

Fact Fourier Transform (FFT) is not a new bransform. DE FFT is a technique used for back computation of DFT.

Algorithm of FFT

Decimation In Time Algorithm

(DIT Algorithm)

Decimation In Fortguenay
Algorithm
(DIF Algorithm)

Butterfly Stomature of 2-Point DFT

For DIT Algorithm

 $g(1) \xrightarrow{Q(1)} G(0)$ G(0) G(1) W_{2}^{0} G(1)

T(0) and g(1) are samples of time domain and G(0) and G(1) are samples of frequency domain corresponding to time domain sample g(0) and g(1).

Development of Butterfly Structure For Computation of 2- Point DFT

Time domain)
$$g(0)$$

Sample

2- paint

DFT

Black

Sample

DFT Black Foor

Compatation of 2-point DFT

Of $g(n)$ is a sequence having two samples

(i.e. $N=2$) then its DFT $G(K)$ is

 $G(K) = g(n) W_2$
 $G(K) = g(n) W_2$

$$\Rightarrow \chi(k) = \begin{cases} \chi(0) |W_{N}^{k,0}| + \chi(2) |W_{N}^{k,2}| \\ \chi(1) |W_{N}^{k,1}| + \chi(3) |W_{N}^{k,2}| \end{cases}$$

$$+ \begin{cases} \chi(1) |W_{N}^{k,1}| + \chi(3) |W_{N}^{k,2}| \\ \chi(2m+1) |W_{N}^{k,2m}| + \begin{cases} \chi(2m+1) |W_{N}^{k,2m}| \\ \chi(2m+1) |W_{N}^{k,2m}| \end{cases}$$

$$= \begin{cases} \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \\ \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \end{cases}$$

$$= \begin{cases} \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \\ \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \end{cases}$$

$$= \begin{cases} \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \\ \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \end{cases}$$

$$= \begin{cases} \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \\ \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \end{cases}$$

$$= \begin{cases} \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \\ \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \end{cases}$$

$$= \begin{cases} \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \\ \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| \end{cases}$$

$$= \begin{cases} \chi(2m+1) |W_{N}^{k,2m}| + \chi(2m+1) |W_{N}^{k,2m}| +$$

80 X(K)= F1(K) + WN F2(K) Now put (K+N) in place of K on both side So $X(k+\frac{N}{2}) = F_1(k+\frac{N}{2}) + W_N^{(k+\frac{N}{2})} F_2(k+\frac{N}{2})$ $\Rightarrow \chi(k+\frac{N}{2}) = F_1(k) + W_N^{(k+\frac{N}{2})} F_2(k) -$) because F, (K) and F2(K) are N bound) DFT. So & they are periodic for after N (x+12) = F, (K) and F2(K+12)=F2(K) Now W + + 2 = W x . W = W (- 32) N /2 JWK+12 = WN. 63 2/ 2 = WX. 63 T > WF+2 = - WK So put WN = = - WN in Equition (1) So X (K+N2)=F1(K)-WK F2(K) ul have also prone that X(K)= F1(K) + WK F2(K) Equation (1) and (11) and pair of equation which will be used to compute DFT using DIT FFT algorithm.

For molping Complete Butterfly structure of 4-point DFT using DIT FFT algorithm, suplace 2-point DFT black by Butterfly structure of 2-point DFT.

Butterfly Structure To Compute 4- paint DFT

In case of DIT FFT algorithm, order of ilpis decided by bit reversal of order of O(P).

Eg: for $X(1) \rightarrow 1 \equiv 001$ afterbit $O(1) \rightarrow 2 \rightarrow X(1)$ for $X(2) \rightarrow 2 \equiv 10$ afterbits $O(1) \rightarrow 1 \equiv X(1)$ So i [P is X(2) and X(1) Corresponding for X(1) and X(2). Similar is the Case for X(1) and X(2). Similar is the Case for X(1) and X(2).

In above butter fly structure, if $X(1) = \{1,2,3,4\}$.

