Les calculatrices et les portables sont interdits.

Il est demandé de répondre sur le sujet.

EXERCICE 1:

1. Pour chacune des expressions suivantes, entourer sa forme développée (une seule solution parmi les quatre est correcte).

Expression	Réponse A	Réponse B	Réponse C	Réponse D			_	
(x+5)(x-3)	$x^2 + 8x + 15$	$x^2+2x-15$	x ² -15	x^2+2x+2	1		9	0
3(2x+1)(x+2)	$6x^2 + 6$	$6x^2 + 5x + 2$	$5x^2 + 8x + 5$	6 x ² +15x+6	1	1	9	0
-(x+4)(3x-1)	$-3x^2 - 11x + 4$	3x ² +11x-4	$-3x^2+4$	$-3x^2 - 13x + 4$	1	1	9	0
2x - 4(x+1)	$2x^2 - 2x - 4$	-2x + 4	-2x - 4	6x + 4	1		9	0

2. On considère la fonction f définie sur \mathbb{R} par f(x) = (x+1)(x-1)Les solutions de l'équation f(x) = 2 sont (entourez la ou les bonnes réponses) :

200	0010010110 000 1	990000000000000000000000000000000000000	- 50111 (01110001		miles reponses,	, .		$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$
3	-1	$\sqrt{5}$	5	$-\sqrt{3}$	$-\sqrt{5}$	$\sqrt{3}$	1	1		3	9	0

EXERCICE 2:

On considère la fonction f définie sur R par :

$$f(x) = (-2x+5)(x+2)-(-2x+5)(-x+1)$$

On donne ci-dessous la courbe représentative de f:

- 1.
- a. A partir du graphique, dresser le tableau de signe de la fonction f sur \mathbb{R} .

1	2		9	0
1		3	9	0

b. Montrer, à l'aide d'une factorisation, que f(x) = (-2x+5)(2x+1).

1 3 9 0

c. Etablir le tableau de signe de la fonction f.

1	2	3	9	0
1	2	3	9	0
1	2	3	9	0

d. En déduire l'ensemble des solutions de l'inéquation $f(x) \le 0$

		1	2		9	0
--	--	---	---	--	---	---

2.

a. A partir du graphique, dresser le tableau de variation de la fonction f sur $\square R$.

1	2		9	0
1		3	9	0

b. Sans aucun calcul, ranger dans l'ordre croissant les images par la fonction f de 1,5 et de 1,57. Justifier en utilisant votre leçon.

3 9 0

EXERCICE 3: En tapant l'expression $f(x) = \frac{2x+3}{x-2}$, un logiciel traceur de courbes donne la courbe-cidessous.

6.

1. Y a-t-il un point d'abscisse 2 sur la courbe ? Pourquoi ?

- 1 9 0
- 2. A quelle famille de courbes (droites, paraboles, hyperboles, cercles,...) appartient la représentation graphique ci-dessus?
- 1 9 0
- 3. Déterminer graphiquement l'image de 9 par la fonction f. Laisser les traits de construction.
- 1 2 9 0

4. Calculer l'image de 9 par la fonction f.

1 3 9 0

5. Résoudre graphiquement l'inéquation $f(x) \le 4$. Laisser les traits de construction.

- 1 2 3 9 0
- a. Montrer que résoudre l'inéquation $f(x) \le 4$ revient à résoudre $\frac{-2x+11}{x-2} \le 0$
- 1 9 0 1 2 9 0 1 9 0

b. Résoudre $\frac{-2x+11}{x-2} \le 0$.

c. Cela confirme-t-il votre lecture graphique?

EXERCICE 4: Comparer sans calculer et en justifiant:

1 9 0

1. $3,00001^2$ et $2,99997^2$

1 9 0

Nom:

 $(-299999)^2$ et $(-300000)^2$ 2.

1 2 3 9 0

3. $-13,1^2$ et $(-0,2)^2$

9 0

EXERCICE 5:

1) Déterminer par lecture graphique les équations des droites D1, D2, D3 et D4 tracées ci-dessous:

D1:

D2:

D3:

D4:

2) Tracer sur le même graphique les droites suivantes : D5: y = 2x - 1

D 6 : la droite d'ordonnée à l'origine 5 et de coefficient

directeur $\frac{-1}{3}$

D 7 : la droite de coefficient directeur 3 et passant par le point D2 A(-2;1)

EXERCICE 6: Dans le repère orthonormal ci-dessous, on considère les points A(-1; -3), B(2; -1), C(3;4), D(-3;0), ainsi que les vecteurs \vec{u} et \vec{v} .

D4

1. A l'aide du graphique, lire les coordonnées des vecteurs \vec{u} et \vec{v} .

1		9	0
1		9	0

2. Construire les points M, N, P et Q tels :

$$\vec{BM} = \vec{u} + \vec{v}$$
 $\vec{CN} = \vec{u} - \vec{v}$ $\vec{CP} = -\frac{3}{2}\vec{v}$ $\vec{QB} = -\vec{u} + 3\vec{v}$

1 9 0 1 9 0

3. Déterminer par le calcul les coordonnées des vecteurs \vec{AB} et \vec{BC}

1 9 0

4. Montrer que le triangle BCD est isocèle en B.

1		9	0
1	3	9	0
1	3	9	0

5. Montrer que les droites (AB) et (DC) sont parallèles.

1	2	9	0

6. Déterminer par le calcul les coordonnées du milieu I de [DC].

1 3 5 0

7. Déterminer par le calcul les coordonnées du point R tel que \vec{AR} ait pour coordonnées (-1;2)

1	2		9	0
1	2	3	9	0

EXERCICE 7: On considère l'algorithme suivant :

variables : x ,y

entrée: Entrer un réel x

traitement: Si $x \ge 0$, alors

y prend la valeur 2x - 4

Sinon

y prend la valeur x2

FinSi

sortie: Afficher y

1.

a) Déterminer l'affichage y obtenu en sortie si en entrée on saisit x = 4.

1 9 0

b) Déterminer l'affichage y obtenu en sortie si en entrée on saisit x = -2.

1 9 0

Dans cette question, toute trace de recherche sera prise en compte.
Déterminer le ou les réels x à saisir en entrée pour obtenir l'affichage 36.

1	2	9	0
1		9	0
1		9	0
1		9	0

3. On a tracé ci-dessous la représentation graphique de la fonction qui à x associe y avec l'algorithme précédent :

Modifier en vert l'algorithme pour obtenir cette nouvelle représentation graphique :

