Problem Set X

Youngduck Choi CIMS New York University yc1104@nyu.edu

Abstract

This work contains solutions to the exercises of the problem set X. The chosen problems are 1,3,4.

Question 1.

- 1. Let $\{X_i\}$ be i.i.d. r.v.'s where $\mathbb{P}(X_1=k)=q_k$ for some $(q_k)_{k=1}^\infty$ with $\sum_k q_k=1$ and $\mathbb{E}X_1<\infty$. Let $\mathcal{F}_n=\sigma(X_1,\ldots,X_n)$ and $S_n=\sum_{i=1}^n X_i$, and define $(\tau_t)_{t=0}^\infty$ via $\tau_t=\inf\{n:S_n\geq t\}$.
 - (a) Show that for every $t\geq 0$, the variable τ_t is an \mathcal{F}_t -stopping time; that is, for every $n\geq 0$, the event $\{\tau_t\leq n\}$ is \mathcal{F}_n -measurable. Further show that every \mathcal{F}_n -stopping time τ enjoys the following property: if there exists a positive integer m and some $\varepsilon>0$ such that

$$\mathbb{P}(\tau \le n + m \mid \mathcal{F}_n) > \varepsilon \quad \text{ for all } n,$$

then necessarily $\mathbb{P}(\tau > km) \leq (1 - \varepsilon)^k$ for every positive integer k, and hence $\mathbb{E}\tau < \infty$.

- (b) Show that for any nonrandom t, the variable X_{τ_t+1} is independent of \mathcal{F}_{τ_t} and $X_{\tau_t+1} \stackrel{d}{=} X_1$.
- (c) Show that $D_t=S_{\tau_i}-t$ is a homogeneous Markov chain: find its transition probabilities and show that $\mu(i)=(\mathbb{E}X_1)^{-1}\sum_{k>i}q_k$ is an invariant measure for it.

Solution.

(a) Observe that

$$\begin{split} \left\{\tau_t \leq n\right\} &= \left\{\inf\left\{m \geq 1 \,:\, S_m \geq t\right\} \leq n\right\} \\ &= \bigcup_{m=1}^n \left\{S_m \geq t\right\} \in \sigma(X_1,...,X_n) = \mathscr{F}_n \end{split}$$

for any $n \ge 1$ and $t \ge 0$, and hence τ_t is an \mathscr{F}_t measurable.

Suppose τ is a \mathscr{F}_n stopping time and there exists a positive integer m and $\epsilon > 0$ such that

$$\mathbb{P}(\tau \le n + m \mid \mathscr{F}_n) > \epsilon$$

for all $n \ge 1$.

Question 2.

- 3. Let X_n be a homogeneous Markov chain on a countable state space Ω with an associated σ -field \mathcal{B} , and let $\tau_{x,k}=\inf\{n\geq k: X_n=x\}$.
 - (a) Prove that for every $x_0, x \in \Omega$, every $B \in \mathcal{B}$ and every positive integer $k \leq n$,

$$\mathbb{P}_{x_0} \left(X_n \in B \, , \tau_{x,k} \le n \right) = \sum_{i=0}^{n-k} \mathbb{P}_{x_0} (\tau_{x,k} = n-i) \mathbb{P}_x (X_i \in B) \, ,$$

where $\mathbb{P}_{x_0}(A) := \mathbb{P}(A \mid X_0 = x_0).$

(b) Deduce that

$$\mathbb{P}_{x_0}(X_n=x)=\sum_{i=k}^n\mathbb{P}_{x_0}(au_{x,k}=i)\mathbb{P}_x(X_{n-i}=x)\,.$$

(c) Conclude that for every $x\in\Omega$ and non-negative integers $k,\ell,$

$$\sum_{i=0}^{\ell} \mathbb{P}_x(X_i = x) \ge \sum_{n=k}^{\ell+k} \mathbb{P}_x(X_n = x).$$

Solution.

