# 清华大学本科生考试试题专用纸

考试课程 **2010 级多元微积分期末考题(A)** 系名\_\_\_\_\_\_ 班级\_\_\_\_\_\_ 姓名\_\_\_\_\_\_ ,

- 填空题(每空3分,共15空)(请将答案直接填写在横线上!)
- 1.  $\lim_{y \to 0^+} \int_0^1 \frac{dx}{(1+xy)^{1/y}} = \underline{\hspace{1cm}}_{\circ}$
- 3. 设D平面上以原点为圆心的闭单位圆盘,则二重积分  $\iint_{\Sigma} y \sin(x^4 + y^4) dx dy = ______$ 。
- 由六个平面 $3x-y-z=\pm 1$ ,  $x+3y-z=\pm 1$ ,  $-x-y+3z=\pm 1$ 的所围立体体积
- 5. 设曲线 L 的参数方程为  $x=1-\sin t$ ,  $y=1-\cos t$ ,  $0 \le t \le 2\pi$ , 则第一类曲线积分  $\int \frac{y^2}{(x-1)^2 + (y-1)^2} dl = \underline{\hspace{1cm}}$
- 6.  $\int_{t^+} y dx x dy = _____,$  其中  $L^+$  为曲线  $y = x^2 1$  从 A(0,-1) 到 B(1,0) 。
- 7. 积分  $\iint_S (xy + yz + zx + 1)dS =$ \_\_\_\_\_\_\_,其中 S 为锥面  $z = \sqrt{x^2 + y^2}$  被柱面  $x^2 + v^2 = 2$  所截得的有限部分。
- 8. 柱面  $x^2 + y^2 = 1$ 介于曲面  $z = 1 + x^2$ 与平面 z = 0之间的面积为
- 9. 设 $S^+$ 为圆柱面 $\{(x, y, z) | x^2 + y^2 = 1, 0 \le z \le 2\}$ 的外侧,则第二类曲面积分  $\iint_{\mathbb{R}} e^{x+y} dx \wedge dy + (y-z) dy \wedge dz = \underline{\qquad}$
- 11.  $f(x, y, z) = \sin(x + y + z)$ ,  $y = \sin(x + y + z)$

13. 设  $du = y\cos(xy)dx + x\cos(xy)dy + \sin zdz$ ,则 u(x, y, z) =\_\_\_\_\_\_。

14. 设  $y = x^2 e^{2x}$  为三阶**常系数**线性齐次常微分方程的一个解,则该微分方程的通解为

二. 计算题

- 1. (8分)设L为椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ ,其周长为a,计算 $\int_{L} (3x + 2y + 1)^2 dl$ 。
- 2. (10 分) 求积分  $\iint_{S^+} \frac{x dy \wedge dz + (z+1)^2 dx \wedge dy}{(x^2 + y^2 + z^2)^{\frac{1}{2}}}, \quad S^+$ 为下半球面  $z = -\sqrt{1 x^2 y^2}$ 的下侧。
- 3. (10 分) 计算积分  $\iint_{\Omega} \sqrt{x^2 + y^2 + z^2} dx dy dz$ ,  $\Omega = \{(x, y, z) | \sqrt{x^2 + y^2} \le z \le \sqrt{1 x^2 y^2} \}$ 。
- 4. (12 分)设 f(x) 二阶可导,f(1) = 0,f'(1) = 0,并设在右半平面(x > 0),第二类曲线积分  $\int_{L(A)}^{(B)} \left(\frac{9}{x^2} 2f(x)\right) y dx \left(x^2 f'(x) + \sin y\right) dy$  与路径无关,求 f(x) 。

#### 三. 证明题

- 1. (7分)设 f 为连续函数,证明:  $\int_0^1 dx \int_0^x dy \int_0^y f(z) dz = \frac{1}{2} \int_0^1 (1-z)^2 f(z) dz$ .
- 2. (8 分) 设 $D \subset R^2$ 为单连通有界闭区域,其边界 $\partial D$ 逐段光滑,逆时针为正方向,**n**为边界的外法向量,二阶连续可微函数u(x,y)为D内的调和函数,即  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \equiv 0, (x,y) \in D, \mathbf{r}_0 \to D$ 内任意一点, $\mathbf{r}$ 为 $\mathbf{r}_0$ 到 $\partial D$ 上点的向量, $\mathbf{r} = \|\mathbf{r}\|$ 。证明:

(1) 
$$u(\mathbf{r}_0) = \frac{1}{2\pi} \int_{\partial D} \left( u \frac{\cos \langle \mathbf{r}, \mathbf{n} \rangle}{r} - \ln r \frac{\partial u}{\partial \mathbf{n}} \right) dl;$$

(2) 如果 $L_R$ 为以 $\mathbf{r}_0$ 为圆心,R为半径的圆,则  $u(\mathbf{r}_0) = \frac{1}{2\pi R} \int_{L_0} u(x,y) dl$ 。

#### 清华大学本科生考试试题专用纸

微积分Ⅲ期终考试 A 卷

2006年1 月8日

- 一、填空题(每空题3分,共39分)
- 1. 曲面  $x^2 + y^2 z = 1$  在点 (-1, -1, 1) 的切平面方程是
- 2. 设 f 为连续可微函数, f'(1) = 2. 令  $g(x, y, z) = f(x^2yz)$ ,则  $\nabla g(1,1,1) = ...$
- 3. 设S 为球面 $x^2 + y^2 + z^2 = 4$  上的不与坐标轴相交的一片,则S 上的点(x, y, z) 的外侧单位 法向量是\_\_\_\_\_; 如果S 的面积等于A,则

$$\iint_{S} \frac{\mathrm{d}y \wedge \mathrm{d}z}{x} + \frac{\mathrm{d}z \wedge \mathrm{d}x}{y} + \frac{\mathrm{d}x \wedge \mathrm{d}y}{z} = .$$

- 4. 常微分方程 y'' 2y' + 5y = 0 的通解为
- 5. 设常微分方程  $y'' + \cos x \cdot y' + \sin x \cdot y = \sin 2x$  有三个线性无关解  $y_1(x)$ ,  $y_2(x)$  和  $y_3(x)$ . 则 微分方程  $y'' + \cos x \cdot y' + \sin x \cdot y = 0$  的通解是
- 6. 假设函数 y(t) 满足方程  $y'' + y' + y = 1 + \cos t$ . 则  $\lim_{t \to +\infty} \frac{y(t)}{t} =$ \_\_\_。
- 7. 设空间光滑曲面 S 的方程为 z=f(x,y) ,  $x^2+y^2\leq 2$  ,上侧为正. 其中函数 f(x,y) 有连续的偏导数. 则  $\iint_S (x^2+y^2) \mathrm{d}x \wedge \mathrm{d}y = \mathbf{0}$
- 8. 设 $\Omega = \{(x,y,z) | \sqrt{x^2 + y^2} \le z \le \sqrt{1 x^2 y^2} \}$ ,则三重积分 $\iint_{\Omega} f(x,y,z) dx dy dz$  可以化成球坐标系下的累次积分
- 9. D是由曲线  $y = \ln x$ 、直线 x = e,以及 x 轴围成的平面区域,则  $\iint_D x dx dy = .$
- 10. 锥面  $z = \sqrt{x^2 + y^2}$  含在柱面  $(x 2007)^2 + (y + 2008)^2 = 4$  内部的面积等于。
- 11. 设 L 为曲线  $x^2 + y^2 = 2x$   $(y \ge 0)$ , 则  $\int_L \sqrt{2-x} dl = ...$
- 二、解答题
- 12. (8分)  $\Omega$  是锥面  $x^2 + y^2 = z^2$  与平面 z = 2 围成的空间区域、计算  $\iiint_{\Omega} (2x 3y + z) dx dy dz.$
- 13. (10分)设S是抛物 $z = \frac{1}{2}(x^2 + y^2)$ ,  $0 \le z \le 1$ . 在S 任意点一点(x, y, z) 的质量密度为

 $\sqrt{1+x^2+y^2}$ . 求S的质心.

14. (10 分)如图,L是有向光滑曲线,起点为原点O,终点为A(2,2). 已知L与线段 $\overrightarrow{OA}$  围成的区域D的面积等于A. f(t)有连续导数. 计算曲线积分

$$\int_{I} (y^{2}e^{x} - 2y)dx + (2ye^{x} - 4x)dy$$

15. (8 分)设 L 为平面 S: x+y+z=1 在第一卦限中的部分的边界,方向是  $A(1,0,0) \to B(0,1,0) \to C(0,0,1) \to A(1,0,0)$ . 空间有一个力场

$$\vec{F}(x, y, z) = y\vec{i} - 2z\vec{j} + 6x\vec{k}$$
.

