A REPORT ON DOOR SECURITY CONTROL

Submitted in partial fulfillment of the course INSTR F241 Microprocessors and Interfacing

Submitted by Group No. 106

Shirisha Singh	2016A8PS0415P
Aayush Attri	2016A8PS0421P
Saksham Consul	2016A8PS0424P
Prithviraj Shivraj Patil	2016A8PS0427P

BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE PILANI, RAJASTHAN-333031
23 APRIL 2018

Acknowledgement

We, Shirisha Singh, Aayush Atrri, Saksham Consul and Prithviraj Patil, thank Dr. Nitin Chaturvedi, Dr. Anupama and the entire MuP team for their impeccable documentation and thorough course structure, without which we could not have done this project. This project has been an enjoying and enriching experience for our team.

Contents

- 1. Problem Statement
- 2. Assumptions
- 3. List of Components used
- 4. Memory Mapping
- 5. I/O Mapping
- 6. IVT
- 7. Flowchart
- 8. ALP code
- 9. Complete Circuit Diagram
- 10. References

PROBLEM STATEMENT

DESCRIPTION: This system controls the opening and closing of a door based on password entry. If the password is correct the person can enter. Each person is given two chances to enter the correct password. On failure an alarm is sounded. Inside the room a button is available when the button is pressed the door opens for 1 Min, so that the person can leave the room.

USER INTERFACE: There are three sets of passwords:

- (1) User
- (2) Master
- (3) Alarm off

- The Master password is used by the security Personnel for updating Password of the day. Pressing the M button activates this mode. The system glows Enter Password LED asking the personnel to enter the password. The master password is a 16-digit value. The master is given only a single chance to enter the password. If authenticated, the retry/Update LED glows. If there is a failure in authentication the alarm is sounded. When the retry/ Update LED glows the user has to enter password of the day. This is 12-digit value. Once this value has been accepted by the system the Password Updated LED glows.
- User has to press the O key when he wants to enter the room. The Enter Password LED prompts the user to enter the password. The user is given C/AC option as well. If the first attempt fails, the RETRY LED glows. The user is allowed to re-enter password, on authentication door opens for a period of 1 Min. On Failure an ALARM is sounded.
- To Turn-off the Alarm the A button has to be pressed. Enter Password LED glows prompting user to enter the 14-digit password for turning of alarm, no retries are allowed. If authentication is successful then the alarm is turned off.
- To leave the room a button is available inside the room, when the button is pressed the door opens for 1 Minute so that the person can leave the room.
- LCD show the entry as asterisk when the password characters are entered.

ASSUMPTIONS

• All operations are sequential and so, no two operations can be carried

out at the same time.

• User cannot access the door lock system at the 24 hour mark. First, a user

password needs to be set using the master mode and only then can the

door lock be accessed.

• Once you have entered a mode, it is necessary to complete the entire

procedure. Pressing any other mode buttons like M, O or A will not

override the mode.

• In case of mistake in typing the password to turn down the alarm, the

system will get locked in it's last state and to use it again, it is necessary

to shutdown and restart the system.

• The 24 hour clock starts running as soon as we turn on the system.

• The Master Password and the Alarm Password have been hard coded

in the system.

LIST OF COMPONENTS USED

Sr. No.	Hardware Device	Description	Quantity
1.	8086	16 bit Microprocessor	1
2.	74LS373	Octal Latch	3
3.	74LS245	Transceiver	2
4.	7432	OR gate	6
5.	NOT	NOT gate	6
6.	2732	ROM	2
7.	6116	RAM	2
8.	74LS138	3-to-8 Decoder	1
9.	8255A	Programmable Peripheral Interface	2
10.	8253A	Programmable Interval Timer	2
11.	KEYPAD-PROJECT	Hex-keypad	1
12.	BUTTON	Button	1
13.	LM016L	16x2 LCD display	1
14.	BUZZER	Alarm	1
15.	LED-RED	Red LED	3
16.	MOTOR-STEPPER	Stepper Motor	1

