3506. Показать, что уравнение

$$\frac{\partial^2 z}{\partial x^2} + 2xy^3 \frac{\partial z}{\partial x} + 2(y - y^3) \frac{\partial z}{\partial y} + x^2y^2z = 0$$

не меняет своего вида при преобразовании переменных

$$x = uv \text{ if } y = \frac{1}{v}.$$

3507. Показать, что уравнение

$$\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$

не меняет своего вида при замене переменных

$$u = x + z u v = y + z$$
.

3508. Преобразовать уравнение

$$xy \frac{\partial^2 u}{\partial x \partial y} + yz \frac{\partial^2 u}{\partial y \partial z} + xz \frac{\partial^2 u}{\partial x \partial z} = 0,$$

полагая

$$x = \eta \zeta, \ y = \xi \zeta, \ z = \xi \eta.$$

3609. Преобразовать уравнение

$$\frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_2^2} + \frac{\partial^2 z}{\partial x_3^2} + \frac{\partial^2 z}{\partial x_1 \partial x_2} + \frac{\partial^2 z}{\partial x_1 \partial x_3} + \frac{\partial^2 z}{\partial x_2 \partial x_3} = 0,$$

полагая

$$y_1 = x_2 + x_3 - x_1$$
, $y_2 = x_1 + x_3 - x_2$, $y_3 = x_1 + x_2 - x_3$. 3510. Преобразовать уравнение

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + y^{2} \frac{\partial^{2} u}{\partial y^{3}} + z^{2} \frac{\partial^{2} u}{\partial z^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + 2xz \frac{\partial^{2} u}{\partial x \partial z} + 2yz \frac{\partial^{2} u}{\partial u \partial z} = 0,$$

полагая

$$\xi = \frac{g}{x}, \quad \eta = \frac{z}{x}, \quad \zeta = y - z.$$

Указание. Записать уравнение в виде $A^2u-Au=0$, где

$$A = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}.$$

3511. Выражения

$$\Delta_1 u = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial z}\right)^2$$