# (19) World Intellectual Property Organization International Bureau



# 

(43) International Publication Date 28 August 2003 (28.08.2003)

**PCT** 

# (10) International Publication Number WO 03/070981 A2

(51) International Patent Classification<sup>7</sup>: C12Q 1/68, C07K 14/35, C12N 5/10, C12R 1/32, A61K 39/04, C12N 15/70, C07K 16/12, G01N 33/569

(21) International Application Number: PCT/IB03/00986

(22) International Filing Date: 25 February 2003 (25.02.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 02290458.5

25 February 2002 (25.02.2002) EP

(71) Applicants (for all designated States except US): INSTITUT PASTEUR [FR/FR]; 25-28, rue du Docteur Roux, F-75015 Paris (FR). VETERINARY LABORATORIES AGENCY [GB/GB]; New Ham, Addelstone KT15 3NB, Surrey (GB).

(72) Inventors; and

[GB/FR]; c/o Institut Pasteur- Unite de Genetique Moleculai, re Bacterienne, 25-28 rue du Docteur Roux, 75724 Paris Cedex 15 (FR). BROSCH, Roland [AT/FR]; c/o Institut Pasteur- IP Paris, Unite de Genetique, Moleculaire Bacterienne, 25-28 rue du Docreur Roux, 75724 Paris Cedex 15 (FR). GORDON, Stephen [IE/GB]; Glyn Hewinson, Veterinary Laboratories Agency, Woodham Lane, New Haw, Addelstone, Surrey KT15 3NB (GB). EIGLMEIER, Karin [DE/FR]; c/o Intstitut Pasteur,

Unite de genetique Moleculaire Bacterienne, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15 (FR). GARNIER, Thierry [FR/FR]; c/o Institut Pasteur- Unite de Genetique Moleculai, re Bacterienne, 25-28, rue du Docteur Roux, 75724 Paris, Cedex 15 (FR).

- (74) Agent: MARTIN, Jean-Jacques; Cabinet Regimbeau, 20, rue de Chazelles, 75847 Paris, Cedex 17 (FR).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

UYOT

(54) Title: DELETED SEQUENCE IN M. TUBERCULOSIS, METHOD FOR DETECTING MYCOBACTERIA USING THESE SEQUENCES AND VACCINES

(57) Abstract: The present invention is the identification of a nucleotide sequence which make it possible in particular to distinguish an infection resulting from the vast majority of Mycobacterium tuberculosis strains from an infection resulting from Mycobacterium africanum, Mycobacterium canetti. Mycobacterium microti. Mycobacterium bovis. Mycobacterium bovis BCG. The subject of the present invention is also a method for detecting the sequences in question by the products of expression of these sequences and the kits for carrying out these methods. Finally, the subject of the present invention is novel vaccines.

WO 03/070981 PCT/IB03/00986

1

DELETED SEQUENCE IN M. TUBERCULOSIS, METHOD FOR DETECTING MYCOBACTERIA USING THESE SEQUENCES AND VACCINES

The present invention pertains to the field of biology, more particularly the subject of the present invention is the identification of a nucleotide sequence which make it possible in particular to distinguish an infection resulting from *Mycobacterium tuberculosis* from an infection resulting from *Mycobacterium africanum*, *Mycobacterium canetti*, *Mycobacterium microti*, *Mycobacterium bovis*, *Mycobacterium bovis BCG*. The subject of the present invention is also a method for detecting the sequences in question by the products of expression of these sequences and the kits for carrying out these methods. Finally, the subject of the present invention is novel vaccines.

Despite more than a century of research since the discovery of Mycobacterium tuberculosis, the aetiological agent of tuberculosis, this disease remains one of the major causes of human mortality. M. tuberculosis is expected to kill 3 million people annually (Snider, 1989 Rev. Inf. Dis. S335) and the number of new people getting infected each year is rising and is estimated at 8.8 million. Although the majority of these are in developing countries, the disease is assuming renewed importance in the western countries due to the increasing number of homeless people, the impact of the AIDS epidemic, the changing global migration, and the travel patterns.

20

25

30

35

5

10

15

Early tuberculosis often goes unrecognized in an otherwise healthy individual. Classical initial methods of diagnosis include examination of a sputum smear under a microscope for acid-fast mycobacteria and an x-ray of the lungs. However, in a vast majority of cases the sputum smear examination is negative for Mycobacteria in the early stages of the disease, and lung changes may not be obvious on an x-ray until several months following infection. Another complicating factor is that acid-fast bacteria in a sputum smear may often be other species of mycobacteria. Antibiotics used for treating tuberculosis have considerable side effects, and must be taken as a combination of three or more drugs for a six to twelve month period. In addition, the possibility of inducing the appearance of drug resistant tuberculosis prevents therapy from being administered without solid evidence to support the diagnosis. Currently the only absolutely reliable method of diagnosis is based on culturing M. tuberculosis from the clinical specimen and identifying it morphologically and bischemically. This usually takes anywhere from three to six weeks, during which time a patient may become seriously ill and infect other individuals. Therefore, a rapid test capable of reliably detecting the presence of M. tuberculosis is vital for the early detection and treament. Several molecular tests have been developed recently for the rapid detection and

BNSDOCID: <WO\_\_\_\_03070981A2\_1\_=

10

15

20

25

30

• s

identification of M. tuberculosis, such as the Gen-Probe "Amplified Mycobacterium tuberculosis Direct Test"; this test amplifies M. tuberculosis 16S ribosomal RNA from respiratory specimens and uses a chemiluminescent probe to detect the amplified product with a reported sensitivity of about 91%. The discovery of the IS6110 insertion element (Cave et al., Eisenach et al., 1990 J. Infectious Diseases 161:977-981; Thierry et al. 1990 J. Clin. Microbiol. 28: 2668-2673) and the belief that this element may only be present in Mycobacterium complex (M. tuberculosis, M.bovis, M.bovis-BCG, M. africanum, M.canettii and M.microti) spawned a whole series of rapid diagnostic strategies (Brisson-Noel et al., 1991 Lancet 338: 364-366; Clarridge et al. 1993, J. Clin. Microbiol. 31:2049-2056; Cormican et al. 1992 J. Clin. Pathology 1992, 45: 601-604; Cousins et al., 1992 J. Clin. Microbiol. 30: 255-258; Del Portillo et al. 1991 J. Clin. Microbiol. 29: 2163-2168; Folgueira et al., 1994 Neurology 44:1336-1338; Forbes et al. 1993, J.Clin.Microbiol. 31:1688-1694; Hermans et al. 1990 J. Clin. Microbiol. 28:1204-1213; Kaltwasser et al. 1993 Mol. Cell. Probes 7: 465-470; Kocagoz et al. 1993 J. Clin. Microbiol. 31:1435-1438; Kolk et al. 1992 J.Clin.Microbiol. 30: 2567-2575; Kox et al. 1994 J.Clin.Microbiol. 32:672-678; Liu et al. 1994 Neurology 44:1161-1164; Miller et al. 1994 J. Clin. Microbiol. 32: 393-397; Reischl et al. 1994 Biotechniques 17:844-845; Schluger et al. 1994 Chest 105:1116-1121; Shawar et al. 1993 J. Clin. Microbiol. 31: 61-65; Wilson et al 1993 J.Clin.Microbiol. 28: 2668-2673). These tests employ various techniques to extract DNA from the sputum. PCR is used to amplify IS6110 DNA sequences from the extracted DNA. The successful amplification of this DNA is considered to be an indicator of the presence of M.tuberculosis infection. U.S. Pat. Nos. 5,168,039 and 5,370,998 have been issued to Crawford et al. for the IS6110 based detection of tuberculosis. European patent EP 0,461,045 has been issued to Guesdon for the IS6110 based detection of tuberculosis.

Thus, these molecular assays used to detect *M. tuberculosis* depend on the IS6110 insertion sequence (about 10 copies) or the 16S ribosomal RNA (thousands of copies). However, these methods do not provide any information regarding the sub-type of the mycobacteria. Indeed several dozen species of Mycobacteria are known, and most are non-pathogenic for humans; tuberculosis is usually caused by infection due to *M. tuberculosis*, with a few cases being caused by *M. bovis*, *M.canettii*, and *M. africanum*. In order to choose an appropriate treatment and to conduct epidemiological investigations it is absolutely necessary to be able to rapidly and accurately identify isolates, i.e to distinguish the sub-type of mycobacteria of the *Mycobacterium* complex, originating from potential tuberculosis patients. That's the problem the present invention intends to solve.

The present invention provides an isolated or purified nucleic acid from *Mycobacterium* complex wherein said nucleic acid is selected from the group consisting of:

- a) SEQ ID N°1, named TbD1 region;
- b) Nucleic acid having a sequence fully complementary to SEQ ID N°1.
- c) Nucleic acid fragment comprising at least 8, 12, 15, 20, 25, 30, 50, 100, 250, 500, 750, 1000, 1500, 2000, 2500, 3000 consecutive nucleotides of SEQ ID N°1;
- d) Nucleic acid having at least 90% sequence identity after optimal alignment with a sequence defined in a) or b);
- e) Nucleic acid that hybridizes under stringent conditions with the nucleic acid defined in a) or b);

As used herein, the terms « isolated » and « purified » according to the invention refer to a level of purity that is achievable using current technology. The molecules of the invention do not need to be absolutely pure (i.e., contain absolutely no molecules of other cellular macromolecules), but should be sufficiently pure so that one of ordinary skill in the art would recognize that they are no longer present in the environment in which they were originally found (i.e., the cellular middle). Thus, a purified or isolated molecule according to the present invention is one that have been removed from at least one other macromolecule present in the natural environment in which it was found. More preferably, the molecules of the invention are essentially purified and/or isolated, which means that the composition in which they are present is almost completely, or even absolutely, free of other macromolecules found in the environment in which the molecules of the invention are originally found. Isolation and purification thus does not occur by addition or removal of salts, solvents, or elements of the periodic table, but must include the removal of at least some macromolecules. The nucleic acids encompassed by the invention are purified and/or isolated by any appropriate technique known to the ordinary artisan. Such techniques are widely known, commonly practiced, and well within the skill of the ordinary artisan. As used herein, the term "nucleic acid" refers to a polynucleotide sequence such as a single or double stranded DNA sequence, RNA sequence, cDNA sequence; such a polynucleotide sequence has been isolated, purified or synthesized and may be constituted with natural or non natural nucleotides. In a preferred embodiment the DNA molecule of the invention is a double stranded DNA molecule. As used herein, the terms "nucleic acid", "oligonucleotide", "polynucleotide" have the same meaning and are used indifferently.

By the term "Mycobacterium complex" as used herein, it is meant the complex of mycobacteria causing tuberculosis which are Mycobacterium tuberculosis, Mycobacterium

5

10

15

20

25

30

35

10

15

20

25

30

bovis, Mycobacterium africanum, Mycobacterium microti, Mycobacterium canettii and the vaccine strain Mycobacterium bovis BCG.

The present invention encompasses not only the entire sequence SEQ ID N°1, its complement, and its double-stranded form, but any fragment of this sequence, its complement, and its double-stranded form.

In embodiments, the fragment of SEQ ID N°1 comprises at least approximately 8 nucleotides. For example, the fragment can be between approximately 8 and 30 nucleotides and can be designed as a primer for polynucleotide synthesis. In another preferred embodiment, the fragment of SEQ ID N°1 comprises between approximately 1,500 and approximately 2,500 nucleotides, and more preferably 2153 nucleotides corresponding to SEQ ID N°4 (see figure 5). As used herein, "nucleotides" is used in reference to the number of nucleotides on a single-stranded nucleic acid. However, the term also encompasses double-stranded molecules. Thus, a fragment comprising 2,153 nucleotides according to the invention is a single-stranded molecule comprising 2,153 nucleotides, and also a double stranded molecule comprising 2153 base pairs (bp).

In a preferred embodiment, the nucleic acid fragment of the invention is specifically deleted in the genome of *Mycobacterium tuberculosis*, excepted in *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome and present in the genome of *Mycobacterium africanum*, *Mycobacterium canettii*, *Mycobacterium microti*, *Mycobacterium bovis*, *Mycobacterium bovis* BCG. By the term "few IS6110 sequences inserted in the genome", it is meant less than ten copies in the genome of *M. tuberculosis*, more preferably less than 5 copies, for example less than two copies.

The nucleic acid fragment of the invention is preferably selected from the group consisting of:

- a) SEQ ID N°4;
- b) Nucleic acid having a sequence fully complementary to SEQ ID N°4.
- c) Nucleic acid fragment comprising at least 8, 12, 15, 20, 25, 30, 50, 100, 250, 500, 750, 1000, 1500, 2000, 2500, 3000 consecutive nucleotides of SEQ ID N°4;
- d) Nucleic acid having at least 90% sequence identity after optimal alignment with a sequence defined in a) or b);
- e) Nucleic acid that hybridizes under stringent conditions with the nucleic acid defined in a) or b).

In embodiments, the stringent conditions under which a sequence according to the invention is determined are conditions which are no less stringent than 5X SSPE, 2X

WO 03/070981 PCT/IB03/00986

5

Denhardt's solution, and 0.5% (w/v) sodium dodecyl sulfate at 65°C. More stringent conditions can be utilized by the ordinary artisan, and the proper conditions for a given assay can be easily and rapidly determined without undue or excessive experimentation. As an illustrative embodiment, the stringent hybridization conditions used in order to specifically detect a polynucleotide according to the present invention are advantageously the following: pre-hybridization and hybridization are performed at 65°C in a mixture containing:

- 5X SSPE (1X SSPE is 3 M NaCl, 30 mM tri-sodium citrate)
- 2X Denhardt's solution
- 0.5% (w/v) sodium dodecyl sulfate (SDS)
- 100 μg ml<sup>-1</sup> salmon sperm DNA.

The washings are performed as follows:

- two washings at laboratory temperature (approximately 21-25°C) for 10 min. in the presence of 2X SSPE and 0.1% SDS; and
  - one washing at 65°C for 15 min. in the presence of 1X SSPE and 0.1% SDS.

15

5

10

The invention also encompasses the isolated or purified nucleic acid of the invention wherein said nucleic acid comprises at least a deletion of a nucleic acid fragment as defined above. Preferably, such an isolated or purified nucleic acid of the invention is the SEQ ID N°21 that corresponds to SEQ ID N°1 in which SEQ ID N°4 is deleted (absent).

20

25

30

Polynucleotides of the invention can be characterized by the percentage of identity they show with the sequences disclosed herein. For example, polynucleotides having at least 90% identity with the polynucleotides of the invention, particularly those sequences of the sequence listing, are encompassed by the invention. Preferably, the sequences show at least 90% identity with those of the sequence listing. More preferably, they show at least 92% identity, for example 95% or 99% identity. The skilled artisan can identify sequences according to the invention through the use of the sequence analysis software BLAST (see for example, Coffin et al., eds., "Retroviruses", Cold Spring Harbor Laboratory Press, pp. 723-755). Percent identity is calculated using the BLAST sequence analysis program suite, Version 2, available at the NCBI (NIH). All default parameters are used. BLAST (Basic Local Alignment Search Tool) is the heuristic search algorithm employed by the programs blastp, blastn, blastx, tblastn and tblastx, all of which are available through the BLAST analysis software suite at the NCBI. These programs ascribe significance to their findings using the statistical methods of Karlin and Altschul (1990, 1993) with a few enhancements.

Using this publicly available sequence analysis program suite, the skilled artisan can easily identify polynucleotides according to the present invention.

It is well within the skill of the ordinary artisan to identify regions of the nucleic acid sequence of the invention, which would be useful as a probe, primer, or other experimental, diagnostic, or therapeutic aid. For example, the ordinary artisan could utilize any of the widely available sequence analysis programs to select regions (fragments) of these sequences that are useful for hybridization assays such as Southern blots, Northern blots, DNA binding assays, and/or *in vitro*, *in situ*, or *in vivo* hybridizations. Additionally, the ordinary artisan, with the sequences of the present invention, can utilize widely available sequence analysis programs to identify regions that can be used as probes and primers, as well as for design of anti-sense molecules. The only practical limitation on the fragment chosen by the ordinary artisan is the ability of the fragment to be useful for the purpose for which it is chosen. For example, if the ordinary artisan wished to choose a hybridization probe, he would know how to choose one of sufficient length, and of sufficient stability, to give meaningful results. The conditions chosen would be those typically used in hybridization assays developed for nucleic acid fragments of the approximate chosen length.

Thus, the present invention provides short oligonucleotides, such as those useful as probes and primers. In embodiments, the probe and/or primer comprises 8 to 30 consecutive nucleotides of the polynucleotide according to the invention or the polynucleotide complementary thereto. Advantageously, a fragment as defined herein has a length of at least 8 nucleotides, which is approximately the minimal length that has been determined to allow specific hybridization. Preferably the nucleic fragment has a length of at least 12 nucleotides and more preferably 20 consecutive nucleotides of any of SEQ ID N°1 or SEQ ID N°4. The sequence of the oligonucleotide can be any of the many possible sequences according to the invention. Preferably, the sequence is selected from the following group SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18. More precisely, the primers SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15 and SEQ ID N° 16 are contained in the nucleic acid fragment SEQ ID N° 4. The primers SEQ ID N° 17 and SEQ ID N° 18 are contained in the nucleic acid sequence SEQ ID N° 1 and are flanking the nucleic acid fragment of SEQ ID N° 4 (see figure 5).

Thus, the polynucleotides of SEQ ID N°1 and SEQ ID N°4, and their fragments, can be used to select nucleotide primers, notably for an amplification reaction, such as the amplification reactions further described.

PCR is described in US Patent No. 4,683,202, which is incorporated in its entirety herein. The amplified fragments may be identified by agarose or polyacrylamide gel

ΔT ...

5

10

15

20

25

30

35

electrophoresis, by a capillary electrophoresis, or alternatively by a chromatography technique (gel filtration, hydrophobic chromatography, or ion exchange chromatography). The specificity of the amplification can be ensured by a molecular hybridization using as nucleic probes the polynucleotides of SEQ ID N°1 or SEQ ID N°4, and their fragments, oligonucleotides that are complementary to these polynucleotides or fragments thereof, or their amplification products themselves, and/or even by DNA sequencing.

The following other techniques related to nucleic acid amplification may also be used and are generally preferred to the PCR technique. The Strand Displacement Amplification (SDA) technique is an isothermal amplification technique based on the ability of a restriction enzyme to cleave one of the strands at a recognition site (which is under a hemiphosphorothioate form) and on the property of a DNA polymerase to initiate the synthesis of a new strand from the 3'OH end generated by the restriction enzyme and on the property of this DNA polymerase to displace the previously synthesized strand being localized downstream. The SDA amplification technique is more easily performed than PCR (a single thermostatted water bath device is necessary), and is faster than the other amplification methods. Thus, the present invention also comprises using the nucleic acid fragments according to the invention (primers) in a method of DNA or RNA amplification according to the SDA technique.

When the target polynucleotide to be detected is a RNA, for example a mRNA, a reverse transcriptase enzyme will be used before the amplification reaction in order to obtain a cDNA from the RNA contained in the biological sample. The generated cDNA is subsequently used as the nucleic acid target for the primers or the probes used in an amplification process or a detection process according to the present invention.

The non-labeled polynucleotides or oligonucleotides of the invention can be directly used as probes. Nevertheless, the polynucleotides or oligonucleotides are generally labeled with a radioactive element (<sup>32</sup>P, <sup>35</sup>S, <sup>3</sup>H, <sup>125</sup>I) or by a non-isotopic molecule (for example, biotin, acetylaminofluorene, digoxigenin, 5-bromodesoxyuridine, fluorescein) in order to generate probes that are useful for numerous applications. Examples of non-radioactive labeling of nucleic acid fragments are described in French patent N° FR 78 10975 and by Urdea *et al.* (1988, *Nucleic Acids Research* 11:4937-4957) or Sanchez-Pescador *et al.* (1988, *J. Clin. Microbiol.* 26(10):1934-1938), the disclosures of which are hereby incorporated in their entirety. Other labeling techniques can also be used, such as those described in French patents FR 2 422 956 and FR 2 518 755. The hybridization step may be performed in different ways. See, for example, Matthews *et al.*, 1988, *Anal. Biochem.* 169:1-25. A general method comprises immobilizing the nucleic acid that has been extracted from the biological

5

10

15

20

25

30

35

10

15

20

25

30

35

sample on a substrate (for example, nitrocellulose, nylon, polystyrene) and then incubating, in defined conditions, the target nucleic acid with the probe. Subsequent to the hybridization step, the excess amount of the specific probe is discarded and the hybrid molecules formed are detected by an appropriate method (radioactivity, fluorescence or enzyme activity measurement, etc.).

Amplified nucleotide fragments are useful, among other things, as probes used in hybridization reactions in order to detect the presence of one polynucleotide according to the present invention or in order to detect mutations. The primers may also be used as oligonucleotide probes to specifically detect a polynucleotide according to the invention.

The oligonucleotide probes according to the present invention may also be used in a detection device comprising a matrix library of probes immobilized on a substrate, the sequence of each probe of a given length being localized in a shift of one or several bases, one from the other, each probe of the matrix library thus being complementary to a distinct sequence of the target nucleic acid. Optionally, the substrate of the matrix may be a material able to act as an electron donor, the detection of the matrix positions in which an hybridization has occurred being subsequently determined by an electronic device. Such matrix libraries of probes and methods of specific detection of a target nucleic acid is described in the European patent application No EP-0 713 016 (Affymax technologies) and also in the US patent N° US-5,202,231 (Drmanac). Since almost the whole length of a mycobacterial chromosome is covered by BAC-based genomic DNA library (i.e. 97% of the M. tuberculosis chromosome is covered by the BAC library I-1945), these DNA libraries will play an important role in a plurality of post-genomic applications, such as in mycobacterial gene expression studies where the canonical set of BACs could be used as a matrix for hybridization studies. Thus it is also in the scope of the invention to provide a nucleic acid chips, more precisely a DNA chips or a protein chips that respectively comprises a nucleic acid or a polypeptide of the invention.

The present invention is also providing a vector comprising the isolated DNA molecule of the invention. A "vector" is a replicon in which another polynucleotide segment is attached, so as to bring the replication and/or expression to the attached segment. A vector can have one or more restriction endonuclease recognition sites at which the DNA sequences can be cut in a determinable fashion without loss of an essential biological function of the vector, and into which a DNA fragment can be spliced in order to bring about its replication and cloning. Vectors can further provide primer sites (e.g. for PCR), transcriptional and/or translational initiation and/or regulation sites, recombinational signals, replicons, selectable markers, etc. Beside the use of homologous recombination or restriction enzymes to insert a

10

15

20

25

30

desired DNA fragment into the vector, UDG cloning of PCR fragments (US Pat. No. 5,334,575), T:A cloning, and the like can also be applied. The cloning vector can further contain a selectable marker suitable for use in the identification of cells transformed with the cloning vector.

The vector can be any useful vector known to the ordinary artisan, including, but not limited to, a cloning vector, an insertion vector, or an expression vector. Examples of vectors include plasmids, phages, cosmids, phagemid, yeast artificial chromosome (YAC), bacterial artificial chromosome (BAC), human artificial chromosome (HAC), viral vector, such as adenoviral vector, retroviral vector, and other DNA sequences which are able to replicate or to be replicated *in vitro* or in a host cell, or to convey a desired DNA segment to a desired location within a host cell.

According to a preferred embodiment of the invention, the recombinant vector is a BAC pBeloBAC11 in which the genomic region of *Mycobacterium bovis-BCG* 1173P3 that spans the region corresponding to the locus 1,760,753 bp to 1,830,364 bp in the genome of *M. tuberculosis* H37Rv has been inserted into the HindIII restriction site; this recombinant vector is named X229. In this region, the inventors have demonstrated the deletion of a 2153 bp fragment, corresponding to SEQ ID N°4, in the vast majority of *M. tuberculosis* strains excepted strains of *M. tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome. That's the reason why the inventors named this deletion of 2153 bp TbD1 ("*M. tuberculosis* specific deletion 1"). TbD1 is flanked by the sequence GGC CTG GTC AAA CGC GGC TGG ATG CTG and AGA TCC GTC TTT GAC ACG ATC GAC G. External primers hybridizing with such sequences outside TbD1 or the complementary sequences thereof can be used for the amplification of TbD1 to check for the presence or the absence of the deletion of the TbD1. The inventors design for example the following primers:

- 5'- CTA CCT CAT CTT CCG GTC CA-3' (SEQ ID N°17)
- 5'- CAT AGA TCC CGG ACA TGG TG-3'(SEQ ID N°18)

In order to get a specific 500 pb probe for hybridization experiments, a PCR amplification of a fragment comprised in TbD1 may be realized by using the plasmid X229 as a matrix. The amplification of a fragment of approximatively 500 bp contained in TbD1 can be performed by using the following primers:

- 5'- CGT TCA ACC CCA AAC AGG TA-3' (SEQ ID N°13)
- 5'- AAT CGA ACT CGT GGA ACA CC-3' (SEQ ID N°14)

The amplification of a fragment of approximatively 2,000 bp contained in TbD1 can be performed by using the following primers:

10

15

20

25

30

#### 5'- ATT CAG CGT CTA TCG GTT GC-3' (SEQ ID N°15)

#### 5'- AGC AGC TCG GGA TAT CGT AG-3' (SEQ ID N°16)

The PCR conditions are the following: denaturation 95°C 1 min, then 35 cycles of amplification [95°C during 30 seconds, 58°C during 1 min], then elongation 72°C during 4 min.

Thus, this invention also concerns a recombinant cell host which contains a polynucleotide or recombinant vector according to the invention. The cell host can be transformed or transfected with a polynucleotide or recombinant vector to provide transient, stable, or controlled expression of the desired polynucleotide. For example, the polynucleotide of interest can be subcloned into an expression plasmid at a cloning site downstream from a promoter in the plasmid and the plasmid can be introduced into a host cell where expression can occur. The recombinant host cell can be any suitable host known to the skilled artisan, such as a eukaryotic cell or a microorganism. For example, the host can be a cell selected from the group consisting of *Escherichia coli*, *Bacillus subtilis*, insect cells, and yeasts. According to a preferred embodiment of the invention, the recombinant cell host is a commercially available *Escherichia coli* DH10B (Gibco) containing the BAC named X229 previously described. This *Escherichia coli* DH10B (Gibco) containing the BAC named X229 has been deposited with the Collection Nationale de Cultures de Microorganismes (CNCM), Institut Pasteur, Paris, France, on February 18<sup>th</sup>, 2002 under number CNCM I-2799.

Another aspect of the invention is the product of expression of all or part of the nucleic acid according to the invention, including the nucleic acid fragment specifically deleted in the genome of *Mycobacterium tuberculosis*, excepted in *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome as defined previously. The expression "product of expression" is understood to mean any isolated or purified protein, polypeptide or polypeptide fragment resulting from the expression of all or part of the above-mentioned nucleotide sequences. Among those product of expression, one can cite the membrane protein mmpL6 corresponding to SEQ ID N°6, the membrane protein mmpS6 corresponding to SEQ ID N°10 (the two sequences SEQ ID N°3 and SEQ ID N°10 are identical), and their truncated or rearranged forms due to the deletion of a nucleic acid fragment according to the invention. For example, SEQ ID N°8 is a truncated form of mmpL6 protein, SEQ ID N°12 is a truncated form of mmpS6 protein and SEQ ID N°22 is a fusion product [mmpS6-mmpL6] of both rearranged mmpL6 and mmpS6 proteins.

15

20

25

It is now easy to produce proteins in large amounts by genetic engineering techniques through the use of expression vectors, such as plasmids, phages, and phagemids. The polypeptide of the present invention can be produced by insertion of the appropriate polynucleotide into an appropriate expression vector at the appropriate position within the vector. Such manipulation of polynucleotides is well known and widely practiced by the ordinary artisan. The polypeptide can be produced from these recombinant vectors either *in vitro* or *in vivo*. All the isolated or purified nucleic acids encoding the polypeptide of the invention are in the scope of the invention. The polypeptide of the invention is a polypeptide encoded by a polynucleotide which hybridizes to any of SEQ ID N°1 or N°4 under stringent conditions, as defined herein.

More preferably, said isolated or purified nucleic acid according the invention is selected among:

- the mmpL6 gene of sequence SEQ ID N°5 contained in SEQ ID N°1 and encoding the mmpL6 protein of sequence SEQ ID N°6;
- the truncated form of *mmpL6* gene of sequence SEQ ID N°7 contained in TbD1 of sequence SEQ ID N°4 and encoding a truncated form of mmpL6 protein of sequence SEQ ID N°8;
  - the mmpS6 gene of sequence SEQ ID N°9 contained in SEQ ID N°1 and encoding the mmpS6 protein of SEQ ID N°10;
  - the truncated form of *mmpS6* gene of sequence SEQ ID N°11 contained in TbD1 of sequence SEQ ID N°4 and encoding a truncated form of mmpS6 protein of SEQ ID N°12.
    - the chimeric gene of SEQ ID N°21 issued from fusion of both truncated mmpS6 and mmpL6 genes due to the deletion of TbD1 in the genome of *M. tuberculosis* excepted strains of *M. tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome. This chimeric gene encodes the fusion polypeptide [mmpS6-mmpL6] of sequence SEQ ID N°22.

The present invention also provides a method for the discriminatory detection and identification of:

- Mycobacterium tuberculosis excepted Mycobacterium tuberculosis strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome; versus,
- Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti,

  Mycobacterium bovis, Mycobacterium bovis BCG in a biological sample,

10

15

20

25

30

comprising the following steps:

- a) isolation of the DNA from the biological sample to be analyzed or production of a cDNA from the RNA of the biological sample,
- b) detection of the nucleic acid sequences of the mycobacterium present in said biological sample,
- c) analysis for the presence or the absence of a nucleic acid fragment specifically deleted in the genome of *Mycobacterium tuberculosis*, excepted in *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, as previously described.

By a biological sample according to the present invention, it is notably intended a biological fluid, such as sputum, saliva, plasma, blood, urine or sperm, or a tissue, such as a biopsy.

Analysis of the desired sequences may, for example, be carried out by agarose gel electrophoresis. If the presence of a DNA fragment migrating to the expected site is observed, it can be concluded that the analyzed sample contained mycobacterial DNA. This analysis can also be carried out by the molecular hybridization technique using a nucleic probe. This probe will be advantageously labeled with a nonradioactive (cold probe) or radioactive element. Advantageously, the detection of the mycobacterial DNA sequences will be carried out using nucleotide sequences complementary to said DNA sequences. By way of example, they may include labeled or nonlabeled nucleotide probes; they may also include primers for amplification. The amplification technique used may be PCR but also other alternative techniques such as the SDA (Strand Displacement Amplification) technique, the TAS technique (Transcription-based Amplification System), the NASBA (Nucleic Acid Sequence Based Amplification) technique or the TMA (Transcription Mediated Amplification) technique.

The primers in accordance with the invention have a nucleotide sequence chosen from the group comprising SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15, SEQ ID N° 16, SEQ ID N° 17, SEQ ID N° 18. The primers SEQ ID N° 13, SEQ ID N° 14, SEQ ID N° 15 and SEQ ID N° 16 are contained in the nucleic acid fragment SEQ ID N° 4, and the primers SEQ ID N° 17 and SEQ ID N° 18 are contained in the nucleic acid of the invention SEQ ID N° 1 but not in the nucleic acid fragment SEQ ID N° 4.

In a variant, the subject of the invention is also a method for the discriminatory detection and identification of:

10

15

20

25

30

- Mycobacterium tuberculosis excepted Mycobacterium tuberculosis strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome; versus,
- Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG in a biological sample, comprising the following steps:
  - a) bringing the biological sample to be analyzed into contact with at least one pair of primers as defined above, the DNA contained in the sample having been, where appropriate, made accessible to the hybridization beforehand,
    - b) amplification of the DNA of the mycobacterium,
    - c) visualization of the amplification of the DNA fragments.

The amplified fragments may be identified by agarose or polyacrylamide gel electrophoresis by capillary electrophoresis or by a chromatographic technique (gel filtration, hydrophobic chromatography or ion-exchange chromatography). The specification of the amplification may be controlled by molecular hybridization using probes, plasmids containing these sequences or their product of amplification. The amplified nucleotide fragments may be used as reagent in hybridization reactions in order to detect the presence, in a biological sample, of a target nucleic acid having sequences complementary to those of said amplified nucleotide fragments. These probes and amplicons may be labeled or otherwise with radioactive elements or with nonradioactive molecules such as enzymes or fluorescent elements.

The subject of the present invention is also a kit for the discriminatory detection and identification of:

- Mycobacterium tuberculosis excepted Mycobacterium tuberculosis strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome; versus,
- Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG in a biological sample, in a biological sample comprising the following elements:
  - a) at least one pair of primers as defined previously,
  - b) the reagents necessary to carry out a DNA amplification reaction,
- c) optionally, the necessary components which make it possible to verify or compare the sequence and/or the size of the amplified fragment.

Indeed, in the context of the present invention, depending on the pair of primers used, it is possible to obtain very different results. Thus, the use of primers which are

10

15

20

25

30

35

contained in the TbD1 deletion, such as for example SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, is such that no amplification product is detectable in M. tuberculosis excepted in strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences in their genome, and that amplification product is detectable in Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG, Mycobacterium tuberculosis having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome. The use of a pair of primers outside the TbD1 deletion such as SEQ ID N°17 and SEQ ID N°18 is likely to give rise to an amplicon in Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG, Mycobacterium tuberculosis having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome, of about 2100 bp whereas the use of the pair of primers outside the TbD1 deletion will give rise in M. tuberculosis excepted in strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome, to an amplicon of about few bp.

