WE CLAIM:

- 1. A method of protecting an Open Shortest Path First (OSPF) network against network failures affecting traffic flow between an interior router (IR) and a predetermined primary area border router (ABR) using a back-up link between the IR and a predetermined alternate ABR, the method comprising steps of:
 - maintaining the back-up link in a dormant state during normal operations of the network, such that no traffic is forwarded to the back-up link during normal operations of the network; and
 - activating the back-up link in response to a network failure affecting communications between the IP and the primary ABR, such that traffic can be routed between the IR and the alternate ABR through the back-up link.
- 2. A method as claimed in claim 1, wherein the step of maintaining the back-up link in a dormant state comprises steps of:
 - assigning a backup interface type attribute to the back-up link; and
 - controlling each of the IR and the alternate ABR such that:
 - information respecting the back-up link is not advertised to adjacent routers; and
 - the back-up link is not identified as a valid route in respective forwarding tables of each of the IR and the alternate ABR.

- 3. A method as claimed in claim 1, wherein the step of activating the back-up link comprises steps of:
 - detecting the network failure affecting communications between the IP and the primary ABR;
 - promoting the back-up link to an active status; and advertising the back-up link as a valid route.
- 4. A method as claimed in claim 3, wherein the network failure is detected by the IR.
- 5. A method as claimed in claim 4, wherein the step of promoting the back-up link to an active status is initiated by the IR.
- 6. A method as claimed in claim 3, wherein the step of detecting the network failure comprises steps of:
 - detecting a loss of communications between the IR and the primary ABR;
 - monitoring a link between the IR and the primary ABR for a predetermined period, to detect recovery of communications; and
 - declaring a link failure if recovery of communications between the IR and the primary ABR is not detected within the predetermined period.
- 7. A method as claimed in claim 3, wherein the step of promoting the back-up link comprises a step of negotiating an adjacency relationship between the IR and the alternate ABR.

- 8. A method as claimed in claim 1, further comprising a step of deactivating the back-up link in response to a network recovery affecting communications between the IP and the primary ABR, such that traffic flow through the back-up link between the IR and the alternate ABR is terminated.
- 9. A method as claimed in claim 8, wherein the step of deactivating the back-up link comprises steps of: detecting the network recovery; and demoting the back-up link to an inactive status.
- 10. A method as claimed in claim 9, wherein the network recovery is detected by the IR.
- 11. A method as claimed in claim 10, wherein the step of deactivating the back-up link to an inactive status is initiated by the IR.
- 12. A method as claimed in claim 9, wherein the step of detecting the network recovery comprises steps of:

 detecting a recovery of communications between the IR
 - and the primary ABR;
 - monitoring a link between the IR and the primary ABR for a predetermined period, to detect loss of communications; and
 - declaring a link recovery if loss of communications between the IR and the primary ABR is not detected within the predetermined period.
- 13. A method as claimed in claim 9, wherein the step of demoting the back-up link comprises a step of

terminating an adjacency relationship between the IR and the alternate ABR.

- 14. A router adapted for protecting an Open Shortest Path (OSPF) network against network failures affecting communications with а predetermined adjacent router using а back-up link to predetermined alternate router, the router comprising:
 - means for maintaining the back-up link in a dormant state during normal operations of the network, such that no traffic is forwarded to the back-up link during normal operations of the network; and
 - means for activating the back-up link in response to a network failure affecting communications with the primary router, such that traffic can be routed through the back-up link.
- 15. A router as claimed in claim 14, wherein the back-up link is provisioned with a back-up interface type attribute.
- 16. A router as claimed in claim 15, wherein the means for maintaining the back-up link in a dormant state comprises means responsive to the assigned backup interface type attribute for controlling the router such that:
 - information respecting the back-up link is not advertised to adjacent routers; and
 - the back-up link is not identified as a valid route in a respective forwarding table of the router.