The $S_0 = X(0) + X(2) = 1 + 3 = 4$ $S_1 = X(0) - X(2) = 1 - 3 = -2$

$$S_{2} = \left\{ \frac{1}{2}(1) + \frac{1}{2}(3) \right\} W_{4}^{\circ} = (2+4) \cdot 1 = 6$$

$$S_{3} = \left\{ \frac{1}{2}(1) - \frac{1}{2}(3) \right\} W_{4}^{\circ} = \left\{ \frac{1}{2} - 4 \right\} \left(-\frac{1}{2} \right) \right\}$$

$$\Rightarrow S_{3} = \left\{ \frac{1}{2} \right\}$$
Calculation of Samples of DFT i.e. Calculation of $\frac{1}{2}(1) + \frac{1}{2}(1) = \frac{1}{$

then its 4- point DFT is

 $X(K) = \{10, -2+2j, -2, -2-j2\}$

Meaning of Decimation In Time (DIT) Imput is devided as per rule of bit remersal.

9

About figure is a Butterfly structure for g-point DFT made using DIT FFT

algorithm

Things To & Remember For Making Butterfly Structured

(i) How to write of and if (ii) how to make stage-1, stage 2 and stages

(ii) How to write twiddle factor

(iv) How to multiply by (-1)

Queing above Butterfly Standburr of 8-point DFT X(K)

If $X(n) = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, 0, 0, 0, 0\}$

Solution

(Steb1) > Make Butterfly Staucture as ginen about for 2-point DFT

On about Butterfly elevature, S, (n) and Soln)

In about Butterfly exerceture, S, (m) and Som) represent of poly first and second stage.

(Step 2) - Olp of Stage 1

 $S_{1}(0) = X(0) + W_{0}^{0} X(4) = \frac{1}{2} + (1/0) = \frac{1}{2}$

S, (1) = x(0) - W x(4) = 5 - 1. (0) = 2

Sp (2) = x(2) + W x(6) = = = + 1. (0) = =

 $S_{10}(3) = x(0) - W_{0}^{0} x(0) = \frac{1}{2} - 1.(0) = \frac{1}{2}$

S,(4) = X(1) + W0 X(5) = \frac{1}{2} + 1. (0) = \frac{1}{2}

 $S_1(5) = S(1) - W_8^{\circ} \times (5) = \frac{1}{2} - 1.(0) = \frac{1}{2}$

S,16) = x(3) + Wg° x(7) = \frac{1}{2} + 1.(0) = \frac{1}{2}

X1(7) = X(3) - W & X(7) = - 1-10) = - 1

Step3) & Olpof Stage 2

 $S_2(0) = S_1(0) + W_0^0 S_1(0) = \frac{1}{2} + 1.(\frac{1}{2}) = 1$ $S_2(1) = S_1(1) + W_0^2 S_1(3) = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2}$

 $S_2(3) = S_1(0) - W_8^2 S_1(3) = \frac{1}{2} + \dot{\beta} \cdot \frac{1}{2}$ Similarly we can show that $S_2(4) = 1$, $S_2(5) = \frac{1}{2} - \dot{\beta} \cdot \frac{1}{2}$, $S_2(6) = 0$ and $S_2(7) = \frac{1}{2} + \dot{\beta} \cdot \frac{1}{2}$

Stepy-Last Step) > Final OIP.

 $\rightarrow \chi(0) = S_2(0) + W_8^0 S_2(4) = 1 + 1 = 2$ $\rightarrow \chi(1) = S_2(1) + W_8 S_2(5) = (\frac{1}{2} - j\frac{1}{2})$ + S(707 - j.707) $+ \chi(\frac{1}{2} - j\frac{1}{2})$

⇒×(1)=015-j12

 $\rightarrow \chi(2) = S_2(2) + W_8^2 S_2(6) = 0 + (-i) \cdot 0 = 0$

Similarly

X(3) 2 · 5 - 8' 0,207 , X(4) = 0,

Y(5) = 0.5 + j 0.207, Y(6) = 0

X(7) = 018+8/121

