wprowadzenie do analizy szeregów czasowych

Patryk Filipiak

Instytut Informatyki, Uniwersytet Wrocławski

19 stycznia 2016

Prezentacja danych

Dekompozycja

Preprocessing

Model predykcji ARIMA

Dobór parametrów modelu ARIMA

Podsumowanie

Definicie

Szeregiem czasowym nazywamy ciąg $(x_1, x_2, \dots, x_t, \dots)$ następujących po sobie obserwacji pewnego zjawiska.

- charakter dyskretny kolejne obserwacje w identycznych odstepach czasowych,
- formalnie jest realizacją pewnego procesu stochastycznego (tj. rodziny zmiennych losowych) postaci $X = (X_t)_{t \in T}$.

$$X_1 \longleftrightarrow X_1, \quad x'_1, \quad x''_1, \quad \dots$$
 $X_2 \longleftrightarrow X_2, \quad x'_2, \quad x''_2, \quad \dots$
 $\vdots \quad \vdots \quad \vdots \quad \vdots$
 $X_t \longleftrightarrow X_t, \quad x'_t, \quad x''_t, \quad \dots$
 $\vdots \quad \vdots \quad \vdots \quad \vdots$

0000000

Przykłady

Wykres

miesięczne zestawienie ilości wytworzonej energii elektrycznej dla Australii

- trend,
- sezonowość,
- wysoka przewidywalność.

0000000 Definicje i przykłady

Wykres

notowania bonów skarbowych USA w ciągu 100 kolejnych dni roboczych 1981r.

- trend albo "chwilowy" spadek,
- ryzyko dużego błędu prognozy.

0000000

Przykłady

Wykres

sprzedaż produktu "C" notowana w dużej spółce naftowej

- spikes,
- predykcja
 wymaga analizy
 jakościowej.

0000000

Przykłady

Wykres

miesięczne zestawienie produkcji gliny ceglarskiej dla Australii

- silne wahania,
- sezonowość o nieregularnej intensywności,
- predykcja jedynie po ustaleniu przyczyn fluktuacji.

0000000

Zarys problematyki

Cel

Dysponując historycznymi obserwacjami pewnego zjawiska (x_1, x_2, \dots, x_n) , zrozumieć jego charakter i/lub przewidzieć przyszłe wartości, ti. $x_{n+1}, x_{n+2}, \dots, x_{n+m}$ dla m > 0.

Założenia

- ▶ Istnieje proces stochastyczny $(X_t)_{t \in T}$, którego instancją jest ciąg $(x_1, x_2, \ldots, x_n, \ldots).$
- Na podstawie obserwacji (x₁, x₂, ..., xₙ) można estymować parametry rozkładów zmiennych losowych X_1, X_2, \dots, X_n .
- Autokorelacja w procesie $(X_t)_{t\in\mathcal{T}}$ pozwala na jakiekolwiek przewidywania na temat zmiennych $X_{n+1}, X_{n+2}, \dots, X_{n+m}$.

0000000

Zarys problematyki

Metody

- prezentacja danych wykresy, statystyki,
- estymacja parametrów rozkładów X_1, X_2, \dots, X_n wartości oczekiwanych, (auto)kowariancji, (auto)korelacji i innych,
- dobór i konstrukcja modelu $(X_t)_{t \in T}$,
- dekompozycja modelu,
- testowanie modelu szacowanie błędów, dopasowania, etc.
- zastosowanie mechanizmu predykcji dla modelu autoregresja, średnie kroczące i inne.

Statystyki i wykresy

Proste statystyki

Niech $(x_1, x_2, ..., x_n)$ będzie szeregiem czasowym.

średnia arytmetyczna

$$\overline{x} = \sum_{i=1}^{n} x_i$$

wariancja (z próby)

$$s^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

odchylenie standardowe

$$s = \sqrt{s^2}$$

$$\overline{x}=0, s^2\approx 50$$

$$\overline{x}=0, s^2\approx 0.5$$

Proste statystyki

Niech $1 \le k < n$.

Autokowariancja (z próby)

$$c_k = \frac{1}{n} \sum_{t=k+1}^n (x_t - \overline{x})(x_{t-k} - \overline{x})$$

Autokorelacja (z próby)

$$r_k = \frac{c_k}{s^2} = \frac{\sum_{t=k+1}^n (x_t - \overline{x})(x_{t-k} - \overline{x})}{\sum_{t=1}^n (x_t - \overline{x})^2},$$

czyli −1 \leqslant r_k \leqslant 1.

