MP1 Design Review Presentation

Abhishek Patel

Zarir Hamza

THE CAMS

Classroom
Attendance
Monitoring
System

DATE: October 28, 2017

Team Member 1 - Zarir Hamza

Team Member 2 - Abhishek Patel

Problem Addressed

- Instructors take up valuable class time to take attendance
- No guarantee that at any given time, instructor is aware of the attendance of all students
- Especially important during emergency situations

- Solution is to use strategically placed cameras at the main entryway of classroom in order to take attendance of students entering and leaving classroom
- Automatic process with real time updates that can be viewed by administrators
 - Save time and efficient

Applications

- Currently using one camera which requires single file line in order to detect students leaving one by one
- Potentially in the future, process can be more streamlined with an array of cameras with crowds of students

- Target large schools and colleges
 - Any place with a room with regular visitors
- Currently our customer is Dr. Russo to be used in the Academy

- Real time updates on website with list of students
- Camera with facial recognition that differentiates between students
- Guarantees list of students can be viewed at any time marking them as "in class" or "out of class"

Patent Search

- No exact matches
- Closest Match:
 - Smart Doorman
 - Patent #9,786,107
 - "detecting the presence of one or more guests at an entrance to a residence and comparing the presence of a guest to one or more profile parameters"
- Very Different from our product, <20% overlap

Concurrent Engineering

- Computer Engineering
 - Machine Learning
 - OpenCV
- Electrical Engineering
 - Send pulse to LED for facial recognition
 - Serial Communication
 - Send information over WIFI
- Civil Engineering
 - Shelf to hold camera and microcontroller
 - Calculate stress points and size to support load

Block Diagram Functional Descriptions

- Battery Pack Allows Portability
- USB Camera Takes Video Feed to send to Microcontroller
- Jetson TK1 Extra Processing Power
- CAMS Algorithm Picks frames to process
- OpenCV Recognizes faces in selected frames
- Webserver Easily allows for attendance to be checked
- Output to PCB LED indicator of Facial recognition state

Design Specifications

- Jetson TK1
 - OpenCV Library, image processing
 - NumPy Library, computational processing
 - Linux OS, easily usable
- USB Camera
 - Full HD Pictures, Good in low lighting
- Battery Pack
 - Portability, system can be mounted to doors

Mechanical Specifications

6'x4' Makeshift Plywood "Wall"

- 3D Print Packaging Design
 - -(9"x3"x8") Shelf to hold Camera
 - \circ -(5"x5"x2") Box to hold Jetson TK1
 - Mounted on top of Camera
- Hinge to hold shelf to wall

Zarir

- Processor side with Jetson
- PCB
- Packaging

Abhishek

- Facial recognition with Camera
- Website
- Integration

Milestones

MP1 OpenCV Facial Recognition

MP2 Camera with Laptop

MP3 Jetson with Camera

MP4 Jetson with Webapp

Planned Deliveries for each marking period

MP1	MP2
OpenCV Demo	Jetson Processing
MP3 Webapp	MP4 Jetson with Camera

Gantt Chart

Cost Analysis

Budget: $$150 \times 2 = 300

Jetson TK1 Microcontroller: -\$129

Camera: **-\$60**

Costs:

Wall Plywood: ~**\$20**

Other Costs: ~\$30

Shipping: -\$20

WIFI Dongle: ~\$30

Expenditures: \$289

W

Ρ

3

4

Item No.	Part No.	Reference	Primary Source	Secondary Source	Description	Lead Time	Cost	Order Status
1	1	M	NVIDIA	Amazon	Microcontroller	10 Days	\$129	None
2	1	С	Amazon	Best Buy	USB Camera	7 Days	\$60	None

Best Buy

Lowe's

Amazon

Home Depot

WIFI Dongle

Plywood (6'x4')

7 Days

5 Days

\$30

\$20

None

None

Risk Factors

- Camera Issues
 - Lighting
 - Direction Changes
- Human Error
 - Moving too quickly

Contingency Plans

- IF OpenCV is not compatible:
 - Alternative Computer Vision (CV) Libraries
 - SimpleCV
 - VXL (Vision X Library)
 - PIL (Python Imaging Library)
- IF Camera Issues:
 - Continuous Flash (Buy Nanolights)
- IF Human Error:
 - Send error message to teacher/principal/administrator

Testing Strategies

- Board Testing
 - I/O Pins
 - HDMI/WIFI/Bluetooth connection strength
- Functionality Testing
 - Camera with Jetson
 - Response time
- Data Testing
 - Server requests/WIFI connectivity

Issues

Open

None

Resolved Issues:

- Number of Cameras (resolved to be 1)
- Placement of Cameras (resolved at doorframe)

Resource Requirements

- Hardware
 - USB Camera capture images of students' faces
 - Jetson TK1 Microcontroller use images to recognize faces
 - Plywood "Wall" to hand camera from
- Software
 - OpenCV image processing
 - NumPy computation for image arrays
 - Python foundation of OpenCV

References

Acknowledgements

NVIDIA (Jetson TK1)

46

Mr. E. Paterno

NVIDIA Website (<u>www.nvidia.com</u>)
for information about TK1
Microcontroller

Middlesex County Academy for Science, Mathematics, and Engineering Technologies