Theorem 1. Let x and y be real numbers. Then

- $(1) \ [x] \leq x \leq [x]+1], x-1 < [x] \leq x, 0 \leq x-[x] < 1.$
- (2) $[x] = \sum_{1 \le i \le x} 1$ if $x \le 0$.
- (3) [x+m] = [x] + m if m is an integer. (4) $[x] + [y] \le [x+y] \le [x] + [y] + 1$.
- (5) $[x] + [-x] = \begin{cases} 0 & \text{if } x \text{ is an integer} \\ -1 & \text{otherwise} \end{cases}$ (6) $\left[\frac{[x]}{m}\right] = \left[\frac{x}{m}\right]$ if m is a positive integer.

Theorem 2. de Policgnac's formula. Let p denote a prime. Then the largest exponent e such that $p^e \parallel n!$ is

$$e = \sum_{i=1}^{\infty} \left[\frac{n}{p^i} \right].$$

Definition. A function f is arithmetic if its domain is the positive integers and whose range is a subset of the complex numbers. In other words, f(n) is defined for all positive integers n. Arithmetic functions are also called number theoretic functions, or numerical functions.

Note. An arithmetic function does not need to be defined for 0. Also, ϕ , or Euler's function, is an arithmetic function.

Definition. For positive integers n we make the following definitions

- d(n) is the number of positive divisors of n.
- $\sigma(n)$ is the sum of the positive divisors of n.
- $\sigma_k(n)$ is the sum of the kth powers of the positive divisors of n.
- $\omega(n)$ is the number of distinct primes dividing n.
- $\Omega(n)$ is the number of primes dividing n, counting multiplicity.

Note. Prime numbers are positive by definition.

Definition. If f(n) is an arithmetic function not identically zero such that f(mn) = f(m)f(n) for every pair of positive integers m, n satisfying gcd(m,n)=1, then f(n) is said to be multiplicative. If f(mn)=f(m)f(n)whether m and n are relatively prime or not, then f(n) is said to be totally multiplicative or completely multiplicitive.

Note. If f is a multiplicative function, then f(n) = f(n)f(1). Since there is an n such that $f(n) \neq 0$, we can divide by f(n) to reveal that f(1) = 1. Thus, an easy way to exclude a function as multiplicitive is to find $f(1) \neq 1$.

Note. For a multiplicative function f, we see that for $n = \prod p^{\alpha}$, we have $f(n) = f(\prod p^{\alpha}) = \prod f(p^{\alpha})$.

Theorem 3. Let f(n) be a multiplicative function and let $F(n) = \sum_{d|n} f(d)$. Then F(n) is multiplicative.

Theorem 4. For every positive integer n,

$$\sigma(n) = \prod_{p^{\alpha} || n} \left(\frac{p^{\alpha+1} - 1}{p - 1} \right).$$

Definition. For positive integers n put $\mu(n) = (-1)^{\omega(n)}$ if n is square-free, and set $\mu(n) = 0$ otherwise. Then $\mu(n)$ is the Möbius mu function.

Theorem 5. The function $\mu(n)$ is multiplicative and

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & if \quad n = 1 \\ 0 & if \quad n > 1. \end{cases}$$

Theorem 6. Möbius inversion formula. If $F(n) = \sum_{d|n} f(d)$ for every positive integer n, then

$$f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right).$$

Theorem 7. If $f(n) = \sum_{d|n} \mu(d) F\left(\frac{n}{d}\right)$ for every positive integer n, then $F(n) = \sum_{d|n} f(d)$.