Proste statystyki

Statystyki i wykresy

Niech k = 2m + 1.

Prosta średnia krocząca

$$SMA_k(t) = \frac{1}{k} \sum_{i=-m}^{m} x_{t+j},$$

gdzie
$$m < t \leqslant n - m$$
.

Dla krańcowych wartości t stosuje się zmodyfikowane warianty

$$\frac{1}{m+1}\sum_{i=0}^{m}x_{t+j}$$
 oraz $\frac{1}{m+1}\sum_{i=-m}^{0}x_{t+j}$.

Statystyki i wykresy

Wykres punktowy (ang. scatterplot)

Wykres

cena vs. ilość dostarczanej pulpy drzewnej

Zjawiska

zależność zbliżona do liniowej.

Wykres punktowy – różne wartości (auto)korelacji

Statystyki i wykresy

Korelogram

miesięczne zestawienie sprzedaży piwa

- ightharpoonup silna korelacja dodatnia dla k=12,
- ightharpoonup silna korelacja ujemna dla k=6.

Model addytywny i multiplikatywny

Rozważamy zwykle dwa zasadnicze modele:

addytywny

$$X_t = T_t + S_t + E_t,$$

multiplikatywny

$$X_t = T_t \times S_t \times E_t,$$

gdzie

- ► T_t składowa trend-cykl,
- ▶ S_t składowa sezonowa,
- ► E_t reszta.

Przykład – model addytywny

obserwacje

składowa trend-cykl

składowa sezonowa

reszta

Usuwanie trendu i sezonowości

Wykrywanie trendu

Najprostszym mechanizmem wykrywania trendu jest wygładzanie za pomocą średniej kroczącej.

- im większa wartość k, tym gładszy wykres,
- im mniejsza wartość k, tym mniej danych potrzebnych do wyliczenia średniej kroczącej.

Wykrywanie trendu

Optymalnie wyznaczony trend dla k = 19 ze zmodyfikowaną średnią kroczącą dla krańcowych wartości t.

Usuwanie sezonowości

Po usunięciu składowej trend-cykl, otrzymujemy

$$X_t - T_t = S_t + E_t,$$
 $X_t / T_t = S_t \times E_t.$

- Załóżmy, że badany szereg czasowy jest ciągiem comiesiecznych obserwacji danego zjawiska.
- Średnie arytmetyczne obserwacji (po usunięciu trendu) z poszczególnych miesięcy wyznaczają przybliżenie składowej sezonowei.

Usuwanie trendu i sezonowości – przykład

Niech $n = 5 \times 12$ mies. = 60

- ▶ Dane są obserwacje $(x_1, x_2, ..., x_{60})$.
- Przyjmujemy model addytywny.

Algorytm

- (1) Obliczamy $\tau_t = SMA_k(t)$, np. dla k = 15.
- (2) Wyznaczamy średnie dla miesięcy

$$\sigma_{Jan} = \frac{\sum_{i=0}^{4} (x_{1+12 \cdot i} - \tau_{1+12 \cdot i})}{5}, \dots, \sigma_{Dec} = \frac{\sum_{i=0}^{4} (x_{12+12 \cdot i} - \tau_{12+12 \cdot i})}{5}$$

(3) Obliczamy resztę (błąd) $e_t = x_t - \tau_t - \sigma_{mies.}$

Usuwanie trendu i sezonowości – przykład

Dekompozycja – uwagi

- Pomyślnie przeprowadzona dekompozycja dostarcza istotnych informacji o postaci szeregu czasowego.
- Wiele metod predykcji wymaga usuniecia trendu i sezonowości.

Problemy

- Czy składowe trend-cykl i sezonową również należy przewidywać czy przyjąć, że nie ulegną zmianie w przyszłości?
- ▶ Jak dużo danych (np. τ_t , σ_t) należy dodatkowo gromadzić dla skutecznej predykcji?

Zaszumienie danych

Wszelkie obserwacje narażone sa na liczne zaszumienia, np.:

- przerwy w działaniu urządzenia pomiarowego (braki danych),
- znaczne błędy pomiaru (nadspodziewanie duże lub małe wartości, ang. *outliers*),
- wpływ kalendarza, w szczególności:
 - liczba dni w miesiacu,
 - liczba weekendów.
 - świeta (w tym świeta "ruchome").

