Урок 2. Базовая математика

Целые числа	2
Возведение в степень	4
Задание для закрепления	5
Дроби	7
Задание для закрепления	11
Задание для закрепления	14
Задание для закрепления	17
Задание для закрепления	20
Выражение величины из формулы	22
Логарифм	24
Задание для закрепления	25
Арифметическая прогрессия	26
Задание для закрепления	29
Геометрическая прогрессия	31
Системы счисления	33

Целые числа

В этом уроке мы верхнеуровнево разберем основные знания по математике, которые нужны при работе бухгалтером.

Целые числа — это числа, которые представляют целое количество единиц.

Они могут быть положительными, т.е. больше нуля, отрицательными, меньше нуля и нулем.

Целые числа используются, например, для подсчета количества предметов, денег, температуры и многих других величин.

Примеры: 3, 0, -5, 10, -20

Операции с целыми числами

Операции – это способы, которыми мы можем работать с числами.

В математике есть четыре основные операции:

- сложение
- вычитание
- умножение
- деление

Другие операции:

- возведение в степень
- факториал
- проценты

Свойства целых чисел

Замкнутость	а + b — целое	а × b — целое
Ассоциативность	a + (b + c) = (a + b) + c	$a (b \times c) = (a \times b) c$
Коммутативность	a + b = b + a	$a \times b = b \times a$
Существование нейтрального элемента	a + 0 = a	a × 1 = a
Существование противоположного элемента	a + (-a) = 0	а ≠ ±1 ⇒ 1/а не является целым
Дистрибутивность умножения относительно сложения	a (b + c) = (a b) + (a c)	

Возведение в степень

Возведение числа в степень означает, что мы умножаем это число на само себя несколько раз, как указано в степени.

$$a^{n} = a \times a \times ... \times a_{n}$$

$$2^3 = 2 \times 2 \times 2 = 8$$

$$N^0 = 1$$

$$5^{\circ} = 1$$

Свойства степени

- Умножение степеней с одинаковым основанием: $a^m \times a^n = a^{m+n}$
- Деление степеней с одинаковым основанием: $a^{m}:a^{n}=a^{m-n};\ a\neq 0$
- Степень от степени: $(a^{m})^{n} = a^{mn}$
- Произведение степеней с разными основаниями, но одинаковой степенью:

$$(a \times b)^n = a^n \times b^n$$

• Деление степеней с разными основаниями, но одинаковой степенью:

$$(\frac{a}{b})^n = a^n : b^n; b \neq 0$$

- Первая степень числа: $a^1 = a$
- Число в нулевой степени: $a^0 = 1$
- Отрицательная степень: $a^{-n} = 1 : a^n$

స్తో Задание для закрепления

Проверьте себя: решите примеры

- 2⁶
- 0,561°

Ответ: 64; 1.

Дроби

Дробь — это способ представления частей целого.

Когда мы разделяем что-то на равные части, мы используем дроби, чтобы показать, сколько частей мы взяли из общего целого.

Представим пирог. Если пирог разрезать на 4 равных куска, и мы возьмем 1 из них, то это можно представить дробью: 1/4. Здесь числитель — 1, это часть, которую мы взяли, а знаменатель — 4, это общее количество равных частей пирога.

Дроби состоят из двух чисел:

- числителя
- знаменателя

Числитель — это количество частей, которое мы взяли или имеем.

О Знаменатель — это количество равных частей, на которые мы разделили целое.

	ДРОБИ	
Смешанные числа	Обыкновенные	Десятичные
$\boxed{ 3\frac{5}{8}}$	Правильные Неправильные	Конечные Бесконечные
	меньше $\longrightarrow \frac{5}{8}$ больше/равно $\longrightarrow \frac{8}{5}$ меньше/равно $\longrightarrow \frac{5}{5}$	Периодические 5,91
		0,1666 0,78788

О Десятичная дробь — это то, что получается, если разделить числитель на знаменатель.

Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. Вот так: 0,3; 4,23; 9,939

$$9,123 = 9\frac{123}{1000} = 9 + \frac{1}{10} + \frac{2}{100} + \frac{3}{1000}$$

Арифметические операции с дробями

Сложение и вычитание: Для сложения или вычитания дробей они должны иметь общий знаменатель. Если знаменатели разные, их нужно привести к общему знаменателю.

$$\frac{1}{2} + \frac{1}{5} = \frac{5}{10} + \frac{2}{10} = \frac{7}{10}$$

Из дроби в десятичное число: Дробь можно преобразовать в десятичное число путем деления числителя на знаменатель.

$$\frac{7}{10}$$
 = 0,7

Умножение: Дроби умножаются путем перемножения числителей и знаменателей.

