FUROPEAN PATENT APPLICATION

g -

- Application number: 88306584.9
- (22) Date of filing: 19.07.88

(9) Int. Cl.4: C07D 473/34 , C07D 471/04 , A61K 31/52 , A61K 31/44

- Priority: 20.07.87 US 75362
- Date of publication of application: 25.01.89 Bulletin 89/04
- Designated Contracting States:
 AT BE CH DE ES FR GB GR IT LI LU NL SE
- 7 Applicant: MERCK & CO. INC. 126, East Lincoln Avenue P.O. Box 2000 Rahway New Jersey 07065-0900(US)
- memtor: Johnston, David B. R.
 33 Round Top Road
 Warren New Jersey 07060(US)
 Inventor: Tolman, Richard L.
 29 Upper Warren Way
 Warren New Jersey 07060(US)
 Inventor: Mac Coss, Malcolm
 48 Rose Court
 Freshold New Jersey 07728(US)
 Inventor: Marburg, Stephen
 50 Concord Avenue
 Metuchen New Jersey 08840(US)
 Inventor: Meurer, Laura C.
 620 Ayres Avenue
 North Pialinfield New Jersey 07060(US)
- Representative: Hesketh, Alan, Dr. European Patent Department Merck & Co., Inc. Terlings Park Eastwick Road Harlow Essex, CM20 2QR(GB)
- (S) Piperazinyl derivates of purines and isosteres thereof as hypoglycemic agents.
- There are disclosed certain 6-piperazino-purine and heteroaromatic derivatives thereof which have oral hypoglycemic activity and with such ability to lower blood sugar are useful in the treatment of type II diabetes and/or obesity with associated insulin resistance. Processes for the preparation of such compounds and compounds containing such compounds as the active incredient thereof are also disclosed.

EP 0 300 726 A1

PIPERAZINAL DERIVATIVES OF PURINES AND ISOSTERES THEREOF AS HAPOGUACEMIC AGENTS

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of our copending application Serial Number 75362 filed 20 July 1987.

BACKGROUND OF THE INVENTION

10

30

35

40

Certain 6H-7,8-dihydrothiapyrano[3,2-d]pyrimidines are disclosed in Belgian Patent 724745 as intermediates for the preparation of compounds with cardiovascular and coronary dilation activity, however, suggestion is made neither of any hypoglycemic activity nor of weight reducing properties for either the intermediates or the final products. Great Britain 2119368 discloses 6H-7,8-dihydrothiapyrano[3,2-d]pyrimidines (where the bicyclic system is not heteroaromatic) with a very different substitution pattern on 15 the nucleus when compared with the instant heteroaromatic compounds.

SUMMARY OF THE INVENTION

The instant invention is concerned with novel 6-piperazinopurines and heteroaromatic derivatives thereof, which are useful as hypoglycemic and/or weight reducing agents. Thus, it is an object of this invention to describe such compounds. It is a further object of this invention to describe the hypoglycemic activity of such compounds. A still further object is to describe compositions containing such compounds as the active ingredient thereof. Further objects will become apparent from a reading of the following 25 description.

DESCRIPTION OF THE INVENTION

The 6-piperazinopurines of this invention are novel compounds with significant hypoglycemic activity. The compounds have the following structures:

wherein X and Y have the following meanings:

х	Υ
N-(R ₃) _m	N-(R ₃) _n
C-R₃	N-R ₃
N	S
N	0

and R₁ and R₂ are independently hydrogen, loweralkyl, coycoloweralkyl, loweralkonyl, loweralkonyl, loweralkonyl, loweralkonyl, loweralkyl, loweralkylamino or diloweralkylamino, or the substituent is one of a 5- or 6-membered heteroaromatic ring system with nitrogen, oxygen or sulfur as the 5- heteroatom, in particular where the hetero aromatic ring system is pyridyl, furyl or thienyl, and m and n are 0 or 1 such that whem m is 0, n is 1 and whem m is 1, n is 0.

R2 and R4 are independently hydrogen, loweralkyl, cycloloweralkyl, loweralkoxy, loweralkylthio. loweralkyl-suifinyl, loweralkynyl, poweralkynyl, poweralkynyl, poweralkynyl, pomoralkynyl, pomoralk

The loweralkyl groups of this invention may contain from 1 to 6 carbon atoms and may be in either a linear or branched configuration. Evemplary of such groups are methyl, ethyl, propyl, isopropyl, butyl, secbutyl, centyl, heavyl, and the like.

The loweralkoxy groups of this invention may contain from 1 to 6 carbon atoms and may be in either a straight or branched configuration. Exemplary of such groups are methoxy, ethoxy, propoxy, butoxy, isobutoxy, pentoxy, hexoxy, and the like.

The loweralkenyl and loweralkynyl groups of this invention may contain from 2 to 6 carbon atoms and 20 may be in either a linear or branched configuration. Exemplary of such groups are ethenyl, vinyl, butenyl, butynyl, propenyl, proparyl and the like.

The cycloloweralkyl groups of this invention may contain from 3 to 6 carbon atoms and are exemplified by cyclopropyl, cyclobutyl, cycloperty, and cyclohexyl.

The halogen atoms of this invention may contain any of the halogen fluorine, chlorine, homine or iodine. The armino and substituted amino groups are exemplified by amino, methylamino, dimethylamino, ethylamino, diethylamino, provrioligino, morpholino, propylamino, and the like.

25

26

45

The preferred compounds of this invention are those wherein R_i is hydrogen, methyl, ethyl or 2propenyl; R₂ is hydrogen, methyl, ethyl, methoxy, othoxy, amino, methylamino, dimethylamino, pyrrollidino or ethylamino; each R₃ is independently hydrogen, methyl, ethyl, n-propyl, i-propyl, methoxymethyl, somethoxyethyl, or fluoroethyl, in particular, a halogenated branched loweralkyl group, in particular a halogenated isopropyl, more perferred as a fluorinated isopropyl, and most preferred as 1.3-diffuoro isopropyl; and each R₄ is independently hydrogen, methyl, methylamino or dimethylamino.

Further preferred compounds of this invention are realized in the following structural formula:

$$R_4 \longrightarrow \bigvee_{N} \bigvee_{N} \stackrel{R_2}{\bigvee_{N}}$$

wherein R1, R2, R3 and R4 are as defined above, Y is S or N-R3 and the corresponding X is N or C-R3.

Further preferred compounds are realized in the purine compounds when X and Y are independently N $_{50}$ and N-R $_{3}$.

In addition, those compounds where R_1 is hydrogen or methyl; R_3 is as defined above, and R_2 and R_4 are independently hydrogen, methyl, methoxy, ethoxy or dimethylamino are particularly preferred.

The most preferred compounds are those wherein R₁ is hydrogen. R₂ is methyl, methoxy or ethoxy, R₃ is as defined above, R₄ is hydrogen, X is N and Y is N-R₃.

With the presence of various amino groups, it will be appreciated that the instant compounds will be basic in nature and will be capable of forming acid addition salts with acidic compounds. The pharmaceutically acceptable acid addition salts of the compounds of this invention are included within the ambit of this invention. Examples of such pharmaceutically acceptable acid addition salts are those formed from

inorganic acids such as hydrochloric, hydrobromic, nitric, sulfuric, phosphonc, dialkylphosphoric, or hypophosphorous; and organic acids such as acetic, benzenesulfonic, benzoic, citric, fumanc, gluconic, lactic, malic, maleic, oxatic, pamoic, pantothenic, salicvite, stearic, succinic, tannic, tarranc, and the like,

The instant compounds may also be used in combination with other compounds, in particular 5 combinations with other acid hypoptyceric agents is useful. In particular, the instant compounds may be used in combination with sulfonylower for beneficial effect.

The instant compounds are prepared according to the following reaction scheme:

SCHEME

wherein X, Y, R₁, R₂, R₃ and R₄ are as defined above.

The foregoing reaction is carried out by reacting an R₁-substituted piperazine with the chloroheterocycle (II). When R₁ is hydrogen the reactant can be protected piperazine such that only one of the piperazine introden atoms are available for reaction.

The preferred protecting group is the t-butoxycarbonyl (BOC) group. After the protected piperazine has been reacted with the chloroheterocyclic substrate, the protecting group is removed.

The displacement of the chloro by the RI-piperazine or protected piperazine is carried out in an optional solvent at a temperature of from 100 to 150. C such that the solvent does not boil at a temperature less than the desired reaction temperature. The preferred solvents are NN-diemthylformamide, eithand, issamyl alcohol and the like. It is preferred to carry out the reaction at from about 75 to 125. C and the reaction is generally complete in from about 30 minutes to 16 hours. The reaction proceeds well in the absence of a solvent. The piperazine reagent is generally used in at least 1 molar excess in order to neutralize the hydrogen chloride liberated during the course of the reaction. Preferably 4 equivalents of the opiperazine compound are employed. Optionally, the use of a tertiary amine such as triethylamines can be used to reduce the amount of piperazine compound employed in the reaction. The products are isolated from the reaction mitture using standard techniques.

The reactions used to prepare the instant compounds are generally carried out with the displacement of the hatogen by the R1-piperazine as the last step. However, the R1 group can be introduced on the unsubstituted piperazine after the piperazine has been placed on the heterocycle and after the removal of the protecting group. Similarly, the reactions used to prepare the heterocycle can include the substitution of the piperazine group prior to the final synthetic steps such as the heterocyclic ning closure or the substitution of the R2, R3 and R4 groups (See Scheme 1A).

10

15

20

25

SCHEME IA

$$0 \le N$$
 $0 \le N$
 $0 \le N$

Early Introduction of Piperazine

Occasionally, the presence of more than one reaction site may result in the preparation of a mixture which will be separated in order to obtain the instant compounds. The various procedures available to those skilled in the art for the preparation of the instant compounds are outlined below and in the appended examples.

The Preparation of 6-(1-piperazinyl)-Substituted Purines

Alkylation with R_3 -Z (Z = leaving group) of a 6-chloropurine with ensuing replacement of chlorine by a protected piperazine followed by deprotection

SCHEME !!

H or Alkyl Substituents in R_2 and/or R_4

SCHEME III

A = halogen or sub'd-piperazine

10

15

30

Transformation of 6-chloropurine to 6-[1-(4-protected)piperazinyl]purine followed by alkylation and deprotection.

Scheme IV

SCHEME IV

$$R_{4} = \begin{array}{c} X \\ N \\ N \end{array}$$

$$R_{2} = \begin{array}{c} R_{4} \\ N \\ N \end{array}$$

$$R_{2} = \begin{array}{c} R_{4} \\ N \\ N \end{array}$$

$$R_{2} = \begin{array}{c} R_{4} \\ N \\ N \end{array}$$

$$R_{4} = \begin{array}{c} R_{4} \\ N \\ N \end{array}$$

$$R_{4} = \begin{array}{c} R_{4} \\ N \\ N \end{array}$$

$$R_{4} = \begin{array}{c} R_{4} \\ N \\ N \\ N \end{array}$$

$$R_{5} = \begin{array}{c} R_{4} \\ N \\ N \\ N \end{array}$$

$$R_{1} = \begin{array}{c} R_{4} \\ N \\ N \\ N \\ N \end{array}$$

Electronegative Elements in R, and/or R,

Diabetes is a condition characterized by abnormal insulin secretion and a variety of metabolic and vascular manifestations reflected in a tendency toward inappropriately elevated blood glucose levels and which if left poorly treated or untreated can result in accelerated, nonspecific atherosclerosis, neuropathy and thickneed capillary lamina causing renal and retinal impairment. Diabetes is cut bracticized as being insulin dependent (Type i) and non-insulin dependent (Type ii). Type i clabetes is due to damage and eventual loss of the β-cells of the pancreatic slets of Langerhans with a resulting loss of insulin production. Type il clabetics sceretie insulin, however, the insulin is somehow not properly or effectively utilized in the metabolism of blood sugars and glucose accumulates in the blood to above normal levels. This condition is termed insulin resistance.

With the certainty of serious complications resulting from high glucose levels in poorly controlled or uncontrolled diabetics, means to lower blood glucose have been research goals for a considerable period of time. With Type II diabetes glucose control can only be achieved with daily insulin injections. With Type II diabetes glucose control can be effected from a combination of diet and drugs which lower glucose levels. The currently available oral hypoglycemic agents are not completely satisfactory since they may not offer complete blood glucose control or may provide a variety of undesirable side effects or they may elevate insulin concentrations to undesirable and dangerous levels. Thus, the search for improved oral hypodycemic agents is a continuing one.

As previously indicated, the compounds of this invention are all readily adapted to their therapoutic use as oral hypoglycemic agents, in view of their ability to lower the blood sugar levels of diabetic subjects to a statistically significant degree. For instance, 6-(1-piperazinyi)-9-methylpurine, a typical and proterred agent of the present invention, has been found to consistently lower blood sugar levels and improve glucose tolerance in either fasted or fed diabetic (i.e., hyporglycemic) mice to a statistically significant degree when given by the oral route of administration at dose levels ranging from 1 mg/kg to 100 mg/kg, respectively, without showing any toxic side effects. The other compounds of this invention also produce similar results. In operalt, these compounds are ordinarily administered at dosage levels ranging from 20 mg/kg.

100 mg per kg of body weight per day, although variations will necessarily occur depending upon the condition and individual response of the subject being treated and the particular type of oral pharmaceutical formulation chosen.

Administration over time to obese, insulin resistant mice, resulted in a significant reduction in body weight.

In connection with the use of the compounds of this invention for the treatment of diabetic subjects, it is to be noted that they may be administered either alone or in combination with other oral hypoglycemic agents in pharmaceutically acceptable carriers and that such administration can be carried out in both single and multiple dosages. More particularly, the novel compounds of the invention can be administered in awide variety of different dosage forms, i.e., they may be combined with vanous pharmaceutically acceptable inert carriers in the forms of tablets, capsules, lozanges, troches, hard candies, powders, aqueous susponsion, elivirs, syrups and the like. Such carriers include diluents or filters, sterila equicus media and various non-toxic organic solvents, etc. Moreover, such oral pharmaceutical compositions can be suitably sweetened and/or flavored by means of various agents of the type commonly employed for just 15 such a purpose. In general, the therapeutically-effective compounds of this invention are present in such dosage forms at concentration levels ranging from about 0.5% to about 90% by weight of the total composition, i.e., in amounts which are sufficient to provide the desired unit dosage.

For purposes of oral administration, tablets containing various excipients such as sodium cirate, calcium carbonate and dicalcium phosphate may be employed along with various disintegrants such as as attach and proferably potate or tapioca starch, alginic acid and certain complex silicates, together with binding agents such as polyvinylpyrrolidone, golatin and saccia. Additionally, lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are often very useful for tabletting purposes. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled golatin capsuless; preferred materials in this connection would also include the high molecular weight polyvinylene glyciss. Proferred materials in this connection would also include the high molecular weight polyvinylene glyciss. When aqueous suspensions and/or elixirs are desired for cral administration, the ossential active ingredient therein may becombined with various sweetening or flavoring agents, coloning matter or dyes and, fis of desired, emulsifying and/or suspending agents as well, together with such diluents as water, ethanol, propylene glycol, diversin and various like combinations thereof.

The activity of the compounds of the present invention, as hypoglycemic agents, is determined by their a ability to lower blood sugar levels in the fasted or fed hyporglycemic mouse when tested therein for such purposes according to the procedures described by Saperstein et al. as submitted to the journal <u>Diabetes</u> and summarized as follows:

Genetically obese mice (obob) were fasted overnight. The compounds were administered orally via a stomach tube and each mouse serially bled from the orbital sinus at various times and the blood samples were analyzed for blood glucose. When the effects of the compounds on blood glucose levels of fed mice were to be determined, glucose was administered orally at a rate of 2 g per kg. 30 minutes after administration of the test compound. Glucose in the blood was determined by the potassium ferricyanide potassium ferrocyanide oxidation reaction auto analyzer.

The latter method measures directly the amount of glucose in the blood at any given time and from this, the maximum percent decrease in blood sugar can be readily calculated and reported as hypoglycomic activity per ge. In this way, the present compounds are shown to markedly improve glucose tolerance of non-anesthetized hyperglycemic mice when administered to them at dose levels as low as 10 mg/kg orally and lower fasting blood glucose levels when administered at dose levels as low as 30 mg/kg orally.

The instant invention is further described by the following examples which are intended to be merely descriptive and should not be construed as limitative of the invention.

EXAMPLE 1

6-[1-(4-tert-butoxycarbonyl)piperazinyl]purine

50

55

6-Chloropurine (4.6 g. 30 mmol) and 11.2 g (60 mmol) of N-(1-tent-butoxycarbonyl)piperazine (BOC-piperazine) were dissolved in dimethylformamide (DMF) (150 ml) and the solution was stirred overnight at 100 °C under nitrogen (Ne). The reaction mixture was then evaporated to dryness in yazuo and the residue.

crystallized from n-propanol affording 5.0 g (55% of 6-[1-(4-BOC)piperazinyl]purine. m.p. 244-248 $^{\circ}$ C. Calc'd for C₁₄H₂₀N₅O₂:

C, 55.26; H, 6.58; N, 27.63

Found: 5 C, 55.23; H, 6.48; N, 27.63

EXAMPLE 2

10

6-[1-(4-BOC)piperaziny!]-9-methylpurine

..

Method A

To 8-[1-(4-BOC)piperaziny*]purine (1.6 g. 5.58 mmol) dissolved in 60 ml of dimethylsulfoxide (DMSO) was added potassium carbonate (648 mg, 6.14 mmol) and methylsicide (0.70 ml, 1.12 mmol). The mixture was stoppered and stirred at room temperature for 24 hours at which time an additional 0.35 ml (5.6 mmol) of methylicidide was added. Stirring was continued for an additional 24 hours and then the reaction mixture was quenched in water. The aqueous mixture was extracted with ethyl acetate. The organic layer was dried as with NagSO₄ and evaporated to dryness affording 1.3 g of a mixture of 9- and 7- isomers. These were separated or a 100 ml silicia gel column using a 90:10 ethylacetate/sethand mixture as eluent. The first peak after concentration afforded 1.0 g (56%) of 9-(1-(4-BOC)piperazinyl-9-methylpurine, m.p. 129-131 °C.

C. 56.60; H. 6.92; N. 26.42

30 Found:

C. 56.10; H. 6.78; N. 26.11

Method B

35

To 4.5g (28.7 mmoll) of 6-chloro-8-methyl purine dissolved in 70 ml of sieve dried, degassed, DNF (dimethylformamide) was added 4.966 g of BOC-piperazine (28.7 mmol) and 4.6 ml of disopropylethylamine (26.7 mmol). The solution was stored, under N₂, at 100 °C for 16 hrs. after which it 40 was evaporated to dryness in vacuo. The orange residue was triturated with warm water (100 ml). The process was repeated and neither water layer showed product (t.t.c.). The residue was disolved in boiling methanol charcoaled (10% by weight), and after filtration through ceille, evaporated to dryness. The residue was disolved in 95.5 ethyl acetate-ethanol and adsorbed onto 15 ml of slicing cell. This was added to the top of a 250 ml silica gel column (dry column) and eluted with 250 ml of 95.5 ethyl acetate-ethanol and then a 49 90.10 mixture. 100 ml fractions were collected and the product which is eluted in fractions 7 to 13. The t.l.c. (9.1 ethyls acetate-ethanol): a single spot shows no BCC piperazine. Recrystalization was effected with acetontritle effording 7g of 6-[1-(4-BOC)piperazinyli-9-methylpurine, m.p. 129-131 °C.

C. 56.60; H. 6.92; N. 26.42.

so Found:

C. 55.76; H. 6.71; N. 25.98.

EXAMPLE 3

6-[1-(4-BOC)piperazinyl]-3-methylpurine

The second peak from the above chromatography in Example 2, Method A, after concentration afforded 83 mg (5%) of 6-f1-(4-BOC)piperazinvlh-3-methylpurine, m.p. 235-238 °C.

EXAMPLE 4

10

6-(1-piperazinyl)-9-methylpurine

6-{1-(4-BOC)piperazinyl}-9-methylpurine (2.5 g, 8.09 mmol) was dissolved in 50 ml of trifluoroacetic acid (TFA) and the solution aged for 1 hour at room emperature. The TFA was removed in a stream of N₂ and the residue dissolved in 2N HCl (20 ml) and the acidic solution evaporated to dryness in vacuo. This HCl treatment was repeated twice and the final residue crystallized from methanolacetonitrile affording 1.71 g (73%) of 6-(1-piperazinyl)-9-methylpurine dihydrochloride, m.p. 300°C.

20 C, 41.23; H, 5.50; N, 28.87; Cl, 24.40 Found: C, 41.33; H, 5.50; N, 28.70; Cl. 24.37 U.V. (H₂O)λ_{max} = 274 (ε = 21,454)

 $\lambda_{min} = 230$: other $\lambda_{max} = 218$ ($\epsilon = 19,283$)

EXAMPLE 5

30

25

N-t-Butoxycarbonyl-N'-benzyloxycarbonyloiperazine

To 15 g of BOC-piperazine (80.6 mmol) dissolved in acetone (50 ml) was added in alternating portions benzylchloroformate (11.5 ml, 80.6 mmol) and 1N NaOH (15 ml) keeping the pH at 8-8.5 and the temperature 0-5°C. After 2 hours, starting material was still present (tic) and an additional quantity of benzylchloroformate (5 ml) and 1N NaOH (5 ml) was added. The reaction mixture was aged at 5°C overnight and at room temperature an additional 7 hours. Water was added and the mixture vestracted with ethyl acetate (3 x 50 ml), dried with Na₂SO. and concentrated to 21 g of an oil. This oil was dissolved in 10 ml of ethyl acetate, passed through 40 ml of silica gel and eluted with 200 ml of ethylacetate. Crystallization was effected by trituration with petroleum ether and the crystals collected, affording 8.28 g (32%) of Nt-butoxycarbonyl-N-benzyloxycarbonylpiperazine, m.p. 90.5 - 91.5°C.

C. 63.75; H. 7.50; N. 8.75

45 Found:

C. 63.53; H. 7.48; N. 8.93

NMR (CDCl₃, 5 from TMS) 5 1.45 (s. 9), 5 3.45 (m, 8), 5 5.12 (s. 2), 5 7.3 (m, 5).

50

EXAMPLE 6

N-Benzyloxycarbonylpiperazine (CBZ-piperazine)

10

25

30

45

960 mg (3 mmol) of N-butoxycarbonyl-N'-benzyloxycarbonylpiperazine was dissolved in 8 ml of TFA and aged for 1 hour. The TFA was evaporated in a stream of N₂ and then to the residue was added water 5 and NaOH to pht12. The basic mixture was extracted with 3 x 15 ml of ethyl acetate, backwashed with saturated aqueous NaCl, dried with Na₂SO₄ and concentrated to 566 mg of an oil whose mass spectlum had a patent peak at mie = 220N MR (CDCl₃, δ from TMS) δ 2.8 (m, 4), δ 3.5 (t, 4), δ 5.12 (s, 2), δ 7.38 (m.

