A VERY thin slab of thickness d and area A has volume charge density $\rho=Q/V$. Because it's so thin, we may think of it as a surface charge density $\sigma=Q/A$.

The relation between ρ and σ is:

A.
$$\sigma = \rho$$

B.
$$\sigma = \rho d$$

C.
$$\sigma = \rho/d$$

D.
$$\sigma = V\rho$$

E.
$$\sigma = \rho/V$$

Are ρ_b and σ_b due to real charges?

A. Of course not! They are as fictitious as it gets!

B. Of course they are! They are as real as it gets!

C. I have no idea

A dielectric slab (top area A, height h) has been polarized, with $\mathbf{P}=P_0$ in the +z direction. What is the surface charge density, σ_b , on the bottom surface?

B.
$$-P_0$$

$$\mathsf{C}.P_0$$

D.
$$P_0Ah$$

$$E. P_0A$$

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the surface charge density?

- A. 0
- B. Non-zero Constant
- C. constant* $\sin \theta$
- D. constant* $\cos \theta$
- E. ??

A dielectric sphere is uniformly polarized,

$$\mathbf{P} = +P_0\hat{z}$$

What is the volume charge density?

- A. 0
- B. Non-zero Constant
- C. Depends on r, but not θ
- D. Depends on θ , but not r
- E. ?

If we push this dielectric inside the isolated capacitor, will it be drawn into the capacitor or repelled?

- A. It gets sucked into the capacitor
- B. It gets pushed out from the capacitor
- C. I just don't know.

If we push this conductor inside the isolated capacitor, will it be drawn into the capacitor or repelled?

- A. It gets sucked into the capacitor
- B. It gets pushed out from the capacitor
- C. I just don't know.