More generally, the invention pertains to the use of at least one pair of primers as defined previously for the amplification of a DNA sequence from *Mycobacterium tuberculosis* or *Mycobacterium africanum*, *Mycobacterium canettii*, *Mycobacterium microti*, *Mycobacterium bovis*, *Mycobacterium bovis* BCG, *Mycobacterium tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome.

Indeed, the subject of the present invention is also a method for the *in vitro* discriminatory detection of antibodies directed against *Mycobacterium tuberculosis* excepted *Mycobacterium tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome versus antibodies directed against *Mycobacterium africanum*, *Mycobacterium canettii*, *Mycobacterium microti*, *Mycobacterium bovis*, *Mycobacterium bovis* BCG, *Mycobacterium tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few *I*S6110 sequences inserted in their genome, in a biological sample, comprising the following steps:

a) bringing the biological sample into contact with at least one product of expression of all or part of the nucleic acid fragment specifically deleted in *M. tuberculosis* excepted in strains of *M. tuberculosis* having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome, as previously defined,

10

15

-20

25

30

35

b) detecting the antigen-antibody complex formed.

The subject of the present invention is also a method for the *in vitro* discriminatory detection of a vaccination with *Mycobacterium bovis* BCG, an infection by *M. bovis*, *M. canettii*, *M. microti*, *M. africanum* or *M. tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, versus an infection by *Mycobacterium tuberculosis*, excepted by *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome in a mammal, comprising the following steps:

- a) preparation of a biological sample containing cells, more particularly cells of the immune system of said mammal and more particularly T cells,
- b) incubation of the biological sample of step a) with at least one product of expression of all or part of the nucleic acid fragment specifically deleted in *M. tuberculosis* excepted in strains of *M. tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, as previously defined,
- c) detection of a cellular reaction indicating prior sensitization of the mammal to said product, in particular cell proliferation and/or synthesis of proteins such as gamma-interferon. Cell proliferation may be measured, for example, by incorporating <sup>3</sup>H-Thymidine.

The invention also relates to a kit for the *in vitro* discriminatory diagnosis of a vaccination with *M. bovis* BCG, an infection by *M. bovis*, *M. canettii*, *M. microti*, *M. africanum* versus an infection by *M. tuberculosis* excepted by strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, in a mammal comprising:

- a) a product of expression of all or part of the nucleic acid fragment specifically deleted in *M. tuberculosis* excepted in strains of *M. tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, as previously defined,
- b) where appropriate, the reagents for the constitution of the medium suitable for the immunological reaction,
- c) the reagents allowing the detection of the antigen-antibody complexes produced by the immunological reaction,
- d) where appropriate, a reference biological sample (negative control) free of antibodies recognized by said product,
- e) where appropriate, a reference biological sample (positive control) containing a predetermined quantity of antibodies recognized by said product.

10

15

20

25

30

The reagents allowing the detection of the antigen-antibody complexes may carry a marker or may be capable of being recognized in turn by a labeled reagent, more particularly in the case where the antibody used is not labeled.

The subject of the invention is also mono- or polyclonal antibodies, their chimeric fragments or antibodies, capable of specifically recognizing a product of expression in accordance with the present invention.

The present invention therefore also relates to a method for the *in vitro* discriminatory detection of the presence of an antigen of *Mycobacterium tuberculosis* excepted of strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, versus the presence of an antigen of *Mycobacterium africanum*, *Mycobacterium canettii*, *Mycobacterium microti*, *Mycobacterium bovis*, *Mycobacterium bovis*-BCG and *Mycobacterium tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, in a biological sample comprising the following steps:

- a) bringing the biological sample into contact with an antibody of the invention,
- b) detecting the antigen-antibody complex formed.

The invention also relates to a kit for the discriminatory detection of the presence of an antigen of Mycobacterium tuberculosis excepted strains of M. tuberculosis having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome versus the presence of an antigen of Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG, Mycobacterium tuberculosis having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome, in a biological sample comprising the following steps:

a) an antibody as previously claimed,

- b) the reagents for constituting the medium suitable for the immunological reaction,
- c) the reagents allowing the detection of the antigen-antibody complexes produced by the immunological reaction.

The above-mentioned reagents are well known to a person skilled in the art who will have no difficulty adapting them to the context of the present invention.

The subject of the invention is also an immunogenic composition, characterized in that it comprises at least one product of expression in accordance with the invention. Such an immunogenic composition will be used to protect animals and humans against infections by M. africanum, M. bovis, M. canettii, M. microti and M. tuberculosis.

10

15

20

25

30

35

In a particular embodiment, such an immunogenic composition will comprise a product of expression of all or part of the nucleic fragment specifically deleted in the genome of *Mycobacterium tuberculosis*, excepted in *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome. And in a preferable embodiement, such an immunogenic composition will comprise a product of expression of all or part of TbD1. In this case, such an immunogenic composition will be used to protect animals and humans against infections by *M. africanum*, *M. bovis*, *M. canettii*, *M. microti* and *M. tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome.

In an other particular embodiment, such an immunogenic composition will comprise the fusion product [mmpS6-mmpL6] of SEQ ID N°22. This fusion product is due to the absence of TbD1 in *M. tuberculosis* excepted strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome. An immunogenic composition comprising this fusion product will be used to protect animals and humans specifically against infection by the vast majority of *M. tuberculosis* strains excepted strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome.

Advantageously, the immunogenic composition in accordance with the invention enters into the composition of a vaccine when it is provided in combination with a pharmaceutically acceptable vehicle and optionally with one or more immunity adjuvant(s) such as alum or a representative of the family of muramylpeptides or incomplete Freund's adjuvant.

The invention also relates to a vaccine comprising at least one product of expression in accordance with the invention in combination with a pharmaceutically compatible vehicle and, where appropriate, one or more appropriate immunity adjuvant(s).

The invention also provide an in vitro method for the detection and identification of *Mycobacterium tuberculosis* excepted *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome in a biological sample,

- comprising the following steps:
  - a) isolation of the DNA from the biological sample to be analyzed or production of a cDNA from the RNA of the biological sample,
- b) detection of the nucleic acid sequences of the mycobacterium present in said biological sample,

10

15

20

30

c) analysis for the presence or the absence of a nucleic acid fragment of the invention.

In another embodiment, the invention provides an *in vitro* method for the detection and identification of *Mycobacterium tuberculosis* excepted *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome in a biological sample, comprising the following steps:

- a) bringing the biological sample to be analyzed into contact with at least one pair of primers selected among nucleic acid fragments of the invention, and more preferably selected among the primers chosen from the group comprising SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, SEQ ID N°17, SEQ ID N°18, the DNA contained in the sample having been, where appropriate, made accessible to the hybridization beforehand,
  - b) amplification of the DNA of the mycobacterium,
  - c) visualization of the amplification of the DNA fragments.

The invention also provides a kit for the detection and identification of *Mycobacterium tuberculosis* excepted *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome in a biological sample, comprising the following elements:

- a) at least one pair of primers selected among nucleic acid fragments of the invention, and more preferably selected among the primers chosen from the group comprising SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, SEQ ID N°17, SEQ ID N°18,
  - b) the reagents necessary to carry out a DNA amplification reaction,
- c) optionally, the necessary components which make it possible to verify or compare the sequence and/or the size of the amplified fragment.

The invention also relates to a method for the *in vitro* detection of antibodies directed against *Mycobacterium tuberculosis* excepted *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, in a biological sample, comprising the following steps:

- a) bringing the biological sample into contact with at least one product of expression of all or part of the nucleic acid fragment specifically deleted in *M. tuberculosis* excepted in strains of *M. tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome,
  - b) detecting the antigen-antibody complex formed.

10

15

20

25

30

It is also a goal of the invention to use the TbD1 deletion as a genetic marker for the differentiation of *Mycobacterium* strains of *Mycobacterium* complex.

It is also a goal of the invention to use mmpL6<sup>551</sup> polymorphism as a genetic marker for the differentiation of *Mycobacterium* strains of *Mycobacterium* complex.

The use of such genetic marker(s) in association with at least one genetic marker selected among RD1, RD2, RD3, RD4, RD5, RD6, RD7, RD8, RD9, RD10, RD11, RD13, RD14, RvD1, RvD2, RvD3, RvD4, RvD5, katG<sup>463</sup>, gyrA<sup>95</sup>, oxyR<sup>,285</sup>, pncA<sup>57</sup> and the specific insertion element of *M. canettii* (IS canettii) allows the differentiation of Mycobacterium strains of Mycobacterium complex (see example 4).

The present invention provides an *in vitro* method for the detection and identification of *Mycobacteria* from the *Mycobacterium* complex in a biological sample, comprising the following steps:

- a) analysis for the presence or the absence of a nucleic acid fragment specifically deleted in *M. tuberculosis* excepted in strains of *M. tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, and
- b) analysis of at least one additional genetic marker selected among RD1, RD2, RD3, RD4, RD5, RD6, RD7, RD8, RD9, RD10, RD11, RD13, RD14, RvD1, RvD2, RvD3, RvD4, RvD5, katG<sup>463</sup>, gyrA<sup>95</sup>, oxyR<sup>285</sup>, pncA<sup>57</sup>, the specific insertion element of *M. canettii*.

In a preferred embodiment, two additional markers are used, preferably RD4 and RD9. The analysis is performed by a technique selected among sequence hybridization, nucleic acid amplification, antigen-antibody complex.

It is also a goal of the present invention to provide a kit for the detection and identification of *Mycobacteria* from the *Mycobacterium* complex in a biological sample comprising the following elements:

- a) at least one pair of primers selected among nucleic acid fragments of the invention, and more preferably selected among the primers chosen from the group comprising SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, SEQ ID N°17, SEQ ID N°18,
- b) at least one pair of primers specific of the genetic markers selected among RD1, RD2, RD3, RD4, RD5, RD6, RD7, RD8, RD9, RD10, RD11, RD13, RD14, RvD1, RvD2, RvD3, RvD4, RvD5, katG<sup>463</sup>, gyrA<sup>95</sup>, oxyR<sup>,285</sup>, pncA<sup>57</sup>, the specific insertion element of *M. canettii*.
- c) the reagents necessary to carry out a DNA amplification reaction,

d) optionally, the necessary components which make it possible to verify or compare the sequence and/or the size of the amplified fragment.

In a preferred embodiment, the kit comprises the following elements:

- a) at least one pair of primers selected among nucleic acid fragments of the invention, and more preferably selected among the primers chosen from the group comprising SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, SEQ ID N°17, SEQ ID N°18,
- b) one pair of primers specific of the genetic marker RD4,
- c) one pair of primers specific of the genetic marker RD9,
- d) the reagents necessary to carry out a DNA amplification reaction,
- e) optionally, the necessary components which make it possible to verify or compare the sequence and/or the size of the amplified fragment.

The figures and examples presented below are provided as further guide to the practitioner of ordinary skill in the art and are not to be construed as limiting the invention in anyway.

# **FIGURES**

20

5

10

15

Figure 1: Amplicons obtained from strains that have the indicated genomic region present or deleted. Sizes of amplicons in each group are uniform. Numbers correspond to strain designation used in Kremer et al. (1999, J. Clin Microbiol. 37: 2607-2618) (Ref. 8) and Supply et al (2001, J. Clin. Microbiol. 39: 3563-3571) (ref.9).

25

30

- Figure 2: Sequences in the TbD1 region obtained from strains of various geographic regions.
- \* refers to groups based on  $katG^{c463}/gyrA^{c95}$  sequence polymorphism defined by Sreevatsan and colleagues (Ref. 2). Numbers correspond to strain designation used in Kremer et al. (1999, J. Clin Microbiol. 37: 2607-2618) (Ref. 8) and Supply et al (2001, J. Clin. Microbiol. 39: 3563-3571) (ref.9).

- Figure 3: Spoligotypes of selected M. tuberculosis and M. bovis strains. Numbers correspond to strain designation used in Kremer et al. (1999, J. Clin Microbiol. 37: 2607-2618) (Ref. 8) and Supply et al (2001, J. Clin. Microbiol. 39: 3563-3571) (ref.9).
- Figure 4: Scheme of the proposed evolutionary pathway of the tubercle bacilli illustrating successive loss of DNA in certain lineages (grey boxes). The scheme is based on presence or absence of conserved deleted regions and on sequence polymorphisms in five selected genes. Note that the distances between certain branches may not correspond to actual phylogenetic differences calculated by other methods.
- Dark arrows indicate that strains are characterized by  $katG^{c463}$  CTG (Leu),  $gyrA^{c95}$  ACC (Thr), typical for group 1 organisms. Arrows with white lines indicate that strains belong to group 2 characterized by  $katG^{c463}$  CGG (Arg),  $gyrA^{c95}$  ACC (Thr). The arrow with white boxes indicates that strains belong to group 3, characterized by  $katG^{c463}$  CGG (Arg),  $gyrA^{c95}$  AGC (Ser), as defined by Sreevatsan and colleagues (Sreevastan et al., 1997 Proc. Natl. Acad.Sci USA 151: 9869-9874) (Ref. 2).
  - Figure 5: Scheme of the TbD1 deletion and surrounding region in Mycobacterium complex. A: Scheme of TbD1 and surrounding region in genome of M. bovis, M. bovis BCG, M. africanum, M. canettii, M. microti and ancestral strains of M. tuberculosis characterized by having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome. The mmpL6 gene, the mmpS6 gene, the different primers, the different nucleic acid fragments and polypeptides coded by them are approximately localized in the region. The 2153 pb deletion named TbD1, specifically deleted in M. tuberculosis excepted in ancestral strains of M. tuberculosis, is delimited by its two end points.
  - **B**: Scheme of TbD1 and surrounding region in genome of *M. tuberculosis* excepted ancestral strains of *M. tuberculosis*. Positions of the TbD1 deletion and of the nucleic acid of sequence SEQ ID N°1 in the genome of *M. tuberculosis* strain H37Rv are marked below the scheme. An chimeric ORF [mmpS6-mmpL6] resulting from the absence of TbD1 is drawn, the sequence of this chimeric ORF, SEQ ID N°21 and the sequence of the encoded polypeptide, SEQ ID N°22, are approximately localized above the scheme.
- Figure 6: Sequence of the specific insertion element in genome of Mycobacterium canettii strains. The beginning of this insertion element is at position 399 and the end of this insertion element is at position 2378. This insertion element contains the coding sequence of a

25

30

putative transposase (sequence in bold characters, from position 517 to position 2307) that shows significant homology with a transposase of *Mycobacterium smegmatis*. This coding sequence is framed by two 20 bp inverted repeats (sequences underlined from position 399 to 418 and from position 2359 to 2378).

5

## **EXAMPLES**

#### 1. MATERIAL AND METHODS:

10

15

20

1.1. Bacterial Strains: The 100 M. tuberculosis complex strains comprised 46 M. tuberculosis strains isolated in 30 countries, 14 M. africanum strains, 28 M. bovis strains originating in 5 countries, 2 M. bovis BCG vaccine strains (Pasteur and Japan), 5 M. microti strains, and 5 M. canettii strains. The strains were isolated from human and animal sources and were selected to represent a wide diversity including 60 strains that have been used in a multi-center study (8). The M. africanum strains were retrieved from the collection of the Wadsworth Center, New York State Department of Health, Albany, New York, whereas the majority of the M. bovis isolates came from the collection of the University of Zaragoza, Spain. Four M. canettii strains are from the culture collection of the Institut Pasteur, Paris, France. The strains have been extensively characterized by reference typing methods, i.e. IS6110 restriction fragment length polymorphism (RFLP) typing and spoligotyping. M. tuberculosis H37Rv, M. tuberculosis H37Ra, M. tuberculosis CDC1551, M. bovis AF2122/97, M. microti OV254, and M. canettii CIPT 140010059 were included as reference strains. DNA was prepared as previously described (10).

25

30

#### 1.2. Genome comparisons and primer design

For preliminary genome comparisons between *M. tuberculosis* and *M. bovis* websites <a href="http://genolist.pasteur.fr/TubercuList/">http://genolist.pasteur.fr/TubercuList/</a> and <a href="http://www.sanger.ac.uk/Projects/M\_bovis/">http://www.sanger.ac.uk/Projects/M\_bovis/</a> as well as inhouse databases were used. For primer design, sequences inside or flanking RD and RvD regions were obtained from the same websites. Primers were designed using the primer 3 website <a href="http://www-genome.wi.mit.edu/cgi-bin/primer/primer3\_www.cgi">http://www-genome.wi.mit.edu/cgi-bin/primer/primer3\_www.cgi</a> that would amplify ca. 500 base pair fragments in the reference strains (Table 1).

## 1.3. RD-PCR analysis

Reactions were performed in 96 well plates and contained per reaction 1.25 μl of 10 x PCR buffer (600mM Tris HCl pH 8.8, 20 mM MgCl<sub>2</sub>, 170 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 100 mM β-mercaptoethanol), 1.25 μl 20mM nucleotide mix, 50 nM of each primer, 1-10 ng of template DNA, 10% DMSO, 0.2 units *Taq* polymerase (Gibco-BRL) and sterile distilled water to 12.5 μl. Thermal cycling was performed on a PTC-100 amplifier (MJ Inc.) with an initial denaturation step of 90 seconds at 95°C, followed by 35 cycles of 30 seconds at 95°C, 1 min at 58°C, and 4 min at 72°C.

# 10 1.4. Sequencing of junction regions (RDs, TbD1,) katG, gyrA, oxyR and pncA genes

PCR products were obtained as described above, using primers listed in Table 1.

For primer elimination, 6 µl PCR product was incubated with 1 unit of Shrimp Alkaline phosphatase (USB), 10 units of exonuclease I (USB), and 2 µl of 5 x buffer (200mM Tris HCl pH 8.8, 5mM MgCl<sub>2</sub>) for 15 min at 37°C and then for 15 min at 80°C. To this reaction mixture 2 µl of Big Dye sequencing mix (Applied Biosystems), 2 µl (2µM) of primer and 3 µl of 5 x buffer (5mM MgCl<sub>2</sub>, 200mM Tris HCl pH 8.8) were added and 35 cycles (96°C for 30 sec; 56°C for 15 sec; 60°C for 4 min) performed in a thermocycler (MJ-research Inc., Watertown, MA). DNA was precipitated using 80 µl of 76% ethanol, centrifuged, rinsed with 70% ethanol, and dried. Reactions were dissolved in 2 µl of formamide/EDTA buffer, denatured and loaded onto 48 cm, 4 % polyacrylamide gels and electrophoresis performed on 377 automated DNA sequencers (Applied Biosystems) for 10 to 12 h. Alternatively, reactions were dissolved in 0.3 mM EDTA buffer and subjected to automated sequencing on a 3700 DNA sequencer (Applied Biosystems). Reactions generally gave between 500-700 bp of unambiguous sequence.

25

30

15

#### 1.5. Accession Numbers

The sequence of the TbD1 region from the ancestral *M. tuberculosis* strain No. 74 (Ref. 8) containing genes *mmpS6* and *mmpL6* was deposited in the EMBL database under accession No. AJ426486. Sequences bordering RD4, RD7, RD8, RD9 and RD10 in BCG are available under accession numbers AJ003103, AJ007301, AJ131210, Y18604, and AJ132559, respectively.

#### 2. EXPERIMENTAL DATA:

10

15

20

25

30

35

The distribution of 20 variable regions resulting from insertion-deletion events in the genomes of the tubercle bacilli has been evaluated in a total of 100 strains of Mycobacterium tuberculosis, M. africanum, M. canettii, M. microti and M. bovis. This approach showed that the majority of these polymorphisms did not occur independently in the different strains of the M. tuberculosis complex but, rather, result from ancient, irreversible genetic events in common progenitor strains. Based on the presence or absence of an M. tuberculosis specific deletion (TbD1), M. tuberculosis strains can be divided into ancestral and "modern" strains, the latter comprising representatives of major epidemics like the Beijing, Haarlem and African M. tuberculosis clusters. Furthermore, successive loss of DNA, reflected by RD9 and other subsequent deletions, was identified for an evolutionary lineage represented by M. africanum, M. microti and M. bovis that diverged from the progenitor of the present M. tuberculosis strains before TbD1 occurred. These findings contradict the often-presented hypothesis that M. tuberculosis, the etiological agent of human tuberculosis evolved from M. bovis, the agent of bovine disease. M. canettii and ancestral M. tuberculosis strains lack none of these deleted regions and therefore appear to be direct descendants of tubercle bacilli that existed before the M. africanum  $\rightarrow$  M. bovis lineage separated from the M. tuberculosis lineage. This suggests that the common ancestor of the tubercle bacilli resembled M. tuberculosis or M. canettii and could well have been a human pathogen already.

The mycobacteria grouped in the *M. tuberculosis* complex are characterized by 99.9% similarity at the nucleotide level and identical 16S rRNA sequences (1, 2) but differ widely in terms of their host tropisms, phenotypes and pathogenicity. Assuming that they are all derived from a common ancestor, it is intriguing that some are exclusive human (*M. tuberculosis*, *M. africanum*, *M. canettii*) or rodent pathogens (*M. microti*) whereas others have a wide host spectrum (*M. bovis*). What was the genetic organization of the last common ancestor of the tubercle bacilli and in which host did it live? Which genetic events may have contributed to the fact that the host spectrum is so different and often specific? Where and when did *M. tuberculosis* evolve? Answers to these questions are important for a better understanding of the pathogenicity and the global epidemiology of tuberculosis and may help to anticipate future trends in the spread of the disease.

Because of the unusually high degree of conservation in their housekeeping genes it has been suggested that the members of the *M. tuberculosis* complex underwent an evolutionary bottleneck at the time of speciation, estimated to have occurred roughly 15,000 – 20,000 years ago (2). It also has been speculated that *M. tuberculosis*, the most widespread etiological agent of human tuberculosis has evolved from *M. bovis*, the agent of bovine

15

20

25

30

35

tuberculosis, by specific adaptation of an animal pathogen to the human host (3). However, both hypotheses were proposed before the whole genome sequence of *M. tuberculosis* (4) was available and before comparative genomics uncovered several variable genomic regions in the members of the *M. tuberculosis* complex. Differential hybridization arrays identified 14 regions (RD1 –14) ranging in size from 2 to 12.7 kb that were absent from BCG Pasteur relative to *M. tuberculosis* H37Rv (5, 6). In parallel, six regions, RvD1-5, and TbD1, that were absent from the *M. tuberculosis* H37Rv genome relative to other members of the *M. tuberculosis* complex were revealed by comparative genomics approaches employing pulsed-field gel electrophoresis (PFGE) techniques (5, 7) and *in silico* comparisons of the near complete *M. bovis* AF2122/97 genome sequence and the *M. tuberculosis* H37Rv sequence.

In the present study the inventors have analyzed the distribution of these 20 variable regions situated around the genome (Table 1) in a representative and diverse set of 100 strains belonging to the *M. tuberculosis* complex. The strains were isolated from different hosts, from a broad range of geographic origins, and exhibit a wide spectrum of typing characteristics like IS6110 and spoligotype hybridization patterns or variable-number tandem repeats of mycobacterial interspersed repetitive units (MIRU-VNTR) (8, 9). The inventors have found striking evidence that deletion of certain variable genomic regions did not occur independently in the different strains of the *Mycobacterium* complex and, assuming that there is little or no recombination of chromosomal segments between the various lineages of the complex, this allows the inventors to propose a completely new scenario for the evolution of the *Mycobacterium* complex and the origin of human tuberculosis.

# Variable genomic regions and their occurrence in the members of the *M. tuberculosis* complex.

The PCR screening assay for the 20 variable regions (Table 1) within 46 M. tuberculosis, 14 M. africanum, 5 M. canettii, 5 M. microti, 28 M. bovis and 2 BCG strains employed oligonucleotides internal to known RDs and RvDs, as well as oligonucleotides flanking these regions (Table 1). This approach generated a large data set that was robust, highly reliable, and internally controlled since PCR amplicons obtained with the internal primer pair correlated with the absence of an appropriately sized amplicon with the flanking primer-pair, and vice-versa.

According to the conservation of junction sequences flanking the variable regions three types of regions were distinguished, each having different importance as an

10

15

20

25

30

35

evolutionary marker. The first type included mobile genetic elements, like the prophages phiRv1 (RD3) and phiRv2 (RD11) and insertion sequences IS1532 (RD6) and IS6110 (RD5), whose distribution in the tubercle bacilli was highly divergent (Table 2). The second type of deletion is mediated by homologous recombination between adjacent IS6110 insertion elements resulting in the loss of the intervening DNA segment (RvD2, RvD3, RvD4, and RvD5 (7)) and is variable from strain to strain (Table 2).

The third type includes deletions whose bordering genomic regions typically do not contain repetitive sequences. Often this type of deletion occurred in coding regions resulting in the truncation of genes that are still intact in other strains of the *M. tuberculosis* complex. The exact mechanism leading to this type of deletion remains obscure, but possibly rare strand slippage errors of DNA polymerase may have contributed to this event. As shown in detail below, RD1, RD2, RD4, RD7, RD8, RD9, RD10, RD12, RD13, RD14, and TbD1 are representatives of this third group whose distribution among the 100 strains allows us to propose an evolutionary scenario for the members of the *M. tuberculosis* complex, that identified *M. tuberculosis* and/or *M. canettii* as most closely related to the common ancestor of the tubercle bacilli.

#### 2.1. M. tuberculosis strains:

Investigation of the 46 *M. tuberculosis* strains by deletion analysis revealed that most RD regions were present in all *M. tuberculosis* strains tested (Table 2). Only regions RD3 and RD11, corresponding to the two prophages phiRv1 and phiRv2 of *M. tuberculosis* H37Rv (4), RD6 containing the insertion sequence IS1532, and RD5 that is flanked by a copy of IS6110 (5) were absent in some strains. This is an important observation as it implies that *M. tuberculosis* strains are highly conserved with respect to RD1, RD2, RD4, RD7, RD8, RD9, RD10, RD12, RD13, and RD14, and that these RDs represent regions that can differentiate *M. tuberculosis* strains independent of their geographical origin and their typing characteristics from certain other members of the *M. tuberculosis* complex. Furthermore, this suggests that these regions may be involved in the host specificity of *M. tuberculosis*.

In contrast, the presence or absence of RvD regions in *M. tuberculosis* strains was variable. The region which showed the greatest variability was RvD2, since 18 from 46 tested *M. tuberculosis* strains did not carry the RvD2 region. Strains with a high copy number of IS6110 (>14) missed regions RvD2 to RvD5 more often than strains with only a few copies. As an example, all six tested strains belonging to the Beijing cluster (8) lacked regions RvD2 and RvD3. This is in agreement with the proposed involvement of recombination of two adjacent copies of IS6110 in this deletion event (7).

10

15

20

25

30

35

However, the most surprising finding concerning the RvD regions was that TbD1 was absent from 40 of the tested M. tuberculosis strains (87 %), including representative strains from major epidemics such as the Haarlem, Beijing and Africa clusters (8). To accentuate this result we named this region "M. tuberculosis specific deletion 1" (TbD1). In silico sequence comparison of M. tuberculosis H37Rv with the corresponding section in M. bovis AF2122/97 revealed that in M. bovis this locus comprises two genes encoding membrane proteins belonging to a large family, whereas in M. tuberculosis H37Rv one of these genes (mmpS6) was absent and the second was truncated (mmpL6). Unlike the RvD2-RvD5 deletions, the TbD1 region is not flanked by a copy of IS6110 in M. tuberculosis H37Rv, suggesting that insertion elements were not involved in the deletion of the 2153 bp fragment. To further investigate whether the 40 M. tuberculosis strains lacking the TbD1 region had the same genomic organization of this locus as M. tuberculosis H37Rv, we amplified the TbD1-junction regions of the various strains by PCR using primers flanking the deleted region (Table 1). This approach showed that the size of the amplicons obtained from multiple strains was uniform (Fig. 1) and subsequent sequence analysis of the PCR products revealed that in all tested TbD1-deleted strains the sequence of the junction regions was identical to that of M. tuberculosis H37Rv (Fig.2). The perfect conservation of the junction sequences in TbD1-deleted strains of wide geographical diversity suggests that the genetic event which resulted in the deletion occurred in a common progenitor. However, six M. tuberculosis strains, all characterized by very few or no copies of IS6110 and spoligotypes that resembled each other (Fig. 3) still had the TbD1 region present. Interestingly, these six strains were also clustered together by MIRU-VNTR analysis (9).

Analysis of partial gene sequences of oxyR, pncA, katG, and gyrA which have been described as variable between different tubercle bacilli (2, 11, 12, 13) revealed that all tested M. tuberculosis strains showed oxyR and pncA partial sequences typical for M. tuberculosis (oxyR - nucleotide 285 (oxyR<sup>285</sup>):G, pncA - codon 57 (pncA<sup>57</sup>: CAC). Based on the katG codon 463 (katG<sup>463</sup>) and gyrA codon 95 (gyrA<sup>95</sup>) sequence polymorphism, Sreevatsan and colleagues (2) defined three groups among the tubercle bacilli, group 1 showing katG<sup>463</sup> CTG (Leu), gyrA<sup>95</sup> ACC (Thr), group 2 exhibiting katG<sup>463</sup> CGG (Arg), gyrA<sup>95</sup> ACC (Thr), and group 3 showing katG<sup>463</sup> CGG (Arg), gyrA<sup>95</sup> AGC (Ser). According to this scheme, in our study 16 of the 46 tested M. tuberculosis strains belonged to group 1, whereas 27 strains belonged to group 2 and only 3 isolates to group 3. From the 40 strains that were deleted for region TbD1, 9 showed characteristics of group 1, including the strains belonging to the Beijing cluster, 28 of group 2, including the strains from the Haarlem and Africa clusters and 3 of group 3, including H37Rv and H37Ra. Most interestingly, all six M. tuberculosis strains

10

15

20

25

30

35

where the TbD1 region was not deleted, contained a leucine (CTG) at  $katG^{463}$ , which was described as characteristic for ancestral M. tuberculosis strains (group 1) (2). As shown in Figure 4, this suggests that during the evolution of M. tuberculosis the katG mutation at codon 463 CTG (Leu)  $\rightarrow$  CGG (Arg) occurred in a progenitor strain that had region TbD1 deleted. This proposal is supported by the finding that strains belonging to group 1 may or may not have deleted region TbD1, whereas all 30 strains belonging to groups 2 and 3 lacked TbD1 (Fig. 4). Furthermore, all strains of groups 2 and 3 characteristically lacked spacer sequences 33-36 in the direct repeat (DR) region (Fig. 3). It appears that such spacers may be lost but not gained (14). Therefore, TbD1 deleted strains will be referred to hereafter as "modern" M. tuberculosis strains.

#### 2.2. M. canettii:

M. canettii is a very rare smooth variant of M. tuberculosis, isolated usually from patients from, or with connection to, Africa. Although it shares identical 16S rRNA sequences with the other members of the Mycobacterium complex, M. canettii strains differ in many respects including polymorphisms in certain house-keeping genes, IS1081 copy number, colony morphology, and the lipid content of the cell wall (15, 16). Therefore, we were surprised to find that in M. canettii all the RD, RvD, and TbD1 regions except the prophages (phiRv1, phiRv2) were present. In contrast, we identified a region (RD<sup>can</sup>) being specifically absent from all five M. canettii strains that partially overlapped RD12 (Fig. 4).

The conservation of the RD, RvD, and TbD1 regions in the genome of *M. canettii* in conjunction with the many described and observed differences suggest that *M. canettii* diverged from the common ancestor of the *Mycobacterium* complex before RD, RvD and TbD1 occurred in the lineages of tubercle bacilli (Fig. 4). This hypothesis is supported by the finding that *M. canettii* was shown to carry 26 unique spacer sequences in the direct repeat region (14), that are no longer present in any other member of the *Mycobacterium* complex. An other specific feature of *M. canettii* is the presence of an insertion element whose sequence has been searched, by using PCR and hybridization approaches, without sucess in the other member strains of *Mycobacterium* complex (including *M. tuberculosis*, *M. bovis*, *M. africanum* and *M. microti*). This insertion element contained an ORF encoding a putative transposase framed by two inverted repeats. The sequence of this insertion element is represented in figure 6 and in SEQ ID N°19 where it begins at position 399 and ends at position 2378. The amino acids sequence of the putative transposase is drawn in SEQ ID N°20. As such, this insertion element can be used to differentiate between *M. tuberculosis* ancestral strains and *M. canettii* strains that may show the same TbD1, RD4 and RD9

10

15

20

25

**30** 

35

profiles. Therefore, *M. canettii* represents a fascinating tubercle bacillus, whose detailed genomic analysis may reveal further insights into the evolution of *Mycobacterium* complex.

## 2.3. M. africanum:

The isolates designated as *M. africanum* studied here originate from West and East-African sources. 11 strains were isolated in Sierra Leone, Nigeria and Guinea and 2 strains in Uganda. One strain comes from the Netherlands.

