Emmanuel Filiot
Nicolas Mazzocchi
Jean-François Raskin

Université libre de Bruxelles FCT 2017 - Bordeaux

Decidable Weighted **Expressions** with Presburger **Combinators** 

# Boolean vs Quantitative Languages

$$L:\Sigma^* \to \{0,1\}$$

### Classical decision problems

# Boolean vs Quantitative Languages

$$L: \Sigma^* \to \{0,1\} \mathbb{Z} \cup \{-\infty\}$$

### Classical quantitative decision problems

| Emptiness    | $\exists u.t(u) \geq \not\perp \nu$ |
|--------------|-------------------------------------|
| Universality | $\forall u.f(u) \geq 1 \nu$         |
| Inclusion    | $\forall u.f(u) \geq g(u)$          |
| Equivalence  | $\forall u.f(u) = g(u)$             |

for some threshold  $\nu$  for some threshold  $\nu$ 

# Classical Model: Weighted Automata

(max,+) WA





# Classical Model: Weighted Automata

(max,+) WA

## **Transition sequence**





## **Undecidability** [Krob 1994]

Quantitative language-inclusion is undecidable for (max,+) WA

▶ Even for linearly ambiguous automata [Colcombet 2010]

# **Decidable Formalisms: Restriction**

## Finitely ambiguous (max,+) WA [Filiot et al. 2012]

Define functions of the form,

$$u \mapsto \max\{\mathcal{A}_1(u), \ldots, \mathcal{A}_k(u)\}$$

 $A_i$ : Unambiguous WA

- © Quantitative decision problems are DECIDABLE
- Closed under max and sum
- © Limited expressive power (min, minus, ...)

# **Decidable Formalisms: New model**

## Mean-payoff expressions [Chatterjee et al. 2010]

$$E ::= \mathcal{A} \mid \max(E, E) \mid \min(E, E) \mid E + E \mid -E$$

A: Deterministic WA

- igoplus Quantitative decision problems are PSPACE-COMPLETE [Velner 2012]
- © Closed under max, min, sum and minus
- Determinism (define Lipschitz continuous functions)
- © Does not contain all finitely ambiguous (max,+) WA
- (apply on the whole word)

# **Contributions**

# 1 Simple expressions

$$E ::= \mathcal{A} \mid \phi(E, E)$$

 $\mathcal{A}$ : Unambiguous WA

 $\phi: \exists \mathsf{FO}[\leq,+,0,1]$  formula defining function with arity two



# **Contributions**

1 Simple expressions

$$E ::= \mathcal{A} \mid \phi(E, E)$$

 $\mathcal{A}$ : Unambiguous WA

 $\phi: \exists FO[\leq,+,0,1]$  formula defining function with arity two

- © Quantitative decision problems are PSPACE-COMPLETE
- © Closed under Presburger definable functions
- © Contain all finitely ambiguous (max,+) WA
- (apply on the whole word)

# **Contributions**

2

## **Iterable expressions**

$$E ::= \mathcal{A} \mid \phi(E, E) \mid E^{\circledast}$$

- Sum arbitrarily many factors
- Unique decomposition required



# **Examples**

$$E^*$$

$$u_1 \nabla u_2 \nabla \dots u_n \nabla \mapsto \sum_{i=1}^n E(u_i)$$

$$\phi(E^\circledast, F^\circledast)$$

$$u \mapsto \phi \left\{ \sum_{i=1}^n E(u_i) , \sum_{j=1}^m F(v_i) \right\}$$

# Results

## **Theorem (Iterable Expressions)**

Quantitative decision problems are UNDECIDABLE



# Results

## Theorem (Iterable Expressions)

Quantitative decision problems are UNDECIDABLE

## Theorem (Synchronised Iterable Expressions)

Quantitative decision problems are Decidable



# Results

## **Theorem (Iterable Expressions)**

Quantitative decision problems are UNDECIDABLE

## Theorem (Synchronised Iterable Expressions)

Quantitative decision problems are Decidable Synchronisation property is PTIME





#### New model

- Generalise unambiguous WA
- ▶ Recursive definition

#### Regular language



#### New model

- Generalise unambiguous WA
- Recursive definition

#### Regular language



Presburger formula use sub-WCA

#### New model

- ▶ Generalise unambiguous WA
- Recursive definition

#### Regular language



Presburger formula use sub-WCA

#### New model

- ▶ Generalise unambiguous WA
- ▶ Recursive definition

## **Example**

```
\mathcal{C}(\mathsf{aab}\,\blacktriangledown\,\mathsf{baa}\,\blacktriangledown) = \\ \phi\left(\mathcal{C}_1(\mathsf{aab}\,\blacktriangledown), \mathcal{C}_2(\mathsf{aab}\,\blacktriangledown)\right) + \mathcal{C}'(\mathsf{baa}\,\blacktriangledown)
```

#### Regular language



Presburger formula use sub-WCA

#### New model

- Generalise unambiguous WA
- Recursive definition

## Example

$$\mathcal{C}(\mathsf{aab} \, \blacktriangledown \, \mathsf{baa} \, \blacktriangledown) = \\ \phi \left( \mathcal{C}_1(\mathsf{aab} \, \blacktriangledown), \mathcal{C}_2(\mathsf{aab} \, \blacktriangledown) \right) + \mathcal{C}'(\mathsf{baa} \, \blacktriangledown)$$

## Operators for expressiveness equivalence

$$E \odot F: u_1u_2 \mapsto E(u_1) + F(u_2)$$

$$E \rhd F: u \mapsto \text{if } u \in \text{dom}(E) \text{ then } E(u) \text{ else } F(u)$$
[Alur 2014]

# **Conclusion**

### Summary

Simple expressions: PSPACE-COMPLETE Sum-iterable expressions: UNDECIDABLE

Synchronised sum-iterable expressions: Decidable

### **Perspective**

Iterate other operations (max, Presburger definable functions, ...)

# Conclusion

### Summary

Simple expressions: PSPACE-COMPLETE Sum-iterable expressions: UNDECIDABLE

Synchronised sum-iterable expressions: Decidable

### **Perspective**

Iterate other operations (max, Presburger definable functions, ...)

Thanks!