EXAMPLE 7

9-(1-8-Ribofuranosyl)-6-[1-(4-benzyloxycarbonyl)piperazinyl]purine

6-Chloropurine riboside (237 mg, 0.834 mmol) and 410 mg (1.86 mmol) of CBZ-piperazine were dissolved in 12 ml of DMF and heated at 100 °C for 20 hours. The mixture was then concentrated to 20 dryness in vacuo affording 854 mg of a residue. This was chromatographed on silica gel (60 ml) eluting with equal volumes of methylene chloride, 2% ethanol in methylene chloride (vv) and finally with 40% ethanol in methylene chloride (vv) evaporation of appropriate fractions afforded 320 mg (82%) of 6-[1-(4-CBZ)-picerazin/Viburine riboside.

EXAMPLE 8

9-(1-8-D-Ribofuranosyl)-6-(1-piperazinyl)ourine

9-(1-3-D-riboturanosy)-9-(1-(4-OEZ)piperazinvj)purine (300 mg, 0.84 mnol) dissolved in 10 ml of ethanol was hydrogenated overnight under 40 psi of hydrogen in the presence of 50 mg 10% palladium on 35 charcoal. The reaction mixture was filtered through distomaceous earth and evaporated to 221 mg of crude product. This was recrystallized three times from ethanol-either to afford 70 mg of 8-(1-piperazinyi)purine ribosine.

Galc'd for G₁ ∈ H₂0N₅ O₂ ∈ 0.5 H₂ O; C, 48.70; H, 8.09; N, 24.35 49 Found: C, 48.01; H, 5.76; N, 24.31 U.V.λ_{max} (H₂ O) 275; e = 1.81 x 10⁴·λ_{max} 215, e = 13.5 x 10⁴· FAB mass spectrum ru'e = 337 (M + 1.).

EXAMPLE 9

6-Chloro-9-methylpurine

To 5.0 g (31 mmol) of 5-amino-4-chloro-6-methylaminopyrimidine suspended in 200 ml of triethyl orthoformate was added 2.6 ml of concentrated HCI and the resultant mixture was stirred overnight at room 5 (emporature (f.t.) The white precipitate was then collected, washed with ether which was then combined

with the orthoformate which was concentrated to give pure 6-chloro-9-methylpurine by tlc (thin layer chromatography) (silica, 90:10 CHCl₃:CH₃OH). The filtered solid was returned to 150 ml ethyl orthoformate. treated with 1.0 ml concentrated HCl and stirred at 60 °C for 18 hours. The solution was evaporated and the solids combined to give 5 g (94%) of 6-chloro-9-methylpurine, m.p. 205-207 °C.

EXAMPLE 10

10

4-[1-(4-BOC)piperazinyl]-5.6-diaminopyrimidine

2.0 g (13 mmol) of 6-chloro-4.5-diamino pynmidine (Lin et al J. Org. Chem. 26, 264-265 (1961)) and 10 15 g (54 mmol) of N-BOC-piperazine was stirred, molten, at 130 °C for 5 hours. Then an additional 2 g of BOC-piperazine were added and heating continued for an additional 2 hours. The t.l.c. (90:10 ethl acetate: ethanol) showed only small amounts of the pyrimidine reactant. A large fraction of the unreacted BOCpiperazine was removed by sublimation at 100-130 °C and the residue was chromatographed on 800 ml of silica gel eluting with 90:10 ethyl acetate ethanol. There was obtained 1.8 g of 4-[1-(4-BOC) piperazinyl]-5.6-20 diaminopyrimidine, 200 MHz NMR(CDCl₃, δ from TMS); 1.46(s,9), 3.17(m,4), 3.55(m,4), 8.02(s,1).

EXAMPLE 11

25

30

e-[1-(4-BOC)piperazinyl]-8-methylpurine

To 500 mg (1.7 mmol) of 4-[1-(4-BOC)piperazinyl]-5,6-diaminopyrimidine dissolved in 5.2 ml of 2methoxyethanol was added 271 mg (2.3 mmol) of acetamidine acetate and the mixture was refluxed under nitrogen for 22 hours. At this time an additional 100 mg of acetamidine acetate was added and reflux was continued for an additional 3 hours. The mixture was then partitioned between ethylacetate and water, the organic layer dried and concentrated to 630 mg of crude product. This was chromatographed on 65 ml of 35 silica gel eluting with egual volumes of 95:5, 93:7, 88:12 and 80:20 ethylacetate:ethanol. The NMR spectrum of the fractions eluting after 150 ml (200 mg) showed mostly product [mass spectrum:(fast atom bombardment) m/e = 319(M+H)]. An analytical sample of the title compound was obtained after two recrystallizations from toluene.

Calc'd for C15 H22 N5 O2 • 2H2O: 40 C. 55.58; H. 7.04; N. 25.92. Found :

C. 56.03: H. 6.93: N. 25.47. uv (methanol): λmax 273 nm.

45

EXAMPLE 12

50

8-Methyl-6-(1-piperazinyl)purine

To 1.6 ml of trifluoroacetic acid (TFA) was added 54 mg (0.17 mmol) of 6-[1-(4-BOC)piperazinyl]-8methylpurine and the solution aged for 1 hour. The TFA was then evaporated in a stream of dry nitrogen 55 and the residue converted to the hydrochloride by dissolving it in 2 ml of 2N HCl and evaporating in vacuo. This process was repeated twice. The hydrochloride was recrystallized from methanolacetonitrile affording 34 mg of 8-methyl-6-(1-piperazinyl)ourine (isolated as hydrated di hydrochloride: Calc'd: for C10H14N6 •2HCI•0.8H2O•0.05 NaCI:

C, 38.91; H, 5.75; N, 27.22; Cl, 23.57. Found : C, 39.29; H, 5.55; N, 26.84; Cl, 23.95. Mass spectrum m/e = 218.

EXAMPLE 13

10

5-Amino-4-[1-(4-BOC)piperazinyl]-6-methylamino pyrimidine

To a stirred melt of 11 g (59 mmol) of BOC-piperazine at 130.° C was acided 2.08 g (13 mmol) of 5mino-8-chicor-4-methylaminopyrimidine (Robins et al. JACS, 7g. 480-444 (1957)) and the moture heatad
at 130.° C for 8.5 hours. Then after aging at room temperature overnight, the reaction mixture was heated for
an additiona 48 hours at 130.° (at 24 hours an additional 2 g of 80C piperazine was added.) Excess BOC
piperazine was removed by sublimation and the residue (8 g) was chromatographed on a 600 mi silica get
piperazine was removed by sublimation and the residue (8 g) was chromatographed on a 600 mi silica get
as spectrum; m/s = 308.300 Mixt pMR; MCDC, a from TMS1; 145 (s.9). 3.05 m/n.7; 3.50 (m.4), 8.14 (s.1).

EXAMPLE 14

25

40

6-[1-(4-BOC)piperazinvI]-8,9-dimethylpurine

To 400 mg (1.29 mmol) of 5-amino-411-(4-BOC) piperazinyl)-6-methylaminopyrimidine dissolved in 2 ml of 2-methoxyethanol was added 305 mg (2.58 mmol) of acetamidine acetate and the mixture refluxed for 24 hours and then aged for an additional 16 hours at room temperature. The solution was then quenched into H₂O and extracted with ethylacetate. The organic layer was dried over sodium suifate and concentrated to 474 mg of a mixture. This was chromatographed on 105 g of sitiac get with a chloroform-methanol step gradient [from 100% chloroform to 92% (v/v) chloroform: 8% methanol]. The product was identified by t.l.c. and recrystalized three times from cyclohexane affording 77 mg of 6-[1-(4-BOC)piperazinyl]-6,9-dlmethyl-purine.

EXAMPLE 15

45 8,9-Dimethyl-6-(1-piperazinyl)purine

6-{1-(4-BOC)piperazinyl}-8,9-dimethyl purine (75 mg, 0.25 mmol) was dissolved in 2.0 ml of triflluoroacetic acid (TFA) and the solution aged at room temperature for 1 hour. The TFA was then evaporated in a stream of dry nitrogen and the residue converted to the hydrochloride by three times dissolving it in 2 ml of 2N HCl and concentrating to dryness. The crude hydro chloride was recrystallized from methanol-acetonitrile affording 95 mg (82%) of 8,9-dimethyl-6-(1-piperazinyl)purine. Catic dior: C1Hs/hs/\$=2f0:0.03Hz(0:

C, 42.31; H, 5.96; N, 26.92; Cl, 22.76.

55 C, 42.30; H, 5.88; N, 26.80; Cl, 23.03 mass spectrum (EI) m/e 232.

EXAMPLE 16

Imidazof 4.5-c lpyridine (3-deazapurine)

To 5.0 of 3.4-diaminopyridine (Abdrich, 45.82 mmol), suspended in 45 ml of 2-methoxyethanol was added 6.4 g of formamidine acetate (Abdrich, 61.5 mmol) and the mixture heated at reflux (t becomes a solution) for 16 hrs. The solution was then evaporated in vacuo to a solid residue which was recrystallized from 50 ml of acetonitrile. This afforded 4.06 g of imidazo[4.5-c]pyridine (74.5%) m.p. 166-168 °C [lit 162-163 °C. Y. Mizuno, et al. Chem. Phar. Bull., 12, 868-872 (1964)], 200 MHz NMR (D₂O. 3 from TSP); 7.6 (1H. d. J=614.9.8.24) H. d. J=614.9.8.24 (H. d. J=614.9.24) H. d. J=614.9.24 (H. d. J=614.9.24) H. d.

EXAMPLE 17

1H-Imidazo[4,5-c]pyridine-5-oxide

15

35

1H Imidazo(4,5-c)pyridine (4.0 g, 33.6 mmol) was dissolved in 60 ml of fresh acetic acid. heated to 73 °C = 1 °C and to the solution was added 8.8 ml of 30% H₂O₂ (78 mmol). After stirring and heating at 73 °C or 24 hrs. an additional 5 ml of H₂O₂ was added as well as 1 ml of trifluoroacetic acid. Heating at 73 °C was continued for an additional 3 days. After concentrating, an aliquot NMR (O₂O) shows a 2-1 product: starting material mixture. Con centration of the main reaction mixture was followed by trituration of the residue with 50 ml of acetontrile. The filtered insolubles 1.6 g (35%) are pure Noxide by TLC, (reverse phase, 9:1 H₂OTTHF) 200 MHz NMR (O₂O, 8 from TSP): 7.82 (1H, d, J = 7 Hz) 8.21 (1H, d of d, J = 7Hz, J = 1 Hz) 8.52 (1H, d, J = 4 Hz) 4 (1H, d, J = 7 Hz) 4 (1H, d,

A second crop of 0.8 g is obtained by aging at 4 °C.

EXAMPLE 18

4-Chloroimidazo-(4,5-c)pyridine

2.84 g (21 mmol) of imidazo(4.5-c)pyridine-5-oxide was dissolved in 200 ml of freshly distilled PCCIs and refluxed for 16 hrs. The insolubles (starting material, approx. 0.8 g) were filtered and the excess PCCIs was then removed by distillation and the residue was dissolved in 30 ml of H₂0 and made base with concentrated NH₃ to pH 8. The solution was extracted 3 times with 30 ml of isosamyl alcohol. This was a backwashed with 1 ml of H₂0 and concentrated to give 1 g of product. This was dissolved in 5-10 ml of 1:1 ethanol:CHCs and applied to a stilica gel column (56 g) packed in 7% ethanol: CHCl₃ and then eluted with 15% ethanol:CHCl₃ and commotive the stillage of the

EXAMPLE 19

4[1-(4-BOC)piperazinyI]-1H-imidazo(4.5-c)pyridine

253 mg (f.65 mmols) of 4-chloro-1H-imidazo(4,5-c)pyridine and 1.07 g 8OC-piperazine were dissolved in 2 ml of DMF and the solution was heated at 150° C for 2 hr , aged at room beneprature for 16 hrs and 5 then heated an additional 4 hrs at 150° C. The DMF was removed in vacuo, the residue covered with 7 ml of ethyl acetate, filtered (the solid gives a positive AgNO, test) and the resulting filtrate applied to a 14 g silica gel column developed with EIOAc. The first UV positive peak was concentrated to 0.22 g of a mixture. This was rechromatographed on 22 g of silica gel (packed in CHCl₂) eluting with 250 ml 20:30 EloAccCHCl₃, 250 ml 33.87 EloAccCHCl₃, 250 ml 1:1 EloAccCHCl₃ and then with pure EtOAc. Fractions containing the required material were concentrated to give 164 mg of pure product (32°s). 300 MHz NMR (CDCl₃, 8 from TMS) 1.5 (9H.s) 3.6 (4H, m), 4.15 (4H, m), 6.76 (1H, d, J = 5 Hz) 7.92 (1H, s) 7.95 (1H, d, J = 5 Hz)

EXAMPLE 20

20 4-[1-(4-BOC)piperazinyl]-1-methyl-1H-imidazo[4.5-c] pyridine

To 158 mg of 4-piperazinyi-1H-imidazo (4,5-c)pyridine (0.52 mmol) dissolved in 3.8 ml DMF was added 38 mg of 80% Nai-lin oil and 0.064 ml of methyl iodide. The mixture was stirred for 6 hrs at room temperature and then quenched into 20 ml of CH₂Cl₂. This was washed 5 limes with 12 ml of H₂O, 12 ml of saturated aqueous NaCl and then dried over Na₂SO₄. Concentration afforded 187 mg of crude product which was purified by preparative TLC 2x1000µ silica gel plates) developed in 60:50 CH₂Cl₂:EtOAc to give 84 mg of pure product.

EXAMPLE 21

35 1-Methyl-4-(1-piperazinyl)-1H-imidazo(4,5-c)pyridine

The above 84 mg from Example 20 were dissolved in 4 ml of trifluoracetic axid (TFA), aged for 1 hr at room temperature and then concentrated to an oily residue by evaporation of the TFA in a stream of N₂. This residue was dissolved in concentrated HCI (2 ml) and the solution evaporated to dryness. The 4p procedure was repeated twice. The product was sturried in 2.5 ml of ethanol: ml acetonitrile for 17 hrs, affording pure 4(1-piperacyiny)-1-methy-1-HmidazQ(45-c)yridine dithydrochloride.

Calcd, for C₁₁H₁₅N₅ • 2HCl • 0.4 H₂O:

C, 43.79; H, 6.11; N, 23.21; Cl, 23.50 Found:

15

30

50

55

45 C. 44.00; H. 6.02; N. 23.00; Cl. 23.40.

200 MHz NMR (D_2O , δ from TSP): 3.56 (4H, m) 4.40 (4H, m) 7.36 (1H, d, J=5 Hz) 7.82 (1H, d, J=5 Hz) 8.28 (1H, s).

EXAMPLE 22

6-[1-(4-BOC)piperazinyl]-8-bromo-9-methylpurine

To 0.3 g of 6-[1-44-BOC)piperaziny[1-9-methylpurine (0.94 mmol) in 15 ml of dioxane was added 1.5 g Na₂HPO. followed by 15 ml H₂O. After stirring 15 min, 0.10 ml Br₂ (0.312 g; 1.95 mmol) was added 5 dropwise and stirring continued for two days. The mixture was extracted five bmes with 5 ml portions of CHOs, and the combined extracts washed successively with aqueous NaHSO, saturated NaCl. dired over anhydrous NaySO₄, littered and evaporated to a yellowish gum. Preparative chromatography on four 20 x 20 cm x 1000 μ stica GF plates, developed with EtOAc, afforded 244 mg of a solid product (0.61 mmol: 65% yield). Recrystalization from EOH adve an analytical sample, mn 151-1152 C.

10 Calculated for C15H21N5OBr:

20

40

45

C, 45.34; H, 5.33; N, 21.16; Br. 20.12.

C. 45.21: H. 5.38: N. 20.86: Br. 23.46.

EXAMPLE 23

8-Bromo-9-methyl-6-(1-piperazinyl)purine dihydrochloride

A solution of 100 mg of 6+11-4+BOC)picerazinyl-6-bromo-9-methylpurine (0.25 mmol) in 5 ml absolute EtOH was treated with about 1 ml of ethanolic HCI. After 15 minutes, a white precipitate began to form.

After standing overnight the suspension was filtered, but the product was only parallely deblocked. Solids and filtrate, after evaporation were combined in about 1 ml trifluoroacetic acid. After 15 minutes, the mixture was evaporated to a gum and partitioned between chloroform and aqueous 10% Na₂CO₃. The aqueous layer was extracted again with chloroform, the combined extracts dried with MgSO₄ and evaporated to a gum. The gum was taken up in about 1 ml of absolute EtOH and freated with about 1 ml of ethanolic HCI.

After standing overnight the suspension was filtered, the solid washed successively with EtOH, EtOHelther, and ether. After drying under a nitrogen stream, 53 mg (0.14 mmol: 56% isolated yield) of a white powder was obtained.

Calculated for C₁₀H₁₃N₆Br•2HCl•H₂O; C, 30.94; H, 4.42; N, 21.66; Cl. 20.59. 35 Found:

C. 31.09: H. 4.26: N. 21.54: CL 20.27.

EXAMPLE 24

6-[1-(4-BOC)piperazinvI]-8-bromopurine

To 5.0 g (16 mmol) of 6-[1-(4-BOClpi)perazinyl]purine suspended in 250 ml of dioxane was added, with stirring, a solution of 25 g K,PHPO₄ in 250 ml water, followed after brief stirring by dropwise addition of 1.7 ml Br₂ (5.3g; 33 mmol). After about 1 hr, the mix was extracted five times with 100 ml portions of chloroform. The combined extracts were washed successively with aqueous NaHSO₃, saturated NaCl, dried over anhydrous Na₂SO₄, filtered and evaporated to give 5.52 g (1.4.4 mmol) of an orange white solid (90% crude yield). Recrystalization from EtOH provided an analytical sample:

Calculated for C₁₄H₁₃N₆O₂Br: C. 43.87: H. 5.00: N. 21.93: Br. 20.85.

Found:

55 C. 44.13; H. 5.12; N. 21.68; Br. 20.76.

EXAMPLE 25

6-[1-(4-BOC)piperazinyl]-8-methylaminopurine

A glass bomb liner was charged with 0.5 g of 6+[1-(4-BOC)piperazinyl]-B-bromopurine (1.3 mmol), 25 ml MeOH and ca. 10 ml H₂NCH, sealed, and heated with gentile agiation for 24 hours at 150 °C. The dark mixture that resulted was evaporated to a gum with a Ny-stream and purified by preparative tic on four 20 x 20 cm \times 1000 μ silica GF plates, developing with 11:0:90-conc. NH₂OH:MeOH:CHCl₃ to give 204 mg of a brownish gum. This was triturated several times with ether to give 100 mg of a residue which was crystalized from EtOH to give 51 mg (15% yield) of product.

Calculated for C₁₅H₂₃N₇O₂: 75 C, 54.04; H, 6.95; N, 29.41.

Found:

20

C, 54.17; H, 7.21; N, 28.61.

EXAMPLE 26

25 8-Bromo-6-(1-piperazinyl)purine dihydrochloride

A solution of 250 mg of 6-f1-(4-BOC)piperazinyll-8-bromopurine (0.65 mmol) in 8 ml abs. Ei:OH was treated with 1.5 ml ethanolic-HOI and allowed to stand overnight. The resultant suspension was filtered, and the cake washed successively with EiOH, EiOH/either, and finally either. The cake was dried by sucking dry su under N₂ to give a white powder. A sample dried overnight under high vacuum was submitted for analysis: Calculated for C₂H₁ N₂Br-2HCI:

C. 30.36; H. 3.68; N. 23.60; Br. 22.44; Cl. 19.91.

C. 30.19: H. 3.72: N. 22.66: Br. 20.50: Cl. 19.41.

35

40

EXAMPLE 27

6-Chloro-2,9-dimethylpurine

This was prepared in a manner similar to that described in Example 9 for 8-chloro-9-methylpurine, except that 5-amino-4-chloro-2-methyl-8-methylaminopyrimidine was used as the starting material and the reaction was carried out at 80°C for 6 hrs. The title compound was obtained in 97% yield.

EXAMPLE 28

50

6-[1-(4-BOC)piperazinyl]-2,9-dimethylpurine

6-Chiloro-2,9-dimethylpurine (1.0 g; 5.48 mmol) was dissolved in isopentyl alcohol (90 ml) and 1-BCCpiperazine (1.54 g, 8.25 mmol) was added, followed by triethylamine (1.16 ml; 8.25 mmol). This solution was heated under reflux (bath temp 146°C) overnight. The reaction mixture was evaporated to dryness in vacuo, followed by an additional evaporation from toluene. The residue was dissolved in CH₂Cl₂ and the

solution was extracted with aqueous 10% Na₂CO₃ solution. The organic layer was dried over MgSO₄ filtered, and evaporated to dryness. This residue was chromatographed on a column of silice gel 60 (200 g) developed successively with EIOAC (600 HID, EIOAC MGO HIG. EIOAC MGO HIG. EIOAC MGO HIG. 34 400 ml) and then EIOAC:MeOH (95:5) until completion. Fractions containing the required product were pooled and 5 evaporated to drynes to give a residue which crystallized on standing to give the title compound in quantitative yield.

Calculated for C₁₆H₁₄N₆O₂: C, 57.81; H, 7.28; N, 25.28. Found:

10 C, 57.93; H, 7.30; N, 25.12.

EXAMPLE 29

15

6-[1-(4-BOC)piperaziny/]-8-bromo-2,9-dimethy/purine

To a solution of 1.66g 6-[1-(4-BOC)piperazinyl}-B-bromo-2,9-dimethylpurine (4.97 mmol) in 90 ml diovane was added a solution of 9 g K-HPO₄ in 90 ml vater, followed after brief stirring, by dropwise addition of 0.5 ml Br₂ (1.8 g; 10 mmol). After 5 hours, the mix was extracted live times with 50 ml portions of CHCl₃ and time combined extensit washed with squeueu NaHPOs, saturated NaCl, dried over NasSO₄, filtered and everporated to give 3.5 g of a pinklet gum. Chromatography on 50 g slica gel packed in CHCl₃.

25 was carried out, eluting with CHCl₃ and then EtOAc:CHCl₃(1.9). A total of 1.8 g (4.4 mmol: 88% yield) of product, after crystallization from EtOH, was obtained. Recrystallization from EtOH gave material with mp 187-188° C.

