6 sucesión
$$x_{u} = \frac{1}{2} (4n + 1 + (-1)^n) \forall n \ge 0$$

$$X_0 = \frac{1}{2} \cdot (4.03 + 1 + (-1)^6) = 1$$

$$X_{i} = \frac{1}{2} \cdot (4.1 + (-1)') = 2$$

Subon
$$X_2 = \frac{1}{2} \cdot (4.2 + 1 + (-1)^2) = \frac{10}{2} = 5 = X_0 + 4 = 7$$

→ Se cumple para el primer Término

Saponemos que se ample para Xe.

Cambiopanos du se ambre bora xxx,

$$X_{u+1} = \frac{1}{2} \cdot (4n+4+1+(-1)^{n+1}) =$$

$$= \frac{1}{2} (4n + 54 (-1)^{n+1}) = \frac{1}{2} (4n + 8 - 3 + (-1)^{n+1}) =$$

$$= \frac{1}{2} \cdot 7 + \frac{1}{2} \cdot (4n - 3 + (-1)^{n+1}) = 4 + \frac{1}{2} (4n - 3 + (-1)^{n+1})$$

$$* \times_{N-1} = \frac{1}{2} \cdot (4(n-1)+1+(-1)^{N-1}) = \frac{1}{2} \cdot (4n-3+(-1)^{N-1})$$

Resulta que (-1)n+1 y (-1)n-1 son iguales.

Luego por inducción homos demostrado que $X_n = 4 + X_{n-2}$

1)
$$Y_{N-1} = Y_{N-1} + 1$$
 { Restamos=0 $X_{N-1} = Y_{N-1} = Y_{N-1} - Y_{N-1} = Y_{N$

$$X_{n-1} = X_{n-1} + 4$$
 Restauos =0 $X_{n-1} = X_{n-1} - X_{n-2} = 0$

$$= D \quad X^{\nu} = \int X^{\nu-1} - X^{\nu-3}$$

$$(2)$$
 $(n = 2^n + n = 2^n + n \cdot 1^n = 0)$

= Polinauio característico:
$$(x-2) \cdot (x-1)^2 =$$

$$= (x-2)(x^2-2x+1) = x^3-2x^2+x-2x^2+4x-2=$$

$$= x^3-4x^2+5x-2=$$

$$=0 X^3 - 4x^2 + 6x - 2 = 0 = 0 X^3 = +4x^2 - 6x + 2 = 0$$

$$-0$$
 $\times_{n} = 4 \times_{n-1} - 5 \times_{n-2} + 2 \cdot \times_{n-3}$

3)
$$z_n = 2^n + (n+1)3^n \Rightarrow Polinounio caracteristico:$$

$$(x - 2) \cdot (x - 3)^{2} = (x^{2} - 6x + 9)(x - 2) = x^{3} - 2x^{2} - 6x^{2} + 12x + 9x - 18 = 0$$

$$= x^{3} - 8x^{2} + 21x - 18 = 0$$

a)
$$\overline{t}_{n+2} > 2\overline{t}_n \quad \forall n \geq 2$$

Para
$$n=0$$
 $\stackrel{\circ}{\underset{i=0}{\mathcal{E}}}(\overline{+}_{\circ})^{2} = \overline{+}_{\circ}.\overline{+}_{i} = 0$

Comprehens para un:

$$\Sigma(F_i)^2 = \overline{F}_{n+1} \cdot \overline{F}_{n+2} \quad \forall n > 0$$

d) $\overline{f}_{n-1} \cdot \overline{f}_{n+1} = (\overline{f}_n)^2 + (-1)^n \quad \forall n \ge 1$ $\overline{f}_0 \cdot \overline{f}_2 = 0 = 1^2 - 1 \quad \forall \text{ Pora } n = 1$ Supareuros para u y camprobamos pora n + 1 = 1 $\overline{f}_{n-1} \cdot \overline{f}_{n+1} = (\overline{f}_n)^2 + (-1)^n = 0 \quad \overline{f}_{n-1} \cdot \overline{f}_{n+1} - (-1)^n = (\overline{f}_n)^2 = 1$

