Unit 3

분류기반 ML 모형의 성능 측정 방법

11주차. 앙상블(Ensemble)

Classification based

- >> 기계학습에는 다양한 분류 모형이 존재
- 적합한 분류 모형 선택을 위해 성능을 비교·분석이 필요

학습 내용

- Confusion matrix (오차행렬)
- 정확도, 정밀도, 재현율
- Miss Rate, False Negative Rate (FNR)
- False Alarm Rate
- F1 score
- Receiver Operating Characteristic (ROC) Curve

학습 목표

- 분류기의 다양한 성과척도를 이해하고 선택할 수 있다.
- 분류 기반 모형의 성능을 비교, 분석할 수 있다.

Confusion matrix

✓ Confusion matrix란?

Confusion Matrix

오차행렬 또는 혼돈행렬

- >> Discrete 분류 모형의 성능을 도식화하는 데 사용되는 정방행렬
- >> 학습을 통해 Prediction의 성능을 측정하기 위해서 예측값과 실제값을 비교하는 표

Confusion matrix

Confusion matrix

사용자에 따라 Column과 Row의 위치가 바뀔 수 있다! 🔼

		Predictive values	
		Positive (1)	Negative (0)
Actual values	Positive (1)	TP	FN
	Negative (0)	FP	TN

True Positive(TP)

■ 실제 True인 정답을 True라고 예측 (정답)

False Negative(FN)

■ 실제 True인 정답을 False라고 예측 (오답)

False Positive(FP)

■ 실제 False인 정답을 True라고 예측 (오답)

True Negative(TN)

■ 실제 False인 정답을 False라고 예측 (정답)

네 가지 Element로 다양한 모형의 성과 지표를 계산

Confusion matrix

✓ Confusion matrix 출력

Confusion matrix

Confusion matrix 출력

Error Rate

$$=\frac{FP+FN}{TP+TN+FP+FN}$$

1-accuracy와 동일

sklearn.metrics

from sklearn.metrics import confusion_matrix

df_result = logistic_reg_model.df_result

actual = list(df_result['Actual'])

predicted = list(df_result['Predicted'])

matrix = confusion_matrix(actual, predicted)

print(matrix)

> 분류기반 ML 모형의 정능 측정 방법

Accuracy

✓ Accuracy란?

정확도(Accuracy)

전체 중에서 모형을 바르게 분류한 비율

$$\frac{TP + TN}{TP + TN + FP + FN}$$

		Predictive values	
		Positive (1)	Negative (0)
Actual values	Positive (1)	TP	FN
	Negative (0)	FP	TN

Accuracy

✓ Accuracy 출력

정확도(Accuracy)

sklearn.metrics

from sklearn.metrics import accuracy_score print('accuracy_score:', accuracy_score(actual, predicted))

Accuracy

✓ Accuracy의 단점

Accuracy의 단점

도메인 데이터셋의 편중(Bias 발생)

- ◎ 희귀병
 - 발생빈도가 낮아 Accuracy Rate 자체가 낮음
 - 정확한 모형 판단이 어려움

Precision

✓ Precision이란?

정밀도(Precision 또는 Specificity)

모형이 Positive라고 분류한 것 중에서 실제로 Positive인 비율

$$\frac{TP}{TP + FP}$$

		Predictive values	
		Positive (1)	Negative (0)
Actual values	Positive (1)	TP	FN
	Negative (0)	FP	TN

Precision

✓ Precision 출력

정밀도

sklearn.metrics

from sklearn.metrics import precision_score print('precision_score:', precision_score(actual, predicted))

Recall Score

☑ Recall Score란?

재현율(Sensitivity, Hit rate 또는 TPR)

실제 데이터가 Positive인 것 중 모형이 Positive로 분류한 비율

$$\frac{TP}{TP+FN}=TPR=1-FNR$$

False Negative Rate

Precision(정밀도)

■ 모형의 관점

Recall Score(재현율)

■ 데이터 관점

Recall Score

✓ Recall Score 출력

재현율

sklearn.metrics

from sklearn.metrics import recall_score print('recall_score:', recall_score(actual, predicted))

Miss Rate, False Negative Rate (FNR)

☑ Miss Rate, False Negative Rate (FNR) 이란?

