CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-II

Prime Numbers

Euler's Theorem

Primality Testing

Chinese Remainde

Discrete

CS8792 Cryptography and Network Security

Basic Concepts in Number Theory

Session Objectives

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-II

Prime Numbers

Euler's Theorem

Primality Testing

Chinese Remainde

Discrete

- To learn about prime numbers
- To check a number is prime or not
- To learn Chinese remainder theorem

Agenda

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-I

Prime Number

Euler's

Primality

Chinese Remainde

Discrete

- 1 Prime Numbers
- 2 Euler's Theorem
- 3 Primality Testing
- 4 Chinese Remainder Theorem
- 5 Discrete Logarithms

Presentation Outline

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-I

Prime Numbers

Euler's Theorem

Primality Testing

Chinese Remainde

- 1 Prime Numbers
- 2 Euler's Theorem
- 3 Primality Testing
- 4 Chinese Remainder Theorem
- 5 Discrete Logarithms

Prime Numbers and Factorization

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Numbers

Euler's Theorem

Primalit Testing

Chinese Remainde Theorem

Discrete Logarithm

- prime numbers only have divisors of 1 and self
- to factor a number n is to write it as a product of other numbers: n=a x b x c
- note that factoring a number is relatively hard compared to multiplying the factors together to generate the number
- the prime factorisation of a number n is when its written as a product of primes eg. $91=7\times13$; $3600=2^4\times3^2\times5^2$

$$a=\prod_{p\in P}P^{a_p}$$

■ Relatively Prime Numbers: two numbers a, b are relatively prime if they have no common divisors except 1

Fermat's Theorem

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Numbers

Euler's Theorem

Primalit Testing

Chinese Remainde Theorem

Discrete Logarithm

Fermat's Theorem:

$$a^{p-1} mod p = 1$$

- where p is prime and gcd(a,p)=1 also known as Fermat's Little Theorem
- useful in public key and primality testing

Euler Totient Function $\phi(n)$

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-i

Prime Numbers

Euler's Theorem

Primalit Testing

Chinese Remainde Theorem

- when doing arithmetic modulo n
- **complete set of residues** is: 0..n-1
- reduced set of residues is those numbers (residues) which are relatively prime to n
- eg for n=10, complete set of residues is 0,1,2,3,4,5,6,7,8,9 reduced set of residues is 1,3,7,9
- number of elements in reduced set of residues is called the Euler Totient Function $\phi(n)$

Euler Totient Function $\phi(n)$

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-II

Prime Numbers

Euler's

Primality

Chinese Remainde

Discrete Logarithms ■ in general need prime factorization, but

Presentation Outline

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde

Discrete

- 1 Prime Numbers
- 2 Euler's Theorem
- 3 Primality Testing
- 4 Chinese Remainder Theorem
- 5 Discrete Logarithms

Euler's Theorem

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-I

Prime Number

Euler's Theorem

Primalit Testing

Chinese Remainde Theorem

Discrete Logarithm ullet a generalisation of Fermat's Theorem $a^{\phi(n)} ullet$ mod old N=1

- where gcd(a,N)=1
- eg. a=3; n=10; ϕ (10)=4;
- hence $3^4 = 81 = 1 \mod 10$
- $a=2; n=11; \phi(11)=10;$
- hence $2^{10} = 1024 = 1 \mod 11$

Presentation Outline

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde Theorem

- 1 Prime Numbers
- 2 Euler's Theorem
- 3 Primality Testing
- 4 Chinese Remainder Theorem
- 5 Discrete Logarithms

Primality Testing

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde Theorem

- often need to find large prime numbers
- traditionally sieve using trial division
- ie. divide by all numbers (primes) in turn less than the square root of the number
- only works for small numbers
- alternatively can use statistical primality tests based on properties of primes
- for which all primes numbers satisfy property
- but some composite numbers, called pseudo-primes, also satisfy the property

Miller Rabin Algorithm

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde Theorem

Discrete Logarithms a test based on Fermat's Theorem

algorithm is:

TEST (n) is:

1 Find integers **k**, **m**, **k**> **0**, **m** odd, so that $(n-1)=2^k$.m

2 Select a random integer a, 1 < a < n-1

3 if $a^m \mod n = 1$ then return ("maybe prime");

4 for j = 0 to k - 1 do

5 if $(a^{2^{j}m} \mod n = n-1)$ then return(" maybe prime")

6 return ("composite")

Miller Rabin Algorithm

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde Theorem

Discrete Logarithms Is 561 prime?

