04.02.2024 328197462

מטלת מנחה 14 - לוגיקה למדמ"ח 20466

שאלה 1

א. הטענה נכונה.

יהא M מודל, s השמה ו ϕ נוסחה, ונניח כי ϕ $\forall x$ מסופק ע"י M, כלומר לכל משתנה s בתחום המודל, הנוסחה נכונה תחת ההשמה s.

.M⊨ ֶּ מתקיים מתקיים ל מנונה ע"פ הנחתנו, ולכן מתקיים x בפרט, יהא x הערך המותאם ל

ב. הטענה נכונה.

יהא M מודל, s השמה ו ϕ נוסחה, ונניח כי ϕ נכונה ב M תחת ההנחה s. בפרט, קיים ערך כלשהו שניתן להציב ב x, נניח הערך הניתן לו תחת ההשמה s, כך ש ϕ נכון, ולכן הפסוק $\pm x$ נכון במודל M תחת ההשמה $\pm x$. פרט ביים אינון לו תחת ההשמה $\pm x$.

ג. הטענה נכונה.

 ϕ הנוסחה מחודל, הנוסחה x ולכל ערך של x בתחום המודל, הנוסחה y מסופק ע"י המודל, קרי לכל השמה y הנוסחה y המיתית במודל, ומתקיים y

כיוון שני: נניח כי עבור כל השמה s, הנוסחה ϕ אמיתית במודל. בפרט הנוסחה נכונה עבור כל ערך של המשתנה x, ומכאן $\forall x \phi$ אמיתית במודל.

ד. הטענה לא נכונה.

רעיון הדוגמה הנגדית: בניגוד לפסוקים, ישנן נוסחאות הנכונות עבור השמות מסוימות ואינן נכונות עבור השמות אחרות.

x < y שפירושו R(x,y) שפירושו ועם היחס מודל שתחומו המספרים הטבעיים ועם היחס $\Phi = R(x,32)$ שפירושו נתבונן בנוסחה

.Mב אכן מתקיים $\phi \neq M$, שכן קיימת השמה, למשל 43 $x \leftarrow 4$, עבורה הנוסחה לא אמיתית ב

אולם אם שלילת הנוסחה, קרי (x < 32), אמיתית בM, כ היא אינה אמיתית למשל עבור ההשמה, קרי $x \leftarrow 8$

ה. הטענה לא נכונה.

רעיון הדוגמה הנגדית: על פי ההנחה, קיים מודל בו φ לא נכונה. נמצא מודל אחר בו φ⊢ שקרית. דוגמה נגדית: יהא M המודל לעיל, וכן φ הנוסחה לעיל, והראינו כי φ שקרית במודל, בפרט φ לא טאוטולוגיה, קרי φ⊭.

. מצאנו כי מודל זה אינו מספק גם את φ ר, קרי גם φ ר אינה טאוטולוגיה

04.02.2024 328197462

שאלה 2

- א. הפסוק אמיתי לוגית. נראה כי $\exists y P(y)$ יכיח מתוך $\{\forall x P(x)\}$, ונשתמש בכלל הדדוקציה. סדרת ההוכחה:
 - .1 אנחה. $\forall x P(x)$
 - אקסיומת ההצבה הכללית ($\forall x P(x) \rightarrow P(t)$) .2
 - 1,2 ניתוק P(t) .3
 - בלל ההכללה הישיר $\exists y P(y)$.4

.⊢ $\forall x P(x) \rightarrow \exists y P(y)$ כעת, לפי כלל הדדוקציה, נקבל

- בכלל $\exists x P(x), \ \exists x Q(x) \}$ יכיח מתוך $\exists x (P(x) \to Q(x)), \ \exists x \in \{P(x), \ x \in \{P(x), \ \exists x \in \{P(x), \ x \in \{P(x), \$
 - .1 $\exists x Q(x)$ הנחה.
 - אקסיומת ההצבה הישירה ($\exists x Q(x) \rightarrow Q(c)$.2
 - Q(c) ניתוק 1, 2
 - אקסיומת הילברט הראשונה $(Q(c) \rightarrow (P(c) \rightarrow Q(c)))$.4
 - 3,4 ניתוק ($P(c) \to Q(c)$) .5
 - כלל ההכללה הישיר $\exists x(P(x) \rightarrow Q(x))$.6

כעת, לפי כלל הדדוקציה פעמיים, נקבל את התוצאה הנדרשת.

- בירת הדוקציה. סדרת ההוכחה: $\{\forall x P(x)\}$ ונשתמש בכלל הדדוקציה. סדרת ההוכחה:
 - הנחה $\forall x P(x)$.1
 - אקסיומת ההצבה הכללית ($\forall x P(x) \rightarrow P(t)$) .2
 - 1,2 ניתוק P(t) .3
 - כלל ההכללה הכללי $\forall y P(y)$.4

ד. הפסוק לא אמיתי לוגית.

x < y פירושו R(x,y) פירושו המספרים הממשיים החיוביים, והיחס מודל שתחומו המספרים הממשיים, קיים החלק השמאלי של הפסוק אמיתי לוגית. לכל משתנה y, עקב תכונת הצפיפות של המספרים הממשיים, קיים $x \in (0,y)$

באותו האופן, חלקו הימני של הפסוק שקרי, כי שלילתו, $\forall x\exists y\neg R(x,y)$ אמיתית לוגית. לכל משתנה x, ניתן באותו האופן, חלקו הימני של הפסוק שקרי, כי שלילתו, R(x,x) מתקיים R(x,x).

ה. הפסוק לא אמיתי לוגית.

x < y פירושו R(x,y) מודל שתחומו הוא המספרים הטבעיים, והיחס M מודל שתחומו דוגמה נגדית: יהא

B(x) = R(8,x) ויהא A הפסוק, A(x) = R(x,3) ויהא A הפסוק

שני הפסוקים ($x \leftarrow 2$ אמיתיים במודל: למשל, A אמיתיים במודל: אמיתיים במודל: אמיתיים במודל: אמיתיים במודל: אמיתיים במודל: משל, אמיתיים במודל: משל, אמיתיים במודל: מודל אמיתיים במודל: אמיתים במודל: אמי