Indian Standard

CODE OF PRACTICE FOR DESIGN LOADS (OTHER THAN EARTHQUAKE) FOR BUILDINGS AND STRUCTURES

PART 1 DEAD LOADS — UNIT WEIGHTS OF BUILDING MATERIALS AND STORED MATERIALS

(Second Revision)

UDC 624·042:006·76

© Copyright 1989

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

CONTENTS

						Page
).	For	EWORD	•••	•••		3
i.	Sco	PE	•••	•••	•••	4
2.	Bui	LDING MATERIALS	•••	•••	•••	4
ΤΑ	BLE	1 Unit Weight of Building Ma	TERIALS			
	1.	Acoustical material	•••	•••	•••	4
	2.	Aggregate, coarse	•••	•••	•••	4
	3.	Aggregate, fine	•••	•••	•••	4
	4.	Aggregate, organic	•••	•••	•••	4
	5.	Asbestos	•••	•••	•••	4
	6.	Asbestos cement building pipes		•••	•••	4
	7.	Asbestos cement gutters		•••	•••	5
	8.	Asbestos cement pressure pipes		•••	•••	5
	9.	Asbestos cement sheeting	•••		•••	5
	10.	Bitumen	•••	•••	•••	5
	11.	Blocks	•••	•••	•••	5
	12.	Boards	•••	•••	•••	5
	13.	Bricks	•••	•••	•••	
	14.	Brick chips and broken bricks	•••		•••	,6 ,6
	15.	Brick dust (SURKHI)	•••	•••	•••	6
	16.	Cast iron, manhole covers	•••	•••	•••	7
	17.	Cast iron, manhole frames	•••	•••	•••	7
	18.	Cast iron pipes	•••	•••	•••	7
	19.	Cement		•••	•••	7
	20.	Cement concrete, plain		•••		7
	21.	Cement concrete, prestressed		•••	•••	8
	22.	Cement concrete, reinforced	•••	•••	•••	8
	23.	Cement concrete pipes	•••	•••		8
	24.	Cement mortar		•••	•••	8.
	25.	Cement plaster		•••		8
	26.	Cork				8
	27.	Expanded metal		•••		8
	28.	Felt, bituminous for waterproofi	ng and			9
	29.	Foam slag, foundry pumice			•••	9
	30.	Glass		•••	***	9
	31.	Gutters, asbestos cement	:		•••	9
	32.	Gypsum	•••	•••	•••	ý
	33.	Iron		•••	•••	9
	34.	Lime	•••			9
	35.	Linoleum	•••	•••		10
	36.	Masonry brick				10
	37.	Masonry, stone	•••	•••	•••	10
	38.	· ·	•••	•••	•••	10
	39.	•	•••	•••	•••	10
	40.	Mortar	•••	•••	• • • • • • • • • • • • • • • • • • • •	10
	41.	Pipes	•••	•••	•••	11
	42.	Plaster	•••	•••	•••	16
	43.	Sheeting	•••	•••	***	16
	44.	Slagwool	•••	•••	•••	17
		~			• • •	-1/

IS:8	75 (Part 1) - 1987				PAGE
45	. Soils and gravels	•••			17
46		•••	•••	•••	17
47	Stone	•••	•••	•••	17
48	. Tar, coal		•••	•••	25
49	· · · · · · · · · · · · · · · · · · ·	***	•••	•••	25
50.		•••	•••	•••	25
51.		•••	•••	•••	26
52.		, •••	***	•••	26
5 3.		•••	•••	•••	26
54.			•••	•••	26
55.		•••	# ●	•••	28
	JILDING PARTS AND COMPONENTS	•••	•••	•••	28
IABL	E 2 Unit Weights of Building I	PARTS OR CO	OMPONENTS		
1.	<u> </u>	•••	•••	·	20
2.	piani	•••	•••	•••	29
3.	- Tennoice	•••	•••	•••	29
4.	Damp-proofing	•••		•••	29
5.		•••	•••	•••	29
6.	-8	•••	•••	•••	29
7.	Flooring		•••	•••	29
8.	Roofing	•••	•••	•••	29
9.	Walling	•••	•••	•••	30
4 STO	re and Miscellaneous Materials		•••	•••	31
			•••	•••	31
APPEI	NDIX A UNIT WEIGHTS OF STORE	AND MISCEL	LANEOUS MATERIALS	· S	
1.	Agricultural and food products		•••	i.	
2.	Chemicals and allied materials	•••		•••	32
3.	Fuels	•••	•••	•••	33
4.	Manures	•••	•••	•••	33
5.	Metals and alloys	•••	•••	•••	34
6.	Miscellaneous materials		•••	•••	34
7.	Ores	•••	•••	•••	36
8.	Textiles, paper and allied materia	 als	•••	•••	37
	. I i amount matter	uis	•••		27

Indian Standard

CODE OF PRACTICE FOR DESIGN LOADS (OTHER THAN EARTHQUAKE) FOR BUILDINGS AND STRUCTURES

PART 1 DEAD LOADS — UNIT WEIGHTS OF BUILDING MATERIALS AND STORED MATERIALS

(Second Revision)

O. FOREWORD

0.1 This Indian Standard (Part 1) (Second Revision) was adopted by the Bureau of Indian Standards on 30 October 1987, after the draft finalized by the Structural Safety Sectional Committee had been approved by the Civil Engineering Division Council.

0.2 A building has to perform many functions satisfactorily. Amongst these functions are the utility of the building for the intended use and occupancy, structural safety, fire safety; and compliance with hygienic, sanitation, ventilation and daylight standards. The design of the building is dependent upon the minimum requirements prescribed for each of the above functions. The minimum requirements pertaining to the structural safety of buildings are being covered in this code by way of laying down minimum design loads which have to be assumed for dead loads, imposed loads, snow loads and other external loads, the structure would be required to bear. Strict conformity to loading standards recommended in this code, it is hoped, will not only ensure the structural safety of the buildings which are being designed and constructed in the country and thereby reduce the hazards to life and property caused by unsafe structures, but also eliminate the wastage caused by assuming unnecessarily heavy loadings.

0.3 This Indian standard code of practice was first published in 1957 for the guidance of civil engineers, designers and architects associated with planning and design of buildings. It included the provisions for the basic design loads (dead loads, live loads, wind loads and seismic loads) to be assumed in the design of buildings. In its first revision in 1964, the wind pressure provisions were modified on the basis of studies of wind phenomenon and its effect on structures, undertaken by the special committee in consultation with the Indian Meteorological Department. In addition to this, new clauses on wind loads for butterfly type structures were included; wind pressure coefficients for sheeted roofs both curved and sloping, were modified; seismic load provisions were deleted (separate code having

been prepared) and metric system of weights and measurements was adopted.

0.3.1 With the increased adoption of the code, a number of comments were received on provisions on live load values adopted for different occupancies. Simultaneously, live load surveys have been carried out in America and Canada to arrive at realistic live loads based on actual determination of loading (movable and immovable) in different occupancies. Keeping this in view and other developments in the field of wind engineering, the Sectional Committee responsible for the preparation of the standard has decided to prepare the second revision in the following five parts:

Part 1 Dead loads

Part 2 Imposed loads

Part 3 Wind loads

Part 4 Snow loads

Part 5 Special loads and loads combinations

Earthquake load is covered in a separate standard, namely IS: 1893-1984* which should be considered along with the above loads.

0.4 This standard deals with dead loads to be assumed in the design of buildings and same is given in the form of unit weight of materials. The unit weight of other materials that are likely to be stored in a building are also included for the purpose of load calculations due to stored materials.

0.4.1 This standard incorporates IS: 1911† published in 1967. The unit weight of materials incorporated in this standard are based on information available through published Indian standards and various other publications.

0.4.2 The values given in this standard have been rounded off in accordance with IS: 2-1960‡.

^{*}Criteria for earthquake resistant design of structures (third revision).

[†]Schedule of unit weights of building materials (first revision).

[‡]Rules for rounding off numerical values (revised).

1. SCOPE

1.1 This code (Part 1) covers unit weight/mass of materials, and parts or components in a building that apply to the determination of dead loads in the design of buildings.

1.1.1 The unit weight/mass of materials that are likely to be stored in a building are also specified for the purpose of load calculations along with angles of internal friction as appropriate.

Note 1 — Table 1 gives the unit weight mass of individual building materials in alphabetical order; Table 2 covers the unit weight mass of parts or components of a building; and Appendix A gives unit weight mass of stored materials.

2. BUILDING MATERIALS

2.1 The unit weight/mass of materials used in building construction are specified in Table 1.

	MATERIAL	Nominal Size or Thickness	Weight/	MASS	
		mm	kN	kg	per
	(1)	(2)	(3)	(4)	(5)
1.	Acoustical Material				
	Eelgrass	10	5.70×10^{-8} to 7.65×10^{-8}	0.58 to 0.78	m²
	Glass fibre	10	3.80×10^{-3}	0.39	,,
	Hair Mineral wool	10 10	19.10×10^{-3} 13.45×10^{-3}	1·95 1·37	•,
	Slag wool		2.65	270	m ^a
	Cork	-	2.35	240	,,
2.	Aggregate, Coarse				
	Broken stone ballast:				
	Dry, well-shaken		15.70 to 18.35	1 600 to 1 870	,,
	Perfectly wet Shingles, 3 to 38 mm		18:85 to 21:95 14:35	1 920 to 2 240 1 460	**
	Broken bricks:		14 33	1 400	*,
	Fine		14.20	1 450	
	Coarse		9.90	1 010	"
	Foam slag (foundry pumice)		6.85	700	,,
	Cinder*		7.85	800	,,
3.	Aggregate, Fine				
	Sand:				
	Dry, clean		15·10 to 15·70	1 540 to 1 600	,,
	River Wet		18.05	1 840	**
	Brick dust (SURKHI)		17·25 to 19·60 9·90	1 760 to 2 000 1 010	,,
	•		9 90	1 010	•,
4.	Aggregate, Organic				
	Saw dust, loose		1.55	160	,,
	Peat:				
	Dry		5.20 to 6.30	560 to 640	,,
	Sandy, compact		7.85	800	,,
	Wet, compact		13.35	1 360	,,
5.	Asbestos				
	Felt	10	0-145	15	m*
	Fibres:				
	Pressed	-	9-40	9 60	m ^s
	Sprayed	10	0.02	2	m²
	Natural	Terrept	29.80	3 0 40	m³
	Raw	_	5.90 to 8.85	600 to 900	,,

^{6.} Asbestos Cement Building Pipes (see under 41 'Pipes' in this table)

^{*}Also used for filling purposes.

	TABLE 1 UNIT	WEIG	GHT OF BUIL	DING MATERIALS—	Contd	
	MATERIAL		MINAL SIZE	\mathbf{w}	EIGHT/MASS	
		OR	THICKNESS mm	kN	kg	per
	(1)		(2)	(3)	(4)	(5)
7.	Asbestos Cement Gutters [see IS: 1626 (Part 2)-1980*]					
	Boundry wall gutters:					
	400 × 150 × 250 mm 450 × 150 × 300 mm		12·5 12·5	0 16 0 16	16 [.] 0	m ,,
	300 × 150 × 225 mm 275 × 125 × 175 mm		12·5 10·0	0·13 0·085	13 [.] 0 8 [.] 5	,,
	Valley gutters:		100	0 003	0.5	,,
	900 × 200 × 225 mm		12·5 12·5	0.245	24·8 16·1	"
	600 × 150 × 225 mm 450 × 125 × 150 mm		12.5	0·160 0·145	14 [.] 6	"
	$400 \times 125 \times 250 \text{ mm}$		12.5	0.130	13.2	,,
	Half round gutters: 150 mm		9· 5	0.043	4.4	,,
	250 mm 300 mm		9·5 9·5	0·079 0·087	8· 1 8·9	19 11
						**
8.	Asbestos Cement Pressure Pipes		·			
	(see under 41 'Pipes' in this table)					
9.	Asbestos Cement Sheeting (see IS: 459-1970†)					
	Corrugated (pitch = 146 mm) Semi-corrugated (pitch = 340 mm)		6 6	0·118 to 0·130 0·118 to 0·127	12·0 to 13·3 12·0 to 13·0	mª
	Plain		5	0.09	9.16	"
10.	Bitumen		_	0.102	10:40	m³
11	Blocks					
11.	Lime-based solid blocks			8.65 to 12.55	880 to 1 280	.,
	(see IS : 3115-1978‡)					"
	Hollow (open and closed cavity concrete blocks)					
	[see IS : 2185 (Part 1)-1979§] Grade A		_	1·41	144 .	,,
	(load bearing) Grade B			1·41 to 0·94	144 to 9 6	,,
	(load bearing) Grade C		_	1·41 to 0·94	144 to 96	,,
	(non-load bearing)				1 800	,,
	Solid concrete blocks			17·65	1 000	,,
12.	Boards					
	Cork boards:					_
	Compressed Ordinary		10 1 0	0·04 0·02	4 2	m²
	Fibre building boards (see IS: 1658-1977)		- -			• •
	(300-13//)	ſ	6	0.028 to 0.047	2.88 to 4.80	,,
	Medium hardboard	Ϋ́	8 10	0.038 to 0.063 0.047 to 0.078	3.84 to 6.40 4.80 to 8.00	,, ,,
		L	12	0.056 to 0.095	5·76 to 9·60	,,

^{*}Specification for asbestos cement building pipes and pipe fittings, gutters and gutter fittings and roofing fittings: Part 2 Gutters and gutter fittings (first revision).

[†]Specification for unreinforced corrugated and semi-corrugated asbestos cement sheets (second revision).

[‡]Specification for lime based block (first revision).

[§]Specification for concrete masonry units: Part 1 Hollow and solid concrete blocks (second revision). ||Specification for fibre hardboards (second revision).

TABLE 1	UNIT	WEIGHT	OF	BUILDING	MATERIALS -	Contd
---------	------	--------	----	----------	-------------	-------

MATERIAL	Nominal Size or Thickness	WE	Weight/Mass			
	mm	kN	kg	per		
(1)	(2)	(3)	(4)	(5)		
Standard hardboard	{ 3 4 5	0.024 to 0.035 0.031 to 0.047 0.039 to 0.059	2.40 to 3.60 3.20 to 4.80 4.00 to 6.00	m*		
Tempered hardboard	£ 6	0.047 to 0.071	4:80 to 7:20	,,		
Fire insulation board (see 1S: 3348-1965*) Fibre insulation board, ordinary or flame-retardant type, bitumen-bounded fibre insulation board	1 9 9 12 18 25	0.071 to 0.106 0.035 0.047 0.071 0.098	7-20 to 10-80 3-6 4-8 7-2 10-0	,, ,, ,,		
Gypsum plaster boards (see IS: 2095-1982†)	$\begin{cases} 9.5 \\ 12.5 \\ 15 \end{cases}$	0.069 to 0.098 0.093 to 0.147	7:0 to 10:0 9:5 to 15:0	,,		
Insulating board (fibre) Laminated board (fibre)	12 6	0°110 to 0°154 0°034 0°034	11·25 to 15·75 3·5 3·5	,, ,,		
Wood particle boards (see IS: 3087-1985‡) Designation:				,,		
FPSI FPTH XPSO XPTU Wood particle boards for insulation purposes (see IS: 3129-19858)	· = = = = = = = = = = = = = = = = = = =	4.90 to 8.85 4.90 to 8.85 4.90 to 8.85 4.90 to 8.85 3.90	500 to 900 500 to 900 500 to 900 500 to 900 400	m³		
High density wood particle boards (see IS: 3478-1966)						
Type 1, Grade A Type 1, Grade B Type 2, Grade A Type 2, Grade B	 	0·117 0·088 0·117 0·088	12 9 12 9	m²		

- Note 1 Density of medium hardboard varies from 350 to 800 kg/m².
- Note 2 Density of normal hardboard varies from 800 to 1 200 kg/m³.
- Note 3 Density of tempered hardboard varies according to treatment. The actual value may be had from the manufacturers.

Note 4 — All the three types of hardboards are manufactured to width of 12 m.

13. Bricks

Common burnt clay bricks (see IS: 1077-1987)	_	15·70 to 18·85	1 600 to 1 920	m³
Engineering bricks		21.20	2 160	
Heavy duty bricks (see IS: 2180-1985**)	—	24.50	2 500	"
Pressed bricks	_	17.25 to 18.05	1 760 to 1 840	
Refractory bricks	_	17.25 to 19.60	1 760 to 2 000	,,
Sand cement bricks	_	18.05	1 840	11
Sand lime bricks		20.40	2 080	•••

9.90

14. Brick Chips and Broken Bricks (see under 2 'Broken bricks' in this table)

15. Brick Dust (SURKHI)

*Specification for fibre insulation boards.

