Combinatorics

Thomas Fleming

October 13, 2021

Contents

Lecture 20: Quasi-Random Graphs (3)

Fri 08 Oct 2021 10:13

We complete the proof from last time.

Proof. Take m values x_1, x_2, \ldots, x_m and let \overline{x} be their arithmetic mean. Then, recall that $\sum_{i=1}^m (x_i - \overline{x})^2 = \sum_{i=1}^m x_i^2 - n\overline{x}^2$ This is simply the definition of variance.

Then, letting $m = \binom{n}{2}$, $\hat{d}_{ij} = x_k$ and the mean codegree to be $\operatorname{mcd} = \frac{1}{\binom{n}{2}} \sum_{1 \leq i,j \leq n} \hat{d}_{ij} = \frac{1}{\binom{n}{2}} \left(\frac{1}{8} n^3 + o\left(n^3\right) \right) = \frac{n}{4} + o\left(n\right)$. Then, we have

$$\sum_{1 \le i,j \le n} \left(\hat{d}_{ij} - \operatorname{mcd} \right)^2 = \sum_{1 \le i,j \le n} \hat{d}_{ij}^2 - \binom{n}{2} \operatorname{mcd}$$
$$= \frac{1}{32} n^4 + o\left(n^4\right) - \frac{1}{32} n^4 + o\left(n^4\right)$$
$$= o\left(n^4\right).$$

Hence, we obtain $\sum_{1 \leq i,j \leq n} \left(\hat{d}_{ij} - \operatorname{mcd} \right)^2 = o\left(n^4\right)$. Then, letting $y_i = \left| \hat{d}_{ij} - \operatorname{mcd} \right|$ we see by cauchy shwartz that $\frac{1}{m} \sum_{i=1}^n y_i \leq \sqrt{\frac{1}{m} \sum_{i=1}^n y_i}$, hence $\sum_{i=1}^n x_i \leq \sqrt{m \sum_{i=1}^n y_i}$. Hence, we have $\sum_{1 \leq i,j \leq n} \left| \hat{d}_{ij} - \operatorname{mcd} \right| \leq \sqrt{\binom{n}{2} \sum_{1 \leq i,j \leq n} \left(\hat{d}_{ij} - \operatorname{mcd} \right)^2} = o\left(n^3\right)$. Hence,

$$\sum_{1 \le i,j \le 2} \left| \hat{d}_{ij} - \operatorname{mcd} \right| = o\left(n^3\right).$$

Then triangle inequality yields

$$\sum_{1 \le i,j \le n} \left| \hat{d}_{ij} - \frac{n}{4} \right| \le \sum_{1 \le i,j \le n} \left| \hat{d}_{ij} - \operatorname{mcd} \right| + \left| \operatorname{mcd} - \frac{n}{4} \right|$$

$$= o(n^{3}) + o(n^{3})$$

$$= o(n^{3}).$$

Now, we proceed to prove some more implications, but first we state a lemma.

Lemma 0.1. Let x_1, x_2, \ldots, x_n be an orthornormal basis with associated eigenvalues $\lambda_1, \ldots, \lambda_n$. Then for $j = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 & \ldots & 1 \end{pmatrix}$, we find $|x_1 - j|_2 = o(1)$.

Proof. $(P_3 \Rightarrow P_5)$. Let x_1 be a unit eigenvector of G corresponding to λ_1 . Then, let $j = \frac{1}{\sqrt{n}} \begin{pmatrix} 1 & \dots & 1 \end{pmatrix}$, then by lemma we have $|x_1 - j|_2 = o(1)$.

Lecture 21: Quasi-Random Graphs (4)

Wed 13 Oct 2021 10:17

We complete the proof from last time. Recall our lemma that for orthornormal basis containing x_1 we have $|x_1 - j|_2 = o(1)$. We proceed

Proof. WLOG assume G to be a random graph of even order and $|S| = \frac{n}{2}$. Then,

we define a vector \vec{S} with $s_i = \left\{ \begin{array}{ll} \frac{1}{\sqrt{n}}, & i \in S \\ -\frac{1}{\sqrt{n}}, & i \in V \setminus S \end{array} \right.$ It is clear $|S|_2 = 1$ and we see

$$\langle S, j \rangle = \underbrace{\frac{1}{\sqrt{n}} \cdot \frac{1}{\sqrt{n}}}_{\frac{n}{n} \text{ times}} + \underbrace{\frac{1}{-\sqrt{n}} \cdot \frac{1}{\sqrt{n}}}_{\frac{n}{n} \text{ times}} = 0.$$

