2010 Mechanical Engineering

AI24BTECH11003 - Badde Vijaya Sreyas

1) The parabolic arc $y = \sqrt{x}$, $1 \le x \le 2$ is revolved around the axis. The volume of the

c) $\frac{3\pi}{4}$

d) $\frac{3\pi}{2}$

solid of revolution is

a) $\frac{\pi}{4}$

b) $\frac{\pi}{2}$

a) second order nonlinear ordinary differential equationb) third order nonlinear ordinary differential equation

2) The Blausius equation, $\frac{d^3f}{d\eta^3} + \frac{f}{2}\frac{d^2f}{d\eta^2} = 0$, is a

	r nonlinear ordinary d	•		
3) The value of	the integral $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$ is			
a) $-\pi$	b) $-\frac{\pi}{2}$	c) $\frac{\pi}{2}$	d) π	
4) The modulus	of the complex number	$\operatorname{er}\left(\frac{3+4i}{1-2i}\right)$		
a) 5	b) $\sqrt{5}$	c) $\frac{1}{\sqrt{5}}$	d) $\frac{1}{5}$	
b) is continuouc) is continuoud) is continuou	y = 2 - 3x us for all $\forall x \in R$ and ous for all $\forall x \in R$ excepstatically indeterminate	differentiable $\forall x \in R$ differentiable $\forall x \in R$ pt at $x = 3$ and differentiable	except at $x = \frac{2}{3}$	
a) ≤ -1	b) 0	c) 1	d) ≥ 2	
two points a) should alwa b) can be orie c) should alwa d) should be a 8) The state of	ays be along PQ nted along any direction ays be perpendicular to along QP when the book	on to PQ dy undergoes pure tractis given by $\sigma_x\frac{1}{2}$	relative velocity between the relative velocity between the velocity between the relative velocity between the ve	

a) 111.8	b) 150.1	c) 180.3	d) 223.6	2		
9) Which of the f	following statements is	INCORRECT?				
the shortest two link len	le states that for a plar and longest link length gths. f a mechanism are crea	ns cannot be less than	n the sum of the rema			
	hanism is an intermitte		t miks one at a time.			
	riterion assumes mobili		nism to be one			
10) The natural fre	equency of a spring-ma on the moon $(g_{moon} = \frac{1}{2})$	ass system on earth is		uency		
a) ω_n	b) $0.408\omega_n$	c) $0.204\omega_n$	d) $0.167\omega_n$			
11) Tooth interfere	nce in an external invo	lute spur gear pair ca	n be reduced by			
	enter distance between		,			
b) decreasing r		8 F				
c) decreasing pressure angle						
d) increasing n	umber of gear teeth					
12) For the stabilit following is T	y of a floating body, unRUE?	nder the influence of	gravity alone, which	of the		
a) Metacentre	should be below centre	of gravity				
	should be above centre					
	and centre of gravity m					
d) Metacentre and centre of gravity must lie on the same vertical line						

13) The maximum velocity of a one-dimensional incompressible fully developed viscous flow, between two fixed parallel plates, is $6\frac{m}{s}$. The mean velocity (in $\frac{m}{s}$) of the flow is

b) 3

c) 4

d) 5

a) 2