

实验背景

1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。

杨氏弹性模量是选定机械零件材料的依据之一,是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。

实验背景

本实验用拉伸法测量杨氏模量。

材料	杨氏模量E (GPa)
橡胶(微小应变)	0.01-0.1
尼龙	2~4
高强度混凝土 (受到压缩)	30
金属镁	45
玻璃(所有种类)	71.7
铝	69
黄铜和青铜	103~124
合金与钢	190~210
钨 (W)	400~410
钻石	1050~1200

一、实验原理/1.1基本原理

1、杨式模量:

假设一根横截面积为S,长为L的材料,在大小为F的力的拉压下,伸缩短了 $\triangle L$ 则:

$$\frac{\Delta L}{L}$$
 : 应变 $\frac{\Delta L}{S}$: 应力(单位截 $\frac{\Delta L}{L} = \frac{F}{S}$

应力和应变的比成为杨式模量

$$E = \frac{FL}{S\Delta L}$$

本实验目标: 额材的

杨氏模量

一、实验原理/1.1基本原理

2、钢丝杨式模量的测量方法:

$$E = \frac{FL}{S\Delta L} \qquad S = \frac{\pi d^2}{4}$$

F:可由实验中钢丝下面悬挂的砝码的重力给出

L: 可由米尺测量

d: 为细铁丝的直径,可用螺旋测微仪测量

△L: 是一个微小长度变化量,本实验利用光杠杆的光学放大作用实现对金属丝微小伸长量△L 的间接测量。

一、实验原理/1.2光杠杆的光学放大原理

沧海校区仪器

一、实验原理/1.2光杠杆的光学放大原理

丽湖校区仪器

一、实验原理/1.2光杠杆的光学放大原理

$$\tan \theta = \frac{\Delta L}{b} \quad 2\theta << 5^{\circ} \quad \theta = \frac{\Delta L}{b}$$

$$\tan 2\theta = \frac{l}{D} \quad 2\theta = \frac{l}{D}$$

$$\frac{l}{\Delta L} = \frac{2D}{b} = \beta \quad \beta \text{ multathints}$$

$$E = \frac{8FLD}{\pi d^{2}bl}$$

将微小的伸长量△L 放大为竖尺上的位移/

二、实验仪器

杨氏模量测定仪

螺旋测微计 (仪器误差: ±0.004mm)

游标卡尺(仪器误差:±0.02mm)

米尺(仪器误差:±1mm)

砝码(仪器误差: ±1g)(沧海校区用)

数字拉力计(仪器误差: ±5g) (丽湖校区用)

标尺(仪器误差:±0.5mm)

待测金属丝

二、实验仪器

测量仪器的选择

$$E = \frac{8FLD}{\pi d^2 bl}$$

砝码 寒尺 寒尺 千分尺 卡尺 米尺

$$\frac{\Delta E}{E} = \sqrt{\left(\frac{\Delta F}{F}\right)^2 + \left(\frac{\Delta L'}{L}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{2\Delta d}{d}\right)^2 + \left(\frac{\Delta b}{b}\right)^2 + \left(\frac{\Delta l}{L}\right)^2}$$

- 1、调节仪器: 调节光杠杆和望远镜:
 - (1) 调整望远镜水平,光杠杆平面镜竖直;
 - (2) 调整望远镜与光杠杆平面镜高度相同;
- (3) 沿望远镜外侧边沿上方使凹口、瞄准星面镜在同一直线上,左、右移动望远镜在镜子里找到竖直尺的像;若找不到,可微调镜子的角度,直到找到为止;
- (4) 旋动望远镜目镜,使十字叉丝清晰; 再旋动聚焦手轮,直到看清竖直尺的像。

2、记录金属丝伸长变化

逐次加一个砝码,在望远镜中读对应标尺的位置,共 7次;然后将所加砝码逐次去掉,并读取相应读数。

加砝码	r_0	r ₁	r_2	1 1 1 3	$m{r}_4$	1 7 5	r_{6}	V ₇
减砝码	$\boldsymbol{\mathit{F}_0'}$			" 3"	r ' ₄	r' ₅	r_6'	
平均值	$\overline{\it r}_{_0}$	$\overline{\boldsymbol{\mathit{r}}}_{\scriptscriptstyle 1}$	\overline{r}_{2}	\overline{r}_3	$\overline{\it r}_{_4}$	\overline{I}_{5}	\overline{r}_{6}	V ₇