- **1** Find 561 $1 = 2^k$. m
- **2** Choose a, 1 < a < n 1
- 3 Compute $b_0 = a^m \mod n$
- 4 if $b_0 = +1 \implies$ n is a composite number else if $b_0 = -1 \implies$ n may be a prime number
- **5** Compute $b_i = b_{i-1}^2$, check for composite or prime
- 6 Repeat step number 5

Miller Rabin Algorithm

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde Theorem

Discrete Logarithms

■
$$561-1=2^k$$
.m
 $\frac{560}{2^2}=280$; $\frac{560}{2^3}=140$; $\frac{560}{2^3}=70$; $\frac{560}{2^4}=35$; $\frac{560}{2^5}=17.5$

$$\bullet$$
 560= $2^4.35$; k=4; m=35

$$b_0 = 2^{35} \mod 561 = 263$$

3 Is
$$b_0 = \pm 1 \mod 561$$

$$b_1 = b_0^2 = 263^2 \mod 561 = 67$$

$$b_3 = 67^2 \mod 561 = 1$$

561 is a composite number

Solve: Is 53 a prime number?

Probabilistic Considerations

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde Theorem

- if Miller-Rabin returns "composite" the number is definitely not prime
- otherwise is a prime or a pseudo-prime
- chance it detects a pseudo-prime is < 1/4
- hence if repeat test with different random a then chance n is prime after t tests is:
- Pr(n prime after t tests) = $1 4^{-t}$ eg. for t=10 this probability is > 0.99999

Presentation Outline

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainder Theorem

- 1 Prime Numbers
- 2 Euler's Theorem
- 3 Primality Testing
- 4 Chinese Remainder Theorem
- 5 Discrete Logarithms

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-I

Prime Numbers

Euler's Theorem

Primality Testing

Chinese Remainder Theorem

Discrete Logarithms Chinese Remainder Theorem: If $m_1, m_2, ..., m_k$ are pairwise relatively prime positive integers, and if $a_1, a_2, ..., a_k$ are any integers, then the simultaneous congruences

$$x \equiv a_1 \pmod{m_1}$$
, $x \equiv a_2 \pmod{m_2}$, ..., $x \equiv a_k \pmod{m_k}$

have a solution, and the solution is unique modulo m, where

$$m = m_1 m_2 \cdots m_k$$
.

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainder Theorem

Discrete Logarithm

To compute $X \pmod{M}$

- first compute all $a_i = A \mod m_i$ separately
- determine constants c_i , where $M_i = M/mi$
- then combine results to get answer using:

$$X \equiv (\sum_{i=1}^k a_i c_i) \mod M$$

$$c_i = M_i \times (M_i^{-1} \mod m_i)$$
 for $1 \le i \le k$

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-I

Prime Numbers

Euler's Theorem

Primality Testing

Chinese Remainder Theorem

Discrete Logarithms What's x such that:

$$x \equiv 2 \pmod{3}$$

$$x \equiv 3 \pmod{5}$$

$$x\equiv 2 \; (mod \; 7)?$$

$$X \equiv (\sum_{i=1}^{k} a_i c_i) \mod M$$
; $c_i = M_i \times (M_i^{-1} \mod m_i)$

$$X = a_1.M_1.M_1^{-1} + a_2.M_2.M_2^{-1} + a_3.M_3.M_3^{-1} \mod M$$

$$M_1.M_1^{-1} \equiv 1 \mod m_1$$

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-l

Prime Numbers

Euler's Theorem

Primality Testing

Chinese Remainder Theorem

Discrete Logarithm Using the Chinese Remainder theorem:

$$a_1 = 2$$
; $a_2 = 3$; $a_3 = 2$; $m_1 = 3$; $m_2 = 5$; $m_3 = 7$;

$$M = m_1 \times m_2 \times m_3 = 3 \times 5 \times 7 = 105$$

$$M_1 = M/m_1 = 105/3 = 35$$

• 2 is an inverse of
$$M_1 = 35 \pmod{3}$$

(since $35 \times 2 \equiv 1 \pmod{3}$

•
$$M_1.M_1^{-1} \equiv 1 \mod m_1 \implies 35. M_1^{-1} \equiv 1 \mod 3$$

$$\blacksquare$$
 gcd(35,3);gcd(3,2);gcd(2,1); gcd(1,0)= 1

■
$$35 = 11 \times 3 + 2 \implies 2 = 35 - 11 \times 3$$

$$3 = 1 \times 2 + 1 \implies 1 = 3 - 1 \times 2$$

$$1 = 3 - 1 \times 2$$
= 3 - (35 - 11 \times 3) = -1 \times 35 + 12 \times 3

■
$$1 = -1 \times 35 + 12 \times 3$$
; $-1 \times 35 \equiv 1 \mod 3$
⇒ $2 \times 35 \equiv 1 \mod 3$; **2** is inverse of **35 mod 3**

CS8792 Cryptography and Network Security Basic Concepts in Number

Theory
Unit-III

Prime Number

Euler's Theorem

Primalit Testing

Chinese Remainder Theorem

Discrete Logarithms Using the Chinese Remainder theorem:

- $M_2 = M/m_2 = 105/5 = 21$
 - 1 is an inverse of $M_2 = 21 \pmod{5}$ (since $21 \times 1 \equiv 1 \pmod{5}$)
- $M_3 = M/m_3 = 105/7 = 15$
 - 1 is an inverse of $M_3 = 15 \pmod{7}$ (since $15 \times 1 \equiv 1 \pmod{7}$
- \blacksquare So , X \equiv 2 x 2 x 35 + 3 x 1 x 21 + 2 x 1 x 15 = 233 \equiv 23 (mod 105)
- So answer: $X \equiv 23 \pmod{105}$

Presentation Outline

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde

- 1 Prime Numbers
- 2 Euler's Theorem
- 3 Primality Testing
- 4 Chinese Remainder Theorem
- 5 Discrete Logarithms

Primitive Root

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Numbers

Euler's Theorem

Primality Testing

Chinese Remainde

- Primitive root: if p is prime, then successive powers of a 'generate' the group mod p
- these are useful but relatively hard to find

Powers of Mod 19

 Z_{19}

CS8792 Cryptography and Network Security Basic Concepts in Number Theory

Unit-II

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde

Discrete Logarithms

a	a^2	a^3	a^4	a^5	a^6	a^7	a^8	a^9	a^{10}	a^{11}	a^{12}	a^{13}	a^{14}	a^{15}	a^{16}	a^{17}	a^{18}
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	8	16	13	7	14	9	18	17	15	11	3	6	12	5	10	1
3	9	8	5	15	7	2	6	18	16	10	11	14	4	12	17	13	- 1
4	16	7	9	17	11	6	5	1	4	16	7	9	17	11	6	5	1
5	6	11	17	9	7	16	4	1	5	6	11	17	9	7	16	4	1
6	17	7	4	5	11	9	16	1	6	17	7	4	5	11	9	16	1
7	11	1	7	11	1	7	11	1	7	11	1	7	11	1	7	11	1
8	7	18	11	12	1	8	7	18	11	12	1	8	7	18	11	12	1
9	5	7	6	16	11	4	17	1	9	5	7	6	16	11	4	17	1
10	5	12	6	3	11	15	17	18	9	14	7	13	16	8	4	2	- 1
11	7	1	11	7	1	11	7	1	11	7	1	11	7	1	11	7	1
12	11	18	7	8	1	12	11	18	7	8	1	12	11	18	7	8	1
13	17	12	4	14	11	10	16	18	6	2	7	15	5	8	9	3	1
14	6	8	17	10	7	3	4	18	5	13	11	2	9	12	16	15	- 1
15	16	12	9	2	11	13	5	18	4	3	7	10	17	8	6	14	1
16	9	11	5	4	7	17	6	1	16	9	11	5	4	7	17	6	1
17	4	11	16	6	7	5	9	1	17	4	11	16	6	7	5	9	1
18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1	18	1

For the prime number 19 the **primitive roots** are **2**, **3**, **10**, **13**,

Discrete Logarithms

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-I

Prime Numbers

Euler's Theoren

Primalit Testing

Chinese Remainde Theorem

- The inverse problem to exponentiation is to find the discrete logarithm of a number modulo p
- That is to find i such that $b = a^i \pmod{p}$
- This is written as $i = dlog_a b \pmod{p}$
- If a is a primitive root then it always exists, otherwise it may not, eg.
- The discrete logarithm does not always exist, for instance there is no solution to $2^x \equiv 3 \pmod{7}$.
- There is no simple condition to determine if the discrete logarithm exists.
- Whilst exponentiation is relatively easy, finding discrete logarithms is generally a hard problem

Discrete Logarithms

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-II

Prime Numbers

Euler's Theorem

Primality Testing

Chinese Remainde Theorem

Discrete Logarithms For example, consider Z_{23}

To compute 3^4 in this group, we first compute 3^4 =81, and then we divide 81 by 23, obtaining a remainder of 12. Thus 3^4 =12 in the group Z_{23^*}

Discrete logarithm is just the inverse operation. For example, take the equation $3^k\equiv 12 \pmod{23}$ for k. As shown above k=4 is a solution, but it is not the only solution. Since $3^{22}\equiv 1 \pmod{23}$, it also follows that if n is an integer then $3^{4+22n}\equiv 12\times 1^n\equiv 12 \pmod{23}$. Hence the equation has infinitely many solutions of the form 4+22n.

Summary

CS8792
Cryptography
and Network
Security
Basic
Concepts in
Number
Theory

Unit-

Prime Number

Euler's Theorem

Primality Testing

Chinese Remainde Theorem

- concept of groups, rings, fields
- modular arithmetic with integers
- Euclid's algorithm for GCD & Inverse
- finite fields GF(p)
- **polynomial** arithmetic in general and in $GF(2^n)$
- Fermat's and Euler's Theorems
- Primality Testing
- Chinese Remainder Theorem
- Discrete Logarithms