Then, we note $\langle S, x_1 \rangle = \langle S, j \rangle + \langle S, x_1 - j \rangle = \langle S, x_1 - j \rangle$ and applying cauchy-shwartz yields

$$\langle S, x_1 \rangle = \langle S, x_1 - j \rangle \le |S|_2 |x_1 - j|_2 = 1 \cdot o(1) = o(1).$$

Now, define $Z = S - \langle S, x_1 \rangle x_1$). Then, we see

$$\langle Z, x_1 \rangle = \langle S, x_1 \rangle - \langle S, x_1 \rangle |x_1|_2^2 = 0.$$

So, Z is orthogonal to x_1 . Hence, there is a n-1 dimensional space, M, generated by x_2, \ldots, x_n with eigenvalues $\lambda_2, \ldots, \lambda_n$ with largest eigenvalue $\max\{\lambda_2, |\lambda_n|\}$. Then, we find by the rayleigh quotient that $|\langle Ay, y \rangle| \leq \lambda_1 (M) |y|_2^2 = \sigma_2 |y|_2^2$ for all $y \in M$. Similarly, we find

$$\lambda_n |y|_2^2 \le \langle Ay, y \rangle \le \lambda_2 |y|_2^2$$

for all $y\in M$. From this we get $\lambda_n |Z|_2^2 |\langle AZ,Z\rangle| \leq \lambda_2 |Z|_2^2$, and recalling $|Z|_2 \leq |S|_2 + |\langle S,x_1\rangle| \, |x_1|_2 = 1 + o\,(1)\,1 \leq 2$

$$|\langle AZ, Z \rangle| \le \sigma_2 |Z|_2^2 \le \sigma_2 |2|_2^2 = 4\sigma_2 = o(n).$$

Finally, we see

$$\begin{split} \langle AS,S\rangle &= \langle A\left(Z+\langle S,x_1\rangle\,x_1\right),Z+\langle S,x_1\rangle\,x_1\rangle \\ &=\underbrace{\langle AZ,Z\rangle}_{o(n)} +\underbrace{\langle S,x_1\rangle}_{o(1)}\underbrace{\langle AZ,x_1\rangle}_{=0} +\underbrace{\langle S,x_1\rangle}_{o(1)}\underbrace{\langle Ax_1,Z\rangle}_{0} +\underbrace{\langle S,x_1\rangle^2}_{o(1)}\langle Ax_1,x_1\rangle \\ &= o\left(n\right)+\langle S,x_1\rangle^2\,\langle Ax_1,x_1\rangle \\ &= o\left(n\right)+\lambda_1 \\ &= o\left(n^2\right) \end{split}$$

.

Recall we also know

$$\langle AS, S \rangle = 2e(S) + 2e(G \setminus S) - 2e(S, G \setminus S).$$

and $2e\left(S\right)+2e\left(G\setminus S\right)+2e\left(S,G\setminus S\right)=e\left(G\right)\geq\frac{1}{4}n^2+o\left(n^2\right)$. Then, adding and dividing yields these identities yields $e\left(S\right)+e\left(G\setminus S\right)=\frac{n^2}{8}+o\left(n^2\right)$. Furthermore, $\sum_{i\in S}d_i==\frac{n^2}{4}+o\left(n^2\right)2e\left(S\right)+e\left(S,G\setminus S\right)$ and $\sum_{i\in G\setminus S}d_i=\frac{n^2}{4}+o\left(n^2\right)=2e\left(G\setminus S\right)+e\left(S,G\setminus S\right)$. Adding all of the identities thus far yields that $2e\left(S\right)-2e\left(G\setminus S\right)=o\left(n^2\right)$, hence $e\left(S\right)=\frac{1}{16}n^2+o\left(n^2\right)$.

We are nearing the end of quasi-random graphs, but note we have always assumed a quasi-random graph to have density $\frac{1}{2}$. These properties are easily generalized to one of density p. We list the generalized properties.

Definition 0.1. 1. (P_2) . A graph is P_2 if

- $e(G) \ge \frac{pn^2}{2} + o(n^2)$
- $\#CW_4 \le p^4 n^4 + o(n^4)$.
- 2. (P_3) . A graph is P_3 if
 - $e(G) \ge \frac{pn^2}{2} + o(n^2)$
 - $\lambda_1(G) = pn + o(n)$
 - $\sigma_2(G) = o(n)$.
- 3. (P_7) . A graph is P_7 if
 - $\sum_{1 \le i,j \le n} \left| \hat{d}_{ij} p^2 n \right| = o(n^2)$.