Calculated for C₁₆H₂₃N₆O₂Br: C, 46.72; H, 5.64; N, 20.43; Br, 19.43.

30 Found:

C. 46.41; H. 5.63; N. 20.14; Br. 19.38.

EXAMPLE 30

35

6-[1-(4-BOC)piperazinyl]-2,9-dimethyl-8-methylaminopurine

A glass bomb liner was charged with 0.5 g 6-{1-(4-BOC)piperazinyl}-8-bromo-2.9-dimethylpurine (1.2 mnoi), 25 ml MeOH and 10 ml H₂NCH₃, sealed, and heated at 130 °C for 18 hours with gentle agitation. The recovered solution was concentrated to a gum under a stream of N₂, and purified on lour 20 × 20 cm × 100 μ silica GF plates, eluting with 0.55:95/conc. NH₂-DH-MoCH-CHCl₃ to give 512 mg (1.4 mmol; 94% crude yield). Recrystallization from EICH/ether cave 191 mg of product np. 209-211.

Calculated for C₁₇H₂₇N₇O₂: C, 56.49; H, 7.53; N, 27.13.

Found:

C, 56.64; H, 7.60; N, 27.02.

EXAMPLE 31

55

6-(1-(4-BOC)piperazinyI12,9-dimethyl-8-dimethylaminopurine

A glass bomb liner was charged with 0.4 g of 6-[1-(4-BOC)piperaziny]-2.9-dimethyl-6methylaminopurine (0.97 mm0), 30 ml MeOH, and ca. 10 ml HN(CH₃)₂, sealed and heated with gentle s agitation for 15 hours. The recovered material was concentrated to an oil under a stream of N₂ and purified on four 20 x 20 cm x 1000 μ silica GF plates, developed with 1:10-90/conc.NH.OH.MeOH:CHCl₃, to give 331 mg (.98 mmol; quantitative) of crude product. Recrystallization from EtOH gave material with mp 157-156 °C.

10

EXAMPLE 32

15

2,9-Dimethyl-8-methylamino-6-(1-piperazinyl)purine dihydrochloride

To 175 mg of 6-[1-(4-BOC)piperazinyl-2,9-dimethyl-8-methylaminopurine (0.48 mmol) was added ca. 0.5 ml of conc. HCl. The mixture loamed initially, then settled to a slightly cloudy solution. After 1 hour teaction mixture was concentrated to 0.3 ml under a stream of N₂ diluted to 2 ml with 95% EiOH and concentration resumed. When crystallization commenced the solution was stoppered and allowed to stand until complete. After filtration, washing successively with EiOH, EiOH/either, and finally ether, followed by drying in a N₂ stream, 148 mg (0.44 mmol; 92% yield) of product was obtained: Calculated for C₂-1h₁-N₂-2PICH-1.9/H₂O.

25 C, 39.10: H, 6.82; N, 26.60; Cl, 19.24. Found:

C. 39.32: H. 6.74: N. 26.56: Cl. 19.03.

30

EXAMPLE 33

35 6-[1-(4-BOC)piperazinyI]-2,9-dimethyl-8-)1-pyrrolidinyI)purine

A glass bomb liner was charged with 298 mg of 6-[1-(4-BOC) piperaziny]t-8-bromo-2-9-dimethylpurine (0.72 mmol), 25 ml MeOH, and 10 ml pyrrolidine, sealed, and heated at 130 for 15 hours with gentle agitation. The recovered material was concentrated under a stream of № and purified on four 20x20 cm cmx1000 µ silica GP plates developed with 2:120-80/conc.NH.OH.MOH.CHC/ICl; to give 0.277 g (0.89 mmol; 95% yield) of crude product. Recrystallization from EIOH acw material with mo. 197-199 C.

EXAMPLE 34

45

50

6-f1-(4-BOC)piperazinyl1-2,9-dimethyl-8-methoxypurine

A solution of 300 mg 6-11-4-BOCp)pierazinyl}-B-bromo-2,9-dimethylpurine (0,73 mmol) in 4 ml MeOH was treated with 1 ml of 4M NaOMe in MeOH and then refuxed for 2 hours. After concentration to a gum under a stream of Na, the residue was partitioned between aqueous 10% NaHCO₃ and CHOI₃ and the aqueous phase was further extracted four more times with CHOI₃. The combined organic extracts were so dried with Na₂SO₄ and exportated to a cloudy oil which was purified on four 20x20 cm x1000 µ silica GF plates, developed with 1:1 EtOAcCHOI₃ to give 200 mg (0.55 mmol; 75% of crude product). Recrystalization from ether gave 127 mg of pure product, m. 128-129 °C.

EXAMPLE 35

2,9-Dimethyl-8-dimethylamino-6-(1-piperazinyl)purine dihydrochloride

The procedure used in Example 32 was employed using the corresponding 8-dimethylamino analog (prepared as in Example 31). In this case, the crude product was recrystallized successfully only after or excess water was removed by distilling off several portions of absolute EtOH. The final mixture was concentrated and upon standing the product crystallized.

Calculated for C₁₃H₂₁N₇•2HCl•1.2H₂O: C, 42.21; H, 6.92; N, 26.51; CI, 19.17.

Found:

15 C, 42.18; H. 6.92; N, 26.39; Cl, 18.99.

EXAMPLE 36

20

2.9-Dimethyl-6-(1-piperazinyl)-8-(1-pyrrolidinyl)purine dihydrochloride

5 The process described above in Example 32 was repeated using the 8-(1-pyrolidiny)) analog (prepared as described in Example 33). As in Example 35, the EtOH azeotropic removal of water was used to encourage crystallization.

Calculated for C₁₅H₂₃N₇•2HCl•0.2 H₂O: C, 47.66; H, 6.77; N, 25.95; Cl, 18.76.

30 Found:

C, 47.80; H, 6.67; N, 25.93; CI, 18.65.

EXAMPLE 37

35

40

6-[1-(4-BOC)piperazinyl]-8-methoxy-9-methylpurine

A solution of 0.5 g of 6-[1-(4-BOC)piperazinyl]-b-bromo-9-methylpurine (1.28 mmol) in 5.0 ml MeOH was treated with 1.0 ml of 4M NaOMe in MeOH, stirred, and heated under reflux for 1.5 hours. After concentration to a gum under a N₂ stream, the residue was partitioned between 10% NaHCO₃ and CHCl₃, the aqueous phase was extracted three more times with CHCl₃, the combined CHCl₃ extracts washed with 4s saturated NaCl and dried over Na₂SO₄. After illitation and concentration, the residue, 483 mg, was taken up in ether, concentrated to an oil and the process repeated. Finally, the residue was taken up in ether and concentration boiling to about 0.8 ml. Upon standing, the product crystallized and, after isolation, weighed 256 mg (0.74 mmolt; 58% yeldd).

EXAMPLE 38

55

6-[1-(4-BOC)piperazinyI]-8-dimethylamino-9-methylpurine

A glass bomb liner was charged with 0.4 g of 6-[1(4-BOC)piperazinyi]-B-tromo-8-methylpurine [1.0 mmol), 30 ml MeOH, and ca. 10 ml HN(CH₃)₂, sealed, and heated at 130°C with gentle agitation for 15 5 hours. The recovered material was concentrated to an oil under a Ne, stream and purified on four 20x20cmx10000 u. slica GF plates developed with 1:10:90/NHLOH:MOOH:CHG) to give 320 mg of a yellowish oil (1.02 mmol; quantitative). It could be crystallized from a highly concentrated solution in MeOH.

EXAMPLE 39

15 8-Methoxy-9-methyl-6-(1-piperazinyl)purine

10

25

30

40

To 125 mg of 6-f1-(4-BOC)piperaziny/I-9-methoxy-9-methylpurine (0.36 mnol) was added ca. 0.5 ml of trifluoroacetic acid. After the initial foaming subsided the solution was allowed to stand 15 minutes, then was evaporated under an N₂ stream to a thick gum. After repeated dissolution in about 1 ml of MeOH and rese evaporation, the crude product was dried under high vacuum for 15 min. The crude deblocked purine was taken up in ca. 0.5 ml of deionized water and carefully applied to a column of Dowex 1x2(OH) resin (5 ml). Collection of the eluant was begun and 20 ml of deionized water was run through. The eluate was lyophylized to give 105 mg (quantitative recovery) of a yellowish gum of the title compound as the free base.

EXAMPLE 40

6-[1-(4-BOC)piperazinyl]-9-methyl-8-(1-pyrrolidinyl)purine

A glass bomb liner was charged with 0.4 g 641-(4-BOC)piperazinyll-8-bromo-9-methylpurine (1.01 mmol), 30 ml of MeOH, and 10 ml of pyrrolidine, sealed, and heated at 130 °C with gentle spitation for 15 hours. The recovered material, after concentration to an oil under a N₂ stream, was purified on four 20x20cmx1000 u silica GF plates developed with 3.30:70/NHx.OH:MoCH:CHCl3 to give 327 mg (0.84 mmol; 83% crude yield) of the title compound. Recrystallization from EIOH gave 149 mg pure product.

EXAMPLE 41

6-[1-(4-BOC)piperazinyl]9-methyl-8-methylthiopurine

A mixture of 0.4 g.6-[1-(4-BOC)piperazinyl]-B-bromo-9-methylpurine (1.01 mmol), 500 mg thioures (6.6 mmol), and 5.0 ml MeOH was refluxed for 30 hours. The resultant suspension was cooled to ambient temperature and 1.4 ml of 4M NaOMe in MeOH (5.6 mmol) was added with stirring; a clear solution resulted. To this was added 0.4 ml of CH₃ (0.91 g; 6.4 mmol) and stirring was continued overnight under a N₂ atmosphere. The clear solution obtained was evaporated to a paste under a stream of N₂, and the residue was taken up in a mixture of NaHCO₃/H₂O/CHCl₃. The aq. phase was further extracted with CHCl₃, the extracts combined, dried with Na₂SO₄, filtered and evaporated to give a thick yellowish oil. This was separated on silica cel, developed in acction: CHc₂Cl₃ (1.4) to give the title compound.

EXAMPLE 42

9-Methyl-6-(1-piperazinyl)-8-(1-pyrrolidinyl)purine dihydrochloride

To 130 mg of 6-[1-(4-BOC)piperaznyl-9-methyl-9-(1-pyrrolidinyl)punne (0.33 mmol) was added ca 0.5 ml concentrated HCL After 15 minutes, the solution was evaporated to a solid under a stream of Ns. The residue was taken up in absolute EtOH with heating and the EtOH boiled off to azeotropically any the product. The process was repeated a second time. The third time, the solution was concentrated and then diluted to 1.0 ml with absolute EtOH. After standing overnight, the crystals were isolated by filtration, washed with EtOH, EtOH'ether, and ether, then dried under N₂ to give 78 mg (0.29 mmol: 38% yield) of the title compound as a white powder.

75 Calculated for C_{1.6}H₂·N₇•2.1HCl•0.5 H₂O C. 45.08; H, 6.52; N, 26.29; Cl, 19.96. Found: C, 44.95; H, 6.12; N, 26.23; Cl, 19.91.

20

40

EXAMPLE 43

8-Dimethylamino-9-methyl-6-(1-piperazinyl)purine dihydrochloride

By substituting the appropriate 8-dimethylamino analog (see Example 38) in the reaction described above, (Example 42) the corresponding (title) product was obtained.

30 Calculated for C₁₂H₁₉N₇•2.15HCl•0.6H₂.O C, 41.12; H, 6.43; N, 27.98; Cl, 21.75. Found:

C, 41.23; H, 6.16; N, 27.86; Cl, 21.90.

EXAMPLE 44

5-Amino-4-[1-(4-BOC)piperazinyl]-2-methyl-6-methylaminopyrimidine

5-Amino-4-chloro-2-methyl-6-methylaminopyrimidine (1,50 g; 8.7 mmol) and BOC-piperazine (7,50 g; 40.3 mmol) were mixed and heated at 130 °C in a met. After 24 hs, an additional 1.0 g of BOC-piperazine 49 was added, and after 48 hrs, a further 2.0 g were added. The reaction was worked up after 55 hrs, total reaction time. The reaction mixture was dissolved in a minimum amount of CH_CI₂ and absorbed omto a small amount of silica gel 60 by evaporation to dryness. This was piaced atop a silica gel column (250 g) which was developed with EiOAc. Fractions containing the required product were pooled and evaporated to dryness to give 17 g of material contaminated with both starting materials. Further chromatography on so another column of silica gel 60 (170 g), followed by preparative thick layer plates gave the title compound as a thick syrup (500 mg; 18% yield) contaminated with a trace amount of BOC-piperazine.

EXAMPLE 45

6-[1-(4-BOC)piperazinyI]-2,8,9-trimethylpurine

To the foregoing material prepared in Example 44, (490 mg. 1.6 mmol) in 2-methoxyethanol (2.5 ml) was added acetamidine acetale (378 mg. 2.2 mmol) and the mixture was heated under reflux for 20 hr. 5 Upon cooling, 10% aq, Na₂CO₂ was added and the mixture was extracted with EtOAc. The pooled organic layers were dried (Na₂SO₄), filtered, and evaporated to dryness. This residue was chromatographed on a column of sitica get 80 (100 g) developed in EtOAc and then a step gradient of MeOH in EtOAc (µto 10% MeOH) to give 340 mg of the title compound (61%) which was slightly contaminated by NMR evaluation. Crystallization from evolohexane cave material suitable for deblocking.

EXAMPLE 46

6-(1-Piperazinyl)-2,8,9-trimethylpurine dihydrochloride

The foregoing material prepared in Example 45, (97 mg; 0.28 mmol) was dissolved in absolute ECOH (3 ml) and ethanolic HOI (2 ml) was added. This solution was allowed to stand at room temperature for 1 hour and then was blown down to dryness under a stream of nitrogen. Trituration under Et₂O containing a little ECOH gave 79 mg of crude material which contained some impurities. This was recrystallized from abs. EIOH to give 22 mg of impure material, but the mother (lugros: after concentration to dryness gave 49 mg.)

of analytically pure product. Mass spectrum showed molecular ion m/e = 246.

25 Calculated for C₁₂H₁₈N₆•2HC|•1.2 H₂O:

C, 42.28; H, 6.62; N, 24.42.

Found:

20

35

45

15

C, 42.11; H, 6.46; N, 24.66.

EXAMPLE 47

4-[1-(4-BOC)piperazinyI]-5,6-diamino-2-methylpyrimidine

This was prepared in a manner similar to that described in Example 10 for 4-[1-(4-80C)piperazinyl]-5.6diaminopyrimidne except that 6-chloro-4,5-diamino-2-methylpyrimidline was used as the starting material.

The title compound was obtained in a yield of 74% after silica gel chromatography.

EXAMPLE 48

6-[1-(4-BOC)piperazinyl]-2,8-dimethylpurine

The foregoing material prepared in Example 47, (450 mg; 146 mmol) was dissolved in 2-methoxyethanol (5ml) and acetamidine acetate (354 mg; 3 mmol) was added. This solution was heated at reflux of 24 hrs, when to indicated completion of the reaction. The mixture was cooled to room temperature and 10% aqu. Na₂CO₃ was added, followed by EtOAc. The required product was insolutel and was filtered off and washed with H₂O and then EtOA₂C, to give 258 mg of the title compound (0.78 mmol, 53% yield).

55 Calculated for C₁₆H₂₄N₆O₂•0.6H₂O: C, 55,98: H, 7,40: N, 24,49.

Found:

C. 55.61; H. 7.09; N. 24.16.

EXAMPLE 49

2,8-Dimethyl-6-1(1-piperazinyl)purine hydrochloride

The foregoing material (113 mg, 0.34 mmol) was dissolved in hot EiOH (8 ml) and ethanolic HCI (4 ml) was added. After 1 hour at room temperature, the solution was blown down to dryness under a stream of reitrogen and the residue was triturated under EiOH:EisO (1:1, 4 ml). The solid so obtained vas washed with EisO and dried to give 107 mg of the title compound. This was recrystallized from EiOH to give 66 mg of product (0.21 mmol, 62%).

Calculated for C1+H15N16+2HCl+0.4 H2O:

C, 42.28; H, 6.06; N, 26.90.

15 Found:

C, 42.48; H, 5.45; N, 26.48.

EXAMPLE 50

20

6-[1-(4-BOC)piperazinyl]-2-chloropurine

A solution of 2.8-dichloropurine (10.02 g, 52.0 mmol), BOC-piperazine (11.85 g; 63.6 mmol), and triethylamine (11.08 mi; 79.5 mmol) in absolute EIOH (200 mi) was allowed to stir at room temperature for 40 min. (white precipitate formed) and then was heated at 70-80 °C (bath-temp) under a reflux condenser, under nitrogen for 3 hours. The mixture was cooled and the precipitate which formed was collected by filtration, Yfeld 16.27 a (48.02 mmol. 90.6%).

Calculated for C14H19N6CIO2: C. 49.63; H. 5.65; N. 24.81.

Found:

C, 49.60; H, 5.69; N, 24.49.

35

EXAMPLE 51

40

6-[1-(4-BOC)piperazinyl]-2-chloro-9-methylpurine

46-f1-(4-BOC)piperazinyl)-2-chloropurine (5.76 g, 17.0 mmol) was dissolved in sieve-dried DMF (100 m) and anhydrous KcOO, (2.58 g, 18.7 mmol) and methyl iodide (2.12 m, 340 mmol) were added. This mixture was stirred overnight at room temperature, under a Drierite guard tube. The mixture was evaporated to dryness in vacuo and the residue was partitioned between Et₂O and H₂O. Some solid remained undissolved and this was filtered off and partitioned between Ch4_CO₂ and H₂O. The total organic layers were pooled and evaporated to dryness to give a white solid residue which was triturated under Et₂O and filtered. The solid was air-dried to give 4.14 g of the title compount (6.9% yield).

Calculated for C₁₅H₂ · N₅ClO₂ • 3H₂O:

C. 50.29; H. 6.08; N. 23.46.

Found:

C, 50.58; H, 5.90; N, 23.25.

EXAMPLE 52

2-Chloro-9-methyl-6-(1-piperazinyl)purine hydrochloride

The foregoing material prepared in Example 51, (247 mg, 0.70 mmol) was dissolved in absolute EICH (8 ml) and to this solution was added EICH saturated with HOI (3 ml). A solid precipitated immediately and 5 was removed by centrifugation after concentration of the mixture to 4 ml under a stream of nitrogen. Thin layer chromatography of this solid indicated incomplete deblocking and it was treated again with ethanolic HCI for 3 hours. The solid was recovered by filtration, washed with EtOH, and dried to give 124 mg (0.43 mmol; 61% yield) of the title compound.

Calculated for C₁₀H₃N₅Cl•HCl•O.4H₂O: 10 C, 40.53; H, 5.03 N, 28.36; Cl, 23.92.

Found: C. 41.18: H. 4.88: N.27.81: Cl. 23.78.

15

35

EXAMPLE 53

20 6-[1-(4-BOC)piperazinyl]-9-methyl-2-morpholinopurine

6-{1-(4-BOC)piperazinyl}-2-chloro-9-methylpurine (352.8 mg. 1.0 mmol) was dissolved in distilled morpholine (5 ml) and heated (bath-temp. 150 °C) under № for 27 hours. The reaction mixture was cooled to room temperature and then evaporated to dryness in vacuo (several times from toluene to remove the last at races of morpholine). The residue was dissolved in a minimum amount of CH₂Cl₂ and absorbed onto silica gel 60 column (40 g) packed in hexanes. The column was developed successively with EtOAc: hexanes (2:3), EtOAc:hexanes (1:1), and finally with EtOAc:hexanes (3:2). Fractions containing the required product were pooled and evaporated to dryness to give 368 mg (91% vield) of the title comound.

30 Calculated for C₁₉H₂₉N₇O₃•0.35H₂O: C, 55.64; H, 7.29; N, 23.91.
Found:

C, 55.92; H, 6.84; N, 23.52.

EXAMPLE 54

9-Methyl-2-morpholino-6-(1-piperazinyl)purine dihydrochloride

The foregoing material prepared in Example 63, (310 mg; 0.77 mmol) was dissolved in absolute EtO+ (7 ml) and EtOAc (2 ml), with warning. To this soution was added EtOH saturated with HCI (4 ml) and the 45 mixture was concentrated to 5 ml under a stream of nitrogen and Et₀ 0 (5 ml) was added. The solid so formed was isolated by centrifugation and washed 3 times with Et₀ 0 to give the title compound in good yield.

Calculated for C₁₊₁+: N-O-2HCi:

C, 44.68; H, 6.16; N, 26.06.

50 Found:

55

C. 44.75; H. 6.39; N. 25.75.

EXAMPLE 55

6-[1-(4-BOC)piperazinvII-9-methyl-2-pyrrolidinvipurine

6-[1-4-BOC]piperazinyl[-2-chloro-9-methylpurine (0.396 g; 1.12 mmol) was dissolved in EiOH (15 ml) and pyrrolidine (10 ml) was added. This solution was heated under reflux (bath temp 120-130 °C) for 6 5 hours and allowed to cool to room temperature. The mixture was evaporated to dryness and the residue was separated between CH₂Cb₂ (70 ml) and 10% aq. Na₂CO₃ (70 ml). The aq. layer was washed two more times with CH₂Cb₂ (270 ml) and the pooled organic layers were dried (MgSO₄), filtered, and evaporated to dryness in vacuo to give 0.450 g (quantitative yield) of the title compound as a white powder.

10 C, 58.08, H, 7.65, N, 24.96,

Found:

C. 58.35; H. 7.56; N. 24.69.

EXAMPLE 56

20 9-Methyl-6-(1 piperazinyl)-2-pyrrolidinylpurine dihydrochloride

The foregoing material prepared in Example 55, (0.410 g: 1.06 mmol) was dissolved in EtiOAc (30 ml) and ethanolic HCI (15 ml) was added. After standing at room temperature for 1 1.2 hour, the solution was blown down under a stream of nitrogen to a syrup. This was triturated under EtiOH-Et₂O (8 ml) to give a swittle powder which was washed with Et₂O and dried in vacuo to give 315.3 mg (0.87 mmol; 83%) of the title compound.