Przekształcenia matematyczne i kalendarzowe

Proste przekształcenia matematyczne

Szczególna role odgrywa logarytmowanie, które pozwala przejść od modelu multiplikatywnego do addytywnego.

Przekształcenia matematyczne i kalendarzowe

Proste przekształcenia kalendarzowe

W wykresie na dole uwzględniono liczbę dni w miesiącu.

Predykcja

Istnieje wiele metod prognozowania szeregów czasowych, m.in.:

- analiza jakościowa (np. kondycja firm, stan gospodarki),
- wiedza i doświadczenie (np. odwołanie się do podobnych zjawisk opisanych w literaturze),
- intuicja (np. w kontekście postępowania drugiej osoby),
- użycie jako prognozy ostatniej odnotowanej wartości,
- analiza ilościowa (metody matematyczne).

Analiza ilościowa

Wykorzystanie metod matematycznych wymaga spełnienia pewnych warunków.

- Dane obciążone trendem i/lub sezonowością utrudniają predykcję.
- ▶ W modelu $X_t = T_t + S_t + E_t$ lub $X_t = T_t \times S_t \times E_t$ racjonalna jest analiza ilościowa wyłącznie dla E_t .
- Podstawowym wymogiem nakładanym na prognozowany szereg czasowy jest jego stacjonarność, a więc stacjonarność procesu, którego jest on instancją.

Definicje i przykłady

Proces stacjonarny

Proces nazywamy **stacjonarnym**, jeżeli dla dowolnych $t, k \in T$:

wartość oczekiwana jest stała

$$\mathbb{E}(X_t) = \mathbb{E}(X_{t+k}) = \mu$$

autokowariancja zależy jedynie od k

$$Cov(X_t, X_{t+k}) = Cov(X_1, X_{k+1}) = \gamma(k)$$

$$X_1, \ldots, X_{t-1}, \underbrace{X_t, X_{t+1}, \ldots, X_{t+k-1}, X_{t+k}}_{\mu, \gamma(k)}, X_{t+k+1}, X_{t+k+2}, \ldots$$

Definicie i przykłady

Biały szum

Proces stacjonarny $(X_t)_{t \in T}$ złożony wyłącznie ze zmiennych losowych parami nieskorelowanych nazywamy białym szumem.

Wówczas dla dowolnego $t \in T$

$$\blacktriangleright \mathbb{E}(X_t) = \mu,$$

$$\mathsf{Cov}(X_t, X_{t+k}) = \left\{ \begin{array}{ll} 1, & k = 0 \\ 0, & k \neq 0 \end{array} \right. .$$

Biały szum jest więc "nieprzewidywalny".

Model autoregresywny AR(p)

Model procesu, w którym każda zmienna losowa jest w liniowej zależności z p > 0 poprzedzającymi ją zmiennymi, nazywamy **modelem autoregresywnym** rzędu p, AR(p):

$$X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_p X_{t-p} + e_t,$$

gdzie $c = \text{const}, -1 \leq \phi_1, \phi_2, \dots, \phi_p \leq 1$, zaś e_t – biały szum.

Random walk ("spacer losowy")

Szczególny przypadek modelu AR(1) dla $c = 0, \phi_1 = 1$

$$X_t = X_{t-1} + e_t.$$

Definicje i przykłady

Częściowa autokorelacja

Rozważmy model AR(1), czyli $X_t = c + \phi_1 X_{t-1} + e_t$.

- $ightharpoonup X_t$ jest związane z X_{t-1} , więc występuje silna autokorelacja r_1 .
- X_{t-1} jest z kolei związane z X_{t-2}, więc pośrednio X_t jest związane z X_{t-2}, czyli występuje istotna autokorelacja r₂.
- **•** . . .

Problem:

Jaka jest bezpośrednia zależność pomiędzy X_t a X_{t-k} dla k>1?

Odpowiedzią jest **częściowa autokorelacja**, czyli współczynnik ϕ_k w modelu AR(k)

$$X_t = c + \phi_1 X_{t-1} + \phi_2 X_{t-2} + \ldots + \phi_k X_{t-k} + e_t,$$

Definicje i przykłady

Częściowa autokorelacja – przykład

- Notowania indeksu Dow-Jones łudząco przypominają random walk.
- Model ten jest często najbardziej adekwatny w zagadnieniach finansowych.

