Module Interface Specification for Solar Water Heating Systems

Maya Grab

May 4, 2018

Contents

1 Introduction

The following document details the Module Interface Specifications for the implemented modules in a program simulation Solar Water Heating Systems. It is intended to ease navigation through the program for design and maintenance purposes.

Complementary documents include the System Requirement Specifications and Module Guide.

2 Module Decomposition

The following table is taken directly from the Module Guide document for this project.

Level 1	Level 2
Hardware-Hiding Module	
Behaviour-Hiding Module	Input Format Module Input Parameters Module Output Format Module Temperature ODEs Module Energy Equations Module Control Module
Software Decision Module	Sequence Data Structure Module ODE Solver Module Plotting Module

Table 1: Module Hierarchy

3 MIS of Control Module

3.1 Module Name: main.m

3.2 Uses

3.2.1 Imported Data Types

Uses Input Parameters Module Imports paramT

3.2.2 Imported Access Programs

Uses Input Format Module Imports load_params

Uses Energy Module Imports energy1, energy2, energy3

Uses Temperature Module Imports temperature1, temperature2, temperature3

Uses Event Module Imports event1, event2

Uses Plot Module Imports plots

3.3 Interface Syntax

3.3.1 Exported Access Programs

Name	In	Out	Exceptions
main	String (file)	Modifies the screen environment Modifies the output file to contain its state variables	Various

3.4 Interface Semantics

3.4.1 State Variables

t : column vector
T : column vector
Ew : column vector
Ep : column vector
Etot : column vector

3.4.2 Assumption

3.4.3 Invariant

None

3.4.4 Access Program Semantics

Input:

Main.m will accept a valid file name string which is accessible to the current Matlab path. The data in the provided file must comply with the format specifications required by the Input Format Module.

Exceptions:

Potential exceptions are invalid file names or paths. Other exceptions are possible within the Input Format Module due to inappropriate input.

Output:

Main will request the Output Format Module to produce a file with the same file name as the input string, with the extension .out. The file will contain the state variables of main at the end of the simulation.

Main will request the Plotting Module to produce energy and temperature graphs from its state variables.

4 MIS of Input Parameters Module

4.1 Module Name: ParamT

4.2 Interface Syntax

4.2.1 Exported Data Types

paramT := tuple of (

L: \mathbb{R} , length of tank

 $D: \mathbb{R}$, diameter of tank

 A_P : \mathbb{R} , phase change material surface area

 H_f : \mathbb{R} , specific latent heat of fusion

 A_C : \mathbb{R} , coil surface area

 T_C : \mathbb{R} , temperature of coil

 ρ_W : \mathbb{R} , density of water

 C_W : \mathbb{R} , specific heat capacity of water

 h_C : \mathbb{R} , convective heat transfer coefficient between coil and water

 h_P : \mathbb{R} , convective heat transfer coefficient between water and PCM

 T_{init} : \mathbb{R} , initial temperature of water

 t_{final} : \mathbb{R} , time at end of simulation

AbsTol: \mathbb{R} , absolute tolerance

RelTol: \mathbb{R} , relative tolerance

 V_T : \mathbb{R} , total volume of tank, including water

```
m_W: \mathbb{R}, mass of water \tau_W: \mathbb{R}, ODE parameter for water \eta: \mathbb{R}, ODE parameter E_{P\text{melt}}^{\text{init}}: \mathbb{R}, Energy when melting starts m_W^{\text{noPCM}}: \mathbb{R}, Mass of the water assuming there is no PCM \tau_W^{\text{noPCM}}: \mathbb{R}, ODE parameter assuming there is no PCM
```

4.3 Interface Semantics

Params is a data structure designed to store the input information entered by the Input Format module. The data structure also holds the few quantities that are derived from the input information.

5 MIS of Input Format Module

5.1 Module Name: load_params.m

5.1.1 Imported Data Types

Uses Input Parameters Module Imports paramT

5.2 Interface Syntax

5.2.1 Exported Access Programs

Name	In	Out	Exceptions
load_params	String (file)	paramT	Various (see appendix)

5.3 Interface Semantics

5.3.1 Access Program Semantics

Input:

load_params.m will accept a valid file name string which is accessible to the current Matlab path. The readable data in the given file must be numeric only, with all comments appropriately signaled.

Exceptions:

Data which does not comply with the data constraints specifications detailed in the SRS document for this project will yield one of the potential exceptions or warnings as listed in the appendix of this document.

Output:

When given valid data load_params.m will return a structure containing all inputted data under appropriate field names, in addition to some relevant calculated data fields.

6 MIS of Temperature Modules

6.1 Module Name: temperature1; temperature2;, temperature3

6.2 Interface Syntax

6.2.1 Exported Access Programs

Name	In	Out	Exceptions
temperature1	real vector struct	vector	Vector dimensions Data structure missing fields
temperature2	real vector struct	vector	Vector dimensions Data structure missing fields
temperature3	real vector struct	vector	Vector dimensions Data structure missing fields

6.3 Interface Semantics

6.3.1 Assumption

The Control Module and the Event Module handled the different cases correctly, ensuring that each temperature function necessarily receives valid numerical input for the case it is meant to handle.

6.3.2 Access Program Semantics

Input:

The Temperature Module functions require a time value, a vector containing at least two values, and a data structure containing the fields created by the Input Format Module.

Exceptions:

Potential exceptions may occur when given inappropriately sized vectors or a data structure lacking the required fields.

Output:

The Temperature Module will return a vector containing numerical solutions to the differential equations it governs.

