

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO **SOFTEX BOLSA FUTURO DIGITAL BACK-END COM PYTHON**

Prof. Dr. Raphael Gomes (raphael.gomes@ifg.edu.br)

Lógica de Programação com Python Lista de Exercícios 06 – Variáveis Compostas Multidimensionais

- 1. Faça um algoritmo que carregue uma matriz 3 x 5 com números inteiros, calcule e mostre a quantidade de elementos entre 15 e 20.
- 2. Faça um algoritmo que carregue uma matriz 2 x 4 com números inteiros, calcule e mostre:
 - a quantidade de elementos entre 12 e 20 em cada linha;
 - a média dos elementos pares da matriz.
- 3. Faça um algoritmo que carregue uma matriz 6 x 3, calcule e mostre:
 - o maior elemento da matriz e sua respectiva posição, ou seja, linha e coluna;
 - o menor elemento da matriz e sua respectiva posição, ou seja, linha e coluna.
- 4. Faça um algoritmo que receba:
 - as notas de 15 alunos em cinco provas diferentes e armazene-as em uma matriz 15 x 5;
 - as matrículas dos 15 alunos e armazene-os em um vetor de 15 posições. Calcule e mostre:
 - para cada aluno, a matrícula, a média aritmética das cinco provas e a situação (Aprovado, Reprovado ou Exame);
 - a média da classe.
- 5. Faça um algoritmo que carreque uma matriz 12 x 4 com os valores das vendas de uma loja, onde cada linha representa um mês do ano e cada coluna representa uma semana do mês. Calcule e mostre:
 - o total vendido em cada mês do ano, mostrando o nome do mês por extenso;
 - o total vendido em cada semana durante todo o ano;
 - o total vendido pela loja no ano.
- 6. Faça um algoritmo que carregue uma matriz 20 x 10 com números inteiros e some cada uma das colunas, armazenando o resultado da soma em um vetor. A seguir, multiplique cada elemento da matriz pela soma da coluna e mostre a matriz resultante.
- 7. Faça um algoritmo que carregue uma matriz M de ordem 4 x 6 e uma segunda matriz N de ordem 6 x 4, calcule e imprima a soma das linhas de M com as colunas de N.
- 8. Faça um algoritmo que carregue duas matrizes 3 x 8 com números inteiros, calcule e mostre:
 - a soma das duas matrizes, resultando em uma terceira matriz também de ordem 3 x 8,
 - a diferença das duas matrizes, resultando em uma quarta matriz também de ordem 3 x 8.
- 9. Faça um algoritmo que carregue uma matriz 3 x 3 com números reais e receba um valor, número digitado pelo usuário, calcule e mostre a matriz resultante da multiplicação do número digitado por elemento da matriz.

