

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 24 Métodos estadísticos en ingeniería de software

IIC2143 - Ingeniería de Software Sección 1

Rodrigo Saffie

Etapas de una métrica

- Formulación: formalización de factores apropiados para representar el *software*
- Recolección: mecanismos para acumular datos a partir de la formulación
- Análisis: procesamiento de los valores recolectados para obtener información
- Interpretación: evaluación de la información para determinar mejoras
- Retroalimentación: recomendaciones para el equipo de desarrollo, derivadas de la interpretación

Visualización de métricas

• Las métricas son representadas con gráficos

Características de una buena métrica

- Simple y computable
- Intuitiva
- Consistente y objetiva
- Unidades de medición expresivas
- Reflejar recomendaciones para mejorar
- Independiente del contexto (equipo, lenguaje de programación)

Ejemplos de métricas

- Métricas de *testing*
- Métricas de diseño
- Métricas aplicaciones web

Métricas aplicaciones web

Tiempos de respuesta

- Media
- Mediana
- Moda
- Desviación estándar

Métricas aplicaciones web

- Tiempos de respuesta
 - Media
 - Mediana
 - Moda
 - Desviación estándar
- Throughput: cantidad de solicitudes por minuto

Histogramas

Forma del histograma

- Cambia radicalmente según intervalos escogidos
- Puede decir bastante sobre los datos

Distribuciones de probabilidad

 Función que entrega las probabilidades que puede tomar cada valor de la variable aleatoria X

Distribución de Poisson

 Distribución de probabilidad discreta que se aplica a las ocurrencias de algún suceso durante un intervalo específico

$$P(x) = \frac{\mu^x e^{-\mu}}{x!}$$

- X es el número de veces que el suceso ocurre en el intervalo
- μ es el promedio de veces que el susceso ocurre en el intervalo

Distribución de Poisson

Ejemplo

El número de correos que llegan a un servidor en un período de 15 minutos puede ser descrito como una distribución Poisson con una media de 2.

- a) ¿Cuál es la probabilidad de que no se reciba ningún mensaje en un intervalo de 15 minutos?
- b) ¿Cómo es la distribución de mensajes que llegan en una hora?
- a) $p(x=0) = e^{-2} = 0.135$
- b) Distribución Poisson con media 8

Distribución triangular

• Aproximación simple de una distribución normal

Distribución triangular

Ejemplo

- Estimación duración de un proyecto
 - Optimista: 25 días
 - Pesimista: 50 días
 - Más probable: 30 días
- Media: (25 + 50 + 30)/3 = 35 días
- PERT: (25 + 4*30 + 50)/6 = 32.5 días

Ley de Pareto

SQA Estadístico

- Recolectar datos sobre errores y defectos
- Trazar para cada error su causa
- Seleccionar el 20% de causas que generan el 80% de los errores (ley de Pareto)
- Enfocarse en evitar/corregir esas causas

Ejemplo

Error	Total		Serious		Moderate		Minor	
	No.	%	No.	%	No.	%	No.	%
ES	205	22%	34	27%	68	18%	103	24%
MCC	156	17%	12	9%	68	1.8%	76	17%
IDS	48	5%	1	1%	24	6%	23	5%
VPS	25	3%	0	0%	1.5	4%	10	2%
EDR	130	14%	26	20%	68	18%	36	8%
ICI	58	6%	9	7%	18	5%	31	7%
EDL	45	5%	14	11%	12	3%	19	4%
IET	95	10%	12	9%	35	9%	48	11%
ID	36	4%	2	2%	20	5%	14	3%
PLT	60	6%	1.5	12%	19	5%	26	6%
HCI	28	3%	3	2%	17	4%	8	2%
MIS	56	6%	0	0%	_15	4%	_41	- 9%
Totals	942	100%	128	100%	379	100%	435	100%

- · IES especificación erronea o incompleta
- · EDR error en representación de datos
- · ICI interfaz inconsistente
- · EDL error en diseño lógco

- · MCC -malentendido en requerimiento del cliente
- · IID documentación incompleta
- IID error en transf de diseño a código
- · HCI interfaz humano computador

Teorema de Bayes

 La probabilidad de un evento futuro está influenciada por la historia

$$p(A|B) = \frac{p(A \text{ and } B)}{P(B)}$$

- Estimaciones de costos o productividad
 - juicio a priori de experto se combina con información histórica

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

Clase 24 Métodos estadísticos en ingeniería de software

IIC2143 - Ingeniería de Software Sección 1

Rodrigo Saffie