

Pengenalan Sistem Operasi

Course Objective

- Definisi Sistem Operasi.
- Peran Sistem Operasi dalam Sistem Komputer.
- Tujuan Sistem Operasi.
- Sejarah perkembangan Sistem Operasi.

Cietam Anaraci (1)

- OS (Operating System) merupakan merupakan program yang mengatur eksekusi program dan bertindak sebagai interface antara aplikasi dan perangkat keras.
- Tujuan Sistem Operasi :
 - Kemudahan.
 - Efisiensi.
 - Kemampuan untuk berkembang.

Sietam Anaraci (?)

- OS sebagai interface antara user dan perangkat keras berarti menyediakan mekanisme kapada end user untuk menggunakan utilitas yang disediakan.
- End user tidak mau tahu akan detail proses yang melibatkan computer hardware, sehingga end user hanya berinteraksi via aplikasi-aplikasi yang disediakan.

Sietam Anaraci (3)

Figure 2.1 Layers and Views of a Computer System

Mengapa Mempelajari Sistem

Operasi

- Merupakan kajian mendasar untuk pendidikan ilmu-ilmu komputer & informatika
- Rekayasawan dan ilmuwan komputer/informatika mutlak memahami Sistem Operasi, karena Sistem Operasi ibarat roh bagi manusia

20 nedeibeeib naev eerivae

- Program development.
- Program execution.
- Access to I/O devices.
- Controlled access to File.
- System Access.
- Error Detection and Response.
- Accounting.

NS ac Recource Manager

- Resource management :
 - Manajemen Proses
 - Manajemen Memori
 - Manajemen Input / Output
 - Manajemen Berkas
 - Protection system
 - Networking
 - Command interpreter system
- Memberikan / mangalikasikan resource tersebut kepada user sesuai dengan kebutuhan.

Posisi Sistem Operasi dalam

Sistem Komputer

Evoluci Cietam Anaraci

- Perkembangan sistem operasi :
 - Batch Sistem
 - Time Sharing Sistem
 - Multiprocessing Sistem
 - Distributed Sistem
 - Real Time Sistem.

Oneratina Svetem Hietory (1)

- Computer digital, pertama kali di desain oleh ahli matematika bernama Charles Babbage (1792 – 1871), memberikan gagasan tantang suatu mesin yang terprogram.
- Keterbatasan teknologi masa itu, membuat mesin yang diciptakan Charles Babbage tidak dapat bekerja sesuai dengan yang diinginkan.
- Mesin yang diciptakan hanya berupa mekanis, tanpa adanya sistem operasi.
- Bekerja sebagai mesin hitung.

Anerstina Guetem Hietory (2)

- Mesin yang diciptkan Charles, digunakan untuk melakukan perhitungan beberapa model matematis.
- Menggunakan punch card untuk memasukan nilai / angkat yang akan digunakan dalam perhitungan.

Pengenalan Sistem Operasi – Mata Kuliah Sistem Operasi

Anaratina Svetam Hietory (2)

- OS Generations
 - Generation 1 (1945 55)
 Vacuum tubes, plugboards, and serial processing
 - Generation 2 (1955 65)
 Transistors and batch systems
 - Generation 3 (1965 80)
 ICs and multiprogramming
 - Generation 4 (1980 present)
 Personal computers and interactivity
 - Generation 5 (present ?)
 self-organizing systems?

Serial Proceeding (1)

- Pada generasi ini, programmer berinteraksi langsung dengan perangkat keras, tidak terdapat sistem operasi.
- Operasional mesin, dikontrol dengan console yang berupa display light, toggle switch, input devices.
- Input device dapat berupa card reader, sedangkan output devices dapat berupa printer.
- Tidak terdapat mekanisme penjadwalan / scheduling dinamis, karena programmer menentukan alokasi waktu setiap job yang akan dikerjakan.

Serial Proceeding (2)

- Kelemahan pada generasi ini adalah :
 - Suatu task bisa saja telah selesai sebelum menghabiskan jatah waktu yang telah ditentukan sebelumnya, sehingga terdapat waktu yang dihabiskan untuk menunggu untuk mengerjakan job selanjutnya.
 - Atau malahan waktu yang telah dialokasikan sebelumnya tidak cukup untuk menyelesaikan job, sehingga dipaksa untuk dihentikan.

Cimple Ratch Cyctem (1)

- Operation of an early batch system:
 - 1. Programmer brings cards to 1401.
 - 1401 reads batch of jobs onto tape.

Simple Ratch System (2)

- Operation of an early batch system:
 - 3. Operator carries input tape to 7094.
 - 4. 7094 does computing.

Cimple Ratch Cyctem (?)

- · Operation of an early batch system:
 - 5. Operator carries output tape to 1401.
 - 6. 1401 prints output.

Simple Ratch System (4)

- Sistem Operasi Batch Sederhana menghasilkan mekanisme pengurutan dan pengelompokan instruksi secara otomatis.
- Masalah timbul jika mekanisme eksekusi instruksi berhubungan dengan I/O.
- Masalahnya I/O relatif lambat jika dibandingkan dengan processor, sehingga terdapat banyak sekali kondisi idle.

Multinrourammina (1)

- Kelemahan pada Sistem
 Batch Sederhana, yaitu
 penggunaan utilitas
 processor yang seringkali
 dalam keadaan idle, pada
 saat menunggu mekanisme
 dari I/O.
- Ide: pada saat processor menunggu mekanisme dari I/O, processor dapat melakukan eksekusi instruksi yang lain.

Pengenalan Sistem Operasi – Mata Kuliah Sistem Operasi

Multinrourammina (2)

Uniprogramming

Program A Run Wait Run Wait

Processor must wait for I/O instruction to complete before preceding

Multiprogramming with two programs

When one job needs to wait for I/O, the processor can switch to the other job

Multinrourammina (2)

Multiprogramming with three programs

Price for task switching should be less than gain in system utilization!

Multinrourommina (4)

Multinroarammina (5)

Effects of multiprogramming for example

	Uniprogramming	Multiprogramming
Processor use	20 %	40 %
Memory use	33 %	67 %
Disk use	33 %	67 %
Printer use	33 %	67 %
Elapsed time	30 min	15 min
Throughput	6 jobs/hr	12 jobs/hr
Mean response time	18 min	10 min