- 17. A router as claimed in claim 14, wherein the means for activating the back-up link comprises:
 - means for detecting the network failure affecting communications with the primary adjacent router;
 - means for promoting the back-up link to an active status; and
 - means for advertising the back-up link as a valid route.
- 18. A router as claimed in claim 17, wherein the means for detecting the network failure comprises:
 - means for detecting a loss of communications with the primary adjacent router;
 - means for monitoring a link to the primary adjacent router for a predetermined period, to detect recovery of communications; and
 - means for declaring a link failure if recovery of communications with the primary adjacent router is not detected within the predetermined period.
- 19. A router as claimed in claim 17, wherein the means for promoting the back-up link comprises means for negotiating an adjacency relationship with the alternate router.
- 20. A router as claimed in claim 14, further comprising means for deactivating the back-up link in response to a network recovery affecting communications with the primary adjacent router, such that traffic flow with the alternate router through the back-up link is terminated.

- 21. A router as claimed in claim 20, wherein the means for deactivating the back-up link comprises:
 - means for detecting the network recovery; and
 - means for demoting the back-up link to an inactive status.
- 22. A router as claimed in claim 21, wherein the means for detecting the network recovery comprises:
 - means for detecting a recovery of communications with the primary adjacent router;
 - means for monitoring a link to the primary adjacent router for a predetermined period, to detect loss of communications; and
 - means for declaring a link recovery if loss of communications with the primary adjacent router is not detected within the predetermined period.
- 23. A router as claimed in claim 21, wherein the means for demoting the back-up link comprises means for terminating an adjacency relationship with the alternate adjacent router.
- 24. A software program adapted to control a router of an Open Shortest Path First (OSPF) network to protect against network failures affecting communications with a predetermined primary adjacent router using a back-up link to a predetermined alternate router, the software program comprising:
 - software adapted to control the router to maintain the back-up link in a dormant state during normal operations of the network, such that no traffic

- is forwarded to the back-up link during normal operations of the network; and
- software adapted to control the router to activate the back-up link in response to a network failure affecting communications with the primary router, such that traffic can be routed through the back-up link.
- 25. A software program as claimed in claim 24, wherein the back-up link is provisioned with a back-up interface type attribute.
- 26. A software program as claimed in claim 25, wherein the software adapted to control the router to maintain the back-up link in a dormant state comprises software responsive to the assigned backup interface type attribute for controlling the router such that:
 - information respecting the back-up link is not advertised to adjacent routers; and
 - the back-up link is not identified as a valid route in a respective forwarding table of the router.
- 27. A software program as claimed in claim 24, wherein the software adapted to control the router to activate the back-up link comprises:
 - software adapted to control the router to detect the network failure affecting communications with the primary adjacent router;
 - software adapted to control the router to promote the back-up link to an active status; and

- software adapted to control the router to advertise the back-up link as a valid route.
- 28. A software program as claimed in claim 27, wherein the software adapted to control the router to detect the network failure comprises:
 - software adapted to control the router to detect a loss of communications with the primary adjacent router;
 - software adapted to control the router to monitor a link to the primary adjacent router for a predetermined period, to detect recovery of communications; and
 - software adapted to control the router to declare a link failure if recovery of communications with the primary adjacent router is not detected within the predetermined period.
- 29. A software program as claimed in claim 27, wherein the software adapted to control the router to promote the back-up link comprises:
 - software adapted to control the router to negotiate an adjacency relationship with the alternate router; and
 - software adapted to control the router to update a respective forwarding table of the router to identify the back-up link as a valid route.
- 30. A software program as claimed in claim 24, further comprising software adapted to control the router to deactivate the back-up link in response to a network recovery affecting communications with the primary

adjacent router, such that traffic flow with the alternate router through the back-up link is terminated.

- 31. A software program as claimed in claim 30, wherein the software adapted to control the router to deactivate the back-up link comprises:
 - software adapted to control the router to detect the network recovery; and
 - software adapted to control the router to demote the back-up link to an inactive status.
- 32. A software program as claimed in claim 31, wherein the software adapted to control the router to detect the network recovery comprises:
 - software adapted to control the router to detect a recovery of communications with the primary adjacent router;
 - software adapted to control the router to monitor a link to the primary adjacent router for a predetermined period, to detect loss of communications; and
 - software adapted to control the router to declare a link recovery if loss of communications with the primary adjacent router is not detected within the predetermined period.
- 33. A software program as claimed in claim 31, wherein the software adapted to control the router to demote the back-up link comprises:

grad grad to the state of the first transfer of the state of the state

- software adapted to control the router to terminate an adjacency relationship with the alternate adjacent router; and
- software adapted to control the router to update a respective forwarding table of the router to reflect an inactive status the back-up link.