 $\overline{t_{n-1}} \cdot \overline{t_{n+1}} = (\overline{t_n})^2 + (-1)^n = 0$ $\overline{t_{n-1}} \cdot \overline{t_{n+1}} - (-1)^n = (\overline{t_n})^2 = 0$ $\overline{t_{n-1}} \cdot \overline{t_{n+1}} + (-1)^n + 1$

 $F_{n} \cdot F_{n+2} = F_{n} \cdot (F_{n} + F_{n+1}) = (F_{n})^{2} + F_{n} \cdot F_{n+1} = F_{n-1} \cdot F_{n+1} + (-1)^{n+2} + F_{n} \cdot F_{n+1} = F_{n-1} \cdot F_{n+1} + (-1)^{n+2} + F_{n} \cdot F_{n+1} = F_{n-1} \cdot F_{n+1} + (-1)^{n+2} + F_{n} \cdot F_{n+1} = F_{n-1} \cdot F_{n+1} + F_{n} \cdot F_{n+1} + F_{n} \cdot F_{n+1} = F_{n-1} \cdot F_{n+1} + F_{n} \cdot F_{n+1} + F_{n} \cdot F_{n+1} = F_{n-1} \cdot F_{n+1} + F_{n} \cdot F_{n} + F_{n} \cdot F_{n} + F$

e) mcd (Fn, Fn+1)=1 + n=0

Para u=0 mcd (Fo, Fi)=1 ~

Separemos para u. Comprobamos para un

med (Fn+1, Fn+2)= med (Fn+1, Fn+1 +Fn)= med (Fn+1, Fn)= 1V

$$\begin{array}{lll} & \times & = 1 & \times_{i=1} & \times_{u=2} & \times_{h-i} & \times_{h-2} & \forall n \geqslant 2 \\ & & \in c. & \text{covacte ristica} & \times^2 - 2 \times + 1 = 0 \Rightarrow (\times + 1)^2 = 0 \end{array}$$

Sol. 9:
$$An+B$$

 $Sol. 9: An+B$
 $X=1$ $\Rightarrow (An+B) \cdot 1^n = An+B$

$$8 \text{ Sol } \text{ poil.}$$
 $B = 1$

$$A + 8 = 1 \Rightarrow A = 0$$

$$Q_n = 1$$

2)
$$x_0 = 1$$
 $x_1 = 2$ $x_1 = 5x_{n-1} - 6x_{n-2}$ $\forall n \ge 2$.
 ϵ_c ϵ_c

3)
$$x_0 = 1$$
 $x_1 = 1$ $x_4 = 3x_{4-1} + 4x_{4-2} + x_{5-2}$
 $x_5^2 - 3x - 4 = 0 = 0$ $(x-4)(x+1) = 0$

Sol P:
$$A + B = 1$$
 $A = 1 - B$
 $4A - B = 1$ $4 - 4B - B = 1$ $B = \frac{3}{5}$ $A = \frac{2}{5}$
 $A = \frac{2}{5} \cdot 4^{n} + \frac{3}{5} (-1)^{n}$

Qu=(- n+5)3"

7)
$$X_0=1$$
 $X_1=1$ $X_2=2$ $X_{n}=5X_{n-1}-8X_{n-2}+4X_{n-3}+8n>3$.
6(. c. $X^2-5X^2+8X-4=0$ $(X-1)(X-2)^2=0$

50l. g. $(An+B)\cdot 2^n+C\cdot 1^n$

50l p. $\frac{1}{2}$ $B+C=1$ $B=1-C$ $2A+2B+C=1$ $3A+4B+C=2$ $3A+4-4C=1$ $3A+4-4C=2$ $3A+4-4C=2$ $3A+4-4C=2$ $3A+4-4C=2$ $3A+4-4C=2$ $3A+4-4C=2$ $3A+4-4C=2$ $3A+4-4C=2$ $3A+4-4C=2$ $3A+4-4-2$ $3A+4-2$ $3A+4$

