

21V 3A 4-Switch Buck-Boost Converter

DESCRIPTION

The XR3651 is a high performance buck boost converter that the output voltage can be programmed from 0.9V up to 20V through external resistor.

The XR3651 implements the Buck Boost converter with a single inductor architecture that operates from input voltages above, below or equal to the output voltage. And support 2-switch boost mode for higher efficiency.

The integrated low Rds(on) MOSFET minimizes physical footprint, maximizes efficiency, which reduces the power dissipation. Constant current control is utilized to protect the device from overshooting in unwanted conditions. Built-in loop compensation simplifies the circuit and design.

XR3651 guarantees robustness with under voltage lockout, short circuit protection and thermal protection.

FEATURES

- Integrate low R_{DS} (on) power MOSFET
- Wide V_{IN}range:3.0V-21V
- Wide V_O range:0.9V-20V
- Compatible with 4-switch buck-boost mode and 2-switch boost mode.
- Fixed frequency 450kHz
- Programmable input and output current limit
- Output Constant Current Control.
- Quiescent current: <60uA
- Integrate output short protection
- Integrate thermal protection
- QFN3*4 package

APPLICATIONS

- Power bank systems
- USB Power Delivery
- Industrial applications
- Automotive Systems

TYPICAL APPLICATION

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾
VD26F1OFNF#TDDDF	QFN3×4-15	XR3651
XR3651QFNE#TRPBF		XXXXXX

Notes:

2) Line 1 of top marking means Part No., and the line 2 of top marking means Date Code.

PIN CONFIGURATION

TOP VIEW

ABSOLUTE MAXIMUM RATING¹⁾

VO, VIN, SW1, SW2Pin	0.3V to24V
BST1-SW1, BST2-SW2	0.3V to 6.5V
All Other Pins	0.3V to 6.5V
JunctionTemperature ²⁾³⁾	150°C
Lead Temperature	260°C
Storage Temperature	65°C to +150°C
ESD Susceptibility (Human Body Model)	2kV

RECOMMENDED OPERATING CONDITIONS

Input Voltage VIN	3.0V to 21V
OutputVoltage VO	0.9V to 20V
Operation Junction Temp (T ₁)	40°C to +125°C

THERMAL PERFORMANCE⁴⁾ $\theta_{JA}\theta_{JC}$

QFN3X4-15......48...11°C/W

Note:

- 1) Exceeding these ratings may damage the device.
- 2) The XR3651guarantees robust performance from -40°Cto 150°C junction temperature. The junction temperature range specification is assured by design, characterization and correlation with statistical process controls.
- 3) The XR3651 includes thermal protection that is intended to protect the device in overload conditions. Thermal protection is active when junction temperature exceeds the maximum operating junction temperature. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARATERISTICS

ltem	Symbol	Condition	Min.	Тур.	Max.	Units
General parameters						
VIN voltage range	V_{IN}		3.0		21	V
N/INI and a self-control of the	V _{INUVLO}	V _{IN} falling	2.8	3.0	3.1	V
VIN under voltage lockout		V _{IN} falling	2.45	2.6	2.75	V
VCC output voltage	Vcc		4.7	5	5.3	V
VCC output current limit	lvcc	V _{VCC} =0V		50		mA
Supply current in shut-down mode	IQ	V _{IN} =4V, V _{EN} =0V	30		60	μA
EN Logic HIGH	V_{ENH}	V _{EN} rising			2.5	V
EN Logic LOW	V_{ENL}	V _{EN} falling	1.6			V
Switch frequency	F _{sw} ⁵⁾		350	450	550	kHz
Switch minimum off time	T _{off_min} ⁵⁾		80	100	120	ns
Bucktopswitch on-resistance	$R_{dsbkTG}^{5)}$			20	28	mΩ
Buck bottom switchon-resistance	R _{dsbkBG} ⁵⁾			20	28	mΩ
Boost top switch on-resistance	$R_{dsbstTG}^{5)}$			20	28	mΩ
Boost bottom switch on-resistance	R _{dsbstBG} ⁵⁾			20	28	mΩ
Feedback voltage	V_{FB}		0.885	0.9	0.915	V
Input average current limit	I _{IN_LIM}	R_1 =10m Ω ; R_2 = R_3 =3k Ω ;	2.85	3	3.15	А
OLIM pin output current sense ratio	K _{OLIM}	I _O =2A	4	5	6	μA/A
OLIM pin regulate voltage	V_{OLIM}			400		mV
Output average current limit	I _{O_LIM}	R _{OLIM} =40KΩ	1.9	2	2.1	Α
Buck region, (IL Valley)	5)	V _{VCC} >4.8V		7		_
Boost region, (IL Peak)	I _{COMP(MAX)} 5)	V _{VCC} >4.8V		7		- A
Protection						
Thermal shutdown threshold ⁵⁾	T _{SHUT}			150		°C
Thermal recovery threshold ⁵⁾	T _{REC}			130		°C

Notes:

5) Guaranteed by design.

