INTELIGÊNCIA ARTIFICIAL

Aprendizado Descritivo Clustering

Marcos de Souza

mso2@cesar.school

Marcos de Souza

Bacharel em Ciência da Computação

Mestre em Ciência da Computação (UFPE)

Doutorando em Ciência da computação (UFPE)

DS & SE @ CESAR - 2017

Professor @ CESAR School - 2022

Linkedin: https://www.linkedin.com/in/marcos-de-souza-msc-893758aa/

Github: https://github.com/marcosd3souza

Lattes: http://lattes.cnpq.br/6137784444858483

João Canhoto

Técnico em Eletrônica (IFPE)

Bacharel em Engenharia da Computação (UFPE)

DS & SE @ CESAR - 2017

Professor @ CESAR School - 2022

LinkedIn: https://www.linkedin.com/in/jo%C3%A3o-lucas-canhoto-836670143/

Antônio Júnior

Bacharel em Ciência da Computação (UFAM)

Mestre em Ciência da Computação (UFAM)

DS & SE @ CESAR - 2017

Professor @ CESAR School - 2022

Linkedin: https://www.linkedin.com/in/antoniojsjunior/

Lattes: http://lattes.cnpq.br/6334165648715375

Gabriel Calazans

Graduação em Engenharia da Computação (UPE)

Mestrando em Engenharia da Computação (UPE)

SE @ CESAR - 2020

Professor @ CESAR School - 2022

Linkedin: https://www.linkedin.com/in/gabriel-c-159038141/

Github: https://github.com/gcalazansdm

Lattes: http://lattes.cnpq.br/7670369643263800

Aprendizado Supervisionado vs Não Supervisionado

Aprendizado Supervisionado / Não Supervisionado

ref: https://medium.com/opensanca/aprendizagem-de-maguina-supervisionada-ou-n%C3%A3o-supervisionada-7d01f78c

Aprendizado Supervisionado (Classificação)

Aprendizado Supervisionado / Não Supervisionado

ref: https://www.venturus.org.br/machine-learning-para-leigos/

Aprendizado Não-Supervisionado

- Exemplos fornecidos ao algoritmo não são acompanhados da **resposta esperada**
- Normalmente **agrupam** os exemplos semelhantes
- Extraindo as suas principais características (define um representante)

ref: https://www.cgee.org.br/documents/10195/734063/CGEE_Pan_Cie_Bra_2015-20.pdf

Figura 2 - Mapa da ciência da produção científica brasileira, Web of Science (2015-2020)

Fonte: Web of Science, dados extraídos em fevereiro de 2021.

ref: https://www.cgee.org.br/documents/10195/734063/CGEE_Pan_Cie_Bra_2015-20.pdf

Figura 8 - Rede dos 35 agrupamentos temáticos formada a partir da rede de similaridade semântica da produção científica com participação brasileira

Como podemos agrupar estas amostras de forma que faça sentido?

É razoável assumir - em problemas diversos - que amostras podem ser agrupadas 'naturalmente' por meio da similaridade de suas características?

Leão

Com Bico

Agrupamentos / Clustering

Como podemos agrupar estas amostras de forma que faça sentido?

É razoável assumir - em problemas diversos - que amostras podem ser agrupadas 'naturalmente' por meio da similaridade de suas características?

Sem Bico

Como podemos agrupar estas amostras de forma que faça sentido?

É razoável assumir - em problemas diversos - que amostras podem ser agrupadas 'naturalmente' por meio da similaridade de suas características?

Como podemos agrupar estas amostras de forma que faça sentido?

É razoável assumir - em problemas diversos - que amostras podem ser agrupadas 'naturalmente' por meio da similaridade de suas características?

Outras formas de agrupamento...

O resultado normalmente são agrupamentos (clusters) dos exemplos da base de treinamento que podem ser utilizados para predizer o grupo de um novo indivíduo.

Obs: a normalização não altera o arranjo natural.

O resultado normalmente são agrupamentos **(clusters)** dos exemplos da base de treinamento que podem ser utilizados para predizer o grupo de um novo indivíduo.

