

Communication Theory (5ETB0) Module 4.3

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/

Module 4.3

Presentation Outline

Part I AGN Vector Channel

Part II Error Probability

Part III Multi-vector Channels, Irrelevance, and Reversibility

AGN Vector Channel

AGN Vector Channel

The AGN vector channel is

$$r = s + n$$
,

where $\underline{n} \stackrel{\Delta}{=} (n_1, n_2, \dots, n_N)$ is an N-dimensional noise vector, independent of the signal vector \underline{S} , and composed by independent, identically distributed zero-mean Gaussian random variables.

The joint PDF of the noise vector is given by

$$\begin{split} p_{\underline{N}}(\underline{n}) &= \prod_{i=1}^N \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{n_i^2}{2\sigma^2}\right) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^N n_i^2\right) \\ &= \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{\|\underline{n}\|^2}{2\sigma^2}\right) \end{split}$$

The AGN Vector Channel: A Matlab Example

Conclusions from Example

- Vector AGN noise can be interpreted as multidimensional noise balls
- \blacksquare AGN vector channel can be seen as multiple noise balls centered at \underline{s}_m
- lacktriangle Decisions will have to be done in N-dimensional space

Decision Rules for AGN Vector Channel

MAP decision rule for AGN Vector Channel

The conditional PDF for the AGN Vector channel

$$p_{\underline{R}}(\underline{r}|\underline{S} = \underline{s}_m) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{\|\underline{r} - \underline{s}_m\|^2}{2\sigma^2}\right)$$

The MAP decision rule is

$$\hat{m}^{\mathsf{MAP}}(\underline{r}) \overset{\Delta}{=} \underset{m \in \mathcal{M}}{\operatorname{argmin}} \left\{ \|\underline{r} - \underline{s}_m\|^2 - 2\sigma^2 \ln \Pr\{M = m\} \right\}$$

ML decision rule for AGN Vector Channel

The ML decision rule

$$\hat{m}^{\mathsf{ML}}(\underline{r}) \stackrel{\Delta}{=} \underset{m \in \mathcal{M}}{\operatorname{argmin}} \left\{ \|\underline{r} - \underline{s}_m\|^2 \right\}$$

MAP Derivation

Detailed Derivation

$$\begin{split} \hat{m}^{\mathsf{MAP}}(\underline{r}) &= \underset{m \in \mathcal{M}}{\operatorname{argmax}} \left\{ \Pr\{\underline{R} = \underline{r}, \underline{S} = \underline{s}_m\} \right\} = \underset{m \in \mathcal{M}}{\operatorname{argmax}} \left\{ \log \Pr\{\underline{R} = \underline{r}, \underline{S} = \underline{s}_m\} \right\} \\ &= \underset{m \in \mathcal{M}}{\operatorname{argmax}} \left\{ \log \Pr\{M = m\} p_{\underline{R}}(\underline{r} | \underline{S} = \underline{s}_m) \right\} \\ &= \underset{m \in \mathcal{M}}{\operatorname{argmax}} \left\{ \log \Pr\{M = m\} \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{\|\underline{r} - \underline{s}_m\|^2}{2\sigma^2}\right) \right\} \\ &= \underset{m \in \mathcal{M}}{\operatorname{argmax}} \left\{ \log \Pr\{M = m\} - \log(2\pi\sigma^2)^{N/2} - \frac{\|\underline{r} - \underline{s}_m\|^2}{2\sigma^2} \right\} \\ &= \underset{m \in \mathcal{M}}{\operatorname{argmax}} \left\{ \log \Pr\{M = m\} - \frac{\|\underline{r} - \underline{s}_m\|^2}{2\sigma^2} \right\} \\ &= \underset{m \in \mathcal{M}}{\operatorname{argmin}} \left\{ \frac{\|\underline{r} - \underline{s}_m\|^2}{2\sigma^2} - \log \Pr\{M = m\} \right\} \\ &= \underset{m \in \mathcal{M}}{\operatorname{argmin}} \left\{ \|\underline{r} - \underline{s}_m\|^2 - 2\sigma^2 \log \Pr\{M = m\} \right\} \end{split}$$

Decision Rules for AGN Vector Channel

ML decision rule for AGN Vector Channel

- lacksquare In one dimension (DICO Channel) the optimum threshold was half way between s_1 and s_2
- \blacksquare In N dimensions (DICO Vector Channel) the rule is

$$\hat{m}^{\mathsf{ML}}(\underline{r}) \stackrel{\Delta}{=} \underset{m \in \mathcal{M}}{\operatorname{argmin}} \left\{ \|\underline{r} - \underline{s}_m\|^2 \right\}$$

 \blacksquare For two signals \underline{s}_1 and $\underline{s}_2,$ this rule corresponds to a hyperplane

ML Decision rule for a 3-signal system

ML Decision Regions: A Matlab Example

Module 4.3

Presentation Outline

Part I AGN Vector Channel

Part II Error Probability

Part III Multi-vector Channels, Irrelevance, and Reversibility

Error Probability: Key Result

AGN vector channel

For the AGN vector channel, the probability that the noise pushes a signal to the wrong side of a hyperplane is

$$P_{\mathcal{I}} = Q\left(\frac{\Delta}{\sigma}\right),$$

where Δ is the distance from the signal-point to the hyperplane and σ^2 is the variance of each noise component.

