Universidad de la República - Facultad de Ingeniería - IMERL: Matemática Discreta 2

SEGUNDO PARCIAL - 27 DE JUNIO DE 2019. DURACIÓN: 3:30 HORAS

N° de parcial	Apellido y Nombre	Cédula

Ejercicio 1.

- a. Probar que 98 es raíz primitiva módulo 101.
- b. ¿Existen elementos de orden 25 en U(101)? En caso afirmativo encontrar alguno y decir cúantos hay. Justificar las afirmaciones que se den.
- c. Alicia y Beatriz quieren acordar una clave común utilizando el protocolo Diffie-Hellman. Para ello acuerdan públicamente el uso del primo p=101 y el número g=98 como raíz primitiva. Alicia le envía el número 11 a Beatriz. Beatriz elige en secreto m=31 y le envía el número 83 a Alicia.

¿Cuál es la clave común k acordada?

Solución:

a. Primero vemos que $\varphi(101) = 100 = 2^2 5^2$ por lo que tenemos que probar:

$$\begin{cases} 98^{\frac{100}{2}} \not\equiv 1 \pmod{101} \equiv 98^{50} \pmod{101} \\ 98^{\frac{100}{5}} \not\equiv 1 \pmod{101} \equiv 98^{20} \pmod{101} \end{cases}$$

Observamos que $98 \equiv -3 \pmod{101}$, y utilizamos el método de exponenciación rápida para -3.

Entonces $98^{20} = 98^{2^4} \cdot 98^{2^2} \equiv 16 \cdot -20 \pmod{101} \equiv -320 \pmod{101} \equiv -17 \pmod{101} \not\equiv 1 \pmod{101}$. Y $98^{50} = 98^{2^5} \cdot 98^{2^4} \cdot 98^{2^1} \equiv 54 \cdot 16 \pmod{101} \equiv 7776 \pmod{101} \equiv 100 \pmod{101} \not\equiv 1 \pmod{101}$. Concluimos que 98 es una raíz primitiva módulo p.

- **b.** Como 98 es raíz primitiva módulo 101 sabemos que tiene orden 100, podemos utilizar la fórmula o $(g^k) = \frac{o(g)}{\text{mcd}(o(g),k)}$ para $g = \overline{98}$ en U(101) y vemos que $25 = o(98^k) = \frac{100}{\text{mcd}(100,k)}$, por lo que mcd(100, k) = 4. Tomando k = 4 vemos que $\overline{98}^4 = \overline{81}$ tiene orden 25. Para ver cúantos hay vemos que los posibles k módulo 100 son $\{1 \le k \le 100 : \text{mcd}(k, 100) = 4\} = \{1 \le k \le 100 : k = 4k', \text{mcd}(k', 25) = 1\} = \{4, 8, 12, 16, 24, 28, 32, 36, 44, 48, 52, 56, 62, 66, 74, 78, 82, 86, 92, 96\}$ por lo que hay 20 elementos de orden 25.
- c. Tenemos que calcular 11³¹ (mód 101). Utilizamos exponenciación rápida para 11

Y, $11^{31} = 11^{16}11^811^411^211^1 \equiv 11 \cdot 20 \cdot -4 \cdot 16 \cdot 54 \pmod{101} \equiv 18 \cdot -4 \cdot 16 \cdot 54 \pmod{101} \equiv 29 \cdot 16 \cdot 54 \pmod{101} \equiv 60 \cdot 54 \pmod{101} \equiv 8 \pmod{101}.$

Ejercicio 2. Sean G un grupo y dos elementos $g, h \in G$ de orden finito.

- **a**. Probar que si $g^n = e$ entonces $o(g) \mid n$.
- **b**. Probar que $|\langle g \rangle| = o(g)$.
- **c.** Probar que si gh = hg y mcd(o(g), o(h)) = 1, entonces o(gh) = o(g)o(h).

Si utilizan alguna propiedad de ordenes deben probarla.

Solución: Ver notas teóricas.

Ejercicio 3. Sean (G,\cdot) y (K,\times) dos grupos y $f:G\to K$ un homomorfismo.

- a. Si e_G y e_K son los neutros de G y K respectivamente, probar que $f(e_G) = e_K$.
- **b**. Probar que Im(f) es un subgrupo de K.
- c. Probar que si G y K son finitos y mcd(|G|, |K|) = 1, entonces f es el homomorfismo trivial.

Solución:

- a. Primero vemos que $f(e_G) = f(e_G \cdot e_G) = f(e_G) \times f(e_G)$, y utilizando la propiedad cancelativa de K tiene que pasar que $f(e_G) = e_K$.
- **b.** Por definición tenemos que $\mathrm{Im}(f)=\{f(g):g\in G\}\subset K.$ Veamos que cumple las tres propiedades de subgrupo.
 - Por la parte anterior $e_K = f(e_G) \in \text{Im}(f)$.
 - Si $f(g), f(g') \in \text{Im}(f)$ entonces, como f es homomorfismo tenemos que $f(g) \times f(g') = f(g \cdot g') \in \text{Im}(f)$
 - Falta ver que si $f(g) \in \text{Im}(f)$ entonces $f(g)^{-1} \in \text{Im}(f)$. Esto se prueba viendo que $f(g) \times f(g^{-1}) = f(g \cdot g') = f(e_G) = e_K$, y por lo tanto $f(g)^{-1} = f(g^{-1}) \in \text{Im}(f)$.
- c. Si $g \in G$, tenemos que $o(f(g)) \mid o(g) \mid |G|$ y por otro lado tenemos que $o(f(g)) \mid |\operatorname{Im}(f)| \mid |K|$. Por lo tanto, $o(f(g)) \mid \operatorname{mcd}(|G|, |K|) = 1$, y concluimos que o(f(g)) = 1, por lo tanto $f(g) = e_K$ para todo $g \in G$.

Ejercicio 4. Para los siguientes grupos G, K, determinar si existen homomorfismos $f: G \to K$ no triviales. En caso afirmativo dar un ejemplo, justificando que es un homomorfismo.

- a. Para un primo impar p, $G = \mathbb{Z}_p$ el grupo de enteros módulo p y $K = S_{p-1}$ el grupo de permutaciones de p-1 elementos.
- b. $G = \mathbb{Z}_{100}$ el grupo de enteros módulo 100, y K = U(101) el grupo de invertibles módulo 101.
- c. G = U(12) el grupo de invertibles módulo 12 y \mathbb{Z}_4 el grupo de enteros módulo 4.

Solución:

- a. Vemos |G| = p y |K| = (p-1)!, que son coprimos. Por lo tanto el único homomorfismo es el trivial.
- b. Sabemos G es cíclico de orden 100 con generador $\overline{1}$. Por el teorema de la raíz primitiva sabemos que U(101) es cíclico. Sea $g \in \text{U}(101)$ un generador. Por lo visto en las notas teóricas, el morfismo $f(n \cdot \overline{1}) = f(\overline{n}) = g^n$ está bien definido y es un morfismo. Es más, f es un isomorfismo.
- c. Veamos como es G, $U(12) = \{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$. Los elementos $\overline{5}, \overline{7}, \overline{11}$ tienen orden $2 \text{ y } \overline{5} \cdot \overline{7} = \overline{11}$, sabemos que $o(f(g)) \mid o(g)$ para $g \in G$ y K tiene un solo elemento de orden 2 que es $\overline{2}$, puedo definir el morfismo $f(\overline{1}) = \overline{0}, f(\overline{5}) = \overline{2}, f(\overline{7}) = \overline{0}, f(\overline{11}) = \overline{2}$.

0