For the 11 West African isolates, RD analysis indicated that these strains all lack the RD9 region containing *cobL*. Sequence analysis of the RD9 junction region showed that the genetic organization of this locus in West African strains was identical to that of *M. bovis* and *M. microti* in that the 5' part of *cobL* as well as the genes Rv2073c and Rv2074c were absent. In addition, six strains (2 from Sierra Leone, 4 from Guinea) also lacked RD7, RD8 and RD10 (Table 2). The junction sequences bordering RD7, RD8 and RD10, like those for RD9, were identical to those of *M. bovis* and *M. microti* strains. As regards the two prophages phiRv1 and phiRv2, the West African strains all contained phiRv2, whereas phiRv1 was absent. No variability was seen for the RvD regions. RvD1-RvD5 and TbD1 were present in all tested West African strains. This shows that *M. africanum* prevalent in West Africa can be differentiated from "modern" *M. tuberculosis* by at least two variable genetic markers, namely the absence of region RD9 and the presence of region TbD1.

In contrast, for East African *M. africanum* and for the isolate from the Netherlands, no genetic marker was found which could differentiate them from *M. tuberculosis* strains. With the exception of prophage phiRv1 (RD3) the 3 strains from Uganda and the Netherlands did not exhibit any of the RD deletions, but lacked the TbD1 region, as do "modern" *M. tuberculosis* strains. The absence of the TbD1 region was also confirmed by sequence analysis of the TbD1 junction region, which was found to be identical to that of TbD1 deleted *M. tuberculosis* strains. These results indicate a very close genetic relationship of these strains to *M. tuberculosis* and suggest that they should be regarded as *M. tuberculosis* rather than *M. africanum* strains.

#### 2.4. M. microti:

M. microti strains were isolated in the 1930's from voles (17) and more recently from immuno-suppressed patients (18). These strains are characterized by an identical, characteristic spoligotype, but differ in their IS6110 profiles. Both, the vole and the human isolates, lacked regions RD7, RD8, RD9, and RD10 as well as a region that is specifically deleted from M. microti (RD<sup>mic</sup>). RD<sup>mic</sup> was revealed by a detailed comparative genomics

10

. 15

20

25

30

35

study of *M. microti* isolates (19) using clones from a *M. microti* Bacterial Artificial Chromosome (BAC) library. RD<sup>mic</sup> partially overlaps RD1 from BCG (data not shown). Furthermore, vole isolates missed part of the RD5 region, whereas this region was present in the human isolate. As the junction region of RD5 in *M. microti* was different to that in BCG (data not shown), RD5 was not used as an evolutionary marker.

#### 2.5. M. bovis and M. bovis BCG:

M. bovis has a very large host spectrum infecting many mammalian species, including man. The collection of M. bovis strains that was screened for the RD and RvD regions consisted of 2 BCG strains and 18 "classical" M. bovis strains generally characterized by only one or two copies of IS6110 from bovine, llama and human sources in addition to three goat isolates, three seal isolates, two oryx isolates, and two M. bovis strains from humans that presented a higher number of IS6110 copies.

Excluding prophages, the distribution of RDs allowed us to differentiate five main groups among the tested *M. bovis* strains. The first group was formed by strains that lack RD7, RD8, RD9, and RD10. Representatives of this group are three seal isolates and two human isolates containing between three and five copies of IS6110 (data not shown). Two oryx isolates harboring between 17 and 20 copies of IS6110 formed the second group that lacked parts of RD5 in addition to RD7-RD10, and very closely resembled the *M. microti* isolates. However, they did not show RD<sup>mic</sup>, the deletion characteristic of *M. microti* strains (data not shown). Analysis of partial oxyR and pncA sequences from strains belonging to groups one and two, showed sequence polymorphisms characteristic of *M. tuberculosis* strains (oxyR<sup>285</sup>: G, pncA<sup>57</sup>: CAC, Ref. 12, 13).

Group three consists of goat isolates that lack regions RD5, RD7, RD8, RD9, RD10, RD12, and RD13. As previously described by Aranaz and colleagues, these strains exhibited an adenosine at position 285 of the oxyR pseudogene that is specific for "classical" M bovis strains whereas the sequence of the  $pncA^{57}$  polymorphism was identical to that in M tuberculosis (20). This is in good agreement with our results from sequence analysis (Table 2) and the finding that except for RD4, the goat isolates displayed the same deletions as "classical" M bovis strains. Taken together, this suggests that the  $oxyR^{285}$  mutation ( $G \rightarrow A$ ) occurred in M bovis strains before RD4 was lost. Interestingly, the most common M bovis strains ("classical" M bovis (21)), isolated from cattle from Argentina, the Netherlands, the UK and Spain, as well as from humans (e. g. multi-drug resistant M bovis from Spain (22)) showed the greatest number of RD deletions and appear to have undergone

10

15

the greatest loss of DNA relative to other members of the M. tuberculosis complex. These lacked regions RD4, RD5, RD6, RD7, RD8, RD9, RD10, RD12 and RD13, confirming results obtained with reference strains (5, 6). These strains together with the two BCG strains were the only ones that showed the  $pncA^{57}$  polymorphism GAC (Asp) in addition to the  $oxyR^{285}$  mutation ( $G \rightarrow A$ ) characteristic of M. bovis. Analysis of BCG strains indicate that BCG lacked the same RD regions as "classical" M. bovis strains in addition to RD1, RD2 and RD14 which apparently occurred during and after the attenuation process (Fig. 4) (6, 23).

In contrast to RDs, the RvD regions were highly conserved in the *M. bovis* strains. With the exception of the two IS6110-rich oryx isolates, that lacked RvD2, RvD3 and RvD4, all other strains had the five RvD regions present. It is particularly noteworthy that TbD1 was present in all *M. bovis* strains.

However, except for the two human isolates, containing between three and five copies of IS6110 from group 1, strains designated as M. bovis showed a single nucleotide polymorphism in the TbD1 region at codon 551 (AAG) of the mmpL6 gene, relative to M. canettii, M. africanum and ancestral M. tuberculosis strains, which are characterized by codon AAC. Even the strains isolated from seals and from oryx with oxyR or pncA loci like those of M. tuberculosis and with fewer deleted regions than the classical M. bovis strains, showed the mmpL6<sup>551</sup>AAG polymorphism typical for M. bovis and M. microti (Table 2, Fig. 4). As such, this polymorphism could serve as a very useful genetic marker for the differentiation of strains that lack RD7, RD8, RD9, and RD10 and have been classified as M. bovis or M. africanum, but may differ from other strains of the same taxon.

#### 3. DISCUSSION

25

30

35

20

# 3.1. Origin of human tuberculosis

For many years, it was thought that human tuberculosis evolved from the bovine disease by adaptation of an animal pathogen to the human host (3). This hypothesis is based on the property of *M. tuberculosis* to be almost exclusively a human pathogen, whereas *M. bovis* has a much broader host range. However, the results from this study unambiguously show that *M. bovis* has undergone numerous deletions relative to *M. tuberculosis*. This is confirmed by the preliminary analysis of the near complete genome sequence of *M. bovis* AF2122/97, a "classical" *M. bovis* strain isolated from cattle, which revealed no new gene clusters that were confined specifically to *M. bovis*. This indicates that the genome of *M. bovis* is smaller than that of *M. tuberculosis* (24). It seems plausible that *M. bovis* is the final

10

15

20

25

30

35

member of a separate lineage represented by M. africanum (RD9), M. microti (RD7, RD8, RD9, RD10) and M. bovis (RD4, RD5, RD7, RD8, RD9, RD10, RD12, RD13) (25) that branched from the progenitor of M. tuberculosis isolates. Successive loss of DNA may have contributed to clonal expansion and the appearance of more successful pathogens in certain new hosts.

Whether the progenitor of extant M tuberculosis strains was already a human pathogen when the M africanum  $\rightarrow M$  bovis lineage separated from the M tuberculosis lineage is a subject for speculation. However, we have two reasons to believe that this was the case. Firstly, the six ancestral M tuberculosis strains (TbD1<sup>+</sup>, RD9<sup>+</sup>) (Fig.3) that resemble the last common ancestor before the separation of M tuberculosis and M africanum are all human pathogens. Secondly, M canettii, which probably diverged from the common ancestor of today's M tuberculosis strains prior to any other known member of the M tuberculosis complex is also a human pathogen. Taken together, this means that those tubercle bacilli, which are thought to most closely resemble the progenitor of M tuberculosis are human and not animal pathogens. It is also intriguing that most of these strains were of African or Indian origin (Fig. 3). It is likely that these ancestral strains predominantly originated from endemic foci (15, 26), whereas "modern" M tuberculosis strains that have lost TbD1 may represent epidemic M tuberculosis strains that were introduced into the same geographical regions more recently as a consequence of the worldwide spread of the tuberculosis epidemic.

#### 3.2. The evolutionary timescale of the M. tuberculosis complex

Because of the high sequence conservation in housekeeping genes, Sreevatsan et al. previously hypothesized that the tubercle bacilli encountered a major bottleneck 15,000 – 20,000 years ago (2). As the conservation of the TbD1 junction sequence in all tested TbD1 deleted strains suggests descendance from a single clone, the TbD1 deletion is a perfect indicator that "modern" M. tuberculosis strains that account for the vast majority of today's tuberculosis cases definitely underwent such a bottleneck and then spread around the world.

As described in detail in the results section, our analysis showed that the  $katG^{463}$  CTG $\rightarrow$ CGG and the subsequent  $gyrA^{95}$  ACC  $\rightarrow$ AGC mutations, that were used by Sreevatsan and colleagues to designate groups 2 and 3 of their proposed evolutionary pathway of the tubercle bacilli (2), occurred in a lineage of M. tuberculosis strains that had already lost TbD1 (Fig.4). Although deletions are more stable markers than point mutations, which may be subject to reversion, a perfect correlation of deletion and point mutation data was found for the tested strains.

15

20

25

30

35

This information, together with results from a recent study by Fletcher and colleagues (27), who have shown that *M. tuberculosis* DNAs amplified from naturally mummified Hungarian villagers from the 18<sup>th</sup> and 19<sup>th</sup> century belonged to  $katG^{463}/gyrA^{95}$  groups 2 and 3, suggests that the TbD1 deletion occurred in the lineage of *M. tuberculosis* before the 18<sup>th</sup> century. This could mean that the dramatic increase of tuberculosis cases later in the 18<sup>th</sup> century in Europe mainly involved "modern" *M. tuberculosis* strains. In addition, it shows that tuberculosis was caused by *M. tuberculosis* and not by *M. bovis*, a fact which is also described for cases in rural medieval England (28).

There is good evidence that mycobacterial infections occurred in man several thousand years ago. We know that tuberculosis occurred in Egypt during the reign of the pharaohs because spinal and rib lesions pathognomonic of tuberculosis have been identified in mummies from that period (29). Identification of acid fast bacilli as well as PCR amplification of IS6110 from Peruvian mummies (30) also suggest that tuberculosis existed in pre-Columbian societies of Central and South America. To estimate when the TbD1 bottleneck occurred, it would now be very interesting to know whether the Egyptian and South American mummies carried *M. tuberculosis* DNA that had TbD1 deleted or not.

The other major bottleneck, which seems to have occurred for members of the M africanum  $\rightarrow M$ . microti  $\rightarrow M$ . bovis lineage is reflected by RD9 and the subsequent RD7, RD8 and RD10 deletions (Fig. 4). These deletions seem to have occurred in the progenitor of tubercle bacilli that - today - show natural host spectra as diverse as humans in Africa, voles on the Orkney Isles (UK), seals in Argentina, goats in Spain, and badgers in the UK. For this reason it is difficult to imagine that spread and adaptation of RD9-deleted bacteria to their specific hosts could have appeared within the postulated 15,000 – 20,000 years of speciation of the M tuberculosis complex.

However, more insight into this matter could be gained by RD analysis of ancient DNA samples, e. g. mycobacterial DNA isolated from a 17,000 year old bison skeleton (31). The mycobacterium whose DNA was amplified showed a spoligotype that was most closely related to patterns of M. africanum and could have been an early representative of the lineage M. africanum  $\rightarrow M$ . bovis. With the TbD1 and RD9 junction sequences that we supply here, PCR analyses of ancient DNAs should enable very focused studies to be undertaken to learn more about the timescale within which the members of the M. tuberculosis complex have evolved.

# 3.3. Concluding comments

Our study provides an overview of the diversity and conservation of variable regions

in a broad range of tubercle bacilli. Deletion analysis of 100 strains from various hosts and countries has identified some evolutionarily "old" *M. canettii, M. tuberculosis* and *M. africanum* strains, most of them of African origin, as well as "modern" *M. tuberculosis* strains, the latter including representatives from major epidemic clusters like Beijing, Haarlem and Africa. The use of deletion analysis in conjunction with molecular typing and analysis of specific mutations was shown to represent a very powerful approach for the study of the evolution of the tubercle bacilli and for the identification of evolutionary markers. In a more practical perspective, these regions, primarily RD9 and TbD1 but also RD1, RD2, RD4, RD7, RD8, RD10, RD12 and RD13 represent very interesting candidates for the development of powerful diagnostic tools for the rapid and unambiguous identification of members of the *M. tuberculosis* complex (32). This genetic approach for differentiation can now be used to replace the often confusing traditional division of the *M. tuberculosis* complex into rigidly defined subspecies.

Moreover, functional analyses will show whether the TbD1 deletion confers some selective advantage to "modern" *M. tuberculosis*, or whether other circumstances contributed to the pandemic of the TbD1 deleted *M. tuberculosis* strains.

#### **EXAMPLE 4**

20

25

30

15

5

10

The members of the *M. tuberculosis* complex share an unusually high degree of conservation such that the commercially-available nucleic acid probes and amplification assays cannot differentiate these organisms. In addition conventional identification methods are often ambiguous, cumbersome and time consuming because of the slow growth of the organisms.

In the present invention the inventors, by a deletion analysis, solve the problem faced by clinical mycobacteriology laboratories for differentiation within the *M. tuberculosis* complex.

This approach allows to perform a diagnostic on a biological fluid by using at least three markers including TbD1. The following table 3 illustrates such a combinaison sufficient to realize the distinction between the members of the *Mycobacterium* complex.

|                           | MARKERS |          |                 |
|---------------------------|---------|----------|-----------------|
| MYCOBACTERIUM<br>STRAIN   | RD4     | RD9      | TBD1            |
| M. bovis BCG              |         |          | +               |
| M. bovis                  |         | <b>—</b> | +               |
| M. africanum              | +       |          | - <del>}-</del> |
| M. tuberculosis           | +       | +        | <b></b>         |
| M. tuberculosis ancestral | +       | +        | +               |
| M. canettii               | +       | +        | <del></del>     |

Table 3

Beside TbD1 marker, preferably at least 2 other markers should be used. Examples of such additional markers available in the literature are listed in the following table 1.

Although ancestral strains of *Mycobacterium tuberculosis* represent only 5% of all *Mycobacterium tuberculosis* strains, persons who would be interested in distinguishing the ancestral strains of *Mycobacterium tuberculosis* from the srains of *Mycobacterium canettii*, could consider using the genetic marker RD12 in combination with the three markers described in table 3. Because the region RD<sup>can</sup> partially overlapped RD12 in genome of *Mycobacterium canettii*, flanking primers as described in table 1 do not hybridize on genomic DNA of *Mycobacterium canettii*. Therefore, PCR amplification with these flanking

primers results in 2.8 kb PCR product in *Mycobacterium tuberculosis* and no PCR product in *Mycobacterium canettii*.

An other way to distinguish ancestral strains of *Mycobacterium tuberculosis* from *Mycobacterium canettii* would be the detection of the insertion element specific for *M. canettii* strains and corresponding to SEQ ID N° 19.

# Supplemental data:

10

Table 1: RD, RvD and TbD1 regions and selected primers

| Region      | Gene            | Size | Internal                   | Flanking primers or                   |
|-------------|-----------------|------|----------------------------|---------------------------------------|
| absent from | •               | (kb) | Primerpair                 | 2 <sup>nd</sup> internal * primerpair |
| BCG         | _               |      |                            |                                       |
|             |                 |      |                            |                                       |
| RD1         | Rv3871-Rv3879c  | 9.5  | RD1in-Rv3878F              | RD1-flank.left                        |
|             | •               |      | GTC AGC CAA GTC AGG CTA CC | GAA ACA GTC CCC AGC AGG T             |
|             |                 |      | RD1in-Rv3878R              | RD1-flank.right                       |
| •           |                 |      | CAA CGT TGT GGT TGT TGA GG | TTC AAC GGG TTA CTG CGA AT            |
| RD2         | Rv1978-Rv1988   | 10.8 | RD2-Rv1979.int.F           | RD2-flank.F                           |
|             |                 |      | TAT AGC TCT CGG CAG GTT CC | CTC GAC CGC GAC GAT GTG C             |
|             |                 |      | RD2-Rv1979-int.R           | RD2-flank.R                           |
|             |                 |      | ATC GGC ATC TAT GTC GGT GT | CCT CGT TGT CAC CGC GTA TG            |
| RD3*        | Rv1573-Rv1586c  | 9.2  | RD3-Rv1586.int.F           | RD3-int-REP.F                         |
|             | •               |      | TTA TCT TGG CGT TGA CGA TG | CTG ACG TCG TTG TCG AGG TA*           |
|             |                 |      | RD3-Rv1586.int.R           | RD3-int-REP.R                         |
|             |                 |      | CAT ATA AGG GTG CCC GCT AC | GTA CCC CCA GGC GAT CTT*              |
| RD4         | Rv1505c-Rv1516c | 12.7 | RD4-Rv1516.int.F           | RD4-flank.F                           |
|             |                 |      | CAA GGG GTA TGA GGT TCA CG | CTC GTC GAA GGC CAC TAA AG            |
|             |                 |      | RD4-Rv1516.int.R           | RD4-flank.R                           |
|             |                 | •    | CGG TGA TTC GTG ATT GAA CA | AAG GCG AAC AGA TTC AGC AT            |

| Table 1 | (continued)     |      | RD5A-Rv2348.int.F              | RD5B-plcA.int.F            |  |  |
|---------|-----------------|------|--------------------------------|----------------------------|--|--|
| RD5*    | Rv2346c-Rv2353c | 9.0  | AAT CAC GCT GCT GCT ACT CC     | CAA GTT GGG TCT GGT CGA AT |  |  |
| 1600    |                 |      | RD5A-Rv2348.int.R              | RD5B-plcA.int.R            |  |  |
|         |                 |      | GTG CTT TTG CCT CTT GGT C      | GCT ACC CAA GGT CTC CTG GT |  |  |
|         | D2425 D2429     | 4.9  | RD6-IS1532F                    | ND                         |  |  |
| RD6*    | Rv3425-Rv3428c  | 4.7  | CAG CTG GTG AGT TCA AAT GC     | . 1.22                     |  |  |
|         |                 |      | RD6-IS1532R                    | ND                         |  |  |
|         |                 |      | CTC CCG ACA CCT GTT CGT        |                            |  |  |
| RD7     | Rv1964-Rv1977   | 12.7 | RD7-Rv1976.int.F               | RD7-flank.F                |  |  |
| KD/     | RV1904-1CV1977  | 12., | TGG ATT GTC GAC GGT ATG AA     | GGT AAT CGT GGC CGA CAA G  |  |  |
|         |                 |      | RD7-Rv1976.int.R               | RD7-flank.R                |  |  |
|         |                 |      | GGT CGA TAA GGT CAC GGA AC     | CAG CTC TTC CCC TCT CGA C  |  |  |
| RD8     | epl1A-lpqG      | 5.9  | RD8-ephA.F                     | RD8-flank.F                |  |  |
| KD6     | epini ipq0      |      | GGT GTG ATT TGG TGA GAC GAT G  | CAA TCA GGG CTG TGC TAA CC |  |  |
|         |                 |      | RD8-ephA.R                     | RD8-flank.R                |  |  |
|         |                 |      | AGT TCC TCC TGA CTA ATC CAG GC | CGA CAG TTG TGC GTA CTG GT |  |  |
| RD9     | cobL-Rv2075     | 2.0  | RD9-intF                       | RD9-flankF                 |  |  |
| 1.27    | 5002 11.20.0    |      | CGA TGG TCA ACA CCA CTA CG     | GTG TAG GTC AGC CCC ATC C  |  |  |
|         |                 |      | RD9-intR                       | RD9-flankR                 |  |  |
|         |                 |      | CTG GAC CTC GAT GAC CAC TC     | GCC CAA CAG CTC GAC ATC    |  |  |
| RD10    | Rv0221-Rv0223   | 1.9  | RD10-intF                      | RD10-flankF                |  |  |
|         |                 |      | GTA ACC GCT TCA CCG GAA T      | CTG CAA CCA TCC GGT ACA C  |  |  |
|         | •               |      | RD10-intR                      | RD10-flankR                |  |  |
|         |                 |      | GTC AAC TCC ACG GAA AGA CC     | GTC ATG AAC GCC GGA CAG    |  |  |
| RD11    | Rv2645-Rv2695c  | 11.0 | RD11-Rv2646F                   | RD11-fla-F                 |  |  |
|         |                 |      | CGG CAG CTA GAC GAC CTC        | TCA CAT AGG GGC TGC GAT AG |  |  |
|         |                 |      | RD11-Rv2646R                   | RD11-fla-R                 |  |  |
|         |                 |      | AAC GTG CTG CGA TAG GTT TT     | AGA GGA ACC TTT CGG TGG TT |  |  |
| RD12    | sseC-Rv3121     | 2.8  | RD12-Rv3120.int.F              | RD12-flank.F               |  |  |
|         |                 |      | GAA ATA CGA GTG CGC TGA CC     | GCC ATC AAC GTC AAG AAC CT |  |  |
|         |                 |      | RD12-Rv3120.int.R              | RD12-flank.R               |  |  |
|         |                 |      | CTC TGA ACC ATC GGT GTC G      | CGG CCA GGT AAC AAG GAG T  |  |  |
| RD13    | Rv1255c-Rv1257c | 3.0  | · RD13intF                     | RD13-flank.F               |  |  |
|         |                 |      | GGA TGT CAC TCG GAA CGG CA     | CGA TGG TGT TTC TTG GTG AG |  |  |
|         |                 |      | RD13intR                       | RD13-flank.R               |  |  |
|         |                 |      | CAC CGG GCT GAT CGA GCG A      | GGA TCG GCT CAG TGA ATA CC |  |  |
| RD14    | Rv1765c-Rv1773c | 9.0  | RD14-Rv1769.int.F              | RD14-flankF                |  |  |
|         |                 |      | GTG GAG CAC CTT GAC CTG AT     | TTG ATT CGC CAA CAA CTG AA |  |  |
|         |                 |      | RD14-Rv1769.int.R              | RD14-flankR                |  |  |
|         |                 |      | CGT CGA ATA CGA GTC GAA CA     | GGG CTG GTT AGT GTC GAT TC |  |  |

Table 1 (continued)

| Region mis          | sing from M. tuberculosis | H37Rv      |                               |                            |
|---------------------|---------------------------|------------|-------------------------------|----------------------------|
| RvD1*               |                           | 5.0        | RvD1-int1F                    | RvD1-int2.F                |
|                     |                           |            | AGC GCG TCG AAC ACC GGC       | GAG CCA CTC CGA TGT TGA CT |
|                     |                           |            | RvD1-int1R                    | RvD1-int2.R                |
|                     | •                         |            | CCT GAA TCC GCG CAA TTC CAT   | CAC GCG AAC CCT ACC TAC AT |
| RvD2*               | plcD                      | ·5.1       | · RvD2-int1F                  | RvD2-int2F                 |
|                     | •                         |            | GTT CTC CTG TCG AAC CTC CA    | GGA CGG TGA CGG TAT TTG TC |
|                     |                           |            | RvD2-int1R                    | RvD2-int2R                 |
|                     | •                         | •          | ACT TCA CCG GTT TCA TCT CG    | TCG CCA ACT TCT ATG GAC CT |
| RvD3                |                           | 1.0        | RvD3-intF                     | RvD3-flank.F               |
|                     |                           |            | ATC GAT CAG GTC GTC AAT GC    | AAA CCA TGC AGC GTC TGC CA |
|                     | •                         |            | RvD3-intR                     | RvD3-flankR                |
|                     |                           |            | ACG CCA CCA TCA AGA TCC       | GCG TTT CTG CGT CTG GTT GA |
| RvD4*               | PPE gene                  | 0.8        | RvD4-intF-PPE                 | ND                         |
|                     |                           |            | GGT TGC CAA CGT TAC CGA TGC   |                            |
|                     |                           |            | RvD4-intR-PPE                 | ND                         |
|                     | •                         |            | CCG GTG GTG GCG GCT           | ·                          |
| RvD5                | moa                       | 4.0        | RvD5intF                      | RvD5-flankF                |
|                     | -                         |            | GGG TTC ACG TTC ATT ACT GTT C | CCC ATC GTG GTC GTT CAC C  |
|                     |                           |            | RvD5intR                      | RvD5-flankR                |
|                     |                           |            | CCT GCG CTT ATC TCT AGC GG    | GTA CCC GCA CCA CCT GCT G  |
| TbD1                | mmpL6                     | 2.1        | TBD1intS.F                    | TBD1fla1-F                 |
|                     |                           |            | CGT TCA ACC CCA AAC AGG TA    | CTA CCT CAT CTT CCG GTC CA |
|                     |                           |            | TBD1intS.R                    | TBD1fla1-R                 |
| •                   |                           |            | AAT CGA ACT CGT GGA ACA CC    | CAT AGA TCC CGG ACA TGG TG |
| katG, gyrA,         | oxyR', pncA and mmpL6     | PCR and se | quencing primers              |                            |
| katG <sup>463</sup> | •                         |            | ka1G-2154,225-PCR-F           | katG-2154,872-SEQ-R        |
| ·                   |                           |            | CTA CCA GCA CCG TCA TCT CA    | ACA AGC TGA TCC ACC GAG AC |
|                     | -                         |            | katG-2155,157-PCR-R           |                            |
|                     |                           | •          | AGG TCG TAT GGA CGAACA CC     |                            |
| gyrA <sup>95</sup>  |                           |            | gyrA-7,127-PCR-F              | gyrA-7,461F                |
|                     |                           |            | GTT CGT GTG TTG CGT CAA GT    | CGG GTG CTC TAT GCA ATG TT |
|                     |                           |            | gvrA- 8,312-PCR-R             |                            |
|                     |                           |            | CAG CTG GGT GTG CTT GTA AA    |                            |
| $oxyR^{285}$        |                           |            | oxyR 2725,559F                | oxyR-2726,024-SEQ-R        |
|                     |                           |            | TAT GCG ATC AGG CGT ACT TG    | CAA AGC AGT GGT TCA GCA GT |
|                     |                           |            | oxyR-2726,024-PCR-R           |                            |
|                     |                           |            | CAA AGC AGT GGT TCA GCA GT    |                            |

Table 1 (continued)

pncA-2288,678-PCR-F

pnc4-2289,319-SEQ-R

pncA<sup>57</sup>

 $mmpL6^{551}$ 

ATC AGG AGC TGC AAA CCA AC

GGC GTC ATG GAC CCT ATA TC

pncA- 2289,319-PCR-R

GGC GTC ATG GAC CCT ATA TC

mmpL-seq5F

GTA TCA GAG GGA CCG AGC AG

ninipL-seq5F

•

GTA TCA GAG GGA CCG AGC AG

TBD1fla1-R

CAT AGA TCC CGG ACA TGG TG

The RD nomenclature used in this table is based on that used by Brosch *et al.* (2000), (Ref. 25) and differs from that proposed by Behr and coworkers (1999), (Ref. 6). Primer sequences are shown in 5'  $\rightarrow$ 3' direction.

- \* Regions where a second pair of internal primers was used rather than flanking primers, due to
- flanking repetitive regions, and/or mobile genetic elements.

#### REFERENCES

- Boddinghaus, B., Rogall, T., Flohr, T., Blocker, H. & Bottger, E. C. (1990) J Clin
   Microbiol 28, 1751-9.
  - 2. Sreevatsan, S., Pan, X., Stockbauer, K. E., Connell, N. D., Kreiswirth, B. N., Whittam, T. S. & Musser, J. M. (1997) Proc Natl Acad Sci USA 94, 9869-74.
  - 3. Stead, W. W., Eisenach, K. D., Cave, M. D., Beggs, M. L., Templeton, G. L., Thoen, C. O. & Bates, J. H. (1995) Am J Respir Crit Care Med 151, 1267-8.
- Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.
   V., Eiglmeier, K., Gas, S., Barry, C. E., 3rd, Tekaia, F., Badcock, K., Basham, D., Brown,
   D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin,
   N., Holroyd, S., Hornsby, T., Jagels, K., Barrell, B. G. & et al. (1998) Nature 393, 537-44.
- 5. Gordon, S. V., Brosch, R., Billault, A., Garnier, T., Eiglmeier, K. & Cole, S. T. (1999) Mol Microbiol 32, 643-55.
  - 6. Behr, M. A., Wilson, M. A., Gill, W. P., Salamon, H., Schoolnik, G. K., Rane, S. & Small, P. M. (1999) Science 284, 1520-3.
  - 7. Brosch, R., Philipp, W. J., Stavropoulos, E., Colston, M. J., Cole, S. T. & Gordon, S. V. (1999) Infect Immun 67, 5768-74.

- 8. Kremer, K., van Soolingen, D., Frothingham, R., Haas, W. H., Hermans, P. W., Martin, C., Palittapongarnpim, P., Plikaytis, B. B., Riley, L. W., Yakrus, M. A., Musser, J. M. & van Embden, J. D. (1999) *J Clin Microbiol* 37, 2607-18.
- 9. Supply, P., Lesjean, S., Savine, E., Kremer, K., van Soolingen, D., & Locht, C.
- 5 (2001) J Clin Microbiol 39, 3563–71.
  - 10. Van Soolingen, D., de Haas, P. E. W., Hermans, P. W. M. & van Embden, J. D. A. (1994) Methods Enzymol 235, 196-205.
  - 11. Heym, B., Honore, N., Truffot-Pernot, C., Banerjee, A., Schurra, C., Jacobs, W. R., Jr., van Embden, J. D., Grosset, J. H. & Cole, S. T. (1994) Lancet 344, 293-8.
- 10 12. Scorpio, A., Collins, D., Whipple, D., Cave, D., Bates, J. & Zhang, Y. (1997) *J Clin Microbiol* 35, 106-10.
  - 13. Sreevatsan, S., Escalante, P., Pan, X., Gillies, D. A., 2nd, Siddiqui, S., Khalaf, C. N., Kreiswirth, B. N., Bifani, P., Adams, L. G., Ficht, T., Perumaalla, V. S., Cave, M. D., van Embden, J. D. & Musser, J. M. (1996) *J Clin Microbiol* 34, 2007-10.
- 14. Van Embden, J. D., van Gorkom, T., Kremer, K., Jansen, R., van Der Zeijst, B. A. & Schouls, L. M. (2000) *J Bacteriol* 182, 2393-401.
  - 15. Van Soolingen, D., Hoogenboezem, T., de Haas, P. E., Hermans, P. W., Koedam, M. A., Teppema, K. S., Brennan, P. J., Besra, G. S., Portaels, F., Top, J., Schouls, L. M. & Van Embden, J. D. (1997) *Int J Syst Bacteriol* 47, 1236-45.
- 16. Papa, F., Laszlo, A., David, H. L. & Daffe, M. (1989) Acta Leprol 7 (Suppl.) 98-101.
  - 17. Wells, A. Q., (1937) Lancet 1221.
    - 18. Van Soolingen, D., Van der Zanden, A. G., de Haas, P. E., Noordhoek, G. T., Kiers, A., Foudraine, N. A., Portaels, F., Kolk, A. H., Kremer, K. & Van Embden, J. D. (1998) J
- 25 Clin Microbiol 36, 1840-5.
  - 19. Brodin, P., et al. (2002) in preparation
  - 20. Aranaz, A., Liebana, E., Gomez-Mampaso, E., Galan, J. C., Cousins, D., Ortega, A., Blazquez, J., Baquero, F., Mateos, A., Suarez, G. & Dominguez, L. (1999) Int J Syst Bacteriol 49, 1263-73.
- 21. Van Soolingen, D., P.E.W. de Haas, J. Haagsma, T. Eger, P.W.M. Hermans, V. Ritacco, A. Alito, & J.D.A van Embden. (1994) J. Clin. Microbiol. 32, 2425-33.
  - 22. Samper, S., Martin, C., Pinedo, A., Rivero, A., Blazquez, J., Baquero, F., van Soolingen, D. & Van Embden, J. (1997) Aids 11, 1237-42.
  - 23. Mahairas, G. G., Sabo, P. J., Hickey, M. J., Singh, D. C. & Stover, C. K. (1996) J
- 35 Bacteriol 178, 1274-82.

