Entscheidbarkeit

Nichtentscheidbare Probleme Welche von denen gehören zu den Semientscheidbaren?

- Diagonalsprache $L_d := \{\omega_i : M_i\}$ akzeptiert ω_i nicht}
- Kontextfreie Sprachen: $L(G_1) \subseteq L(G_2)$?, Mehrdeutigkeit (mehrere Ableitungen zum gleichen Wort)?, $\overline{L(G)}$ kontextfrei?, L(G)regulär?, $\hat{L}(G)$ det. kontextfrei?
- Diophantische Gleichungen: multivariates Polynome p, Koeffizienten ganzzahlig: $\exists x_1,\ldots,x_n\in\mathbb{Z}:$ $p(x_1,\ldots,x_n)=0?$

• siehe semientsch. Probleme Semientscheidbare Probleme Definition: Es ex. eine TM, die

genau die Wörter aus L akzeptiert, sonst aber nicht halten muss. Beispiele:

- Halteproblem $H := \{wv | T_w \text{ hält }$ auf der Eingabe v}
- Universelle Sprache $L_u := \{wv | v \in L(T_w)\}$
- Postsches Korrenspondenzproblem Geg: Menge von Wortpaaren $(x_i, y_i) \in (\Sigma^+ \times \Sigma^+)^*$. Gibt es eine endl. Folge von Indizes: $x_{i1}...x_{in} = y_{i1}...y_{in}?$
- Komplement der $\dot{\rm Diagonal sprache}$

Entscheidbare Probleme

Definition: Es ex. eine TM, die genau die Wörter aus L akzeptiert und bei jeder Eingabe hält. Beispiele:

 $Presburger\ Arithmetik:$ eingeschränkte prädikatenlogische

rormem.				
Тур	\in	Ø	=	$\cap = \emptyset$
CH-3	J	J	J	J
Det. KF	J	J	J	N
CH-2	J	J	N	N
CH-1	J	N	N	N
CH-0	N	N	N	N
C11-0	11	1.4	1.4	1 1

$$\mathcal{NP}\stackrel{?}{=}\mathcal{P}$$

$\overline{\textbf{Definitionen}\,\,\mathcal{NP},\mathcal{P}}$

- $time_M(w) := Anzahl$ Rechenschritte einer TM M bei Eingabe w
- $\mathrm{TIME}(f(n)) := \{L \in \Sigma^* : \exists \ \mathrm{TM}$ $M: L(M) = L \text{ und } \forall w \in L(M):$ $time_{M}(w) \leq f(|w|)$
- $\mathcal{P} := \cup_{\text{Polynom } p} \text{TIME}(p(n))$
- $\operatorname{ntime}_{M}(w) =$

 $\bigcap \min\{n : P = (s)w \Rightarrow^n u(f)v,$ $f \in F$ } falls $w \in L(M)$ 0, sonst

- NTIME $(f(n)) = \{L \in \Sigma^* :$ $\exists NTM \ M : L(M) = L \text{ und } \forall w \in$ $L(M) : \operatorname{ntime}_{M}(w) \leq f(|w|)$
- $\mathcal{NP} = \bigcup_{\text{Polynom } p} \text{NTIME}(p(n))$
- $V \in \mathcal{NP}\text{-hart} : \Leftrightarrow \\ \forall V' \in \mathcal{NP} : V' \leq_p V$
- $V \in \mathcal{NP}$ -vollständig : $\Leftrightarrow V \in \mathcal{NP} \cap \mathcal{NP}$ -hart

Probleme siehe Tabelle Achtung: "Rucksack" ist Knapsack bei Sanders, aber Subsetsum bei Schöning.

Grammatiken

Sei $G = (V, \Sigma, P, S), \forall l \rightarrow r \in P$:

Def. CH-0 (rekursiv aufzählbar)

 $Wortproblemkomplexit\"{a}t:$

semientscheidbar Definition CH-1 (längenbeschr.)

