A Vector Addition Coefficients of Angular Momenta

In the following, we will give an overview of the vector addition coefficients and their properties together with a variety of contraction and orthogonality relations most frequently used in angular momentum coupling theory. Concerning a more complete description and introduction to the theory of angular momentum coupling we refer to the books by Brink and Satchler (1962); Edmonds (1974) or Zare (1988). For a more extensive compendium of angular momentum coupling equations and relations we refer to the book by Varshalovich *et al.* (1988).

The vector addition coefficients have been numerically calculated and a variety of tables for the Clebsch–Gordan and the nj-symbols exist. We only mention the extended tables by Rotenberg *et al.* (1959) and Varshalovich *et al.* (1988).

A.1 Clebsch-Gordan Coefficients and 3*j*-Symbols

The Clebsch–Gordan coefficients, or vector addition coefficients, are defined by the unitary transformation of the coupling of two angular momenta

$$|(ab)c\gamma\rangle = \sum_{\alpha\beta} |a\alpha, b\beta\rangle (a\alpha, b\beta|c\gamma),$$
 (A.1)

and vanish unless the selection rule

$$\alpha + \beta = \gamma, \tag{A.2}$$

and the triangular condition

$$|a - b| \le c \le a + b \tag{A.3}$$

are fulfilled.

The Clebsch-Gordan coefficients are real quantities

$$(a\alpha, b\beta|c\gamma)^* = (a\alpha, b\beta|c\gamma), \tag{A.4}$$

which yields the inverse transformation

$$|a\alpha, b\beta\rangle = \sum_{c\gamma} |(ab)c\gamma\rangle (a\alpha, b\beta|c\gamma).$$
 (A.5)

Symmetry properties:

$$(a\alpha, b\beta|c\gamma) = (-1)^{a+b-c}(a-\alpha, b-\beta|c-\gamma), \tag{A.6a}$$

$$= (-1)^{a+b-c} (b\beta, a\alpha | c\gamma), \tag{A.6b}$$

$$= \sqrt{\frac{2c+1}{2b+1}} (-1)^{a-\alpha} \left(a\alpha, c - \gamma | b - \beta \right), \tag{A.6c}$$

$$= \sqrt{\frac{2c+1}{2a+1}} (-1)^{b+\beta} \left(c - \gamma, b\beta | a - \alpha\right). \tag{A.6d}$$

Special cases:

$$(a\alpha, b\beta|00) = \frac{(-1)^{a-\alpha}}{\sqrt{2a+1}} \delta_{ab} \delta_{\alpha-\beta}, \tag{A.7a}$$

$$(a\alpha, 00|c\gamma) = \delta_{ac}\delta_{\alpha\gamma}. \tag{A.7b}$$

If c and γ take their maximum values, we have:

$$(aa, bb|a + b a + b) = 1$$
 (A.7c)

The orthonormality of $|a\alpha, b\beta\rangle$ and $|(ab)c\gamma\rangle$ yields the orthogonality relations:

$$\sum_{c\gamma} (a\alpha', b\beta'|c\gamma) (a\alpha, b\beta|c\gamma) = \delta_{\alpha'\alpha} \delta_{\beta'\beta}, \tag{A.8a}$$

$$\sum_{\alpha\beta} (a\alpha, b\beta | c'\gamma') (a\alpha, b\beta | c\gamma) = \delta_{c'c} \delta_{\gamma'\gamma}. \tag{A.8b}$$

The Wigner 3 *j*-symbols are defined as

$$\begin{pmatrix} a & b & c \\ \alpha & \beta & \gamma \end{pmatrix} = \frac{(-1)^{a-b-\gamma}}{\sqrt{2c+1}} (a\alpha, b\beta | c - \gamma). \tag{A.9}$$

Note the appearance of $-\gamma$ on the right, so that now the selection rule

$$\alpha + \beta + \gamma = 0, \tag{A.10}$$

must be fulfilled.

The 3*j*-symbol is invariant under cyclic permutations of its columns and is multiplied by $(-1)^{a+b+c}$ by non-cyclic ones, and by changing the signs of its magnetic components α , β , γ . In particular:

$$\begin{pmatrix} a & b & c \\ \alpha & \beta & \gamma \end{pmatrix} = \begin{pmatrix} b & c & a \\ \beta & \gamma & \alpha \end{pmatrix} = \begin{pmatrix} c & a & b \\ \gamma & \alpha & \beta \end{pmatrix}, \tag{A.11a}$$

$$\begin{pmatrix} a & b & c \\ \alpha & \beta & \gamma \end{pmatrix} = (-1)^{a+b+c} \begin{pmatrix} b & a & c \\ \beta & \alpha & \gamma \end{pmatrix}, \tag{A.11b}$$

$$= (-1)^{a+b+c} \begin{pmatrix} a & b & c \\ -\alpha & -\beta & -\gamma \end{pmatrix}.$$
 (A.11c)

Special cases:

$$\begin{pmatrix} a & b & 0 \\ \alpha & \beta & 0 \end{pmatrix} = \frac{(-1)^{a-\alpha}}{\sqrt{2a+1}} \delta_{ab} \delta_{\alpha-\beta}.$$
 (A.12a)

If $\alpha = \beta = \gamma = 0$, and a + b + c is odd, we have

$$\begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix} = 0, \tag{A.12b}$$

and if $2p \equiv a + b + c$ is even, we have

$$\begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix} = (-1)^p \sqrt{\Delta(abc)} \frac{p!}{(p-a)!(p-b)!(p-c)!},$$
 (A.12c)

where

$$\Delta(abc) \equiv \frac{(a+b-c)!(b+c-a)!(c+a-b)!}{(a+b+c+1)!}.$$
 (A.12d)

If the arguments of β and γ change by 1 an important relation is

$$\begin{pmatrix} a & b & c \\ \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix} = \frac{-1}{2} \begin{pmatrix} a & b & c \\ \frac{1}{2} & \frac{-1}{2} & 0 \end{pmatrix} \frac{(2b+1) + (-1)^{a+b-c}(2a+1)}{\sqrt{c(c+1)}}.$$
 (A.13)

Orthogonality relations:

$$\sum_{\alpha\beta} \begin{pmatrix} a & b & c \\ \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} a & b & c' \\ \alpha & \beta & \gamma' \end{pmatrix} = \frac{1}{2c+1} \delta_{cc'} \delta_{\gamma\gamma'}, \tag{A.14a}$$

$$\sum_{c\gamma} (2c+1) \begin{pmatrix} a & b & c \\ \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} a & b & c \\ \alpha' & \beta' & \gamma \end{pmatrix} = \delta_{\alpha\alpha'} \delta_{\beta\beta'}. \tag{A.14b}$$

A.2 Racah Coefficients and 6 j-Symbols

The coupling of three angular momenta, $|m \ m' \ m''\rangle \equiv |jm\rangle|j'm'\rangle|j''m''\rangle$, allows for the generation of two usually different basis sets in the related Hilbert sub-space

$$|(j'j)g',j'';J'M'\rangle = \sum_{\substack{mm'\\m''u'}} |m\,m'\,m''\rangle (j'm',jm|g'\mu') (g'\mu',j''m''|JM), \quad (A.15a)$$

or

$$|j',(jj'')g'';JM\rangle = \sum_{\substack{mm'\\m''\mu''}} |m\,m'\,m''\rangle (jm,j''m''|g''\mu'') (j'm',g''\mu''|JM).$$
(A.15b)

The 6j-symbols are defined by the unitary transformation between the two basis sets

$$\langle j', (jj'')g''; JM | (j'j)g', j''; J'M' \rangle = \delta_{JJ'}\delta_{MM'}(-1)^{j+j'+j''+J}$$

$$\times \sqrt{(2g'+1)(2g''+1)} \left\{ \begin{array}{l} j' \ j \ g' \\ j'' \ J \ g'' \end{array} \right\},$$
(A.16)

that is, we have

$$|(j'j)g', j''; JM\rangle = \sum_{g''} |j', (jj'')g''; JM\rangle \sqrt{(2g'+1)(2g''+1)} \times (-1)^{j+j'+j''+J} \left\{ \begin{array}{l} j' & j & g' \\ j'' & J & g'' \end{array} \right\}.$$
(A.17)

The 6 j-symbols are related to the Racah, or W-coefficients via

$$\left\{ \begin{array}{l} a \ b \ c \\ d \ e \ f \end{array} \right\} = (-1)^{a+b+d+e} W(abed; cf). \tag{A.18}$$

Triangular conditions: the 6j-symbol is non-zero only, if the four triangular conditions are fulfilled by the six angular momenta which may be illustrated in the following way

$$\left\{ \begin{array}{c} \bigcirc \\ \bigcirc \\ \bigcirc - \bigcirc \end{array} \right\}, \left\{ \begin{array}{c} \bigcirc - \bigcirc - \bigcirc \\ \bigcirc \end{array} \right\}, \left\{ \begin{array}{c} \bigcirc \\ \bigcirc - \bigcirc \end{array} \right\}, \left\{ \begin{array}{c} \bigcirc \\ \bigcirc \end{array} \right\}. \tag{A.19}$$

Particularly, the sum of its arguments must be integer

$$a+b+c+d+e+f=n$$
, where $n \in \mathbb{N}$. (A.20)

Symmetries: the 6j-symbol is invariant under any permutation of its columns, and also for interchanging of the upper and lower arguments in each of any two columns, resulting in symmetry relations between 24 different 6j-symbols, i.e.

Special value:

$$\begin{cases} a & b & 0 \\ c & d & f \end{cases} = (-1)^{a+c+f} \frac{\delta_{ab}\delta_{cd}}{\sqrt{(2a+1)(2c+1)}} . \tag{A.22}$$

Contraction of 3j-symbols: according to the definition (A.16) the 6j-symbols may be expressed in terms of four 3j-symbols

$$\sum_{\substack{\alpha\beta\gamma\\\alpha'\beta'\gamma'}} (-1)^{A+B+C+\alpha+\beta+\gamma} \begin{pmatrix} A & B & c\\ \alpha & -\beta & \gamma' \end{pmatrix} \begin{pmatrix} B & C & a\\ \beta & -\gamma & \alpha' \end{pmatrix} \begin{pmatrix} C & A & b\\ \gamma & -\alpha & \beta' \end{pmatrix} \begin{pmatrix} a & b & c\\ \alpha' & \beta' & \gamma' \end{pmatrix}$$

$$= \left\{ \begin{array}{cc} a & b & c \\ A & B & C \end{array} \right\} . \tag{A.23}$$

Note, that the sum runs in fact over two indices, only, as the primed and unprimed magnetic components of the 3j-symbols are not independent; see (A.10). Omitting one index, e.g. γ' from the summation, the left-hand side of (A.23) must be multiplied by (2c+1) which yields

$$\sum_{\substack{\alpha\beta\gamma\\\alpha'\beta'}} (-1)^{A+B+C+\alpha+\beta+\gamma} \begin{pmatrix} A & B & c\\ \alpha & -\beta & \gamma' \end{pmatrix} \begin{pmatrix} B & C & a\\ \beta & -\gamma & \alpha' \end{pmatrix} \begin{pmatrix} C & A & b\\ \gamma & -\alpha & \beta' \end{pmatrix} \begin{pmatrix} a & b & c_1\\ \alpha' & \beta' & \gamma_1' \end{pmatrix}$$

$$= \delta_{cc_1} \delta_{\gamma'\gamma_1'} \frac{1}{2c+1} \begin{Bmatrix} a & b & c\\ A & B & C \end{Bmatrix}. \tag{A.24}$$

Again, the sum is over two indices, only. Further relations can be obtained applying the orthogonality properties (A.14) of the 3j-symbols. Multiplying both sides of (A.23) with the last 3j-symbol yields

$$\sum_{\alpha\beta\gamma} (-1)^{A+B+C+\alpha+\beta+\gamma} \begin{pmatrix} A & B & c \\ \alpha & -\beta & \gamma' \end{pmatrix} \begin{pmatrix} B & C & a \\ \beta & -\gamma & \alpha' \end{pmatrix} \begin{pmatrix} C & A & b \\ \gamma & -\alpha & \beta' \end{pmatrix}$$

$$= \begin{pmatrix} a & b & c \\ \alpha' & \beta' & \gamma' \end{pmatrix} \begin{Bmatrix} a & b & c \\ A & B & C \end{Bmatrix}. \tag{A.25}$$

Due to the same argument, the sum is over one index, only. Continuing in the same manner, we get

$$\sum_{C\gamma} (-1)^{C+\gamma} (2C+1) \begin{pmatrix} a & B & C \\ \alpha' & \beta & -\gamma \end{pmatrix} \begin{pmatrix} b & A & C \\ \beta' & \alpha & \gamma \end{pmatrix} \begin{cases} a & b & c \\ A & B & C \end{cases}$$

$$= (-1)^{b+B+c+C} \sum_{\gamma'} (-1)^{c+\gamma'} \begin{pmatrix} a & b & c \\ \alpha' & \beta' & -\gamma' \end{pmatrix} \begin{pmatrix} B & A & c \\ \beta & \alpha & \gamma' \end{pmatrix} . \tag{A.26a}$$

Note, that due to (A.10), the formal sum over γ and γ' is over one term, only. Thus, (A.26) may be re-expressed as

$$\sum_{C} (-1)^{a+b-c+A+B+C-\alpha'-\alpha} (2C+1) \begin{Bmatrix} a & b & c \\ A & B & C \end{Bmatrix} \begin{pmatrix} B & a & C \\ \beta & \alpha' & -\gamma \end{pmatrix} \begin{pmatrix} b & A & C \\ \beta' & \alpha & \gamma \end{pmatrix}$$

$$= \begin{pmatrix} a & b & c \\ \alpha' & \beta' & -\gamma' \end{pmatrix} \begin{pmatrix} A & B & c \\ \alpha & \beta & \gamma' \end{pmatrix}. \tag{A.26b}$$

Continuing with this procedure yields

$$\sum_{BC} (-1)^{a+b-c+A+B+C-\alpha'-\alpha} (2B+1)(2C+1) \begin{Bmatrix} a & b & c \\ A & B & C \end{Bmatrix} \times \begin{pmatrix} B & a & C \\ \beta & \alpha' & -\gamma \end{pmatrix} \begin{pmatrix} b & A & C \\ \beta' & \alpha & \gamma \end{pmatrix} \begin{pmatrix} A & B & c \\ \alpha & \beta & \gamma' \end{pmatrix} = \begin{pmatrix} a & b & c \\ \alpha' & \beta' & -\gamma' \end{pmatrix} , \quad (A.27)$$

and

258

$$\sum_{cBC} (-1)^{a+b-c+A+B+C-\alpha'-\alpha} (2c+1)(2B+1)(2C+1) \begin{cases} a & b & c \\ A & B & C \end{cases}$$

$$\times \begin{pmatrix} B & a & C \\ \beta & \alpha' & -\gamma \end{pmatrix} \begin{pmatrix} b & A & C \\ \beta' & \alpha & \gamma \end{pmatrix} \begin{pmatrix} A & B & c \\ \alpha & \beta & \gamma' \end{pmatrix} \begin{pmatrix} a & b & c \\ \alpha' & \beta' & -\gamma' \end{pmatrix} = 1.$$
(A.28)

If a + b + e is even a special case is

$$(-1)^{a+b+c+d+1}\sqrt{(2a+1)(2b+1)}\begin{pmatrix} a & b & e \\ 0 & 0 & 0 \end{pmatrix} \begin{Bmatrix} a & b & e \\ d & c & \frac{1}{2} \end{Bmatrix} = \begin{pmatrix} c & d & e \\ -\frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}. \quad (A.29)$$

Racah-Elliot relation and orthogonality relations:

$$\sum_{x} (-1)^{2x} (2x+1) \begin{Bmatrix} a & b & x \\ a & b & f \end{Bmatrix} = 1.$$
 (A.30)

$$\sum_{x} (-1)^{a+b+x} (2x+1) \begin{Bmatrix} a & b & x \\ b & a & f \end{Bmatrix} = \delta_{f0} \sqrt{(2a+1)(2b+1)}. \tag{A.31}$$

$$\sum_{x} (2x+1) \begin{Bmatrix} a & b & x \\ c & d & f \end{Bmatrix} \begin{Bmatrix} c & d & x \\ a & b & g \end{Bmatrix} = \delta_{fg} \frac{1}{(2f+1)}. \tag{A.32}$$

$$\sum_{x} (-1)^{f+g+x} (2x+1) \begin{Bmatrix} a & b & x \\ c & d & f \end{Bmatrix} \begin{Bmatrix} c & d & x \\ b & a & g \end{Bmatrix} = \begin{Bmatrix} a & d & f \\ b & c & g \end{Bmatrix}. \tag{A.33}$$

$$\sum_{x} (-1)^{a+b+c+d+e+f+g+h+j+x} (2x+1) \begin{Bmatrix} a & b & x \\ c & d & g \end{Bmatrix} \begin{Bmatrix} c & d & x \\ e & f & h \end{Bmatrix} \begin{Bmatrix} e & f & x \\ b & a & j \end{Bmatrix}$$

$$= \begin{Bmatrix} g & h & j \\ e & a & d \end{Bmatrix} \begin{Bmatrix} g & h & j \\ f & b & c \end{Bmatrix}. \tag{A.34}$$

A.3 9j-Symbols

The coupling of four angular momenta \mathbf{a} , \mathbf{b} , \mathbf{d} , and \mathbf{e} resulting in a total angular momentum \mathbf{i} with z-component m leads to two different basis systems for the Hilbert sub-space of the total angular momentum $|im\rangle$:

$$|(ab)c, (de)f; im\rangle$$
 and $|(ad)g, (be)h; im\rangle$.

As in the three vector case, the corresponding eigenfunctions of the basis sets are not independent. They are connected by a linear transformation

$$|(ad)g, (be)h; im\rangle = \sum_{cf} |(ab)c, (de)f; im\rangle \times \langle (ab)c, (de)f; im|(ad)g, (be)h; im\rangle. \quad (A.35)$$

The transformation coefficient in (A.35) that changes the coupling defines the 9j-symbol of Wigner

$$\langle (ab)c, (de)f; im | (ad)g, (be)h; im \rangle$$

$$= \sqrt{(2c+1)(2f+1)(2g+1)(2h+1)} \begin{cases} a & b & c \\ d & e & f \\ g & h & i \end{cases}$$

$$\equiv X(abc, def, ghi), \tag{A.36}$$

which is identical to the *X*-function of Fano.

Triangular conditions: the 9j-symbol vanishes unless the triangular conditions for the triads (a, b, c), (d, e, f), (g, h, i), (a, d, g), (b, e, h), and (c, f, i) are fulfilled.

Symmetry: the 9j-symbol is invariant under interchange of rows and columns (reflection about a diagonal) and is multiplied by $(-1)^p$, where p = a + b + c + d + e + f + g + h + i, upon interchanging of two adjacent rows or columns, resulting in 72 symmetry relations.

Orthogonality:

$$\sum_{cf} (2c+1)(2f+1) \begin{cases} a \ b \ c \\ d \ e \ f \\ g \ h \ i \end{cases} \begin{cases} a \ b \ c \\ d \ e \ f \\ j \ k \ i \end{cases} = \frac{\delta_{gj}\delta_{hk}}{(2g+1)(2h+1)}. \tag{A.37}$$

Sum rule:

$$\sum_{jk} (2j+1)(2k+1) \begin{Bmatrix} a & b & c \\ d & e & f \\ j & k & i \end{Bmatrix} \begin{Bmatrix} a & e & j \\ d & b & k \\ g & h & i \end{Bmatrix} = \begin{Bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{Bmatrix}. \tag{A.38}$$

Identical rows or columns: in this case the 9j-symbol vanishes unless the sum of all arguments is even

$$\left\{
 \begin{array}{l}
 a \ b \ c \\
 g \ h \ j
 \end{array} \right\} = 0 \quad \text{if } g + h + j = 2k + 1, \tag{A.39a}$$

and

$$\left\{
 \begin{array}{l}
 a & a & c \\
 d & d & f \\
 g & g & j
 \end{array} \right\} = 0 \quad \text{if } c + f + j = 2k + 1, \tag{A.39b}$$

where $k \in \mathbb{N}$.

Special values of the arguments: if one argument equals zero the 9j-symbol is reduced to a 6j-symbol

If two arguments are equal to zero we have

$$\left\{
 \begin{array}{l}
 a \ b \ c \\
 d \ 0 \ f \\
 g \ h \ 0
 \end{array} \right\} = \delta_{df} \delta_{bh} \delta_{cf} \delta_{gh} \frac{(-1)^{a-b-c}}{(2b+1)(2c+1)}, \tag{A.41}$$

and for three arguments equal to zero we obtain

$$\begin{cases} a \ b \ c \\ d \ e \ f \\ 0 \ 0 \ 0 \end{cases} = \frac{\delta_{ad}\delta_{be}\delta_{cf}}{\sqrt{(2a+1)(2b+1)(2c+1)}},\tag{A.42a}$$

and

$$\begin{cases} 0 & b & c \\ d & 0 & f \\ g & h & 0 \end{cases} = \delta_{bc} \delta_{bd} \delta_{bf} \delta_{bg} \delta_{bh} \frac{(-1)^{2b}}{(2b+1)^2}.$$
 (A.42b)

If one arguments equals unity, the 9j-symbol can be also reduced to a 6j-symbol

$$\begin{cases} a & b & c \\ d & e & c \\ g & g & 1 \end{cases} = (-1)^{b+c+d+g} \frac{a(a+1) - d(d+1) - b(b+1) + e(e+1)}{\sqrt{(g+1)(2g+1)2g(c+1)(2c+1)2c}} \begin{cases} a & b & c \\ e & d & g \end{cases}.$$
(A.43)

Important relations to the 3j- and 6j-symbols exist if one of the triads in the 9j-symbol equals (1/2, 1/2, 1)

In addition, if c, d, e are integer and c + d + e is even, we get

$$\sqrt{6(2c+1)(2d+1)(2e+1)} \begin{pmatrix} c & d & e \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} a & b & c \\ d & e & c \\ \frac{1}{2} & \frac{1}{2} & 1 \end{cases} = \begin{pmatrix} a & b & c \\ \frac{1}{2} & \frac{1}{2} & -1 \end{pmatrix}. \tag{A.45}$$

If c + d + e is odd, we have two other relations

$$\begin{pmatrix} c+1 & d & e \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} a & b & c \\ d & e & c+1 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{cases} = (-1)^{b+c+1/2} \begin{pmatrix} a & b & c \\ \frac{1}{2} - \frac{1}{2} & 0 \end{pmatrix}$$

$$\times \frac{[(d-a)(2a+1) + (e-b)(2b+1) + c+1]}{\sqrt{6(c+1)(2c+1)(2c+3)(2d+1)(2e+1)}}, \quad (A.46a)$$

and

$$\begin{pmatrix} c - 1 & d & e \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} a & b & c \\ d & e & c - 1 \\ \frac{1}{2} & \frac{1}{2} & 1 \end{cases} = (-1)^{b+c+1/2} \begin{pmatrix} a & b & c \\ \frac{1}{2} - \frac{1}{2} & 0 \end{pmatrix}$$

$$\times \frac{[(d-a)(2a+1) + (e-b)(2b+1) - c]}{\sqrt{6c(2c+1)(2c-1)(2d+1)(2e+1)}}.$$
 (A.46b)

Contraction of 3j-symbols: the following equations are continuously applied as a useful tool in angular momentum coupling theory in order to reduce extended expressions by analytically carrying out the sum over the magnetic quantum numbers.

$$\begin{cases}
a b c \\
d e f \\
g h i
\end{cases} = (2a+1) \sum_{\substack{\beta \gamma \delta \epsilon \\ \phi \eta \nu \rho}} \begin{pmatrix} a b c \\ \alpha \beta \gamma \end{pmatrix} \begin{pmatrix} b e h \\ \beta \epsilon \eta \end{pmatrix} \begin{pmatrix} c f i \\ \gamma \phi \nu \end{pmatrix} \\
\times \begin{pmatrix} a d g \\ \alpha \delta \rho \end{pmatrix} \begin{pmatrix} d e f \\ \delta \epsilon \phi \end{pmatrix} \begin{pmatrix} g h i \\ \rho \eta \nu \end{pmatrix}.$$
(A.47)

$$\begin{pmatrix} a & b & c \\ \alpha & \beta & \gamma \end{pmatrix} \begin{cases} a & b & c \\ d & e & f \\ g & h & i \end{cases} = \sum_{\substack{\delta \in \phi \\ \eta \lor \rho}} \begin{pmatrix} b & e & h \\ \beta & \epsilon & \eta \end{pmatrix} \begin{pmatrix} c & f & i \\ \gamma & \phi & \nu \end{pmatrix} \begin{pmatrix} a & d & g \\ \alpha & \delta & \rho \end{pmatrix}$$

$$\times \begin{pmatrix} d & e & f \\ \delta & \epsilon & \phi \end{pmatrix} \begin{pmatrix} g & h & i \\ \rho & \eta & \nu \end{pmatrix}.$$
 (A.48)

$$\sum_{b\beta} (2b+1) \begin{pmatrix} a & b & c \\ \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} b & e & h \\ \beta & \epsilon & \eta \end{pmatrix} \begin{cases} a & b & c \\ d & e & f \\ g & h & i \end{cases}$$

$$= \sum_{\delta\phi\nu\rho} \begin{pmatrix} c & f & i \\ \gamma & \phi & \nu \end{pmatrix} \begin{pmatrix} a & d & g \\ \alpha & \delta & \rho \end{pmatrix} \begin{pmatrix} d & e & f \\ \delta & \epsilon & \phi \end{pmatrix} \begin{pmatrix} g & h & i \\ \rho & \eta & \nu \end{pmatrix}. \quad (A.49)$$

Note, that due to the selection rule (A.10), the sum over β on the left side is over one term, only.

$$\sum_{b\beta c\gamma} (2b+1)(2c+1) \begin{pmatrix} a & b & c \\ \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} b & e & h \\ \beta & \epsilon & \eta \end{pmatrix} \begin{pmatrix} c & f & i \\ \gamma & \phi & \nu \end{pmatrix} \begin{cases} a & b & c \\ d & e & f \\ g & h & i \end{cases}$$

$$= \sum_{\delta\rho} \begin{pmatrix} a & d & g \\ \alpha & \delta & \rho \end{pmatrix} \begin{pmatrix} d & e & f \\ \delta & \epsilon & \phi \end{pmatrix} \begin{pmatrix} g & h & i \\ \rho & \eta & \nu \end{pmatrix}. \tag{A.50}$$

Due to the same argument, the sums over β and γ on the left, and over δ and ρ on the right side are over one term, only.

Contraction of 6j-symbols: analogously, the 9j-symbol may expressed in terms of 6j-symbols

$$\begin{cases} a b c \\ d e f \\ g h i \end{cases} = \sum_{x} (-1)^{2x} (2x+1) \begin{cases} a b c \\ f i x \end{cases} \begin{cases} d e f \\ b x h \end{cases} \begin{cases} g h i \\ x a d \end{cases},$$
 (A.51)

$$\sum_{x} (2x+1) \begin{Bmatrix} a & f & x \\ d & q & e \\ p & c & b \end{Bmatrix} \begin{Bmatrix} a & f & x \\ e & b & s \end{Bmatrix} = (-1)^{2s} \begin{Bmatrix} a & b & s \\ c & d & p \end{Bmatrix} \begin{Bmatrix} c & d & s \\ e & f & q \end{Bmatrix}, \quad (A.52)$$

$$\sum_{x} (-1)^{R+x} (2x+1) \begin{cases} a & f & x \\ d & q & e \\ p & c & b \end{cases} \begin{cases} a & f & x \\ b & e & s \end{cases} = (-1)^{2s} \begin{cases} p & q & s \\ e & a & d \end{cases} \begin{cases} p & q & s \\ f & b & c \end{cases},$$
 (A.53)

where R = a + b + c + d + e + f + p + q.

It is sometimes helpful to re-order the coupling of the quantum numbers in the 3nj-symbols. This can be achieved with the recursion relation

$$(-1)^{a+f+b+i} \sum_{x} (-1)^{2x} (2x+1) \begin{cases} a \ b \ x \\ d \ e \ f \\ g \ h \ i \end{cases} \begin{cases} a \ b \ x \\ c \ \lambda \ a' \end{cases} \begin{cases} i \ f \ x \\ \lambda \ c \ f' \end{cases}$$

$$= (-1)^{a'+f'+g+e} \sum_{y} (-1)^{2y} (2y+1) \begin{cases} a' \ b \ y \\ d \ e \ f' \\ g \ h \ i \end{cases} \begin{cases} f' \ e \ y \\ d \ \lambda \ f \end{cases} \begin{cases} g \ a' \ y \\ \lambda \ d \ a \end{cases}. (A.54)$$

B Rotation Matrices and Spherical Harmonics

The behaviour of particles in a scattering system is directly related to its description in the relevant coordinate frame. These relations are dealt with by the theory of rotation matrices. The book of Zare (1988) yields a detailed and broad insight. We are giving a comprehensive overview of the important relations.

