Question 1.

$$F(A, B, C, D) = Ac(\overline{B}+D) + \overline{A}c(\overline{B}+\overline{D}) + Bc(\overline{A}+\overline{D})$$

Total gate input cost = 6+12+3 = 21

A
$$\frac{19}{B}$$
 $\frac{A}{B}$ $\frac{A}{B}$ $\frac{12}{B}$ $\frac{12}{B}$

GIC = 21

F = ABC + ACD + ABC + ACD + ABC + BCD

Truth table

Truth		151 8	o 16				
1	Α	B	С	0)	F	
0	0	0	0	C		0	
l	0	0			1	0	
2	0	0	1	(1	
3	0	C)	1	1	1	
4	0	1	(\supset	0	0	
5	10	, 1	(\supset	1	0	
6			(1	0	1	
6))	į	į	1	1	
Ž		· (0	0	0	0	
			0	0	1	0	
				1	0	,	
(:		1	0	1		',	
t	((0	1	1	1	
	2	1	1	0	0	0	
		l	1	0	(0	
		10	7	7	(*)		
1	4	1	((U	1	
1	5	†	1	1	1	1	
	1						

c)
$$F = \sum_{i=1}^{n} m(a,3,6,7,10,11,14,15)$$
 [2]
d) $F = \prod_{i=1}^{n} M(0,1,4,5,8,9,12,13)$ [2]

f) product of sums

(ombine the zeros to find F

$$F = \overline{C} \implies F = C$$
 is also product of sums

 $\overline{F} = \overline{C} \implies F = C$ is also product of sums

(3)

(i)
$$(23B4.A5)_{12} = 2 \times 12^{3} + 3 \times 12^{2} + 11 \times 12^{4} + 4 \times 12^{6} + 10 \times 12^{1} + 5 \times 12^{2}$$

$$= 3456 + 432 + 132 + 4 + 0.8333... + 0.087222$$

$$= (40.24.868.05.222...)_{10}$$
Integral part to boxe 5
$$40.24 \div 5 = 20.4$$

$$40.24 \div 5 = 160$$

$$40.24 \div 5 = 6$$

$$20.24 \div 5 = 6$$

$$20.24 \div 5 = 1$$

$$6 \div 5 = 1$$

$$1 \div 5 = 0$$

$$(11.2.0.44)_{5}$$
Fractional part
$$0.86805.222... \times 5 = 4$$

$$0.86805.222... \times 5 = 4$$

$$0.94026.111... \times 5 = 3$$

$$0.5065.2777... \times 5 = 3$$

$$0.5065.2777... \times 5 = 3$$

$$0.53263238... \times 5 = 3$$

$$0.53263238... \times 5 = 3$$

$$0.4132)_{5}$$
Trancating into 4 digits a after stadially point
$$(112044.4132)_{5}$$

u') Moore Tope (Moure 1-00.

(ii) Three bit binary Counter

iv) Characterstie table for Jk flipflop

100	000,		(5) (4)	Q (6+1)	JK
3	R	Q(til)	Q (t)	0	OX
0	0	ält)		($_{t}$ \times
0	1	0	1	0	× 1
1	O	1	1	1	X D
,	1	Q(t)	L		

Present State	Next State	Elipflop inputs
92 91 90 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0	Q2 Q1 Q0 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0	J2 K2 J3 K3
	0 0 0	

The output of the system will be 010 after 20 clock Clycle.

A - with no borrow

B - with borrow

b) state assignment

B=1

State table

Present state	noxt			
A B	Xy=00	x9=01	xg=11	x9:10
	A, O	B, 1	A,D	A, 1
	B, I	B, 0	B, I	A, 0

with state assignment

with sterre		. 0	1	
present state	Mext S xy=00 0,0	x9.01 x9=	1,0	
1	1,1	10 11	0,0	

$$Q_o^{\dagger} = \overline{x}y + Q_o(\overline{x} + y)$$

[3]

module OFF (Q, Do, CIK); input Du, CIK; output reg Q; always @ (posedge cik) QEA;

[3]

$$Y = B(\overline{A} + C) + C\overline{A}$$

[4]

Questi 7 State diagra-1/0 B A 0/1 1/0 0/1 011 D

State table

State table	next state, output				
Present State	X=0	X = 1			
A B C D	A, O A, I A, d A, I	B,0 D,0 C,0 C,0			

State reduction

$$C = D = B$$
, A

reduces to two states

output is a function of X [2] a) Mealy,

	next Sta	th, output	
n 1 siete	X = O	X= 1	A =
Present State	QJ, 4)	62,50	2.
Qo	0,0	l, U	1) -
0	0,1	1,0	
1	0) 1		

$$Q_0^+ = X =$$

4.			١	()	1	1			
C)	input 1	0	1		h	12	13	A	A
/		13	A	B	17	10		1.	
	Sterle	10			0	0	1	()	
	mulant	1	0	1	\cup	\circ	.3		
	Output	/							