Miss Rate 또는 FNR(False Negative Rate)

실제 데이터가 Positive인 것 중 모형이 Negative로 잘못 분류한 비율

$$\frac{FN}{\overline{TP+FN}} = 1 - TPR$$

완전한 분류기 = 0

False Alarm Rate

✓ False Alarm Rate이란?

False Alarm Rate

실제 데이터가 Negative인 것 중

모형이 Positive로 잘못 분류한 비율

$$FP$$
 $\overline{TN + FP}$

		Predictive values	
		Positive (1)	Negative (0)
Actual values	Positive (1)	TP	FN
	Negative (0)	FP	TN

F1 Score

✓ F1 Score란?

F1 Score

Precision과 Recall의 조화평균

극단적인 값에 대해서 **패널티**를 주기 위해

F1 Score

✓ F1 Score란?

F1 Score

 $\frac{2 \times Precision \times Recall}{Precision + Recall}$

		Predictive values	
		Positive (1)	Negative (0)
Actual values	Positive (1)	TP	FN
	Negative (0)	FP	TN

F1 Score

✓ F1 Score 출력

F1 Score

sklearn.metrics

from sklearn.metrics import f1_score print('f1_score:', f1_score(actual, predicted))

분류기 성과 척도 계산

		Predictive values		
			Positive (1)	Negative (0)
Actual values		Positive (1)	TP= 55	FN= 5
		Negative (0)	FP= 10	TN= 30
Accuracy	= T	TP + TN $TP + TN + FP + FN$	$=\frac{55+30}{55+30+10+}$	$\frac{1}{100} = \frac{85}{100} = 0.85$
Error rate	Error rate $= 1 - \text{accuracy} = 0.15$			
Recall	= 7	$\frac{TP}{TP+FN}=\frac{55}{55+10}$	$\frac{55}{65} = 0.85$	

분류기 성과 척도 계산

		Predictive values	
		Positive (1)	Negative (0)
Actual values	Positive (1)	TP	FN
	Negative (0)	FP	TN

Precision
$$= \frac{TP}{TP + FP} = \frac{55}{55 + 5} = \frac{55}{60} = 0.92$$

F1 Score
$$= \frac{2 \times Precision \times Recall}{Precision + Recall} = \frac{2 \times 0.92 \times 0.85}{0.92 + 0.85} = 0.88$$

False Alarm
$$= \frac{FP}{TN + FP} = \frac{5}{30 + 5} = \frac{5}{35} = 0.14$$

ROC Curve

☑ ROC Curve란?

ROC Curve(Receiver Operating Characteristic Curve)

- >> 오차행렬과 분류기 성능 척도는 임계값에 따라 상이
- ightharpoonup 임계값 = θ , 이를 조정할 경우 재현율과 정밀도가 서로 Trade off

기 임계값에 독립적인 성과평가 척도가 있을까

ROC Curve

ROC Curve

ROC Curve가 세타와 무관하게 독립적인 성과 척도로 많이 활용

ROC Curve

ROC AUC(Area Under the curve)

ROC보다 AUC가 더 쉽게 모형 성과를 비교 분석 할 수 있음

분류기 성과 척도

☑ 분류기 성과 척도의 선택

" 절대적 성과 척도는 없다. "

다양한 성과 척도 고려

분류기의 다양한 특성 파악

목적에 맞는 분류기 선택

분류기 성과 척도

☑ 분류기 성과 척도의 선택

오차행렬 원소들의 의미를 혼동해서는 안 된다!

연구연구자에 따라서 행과 열을 바꾸어서 제시하는 경우도 있으므로계산할 때 주의한다!

정리

- >>> Confusion matrix (오차행렬)
- >> 정확도, 정밀도, 재현율
- Miss Rate, False Negative Rate (FNR)
- >> False Alarm Rate
- >> F1 score
- >>> Receiver Operating Characteristic (ROC) Curve