

Recap

- Global and Indian energy scenario
- Energy security
- Necessity of energy management

Energy Pyramid

RENEWABLE **ENERGY** Tier 3

When the system is modified to use efficiency, less renewable energy is needed

ENERGY EFFICIENCY Tier 2 ENERGY STAR

Purchasing and installing efficient equipment and processes

ENERGY CONSERVATION Tier 1 [B]

Largely based on behavioural & operational practices. Best return on investment.

Energy Management

Objective

The judicious and effective use of energy to maximize profits (minimize costs) and enhance competitive positions

Benefits

- > Reduce the greenhouse gases and improving air quality
- > Improving the national energy security index
- > Reduce the impact of brownouts or interruption in supplies

Energy Conservation

Oil, natural gas and electricity demand reductions from EU citizen actions based on the *Playing My Part* recommendations

IEA. CC BY 4.0.

Behavioural changes could immediately save 0.6 mb/d of oil, 17 bcm of gas and 30 TWh of electricity a year

Energy Efficiency - Often considered as an alternative fuel

EN 410 Energy

Energy Intensity

- Energy intensity is a measure that is often used to assess the energy efficiency of a particular economy
- Ratio of energy use to gross domestic product
- Low energy intensity is the desired goal
- Trying to decouple energy use and economic output to enhance that quality

How will affect our life?

Flow of Energy

- Treatment Sulfur
- Washing Sulfur, Ash and Slag
- Refining Extract different types of oil
- Enrichment Increasing the percentage
 of Uranium-235

Flow of Energy

Energy Audit

"The verification, monitoring and analysis of use of energy including submission of technical report containing recommendations for improving energy efficiency with cost benefit analysis and an action plan to reduce energy consumption"

Energy Conservation Act 2001

- ✓ A study of a plant or facility to determine how and where energy is used and identify methods for energy savings
- ✓ The key to a systematic approach for decision-making in the area of energy management
- ✓ Translation of energy conservation ideas into realities
- ✓ Energy, Material and Labor highest potential for cost reduction and thereby increasing the profit

Types of Energy Audit

- Energy audit type depends on
 - > Function and type of industry
 - > Depth to which final audit is needed
 - ➤ Potential and magnitude of cost reduction desired
- Energy audit can be classified into
 - ➤ Preliminary audit
 - > Targeted audit
 - > Detailed audit

Preliminary Energy Audit

- Set up a baseline / reference for the energy consumption from past data and identify the scope for energy savings
- Identify immediate (especially no-/low-cost) improvements/ savings
- Identify areas for more detailed study/ measurement

Preliminary Energy Audit Outcomes

No cost

- Arresting leaks (steam, compressed air)
- Controlling excess air by adjusting fan damper

Low cost

- > Shutting equipment when not needed
- Replacement with appropriate items/ retrofit like lamps,motion sensors

Areas for detailed audit

- Upgrading or installing new insulation or equipment (e.g., heat pump based heating, High eff. heat exchanger)
- ➤ Modifying the process
- > Scheduling of operation
- Waste heat recovery

Energy use analysis

	Electricity, kWh	Fuel, kg	LPG, kg	Diesel, kg	Total, MWh
January	2943374	93919	2498	1650	4070.888
February	2453916	109077	2703	1650	3757.738
March	3054064	129540	3700	1650	4605.024
April	2914539	117146	4064	1100	4321.558
May	3082023	122894	4139	0	4542.829
June	2852936	130902	4446	0	4409.404
July	3313587	128429	4120	880	4848.012
August	2985654	117961	3747	0	4384.962
September	3047247	123566	4707	0	4522.951
August	2958361	128500	5024	770	4503.75
November	3024284	129301	4996	1650	4588.925
December	3079456	148502	4642	1650	4859.656
Total	35709441	1479737	48786	11000	53415.7

Energy use in a manufacturing plant

Energy or Cost or Emission?

Energy Use and Distribution

Targeted Energy Audit

- Often results from preliminary results
- Detail survey on the area of changes or modifications (e.g. lighting)
- Recommendations reading the outcome in savings (how much savings in energy and cost for the given number and type)

Detailed Energy Audit

- A comprehensive audit provides a detailed energy project implementation plan
- Offers the most accurate estimate of energy savings and cost
- Considers the interactive effects of all projects, accounts for the energy use of all major equipment
- Includes detailed energy cost saving calculations and project cost
- Steps for conducting detailed audit
 - ➤ Phase I pre audit phase
 - ➤ Phase II audit phase
 - ➤ Phase III post audit phase

Pre Audit Phase

Step 1	Plan and Organise	Establish/organize a Energy audit team
	Walk through Audit	Organize Instruments and time frame
	• Informal Interview with	Macro data collection (suitable to type of industry.)
	Energy Manager, Production / Plant Manager	Familiarization with process / plant activities
		• First hand observation and Assessment of current level of operation and practices
Step 2	• Introductory Meeting with	To built up cooperation and rapport
	all divisional heads and persons concerned with energy management (1-2 hrs.)	Orientation, awareness creation
		Issue questionnaire tailored for each department

Audit Phase

Step 3	Primary data gathering,	Historic data collection and analysis for setting up
	Process Flow Diagram and	Baseline energy consumption
	Energy Utility Diagram	• All service utilities system diagram (e.g. Single line power distribution diagram, water, and compressed air and steam distribution).
		Prepare process flow charts
		Design, operating data and schedule of operation
		• Annual Energy Bill and energy consumption
		pattern
		(Refer manual, logbook, name plate etc.)
Step 4	Conduct survey and	Measurements:
	monitoring	Motor survey, Insulation, lighting survey etc. with
		portable instruments for operating data. Confirm
		and compare operating data with design data.
Step 5	Conduct of detailed trials /	Trials / Tests
	tests for selected major	- 24 hours power monitoring (MD, PF, kWH etc.).
	energy equipment	- Load variations trends in pumps, fan compressors
		etc.
		- Boiler Efficiency trials for (4-8 hours)
		- Furnace Efficiency trials
		- Equipments Performance tests etc