17.	OMIH-SH-105D	Relay	1
18.	SW-SPDT-MOM	SPDT Switch	1
19.	ULN2003A	Darlington Transistor	1
20.	74LS241	Tri-state Buffer	1

Memory Mapping

Size of 2732 (ROM): 4k

ROM(even): 00000h - 01FFEh (A0 = 0) ROM (odd): 00001h - 01FFFh (A0 = 1)

A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
0	0	0	Х	Χ	Х	Χ	Х	Χ	Х	Χ	Х	Χ	Χ	Χ	Х

Size of 6116 (RAM): 2k

RAM(even): FF000h - FFFFEh (A0 = 0) RAM(odd): FF001h - FFFFFh (A0 = 1)

A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
1	1	1	1	Х	X	Х	Х	X	Х	Χ	Х	Х	Χ	Χ	Х

I/O Mapping

Address of 8255-1 port-A	: 00h
Address of 8255-1 port-B	: 02h
Address of 8255-1 port-C	: 04h
Address of 8255-1 control register	: 06h
Control word of 8255-1	: 88h
Address of 8255-2 port-A	: 08h
Address of 8255-2 port-B	: 0Ah
Address of 8255-2 port-C	: 0Ch
Address of 8255-2 control register	: 0Eh
Control word of 8255-2	: 89h
Address of 8253-1 count0	: 10h
Address of 8253-1 count1	: 12h
Address of 8253-1 count2	: 14h
Address of 8253-1 control register	: 16h
Control word of 8253-1 count0	: 36h
Control word of 8253-1 count1	: 56h
Control word of 8253-1 count2	: 92h
Address of 8253-2 count0	: 18h
Address of 8253-2 count1	: 1Ah
Address of 8253-2 count2	: 1Ch
Address of 8253-2 control register	: 1Eh
Control word of 8253-2 count0	: 34h
Control word of 8253-2 count1	: 5Ah
Control word of 8253-2 count2	: 94h

IVT

Interrupt Vector No.	Physical Address	Contains
INT 02h	00008h 0000Ah	IP2 CS2
INT 80h	00200h 00202h	IP128 CS128

