

液压传动及控制I

— 概述、介质与流体力学

浙江大学 流体动力与机电系统国家重点实验室 2022.11

目录

- □发展历史
- □应用领域
- □系统组成与符号
- □控制方式及优缺点
- □工作介质特性
- □液压油污染及控制

□ 古代流体力学成就

水转连磨

水运仪象台 (水力天文计算机)

□ 近代流体力学成就

帕斯卡定理

伯努利方程

Joseph Bramah申请 了第一个液压机专利

早期水力起重机

□ 现代液压

第一台轴向柱塞泵 (首先用矿物油作为传动介质)

机电液一体化

智能液压

液压数字孪生

液压物联网

□ 液压传动广泛应用于各种领域

工程机械

汽车工业

海工船舶

工业设备

机器人

深海探测

航空航天

大型试验设备

□ 液压驱动与传动是非道路移动机器动力系统的核心

□一个完整的液压系统由五个部分组成,即动力元件、液压执行元件、控制元件、检测及辅助元件和液压油液。

□ 半结构式的工作原理图直观易理解,但绘制麻烦。一般采用

液压图形符号绘制液压系统工作原理图。

□ 液压传动可以分为手动式、半自动式和全自动式三种。

手动式或半自动式

全自动式

□ 按控制结构可分为开环式和闭环式。

液压传动的优缺点

□ 液压传动优点

- 功率密度大
- 易于实现直线运动
- 大范围无级调速
- 工作平稳、冲击小

□ 液压传动缺点

- 能量损失大
- 受温度影响大
- 油液泄漏污染

电动缸

液压缸

ar over-drive gear 机械无级调速

Steel belt

液压无级调速

> 液压传动及控制所用的工作介质为液压油液或其他合成液体

液压液的作用: 传动、润滑、冷却、去污和防锈

- □ 密度p: 单位体积液体所具有的质量;
- □ 流体的密度随着压力或温度的变化而变化,但变化量很小。

$$ho = rac{m}{v}$$
 ——液体的质量 ——液体的体积

常用液压传动介质密度(20°C)

工作介质	密度 ρ∕ (kg・m ⁻³)	工作介质	密度 ρ/ (kg・m ⁻³)
抗磨液压液 L-HM32	0.87×10^3	水-乙二醇液压液 L-HFC	1.06×10^3
抗磨液压液 L-HM46	0.875×10^3	通用磷酸酯液压液 L-HFDR	1. 15×10^3
油包水乳化液 L-HFB	0.932×10^3	飞机用磷酸酯液压液 L-HFDR	1.05×10^3
水包油乳化液 L-HFAE	0.977×10^3	10 号航空液压油	0.85×10^3

□ 可压缩性:液体因所受压力增高而发生体积缩小的性质称为可压缩性。

体积压缩系数
$$k = -\frac{1}{\Delta p} \frac{\Delta V}{V_0}$$

体积弹性模量
$$K = \frac{1}{k} = -\frac{\Delta p}{\Delta V}V_0$$

 ΔV ——液体体积变化量

 V_0 ——被压缩液体体积

□可压缩性

- ➢ 油液的可压缩性对液压系统的动态性能影响较大,不可忽略;
- ▶ 由于空气的可压缩性很大,空气对液压油当量体积弹性 模量影响显著。

常用液压介质体积模量(20°C)

工作介质	体积模量 K/MPa	工作介质	体积模量 K/MPa
石油基液压油	$(1.4~2) \times 10^3$	水-乙二醇液压液	3.45×10^3
水包油乳化液	1.95×10^3	磷酸酯液压液	2.65×10^3
油包水乳化液	2.3×10^3	水	2. 4×10^3

石油基液压油可压缩性是钢的 100~170 倍(钢的弹性模量为 2.1×105 MPa)

□ 黏性:液体在外力作用下流动时,其流动受到牵制,从而沿其界面产生内摩擦力,这一特性称为液体的黏性。

当压力增加时,液体黏度有所增加;

液体的黏度对温度很敏感,温度略升高,黏度显著降低。

□黏性的度量

绝对黏度 (动力粘度) μ : 液体在单位速度梯度流动时单位面积上的内摩擦力。

$$\mu = \tau / \frac{du}{dv} \qquad (N \cdot s/m^2)$$

运动黏度v:液体绝对黏度与其密度之比称为运动黏度

$$v = \frac{\mu}{\rho} \qquad (m^2/s)$$

相对黏度: 根据特定测量条件制定, 又称条件黏度。

□ 液压介质污染源

- 残留物: 元件的冷热加工,安装,清洗等
- 生成物:油温高引起化学反应
- 混入物: 混入水和空气;
- 元件磨损
- 油的生产、储存和运输等过程中受到污染

液压介质的污染原因

