```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
```

In [2]: df=pd.read_csv(r"C:\Users\user\Downloads\11_winequality-red.csv")
 df.fillna(0,inplace=True)
 df

Out[2]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcol
0	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1	7.8	0.880	0.00	2.6	0.098	25.0	67.0	0.99680	3.20	0.68	
2	7.8	0.760	0.04	2.3	0.092	15.0	54.0	0.99700	3.26	0.65	
3	11.2	0.280	0.56	1.9	0.075	17.0	60.0	0.99800	3.16	0.58	
4	7.4	0.700	0.00	1.9	0.076	11.0	34.0	0.99780	3.51	0.56	
1594	6.2	0.600	0.08	2.0	0.090	32.0	44.0	0.99490	3.45	0.58	1
1595	5.9	0.550	0.10	2.2	0.062	39.0	51.0	0.99512	3.52	0.76	1
1596	6.3	0.510	0.13	2.3	0.076	29.0	40.0	0.99574	3.42	0.75	1
1597	5.9	0.645	0.12	2.0	0.075	32.0	44.0	0.99547	3.57	0.71	1
1598	6.0	0.310	0.47	3.6	0.067	18.0	42.0	0.99549	3.39	0.66	1

1599 rows × 12 columns

In [3]: df.head()

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
4.6											

```
In [4]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	pН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [5]: import seaborn as sns

In [6]: df.describe()

Out[6]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfu dioxid
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.46779
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.89532
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.00000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.00000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.00000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.00000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.00000

In []:

In [7]: sns.pairplot(df)

Out[7]: <seaborn.axisgrid.PairGrid at 0x1fdf66b4e80>


```
In [8]: df1=df.drop(['citric acid'],axis=1)
        df1=df1.drop(df1.index[1537:])
        df1.isna().sum()
Out[8]: fixed acidity
        volatile acidity
                                 0
        residual sugar
                                 0
        chlorides
                                 0
        free sulfur dioxide
                                 0
        total sulfur dioxide
                                 0
        density
                                 0
                                 0
        рΗ
                                 0
        sulphates
        alcohol
                                 0
        quality
                                 0
        dtype: int64
In [9]: sns.displot(df['alcohol'])
```

Out[9]: <seaborn.axisgrid.FacetGrid at 0x1fdfda65190>


```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>


```
In [11]: from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [12]: df1.isna().sum()

Out[12]:	fixed acidity	0
	volatile acidity	0
	residual sugar	0
	chlorides	0
	free sulfur dioxide	0
	total sulfur dioxide	0
	density	0
	рН	0
	sulphates	0
	alcohol	0
	quality	0
	dtype: int64	

```
In [13]: y=df1['fixed acidity']
         x=df1.drop(['chlorides','residual sugar'],axis=1)
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
         print(x train)
               fixed acidity volatile acidity free sulfur dioxide \
         1341
                         7.5
                                           0.51
                                                                13.0
                         8.6
                                           0.55
                                                                 8.0
         801
                         7.9
                                                                 7.0
         1459
                                           0.20
         756
                         6.3
                                           0.98
                                                                15.0
         1126
                         5.8
                                           0.29
                                                                 3.0
         . . .
                         . . .
                                            . . .
                                                                 . . .
         583
                        12.0
                                           0.28
                                                                10.0
         1518
                         7.4
                                           0.47
                                                                 7.0
         1490
                         7.1
                                           0.22
                                                                 8.0
         388
                         7.8
                                           0.46
                                                                23.0
         118
                         8.8
                                           0.55
                                                                14.0
               total sulfur dioxide density
                                                 pH sulphates alcohol quality
         1341
                                                          0.54
                                                                   10.5
                                31.0
                                      0.99538 3.36
                                                                               6
                                                                                5
                                17.0
                                                          0.44
                                                                   10.0
         801
                                      0.99735 3.23
                                                                               7
         1459
                                15.0
                                      0.99458 3.32
                                                          0.80
                                                                   11.9
                                                                               6
         756
                                33.0
                                      0.99488 3.60
                                                          0.46
                                                                   11.2
         1126
                                11.0
                                      0.99150 3.39
                                                          0.54
                                                                   13.5
                                                                               6
         . . .
                                                           . . .
                                                                    . . .
                                 . . .
                                               . . .
         583
                                21.0
                                      0.99760 2.98
                                                                    9.9
                                                                               7
                                                          0.66
         1518
                                20.0
                                      0.99647 3.32
                                                          0.63
                                                                   10.5
                                                                               5
         1490
                                18.0 0.99344 3.39
                                                          0.56
                                                                   12.4
                                                                               6
                                                                   9.2
         388
                                53.0
                                      0.99810 3.43
                                                          0.74
                                                                               6
                                                                               6
         118
                                56.0 0.99620 3.21
                                                          0.60
                                                                   10.9
         [1075 rows x 9 columns]
In [14]: | model=LinearRegression()
         model.fit(x_train,y_train)
         model.intercept
```