B.1 Transformation Properties of Angular Momentum Under Rotation

Any rotation $\mathbf{R}_n(\omega)$ can be specified by giving three parameters, two to fit its rotation axis $\hat{\mathbf{n}}$ and one to fit its rotation angle ω about $\hat{\mathbf{n}}$. For an arbitrary rotation about $\hat{\mathbf{n}}$ by an angle ω , we obtain

$$\mathbf{R}_{n}(\omega) = \exp(-\mathrm{i}\omega \mathbf{J} \cdot \hat{\mathbf{n}}). \tag{B.1}$$

We note, that an arbitrary rotation cannot change the value of the angular momentum J since \mathbf{J}^2 commutes with the rotation operator

$$\left[\mathbf{R}_{n}(\omega), \mathbf{J}^{2}\right] = \left[\exp(-\mathrm{i}\omega\mathbf{J}\cdot\hat{\mathbf{n}}), \mathbf{J}^{2}\right] = \sum_{\nu} \frac{1}{\nu!} (-\mathrm{i}\omega)^{\nu} \left[(\mathbf{J}\cdot\hat{\mathbf{n}})^{\nu}, \mathbf{J}^{2} \right] = 0. \quad (B.2)$$

Thus, a rotation acting on the angular momentum eigenstates $|JM\rangle$ of \mathbf{J}^2 and J_z can only transform $|JM\rangle$ into a linear combination of other M values

$$|Jm\rangle = \mathbf{R}(\alpha, \beta, \gamma)|JM\rangle = \sum_{M'} \mathcal{D}_{M'M}^{(J)}(\alpha, \beta, \gamma)|JM'\rangle,$$
 (B.3)

where the expansion coefficients

$$\mathcal{D}_{M'M}^{(J)}(\alpha,\beta,\gamma) = \langle JM' | \mathbf{R}(\alpha,\beta,\gamma) | JM \rangle, \tag{B.4}$$

are the elements of a $(2J+1) \times (2J+1)$ unitary matrix for **R**, called the *rotation matrix*, and form the irreducible representation of the rotation group of dimension 2J+1 corresponding to an angular momentum J and a rotation around the Euler angles (α, β, γ) ; see Fig. B.1.

The Euler angles (α, β, γ) are a set of parameters to specify arbitrary rotations by three successive finite rotations; i.e. to make the XYZ space-fixed coordinate frame coincide with the xyz body-fixed frame:

Fig. B.1. The Euler angles α , β , and γ relating the XYZ space-fixed and the xyz body-fixed coordinate frames

- 1. A counterclockwise rotation α about Z, the vertical axis. This carries the Y axis into the line of nodes N.
- 2. A counterclockwise rotation β about the line of nodes N. This carries the Z axis into the z axis, i.e. the figure axis of the body.
- 3. A counterclockwise rotation γ about z, the figure axis. This carries the line of nodes N into the y axis.

Using (B.1), we may express such a rotation as

$$\mathbf{R}(\alpha, \beta, \gamma) = \exp(-i\gamma \mathbf{J} \cdot \hat{\mathbf{n}}_{\gamma}) \exp(-i\beta \mathbf{J} \cdot \hat{\mathbf{n}}_{\beta}) \exp(-i\alpha \mathbf{J} \cdot \hat{\mathbf{n}}_{\alpha})$$
$$= \exp(-i\gamma J_{z}) \exp(-i\beta J_{N}) \exp(-i\alpha J_{Z}), \tag{B.5}$$

where the form of **R** has been chosen to be an active rotation of the physical system. It can be shown, e.g. Zare (1988), that the three Euler angle rotations may all be carried out in the *same XYZ* space-fixed coordinate frame if the order of the rotations is reversed. That is, first a rotation γ about the Z axis, then a rotation β about the Y axis, and finally a rotation α about the same Z axis:

$$\mathbf{R}(\alpha, \beta, \gamma) = \exp(-i\alpha J_Z) \exp(-i\beta J_Y) \exp(-i\gamma J_Z). \tag{B.6}$$

Associated with this is the equivalent rotation of the coordinate frame $(\gamma, \beta, \alpha)^{-1} = (-\alpha, -\beta, -\gamma)$, so their usage results in a different sign convention for the angles of rotation.

Substituting (B.6) into (B.4) and using the fact that the basis vectors $|JM\rangle$ are eigenfunctions of J_Z the rotation matrices simplify as follows

$$\mathcal{D}_{M'M}^{(J)}(\alpha,\beta,\gamma) = \exp(-\mathrm{i}\alpha M') d_{M'M}^{(J)}(\beta) \exp(-\mathrm{i}\gamma M), \tag{B.7}$$

where

$$d_{M'M}^{(J)}(\beta) = \langle JM' | \exp(-i\beta J_Y) | JM \rangle, \tag{B.8}$$

are the reduced rotation matrices. They are real quantities and explicit expressions as well as extended tables may be found in the literature (Brink and Satchler 1962; Messiah 1979; Varshalovich et al. 1988; Zare 1988).

B.2 Symmetry Properties of Rotation Matrices

The reduced rotation matrices $d_{MM'}^{(J)}$ satisfy a number of useful symmetry relations:

$$\begin{split} d_{M\,M'}^{(J)}(\beta) &= (-1)^{M-M'} d_{M'\,M}^{(J)}(\beta) = d_{-M'\,-M}^{(J)}(\beta) = d_{M'\,M}^{(J)}(-\beta) \\ &= (-1)^{J-M} d_{M\,-M'}^{(J)}(\pi-\beta) = (-1)^{J+M'} d_{M\,-M'}^{(J)}(\pi+\beta). \end{split} \tag{B.9}$$

Note, that rotation by $-\beta$ is the inverse of rotation by β , that is $d_{M'M}^{(J)}(-\beta) =$ $\left[d_{M'M}^{(J)}(\beta)\right]^{-1}$. As the $d_{MM'}^{(J)}$ are real and are elements of a unitary transformation, we get $\left[d_{M'M}^{(J)}(\beta)\right]^{-1} = \left[d_{M'M}^{(J)}(\beta)\right]^{\dagger} = d_{MM'}^{(J)}(\beta)$. Using Zare (1988) we obtain special values:

$$d_{M'M}^{(J)}(0) = \delta_{M'M}$$
 and $d_{M'M}^{(J)}(\pi) = (-1)^{J+M'} \delta_{M'-M}$. (B.10)

Combining (B.9) and (B.10) yields the result

$$\begin{split} d_{M'M}^{(J)}(2\pi) &= (-1)^{J+M'} d_{-M'M}^{(J)}(\pi) \\ &= (-1)^{2J} \delta_{M'M} = (-1)^{2J} d_{M'M}^{(J)}(0). \end{split} \tag{B.11}$$

The symmetry properties for the rotation matrices $\mathcal{D}_{M\,M'}^{(J)}$ are obtained as:

$$\mathcal{D}_{M\,M'}^{(J)}(\alpha\beta\gamma)^* = (-1)^{M-M'} \mathcal{D}_{-M\,-M'}^{(J)}(\alpha\beta\gamma) = \mathcal{D}_{M'\,M}^{(J)}(-\gamma - \beta - \alpha), \quad (B.12)$$

where $(-\gamma - \beta - \alpha)$ is the rotation inverse to $(\alpha\beta\gamma)$. In the following we may use the contraction ($\omega = \alpha \beta \gamma$).

As the rotation matrices are unitary, they satisfy the sum rules:

$$\sum_{M'} \left[\mathcal{D}_{M'M}^{(J)}(\omega) \right]^{\dagger} \mathcal{D}_{M'N}^{(J)}(\omega) = \sum_{M'} d_{M'M}^{(J)}(-\beta) d_{M'N}^{(J)}(\beta)$$

$$= \sum_{M'} d_{MM'}^{(J)}(\beta) d_{M'N}^{(J)}(\beta) = \delta_{MN}, \qquad (B.13a)$$

and

$$\sum_{M} \left[\mathcal{D}_{M'M}^{(J)}(\omega) \right]^{\dagger} \mathcal{D}_{N'M}^{(J)}(\omega) = \sum_{M} d_{M'M}^{(J)}(-\beta) d_{N'M}^{(J)}(\beta)$$

$$= \sum_{M} d_{MM'}^{(J)}(\beta) d_{N'M}^{(J)}(\beta) = \delta_{M'N'}. \quad (B.13b)$$

B.3 The Clebsch–Gordan Series and its Inverse

The connection between the uncoupled $|J_1M_1\rangle|J_2M_2\rangle$ and coupled representations $|JM\rangle$ under a rotational transformation is given by the so-called *Clebsch–Gordan* series.

$$\mathcal{D}_{M'_{1}M_{1}}^{(J_{1})}(\omega)\mathcal{D}_{M'_{2}M_{2}}^{(J_{2})}(\omega) = \sum_{J} (J_{1}M_{1}, J_{2}M_{2}|JM) (J_{1}M'_{1}, J_{2}M'_{2}|JM') \mathcal{D}_{M'M}^{(J)}(\omega).$$
(B.14)

In principle, the right-hand side must be summed over M and M', too. Applying the selection rule (A.2), the sum can be omitted. The Clebsch–Gordan series can be re-written in terms of 3j-symbols

$$\mathcal{D}_{M'_{1}M_{1}}^{(J_{1})}(\omega)\mathcal{D}_{M'_{2}M_{2}}^{(J_{2})}(\omega) = \sum_{J} (2J+1) \begin{pmatrix} J_{1} & J_{1} & J \\ M_{1} & M_{2} & M \end{pmatrix} \begin{pmatrix} J_{1} & J_{2} & J \\ M'_{1} & M'_{2} & M' \end{pmatrix} \mathcal{D}_{M'M}^{(J)}(\omega)^{*}. \quad (B.15)$$

Note the complex conjugate rotation matrix on the right hand side which enters by using (A.9) and (B.12).

The inverse Clebsch-Gordan series yields

$$\mathcal{D}_{M'M}^{(J)}(\omega) = \sum_{M_1 M_1' M_2 M_2'} (J_1 M_1, J_2 M_2 | JM) (J_1 M_1', J_2 M_2' | JM')$$

$$\times \mathcal{D}_{M',M_1}^{(J_1)}(\omega) \mathcal{D}_{M',M_2}^{(J_2)}(\omega). \tag{B.16}$$

Note, that the summation of the right-hand side is not independent. Applying the selection rule (A.2), either two of the summation indices M_1 , M'_1 or M_2 , M'_2 can be omitted. Re-writing in terms of 3j-symbols and omitting the sum over M_2 and M'_2 we obtain

$$\mathcal{D}_{M'M}^{(J)}(\omega)^* = \sum_{M_1 M_1'} (2J+1) \begin{pmatrix} J_1 & J_2 & J \\ M_1 & M_2 & M \end{pmatrix} \begin{pmatrix} J_1 & J_2 & J \\ M_1' & M_2' & M' \end{pmatrix} \times \mathcal{D}_{M_1'M_1}^{(J_1)}(\omega) \mathcal{D}_{M_2'M_2}^{(J_2)}(\omega).$$
(B.17)

Analogously, we obtain the relations

$$\mathcal{D}_{M'M}^{(J)}(\omega)^* \begin{pmatrix} J_1 & J_2 & J \\ M_1 & M_2 & M \end{pmatrix}$$

$$= \sum_{M'_1 M'_2} \begin{pmatrix} J_1 & J_2 & J \\ M'_1 & M'_2 & M' \end{pmatrix} \mathcal{D}_{M'_1 M_1}^{(J_1)}(\omega) \mathcal{D}_{M'_2 M_2}^{(J_2)}(\omega), \quad (B.18a)$$

and

$$\mathcal{D}_{M\,M'}^{(J)}(\omega)^* \begin{pmatrix} J_1 & J_2 & J \\ M_1 & M_2 & M \end{pmatrix}$$

$$= \sum_{M'_1M'_2} \begin{pmatrix} J_1 & J_2 & J \\ M'_1 & M'_2 & M' \end{pmatrix} \mathcal{D}_{M_1\,M'_1}^{(J_1)}(\omega) \mathcal{D}_{M_2\,M'_2}^{(J_2)}(\omega). \quad (B.18b)$$

Eventually, the contraction of three rotation matrices results in a 3 j-symbol

$$\sum_{MM_{1}M_{2}} \mathcal{D}_{MM'}^{(J)}(\omega) \mathcal{D}_{M_{1}M'_{1}}^{(J_{1})}(\omega) \mathcal{D}_{M_{2}M'_{2}}^{(J_{2})}(\omega) \begin{pmatrix} J_{1} & J_{2} & J \\ M_{1} & M_{2} & M \end{pmatrix}$$

$$= \begin{pmatrix} J_{1} & J_{2} & J \\ M'_{1} & M'_{2} & M' \end{pmatrix}. \tag{B.19}$$

The closure relation for two consecutive rotations gives

$$\sum_{M''} \mathcal{D}_{M\,M''}^{(J)}(\omega_2) \mathcal{D}_{M''\,M'}^{(J)}(\omega_1) = \mathcal{D}_{M\,M'}^{(J)}(\omega), \tag{B.20}$$

where $\omega = (\alpha \beta \gamma)$ is the resultant of first $\omega_1 = (\alpha_1 \beta_1 \gamma_1)$ and second $\omega_2 = (\alpha_2 \beta_2 \gamma_2)$. Analogously, the closure relation for the reduced rotation matrices yields

$$\sum_{M''} d_{M M''}^{(J)}(\beta_2) d_{M'' M'}^{(J)}(\beta_1) = d_{M M'}^{(J)}(\beta_1 + \beta_2).$$
 (B.21)

B.4 Integrals Over Rotation Matrices

Integrating over the solid angle element $d\Omega = d\alpha \sin \beta d\beta d\gamma$ and using (B.12) and (B.14) yields the orthogonality relation results in a between two rotation matrices having the same argument

$$\int d\Omega \, \mathcal{D}_{M'_1 M_1}^{(J_1)}(\omega)^* \mathcal{D}_{M'_2 M_2}^{(J_2)}(\omega) = \frac{8\pi^2}{2J_1 + 1} \delta_{J_1 J_2} \delta_{M'_1 M'_2} \delta_{M_1 M_2} . \tag{B.22}$$

Applying the Clebsch–Gordan series and (B.22) allows for evaluating the integral over three rotation matrices of the same argument. With (B.14) we obtain

$$\int d\Omega \, \mathcal{D}_{M'_3 M_3}^{(J_3)}(\omega)^* \mathcal{D}_{M'_2 M_2}^{(J_2)}(\omega) \, \mathcal{D}_{M'_1 M_1}^{(J_1)}(\omega)$$

$$= \frac{8\pi^2}{2J_3 + 1} (J_1 M_1, J_2 M_2 | J_3 M_3) (J_1 M'_1, J_2 M'_2 | J_3 M'_3) , \quad (B.23a)$$

and using (B.15) yields

$$\int d\Omega \, \mathcal{D}_{M'_{3}M_{3}}^{(J_{3})}(\omega) \, \mathcal{D}_{M'_{2}M_{2}}^{(J_{2})}(\omega) \, \mathcal{D}_{M'_{1}M_{1}}^{(J_{1})}(\omega)$$

$$= 8\pi^{2} \begin{pmatrix} J_{1} & J_{2} & J_{3} \\ M_{1} & M_{2} & M_{3} \end{pmatrix} \begin{pmatrix} J_{1} & J_{2} & J_{3} \\ M'_{1} & M'_{2} & M'_{3} \end{pmatrix} . \quad (B.23b)$$

B.5 Relation with the Spherical Harmonics

Special cases: if the angular momentum L is integer and one magnetic quantum number is equal to zero the dependence on the angles γ or α becomes obsolete, and the rotation matrices can be expressed in terms of spherical harmonics $Y_{LM}(\beta, \alpha)$. For the spherical harmonics the notation $Y_{LM}(\theta, \phi)$ is more common. In the following, we therefore change the notation of the Euler angles accordingly; i.e. $\alpha \leftrightarrow \phi$, $\beta \leftrightarrow \theta$, and $\gamma \leftrightarrow \chi$. This yields the relation

$$\mathcal{D}_{M\,0}^{(L)}(\omega) = d_{M\,0}^{(L)}(\theta) \,\mathrm{e}^{-\mathrm{i}M\phi} = C_{LM}^*(\theta,\phi) = \sqrt{\frac{4\pi}{2L+1}} Y_{LM}^*(\theta,\phi), \tag{B.24}$$

where $C_{LM}(\theta, \phi)$ are the *renormalized* spherical harmonics introduced by Condon and Shortley (1935). With the first magnetic quantum number equal to zero we obtain

$$\mathcal{D}_{0M}^{(L)}(\omega) = d_{0M}^{(L)}(\theta) e^{-iM\chi} = (-1)^M d_{M0}^{(L)}(\theta) e^{-iM\chi} = (-1)^M C_{LM}^*(\theta, \chi)$$
$$= C_{L-M}(\theta, \chi) = \sqrt{\frac{4\pi}{2L+1}} Y_{L-M}(\theta, \chi), \tag{B.25}$$

where we have used the relation $Y_{LM}^* = (-1)^M Y_{L-M}$. Particularly, for $\chi = \phi = 0$, the reduced rotation matrices may be also expressed in terms of associated Legendre polynomials $P_L^M(\cos \theta)$ as

$$d_{M0}^{(L)}(\theta) = C_{LM}^*(\theta, 0) = \sqrt{\frac{(L-M)!}{(L+M)!}} P_L^M(\cos \theta), \tag{B.26}$$

if $M \ge 0$, and

$$d_{0M}^{(L)}(\theta) = (-1)^M C_{LM}^*(\theta, 0) = (-1)^M \sqrt{\frac{(L-M)!}{(L+M)!}} P_L^M(\cos \theta).$$
 (B.27)

Having both magnetic quantum numbers equal to zero we simply get the Legendre polynomials

$$\mathcal{D}_{00}^{(L)}(\omega) = d_{00}^{(L)}(\theta) = P_L(\cos \theta). \tag{B.28}$$

Some of the relations derived above are often applied using spherical harmonics. Using (B.24), the orthogonality relation (B.22) may be expressed as

$$\int \sin\theta \,d\theta \,d\phi \,C_{kq}^*(\theta,\phi)C_{KQ}(\theta,\phi) = \frac{4\pi}{2K+1}\delta_{kK}\delta_{qQ} . \tag{B.29}$$

From the sum rules (B.13a) and (B.13b) we get

$$\sum_{q} |C_{kq}(\theta, \phi)|^2 = 1, \tag{B.30}$$

and for q = 0 we obtain

$$\sum_{k} (2k+1)C_{k0}(\theta,\phi) = 2\delta(\cos\theta - 1).$$
 (B.31)

From the closure relation (B.20) we obtain the addition theorem for the renormalized spherical harmonics

$$\sum_{q} C_{kq}(\theta, \phi) C_{kq}^* \left(\theta', \phi' \right) = P_k(\cos \omega), \tag{B.32}$$

where ω is the angle between the two directions (θ, ϕ) and (θ', ϕ') .

From the Clebsch–Gordan series and its inverse, see (B.15) and (B.17), we obtain similar contractions between two renormalized spherical harmonics of the same argument

$$C_{a\alpha}(\theta,\phi)C_{b\beta}(\theta,\phi) = \sum_{c} C_{c\gamma}(\theta,\phi)(2c+1)(-1)^{\gamma} \begin{pmatrix} a & b & c \\ \alpha & \beta & -\gamma \end{pmatrix} \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix},$$
(B.33)

where the sum over γ on the right-hand side is fixed to one argument due to the selection rule (A.10). Summing over the magnetic components on the left-hand side yields

$$\sum_{\alpha\beta} C_{a\alpha}(\theta, \phi) C_{b\beta}(\theta, \phi) \begin{pmatrix} a & b & c \\ \alpha & \beta & -\gamma \end{pmatrix} = C_{c\gamma}(\theta, \phi) (-1)^{\gamma} \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix}.$$
 (B.34)

Combining (B.22) and (B.33) yields the integral over three renormalized spherical harmonics

$$\int \sin\theta d\theta d\phi C_{a\alpha}(\theta,\phi)C_{b\beta}(\theta,\phi)C_{c\gamma}(\theta,\phi) = 4\pi \begin{pmatrix} a & b & c \\ \alpha & \beta & -\gamma \end{pmatrix} \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix} .$$
 (B.35)

For all three magnetic quantum numbers equal to zero, we obtain a similar integral in terms of Legendre polynomials

$$\int \sin\theta \,d\theta \,P_a(\cos\theta)P_b(\cos\theta)P_c(\cos\theta) = 2\left(\begin{matrix} a & b & c \\ 0 & 0 & 0 \end{matrix}\right)^2. \tag{B.36}$$

B.6 Left-Right Asymmetry of Rotation Matrices

For evaluating asymmetry parameters it is useful to investigate the symmetries of the reduced rotation matrices under the operation $\theta \longrightarrow -\theta$.

Considering the case of electron impact excitation/ionization we need to consider only a few of the reduced rotation matrices $d_{Q'Q}^{(K)}(\theta)$ since the quantum numbers Q and Q' are restricted by the selection rule

$$|Q| < 1, \tag{B.37}$$

and only particular combinations of the reduced rotation matrices can occur (see Sect. 2.5.3).

Due to the definition of the asymmetry parameters we need to consider the sum and the difference of the occurring combinations of reduced rotation matrices with the argument being θ and $-\theta$, respectively. I.e., we need to consider expressions of the type $d_{Q'Q}^{(K)}(\theta) \pm d_{Q'Q}^{(K)}(-\theta)$.

In order to obtain the relevant results the symmetry relations (B.9) of the reduced

rotation matrices must be applied. For the simple most case we obtain

$$d_{00}^{(K)}(\theta) - d_{00}^{(K)}(-\theta) = 0, (B.38)$$

and by using (B.28)

$$d_{00}^{(K)}(\theta) + d_{00}^{(K)}(-\theta) = 2d_{00}^{(K)}(\theta) = 2P_K(\cos\theta).$$
 (B.39)

Analogously, applying (B.26) and (B.27), we obtain for the difference

$$d_{10}^{(K)}(\theta) - d_{10}^{(K)}(-\theta) = d_{10}^{(K)}(\theta) - d_{01}^{(K)}(\theta) = 2C_{K1}^*(\theta, 0)$$
$$= \frac{2}{\sqrt{K(K+1)}} P_K^1(\cos\theta). \tag{B.40}$$

The sum yields

$$\begin{aligned} d_{10}^{(K)}(\theta) + d_{10}^{(K)}(-\theta) &= d_{10}^{(K)}(\theta) + d_{01}^{(K)}(\theta) \\ &= C_{K1}^*(\theta, 0) - C_{K1}^*(\theta, 0) = 0. \end{aligned} \tag{B.41}$$

For the other occurring differences we simply obtain

$$\begin{split} \left[d_{11}^{(K)}(\theta) \pm d_{-11}^{(K)}(\theta) \right] - \left[d_{11}^{(K)}(-\theta) \pm d_{-11}^{(K)}(-\theta) \right] \\ &= \left[d_{11}^{(K)}(\theta) \pm d_{-11}^{(K)}(\theta) \right] - \left[d_{11}^{(K)}(\theta) \pm d_{-11}^{(K)}(\theta) \right] = 0, \quad (B.42) \end{split}$$

and for the summations we eventually get

$$\begin{aligned} \left[d_{11}^{(K)}(\theta) \pm d_{-11}^{(K)}(\theta) \right] + \left[d_{11}^{(K)}(-\theta) \pm d_{-11}^{(K)}(-\theta) \right] \\ &= \left[d_{11}^{(K)}(\theta) \pm d_{-11}^{(K)}(\theta) \right] + \left[d_{11}^{(K)}(\theta) \pm d_{-11}^{(K)}(\theta) \right] \\ &= 2 \left[d_{11}^{(K)}(\theta) \pm d_{-11}^{(K)}(\theta) \right]. \end{aligned} \tag{B.43}$$

Note, that the derived relations are valid for any integer rank $K \geq 0$ of the reduced rotation matrices.

Eventually, we give explicit expressions of (B.43) for some cases of interest. For K = 1 we obtain

$$d_{11}^{(1)}(\theta) + d_{-11}^{(1)}(\theta) = 1, (B.44)$$

and

$$d_{11}^{(1)}(\theta) - d_{-11}^{(1)}(\theta) = \cos \theta, \tag{B.45}$$

and for K = 2 we get

$$d_{11}^{(2)}(\theta) + d_{-11}^{(2)}(\theta) = \cos \theta, \tag{B.46}$$

and

$$d_{1,1}^{(2)}(\theta) - d_{-1,1}^{(2)}(\theta) = \cos(2\theta). \tag{B.47}$$

The identity of (B.45) and (B.46) is by chance. For K = 3 we obtain

$$d_{11}^{(3)}(\theta) + d_{-11}^{(3)}(\theta) = \frac{1}{4} (5\cos^2 \theta - 1),$$
 (B.48)

which is unequal to the result of (B.47).

Eventually, we give expressions for the angular functions for the *magic angle* $\theta_M = 54.7^{\circ}$,

$$\sin \theta_M = \sqrt{\frac{2}{3}} \quad \text{and} \quad \cos \theta_M = \frac{1}{\sqrt{3}}.$$
 (B.49)

C Irreducible Tensorial Sets

Dealing with tensorial sets is essential in interpreting multi-particle scattering processes. Therefore, its application is an important means for the understanding of Auger emission. Important relations are given below. A good introduction into the field may be found in Brink and Satchler (1962) or Zare (1988).

C.1 Definition and Basic Properties

Definition: Tensor operator \equiv The manifold of operators which, under rotation, linearly transform into each other.

Irreducible tensor operator: The (2k+1) operators T_{KQ} , $Q=-K,\ldots,+K$, are called the *standard components of an irreducible tensor operator* \mathbf{T}_K *of rank K* if they transform under rotation as

$$\mathcal{D}T_{KQ}\mathcal{D}^{-1} = \sum_{q} T_{Kq} \mathcal{D}_{qQ}^{(K)}.$$
 (C.1)

Scalar operator ≡ Irreducible tensor operator of rank zero; i.e.,

$$\mathcal{D}T_{00}\mathcal{D}^{-1} = T_{00}\mathcal{D}_{00}^{(0)} = T_{00}.$$
 (C.2)

Vector operator \equiv Irreducible tensor operator of first rank; let V_x , V_y , V_z be its components in the Cartesian x, y, z-coordinate frame, then its standard components are

$$V_{+} = \frac{1}{\sqrt{2}} \left(V_x + i V_y \right), \tag{C.3a}$$

$$V_0 = V_z, (C.3b)$$

$$V_{-} = \frac{1}{\sqrt{2}} \left(V_x - i V_y \right). \tag{C.3c}$$

Commutation relations with the angular momentum:

$$[J_{\pm}, T_{kq}] = \sqrt{k(k+1) - q(q+1)} T_{kq\pm 1},$$
 (C.4a)

$$[J_z, T_{kq}] = q T_{kq}. \tag{C.4b}$$

Hermitian conjugate:

$$\mathbf{S}_K = \mathbf{T}_K^{\dagger} \quad \text{if} \quad S_{KQ} = (-1)^Q T_{KQ}^{\dagger}. \tag{C.5}$$

One of the basic properties of irreducible tensor operators is the *Wigner–Eckart* theorem (see also Sect. 2.2):

$$\langle JM|T_{KQ}|J'M'\rangle = \frac{(-1)^{2K}}{\sqrt{2J+1}} \langle J||T_K||J'\rangle (J'M', KQ|JM)$$
$$= (-1)^{J-M} \langle J||T_K||J'\rangle \begin{pmatrix} J & K & J' \\ -M & Q & M' \end{pmatrix}, \tag{C.6}$$

where $\langle J || T_K || J' \rangle$ is the so-called reduced matrix element. Its complex conjugate is given (for *K* integer) as:

$$\langle J \| T_K \| J' \rangle^* = (-1)^{J'-J} \langle J \| T_K^{\dagger} \| J' \rangle. \tag{C.7}$$

Note, that the notation of the Wigner–Eckart theorem is not unique in the literature. Our form coincides with the convention used by Blum (1996); Edmonds (1974); Fano and Racah (1959); Messiah (1979); Racah (1942); Varshalovich *et al.* (1988) and Zare (1988). Some authors, including Brink and Satchler (1962); Rose (1957) and Wigner (1959), define the reduced matrix element to be a factor of $\sqrt{2J+1}$ smaller.

