LES ÉTAPES DU PROCESSUS DE CONCEPTION

ÉTAPES DE LA DÉMARCHE DE CONCEPTION

Identification d'un besoin

Définition des paramètres / Cahier des charges

Étude de principe

Concepts et idées / Recherche / Croquis / Schémas / Dessins

► Étude de construction (choix des solutions techniques)

Forme / Dimensions / Matériaux / Organes de liaison / Procédés

Construction et évaluation du prototype

► Élaboration du dossier technique

Dessins d'ensemble / Dessins de sous-ensembles / Dessins de détail (de définition) / Schémas / Notice de montage

Production

Analyse du problème

La deuxième étape du processus de conception vise à mieux définir le besoin.

C'est le cahier des charges qui oriente la démarche de conception.

Cette étape conduit à la rédaction du cahier des charges, qui est l'énoncé le plus complet et le plus clair possible du besoin.

Étude de principe

Concepts et idées

Fabriquer un jouet

Recherche et analyse

Trouver un exemple d'objet du même type et en faire l'analyse.

Utiliser les ressources disponibles en ligne: jaguar, grenouille, papillon, etc etc

Problématique commune :

Comment générer des mouvements plus ou moins complexes ?

Transformation et transmission de mouvement:

- Rotation en rotation.
- Rotation en translation.
 - La roue
 - La roue dentée
 - Le treuil
 - La came
 - La bielle-manivelle
 - Le système vis-écrou

• Rotation en rotation

Engrenage

Roue dentée-chaîne

Poulie-courroie

Roue et vis sans fin

Système Pignon / Crémaillère

Lorsque la roue dentée tourne, il y a deux possibilités :

- si la surface est fixe, la roue dentée se déplace,
- si la roue est fixe, la surface se déplace.

Utilisation d'une liaison hélicoïdale :

- un degré de liberté sous la forme de deux mouvements élémentaires liés par une relation.

Système Bielle / Manivelle

Système à Excentrique

Exemple de la CAME

Système à Excentrique

Système plus complexe exemple à traiter:

Exemple de jouet

Croquis, schémas et dessins

Représenter, sous forme de schémas et de dessins, la ou les solutions envisagées.

Décomposition du mouvement de la came

LA DÉMARCHE DE CONCEPTION

SCHÉMA DE CONSTRUCTION

LES LIAISONS ENTRE LES PIÈCES

SCHÉMA DE CONSTRUCTION

LES LIAISONS ENTRE LES PIÈCES

Dans le cas général la difficulté est :

Une fois le mouvement souhaité décris comment obtenir la chaîne cinématique ?

Notation vectorielle

- On utilise des vecteurs pour la représentation
 - C'est plus simple
- Un point est un vecteur :
- Une translation est une somme vectorielle :

$$P' = P + T$$

Changement d'échelle

• Les coordonnées sont multipliées par le facteur de changement d'échelle :

•
$$x' = s_x x$$

•
$$y' = s_y y$$

Notation matricielle

• C'est une multiplication matricielle :

$$P' = SP$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotation

- Rotation en 2D:
 - $x' = \cos\theta x \sin\theta y$
 - $y' = \sin\theta x + \cos\theta y$

Notation matricielle

• Rotation = multiplication matricielle :

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Unification

- Notation simple, concise
- Mais pas vraiment unifiée
 - Addition ou bien multiplication
 - Comment faire pour concaténer plusieurs transformations ?
- On veut une notation unique
 - Qui permette de noter aussi les combinaisons de transformations
 - Comment faire ?

Coordonnées homogènes

- Outil géométrique très puissant :
 - Utilisé partout en Infographie (Vision, Synthèse)
 - cf. aussi géométrie projective
- On ajoute une troisième coordonnée, w
- Un point 2D devient un vecteur à 3 coordonnées :

Coordonnées homogènes

• Deux points sont égaux si et seulement si :

$$-x'/w' = x/w$$
 et $y'/w' = y/w$

- w=0: points « à l'infini »
 - Très utile pour les projections, et pour certaines splines

Et en 3 dimensions?

- C'est pareil
- On introduit une quatrième coordonnée, w
 - Deux vecteurs sont égaux si : x/w = x'/w', y/w = y'/w' et z/w=z'/w'

• Toutes les transformations sont des matrices 4x4

Translations en c. homogènes

Changement d'échelle

Rotation

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\begin{cases} \frac{x'}{w'} = \cos \theta \frac{x}{w} - \sin \theta \frac{y}{w} \\ \frac{y'}{w'} = \sin \theta \frac{x}{w} + \cos \theta \frac{y}{w} \end{cases}$$

$$\begin{cases} x' = \cos \theta x - \sin \theta y \\ y' = \sin \theta x + \cos \theta y \\ w' = w \end{cases}$$

Composition des transformations

- Il suffit de multiplier les matrices :
 - composition d'une rotation et d'une translation: $\mathbf{M} = \mathbf{RT}$
- Toutes les transformations 2D peuvent être exprimées comme des matrices en coord. homogènes
 - Notation très générale

Rotation autour d'un point Q

- Rotation autour d'un point Q:
 - Translater Q à l'origine (T_Q) ,
 - Rotation autour de l'origine (\mathbf{R}_{Θ})
 - Translater en retour vers \overline{Q} (- \overline{T}_{O}).

$$P'=(-T_Q)R_{\Theta}T_QP$$

Translations en 3D

$$T(t_{x}, t_{y}, t_{z}) = \begin{bmatrix} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{cases} x' = x + wt_{x} \\ y' = y + wt_{y} \\ z' = z + wt_{z} \\ w' = w \end{cases}$$

Changement d'échelle en 3D

$$S(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Transformation des normales

- Vecteur normal (à la surface)
- Pas vraiment un vecteur
 - Définit une relation sur les vecteurs
 - Une forme linéaire, un co-vecteur

• Transformation en utilisant la transposée de l'inverse de *M*

Supplément : Projection perspective

• Projection sur le plan z=0, avec le centre de projection placé à z=-d:

Supplément : perspective (suite)

- Coord. homogènes essentielles pourperspective
- La rétrécissement des objets utilise w

$$w' = \frac{z}{d} + w$$

$$\frac{x'}{w'} = \frac{z}{z} + w$$

• Impossible sans coordonnées homogènes

- Action directe de l'utilisateur sur les paramètres
- Fourni par vous
 - $-(x_0, y_0)$ et (x_t, y_t)
- Relation entre action de la main et du modèle
 - Perception logique
- Difficile d'agir sur modèle complexe
 - Quel partie de l'objet ?

Déplacement et cinématique

- Vitesse donnée en entrée
 - Programme calcule la position
- Utile pour des objets simples, trajectoires simples
- Contrôle complet de l'objet

• ...mais besoin d'un contrôle complet de l'objet

Animation : cinématique inverse

- Objets complexes
 - Bras articulé
- Animation d'une partie de l'objet
- Calcul des positions du reste de l'objet
- Simple pour animateur
- Problème complexe
 - Non-linéaire, pas d'unicité, pas de continuité...

Animation: dynamique

- Lois de la dynamique, appliquées au modèle
- Trajectoires réalistes
 - Si modèle réaliste
- Complexité pour imposer résultat
- Utile pour particules, objets secondaires...