TUGAS Arsitektur dan Organisasi Komputer

Disusun Oleh:

Prames Ray Lapian - 140810210059

PROGRAM STUDI S-1 TEKNIK INFORMATIKA

FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

UNIVERSITAS PADJADJARAN

JATINANGOR

2022

1. Tugas Error Correction

Posisi	12	11	10	9	8	7	6	5	4	3	2	1
Data	1	1	0	1		1	0	1		1		
Var	D8	D7	D6	D5	C8	D4	D3	D2	C4	D1	C2	C1

Input: 1011 1101

Dengan rumus:

$$C1 = D1 \oplus D2 \oplus$$

$$C2 = D1 \oplus$$

$$C4 =$$

D8

$$C8 =$$

$$\oplus$$
 D5 \oplus D6 \oplus D7 \oplus D8

Maka dapat dihitung:

Posisi	12	11	10	9	8	7	6	5	4	3	2
Data	1	1	0	1	1	1	0	1	1	1	0
Var	D8	D7	D6	D5	C8	D4	D3	D2	C4	D1	C2

Input: 1011 1101

$$C1 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$C2 = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$C4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$C8 = 1 \oplus 1 \oplus 0 \oplus 1 = 1$$

Posisi bit data menjadi: 1001 1101 (D6 Error), maka check bit menjadi:

$$C1 = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1$$

$$C2 = 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0 = 1$$

$$C4 = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$C8 = 1 \oplus 0 \oplus 0 \oplus 1 = 0$$

Jika kita membandingkan hasil check bit sebelum dan sesudah error, maka =

Jika dilihat dalam gambaran proses error deteksi dan koreksi,maka dapat digambarkan sebagai berikut

Figure 5.7 Error-Correcting Code Function

Mf = 1011 1101

Min = 1011 1101

Kf = 1101

Mcr = 1001 1101

Kco = 1100

Kcr = 0111

Cor = 1010

2. Tugas Kinerja Disk

a. total data yang akan dibaca = 512 * 3000 = 1,536,000 byte = 1.536 Mbyte

b. Asumsikan bahwa file disimpan sepadat mungkin di disk. Artinya, file tersebut menempati semua sektor di 6 trek yang berdekatan/berurutan (6 trek * 500 sektor / trek = 3000 sektor). Ini dikenal sebagai organisasi sekuensial.

Waktu untuk membaca track pertama adalah sebagai berikut :;

Pencarian rata-rata 4 ms

Delay rotasi rata-rata 1.5 ms

Membaca 500 sektor 3.3 ms = (60/18000)

Jumlah = 8.8 ms

Misalkan track yang tersisa sekarang dapat dibaca tanpa pencarian waktu. Artinya, operasi I/O dapat mengikuti aliran dari disk. Lalu, biasanya kita perlu memperhatikan penundaan rotasi untuk 5 trek

yang tersisa. Jadi masing-masing trek berturut-turut dibaca dalam 1.5 + 3.3 = 4.8 ms. Untuk membaca seluruh file,

Total waktu = 8.8 + (5*4.8) = 32.8 ms = 0.0328 detik

c. Sekarang mari kita hitung waktu yang dibutuhkan untuk membaca data yang sama menggunakan random akses daripada akses berurutan; yaitu, akses ke sektor didistribusikan secara acak melalui disk. Untuk setiap sektor, kami punya

Pencarian rata-rata 4 ms
Delay rotasi 1.5 ms
Membaca 1 sektor 0.0066 ms

Jumlah = 5.5066 ms

Total waktu = 3000 * 5.5066 = 16,519.8 ms = 16.5198 detik

Jadi, urutan pembacaan sektor dari disk memiliki efek yang luar biasa pada kinerja I/O.