Calculated for C₁₄H₂₁N₇•2HCl•0.25H₂O

C. 46.10: H. 6.49: N. 26.88.

Found:

30 C. 46.11; H. 6.32; N. 26.55.

EXAMPLE 57

35

6-[1-(4-BOC)piperazinyI]-9-methyl-2-methylaminopurine

49 A suspension of 641-(4-BCD)piperazinyl-)2-chibror-9-methylpurine (0.250 g; 0.71 mmol) in EtOH (8 ml) was cooled to 0° and added to anhydrous methylamine (3 ml) condensed in a pressure table. The tube was sealed and scaled at 110° C for 5 1.2 hours. After cooling to room temperature. CH₂Cl₂ and 10% aq. Na;CO₁ were added and the layers were separated. The aqueous layer was washed two more times with CH₂O₂ and the pooled organic layers were dried (MgSO₄), filtered and evaporated to dryness. The residues were recrystallized from CH₂Cl₂ (5ml)-hexanes (20 ml) to give 150 mg (0.45 mmol, 83%) of the title comogund in two cross.

Calculated for C₁₆H₂₅N₇O₂:

C, 55.31; H, 7.25; N, 28.22.

Found:

50 C, 55.46; H, 7.22; N, 28.31.

EXAMPLE 58

9-Methyl-2-methylamino-6-(1-piperazinyl)purine dihydrochloride

This was prepared from the foregoing compound prepared in Example 57 by deblocking with ethanolic HCI in the usual fashion.

5 Calculated for C₁₁H₁₇N₇•HCl: C, 41.26; H, 5.98; N, 30.62. Found: C, 41.07; H, 6.05; N, 30.29.

10

EXAMPLE 59

6-[1-(4-BOC)piperazinyl]-2-dimethylamino-9-methylpurine

20 Method A

6-[1-(4-BC)[plorezainyl]-2-chloro-9-methylpurine (0.49 g; 1.41 mmol) was dissolved in EIOH (15 ml), chilled, and added to 10 ml of anhydrous dimethylamine (condensed at 7-8 C) in a Fischer-Porter tube. The tube was sealed and heated at 120-130 for 5 hours. After cooling to room temperature, the reaction mixture was evaporated to dryness to give a white residue of 0.58 g. This was separated between CH₂Cl₂ (70 ml) and 10% aq. Nag-CO₃ (70 ml) and the aqueous layer was washed two more times with CH₂Cl₂ (2x70 ml). The pooled organic layers were dried (MgSCl₃) filtered, and evaporated to dryness to give 0.50 g (1.38 mmol, 98%) of the 8tile compound.

Calculated for: C₁₇H₂₇N₇O₂: 30 C, 56,49: H, 7,53: N, 27,13.

Found:

C, 56.65; H, 7.58; N, 26.95.

35 Method B

6-(1-(4-BOC)piperazinyl}2-chioro-9-methylpurine (0.352 g; 1.0 mmol) was dissolved in n-butanol (30 ml) and 40% aq. dimethylamine (10 ml) was added. This mixture was heated in a seeled tube at 150° for 24 hours, at which point tie indicated no starting material remaining, but two products were apparent. The reaction mixture was blown down under a stream of ritrogen and then was evaporated to dryness. This residue was absorbed onto slica gel 60 column (30 g). The column was developed first with EtOA-chevanes (1:1) to give 110 mg (30% yield) of the title compound identical by tie and NMR with that prepared by Method A (above).

Calculated for: C₁₇H₂₇N₇O₂: 45 C. 56.49: H. 7.53: N. 27.13

Found:

C. 56.83; H. 7.65; N. 26.99

Further development of the column with CH₂Cl₂: MeOH 9:1 gave 180 mg (69% yield) of 2-dimethylamino-9methyl-6-(1-piperazinyl)purine as the free base.

EXAMPLE 60

55

50

2-Dimethylamino-9-methyl-6-(1-piperazinyl)purine dihydrochloride

Method A

The free base of the title compound obtained by Method B in the foregoing example (Example 59) (185 mg; 0.83 mmo)) was dissolved in EtOH (4 ml) and ethanolic HCI (2 ml) was added. The solution was blown 5 down under a stream of nitrogen and the residue was triturated under EtOH (2 ml). A solid formed which was washed with EtOH (0.5 ml) and then Et_QO before being dried in vacuo overnight at 40 °C to give 96 mg (0.27 mmol) of the title compound.

Calculated for C₁₂H₁₉N₇•2HCl•1.3H₂O:

C, 40.30; H, 6.64; N. 27.42.

Found: C. 40.34; H. 6.30; N. 27.06.

Method B

641-44-BCC)picerazinyl}-2-dimethylaruno-9-methylpunne (50 mg; 0.14 mmol) was dissolved in EIOH (4 ml) and ethanolic HOI (2 ml) was added. After 1 hour at room temperature, the solution was blown down to about 1 ml under a stream of nitrogen. Product precipitated and an additional 2 ml of Ei_EO was added. The about 1 ml under a stream of nitrogen. Product precipitated and an additional 2 ml of Ei_EO was added. The 30 was washed by centrifugation with Ei_EO (2x2 ml) and dried at 40 ¹ in vacuo to give 42 mg (0.13 mmol, 30 %) of the title compound identical in all respects to that orepeared by Method A (above).

EXAMPLE 61

25

45

15

6-[1-(4-BOC)piperazinyl]-8-bromo-2-dimethylamino-9-methylpurine

36-f1-(4-BCC)pioerazinyI)-2-dimethylamino-9-methylpurine (0.48 g; 133 mmol) was dissolved in distance (25 ml), with warming, and a solution of KsHPO. 2.39 gi in H-Q (25 ml) was added. To this well-strine solution was added bromine (0.2 ml), dropwise over a period of 1-2 min. After 45 min. at room temperature, the reaction was blown under a stream of introgen and evaporated to dryness. The residues so obtained was separated between CH-Cg- (66 ml) and 10% aq. Nag-CG₃ (60 ml), and the aqueous layer was washed two 5 more times with 60 ml of CH₂Cg. The pooled organic layers were direct (MgSCA), filtered, and evaporated to dryness to give 0.44 g. This residue was purified by chromatography on silica gel 60 using CH₂Cg and a step gradient of EICH in CH₂Cg as developing solvents, and then rechromatography using EICAc-hexanes, gave 1982 mg of the title compound in 34% yield.

Calculated for C₁₇H₂₅N₇O₂Br: 40 C, 46.37; H, 5.95; N, 22.27. Found: C, 46.57; H, 5.98; N, 22.08.

-, ----, -, ----, -, -

EXAMPLE 62

50 6-[1-(4-BOC)piperazinyl]-2,8-bis(dimethylamino)-9-methylpurine

The foregoing material propared in Example 61. (198.2 mg; 0.45 mmol) was dissolved in n-butanol (10 ml), with warming, and added to anhydrous dimethylamine (10 ml) (condensed at -78° C) in a pressure bottle. This solution was sealed and heated at 120-130° C for 4 hours. T.C indicated the reaction to be sincomplete, and an additional 10 ml of condensed dimethylamine was added and the reaction continued overnight. The mixture was then cooled to room temperature, blown down to small volume under a stream of nitrogen, and evaporated to dryness. This residue was separated between CH₂Cb₂ (60 ml) and 10% ague of the condense of the cooled the cooled to the cooled t

organic layers were dried (MgSQ.), filtered, and evaporated to dryness. This residue was chromatographed on a column (2x36 cm) of silica gel 80 developed successively with a step gradient of EIOAc in hexanes (10% increments starting with EIOAchexanes 1:9). Fractions containing the required product were pooled and evaporated to dryness to give a quantitative yield of the title compound as a clear glass which solidified 5 on standing overnight.

Calculated for $C_{19}H_{92}N_8O_2.0.25H_2O$: C, 55.79; H, 8.01; N, 27.40. Found:

C, 55.91; H, 7.65; N, 27.31.

15

30

25

EXAMPLE 63

2,8-Bis(dimethylamino)-9-methylpurine dihydrochloride

The foregoing material (180 mg; 0.44 mmol) was dissolved in EIDH (6 ml) and ethanolic HCI (5 ml) was added. After standing at room temperature for 15 minutes, the solution was slowly blown down to a syrup under a stream of nitrogen. This residue was titurated under EIDH-Elgo (8 ml) and the solid so formed was isolated and washed with Elgo to give 121.3 mg (0.32 mmol; 73%) of the title compound. An analytical sample was obtained by reconversion to the free base (extraction into CH₂Cl₂ from 10% aq. Na₂CO₃), followed by re-conversion to the dishydrochiod sate by treatment with ethanolic HCI.

25 Calculated for C14H24N8 2HCI+0.4H2O:

C, 43.73; H, 7.03; N, 29.14. Found:

C, 43.95; H, 6.95; N, 28.83.

EXAMPLE 64

6-[1-(4-BOC)piperazinyI]-2-methoxy-9-methylpurine

Sodium spheres (110 mg, 4.8 mmol) were dissolved in anhydrous methanol (10 ml) and 6-11-4-8-0Ctpiporazinyl/2-chitoro-9-methylpurine (430 mg, 1.2 mmol) was added. This mixture was heated under reflux
under nitrogen for 4 days and then allowed to cool to room temperature. The reaction was neutralized with
glacial acetic acid and evaporated to dryness in vacuo to give a withe residue. This was adsorbed onto
silica gel 69 and placed on top of a silica gel 60 column (90 ml), packed in hoxanes. The column was
developed successively with EtOA-chexanes (1:4), EtOA-chexanes (3:7), EtOA-chexanes (1:1) and finally,
EtOA-chexanes (3:2). Fractions containing the required product were pooled and evaporated to dryness to
set give a residue which was triturated under hexanes to give a 64% yield of the title compound as a white
solid.

Calculated for $C_{16}H_{24}N_6O_3$: C, 55.16; H, 6.94; N, 27.12. Found:

50 C. 55.34; H. 6.84; N. 24.06.

EXAMPLE 65

2-Methoxy-9-methyl-6-(1-piperazinyl)purine dihydrochloride

The foregoing compound prepared in Example 84, (2.1 mg, 0.8 mmol) was dissolved in assolute EIOH (5 ml) with warming. To this solution was added EIOH saturated with HCI (2 ml) and after 1 hour the 5 solution was concentrated to 4 ml under a stream of nitrogen. The white precipitate so formed was collected by centrifugation and washed with EI₂O (4x2 ml). Re-working of the supernatants gave 51 mg (0.16 mmol: 28%) in total, of the title compound, m.p.>280 °C.

Calculated for C11H16N6Oe2HCIe1.25H2O:

C. 38.44: H. 6.01: N. 24.45.

to Found:

C. 38.44: H. 5.88: N. 26.16.

EXAMPLE 66

6-[1-(4-BOC)piperazinyl]-9-methyl-2-(2-propoxy)purine

Sodium spheres (92 mg, 4 mmol) were dissolved in 2-propanol (9 ml) and 6-[1-(4-BOC)piperazinyi]-2chron-9-methylpurine (352.8 mg; 1 mmol) was added. This mixture was heated under reflux under nitrogen for 3 days and then was exported to dryness in yacuporatidue was partitioned between CH₂Ol₃ and H₂Ol

for 3 days and then was evaporated to dryness in vacuoresidue was partitioned between CH₂Cl₂ and H₂O and the organic Jayer was dried (MgSO₄), littered, and evaporated to dryness. This residue was adsorbed to too silica gel 80 and placed on top of a silica gel 80 column (50 g), packed in hexanes. The column was developed successively with EtOAchexanes (1:3), EtOAchexanes (1:1), and finally with EtOAchexanes (3:2). Fractions containing the required product were pooled and evaporated to dryness to give 214 mg of the title compound (57% yield).

Calculated for C-8H-8N6O3 • 0.25 H2O:

30 C, 56.75; H, 7.54; N, 22.06.

Found:

35

20

C. 56.73: H. 7.35: N. 21.66.

EXAMPLE 67

40 9-Methyl-6-(1-piperazinyl)-2-(2-propoxy)purine dihydrochloride

The foregoing material prepared in Example 68, (224 mg, 0.54 mmnl) was dissolved in absolute EtOH (5 ml) and to this solution was added ethanolic HCI (3 ml). After 1 hour at room temperature, this solution was concentrated to 4 ml under a stream of nitrogen. Ether (4 ml) was added and the white solid so formed was soluted by centrifugation and washed well (8x) with ether. Yield 132 mg (2 crops), 71% yield. Calculated for C-3H₂-N₂C-2HCi=1.15 H.D:

C. 42.20; H. 6.60; N. 22.72.

Found:

C, 41.97; H, 6.18; N, 22.61.

EXAMPLE 68

6-f1-(4-BOC)piperazinyl1-2-dimethylaminopurine

A suspension of 6-[1-(4-BOC)piperazinyl]-2-chloropurine (0.25 g; 0.74 mmoi) in EtOH (6 ml) was cooled to 0° and added to anhydrous dimethylamine (3 ml) condensed in a pressure bottle. The bottle was sealed 5 and heated at 110°C for 5 1/2 hr. The mixture became homogeneous as the reaction progressed. At completion of the reaction, the tube was cooled and the mixture was blown down under a stream of nitrogen. The residue was partitioned between CH2Cl2 and 10% aq. Na2CO3 and the organic phase was dried (MgSO4), filtered, and evaporated to dryness, Further separation between CH2C12 and 10% aq. Na₂CO₃, followed by re-working of the organic phase as described above, gave the title compound in 97% 10 vield (250 mg; 0.71 mmol).

Calculated for C16H25N7O2:

C. 55.31: H. 7.25: N. 28.22.

Found:

C. 54.95; H. 7.25; N. 28.51.

EXAMPLE 69

20

15

2-Dimethylamino-6-(1-piperazinyl)purine dihydrochloride

The foregoing material prepared in Example 68, (220 mg; 0.63 mmol) was dissolved in hot EtOH (20 25 ml) and cooled to room temperature. Ethanolic HCI (10 ml) was added and the mixture was allowed to stand at room temperature for 1 hour (product started to precipitate after about 30 min.). The mixture was then blown down to about 10 ml under a stream of nitrogen and then Et₂O (10 ml) was added. The precipitated product was filtered off and washed with Et₂O. Yield 0.218 g (quantitative yield)

Calculated for C11H17N7+2HCI+2.8 H2O 30 C, 35.64; H, 6.40; N, 26.45.

Found:

C. 35.39; H. 6.02; N. 26.30.

35

EXAMPLE 70

40 2-Chloro-8-[1-(4-methylpiperazinyl)]purine

2,6-Dichloropurine (4.53 g; 24 mmol) was dissolved in EtOH (100 ml) and N-methylpiperazine (2.90 g, 29 mmol) was added, followed by triethyl amine (5.01 ml, 36 mmol). This mixture was heated under reflux for 45 min. (tic after 15 min showed traces of starting material). Upon cooling to room temperature, the 45 product precipitated and was filtered off and dried. Yield 5.80 g (23 mmol, 96%)

Calculated for C10H17N6CI: C. 47.53; H. 5.18; N. 33.26.

Found:

C. 47.43; H. 5.34; N. 33.03.

50

EXAMPLE 71

2-Dimethylamino-6-[1-(4-methylpiperazinyl)]purine dihydrochloride

The foregoing material prepared in Example 70, (0.700 g; 2.77 mmol) was added to anhydrous dimethylamine (5 ml; condensed in a pressure tube) and chilled EtOH (8 ml) was added. The tube was 5 sealed and heated at 110°C for 5 1/2 hours, during which time dissolution occurred. Upon cooling to room temperature a solid formed and the cooled mixture was blown down to dryness under a stream of nitrogen. The residue was dissolved in CH₂Cl₂ and extracted with 10% aq. Na₂CO₃ and the organic phase was dried (MgSO₄), filtered and evaporated to dryness to give 0.850 g (2.49 mmol; 90% yield) of the little compound as the firee base. A portion, 0.100 g (0.38 mmol), of this material was dissolved in hort EtOH is ml) and rooted to room temperature. Ethanolic HCl (4 ml) was added and the product started to precipitate out after ca. 5 min. After 1 hour, the solution was blown down under a stream of nitrogen and the residue was triturated under EtOH-Et₂O. The precipitated product was filtered and washed with Et₂O. Yield 0.122 g (0.37 mmol; 97% from fire base).

Calculated for C₁₂H₁₃N₇•2HCl•2.4 H₂O:

75 C, 38.17; H. 6.88; N, 25.97.

Found.

20

C, 37.89; H. 6.45; N, 25.76.

EXAMPLE 72

25 2-Dimethylamino-9-methyl-6-[1-(4-methylpiperazinyl]purine dihydrochloride

The free base of the foregoing material prepared in Example 71, (150 mg; 0.58 mmol) was dissolved in sleved-riced DMF (10 ml) and NaH (60% in oil: 40 mg, 24 mg of NaH, 1 mmol) was added. This mixture was stirred at room temperature under N₂ until evolution of hydrogen gas had ceased (20 min). Methyl iodide (0.043 ml; 0.7 mmol) was then added and the mixture was stirred at room temperature for 3 1/2 hr. The mixture was then evaporated to dryness in vacuo and the residue was adsorbed onto a minimum amount of sifica gel 60 by evaporation of a methanolic solution. This was placed atop a sifica gel 60 column (20 g) packed in CH₂Ci₂ which was developed successively with MeOH-CH₂Ci₂ 595 and them MeOH-CH₂Ci₃ 1.9. Fractions containing the required product were pooled and evaporated to dryness to give 163mg (quantitative yield) of the title compound as the free base.

0.115 g (0.42 mmol) of this material was dissolved in hot EtOH (8 ml) and cooled to room temperature. Ethanolic HCI (4 ml) was added and after 30 mln at room temperature the mixture was blown down to dryness under a stream of nitrogen. Trituration under EtOH-Et₂O gave the title compound which was filtered off and washed with Et₂O. After drying, 85 mg (0.24 mmol, 57%) was obtained.

40 Calculated for C₁₃H₂,N₇•2HCl•H₂O C, 42.62; H, 6.88; N, 26.77.

Found:

45

50

C, 42. 9; H, 6.73; N, 26.43.

EXAMPLE 73

2-Amino-6-(1-piperazinyl)purine dihydrochloride

2-Amino-6-chloropurine (508 mg, 3.00 mmol) was suspended in steve-dried DMF (20 ml) and piperazine (616 mg; 5.99 mmol) was added. Dissolution occurred and the mixture was heated at 100 °C overnight of the original original of the original o

Calculated for $C_9H_{13}N_7 \bullet 2HCI \bullet 0.69 H_2O$: C, 35.49; H, 5.42; N, 32.20; CI, 23.28. Found: C. 35.74; H. 5.36; N. 31.97; CI, 23.20.

EXAMPLE 74

10

5

6-[1-(4-BOC)piperazinyI]-2-chloro-9-(1-propyI)purine

The material prepared in Example 50 (3.73 g, 11.0 mmol) was dissolved in sive dired DMF (100 ml) and 60% Nakl in oil (660 mg, 16.5 mmol of Nahl) was added and the mitture was stirred uncer nitrogen until the effervescence ceased. Hodopropane (1.23 ml, 12.65 mmol) was added and the reaction was stirred at room temperature overnight. The mixture was evaporated to dryness in vacuo and the reaction was dissolved in CH₂Cl₂ and this solution was washed with 10% aqu. Na₂CO₃, dried over MgSO₄, filtered and column was developed successively with ECO₄C: hexanes (1 : 2) and ECO₄C: hexanes (1 : 2) the Column was developed successively with ECO₄C: hexanes (1 : 2) and ECO₄C: hexanes (1 : 2) and chromographic on a slice give a syrup which crystallized upon trituration. These white crystals were triturated under haxane and filtered. Yield 2.85 g (74.8 mmol, 68%). Mp 105-106.5° C.

25 C, 53.61; H, 6.62; N, 22.06 Found:

C. 53.39: H. 6.47: N. 22.06

30

EXAMPLE 75

35 6-[1-(4-BOC)piperazinyl]-2-methoxy-9-(1-propyl)purine

The foregoing material propared in Example 74 (72.52 g, 0.17 mol) was dissolved in methanol (1.08 L) and 122 m for 4.38 M methanolic sodium methoxide was added. This solution was heated under reflux under N₂ for 48 hrs. and then additional sodium methoxide (12 mil) was added, followed by another 6 mil 40 atter a further 24 hrs. After 98 hrs total reaction, the mixture was evaporated to dryness and the residue was partitioned between CH₂C₂ (1.1) and H₂O (400 mil). The aqueous layer was washed with CH₂C₂ (2 x 500 mil) and the pooled organic layers were dried (MgSO₂), filtered and evaporated to dryness. Purification was effected on a silica gel 60 column (2.1 kg) developed with a step gradient (1 : 4 to 1 : 1) of ETOAc 1: 1 of ETOAc 1: 1

Calculated for C₁₈H₂₈N₆O₃: C, 57.43; H, 7.50; N, 22.33 Found:

C, 57.58; H, 7.66; N, 22.33

50

EXAMPLE 76

2-Methoxy-6-(1-piperazinyl)-9-(1-propyl)purine dihydrochloride

The foregoing material prepared in Example 75 (51.5 g, 0.137 mol) was dissolved in MeOH (1.5 L) and 1.5L of methanolic HCI was added carefully. This mixture was stirred at room temperature for 1.1.2 hr. and 5 then was concentrated first under a stream of N₂ and then on an evaporator to 800 nl. Precipitation occurred and Et₂O (IL) was added. The white solid was filtered off and washed well with Et₂O. Yield 39.4 g, and a second crop gave 3.54 g, Total yield 0.123 mol, 90%. Mp 205-207 C Calculated for C₃Ht₂D₂N₂O-2HCI:

C, 44.70; H, 6.35; N, 24.06; CI, 20.30

10 Found:

15

C, 44.50; H, 6.50; N, 23.98; Cl, 20.64

EXAMPLE 77

6-[1-(4-BOC)piperazinyl]-2-methylthio-9-(1-propyl)purine

The material prepared in Example 74 (300 mg, 0.76 mmol) was dissolved in t-butanol (10 mi) and sodium methythholate (21 mg, 3.04 mmol) was added. This mixture was refluxed under N, for 48 hrs. and then volatiles were removed under a stream of ½. The residue was taken up in CH₂Cl₂ (100 mi) and 10% agrous Na₂CO. (20 mi) and the layers were separated. The acqueous layer was washed two more times 35 with CH₂Cl₂ (2 × 20 mi) and the pooled organic layers were dried (MgSQs), filtered, and evaporated to dryness. This residue was dissolved in a little EIOAc and passed onto a silica gel 80 column (20 g), packed and developed with EIOAC. Fractions containing the required product were pooled and evaporated to dryness to give 177 mg (0.45 mmol. 59%) of chromatographically pure product. Calculated for Creit-lay-No-20

30 C, 55.08; H, 7.19; N, 21.41

C. 55.31: H. 7.18: N. 21.18

EXAMPLE 78

40 2-Methylthio-6-(1-piperazinyl]-9-(1-propyl)purine dihydrochloride

The foregoing material prepared in Example 77 (150 mg, 0.38 mmol) was dissolved in EiOH (7.5 ml) and ethanolic HCl (3.5 ml) was added. After standing at room temperature for 1 hr, the mixture was concentrated in 1 ml under a stream of N₂. Precipitation of the product was compeled by the addition of 45 Eb₂O (4 ml) and the title compound was filtered and washed with Et₂O (2 x 2 ml). Yield 126 mg (0.34 mmol.

