System Check_Head_2450MHz

DUT: D2450V2-929

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL 2450 190719 Medium parameters used : f = 2450 MHz; $\sigma = 1.756$ S/m; $\varepsilon_r = 39.671$;

Date: 2019/7/19

 $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.7 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration

- Probe: ES3DV3 SN3169;ConvF(4.54, 4.54, 4.54) @ 2450 MHz;Calibrated: 2019/5/24
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn360; Calibrated: 2018/10/29
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 16.2 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 101.3 V/m; Power Drift = -0.19 dB

Peak SAR (extrapolated) = 24.6 W/kg

SAR(1 g) = 12.1 W/kg; SAR(10 g) = 5.63 W/kg

Maximum value of SAR (measured) = 15.7 W/kg

0 dB = 15.7 W/kg = 11.96 dBW/kg

System Check_Head_5250MHz

DUT: D5GHzV2-1006

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: HSL_5G_190718 Medium parameters used : f = 5250 MHz; σ = 4.732 S/m; ϵ_r = 36.107; ρ

Date: 2019/7/18

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration

- Probe: EX3DV4 SN3898;ConvF(5.33, 5.33, 5.33) @ 5250 MHz;Calibrated: 2019/6/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn495; Calibrated: 2019/5/21
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 21.7 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.15 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 31.2 W/kg

SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.29 W/kg

Maximum value of SAR (measured) = 19.9 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

System Check_Head_5600MHz

DUT: D5GHzV2-1006

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: HSL_5G_190718 Medium parameters used: f = 5600 MHz; σ = 5.093 S/m; ϵ_r = 35.652; ρ

Date: 2019/7/18

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.5 °C; Liquid Temperature: 22.5 °C

DASY5 Configuration

- Probe: EX3DV4 SN3898;ConvF(4.85, 4.85, 4.85) @ 5600 MHz;Calibrated: 2019/6/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn495; Calibrated: 2019/5/21
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 20.2 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.69 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 34.7 W/kg

SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.25 W/kg

Maximum value of SAR (measured) = 20.3 W/kg

0 dB = 20.3 W/kg = 13.07 dBW/kg

System Check_Head_5750MHz

DUT: D5GHzV2-1006

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium: HSL_5G_190719 Medium parameters used: f = 5750 MHz; σ = 5.234 S/m; ϵ_r = 35.422; ρ

Date: 2019/7/19

 $= 1000 \text{ kg/m}^3$

Ambient Temperature: 23.7 °C; Liquid Temperature: 22.7 °C

DASY5 Configuration

- Probe: EX3DV4 SN3898;ConvF(4.95, 4.95, 4.95) @ 5750 MHz;Calibrated: 2019/6/27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn495; Calibrated: 2019/5/21
- Phantom: ELI V5.0; Type: QD OVA 002 Ax; Serial: 1191
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=100mW/Area Scan (71x71x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 18.0 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.55 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 32.0 W/kg

SAR(1 g) = 7.62 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg