Lecture 1: Hilbert Space

Tianpei Xie

Nov. 18th., 2022

Contents

1	\mathbf{Met}	ric Space	2
	1.1	Basics	2
	1.2	Equicontinuity	2
		Proof of Completeness	
2		pert Space	6
	2.1	Inner Product Space	6
	2.2	Hilbert Space	8
	2.3	The Projection Theorem	9
	2.4	The Riesz Representation Theorem	. 1
	2.5	Orthonormal Bases	.2
	2.6	Separability	.3
	2.7	Fourier Series	.4
	2.8	Legendre, Hermite and Laguerre Polynomials	4
	2.9	Hilbert-Adjoint Operator	.4
		Self-Adjoint, Unitary and Normal Operators	

1 Metric Space

1.1 Basics

- **Definition** A *metric space* is a set M and a real-valued function $d(\cdot, \cdot): M \times M \to \mathbb{R}$ which satisfies:
 - 1. (Non-Negativity) $d(x,y) \ge 0$
 - 2. (**Definiteness**) d(x,y) = 0 if and only if x = y
 - 3. (Symmetric) d(x,y) = d(y,x)
 - 4. (Triangle Inequality) $d(x,z) \le d(x,y) + d(y,z)$

The function d is called a <u>metric</u> on M. The metric space M equipped with metric d is denoted as (M, d).

• Definition (Cauchy Sequence)

A sequence of elements $\{x_n\}$ of a metric space (M, d) is called a <u>Cauchy sequence</u> if $\forall \epsilon > 0$, there exists $N \in \mathbb{N}$, for all $n, m \geq N$, $d(x_n, x_m) < \epsilon$.

• Proposition 1.1 Any convergent sequence is a Cauchy sequence.

Note that this is the direct result of triangle inequality property of a metric.

• Definition (Complete Metric Space)

A metric space in which all Cauchy sequences converge is called complete.

- Remark In complete metric space, one can prove convergence without knowing what point the sequence converges to.
- Example The space of all absolutely integrable functions $\mathcal{L}^1(X,\mu)$ is complete.
- \bullet Definition (Denseness)

A set B in a metric space M is called **dense** if every $m \in M$ is a limit of elements in B.

• Definition (Continuity)

A function $f:(X,d)\to (Y,p)$ is called **continuous** at x if $f(x_n)\stackrel{p}{\to} f(x)$ whenever $x_n\stackrel{d}{\to} x$.

• Definition (*Isometry*)

A **bijection** $h:(X,d)\to (Y,p)$ which **preserves** the metric, that is,

$$p(h(x), h(y)) = d(x, y)$$

is called an **isometry**. It is automatically *continuous*. (X, d) and (Y, p) are said to be **isometric** if such an isometry exists.

1.2 Equicontinuity

• **Definition** (*Equicontinuity*) [Reed and Simon, 1980]

Let \mathscr{F} be a family of functions from a metric space (X,p) to another metric space (Y,d). We say \mathscr{F} is an <u>equicontinuous family</u> if and only if for all $\epsilon > 0$ and all $x \in X$, there exists $\delta > 0$ such that $d(f(x), f(x')) < \epsilon$ whenever $p(x, x') < \delta$ for every $f \in \mathscr{F}$ and all $x' \in X$.

We say \mathscr{F} is a *uniformly equicontinuous family* if and only if for all $\epsilon > 0$, there exists $\delta > 0$ such that $\overline{d(f(x), f(x'))} < \epsilon$ whenever $p(x, x') < \delta$ for all $x, x' \in X$ and *every* $f \in \mathscr{F}$.

- Remark An equicontinuous family of functions is a family of continuous functions.
- Remark The concept of *equicontinuity* is with respect to *a family of functions*, while the concept of *continuity* is *for one fixed function*. In other word, for continuous function f, the radius of input $\delta := \delta(\epsilon, x, f)$ depends on threshold ϵ , the point of continuity x and the function of concern f. But for an *equicontinuous family*, $\delta := \delta(\epsilon, x)$ does not depends on which function $f \in \mathscr{F}$. For a *uniform equicontinuous family*, $\delta := \delta(\epsilon)$ does not depends on which function $f \in \mathscr{F}$ and which point x for continuity.
- Remark We can control the behavior of $\lim_{n\to\infty} f_n(x)$ in two ways [Reed and Simon, 1980]:
 - 1. Control its dependence on x: If the convergence of $\{f_n(x)\}$ does not depend on the choice of x, we have uniform convergence. Otherwise, we have pointwise convergence.
 - 2. Control its dependence on n: If the convergence of $\{f_n(x)\}$ does not depend on choice of function f_n , we have an equicontinuous family $\{f_n\}$. This time it reveals the behavior of x in the limit. What we will see is that one can obtain not only information about the x behavior of the limit but that one can also turn weak information about the approach to the limit into stronger information.
- **Proposition 1.2** Let f_n be a sequence of functions from one metric space to another with the property that the family $\{f_n\}$ is **equicontinuous**. Suppose that $f_n(x) \to f(x)$ **pointwise** for each x. Then f is **continuous**.
- We see that *pointwise convergence* on a *dense set* combined with *equicontinuity* implies *pointwise convergence everywhere*.

Proposition 1.3 [Reed and Simon, 1980] Let $\{f_n\}$ be an **equicontinuous family** of functions from one metric space (X, p) to another (Y, d) with Y complete. Suppose that for a **dense** set $D \subseteq X$, we know $f_n(x)$ converges for all $x \in D$. Then $f_n(x)$ converges for all $x \in X$.

