

Capstone Project 2

CMU-SE 451

Architecture Document

Version 2.4 Date: 13/05/2023

Craft Village Pollution Monitor System

Submitted by
Ca, Van Cong Le
Huy, Bui Duc
Phuc, Hua Hoang
Trung, Nguyen Thanh
Nhan, Huynh Ba

Approved by Ph.D. Nguyen Thanh Binh

Proposal Review Panel Representative		
Name	Signature	Date
Capstone Proj	ect 2 - Mentor	::
Ma	My	
Name	Signature	Date

PROJECT INFORMATION

Project acronym	CVPMS		
Project Title	Craft Village Pollution	Monitor System	
Start Date	01/03/2023	End Date	15/05/2023
Lead Institution	International School, D	uy Tan University	
Project Mentor	Ph.D. Thanh Binh, Ngu	yen	
Scrum master / Project Leader & contact details	Ca, Van Cong Le Email: cascabusiness@gmail.com Tel: 0352707895		
Partner Organization			
Project Web URL	https://github.com/Casca113s2/craft-village-pollution-monitor-system		
Team members	Name	Email	Tel
25211207666	Ca, Van Cong Le	cascabusiness@gmail.com	0352707895
25211215894	Huy, Bui Duc	duchuyltt122@gmail.com	0818648090
25211204084	Phuc, Hua Hoang	phuchuho0402@gmail.com	0905639682
25211215133	Trung, Nguyen Thanh	nguyenttrung2601@gmail.com	0774496838
25211203702	Nhan, Huynh Ba	huynhbanhan1491999@gmail.com	0935430785

DOCUMENT NAME

Document Title	Architecture Document		
Author(s)	Bui Duc Huy		
Date	13/05/2023	File Name	C2SE.01_CVPMS_Architecture- Document_v2.4.docx

REVISION HISTORY

Version	Date	Comments Author		Approval
1.0	21/08/2022	Initial Release	Bui Duc Huy	NyMe
1.1	17/10/2022	Update C&C, Module View diagrams	Bui Duc Huy	Ny/Rel
2.0	14/03/2023	Update Activity, Module View diagrams	Hua Hoang Phuc	Ng/Rel
2.1	29/03/2023	Update Activity, Context Diagram	Hua Hoang Phuc	Ny/Ms
2.2	13/04/2023	Update Activity, Module View diagrams,	Hua Hoang Phuc	Ny Mrs.
2.3	28/04/2023	Overview, Prediction AI	Bui Duc Huy Van Cong Le Ca	Ny Mrs
2.4	13/05/2023	Allocation View, Prediction AI	Huynh Ba Nhan Bui Duc Huy	Ny/Rel

Approve Document: Sign in to approve the document

		Date	13/05/2023
Mentor	Binh, Nguyen Thanh	Sign	Nythel
		Date	13/05/2023
Scrum Master	Ca, Van Cong Le	Sign	Sing
			13/05/2023
Scrum Member	Huy, Bui Duc	Sign	Huy
	ember Phuc, Hua Hoang	Date	13/05/2023
Scrum Member		Sign	Ruz
	Trung, Nguyen	Date	13/05/2023
Scrum Member	Thanh	Sign	A.
C. Ml.	NI II 1 D	Date	13/05/2023
Scrum Member	Nhan, Huynh Ba	Sign	<u>Mm</u>

Table Of Contents

1. In	ntroduction	7
1.1.	Purpose	7
1.2.	Business needs	7
1.3.	Proposed solution	7
1.4.	Business drivers	8
1.5.	Project goal	8
2. A	rchitectural drivers	9
2.1.	Functional requirements	9
2.2.	Business constraints	10
2.3.	Technical constraints	10
2.4.	Quality Attribute	10
2.5.	Context Diagram	13
3. A	ctivity Diagram	16
4. C	&C view	20
5. M	Iodule View	21
6. Al	llocation view	22
	roposed architecture for Image Classification	
	roposed architecture for Random Forest Classification	
9. Re	eferences	25

Table Of Figures

Figure 1. Craft Village Pollution Monitor System	7
Figure 2. System Context Diagram Overview	13
Figure 3. Personal System Context Diagram	13
Figure 4. Household System Context Diagram	14
Figure 5. Authority System Context Diagram	14
Figure 6. Admin System Context Diagram	15
Figure 7. Activity Diagram (Personal)	16
Figure 8. Activity Diagram (Household)	17
Figure 9. Activity Diagram (Authority)	18
Figure 10. Activity Diagram (Admin)	19
Figure 11. Component & connector view	20
Figure 12. Module view	21
Figure 13. Allocation view	22
Figure 14. Image Classification Architecture	23
Figure 15. Random Forest Classification	24
Table Of Tables	
Table 1. Functional requirements	9
Table 2. Quality Attributes: Availability	10
Table 3. Quality Attributes: Performance	11
Table 4. Quality Attributes: Performance	12
Table 5. Quality Attributes: Usability	12

1. Introduction

1.1. Purpose

This document will cover the following information:

- ➤ Brief description of the project (project overview, business goals, general constrains about technical and business problems).
- Architectural drivers (functional requirements, quality attributes and constraints).
- Architectural design (C&C View type, Module View type, Allocation View type).