Flow-Chart of the System

ALP Code

```
#make_bin#
#LOAD_SEGMENT=FFFFh#
#LOAD_OFFSET=0000h#
#CS=0000h#
#IP=0000h#
#DS=0000h#
#ES=0000h#
#SS=0000h#
#SP=FFFEh#
#AX=0000h#
#BX=0000h#
#CX=0000h#
#DX=0000h#
#SI=0000h#
#DI=0000h#
#BP=0000h#
    jmp st1
    db
        5 dup(0)
    ;IVT entry for NMI (INT 02h)
        Nmi 24hrtimer
    dw
    dw
         0000
         500 dup(0)
    db
     ;IVT entry for 80H
           Switch_intR
      dw
```

```
dw 0000
           508 dup(0)
      db
            cli; Clear IF, now initiliaze RAM
     st1:
     ;intialize ds, es,ss to start of RAM
     mov
             ax,0200h
             ds,ax
     mov
            es,ax
     mov
     mov
            ss,ax
             sp,OFFFEH
     mov
     ; INITIALIZATION OF 8255,8253 BEGINS HERE
     port a1 equ 00h
     port b1 equ 02h
     port_c1 equ 04h
     creg1 equ 06h
     port a2 equ 08H
     port b2 equ 0Ah
     port_c2 equ 0Ch
     creg2 equ 0Eh
     cnt0 1 equ 10h
     cnt1_1 equ 12h
     cnt2_1 equ 14h
     creg3 equ 16h
     cnt0 2 equ 18h
     cnt1_2 equ 1Ah
     cnt2_2 equ 1Ch
     creg4 equ 1Eh
     sti
     mov al,89h; control word for 8255-2 I/O Mode, Port A - Mode 0,
o/p, PCU - i/p Port B - Mode 0, o/p, PCL - i/p
      out creg2,al
```

```
mov al,88h; control word for 8255-1 I/O Mode, Port A - Mode 0,
o/p, PCU - i/p Port B - Mode 0, o/p, PCL - o/p
      out creg1,al
      mov al,36h ;control word for 8253-1 counter 0 16bit count, Mode
3, Bin
      out creg3,al
      mov al,56h ;control word for 8253-1 counter 1 8bit LSB count, Mode
3, Bin
      out creg3,al
      mov al,92h ;control word for 8253-1 counter 2, 8bit LSB count,
Mode 1, Bin
      out creg3,al
      mov al,34h ;control word for 8253-2 counter 0 16bit count, Mode 2,
Bin
      out creg4,al
      mov al,5ah ;control word for 8253-2 counter 1 8bit LSB count, Mode
5, Bin
      out creg4,al
      mov al,94h ;control word for 8253-2 counter 2 8bit LSB count Mode
2, Bin
      out creg4,al
      mov al,50h ;load count lsb for 8253-1 counter 0 | Count value =
50000(dec)
      out cnt0_1, al
      mov al,0C3h
                        ;load count msb for 8253-1 counter 0
      out cnt0_1, al
      mov al,64h ;load count for 8253-1 counter 1 | Count value =
100(dec)
```

```
out cnt1_1, al
     mov al,1eh ;load count lsb for 8253-1 counter 2 (1 minute Timer)
Count value = 30(dec)
      out cnt2 1, al
     mov al,0A0h;load count for 8253-2 LSB counter 0 (24 hour counter)
| Count value = 64(dec)
      out cnt0 2, al
     mov al,-5h ;load count for 8253-2 MSB counter 0 (24 hour counter)
      out cnt0 2, al
     mov al,3
                  ;load count for 8253-2 counter 1 (Switch trigger counter)
| Count value = 3(dec)
     out cnt1 2, al
                  ;load count for 8253-2 counter 2 | Count value = 2(dec)
     mov al,2
     out cnt2 2, al
      ;INITIALIZATION OF 8255,8253 ENDS HERE
     mov al,00h ;default low output from 8255-2 upper port C
      out port c2, al
      call DELAY 20ms; LCD INITIALIZATION BEGINS
     mov al,04h ;E=1 RW=0 RS=0 -> control write
      out port_b1,al
      call DELAY 20ms
      mov al,00h; E=0 RW=0 RS=0 -> control write H-L transition
      out port b1,al
     mov al,38h; Initialization
      out port a1,al
     mov al,04h ;E=1 RW=0 RS=0 -> control write
```

```
out port_b1,al
      call DELAY 20ms
      mov al,00h; E=0 RW=0 RS=0 -> control write H-L transition
      out port b1,al
      call DELAY 20ms
      mov al,0Ch;LCD ON, cursor ON, curson blinking OFF
      out port a1,al
      mov al,04h ;E=1 RW=0 RS=0 -> control write
     out port b1,al
     call DELAY 20ms
     mov al,00h; E=0 RW=0 RS=0 -> control write H-L transition
      out port_b1,al
     mov al,06h; move cursor right
      out port a1,al
      call DELAY 20ms
     mov al,04h ;E=1 RW=0 RS=0 -> control write
      out port b1,al
     call DELAY 20ms
      mov al,00h; E=0 RW=0 RS=0 -> control write H-L transition
      out port_b1,al
     mov al,4ch
      out port a1,al
      call DELAY 20ms ;LCD INITIALIZATION ENDS
  mov ax,0200h; Initialize DS
      mov ds,ax
     mov si,0000h
     mov al,0bdh;hard coding pass-word; 999999999999999 (BD ->
Keyboard value)
     mov [si],al
     mov al,0bdh
     mov [si+1],al
     mov al,0bdh
```

