ЛЕКЦІЯ 11

Графи й відношення, графи й відображення, числа графа

План лекції

- 1. Графи й бінарні відношення
- 2. Зв'язок між операціями над графами й операціями над відношеннями
- 3. Багатозначні відображення.
- 4. Відображення множини вершин
- 5. Визначення графа і його властивостей з використанням відображень
- 6. Досяжні й контрдосяжні вершини
- 7. Матриця досяжності.
- 8. Відображення й досяжність
- 9. Визначення множини досяжності через відображення
- 10. Побудова матриці досяжності
- 11. Матриця контрдосяжності
- 12. Співвідношення між матрицями досяжності й контрдосяжності
- 13. Числа, що характеризують граф
- 13.1. Цикломатичне число
- 12.1.1. Цикли в графі
- 13.1.2.Вектор-цикл, незалежні цикли
- 12.1.3. Властивості пиклів
- 13.1.4. Визначення цикломатичного числа
- 14. Число внутрішньої стійкості
- 15. Число зовнішньої стійкості

Графи й бінарні відношення

Відношенню R , заданому на множині V взаємно однозначно відповідає орієнтований граф $G\left(R\right)$ без кратних ребер з множиною вершин V , у якому ребро $\left(v_i,v_j\right)$ існує тільки тоді, коли виконано v_iRv_j .

Представимо на графах деякі бінарні відношення.

1. **Рефлексивність.** Відношення R на множині V *рефлексивне*, якщо для кожного елемента $v \in V$ справедливе $(v,v) \in R$. На графі це зображається петлею, а матриця суміжності графа з рефлексивними відношеннями містить одиниці на головній діагоналі.

Іншими словами, якщо відношення R рефлексивне, то граф G(R) без кратних ребер має петлі у всіх вершинах.

Приклад. На малюнку показаний приклад графа рефлексивного відношення.

Головна діагональ матриці суміжності G(R) складається з одиниць.

$$\mathbf{C} = \begin{bmatrix} \mathbf{1} & 1 & 0 & 0 & 0 \\ 1 & \mathbf{1} & 1 & 0 & 0 \\ 0 & 1 & \mathbf{1} & 1 & 0 \\ 0 & 0 & 1 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 1 & \mathbf{1} \end{bmatrix}$$

2. **Антирефлексивність.** Якщо відношення R на множині V антирефлексивне, то для всіх елементів v множини V справедливе $(v,v) \not\in R$.

Якщо R антирефлексивне, то граф G(R) без кратних ребер не має петель.

Приклад. На малюнку показаний граф антирефлексивного відношення

$$\mathbf{C} = \begin{bmatrix} \mathbf{0} & 1 & 1 & 0 & 0 \\ 1 & \mathbf{0} & 1 & 0 & 0 \\ 1 & 1 & \mathbf{0} & 1 & 1 \\ 0 & 0 & 1 & \mathbf{0} & 1 \\ 0 & 0 & 1 & 1 & \mathbf{0} \end{bmatrix}$$

Головна діагональ матриці суміжності G(R) складається з нулів.

3. Симетричність. Відношення R на V називають $\mathit{симетричним}$, якщо з $\left(v_i,v_j\right)\in R$ випливає $\left(v_j,v_i\right)\in R$ при $v_i\neq v_j$. Матриця суміжності симетричного відношення симетрична щодо головної діагоналі.

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{split} &\left(v_1,v_2\right) \in R \longrightarrow \left(v_2,v_1\right) \in R, \ \left(v_1,v_3\right) \in R \longrightarrow \left(v_3,v_1\right) \in R, \\ &\left(v_1,v_4\right) \in R \longrightarrow \left(v_4,v_1\right) \in R, \ \left(v_2,v_5\right) \in R \longrightarrow \left(v_5,v_2\right) \in R, \\ &\left(v_3,v_4\right) \in R \longrightarrow \left(v_4,v_3\right) \in R, \ \left(v_4,v_5\right) \in R \longrightarrow \left(v_5,v_4\right) \in R. \end{split}$$

4. **Антисиметричність.** Відношення R на антисиметричним, якщо з $\left(v_{i},v_{j}\right)\in R$ випливає $\left(v_{i},v_{i}\right)\not\in R$ при $v_{i}\neq v_{j}$. Матриця суміжності антисиметричного відношення несиметрична щодо головної діагоналі. Антисиметричне відношення завжди представлене орграфом з дугами без повторень.

