Chapter 1: Affine Algebraic Sets

Author: Meng-Gen Tsai Email: plover@gmail.com

Problem 1.1. Let R be a domain.

- (a) If F, G are forms of degree r, s respectively in $R[X_1, \ldots, X_n]$, show that FG is a form of degree r + s.
- (b) Show that any factor of a form in $R[X_1, ..., X_n]$ is also a form.

Proof of (a). Write

$$F = \sum_{(i)} a_{(i)} X^{(i)},$$
$$G = \sum_{(j)} b_{(j)} X^{(j)},$$

where $\sum_{(i)}$ is the summation over $(i) = (i_1, \dots, i_n)$ with $i_1 + \dots + i_n = r$ and $\sum_{(j)}$ is the summation over $(j) = (j_1, \dots, j_n)$ with $j_1 + \dots + j_n = s$. Hence,

$$\begin{split} FG &= \sum_{(i)} \sum_{(j)} a_{(i)} b_{(j)} X^{(i)} X^{(j)} \\ &= \sum_{(i),(j)} a_{(i)} b_{(j)} X^{(k)} \end{split}$$

where $(k)=(i_1+j_1,\ldots,i_n+j_n)$ with $(i_1+j_1)+\cdots+(i_n+j_n)=r+s$. Each $X^{(k)}$ is the form of degree r+s and $a_{(i)}b_{(j)}\in R$. Hence FG is a form of degree r+s. \square

Proof of (b). Given any form $F \in R[X_1, ..., X_n]$, and write F = GH. It suffices to show that G (or H) is a form as well. Write

$$G = G_0 + \dots + G_r,$$

$$H = H_0 + \dots + H_s$$

where $G_r \neq 0$ and $H_s \neq 0$. So

$$F = GH = G_0H_0 + \cdots + G_rH_s.$$

Since R is a domain, $R[X_1, \ldots, X_n]$ is a domain and thus $G_rH_s \neq 0$. The maximality of r and s implies that $\deg(F) = r + s$. Therefore, by the maximality of r + s, $F = G_rH_s$, or $G = G_r$, or G is a form. \square