• The following shows that uniformly equicontinuous combined with pointwise convergence implies uniform convergence.

Proposition 1.4 [Reed and Simon, 1980] Let $\{f_n\}$ be a **uniformly equicontinuous family** of functions on [0,1]. Suppose that $f_n(x) \to f(x)$ for each x in [0,1]. Then $f_n(x) \to f(x)$ **uniformly** in x.

- Remark For functions on [0,1], every equicontinuous family is uniformly equicontinuous.
- Theorem 1.5 (Ascoli's Theorem) [Reed and Simon, 1980] Let $\{f_n\}$ be a family of uniformly bounded equicontinuous functions on [0,1]. Then some subsequence $\{f_{n,m}\}$ converges uniformly on [0,1].

1.3 Proof of Completeness

- Remark To prove completeness, we take an arbitrary Cauchy sequence (x_n) in X and show that it converges in X. For different spaces, such proofs may vary in complexity, but they have approximately the same general pattern:
 - 1. Construct an element x (to be used as a limit).
 - 2. Prove that x is in the space considered.
 - 3. Prove convergence $x_n \to x$ (in the sense of the metric)
- Proposition 1.6 (Completeness of ℓ^{∞})

 The space ℓ^{∞} is complete.

Proof: Let (x_m) be any Cauchy sequence in the space ℓ^{∞} , where $x_m = (\xi_1^{(m)}, \xi_2^{(m)}, \ldots)$. Since the metric on ℓ^{∞} is given by

$$d(x,y) = \sup_{j} |\xi_j - \eta_j|$$

where $x = (\xi_j)$ and $y = (\eta_j)$ and (x_m) is Cauchy, for any $\epsilon > 0$ there is an N such that for all m, n > N,

$$d(x_m, x_n) = \sup_{j} \left| \xi_j^{(m)} - \xi_j^{(n)} \right| < \epsilon.$$

A fortiori, for every fixed j,

$$\left| \xi_j^{(m)} - \xi_j^{(n)} \right| < \epsilon, \quad (m, n > N). \tag{1}$$

Hence for every fixed j, the sequence $(\xi_j^{(1)}, \xi_j^{(2)}, \ldots)$ is a *Cauchy sequence* of numbers. It converges, say, $\xi_j^{(m)} \to \xi_j$ as $m \to \infty$. Using these infinitely many limits ξ_1, ξ_2, \ldots , we define $x = (\xi_1, \xi_2, \ldots)$ and show that $x \in \ell^{\infty}$ and $x_m \to x$. From (1) with $n \to \infty$ we have

$$\left|\xi_j^{(m)} - \xi_j\right| \le \epsilon, \quad (m > N). \tag{2}$$

Since $x_m = (\xi_j^{(m)}) \in \ell^{\infty}$, there is a real number k_m such that $\left|\xi_j^{(m)}\right| \leq k_m$ for all j. Hence by the triangle inequality

$$|\xi_j| \le \left|\xi_j - \xi_j^{(m)}\right| + \left|\xi_j^{(m)}\right| \le \epsilon + k_m \quad (m > N).$$

This inequality holds for every j, and the right-hand side does not involve j. Hence (ξ_j) is a bounded sequence of numbers. This implies that $x = (\xi_j) \in \ell^{\infty}$. Also, from (2) we obtain

$$d(x_m, x) = \sup_{j} \left| \xi_j^{(m)} - \xi_j \right| \le \epsilon, \quad (m, n > N).$$

This shows that $x_m \to x$. Since (x_m) was an arbitrary Cauchy sequence, ℓ^{∞} is complete.

• Proposition 1.7 (Completeness of $C^0[a,b]$)

The space of all continuous function under supremum norm on [a,b] (, denoted as $C^0[a,b]$) is complete.

Proof: Let (x_m) be any Cauchy sequence in $C^0[a,b]$. Then, given any $\epsilon > 0$, there is an N such that for all m, n > N we have

$$d(x_m, x_n) = \max_{t \in J} |x_m(t) - x_n(t)| \le \epsilon \tag{3}$$

where J = [a, b]. Hence for any fixed $t = t_0 \in J$,

$$|x_m(t_0) - x_n(t_0)| \le \epsilon, \quad (m, n > N).$$

This shows that $(x_1(t_0), x_2(t_0), \ldots)$ is a Cauchy sequence of real numbers. Since \mathbb{R} is complete, the sequence converges, say, $x_m(t_0) \to x(t_0)$ as $m \to \infty$. In this way we can associate with each $t \in J$ a unique real number x(t). This defines (pointwise) a function x on J, and we show that $x \in \mathcal{C}^0[a, b]$ and $x_m \to x$. From (3) with $n \to \infty$ we have

$$\max_{t \in J} |x_m(t) - x(t)| \le \epsilon, \quad (m > N).$$

Hence for every $t \in J$,

$$|x_m(t) - x(t)| \le \epsilon, \quad (m > N).$$

This shows that $(x_m(t))$ converges to x(t) uniformly on J. Since the x_m 's are continuous on J and the convergence is uniform, the limit function x is continuous on J, as is well known from calculus. Hence $x \in C^0[a, b]$. Also $x_m \to x$. This proves completeness of $C^0[a, b]$.

• Theorem 1.8 (Riesz-Fisher Theorem) [Reed and Simon, 1980] Let $\mathcal{L}^1(X,\mu)$ be the space of all absolutely integrable functions on measure space (X,\mathcal{B},μ) with \mathcal{L}^1 norm. $\mathcal{L}^1(X,\mu)$ is complete.