PIN DESCRIPTION

Pin No.	Name	Description
1	CSP	Positive terminal of current sense.
2	VIN	Input pin, place bypass capacitor close to this pin.
3	PGND	Power Ground.
4	VO	Output pin, place bypass capacitor close to this pin.
5	FB	Output feedback pin.
6	OLIM	Output current limit program pin. Connect a resistor to GND to set the maximum
		average current. And in the light load, it could be output current detection pin.
7	EN	Enable control pin. Forcing the pin below 1.6V shuts down the converter, reducing
	EIN	quiescent current. Once the EN pin rises above 2.5V, the IC is turned on.
8	BST1	VO side bootstrap supply pin for top switch. 0.1uF capacitor is connected between
8	ВЗП	BST1 and SW1 pins.
9	SW1	VO side power switching node.
10	SW2	VIN side power switching node. Connect to SW1 with inductor
11	BST2	VIN side bootstrap supply pin for top switch. 0.1uF capacitor is connected between
	DOIZ	BST2 and SW2 pins.
12	TEST	Test pin. Tie this pin to GND for normal operation.
13	VCC	5V LDO for power driver and internal circuit. Must be bypassed to GND with a
		minimum of 10uF ceramic capacitor for stable operation.
14	GND	Signal GND.
15	CSN	Negative terminal ofcurrent sense.

Notes:

Highlighted pins are high current pins

BLOCK DIAGRAM

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{IN} =12V, V_O = 5.0V, L = 3.3 μ H, C_O = 40 μ F, TA = +25 $^{\circ}$ C, unless otherwise noted

Steady State Test

 V_{IN} =12V, V_{O} =5.0V I_O=2A

Startup through Enable

 V_{IN} =12V, V_{O} =5.0V I_O=2A(Resistive load)

Shutdown through Enable

 V_{IN} =12V, V_{O} =5.0V I_O=2A(Resistive load)

Heavy Load Operation

2A LOAD

Medium Load Operation

1A LOAD

Light Load Operation

0 A LOAD

Short Circuit Protection

V_{IN}=12V, V_O=5.0V I_O=1.93A-Short

Short Circuit Recovery

V_{IN}=12V, V_O=5.0V I_O=Short-1.93A

Discharge I-V Curve

V_{IN}=12V, V_O=5.0V

I_{O_LIM}=2A

FUNCTIONAL DESCRIPTION

XR3651 is a monolithic buck-boost DC to DC converter that can operate over a wide input voltage range of 3.0V to 21V. The output voltage can be programmed between 0.9V to 20V and deliver 3A of load current. Internal, low R_{DSON} N-channel power switches reduce the solution complexity and efficiency.

Flexible Buck-Boost Converter

The XR3651contains flexible buck-boost converter for either buck or boost converter. When V_{IN} is higher than output voltage, it is a buck converter. When V_{IN} is lower than output voltage, it is a boost converter.

The DC-DC converter utilizes proprietary single inductor current-mode control to guarantee smooth transition between buck and boost operation with better dynamic response and cycle-by-cycle current protection.

XR3651 regulates the output voltage and output current.

Output Voltage

The output voltage is set by an external feedback resistive divider. The feedback signal is compared with internal precision 0.9V voltage reference by the error amplifier. The output voltage is given by the equation:

$$V_O(V) = \frac{0.9(V) \times (R_4 + R_5)}{R_5}$$

Where R_4 and R_5 are defined in typical application figure.

Programmable Input/Output Current Limit

As shown in figure 1, the current sense resistor R_{CS} should be placed input terminal or output terminal and closed to the R_{ISET} . The input/output current limit is set by R_{ISET} and R_{CS} ,

which is optional. If the input/output current limit is not desired, the CSN pin should be shorted to VCC, and the CSP pin shorted to GND.

$$I_{IN/O_LIM}(A) = \frac{R_{ISET}(k\Omega)}{R_{CS}(m\Omega)} \times 10(\mu A/A)$$

(a) Input current sense

(b) output current sense

Figure1. Programmable current limit

If the input and output current limit are all necessary. The secondary output current limit can be programmable by R_{OLIM} pin.

$$I_{O_LIM}(A) = \frac{0.4(V)}{R_{OLIM}(k\Omega)} \times 0.2(A/\mu A) \times 1000$$

If the output current equals to the I_{O_LIM} , the output current loop begins to work, it turns down output voltage to limit the output power. When OLIM is not used, it should be shorted to GND. When output is shorted to ground, the XR3651 works as a buck converter, the output current is continuously sensed and limited to I_{O_LIM} . When the output short is removed, the regulator comes into normal operation again.

VIN UVLO

When V_{IN} decreases to V_{IN_UVLO} , the discharging process is terminated. When the V_{IN} recovers and is larger than V_{IN_UVLO} , the XR3651 can re-discharge if the V_{EN} is still high.

Thermal Control

When the junction temperature of the XR3651rises above 135°C, it begins to reduce the output power to prevent the temperature from rising further. If the junction temperature of

the XR3651rises above 150°C, the discharging process stops.

Shut-down Mode

The XR3651 shuts down when voltage at EN pin is below 1.6V. The entire regulator is off.

PCB Layout Note

For minimum noise problem and best operating performance, the PCB is preferred to following the guidelines as reference.

- Place the input decoupling capacitor as close to XR3651 (VIN pin and PGND) as possible to eliminate noise at the input pin. The loop area formed by input capacitor and GND must be minimized.
- 2. Put the feedback trace as far away from the inductor and noisy power traces as possible.
- 3. The ground plane on the PCB should be as large as possible for better heat dissipation

Reference Design

Reference 1: Input and output current limit set

 V_{IN} : 3.0V ~ 21V

V_{OUT}: 5.0V I_{IN_LIM}: 3A I_{O LIM}: 2A

Reference 2: Only output current limit set

V_{IN}: 3.0V ~ 21V

V_{OUT}: 5.0V I_{O_LIM}: 2A

Reference 3: 2-switch mode and no current limit

 V_{IN} : 5.0V ~ 10 V

V_{OUT}: 12V I_O: 0~2A

PACKAGE OUTLINE