1.2. Business needs

- ➤ Desiring to help people have more awareness of pollution from craft villages, a system that will allow people to submit data of craft village and keep track its pollution status.
- A system that will provide the user the abilities such as take a survey, include the image of the pollution, view survey history, etc.
- ➤ An AI system will also provide the application to analyze the pollution based on the user's provided image.
- ➤ An AI takes the production information and then give the prediction of pollution types that the craft village will facing.
- The system should also give the administrator the ability to manage their user and data.

1.3. Proposed solution

Figure 1. Craft Village Pollution Monitor System

C2SE.01 Page 7 of 25

Our team will wrap around the above problems and help everyone monitor and resolve the pollution problems from their craft village area more effectively. Some aspects that will make our system that the people will find much more effective:

- ❖ Our system will help everyone to monitor your local craft village despite where your location. This means whether you stay in a big city or a small village at the top of the mountain our system will still function.
- Our system will provide a function that lets people make an instant report to the local environment department.
- ❖ Our system will detect all kinds of pollution instead of focusing on some specific kinds. This will help to collect a variety of data that could help people to a bigger picture about their pollution levels in the area.
- ❖ Our system will have an AI that will take images from people then analyzes the image to know what kind of pollution the user is facing and the result will be automatically filled into the form which will be sent directly to the local environment department to resolve the problem. This is so easy to use that even an elementary school child can do and it also reduces a massive amount of the cumbersome and bureaucratic process that people have to go through.
- ❖ Our system will have an AI that will take the production information and then give the prediction of pollution types that the craft village will facing. By combining the pollution from the image and the prediction then the result will be more accurate.
- Our system is also integrated with location-based technology to detect the location of the pollution and layout the data on the map for the user to monitor.

1.4. Business drivers

Based on the business needs and business solution our team decides to make a Craft Village Pollution Monitor System.

1.5. Project goal

The goal of the project is to build a Craft Village Pollution Monitor System (CVPMS) within the budget of \$3000 and deliver on time by the end of May of 2023.

C2SE.01 Page **8** of **25**

2. Architectural drivers

2.1. Functional requirements

 Table 1. Functional requirements

ID	Function	Description
FE01	Login	Use username/password to login into the system, can use the function of the system.
FE02	Register	Use to register a new account
FE03	Forgot Password	Use to recover password
FE04	Change Password	Use to change current password to new password
FE05	Send Mail	Use to sent verify code or new password to registed email
FE06	Edit User's Information	Use to change registed information
FE07	Change Language	Use to change application language from English to Vietnamses and vice versa
FE08	Take Pollution Photo	Use to take pollution photo
FE09	Detect Location	Use to detection location of user automatically
FE10	Auto Fill Information	Use to autofill necessary information after application detect pollution types from image and get location
FE11	Add New Village	Use to add new village to database
FE12	Detection Pollution Types	Use to auto detect pollution types from image
FE13	Add Additional Information	Use to add additional information for the survey
FE14	Submit Survey	Use to sent survey to database

C2SE.01 Page 9 of 25

FE15	View Finished Survey	Use to load the finshied survey for user to review
FE16	View In Progress Survey	Use to load the in progess survey for user to review
FE17	Accept/Decline New Village	Use to give an accept/decline a new village
FE18	Create Local Authority Account	Use to create a new local authority account
FE19	Display Dashboard	Use to load necessary according to user role

2.2. Business constraints

- ❖ Project begins from Mar 1st, 2023 to May 15th, 2023. After delivery, the team will rectify defects in the deliverable (no additional functionalities or features).
- \diamond Resource availability is defined below: 01/03 15/05 with 5 members.
- Product follows Mentor's requirement.

2.3. Technical constraints

❖ Technical to develop

- Language: Java (Spring Boot), Dart (Flutter), Python (Flask, FastAI)
- ➤ Develop tool: Visual Studio Code, SpringToolSuite4
- ➤ Version Control System: Git/GitHub
- ➤ Database Management System: Oracle SQL Developer

Environment

> Operation systems: Microsoft Windows, MacOS, Android, iOS

2.4. Quality Attribute

Table 2. *Quality Attributes: Availability*

Scenario	A1
Attribute concern	Downtime of system
Description	The operating time of the system should be 95% to have

C2SE.01 Page **10** of **25**

	time for backup data, maintenance and repair.	
Source	Internal to system	
Stimulus	System pause	
Artifact	System	
Environment	The system works normally	
Response	Be temporarily unavailable while backup data, maintenance and repair are being effected	
Response Measure	Uptime of the system should be 95%, downtime is about 1.2 hours per day	

 Table 3. Quality Attributes: Performance

Scenario	P2
Attribute concern	The latency of initiating transactions
Description	Users initiate transactions under normal operations. The system processes the transactions with latency less than 5 seconds.
Source	Users
Stimulus	Initiate transactions
Artifact	System
Environment	Under normal operations
Response	Transactions are processed
Response Measure	With latency less than 5 seconds

