Exercise 11. (Q3): Assume $\lim_{n\to\infty} a_n = 3$. Using the definition of a convergent sequence, prove that

$$\lim_{n \to \infty} \frac{a_n^2 + 1}{a_n - 2} = 10.$$

Proof: We begin by manipulating the term

$$\left| \frac{a_n^2 + 1}{a_n - 2} - 10 \right| = \left| \frac{a_n^2 + 1 - 10a_n + 20}{a_n - 2} \right|$$

$$= \left| \frac{(a_n - 7)(a_n - 3)}{a_n - 2} \right|$$

$$= \frac{|a_n - 7||a_n - 3|}{|a_n - 2|}.$$

Since we assume directly that $\lim_{n\to\infty} a_n = 3$, there exists an $N_1 \in \mathbb{N}$ such that

$$|a_{N_1} - 3| < \frac{1}{2},$$

which is equivalent to

$$\frac{1}{2} < a_{N_1} - 2 < \frac{3}{2}.$$

It is also equivalent to

$$-4 - \frac{1}{2} < a_{N_1} - 7 < -4 + \frac{1}{2}$$
$$-\frac{9}{2} < a_{N_1} - 7 < -\frac{7}{2}.$$

Thus, for any $n > N_1$, we have that

$$\frac{|a_n - 7| |a_n - 3|}{|a_n - 2|} < \frac{\frac{7}{2} |a_n - 3|}{\frac{1}{2}}$$
$$= 7 |a_n - 3|.$$

Once again, Since we assume directly that $\lim_{n\to\infty}a_n=3$, given an $\epsilon>0$, there exists an $N_2\in\mathbb{N}$ such that whenever $m>N_2$,

$$|a_n - 3| < \frac{\epsilon}{7}.$$

Thus, given an $\epsilon > 0$, let $N = \max(N_1, N_2)$, then whenever $n \in \mathbb{N} > N$,

$$\left| \frac{a_n^2 + 1}{a_n - 2} - 10 \right| < 7 |a_n - 3|$$

$$< 7 \frac{\epsilon}{7}$$

$$= \epsilon.$$

Therefore

$$\lim_{n\to\infty}\frac{a_n^2+1}{a_n-2}=10.$$