ECN 7060, cours 11

William McCausland

2020-11-18

Hypothèses sur un paramètre $\theta \in \Theta$

- ▶ Deux hypothèses sur θ :
 - ▶ hypothèse nulle H_0 , $\theta \in \Theta_0$
 - ▶ hypothèse alternative H_1 , $\theta \in \Theta_0^c$
- ► Notes :
 - Les hypothèses viennent d'une question scientifique d'intérêt.
 - Il n'y a rien ici de classique ou de bayésien.
 - La spécification de Θ₀ devrait précèder la recherche d'un test et l'évaluation d'un test.
 - Il y a une asymmétrie qui n'est pas explicite ici.
 - L'asymétrie est une question d'erreur : on favorise le control d'un type d'erreur.

Tests

- Deux décisions (même notation pour les actions)
 - $ightharpoonup a_0$, ne pas rejeter H_0
 - \triangleright a_1 , rejeter H_0
- Deux régions de l'espace échantillonal :
 - région critique (ou de rejet) $R \subseteq \mathcal{X}$
 - ▶ région de non-rejet R^c
- Notes :
 - ▶ Une règle de décision est un δ : $\mathcal{X} \to \{a_0, a_1\}$
 - $R = \{x : \delta(x) = a_1\}, R^c = \{x : \delta(x) = a_0\}.$
 - ▶ réduction de dimension, comme dans le cas d'estimation ponctuelle : il y a souvent une statistique W(X) scalaire tel que R ou R^c prend la forme $\{x \colon W(x) \in [a,b]\}$, des fois avec $a = -\infty$ ou $b = \infty$.
 - ▶ attention : quand W(X) est un estimateur de θ , il est facile de confondre une hypothèse avec une région $(R \text{ ou } R^c)$.

Optimalité par fonction de perte

Une fonction de perte assez générale :

$$L(\theta, a_0) = \begin{cases} 0 & \theta \in \Theta_0 \\ c_{II} & \theta \in \Theta_0^c \end{cases}$$
$$L(\theta, a_1) = \begin{cases} c_I & \theta \in \Theta_0 \\ 0 & \theta \in \Theta_0^c \end{cases}$$

Notes :

- c_I est le coût d'une erreur du type I, c_{II} le coût d'une erreur du type II
- Avec cette généralité, on peut briser la symétrie des deux hypothèses : choisir $c_I \neq c_{II}$.

Les fonctions de risque et de puissance

▶ Le risque $R(\theta, \delta) = E_{\theta}[L(\theta, \delta(X))]$ est

$$R(\theta, \delta) = \begin{cases} 0 \cdot P_{\theta}(\delta(X) = a_0) + c_I \cdot P_{\theta}(\delta(X) = a_1), & \theta \in \Theta_0, \\ c_{II} \cdot P_{\theta}(\delta(X) = a_0) + 0 \cdot P_{\theta}(\delta(X) = a_1), & \theta \in \Theta_0^c. \end{cases}$$

Cela motive la définition de la fonction de puissance :

$$\beta(\theta) \equiv P_{\theta}(X \in R) = P_{\theta}(\delta(X) = a_1)$$

On peut écrire tout court

$$R(\theta, \delta) = \begin{cases} c_I \beta(\theta), & \theta \in \Theta_0, \\ c_{II}(1 - \beta(\theta)), & \theta \in \Theta_0^c \end{cases}$$

Rappel : c'est une exercise ex ante.

Risque de Bayes

- ▶ Rappel : $r(\pi, \delta) = \int R(\theta, \delta)\pi(\theta) d\theta = E[E[L(\theta, \delta(X))|\theta]] = E[L(\theta, \delta(X))] = E[E[L(\theta, \delta(X))|X]].$
- ▶ Pour un échantillon x observé, la perte espérée a posteriori est

$$E[L(\theta, \delta(X))|x]$$

$$= \begin{cases} 0 \cdot P[\theta \in \Theta_0|x] + c_{II} \cdot P[\theta \in \Theta_0^c|x], & \delta(x) = a_0 \\ c_I \cdot P[\theta \in \Theta_0|x] + 0 \cdot P[\theta \in \Theta_0^c|x], & \delta(x) = a_1 \end{cases}$$

La solution $\delta(x)$ qui minimise la perte *a posteriori* est

$$\delta(x) = \begin{cases} a_0, & \frac{c_l}{c_{ll}} \frac{P[\theta \in \Theta_0 | x]}{P[\theta \in \Theta_0^c | x]} \ge 1, \\ a_1, & \text{autrement.} \end{cases}$$

- ► Notes :
 - ► C'est une exercise ex post.
 - ▶ La distinction entre H_0 et H_1 est seulement en termes de c_{II}/c_I .