$$\frac{1}{6} \times \frac{2}{3} = \frac{1 \times 2}{6 \times 3} = \frac{2}{18}$$

Сокращение дробей: Для упрощения дробей числитель и знаменатель делятся на их общий наибольший делитель.

$$\frac{2}{18} = \frac{1}{9}$$

Деление: Для деления одной дроби на другую используется умножение первой дроби на обратную (перевернутую) вторую дробь.

$$\frac{4}{5}:\frac{1}{8}=\frac{4\times8}{5\times1}=\frac{32}{5}$$

Преобразование дроби из неправильной дроби в смешанное число: Неправильную дробь можно преобразовать в смешанное число, выделив целую часть.

$$\frac{32}{5} = 6\frac{1}{2}$$

Задача: Распределение прибыли между партнерами

Компания "Alpha GmbH" получила чистую прибыль за год в размере 300.000 евро. У компании три партнера: Александр, Борис и Виктор. Доли их участия в компании распределены следующим образом:

- Александр владеет 1/2 доли.
- Борис владеет 1/3 доли.
- Виктор владеет оставшейся частью.

Необходимо рассчитать, сколько прибыли получит Виктор.

Решение:

1. Сначала найдем долю Виктора. Так как общая доля всех партнеров должна составлять 1 (целое), можно вычислить долю Виктора:

$$1 - (\frac{1}{2} + \frac{1}{3}) = 1 - (\frac{3}{6} + \frac{2}{6}) = 1 - \frac{5}{6} = \frac{1}{6}$$

2. Теперь рассчитаем прибыль Виктора:

$$\frac{1}{6}$$
 × 300.000 = $\frac{300.000}{6}$ = 50.000

Прибыль Виктора будет 50.000 евро.

స్తో Задание для закрепления

Компания "Beta GmbH" получила чистую прибыль за год в размере 100.000 евро. У компании два партнера: Мария и Анна. Доли их участия в компании распределены следующим образом:

- Мария владеет 3/5 доли.
- Анна владеет оставшейся частью.

Посчитайте прибыль Анны.

Ответ:

Доля Анны = 2/5. 2/5 от 100.000 будет 40.000. Доход Анны: 40.000 евро. **А**рифметическим квадратным корнем из неотрицательного числа а называется такое неотрицательное число, квадрат которого равен а.

Определение квадратного корня также можно представить в виде формул:

$$\sqrt{a} = x$$

$$x^2 = a$$

$$x \ge 0$$

$$a \ge 0$$

Из определения следует, что а не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.

Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.

$$\sqrt[2]{4} = \pm 2$$

ఏ Задание для закрепления

- 1. Извлечь квадратный корень $\sqrt{3}6$
- 2. Найти значение выражения 2√16

Ответ:

- 1. 6
- 2. 8

Корнем n-ой степени (n=2,3,4...) из числа а называется такое число b, n-ая степень которорого равно а.

$$\sqrt[n]{a} = b, \ b^n = a$$

Пример:

$$\sqrt{81} = 9 \ (9^2 = 81); \ \sqrt[3]{27} = 3 \ (3^3 = 27); \ \sqrt[4]{625} = 5 \ (5^4 = 625).$$
 $\sqrt[3]{-8} = -2; \ \sqrt[3]{8} = 2.$

్లు: Задание для закрепления

Извлечь корень $\sqrt[4]{16}$

Ответ:

2

О Дробные степени. Число с дробным показателем степени равно корню с показателем, равным знаменателю, и подкоренным числом в степени, равной числителю.

Для выполнения такой операции нам потребуется вспомнить базовое определение степени с дробным показателем:

$$\sqrt[n]{a^k} = a^{\frac{k}{n}}$$

при любом положительном а, целом k и натуральном n.

$$\sqrt[5]{b^7} = b^{7:5} = b^{\frac{7}{5}}$$

స్తో Задание для закрепления

Решите примеры:

- 81^{1/4}
- 49^{1/2}

Ответ:

- 1. 3
- 2. 7

Выражение величины из формулы

Для того, чтобы выражать величины из формулы, нам надо повторить, какие алгебраические преобразования существуют.

Алгебраические преобразования — это операции, которые позволяют изменять вид выражений и уравнений для получения нужного результата.

