

What is a human genome?

Simply the sum total of an organism's DNA

~ 6.4 billion characters (A,T,G,C) in a human genome

Repeating sequences in the genome

ACASTCATCSACTCSCCTCTSCCSTATATATAGCGCTCTCTCTTTTTTTTATATAGAGAGCT gggtatcagatcgcatactgatcgttgtacgcgatgcaacgctgcattgatgaaaa **ATCAGACTGCTACGACGATCGATTTCTCTGACATGTGAATATGGTCGCGCGCTATGCTA** CCCGCATATACGTATCGACATGTCTGCGCCGCGATATAATATCCAGACTCTGCTGACATAACG **ATATACTACGATGACCGATGATGTAGACTAGCTACAGACGCACTGAAGAGCGCGCTCTATACG ATCTATATCTGCATGCTACGACACGTCACGCTATATGCTGCTATGCAGCCGTCACTAGCGCAA** CECACTEATGACTAACECECTACTECECTACTEACTCACTATECECCECCECCET TACGCTGATCGTACGCGCGCATATCGCGGATCTGCGCTCATATCGCCATCGCTATCTACGCATA TACCAGATCATGCCGTAATAGTACTATGATTATAATCGCTACAGCTAAAAGCTCGATCAGATC GATAAGACTTATTACGAAGGCGCGTAATATCGTAGCAAACTCTATGATTAGCAGGGTCGATAT ACGATCAATGATGATACTAATTATAACTAATACTCGCGATATCGCGATCCGCGCTACAGTTA CGCCACGTATCTATATCGACGCGATATTTCGATACGAGAAAGTCAGTAGCGCGTATC TATCATACTGACACTACTCATCAGTCACGACGACATCATTCTAGTGTGTGATGATATGCTATA GCTACGTACGACAGTCTATCTACGATCGCTAGCTACGTCGTTATGCTACTCTGCGTTTTACTA **ACARTGATGGATGACGTGACTAGCTAGCTAGCATGCGCTAGCGATGCGCATGCCGATA** GTCCACATGCATCAACTATACTATCATGATCGTACGCCCGCGCGTTTCGCCGATGATGC TCGATTGATCGACTGATCGTCGATGCATTCATACTTCATACTAAAGCGCGTCGCATA **AATATATCGAGAGTCAGTGCGATATATACGCGATAACAGCG** ATATACGCGCGCGATCAGTCTACTACCCACTAGCTACAAACGATCACTCGCGCCGGATA

Language of Life: Francis Collins

Our objective

- Learning repeating sequences in a genomic sequences.
- Clustering similar genome sequences.

Applications: Why Deep learning?

Understanding all functions and interactions of genome is challenging

Genome data

DL (Bi-LSTM)

Extract highly complex patterns (Motifs)

Applications: Clustering Genome

Traditional Genome clustering:

- Computationally intensive
- Impractical for large genome

Deep learning: Train once, use multiple times

Applications: Clustering Genome

Traditional Genome clustering:

- · Computationally intensive
- Impractical for large genome

Deep learning: Train once, use multiple times

Applications: Clustering Genome

Traditional Genome clustering:

- Computationally intensive
- Impractical for arge genome

Deep learning: Train once, use multiple times

Other Applications:

Modeling genome using LSTM:

- Automatically extract novel features from input data to:
 - Connecting genotype to phenotype
 - Predicting regulatory function
 - Classifying mutation types

Phenotype: The physical characteristics Genotype: The genetic composition

Recurrent Neural Networks

Traditional Network

Input layer Output layer Output layer

Recurrent Network

LSTM, Long Short Term Memory

Validating DNA Model

- Cluster with alternative method of DNA embedding and compare results
 - · fastDNA looks promising

LSTM

- LSTMs excel for sequential data
- Following slides explain text generation using LSTM
- Can be easily extended to DNA just by changing input to DNA sequences

Steps:

- Dictionary Building
- Data set Generation
- Training
- Prediction

Dictionary building and encoding

Data Set generation:

- The encoded sequence is split into chunks of size L
- L is the size of the unrolled LSTM

Training and prediction


```
Training:
```

```
Hidden state update:
```

```
h(t) = \tanh(\det(W_hh, h(t-1)) + \det(W_xh, x(t)))
```

Output generation:

$$y(t) = dot(W_hy, h(t))$$

Prediction:

- Given an input string "Hel"
- Convert each character to its corresponding id
- Run each id through the model
- Once, completed start picking next character from predicted values

Training and prediction

GMM

- Takes into account elliptical shapes
- Central Limit Theorem
- Different initialization points may lead to different configurations

Preliminary Results

Clustering Method	Number of clusters	Silhouette Score
K Means	50	0.198
	2	0.932
	10	0.210
	5	0.579
GMM	2	0.935
DBSCAN	2	0.935

- · 207 Query Sequences
- Each sequence has 80 characters

Conclusion

- Traditional methods for genome clustering are computationaly expensive.
- Utilize bi-directional LSTM to model and cluster genome data more efficiently

