[I2A] - Vector Sorting

Time: 1 sec / Memory: 256 MB

Background

This problem simulates the vector sorting step used in the Graham-Scan algorithm for the <u>Convex Hull (/@LTYI96fQQOWFYWr2vFQsWg/BJwPiYf3A)</u> problem.

You may use the method developed in <u>Compare function for Vector Sorting</u> (/(@LTY196fQQOWFYWr2vFQsWq/SktY-cSh0) as a building block for this problem.

Problem Statement

Given n distinct points $p_1=(x_1,y_1), p_2=(x_2,y_2),\ldots,p_n=(x_n,y_n)$ in the plane, first select a reference point p_i for some $1\leq i\leq n$ such that

the angle spanned by the vectors $v_k := p_i \vec{p}_k$ for all k
eq i is strictly less than π .

Sort the vectors v_k for all $1 \leq k \leq n$ in counter-clockwise order with ties broken by the length of the vectors in non-descending order.

Hint: Use long long data-type to prevent integer overflow.

Input

The first line contains an integer n, where $1 \leq n \leq 10^5$.

The following n lines each contain two integers representing the coordinates of each point.

You may assume that the input points are distinct.

Output

Output the indexes of the vectors v_k in their sorted order.

Note that, according to the sorting rule, the first index will be the index of the reference point you select.

Example

Input:

Output:

1 3 4 2