- 24. Gordon, S. V., Eiglmeier, K., Garnier, T., Brosch, R., Parkhill, J., Barrell, B., Cole, S. T. & Hewinson, R. G. (2001) *Tuberculosis* 81, 157-63.
- 25. Brosch, R., S. V. Gordon, K. Eiglmeier, T. Garnier, F. Tekaia, E. Yeramanian, & S.
- T. Cole. (1999) in Molecular genetics of mycobacteria, eds. Hatful G. F. & Jacobs, W. R. Jr.
- 5 (American Society for Microbiology, Washington, D.C.), pp. 19-36.
  - 26. Radhakrishnan, I., K, M. Y., Kumar, R. A. & Mundayoor, S. (2001) J Clin Microbiol 39, 1683.
  - 27. Fletcher, H. A., Donoghue, H. D., Holton, J., Pap, I. & Spigelman, M. (2002) Am. J. Phys. Anthropol, in press.
- 10 28. Mays, S., Taylor, G. M., Legge, A. J., Young, D. B. & Turner-Walker, G. (2001) Am J Phys Anthropol 114, 298-311.
  - 29. Nerlich, A. G., Haas, C. J., Zink, A., Szeimies, U. & Hagedorn, H. G. (1997) Lancet 350, 1404.
- 30. Salo, W. L., Aufderheide, A. C., Buikstra, J. & Holcomb, T. A. (1994) Proc Natl Acad Sci USA 91, 2091-4.
  - Rothschild, B. M., Martin, L. D., Lev, G., Bercovier, H., Bar-Gal, G. K., Greenblatt, C., Donoghue, H., Spigelman, M. & Brittain, D. (2001) Clin Infect Dis 33, 305-11.
  - 32. Parsons, L.M., Brosch, R., Cole, S. T., Somoskovi, A., Loder, A., Britzel, G., van Soolingen, D., Hale, Y., & Salfinger, M. (2001) in preparation

25

30

10

20

30

## **CLAIMS**

- 1. An isolated or purified nucleic acid wherein said nucleic acid is selected from the group consisting of:
  - a. SEQ ID N°1;
    - b. Nucleic acid having a sequence fully complementary to SEQ ID N°1;
    - c. Nucleic acid having at least 90% sequence identity after optimal alignment with a sequence defined in a) or b);
  - d. Nucleic acid that hybridizes under stringent conditions with the nucleic acid defined in a) or b).
  - 2. A nucleic acid fragment comprising at least 8 to 2000 consecutive nucleotides comprised in at least one nucleic acid according to claim 1.
- 3. The nucleic acid fragment according to claim 2, characterized in that it is susceptible to be used as a probe or a primer specific of SEQ ID N°1.
  - 4. The nucleic acid fragment according to claim 2, selected from the group consisting of: SEQ ID N°17, SEQ ID N°18.
  - 5. The nucleic acid fragment according to claim 2, characterized in that it is obtained by specific amplification of SEQ ID N°1 with the pair of primers SEQ ID N°17 and SEQ ID N°18.
- 6. The nucleic acid fragment according to claim 2 wherein said nucleic acid fragment is:
  - specifically deleted from the genome of Mycobacterium tuberculosis, excepted in Mycobacterium tuberculosis strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome; and,
  - present in the genome of Mycobacterium africanum, Mycobacterium canetti, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG.
- 7. The nucleic acid fragment according to claim 2 or 6 selected from the group consisting of:

10

20

25

- a) SEQ ID N°4;
- b) Nucleic acid having a sequence fully complementary to SEQ ID N°4;
- c) Nucleic acid having at least 90% sequence identity after optimal alignment with a sequence defined in a) or b);
- d) Nucleic acid that hybridizes under stringent conditions with the nucleic acid defined in a) or b).
- 8. A nucleic acid fragment comprising at least 8 to 2000 consecutive nucleotides of at least one nucleic acid according to claim 7.
- 9. The nucleic acid fragment according to claim 2 or 8, characterized in that it is susceptible to be used as a probe or a primer specific of SEQ ID N°1 and SEQ ID N°4.
- 10. The nucleic acid fragment according to claim 9, selected from the group consisting of: SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16.
  - 11. A nucleic acid fragment according to claim 9, characterized in that is obtained by specific amplification of SEQ ID N°1 or SEQ ID N°4 with one pair of primers choosed in the group consisting of SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16.
  - 12. The nucleic acid fragment according to claim 9, characterized in that it is obtained by specific amplification of SEQ ID N°1 or SEQ ID N°4 with the pair of primers SEQ ID N°13 and SEQ ID N°14.
    - 13. The nucleic acid fragment according to claim 9, characterized in that it is obtained by specific amplification of SEQ ID N°1 or SEQ ID N°4 with the pair of primers SEQ ID N°15 and SEQ ID N°16.
    - 14. The isolated or purified nucleic acid according to claim 1 wherein said nucleic acid comprises at least a deletion of a nucleic acid fragment according to any of claims 6, 7 and 8.

. 15

- 15. An isolated or purified polypeptide encoded by the nucleic acid according to any of claims 1, 2, 6, 7, 8 and 14.
- 16. The polypeptide according to claim 15 selected among polypeptides with sequence SEQ ID N°6, SEQ ID N°8, SEQ ID N°10, SEQ ID N°12, SEQ ID N°22 and fragments thereof.
- 17. An isolated or purified nucleic acid encoding a polypeptide according to claim 16.
- 18. The isolated or purified nucleic acid according to claim 17, wherein said nucleic acid is selected among:
  - SEQ ID N°5 encoding the polypeptide of SEQ ID N°6;
  - SEQ ID N°7 encoding the polypeptide of SEQ ID N°8;
  - SEQ ID N°9 encoding the polypeptide of SEQ ID N°10;
  - SEQ ID N°11 encoding the polypeptide of SEQ ID N°12;
  - SEQ ID N°21 encoding the polypeptide of SEQ ID N°22; and fragments thereof.
- 19. A recombinant vector comprising a nucleic acid sequence selected among nucleic acids according to any of claims 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13 and 14.
  - 20. The recombinant vector of claim 19 consisting of vector named X229 introduced into the recombinant *Escherichia coli* deposited at the CNCM on February 18<sup>th</sup>, 2002 under N° I-2799.
  - 21. A recombinant cell comprising a nucleic acid sequence selected among nucleic acids according to any of claims 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13 and 14 or a vector according to claim 19 or 20.
- 22. The recombinant cell according to claim 21 consisting of the *Escherichia coli* deposited at the CNCM on February 18<sup>th</sup>, 2002 under N° I-2799.
  - 23. A method for the discriminatory detection and identification of:

10

15

20

- Mycobacterium tuberculosis excepted Mycobacterium tuberculosis strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome; versus,
- Mycobacterium africanum, Mycobacterium canetti, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG in a biological sample, comprising the following steps:
  - a) isolation of the DNA from the biological sample to be analyzed or production of a cDNA from the RNA of the biological sample,
    - b) detection of the nucleic acid sequences of the mycobacterium present in said biological sample,
    - c) analysis for the presence or the absence of a nucleic acid fragment according to any of claims 6, 7 and 8.
  - 24. The method as claimed in claim 23, wherein the detection of the mycobacterial DNA sequences is carried out using nucleotide sequences complementary to said DNA sequences.
    - 25. The method as claimed in claim 23 or 24, wherein the detection of the mycobacterial DNA sequences is carried out by amplification of these sequences using primers.
  - 26. The method as claimed in claim 25, wherein the primers have a nucleotide sequence chosen from the group comprising SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, SEQ ID N°17, SEQ ID N°18.
  - 27. A method for the discriminatory detection and identification of:
    - Mycobacterium tuberculosis excepted Mycobacterium tuberculosis strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome; versus,
- Mycobacterium africanum, Mycobacterium canetti, Mycobacterium microti,
  Mycobacterium bovis, Mycobacterium bovis BCG in a biological sample,
  comprising the following steps:
  - a) bringing the biological sample to be analyzed into contact with at least one pair of primers as defined in claim 25 or 26, the DNA contained in the sample having been, where appropriate, made accessible to the hybridization beforehand,
- b) amplification of the DNA of the mycobacterium,

- 10

25

- c) visualization of the amplification of the DNA fragments.
- 28. A kit for the discriminatory detection and identification of:
  - Mycobacterium tuberculosis excepted Mycobacterium tuberculosis strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome; versus,
  - Mycobacterium africanum, Mycobacterium canetti, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG in a biological sample,

comprising the following elements:

- a) at least one pair of primers as defined in claim 25 or 26,
- b) the reagents necessary to carry out a DNA amplification reaction,
- c) optionally, the necessary components which make it possible to verify or compare the sequence and/or the size of the amplified fragment.
- 29. The use of at least one pair of primers as defined in claim 25 or 26 for the amplification of a DNA sequence from Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti, Mycobacterium bovis or Mycobacterium bovis BCG.
- 30. The use of at least one pair of primers or at least one nucleic acid fragment according to any of claims 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 for the detection of a DNA sequence from Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium canettii, Mycobacterium microti, Mycobacterium bovis or Mycobacterium bovis BCG.
  - 31. A product of expression of all or part of the nucleic acid fragment as claimed in any of claims 6, 7 and 8.
- 32. A method for the *in vitro* discriminatory detection of antibodies directed against

  Mycobacterium tuberculosis excepted Mycobacterium tuberculosis having the
  sequence CTG at codon 463 of gene katG and having no or very few IS6110
  sequences inserted in their genome, versus antibodies directed against
  Mycobacterium africanum, Mycobacterium canetti, Mycobacterium microti,
  Mycobacterium bovis, Mycobacterium bovis BCG, in a biological sample,
  comprising the following steps:

- a) bringing the biological sample into contact with at least one product as defined in claim 31,
- b) detecting the antigen-antibody complex formed.
- 33. A method for the *in vitro* discriminatory detection of a vaccination with *Mycobacterium bovis* BCG, an infection by *M. bovis*, *M. canettii*, *M. microti*, *M. africanum* or *M. tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome versus an infection by *Mycobacterium tuberculosis*, excepted *Mycobacterium Tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome in a mammal, comprising the following steps:
  - a) preparation of a biological sample containing cells, more particularly cells of the immune system of said mammal and more particularly T cells,
  - b) incubation of the biological sample of step a) with at least one product as defined in claim 31,
  - c) detection of a cellular reaction indicating prior sensitization of the mammal to said product, in particular cell proliferation and/or synthesis of proteins such as gamma-interferon.

25

15

- 34. A kit for the *in vitro* discriminatory diagnosis of a vaccination with *M. bovis* BCG, an infection by *M. bovis*, *M. canettii*, *M. microti*, *M. africanum* versus an infection by *M. tuberculosis* excepted by strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, in a mammal comprising:
  - a) a product as defined in claim 31,
  - b) where appropriate, the reagents for the constitution of the medium suitable for the immunological reaction,
  - c) the reagents allowing the detection of the antigen-antibody complexes produced by the immunological reaction,
  - d) where appropriate, a reference biological sample (negative control) free of antibodies recognized by said product,
  - e) where appropriate, a reference biological sample (positive control) containing a predetermined quantity of antibodies recognized by said product.

35

35. A mono- or polyclonal antibody, a chimeric fragment or a chimeric antibody thereof, characterized in that it is capable of specifically recognizing a product as defined in claim 31.

5

36. A method for the *in vitro* discriminatory detection of the presence of an antigen of *Mycobacterium tuberculosis* excepted of strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome versus an antigen of *Mycobacterium africanum*, *Mycobacterium canetti*, *Mycobacterium microti*, *Mycobacterium bovis*, *Mycobacterium bovis BCG* or *Mycobacterium tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome in a biological sample comprising the following steps:

15

10

- a) bringing the biological sample into contact with an antibody as claimed in claim 35,
- b) detecting the antigen-antibody complex formed.

20

37. A kit for the *in vitro* discriminatory detection of the presence of an antigen of *Mycobacterium tuberculosis* excepted of strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome versus an antigen of *Mycobacterium africanum*, *Mycobacterium canetti*, *Mycobacterium microti*, *Mycobacterium bovis*, *Mycobacterium bovis* BCG, or *Mycobacterium tuberculosis* having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, in a biological sample comprising the following steps:

25

- a) an antibody as claimed in claim 35,
- b) the reagents for constituting the medium suitable for the immunological reaction,

- the reagents allowing the detection of the antigen-antibody complexes produced by the immunological reaction.
- 38. An immunogenic composition, characterized in that it comprises at least one product as defined in claim 31.

- 39. A vaccine, characterized in that it comprises at least one product as defined in claim 31 in combination with a pharmaceutically compatible vehicle and, where appropriate, one or more appropriate immunity adjuvants.
- 40. An *in vitro* method for the detection and identification of *Mycobacterium tuberculosis* excepted *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome in a biological sample, comprising the following steps:
  - a) isolation of the DNA from the biological sample to be analyzed or production of a cDNA from the RNA of the biological sample,
  - b) detection of the nucleic acid sequences of the mycobacterium present in said biological sample,
  - c) analysis for the presence or the absence of a nucleic acid fragment according to any of claims 6, 7 and 8.
  - 41. An in vitro method for the detection and identification of Mycobacterium tuberculosis excepted Mycobacterium tuberculosis strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome in a biological sample, comprising the following steps:
    - a) bringing the biological sample to be analyzed into contact with at least one pair of primers selected among nucleic acids according to any of claims 1 to 14, 17 and 18, and more preferably selected among the primers chosen from the group comprising SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, SEQ ID N°17, SEQ ID N°18, the DNA contained in the sample having been, where appropriate, made accessible to the hybridization beforehand,
    - b) amplification of the DNA of the mycobacterium,
    - c) visualization of the amplification of the DNA fragments.
  - 42. A kit for the detection and identification of Mycobacterium tuberculosis excepted Mycobacterium tuberculosis strains having the sequence CTG at codon 463 of gene katG and having no or very few IS6110 sequences inserted in their genome, in a biological sample, comprising the following elements:
    - a) at least one pair of primers selected among nucleic acids according to any of claims 1 to 14, 17 and 18, and more preferably selected among the primers

20

15

10

20

25

- chosen from the group comprising SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, SEQ ID N°17, SEQ ID N°18,
- b) the reagents necessary to carry out a DNA amplification reaction,
- c) optionally, the necessary components which make it possible to verify or compare the sequence and/or the size of the amplified fragment.
- 43. A method for the *in vitro* detection of antibodies directed against *Mycobacterium tuberculosis* excepted *Mycobacterium tuberculosis* strains having the sequence CTG at codon 463 of gene *katG* and having no or very few IS6110 sequences inserted in their genome, in a biological sample, comprising the following steps:
  - a) bringing the biological sample into contact with at least one product as defined in claim 31,
  - b) detecting the antigen-antibody complex formed.
- 44. Use of TbD1 deletion as a genetic marker for the differentiation of *Mycobacterium* strains of *Mycobacterium* complex.
  - 45. Use of mmpL6<sup>551</sup> polymorphism as a genetic marker for the differentiation of *Mycobacterium* strains of *Mycobacterium* complex.
  - 46. Use of the genetic marker according to claim 44 in association with at least one genetic markers selected among RD1, RD2, RD3, RD4, RD5, RD6, RD7, RD8, RD9, RD10, RD11, RD13, RD14, RvD1, RvD2, RvD3, RvD4, RvD5, katG<sup>463</sup>, gyrA<sup>95</sup>, oxyR<sup>285</sup>, pncA<sup>57</sup>, mmpL6<sup>551</sup>, the specific insertion element of *M. canettii* for the differentiation of *Mycobacterium* strains of *Mycobacterium* complex.
  - 47. An in vitro method for the detection and identification of Mycobacteria from the Mycobacterium complex in a biological sample, comprising the following steps:
  - c) analysis for the presence or the absence of a nucleic acid fragment of a sequence according to claim 6, 7 or 8, and
  - d) analysis of at least one additional genetic marker selected among RD1, RD2, RD3, RD4, RD5, RD6, RD7, RD8, RD9, RD10, RD11, RD13, RD14, RvD1, RvD2, RvD3, RvD4, RvD5, katG<sup>463</sup>, gyrA<sup>95</sup>, oxyR<sup>,285</sup>, pncA<sup>57</sup>, mmpL6<sup>551</sup>, the specific insertion element of *M. canettii*.

10

15

20

- 48. The *in vitro* method of claim 47 wherein two additional markers are used, preferably RD4 and RD9.
- 49. The *in vitro* method of claim 47 wherein three additional markers are used, preferably RD4, RD9 and RD12.
- 50. The method according to claim 47 wherein the analysis is performed by a technique selected among sequence hybridization, nucleic acid amplification, antigen-antibody complex.
- 51. A kit for the detection and identification of Mycobacteria from the Mycobacterium complex in a biological sample comprising the following elements:
  - a) at least one pair of primers selected among nucleic acids according to any of claims 1 to 14, 17 and 18, and more preferably selected among the primers chosen from the group comprising SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, SEQ ID N°17, SEQ ID N°18,
  - b) at least one pair of primers specific of the genetic markers selected among RD1, RD2, RD3, RD4, RD5, RD6, RD7, RD8, RD9, RD10, RD11, RD13, RD14, RvD1, RvD2, RvD3, RvD4, RvD5, katG<sup>463</sup>, gyrA<sup>95</sup>, oxyR<sup>285</sup>, pncA<sup>57</sup>, mmpL6<sup>551</sup>, the specific insertion element of *M. canettii*
  - c) the reagents necessary to carry out a DNA amplification reaction,
  - d) optionally, the necessary components which make it possible to verify or compare the sequence and/or the size of the amplified fragment.
- 52. A kit according to claim 51 comprising the following elements:
  - a) at least one pair of primers selected among nucleic acids according to any of claims 1 to 14, 17 and 18, and more preferably selected among the primers chosen from the group comprising SEQ ID N°13, SEQ ID N°14, SEQ ID N°15, SEQ ID N°16, SEQ ID N°17, SEQ ID N°18,
  - b) one pair of primers specific of the genetic marker RD4,
    - c) one pair of primers specific of the genetic marker RD9,
    - d) the reagents necessary to carry out a DNA amplification reaction,
    - e) optionally, the necessary components which make it possible to verify or compare the sequence and/or the size of the amplified fragment.

10

15

- 53. An immunogenic composition, characterized in that it comprises the polypeptide of sequence SEQ ID N°22.
- 54. A vaccine, characterized in that it comprises the polypeptide of sequence SEQ ID N°22 in combination with a pharmaceutically compatible vehicle and, where appropriate, one or more appropriate immunity adjuvants.
- 55. Use of the genetic marker according to claim 45 in association with at least one genetic markers selected among RD1, RD2, RD3, RD4, RD5, RD6, RD7, RD8, RD9, RD10, RD11, RD13, RD14, RvD1, RvD2, RvD3, RvD4, RvD5, TbD1, katG<sup>463</sup>, gyrA<sup>95</sup>, oxyR<sup>,285</sup>, pncA<sup>57</sup>, the specific insertion element of *M. canettii* for the differentiation of Mycobacterium strains of *Mycobacterium* complex.
- 56. A nucleic acid specifically present in strains of *M. canettii* and absent from all other members of the *Mycobacterium* complex and having the sequence from position 399 to position 2378 of SEQ ID N°19.
  - 57. Use of the nucleic acid according to claim 53 as a genetic marker for the differentiation of Mycobacterium strains of Mycobacterium complex.
  - 58. A reagent for the identification of a Mycobacterium infection comprising at least polynucleotide sequences capable to hybridize under stringent conditions with at least 8 to 20 nucleotides of the RD1, RD4, RD9 and TbD1 genetic markers.
- 59. A reagent for the identification of a Mycobacterium infection comprising at least one polypeptide encoded by each of the RD1, RD4, RD9 and TbD1 genetic markers capable to react with an antibody or an immune serum raised against the same immunogenic molecules or fragments thereof.



FIGURE 1

| C     | 1        |
|-------|----------|
| TAL   |          |
| LTCT. | <b>)</b> |
| H     | 7        |
|       |          |

| M. bovis AF2122/97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M. canettii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M. tub. 93, Tanzania                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M. tub. H37Rv                                         | M. tub. 20, Mongolia                                | M. tub. 41, Chilli                      | M. tub., Australia                               | M. tub. 50, Czech Rep.                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-----------------------------------------|--------------------------------------------------|-------------------------------------------------------------|
| TbD1 -region  Gectigett ceceseres testectes testes | William Michigan Market Man Man Man Market M | MANNE HARMAN MANNE SAME TO SAME THE SAM | GGCCT GOTC CGCGGCTGG TGGTG G TCG TCG CG M. tub. H37Rv | My May May Man Man Man Man Man M. tub. 20, Mongolia | LAMPA MONDAMANAMARAM M. tub. 41, Chilli | Myllma halfallallallallallallallallallallallalla | Middly Jakally Malala Jakally Malala M. tub. 50, Czech Rep. |







Figure 4



BNSDOCID: <WO\_\_\_\_03070981A2\_1\_>

6 / 6

|            |            |                    | •          |            |            | •      |
|------------|------------|--------------------|------------|------------|------------|--------|
|            |            | ggagctggcc         |            |            |            | 60     |
|            |            | catgcgcgcc         | ~          |            |            | 120    |
|            |            | cttagaactt         |            |            |            | 180    |
| gagttcgccg | ctcgcttggc | tgccgctcaa         | cacaggtagc | gcctaccagc | ctcgctggtt | 240    |
|            |            | gaagctgctg         |            |            |            | 300    |
| cgcgctgttg | tacggcccaa | acggcgtgtc         | ggtgtacagt | cgcgcgctcg | cggcttcagt | 360    |
| ccggcccccc | gactccggca | ggcccgacgg         | cgcccagcgc | tagcccgaag | ttcccccttg | 420    |
| taggggcggg | ctgagtttcg | atctgtttcg         | tgagcaggtg | tttctgtgtt | caacttccct | 480    |
| caacatgtac | tcatgtatta | ttgagaatag         | ctcggcgtgt | catcctctga | tgacgctatt | 540    |
| atcgcgctga | ccgcgtgtta | taaagtaatc         | atgtacatta | cccgggtacc | caaccgggga | 600    |
| teceegeegg | cggtgctgtt | gcgggaaagc         | ttccgcgaaa | acggcaaggt | caagacgcgt | 660    |
| accctggcca | acctctcacg | ctggcccgag         | cacaagctgg | acagactgga | cegggegett | 720    |
| aagggcttgc | cgcccgcgga | ctgggatcta         | gccgaggcct | tcgatatcac | ccgcagcctg | 780    |
| ccgcacgggc | atgtggccgc | ggtggccggc         | accgccgaga | agctgggcat | acccgagctg | 840    |
| atcgacccca | ccccgtcgcg | gcggcgcaac         | ctggtgctgg | ccatgctgat | cgggcagatc | 900    |
| atcgagcccg | gatcgaaact | ggcgatcgcg         | cgcgggctgc | gcgcccagac | cgccaccagc | 960    |
| acgctgggtg | cggtgctggg | tgtctcgggc         | gccgatgagg | acgacctgta | tgacgcgatg | 1020   |
| gactgggcgc | tggagcgcaa | agacggcatc         | gaaaacgcct | tggccgcacg | gcatctgacc | 1080   |
| aacggcaccc | tggtgctcta | tgacgtatcc         | teggeggegt | tcgagggcca | cacctgcccg | 1140   |
| ctgggagcga | tcgggcacgc | ccgcgacggg         | gtcaaaggcc | ggctgcagat | cgtctacggg | 1200   |
| ctgctgtgct | cacccaaggg | agcgccggtg         | gccatcgagg | tgttcaaggg | caacaccgcc | 1260   |
| gacccgaaaa | ctctgaaagc | tcaaatcgac         | aagctcaaaa | cccggttcgg | gttgacccgc | 1320   |
| atcgccctgg | tgggcgatcg | gggcatgctc         | acttccgcgc | gcatccgtga | cgagctgcgt | 1380   |
| ccggcgcacc | tggattggat | cagcgcgctg         | cgcgcccgc  | agatcaagat | cctgctcgag | 1440   |
| gacggggcgc | tgcagctgtc | gctgttcgat         | gagcagaacc | tgttcgagat | cactcacccc | 1500   |
| gactatcccg | gtgagcggct | ggtgtgctgc         | cacaaccccg | ccctggccga | cgagcgcgcc | 1560   |
| cgcaaacgcg | ccgagctgct | ggcggccacc         | gaaaaggagc | tgcaggccat | cgccgaagcc | 1620   |
| acccgccgcc | aacgccggcc | gttacgcggt         | acagacaaga | teggeetgeg | ggtgggcaag | 1680   |
| gtgcgcaaca | agttcaagat | ggccaagcac         | tttgacctgc | acatcaccga | tgaggccttc | 1740   |
| agcttcaccc | gcaaccagaa | 'cagtatcgcc        | gccgaggccg | ccctcgacgg | catctacgtg | 1800   |
| ctacgcacca | gcctgcccga | caacgccctg         | ggccgcgacg | acgtggtggg | ccgctacaaa | 1860   |
| gacctcgccg | acgtcgaacg | cttcttccgc         | accctcaaca | gcgaactgga | cgtacgcccc | 1920   |
| atccggcatc | ggctggccga | ccgggtccgc         | gcccacatgt | tcttgcacat | gctctcctac | . 1980 |
| tacatcagct | ggcacatgaa | acaagccctg         | gccccaatcc | tgttcaccga | caacgacaaa | 2040   |
| cccgccgccg | ccgccaaacg | cgccgacccc         | gtcgcgccag | cccaacgctc | cgacgaagcg | 2100   |
| ctgaacaagg | cagcacgcaa | acgcaccgaa         | gacaaccaac | cggtgcacag | cttcaccagc | 2160   |
| ctgctcaccg | acctggccac | catctgcgcc         | aactacatcc | aacccacaga | cgacctgcca | 2220   |
| gcattcacca | aaaccaccac | ccccacccc          | acacaacggc | gcgccttcga | cctactggcc | 2280   |
| gtttcccacc | gccacggcct | <b>ggcgtag</b> tca | gtaccgaacc | acaaatgccc | aggtcaacga | 2340   |
| cacaaaccgc | gccggatcag | ggggaacttc         | gggctagccg | ggcgcgccgg |            | 2390   |
|            |            |                    |            |            | -          |        |

# Figure 6

### SEQUENCE LISTING

<110> INSTITUT PASTEUR VETERINARY LABORATORIES AGENCY <120> DELETED SEQUENCE IN M. TUBERCULOSIS, METHOD FOR DETECTING MYCOBACTERIA USING THESE SEQUENCES AND VACCINES <130> D20110 <160> 22 <170> PatentIn Ver. 2.1 <210> 1 <211> 3953 <212> DNA <213> Mycobacterium tuberculosis strain 74 ("ancestral" strain) <220> <221> CDS <222> (735)..(3638) <400> 1 tccagcgcgg ccatcagcga tgaactctgg gacctgctac ccggctacct catcttccgg 60 tccatcatcc ccaaccggcc gcccacccag gacacggtgc aagccctcgt cgacgacgtg 120 atactcccca gcctcacccg atccaccggt tgagtcagcg gtgcgaatgg ctgggcaccg 180 ttgtggtgtc cggtcccgta ccgtactgtt gaatccgcgg atccccgcct gaggtacggg 240 gcgtggtcgc gccccgggca atagcgtcgc cggttatcga aaggctaacg ggtgcagggg 300 atttcagtga ctggcctggt caaacgcggc tggatggtgc tggttgccgt ggcggtggtg 360 gcggtcgcgg gattcagcgt ctatcggttg cacggcatct tcggctcgca cgacaccacc 420 tcgaccgccg gtggtgtcgc gaacgacatc aagccgttca accccaaaca ggtaaccctc 480 gaggtctttg gcgctcccgg aaccgtggca acgatcaatt atctggacgt ggatgccaca 540 cctcggcaag tcctggacac gaccctgccg tggtcataca cgatcacgac gaccctgccc 600 gcggtcttcg ccaatgttgt cgcgcaaggc gacagcaatt ccatcggctg ccgcatcacc 660 gtcaacggtg tagtcaagga cgaaaggatc gtcaacgaag tgcgcgccta taccttctgc 720 ctcgacaagt cctc atg agc aac cac cac cgc ccg cgg cct tgg ttg ccg 770 Met Ser Asn His His Arg Pro Arg Pro Trp Leu Pro 10 5 1 cac acc atc cga cgg ctt tcg ttg ccg atc ttg ctg ttt tgg gtg ggt 818 His Thr Ile Arg Arg Leu Ser Leu Pro Ile Leu Leu Phe Trp Val Gly 20 15 gtg gcc gcc ata acc aat gcc gcc gtg ccg caa ttg gag gtg gtc ggg 866 Val Ala Ala Ile Thr Asn Ala Ala Val Pro Gln Leu Glu Val Val Gly 40 35 30

| gag<br>Glu<br>45  | gcg<br>Ala          | cat<br>His         | aac<br>Asn          | gtc<br>Val        | gca<br>Ala<br>50  | cag<br>Gln           | agc<br>Ser            | tcc<br>Ser          | ccg<br>Pro          | gat<br>Asp<br>55  | gac<br>Asp           | ccg<br>Pro          | tcg<br>Ser          | ctg<br>Leu        | cag<br>Gln<br>60  | 914  |
|-------------------|---------------------|--------------------|---------------------|-------------------|-------------------|----------------------|-----------------------|---------------------|---------------------|-------------------|----------------------|---------------------|---------------------|-------------------|-------------------|------|
| gcg<br>Ala        | atg<br>Met          | aaa<br>Lys         | cgc<br>Arg          | atc<br>Ile<br>65  | ggc<br>Gly        | aag<br>Lys           | gtg<br>Val            | ttc<br>Phe          | cac<br>His<br>70    | gag<br>Glu        | ttc<br>Phe           | gat<br>Asp          | tcc<br>Ser          | gac<br>Asp<br>75  | agt<br>Ser        | 962  |
| gcg<br>Ala        | gcc<br>Ala          | atg<br>Met         | atc<br>Ile<br>80    | gtc<br>Val        | ttg<br>Leu        | gaa<br>Glu           | Gly                   | gat<br>Asp<br>85    | aag<br>Lys          | ccg<br>Pro        | ctc<br>Leu           | ggc                 | aac<br>Asn<br>90    | gac<br>Asp        | gcc<br>Ala        | 1010 |
| cac<br>His        | Arg                 | ttc<br>Phe<br>95   | tac<br>Tyr          | gac<br>Asp        | acc<br>Thr        | ctg<br>Leu           | ctc<br>Leu<br>100     | cgc.<br>Arg         | aac<br>Asn          | ctt<br>Leu        | tca<br>Ser           | aac<br>Asn<br>105   | gac<br>Asp          | acc<br>Thr        | aaa<br>Lys        | 1058 |
| cac<br>His        | gtc<br>Val<br>110   | gag<br>Glu         | cac<br>His          | gtt<br>Val        | cag<br>Gln        | gac<br>Asp<br>115    | ttc<br>Phe            | tgg<br>Trp          | ggc<br>Gly          | gat<br>Asp        | ccg<br>Pro<br>120    | ctg<br>Leu          | acc<br>Thr          | gcg<br>Ala        | gcc<br>Ala        | 1106 |
| ggc<br>Gly<br>125 | tcg<br>Ser          | caa<br>Gln         | agc<br>Ser          | acc<br>Thr        | gac<br>Asp<br>130 | ggc                  | aaa<br>Lys            | gcc<br>Ala          | gcc<br>Ala          | tac<br>Tyr<br>135 | gtt<br>Val           | cag<br>Gln          | gtc<br>Val          | tat<br>Tyr        | ctc<br>Leu<br>140 | 1154 |
| gcc<br>Ala        | ggc                 | aac<br>Asn         | caa<br>Gln          | ggc<br>Gly<br>145 | gag<br>Glu        | gcg<br>Ala           | ttg<br>Leu            | tca<br>Ser          | atc<br>Ile<br>150   | Glu               | tcc<br>Ser           | gtc<br>Val          | gac<br>Asp          | gcg<br>Ala<br>155 | gtg<br>Val        | 1202 |
| cgc<br>Arg        | gac<br>Asp          | atc<br>Ile         | gtc<br>Val<br>160   | Ala               | cat<br>His        | acg<br>Thr           | cca<br>Pro            | cca<br>Pro<br>165   | Pro                 | gcc<br>Ala        | ejy<br>aaa           | gtc<br>Val          | aag<br>Lys<br>170   | gcc<br>Ala        | tac<br>Tyr        | 1250 |
| gtc<br>Val        | acc<br>Thr          | ggc<br>Gly<br>175  | Ala                 | gcc<br>Ala        | ccg<br>Pro        | ctc<br>Leu           | atg<br>Met<br>180     | Ala                 | gat<br>Asp          | cag<br>Gln        | ttt<br>Phe           | cag<br>Gln<br>185   | Val                 | ggc               | agc<br>Ser        | 1298 |
| aaa<br>Lys        | gga<br>Gly<br>190   | Thr                | gcg<br>Ala          | aaa<br>Lys        | gtt<br>Val        | acc<br>Thr<br>195    | Gly                   | ata<br>Ile          | act<br>Thr          | ctg<br>Leu        | gtt<br>Val<br>200    | Val                 | atc<br>Ile          | gcg<br>Ala        | gtg<br>Val        | 1346 |
| atg<br>Met<br>205 | Leu                 | ctc<br>Lev         | tto<br>Phe          | gta<br>Val        | tac<br>Tyr<br>210 | Arg                  | tcc<br>Ser            | gto<br>Val          | gtc<br>Val          | acc<br>Thr<br>215 | Met                  | gtc<br>Val          | ctg<br>Leu          | gtg<br>Val        | ctt<br>Leu<br>220 | 1394 |
| ato<br>Ile        | acg<br>Thr          | gtt<br>Val         | ctt<br>Lev          | att<br>11e<br>225 | Glu               | ttg<br>Lev           | g gcc                 | gcg<br>Ala          | g gco<br>Ala<br>230 | a Arc             | g Gly                | g ato               | gtc<br>Val          | gct<br>Ala<br>235 | ttt<br>Phe        | 1442 |
| cto<br>Lev        | gga<br>Gly          | a aac<br>⁄ Asi     | gco<br>n Ala<br>240 | a Gly             | g gta<br>Val      | ato<br>Ile           | ggs<br>Gly            | g cto<br>Let<br>245 | ı Sei               | g aca             | tac<br>Tyr           | tc <u>c</u><br>Ser  | acc<br>Thr<br>250   | ASI               | ctg<br>Leu        | 1490 |
| cto               | e aca<br>ı Thi      | a cta<br>Lev<br>25 | ı Lev               | g gta<br>ı Val    | a ato             | geg<br>Ala           | g gcg<br>a Ala<br>260 | a Gly               | c acay Th:          | a gad<br>r Asp    | c tac<br>o Tyi       | gcg<br>c Ala<br>265 | ₹ Τ <sup>'</sup> Τ€ | ttt<br>Phe        | gtc<br>Val        | 1538 |
| ct:<br>Le:        | gg(<br>1 Gly<br>27( | y Ar               | tai                 | cac<br>r His      | c gag<br>s Glu    | g gcg<br>1 Ala<br>27 | a Arg                 | c tac               | c gc                | c gca<br>a Ala    | a caq<br>a Gli<br>28 | n Asj               | cgg<br>Arg          | g gaa             | a acg<br>u Thr    | 1586 |
| gc                | c tto               | c ta               | c ac                | g at              | g ta              | t cg                 | c gg                  | g ac                | c gc                | c ca              | c gt                 | c gt                | c ttg               | g <b>g</b> g      | c tcg             | 1634 |

