姓名: 专业:

第 09 周作业解答

练习 1. 根据参数 a 的取值,讨论向量组 $\alpha_1 = \begin{pmatrix} 3 \\ 1 \\ a \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 4 \\ a \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 0 \\ a \end{pmatrix}$ 何时线性相关,何时线性无关。

解作矩阵

$$A = \left(\begin{array}{ccc} \alpha_1 & \alpha_2 & \alpha_3 \end{array}\right) = \left(\begin{array}{ccc} 3 & 4 & 1 \\ 1 & a & 0 \\ a & 0 & a \end{array}\right),$$

则 $\alpha_1, \alpha_2, \alpha_3$ 线性相关当且仅当 |A| = 0,线性无关当且仅当 $|A| \neq 0$ 。计算行列式:

$$|A| = \begin{vmatrix} 3 & 4 & 1 \\ 1 & a & 0 \\ a & 0 & a \end{vmatrix} = \frac{c_1 - c_3}{a - a} \begin{vmatrix} 2 & 4 & 1 \\ 1 & a & 0 \\ 0 & 0 & a \end{vmatrix} = \frac{\text{tr} \$ \ 3 \ \text{TRF}}{(-1)^{3+3}a} \begin{vmatrix} 2 & 4 \\ 1 & a \end{vmatrix} = 2a(a-2).$$

所以

- $\alpha_1, \alpha_2, \alpha_3$ 线性相关 $\Leftrightarrow |A| = 0 \Leftrightarrow a = 0$ 或 a = 2
- $\alpha_1, \alpha_2, \alpha_3$ 线性无关 $\Leftrightarrow |A| \neq 0 \Leftrightarrow a \neq 0 \perp a \neq 2$

练习 2. 设 α , β , γ 线性无关, 证明: α , $\alpha + \beta$, $\alpha + \beta + \gamma$ 也是线性无关。

证明设

$$0 = k_1 \alpha + k_2 (\alpha + \beta) + k_3 (\alpha + \beta + \gamma)$$

= $(k_1 + k_2 + k_3) \alpha + (k_2 + k_3) \beta + k_3 \gamma$

因为 α , β , γ 线性无关,所以

$$\begin{cases} k_1 + k_2 + k_3 = 0 \\ k_2 + k_3 = 0 \\ k_3 = 0 \end{cases} \Rightarrow k_1 = k_2 = k_3 = 0$$

所以 α , $\alpha + \beta$, $\alpha + \beta + \gamma$ 线性无关。

练习 3. 求向量组
$$\alpha_1 = \begin{pmatrix} -2 \\ 1 \\ 3 \\ -1 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} -1 \\ 3 \\ 5 \\ -3 \\ -1 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 0 \\ 5 \\ 7 \\ -5 \\ -4 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 1 \\ 2 \\ 2 \\ -2 \\ -3 \end{pmatrix}$ 的一组极大无关组,并将其余向量表示成极大无关组的线性组合。

解

可见

- $r(\alpha_1\alpha_2\alpha_3\alpha_4) = 2$, 说明极大无关组应含 2 个向量;
- 从最后简化的阶梯型矩阵容易看出: α_1, α_2 线性无关, 所以 α_1, α_2 构成一极大无关组;
- 也是从最后简化的阶梯型矩阵看出:

$$\alpha_3 = -\alpha_1 + 2\alpha_2, \qquad \alpha_4 = -\alpha_1 + \alpha_2.$$

下一题是附加题,做出来的同学下周交上来,可以加分

练习 4. 先介绍"幂零"的概念: 一个方阵 A 称为幂零是指存在正整数 m 使得 $A^m=O$ 。要注意的是幂零矩阵不一定是零矩阵。例如 $A=\begin{pmatrix}0&1\\0&0\end{pmatrix}$ 不是零矩阵,但满足 $A^2=O$ 。

现假设 n 阶方阵 A 是幂零,并假设 m 是最小的正整数满足 $A^m = O$ 。设 v 是 \mathbb{R}^n 的向量,并且满足 $A^{m-1}v \neq 0$ 。证明:向量组 $v, Av, A^2v, \cdots, A^{m-1}v$ 是线性无关。

利用上述结论证明: 如果 n 阶方阵 A 是幂零,则 $A^n = O$ 。

解设 $k_0v+k_1Av+k_2A^2v+\cdots+k_{m-1}A^{m-1}v=0$ 。等式两边左乘 A^{m-1} ,得到 $k_0A^{m-1}v+k_1A^mv+k_2A^{m+1}v+\cdots+k_{m-1}A^{2m-2}v=0$ 。因为 $A^m=O$,所以前一个式子说明 $k_0A^{m-1}v=0$ 。又因为 $A^{m-1}v\neq0$,所以 $k_0=0$ 。代入第一个式子,得 $k_1Av+k_2A^2v+\cdots+k_{m-1}A^{m-1}v=0$ 。对此两边左乘 A^{m-2} ,类似地分析,可知 $k_1=0$ 。如此类推,可知 $k_0=k_1=\cdots=k_{m-1}=0$ 。所以是线性无关。

反证法,假设 $A^n \neq O$ 。因为 A 是幂零,可假设 m 是最小的正整数满足 $A^m = O$ 。因为 $A^n \neq O$,所以 m > n。注意到 $A^{m-1} \neq O$,所以可以找到一个向量 $v \in \mathbb{R}^n$ 满足 $A^{m-1}v \neq 0$ 。有上述证明的结论知: $v, Av, A^2v, \cdots, A^{m-1}v$ 是线性无关。从另外一方面看,该向量组维数为 n,向量个数 m 大于 n,因此不可能线性相关,出现矛盾。所以应有 $A^n = O$ 。