Inteligență artificială Laborator 4

Clasificatorul Naive Bayes

În acest laborator vom clasifica cifrele scrise de mână din subsetul MNIST (introdus în laboratorul precedent) folosind clasificatorul Naive Bayes. Revedeți slide-urile de la curs (cursul 3) pentru a vă reaminti în detaliu în ce constă acest model.

Scopul acestui clasificator este de a clasifica o imagine X ce conține o cifră într-una din cele 10 clase din mulțimea $\{0, 1, ..., 9\}$. Imaginea X o reprezentăm ca un vector cu 784 de componente $X = (X_1, X_2, ..., X_{784})$, unde fiecare componentă X_j reprezintă intensitatea pixelului de la poziția j din imaginea X. Pe baza analizei intensității pixelilor clasificatorul clasifică imaginea X într-una din cele 10 clase.

Regula de clasificare pentru clasificatorul Naïve Bayes este de a alege clasa care maximizează probabilitatea a-posteriori. Pe baza calculelor (revedeți materialul de la curs) ajungem la formulele:

$$c^* = \underset{i=0,1,\dots,9}{\operatorname{argmax}} \left(\sum_{j=1}^{n=784} \log(P(X_j = x_j \mid c = i)) + \log(P(c = i)) \right)$$

unde:

- $P(X_j = x_j | c = i)$ reprezintă probabilitatea ca, pentru o imagine din clasa i, intensitatea X_j a pixelului de la poziția j să ia valoarea x_i ;
- P(c=i) reprezintă probabilitatea a-priori (fără a observa niciun pixel al imaginii X) ca imaginea X să conțină cifra i.

Întrucât estimarea probabilității $P(X_j = x_j | c = i)$ nu poate fi realizată robust din datele de antrenare (din cauza lipsei unui număr mare de date de antrenare) vom aproxima această probabilitate cu probabilitatea ca intensitatea X_j să ia o valoare dintr-un anumit interval $[a_k, b_k]$ din mulțimea de valori $\{0, 1, ..., 255\}$, notată cu $P(a_k \le X_j \le b_k | c = i)$. O posibilitate este de a partiționa $\{0, 1, ..., 255\}$ într-un număr de 4 părți egale, obținând intervalele [0, 63], [64, 127], [128, 191], [192, 255]. Astfel probabilitatea $P(X_j = 25 | c = i)$ va fi aproximată cu $P(0 \le X_j \le 63 | c = i)$ întrucât 25 se află în intervalul [0, 63] iar probabilitatea $P(X_j = 154 | c = i)$ va fi aproximată cu $P(128 \le X_j \le 191 | c = i)$ întrucât 154 se află în intervalul [128, 191]. Practic mulțimea de 256 de valori posibile $\{0, 1, 2, ..., 255\}$ este redusă numai la 4 valori posibile, corespunzătoare celor 4 intervale.

Calculul probabilităților $P(a_k \le X_j \le b_k | c = i)$ pentru $i \in \{0, 1, ..., 9\}$, $j \in \{1, ..., 784\}$, $\}$, $k \in \{1, ..., 4\}$ înseamnă de fapt calculul unui matrice M cu elemente de forma $M_{ijk} = P(a_k \le X_j \le b_k | c = i)$. Matricea M are trei dimensiuni: indicele i ce se referă la clasa i reprezintă numărul liniei i (în total sunt 10 linii = 10 clase), indicele j ce se referă la componenta (valoarea pixelului) j a imaginii X reprezintă numărul coloanei j (în total sunt 784 de coloane = 784 de pixeli în imaginea X), indicele k ce se referă la intervalul $[a_k, b_k]$ reprezintă adâncimea pe dimensiunea a treia a matricei (în total sunt 4 intervale). Pentru fiecare linie i și coloană j avem că: $M_{ij1} + M_{ij2} + M_{ij3} + M_{ij4} = 1$.

Codul de la care porniți exemplifică pentru clasa i = 0 și poziția j = 370 calculul vectorului de 4 probabilitati $M_{ij} = (M_{ij1}, M_{ij2}, M_{ij3}, M_{ij4})$. Acest lucru trebuie să-l realizați și voi pentru toate perechile (i, j) în vederea calculării matricei M. Apoi aveți de implementat regula de clasificare de mai sus

Inteligență artificială Laborator 4

pentru clasificatorul Naïve Bayes prin care alegeți clasa cu maximul probabilității a-posteriori. Pe baza acestei reguli de clasificare veți clasifica exemplele de testare și calcula apoi matricea de confuzie.

Realizați următoarele:

- 1. Scrieți o funcție care calculează matricea M din datele de antrenare. Puteți să vă verificați că ați calculat corect pe baza exemplului pentru i=0, j=170 si probabilitățile calculate. Aveți grija să adunați o constantă mica 0.00000001 = 10e-9 la elementele matricei M astfel încât să nu aveți probabilități egale cu 0 în matricea M.
- 2. Scrieti o funcție care implementează regula de clasificare pentru clasificatorul naive Bayes pentru un exemplu de testare.
- 3. Folosiți regula de clasificare implementată a clasificatorului naive Bayes și clasificați exemplele de testare. Calculati matricea de confuzie.
- 4. Care sunt perechile de exemple de testare cu cele mai multe misclasificari in matricea de confuzie. Plotati toate aceste exemple misclasificate.

Funcții numpy utile în rezolvarea laboratorului:

```
x = np.array([1, 2, 3, 4, 3, 4])
np.argmin(x) # returneaza pozitia elementului minim
np.argmax(x) # returneaza pozitia elementului maxim
np.where(x == 3) # returneaza indecsi care satisfac conditia
```