用逐差法计算每增减4个砝码,钢丝的伸长量

$l_1 = r_4 - r_0$	$l_2 = r_5 -$	$-r_1$ $l_3 =$	$l_3 = r_6 - r_2$		3
	1	2	3	4	平均
l_i					

- 3、测量金属丝长度<math>L、平面镜与竖尺之间的距离D
- ,金属丝直径d,光杠杆常数b。
 - (1)用钢卷尺测量L和D(L、D测一次)
 - (2)在钢丝上选不同部位用螺旋测微计测量d(测5次)
- (3)取下光杠杆在展开的白纸上同时按下三个尖脚的位置,用直尺作出光杠杆后脚尖到前两尖脚连线的垂线,用游标卡尺测出b

注意:

- 1、实验系统调好后,一旦开始测量ri,在实验过程中不能对系统的任何一部分进行调整,否则,所有数据将重新再测。
- 2、加减砝码时要轻拿轻放,系统稳定后才能读取刻度尺, 读数过程中不要按压桌面。
- 3、光杠杆后脚尖不能接触钢丝。
- 4、注意维护钢丝的平直状态,在钢丝两端夹点外测量直径, 避免伸长部分扭折。

四、报告要求

1、计算杨氏模量 E:

$$E = \frac{8FLD}{\pi d^2 bl}$$
 注意各个量的单位以及有效数字的计算规则 注意: 为4个砝码的重量

计算要求:

首先把各个量表示成: $N = \overline{N} \pm \Delta N$ 的形式,然后再计算E

注意一: F、L、D、b均为单次测量量,只有B类不确定度

$$\Delta = \Delta_B = \Delta_{\text{\lambda}} / \sqrt{3}$$

例:测量金属丝长度 L=37.42cm,钢卷尺仪器误差为 0.1cm

$$\Delta L = 0.1 \times \frac{1}{\sqrt{3}} \approx 0.577 = 0.06cm$$

$$L = (37.42 \pm 0.06)cm$$

四、报告要求

$$egin{align} \Delta_A &= \sqrt{rac{\sum_{i=1}^k \left(\overline{N} - N_i
ight)^2}{k(k-1)}} & \Delta_B &= rac{\Delta_{ ext{QB:g}}}{\sqrt{3}} \ \Delta &= \sqrt{\left(\Delta_A
ight)^2 + \left(\Delta_B
ight)^2} \ \end{pmatrix}$$

例:测量金属丝直径 5次测量值分别为,螺旋仪器仪器误差 为 0.004mm

次数	1	2	3	4	5	平均值
d	0. 488	0.490	0.489	0. 492	0. 490	0. 490
Δd	0.002	0.000	0.001	0.002	0.000	

$$\Delta_A = \sqrt{\frac{(0.490 - 0.488)^2 + (0.490 - 0.490)^2 + (0.490 - 0.489)^2 + (0.490 - 0.492)^2 + (0.490 - 0.490)^2}{5 \times 4}} = 0.001 mm$$

$$\Delta_B = \frac{0.004}{\sqrt{3}} = 0.002mm$$

$$d = (0.490 \pm 0.003)mm$$

$$\Delta = \sqrt{\Delta_A^2 + \Delta_B^2} = \sqrt{0.001^2 + 0.002^2} = 0.003mm$$

注意二: d, \overline{l} 为多次测量量,有A类和B类不确定度

四、报告要求

2、计算 $\triangle E$: 测量结果的相对不确定度

$$\frac{\Delta E}{E} = \sqrt{\left(\frac{\Delta F}{F}\right)^2 + \left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta D}{D}\right)^2 + \left(\frac{2\Delta d}{\overline{d}}\right)^2 + \left(\frac{\Delta l}{\overline{l}}\right)^2} = N\%$$

$$\boxed{\emptyset! : \frac{\Delta L}{L} = \frac{0.06}{37.42} = 0.080\%}$$

3、规范表示测量结果

$$\begin{cases} E = E \pm \Delta E \\ \mathbf{P} = \mathbf{0.683} \\ \frac{\Delta E}{E} = N\% \end{cases}$$