Audit Phase

Step 6	Analysis of energy use	Energy and Material balance	
		Energy loss/waste analysis	
Step 7	Identification and	Conceive, develop and refine ideas	
	development of Energy	Review ideas suggested by unit personnel	
	Conservation (ENCON) opportunities	Review ideas suggested in previous energy audit report if any	
	FF 52 52	 Use brainstorming and value analysis techniques 	
		Contact vendors for new / efficient technology	
Step 8	Cost benefit analysis	Assess technical feasibility, economic viability and prioritization of ENCON options for implementation	
		Select the most promising projects	
		Prioritise by low, medium, long term measures	
Step 9	Reporting and	Documentation, draft Report Presentation to the top	
	Presentation to the	Management.	
	Top Management	Final report preparation on feedback from unit	

Post Audit Phase

Step 10	Implementation and Follow-up	Implementation of ENCON recommendation measures and Monitor the performance	
		Action plan, schedule for implementation	
		Monitoring and periodic review	

Energy Audit Report

DETAILED ENERGY AUDIT

TABLE OF CONTENTS

- i. Acknowledgement
- ii. Executive Summary

Energy Audit Options at a glance & Recommendations

1.0 Introduction about the plant

- 1.1 General Plant details and descriptions
- 1.2 Energy Audit Team
- 1.3 Component of production cost (Raw materials, energy, chemicals, manpower, overhead, others)
- 1.4 Major Energy use and Areas

2.0 Production Process Description

- 2.1 Brief description of manufacturing process
- 2.2 Process flow diagram and Major Unit operations
- 2.3 Major Raw material Inputs, Quantity and Costs

3.0 Energy and Utility System Description

- 3.1 List of Utilities
- 3.2 Brief Description of each utility
 - 3.2.1 Electricity
 - 3.2.2 Steam
 - 3.2.3 Water
 - 3.2.4 Compressed air
 - 3.2.5 Chilled water
 - 3.2.6 Cooling water

4.0 Detailed Process flow diagram and Energy& Material balance

- 4.1 Flow chart showing flow rate, temperature, pressures of all inputoutput streams
- 4,2 Water balance for entire industry

5.0 Energy efficiency in utility and process systems

- 5.1 Specific Energy consumption
- 5.2 Boiler efficiency assessment
- 5.3 Thermic Fluid Heater performance assessment
- 5.4 Furnace efficiency Analysis
- 5.5 Cooling water system performance assessment
- 5,6 DG set performance assessment
- 5.7 Refrigeration system performance
- 5.8 Compressed air system performance
- 5.9 Electric motor load analysis
- 5.10 Lighting system

6.0 Energy Conservation Options & Recommendations

- 6.1 List of options in terms of No cost/ Low Cost, Medium cost and high investment Cost, Annual Energy & Cost savings, and payback
- 6.2 Implementation plan for energy saving measures/Projects

ANNEXURE

- A1. List of Energy Audit Worksheets
- A2. List of instruments
- A3. List of Vendors and Other Technical details

Energy conservation opportunities

Short-term Schemes

Usually involves changes in operating practices with little or no investments

- Tightening operation, control and improved house keeping
- Use of steam (check for leaks)
- Electrical power (avoid the waste)

Medium-term Schemes

Low cost modifications and improvements

- **►**Insulation
- ➤ Power factor
- ➤ Equipment operational modifications and improvements

Long-term Schemes

Modifications involving high capital investments

- > Equipment upgradation
- Heat recovery
- Process modifications

Selection of Long-term Measures

Priority	Economical Feasibility	Technical Feasibility	Risk / Feasibility
A - Good	Well defined and attractive	Existing technology adequate	No Risk/ Highly feasible
B -May be	Well defined and only marginally acceptable	Existing technology may be updated, lack of confirmation	Minor operating risk/May be feasible
C -Held	Poorly defined and marginally unacceptable	Existing technology is inadequate	Doubtful
D -No	Clearly not attractive	Need major breakthrough	Not feasible

- A Attractive
- B and C − For fixed target

Equipment Data Collection

- Consumption of fuel, steam, electricity, compressed air, cooling water, chilled water.....
- Energy costs
- Quantity of raw materials, intermediate and final products as well as waste products
- Capacity utilization
- Efficiency trends of process, equipment
- It is important to plan additional data gathering carefully (at least for 3 years)

.....Many more.....

Utility Data Collection – E.g. Steam

At each process / stage of operation

- Boiler capacities
- > Steam conditions
- Normal operating load (T/h)
- ➤ Maximum load (T/h)
- > Steam requirements at different pressures
- ➤ Captive generation Yes/No (if yes provide ratings, fuel, average output)
- Cogeneration Yes/No (if yes provide ratings, fuel, average output)

References

- https://www.123rf.com/clipart-vector/energy_conservation_charts.html
- https://ourworldindata.org/energy-definitions
- Accelerating Improvements in the Energy Efficiency of Room Air Conditioners (RACs) in India: Potential, Cost-Benefit, and Policies (Interim Assessment) by Nikit Abhyankar, Nihar Shah, Won Young Park and Amol Phadke
- Energy Efficiency: Concepts and Calculations by Daniel M. Martínez, Ben W.
 Ebenhack and Travis P. Wagner