Wentao Qin

May 17, 2019

Content

- Three Approach to Imitation Learning
 - Behavior Cloning
 - Inverse Reinforcement Learning
 - Generative Adversarial Imitation Learning
- Imitaion Learning in Dialogue Generation

Characteristic of Imitation Learning

- Data Driven, learn to perform a task from expert demonstrations
 - Imitate what expert(human) does: Given State s, take right action a

Context(s):

Speak 1: Long time no see

Speak 2: Yup, how are you?

Response(a):

Answer 1: I am good! 🙂

Answer 2: I don't know. •••

Answer 3: no, no, no 😥

Behavior Cloning

- Supervised Style , one way to achieve Imitation Learning
- Approach: Model that can learn a mapping from state to a good action, by optimizing a well designed object function.
 - All Supervised Method can be seen as behavior cloning
- In dialogue generation, Ses2Seq model is a popular method. By applying negtive log likelihood loss function in each decoding step, make the machine to clone/imitate human responses

The Disadvantages of Behavior Cloning

- The set of Observed states is limited. Therefore, when faced with a (totally) new state, the taken action may cause failure
 - Solution: Data aggregation, i.e., providing more traning data
- Behavior cloning treats every sample in trainging data equally, which cause problem of generic response in dialogue generation
 - Soulution: Design new architecture and new object function. Reinforcement Learning comes up.

Reinforcement Learning in Dialogue generation

[1] Deep Reinforcement Learning for Dialogue Generation, Li et al, 2016

Common loss function (log likelihood based):

$$loss = -\sum log(a|s)$$

RL loss function (with reward as weight, policy gradient style) $RLloss = -\sum r(s, a)log(a|s)$

r(s, a) is reward when taking action a under state s

In [1], the authors manually desgin reward function based on 3 aspects:

- 1. Ease of answering
- 2. New information
- Semantic Coherence

Imitation Learning using Inverse Reinforcement Learning

Reinforcement Learning has a severe problem —— It's hard to design a good reward function.

- For auto pilot, how much the reward of running through the red light, of hitting other cars. Hard to decide.
- For dialogue generation, there is no a gloden metrics to judge whether a response is good or not. The existing researchs manually design reward in certain aspects. The designed reward may let the machine work well in these ascpects, but not a general solution.

Imitation Learning using Inverse Reinforcement Learning

Inverse Reinforcemnt Learning: a second kind of imitation learning

- Based on Reinforcemnt Learning
- Key idea: learn the reward function

Inverse Reinforcement Learning

Question: How to get the reward function?

Solutions:

- 1. Maximum entropy model
- 2. Structure Perceptron

Key Assumption: for $(s,\bar{a}) \in \pi_E(Training\ data)$, $(s,a) \in \pi(Sampled\ form\ cueent\ policy)$, the reward function r(s,a) should satisfy $r(s,a) \leq r(s,\bar{a})$

Update reward fuction by minimize:

$$L = -\mathbb{E}_{(s,\bar{a})\in\pi_E}[r(s,\bar{a})] + \log(\mathbb{E}_{(s,a)\in\pi}\left[\frac{e^{r(s,a)}}{\pi(s,a)}\right])$$

For more details, see *Maximum entropy inversereinforcement learning*. AAAI 2008

- Updating the reward function and runing the standard reinforcment learning are taken alternately, util convergence
- Disadvantage: It is extremely expensive to run
 - This procedure requires reinforcement learning in every inner loop, which is slow

Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning: GAN-style

· Key idea: using the Discriminator to signal reward

Adversarial Learning for Neural Dialogue Generation

ACL 2017

Jiwei Li, Will Monroe, Tianlin Shi, Sebastien Jean, Alan Ritter and Dan Jurafsky

Dialogue Generation: From Imitation Learning to Inverse Reinforcement Learning AAAI 2019

Ziming Li, Julia Kiseleva, and Maarten de Rijke

Problem Setting

- Response $< w_1, w_2, ..., w_t >$ can be regarded as corresponding actions $< a_1, a_2, ..., a_n >$ at different steps
- Use a state function f to compress the dialogue context p and the words already generated
 - $s_1 = f(p)$
 - $s_t = f(p, a_1, a_2, ..., a_{t-1})$
- Find optimal policy $\pi(a_t|s_t)$ that selects the most appropriate word at each time step

Adversarial Imitation Learning

- 1. Discriminator:
 - A hierachical structure to compress utterances

Figure 1: Discriminator architecture in DG-AIL.

Minimize $\mathbb{E}_{\pi}[log(D(s,a))] + \mathbb{E}_{\pi_{F}}[log(1-D(s,a))]$

What SegGANs do!