(Continued)

1 010

[†]Specification for gypsum plaster boards (first revision).
†Specification for wood particle boards (medium density) for general purposes (first revision).

Specification for low density particle boards (first revision).

Specification for high density wood particle boards.

Specification for common burnt clay building bricks (fourth revision). **Specification for heavy-duty burnt clay building bricks (second revision).

	UNIT WEIGHT OF BUIL		IGHT/MASS	
MATERIAL	Nominal Size or Thickness		<u>~_</u>	
	mm	kN	kg (4)	per (5)
(1)	(2)	(3)	(4)	(3)
6. Cast Iron, Manhole Covers (see IS: 1726*)				
Double triangular (HD)	500 560	1·16 1·37	118 140	Cover
Circular (HD)	500 500 560	1·16 1·37	118 140	••
Circular (MD)	500	0.57	58 64	,,
Rectangular (MD) Rectangular (LD):	560 —	0.63 0.78	80	,,
Single seal (Pattern 1) (Pattern 2) Double seal Square (LD) :	 	0·23 0·15 0·28	23 15 29	** **
Single seal	455	0.13	13	,,
Double seal	610 455 610	0·25 0·23 0·36	26 23 37	,, ,,
7. Cast Iron Manhole Frames (see IS: 1726*)				
Double triangular (HD)	500	1.09	111	Fram
Circular (HD)	560 500	1·1 3 0·83	115 85	,, ,,
Circular (MD)	560 500	1·06 0·57	108 58	,, ,,
Rectangular (MD) Rectangular (LD):	560	0·63 0·63	64 64	,,
Single seal (Pattern 1)		0.15	15	,,
(Pattern 2) Double seal Square (LD):		0·10 0·23	10 23	"
Single seal	455 610	0.07	7	,,
Double seal	455 610	0·13 0·15 0·18	13 15 18	,, ,,
8. Cast Iron Pipes (see under 41 'Pipes' in thi	s table)			
9. Cement (see IS : 269-1976†)				
Ordinary and aluminous Rapid-hardening		14·10 12·55	1 440 1 280	mª
20. Cement Concrete, Plain			7/0	
Aerated No-fines, with heavy aggregate No-fines, with light aggregate With burnt clay aggregate With expanded clay aggregate With clinker aggregate With pumice aggregate With sand and gravel or crus	e — — — — — — — — — — — — — — — — — — —	7·45 15·70 to 18·80 8·65 to 12·55 17·25 to 21·20 9·40 to 16·50 12·55 to 17·25 5·50 to 11·00 22·00 to 23·50	760 1 600 to 1 920 880 to 1 280 1 760 to 2 160 960 to 1 680 1 280 to 1 760 560 to 1 120 2 240 to 2 400	,, ,, ,, ,, ,,
natural stone aggregate With saw dust With foamed slag aggregate	_	6·30 to 16·50 9·40 to 18·05	640 to 1 680 960 to 1 840	

†Specification for ordinary and low heat Portland cement (third revision).

		TABLE 1 UNIT	WEIGHT OF B	UILDING MATERIALS —	Contd	
	MATERIAL		NOMINAL SIZE	W	eiGht/Mass	
			or Thickness mm	kN	kg	per
	(1)		(2)	(3)	(4)	(5)
21.	Cement Concrete (conforming to	, <i>Prestressed</i> o IS: 1343-1980*)	_	23:50	2 400	m³
22.	Cement Concrete	, Reinforced				
	With sand and grant natural stone a					
	With 1 percent	steel	_	22:75 to 24:20	2 310 to 2 470	**
	With 2 percent With 5 percent	steel		23.25 to 24.80 24.80 to 26.50	2 370 to 2 530 2 530 to 2 700	,, ,,
23.	Cement Concrete (see under 41 this table)	Pipes 'Pipes' in				
24.	Cement Mortar		_	20.40	2 080	,,
25.	Cement Plaster			20.40	2 080	,,
26.	Cork			2.35	240	**
27.	Expanded Metal					
	(conforming to	o IS: 412-1975†)				
Re	eference	Size of Mesh, Nom	inal			
	No.	SWM	LWM			
	•	mm	mm			
	1 2	100 100	250 250	0:030 0:024	3.08 2.47	m²
	3	100	250	0.016	1.60	,, ,,
	4	75 75	200 200	0-042	4.28	,,
	5 6	75 75	200	0·032 0·021	3·29 2·14	,,
	7	40	115	0 ·080	8.02	,, ,,
	8 9	40 40	115 75	0·060 0·060	6·17 6·17	,,
	10	40	75	0.028	2.85	"
	11	40	115	0.039	4.01	,,
	12 13	40 40	75 115	0.039	4.01	,,
	14	40	115 75	0·020 0·020	2·04 2·04	,,
	15	25	75	0.054	5.53	"
	16 17	25 25	75 75	0·038 0·028	3.93	,,
	18	25	75	0.028	2·81 2·19	,,
	19 20	20 20	60	0.070	7.15	,,
	21		50	0.070	7·15	,,
	22	20 20	60 50	0·050 0·050	5·09	,,
	23	20	60	0.036	3 63	"
	24 25	20 20	50 60	0·036 0·021	3.63	,,
	26	20	50	0.021	2·18 2·18	,,
	27 28	12:5	50	0.020	5.04	,,
	28 29	12·5 12·5	40 50	0 [.] 050 0 [.] 040	5·04 4·00	**
	30	12.5	50	0.030	3.13	",
	31	12.5	40	0.030	3.13	,,
	32 33	12·5 12·5	50 40	0.025	2.50	,,
	34	10	40 40	0·025 0·050	2·50 5·98	**
	35	10	40	0.035	3.59	,, ,,
	36	10	40	0.028	2.87	,,

^{*}Code of practice for prestressed concrete (first revision).

[†]Specification for expanded metal steel sheets for general purposes (second revision).

MATERIAL		NOMINAL SIZE	W	eight/Mass	
		or Thickness mm	kN	kg	per
(1)		(2)	(3)	(4)	(5)
Reference	Size of Me	esh, Nominal			
No.	SWM	LWM			
37 38 39 40	mm 9.5 9·5 9·5	mm 28·5 28·5 28·5 25	0·050 0·028 0·020 0·074	5·19 2·81 2·09 7·55	m ,,
41 42 43 44	6 6 5 3	25 25 20 15	0·048 0·038 0·050 0·041	4 88 3 9 0 5 01 4 28	" " " " " "
3. Felt, Bitumine and Damp- (see IS : 1.		ing			
Fibre base:					
Type 1 (U Type 2 (Se	nderlay) elf-finished felt):		8·34 × 10 ⁻⁸	0.82	••
Grade 1 Grade 2 Hessian base		-	21.48×10^{-8} 30.21×10^{-8}	2·19 3·08	"
Type 3 (Self-finished felt):				
Grade 1 Grade 2			21.87×10^{-3} 35.70×10^{-8}	2·23 3·64	,,

e of felt and not of the ingredients determined from a physical analysis of the finished material.

29.	Foam Slag, Foundry Pumice	-	6.85	700	m³
30.	Glass (see IS : 2835-1977†)				
	Sheet	2.0 2.5 3.0 4.0 5.5 6.5	0·049 0·062 0·074 0·098 0·123 0·134 0·167	5·0 6·3 7·5 10·0 12·5 13·7 17·0	>9 9> 9> 9> 9> 9> 9> 9> 9> 9> 9> 9> 9> 9
31.	Gutters, Asbestos Cement (see under 7 'Asbestos cement gutter' in this table)	,			
32.	Gypsum				
	Gypsum mortar Gypsum powder		11·75 13·89 to 17·25	1 200 1 410 to 1 760	mª
33.	Iron				
	Pig Gray, cast White, cast Wrought	=	70:60 68:95 to 69:90 74:30 to 75:70 75:50	7 200 7 030 to 7 130 7 580 to 7 720 7 700	", ", ",
34.	Lime				
	Lime concrete with burnt clay aggregate	-	18.80	1 920	**

^{*}Specification for bitumen felts for waterproofing and damp-proofing (third revision).

[†]Specification for flat transparent sheet glass (second revision).

	MATERIAL	Nominal Size or Thickness	W	EIGHT/MASS	
		mm	kN	kg	per
	(1)	(2)	(3)	(4)	(5
	Lime mortar	_	15.70 to 18.05	1 600 to 1 840	n
	Lime plaster	_	17.25	1 760	,,
	Lime stone in lumps, uncalcined	_	12:55 to 14:10	1 280 to 1 440	,,
	Lime, unslaked, freshly burnt in pieces		8 60 to 10 20	880 to 1 040	9:
	Lime slaked, fresh	******	5.70 to 6.30	580 to 640	,,
	Lime slaked, after 10 days Lime, unslaked (KANKAR)		7·85 11·55	800 1 180	, ,
	Lime, slaked (KANKAR)	_	10.00	1 020	,,
	Linoleum (see IS : 653-1980*)				
		ς 4 ·4	0.056 9	5.8	n
	Sheets and tiles	3.2	0.040 2	4.1	,,
		2·0 1·6	0·026 5 0·021 5	1·7 2·2	,,
	Manager Polish	Ç- V			,,
	Masonry, Brick		10.05	1.000	
	Common burnt clay bricks Engineering bricks		18·85 23·55	1 920 2 400	n
	Glazed bricks	_	20:40	2 080	"
	Pressed bricks	- '	22.00	2 240	,
	Masonry, Stone				
	Cast		22.55	2 300	,
	Dry rubble		20.40	2 080	,
	Granite ashlar	· <u>—</u>	25· 9 0 23·55	2 640 2 400	,
	Granite rubble Lime stone ashlar	<u></u>	25·10	2 560	•
	Marble dressed	_	26.50	2 700	,
	Sand stone		22.00	2 240	,
	Mastic Asphalt	10	0.215	22	n
•	Metal Sheeting, Protected Galvanized Steel Sheets, Plain and Corrugated (see IS: 277-1985†	•)			
		1.60 1.26	0.131	13:31	,,
	Class 1	₹ 1.00	0·104 0·084	10·56 8·60	,,
		0.80	0.069	7.03	,
		(0.63	0.056	5.70	,
		(1.60	0.129	13.16	•
	Class 2	1·25 1·00	0·102 0·083	10:41	> :
		0.80	0·067	8·45 6·88	>
		0.63	0.054	5.55	,
		(1·60	0.128	13.01	,
	Ci. A	1.25	0.101	10.26	•
	Class 3	₹ 1.00	0·081 0·066	8·30 6·73	,
		0.80	0.023	6·73 5·40	,
		(1.60	0.127	12·94	,
		1.25	0.100	10.19	,
	Class 4	₹1.00	0.081	8.22	,
		(0.63	0·065 0·052	6·66 5·32) ;
	Mortar				
	Cement		20.40	2 080	n
	Gypsum		11.80	1 200	,
	Lime		15 [.] 70 to 18 [.] 05	1 600 to 1 840	,

	TABLE 1 UN	IT WEIGHT OF BUII	LDING MATERIALS — C		
MA	TERIAL	Nominal Size or Thickness	Weight/Mass		
		mm	kN	kg	per
(1)	(2)	(3)	(4)	(5)
41. Pipes					
		50 60	0.032 to 0.034 0.032 to 0.043	3·3 to 3·5 3·3 to 4·4	m³
		80	0.051 to 0.054	5.2 to 5.5	,,
Asbe	stos cement pipes	₹ 50	0·052 to 0·060 0·058 to 0·065	5·3 to 6·1 5·9 to 6·6	,,
[se	re IS: 1626 (Part) 1-1980*]	100	0.072 to 0.086	7·3 to 8·8	"
		L 150	0.086 to 0.108	8.8 to 11.0	**
		50	0·056 0·067	5·7 6·8	91
		80 100	0.090	9.2	" "
Asbe	stos cement pressure) 125	0.139	14.2	"
pip	es (see IS: 1592-1980†)	150 200	0·175 0·264	17·8 26·9	**
		250	0.380	38 8	"
		(300	0.539	55	,,
	iron pipes:				
Ra	inwater pipes see IS: 1230-1979‡)				
'	See 15 . 1230 17774)	(550	0·073 0·108	7·5 11·0	pipe
		√75 √100	0.137	14.0	"
Sta	indard overall length	125	0.196	20.0	,,
1	'8 m with socket	L 150	0.255	26.0	,,
		50 75	0·064 0·093	6·5 9·5	"
Sta	indard overall length	₹.160	0.123	12.5	"
	5 m with socket	125 150	0·172 0·230	17·5 23·5	**
	sure pipes for water, s and sewage:	(130	0 230	23 3	**
a)	Centrifugally cast (see IS: 1536-1976§)				
	i) Socket and spigot pipes:				
	Barrel:	(80	1.144	14.7	m
		100	1·144 0·182	18.6	99
		125	0.237	24·2 30·1	,,
		150	0·295 0·432	44·0	"
		250	0.582	59·3	"
	Class LA	∫ 300 ≺ 350	0·750 0·944	76·5 96·3	"
	Class LA	400	1·146	116 [.] 9	"
		450	1:383	141 [.] 0 165 [.] 2	**
		500 600	1·620 2·156	219.8	"
		700	2.778	283·2	,,
		∫ 750 ∫ 80	3·111 0·157	3 17·2 16·0	**
		100	0.201	20.5	,,
		125	0 259	26.4	,,
		150 200	0∙326 0∙472	33·2 48·1	,,
		₹ 250	0.637	65.0	,,
	Class A	300	0·824 1·030	84·0 105·0	,,
		400	1.262	128· 7	"
		450	1.530	156·0 181·0	,,
		į 500	1.775	181.0	,,

^{*}Specification for asbestos cement buildings pipes and pipe fittings, gutters and gutter fittings and roofing fittings: Part I Pipes and pipe fittings (first revision).

†Specification for asbestos cement pressure pipes (second revision).

‡Specification for cast iron rainwater pipes and fittings (second revision).

§Specification for centrifugally cast (spun) iron pressure pipes for water, gas and sewage (second revision).

