Cone Theorem

阿巴阿巴阿巴阿巴!

Cone Theorem

1 Preliminary

Theorem 1 (Iitaka fibration, semiample case, ref. [Laz04, Theorem 2.1.27]). Let X be a projective variety and \mathcal{L} an semiample line bundle on X. Then there exists a fibration $\varphi: X \to Y$ of projective varieties such that for any $m \gg 0$ with \mathcal{L}^m base point free, we have that the morphism $\varphi_{\mathcal{L}^m}$ induced by \mathcal{L}^m is isomorphic to φ . Such a fibration is called the *Iitaka fibration* associated to \mathcal{L} .

2 Non-vanishing Theorem

Theorem 2 (Non-vanishing Theorem). Let (X, B) be a projective klt pair and D a Cartier divisor on X. Suppose that D is nef and $aD - K_{(X,B)}$ is nef and big for some a > 0. Then for $m \gg 0$, we have

$$H^0(X, mD) \neq 0.$$

3 Base Point Free Theorem

Theorem 3 (Base Point Free Theorem). Let (X, B) be a projective klt pair and D a Cartier divisor on X. Suppose that D is nef and $aD - K_{(X,B)}$ is nef and big for some a > 0. Then D is semiample.

4 Rationality Theorem

Theorem 4 (Rationality Theorem). Let (X, B) be a projective klt pair, $a = a(X) \in \mathbb{Z}$ with $aK_{(X,B)}$ Cartier and H an ample divisor on X. Let

$$t := \inf\{s \ge 0 : K_{(X,B)} + sH \text{ is nef}\}$$

be the nef threshold of (X, B) with respect to H. Then $t = u/v \in \mathbb{Q}$ and

$$0 \le u \le a(X) \cdot (\dim X + 1).$$

5 Cone Theorem and Contraction Theorem

Theorem 5 (Cone Theorem). Let (X, B) be a projective klt pair. Then there exist countably many rational curves $C_i \subset X$ with

$$0 < -K_{(X,B)} \cdot C_i \le 2 \dim X$$

Date: July 19, 2025, Author: Tianle Yang, My Website

such that

(a) we have a decomposition of cones

$$\operatorname{Psef}_1(X) = \operatorname{Psef}_1(X)_{K_{(X,B)} \ge 0} + \sum \mathbb{R}_{\ge 0}[C_i];$$

(b) and for any $\varepsilon > 0$ and an ample divisor H on X, we have

$$\operatorname{Psef}_1(X) = \operatorname{Psef}_1(X)_{K_{(X,B)} + \varepsilon H \ge 0} + \sum_{\text{finite}} \mathbb{R}_{\ge 0}[C_i].$$

Proof. We follow the following steps to prove the theorem.

Step 1. Let $F_D := \operatorname{Psef}_1(X) \cap D^{\perp}$ for a nef divisor D on X. We show that if $\dim F_D > 1$ and $F_D \not\subset \operatorname{Psef}_1(X)_{K_{(X,B)} \geq 0}$, then we can choose D' nef such that $F_{D'} \subset F_D$ and $\dim F_{D'} < \dim F_D$.

Yang: To be completed.

Step 2. If dim $F_D = 1$, we also write $R_D := F_D$. We show that

$$\operatorname{Psef}_1(X) = \overline{\operatorname{Psef}_1(X)_{K_{(X,B)} \ge 0} + \sum R_D}.$$

Yang: To be completed.

Step 3. For any $\varepsilon > 0$ and an ample divisor H on X, we show that

$$\operatorname{Psef}_1(X) = \operatorname{Psef}_1(X)_{K_{(X,B)} + \varepsilon H \ge 0} + \sum_{\text{finite}} R_D.$$

Yang: To be completed.

Step 4. We show that any $K_{(X,B)}$ -negative extremal ray R_D contains the class of a rational curve C with $0 < -K_{(X,B)} \cdot C \le 2 \dim X$.

Yang: To be completed.

Theorem 6 (Contraction Theorem). Let (X, B) be a projective klt pair and $F \subset \operatorname{Psef}_1(X)$ a $K_{(X,B)}$ negative extremal face of $\operatorname{Psef}_1(X)$. Then there exists a fibration $\varphi_F : X \to Y$ of projective varieties such that

- (a) an irreducible curve $C \subset X$ is contracted by φ_F if and only if $[C] \in F$;
- (b) any line bundle \mathcal{L} with $F \subset \mathcal{L}^{\perp} = \{ \alpha \in N_1(X) : \alpha \cdot \mathcal{L} = 0 \}$ comes from a line bundle on Y, i.e., there exists a line bundle \mathcal{L}_Y on Y such that $\mathcal{L} \cong \varphi_F^* \mathcal{L}_Y$.

Proof. We follow the following steps to prove the theorem.

Step 1. We show that there exists a nef divisor D on X such that $F = D^{\perp} \cap \operatorname{Psef}_1(X)$. In other words, F is defined on $N_1(X)_{\mathbb{O}}$.

Yang: To be completed.

Step 2. We show that D is semiample.

Yang: To be completed.

Step 3. Let $\varphi: X \to Y$ be the Iitaka fibration associated to D by \ref{D} ?. We show that φ is the desired fibration.

Yang: To be completed.

Remark 7. The ?? is amazing. If F is not $K_{(X,B)}$ -negative, then it may not be rational. For example, let $X = E \times E$ for a general elliptic curve E. By [Laz04, Lemma 1.5.4], we know that $\operatorname{Psef}_1(X)$ is a circular cone. The we see there indeed exist some irrational extremal faces of $\operatorname{Psef}_1(X)$.

References

[Laz04] Robert Lazarsfeld. Positivity in algebraic geometry. I. Vol. 48. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Classical setting: line bundles and linear series. Springer-Verlag, Berlin, 2004, pp. xviii+387. ISBN: 3-540-22533-1. DOI: 10.1007/978-3-642-18808-4. URL: https://doi.org/10.1007/978-3-642-18808-4.

3