Special values of tensor operators are the *identity operator*

$$\langle J \| \mathbf{1} \| J' \rangle = \delta_{JJ'} \sqrt{2J + 1},\tag{C.8}$$

and the total angular momentum

$$\langle J \| \mathbf{J} \| J' \rangle = \delta_{JJ'} \sqrt{J(J+1)(2J+1)}. \tag{C.9}$$

In the following, some of the multipole expansions useful in physics are given:

$$\exp(i\mathbf{k}\mathbf{r}) = \sum_{\ell} i^{\ell} (2\ell + 1) j_{\ell}(kr) \mathbf{C}_{\ell} (\theta_{k}\phi_{k}) \mathbf{C}_{\ell} (\theta_{r}\phi_{r}), \qquad (C.10)$$

$$\delta(\mathbf{a} - \mathbf{b}) = \frac{1}{4\pi a^2} \delta(a - b) \sum_{\ell} (2\ell + 1) \mathbf{C}_{\ell} (\theta_a \phi_a) \mathbf{C}_{\ell} (\theta_b \phi_b), \quad (C.11)$$

$$\exp(-\gamma [\mathbf{a} - \mathbf{b}]^2) = \sum_{\ell} i^{-\ell} (2\ell + 1) e^{-\gamma (a^2 + b^2)} j_{\ell} (2i\gamma ab) \times \mathbf{C}_{\ell} (\theta_a \phi_a) \mathbf{C}_{\ell} (\theta_b \phi_b). \tag{C.12}$$

where $j_{\ell}(kr)$ denote the spherical Bessel functions; and if $\rho = \mathbf{b} - \mathbf{a}$, with $b \ge a$,

$$\frac{1}{\rho} = \sum_{\ell} \frac{a^{\ell}}{b^{\ell+1}} \mathbf{C}_{\ell} \left(\theta_{a} \phi_{a} \right) \mathbf{C}_{\ell} \left(\theta_{b} \phi_{b} \right), \tag{C.13}$$

$$\frac{e^{ik\rho}}{\rho} = ikh_0^{(1)}(k\rho) = ik \sum_{\ell} (2\ell + 1)j_{\ell}(ka)h_{\ell}^{(1)}(kb)
\times \mathbf{C}_{\ell} \left(\theta_a \phi_a\right) \mathbf{C}_{\ell} \left(\theta_b \phi_b\right),$$
(C.14)

$$\frac{\mathrm{e}^{-\alpha\rho}}{\alpha\rho} = -\sum_{\ell} (2\ell+1) j_{\ell}(\mathrm{i}\alpha a) h_{\ell}^{(1)}(\mathrm{i}\alpha b) \mathbf{C}_{\ell} \left(\theta_{a}\phi_{a}\right) \mathbf{C}_{\ell} \left(\theta_{b}\phi_{b}\right), \quad (C.15)$$

where $h_{\ell}^{(1)}(kr)$ denote the spherical Hankel functions of the first type; and if $\mathbf{r} = \mathbf{a} + \mathbf{b}$, we get the expansion

$$r^{\ell}C_{\ell m}(\theta_{r},\phi_{r}) = \sum_{\lambda\mu} \sqrt{\frac{2\ell!}{2\lambda!2(\ell-\lambda)!}} \left(\ell-\lambda m-\mu,\lambda\mu|\ell m\right) \times a^{\ell-\lambda}b^{\lambda}C_{\ell-\lambda m-\mu}(\theta_{a}\phi_{a})C_{\lambda\mu}(\theta_{b}\phi_{b}). \quad (C.16)$$

C.2 Tensorial Products of Irreducible Tensor Operators

Definition: Let \mathbf{T}_{k_1} , \mathbf{U}_{k_2} be two irreducible tensor operators of rank k_1 and k_2 , respectively. Then $\mathbf{T}_{k_1} \otimes \mathbf{U}_{k_2} \equiv$ the manifold of the $(2k_1+1)(2k_2+1)$, not necessarily linear independent, operators $T_{k_1q_1}U_{K_2q_2}$. It is a (reducible) tensor operator.

 $\mathbf{V}_K \equiv [\mathbf{T}_{k_1} \otimes \mathbf{U}_{k_2}]_K$ is the tensorial product of rank K, which is the irreducible tensor operator of rank K with its components

$$V_{KQ}(k_1, k_2) = \sum_{q_1 q_2} (k_1 q_1, k_2 q_2 | KQ) T_{k_1 q_1} U_{k_2 q_2},$$
 (C.17)

where, $|k_1 - k_2| \le K \le k_1 + k_2$ is a necessary condition. Re-writing (C.17) in terms of 3j-symbols yields

$$V_{KQ}(k_1, k_2) = \sum_{q_1 q_2} (-1)^{k_1 - k_2 + Q} \sqrt{2K + 1} \begin{pmatrix} k_1 & k_2 & K \\ q_1 & q_2 - Q \end{pmatrix} T_{k_1 q_1} U_{k_2 q_2}.$$
 (C.18)

In case that $k_1 = k_2 = k$, the scalar product is defined as

$$S \equiv (\mathbf{T}_k \cdot \mathbf{U}_k) = \sum_{q} (-1)^q T_{kq} U_{k-q}. \tag{C.19}$$

Note, that S is not irreducible. It is related to the irreducible tensor of rank zero via

$$S = (-1)^k \sqrt{2k+1} V_{00}(k,k). \tag{C.20}$$

Reduced matrix elements: Suppose a composite quantum system to be generated from its joint sub-systems 1 and 2. Let J_1 and J_2 be the total angular momenta of the related sub-systems, and $J = J_1 + J_2$.

Let $|\tau_1 J_1 M_1\rangle$ and $|\tau_2 J_2 M_2\rangle$ be the basis sets of system 1 and 2, respectively.

 \mathbf{T}_{k_1} and \mathbf{U}_{k_2} are irreducible tensor operators which solely interact with the variables in the Hilbert sub-space of system 1 and 2, respectively.

Let V_K be the tensorial product of rank K according to its definition (C.17). Then, in the standard basis $\{\tau_1\tau_2\mathbf{J}_1^2\mathbf{J}_2^2\mathbf{J}_2^2\mathbf{J}_2\}$ the matrix elements of $V_K(k_1,k_2)$ are given as

$$\langle \tau_{1}\tau_{2}J_{1}J_{2}J \| \mathbf{V}_{K} \| \tau_{1}'\tau_{2}'J_{1}'J_{2}'J' \rangle = \sqrt{(2J+1)(2K+1)(2J'+1)}$$

$$\times \begin{cases} J_{1}' J_{2}' J' \\ k_{1} k_{2} K \\ J_{1} J_{2} J \end{cases} \langle \tau_{1}J_{1} \| \mathbf{T}_{k_{1}} \| \tau_{1}'J_{1}' \rangle \langle \tau_{2}J_{2} \| \mathbf{U}_{k_{2}} \| \tau_{2}'J_{2}' \rangle.$$
 (C.21)

Special cases occur if the tensor operator acts in one of the sub-systems, only. Let $\mathbf{U} = \mathbf{1}$ be the identity operator acting on sub-system 2. Then, we have $K = k_1 = k$, and (C.21) can be reduced to

$$\langle \tau_{1}\tau_{2}J_{1}J_{2}J \| \mathbf{T}_{k} \| \tau_{1}'\tau_{2}'\mathbf{J}_{1}'\mathbf{J}_{2}'\mathbf{J}' \rangle = \delta_{\tau_{2}\tau_{2}'}\delta_{J_{2}J_{2}'} \langle \tau_{1}J_{1} \| \mathbf{T}_{k} \| \tau_{1}'\mathbf{J}_{1}' \rangle$$

$$\times (-1)^{J'+J_{1}+J_{2}+k} \sqrt{(2J+1)(2J'+1)} \left\{ \begin{array}{cc} J_{1} & k & J_{1}' \\ J' & J_{2} & J \end{array} \right\}. \quad (C.22)$$

In the opposite case we have $\mathbf{T} = \mathbf{1}$ the identity operator acting in sub-system 1. Then, $K = k_2 = k$, and (C.21) is reduced to

$$\langle \tau_1 \tau_2 J_1 J_2 J \| \mathbf{U}_k \| \tau_1' \tau_2' J_1' J_2' J' \rangle = \delta_{\tau_1 \tau_1'} \delta_{J_1 J_1'} \langle \tau_2 J_2 \| \mathbf{U}_k \| \tau_2' J_2' \rangle$$

$$\times (-1)^{J+J_1+J_2'+k} \sqrt{(2J+1)(2J'+1)} \left\{ \begin{array}{cc} J_2 & k & J_2' \\ J' & J_1 & J \end{array} \right\}.$$
 (C.23)

In case of a compound scalar operator $V_0(k, k)$ we have K = 0 and $k_1 = k_2 = k$. Applying (C.21) and (A.40) yields

$$\begin{aligned}
& \left\langle \tau_{1}\tau_{2}J_{1}J_{2}J \| \mathbf{V}_{0}(k,k) \| \tau_{1}'\tau_{2}'J_{1}'J_{2}'J \right\rangle \\
&= \left\langle \tau_{1}\tau_{2}J_{1}J_{2}J \| \left[\mathbf{T}_{k} \otimes \mathbf{U}_{k} \right]_{0}^{(0)} \| \tau_{1}'\tau_{2}'J_{1}'J_{2}'J \right\rangle \\
&= \delta_{JJ'}(-1)^{k+J+J_{2}+J_{1}'} \sqrt{\frac{2J+1}{2k+1}} \left\{ \begin{array}{c} J_{1} k J_{1}' \\ J_{2}' J J_{2} \end{array} \right\} \\
&\times \left\langle \tau_{1}J_{1} \| \mathbf{T}_{k} \| \tau_{1}'J_{1}' \right\rangle \left\langle \tau_{2}J_{2} \| \mathbf{U}_{k} \| \tau_{2}'J_{2}' \right\rangle.
\end{aligned} (C.24)$$

Often, the scalar product $\mathbf{T}_k \cdot \mathbf{U}_k$ is used in place of $[\mathbf{T}_k \otimes \mathbf{U}_k]_0^{(0)}$ as the scalar operator. Applying the Wigner–Eckart theorem (C.6) and using (C.19) and (C.20), we can re-write (C.24) as

$$\langle \tau_{1}\tau_{2}J_{1}J_{2}JM|(\mathbf{T}_{k}\cdot\mathbf{U}_{k})|\tau_{1}'\tau_{2}'J_{1}'J_{2}'J'M'\rangle = \delta_{JJ'}\delta_{MM'}(-1)^{k}$$

$$\times \sqrt{\frac{2k+1}{2J+1}} \langle \tau_{1}\tau_{2}J_{1}J_{2}J\|\mathbf{V}_{0}(k,k)\|\tau_{1}'\tau_{2}'J_{1}'J_{2}'J\rangle$$

$$= \delta_{JJ'}\delta_{MM'}(-1)^{J+J_{2}+J_{1}'} \begin{cases} J_{1} & k & J_{1}' \\ J_{2}' & J & J_{2} \end{cases}$$

$$\times \langle \tau_{1}J_{1}\|\mathbf{T}_{k}\|\tau_{1}'J_{1}'\rangle\langle \tau_{2}J_{2}\|\mathbf{U}_{k}\|\tau_{2}'J_{2}'\rangle.$$
(C.25)

Eventually, a more general case is the situation when the system is in a state $|\tau JM\rangle$ with sharp angular momentum J that is not decomposable into sub-system states. Then, the matrix elements of the compound tensor $V_{KQ}(k_1,k_2) = [\mathbf{T}_{k_1} \otimes \mathbf{T}_{k_2}]_Q^{(K)}$, where $V_{KQ}(k_1,k_2)$ can act only on the set of variables of the system, are obtained as

$$\langle \tau J \| \mathbf{V}_K \| \tau' J' \rangle = \langle \tau J \| [\mathbf{T}_{k_1} \otimes \mathbf{T}_{k_2}]_K \| \tau' J' \rangle$$

$$= (-1)^{K+J+J'} \sqrt{2K+1} \sum_{\tau'' J''} \begin{cases} k_1 & k_2 & K \\ J & J' & J'' \end{cases}$$

$$\times \langle \tau J \| \mathbf{T}_{k_1} \| \tau'' J'' \rangle \langle \tau'' J'' \| \mathbf{T}_{k_2} \| \tau' J' \rangle. \qquad (C.26)$$

A particular application of (C.22) or (C.23) is the reduction of composite systems described in the LSJ coupling scheme. Suppose $\mathbf{L} + \mathbf{S} = \mathbf{J}$ and $\mathbf{L}' + \mathbf{S}' = \mathbf{J}'$. If the tensor operator T_{KQ} acts only on the system with angular momenta L, L' then

$$\langle (LS)J \| \mathbf{T}_{K} \| (L'S')J' \rangle = \delta_{SS'}(-1)^{L+S+J'+K} \sqrt{(2J+1)(2J'+1)} \times \begin{cases} L & L' & K \\ J' & J & S \end{cases} \langle L \| \mathbf{T}_{K} \| L' \rangle.$$
 (C.27)

Basic reduced matrix elements for the identity and the total angular momentum operator have been given in (C.8) and (C.9), respectively. Reduced matrix elements for the spherical harmonics yield

$$\langle \ell \| \mathbf{Y}_k \| \ell' \rangle = (-1)^{\ell} \sqrt{\frac{(2\ell+1)(2k+1)(2\ell'+1)}{4\pi}} \begin{pmatrix} \ell & k & \ell' \\ 0 & 0 & 0 \end{pmatrix}. \tag{C.28}$$

Using the renormalized spherical harmonics instead gives a more compact relation

$$\langle \ell \| \mathbf{C}_k \| \ell' \rangle = (-1)^\ell \sqrt{(2\ell+1)(2\ell'1)} \begin{pmatrix} \ell & k & \ell' \\ 0 & 0 & 0 \end{pmatrix}.$$
 (C.29)

Considering the composite angular momentum – electron spin system the renormalized spherical harmonics act in the angular momentum Hilbert sub-space, only. Applying (C.22) and (C.29) gives

$$\langle (\ell 1/2) j \| \mathbf{C}_{k} \| (\ell' 1/2) j' \rangle = \sqrt{(2\ell+1)(2\ell'+1)(2j+1)(2j'+1)} \times (-1)^{j'+1/2+k} \begin{pmatrix} \ell & k & \ell' \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} \ell & k & \ell' \\ j' & \frac{1}{2} & j \end{cases}, \quad (C.30)$$

and combining with (A.29) eventually yields

$$\langle (\ell 1/2) j \| \mathbf{C}_k \| (\ell' 1/2) j' \rangle = (-1)^{j' - 1/2 - k} \sqrt{(2j+1)(2j'+1)} \begin{pmatrix} j & j' & k \\ \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix},$$
(C.31)

provided that $\ell + \ell' + k$ is even, and zero otherwise.

D Expansion of Dipole Matrix Elements

Following Amusia and Cherepkov (1975, pp. 16) the *T* matrix elements may be written as

$$\langle JM\mathbf{p}^{(-)}m_s|T_i|J_0M_0\omega\mathbf{n}\lambda\rangle = \sum_{q=1}^N \langle JM\mathbf{p}^{(-)}m_s|\exp^{i\mathbf{k}\cdot\mathbf{r}}(\mathbf{e}_\lambda\cdot\mathbf{p}_q^*)|J_0M_0\rangle, \quad (D.1)$$

where N denotes the number of electrons in the atomic shell, \mathbf{e}_{λ} ($\lambda=\pm 1$) is the photon polarization vector which is chosen that $\mathbf{e}_{\lambda} \cdot \mathbf{n}=0$, and \mathbf{p}_q is the momentum of the q^{th} electron of the atom. For completeness we note, that (D.1) holds for photoionization. In the case of photoemission the operator must be replaced by its complex conjugate, i.e. $\mathbf{e}_{\lambda}^* \cdot \mathbf{p}_q$.

Applying the long-wavelength limit of the dipole approximation, i.e. $kr_q \ll 1$, the exponential function can be replaced by unity; $\exp(i\mathbf{k}\cdot\mathbf{r})\approx 1$.

Thus, for an arbitrarily polarized photon beam, the T matrix elements may be written as

$$\langle JM\mathbf{p}^{(-)}m_s|T_i|J_0M_0\omega\mathbf{n}\lambda\rangle = \sum_{q=1}^N \langle JM\mathbf{p}^{(-)}m_s|(\mathbf{e}_{\lambda}\cdot\mathbf{p}_q^*)|J_0M_0\rangle$$
$$= \sum_{q=1}^N i\,\omega\langle JM\mathbf{p}^{(-)}m_s|(\mathbf{e}_{\lambda}\cdot\mathbf{r}_q^*)|J_0M_0\rangle\,,\quad (D.2)$$

where the first term denotes the "velocity form" and the latter the "length form" of the dipole transition matrix element. The dipole approximation is valid in a rather broad region of energy (Amusia 1990)

$$Z^2 < \omega \ll Z\alpha^{-1} \,, \tag{D.3}$$

where $\alpha^{-1} = 137$ denotes the fine structure constant. Throughout this book the length form of the dipole matrix elements is used.

In our chosen coordinate frame the polarization vector \mathbf{e}_{λ} can be eliminated by noting that in the helicity system the coordinate system is "spanned" by the three unit vectors \mathbf{e}_{+1} , \mathbf{e}_{-1} , \mathbf{n} , and that the dipole operator \mathbf{r} can be therefore expanded in terms of this basis¹

$$\mathbf{r} = r_{+1}^* \mathbf{e}_{+1} + r_{-1}^* \mathbf{e}_{-1} + r_0^* \mathbf{n} , \qquad (D.4)$$

Here, and throughout the following the index q and the summation over q, referring to the q^{th} electron, are suppressed if not causing ambiguities.

where $r_{\pm 1}$ and r_0 are the components of \mathbf{r} along the directions of $\mathbf{e}_{\pm 1}$ and \mathbf{n} , respectively. I.e., $r_{\pm 1}$ and r_0 are the spherical components of the vector \mathbf{r} . In this system the scalar product of \mathbf{r} and \mathbf{e}_{λ} is given by

$$\mathbf{e}_{\lambda} \cdot \mathbf{r}^* = r_{\lambda} . \tag{D.5}$$

The final state electron wavefunction can be expanded into partial waves. Applying the results of Lohmann (1990) we get

$$|\mathbf{p}^{(-)}m_{s}\rangle = \psi_{\mathbf{p}m_{s}}^{(-)}(\mathbf{r}) = \frac{1}{|\mathbf{p}|} \sum_{\substack{\ell m j m_{j} \\ m' \mu}} i^{\ell} e^{-i\sigma_{\ell}^{j}} Y_{\ell m}^{*}(\hat{\mathbf{p}}) R_{\varepsilon\ell}^{j}(r) Y_{\ell m'}(\hat{\mathbf{r}}) \chi_{\mu}$$

$$\times (\ell m, 1/2m_{s}|jm_{j}) (\ell m', 1/2\mu|jm_{j}), \qquad (D.6)$$

which yields for the expansion coefficients

$$a_{\ell m}^{j} = \langle j\ell m | \mathbf{p}^{(-)} \rangle = \frac{1}{|\mathbf{p}|} i^{\ell} e^{-i\sigma_{\ell}^{j}} Y_{\ell m}^{*}(\hat{\mathbf{p}}) . \tag{D.7}$$

Inserting the partial wave expansions into the transition matrix element we get

$$\langle JM\mathbf{p}^{(-)}m_{s}|r_{\lambda}|J_{0}M_{0}\rangle = \sum_{\ell m} a_{\ell m}^{j*} \langle JM\ell m 1/2m_{s}|r_{\lambda}|J_{0}M_{0}\rangle$$

$$= \sum_{\substack{\ell m j m_{j} \\ J_{1}M_{1}}} a_{\ell m}^{j*} \langle (Jj)J_{1}M_{1}|r_{\lambda}|J_{0}M_{0}\rangle$$

$$\times (\ell m, 1/2m_{s}|jm_{j}) (JM, jm_{j}|J_{1}M_{1}). \quad (D.8)$$

Using the fact that $\hat{\mathbf{r}}_{\lambda}$ is a tensor operator of rank one and applying the Wigner–Eckart theorem (C.6) we get

$$\langle J_1 M_1 | r_{\lambda} | J_0 M_0 \rangle = (-1)^{J_1 - M_1} \begin{pmatrix} J_1 & 1 & J_0 \\ -M_1 & \lambda & M_0 \end{pmatrix} \langle J_1 | | r | | J_0 \rangle.$$
 (D.9)

With this, we obtain for the dipole matrix element

$$\langle JM\mathbf{p}^{(-)}m_{s}|T_{i}|J_{0}M_{0}\omega\mathbf{n}\lambda\rangle = \langle JM\mathbf{p}^{(-)}m_{s}|d_{\lambda}|J_{0}M_{0}\rangle$$

$$= \sum_{\substack{\ell m j m_{j} \\ J_{1}M_{1}}} a_{\ell m}^{j*}\langle (Jj)J_{1}\|d\|J_{0}\rangle$$

$$\times (-1)^{-\ell+1/2-m_{j}-J+j-J_{1}}$$

$$\times \sqrt{(2j+1)(2J_{1}+1)} \begin{pmatrix} \ell & 1/2 & j \\ m & m_{s} & -m_{j} \end{pmatrix}$$

$$\times \begin{pmatrix} J & j & J_{1} \\ M & m_{j} & -M_{1} \end{pmatrix} \begin{pmatrix} J_{1} & 1 & J_{0} \\ -M_{1} & \lambda & M_{0} \end{pmatrix}, \quad (D.10)$$

where we introduced the abbreviation $d_{\lambda} = i\omega r_{\lambda}$. Inserting the expansion coefficients we finally end up with (2.41).

E Anisotropy Parameters for Electron Impact Ionization

E.1 Expansion of Matrix Elements

The transition matrix elements of (2.92) can be evaluated applying a triple partial wave expansion (see Appendix D)

$$\langle JM\mathbf{p}_{1}^{(-)}m_{s_{1}}\mathbf{p}_{2}^{(-)}m_{s_{2}}|V|J_{0}M_{0}\mathbf{p}_{0}^{(+)}m_{s_{0}}\rangle = \sum_{\substack{\ell_{0}\ell_{1}m_{1}\\\ell_{2}m_{2}}} a_{\ell_{1}m_{1}}^{j_{1}*}b_{\ell_{2}m_{2}}^{j_{2}*}c_{\ell_{0}}^{j_{0}}$$

$$\times \langle JM\ell_{1}m_{1}1/2m_{s_{1}}\ell_{2}m_{2}1/2m_{s_{2}}|V|J_{0}M_{0}\ell_{0}01/2m_{s_{0}}\rangle$$

$$= \sum_{\substack{\ell_{0}\ell_{1}m_{1}\ell_{2}m_{2}j_{0}m_{j_{0}}\\j_{1}m_{j_{1}}j_{2}m_{j_{2}}\\J_{1}M_{1}J_{2}M_{2}J_{f}M_{f}}} a_{\ell_{1}m_{1}}^{j_{1}*}b_{\ell_{2}m_{2}}^{j_{2}*}c_{\ell_{0}}^{j_{0}}$$

$$\times \langle ([Jj_{1}]J_{1}j_{2})J_{f}M_{f}|V|(J_{0}j_{0})J_{2}M_{2}\rangle$$

$$\times (\ell_{1}m_{1}, 1/2m_{s_{1}}|j_{1}m_{j_{1}})(\ell_{2}m_{2}, 1/2m_{s_{2}}|j_{2}m_{j_{2}})$$

$$\times (\ell_{0}0, 1/2m_{s_{0}}|j_{0}m_{j_{0}})(JM, j_{1}m_{j_{1}}|J_{1}M_{1})$$

$$\times (J_{1}M_{1}, j_{2}m_{j_{1}}|J_{f}M_{f})(J_{0}M_{0}, j_{0}m_{j_{0}}|J_{2}M_{2}). \tag{E.1}$$

Using the fact that V is a zero-order tensor operator and applying the Wigner–Eckart theorem (C.6) we get

$$\langle J_f M_f | V | J_2 M_2 \rangle = (-1)^{J_f - M_f} \begin{pmatrix} J_f & 0 & J_2 \\ -M_f & 0 & M_2 \end{pmatrix} \langle J_f | | V | | J_2 \rangle$$

$$= \frac{1}{\sqrt{2J_f + 1}} \langle J_f | | V | | J_2 \rangle \delta_{J_f J_2} \delta_{M_f M_2}.$$
(E.2)

With this, we finally obtain for the transition matrix element

$$\langle JM\mathbf{p}_{1}^{(-)}m_{s1}\mathbf{p}_{2}^{(-)}m_{s2}|V|J_{0}M_{0}\mathbf{p}_{0}^{(+)}m_{s_{0}}\rangle = \sum_{\substack{\ell_{0}\ell_{1}m_{1}\ell_{2}m_{2}j_{0}m_{j_{0}}\\j_{1}m_{j_{1}}j_{2}m_{j_{2}}\\J_{1}M_{1}J_{f}M_{f}}} a_{\ell_{1}m_{1}}^{j_{1}*} \times b_{\ell_{2}m_{2}}^{j_{0}}c_{\ell_{0}}^{j_{0}}\langle ([Jj_{1}]J_{1}j_{2})J_{f}|V|(J_{0}j_{0})J_{f}\rangle \times (-1)^{-\ell_{1}+1/2-m_{j_{1}}-\ell_{2}+1/2-m_{j_{2}}-\ell_{0}+1/2-m_{j_{0}}} \times (-1)^{-J+j_{1}-M_{1}-J_{1}+j_{2}-M_{f}-J_{0}+j_{0}-M_{f}} \times \sqrt{(2j_{1}+1)(2j_{2}+1)(2j_{0}+1)(2J_{1}+1)(2J_{f}+1)} \times \begin{pmatrix} \ell_{1}&1/2&j_{1}\\m_{1}&m_{s_{1}}&-m_{j_{1}}\end{pmatrix}\begin{pmatrix} \ell_{2}&1/2&j_{2}\\m_{2}&m_{s_{2}}&-m_{j_{2}}\end{pmatrix}\begin{pmatrix} \ell_{0}&1/2&j_{0}\\0&m_{s_{0}}&-m_{j_{0}}\end{pmatrix} \times \begin{pmatrix} J&j_{1}&J_{1}\\M&m_{j_{1}}&-M_{1}\end{pmatrix}\begin{pmatrix} J_{1}&j_{2}&J_{f}\\M_{1}&m_{j_{2}}&-M_{f}\end{pmatrix}\begin{pmatrix} J_{0}&j_{0}&J_{f}\\M_{0}&m_{j_{0}}&-M_{f}\end{pmatrix}. (E.3)$$

E.2 Derivation of Anisotropy Parameters

Inserting the derived expression (E.3) for the transition matrix element twice into (2.92) the anisotropy parameter B_e can be written as

$$\begin{split} B_{e}(K'Q',kq) &= \frac{\sqrt{(2k+1)(2K'+1)}}{2J_{0}+1} \int \mathrm{d}\mathbf{p}_{1} \int \mathrm{d}\mathbf{p}_{2} \sum_{\substack{MM'm_{s_{1}}m_{s_{2}}\\m_{s_{0}}m'_{s_{0}}M_{0}}} \\ &\times \sum_{\substack{\ell_{0}\ell_{1}m_{1}\ell_{2}m_{2}\\j_{0}m_{j_{0}}j_{1}m_{j_{1}}j_{2}m_{j_{2}}\\J_{1}M_{1}J_{f}M_{f}}} \sum_{\substack{\ell_{0}'\ell'_{1}m'_{1}\ell'_{2}m'_{2}\\j_{0}m'_{j_{0}}j'_{1}m'_{j_{1}}j'_{2}m'_{j_{2}}\\J'_{1}M'_{1}J'_{f}M'_{f}}} (-1)^{J-M+1/2-m_{s_{0}}} \\ &\times a_{\ell_{1}m_{1}}^{j_{1}*}b_{\ell_{2}m_{2}}^{j_{2}*}c_{\ell_{0}}^{j_{0}}(([Jj_{1}]J_{1}j_{2})J_{f}\|V\|(J_{0}j_{0})J_{f}) \\ &\times a_{\ell_{1}m_{1}}^{j'_{1}}b_{\ell_{2}m'_{2}}^{j_{2}*}c_{\ell_{0}}^{j'_{0}*}(([Jj_{1}]J'_{1}j'_{2})J'_{f}\|V\|(J_{0}j'_{0})J'_{f}) \\ &\times a_{\ell_{1}m_{1}}^{j'_{1}}b_{\ell_{2}m'_{2}}^{j_{2}*}c_{\ell_{0}}^{j'_{0}*}(([Jj'_{1}]J'_{1}j'_{2})J'_{f}\|V\|(J_{0}j'_{0})J'_{f}) \\ &\times (-1)^{-\ell_{1}+1/2-m_{j_{1}}-\ell_{2}+1/2-m_{j_{2}}-\ell_{0}+1/2-m_{j_{0}}} \\ &\times (-1)^{-J+j_{1}-M_{1}-J_{1}+j_{2}-M_{f}-J_{0}+j_{0}-M_{f}} \\ &\times (-1)^{-J+j'_{1}-M'_{1}-J'_{1}+j'_{2}-M'_{f}-J_{0}+j'_{0}-M'_{f}} \\ &\times \sqrt{(2j_{1}+1)(2j_{2}+1)(2j_{0}+1)(2j_{0}+1)(2J_{1}+1)(2J'_{f}+1)}} \\ &\times \sqrt{(2j'_{1}+1)(2j'_{2}+1)(2j'_{0}+1)(2j'_{0}+1)(2J'_{1}+1)(2J'_{f}+1)}} \end{split}$$

$$\times \begin{pmatrix} 1/2 & 1/2 & k \\ m_{s_0} - m'_{s_0} - q \end{pmatrix} \begin{pmatrix} J & J & K' \\ M - M' - Q' \end{pmatrix}$$

$$\times \begin{pmatrix} \ell_1 & 1/2 & j_1 \\ m_1 & m_{s_1} - m_{j_1} \end{pmatrix} \begin{pmatrix} \ell_2 & 1/2 & j_2 \\ m_2 & m_{s_2} - m_{j_2} \end{pmatrix} \begin{pmatrix} \ell_0 & 1/2 & j_0 \\ 0 & m_{s_0} - m_{j_0} \end{pmatrix}$$

$$\times \begin{pmatrix} \ell'_1 & 1/2 & j'_1 \\ m'_1 & m_{s_1} - m'_{j_1} \end{pmatrix} \begin{pmatrix} \ell'_2 & 1/2 & j'_2 \\ m'_2 & m_{s_2} - m'_{j_2} \end{pmatrix} \begin{pmatrix} \ell'_0 & 1/2 & j'_0 \\ 0 & m'_{s_0} - m'_{j_0} \end{pmatrix}$$

$$\times \begin{pmatrix} J & j_1 & J_1 \\ M & m_{j_1} - M_1 \end{pmatrix} \begin{pmatrix} J_1 & j_2 & J_f \\ M_1 & m_{j_2} - M_f \end{pmatrix} \begin{pmatrix} J_0 & j_0 & J_f \\ M_0 & m_{j_0} - M_f \end{pmatrix}$$

$$\times \begin{pmatrix} J & j'_1 & J'_1 \\ M' & m'_{j_1} - M'_1 \end{pmatrix} \begin{pmatrix} J'_1 & j'_2 & J'_f \\ M'_1 & m'_{j'_2} - M'_f \end{pmatrix} \begin{pmatrix} J_0 & j'_0 & J'_f \\ M_0 & m'_{j_0} - M'_f \end{pmatrix} . (E.4)$$

The integration over the solid angles and the energy distribution of the electrons e_1^- and e_2^- can be carried out,

$$\int d\mathbf{p}_1 \, a_{\ell_1 m_1}^{j_1 *} a_{\ell'_1 m'_1}^{j'_1} = e^{i(\sigma_{\ell_1}^{j_1} - \sigma_{\ell_1}^{j'_1})} \, \delta_{\ell_1 \ell'_1} \, \delta_{m_1 m'_1} \, \Delta E_1 , \qquad (E.5)$$

and

$$\int d\mathbf{p}_2 \, b_{\ell_2 m_2}^{j_2 *} b_{\ell_2' m_2'}^{j_2'} = e^{i(\sigma_{\ell_2}^{j_2} - \sigma_{\ell_2}^{j_2'})} \, \delta_{\ell_2 \ell_2'} \, \delta_{m_2 m_2'} \, \Delta E_2 \,. \tag{E.6}$$

Note, that the phase difference can still be non-zero because without further assumptions we generally have $j_1 \neq j_1'$ and $j_2 \neq j_2'$.