求单位质点P在L上某点出发,绕L运动一周时, $\vec{F}$ 对于质点所做的功.

- 16. (10 分)设 f(x) 在  $(-\infty, +\infty)$  上有二阶连续导数且 f(0) = f'(0) = 1. 又设对于空间  $R^3$  中的任意一张光滑的闭合曲面 S ,都有  $\iint_S f'(x) dy \wedge dz + y f(x) dz \wedge dx 2z e^x dx \wedge dy = 0$  ,求 f(x) . 17. (12 分)
- ① 设  $\delta$  是任意一个正数, L 是圆周  $x^2 + y^2 = \delta^2$  (逆时针方向). 计算积分

$$\oint_L \frac{(x+y)dx + (y-x)dy}{x^2 + y^2}$$

- ② 如果将 L 换成不经过原点但环绕原点的光滑、简单的闭合曲线(逆时针方向). 计算上述积分.
- ③ 向量场  $\frac{(x+y)i-(x-y)j}{x^2+y^2}$  在右半平面 x>0 有没有势函数?简述理由.
- ④ 设L为从A(2,0)到B(4,4)的有向线段,计算

$$\int_{L} \frac{(x+y)\mathrm{d}x + (y-x)\mathrm{d}y}{x^2 + y^2}.$$

18. (6分) 设 $\Omega$  是圆域:  $x^2 + y^2 < 1$ . f(x, y) 在 $\Omega$  上有连续偏导数, 且处处满足方程

$$x\frac{\partial f(x,y)}{\partial x} + y\frac{\partial f(x,y)}{\partial y} = 0.$$

求证 f(x,y) 在  $\Omega$  恒等于常数. 如果  $\Omega$  是不包含原点的圆域,举例说明上述结论未必正确.

# 微积分 A(2) 期末考题(A)

## 一. 填空题(每空3分,共15空)(请将答案直接填写在横线上!)

2. 设曲线 L 的参数方程为  $x=1-\sin t$  ,  $y=1-\sqrt{2}\cos t$  ,  $0 \le t \le 2\pi$  ,则第一类曲线积分  $\int_{t}^{t} \sqrt{x^2-2x+2} \ dl = \underline{\hspace{1cm}}$ 。

3. 设 S 为单位球面  $x^2 + y^2 + z^2 = 1$ ,则  $\iint_S (x+1)^2 dS =$ \_\_\_\_\_\_\_。

4.  $\vec{V}(x, y, z) = (x + y + z, xy + yz + zx, xyz)$ ,  $\emptyset \text{div} \vec{V} = \underline{\hspace{1cm}}$ 

5.  $f(x, y, z) = e^{x+y+z}$ , 则 grad  $f = _____$ , rot(grad f) = \_\_\_\_\_\_。

6. 设 函 数  $f(x) = x^2 + x + 2$  在 区 间 [0,2) 上 的 Fourier 展 开 为  $S(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} [a_n \cos(n\pi x) + b_n \sin(n\pi x)]$ ,则  $S(0) = \underline{\hspace{1cm}}$ 。

7. 三重积分  $\iiint_{x^2+y^2+z^2\leq 1} x^{99} y^{100} z^{101} dx dy dz = \underline{\hspace{1cm}}.$ 

