1) For the circuit shown in Figure below the switch opens at time t = 0 s. Write a differential equation in i(t) for t > = 0 s. Find i(t) and V(t) for all time.

Solution

At t=0 or just before switch is open: Inductor acts as short circuit so no current flows through the 8 ohms resistor branch and $3V_1$ branch.

$$i(0)=12/8=1.5$$
 amps

After t>=0 : $V_s = 0$, so circuit looks like:

By KVL in this loop:

$$-3V_1 + V - V_1 = 0$$

$$V = 4V_1$$

$$V_1 = 8i$$

$$L\frac{d}{dt} = -32i$$

$$\int \frac{di}{i} = \int -2dt + \ln C$$

$$i=Ce^{-2t}$$

So ,
$$i=1.5e^{-2t}$$
 amp

Hence,

$$t>=0$$
 i=1.5 e^{-2t} amp

for voltage

when t<0 V=0 volts

t>=0 V=
$$16\frac{d}{dt}[1.5e^{-2t}]$$

$$V=(-)*16*1.5*2e^{-2t}$$

$$V=-48e^{-2t}$$
 volts

2) The staircase input voltage wave form shown in Fig. (a) is applied across a series LR circuit consisting of R=1 Ω and L=1H. Find the current through the circuit.

Sol:- The given waveform is the summation of four unit step function

$$V(t)= u(t-1) + u(t-2) + 2u(t-3) - 4u(t-4)$$

$$= V_a + V_b + V_c + V_d$$

For RL ckt. Current i_L for u(t) is given by

$$i(t)=I_0\left(1-e^{-rac{t}{ au}}
ight)u(t)$$
 where $au=rac{L}{R}=1$
$$I_0=rac{V}{R}$$

for
$$V_a$$
 $I_0=1$ A $i_{La}(t) = (1 - e^{-(t-1)})u(t-1)$

for
$$V_b$$
 $I_0=1$ A $i_{Lb}(t) = (1 - e^{-(t-2)})u(t-2)$

for
$$V_c$$
 $I_0=2$ A $i_{Lb}(t) = 2(1 - e^{-(t-3)})u(t-3)$

for
$$V_d$$
 $I_0=-4$ A $i_{Lb}(t) = -4(1-e^{-(t-4)})u(t-4)$

So, the total current due to this complete wave form would be

$$i_L(t) = i_{La}(t) + i_{Lb}(t) + i_{Lc}(t) + i_{Ld}(t)$$

TUTORIAL 2

3) Given $V_{c1}(\mathbf{0}^-)=6$ and $V_{c2}(\mathbf{0}^-)=24$, Find V_o :

Solution:

At t>=0

$$V_o(0^-) = V_{C1}(0^-) + V_{C2}(0^-)$$

$$V_o(0^-) = 24 + 6 = 30 \text{ volts}$$

$$V_o(0^-) = V_o(0^+) = 30 \text{ volts}$$

 V_o = (Initial value-Final value) $e^{\frac{-t}{\tau}}$ + (Final value)

$$= [V_o(0^+) - V_o(0^-)]e^{\frac{-t}{\tau}} + [V_o(+\infty)]$$
 (1)

Final value at $t=+\infty$

$$V_o(+\infty_o) = \frac{12*4}{4+2} = 8 \text{ volts}$$

Time constant (τ)

$$C_{eq} = \frac{0.6 * 0.3}{0.3 + 0.6} = 0.2F$$

$$R_{eq} = \frac{2*4}{2+4} = \frac{4}{3}ohms$$

$$\tau = R_{eq}C_{eq} = 0.266 \ seconds$$

Hence, by (1)

$$V_0 = (22) e^{\frac{-t}{0.266}} + 8$$

4) The input voltage wave form shown in Fig. (a) is applied across a RC circuit shown in Fig. (b). Find the output voltage across the capacitor C. Plot $i_c(t)$, $v_c(t)$.

$$\frac{di}{dt} + i = \frac{dV}{dt}$$

$$\frac{di}{dt} + i = 0 \quad \text{as V(t)=1} \quad \text{so} \quad \frac{dV}{dt} = 0$$
So,
$$i = K_3 e^{-t}$$
For this region at t=1 $i(1) = (1 - e^{-1}) = K_3 e^{-1} \quad \text{or,} \quad K_3 = (e - 1)$
So,
$$i = (e - 1)e^{-t} \quad \dots \dots (3)$$
as,
$$V_c = \frac{1}{c} \int i \, dt \quad \text{so,} \quad V_c = -(e - 1)e^{-t} + K_4$$
at t=1
$$V_c(1) = e^{-1}$$
so,
$$e^{-1} = -(e - 1)e^{-1} + K_4 \quad \text{or, } e^{-1} = -1 + e^{-1} + K_4$$
so,
$$K_4 = 1. \quad V_c(t) = 1 + e^{-t} - e^{-(t-1)} \quad \dots \dots (4) \quad \text{for Reg. 2}$$