Calculated for C₁₃H₂₀N₆S•2HCl: C, 42.74; H, 6.07; N, 23.01

Found:

50 C, 42.69; H, 6.06; N, 22.68

EXAMPLE 79

55

6-[1-(4-BOC)piperazinyl]-2-chloro-9-(methoxymethyl)purine

The material prepared in Example 50 (1.02 g. 3.0 mmol) was dissolved in sieve dried DMF (25 ml) and 80 NaH in oil (180 mg, 4.5 mmol of NaH) was added and the mixture was stirred under N₂. When a 5 homogeneous solution was obtained, bromomethyl methyl ether (0.27 ml, 3.3 mmol) was added and the mixture was left stirring at room temperature under N₂ overnight. Additional bromomethyl methyl ether (0.05 ml) was added followed, at hourly intervals, by two additional 24 mg arounts of 60% NaH in oil. Cold H₂O (25 ml) was added slowly, followed by 10% aqueous Na₂CO₂ (10 ml). After stirring for 1 1.2 hr., the mixture was evaporated to dryness in vacuo and the residue was partitioned between 10% aqueous Na₂CO₃ and CH₂O₃. The organic layer was separated, filtered, and adsorbed onto a small amount of slice gel 60. This was placed atop a dry packed sitica gel 60 column (80 ml) which was developed with a step gradient (from 1: 4 to 1: 1) of ElOAc: hexanes. Fractions containing the required product were pooled and evaporated to dryness to give 927 mg (2.42 mmol. 30%) of an oil which crystallized on standing. Mp 106-110 .

Calculated for C₁₆H₂₃N₆O₃Cl: 75 C, 50.20; H, 6.06; N, 21.95 Found: C, 50.28; H, 6.10; N, 22.05

20

40

EXAMPLE 80

25 6-[1-(4-BOC)plperazinyl]-2-ethoxy-9-methoxymethyl)purine

Sodium spheres (83 mg, 3,6 mmol) were added to abs. EICH (5 mi) and after hydrogen evolution had ceased, 354 mg 0.92 mmol) of material from the foregoing Example 79 in 5 ml of EtOH was added. This solution was heated under reflux overnight under Ns. The mixture was cooled and carefully neutralized with 30 acotic acid before being evaporated to dryness. This residue was partitioned between CH₂Cl₂ and 10% aqueous Ne₂CO₃ and a little EIOAC was then added to the CH₂Cl₃ layer to effect total dissolution. After drying (MgSO₄) and filtration, the filtrate was evaporated to an oil (310 mg, 88%) which crystallized on standing. Tiffuration under Et₂O and then evaporation of the mixture gave 257 mg (0.85 mmol, 71%) of product. m or 115-116.6 °C.

36 Calculated for C₁₈H₂₈N₅O₄: C₁ 55.09; H₁ 7.19; N₁ 21.41 Found: C₂ 55.20; H₁ 7.31; N₂ 21.10

EXAMPLE 81

2-Ethoxy-9-methoxymethyl-6-(1-piperazinyl)purine maleate

The foregoing material prepared in Example 80 (255 mg, 0.65 mmol) was dissolved in CF₂COOH (4 ml) and stirred at room temperature for 40 min. The mixture was concentrated and to the residual oil was added a small amount of Dowes 1x2(0H) resin, followed by 1 drop of conc. NaOH (to ensure basicity). This total mixture was then poured onto a Dowes 1x2(0H) column and developed with H₂O. Fractions containing the required product were pooled and evaporated to give 70 mg (0.24 mmol) of the title compound as the free base. This was dissolved in EIOH (2 ml) and 56 mg (0.49 mmol) of maleic acid in EIOH (3 ml) was added. The solution was concentrated under a stream of N₂ until precipitation was observed. This solid was removed by centrifugation and washed with Et₂O (2 x 3 ml). Yield 81 mg (0.20 mmol), more product was apparent in the supernatants.

Calculated for C·₃H₂₀N₅O₂•C₄H₄O₆: C, 50.00; H, 5.92; N, 20.58 Found: C, 49.94; H, 5.92; N, 20.55

EXAMPLE 82

10

6-[1-(4-BOC)piperazinyl1-2-chloro-9-(ethoxymethyl)purine

The material prepared in Example 50 (847 mg, 2.5 mmol) was dissolved in sieve oried DMF (25 ml) and 80% NaH in oil (105 mg, 2.62 mmol of NaH) was added. After 20 minutes stirring under N₃, evolution of H₂ had ceased and chloromethyl ethyl ether (0.255 ml, 2.75 mmol) was added. After 3 hrs at room temperature, tic indicated complete reaction and the mixture was concentrated at 65° under a stream of N₃ (with NaHCO₃ outlet tube). The mixture was then evaporated to dryness and the residual oil was partitioned between CH₃Cl₃ and 10% aqueous Na₂CO₃. The organic layer was dried (MgSO₄), filtered, and evaporated to a viscous oil. This matheral was chromatographed on a silica gel 60 column (150 ml) packed in EtOAc: hexanes (1: 4) and developed with a step gradient of EtOAc: hexanes (from 1: 4 to 1: 1). Fractions containing the required product were pooled and evaporated to dryness to give 620 mg (1.56 mmol. 82.5%) of the title compound, mp 102-104 °C.

Calculated for C_{1.7}H₂₅N₆O₃Cl: 25 C, 51.45; H, 6.35; N, 21.18 Found: C, 51.28; H, 6.42; N, 20.86

EXAMPLE 83

35 6-[1-(4-BOC)piperazinyl]-9-ethoxymethyl-2-methoxypurine

The foregoing material prepared in Example 82 (300 mg, 0.75 mmol) was added to a solution of methanolic sodium methoxide (0.99 ml of 4.37M solution) in methanol (6 ml) and the mixture was heated under reflux under N₂ for 42 hrs. The solution was then cooled and carefully neutralized with aceic acid before being evaporated to dryness. This residue was partitioned between CH₂Cl₂ and 10% aqueous Na₂CO₃ and the organic layer was dried (MgSO₄), filtered and evaporated to dryness. This residue was purified by chromatography on a silica gel 60 column (50 ml) developed in EtOAc: hexanes (3 : 7) to give the title compound as a tic pure viscous clear oil (259 mg, 0.96 mmol, 88%). Mass spec. (FAB) showed M^{*} + Hat 383 me.

EXAMPLE 84

50

45

30

9-Ethoxymethyl-2-methoxy-6-(1-piperazinyl)purine maleate

The foregoing material prepared in Example 83 (170 mg, 0.43 mmol) was dissolved in CF;COOH (3 ml) and strred at room temperature for 30 mln before being concentrated to dryness. To this residual liquid was added a small amount of Dowex 1x2(OH) resin in H₂O and the sturry was placed atop a Dowex 1x2-(OH) column which was then developed with H₂O. Fractions containing the required product were pooled and evaporated to dryness in vegue to give 37 mg (0.13 mmol, 29%) of the product as its free base. This

was dissolved in EtOH (7 ml) containing maleic acid (29.9 mg, 0.26 mmol) and the solution was concentrated under a stream of N₂ to give a residual oil. Trituration under Et_Q0 gave a gummy solid which was further washed with EtOAc to give 37.8 mg of the title compound. Mass spec. (EI) showed M (free base) at 29.9 m/s.

5 Calculated for C₁₃H₂₀N₆O₂•C₄H₄O₄: C, 49.99; H, 5.92; N, 20.58 Found: C, 49.97; H, 5.66; N, 20.40

10

EXAMPLE 85

15

6-[1-(4-BOC)piperazinyl]-2-chloro-9-(cyclopropylmethyl)purine

The material prepared in Example 50 (1.02 g. 3.0 mmol) was dissolved in sieve dried DMF (25 ml) and 180 mg of 60% NaH in oil (4.5 mmol of NaH) was added. This inviture was stried under N₂ until evolution of H₂ had cassed. Bromomethylcyclopropane (0.35 ml, 3.6 mmol) in DMF (0.5 ml) was added and the reaction was stirred at room temperature under N₂ overnight. The mixture was neutralized with acells acid and evaporated to a semi-solid residue which was partitioned between EOAc and 10% aquecus Na₂CO₂. The organic layer was dried (MgSO₂), littered and evaporated to dryness. This residue was chromatographed on slike get 600 (ya packed) developing with a step gradient of EOAc: hexanes (1.4) to EIOAc: 26 hexanes (2.3) to give 1.007 g (2.56 mmol, 85%) of the title compound as a white solid, mp 141-143 °C. Calculated for C₁ H₂SN₂O₂(0.00-11₂O₂(0.00-11₂O₂).

C, 54.78; H, 6.44; N, 21.29

Found:

C, 55.10; H, 6.48; N, 20.94

EXAMPLE 86

35

20

6-[1-(4-BOC)piperazinyI]-9-cyclopropylmethyl-2-ethoxypurine

Sodium spheres (120 mg, 5.2 mmol) were added to abs. EiOH (5 ml) and after hydrogen evolution had ceased, 517 mg (1.3 mmol) of material from the foregoing Example 85 in EiOH (95 ml) was added. This solution was heated under reflux under N₂ for 23 hrs. The mixture was neutralized with acetic acid evaporated to a solid residue which was partitioned between EiOac and 10% aqueous Na₂CO₃. The organic phase was dried (MgSO₄), filtered and evaporated to dryness to give 510 mg of a viscous oil. This was chromatographed on a dry packed silica gel 60 column (60 ml) which was developed with a step gradient of 45 EiOAc: hexames (14) be EiOAc: hexames (2: 3) in 10% increments. Fractions containing the required product were pooled and evaporated to dryness to give 389 mg (0.37 mmol), 74%) of the title compound as a white solid, mp 120-122 °C. Mass spec (El) showed M °at 402 m/e. Calculated for Co-Hash-Co-1

C. 59.68; H, 7.51; N, 20.88

50 Found:

C. 59.87; H. 7.65; N. 20.75

EXAMPLE 87

9-Cyclopropylmethyl-2-ethoxy-6-(1-piperazinyl)purine dihydrochloride

The foregoing material prepared in Example 86 (280 mg. 0.85 mmol) was dissolved in abs. EIOH (8 ml) and ethanolic HCi (2 ml) was added. This solution was concentrated slowly under a stream of N₂. A white 5 precipitate formed which was washed well with Et₂O. Yield 222 mg (0.59 mmol. 92%). Mass spec (EI) showed M (free base) at 302 m/e.

Calculated for C₁₅H₂₂N₆O•2HCI: C. 48.01: H. 6.45: N. 22.39

Found: 10 C. 48.17: H. 6.52: N. 22.29

15

35

40

EXAMPLE 88

6-[1-(4-BOC)piperazinyl]-2-chloro-9-(methoxyethyl)purine

The material prepared in Example 50 (1.02 g. 3.0 mmol) was dissolved in sieve dried DMF (25 ml) and 60% NaH in oil (180 mg. 4.5 mmol of NaH) was added and the mixture was stirred under N₂. When a homogeneous solution was apparent 2-bromoethyl methyl ether (0.33 ml, 3.6 mmol) was added and the reaction was left stirring overnight. Additional 2-bromoethyl methyl ether (0.085 ml) was then added followed by sodium iodide (90 mg. 0.6 mmol). After stirring for an additional 24 hrs. the mixture was sequentialized with acetic acid and evaporated to dryness in vacuo. The residue so obtained was partitioned between CH₂C₂ and 10% aqueous Na₂CO₃ and the organic phase was dried (MgSC₃), filtered and evaporated to dryness. Purification was carried out on a dry packed silica gel 80 column (70 ml) developing with a step gradient of (1 · 4) to (1 · 1) ElOAc: hexaness. Fractions containing the required product were pooled and evaporated to dryness to give (1.82 mmol, 61%) of the title compound as a tic pure white solid. M 104-107 °C, mass spec (El) showed M at 397 and 399 m/e.

Calculated for C₁₇H₂₅N₆O₃Cl: C, 51.45; H, 6.35; N, 21.18 Found:

C, 51.63; H, 6.36; N, 21.03

EXAMPLE 89

6-(1-(4-BOC)piperazinyl]-2-methoxy-9-(methoxyethyl)purine

To a methanolic solution of sodium methoxide (0.75 ml of 4.37 M solution) in methanol (8 ml) was added 3.25 mg (0.82 mmol) of the foregoing material repeared in Example 88. This solution was heated under reflux under N₂ for 4 days. After evaporation to dryness, the residue was partitioned between CH₂Cl₂ and 10% aqueous Na₂CO₃ and the organic layer was dried (MgSO₄), filtered and evaporated to dryness. Purification was carried out on a dry packed silicage (80 column (40 ml) developing with a step gradient of (3 .7) to (3 .2) EIOAc: hexanes. Fractions containing the required product were pooled and evaporated to dryness to give 192 mg of the title compound as a clear, its cure oil.

EXAMPLE 90

2-Methoxy-9-methoxyethyl-6-(1-piperazinyl)purine dihydrochloride

The foregoing material prepared in Example 89 (182 mg, 0.46 mmol) was dissolved in abs. EIOH (3 ml) and ethanolic HCI (1.5 ml) was added. After 2 hrs. the solution was concentrated under a stream of N_2 to give a write solid which was washed with El₂O and EIOH to give 109 mg of the title compound. Mass spec (EI) showed M+ (free base) at 293 mle.

Calculated for C₁₃H₂₀N₆O₂•2HCI: C, 42.75; H, 6.07, N, 23.01

Found: 10 C, 42.87, H, 6.09; N, 22.94

EXAMPLE 91

16

6-[1-(4-BOC)piperazinyl]-2-chloro-9-(methylthiomethyl)purine

The material prepared in Example 50 (1.02 g, 3.0 mmol) was dissolved in sieve dried DMF (25 ml) under N₂ and 60% NaH in oil (156 mg, 3.9 mmol of NaH) was added. After the evolution of H₂ had ceased, chloromethyl methyl suifide (0.3 ml, 3.6 mmol) in DMF (3 ml) was added and the reaction was stirred at room temperature for 3 days. Cold H₂O (25 ml) was carefully added, followed by 10 ml of 10% aqueous Na₂CO₂. After stirring for 1 mt he mixture was evaporated to dryness in yearou and the residual solid was the stirred and evaporated to dryness. The residue so obtained was purified by chromatography on a dry packed silica gel 60 column 960 ml) developed with a step gradient of (1*4 to 2:3) EtOAc: hexames. Fractions containing the required product were pooled and evaporated to dryness to give 625 mg (1.72 mmol, 57%) of the title compound as white solid. Mp 144-145 C, mass spoc (51) showed M *1 438 m.e.

EXAMPLE 92

35

20

6-([1-(4-BOC)piperazinyl]-2-methoxy-9-(methylthiomethyl)purine

To a methanolic solution of sodium methoxide (0.76 ml of a 4.37 M solution) in methanol (8 ml) was added 301 mg (0.75 mm) of the foregoing material prepared in Example 91. This solution was heated under reflux under N₂ for 2 days and then was cooled and neutralized with acetic acid before being evaporated to dryness. The solid so obtained was partitioned between EtOAc and 10% aqueous Na₂CO₃ and the organic phase was dried (MgSO₃) filtered and evaporated to dryness. Purification was carried out at Cyp sched sitica get 60 column (40 ml) developed with a step gradient of EtOAc: hexanes (1: 4 to 41). Fractions containing the required product were pooled and evaporated to dryness to give 284 mg (0.87 mm), 83%) of the title compound. Mp 138-139.5°, mass spec. (El) showed M° at 394 m/e. Calculated for C; Hrbs.NO.9540.1HpC:

C. 51.52; H. 6.67; N. 21.21

Found:

50 C, 51.91; H, 6.74; N, 20.88

EXAMPLE 93

2-Methoxy-9-(methylthiomethyl)-6-(1-piperazinyl)purine maleate

The foregoing material prepared in Example 92 (253 mg, 0.94 mmol) was dissolved in CF₂COOH (3 ml) and stirred at room temperature for 40 min. The mixture was concentrated under a steram of N₂ and a 5 sturry of Dowex 1x2 (OH) in H₂O was added to the residue. This mixture was poured onto a column (2.5 x 20 cm) of Dowex 1x2 (OH) and the column was developed with H₂O. Fractions containing the required product were pooled and evaporated to dryness to give 91 mg (0.31 mmol) of the title compound as its free base. This was dissolved in EiOH (3 ml) and maleic acid (69 mg, 0.60 mmol) in EiOH (4 ml) was added. The solution was concentrated under a stream of N₂ and the precipitate obtained was separated and washed with Ei₂O. Yelid 117.6 mg (0.29 mmol, 45%), mass spec. (EI) showed M (free base) at 294 m e. Calculated for C-shi₂ Ns.Cept. 2 C.H.O.;

C, 46.53; H, 5.30; N, 19.38 Found:

C. 46.57; H. 5.44; N. 19.33

EXAMPLE 94

20

6-[1-(4-BOC)piperazinyl]-2-chloro-9-[2-(trimethylsilyl)ethoxymethyl]purine

The material prepared in Example 50 (2.03 g. 8.0 mmol) was dissolved in sieve dried DM (50 ml) and 30% NaH in oil (338 mg, 8.4 mmol of NaH) was added. This mixture was stirred under N₂ with lydrogen evolution had ceased and then 2-(trimethylsily)ethoxymethyl chloride (1.17 ml, 6.8 mmol) was added. The reaction was stirred under N₂ at room temperature for 24 hrs. and then cold Ho/ (50 ml) was added, followed by 10% aq. Na₂CO₂ (20 ml). This mixture was exportated to dryness and the solid residue was carried cold to the cold of the col

35 Calculated for C₂₀ H₃₃ N₅ O₃ CISi: C, 51.21; H, 7.09; N, 17.92 Found: C, 51.30; H, 6.97; N, 17.95

40

EXAMPLE 95

45

6-[1-(4-BOC)piperazinyl]-2-methoxy-9-[2-(trimethylsilyl)ethoxymethyl]purine

The foregoing material prepared in Example 94 (957 mg, 2.04 mmol) was added to a solution of 4.37 M methanolic sodium methoxide (1.87 mt) in MeOH (20 mt) and the mixture was heated under reflux under N₂ for 3 days. The mixture was neutralized with acetic acid and then evaporated to dryness to give a solid residue which was partitioned between EtOAc and 10% aqueous Na₂CO₂. The organic phase was dried (MgSO₃), filtered and evaporated to dryness. This material was puritied on a dry-packed silica gel 80 column (70 mt) developed with a step gradient of (1:4 to 2:3) of EtOAc: hexanes. Fractions containing the required product were pooled and evaporated to dryness to give 794 mg (1.71 mmol, 84%) of the title compound as a white solid. Mp 109-110 C.

Calculated for $C_{21}H_{36}N_{6}O_{4}Si:$ C, 54.29; H, 7.81; N, 18.09 Found: C, 54.24; H, 7.87; N, 18.12

EXAMPLE 96

10

6-[1-(4-BOC)piperazinyl]-2-methoxypurine

The foregoing material prepared in Example 95 (782 mg, 1.88 mmol) was dissolved in dry THF (9 m) and 9 mil of a 1M solution of tetrabulyammonium fluoride in THF was added. This solution was heated at 60° overnight and then an additional 2 ml of 1M tetrabulyammoniumfluoride in THF was added and the heating was continued at 70° for an additional 6 hiss. This mixture was evaporated to dryness and the orange residual oil was purified on a dry packed silica gel 60° column (80° ml) developed with a step pracilent of 4 to 2: 30 of acetone: hexanes. Fractions containing the required product were pooled and evaporated to dryness to give 356 mg (1.07 mmol, 64%) of the title compound as at to pure white solid.

EXAMPLE 97

25

6-[1-(4-BOC)piperazinyl]-9-[1-(2-fluoroethyl)]-2-methoxypurine

30

Method A

The foregoing material prepared in Example 96 (102.8 mg, 0.31 mmol) was dissolved in sieve dried 30 MF (3 mf) and attirred under N. To this solution was added 60% Nel in oil (16 mg, 0.4 mmol of Nel) and when H₂ evolution had ceased, 1-bromo-2-fluoroethane (50 mg, 0.4 mmol) was added. After stirring overright the mixture was neutralized with acute and the organic phase was dried (MgSO₄), filtered partitioned between E10Ac and 10% aqueous Na₂CO₃ and the organic phase was dried (MgSO₄), filtered and evaporated to dryness. Purification was carried out on a dry-packed silica gel 60 column (30 ml) developed with a step gradient (3.7 to 3.2) of E10Ac: hexanes. Fractions containing the required product were pooled and evaporated to dryness to give 85.2 mg (0.23 mmol, 73%) of the title compound as a white solid. Min 1935-104.5° C.

Calculated for C17 H25 N6 OF • 0.2 H2O:

C. 53.31: H. 6.68: N. 21.94

45 Found:

C, 53.55; H, 6.56; N, 21.61

Method B

50

A mixture of the material prepared in Example 117 (50 mg, 0.13 mmol) and methanol (0.5 ml) containing sodium methoxide (0.5 mml) was refluxed under a nitrogen atmosphere for 18 hours. After cooling, the reaction treated with a mixture of 1M K₂PO₄ and CHOIs, and after thorough mixing the phases were separated. The aqueous phase was reextracted with CHOIs, and the organic phases dried (MgSO₄) and evaporated to give 60 mg of a crystalline residue. Preparative tic on new 2b2x2cm x100u, silica gel 67 plate with (1:1) EIOAc: hexanes gave, after isolation, 17.5 mg of unreacted starting material and, 23.3 mg the title compound which was identical to material prepared by Method A.

EXAMPLE 98

9-[1-(2-Fluoroethyl)]-2-methoxy-6-(1-piperazinyl)purine dihydrochloride

The foregoing material prepared in Example 97 (78 mg, 0.26 mmol) was dissolved in acs. EtOH (4 ml) and 2 ml of athanolic HCl was added. After standing at room temperature for 30 min the solution was slowly concentrated using a stream of Na. The white solid so obtained was washed with EtOH and Et₂O and dried to give 58.9 mg (0.16 mmol, 62%) of the title compound.

Calculated for C₁₂H₁₇N₆OF•2HCL.0.2 CH₃CH₂OH: C. 41.09: H. 5.67: N. 23.19

Found:

15 C. 40.86; H. 5.68; N. 22.85

The 0.2 molar equivalents of EtOH in the analytical sample were verified by NMR.