Proof: Let (f_n) be Cauchy sequence in \mathcal{L}^1 . It is enough to prove some **subsequence converges** (i.e. "Cauchy sequence in a metric space is convergent if and only if it has convergent sub-sequence".) so pass to a subsequence (also labeled f_n with $||f_n - f_{n+1}||_{\mathcal{L}^1} \leq 2^{-n}$). Let

$$g_m(x) = \sum_{n=1}^{m} |f_n(x) - f_{n+1}(x)|$$

Let g_{∞} be the *infinite sum* (which may be ∞). Then $g_m \leq g_{m+1} \nearrow g_{\infty}$ and

$$\int_{X} |g_{m}(x)| d\mu = \int_{X} \left| \sum_{n=1}^{m} |f_{n}(x) - f_{n+1}(x)| \right| d\mu \le \int_{X} \sum_{n=1}^{m} |f_{n}(x) - f_{n+1}(x)| d\mu = \sum_{n=1}^{m} ||f_{n} - f_{n+1}||_{\mathcal{L}^{1}} \le 1,$$

so by the monotone convergence theorem, $g_{\infty} \in \mathcal{L}^1(X,\mu)$. Thus $|g_{\infty}(x)| < \infty$ a.e. As a result

$$f_m(x) = f_1(x) - \sum_{n=1}^{m-1} (f_n(x) - f_{n+1}(x))$$

converges pointwise a.e. to a function f(x). Moreover.

$$|f_m(x)| < |f_1(x)| + |q_{\infty}(x)| < \infty$$

i.e. $f_m(x) \in \mathcal{L}^1(X,\mu)$, so $f_n \to f$ in \mathcal{L}^1 norm by the dominated convergence theorem.

• Proposition 1.9 $C^0[a,b]$ is dense $(w.r.t. |||_1)$ in $L^1([a,b])$. Thus $L^1([a,b])$ is the completion of $C^0[a,b]$ w.r.t. L^1 norm.

2 Hilbert Space

• Remark (Hilbert Space vs. Banach Space)

Hilbert space is a special Banach space equipped with inner product. Historically, Hilbert space appears earlier. The theory of inner product and Hilbert spaces is richer than that of general normed and Banach spaces. *Distinguishing features* are

- 1. representations of \mathcal{H} as a direct sum of a closed subspace and its orthogonal complement (section 2.3),
- 2. **orthonormal sets** and sequences and corresponding **representations** of elements of \mathcal{H} (section 2.5),
- 3. the Riesz representation of bounded linear functionals by inner products, (section 2.4)
- 4. the Hilbert-adjoint operator T^* of a bounded linear operator T (section 2.10).

2.1 Inner Product Space

- **Remark** Finite-dimensional vector spaces have *three kinds of properties* whose generalizations we will study in the next four chapters:
 - 1. **linear** properties,
 - 2. metric properties,
 - 3. and **geometric** properties.

A *Hilbert space* generalizes the *geometric* property of a finite-dimensional vector space to *infinite-dimensional* via definition of inner product.

- **Definition** A complex vector space V is called **an** <u>inner product space</u> if there is a complex-valued function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ that satisfies the following four conditions for an $x, y, z \in V$ and $a, b \in \mathbb{C}$:
 - 1. (**Positive Definiteness**): $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0$ if and only if x = 0
 - 2. (*Linearity*): $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
 - 3. (*Hermitian*): $\langle x, y \rangle = \overline{\langle y, x \rangle}$

The function $\langle \cdot, \cdot \rangle$ is called *an inner product*.

- Remark Without "condition $\langle x, x \rangle = 0$ if and only if x = 0", we have **semi-inner product** [Conway, 2019].
- **Remark** From *Hermitian property*, we have $\langle x, ay + bz \rangle = \overline{a} \langle x, y \rangle + \overline{b} \langle x, z \rangle$.
- Remark For real vector space, an inner product is a symmetric covariant 2-tensor, or a symmetric bilinear form.
- Remark Some books [Reed and Simon, 1980] define inner product via *linearity in second* argument; while others [Kreyszig, 1989, Luenberger, 1997, Conway, 2019] defines it in terms

of *linearity in first argument*. The difference is the position of conjugate.

- Proposition 2.1 Every inner product space V is a normed linear space with the norm $||x|| = \sqrt{\langle x, x \rangle}$.
- **Remark** We denote $||x|| = \sqrt{\langle x, x \rangle}$ as the **length** of a vector. With the definition of length, we can define the **distance** d as

$$d(x,y) := ||x - y|| = \sqrt{\langle x - y, x - y \rangle}.$$

As a consequence of the Pythagorean Theorem, d satisfies the triangle inequality so it is a metric. Thus every inner product space is a metric space.

• Proposition 2.2 (Parallelogram Law) For any $x, y \in (V, \langle \cdot, \cdot \rangle)$,

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$

• Remark The followings are other versions of Parallelogram Law:

$$\Re \langle x, y \rangle = \frac{1}{2} \left(\|x + y\|^2 - \|x\|^2 - \|y\|^2 \right)$$

$$\Re \langle x, y \rangle = \frac{1}{2} \left(\|x\|^2 + \|y\|^2 - \|x - y\|^2 \right)$$

$$\Re \langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right)$$

$$\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 + i \|x + iy\|^2 - i \|x - iy\|^2 \right)$$

$$= \Re \langle x, y \rangle + i \Re \langle x, iy \rangle$$

• The converse holds true as well.

