Podmínky optimality

Zadání

- 1. Ukažte, že funkce $f(x_1, x_2) = 3x_1^2 + 5x_2^2 + 2x_1x_2 10x_1 22x_2$ je konvexní. Dále nalezněte všechny její body minima.
- 2. Ať $A \in \mathbb{M}_{m,n}(\mathbb{R}), b \in \mathbb{R}^m$. Je dána úloha (nejmenších čtverců)

minimalizujte
$$f(x) = ||Ax - b||^2$$
 na \mathbb{R}^n .

- (a) Ukažte, že se jedná o konvexní úlohu.
- (b) Ukažte na základě podmínek optimality pro konvexní úlohu, že $\hat{x} \in \operatorname{argmin}_{x \in M} f(x)$ právě tehdy, když $A^T A \hat{x} = A^T b$.
- 3. Ať $A \in \mathbb{M}_{m,n}(\mathbb{R}), D \in \mathbb{M}_{r,n}(\mathbb{R}), b \in \mathbb{R}^m$ a $\lambda > 0$. Je dána úloha¹ minimalizujte $f(x) = \|Ax b\|^2 + \lambda \|Dx\|^2$ na \mathbb{R}^n .
 - (a) Ukažte, že se jedná o konvexní úlohu.
 - (b) Ukažte, že $f(x) = \langle (A^T A + \lambda D^T D)x, x \rangle 2 \langle Ax, b \rangle + ||b||^2$.
 - (c) Ukažte na základě podmínek optimality pro konvexní úlohu, že $\hat{x} \in \operatorname{argmin}_{x \in M} f(x)$ právě tehdy, když $A^T A \hat{x} + D^T D \hat{x} = A^T b$.
 - (d) Ať m = n = r + 1 = 20, A = 1 je jednotková matice,

$$D = \begin{pmatrix} 1 & -1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & -1 \end{pmatrix}.$$

Komponenty vektoru b jsou uvedeny v tabulce.

n	1	2	3	4	5	6	7	8	9	10
b_n	1,02	1,06	1,08	1,15	1,17	1,20	1,23	1,23	1,24	1,31
n	11	12	13	14	15	16	17	18	19	20
b_n	1,29	1,33	1,34	1,38	1,41	1,40	1,42	1,49	1,48	1,47
\overline{n}	21	22	23	24	25	26	27	28	29	30
b_n	1,51	1,53	1,53	1,53	1,56	1,61	1,62	1,58	1,63	1,61
\overline{n}	31	32	33	34	35	36	37	38	39	40
b_n	1,64	1,61	1,61	1,60	1,65	1,62	1,62	1,66	1,62	1,63
\overline{n}	41	42	43	44	45	46	47	48	49	50
b_n	1,63	1,63	1,60	1,60	1,60	1,54	1,55	1,52	1,55	1,48

S využitím výpočetní techniky nalezněte řešení \hat{x} zadané úlohy pro následující hodnoty parametru λ : $\lambda=1,~\lambda=5,~\lambda=100,~\lambda=1000$ a $\lambda=10000.^2$

 ^{– 1} Jedná se o úlohu regularizovaných nejmenších čtverců. Parametr λ se nazývá regularizační konstanta

²Interpretace uvedené úlohy může být následující. Komponenty vektoru b jsou naměřené hodnoty signálu ovlivněného šumem. Řešení zadané úlohy pak odpovídá signálu po "odstranění" šumu. Díky volbě matice D požadujeme, aby se sousední komponenty v \hat{x} příliš nelišily, neboť $\|Dx\|^2 = \sum_{i=1}^{n-1} (x_i - x_{i+1})^2$. Tedy původní signál "vyhlazujeme".

4. Je dána optimalizační úloha

minimalizujte
$$x_1^4+x_2^4+12x_1^2+6x_2^2-x_1x_2-x_1-x_2$$
 za podmínek $x_1+x_2\geq 6,$
$$2x_1-x_2\geq 3,$$

$$x_1,x_2\geq 0.$$

Napište KKT podmínky pro tuto úlohu a ukažte, že $(3,3)^T$ je jediný bod minima.

5. Je dána úloha

maximalizujte
$$(x_1 - 2)^2 + (x_2 - 3)^2$$

za podmínek $3x_1 + 2x_2 \ge 6$,
 $-x_1 + 2x_2 \le 3$,
 $x_1 \le 2$.

- (a) Napište KKT podmínky.
- (b) Jsou splněny předpoklady věty O nutných KKT podmínkách?
- (c) Jsou splněny předpoklady věty O postačujících KKT podmínkách?
- (d) Ověřte, že vektor $(2,0)^T$ je KKT bod. Je to řešení úlohy?
- 6. Je dána úloha

minimalizujte
$$\alpha x_1 + x_2$$

za podmínek $x_1^2 + x_2^2 \le 25$,
 $x_1 - x_2 \le 1$,

kde $\alpha \in \mathbb{R}$ je parametr.