Intuition Neyman Pearson I

- ▶ Supposons qu'il y a deux valeurs possibles de θ : θ_0 et θ_1 .
- ▶ On divise \mathcal{X} en deux : R où $\delta(x) = a_1$ et R^c où $\delta(x) = a_0$.
- ▶ On choisit R pour maximiser $p(R|\theta_1)$ sous la contrainte $p(R|\theta_0) \le c$.
- ▶ Une fonction de Lagrange pour ce problème :

$$P[R|\theta_1] - \lambda(P[R|\theta_0] - c).$$

▶ Pour $x_2 \in \mathcal{X}$ à la frontière entre R optimal et R^c et un voisinage infinitessimal dR_2 autour de x_2 ,

$$P[R + dR_2|\theta_1] - P[R|\theta_1] - \lambda(P[R + dR_2|\theta_0] - P[R|\theta_0]) = 0.$$

ou

$$p(x_2|\theta_1) - \lambda p(x_2|\theta_0) = 0.$$

Intuition Neyman Pearson II

▶ De la diapo précédente :

$$\frac{p(x_2|\theta_1)}{p(x_2|\theta_0)} = \lambda.$$

▶ Pour $x_1 \in \mathcal{X}$ à l'intérieure de R,

$$\frac{p(x_1|\theta_1)}{p(x_1|\theta_0)} > \lambda.$$

▶ Pour $x_3 \in \mathcal{X}$ à l'intérieure de R^c ,

$$\frac{p(x_3|\theta_1)}{p(x_3|\theta_0)} < \lambda.$$

Illustration pour l'intuition Neyman Pearson

ROC

Exemple récurrent Bernoulli

- Rappel :
 - 1. $X_1,\ldots,X_n\sim\operatorname{iid}\operatorname{Bn}(\theta),\ \theta\in[0,1].$
 - 2. $L(\theta, x) = \theta^r (1 \theta)^{(n-r)}$, où r est le nombre de uns.
 - 3. $\hat{\theta}_{\rm EMV} = \hat{\theta} = r/n$.
- ► Considérons les hypothèses $H_0: \theta \ge 1/2$ et $H_1: \theta < 1/2$ ► $\Theta_0 = [1/2, 1], \ \Theta = [0, 1], \ \Theta_0^c = [0, 1/2)$
- ► Calculer le rapport des vraisemblances

$$\sup_{\theta \in \Theta_0} L(\theta|x) = \begin{cases} L(\hat{\theta}|x) & \hat{\theta} \ge 1/2\\ L(\frac{1}{2}|x) = \left(\frac{1}{2}\right)^n & \hat{\theta} < 1/2 \end{cases}$$

$$\sup_{\theta \in \Theta} L(\theta|x) = L(\hat{\theta}|x)$$

$$\lambda(x) = \begin{cases} 1, & r \ge n/2,\\ \frac{(n/2)^n}{r(x)^{n-1}}, & r < n/2. \end{cases}$$

▶ Une fonction de la statistique suffisante. En général, on peut utiliser $f(t|\theta)$ directement, obtenir le même résultat.

Les valeures de $\lambda(x)$ pour n = 12

r	$\lambda(x)$	$P_{ heta}(R \leq r)$
0	0.000244	$(1-\theta)^n$
1	0.007629	$(1-\theta)^n + n\theta(1-\theta)^{n-1}$
2	0.054420	$(1-\theta)^n + n\theta(1-\theta)^{n-1} + \binom{n}{2}\theta^2(1-\theta)^{n-2}$
3	0.208098	
4	0.506822	
5	0.845821	
6	1	
12	1	1

La forme d'un LRT

La forme en général :

$$\left\{x \in \mathcal{X} \colon \lambda(x) \equiv \frac{\sup_{\theta \in \Theta_0} L(\theta|x)}{\sup_{\theta \in \Theta} L(\theta|x)} \le c\right\}$$

- ► Notes :
 - attrait intuitive
 - réduction de dimension
- $c \in [0,1]$ à spécifier
- ▶ Ici, la forme d'un LRT est

$$\{x \in \mathcal{X}: \sum_{i} x_i \le r\}, \quad r = 0, 1, 2, 3, 4, 5, 12$$

Quelques fonctions de puissance $\beta_r(\theta)$

Soit $\beta_r(\theta)$ la fonction de puissance pour la région critique $\{x \colon \sum_i x_i \le r\}$

```
theta = seq(0, 1, by=0.01); n=12
beta_0 = pbinom(0, n, theta) # R = {r <= 0}
beta_1 = pbinom(1, n, theta) # R = {r <= 0}
beta_2 = pbinom(2, n, theta) # R = {r <= 2}
beta_3 = pbinom(3, n, theta)
beta_4 = pbinom(4, n, theta)
beta_5 = pbinom(5, n, theta)
beta_12 = pbinom(12, n, theta)</pre>
```

Graphique des fonctions de puissance

```
plot(theta, beta_0, type='l'); lines(theta, beta_1)
lines(theta, beta_2); lines(theta, beta_3)
lines(theta, beta_4); lines(theta, beta_5); lines(theta, beta_5);
```


