Sardar Patel Institute of Technology
Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India

(Autonomous College Affiliated to University of Mumbai)

End Semester Examination-Synoptic/Breakup

November 2019

Max. Marks: 60 Class: B.E./BTech. Course Code: ELE 73B

Name of the Course: Computer and Communication Networks

Duration: 3 Hrs. Semester: VII Branch: ETRX

Instruction:

1) All questions are compulsory

2) Assume suitable data if necessary

3) Figure to the right indicate full mark

	5	
	1	1
- 3	ŧ	
	3	

Q. No.		Max. Marks	CO-BL-PI
1 a)	Does CSMA/CD work universally in the wired networks? Discuss. Ans: relevant explanation	5	2-3-2.2.4
b)	Identify the cable use to connect the following: 1) PC to PC 2) Router to PC 3) PC serial port to Router console port 4) Floors in Single Building Also compare: 1) Router and Switch 2) HUB and Bridge ANS: 1. Cross through cable 1 mark 2. Cross through cable 1 mark 3. Rollover cable 1 mark 4. Multi mode fiber optic cable 1 mark 5. Comparison router and switch 3 marks 6. Comparison HUB and Bridge 3 marks		1-2-2.1.2
2 a)	Consider the following four flows sharing a common bottle neck link: 1 2 Mps 2 2.6 Mbps 10 Mps 2 3 4 Mps 3 5 Mps 4 5 Mps	10	2-3-2.2.3

Compute the fair share of each unsatisfied flow using Max-Min Fairness algorithm.

Ans: Iteration1

- compute the fair share of each unsatisfied flow: 10/4 Mbps = 2.5Mbps (per flow)
- Assignment:
- Flow 1: 2 Mbps (with 0.5 Mbps overassignment)
- Flow 2: 2.5 Mbps
- Flow 3: 2.5 Mbps
- Flow 4: 2.5 Mbps

Unused bandwidth = 0.5 Mbps

The flow with minimum demand (i.e., flow 1 with 2 Mbps demand) has been maximized

Iteration2

- compute the fair share of each unsatisfied flow: 0.5 Mbps = 0.5/3=0.166Mbps Mbps (per flow)
- Assignment:

Flow 2: 2.5 + 0.1 Mbps = 2.6 Mbps

(because demand = 2.6 Mbps)

Flow 3: 2.5 + 0.16666 Mbps = 2.66666 Mbps

Flow 4: 2.5 + 0.16666 Mbps = 2.66666 Mbps

Unused bandwidth = 0.06666 Mbps

Iteration 3

• compute the fair share of each unsatisfied flow:

0.06666 Mbps/2= 0.03333 Mbps (per flow)

- Assignment:
- 1. Flow 3: 2.66666 + 0.03333 Mbps = 2.7 Mbps
- Flow 4: 2.66666 + 0.033333 Mbps = 2.7
 Mbps
 Unused bandwidth = 0.0 Mbps

	OR		
	What is ALOHA? Derive expression for efficiency of pure and slotted Aloha. Ans: definition2 marks Derivation8 marks	10	2-3-2.2.3
b)	Explain bus topology with number of nodes, number of links required, number I/O ports required, advantages and limitations Ans: relevant explanation.	5.	1-2-2.1.2
3a)	Explain how Subnet Mask Works? Assume IP Address :192.168.1.1 Now Assume that the administrators requirement is 40 hosts and is using Class C network-id address : 192.168.1.0. Using the concept of Subnetting find the possible of host/subnets and subnet ranges.	10	3-3-3.1.6
	Ans: Subnet Mask Works example (02 Marks) IP Address :192.168.1.1 Subnet Mask : 255.255.255.0 ANDING PROCESS : 192.168.1.1 = 110000000.10101000.00000001.00000001 255.255.255.0 = 11111111.11111111111111111111111111	10	3-3-3.1.6
	192.168.1.0 = 11000000.10101000.00000001.000000000 Class C : N.N.N.H (08 Marks) 110xxxxx.xxxxxxxxxxxxxxxxxxxxxxxxxxxxx		
	An ISP is granted a block of addresses starting with 90.100.0.0/16 (65,536 addresses). The ISP needs to distribute these addresses to three groups of customers as follows: a. The first group has 64 customers; each needs 256 addresses. b. The second group has 128 customers; each needs 128 addresses. c. The third group has 128 customers; each needs 64 addresses. Design the sub-blocks and find out how many addresses are still available after these allocations. Ans: Figure shows the situation.		

Figure An example of address allocation and distribution by an IS?

1. Group 1

For this group, each customer needs 256 addresses. This means that 8 (log2256) bits are

needed to define each host. The prefix length is then 32 - 8 = 24.

The addresses are

1st Customer:

2nd Customer:

190.100.0.0/24

190.100.1.0/24

190.100.0.255/24

190.100.1.255/24

64th Customer: 190.100.63.0/24 190.100.63.255/24

Total =64 X 256 =16,384

2. Group2

For this group, each customer needs 128 addresses. This means that 7 (10g2 128) bits are needed to define each host. The prefix length is then 32 - 7 = 25. The addresses are

1st Customer: 190.100.64.0/25

2nd Customer: 190.100.64.128/25

190.100.64.127/25 190.100.64.255/25

	th Customer: 190.100.127.128/25 190.100.127.255/25		
	Total = 128 X 128 = 16,384		
	3. Group3		
	For this group, each customer needs 64 addresses. This means		
	that 6 (logz 64) bits are needed		
	to each host. The prefix length is then $32 - 6 = 26$. The addresses		
	are		
	1st Customer:		
	2nd Customer:		
	190.100.128.0/26		
	190.100.128.64/26		
	190.100.128.63/26		
0	190.100.128.127/26		
	128th Customer: 190.100.159.192/26 190.100.159.255/26		
	Total =128 X 64 =8192		
	Number of granted addresses to the ISP: 65,536		
No. 18 control	Number of allocated addresses by the ISP: 40,960		
	Number of available addresses: 24,576		MANAGER AND CONTRACT OF THE STREET
b)	Explain the boot-up process of a typical router with an appropriate flowchart.	5	1-2-2.1.2
	Ans: flowchart2 marks		
	Explanation2 marks		
4a)	What is NAT? Explain how address translation is done in NAT. Ans: Definition 1 mark	5	4-3- 2.2.3
P	Explanation with example4 marks		
b)	What are the challenges of symmetric key cryptography? Bob	10	4-3- 2.2.3
	wants to send message "HOSPITALITY" to Alice and uses key	10	T-3- 2.2.3
	"Treat" to encrypt the message. Identify relevant Cryptography Algorithm and use the same to perform encryption and		
	decryption.		
CHERO DESA	Ans: Challenges 2 marks		
	Use of simple cryptographic algorithm, encryption and decryption4 marks each		
	OR		

Define the following with example:2.5 marks each 1) SQL Injection attacks 2) Botnets 3) DoS attacks 4) Replay attacks	10	4-3- 2.2.3
Replay attacks		