Theoretical Computer Science Lab Session 12

April 22, 2021

Agenda

- Generative Grammars
- ► Chomsky Hierarchy.
- ► Context-Free Grammars: Backus-Naur Form

Models

- ► Automata (operational models): models suitable to recognize/accept, translate, compute language: receive an input string and process it.
- Grammars (generative models): Models suitable to describe how to generate a language: set of rules to build phrases of a language.

Grammars

A grammar is a set of rules to produce strings $% \left\{ 1\right\} =\left\{ 1\right\} =\left\{$

Grammar: definition

A grammar is a tuple

$$\langle V_N, V_T, P, S \rangle$$

where

- \triangleright V_N is the non-terminal alphabet;
- V_T is the terminal alphabet;
- ➤ Terminal symbols are elementary symbols cannot be broken down into smaller units i.e. cannot be changed using the production rules of the grammar.
- Non-terminal symbols can be replaced by groups of terminal and non-terminal symbols according to the production rules.

Grammar: definition

A grammar is a tuple

$$\langle V_N, V_T, P, S \rangle$$

where

- $ightharpoonup V_N$ is the non-terminal alphabet;
- V_T is the terminal alphabet;
- $ightharpoonup V = V_N \cup V_T$ the alphabet;
- ▶ $P \subseteq (V^* \cdot V_N \cdot V^*) \times V^*$ is the (finite) set of rewriting rules of production;
- $ightharpoonup S \in V_N$ is a particular element called axiom or initial symbol.

A grammar $\langle V_N, V_T, P, S \rangle$ generates a language on V_T .

Production Rule

Let $G = \langle V_N, V_T, P, S \rangle$ be a grammar.

A **production rule** $\alpha \rightarrow \beta$ is an element of P where

- ▶ $\alpha \in V^* \cdot V_N \cdot V^*$ is a sequence of symbols including at least one non-terminal symbol;
- $eta \in V^*$ is a (potentially empty) sequence of (terminal or non-terminal) symbols.

$$V = V_N \cup V_T$$

Chomsky Hierarchy

- Grammars are classified according to the form of their productions.
- Chomsky classified grammars in four types
 - (type 3) Regular grammars
 - (type 2) Context-Free grammars
 - (type 1) Context-Sensitive grammars
 - (type 0) Unrestricted grammars

Chomsky Hierarchy

Grammars, languages and automata

Chomsky hierarchy	Grammars	Languages	Minimal automaton
Type-0	Unrestricted	Recursively enumerable	Turing machine
Type-1	Context-sensitive	Context-sensitive	LBA
Type-2	Context-free	Context-free	NDPDA
Type-3	Regular	Regular	FSA

Strictly Regular grammars (type 3)

production rules restricted to a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal, possibly

- 1. followed by a single non-terminal right grammar
- 2. preceded by a single non-terminal left grammar but **NOT** both in the same grammar

Strictly Regular grammars (type 3)

production rules restricted to a single non-terminal on the left-hand side and a right-hand side consisting of a single terminal, possibly

- 1. followed by a single non-terminal right grammar
- 2. preceded by a single non-terminal left grammar but **NOT** both in the same grammar

Example

Generate language with the strings of alternating a's and b's $V_N = \{S, A, B\}; V_T = \Sigma_1 = \{a, b\}$

- 1. $S \rightarrow A$
- 2. $S \rightarrow B$
- 3. $A \rightarrow aB$

- 4. $A \rightarrow \epsilon$
- 5. $B \rightarrow bA$
- 6. $B \rightarrow \epsilon$

Strictly Regular grammars (type 3)

Strictly Right regular grammar

A right regular grammar is a formal grammar $\langle V_N, V_T, P, S \rangle$ such that all the production rules in P are of one of the following forms:

- 1. $A \rightarrow b$, where $A \in V_N$ and $b \in V_T$;
- 2. $A \rightarrow bB$, where $A, B \in V_N$ and $b \in V_T$;
- 3. $A \rightarrow \epsilon$, where $A \in V_N$ and ϵ denotes the empty string.