 $|l| \leq |r|$. Sonderregel für ε -Produktion nur bei SBeispiel: $a^n b^n c^n$ $Wortproblemkomplexit \ddot{a}t:$ $|\Sigma|^{O(n)}$, NP-hart EntscheidbareProbleme: $L(G) = \emptyset$, $|L(G)| \neq \infty$, $L(G) = \Sigma^*$

Definition CH-2 (kontextfrei)

CH-1 und $l \in V$ Beispiel: $a^n b^n$

Wortproblemkomplexität: $O(n^3)$ Pumpinglemma: L kontextfrei $\Rightarrow \exists n \in \mathbb{N} : \forall z \in L, |z| > n :$ $\begin{array}{l} \exists u,v,w,x,y:\\ z=uvwxy \wedge |vx| \geq 1 \wedge |vwx| \leq \end{array}$ $n \wedge \forall i \in \mathbb{N}_0 : uv^i wx^i y \in L$ $Odgens\ Lemma:\ L\ kontextfrei$

 $\Rightarrow \exists n \in \mathbb{N}: \forall z \in L, |z| \geq n:$ Wenn wir in z mindestens n Buchstaben markieren

 $\exists u, v, w, x, y : z = uvwxy$, dass von den mindestens n markierten Buchstaben mindestens einer zu vx gehört und höchstens nzu vwxgehören und $\forall i \geq 0 : uv^i wx^i y \in L$. Chomsky-Normalform: falls gilt: $P \subseteq (V \times \Sigma) \cup (V \times VV)$

- 1. Terminale in eigene Regeln.
- 2. Regeln mit rechts > 2Nicht-Terminale aufsplitten
- $\varepsilon ext{-Produktionen entfernen}$
- 4. Kettenproduktionen entfernen

Definition Det. KF Bitte noch eintragen

Wortproblemkomplexit"at: O(n)

Definition CH-3 (regulär)

CH-2 und $r \in \Sigma \cup \hat{\Sigma}V$

Beispiel: a^*b^*

Wortproblemkomplexit"at: O(n)Pumpinglemma: L regulär

 $\Rightarrow \exists n \in \mathbb{N} : \forall w \in L, |w| > n :$ $\exists u,v,x: w = uvx \land |v| \geq 1 \land |uv| \leq$ $n \wedge \forall i \in \mathbb{N}_0 : uv^i x \in L$

Reguläre Ausdrücke: Beispiel: $(\emptyset \cup \varepsilon)^* abc^+$

Nerode-Relation

 $\begin{array}{l} \textit{Für Sprache L:} \\ R_L := \{(x,y) \in \Sigma^* \times \Sigma^* : \forall z \in \Sigma^* : \\ xz \in L \Leftrightarrow yz \in L \} \end{array}$ Für Automat $M: R_M := \{(x, y) \in \Sigma^* \times \Sigma^* : \delta^*(s, x) = \delta^*(s, y)\}$

Verfeinerung: R verfeinert $R' \Leftrightarrow R \subseteq R'$

Satz: L regulär \Leftrightarrow index $(R_L) \neq \infty$ Satz: $q \not\equiv r \Leftrightarrow \exists z \in \Sigma^* : \delta(q, z) \in$ $F \not\Leftrightarrow \delta(r, z) \in F$

 $Beispielanwendung: a^n b^n$ ist nicht regulär, denn $[a^n], n \in \mathbb{N}$ sind unendlich verschiede

Äquivalenzklassen, denn für $i \neq j$ ist $a^i b^i \in L$, aber $a^j b^i \notin L$, also $[a^i] \neq [a^j]$.

Γ	J	/	[1.				
$\overline{\mathbf{A}}$	bs	sc.	hlu	ISS	eige	nsc	haft	en

Тур	\cap	U			*
CH-3	J	J	J	J	J
Det. KF	N	N	J	N	N
CH-2	N	J	N	J	J
CH-1	J	J	J	J	J
CH-0	J	J	N	J	J
semient.	J	J	N	J	J
entsch.	J	J	J	J	J

Automaten-Zuordnung

Тур	Automat
CH-3	Endlicher Automat
	(NEA, DEA)
Det. KF	det. Kellerautomat
	(DKellerA)
CH-2	Kellerautomat
	(NKellerA)
CH-1	linear beschr. Automat
	(NLBTM)
CH-0	Turingmaschine (TM)

Automatenäquivalenz

 $\varepsilon {\rm NEA}$ ist zu $\overline{\varepsilon} {\rm NEA}$ ist zu DEA und NTM ist zur DTM äquivalent. NKellerA ist zu DKellerA nicht äquivalent. Äquivalenz von NLBTM und DLBTM ist noch nicht bewiesen.

