Data Mining and Data Warehousing

— Introduction —

Source: Slides from Data Mining: Concepts and Techniques
-Jiawei Han and Micheleline Kamber

Chapter 1. Introduction

- Motivation: Why data mining?
- What is data mining?
- Data Mining: On what kind of data?
- Data mining functionality
- Classification of data mining systems
- Top-10 most popular data mining algorithms
- Major issues in data mining
- Overview of the course

Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, ...
 - Science: Remote sensing, bioinformatics, scientific simulation, ...
 - Society and everyone: news, digital cameras
- We are drowning in data, but starving for knowledge!
- "Necessity is the mother of invention"—Data mining—Automated analysis of massive data sets

Information and knowledge gained can be used for Applications:

- Market Analysis
- Fraud detection
- Customer retention
- Production control
- Science Exploration

Evolution of Database Technology

1960s:

- Data collection, database creation, IMS and network DBMS
- 1970s:
 - Relational data model, relational DBMS implementation
- 1980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- **2000s**
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems

What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (<u>non-trivial</u>, <u>implicit</u>, <u>previously</u>
 <u>unknown</u> and <u>potentially useful</u>) patterns or knowledge from huge amount of data
 - Data mining: a misnomer?
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
- Watch out: Is everything "data mining"?
 - Simple search and query processing
 - (Deductive) expert systems

Knowledge Discovery (KDD) Process

Data Mining and Business Intelligence

Why Not Traditional Data Analysis?

- Tremendous amount of data
 - Algorithms must be highly scalable to handle such as tera-bytes of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

Ex. 1: Market Analysis and Management

- Where does the data come from?—Credit card transactions, loyalty cards, discount coupons, customer complaint calls, plus (public) lifestyle studies
- Target marketing
 - Find clusters of "model" customers who share the same characteristics: interest, income level, spending habits, etc.
 - Determine customer purchasing patterns over time
- Cross-market analysis—Find associations/co-relations between product sales,
 & predict based on such association
- Customer profiling—What types of customers buy what products (clustering or classification)
- Customer requirement analysis
 - Identify the best products for different groups of customers
 - Predict what factors will attract new customers
- Provision of summary information
 - Multidimensional summary reports
 - Statistical summary information (data central tendency and variation)

Ex. 2: Corporate Analysis & Risk Management

- Finance planning and asset evaluation
 - cash flow analysis and prediction
 - contingent claim analysis to evaluate assets
 - cross-sectional and time series analysis (financial-ratio, trend analysis, etc.)
- Resource planning
 - summarize and compare the resources and spending
- Competition
 - monitor competitors and market directions
 - group customers into classes and a class-based pricing procedure

set pricing strategy in a highly competitive market

Ex. 3: Fraud Detection & Mining Unusual Patterns

- Approaches: Clustering & model construction for frauds, outlier analysis
- Applications: Health care, retail, credit card service, telecomm.
 - Auto insurance: ring of collisions
 - Money laundering: suspicious monetary transactions
 - Medical insurance
 - Professional patients, ring of doctors, and ring of references
 - Unnecessary or correlated screening tests
 - <u>Telecommunications: phone-call fraud</u>
 - Phone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm
 - Retail industry
 - Analysts estimate that 38% of retail shrink is due to dishonest employees
 - Anti-terrorism