CSE3505 Foundation of Data Analytics

Project Title:

Heart Disease Analysis and Decision Tree to Predict Pathological Suspects

Abstract:

With the new and sedentary lifestyle which a large majority of the population across the world is being exposed to, there has been a significant increase in heart diseases like those of heart failure, pericardial diseases, heart stroke etc. In order to analyze and portray the severity of this issue, we have decided to conduct heart disease data analysis and also build a classification and regression tree using cardiotocographic data using essential parameters like fasting blood sugar, serum cholesterol, max heart rate, etc. Through this analysis, we will be able to identify if a person is prone to have a heart disease or not using logistic regression for gaining accurate and precise results. Apart from this, we will also be curating a decision tree using classification and regression to classify patients as pathological and non-pathological suspects of heart diseases. The motive behind choosing this problem statement for data analysis is to create awareness on the severity of heart diseases today and also provide a substantial solution in predicting if a person is likely to have a heart ailment or not.

Literature Survey:

S. No	Title	Journal/Year of Publication	Dataset Used	Methodologies Used	Metrics used	Interpretation of Results	Reference Link
1	Identification of significant features and data mining techniques in predicting heart disease, Telematics and Informatics	Volume 36, 2019, Pages 82-93, ISSN	UCI Machine Learning Repository - Cleveland dataset and UCI Statlog Heart disease dataset	k-NN, Naïve Bayes, Vote, Support Vector Machine and Neural Network	Accuracy, F-measure and Precision. Accuracy is the percentage of correctly predicted instances among all instances. F-measure is the weighted mean of the precision and recall. Precision is the percentage of correct predictions for the positive class.	Precision and accuracy of prediction was highest for K-NN, followed by Vote, Naïve Bayes, SVM, Neural Network	https://www.sciencedir ect.com/science/article/ abs/pii/S073658531830 8876
2	Prediction of coronary heart disease using machine learning: An experimental analysis	Proceedings of the 2019 3rd International Conference on Deep Learning Technologies	South African Heart Disease which is a subset of a larger dataset. It contains 462 instances (observations) and 10 attributes in all (shown in Table 1), of	Decision Tree, Naïve Bayes Algorithm, SVM	The performance of the classification models derived by the ML is measured using the confusion matrix. The confusion matrix is a contingency table that displays the number of instances assigned to each class thus allowing us to calculate the classification	NB achieved the highest accuracy amongst the three models. SVM and DT J48 outperformed NB with a Specificity rate of 82% but proved to have an unacceptable Sensitivity rate of less than 50%. While NB Algorithm didn't reach the threshold of 80% Specificity and Sensitivity rate, it did turn out to be	https://dl.acm.org/doi/pdf/10.1145/3342999.3 343015?casa_token=EQ 63fwch8XoAAAAA:L6EK 91Udq48GCISOWPgHDd AnE1- PTEZd6ZZ416bs4dF67u9 2qLISxUanXUaRd1ZuJIFd 4nyto8MGyw

which 9 are	accuracy, sensitivity,	the best classifier for the	
independent	specificity, true	considered dataset as its	
factors and 1	positives (TPs), true	predictive rate is better	
variable, i.e.	negatives (TNs), false	that those of J48 and SVM	
CHD is the	positives (FPs), and	algorithms at least on the	
dependent	false negatives (FNs)	considered dataset.	
variable or	among others		
labelled class.			
The dataset is			
а			
retrospective			
sample of			
males in a			
heart-disease			
high-risk			
region of the			
Western Cape			
in South			
Africa-KEEL			
[28] where			
the labelled			
class CHD has			
two			
predictive			
outcomes:			
positive (1)			
and negative			
(0).			

3	Combination	2007	The dataset	SVM, Artificial	Three performance	The survey was done on a	https://ieeexplore.ieee.
	data mining	International	consisted of	Neural Networks	metrics were	data of 1000 CHD cases	org/abstract/document
	methods with	Conference on	1000	(ANN)	employed: accuracy,	with 11 attributes. In this	/4420369
	new medical	Convergence	consecutive		sensitivity and	research, they defined	
	data to	Information	patients who		specificity. A	survival as any incidence	
	predicting	Technology	underwent		distinguished	of CHD where person is	
	outcome of		coronary		confusion matrix is	still alive after 6 months	
	Coronary		angiography		obtained to calculate	from the date of	
	Heart Disease		for known		the three measures.	diagnosis. Theyused a	
			coronary		Confusion matrix is a	binary categorical survival	
			atherosclerosi		matrix representation	variable, which was	
			s at Anzhen		of the classification	calculated from the	
			hospital,		results. the upper left	variables in the raw	
			capital		cell denotes the	dataset, to represent the	
			University of		number of samples	survivability where	
			Medical		classifies as true while	survival is represented	
			Sciences,		they were true (i.e.,	with a value of "1" and	
			Beijing from		true positives), and	non-survival is	
			August 2005		lower right cell	represented with "0".	
			to December		denotes the number	The aggregated results	
			2005.		of samples classified	indicated that the SVM	
					as false while they	performed the best with a	
					were actually false	classification accuracy of	
					(i.e., true false). The	92.1%, the ANN model	
					other two cells (lower	(with multi layered	
					left cell and upper	perceptron architecture)	
					right cell) denote the	came out to be second	
					number of samples	best with a classification	
					misclassified.	accuracy of 91.0%. The	
						results showed here make	
						clinical application more	

