Approximating Pi using Simulations

CSCI 317

Mike Heroux

Computing Estimate of Pi

- Area of circle C is $A_C = \pi r^2$.
- Area of square S is $A_S = s^2$.
- Pick random (x,y) pairs with x and y between (-1/2, 1/2).
- Probability of (x, y) being inside C is A_C / A_S .
- In our case:

$$-A_C = \pi(1/2)^2 = \pi/4.$$

$$-A_S = 1^2 = 1.$$

$$- A_C / A_S = \pi/4.$$

Algorithm to Estimate Pi

Get n_{total} number random pairs (x, y).

Use built-in random generator

For each pair:

Compute distance from center of circle: d = sqrt(x*x+y*y)

If d < radius of circle (1/2)

+ 1 count of points inside circle (n_{inside})

Theory tells us

 n_{inside} / $n_{total} \approx \pi/4$.

Multiply both sides above by 4

$$\pi \approx 4* (n_{\text{inside}} / n_{\text{total}}).$$

Assignment

Write a Java program to estimate Pi.

- Input parameters:
 - Number of games
 - Number of darts "thrown" randomly per game
- Output:
 - Estimate of Pi using the average (mean) value of all games.
 - Standard deviation (look this up).

Write a brief report. Address:

- How many darts did you need in a game in order to reliably compute Pi to 3 digits (3.14)?
- What was the standard deviation in this case?