Homework 1

## §11.1

**1.** (a) If f(x) and g(x) have period p, show that h(x) = af(x) + bg(x)(a, b, constant)has the period p.

(b) If f(x) has period p, show that f(bx),  $b \neq 0$ , is a periodic function of x of period p/b.

**2.** Find the Fourier series of the given periodic function f(x) of period  $2\pi$ :









(c) 
$$f(x) = x^2 (-\pi < x < \pi)$$

(c) 
$$f(x) = x^2 \ (-\pi < x < \pi)$$
 (d)  $f(x) = \begin{cases} -4x & \text{if } -\pi < x < 0 \\ 4x & \text{if } 0 < x < \pi \end{cases}$ .

**3.** Using Problem 2, find the sum of the series.

(a) 
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

(a) 
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$
 (b)  $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{2n-1}$  (c)  $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 

(c) 
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

# §11.2

1. Is the given function even or odd? Find its Fourier series.

(a) f(x) = -1(-2 < x < 0), f(x) = 1(0 < x < 2) with the period p = 4.

(b)  $f(x) = \cos \pi x (-\frac{1}{2} < x < \frac{1}{2})$  with the period p = 1.

(c)  $f(x) = x^2(-1 \le x \le 1)$  with the period p = 2.

(d) f(x) = x + 1(-1 < x < 0), f(x) = 1 - x(0 < x < 1) with the period p = 2.

2. Calculate from the problem 1

(a) 
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$$

(b) 
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

(a) 
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^2}$$
 (b)  $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$  (c)  $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)(2n+1)}$ 

**3.** Show that the identity  $\cos^3 x = \frac{3}{4}\cos x + \frac{1}{4}\cos 3x$  can be interpreted as the Fourier series expansion. Develop  $\cos^4 x$ .

**4.** Find (I) the Fourier cosine series, (II) the Fourier sine series.

(a) 
$$f(x) = 2 - x (0 < x < 2)$$

(a) 
$$f(x) = 2 - x (0 < x < 2)$$
 (b)  $f(x) = \begin{cases} 0 & \text{if } 0 < x < 2 \\ 1 & \text{if } 2 < x < 4 \end{cases}$ 

(c) 
$$f(x) = x \ (0 < x < L)$$

(c) 
$$f(x) = x \ (0 < x < L)$$
 (d)  $f(x) = \sin x \ (0 < x < \pi)$ 

Homework 2

**5.** Find the Fourier cosine series.

(a)



(b)



(c) Obtain the Fourier cosine series of (a) from that of (b).

## §11.4

1. Find the trigonometric polynomial

$$F(x) = A_0 + \sum_{n=1}^{N} (A_n \cos nx + B_n \sin nx)$$

for which the square error with respect to the function f(x) on the interval  $-\pi \le x \le \pi$  is minimum, and compute the minimum value for N=3.

(a) 
$$f(x) = x(-\pi < x < \pi)$$
 (b)  $f(x) = |x|(-\pi < x < \pi)$ 

**2.** Using Parseval's identity and the given function f(x) of period  $2\pi$ , show that

(a) 
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8} \quad \text{(Use } f(x) = \begin{cases} 0 & \text{if } -\pi < x < -\pi/2, \, \pi/2 < x < \pi \\ 1 & \text{if } -\pi/2 < x < \pi/2 \end{cases}$$

(b) 
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^4} = \frac{\pi^4}{96} \quad \text{(Use } f(x) = \begin{cases} x+\pi & \text{if } -\pi < x < 0 \\ \pi - x & \text{if } 0 < x < \pi \end{cases}$$

(c) 
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2 \cdot (2n+1)^2} = \frac{\pi^2}{16} - \frac{1}{2} \quad \text{(Use } f(x) = |\sin x| (-\pi < x < \pi).)$$

(d) 
$$\sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}$$
 (Use  $f(x) = x^2(-\pi < x < \pi)$ )

(e) 
$$\int_{-\pi}^{\pi} \sin^4 x dx = \frac{3}{4}\pi$$
 (Use  $f(x) = \sin^2 x = \frac{1 - \cos 2x}{2}$ )

(f) 
$$\int_{-\pi}^{\pi} \cos^6 x dx = \frac{5}{8}\pi$$
 (Use  $f(x) = \cos^3 x = \frac{3\cos x + \cos 3x}{4}$ )

Computational Science & Homework 3

#### §11.5

1. Show that the functions

$$P_n(\cos\theta), n = 0, 1, \cdots,$$

form an orthogonal set on the interval  $0 \le \theta \le \pi$  with respect to the weight function  $\sin \theta$ . Here,  $P_n$  is a Legendre polynomial.

2. Show that

$$y'' + fy' + (g + \lambda h)y = 0$$

takes the Sturm-Liouville form if you set  $p = \exp(\int f dx)$ , q = pg, r = hp.