		LDING MATERIALS — Contd	_	
MATERIAL	NOMINAL SIZE	Weight/Mas	S	
	or Thickness mm	kN	kg	per
(1)	(2)	(3)	(4)	(5)
(1)		2·367	241.4	
Class A	∫ 600 √ 700	3.056	311.6	m
Class A	750	3.422	348.9	,,
	(80	0.172	17:3	,,
	100	0.216	22.0	,,
•	125	0.281	28.7	,,
	150	0.352	35.9	,,
	200 250	0·511 0·692	52·1	,,
Class B	300	0.896	70·6 91·4	,,
Class B	350	1.122	114.5	,,
	400	1:368	139.5	"
	450	1.657	169.0	,,
	500	1.929	196.7	,,
	600	2:578	262.9	,,
	700 750	3·317 3:733	338·2 380·6	,,
	(730 (80	0.054	5.5	Soc
	100	0.069	7:1	,,
	125	0.090	9.2	,,
	150	0.113	11.5	,,
	200	0.165	16.8	,,
	250	0·225 0·292	22·9 29·8	,,
Sockets for Class LA, Class A and Class B barrels		0.368	37.5	,,
and Class B barreis	350 400	0.454	46.3	,,
	450	0.549	56.0	,,
	500	0.647	66.0	,,
	600	0.876	89.3	,,
	700	1.145	116.8	,,
ii) Flanged pipe with screwed flanges:	(750	1·292	131.7	,,
Barrel:				
Class A	80 to 300	Same as for centrifugally spigot pipes, Class A	cast socker	t an
Class B	80 to 300	Same as for centrifugally spigot pipes, Class B	cast socke	t an
	ſ 80	0.042	4.3	Fla
	100	0.049	5.0	,
_, , , , ,	125	0.065	6.6	,
Flanges for Class A and Class B barrels	₹ 150	0.080	8.2	,
Class D varreis	200	0·112 0·144	11·4 14·7	,
	300	0.182	18.6	,
Vertically cast socket and spigot pipes (see IS: 1537-1976*)	(200			,
Barrel:	(80)			_
	to }	Same as for centrifugally ca	st socket and	l spig
	750) 800	pipes, Class A 3.82	389	r
Class A	\$ 500	4.65	474	,
	1 000	5.59	570	,
	1 100	6.59	672	,
	1 200	7.67	783	,
	{ 1 500	11.98 Same as for centrifugally spigot pipes, Class B	1 222 cast socke	t an
	800	4·15	423	n
Class B	1 900	5.07	516	,
	1 000	6.07	619	,
	1 4 400	7.23	739	,
	1 100			,
	1 100 1 200 1 500	8·35 13·07	851 1 333	,

¹²

TABLE 1 UNIT	WEIGHT OF BU	JILDING MATERIALS — Contd			
MATERIAL	Nominal Size or Thickness	Weight/Mass			
1	or Thickness mm	kN	kg	per	
(1)	(2)	(3)	(4)	(5)	
(1)	$\begin{cases} 80 \\ to \end{cases}$	Same as for centrifugally cast spigot pipes, Class A and Class	socket		
Socket for Class A and Class B barrels	750 J 800 900 1 000 1 100 1 200	1·45 1·79 2·18 2·60 3·07	147 182 222 265 313	Socket	
c) Sand cast (flanged pipes):	(1 500	4·91	501	,,	
Barrel:					
24	$ \begin{cases} 80 \\ to \\ 750 \end{cases} $	Same as for centrifugally cast spigot pipes, Class A	socket	and	
Class A	800 to 1 500	Same as for vertically cast spigot pipes, Class A	socket	and	
Class B	80 to 750	Same as for centrifugally cast spigot pipes, Class B	socket	and	
C 2	800 to 1 500	Same as for vertically cast socke pipes, Class B	t and s	spigot	
	80	0.036	3.7	Flange	
	100	0.041	4.5	,,	
	125	0.052	5.3	**	
	150	0·066 0·091	6·7 9·3	,,	
	200	0.117	12.0	**	
	300	0.145	14 8	,,	
	350	0.186	19.4	,,	
	400	0.229	23.4	,,	
Flanges for Class A and	450	0.250	26.5	,,	
Class B Barreis	500	0·315 0·431	32.1	,,	
	600	0.587	44·0 59·9	,,	
	700 750	0.685	69.8	"	
	800	0.792	80.8	,,	
	900	0.928	94 6	"	
	1 000	1·18	120.0	,,	
	1 100	1.38	139.0	91	
	1 200	1.70	173.0	19	
	(1 500	2.71	276.2	**	
Concrete pipes (see IS: 458-1971*)					
	ر 80	0.19	19	m	
	100	0.22	22	,,	
Class NID4 / manada fa ana 4	150	0.30	31	**	
Class NP1 (unreinforced non-pressure pipes)	250 300	0·40 0·69	41 70	**	
non-pressure pipes)	350	0.84	86	••	
	400	0.95	97	,, ,,	
	450	1·17	119	1,	
	(80	0.196	20		
	100	0.235	24	,,	
	150	0.324	. 33	,,	
	250	0.510	52	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Class NID2 (mail & mail and m	300	0.736	75	**	
Class NP2 (reinforced concrete, li		0· 9 02	92 104	**	
duty, non-pressure pipes)	400 450	1·02 1·26	104 128	**	
	500	1.38	141	**	
	600	1.89	193	"	
	700	2.19	223	,,,	
	800	2.81	287	**	
	L 900	3·51	358	•,	

^{*}Specification for concrete pipes (with and without reinforcement) (second revision).

TABLE 1 UNIT V	VEIGHT OF BUI	LDING MATERIALS	— Contd	
	Nominal Size or Thickness	Weight/Mass		
•	mm	kN	kg	per
(1)	(2)	(3)	(4)	(5)
(1)	(1 000	4.30	438	m
	1 100	5.15	525	,,
Class NP2 (reinforced concrete, light	1 200	6.09	620	**
duty, non-pressure pipes)	1 400	8·18 9·9 3	834 1 013	,,
	1 600 1 800	12·58	1 283	"
	-	2:35	240	
	350 400	2 63	269	"
	450	2.91	297	"
Class NP3 (reinforced concrete, heavy duty, non-pressure pipes)	500	3.19	325	,,
	vv 600	4.02	410	**
	79	4·61 5 92	470 604	"
	900	7:39	754	••
	1 000	8.13	829	,,
	j 1 100	10.34	1 054	,,
	[1 200	11.18	1 140	,,
	6 80	0.196	20	,,
	100	0.235	24	,,
Class P1 (reinforced concrete pressure opipes safe for 20 MPa pressure tests)	150	0.324	33	,,
	250 300	0.510	52 75	**
	350	0 [.] 736 0 [.] 902	73 92	,,
	400	1.02	104	"
	ire { 450	1.26	128	,,
	s) 500	1.38	141	**
	60 0 700	1·89 2·19	193 223	,,
	800	2.81	223 287	**
	900	3.51	358	"
	1 000	4.30	437	,,
	1 100 [1 200	5·15 6·09	525 620	,,
	(1 200 (80	0.196	20	,,
	100	0.235	24	"
	150	0.324	33	,,
Class P2 (reinforced concrete pressu	re 250 300	0.608	63 103	**
pipes safe for 40 MPa pressure	350	1·01 1·31	103	**
tests)	400	1.67	170	"
	450	1.84	188	,,
	500	1.56	261	,,
	(600	3.50	326	**
	(80	0.196	20	,,
Class P3 (reinforced concrete pressu	100 ire 150	0·235 0·324	24 33	,,
pipes safe for 60 MPa pressure tests	s) { 250	0.736	33 75	٠,
	300	1.12	117	"
	350	1.65	168	**
Lead pipes	(400	2.04	204	,,
[see 1S : 404 (Part 1)-1977*]				
(service and distribution pipes to be underground):	e laid			
and sign of the si	C10	0.010	4.0=	
	10 15	0·018 0·031	1·87 3·13	**
	20	0.042	4·24	,,
For working pressure 40 MPa	₹ 25	0.060	6.11	"
	32	0.074	7:50	,,
	40 50	0.091	9.28	,,
	•	0.142	14.45	**
Specification for lead pipes: Part 1 F	or other than cher	nical purposes (second	revision).	
			(Coi	ntinued

AATERIAL	VEIGHT OF BUILDING MATERIALS — Co. Nominal Size Weight		GHT/MASS
MALEKIAL	OR THICKNESS	kN	kg per
	mm	(3)	(4) (5)
(1)	(2)	0.022	2·26 m
	(10 15	0.038	3.83
	20	0.050	5.11 ,,
or working pressure 70 MPa	1 25	0.069	7·03 ,, 12·8 0
•	32 40	0·126 0·175	17.82 ,,
100 MD-	10	0.029	2 .9 6 ,,
or working pressure 100 MPa	15	0 048	4·88 ,,
	20	0.067	6 [.] 86 ,,
(s	ee Note below)	0.105	10.75 ,,
()	25 ee Note below)	0 103	
ervice pipes to be fixed or			
laid above ground:			
into acceptance	(10	0.014	1.45 ,,
	15	0.021	2.15 ,,
	20	0.027	2·74 3·67
for working pressure 40 MPa	₹ 25 32	0·036 0·059	6.00
	40	0.091	9.28
	50	0.142	14.45 ,
	[10	0.018	1·81 2·47
	15	0·024 0·030	2.11
For working pressure 70 MPa	20 25	0 ·069	7.03
Lot MoternR biesente to Mita	32	0.126	12.80 ,
	Ĺ40	0.175	17.82 ,
	10	0·029 0·048	2·96 4·88
For working pressure 100 MPa	15 20	0.048	6.86
	see Note below)		
•	25 see Note below)	0.102	10.75
	see Itoto below y		
Cold water distribution pipes to be fixed or laid above ground:			
oo into or into a o o o o o o o	(10	0.014	1.45
	15	0.021	2·15 2·74
- 26.360-	20	0·027 0·036	3.67
For working pressure 25 MPa	25 32	0.048	4.85
	i 40	0.067	6.79
	(50	0.084	8:53
	(10	0 [.] 014 0 021	1·45 2·15
	15	0.021	2:74
For working pressure 40 MPa	\ \frac{20}{25}	0.036	3.67
1 of Holking pressure to mit	32	0.059	6·00 9·2 9
	40 50	0·0 9 1 0·142	14·4 5
	-		
Hot water distribution pipes to fixed or laid above ground:	De		
	ſ10	0.012	1.50
	i 15	0.023	2.34
	20	0·031 0·641	3·13 4·13
For working pressure 20 MPa	₹ 25 32	0.062	6.30
	40	0.082	8.38
	50	0.142	14·45
TE — The maximum working p	-		

TABLE 1 UNI	T WEIGHT OF BU	ILDING MATERIALS - Contd		
MATERIAL	Nominal Size	WEIGHT/MASS		
	or Thickness mm	' kN	kg	per
		(3)	(4)	(5)
(1)	(2)	0:015	1.50	m
	(10 15	0.013	2.34	,,
25 MDo	√ 20 √ 20	0.045	4.56	,,
For working pressure 35 MPa	25	0.082	8.69	,,
	32	0.132	13.51	,,
	f 50	0·05 0	5:07	91
Soil, waste, and soil and waste		0.073	7·48 9·88	,,
ventilation pipes	1 100	0.097	16.36	,,
Y VIIVIIII E E	Ĺ 150	0.160	2.09	**
	<u> </u>	0.020	2.56	3 0
	25	0·025 0·032	3.28	,, ,,
Flushing and warning pipes	32 40	0.032	3.95	**
	50	0.049	5.07	**
	Ç			
Gas pipes:	(10	0.008	0.81	,,
	15	0.017	1.70	"
	20	0.025	2.60	**
Heavy weight gas pipes	₹ 25	0.034	3·44 4·57	**
licat) weight gas per	32	0.045	6.27	**
	40	0·061 0·071	7.20	", "
	(50	•	0.81	
	10 15	0·008 0·012	1.21	. **
Λ.	20	0.020	2.09	,,
Light weight gas pipes	₹ 25	0.029	2.99	**
Light weight gas pipes	32	0.037	3.74	**
	40	0.047	4·76 5 ·87	**
	(50	0.028		**
	[100	0:137	14 22	,,
	150	0·216 0·324	33	**
	200	0.412	42	"
	(see Note			
Stoneware, salt-glazed pipes	₹ 250	0.510	52	19
(see IS: 651-1980*)	j 300	0.775	79 100	**
•	350	0 [.] 980 1·26	100 128	97
	400 450	1.44	147	5 1
	500	1.77	180	,,
	600	2.35	240	,,
	•			
42. Plaster				
(see also 6 'Finishing' in Table	2)			
·		20.40	2 080	m³
Cement Lime	=	17.25	1 760	**
Acoustic	10	0.078	8	m²
Anhydrite	10	0.206	21 29	**
Barium sulphate	10	0·284 0·088	9	"
Fibrous	10 10	0.186	19	"
Gypsum	10	- · · · ·		
43. Sheeting				
Asbestos (see under 9 'Asbestos		•		
cement sheeting' in this table)	•			
Galvanized iron (see under 39 '1	Metal			
sheeting, protected' in this table	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Glass (see under 30 'Glass' in th	, is table)			
		0.007	0.7	**
Plywood	1	0 001	- •	•
NOTE - This is non-preferred s	ize and its manufact	ure is permitted for a limited period.		
*Specification for salt-glazed ston	eware pipes and fitti	ngs (Jourin revision).	, ,	Y 1 Y
			((Continued)

	MATERIAL	Nominal Size			
		or Thickness mm	kN	kg	pe
	(1)	(2)	(3)	(4)	(5
ı	Slagwool		2.65	270	m
•	Soils and Gravels		15.60	1 (00	
	Aluvial ground, undisturbed Broken stone ballast:		15.69	1 600	,,
	Dry, well-shaken		15.70 to 18.35	1 600 to 1 870	
	Perfectly wet	_	18·85 to 21·95	1 920 to 2 240	,
	Chalk		15·70 to 18·85	1 600 to 1 920	,
	Clay:				
	China, compact		21.95	2 240	• •
	Clay fills:		4.5.0	4 0 4 0	
	Dry, lumps		10·20 14·10	1 040 1 440	*1
	Dry, compact Damp, compact		17.25	1 760	,,
	Wet, compact	_	20:40	2 080	,
	Undisturbed Undisturbed, gravelly		18·85 20·40	1 92 0 2 080	, i
	Earth:		24 11		,,
	Dry		13:85 to 18:05	1 410 to 1 840	-
	Moist		15.70 to 19.60	1 600 to 2 000	21
	Gravel:				
	Loose		15.70	1 600	• •
	Rammed		18:85 to 21:20 25:50	1 920 to 2 160 2 600	,
	Kaolin, compact	-	23.0	2 000	*1
	Loam:		11.75	1.200	
	Dry, loose Dry, compact		11:75 15:70	1 200 1 600	,
	Wet, compact	•	18.85	1 920	,
	Loess, dry Marl, compact	-	14·10 17·25 to 18·85	1 440 1 760 to 1 920	•
	Mud, river, wet		17 25 to 18 85	1 760 to 1 920	,
	Peat:				
	Dry		5.50 to 6.30	560 to 640	,
	Sandy, compact Wet, compact		7·85 13·35	800 1 36 0	,
	Rip-rap	and the same of th	12.55 to 14.10	1 280 to 1 440	,
	Sand:				
	Dry, clean		15·10 to 15·70	1 540 to 1 600	,
	River Wet		18:05 17:25 to 19:60	1 84 0 1 76 0 to 2 000	•
	Shingles:		17 23 10 19 00	1 700 10 2 000	• •
	Aggregate 3 to 38 mm		13.75	1 400	
	Fine sand:				·
	Dry	*	15.70	1 600	,
	Saturated		20 40	2 080	,
	Silt, wet		17 [.] 25 to 18 [.] 85	1 760 to 1 920	• 1
	Steel Sections Hot rolled [see IS: 808 (Part 1)-	1978*]			
	Beams — Designation				
	MB 100 MB 125		0.113	11.5	n
	MB 150		0·131 0·147	13·4 15·0	9 1
	MB 175		0.191	19:5	91
	MB 200 MB 225		0°249 0°306	25·4 31·2	•
	17142 2243		0 500	31 4	• ;

TABLE 1 UNI	IT WEIGHT OF BUIL	DING MATERIALS —	Contd
MATERIAL	Nominal Size		EIGHT/MASS
	or Thickness mm	kN	kg per
(1)	(2)	(3)	(4) (5)
(1)	(2)	(0)	(4)
Beams Designation			
MB 250		0.365	37·3 m
MB 300 MB 350	<u>-</u>	0·452 0·514	46·1 ,, 52·4
MB 400	-	0.604	61.6 ,,
MB 450		0.710	72.4 ,,
MB 500		0·852 1·00	86·9 ,, 104
MB 550 MB 600		1.21	123 ,,
Columns — Designation			••
[see IS: 808 (Part 2)-1978*]	•		
SC 100	_	0.196	20.0 ,,
SC 120 SC 140	_	0·257 0·327	26·2 ,, 33·3 ,,
SC 160		0:411	41.9 ,,
SC 180		0.495	50.5
SC 200 SC 220	-	0·591 0·690	60·3 ,, 70·4
SC 250		0.839	85·6 ,,
Channels — Designation		•	
[see IS: 808 (Part 3)-1979†]			
Medium weight channel sections with sloping flanges			
MC 75	-	0.070	7·14 ,,
MC 100 MC 125	_	0.098	10·0 ,, 16·8
MC 123 MC 150	<u>=</u>	0·165 0·192	19.6 ,,
MC 175		0.219	22.3
MC 200	_	0.256	26.1 ,,
MC 225 MC 250		0·300 0·356	30·6 ,, 36·3
MC 300		0.419	42·7 ,,
MC 350		0.491	50·1 ,,
MC 400 Medium weight channel sections w			
parallel flanges (see Note below)		
MCP 75		0.070	7·14 ,, 9·56
MCP 100 MCP 125	_	0·094 0·128	12:1
MCP 150		0.165	16.8 ,,
MCP 175		0.192	19.6 ,,
MCP 200 MCP 225		0·219 0·256	22·3 ,, 26·1
MCP 223 MCP 250	-	0.300	30.6 ,,
MCP 300		0.356	36.3 ,,
MCP 350		0.419	42:7 ,,
MCP 400 Equal leg angles — Size	_	0·491	50·1 ,,
[see IS: 800 (Part 5)-1976‡]	ſ 3·0	0.009	0:9 m
ISA 2020	$\begin{cases} 3.0 \\ 4.0 \end{cases}$	0.011	1.1 ,,
	Ç3·0	0.011	1.1 ,
ISA 2525	₹ 4·0	0.014	1.4 ,,
	(5.0	0.018	1.8 ,,
ISA 3030	$\begin{cases} 3.0 \\ 4.0 \end{cases}$	0:014 0:018	1·4 ,, 1·8 ,,
AMAR DOOV	ે 5∙0	0.022	2.2 ,,

Note — These sections are steel in the developmental stage and may be available subject to agreement with the manufacturer.

^{*}Dimensions for hot-rolled steel sections: Part 2 Columns — SC series (second revision). †Dimensions for hot-rolled steel sections: Part 3 Channels, MC and MPC series (second revision). †Dimensions of hot-rolled steel sections: Part 5 Equal leg angles (second revision).

MATERIAL NOMINAL SIZE WEIGHT/MASS	
(1) (2) (3) (4) (5) (4) (5) (4) (5) (4) (5) (4) (6) (7) (7) (7) (7) (7) (7) (7) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	
SA 3535 \$\begin{array}{c c c c c c c c c c c c c c c c c c c	ľ
ISA 3535 \$\begin{array}{cccccccccccccccccccccccccccccccccccc)
ISA 3535 \begin{cases} \{5.0 & 0.026 & 2.6 & 3.0 \\ \{6.0 & 0.029 & 3.0 & 3.0 \\ \{4.0 & 0.024 & 2.4 \\ \{4.0 & 0.024 & 2.4 \\ \{5.0 & 0.029 & 3.0 & 3.0 \\ \{6.0 & 0.029 & 3.0 & 3.0 \\ \{6.0 & 0.029 & 3.0 & 3.0 \\ \{6.0 & 0.034 & 3.5 & 3.0 \\ \{6.0 & 0.027 & 2.7 \\ \{1.0 & 0.027 & 2.7 \\ \{1.0 & 0.027 & 2.7 \\ \{1.0 & 0.023 & 2.3 \\ \{4.0 & 0.023 & 2.3 \\ \{4.0 & 0.029 & 3.0 \\\ \{6.0 & 0.039 & 4.0 \\ \{0.0 & 0.023 & 2.3 \\ \{4.0 & 0.029 & 3.0 \\\ \{0.0 & 0.037 & 3.8 \\\ \{0.0 & 0.037 & 3.8 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
SA 4050 So	
ISA 4050 \$\begin{array}{cccccccccccccccccccccccccccccccccccc	
ISA 4050 \begin{cases} 5 0 & 0 \cdot 0.034 & 3.5 & 3.	
SA 4545	
$ \begin{array}{c} 3.0 \\ 4.0 \\ 0.027 \\ 1.007 \\ 1.$	
$\begin{array}{c} 1\text{SA }4545 & \begin{cases} 4\cdot0 & 0\cdot0.27 \\ 5\cdot0 & 0\cdot0.33 \\ 6\cdot0 & 0\cdot0.39 \end{cases} & 3\cdot4 & 3\cdot4 \\ 3\cdot0 & 0\cdot0.23 \\ 4\cdot0 & 0\cdot0.29 \\ 5\cdot0 & 0\cdot0.37 \\ 6\cdot0 & 0\cdot0.44 \end{cases} & 3\cdot8 & 3\cdot8 \\ 3\cdot8 & 3\cdot8 \\ 6\cdot0 & 0\cdot0.44 \\ 4\cdot5 & 3\cdot8 \\ 8\cdot0 & 0\cdot0.63 \\ 10\cdot0 & 0\cdot0.77 \end{cases} & 7\cdot9 & 3\cdot8 \\ 8\cdot0 & 0\cdot0.63 \\ 10\cdot0 & 0\cdot0.77 \end{cases} & 7\cdot9 & 3\cdot8 \\ 8\cdot0 & 0\cdot0.63 \\ 8\cdot0 & 0\cdot0.63 \\ 8\cdot0 & 0\cdot0.63 \\ 8\cdot0 & 0\cdot0.63 \\ 8\cdot0 & 0\cdot0.69 \\ 7\cdot0 & 3\cdot8 \\ 8\cdot0 & 0\cdot0.67 \\ 8\cdot0 & 0\cdot0.57 \\ 8\cdot0 & 0\cdot0.52 \\ 6\cdot0 & 0\cdot0.62 \\ 8\cdot0 & 0\cdot0.62 \\ 6\cdot0 & 0\cdot0$	
SA 5050 \$\begin{array}{c c c c c c c c c c c c c c c c c c c	
$ \begin{array}{c} 30 \\ 40 \\ 0023 \\ 40 \\ 0029 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 30 \\ 3$	
$\begin{array}{c} \text{ISA 5050} & \begin{cases} 4.0 & 0.029 \\ 5.0 & 0.037 \\ 6.0 & 0.044 \end{cases} & 3.8 \\ 3.8 & 0.0044 \\ 4.5 & 0.0048 \\ 8.0 & 0.063 \\ 10.0 & 0.077 \end{cases} & 7.9 \\ 1SA 5555 & \begin{cases} 5.0 & 0.044 \\ 6.0 & 0.048 \\ 8.0 & 0.063 \\ 10.0 & 0.077 \end{cases} & 7.9 \\ 1SA 6060 & \begin{cases} 5.0 & 0.044 \\ 6.0 & 0.053 \\ 8.0 & 0.069 \\ 10.0 & 0.084 \end{cases} & 4.9 \\ 8.0 & 0.069 & 7.0 \\ 10.0 & 0.084 \end{cases} & 8.6 \\ 10.0 & 0.057 & 5.8 \\ 8.0 & 0.076 & 7.7 \\ 10.0 & 0.092 & 9.4 \\ 10.0 & 0.092 & 9.4 \\ 10.0 & 0.092 & 9.4 \\ 10.0 & 0.092 & 9.4 \\ 10.0 & 0.092 & 9.4 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.062 & 6.3 \\ 10.0 & 0.081 & 8.3 \\ 10.0 & 0.081 & 8.3 \\ 10.0 & 0.081 & 8.3 \\ 10.0 & 0.087 & 8.9 \\ 10.0 & 0.087 & 8.9 \\ 10.0 & 0.087 & 8.9 \\ 10.0 & 0.094 & 9.6 \\ 10.0 & 0.094 & 9.6 \\ 11.8 & 9.1 \\ 12.0 & 0.117 & 14.0 \\ 11.8 & 9.1 \\ 14.0 & 0.117 & 14.0 \\ 11.8 & 9.1 \\ 14.0 & 0.117 & 14.0 \\ 11.8 & 9.1 \\ 14.0 & 0.117 & 14.0 \\ 11.8 & 9.1 \\ 14.0 & 9.1 \\ 14.$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} \text{ISA 5555} & \begin{cases} 5.0 & 0.040 & 4.1 \\ 6.0 & 0.048 & 4.9 \\ 8.0 & 0.063 & 6.4 \\ 10.0 & 0.077 & 7.9 \end{cases}, \\ \begin{cases} 5.0 & 0.044 & 4.5 \\ 6.0 & 0.053 & 5.4 \\ 8.0 & 0.069 & 7.0 \\ 10.0 & 0.084 & 8.6 \end{cases}, \\ \begin{cases} 5.0 & 0.048 & 4.9 \\ 6.0 & 0.057 & 5.8 \\ 8.0 & 0.076 & 7.7 \\ 10.0 & 0.092 & 9.4 \\ 10.0 & 0.092 & 9.4 \\ 10.0 & 0.092 & 9.4 \\ 10.0 & 0.062 & 6.3 \\ 8.0 & 0.062 & 6.3 \\ 10.0 & 0.100 & 10.2 \\ 10.0 & 0.100 & 10.2 \\ 10.0 & 0.087 & 8.9 \\ 10.0 & 0.087 & 8.9 \\ 10.0 & 0.087 & 8.9 \\ 10.0 & 0.018 & 11.0 \\ 10.0 & 0.108 & 11.0 \\ 10.0 & 0.108 & 11.0 \\ 10.0 & 0.094 & 9.6 \\ 10.0 & 0.094 & 9.6 \\ 11.0 & 0.0127 & 11.40 \\ 11.18 & 11.18 \\ 11.18 & $	
$\begin{array}{c} \text{ISA 5555} & \begin{cases} 6.0 & 0.048 & 4.9 & \% \\ 8.0 & 0.063 & 6.4 & \% \\ 10.0 & 0.077 & 7.9 & \% \end{cases} \\ & \begin{cases} 5.0 & 0.044 & 4.5 & \% \\ 6.0 & 0.053 & 5.4 & \% \\ 8.0 & 0.069 & 7.0 & \% \\ 10.0 & 0.084 & 8.6 & \% \end{cases} \\ & \begin{cases} 5.0 & 0.048 & 4.9 & \% \\ 6.0 & 0.057 & 5.8 & \% \\ 8.0 & 0.076 & 7.7 & 5.8 & \% \\ 8.0 & 0.076 & 7.7 & 5.8 & \% \\ 10.0 & 0.092 & 9.4 & \% \\ 10.0 & 0.092 & 9.4 & \% \\ 10.0 & 0.062 & 6.3 & \% \\ 8.0 & 0.062 & 6.3 & \% \\ 8.0 & 0.062 & 6.3 & \% \\ 10.0 & 0.100 & 10.2 & \% \\ 8.0 & 0.081 & 8.3 & \% \\ 10.0 & 0.100 & 10.2 & \% \\ 10.0 & 0.087 & 8.9 & \% \\ 10.0 & 0.108 & 11.0 & \% \\ 8.0 & 0.087 & 8.9 & \% \\ 10.0 & 0.108 & 11.0 & \% \\ 8.0 & 0.094 & 9.6 & \% \\ 10.0 & 0.106 & 11.8 & \% \\ 10.0 & 0.116 & 11.8 & \% \\ 11.0 & 0.127 & 14.0 & \% \\ 11.0 & 0.127 & 14.0 & \% \\ \end{array}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} 10.0 & 0.077 & 7.9 & \\ 5.0 & 0.044 & 4.5 & \\ 6.0 & 0.053 & 5.4 & \\ 8.0 & 0.069 & 7.0 & \\ 10.0 & 0.084 & 8.6 & \\ $	
$\begin{array}{c} \text{ISA 6060} & \begin{cases} 6.0 & 0.053 \\ 8.0 & 0.069 \\ 10.0 & 0.084 \end{cases} & 5.4 \\ 8.6 & 0.069 \\ 10.0 & 0.084 \end{cases} & 8.6 \\ 8.6 & 0.057 \\ 8.0 & 0.057 \\ 10.0 & 0.092 \end{cases} & 5.8 \\ 8.0 & 0.052 \\ 6.0 & 0.052 \\ 8.0 & 0.062 \\ 8.0 & 0.081 \\ 10.0 & 0.100 \end{cases} & 8.3 \\ 10.0 & 0.100 \\ 10.2 \\ 10.0 & 0.100 \\ 10.0 & 0.100 \\ 10.0 & 0.108 \\ 11.0 \\ 10.0 & 0.108 \\ 11.0 \\ 1$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} 10.0 & 0.084 & 8.6 & , \\ 5.0 & 0.048 & 4.9 & , \\ 6.0 & 0.057 & 5.8 & , \\ 8.0 & 0.076 & 7.7 & , \\ 10.0 & 0.092 & 9.4 & , \\ \end{bmatrix} $ ISA 6565 $ \begin{bmatrix} 5.0 & 0.052 & 5.3 & , \\ 6.0 & 0.062 & 6.3 & , \\ 8.0 & 0.081 & 8.3 & , \\ 10.0 & 0.100 & 10.2 & , \\ \end{bmatrix} $ ISA 7070 $ \begin{bmatrix} 5.0 & 0.052 & 5.3 & , \\ 6.0 & 0.062 & 6.3 & , \\ 8.0 & 0.081 & 8.3 & , \\ 10.0 & 0.100 & 10.2 & , \\ \end{bmatrix} $ ISA 7575 $ \begin{bmatrix} 5.0 & 0.056 & 5.7 & , \\ 6.0 & 0.067 & 6.8 & , \\ 8.0 & 0.087 & 8.9 & , \\ 10.0 & 0.108 & 11.0 & , \\ 10.0 & 0.108 & 11.0 & , \\ \end{bmatrix} $ ISA 8080 $ \begin{bmatrix} 6.0 & 0.072 & 7.3 & , \\ 8.0 & 0.094 & 9.6 & , \\ 10.0 & 0.116 & 11.8 & , \\ 10.0 & 0.127 & 14.0 & , \\ \end{bmatrix} $	
$\begin{array}{c} \text{ISA 6565} & \begin{cases} 6.0 & 0.057 \\ 8.0 & 0.076 \\ 10.0 & 0.092 \end{cases} & 9.4 \\ \begin{cases} 5.0 & 0.052 \\ 6.0 & 0.062 \\ 8.0 & 0.081 \end{cases} & 8.3 \\ 10.0 & 0.100 & 10.2 \\ \end{cases}, \\ \text{ISA 7070} & \begin{cases} 5.0 & 0.052 \\ 6.0 & 0.062 \\ 8.0 & 0.081 \\ 10.0 & 0.100 \end{cases} & 10.2 \\ \begin{cases} 5.0 & 0.056 \\ 6.0 & 0.067 \\ 8.0 & 0.087 \\ 10.0 & 0.108 \end{cases} & 11.0 \\ \end{cases}, \\ \text{ISA 7575} & \begin{cases} 6.0 & 0.072 \\ 8.0 & 0.094 \\ 8.0 & 0.094 \\ 10.0 & 0.116 \\ 11.8 \\ 11.0 \\$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} 10.0 & 0.092 & 9.4 & , \\ 5.0 & 0.052 & 5.3 & , \\ 6.0 & 0.062 & 6.3 & , \\ 8.0 & 0.081 & 8.3 & , \\ 10.0 & 0.100 & 10.2 & , \\ & \begin{cases} 5.0 & 0.056 & 5.7 & , \\ 6.0 & 0.067 & 6.8 & , \\ 8.0 & 0.087 & 8.9 & , \\ 10.0 & 0.108 & 11.0 & , \\ 8.0 & 0.094 & 9.6 & , \\ 8.0 & 0.094 & 9.6 & , \\ 10.0 & 0.116 & 11.8 & , \\ 12.0 & 0.127 & 14.0 & , \\ 10.0 & 0.127 & , \\ 10.0 & 0.127 & , $	
$\begin{array}{c} \text{ISA 7070} & \begin{cases} 5.0 & 0.052 & 5.3 \\ 6.0 & 0.062 & 6.3 \\ 8.0 & 0.081 & 8.3 \\ 10.0 & 0.100 & 10.2 \\ \end{cases}, \\ \begin{cases} 5.0 & 0.056 & 5.7 \\ 6.0 & 0.067 & 6.8 \\ 8.0 & 0.087 & 8.9 \\ 10.0 & 0.108 & 11.0 \\ \end{cases}, \\ \text{ISA 8080} & \begin{cases} 6.0 & 0.072 & 7.3 \\ 8.0 & 0.094 & 9.6 \\ 10.0 & 0.116 & 11.8 \\ 12.0 & 0.127 & 14.0 \\ \end{cases}, \\ \text{ISA 8080} & \begin{cases} 10.0 & 0.116 & 11.8 \\ 10.0 & 0.127 & 14.0 \\ 10.0 & 0.127 & 14.0 \\ \end{cases}, \\ \text{ISA 8080} & \begin{cases} 10.0 & 0.127 & 14.0 \\ 10.0 & 0.127 & 14.0 \\ 10.0 & 0.127 & 14.0 \\ \end{cases}, \\ \text{ISA 8080} & \begin{cases} 10.0 & 0.052 & 0.052 \\ 0.004 & 0.004 & 0.052 \\ 0.004 & 0.004 & 0.004 \\ 0.004 & 0.004 \\ 0.004 & 0$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{bmatrix} 10.0 & 0.100 & 10.2 & \\ 5.0 & 0.056 & 5.7 & \\ 6.0 & 0.067 & 6.8 & \\ 8.0 & 0.087 & 8.9 & \\ 10.0 & 0.108 & 11.0 & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & &$	
ISA 7575 $\begin{cases} 5.0 & 0.056 \\ 6.0 & 0.067 \\ 8.0 & 0.087 \\ 10.0 & 0.108 \end{cases} \qquad \begin{array}{c} 5.7 \\ 8.9 \\ 110 \\ 1$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{cases} 10.0 & 0.108 & 11.0 & ,, \\ 6.0 & 0.072 & 7.3 & ,, \\ 8.0 & 0.094 & 9.6 & ,, \\ 10.0 & 0.116 & 11.8 & ,, \\ 12.0 & 0.127 & 14.0 & ,, \end{cases} $	
$\begin{cases} 6.0 & 0.072 & 7.3 & ,, \\ 8.0 & 0.094 & 9.6 & ,, \\ 10.0 & 0.116 & 11.8 & ,, \\ 12.0 & 0.137 & 14.0 & , \end{cases}$	
8:0 0:094 9:6 ", ISA 8080 10:0 0:116 11:8 ", 12:0 0:127 14:0	
112:0 0:127 14:0 "	
, , , , , , , , , , , , , , , , , , , ,	
$\begin{cases} 6.0 & 0.080 & 8.2 & ,, \\ 8.0 & 0.106 & 10.8 & ,, \end{cases}$	
ISA 9090 \\ \frac{10.0}{10} 0.131 13.4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
(12.0 0.155 15.8 ",	
$\begin{cases} 6.0 & 0.090 & 9.2 \\ 8.0 & 0.119 & 12.1 \\ & & & & & & & & & & & & & & & & & & $	
ISA 100100 10.0 0.146 14.9	
(12.0 0.174 17.7 ,,	
$ \begin{cases} 8.0 & 0.131 & 13.4 \\ 10.0 & 0.163 & 16.6 \end{cases} $	
ISA 110110 12:0 0:103 10:7 "	
16·0 0·252 25·7 ,,	
8:0 0.156 15.9 ,,	
10·0 0·193 19·7 , ISA 130130 12·0 0·230 23·5 ,	
16·0 0·301 23·7 ;;	
(10·0 0·225 22·9 ,,	
12.0 0.268 27.3 ,, ISA 150150 16:0 0.351 35:8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
ſ12·0 0·362 36·9	
16.0 0.476 48.5 "	
15A 200200	
(Continue	d Y
Continue	<i>u)</i>