						accessible, which will provide great advance in healing CHD.	
4	Improved Study of Heart Disease Prediction System using Data Mining Classification Techniques	International Journal of Computer Applications (0975 – 888) Volume 47– No.10, June 2012	Cleveland Heart Disease database consists of 303 records & Statlog Heart Disease database consists of 270 records	ANN, Naïve Bayes	A confusion matrix is obtained to calculate the accuracy of classification. It shows how many instances have been assigned to each class. In their experiment they have two classes, and therefore they have a 2x2 confusion matrix.	Three data mining classification techniques were applied namely Naive Bayes & Neural Networks. From results it has been seen that Neural Networks provides accurate results as compare to Naive Bayes.	http://citeseerx.ist.psu. edu/viewdoc/download ?doi=10.1.1.258.8158&r ep=rep1&type=pdf
5	Early Prediction of Heart Disease Using Decision Tree Algorithm	International Journal of Advanced Research in Basic Engineering Sciences and Technology (IJARBEST) Vol.3, Issue.3, March 2017	UCI Repository Dataset	Decision Tree (C4.5), Naïve Bayes	Accuracy, Sensitivity and Specificity are computed on the basis of the confusion matrix that is curated.	From results, it has been seen that Decision trees provides accurate results as compare to Naive Bayes. This system can be further expanded. It can use more number of inputs.	https://www.researchg ate.net/profile/Safish- Mary/publication/3150 23624_Early_Prediction _of_Heart_Disease_Usi ng_Decision_Tree_Algor ithm/links/58c84b57aca 2723ab16eba60/Early- Prediction-of-Heart- Disease-Using-Decision- Tree-Algorithm.pdf

6	Coronary	International	UCI	Self Organizing	The experimental	The results revealed that	https://link.springer.co
	Heart Disease	Journal of	Repository for	Map, SVM	setup of our	the dataset imputation	m/article/10.1007/s408
	Diagnosis	<u>Fuzzy Systems</u>	datasets of		experiment on the	has a positive relationship	15-020-00828-7
	Through Self-	, Springer,	Cleveland and		dataset with missing	with the accuracy of the	
	Organizing	2020	Statlog		values is as follows.	Fuzzy SVM classifier. In	
	Map and				The dataset is divided	addition, we found that	
	Fuzzy				into two subsets, 70%	the methods which rely	
	Support				of the dataset as	on PCA provide better	
	Vector				training subset and	accuracy in relation to the	
	Machine with				30% of dataset as test	other methods. In fact, it	
	Incremental				subset. Then we	was found that, in the	
	Updates				applied the	medical dataset the	
					imputation procedure	multicollinearity can	
					through hot-deck and	significantly affect the	
					k-NN on the training	predictive accuracy of the	
					set for missing value	classifiers. Our	
					imputation. We then	experimental findings on	
					applied PCA on each	two datasets also showed	
					cluster which does not	that the use of the	
					include the missing	methods with	
					values. In the final	incremental techniques	
					stage, the	can have advantages on	
					classification models	enhancing the	
					were constructed by	computation time of	
					Fuzzy SVM. To obtain	disease prediction.	
					the classification		
					accuracy, the Fuzzy		
					SVM classification		
					model was evaluated		
					on the test set.		

removal of redundant variables.	redundant		
---------------------------------	-----------	--	--

8	A Reliable	2016	MIT-BIH	Weighted	Sensitivity, speed,	This study has presented	https://ieeexplore.ieee.
	Feature	International	Arrhythmia	Principal	reliability, detection	a simple and reliable	org/abstract/document
	Selection	Conference on	Database	Component		WPCA method to analyze	/7551594
	Algorithm for	System		Analysis (WPCA)		ECG signals for diagnosing	
	Determining	Science and		method		cardiac arrhythmias. The	
	Heartbeat	Engineering				proposed method has the	
	Case using	(ICSSE)				following advantages: (1)	
	Weighted	National Chi				good detection results:	
	Principal	Nan				sensitivities are 95.29%,	
	Component	University,				93.35%, 92.29%, 79.98%,	
	Analysis	Taiwan, July 7-				91.55% and 90.07% for	
		9, 2016				heartbeat cases NORM,	
						LBBB, RBBB, VPC, APC and	
						PB, respectively; (2)	
						simplicity: complicated	
						mathematical	
						computations are	
						unnecessary; (3) high	
						speed: the average time	
						required for processing a	
						30-minute record of ECG	
						data is less than 1 minute;	
						and (4) high reliability:	
						total classification	
						accuracy approximates	
						93.19%. Therefore, the	
						proposed WPCA is an	
						efficient, simple and fast	
						method for diagnosing	
						cardiac arrhythmia based	
						on ECG signals.	

9	Hybrid	<u>International</u>	5 high	CORR SVM	Classification accuracy	This paper presents a	https://ieeexplore.ieee.
	Classification	Conference on	dimensional	hybrid model for		Hybrid of Supervised	org/abstract/document
	Model of	<u>System</u>	datasets like	Classification		Correlation method and	/7567338
	Correlation-	Science and	Breast_2,			Support Vector Machine	
	based	Engineering	Colon, DLBCL,			for classification of high	
	Feature	(ICSSE), 2016	Leukaemia			dimensional datasets.	
	Selection and		and Prostate			First each feature's	
	Support		as shown in			absolute correlation value	
	Vector		Table 1. All			with respect to class is	
	Machine		datasets are			calculated and keep it	
			of binary			into an array call array0.	
			classes (only			Then sort array0 in	
			two classes).			descending order of	
			The numeric			values and then sort	
			values 1 and -			features according to	
			1 are taken to			sorted array0 call this list	
			represent			as list1. Then select top K	
			classes.			(a user defined number)	
						features from list1 which	
						forms reduced dataset.	
						Then calculate	
						classification measures	
						with various options as	
						presented in the	
						literature	