- (a) Jsou splněny předpoklady věty O nutných KKT podmínkách?
- (b) Jsou splněny předpoklady věty O postačujících KKT podmínkách?
- (c) Napište KKT podmínky.
- (d) Určete α tak, aby vektor $(4,3)^T$ byl řešením úlohy.
- 7. Ať $A \in \mathbb{M}_{m,n}(\mathbb{R})$ a $b \in \mathbb{R}^m$. Je dána úloha

minimalizujte
$$||Ax - b||^2$$

za podmínky $||x||^2 \le \alpha$,

kde $\alpha>0$ je parametr. Nalezněte KKT podmínky. Jsou nutné a postačující pro body minima?

8. Ať $c \in \mathbb{R}^n \setminus \{0\}$. Uvažte úlohu

maximalizujte
$$\langle x, c \rangle$$

za podmínky $||x||^2 \le 1$.

Napište KKT podmínky a pomocí nich zdůvodněte, že jediné řešení úlohy je $\hat{x} = \frac{c}{\|c\|}$.

9. Je dána úloha

minimalizujte
$$\frac{x_1}{x_2}$$
 za podmínek $\frac{1}{x_1}+x_2\leq 2,$ $x_1,x_2>0.$

- (a) Ukažte, že uvedená úloha není konvexní.
- (b) Zkoumejte souvislost s úlohou

minimalizujte
$$e^{y_1-y_2}$$
 za podmínek $e^{-y_1}+e^{y_2} \le 2$.

(Nápověda: Uvažte substituci $x_1=e^{y_1}$ a $x_2=e^{y_2}.$)

- (c) Ukažte, že úloha z bodu (b) je konvexní.
- (d) Řešte zadanou úlohu pomocí úlohy z bodu (b).

Výsledky

- 1. $(1,2)^T$.
- 4. KKT podmínky jsou

$$4x_1^3 + 24x_1 - x_2 - 1 - \mu_1 - 2\mu_2 - \mu_3 = 0,$$

$$4x_2^3 + 12x_2 - x_1 - 1 - \mu_1 + \mu_2 - \mu_4 = 0,$$

$$\mu_1(6 - x_1 - x_2) = 0,$$

$$\mu_2(3 - 2x_2 + x_2) = 0,$$

$$\mu_3x_1 = 0,$$

$$\mu_4x_2 = 0,$$

$$\mu_1, \mu_2, \mu_3, \mu_4 \ge 0.$$

5. (a) KKT podmínky jsou

$$-2(x_1 - 2) - 3\mu_1 - \mu_2 + \mu_3 = 0,$$

$$-2(x_2 - 3) - 2\mu_1 + 2\mu_2 = 0,$$

$$\mu_1(6 - 3x_1 - 2x_2) = 0,$$

$$\mu_2(-x_1 + 2x_2 - 3) = 0,$$

$$\mu_3(x_1 - 2) = 0,$$

$$\mu_1, \mu_2, \mu_3 \ge 0.$$

- (b) ano (je splněna afinní podmínka regularity).
- (c) ne (přepíšeme-li úlohu na minimalizační, pak cílová funkce není konvexní).
- (d) $(2,0)^T$ je řešení úlohy. (Nápověda: existence řešení je zaručena z Weierstrassovy věty.)
- 6. (a) Ano (je splněna Slaterova podmínka regularity).
 - (b) Ano.
 - (c) KKT podmínky jsou

$$\alpha + 2\mu_1 x_1 + \mu_2 = 0,$$

$$1 + 2\mu_1 x_2 - \mu_2 = 0,$$

$$\mu_1 (x_1^2 + x_2^2 - 25) = 0,$$

$$\mu_2 (x_1 - x_2 - 1) = 0,$$

$$\mu_1, \mu_2 \ge 0.$$

(d)
$$\alpha \leq -1$$
.

7. KKT podmínky jsou

$$A^{T}Ax + \mu x = 0,$$

$$\mu(\|x\|^{2} - \alpha) = 0,$$

$$\mu \ge 0.$$

KKT podmínky jsou nutné i postačující podmínky pro body minima.

8. KKT podmínky jsou

$$-c + 2\mu x = 0,$$

 $\mu(\|x\|^2 - 1) = 0,$
 $\mu \ge 0.$

- 9. (b) Ať $\varphi(y)=(e^{y_1},e^{y_2})$. Pak \hat{y} je řešením úlohy z bodu (a) právě tehdy, když $\hat{x}=\varphi(\hat{y})$ je řešení původní úlohy.
 - (d) Jediné řešení je vektor $(1,1)^T$.