Applying the above selection rules and defining $\Delta E_{12} = \Delta E_1 + \Delta E_2$ we obtain

$$B_{e}(K'Q',kq) = \frac{\sqrt{(2k+1)(2K'+1)}}{2J_{0}+1} \Delta E_{12} \sum_{\substack{MM'm_{s_{1}}m_{s_{2}}\\ m_{s_{0}}m'_{s_{0}}M_{0}}} \sum_{\substack{\ell_{0}\ell_{1}m_{1}\ell_{2}m_{2}\\ j_{0}m_{j_{0}}j_{1}m_{j_{1}}j_{2}m_{j_{2}}\\ J_{1}M_{1}J_{f}M_{f}}} \times \sum_{\substack{\ell'_{0}J'_{1}M'_{1}J'_{f}M'_{f}\\ j_{0}m'_{j_{0}}j'_{1}m'_{j_{1}}j'_{2}m'_{j_{2}}}} (-1)^{J-M+1/2-m_{s_{0}}} e^{i(\sigma_{\ell_{1}}^{j_{1}}-\sigma_{\ell_{1}}^{j'_{1}})} e^{i(\sigma_{\ell_{2}}^{j_{2}}-\sigma_{\ell_{2}}^{j'_{2}})} \times c_{\ell_{0}}^{j_{0}} \langle ([Jj_{1}]J_{1}j_{2})J_{f}\|V\|(J_{0}j_{0})J_{f} \rangle \times c_{\ell'_{0}}^{j'_{0}} \langle ([Jj'_{1}]J'_{1}j'_{2})J'_{f}\|V\|(J_{0}j'_{0})J'_{f} \rangle \times (-1)^{-\ell_{1}+1/2-m}j_{1}-\ell_{2}+1/2-m}j_{2}-\ell_{0}+1/2-m}j_{0} \times (-1)^{-J+j_{1}-M_{1}-J_{1}+j_{2}-M_{f}-J_{0}+j_{0}-M_{f}} \times (-1)^{-J+j'_{1}-M'_{1}-J'_{1}+j'_{2}-M'_{f}-J_{0}+j'_{0}-M'_{f}} \times (-1)^{-J+j'_{1}-M'_{1}-J'_{1}+j'_{2}-M'_{f}-J_{0}+j'_{0}-M'_{f}} \times \sqrt{(2j_{1}+1)(2j_{2}+1)(2j_{0}+1)(2j_{0}+1)(2J_{1}+1)(2J_{f}+1)}$$

$$\times \sqrt{(2j_{1}'+1)(2j_{2}'+1)(2j_{0}'+1)(2J_{1}'+1)(2J_{f}'+1)}$$

$$\times \begin{pmatrix} 1/2 & 1/2 & k \\ m_{s_{0}} - m_{s_{0}}' - q \end{pmatrix} \begin{pmatrix} J & J & K' \\ M - M' - Q' \end{pmatrix}$$

$$\times \begin{pmatrix} \ell_{1} & 1/2 & j_{1} \\ m_{1} & m_{s_{1}} - m_{j_{1}} \end{pmatrix} \begin{pmatrix} \ell_{2} & 1/2 & j_{2} \\ m_{2} & m_{s_{2}} - m_{j_{2}} \end{pmatrix} \begin{pmatrix} \ell_{0} & 1/2 & j_{0} \\ 0 & m_{s_{0}} - m_{j_{0}} \end{pmatrix}$$

$$\times \begin{pmatrix} \ell_{1} & 1/2 & j_{1}' \\ m_{1} & m_{s_{1}} - m_{j_{1}}' \end{pmatrix} \begin{pmatrix} \ell_{2} & 1/2 & j_{2}' \\ m_{2} & m_{s_{2}} - m_{j_{2}}' \end{pmatrix} \begin{pmatrix} \ell_{0}' & 1/2 & j_{0}' \\ 0 & m_{s_{0}}' - m_{j_{0}}' \end{pmatrix}$$

$$\times \begin{pmatrix} J & j_{1} & J_{1} \\ M & m_{j_{1}} - M_{1} \end{pmatrix} \begin{pmatrix} J_{1} & j_{2} & J_{f} \\ M_{1} & m_{j_{2}} - M_{f} \end{pmatrix} \begin{pmatrix} J_{0} & j_{0} & J_{f} \\ M_{0} & m_{j_{0}} - M_{f} \end{pmatrix}$$

$$\times \begin{pmatrix} J & j_{1}' & J_{1}' \\ M' & m_{j_{1}}' - M_{1}' \end{pmatrix} \begin{pmatrix} J_{1}' & j_{2}' & J_{f}' \\ M_{1}' & m_{j_{2}}' - M_{f}' \end{pmatrix} \begin{pmatrix} J_{0} & j_{0}' & J_{f}' \\ M_{0} & m_{j_{0}}' - M_{f}' \end{pmatrix} .$$

$$(E.7)$$

Now, applying the orthogonality relations of the 3j-symbols (A.8a), the summation over m_1 , m_{s_1} and m_2 , m_{s_2} can be carried out which gives the selection rules

$$j_1 = j_1', \qquad m_{j_1} = m_{j_1}',$$
 (E.8)

and

$$j_2 = j_2'$$
, $m_{j_2} = m_{j_2}'$. (E.9)

Thus, the phase difference disappears which yields

$$\begin{split} B_{\ell}(K'Q',kq) &= \frac{\sqrt{(2k+1)(2K'+1)}}{2J_0+1} \, \Delta E_{12} \sum_{\substack{MM'M_0 \\ m_{s_0}m'_{s_0}}} \sum_{\substack{\ell_0\ell_1\ell_2j_0m_{j_0} \\ j_1m_{j_1}j_2m_{j_2} \\ J_1M_1J_fM_f}} \sum_{\substack{\ell'_0j'_0m'_{j_0} \\ J'_1M'_1J'_fM'_f}} \\ &\times c_{\ell_0}^{j_0} \big\langle ([Jj_1]J_1j_2)J_f \|V\|(J_0j_0)J_f \big\rangle \\ &\times c_{\ell'_0}^{j'_0*} \big\langle ([Jj_1]J'_1j_2)J'_f \|V\|(J_0j'_0)J'_f \big\rangle \\ &\times (-1)^{J-M+1/2-m_{s_0}+\ell'_0-\ell_0+j_0-j'_0+m_{j_0}-m'_{j_0}} \\ &\times (-1)^{J'_1-J_1+M_1-M'_1+2M_f-2M'_f} \\ &\times \sqrt{(2j_0+1)(2J_1+1)(2J_f+1)} \\ &\times \sqrt{(2j'_0+1)(2J'_1+1)(2J'_f+1)} \\ &\times \left(\frac{1/2}{m_{s_0}-m'_{s_0}-q}\right) \left(\frac{J}{M} \frac{J}{M} \frac{K'}{M-M'-Q'}\right) \\ &\times \left(\frac{\ell_0}{m_{s_0}-m'_{j_0}}\right) \left(\frac{\ell'_0}{m_{s_0}-m'_{j_0}}\right) \end{split}$$

$$\times \begin{pmatrix} J & j_{1} & J_{1} \\ M & m_{j_{1}} - M_{1} \end{pmatrix} \begin{pmatrix} J_{1} & j_{2} & J_{f} \\ M_{1} & m_{j_{2}} - M_{f} \end{pmatrix} \begin{pmatrix} J_{0} & j_{0} & J_{f} \\ M_{0} & m_{j_{0}} - M_{f} \end{pmatrix}$$

$$\times \begin{pmatrix} J & j_{1} & J'_{1} \\ M' & m_{j_{1}} - M'_{1} \end{pmatrix} \begin{pmatrix} J'_{1} & j_{2} & J'_{f} \\ M'_{1} & m_{j_{2}} - M'_{f} \end{pmatrix} \begin{pmatrix} J_{0} & j'_{0} & J'_{f} \\ M_{0} & m'_{j_{0}} - M'_{f} \end{pmatrix}.$$

$$(E.10)$$

Carrying out the sum over M, M', and m_{j_1} by using (A.25) the 2^{nd} , 5^{th} , and 8^{th} 3 j-symbols can be contracted

$$B_{e}(K'Q',kq) = \frac{\sqrt{(2k+1)(2K'+1)}}{2J_{0}+1} \Delta E_{12} \sum_{\substack{\ell_{0}\ell_{1}\ell_{2}M_{0} \\ m_{s_{0}}m'_{s_{0}}}} \sum_{\substack{j_{0}m_{j_{0}}j_{1}j_{2}m_{j_{2}} \\ J_{1}M_{1}J_{f}M_{f}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{j_{0}} \\ J'_{1}M'_{1}J'_{f}M'_{f}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{j_{0}} \\ J'_{0}m'_{1}J'$$

Further, summing over M_1 , M'_1 , and m_{j_2} and again using (A.25) the 2^{nd} , 4^{th} , and 7^{th} 3 j-symbols are contracted to

$$B_{e}(K'Q',kq) = \frac{\sqrt{(2k+1)(2K'+1)}}{2J_{0}+1} \Delta E_{12} \sum_{\substack{\ell_{1}\ell_{2}j_{1}j_{2}\\M_{0}m_{s_{0}}m'_{s_{0}}\\J_{1}J_{f}M_{f}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{j_{0}}\\J'_{1}J'_{f}M'_{f}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{j_{0}}\\J'_{0}J'_{0}J'_{f}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{j_{0}}\\J'_{0}J'_{0}J'_{f}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{j_{0}}\\J'_{0}J'_{0}J'_{f}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}\\J'_{0}J'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}J'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{0}J'_{0}J'_{0}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{0}J'_{$$

$$\times (-1)^{K'+J'_1-J_1+J-j_1-j_2+2M_f-M'_f}$$

$$\times \sqrt{(2j_0+1)(2J_1+1)(2J_f+1)}$$

$$\times \sqrt{(2j'_0+1)(2J'_1+1)(2J'_f+1)}$$

$$\times \begin{pmatrix} 1/2 & 1/2 & k \\ m_{s_0} & -m'_{s_0} & -q \end{pmatrix} \begin{pmatrix} J_f & J'_f & K' \\ -M_f & M'_f & Q' \end{pmatrix}$$

$$\times \begin{cases} J'_1 & J_1 & K' \\ J & J & j_1 \end{cases} \begin{pmatrix} \ell_0 & 1/2 & j_0 \\ 0 & m_{s_0} & -m_{j_0} \end{pmatrix} \begin{pmatrix} J_0 & j_0 & J_f \\ M_0 & m_{j_0} & -M_f \end{pmatrix}$$

$$\times \begin{cases} J_f & J'_f & K' \\ J'_1 & J_1 & j_2 \end{cases} \begin{pmatrix} \ell'_0 & 1/2 & j'_0 \\ 0 & m'_{s_0} & -m'_{j_0} \end{pmatrix} \begin{pmatrix} J_0 & j'_0 & J'_f \\ M_0 & m'_{j_0} & -M'_f \end{pmatrix} .$$

$$(E.12)$$

Once more, applying (A.25) for carrying out the sum over M_f , M'_f , and M_0 the 2^{nd} , 4^{th} , and 6^{th} 3 *j*-symbols yield

$$B_{e}(K'Q',kq) = \frac{\sqrt{(2k+1)(2K'+1)}}{2J_{0}+1} \Delta E_{12} \sum_{\substack{\ell_{1}\ell_{2}j_{1}j_{2}\\ m_{s_{0}}m'_{s_{0}}}} \sum_{\substack{\ell_{0}j_{0}m_{j_{0}}\\ J_{1}J_{f}}} \sum_{\substack{\ell'_{0}j'_{0}m'_{j_{0}}\\ J'_{1}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{0}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}J'_{f}}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{f}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{0}J'_{f}J'_{f}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{0}J'_{f}}}} \sum_{\substack{k'_{0}j'_{0}m'_{j_{0}}\\ J'_{0}J'_{0}J'_{f}J'_{f}}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}m'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}}} \sum_{\substack{k'_{0}j'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{0}J'_{$$

Eventually, carrying out the sum over m_{s_0} , m'_{s_0} , m_{j_0} , and m'_{j_0} the remaining four 3j-symbols can be contracted to form a 9j-symbol via (A.49) by introducing the artificial angular momentum b and its magnetic component β .

$$B_{e}(K'Q',kq) = \frac{\sqrt{(2k+1)(2K'+1)}}{2J_{0}+1} \Delta E_{12} \sum_{\substack{\ell_{1}\ell_{2}j_{1}j_{2} \\ b\beta}} \sum_{\substack{\ell_{0}j_{0}\ell'_{0}j'_{0} \\ J_{1}J_{f}J'_{1}J'_{f}}} \sum_{(2b+1)} \left(2b+1\right)$$

$$\times c_{\ell_{0}}^{j_{0}} \langle ([Jj_{1}]J_{1}j_{2})J_{f} \|V\|(J_{0}j_{0})J_{f} \rangle$$

$$\times c_{\ell_{0}}^{j'_{0}} \langle ([Jj_{1}]J'_{1}j_{2})J'_{f} \|V\|(J_{0}j'_{0})J'_{f} \rangle$$

$$\times (-1)^{J_{1}-J'_{1}-J+j_{1}+j_{2}+J_{f}+J'_{f}+J_{0}+\ell_{0}-j'_{0}+1-q}$$

$$\times \sqrt{(2j_{0}+1)(2J_{1}+1)(2J_{f}+1)}$$

$$\times \sqrt{(2j'_{0}+1)(2J'_{1}+1)(2J'_{f}+1)}$$

$$\times \left(\frac{K'}{Q'}\frac{b}{\beta} - q\right) \left(\frac{b}{\beta}\frac{\ell_{0}}{0}\frac{\ell'_{0}}{0}\right) \left\{\frac{K'}{J_{0}}\frac{b}{\ell_{0}}\frac{k}{1/2}\right\}$$

$$\times \left\{\frac{J'_{1}}{J_{1}}\frac{J_{1}}{K'}\right\} \left\{\frac{J_{f}}{J'_{f}}\frac{J'_{f}}{K'}\right\} \left\{\frac{j'_{0}}{J_{f}}\frac{j_{0}}{J_{f}}\frac{K'}{J_{0}}\right\}. \quad (E.14)$$

The second 3j-symbol immediately gives $\beta = 0$. Thus, the first 3j-symbol yields the important selection rule

$$q = Q'. (E.15)$$

With this, the anisotropy parameter can be redefined as

$$B_{e}(K'kq) = B_{e}(K'Q', kq) \delta_{Q'q}$$

$$= \frac{\sqrt{(2k+1)(2K'+1)}}{2J_{0}+1} \Delta E_{12} \sum_{\substack{b\ell_{1}j_{1} \\ \ell_{2}j_{2}}} \sum_{\substack{l_{0}j_{0}\ell'_{0}j'_{0} \\ J_{1}J_{f}J'_{1}J'_{f}}} \sum_{\substack{l_{0}j_{0}\ell'_{0}j'_{0} \\ J_{1}J_{f}J'_{1}J'_{f}}} (2b+1)$$

$$\times c_{\ell_{0}}^{j_{0}} \langle ([Jj_{1}]J_{1}j_{2})J_{f} ||V|| (J_{0}j_{0})J_{f} \rangle$$

$$\times c_{\ell'_{0}}^{j'_{0}*} \langle ([Jj_{1}]J'_{1}j_{2})J'_{f} ||V|| (J_{0}j'_{0})J'_{f} \rangle$$

$$\times (-1)^{J_{1}-J'_{1}-J+j_{1}+j_{2}+J_{f}+J'_{f}+J_{0}+\ell_{0}-j'_{0}+1-q}$$

$$\times \sqrt{(2j_{0}+1)(2J_{1}+1)(2J_{f}+1)}$$

$$\times \sqrt{(2j'_{0}+1)(2J'_{1}+1)(2J'_{f}+1)}$$

$$\times \left(\begin{pmatrix} K' & b & k \\ q & 0 - q \end{pmatrix} \begin{pmatrix} b & \ell_{0} & \ell'_{0} \\ 0 & 0 & 0 \end{pmatrix} \begin{cases} K' & b & k \\ j_{0} & \ell_{0} & 1/2 \\ j'_{0} & \ell'_{0} & 1/2 \end{cases}$$

$$\times \left\{ \begin{pmatrix} J'_{1} & J_{1} & K' \\ J & J & j_{1} \end{pmatrix} \right\} \left\{ \begin{pmatrix} J_{f} & J'_{f} & K' \\ J'_{1} & J_{1} & j_{2} \end{pmatrix} \left\{ \begin{pmatrix} J'_{0} & j_{0} & K' \\ J_{f} & J'_{f} & J_{0} \end{pmatrix} \right\} . \quad (E.16)$$

Eventually, inserting the expansion coefficient

$$c_{\ell_0}^{j_0} = \langle \ell_0 0 | \mathbf{p}_0^{(+)} \rangle = \sqrt{\frac{2\ell_0 + 1}{4\pi |\mathbf{p}_0|^2}} i^{\ell_0} e^{i\sigma_{\ell_0}^{j_0}} , \qquad (E.17)$$

which has been obtained in full analogy to the method used in Appendix D, e.g. see (D.7), the anisotropy parameter can be written as

$$B_{e}(K'kq) = \frac{\Delta E_{12}}{4\pi |\mathbf{p}_{0}|^{2}} \frac{\sqrt{(2k+1)(2K'+1)}}{2J_{0}+1} \sum_{\substack{b\ell_{1}j_{1} \\ \ell_{2}j_{2}}} \sum_{\substack{\ell_{0}j_{0}\ell'_{0}j'_{0} \\ J_{1}J_{f}J'_{1}J'_{f}}} \sum_{\substack{k(0)\ell'_{0}j'_{0} \\ J_{1}J_{f}J'_{1}J'_{f}}} \sum_{\mathbf{k}} \sum_{\substack{k(0)\ell'_{0}j'_{0} \\ J_{1}J_{f}J'_{1}J'_{f}}} \sum_{\mathbf{k}} \sum_{\substack{k(0)\ell'_{0}j'_{0} \\ J_{1}J_{f}J'_{1}J'_{f}}} \sum_{\mathbf{k}} \sum_{\substack{k(0)\ell'_{0}j'_{0} \\ (IJj_{1}]J_{1}j_{2})J'_{f}||V||(J_{0}j_{0})J_{f}|} \times \langle (IJj_{1}]J'_{1}j_{2})J'_{f}||V||(J_{0}j'_{0})J'_{f}|} \times \langle (IJj_{1}]J'_{1}J'_{2}J'_{f}||V||(J_{0}j'_{0})J'_{f}|} \times \langle (IJj_{1}J'_{1$$

References

Åberg, T., Howat, G. (1982) "Theory of the Auger Effect." In: S. Flügge, W. Mehlhorn (Eds.), *Handbuch der Physik* **31**, p. 469. Springer, Berlin.

Aksela, H., Mursu, J. (1996). Phys. Rev. A 54, 2882.

Aksela, H., Aksela, S., Jen, J. S., Thomas, T. D. (1977). Phys. Rev. A 15, 985.

Aksela, S., Aksela, H., Thomas, T. D. (1979). Phys. Rev. A 19, 721.

Aksela, S., Kellokumpo, M., Aksela, H., Väyrynen, J. (1981). Phys. Rev. A 23, 2374.

Aksela, H., Aksela, S., Hotokka, M., Jaentti, M. (1983a). Phys. Rev. A 28, 287.

Aksela, S., Harkoma, M., Pohjola, M., Aksela, H. (1983b). J. Phys. B: At. Mol. Phys. 17, 2227.

Aksela, H., Aksela, S., Patana, H. (1984a). Phys. Rev. A 30, 858.

Aksela, H., Aksela, S., Pulkkinen, H. (1984b). Phys. Rev. A 30, 865.

Aksela, H., Aksela, S., Pulkkinen, H. (1984c). Unpublished data, quoted in Tulkki *et al.* (1993).

Aksela, H., Aksela, S., Bancroft, G. M., Tan, K. H. (1986a). Phys. Rev. A 33, 3867.

Aksela, H., Aksela, S., Pulkkinen, H., Bancroft, G. M., Tan, K. H. (1986b). *Phys. Rev. A* 33, 3876.

Aksela, H., Aksela, S., Pulkkinen, H., Bancroft, G. M., Tan, K. H. (1988a). Phys. Rev. A 37, 1798.

Aksela, S., Sairanen, O. P., Aksela, H., Bancroft, G. M., Tan, K. H. (1988b). Phys. Rev. A 37, 2934.

Aksela, H., Bancroft, G. M., Olsson, B. (1992). Phys. Rev. A 46, 1345.

Aksela, H., Sairanen, O. P., Aksela, S., Kivimäki, A., Naves de Brito, A., Nõmmiste, E. (1995). *Phys. Rev. A* 51, 1291.

Aksela, H., Mursu J., Jauhiainen, J., Nõmmiste, E., Karvonen, J., Aksela, S. (1997). *Phys. Rev. A* 55, 3532.

Amusia, M. Y. (1990). "Atomic Photoeffect." K. T. Taylor. (trans. Ed.), Plenum, New York, London

Amusia, M. Y., Cherepkov, N. A. (1975). Case Studies in Atomic Physics 5, 47.

Andersen, N., Bartschat, K., Broad, J. T., Hertel, I. V. (1997). Phys. Rep. 278, 107.

Armen, G. B., Larkins, F. P. (1994). Unpublished, data published and cited by Saha (1994).

Asaad, W. N. (1963a). Nucl. Phys. 44, 399.

Asaad, W. N. (1963b). Nucl. Phys. 44, 415.

Asaad, W. N., Burhop, E. H. S. (1958). Proc. Phys. Soc. 71, 369.

Asaad, W. N., Mehlhorn, W. (1968). Z. Phys. 217, 304.

Atkins, P. W. (1970). "Molecular Quantum Mechanics." Clarendon Press, Oxford.

Auger, P. (1923). Comm. Royal Acad. Sci. Paris 177, 169.

Auger, P. (1924). Comm. Royal Acad. Sci. Paris 178, 929, and 1535.

Auger, P. (1926). Comm. Royal Acad. Sci. Paris 182, 776.

Balashov, V. V., Bodrenko, I. V. (1999). J. Phys. B: At. Mol. Opt. Phys. 32, L687.

Balashov, V. V., Bodrenko, I. V. (2000). J. Phys. B: At. Mol. Opt. Phys. 33, 1473.

Barnett, A. R. (1982). Comp. Phys. Comm. 27, 147.

Bartschat, K. (2003). In: G. F. Hanne, L. Malegat, H. Schmidt-Böcking (Eds.), *AIP Conf. Proc.* **697**, p. 213. Melville, New York.

Bartynski, R. A. (2003). In: G. F. Hanne, L. Malegat, H. Schmidt-Böcking (Eds.), *AIP Conf. Proc.* **697**, p. 111. Melville, New York.

Becker, U. (1990a). "The Physics of Electronic and Atomic Collisions." In: A. Dalgarno, R. S. Freund, P. M. Koch, M. S. Lubell, T. B. Lucatorto (Eds.), AIP Conf. Proc. 205, p. 162. New York.

Becker, U. (1990b). "Synchrotron radiation experiments on atoms and molecules." In: A. Dalgarno, R. S. Freund, P. M. Koch, M. S. Lubell, T. B. Lucatorto (Eds.), AIP Conf. Proc. 205, p. 160. New York.

Becker, U. (1994). Private communication.

Becker, U., Crowe, A. (2001). "Complete Scattering Experiments." Kluwer Academic/Plenum Publishers, New York.

Becker, U., Szostak, D., Kerkhoff, H. G., Kupsch, M., Langer, B., Wehlitz, R., Yagishita, A., Hayaishi, T. (1989). *Phys. Rev. A* 39, 3902.

Bederson, B. (1969). Comm. At. Mol. Phys. 1, 41, and 65.

Bederson, B., Miller, T. M. (1976). In: H. Kleinpoppen, M. R. C. McDowell (Eds.), "Electron and Photon Interactions with Atoms," p. 191. Plenum Press, New York.

Berezhko, E. G., Kabachnik, N. M. (1977). J. Phys. B: At. Mol. Phys. 10, 2467.

Berezhko, E. G., Ivanov, V. K., Kabachnik, N. M. (1978a). Phys. Lett. A 66, 474.

Berezhko, E. G., Kabachnik, N. M., Rostovsky, V. S. (1978b). *J. Phys. B: At. Mol. Opt. Phys.* 11, 1749.

Bergmann, L., Schaefer, C. (1992). "Lehrbuch der Experimentalphysik." Vol. 4, "Teilchen." W. de Gruyter, Berlin.

Beyer, H. J., West, J. B., Ross, K. J., Ueda, K., Kabachnik, N. M., Hamdy, H., Kleinpoppen, H. (1995). *J. Phys. B: At. Mol. Opt. Phys.* **28**, L47.

Biedenharn, L. C., Gluckstern, R. L., Hull Jr., M. H., Breit, G. (1955). Phys. Rev. 97, 542.

Blum, K. (1996). "Density Matrix Theory and Applications." 2nd Edn. Plenum Press, New York, London.

Blum, K., Lohmann, B., Taute, E. (1986). J. Phys. B: At. Mol. Opt. Phys. 19, 3815.

Bolognesi, P., Coreno, M., De Fanis, A., Huetz, A., Rioual, S., Rouvellou, B., Avaldi, L. (2003). In: G. F. Hanne, L. Malegat, H. Schmidt-Böcking (Eds.), AIP Conf. Proc. 697, p. 119. Melville, New York.

Bonhoff, K., Nahrup, S., Lohmann, B., Blum, K. (1996). J. Chem. Phys. 104, 7921.

Bonhoff, S., Bonhoff, K., Schimmelpfennig, B., Nestmann, B. (1997). J. Phys. B: At. Mol. Opt. Phys. 30, 2821.

Bonhoff, S. (1998a). PhD Thesis, University of Münster, Germany.

Bonhoff, K. (1998b). *PhD Thesis*, University of Münster, Germany.

Born, M., Wolf, E. (1970). "Principles of Optics." Pergamon Press, New York.

Brink, D. M., Satchler, G. R. (1962). "Angular Momentum." Oxford University Press, Oxford.

Buckmaster, H. A. (1964). Can. J. Phys. 42, 386.

Buckmaster, H. A. (1966). Can. J. Phys. 44, 2525.

Burhop, E. H. S., Asaad, W. N. (1972). "The Auger Effect." In: D. R. Bates, I. Estermann (Eds.), *Adv. At. Mol. Phys.* **8**, p. 164. Elsevier Academic Press, New York.

Burnett, G. C., Monroe, T. J., Dunnings, F. B. (1994). Rev. Sci. Instrum. 65, 1893.

Bussert, W., Klar, H. (1983). Z. Phys. A 312, 315.

Caldwell, C. D. (1990). In: T. A. Carlson, M. O. Krause, S. T. Manson (Eds.), "X-ray and Inner-Shell Processes." AIP Conf. Proc. 215, p. 685. Melville, New York.

Caldwell, C. D., Krause, M. O. (1993). Phys. Rev. A. 47, R759.

Carlson, J. A., Mullins, D. R., Beall, C. E., Yates, B. W., Taylor, J. W., Lindle, D. W., Pullen, B. P., Grimm, F. A. (1988). Phys. Rev. Lett. 60, 1382.

Carlson, T. A., Mullin, D. R., Beall, C. E., Yates, B. W., Taylor, J. W., Lindle, D. W., Grimm, F. A. (1989). Phys. Rev. A 39, 1170.

Carravetta, V., Ågren, H. (1987). Phys. Rev. A 35, 1022.

