МОДА, МЕДІАНА, СЕРЕДНЄ ЗНАЧЕННЯ ВИБІРКИ

Математична статистика — розділ математики, присвячений математичним методам систематизації, обробки та дослідження статистичних даних для наукових і практичних висновків. Її широко застосовують соціально-економічні дисципліни та інші галузі, а саме: астрономія (розподіл і рух зірок у небесному просторі), фізика (термодинаміка), біологія (закони спадковості), гідрологія (прогноз погоди), індустрія (контроль якості виробів) і таке інше.

Глибоке вивчення сучасної математичної статистики неможливо без допомоги теорії ймовірностей.

Статистика виникла з практичних потреб людини, її господарської діяльності, необхідністю обліку земельних угідь, майна, кількості населення, вивчення його занять, вікового складу тощо. Цікаво, що в Англії в XVII ст.. людей, які займалися цими питаннями, називали "політичними арифметиками".

Математична статистика виникла у XVII ст. і створювалась паралельно з теорією ймовірностей. Дальший розвиток математична статистика (друга половина XIX і початок XX століть) одержала в працях П.Л.Чебишева, А.А.Маркова, О.М.Ляпунова, а також К.Гаусса, А.Кете, Ф.Гальтона, К.Персона.

В XX столітті найбільш суттєвий внесок у розвиток математичної статистики зробили В.І.Романовський, Є.Є.Слуцький, А.М.Колмогоров, М.В.Смирнов, Стьюдент, Ф.Фішер, Е.Пірсон, Ю.Непман та інші.

Найпоширенішим серед видів статистичних спостережень є вибіркове спостереження. У процесі вибіркового спостереження вивчається лише частина сукупності, відібрана спеціальним методом, яка називається вибіркою. Всю сукупність, з якої роблять вибірку називають генеральною сукупністю. Число об'єктів генеральної сукупності і вибірки називають відповідно обсягом генеральної сукупності і обсягом вибірки.

Приклад 1. Якщо із 1000 деталей відібрано для обстеження 100 деталей, то обсяг генеральної сукупності N = 1000, а обсяг вибірки n = 100.

Приклад 2. Якщо із усіх 20 млн працюючих в Україні об'єктом дослідження економісти вибрали 1000 чоловік, то обсяг генеральної сукупності N = 20 млн чоловік, а обсяг вибірки n = 1000 чоловік.

Вибірка характеризується центральними тенденціями: середнім значенням, модою і медіаною. Дамо означення кожній з них. *Середнім значенням вибірки називається середнє арифметичне всіх її значень:*

$$\overline{x} = \frac{x_1 + x_2 + ... + x_n}{n}, \text{ або } \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$
 (\sum – знак суми – "сигма" велика).

Мода вибірки – те її значення, яке трапляється найчастіше. Позначається Мо.

Медіана вибірки — це число, яке "поділя ϵ " "навпіл" упорядковану сукупність усіх значень вибірки, тобто середня величина змінюваної ознаки, яка міститься в середині ряду, розміщеного в порядку зростання або спадання ознаки. Позначається Ме.

Приклад 1. Нехай дано вибірку 2, 3, 4, 4, 6, 6, 6, 7, 7, 8. Знайдемо центральні тенденції вибірки.

1. Розв'язання

Мода даної вибірки Mo = 6, бо число 6 зустрічається найчастіше. Середнє значення вибірки:

$$x = \frac{2+3+4+4+6+6+6+7+7+8}{10} = \frac{53}{10} = 5.3$$

медіана дорівнює півсумі двох її середніх значень:

$$Me = \frac{6+6}{2} = 6$$
.

Приклад 2. Знайти центральні тенденції вибірки: 12, 17, 11, 13, 14, 15, 15, 16, 13, 13.

Розв'язання

Упорядкуємо дану вибірку:

Мода даної вибірки: Mo = 13.

Середнє значення:

$$\overset{-}{x}=\frac{11+12+13+13+13+14+15+15+16+17}{10}=\frac{139}{10}=13,9$$
. Медіана даної вибірки: $Me=\frac{13+14}{2}=\frac{27}{2}=13,5$.