LECTURE 2

September 11, 2023

1. Open Sets in Metric Spaces

DEFINITION 1.1. Let (X, d) be a metric space.

• For $x_0 \in X$ and $\epsilon > 0$ define the open ball centered around x_0 with radius ϵ as

$$B(x_0, \epsilon) = \{ y \in X : d(x_0, y) < \epsilon \}$$

• A subset $U \subset X$ is called an open set if for every $x_0 \in U$, there exists an $\epsilon > 0$ (that depends on x_0 and U) such that $B(x_0, \epsilon) \subset U$.

EXAMPLE 1.2. In \mathbb{R}^2 , the open unit disk defined by

$$U = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$$

is an open set. (Verify this formally)

EXAMPLE 1.3. In \mathbb{R}^2 , the closed unit disk defined by

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$

is not an open set.

EXERCISE 1.4. In a metric space (X, d), for any $x_0 \in X$ and $\epsilon > 0$, the open ball $B(x_0, \epsilon)$ is an open set.

PROOF. We want to show that $B(x_0, \epsilon)$ is an open set. Indeed, let $y \in B(x_0, \epsilon)$ be arbitrary. We are looking for a $\delta > 0$ such that $B(y, \delta) \subset B(x_0, \epsilon)$. Take $\delta = \epsilon - d(x_0, y)$. (Use the triangle inequality to show that $\delta > 0$ and $B(y, \delta) \subset B(x_0, \epsilon)$).

EXERCISE 1.5. Let (X, d) be a metric space. Prove the following.

- (i) X is open, and the \emptyset is open. (Prove \emptyset is open by using contradiction, assuming that there is a point and $\epsilon > 0$ such that $B(x_0, \epsilon) < \epsilon$ but there are no such points in \emptyset so we have a contradiction)
- (ii) If U and V are open sets, then $U \cap V$ is open.
- (iii) If $(U_{\alpha})_{\alpha \in I}$ is an arbitrary collection of open subsets of X, then $\bigcup_{\alpha \in I} U_{\alpha}$ is open.

Note that from (ii), by using induction, for any $n \in \mathbb{N}$, and $U_1, U_2, ..., U_n$ is open, then $\bigcap_{i=1}^n U_i$ is open.

PROOF OF (II). Let U and V be open. Take any $x \in U \cap V$. since $x \in U$ and U is open, there exists an $\epsilon > 0$ such that $B(x, \epsilon) \subset U$. Similarly, since $x \in V$ and V is open, there exists a $\delta > 0$ such that $B(x, d) \subset V$. Take $\eta = \min\{\epsilon, \delta\} > 0$ and show $B(x, \eta) \subset U \cap V$. (Formalize this)

THEOREM 1.6. Let (X, d) be a metric space, let $x_0 \in X$ and let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X. The following are equivalent.

- (i) $\lim_{n\to\infty} x_n = x_0$
- (ii) For every open set U such that $x_0 \in U$, there exists an $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N$.

PROOF. To show that (i) implies (ii), take U to be an open set with $x_0 \in U$. We want to find an $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N$. (Formalize this)

To show that (ii) implies (i), let $\epsilon > 0$ be arbitrary, we want to find an $N \in \mathbb{N}$ such that $d(x_0, x_n) < \epsilon$ for all $n \geq N$. Take $U = B(x_0, \epsilon)$. (Formalize this)

THEOREM 1.7. Let (X,d) and (Y,ρ) be two metric spaces and let $f:X\to Y$ be a function. The following are equivalent:

- (i) $f:(X,d)\to (Y,\rho)$ is continuous.
- (ii) For every V open subset of Y, $f^{-1}(V)$ is open in X.

PROOF. (i) \Rightarrow (ii): Assume that $f:(X,d) \to (Y,\rho)$ be continuous. Let $V \subset Y$ be an arbitrary subset of Y. We will show that $f^{-1}(V) = U$ is open in X. Take an arbitrary point $x \in U$, we seek a $\delta > 0$ such that $B(x,\delta) \subset U$. Since f is continuous everywhere in X, f is continuous at f. Since f is continuous everywhere in f is continuous at f. Since f is continuous everywhere in f is continuous at f. Since f is continuous everywhere exists an f is continuous at f is open, there exists an f is continuous at f is open, there exists an f is continuous at f is open, there exists an f is continuous at f is open, there exists an f is continuous at f is open, there exists an f is continuous at f is open, there exists an f is continuous at f is open, there exists an f is continuous at f is open, there exists a f is continuous at f is open, there exists a f is continuous at f is open, there exists a f is continuous at f. By continuous at f is open, therefore exists a f is continuous at f is continuous at f is continuous at f. By continuous at f is co