Proposition 2.3 In a normed space $(V, \|\cdot\|)$, if the parallelogram law

$$||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$$

holds, then there exists a unique inner product $\langle \cdot, \cdot \rangle$ on V such that $||x|| = \sqrt{\langle x, x \rangle}$ for all $x \in V$.

- Remark The inner product defines the concept of *angle* (and *orthorgonality*), and *distance*. Hence it allows the *geometric property* of Euclidean space to be generalized.
- **Definition** Two vectors, x and y, in an inner product space V are said to be **orthogonal** if $\langle x, y \rangle = 0$. A collection $\{x_n\}$ of vectors in V is called **an orthonormal set** if $\langle x_i, x_i \rangle = 1$ for all i, and $\langle x_i, x_j \rangle = 0$ if $i \neq j$.
- Theorem 2.4 (Pythagorean Theorem) Let $\{x_i\}_{i=1}^n$ be an orthonormal set in an inner product space V. Then for all $x \in V$,

$$||x||^2 = \sum_{i=1}^n |\langle x_i, x \rangle|^2 + \left| |x - \sum_{i=1}^n \langle x_i, x \rangle x_i \right|^2$$

• Corollary 2.5 (Bessel's inequality) Let $\{x_i\}_{i=1}^n$ be an **orthonormal** set in an inner product space V. Then for all $x \in V$,

$$||x||^2 \ge \sum_{i=1}^n |\langle x_i, x \rangle|^2$$

• Corollary 2.6 (Cauchy-Schwartz's inequality) Let V be an inner product space. For $x, y \in V$,

$$|\langle x, y \rangle| \le ||x|| ||y||$$
.

2.2 Hilbert Space

• Definition A <u>complete</u> inner product space is called <u>a Hilbert space</u>.

Inner product spaces are sometimes called <u>pre-Hilbert spaces</u>.

• **Definition** Two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 are said to be <u>isomorphic</u> if there is a <u>surjective</u> <u>linear</u> operator $U: \mathcal{H}_1 \to \mathcal{H}_2$ such that

$$\langle Ux, Uy \rangle_{\mathcal{H}_2} = \langle x, y \rangle_{\mathcal{H}_1}$$

for all $x, y \in \mathcal{H}_1$. Such an operator is called *unitary*.

• Remark (Isomorphism)

For vector space, an <u>(linear)</u> isomorphism is a <u>bijective linear mapping</u> from one vector spaces to another vector space that <u>preserve</u> the <u>structure</u> of that vector space. However, depending on definition of specific structure, we can have various different definition of isomorphisms:

- 1. For <u>metric space</u>, an isomorphism is a bijective linear operator that **preserves the** <u>metric</u>. It is often called an <u>isometry</u>.
- 2. For <u>inner product space</u>, an isomorphism is a surjective linear operator that <u>preserves the inner product</u>. It is often called an <u>surjective isometry</u>.
- 3. For <u>linear algebra</u>, an isomorphism is a bijective linear mapping that preserves all <u>algebraic operations</u> (i.e. the vector addition and scalar multiplication).

In general, *isomorphism* is a *structure-preserving mapping* between two structures of the same type that *can be reversed* by *an inverse mapping*. It means that "*two spaces are essentially of the same form*". For instance, the followings are also called *isomorphism* depending on the context:

- 1. homemorphism between topological spaces,
- 2. diffeomorphism between smooth manifolds,
- 3. bijective homomorphism between algebraic groups / rings / fields,
- 4. graph isomorphism between graphs that preseves the edge structure,

Also an isomorphism is called a *transformation* in *geometry*, e.g. *rigid transformation*, affine transformation etc.

• Example $(\mathcal{L}^2[a,b])$

Define $\mathcal{L}^2([a,b])$ to be the set of complex-valued measurable functions on [a,b], a finite interval, that satisfy $\int_{[a,b]} |f(x)|^2 dx < \infty$. We define an inner product by

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx$$

 $\mathcal{L}^2([a,b])$ is a complete metric space. Actually, $\mathcal{L}^2([a,b])$ is a completion of $\mathcal{C}^0([a,b])$ with finite \mathcal{L}^2 norm

$$||f||_{\mathcal{L}^2} = \left(\int_a^b |f(x)|^2 dx\right)^{\frac{1}{2}}$$

Thus $\mathcal{L}^2([a,b])$ is a *Hilbert space*.

• Example (ℓ^2)

Define ℓ^2 to be the set of sequences $(x_n)_{n=1}^{\infty}$ of complex numbers which satisfy $\sum_{n=1}^{\infty} |x_n|^2 < \infty$ with the inner product

$$\langle (x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty} \rangle = \sum_{n=1}^{\infty} \overline{x_n} y_n.$$

 ℓ^2 is a complete metric space with ℓ^2 norm

$$\|(x_n)_{n=1}^{\infty}\|_2 = \left(\sum_{n=1}^{\infty} |x_n|^2\right)^{\frac{1}{2}}.$$

So ℓ^2 is a Hilbert space.

We will see that any Hilbert space that has a *countable dense set* and is *not finite dimensional* is *isomorphic* to ℓ^2 In this sense, ℓ^2 is the canonical example of a Hilbert space.

• Example $(\mathcal{L}^2(\mathbb{R}^n,\mu))$

Define μ to be a *Borel measure* on \mathbb{R}^n and $\mathcal{L}^2(\mathbb{R}^n, \mu)$ to be the set of complex-valued measurable functions on \mathbb{R}^n that satisfy $\int_{\mathbb{R}^n} |f(x)|^2 d\mu < \infty$. We define an inner product by

$$\langle f, g \rangle = \int_{\mathbb{R}^n} f(x) \overline{g(x)} d\mu$$

 $\mathcal{L}^2(\mathbb{R}^n, \mu)$ is a Hilbert space.

