DGD₃

Q1. Which of the following are subspaces of $M_{2,2}(\mathbb{R})$?

$$A = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2,2}(\mathbb{R}) : a + d = 0 \right\}$$

$$B = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2,2}(\mathbb{R}) : ad = 1 \right\}$$

$$C = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2,2}(\mathbb{R}) : a, b, c, d \text{ are integers } \right\}$$

$$D = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2,2}(\mathbb{R}) : ad - bc = 0 \right\}$$

Q2. Which of the following are subspaces of $\mathscr{F} = \{f | f : \mathbb{R} \to \mathbb{R}\}$ (space of real-valued functions with domain \mathbb{R})?

$$\begin{split} U &= \{f \in \mathscr{F} : f(0)f(1) = 0\} \\ V &= \{f \in \mathscr{F} : f(0) + f(1) = 0\} \\ W &= \{f \in \mathscr{F} : f(x) = -2f(x) \text{ for all } x \in \mathbb{R}\} \\ X &= \{f \in \mathscr{F} : f(1) < 0\} \end{split}$$

Q3. Which of the following are subspaces of \mathbb{R}^3 ? For the subspaces, find a spanning set.

$$S = \{(x, x + y, x + 2y) : x, y \in \mathbb{R}\}$$

$$T = \{(x, y, z) \in \mathbb{R}^3 : x - 2 = y - 3 = z\}$$

$$Y = \{(x, y, z) \in \mathbb{R}^3 : xyz = 0\}$$

$$M = \{(x, y, z) \in \mathbb{R}^3 : x - y - z = 0\}$$

- **Q4.** Is the polynomial $1 + x^2$ a linear combination of $1 + x x^2$ and x?
- **Q5.** Is the polynomial 1 5x a linear combination of 1 + x and 1 x?
- **Q6.** Is the function $\cos(x + \pi/2)$ a linear combination of $\sin(x)$ and $\cos(x)$?
- **Q7.** Does the function x^2 belong to span $\{\sin(x), \cos(x)\}$?
- **Q8.** Are the subsets $\{(1,2)\}$ and span $\{(1,2)\}$ equal?
- **Q9.** Give two distinct finite spanning sets for each of the following subspaces:

$$U = \{(2x, x) : x \in \mathbb{R}\}\$$

$$V = \{(x, y, z) \in \mathbb{R}^3 : x + y - 2z = 0\}$$