| VV () ()3/0/0/01                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ala Phe Tyr Thr Met Tyr Arg Gly Thr Ala His Val Val Leu Gly Ser 295 295                                                                              |
| ggt ctg acc gtt gcc ggc gcg gtg tat tgc ctg agc ttt acc cgg cta 1682<br>Gly Leu Thr Val Ala Gly Ala Val Tyr Cys Leu Ser Phe Thr Arg Leu<br>315       |
| ccc tat ttt caa agc ctg ggt att ccc gcc tcg ata ggg gtg atg att 1730  Pro Tyr Phe Gln Ser Leu Gly Ile Pro Ala Ser Ile Gly Val Met Ile  320  320      |
| gcg ttg gca gcc gcg ctc agc ctg gcc cca tcc gtg ctc atc ttg ggc 1778  Ala Leu Ala Ala Ala Leu Ser Leu Ala Pro Ser Val Leu Ile Leu Gly  345           |
| agt cgt ttc ggt tgt ttc gaa ccc aag cgc agg atg agg acc agg gga 1826<br>Ser Arg Phe Gly Cys Phe Glu Pro Lys Arg Arg Met Arg Thr Arg Gly<br>355       |
| tgg cgg cgc atc ggc acg gcc atc gtg cgt tgg ccg gga ccc atc ctg 1874  Trp Arg Arg Ile Gly Thr Ala Ile Val Arg Trp Pro Gly Pro Ile Leu  370           |
| gca gtg gcg tgc gca att gcg gtg gtg ggt ctg ctc gcg ctg ccg gga 1922  Ala Val Ala Cys Ala Ile Ala Val Val Gly Leu Leu Ala Leu Pro Gly  395           |
| tac aaa acg agc tac gac gct cgc tat tac atg ccc gcc acc gcc ccg 1970<br>Tyr Lys Thr Ser Tyr Asp Ala Arg Tyr Tyr Met Pro Ala Thr Ala Pro              |
| 400  gcc aat att ggc tac atg gcc gcg gag cga cat ttt ccc caa gcg cgg 2018  Ala Asn Ile Gly Tyr Met Ala Ala Glu Arg His Phe Pro Gln Ala Arg  425  415 |
| ctg aat ccc gaa cta ctg atg atc gag acg gat cac gat atg cgc aat 2066  Leu Asn Pro Glu Leu Leu Met Ile Glu Thr Asp His Asp Met Arg Asn  440  430      |
| ccg gcc gac atg ctc atc ttg gat agg atc gcc aag gct gtc ttc cat 2114  Pro Ala Asp Met Leu Ile Leu Asp Arg Ile Ala Lys Ala Val Phe His  450  450      |
| ctg ccc ggc ata ggg ctg gtg cag gcc atg acc cgg ccg cta gga acc 2162<br>Leu Pro Gly Ile Gly Leu Val Gln Ala Met Thr Arg Pro Leu Gly Thr  475         |
| ccg att gac cac agc tcg ata ccg ttt cag atc agc atg caa agc gtc 2210<br>Pro Ile Asp His Ser Ser Ile Pro Phe Gln Ile Ser Met Gln Ser Val<br>490       |
| 480  ggc cag att cag aat ctc aag tat cag agg gac cga gca gcc gac ttg 2258  Gly Gln Ile Gln Asn Leu Lys Tyr Gln Arg Asp Arg Ala Ala Asp Leu  505      |
| 495  ctg aag cag gcc gaa gag ctg ggg aag acg atc gaa atc ttg cag cgc 2306  ctg Lys Gln Ala Glu Glu Leu Gly Lys Thr Ile Glu Ile Leu Gln Arg  520      |
| caa tat gcc cta cag cag gaa ctc gcg gcc gct act cac gag caa gcc 2354 Gln Tyr Ala Leu Gln Glu Leu Ala Ala Ala Thr His Glu Gln Ala                     |

| 525               |                   |                    |                    |                       | 530                   |                     |                        |                       |                     | 535                |                      |                       |                    |                    | 54       | ł 0               |      |
|-------------------|-------------------|--------------------|--------------------|-----------------------|-----------------------|---------------------|------------------------|-----------------------|---------------------|--------------------|----------------------|-----------------------|--------------------|--------------------|----------|-------------------|------|
| gaa<br>Glu        | agc<br>Ser        | ttt<br>Phe         | cac<br>His         | caa<br>Gln<br>545     | acg<br>Thr            | atc<br>Ile          | gcc<br>Ala             | acg<br>Thr            | gta<br>Val<br>550   | aac<br>Asn         | gaa<br>Glu           | ctg<br>Leu            | cga<br>Arg         | gat<br>Asp<br>555  | aç<br>Aı | ca<br>3a          | 2402 |
| atc<br>Ile        | gcc<br>Ala        | aat<br>Asn         | ttc<br>Phe<br>560  | gac<br>Asp            | gat<br>Asp            | ttc<br>Phe          | ttc<br>Phe             | agg<br>Arg<br>565     | ccg<br>Pro          | att<br>Ile         | cgt<br>Arg           | agt<br>Ser            | tac<br>Tyr<br>570  | ttt<br>Phe         | ta<br>Ty | ac<br>yr          | 2450 |
| tgg<br>Trp        | gaa<br>Glu        | aag<br>Lys<br>575  | cac<br>His         | tgc<br>Cys            | tac<br>Tyr            | gat<br>Asp          | atc<br>Ile<br>580      | ccg<br>Pro            | agc<br>Ser          | tgc<br>Cys         | tgg<br>Trp           | gcg<br>Ala<br>585     | ctg<br>Leu         | aga<br>Arg         | t s      | cc<br>er          | 2498 |
| gtc<br>Val        | ttt<br>Phe<br>590 | gac<br>Asp         | acg<br>Thr         | atc<br>Ile            | gac<br>Asp            | ggt<br>Gly<br>595   | atc<br>Ile             | gac<br>Asp            | caa<br>Gln          | ctc<br>Leu         | Gly<br>600           | gag<br>Glu            | cag<br>Gln         | ctg<br>Leu         | 9<br>A   | cc<br>la          | 2546 |
| agc<br>Ser<br>605 | gtg<br>Val        | acc                | gta<br>Val         | acc<br>Thr            | Leu                   | Asp                 | Lys                    | ttg<br>Leu            | Ala                 | Ala                | тте                  | cag<br>Gln            | PIO                | GII.               | יר ז     | tg<br>eu<br>20    | 2594 |
| gtg<br>Val        | gcg<br>Ala        | ctg<br>Leu         | cta<br>Leu         | cca<br>Pro<br>625     | Asp                   | gag<br>Glu          | atc<br>Ile             | gcc<br>Ala            | agc<br>Ser<br>630   | GII                | cag<br>Gln           | atc<br>Ile            | aat<br>Asr         | cgg<br>Arg<br>635  | 9        | jaa<br>lu         | 2642 |
| ctg<br>Leu        | gcg<br>Ala        | ctg<br>Leu         | gct<br>Ala<br>640  | Asn                   | tac<br>Tyr            | gcc<br>Ala          | acc<br>Thr             | atg<br>Met<br>645     | Ser                 | Gly<br>ggg         | g ato                | tat<br>Tyr            | gcc<br>Ala<br>650  | т Сті              | g a      | icg<br>Thr        | 2690 |
| gcg<br>Ala        | gcc<br>Ala        | tto<br>Leu<br>655  | i Ile              | gaa<br>Glu            | aac<br>Asn            | gct<br>Ala          | gcc<br>Ala<br>660      | Ala                   | at <u>c</u><br>Met  | g gga              | a caa<br>/ Glr       | a gcc<br>n Ala<br>665 | r Bire             | ga<br>As           | c g      | gcc<br>Ala        | 2738 |
| gcc<br>Ala        | aag<br>Lys<br>670 | Asr                | gaq<br>n Asp       | gac<br>Asp            | tcc<br>Ser            | ttc<br>Phe<br>675   | Tyr                    | ctg<br>Leu            | ccg<br>Pro          | g ccg              | g gag<br>o Gli<br>68 | g gct<br>u Ala<br>0   | t tt               | t ga<br>e As       | c a      | aac<br>Asn        | 2786 |
| cca<br>Pro<br>685 | ) Asp             | tto<br>Phe         | c caq<br>e Gl      | g cgo                 | g ggc<br>g Gly<br>690 | Leu                 | ı aa <i>a</i><br>ı Lys | ttç<br>Lei            | g tto               | c ct<br>e Le<br>69 | u se                 | g gca<br>r Ala        | a ga<br>a As       | p Gl               | X.       | aag<br>Lys<br>700 | 2834 |
| gcg               | g gct<br>a Ala    | cgg<br>a Arg       | g at               | g ato<br>t Ile<br>70! | e Ile                 | tcc<br>Ser          | cat<br>His             | gaa<br>s Gl           | a gg<br>ı Gl;<br>71 | y As               | t cc<br>p Pr         | c gc<br>o Al          | c ac<br>a Th       | c cc<br>r Pr<br>71 |          | gaa<br>Glu        | 2882 |
| Gl <sub>j</sub>   | c att             | t to<br>e Se       | g ca<br>r Hi<br>72 | s Il                  | c gad<br>e Asj        | gcg<br>5 Ala        | g ato                  | c aag<br>e Ly:<br>72: | s GT                | g gc<br>n Al       | g go<br>a Al         | c ca<br>a Hi          | c ga<br>s Gl<br>73 | u na               | cc<br>La | gtg<br>Val        | 2930 |
| aa<br>Ly          | g gg              | c ac<br>y Th<br>73 | r Pr               | c at<br>o Me          | g gc                  | g gg <sup>1</sup>   | t gc<br>y Al<br>74     | a Gi                  | g at<br>y Il        | c ta<br>e Ty       | t ct<br>r Le         | g gc<br>u Al<br>74    | u C                | jc ac<br>Ly Tì     | eg<br>ar | gcc<br>Ala        | 2978 |
| gc<br>Al          | c ac<br>a Th      | r Ph               | c aa<br>le Ly      | ig ga<br>'s As        | c at<br>p Il          | t ca<br>e Gl:<br>75 | n As                   | c gg                  | c gc<br>y Al        | c ac               | 17 17                | ac ga<br>/r As        | c ct<br>p Le       | eu L               | tg<br>eu | atc<br>Ile        | 3026 |
| gc<br>Al<br>76    | a Gl              | a at<br>y Il       | a go<br>.e Al      | ec go<br>la Al        | g ct<br>a Le          | u Se                | c tt<br>r Le           | g at<br>u Il          | t tt<br>e Le        | ית אי              | cc ateu II           | cc at<br>le Me        | g at<br>et Mo      | tg a<br>et I       | tc<br>le | att<br>Ile<br>780 | 3074 |

| acc cga agc ctg gtt gcg gcg ctg gtg atc gtg ggc acg gtg gcg ctg 3122<br>Thr Arg Ser Leu Val Ala Ala Leu Val Ile Val Gly Thr Val Ala Leu<br>795     |
|----------------------------------------------------------------------------------------------------------------------------------------------------|
| tcg ttg ggc gct tct ttt ggc ctg tcc gtg ctg gtg tgg cag cat ctt 3170<br>Ser Leu Gly Ala Ser Phe Gly Leu Ser Val Leu Val Trp Gln His Leu<br>800     |
| ctc ggt atc cag ttg tac tgg atc gtg ctc gcg ctg gcc gtc atc ctg 3218<br>Leu Gly Ile Gln Leu Tyr Trp Ile Val Leu Ala Leu Ala Val Ile Leu<br>825     |
| ctc ctg gcc gtg gga tcg gac tat aac ttg ctg ctg att tcc cga ttc 3266<br>Leu Leu Ala Val Gly Ser Asp Tyr Asn Leu Leu Leu Ile Ser Arg Phe<br>830 835 |
| aag gag gag atc ggt gca ggt ttg aac acc ggc atc atc cgt gcg atg 3314 Lys Glu Glu Ile Gly Ala Gly Leu Asn Thr Gly Ile Ile Arg Ala Met 855 850       |
| gcc ggc acc ggg gtg gtg acc gct gcc ggc ctg gtg ttc gcc gcc 3362  Ala Gly Thr Gly Gly Val Val Thr Ala Ala Gly Leu Val Phe Ala Ala  875             |
| act atg tct tcg ttc gtg ttc agt gat ttg cgg gtc ctc ggt cag atc 3410<br>Thr Met Ser Ser Phe Val Phe Ser Asp Leu Arg Val Leu Gly Gln Ile<br>890     |
| ggg acc acc att ggt ctt ggg ctg ctg ttc gac acg ctg gtg gtg cgc 3458  Gly Thr Thr Ile Gly Leu Gly Leu Phe Asp Thr Leu Val Val Arg  905             |
| gcg ttc atg acc ccg tcc atc gcg gtg ctg ctc ggg cgc tgg ttc tgg 3506  Ala Phe Met Thr Pro Ser Ile Ala Val Leu Leu Gly Arg Trp Phe Trp  920  910    |
| tgg ccg caa cga gtg cgc ccg cgc cct gcc agc agg atg ctt cgg ccg 3554  Trp Pro Gln Arg Val Arg Pro Arg Pro Ala Ser Arg Met Leu Arg Pro 935 930      |
| tac ggc ccg cgg ccc gtg gtt cgt gaa ttg ctg ctg cgc gag ggc aac 3602<br>Tyr Gly Pro Arg Pro Val Val Arg Glu Leu Leu Arg Glu Gly Asn<br>950         |
| gat gac ccg aga act cag gtg gct acc cac cgt taa ggtggtggga 3648  Asp Asp Pro Arg Thr Gln Val Ala Thr His Arg  960  965                             |
| tgccgctttc aggggaatat gcgccgagcc cgctcgactg gtcgcgcgag caagccgaca 3708                                                                             |
| cgtatatgaa gtccggcgga accgagggca cacagctgca gggaaagccg gtcatcctgc 3768                                                                             |
| tcaccaccgt cggggcgaag accggcaaac tccgtaagac cccgctgatg cgcgtcgagc 3828                                                                             |
| acgacggcca gtacgcgatc gtcgcctcgc tgggtggggc gccgaaaaat ccggtctggt 3888                                                                             |
| acgacggcca geacges - coacgggtcg agctgcagga cggcaccgga ccggcgacta 3948                                                                              |
|                                                                                                                                                    |
| cgacg                                                                                                                                              |

<210> 2 <211> 967 <212> PRT <213> Mycobacterium tuberculosis strain 74 ("ancestral" strain) <220> <223> mmpL6 protein <400> 2 Met Ser Asn His His Arg Pro Arg Pro Trp Leu Pro His Thr Ile Arg Arg Leu Ser Leu Pro Ile Leu Leu Phe Trp Val Gly Val Ala Ala Ile Thr Asn Ala Ala Val Pro Gln Leu Glu Val Val Gly Glu Ala His Asn Val Ala Gln Ser Ser Pro Asp Asp Pro Ser Leu Gln Ala Met Lys Arg Ile Gly Lys Val. Phe His Glu Phe Asp Ser Asp Ser Ala Ala Met Ile Val Leu Glu Gly Asp Lys Pro Leu Gly Asn Asp Ala His Arg Phe Tyr Asp Thr Leu Leu Arg Asn Leu Ser Asn Asp Thr Lys His Val Glu His Val Gln Asp Phe Trp Gly Asp Pro Leu Thr Ala Ala Gly Ser Gln Ser Thr Asp Gly Lys Ala Ala Tyr Val Gln Val Tyr Leu Ala Gly Asn Gln Gly Glu Ala Leu Ser Ile Glu Ser Val Asp Ala Val Arg Asp Ile Val Ala His Thr Pro Pro Pro Ala Gly Val Lys Ala Tyr Val Thr Gly Ala Ala Pro Leu Met Ala Asp Gln Phe Gln Val Gly Ser Lys Gly Thr Ala Lys Val Thr Gly Ile Thr Leu Val Val Ile Ala Val Met Leu Leu Phe Val Tyr Arg Ser Val Val Thr Met Val Leu Val Leu Ile Thr Val Leu Ile Glu Leu Ala Ala Ala Arg Gly Ile Val Ala Phe Leu Gly Asn Ala Gly Val Ile Gly Leu Ser Thr Tyr Ser Thr Asn Leu Leu Thr Leu Leu Val Ile Ala Ala Gly Thr Asp Tyr Ala Ile Phe Val Leu Gly Arg Tyr

His Glu Ala Arg Tyr Ala Ala Gln Asp Arg Glu Thr Ala Phe Tyr Thr 275 280 285

- Met Tyr Arg Gly Thr Ala His Val Val Leu Gly Ser Gly Leu Thr Val 290 295 300
- Ala Gly Ala Val Tyr Cys Leu Ser Phe Thr Arg Leu Pro Tyr Phe Gln 305
- Ser Leu Gly Ile Pro Ala Ser Ile Gly Val Met Ile Ala Leu Ala Ala 325
- Ala Leu Ser Leu Ala Pro Ser Val Leu Ile Leu Gly Ser Arg Phe Gly 340
- Cys Phe Glu Pro Lys Arg Arg Met Arg Thr Arg Gly Trp Arg Arg Ile 355 360 365
- Gly Thr Ala Ile Val Arg Trp Pro Gly Pro Ile Leu Ala Val Ala Cys 370
- Ala Ile Ala Val Val Gly Leu Leu Ala Leu Pro Gly Tyr Lys Thr Ser 390 395 400
- Tyr Asp Ala Arg Tyr Tyr Met Pro Ala Thr Ala Pro Ala Asn Ile Gly 405
- Tyr Met Ala Ala Glu Arg His Phe Pro Gln Ala Arg Leu Asn Pro Glu 420 425 430
- Leu Leu Met Ile Glu Thr Asp His Asp Met Arg Asn Pro Ala Asp Met 435
- Leu Ile Leu Asp Arg Ile Ala Lys Ala Val Phe His Leu Pro Gly Ile 450 455 460
- Gly Leu Val Gln Ala Met Thr Arg Pro Leu Gly Thr Pro Ile Asp His 480
- Ser Ser Ile Pro Phe Gln Ile Ser Met Gln Ser Val Gly Gln Ile Gln 495
- Asn Leu Lys Tyr Gln Arg Asp Arg Ala Ala Asp Leu Leu Lys Gln Ala 500 505
- Glu Glu Leu Gly Lys Thr Ile Glu Ile Leu Gln Arg Gln Tyr Ala Leu 515
- Gln Gln Glu Leu Ala Ala Ala Thr His Glu Gln Ala Glu Ser Phe His 530
- Gln Thr Ile Ala Thr Val Asn Glu Leu Arg Asp Arg Ile Ala Asn Phe 550 555 560
- Asp Asp Phe Phe Arg Pro Ile Arg Ser Tyr Phe Tyr Trp Glu Lys His 575
- Cys Tyr Asp Ile Pro Ser Cys Trp Ala Leu Arg Ser Val Phe Asp Thr 580
- Ile Asp Gly Ile Asp Gln Leu Gly Glu Gln Leu Ala Ser Val Thr Val

595 600 605

Thr Leu Asp Lys Leu Ala Ala Ile Gln Pro Gln Leu Val Ala Leu Leu 610 620

Pro Asp Glu Ile Ala Ser Gln Gln Ile Asn Arg Glu Leu Ala Leu Ala 625 630 · 635 640

Asn Tyr Ala Thr Met Ser Gly Ile Tyr Ala Gln Thr Ala Ala Leu Ile 645 650 655

Glu Asn Ala Ala Met Gly Gln Ala Phe Asp Ala Ala Lys Asn Asp
660 670

Asp Ser Phe Tyr Leu Pro Pro Glu Ala Phe Asp Asn Pro Asp Phe Gln 675 680 685

Arg Gly Leu Lys Leu Phe Leu Ser Ala Asp Gly Lys Ala Ala Arg Met 690 695 700

Ile Ile Ser His Glu Gly Asp Pro Ala Thr Pro Glu Gly Ile Ser His
705 710 715 720

Ile Asp Ala Ile Lys Gln Ala Ala His Glu Ala Val Lys Gly Thr Pro
725 730 735

Met Ala Gly Ala Gly Ile Tyr Leu Ala Gly Thr Ala Ala Thr Phe Lys
740 745 750

Asp Ile Gln Asp Gly Ala Thr Tyr Asp Leu Leu Ile Ala Gly Ile Ala 755 760 765

Ala Leu Ser Leu Ile Leu Leu Ile Met Met Ile Ile Thr Arg Ser Leu 770 780

Val Ala Ala Leu Val Ile Val Gly Thr Val Ala Leu Ser Leu Gly Ala 785 790 795 800

Ser Phe Gly Leu Ser Val Leu Val Trp Gln His Leu Leu Gly Ile Gln 805 810 815

Leu Tyr Trp Ile Val Leu Ala Leu Ala Val Ile Leu Leu Leu Ala Val 820 830

Gly Ser Asp Tyr Asn Leu Leu Leu Ile Ser Arg Phe Lys Glu Glu Ile 835 840 845

Gly Ala Gly Leu Asn Thr Gly Ile Ile Arg Ala Met Ala Gly Thr Gly 850 860

Gly Val Val Thr Ala Ala Gly Leu Val Phe Ala Ala Thr Met Ser Ser 865 870 875 880

Phe Val Phe Ser Asp Leu Arg Val Leu Gly Gln Ile Gly Thr Thr Ile 885 890 895

Gly Leu Gly Leu Leu Phe Asp Thr Leu Val Val Arg Ala Phe Met Thr 900 905 910

Pro Ser Ile Ala Val Leu Leu Gly Arg Trp Phe Trp Trp Pro Gln Arg 915 920 925

PCT/IB03/00986 WO 03/070981

Val Arg Pro Arg Pro Ala Ser Arg Met Leu Arg Pro Tyr Gly Pro Arg 940 935 930

Pro Val Val Arg Glu Leu Leu Leu Arg Glu Gly Asn Asp Asp Pro Arg 955 950 945

Thr Gln Val Ala Thr His Arg 965

<210> 3

<211> 148

<212> PRT

<213 > Mycobacterium tuberculosis strain 74 ("ancestral" strain)

<220>

<223> mmpS6 protein

Val Gln Gly Ile Ser Val Thr Gly Leu Val Lys Arg Gly Trp Met Val <400> 3 15 10 1

Leu Val Ala Val Ala Val Ala Val Ala Gly Phe Ser Val Tyr Arg 30 25 20

Leu His Gly Ile Phe Gly Ser His Asp Thr Thr Ser Thr Ala Gly Gly 45 40 35

Val Ala Asn Asp Ile Lys Pro Phe Asn Pro Lys Gln Val Thr Leu Glu 60 55 50

Val Phe Gly Ala Pro Gly Thr Val Ala Thr Ile Asn Tyr Leu Asp Val 75 70 65

Asp Ala Thr Pro Arg Gln Val Leu Asp Thr Thr Leu Pro Trp Ser Tyr

Thr Ile Thr Thr Leu Pro Ala Val Phe Ala Asn Val Val Ala Gln 110 105 100

Gly Asp Ser Asn Ser Ile Gly Cys Arg Ile Thr Val Asn Gly Val Val 125 120 115

Lys Asp Glu Arg Ile Val Asn Glu Val Arg Ala Tyr Thr Phe Cys Leu 140 135 130

Asp Lys Ser Ser 145

<210> 4

<211> 2153

<212> DNA <213> Mycobacterium tuberculosis strain 74 ("ancestral" strain)

<220>

<223> Sequence specifically deleted in "modern" strains of Mycobacterium tuberculosis

```
ctggttgccg tggcggtggt ggcggtcgcg ggattcagcg tctatcggtt gcacggcatc 60
ttcggctcgc acgacaccac ctcgaccgcc ggtggtgtcg cgaacgacat caagccgttc 120
aaccccaaac aggtaaccct cgaggtcttt ggcgctcccg gaaccgtggc aacgatcaat 180
tatctggacg tggatgccac acctcggcaa gtcctggaca cgaccctgcc gtggtcatac 240
acgatcacga cgaccctgcc cgcggtcttc gccaatgttg tcgcgcaagg cgacagcaat 300
tccatcggct gccgcatcac cgtcaacggt gtagtcaagg acgaaaggat cgtcaacgaa 360
gtgcgcgcct ataccttctg cctcgacaag tcctcatgag caaccaccac cgcccgcggc 420
cttggttgcc gcacaccatc cgacggcttt cgttgccgat cttgctgttt tgggtgggtg 480
tggccgccat aaccaatgcc gccgtgccgc aattggaggt ggtcggggag gcgcataacg 540
tcgcacagag ctccccggat gacccgtcgc tgcaggcgat gaaacgcatc ggcaaggtgt 600
tccacgagtt cgattccgac agtgcggcca tgatcgtctt ggaaggcgat aagccgctcg 660
gcaacgacgc ccaccggttc tacgacaccc tgctccgcaa cctttcaaac gacaccaaac 720
acgtcgagca cgttcaggac ttctggggcg atccgctgac cgcggccggc tcgcaaagca 780
ccgacggcaa agccgcctac gttcaggtct atctcgccgg caaccaaggc gaggcgttgt 840
caatcgagtc cgtcgacgcg gtgcgcgaca tcgtcgccca tacgccacca ccggccgggg 900
tcaaggccta cgtcaccggc gcggccccgc tcatggccga tcagtttcag gtgggcagca 960
aaggaaccgc gaaagttacc gggataactc tggttgtgat cgcggtgatg ttgctcttcg 1020
tataccettc cetcetcacc ategiccted tectatcac egitcitatt gagitegice 1080
cggcccgcgg gatcgtcgct tttctcggaa acgccggggt aatcgggctg tcgacatact 1140
cgacgaatct gctcacacta ttggtaatcg cggcgggcac agactacgcg atttttgtcc 1200
tcggccgcta tcacgaggcg cgctacgccg cacaggatcg ggaaacggcc ttctacacga 1260
tgtatcgcgg gaccgcccac gtcgtcttgg gctcgggtct gaccgttgcc ggcgcggtgt 1320
attgcctgag ctttacccgg ctaccctatt ttcaaagcct gggtattccc gcctcgatag 1380
gggtgatgat tgcgttggca gccgcgctca gcctggcccc atccgtgctc atcttgggca 1440
gtcgtttcgg ttgtttcgaa cccaagcgca ggatgaggac caggggatgg cggcgcatcg 1500
gcacggccat cgtgcgttgg ccgggaccca tcctggcagt ggcgtgcgca attgcggtgg 1560
tgggtctgct cgcgctgccg ggatacaaaa cgagctacga cgctcgctat tacatgcccg 1620
ccaccgcccc ggccaatatt ggctacatgg ccgcggagcg acattttccc caagcgcggc 1680
tgaatcccga actactgatg atcgagacgg atcacgatat gcgcaatccg gccgacatgc 1740
tcatcttgga taggatcgcc aaggctgtct tccatctgcc cggcataggg ctggtgcagg 1800
ccatgacccg gccgctagga accccgattg accacagctc gataccgttt cagatcagca 1860
tgcaaagcgt cggccagatt cagaatctca agtatcagag ggaccgagca gccgacttgc 1920
tgaagcaggc cgaagagctg gggaagacga tcgaaatctt gcagcgccaa tatgccctac 1980
agcaggaact cgcggccgct actcacgagc aagccgaaag ctttcaccaa acgatcgcca 2040
cggtaaacga actgcgagat aggatcgcca atttcgacga tttcttcagg ccgattcgta 2100
gttactttta ctgggaaaag cactgctacg atatcccgag ctgctgggcg ctg
<210> 5
<211> 2904
<212> DNA
<213> Mycobacterium complex
<220>
<223> mmpL6 coding sequence and protein
<220>
<221> CDS
<222> (1)..(2901)
<400> 5
atg age aac cac cac cgc ccg cgg cct tgg ttg ccg cac acc atc cga
                                                                  48
Met Ser Asn His His Arg Pro Arg Pro Trp Leu Pro His Thr Ile Arg
                                     10
                                                         15
                  5
 1
egg ctt teg ttg eeg ate ttg etg ttt tgg gtg ggt gtg gee gee ata
                                                                  96
Arg Leu Ser Leu Pro Ile Leu Leu Phe Trp Val Gly Val Ala Ala Ile
             20
                                 25
                                                     30
acc aat gcc gcc gtg ccg caa ttg gag gtg gtc ggg gag gcg cat aac
                                                                  144
```

