

PI, Ch 2: Constructing Manifolds

In this chapter we will explore the category of manifolds. That is the collection of all manifolds and the maps between them which preserve the structure of a manifold. Additionally we explore a particularly important kind of manifold, a bundle, as well as the category thereof.

Category of Manifolds

Setup:

For this chapter $(M, \tau_M, \mathcal{A}_M)$ is assumed to be a real analytic manifold. Its charts are given by $\phi_\alpha: U_\alpha \to V_\alpha \subseteq \mathbb{R}^m$. Additionally so is $(N, \tau_N, \mathcal{A}_N)$ with charts $\rho_\beta: S_\beta \to T_\beta \subseteq \mathbb{R}^n$.

Recall: Analytic Maps and Diffeomorphisms

We already know that the morphism in this category are the (analytic) maps $\Psi \in C^{\omega}(M,N)$ with bijective analytic maps being called diffeomorphisms.

A map $\Psi: M \to N$ is called **analytic** if $\forall p \in M: \forall \phi_{\alpha} \in \mathcal{A}_{M}(p)$ and $\forall \rho_{\beta} \in \mathcal{A}_{N}(\Psi(p))$, if $\Psi_{\alpha} = \Psi|_{U_{\alpha}}$, (where $\Psi_{\alpha}: U_{\alpha} \to \Upsilon_{\alpha} \subseteq N$) and $\tilde{\rho}_{\alpha\beta} = \rho_{\beta}|_{\Upsilon_{\alpha} \cap S_{\beta}}$, then the following map $\Psi_{\alpha\beta}$

$$\Psi_{lphaeta}= ilde
ho_{lphaeta}\circ\Psi_lpha\circ\phi_lpha^{-1}:V_lpha\subseteq\mathbb{R}^m o T_eta\subseteq\mathbb{R}^n$$

Being called the representation of Ψ with respect to charts ϕ_{α} , ρ_{β} , is analytic as a function from (an open subset of) \mathbb{R}^n to (an open subset of) \mathbb{R}^n . That is $\Psi_{\alpha\beta} \in C^{\omega}(V_{\alpha}, T_{\beta})$.

Moreover, if Ψ is bijective and its inverse is analytic then it is called a **diffeomorphism**.

Is Ψ is a diffeomorphism of M and N, then $\Psi_{lphaeta}$ is a diffeomorphism of V_lpha and T_eta

Obviously every diffeo is a homeo

Def: Submanifold and Embeddings

A **submanifold** $\tilde{M}\subseteq_{\mathcal{M}fd}M$ is a sub-topological space which also happens to be a real analytic manifold.

An **embedding** is a analytic map, which is a diffeomorphism between its domain and its range.

The inclusion map $id|_{ ilde{M}}$ imbeds $ilde{M}$ (or by composition any diffeomorphic space) into M.

Example: Submanifold

The first is that $S^n\subseteq\mathbb{R}^{n+1}$, or $SU(2),SL(2,\mathbb{C})\subseteq GL(2,\mathbb{C})$. Since $S^3\cong SU(2)$ it follows that the latter imbeds into \mathbb{R}^4 .

Def: Product Manifold

The **product manifold** $M \times N$ is a product topological space, with a **product atlas** containing **product charts.** Product charts are simply $\chi_{\alpha\beta} = (\phi_\alpha, \rho_\beta) : U_\alpha \times S_\beta \to V_\alpha \times T_\beta$, such that we have $\forall (p,q) \in U_\alpha \times S_\beta : \chi_{\alpha\beta}(p,q) = (\phi_\alpha(p), \rho_\beta(q))$ and this is a chart as $V_\alpha \times T_\beta \subseteq \mathbb{R}^{m+n}$. The product atlas contains all product charts, and any other compatible charts that can be defined.

Example: The Cylinder

The cylinder (of infinite length) $C=S^1 imes \mathbb{R}$

Example: The Torus

The n-Torus $T^n=(S^1)^{n+1}$, has a natural pair of coordinates representing the angle from each of its member circles.

Bundles

Here, our definitions are technically for **analytic bundles**, but one could replace our definition of a manifold as an **analytic manifold** to any other type and define that type of bundle.

Def: Bundles

Bundles, are a generalization of a product manifold. If E,M are manifolds and $\pi \in C^\omega(E,M)$ then the triplet (E,π,M) is called a **bundle**. Moreover, $fib(p)=preim_\pi\{p\}$ is called **the fibre at** p. The space E is called the **total space** (and sometimes in bad terminology the bundle) and the space M is called the **base space**. A bundle in which $\forall p \in M: fib(p)$ is a manifold diffeomorphic to F, is called a **fibre bundle with typical fibre** F.

Example: Trivial (Fibre) Bundle is a Product Manifold

A trivial (fibre) bundle is a bundle whose total space is diffeomorphic to the product of its base space with its typical fibre. e.g. $E=M\times F$. It has the natural projection map $\pi=proj^1$. Obviously C can be thought of as a trivial fibre bundle of S^1 with fibre $\mathbb R$. Alternatively T^1 can be thought of as a trivial fibre bundle of S^1 with fibre S^1 .

