

Session 4.2 - Ensamblado

<u>Isabel Cuesta</u>

<u>BU-ISCIII</u> <u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

> 3 al 10 noviembre 2022 CURSO FORMACIÓN AESAN-CNA

Assembly

Reconstruct the sequence of the original DNA from shorter DNA sequences or small fragments known as reads

- **De novo:** with no previous knowledge of the genome to be assembled. It overlap the end of the end of each read in order to create a longer sequence.
- Assembly with reference: A similar but not identical genome guides the assembly process. Map reads over supplied genome.

Assembly: contig y scaffold

- Contig: continuous sequence made up of overlaping shorter sequences
- Scaffold: two or more contigs located and rearranged according to spatial information (pair-end, mate pair, reference)

https://www.biostars.org/p/253222/

Assembly: gaps

- Sequencing gaps: Position and orientation known by spatial information
- Physical gaps: No information about adjacent contigs

Gene Cloning, Lodge et al.

Assembly: Algorithms

- Overlap, Layout, Consensus (OLC overlap graph):
 - O first overlaps among all the reads are found
 - L then it carries out a layout of all the reads and overlaps information on a graph
 - Removes redundant and low quality overlaps
 - C and finally the consensus sequence is inferred

Ex. Newbler, Mira, Celera Assembler, CAP3, PCAP, Phrap, Phusion.

https://pt.slideshare.net/anton_alexandrov/combining-de-bruijn-graph-overlap-graph-and-microassembly/12?smtNoRedir=1

Assembly: Algorithms

• De Brujin Graph (DBG: k-mer graph)

Chopping reads into much shorter k-mers (fixed length fragments) and then using all the k-mers to form a DBG and infer the contigs.

- Nodes in the graph are k-mers
- Edges represent consecutive k-mers (which overlap by k-n symbols)

Ex. SPAdes, ABySS, Velvet, AllPaths, Soap....

https://medium.com/@han_chen

de Bruijn Graphs

- A directed graph of sequences of symbols
- Nodes in the graph are k-mers
- Edges represent consecutive k-mers (which overlap by k-1 symbols)

Consider the 2 symbol alphabet (0 & 1) de Bruijn Graph for k =3

Producing sequences

Sequences of symbols are produced by moving through the graph

What are K-mers?

Example #1:

HAPPI PINE INESS APPIN

Example #1:

HAPPI PINE INESS APPIN

All 4-mers:

HAPP PINE INES APPI

APPI NESS PPIN

Unique 4-mers:

HAPP APPI PINE PPIN INES NESS

Example #1:

HAPPI PINE INESS APPIN

k = 4 k-mers:

HAPP APPI

PINE PPIN

INES NESS

Example #1:

HAPPI PINE INESS APPIN

k = 4 k-mers:

HAPP APPI

PINE PPIN

INES NESS

HAPPINESS

Easy!

Example #2:
MISSIS SSISSI SSIPPI


```
Example #2:
```

MISSIS SSISSI SSIPPI

```
All 4-mers (9):
```

MISS SSIS SSIP

ISSI SISS SIPP

SSIS ISSI IPPI

Unique 4-mers (7):

MISS SSIS SSIP ISSI SISS SIPP IPPI

Example #2:

MISSIS SSISSI SSIPPI

All 4-mers:

MISS ISSI SSIS SISS SSIP SIPP IPPI

Example #2:

MISSIS SSISSI SSIPPI

All 4-mers:

MISS ISSI SSIS SISS SSIP SIPP IPPI

MISSISSIPPI or MISSISSISSIPPI or ...

