Linear Regression

Closed Form Solution

Notation

- Let the given data is $D = \{(X_1, y_1), ..., (X_n, y_n)\}.$
- Let $X_i \in \mathbb{R}^d$ and $y_i \in \mathbb{R}$
- Further, $X_i = [x_{i1} \quad ... \quad x_{id}]^t$

We believe that

$$\bullet \ \theta_0 + \theta_1 x_{i1} + \dots + \theta_d x_{id} = y_i$$

We like to solve

•
$$\theta_0 + \theta_1 x_{11} + \dots + \theta_d x_{1d} = y_1$$

 $\theta_0 + \theta_1 x_{21} + \dots + \theta_d x_{2d} = y_2$
 \vdots
 $\theta_0 + \theta_1 x_{n1} + \dots + \theta_d x_{nd} = y_n$

In matrix form $Z\Theta = Y$ Solve this to find Θ Z may not be invertible !!

$$Z\Theta = Y$$

$$\begin{bmatrix} 1 & x_{11} & \cdots & x_{1d} \\ 1 & x_{21} & \cdots & x_{2d} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_{n1} & \cdots & x_{nd} \end{bmatrix} \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_d \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Closest Solution: by minimizing the squared error

• Obtained by minimizing the criterion $J(\Theta) = ||Z\Theta - Y||^2 = (Z\Theta - Y)^t (Z\Theta - Y)$

$$J(\Theta) = \Theta^t Z^t Z \Theta - 2(Z\Theta)^t Y - Y^t Y$$

$$J(\Theta) = \Theta^t Z^t Z \Theta - 2(Z\Theta)^t Y - Y^t Y$$

Equating gradient of J to zero. So

$$\nabla_{\Theta}(J) = 2(Z^{t}Z)\Theta - 2Z^{t}Y = 0$$

We get
$$\Theta = (Z^t Z)^{-1} Z^t Y$$

Example: 1D problem

•
$$D = \{(1,1), (2,2), (3,2)\}$$

•
$$Z = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, $\Theta = \begin{bmatrix} \theta_0 \\ \theta_1 \end{bmatrix}$, $Y = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$

•
$$Z^t Z = \begin{bmatrix} 3 & 6 \\ 6 & 14 \end{bmatrix}$$
 $(Z^t Z)^{-1} = \frac{1}{6} \begin{bmatrix} 14 & -6 \\ -6 & 3 \end{bmatrix}$

$$\bullet$$
 $\Theta = (Z^t Z)^{-1} Z^t Y$

•
$$\Theta = \frac{1}{6} \begin{bmatrix} 14 & -6 \\ -6 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ 11 \end{bmatrix} = \begin{bmatrix} 2/3 \\ 1/2 \end{bmatrix}$$

• So the line we fitted is $y = \frac{2}{3} + \frac{x}{2}$

