ENHANCING CROWDSOURCED PLANT IDENTIFICATION: FROM LABEL AGGREGATION TO PERSONALIZED RECOMMENDATIONS

Tanguy Lefort INRIA Lille, Scool

ONGOING WORK WITH...

- Odalric Ambrym Maillard
- ► Alexis Joly
- ▶ Vanessa Hequet

- Benjamin Charlier
- Joseph Salmon
- ► Pierre Bonnet
- ► Antoine Affouard
- ► Jean-Christophe Lombardo

Publications

- ► Label aggregation: Methods in Ecology and Evolution 2024 (part of PhD)
- ► Recommender system: WIP (part of postdoc)

PL@NTNET ONLINE VOTES

× Chitalpa tashkentensis T.S.Elias & Wisura World flora

Observation

pofpof63 Jun 26, 2023	1: user and date		0 0 %
Most probable nam	e		
× Chitalpa tashkentensis T.S.Elias & Wisura Bignoniaceae Dave		2	otos
Bignoniaceae Dave		2: v	Otes
Submitted name		Suggested names Vote for the species name	otes
Submitted name	nsis T.S.Elias & Wisura		#5 ≛

△ Observation contains pictures of several plants?: Vote for Malformed observation (✓) 0

USERS CAN MAKE CORRECTIONS

Vesalea grandifolia (Villarreal) Hua Feng Wang & Landrein Flore mondiale Observation

Corrected initial submission

BUT SOMETIMES USERS CAN'T BE TRUSTED

Espèce non identifiée Flore mondiale

Corrected?

Observation

BUT SOMETIMES USERS CAN'T BE TRUSTED

Espèce non identifiée Flore mondiale Observation Ernst Fürst 23 janv. 2022 0 9 % 8 2 Nom le plus probable Espèce non identifiée Nom soumis Noms suggérés Voter pour le nom d'espèce Plantago subulata L. Plantago subulata L. Plantain à feuilles en alène £75 € Espèce non identifiée ı∂ 2 🎎 Polytrichum commune Hedw. iÓ 2 ♣5 Polytrichum commune ற் 1 🚉 Contributeurs Sylvain Gaudin PlantNet Curator (Vanessa Hequet) Majority is wrong Fermer Voter pour un organe Voter pour la qualité

CROWDSOURCING FOR CLASSIFICATION THE GOOD, THE BAD AND THE UGLY

General.

► The good: Fast, easy, cheap data collection

CROWDSOURCING FOR CLASSIFICATION THE GOOD, THE BAD AND THE UGLY

General.

- ► The good: Fast, easy, cheap data collection
- ► The bad: Noisy labels with different level skills

CROWDSOURCING FOR CLASSIFICATION THE GOOD, THE BAD AND THE UGLY

General.

- ► The good: Fast, easy, cheap data collection
- ► The bad: Noisy labels with different level skills
- ► The ugly: Very few theory, ad-hoc methods to handle noise from users

CROWDSOURCING FOR CLASSIFICATION THE GOOD, THE BAD AND THE UGLY

General.

- ► The good: Fast, easy, cheap data collection
- ► The bad: Noisy labels with different level skills
- ► The ugly: Very few theory, ad-hoc methods to handle noise from users

Pl@ntNet.

- ▶ 20+ million observations from around the world
- ► 6+ million users
- ► 22+ million votes
- ► 49 720 species

PL@NTNET GENERAL DESIGN

Key concept of Pl@ntNet: Collaborative AI

PL@NTNET LABEL AGGREGATION EM BASED ALGORITHM

Weighting users vote by their estimated number of identified species

ACTIVE DATASET ANY OBSERVATION LABELING IS ACTIVE

Rai Luca Mei

Initial setting

Label switch

ACTIVE DATASET Any observation labeling is active

Invalidating label

CHOICE OF WEIGHT FUNCTION

$$f(n_u) = n_u^{\alpha} - n_u^{\beta} + \gamma \text{ with } \begin{cases} \alpha = 0.5\\ \beta = 0.2\\ \gamma = \log(2.1) \simeq 0.74 \end{cases}$$

OTHER EXISTING STRATEGIES

► Majority Vote (MV)

OTHER EXISTING STRATEGIES

- ► Majority Vote (MV)
- ▶ Worker agreement with aggregate (WAWA, Appen 2021)
 - Majority vote
 - ▶ Weight user by how much they agree with the majority
 - Weighted majority vote

OTHER EXISTING STRATEGIES

- ► Majority Vote (MV)
- ▶ Worker agreement with aggregate (WAWA, Appen 2021)
 - Majority vote
 - Weight user by how much they agree with the majority
 - ▶ Weighted majority vote
- ► TwoThird (from iNaturalist)
 - ► Need at least 2 votes
 - ▶ 2/3 of agreements

EXTRACTING A SUBSET: PL@NTNET-CROWDSWE DESIGN AND SOME NUMBERS

- ► South Western European flora obs since 2017
- ▶ 823 000 users answered more than 11000 species
- ► 6700 000 observations
- ▶ 9 000 000 votes casted
- ▶ Imbalance: 80% of observations are represented by 10% of total votes
- zenodo: https://zenodo.org/records/10782465

EXTRACTING A SUBSET: PL@NTNET-CROWDSWE DESIGN AND SOME NUMBERS

- ► South Western European flora obs since 2017
- ▶ 823 000 users answered more than 11000 species
- ► 6700 000 observations
- ▶ 9 000 000 votes casted
- ▶ **Imbalance**: 80% of observations are represented by 10% of total votes
- ▶ zenodo: https://zenodo.org/records/10782465

No ground truth available to evaluate the strategies

EXTRACTING A SUBSET OF A PL@NTNET CREATION OF TEST SETS

► Extraction of 98 experts (TelaBotanic + prior knowledge – thanks to Pierre Bonnet)

Pl@ntnet South-Western Europe flora dataset

PERFORMANCE

In short

- ▶ Pl@ntNet aggregation performs better overall
- ▶ We indeed remove some data but less than TwoThird

AGGREGATING LABELS: WITH WHAT TOOLS? https://peerannot.github.io/

Peerannot: Python library to handle crowdsourced data

RECOMMENDER SYSTEM FOR BOTANICAL DATA

Why?