Strictly Left regular grammar

A left regular grammar is a formal grammar $\langle V_N, V_T, P, S \rangle$ such that all the production rules in P are of one of the following forms:

- 1. $A \rightarrow b$, where $A \in V_N$ and $b \in V_T$;
- 2. $A \rightarrow Bb$, where $A, B \in V_N$ and $b \in V_T$;
- 3. $A \rightarrow \epsilon$, where $A \in V_N$ and ϵ denotes the empty string.

Extended regular grammars

Extended Right regular grammar

A left regular grammar is a formal grammar $\langle V_N, V_T, P, S \rangle$ such that all the production rules in P are of one of the following forms:

- 1. $A \rightarrow b$, where $A \in V_N$ and $b \in V_T$;
- 2. $A \rightarrow wB$, where $A, B \in V_N$ and $w \in V_T^*$;
- 3. $A \rightarrow \epsilon$, where $A \in V_N$ and ϵ denotes the empty string.

Extended Left regular grammar

A left regular grammar is a formal grammar $\langle V_N, V_T, P, S \rangle$ such that all the production rules in P are of one of the following forms:

- 1. $A \rightarrow b$, where $A \in V_N$ and $b \in V_T$;
- 2. $A \rightarrow Bw$, where $A, B \in V_N$ and $w \in V_T^*$;
- 3. $A \rightarrow \epsilon$, where $A \in V_N$ and ϵ denotes the empty string.

Exercises

Define Strictly Regular grammars that produce the following languages over the alphabet $\Sigma_1 = \{a, b\}$, $\Sigma_2 = \{0, 1\}$

- 1. $L_1 = \{0, 1\}^*$
- 2. $L_2 = \{(aab \mid bba)^*\}$

Homework:

- 3. $L_3 = \{(aa \mid bb)^*aa\}$
- 4. $L_4 = \{(00^*11^*)\}$

Solutions L₁

$$L_1 = \{0, 1\}^*$$

$$V_N = \{S\}; \ V_T = \Sigma_2 = \{0,1\}$$

- 1. S $\rightarrow \epsilon$
- 2. $S \rightarrow 0S$
- 3. $S \rightarrow 1S$

Solutions L₂

$$L_2 = \{(aab \mid bba)^*\}$$

$$V_N = \{S,A,B,F,E\}; \ V_T = \Sigma_1 = \{\text{a, b}\}$$

- 1. $S \rightarrow \epsilon$
- 2. $S \rightarrow aA$
- 3. $S \rightarrow bB$
- 4. $A \rightarrow aF$
- 5. $F \rightarrow bS$
- 6. $B \rightarrow bE$
- 7. $E \rightarrow aS$

Solutions

$$L_3 = \{(aa \mid bb)^*aa\}$$

$$V_N = \{S,A,B,C\}; \ V_T = \Sigma_1 = \{\text{a, b}\}$$

- 1. $S \rightarrow bC \mid aA$
- 2. $A \rightarrow aB \mid a$
- 3. $B \rightarrow bC \mid aA$
- 4. $C \rightarrow bS$

Context-Free grammars (type 2)

Defined by rules of the form $A \to \gamma$ where A is a non-terminal and γ is a string of terminals and non-terminals.

Example

Generate language with the $a^n b^n$ where n > 0

$$V_N = \{S\}; \ \ V_T = \Sigma_1 = \{a, b\}$$

Set of Production rules $P = \{S \rightarrow aSb \mid ab\}$

Exercises

Define context-free grammars that produce the following languages over the alphabet $\Sigma = \{a, b\}$:

- 1. Language of palindromes strings $L_1 = \{w \in \{a, b\}^* | w = w^R\}$
- 2. $L_2 = \{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$

Homework:

- 3. L_3 Generate language with alternating a's and b's
- 4. $L_4 = \{a^n b^n c^m \mid n, m > 0\} \cup \{a^n b^m c^m \mid n, m > 0\}$

Solutions L₁

Language of palindromes strings;

$$L_1 = \{ w \in \{a, b\}^* | w = w^R \}$$

$$V_N = \{S,O,E\}; \ V_T = \Sigma = \{\text{a,b}\}$$

- 1. $S \rightarrow O \mid E$
- 2. $E \rightarrow \epsilon \mid aEa \mid bEb$
- 3. $O \rightarrow a \mid b \mid aOa \mid bOb$