Automaten

Mealy-Automat: Ausgabe beim Übergang, Moore-Automat: Ausgabe beim Zustand.

$\overline{ ext{DTM}}$

 $T = (Q, \Sigma, \Gamma, \delta, s, F), \delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, N\}$

sie hält in q(q)av: $\Leftrightarrow \delta(q, a) = (q, a, N).$ Konvention: $\forall q \in F : \forall a \in \Gamma : \delta(q, a) = (q, a, N)$ $sie\ akzeptiert\ w:\Leftrightarrow (s)w$ hält nach endlich vielen Übergängen in $x(f)y, f \in F$. y ist die Ausgabe. rekursiv aufzählbar $(semientscheidbar): \exists T: T$ akzeptiert L $\begin{array}{l} rekursiv \ (entscheidbar) \colon \exists T : T \\ \text{akzeptiert} \ L \wedge \forall w \in \Sigma^* : T \ \text{h\"{a}lt}. \end{array}$

DTM-Varianten

Mehrere Bänder, mehrere Köpfe, mehrere Dimensionen – alles gleich mächtig wie DTM.

$\overline{\text{NTM}}$

 $T = (Q, \Sigma, \Gamma, \delta, s, F), \delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times \{L, R, N\}}$

sie hält wie: DTM $sie~akzeptiert~w:\Leftrightarrow \exists~ \text{Folge von}$ Konfigurationen

$s(w) \xrightarrow{} \cdots \xrightarrow{} x(f)y, f \in F$ Gödelnummer-Code

1. Kodiere δ :

 $\delta(q_i, a_j) = (q_r, a_s, d_t) \rightarrow 0^i 10^j 10^r 10^s 10^t$

wobei $d_t \in \{d_1 = L, d_2 = R, d_3 = N\}$ 2. Die TM wird dann kodiert durch: $111u_111u_211...11u_z111$ mit u_i die möglichen Übergänge in

bel. Reihenfolge. NLBTM

NTM $T = (Q, \Sigma, \Gamma, \delta, s, F) : \forall a =$ $a_1, \dots, a_n \in \Sigma^+ : a \stackrel{*}{\Rightarrow} \alpha(q)\beta$ mit $|\alpha\beta| < n$

Nichtdet. Kellerautomat

 $K = (Q, \Sigma, \Gamma, \delta, s, \#), \delta:$ $Q \times (\Sigma \cup \varepsilon) \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$ $er \ akzeptiert \ w: \Leftrightarrow \exists \ Folge \ von$ Konfigurationen $(s, w, \#) \to \cdots \to (q, \varepsilon, \varepsilon), q \in Q$

beliebig.

Det. Kellerautomat $K = (Q, \Sigma, \Gamma, \delta, s, \#), \delta$ $Q \times (\Sigma \cup \varepsilon) \times \Gamma \to 2^{Q \times \Gamma^*} \text{ mit } \forall q \in Q, a \in \Sigma, A \in \Gamma :$ $|\delta(z,a,A)|+|\delta(z,\varepsilon,A)|\leq 1$ $er \ akzeptiert \ w: \Leftrightarrow \exists \ Folge \ von$ Konfigurationen

$(s, w, \#) \to \cdots \to (f, \varepsilon, \varepsilon), f \in F$ Automatenminimierung (Für endliche Automaten)

1. nicht erreichbare Zustände weg Tabelle aller Zustandspaare

- $\{z, z'\}$ mit $z \neq z'$ $(z_1 \text{ bis } z_k \text{ links}, z_0 \text{ bis } z_{k-1}$ unten)
- 3. Markieren der Zustandspaare $\text{mit }z\in F\text{ und }z\notin F\text{ oder}$ umgekehrt.
- 4. Betrachte unmakrierte Paare Wenn $\{\delta(z,z')\}$. Wenn $\{\delta(z,a),\delta(z',a)\}$ für mind. ein $a\in\Sigma$ bereits makiert, markiere $\{z,z'\}$.
- Wiederhole 4. bis keine Änderung mehr.
- 6. Unmarkierte Paare können

verschmolzen werden.

DEA \rightarrow reg. ex.