Exemple, même modèle, hypothèse ponctuelle

- ▶ Considérons les hypothèses $H_0: \theta = 1/2$ et $H_1: \theta \neq 1/2$
- ▶ Ici, la LRT $\lambda(x)$ est

$$\lambda(x) = \frac{(n/2)^n}{r^r(n-r)^{n-r}}.$$

Les valeures de $\lambda(x)$ pour n=12

	$r \lambda(x)$
0	0.000244140
1	0.0076294893
2	0.0544195584
3	0.208098359
4	0.5068216324
5	0.845821465
6	1.0000000000
7	0.8458214659
8	0.5068216324
9	0.208098359
10	0.0544195584
11	0.007629489
12	0.000244140

Quelques fonctions de puissance $\beta_r(\theta)$

Soit $\beta_c(\theta)$ la fonction de puissance pour la région critique $\{x: |\sum_i x_i - n/2| \ge c\}$

```
theta = seq(0, 1, by=0.01); n=12
\# R = \{0, 12\}
beta_6 = pbinom(0, n, theta) + pbinom(0, n, 1-theta)
\# R = \{0.1.11.12\}
beta 5 = pbinom(1, n, theta) + pbinom(1, n, 1-theta)
beta 4 = pbinom(2, n, theta) + pbinom(2, n, 1-theta)
beta 3 = pbinom(3, n, theta) + pbinom(3, n, 1-theta)
beta 2 = pbinom(4, n, theta) + pbinom(4, n, 1-theta)
\# R = \{0,1,2,3,4,5,7,8,9,10,11,12\}
beta_1 = pbinom(5, n, theta) + pbinom(5, n, 1-theta)
```

Graphique des fonctions de puissance

```
plot(theta, beta_6, type='l'); lines(theta, beta_5)
lines(theta, beta_4); lines(theta, beta_3)
lines(theta, beta_2); lines(theta, beta_1)
```


La probabilité *a posteriori* $P(\theta \ge 1/2|x)$, r = 4

- ▶ Soit n = 12, $\theta \sim \text{Be}(\alpha, \beta)$, où $\alpha = 1$, $\beta = 1$.
- ▶ Si on observe (mettons) r = 4, $\theta | x \sim \text{Be}(5,9)$
- $P(\theta \ge 1/2 | r(x) = 4) = 1 F_{\text{Be}(5,9)}(1/2) = 0.1334229.$

La probabilité *a posteriori* $P(\theta \ge 1/2|x)$, plusieurs r

 $\frac{P[\theta \in \Omega_0 || x]}{0.0001220703} \\
0.0017089844 \\
0.0112304688$

- ▶ Soit n = 12, $\alpha = 1$, $\beta = 1$, $\Omega_0 = [1/2, 1]$
- ► La probabilité *a posterior* dépend du *r* observé :

3	0.0461425781
4	0.1334228516
5	0.2905273437
6	0.5000000000
7	0.7094726563
8	0.8665771484
9	0.9538574219
10	0.9887695312
11	0.9982910156
12	0.9998779297

Test d'une hypothèse ponctuelle, une approche bayésienne

Un modèle composé, où le modèle M, le paramètre θ et les données sont aléatoires :

$$\begin{split} f(M,\theta,x) &= \Pr[M = H_0] 1_{\{H_0\}}(M) \delta_{1/2}(\theta) (1/2)^n \\ &+ \Pr[M = H_1] 1_{\{H_1\}}(m) f_{\mathrm{Be}}(\theta;\alpha,\beta) \theta^r (1-\theta)^{n-r}. \end{split}$$

Après l'intégration de x,

$$f(M,x) = \Pr[M = H_0]1_{\{H_0\}}(M)f_0(x) + \Pr[M = H_1]1_{\{H_1\}}(M)f_1(x),$$

οù

$$f_0(x) = (1/2)^n, \quad f_1(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+r)\Gamma(\beta+n-r)}{\Gamma(\alpha+\beta+n)}.$$

(cont.)

Les probabilités posterieures :

$$Pr[M = H_0|x] = \frac{Pr[M = H_0]f_0(x)}{Pr[M = H_0]f_0(x) + Pr[M = H_1]f_1(x)}$$
$$Pr[M = H_1|x] = \frac{Pr[M = H_1]f_1(x)}{Pr[M = H_0]f_0(x) + Pr[M = H_1]f_1(x)}$$

Le rapport de chances (rapport des cotes) postérieur :

$$\frac{\Pr[M = H_0|x]}{\Pr[M = H_1|x]} = \frac{\Pr[M = H_0]}{\Pr[M = H_1]} \frac{f_0(x)}{f_1(x)}$$

La décision optimale :

$$\delta(x) = \begin{cases} a_0 & \frac{c_I}{c_H} \frac{\Pr[M=H_0]}{\Pr[M=H_1]} \frac{f_0(x)}{f_1(x)} \ge 1, \\ a_1 & \text{autrement.} \end{cases}$$

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE)

FREQUENTIST STATISTICIAN: THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS = 0.027. SINCE P<0.05, I CONCLUDE THAT THE SUN HAS EXPLODED.