mov [si+2],al

mov al,0bdh mov [si+3],al

mov al,0bdh mov [si+4],al

mov al,0bdh mov [si+5],al

mov al,0bdh mov [si+6],al

mov al,0bdh mov [si+7],al

mov al,0bdh mov [si+8],al

mov al,0bdh mov [si+9],al

mov al,0bdh mov [si+0ah],al

mov al,0bdh mov [si+0bh],al

mov al,0bdh mov [si+0ch],al

mov al,0bdh mov [si+0dh],al

mov al,0bdh mov [si+0eh],al

```
mov al,0bdh
mov [si+0fh],al
add si,000fh
inc si; Update si to store future entry
mov [si],al
mov al,0bdh
mov [si+1],al
mov al,0bdh
mov [si+2],al
mov al,0bdh
mov [si+3],al
mov al,0bdh
mov [si+4],al
mov al,0bdh
mov [si+5],al
mov al,0bdh
mov [si+6],al
mov al,0bdh
mov [si+7],al
mov al,0bdh
mov [si+8],al
mov al,0bdh
mov [si+9],al
```

```
mov al,0bdh
      mov [si+0ah],al
      mov al,0bdh
      mov [si+0bh],al
      mov al,0bdh
      mov [si+0ch],al
      mov al,0bdh
      mov [si+0dh],al
      add si,000dh
  inc si ;Update si to store future values
      mov al,0ffh; Switch off all LEDs
      out port_a2,al
      start: call clear_LCD
            call welcome_msg
            mov bp,00h
            call keypad_input
            cmp al,0bbh
            jz master_Mode
            jmp start
x6: call clear_LCD
    call welcome_msg
    call keypad_input
      cmp al,0b7h
      jz User_Mode
      jmp x6 ;press valid key
master_Mode:
```

call intm

```
mov bp,0abcdh
 cmp ax,0abcdh
 jnz x6
x8:
     call keypad_input
     cmp al,7Dh
     jz Alarm_Mode
     jnz x8
Alarm_Mode:
 call inta
 cmp dh,6h
 jz start
 cmp dh,1h
 jz x6
 jmp x70
User_Mode:
 call intu
 cmp ax,0abcdh
 jz x8
 jnz x6
x70:
stop: jmp stop
DELAY_20ms proc
     MOV
                 CH,5
     X4:
           NOP
           NOP
           DEC
                CH
           JNZ
                 X4
     RET
DELAY_20ms endp
DELAY_0.04s proc
     MOV cx,4fffh
```

```
X17: NOP
           NOP
           DEC cx
           JNZ
                 X17
     RET
DELAY 0.04s endp
DELAY_max proc
     MOV cx,0ffffh
     X16: NOP
           NOP
           DEC
                CX
           JNZ
                 X16
     RET
DELAY_max endp
enter_LCD proc
     mov al,0A0h
     out port a1,al
     call DELAY_20ms
     mov al,05h ;E=1 RW=0 RS=1 -> data write
     out port_b1,al
     call DELAY 20ms
     mov al,01h; E=1 RW=0 RS=1 -> data write H-L transition
     out port_b1,al ;prints Space
     mov al,0A0h
     out port a1,al
     call DELAY_20ms
     mov al,05h
     out port_b1,al
     call DELAY 20ms
     mov al,01h
     out port_b1,al ;prints Space
     mov al,50h
     out port_a1,al
```

call DELAY_20ms mov al,05h out port_b1,al call DELAY_20ms mov al,01h out port_b1,al ;prints P

mov al,52h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints R

mov al,45h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints E

mov al,53h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints S

mov al,53h out port_a1,al call DELAY_20ms mov al,05h out port_b1,al call DELAY_20ms mov al,01h out port_b1,al ;prints S

