Methods Lesson 3

1 Differentiate $\ln(3x^2 + 7)$ and hence determine $\int \frac{x}{3x^2 + 7} dx$.

16. WE14 Differentiate $\ln (3x^2+4)$ and hence determine an antiderivative of $\frac{x}{(3x^2+4)}$

10. The gradient function of a particular curve is given by $f'(x) = \cos(2x) - \sin(2x)$ Determine the rule for this function if it is known that the curve passes through the point $(\pi, 2)$.

5. WE7 Determine $\int \frac{(2x+5)^2}{x} dx$.

6. Determine $\int \frac{(3x+2)^2}{x^2} \, dx.$

5. Determine:

a.
$$\int \left(e^{2x+1}-4\right)^2\!dx$$

10. Determine the general rule for the function $y=f\left(x
ight)$ if it is known that $\dfrac{dy}{dx}=xigg(1-\dfrac{1}{x}igg)^2$.

10. Determine $\dfrac{d}{dx} \left(\ln \left(x^2 + 3 \right) \right)$ and hence determine $\int \dfrac{12x}{(x^2 + 3)} dx$.

11. Differentiate $\frac{\cos(x)}{\sin(x)}$ and hence determine an antiderivative of $\frac{1}{\sin^2(x)}$.

12. a. Show that $\dfrac{6x-5}{3-2x}=-3+\dfrac{4}{3-2x}.$

b. Hence, determine
$$\int \frac{6x-5}{3-2x} \, \mathrm{d}x$$
.

6 A curve with equation y = f(x) passes through the origin and its gradient is given by $f'(x) = 3x^2 - 8x + 3$.

a Find the equation of the curve.

b Find the *x*-axis intercepts of the curve.

- 6 An object is projected vertically upwards with a velocity of 25 m/s. (Its acceleration due to gravity is −10 m/s².) Find:
 - a the object's velocity at time t
 - **b** its height above the point of projection at time t
 - c the time it takes to reach its maximum height
 - d the maximum height reached
 - e the time taken to return to the point of projection.
- 1. WE4 Evaluate the following definite integrals.

a.
$$\int_0^1 x^2 dx$$

b.
$$\int_0^3 x^3 dx$$

c.
$$\int_0^{\pi} 5 \sin\left(\frac{x}{4}\right) dx$$

- 11. Determine the value of a if $\int_0^a e^{rac{x}{2}} dx = 4$.
- 12. Determine a if $\displaystyle \int_0^a e^{-2x}\,dx = \displaystyle \frac{1}{2} \left(1 \displaystyle \frac{1}{e^8}\right)$.
- Part of the graph of y = x + 1 is shown to the right. Find the area of the shaded region.

4 Part of the graph of $y = x^2$ is shown to the right. Find the area of the shaded region.