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{split} & \left(v_1, v_2\right) \in R \longrightarrow \left(v_2, v_1\right) \not \in R, \ \left(v_1, v_3\right) \in R \longrightarrow \left(v_3, v_1\right) \not \in R, \\ & \left(v_4, v_1\right) \in R \longrightarrow \left(v_1, v_4\right) \not \in R, \ \left(v_2, v_5\right) \in R \longrightarrow \left(v_5, v_2\right) \not \in R, \\ & \left(v_3, v_4\right) \in R \longrightarrow \left(v_4, v_3\right) \not \in R, \ \left(v_5, v_4\right) \in R \longrightarrow \left(v_4, v_5\right) \not \in R. \end{split}$$

5. Транзитивність. Відношення Rмножині на **транзитивним**, якщо з $\left(v_i,v_j\right)\in R$, $\left(v_j,v_k\right)\in R$ випливає $\left(v_i,v_k\right)\in R$ при $v_i,v_j,v_k\in V$ і $v_i\neq v_j,v_j\neq v_k,v_i\neq v_k$. У графі, що задає транзитивне відношення для всякої пари дуг, таких, що кінець першої дуги збігається з початком другий, існує транзитивно замикаюча дуга, що має спільний початок з першою і спільний кінець з другою.

$$\mathbf{C} = \begin{vmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & 0 & 1 & 0 & 1 & 1 \\ v_2 & 1 & 0 & 1 & 0 & 1 \\ v_3 & 0 & 1 & 0 & 1 & 1 \\ v_4 & 1 & 0 & 1 & 0 & 1 \\ v_5 & 1 & 1 & 1 & 1 & 0 \end{vmatrix}$$

$$\begin{pmatrix} v_1,v_5 \end{pmatrix} \in R, \begin{pmatrix} v_5,v_2 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_1,v_2 \end{pmatrix} \in R; \\ \begin{pmatrix} v_1,v_5 \end{pmatrix} \in R, \begin{pmatrix} v_5,v_4 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_1,v_4 \end{pmatrix} \in R; \\ \begin{pmatrix} v_3,v_5 \end{pmatrix} \in R, \begin{pmatrix} v_5,v_4 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_3,v_4 \end{pmatrix} \in R; \\ \begin{pmatrix} v_2,v_5 \end{pmatrix} \in R, \begin{pmatrix} v_5,v_3 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_2,v_3 \end{pmatrix} \in R \\ & \cdots \\ \begin{pmatrix} v_1,v_2 \end{pmatrix} \in R, \begin{pmatrix} v_2,v_5 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_1,v_5 \end{pmatrix} \in R \\ & \begin{pmatrix} v_5,v_1 \end{pmatrix} \in R, \begin{pmatrix} v_1,v_2 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_5,v_2 \end{pmatrix} \in R \\ & \cdots \\ \end{pmatrix}$$

Відношення R на множині вершин $V = \left\{v_1, v_2, ..., v_5\right\}$ транзитивне, оскільки для довільного ребра в графі виконується умова транзитивності.

Антитранзитивність. Відношення R на множині антитранзитивним, якщо з $\left(v_{i},v_{i}\right)\in R$, $\left(v_{i},v_{k}\right)\in R$ випливає $\left(v_{i},v_{k}\right)\not\in R$ при $v_i,v_j,v_k\in V$ і $v_i\neq v_j,v_j\neq v_k,v_i\neq v_k$. У графі, що задає антитранзитивне відношення для всякої пари дуг, таких, що кінець першої дуги збігається з початком другої, не існує транзитивно замикаючої дуги, яка має спільний початок з першою і спільний кінець з другою.

