Digital Electronics CSE 223

Lecturer, Angona Biswas

Table of contents

- Decoder Definition, Significance
- Decoder- truth table, block diagram, circuit diagram
- Application of Decoder in real life
- Boolean function with Decoder

\triangleright

Chapter 4 Morris Mano (Topic- 4.9)

Decoder

- Decoder is combinational circuit.
- \checkmark The combinational circuit that change the binary information into 2^N output lines is known as Decoders.
- Function of decoder is exactly opposite of "Encoder".
- A binary code of n bits is capable of representing up to 2ⁿ distinct elements of coded information. A decoder is a combinational circuit that converts binary information from n input lines to a maximum of 2ⁿ unique output lines.

Decoder

- There are various types of decoders which are as follows:
- 2 to 4 line decoder
- ✓ 3 to 8 line decoder
- ✓ 4 to 16 line Decoder

Concept of Encoder

- Encoders are devices that take an input signal and encode it into a format suitable for transmission or storage. Decoders are devices that take an encoded input signal and decode it into the original format.
- An encoder is a combinational circuit that converts binary information in the form of a 2^N input lines into N output lines, which represent N bit code for the input. For simple encoders, it is assumed that only one input line is active at a time.

Concept of Encoder

Types of Encoders:

There are different types of Encoders which are mentioned below.

- 4 to 2 Encoder
- Octal to Binary Encoder (8 to 3 Encoder)
- Decimal to BCD Encoder
- Priority Encoder

Advantages of Using Encoders in Digital Logic

Reduction in the number of lines: Encoders reduce the number of lines required to transmit information from multiple inputs to a single output, which can simplify the design of the system and reduce the cost of components.

Improved reliability: By converting multiple inputs into a single serial code, encoders can reduce the possibility of errors in the transmission of information.

Improved performance: Encoders can enhance the performance of a digital system by reducing the amount of time required to transmit information from multiple inputs to a single output.

Advantages of using Decoders in Digital Logic:

Increased flexibility: Binary decoders provide a flexible way to select one of multiple outputs based on a binary code, allowing for a wide range of applications.

Improved performance: By converting a serial code into a parallel set of outputs, binary decoders can improve the performance of a digital system by reducing the amount of time required to transmit information from a single input to multiple outputs.

Improved reliability: By reducing the number of lines required to transmit information from a single input to multiple outputs, binary decoders can reduce the possibility of errors in the transmission of information.

Three-to-eight-line decoder (3 to 8 line decoder)

- ✓ Also known "binary-to-octal conversion".
- ✓ The three inputs are decoded into eight outputs, each representing one of the minterms of the three input variables.
- ✓ The input variables represent a binary number, and the outputs represent the eight digits of a number in the octal number.

Three-to-eight-line decoder (3 to 8 line decoder)

Table 4.6
Truth Table of a Three-to-Eight-Line Decoder

Inputs		Outputs								
х	y	z	Do	D ₁	D ₂	D ₃	D ₄	D ₅	D ₆	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Fig: the threeto-eight-line decoder circuit

Three-to-eight-line decoder (3 to 8 line decoder)

- ✓ Using Enable Input
- ✓ Assume, Enable Input is ACTIVE HIGH which means when the enable input is HIGH then the decoder will get Enabled.

Three-to-eight-line decoder (3 to 8 line decoder)

Fig: Logic Circuit

Enable Pin

- ✓ Some binary decoders have an additional input pin labelled "Enable" that controls the outputs from the device.
- ✓ This extra input allows the decoders outputs to be turned "ON" or "OFF" as required.
- ✓ Output is only generated when the Enable input has value 1; otherwise, all outputs are 0.

BCD-to-Decimal decoder (4 to 10 line decoder)

- ✓ Also known "4 to 10 line decoder".
- ✓ The four inputs are decoded into ten outputs, each representing one of the minterms of the three input variables.

A3 A2 A1 A0
0 1 0 0

A1
BCD to Decimal D2
Indicating the output line D4. D4 will be HIGH at this condition

BCD-to-Decimal decoder (4 to 10 line decoder)

Fig: BCD-to-Decimal decoder

2-to-4 decoder

Tru En	th ta	w ₀	y ₀	y_1	y'2	y 3	
1	0	0	1	0	0	0	
1	0	1	0	1	0	0	
1	1	0	0	0	1	0	
1	1	1	0	0	0	1	
0	x	x	0	0	0	0	

2-to-4 decoder

Truth table En w_1 w_0 y_0 y_1 y_2 y_3										
En	41	п,0	y ₀	y_1	3,5	23				
1	0	0	1	0	0	0				
1	0	1	0	1	0	0				
1	1	0	0	0	1	0				
1	1	1	0	0	0	1				
0	X	x	0	0	0	0				

Octal to Binary Encoder (8 to 3 Encoder)

- ✓ The 8 to 3 Encoder or octal to Binary encoder consists of 8 inputs: Y7 to Y0 and
- **✓ 3 outputs**: A2, A1 & A0
- ✓ Each input line corresponds to each octal digit and three outputs generate corresponding binary code.

Octal to Binary Encoder (8 to 3 Encoder)

✓ The figure below shows the logic symbol of octal to the binary encoder.

INPUTS								OUTPUTS		
Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0	A2	A1	Α0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Octal to Binary Encoder (8 to 3 Encoder)

✓ Logical expression for A2, A1, and A0:

$$\checkmark$$
 A2 = Y7 + Y6 + Y5 + Y4

$$\checkmark$$
 A1 = Y7 + Y6 + Y3 + Y2

$$\checkmark$$
 A0 = Y7 + Y5 + Y3 + Y1

Octal to Binary Encoder (Logic Circuit)

BCD-to-seven-segment decoder

✓ The BCD-to-7-segment decoder accepts the BCD code on its inputs and provides outputs to drive 7-segment display devices to produce a decimal readout.

4 to 16 Decoder using 3 to 8 Decoders

3 to 8 Decoder using 2 to 4 Decoder

Implementation of Full Adder using Decoder