

Chapitre VI – Les primitives de fonctions continues

Bacomathiques — https://bacomathiqu.es

I - Définition

Soit f un fonction définie et continue sur un intervalle I, on appelle **primitive** de f, toute fonction F définie sur I et qui vérifie pour tout $x \in I$:

À RETENIR 💡

$$F'(x) = f(x)$$

À LIRE 00

Note: Une primitive est toujours définie à une constante près.

En effet. Si on considère la fonction définie pour $x \in R$: f(x) = 2x.

Alors, $F_1(x) = x^2 + 1$ est une primitive de la fonction f (car F'(x) = 2x = f(x)).

Mais $F_1(x)$ n'est pas la seule primitive de f!

On peut citer par exemple $F_2(x) = x^2 + 10$ et $F_3(x) = x^2 + 3$ qui sont également des primitives de f.

C'est pour cette raison que l'ont dit que les primitives sont définies à une constante près (lorsque l'on dérive, la constante devient nulle).

Ainsi, toute **fonction continue** sur un intervalle *I* admet **une infinité de primitives** sur *I* de la forme suivante :

À RETENIR 🦠

 $x\mapsto F(x)+k$ avec $k\in\mathbb{R}$ avec F une primitive de f.

II - Primitive de fonctions usuelles

Le tableau suivant est à connaître (mais il peut être obtenu en prenant celui des dérivées usuelles à l'envers) :

À RETENIR 📍			
Fonction	Primitive	Domaine de définition de la primitive	
k	kx	\mathbb{R}	
e ^x	e ^x	R	
$\frac{1}{x}$	ln(x)	\mathbb{R}_+^*	
$\frac{1}{\sqrt{x}}$	$2\sqrt{x}$	\mathbb{R}_+^*	
x^a avec $a \in \mathbb{R}$ et $a \neq -1$	$\frac{1}{a+1}x^{a+1}$	\mathbb{R}_+^*	
sin(x)	$-\cos(x)$	\mathbb{R}	
cos(x)	sin(x)	\mathbb{R}	

III - Opérations sur les primitives

Le tableau suivant est également à connaître (mais il peut être obtenu en prenant celui des dérivées usuelles à l'envers) :

À RETENIR 📍			
Fonction	Primitive	Domaine de définition de la primitive	
$u'(x)e^{u(x)}$	e ^{u(x)}	En tout point où <i>u</i> est définie.	
$\frac{u'(x)}{u(x)}$	ln(u(x))	En tout point où <i>u</i> est définie. On peut retirer la valeur absolue si <i>u</i> est positive.	
$\frac{u'(x)}{\sqrt{u(x)}}$	$2\sqrt{u(x)}$	En tout point où <i>u</i> est définie et est positive.	
$u'(x)(u(x))^a$ avec $a\in\mathbb{R}$ et $a\neq -1$	$\frac{1}{a+1}(u(x))^{a+1}$	En tout point où <i>u</i> est définie.	
$u'(x)\sin(u(x))$	$-\cos(u(x))$	En tout point où <i>u</i> est définie.	
$u'(x)\cos(u(x))$	$\sin(u(x))$	En tout point où <i>u</i> est définie.	