Automatic root cause (anomaly) detection — 3GPP ETSI 4G LTE RAN KPIs

Machine learning model

MARLON FERNANDES

Network Design | Network Development Engineer

Agenda

1. Motivation

- Context: "Why optimize 4G networks?"
- Automation: "Why Al/machine learning?"
- Objective

4. Results

- Cell I example
- Cell II example

2. Case study

- Network performance metrics and evaluation criteria
- 4G LTE 3GPP solution
- Anomaly and network issues

3. Development

- 4G solution
- Data strategy
- Machine learning algorithm selection
- Proof of concept (*PoC*)

1. Motivation

Why optimization?

- Maximize MNO OPEX and CAPEX
 - Seasonality
 - Traffic behavior and user type
 - · Network engineering resource strategy
- QoS improvement and user live network experience

Why automate?

- Human error → Process loop impact
- Complexity → Heave amount of data and parameters to analyze and improve
- Autonomous network concept → Digital transformation
- Increase cost efficiency and resource productivity
- Automatic anomaly detection/root cause → Al/Machine Learning

Source: How Machine Learning Can Enable Anomaly Detection, 2020

1. Motivation

Objective

ML model for 4G 3GPP Radio Network Performance management (automatic anomaly detection)

- Identify network performance anomalies
- Identify potential root cause (diagnostics)
- Automate the process (digital transformation)
- Increase efficiency (time reduction per activity)

2. Study case

Network performance metrics and evaluation criteria for 3GPP 4G LTE Radio Acces Network (RAN)

- 3GPP ETSI TS 132 451 → "User experience and QoS based on Key Performance Indicators"
 - Accessibility
 - Retention capacity
 - Integrity
 - Traffic
 - Utilization

Name	Average Uplink Interference				
Object	4G Cell				
KPI Formula	UL.Interference.Avg (unique counter)				
Unit	Power (dBm) KPI – Uplink interference				

Name	Max User Number	
Object	4G Cell	
KPI Formula	Max.User.Number (unique counter)	
Unit	N/A	KPI – User traffic

2. Case study

Counters aggregation (formula) and commercial network acceptance based on technical performance metrics

2500 2000 1500 1000 500 Aug 8 Aug 9 Aug 10 Aug 11 Aug 12 Aug 13 Tempo

Counters of different categories (e.g. network failure, external events, etc)

Time (mm/dd/yyyy)	4G Cell			
hh:mm		Counter1	Counter2	 Counter or KPI formula of interest
	Cell1			
6/01/2021 12:00		1424	422	 0
	Cell2			
6/01/2021 12:00		533	328	 6
	Cell1		775 BY	
8/14/2021 21:00		1621	457	 7
	Cell2			
8/14/2021 21:00		1111	127	 9

Global standard 3GPP → Time series, extracted by hour

2. Case study

4G common anomalies and network issues

- Hardware malfunction on live network (site to backhaul-core)
- Human error → Network parameterization
- External interference, decreasing the performance of 4G active carrier
- 4G network traffic congestion

3. Development

Scenario:

- Blumenau city SC (South Brazil)
- 2020/H2
- Total of 95 performance indicator counters → KPI formula of interest is RRC Setup Success Rate (97.5% acceptance metric)
- Collected for two 4G cells (Cell1 e Cell2), different sites (06/1/2022 to 8/18/2022)
- 1785 samples (rows) for each 4G cell (dataset.csv)

3. Development

Acceptance metric and KPI evaluation criteria for RRC Setup Success Rate (%)

■ 3GPP → 97.5% for network acceptance

Data strategy → Anomaly identification

Automatic metric labeling (by hour)

Time (mm/dd/yyyy) hh:mm	4G Cell	Counter1	Counter2	 RRC Setup Success Rate (%)	KPI anomaly?
6/01/2021 12:00	Cell1	1424	422	 97	1
6/01/2021 12:00	Cell2	533	328	 99	0
8/14/2021 21:00	Cell1	1621	457	 100	0
8/14/2021 21:00	Cell2	1111	127	 75	1

3. Development

Machine learning model selection → Supervised classification (binary)

Time (mm/dd/yyyy)	4G Cell					
hh:mm		Counter1	Counter2		RRC Setup Success Rate (%)	KPI anomaly?
6/01/2021 12:00	Cell1	1424	422		97	1
6/01/2021 12:00	Cell2	533	328		99	0
8/14/2021 21:00	Cell1	1621	457		100	0
8/14/2021 21:00	Cell2	1111	127		75	1
(γ				
Input						Output

4. Results

Proof of concept $(PoC) \rightarrow RRC$ Setup Success Rate (%) for new data (Cell1 e Cell2)

Model	Accuracy	Precision
Decision Tree Classifier	99.64%	96.67%
Naive Bayes	82.42%	18.58%

Notes:

- Decision Tree → Better performance (correlated features)
- Feature importance extraction as the most correlated root cause

4. Results

Proof of concept (PoC) \rightarrow RRC Setup Success Rate (%) for Cell1

KPI identified as anomaly

Feature importance

Notes:

- Possible to identify anomaly and its root cause
- 3GPP → L.RRC.SetupFailNoReply counter indicator

4. Results

Proof of concept $(PoC) \rightarrow RRC$ Setup Success Rate (%) for Cell2

KPI identified as anomaly

Notes:

- Possible to identify anomaly and its root cause
- 3GPP → *L.RA.GrpA.Resp* counter indicator

Feature importance

Thank you