8. 级数  $\sum_{n=1}^{+\infty} \frac{2^n}{(n+1)!}$  的和为\_\_\_\_\_\_\_。

- 12. 函数  $f(x) = \int_0^x \frac{\sin t}{t} dt$  在  $x_0 = 0$  点的幂级数展开为\_\_\_\_\_\_
- 13. 设幂级数  $\sum_{n=1}^{\infty} \frac{(x-a)^n}{n}$  在 x=3 处收敛, 且当 x<3 时发散, 则 a=\_\_\_\_\_\_。
- 14. 设  $D = \{ (x, y) | 0 \le x \le 1, x^2 \le y \le 1 \}$ , 则 D 的形心横坐标  $\overline{x} = \underline{\hspace{1cm}}$
- 二. 计算题 (每题 10 分, 共 40 分)
- 1. 设 $S^+$ 为锥面 $z = \sqrt{x^2 + y^2}$   $(0 \le z \le 1)$ 的下侧,求 $\iint_{S^+} (x + y) dy \wedge dz + (2y z) dz \wedge dx$ 。
- 2. 求两个球体  $x^2 + y^2 + z^2 \le 1$ 、  $x^2 + y^2 + (z-2)^2 \le 4$  相交部分的体积。
- 3. 设 $f(x) = \sin^2(x^2)$ ,
  - (I) 求 f(x) 在  $x_0 = 0$  点的幂级数展开;
  - (II)  $\dot{x} f^{(n)}(0), n = 1, 2, 3, \dots$
- 三. 证明题
- 1. (8分)(I)  $2\pi$  为周期的函数 f(x) 在 $[-\pi,\pi]$ 上的定义为  $f(x) = \cos \alpha x$  ( $\alpha$  不是整数),将其展成 Fourier 级数(提示:  $\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$ );

(II) 利用 (I) 证明: 
$$\cot x = \frac{1}{x} + \sum_{n=1}^{+\infty} \frac{2x}{x^2 - n^2 \pi^2}, \quad x \neq k\pi, k = 0, \pm 1, \pm 2, \cdots$$

2. (7 分) 设函数 P(x,y),  $Q(x,y) \in C^{(1)}(\mathbb{R}^2)$ , 在以任意点 $(x_0,y_0)$ 为中心,任意正数r为 半径的上半圆周 $\Gamma$ 上的第二类曲线积分



$$\int_{\Gamma} P(x, y) dx + Q(x, y) dy = 0$$
。 求证: 在  $\mathbb{R}^2$  上有

 $P(x, y) \equiv 0, \frac{\partial Q}{\partial x}(x, y) \equiv 0$ .

(提示:用Green 公式)

## 2006 级多元微积分期末考题(A)

2007.6.28

一、填空题(每空3分,共15空)

2. 设函数 f(x,y) 在  $\Re^2$  上连续, 交换累次积分顺序

$$\int_{-1}^{2} dy \int_{y^{2}}^{y+2} f(x, y) dx = \underline{\hspace{1cm}}$$

3. 设函数 f(x,y) 在  $\Re^2$  上连续,将直角坐标系下的累次积分化为极坐标系下的累次积分:

$$\int_{0}^{\frac{R}{2}} dx \int_{0}^{\sqrt{3}x} f(x, y) dy + \int_{\frac{R}{2}}^{R} dx \int_{0}^{\sqrt{R^{2} - x^{2}}} f(x, y) dy = \underline{\qquad}$$

4. 锥面  $z = \sqrt{x^2 + y^2}$  被柱面  $(x - 2007)^2 + (y + 2008)^2 = 4$ 所截的面积等于\_\_\_\_\_

5. 
$$\int_{t^+} \frac{xdy - ydx}{x^2 + y^2} = ______,$$
其中  $L^+ : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ,逆时针为正

6. 已知 S 为球面 
$$x^2 + y^2 + z^2 = a^2$$
,则  $\iint_S x^2 dS =$ \_\_\_\_\_\_

7. 设 L 为曲线 
$$x^2 + y^2 = 2x(y \ge 0)$$
, 则  $\int_L \sqrt{2-x} dl =$ \_\_\_\_\_\_

8. 设 S 为球面  $x^2 + y^2 + z^2 = 4$  外侧的一部分,不与坐标面相交,则 S 上的点 (x, y, z) 的外测单位法向量是\_\_\_\_\_\_\_;如果 S 的面积等于 A,则

$$\iint_{S} \frac{dy \wedge dz}{x} + \frac{dz \wedge dx}{y} + \frac{dx \wedge dy}{z} = \underline{\hspace{1cm}}$$

9. 如果平面向量场  $\frac{x}{y}(x^2+y^2)^{\lambda}i-\frac{x^2}{y^2}(x^2+y^2)^{\lambda}j$  为半平面 y>0 的保守场, 那么  $\lambda=$ \_\_\_\_\_

10. 设 
$$A(x, y, z) = xyi + e^{yz}j + \sin(zx)k$$
, 则  $divA(x, y, z) =$ \_\_\_\_\_\_

11. 设常微分方程  $y'' + (\cos x)y' + (\sin x)y = \sin 2x$  有三个线性无关解  $y_1(x), y_2(x), y_3(x)$ ,

12. 一阶常微分方程组 
$$\begin{cases} \frac{dx}{dt} = x + 2y \\ \frac{dy}{dt} = -x + 4y \end{cases}$$
 的通解为\_\_\_\_\_

13. 全微分方程 
$$(x+2y)dx+(2x-y)dy=0$$
 的通解为\_\_\_\_\_\_

14. 设
$$\Omega$$
是由锥面  $z = \sqrt{x^2 + y^2}$  与平面  $z = h$  所围的闭区域,这里  $h > 0$  ,则三重积分

$$\iiint_{\Omega} z dx dy dz = \underline{\hspace{1cm}}$$

二、计算题(每题10分,共40分)

1. 计算二重积分 
$$\iint_{D} |x-y^2| dxdy$$
, 其中  $D = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}$ 。

2. 
$$\exists$$
  $\exists \lim_{0}^{+\infty} \frac{\ln x}{1+x^2} dx = 0$ ,  $\vec{x} \int_{0}^{+\infty} \frac{\ln(x^2+a^2)}{1+x^2} dx$  的值  $(0 \le a < 1)$  .

(不必讨论广义含参积分的一致收敛性)

3. 计算第二类曲面积分 
$$\iint_{S^+} (2y+z)dz \wedge dx + zdx \wedge dy$$
, 其中  $S^+$  为有向曲面

 $z = x^2 + y^2$ ,  $(0 \le z < 1)$ , 法向量与 z 轴正向夹角为锐角。

4. 设二阶连续可微函数 
$$f(x)$$
 满足  $f(1) = -2$ ,  $f'(1) = 1$ ,若对于右半平面  $\{(x,y) | x > 0\}$  内任意简单光滑曲线 L 恒有  $\oint_L 2yf(x)dx + x^2f'(x)dy = 0$ , 求  $f(x)$ 

三、证明题

1. (8分) 考虑二阶线性方程 
$$\frac{d^2x}{dt^2} + 8\frac{dx}{dt} + 7x = f(t)$$
, 其中  $f(t) \in C(-\infty, +\infty)$  且满足  $\lim_{t \to +\infty} f(t) = 0$ 。

(i) 求该方程的通解 (可用常数变易法); (ii) 证明该方程的每个解 x(t) 满足  $\lim_{t\to +\infty} x(t) = 0$ 。

2. (7 分) 设函数 
$$f(x,y) \in C^2(\mathbb{R}^2)$$
,且满足  $f'''_{xx}(x,y) + f'''_{yy}(x,y) = e^{-(x^2+y^2)}$ , $\forall (x,y) \in \mathbb{R}^2$ 

证明: (i) 
$$\oint_{\Gamma_r} \frac{\partial y}{\partial \mathbf{n}} dl = \pi (1 - e^{-r^2})$$
, 其中  $\Gamma$  为圆周:  $x^2 + y^2 = r^2$ , 逆时针为正向,  $\mathbf{n}$  为  $\Gamma_r$  的

外法向量, r > 0;

(ii) 
$$\iint_{|x^2+y^2| < 1} \left[ x f_x'(x,y) + f_y'(x,y) \right] dx dy = \frac{\pi}{2e}$$

