

Universidad Técnica Nacional Sede Central Alajuela - Campus CUNA

CURSO: IEL-525 LABORATORIO DE ELECTRÓNICA I

GRUPO 02

III CUATRIMESTRE DE 2020

LABORATORIO No.10: CIRCUITO AMPLIFICADOR EN CASCADA O MULTIETAPA.

DOCENTE: RONALD SABORÍO RODRÍGUEZ FECHA DE REALIZACIÓN: 23/11/2020 FECHA MÁXIMA DE ENTREGA: 01/12/2020

NOMBRE ESTUDIANTE: <u>Angie Marchena Mondell</u> CARNÉ: <u>604650904</u>

HAGA SUS ANOTACIONES EN LETRA TIPO CALIBRI, TAMAÑO 12, CURSIVA Y EN COLOR AZUL.

FUNDAMENTOS TEÓRICOS IMPORTANTES POR CONSIDERAR PARA ESTE LABORATORIO:

• Circuitos amplificadores en cascada o multietapa: características, funcionamiento.

1. CIRCUITO AMPLIFICADOR EN CASCADA (DOS ETAPAS)

Con base en el siguiente circuito.

1.1 Calcule los valores teóricos indicados en la tabla No.1 y anótelos.

Tabla No.1

VALORES TEÓRICOS								
VCEQ1	Av1	Vop1	VCEQ2	Av2	Vop	AV(total)		
6.20 V	87	872 uV	6.20 V	49	43 mV	4263		

1.2 Implemente en el simulador el circuito anterior, la tensión de entrada es de 10 μ Vp (en el simulador Multisim se debe asignar como .01 mVpk). Mida con el voltímetro las tensiones VCEQ1 y VCEQ2; observe con el osciloscopio las señales de entrada (Vin), la señal de salida en la primera etapa (Vo1) y la señal de salida en la segunda etapa (Vo); mida las tensiones pico en cada etapa y anote los valores en la tabla No.2.

Tabla No.2

VALORES MEDIDOS							
VCEQ1	Av1 (Vin/Vo1)	Vop1	VCEQ2	Av2 (Vo/Vo1)	Vop	Av(total) (Vo/Vin)	
5.96 V	62	615 uV	5.96 V	26.25	16.12 mV	1696	

2. ANÁLISIS DE RESULTADOS / CONCLUSIONES.

Anotar al menos 3 conclusiones.
En un amplificador en cascada, su multiplicación proporciona una ganancia en el voltaje de cada etapa para tener una mayor ganancia en general.
Los valores teóricos y medidos, sus resultados dieron diferentes debido a los parámetros del transistor, pero no es muy grande la diferencia.
La presencia de capacitores hace que la ganancia dependa de la frecuencia.
La configuración en cascada puede aumentar significativamente los valores de las ganancia, ideales para mucha amplificación en voltaje.