



## Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at <http://about.jstor.org/participate-jstor/individuals/early-journal-content>.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

February 2, 1837.

FRANCIS BAILY, Esq., V.P. and Treasurer, in the Chair.

"Observations on the Electro-chemical Influence of long-continued Electric Currents of Low Tension." By G. Golding Bird, Esq., F.L.S., F.G.S., Lecturer on Experimental Philosophy at Guy's Hospital. Communicated by Thomas Bell, Esq., F.R.S.

The author, after observing that the brilliant discoveries in electro-chemistry obtained by Sir Humphry Davy were effected by the employment of voltaic currents of high intensity, elicited by means of large batteries, adverts to the labours of M. Becquerel, to whom we are indebted for the knowledge of the chemical agency of feeble currents in reducing several refractory oxides to the metallic state : and also to those of Dr. E. Davy, Bucholtz, and Professor Faraday in effecting decompositions of other substances by similar means. In prosecuting this branch of inquiry, the author employed an apparatus analogous to that of Professor Daniell, for obtaining an equal and continuous current of low intensity from a single pair of plates : the metallic solution, in which a copper-plate was immersed, being contained in a glass tube, closed at the bottom by a diaphragm of plaster of Paris, and itself plunged in a weak solution of brine contained in a larger vessel, in which a plate of zinc was immersed ; and a communication being established between the two metallic plates by connecting wires. By the feeble, but continuous current thus elicited, sulphate of copper is found to be slowly decomposed, affording beautiful crystals of metallic copper. Iron, tin, zinc, bismuth, antimony, lead, and silver may, in like manner, be reduced, by a similar and slightly modified process ; in general appearing with metallic lustre, and in a crystalline form, and presenting a remarkable contrast in their appearance to the irregular, soft, and spongy masses obtained from the same solutions by means of large batteries. The crystals of copper rival in hardness and malleability the finest specimens of native copper, which they much resemble in appearance. The crystallization of bismuth, lead, and silver, by this process, is very beautiful ; that of bismuth being lamellar, of a lustre approaching to that of iron, but with the reddish tint peculiar to the former metal. Silver may thus be procured of the whiteness of snow, and usually in the form of needles. Some metals, such as nickel, which, when acted on by currents from large batteries, are deposited from their solutions as oxides only, are obtained, by means of the apparatus used by the author, in a brilliant metallic form. He farther found that he could in this way reduce even the more refractory metallic oxides, such as silica, which resist the action of powerful batteries, and which M. Becquerel could only obtain in alloy with iron. By a slight modification of the apparatus he was enabled to form amalgams both of potassium and of sodium with mercury, by the decomposition of solutions of chlorides of those bases ; and in like manner ammonium was easily reduced, when in contact with mercury, by the influence of a feeble voltaic current. In this last

experiment it was found that an interruption to the continuance of the current, even for a few seconds, is sufficient to destroy the whole of the product which had been the result of the previous long-continued action ; the spongy ammoniacal amalgam being instantly decomposed, and the ammonia formed being dissolved in the surrounding fluid.

---

February 9, 1837.

FRANCIS BAILY, Esq., V.P. and Treasurer, in the Chair.

Edmund Halswell, Esq., who, at the last Anniversary, had ceased to be a Fellow, from the non-payment of his annual contribution, was, at this meeting, readmitted by ballot into the Society, agreeably to the provision of the statutes.

A paper was read, in part, entitled, "On the Elementary Structure of Muscular Fibre of Animal and Organic Life." By Frederick Skey, Esq., Assistant Surgeon to St. Bartholomew's Hospital. Communicated by John Bostock, M.D., F.R.S.

---

February 16, 1837.

The Right Honourable the EARL OF BURLINGTON, V.P., in the Chair.

The reading of a paper entitled, "On the Elementary Structure of Muscular Fibre of Animal and Organic Life." By Frederick Skey, Esq., Assistant Surgeon to St. Bartholomew's Hospital. Communicated by John Bostock, M.D., F.R.S., was resumed and concluded.

The author concludes, from his microscopic examinations of the structure of muscular fibres, that those subservient to the functions of animal life have, in man, an averagediameter of one 400dth of an inch, and are surrounded by transverse circular striae varying in thickness, and in the number contained in a given space. He describes these striae as constituted by actual elevations on the surface of the fibre, with intermediate depressions, considerably narrower than the diameter of a globule of the blood. Each of these muscular fibres, of which the diameter is one 400dth of an inch, is divisible into bands or fibrillæ, each of which is again subdivisible into about one hundred tubular filaments, arranged parallel to one another, in a longitudinal direction, around the axis of the tubular fibre which they compose, and which contains in its centre a soluble gluten. The partial separation of the fibrillæ gives rise to the appearance of broken or interrupted circular striae, which are occasionally seen. The diameter of each filament is one 16,000dth of an inch, or about a third part of that of a globule of the blood. On the other hand, the muscles of organic life are composed, not of fibres similar to those above described, but of filaments only ; these filaments being interwoven with each other in irregularly disposed lines of various thickness ; having for the most part a longitudinal direction, but forming a kind of untraceable network. They are readily distinguishable from teadinous fibres, by the