Digital Design with the Verilog HDL Chapter 1: Digital Design Review

Binh Tran-Thanh

Department of Computer Engineering Faculty of Computer Science and Engineering Ho Chi Minh City University of Technology

May 26, 2023

Technology Tradeoffs

Non-Recurring Engineering (NRE) Cost Process complexity Density, speed, complexity

Design Methodology

Combinational - Sequential Logic

- Combinational logic:
 - The outputs at any time, t, are a function of only the inputs at time t
- Sequential logic:
 - The outputs at time t are a function of the inputs at time t and the outputs at time t-1

Transistor

nMos

pMos

$$\begin{array}{ccc} \mathsf{G} = 1 \\ & \mathsf{S} \\ & & \\ \downarrow & & \mathsf{ON} \\ \mathsf{D} \end{array}$$

CMOS Technology

Α

GND

Inverter

- Complementary metal-oxide semiconductor
- Outputs are always either 0 or 1

Input -

pMos Pull-up network

Output

Parallel and Serial

- nMOS: 1 = ON
- pMOS: 0 = ON

- Series: all transistors are on
- Parallel: at least one transistor is on

The "Conduction Complement" Rule

- CMOS gate's output is always either 0 or 1 A
- For example: NAND
 - ullet Y=0 if and only if both inputs are 1
 - ullet Y=1 if and only at least one input is 0
 - pMos transistors are parallel while nMos transistors are serial
- The "Conduction Complements" rule
 - The pull-up network always complements the pull-down network
 - ullet Parallel o Serial, Serial o Parallel

CMOS Inverter

CMOS Inverter

CMOS Inverter

Α	В	Υ
0	0	
0	1	
1	0	
1	1	

Α	В	Υ
0	0	1
0	1	
1	0	
1	1	

Α	В	Υ
0	0	1
0	1	1
1	0	
1	1	

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0
	1	U

CMOS NOR Gate

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

3-input NAND Gate

- Y is 0 if and only if ALL inputs are 1
- Y is 1 if and only if AT LEAST one input is 0

Design CMOS Gates

Example

Using the CMOS Technology, draw transistor structure of a 4-input NOR gate

Design CMOS Gate (cont.)

Example 2 (Homework)

Compound Gates

Compound gates: can describe any inverter function (not function)

Example: AOI22

(f)

AOI22

Use AND/OR gate to implement?

20 transistors

Example: O3AI

Standard Cells

- Library of common gates and structures (cells)
- Decompose hardware in terms of these cells
- Arrange the cells on the chip
- Connect them using metal wiring

FPGAs

- "Programmable" hardware
- Use small memories as truth tables of functions
- Decompose circuit into these blocks
- Connect using programmable routing
- SRAM bits control functionality