For Region 3 as V(t)=0 for this region so $V_C(t) = V_0 e^{-t}$ so $V_C(2-) = V_C(2+) = 1 + e^{-2} - e^{-1}$ so, at t=2 $(1 + e^{-2} - e^{-1}) = V_0 e^{-2}$ so, $V_0 = e^2 - e^1 + 1$

$$V_C(t) = (e^2 + 1 - e)e^{-t}$$
 or, $V_C(t) = (e^{-t} - e^{-(t-1)} + e^{-(t-2)})$

4) The given signal can be written as

$$V(t) = t u(t) - (t - 1)u(t - 1) - u(t - 2)$$

= $V_a + V_b + V_c$

For V_a for CR ckt we know

$$\frac{dV_C}{dt} + \frac{V_C}{RC} = \frac{V}{RC}$$

As here $R=1\Omega$ and C=1 F so RC=1.

So eq. becomes $\frac{dV_C}{dt} + V_C = V$

As we know the sol. of $\frac{dx}{dt} + ax(t) = f(t)$

is $x(t) = e^{-at} \int e^{at} f(t) dt + Ae^{-at}$

so here $V_{ca}(t)$ will be $V_{ca}(t) = (t-1) + Ae^{-t}$

at t=0 Vc(0)=0 so A=1 So $V_{ca}(t) = t - 1 + e^{-t}$,

For V_b $V_b = -(t-1)u(t-1) = -t'u(t')$ where t' = t-1 we know the response for t u(t)

so, the response for $-t'u(t') = -[t'-1+e^{-t'}]$ now, put t' = t-1; so, $V_{bc} = -[(t-1)-1+e^{-(t-1)}]$ $= -t+2-e^{-(t-1)}$

For V_c for V u(t) we know $V_c(t) = V\left(1 - e^{-\frac{t}{RC}}\right)$ so here for -u(t-2) $V_{cc}(t) = -\left(1 - e^{-(t-2)}\right)$

So, the final solution for Vc(t) will be

$$V_c = V_{ca}(t)u(t) + V_{cb}(t)u(t-1) + V_{cc}(t)u(t-2)$$

5) FIND $\frac{di_1}{dt}(0^+), \frac{dv_c}{dt}(0^+), i_1(0^+), v_c(\infty)$ in the below figure

Solutions:

At $t=0^-$: Inductor is short circuited and capacitor is open circuited

$$i_1(0^-) = \frac{100}{40} = 2.5 A = i_1(0^+)$$

 $V_c(0^-) = 100 - 50 = 50 Volts = V_c(0^+)$

At $t=0^+$

Replace inductor by a current source of value $i_1(0^+)$ =2.5 A and capacitor by voltage source of value $V_c(0^+)$

$$V_{20 \ ohm} = 50 volts$$

$$i_{20\ ohm} = \frac{50}{20} = 2.5A$$

$$50=V_L = L\frac{di}{dt} = 1\frac{di}{dt}$$

$$50 = \frac{di}{dt}(0^+) \text{ A/sec}$$

Also,

$$i_c = C \frac{dv_c}{dt}$$

$$2.5=i_c=2*\frac{dv_c}{dt}$$

$$\frac{dv_c}{dt}(0^+) = 1.25 \ volts/sec$$

At t=+∞

$$i_1 = \frac{100}{20} = 5A$$

$$i_1(+\infty) = 5A$$

$$v_c(+\infty) = 100 \ volts$$

6) For the circuit shown in the Fig.6, the switch opens at time t=0. Find V(t) and i(t) for all time.

