

Arquitetura de Computadores

PROTOTIPO DE MONITORAMENTE SUBMERSIVEL

202407321976 Vinícius Marinho Queiroz 202501511031 Heitor Gonçalves Lima 202501441581 Carlos Vinicius Oiticica Jund 202502579519 Pietro Baldo Albuquerque 202501001254 Gianluca Leinardi 202503545189 Rafael Tomaz

> Rio de Janeiro 2025.2

Sumário

1	Introdução	3
2	Arquitetura de Componentes	4
3	Diagrama de ligações	5
4	Descrição de funcionamento	7
	4.1. Função de Leitura e Alerta	7
	4.2. Logica de Seleção de Modo	
	4.3. Configuração de Limites	8
5	Fluxograma do Sistema	9
6	Exemplos de Entradas e Saídas	11
	6.1. Exemplo de Seleção de Modo e Configuração de Limites	11
	6.2. Exemplo de Monitoramento Contínuo com Alerta	12

1 INTRODUÇÃO

Este documento técnico apresenta o desenvolvimento e a documentação de um protótipo de sistema de monitoramento para um mini submarino. O objetivo principal é a aquisição de dados ambientais críticos, como o nível de água interno (indicando possíveis vazamentos) e a distância externa (para detecção de obstáculos). O sistema utiliza um microcontrolador Arduino, que processa dados de um sensor de nível de água resistivo e um sensor ultrassônico, além de gerenciar a interação do usuário por meio de um joystick para seleção de modos e um teclado de matriz para configuração de limites.

2 ARQUITETURA DE COMPONENTES

A arquitetura do sistema é baseada no Arduino Uno, que centraliza a leitura dos sensores e o processamento da lógica de alerta e monitoramento. Os principais componentes utilizados são:

- Microcontrolador Arduino Uno: Responsável pela execução do código e controle de toda a lógica.
- Sensor Ultrassônico HC-SR04: Utilizado para medir a distância de objetos externos (pinos D10 e D11).
- Sensor de Nível de Água: Monitora o nível de umidade/água dentro do protótipo (pino analógico A2).
- Módulo Joystick: Controla a seleção dos modos de operação (eixos analógicos A0 e A1).
- Teclado Membrana 4x4: Usado para a entrada de dados numéricos para a definição dos limites de segurança (pinos digitais D2 a D9).

3 DIAGRAMA DE LIGAÇÕES

Este diagrama ilustra a conectividade lógica e elétrica entre os componentes e o microcontrolador Arduino Uno. É essencial notar que, para fins de simulação esquemática, os módulos físicos (Joystick e Sensor de Nível de Água) foram substituídos por potenciômetros no diagrama, conforme detalhado na Tabela.

Mapeamento de Componentes do protótipo.

Componente Fisico	Pino do Arduino	Componente no Diagrama Esquemático	Função Elétrica Representada
Módulo Joystick (Eixo X)	A0	Potenciômetro 1	Simula a variação de tensão no eixo X
Módulo Joystick (Eixo Y)	A1	Potenciômetro 2	Simula a variação de tensão no eixo Y
Sensor de Nível de Água	A2	Potenciômetro 3	Simula a variação de resistência/nível lida pelo sensor
Sensor Ultrassônico (HC-SR04)	D10(THIG), D11(ECHO)	Módulo DIST1	Medição de Distância
Teclado Membrana 4x4	D2 a D9	Módulo KEYPAD D1	Entrada de Dados (Matriz 4x4)
Arduino UNO	5V, GND	U1	Microcontrolador central

Diagrama esquemático do protótipo de monitoramento submersível.

4 DESCRIÇÃO DE FUNCIONAMENTO

O sistema opera com base em uma lógica de máquina de estados, controlada pela variável modo, permitindo que o usuário selecione uma das três opções de monitoramento após a configuração inicial dos limites de segurança. A interface de usuário é realizada através da leitura de dois eixos analógicos do joystick (pinos A0 e A1) para a seleção do modo e do teclado de matriz (pinos D2 a D9) para entrada de limites.

4.1. FUNÇÃO DE LEITURA E ALERTA

As leituras dos sensores são realizadas pelas funções leragua() e lerultrasom().

- A função leragua() realiza uma leitura analógica no pino A2.
- A função lerultrasom() envia um pulso de 10 microssegundos pelo pino TRIG
 (D10) e calcula a distância em centímetros com base no tempo de retorno do pulso no pino ECHO (D11).

A função alerta() é chamada em todos os modos de operação e é responsável por verificar se os valores atuais violam os limites definidos pelo usuário:

- Alerta de Água: Emitido se o valor lido da água for maior que o limite agua.
- Alerta de Distância: Emitido se a distância lida for inferior ao limite distancia.