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\begin{split} &\left(v_1,v_3\right) \in R, \left(v_3,v_4\right) \in R \longrightarrow \left(v_1,v_4\right) \not \in R; \\ &\left(v_4,v_1\right) \in R, \left(v_1,v_3\right) \in R \longrightarrow \left(v_4,v_3\right) \not \in R; \\ &\left(v_3,v_4\right) \in R, \left(v_4,v_1\right) \in R \longrightarrow \left(v_3,v_1\right) \not \in R; \\ &\left(v_4,v_1\right) \in R, \left(v_1,v_2\right) \in R \longrightarrow \left(v_4,v_2\right) \not \in R; \\ &\left(v_2,v_5\right) \in R, \left(v_5,v_4\right) \in R \longrightarrow \left(v_2,v_4\right) \not \in R; \\ &\left(v_5,v_4\right) \in R, \left(v_4,v_1\right) \in R \longrightarrow \left(v_5,v_1\right) \not \in R; \\ &\left(v_1,v_2\right) \in R, \left(v_2,v_5\right) \in R \longrightarrow \left(v_1,v_5\right) \not \in R \end{split}$$

Відношення R на множині вершин $V = \{v_1, v_2, ..., v_5\}$ антитранзитивне, оскільки для довільних пар ребер виконується умова антитранзитивності.

Зв'язок між операціями над графами і операціями над відношеннями

1. Нехай \overline{R} — доповнення відношення R на V :

$$\overline{R} = U \setminus R$$
,

де U — універсальне (повне) відношення $U = V \times V$, тобто відношення, яке має місце між будь-якою парою елементів з V.

2. Граф $G\left(\overline{R}\right)$ ϵ доповненням графа $G\left(R\right)$ (до повного орграфа K з множиною вершин V і множиною ребер

$$E(K) = V \times V).$$

Приклад. Нехай $V = \left\{ v_1, v_2, v_3, v_4 \right\}$.

$$\begin{split} U &= \left\{ \left(v_1, v_1\right), \left(v_1, v_2\right), \left(v_1, v_3\right), \left(v_1, v_4\right), \left(v_2, v_1\right), \left(v_2, v_2\right), \left(v_2, v_3\right), \left(v_2, v_4\right), \\ & \left(v_3, v_1\right), \left(v_3, v_2\right), \left(v_3, v_3\right), \left(v_3, v_4\right), \left(v_4, v_1\right), \left(v_4, v_2\right), \left(v_4, v_3\right), \left(v_4, v_4\right) \right\} \\ R &= \left\{ \left(v_1, v_1\right), \left(v_1, v_2\right), \left(v_2, v_2\right), \left(v_2, v_3\right), \left(v_3, v_3\right), \left(v_3, v_4\right), \left(v_4, v_1\right), \left(v_4, v_4\right) \right\} \\ \overline{R} &= \left\{ \left(v_1, v_3\right), \left(v_1, v_4\right), \left(v_2, v_1\right), \left(v_2, v_4\right), \left(v_3, v_1\right), \left(v_3, v_2\right), \left(v_4, v_2\right), \left(v_4, v_3\right) \right\} \end{split}$$

3. Граф зворотного відношення $G\left(R^{-1}\right)$ відрізняється від графа $G\left(R\right)$ тим, що напрямки всіх ребер замінені на зворотні. R R^{-1}

що напрямки всіх ребер замінені на зворотні.
$$v_1$$
 v_2 v_3 v_4 v_3 v_4 v_4 v_4 v_4 v_4 v_5 v_6 v_8 v_8

$$R = \left\{ \left(v_1, v_2\right), \left(v_2, v_3\right), \left(v_4, v_1\right), \left(v_4, v_3\right) \right\}; \ R^{-1} = \left\{ \left(v_2, v_1\right), \left(v_3, v_2\right), \left(v_1, v_4\right), \left(v_3, v_4\right) \right\}$$

4. Граф об'єднання двох відносин, заданих на V, $G\left(R_1 \cup R_2\right)$ є графом об'єднання двох графів $G\left(R_1\right)$ і $G\left(R_2\right)$:

5. Граф перетинання відносин $R_1\cap R_2$ на V $G\left(R_1\cap R_2\right)$ є графом перетинання двох графів $G\left(R_1\right)$ і $G\left(R_2\right)$:

$$G\left(R_1\cap R_2\right)=G\left(R_1\right)\cap G\left(R_2\right).$$

$$v_1 \qquad \qquad v_2 \qquad v_1 \qquad \qquad v_2 \qquad v_1 \qquad \qquad v_2 \qquad v_2 \qquad v_3 \qquad v_4 \qquad \qquad v_4 \qquad \qquad v_4 \qquad \qquad v_4 \qquad \qquad v_5 \qquad v_6 \qquad \qquad v_7 \qquad v_8 \qquad \qquad v_8 \qquad v_8$$