mov al,0A0h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Space

mov al,45h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints E

mov al,4Eh
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints N

mov al,54h out port_a1,al call DELAY_20ms mov al,05h

```
out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints T
     mov al,45h
     out port_a1,al
     call DELAY_20ms
     mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints E
     mov al,52h
     out port a1,al
     call DELAY 20ms
     mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port_b1,al ;prints R
RET
enter_LCD endp
intm proc
            call clear_LCD
            mov al,0feh
            out port_a2,al
                                    ;turns on enter password LED
            mov cx,16
enter_16bit:
            call keypad_input
            cmp al,7eh; Check if pressed 'C'
           jz pressc
```

```
cmp al,7bh; Check if pressed 'AC'
            jz pressac
            cmp al,77h; Check if pressed 'ENTER'
            jz press enter
            cmp al,0bbh ;Check if pressed 'M'
            jz nop_master
            cmp al,0b7h; Check if pressed 'U'
            jz nop_master
            cmp al,7dh; Check if pressed 'A'
            jz nop_master
            mov [si],al
            CALL asterisk
            inc si
            dec cx
            jnz enter_16bit
disp_entermaster:
            call keypad_input
            cmp al,7eh
            jz pressc
            cmp al,7bh
            jz pressac
            cmp al,77h
            jz press enter
asd: CALL clear_LCD
            CALL enter_LCD
            call keypad_input
            cmp al,77h
            jz press_enter
            jnz asd
nop_master:
                  nop
            jmp enter 16bit
            call clear_1digit_LCD
pressc:
            dec si
            inc cx
            jmp enter 16bit
pressac:
```

```
CALL clear_LCD
            mov cx,16
                         ;start of pass segment
            mov si,1eh
            jmp enter 16bit
press_enter:
            CALL clear_LCD
            mov al,0ffh; All LED off
            out port_a2,al
            cmp cx,0
            jz cmp_pass
            jmp raise_alarm
day_pass:
            mov si,002Eh
            mov al,0fdh; Retry/Update is on
            out port_a2,al
            call DELAY max
            call DELAY max
            call DELAY_max
            call clear_LCD
            mov cx,12
enter_12bit:
            call keypad_input
            cmp al,7eh ;Check for 'C'
            jz presscday
            cmp al,0bbh ;Check for 'M'
            jz nop day
            cmp al,0b7h; Check for U
            jz nop_day
            cmp al,7dh; Check for A
            jz nop day
            cmp al,7bh ;Check for AC
            jz pressacday
            cmp al,77h ;Check for ENTER
            jz press_enterday
            mov [si],al
```

```
CALL asterisk
            inc si
            dec cx
            jnz enter_12bit
disp_enter:
            call keypad_input
            cmp al,7eh
            jz presscday
            cmp al,7bh
            jz pressacday
            cmp al,77h
            jz press_enterday
                  CALL clear LCD
asd1:
                  CALL enter LCD
                  call keypad_input
                  cmp al,77h; Check for ENTER
                  jz press_enterday
                  jnz asd1
nop_day:
            nop
            jmp enter_12bit
presscday:
            call clear 1digit LCD
            dec si
            inc cx
            jmp enter_12bit
pressacday:
            CALL clear LCD
            jmp day_pass
press_enterday:
            CALL clear_LCD
            mov al,0ffh
            out port_a2,al
            cmp cx,0
            jnz err_msg
            mov al,0fbh
            out port_a2,al
```

call DELAY_max call DELAY_max

mov al,0ffh out port_a2,al jz end_69h

err_msg:

call error_msg
jmp day_pass

cmp_pass:

cld

mov si,0000h mov di,001Eh

mov cx,17

x5: mov al,[si]

mov bl,[di]

dec cx

jz day_pass cmp al,bl

jnz raise_alarm

inc si inc di jmp x5

raise_alarm:

mov dh,5h mov al,0fh out port_a2,al mov ax,0abcdh

end_69h:

ret

intm endp

asterisk proc

```
mov al,2Ah
            out port_a1,al
            call DELAY_20ms
            mov al,05h
            out port b1,al
            call DELAY 20ms
            mov al,01h
            out port_b1,al ;prints *
ret
asterisk endp
clear_LCD proc
      mov al,00h
      out port b1,al
      call DELAY_20ms
                              ;Clear Display
      mov al,01h
      out port a1,al
      call DELAY 20ms
      mov al,04h
      out port_b1,al
      call DELAY_20ms
      mov al,00h
      out port b1,al
RET
clear_LCD endp
keypad_input proc
                                    ;SubR for keypad entry,al has unique
key input value.
x0:
            mov al,00h
            out port_c1,al
x1:
            in al, port_c1
            and al,0f0h
            cmp al,0f0h
            jnz x1
            CALL DELAY_20ms
            mov al,00h
                                           ; Check for key press
```

