International Workshop on Modeling Biological Macromolecules

- This module will consist of a
 - mini-lecture on molecular simulation including Markov Chain Monte Carlo,
 Molecular Dynamics and Hybrid Monte Carlo
 - walk-through of a python script to run HMC with Robosample
- At the end of this module, you should be able to address these questions:
 - What is Markov Chain Monte Carlo and Molecular Dynamics?
 - What is Hybrid Monte Carlo and why do people use it?
 - Generally speaking, how does a Hybrid Monte Carlo simulation work?
- You should also be able to run a simulation of a simple system using Robosample

Monte Carlo

- Monte Carlo simulation:
 - named after famous gambling city
 - uses random numbers
 - usually applied to hard deterministic or probabilistic problems
- Examples:
 - pi approximation
 - virtually tossing a coin or rolling a dice many times
 - estimating financial risk (uncertainty in unit price, sales...)
 - solving integrals / differential equations
- Hard to use for complex highly dimensional problems

Markov Chains

Stochastic process: Sequence of indexed random variables

$$\chi$$
 = state space

$$\pi$$
 = probability vector; $\pi = [\pi(A), \pi(B)], \quad \pi(A) = P(X = A)$

$$X = \{X_0, X_1, X_2, \dots\}, \qquad X_i = x \in \chi, \qquad \pi(\chi)$$

 Markovian property: memoryless: future only depends on the present

$$P(X_{i+1}|X_i=x_i,X_{i-1}=x_{i-1}...,X_0=x_0)=P(X_{i+1}|X_i=x_i)$$

Markov Chains

 Markov chains can be represented as graph diagrams where nodes are states and edges can be weighted by transition probabilities

Transition probabilities can be expressed as a transition matrix

transition matrix

$$Q = \begin{pmatrix} 0.9 & 0.1 \\ 0.1 & 0.9 \end{pmatrix}$$

probability vector evolution

$$\boldsymbol{\pi}_{k+1} = \boldsymbol{\pi}_k Q$$

Markov Chains Properties

Stationarity (<u>equilibrium</u>): $\pi Q = \pi$

Irreducibility

for any two states A, B, if we start in A, we will eventually get to B

states are reached at integer multiples

$$\pi(A)P(A \to B) = \pi(B)P(B \to A)$$

Metropolis – Hastings Algorithm Derivation

 Markov Chain Monte Carlo usefulness: construct our own Markov Chain that converges to a specific probability distribution.

for molecules: the states are the configurations

detailed balance
$$\pi(A)P(A \to B) = \pi(B)P(B \to A)$$

proposal distribution $\pi(A)Q(A \to B) \neq \pi(B)Q(B \to A)$

correcting term $\pi(A)Q(A \to B)\alpha(A,B) = \pi(B)Q(B \to A)\alpha(B,A) \Leftrightarrow \frac{\alpha(A,B)}{\alpha(B,A)} = \frac{\pi(B)Q(B \to A)}{\pi(A)Q(A \to B)}$

Metropolis-Hastings $\alpha(A,B) = \min\left(1,\frac{\pi(B)Q(B \to A)}{\pi(A)Q(A \to B)}\right)$

Metropolis – Hastings Algorithm

 $\pi(u \le R) = R \text{ for any } R \in [0,1]$ $and \ u \sim U(0,1)$ $0 \qquad \qquad R \qquad 1$

Markov Chain Monte Carlo for molecules

Randomly choose configurations

$$\pi(X) = \frac{1}{Z}e^{-\frac{1}{kT}\cdot E(X)}$$

MCMC In Practice: When do we start recording?

- The initial distribution is not known. Burn-in
 - achieve "stationarity" within a certain threshold
 - get to a high probability region

$$\bar{X}_n \to \mu \text{ as } n \to \infty$$

MCMC In Practice: When do we stop recording?