Betrachte $L^m_{ij} := \{w : \Sigma^* : \text{Beim Verarbeiten von } w \text{ geht } A$ vom Zustand i nach j und dabei höchstens durch m}. Es gilt $L_{ij}^{m+1} = L_{ij} \cup$

 $\left(L_{i,m+1}^m(L_{m+1,m+1,j}^m)^*L_{m+1,j}^m\right)$ So weitermachen, bis man L_{sf}^{n} hat (s Startzustand, f Endzustand, nZahl der Zustände).

$\overline{\mathbf{NEA} \to \mathbf{DEA}}$

Potenzmengenkonstruktion. Knotenmengen sind Endzustände, wenn einer ihrer enthaltenen Zustände ein Endzustand ist.

Whileprogramm

 $\mathbb{N} \min(\mathbb{N}x_1,\ldots,x_k)$ $\mathbb{N}x_0 = 0; \mathbb{N}x_{k+1} = 0; \dots$

return x_0 ; body $\in \{ \text{ Sequenz '}; ', \text{while}(x_i \neq 0) : \}$ Schleife, $x_i := x_i + c$ wobei $c \in \{-1, 0, 1\}$ und $0 - 1 := 0\}$ "loop"-Konstrukte im body erlaubt, aber redundant.

${\bf Loopprogramm}$

 $\mathbb{N} \min(\mathbb{N}x_1, \dots, x_k) \{ \\ \mathbb{N}x_0 = 0; \mathbb{N}x_{k+1} = 0; \dots$ body; return x_0 ; body $\in \{ \text{ Sequenz ';',loop}(x_i) :$ Schleife, wobei schon vor dem

Durchlauf bekannt ist wie oft die

wobei $c \in \{-1, 0, 1\}$ und $0 - 1 := 0\}$ Ackermannfunktion

Schleife wiederholt wird, $x_i := x_i + c$

Definition

Function a(x, y)

if x = 0 then return y + 1if y = 0 then return a(x - 1, 1)return a(x-1, a(x, y-1))

Eigenschaften

- y < a(x, y)
- a(x,y) < a(x,y+1)
- a(x, y+1) < a(x+1, y)
- $\bullet \quad a(x,y) < a(x+1,y)$
- $a(x,y) \le a(x',y')$ falls $x \le x'$ und $y \le y'$

Pseudopolinomialität

Nur relevant für Probleme mit Zahlen

Approximation

 \mathcal{A} ein polynomieller Approximationsalgo, OPT Optimalwert:

absoluter Approxalgo

 $\forall I$ Instanzen eines Optimierungsproblems

 $\exists K : \mathrm{OPT}(I) - \mathcal{A}(I) \leq K$ Approxalgo relativer Güte $\forall I \text{Instanz} \exists K : \mathcal{R}_{\mathcal{A}}(I) \leq K, K \geq 1$

konstant. $\mathcal{R}_{\mathcal{A}} =$ $\begin{cases} \frac{\mathcal{A}(I)}{\text{OPT}(I)} \text{falls Minimierungspr.} \\ \frac{\text{OPT}(I)}{\mathcal{A}(I)} \text{falls Maximierungspr.} \end{cases}$

ell Formulierungen anpassen PAS – Approxschema

Familie von Approxalgos A_{ε} mit $\mathcal{R}_{A_{\varepsilon}} \leq 1 + \varepsilon$, polynomiell in der

Eingabe
FPAS – vollpoly Approxschema wie PAS, aber auch polynomiell in $\frac{1}{\varepsilon}$

Ansatz Nichtexistenzbeweis

Man zeigt, dass man das eigentliche Problem aufblähen kann, so dass eine Approximation des aufgeblähten beim zurücktransformieren das eigentliche

Problem (in \mathcal{P}) lösen würde. Bekannte Existenzen (Falls $\mathcal{NP} \neq \mathcal{P}$)

- KNAPSACK, Clique kein abs. Approx-Algo
- Knapsack hat rel. Approx-Algo (greedy, Güte 2)
- Color hat kein rel. Approx-Algo mit $\mathcal{R}^{\infty} \leq \frac{4}{3}$ TSP mit Δ -Ungleichung hat rel.
- Approx-Algo mit $\mathcal{R} \leq 2$

Hinweise

Diese Hinweise müssen noch ein sortiert und ggf. umformuliert

• Bei Reduktionsbeweisen stets zeigen, dass eine Lösung des einen Problems eine Lösung im anderen Problem induziert und umgekehrt. (Dieses muss allerdings nur in der einen Richtung in polynomieller Zeit möglich sein)

