Analisis Diamantes _ Estadistica Descriptiva

Ramon Ceballos

10/2/2021

Ejercicio de Diamantes en Python

Se pueden instalar paquetes de Python en RStudio cargando la librería "reticulate" (library(reticulate)) y despues emplear la instrucción py_install().

Una vez instalados, cargamos en RMarkdown diferentes paquetes de Python.

```
import numpy as np
import pandas as pd
import matplotlib
from ggplot import diamonds

## C:\Users\usuario\ANACON~1\lib\site-packages\ggplot\utils.py:81: FutureWarning: pandas.tslib is depre
## You can access Timestamp as pandas.Timestamp
## pd.tslib.Timestamp,
## C:\Users\usuario\Documents\R\win-library\3.6\reticulate\python\rpytools\loader.py:24: FutureWarning:
## level=level

matplotlib.style.use("ggplot")

Una vez cargado el dataset diamonds, lo exploramos.

#Dimensiones
print(diamonds.shape)

#Cinco primeras filas
```

```
## (53940, 10)
print(diamonds.head(5))
```

```
cut color clarity depth table price
##
      carat
                                                          Х
                                                                У
                                                                      z
## 0
      0.23
              Ideal
                        Ε
                              SI2
                                    61.5
                                           55.0
                                                       3.95 3.98 2.43
## 1
      0.21 Premium
                        Ε
                              SI1
                                           61.0
                                    59.8
                                                   326 3.89 3.84 2.31
## 2
      0.23
               Good
                        Ε
                              VS1
                                    56.9
                                           65.0
                                                   327
                                                       4.05 4.07 2.31
                              VS2
## 3
      0.29 Premium
                        Ι
                                    62.4
                                           58.0
                                                   334
                                                       4.20 4.23 2.63
## 4
      0.31
               Good
                              SI2
                                    63.3
                                           58.0
                                                   335
                                                       4.34 4.35 2.75
```

Histograma

Hacer el diagrama de una columna del dataset.

```
#Representamos el histograma de la columna "carat"
diamonds.hist(column="carat",
figsize=(8,3),
color="blue",
bins = 50,
range = (0,3.5))
```

```
## array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000000001F67D7B8>]],
## dtype=object)
```

```
matplotlib.pyplot.title("Histograma de pesos de diamantes")
matplotlib.pyplot.show()
```


Filtro de outliers

Filtramos en python para aquellos diamantes con un peso superior a 3.5. Estos son muy raros ya que ni aparecen en el histograma anterior.

```
print(diamonds[diamonds["carat"]>3.5])
```

##		carat	cut	color	clarity	depth	table	price	x	У	z
##	23644	3.65	Fair	Н	I1	67.1	53.0	11668	9.53	9.48	6.38
##	25998	4.01	Premium	I	I1	61.0	61.0	15223	10.14	10.10	6.17
##	25999	4.01	Premium	J	I1	62.5	62.0	15223	10.02	9.94	6.24
##	26444	4.00	Very Good	I	I1	63.3	58.0	15984	10.01	9.94	6.31
##	26534	3.67	Premium	I	I1	62.4	56.0	16193	9.86	9.81	6.13
##	27130	4.13	Fair	Н	I1	64.8	61.0	17329	10.00	9.85	6.43
##	27415	5.01	Fair	J	I1	65.5	59.0	18018	10.74	10.54	6.98
##	27630	4.50	Fair	J	I1	65.8	58.0	18531	10.23	10.16	6.72
##	27679	3.51	Premium	J	VS2	62.5	59.0	18701	9.66	9.63	6.03

Este tipo de análisis sería conveniente para estudios específicos sobre este tipo de diamantes.

Boxplots

Representar boxplots en Python, para una variable ("precios").

Se podría hacer en función de otra variable, para ver diferentes boxplots comparandolos.

```
#Limpia la figura anterior
matplotlib.pyplot.clf()
diamonds.boxplot(column = "price",
figsize = (8,8))
matplotlib.pyplot.show()
```


La claridaad de los diamantes vs el precio de los mismos.

```
matplotlib.pyplot.clf()
diamonds.boxplot(column = "price", by = "clarity",
figsize = (8,8))
matplotlib.pyplot.show()
```

Boxplot grouped by clarity

Tamaño de los diamantes en relación a la claridad de los mismos.

```
matplotlib.pyplot.clf()
diamonds.boxplot(column = "carat", by = "clarity",
figsize = (8,8))
matplotlib.pyplot.show()
```

Boxplot grouped by clarity

Densidades

Densidad de la distribución subyacente para la columna carat de pesos.

```
matplotlib.pyplot.clf()
diamonds["carat"].plot(kind="density",
figsize=(8,8),
xlim=(0,5))
matplotlib.pyplot.show()
```


Tabla de frecuencias y Barplot

Con pandas para tablas de frecuencias.

clarity

Vamos a hacer la tabla de frecuencias absolutas y a posteirori dibujamos el barplot.

```
#Tabla de frecuencias absolutas
carat_table = pd.crosstab(index=diamonds["clarity"], columns="count")
print(carat_table)
## col_0 count
```

```
## I1
              741
## IF
             1790
## SI1
            13065
## SI2
             9194
## VS1
             8171
            12258
## VS2
## VVS1
             3655
## VVS2
             5066
```

```
matplotlib.pyplot.clf()
carat_table.plot(kind="bar", figsize=(8,8))
matplotlib.pyplot.show()
```


Tabla bidimensional de dos variables (claridad y color).

```
#Frecuencias absolutas para tabla bidimensional
carat_table_2 = pd.crosstab(index=diamonds["clarity"], columns=diamonds["color"])
print(carat_table_2)
```

```
## color
               D
                     Ε
                           F
                                  G
                                        Η
                                              Ι
                                                   J
## clarity
## I1
              42
                   102
                          143
                                150
                                      162
                                             92
                                                  50
## IF
              73
                   158
                         385
                                681
                                      299
                                            143
                                                  51
                                           1424
## SI1
            2083
                  2426
                        2131
                               1976
                                     2275
                                                 750
## SI2
            1370
                  1713
                        1609
                               1548
                                     1563
                                            912
                                                 479
## VS1
             705
                  1281
                        1364
                               2148
                                     1169
                                            962 542
## VS2
            1697
                  2470
                        2201
                               2347
                                     1643
                                           1169 731
## VVS1
             252
                   656
                         734
                                999
                                      585
                                            355
                                                 74
## VVS2
             553
                   991
                         975 1443
                                      608
                                            365 131
```

```
matplotlib.pyplot.clf()

#Barras apiladas (stacked=True)
carat_table_2.plot(kind="bar", figsize=(8,8), stacked=True)

matplotlib.pyplot.show()
```



```
matplotlib.pyplot.clf()

#Barras no apiladas
carat_table_2.plot(kind="bar", figsize=(8,8), stacked=False)

matplotlib.pyplot.show()
```


${\bf Scatterplot}$

Un gráfico de ptos de dispersión parat peso vs precio.

Poner transparencia a los ptos para visualizar mejor las zonas donde se aglutinan ptos.

```
matplotlib.pyplot.clf()
diamonds.plot(kind="scatter", x = "carat", y = "price", figsize=(10,10), ylim=(0,20000), xlim = (0,6), matplotlib.pyplot.show()
```