 $Q_{N} = \left(\frac{N}{3} + \frac{\delta}{q}\right) + \frac{1}{0} \cdot \left(-2\right)^{N}$

(a)
$$X_0 = 0$$
 $X_1 = 1$ $X_2 = 2$ $X_n = X_{n-1} + 2X_{n-2} - X_{n-3} \forall n \ge 3$.
(c) $COURC$, $X^3 - X^2 - 2X + 1 = 0$ $(X_1 + 2)(X_1 + 1)(X_1 + 1)(X_2 + 1)(X_1 + 1$

Sol p:
$$A+B+C=1$$
 $B=1-C$
 $A+B+C=1$ $A+1-C+2C=1$ $A+C=0$ $A=C$
 $A+B+C=3$ $A+1-C+C=3$ $A+C=3$ $A+3C=2$
 $A+C=3$ $A+3C=3$
 $A+C=3$ $A=3$

$$Q_{n} = (-2n-1) + 2$$

11)
$$X_0 = 1$$
 $X_1 = 3$ $X_2 = 7$ $X_4 = 3X_{4-1} - 3X_{4-2} + X_{4-3} + X_{4-3}$
Ec. corac.
 $X_1^3 - 3X_2^2 + 3X_1 - (1 = 6 \Rightarrow (x_{-1})^3 = 6$
Sol. $g: (A_1^2 + B_1 + C)|^n = A_1^2 + B_1 + C$

Sol. p:
$$\begin{cases} C=1 \\ A+B+C=3 \end{cases} A+B=2 A=2-B \\ 4A+2B+C=7 4A+2B=6 8-4B+2B=6 \\ 8-2B=-2 \\ B=1 \end{cases}$$

$$x_{n-2}x_{n-1} = 1$$
 $1 = b^{n} \cdot p(u) = 0 \ b=1 \ p(n) = 1$ $gr(p) = 0$

Extendences los cardiciones.

$$x_0=0$$
 $x_1=1$ $x_2=3$
Solp: $A + B = 0$ $A = -B$ $A = 1$
 $A + B = 1$ $A = 1$ $A = 1$

Extendences las cardiciales para una sucesión arbitraria.

$$x_0 = \alpha$$
 $x_1 = 2\alpha + 1$
Sol 9. $\alpha = A + B$ $A = \alpha + 1$ $A = \alpha +$

$$x_n - x_{n-1} = u$$
 $p_n \cdot b(u) = u - v p = 1 b(u) = u g(b) = 1$

Extendences conditiones iniciales.

$$x_0 = 1$$
 $x_1 = 2$ $x_2 = 4$

Sol
$$C = 1$$

 $A + B + C = 2$ $A + B = 1$ $A = 1 - B$
 $A + 2B + C = 4$ $A + 2B = 3$ $A = 2B = -1$ $A = \frac{1}{2}$

Sol par Qu= 122+ 1 + 1

Sd g. de la no havagérea. $X_0 = \alpha$ $X_1 = \alpha + 1$ $X_2 = \alpha + 1 + 2 = \alpha + 3$. A = C $A + B + C = \alpha + 1$ A + B = 1 $A = \frac{1}{2}$ $A = \frac$ $(4) \quad \chi_0 = 1 \quad \chi_n = 2\chi_{n-1} + n \quad \forall \quad n \ge 1$ $X_{n}-2X_{n-1}=n$ $b^{n}-p(n)=n$ =0 $b^{n}=1$ p(n)=n $g_{1}(p)=1$ Pol. car: (x-2)(x-1)2 Sol 9: A.2" + (Bn+c) 1" = A.2" + Bn+C Extaudemos condiciones iniciales: $x_0 = 1$ $x_1 = 3$ $x_2 = 8$ an= 3.2"- N-2 Sol. g. uo howogénea $X_0 = \alpha$ $X_1 = 2\alpha + 1$ $X_2 = 4\alpha + 2 + 2 = 4\alpha + 4 = 4(\alpha + 1)$ A= Q+2

