Part II Numerical Analysis (J6) Lent Term, 2000

Exercise Sheet 4^1

- **36.** Let A be the $(N-1)^2 \times (N-1)^2$ matrix that is the subject of Lemma 4.11, so it is the matrix that occurs in the five point difference method for Laplace's equation on a square grid. By applying the orthogonal similarity transformation of Hockney's method, find a tridiagonal matrix, T say, that is similar to A, and derive expressions for each element of T. Hence deduce the eigenvalues of T. Verify that they agree with the eigenvalues of Lemma 4.11.
- **37.** Let $\beta_0=2$, $\beta_1=0$, $\beta_2=6$, $\beta_3=-2$, $\beta_4=6$, $\beta_5=0$, $\beta_6=6$ and $\beta_7=2$. By applying the FFT method, calculate $\sum_{j=0}^7 \beta_j \, e^{2\pi i j k/8}$, k=0,2,4,6. Check your results by direct calculation. Hint: Because all values of k are even, you can omit some parts of the usual FFT algorithm.
- **38.** Let $u(x,t): \mathcal{R}^2 \to \mathcal{R}$ be an infinitely differentiable solution of the diffusion equation $u_t = u_{xx} bu_x$, where the subscripts denote partial derivatives and where b is a positive constant, and let $u(x,0), 0 \le x \le 1, u(0,t), t > 0$, and u(1,t), t > 0, be given. A difference method sets h = 1/M and k = T/N, where M and N are positive integers and T is a fixed bound on t. Then it calculates the estimates $U_m^n \approx u(mh, nk), 1 \le m \le M-1, 1 \le n \le N$, by applying the formula

$$U_{m}^{n+1} = U_{m}^{n} + (k/h^{2}) \left[U_{m-1}^{n} - 2 U_{m}^{n} + U_{m+1}^{n} \right] - b \left(k/2h \right) \left[U_{m+1}^{n} - U_{m-1}^{n} \right],$$

the values of U_m^n being set to u(mh, nk) when (mh, nk) is on the boundary. Show that the local truncation error of the formula is $\mathcal{O}(k^2+kh^2)$.

Let $\varepsilon(h,k)$ be the greatest of the errors $|u(mh,nk)-U_m^n|$, $1 \le m \le M-1$, $1 \le n \le N$. Prove that, if h and k tend to zero in any way such that $k \le \frac{1}{2}h^2$, then $\varepsilon(h,k)$ also tends to zero. Hint: Relate the maximum error at each time level to the maximum error at the previous time level.

39. Let v(x,y) be a solution of Laplace's equation $v_{xx}+v_{yy}=0$ on the unit square $0 \le x, y \le 1$, and let u(x,y,t) solve the diffusion equation $u_t=u_{xx}+u_{yy}$, where the subscripts denote partial derivatives. Further, let u satisfy the boundary conditions $u(\xi,\eta,t)=v(\xi,\eta)$ at all points (ξ,η) on the boundary of the unit square for all $t \ge 0$. Prove that, if u and v are sufficiently differentiable, then the integral

$$\phi(t) = \int_0^1 \int_0^1 \left[u(x, y, t) - v(x, y) \right]^2 dx dy, \qquad t \ge 0,$$

has the property $\phi'(t) \leq 0$. Then prove that $\phi(t)$ tends to zero as $t \to \infty$.

Hint: In the first part, try to replace u_{xx} and u_{yy} when they occur by $u_{xx}-v_{xx}$ and $u_{yy}-v_{yy}$.

40. Let $u(x,t): \mathbb{R}^2 \to \mathbb{R}$ be a many times differentiable function that satisfies the diffusion equation $u_t = u_{xx}$, and let θ be a positive constant. Using the notation $U_m^n \approx u(mh, nk)$, where $\mu = k/h^2$ is constant, we consider the implicit difference equation

$$U_m^{n+1} - \tfrac{1}{2} \left(\mu - \theta\right) \left[U_{m-1}^{n+1} - 2 \, U_m^{n+1} + U_{m+1}^{n+1} \, \right] = U_m^n + \tfrac{1}{2} \left(\mu + \theta\right) \left[U_{m-1}^n - 2 \, U_m^n + U_{m+1}^n \, \right].$$

Show that its local truncation error is $\mathcal{O}(h^4)$, unless $\theta = \frac{1}{6}$ (the Crandall method), which makes the local truncation error of order h^6 , or is it possible for the order to be even higher?

41. The Crank–Nicolson formula is applied to the diffusion equation $u_t = u_{xx}$ on a rectangular mesh (mh, nk), $m = 0, 1, \ldots, M$, $n = 0, 1, 2, \ldots$, where h = 1/M. Let the boundary conditions include u(0,t) = u(1,t) = 0 for all $t \ge 0$. Prove that the estimates $U_m^n \approx u(mh, nk)$ satisfy the equation

¹Please send any corrections and comments by e-mail to mjdp@cam.ac.uk

$$\sum_{m=1}^{M-1} \left[(U_m^{n+1})^2 - (U_m^n)^2 \right] = -\frac{1}{2} (k/h^2) \sum_{m=1}^{M} \left[U_m^{n+1} + U_m^n - U_{m-1}^{n+1} - U_{m-1}^n \right]^2, \qquad n = 0, 1, 2, \dots.$$

Because the right hand side is nonpositive, it follows that $\sum_{m=1}^{M-1}(U_m^n)^2$ is a monotonically decreasing function of n. We see that this property is analogous to part of Exercise 39 if $v \equiv 0$ there. Hint: Substitute the value of $U_m^{n+1} - U_m^n$ that is given by the Crank–Nicolson formula into the elementary equation $\sum_{m=1}^{M-1} \left[(U_m^{n+1})^2 - (U_m^n)^2 \right] = \sum_{m=1}^{M-1} (U_m^{n+1} - U_m^n) \left(U_m^{n+1} + U_m^n \right)$. It is also helpful occasionally to change the index m of the summation by one.