EXAMPLE 99

20

25

5

6-[1-(4-BOC)piperazinyi]-2-methoxy-9-[1-(2-propynyi)]purine

The material prepared in Example 96 (150 mg, 0.45 mmol) was dissolved in sieve dried DMF (3 ml) and 60% NAH in oil (27 mg, 0.67 mmol of NAH) was added. This mixture was stirred under N₂ until hydrogen evolution had ceased and then propargyl bromide (80% by wt in foluere; 0.06 ml, 0.54 mnol) was added. The mixture was stirred at room temperature overnight under N₂ and then was neutralized with accide acid before being evaporated to dryness. This solid residue was partitioned between CH₂Cl₂ and 10% ac, Na₂CO₂ and the organic phase was dired (MgSO₄), filtered and evaporated to dryness. Two products were apparent by its and these were separated on a dry packed silica gel 80 column (50 ml) developed with a step gradient of hexanes to accione: hexanes (1: 4). Fractions containing the slower moving material were pooled and evaporated to dryness to give 48 mg (0.13 mmol, 29%) of the title 16 compound as a clear oil. Mass spec (El) showed M * + H at 373 m/e and further identification was by PMR (see Table).

EXAMPLE 100

40

9-(1-Allenyi)-6-[1-(4-BOC)piperazinyl]-2-methoxypurine

Fractions containing the faster moving product from the silica gel 60 column described in the previous Example 99 were pooled and evaporated to dryness to give 66 mg (0.18 mmo, 39%) of the title compound as a white solid. Mass spec. (El) showed M + H at 373 me. Further identification was by PMR (see Table).

EXAMPLE 101

5

2-Methoxy-6-(1-piperazinyi)-9-(1-(2-propynyl))purine dihydrochloride

The material prepared in Example 99 (40 mg, 0.11 mmol) was deblocked in the usual way with ethanolic HCl to give 24 mg (0.07 mmol, 817.) of the title compound. Mass spec. (El) showed M (free 5 base) at 272 m/e.

Calculated for C₁3H₁6N6O•2HCI•1.1 H2O:

C, 42.77; H, 5.58; N, 23.02

Found: C, 42.94; H, 5.11; N, 22.65

10

EXAMPLE 102

15

9-(1-Allenyl)-2-methoxy-6-(1-piperazinyl)purine dihydrochloride

The material prepared in Example 100 (63 mg, 0.17 mmol) was deblocked in the usual way with a ethanolic HCI to give 60.2 mg (0.16 mmol, 97%) of the title compound. Mass spec. (Ei) showed M * + H (free base) at 273 m/e.

Calculated for C13H16N6Oe2HCle0.6 H2Oe0.25 CH3CH2OH:

C, 44.12; H, 5.68; N, 22.87

Found:

25 C. 44.03; H. 5.55; N. 22.85

The 0.25 molar equivalents of EtOH in the analytical sample were verified by NMR.

EXAMPLE 103

30

36

6-f1-(4-BOC)piperazinvI]-2-methoxy-9-f1-(2-propenyI)]purine

The material prepared in Example 96 (150 mg, 0.45 mmol) was dissolved in sieve dred DMF (9 ml) and 60% NAH in cil (27 mg, 0.68 mmol of NAH) was added. This mixture was stirred under N₂ until evolution of hydrogen had cassed and then 3-iodopropene (0.05 ml, 0.55 mmol) was added. After stirring for 8 hrs. under N₂ at room temperature, the mixture was evaporated to dryness in vector and the residue 40 was partitioned between CH₂Cl₂ (100 ml) and 10% as, Na₂CO₂ (20 ml). The organic phase was dried (MgSo₄), filtered and evaporated to dryness. This residue was purified on a silica gel 60 column (15 g) developed with a step gradeint of hexanes. ElOAc: hexanes (11.3) ElOAc. hexanes (11.1) and then ElOAc. Fractions containing the required product were pooled and evaporated to dryness to give 138 mg (0.37 mmol, 82% of the title compound as at the pure syrup. Mass spec. (El) showed M + H at 375 m.e.

EXAMPLE 104

50

2-Methoxy-6-(1-piperazinyl)-9-[1-(2-propenyl)]purine dihydrochloride

The foregoing material prepared in Example 103 (133 mg, 0.36 mmol) was deblocked with ethanolic HCl in the usual way to give 101 mg (0.29 mmol, 81%) of the title compound.

5 Calculated for C₁-1+-1, NC•2HCl:

C. 44.96; H. 5.81; N. 24.20

Found: C. 45.22: H. 6.19: N. 24.00

10

EXAMPLE 105

15

5-Amino-4-chloro-6-cyclopropylamino-2-ethylpyrimidine

A mixture of 4.6-dichloro-5-nithro-2-ethylpymindine (0.5 g), Raney nickel (ca. 0.5 g) and MeOH (5 ml) was shaken in a hydrogen atmosphere at 1-2 p.s.i until reduction of the nitro group was complete. The mixture was filtered, evaporated to a black gum, taken up in a mixture of cyclopropylamine (5 ml, ca. 100 mmol) and isopropyl alcohol (6 ml) and heated in a bomb at 110° for 4 hours. The reaction mixture was then filtered, evaporated to dryness under reduced pressure and the pure product was isolated by preparative tic using four 20x20 cmx1000µ silica gel GF plates developed with 1: 1 EtoAc: hexanes: 315 mg of product was obtained. Yield: 64%. NMR (CDCls, à fom TMS): 0.47(m) and 0.76(ml) cyclopropyl methylenes, 1.24 (t, CH₂), 2.69 (q, CH₂CH₃), 2.86 (m, CH₃), 3-7 (br. s. NH₃), 5.47 (br. s. NH₃).

EXAMPLE 106

30

6-Chloro-9-cyclopropyl-2-ethylpurine

A mixture of the material prepared in the foregoing Example 105 (315 mg, 1.47 mmol), triethyrotrotormate (3 ml), and conc. HCl (0.03 ml) was heated and stirred at 60°. After two hours the mixture was evaporated under a stream of nitrogen with heating. The solid brown residue was purified by preparative to on four 20x20cm x1000u. silica gel GF plates developed with 10% MeOH in CH₂Cl₂. The main band was isolated and extracted to give 265 mg of the title compound as a crystaline solid NMR (CDCl₃, & from TMS): 1.12-1.30 (m, cyclopropyl methylenes), 1.41 (t, CH₃), 3.07 (d, CH₂CH₃), 3.50 (m, CH₃), 8.03 (s, HB).

EXAMPLE 107

45

6-[1-(4-BOC)piperazinyl]-9-cyclopropyl-2-ethylpurine

A mixture of the foregoing material prepared in Example 106 (249 mg, 1.2 mmol) 1-BOC piperazine (232 mg, 1.3 mmol) and triethylamine (0.35 ml, 2.5 mmol) in l-amyl alcohol (5 ml) were refluxed for 3 hours. The mixture was taken to dryness under reduced pressure and purified on four 20x20cm x1000µ silica gel GF plates using 1:1 EtOAc: hexane, isolation and extraction of the main band gave the title compound.

55

EXAMPLE 108

9-Cyclopropyl-2-ethyl-6-(1-piperazinyl)purine

A portion of the foregoing material prepared in Example 107 was dissolved in ca. I ml of GF₂CO₂H. After 15-20 minutes, the clear solution was evaporated to a gurn under a nitrogen stream, and the residues was partitioned between water and chloroform. The aqueous phase was extracted a second time with chloroform and then made basic by careful addition of solid K₂CO₃. The milky aqueous solution was extracted repeatedly with chloroform and the combined organic extracts were dried (MgSO₄) and evaporated to dryness to give the title compound, which was crystallized from either. Calculated for C₁Heb₂N₂O₃ (1C-He₂N₂)C.

10 C, 61.82; H, 7.57; N, 30.04 Found: C, 61.45; H, 7.65; N, 29.85

EXAMPLE 109

20 4-[1-(4-BOC)piperazinyI]-6-chloro-2-ethyl-5-nitropyrimidine

To a stirred solution of 4,6-dichloro-5-nitro-2-ethylpyrimidine (508 mg, 2.3 mmol) and triethylamine (0.35 ml, 2.5 mmol) in sleve dried DMF (4 ml) was added dropwise over 3 minutes a solution of BOC-piperazine (0.3 g, 2.7 mmol) in sleve dried DMF (2 ml). The mildly evolhermic reaction was allowed to proceed for a 25 few minutes longer after which time it was filtered and the filtrate evaporated to a gum under high vacuum. The residue was partitioned between CHO1, and water, the aqueous phase extracted again with CHO1s, the combined organic extracts washed once with water, once with saturated NaCl solution, dried (MgSQJ) and evaporated to a dark foam. This residue was purified by preparative to nor 07 00x20cm x1000u. Silica gel of plates with 20% ethyl acetate in hexane. The main (high RI) band of the four observed afforded 486 mg or of the title compound as a yellow solid which was crystallized from hexane. NMR (CDCI), & from TMS): 1.28 (t, CH₃), 1.47 (s. C(CH₃)), 2.80 (n, piperazine methylenezine methylenezine methylenezine methylenezine methylenezine methylenezine methylenezine methylenezine

EXAMPLE 110

35

40

15

4-[1-(4-BOC)plperazinyl]-2-ethyl-5-nitro-6-[1-(2,2,2-tri-fluoroethylamino)]pyrimidine

To a solution of the foregoing material prepared in Example 109 (418 mg, 1.3 mmol) and triethylamine (0.2 ml, 1.4 mmol) in sleve dried DMF (5 ml) was added dropwise, with stirring, a solution of 209 mg (2.1 mmol) of 2.2.2-trifluoroethylamine in sleve dried DMF (1 ml) over two minutes. No exotherm was noted, after standing 84 hours, the reaction mixture was evaporated to dryness under reduced pressure and the residue was partitioned between water and CHCls. The aqueous phase was extracted again with CHCls, and the combined organic phases were washed once with water, once with saturated NaCl solution, dried (MgSO₄) and evaporated to a gum. This was purified on four 20x20cm x1000u silica gel GF plates using EtOAc: hexanes 1: 4), Isolation and extraction of the main band gave 414 mg of the title compound stable for further reactions. NMR (CDCls, 3 from TMS): 1.24 (t. CH₂CH₃), 1.49 (s. C(CH₃)₂), 2.65 (q. 50 CH₂CH₃), 3.56 (pr. s. pigerazine methylenes), 4.36 (m. CH₂CF), 8.43 (k. MHCH₃).

EXAMPLE 111

5-Aming-4-[1-(4-BOC)piperazinyl]-2-ethyl-6-[1-(2.2,2-trifluoroethylaming)]pyrimidine

A suspension of the foregoing material prepared in Example 110 (383 mg, 0.98 mmol) in MeOH (10 m) containing 2-0.3 g Raney nickel, was shaken in a 1-2 p.5. at atmosphere of hydrogen. After 24 hrs. the 5 mixture was filtered (the organic material having now dissolved), evaporated and purified by preparative tic on four 20x20cm x/100us silice gill GF plates using EtOAC : hexanes (1-4), to give ca. 0.2g of the title compound along with some recovered unreduced starting material. NMR (CDOt), 8 from TMS): 1.25 tt. CH₂CH₃), 1.48 (s. CCH₃b), 2.88 (q. CH₂CH₃), 2.97 (br s NH₂), 3.14 (m) and 3.58 (m) (piperazine methylenes), 4.25 (m, CH₂CF₃), 4.53 (n, NHCH₂).

EXAMPLE 112

15

10

6-[1-(4-BOC)piperaziny/]-2-ethyl-9-[1-(2,2,2-trifluoroethylamino)]purine

EXAMPLE 113

30

2-ethyl-9-[1-(2,2,2-trifluoroethylamino)]-6-(1-piperazinyl)purine

The foregoing material prepared in Example 112 (160 mg) was dissolved in ca. 2 ml of trifluoroacetic acid. After 30 minutes the solution was evaporated to a gum under a nitrogen stream and the residue was partitioned between water and CHCl₃. The aqueous phase was separated, extracted a second time with CHCl₃, then made basic by careful addition of solid K₂CO₃, and saturated with solid NaCl. The milky solution was extracted several times with CHCl₃ and the combined organic phases were washed once with saturated NaCl solution, dried (MgSO₄) and evaporated to give 124 mg of a gum. Recrystalilization from hexanes, after removal of a slight floculant insoluble contaminant, gave 91 mg of the title compound. Mp 104-106° C.

Calculated for C₁₃H₁₇N₆F₃: C, 49.67; H, 5.45; N, 26.74 45 Found: C, 49.87; H, 5.56; N, 26.69

EXAMPLE 114

50

55

6-[1-(4-BOC)piperazinyl)-2-chloro-9-[1-(2-oxopropyl)]purine

The material prepared in Example 50 (1.02g, 3.0 mmol) was dissolved in sieved-dried DMf 925 ml) and 60% NaH in oil (156 mg, 3.9 mmol of NaH) was added and the mixture was stirred under N₂ until evolution of H₂ had ceased. Chloroacetone (0.31 ml, 3.9 mmol) was then added and the mixture was stirred under N₂

for 3 days. The reaction was evaporated to dryness and the residue was partitioned between EtOAc and 10% ac, Na₂CO₃. The organic phase was dried (MgSO₃), filtered and evaporated to dryness to give 1.28 g of a pale yellow oil. Trituration under hexanes gave 1.07g of the title compound, mp 173-175° C. Calculated for O₇₇H_{2.3}N₆OCI:

C, 51.71; H, 5.87; N, 21.28
 Found
 C, 51.58; H, 5.87; N, 20.95

25

30

EXAMPLE 115

15 6-[1-(4-BOC)piperazinyl]-2-chloro-9-[1-(2,2-difluoropropyl)]purine

A suspension of MgO (50 mg) in sieve dried Oft+Gb (1.1 ml) containing diethylaminosulfur trifluoride (0.1 ml, 0.8 mmol) was stirred while 315 mg (0.8 mmol) of the material prepared in Example 114 was added under nitrogen over 2-3 minutes. After 20 hours an additional 0.1 ml of diethylamino sulfurtrifluoride was 20 added, and after four more hours the reaction was worked up. The mixture was added to 1M KgHPO. and the mix was extracted with several portions of CHGb. The pooled organic layers were cired (MgSCA), filtered and evaporated to give a semicrystalline product. Preparative to on four 20x20cm x1000L silica gel GF plates developed with EtOAc: hexanes (1: 1) gave 90 mg of recovered starting ketone and 184 mg of the title compound.

EXAMPLE 116

6-[1-(4-BOC)piperazinyl]-9-[1-(2,2-difluoropropyl)]-2-methoxypurine

A mixture of the foregoing material prepared in Example 115 (50 mg, 0.12 mmol) and methenol (0.2 ml) containing a.0.4 mmol of sodium methoxide was refluxed under a nitrogen etmosphere for 18 hours. After cooling it was treated with a mixture of 1M KH₂PO₄ and CHOIs and after thorough mixing, the phases were separated. The authous phase was extracted again with CHOIs and the combined organic extracts dried (MgSO₄) and evaporated to give 44 mg of a semicrystalline residue. Preparative tic on one 20x200m one 20x200

EXAMPLE 117

6-[1-(4-BOC)piperazinyl]-2-chloro-9-[1-(2-fluoroethyl)]purine

The material prepared in Example 50 (300 mg, 0.88 mmol) was dissolved in sieve dried DMF (5 ml) and 80% NaH in oil (1.5 mmol) of NaH) was added. This mixture was stirred under N₂ until evolution of H₂ had ceased (2 1/2hr). The mixture was centrifuged and the supermatant was added dropwise to a stirred solution of 1-bromo-2-fluoreethane (7.9 mmol) in 1 ml of sleve dried DMF. After stirring overnight at room temperature under N₂, the residue was partitioned between CH₂Cl₂ and sat a.d. NaHCOs. The acu. layer swas further washed with CH₂Cl₂ and the pooled organic layers were dried (MgSOs), filtered and evaporated to dryness. Purification was effected on four 20x2Com. 1000u. slice gol GF preparative plates developed with EtOAc: hexanes (1:1). The title compound was obtained as a crystalline solid after standing under EtO.

EXAMPLE 118

6-Chloro-2-ethyl-9-methylpurine

This was prepared in a manner similar to that described in Example 27 for 6-chloro-2.9-dimethylpurne. except that 5-amino-4-chloro-2-ehyl-6-methylaminopyrimidine was used as the starting material, and the final product was purified by chromatography. The title compound was obtained in 65% yield. NMR (CDCI), 3 from TMS): 1.40 (t. CH₂CH₃), 3.08 (q. CH₂CH₃), 3.83 (s. NCH₃), 8.00 (s. H₃).

EXAMPLE 119

6-[1-(4-BOC)piperazinyl]-2-ethyl-9-methylpurine

This was prepared in a manner similar to that described in Example 28 for 6-[1-(4-BOC)piperazinyl]-2.9dimethylpurine, except that the foregoing material prepared in Example 118 (332 mg, 1.88 mmol) was used as the starring material. The title compound was obtained in good yield after purification on four 20x20cmx1000u silica GF plates developed with CHO₃: MeOH: NNLOH (90:10:1)

EXAMPLE 120

30

20

25

5

2-Ethyl-9-methyl-6-(1-piperazinyl)purine dihydrochloride

The foregoing material prepared in Example 119 (300 mg, 0.87 mmol) was deblocked in the usual se fashion using ethanolic HCI t, give the title compound (197 mg, 0.82 mmol, 71%) as a white crystalline solid.

Calculated for C₁₂H₁₈N₆ •2HCl: C, 45.15; H, 6.32; N, 26.33; Cl, 22.21 Found: 40 C, 45.20; H, 6.24; N, 26.53; Cl, 22.41

EXAMPLE 121

45

6-[1-(4-BOC)piperazinyl]-2-chloro-9-(2-propyl)purine

This was prepared in a manner similar to that described in Example 74 for 6-11-(4-BOC)poperazinyI)-2-chloro-9-(1-propyl)purine, except that 2-iodopropane was used as the alkylating agent. The reaction utilized 978 mg (2.0 mmol) of 6-[1-(4-BOC)piperazinyI)-2-chloropurine as starting material and gave the title compound (640 mg, 1.88 mmol) in 84% yield after silica get chromatography. Mass spec. (El) showed M at 380 and 382 m/e.

55 Calculated for C₁₇H₂₅N₆O₂Cl: C, 53.61; H, 6.62; N, 22.06 Found: C, 53.61; H, 6.59; N, 22.06

EXAMPLE 122

6-[1-(4-BOC)piperazinyl]-2-methoxy-9-(2-propyl)purine

This was prepared in a manner similar to that described in Example 75 for 6-1-(4-BOC)pioraziniyl}-2-methoxy-9-(1-propy)purine, except that the foregoing material described in Example 121 (305 mg, 0.8 mmo) was used as the starting material. The title compound was obtained as a crystalline solid (200 mg, 0.53 mmo, 68%) without recourse to chromatographic purification. Mass spec. (El) showed M at 376 m e. Calculated for Cri-Hsa-No.2; 0.57-43: H, 7.50; N, 22-33 Found:

15 C, 57.30; H, 7.46; N, 22.32

5

50

EXAMPLE 123

2-Methoxy-6-(1-piperazinyl)-9-(2-propyl)punne dihydrochloride

The foregoing material prepared in Example 122 (150 mg, 0.40 mmol) was deblocked in the usual fashion using ethanolic HCl to give the title compound (89.4 mg, 0.26 mmol; 64%) as a white solid. Mass spec. (El) showed M* (free base) at 276 m/e. Calcutated for Ci-17-bol No-2Hcl Co-2Hcl C:

C, 44.25; H, 6.40; N, 23.82

C, 44.24; H, 6.30; N, 23.59

EXAMPLE 124

6-[1-(4-BOC)piperazinyI]-2-methoxy-9-[1-(2-oxopropyI)]purine

The material prepared in Example 96 (84 mg. 0.25 mmol) was dissolved in sieve dried DMI (2 ml) and 60% NeI in oil (15 mg. 0.38 mmol of NeIIV) was added. This mixture was strend under N. under evolution of H₂ had ceased. Chloroacetone (0.03 ml. 0.38 mmol) was then added and the stirring was evaporated to driven the strength of the

EXAMPLE 125

2-Methoxy-9-[1-(2-oxopropyl)]-6-(1-piperazinyl)purine dihydrochloride

The foregoing material prepared in Example 124 (65 mg, 0.17 mmol) was deblocked using ethanolic HCl in the usual fashion to give the title compound (25.7 mg, 0.07 mmol, 43%) as a white solid. Mass spec. 5 (El) showed M (free base) at 290 mis.

Calculated for $C_{13}H_{18}N_5O=2HCl=H_2O$: C, 40.96; H, 5.82; N. 22.04 Found: C, 40.76; H, 5.69; N, 22.04

n

EXAMPLE 126

15

9-[1-(2.2-Difluoropropyl)]-2-methoxy-6-(1-piperazinyl)purine dihydrochloride

The material prepared in Example 116 (96 mg, 0.23 mmol) was deblocked in the usual fashion using ethanolic HCI (6.5 m) to give the title compound (95.8 mg, 0.15 mmol, 65%) as a white crystalline solid. Calculated for C_{1.3}H₁₋₈N₀OF₂•0.7H₂OZHO:

C, 39.24; H, 5.42; N, 21.13; Cl, 17.82 Found:

C, 39.03; H, 5.34; N, 21.34; Cl, 17.92

EXAMPLE 127

31

25

5-Amino-4.6-dichloro-2-ethylpyrimidine

4.6-Dichloro-5-nthro-2-ethylpyrimidine (188 g. 0.83 mol) was dissolved in methanol (1.5L) and reduced under 15 p.s.i. H₂ in the presence of Raney nickel (30 g) for 5hr. The mixture was filtered through Ceite (washing well with MeOH) and the filtrate was evaporated to dryness to give 159.1 g (0.83 mol. quantitative yield) of the title compound as a chromatographically pure (silica gel plates, developed with EtOAc: hexanes, 31) dark liquid which was used directly in the next step.

40

EXAMPLE 128

45

6-Chloro-5.6-diamino-2-ethylpyrimidine

The maternal prepared in the foregoing Example 127 (6.19 g., 32 mmol) was dissolved in 2-propanol (75 ml) and 10 ml of anitydrous ammonia was added. This was sealed in a pressure vessel and heated at 110 for 4 hr. The mixture was vented and then evaporated to a solid residue under a stream of nitrogen. This residue was leacted with CH₂O_E (3 x 10 ml) and the soluble material (3g) was shown (tib. ElOAc: hexanes. 1: 1) to be predominantly unreacted starting material, whereas the insoluble material (3g.), 19 mmol) was chromatographically pure title compound, suitable for the next reaction (Yield, 60%; quantitative, based on recovered starting material).