mov al,0Bh mov bl,al out port_c1,al in al, port_c1 and al,0f0h cmp al,0f0h

cmp al,0f0h

jnz x3

;Check for key press column 3

```
jnz x3
            mov al,07h
                                           ;Check for key press column 4
            mov bl,al
            out port_c1,al
            in al,port_c1
            and al,0f0h
            cmp al,0f0h
            jz x2
            or al,bl
x3:
ret
keypad input endp
inta proc
      mov al,00eh
      out port_a2,al
      mov cx,14
      mov si,3ah
                                           ;store the 16-bit entered pass
after the hard coded pass word
enter_14bit:
            call keypad_input
            cmp al,7eh
            jz pressc_alarm
            cmp al,0bbh
            jz nop_alarm
            cmp al,0b7h
            jz nop_alarm
            cmp al,7dh
            jz nop_alarm
            cmp al,7bh
            jz pressac_alarm
            cmp al,77h
            jz press_enter_alarm
```

```
mov [si],al
            CALL asterisk
            inc si
            dec cx
            jnz enter_14bit
disp_enteralarm:
            call keypad_input
            cmp al,7eh
            jz pressc_alarm
            cmp al,7bh
            jz pressac_alarm
            cmp al,77h
            jz press enter alarm
            CALL clear LCD
asd2:
            CALL enter LCD
            call keypad_input
            cmp al,77h
            jz press_enter_alarm
            jnz asd2
nop_alarm: nop
      jmp enter_14bit
pressc_alarm:
            call clear 1digit LCD
            dec si
            inc cx
            jmp enter_14bit
pressac_alarm:
            call clear LCD
            mov cx,14
                                           ;start of pass segment
            mov si,3ah
            jmp enter_14bit
press enter alarm:
            CALL clear LCD
            mov al,0fh
            out port_a2,al
            cmp cx,0
            jz cmp_pass_alarm
```

```
jnz x56
cmp_pass_alarm:
            cld
            mov si,10h
            mov di,3ah
            mov cx,14
            repe cmpsb
            cmp cx,00h
            jnz x56
            mov al,0ffh
            out port_a2,al
            add dh,1h
x56:
ret
inta endp
intu proc
            call clear_LCD
            mov dl,1
                                           ;flag for checking two inputs
            mov al,0feh
            out port_a2,al
            mov cx,12
            mov si,48h
                                           ;store the 12-bit entered pass
after the hard coded pass word
enter_12bitu:
            call keypad_input
            cmp al,7eh
            jz pressc_user
            cmp al,7bh
            jz pressac_user
            cmp al,0bbh
            jz nop_user
            cmp al,0b7h
            jz nop_user
```

```
cmp al,7dh
            jz nop_user
            cmp al,77h
            jz press enter user
            mov [si],al
            CALL asterisk
            inc si
            dec cx
            jnz enter_12bitu
disp_enter_user:
            call keypad_input
            cmp al,7eh
            jz pressc user
            cmp al,7bh
            jz pressac_user
            cmp al,77h
            jz press_enter_user
            CALL clear LCD
asd3:
            CALL enter LCD
            call keypad_input
            cmp al,77h
            jz press_enter_user
            jnz asd3
nop_user:
                  nop
                  jmp enter_12bitu
pressc_user:
            call clear_1digit_LCD
            dec si
            inc cx
            jmp enter_12bitu
pressac_user:
            call clear LCD
            mov cx,12
            mov si,48h
                                           ;start of pass segment
            jmp enter_12bitu
press_enter_user:
```

```
mov al,0ffh
            out port_a2,al
           cmp cx,0
           jz cmp_pass_user
           jnz wrong_pass
cmp_pass_user:
            cld
           mov si,2eh
           mov di,48h
            mov cx,12
           repe cmpsb
           cmp cx,00h
           jnz wrong pass
           jz open_door_user
wrong_pass:
           call clear_LCD
            mov si,48h
            mov cx,12
           cmp dl,0
           jz raise alarm user
           mov al,0fdh
           out port_a2,al
           call retry_msg
           call DELAY_max
            call DELAY_max
           call clear_LCD
            mov cx,12
           dec dl
           jmp enter_12bitu
raise_alarm_user:
           mov dh,0
           mov al,0fh
           out port_a2,al
           mov ax,0abcdh
           jmp end_70h
```

```
open_door_user:
            call open_door
end_70h:
ret
intu endp
ints proc
            call open_door
            ; CALL DELAY_0.04s
            ; mov al,00h
            ; out port_c2, al
ret
ints endp
open_door proc
      call clear_LCD
      mov al,8ah
      out port_b2,al
      call DELAY 20ms
      mov al,0ah
      out port_b2,al
            in al, port_c2
x31:
            cmp al,0ffh
            jnz x31
            call DELAY_20ms
            call close_door
ret
open_door endp
close_door proc
      mov al,03h
      out port_b2,al
```

```
call DELAY_max
     call DELAY_max
     call DELAY_max
     call DELAY max
     call DELAY max
     call DELAY_max
     call DELAY_max
     call DELAY_max
     call DELAY max
     call DELAY_max
     call DELAY_max
     call DELAY_max
     call DELAY max
     call DELAY max
     call DELAY_max
     call DELAY_max
     call DELAY_max
     call DELAY max
     call DELAY_max
     call DELAY_max
close_door endp
welcome_msg proc
     mov al,0A0h
     out port_a1,al
     call DELAY_20ms
     mov al,05h
     out port b1,al
     call DELAY 20ms
     mov al,01h
     out port_b1,al ;prints Space
     mov al,0A0h
```

