Análisis Canónico

Itzel Teodocio Olivares

2022-05-15

Instalar paqueterias

Se utiliza la matriz penguins.xlsx

Importar la matriz de datos.

```
library("readxl")
penguins <- read_excel("penguins.xlsx")</pre>
```

Exploracion de la matriz

```
dim(penguins)
## [1] 344
colnames(penguins)
## [1] "ID"
                        "especie"
                                          "isla"
                                                            "largo_pico_mm"
## [5] "grosor_pico_mm"
                        "largo_aleta_mm" "masa_corporal_g" "genero"
## [9] "año"
str(penguins)
## tibble [344 x 9] (S3: tbl_df/tbl/data.frame)
                    : chr [1:344] "i1" "i2" "i3" "i4" ...
## $ ID
## $ especie
                    : chr [1:344] "Adelie" "Adelie" "Adelie" "Adelie" ...
                    : chr [1:344] "Torgersen" "Torgersen" "Torgersen" "Torgersen" ...
## $ isla
## $ largo_pico_mm : num [1:344] 39.1 39.5 40.3 37.8 36.7 39.3 38.9 39.2 34.1 42 ...
## $ grosor_pico_mm : num [1:344] 18.7 17.4 18 18.1 19.3 20.6 17.8 19.6 18.1 20.2 ...
## $ largo_aleta_mm : num [1:344] 181 186 195 190 193 190 181 195 193 190 ...
## $ masa corporal g: num [1:344] 3750 3800 3250 3700 3450 ...
                : chr [1:344] "male" "female" "female" "female" ...
## $ genero
## $ año
                   : num [1:344] 2007 2007 2007 2007 2007 ...
```

```
anyNA(penguins)
## [1] FALSE
```

Escalamiento de la matriz

Generacion de variables X

```
X <- penguins %>%
  select(grosor_pico_mm, largo_pico_mm) %>%
  scale()
head(X)
##
       grosor_pico_mm largo_pico_mm
## [1,]
          0.7863145 -0.8825216
## [2,]
           0.1267012
                        -0.8093460
## [3,]
           0.4311381 -0.6629947
## [4,]
          0.4818776 -1.1203424
## [5,]
          1.0907514 -1.3215754
            1.7503647
## [6,]
                        -0.8459338
```

Generacion de variables Y

Libreria

```
install.packages("CCA")
library("CCA")
```

Analisis

```
ac<-cancor(X,Y)
```

Visualizacion de la matriz X

```
ac$xcoef

## [,1] [,2]

## grosor_pico_mm 0.03098538 0.04615243

## largo_pico_mm -0.03746177 0.04107014
```

Visualizacion de la matriz Y

```
ac$ycoef

## [,1] [,2]

## largo_aleta_mm -0.055220261 -0.0951545

## masa_corporal_g 0.001411466 0.1100076
```

Visualizacion de la correlacion canonica

```
ac$cor
## [1] 0.79268475 0.09867305
```

Obtencion de la matriz de variables canonicas

Se obtiene multiplicando los coeficientes por

cada una de las variables (X1 y Y1)

```
ac1_X <- as.matrix(X) %*% ac$xcoef[, 1]
ac1_Y <- as.matrix(Y) %*% ac$ycoef[, 1]

#Visualizacion de los primeros 20 datos
ac1_X[1:20,]

## [1] 0.05742508 0.03424542 0.03819593 0.05690117 0.08330590 0.08592589
## [7] 0.04464608 0.07088939 0.08225809 0.06113346 0.04117935 0.04432371
## [13] 0.02642463 0.10015624 0.12599695 0.06040849 0.06488291 0.06556776
## [19] 0.08491867 0.05415894
ac1_Y[1:20,]

## [1] 0.07742915 0.05790657 0.02163800 0.04204177 0.02983476 0.04195365
## [7] 0.07720886 0.02414936 0.02987882 0.04301106 0.05702539 0.08126317
## [13] 0.07253771 0.03829586 0.01189829 0.06165247 0.02199048 0.01599667
## [19] 0.06491373 0.02723438</pre>
```

Correlacion canonica entre variable X1 y Y1

```
cor(ac1_X,ac1_Y)
```

```
## [,1]
## [1,] 0.7926848
```

Verificacion de la correlacion canonica

[1] TRUE

Analisis canonico con dos pares de variables

Calculo de las variables X2 y Y2

```
ac2_X <- as.matrix(X) %*% ac$xcoef[, 2]
ac2_Y <- as.matrix(Y) %*% ac$ycoef[, 2]</pre>
```

Agregamos las variables generadas a la matriz original de penguins

Visualización de los nombres de las variables

Generacion del grafico scater plot para la

visualizacion de X1 y Y1

```
ac_df %>%
ggplot(aes(x=ac1_X,y=ac1_Y))+
geom_point(color="indianred1")
```


Generacion de un boxplot

```
ac_df %>%
  ggplot(aes(x=especie,y=ac1_X, color=especie))+
  geom_boxplot(width=0.5)+
  geom_jitter(width=0.15)+
  ggtitle("Variable Canónica X1 contra Especie")
```

Variable Canónica X1 contra Especie

Interpretación: se observa una correlacion entre la variable canónica X1 y la variable latente Especie

```
ac_df %>%
  ggplot(aes(x=especie,y=ac1_Y, color=especie))+
  geom_boxplot(width=0.5)+
  geom_jitter(width=0.15)+
  ggtitle("Variable Canónica Y1 contra Especie")
```

Variable Canónica Y1 contra Especie


```
ac_df %>%
  ggplot(aes(x=ac1_X,y=ac1_Y, color=especie))+
  geom_point()+
  ggtitle("Variable Canónica X1 contra Y1")
```


Scarter plot con las variables canonicas

X2 y Y2 separadas por genero.

```
ac_df %>%
ggplot(aes(x=ac2_X,y=ac2_Y, color=genero))+
geom_point()+
ggtitle("Variable Canónica X2 contra Y2")
```

Variable Canónica X2 contra Y2

Interpretacion: No de identifica correlacion#entre el conjunto de variables X2 y Y2 separadas # por genero.