4.2. LOGICA DE SELEÇÃO DE MODO

O sistema é inicializado no modo = 0, aguardando a seleção do usuário através do joystick e da confirmação com a tecla #.

Joystick para Cima (y < 400): Seleciona o Modo de Teste (modo = 1).

- Joystick para Direita (x > 600): Seleciona o Monitoramento Sob Demanda (modo = 2).
- Joystick para Esquerda (x < 400): Seleciona o Monitoramento Contínuo (modo = 3).

Após a seleção, o sistema avança para a fase de configuração de limites.

4.3. CONFIGURAÇÃO DE LIMITES

Após a seleção do modo, o sistema exige que o usuário defina os dois limites de segurança, utilizando as teclas numéricas do teclado membrana para a entrada de dígitos.

- Limite de Água (limite_agua): O usuário digita o valor máximo permitido. A entrada é confirmada com a tecla #, e a variável booleana setagua é marcada como true.
- Limite de Distância (limite_distancia): O processo é repetido para o limite mínimo de distância. A confirmação com # marca setdistancia como true, e o sistema inicia o loop da função do modo selecionado.

5 FLUXOGRAMA DO SISTEMA

O fluxograma do sistema, representado na imagem baixo, detalha a arquitetura de software implementada na função loop() do Arduino, seguindo uma lógica de máquina de estados. O diagrama está dividido em módulos funcionais que representam as etapas principais do sistema: Inicialização, Seleção de Modo, Configuração de Limites e os três Modos de Operação (Teste, Sob Demanda e Contínuo).

- Inicialização: O sistema define a variável modo como 0 e exibe o menu de seleção no Monitor Serial.
- Seleção de Modo: O usuário utiliza o joystick para navegar entre os modos (Cima/Direita/Esquerda) e confirma a escolha com a tecla # do teclado de membrana.
- Configuração de Limites: Após a seleção do modo, o usuário é obrigado a definir os limites de água e distância através do teclado, marcando setagua e setdistancia como verdadeiro (true) para liberar a operação.
- Operação: O fluxo segue para o módulo do modo selecionado (Modo 1, 2 ou 3), onde as leituras dos sensores e as verificações de alerta (alerta()) são executadas continuamente.

6 EXEMPLOS DE ENTRADAS E SAÍDAS

Para demonstrar o funcionamento e a resposta do sistema, são apresentados exemplos de interação do usuário (entradas via joystick e teclado) e as respectivas saídas apresentadas no Monitor Serial, conforme observado durante a simulação/testes.

6.1. Exemplo de Seleção de Modo e Configuração de Limites

Este cenário ilustra a transição do sistema do **Modo 0** para o **Monitoramento Contínuo** (modo = 3) e a definição dos limites de segurança para a água () e a distância ().

Exemplo de transição de modo e entrada de limites.

Entrada (Ação do Usuário)	Saída (Monitor Serial)	Função
Inicialização	Sistema iniciado. Use o joystick para escolher o modo.	Início do setup().
Joystick Esquerda	Pressione # para entrar no modo de monitoramento contínuo	Indica a opção disponível.
Teclado: #	# modo de monitoramento contínuo Selecione um limite para a água máxima.	Confirma a seleção e inicia a fase de configuração.
Teclado: 7, 5	->7 ->75	Entrada de dígitos para limite_agua.
Teclado: #	Valor selecionado para a agua: 75 Selecione um limite para a distância mínima.	Confirma o limite_agua.

Teclado: 1, 0	->1 -> 10	Entrada de dígitos para limite_distancia.
Teclado: #	Valor selecionado para a distancia: 10	Confirma o limite_distancia; Inicia o loop do modo 3.

6.2. EXEMPLO DE MONITORAMENTO CONTÍNUO COM ALERTA

Este cenário demonstra a operação do sistema com os limites definidos (limite_agua = 75, limite_distancia = 10) e a emissão de alertas.

Exemplo de saídas do Monitor Serial com e sem violação de limites.

Cenário de Sensor	Valores Lidos (Exemplo)	Saída (Monitor Serial)	Observação
Normal	Água: 50, Distância: 25	agua: 50 Distancia(cm): 25	Leituras dentro dos parâmetros de segurança.
Alerta de Distância	Água: 50, Distância: 8	agua: 50 Distancia(cm): 8 Alerta! distância inferior ao limite	Distância () é menor que o limite ().
Alerta de Água	Água: 80, Distância: 25	agua: 80 Distancia(cm): 25 Alerta! Água passou do limite.	Vazamento (80) é maior que o limite (75).