1 Elementare Zahlentheorie

Eulersche φ -Funktion

<u>Definition</u>:

$$\varphi(n) = \#(\mathbb{Z}/n\mathbb{Z})^{\times}$$

Multiplikativität:

$$(n,m) = 1 \implies \varphi(nm) = \varphi(n)\varphi(m)$$

Für p Primzahl gilt:

$$\varphi(p^k) = (p-1)p^{k-1}$$

Es gilt:

$$\sum_{d|m} \varphi(d) = m$$

Kleiner Fermatscher Satz

$$(a,m) = 1 \implies a^{\varphi(m)} \equiv 1 \mod m$$

Primitive Wurzel

Definition a primitive Wurzel modulo p:

Die Restklassen $\overline{a}, \overline{a}^2, \dots, \overline{a}^{p-1} = 1$ durchlaufen alle Restklassen $\neq 0$ mod p.

Satz von Gauß:

Es existieren primitive Wurzeln modulo p.

Legendre für primitive Wurzeln:

Sei a eine primitive Wurzel modulo p. Dann gilt für $r \in \mathbb{N}$

$$\left(\frac{a^r}{p}\right) = (-1)^r.$$

2 Das Quadratische Reziprozitätsgesetz

Quadratisches Reziprozitätsgesetz Es seien p, q > 2 Primzahlen. Dann gilt

$$\left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{q}{p}\right).$$

1. Ergänzungssatz zum Quadratischen Reziprozitätsgesetz

$$\left(\frac{-1}{p}\right) = \left(-1\right)^{\frac{p-1}{2}}.$$

2. Ergänzungssatz zum Quadratischen Reziprozitätsgesetz

$$\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}}.$$

Primzahlen mit a **Quadratischer Rest** Zu jeder ganzen Zahl $a \neq 0$ existieren unendlich viele Primzahlen p, so dass a quadratischer Rest modulo p ist.

Primzahlen mit a **Quadratischer Nichtrest** Sei $a \in \mathbb{Z}$ kein Quadrat. Dann existieren unendlich viele Primzahlen p, so dass a quadratischer Nichtrest modulo p ist.

Norm von Primelementen in $\mathbb{Z}[i]$ Sei $\pi \in \mathbb{Z}[i]$ prim. Dann gilt entweder $N(\pi) = p^2, \pi = p$ oder $N(\pi) = \pi = p$.

Ringe ganzer Zahlen

Ganzheit

- (i) f(b) = 0 für ein normiertes Polynom $f \in A[X]$.
- (ii) $A[b] \subset B$ ist als A-Modul endlich erzeugt.
- (iii) $\exists e.e. A$ -Untermodul $M \subset B$ mit $1 \in M$, $bM \subset M$.

Endlichkeit \implies Ganzheit, faktoriell \implies ganzabgeschlossen.

Diskriminante Sei $\alpha_1, \ldots, \alpha_n, n = [L:K]$ eine K-Basis von L. Dann ist die Diskriminante definiert durch $d(\alpha_1, \ldots, \alpha_n) = \det(\operatorname{Sp}(\alpha_i \alpha_j)) = (\det(\sigma_i \alpha_j)_{ij})^2$.