Основные алгебраические преобразования

Сложение и вычитание: Можно добавлять или вычитать одинаковые величины с обеих сторон уравнения.

$$a + 5 = c + 10$$

$$a = c + 5$$

Умножение и деление: Можно умножать или делить обе стороны уравнения на одно и то же число (кроме нуля).

$$5a = 10c$$

$$a = 2c$$

Обратная операция сложения — вычитание:

$$a + b = c$$

$$a = c - b$$

Обратная операция вычитания — сложение:

$$a - b = c$$

$$a = c + b$$

Обратная операция умножения — деление:

$$a \times b = c$$

$$a = \frac{c}{b}$$

Обратная операция деления — умножение:

$$\frac{a}{b} = c$$

$$a = b \times c$$

Задача

Формула скорости: $v = \frac{s}{t}$. Нужно выразить t (время).

Решение

$$v = \frac{s}{t}$$

Умножаем обе стороны уравнения на t, чтобы убрать знаменатель.

$$v \times t = s$$

Делим обе стороны уравнения на v, чтобы изолировать t.

$$t = \frac{s}{v}$$

Логарифм

О Логарифм — это степень, в которую нужно возвести а для получения b.

Логарифмом числа b по основанию a (a>0, a≠1):

 $\log_a b$ – называется степень p, $\log_a b = p$, в которую нужно возвести a, чтобы получить b.

 $\log_2 64 = ?$

Задаем вопрос: в какую степень нужно возвести 2, чтобы получить 64?

Ответ: в шестую степень.

Значит, $\log_2 64 = 6$

- Логарифм по основанию 10 называется десятичным логарифмом и обозначается
- Логарифм по основанию е называется натуральным логарифмом и обозначается как In.

Основные свойства логарифма:

1	$\pmb{a^{\log_{\pmb{a}}\pmb{b}}}=\pmb{b}$
2	$\log_a a = 1$
3	$\log_a 1 = 0$
4	$\log_a(b\cdot c) = \log_a b + \log_a c$
5	$\log_a \frac{b}{c} = \log_a b - \log_a c$
6	$\log_a b^n = n \cdot \log_a b$
7	$\log_{a^n} b = \frac{1}{n} \cdot \log_a b$
8	$\log_a b = \frac{\log_k b}{\log_k a}$

స్తో Задание для закрепления

Вычислить:

1. log ₂ 256

Арифметическая прогрессия

Арифметическая прогрессия — это последовательность чисел, в которой каждое следующее число отличается от предыдущего на постоянную величину, называемую разностью прогрессии и обозначаемой d.

Числовая последовательность выглядит так: a_1 , a_1 + d, a_1 + 2d, a_1 + 3d...

Пример: 2, 5, 8, 11, 14...

Формула n члена арифметической прогрессии:

$$a_n = a_1 + d(n - 1)$$

Применение арифметической прогрессии в бухучете

- **Амортизация оборудования:** При равномерной амортизации оборудования, когда ежегодно списывается одинаковая сумма. Это позволяет равномерно распределить стоимость оборудования на протяжении его полезного срока службы.
- Планирование бюджета: При составлении и анализе бюджета, когда необходимо предусмотреть равномерное увеличение или уменьшение расходов или доходов. Например, ежегодное увеличение рекламного бюджета на фиксированную сумму.
- **Анализ динамики запасов:** При управлении запасами, когда запасы товара увеличиваются или уменьшаются на фиксированное количество каждый месяц.
- Расчет резервов и фондов: При создании резервов или фондов, когда ежемесячно или ежегодно откладывается фиксированная сумма. Например, создание резервного фонда для будущих затрат.
- Планирование заработной платы: При составлении плана повышения зарплат, когда зарплата увеличивается на фиксированную сумму ежегодно. Это может быть полезно при долгосрочном планировании затрат на персонал.
- Распределение расходов: При распределении расходов на обслуживание кредита или лизинга, когда платежи остаются равными в течение всего срока действия договора.
- **Анализ прибыли и убытков:** При анализе тенденций в прибыли и убытках, когда предполагается равномерное изменение прибыли или убытков в течение нескольких периодов.

Задача 1

На предприятии ежегодно увеличивают зарплату сотрудников на фиксированную сумму. В первый год сотрудник получал зарплату в размере 50.000 евро в год. Каждый последующий год зарплата увеличивается на 5.000 евро.

Найдите размер зарплаты сотрудника через 5 лет.

Решение

```
a_n — размер зарплаты в n-й год, в нашем случае a_5;
```

 a_1 — начальная зарплата (в первый год), т.е. 50.000;

n — номер года, нам нужен 5;

d — разница между зарплатами в последующие годы, это 5.000 евро.

Формула: $a_n = a_1 + d(n - 1)$

 $a_5 = 50.000 + 5.000 \times (5-1)$

 a_5 = 50.000 + 20.000

 a_5 = 70.000

Через 5 лет сотрудник будет получать зарплату 70.000 евро в год.