```
Out[14]: 7.993605777301127e-14
```

```
In [15]: prediction=model.predict(x_test)
         plt.scatter(y_test,prediction)
Out[15]: <matplotlib.collections.PathCollection at 0x1fdfffd7610>
          16
          14
          12
          10
           8
           6
                                 10
                                        12
                                               14
                                                       16
In [16]: model.score(x_test,y_test)
Out[16]: 1.0
In [17]: from sklearn.linear_model import Ridge,Lasso
In [18]: rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[18]: Ridge(alpha=10)
In [19]: rr.score(x_test,y_test)
Out[19]: 0.9999872504686617
In [20]: la =Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[20]: Lasso(alpha=10)
In [21]: la.score(x_test,y_test)
Out[21]: -0.00024395652394071377
```

```
In [22]: from sklearn.linear model import ElasticNet
         en=ElasticNet()
         en.fit(x_train,y_train)
         print(en.coef )
         print(en.intercept )
         print(en.predict(x test))
         print(en.score(x test,y test))
         from sklearn import metrics
         print("Mean Absolute Error:",metrics.mean_absolute_error(y_test,prediction))
         print("Mean Squared Error:", metrics.mean_squared_error(y_test, prediction))
         print("Root Mean Squared Error:",np.sqrt(metrics.mean_squared_error(y_test,pred
          10.72027011 10.0/0/770/
                                  U.100002/7 U.70T7770 U.007777/1 /.070//070
           7.67156836 7.04546752 9.849262
                                             10.04525574 7.43595514
                                                                     8.32032773
           7.95160255 8.05184922 13.49796054 12.15211542 8.15569941 8.29091502
           6.79844956 7.91693551 8.89210275 7.46386799 8.26615284 9.38628961
           8.50176607 7.5987817
                                  9.98762828 6.78689388 8.10302439 10.63173711
           9.64336338 8.78975242 9.25617738 8.00382474 8.40947156 7.09334105
          10.72238081 8.33203436 7.64170281 9.4424172
                                                         5.98460902 8.92016654
           6.25308753 7.04546752 7.930142
                                             7.49508247 5.98610889
                                                                     8.23328756
           7.06197563 7.80813289 7.81158546 7.55451168 11.53937202 9.86907174
           8.63517992 8.15554846 11.6496745
                                             8.08321465 10.49832326
                                                                     9.7224514
                      7.37157349 8.71426793 8.59075895 8.80326081
           7.59248035
                                                                     8.78840351
          10.71247594 8.33203436 7.29908872 6.9663795 11.48339537 9.05673107
           8.21993012 8.51497256 8.8854995
                                             7.15096851 7.44090757 10.34675049
           8.78840351 8.66639439 7.17557974 9.93165163 11.05493908 8.58085408
          10.95619227 6.46408953 6.46739115 7.97621378 7.4077404 10.18692365
           7.22990558 5.92037831 7.86921292 7.7949264
                                                         9.20185155 7.70608446]
         0.9155323766730585
         Mean Absolute Error: 7.782134724991574e-15
         Mean Squared Error: 9.409300658681618e-29
         Root Mean Squared Error: 9.700154977463823e-15
```