Adversarial Imitation Learning

2. Generator:

- A Seq2Seq model
- At each decode step t, choose an action a_t (i.e., chooes a word w_t), then use the Discriminator to compute $D(s_t, a_t)$ as reward, then use policy gradient to update Generator's parameters
- Maximize $\mathbb{E}_{\pi} \big[\sum_t log \big(D(s_t, a_t) \big) \big]$
- Note: The discriminator is trained to assign scores for fully generated sequences, while the action a_t in intermediate steps only represents partially decoded sequences
 - Solution 1: Discriminator assigns rewards to both fully and partially decoded sequences
 - Solution 2: Use Monte Carlo search to get several full sequences, and the average score as reward

Regularation Trick — Maximum causal entropy

The causal entropy of policy π $H(\pi) = \mathbb{E}_{\pi}[-\log \pi(a|s)]$

It measures the uncertainy presented in
$$\pi$$

- In learning a probability model, among all possible models, model with max entropy is the best one.
 - · Possible model: satisfy existing data
 - Max entropy: don't make any subjective assumptions about the unseen data
- New Objective function of Generator:
- Maximize $\lambda H(\pi) + \mathbb{E}_{\pi} \left[\sum_{t} log(D(s_{t}, a_{t})) \right]$

Maximum entropy Inverse reinforcement learning

- 1. Reward function model:
 - A hierachical structure to compress state and action, and then a MLP layer is used to get a scalar as reward

Figure 2: Reward model architecture in DG-AIRL.

$$\mathsf{Minimize} - \mathbb{E}_{(s,\bar{a}) \in \pi_E}[r(s,\bar{a})] + \log(\mathbb{E}_{(s,a) \in \pi}\left[\frac{e^{r(s,a)}}{\pi(s,a)}\right])$$

Maximum entropy Inverse reinforcement learning

- 2. Dialogue response policy:
 - · Same with previous practice
 - Difference lies in use the reward function model to get reward
 - Maximize $\lambda H(\pi) + \mathbb{E}_{\pi} \left[\sum_{t} log(r(s_{t}, a_{t})) \right]$

- Dataset: MovieTripe dataset
 - Train:valid:test = 157000:19000:19000
 - Vocablary size = 20k
 - Embedding size = 200
- Baseline
 - Seq2Seq+Attention
 - VHERD
 - SeqGan
 - DG-AIL
 - SeqGAN with maximum causal entropy
 - DG-AIRL

- Existing Automatic Evaluation metrics
 - BLEU
 - Embedding metrics
 - Average embedding
 - Greedy embedding
 - Extrema embedding
 - Distinct
- Chosen evaluation metric: Embedding metrics
 - Why not BLEU: Word-overlap metrics such as BLEU correlate very weekly with reply quality judgements from human annotators
 - Why not Distinct: The authors found that the Distinct result is not aligned with the results besed on human evaluations

Embedding metrics

Model	Average	Greedy	Extrema	Length
Seq2Seq	0.563 ± 0.003	0.167 ± 0.001	0.352 ± 0.002	8.8
SeqGan	0.564 ± 0.003	0.165 ± 0.001	0.354 ± 0.002	9.7
VHRED	0.507 ± 0.003	0.145 ± 0.001	0.309 ± 0.002	12.0
DG-AIL	0.553 ± 0.003	$0.171^* \pm 0.001$	0.356 ± 0.002	7.7
DG-AIRL	$0.589* \pm 0.003$	0.169 ± 0.001	$0.368* \pm 0.002$	10

Table 1: Performance in terms of embedding metrics of response generation models, with 95% confidence intervals. * indicates the result is statistically significant (p < 0.005) with a paired t-test over DG-AIRL and other baseline models.

- Human evaluations
 - Pairwise evaluation: given two models' result, ask human which is better based on the following aspects, tie is allowed
 - (Top priority) is relevent?
 - Is natural?
 - Is interesting?
 - Is proactive, i.e., can make conversation continue?
 - Is the only possible reply to the given context?

Model pair	Win	Tie	Loss
DG-AIRL-Seq2Seq	0.44	0.29	0.27
DG-AIRL-VHRED	0.46	0.32	0.22
DG-AIRL-SeqGan	0.47	0.25	0.28
DG-AIRL-DG-AIL	0.36	0.37	0.27

Table 2: Performance in terms of pairwise human annotations of response generation models.

- Human evaluations
 - Pointwise evaluation: ask human to score response among 0, +1,
 +2
 - +2 (a) relevent, natrual, informative, interesting;
 - (b) natural, make the conversation continue
 - (c) the only possible reply to the context
 - +1 can be used as a reply to the context, but is too generic like "I don't know", which usually is reactive
 - o cannot be a reply to the context. Either semantically irrelevant or disfluent

Ponitwise evaluation

Model	Freq of +2	Freq of +1	Freq of 0	Avg Score
Seq2Seq	0.09	0.22	0.69	0.40
SeqGan	0.09	0.21	0.70	0.39
VHRED	0.12	0.25	0.63	0.49
DG-AIL	0.12	0.29	0.59	0.53
DG-AIRL	0.13	0.28	0.59	0.54

Table 3: Performance in terms of pointwise human evaluations of response generation models. "Freq of N" is the relative frequency of a model's responses with a score of N.

Some thinking and Q&A

- Why reinforcemnt learning?
- Why Imitation learning, like inverse reinforcement learning, for adversarial learning?
- What these learning methods actually do?

"The seemingly simple reward function can guide a complex (maybe powerful) strategy."

Reference & Extra reading

- [1] Deep Reinforcement Learning for Dialogue Generation, Li et al, 2016
- [2] Dialogue Generation: From Imitation Learning to Inverse Reinforcement Learning, AAAI, 2019 (IM+DG)
- [3] Adversarial Learning for Neural Dialogue Generation (SeqGan+DG)
- [4] Generative Adversarial Imitation Learning, OpenAI, 2016
- [5] Imitation Learning with Recurrent Neural Networkss

Thanks for listening!