(a) By homogeneity,

$$\mathbb{P}_x(X_i \in B) = \mathbb{P}(X_i \in B | X_0 = x) = \mathbb{P}(X_n \in B | X_{n-i} = x)$$

for any $1 \le i \le n$. Then,

$$\mathbb{P}_{x_0}(X_n \in B, \tau_{x,k} \le n) = \mathbb{P}_{x_0}(\bigcup_{i=0}^{n-k} X_n \in B, \tau_{x,k} = n-i) \\
= \sum_{i=0}^{n-k} \mathbb{P}_{x_0}(X_n \in B, \tau_{x,k} = n-i) \\
= \sum_{i=0}^{n-k} \mathbb{P}_{x_0}(\tau_{x,k} = n-i) \mathbb{P}(X_n \in B | X_{n-i} = x) \\
= \sum_{i=0}^{n-k} \mathbb{P}_{x_0}(\tau_{x,k} = n-i) \mathbb{P}_x(X_i \in B).$$

(b) In view of (a), setting $B = \{x\}$,

$$\mathbb{P}_{x_0}(X_n = x) = \mathbb{P}_{x_0}(X_n = x, \tau_{x,k} \le n)
= \sum_{i=k}^n \mathbb{P}_{x_0}(\tau_{x,k} = i) \mathbb{P}_x(X_{n-i} = x)$$
(1)

where (1) holds as $\{X_n = x\} \subset \{\tau_{x,k} \le n\}$.

(c) Applying (b) with $x_0 = x$,

$$\sum_{n=k}^{l+k} \mathbb{P}_x(X_n = x) = \sum_{n=k}^{l+k} \sum_{i=k}^n \mathbb{P}_x(\tau_{x,k} = i) \mathbb{P}_x(X_{n-i} = x)$$

$$= \sum_{i=0}^{l} \mathbb{P}_x(X_i = x) \sum_{i=k}^{n-j} \mathbb{P}_x(\tau_{x,k} = i)$$

$$\leq \sum_{i=0}^{l} \mathbb{P}_x(X_i = x)$$
(2)

where (2) holds by disjointness.

Question 3.

- 4. Let X_n be a Markov chain on a countable state space $\Omega=S\cup T$ with $S\cap T=\emptyset$, where S is finite and $T=A\cup B$ for nonempty sets A,B. For $E\subset \Omega$, let $\tau_E=\inf\{n:X_n\in E\}$, and suppose that $\inf\{s\in S:\mathbb{P}_s(\tau_T<\infty)\}>0$. Finally, call a bounded function $h:\Omega\to\mathbb{R}$ is harmonic at $x\in \Omega$ for the transition probabilities $P(\cdot,\cdot)$ of X_n if $h(x)=\sum_{y\in\Omega}P(x,y)h(y)$.
 - (a) Prove that there exist $\varepsilon > 0$ and $m < \infty$ such that $\mathbb{P}_x(\tau_T > km) \le (1 \varepsilon)^k$ for all $k \ge 1$ and $x \in \Omega$, and conclude that $\tau_T < \infty$ a.s.
 - (b) Prove that $h(x) = \mathbb{P}_x(\tau_A < \tau_B)$ satisfies

$$h(x)=1 \text{ for } x\in A\,, \quad h(x)=0 \text{ for } x\in B\,, \quad h \text{ is harmonic at every } x\in \,S\,. \quad (\star)$$

(c) Prove that if $h:\Omega\to\mathbb{R}$ is a bounded function satisfying (\star) then $h(x)=\mathbb{P}_x(\tau_A<\tau_B)$. To do so, first show that if \mathcal{F}_n is the natural filtration associated with X_n and $g:\Omega\to\mathbb{R}$ is a bounded function that is harmonic at every $x\in S$, then the variable $Y_n=g(X_{n\wedge \tau_T})$ is a martingale; that is, $\mathbb{E}\left[Y_{n+1}\mid \mathcal{F}_n\right]=Y_n$ for every n.

Solution.

(a) We claim that

$$\mathbb{P}(X_i \in B | X_0 = x) = \mathbb{P}(X_n \in B | X_{n-i} = x)$$

for any $n \ge 1$ and $n \ge i \ge 1$. We proceed by induction on i. Then,

$$\mathbb{P}_{x_0}(X_n \in B, \tau_{x,k} \le n) = \mathbb{P}_{x_0}(\bigcup_{i=0}^{n-k} X_n \in B, \tau_{x,k} = n-i)$$

(b)