Representations and Autoencoder

11-785 Introduction to Deep Learning

- lecture 19 -

TAVE Research DL001 Heeji Won

- 1. Estimate a classifier model
- 2. Role of the layers
- 3. Autoencoder

- 1. Estimate a classifier model
- 2. Role of the layers
- 3. Autoencoder

01. Estimate a classifier model

to represent using a y=+1/-1 notation

$$P(y=1|x) = \frac{1}{1+e^{-(w_0+w_1x)}} \qquad P(y=-1|x) = \frac{1}{1+e^{(w_0+w_1x)}}$$

$$P(y|x) = \frac{1}{1+e^{-y(w_0+w_1x)}}$$

Total probability of data

$$P((X_1, y_1), (X_2, y_2), ..., (X_N, y_N)) = \prod_{i} P(X_i) P(y_i | X_i)$$

$$= \prod_{i} P(X_i) \prod_{i} \frac{1}{1 + e^{-y_i(w_0 + w^T X_i)}}$$

$$=> \widehat{w}_0, \widehat{w}_1 = \underset{w_0, w}{\operatorname{argmin}} \sum_i \log \left(1 + e^{-y_i(w_0 + w^T X_i)}\right)$$

Cannot be solved directly, needs gradient descent!

01. Estimate a classifier model

How non-linear classifier?

- y_1 and y_2 make a transformation that data from non-linear classes to linearly separable features => the role of **Feature Extraction**
- y_{out} compute a posterior probability $P(y|y_1,y_2)$

$$y_{out} = \frac{1}{1 + \exp(b + W^T Y)} = \frac{1}{1 + e (b + W^T f(X))}$$

- transformation from input to y spaces is deterministic
 - => So, y_{out} virtually compute a posterior probability P(y|x)

- 1. Estimate a classifier model
- 2. Role of the layers
- 3. Autoencoder

02. Role of the layers

How about the lower layers?

<the behavior of the layers>

✓ Manifold hypothesis: For separable classes, the classes are linearly separable on a non-linear manifold

02. Role of the layers

The intermediate layers

We've seen what the network learns here

• The weight as a 'template'!

• as correlation filters

- 1. Estimate a classifier model
- 2. Role of the layers
- 3. Autoencoder

- The signal could be reconstructed using these features
- by using W^T , simply recompose the detected features
- trained to predict the input itself
- ⇒ Autoencoder!

- This is a simplest autoencoder
- training by minimizing L2 divergence

$$\hat{\mathbf{x}} = \mathbf{w}^T \mathbf{w} \mathbf{x}$$

$$div(\hat{\mathbf{x}}, \mathbf{x}) = \|\mathbf{x} - \hat{\mathbf{x}}\|^2 = \|\mathbf{x} - \mathbf{w}^T \mathbf{w} \mathbf{x}\|^2$$

$$\hat{W} = \underset{W}{\operatorname{argmin}} E[\|\mathbf{x} - \mathbf{w}^T \mathbf{w} \mathbf{x}\|^2]$$
This is just PCA!

- Z will always lie on W space!

DECODER

ENCODER

$$Y = WX$$

$$\widehat{\mathbf{X}} = \mathbf{W}^T \mathbf{Y}$$

$$E = \|\mathbf{X} - \mathbf{W}^T \mathbf{W} \mathbf{X}\|^2$$

- This is still just PCA!
- The output of hidden layer will be in the principal subspace
- Encoder: The "Analysis" net which computes the hidden representation
- Decoder: The "Synthesis" which recomposes the data from the hidden representation

- When the hidden layer has non-linear activation, the net performs nonlinear PCA
- Varying the hidden layer value only generates data along the learned manifold
- But may not generalize beyond the manifold

Learning AE dictionaries for each source

Examples

- ✓ Given mixed signal and source dictionaries, find excitation that best recreates mixed signal
- ✓ Intermediate results are separated signals

Thank you