C2SE.01 Page **11** of **25**

 Table 4. Quality Attributes: Performance

Scenario	P3
Attribute concern	The throughput of the system
Description	At peak load, the system is able to complete 100 normalized transactions per second.
Source	Internal to system
Stimulus	Multiple transactions at the same time
Artifact	System
Environment	Peak load
Response	Throughput
Response Measure	Throughput is 100 transactions per second

 Table 5. Quality Attributes: Usability

Scenario	U4
Attribute concern	Using effectively
Description	Craft Village Pollution Monitor can be easy for end-users to create a report after 10 minutes using.
Source	End-users
Stimulus	Create a report
Artifact	System
Environment	The system work normally
Response	Easy to use
Response Measure	Easy to use after 10 minutes using

C2SE.01 Page **12** of **25**

2.5. System Context Diagram

Figure 2. System Context Diagram Overview

Figure 3. Personal System Context Diagram

C2SE.01 Page **13** of **25**

Figure 4. Household System Context Diagram

Figure 5. Authority System Context Diagram

C2SE.01 Page 14 of 25

Figure 6. Admin System Context Diagram

Prose:

- ❖ The personal user, they can:
 - > Create a new survey;
 - ➤ View previous survey;
 - > Report;
- * The household, they can:
 - > Submit their production information;
 - ➤ Request add their village;
 - > Declare their current village;
 - Report.
- ***** The authority, they can:
 - View craft village's data (village production information, pollution status, etc);
 - ➤ Approve/decline a new village.
 - ➤ Update village.
 - > Report.
- ❖ The admin, they can:
 - > Create authority account.
 - > Update question to training data.
 - Download data set.

C2SE.01 Page **15** of **25**

3. Activity Diagram

Activity diagram is a graphical representation of workflows of stepwise activities and actions with support for choice, iteration, and concurrency.

Figure 7. Activity Diagram (Personal)

C2SE.01 Page **16** of **25**

Figure 8. Activity Diagram (Household)

C2SE.01 Page 17 of 25

Figure 9. Activity Diagram (Authority)

C2SE.01 Page **18** of **25**

Figure 10. Activity Diagram (Admin)

C2SE.01 Page **19** of **25**

4. C&C view

The diagram below shows the overview architecture including components and other related components.

Figure 11. Component & connector view

C2SE.01 Page **20** of **25**

5. Module View

Figure 12. Module view

C2SE.01 Page **21** of **25**

Prose:

- ➤ The CVPMS includes 5 packages and a database that helps the app run effectively.
- ➤ In the Web View package, we use Thymeleaf (Java template engine) to process and generate HTML, Javascript, and CSS.
- ➤ The App View package which has 22 classes are often used and we customize it to fit our requirements.
- ➤ The Controller package contains 16 classes, the Entities component, and the ORM model. The PredictController and the PredictiveModel are used to predict and return the types of pollution. We build a "bridge" between the software and relational databases using the ORM model and the Entities component.
- The Module package contains 10 models and the relation between them.
- ➤ In the External package, we use the E-mail System and the SMS System.
- Finally, the app is connected to the Oracle Database.

6. Allocation view

Figure 13. Allocation view

Prose:

The user can access our system by using Web App (Household User and Authority User and Admin) and Mobile App (Personal User) via internet.

C2SE.01 Page 22 of 25

7. Proposed architecture for Image Classification

IMAGE CLASSIFICATION

Output: Predict various classes

Figure 14. Image Classification Architecture

Prose:

To train a machine learning model, we use the dataset and the Pre-trained Model (ResNet34). From an input image, the trained model can predict various pollution classes.

C2SE.01 Page 23 of 25

8. Proposed architecture for Random Forest Classification

RANDOM FOREST CLASSIFICATION

Figure 15. Random Forest Classification

Prose:

To train a Random Forest classifier model, we use the dataset and the RandomForestClassifier class in scikit-learn. The trained model (RandomForest) can make predictions on the Production information of the craft village. The output of the prediction will be the predicted various classes.

C2SE.01 Page 24 of 25

9. References

No.	References	Document Information
1	Design standards, Document standards	https://www.softwarearchitecturebook.com/svn/main/slides/ppt/2 6_Standards.ppt https://standards.ieee.org/standard/1471-2000.html https://c4model.com/ https://machinelearningcoban.com/tabml_book/ch_model/random_forest.html
2	Patterns	https://en.wikipedia.org/wiki/Architectural_pattern
3	Evaluation standards	https://www.iso.org/obp/ui/#iso:std:iso-iec-ieee:42030:ed-1:v1:en https://gabrielfs7.github.io/software- architecture/2019/10/18/atam-analyze-evaluate-architecture/
4	Draw.io	https://www.draw.io
5	Visual Paradigm Online	https://online.visual-paradigm.com/

C2SE.01 Page 25 of 25