考试课程

## 多元微积分期末考题

- 1. 设b > a > 0,积分 $\int_0^{+\infty} \frac{e^{-ax} e^{-bx}}{x} dx =$ \_\_\_\_\_\_
- 2. 设函数 f(x,y) 在  $\Re^2$  上连续, 交换累次积分的顺序  $\int_{0}^{1} dy \int_{-\sqrt{1-y}}^{\sqrt{1-y}} f(x, y) dx = _{-}$
- 3.  $\mbox{if } D = \{(x,y) \in \Re^2 | x^2 + y^2 \le 2x \}, \ \ \mbox{if } \int \int \left( y + \sqrt{x^2 + y^2} \right) dx dy = \underline{\hspace{1cm}}_{\circ}$
- 4. 设  $\Omega$  是 锥 面  $z = \sqrt{x^2 + y^2}$  和 球 面  $x^2 + y^2 + z^2 = R^2$  所 围 成 的 区 域 , 积 分  $\iiint (x^2 + y^2 + z^2) dx dy dz = \underline{\qquad}$
- 5. 圆柱面  $x^2 + y^2 = 2x$  被曲面  $z = x^2 + y^2$  及平面 z = 0 所截部分的面积为\_\_\_\_\_\_。
- 6. 设 A(1,0,0),  $B(1,0,2\pi)$  为曲线  $L: x = \cos t$ ,  $y = \sin t$ , z = t 上两点,则第二类曲线积分  $\int_{L(A)}^{(B)} y dx + x dz = \underline{\hspace{1cm}}$
- 7. 设第二类曲线积分  $\int_{L^+} (1+x^k e^{2y}) dx + (x^2 e^{2y} y^2) dy$  与积分路径无关,则
- 8. 微分方程  $e^y dx + (xe^y 2y)dy = 0$  的通解为\_\_\_\_\_\_
- 9. 设 S 为球面  $x^2 + y^2 + z^2 = a^2$ ,则  $\iint_S \frac{x + y + z}{x^2 + y^2 + z^2} dS =$ \_\_\_\_\_\_
- 10. 设S为 $R^3$ 中的闭圆域:  $x^2 + y^2 \le 1$ , z = 0, 规定S的正法向量向下, 则第二类曲面
- 11. 曲面S是中心在原点,半径为a的球面,正方向为外法向量方向,则第二类曲面积分  $\iint x dy \wedge dz + y dz \wedge dx + z dx \wedge dy = \underline{\hspace{1cm}}_{\circ}$
- 12. 设  $\mathbf{A}(x, y, z) = x\mathbf{i} + e^{y}\mathbf{j} + (xyz)\mathbf{k}$  , 则 rot  $\mathbf{A}(x, y, z) =$

13. 三阶常系数齐次线性常微分方程有两个解为  $xe^{x}, e^{-x}$ ,则该常微分方程的通解为

- 15. 微分方程  $x^2y'' + 2xy' 2y = 0$  的通解为 \_\_\_\_
- 二. 计算题 (每题 10 分, 共 40 分)
- 1. 设 $\Omega$  是由曲面  $z = x^2 + y^2$  和  $z = 2 x^2 y^2$  包围的空间区域,求 $\iiint_{\Omega} (x^2 + y^2) dx dy dz$ 。
- 2. 计算积分  $\oint_{L^+} (y-z)dx + (z-x)dy + (x-y)dz$  , 其中  $L^+$  是柱面  $x^2 + y^2 = R^2$  与平面  $\frac{x}{a} + \frac{z}{b} = 1$ 的交线 (a>0,b>0) ,其正向从 Oz 轴向下看为逆时针方向。
- 3. 设 $S^+$ 为椭球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ , 内侧为正,求  $\iint_{S^+} \frac{(x,y,z)}{(x^2+y^2+z^2)^{\frac{3}{2}}} \cdot d\mathbf{S}$ 。
- 4. 假设函数  $\varphi(x)$ ,  $\psi(x)$  连续可导,且满足  $\varphi(0) = -2$ ,  $\psi(0) = 1$ ,对平面上任意一条分段光滑的曲线 L,第二类曲线积分

$$I = \int_{L} 2(x\varphi(y) + \psi(y))dx + (x^{2}\psi(y) + 2xy^{2} - 2x\varphi(y))dy$$

与路径无关,求 $\varphi(x), \psi(x)$ 。

### 三.证明题

- 1. (7分)设 f(x) 在闭区间[0,1]上连续,证明  $2\int_0^1 f(x)dx \int_x^1 f(y)dy = \left(\int_0^1 f(x)dx\right)^2$ 。
- 2. (8 分)设 $\Omega$ 为 $\Re^3$ 中的有界闭区域,其边界面 $\partial\Omega$ 为光滑闭曲面,函数u(x,y,z),v(x,y,z)在 $\Omega$ 上二阶连续可微,
- (I)证明:

$$\iint_{\partial\Omega} v \frac{\partial u}{\partial \vec{n}} dS = \iiint_{\Omega} v \left( \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) dx dy dz + \iiint_{\Omega} \left( \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z} \frac{\partial v}{\partial z} \right) dx dy dz$$
  
其中  $\vec{n}$  为  $\partial\Omega$  的外法线方向:

(II) 若u(x,y,z)为调和函数,即 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$ ,  $\forall (x,y,z) \in \Omega$ ,且 $u(x,y,z) \Big|_{\partial\Omega} = 0$ ,即函数u 在边界面 $\partial\Omega$ 上取值为0,证明:  $u(x,y,z) \equiv 0$ , $\forall (x,y,z) \in \Omega$ 。