NP-Vollständige Probleme

Problem	Gegeben	Gesucht	polyn. red. von
SAT	aussagenlog. Formel	Erfüllbarkeit	TM
3SAT	boolesche Formel in KNF mit 3 Lit. pro Klausel	Erfüllbarkeit	SAT
Set Cover	endl. Menge M und $T_1,, T_k \subseteq M$, Zahl $n \leq k$	$n \text{ Mengen } T_{i_1},, T_{i_n} \text{ mit } M = \bigcup_{j=1n} T_{i_j}$	3SAT
Steiner-Tree	Unger. Graph $G = (V, E)$ mit Gewichten $c : E \rightarrow$	Baum $T \subseteq E$ der mit minimalen Kosten alle	3SAT
	$\mathbb{R}^+, V = R$ (Pflicht-) $\cup F$ (Steinerknoten)	Pflichtknoten verbindet	
Clique	ungerichteter Graph $G = (V, E)$ und Zahl $k \in \mathbb{N}$	Clique $V' \subseteq V$ mit $ V' \ge k$, also $\forall i, j \in V', i \ne j$	3SAT
		j , gilt: $\{i, \overline{j}\} \in E$	
Vertex Cover	ungerichteter Graph $G = (V, E)$ und Zahl $k \in \mathbb{N}$	überdeckende Knotenmenge $V' \subseteq V$ mit $ V' \ge$	Clique
		k , sodass $\forall \{u, v\} \in E : u \in V'$ oder $v \in V'$	
Subset Sum	Zahlen $a_1,, a_k \in \mathbb{N}$ und $W \in \mathbb{N}$	Teilmenge $J \subseteq \{1,, k\}$ mit $\sum_{i \in J} a_i = W$	3SAT
Partition	Zahlen $a_1,, a_k \in \mathbb{N}$	Teilmenge $J \subseteq \{1,, k\}$ mit $\sum_{i \in J} a_i = \sum_{i \notin J} a_i$	Subset Sum
Bin Packing	Behältergröße $b \in \mathbb{N}$, Behälteranzahl $k \in \mathbb{N}$, Ob-	Abb. $f : \{1,, n\} \to \{1,, k\}, \text{ sodass } \forall j = 1,, k\}$	Partition
	jekte $a_1, a_k \leq b$	$1,, k : \sum_{f(i)=j} a_i \le b$	
Knapsack	endl. Menge M , Gewichsfkt. $w: M \to \mathbb{N}_0$, Ko-	$M' \subseteq M \text{ mit } \sum_{a \in M'} w(a) \leq W \text{ und }$	Subset Sum
	stenfkt. (Profitfkt.) $c: M \to \mathbb{N}_0, W, C \in \mathbb{N}_0$	$\sum_{a \in M'} c(a) \ge C$	
ILP	Vektor $x = (x_1, \dots, x_n)$ und Bedingungen $a \cdot xRb$	$\overline{\text{Gibt}}$ es eine Belegung von x , so dass alle Bedin-	Subset Sum
	mit $R \in \{\leq, \geq, =\}, a \in \mathbb{Z}^n, b \in \mathbb{Z}$	gungen erfüllt sind?	
Gericht. Ha-	gerichteter Graph $G = (V, E)$	Hamiltonkreis: einfacher Kreis der jeden Knoten	3SAT
miltonkreis		genau einmal enthält	
Hamiltonkreis	ungerichteter Graph $G = (V, E)$	Hamiltonkreis	Gericht. Ha-
map.	TABLE OF THE CONTRACTOR OF THE	II 11 1 1 C 1 I I T	miltonkreis
TSP	Vollständiger Graph $G = (V, V \times V)$ mit Ab-	Hamiltonkreis C mit Länge $\sum_{(u,v)\in C} d(u,v) \leq k$	Hamiltonkreis
~ · ·	standsfkt. $d: V \times V \to \mathbb{R}^+$ und Zahl k	77 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	
Coloring	ungerichteter Graph $G = (V, E)$ und Zahl $k \in \mathbb{N}$	$c: V \to 1, \dots, k \text{ mit } \forall \{u, v\} \in E: c(u) \neq c(v)$	3SAT

Und für die, die den Taschenrechner vergessen haben:

Jetzt sogar mit Glückspfenning!