Sn= (a+2).2"-n-2

B= -1

15)
$$V_0 = 0$$
 $V_{N-2} - 2V_{N-1} = 3^N$ $V_{N>1}$
 $3^N = b^N$ $p(n) = 0$ $b = 3$ $p(n) = 1$ $gr(p) = 0$

Por car. $(x-2)(x-3)$

Solg. & $A = 2^N + B \cdot 3^N$
 $V_0 = 0$ $V_1 = 3$
 $A + B = 0$ $A = -B$
 $A + B = 0$ $A = 0$
 $A = -32^N + 3^{N-1}$

Sol. g . u_0 $u_0 u_{00}$.

 $V_0 = 0$ $V_1 = 0$
 $V_0 = 0$ $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 $V_0 = 0$
 V

Sol 9:

$$y_{0} = \alpha \quad y_{1} = 2\alpha + 6 \quad x_{2} = (q_{0} + 3\alpha)$$

$$\alpha = A + C$$

$$2\alpha + G = 2A + 3B + 3C \quad A_{0} = A_{0} + C_{0} = A_{0} = A_{0} + C_{0} = A_{0} = A_{0} + C_{0} = A_{0} = A_{0$$

19)
$$x_0=0$$
 $x_0-2x_{n-1}=n+2^n$ $\forall n\ge 1$
 $x=b^n p(n)=0$ $b=1 p(n)=n$ $gr(p)=1$
 $2^n=c^n \cdot p(n)=0$ $c=2$ $p=1$ $gr(p)=0$

7. $cora$. $(x-2)^2 (x-1)^2$.

Sol g: $A \cap +B + (C \cap +D) \cdot 2^n$
 $x_0=0$ $x_1=3$ $x_2=12$ $x_3=35$
 $A \cap +B + 2C + 2D = 1$ $A=-1$ $A=-1$

$$Q_{N} = -n - 2 + (n+2) 2^{n} = (2^{n} - 2)(n+2).$$

Soig: $x_0 = a$ $x_1 = 2a + 3$ $x_2 = 4a + 12$ $x_3 = 8a + 35$
 $B + 0 = a$

$$\begin{vmatrix} B+0 = a \\ A+B+2C+2D = 2a+3 \\ 2A+B+8C+4D = 4a+12 \\ 3A+B+24C+8D = 8a+35 \end{vmatrix} S_{n}^{2}-n-2+(n+2+a)\cdot 2^{n}$$

```
20)
       x_0=0 x_1=1 x_0=3x_{n-1}-2x_{n-2}+2^{n}+2n.
         x_{u} - 3x_{u-1} + 2x_{u-2} = 2' + 2 \cdot n
         2^{n} = b^{n} \cdot p(n) = 0 b = 2 p(n) = 1 gr(p) = 0
          2n = b^{n} \cdot p(n) = 0 b = 1 p(n) = 2n g(p) = 1
      Pol. co. (x-2) (x-1) =0
         Sol g . An' + Bn + C + (Dn+ E).2"
             x0=0 x=1 x2=11 x3= 45 x4=137
     C + E = 0
A + B + C + 2D + 2E = 1
4A + 2B + C + 8D + 4E = 11
4A + 3B + C + 240 + 8E = 45
(6A + 4B + C + 64 + D + 16E = 13)
           \Omega_{n} = -n^2 - 5n - 3 + (2n+3) \cdot 2^n
          x_0 = a x_1 = b x_2 = 3b - 2a + 8 x_3 = 7b - 6a + 38
           Xy= 15b-12a+122
    \begin{cases}
(+E = a) \\
A+B+(+20+2E = b) \\
(4A+2B+(+80+4E = 3b-2a+8) \\
(4A+3B+(+2uo+8E = 7b-6a+38)
\end{cases}
                                                           -17
       16A+UB+C +64D+16€= 156-12a+122
```

 $= p \qquad S_n = (a-1)^n + (3a-9)^n + 3a - b - 2 + ((a+2) \cdot n - 7a + b + 2) \cdot 2^n$