

Automatyczny Ekspres do Herbaty

Projekt Przejściowy

Łukasz Weber

30 maja 2024

1 Wstęp

Celem projektu jest zaprojektowanie automatycznego ekspresu do herbaty zawierającego minimum trzy osie ruchu. Aby osiągnąć ten cel konstrukcja musi spełniać następujące założenia:

- Ekspres musi być w pełni automatyczny, gdzie jedynymi czynnościami wykonywanymi manualnie będzie okresowe dolanie wody do rezerwuaru, uzupełnienie suszu herbacianego w magazynku oraz usunięcie zgromadzonego zużytego suszu.
- Ekspres musi działać zarówno na susz herbaciany jak i torebki z herbatą
- Możliwość załadowania kilku rodzajów herbaty jednocześnie i wyboru, którą chcemy przygotować
- Kompaktowy rozmiar, aby można było go ustawić na kuchennym blacie
- Prosty i szybki montaż bez konieczności użycia specjalizowanych narzędzi, aby można było łatwo wyczyścić ekspres

Poniższy projekt skupia się tylko i wyłącznie na konstrukcji mechanicznej, elementy elektroniczne i układu sterowania nie są uwzględniane podczas projektowania.

2 Rysunek Złożeniowy

3 Model 3D

4 Noty Katalogowe

4.1 Siłownik elektryczny LA10P

NAZWA	PARAMETR
Napięcie zasilania	12 V DC
Prędkość	13 mm/s
Siła maksymalna	500 N (50 kg)
Cykl pracy	25%
Długość wysuwu	50 mm
Długość całkowita w stanie złożonym (Lmin)	195 mm
Średnica	20 mm
Typ mocowania	mocowanie H
Temperatura pracy	od -25°C do 65°C
Zabezpieczenia	wyłączniki krańcowe
Klasa szczelności	IP65
Masa	830 g

4.2 Koło zębate 20T GT2

4.3 Łożysko MR105

Wymiary (mm), Waga (kg)

Waga (kg)	0.020000
(d) śred. wewn.	5
(D) śred. zewn.	10
(B) szer.	4

Specyfikacja

Rodzaj łożyska	kulkowe zwykłe	Wykonanie pierś. wew.	standardowy (nieposzerzony)
Uszczelnienie	dwustronne metalowe	Kształt pow. pierś. zew.	płaska powierzchnia zewnętrzna
llość rzędów	jednorzędowe	Wykonanie pierścienia zew.	standardowy
Luz wewnętrzny	luz normalny	Materiał wyk. pierścieni	stal łożyskowa
Rodzaj koszyka	kosz stalowy	Materiał wyk.elem.tocznych	stal łożyskowa
Prowadzenie koszyka	na elementach tocznych	Klasa dokładności	normalna / standardowa
Otwór pierścienia wew.	otwór standardowy (walcowy)	Temperatura pracy	standardowa

4.4 Silnik krokowy 28BYJ-48

Specyfikacja silnika krokowego

- Napięcie znamionowe: 5 V
- Pobór prądu na cewkę: 100 mA
- Przełożenie: 64:1
- Rezystancja cewki: 50 Ω
- Moment trzymający na wyjściu przekładni: 0,3 kg*cm (0,03 Nm).
- Wyprowadzenia: pięć przewodów)
- Średnica wału: 5 mm ze ścięciami
- Masa: 35 g
- Odległość pomiędzy otworami montażowymi: 35 mm
- Wymiary: φ28 x 19 mm (bez wału)

4.5 Pompa KDP-370EB

Specyfikacja:

- 1. Marka: TCS pompa
- 2. Numer modelu: JQB2438439
- 3. Średnica głowica pompy: 27mm
- 4. Średnica wlotu: 4.6mm
- 5. Średnica wylotu: 4.7mm
- 6. Silnik: szczotka węglowa silnik 370
- 7. Waga: 66g
- 8. Napięcie znamionowe: DC 12V
- 9. Prąd roboczy: 600mA
- Odpowiednie napięcie: DC 6V-12V

ና

4.6 Serwo LF20MG

Specyfikacja serwa LF20MG

- Napięcie zasilania: od 4,8 V do 6,6 V
- Zakres ruchu: od 0 ° do 180 °
- Typ: cyfrowe
- Serwo posiada aluminiowe tryby i łożyska kulkowe
- Sygnał sterujący: do 1520 μs / 333 Hz
- Wymiary: 40,7 x 20,5 x 39,5 mm
- Masa: 60 g
- Parametry dla 4,8 V:
 - Moment: 16,5 kg*cm (1,61 Nm)
 - Prędkość: 0,18 s/60°
- Parametry dla 6,6 V:
 - Moment: 20,0 kg*cm (1,96 Nm)
 - Prędkość: 0,16 s/60°

4.7 Serwo SG90

Specyfikacja serwa

- Parametry dla napięcia 4,8 V:
 - Moment: 1,8 kg*cm (0,18 Nm)
 - Prędkość: 0,1 s/60°
- Zakres ruchu: od 0° do 180°
- Wymiary: 22 x 11,5 x 27 mm
- Masa: 9 g

Jak zaparzyć herbate?

Założenia projektu

Procesy wykonywane automatycznie

- Pobranie i zagotowanie wody z rezerwuaru
- Pobranie odpowiedniego rodzaju i ilości suszu
- Zalanie suszu wodą o odpowiedniej temperaturze
- Odsączenie herbaty i usunięcie zużytego suszu
- Przelanie gotowej herbaty do kubka

Procesy wykonywane manualnie

- Uzupełnienie wody w rezerwuarze
- Uzupełnienie suszu w magazynku

Standardowa Budowa

Przegląd rynku

Automat w wersji studenckiej

- Torebka herbaty mocowana na ramieniu sterowanym w jednej osi przez serwo
- Automatyczny jest tylko proces parzenia
- Wymagane ręczne przygotowanie kubka z gorącą wodą
- Bardzo prosta konstrukcja

the Tea Maker™

- Susz w pojemniku, który porusza się liniowo w pionie.
- Wymagane ręczne wsypanie i wysypanie suszu, oraz nalewanie gotowej herbaty

BRU Tea Maker & Senya SYBF-CM013N

- Automatyczne pobieranie wody z rezerwuaru.
- Wymagane ręczne wsypanie suszu przed uruchomieniem.

BARISIEUR Designer

- Susz podawany przez "głowice prysznicową", która zapewnia równomierne zanurzenie liści herbaty
- Mały rezerwuar na wodę (wystarcza na jedne parzenie)
- Komory na mleko, herbate oraz kawe
- Skomplikowana konstrukcja

Koncepcja rozwiązania

Automat do herbaty

Spychacz suszu