<400> 4

| Thr Asn Ala Ala Val Pro Gln Leu Glu Val Val Gly Glu Ala His Asn<br>45                                                                                                                                                                                                                                                                                                                                                           | -        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| gtc gca cag agc tcc ccg gat gac ccg tcg ctg cag gcg atg and og<br>Val Ala Gln Ser Ser Pro Asp Asp Pro Ser Leu Gln Ala Met Lys Arg<br>50                                                                                                                                                                                                                                                                                         | 192      |
| atc ggc aag gtg ttc cac gag ttc gat tcc gac agt gcg gcc acg acc agt gcg gcc acg atc ggc agt gcg gcc acg acc acg acc agt gcg gcc acg acc acg acc agt gcg gcc acg acc acc | 240      |
| gtc ttg gaa ggc gat aag ccg ctc ggc aac gac gcc cac cgg ttc tac<br>Val Leu Glu Gly Asp Lys Pro Leu Gly Asn Asp Ala His Arg Phe Tyr<br>90                                                                                                                                                                                                                                                                                        | 288      |
| gac acc ctg ctc cgc aac ctt tca aac gac acc aaa cac gtc gag cac<br>Asp Thr Leu Leu Arg Asn Leu Ser Asn Asp Thr Lys His Val Glu His<br>100                                                                                                                                                                                                                                                                                       | 336      |
| gtt cag gac ttc tgg ggc gat ccg ctg acc gcg gcc ggc tcg caa agc                                                                                                                                                                                                                                                                                                                                                                 | 384      |
| Val Gln Asp Phe Trp Gly Asp Pro Leu Thr Ala Ala Gly Ser Gln Ser<br>125                                                                                                                                                                                                                                                                                                                                                          |          |
| acc gac ggc aaa gcc gcc tac gtt cag gtc tat ctc gcc ggc aac caa<br>Thr Asp Gly Lys Ala Ala Tyr Val Gln Val Tyr Leu Ala Gly Asn Gln<br>130                                                                                                                                                                                                                                                                                       | 432      |
| ggc gag gcg ttg tca atc gag tcc gtc gac gcg gtg cgc gac atc gtc<br>Gly Glu Ala Leu Ser Ile Glu Ser Val Asp Ala Val Arg Asp Ile Val<br>150                                                                                                                                                                                                                                                                                       | 480      |
| gcc cat acg cca ccg gcc ggg gtc aag gcc tac gtc acc ggc gcg Ala His Thr Pro Pro Pro Ala Gly Val Lys Ala Tyr Val Thr Gly Ala  165                                                                                                                                                                                                                                                                                                | 528      |
| gcc ccg ctc atg gcc gat cag ttt cag gtg ggc agc aaa gga acc gcg<br>Ala Pro Leu Met Ala Asp Gln Phe Gln Val Gly Ser Lys Gly Thr Ala<br>180                                                                                                                                                                                                                                                                                       | 576      |
| aaa gtt acc ggg ata act ctg gtt gtg atc gcg gtg atg ttg ctc ttc<br>Lys Val Thr Gly Ile Thr Leu Val Val Ile Ala Val Met Leu Leu Phe<br>195                                                                                                                                                                                                                                                                                       | 624      |
| gta tac cgt tcc gtc acc atg gtc ctg gtg ctt atc acg gtt ctt Val Tyr Arg Ser Val Val Thr Met Val Leu Val Leu Ile Thr Val Leu 210 210                                                                                                                                                                                                                                                                                             | 672      |
| att gag ttg gcc gcg gcc cgc ggg atc gtc gct ttt ctc gga aac gcc<br>Ile Glu Leu Ala Ala Arg Gly Ile Val Ala Phe Leu Gly Asn Ala<br>235 230                                                                                                                                                                                                                                                                                       | 720      |
| ggg gta atc ggg ctg tcg aca tac tcg acg aat ctg ctc aca cta ttg<br>Gly Val Ile Gly Leu Ser Thr Tyr Ser Thr Asn Leu Leu Thr Leu Leu<br>255                                                                                                                                                                                                                                                                                       | 768<br>L |
| gta atc gcg gcg ggc aca gac tac gcg att ttt gtc ctc ggc cgc tat<br>Val Ile Ala Ala Gly Thr Asp Tyr Ala Ile Phe Val Leu Gly Arg Tyr<br>260                                                                                                                                                                                                                                                                                       | 816      |
| cac gag gcg cgc tac gcc gca cag gat cgg gaa acg gcc ttc tac acg                                                                                                                                                                                                                                                                                                                                                                 | g 864    |

| His (             |                   | Ala<br>275        | Arg                | Tyr                  | Ala i                |                   | Gln<br>280        | Asp               | Arg                 | Glu                | Thr                | Ala<br>285        | Phe                   | Tyr                | Thr                   |      |
|-------------------|-------------------|-------------------|--------------------|----------------------|----------------------|-------------------|-------------------|-------------------|---------------------|--------------------|--------------------|-------------------|-----------------------|--------------------|-----------------------|------|
| atg<br>Met        | tat<br>Tyr<br>290 | cgc<br>Arg        | Gly<br>333         | acc<br>Thr           | Ala :                | cac<br>His<br>295 | gtc<br>Val        | gtc<br>Val        | ttg<br>Leu          | ggc<br>Gly         | tcg<br>Ser<br>300  | ggt<br>Gly        | ctg<br>Leu            | acc<br>Thr         | gtt<br>Val            | 912  |
| gcc<br>Ala<br>305 | ggc               | gcg<br>Ala        | gtg<br>Val         | Tyr                  | tgc<br>Cys<br>310    | ctg<br>Leu        | agc<br>Ser        | ttt<br>Phe        | acc<br>Thr          | cgg<br>Arg<br>315  | cta<br>Leu         | ccc<br>Pro        | tat<br>Tyr            | ttt<br>Phe         | caa<br>Gln<br>320     | 960  |
| agc<br>Ser        | ctg<br>Leu        | ggt<br>Gly        | att<br>Ile         | ccc<br>Pro<br>325    | gcc<br>Ala           | tcg<br>Ser        | ata<br>Ile        | ggg<br>ggg        | gtg<br>Val<br>330   | atg<br>Met         | att<br>Ile         | gcg<br>Ala        | ttg<br>Leu            | gca<br>Ala<br>335  | gcc<br>Ala            | 1008 |
| gcg<br>Ala        | ctc<br>Leu        | agc<br>Ser        | ctg<br>Leu<br>340  | gcc<br>Ala           | cca<br>Pro           | tcc<br>Ser        | gtg<br>Val        | ctc<br>Leu<br>345 | atc<br>Ile          | ttg<br>Leu         | Gly                | agt<br>Ser        | cgt<br>Arg<br>350     | ttc<br>Phe         | ggt<br>Gly            | 1056 |
| tgt<br>Cys        | ttc<br>Phe        | gaa<br>Glu<br>355 | ccc<br>Pro         | aag<br>Lys           | cgc<br>Arg           | agg<br>Arg        | atg<br>Met<br>360 | agg<br>Arg        | acc<br>Thr          | agg<br>Arg         | gga<br>Gly         | tgg<br>Trp<br>365 | cgg                   | cgc<br>Arg         | atc<br>Ile            | 1104 |
| ggc               | acg<br>Thr<br>370 | gcc<br>Ala        | atc<br>Ile         | gtg<br>Val           | cgt<br>Arg           | tgg<br>Trp<br>375 | ccg<br>Pro        | gga<br>Gly        | ccc<br>Pro          | atc<br>Ile         | ctg<br>Leu<br>380  | Ald               | gtg<br>Val            | gcg<br>Ala         | tgc<br>Cys            | 1152 |
| gca<br>Ala<br>385 | att<br>Ile        | gcg<br>Ala        | gtg<br>Val         | gtg<br>Val           | ggt<br>Gly<br>390    | ctg<br>Leu        | ctc<br>Leu        | gcg<br>Ala        | ctg<br>Leu          | ccg<br>Pro<br>395  | GTĀ                | tac<br>Tyr        | aaa<br>Lys            | acg<br>Thr         | agc<br>Ser<br>400     | 1200 |
| tac<br>Tyr        | gac<br>Asp        | gct<br>Ala        | cgc<br>Arg         | tat<br>Tyr<br>405    | Tyr                  | atg<br>Met        | ccc<br>Pro        | gcc<br>Ala        | acc<br>Thr<br>410   | AT5                | e ccg              | gcc<br>Ala        | aat<br>Asr            | att<br>11e<br>415  | ggc<br>Gly            | 1248 |
| tac<br>Tyr        | atg<br>Met        | gcc               | gcg<br>Ala<br>420  | Glu                  | cga<br>Arg           | cat<br>His        | ttt<br>Phe        | ccc<br>Pro        | GIn                 | gcg<br>Ala         | g cgg              | g cto             | g aat<br>1 Asi<br>430 | 1 PIC              | gaa<br>Glu            | 1296 |
| cta<br>Leu        | ctg<br>Lev        | ato<br>Met        | : Ile              | gag<br>Glu           | acg<br>Thr           | gat<br>Asp        | cac<br>His        | s Asl             | ato<br>Met          | g cgo              | c aat              | n Pro             | 7 241                 | c gad<br>a Asj     | c atg<br>p Met        | 1344 |
| ctc<br>Leu        | atc<br>11e<br>450 | e Lei             | g gat<br>1 Asp     | agg<br>Arg           | g ato<br>g Ile       | gco<br>Ala<br>455 | Ly:               | g gct<br>s Ala    | a va.               | L Pn               | c ca<br>e Hi<br>46 | s ne              | g cc<br>u Pr          | c gg<br>o Gl       | c ata<br>y Ile        | 1392 |
| 999<br>Gly<br>465 | , Lei             | g gtg<br>1 Va     | g caq<br>l Gli     | g gco<br>n Ala       | a to<br>a Met<br>470 | Thi               | c cgg             | g ccq<br>g Pro    | g cta               | a gg<br>u Gl<br>47 | <b>А</b> ди        | c cc<br>r Pr      | g at<br>o Il          | t ga<br>e As       | c cac<br>p His<br>480 | 1440 |
| ago<br>Ser        | tc;<br>Se:        | g at              | a cc               | g tti<br>o Pho<br>48 | e Gli                | g ato             | c ag<br>e Se      | c at              | g ca<br>t Gl:<br>49 | n se               | c gt<br>r Va       | c gg<br>1 Gl      | c ca<br>y Gl          | g at<br>n Il<br>49 | t cag<br>e Gln        | 1488 |
| aat<br>Asr        | t ct<br>n Le      | c aa<br>u Ly      | g ta<br>s Ty<br>50 | r Gl                 | g agg                | g ga<br>g As      | c cg<br>p Ar      | g AI              | a gc<br>a Al<br>5   | a As               | c tt<br>p Le       | g ct<br>eu Le     | g aa<br>u Ly<br>5]    | 5 01               | ng gcc<br>n Ala       | 1536 |
| gaa               | a ga              | g ct              | g gg               | g aa                 | g ac                 | g at              | c ga              | a.at              | c tt                | g ca               | g cg               | ge e              | a ta                  | at go              | cc cta                | 1584 |

| Glu Glu Leu Gly Lys Thr Ile Glu Ile Leu Gln Arg Gln Tyr Ala Leu<br>525                                                                             |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| cag cag gaa ctc gcg gcc gct act cac gag caa gcc gaa agc ttt cac<br>Gln Gln Glu Leu Ala Ala Ala Thr His Glu Gln Ala Glu Ser Phe His<br>530          | 1632 |
| caa acg atc gcc acg gta aag gaa ctg cga gat agg atc gcc aat ttc<br>Gln Thr Ile Ala Thr Val Lys Glu Leu Arg Asp Arg Ile Ala Asn Phe<br>550 555 5.60 | 1680 |
| gac gat ttc ttc agg ccg att cgt agt tac ttt tac tgg gaa aag cac<br>Asp Asp Phe Phe Arg Pro Ile Arg Ser Tyr Phe Tyr Trp Glu Lys His<br>575          | 1728 |
| tgc tac gat atc ccg agc tgc tgg gcg ctg aga tcc gtc ttt gac acg<br>Cys Tyr Asp Ile Pro Ser Cys Trp Ala Leu Arg Ser Val Phe Asp Thr<br>580          | 1776 |
| atc gac ggt atc gac caa ctc ggc gag cag ctg gcc agc gtg acc gta<br>Ile Asp Gly Ile Asp Gln Leu Gly Glu Gln Leu Ala Ser Val Thr Val<br>595 600 605  | 1824 |
| acc ttg gac aag ttg gct gcg atc cag cct caa ttg gtg gcg ctg cta<br>Thr Leu Asp Lys Leu Ala Ala Ile Gln Pro Gln Leu Val Ala Leu Leu<br>610 615      | 1872 |
| cca gac gag atc gcc agc cag cag atc aat cgg gaa ctg gcg ctg gct<br>Pro Asp Glu Ile Ala Ser Gln Gln Ile Asn Arg Glu Leu Ala Leu Ala<br>635 630      | 1920 |
| aac tac gcc acc atg tcc ggg atc tat gcc cag acg gcg gcc ttg atc<br>Asn Tyr Ala Thr Met Ser Gly Ile Tyr Ala Gln Thr Ala Ala Leu Ile<br>655          | 1968 |
| gaa aac gct gcc gcc atg gga caa gcc ttt gac gcc gcc aag aac gac<br>Glu Asn Ala Ala Met Gly Gln Ala Phe Asp Ala Ala Lys Asn Asp<br>660 665          | 2016 |
| gac tcc ttc tat ctg ccg ccg gag gct ttt gac aac cca gat ttc cag<br>Asp Ser Phe Tyr Leu Pro Pro Glu Ala Phe Asp Asn Pro Asp Phe Gln<br>675          | 2064 |
| cgc ggc ctg aaa ttg ttc ctg tcg gca gac ggt aag gcg gct cgg atg<br>Arg Gly Leu Lys Leu Phe Leu Ser Ala Asp Gly Lys Ala Ala Arg Met<br>690 695      | 2112 |
| atc atc tcc cat gaa ggc gat ccc gcc acc ccc gaa ggc att tcg cat  Ile Ile Ser His Glu Gly Asp Pro Ala Thr Pro Glu Gly Ile Ser His  715  720         | 2160 |
| atc gac gcg atc aag cag gcg gcc cac gag gcc gtg aag ggc act ccc<br>Ile Asp Ala Ile Lys Gln Ala Ala His Glu Ala Val Lys Gly Thr Pro<br>735          | 2208 |
| atg gcg ggt gct ggg atc tat ctg gcc ggc acg gcc gcc acc ttc aag<br>Met Ala Gly Ala Gly Ile Tyr Leu Ala Gly Thr Ala Ala Thr Phe Lys<br>740          | 2256 |
| gac att caa gac ggc gcc acc tac gac ctc ctg atc gcc gga ata gcc<br>Asp Ile Gln Asp Gly Ala Thr Tyr Asp Leu Leu Ile Ala Gly Ile Ala                 | 2304 |

|                           | WO (             | 3/070             | 981               |                   |            |            |                   |                   |                   |            |                 |                   |                   |                   | PCT/IB03/00986 |
|---------------------------|------------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|-----------------|-------------------|-------------------|-------------------|----------------|
|                           | 755              |                   |                   |                   |            | 760        |                   |                   |                   |            | 765             |                   |                   |                   |                |
| gcg ctg<br>Ala Leu<br>770 | Ser              |                   |                   |                   |            |            |                   |                   |                   |            |                 |                   |                   |                   | 2352           |
| gtt gcg<br>Val Ala<br>785 |                  |                   |                   |                   |            |            |                   |                   |                   |            |                 |                   |                   |                   | 2400           |
| tct ttt<br>Ser Phe        |                  |                   |                   |                   |            |            |                   |                   |                   |            |                 |                   |                   |                   | 2448           |
| ttg tac<br>Leu Tyr        |                  |                   |                   |                   |            |            |                   |                   |                   |            |                 |                   |                   |                   | 2496           |
| gga tcg<br>Gly Ser        |                  |                   |                   |                   |            |            |                   |                   |                   |            |                 |                   |                   |                   | 2544           |
| ggt gca<br>Gly Ala<br>850 | Gly              |                   |                   |                   |            |            |                   |                   |                   |            |                 |                   |                   |                   | 2592           |
| ggg gtg<br>Gly Val<br>865 | gtg<br>Val       | acc<br>Thr        | gct<br>Ala        | gcc<br>Ala<br>870 | ggc<br>Gly | ctg<br>Leu | gtg<br>Val        | ttc<br>Phe        | gcc<br>Ala<br>875 | gcc<br>Ala | act<br>Thr      | atg<br>Met        | tct               | tcg<br>Ser<br>880 | 2640           |
| ttc gtc<br>Phe Val        | ttc<br>Phe       | agt<br>Ser        | gat<br>Asp<br>885 | ttg<br>Leu        | cgg<br>Arg | gtc<br>Val | ctc<br>Leu        | ggt<br>Gly<br>890 | cag<br>Gln        | atc<br>Ile | Gl <sup>A</sup> | acc<br>Thr        | acc<br>Thr<br>895 | att<br>Ile        | 2688           |
| ggt ctt<br>Gly Leu        | gly<br>ggg       | ctg<br>Leu<br>900 | ctg<br>Leu        | ttc<br>Phe        | gac<br>Asp | acg<br>Thr | ctg<br>Leu<br>905 | gtg<br>Val        | gtg<br>Val        | cgc<br>Arg | gcg<br>Ala      | ttc<br>Phe<br>910 | atg<br>Met        | acc<br>Thr        | 2736           |
| ccg tcc<br>Pro Sei        |                  |                   |                   | _                 |            |            |                   |                   |                   |            |                 |                   |                   |                   | 2784           |
| gtg cgc<br>Val Arg<br>930 | g Pro            |                   |                   |                   |            |            |                   |                   |                   |            |                 |                   |                   |                   | 2832           |
| ccc gtc<br>Pro Val<br>945 |                  |                   |                   |                   | Leu        |            |                   |                   |                   | Asn        |                 |                   |                   |                   | 2880           |
| act cad                   | -                |                   |                   | His               |            |            | ·                 |                   |                   |            | ٠.              |                   |                   |                   | 2904           |
| <210> (211> ) (212> )     | 967 <sup>*</sup> | ·                 |                   |                   | 7          |            |                   |                   |                   |            |                 |                   |                   |                   |                |

<220>

<213> Mycobacterium complex

<223> mmpL6 protein

Thr Asn Ala Ala Val Pro Gln Leu Glu Val Val Gly Glu Ala His Asn 35 40 45

Val Ala Gln Ser Ser Pro Asp Asp Pro Ser Leu Gln Ala Met Lys Arg
50 55

Ile Gly Lys Val Phe His Glu Phe Asp Ser Asp Ser Ala Ala Met Ile 65 70 75 80

Val Leu Glu Gly Asp Lys Pro Leu Gly Asn Asp Ala His Arg Phe Tyr 85

Asp Thr Leu Leu Arg Asn Leu Ser Asn Asp Thr Lys His Val Glu His
100 105 110

Val Gln Asp Phe Trp Gly Asp Pro Leu Thr Ala Ala Gly Ser Gln Ser 115 120 125

Thr Asp Gly Lys Ala Ala Tyr Val Gln Val Tyr Leu Ala Gly Asn Gln 130

Gly Glu Ala Leu Ser Ile Glu Ser Val Asp Ala Val Arg Asp Ile Val 145 150 150

Ala His Thr Pro Pro Pro Ala Gly Val Lys Ala Tyr Val Thr Gly Ala 165

Ala Pro Leu Met Ala Asp Gln Phe Gln Val Gly Ser Lys Gly Thr Ala 180 185 190

Lys Val Thr Gly Ile Thr Leu Val Val Ile Ala Val Met Leu Leu Phe 195 200 205

Val Tyr Arg Ser Val Val Thr Met Val Leu Val Leu Ile Thr Val Leu 210 220

Ile Glu Leu Ala Ala Ala Arg Gly Ile Val Ala Phe Leu Gly Asn Ala 225 230 230 235

Gly Val Ile Gly Leu Ser Thr Tyr Ser Thr Asn Leu Leu Thr Leu Leu 255

Val Ile Ala Ala Gly Thr Asp Tyr Ala Ile Phe Val Leu Gly Arg Tyr 260 270

His Glu Ala Arg Tyr Ala Ala Gln Asp Arg Glu Thr Ala Phe Tyr Thr 275 280 285

Met Tyr Arg Gly Thr Ala His Val Val Leu Gly Ser Gly Leu Thr Val 290 295

|   | Ala<br>305 | Gly      | ΙA          | la         | Val        | Tyr        | Cys<br>310 | Leu        | Ser         | Phe          | Thr         | Arg<br>315  | Leu         | Pro        | Tyr         | Phe         | e G<br>3  | ln<br>20   |
|---|------------|----------|-------------|------------|------------|------------|------------|------------|-------------|--------------|-------------|-------------|-------------|------------|-------------|-------------|-----------|------------|
|   | Ser        | Let      | ı G         | lly        | Ile        | Pro<br>325 | Ala        | Ser        | Ile         | Gly          | Val<br>330  | Met         | Ile         | Ala        | Leu         | Ala<br>33!  | a A<br>5  | la         |
|   | Ala        | Lei      | ı S         | Ser        | Leu<br>340 | Ala        | Pro        | Ser        | Val         | Leu<br>345   | Ile         | Leu         | Gly         | Ser        | Arg<br>350  | Pho         | e G       | ly         |
|   | Cys        | Ph       |             | 31u<br>355 | Pro        | Lys        | Arg        | Arg        | Met<br>360  | Arg          | Thr         | Arg         | Gly         | Trp<br>365 | Arg         | J Ar        | g I       | le         |
|   | Gly        | Th       |             | Ala        | Ile        | Val        | Arg        | Trp<br>375 | Pro         | Gly          | Pro         | Ile         | Leu<br>380  | Ala        | . Val       | l Al        | a C       | Cys        |
|   | Ala<br>385 | Il       | e A         | Ala        | Val        | Val        | Gly<br>390 | Leu        | Leu         | Ala          | Leu         | Pro         | Gly         | Tyr        | Ly:         | s Th        | r S       | Ser<br>100 |
|   | Tyr        | As       | p i         | Ala        | Arg        | Tyr<br>405 |            | Met        | Pro         | Ala          | Thr<br>410  | Ala         | Pro         | Ala        | a Ası       | n Il<br>41  | e (       | Gly        |
|   | Tyr        | Me       | t 2         | Ala        | Ala<br>420 |            | Arg        | His        | Phe         | Pro<br>425   | Gln         | Ala         | a Arg       | J Lei      | 1 As:<br>43 | n Pr<br>O   | TO (      | Glu        |
|   | I eu       | Le       |             | Met<br>435 |            | Glu        | Thr        | Asp        | His<br>440  | Asp          | Met         | . Arg       | g Asr       | 1 Pro      | o Al<br>5   | a As        | sp :      | Met        |
|   | Leu        | 1]<br>45 |             | Leu        | Asp        | Arg        | ; Ile      | Ala<br>455 | Lys         | Ala          | · Val       | Phe         | e His       | s Le       | u Pr        | o G         | Ly        | Ile        |
| • | Gly<br>465 |          | eu          | Val        | Glr        | n Ala      | Met<br>470 |            | arg         | g Pro        | Le          | 1 Gly<br>47 | y Ťh:<br>5  | r Pr       | o Il        | e A         | sp        | His<br>480 |
|   | Sei        | . Se     | er          | Ile        | e Pro      | Phe<br>48! |            | ı Ile      | e Ser       | . Met        | Gl:         | n Se:       | r Va        | l Gl       | y Gl        | n I<br>4    | le<br>95  | Gln        |
|   | Ası        | ı L      | eu          | ГÀ         | 500        |            | n Arg      | g As       | o Arg       | g Ala<br>50! | a Al        | a As        | p Le        | u Le       | u Ly<br>51  | /s G<br>LO  | ln        | Ala        |
|   | Glı        | ı G      | lu          | Le:        |            | у          | s Th       | r Il       | e Gl:<br>52 | ı Ile        | e Le        | u Gl        | n Ar        | g Gl<br>52 | .n Ty<br>:5 | yr A        | la        | Leu        |
|   | Gl:        |          | ln<br>30    | Glı        | ı Le       | u Al       | a Al       | a Al<br>53 | a Th        | r Hi         | s Gl        | u Gl        | n Al<br>54  | a G]<br>0  | u Se        | er F        | he        | His        |
|   | Gl<br>54   |          | hr          | Il         | e Al       | a Th       | r Va<br>55 |            | s Gl        | u Le         | u Ar        | g As<br>55  | sp Ar<br>55 | g I        | le A        | la <i>P</i> | sn        | Phe<br>560 |
|   | As         | pΑ       | sp          | Ph         | e Ph       | e Ar<br>56 | g Pr<br>5  | o Il       | e Ar        | g Se         | r Ty<br>57  | r Pi        | ne Ty       | /r T       | rp G        | lu I        | ys<br>575 | His        |
|   | Су         | s 1      | Эr          | As         | p Il<br>58 |            | o Se       | er Cy      | s Tr        | p Al<br>58   | .a Le<br>85 | eu Ai       | rg Se       | er V       | al P<br>5   | he 1<br>90  | /sp       | Thr        |
|   | IJ         | e P      | /sp         | Gl<br>59   |            | Le As      | sp G]      | ın Le      | eu Gl<br>60 | .y G]<br>00  | lu G        | ln L        | eu A        | la S<br>6  | er V<br>05  | 'al '       | Thr       | · Val      |
|   | Th         |          | ວ່ອນ<br>510 |            | p Ly       | ys Le      | eu A.      | la A<br>6: | la I]<br>15 | le G         | ln P        | ro G        | ln L<br>6   | eu V<br>20 | al A        | la          | Lev       | Leu        |
|   | Di         |          | A cr        | പ പ്രി     | u T        | le A       | la Se      | er G       | ln G        | ln I         | le A        | sn A        | rg G        | lu I       | eu I        | lla         | Leı       | ı Ala      |

625 630 635 640

Asn Tyr Ala Thr Met Ser Gly Ile Tyr Ala Gln Thr Ala Ala Leu Ile 655

Glu Asn Ala Ala Met Gly Gln Ala Phe Asp Ala Ala Lys Asn Asp 660 665

Asp Ser Phe Tyr Leu Pro Pro Glu Ala Phe Asp Asn Pro Asp Phe Gln 675

Arg Gly Leu Lys Leu Phe Leu Ser Ala Asp Gly Lys Ala Ala Arg Met 690 695

Ile Ile Ser His Glu Gly Asp Pro Ala Thr Pro Glu Gly Ile Ser His 720

Ile Asp Ala Ile Lys Gln Ala Ala His Glu Ala Val Lys Gly Thr Pro
735

Met Ala Gly Ala Gly Ile Tyr Leu Ala Gly Thr Ala Ala Thr Phe Lys
740 745

Asp Ile Gln Asp Gly Ala Thr Tyr Asp Leu Leu Ile Ala Gly Ile Ala 755

Ala Leu Ser Leu Ile Leu Leu Ile Met Met Ile Ile Thr Arg Ser Leu 770 780

Val Ala Ala Leu Val Ile Val Gly Thr Val Ala Leu Ser Leu Gly Ala 785

Ser Phe Gly Leu Ser Val Leu Val Trp Gln His Leu Leu Gly Ile Gln 815

Leu Tyr Trp Ile Val Leu Ala Leu Ala Val Ile Leu Leu Leu Ala Val 825 830

Gly Ser Asp Tyr Asn Leu Leu Leu Ile Ser Arg Phe Lys Glu Glu Ile 835

Gly Ala Gly Leu Asn Thr Gly Ile Ile Arg Ala Met Ala Gly Thr Gly 850

Gly Val Val Thr Ala Ala Gly Leu Val Phe Ala Ala Thr Met Ser Ser 875

Phe Val Phe Ser Asp Leu Arg Val Leu Gly Gln Ile Gly Thr Thr Ile 895

Gly Leu Gly Leu Leu Phe Asp Thr Leu Val Val Arg Ala Phe Met Thr 900 905

Pro Ser Ile Ala Val Leu Leu Gly Arg Trp Phe Trp Trp Pro Gln Arg 915

Val Arg Pro Arg Pro Ala Ser Arg Met Leu Arg Pro Tyr Gly Pro Arg 930 935 940

Pro Val Val Arg Glu Leu Leu Leu Arg Glu Gly Asn Asp Asp Pro Arg

955

960

Thr Gln Val Ala Thr His Arg 965

950

| <210<br><211<br><212<br><213  | > 17.<br>> DN.   | A                 | cter              | ium (            | comp.             | lex               |                   |                   |                  |                   |                  |                   |                   |                  |                   |     |
|-------------------------------|------------------|-------------------|-------------------|------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|------------------|-------------------|-------------------|------------------|-------------------|-----|
| <220<br><221<br><222          | > CD             | _                 | 1758              | )                |                   |                   |                   |                   |                  |                   | •                |                   |                   |                  | •                 |     |
| <220<br><223                  |                  | рЬб               | trun              | cate             | d co              | ding              | seq               | uenc              | e an             | d pr              | otei             | n                 |                   |                  |                   | ٠   |
| <400<br>atg<br>Met<br>1       | acc              | aac<br>Asn        | cac<br>His        | cac<br>His<br>5  | cgc<br>Arg        | ccg<br>Pro        | cgg<br>Arg        | cct<br>Pro        | tgg<br>Trp<br>10 | ttg<br>Leu        | ccg<br>Pro       | cac<br>His        | acc<br>Thr        | atc<br>Ile<br>15 | cga<br>Arg        | 48  |
| cgg<br>Arg                    | ctt<br>Leu       | tcg<br>Ser        | ttg<br>Leu<br>20  | ccg<br>Pro       | atc<br>Ile        | ttg<br>Leu        | ctg<br>Leu        | ttt<br>Phe<br>25  | tgg<br>Trp       | gtg<br>Val        | ggt<br>Gly       | gtg<br>Val        | gcc<br>Ala<br>30  | gcc<br>Ala       | ata<br>Ile        | 96  |
| acc<br>Thr                    | aat<br>Asn       | gcc<br>Ala<br>35  | gcc<br>Ala        | gtg<br>Val       | ccg<br>Pro        | caa<br>Gln        | ttg<br>Leu<br>40  | gag<br>Glü        | gtg<br>Val       | gtc<br>Val        | Gly<br>999       | gag<br>Glu<br>45  | gcg<br>Ala        | cat<br>His       | aac<br>Asn        | 144 |
| gtc<br>Val                    | gca<br>Ala<br>50 | cag<br>Gln        | agc<br>Ser        | tcc<br>Ser       | ccg<br>Pro        | gat<br>Asp<br>55  | gac<br>Asp        | ccg<br>Pro        | tcg<br>Ser       | ctg<br>Leu        | cag<br>Gln<br>60 | gcg<br>Ala        | atg<br>Met        | aaa<br>Lys       | cgc<br>Arg        | 192 |
| atc<br>Ile<br>65              | ggc              | aag<br>Lys        | gtg<br>Val        | ttc<br>Phe       | cac<br>His<br>70  | Glu               | Phe               | gat<br>Asp        | Ser              | gac<br>Asp<br>75  | agt<br>Ser       | gcg<br>Ala        | gcc<br>Ala        | atg<br>Met       | atc<br>İle<br>80  | 240 |
| gtc<br>Val                    | ttg<br>Leu       | gaa<br>Glu        | ggc<br>Gly        | gat<br>Asp<br>85 | aag<br>Lys        | ccg<br>Pro        | ctc<br>Leu        | ggc               | aac<br>Asn<br>90 | gac<br>Asp        | gcc<br>Ala       | cac<br>His        | cgg<br>Arg        | ttc<br>Phe<br>95 | tac<br>Tyr        | 288 |
| gac<br>Asp                    | acc<br>Thr       | ctg<br>Leu        | ctc<br>Leu<br>100 | Arg              | aac<br>Asn        | ctt<br>Leu        | tca<br>Ser        | aac<br>Asn<br>105 | Asp              | acc<br>Thr        | aaa<br>Lys       | cac<br>His        | gtc<br>Val<br>110 | gag<br>Glu       | cac               | 336 |
| gtt<br>Val                    | cag<br>Gln       | gac<br>Asp<br>115 | Phe               | tgg<br>Trp       | ggc               | gat<br>Asp        | ccg<br>Pro<br>120 | Leu               | acc<br>Thr       | gcg               | gcc<br>Ala       | ggc<br>Gly<br>125 | ser               | caa<br>Gln       | agc               | 384 |
| acc<br>Thr                    | gac<br>Asp       | Gly               | : aaa<br>' Lys    | gcc<br>Ala       | gcc<br>Ala        | tac<br>Tyr<br>135 | Val               | cag<br>Gln        | gto<br>Val       | tat<br>Tyr        | cto<br>Lev       | I Ala             | ggc               | aac<br>Asn       | caa<br>Gln        | 432 |
| 990<br>Gl <sub>3</sub><br>145 | / Glu            | g gcg<br>n Ala    | tto<br>Lev        | g tca<br>1 Ser   | atc<br>Ile<br>150 | Glu               | tco<br>Ser        | ggto<br>Val       | gac<br>Asp       | gcg<br>Ala<br>155 | a val            | g cgc<br>L Arg    | gac<br>Asp        | atc<br>Ile       | gtc<br>Val<br>160 | 480 |
| gco                           | cat              | acg               | g cca             | a cca            | a ccg             | g gcc             | . ggg             | g gto             | c aag            | g gco             | c tac            | gto               | acc               | gg               | gcg               | 528 |

| Ala               | His               | Thr               | Pro               | Pro<br>165        | Pro                               | Ala               | Gly               |                   | Lys<br>170        | Ala                   | Tyr                   | Val               | Thr               | Gly<br>175        | Ala                   |      |
|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|-----------------------|------|
| gcc<br>Ala        | ccg<br>Pro        | ctc<br>Leu        | atg<br>Met<br>180 | gcc<br>Ala        | gat<br>Asp                        | cag<br>Gln        | ttt<br>Phe        | cag<br>Gln<br>185 | gtg<br>Val        | ggc<br>Gly            | agc<br>Ser            | тЛг               | gga<br>Gly<br>190 | acc<br>Thr        | gcg<br>Ala            | 576  |
| aaa<br>Lys        | gtt<br>Val        | acc<br>Thr<br>195 | Gly<br>999        | ata<br>Ile        | act<br>Thr                        | ctg<br>Leu        | gtt<br>Val<br>200 | gtg<br>Val        | atc<br>Ile        | gcg<br>Ala            | gtg<br>Val            | atg<br>Met<br>205 | ttg<br>Leu        | ctc<br>Leu        | ttc<br>Phe            | 624  |
| gta<br>Val        | tac<br>Tyr<br>210 | cgt<br>Arg        | tcc<br>Ser        | gtc<br>Val        | gtc<br>Val                        | acc<br>Thr<br>215 | atg<br>Met        | gtc<br>Val        | ctg<br>Leu        | gtg<br>Val            | ctt<br>Leu<br>220     | atc<br>Ile        | acg<br>Thr        | gtt<br>Val        |                       | 672  |
| att<br>Ile<br>225 | gag<br>Glu        | ttg<br>Leu        | gcc<br>Ala        | gcg<br>Ala        | gcc<br>Ala<br>230                 | cgc<br>Arg        | Gly<br>999        | atc<br>Ile        | gtc<br>Val        | gct<br>Ala<br>235     | ttt<br>Phe            | ctc<br>Leu        | gga<br>Gly        | aac<br>Asn        | gcc<br>Ala<br>240     | 720  |
| Gly<br>999        | gta<br>Val        | atc<br>Ile        | Gly<br>333        | ctg<br>Leu<br>245 | tcg<br>Ser                        | aca<br>Thr        | tac<br>Tyr        | tcg<br>Ser        | acg<br>Thr<br>250 | aat<br>Asn            | ctg<br>Leu            | ctc<br>Leu        | aca<br>Thr        | cta<br>Leu<br>255 | ttg<br>Leu            | 768  |
| gta<br>Val        | atc<br>Ile        | gcg<br>Ala        | gcg<br>Ala<br>260 | ggc               | aca<br>Thr                        | gac<br>Asp        | tac<br>Tyr        | gcg<br>Ala<br>265 | att<br>Ile        | ttt<br>Phe            | gtc<br>Val            | ctc<br>Leu        | ggc<br>Gly<br>270 | cgc<br>Arg        | tat<br>Tyr            | 816  |
| cac<br>His        | gag<br>Glu        | gcg<br>Ala<br>275 | cgc<br>Arg        | tac<br>Tyr        | gcc<br>Ala                        | gca<br>Ala        | cag<br>Gln<br>280 | gat<br>Asp        | cgg<br>Arg        | gaa<br>Glu            | acg<br>Thr            | gcc<br>Ala<br>285 | ttc<br>Phe        | tac<br>Tyr        | acg<br>Thr            | 864  |
| atg<br>Met        | tat<br>Tyr<br>290 | Arg               | gly<br>aaa        | acc<br>Thr        | gcc<br>Ala                        | cac<br>His<br>295 | gtc<br>Val        | gtc<br>Val        | ttg<br>Leu        | ggc                   | tcg<br>Ser<br>300     | GTA               | ctg<br>Leu        | acc<br>Thr        | gtt<br>Val            | 912  |
| gcc<br>Ala<br>305 | Gly               | gcg<br>Ala        | gtg<br>Val        | tat<br>Tyr        | tgc<br>Cys<br>310                 | Leu               | agc<br>'Ser       | ttt<br>Phe        | acc<br>Thr        | cgg<br>Arg<br>315     | Leu                   | ccc<br>Pro        | tat<br>Tyr        | ttt<br>Phe        | caa<br>Gln<br>320     | 960  |
| ago<br>Ser        | ctg<br>Leu        | ggt<br>Gly        | att<br>Ile        | ccc<br>Pro<br>325 | Ala                               | Ser               | ata<br>Ile        | Gly               | · Val             | . Met                 | att<br>Ile            | gcg<br>Ala        | ttg<br>Leu        | gca<br>Ala<br>335 | gcc<br>Ala            | 1008 |
| gcg               | g ctc<br>a Leu    | ago<br>Ser        | cto<br>Leu<br>340 | ı Ala             | cca<br>Pro                        | tco<br>Ser        | gtg<br>Val        | cto<br>Lev<br>345 | Ile               | ttg<br>E Lev          | g ggc                 | agt<br>Ser        | cgt<br>Arg<br>350 | l hue             | ggt<br>Gly            | 1056 |
| tgi<br>Cy:        | tto<br>Phe        | gaa<br>Glu<br>355 | Pro               | c aag<br>b Lys    | g cgc<br>Arg                      | agg<br>Arg        | ate<br>Met<br>360 | Arc               | g aco             | agg<br>Arg            | g Gly                 | tgg<br>Trp<br>365 | Arg               | g Cgo             | c atc                 | 1104 |
| Gl;               | c acc<br>y Thi    | c Ala             | ato<br>a Ile      | e gtg             | g cgt<br>L Arg                    | tgg<br>Trg<br>375 | Pro               | g Gly             | e cco             | c ato                 | c cts<br>E Lev<br>380 | ı Ala             | a gtg<br>a Val    | g gcg             | g tgc<br>a Cys        | 1152 |
| gc.<br>Al.<br>38  | a Ile             | c gcg             | g gto<br>a Val    | g gto<br>l Val    | g ggt<br>l Gl <sub>l</sub><br>390 | , Lei             | g cto<br>1 Leu    | e geg             | g ctg<br>a Le     | g ccg<br>u Pro<br>39! | o GTZ                 | a tao             | c aaa<br>r Ly:    | a ac              | g agc<br>r Ser<br>400 | 1200 |
| ta<br>Ty          | c gao<br>r Asj    | c gc              | t cg              | c tat<br>g Ty:    | t tac<br>r Tyl                    | c ato             | g cco             | gco<br>Ala        | c ac<br>a Th      | c gco<br>r Ala        | c cc                  | g gc              | c aa<br>a As:     | t at<br>n Il      | t ggc<br>e Gly        | 1248 |