- ▶ "As an expert in XXX I only want to see observations related to XXX"
- Personalized flow of observations to annotate
- ► Have more valid observations in the long term

RECOMMENDER SYSTEM FOR BOTANICAL DATA

Why?

- ► "As an expert in XXX I only want to see observations related to XXX"
- ▶ Personalized flow of observations to annotate
- ▶ Have more valid observations in the long term

How

- ▶ RL: Sequential flow of arriving observations to learn from
- ► Tool: Contextual Multi-armed bandits (the context is the user's expertise)
- ▶ Bonus 1: We can exploit the botanical taxonomy
- ▶ Bonus 2: We have a current estimate of the species using Pl@ntNet computer vision model
- ► Issue: Recommender systems are mostly based on popularity, and we don't want many votes on each observation

MORTAL MULTI-ARMED BANDITS

- ▶ Neurips 2008: **Mortal Multi-armed bandits** Chakrabarti et al.
- ▶ In our work: user=context and arm=observation to recommend

MORTAL MULTI-ARMED BANDITS

- ▶ Neurips 2008: **Mortal Multi-armed bandits** Chakrabarti et al.
- ▶ In our work: user=context and arm=observation to recommend

Mortal bandit algorithm in crowdsourcing

```
Input: Recommender system f, arms A, constraint functions \Gamma_{agg}, user u,
   budget T, user weights W
2: Output: Set of valid observations
3. for t=1,...,T do
i \leftarrow f(u)
                                                       {recommend a new observation}
    if y_i^u \notin \emptyset then
            r_{u,i} \leftarrow 1
            if \Gamma_{agg}(i, W, \{y_i^u\}_{i,u}) = 1 then
                \mathcal{A} \leftarrow \mathcal{A} \setminus \{i\}
                                                                       {observation is valid}
       else
            r_{u,i} \leftarrow 0
10-
        Update f following its policy
11:
```

OUR RECOMMENDER SYSTEM: PHYLOCROWDREC

► Keypoint: recommend a genus and then select the observation

```
1. Input: Recommender system f, Constraint functions \Gamma_{agg}, Budget T, History of in-
    teractions with genera (g, u, r_{g,u})_{g,u}, User votes on observations \{y_i^u\}_{i,u}
2: Output: Set of valid observations \mathcal{D}_{\text{valid}}, User weights W
3: \mathcal{D}_{\text{valid}} \leftarrow \emptyset, w_u^0 = 1 for all users
                                                                                                       {Initialization}
4: for t=1,...,T do
g \leftarrow f(u)
                                                                                              {Recommend genus}
6: if r_{a,u} = 0 then
               Update CMAB and go to next visit
                                                                                {Unaligned recommendation}
        else
               \mathcal{D}_g \leftarrow \{i| \operatorname{genus}(x_i) = g\}
9.
               i_t \leftarrow \text{First}\left(x_i|\text{genus}(x_i) = g, \ \Gamma_{\text{agg}}(i, W, \{y_i^u\}_{i,u}) = 0, \ w_u \geq \max_{u' \in \mathcal{U}_i} w_{u'}\right)_i,
10-
               Observe y_{i}^{u}
11:
               Aggregate \{y_i^u\}_{i,u} and get new weights
12:
               W \leftarrow (w_u^t)_u
                                                                                                   {Update weights}
13:
               if \Gamma_{agg}(i_t, W, \{y^u_{i_{t'}}\}_{i_{t'}, u, t' < t} \cup \{y^u_{i_t}\}) = 1 then
14:
                     \mathcal{D}_{\text{valid}} \leftarrow \mathcal{D}_{\text{valid}} \cup \{i_t\}
                                                                                              {observation is valid}
15-
               Update CMAB with r_{g,u} = 1
16:
```

EXPERIMENTAL SETTING

- ► MovieLens-100K dataset with TwoThird aggregation
- ► A user likes a genre of movies if they liked over 5 movies of this genre (binary classification: good or bad movie)
- ► A user likes a movie if rating is 5 stars
- ▶ In total: 19 genres, 1682 movies, 100K ratings
- ► LinUCB bandits for online recommendation

PRELIMINARY RESULTS PHYLOCROWDREC

RESULTS ONLINE MORTAL BANDITS

In short

► Too many arms, poor performance overall

RESULTS PHYLOCROWDREC

In short

▶ More than 550 quality verified movies for the same budget

OTHER BANDIT TYPES? OFFLINE EXPERIMENT

In short

- ▶ Bandits that cluster contexts outperforms others
- ► Contextual bandits outperform non-contextual bandits

What about Pl@ntNet recommender system?

Work in progress

- ▶ What is the user profile?
- ▶ What happens when we add the weights?
- ► Lots of observation are seen by a very few users

TAKE HOME MESSAGE

- ► Crowdsourcing in large scale classification settings can be handled by the Pl@ntNet aggregation strategy
- ► Bandit-based recommender systems can exploit the data phylogeny to improve user interactions and quality control
- ► Python library if you want to try it out: https://peerannot.github.io/
- ▶ Pl@ntNet-CrowdSWE available on zenodo https://zenodo.org/records/10782465