42. Apply the von Neumann stability test to the difference equation

$$U_{m}^{n+1} = \frac{1}{2} \left(2 - 5\mu + 6\mu^{2}\right) U_{m}^{n} + \frac{2}{3}\mu \left(2 - 3\mu\right) \left(U_{m-1}^{n} + U_{m+1}^{n}\right) - \frac{1}{12}\mu \left(1 - 6\mu\right) \left(U_{m-2}^{n} + U_{m+2}^{n}\right).$$

Deduce that the test is satisfied if and only if $0 \le \mu \le \frac{2}{3}$.

43. A square grid is drawn on the region $\{(x,t): 0 \le x \le 1, t \ge 0\}$ in \mathbb{R}^2 , the grid points being $(mh, nh), 0 \le m \le M, n = 0, 1, 2, \ldots$, where h = 1/M and M is even. Let u(x,t) be an exact solution of the wave equation $u_{tt} = u_{xx}$ and let the boundary values $u(x,0), 0 \le x \le 1, u(0,t), t > 0$, and u(1,t), t > 0, be given. Further, an approximation to $\partial u/\partial t$ at x = 0 allows each of the function values $u(mh,h), m = 1, 2, \ldots, M-1$, to be estimated to accuracy ε . Then the difference equation

$$U_m^{n+1} = U_{m+1}^n + U_{m-1}^n - U_m^{n-1}$$

is applied to estimate u at the remaining grid points. Prove that all of the moduli of the errors $|U_m^n-u(mh,nh)|$ are bounded above by $\frac{1}{2}\varepsilon M$, even when n is very large.

Hint: Let the error in u(mh,h) be $\delta_{mj} \varepsilon$, $m=1,2,\ldots,M-1$, where δ_{mj} is the Kronecker delta and where j is any integer that you choose from [1,M-1]. Draw a diagram that shows the contribution from this error to U_m^n for every m and n.

44. A rectangular grid is drawn on \mathbb{R}^2 , with grid spacing h in the x-direction and k in the t-direction. Let the difference equation

$$\begin{array}{ll} U_m^{n+1} - 2\,U_m^n + U_m^{n-1} & = & (k/h)^2 \Big(a\,(U_{m-1}^{n+1} - 2\,U_m^{n+1} + U_{m+1}^{n+1}) \\ \\ & + b\,(U_{m-1}^n - 2\,U_m^n + U_{m+1}^n) + c\,(U_{m-1}^{n-1} - 2\,U_m^{n-1} + U_{m+1}^{n-1}) \,\, \Big) \end{array}$$

be used to approximate solutions of the wave equation $u_{tt} = u_{xx}$. Deduce that the local truncation error is $\mathcal{O}(h^4 + k^4)$ if and only if the parameters a, b and c satisfy a = c and a + b + c = 1. Show also that, if these conditions hold, then the von Neumann stability condition is achieved for all values of k/h if and only if the parameters also satisfy $|b| \le 2a$.

45. Let the split form of the Crank-Nicolson formula, namely

$$\left(1 - \tfrac{1}{2}\mu\Delta_x^2\right)\left(1 - \tfrac{1}{2}\mu\Delta_y^2\right)U_{\ell m}^{n+1} = \left(1 + \tfrac{1}{2}\mu\Delta_x^2\right)\left(1 + \tfrac{1}{2}\mu\Delta_y^2\right)U_{\ell m}^n,$$

be applied to the diffusion equation $u_t = u_{xx} + u_{yy}$, $(x,y) \in \mathcal{S}$, $t \geq 0$, in order to generate estimates $U^n_{\ell m} \approx u(\ell h, mh, nk)$ of the function u(x,y,t), $(x,y) \in \mathcal{S}$, $t \geq 0$. Further, let \mathcal{S} be the L-shaped region $\{(x,y): -1 \leq x \leq 1, -1 \leq y \leq 1, \max[x,y] \geq 0\}$, and let h=1/M for some positive integer M. Therefore the range of ℓ and m in the formula that is displayed above is all pairs of integers that satisfy the strict inequalities $-M < \ell < M$, -M < m < M and $\max[\ell, m] > 0$. We assume as usual that, if $(\ell h, mh)$ is on the boundary of \mathcal{S} , then $U^n_{\ell m}$ is set to $u(\ell h, mh, nk)$ for all $n \geq 0$. Find a splitting method that calculates all the unknowns $U^{n+1}_{\ell m}$ at time t = nk + k from the estimates $U^n_{\ell m}$ at time t = nk. The main task of your method should be the solution of tridiagonal systems of linear equations, the dimensions of each system being either $(M-1) \times (M-1)$ or $(2M-1) \times (2M-1)$.