410 415 405 tac atg gcc gcg gag cga cat ttt ccc caa gcg cgg ctg aat ccc gaa 1296 Tyr Met Ala Ala Glu Arg His Phe Pro Gln Ala Arg Leu Asn Pro Glu 420 425 430 cta ctg atg atc gag acg gat cac gat atg cgc aat ccg gcc gac atg 1344 Leu Leu Met Ile Glu Thr Asp His Asp Met Arg Asn Pro Ala Asp Met 435 440 445 ctc atc ttg gat agg atc gcc aag gct gtc ttc cat ctg ccc ggc ata 1392 Leu Ile Leu Asp Arg Ile Ala Lys Ala Val Phe His Leu Pro Gly Ile 450 455 460 ggg ctg gtg cag gcc atg acc cgg ccg cta gga acc ccg att gac cac 1440 Gly Leu Val Gln Ala Met Thr Arg Pro Leu Gly Thr Pro Ile Asp His 465 470 475 480 age teg ata eeg ttt eag ate age atg caa age gte gge eag att eag 1488 Ser Ser Ile Pro Phe Gln Ile Ser Met Gln Ser Val Gly Gln Ile Gln 495 485 490 aat ctc aag tat cag agg gac cga gca gcc gac ttg ctg aag cag gcc 1536 Asn Leu Lys Tyr Gln Arg Asp Arg Ala Ala Asp Leu Leu Lys Gln Ala 500 505 510 gaa gag ctg ggg aag acg atc gaa atc ttg cag cgc caa tat gcc cta 1584 Glu Glu Leu Gly Lys Thr Ile Glu Ile Leu Gln Arg Gln Tyr Ala Leu 515 520 525 cag cag gaa ctc gcg gcc gct act cac gag caa gcc gaa agc ttt cac 1632 Gln Gln Glu Leu Ala Ala Thr His Glu Gln Ala Glu Ser Phe His 530 535 540 caa acg atc gcc acg gta aag gaa ctg cga gat agg atc gcc aat ttc 1680 Gln Thr Ile Ala Thr Val Lys Glu Leu Arg Asp Arg Ile Ala Asn Phe 545 550 1 555 gac gat ttc ttc agg ccg att cgt agt tac ttt tac tgg gaa aag cac 1728 Asp Asp Phe Phe Arg Pro Ile Arg Ser Tyr Phe Tyr Trp Glu Lys His 565 570 575 tgc tac gat atc ccg agc tgc tgg gcg ctg 1758 Cys Tyr Asp Ile Pro Ser Cys Trp Ala Leu 580 585 <210> 8 <211> 586 <212> PRT <213> Mycobacterium complex <220> . <223> mmpL6 truncated protein <400> 8 Met Ser Asn His His Arg Pro Arg Pro Trp Leu Pro His Thr Ile Arg 1 . 15 10 Arg Leu Ser Leu Pro Ile Leu Leu Phe Trp Val Gly Val Ala Ala Ile 25 30 20

Thr Asn Ala Ala Val Pro Gln Leu Glu Val Val Gly Glu Ala His Asn 35 40 45

- Val Ala Gln Ser Ser Pro Asp Asp Pro Ser Leu Gln Ala Met Lys Arg
  50 55 60
- Ile Gly Lys Val Phe His Glu Phe Asp Ser Asp Ser Ala Ala Met Ile
  65 70 75 80
- Val Leu Glu Gly Asp Lys Pro Leu Gly Asn Asp Ala His Arg Phe Tyr 85 90 95
- Asp Thr Leu Leu Arg Asn Leu Ser Asn Asp Thr Lys His Val Glu His
  100 105 110
- Val Gln Asp Phe Trp Gly Asp Pro Leu Thr Ala Ala Gly Ser Gln Ser 115 120 125
- Thr Asp Gly Lys Ala Ala Tyr Val Gln Val Tyr Leu Ala Gly Asn Gln 130 135 140
- Gly Glu Ala Leu Ser Ile Glu Ser Val Asp Ala Val Arg Asp Ile Val 145 150 155 160
- Ala His Thr Pro Pro Pro Ala Gly Val Lys Ala Tyr Val Thr Gly Ala 165 170 175
- Ala Pro Leu Met Ala Asp Gln Phe Gln Val Gly Ser Lys Gly Thr Ala 180 185 190
- Lys Val Thr Gly Ile Thr Leu Val Val Ile Ala Val Met Leu Leu Phe 195 200 205
- Val Tyr Arg Ser Val Val Thr Met Val Leu Val Leu Ile Thr Val Leu 210 220
- Ile Glu Leu Ala Ala Ala Arg Gly Ile Val Ala Phe Leu Gly Asn Ala 225 230 235 240
- Gly Val Ile Gly Leu Ser Thr Tyr Ser Thr Asn Leu Leu Thr Leu Leu 245 250 255
- Val Ile Ala Ala Gly Thr Asp Tyr Ala Ile Phe Val Leu Gly Arg Tyr 260 265 270
- His Glu Ala Arg Tyr Ala Ala Gln Asp Arg Glu Thr Ala Phe Tyr Thr 275 280 285
- Met Tyr Arg Gly Thr Ala His Val Val Leu Gly Ser Gly Leu Thr Val 290 295 300
- Ala Gly Ala Val Tyr Cys Leu Ser Phe Thr Arg Leu Pro Tyr Phe Gln 305 310 315
- Ser Leu Gly Ile Pro Ala Ser Ile Gly Val Met Ile Ala Leu Ala Ala 325 330 335
- Ala Leu Ser Leu Ala Pro Ser Val Leu Ile Leu Gly Ser Arg Phe Gly 340 345 350

Cys Phe Glu Pro Lys Arg Arg Met Arg Thr Arg Gly Trp Arg Arg Ile Gly Thr Ala Ile Val Arg. Trp Pro Gly Pro Ile Leu Ala Val Ala Cys Ala Ile Ala Val Val Gly Leu Leu Ala Leu Pro Gly Tyr Lys Thr Ser Tyr Asp Ala Arg Tyr Tyr Met Pro Ala Thr Ala Pro Ala Asn Ile Gly Tyr Met Ala Ala Glu Arg His Phe Pro Gln Ala Arg Leu Asn Pro Glu Leu Leu Met Ile Glu Thr Asp His Asp Met Arg Asn Pro Ala Asp Met Leu Ile Leu Asp Arg Ile Ala Lys Ala Val Phe His Leu Pro Gly Ile Gly Leu Val Gln Ala Met Thr Arg Pro Leu Gly Thr Pro Ile Asp His Ser Ser Ile Pro Phe Gln Ile Ser Met Gln Ser Val Gly Gln Ile Gln Asn Leu Lys Tyr Gln Arg Asp Arg Ala Ala Asp Leu Leu Lys Gln Ala Glu Glu Leu Gly Lys Thr Ile Glu Ile Leu Gln Arg Gln Tyr Ala Leu Gln Gln Glu Leu Ala Ala Ala Thr His Glu Gln Ala Glu Ser Phe His Gln Thr Ile Ala Thr Val Lys Glu Leu Arg Asp Arg Ile Ala Asn Phe Asp Asp Phe Phe Arg Pro Ile Arg Ser Tyr Phe Tyr Trp Glu Lys His Cys Tyr Asp Ile Pro Ser Cys Trp Ala Leu <210> 9 <211> 447 <212> DNA · <213> Mycobacterium complex <220> <221> CDS <222> (1)..(444)

<400> 9
gtg cag ggg att tca gtg act ggc ctg gtc aaa cgc ggc tgg atg gtg 48

<223> mmpS6 coding sequence and protein

<220>

PCT/IB03/00986 WO 03/070981

| Val G                        | ln                | Gly               | Ile               | Ser<br>5         | Val              | Thr               | Gly               | Leu               | Val<br>10        | Lys              | Arg               | Gly               | Trp               | Met<br>15        | Val              |     |
|------------------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|-------------------|-------------------|-------------------|------------------|------------------|-----|
| ctg g<br>Leu V               | gtt<br>/al        | gcc<br>Ala        | gtg<br>Val<br>20  | gcg<br>Ala       | gtg<br>Val       | gtg<br>Val        | gcg<br>Ala        | gtc<br>Val<br>25  | gcg<br>Ala       | gga<br>Gly       | ttc<br>Phe        | agc<br>Ser        | gtc<br>Val<br>30  | tat<br>Tyr       | cgg<br>Arg       | 96  |
| ttg o                        | cac               | ggc<br>Gly<br>35  | atc<br>Ile        | ttc<br>Phe       | ggc              | tcg<br>Ser        | cac<br>His<br>40  | gac<br>Asp        | acc<br>Thr       | acc<br>Thr       | tcg<br>Ser        | acc<br>Thr<br>45  | gcc<br>Ala        | ggt<br>Gly       | ggt<br>Gly       | 144 |
| gtc g<br>Val A               | gcg<br>Ala<br>50  | aac<br>Asn        | gac<br>Asp        | atc<br>Ile       | aag<br>Lys       | ccg<br>Pro<br>55  | ttc<br>Phe        | aac<br>Asn        | ccc<br>Pro       | aaa<br>Lys       | cag<br>Gln<br>60  | gta<br>Val        | acc<br>Thr        | ctc<br>Leu       | gag<br>Glu       | 192 |
| gtc t<br>Val 1<br>65         | ttt<br>Phe        | ggc               | gct<br>Ala        | ccc<br>Pro       | gga<br>Gly<br>70 | acc<br>Thr        | gtg<br>Val        | gca<br>Ala        | acg<br>Thr       | atc<br>Ile<br>75 | aat<br>Asn        | tat<br>Tyr        | ctg<br>Leu        | gac<br>Asp       | gtg<br>Val<br>80 | 240 |
| gat g                        | gcc<br>Ala        | aca<br>Thr        | cct<br>Pro        | cgg<br>Arg<br>85 | Gln              | gtc<br>Val        | ctg<br>Leu        | gac<br>Asp        | acg<br>Thr<br>90 | Thr              | ctg<br>Leu        | ccg<br>Pro        | tgg<br>Trp        | tca<br>Ser<br>95 | TAT              | 288 |
| acg<br>Thr                   | atc<br>Ile        | acg<br>Thr        | acg<br>Thr<br>100 | Thr              | ctg<br>Leu       | ccc<br>Pro        | gcg<br>Ala        | gtc<br>Val<br>105 | ttc<br>Phe       | gcc<br>Ala       | aat<br>Asn        | gtt<br>Val        | gtc<br>Val<br>110 | Ala              | caa<br>Gln       | 336 |
| ggc                          | gac<br>Asp        | agc<br>Ser<br>115 | Asn               | tcc<br>Ser       | atc<br>Ile       | ggc               | tgc<br>Cys<br>120 | Arg               | atc<br>Ile       | acc<br>Thr       | gtc<br>Val        | aac<br>Asn<br>125 | . СТУ             | gta<br>Val       | gtc<br>Val       | 384 |
| aag<br>Lys                   | gac<br>Asp<br>130 | Glu               | agg<br>Arg        | ato<br>Ile       | gto<br>Val       | aac<br>Asn<br>135 | Glu               | gtg<br>Val        | cgc<br>Arg       | gcc<br>Ala       | tat<br>Tyr<br>140 | runr              | ttc<br>Phe        | tgo<br>Cys       | ctc<br>Leu       | 432 |
| _                            |                   | tcc<br>Ser        |                   |                  | ì                |                   | 4                 |                   |                  |                  |                   |                   |                   |                  |                  | 447 |
| <210<br><211<br><212<br><213 | 1> 1<br>2> E      | 48                | oacte             | eriu             | n cor            | nplex             | Σ                 |                   |                  |                  |                   |                   |                   |                  |                  |     |
| <220<br><223                 |                   | nmpSe             | s pro             | otei             | n                |                   |                   |                   |                  |                  |                   |                   |                   |                  |                  |     |
| <400<br>Val<br>1             | Glı               | 10<br>n Gl        | y Il              |                  | r Va<br>5        | l Th:             | r Gl              | y Lei             | u Vai            | 0<br>L           | s Ar              | g Gl              | y Tr              | р Ме<br>1        | t Val<br>5       |     |
| Leu                          | Va.               | l Al              | a Va              |                  | a Va             | l Va              | l Al              | a Vai             | l Al             | a Gl             | y Ph              | e Se              | r Va<br>3         | 1 Ty<br>0        | r Arg            |     |
| Leu                          | Hi.               | s Gl              |                   | e Ph             | e Gl             | y Se              | r Hi<br>4         | s As              | p Th             | r Th             | r Se              | r Th              | r Al<br>5         | a Gl             | y Gly            |     |
| Val                          | Al<br>5           |                   | n As              | p Il             | е Гу             |                   | o Ph<br>5         | e As              | n Pr             | o Ly             | rs Gl<br>6        | n Va              | .l Th             | r L€             | eu Glu           |     |

BNSDOCID: <WO\_\_\_\_03070981A2\_I\_>

Val Phe Gly Ala Pro Gly Thr Val Ala Thr Ile Asn Tyr Leu Asp Val 75 65 80 70 Asp Ala Thr Pro Arg Gln Val Leu Asp Thr Thr Leu Pro Trp Ser Tyr 90 95 85 Thr Ile Thr Thr Leu Pro Ala Val Phe Ala Asn Val Val Ala Gln 110 105 100 Gly Asp Ser Asn Ser Ile Gly Cys Arg Ile Thr Val Asn Gly Val Val 125 115 120 Lys Asp Glu Arg Ile Val Asn Glu Val Arg Ala Tyr Thr Phe Cys Leu 140 130 135 Asp Lys Ser Ser 145 <210> 11 <211> 399 <212> DNA <213> Mycobacterium complex <220> <221> CDS <222> (1)..(399) <220> <223> mmpS6 truncated coding sequence and protein <400> 11 ctg gtt gcc gtg gcg gtg gcg gtc gcg gga ttc agc gtc tat cgg Leu Val Ala Val Ala Val Ala Val Ala Gly Phe Ser Val Tyr Arg 15 10 ttg cac ggc atc ttc ggc tcg cac gac acc acc tcg acc gcc ggt ggt Leu His Gly Ile Phe Gly Ser His Asp Thr Thr Ser Thr Ala Gly Gly 30 20 gtc gcg aac gac atc aag ccg ttc aac ccc aaa cag gta acc ctc gag 144 Val Ala Asn Asp Ile Lys Pro Phe Asn Pro Lys Gln Val Thr Leu Glu 45 35 40 192 gtc ttt ggc gct ccc gga acc gtg gca acg atc aat tat ctg gac gtg Val Phe Gly Ala Pro Gly Thr Val Ala Thr Ile Asn Tyr Leu Asp Val 60 55 50 gat gcc aca cct cgg caa gtc ctg gac acg acc ctg ccg tgg tca tac 240 Asp Ala Thr Pro Arg Gln Val Leu Asp Thr Thr Leu Pro Trp Ser Tyr 75 80 70 65 acg atc acg acc ctg ccc gcg gtc ttc gcc aat gtt gtc gcg caa 288 Thr Ile Thr Thr Leu Pro Ala Val Phe Ala Asn Val Val Ala Gln 95 90 85 ggc gac agc aat tcc atc ggc tgc cgc atc acc gtc aac ggt gta gtc 336 Gly Asp Ser Asn Ser Ile Gly Cys Arg Ile Thr Val Asn Gly Val Val 110 105 100

aag gac gaa agg atc gtc aac gaa gtg cgc gcc tat acc ttc tgc ctc 384 Lys Asp Glu Arg Ile Val Asn Glu Val Arg Ala Tyr Thr Phe Cys Leu 125 120 115 399 gac aag tcc tca tga Asp Lys Ser Ser 130 <210> 12 <211> 132 <212> PRT <213> Mycobacterium complex <220> <223> mmpS6 truncated protein <400> 12 Leu Val Ala Val Ala Val Ala Val Ala Gly Phe Ser Val Tyr Arg 15 10 5 1 Leu His Gly Ile Phe Gly Ser His Asp Thr Thr Ser Thr Ala Gly Gly 30 25 20 Val Ala Asn Asp Ile Lys Pro Phe Asn Pro Lys Gln Val Thr Leu Glu 45 40 35 Val Phe Gly Ala Pro Gly Thr Val Ala Thr Ile Asn Tyr Leu Asp Val 60 55 50 Asp Ala Thr Pro Arg Gln Val Leu Asp Thr Thr Leu Pro Trp Ser Tyr 80 75 70 65 Thr Ile Thr Thr Leu Pro Ala Val Phe Ala Asn Val Val Ala Gln 95 90 85 Gly Asp Ser Asn Ser Ile Glý Cys Arg Ile Thr Val Asn Gly Val Val 110 105 100 Lys Asp Glu Arg Ile Val Asn Glu Val Arg Ala Tyr Thr Phe Cys Leu 125 120 115 Asp Lys Ser Ser 130

<210> 13
<211> 20
<212> DNA
<213> Mycobacterium complex
<400> 13
cgttcaaccc caaacaggta

<210> 14 <211> 20 <212> DNA

<212> DNA <213> Mycobacterium complex

20

BNSDOCID: <WO\_\_\_\_\_03070981A2\_1\_>

PCT/IB03/00986 WO 03/070981 <400> 14 20 aatcgaactc gtggaacacc <210> 15 <211> 20 <212> DNA <213> Mycobacterium complex <400> 15 20 attcagcgtc tatcggttgc <210> 16 <211> 20 <212> DNA <213> Mycobacterium complex <400> 16 20 agcagctcgg gatatcgtag <210> 17 <211> 20 <212> DNA <213> Mycobacterium complex <400> 17 20 ctacctcatc ttccggtcca <210> 18 <211> 20 <212> DNA <213> Mycobacterium complex <400> 18 20 catagatccc ggacatggtg <210> 19 <211> 2390 <212> DNA <213> Mycobacterium canettii <220> <221> CDS <222> (517) ... (2307) <400> 19 gatcccgtcg ccgcggcgct ggagctggcc gccgggcccg cagccgcccc gcgcgaggtc 60 gtgctggcga gcaaagccac catgcgcgcc acagccagcc ccggatcgct ggaccttgag 120 caacacgaac tcgccaaacg cttagaactt gggccgcagg cgaaatcggt ccagtcgccc 180 gagttegeeg etegettgge tgeegeteaa caeaggtage geetaecage etegetggtt 240

tccatggcgt gccccagtcc gaagctgctg ctgcttgact ccgcgcgctg ggcccgagcg 300

cgcgctgttg tacggcccaa acggcgtgtc ggtgtacagt cgcgcgctcg cggcttcagt 360

| ccggcccccc gactccg                            | ggca ggcccgacgg                           | cgcccagcgc                            | tagcccgaag ttcccccttg                                  | 420  |
|-----------------------------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------------------|------|
| taggggcggg ctgagt                             | ttcg atctgtttcg                           | tgagcaggtg                            | tttctgtgtt caacttccct                                  | 480  |
| caacatgtac tcatgta                            | atta ttgagaatag                           | g ctcggc gtg<br>Val<br>1              | tca tcc tct gat gac<br>Ser Ser Ser Asp Asp<br>5        | 534  |
| gct att atc gcg c<br>Ala Ile Ile Ala L<br>10  | tg acc gcg tgt<br>eu Thr Ala Cys          | tat aaa gta<br>Tyr Lys Val<br>15      | atc atg tac att acc<br>Ile Met Tyr Ile Thr<br>20       | 582  |
| cgg gta ccc aac c<br>Arg Val Pro Asn A<br>25  | gg gga tcc ccg<br>rg Gly Ser Pro<br>30    | ccg gcg gtg<br>Pro Ala Val            | ctg ttg cgg gaa agc<br>Leu Leu Arg Glu Ser<br>35       | 630  |
| ttc cgc gaa aac g<br>Phe Arg Glu Asn G<br>40  | gc aag gtc aag<br>Bly Lys Val Lys<br>45   | acg cgt acc<br>Thr Arg Thr            | ctg gcc aac ctc tca<br>Leu Ala Asn Leu Ser<br>50 .     | 678  |
| cgc tgg ccc gag c<br>Arg Trp Pro Glu H<br>55  | cac aag ctg gac<br>His Lys Leu Asp<br>60  | aga ctg gac<br>Arg Leu Asp<br>65      | cgg gcg ctt aag ggc<br>Arg Ala Leu Lys Gly<br>70       | 726  |
| ttg ccg ccc gcg g<br>Leu Pro Pro Ala A        | gac tgg gat cta<br>Asp Trp Asp Leu<br>75  | gcc gag gcc<br>Ala Glu Ala<br>80      | ttc gat atc acc cgc<br>Phe Asp Ile Thr Arg<br>85       | 774  |
| agc ctg ccg cac s<br>Ser Leu Pro His (        | ggg cat gtg gcc<br>Gly His Val Ala        | gcg gtg gcc<br>Ala Val Ala<br>95      | ggc acc gcc gag aag<br>Gly Thr Ala Glu Lys<br>100      | 822  |
| ctg ggc ata ccc g<br>Leu Gly Ile Pro (        | gag ctg atc gac<br>Glu Leu Ile Asp<br>110 | Pro Thr Pro                           | tcg cgg cgc cac<br>Ser Arg Arg Arg Asn<br>115          | 870  |
| ctg gtg ctg gcc a<br>Leu Val Leu Ala 1<br>120 | atg ctg atc ggg<br>Met Leu Ile Gly<br>125 | g cag atc atc                         | gag ccc gga tcg aaa<br>e Glu Pro Gly Ser Lys<br>130    | 918  |
| ctg gcg atc gcg<br>Leu Ala Ile Ala<br>135     | cgc ggg ctg cgc<br>Arg Gly Leu Arg<br>140 | g gcc cag acc<br>g Ala Gln Thi<br>14! | r gcc acc agc acg ctg<br>r Ala Thr Ser Thr Leu<br>150  | 966  |
| ggt gcg gtg ctg<br>Gly Ala Val Leu            | ggt gtc tcg ggc<br>Gly Val Ser Gly<br>155 | e gcc gat gag<br>y Ala Asp Gli<br>160 | g gac gac ctg tat gac<br>u Asp Asp Leu Tyr Asp<br>165  | 1014 |
| gcg atg gac tgg<br>Ala Met Asp Trp<br>170     | gcg ctg gag cg<br>Ala Leu Glu Ar          | c aaa gac gg<br>g Lys Asp Gl<br>175   | c atc gaa aac gcc ttg<br>y Ile Glu Asn Ala Leu<br>180  | 1062 |
| gcc gca cgg cat<br>Ala Ala Arg His<br>185     | ctg acc aac gg<br>Leu Thr Asn Gl          | y Thr Leu Va                          | g ctc tat gac gta tcc<br>l Leu Tyr Asp Val Ser<br>195  | 1110 |
| tcg gcg gcg ttc<br>Ser Ala Ala Phe<br>200     | gag ggc cac ac<br>Glu Gly His Th<br>205   | c tgc ccg ct<br>r Cys Pro Le          | g gga gcg atc ggg cac<br>eu Gly Ala Ile Gly His<br>210 | 1158 |

| gcc<br>Ala<br>215 | cgc<br>Arg          | gac<br>Asp        | gly<br>ggg        | gtc<br>Val        | aaa<br>Lys<br>220  | ggc<br>Gly          | cgg<br>Arg            | ctg<br>Leu        | cag<br>Gln        | atc<br>Ile<br>225 | gtc<br>Val          | tac<br>Týr        | Gly<br>999        | ctg<br>Leu        | ctg<br>Leu<br>230 | 1206   |
|-------------------|---------------------|-------------------|-------------------|-------------------|--------------------|---------------------|-----------------------|-------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-------------------|-------------------|--------|
| tgc<br>Cys        | tca<br>Ser          | ccc<br>Pro        | aag<br>Lys        | gga<br>Gly<br>235 | gcg<br>Ala         | ccg<br>Pro          | gtg<br>Val            | gcc<br>Ala        | atc<br>Ile<br>240 | gag<br>Glu        | gtg<br>Val          | ttc<br>Phe        | aag<br>Lys        | ggc<br>Gly<br>245 | aac<br>Asn        | 1254   |
| acc<br>Thr        | gcc<br>Ala          | gac<br>Asp        | ccg<br>Pro<br>250 | aaa<br>Lys        | act<br>Thr         | ctg<br>Leu          | aaa<br>Lys            | gct<br>Ala<br>255 | caa<br>Gln        | atc<br>Ile        | gac<br>Asp          | aag<br>Lys        | ctc<br>Leu<br>260 | aaa<br>Lys        | acc<br>Thr        | 1302   |
| cgg<br>Arg        | Phe                 | 999<br>Gly<br>265 | ttg<br>Leu        | acc<br>Thr        | cgc<br>Arg         | atc<br>Ile          | gcc<br>Ala<br>270     | ctg<br>Leu        | gtg<br>Val        | ggc<br>Gly        | gat<br>Asp          | cgg<br>Arg<br>275 | ggc<br>Gly        | atg<br>Met        | ctc<br>Leu        | 1350   |
| act<br>Thr        | tcc<br>Ser<br>280   | gcg<br>Ala        | cgc<br>Arg        | atc<br>Ile        | cgt<br>Arg         | gac<br>Asp<br>285   | gag<br>Glu            | ctg<br>Leu        | cgt<br>Arg        | ccg<br>Pro        | gcg<br>Ala<br>290   | cac<br>His        | ctg<br>Leu        | gat<br>Asp        | tgg<br>Trp        | 1398   |
| atc<br>Ile<br>295 | agc<br>Ser          | gcg<br>Ala        | ctg<br>Leu        | cgc<br>Arg        | gcc<br>Ala<br>30.0 | ccg<br>Pro          | cag<br>Gln            | atc<br>Ile        | aag<br>Lys        | atc<br>Ile<br>305 | ctg<br>Leu          | ctc<br>Leu        | gag<br>Glu        | gac<br>Asp        | 999<br>Gly<br>310 | . 1446 |
| gcg<br>Ala        | ctg<br>Leu          | cag<br>Gln        | ctg<br>Leu        | tcg<br>Ser<br>315 | ctg<br>Leu         | ttc<br>Phe          | gat<br>Asp            | gag<br>Glu        | cag<br>Gln<br>320 | aac<br>Asn        | ctg<br>Leu          | ttc<br>Phe        | gag<br>Glu        | atc<br>Ile<br>325 | act<br>Thr        | 1494   |
| cac               | ccc<br>Pro          | gac<br>Asp        | tat<br>Tyr<br>330 | Pro               | ggt<br>Gly         | gag<br>Glu          | Arg<br>cgg            | ctg<br>Leu<br>335 | gtg<br>Val        | tgc<br>Cys        | tgc<br>Cys          | cac<br>His        | aac<br>Asn<br>340 | ccc<br>Pro        | gcc<br>Ala        | 1542   |
| ctg<br>Leu        | gcc<br>Ala          | gac<br>Asp<br>345 | Glu               | cgc<br>Arg        | gcc<br>Ala         | cgc<br>Arg          | aaa<br>Lys<br>350     | Arg               | gcc<br>Ala        | gag<br>Glu        | ctg<br>Leu          | ctg<br>Leu<br>355 | Ala               | gcc<br>Ala        | acc<br>Thr        | 1590   |
| gaa<br>Glu        | aag<br>Lys<br>360   | Glu               | ctg<br>Leu        | cag<br>Gln        | gcc                | atć<br>Ile<br>365   | Ala                   | gaa<br>Glu        | gcc<br>Ala        | acc<br>Thr        | ege<br>Arg<br>370   | Arg               | caa<br>Gln        | cgc<br>Arg        | cgg<br>Arg        | 1638   |
| ccg<br>Pro<br>375 | Leu                 | cgc<br>Arg        | ggt<br>Gly        | aca<br>Thr        | gac<br>Asp<br>380  | Lys                 | atc<br>Ile            | ggc               | ctg<br>Leu        | cgg<br>Arg<br>385 | , Val               | ggc               | aag<br>Lys        | gtg<br>Val        | cgc<br>Arg<br>390 | 1686   |
| aac<br>Asn        | aag<br>Lys          | tto<br>Phe        | aag<br>Lys        | atg<br>Met        | Ala                | aag<br>Lys          | cac<br>His            | ttt<br>Phe        | gac<br>Asp<br>400 | ) Leu             | g cac<br>n His      | ato<br>Ile        | e acc             | gat<br>Asp<br>405 | gag<br>Glu        | 1734   |
| gcc               | tto<br>Phe          | ago<br>Ser        | Phe<br>410        | ? Thr             | cgc                | aac<br>J Asi        | cag<br>Gln            | aac<br>Asn<br>415 | Sei               | ato               | gcc<br>Ala          | gco<br>Ala        | gas<br>Glu<br>420 | ı Ala             | gcc<br>A Ala      | 1782   |
| cto               | gac<br>Asp          | gg Gly            | , Ile             | c tac             | gtg<br>Val         | g cta<br>L Lev      | a cgc<br>a Arg<br>430 | J Thr             | ago<br>Sei        | c cto<br>Lei      | g cco<br>ı Pro      | gad<br>Asp<br>435 | ) Ası             | gco<br>n Ala      | c ctg<br>a Leu    | 1830   |
| Gly               | c cgc<br>Arc<br>440 | g Ası             | gao<br>As         | g gtg             | g gto<br>L Val     | 999<br>1 Gly<br>449 | y Arg                 | tac<br>Tyi        | aaa<br>Ly:        | a gad<br>s Asp    | c cto<br>Dev<br>450 | ı Ala             | e gad<br>a Asp    | gto<br>Vai        | c gaa<br>l Glu    | 1878   |
| cgo               | e tto               | c tto             | c cg              | c ac              | c cto              | c aa                | c ago                 | c gaa             | a ct              | g gad             | c gta               | a cg              | C CC              | c at              | c cgg             | 1926   |

