

Programming Assignments due Jul 17, 2022 15:49 PKT Completed

Click this link to download the Diabetes Regression notebook and then complete problems 1-4.

Click this link to download the <u>mystery.dat file</u> which will help you complete problem 5.

Click this link to download the **Sentiment Logistic Regression notebook**.

Problem 1

1/1 point (graded)

This problem is based on the *Diabetes Regression notebook*. You should work through that notebook before entering your answers here.

If a single feature is to be used to predict y, the best choice (the one that yields the smallest MSE) is feature 2 ('body mass index'). What is the second-best choice? Your answer should be the feature number (0-9).

Problem 2

2/2 points (graded)

Training MSE =

Use the ${\tt split_data}$ procedure to create training/test splits of various sizes. In particular, try training set sizes of ${\tt 20}$, ${\tt 50}$, ${\tt 100}$, and ${\tt 200}$. In each case, record the training error and test error when using all features for prediction.

For a training set size of 100, what are the training MSE and test MSE (just round to the nearest integer)?

2884

2884

Test MSE =

Problem 3

Submit

1/1 point (graded)

What $rough$ trends do you observe as the training set size increases (from, say, ${f 20}$ to ${f 400}$)? Select all that apply.
✓ The training error increases
✓ The test error decreases
The gap between the training and test error decreases
Submit
Problem 4
1/1 point (graded) What is the single best explanation for these trends? Choose one of the following.
O With more training data, we get better estimates of training error.
With more training data, we learn a more accurate model.
The error is proportional to the amount of data.
Submit
Problem 5 relates to finding relevant features.
Problem 5
1/1 point (graded) The file ${ t mystery.dat}$ contains pairs (x,y) , where $x\in\mathbb{R}^{100}$ and $y\in\mathbb{R}$. There is one data point per line, with comma-separated values; the very last number in each line is the y -value.
In this data set, $m{y}$ is a linear function of just \emph{ten} of the features in $m{x}$, plus some noise. Your job is to identify those ten features.
Which of the following contain only relevant features?
(Think of the feature numbers as being in the range 1 to 100, but be aware that Python indexes arrays starting at zero.)
3,7,13,19,44
<u></u>

71mau Previous Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>