[2]

ii)
$$\overline{A}(A+C)(\overline{A}+B)(A+B) = BC$$
 $\overline{B}(A+C)B = BA+BC$
 $A+B=1$ and $A=B=0 \Rightarrow A=\overline{B}$
 $B(A+C)(B+B) = B(A+C) = BA+BC$
 $= AB+BC = O+BC = BC$

[4]

iii) $q + o = 2q \text{ line decoder}$
 $2^{1} \longrightarrow 2^{2} \longrightarrow 2^{3} \longrightarrow 2^{4}$
 $2^{1} \longrightarrow 2^{2} \longrightarrow 2^{4} \longrightarrow 2^{4$

a) Bidirectional Shift register
b) Moore type System [2] 17) [2]

B3 B2 B, Bo A3 A2 A1 Ao 0 0 00 0001

R	Sea.			47	
Do	0	1	1	0	
	0	ì	1	D	A
A- 1	0	1	1	0	7
Ag	0	11	1	0	
		A	0	_	

Bo= Au

$$B_{2} = \overline{A_{3}}\overline{A_{1}}(A_{0} \oplus A_{1}) + A_{3}\overline{A_{1}}(A_{0} \oplus A_{1})$$

$$= (A_{0} \oplus A_{2})(A_{3}\overline{A_{1}} + \overline{A_{3}}\overline{A_{1}}) + A_{1}\overline{A_{1}}$$

$$= (A_{0} \oplus A_{2})(A_{3}\overline{A_{1}} + \overline{A_{3}}\overline{A_{1}}) + A_{1}\overline{A_{2}}$$

$$= \overline{A_{1}}(A_{0} \oplus A_{2}) + A_{1}\overline{A_{2}}$$

$$= \overline{A_{1}}(A_{0} \oplus A_{2}) \oplus A_{1}\overline{A_{2}}$$

$$= \overline{A_{1}}(A_{0} \oplus A_{2}) \oplus A_{1}\overline{A_{2}}$$

$$B_{3}$$

$$A_{1}$$

$$B_{3} = (A_{3} \oplus A_{0}) \overline{A_{1}} \overline{A_{2}} + A_{1} \overline{A_{3}} + A_{2} \overline{A_{3}}$$

$$A_{2} = (\overline{A_{1}} \overline{A_{2}} (A_{0} \oplus A_{3}) \oplus A_{1} \overline{A_{3}}) \oplus A_{2} \overline{A_{3}}$$

$$A_{3} = (\overline{A_{1}} \overline{A_{2}} (A_{0} \oplus A_{3}) \oplus A_{1} \overline{A_{3}}) \oplus A_{2} \overline{A_{3}}$$

$$A_{3} = (\overline{A_{1}} \overline{A_{2}} (A_{0} \oplus A_{3}) \oplus A_{1} \overline{A_{3}}) \oplus A_{2} \overline{A_{3}}$$

$$A_{4} = (\overline{A_{1}} \overline{A_{2}} (A_{0} \oplus A_{3}) \oplus A_{1} \overline{A_{3}}) \oplus A_{2} \overline{A_{3}}$$

 B_3

[2]

Multiplexer

C)
$$B_3 = A_1 \overline{A_3} + A_2 \overline{A_3} + \overline{A_3} A_0 + \overline{A_0} \overline{A_1} \overline{A_2} A_3$$

 $= \overline{A_3} (A_1 + A_2 + A_0) + A_3 (\overline{A_0} \overline{A_1} \overline{A_2})$
 $= \overline{A_3} (A_1 + A_2 + A_0) + \overline{A_3} (\overline{A_0} + \overline{A_1} + \overline{A_2})$
 $= A_3 \oplus Z$
 $= A_3 \oplus Z$
 $= A_3 \oplus Z$
 $= A_3 \oplus Z$

where Z: AotA,+M

Z = Az · A. Az 2 B₃ = A₃ ⊕ Z B3 Transmissi gate [3]

ii) There will be two states

A -> State to in which arriving bit is unchanged
B -> State in which arriving bit is Complemented

2 = 80 AX

R = 1000 111100010101 iii) R2= 1010 1011 10010111 0011101010101100 $V = Cond \oplus Cin = 1 \oplus 0 = 1$ C = (out = 1 [4] N = 0 7 = 0 is low and A is low IV) a When C Q5 h ON Q, 50 0H Q6 5 off Q450N Q2 is off Qy hoff Y's High Q3 is off Qz is off 6) When Cis low and Ais high as is of QUON Q4 GOH Q6 6 4 Q2 GON Y is LOW Q3 GON Qz Soff Q8 5 A 3 C) when c's high ar is OFF Q5 is OFF Q3 G OFF Q6 6 DN Q46 OFF Qis OFF Y's high impede. QT IS ON Qz " ON Tristate buffer