2.3 The Projection Theorem

• Remark *Orthogonality* is the central concept of Hilbert space. In the presence of closed subspaces, the orthogonality allows us to decompose the Hilbert space into the direct sum of the *subspace* and its *orthogonal complement*.

Figure 1: The projection theorem in Hilbert space [Luenberger, 1997]

• Definition (Direct Sum)

Suppose that \mathcal{H}_1 and \mathcal{H}_2 are Hilbert spaces. Then the set of pairs (x,y) with $x \in \mathcal{H}_1, y \in \mathcal{H}_2$ is a Hilbert space with inner product

$$\langle (x_1, y_1), (x_2, y_2) \rangle := \langle x_1, x_2 \rangle_{\mathcal{H}_1} + \langle y_1, y_2 \rangle_{\mathcal{H}_2}$$

This space is called <u>the direct sum</u> of the spaces \mathcal{H}_1 and \mathcal{H}_2 and is denoted by $\mathcal{H}_1 \oplus \mathcal{H}_2$.

• Definition (Orthogonal Complement)

Let $\mathcal{M} \subseteq \mathcal{H}$ is a **closed** linear subspace of Hilbert space \mathcal{H} with induced inner product \langle , \rangle (i.e. $\langle x, y \rangle_{\mathcal{M}} = \langle x, y \rangle_{\mathcal{H}}$ for all $x, y \in \mathcal{M}$). \mathcal{M} is also a Hilbert space.

We denote by \mathcal{M}^{\perp} the set of vectors in \mathcal{H} which are *orthogonal* to \mathcal{M} ; \mathcal{M}^{\perp} is called **the orthogonal complement** of \mathcal{M} . It follows from the linearity of the inner product that \mathcal{M}^{\perp} is a *linear subspace* of \mathcal{H} and an elementary argument shows that \mathcal{M}^{\perp} is closed. So \mathcal{M}^{\perp} is also a *Hilbert space*.

• Remark The following theorem is going to show that

$$\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp} = \left\{ x + y : x \in \mathcal{M}, y \in \mathcal{M}^{\perp}, \text{ i.e. } \langle x, y \rangle = 0 \right\}.$$

This important geometric property is one of the main reasons that Hilbert spaces are *easier* to handle than Banach spaces.

- Lemma 2.7 Let \mathcal{H} be a Hilbert space, \mathcal{M} a closed subspace of \mathcal{H} , and suppose $x \in \mathcal{H}$. Then there exists in \mathcal{M} a unique element z closest to x.
- Theorem 2.8 (The Projection Theorem) Let \mathcal{H} be a Hilbert space, \mathcal{M} a closed subspace. Then every $x \in \mathcal{H}$ can be uniquely written x = z + w where $z \in \mathcal{M}$ and $w \in \mathcal{M}^{\perp}$.
- Remark The projection theorem sets up a natural isomorphism $\mathcal{M} \oplus \mathcal{M}^{\perp} \to \mathcal{H}$ given by

$$(z,w)\mapsto z+w$$

We will often suppress the isomorphism and simply write $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$.

2.4 The Riesz Representation Theorem

 $\bullet \ \ \mathbf{Definition} \ \ (\textbf{\textit{Bounded Linear Operator}})$

A <u>bounded linear transformation</u> (or <u>bounded operator</u>) is a mapping $T:(X,\|\cdot\|_X) \to (Y,\|\cdot\|_Y)$ from a normed linear space X to a normed linear space Y that satisfies

- 1. (*Linearity*) $T(\alpha x + \beta y) = \alpha T(x) + \beta T(y)$ for all $x, y \in X$, $\alpha, \beta \in \mathbb{R}$ or \mathbb{C}
- 2. (**Boundedness**) $||Tx||_Y \leq C ||x||_X$ for small $C \geq 0$.

The smallest such C is called the **norm** of T, written ||T|| or $||T||_{X,Y}$. Thus

$$||T|| := \sup_{||x||_X = 1} ||Tx||_Y$$

• Remark Denote the space of *all bounded linear operator* between Hilbert space \mathcal{H}_1 and \mathcal{H}_2 as $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$. The space $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ is linear space with norm

$$||T|| := \sup_{||x||_{\mathcal{H}_1} = 1} ||Tx||_{\mathcal{H}_2}, \quad \forall T \in \mathcal{L}(\mathcal{H}_1, \mathcal{H}_2).$$

It can be shown that $\mathcal{L}(\mathcal{H}_1, \mathcal{H}_2)$ is a complete normed space (i.e. a Banach space).

• Definition (Dual Space)

The space $\mathcal{L}(\mathcal{H}, \mathbb{C})$ is called the <u>dual space</u> of \mathcal{H} and is denoted by \mathcal{H}^* . The elements of \mathcal{H}^* are called <u>continuous linear functionals</u>. That is, the dual space \mathcal{H}^* is the space of continuous linear functionals on \mathcal{H} .

- Remark The dual space \mathcal{H}^* is also called **covector space** with respect to a vector space \mathcal{H} and the linear functionals are called **covectors**. This terms are mostly used in differential geometry when the vector space is the tangent space.
- Theorem 2.9 (The Riesz Representation Theorem) [Reed and Simon, 1980, Kreyszig, 1989, Conway, 2019]

For each $T \in \mathcal{H}^*$, there is a **unique** $y_T \in \mathcal{H}$ such that

$$T(x) = \langle x, y_T \rangle$$

for all $x \in \mathcal{H}$. In addition $||y_T||_{\mathcal{H}} = ||T||_{\mathcal{H}^*}$.

