Practica 1 DE10-lite FCHE FEB2017

1. Abrir Quartus PRIME Lite Edition VER 16.0

2. Oprimir New Project Wizard (en la parte de azul)

Oprimir NEXT

3. Crear un directorio externo a intelFPGA. Y colocar en el nombre del projecto prac1. NEXT

Oprimir "NO", no queremos seleccionar otro directorio.

4. El tipo de proyecto esta VACIO o "Empty", NEXT

5. No requerimos adicionar archivos. NEXT

6. Family, Escogemos "MAX 10" y luego 10M50DAF484C7G. NEXT.

7. No simulación. NEXT

8. El resumen. FINISH.

9. Ahora podemos comenzar a escribir el código VHDL escogiendo una hoja blanca (NEW)

Escoger VHDL File. OK

Al momento de comenzar a escribir el código a veces no se ve lo que se está escribiendo, porque quedó un comercial pegado, te siguiero abrir un VHDL File otra vez y lo vuelves a cerrar y ya se verá todo el código que se escribió. (RARO pero así lo solucione..)

10. Escribir el código para una compuerta AND y guardarla.

11. Compilar el código. En menú "Processing" y submenú "Start Compilation".

Tarda como 1 min. La compilación, hace como 121 procesos

Si tuvo errores, darle click a los errores (que aparecen en color rojo, darle doble click, te envía a la línea a corregir), guardar y volver a compilar cuantas veces sea.

Si ya no tuvo errores procedemos a asignar pins.

12. Asignar PINS

Requerimos 2 dos "dipwitch" para A y B y un "LED" para C. Al final de esta práctica tenemos una copia rápida del manual.

Utilizaremos

Dipswitch (0) con pin_c10

Dipswitch(1) con pin_c11

Υ

Led (0) con pin_A8

Entonces escogemos. Menu "Assignments" y luego "pin planner"

Se colocaran los PINS en donde dice Location

Enter en cada que se escriba el pin,(porque así se guarda). Y cerrar la ventana completa de "asignar pins".

Si quiere ver el código otra vez está aquí, pero por el momento no lo necesitamos.

- 13. VOLVER A COMPILAR!!!!
- 14. Descargar a tarjeta.

ANTES necesitamos conectarla a la LAPTOP y se activará el programa que viene por default en la tarjeta, prendiéndose leds y display de 7 segmentos.

Escogemos del menú "Tools", el submenú "Programmer".

Ya reconoce el USB blaster

Entonces escogemos "ADD File", aparece otra caja de dialogo, y escogemos "output files"

Se escogerá el archivo de nombre prac1, pero de extensión "SOF" y OPEN

Finalmente se oprime "Start" y se obsevará un color verde de porcentaje de descarga, cuando diga 100% esta listo.

En la tarjeta se quita el programa demo y se apagan LEDS y display de 7 segmentos. Ahora probemos nuestro código.

Te pide al final si quieres guardar la cadena de salida, podemos decirle "NO".

Checa subiendo el dipswitc(0) y el dipswitch(1), y el ledRO que estapa apagado prendera.

FIN

INFORMACION SINTENTIZADA DE ESTA TARJETA EXTRAIDA DE SU MANUAL

Tiene un FPGA MAX 10 10M50DAF484c7G

Todo esta información se extrajo del manual, que accesorios tiene además del FPGA

Cuales pins están conectados al FPGA?

• El dipswith 0 tiene el pin_c10, el dip 1 en pin_c11, etc.

Figure 3-15 Connections between the slide switches and MAX 10 FPGA

Signal Name	FPGA Pin No.	Description	I/O Standard
SW0	PIN_C10	Slide Switch[0]	3.3-V LVTTL
SW1	PIN_C11	Slide Switch[1]	3.3-V LVTTL
SW2	PIN_D12	Slide Switch[2]	3.3-V LVTTL
SW3	PIN_C12	Slide Switch[3]	3.3-V LVTTL
SW4	PIN_A12	Slide Switch[4]	3.3-V LVTTL
SW5	PIN_B12	Slide Switch[5]	3.3-V LVTTL
SW6	PIN_A13	Slide Switch[6]	3.3-V LVTTL
SW7	PIN_A14	Slide Switch[7]	3.3-V LVTTL
SW8	RIN_B14	Slide Switch[8]	3.3-V LVTTL
SW9	PN_F15	Slide Switch[9]	3.3-V LVTTL

El led 0 está conectado al pin_A8 dela FPGA, el led1 al pin_a9, etc.

Figure 3-16 Connections between the LEDs and MAX 10 FPGA

Table 3-5 Pin Assignment of LEDs

Signal Name	FPGA Pin No.	Description	I/O Standard
LEDR0	PIN_A8	LED [0]	3.3-V LVTTL
LEDR1	PIN_A9	LED [1]	3.3-V LVTTL
LEDR2	PIN_A10	LED [2]	3.3-V LVTTL
LEDR3	PIN_B10	LED [3]	3.3-V LVTTL
LEDR4	PIN_D13	LED [4]	3.3-V LVTTL
LEDR5	PIN_C13	LED [5]	3.3-V LVTTL
LEDR6	PIN_E14	LED [6]	3.3-V LVTTL
LEDR7	PIN_D14	LED [7]	3.3-V LVTTL
LEDR8	PIN_A11	LED [8]	3.3-V LVTTL
LEDR9	PIN_B11	LED [9]	3.3-V LVTTL

Para los display de siete segmentos, que son

Con el primer display de sus 7 segmentos el primero está conectado así

El segmento 0 está en el pin_c14, y el ultimo segmento 7(que es el punto) esta conectado al pin_D15, mientras que el SIGUIENTE display su segmento 0 esta en el pin C18, y segm1 en pinD18, etc.