Carre, B., d'Oliveira, P., Ferray, M., Fournier, P., Gounand, F., Cubayanes, D., Bizau, J. M., Wuilleumier, F. J. (1990). Z. Phys. D 15, 117.

Chandra, N. (1989). Phys. Rev. A 40, 752.

Chandra, N., Chakraborty, M. (1992). J. Chem. Phys. 97, 236.

Chattarji, D. (1976). "The Theory of Auger Transitions." Academic Press, London, New York, San Francisco.

Chen, M. H. (1992). Phys. Rev. A 45, 1684.

Chen, M. H. (1993). Phys. Rev. A 47, 3733.

Chen, M. H. (1994). Data published and cited by Saha (1994).

Chen, M. H., Crasemann, B. (1973). *Phys. Rev. A* **8**, 7; and private communication cited by Hillig *et al.* (1974)

Chen, M. H., Larkins, F. P., Crasemann, B. (1990). *Atomic Data and Nuclear Data Tables* 45, 1.

Cleff, B., Mehlhorn, W. (1971). Phys. Lett. A 37, 3.

Cleff, B., Mehlhorn, W. (1974a). J. Phys. B: At. Mol. Phys. 7, 593.

Cleff, B., Mehlhorn, W. (1974b). J. Phys. B: At. Mol. Phys. 7, 605.

Clenshaw, C. W., Goodwin, E. T., Martin, D. W., Miller, G. F., Olver, F. W. J., Wilkinson, J. H. (1961). *National Physics Laboratory*. "Modern Computing Methods, Notes on Applied Science." 2nd Edn. Her Majesty's Stationary Office (HMSO), London. Vol. 16.

Combet Farnoux, F. (1992). Phys. Scr. T 41, 28.

Condon, E. U., Shortley, G. H. (1935). "Theory of Atomic Spectra." Cambridge University Press, Cambridge.

Coplan, M. A., Cooper, J. W., Moore, J. H., Doering, J. P., van Boeyen, R. W. (2002). In: M. Schulz, D. H. Madison (Eds.), *AIP Conf. Proc.* **604**, p. 103. Melville, New York.

Cooper, J. W. (1989). Phys. Rev. A 39, 3714.

Cowan, R. D. (1981). "The Theory of Atomic Structure and Spectra." University of California Press, Berkeley, Los Angeles, London.

de Gouw, J. A., van Eck, J., Peters, A. C., van der Weg, J., Heideman, H. G. M. (1995).
J. Phys. B: At. Mol. Opt. Phys. 28, 2127.

Dill, D., Starace, A. F., Manson, S. T. (1975). Phys. Rev. A 11, 1596.

Dill, D., Swanson, J. R., Wallace, S., Dehmer, J. L. (1980). Phys. Rev. Lett. 45, 1393.

Dorn, A., Nienhaus, J., Wetzstein, M., Winnewisser, C., Eichmann, U., Sandner, W., Mehlhorn, W. (1995). J. Phys. B: At. Mol. Opt. Phys. 28, L225.

Douglas, B. E., Hollingsworth, C. A. (1985). "Symmetry in Bonding and Spectra." Academic Press, London.

Drescher, M., Khalil, T., Müller, N., Fritzsche, S., Kabachnik, N. M., Heinzmann, U. (2003). J. Phys. B: At. Mol. Opt. Phys. 36, 3337. Dyall, K. G., Grant, I. P., Johnson, C. T., Parpia, F. A., Plummer, E. P. (1989). Comp. Phys. Comm. 55, 425.

Edmonds, A. R. (1974). "Angular Momentum in Quantum Mechanics." Princeton University Press, Princeton, NJ.

Eichler, J., Fritsch, W. (1976). J. Phys. B: At. Mol. Opt. Phys. 9, 1477.

Einstein, A. (1905). Ann. Physik 17, 132.

Erman, P., Sujkowski, Z. (1961). Ark. Fys. 20, 209.

Fahlman, A., Nordberg, R., Nordling, C., Siegbahn, K. (1966). Z. Phys. 192, 476.

Fano, U. (1957). Rev. Mod. Phys. 29, 74.

Fano, U., Racah, G. (1959). "Irreducible Tensorial Sets." Academic Press, New York.

Farhat, A., Humphrey M., Langer, B., Berrah, N., Bozek, J. D., Cubaynes, D. (1997). Phys. Rev. A 56, 501.

Ferrett, T. A., Piancastelli, M. N., Lindle, D. W., Heimann, P. A., Shirley, D. A. (1988). *Phys. Rev. A* 38, 701.

Feuerstein, B., Grum-Grzhimailo, A. N., Bartschat, K., Mehlhorn, W. (1999). J. Phys. B: At. Mol. Opt. Phys. 32, 3727.

Foldy, L., Wouthuysen, W. A. (1950). Phys. Rev. 78, 29.

Frauenfelder, H., Henley, E. M. (1979). "Teilchen und Kerne." Oldenbourg, München, Wien.

Fritzsche, S. (1991). "RATR: An Input Description." University of Kassel, Germany.

Fritzsche, S. (1992). PhD Thesis, University of Kassel, Germany.

Fritzsche, S. (1993). Phys. Rev. Lett. A 180, 262.

Fritzsche, S. (2001). J. Electr. Spectr. & Relat. Phen. 114-116, 1155.

Fritzsche, S., Zscharnack, G., Musiol, G., Soff, G. (1991). Phys. Rev. A 44, 388.

Fritzsche, S., Froese-Fischer, C., Dong, C. Z. (2000). Comp. Phys. Comm. 124, 340.

Furness, J. B., Mc Carthy, I. E. (1973). J. Phys. B: At. Mol. Opt. Phys. 6, 2280.

Geßner, O., Hikosaka, Y., Zimmermann, B., Hempelmann, A., Lucchese, R. R., Eland, J. H. D., Guyon, P. M., Becker, U. (2002). *Phys. Rev. Lett.* 88, 193002.

Golovin, A. V. (1991). Opt. Spectrosc. (USSR) 71, 537.

Grant, I. P. (1970). Advan. Phys. 19, 747.

Grant, I. P., Mayers, D. F., Pyper, N. C. (1976). J. Phys. B: At. Mol. Phys. 9, 2777.

Grant, I. P., McKenzie, B. J., Norrington, P. H., Mayers, D. F., Pyper, N. C. (1980). Comp. Phys. Comm. 21, 207.

Grant, I. P. (1988). In: S. Wilson (Ed.), "Methods in Computational Chemistry", Vol. 2, p. 1. Plenum Press, New York.

Grant, I. P., Parpia, F. A. (1992). Private communication.

Hahn, U., Semke, J., Merz, H., Kessler, J. (1985). J. Phys. B: At. Mol. Phys. 18, L417.

Haken, H. Wolf, H. C. (1991). "Molekülphysik und Quantenchemie." Springer, Berlin.

Hanne, G. F., Malegat L., Schmidt-Böcking, H. (Eds.) (2003). *AIP Conf. Proc.* **697**. Melville, New York.

Hansen, J. E., Persson, W. (1987). Phys. Scr. 36, 602.

Harnung, S. E., Schäffer, C. E. (1972). In: J. D. Dunitz, P. Hemmerich, J. A. Ibers, C. K. Jørgensen, J. B. Neilands, D. Reinen, R. J. P. Williams (Eds.), *Structure and Bonding*, Vol. 12, p. 245. Springer, Berlin.

Heiser, F., Geßner, O., Viefhaus, J., Wieliczek, K., Hentges, R., Becker, U. (1997). *Phys. Rev. Lett.* **79**, 2435.

Hemmers, O., Heiser, F., Eiben, J., Wehlitz, R., Becker, U. (1993). Phys. Rev. Lett. 71, 987.

Hergenhahn, U. (1996). "Winkelverteilung und Spin-Polarisation von Auger-Elektronen." *PhD Thesis*, Oberhofer, Berlin.

Hergenhahn, U., Becker, U. (1995a). J. Electr. Spectr. & Relat. Phen. 72, 243.

Hergenhahn, U., Becker, U. (1995b). J. Electr. Spectr. & Relat. Phen. 76, 225.

Hergenhahn, U., Kabachnik, N. M., Lohmann, B. (1991). J. Phys. B: At. Mol. Opt. Phys. 24, 4759.

Hergenhahn, U., Lohmann, B., Kabachnik, N. M., Becker, U. (1993). J. Phys. B: At. Mol. Opt. Phys. 26, L117.

Hergenhahn, U., Snell, G., Drescher, M., Schmidtke, B., Müller, N., Heinzmann, U., Wiedenhöft, M., Becker, U. (1999). *Phys. Rev. Lett.* **82**, 5020, and private communication.

Hertel, I. V., Stoll, W. (1977). Adv. At. Mol. Phys. 13, 113. Elsevier Academic Press, New York.

Hillig, H., Cleff, B., Mehlhorn, W., Schmitz, W. (1974). Z. Phys. 268, 225.

Hörnfeldt, O. (1962). Ark. Fys. 23, 235.

Hörnfeldt, O., Fahlman, A., Nordling, C. (1962). Ark. Fys. 23, 155.

Howat, G., Åberg, T., Goscinsky, O. (1978). J. Phys. B: At. Mol. Phys. 11, 1575.

Huang, K. N. (1982). Phys. Rev. A 26, 2274.

Huzinaga, S. (1965). J. Chem. Phys. 42, 1293.

Kabachnik, N. M. (1981). J. Phys. B: At. Mol. Phys. 14, L337.

Kabachnik, N. M. (2005). J. Phys. B: At. Mol. Opt. Phys. 38, L19.

Kabachnik, N. M., Grum-Grzhimailo, A. N. (2001). J. Phys. B: At. Mol. Opt. Phys. 34, L63.

Kabachnik, N. M., Lee, O. V. (1989). J. Phys. B: At. Mol. Opt. Phys. 22, 2705.

Kabachnik, N. M., Lee, O. V. (1990a). Z. Phys. D 17, 169.

Kabachnik, N. M., Lee, O. V. (1990b). J. Phys. B: At. Mol. Opt. Phys. 23, 353.

Kabachnik, N. M., Sazhina, I. P. (1976). J. Phys. B: At. Mol. Phys. 9, 1681.

Kabachnik, N. M., Sazhina, I. P. (1984). J. Phys. B: At. Mol. Phys. 17, 1335.

Kabachnik, N. M., Sazhina, I. P. (1986). Opt. Spectrosc. 60, 683.

Kabachnik, N. M., Sazhina, I. P. (1988). J. Phys. B: At. Mol. Opt. Phys. 21, 267.

Kabachnik, N. M., Sazhina, I. P. (2002). J. Phys. B: At. Mol. Opt. Phys. 35, 3591.

Kabachnik, N. M., Schmidt, V. (1995). J. Phys. B: At. Mol. Opt. Phys. 28, 233.

Kabachnik, N. M., Ueda, K. (1995). J. Phys. B: At. Mol. Opt. Phys. 28, 5013.

Kabachnik, N. M., Sazhina, I. P., Lee, I. S., Lee, O. V. (1988). *J. Phys. B: At. Mol. Opt. Phys.* 21, 3695.

Kabachnik, N. M., Lohmann, B., Mehlhorn, W. (1991). J. Phys. B: At. Mol. Opt. Phys. 24, 2249.

Kabachnik, N. M., Tulkki, J., Aksela, H., Ricz, S. (1994). Phys. Rev. A 49, 4653.

Kämmerling, B., Schmidt, V., Mehlhorn, W., Peatman, W. B., Schaefers, F., Schroeter, T. (1989). *J. Phys. B: At. Mol. Opt. Phys.* 22, L597.

Kämmerling, B., Krässig, B., Schmidt, V. (1990). J. Phys. B: At. Mol. Opt. Phys. 23, 4487, and private communication.

Kämmerling, B., Krässig, B., Schwarzkopf, O., Ribeiro, J. P., Schmidt, V. (1992). *J. Phys. B: At. Mol. Opt. Phys.* **25**, L5.

Karim, K. R., Crasemann, B. (1985). Phys. Rev. A 31, 709.

Karim, K. R., Chen, M. H., Crasemann, B. (1984). Phys. Rev. A 29, 2605.

Kaur, S., Srivastava, R. (1999). J. Phys. B: At. Mol. Opt. Phys. 32, 2323.

Kessler, J. (1985). "Polarized Electrons." 2nd Edn. Springer, Berlin.

Kettle, S. F. A. (1995). "Symmetry and Structure." Wiley, New York.

Klar, H. (1980). J. Phys. B: At. Mol. Phys. 13, 4741.

Kleiman, U., Becker, U. (2005). J. Electr. Spectr. & Relat. Phen. 142, 45.

Kleiman, U., Lohmann, B. (2003). J. Electr. Spectr. & Relat. Phen. 131-132, 29.

Kleiman, U., Lohmann, B., Blum, K. (1999a). J. Phys. B: At. Mol. Opt. Phys. 32, 309, and 4129.

Kleiman, U., Lohmann, B., Blum, K. (1999b). *J. Phys. B: At. Mol. Opt. Phys.* **32**, L219. Kleinpoppen, H. (1997). Private communication.

H. Kleinpoppen, M. R. C. McDowell (Eds.) (1976). "Electron and Photon Interactions with Atoms." Plenum Press, New York.

Kleinpoppen, H., Lohmann, B., Grum-Grzhimailo, A., Becker, U. (2005). In: H. H. Stroke (Ed.), *Adv. At. Mol. & Opt. Phys.* **51**, p. 471. Elsevier Academic Press, New York.

Knyr, V. A., Nasyrov, V. V., Popov, Y. V. (2003). In: G. F. Hanne, L. Malegat, Schmidt-Böcking, H. (Eds.), AIP Conf. Proc. 697, p. 76. Melville, New York.

Krause, M. O., Caldwell, C. D., Menzel, A., Benzaid, S., Jiménez-Mier, J. (1996). *J. Electr. Spectr. & Relat. Phen.* **79**, 241.

Kronast, W., Huster, R., Mehlhorn, W. (1986). Z. Phys. D 2, 285.

Kuntze, R., Salzmann, M., Böwering, N., Heinzmann, U. (1993). Phys. Rev. Lett. 70, 3716.

Kuntze, R., Salzmann, M., Böwering, N., Heinzmann, U., Ivanov, V. K., Kabachnik, N. M. (1994). *Phys. Rev. A* **50**, 489.

Lafosse, A., Lebech, M., Brenot, J. C., Guyon, P. M., Jagutzki, O., Spielberger, L., Vervloet, M., Houver, J. C., Dowek, D. (2000). Phys. Rev. Lett. 84, 5987.

Lagutin, B. M., Petrov, I. D., Sukhorukov, V. L., Demekhin, P. V., Zimmermann, B., Mickat, S., Kammer, S., Schartner, K.-H., Ehresmann, A., Shutov, Y. A., Schmoranzer, H. (2003). J. Phys. B: At. Mol. Opt. Phys. 36, 3251.

Landers, A., Weber, Th., Ali, I., Cassimi, A., Hattauss, M., Jagutzki, O., Nauert, A., Osipov, T., Staudte, A., Prior, M. H., Schmidt-Böcking, H., Cocke, C. L., Dörner, R. (2001). *Phys. Rev. Lett.* 87, 013002.

Langer, B., Berrah, N., Farhat, A., Humphrey, M., Cubaynes, D., Menzel, A., Becker, U. (1997). J. Phys. B: At. Mol. Opt. Phys. 30, 4255.

Larkins, F. P. (1977). Atomic Data and Nuclear Data Tables 20, 311.

Larkins, F. P. (1990). J. Electr. Spectr. & Relat. Phen. 51, 115.

Lee, O. V. (1990). Private communication.

Lehmann, J., Blum, K. (1997). J. Phys. B: At. Mol. Opt. Phys. 30, 633.

Lehmann, J., Bonhoff, K., Bonhoff, S., Lohmann, B., Blum, K. (1997). In: J. L. Duggan, I. L. Morgan (Eds.), "Application of Accelerators in Research and Industry." AIP Conf. Proc. 392, p. 63. New York.

Lindle, D. W., Ferrett, T. A., Heimann, P. A., Shirley, D. A. (1988). Phys. Rev. A 37, 3808.

Löwdin, P. O. (1955). Phys. Rev. 97, 1474.

Lohmann, B. (1984). Diploma Thesis, University of Münster, Germany.

Lohmann, B. (1988). PhD Thesis, University of Münster, Germany.

Lohmann, B. (1990). J. Phys. B: At. Mol. Opt. Phys. 23, 3147.

Lohmann, B. (1991). J. Phys. B: At. Mol. Opt. Phys. 24, 861.

Lohmann, B. (1992). J. Phys. B: At. Mol. Opt. Phys. 25, 4163.

Lohmann, B. (1993). J. Phys. B: At. Mol. Opt. Phys. 26, 1623.

Lohmann, B. (1996a). Aust. J. Phys. 49, 365, and refs. therein.

Lohmann, B. (1996b). "Spin polarization of Auger electrons; recent developments." In: H. Kleinpoppen, M. C. Campell (Eds.), "Selected Topics in Electron Physics." *Peter-Farago-Symp. Conf. Proc.*, p. 119. Plenum Press, New York.

Lohmann, B. (1996c). "Recent developments in the theory of angular distribution and spin polarization of Auger electrons." In: "VIII. Int. Symp. on Pol. & Corr. in Elec. & Atomic Coll., Vancouver." Can. J. Phys. 74, 962.

Lohmann, B. (1996d). J. Phys. B: At. Mol. Opt. Phys. 29, L521.

Lohmann, B. (1997). "Spin polarization parameters for resonant Auger transitions." In: "IX Int. Symp. on Pol. & Corr. in Elec. & Atomic Coll. and Int. Symp. on (e,2e), Double Phot. & Rel. Topics," Ses. 8. Frascati, Italy.

Lohmann, B. (1998). Habilitation Thesis, University of Münster, Germany.

Lohmann, B. (1999a). J. Phys. B: At. Mol. Opt. Phys. 32, L643.

Lohmann, B. (1999b). Aust. J. Phys. 52, 397.

Lohmann, B., Fritzsche, S. (1994). J. Phys. B: At. Mol. Opt. Phys. 27, 2919.

Lohmann, B., Fritzsche, S. (1996). J. Phys. B: At. Mol. Opt. Phys. 29, 5711.

Lohmann, B., Larkins, F. P. (1994). J. Phys. B: At. Mol. Opt. Phys. 27, L143.

Lohmann, B., Kleiman, U. (2001). In: J. Berakdar, J. Kirschner (Eds.), "Many Particle Spectroscopy of Atoms, Molecules, Clusters, and Surfaces." p. 173. Kluwer/Plenum, New York, London.

Lohmann, B., Kleiman, U. (2006). J. Phys. B: At. Mol. Opt. Phys. 39, 271.

Lohmann, B., Hergenhahn, U., Kabachnik, N. M. (1993). J. Phys. B: At. Mol. Opt. Phys. 26, 3327.

Lohmann, B., Fritzsche, S., Larkins, F. P. (1996). J. Phys. B: At. Mol. Opt. Phys. 29, 1191.

Lohmann, B., Bonhoff, S., Bonhoff, K., Lehmann, J., Blum, K. (1997). In: J. L. Duggan, I. L. Morgan (Eds.), "Application of Accelerators in Research and Industry." AIP Conf. Proc. 392, p. 59. New York.

Lohmann, B., Fritzsche, S., Andrä, H. J. (1998). "Absolut transition rates for Auger neutralization processes." Unpublished data. University of Münster, University of Kassel, Germany.

Lohmann, B., Srivastava, R., Kleiman, U., Blum, K. (2002). In: D. H. Madison, M. Schulz (Eds.), *AIP Conf. Proc.* **604**, p. 229. Melville, New York.

Lohmann, B., Zimmermann, B., Kleinpoppen, H., Becker, U. (2003a). In: B. Bederson, H. Walther (Eds.), *Adv. At. Mol. & Opt. Phys.* **49**, p. 217. Elsevier Academic Press, New York.

Lohmann, B., Langer, B., Snell, G., Kleiman, U., Canton, S., Martins, M., Becker, U., Berrah, N. (2003b). In: G. F. Hanne, L. Malegat, H. Schmidt-Böcking (Eds.), AIP Conf. Proc., vol. 697, p. 133. Melville, New York.

Lohmann, B., Langer, B., Snell, G., Kleiman, U., Canton, S., Martins, M., Becker, U., Berrah, N. (2005). Phys. Rev. A 71, 020701(R).

Lombardi, M. (1975). Phys. Rev. Lett. 35, 1172.

Lower, J., Panajotovic, R., Weigold, E. (2004). Phys, Scr. T 110, 216.

Mayer-Kuckuk, T. (1977). "Atomphysik." Teubner, Stuttgart.

Mayer-Kuckuk, T. (1979). "Kernphysik." Teubner, Stuttgart.

McGuire, E. J. (1969). Phys. Rev. 185, 1.

McGuire, E. J. (1970). Phys. Rev. A 2, 273.

McGuire, E. J. (1975). Sandia Research Lab. Research report no. SAND-75-0443.

McKenzie, B. J., Grant, I. P., Norrington, P. H. (1980). Comp. Phys. Comm. 21, 233.

Mehlhorn, W. (1968). Phys. Lett. A 26, 166.

Mehlhorn, W. (1985). "Auger-Electron Spectrometry of Core Levels of Atoms." In: B. Crasemann (Ed.), "Atomic Inner Shell Physics." Plenum Press, New York.

Mehlhorn, W. (1990). In: T. A. Carlson, M. O. Krause, S. T. Manson (Eds.), "X-ray and Inner Shell Processes." *AIP Conf. Proc.* **215**, p. 465. New York.

Mehlhorn, W., Stalherm, D. (1968). Z. Phys. 217, 294.

Mehlhorn, W., Taulbjerg, K. (1980). J. Phys. B: At. Mol. Phys. 13, 445.

Meister, H. J., Weiss, H. F. (1968). Z. Phys. 216, 165.

Menzel, A. (1994). PhD Thesis, Technical University of Berlin, Germany.

Menzel, A., Hemmers, O., Langer, B., Wehlitz, R., Becker, U. (1993). "BESSY annual report.", and private communication.

Merz, H. (1991). Private communication.

Merz, H., Semke, J. (1990). In: T. A. Carlson, M. O. Krause, S. T. Manson (Eds.), "X-ray and Inner Shell Processes." *AIP Conf. Proc.* **215**, p. 719. New York.

Messiah, A. (1979). "Quantenmechanik." de Gruyter, Berlin.

Meyer, M., von Raven, E., Sonntag, B., Hansen, J. E. (1991). Phys. Rev. A 43, 177.

Meyer, M., Marquette, A., Grum-Grzhimailo, A. N., Kleiman, U., Lohmann, B. (2001). *Phys. Rev. A* **64**, 022703.

Michl, J., Thulstrup, E. W. (1986). "Spectroscopy with Polarized Light." V.C.H. Wiley, New York

Moore, C. E. (1976). "Atomic energy levels." *Natl. Bur. Stand., U.S. Circ.* No. **467**, Vol. 1. U.S. GPO, Washington, DC.

Motoki, S., Adachi, J., Hikosaka, Y., Ito, K., Sano, M., Soejima, K., Yagishita, A., Raseev, G., Cherepkov, N. A. (2000). J. Phys. B: At. Mol. Opt. Phys. 33, 4193.

Mott, N. F., Massey, H. S. W. (1965). "The Theory of Atomic Collisions." 3rd Edn, Chap. IX.
4. Clarendon Press, Oxford.

Müller, N., David, R., Snell, G., Kuntze, R., Drescher, M., Böwering, N., Stoppmanns, P., Yu, S. W., Heinzmann, U., Viefhaus, J., Hergenhahn, U., Becker, U. (1995). *J. Electr. Spectr. & Relat. Phen.* **72**, 187.

Mursu, J., Aksela, H., Sairanen, O. P., Kivimäki, A., Nõmmiste, E., Ausmees, A., Svensson, S., Aksela, S. (1996). *J. Phys. B: At. Mol. Opt. Phys.* 29, 4387.

Nahrup, S. (1995). Diploma Thesis, University of Münster, Germany.

Oenning, R. (1989). Diploma Thesis, University of Münster, Germany.

O'Keeffe, P., Aloïse, S., Meyer, M., Grum-Grzhimailo, A. N. (2003). Phys. Rev. Lett. 90, 023002.

O'Keeffe, P., Aloïse, S., Fritzsche, S., Lohmann, B., Kleiman, U., Meyer, M., Grum-Grzhimailo, A. N. (2004). *Phys. Rev. A* 70, 012705.

Ong, W., Russek, A. (1978). Phys. Rev. A 17, 120.

Paripás, B., Víkor, G., Ricz, S. (1997). J. Phys. B: At. Mol. Opt. Phys. 30, 403.

Parpia, F. A., Grant, I. P. (1992). Private communication.

Paulus, G. G., Lindner, F., Walther, H., Baltuska, A., Goulielmakis, E., Lezius, M., Krausz, F. (2003). Phys. Rev. Lett. 91, 253004.

Persson, W., Wahlström, C.-G., Bertucelli, G., Di Rocco, H. O., Reyna Almandos, J. G., Gallardo, M. (1988). *Phys. Scr.* **38**, 347.

Petrini, D., Araújo, F. X. (1994). Astron. Astrophys. 282, 315.

Racah, G. (1942). Phys. Rev. 62, 438.

Ridder, D., Dieringer, J., Stolterfoht, N. (1976). J. Phys. B: At. Mol. Phys. 9, L307.

Rose, M. E. (1957). "Elementary Theory of Angular Momentum." J. Wiley & Sons, New York

Rotenberg, M., Bivins, R., Metropolis, N., Wooten Jr., J. K. (1959). "The 3-j and 6-j Symbols." Technology Press, Cambridge, MA.

Saha, H. P. (1994). Phys. Rev. A 49, 894.

Sandner, W. (1985). "New Application of Electron-Electron Coincidences." In: H. Kleinpoppen, J. S. Briggs, H. O. Lutz (Eds.), "Fundamental Processes in Atomic Collision Physics." NATO ASI Series B: Physics 134, p. 453. New York.

Sarkadi, L., Vajnai, T., Pálinkás, J., Kövér, A., Végh, J., Mukoyama, T. (1990). J. Phys. B: At. Mol. Opt. Phys. 23, 3643.

Schimmelpfennig, B. (1994). PhD Thesis, University of Bonn, Germany.

Schimmelpfennig, B., Nestmann, B., Peyerimhoff, S. D. (1992). J. Phys. B: At. Mol. Opt. Phys. 25, 1217.

- Schimmelpfennig, B., Nestmann, B., Peyerimhoff, S. D. (1995). *J. Electr. Spectr. & Relat. Phen.* **74**, 173.
- Schmidt, V. (1992). Rep. Prog. Phys. 55, 1483.
- Schmidt, V. (1997). "Electron Spectrometry of Atoms using Synchrotron Radiation." Cambridge University Press, Cambridge, MA.
- Schmidtke, B., Drescher, M., Cherepkov, N. A., Heinzmann, U. (2000a). J. Phys. B: At. Mol. Opt. Phys. 33, 2451.
- Schmidtke, B., Khalil, T., Drescher, M., Müller, N., Kabachnik, N. M., Heinzmann, U. (2000b). J. Phys. B: At. Mol. Opt. Phys. 33, 5225.
- Schmidtke, B., Khalil, T., Drescher, M., Müller, N., Kabachnik, N. M., Heinzmann, U. (2001). J. Phys. B: At. Mol. Opt. Phys. 34, 4293.
- Schpolski, E. W. (1983). "Atomphysik." 12th Edn., VEB Deutscher Verlag der Wissenschaften, Berlin.
- Schuch, R., Cederquist, M., Larsson, E., Lindroth, S., Schmidt, H. (Eds.) (2004). *Phys. Scr.* **T110**.
- Shampine, L. F., Gordon, M. K. (1975). "Computer Solution of Ordinary Differential Equations: The Initial Value Problem." W. H. Freeman and Co., San Francisco.
- Shaw Jr., R. W., Thomas, T. D. (1975). Phys. Rev. A 11, 1491.
- Shirley, D. A. (1973). Phys. Rev. A 7, 1520.
- Siegbahn, K., Nordling, C., Fahlman, A., Nordberg, R., Hamrin, K., Hedman, J., Johansson, G., Bergmark, T., Karlsson, S.-E., Lindgren, T., Lindberg, B. (1967). "ESCA Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy." Nova Acta Regiae Soc. Sci. Upsaliensis Ser. IV, Vol. 20.
- Siegbahn, K., Nordling, C., Johansson, G., Hedman, J., Heden, P. F., Hamrin, K., Gelius, U., Bergmark, T., Werme, L. O., Manne, R., Baer, Y. (1969). "ESCA Applied to Free Molecules." North-Holland, Amsterdam.
- Slater, J. C. (1951). Phys. Rev. 81, 385.
- Snell, G., Hergenhahn, U., Drescher, M., Schmidtke, B., Müller, N., Wiedenhöft, M., Becker, U., Heinzmann, U. (1996a). "BESSY annual report."
- Snell, G., Drescher, M., Müller, N., Heinzmann, U., Hergenhahn, U., Viefhaus, J., Heiser, F., Becker, U., Brookes, N. B. (1996b). *Phys. Rev. Lett.* **76**, 3923.
- Snell, G., Langer, B., Drescher, M., Müller, N., Zimmermann, B., Hergenhahn, U., Viefhaus, J., Heinzmann, U., Becker, U. (1999). Phys. Rev. Lett. 82, 2480.
- Snell, G., Viefhaus, J., Dunnings, F. B., Berrah, N. (2000). Rev. Sci. Instrum. 71, 2608.
- Snell, G., Hergenhahn, U., Müller, N., Drescher, M., Viefhaus, J., Becker, U., Heinzmann, U. (2001). *Phys. Rev. A* 63, 032712.
- Snell, G., Langer, B., Young, A. T., Berrah, N. (2002). Phys. Rev. A 66, 022701.
- Southworth, S., Becker, U., Truesdale, C. M., Kobrin, P. H., Lindle, D. W., Owaki, S., Shirley, D. A. (1983). Phys. Rev. A 28, 261.
- Srivastava, R., Blum, K., McEachran, R. P., Stauffer, A. D. (1996a). J. Phys. B: At. Mol. Opt. Phys. 29, 3513.
- Srivastava, R., Blum, K., McEachran, R. P., Stauffer, A. D. (1996b). J. Phys. B: At. Mol. Opt. Phys. 29, 5947.
- Starace, A. F. (1982). In: S. Flügge, W. Mehlhorn (Eds.), *Encyclopedia of Physics* **31**, p. 1. Springer, New York.
- Stoppmanns, P., Schmiedeskamp, B., Vogt, B., Müller, N., Heinzmann, U. (1992). *Phys. Scr.* **T41**, 190.