(ii) \Rightarrow (i): Take $x \in X$ and $\epsilon > 0$. We want to find a $\delta > 0$ such that for all $z \in X$ with $d(x,z) < \delta$, we have $\rho(f(x),f(z)) < \epsilon$. Take the open set $V = B(f(x),\epsilon)$ which is open in Y. By assumption, $U = f^{-1}(V)$ is open in X. Then $x \in U$ because $f(x) \in V$ and therefore, there exists a $\delta > 0$ such that $B(x,\delta) \subset U$. Take $z \in X$ such that $d(x,z) < \delta$, i.e. $z \in B(x,\delta) \subset U$, which implies that $f(z) \in V = B(f(x),\epsilon)$ which implies that $\rho(f(x),f(z)) < \epsilon$ as desired.

2. Topology

DEFINITION 2.1. Let X be a nonempty set and let \mathcal{T} be a collection of subsets of X, i.e. $\mathcal{T} \subset \mathcal{P}(X)$. If \mathcal{T} satisfies the following, then we call \mathcal{T} a topology on X and (X, \mathcal{T}) is called a topological space.

- (i) $\emptyset, X \in \mathcal{T}$
- (ii) If $U, V \in \mathcal{T}$ then $U \cap V \in \mathcal{T}$.
- (iii) If $(U_i)_{i\in I}$ is an arbitrary collection of members of \mathcal{T} , then $\bigcup_{i\in I} U_i \in \mathcal{T}$

If \mathcal{T} is a topology on X, then the members of \mathcal{T} are called \mathcal{T} -open sets (or just open sets)

REMARK 2.2. If \mathcal{T} is a topology on X, then for any $n \in \mathbb{N}$ and $U_1, U_2, ..., U_n \in \mathcal{T}$, then $\bigcap_{i=1}^n U_i \in \mathcal{T}$.

EXAMPLE 2.3. For a metric space (X, d) denote

$$\mathcal{T}_d = \{U \subset X : U \text{ is an open set with respect to } d\}$$

This is called the topology induced by the metric d. A topology \mathcal{T} on a set X for which there exists a metric d on X with $\mathcal{T} = \mathcal{T}_d$ is called a metrizable topology.

EXAMPLE 2.4. For any $X \neq \emptyset$, define $\mathcal{T} = \{\emptyset, X\}$ is a topology called the trivial topology on X. It is elementary to see that \mathcal{T} is a topology.

EXAMPLE 2.5. For any nonempty set $X \neq \emptyset$, $\mathcal{T} = \mathcal{P}(X)$ is a topology on X, called the discrete topology on X.

EXERCISE 2.6. Let (X, d) be a discrete metric space. Show that $\mathcal{T}_d = \mathcal{P}(X)$. In particular, the discrete topology on any set is metrizable.

Remark 2.7. If (X, \mathcal{T}) is a metrizable topology, there may be different metrics d, d' on X such that $\mathcal{T} = \mathcal{T}_d = \mathcal{T}_{d'}$. For example, on \mathbb{Z} with the usual metric d(x, y) = |x - y|, $\mathcal{T}_d = \mathcal{P}(\mathbb{Z})$ (also given by the discrete metric).

DEFINITION 2.8. A toplogical space (X, \mathcal{T}) is called *Hausdorff* if for any $x, y \in X$ with $x \neq y$, there exists disjoint open sets $U, V \in \mathcal{T}$ such that $x \in U$ and $y \in V$.

EXAMPLE 2.9. Let $X \neq \emptyset$ with $|X| \geq 2$. Then the trivial topology $\mathcal{T} = \{\emptyset, X\}$ is *not* Hausdorff.

Proposition 2.10. Any metrizable topological space is Hausdorff.

PROOF. If (X,\mathcal{T}) is metrizable, there exists a metric d on X such that $\mathcal{T}=\mathcal{T}_d$. Take $x\neq y\in X$. Take r=d(x,y). Take $U=B\left(x,\frac{r}{2}\right)$ and $V=B\left(y,\frac{r}{2}\right)$ are containing x and y, respectively. We claim that $U\cap V=\emptyset$. If not, then there exists a $z\in U\cap V$ such that

$$d(x,y) \le d(x,z) + d(z,y) < \frac{r}{2} + \frac{r}{2} = r$$

This is a contradiction.

EXAMPLE 2.11. Let X be a nonempty set, and let \mathcal{T} to be defined by

$$\mathcal{T} = \{A \subset X : X \setminus A \text{ is finite}\} \cup \{\emptyset\}$$

- (i) This is a topology on X, called the cofinite topology.
- (ii) If X is infinite, then \mathcal{T} is not metrizable.