Figure 3-17 Connections between the 7-segment display HEX0 and the MAX 10 FPGA

Table 3-6 Pin Assignment of 7-segment Displays

Fignal Name	FPGA Pin No.	Description	I/O Standard
HEX00	PIN_C14	Seven Segment Digit 0[0]	3.3-V LVTTL
HEX01	PIN_E15	Seven Segment Digit 0[1]	3.3-V LVTTL
HEX02	PIN_C15	Seven Segment Digit 0[2]	3.3-V LVTTL
HEX03	PIN_C16	Seven Segment Digit 0[3]	3.3-V LVTTL
HEX04	PIN_E16	Seven Segment Digit 0[4]	3.3-V LVTTL
HEX05	PIN_D17	Seven Segment Digit 0[5]	3.3-V LVTTL
HEX06	PIN_C17	Seven Segment Digit 0[6]	3.3-V LVTTL
NEX07	PIN_D15	Seven Segment Digit 0[7], DP	3.3-V LVTTL
HEX10	PIN_C18	Seven Segment Digit 1[0]	3.3-V LVTTL
HEX11	PIN_D18	Seven Segment Digit 1[1]	3.3-V LVTTL
HEX12	PIN_E18	Seven Segment Digit 1[2]	3.3-V LVTTL

HEX13	PIN_B16	Seven Segment Digit 1[3]	3.3-V LVTTL
HEX14	PIN_A17	Seven Segment Digit 1[4]	3.3-V LVTTL
HEX15	PIN_A18	Seven Segment Digit 1[5]	3.3-V LVTTL
HEX16	PIN_B17	Seven Segment Digit 1[6]	3.3-V LVTTL
HEX17	PIN_A16	Seven Segment Digit 1[7], DP	3.3-V LVTTL
HEX20	PIN_B20	Seven Segment Digit 2[0]	3.3-V LVTTL
HEX21	PIN_A20	Seven Segment Digit 2[1]	3.3-V LVTTL
HEX22	PIN_B19	Seven Segment Digit 2[2]	3.3-V LVTTL
HEX23	PIN_A21	Seven Segment Digit 2[3]	3.3-V LVTTL
HEX24	PIN_B21	Seven Segment Digit 2[4]	3.3-V LVTTL
HEX25	PIN_C22	Seven Segment Digit 2[5]	3.3-V LVTTL
HEX26	PIN_B22	Seven Segment Digit 2[6]	3.3-V LVTTL
HEX27	PIN_A19	Seven Segment Digit 2[7], DP	3.3-V LVTTL
HEX30	PIN_F21	Seven Segment Digit 3[0]	3.3-V LVTTL
HEX31	PIN_E22	Seven Segment Digit 3[1]	3.3-V LVTTL
HEX32	PIN_E21	Seven Segment Digit 3[2]	3.3-V LVTTL
HEX33	PIN_C19	Seven Segment Digit 3[3]	3.3-V LVTTL
HEX34	PIN_C20	Seven Segment Digit 3[4]	3.3-V LVTTL
HEX35	PIN_D19	Seven Segment Digit 3[5]	3.3-V LVTTL
HEX36	PIN_E17	Seven Segment Digit 3[6]	3.3-V LVTTL
HEX37	PIN_D22	Seven Segment Digit 3[7], DP	3.3-V LVTTL
HEX40	PIN_F18	Seven Segment Digit 4[0]	3.3-V LVTTL
HEX41	PIN_E20	Seven Segment Digit 4[1]	3.3-V LVTTL
HEX42	PIN_E19	Seven Segment Digit 4[2]	3.3-V LVTTL
HEX43	PIN_J18	Seven Segment Digit 4[3]	3.3-V LVTTL
HEX44	PIN_H19	Seven Segment Digit 4[4]	3.3-V LVTTL
HEX45	PIN_F19	Seven Segment Digit 4[5]	3.3-V LVTTL
HEX46	PIN_F20	Seven Segment Digit 4[6]	3.3-V LVTTL
HEX47	PIN_F17	Seven Segment Digit 4[7], DP	3.3-V LVTTL
HEX50	PIN_J20	Seven Segment Digit 5[0]	3.3-V LVTTL
HEX51	PIN_K20	Seven Segment Digit 5[1]	3.3-V LVTTL
HEX52	PIN_L18	Seven Segment Digit 5[2]	3.3-V LVTTL
HEX53	PIN_N18	Seven Segment Digit 5[3]	3.3-V LVTTL

HEX54	PIN_M20	Seven Segment Digit 5[4]	3.3-V LVTTL
HEX55	PIN_N19	Seven Segment Digit 5[5]	3.3-V LVTTL
HEX56	PIN_N20	Seven Segment Digit 5[6]	3.3-V LVTTL
HEX57	PIN_L19	Seven Segment Digit 5[7], DP	3.3-V LVTTL

Para distribución de pins listos para conectarse con otros dispositivos

Figure 3-18 I/O distribution of the expansion headers

Y para la parte de SECUENCIALES, requerimos activar el reloj de 50MHZ, en el pin_11

Figure 3-12 Clock circuit of the FPGA Board