Model średniej kroczącej MA(q)

W praktyce, składowa e_t w stanowi **residuum**, tzn. różnicę pomiędzy teoretycznym modelem a odnotowaną obserwacją (błąd).

Model średniej kroczącej MA(q) jest kombinacją liniową residuów

$$X_t = c + e_t - \theta_1 e_{t-1} + \theta_2 e_{t-2} + \ldots + \theta_q e_{t-q},$$

gdzie $c = \text{const}, -1 \leqslant \theta_1, \theta_2, \dots, \theta_q \leqslant 1$, zaś e_t – biały szum.

Uwaga

Modelu $\mathrm{MA}(q)$ nie należy mylić ze średnią kroczącą obserwacji (np. SMA_k) wykorzystywaną do wykrywania trendu. W modelu $\mathrm{MA}(q)$ mamy do czynienia ze średnią kroczącą ciągu residuów.

Model ARIMA(p, d, q)

AR(p) i MA(q) wzajemnie się dopełniają, tworząc model ARMA(p,q)

$$X_t = c + \phi_1 X_{t-1} + \ldots + \phi_p X_{t-p} + e_t - \theta_1 e_{t-1} - \ldots - \theta_q e_{t-q}$$

- W bardzo wielu praktycznych problemach, aby usunąć niestacjonarność z szeregu czasowego, wystarczy rozważyć szereg różnic $X_t - X_{t-1}$.
- Model ARIMA(p, d, q) to model ARMA(p, q) dla szeregu czasowego poddanego d-krotnemu różnicowaniu (w celu zagwarantowania stacjonarności).

Kryterium Akaike

Modele teoretyczne

$$AIC = 2k - 2\sum_{i=0}^{N} ln(p_i),$$

gdzie k to liczba parametrów modelu, N to liczba rozpatrywanych obserwacji, zaś p_i to estymowane prawdopodobieństwo, że przy założeniach rozpatrywanego modelu i-ta obserwacja będzie miała taką wartość jaka została zarejestrowana.

Błędy dopasowania modelu

mean absolute error:

$$MAE = mean(|e_i|)$$

root mean squared error:

$$RMSE = \sqrt{mean(e_i^2)}$$

mean absolute percentage error:

$$MAPE = mean(|p_i|), \text{ where } p_i = \frac{100e_i}{y_i}$$

mean absolute scaled error:

$$extit{MASE} = extit{mean}(|q_j|), \quad ext{where } q_j = rac{e_j}{(1/(T-1)\sum_{t=2}^T |y_t-y_{t-1}|)}$$

Przykład – AR(1)

Przykład – MA(1)

Przykład - AR(2)

Simulated AR(2) series

Przykład – MA(2)

Simulated MA(2) series

Model mieszany

W przypadku mieszanym dobór parametrów ARIMA(p, d, q) nie jest natychmiastowy.

- zwykle dobór metodą empiryczną,
- podobne rezulataty mogą być osiągane dla różnych parametrów,
- na ogół wartości p, d, q ograniczają się do zbioru $\{0, 1, 2\}$,

Powszechną praktyką jest podział danych historycznych na dane treningowe ("uczace") i testowe.

- dobór parametrów na danych treningowych,
- weryfikacja skuteczności predykcji na danych testowych,
- powszechnie stosowany błąd średniokwadratowy jako miara dopasowania.

Podsumowanie

- Szereg czasowy jest realizacją pewnego procesu stochastycznego.
- Metody matematyczne dostarczają wiele modeli pozwalających opisywać szeregi czasowe występujące w praktyce.
- Stacjonarność szeregu czasowego jest podstawowym wymogiem do zbudowania skutecznego modelu predykcji.
- ARIMA(p, d, q) jest uniwersalnym modelem autoregresywnym i średniej kroczącej z opcją różnicowania (w celu usuwania niestacjonarności).

Literatura

- Box, G., E., P., Jenkins, G., M., Reinsel, G., C., Time series analysis: Forecasting and control, 1994.
- Makridakis, S., G., Wheelwright, S., C., Hyndman, R., F., Forecasting: Methods and applications, 1997.
- ► Falk, M. et al., A first course on time series analysis examples with SAS, 2011.
- ► Taylor, S., J., *Modelling financial time series*, 2008.