- 10. Faça um algoritmo que carregue uma matriz 5 x 5 com números inteiros, calcule e mostre a soma:
 - dos elementos da linha 4;
 - dos elementos da coluna 2:
 - dos elementos da diagonal principal;
 - dos elementos da diagonal secundária;
 - de todos os elementos da matriz.
- 11. Faça um algoritmo que receba a idade de oito alunos e armazene-as em um vetor. Em um outro vetor armazene o código de cinco disciplinas e em uma matriz armazene a quantidade de provas que cada aluno fez em cada disciplina. Calcule e mostre:
 - a quantidade de alunos com idade entre 18 e 25 anos e que fizeram mais de duas provas em uma disciplina com código digitado pelo usuário. O usuário pode digitar um código que não está cadastrado; nesse caso, mostrar mensagem.
 - uma listagem com o número do aluno e o código da disciplina dos alunos que fizeram menos de três provas. Analisar cada disciplina.
 - a média de idade dos alunos que não fizeram nenhuma prova em alguma disciplina. Cuidado para não contar duas vezes o mesmo aluno.
- 12. Faça um algoritmo que carregue uma matriz 6 x 4. Recalcule a matriz digitada, onde cada linha será multiplicada pelo maior elemento da linha em questão. Mostre a matriz resultante.
- 13. Faça um algoritmo que carregue uma matriz 2 x 3, calcule e mostre a quantidade de elementos da matriz que não pertencem ao intervalo [5,15].
- 14. Faça um algoritmo que carregue uma matriz 12 x 13 e divida todos os elementos de cada linha pelo maior elemento em módulo daquela linha. Escreva a matriz lida e a modificada.
- 15. Faça um algoritmo que carregue uma matriz 5 x 5 e crie dois vetores de cinco posições cada um, que contenham, respectivamente, as somas das linhas e das colunas da matriz. Escreva a matriz e os vetores criados.
- 16. Faça um algoritmo que calcule e mostre a média dos elementos da diagonal principal de uma matriz 10 x 10.
- 17. Faça um algoritmo que carreque uma matriz 5 x 5 de números reais, calcule e mostre a soma dos elementos da diagonal secundária.
- 18. Faça um algoritmo que carregue uma matriz 8 x 6 de inteiros, calcule e mostre a média dos elementos das linhas pares da matriz.
- 19. Faça um algoritmo que carregue uma matriz 5 x 5 com números reais e encontre o maior valor da matriz. A seguir, multiplique cada elemento da diagonal principal pelo maior valor encontrado. Mostre a matriz resultante após as multiplicações.
- 20. Faça um algoritmo que carregue uma matriz 5 x 5 de números reais. A seguir, multiplique cada linha pelo elemento da diagonal principal daquela linha. Mostre a matriz após as multiplicações.
- 21. Faça um algoritmo que carregue uma matriz 6 x 10, some as colunas individualmente e acumule as somas na 7 a linha da matriz. Mostre o resultado de cada coluna.
- 22. Faça um algoritmo que carregue uma matriz 3 x 4, calcule e mostre:

- a quantidade de elementos pares;
- a soma dos elementos ímpares;
- a média de todos os elementos.
- 23. Faça um algoritmo que carreque uma matriz 4 x 5, calcule e mostre um vetor com cinco posições, onde cada posição contém a soma dos elementos de cada coluna da matriz. Mostre apenas os elementos do vetor maiores que dez. Se não existir nenhum elemento maior que dez mostre uma mensagem.

24. Faça um algoritmo que:

- receba o preço de dez produtos e armazene-os em um vetor;
- receba a quantidade estocada de cada um desses produtos em cinco armazéns diferentes, utilizando uma matriz 5 x 10.

Calcule e mostre:

- a quantidade de produtos estocados em cada um dos armazéns;
- a quantidade de cada um dos produtos estocados em todos os armazéns juntos;
- o preço do produto que possui maior estoque em um único armazém;
- o menor estoque armazenado;
- o custo de cada armazém.
- 25. Faça um algoritmo que receba os preços de 20 produtos em cinco lojas diferentes e armazene-os em uma matriz 20 x 5. Desconsiderando empates, mostre o número do produto e o número da loja do produto mais caro.
- 26. Na teoria dos sistemas define-se o elemento MINMAX de uma matriz como sendo o maior elemento da linha onde se encontra o menor elemento da matriz. Faça um algoritmo que leia uma matriz 4 x 7 com números reais, calcule e mostre seu MINMAX e sua posição (linha e coluna).
- 27. Faça um algoritmo que leia uma primeira matriz de ordem 4 x 5 e uma segunda matriz 5 x 2, calcule e mostre a matriz resultante do produto matricial das duas matrizes anteriores, armazenado-o em uma terceira matriz de ordem 4 x 2.
- 28. Um elemento Aij de uma matriz é dito ponto de sela da matriz A se, e somente se, Aij for ao mesmo tempo o menor elemento da linha i e o maior elemento da coluna j. Faça um algoritmo que leia uma matriz de ordem 5 x 7, verifique se a matriz possui ponto de sela e, se possuir, mostre seu valor e sua localização.
- 29. Faça um algoritmo que leia uma matriz 15 x 5 com números inteiros, calcule e mostre quais elementos da matriz que se repetem e quantas vezes cada um está repetido.
- 30. Faça um algoritmo que leia uma matriz 8 x 8 com números inteiros e mostre uma mensagem dizendo se a matriz digitada é simétrica. Uma matriz simétrica possui A[i,i] = A[i,i].