Takahashi, M., Cave, J. P., Eland, J. H. D. (2000). Rev. Sci. Instrum. 71, 1337.

Taouil, L., Duguet, A., Lahman-Bennani, A., Lohmann, B., Rasch, J., Whelan, C. T., Walters, H. R. J. (1999). *J. Phys. B: At. Mol. Opt. Phys.* 32, L5.

Taylor, J. R. (1972). "Scattering Theory." J. Wiley & Sons, New York, London, Sydney, Toronto.

Theodosiou, C. E. (1987). Phys. Rev. A 36, 3138.

Tinkham, M. (1964). "Group Theory and Quantum Mechanics." McGraw-Hill, New York.

Tulkki, J., Kabachnik, N. M., Aksela, H. (1993). *Phys. Rev. A* 48, 1277, and private communication.

Tulkki, J., Aksela, H., Kabachnik, N. M. (1993). Phys. Rev. A 48, 2957.

Turri, G., Lohmann, B., Langer, B., Snell, G., Becker, U., Berrah, N. (2007). J. Phys. B: At. Mol. Opt. Phys. 40, 3453.

Ueda, K., West, J. B., Ross, K. J., Beyer, H. J., Kabachnik, N. M. (1998). J. Phys. B: At. Mol. Opt. Phys. 31, 4801.

Varshalovich, D. A., Moskalev, A. N., Khersonskii, V. K. (1988). "Quantum Theory of Angular Momentum." World Scientific, Singapore.

Vanderpoorten, R. (1975). J. Phys. B: At. Mol. Phys. 8, 926.

Väyrynen, J., Aksela, S. (1979). J. Electr. Spectr. & Relat. Phen. 16, 423.

van der Laan, G., Thole, B. T. (1995). Phys. Rev. B 52, 15355.

Viefhaus, J., Avaldi, L., Hentges, R., Wiedenhöft, M., Wieliczek, K., Becker, U. (1996). In: "17th Int. Conf. X-ray and Inner-Shell Processes." *Book of Abstracts*, p. 220. Hamburg.

Viefhaus, J., Zimmermann, B., Kleinpoppen, H., Becker, U. (1998). Private communication.

Vollmer, R., Etzkorn, M., Anilkumar, P. S., Ibach, H., Kirschner, J. (2003). *Phys. Rev. Lett.* **91**, 147201.

von Raven, E., Meyer, M., Pahler, M., Sonntag, B. (1990). J. Electr. Spectr. & Relat. Phen. 52, 677.

Wagner, C. D. (1975). Faraday Discuss. Chem. Soc. 60, 291.

Walters, D. L., Bhalla, C. P. (1971). Atomic Data 3, 301.

Wehlitz, R., Pibida, L. S., Levin, J. C., Sellin, I. A. (1999). Phys. Rev. A 59, 421.

Weigold, E., Lower, J., Berakdar, J., Mazevet, S. (2002). In: M. Schulz, D. H. Madison (Eds.), *AIP Conf. Proc.* **604**, p. 32. Melville, New York.

Wentzel, G. (1927). Z. Phys. 43, 524.

Werme, L. O., Bergmark, T., Siegbahn, K. (1972). Phys. Scr. 6, 141.

Werme, L. O., Bergmark, T., Siegbahn, K. (1973). Phys. Scr. 8, 149.

Wigner, E. P. (1959). "Group Theory and its Application to the Quantum Mechanics of Atomic Spectra." Academic Press, New York.

Wöste, G., Fullerton, C., Blum, K., Thompson, D. (1994). J. Phys. B: At. Mol. Opt. Phys. 27, 2625.

Ying-Nan, C. (1966). J. Chem. Phys. 45, 2969.

Young, A. T., Feng, J., Arenholz, E., Padmore, H. A., Henderson, T., Marks, S., Hoyer, E., Schlueter, R., Kortright, J. B., Martynov, V., Steier, C., Portmann, G. (2001). Nucl. Instrum. & Methods A 467, 549.

Zare, R. N. (1988). "Angular Momentum." J. Wiley & Sons, New York.

Zähringer, K., Meyer, H. D., Cederbaum, L. S. (1992). Phys. Rev. A 46, 5643.

Zähringer, K., Meyer, H. D., Cederbaum, L. S., Tarantelli, F., Sgamellotti, A. (1993). *Chem. Phys. Lett.* **206**, 247.

Zheng, Q., Edwards, A. K., Wood, R. M., Mangan, M. A. (1995a). Phys. Rev. A 52, 3940.

Zheng, Q., Edwards, A. K., Wood, R. M., Mangan, M. A. (1995b). Phys. Rev. A 52, 3945.

- Zimmermann, B. (2000). "Vollständige Experimente in der atomaren und molekularen Photoionisation." In: U. Becker (Ed.), *Studies of Vacuum Ultraviolet and X-Ray Processes* 13. Wissenschaft und Technik Verlag, Berlin.
- Zimmermann, B., Wilhelmi, O., Schartner, K.-H., Vollweiler, F., Liebel, H., Ehresmann, A., Lauer, S., Schmoranzer, B. M., Lagutin, B. M., Petrov, I. D., Sukhorukov, V. L. (2000). J. Phys. B: At. Mol. Opt. Phys. 33, 2467.

Index

A representation 239	rank K = 2 56
A(KkQ) coefficient 103, 108	real 235
A ₁ -symmetry 243	relation between A_{20} and A_{22} 57
$A_2(J, J')$ parameter 80	alignment parameter A_{20} 54, 56, 89
absolute Auger rate 176, 179	alignment parameter \mathcal{A}_{K0}
exchange interaction 180	unpolarized electron beam 52
Na KLL spectrum 180	different from zero 53
alignment	alignment parameter $Re A_{K1}$
coincidence experiments 249	polarized electron beam 52
components A_{2O} 78	spin dependent forces during Auger
dynamics of excitation 157	emission 83
electron impact excitation 248	terms of state multipoles
electron impact ionization 249	orbital angular momentum and spin
intermediate ionic 159	83
intermediate state 157	alignment tensor 248
maximum	components A_{K0} and $Re A_{K1}$ 81
linearly polarized photon beam 157	Stokes parameters
non-relativistic 197	photoexcited atom 70
parameter \mathcal{A}_{20}	polarization state of synchrotron beam
LSJ coupling 128	70
photoexcitation 248	alkali element
photoionization	KLL Auger spectrum 175, 176
closed shell atoms 248	KLL Auger transition 189, 192
inner shell 248	outer shell electron 189
open shell atoms 248	amplitude
valence shell 248	Auger transition 218
photon energy dependent 124	modulation 88
primary ion 133	analyzing power
relativistic effects 197	polarimeter 166
alignment and orientation	angle and spin resolved Auger decay 164
closed shell atoms and cations 45	resonantly excited 164
photoionization	angle and spin resolved Auger process
deep inner shell 45	anisotropy parameters 91
open shell atoms 45	angle and spin resolved experiment 157
alignment effect 250	Auger emission 2
alignment parameter 122, 128, 153, 236	angle dependent intensity
estimates 143	Auger emission 81
ionization and excitation dynamics 45	angle resolved electron spectroscopy 126

angle resolved experiment	non-linear molecules 229
Auger emission 2	non-linear polyatomic molecules 9
angle resolved KLL Auger transition 119	normal and resonant Auger processes
angular anisotropy	119
Auger decay 176	photoabsorption or photoionization of
Auger electrons	molecules 8
Ar $L_3M_{2,3}M_{2,3}$ transitions 119	polyatomic molecules 247
electron-electron correlation 119	unresolved intermediate state 77
$Kr M_{4,5}N_{2,3}N_{2,3}$ transitions 119	unresolved resonance 80
noble gas 245	circularly polarized photon beam 72
noble gas atoms 7, 117	CO 251
relativistic correction 119	
$Xe N_{4,5}O_{2,3}O_{2,3} transitions 119$	degenerate point groups 247
molecular Auger electrons	depend on even rank tensors 79
degenerate point groups 239	dipole selection rules 224
non-zero	electron impact excitation/ionization
high resolution experiments 191	79
	$\eta_3 = 1$
photoelectrons V. open shall stome 175	electric field vector oscillates
K open shell atoms 175	in-reaction plane 75
resonant Auger decay	experimental observable 14
in Ar 121	factorization 247
angular anisotropy parameter 131, 140,	function of alignment parameter A_{22}
152, 158, 161	real and imaginary part 58
electron impact excitation	general equation 245
excitation dynamics 30	helicity and laboratory frame
$Kr^* 3d_{5/2}^{-1} 5p \rightarrow 4p^{-2} 5p \text{ decay} 155$	arbitrarily oriented 73
model independent 128	HF 247
geometrical quantity 125	independent of polar angle θ 76
$Xe^* 4d_{5/2}^{-1}6p \rightarrow 5p^{-2}6p \text{ decay} 155$	isotropic 76, 77, 140
$Xe^* 4d_{5/2}^{3/2} 6p \rightarrow 5s^{-1}5p^{-1}6p \text{ decay}$	no alignment for $J = 1/2$ 133
156	rare gases 195
angular asymmetry of Augar transition	symmetry consideration 121
angular asymmetry of Auger transition	KLL Auger lines 205
alignment component $Re A_{21}$ 82	molecular 251
angular correlation effect 252	molecular Auger electrons 213, 218,
angular distribution 78, 111	219, 240
alignment and anisotropy parameters	N ⁺ ion 252
153	non-degenerate point groups 236, 247
alignment parameter $Re A_{22}$ 88	
anisotropy coefficients 189	non-isotropic 211
anisotropy parameter α_2 149, 189	non-isotropy 214
anisotropy parameter α_K 60, 81	non-vanishing
Auger decay 45	LS coupling 191
Auger electrons 43, 56, 58, 124, 225	not independent 59
correlation effect 144, 149	$\phi = 0$ 71
depending on total angular momentum	quadratic
77	arbitrary electronic Auger decay 64
diatomic molecule 212	quadratic and linear equations 64
general expression 44	relations between parameters 68

resonant Auger decay	angular momentum state
heavier atoms 153	characterized by density matrix 20
resonant Auger transitions 70, 118	angular momentum theory
arbitrarily polarized light 71	closed-shell atom
Stokes parameter η_3	excitation and decay of dipole $J = 1$
general geometry 74	state in continuum 66
unpolarized photon beam 71	angular quantum number
angular distribution and spin polarization	seniority number 113
Auger electrons	ANISO program 91–93, 133
equations 5	branching points 103
comparison to experimental and other	Dirac–Fock wavefunction
theoretical data 7	neglect small component 6
depend on magnitudes of transition	extended version 145
amplitudes	inclusion of exchange
relative phases 2	continuum wavefunction 97
functions of transition amplitudes	POTRES part 96
scattering phases 6	relativistic corrections and exchange 92
molecular Auger emission	scattering theory
electron impact ionization 9	Δ -SCFCI method 6
state multipoles	structure 102
intermediate ionic states 5	anisotropic angular distribution
angular distribution measurement	Auger transition
Auger electrons 176	KLL open shell 175
angular distribution of Auger emission	existence of alignment 133
photoexcitation	anisotropic ensemble
arbitrarily polarized photon beam 70	characterization by density matrix and
	state multipoles 5, 11
angular distribution parameter 91, 92, 108, 126, 141	anisotropy
correlation effect	
electron-electron 144	Auger angular distribution 223 Auger line 149
HF 213	electron-electron correlation
	relativistic effects 123
Hg N _{6,7} O _{4,5} O _{4,5} Auger emission 148,	molecular axis 223
= 17	orbital distribution 223
angular momentum artificial 31, 286	
Auger electron	1.5
	α_2 different Auger lines 120
magnetic component in direction of propagation 39	$\alpha_2 \neq 0$ 189
component Λ 214	angular distribution 151
component Ω 214	coherent sum
coupling 253, 255, 258	
	total angular momentum 80 fine structure state
coupling rules 159 total and orbital	
Auger electrons 46	statistically averaged 208
angular momentum algebra 31, 35	intermediate coupling
angular momentum distribution	exchange effects 194
characterization by state multipoles	LS coupling rediction 194
217	LS coupling scheme 191, 193

negative 154	independent of
oxygen KLL Auger transition 205	Auger amplitudes 120
sensitivity	final spin 206
Auger dynamics 122	total angular momentum 206
spin polarization 151	KLL Auger transitions 246
anisotropy parameter 102, 220, 288	knowledge of scattering phase 92, 177
A(KkQ) 41, 43, 44	large values 228
dynamics of Auger emission 42	matrix elements 154
symmetry relations 40	molecular
α_2 56, 120	calculation 226
LS coupling limit 189	
α_2 and α_4	molecular Auger decay
Auger transitions to $J_f = 0$ 46	degenerate point groups 230
$\alpha_2 = 0$	non-vanishing 243
doublet state 192	non-zero odd-rank 228
α_2^{LS} LS coupling 190	photoexcitation
³ S ₁ independent of matrix element	independent of tensorial rank 69
191	polyatomic molecules 238
$\alpha_2 \neq 0$	real or imaginary 40
quartet state 192	sodium
	KLL Auger transition 193
α_K analytic for $J_f = 0$ transitions 46	split in real and imaginary part 44
Auger decay dynamics 40	symmetry properties 239
transition amplitudes and scattering	symmetry relations 221
phases 5, 11	even K values 45
B_e electron ionization 35	unresolved final fine structure states
dynamics of ionization process 35	207
B_{exci} photoexcitation 28	anisotropy parameter ξ_K
$B_{exci}^{J_0=0}$ photoexcitation 28	even K values
	transversely polarized electron beam
constant number 29	53
B_{phot} photoionization 25, 27	odd K values
independent of Q' and γ 26	longitudinally polarized electron beam
real number 26	53
B_{scat} electron excitation 30, 31	anti-symmetrized product 227
real or imaginary depending on rank	APECS see Auger-photoelectron
of state multipoles 33	coincidence spectroscopy
symmetries 32	approximation of non-local exchange term
decay amplitudes 153	local potential 97
degenerate case 241	Ar* $(2p \rightarrow 4s) L_{2,3}M_{2,3}M_{2,3}$ resonant
derivation 282	Auger transition 118
electron impact ionization 281	$Ar^*(2p_{3/2}^{-1}4s_{1/2})_{J=1} L_3M_{2,3}M_{2,3}$ resonant
functions of transition amplitudes	Auger transition $(-p_3/2, 161/2)^{J=1}$
scattering phases 91	angular distribution 169
H ₂ O 251	MCDF calculation
HF 251	
higher rank	final state $J_f = 1/2$ 161
coincidence experiments 67	relative intensities 169
including exchange effects 194	spin polarization 169

Ar*L _{2,3} M _{2,3} M _{2,3} Auger decay	measure for
excited intermediate 171	spin-dependent forces 84
photoexcited 175	product and ratio 88
Ar*L _{2,3} M _{2,3} M _{2,3} Auger spectrum	product of two
low resolution 165	function of scattering angle 87
resonantly excited 246	ratio
Ar L ₂ MM Auger spectrum 133, 136, 246	independent of scattering angle 87
Ar L ₂ MM Auger transition 77, 134	symmetries
Ar L ₂ MM multiplet	reduced rotation matrices 81
spin polarization parameters 140	atom
$Ar^*(2p_{3/2} \to 4s_{1/2}) L_3 M_{2,3} M_{2,3}$ Auger	ionized in inner shell
multiplet	spontaneous emission of electron 1
angular distribution 168	atomic ensemble
relative intensity 168	unpolarized 14, 29, 35
spin polarization parameter 168	atomic oxygen
Ar L ₃ M _{2,3} M _{2,3} Auger transition	inner-shell ionized 197
angular anisotropy parameter 130	atomic state function see ASF
anisotropy coefficient 121	atomic units 100, 178
$Ar^*(2p_{3/2} \to 4s_{1/2}) L_3 M_{2,3} M_{2,3} Auger$	atomic weight 126
transition	Au $N_{6,7}O_{4,5}O_{4,5}$ Auger spectrum 248
partial waves	Auger amplitude 114, 198
phase shift 170	bound orbitals
partial widths 171	continuum spinors 177
Ar $L_3M_{2,3}M_{2,3}$ Auger transition	exchange effects
relative intensities 130	channel coupling 124
spin polarization parameter 130	Auger decay 37
Ar LMM Auger spectrum 164	anisotropy
$Ar^*(2p^{-1}4s)_{J=1} L_{2,3}M_{2,3}M_{2,3}$ Auger	degenerate point group 213
decay	non-degenerate point group 213
understood as showcase	anisotropy parameter 212
vanishing dynamic but large	Ar $(2p \rightarrow 4s)$ excited state 170
transferred spin polarization 8	conservation of angular momentum and
ASF	parity 65
linear combinations of CSF 167	dynamics 45, 78, 124, 238
ASF of final state	parameter ξ_2 57 excitation
exchange interaction with continuum 158	
	Rydberg state 69
intermediate coupling between CSF 158	initial state 12, 176 kinematical relations 65
asymmetry of angular distribution fixed angle	large ξ_2 parameter
changing polarization 88	two partial waves 170 matrix elements 125
asymmetry parameter 245, 269	molecular 240
	molecules
Auger emission dependency on spin-dependent forces	non-linear 229
5	non-degenerate and degenerate point
electronic excitation/ionization 77	groups 10
magic angle 82	partial waves 159
manus minites of	partial marco 107

polyatomic molecular	isotropically emitted 76
anisotropy 10	Auger emission 12, 14, 103
resonantly excited 152	after excitation/ionization process 38
restrictions for specific case 67	angle and spin resolved ix, 2, 4, 175
single channel 135	state of the art 252
spectator 152	two-step model 11
total rate 180	asymmetry parameters 12
two electron transition 174	direct process 104
two-step model 124	direction 214
Auger effect	dynamics 12, 247
two or more tracks	exchange process 105
from point of impact 1	excited rare gases
two-step process 12	resonant Auger transitions 28
Auger electron	free atoms and molecules 13
angular distribution and spin polarization	from solid surfaces 5
ix	from HCl 251
angular momentum $J > 1/2$	general symmetries 5
non-isotropic angular distribution 2	half scattering 97
anisotropy	half-integer total angular momentum
Dirac-Fock intermediate coupling	linear equation 64
123	helicity system 42
continuum wavefunction 168	$J_f = 0$ states 249
counterparts of X-rays 1	$J_f \neq 0$ states 249
emitted by light elements	linear dichroism 12, 245
outermost shells of heavy elements 1	molecular
emitted from K-shell vacancy of diatomic	two-step process 213
molecule	molecules
non-isotropic angular distribution 9	adsorbed at surface 211
energies	sharp axis orientation 211
Hartree–Slater calculation 121	normal vs. resonant 69
initial hole in continuum 104	quantization axis
kinetic energy 226	beam axis 50
molecular	resonant
angular distribution 251	CO 251
momentum 41, 237	resonant closed shell 175
scattering in field of ion 4	resonant Raman 251
spin component 237	rotating molecules 211
spin polarized	spin polarized
final state interaction with core charge	open shell atoms 248
124	subsequent
from solid surface 252	information about intermediate ionic
isotropic angular distribution 7, 117,	state 23
133	two-particle interaction ix
spin tensors 41	two-step model 176
tensors $\langle t_{kq}^+ \rangle$ 38	Auger energy 1, 134, 141, 142, 148, 158
terms of state multipoles 42	161, 176, 178, 180
unpolarized 223	decreasing
isotropic angular distribution 76	exchange becomes important 97

independent of generation of primary	molecular 211, 251
hole 76	polyatomic 229
Auger line	Auger rate 92, 102, 115, 177
fine structure splitting 177	absolute 115, 200
incoherent overlap 196	absolute values of transition matrix
intensities	elements 1
angular distribution and spin	angle integrated spectrum 1
polarization parameters 7	angular distribution parameter 158
influence of potentials 176	forbidden transition 207
Lorentz profiles 180	integration over solid angle 43
large dynamic spin polarization 162	spin polarization parameter 158
large intensity	total KLL
measurable anisotropy coefficient	alkali elements 116
209	Auger satellite
Lorentz profiles 180	non-diagram lines
measurable anisotropy 194	high J -part 174
natural width 94	Auger spectrum 14
non-diagram	HF 213, 228, 247
non-vanishing DSP 171	high resolution 131
non-relativistically forbidden ³ P ₁ 182	molecular
non-zero anisotropy coefficients 195	angle integrated 226
participator decay	open shell systems 177, 198
main lines 69	Auger transition
spectator decay	amplitudes 4, 91
satellite lines 69	reduced 102
Auger matrix element	angle and spin resolved 11
Breit interaction 180, 192	calculation of amplitudes 6
Coulomb interaction 192	energies 199
Coulomb repulsion 180, 186	energy 211
exchange interaction	equivalent electrons 107
continuum waves 192	free atoms 117
static Coulomb repulsion 115	free molecules 211
Auger multiplet	heavy atoms
energy resolution 176	large fine structure splitting 91
intensity 176	in-reaction plane components
Auger partial wave	spin polarization vector 140
parity 159, 160	independent of matrix elements
total angular momentum 159	LS coupling 206
Auger peak	$J_f = 0$ states 206
even parity 204	kinetic energy
odd parity 204	Auger electron 99 LSJ notation 178
Auger process	matrix elements 92, 206
angle and spin resolved	•
molecular 211	angular anisotropy parameter 168 continuum and bound state wavefunc
dynamics 14	tions 115, 177
indistinguishable 105	MCDF approach 6, 91
many-particle problem 4	MCDF approach 6, 91 MCDF wavefunction 110
many-particle problem 4	MICDI Wavefullelloll 110

relaxed orbital method 167	diatomic molecules
scattering phase 168	Σ -states 236
spin polarization parameter 168	isotropic 213
model independent 132	molecules 217, 247
non-vanishing spin polarization	oriented 217, 233
anisotropic angular distribution 133	polarized 233
non-zero anisotropy parameter	axis distribution function 240
unresolved fine structure 210	axis of alignment
open shell atoms 175	direction of Auger electrons 54
open shell systems 189	axis orientation 235
oxygen atom 196	
parity of electronic orbital angular	B representation 239
momenta 62	Bessel function
probability 211	spherical 227, 274
rates 91	B_{exci} parameter
influence of relativistic and exchange	real quantity 28
effects 115	bi-linear product
relativistic 111	interference terms 33
relaxed orbital method	Bloch waves 252
MCDF approach 158	bound electron wavefunction
	field of singly ionized atom 144
scattering phases 102 single channel 120	bound state orbital
•	initial and final states 114
Slater exchange potential	bound state wavefunction
deviations from experiment 98 unresolved intermediate fine structure 5	intermediate and final states 92
	MCDF package 92
Auger–photoelectroncoincidence spec-	Breit interaction 6, 194
troscopy 250	corrections 195
autoionization	relativistic 182
amplitude and phases 111	Breit-QED and exchange interaction
two-step 153	same but opposite magnitude 116
autoionization decay 250	
autoionization resonance 165	C-coefficient 60
autoionizing state 227	symmetry 46
average level calculation	C_2 -axis 234, 239
mixing coefficients	C ₂ -rotation 239
intermediate coupling 144	C_{2v} point group 247
average level mode 112, 167	C_{2v} symmetry 234, 235
average level scheme	C ₃ -operator 242
mixing coefficients	C ₃ -rotation 242
CSF 177	C_{3v} point group 247
axial symmetry	A ₁ -representation 243
molecular ensemble 217	A ₂ -representation 243
probability density 238	C_{3v} symmetry group 241
system 240	cesium 195
axis distribution 235	decay rate
aligned 217, 233	Breit interaction 180
anisotropic 232, 240	exchange interaction 180
non- Σ vacancy 211	intermediate coupling scheme 195

KLL Auger spectrum 184	molecular states 218
9-line spectrum 182	states with different quantum number M
charge density	multipoles with $Q \neq 0$ 21
anisotropic deformation	coherence parameter 225, 240, 241, 247
electronic or nucleus 94	nonlinear molecules 230
core	coherence property
finite or point 95	non- Σ vacancy 212
final ionic state	coherence term 224, 225
doubly ionized 97	coherent excitation 80, 224
finite core	coherent ionization 212
Woods–Saxon form 95	coherent summation
symmetry 96	initial state
charge distribution	fine structure 208
electron shell and core 94	coherent superposition
charge transfer x	Λ -doublet state 212
charged particle	coherently excited orbital
detection of low energy electrons 1	shape 240
chemical shift 187	spatial orientation 240
CI see correlation-interaction	coincidence experiment 249
circular dichroism	angle and spin resolved 251
angular distribution 252	coincidence studies 252
circular polarization	collision
$\eta_2 \neq 0$ 57	excited species 1
circularly polarized light	high energy particles 1
right and left-handed 72	negative ions 1
circularly polarized photon beam	complete basis set 25, 30, 35
orientation	initial and final states 38
intermediate ionic state 117	complete data set
classification	angular distribution parameter 123
states 196	relative intensity 123
Clebsch–Gordan coefficient 253	spin polarization parameter 123
via 3 <i>j</i> -symbol	complete experiment
orthogonality properties 21	transition amplitude
Clebsch–Gordan series 266, 267	scattering phase 2, 14
inverse 266	completeness relation 218
closed shell atom	complex conjugate 39
rare gases 177	complex rotation matrix 40
coefficient $A(KkQ)$ 45	compound tensor
coefficient α_K 45	matrix elements 277
coefficient ξ_2	configuration interaction 246
Hg N _{6,7} O _{4,5} O _{4,5} Auger emission 150	correlation effects 133
coefficient ξ_K^{even}	final state
imaginary parameters 61	FISCI 144
coefficient ξ_K^{odd}	$Xe N_{4,5}O_1O_{2,3}$ spectrum 131
real parameters 61	initial and final state
coherence	correlation effects 7
degenerate electronic states 230	initial state
degenerate states 239	ISCI 144

multi-channel Schwinger calculation	coordinate frame 14, 279
252	body-fixed 263
configuration mixing coefficient 94, 112	helicity system 38
contributing CSF 104	molecular 231
configuration state function 6, 92, see	space-fixed 231, 263
CSF, 228	coordinate system 15, 22, 279
antisymmetrized product	laboratory 213
Dirac orbitals 93	molecular 230, 238
conservation	molecule-fixed 213
angular momentum 124	space-fixed 213, 230, 238
spin 207	_
consistent data set	x-z plane 54
analysis of experiments 130	core density
constructive interference 162	finite nucleus 96
continuum exchange 6	correlation effect 143, 145, 246
continuum spinor 198	between electrons 97
exchange interaction 180, 182	electron-electron 151
final scattering states 112, 176	excited CSF 145
normalization 176	final state wavefunction 145
normalization and phase 114	higher excited states 143
phase 176	small influence of ISCI 147
continuum state 109	strength 248
energy of hundred eV	correlation-interaction
exchange negligible 97	space 228
continuum wavefunction 98, 100, 101,	wavefunction 228
110	Coulomb interaction 159
asymptotic behaviour 102	Auger electron
Auger electron 94, 144	with ionic charge distribution 94
Breit interaction 177	conservation of parity 61
Coulomb potential 114, 177	invariant under reflection of total system
exchange interaction 177	32
generation 92	Coulomb operator 29, 38, 218
linear combination	expansion into Legendre polynomials
regular and irregular Coulomb	106
functions 102	invariant under rotation 55
non-relativistic 101	reflection invariance
radial part 99	irreducible tensor of zero rank 40
regular and irregular asymptotic solutions	
101	unchanged under reflection in reaction
contraction	plane 40
3 <i>j</i> -symbols 256, 261	Coulomb phase 101, 102, 159
6 <i>j</i> -symbols 262	angular momentum 161
Cooper minimum 130, 143	Ar transitions 161
above threshold	partial waves 163
$\varepsilon(\ell+1)$ partial amplitude 137	Coulomb potential
partial amplitude 128	
	long-range 226
coordinate electronic and hole states 106	long-range 226 repulsive between two electrons 97