Sol:- for t<0 ckt. was in steady state so inductor was short and capacitor was open and the ckt. looks like

so i=4A and V=0 V for t>0 the ckt. looks like

$$\frac{1}{12} H \begin{cases}
\frac{1}{3} \Omega \\
+ \sqrt{3} \Gamma \\
\frac{1}{5} F - V
\end{cases}$$

so,
$$L\frac{di}{dt} + Ri + V = 0$$
 or $\frac{1}{12}\frac{di}{dt} + \frac{1}{3}i + V = 0$ (1)
as, $i = C\frac{dV_C}{dt}$ or $i = \frac{3}{5}\frac{dV_C}{dt}$ so eq. (1) becomes
$$\frac{1}{20}\frac{d^2V}{dt^2} + \frac{1}{5}\frac{dV}{dt} + V = 0$$
 or $\frac{d^2V}{dt^2} + 4\frac{dV}{dt} + 20V = 0$

so,
$$\alpha=2$$
 and $\omega_n^2=20$ so, roots are $s=-\alpha\pm\sqrt{\alpha^2-\omega_n^2}=-2\pm4j$
$$V_C(t)=e^{-2t}(A_1cos4t+A_2sin4t)$$

at t=0
$$V_C(0) = 0$$
; so, $A_1 = 0$. $V_C(t) = A_2 e^{-2t} sin4t$
again $i_C = C \frac{dV_C}{dt} = \frac{3}{5} A_2 [-2e^{-2t} sin4t + 4e^{-2t} cos4t]$

at t= 0
$$i_C(0) = i_L(0+) = i_L(0-) = 4$$
 so $\frac{3}{5}A_24 = 4$ or $A_2 = \frac{5}{3}$

so,
$$V_C(t) = \frac{5}{3} e^{-2t} \sin 4t$$

then $i_C(t) = C \frac{dV_C}{dt} = \frac{3}{5} \frac{5}{3} [-2e^{-2t} \sin 4t + 4e^{-2t} \cos 4t]$
 $= e^{-2t} [4\cos 4t - 2\sin 4t]$

7) For the circuit shown in fig. switch was moved from position a to position b at time t=0; Find i(t) and v(t) for t>0.

Sol:- for t<0 ckt. was in steady state and it looks like

so
$$V_C = 3V = V_C(0 -)$$
 and $i = 3A = i_L(0 -)$

for t>0 ckt. looks like

KVL in loop 2 gives
$$V=Ri+L\frac{di}{dt}$$
 or $V=i+\frac{di}{dt}$ (1) applying KCL at node A we get $I=i_C+i$ or, $\frac{o-V}{1}=C\frac{dV}{dt}+i$ or $-V=\frac{dV}{dt}+i$ putting V from eq. (1) $-i-\frac{di}{dt}=\frac{di}{dt}+\frac{d^2i}{dt^2}+i$ or $\frac{d^2i}{dt^2}+2\frac{di}{dt}+2i=0$ so $\alpha=1$ and $\omega_n^2=2$ so, roots are $s=-\alpha\pm\sqrt{\alpha^2-\omega_n^2}=-1\pm j$

so, sol. of current i(t) is
$$i(t) = e^{-t}(A_1 cost + A_2 sint)$$

at t=0, i(0)=3, so $A_1 = 3$ then $i(t) = e^{-t}(3 cost + A_2 sint)$
from eq. (1) we $V(t) = i + \frac{di}{dt}$
 $= e^{-t}(3 cost + A_2 sint) - e^{-t}(3 cost + A_2 sint) + e^{-t}(A_2 cost - 3 sint)$
 $= e^{-t}(A_2 cost - 3 sint)$

so, current
$$i(t) = 3e^{-t}(cost + sint)$$

 $voltage$ $v(t) = 3e^{-t}(cost - sint)$

V(0)=3 so $A_2=3$

at t=0

8) For the circuit shown in fig. switch was moved from position a to position b at time t=0; Find i(t) for t>0.

Sol:- for t<0 ckt. was in steady state

so,
$$i(0-) = 0 A$$
 and $V_c(0-) = 20 V$

for t>0 ckt. looks like as shown in the problem figure

so,
$$V_C + V_L = 0$$
 or, $CV_C + CV_L = 0$
 $C\frac{dV_C}{dt} + C\frac{dV_L}{dt} = 0$ or, $i + C\frac{d}{dt}\left(L\frac{di}{dt}\right) = 0$
or, $\frac{d^2i}{dt^2} = -\frac{1}{LC}i = -64i$ so, $i(t) = A_1cos8t + A_2sin8t$
 $i(0+) = i_L(0-) = 0$ so, $A_1 = 0$ so, $i(t) = A_2sin8t$ (1)
at $t = 0 + so$, $V_C(0+) + V_L(0+) = 0$; so, $V_L(0+) = -V_C(0+) = -20$
so, $V_L(0+) = L\frac{di}{dt}\Big|_{t=0+} = -20$; so, $\frac{di}{dt}\Big|_{t=0+} = -80$
so, $from\ eq.(1)\ \frac{di}{dt} = 8A_2cos8t$
at $t=0+$ $-80=8A_2$ $A_2=-10$ so, current $i(t)=-10sin8t$