Multiplying Matrices

Multiplying natrices A and B.

$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 5 & -4 \\ 3 & -3 & -2 \\ 6 & 7 & -1 \end{bmatrix} \quad B = \begin{bmatrix} 4 & 8 & 0 \\ 9 & 5 & 10 \\ 11 & 1 & 2 \end{bmatrix}$$

Here we have (4×3) and (3×3) natical and the number of columns in A is the same as the number of rows in B.

The first step is to write 2 matrices Side by Side, as follows:

$$AB = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 5 & -4 \\ 3 & -3 & -2 \\ 6 & 7 & -1 \end{bmatrix} \begin{bmatrix} 4 & 8 & 0 \\ 9 & 5 & 10 \\ 11 & 1 & 2 \end{bmatrix}$$

Here we need to multiply in the first row, first column position from the matrix

4×4 +0+9+ 1×11=27

Next step is to multiply first row and second column as followp.

4 X8+ 0X5+1X1 = 33.

we continue on algog the your and columns as

 $= \begin{bmatrix} 4 \times 4 + 0 \times 9 + 1 \times 11 & 4 \times 8 + 0 \times 5 + 1 \times 1 & 4 \times 0 + 0 \times 10 + 1 \times 2 \\ 2 \times 4 + 5 \times 9 + -4 \times 71 & 2 \times 8 + 5 \times 5 + -4 \times 1 & 2 \times 0 + 5 \times 10 + -4 \times 2 \\ 3 \times 4 + -3 \times 9 + -2 \times 11 & 3 \times 8 + -3 \times 5 + -2 \times 1 & 3 \times 0 + -3 \times 10 + -2 \times 2 \\ 6 \times 4 + 7 \times 9 + -1 \times 11 & 6 \times 8 + 7 \times 5 + -1 \times 1 & 6 \times 0 + 7 \times 10 + -1 \times 2 \end{bmatrix}$

$$AB. = \begin{bmatrix} 27 & 33 & 2 \\ 9 & 37 & 42 \\ -37 & 7 & -34 \\ 76 & 82 & 68 \end{bmatrix}$$

Determinants	
is a s	square array of nembers which ain Sum of products.
Represents a Cort	ain Sum of Producty.
Below is an	Example of a 3×3 determinant
100	
-2-4	
3 0	2
The result of	multiplying out, then Simplifying
the Elements of	a deter-
(a Séalar quar	が (1).
Calculating a	2x2 Determinant
e and the	e value of a 2 x 2 determenat
with Elemets	e value of a 2 x2 determinate a, b, c and d as follows.
Ca b]	
(cd)	= ad-Cb
we multipy	= ad-cb, diagonals, then Subtract
Exit Pur	$\frac{1}{12} = \frac{12 - 2}{10}$ + Single No = 10
[-2X3]	J = 12-2
Reguelt we go	+ Single No= 10]

Python code Snippet Matrix Multiplication Import numpy as mp A = np. array ([[5,7,2], [6,2,9]]) B=np. array ([[3,2], [4,7], [8,2]]) (= A. dot(B) print(c) output: [[59 63] [98 44]] Transpose of a matrix impost nempy as np A = np. array ([3,4), [6,2], [4,-4]) Print (A. traspose ()) Output: [[3,64]].