6.3.3 Considerations

Note: the three exported access functions are implemented in three separate function files.

7 MIS of Energy Modules

7.1 Module Name: energy1, energy2, energy3

7.2 Interface Syntax

7.2.1 Exported Access Programs

Name	In	Out	Exceptions
energy1	matrix struct	vector	Matrix dimensions Data structure missing fields
energy2	matrix struct	vector	Matrix dimensions Data structure missing fields
energy3	matrix struct	vector	Matrix dimensions Data structure missing fields

7.3 Interface Semantics

7.3.1 Assumption

The Control Module and the Event Module handled the different cases correctly, ensuring that each energy function necessarily receives valid numerical input for the case it is meant to handle.

7.3.2 Access Program Semantics

Input:

The Energy Module functions require a matrix containing at least three columns of numerical data, and a data structure containing the fields created by the Input Format Module.

Exceptions:

Potential exceptions may occur when given an inappropriately sized matrix or a data structure lacking the required fields.

Output:

The Energy Module will return vectors containing numerical solutions to the differential equations it governs.

7.3.3 Considerations

Note: the three exported access functions are implemented in three separate function files.

8 MIS of Event Modules

8.1 Module Name: event1, event2

8.2 Interface Syntax

8.2.1 Exported Access Programs

Name	In	Out	Exceptions
event1	real vector struct	int	None
event2	real vector struct	real int int	Vector dimensions Data structure missing fields

8.3 Interface Semantics

8.3.1 Access Program Semantics

Input:

The Event Module functions require a numerical value, a vector containing at least three numerical values, and a data structure containing the fields created by the Input Format Module.

Exceptions:

Potential exceptions may occur when given inappropriately sized vectors or a data structure lacking the required fields.

Output:

The Event Module will return three numerical values.

8.3.2 Local Constants

direction = 0isterminal = 1

8.3.3 Considerations

Note: the two exported access functions are implemented in two separate function files.

9 MIS of Plotting Module

9.1 Module Name: plots

9.2 Uses

9.3 Interface Syntax

9.3.1 Exported Access Programs

Name	In	Out	Exceptions
plots	vector matrix vector vector	displays figures	Matrix dimensions Vector dimensions

9.4 Interface Semantics

9.4.1 Assumption

All vectors and matrices are handled correctly by the Control Module to be the correct size.

9.4.2 Access Program Semantics

Input:

The Plotting Module takes a matrix containing at least two columns of numerical data, and three different vectors containing numerical data.

Exceptions:

Potential exceptions may occur when given inappropriately sized matrices and vectors.

Output:

The Plotting Module produces figures of the plotted data it has received as input.

10 MIS of Output Format Module

10.1 Module Name: output

10.2 Interface Syntax

10.2.1 Exported Access Programs

Name In		Exceptions
Vo m Vo Vo	ng (file) ector atrix ector ector ector ector truct print	Matrix dimensions Vector dimensions s to file Data structure missing fields

10.3 Interface Semantics

10.3.1 Assumption

All vectors and matrices are handled correctly by the Control Module to be the correct size.

10.3.2 Access Program Semantics

Input:

The Output Format Module takes a string, a matrix containing at least two columns of numerical data, four different vectors containing numerical data, and a data structure as produced by the Input Format Module.

Exceptions:

Potential exceptions may occur when given inappropriately sized matrices and vectors or a data structure lacking the required fields.

Output:

The Output Format Module produces a file with the given string as a name, which contains a formatted list of data given by the input arrays and data structure.

11 Appendix

Table 2: Standard Input Variables

Var	Typical Value
L	1.5 m
D	$0.412 \mathrm{\ m}$
V_P	$0.05~\mathrm{m}^3$
A_P	$1.2~\mathrm{m}^2$
$ ho_P$	$1007~\rm kg/m^3$
$T_{ m melt}^P$	44.2 °C
C_P^S	$1760 \text{ J/(kg}^{\circ}\text{C})$
C_P^L	$2270 \text{ J/(kg}^{\circ}\text{C})$
H_f	$211600~\mathrm{J/kg}$
A_C	0.12 m^2
T_C	50 °C
$ ho_W$	1000 kg/m^3
C_W	$4186 \text{ J/(kg}^{\circ}\text{C)}$
h_C	$1000 \text{ W/(m}^2 {}^{\circ}\text{C})$
h_P	$1000 \text{ W/(m}^2 {}^{\circ}\text{C})$
T_{init}	40 °C
$t_{ m final}$	$50000 \mathrm{\ s}$
AbsTol	10^{-10}
RelTol	10^{-10}

Table 3: Possible Exceptions

Message ID	Error Message
input:L	error: Tank length must be > 0
input:diam	error: Tank diameter must be > 0
input: ρ_P	error: ρ_P must be > 0
input:Tmelt	error: $T_m elt$ must be > 0 and $< T_C$
input: C_{PS}	error: C_{PS} must be > 0
input: C_{PL}	error: C_{PL} must be > 0
input:Hf	error: Hf must be > 0
input:Ac	error: Ac must be > 0
input:Tc	error: Tc must be > 0 and < 100
$\mathrm{input:} \rho_W$	error: ρ_W must be > 0
input: C_W	error: C_W must be > 0
input:hc	error: hc must be > 0
input:hp	error: hp must be > 0
input:Tinit	error: Tinit must be > 0 and < 100
input:TcTinit	error: Tc must be > Tinit
input: Tinit Tmelt	error: Tinit must be < 0 Tmelt
input:tfinal	error: tfinal must be > 0