Багатозначні відображення

Пряме відображення першого порядку вершини v_i — це множина таких вершин

$$v_j$$
 графа $G\left(V,E
ight)$, для яких існує дуга $\left(v_i,v_j
ight)$, тобто
$$\Gamma^+\left(v_i
ight)=\Big\{v_j\left|\left(v_i,v_j
ight)\in E, i,j=1,2,...,n\Big\},$$

де
$$n=\left|V\right|$$
 – кількість вершин графа

$$i = 8$$
 $v_i = v_8$

$$\Gamma^+\left(v_{_8}\right)=\left\{v_2,v_{11},v_{10}\right\}$$

Пряме відображення другого порядку вершини v_i — це пряме відображення від прямого відображення першого порядку

$$\Gamma^{+2}\left(v_{i}\right) = \Gamma^{+}\left(\Gamma^{+1}\left(v_{i}\right)\right).$$

$$\begin{split} i &= 8 \text{ , } v_i = v_8 \\ \Gamma^+ \left(v_8 \right) &= \left\{ v_2, v_{11}, v_{10} \right\} \end{split}$$

$$\Gamma^{+2}\left(v_{8}\right)=\left\{ v_{1},v_{3},v_{4},v_{5},v_{7},v_{9}\right\}$$

Аналогічно можна записати відображення 3-го порядку

$$\Gamma^{+3}\left(\boldsymbol{v}_{i}\right)=\Gamma^{+}\left(\Gamma^{+2}\left(\boldsymbol{v}_{i}\right)\right)=\Gamma^{+}\left(\Gamma^{+}\left(\Gamma^{+1}\left(\boldsymbol{v}_{i}\right)\right)\right),$$

Відображення для 4-го порядку

$$\Gamma^{+4}\left(v_{i}\right) = \Gamma^{+}\left(\Gamma^{+3}\left(v_{i}\right)\right) = \Gamma^{+}\left(\Gamma^{+}\left(\Gamma^{+}\left(\Gamma^{+1}\left(v_{i}\right)\right)\right)\right),$$

i т.д., для p-го порядку.

$$\Gamma^{+p}\left(\boldsymbol{v}_{i}\right) = \Gamma^{+}\left(\Gamma^{+(p-1)}\left(\boldsymbol{v}_{i}\right)\right)$$

Приклад. Знайдемо прямі багатозначні відображення для графа, показаного на малюнку:

$$\begin{split} &\Gamma^{+1}\left(v_{1}\right)=\left\{ v_{2},v_{3}\right\},\\ &\Gamma^{+2}\left(v_{1}\right)=\Gamma^{+}\left(\Gamma^{+}\left(v_{1}\right)\right)=\Gamma^{+}\left(v_{2},v_{3}\right)=\left\{ v_{3},v_{5}\right\}, \end{split}$$

$$\begin{split} &\Gamma^{+3}\left(v_{1}\right)=\Gamma^{+}\left(\Gamma^{+2}\left(v_{1}\right)\right)=\Gamma^{+}\left(v_{3},v_{5}\right)=\left\{ v_{3},v_{1}\right\},\\ &\Gamma^{+4}\left(v_{1}\right)=\Gamma^{+}\left(\Gamma^{+3}\left(v_{1}\right)\right)=\Gamma^{+}\left(v_{3},v_{1}\right)=\left\{ v_{2},v_{3}\right\}. \end{split}$$

Далі легко помітити, що

$$\begin{split} &\Gamma^{+1}\left(v_{1}\right) = \Gamma^{+4}\left(v_{1}\right) = \Gamma^{+7}\left(v_{1}\right)....\\ &\Gamma^{+2}\left(v_{1}\right) = \Gamma^{+5}\left(v_{1}\right) = \Gamma^{+8}\left(v_{1}\right)....\\ &\Gamma^{+3}\left(v_{1}\right) = \Gamma^{+6}\left(v_{1}\right) = \Gamma^{+9}\left(v_{1}\right).... \end{split}$$

Аналогічно знаходимо відображення для інших вершин графа.