PCT/IB03/00986 WO 03/070981

| Arg Phe Phe<br>455                               |                               | Leu Asn<br>160            | Ser Glu                   | Leu Asp<br>465            | Val Arg I                 | Pro Ile                   | Arg<br>470             |
|--------------------------------------------------|-------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------------|
| cat cgg ctg<br>His Arg Leu                       | gcc gac o<br>Ala Asp A<br>475 | egg gtc<br>Arg Val        | cgc gcc<br>Arg Ala        | cac atg<br>His Met<br>480 | ttc ttg o                 | cac atg<br>His Met<br>485 | ctc 1974<br>Leu        |
| tcc tac tac<br>Ser Tyr Tyr                       | atc agc to the ser 5          | tgg cac<br>Trp His        | atg aaa<br>Met Lys<br>495 | caa gcc<br>Gln Ala        | Leu Ala.                  | cca atc<br>Pro Ile<br>500 | ctg 2022<br>Leu        |
| ttc acc gac<br>Phe Thr Asp<br>505                | aac gac a<br>Asn Asp          | aaa ccc<br>Lys Pro        | gcc gcc<br>Ala Ala<br>510 | gcc gcc<br>Ala Ala        | aaa cgc<br>Lys Arg<br>515 | gcc gac<br>Ala Asp        | ccc 2070<br>Pro        |
| gtc gcg cca<br>Val Ala Pro<br>520                | gcc caa<br>Ala Gln            | cgc tcc<br>Arg Ser<br>525 | gac gaa<br>Asp Glu        | gcg ctg<br>Ala Leu        | aac aag<br>Asn Lys<br>530 | gca gca<br>Ala Ala        | cgc 2118<br>Arg        |
| aaa cgc acc<br>Lys Arg Thr<br>535                | Glu Asp                       | aac caa<br>Asn Gln<br>540 | ccg gtg<br>Pro Val        | cac agc<br>His Ser<br>545 | Phe Thr                   | agc ctg<br>Ser Leu        | ctc 2166<br>Leu<br>550 |
| acc gac ctg<br>Thr Asp Leu                       | gcc acc<br>Ala Thr<br>555     | atc tgc<br>Ile Cys        | gcc aac<br>Ala Asn        | tac atc<br>Tyr Ile<br>560 | caa ccc<br>Gln Pro        | aca gac<br>Thr Asp<br>565 | ASP                    |
| rtg cca gca<br>Leu Pro Ala                       | ttc acc<br>Phe Thr<br>570     | aaa acc<br>Lys Thr        | acc acc<br>Thr Thr<br>575 | Pro Thr                   | ccc aca<br>Pro Thr        | caa cgg<br>Gln Arg<br>580 | cgc 2262<br>Arg        |
| gcc ttc gad<br>Ala Phe Asp<br>589                | Leu Leu                       | gcc gtt<br>Ala Val        | tcc cac<br>Ser His        | cgc cac<br>Arg His        | ggc ctg<br>Gly Leu<br>595 | gcg tag<br>Ala            | 2307                   |
| tcactaccca                                       | accacaaat                     | ta cccaq                  | gtcaa c                   | gacacaaa                  | c cgcgccg                 | gat cago                  | gggaac 2367            |
| ttcgggctag                                       |                               | ·                         |                           |                           |                           |                           | 2390                   |
| <210> 20<br><211> 596<br><212> PRT<br><213> Myco | bacterium                     | canetti                   | i                         |                           |                           |                           |                        |
| <400> 20<br>Val Ser Se<br>1                      | r Ser Asp<br>5                |                           | a Ile Il                  | e Ala Le<br>10            | u Thr Ala                 | Cys Ty:                   | r Lys<br>5             |
| Val Ile Me                                       | t Tyr Ile<br>20               | e Thr Arg                 |                           | o Asn Ar<br>5             | g Gly Ser                 | Pro Pro 30                | o Ala                  |
| Val Leu Le                                       | eu Arg Glu<br>5               | ser Pho                   | e Arg Gl<br>40            | u Asn Gl                  | y Lys Val                 | l Lys Th                  | r Arg                  |
| Thr Leu Al                                       | a Asn Lev                     | ser Ar                    |                           | o Glu Hi                  | ls Lys Let<br>60          | ı Asp Ar                  | g Leu                  |
| Asp Arg A                                        | la Leu Lys                    | s Gly Le<br>70            | u Pro Pr                  | o Ala As                  | sp Trp Asj<br>75          | p Leu Al                  | a Glu<br>80            |

65

Ala Phe Asp Ile Thr Arg Ser Leu Pro His Gly His Val Ala Ala Val Ala Gly Thr Ala Glu Lys Leu Gly Ile Pro Glu Leu Ile Asp Pro Thr Pro Ser Arg Arg Arg Asn Leu Val Leu Ala Met Leu Ile Gly Gln Ile Ile Glu Pro Gly Ser Lys Leu Ala Ile Ala Arg Gly Leu Arg Ala Gln Thr Ala Thr Ser Thr Leu Gly Ala Val Leu Gly Val Ser Gly Ala Asp Glu Asp Asp Leu Tyr Asp Ala Met Asp Trp Ala Leu Glu Arg Lys Asp Gly Ile Glu Asn Ala Leu Ala Ala Arg His Leu Thr Asn Gly Thr Leu Val Leu Tyr Asp Val Ser Ser Ala Ala Phe Glu Gly His Thr Cys Pro Leu Gly Ala Ile Gly His Ala Arg Asp Gly Val Lys Gly Arg Leu Gln Ile Val Tyr Gly Leu Leu Cys Ser Pro Lys Gly Ala Pro Val Ala Ile Glu Val Phe Lys Gly Asn Thr Ala Asp Pro Lys Thr Leu Lys Ala Gln Ile Asp Lys Leu Lys Thr Arg Phe Gly Leu Thr Arg Ile Ala Leu Val Gly Asp Arg Gly Met Leu Thr Ser Ala Arg Ile Arg Asp Glu Leu Arg Pro Ala His Leu Asp Trp Ile Ser Ala Leu Arg Ala Pro Gln Ile Lys Ile Leu Leu Glu Asp Gly Ala Leu Gln Leu Ser Leu Phe Asp Glu Gln Asn Leu Phe Glu Ile Thr His Pro Asp Tyr Pro Gly Glu Arg Leu Val Cys Cys His Asn Pro Ala Leu Ala Asp Glu Arg Ala Arg Lys Arg Ala Glu Leu Leu Ala Ala Thr Glu Lys Glu Leu Gln Ala Ile Ala Glu Ala Thr Arg Arg Gln Arg Arg Pro Leu Arg Gly Thr Asp Lys Ile Gly Leu Arg Val Gly Lys Val Arg Asn Lys Phe Lys Met Ala Lys His Phe Asp Leu His Ile Thr Asp Glu Ala Phe Ser Phe Thr Arg Asn Gln Asn Ser

405 410 415

Ile Ala Ala Glu Ala Ala Leu Asp Gly Ile Tyr Val Leu Arg Thr Ser 420 425 430

Leu Pro Asp Asn Ala Leu Gly Arg Asp Asp Val Val Gly Arg Tyr Lys
435
440
445

Asp Leu Ala Asp Val Glu Arg Phe Phe Arg Thr Leu Asn Ser Glu Leu 450 460

Asp Val Arg Pro Ile Arg His Arg Leu Ala Asp Arg Val Arg Ala His 465 470 475 480

Met Phe Leu His Met Leu Ser Tyr Tyr Ile Ser Trp His Met Lys Gln 485 490 495

Ala Leu Ala Pro Ile Leu Phe Thr Asp Asn Asp Lys Pro Ala Ala Ala 500 505 510

Ala Lys Arg Ala Asp Pro Val Ala Pro Ala Gln Arg Ser Asp Glu Ala 515 520 525

Leu Asn Lys Ala Ala Arg Lys Arg Thr Glu Asp Asn Gln Pro Val His 530 540

Ser Phe Thr Ser Leu Leu Thr Asp Leu Ala Thr Ile Cys Ala Asn Tyr 545 550 560

The Gln Pro Thr Asp Asp Leu Pro Ala Phe Thr Lys Thr Thr Thr Pro 565 570 575

Thr Pro Thr Gln Arg Arg Ala Phe Asp Leu Leu Ala Val Ser His Arg 580 585 590

His Gly Leu Ala

<210> 21

<211> 1191

<212> DNA

<213> Mycobacterium tuberculosis

<220>

<221> CDS

<222> (1)..(1191)

<223> Fusion gene between mmpS6 and mmpL6 genes

<220>

<221> misc\_feature

<222> (1) (1191)

<223> CDS corresponds to fusion protein of rearranged forms of mmpS6 and mmpL6

<400> 1

gtg cag ggg att tca gtg act ggc ctg gtc aaa cgc ggc tgg atg gtg Val Gln Gly Ile Ser Val Thr Gly Leu Val Lys Arg Gly Trp Met Val

aga tcc gtc ttt gac acg atc gac ggt atc gac caa ctc ggc gag cag 96

| A | rg         | Ser | Val | Phe<br>20 | Asp               | Thr       | Ile | Asp | Gly<br>25 | Ile | Asp       | Gln | Leu | Gly<br>30 | Glu | Gln               |     |  |
|---|------------|-----|-----|-----------|-------------------|-----------|-----|-----|-----------|-----|-----------|-----|-----|-----------|-----|-------------------|-----|--|
|   | _          | _   | _   |           | acc<br>Thr        | _         |     |     |           |     |           |     |     |           |     | cct<br>Pro        | 144 |  |
|   |            | _   |     |           | ctg<br>Leu        |           |     |     |           |     |           |     |     |           |     |                   | 192 |  |
| C | <b>9</b> 9 | gaa | ctg | gcg       | ctg               | gct.      | aac | tac | gcc       | acc | atg       | tcc | 999 | atc       | tat | gcc               | 240 |  |
|   | rg<br>65   | Glu | Leu | Ala       | Leu               | Ala<br>70 | Asn | Tyr | Ala       | Thr | Met<br>75 | Ser | Gly | Ile       | Tyr | Ala<br>80         |     |  |
|   |            |     |     |           | ttg<br>Leu<br>85  |           |     |     |           |     |           |     |     |           |     |                   | 288 |  |
|   |            |     |     |           | aac<br>Asn        |           |     |     |           |     |           |     |     |           |     |                   | 336 |  |
|   |            |     |     |           | ttc<br>Phe        |           |     |     |           |     |           |     |     |           |     |                   | 384 |  |
|   |            |     |     |           | cgg<br>Arg        |           |     |     |           |     |           |     |     |           |     |                   | 432 |  |
| P |            |     |     |           | tcg<br>Ser        |           |     |     |           |     |           |     |     |           |     | gag<br>Glu<br>160 | 480 |  |
|   |            |     | _   |           | act<br>Thr<br>165 |           |     |     |           |     | _         | _   |     |           | _   | ·                 | 528 |  |
|   | _          |     | _   |           | ttc<br>Phe        |           |     |     |           |     |           |     |     |           |     | ctc<br>Leu        | 576 |  |
|   |            |     |     | Gly       |                   |           |     |     | -         |     |           |     |     | Ile       |     | atg<br>Met        | 624 |  |
|   |            |     |     | _         | _                 |           |     |     |           |     |           |     |     |           |     | gtg<br>Val        | 672 |  |
| A |            |     |     |           |                   |           |     |     |           |     |           | Val |     |           |     | cag<br>Gln<br>240 | 720 |  |
|   |            |     |     |           |                   | Gln       |     |     |           |     | Val       |     |     |           |     | gtc<br>Val        | 768 |  |
| a | tc         | ctg | ctc | ctg       | gcc               | gtg       | gga | tcg | gac       | tat | aac       | ttg | ctg | ctg       | att | tcc               | 816 |  |

| Ile Leu Leu Leu Ala Val Gly Ser Asp Tyr Asn Leu Leu Leu Ile Ser<br>260 265 270                                                                    |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| cga ttc aag gag gag atc ggt gca ggt ttg aac acc ggc atc atc cgt Arg Phe Lys Glu Glu Ile Gly Ala Gly Leu Asn Thr Gly Ile Ile Arg 275 280 285       | 364  |
| gcg atg gcc ggc acc ggc ggg gtg gtg acc gct gcc ggc ctg gtg ttc Ala Met Ala Gly Thr Gly Gly Val Val Thr Ala Ala Gly Leu Val Phe 290 295 300       | 912  |
| gcc gcc act atg tct tcg ttc gtg ttc agt gat ttg cgg gtc ctc ggt Ala Ala Thr Met Ser Ser Phe Val Phe Ser Asp Leu Arg Val Leu Gly 305 310 320       | 960  |
| cag atc ggg acc acc att ggt ctt ggg ctg ctg ttc gac acg ctg gtg Gln Ile Gly Thr Thr Ile Gly Leu Gly Leu Leu Phe Asp Thr Leu Val 325 330 335       | 1008 |
| gtg cgc gcg ttc atg acc ccg tcc atc gcg gtg ctg ctc ggg cgc tgg<br>Val Arg Ala Phe Met Thr Pro Ser Ile Ala Val Leu Leu Gly Arg Trp<br>340 345 350 | 1056 |
| ttc tgg tgg ccg caa cga gtg cgc ccg cgc cct gcc agc agg atg ctt Phe Trp Trp Pro Gln Arg Val Arg Pro Arg Pro Ala Ser Arg Met Leu 355 360 365       | 1104 |
| cgg ccg tac ggc ccg cgg ccc gtg gtt cgt gaa ttg ctg ctg cgc gag<br>Arg Pro Tyr Gly Pro Arg Pro Val Val Arg Glu Leu Leu Leu Arg Glu<br>370 375 380 | 1152 |
| ggc aac gat gac ccg aga act cag gtg gct acc cac cgt<br>Gly Asn Asp Asp Pro Arg Thr Gln Val Ala Thr His Arg<br>385 390 395                         | 1191 |
| <pre>&lt;210&gt; 22 &lt;211&gt; 397 &lt;212&gt; PRT &lt;213&gt; Mycobacterium tuberculosis &lt;220&gt;</pre>                                      |      |
| <223> Fusion protein of rearranged forms of mmpS6 and mmpL6                                                                                       |      |
| <pre>&lt;400&gt; 2 Val Gln Gly Ile Ser Val Thr Gly Leu Val Lys Arg Gly Trp Met Val 1 5 10 15</pre>                                                |      |
| Arg Ser Val Phe Asp Thr Ile Asp Gly Ile Asp Gln Leu Gly Glu Gln<br>20 25 30                                                                       |      |
| Leu Ala Ser Val Thr Val Thr Leu Asp Lys Leu Ala Ala Ile Gln Pro<br>35 40 45                                                                       |      |
| Gln Leu Val Ala Leu Leu Pro Asp Glu Ile Ala Ser Gln Gln Ile Asn<br>50 55 60                                                                       |      |
| Arg Glu Leu Ala Leu Ala Asn Tyr Ala Thr Met Ser Gly Ile Tyr Ala<br>65 70 75 80                                                                    |      |

Gln Thr Ala Ala Leu Ile Glu Asn Ala Ala Ala Met Gly Gln Ala Phe 85 90 95

- Asp Ala Ala Lys Asn Asp Asp Ser Phe Tyr Leu Pro Pro Glu Ala Phe 100 105 110
- Asp Asn Pro Asp Phe Gln Arg Gly Leu Lys Leu Phe Leu Ser Ala Asp 115 120 125
- Gly Lys Ala Ala Arg Met Ile Ile Ser His Glu Gly Asp Pro Ala Thr 130 135 140
- Pro Glu Gly Ile Ser His Ile Asp Ala Ile Lys Gln Ala Ala His Glu 145 150 155 160
- Ala Val Lys Gly Thr Pro Met Ala Gly Ala Gly Ile Tyr Leu Ala Gly 165 170 175
- Thr Ala Ala Thr Phe Lys Asp Ile Gln Asp Gly Ala Thr Tyr Asp Leu 180 185 190
- Leu Ile Ala Gly Ile Ala Ala Leu Ser Leu Ile Leu Leu Ile Met Met 195 200 205
- Ile Ile Thr Arg Ser Leu Val Ala Ala Leu Val Ile Val Gly Thr Val 210 215 220
- Ala Leu Ser Leu Gly Ala Ser Phe Gly Leu Ser Val Leu Val Trp Gln 225 230 235
- His Leu Gly Ile Gln Leu Tyr Trp Ile Val Leu Ala Leu Ala Val 245 250 255
- Ile Leu Leu Ala Val Gly Ser Asp Tyr Asn Leu Leu Leu Ile Ser 260 265 270
- Arg Phe Lys Glu Glu Ile Gly Ala Gly Leu Asn Thr Gly Ile Ile Arg 275 280 285
- Ala Met Ala Gly Thr Gly Gly Val Val Thr Ala Ala Gly Leu Val Phe 290 295 300
- Ala Ala Thr Met Ser Ser Phe Val Phe Ser Asp Leu Arg Val Leu Gly 305 310 320
- Gln Ile Gly Thr Thr Ile Gly Leu Gly Leu Leu Phe Asp Thr Leu Val 325 330 335
- Val Arg Ala Phe Met Thr Pro Ser Ile Ala Val Leu Leu Gly Arg Trp
  340 345 350
- Phe Trp Trp Pro Gln Arg Val Arg Pro Arg Pro Ala Ser Arg Met Leu 355
- Arg Pro Tyr Gly Pro Arg Pro Val Val Arg Glu Leu Leu Arg Glu 370.
- Gly Asn Asp Asp Pro Arg Thr Gln Val Ala Thr His Arg 385

|  |  | •        |
|--|--|----------|
|  |  |          |
|  |  |          |
|  |  |          |
|  |  | °.       |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  | <b>y</b> |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |
|  |  |          |

# (19) World Intellectual Property Organization International Bureau



## 

(43) International Publication Date 28 August 2003 (28.08.2003)

**PCT** 

# (10) International Publication Number WO 03/070981 A3

(51) International Patent Classification<sup>7</sup>: C12Q 1/68, C12R 1/32, C07K 16/12, 14/35, A61K 39/04, G01N 33/569, C12N 5/10, 15/70 Moleculai, re Bacterienne, 25-28, rue du Docteur Roux, 75724 Paris, Cedex 15 (FR).

(21) International Application Number: PCT/IB03/00986

(74) Agent: MARTIN, Jean-Jacques; Cabinet Regimbeau, 20, rue de Chazelles, 75847 Paris, Cedex 17 (FR).

(22) International Filing Date: 25 February 2003 (25.02.2003)

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 02290458.5 25 February 2002 (25.02.2002) EP

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicants (for all designated States except US): INSTITUT PASTEUR [FR/FR]; 25-28, rue du Docteur Roux, F-75015 Paris (FR). VETERINARY LABORATORIES AGENCY [GB/GB]; New Ham, Addelstone KT15 3NB, Surrey (GB).

#### Published:

(72) Inventors; and

— with international search report

VC, VN, YU, ZA, ZM, ZW.

- (75) Inventors/Applicants (for US only): COLE, Stewart [GB/FR]; c/o Institut Pasteur- Unite de Genetique Moleculai, re Bacterienne, 25-28 rue du Docteur Roux, 75724 Paris Cedex 15 (FR). BROSCH, Roland [AT/FR]; c/o Institut Pasteur- IP Paris, Unite de Genetique, Moleculaire Bacterienne, 25-28 rue du Docreur Roux, 75724 Paris Cedex 15 (FR). GORDON, Stephen [IE/GB]; Glyn Hewinson, Veterinary Laboratories Agency, Woodham Lane, New Haw, Addelstone, Surrey KT15 3NB (GB). EIGLMEIER, Karin [DE/FR]; c/o Institut Pasteur, Unite de genetique Moleculaire Bacterienne, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15 (FR). GARNIER, Thierry [FR/FR]; c/o Institut Pasteur- Unite de Genetique
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report:
  4 December 2003

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

(54) Title: SEEQUENCES SPECIFICALLY DELETED MYCOBACTERIUM TUBERCULOSIS GENOME AND THEIR USE IN DIAGNOSTICS AND AS VACCINES

(57) Abstract: The present invention is the identification of a nucleotide sequence which make it possible in particular to distinguish an infection resulting from the vast majority of Mycobacterium tuberculosis strains from an infection resulting from Mycobacterium africanum, Mycobacterium canetti, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG. The subject of the present invention is also a method for detecting the sequences in question by the products of expression of these sequences and the kits for carrying out these methods. Finally, the subject of the present invention is novel vaccines.

Internat pplication No PCT/IB 03/00986

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12Q1/68 C12R1/32 A61K39/04 CO7K14/35 CO7K16/12 C12N15/70 C12N5/10 G01N33/569 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) BIOSIS, EPO-Internal, MEDLINE, EMBL, PAJ, WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to daim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-5,9, COLE S T ET AL: "Deciphering the biology X 15-19, of Mycobacterium tuberculosis from the 21,29, complete genome sequence" 30,42, NATURE, MACMILLAN JOURNALS LTD. LONDON, 51-53 GB, vol. 393, 11 June 1998 (1998-06-11), pages 537-544, XP002087941 ISSN: 0028-0836 figure 1 table 1 1-5,9,& DATABASE GENBANK 'Online! X 15-19, NCBI; 7 September 2001 (2001-09-07) 21,29, COLE S.T. ET AL.: "Mycobacterium 30,42, tuberculosis H37Rv ,complete genome." 51-53 retrieved from HTTP://WWW.NCBI.NLM.NIH.GOV Database accession no. NC\_000962 the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. "I" later document published after the international filing date Special categories of cited documents: or priority date and not in conflict with the application but cited to understand the principle or theory underlying the \*A\* document defining the general state of the art which is not considered to be of particular relevance invention \*X\* document of particular relevance; the claimed invention \*E\* earlier document but published on or after the international cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority daim(s) or "Y" document of particular relevance; the claimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the citation or other special reason (as specified) document is combined with one or more other such docudocument referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled other means in the art. "P" document published prior to the international filing date but "&" document member of the same patent family later than the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search 16/10/2003 10 October 2003 Authorized officer Name and malling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Ulbrecht, M Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

Internati polication No
PCT/IB 03/00986

| Calegory ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                 | Relevant to claim No.                         |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| X          | DATABASE GENBANK 'Online!  NCBI; 3 August 2001 (2001-08-03)  COLE S.T. ET AL.: "Mycobacterium  tuberculosis H37Rv complete genome;  segment 69/162"  retrieved from HTTP://WWW.NCBI.NLM.NIH.GOV  Database accession no. Z74020  XP002206252  the whole document                                                    | 1-5,9,<br>15-19,<br>21,29,<br>30,42,<br>51-53 |
| A          | WO 00 55362 A (BILLAULT ALAIN ;COLE STEWART (FR); GARNIER THIERRY (FR); GORDON ST) 21 September 2000 (2000-09-21) page 5, line 9 -page 17, line 21 page 22, line 15 -page 32, line 3 figure 1D tables 1-3 claims 3,6,14                                                                                            | 46-52,<br>55,58,59                            |
| Α .        | US 6 291 190 B1 (BEHR MARCEL ET AL) 18 September 2001 (2001-09-18) column 11, line 66 -column 18, line 58 table 1                                                                                                                                                                                                  | 46-52,<br>55,58,59                            |
| A          | MAHAIRAS G G ET AL: "MOLECULAR ANALYSIS OF GENETIC DIFFERENCES BETWEEN MYCOBACTERIUM BOVIS BCG AND VIRULENT M. BOVIS" JOURNAL OF BACTERIOLOGY, WASHINGTON, DC, US, vol. 178, no. 5, 1 March 1996 (1996-03-01), pages 1274-1282, XP000647583 ISSN: 0021-9193 cited in the application figure 2                      | 46-52, 55,58,59                               |
| A          | GORDON S V ET AL: "IDENTIFICATION OF VARIABLE REGIONS IN THE GENOMES OF TUBERCLE BACILI USING BACTERIAL ARTIFICIAL CHROMOSOME ARRAYS" MOLECULAR MICROBIOLOGY, BLACKWELL SCIENTIFIC, OXFORD, GB, vol. 32, no. 3, May 1999 (1999-05), pages 643-655, XP000933429 ISSN: 0950-382X cited in the application tables 1-3 | 46-52, 55,58,59                               |
|            | -/                                                                                                                                                                                                                                                                                                                 |                                               |
|            | •                                                                                                                                                                                                                                                                                                                  |                                               |
|            |                                                                                                                                                                                                                                                                                                                    |                                               |

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Internal pplication No PCT/IB 03/00986

|                                                                             |                                                                                                                                                                                                                                                                                                                                                                 | PC1/1B 03/00960 |  |  |  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
| C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT  Relevant to claim No. |                                                                                                                                                                                                                                                                                                                                                                 |                 |  |  |  |  |
| Category °                                                                  | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                              |                 |  |  |  |  |
| A                                                                           | DATABASE TAXONOMY BROWSER 'Online!  NCBI; Host: http://www.ncbi.nih.gov, "Mycobacterium tuberculosis complex"  XP002206354 Link: http://www.nbi.nlm.nih.gov/Taxonomy/Browse r/wwwtax.cgi?id=77643 Retrieved on: 16.07.2001 the whole document                                                                                                                   | 45-47, 51,55    |  |  |  |  |
| A                                                                           | SREEVATSAN SRINAND ET AL: "Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 94, no. 18, 1997, pages 9869-9874, XP002206250 1997 ISSN: 0027-8424 page 9870, left-hand column table 1 figure 1 | 46-51,55        |  |  |  |  |
| Ţ                                                                           | BROSCH R ET AL: "A new evolutionary scenario for the Mycobacterium tuberculosis complex." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 99, no. 6, 19 March 2002 (2002-03-19), pages 3684-3689, XP002206251 http://www.pnas.org March 19, 2002 ISSN: 0027-8424                                                                     | 1-56,58,        |  |  |  |  |
| T                                                                           | the whole document  -& DATABASE GENBANK 'Online! NCBI; 16 March 2002 (2002-03-16) BROSCH R ET AL.: "Mycobacterium tuberculosis mmpS6 gene and mmpL6 gene" retrieved from HTTP://WWW.NCBI.NLM.NIH.GOV, accession no. AJ426486 XP002251350 the whole document                                                                                                     | 1-56,58,        |  |  |  |  |

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

Int

nal application No. PCT/IB 03/00986

#### INTERNATIONAL SEARCH REPORT

| Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                                                        |
| Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                                                                       |
|                                                                                                                                                                                                                                                                 |
| 2. X Claims Nos.: 6,27-29,51,52,58-59 (partially) because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: |
| see FURTHER INFORMATION sheet PCT/ISA/210                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                 |
| 3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                                         |
| Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                                                 |
| This International Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                                 |
|                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                 |
| 1. As all required additional search fees were timely pald by the applicant, this International Search Report covers all searchable claims.                                                                                                                     |
| 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                                                         |
| As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:                                                            |
| 4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the Invention first mentioned in the claims; it is covered by claims Nos.:                                             |
| Remark on Protest  The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                                                       |
|                                                                                                                                                                                                                                                                 |

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1998)

#### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Continuation of Box I.2

Claims Nos.: 6,27-29,51,52,58-59 (partially)

Present claims 6, 27-29, 51, 52, 58 and 59 relate to products defined by reference to a desirable characteristic or property, namely - a fragment specifically deleted in certain M. tuberculosis strains

(claim 6),

- primers defined by reference to claim 25 which relates to a method wherein primers able of amplifying a genomic region harbouring the TbD1 deletion are used (claims 27-29)

- primers specific for various genetic markers (claim 51(b) and claim 52 (b) and (c))

- polynucleotide sequences capable to hybridise with the genetic the RD1, RD4, RD9 and TbD1 genetic markers (claim 58)

- a polypeptide encoded by each of the RD1, RD4, RD9 and TbD1 genetic markers capable to react with an antibody/immune serum raised against the same immunogenic molecules or fragments thereof (claim 59).

The claims cover all products having this characteristic or property, whereas the application provides support within the meaning of Art. 6 PCT and is reproducible within the meaning of Art. 5 PCT for only a very limited number of such products. In the present case, the claims so lack support, and the application so lacks disclosure, that a meaningful search over the whole of the claimed scope is impossible. Independent of the above reasoning, the claims also lack clarity (Art. 6 PCT). An attempt is made to define the products by reference to a result to be achieved. Again, this lack of clarity in the present case is such as to render a meaningful search over the whole of the claimed scope impossible.

Consequently, the search has been carried out for those parts of the claims which appear to be clear, supported and disclosed, namely those parts relating to

- a nucleic acid as defined by SEQ ID Nos. 4 and 13-16 or their complementary sequences, which nucleic acid is deleted in certain M. tuberculosis strains, but present in other Mycobacteria of the Mycobacterium tuberculosis complex (claim 6)
- the sequences defined in claim 26 (claims 27-29)
- the primer pairs specific for RD4 and RD9 as given by Table 1 (claim 52)
- the oligonucleotide probes/primers specific for RD1, RD4 or RD9 as represented in Table 1, or specific for TbD1 as defined by claim 7 (claim 58)
- the polypeptides as defined by claim 16 (claim 59). As the polypeptides encoded by RD1, RD4 and RD9 referred to in claim 59 are not defined, they were not searched at all.

Additionally, claim 51 relates to an extremely large number of possible products. In fact, claim 51 contains so many options, variables and possible permutations that a lack of clarity and conciseness within the meaning of Art. 6 PCT arises to such an extent as to render a meaningful search of the claim impossible. Said claim relates to any combination of

#### FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

primers defined in claims 1-14, 17 and 18 with at least one primer pair specific for 24 different genetic markers. Moreover, the primers are defined in terms of the result to be achieved, namely by their specificity for the said 24 different genetic markers (supra) (Art. 6 PCT).

Consequently, the search has been carried out for those parts of the application which do appear to be clear and concise, namely a kit as defined by claim 52, wherein the primer pairs specific for RD4 and RD5 are those given in Table 3.

The nucleic acid referred to in claim 57 is defined by reference to claim 53 which, however, does not relate to any nucleic acids. Claim 57 was thus interpreted as referring to claim 56 (Art. 6 PCT).

The applicant's attention is drawn to the fact that claims, or parts of claims, relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure.

page 2 of 2

Internal pplication No
PCT/IB 03/00986

| Patent document cited in search report |    | Publication<br>date | Patent family member(s)    |                                                     |               | Publication date                                                   |
|----------------------------------------|----|---------------------|----------------------------|-----------------------------------------------------|---------------|--------------------------------------------------------------------|
| WO 0055362                             | A  | 21-09-2000          | FR<br>AU<br>CA<br>EP<br>WO | 2791067<br>3298900<br>2368088<br>1161562<br>0055362 | A<br>A1<br>A1 | 22-09-2000<br>04-10-2000<br>21-09-2000<br>12-12-2001<br>21-09-2000 |
| US 6291190                             | B1 | 18-09-2001          | AU<br>EP<br>WO<br>US       | 5394699<br>1108060<br>0011214<br>2002176873         | A1<br>A1      | 14-03-2000<br>20-06-2001<br>02-03-2000<br>28-11-2002               |

Form PCT/ISA/210 (patentitamlly annex) (July 1992)

#### CORRECTED VERSION

# (19) World Intellectual Property Organization International Bureau



(43) International Publication Date 28 August 2003 (28.08.2003)

**PCT** 

(10) International Publication Number  $WO\ 2003/070981\ A3$ 

- (51) International Patent Classification<sup>7</sup>: C12Q 1/68, C12R 1/32, C07K 16/12, 14/35, A61K 39/04, G01N 33/569, C12N 5/10, 15/70
- (21) International Application Number:

PCT/IB2003/000986

- (22) International Filing Date: 25 February 2003 (25.02.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 02290458.5 25 February 2002 (25.02.2002) EP

- (71) Applicants (for all designated States except US): INSTITUT PASTEUR [FR/FR]; 25-28, rue du Docteur Roux, F-75015 Paris (FR). VETERINARY LABORATORIES AGENCY [GB/GB]; New Ham, Addelstone KT15 3NB, Surrey (GB).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): COLE, Stewart [GB/FR]; c/o Institut Pasteur, Unité de Génétique Moléculaire Bactérienne, 25-28 rue du Docteur Roux, F-75724 Paris Cedex 15 (FR). BROSCH, Roland [AT/FR]; c/o Institut Pasteur, Unité de Génétique Moléculaire Bactérienne, 25-28 rue du Docteur Roux, F-75724 Paris Cedex 15 (FR). GORDON, Stephen [IE/GB]; Glyn Hewinson, Veterinary Laboratories Agency, Woodham Lane, New Haw, Addelstone, Surrey KT15 3NB (GB). EIGLMEIER, Karin [DE/FR]; c/o Institut Pasteur, Unité de Génétique Moléculaire Bactérienne, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15 (FR). GARNIER, Thierry [FR/FR]; c/o Institut Pasteur, Unité de Génétique

Moléculaire Bactérienne, 25-28, rue du Docteur Roux, 75724 Paris Cedex 15 (FR).

- (74) Agent: MARTIN, Jean-Jacques; Cabinet Regimbeau, 20, rue de Chazelles, 75847 Paris, Cedex 17 (FR).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### Published:

- with international search report
- (88) Date of publication of the international search report:
  4 December 2003
- (48) Date of publication of this corrected version:

7 October 2004

(15) Information about Correction: see PCT Gazette No. 41/2004 of 7 October 2004, Section  $\Pi$ 

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SEEQUENCES SPECIFICALLY DELETED MYCOBACTERIUM TUBERCULOSIS GENOME AND THEIR USE IN DIAGNOSTICS AND AS VACCINES

(57) Abstract: The present invention is the identification of a nucleotide sequence which make it possible in particular to distinguish an infection resulting from the vast majority of Mycobacterium tuberculosis strains from an infection resulting from Mycobacterium africanum, Mycobacterium canetti, Mycobacterium microti, Mycobacterium bovis, Mycobacterium bovis BCG. The subject of the present invention is also a method for detecting the sequences in question by the products of expression of these sequences and the kits for carrying out these methods. Finally, the subject of the present invention is novel vaccines.



This Page Blank (uspto)