Proof: Let $\mathcal{N} = \text{Ker}(T) = \{x \in \mathcal{H} : T(x) = 0\}$. By continuity of T, \mathcal{N} is a closed subspace of \mathcal{H} . If $\mathcal{H} = \mathcal{N}$, then T(x) = 0 for all x so for $y_T = 0$, $T(x) = \langle x, 0 \rangle$. If $\mathcal{N} \subset \mathcal{H}$, then there exists $x_0 \notin \mathcal{N}$. Define $y_T = \overline{T(x_0)} \frac{x_0}{\|x_0\|^2}$ so for all $x = \alpha x_0$ for any $\alpha \neq 0$

$$T(x) = T(\alpha x_0) = \alpha T(x_0) = \left\langle \alpha x_0, \overline{T(x_0)} \frac{x_0}{\|x_0\|^2} \right\rangle = \left\langle x, y_T \right\rangle.$$

Note that $\mathcal{H} = \operatorname{span} \{x_0\} \oplus \mathcal{N}$ since for any $x \in \mathcal{H}$

$$x = \left(x - \frac{T(x)}{T(x_0)}x_0\right) + \frac{T(x)}{T(x_0)}x_0 \in \mathcal{N} \oplus \operatorname{span}\left\{x_0\right\}.$$

Also T and $\langle \cdot, y_T \rangle$ agree on both \mathcal{N} and span $\{x_0\}$, so they must agree on entire \mathcal{H} .

To prove $||y_T||_{\mathcal{H}} = ||T||_{\mathcal{H}^*}$, we see that

$$||T||_{\mathcal{H}^*} = \sup_{\|x\| \le 1} |Tx| = \sup_{\|x\| \le 1} |\langle x, y_T \rangle| \le \sup_{\|x\| \le 1} ||x|| \, ||y_T|| = ||y_T||,$$

and

$$||T||_{\mathcal{H}^*} = \sup_{\|x\| \le 1} |Tx| \ge \left| T\left(\frac{y_T}{\|y_T\|}\right) \right| = \|y_T\|^{-1} \left| \langle y_T, y_T \rangle \right| = \|y_T\|.$$

- Remark The Riesz Representation Theorem [Conway, 2019, Kreyszig, 1989] is also called **The Riesz Lemma** [Reed and Simon, 1980].
- Remark We note that the Cauchy-Schwarz inequality shows that the **converse** of the Riesz Representation Theorem is **true**. Namely, each $y \in \mathcal{H}$ defines a continuous linear functional T_y on \mathcal{H}^* by

$$T_{u}(x) = \langle x, y \rangle$$
.

Thus the Riesz Representation Theorem together with the Cauchy-Schwarz inequality defines an <u>isomorphism</u> $\mathcal{H}^* \to \mathcal{H}$ between a Hilbert space \mathcal{H} and its dual \mathcal{H}^* . In other words, unlike the case in Banach space, the bounded linear functional on Hilbert space has a simple form.

- Corollary 2.10 (The Riesz Representation for Sesquilinear Form) Let $B(\cdot, \cdot)$ be a function from $\mathcal{H} \times \mathcal{H}$ to \mathbb{C} which satisfies:
 - 1. (Linearity) $B(\alpha x + \beta y, z) = \alpha B(x, z) + \beta B(y, z)$
 - 2. (Conjugate Linearity) $B(x, \alpha y + \beta z) = \overline{\alpha}B(x, y) + \overline{\beta}B(x, z)$
 - 3. (Boundedness) $|B(x,y)| \le C ||x||_{\mathcal{H}} ||y||_{\mathcal{H}}$

for all $x, y, z \in \mathcal{H}$, $\alpha, \beta \in \mathbb{C}$. Then there is a **unique bounded linear transformation** $A : \mathcal{H} \to \mathcal{H}$ so that

$$B(x,y) = \langle x, Ay \rangle$$

for all $x, y \in \mathcal{H}$. The **norm** of A is the smallest constant C such that (3) holds.

Proof: Fix z, (1), (3) shows that $B(\cdot, z)$ is a continuous linear functional on \mathcal{H} . Thus by the Riesz Representation theorem, there exists some $y_{B,z} \in \mathcal{H}$,

$$B(x,z) = \langle x, y_{B,z} \rangle, \quad \forall x \in \mathcal{H}$$

Define $Az = y_{B,z}$. It is not difficult to show that A is a continuous linear operator with right property.

• Remark A bilinear function on \mathcal{H} obeying (1) and (2) is called a <u>sesquilinear form</u> (as a generalization of *blinear form* in complex vector space).

In terms of this, an inner product in complex vector space is a complex $\underline{Hermitian\ form}$ (also called a $symmetric\ sesquilinear\ form$).

2.5 Orthonormal Bases

• Definition (Complete Orthonormal Basis)

If S is an orthonormal set in a Hilbert space \mathcal{H} and no other orthonormal set contains S as a proper subset, then S is called an <u>orthonormal basis</u> (or a **complete orthonormal** system) for \mathcal{H} .