55

EXAMPLE 129

6-Chloro-2-ethylpurine

The material prepared in the foregoing Example 128 (1.50, 8.72 mmol) and triethylorthoformate (15 ml) were mixed and heated at 80° for 1 hr. Concentrated Holf (0.15 ml) was acided and the heating was continued overnight. After cooling to room temperature the suspension was filtered off and the solid was washed with Et₂O. This solid product (1.1g) was essentially circumstographically pure (silica gel; CHCls): MeOH: NHA (DH. 90: 10: 1). An analytical sample was prepared by recrystallization from MeOH. NMR (DMSO-ds, a from TMS): 1.31 (t, CH₂CH₃), 3.95 (q, CH₂CH₃), 8.57 (s, H8).

10 C, 46.04; H, 3.86; N, 30.68; Cl, 19.41 Found:

Found: C, 45.45; H, 3.98; N, 30.38; Cl, 19.91

EXAMPLE 130

20 6-[1-(4-BOC)piperazinyl]-2-ethylpurine

The material prepared in the foregoing Example 129 (1.75g, 9.6 mmol), 8OC-piperazine (1.97g, 11 mmol), triethylamine (2.8 ml, 20 mmol) and l-amyl alcohol (20 ml) were mixed and heated under reflux under N_2 for 3 hr. The mixture was allowed to cool and the solid was filtered off and washed with a small portion of i-amyl alcohol and then with Etg. Yield 2.1g, 68%.

EXAMPLE 131

30

15

6-[1-(4-BOC)piperazinyl]-2-ethyl-9-(2-fluoroethyl)purine

The material prepared in the foregoing Example 130 (401 mg, 121 mmol) was dissolved in sieve dried DMF (6 ml) and 60% NaH in oil, 73 mg, 1.8 mmol of NaH) was added. This mixture was stred under N₂ until the hydrogen evolution had ceased. The mixture was centrifuged and the supernatant was added droowise, with stirring, to a solution of 1-bromo-2-fluorestinan (1,02g, 7.89 mmol) in sieve dried DMF (1 ml). This mixture was stred under N₂ overnight and then was evaporated or dyriness in vacuoThe residue was partitioned between 1M KH₂PO₂ and CH₂Cl₂, and the aqueous phase was washed once more with CH₂Cl₂. The pooled organic layers were washed with H₂O and sat. aq. NaCl, and then dried (MgSCO), filtered, and evaporated to dryness (531 mg). This was purified on four 20 x 20 cm x 1000u. silica gel GF plates developed with EDOs: hexanes (1:2) to give 445 mg (1.18 mmol, 97*s) of the title compound.

45

EXAMPLE 132

50

2-Ethyl-9-(2-fluoroethyl)-6-(1-piperazinyl)purine dihydrochloride

The material prepared in the foregoing Example 131 (339 mg, 0.90 mmol) was deblocked in the usual fashion using ethanolic HCI (2.0 ml) to give the title compound (149 mg, 0.4 mmol, 44%) as a white orystalline solid.

Calculated for C13H13N6 •2HCI: C, 41.27; H, 6.27; N, 22.21; Cl, 20.15

C. 41.02; H. 6.37; N. 22.35; Cl. 20.02

EXAMPLE 133

10

2-Methoxy-6-(1-piperazinyl)-9-(2-furamylmethyl)-9H-purine

To 2-methoxy-6-[1-(4-tertbutoxycarbonyl)-piperazinyl]-9H-purine (1.05g., 3.1 mMol) in DMF (10 ml., 15 sieve dried) at 0 °C under N2 was added sodium hydride (60% dispersion) (0.25 g., 6.3 mMoi). The mixture was washed to RT, and after stirring at 25° for 2 hours, the solution was centrifuged. The brown solution was then added dropwise over 5 minutes to a solution of 2-chloromethylfuran (W.R. Kirner, J. Am. Chem. Soc., 50, 1958 (1928)) (0.44 g., 3.8 mMol) in DMF (1 ml) at 0 °C. After allowing to warm to RT overnight, the DMF was removed in vacuo over a 60° bath. The mixture was acidified with a saturated solution of KH2PO4 20 (25 ml), and the mixture was extracted with chloroform (3x25 ml). The combined extracts were dried over MgSO₄ and the solvent was removed in vacuo to leave a light tan oil (2.0 g); nmr (CDCl₃) δ : 1.43(9H, S), 3.52(4H, m), 3.95(3H, s), 4.22 (4H, m), 5.23(2H, s), 6.32(1H, m), 6.37(1H, d), 7.37(1H, d), 7.61(1H, s), contained 1.0 eq. of DMF; mass spectrum (FAB); 415.

The crude oil (2.0 g) was dissolved in a mixture 1N-HCl (12 ml) and acetonitrile (12 ml). After 2 hours at 25 RT the solvent was partially removed in vacuo and dried under a stream of N2. The residue was dissolved in H2O (50 ml), decolorized with Darco and made basic to pH 12 with 10% NaOH. The product was extracted with CHCl₃ (3X25 ml), dried over Na₂SO₄ and concentrated to a light oil (0.8 g) of 2-methoxy-6-(1-piperazinyl)-9-(2-furanylmethyl)-9H-purine; nmr (CDCl₃) δ: 2.94(4H, m), 3.94(3H, s), 4.22(4H, bd. m), 5.23-(2H. s), 6.31(1H, m), 6.36(1H, d), 7.35(1H, d), 7.59(1H, s); mass spectrum (FAB): 3.15.

30 Anal, Calcd. for C+s H+s Ns O> • O.56 H> O:

C. 55.54: H. 5.94: N. 25.91

Found:

C, 55.56; H, 5.95; N, 25.82.

A portion of oil was dissolved in three fold excess of 4N ethanolic HCl. The solution was concentrated in 35 vacuo to remove excess HCl and the product was triturated with Et-O-EtOH to yield a crystalline salt; mo. 174 dec.; nmr (D2O) 8: 3.52(4H, m), 4.10(3H, s), 4.53(4H, m), 5.44(2H, s), 6.54(1H, m), 6.63(1H, d), 7.59-(1H, s), 8.18(1H, d),

Anal. Calcd. for C+sH+aNsO+e2HCl. 1.5 H+O:

C. 43.49, H. 5.60; N. 20.28

40 Found:

56

C. 43.70; H. 5.62; N. 20.37.

IABLE 1
PROTON NMR SHIFT DATA FOR 6-(1-PIPERAZINYL)PURINES

5				
•	Example	Piperazine Methylene	Heterocyclic	Others
	_	Resonant es	Protons	
	1ª	3.60(m), 4.25(m)	7.95(s), 8.39(s)	1.50(s)-C(CH ₃) ₃
10	28	3.50(m), 4.30(m)	7.70(s), 8.38(s)	1.50(s)-C(CH ₂) ₃
				3.82(s)-N9-CH
	3 ^a	3.60(m), 4.00(m)	7.85(s), 8.0(s)	1.50(s)-C(CH ₃) ₃
15				2.50(m)-N3-CH ₃
	4 ^b	3.55(m), 4.55(m)	8.25(s), 8.43(s)	3.90(s)-N9-CH3
	7 ^a	3.60(m), 4.30(m)	7.70(s), 8.10(s)	2.95(s)
				3.65-4.00(m)
20				4.35(s)
				4.40(d)
				5.00(s)
25				5.15(s)
	•			5.70(d)
				6.50(d)
30				7.40(m)
	8 ^b	3.60(m), 3.90(m)	8.20(s), 8.30(s)	2.90(m)
		4.10(m)		4.12(m)
				4.40(m)
35				6.00(d)
				7.40(m)
	11ª	3.58(m), 4.29(m)	8.29(s)	1.46(s)-C(CH ₃) ₃
40				2.60(s)-C8-CH ₃
	12 ^b	3.59(m), 4.29(m)	8.30(s)	2.67(s)-C8-CH
	14 ^a	3.55(m), 4.70(m)	8.25(s)	1.42(s)-C(CH ₃) ₃
45				2.50(s)-C8-CH ₃
				3.68(s)-C9-CH ₂
	15 ^b	3.55(m), 4.42(m)	8.36(s)	2.62(s)-C8-CH
				3.78(s)-C9-CH ₂

TABLE 1 (Cont'd)

	Example	Piperazine Methylene	Heterocyclic	Others
5		Resonances	Protons	
	22*	3.47(m), 4.13(m)	8.22(s)	1.41(s)-C, CH ₃) ₃
				3.47(s)-N9-CH ₃
10	23 ^b	3.44(m), 4.40(m)	8.32(s)	3.74(s)-N9-CH ₃
	24 ^a	3.59(m), 4.29(m)	8.32(s)	1.49(s)-C(CH ₃) ₃
	25ª	3.42(m), 4.06(m)	7.99(s)	1.44(s)=C(CH ₃) ₃
15				2.34(d)-C8-NH <u>CH</u>
	26 ^b	3.55(m), 4.54(m)	8.44(s)	3
	28 ª	3.56(m), 4.26(m)	7.64(s)	1.49(s)-C(CH ₃) ₃
				2.58(s)-C2-CH ₃
20	_			3.78(s)-N9-CH3
	29 ^a	3.56(m), 4.20(m)		1.49(s)-C(CH ₃) ₃
				2.54(s)-C2-CH ₃
25				3.72(s)-N9-CH ₃
	30 ^a	3.54(m), 4.16(m)		1.48(s)-C(CH ₃) ₃
				2.52(s)-C2-CH ₃
30				3.09(d)-C8-NHCH ₂
				3.46(s)=N9=CH ₃
	31ª	3.44(m), 4.08(m)		1.38(s)-C(CH ₃) ₃
35				2.42(s)-C2-CH ₃
30				2.83(s)-C8-N(CH ₃)2
	32 ^b			3.50(s)-N9-CH ₃
	32	3.53(m), 4.36(m)		2.50(s)-C2-CH ₃
40				3.15(s)-C8-NHCH3
	33 ^a			3.62(s)-N9-CH ₃
	33	3.36-3.50(m), 4.06(m)		1.38(s)-C(CH ₃)3
45				1.85(m)-(CH ₂) ₂ -
				2.42(s)-C2-CH ₃
				3.36-3.50(m)-
50				CH2NCH2-
				3.54(s)-N9-CH ₃

TABLE 1 (Cont'd)

	Example	Piperazine Methylene	Heterocyclic	Others
5		Resonances	Protons	
	34 ⁸	3.44(m), 4.04(m)		1.40(s)-C(CH ₃) ₃
				2.43(s)-C2-CH ₃
10				3.20(s)-C8-OCH ₃
				4.00(s)-N9-CH ₂
	35 ^b	3.50(m), 4.46(m)		2.68(s)-C2-CH ₃
15				3.13(s)-C8-N(CH ₃)
,				3.76(s)-N9-CH ₃
	36 ^b	3.50(m), 4.28(m)		2.08(m)-(CH ₂) ₂ -
				2.67(s)-C2-CH ₃
20				3.78-3.98(m)-
				-CH2NCH2-, N9-CH3
	37 ^a	3.42-3.54(m),	8.20(s)	1.42(s)-C(CH ₃)3
25		4.02-4.16(m)		3.48(s)-C8-OCH
				4.08(s)-N9-CH ₃
	38ª	3.53(m), 4.18(m)	8.24(s)	1.47(s)-C(CH ₃) ₃
30				1.95(s)-C8-N(CH ₃) ₂
				3.62(s)=N9=CH
	39 ^b	2.89(m),	8.15(s)	3.43(s)-C8-OCH ₃
		3.88-4.14(m)		3.88-4.14(s)-N9-CH ₃
36	40ª	3.40-3.60(m),	8.14(s)	1.42(s)-C(CH ₃) ₃
		4.51(m)		1.92(m)-(CH ₂) ₂ -
				3.40-3.60(m)-
40				-CH ₂ NCH ₂ -
				4.62(s)-N9-CH ₃
	41	3.56(m), 4.25(m)	8.28(s)	1.48(s)-C(CH ₃) ₃
45				2.72(s)-C8-SCH ₃
				3.65(s)-N9-CH ₃
	42 ^b	3.56(m), 4.20(m)	8.48(s)	2.17(m)-(CH ₂) ₂ -
				3.97(m)-N9-CH ₃ ,
50				-CH ₂ NCH ₂ -

TABLE 1 (Cont'd)

	Example	Piperazine Methylene	Reterocyclic	Others
5		Resonances	Protons	
	43 ^b	3.56(m), 4.38(m)	8.45(s)	3.27(s)-C8-N(CH ₃) ₂
				3.86(s)-N9-CH ₃
10	45 ^a	3.56(m), 4.24(m)		1.49(s)-C(CH ₂) ₃
				2.52(s)-C2 or C8-CH ₃
				2.56(s)=C2 or C8-CH ₃
15				3.68(s)=N9=CH ₃
	46 ^b	3.46(m), 4.55(m)		2.60(s)-C2 or C8-CH ₃
				2.65(s)-C2 or C8-CH ₃
				3.74(s)-N9-CH
20	48 ^a	3.57(m), 4.28(m)		1.50(s)-C(CH ₃) ₃
				2.62(s)-C2/C8-CH ₂ 's
	49 ^b	3.49(m), 4.45(m)		2.61(s)=C2 or C8-CH ₂
25				2.64(s)-C2 or C8-CH
	50ª	3.58(m),	7.8B(s)	1.50(s)-C(CH ₃) ₃
		3.80-4.80(br)		,,
30	51ª	3.46(m)	8.17(s)	1.43(s)-C(CH ₃) ₃
50		3.80-4.80(br)		3.69(s)-N9-CH
	52 ^b	3.44(m), 4.42(m)	8.03(s)	3.72(s) -N9- CH ₃
	53ª	3.53(m), 4.17(m)	7.45(s)	1.47(s)-C(CH ₃) ₃
35				3.64(s)-N9-CH
				3.75(s)-morpholine CH ₂ 's
	54 ^b	3.40(m), 4.38(m)	8.00(s)	3.74(s)-N9-CH ₃
40				3.80(m)-morpholine CH ₂ 's

TABLE 1 (Cont'd)

	Example	Piperazine Methylene	Heterocyclic	Others
5		Resonances	Protons	
	55 ^a	3.48-3.62(m),	7.40(s)	1.48(s)-C(CH ₃) ₃
		4.19(m)		1.94(m)-(CH ₂) ₂ -
10				3.66(s)-N9-CH
				3.48-3.62(m)-
	h			-CH ₂ NCH ₂ -
	56 ^b	3.46(m), 4.53	7.82(s)	2.06(m)-(CH ₂) ₂ -
15				3.62(m)-CH2NCH2-
				3.81(s)-N9-CH3
	57 ^a	3.54(m), 4.20(m)	7.42(s)	1.48(s)-C(CH ₃) ₃
20				3.00(d)-C2-NHCH ₃
				3.66(s)-N9-CH ₃
	58 ^b	3.48(m), 4.57(m)	7.84(s)	3.02(s)-C2-NHCH
25				3.78(s)-N9-CH ₃
	59 ^a	3.54(m), 4.19(m)	7.41(s)	1.48(s)-C(CH ₃) ₃
				3.17(s)-C2-N(CH ₃) ₂
30	60 ^b			3.66(s)-N9-CH ₃
30	60	3.46(m), 4.52(m)	7.88(s)	3.26(s)-C2-N(CH ₃) ₂
				3.84(s)=N9=CH3
	61ª	3.54(m), 4.13(m)		1.48(s)-C(CH ₃) ₃
35				3.16(s)-C2-N(CH3)2
	62 ^a			3.60(s)-N9-CH ₃
		3.48-3.60(m)		1.49(s)-C(CH ₃)3
40		4.14(m)		2.88(s)-C2-N(CH ₃) ₂
				3.16(s)-C8-N(CH ₃) ₂
	62 ^b			3.53(s)-N9-CH ₃
45		2.84-2.96(m),		2.90(m)-C2-N(CH ₃)2
		4.03(m)		3.10(s)-C8-N(CH ₃)2

TABLE 1 (Cont'd)

	Example	Piperazine Methylene	Heterocyclic	Others
5		Resonances	Protons	
	64ª	3.54(m), 4.24(m)	7.56(s)	1.48(s)-C(CH ₃)3
				3.73(s)-N9-CH ₃
10				3.96(s)-C2-OCH3
	65 ^b	3.42(m), 4.44(m)	8.00(s)	3.72(s)-N9-CH ₃
				4.00(s)-C2-OCH ₃
15	66 ²	3.54(m), 4.23(m)	7.54(s)	1.38(d)-OCH(<u>CH</u> 3) ₂
15				1.48(s)-C(CH ₃)3
				3.70(s)-N9-CH ₃
				5.26(m)-C2-OCH-
20	67 ^b	3.48(m), 4.52(m)	8.10(s)	1.40(d)-OCH(CH ₃)2
				3.80(s)-N9-CH ₃
				5.42(m)-C2-OCH-
25				3.52(s)-N9-CH ₃
	68 ^a	3.56(m), 4.24(m)	7.55(s)	1.48(s)-C(CH ₃) ₃
				3.21(s)-C2-N(CH ₃) ₂
30	69 ^b	3.46(m), 4.48(m)	7.97(s)	3.24(s)-C2-N(CH ₃) ₂
30	716	3.28-3.38(m),	7.98(s)	3.01(s)-NCH ₃
		3.60-3.80(m),		3.25(s)-C2-N(CH ₃) ₂
		5.28-5.42(m)		
35	72 ^b	2.80(m), 4.43(m)	7.42(s)	2.50(s)-NCH3
				3.17(s)-C2-N(CH ₃) ₂
				3.66(s)-N9-CH ₃
40	73 ^b	3.46(m), 4 46(m)	8.00(s)	
	74	3.58(m), 4.28(m)	7.69(s)	0.95(t)-CH ₂ CH ₂ CH ₃
				1.48(s)-C(CH ₃) ₃
45				1.90(m)-CH ₂ CH ₂ CH ₃
~ 5				4.12(t)-NCH2CH2CH3

50

TABLE 1 (Cont'd)

6	Example	Piperazine Methylene	Heterocyclic	Others
5		Resonances	Protons	
	75 ^a	3.58(m), 4.27(m)	7.59(s)	0.96(t)=CH ₂ CH ₂ CH ₃
				1.48(s)-C(CH ₃) ₃
10				1.89(m)-CH ₂ CH ₂ CH ₃
				3.97(s)-OCH ₃
				4.08(t)-NCH2CH2CH3
15	76 ^b	3.46(m), 4.48(m)	8.12(s)	0.88(t)-CH ₂ CH ₂ CH ₃
				1.86(m)=CH ₂ CH ₂ CH ₃
				4.03(s)-0CH ₃
				4.14(t)=NCH2CH2CH3
20	77 ^a	3.57(m), 4.26(m)	7.61(s)	0.94(t)-CH ₂ CH ₂ CH ₃
				1.49(s)-C(CH ₃) ₃
				1.89(m)-CH ₂ CH ₂ CH ₃
25				2.57(s)-SCH ₃
				4.10(t)-NCH2CH2CH3
	78 ^b	3.44(m), 4.46(m)	8.05(s)	0.86(t)-CH ₂ CH ₂ CH ₃
30				1.84(m)-CH ₂ CH ₂ CH ₃
				2.59(s)-SCH ₃
				4.12(t)-NCH2CH2CH3
35	79ª	3.60(m), 4.30(m)	7.86(s)	1.50(s)-C(CH ₃) ₃
30				3.38(s)-OCH ₃
				5.51(s)-NCH ₂ 0
	80*	3.58(m), 4.17(m)	8.72(s)	1.49(s)-C(CH ₃) ₃
40				2.43(t)-CH ₂ CH ₃
				3.37(s)-OCH
				4.49(q)- <u>CH</u> 2CH3
45				5.46(s)-NCH ₂ 0

TABLE 1 (Cont'd)

	Example	Piperazine Methylene	Heterocyclic	Others
5		Resonances	Protons	
	81 ^b	3.36-3.50(m),	8.09(s)	1.38(t)-CH ₂ CH ₃
		4.32-4.49(m)		3.39(s)-OCH ₃
10				5.52(s)-NCH ₂ 0
				6.27(s)-CHCOO
	82ª	3.52-3.64(m),	7.87(s)	1.19(t)=0CH ₂ CH ₃
15		4.29(br m)		1.50(s)-C(CH ₃)3
				3.52-3.64-0 <u>CH</u> 2CH3
				(overlap with piperazine)
				5.55(s)-NCH ₂ 0
20	83 ^a	3.50-3.66(m),	7.76(s)	1.18(s)-0CH ₂ CH ₃
		4.16-4.40(br m)		1.50(s)-C(CH ₃)3
				3.50-3.66-0 <u>cH</u> , CH,
25				(overlap with piperazine)
				3.98(s)-0CH ₃
				5.52(s)=NCH ₂ 0
30	84 ^b	3.45(m), 4.46(m)	8.12(s)	1.17(t)-0CH ₂ CH ₃
				3.68(q)-0 <u>CH</u> 2CH3
				4.00(s)-0CH ₃
				5.59(s)-NCH ₂ 0
35				6.26(s)-0HC00
	85 ^a	3.58(m), 4.19(br m)	7.82(s)	0.44(m) and $0.68(m)$,
				cyclopropyl methylenes
40				1.44-1.22(m)-CH
				1.49(s)-C(CH ₃) ₃
				4.01(d)-NCH ₂
45	86ª	3.58(m), 4.27(br m)	7.70(s)	0.43(m) and 0.64(m)
.,				cyclopropyl methylenes
				1.22-1.38(m)-CH

50

TABLE 1 (Cont'd)

	Example	Piperazine Methylene	<u>Heterocyclic</u>	Others
5		Resonances	Protons	
			*	1.42(t)-0CH ₂ CH ₃
				1.49(s)-C(CH ₃) ₃
10				3.96(d)-NCH ₂
				4.40(q)-0 <u>CH</u> 2CH3
	87 ^b	3.48(m), 4.40-4.58(m)	8.24(s)	0.46(m) and 0.67(m),
15				cyclopropyl methylenes
				1.26-1.44(m)-CH
				1.40(t)=0CH ₂ CH ₃
				4.04(d)-NCH ₂
20		•		4.48(q)-0 <u>CH</u> 2CH3
				(overlap with piperazine)
	88ª	3.58(m), 4.18-4.40(m)	7.82(s)	1.49(s)-C(CH ₃) ₃
25				3.34(s)-0CH ₃
				3.70(t)-NCH ₂ CH ₂ 0
				4.18-4.40-NCH ₂ CH ₂ O
30				(overlap with piperazine)
	89 ^a	3.57(m), 4.16-4.38(m)	7.70(s)	1.49(s)-C(CH ₃) ₃
				3.33(s)-0CH ₃
				3.70(t)-NCH ₂ CH ₂ 0
35				3.96(s)-C ₂ -OCH ₃
				4.16-4.38-NCH ₂ CH ₂ O
				(overlap with piperazine)
40	90 ^b	3.48(m), 4.49(m)	8.10(s)	3.36(s)-OCH ₃
				3.86(t)-NCH ₂ CH ₂ 0
				4.04(s)-C ₂ -0CH ₃
45				4.40(t)-NCH2CH20

