 - c) El Cilindro
 - d) El Paraboloide
- 2. La ecuación de Van der Waals para n moles de un gas está dada por:

$$\left(P + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$

donde R es la constante universal del gas y a y b son constantes positivas características de un gas en particular.

Calcular $\frac{\partial T}{\partial V}$, $\frac{\partial T}{\partial P}$

3. Se muestran las curvas de nivel para una función f. Determine si las derivadas parciales tienen signo negativo o positivo en el punto J, asumiendo que no se anulan.

- 4. Demuestre que las siguientes funciones verifican la ecuación de la onda $u_{tt} = au_{xx}$
 - a) $u = \sin(kx)\cos(akt)$
 - b) $u = (x at)^6 + (x + at)^6$
 - c) $u = \frac{t}{a^2 t^2 x^2}$
- 5. *a*) Sea $T: \mathbb{R}^n \to \mathbb{R}$ una transformación lineal. Hallar $\partial_i T$ para i = 1, ..., n.
 - b) Sea A una matriz simétrica $n \times n$ y $Q: \mathbb{R}^n \to \mathbb{R}$ la función dada por $Q(x) = x^t A x$, esto es, $Q(x_1, ..., x_n) = \sum_{i,j=1}^n a_{ij} x_i x_j$, si $A = (a_{ij})_{i,j=1}^n$. Hallar $\partial_i Q$ para i = 1, ..., n.
 - c) Sea $T: \mathbb{R}^n \to \mathbb{R}^n$ una transformación lineal y $f: \mathbb{R}^n \to \mathbb{R}$ la función $f(x) = \langle x, T(x) \rangle$. Hallar la derivada direccional $\partial f/\partial u$ para todo versor $u \in \mathbb{R}^n$.

3