Зворотне відображення першого порядку вершини v_i — це множина таких вершин v_j графа $G\!\left(V,E\right)$, для яких існує дуга $\!\left(v_j,v_i\right)$, тобто

$$\Gamma^{-}\left(\boldsymbol{v}_{i}\right)=\left\{ \boldsymbol{v}_{j}\left|\left(\boldsymbol{v}_{j},\boldsymbol{v}_{i}\right)\in\boldsymbol{E},i,j=1,2,...,n\right.\right\} ,$$

де n = |V| – кількість вершин графа

Зворотне відображення другого й наступних порядків вершини v_i — це зворотне відображення від зворотного відображення попереднього порядку

$$\Gamma^{-2}\left(v_{i}\right) = \Gamma^{-}\left(\Gamma^{-1}\left(v_{i}\right)\right).$$

$$\Gamma^{-3}\left(v_{i}\right) = \Gamma^{-}\left(\Gamma^{-2}\left(v_{i}\right)\right) = \Gamma^{-}\left(\Gamma^{-1}\left(v_{i}\right)\right)$$

$$\dots$$

$$\Gamma^{-p}\left(v_{i}\right) = \Gamma^{-}\left(\Gamma^{-(p-1)}\left(v_{i}\right)\right)$$

Приклад. Знайдемо зворотні багатозначні відображення для графа, показаного на рисунку :

$$\begin{split} &\Gamma^{-}\left(v_{1}\right)=\left\{v_{5}\right\},\\ &\Gamma^{-2}\left(v_{1}\right)=\Gamma^{-}\left(\Gamma^{-1}\left(v_{1}\right)\right)=\Gamma^{-}\left(v_{5}\right)=\left\{v_{2},v_{4}\right\},\\ &\Gamma^{-3}\left(v_{1}\right)=\Gamma^{-}\left(\Gamma^{-2}\left(v_{1}\right)\right)=\Gamma^{-}\left(v_{2},v_{4}\right)=\left\{v_{1}\right\},\\ &\Gamma^{-4}\left(v_{1}\right)=\Gamma^{-}\left(\Gamma^{-3}\left(v_{1}\right)\right)=\Gamma^{-}\left(v_{1}\right)=\left\{v_{5}\right\} \text{ і т.д.} \end{split}$$

Відображення множини вершин

Якщо розглянуте раніше відображення застосовується одночасно до всіх вершин графа, то воно може бути отримане з виразу:

$$\Gamma^{+}(V) = \bigcup_{v \in V} \Gamma^{+}(v).$$

Якщо $V = \{V_1, V_2, ..., V_n\}$, то слушні співвідношення:

$$\Gamma^{+}\!\left(\bigcup_{i=1}^{n}V_{i}\right)\!=\bigcup_{i=1}^{n}\Gamma^{+}\!\left(V\right)_{i}$$

Визначення графа і його властивостей з використанням відображень

Граф. Говорять, що граф $G(V,\Gamma)$ заданий однозначно, якщо задані:

- 1. Непуста множина V .
- 2. Відображення $\Gamma: V \to V$.

Пари вершин v_i і v_j з'єднують ребром за умови, що $v_j \in \Gamma^+ \left(v_i \right)$.

Підграф. Підграфом графа $G\!\left(V,\Gamma\right)$ називають граф виду $G\!\left(A,\Gamma_A\right)$, де $A\subset V$, а відображення Γ_A визначене в такий спосіб:

$$\Gamma_A^+(v) = \Gamma^+(v) \cap A$$
,

Тобто, відображеня Γ_A включає тільки ті вершини, що входять в множину A

Компонента зв'язності графа

Компонента зв'язності — **деяка множина вершин графа,** у якій між довільними двома вершинами **існує шлях** з однієї в іншу, і не існує жодного шляху з вершини цієї множини у вершину не з цієї множини.

Компонента зв'язности — це граф, породжений деякою множиною C_v , де C_v — множина, що включає вершину v і усі ті вершини графа, які можуть бути з'єднані з нею ланцюгом.

Теорема про розбиття графа. Різні компоненти графа $G\left(V,\Gamma\right)$ утворюють розбиття множини V , тобто

- 1. $C_v \neq \emptyset$,
- $2. \ v_i, v_j \in V, \, C_{v_i} \neq C_{v_j} \Rightarrow C_{v_i} \cap C_{v_j} = \varnothing \,,$
- 3. $\bigcup C_v = V$.

Теорема про зв'язний граф. Граф ε зв'язним графом тоді й тільки тоді, коли він складається з одного компонента зв'язності.

Між будь-якою парою вершин зв'язного графа існує як мінімум один шлях.

