

Detecting Retina Symptom 視網膜症狀檢測

視網膜介紹與症狀

視網膜檢測時有以下問題:

解題過程

- ✓ 分類
- ✓ 物件偵測
- ✓ Segmentation

7.結案報告

視網膜檢測攻堅思維

有沒有症狀?

什麼症狀?

發生在那/多大?

物件歸類 Classification

物件偵測 Object Detection

語意分析 Instance Segmentation

本專案以電腦視覺三大方法做為主要攻堅計劃

如何順利執行AI專案

Tips:

- ✓ 資料拆成 Training / Dev / Test
- ✓ Transfer Learning
- ✓ 注意 High Bias and High Variance
- ✓ 注意 Dev set and Test Set same distribution
- ✓ Error Analysis

✓ 資料拆成 TRAINING / DEV / TEST

Idea #1: Choose hyperparameters that work best on the data

train

BAD: Easy works perfectly on training data

test

Your Dataset			
Idea #2: Split data into train and test, choose hyperparameters that work best on test data		idea how algo rm on new dat	
train		test	
Idea #3: Split data into train, val, and test; choose hyperparameters on val and evaluate on test	Bett	er!	

validation

✓ TRANSFER LEARNING

Transfer Learning with CNNs

1. Train on Imagenet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64 Image

2. Small Dataset (C classes)

Donahue et al, "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition", ICML 2014 Razavian et al, "CNN Features Off-the-Shelf: An Astounding Baseline for Recognition", CVPR Workshops 2014

3. Bigger dataset

✓ TRANSFER LEARNING

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of data	Finetune a few layers	Finetune a larger number of layers

✓ 注意 HIGH BIAS AND HIGH VARIANCE

> 何謂 High Bias , High Variance

> Action of High Bias , High Variance Problems

High Bias	High Variance
1. Train bigger model	1. More data
2. Train longer/better optimization algorithms3. NN architecture / hyperparameters search	2. Regularization3. NN architecture / hyperparameters search

參考資料: Coursera, Deep Learning, Structuring Machine Learning Projects, Andrew Ng

本例 human-level performance ≈ 1

validation accuracy

Epochs

validation accuracy

Epochs

20

✓ 注意 DEV SET AND TEST SET SAME DISTRIBUTION

Regions:

- US
- UK
- Other Europe
- South America
- India
- China
- Other Asia
- Australia

Guideline:

Choose a <u>dev set</u> and <u>test set</u> to reflect data you expect to get in the future and consider important to do well on.

Same Distribution

✓ ERROR ANALYSIS

➤ 製作表格,針對分類錯誤的 Image 下 Comments

Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments
1				\checkmark	Labeler missed cat in background
2		✓			
3				\checkmark	Drawing of a cat; Not a real cat.
•••					

✓ 有了 Al Project Knowledge 後,開始實作

攻堅計劃一:影像分類判定症狀

Basic Information

Method		Transfer Learning	
Model		Xception	
Llunarnaramatar		Adam(lr=10e-6)	
Hyperparameter	epochs	100	
ImageDataGenerator		rotation_range=10, width_shift_range=0.1, height_shift_range=0.1, shear_range=0.1, zoom_range=0.1, horizontal_flip=True, fill_mode='nearest')	
Earlystop		val_loss 連續 5 epoch 無下降	
Data		CNV 605 DME 501 DRUSEN 580 Normal 517	
Train_Test_Split		0.8/0.2	

Training/Validation Accuracy/Loss-Model 無 bias , variance 問題

錯誤分析: 模型預測 Validation Set 結果
 正常照片 recall 0.99/異常照片 recall 1
 => Model 無漏篩問題

predict	CNV	DME	DRUSEN	NORMAL
label				
CNV	117	0	0	0
DME	0	87	0	0
DRUSEN	0	0	112	0
NORMAL	0	0	1	124

Validation loss: 0.011931998532713135

Validation accuracy: 0.9977324

	precision	recall	f1-score	support
CNV DME DRUSEN NORMAL	1.00 1.00 0.99 1.00	1.00 1.00 1.00 0.99	1.00 1.00 1.00 1.00	f'index=139', 'label=NORMAL', 'predict=DRUSEN'] 50 - 100 -
accuracy macro avg weighted avg	1.00	1.00 1.00	1.00 1.00 1.00	441 441 441

攻堅計劃一:影像分類成效驗證

新資料預測 (每類各 100 張)

正常照片 recall 為 1 (100/100) 異常照片 recall 為 0.987 (4/300)

=> Model 無漏篩問題

label				
CNV	98	2	0	0
DME	0	100	0	0
DRUSEN	2	0	98	0
NORMAL	0	0	0	100

	precision	recall	f1-score	support
CNV	0.98	0.98	0.98	100
DME	0.98	1.00	0.99	100
DRUSEN	1.00	0.98	0.99	100
NORMAL	1.00	1.00	1.00	100
accuracy			0.99	400
macro avg	0.99	0.99	0.99	400
weighted avg	0.99	0.99	0.99	400

● 失效影像驗證:

複合型異常,導致分類錯誤。解法: Object Detection

攻堅計劃二:物件偵測解決複合型異常

Basic Information

Method		YOLOv3
Hyperparameter	epochs	30
Number of label		CNV 252 DME 146 DRUSEN 183

準確度

CNV: 0.9020

DME: 0.9540

DRUSEN: 0.9279

mAP: 0.9280

結果: mAP: 0.928

平均準確度

● 成效驗證:平均準確度mAP達92.8%

後續問題: 偵測的 Box 集中不美觀。解法: Segmentation

CNV

DME

攻堅計劃三:語意分析解決偵測BOC集中問題

Basic Information

Method		Mask R-CNN
Hyperparameter	epochs	10
STEPS_PER_EPOCH		100
Detection min confidence		0.9
		CNV 30
Number of label		DME 30
		DRUSEN 30

● 成效驗證:有效解決物件偵測BOS 集中,不美觀問題 並與物件偵測手法比較

AI導入前

醫生盯著螢幕看症狀

資料來源: 高雄榮總台南分院眼科李尹暘醫師

AI 導入後

分類與偵測顯示螢幕輔助判斷

對企業/產業的IMPACT

本報告 Demo

異常檢測的 AI 專案應有的流程與技術,供各企業參考!!

參考資料

- Coursera, Deep Learning, Structuring Machine Learning Projects, Andrew Ng
- Stanford University CS231n
- AI 學校技術班 YOLOv3 教材
- ORAI Mask R-CNN
- 高雄榮總台南分院眼科李尹暘醫師:視網膜眼斷層掃描 Retina OCT https://www.youtube.com/watch?v=T2kuA5ZfKL4