TABLE D/3 PROPERTIES OF PLANE FIGURES

FIGURE	CENTROID	AREA MOMENTS OF INERTIA
Arc Segment $\alpha r C$	$\overline{r} = \frac{r \sin \alpha}{\alpha}$	_
Quarter and Semicircular Arcs $C \leftarrow \frac{1}{y}$	$\overline{y} = \frac{2r}{\pi}$	_
Circular Area	_	$I_x = I_y = \frac{\pi r^4}{4}$ $I_z = \frac{\pi r^4}{2}$
Semicircular Area r y	$\overline{y} = \frac{4r}{3\pi}$	$I_x = I_y = \frac{\pi r^4}{8}$ $\bar{I}_x = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right) r^4$ $I_z = \frac{\pi r^4}{4}$
Quarter-Circular Area r	$\bar{x} = \bar{y} = \frac{4r}{3\pi}$	$I_x = I_y = \frac{\pi r^4}{16}$ $\overline{I}_x = \overline{I}_y = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) r^4$ $I_z = \frac{\pi r^4}{8}$
Area of Circular Sector x	$\overline{x} = \frac{2}{3} \frac{r \sin \alpha}{\alpha}$	$I_x = \frac{r^4}{4}(\alpha - \frac{1}{2}\sin 2\alpha)$ $I_y = \frac{r^4}{4}(\alpha + \frac{1}{2}\sin 2\alpha)$ $I_z = \frac{1}{2}r^4\alpha$

TABLE D/3 PROPERTIES OF PLANE FIGURES Continued

FIGURE	CENTROID	AREA MOMENTS OF INERTIA
Rectangular Area $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	_	$I_x = \frac{bh^3}{3}$ $\overline{I}_x = \frac{bh^3}{12}$ $\overline{I}_z = \frac{bh}{12}(b^2 + h^2)$
Triangular Area y \overline{x} C h x	$\overline{x} = \frac{a+b}{3}$ $\overline{y} = \frac{h}{3}$	$I_x = \frac{bh^3}{12}$ $\overline{I}_x = \frac{bh^3}{36}$ $I_{x_1} = \frac{bh^3}{4}$
Area of Elliptical Quadrant $b \overline{x} C \overline{y}$ ax	$\overline{x} = \frac{4a}{3\pi}$ $\overline{y} = \frac{4b}{3\pi}$	$I_{x} = \frac{\pi a b^{3}}{16}, \bar{I}_{x} = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) a b^{3}$ $I_{y} = \frac{\pi a^{3} b}{16}, \bar{I}_{y} = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) a^{3} b$ $I_{z} = \frac{\pi a b}{16} (a^{2} + b^{2})$
Subparabolic Area $y y = kx^2 = \frac{b}{a^2}x^2$ Area $A = \frac{ab}{3}$ $\overline{x} C$ a	$\overline{x} = \frac{3a}{4}$ $\overline{y} = \frac{3b}{10}$	$I_{x} = \frac{ab^{3}}{21}$ $I_{y} = \frac{a^{3}b}{5}$ $I_{z} = ab\left(\frac{a^{3}}{5} + \frac{b^{2}}{21}\right)$
Parabolic Area $y = kx^{2} = \frac{b}{a^{2}}x^{2}$ Area $A = \frac{2ab}{3}$ b \overline{x} C \overline{y}	$\overline{x} = \frac{3a}{8}$ $\overline{y} = \frac{3b}{5}$	$I_x = \frac{2ab^3}{7}$ $I_y = \frac{2a^3b}{15}$ $I_z = 2ab\left(\frac{a^2}{15} + \frac{b^2}{7}\right)$