Досяжні і контрдосяжні вершини

Визначення. Вершину w графа D (або орграфа) називають досяжною з вершини v, якщо w=v, або існує шлях з v у w (маршрут від v у w).

Визначення. Вершину w графа D (або орграфа) називають **контрдосяжною** з вершини v, якщо існує шлях з w у v (маршрут від w у v).

Матриця досяжності

Mатрицею досяжності називається матриця $n \times n$ $R = \left(r_{ij}\right), i,j=1,2,...,n$, де n — число вершин графа, а кожний елемент визначається в такий спосіб:

$$r_{ij} = egin{cases} 1, & \textit{якщо} \ \text{вершина} \ v_{_j} \ \textit{досяжна} \ \textit{3} \ v_{_i}, \ 0, & \textit{у} \ & \text{протилеженому} \ & \textit{випадку}. \end{cases}$$

Множина досяжних вершин $R\left(v_i\right)$ графа G . Множина $R\left(v_i\right)$ вершин, досяжних із заданої вершини v_i , складається з таких елементів v_j , для яких елемент r_{ij} в матриці досяжності дорівнює 1.

Усі діагональні елементи r_{ii} в матриці R дорівнюють 1, оскільки кожна вершина досяжна з себе самої зі шляхом довжиною 0.

Відображення і досяжність

Пряме відображення 1-го порядку $\Gamma^{+1} ig(v_i ig) -$ це

множина таких вершин v_j , які досяжні з v_i з використанням шляхів довжиною 1.

Пряме відображення 2-го порядку — це множина $\Gamma^+\Big(\Gamma^{+1}\Big(v_i\Big)\Big) = \Gamma^{+2}\Big(v_i\Big)$, яка складається з вершин, досяжних з v_i з використанням шляхів довжиною 2.

Пряме відображення р-го порядку — це множина $\Gamma^{+p}\left(v_i\right)$, яка складається з вершин, досяжних із v_i за допомогою шляхів довжини p .

Визначення множини досяжності через відображення

Будь-яка вершина графа G, яка досяжна з v_i , повинна бути досяжна з використанням шляху (або шляхів) довжиною 0 або 1, або 2, ..., або p. Тоді множина вершин, досяжних з вершини v_i , можна представити у вигляді

$$R\left(v_{i}\right)=\left\{ v_{i}\right\} \cup \Gamma^{+1}\left(v_{i}\right) \cup \Gamma^{+2}\left(v_{i}\right) \cup \ldots \cup \Gamma^{+p}\left(v_{i}\right).$$

Побудова матриці досяжності

Будуємо матрицю по рядках.

- 1. Знаходимо досяжні множини $R\left(v_{i}\right)$ для всіх вершин $v_{i}\in V$.
- 2. Для i го рядка $r_{ij}=1$, якщо $v_j\in R\left(v_i\right)$, а якщо ж $v_j\not\in R\left(v_i\right)$, то $r_{ij}=0$.

Рисунок. Досяжність у графі: а – граф; б – матриця суміжності; в – матриця досяжності; г – матриця контрдосяжності.

Множини досяжностей знаходять у такий спосіб:

$$\begin{split} R\left(v_{1}\right) &= \left\{v_{1}\right\} \cup \Gamma^{+1}\left(v_{1}\right) \cup \Gamma^{+2}\left(v_{1}\right) \cup \Gamma^{+3}\left(v_{1}\right) = \\ &= \left\{v_{1}\right\} \cup \left\{v_{2}, v_{5}\right\} \cup \left\{v_{2}, v_{4}, v_{5}\right\} \cup \left\{v_{2}, v_{4}, v_{5}\right\} = \left\{v_{1}, v_{2}, v_{4}, v_{5}\right\} \\ &= \left\{v_{2}\right\} \cup \left\{v_{2}\right\} \cup \Gamma^{+1}\left(v_{2}\right) \cup \Gamma^{+2}\left(v_{2}\right) = \\ &= \left\{v_{2}\right\} \cup \left\{v_{2}, v_{4}\right\} \cup \left\{v_{2}, v_{4}, v_{5}\right\} = \left\{v_{2}, v_{4}, v_{5}\right\} \\ &= \left\{v_{3}\right\} \cup \left\{v_{3}\right\} \cup \Gamma^{+1}\left(v_{3}\right) \cup \Gamma^{+2}\left(v_{3}\right) \cup \Gamma^{+3}\left(v_{3}\right) = \\ &= \left\{v_{3}\right\} \cup \left\{v_{4}\right\} \cup \left\{v_{5}\right\} \cup \left\{v_{5}\right\} = \left\{v_{3}, v_{4}, v_{5}\right\} \\ &= \left\{v_{4}\right\} \cup \left\{v_{5}\right\} \cup \left\{v_{5}\right\} = \left\{v_{4}, v_{5}\right\} \\ &= \left\{v_{4}\right\} \cup \left\{v_{5}\right\} \cup \left\{v_{5}\right\} = \left\{v_{4}, v_{5}\right\} \\ &= \left\{v_{5}\right\} \cup \Gamma^{+1}\left(v_{5}\right) = \left\{v_{5}\right\} \cup \left\{v_{5}\right\} = \left\{v_{5}\right\} \end{split}$$