Solutions L₂

$$L_2 = \{a^i b^j c^k | i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$$

$$V_N = \{S,X,Y,W,Z\}; \ V_T = \Sigma = \{\text{a, b}\}$$

- 1. $S \rightarrow XY \mid W$
- 2. $X \rightarrow aXb \mid \epsilon$
- 3. $Y \rightarrow cY \mid \epsilon$
- 4. $W \rightarrow aWc \mid Z$
- 5. $Z \rightarrow bZ \mid \epsilon$

Context-Sensitive grammars (type 1)

The rules of the form $\alpha A\beta \to \alpha \gamma \beta$, where A is a non-terminal and α , β and γ are strings of terminals and non-terminals.

- 1. γ must be non-empty
- 2. The rule $S{
 ightarrow}\epsilon$ is allowed if S does not appear on the right side of any rule

Context-Sensitive grammars (type 1)

The rules of the form $\alpha A\beta \to \alpha\gamma\beta$, where A is a non-terminal and α , β and γ are strings of terminals and non-terminals.

- 1. γ must be non-empty
- 2. The rule $S{\to}\epsilon$ is allowed if S does not appear on the right side of any rule

Example

Generate language $\{A^nB^nC^n|n>0\}$

- 1. $S \rightarrow aBC$
- 2. $S \rightarrow aSBC$
- 3. $CB \rightarrow CZ$
- 4. $CZ \rightarrow BZ$
- 5. $BZ \rightarrow BC$

- 6. $aB \rightarrow ab$
- 7. $bB \rightarrow bb$
- 8. $bC \rightarrow bc$
- 9. $cC \rightarrow cc$

Exercises

Define context-sensitive grammars that produce the following languages:

- 1. $L_1 = \{WW \mid W \in \{a, b\}^*\}$ Homework:
- 2. $L_2 = \{a^i b^j c^i d^j \mid i, j \ge 1\}$
- 3. $L_3 = \{ W \in \{a, b, c\}^* | \#(a) = \#(b) = \#(c) \text{ and } \#(a) \ge 1 \}$

Solutions L₂

$$L_2 = \{a^i b^j c^i d^j \mid i, j \ge 1\}$$

$$V_N = \{S,A,B,C\}; \ V_T = \Sigma = \{a,b,c\}$$

- 1. $S \rightarrow AB$
- 2. $A \rightarrow aAX \mid aX$
- 3. $B \rightarrow bBd \mid bYd$

- 4. $Xb \rightarrow bX$
- 5. $XY \rightarrow Yc$
- 6. $Y \rightarrow \epsilon$

Solutions L₃

$$L_3 = \{W \in \{a, b, c\}^* | \#(a) = \#(b) = \#(c) \text{ and } \#(a) \ge 1\}$$
 $V_N = \{S, A, B, C\}; V_T = \Sigma = \{a, b, c\}$

- 1. $S \rightarrow ABC \mid ABCS$
- 2. $AB \rightarrow BA$
- 3. $AC \rightarrow CA$
- 4. $BC \rightarrow CB$
- 5. $BA \rightarrow AB$

- 6. $CA \rightarrow AC$
- 7. $CB \rightarrow BC$
- 8. $A \rightarrow a$
- 9. $B \rightarrow b$
- 10. $C \rightarrow c$

Unrestricted grammars (type 0)

The rules of the form $\alpha \to \beta$, where α and β are strings of non-terminals and terminals.

- 1. The grammars without any limitation on production rules.
- 2. α at least have one non-terminal
- 3. α cannot be an empty string

Unrestricted grammars (type 0)

The rules of the form $\alpha \to \beta$, where α and β are strings of non-terminals and terminals.

Example

Generate language $\{A^nB^nC^n|n>0\}$

- 1. $S \rightarrow aBC$
- 2. $S \rightarrow aSBC$
- 3. $CB \rightarrow BC$
- 4. $aB \rightarrow ab$

- 5. $bB \rightarrow bb$
- 6. $bC \rightarrow bc$
- 7. $cC \rightarrow cc$

Exercises

Generate Unrestricted grammars for below languages:

- 1. $L_1 = \{ W \mid W = a^i \text{ and } i = 2^k \text{ and } k > 0 \}$
- 2. $L_2 = \{a^n b^m c^n d^m \mid n > 0, m > 0\}$

Homework:

3.
$$L_3 = \{ a^n b^{2n} c^{3n} \mid n \ge 1 \}$$

Solutions 1 L₁

$$L_2 = \{ W : W = a^i \text{ and } i = 2^k \text{ and } k > 0 \}$$

$$V_N = \{S,A,B,C\}; \ V_T = \Sigma = \{a,b,c\}$$

- 1. $S \rightarrow LAYR$
- 2. $ZA \rightarrow aAZ$
- 3. $Za \rightarrow aZ$
- 4. $ZR \rightarrow AAYR$
- 5. $aY \rightarrow Ya$
- 6. $AY \rightarrow YA$

- 7. $LY \rightarrow LZ$
- 8. $YR \rightarrow X$
- 9. $aX \rightarrow Xa$
- 10. $AX \rightarrow Xa$
- 11. $LX \rightarrow \epsilon$

Solutions L₂

$$L_2 = \{a^n b^m c^n d^m \mid n > 0, m > 0\}$$

$$V_N = \{S, A, B, C, X, Y\}; V_T = \Sigma = \{a, b, c\}$$

- 1. $S \rightarrow XY$
- 2. $X \rightarrow aXC \mid aC$
- 3. $Y \rightarrow BYd \mid Bd$
- 4. $CB \rightarrow BC$

- 5. $aB \rightarrow ab$
- 6. $bB \rightarrow bb$
- 7. $Cd \rightarrow cd$
- 8. $Cc \rightarrow cc$

Context-Free grammars (type 2)

Defined by rules of the form $A \to \gamma$ where A is a non-terminal and γ is a string of terminals and non-terminals.

Backus Naur Form (BNF)

BNF (Backus Normal Form or Backus–Naur Form) is a notation technique for context-free grammars.

It is often used to describe the syntax of programming languages.

The BNF Notation

- Non-terminals are words in ⟨...⟩
 Example: <statement>, and represents non-terminal symbols.
- ➤ Terminal symbols are grammar symbols enclosed in quotes ('') and often multicharacter strings indicated by single quotation marks. Example: 'while'.
- ▶ Symbol ::= is often used for \rightarrow (from the production rules).
- Symbol | is used as a shorthand for a list of productions with the same left side.
 - ► Example: $\{S \rightarrow 0S1 \mid 01\}$ is shorthand for $\{S \rightarrow 0S1, S \rightarrow 01\}$.
- ▶ Symbol [...] is used to represent optional.
 - Example: a [b] can produce: ab or a.
- ▶ Symbol {...} is used to represent zero or more times.
 - Example: a{b} can produce: ab or a or abbb.

BNF: Example

$$\begin{split} \langle \mathcal{S} \rangle &::= \langle \mathcal{X} \rangle \text{`a'`a'} \langle \mathcal{X} \rangle \\ \langle \mathcal{X} \rangle &::= \text{`a'} \langle \mathcal{X} \rangle \mid \text{`b'} \langle \mathcal{X} \rangle \mid \epsilon \end{split}$$

BNF: Example

Can the string bbaab be produced by the Grammar?

$$\langle \mathcal{S} \rangle ::= \langle \mathcal{X} \rangle$$
'a''a' $\langle \mathcal{X} \rangle$
 $\langle \mathcal{X} \rangle ::=$ 'a' $\langle \mathcal{X} \rangle \mid$ 'b' $\langle \mathcal{X} \rangle \mid \epsilon$

$$\langle \mathcal{S} \rangle = \langle \mathcal{X} \rangle$$
ʻa'ʻa' $\langle \mathcal{X} \rangle$

$$\langle \mathcal{S} \rangle ::= \langle \mathcal{X} \rangle$$
'a''a' $\langle \mathcal{X} \rangle$
 $\langle \mathcal{X} \rangle ::=$ 'a' $\langle \mathcal{X} \rangle \mid$ 'b' $\langle \mathcal{X} \rangle \mid \epsilon$

$$\langle \mathcal{S}
angle = \underline{\langle \mathcal{X}
angle}$$
ʻa'ʻa' $\langle \mathcal{X}
angle$

