Misura dell'indice di rifrazione di un vetro con lo spettrometro a prisma

Laboratorio di Ottica, Elettronica e Fisica Moderna C.d.L. in Fisica, a.a. 2023-2024 Università degli Studi di Milano

Lucrezia Bioni, Leonardo Cerasi, Giulia Federica Bianca Coppi Matricole: 13655A, 11410A, 11823A

23 novembre 2023

1 Introduzione

1.1 Scopo

Mediante l'utilizzo di un prisma a sezione isoscele, si vuole misurare l'indice di rifrazione del materiale che lo compone. Si vuole inoltre verificare la legge di dispersione secondo la formula di Cauchy:

$$n^2(\lambda) = A + \frac{B}{\lambda^2} \tag{1.1.1}$$

Dove dove n è l'indice di rifrazione, λ è la lunghezza d'onda, A e B sono i coefficienti che possono essere determinati per un materiale interpolando l'equazione ad indici di rifrazione misurati per lunghezze d'onda note.

1.2 Metodo

In seguito alla misurazione dello spettro di emissione della lampada ai vapori di mercurio - effettuata con il reticolo di diffrazione -, si utilizzano le lunghezze d'onda trovate per misurare l'indice di rifrazione del materiale vetroso che compone il prisma.

Tale misurazione viene effettuata attraverso il metodo della deviazione minima: si può ricavare la dipendenza dell'angolo δ in funzione dell'angolo di incidenza i, dimostrando inoltre che la funzione $\delta(i)$ presenta un minimo. La condizione di deviazione minima si presenta nel momento in cui viene soddisfatta l'equazione:

$$\cos i \cdot \cos r' = \cos r \cdot \cos i' \tag{1.2.2}$$

Dove i è l'algolo di incidenza, i' è l'angolo di emergenza r è l'angolo di rifrazione sulla faccia di entrata del prisma e r' l'angolo di incidenza sulla seconda faccia del prisma.

Queste quantità sono legate a δ dalle seguenti relazioni:

$$r + r' = \alpha \delta = i + i' - \alpha \tag{1.2.3}$$

Dove α è l'angolo al vertice del prisma.

L'indice di rifrazione del prisma, in condizioni di minima deviazione, risulterà essere quindi:

$$n(\lambda) = \frac{\sin\frac{\alpha + \delta_m}{2}}{\sin\frac{\alpha}{2}} \tag{1.2.4}$$

Dove $n(\lambda)$ è l'indice di rifrazione del materiale in funzione della lunghezza d'onda λ considerata, α l'angolo al vertice della sezione del prisma, δ_m l'angolo di minima deviazione della lunghezza d'onda considerata.

2 Misure

3 Analisi dati

3.1 Elaborazione dati

3.1.1 Angolo α del prisma

Dalla misura della posizione del fascio di luce riflessa da due delle facce del prisma, si ricava la posizione dell'angolo α compreso tra le due facce attraverso la seguente relazione:

$$\alpha = 180 - \Delta\theta \tag{3.1.5}$$

Dove $\Delta\theta = \theta_2 - \theta_1$, e θ_1 è la posizione angolare del fascio riflesso dalla prima faccia, mentre θ_2 è la posizione angolare del fascio riflesso dalla seconda. Tale calcolo è stato eseguito per ogni set di misure di θ_1 e θ_2 , ed è stata effettuata una media aritmetica per determinare il valore finale di α , pari a:

$$\alpha = 59^{\circ} \, 53' \pm 12' \tag{3.1.6}$$

Dove l'errore è stato attribuito come da Par. 3.2.1.

3.1.2 Angolo di deviazione minima

Per determinare la posizione angolare θ_0 del cannocchiale nella direzione da cui proviene l'immagine diretta della fenditura, si è eseguita la media aritmetica tra i valori di θ_0 misurati (riferimento - a - tabelle):

$$\theta_0 = -(1^\circ 18' \, 0'' \pm 40'') \tag{3.1.7}$$

Per ciascuna lunghezza d'onda dello spettro del mercurio, si determina l'angolo di inversione δ del moto dell'immagine osservata mediante il cannocchiale attraverso la seguente relazione:

$$\delta = |\theta_0 - \theta_\lambda| \tag{3.1.8}$$

Dove θ_{λ} è la posizione angolare misurata del punto di inversione del moto. Attraverso la media aritmetica dei valori di δ ottenuti, se ne determina la miglior stima. I valori ottenuti di δ per ciascuna lunghezza d'onda osservata, con le loro incertezze (ricavate come da Par. 3.2.2), sono riportati nella seguente tabella:

Colore	$\delta \pm \sigma_{\delta}$
Viola 1	$74^{\circ}9'0''\pm1'8''$
Viola 2	$73^{\circ} 53' 0'' \pm 1' 44''$
Indaco	$71^{\circ} 47' 0'' \pm 27'$
Ciano	$68^{\circ} 58' 0'' \pm 1' 32''$
Verde	$67^{\circ} 16' 0'' \pm 23''$
Giallo 1	$66^{\circ} 33' 0'' \pm 23''$
Giallo 2	$66^{\circ} 32' 0'' \pm 23''$

Tab. 1: Valori di δ e relativi errori.