3. Find the eigenvalues and eigenfunctions. Verify orthogonality.

(a) 
$$y'' - 2y' + (\lambda + 1)y = 0$$
,  $y(0) = 0$ ,  $y(1) = 0$ 

(b) 
$$y'' + \lambda y = 0$$
,  $y(0) = y(1)$ ,  $y'(0) = y'(1)$ 

$$(c)(x^{-1}y')' + (\lambda + 1)x^{-3}y = 0, \quad y(1) = 0, \quad y(e^{\pi}) = 0 \quad \text{(Set } x = e^t.)$$

#### §11.6

1. Find the Fourier-Legendre series of the following functions.

(a) 
$$f(x) = x$$
 (b)  $g(x) = x^2$  (c)  $h(x) = x^3$  (d)  $h(x) = 7x^4 - 6x^2$ 

**2.** Prove that if f(x) is even, its Fourier-Legendre series contains only  $P_m(x)$  with even m.

## §11.7

1. Show that

(a) 
$$\int_0^\infty \frac{\cos xw + w \sin xw}{1 + w^2} dw = \begin{cases} 0 & \text{if } x < 0 \\ \pi/2 & \text{if } x = 0 \\ \pi e^{-x} & \text{if } x > 0 \end{cases}$$

(b) 
$$\int_0^\infty \frac{(\sin w - w \cos w) \sin xw}{w^2} dw = \begin{cases} \pi x/2 & \text{if } 0 < x < 1\\ \pi/4 & \text{if } x = 1\\ 0 & \text{if } x > 1 \end{cases}.$$

(c) 
$$\int_0^\infty \frac{\cos(\pi w/2)\cos xw}{1 - w^2} dw = \begin{cases} \frac{\pi}{2}\cos x & \text{if } |x| < \pi/2 \\ 0 & \text{if } |x| \ge \pi/2 \end{cases}$$
.

(d) 
$$\int_0^\infty \frac{w^3 \sin xw}{w^4 + 4} dw = \begin{cases} \frac{1}{2} \pi e^{-x} \cos x & \text{if } x > 0 \\ 0 & \text{if } x \le 0 \end{cases}$$
.

Homework 4

2. Find the Fourier cosine integral.

(a) 
$$f(x) = \begin{cases} x & \text{if } 0 < x < 1 \\ 0 & \text{if } x > 1 \end{cases}$$
 (b)  $f(x) = \begin{cases} \sin x & \text{if } 0 < x < \pi \\ 0 & \text{if } x > \pi \end{cases}$ 

**3.** Find the Fourier sine integral.

(a) 
$$f(x) = \begin{cases} x & \text{if } 0 < x < 1 \\ 0 & \text{if } x > 1 \end{cases}$$
 (b)  $f(x) = \begin{cases} \cos x & \text{if } 0 < x < \pi \\ 0 & \text{if } x > \pi \end{cases}$ 

**4.** Let 
$$f(x) = \int_0^\infty A(w) \cos wx dw$$
, where  $A(w) = \frac{2}{\pi} \int_0^\infty f(v) \cos wv dv$ . Show that (a)  $f(ax) = \frac{1}{a} \int_0^\infty A\left(\frac{w}{a}\right) \cos wx dw$  (a > 0) (b)  $x^2 f(x) = \int_0^\infty \left(-\frac{d^2 A}{dw^2}\right) \cos xw dw$ .

#### §11.9

**1.** Find the Fourier transform of f(x).

(a) 
$$f(x) = \begin{cases} e^{2ix} & \text{if } -1 < x < 1 \\ 0 & \text{if otherwise} \end{cases}$$
 (b)  $f(x) = \begin{cases} x & \text{if } 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$  (c)  $f(x) = \begin{cases} e^{kx} & \text{if } x < 0 \ (k > 0) \\ 0 & \text{if } x > 0 \end{cases}$  (d)  $f(x) = \begin{cases} x & \text{if } -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$ 

- **2.** (a) Find the Fourier transform of  $g(x) = e^{-x}$  if x > 0 and 0 otherwise.
- (b) Find the Fourier transform of  $f(x) = xe^{-x}$  if x > 0 and 0 otherwise, using f'(x) = g(x) - f(x).
- **3.** (a) Show that if f(x) has a Fourier transform, so does f(x-a), and  $\mathcal{F}[f(x-a)] =$  $e^{-iwa}\mathcal{F}[f(x)].$
- (b) Show that if  $\hat{f}(w)$  is the Fourier transform of f(x), then  $\hat{f}(w-a)$  is the Fourier transform of  $e^{iax} f(x)$ .
- (c) Using  $\hat{f}(w) = \frac{1}{\sqrt{2a}} e^{-\frac{w^2}{4a}}$ , where  $f(x) = e^{-ax^2}$ , a > 0, find the Fourier transform of  $f(x) = (2x 3)e^{-2x^2 + 4x + 5}$ .
- **4.** (a) Find the discrete Fourier transform of the signal  $\mathbf{f} = [1, 2, 6, 4]^T$ .
- (b) Using the fast Fourier transform, solve (a).