$$\langle S \rangle ::= \langle X \rangle$$
'a''a' $\langle X \rangle$
 $\langle X \rangle ::=$ 'a' $\langle X \rangle \mid$ 'b' $\langle X \rangle \mid \epsilon$

$$\langle S \rangle = \text{`b'}\langle X \rangle \text{`a'`a'}\langle X \rangle$$

$$\langle S \rangle ::= \langle X \rangle$$
'a''a' $\langle X \rangle$
 $\langle X \rangle ::= 'a'\langle X \rangle \mid 'b'\langle X \rangle \mid \epsilon$

$$\langle S \rangle = \text{`b'}\underline{\langle X \rangle}\text{`a'`a'}\langle X \rangle$$

$$\langle \mathcal{S} \rangle ::= \langle \mathcal{X} \rangle$$
'a''a' $\langle \mathcal{X} \rangle$
 $\langle \mathcal{X} \rangle ::=$ 'a' $\langle \mathcal{X} \rangle \mid$ 'b' $\langle \mathcal{X} \rangle \mid \epsilon$

$$\langle S \rangle = \text{`b''b'} \langle X \rangle \text{`a''a'} \langle X \rangle$$

$$\langle S \rangle ::= \langle X \rangle$$
'a''a' $\langle X \rangle$
 $\langle X \rangle ::=$ 'a' $\langle X \rangle \mid$ 'b' $\langle X \rangle \mid \epsilon$

$$\langle \mathcal{S} \rangle = \text{`b'`b'}\underline{\langle \mathcal{X} \rangle}\text{`a'`a'}\langle \mathcal{X} \rangle$$

$$\langle S \rangle ::= \langle X \rangle$$
'a''a' $\langle X \rangle$
 $\langle X \rangle ::=$ 'a' $\langle X \rangle$ | 'b' $\langle X \rangle$ | ϵ

$$\langle \mathcal{S} \rangle = \text{`b'`b'`a'`a'} \langle \mathcal{X} \rangle$$

$$\langle S \rangle ::= \langle X \rangle$$
'a''a' $\langle X \rangle$
 $\langle X \rangle ::=$ 'a' $\langle X \rangle \mid$ 'b' $\langle X \rangle \mid \epsilon$

$$\langle S \rangle = \text{`b''b''a''a'} \underline{\langle X \rangle}$$

$$\begin{split} \langle \mathcal{S} \rangle &::= \langle \mathcal{X} \rangle \text{`a'`a'} \langle \mathcal{X} \rangle \\ \langle \mathcal{X} \rangle &::= \text{`a'} \langle \mathcal{X} \rangle \mid \text{`b'} \langle \mathcal{X} \rangle \mid \epsilon \end{split}$$

$$\langle \mathcal{S} \rangle = \text{`b''b''a''a''b'} \langle \mathcal{X} \rangle$$

$$\langle S \rangle ::= \langle X \rangle$$
'a''a' $\langle X \rangle$
 $\langle X \rangle ::= 'a'\langle X \rangle \mid 'b'\langle X \rangle \mid \epsilon$

$$\langle S \rangle = \text{`b''b''a''a''b'} \underline{\langle X \rangle}$$

$$\langle S \rangle ::= \langle X \rangle$$
'a''a' $\langle X \rangle$
 $\langle X \rangle ::=$ 'a' $\langle X \rangle \mid$ 'b' $\langle X \rangle \mid \epsilon$

$$\langle \mathcal{S} \rangle = \text{`b''b''a''a''b'}$$

Exercises

Define BNF grammars for the following languages:

- 1. A simple list of the form A1,B2,A4,C3.
- 2. Simple expressions limited to the variable identifiers x, y, and z, that contain the binary operations of addition (+) and subtraction (-), and parentheses, e.g. x + (z y), (x x) + (z + y)

Exercise

Define a BNF grammar for the language of Pascal variable declarations without defining user-defined types. e.g.

```
var i : integer;
var b : boolean;
var my_float : real;
   mychar : char;
   x, y, z : integer;
```

Treat last declaration as a single line.

Solution

Define a BNF grammar for the language of Pascal variable declarations without defining user-defined types:
Grammar