3.1.3 Indice di rifrazione del vetro

Ottenuti i valori dell'angolo di deviazione minima δ per ciascuna lunghezza d'onda e dell'angolo α al vertice del prisma, attraverso la relazione 1.2.4, si ricavano i seguenti valori di indice di rifrazione del vetro del prisma n in funzione della lunghezza d'onda λ :

Colore	$\lambda \pm \sigma_{\lambda}[\cdot 10^{-9} \mathrm{m}]$	$n(\lambda) \pm \sigma_n$
Viola 1	404.32 ± 0.08	1.845 ± 0.004
Viola 2	407.70 ± 0.10	1.843 ± 0.004
Indaco	435.57 ± 0.08	1.828 ± 0.004
Ciano	491.21 ± 0.08	1.807 ± 0.004
Verde	545.44 ± 0.08	1.794 ± 0.004
Giallo 1	576.46 ± 0.08	1.789 ± 0.004
Giallo 2	578.41 ± 0.08	1.789 ± 0.004

Tab. 2: Valori di $n(\lambda)$.

Per verificare la relazione di Cauchy 1.1.1, sono stati riportati sul grafico riferimento - al - grafico i valori ottenuti dalle misure e dalla loro elaborazione. In particolare, si è posto sulle ascisse il termine $\frac{1}{\lambda^2}$ e sulle ordinate il valore n^2 . Attraverso la regressione lineare pesata si sono ottenuti come valori del coefficiente angolare A e del termine noto B i seguenti:

$$A = (3.002 \pm 0.006) \tag{3.1.9}$$

$$B = (6.5 \pm 0.1) \cdot 10^{-14} \text{m}^2 \tag{3.1.10}$$

Per verificare l'effettivo andamento lineare dei risultati ottenuti è stato effettuato un test del χ^2 :

$$\chi^2 = 5.623 \cdot 10^{-1} \tag{3.1.11}$$

Tale valore restituisce una compatibilità con un andamento lineare di probabilità 76.07%.

3.2 Stima degli errori

3.2.1 Angolo α del prisma

L'errore attribuito ai singoli valori di α è stato ottenuto propagando l'errore su θ_1 e θ_2 nella 3.1.5:

$$\alpha = \sqrt{2} \cdot \sigma_{\theta} \tag{3.2.12}$$

Al valore finale di α è stata attribuita come incertezza la deviazione standard della media delle misure effettuate. Si è scelto di attribuire l'incertezza statistica come errore poiché superiore all'incertezza sistematica, pari a

$$\sigma_{\alpha,sist} = \frac{\sqrt{2} \cdot \sigma_{\theta}}{\sqrt{10}} = 27'' \tag{3.2.13}$$

3.2.2 Angolo di deviazione minima

L'errore attribuito al valore medio di θ_0 è stato ricavato attraverso la deviazione standard della media delle misure effettuate. Tale valore è superiore all'incertezza sistematica, ottenuta dalla propagazione dell'errore sulla singola misura di θ_0 nella formula per calcolare la media aritmetica:

$$\sigma_{\theta_0,sist} = \frac{\sigma_{\theta_0}}{\sqrt{10}} = 19'' \tag{3.2.14}$$

Dove σ_{θ_0} è l'incertezza attribuita alle singole misure di θ_0 . L'errore sul valore di δ ottenuto per i primi quattro colori osservati (Viola 1, Viola 2, Indaco e Ciano) è stato attribuito attraverso la deviazione standard della medie delle misure effettuate. Tale valore è risultato superiore rispetto all'incertezza sistematica, calcolabile attraverso la propagazione degli errori su θ_0 e θ_{λ} nella 3.1.8:

$$\sigma_{\delta,sist} = \frac{\sqrt{\sigma_{\theta_0}^2 + \sigma_{\theta_{\lambda}}^2}}{\sqrt{10}} = 23'' \tag{3.2.15}$$

Dove σ_{θ_0} è l'incertezza attribuita alle singole misure di θ_0 e $\sigma_{\theta_{\lambda}}$ è l'incertezza attribuita alle singole misure di θ_{λ} . Nel caso degli ultimi 3 colori (Verde, Giallo 1 e Giallo 2), l'incertezza sistematica risulta invece

superiore a quella statistica, ed è dunque stata attribuita come errore su δ . Le incertezze statistiche sono riportate nella seguente tabella:

Colore	$\sigma_{\delta_{stat}}$
Verde	0.3"
Giallo 1	0.2"
Giallo 2	0.2"

Tab. 3: Valori dell'incertezza statistica su δ .

3.2.3 Indice di rifrazione del vetro

L'incertezza attribuita a ciascun valore dell'indice di rifrazione del vetro n è stata ottenuta mediante propagazione degli errori su δ e α nella 1.2.4:

$$\sigma_n = \sqrt{\left(\frac{\sin\frac{\delta}{2}}{\cos\alpha - 1}\right)^2 \cdot \sigma_\alpha^2 + \left(\frac{\cos\frac{\delta + \alpha}{2}}{\sin\frac{\alpha}{2}}\right)^2 \cdot \sigma_\delta^2}$$
 (3.2.16)

Dove σ_{delta} è l'incertezza attribuita all'angolo di deviazione minima δ e σ_{α} è l'incertezza attribuita all'angolo al centro del prisma α .

4 Conclusioni

I risultati ottenuti hanno permesso di verificare con ottima compatibilità la relazione di Cauchy.