	TABLE 1 UF		LDING MATERIALS —	
Material		Nominal Size or Thickness	Wi	EIGHT/MASS
		mm	, kN	kg per
(1)		(2)	(3)	(4) (5)
Unequal leg angl [see IS: 808 (
		(3.0	0.011	1·1 m
ISA 3020		{ 4·0 5·0	0·014 0·018	1·4 ,, 1·8
		(3·0	0.012	,,
		4.0	0.013	1.5 ,
ISA 4025		ጎ 5∙0	0.024	2.4 ,,
		L60	0 027	2.8 ,,
		f 3:0	0.017	1:7
ISA 4530		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0 022 0 027	2.2
15A 4550		6.0	0.032	3.3
		(3.0	0.018	1.0
		J 4·0	0.024	1.8
ISA 5030		5:0	0.029	3.0 ,,
		€6·0	0.034	3.5 ,,
ISA 6040		{ 5·0 6·0	0:036 0:043	3·7 4·4
157 0040		(8.0	0.057	5.8
		(50	0:040	4.1
ISA 6545		⋠ 6·0	0.048	4.9 ,,
		€8.0	0.063	6.4 ,,
		5.0	0.042	4.3 ,,
ISA 7045		₹ 6·0 8·0	0·051 0·066	5.2 ,,
ISA 7043		10.0	0.081	6·7 8·3
		(5.0	0.046	4.7
		6.0	0.055	5.6 ,,
ISA 7550		3 8.0	0.073	7.4 ,,
		[10.0	0.088	9.0 ,,
		5.0	0·048 0·058	4·9 ,,
ISA 8050		₹ 8.0	0 038	5 9 ,, 7: 7
		\ 10·0	0.092	9.4 ",
		6.0	0.067	6.8 ,,
TG 4 0000		8.0	0.087	8.9 ,,
ISA 9060		10.0	0.108	11:0 ,,
		(,12·0	0.128	13.0 ,,
ISA 10065		$\begin{cases} 8.0 \\ 6.0 \end{cases}$	0·074 0·087	7·5 ,, 9·9 .,
IDA 1,0003		(10.0	0.120	12.2 ,,
		r 6·0	0.078	8.0 ,,
) 8·0	0.103	10.5
ISA 10075		10.0	0 127	13·0 15·4
		↓12·0 〔 6.0	0·151 0·090	9.2
ISA 12571		8.0	0.119	12.1
2012 -2-11		10.0	0.146	14.9
		6.0	0.099	10.1
4450		8∙0 ز	0.131	13.4
ISA 12595		10.0	0.162	16.5
		(12.0	0.134	19.7
ISA 15075		$\begin{cases} 8.0 \\ 10.0 \end{cases}$	0·134 0·167	13·7 17·2
1011		12.0	0.198	20.2
		(80	0.160	16.3
	_	∫ 10∙0	0·19 7	20 1 .
ISA 15011	5	12.0	0.235	24.0 ,
		(160	0.308	31 4 ,
ISA 20010	n	$\begin{cases} 10.0 \\ 12.0 \end{cases}$	0·225	22.9
	v) 12'U	0.268	27.3

*Dimensions of hot-rolled steel sections: Part 6 Unequal leg angles (second revision).

²⁰

MATERIAL	LE 1 UNIT WEIGHT OF BUIL Nominal Size		HT/MASS
MATERIAL	OR THICKNESS		<u> </u>
(1)	mm (2)	kN (3)	kg pe (4) (5
(.)	(10.0	0.264	26·9 n
	12.0	0.315	32.1
ISA 200150	16·0 20·0	0·414 0·510	42·2 52 0
old formed light gauge	structural steel		
sections (see IS: 811-	1965*):		
Light gauge sections - Size:	- angles		
Size:	ſ3·15	0.047	4.81
100×100	₹4.0	0 060	6 07 ,
	$\begin{cases} 2.5 \\ 3.15 \end{cases}$	0.030	3·05 3·82
80 × 80	313	0·037 0·047	4.82 ,
	(2.0	0.018	1.82
	$\begin{cases} 2.5 \\ 3.15 \end{cases}$	0·022 0·028	2·26 2·83
60 × 60	4.0	0.035	3.56
	Γ1·6	0.012	1·21 , 1·51 ,
	\ \frac{2.0}{2.5}	0·015 0·018	1.87
50 × 50] 3.15	0.023	2.34
	(4.0	0.029	2·93 , 0·75 ,
	[1·2 1·6	0·007 0·009	0.96
40 × 40	₹ 2.0	0.012	1 ·19
	2:5	0 014 0 018	1·48 1·84
	(12	0.005	0.56
	1.6	0.007	0·71 0·88
30×30	2·0 2·5	0·009 0·010	1.08
	(1.2	0.004	0.36
20·× 20	$\begin{cases} 1.6 \\ 2.0 \end{cases}$	0·005 0·006	0°46 0°56
hannels without lips	, - ↓	•	
Size:			
100	∫ 3·15	0·070 0·088	7·15 9·01
100 × 100	↑4·0 € 2·5	0.044	4.52
80 × 80	3.15	0.056	5.66
	(40	0.070	7.12
	$\begin{cases} 2.0 \\ 2.5 \end{cases}$	0·026 0·033	2·69 3·35
60 × 60	↑ 3·15	0.041	4.18
	(4.0	0.051	5·24 1·79
	1.6 2.0	0·018 0·022	2.23
50 × 50	₹ 2.5	0.027	2·76
	3.15	0·034 0·042	3·44 4·30
	(4·0 (1·25	0.011	1.12
	1.6	0.014	1.42
40 × 40	₹ 2.0 2.5	0·017 0·021	1·75 2·17
	3.15	0.026	2.70
	Γ1·21	0.008	0.82
30×30	1 6 2 0	0·010 0·013	1·04 1·28
	2.5	0.012	1.58

Material		NIT WEIGHT OF BUILDING MATERIALS — Contd Nominal Size Weight/N		Weight/Mass	
WATERIAL	OR THICKNESS			1	
(1)	mm (2)	kN (3)		kg (4)	ре (5
Channels without lips	(2)	(3)		(4)	(3
Size:					
5120.	(1·25	0.005		0.23	m
20 × 2 0	1 1.6	0.007		0·66 0·81	,,
,	(2.0	0.008		4 58	,,
	2·00 2·50	0·045 0·056		5.70	,,
200 × 50	ጎ 3·15	0.070		7.14	,,
	₹4.00	0.088		9.01	,,
	\[\frac{2.00}{2.50} \]	0.042	•	4.27	,,
180 × 50	} 2·50 3·15	0·052 0·065		5·31 6·65	**
100 X 30	4 00	0.082		8.38	* **
	(2.00	0:039		3.95	,,
160 × 50	2.50	0.048		4.92	,,
	(3.15	0.060		6.16	,,
	$\begin{cases} 1.60 \\ 2.00 \end{cases}$	0.026		2.67	,,
140 × 40	2.50	0°033 0°041		3·33 4·13	••
110 % 10	3.15	0.051		5.17	7: 7:
	r 1·60	0.024		2.42	
120 × 40	₹ 2.00	0.030		3.01	>: >:
	(2.50	0.037		3.74	• •
	£1·25	0.017		1.70	٠,,
) 1·6 0	0.021		2.17	,,
100 × 40	2.00	0.026		2.70	9:
	•	0.033		3.35	,
	(1.25	0.013		1.31	,
80 × 30	₹ 1.60 2.00	0·016 0·020		1·67 2·07	,,
	$(\overline{2}.\overline{50})$	0.025		2.56	*
	(1.25	0.011		1.12	
60×30	₹ 1.60	0.014		1.42	,
	(2.00	0.017		1.75	,
	(1.25	0.010		1.02	,,
50 × 30	1.60	0.013		1.29	,
Channels with the	(2.00	0.016		1.60	,
Channels with lips					
Size:	CA 00	0.054			
	$\begin{cases} 2.00 \\ 2.50 \end{cases}$	0·051 0·063		5·24 6·50	,
100 × 100	3.15	0.082		8.36	,
	(4.00	0.103		8·36 10·48	,
	ſ 1·60	0.033		3.33	_
00 22	2·00 2·50	0.041		3·33 4·14	,
80 × 80	2.50	0.052 0.065		5·32 6·62	,
	(3.15				
	{ 1·25 1·60	0.019		1 94	,
60 × 60	2.00	0°024 0°031		2·45 3·20	,
- •	2.50	0.039		3.95	,
	(1.25	0.016		1.64	
50 × 50	₹ 1.60	0.020		2.08	
	2.00	0.025		2.57	,
	ç 1·25	0.013		1.35	
40 × 40	₹ 1:60	0 ·01 7		1.70	٠.
	(2.00	0.050		2.09	,
	∫ 1·25	0.009		0:95	,
30×30	1 1 ⋅ 60	0.012		1.50	٠,
				(Co	ntini

TABLE	UNIT WEIGHT OF BUIL	OING MATERIALS—CO	HT/MASS
MATERIAL	NOMINAL SIZE	WEIG	<u> </u>
	or Thickness mm	kN	kg per
<i>**</i>	(2)	(3)	(4) (5)
(1)	(2)	(2)	
Channels with lips		,	
Size:		0.047	4·84 m
	(1.60	0·047 0·059	6.02 ,,
	2 00 2 50	0 039	7.67 ,,
200×80	3.15	0 094	9.59 ,,
	4.00	0.118	12.05 ,,
	(1.60	0.045	4·59 ,,
	2.00	0.056	5·71 ,, 7·28 ,,
180×80	₹ 2.50	0.071	9.10 ,,
	3.15	0·089 0·112	11.42 ,,
	(4.00	0.043	4.34 ,,
	[1:60 [2:00	0.053	5.39 ,,
160 80	₹ 2·50	0.068	6.89 ,,
160×80	i 3·15	0.084	8·60 ,, 10·79 ,,
	(4·00	0.106	2.04
	(1.60	0.038	1.76
	2.00	0.047	5· 9 1 ,,
140×70	₹ 2.50	0·058 0·075	7.61 ,,
	(3·15 (4·00	0.094	9.54 ,,
	(1·25	0.025	2.52 ,,
	1.60	0.031	3.21 ,,
120 × 60	₹ 2.00	0.041	4·14 ,, 5·12 ,,
120 × 60	2.50	0.050	6.38 ,
	(3.15	0.063	2.12
	ſ1·25	0.021	2.71 ,,
	1.60	0·027 0·033	3.35 ,,
100×50	2:00	0.043	4.34 ,,
	(1.25	0.017	1.74 ,,
00 40	{ 1.60	0 022	2.20 ,,
80 × 40	2.00	0.027	2.72 ,,
60 × 30	(1.25	0.012	1·25 ,, 1·57 ,,
60 × 30	₹ i · 60	0.015	- · · · · · · · · · · · · · · · · · · ·
50 × 30	∫1·25	0.011	1·15 ,, 1·45 ,,
20 × 30	₹1.60	0.014	1'45 ,,
Hat sections			
Size:			6.89
Size.	(2.50	0.068	0.05
100×100	3.15	0·089 0·115	11.73
	L 4·00	0.043	4.39
00 00	$\int_{2.50}^{2.00}$	0 056	5·71 7·36
80×80	{ 2.50 3.15	0.072	7.36 ,
	(1.60	0 026	2 63 3 45
60 × 60	₹ 2 00	0.034	1.31
00 ^ 00	(2.50	0.043	4.34 ,
	£ 1·60	0.022	2·25 2·88
50 × 50	(2.00	0.028	
	∫ 1· 2 5	0.013	1·36 1·83
40 × 40	ĺ 1.60	0.018	2.51
	1.60	0·∩34 0·044	4.45
100×50	2.00	0.044	5·51
	(2.50	0.021	2.15
00	§ 1:25	0.028	2.83
80×40	{ 1.60 2.00	0.034	3.51
		0.016	1.64
60 × 30	{1:25 1:60	0 020	2.08
50 × 30	1.25	0.013	1.35
		0.101	10.28
100 × 150	$\begin{cases} 3.15 \\ 4.00 \end{cases}$	0.134	13.68
	(. ••	-	(Contin

		DING MATERIALS—C	
MATERIAL	Nominal Size or Thickness	WEIG	HT/MASS
	mm	kN	kg pe
(1)	(2)	(3)	(4) (5)
Hat sections	ν-,		
Size:			
90 100	₹3.15	0.089	9:08 m
80 × 120	\(\frac{4.00}{5.50}\)	0.113	11.48 ,,
60 × 90	2:50	0.050	5:12 ,,
00 X 30	₹ 3·15 ₹ 4·00	0 [.] 067 0 [.] 084	6·82 ,, 8·59 ,,
	(2 00	0.033	2.27
50 × 75	₹ 2·50	0.043	4.14
	(3.15	0.055	5.64 ,,
	Č1·60	0.021	2.14 ,,
40 × 60	₹ 2.00	0 028	2.82
	(2.20	0.032	3.22
Rectangular box sections Size:			
Size.	/ 1 60	0.072	7:35
200×100	\(\frac{1}{2}\)\(\cdot\)\(\cdot\)	0.030	9.16 ,,
	∫ 1·60	0.065	6.60 ,,
180 × 90	₹2.00	0.081	8.22 ,,
	∫ 1·60	0.057	5.85 ,,
160×80	ົ້າ 2 00	0.071	7.28
	∫ 1·60	0.020	5.09 "
140×70	2.00	0.062	6.34 ,,
400 (0	∫1.60	0.043	4.34 ,,
120×60	₹2.00	0.053	5 39 ,,
100 - 50	∫1:25 1:60	0.028	2.82 ,,
100 × 50	₹1.60	0.035	3.58 ,,
80 × 40	∫ 1·25	0.022	2.23
80 X 40	1.60	0.028	2.83
60 × 30	∫ 1·25	0.016	1.64 ,,
00 × 3 0		0.020	2.08
50 × 30	{ 1·25 1·60	0·014 0·018	1 44 ,, 1 83 .,
Square box section	(100	0 010	103 ,,
Size:			
200 × 200	ſ 1·60	0.097	9.86
	\(\frac{2.00}{0}\)	0.121	12.30
180 × 180	ſ 1·60	0.087	8.86
	(12·00	0.108	11.04
160×160	ſ 1·60	0.764	77:85 ,,
	1 2· 0 0	0 096	9.79 ,
140 × 140	£ 1:60	0.067	6.85 ,,
	\2·00	0.084	8.53 ,,
120 × 120	∫ 1·60	0.057	5.85 ,,
	12.00	0.071	7.28
100 × 100	§ 1·25	0.037	3.80 ,
	1.60	0.047	4.84
80 × 80	∫ 1:25	0.030	3.01 ,
	7 1.60	0.038	3.84
60 × 60	∫ 1·25	0.022	2:23 ,
50 50	₹1.60	0.028	2.83
50 × 50	∫1:25 1:60	0.018	1.84 2.33
S -11 -11	₹ 1·60	0.023	2 33 ,
Rolled steel tee bars (see IS Designation	: 11/3-19/8")		
ISNT 20		0.009	0.9
ISNT 30		0.014	1.4
ISNT 40	-	0.034	3·5 ,
ISNT 50	_	0.044	4.5 ,
ISNT 60	-	0:053	5·4 ,
ISNT 80 ISNT 100	_ .	0·094 0·147	9 [.] 6 , 15 [.] 0 ,
ISNT 150	•	0.223	22.8
	nd slit steel tee bars (second		,
Specification for hot-rolled as			

