COMP3314/CSIS0314: Assignment 1

Due on Monday, March 2, 2015

Instructor: Jack Wang

Qian Xin, 3035134147

2.1 Logistic regression

2.1.1 ML estimation

The effective learning rate found is 0.0002.

The effective maximum iteration values found is 2000.

Run the algorithm repeatedly for 3 times, the final accuracy is as follows,

	Training Set	Validation Set	Test Set
Big Set	1.00	0.82	0.90
	1.00	0.84	0.90
	1.00	0.85	0.86
Small Set	1.00	0.57	0.75
	1.00	0.61	0.61
	1.00	0.64	0.75

Table 1. Final accuracy of ML estimation, 3 times each set

Figure 1. Plot on big set, accuracy = 1.00; 0.84; 0.90

Figure 2. Plot on small set, accuracy = 1.00; 0.64; 0.75

Compare the plot from big set and small set, the small set has lower accuracy on validation set and test set. Given the 28*28 array of digit representation, the training data set is too small thus caused overfitting.

From Table 1, we may notice that the final accuracy and the plot have slight difference for each execution of the code. The source of the randomness is from the initialization of the weight vector w. The initial value of w is randomized from a normal distribution.

```
% Initialize the weight vector using samples from a normal distribution. w = randn(M+1, 1);
```

2.1.2 MAP estimation

For negative log posterior, the curve is much the same in the training set and the validation set. When Lambda=0, the value is small, and goes straight up to the peak when Lambda=1. For Lambda=3, the value goes down and reaches the local minimum either at Lambda=5 or Lambda=100.

For accuracy, the training set have the value of 1.00 at Lambda=0,1,3,5, while goes down slightly down at Lambda=100. On the validation set, the accuracy rises when Lambda increases ([0,1,3,5]) and reaches a peak when Lambda=5. When Lambda=100, the accuracy goes down slightly compared to when Lambda=5.

From the four plots, we may notice the effective lambda value is 5.

Figure 4. Average negative log posterior of MAP estimation, on big set

Lambda	0	1	3	5	100
Training Set	3.065	179.596	119.290	57.418	78.924
	3.323	176.997	118.374	56.925	78.924
	3.262	179.211	119.854	57.287	78.924
Validation Set	76.216	225.271	146.352	76.262	64.656
	77.175	230.408	143.845	76.423	64.656
	75.648	225.960	144.727	76.180	64.656

Table 2. Average negative log posterior on big set, 3 times

Figure 5. Average accuracy of MAP estimation, on big set

Given the classifier trained on the big set, the final accuracy on the test set is 0.93.

Figure 6. Average negative log posterior of MAP estimation, on small set

Lambda	0	1	3	5	100
Training Set	0.331	176.404	109.108	37.658	5.960
	0.350	176.736	108.427	37.650	5.960
	0.342	175.359	107.323	38.678	5.960
Validation Set	259.730	344.387	177.223	97.890	64.422
	239.817	301.087	1199.215	97.832	64.422
	197.770	316.751	195.068	96.087	64.422

Table 3. Average negative log posterior on small set, 3 times

Figure 7. Average accuracy of MAP estimation, on small set

Because MAP introduces the hyperparameter Lambda and implements the regularization term, which controls the distribution of w. MAP estimation eliminates the problem of overfitting and results in a further rise on accuracy of the classifier.

On the full training set, the accuracy is raised from 0.90 to 0.93. On small training set, the raise on accuracy is more obvious, from 0.75 to 0.81. Such result is reasonable because the overfitting is a serious problem when the classifier is trained by smaller set. So that the regularization term has a more obvious effect on smaller training set.

2.2 k-NN classification

Figure 8 shows the accuracy of k-NN on the validation set and the test set.

From the validation set only, we may choose the most suitable value of k as 1, 9 or 13. Their accuracy on the test set is 0.94, 0.99 and 0.96. Combining the two results, we may choose k=9.

There is not much correlation between the accuracy of the validation set and the test set. We may say validation set is not able to predict test performance. This classifier is less accurate but more fast compared to logistic regression.

Figure 8. Accuracy of k-NN on both validation set and test set