- Theorem 2.11 (Existence of Orthonormal Basis)
 Every Hilbert space \mathcal{H} has an orthonormal basis.
- Proposition 2.12 (Orthogonal Representation of Element in Hilbert Space) Let \mathcal{H} be a Hilbert space and $S = (x_{\alpha})_{{\alpha} \in A}$ an orthonormal basis. Then for each $y \in \mathcal{H}$,

$$y = \sum_{\alpha \in A} \langle y \,, \, x_{\alpha} \rangle \, x_{\alpha} \tag{4}$$

and

$$||y||_{\mathcal{H}} = \sum_{\alpha \in A} |\langle y, x_{\alpha} \rangle|^2 \tag{5}$$

The equality in (4) means that the sum on the right-hand side converges (independent of order) to y in \mathcal{H} . Conversely, if $\sum_{\alpha \in A} |c_{\alpha}|^2 < \infty$, $c_{\alpha} \in \mathbb{C}$, then $\sum_{\alpha \in A} c_{\alpha} x_{\alpha}$ converges to an element of \mathcal{H} .

- **Remark** From Bessel's inequality, we already seen that for any finite collection A' of x_{α} , we have $\sum_{\alpha \in A'} |\langle y, x_{\alpha} \rangle|^2 \le ||y||_{\mathcal{H}}$. The main difficulty is on how to prove convergence of $\sum_{n=1}^{N} |\langle y, x_{n} \rangle|^2$ as $N \to \infty$. Similarly we need to prove that $y \sum_{n=1}^{m} \langle y, x_{\alpha_n} \rangle x_{\alpha_n}$ is still orthogonal to x_{α} as $m \to \infty$.
- Remark The unique coefficients $(\langle y, x_{\alpha} \rangle)$ is called the Fourier coefficients of y with respect to basis (x_{α}) .
- Remark (Gram-Schmidt Orthogonalization) Given any set of independent vectors $(v_1, v_2, ...)$. we can construct an orthonormal basis $(b_1, b_2, ...)$ via

$$b_{1} = \frac{v_{1}}{\|v_{1}\|}$$

$$b_{j} = \frac{v_{j} - \sum_{i=1}^{j-1} \langle v_{j}, b_{i} \rangle b_{i}}{\|v_{j} - \sum_{i=1}^{j-1} \langle v_{j}, b_{i} \rangle b_{i}\|}, \quad j \geq 2$$

Thus span $\{v_1, \ldots, v_m\} = \operatorname{span}\{b_1, \ldots, b_m\}$ for all $m \geq 1$.

2.6 Separability

• Definition (Separability)

A metric space which has a countable dense subset is said to be separable.

• Remark Most Hilbert space we have seen is separable.

- Proposition 2.13 (Canonical Hilbert Space)
 A Hilbert space H is separable if and only if it has a countable orthonormal basis S.
 If there are N < ∞ elements in S, then H is isomorphic to C^N, If there are countably many elements in S, then H is isomorphic to ℓ².
- Remark Consider the map $v \mapsto (\langle v, x_n \rangle)_{n=1}^{\infty}$ for orthonormal basis $(x_n)_{n=1}^{\infty}$ as the isomorphism $\mathcal{H} \to \ell^2$.
- **Remark** Notice that in the separable case, the Gram-Schmidt process anows us to construct an orthonormal basis without using Zorn's lemma.

2.7 Fourier Series

• Definition If f(x) is integrable in $[0, 2\pi]$, define the Fourier series as

$$F(x) := \frac{1}{\sqrt{2\pi}} \sum_{n = -\infty}^{\infty} c_n e^{inx}$$
where $c_n = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} e^{-inx} f(x) dx$.

- Proposition 2.14 Suppose that f(x) is periodic of period 2π and is continuously differentiable. Then the functions $\sum_{n=-M}^{M} c_n e^{inx}$ converge uniformly to f(x) as $M \to \infty$.
- Proposition 2.15 If $f \in \mathcal{L}^2[0,2\pi]$, then $\sum_{n=-M}^M c_n e^{inx}$ converges to f in the \mathcal{L}^2 norm as $M \to \infty$.
- Remark The collection of functions, $(\frac{1}{\sqrt{2\pi}}e^{inx})_{n=-\infty}^{\infty}$ is an *orthonormal set* in $\mathcal{L}^2[0,2\pi]$. The above proposition states that it is a *complete orthonormal set*, that is, for every $f \in \mathcal{L}^2[0,2\pi]$

$$f = \lim_{M \to \infty} \frac{1}{\sqrt{2\pi}} \sum_{n=M}^{M} c_n e^{inx}$$

2.8 Legendre, Hermite and Laguerre Polynomials

2.9 Hilbert-Adjoint Operator

Definition (Hilbert Space Adjoint)
 Let T: H₁ → H₂ be a bounded linear operator, where H₁ and H₂ are Hilbert spaces. Then the Hilbert-adjoint operator T* of T is the operator

$$T^*:\mathcal{H}_2\to\mathcal{H}_1$$

such that for all $x \in \mathcal{H}_1$ and $y \in \mathcal{H}_2$,

$$\langle Tx, y \rangle_{\mathcal{H}_2} = \langle x, T^*y \rangle_{\mathcal{H}_1} \tag{6}$$

• Proposition 2.16 (Existence of Adjoint Operator) [Kreyszig, 1989]

The Hilbert-adjoint operator T* of T exists, is unique and is a bounded linear operator with norm

$$||T^*|| = ||T||$$
.