		ILDING MATERIALS —	Contd VEIGHT/MASS	
	MINAL SIZE THICKNESS	٧٠	EIGHT/IVIASS	
OR	mm	kN	kg j	per
(1)	(2)	(3)	(4)	(5)
Designation				
ISHT 75	_	0.150	15.3	m
ISHT 100		0.196	20·0 27·4	"
ISHT 125	_	0·269 0·288	29.4	,,
ISHT 150		0.079	8.1	
ISST 100	_	0.154	15.7	"
ISST 150		0.279	28.4	,,
ISST 200 ISST 250		0.368	37.5	,,
	_	0.040	4.0	,,
ISLT 50 ISLT 75		0.070	7.1	**
ISLT 100		0.125	12.7	**
ISJT 75	_	0.034	3.5	,,
1SJT 87·5	_	0.039	4·0 5·0	,,
ISJT 100	_	0 049 0·063	6.4	,,
ISJT 112·5		0 003	•	"
Steel sheet piling sections				
(see IS: 2314-1963*)				
Designation ISPS 1 021 Z		0.483	49.25	**
ISPS 1 625 U		0.641	65.37	,,
ISPS 2 222 U		0.811	82·70 55·20	,,
ISPS 100 F		0.541	JJ 2 U	**
47. Stone		25:50	2 600	mª
Agate		15.70 to 18.85	1 600 to 1 920	
Aggregate		27·95 to 29·05	2 850 to 2 960	,,
Basalt Cast		21.95	2 240	,,
Chalk		21.50	2 190	,,
Dolomite		28.25	2 880 4 000	**
Emery	_	39.25	2 590	**
Flint		25·40 23·55 to 26·40	2 400 to 2 690	"
Gneiss		25.90 to 27.45	2 640 to 2 800	,,
Granite Gravel:	_	7		
Loose		15:70	1 600	**
Moderately rammed, dry	_	18.85	1 920 2 880	,,
Green stone		28·25 21·95 to 23·55	2 240 to 2 400	,,
Gypsum	_	20.40 to 23.55	2 080 to 2 400	,,
Laterite		23·55 to 25·90	2 400 to 2 640	,,
Lime stone	_	26.70	2 720	,
Marble Pumice		7·85 to 11·00	800 to 1 120	,,
Ouartz rock		25.90	2 640 2 240 to 2 400	,,
Sand stone		21·95 to 23·54 27·45	2 800	,,
Slate	_	26·45	2 700	• ,,
Soap stone	, -	20 43		•
48. Tar, Coal		9.90	1 010	,,
Crude (see IS : 212-1983†) Naphtha, light (see IS : 213-1968‡)	_	9.90	1 010	,,
Naphtha, heavy	_	9.90	1 010	,,
Road tar (see IS : 215-1961§)	_	9.90	1 010 1 010	,,
Pitch (see IS: 216-1961)		9.80	1 010	,,
49. Thermal Insulation		10.75 40 00.55	1 300 to 2 400)
Unbonded glass wool	_	12:75 to 23:55 11:30 to 19:60	1 150 to 2 000	
Unbonded rock and slag wool	_	1.45 to 2.95	150 to 300	
Expanded polystyrene Cellular concrete		2 10 10 20	 _	
Grade A		Up to 29:40	Up to 3 000	
Grade B	· 	29.50 to 39.20	3 010 to 4 000 4 010 to 5 000	١ ′′
Grade C		39·30 to 49·00	2 000 to 3 500	``
Preformed calcium silicate insulation (for temperature up to 650°C)		19·60 to 34·30	200010 3300	, ₉ ,
*Specification for steel sheet piling section †Specification for crude coal tar for gene †Specification for coal-based naphtha (fine)	rai use (<i>secon</i>	nd revision).		
§Specification for road tar (revised). Specification for coal tar pitch (revised)).		(Con	nti n u

MATERIAL NONINAL SIZE OR THICKNESS mm kN kg per		TABLE 1 UNI		DING MATERIALS —		
mm		MATERIAL	NOMINAL SIZE	Weig	5HT/MASS 	
(i) (2) (3) (4) (5) (7) Terra Cotta ———————————————————————————————————			_	kN	kg	per
50. Terra Cotta 51. Terra Cotta 52. Tiles Mangalore pattern (see IS: 654-1972*) Polystyrene wall tiles (see IS: 3463-1966*) Polystyrene wall tiles (see IS: 3463-1966*) Polystyrene wall tiles (see IS: 3463-1966*) Polystyrene wall tiles (see IS: 399-1963*) Aglata Aglata Aglata Allor Allor Allor Allor Allor Amia Amia Amia Amia Amia Amia Ania Ania Ania Ania Ania Ania Ania An		(1)	(2)		=	(5)
St. Terrazzo	5 0	• •	(2)			
Paving			_	18 33 to 23 23	1 070 to 2 570	111
Cast partitions 40 0.93 95 , 752 Tiles Mangalore pattern ———————————————————————————————————	51.			0.44		
Mangalore pattern						
Mangalore pattern		•	40	0 93	93	,,
Care 18 : 654-1972*) Polystyren wall titles 99 x 99 0-013 1-35 m² (see 18 : 3463-1966†) 148 5 x 148 5 0-013 1-35 m² Typical Indian timbers (see 18 : 399-1963‡)	52			0.02 / 0.03	0.4-0	- T- 1
Polystyrene wall titles		Mangalore pattern	_	0.02 to 0.03	2 to 3	Tile
(see IS : 3463-1966†) 148 5 × 148*5 0.013 1.35 7. Timber Typical Indian timbers (see IS : 399-1963‡)			99 × 99	0:013	1.35	m²
Typical Indian timbers (see IS : 399-1963‡) Aglatia						
Typical Indian timbers (see IS : 399-1963‡) Aglaia	53.	Timber				
See St. 299-1963‡	• • •					
Aglaia						_
Alder — 3613 625 Amari — 6113 625 Amla — 7.85 800 Amia — 444 450 Anjan — 833 850 Arjun — 7.99 815 Ashul — 7.06 720 Ashul — 7.70 785 Babul — 7.70 785 Babul — 7.70 785 Bahera — 7.99 815 Bahera — 7.90		Aglaia	-			m ^a
Amari — 613 625						,,
Amia						**
Amria						
Anjan						
Arjun — 7-99 815			_	8.33	850	
Ash Aklewood — 8*82 900			_			
Babul						
Bach			_			,
Bahera			_			,,
Bakota						
Balasu			_			
Ballagi Banati Banati Banati Banati Benteak Ber Ber Ber Ber Ber Bijasal Bijasa						
Banati Benteak Ber			_	11.13	1 135	
Benteak Ber						
Bhendi						
Bijasal — 7.85 800 33 Birch — 6.13 625 33 Black chuglam — 7.85 800 33 Black cloust — 8.34 850 33 Blue gum — 8.34 850 33 Blue pine — 5.05 515 33 Bola — 6.42 655 33 Bullet wood — 8.78 895 33 Bullet wood — 8.78 895 33 Casuarina — 8.34 850 33 Cettis — 6.42 655 33 Champ — 4.85 4.55 33 Champ — 4.85 4.55 33 Chailan — 4.07 415 33 Chirassy — 6.62 6.75 33 Chilla — 7.85 800 33 Chir — 5.64 5.75 33 Chilla — 7.85 800 33 Chir — 6.42 655 33 Chilla — 7.85 800 33 Chir — 6.62 6.55 33 Chuglam: Black — 7.85 800 33 Chir — 6.62 6.55 33 Chyress — 6.62 6.55 33 Chyress — 5.05 515 33 Chyress — 6.62 6.55 33 Chyress — 7.85 800 Chyress — 7.70 7.85 7.70 Chyress — 7.70 7.85 7.70 Chyress — 7.70 7.85 7.70 Chyresy 7.70 7.70						**
Birch — 6-13 625			-			,,
Black chuglam			-			
Black locust — 8:34 850 ,, Blue gum — 8:34 850 ,, Blue pine — 5:05 515 ,, Bola — 6:42 655 ,, Bonsum — 5:20 530 ,, Bullet wood — 8:78 895 ,, Casuarina — 8:34 850 ,, Casuarina — 6:42 655 ,, Champ — 6:42 655 ,, Champ — 4:85 4'5 ,, Chaplash — 5:05 515 ,, Charian — 4:07 415 ,, Chikrassy — 6:62 675 ,, Chilla — 7:85 800 ,, Chilla — 7:85 800 ,, Chiglam: — 7:85 800 ,, White (silver grey-wood) — 6:91 705 ,, Cinnamon			_			
Blue gum			_			
Bola — 642 655						
Bonsum Bullet wood			-			,,,
Bullet wood						,,
Casuarina			_			
Cettis — 6:42 655 Champ — 4:85 4:5 Chaplash — 5:05 515 Chatian — 4:07 415 Chikrassy — 6:62 675 Chilauni — 6:42 655 Chilauni — 6:42 655 Chila — 7:85 800 Chir — 5:64 575 Chuglam: Black — 7:85 800 White (silver grey-wood) — 6:91 705 Cinnamon — 6:42 655 Cypress — 5:05 515 Debdaru — 6:28 640 Deodar — 5:35 545 Devdam — 7:06 720 Dhaman: Grewia tiliofolia — 7:70 785 Grewia vestita — 7:40 755 Dhup Dhup Dhup Dhup Dhup Dhup Dhup Dhup			_			
Champ — 4.85 4.5 ,, Chaplash — 5.05 515 ,, Chatian — 4.07 415 ,, Chikrassy — 6.62 675 ,, Chilauni — 6.42 655 ,, Chilla — 7.85 800 ,, Chir — 5.64 575 ,, Chuglam: — 7.85 800 ,, White (silver grey-wood) — 6.91 705 ,, Cinnamon — 6.42 655 ,, Cypress — 5.05 515 ,, Debdaru — 6.28 640 ,, Devdam — 7.06 720 ,, Dhaman: — 7.70 785 ,, Grewia tiliofolia — 7.70 785 ,, Grewia vestita — 7.40 755 ,, Dhup — 6.42 655 ,, Black						
Chatian						
Chikrassy — 6 62 675 Chilauni — 6 42 655 Chilla — 7 85 800 Chir — 5 64 575 Chuglam: Black — 785 800 White (silver grey-wood) — 6 91 705 Cinnamon — 6 42 655 Cypress — 5 05 515 Debdaru — 6 28 640 Deodar — 5 35 545 Devdam — 7 06 720 Dhaman: Grewia tiliofolia — 7 70 785 Grewia vestita — 7 40 755 Dhup Dhup Dhup Dhup Dhup Dhup Dhup Dhup						29
Chilauni — 6.42 655 Chilla — 7.85 800 Chir — 5.64 575 Chuglam: Black — 7.85 800 White (silver grey-wood) — 6.91 705 Cinnamon — 6.42 655 Cypress — 5.05 515 Debdaru — 6.28 640 Deodar — 5.35 545 Devdam — 7.06 720 Dhaman: Grewia tiliofolia — 7.70 785 Grewia vestita — 7.40 755 Dhup Dhup Dhup Dhup Dhup Dhup Dhup Dhup					i_ i	**
Chilla — 7.85 800 ,, Chir — 5.64 575 ,, Chuglam: — 7.85 800 ,, White (silver grey-wood) — 6.91 705 ,, Cinnamon — 6.42 655 ,, Cypress — 5.05 515 ,, Debdaru — 6.28 640 ,, Deodar — 5.35 545 ,, Devdam — 7.06 720 ,, Dhaman: — 7.70 785 ,, Grewia vestita — 7.40 755 ,, Dhup — 6.42 655 ,, Dhup — 6.42 655 ,,					6/3 655	,•
Chir — 5.64 5.75 Chuglam: — 7.85 800 White (silver grey-wood) — 6.91 705 Cinnamon — 6.42 655 Cypress — 5.05 5.15 Debdaru — 6.28 640 Deodar — 5.35 5.45 Devdam — 7.06 720 Dhaman: — 7.70 785 Grewia vestita — 7.40 755 Dhup — 6.42 655 Dhup — 6.42 655		Chilla		0°42 7·85	800	
Chuglam: Black			_			
Black — 7.85 800 ,, White (silver grey-wood) — 6.91 705 ,, Cinnamon — 6.42 655 ,, Cypress — 5.05 515 ,, Debdaru — 6.28 640 ,, Deodar — 5.35 545 ,, Devdam — 7.06 720 ,, Dhaman: — 7.70 785 ,, Grewia vestita — 7.40 755 ,, Dhup — 6.42 655 ,,			-	2 - 1	• -	,,
White (silver grey-wood) — 691 705 ,, Cinnamon — 642 655 ,, Cypress — 505 515 ,, Debdaru — 628 640 ,, Deodar — 535 545 ,, Devdam — 706 720 ,, Dhaman: Grewia tiliofolia — 7.70 785 ,, Grewia vestita — 7.40 755 ,, Dhup — 642 655 ,, Dhup — 642 655 ,,		Black				,,
Cypress — 5.05 515 " Debdaru — 6.28 640 " Deodar — 5.35 545 " Devdam — 7.06 720 " Dhaman: — 7.70 785 " Grewia vestita — 7.40 755 " Dhup — 6.42 655 " Dhup — 6.42 655 "		White (silver grey-wood)		6.91	7 05	
Cypress — 5.05 515 " Debdaru — 6.28 640 " Deodar — 5.35 545 " Devdam — 7.06 720 " Dhaman: — 7.70 785 " Grewia vestita — 7.40 755 " Dhup — 6.42 655 " Dhup — 6.42 655 "		Cinnamon				**
Debdaru — 6.28 640 ,, Deodar — 5.35 545 ,, Devdam — 7.06 720 ,, Dhaman: — 7.70 785 ,, Grewia vestita — 7.40 755 ,, Dhup — 6.42 655 ,, Dhup — 6.42 625 ,,				5.05		
Deodar — 5.35 545 " Devdam — 7.06 720 " Dhaman: — 7.70 785 " Grewia tiliofolia — 7.40 755 " Dhup — 6.42 655 " Dhup — 6.42 625 "			_	6.28	640	
Devdam — , 7.06 720 ,, Dhaman: — 7.70 785 ,. Grewia tiliofolia — 7.40 755 ,, Dhup — 6.42 655 ,, Dhup — 6.42 625 ,,						
Dhaman: Grewia tiliofolia — 7.70 785 ,, Grewia vestita — 7.40 755 ,, Dhup — 6.42 655 ,, Dhup — 6.13 625 ,,		Devdam	- \	7 ·06	720	
Grewia vestita — 7.40 755 ,, Dhup — 6.42 655 ,,		Dhaman:				
Grewia vestita — 7.40 755 ,, Dhup — 6.42 655 ,, Dhup — 6.42 655 ,,		Grewia tiliofoli a			785	,.
Dilania 625			-			
Dilenia — 6/13 625 ,,			_			
		Dilenia		0.13	023	**

^{*}Specification for clay roofing tiles, Mangalore pattern (second revision).

[†]Specification for polystyrene wall tiles.

[‡]Classification of commercial timbers and their zonal distribution (revised).