Сумма n первых членов арифметической прогрессии:

$$S_n = \frac{a_1 + a_n}{2} n$$

Задача 2

На предприятии ежегодно увеличивают зарплату сотрудников на фиксированную сумму. В первый год сотрудник получал зарплату в размере 50.000 евро в год. Каждый последующий год зарплата увеличивается на 5.000 евро.

Определите, сколько всего денег получит сотрудник за первые 5 лет работы.

Решение

$$S_n = \frac{50.000 + 70.000}{2} \times 5$$

$$S_n = \frac{120.000}{2} \times 5$$

$$S_n = 60.000 \times 5$$

$$S_n = 300.000$$

За первые 5 лет работы сотрудник получит 300.000 евро.

ాహ్ Задание для закрепления

Амортизация оборудования

Компания приобретает новое оборудование стоимостью 50.000 евро. Стоимость оборудования ежегодно уменьшается на одинаковую сумму. Через 5 лет остаточная стоимость оборудования составит 30.000 евро.

Найдите годовую сумму амортизации.

Ответ: d = - 5.000. Годовая сумма амортизации составляет 5.000 евро.

Геометрическая прогрессия

Геометрическая прогрессия – это последовательность чисел, в которой каждое следующее число получается умножением предыдущего на постоянное число, называемое знаменателем прогрессии.

Числовая последовательность выглядит так: b_1 , $b_1 \times q$, $b_1 \times q^2$, $b_1 \times q^3$...

Пример: 2, 6, 18, 54, 162...

Формула n-ого числа геометрической прогрессии:

$$b_n = b_1 \times q^{n-1}$$

Применение геометрической прогрессии в бухучете

- Расчет сложных процентов: Если инвестировать определенную сумму на счет с процентной ставкой, начисляемой ежегодно, сумма будет увеличиваться по геометрической прогрессии.
- **Регулярные инвестиции:** Если инвестировать определенную сумму регулярно (например, ежегодно) и проценты начисляются на накопленную сумму, это также описывается геометрической прогрессией.
- Погашение кредита: Если кредит выплачивается равными ежемесячными платежами, и проценты начисляются на остаток задолженности, это также может быть описано геометрической прогрессией.

Задача

Инвестор вложил 1000 евро на счет с годовой процентной ставкой 5%. Необходимо рассчитать сумму на счету через 5 лет.

Решение

$$b_n = ?$$

$$n = 5$$

$$b_1 = 1000$$

Каждый год к начальной сумме добавляется определенный процент. Проценты добавляются к уже существующей сумме, поэтому q = 1 + 0.05 = 1.05

$$b_5 = 1000 \times 1,05^{5-1}$$

 $b_5 \approx 1000 \times 1.2155$

$$b_5 \approx 1000 \times 1.2155$$

$$b_5 \approx 1215,5$$

Через 5 лет на счету будет приблизительно 1215,5 евро.

Сумма n первых членов арифметической прогрессии:

$$S_n = \frac{b_1 - b_n q}{1 - q}, \ q \neq 1$$

Системы счисления

Системы счисления - это способы представления чисел с использованием различных символов и правил.

Они позволяют нам описывать числа в различных контекстах и для разных целей.

Вот несколько основных систем счисления:

- Десятичная система (десятичное счисление): Это наиболее распространенная система счисления, которую мы используем в повседневной жизни. В десятичной системе используются цифры от 0 до 9. Каждая цифра обозначает определенную степень числа 10. Например, число "123" в десятичной системе означает (1 * 10^2) + (2 * 10^1) + (3 * 10^0) = 100 + 20 + 3.
- Двоичная система (двоичное счисление): В этой системе используются только две цифры 0 и 1. Двоичная система широко применяется в компьютерах, где электрические сигналы могут иметь два состояния включено (1) и выключено (0).
- Восьмеричная система (восьмеричное счисление): В этой системе используются цифры от 0 до 7. Каждая цифра обозначает степень числа 8.
- Шестнадцатеричная система (шестнадцатеричное счисление): В этой системе используются цифры от 0 до 9 и буквы A, B, C, D, E, F, которые обозначают числа с 10 по 15. Шестнадцатеричная система также широко применяется в компьютерной технике, так как она позволяет компактно представлять большие числа.

Пример

$$10101_{2} = 1 \cdot 2^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2} + 0 \cdot 2^{1} + 1 \cdot 2^{0} = 21_{10}$$

$$9AF_{16} = 9 \cdot 16^{2} + 10 \cdot 16^{1} + 15 \cdot 16^{0} = 2479_{10}$$

$$743_{8} = 7 \cdot 8^{2} + 4 \cdot 8^{1} + 3 \cdot 8^{0} = 483_{10}$$