Exemplos de features:

idade x escolaridade latitude x longitude altura x peso x idade

Uma medida de distância (como a euclidiana) é utilizada para definir o quão semelhantes os dados são

Definição do problema de Agrupamentos / Clustering

Considerando um conjunto de objetos descritos através de múltiplos valores (atributos), o algoritmo de agrupamento/clustering deve:

- 1) Atribuir grupos a objetos
 - a) Maximizar a similaridade entre objetos de um mesmo grupo/cluster
 - b) Minimizar a similaridade entre objetos de grupos distintos
- 2) Atribuir descrição para grupos para os agrupamentos descobertos

Definição do problema de Agrupamentos / Clustering

Algoritmos de agrupamentos, ou **clustering**, tentam descobrir o **arranjo 'natural'** de amostras quaisquer através de uma **medida de semelhança** entre eles.

- Tarefa de agrupar os exemplos sem conhecer sua classificação prévia (conhecimento do especialista)
- Existem diversas abordagens na literatura para realizar essa atividade, neste curso iremos focar no K-Means

Aplicações:

- Sistemas de recomendação e redes sociais
- Biologia evolucionária, genética, bactérias.
- Data labelling

K-Means - Esquema

ref: https://stanford.edu/~shervine/l/pt/teaching/cs-229/dicas-aprendizado-nao-supervisionado

K-Means - Esquema de Agrupamento

ref: https://stanford.edu/~shervine/l/pt/teaching/cs-229/dicas-aprendizado-nao-supervisionado

K-Means

Particiona as observações em **k** grupos, nos quais cada observação vai pertencer ao grupo que, na média, é mais similar a ele

Prós

- Simples e eficaz
- Computacionalmente eficiente e escalável
- Gera protótipos que representam os grupos

Contras

- 'k' precisa ser determinado
- Sensível a ruído e outliers
- Não é determinístico
 - Pressupõe distribuição gaussiana

K-Means

ref: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

K-Means

ref: https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

K-Means em Python

Code use example

```
from sklearn.cluster import KMeans
# Cria o modelo
model = KMeans(n clusters=2).fit(X)
model.labels
# centroides
model.clusters centers
model.inertia
```


Hands On!

Experimentos em Machine Learning com Python

Hands On: Resultado Esperado

Silhueta: 0.7697826124517921

NMI: 1.0

Avaliação de Agrupamentos

Data Pipeline

Ref: https://laptrinhx.com/complete-life-cycle-of-a-data-science-machine-learning-project-3256392522/

mas antes ...

Avaliação de Agrupamentos

Principais características

- Alta densidade em um mesmo grupo (homogeneidade)
- Alta separabilidade entre grupos (heterogeneidade)

Outras características

Balanceamento de itens por grupo

O que seria um "bom" agrupamento?

Um resultado esperado de uma atividade de clustering é a geração de grupos

- com alta densidade (menor distância entre os pontos de um mesmo grupo)
- e maior separabilidade (maior distância entre os grupos).

Silhouette

Normalized Mutual Information (NMI)

ref: https://course.ccs.neu.edu/cs6140sp15/7_locality_cluster/Assignment-6/NMI.pdf

- Quanto maior (max=1) melhor.
- Avalia o quão "puro" são os grupos (baixa entropia)

Code


```
from sklearn import metrics
sil = metrics.silhouette score(X, labels, metric='euclidean')
# NMI
nmi = metrics.normalized mutual info score(y true, labels)
```


Elbow Method

Calcular o K-Means para diversos valores de k

Calcular a maior distância entre exemplos de um mesmo grupo

Calcular a maior distância entre exemplos de um mesmo grupo

Plotar a variação intra-clusters pelo número de clusters (k).

Procurar pelo 'cotovelo' da curva!

Number of clusters

O melhor valor de k será definido pelo ponto no qual um aumento no número de clusters não significa uma grande diminuição no diâmetro.

Number of clusters

Hands On!

Experimentos em Machine Learning com Python

Hands On: Resultado Esperado

best K: 7

Para continuar:

- StatQuest: K-Means clustering
- Clustering: K-Means and Hierarchical

Pessoas impulsionando inovação. Inovação impulsionando negócios.

NOSSO CONTATO

mso@cesar.org.br mso2@cesar.school