Error Probability Analysis for ML

Upper Bound on Error Probability (ML)

Average Error Probability: $P_e = \sum_{m \in M} \Pr\{M = m\} P_e^m$

 $m \in M$, $m \neq 1$

 $m \in M$ $m' \in M.m' \neq m$

Union bound:

$$\begin{split} P_{\mathsf{e}}^1 &= \Pr \bigg\{ \bigcup_{m \in \mathcal{M}, \, m \neq 1} (\|\underline{R} - \underline{s}_m\| \leq \|\underline{R} - \underline{s}_1\|) |M = 1 \bigg\} \\ &\leq \sum_{m \in \mathcal{M}, \, m \neq 1} \Pr \{ \|\underline{R} - \underline{s}_m\| \leq \|\underline{R} - \underline{s}_1\| |M = 1 \} \end{split}$$

$$P_{\mathsf{e}} \leq \sum \frac{1}{|\mathcal{M}|} \sum_{|\mathcal{M}|} \Pr{\{\|\underline{R} - \underline{s}_{m'}\| \leq \|\underline{R} - \underline{s}_{m}\||M = m\}}$$

Final Result: AGN channel with per-dimension noise variance σ^2

$$P_{\mathsf{e}} \leq \sum_{m \in \mathcal{M}} \frac{1}{|\mathcal{M}|} \sum_{m' \in \mathcal{M}} Q\left(\frac{\Delta_{m'm}}{\sigma}\right), \quad \Delta_{m'm} = \frac{\|\underline{s}_{m'} - \underline{s}_m\|}{2}$$

Upper Bound: Geometric Interpretation

Who Cares?

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 2, FEBRUARY 201

1231

Asymptotic Comparison of ML and MAP Detectors for Multidimensional Constellations

Alex Alvarado, Senior Member, IEEE, Erik Agrell, Senior Member, IEEE, and Fredrik Brännström, Member, IEEE

II. PRELIMINARIES

A. System Model

The system model under consideration is shown in Fig. 1. We consider the discrete-time, real-valued, N-dimensional, AWGN channel

$$Y = X + Z. \tag{1}$$

where the transmitted symbol X belongs to a discrete constellation $\mathcal{X} = \{x_1, x_2, \dots, x_M\}$ and Z is an N-dimensional vector, independent of X, whose components are independent and identically distributed Gaussian random variables with zero mean and variance σ^2 per dimension. The conditional channel transition probability is

$$f(\boldsymbol{y}|\boldsymbol{x}) = \frac{1}{(2\pi\sigma^2)^{N/2}} \exp\left(-\frac{\|\boldsymbol{y} - \boldsymbol{x}\|^2}{2\sigma^2}\right). \tag{2}$$

Module 4.3

Presentation Outline

Part I AGN Vector Channel

Part II Error Probability

Part III Multi-vector Channels, Irrelevance, and Reversibility

Multi-Vector Channels

Importance

■ This model includes for example what is called spatial diversity, i.e., then the transmitter and receiver use multiple antennas (MIMO systems). Used in modern WiFi routers, mobile phones, etc.

■ Theorem of irrelevance: When can we discard \underline{r}_2 without affecting performance?

Theorem of Irrelevance

Theorem of Irrelevance (Theorem 4.6)

The output \underline{r}_2 of a multi-vector channel is irrelevant (does not affect $P_{\rm e}$) if, for all \underline{r}_1 and \underline{r}_2 , the value of $p_{\underline{R}_2}(\underline{r}_2|\underline{S}=\underline{s}_m,\underline{R}_1=\underline{r}_1)$ does not depend on the message m.

Theorem of Reversibility

Theorem of Reversibility (Theorem 4.7)

The minimum attainable probability of error is not affected by the introduction of a reversible operation at the output of a channel.

Alternative View

A receiver for \underline{r}_1 can be built by first recovering \underline{r}_2 from \underline{r}_1

Summary Module 4.3

Take Home Messages

- Detection in vector channels is determinted by decision regions
- For the AGN vector channel: Euclidean distances!
- Theorems of irrelevance and reversibility let us formally discard certain observations

Communication Theory (5ETB0) Module 4.3

Alex Alvarado
a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/