	TABLE 1 UNIT WEIGHT OF BUIL	LDING MATERIAL	S — Contd	
MATERIAL	Nominal Size or Thickness		WEIGHT/MASS	
	mm	kN	kg	per .
(1)	(2)	(3)	(4)	(5)
Dudhi	_	5.49	560	$\mathbf{m^3}$
Ebony		8:19	835	,,
Elm Eucalyptus		5·20 8·33	5 30 850	**
Figs		4.56	465	,,
Fir	-	4.14	450	,,
Frash	-	6.62	675 5 15	,,
Gamari Gardenia		5·05 7·40	755	**
Garuga		5.98	610	"
Geon	-	4.07	415	**
Gluta Gokul	_	7:06	720 415	,,
Gokul <i>Grewia sp.</i>		4·07 7·55	770	"
Gurjan		7.70	785	"
Gutel	_	4.41	450	,,
Haldu	_	6.62	675 5 95	**
Hathipaila Hiwar		5·84 7·70	785	**
Hollock	_	5.98	610	"
Hollong	-	7.21	735	,,
Hoom Horse chestnut		7·21	735 515	77
Imli	-	5·05 8·97	915	99
Indian Chestnut		6.28	640	,,
Indian Hemlock		3.92	400	,,
Indian Oak		8.48	865	,,
Indian Olive Irul		10·35 8·33	1 065 850	"
Jack		5.83	595	,,
Jaman	_	7.70	785	,,
Jarul		6.13	625	,,
Jathikai Jhingan		5·05 5·63	515 575	"
Jutili		7·85	800	,, • ,,
Kadam	_	4.85	495	,,
Kail Kaim		5.05	515	,,
Kambli		6·42 4·07	655 415	.99
Kanchan		6.62	675	»,
Kanjuj		5.84	595	٠,
Karada Karal		8.34	850 815	,,
Karani		7·99 6·28	640	**
Karar	_	5.34	545	"
Kardahi		9.27	945	,,
Karimgotta Kasi	·	3.92	400 595	**
Kasum	-	5·83 10·84	1 105	**
Kathal		5.85	595	"
Keora		6.13	625	"
Khair Khasipine		9.90	1 010 515	,,
Kindal		5·05 7·55	770	,,
Kokko	_	6.28	640	,,
Kongoo		9.76	995	,,
Kuchla Kumbi	<u> </u>	8·63 7·70	880 785	,,
Kurchi		5.20	530	,,
Kurung	_	9.76	995	>> >>
Kusum	_	11:28	1 150	,,
Kuthan Lakooch		4·71 6·28	480 640	,,
Lambapatti	-	5.34	545	"
Lampati	_ ·	5.05	515	,,
Laurel		8:33	850 555	• •,
Lendi		7:40	755	,,
Machilus:		5.05		
Gamblei Macrantha		5·05 5·20	515 530	,,
Maharukh		3·20 4·07	415	"
		·		tinued)
			, , , ,	

		WEIGHT OF BUI	LDING MATERI	ALS — Contd	
	MATERIAL	NOMINAL SIZE		WEIGHT/MASS	
		OR THICKNESS mm	kN		
	(1)			kg	pe
M		(2)	(3)	(4)	(:
	ahogany ahua	_	6.62	675	n
	aina	_	8·97 5·64	915	,
	akai		3.14	575	,
	alabar neem		4.41	320 450	,
Ma	ango	_	6.77	· 6 9 0	,
	aniawga		7.40	755	,
	aple		5.64	575	,
	esua		9.76	9 9 5	,
	illa	-	9 12	930	,
	okha	_	7.99	815	,
	ulberry ullilam	_	6.62	675	
	undani		7.21	735	,
	urtenga		6·77 7·70	690	,
	vrabolan		9·27	785 945	•
	rikel	_	5.49	945 560	,
	dunar	_	5.05	515	,
Oa	.k	_	8.48	865	,
	dauk		7.06	720	5
Pac			7.06	720	,
	lang		5.98	610	
Pal			6.58	640	,
Pa	pita rrotia	_	3.28	335	,
Per	rsian lilac	_	8.48	865	,
Pin		_	5.84	595	,
Pin			6.13	625	,
	nus insignis		8·97 6·13	915	,
Pip			5·83	625 595	,
Pit			6·77	6 9 0	,
Po		_	6.42	655	,
	plar		4.41	450	,
Pul	la		3.78	385	•
	inma		5.98	610	,
	jbrikh		8.48	865	,
	d sanders hini	_	10.84	1 105	,
	sewood (black wood)		11.33	1 155	,
	drak		8.19	835	,
Sal			4.71	480	,
Sal		_	8.48	865	,
	ndal wood	******	5·64 8·97	575 015	,
Sar	ndan	_	8·34	915 850	,
	in wood		9.41	960	,
	/karanji		7.40	755	,
	eng	-	4.85	495	,
	nul .	_	3.78	385	,
	ver oak		6.58	640	,
Siri		_	3.92	400	,
	la-siris ed-siris		7·21	735	,
Siss			6.58	640	,
	ruce	_	7.70	785	,
Suj		<u> </u>	4.71	. 480	,
	ndri		2.65	270	,
	auma		9·41 5·64	960	,
Tar	naku		2.09	575	,
Tea			6.28	30 5 640	,
Too			5.05	515	,
Ud			2.50	255	,
Up		_	3.14	320	,
Uri		_	7.40	755	,
Val			9.41	960	,
	llapine Inut		5.83	595	,
	Inut ite bombwe	_	5.64	575	,
	nite combwe nite cedar	_	5.98	610	"
Wh	nite cedar nite chuglam (silver grey-wood)	<u> </u>	7:06	720	,
Wh	nte chugiam (silver grey-wood) nite dhup	, –	6.91	705	, 9:
Yo		_	4.22	430	,
			8.33	850	
OIE-II	ne unit of timbers correspond to	average unit weight o	of typical Indian ti	mbers at 12 percent moisture	con
,,				<u>-</u> ,	
Fresh Salt			9.81	1 000	n
Sail	Wool Building Slabs	10	10.05	1 025	,
Woods		143	0.059	6	

3. BUILDING PARTS AND COMPONENTS

TABLE 2 UNIT WE	IGHTS OF BUILDI	NG PARTS OF	R COMPONENTS	
MATERIAL	AL NOMINAL SIZE W		Weight/Mass	
	mm	kN	kg	per
1. Ceilings				
Plaster on tile or concrete	1·3 cm	0.22	25	m²
Plaster on wood lath	2.5 cm	0.39	40	,,
Suspended metal lath and cement plaster	2.5 cm	0.74	75	,,
Suspended metal lath and gypsum plaster	2.5 cm	0.49	50	,,
2. Cement Concrete, Plain (see 20 'Cemer concentrate, plain' in Table 1)	nt			
3. Cement Concrete, Reinforced (see 21 'Cement concrete, reinforced' in Ta	ble 1)			
4. Damp-Proofing (see 28 'Felt bituminous for waterproofing and damp-proofing' in Table 1)				
5. Earth Filling (see 45 'Soils and gravels' in Table 1)				

- 6. Finishing (see also 'Floor finishes' given under 7 'Flooring' and 8 'Roofing' in Table 1)

Aluminium foil Plaster:	_		Negligible	
Acoustic	10		_	_
	10	0.08	. 8	m²
Anhydrite	10	0.51	21	,,
Barium sulphate	10	0.58	29	,,
Fibrous	10	0.09	9	,,
Gypsum or lime		0.19	19	,,
Hydraulic lime or cement	10	0.23	23	,,
Plaster ceiling on wire	10	0.26	27	,,
netting				**
Note — When wood or metal lathing		0.06	6	,,
is used, add				,,
7. Flooring				
Asphalt flooring	10	0.22	22	
Note — For macadam finish, add	10	0.26	27	,,
Compressed cork	10	0.04	4	,,
Floors, structural;		0 04	7	,,
Hollow clay blocks including rein-	ſ 100	1.47	150	
forcement and mortar jointing bet-	125	1.67	170	,,
ween blocks, but excluding any	₹ 150	1.86	190	"
concrete topping	175	2.16		,,
concrete topping	200		220	,,
	(200	2.55	260	,,
Note — Add extra for concrete topping				
Hollow clay blocks including rein-	£100	1.18	120	
forcement and concrete ribs between	1115	1.27	130	,,
blocks, but excluding any concrete	125	1.37	140	"
topping	140	1-47	150	,,
tokhing.	150	1.57	160	"
	175	1.76		,,
			180	**
	(200	1.96	200	9,

Note — Add extra for concrete topping.

TABLE 2 UNIT WEIGH	TS OF BUILDIN	G PARTS OR COMPO	NENTS - Contd	
MATERIAL	NOMINAL SIZE	Weight/Mass		
	OR THICKNESS mm	kN	kg	per
Hollow concrete units including any concrete topping necessary fo constructional purposes	100 125 150 175 200	1·67 1·96 2·16 2·35 2·65	170 200 220 240 270	m ² ,, ,,
Tri	(230	3·14	320	,,
Floors, wood: Hard wood	$ \begin{cases} 22 \\ 28 \end{cases} $ $ \begin{cases} 22 \\ 28 \end{cases} $	0°16 0° 2 0 0°11 0°13	16 20·5 11 13·5),, 9, ,,
Soft wood Weight of mastic used in laying wo block flooring	•	0.015	1.5	,,
Note — All thicknesses are 'finished	thicknesses'.			
Floor finishes: Clay floor tiles (see IS: 1478-1969	12·5 to 25·4	0.10 to 0.2	10 to 20	,,
Note — This weight is 'as laid' but screeding.				
Magnesium oxychloride: Normal type (saw dust filler) Heavy duty type (mineral filler) Parquet flooring Rubber (see IS: 809-1970†)	10 10 	0°142 0°216 0°08 to 0°12 0°048 to 0°062 0°070 to 0°09	14·5 22 8 to 12 4·9 to 6·3 7·1 to 9·5 9·5 to 13·2	99 94 99 99
Terra cotta, filled 'as laid' Terrazzo paving 'as laid'	$\frac{\begin{array}{c} 6.4 \\ \hline 10 \end{array}$	0.093 to 0.130 5.54 to 7.06 0.23	570 to 720 24	m² m²
8. Roofing Asbestos cement sheeting (see 'Asbestos cement sheeting' in Table 1).				
Allahabad tiles (single) including	g —	0.83	85	**
battens (see Note below) Allahabad tiles (double) including	g —	1.67	170	,,
battens (see Note below) Country tiles (single) with		0.69	70	**
battens (see Note below) Country tiles (double) with		1.18	120	٠,
battens (see Note below) Mangalore tiles with battens	_	0.64	65	,,
(see Note below) Mangalore tiles bedded in mortar		1.08	110	,,
over flat tiles (see Note below) Mangalore tiles with flat tiles		0.78	80	**
(see Note below) Copper sheet roofing including laps and rolls	{ 0.56 0.72	0·08 0·10	8 10	,, ,,
Flat Roofs: Clay tiles hollow (see 7 'Flooring in this table) Concrete hollow precast (see 7 'Flooring' in this table) Galvanized iron sheeting (see 39 'Metal sheeting, protected' in Table 1) Glazed Roofing:				
Glazing with aluminium alloy bar for spans up to 3 m	s 6·4	0.19	19.5	,,
Glazing with lead-covered steel bars at 0.6 m centres	6.4	0.25 to 0.28	26 to 29	,,
States on battens Thatch with battens	adicións quantos	0·34 to 0·49 0·34 to 0·49	35 to 50 35 to 50	99 ,9

Note — Weights acting vertically on horizontal projection to be multiplied by cosine of roof angle to obtain weights normal to the roof surface.

^{*}Specification for clay flooring tiles (first revision). †Specification for rubber flooring materials for general purposes (first revision).

TABLE 2 UNIT WEIGHTS	OF BUILDING	PARTS OR	COMPONENTS Contd	
MATERIAL	Nominal Size		WEIGHT/MASS	
	or Thickness mm	kN	kg	per
Roof finishes:	40	0.22	22	m²
Bitumen mecadam	10 10	0·22 0·008	22 0·8	
Felt roofing (see 28 'Felt, bituminous for water-proofing	10	0 000	0.8	,,
and damp-proofing' in Table 1)				
Glass silk, quilted	0.5	0.02	5	,,
Lead sheet	0.8	0.07	7	,,
Mortar screeding	10	0.51	21	,,
9. Walling (IS: 6072-1971*)				
Autoclaved reinforced cellular				
concrete wall slabs Class A		8:35 to	9·80 850 to 1 000	m³
Class B	_	7:35 to	8·35 750 to 850	,,
Class C	_	6.35 to	7·35 650 to 750	,,
Class D		5.40 to	6·35 550 to 650	,,
Class E		4.40 to	5·40 450 to 550	**
Brick masonry (see 36 'Masonry,				
brick' in Table 1)				
Concrete blocks (see 11 'Block' in Table 1)				
Stone masonry (see 37 'Masonry, stone' in Table 1)				
Partitions:				
Brick wall	100	1.91	195	m²
Cinder concrete	75	1.13	115	**
Galvanized iron sheet	100	0.15	15	**
Hollow glass block (bricks)	100	0.88	90	,,
Hollow blocks per 200 mm of thick- ness:				
Ballast or stone concrete	20	0.201	20.5	,,
Clay	20	0.501	20.5	,,
Clinker concrete	20	0.220	22.5	"
Coke breeze concrete	20	9:176	18	,,
Diatomaceous earth	20	0.003	9.5	**
Gypsum Pumice concrete	20 2 0	0.137	14	**
Slag concrete, air-cooled	20	0.177	18	,,
Slag concrete, foamed	20	0·1 9 6 0·186	20 19	••
Lath and plaster		0.392	40	"
Solid blocks per 20 mm of thickness:		U 374	. 40	,,
Ballast or stone	20	0.451	46	,,
Clinker concrete	20	0.300	30.5	,,
Coke breeze concrete	20	0.221	22.5	,,
Pumice concrete	20	0.221	22.5	,,
Slag concrete, foamed	20	0.250	25.5	,,
Terrazzo cast partitions Timber studding plastered	40	0.932	95	,,
rimoer studening plastered	_	9.981	100	,,

Note — For unit weight of fixtures and fittings required to buildings including builder's hardware, reference may be made to appropriate Indian standards.

4. STORE AND MISCELLANEOUS MATERIALS

4.1 Units weights of store and miscellaneous

materials intended for dead load calculations and other general purposes are given in Appendix A.

^{*}Specification for autoclaved reinforced cellular concrete wall slabs.