ret

out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Space

mov al,0A0h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Space

mov al,0A0h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Space

mov al,0A0h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Space

mov al,57h out port_a1,al

call DELAY_20ms mov al,05h out port_b1,al call DELAY_20ms mov al,01h out port_b1,al ;prints W

mov al,45h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints E

mov al,4Ch out port_a1,al call DELAY_20ms mov al,05h out port_b1,al call DELAY_20ms mov al,01h out port_b1,al ;prints L

mov al,43h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port b1,al ;prints C

mov al,4Fh out port_a1,al call DELAY_20ms

```
mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port_b1,al ;prints O
     mov al,4dh
     out port_a1,al
     call DELAY 20ms
     mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints M
     mov al,45h
     out port a1,al
     call DELAY 20ms
     mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints E
welcome_msg endp
update_msg proc
     mov al,55h
     out port_a1,al
     call DELAY_20ms
     mov al,05h
     out port b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints U
```

ret

mov al,50h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints P

mov al,44h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints D

mov al,41h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints A

mov al,54h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints T

mov al,45h

out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints E

mov al,0A0h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Space

mov al,50h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints P

mov al,41h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints A

mov al,53h out port_a1,al call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints S

mov al,53h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints S

mov al,57h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints W

mov al,4Fh
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints O

mov al,52h out port_a1,al call DELAY_20ms

```
mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port_b1,al ;prints R
     mov al,44h
     out port_a1,al
     call DELAY 20ms
     mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints D
ret
update_msg endp
clear_1digit_LCD proc
     mov al,00h
     out port_b1,al
     call DELAY 20ms
                              ;shift left by 1
     mov al,10h
     out port_a1,al
     call DELAY_20ms
     mov al,04h
      out port b1,al
     call DELAY 20ms
     mov al,00h
     out port_b1,al
     mov al,0A0h
     out port a1,al
     call DELAY_20ms
     mov al,05h
     out port b1,al
     call DELAY 20ms
```

```
mov al,01h
     out port_b1,al
                                    ;prints Space
     call DELAY 20ms
     mov al,10h
                              ;shift left by 1
     out port_a1,al
     call DELAY_20ms
     mov al,04h
     out port b1,al
     call DELAY_20ms
     mov al,00h
     out port_b1,al
RET
clear_1digit_LCD endp
error_msg proc
     mov al,0A0h
     out port a1,al
     call DELAY_20ms
     mov al,05h
     out port b1,al
     call DELAY 20ms
     mov al,01h
     out port_b1,al ;prints Space
     mov al,45h
     out port_a1,al
     call DELAY_20ms
     mov al,05h
     out port_b1,al
     call DELAY 20ms
     mov al,01h
     out port_b1,al ;prints E
     mov al,4Eh
     out port_a1,al
```

