學號:R06922113 系級: 資工所碩一 姓名:陳宣伯

1. (1%) 請說明你實作的 RNN model,其模型架構、訓練過程和準確率為何? (Collaborators:李岳庭、林冠廷)

答:

✓ 資料前處理

我使用 Gensim 套件進行 word2vector,參數如以下:
model = Word2Vec(sentences, size=100, window=5, min_count=1)
再來將所有向量 padding 到同一長度 40,有利於計算平行化

✓ 模型架構

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	40)	0
embedding_1 (Embedding)	(None,	40, 128)	2560000
bidirectional_1 (Bidirection	(None,	40, 1024)	2625536
bidirectional_2 (Bidirection	(None,	512)	2623488
dense_1 (Dense)	(None,	256)	131328
dropout_1 (Dropout)	(None,	256)	0
dense_2 (Dense)	(None,	1)	257
Total params: 7,940,609 Trainable params: 7,940,609 Non-trainable params: 0			

✓ 訓練過程

辨識率:82.063%

2. (1%) 請說明你實作的 BOW model,其模型架構、訓練過程和準確率為何? (Collaborators: 李岳庭、林冠廷)

答:

✓ 資料前處理

同上第1題的RNN模型討論

✓ 模型架構

Layer (type)	Output	Shape	Param #
input_1 (InputLayer)	(None,	40)	0
dense_1 (Dense)	(None,	256)	10496
dense_2 (Dense)	(None,	256)	65792
dropout_1 (Dropout)	(None,	256)	0
dense_3 (Dense)	(None,	128)	32896
dropout_2 (Dropout)	(None,	128)	0
dense_4 (Dense)	(None,	1)	129
Total params: 109,313 Trainable params: 109,313 Non-trainable params: 0			

✓ 訓練過程

辨識率:75.12%

3. (1%) 請比較 bag of word 與 RNN 兩種不同 model 對於"today is a good day, but it is hot"與"today is hot, but it is a good day"這兩句的情緒分數,並討論造成差異的原因。

(Collaborators: 李岳庭、林冠廷)

✓ 下表是兩個模型對以上兩句話的輸出

semtence	BOW	RNN
Today is a good day, but it is hot	94.67%	29.66%
Today is hot, but it is a good day	94.67%	98.43%

✓ 討論原因

由於 BOW 只考慮一句話裡面出現的單詞,而不考慮單詞間的相對位置,也就是不可慮上下文,所以以上兩句話通過 BOW 模型結果都是一樣的。但是 RNN模型會記憶上下文,所以兩句話會有截然不同的結果

4. (1%) 請比較"有無"包含標點符號兩種不同 tokenize 的方式,並討論兩者對準確率的影響。

(Collaborators: 李岳庭、林冠廷)

✓ 結果如下

Filter	Accuracy
'!"#\$%&()*+,- ./:;<=>?@[\\]^_`{ }~\t\n'	77.69%
'\n'	81.31%

✓ 討論結果

去除標點符號有較好的辨識率,我認爲應該當考慮某些標點符號時,一句話的語氣可以更加明顯,例如'!',就可能有驚嘆、驚訝的感覺

5. (1%) 請描述在你的 semi-supervised 方法是如何標記 label, 並比較有無 semi-surpervised training 對準確率的影響。

(Collaborators: 李岳庭、林冠廷)

✓ 實踐 semi-supervised 方法

直接將 no label 的 training data 丟進之前用有標籤的 20 萬筆資料建的模型,如果預測值大於 0.8,才會被視為 1,預測值小於 0.8,會被視為 0,最後把這些 130 萬新貼的資料與原本 20 萬資料一起再 train 一個新的模型

✓ 結果如下表

Semi-supervised	Accuracy
True	79.97%
False	80.53%

✓ 結果討論

有做 semi-supervised 的結果表現不如原本的模型,我認為這應該是 self-train 的缺點之一,我認為原因是本質上機器還是在學習那 20 萬筆資料,且這個模型辨識率就是 80.53%,這麼一來把這個模型拿去預測新的資料辨識率都不會穩定的成長,會一直在 80%附近徘徊