TABLE 1 (Cont'd)

5	Example	Piperazine Methylene	Heterocyclic	Others
•		Resonances	Protons	
	912	3.59(m), 4.28(br m)	7.91(s)	1.49(s)-C(CH ₃) ₃
				2.14(s)-SCH ₃
10				5.17(s)-NCH ₂ S
	92	3.58(m), 4.27(br m)	7.77(s)	1.50(s)-C(CH ₃) ₃
				2.15(s)-SCH ₃
15				3.97(s)-OCH ₃
				5.15(s)-NCH ₂ S
	93 ^b	3.46(m), 4.45(m)	8.09(s)	2.14(s)-SCH ₃
				3.98(s)-0CH ₃
20				5.22(s)-NCH ₂ S
				6.27(s)-CHC00
	94 ^a	3.56-3.70(m),	7.87(s)	-0.02(s)-Si(CH ₃) ₃
25		4.30(br m)		0.85(d of d)-CH ₂ Si
				1.50(s)-C(CH ₃) ₃
				3.56-3.70-0CH2CH2
30				(overlap with piperazine)
				5.55(s)-NCH ₂ 0
	95ª	3.52-3.68(m),	7.73(s)	-0.04(s)-Si(CH ₃) ₃
35		4.27(br m)		0.92(d of d) -CH ₂ Si
35				1.48(s) -C(CH ₃) ₃
				3.52-3.68 -OCH2CH2
				(overlap with piperazine)
40				3.97(s)-0CH ₃
				5.51(s)-NCH ₂ 0
	96ª	3.60(m), 4.31 (br m)	7.77(s)	1.49(s)-C(CH ₃) ₃
45				4.00(s) -OCH ₃

50

TABLE 1 (Cont'd)

	Example	Piperazine Methylene	Heterocyclic	Others
5		Resonances	Protons	
	97 ^a	3.58(m),	7.66(s)	1.49(s) -C(CH ₃) ₃
		4.18-4.52(br m)		3.95(s) -OCH ₃
10				4.18-4.52(d of t) -NCH ₂
				(overlap with piperazine)
				4.74(d of t) -CH ₂ F
15	. 98 ^b	3.48(m), 4.42-4.64(m)	8.10(s)	4.02(s) -0CH ₃
				4.42-4.64(d of t) -NCH ₂
				(overlap with piperazine)
				4.84(d of t)=CH ₂ F
20	99 ^a	3.58(m), 4.28(br m)	7.82(s)	1.49(s) -C(CH ₃) ₃
				2.49(t) -CH
				3.98(s) -OCH ₃
25				4.90(d) -NCH ₂
	100ª	3.58(m), 4.26(br m)	7.73(s)	1.49(s) -C(CH ₃) ₃
				3.98(s) -OCH ₃
30				5.66(d) -CH ₂
				7.31(t) -NCH
	101 ^b	3.43(m), 4.44(m)	8.08(s)	2.90(t) -CH
				3.98(s) -OCH ₃
35				4.90(br s) -NCH ₂
	102 ^b	3.44(m), 4.42(m)	8.00(s)	3.98(s)-OCH ₃
				5.78(d)-CH ₂
40				7.10(t)-NCH
	103ª	3.58(m), 4.28(br m)	7.59(s)	1.48(s)-C(CH ₃) ₃
				3.86(s)-0CH ₃
45				4.72(d of t)-NCH ₂
				5.13-5.33(m)-CH=CH ₂
				6.03(m)-CH

- 50

TABLE 1 (Cont'd)

	Example	Piperazine Methylene	Heterocyclic	Others
5		Resonances	Protons	
	104 ^b	3.46(m), 4.49(m)	8.06(s)	4.01(s)-0CH ₃
				4.72-4.84-NCH
10				(overlap with H ₂ 0)
				4.96-5.34(m)-CH=CH ₂
				6.06(m)-CH
15	107 ^a	3.57(m), 4.28(m)	7.65(s)	1.0-1.23(m)-cyclopropy1
				methylenes
				1.35(t)-CH ₃
				1.49(s)-C(CH ₂) ₃
20				2.86(q)-CH ₂ CH ₃
				3.38-3.50(m)-NCH
	108ª	3.00(m), 4.27(m)	7.64(s)	0.99-1.22(m)-cyclopropy1
25				methylenes
				1.34(t)=CH ₃
				Z.84(q)-CH2CH3
30				3.42(m)-NCH
	112*	3.59(m), 4.30(m)	7.77(s)	1.34(t)-CH ₂ CH ₃
				1.51(s)=C(CH ₃) ₃
				2.83(q)-CH2CH2
35				4.80(q)-CH_CF_
	113 ^a	3.03(m), 4.30(m)	7.75(s)	1.33(t)-CH_CH3
				2.82(q)-CH_CH3
40				4.79(q)-CH_CF_3
	114	3.59(m), 4.29(br m)	7.70(s)	1.49(s)-C(CH ₃) ₃
				2.31(s)-COCH ₃
45				5.00(s)-NCH ₂ CO

50

TABLE 1 (Cont'd)

	Example	Piperazine Hethylene	Heterocyclic	Others
5		Resonances	Protons	
	115ª	3.59(m), 4.7 br m)	7.79(s)	1.48(s)-C(CH ₃) ₃
				1.63(t)=CF ₂ CH ₃
10				4.51(t)-NCH2CF2
	116ª	3.57(m), 4.26(br m)	7.66(s)	1.48(s)-C(CH ₃) ₃
				1.58(t)-CF ₂ CH ₃
15				3.96(s)=0CH ₃
				4.46(t)NCH2CF2
	117	3.55(m), 4.26(br m)	7.76(s)	1.88(s)=C(CH ₃) ₃
				4.44(d of t)=NCH ₂ CH ₂ F
20				4.72(d of t)=NCH ₂ CH ₂ F
	119 ^a	3.57(m), 4.28(m)	7.65(s)	1.33(t)=CH ₂ CH ₃
				1.48(s)-C(CH ₃) ₃
25				2.84(q)- <u>CH</u> 2CH3
				3.79(s)-NCH ₃
	120 ^b	3.59(m), 4.72(m)	8.22(s)	1.43(t)=CH ₂ CH ₃
30				3.05(q)- <u>CH</u> 2CH3
				3.97(s)-NCH ₃
	121ª	3.58(m), 4.26(br m)	7.77(s)	1.50(s)-C(CH ₃) ₃
				1.56(d)-CH(<u>CH</u> 3) ₂
35				4.84(m)- <u>CH</u> (CH ₃) ₂
	122ª	3.54(m), 4.04(br m)	7.63(s)	1.48(s)-C(CH ₃) ₃
				1.55(d)-CH(<u>CH</u> 3)2
40				3.94(s)-OCH ₃
				4.74(m)-CH(CH ₃) ₂
	123 ^b	3.43(m), 4.44(m)	8.06(s)	1.54(d)-CH(CH ₃) ₂
45				3.97(s)-0CH ₃
				4.68(m)- <u>CH</u> (CH ₃) ₂

50

TABLE 1 (Cont'd)

5	Example	Piperazine Methylene Resonances	Heterocyclic Protons	Others
	124	3.59(m), 4.28(br m)	7.59;)	1.50(s)-C(CH ₃) ₃
	_			2.28(s)-COCH ₃
10				3.95(s)-0CH ₃
				4.94(s)-NCH ₂ CO
	125 ^b	3.42(m), 4.45(m)	7.88(s)	2.37(s) -COCH ₃
15				3.94(s) -0CH ₃
15				5.22(s) -NCH ₂ CO .
	126 ^b	3.53(m), 4.56(m)	8.15(s)	1.82(t) -CF ₂ CH ₃
				4.09(s) -OCH ₃
20				4.62(t) -NCH2CF2
	130ª	3.60(m), 4.35(m)	7.85(s)	1.41(t) -CH ₂ CH ₃
				1.49(s) -C(CH ₃) ₃
25				2.92(q) -CH2CH3
	131ª	3.59(m), 4.31(m)	7.77(s)	1.33(t) -CH ₂ CH ₃
				1.50(s) -C(CH ₃) ₃
30				2.82(q) -CH ₂ CH ₃
30				4.48(d of t) -NCH2CH2F
				6.77(d of t) -NCH ₂ CH ₂ F
	132 ^b	3.58(m), 4.60-5.14(m)	8.31(s)	1.42(t) -CH ₂ CH ₃
35				3.03(q) -CH2CH3
				4.60-5.14(m)-NCH2CH2F
				(overlap with piperazine
40				and HDO).

All measured at 200 MHz in $^8\mathrm{CDCl}_3$ or $^6\mathrm{D}_2\mathrm{O}$ Chemical shifts in 6 ppm from TMS (CDCl $_3$) or TSP ($\mathrm{D}_2\mathrm{O}$)

45

TABLE 2

PROPERTIES OF OTHER ALKYL 6-(1-PIPERAZINYL)PURINES					
Substituent	Salt Form	200 MHz Proton NMR -(D ₂ O. δ from TSP)			
2-methyl	diHCl	2.66 (s, 3), 3.51 (m, 4), 4.54 (m, 4), 8.22 (s, 1)			
2,9-dimethyl	diHCl	2.70 (s, 3), 3.52 (m, 4), 3.90 (s, 3), 4.62 (m, 4), 8.16 (s, 1)			
3-methyl	diHCl•0.33 H₂O	3.52 (m, 4), 4.10 (s, 3), 4.52 (m, 4), 9.40(s, 1), 8.56 (s, 1)			
3-ethyl	diHCI•0.5H₂O	1.58 (t, 3), 3.56 (m, 4), 4.58 (m, 6), 8.41 (s, 1), 8.61 (s, 1)			
4 ['] ,9-dimethyl	diHCl•0.5H₂O	3.02 (s, 3), 3.32 (t, 2), 3.78 (m, 4), 3.90 (s, 3), 5.38 (d, 2), 8.24 (s, 1), 8.46 (s, 1)			
9-ethyl	diHCl	1.49 (t, 3), 3.58 (m, 4), 4.34 (q, 2), 4.58 (m, 4), 8.38 (s, 1), 8.48 (s, 1)			
9-isopropyl	diHCI•0.33 H₂O	1.60 (d, 6), 3.55 (m, 4), 4.80 (hept, 1), 8.39 (s, 1), 8.41 (s, 1)			
9-benzyl	diHCl	3.52 (m, 4), 4.52 (m, 40, 5.50 (s, 2), 7.35 (m, 5), 8.30 (s, 1) 8.40 (s, 1)			

Claims

10

15

20

25

35

40

1. A compound having the formula:

wherein X, and Y have the following meanings:

Х	Υ
N-(R ₃) _m	N-(R ₃) _n
CR ₃	N-R ₃
N	s
N	0

and R₁ and R₂ are independently hydrogen, loweralkyl, cycloloweralkyl, loweralkenyl, loweralkenyl, loweralkynyl, or phenylloweralkyl or substituted loweralkyl where the substituent is from 1 to 3 of halogen, loweralkylthio, loweralkylufinyl, loweralkylsuffonyl, loweralkylamino or diloweralkylamino, or the substituent is one of a 5- or 6-membered heteroaromatic ring system with nitrogen, oxygen or sulfur as the heteroatom, and m and n are 0 or 1 such that when m is 0, n is 1 and when m is 1, n is 0: R₂ and R₃, are independently hydrogen, loweralkyl, cycloloweralkyl, loweralkoxy, loweralkylthio, loweralkyl-

suifinyl, loweralkysulfonyl, loweralkenyl, loweralkenyloxy, loweralkynyloxy, nono, di, or trihaloloxeralkyl, phenyl or substituted phenyl where the substituent is from 1 to 3 of halo or loweralkyl, phenylloweralkyl, amino. loweralkylaminio or dialkylaminio where the alkyl groups can be linear, branched or joined in a "ring of 5 or 6-members optionally containing oxygen or nitrogen as a heteroatom: and the pharmaceutically saccentable salts thereof.

- The compound of Claim 1 wherein R₁ is hydrogen, loweralkyl, or loweralkenyl; R₂ is loweralkyl, loweralkoxy, amino, loweralkylamino, diloweralkylamino or pyrrolidino; each R₃ is independently hydrogen. loweralkyl, loweralkoxyloweralkyl, or halogenated loweralkyl.
- 3. The compound of Claim 2 wherein R₁ is hydrogen, methyl, ethyl or 2-propenyl; R₂ is methyl, ethyl, or methoxy, ethoxy, amino, methylamino, dimethylamino, pyrrolidino or ethylamino; each R₃ is independently hydrogen, methyl, n-propyl, isopropyl, methoxymethyl, methoxyethyl or fluoroethyl; and each R₄ is independently hydrogen, methyl, methylamino, or dimethylamino.
 - 4. The compound of Claim 1 having the formula

15

20

25

30

40

50

RR

wherein Y is S or N-R3 and the corresponding X is N or C-R3, and R1, R2, R3 and R4 are as defined in Claim 1.

- 5. The compound of Claim 3 wherein X and Y are independently N and N-R₂.
 - 6. The compound of Claim 5 wherein X is N and Y is N-Ro.
 - 7. The compound of Claim 6 wherein R₃ is a halogenated branched loweralkyl.
 - The compound of Claim 7 wherein R₃ is a halogenated isopropyl group.
- The compound of Claim 8 wherein R₃ is a fluorinated isopropyl group.
 The compound of Claim 9 wherein R₃ is 1.3-difluoro isopropyl.
- 11. The compound of Claim 5 wherein R₁ is hydrogen or methyl, and R₂ and R₄ are independently hydrogen, methyl, methoxy, ethoxy or dimethylamino.
- 12. The compound of Claim 1 which is X=N, Y=N-CH₃, R₁=H, R₂=CH₂CH₃ and R₄=H.
 - 13. The compound of Claim 1 which is X=N, Y=N-CH2CH2CH3, R1=H, R2=OMe and R4=H.
 - The compound of Claim 1 which is X=N, Y=N-CH₂OCH₂OH₃, R₁=H, R₂=OCH₂CH₃ and R₄=H.
 - 15. The compound of Claim 1 which is X=N, Y=N-CH₂CH₂F, R₁=H, R₂=OCH₃ and R₄=H.
 - 16. The compound of Claim 1 which is X = N, Y = N-CH₂CH₂F, R₁ = H, R₂ = CH₂CH₃ and R₄ = H.
 - 17. The compound of Claim 1 which is X=N, Y=NCH2CH2CH2F, R1=H, R2=OCH3 and R4=H.
 - 18. The compound of Claim 1 which is X = N, $Y = NCH(CH_3)_2$, R = H, $R_2 = OCH_3$ and $R_4 = H$.
 - 19. The compound of Claim 1 which is X=N, Y=NCH(CH₂F)₂, R₁=H, R₂=OCH₃ and R₄=H.
 - 20. The compound of Claim 1 which is X=NCH(CH₂F)₂, R₁=H, R₂=OCH₂CH₃ and R₄=N.
 - 21. The compound of Claim 1 which is X = N, Y = NCH(CH₂F)₂, R₁ = H, R₂ = CH₂CH₃ and R₄ = H.
- 22. A process for the preparation of a compound of Claim 1 which comprises treating a compound having the formula:

with an R_1 substituted piperazine, or a protected piperazine wherein R_1 is hydrogen, wherein X, Y, R_1 , R_2 and R_3 are defined above.

23. The process of Claim 22 wherein the piperazine is used in at least a 1 molar excess.

24. The use of a compound as claimed in Claim 1 for the preparation of a medicament useful for the treatment of diabetes or obesity with associated insulin resistance.

25. A composition useful for the treatment of diabetes or obesity with associated insulin resistance which comprises an inert carrier and a compound of Claim 1.

Claims for the following Contracting States: ES, GR

1.- A process for preparing piperazinyl derivatives of purines and isosteres thereof having the formula (I)

$$R_4 \xrightarrow{V} \stackrel{X}{\underset{N}{\bigvee}} R_2$$

wherein X, and Y have the following meanings:

Х	Υ
N-(R ₃) _m CR ₃	N-(R ₃) _n N-R ₃
N.	S
N	10

and R₁ and R₃ are independently hydrogen, loweralkyl, loweralkenyl, lower alkoxyloweralkyl, haloloweralkyl, loweralkynyl, or phenylloweralkyl and m and n are 0 or 1 such that when m is 0, n is 1 and when m is 1, n is 0;

R₂ and R₄ are independently hydrogen, loweralkyl, loweralkoxy, loweralkylthio, loweralkynylhaloloweralkyl, phenylloweralkyl amino, loweralkylamino or diakylamino where the alkyl groups can be flinear, branched or joined in a ring of 5- or 6-members optionally containing oxygen or nitrogen as a heteroatom; and the pharmacautically acceptable salts thereof, characterized by freating a compound of formula (II)

$$R_{4} = \bigvee_{N}^{Y} \bigvee_{C_{1}}^{R_{2}} R_{2}$$
 (II)

wherein R₂, R₄, X and Y are those defined above, a) with an R₁ substituted piperazine of formula

55

45

50

10

15

20

wherein R₁ is that defined above, in order to directly render compound I: or b) with a protected piperazine of formula

15

20

35

40

45

55

wherein Prot is a protecting group; followed by, further removal of the protecting group to render a compound of formula (I) wherein R₁ is H, and then, optionally, if desired, further introduction of the R₁ group.

- 2. The process of claim 1 wherein the piperazine is used in at least a 1 molar excess.
- 3. The process of Claim 1 wherein R_1 is hydrogen, loweralkyl, or loweralkenyl; R_2 is diloweralkylamino or promidinc; each R_3 is independently hydrogen, loweralkyl, loweralkoxyloweralkyl, or halogenated loweralkyl.
- 4. The process of claim 1 wherein R₁ is hydrogen, methyl, ethyl or 2-propenyl; R₂ is methyl, methoxy, ethoxy, amino, methylamino, dimethylamino, pyrrolidino or ethylamino; each R₃ is independently hydrogen, methyl, ethyl, n-propyl, isopropyl, methoxymethyl, methoxyethyl or fluoroethyl; and each R₄ is independently hydrogen, methyl, methoxymethyl, methox
 - 5. The process of claim 1 wherein the compound obtained has the formula

wherein Y is S or N-R₃ and the corresponding X is N or C-R₃, and R₁, R₂, R₃ and R₄ are as defined in claim 1.

- 6. The process of claim 5, wherein X and Y are independently N and N-R₃.
- 7. The process of Claim 6 wherein R₃ is a halogenated branched loweralkyl.
- 8. The process of Claim 7 wherein R₃ is a halogenated isopropyl group.
- The process of Claim 8 wherein R₃ is a fluorinated isopropyl group.
 The compound of Claim 9 wherein R₃ is 1,3-diffuoro isopropyl.
- 11. The process of claim 5 wherein R₁ is hydrogen or methyl, R₃ is methyl or ethyl and R₂ and R₄ are independently hydrogen, methyl, methoxy, ethoxy or dimethylamino.
 - 12. The process of claim 1 which is X=N, Y=N-CH₃, R₁=H, R₂=CH₂CH₃, R₄=H.
 - 13. The process of Claim 1 which is X = N, Y = N-CH₂ CH₂ CH₃, R₁ = H, R₂ = OMe and R₆ = H,

5	15. The pr 16. The pr 17. The pr 18. The pr 19. The pr 20. The pr	rocess of Cla rocess of Cla rocess of Cla rocess of Cla rocess of Cla rocess of Cla	im 1 which im 1 which im 1 which im 1 which im 1 which im 1 which	is X=N, Y is X=N, Y is X=N, Y is X=N, Y is X=N, Y is X=NCH	'= N-CH ₂ CH ₂ F, '= N = CH ₂ CH ₂ F '= NCH ₂ CH ₂ CH '= NCH(CH ₃) ₂ , '= NCH(CH ₂ F) ₂ H(CH ₂ F) ₂ , R ₁ = I	R ₁ = H, R ₂ = OCH R ₁ = H, R ₂ = OCH; F, R ₁ = H, R ₂ = CH ₂ I ₂ F, R ₁ = H, R ₂ = O R ₁ = H, R ₂ = OCH ₃ , R ₁ = H, R ₂ = OCH ₄ H, R ₂ = OCH ₂ CH ₃ , R ₁ = H, R ₂ = CH ₂ (and $R_{L} = H$. CH_{3} and $R_{L} = H$. CH_{3} and $R_{L} = H$. and $R_{L} = H$. $R_{1} = H$. and $R_{L} = H$.
10							
15							
20							
25							
30							
36							
40							
45							
50							

DOCUMENTS CONSIDERED TO BE RELEVANT					306584.9	
Category	Citation of document w of rele	Relevant to claim	CLASSIFI APPLICA	CATION OF THE TION (Int. CI.4)		
Α		500 (YOSHITOMI INDUSTRIES, LTD.)	1-5,11	0.07	D 473/34	
	* Examples 2	,4; page 11, lines		į .	D 471/04	
	23-26; page 19-22,25,26	12, lines 7-11,		A 61		
	20 22,20,20			A 61	K 31/44	
А	DE - B2 - 1 695 ET CIE.)	821 (SCIENCE UNION	1-5,11			
	* Claims 1-7	*				
A	DE - B - 1 115 2 THOMAE GESELLSCH SCHRÄNKTER HAFTU	AFT MIT BE-	1-5			
	* Compound no	. 34 *				
İ						
A	DE - A - 1 670 S CONTROL LTD.)	940 (FISONS PEST	1		ICAL FIELDS HED (Int. Cl.4)	
	* Page 2, for	rmula; page 3, page 4, lines		C 07	D 473/00	
	1,2 *	page 1, Illies			D 471/00	
	-		• 0,	2 ., 2, 00		
				,		
	_					
The present search report has been drawn up for all claims						
	Place of search	T	Examine	or .		
	VIENNA	20-09-1988		HERIN	IG	

CATEGORY OF CITED DOCUMENTS

03.82

EPO Form 1503

- X: particularly relevant if taken alone
 Y: particularly relevant if combined with another document of the same category
 A: technological background
 O: non-written disclosure
 P: intermediate document

- T: theory or principle underlying the invention
 E: earlier patent document, but published on, or after the filing date
 D: document cited in the application
 L: document cited for other reasons
- & : member of the same patent family, corresponding document