Coulomb repulsion	diagonal elements 19
static	diagonal in J
between pair of electrons 93	mixture of J states 21
coupled ensemble	diagonal in M 21
description 20	expanded into basis
coupled equation	orthonormalized states 19
system of linearly 102	final state
coupled integro-differential equation	transition operator 29
inclusion of exchange	ion
non-local term 97	expanded into state multipoles 38
coupled system	molecules M^+ 239
sum of direct products 20	off-diagonal elements 239, 240
coupling rule	properties 19
3nj symbols 207	state multipoles 21
cross section 137	synchrotron beam
electron impact ionization	Stokes parameters 23
highly charged ions x	theory
excitation 249	applied to first part of Auger process
Cs KLL Auger transition 177	22
CSF	trace 38
configuration mixing coefficients 93	density matrix theory 19
even parity 198	density operator 20
jj coupled 145	describing mixture 19
jj-coupled basis 154	expansion
large basis sets 6	irreducible tensor operators 21
large number 114	destructive interference
mixing coefficients 198	between partial waves 162
same symmetry 114	determination of spin polarization
odd parity 198	dynamic
total angular momentum $J=106$	direct probe of FSI 56
-	diagram transition
decay width 148, 180	excitation of inner shell electron
double photoionization 13	into Rydberg level 7
degenerate state	interfering partial waves 162
doubly 240	diatomic molecule 213
Δ -SCFCI method 245	homo-nuclear 225
Δ -state 225	differential equation 97, 112
density	decoupled set 6, 91
electronic charge cloud	de'Vogelaere method 102
ASF 94	inhomogeneous coupled set 112
density matrix 214, 245	dipole approximation 27
application of framework	angular momentum algebra 28
scattering problems in atomic and	long-wavelength limit 279
molecular physics 19	dipole matrix element 280
combined ensemble	expansion 279
photoelectron and intermediate ionic	length form 279
state 23	velocity form 279
combined ionic and electronic ensemble	dipole operator 279
statistical tensorial sets 23	irreducible components 26

dipole selection rule 212, 229, 235	measurable effect 175
Dirac equation 114, 115, 177	multiplet
Breit interaction 114, 177	LS coupling 164
Coulomb potential 114, 177	unresolved Auger lines 165
exchange interaction	dynamic spin polarization 124, 166, 246
continuum orbitals 177	Auger decay dynamics 4
exchange interaction in the continuum	Auger transition
114	$J_f = 1/2$ final state 158
intermediate coupling potential	diagram transitions 152, 157
electron exchange with continuum	DSP 163
168	enhancement 162
model potential 144	evidence
small component 99	low resolution spectrum 8
Dirac Hamiltonian	final state configuration interaction
one-electron	large basis set 118
potential of nucleus 93	FSI experienced by Auger electron
Dirac–Coulomb Hamiltonian	leaves the target 55
radial orbitals	generation 54
generated self-consistently 93	large ξ_2 parameter 170
Dirac–Fock equation	measurable 118
Auger electrons	phase shift
stationary field of the ion 98	ε s _{1/2} partial wave 160
stationary field	resonant Auger transition 152
doubly ionized ion 112, 176	resonantly excited
Dirac–Fock orbital	$Xe^* (4d_{5/2}6p_{3/2})_{J=1} N_5 O_{2,3} O_{2,3}$
with non-zero spin 97	Auger spectrum 157
Dirac–Fock wavefunction 92	small
large and small components 94	diagram transitions 118
relativistic approach	small polarization degrees 124
neglect of small component 91	unpolarized beam and target 4
small component 6	unresolved lines 160
direct integral 110	values small for scrutiny
direct potential	most of diagram transitions 8
expansion coefficient 112	vanish for almost all lines
direct product 29	Auger spectrum 118
direct term 107, 110	dynamic spin polarization parameter 141,
direct-process 104	158, 161
distorted wave approximation 164	(2) D 11 D (; ; ; ; ; 1D (;)
doubly ionized target	(e, 2e), Double Photoionization and Related
hole states 109	Topics 252
DSP	(e, 2e) experiment 249, 252
Auger lines 164	(e, 3e) experiment 249
CI-induced effect	eigenfunction
final ionic state 175	rotation matrix 264 8 CSF-CI 173
conditions of partial waves	8 CSF-CI 173 small DSP
relative phase shifts 163	
configuration interaction	propensity rules 175 Einstein
final ionic state 165	photoelectric effect ix
mai iome state 103	photociccuic chect IX

ejection or emission	electron or photon impact
from surfaces 1	excitation or ionization process
electric field vector 17	information of experiment 5
axis invariant	electron spectrometry
reflection under three planes 76	high-resolution 152
linear combination of two components	electron spectroscopy
73	angle resolved 152
oscillation	electron spectrum
perpendicular to reaction plane 76	spin resolved 165
projection onto the axes 73	electron spin effect 252
superposition 18	electron wavefunction
electromagnetic wave	expansion 280
visible, UV or X-ray range 1	electron–atom scattering 252
electron	electron–target system
Auger see Auger electron	
inelastically scattered 29, 35	axial symmetry
photo see photoelectron	angular momentum subspace 83
spin filter 250	electron-electron coincidence experiment 152
unpolarized 231	
electron beam	electron-electron correlation 4, 192
arbitrarily polarized 29, 35	anisotropic
longitudinally polarized 15	electron emission 163
polarized	electron-electron interaction
spin polarization vector 15	correlation inside atom 1
transversely polarized 15, 222	electron-exchange effect 4
unpolarized 222	electron-ion interaction
emission of unpolarized photoelectrons	anisotropic
76	open shell atoms 175
monoenergetic 76	electron-ion recombination x
electron cloud	electronic charge cloud
aligned	electron other electron interaction 159
rotation of the symmetry axis 82	orientation 251
electron emission	shape 251
photon impact ix	size 251
electron energy	electronic charge density 98
analysis 165	electronic momentum 26
electron exchange	electronic orbital
short-range effect 97	coherently excited
electron impact 12	shape 212
electron impact excitation 29	spatial orientation 212
Auger emission 249	directed 225
parameter B_{scat}	shape 211
scattering phase and incoming partial	spatial orientation 211
waves 31	electronic relaxation
electron impact ionization 34	incomplete orthogonality of wavefunc-
independent parameters 9	tions 111
electron or photon beam	electronic spin effect
unpolarized or polarized 11	solid state 252

electronic tensor	excitation/ionization process
magnetic component	atom 13
transferred to excited atomic ensemble	electronic
32	unpolarized target 83
elliptically polarizing undulator	electronic or photonic 5
EPU 165	electrons
emission	angular distribution 52
Auger electrons 38	selection rules 52
photo- see photoemission	general equations 45
emitted electron 12	neglect of spin dependent forces 83
energy loss spectroscopy	expansion coefficient 263, 280, 288
spin polarized 252	basis states 19
energy offset 171	order parameter 215
energy splitting 80	expansion of basis set
ensemble	one-center 226
axially symmetric 214	expectation value 97
incoherent superposition of states 21	angular momentum operators 80
ions	operator Ö
anisotropic 38	trace of product $\hat{\rho}$ and $\hat{\mathbf{O}}$ 19
molecules	experiment
axially symmetric 233	measuring spin polarization of Auger
equilibrium geometry 228	electrons
equivalent electrons	electron impact ionization 3
direct and exchange terms 110	experimental observable
ESA x	angular distribution
Euler angle 58, 213, 230, 232, 235, 264	Auger electrons 4
exchange integral 110	spin polarization
exchange interaction 192, 194	Auger electrons 4
continuum and bound state electrons	experimental set-up 164
113, 176	Auger electrons
electron and final core 180	X– Z plane of laboratory frame 71
emitted electron and final ionic core	
115	factorization
with continuum 92	angular distribution 224
exchange potential 96, 100	problem 223
attractive 97	problem of
Furness and McCarthy	two-step model 212
energy dependent 98	Fermi character 249
singlet and triplet version 98	electrons 104
vanish for low densities and high	Fermi level
energies 98	solid state 179
repulsive or attractive 97	Fermi statistic
Slater approximation	anti-symmetrize 105
	final ionic state 38
energy independent 98	final state
exchange term 107, 110 exchange-process 105	admixture 145
8 1	total angular momentum
excitation	parity 178
photo- <i>see</i> photoexcitation	with equivalent electrons 106

final state ASF	FISCI and ISCI calculation
basis set of 36 CSF	excited initial CSF 147
36 CSF-CI 168	FISCI calculation
basis set of 8 CSF	final state
8 CSF-CI 168	strongest CSF 147
final state configuration	fluorescence photon 251
mixing coefficients	fluorescence polarization 251
Hg N _{6,7} O _{4,5} O _{4,5} Auger transition	fluorescence yield
145	emission of X-ray or Auger electron 1
final state configuration interaction	fluorine atom 228
small basis set	Foldy–Wouthuysen transformation 100
low resolution spectrum 118	four-component wavefunction
final state interaction see FSI	reduce to two-component 99
Auger electron and residual ion 4	4^{th} rank tensor
final state wavefunction	components A_{40} and $Re A_{41}$ 82
linear combination of CSF 154	free electron beam 33
	free electron gas
outgoing Coulomb wave incoming spherical wave 55	Fermi hole 98
incoming spherical wave 55 fine structure	freely rotating molecule
	analysis
final state	theoretical framework 9
unresolved 198	FSI
fully resolved	neglect
non-vanishing DSP 163	electron by plane wave 55
initial state	outgoing Auger electron
unresolved 198	remaining ion 55
non-resolved 164	scattering of Auger electron
splitting of states	field of residual ion 13
smaller than natural line width 80	full width half maximum see FWHM
unresolved components 174	FWHM 170, 182, 185, 203
unresolved multiplets 185	1 WINVI 170, 162, 163, 203
fine structure constant 100, 279	$(\gamma, 2e)$ experiment 250
fine structure level	$(\gamma, e\gamma)$ experiment 250
multiplet states 199	$(\gamma, e\gamma e)$ experiment 251
fine structure multiplet	Gauss type function
mixed diagram/non-diagram character	Cartesian 227
174	Gauss type orbitals 226
fine structure splitting 199	Gaussian function
magnitude	primitive 228
intermediate ionic levels 56	Gaussian functions 228
multiplet	Gaussian line shape 171
overlap of orbitals 195	general equation
multiplets 182, 186	angular distribution and spin polarization
fine structure state	221
energy resolution 194	generalized occupation number 112
energy splitting 199, 200	generation of spin polarization
unresolved 203, 224	in-reaction plane 156
first order Born approximation 29, 218	perpendicular to reaction plane 156
first order perturbation theory	geometrical factor
density matrix 38	transition matrix element 141

GRASP program	Herman–Skillman potential
atomic structure package 178, 199	continuum electron 119
dump file	Hermitian matrix 19
energies and wavefunctions 111	Hermiticity condition 33
multiconfigurational 111	HF Auger spectrum
Greens operator 226	angular distribution parameters 9
diagonalization 227	Hg $N_{6,7}O_{4,5}O_{4,5}$ Auger spectrum 246
effective free 227	configuration basis set
group intensity 189, 203	f-electrons 7
group theoretical method	correlation effects
generalized to polyatomic molecules 9	angular anisotropy and spin
8	polarization data 7
H-coefficient 60	Hg $N_{6,7}O_{4,5}O_{4,5}$ Auger transition 144
symmetry 48, 50	angular distribution parameter 118
H ₂ O molecule 9, 213	relative intensity 118
axis convention 234	spin polarization parameter 118
Hamiltonian matrix	high resolution spectrometer 4
diagonalization 110	higher order parameter
representation of atomic states 94	large angular momentum 77
electronic 226	Hilbert sub-space 255, 258, 276
molecular fragment 226	angular momentum 277
perturbation	Hubble Space Telescope x
radiative corrections 94	Huzinaga basis set 228
Hankel function	hydrogen atom 228
spherical	I(ab) integral
-	one-body interaction 114
first type 275 Hartree potential 101	identity operator 274, 276
Hartree <i>Y</i> -function 112	independent parameter
Hartree–Fock calculation 200	number of 229
	initial atomic ensemble
alignment and orientation function of photon energy 128	unpolarized 23
function of photon energy 128 inner shell	initial atomic state
alignment and orientation 127	photoabsorption 28
Hartree–Fock wavefunction	total angular momentum $J_0 = 0$ 29
LS coupling 121	unpolarized 24
Hartree–Fock–Slater function 189	initial hole state 109
Hartree–Slater wavefunction	initial orientation
bound and continuum electrons 121	upper and lower bounds
single electron	LS coupling 133
bound states 119	initial state
heavy atom	jj-coupled 154
•	non-zero alignment
large fine structure splitting 6	anisotropy parameter $\alpha_2 \neq 0$ 189
helicity frame <i>see</i> helicity system	initial state wavefunction
arbitrarily oriented 70	ground state
laboratory/collision frame 58	single hole 145
helicity system 15, 40, 279	initial vacancy
transforming to laboratory frame	electron impact 213
quantization beam axis 40	Σ -state 225

inner shell	intermediate coupling calculation
excitation 245	correlation and relativistic effects 127
ionization 245	intermediate coupling potential 94
molecules 251	mixed CSF
K-hole 198	final ionic state 168
integro-differential equation	intermediate excited state
coupled set 6, 91	linear combination
evaluation of continuum wavefunction	<i>jj</i> -coupled 167
6, 92	intermediate ion 12
inhomogeneous part	intermediate ionic state 38
orthogonality by Lagrange multipliers	aligned 124
6, 92	alignment generated
reduce system	transformed into spin polarization via
differential equation of Schrödinger	final state interaction 4
type 97	charge distribution
intensity	axially symmetric to beam axis 54
angle dependent	J = 1/2 133
intermediate ionization states 5	$J \le 3/2 - 82$
Auger electrons 222	oriented
total 223	polarized atom or ionizing particle 3
intensity distribution	oriented but not aligned 7, 117
fine structure transitions 202	singly ionized
interacting quantum system 20	tensors Tkq tensors $\langle T(J)_{KO}^{+} \rangle$ 38
interaction	spin polarization
electrons and photons	perpendicular to reaction plane 133
with atoms and molecules 1	total angular momentum 85
mixing of core states 153	intermediate state
outer electron with core	decay
MCDF calculation 153	Coulomb interaction 153
photon-molecule 211	excited
interference	life time 69
between partial waves 136	excited atomic/ionic
Auger emission 158	total angular momentum $J = 1/2$ 77
between states 225	fine structure 80
different partial waves	singly ionized
linearly polarized light 163	unresolved multiplet 80
total angular momenta	internuclear axis 213
Auger electron 136	internuclear distance 228
intermediate coupling 125–127, 154, 158,	interrelation
167, 178, 194, 195, 199	angular distribution and spin polarization
admixtures	11
final state CSF 145	linear and non-linear
influence	angular distribution and spin
weak in Ar 121	polarization 47
interference term 126	intrinsic Auger decay
MCDF calculation 152	orientation and alignment 127
scheme 178, 199	intrinsic spin polarization 3, 140, 157
wavefunction 125	Ar L ₂ MM Auger multiplet 117

Auger electrons 135	K KLL Auger transition 177
polarization transfer	K-shell vacancy
LS coupling 124	diatomic molecule 211
intrinsic spin polarization parameter 124,	kinetic energy
131, 140–142	Dirac–Fock calculations 156
Ar L ₂ MM Auger transition 135	KL ₁ L ₁ Auger transition 199, 202
independent of matrix element 136	$KL_1L_{2,3}$ Auger transition 199, 202
isotropic Auger lines 135	$KL_{1}L_{2,3}$ Auger transition 199, 203 $KL_{2,3}L_{2,3}$ Auger transition 199, 203
ion	LS coupling forbidden 186
oriented but not aligned 133	
ionic bound state	KLL Auger decay
initial and final 93	independent of matrix elements
ionic state parameter 128, 130	LS coupling 192
ionic state wavefunction	KLL Auger energy
linear combination of CSF 145	cesium transitions 179
ionization	sodium transitions 179
photo- see photoionization	KLL Auger line
unpolarized electrons or photons	resonant excitation
multipole tensors A_{KQ} with $Q = 0$	$^{3}S_{1}$ state 178
54	initial states 199
ionization energy 125	KLL Auger spectrum
ionization process	alkali atoms
coherence 9	two-step model 176
electron or photon impact 11	alkalis 115
ions in excited states 5	atomic oxygen 196
shape and spatial orientation of orbitals	relative intensities 207
11	final state configuration 198
spin independent 80	isotropic
influence of correlation effects 188	no alignment 8, 119
ionizing electron beam	no spin polarization 117
polarization states 9	
ionizing electron or photon	oxygen ground state 198
polarized or unpolarized 5	
irreducible representation	
rotation group 263	structure 198
irreducible tensor	KLL Auger transition
matrix elements	3 S ₁ initial state 190
expressed by $3j$ -symbols 25	$\alpha_2 = 0 189$
irreducible tensor operator	alkali atoms 119, 175
standard components 273	alkali elements
tensorial product 275	absolute Auger rates and angular
isotropic distribution 236	distribution 8
isottopio distribution 200	angle resolved 8
<i>jj</i> coupling 104, 108	angular distribution 175
relativistic processes 104	atomic oxygen 8, 119
scheme 153	anisotropy coefficient 208
jK coupling	ground state 198
final states 154	cesium
scheme 153	anisotropy coefficient 197

large anisotropy parameter	orthogonality theorem 96
alkali element 196	product of Racah tensors 106
neon 186	series 95
non-zero alignment 189	limiting value
open shell 124	alignment and orientation 128
non-zero anisotropy parameter 189	ionic parameters 128
open shell atoms	line intensity
non-zero alignment 191	relativistic corrections 180
potassium	
anisotropy coefficient 195	line strength 152
rare gases 195	line width
rubidium	initial state multiplets
anisotropy coefficient 196	fine structure splitting 207
sodium	linear combination
	plane and spherical waves 99
anisotropy coefficient 193	linear dichroism
KLL final state	angular distribution 88, see LDAD
energetic order 194	Auger electron
KLL open shell Auger line	unpolarized targets 77
angular anisotropy 189	Auger emission
KLL open shell transition	photoionization/excitation 5
LS coupling scheme 190	linear equation
$\text{Kr}^* 3d_{5/2}^{-1} 5p (J = 1) \to 4p^{-2} 5p \text{ decay}$	depend on phase factor 65
153	linear expression
Kr M _{4,5} N _{2,3} N _{2,3} Auger transition	J = 5/2 68
angular anisotropy parameter 131	linear molecule
anisotropy coefficient 121	diatomic 9
relative intensities 131	linear polarization
spin polarization parameter 131	$\eta_3 \neq 0$ 57
	.5 /
laboratory frame 15	linearly polarized photon beam 74
collision frame	$\eta_1 = \pm 1$
arbitrarily oriented 70	electric field vector oriented at angle
Lagrange multiplier 113	$\chi = 45^o (135^o) 73$
ensuring orthogonality 113	Stokes parameter $\eta_3 \neq 0$ 56
Λ -representation 242	Stokes parameters η_1 and η_3 73
large dynamic spin polarization	Lippmann–Schwinger equation
caused by large shift	effective 226, 228
scattering phase 118	local exchange potential
resonant Xe* $(4d_{5/2} \rightarrow 6p) N_5 O_{2,3} O_{2,3}$	energy dependent
spectrum 118	calculation of continuum wavefunction
laser excited atom 199	6, 91
law of superposition 17	logarithmic derivation 102
LDAD asymmetry parameter 88	longitudinally spin polarization
magic angle 89	Auger electrons
left–right asymmetry parameter 81	odd K values 53
electron impact 81	Lorentz profile 169
Legendre polynomial 56, 217, 238, 268	Auger lines 203
associated 81, 87, 268	FWHM
orthogonality relation 223	Auger lines 171

	14000
LS coupling 125, 199	MCDF scheme
character of transition 202	Breit interaction
ionic states	transverse 93
initial and final 119	MCDF wavefunction 92
scheme 154	CSF expansion
selection rule $\Delta L = 0$	sequence of energies 178
parity violation 178	intermediate coupling 154
LSJ coupling 125	re-normalize 96
exchange effects	MCHF calculation 204
channel coupling 124	mean orientation angle
subshells	effective 232
different spin coupling 129	mesh
	mesh points 109
magia angla	mixture of states
magic angle	statistical weight W_n 19
angular function 271	
magnetic dipole vector	model potential 4^{th} -order corrections 99
orientation tensor of rank one 80	
magnetic projection 64	Darwin term 99
magnetic properties	derivative 96
matter 163	evaluation of continuum wavefunction
magnetic sublevel	92
asymmetric population 124	mass-velocity term 99
main quantum number 126	POTRES program 94
many-body perturbation theory see MBPT	scalar
many-electron system	spherical symmetry 99
spin up and spin down electrons	semi-relativistic
electronic densities 98	terms up to order of α^2 100
matrix element	spin-orbit term 99
expansion 281	$U_{mod}(\mathbf{r}, \alpha)$
linear combination 154	specific ASF 96
modulus	$U_{mod}(r)$
related to coefficient $A(000)$ 43	charge density of ionic state 101
relativistic approach 6	derivative 101
selection rules 242	molecular anisotropy parameter
MCDF approach 140, 200, 245	basic difficulty
ab initio 198	determination of scattering phase
ANISO program package	numerical methods
relaxed orbital method 124	scattering phase 9
full relativistic	molecular Auger electron
intermediate coupled 192	angular distribution 247
MCDF calculation	molecular symmetries 10
ab-initio 176	spin polarization 247
MCDF model	molecular Auger process
linear combination of CSF	angle and spin resolved 8
ASF 92	energy and probability of Auger
atomic state 110	transition 8
MCDF program 110, 167	molecular Auger rate
atomic structure 93	multi-center basis expansion 9

molecular axis	multi channel transition 120
direction cosines 235	multi-center basis set
isotropically distributed 231	uncontracted 228
molecular basis set	multi-channel plate
multi-center 227	MCP 166
molecular ensemble	multi-coincidence study 249
anisotropy 214	multi-variable function
axially symmetric 231	non-linear
characterization 214	interdependence 67
invariant under reflection 233	multichannel transition 127
order parameter 212	multiconfigurational Dirac–Fock 6, 91,
parameterization 229	see MCDF
-	program 144
symmetry plane 231 molecular ion	multiconfigurational Hartree–Fock 198
	multiplet
degenerate 243	-
excited 252	incoherent overlap 194 statistically distributed 207
molecular spectra 251	multiplet components
molecular state	asymmetric population 175
coherently excited 239	multipole expansion 274
energetically separated 224	multipole expansion 274 multipole tensor
symmetry properties 239	uncorrelated 83
molecular symmetry 213	uncorrelated 85
molecular vacancy	Na Auger transition
decay 251	angle resolved spectrum 197
molecular vibration 243	large anisotropy parameter 197
molecule	Na KLL Auger transition 177
diatomic and small polyatomic 8	laser excited 202
electronic ground state 231	angle resolved 8
freely rotating 230	Na spectrum
higher symmetry	LS coupling character 180
electronic degeneracy 229	NASA x
point groups	near-threshold state
degenerate 230	multiplet
non-degenerate 230	correlation effects 152
rotation 213	near-threshold transition 149, 151
neglect 230	neutral atom
Σ -state 213	electronic configuration
unpolarized 231	
vibrational ground state 231	rare gases 103 NH ₃
momentum	-
Auger electron 218	ground state configuration 243
_	Nicol prism 16
monotonicity theorem 47	9j-symbol
limits for anisotropy parameter ξ_1 49	symmetries 83
Mott analyzer 3	nj-symbol
Mott detector 166	3 <i>j</i> -symbol 254
Mott polarimeter	6 <i>j</i> -symbol 255, 256
asymmetries 166	9 <i>j</i> -symbol 258
Rice type 165	selection rules 41

noble gas	nuclear physics
singly ionized 153	applied to electron emission
non-linear interrelation 245	atomic physics ix
angular distribution and spin polarization	numerical integration
parameters	continuum orbitals
Auger emission 5	scattering phases 111
non-relativistic calculation	numerical method
Hartree-Fock	angular distribution parameters 5
LSJ coupling 127	relative intensities 5
MBPT correlations	spin polarization parameters 5
LSJ coupling 127	
non-vanishing parameter A_{22}	O KLL Auger spectrum 119
deformation of ionic charge cloud	O KLL Auger transition 202
cigar or disc like form 57	observable
non-zero alignment	evaluation 245
anisotropic deformation of ionic charge	occupation number
cloud	non-integer 95
axially symmetric to photon beam axis	total angular momentum 94
57	one-center basis expansion 228
non-zero spin polarization	open shell atom 8, 119
isotropic Auger lines 138	open shell system
normal Auger decay 152	alkali elements 176
intermediate coupling	Auger spectra 246
final state 153	optical data 200
normal Auger transition	order parameter 216, 217, 240, 247
amplitudes 153	axis distribution
normalization 38	molecules 229
	geometrical interpretation 235
normalization condition 232	geometry and dynamics 238
normalization parameter	physical significance 225
Auger emission	real 235
A(000) 41	rotation matrix
electron excitation	expectation values 232
$B_{scat}(000)$ 33	symmetry properties 230, 233
$B_{scat}^{J_0=0}(000)$ 34	orientation
electron ionization	coincidence experiments 249
$B_e(000)$ 36	components \mathcal{O}_{1Q} 78
$B_e^{J_0=0}(000)$ 37	electron impact excitation 248
photoexcitation	electron impact ionization 249
$B_{exci}(0)$ 28	intermediate ionic state
$B_{exci}^{J_0=0}(0)$ 29	polarization transfer 7
photoionization	intermediate state
$B_{phot}(0)$ 27	transferred to Auger electron spin
$B_{phot}^{J_0=0}(0)$ 27	124
	intrinsic 78
selection rules	intermediate excited state 156
symmetries of <i>nj</i> -symbols 34	molecular axis 214
normalized weighted polarization	parameter \mathcal{O}_{10}
asymmetry parameter 85	circularly polarized photon beam 57

parameter \mathcal{O}_{10}	parity
LSJ coupling 128	excited intermediate state 160
photoexcitation 248	states 159
photoionization	parity violation 206
closed shell atoms 248	partial amplitude 126
inner shell 248	partial decay width 164
open shell atoms 248	partial intensity
valence shell 248	36 CSF-CI
photon energy dependent 124	spin polarization 171
primary ion 133	spin-down 171
transferred 78	spin-up 171
transferred to electronic spin 3	spin-up and spin-down
upper and lower bounds 136	circularly polarized light 169
orientation factors 236	partial wave
orientation parameter 128, 136	angular momentum 216
component $Im \mathcal{O}_{11}$ 78	free particle 226
component \mathcal{O}_{10} 78	interference of different 46
component \mathcal{O}_{K0}	one-center basis
longitudinally polarized ionizing	Greens operator methods 9
electron beam 53	orbital and total angular momenta 41
estimates 143	incoming electron 31
ionization and excitation dynamics 45	relative phase shift 170
third rank 79	_
orientation tensor 248	same parity excitation process 33
components	
intermediate ionic state 85	partial wave expansion 35, 228, 280
Stokes parameters	coefficients c_{ℓ}^{J} 107
photoexcited atom 70	incoming and outgoing electrons 31
polarization state of synchrotron beam	transition amplitudes 219
70	triple 281
orientation triangle 236	partial wave series
orthogonality relation 254, 255, 258	Auger electrons 237
overlap	partial wave states 242
between basis sets 227	partial width 81
oxygen atom	fine structure
singly ionized 200	Auger lines 170
oxygen KLL Auger line	Pauli principle
angular distribution	jj coupling scheme
anisotropic 209	general restriction 108
oxygen KLL Auger spectrum 198	PCI
² D initial state 204	negligible during Auger emission 13
² P initial state 203	phase difference 283, 284
² S initial state 204	cosine
³ P ground state 199	parameters α_K , δ_K and ξ_K^{odd} 49
⁴ P initial state 203	sine
energies 199	parameter ξ_K^{odd} 49
oxygen KLL Auger transition	phase shift 102
absolute rates 202	analysis 164
relative intensities 201	between partial waves 161 partial waves 159
relative iliteristites 201	partial waves 159