call DELAY_20ms mov al,05h out port_b1,al call DELAY_20ms mov al,01h out port_b1,al ;prints N

mov al,54h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints T

mov al,45h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints E

mov al,52h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints R

mov al,0A0h out port_a1,al call DELAY_20ms mov al,05h out port_b1,al call DELAY_20ms mov al,01h out port_b1,al ;prints Space

mov al,31h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints 1

mov al,32h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints 2

mov al,0A0h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port b1,al ;prints Space

mov al,44h out port_a1,al call DELAY_20ms mov al,05h out port_b1,al call DELAY_20ms mov al,01h out port_b1,al ;prints D

mov al,49h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints I

mov al,47h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints G

mov al,49h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints I

mov al,54h out port_a1,al call DELAY_20ms mov al,05h out port_b1,al

```
call DELAY_20ms
     mov al,01h
     out port_b1,al ;prints T
     mov al,53h
     out port_a1,al
     call DELAY_20ms
     mov al,05h
     out port b1,al
     call DELAY_20ms
     mov al,01h
     out port_b1,al ;prints S
RET
error msg endp
retry_msg proc
     mov al,0A0h
     out port a1,al
     call DELAY 20ms
     mov al,05h
     out port_b1,al
     call DELAY 20ms
     mov al,01h
     out port_b1,al ;prints Space
     mov al,0A0h
     out port a1,al
     call DELAY 20ms
     mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints Space
     mov al,0A0h
     out port a1,al
     call DELAY_20ms
```

mov al,05h out port_b1,al call DELAY_20ms mov al,01h out port_b1,al ;prints Space

mov al,0A0h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Space

mov al,52h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints R

mov al,45h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints E

mov al,54h out port_a1,al call DELAY_20ms mov al,05h

```
out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints T
     mov al,52h
     out port_a1,al
     call DELAY_20ms
     mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints R
     mov al,59h
     out port a1,al
     call DELAY 20ms
     mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port_b1,al ;prints Y
retry_msg endp
updateday_msg proc
     mov al,55h
     out port_a1,al
     call DELAY_20ms
     mov al,05h
     out port b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints U
```

ret

mov al,50h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints P

mov al,44h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints D

mov al,41h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints A

mov al,54h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints T

mov al,45h

out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints E

mov al,0a0h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Space

mov al,44h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints D

mov al,41h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints A

mov al,59h out port_a1,al call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Y

mov al,0a0h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints Space

mov al,50h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port_b1,al ;prints P

mov al,41h
out port_a1,al
call DELAY_20ms
mov al,05h
out port_b1,al
call DELAY_20ms
mov al,01h
out port b1,al ;prints A

mov al,53h out port_a1,al call DELAY_20ms

```
mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port_b1,al ;prints S
     mov al,53h
     out port_a1,al
     call DELAY 20ms
     mov al,05h
     out port_b1,al
     call DELAY_20ms
     mov al,01h
     out port b1,al ;prints S
ret
updateday_msg endp
Nmi 24hrtimer:
                        call clear LCD
                        call clear_1digit_LCD
                        call updateday_msg
startnmi:
            call keypad_input
            cmp al,0bbh; Check for 'M'
            jz master_Mode
           jmp startnmi
iret
Switch_intR:
     call open_door
     sti
     cmp bp,0abcdh
     jz x6
     jnz start
```

Complete Circuit Diagram

References

 A 16x2 LCD display has been used. Following links were referred to understand its working:

http://www.alldatasheet.com/view.jsp?Searchword=LMO16L http://www.sakshieducation.com/Engineering/Story.aspx?cid =12&nid=96054

• A 4x4 hex keypad has also been used.

http://www.futurlec.com/Keypad4x4.shtml

• A stepper motor and a Darlington transistor has been used.

https://www.youtube.com/watch?v=8aLkXsh1O44
https://www.engineersgarage.com/electronic-components/ul n2003-datasheet