$$\begin{split} R\left(v_{6}\right) &= \left\{v_{6}\right\} \cup \left\{v_{3}, v_{7}\right\} \cup \left\{v_{4}, v_{6}\right\} \cup \left\{v_{3}, v_{5}, v_{7}\right\} \cup \left\{v_{4}, v_{5}, v_{6}\right\} \cup \ldots \\ \cup \left\{v_{4}, v_{5}, v_{6}\right\} &= \left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}, \end{split}$$

$$R\left(v_{7}\right) = \left\{v_{7}\right\} \cup \left\{v_{4}, v_{6}\right\} \cup \left\{v_{3}, v_{5}, v_{7}\right\} \cup \left\{v_{4}, v_{5}, v_{6}\right\} = \left\{v_{3}, v_{4}, v_{5}, v_{6}, v_{7}\right\}.$$

Матриця контрдосяжності

Матриця контрдосяжності — це матриця $n \times n$

 $\mathbf{Q} = \left(q_{ij}\right), \ i,j = 1,2,3,...,n$, де n — число вершин графа, визначається в такий спосіб:

 $q_{ij} = \begin{cases} 1, & \text{якщо 3 вершини } v_j \text{ може бути досягнута вершина } v_i, \\ 0, & \text{в протилежному випадку}. \end{cases}$

Контрдосяжною множиною $Q\!\left(v_i\right)$ називають множину вершин, з яких можна досягти вершину v_i . Контрдосяжну множину $Q\!\left(v_i\right)$ визначають з виразу:

$$Q\left(v_{i}\right)=\left\{ v_{i}\right\} \cup \Gamma^{-1}\left(v_{i}\right) \cup \Gamma^{-2}\left(v_{i}\right) \cup \ldots \cup \Gamma^{-p}\left(v_{i}\right).$$

Співвідношення між матрицями досяжності і контрдосяжності

Визначення. Матриця контрдосяжності дорівнює транспонованій матриці досяжності $Q = R^T$.

Дане співвідношення походить з визначення матриць, оскільки стовпець v_i матриці Q збігається з рядком v_i матриці R .

Слід зазначити, що оскільки всі елементи матриць R і Q дорівнюють 1 або 0, те кожний рядок можна зберігати у двійковій формі, заощаджуючи витрати пам'яті комп'ютера. Матриці R і Q зручні для обробки на комп'ютері, тому що з обчислювальної точки зору основними операціями є швидкодіючі логічні операції.

Числа, що характеризують граф

Цикломатичне число

Цикломатичним числом графа $G = \begin{pmatrix} V, E \end{pmatrix}$ називається число m = N - n + p ,

де
$$N=\left|E\right|$$
 — число ребер графа,
$$n=\left|V\right|$$
 — число вершин графа,
$$p$$
 — число компонентів зв'язності графа.

Для зв'язного графа m = N - n + 1.

Теорема. Цикломатичне число графа дорівнює найбільшій кількості незалежних циклів.

Цикли в графі

Циклом називають шлях, у якім перша й остання вершини збігаються.

Довжина циклу – число складових його ребер.

Простий цикл – це цикл без повторюваних ребер. **Елементарний цикл** – це простий цикл без повторюваних вершин.

Наслідок

Петля – елементарний цикл.

Вектор-цикл, незалежні цикли

Поставимо у відповідність циклу μ графа G деякий вектор.

Для цього додамо кожному ребру графа довільну орієнтацію.