Example #2a:

MISSIS SSISSI SSIPPI


```
Example #2a:
MISSIS SSISSI SSIPPI
```

```
All 5-mers (6):
MISSI SSISS SSIPP
ISSIS SISSI SIPPI
```

Unique 5-mers (6, no duplicates):
MISSI ISSIS SSISS SISSI SSIPP SIPPI

Example #2a:

MISSIS SSISSI SSIPPI

This time k = 5 k-mers:

MISSI ISSIS SSISS SISSI SSIPP SIPPI

Example #2a:

MISSIS SSISSI SSIPPI

This time k = 5 k-mers:

MISSI ISSIS SSISS SISSI SSIPP SIPPI

MISSISSIS

SSIPPI

Choose k wisely

- Lower k
 - More connections
 - Less chance of resolving small repeats
 - Higher k-mer coverage
- Higher k
 - Less connections
 - More chance of resolving small repeats
 - Lower k-mer coverage

Optimum value for k will balance these effects.

Read errors

Example #3:

HAPPI INESS APLIN PINET

k = 3 k-mers:

HAP APP PPI INE NES ESS APL PLI LIN PIN NET

6 contigs: HAP APPIN APLIN INE NESS NET

More coverage

Depth

- Errors won't be duplicated in every read
- Most reads will be error free
- We can count the frequency of each k-mer
- Annotate the graph with the frequencies
- Use the frequency data to clean the de Bruijn graph

More coverage depth will help overcome errors!

SPAdes

 de Bruijn graph assembler by Pavel Pevzner's group out of St. Petersburg

- Uses multiple k-mers to build the graph
 - Graph has connectivity and specificity
 - Usually use a low, medium and high k-mer size together.
- Performs error correction on the reads first
- Maps reads back to the contigs and scaffolds as a check
- Under active development
- Much slower than Velvet
- Should be used in preference to Velvet now.

Assembly: Scaffolding

From draft:

Order contigs (Nucmer, if there is reference it can be used to align and guide)

Fill the GAPs (GapFiller, fill sequencing gap (not physical gap)

Solve repeated sequence ambiguities (Expander)

Resequence with different library:

- Longer fragments and/or distance
- Tools for assembly improvement

SSPACE (Scaffolding) REAPR (evaluate scaffolding, breaking incorrect scaffolds)

Assembly visualyzing

Artemis, ACT (compare two or more sequences), Icarus (Quast)

A move back to OLC

- New long read technologies
 - PacBio and MinIon
- Assemblers: HGap, CANU
 - Use overlap, layout consensus approach
- CANU can perform hybrid assemblies with long and short reads

Ensamblado: Errores

Nature Reviews | Genetics

- A. Gaps región del genoma sin secuenciar
- B. Duplicaciones de gran tamaño
 - Quimeras
- Regiones repetidas colapsadas
 - C. Terminales
 - D. Intersticiales

Genetic variation and the de novo assembly of human genomes
Chaisson et al. 2015

>¤_BU-ISCIII

Assembly: Metrics

- n = contigs number
- average = average contig length
- largest = largest contig
- N50 = length of the shortest contig where 50% of sum is held
- L50 = number of contigs which have 50% of the genome
- N90 = length of the shortest contig where 90% of sum is held.
- L90 = number of contigs which have 90% of the genome

Assembly: Evaluation

- Software that evaluate differets algorithms & parameters iMetAMOS, Koren et al., BMCBioinformatics 2014, 15:126 GAGE-B, Magoc et al., Bioinformatics 2013,29(14):1718-25
- **Graph evaluation**: Bandage, Wick R.R., Schultz M.B., Zobel J. & Holt K.E. (2015)
- Assembly evaluation: Quast, Gurevich et al., Bioinformatics 2013, 29:8
- Metrics for a good assembly:

Large N50 Sum closest to expected Low n Low L50

Assembly: Evaluation - Quast

• Assembly evaluation: Quast, Gurevich et al., Bioinformatics 2013, 29:8

Worst Median Best ✓ Show heatmap											
Genome statistics	■ RA_L2073_paired_assembly	■ RA_L2391_paired_assembly	RA_L2677_paired_assembly	RA_L2978_paired_assembly	RA_L2281_paired_assembly	RA_L2450_paired_assembly	■ RA_L2701_paired_assembly				
Genome fraction (%)	81.079	88.828	84.92	90.172	85.733	88.172	92.463				
Duplication ratio	1	1	1.001	1.001	1.001	1	1				
# genomic features	1736 + 824 part	2113 + 600 part	1881 + 768 part	2157 + 611 part	1992 + 637 part	2073 + 643 part	2368 + 412 part				
Largest alignment	16612	33 033	21 336	25 068	29 638	30 305	40 471				
Total aligned length	2 405 510	2 635 297	2 519 300	2 675 166	2 543 440	2 615 874	2743 222				
NGA50	3176	6162	4234	5948	5104	5358	9519				
LGA50	267	151	219	153	166	166	96				
Misassemblies											
# misassemblies	23	1	14	2	17	12	4				
Misassembled contigs length	84193	9611	45 868	6390	111 490	72 879	37 962				
Mismatches											
# mismatches per 100 kbp	17	18.78	15	16.71	341.39	15.75	13.49				
# indels per 100 kbp	1.21	1.25	1.87	1.94	7.27	1.45	0.87				
# N's per 100 kbp	0	0	0	0	0	0	0				
Statistics without reference											
# contigs	748	546	684	569	569	584	392				
Largest contig	16612	33 033	21 336	25 068	30915	30 305	40 471				
Total length	2 440 656	2 676 227	2 562 578	2714287	2 629 607	2 618 624	2787129				
Total length (>= 1000 bp)	2 439 127	2 676 227	2 559 569	2714287	2 628 029	2 615 105	2 785 415				
Total length (>= 10000 bp)	257 236	739 181	320 638	811 392	700516	658 31 9	1 419 641				
Total length (>= 50000 bp)	0	0	0	0	0	0	0				

Extended report

Assembly: Evaluation - Quast

 Assembly evaluation: Quast, Gurevich et al., Bioinformatics 2013, 29:8

Assembly: Assemblers

Name	Туре	Technologies	Author	Presented /Last updated	Licence*	Homepage
<u>DNASTAR</u> Lasergene Genomics Suite	(large) genomes, exomes, transcriptomes, metagenomes, ESTs	Illumina, ABI SOLiD, Roche 454, Ion Torrent, Solexa, Sanger	DNASTAR	2007 / 2016	С	link
Newbler	genomes, ESTs	454, Sanger	454/Roche	2004/2012	С	link
<u>Canu</u>	Small and large, haploid/diploid genomes	PacBio/Oxford Nanopore reads	Koren et al. ^[8]	2001 / 2018	os	link
<u>SPAdes</u>	(small) genomes, single- cell	Illumina, Solexa, Sanger, 454, Ion Torrent, PacBio, Oxford Nanopore	Bankevich, A et al.	2012 / 2017	OS	link
<u>Velvet</u>	(small) genomes	Sanger, 454, Solexa, SOLiD	Zerbino, D. et al.	2007 / 2011	OS	link

^{*}Licences: OS = Open Source; C = Commercial; C / NC-A = Commercial but free for non-commercial and academics

Assembly: Specials assemblers

- Diploid genomes recovering genomes from metagenomic data
- Metagenomics
- Plasmids
- Transcriptome

Hybrid genome assembly - short and long reads

Hybrid genome assembly - nanopore and illumina

Short reads (ILLUMINA) + Long reads (ONT) \rightarrow deNovo assembly (De novo assembly is the process of assembling a genome from scratch using only the sequenced reads as input - no reference genome is used.) \rightarrow high-quality assembly

ONT: >40.000b, higher error rate – **genome structure**

ILLUMINA: 300b, lower error rate – high base-level accuracy

Higher COST

Molina-Mora et al., Scientific Reports 2020

>¤_BU-ISCIII

PlasmidID

Thanks for your attention!

Questions?