- Lemma 2.17 (Zero operator). [Kreyszig, 1989] Let X and Y be inner product spaces and $Q: X \to Y$ a bounded linear operator. Then:
 - 1. Q = 0 if and only if $\langle Qx, y \rangle = 0$ for all $x \in X$ and $y \in Y$.
 - 2. If $Q: X \to X$, where X is complex, and $\langle Qx, x \rangle = 0$ for all $x \in X$, then Q = 0.
- Proposition 2.18 (Properties of Hilbert-adjoint operators). [Reed and Simon, 1980, Kreyszig, 1989]

Let \mathcal{H}_1 , \mathcal{H}_2 be Hilbert spaces, $S: \mathcal{H}_1 \to \mathcal{H}_2$ and $T: \mathcal{H}_1 \to \mathcal{H}_2$ bounded linear operators and α any scalar. Then we have

- 1. $\langle T^*y, x \rangle = \langle y, Tx \rangle, (x \in H_1, y \in \mathcal{H}_2)$
- 2. $(S+T)^* = S^* + T^*$
- 3. $(\alpha T)^* = \alpha T^*$
- 4. $(T^*)^* = T$
- 5. $||T^*T|| = ||TT^*|| = ||T||^2$
- 6. $T^*T = 0 \Leftrightarrow T = 0$
- 7. $(ST)^* = T^*S^*$ (assuming $\mathcal{H}_2 = \mathcal{H}_1$)
- 8. If T has a bounded inverse, T^{-1} , then T^* has a bounded inverse and $(T^*)^{-1} = (T^{-1})^*$.

2.10 Self-Adjoint, Unitary and Normal Operators

- Definition A bounded linear operator $T: \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is said to be
 - 1. self-adjoint or Hermitian if

$$T^* = T \quad \Leftrightarrow \quad \langle Tx, y \rangle = \langle x, Ty \rangle$$

2. unitary if T is bijective and

$$T^*=T^{-1}$$

3. \underline{normal} if

$$T^*T = TT^*$$

• **Definition** (*Projection Operator*) If $P \in \mathcal{L}(\mathcal{H})$ and $P^2 = P$, then P is called a *projection*. If in addition $P = P^*$, then P is called an *orthogonal projection*.

- Remark If T is *self-adjoint* and *unitary*, then T is *normal*.
- Remark If a basis for \mathbb{C}^n is given and a *linear operator* on \mathbb{C}^n is represented by a certain matrix, then its Hilbert-adjoint operator is represented by the complex conjugate transpose of that matrix. For \mathbb{R}^n , then the Hilbert-adjoint operator is represented by the transpose of that matrix
- Remark Similarly we have
 - 1. The matrix representation for self-adjoint operator is **Hermitian** or **Symmetric**.

$$T^* = T \Leftrightarrow T^H = T$$
 (or for real vector space $T^T = T$)

2. The matrix representation for unitary operator is unitary or orthogonal.

$$T^* = T^{-1} \quad \Leftrightarrow \quad {m T}^H = {m T}^{-1} \; (\; {
m or \; for \; real \; vector \; space \; } {m T}^T = {m T}^{-1})$$

3. The matrix representation for *normal operator* is *normal*.

$$T^*T = TT^* \Leftrightarrow T^HT = TT^H$$
 (or for real vector space $T^TT = TT^T$)

- Proposition 2.19 (Self-adjointness). [Kreyszig, 1989]
 Let T: H → H be a bounded linear operator on a Hilbert space H. Then:
 - 1. If T is **self-adjoint**, $\langle Tx, x \rangle$ is **real** for all $x \in \mathcal{H}$.
 - 2. If \mathcal{H} is complex and $\langle Tx, x \rangle$ is **real** for all $x \in \mathcal{H}$, the operator T is **self-adjoint**
- Proposition 2.20 (Self-adjointness of product). [Kreyszig, 1989]

 The product of two bounded self-adjoint linear operators S and T on a Hilbert space H is self-adjoint if and only if the operators commute,

$$ST = TS$$
.

• Proposition 2.21 (Sequences of self-adjoint operators). [Kreyszig, 1989] Let (T_n) be a sequence of bounded self-adjoint linear operators $T_n : \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} . Suppose that (T_n) converges, say,

$$T_n \to T$$
, i.e. $||T_n - T|| \to 0$

where $\|\cdot\|$ is the norm on the space $\mathcal{L}(\mathcal{H},\mathcal{H})$. Then the limit operator T is a **bounded self-adjoint** linear operator on H.

- Proposition 2.22 (Unitary operator). [Kreyszig, 1989]
 Let the operators U: H → H and V: H → H be unitary; here, H is a Hilbert space. Then:
 - 1. U is **isometric**; thus ||Ux|| = ||x|| for all $x \in \mathcal{H}$;
 - 2. ||U|| = 1, provided $\mathcal{H} \neq \{0\}$,
 - 3. $U^{-1} = U^*$ is **unitary**,
 - 4. UV is unitary,

- $5.\ U\ is\ normal.$
- 6. A bounded linear operator T on a complex Hilbert space \mathcal{H} is unitary if and only if T is isometric and surjective.
- Remark Note that an *isometric operator* need not be *unitary* since it may fail to be *surjective*. An example is the *right shift operator* $T: \ell^2 \to \ell^2$ given by

$$(\xi_1, \xi_2, \xi_3, \ldots) \mapsto (0, \xi_1, \xi_2, \xi_3, \ldots).$$

References

John B Conway. A course in functional analysis, volume 96. Springer, 2019.

Erwin Kreyszig. Introductory functional analysis with applications, volume 81. wiley New York, 1989.

David G Luenberger. Optimization by vector space methods. John Wiley & Sons, 1997.

Michael Reed and Barry Simon. Methods of modern mathematical physics: Functional analysis, volume 1. Gulf Professional Publishing, 1980.