Algebra 2 Home Exercises 3

1. Let A be a Noetherian ring. Prove that an A-module M is a Noetherian A-module iff M is of finite type.

Hint. The left arrow was proved in the lectures. To prove the right arrow assume that M isn't of finite type, then there are infinitely many elements m_i in M such that m_{i+1} doesn't belong to $Am_1 + \cdots + Am_i$. Show that the infinite sequence of A-submodules

$$Am_1, Am_1 + Am_2, Am_1 + Am_2 + Am_3, \dots$$

is strictly increasing.

2. Define the set of formal power series over a ring A by $A[[X]] = \{\sum_{n=0}^{\infty} a_n X^n : a_n \in A\}$. Define

$$\sum_{n=0}^{\infty} a_n X^n + \sum_{n=0}^{\infty} b_n X^n = \sum_{n=0}^{\infty} (a_n + b_n) X^n,$$

$$(\sum_{n=0}^\infty a_n X^n)(\sum_{n=0}^\infty b_n X^n) = \sum_{n=0}^\infty c_n X^n, \quad \text{where } c_n = \sum_{k=0}^n a_k b_{n-k}.$$

Then A[X] is a commutative ring.

Prove that A[[X]] is a Noetherian ring if A is a Noetherian ring.

Hint: Modify cleverly the proof of Hilbert's theorem and consider the sequence of ideals

$$J_n = \{a \in A : \text{ there is } f(X) = aX^n + \text{terms of higher order in } J\}.$$

Note: higher order, not smaller order. Instead of polynomials which generate the ideal in the proof of Hilbert's theorem consider power series $f_j^{(m)}(X)=a_j^{(m)}X^m+$ terms of higher order .

3. Let A be a Noetherian ring and let $f: A \to A$ be a ring homomorphism. Prove that f is an isomorphism iff f is surjective. [Remark: without the assumption of Noetherianity this is false].

Hint. Assume that f is surjective and denote by I_j the kernel of $f^{(j)} = f \circ \cdots \circ f \colon A \to A$. Show that I_j form an increasing sequence of ideals of A and therefore $I_j = I_{j+1}$ for some j. Deduce that $f(f^{(j)}(a)) = 0$ implies $f^{(j)}(a) = 0$ and use the surjectivity of f to complete the proof.

Algebra 2 Solutions of Home Exercises 3

1. Assume that M isn't of finite type. Then there are infinitely many elements m_i in M such that m_{i+1} doesn't belong to $Am_1 + \cdots + Am_i$. Then the infinite sequence of A-submodules

$$Am_1, Am_1 + Am_2, Am_1 + Am_2 + Am_3, \dots$$

is strictly increasing, hence M is not a Noetherian A-module.

2. Let J be a non-zero ideal of A[[X]]. For $n \geq 0$ define

$$J_n = \{a \in A : \text{ there is } f(X) = aX^n + \text{terms of higher order in } J\}.$$

Then J_n is an ideal of A and $J_1 \subset J_2 \subset \ldots$. Since A is Noetherian, we deduce that there is n such that $J_n = J_{n+1} = \ldots$. For $m \leq n$ the ideal J_m as an ideal of the Noetherian ring A is finitely generated, let $c_j^{(m)}$ for $1 \leq j \leq n_m$ be its generators. Pick up $f_j^{(m)}(X) = c_j^{(m)}X^m + \cdots \in J$.

Let $f = a_m X^m + \cdots \in J$. We shall pass from f to another series in J which starts with a larger power of X.

If $m \leq n$, then write $a_m = \sum_j a_j^{(m)} c_j^{(m)}$ with $a_j^{(m)} \in A$. Then $f - \sum_j a_j^{(m)} f_j^{(m)}(X) = b_{m+1} X^{m+1} + b_{m+2} X^{m+2} + \dots \in J$. If m > n, then write $a_m = \sum_j a_j^{(m)} c_j^{(n)}$ with $a_j^{(m)} \in A$. Then $f - \sum_j a_j^{(m)} X^{m-n} f_j^{(n)}(X) = b_{m+1} X^{m+1} + b_{m+2} X^{m+2} + \dots \in J$.

Continue this way (infinitely many times, keeping in mind that we work with power series that's fine). Then f is a linear combination with coefficients in A[[X]] of $f_j^{(m)}(X)$, $0 \le m \le n$, $1 \le j \le n_m$. Thus, J is finitely generated.

3. The sequence of the ideals I_j stabilizes for sufficiently large $j>j_0$. Since f is surjective, $f^{(j)}$ is surjective for all j. Now, if f(b)=0 then for a $j>j_0$ find a such that $b=f^{(j)}(a)$. Then $f(b)=f^{(j+1)}(a)=0$, so $a\in I_{j+1}=I_j$, and so b=0. Thus f is injective.