• Convergence of π^N towards the limiting distribution π_{true}

 $dist(\pi^N, \pi_{true}) \leq \varepsilon$

Total variation distance (TVD)

$$dist(\pi^N, \pi_{true}) = \frac{1}{2} \sum_{\gamma} |\pi^N(\chi) - \pi_{true}(\chi)| \qquad dist(\pi^N, \pi_{true}) = \sup_{\gamma} (\pi^N(E) - \pi_{true}(E)),$$
 E is any event

Hellinger distance

$$dist(\pi^{N}, \pi_{true}) = \frac{1}{\sqrt{2}} \sqrt{\sum_{\chi} \left(\sqrt{\pi^{N}(\chi)} - \sqrt{\pi_{true}(\chi)}\right)^{2}}$$

• Relative entropy (information gain, Kullback-Leibler divergence)

$$dist(\pi^N, \pi_{true}) = \sum_{x} \pi^N(x) \left[-\log \pi_{true}(x) \right] - \left(\sum_{x} \pi^N(x) \left[-\log \pi^N(x) \right] \right)$$

Mixing time

$$t_{mix}(\varepsilon) = \min\{t: dist(t) \le \epsilon\}$$

MCMC Simulation In Practice. When do we stop recording?

Convergence of observables tests when the reference π_{true} is not known

Sawle and Ghosh, "Convergence of Molecular Dynamics Simulation of Protein Native States: Feasibility vs Self-Consistency Dilemma." Grossfield A, Zuckerman DM. Quantifying uncertainty and sampling duality in biomolecular simulations.

MCMC Simulation In Practice. When do we stop recording?

 Self-consistency tests: "monitoring the overlap between full and partial trajectories". E.g. constant number of clusters.

Sawle and Ghosh, "Convergence of Molecular Dynamics Simulation of Protein Native States: Feasibility vs Self-Consistency Dilemma." Grossfield A, Zuckerman DM. Quantifying uncertainty and sampling quality in biomolecular simulations.

MCMC In Practice: How efficient is it?

- Correlation time analysis: time required to lose memory of previous values
- Hitting time
- Cover time
- Mean first passage matrix

	1	2	3	4	5
1					
2					
3					
4					
5					

What is Molecular Dynamics?

- Add energy to a system modeled by molecular mechanics and simulate its progress with time using Newton's second law of motion $\vec{F}=ma$
- See 0:45 to 2:20 of "An Introduction to Molecular Dynamics" (https://www.youtube.com/watch?v=ILFEqKl3sm4)
- See a separation of alkane and water: https://www.youtube.com/watch?v=xcMSHy3CqXA

Why do biological molecular dynamics?

- "everything that living things do can be understood in terms of the jigglings and wigglings of atoms" - Richard Feynman
- Check out David's molecular dynamics YouTube playlist: https://www.youtube.com/playlist?list=PLYEyeVFrqfAu0ft6sF4vVe5F0EbJYyi_L

General MD Algorithm

Figure 2 of Durrant & McCammon, 2011

How do we calculate trajectories?

Evolution in time given is by classical mechanics:

$$T:$$

$$Force: \frac{dp}{dt} = -\frac{\partial \mathcal{H}}{\partial x}$$

$$Velocity: \frac{dx}{dt} = \frac{\partial \mathcal{H}}{\partial p}$$

Integrate trajectory using Taylor expansion

$$x(t) = \frac{1}{0!}x(t_0)(t - t_0)^0 + \frac{1}{1!}\frac{dx}{dt}(t_0)(t - t_0)^1 + \frac{1}{2!}\frac{d^2x}{dt^2}(t_0)(t - t_0)^2 + \frac{1}{3!}\frac{d^3x}{dt^3}(t_0)(t - t_0)^3 + \cdots$$

Ergodic Hypothesis

Evolution in time given by classical mechanics:

$$T:$$

$$Force: \frac{dp}{dt} = -\frac{\partial \mathcal{H}}{\partial r}$$

$$Velocity: \frac{dr}{dt} = \frac{\partial \mathcal{H}}{\partial p}$$

Time averages equals space averages

$$\frac{1}{t} \int_0^t \mathcal{O}(\mathbb{T}^s(r_0, p_0)) ds = \int_{\Gamma} \pi(r, p) \mathcal{O}(r, p) dr dp$$

Disscussion

	MCMC	MD
Uses random numbers as its main tool		
Needs accelerations during calculation		
May use the Metropolis-Hastings algorithm		
Allows the calculation of averages		
In principle, has memory of its past		

Markov Chain Monte Carlo for biological molecules

Randomly chosen configurations lead to low acceptance rates

Can we do better?

Hybrid Monte Carlo

Why does it work?

• Sample from the joint distribution $\pi(r, p)$ and use the marginal $\pi(r)$ because r does not depend on p

$$\pi(\mathbf{r}, p) \propto e^{-\beta U(\mathbf{r})} e^{-\beta \frac{1}{2} p^T M^{-1} p} = e^{-\beta U(\mathbf{r})} \mathcal{N}(0, M)$$

- What potential energy function should we use?
 - solve for potential energy above and get $U(r) = -\log[\pi(r)]$

Why use constraints?

- Target distribution is highly dimensional and too complex to get conclusive results in reasonable amount of time
- Heavier bodies allows the <u>increase of the timestep</u>
- E.g.:
 - rigid water molecules (TIP3P model)
 - hydrogen bond lengths
 - constant bond lengths and bond angles: torsional dynamics
 - constrain specific regions of molecules or even entire domains

How to impose constraints?

Cartesian coordinates

Dynamics with maximal coordinates (Lagrange multipliers)

Force:
$$\frac{dp}{dt} = -\frac{\partial \mathcal{H} + \lambda c(r)}{\partial r}$$

$$Velocity: \frac{dr}{dt} = \frac{\partial \mathcal{H}}{\partial p}$$

$$r(t) = \frac{1}{0!}r(t_0)(t - t_0)^0 + \frac{1}{1!}\frac{dr}{dt}(t_0)(t - t_0)^1 + \frac{1}{2!}\frac{d^2r}{dt^2}(t_0)(t - t_0)^2 + \cdots$$

Example SHAKE algorithm

How to impose constraints?

Internal coordinates
 BAT

Dynamics with reduced coordinates (Featherstone)

Force:
$$\frac{dp}{dt} = -\frac{\partial \mathcal{H}}{\partial \phi}$$

$$Velocity: \frac{d\phi}{dt} = \frac{\partial \mathcal{H}}{\partial p}$$

$$\phi(t) = \frac{1}{0!}\phi(t_0)(t - t_0)^0 + \frac{1}{1!}\frac{d\phi}{dt}(t_0)(t - t_0)^1 + \frac{1}{2!}\frac{d^2\phi}{dt^2}(t_0)(t - t_0)^2 + \cdots$$

Rigid body dynamics includes rotational quantities which are incorporated using

Euler's laws of motion

Gibbs sampling

- Why?
 - Only simulating with constraints is not enough. The simulation does not cover the entire conformational space
 - Sampling from complex multivariate joint probability.
- How?
 - Take turns in sampling from conditionals. Allow oversampling easier to sample variables.

1.
$$\pi(X|Y)$$
 2. $\pi(Y|X)$

Robosample scheme: constrained dynamics combined with all-atom dynamics

1.
$$\pi(\phi|d,\theta)$$

2. $\pi(d,\theta,\phi)$

Why Robosample?

- Many choices of software for molecular dynamics
 - https://en.wikipedia.org/wiki/Comparison_of_software_for_molecular_mechanic s_modeling
 - https://www.rcsb.org/pages/thirdparty/modeling_and_simulation
- Robosample is
 - rigid body dynamics
 - free
 - GPU-accelerated
 - can be used in python scripts/C++ programs

Review Questions

Generally speaking, how does a HMC simulation work?

References

- Durrant, J. D.; McCammon, J. A. Molecular Dynamics Simulations and Drug Discovery. BMC Biol 2011, 9 (1), 71.
 https://doi.org/10.1186/1741-7007-9-71, adapted under the CC BY 2.0 license.
- Kalos, Malvin H.; Whitlock, Paula A. (2008). Monte Carlo Methods.
- Levin DA, Peres Y and Wilmer EL, "Markov Chains and Mixing Times", American Mathematical Soc., Oct 31, 2017, ISBN: 1470429624, 9781470429621
- Sawle L, Ghosh K. Convergence of Molecular Dynamics Simulation of Protein Native States: Feasibility vs Self-Consistency Dilemma. J Chem Theory Comput. 2016 Feb 9;12(2):861-9. doi: 10.1021/acs.jctc.5b00999. Epub 2016 Jan 26. PMID: 26765584.
- Grossfield A, Zuckerman DM. Quantifying uncertainty and sampling quality in biomolecular simulations. Annu Rep Comput Chem. 2009 Jan 1;5:23-48. doi: 10.1016/S1574-1400(09)00502-7. PMID: 20454547; PMCID: PMC2865156.
- Simon Duane, A.D. Kennedy, Brian J. Pendleton, Duncan Roweth, Hybrid Monte Carlo, Physics Letters B, Volume 195, Issue 2, 1987, Pages 216-222, ISSN 0370-2693,