Example: Vector Bundles

A V- vector bundle over a manifold M is defined as follows. Let $\forall p \in M: V_p$ be a real vector space isomorphic to V with dimension n. It was shown in the last chapter to be a manifold with a global chart $\xi_\alpha: V_p \to \mathbb{R}^n$ induced by some choice of basis.

Next define $VM=\bigcup_{\forall p\in M}V_p$. Now VM is a topological space with the disjoint union topology.

For every chart $\phi_{\alpha} \in \mathcal{A}(p)$ and every chart $\xi_{\alpha} \in \mathcal{A}_{V_p}$, we get a chart $\chi_{\alpha\beta}: VM \to V_{\alpha} \times \mathbb{R}^n$ with the definition $\chi_{\alpha\beta}(X) = (\phi_{\alpha}(p), \xi_{\beta}(X)) \ \forall X \in V_p$. Hence VM is a manifold.

Lastly, the projection map $\pi:VM\to M$ is simply defined by $\pi(X)=p\ \forall X\in V_p$. And so (VM,π,M) is a fibre bundle with typical fibre V for any vector space V and is called a V-vector bundle over M.

Notably since \mathbb{R} is a vector space C can also be thought of as a \mathbb{R} -vector bundle over S^1 .

Intuition: A Low Dimensional Vector Bundle

Def: Sections

If (E,π,M) is a bundle, then a section of this bundle is $\sigma\in C^\omega(M,E)$ such that $\pi\circ\sigma=id_M$. We will call the set of all sections $\Gamma(E,\pi,M)=\{\sigma\in C^\omega(M,E)|\pi\circ\sigma=id_M\}$

On a trivial fibre bundle, we are allowed to think of a section as s:M o F and take $\sigma_s(p)=(p,s(p))$, as without loss of generality

$$(proj^1 \circ \sigma_s)(p) = proj^1(p,s(p)) = p$$

However, we <u>cannot</u> generically think of a section as a map from a manifold to its typical fibre.

Intuition: A Section

Category of Bundles

Setup

Let $(E,\pi,M),(D,\chi,N)$ be bundles and let $ilde{E}\subseteq E, ilde{M}\subseteq M$ throughout this section

Def: Bundle-morphism

A **bundle-morphism** $\varrho:(E,\pi,M) o (D,\chi,N)$ is a pair $\varrho=(f,g)$ where the functions are $f\in C^\omega(E,D)$ & $g\in C^\omega(M,N)$, s.t. the following diagram commutes.

$$egin{array}{ccc} E & \stackrel{f}{\longrightarrow} D & & \downarrow_{\chi} & & & \downarrow_{\chi} & & & & & \\ \pi \downarrow & & & \downarrow_{\chi} & & \downarrow_{\chi} & & & & & \\ M & \stackrel{g}{\longrightarrow} N & & & & & & & \\ \Longrightarrow g \circ \pi = \chi \circ f & & & & & & \end{array}$$

A **bundle isomorphism** $\varrho=(f,g)$ where f,g are diffeomorphisms and (f^{-1},g^{-1}) is also a bundle-morphism called the **inverse bundle-morphism** ϱ^{-1} .

Def: Sub-bundles

A **sub-bundle** of (E,π,M) is a triplet $(\tilde{E},\pi|_{\tilde{E}},\tilde{M})$ such that $im_{\pi}\tilde{E}=\tilde{M}$. In particular every submanifold of M generates a sub-bundle by defining $\tilde{E}=preim_{\pi}\tilde{M}$. This is called the **restricted sub-bundle** to \tilde{M}

Def: Local Bundle Isomorphism

if $\forall p \in M : \forall U \in \mathcal{N}(p)$ the restricted bundle generated by U, (\tilde{E}, π, U) is bundle isomorphic to the bundle (D, χ, N) then we say that (E, π, M) is **locally bundle isomorphic** to (D, χ, N) .

If a bundle is locally isomorphic to a trivial bundle it is called **locally trivial.**

There are obvious parallels to a local homeomorphism or chart here.

Example: The Mobius Strip

The Mobius strip is locally trivial whereas the cylinder is trivial, but both are $\mathbb R$ vector bundles over S^1 .

Def: Pullback Bundle

Lastly, if N is a mfd with no given bundle structure, and $\Psi: N \to M$, where (E, π, M) is a given bundle, then we may "pullback" the bundle via the following construction

Define $D_{\Psi}=\{(q,e)\in N imes E|\Psi(q)=\pi(e)\}$, then we simply get the following commutative diagram.

And hence the **pullback bundle** $(D_\Psi, proj^1, N)$ is one such that $(proj^2, \Psi)$ is a bundle-morphism.

To summarize here, a bundle is just two manifolds glued together in some way. In the symplest way like a cylinder is just a product, but we may complicate bundles to make them more general.