$Ar^*(2p_{3/2}^{-1}4s_{1/2})_{J=1} L_3M_{2,3}M_{2,3}$	photon alignment
resonant Auger transition 161	$\langle \mathcal{T}_{20}^+ \rangle$ proportional to monopole 24
$Xe^*(4d_{5/2}^{-1}6p_{3/2})_{J=1}N_5O_{2,3}O_{2,3}$	proportional to monopole 24 photon beam
resonant Auger transition 160	aligned
small relativistic 170	transversal character 163
photoelectron-photoion coincidence studies	transverse character of electromagnetic
angle resolved 251	field 24
photoabsorption	arbitrarily polarized 23
molecules 211	circularly polarized, η^2 15
photoelectric effect	incomplete monochromatized
track of photoelectron 1	fluctuations in kinetic energy of
photoelectron 251	photoelectrons 76
emitted into continuum	linearly polarized 18
atoms in singly ionized states 23	photon polarization
photoemission 279	terms of Stokes parameters 15
molecule 252	photon polarization vector 279
of NO 252	photon propagation 165
photoexcitation 28	photon state
circularly polarized light 156	helicity 25
J = 1 states	photon-molecule interaction
dipole approximation 78	anisotropic nature 9
linearly polarized photons 153	photonic and target system
resonant Auger transition 38	axially symmetric
symmetries 12	photon beam axis 72
photoexcited target 250	photophysics
photoionization x, 12, 13	atoms 125 Π-state 225
absorption of synchrotron radiation 23	Pierre Auger
circularly polarized light 123	Auger effect ix, 1
LS coupling limit 140	Π_X -state 225
closed shell atoms	Π_y -state 225
partial amplitudes 128	plane wave
rare gases or earth alkalis 27	large component 99
cross sections 130	point group
dipole matrix elements 127	E-representation
inner shells 127	doubly degenerate 241
LS coupling 136	irreducible representation 231, 239
molecules 211	symmetry 251
selection rules 27	polarization
single-particle interaction ix	photon <i>see</i> photon polarization
Xe 4d shell 128	projectiles 14
photoionization experiment	spin <i>see</i> spin polarization
complete 251	Polarization and Correlation in Electronic
photoionization parameter	and Atomic Collisions 252
upper and lower bounds	polarization asymmetry parameter
LS coupling 143	ratio
photoionization/excitation 1	independent of emission angle 85
photoionized atoms 250	polarization cancellation 174

polarization density matrix 15	primary ionization
polarization parameter	circularly polarized photon beam 124
$\langle \mathcal{T}_{\Gamma \gamma}^{+} angle$	inner K-shell 119
photon beam 27	probability density 217, 232, 237, 239
polarization P_x	projectile electron
Auger electron emission angle 138	polarized 84
polarization P_Z	projection operator 242
Auger electron emission angle 128	propensity rule 162, 203, 246
polarization P_z	Auger transitions 163
	initial P state transition 202
2	large dynamic spin polarization
polarization P_Z	resonant Auger transition 152, 157,
photon energy 130	161
polarization state	prediction for large dynamic spin
electrons 245	polarization
photons 245	resonant Auger transition 8, 118
polarization transfer 54, 117, 246	qualitative and quantitative explanation
conservation of angular momentum 3	8
polarization vector 279	small DSP 164, 170
polarized electron	Q_s coefficient
longitudinally 17	3nj-symbols 107
polarized light 251	symmetries 107
excitation with circularly 173	quadratic equation
excitation with linearly 173	independent of total final state angular
helicity 166	momentum 65
polarized photon	quadratic expression
circularly 17	J = 3/2 and $M = 3/2$ 66
polarized state 250	J = 5/2 and $M = 3/2$ 68
polarized target 250	J = 5/2 and $M = 5/2$ 68
polyatomic molecule 251	quantization axis 237
non-linear 213	direction of Auger emission 42
post-collision interaction see PCI	electric field vector 153
potassium 194	helicity frame 58
Auger rate	parallel to beam axis 125
influence of exchange effects 183	photon beam axis 24
effect of	quantum number
exchange interaction 183	combination 109
relativity 183	electronic 231
KLL Auger spectrum 184	inner shell hole state 104
LS coupling case 192	summation over magnetic 31
potential	vibrational 214, 231
energy dependent 99	quantum system
relativistic 100	between two states 65
relativistic correction 96	Baseh as afficient as a 6 i symbol 255 256
semi-relativistic 100	Racah coefficient see 6 j-symbol, 255, 256 Racah tensor
POTRES program	irreducible
Hartree potential	proportional to spherical harmonics
relativistic 94	106
101441710410 / 1	100

Racah–Elliot relation 258	recursion relation
radial wavefunction	3nj-symbols 262
large components 109	reduced density matrix
quantum numbers 107	electronic system 38
radiation	ions 23
synchrotron see synchrotron radiation	$\hat{\boldsymbol{\rho}}(M)$ 20
radiation free transition ix	reduced matrix element 22, 275
radiation spectra x	closed shells 103
radon	different from zero 108
relativistic effects 117	phase factor 62
rank K	real numbers 107
unchanged under rotation 22	specific ASF 104
rare gas	Wigner–Eckart theorem 26
closed shell structure 117	reduced rotation matrix 40, 56, 87, 265
selection rules 37	angular dependency 42
ratio of intensities	higher rank 80
LS coupling 134	symmetries 40, 43, 269
total multiplet 140	reduced transition matrix element 106
ratio P_z/P_x	reduction of composite system
Auger electron emission angle 140	LSJ coupling scheme 277
RATIP package	reflection invariance 220
relativistic atomic transition and	reflection operator 40, 243
ionization properties 91	containing beam axis 32
RATR program 110, 176	relative Auger rate 176
Breit interaction 92	relative Auger rate 170 relative intensity 80, 91, 108, 115, 130,
calculation of angular distribution	140, 141, 151, 158, 161, 189, 205
anisotropy parameter 115	
calculation of Auger transition rates	Ar L ₂ MM Auger multiplet LS coupling 134
anisotropy parameters 6	
continuum exchange 92	Auger lines alkali elements 179
Δ -SCFCI method 111	
scattering theory 6	Lorentz profiles 148 transition matrix element 147
exchange interaction with continuum	
spin-orbit coupling 6	Auger transition 188
global structure 111	correlation effect
intermediate coupling	electron-electron 144
many-electron wavefunctions 111	Hg $N_{6,7}O_{4,5}O_{4,5}$ Auger emission 145
large basis sets 114	Hg N _{6,7} O _{4,5} O _{4,5} Auger spectrum 149
relativistic Auger transition rates 91	KLL Auger transition
relativistic framework 6, 92	cesium 183
Rb KLL Auger transition 177	potassium 183
reaction plane 15	rubidium 183
direction of Auger emission and beam	sodium 180
axis 58	normalized to total rates 115, 177
no symmetry plane 17	oxygen KLL Auger lines 200
reflection invariance 222	relative line intensity 142
synchrotron beam axis	relative transition probability 125
direction of Auger emission 163	relativistic Auger transition rate see RATR

relativistic correction	rest energy
important for weak lines	Auger electron 99
heavier elements 115	rotation
relativistic Dirac-Fock model	angular momentum eigenstates 263
intermediate coupling 120	coordinate frame 264
relativistic distorted wave approximation	physical system 264
RDWA 164, 167	rotation matrix 240, 263
relativistic or exchange effects	closure relation 267
strength 92	contraction 267
relativistic wavefunction	$\mathcal{D}_{q Q}^{(K)}(\omega)$ 22
four-component 99	left–right asymmetry 269
relaxation	orthogonality relation 267
bound state electronic orbitals 153	rank 221
renormalized spherical harmonic 268	symmetry properties 233
addition theorem 269	theory 263
contraction 269	rotation matrix element 232
orthogonality relation 268	complete set 215
resonant Ar* $(2p_{3/2}^{-1}4s_{1/2})_{J=1}L_3M_{2,3}M_{2,3}$	reduced 217
multiplet 160	rotation operator 55, 239, 263
resonant Ar*L ₃ M ₁ M _{2,3} multiplet 161	-
resonant Ar*L ₃ M _{2,3} M _{2,3} Auger transition	R_s coefficient $3nj$ -symbols 107
160	
resonant Auger decay 152, 155, 164	symmetries 107 rubidium 195
calculation of DSP and TSP 167	Auger rate
matrix elements 153	2
photoexcitation 166	
resonant Auger electron	effect of
spin resolved	exchange interaction 183
low resolution 175	relativity 183
resonant Auger emission	intermediate coupling scheme 195
experiment and theory 3	KLL Auger spectrum 186
inner shell hole decay 7	Russell–Saunders approximation 121
photoexcitation	Rydberg Auger cascade
symmetry relations 5	transition rates
two-step model 157	highly stripped ions 114
resonant Auger transition 12, 152, 245	Rydberg electron
alignment parameter \mathcal{A}_{20}	participator decay 69
analytic 89	spectator decay 69
amplitudes 153	
angular distribution 7	scalar operator 273, 276
correlation effects 152	scalar product 276
mixing of core states 154	scattered electron 12
photoexcitation 68	scattering phase 26, 31, 41, 100, 102, 108
target atom 5	110, 115, 130, 159, 190, 198
prediction of ξ_2 162	Ar transitions 161
$Xe^*N_5O_{2,3}O_{2,3}$ 158	calculation 103
resonant spectator model 190	independent of model potential 102
correlation effects	complex 107
LS coupling 192	partial waves 163

phase difference	Simpson's formula 109
modulus 49	Simpson's rule
scattering solution	numerical integration 97
incoming boundary conditions 25, 38,	single channel transition 126
55	LS coupling 120
scattering theory 55, 111	single configuration approximation 176
incoming electron	single-configuration wavefunction
outgoing boundary conditions 30	mixing coefficients 145
photoionization 25	6 <i>j</i> -symbol
SCF calculation <i>see</i> self-consistent-field	
calculation	symmetry relations 27 selection rules 34
SCF-CI calculation 226	6^{th} -row element 248
Schrödinger equation 100–102	
inner region solution 102	Slater exchange potential
model potential	continuum wavefunctions
asymptotic solution 101	Auger amplitudes 121
derivative of continuum wavefunction	energy independent 96
101	Slater integral 100, 101, 108, 110
radial two-component	calculation
model potential 100	subroutine YINT 109
selection rule 36, 49, 135, 261, 283, 284,	direct 106
287	exchange 106
$\alpha_2^{res} = 0 190$	symmetries 107
Auger transition	small spin polarization
matrix elements 39	cancellation between Coulomb and
internal 246	scattering phase
	partial waves 118
diagram lines 175	sodium 180, 193
J-dependent 171	Auger rate
asymmetric cases 174	
suppressing partial waves	zero 186
LSJ coupling 126	ionization
transition amplitudes 251	inner K shell 176
self-consistent-field calculation 228	KLL Auger decay 176
Breit interaction 178	KLL Auger spectrum 182
Coulomb interaction 178	laser excited 197
QED corrections 178	sodium atom
sense of orientation	LS coupling case 192
geometry of experiment 54	sodium spectrum
sense of rotation	chemical shift 178
defining polarization 54	solid-state shift 179
shake-up state 160	sodium transition
shape	exchange interaction 194
orbitals 247	solid angle 223, 232
shape and spatial orientation	polar and azimuth angle 58
orbitals 12	solid harmonics
influence Auger emission 5	orthonormal 227
Sherman function	solid state shift 187
effective 166	spatial angle ω
σ_n -reflection 242	two coordinate frames 22
0 11 101100t1011 272	two coordinate frames 22

spatial electron wavefunction	dynamic 171
antisymmetric 97	electron impact excitation/ionization
spatial orientation	79
molecules 238	electrons
orbitals 247	coincidence 250
spatial wavefunction	experimental observable 14
symmetric 97	factorization 247
spectator electron 153	general equation 245
spectator model	high degree of transferred 170, 172
amplitudes	integral values
normal Auger decay 154	Auger lines 171
matrix elements	intermediate ionization hole states 5
Auger transition 7	isotropic Ar L ₂ MM Auger multiplet 7
resonant Auger transition 246	isotropic Auger multiplets 246
spectroscopic identification	isotropic multiplets 5, 12
Auger lines 203	large degree
spectroscopic notation	in-reaction plane 132
final states 140	large dynamic
spherical harmonic 26, 217, 233, 268	fine structure component 170
reduced matrix element 277	non-digram Auger lines 172
spherical wave	magic angle 157
superposition of plane waves 99	molecular Auger electron 251
spin	molecular Auger electrons 220
component Σ 214	molecular Auger emission
spin component	electron impact 212
polarization 166	no dynamic
spin polarization	Auger lines 170
analysis 165	non-vanishing
Auger electrons 124, 159, 163, 246	incoherently 131
after photoionization 117	polarized particles 54
analysis 175	non-zero
correlation effect 144	
electron-electron correlation 119	1 2 1
	not independent 59
general expression 44	observable degree 127
longitudinal 57	orientation out of alignment
noble gases 117	higher multipoles 54
photoionization with circularly	out of alignment 11, 54, 245
polarized light 7 polarization transfer 156	unpolarized electron or photon beam
relativistic correction 119	5
	parameter δ_1 57
two physical mechanisms 3	parameter δ_K 46
Auger electrons after photoionization	independent of matrix elements for
circularly polarized light 132	$J_f = 0$ transitions 47
CI induced	parameter ξ_K 47
caused by selection and propensity	parameter ξ_K^{even} 55, 60
rules 8	refined information on decay dynamics
degree 221	49
diatomic molecules 251	parameter ξ_K^{odd} 60

parameters	LSJ coupling 126
helicity system of Auger electrons	quadratic and linear equations 64
50	special Auger transitions
parameters β_1 and γ_1	rare gases 133
Auger transitions to $J_f = 0$ 51	ξ ₁
quantization and beam axis 50	Auger decay dynamics 77
parameters δ_1 and δ_3	intrinsic 78
Auger transitions to $J_f = 0$ 48	ξ_1 and ξ_2 57
parameters ξ_1 and ξ_3	ξ_K even K values
Auger transitions to $J_f = 0$ 50	unpolarized electron beam 53
photoelectrons 163	spin polarization vector 247
quadratic	
arbitrary electronic Auger decay 64	all components vanish 76
relations between parameters 68	Auger electrons 18
resonant Auger transition	Cartesian components 156
arbitrarily polarized light 71	axial nature 17
sensitivity of predictions 126	axial vector 16, 76
show case	Cartesian component 212, 220, 221
large transferred 170	Cartesian components 29, 30, 42, 43,
vanishing dynamic 170	71, 84
sine of phase shift 170	circularly polarized photon beam 72
spin-orbit interaction 164	helicity frame of Auger electrons 58
transferred 171	magic angle 128
	terms of Stokes parameters 70
ž	unpolarized photon beam 71
Xe M _{4,5} N _{4,5} N _{4,5} Auger lines high resolution experiment 118	Cartesian components p_x and p_y
-	alignment parameter A_{22} 59
spin polarization experiment	component in reaction plane
independent variables 140	Auger emission 163
spin polarization of Auger emission	component perpendicular to reaction
photoexcitation	plane 157, 163
arbitrarily polarized photon beam 70	component p_x 144
spin polarization parameter 91, 92, 102,	components 79
108, 140, 141, 150	Ar L ₂ MM multiplet 138
Auger electrons	coordinate frame
depending on total angular momentum	arbitrarily chosen 58
77	dependency on third rank tensor 79
Auger transitions	dynamic component p_v 55
noble gases 124, 125	$\eta_3 = 1$
correlation effect	7.5
electron-electron 144	x-component vanish 75
dependence on final state coupling	z-component vanish 75
scheme	in-reaction plane components 7, 50,
heavier noble gases 132	117, 133, 136
dynamic of resonant Auger decay 157	independent of Auger decay 86
higher rank	laboratory frame 125
coincidence experiments 67	longitudinal component p_z 59
independent of matrix elements 135	mirror symmetry
intermediate coupling 126	Auger process 16

photoionization	electrons - spin 1/2 particles
transverse in-reaction plane component	restricted by angular momentum
56	coupling rules 32
ratio of components	expectation values
independent of orientation 140	irreducible tensor operators 20
transformation properties 16	helicity system
transverse in-reaction plane component	rotation matrices 58
53, 142, 143	Hermiticity condition 21, 32, 43
x- and y-components 73, 74	incoming photon beam 28
<i>x</i> -component 77, 142	intermediate excited atomic ensemble
z-component 47	28
vanish 74	intermediate ionic states 11
spin polarized	irreducible tensorial sets 40
interference of partial waves	laboratory frame
linearly polarized light 163	$\langle T(J) \overset{+}{K}_{O'} \rangle$ 40
polarization transfer	orientation 233
circularly polarized light 163	photonic system 27
spin quantum number	polarized electron beam 30
	properties 19
magnetic 30	spin polarization vector
spin resolved intensity	Cartesian components 9
36 CSF-CI 172	split in real and imaginary part 44
8 CSF-CI 170	summation over rank <i>K</i>
spin resolved spectrum	dipole approximation 56
DSP 171, 173	symmetry properties 44
TSP 171, 173	$\langle \mathcal{T}_{\Gamma_{\mathcal{V}}}^{+} \rangle$, synchrotron photon
spin state multipole	
selection rules 83	Stokes parameters 24 $(T(I',I)^{+})$
spin wavefunction	$\langle T(J'J)_{KQ}^+ \rangle$
symmetric 97	coherence between states with differ-
spin-dependent effect 4	ent angular momentum $J' \neq J$ 21
spin-dependent forces	$\langle T(J)_{K0}^{21} \rangle$
absence 84	real numbers 22
non-vanishing spin polarization 4	
spin-dependent interaction 54	$\langle T(J)_{KQ'}^{+} \rangle$ 44
spin-orbit interaction	dynamics of excitation/ionization 42 $(T(A)^{+})$
weak 223	$\langle T(J)_{K'Q'}^+ \rangle$
spinless molecule 225, 241	excited atomic ensemble 31
standard basis 276	excited ionic ensemble 25, 27
state multipole 216, 245	$\langle T(J)_{KQ}^{+} \rangle$
alignment 233	excited ionic ensemble 35
arbitrarily polarized photon beam	intermediate ionic state 39
connection to Stokes parameters 24	$\langle T(J)^+_{K'Q'} \rangle$
Auger electron 212	ionic state 27
degree of spin polarization	$\langle T(J)^+_{KQ'} \rangle$
ionizing electron beam 52	quantization beam axis 42
density matrix	$\langle t_{kq}^{+} \rangle$
combined excited electron-atom	angular distribution and degree of spin
system 29	nolarization 42

Auger electron 39	linearly or circularly polarized light
electronic beam 29	5
rank k and component $q = 31$	arbitrarily polarized 15
transformation properties 42	linear polarization 89
under rotation 22	polarization properties 143
transformed by reduced rotation matrices	polarized 78
40	synchrotron radiation 58
transforms as irreducible tensor	circularly polarized 142
rank K and component Q 22	dipole approximation
weight factors 221	general restrictions 77
statistical operator $\hat{\rho}$ 19	photoionization
statistical ratio 141	excitation process 58
statistical tensor <i>see</i> state multipole	synchrotron radiation source
Stirling Symposium 252	third generation ix, 4
Stokes parameter	
circular polarization, η_2 23, 72	T matrix
	one-center expansion 226
linear polarization, η_1 and η_3 16, 23	T matrix element 226, 239, 279
linear polarization, η_3 88	calculation 226
linear polarization, $\eta_3 = 1$ 74	T operator 242
storage ring plane 165	target atom
strict spectator model 118, 121, 153	randomly oriented 80
subshell	tensor
occupation	third rank 80
angular coupling scheme 93	tensor component
sum rule	rank of
6j-symbols 191	initial ionic state 41
superposition	tensor operator
incoherent	definition 20, 273
molecular states 240	orthonormality conditions
satellite lines 188	inverse relation 21
states	rank one 280
incoherent 218	special cases 276
symmetry	special value 274
general 14	$T(J'J)_{KQ}$
principles 18	geometrical quantities 22
symmetry condition 242	zero-order 281
symmetry plane 214	tensor operator $T(J)_{KQ}$
symmetry principles 16, 247	terms of $3j$ -symbols 39
symmetry properties	tensor operator t_{kq}
degenerate states 230	terms of 3 <i>j</i> -symbols 39
non-degenerate states 230	tensor parameter
rotation matrices 265	$Im \mathcal{A}_{K1}(J)$ 84
symmetry relation	tensor polarization 250
angular distribution parameters 81	parameter 250
rotation matrix 221	tensorial product 276
spin polarization parameters 81	tensorial set
synchrotron beam	$T(J)^+_{K'O'}$
3 rd generation techniques 12	excited ionic state 23

$T(J_0)_{K_0Q_0}^+$	uncorrelated ensemble
atomic states 24	initial electron and atomic state 29
$\mathcal{T}^+_{arGamma_{oldsymbol{\gamma}}}$	initial photon and atomic state 23
photonic states 24	total electron wavefunction
36 CSF basis set 171	antisymmetric 97
36 CSF-CI 173	total intensity 45, 56
calculation 171	integration over solid angle 43
for TSP and DSP 171	total rate
fine structure	normalized 202
virtual <i>J</i> -components 174	
large DSP	total width
some lines of spectrum 175	level J 80
three-body problem 249	transferred spin polarization 124, 125, 166
3 <i>j</i> -symbol 239	large for most lines
permutation relations 63	Auger spectrum 118
selection rules 31	large TSP 175
symmetries 83	TSP
symmetry conditions 32	magnetic <i>m</i> -sublevel population 163
symmetry properties 22	transformation coefficient 259
symmetry relations 39	transformation properties
time reversal	angular momentum 263
Coulomb operator	transition
invariant under 55	$^{1}D_{2}$ states
time-of-flight spectrometer	dynamic effects 156
TOF 165	pure state 155
time-reversal operator $\hat{\Theta}$	•
anti-unitarity 55	transition amplitude
total angular momentum	Auger emission
final state 145	generated via Coulomb interaction
initial and final states 31	55
non-zero alignment 197	real
intermediate ionic state 119	plane-wave approximation 55
total Auger rate	spectator model 152
KLL Auger transition	under time reversal 55
cesium 183	transition amplitude and scattering phase
potassium 183	relate to experimental observables 4
rubidium 183	transition matrix
sodium 180	expand in terms of dipole matrix
multiplet	elements 25
initial fine structure states 200	transition matrix element 105, 280, 281
total cross section	D- and E-terms 106
intermediate ionic state 27	dynamics of experiment 14
total decay rate	electron impact ionization 215
fine structure states 199	phase 226
total decay width	•
effect of correlation 200	transition operator 23, 218, 237
total density matrix	Breit interaction 115
projected onto subspace 20	zero-rank tensor 31

transition probability electron impact excitation 131 $KL_{2,3}L_{2,3}$ doublet 182 transition to final state $J_f = 0$ 141	width singly ionized state 13 Wigner–Eckart theorem 274, 280, 281 decoupling quantities dynamical and geometrical 22
triangular condition 256, 259 triangular relation 9 j-symbols 190 triple coincidence process 251	Wilson chamber detect charged particles X-rays in side gas 1 photography of Auger effect
TSP Auger lines 164	observed in krypton 2 WKB method 101, 114, 176
two rotations not equivalent	
sense of rotation defined by experiment 54	X–Z plane reflection symmetry 17
two-step model 198, 230, 245, 247, 249 double 251	X-function see 9 j-symbol expansion coefficients 113
excitation/ionization	X-ray emission x
subsequent Auger decay 42	X-rays 1
ionization and Auger emission independent processes 4	emitted by heavy elements 1 $Xe^*(4d_{5/2}^{-1}6p)_{J=1}N_5O_{2,3}O_{2,3}$ Auger
	spectrum 152 large dynamic spin polarization 8
ultrathin Co film 252 unit matrix	$Xe^*(4d_{5/2}^{-1}6p_{3/2})_{J=1}N_5O_{2,3}O_{2,3}$ resonant
$(2J_0 + 1)$ -dimensional 24	Auger transition MCDF calculation
vacancy	final state $J_f = 1/2$ 158
vacancy molecular photoionization	Xe 4d partial cross section 129
different than atomic counterparts 9 valence shell electron 103	$Xe^* 4d_{5/2}^{-1}6p (J = 1) \rightarrow 5p^{-2}6p decay$ 153
vector addition coefficient 253 vector operator 273	Xe M _{4,5} N ₁ N _{4,5} Auger transition excited CSF 143
vibrational degeneracy 243 virtual excitation 176	Xe M _{4,5} N _{4,5} N _{4,5} Auger lines angular anisotropy parameter 118 relative intensity 118
W-coefficient see 6 j-symbol wave function	spin polarization high resolution experiment 7 spin polarization parameter 118
molecular 226 wavefunction main component	Xe M _{4,5} N _{4,5} N _{4,5} Auger spectrum 140, 142, 143, 246
intermediate coupling 120	$Xe M_{4,5}N_{4,5}N_{4,5}$ Auger transition 141
many electron	Xe N _{4,5} O ₁ O _{2,3} Auger decay
intermediate coupling 6 symmetry adapted 242	spin polarization parameter 127 Xe N _{4.5} O ₁ O _{2.3} Auger transition
weight factors 238	angular anisotropy parameter 132
weighted polarization asymmetry parameter 84	relative intensities 132 spin polarization parameter 132

Xe N_{4,5}O_{2,3}O_{2,3} Auger transition angular anisotropy parameter 132 anisotropy coefficient isotropic in *LS* coupling 122 large positive 122 intermediate coupling large in Xe 122

relative intensities 132 spin polarization parameter 132

zero rank tensor normalization factor 42 zero total angular momentum final ionic state 120

Springer Series on

ATOMIC, OPTICAL, AND PLASMA PHYSICS

Editors-in-Chief:

Professor G.W.F. Drake
Department of Physics, University of Windsor 401 Sunset, Windsor,
Ontario N9B 3P4, Canada

Professor Dr. G. Ecker Ruhr-Universität Bochum, Fakultät für Physik und Astronomie Lehrstuhl Theoretische Physik I Universitätsstrasse 150, 44801 Bochum, Germany

Professor Dr. H. Kleinpoppen, Emeritus Stirling University, Stirling, UK, and Fritz-Haber-Institut Max-Planck-Gesellschaft Faradayweg 4–6,14195 Berlin, Germany

Editorial Board:

Professor W.E. Baylis Department of Physics, University of Windsor 401 Sunset, Windsor, Ontario N9B 3P4, Canada

Professor Uwe Becker Fritz-Haber-Institut Max-Planck-Gesellschaft Faradayweg 4–6, 14195 Berlin, Germany

Professor Philip G. Burke Brook House, Norley Lane Crowton, Northwich CW8 2RR, UK

Professor R.N. Compton Oak Ridge National Laboratory Building 4500S MS6125 Oak Ridge, TN 37831, USA

Professor M.R. Flannery School of Physics Georgia Institute of Technology Atlanta, GA 30332-0430, USA

Professor C.J. Joachain Faculté des Sciences Université Libre Bruxelles Bvd du Triomphe, 1050 Bruxelles, Belgium Professor B.R. Judd Department of Physics The Johns Hopkins University Baltimore. MD 21218, USA

Professor K.P. Kirby Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Cambridge, MA 02138, USA

Professor P. Lambropoulos, Ph.D. Max-Planck-Institut für Quantenoptik 85748 Garching, Germany, and Foundation for Research and Technology – Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (IESL), University of Crete, PO Box 1527 Heraklion, Crete 71110, Greece

Professor G. Leuchs Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für Optik, Physikalisches Institut Staudtstrasse 7/B2, 91058 Erlangen, Germany

Professor P. Meystre Optical Sciences Center The University of Arizona Tucson, AZ 85721, USA

Springer Series on

ATOMIC, OPTICAL, AND PLASMA PHYSICS

- 20 Electron Emission in Heavy Ion–Atom Collision By N. Stolterfoht, R.D. DuBois, and R.D. Rivarola
- 21 Molecules and Their Spectroscopic Properties By S.V. Khristenko, A.I. Maslov, and V.P. Shevelko
- 22 Physics of Highly Excited Atoms and Ions By V.S. Lebedev and I.L. Beigman
- 23 **Atomic Multielectron Processes** By V.P. Shevelko and H. Tawara
- 24 Guided-Wave-Produced Plasmas By Yu.M. Aliev, H. Schlüter, and A. Shiyaroya
- 25 Quantum Statistics of Nonideal Plasmas By D. Kremp, M. Schlanges, and W.-D. Kraeft
- 26 **Atomic Physics with Heavy Ions** By H.F. Beyer and V.P. Shevelko
- 27 **Quantum Squeezing**By P.D. Drumond and Z. Ficek
- 28 Atom, Molecule, and Cluster Beams I
 Basic Theory, Production and Detection
 of Thermal Energy Beams
 By H. Pauly
- 29 Polarization, Alignment and Orientation in Atomic Collisions By N. Andersen and K. Bartschat
- 30 Physics of Solid-State Laser Physics By R.C. Powell (Published in the former Series on Atomic, Molecular, and Optical Physics)
- 31 Plasma Kinetics in Atmospheric Gases By M. Capitelli, C.M. Ferreira, B.F. Gordiets, and A.I. Osipov
- 32 Atom, Molecule, and Cluster Beams II Cluster Beams, Fast and Slow Beams, Accessory Equipment and Applications By H. Pauly
- 33 **Atom Optics** By P. Meystre

- 34 Laser Physics at Relativistic Intensities By A.V. Borovsky, A.L. Galkin, O.B. Shiryaev, and T. Auguste
- 35 Many-Particle Quantum Dynamics in Atomic and Molecular Fragmentation Editors: J. Ullrich and V.P. Shevelko
- 36 Atom Tunneling Phenomena in Physics, Chemistry and Biology Editor: T. Miyazaki
- 37 Charged Particle Traps
 Physics and Techniques
 of Charged Particle Field Confinement
 By V.N. Gheorghe, F.G. Major, and G. Werth
- 38 Plasma Physics and Controlled Nuclear Fusion By K. Miyamoto
- 39 Plasma-Material Interaction in Controlled Fusion By D. Naujoks
- 40 Relativistic Quantum Theory of Atoms and Molecules Theory and Computation By I.P. Grant
- 41 **Turbulent Particle-Laden Gas Flows** By A.Y. Varaksin
- 42 **Phase Transitions of Simple Systems** By B.M. Smirnov and S.R. Berry
- 43 Collisions of Charged Particles with Molecules By Y. Itikawa
- 44 **Plasma Polarization Spectroscopy** Editors: T. Fujimoto and A. Iwamae
- 45 Emergent Non-Linear Phenomena in Bose-Einstein Condensates Theory and Experiment Editors: P.G. Kevrekidis, D.J. Frantzeskakis, and R. Carretero-González
- 46 Angle and Spin Resolved Auger Emission Theory and Applications to Atoms and Molecules By B. Lohmann