APPENDIX A

[Clauses 1.1.1 (Note) and 4.1]

UNIT WEIGHTS OF STORE AND MISCELLANEOUS MATERIALS

Material	WEIGHT/M	Angle of Friction.	
	$\frac{1}{kN/m^3}$	kg/m³	DEGREES
. Agricultural and Food Products			
Butter Coffee in bags Drinks in bottles, in boxes Eggs, packed Eats, oil Fish meal Flour in sacks up to 1 m height Forage (bales) Fruits	8.45 5.50 7.35 2.95 5.80 4.90 2.20 to 5.90 1.25 3.45	860 560 750 300 590 500 225 to 600 125 350	 45
Grains:			
Barley Corn, shelled Flax seed Oats Rice Soyabeans Wheat Wheat Grain sheaves up to 4 m stack height Grass and clover	6·75 7·55 7·35 5·30 6-55 7·35 8·15 6·85 0·98 1·45 3·45	690 770 750 540 670 750 830 700 100 150 350	27 27 30 30 33 33 30 28 30 30 30
Hay:		4.770	
Compressed Loose up to about 3 m stack height Honey	1·65 0·69 14·10	170 70 1 440	=
Hops:			
In sacks In cylindrical hop bins Sewn up or compressed in cylindrical shape in hop cloth	1·65 4 60 2·85	170 470 290	
Malt:			
Crushed Germinated Meat and meat products Milk Molasses Onion in bags Oil cakes, crushed Potatoes Preserves (tins in cases)	3·90 1·85 7·05 10·05 4·40 5·40 5·80 7·05	400 190 720 1 025 450 550 590 720 500 to 800	20 0 0 30
Salt:	4·90 to 7·85	300 (0 800	
Bags Bulk	7·05 9·40	720 960	30
Seeds:			
Heaps Sacks	4.90 to 7.85 3.90 to 6.85	500 to 800 400 to 700	<u>25</u>
Straw and chaff: Loose up to about 3 m stack height Compressed	0·45 1·65	45 170	_
Sugar:			
Crystal Cube sugar in boxes Sugar beet, pressed out Tobacco bundles Vinegar	7·35 7·85 7·85 3·45 10·40	750 800 800 350 1 080	30 — —

Material	Weight/M	IASS	ANGLE OF	
	kN/m³	kg/m³	FRICTION, DEGREES	
2. Chemicals and Allied Materials				
Acid, hydrochloric Acid, nitric 91% Acid, sulphuric 87% Alcohol Alum, pearl, in barrel Ammonia, liquid Ammonium chloride, crystalline Ammonium sulphate Beeswax Benzole Benzene hexachloride Bicarbonate of soda Bone Borax Calcite Camphor Carbon disulphide Casein Caustic soda Creosole Dicalcium phosphate Disodium phosphate Lodine	11·75 14·80 17·55 7·65 5·20 8·85 8·15 7·05 to 9·80 7·05 to 9·00 9·40 8·90 8·75 6·40 18·65 17·15 26·50 9·70 12·75 13·25 13·85 10·50 6·65 3·90 to 4·80	1 200 1 510 1 790 780 530 900 830 720 to 1 000 720 to 920 960 910 890 650 1 900 1 750 2 700 990 1 300 1 350 1 410 1 070 6 80 400 to 490	30-40 25 32-45 45 30 	
Oils in bottles or barrels	48·55 5·70 to 8·90	4 950 580 to 910	_	
Oil, linseed: In barrels In drums Oil, turpentine Paints Paraffin wax Petroleum Phosphorus Plastics: Cellulose acetate Cellulose nitrate Methyl methacrylate Phenol formaldehyde Polystryrene Polyvinyl chloride (Perspex) Resin bonded sheet Urea formaldehyde Potash Potassium Potassium Potassium Potassium Potassium Red lead, dry Red lead, paste Rosin in barrels	5.70 7.05 8.50 9.40 7.85 to 9.40 9.90 17.85 12.25 to 13.35 13.25 to 15.70 11.60 12.55 10.40 11.75 to 13.25 12.85 to 13.55 13.25 to 13.55 14.40 8.65 9.90 20.70 87.30 6.75	580 720 865 960 800 to 960 1 010 1 820 1 250 to 1 360 1 350 to 1 600 1 185 1 280 1 060 1 200 to 1 350 1 310 to 1 380 1 350 to 1 380 1 470 880 1 010 2 110 8 900 690		
Rubber: Raw Vulcanized Saltpetre Sodium silicate in barrels Sulphur Talc Varnishes Vitriol, blue, in barrels	8.90 to 9.40 8.90 to 9.10 9.91 8.35 20.10 27.45 9.40 7.05	910 to 960 910 to 930 1 010 850 2 050 2 800 960 720	- - - - - - - - -	
3. Fuels				
Brown coal Brown coal briquettes heaped	6·85 7·85	700 800	35	

IS: 875 (Part 1) - 1987

Material	WEIGHT	/Mass	Angle of
	kN/m³	kg/m³	FRICTION, DEGREES
Brown coal briquettes,	12.75	1 300	
stacked Charcoal	2.95	300	
Coal:	9.80	1 000	35
Untreated, mine-moist In washeries	11.75	1 200	Õ
Dust Al! other sorts	6·85 8·35	700 850	25 35
Coke:			
Furnace or gas	4.90	500	35
Brown coal, low-temperature	9.80	1 000	35
Hard, raw coal	8:35	850	35
Hard, raw coal,	9•80	1 000	35
mine-damp Diesel oil	9:40	960	0
Firewood, chopped	3.90	400	45
Petrol	6.75	6 9 0	0
Wood in chips	1· 9 5	200	45
Wood shavings, loose	1:45	150	35 35
Wood shavings, shaken down	2.45	250	33
4. Manures			
Animal manures:			
Loosely heaped Stacked dung, up to about	11·75 17·6 5	1 200 1 800	45 45
2.5 m stack height Artificial manures	11:75	1 200	24-30
5. Metals and Alloys			
Aluminium			
Cast	25.30 to 26.60	2 580 to 2 710	
Wrought Sheet per mm of thickness per m ²	25.90 to 27.45 0.028	2 640 to 2 800 2.8	
Antimony, pure:			
Amorphous	60-90	6 210	
Solid	65.70	6 700	
Bismuth:			
Liquid Solid	98 07 95·02 to 97· 0 9	10 000 9 690 to 9900	_
Cadmium:			
Cast	83.75 to 84.05	8 540 to 8 570	
Wrought	85:03	8 670	
Calcium	15.60	1 590	_
Chromium Cobalt;	63·95 to 66·00	6 520 to 6 730	
Cast	02:25 4- 95:10	P 400 + ~ P 690	
Wrought	83°25 to 85°10 88°45	8 490 to 8 680 9 020	
Copper:			
Cast	86.20 to 87.65	8 790 to 8 940	_
Wrought Sheet per mm of thickness	86·70 to 87·65 0·09	8 840 to 8 940 8.7	_
Gold:	100 ME : 100 E-	10.250 += 10.220	
Cast Wrought	188·75 to 189·55 189·55	19 250 to 19 330 19 330	_
Iron:			
Pig	70.60	7 200	_
Grey, cast	68.95 to 69.90	7 030 to 7 130	
White, cast	74:35 to 75:70	7 580 to 7 720 7 700	
Wrought	75.50	1 100	

Material	Weigh	Weight/Mass	
	kN/m³	kg/m³	FRICTION, DEGREES
Lead: Cast Liquid Wrought	111·20 105·00 111·40	11 340 10 710 11 360	
Sheet per mm of thickness Magnesium Manganese Mercury Nickel	0·11 16·45 to 17·15 72·55 133·35 81·20 to 87·20	11 1 680 to 1 750 7 400 13 600 8 280 to 8 890	_ _ _ _
Platinum	210.25	21 440	
Silver: Cast Liquid Wrought	102·0 to 102·85 93·15 103·35 to 103·55	10 400 to 10 490 9 500 10 540 to 10 560	<u>-</u>
Sodium:			
Liquid Solid	9·10 9·30	930 950	_
Tungsten Uranium	188 [.] 30 180 [.] 45	19 200 18 400	_
Zinc: Cast Wrought Sheet per mm of thickness	68.95 to 70.20 70.50 0.07	7 030 to 7 160 7 190 7	-
Alloys:			
Aluminium and copper Aluminium 10%, copper 90% Aluminium 5%, copper 95% Aluminium 3%, copper 97% Aluminium 91%, zinc 9% Babbit metal (tin 90%, lead 5%, copper 5%) Wood's metal (bismuth 50%,	75·40 82·00 85·10 27·45 71·70	7 690 8 360 8 680 2 800 7 310	
lead 25%, cadmium 12.5%,	<i>33</i> 00	, ,	
Brasses: Muntz metal (copper 60%,	80.60	8 220	
zinc 40%) Red (copper 90%, zinc 10%) White (copper 50%, zinc 50%)	84·25 80·30	8 590 8 190	
Yellow (copper 70%, zinc 30%): Cast Drawn Rolled	82· 75 85·10 83·85	8 440 8 680 8 550	
Bronzes:			
Bell metal (copper 80%, tin 20%)	85.60	8 730	
Gun metal (copper 90%, tin 10%)	86·10	8 780	
Cadmium and tin	75·40	7 690	-
German Silver: Copper 52%, zinc 26%,	82·75	8 440	
nickel 22% Copper 59%, zinc 30%,	81.70	8 330	
nickel 11% Copper 63%, zinc 30%, nickel 7%	81.40	8 300	
Gold and Copper: Gold 98%, copper 2% Gold 90%, copper 10%	184·75 168·20	18 840 17 150	

IS: 875 (Part 1) - 1987

MATERIAL	Weight/Mass		ANGLE OF
	kN/m³	kg m³	FRICTION, DEGREES
Lead and Tin:	•	Ç	
Lead 87:5%, tin 12:5% Lead 30:5%, tin 69:5% Monel metal. cast (nickel 70%, copper 30%)	103*85 81*10 87 *00	10 590 8 270 8 870	
Steel:			
Cast Wrought mild Black plate per mm of thickn ess	77 . 00 76 .2 0 0.08	7 850 7 830 8	
Steel sections (see 46 'Steel sections in Table 1)			
6. Miscellaneous Materials			
Aggregate, coarse Ashes, coal, dry, 12 mm and under Ashes, coal, dry, 75 mm and under Ashes, coal, wet, 12 mm and under Ashes, coal, wet, 75 mm and under Ashes, coal, wet, 75 mm and under Asphalt, crushed, 12 mm and under Ammonium nitrate, prills Bone Books and files, stacked Calcium ammonium nitrate Copper sulphate, ground Chalk Chinaware, earthenware, stack ed (including cavities) Clinker, furnace, clean Diammonium phosphate Double salt (ammonium sulphate nitrate) Filling cabinets and cupboards with contents, in records offices, libraries, archives	10.80 to 15.70 5.50 to 6.30 5.50 to 6.30 7.05 to 7.85 7.05 to 7.85 7.05 3.55 to 8.35 18.65 8.35 9.80 11.75 21.95 10.80 7.85 7.85 to 8.50 7.05 to 9.30 5.90	1 100 to 1 600 560 to 645 560 to 645 720 to 800 720 to 800 720 360 to 850 1 900 851 1 000 1 200 2 240 1 100 800 800 to 865 720 to 950 600	30 40 38 52 50 30-45 27 — 28 30 — 30 29 34
Flue dust, boiler house, dry Fly ash, pulverised	5:50 to 7:05 5:50 to 7:05	560 to 720 560 to 720	≥30
Glass:			
Glass, solid Wool In sheets Glue	23:50 to 26:70 0:16 to 1:18 25:50 12:55	2 400 to 2 720 16 to 120 2 600 1 280	
Gypsum, calcined, 12 mm and under Gypsum, calcined, powdered Gypsum, raw, 25 mm and under Hides	8.60 to 9.40 9.40 to 12.55 14.10 to 15.70	889 to 960 960 to 1 280 1 440 to 1 600	40 45 30-45
Dry Salted	8.65	880	
Ice Leather put in rows Lime, ground, 3 mm and under Lime, hydrated, 3 mm and under Lime, hydrated, pulverized Lime pebble Limestone, agricultural, 3 mm	8 90 7·85 9·40 6·30 5·00 to 6·30 8·25 to 8·75	910 800 960 640 510 to 640 840 to 890 1 080	— ≥ 45 30-45 30-45 ≥ 45 30-45
and under Limestone, crushed Limestone dust Magnesite, caustic, in	13·30 to 14·10 8·65 to 14·90 7·85	1 355 to 1 440 880 to 1 520 800	30-45 38-45
powder form Magnesite, sinter and magnesite, granular	19.60	2000	
Phosphate, rock, pulverized Phosphate rock Phosphate sand Potassium carbonate Potassium chloride, pellets Potassium r.itrate Potassium sulphate Pyrites, pellets	9·40 11·75 to 13·35 14·10 to 15·70 7·95 18·85 to 20·40 4·85 6·55 to 7·45 18·85 to 20·40	960 1 200 to 1 360 1 440 to 1 600 810 1 920 to 2 080 495 670 to 760 1 920 to 2 080	40-52 30-45 30-45 30-45 30-45 ≥ 30 45 30-45

MATERIAL	Weight/Mass		ANGLE OF
	kN/m³	kg/m³	Friction, Degrees
Pumice	5.80 to 9.90	590 to 1 010	_
Rubbish:			
Building	13.80	1 410	_
General	6.30	645	
Salt, common, dry, coarse	6.30 to 10 00	640 to 1 020	30-45
Salt, common, dry, fine	11.00 to 12.55	1 120 to 1 280	30-45
Salt cake, dry, coarse Salt cake, dry, pulverized	13·35 11·20 to 13·35	1 360 1 140 to 1 360	30 35
Sand, bank, damp	17·25 to 20·40	1 760 to 2 080	35 45
Sand, bank, dry	14·10 to 17·25	1 440 to 1 760	30
Sand, silica, dry	14·10 to 15·70	1 440 to 1 600	30-35
Saw dust, loose	1.57	160	30
Silica gel	4.40	450	30-45
Soda ash, heavy	8.65 to 10.20	880 to 1 040	35
Soda ash, light Sodium nitrate, granular	4.70 to 6.00 11.00 to 12.55	480 to 610 1 120 to 1 280	37 24
Sulphur, crushed, 12 mm and under	7·85 to 8·25	800 to 840	35-45
Sulphur, 76 mm and under	8.65 to 13.35	880 to 1 360	32
Sulphur, powdered	7.85 to 9.40	800 to 960	30-45
Single superphosphate (S.S.P.), granulated	7.65 to 8.25	780 to 840	37
Slag, furnace, crushed	14.90	1 520	35
Steel goods:	12.00	1 410	
Cylinders, usually stored for carbonic acid, etc	13.80	1410	
Sheets, railway rails, etc, usually stored	44.00	4 490	_
Trisodium phosphate	9·40	960	30-45
Triple superphosphate	7.85 to 8.65	800 to 880	30-45
Turf	2.85 to 5.70	2 910 to 5 810	22.26
Urea, prills	6·40	650	23-26
7. Ores			
Antimony	29.80	3 040	
Ferrous sulphide	26.50	2 700	
Ferrous sulphide ore	13.85	1 400	
waste after roasting	29.80	3 040	
Iron ore, compact stori ng Magnesium ore	19.60	2 000	—
8. Textiles, Paper and Allied Materials			
Cellulose in bundles	7:35	750	_
Cotton, compressed	12.75	1 300	
Flax, piled and compressed	2.95	300	
in bales		010	
Furs	8.00	910	
Jute in bundles	6.82	700	
Paper:			
In bundles and rolls	6.85	700	
Newspapers in bundles	3-90	400	
Put in rows	10.80	1 100 500	
Thread in bundles	4.90	1 300	
Wood, compressed	12.75	1 500	

BUREAU OF INDIAN STANDARDS

Headquarters:

|--|

Telephones: 3 31 01 31, 3 31 13 75	Telegrams: Manaksanstha
	(Common to all Offices)
Regional Offices:	Telephone
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg, NEW DELHI 110002	{331 01 31 {331 13 <i>7</i> 5
*Eastern : 1/14, C. I. T. Scheme VII M. V. I. P. Road, Maniktola, CALCUTTA 700054	36 24 99
Northern: SCO 445-446, Sector 35-C, CHANDIGARH 160036	{2 18 43 {3 16 41
Southern: C. I. T. Campus, MADRAS 600113	{ 41 24 42 { 41 25 19 { 41 29 16
†Western: Manakalaya, E9 MIDC, Marol, Andheri (East), BOMBAY 400093	6 32 92 95
Branch Offices:	
'Pushpak', Nurmohamed Shaikh Marg, Khanpur, AHMADABAD 380001	{2 63 48 {2 63 49
Peenya Industrial Area, 1st Stage, Bangalore Tumkur Road, BANGALORE 560058	∫38 49 55 {38 49 5 6
Gangotri Complex, 5th Floor, Bhadbhada Road, T. T. Nagar, BHOPAL 462003	6 67 16
Plot No. 82/83, Lewis Road, BHUBANESHWAR 751002	5 36 27
53/5, Ward No. 29, R. G. Barua Road, 5th Bylane, GUWAHATI 781003	-
5-8-56C, L. N. Gupta Marg (Nampally Station Road), HYDERABAD 500001	23 10 83
R14 Yudhister Marg, C Scheme, JAIPUR 302005	{6 34 71 {6 98 32
117/418B Sarvodaya Nagar, KANPUR 208005	{21 68 76 {21 82 92
Patliputra Industrial Estate, PATNA 800013	6 23 05
Hantex Bldg (2nd Floor), Rly Station Road, TRIVANDRUM 695001	{6 21 04 {6 21 17
Inspection Offices (With Sale Point):	
Pushpanjali, 205-A West High Court Road, Bharampeth Extension, NAGPUR 440010	2 51 71
Institution of Engineers (India) Building, 1332 Shivaji Nagar PUNE 411005	5 24 35
*Sales Office in Calcutta is at 5 Chowringhee Approach, P. O. Princep S	treet, 27 68 00
Calcutta 700072 †Sales Office in Bombay is at Novelty Chambers, Grant Road, Bombay 400007	89 65 28

AMENDMENT NO. 1 DECEMBER 1997 TO

IS 875 (PART 1): 1987 CODE OF PRACTICE FOR DESIGN LOADS (OTHER THAN EARTHQUAKE) FOR BUILDINGS AND STRUCTURES

PART 1 DEAD LOADS — UNIT WEIGHTS OF BUILDING MATERIALS AND STORED MATERIALS

(Second Revision)

(Page 10, Table 1, col 1, Item 39) — Substitute 'Metal sheeting, Protected Galvanized Steel Sheets and Plain' for 'Metal Sheeting, Protected Galvanized Steel Sheets, Plain and Corrugated'.

(CED 37)