Якщо цикл μ проходить через ребро e_k , де $1 \le k \le N$, у напрямку його орієнтації r_k раз і в протилежному напрямку s_k раз, то вважаємо $c^k = r_k - s_k$.

Вектор ${f c} = \left(c^1, c^2, c^3, ..., c^k, ..., c^N\right)$ називають вектором-**циклом**, відповідним до циклу μ .

Цикли μ_1 й μ_2 називають **незалежними**, якщо відповідні їм вектори $\mathbf{c}_1 = \left(c_1^1, c_1^2, c_1^3, ..., c_1^k, ..., c_1^N\right)$ і $\mathbf{c}_2 = \left(c_2^1, c_2^2, c_2^3, ..., c_2^k, ..., c_2^N\right)$ лінійно незалежні.

Властивості циклів

- 1. Зв'язний граф G не має циклів тоді й тільки тоді, коли цикломатичне число m=0 . Такий граф ϵ деревом.
- 2. Зв'язний граф G має єдиний цикл тоді й тільки тоді, коли цикломатичне число m=1.

Визначення цикломатичного числа

Цикломатичне число зв'язного графа можна визначити як число ребер, яке потрібно вилучити, щоб граф став деревом.

Визначення лінійної незалежності векторів-циклів.

3 курсу лінійної алгебри випливає, що вектори $\begin{pmatrix} 1 & 2 & 3 \\ 1, & 1, & 1, \dots, & 1 \end{pmatrix}$

$$\begin{pmatrix} 1 & 2 & 3 \\ 1, & 1, & 1, \dots, & 1 \end{pmatrix}$$

У розглянутому графі число вершин n=5, число ребер N=7. Оскільки граф є зв'язним, то число компонентів зв'язності p=1.

Таким чином, m = N - n + p = 7 - 5 + 1 = 3.

Число внутрішньої стійкості

Нехай дано граф $G(V,\Gamma)$. Множину $S\subset V$ називають внутрішньо стійким, якщо ніякі дві вершини, що входять в S, не ε суміжними. Іншими словами сформулюємо цю умову, використовуючи відображення першого порядку:

$$\Gamma^+(S) \cap S = \varnothing$$
.

Якщо позначити через Φ сімейство всіх внутрішньо стійких множин графа, то для нього будуть справедливі співвідношення:

- 1. $\varnothing \in \Phi$, $S \in \Phi$.
- 2. Якщо $A\subset S$, то $A\in\Phi$.

Визначення. Числом *внутрішньої стійкості* графа G ϵ величина, яку визначають з виразу:

$$a = \max_{S \in \Phi} \left| S \right|.$$

Визначення $S \subset V$ називають множиною внутрішньої стійкості, якщо всі вершини з S не суміжні між собою. Потужність найбільшої множини внутрішньої стійкості називають числом внутрішньої стійкості.

Приклад. Знайдемо числа внутрішньої й стійкості графа.

Найбільша множина внутрішньої стійкості для нашого графа має вигляд $S = \left\{ v_4, v_5, v_6 \right\}$ (при додаванні будь-яких інших вершин будемо одержувати суміжні вершини). Відповідно, *число внутрішньої стійкості* графа G рівно a=3.

Число зовнішньої стійкості

Нехай даний граф $G\!\left(V,\Gamma\right)$. Говорять, що множина $T\subset V$ зовні стійка, якщо для кожної вершини $v\not\in T$ маємо $\Gamma^+\!\left(v\right)\cap T\neq\varnothing$, інакше кажучи $V\setminus T\subset\Gamma^{-1}\!\left(T\right)$.

Якщо Ψ – сімейство всіх зовні стійких множин графа, то для нього слушні такі співвідношення:

- 1. $T \in \Psi$.
- 2. Якщо $T \subset A$, то $A \in \Psi$.

Визначення

Число зовнішньої стійкості b графа G ϵ величина, яку одержують з виразу:

$$b = \min_{T \in \Psi} \left| T \right|.$$

Зовні стійка множина — множина вершин Т таких, що будь-яка вершина графа або належить Т або суміжна з вершиною з Т.

Приклад. Для представленого графа найменша множина зовнішньої стійкості має вигляд $T = \left\{v_1\right\}$ (тому що будь-яка інша вершина (не приналежна T) з'єднана з вершиною v_1 з T).

Число зовнішньої стійкості графа $_{\it G}$ рівно b=1 .

