

Membres du groupe

- Aykel Cheniour <u>aykel.cheniour@cpe.fr</u>
- Valentin Valette valentin.valette@cpe.fr
- Enagnon Farell Grazina Ahouandjinou ah.farell@gmail.com
- ▶ Lucien Burdet <u>lucien.burdet@cpe.fr</u>

Supervisé par Raphael Leber et Fabrice Jumel.

Lien du dashboard:

https://work.lucien-brd.com/

Lien du git :

https://gitlab.com/5irc_prj_21-22/Sujet_2__Domotique_1/G2_Cheniour_Ahouandjinou_Burdet_Valette

Sommaire

- Introduction
 - Fonctionnement général
 - Serveur WEB
 - Robot Pepper
 - Serveur global
 - IOT
- Démonstration
- Conclusion

I. Introduction

Présentation du projet

Serveur Web

Base de données

Serveur Web

Dashboard

Serveur Web

Robot Pepper

Flux camera TTGO

Flux de la caméra en temps réel.

Affichage des info

Les informations sont mises à jour en temps réel en fonction du home sélectionné.

Creation d'action

Possibilité de créer des actions : allumer/éteindre la VMC, définir une température de référence...

Serveur Global

Accès à l'API

Accède à l'API via Python :

- Mise à jour des valeurs
- Récupération des valeurs

Supervise les microcontroleurs

Avec MQTT, il supervise les microcontroleurs :

- Récupération des valeurs (mise à jour en BDD)
- Assignment d'action (ouverture porte...)

IOT - ESP32 CAM + Python

Serveur WEB - Wifi

- Se connecte au Wifi.
- Serveur WEB
 permettant de
 partager le flux
 de la caméra.

Ecran

Affichage sur l'écran du statut de la connection au Wifi.

Python

- Récupère le flux de la caméra et check si il y a un visage et s'il est autorisé
- Ajouter des visages autorisés
- Notifit en MQTT

IOT - Module Verrou

Servomoteur

Contrôle du servomoteur grâce à un signal PWM.

MQTT

Publish et subscribe :

- Un topic pour acquitter
- Un topic pour écouter les ordres.

Ecran

Affichage sur l'écran du statut de la connection au Wifi + MQTT ainsi que l'état du verrou.

IOT - Module VMC

Servomoteur

Contrôle du servomoteur grâce à un signal PWM.

MQTT

Publish et subscribe :

- Un topic pour acquitter
- Un topic pour écouter les ordres.

Ecran

Affichage sur l'écran du statut de la connection au Wifi + MQTT ainsi que l'état de la VMC.

IOT - Module Digicode

test test test test test

IOT - Module Temp/Hum

test test test test test

IOT - Module Luminosité

test test test test test

Z. Démonstration

Démonstrationdu projet

3. Conclusion

Evolutions possibles

- Mode préprogrammé (ambiance de la maison, mode chill, mode surveillance, mode absence, etc....)
 - Surveillance : détecte les mouvements dans la maison et effectue une notification
- Application Android de gestion
- DashBoard de visualisation
- Intégration Google Home
- Ajout de code de vérification/confirmation pour l'ouverture de la porte d'entrée
- Cryptage des données / Sécurisation du serveur
- Intégration d'un capteur luminosité pour la gestion de l'ambiance

Merci

Des questions?

