Data Structures and Algorithms

Chapter 9

Learning Objectives

- Design of the Priority Queue ADT
- Implementation of the Priority Queue using a Heap with an underlying Array or ArrayList
- Algorithms and runtime of modifier methods for Heapbased Priority Queue
- Sorting using a Priority Queue

Priority Queues

- Each element in a queue is associated with a key.
- When an element is removed, an element with a minimal (or maximal) key is removed.
- Usually keys are numbers.
- Objects can be used as keys as far as there is a total ordering among those objects.

Priority Queues ADT

- insert(*k*, *v*): Create an entry with key *k* and value *v* in the priority queue.
- min(): Returns (but does not remove) an entry (*k*, *v*) with the minimum key. Returns null if the priority queue is empty.
- removeMin(): Removes and returns an entry (k, v) with the minimum key. Returns null if the priority queue is empty.
- size(): Returns the number of entries in the priority queue.
- isEmpty(): Returns true if the priority queue is empty. Returns false, otherwise.

Priority Queues ADT

Method	Return Value	Priority Queue Contents
insert(17, A)		{(17, A)}
insert(4, P)		{(4, P), (17, A)}
insert(15, X)		{(4, P), (15, X), (17, A)}
size()	3	{(4, P), (15, X), (17, A)}
isEmpty()	false	{(4, P), (15, X), (17, A)}
min()	(4, P)	{(4, P), (15, X), (17, A)}
removeMin()	(4, P)	{(15, X), (17, A)}
removeMin()	(15, X)	{(17, A)}
removeMin()	(17, A)	{}
removeMin()	null	{}
size()	0	{}
isEmpty()	true	{}

Priority Queues Implementation

- An element in a priority queue has key and value.
- The Entry interface is used to store a key-value pair.

```
1 public interface Entry<K,V> {
2   K getKey();
3   V getValue();
4 }
```

Priority Queues Implementation

PriorityQueue interface

Priority Queues Implementation

- Keys must have total ordering.
- Total ordering means there is a linear ordering among all keys.
- Total ordering of a comparison rule, ρ, satisfies the following properties:
 - Comparability property: Either $k_1 \rho k_2$ or $k_2 \rho k_1$.
 - Antisymmetric property: If $k_1 \rho k_2$ and $k_2 \rho k_1$, then $k_1 = k_2$.
 - Transitive property: If $k_1 \rho k_2$ and $k_2 \rho k_3$, then $k_1 \rho k_3$.
- If keys have total ordering, minimal key is well defined
- key_{min} is a key such that: $key_{min} \rho k$, for all k

Priority Queues Implementation

- Replacing ρ with ≤:
 - Comparability property: $k_1 \le k_2$ or $k_2 \le k_1$.
 - Antisymmetric property: If $k_1 \le k_2$ and $k_2 \le k_1$, then $k_1 = k_2$.
 - Transitive property: If $k_1 \le k_2$ and $k_2 \le k_3$, then $k_1 \le k_3$.
- If keys have total ordering, minimal key is well defined
- key_{min} is a key such that: $key_{min} \le k$, for all k

Priority Queues Implementation

- Two ways to compare objects in Java
 - compareTo and compare
- compareTo is defined in java.util.Comparable interface.
- A class must override and implement the compareTo method.
- Ordering defined in the compareTo method is called natural ordering.
- Usage: a.compareTo(b) returns
 - a negative number, if a < b
 - zero, if a = b
 - a positive number, if a > b
- Many Java classes implement Comparable interface.

Priority Queues Implementation

- compare is defined in java.util.Comparator interface.
- Use this to compare not by natural ordering
- Need to write a separate customized comparator
- Example: To compare strings by length (natural ordering is lexicographic ordering).
- First, write a customized comparator method

```
public class StringLengthComparator implements Comparator<String> {
   public int compare(String a, String b) {
        if (a.length() < b.length()) return -1;
        else if (a.length() == b.length()) return 0;
        else return 1;
   }
}</pre>
```

Priority Queues Implementation

Then, use it as follows:

```
public class ComparatorTest {
9
     public static void main(String[] args) {
10
                StringLengthComparator c = new StringLengthComparator();
11
                String s1 = "tiger";
12
                String s2 = "sugar";
13
                String s3 = "coffee";
                String s4 = "cat";
14
15
                System.out.println("Compare s1 and s2: " + c.compare(s1, s2)); // 0
                System.out.println("Compare s1 and s3: " + c.compare(s1, s3)); // -1
16
                System.out.println("Compare s1 and s4: " + c.compare(s1, s4)); // 1
17
27 }
28 }
```

Priority Queues AbstractPriorityQueue Base Class

- Provides common features for different concrete implementations.
- An entry in a queue is implemented as PQEntry.

```
protected static class PQEntry<K,V> implements Entry<K,V> {
     private K k; // key
2
     private V v; // value
3
     public PQEntry(K key, V value) {
4
5
        k = key;
        v = value:
8
     public K getKey() { return k; }
     public V getValue() { return v; }
     protected void setKey(K key) { k = key; }
10
11protected void setValue(V value) { v = value; } 12
```

- Implementation with an unsorted list
- Implementation with a sorted list
- We will focus on implementation with heap.
- Heap is a binary tree with the following properties:
 - Heap-order property: In a heap T, for every position p, except the root, the key stored at p is greater than or equal to the key stored at p's parent. (minimum-oriented heap)
 - Complete binary tree property: A heap is a complete binary tree.

Priority Queues

Implementing Using a Heap

- Complete binary tree
 - Levels 0, 1, . . ., h-1 of T have the maximal number of nodes (in other words, level i has 2^i nodes, where $0 \le i \le h-1$), and
 - Nodes at level h are in the leftmost possible positions at that level.

yes no

Priority queue implemented using a heap example:

• Height of a heap with n entries is $h = \lfloor \log n \rfloor$

- Adding an entry to a heap
 - Step 1: Add new entry at the "end" of the heap
 - Step 2: Reorganize the heap (because adding new entry may violate the heap-order property)
- Reorganization is done by up-heap bubbling.

- Removing the entry with minimal key
 - Step1: Remove the root
 - Step 2: Last node moves up to the root and performs down-heap bubbling.
- Down-heap bubbling is opposite of up-heap bubbling.
- Each time we compare the current node with both left and right child, and replace it with the minimum child

- The level number of a position p, f(p), is defined as follows:
 - If p is the root, f(p) = 0
 - If p is the left child of position q, f(p) = 2*f(q) + 1
 - If p is the right child of position q, f(p) = 2*f(q) + 2
- The level number is used as the index in an array where the entry with position p is stored.

- Then, the entry at position p is stored in A[f(p)].
- Index of the root node is 0.
- Index of left child of p = 2*f(p) + 1
- Index of right child of p = 2*f(p) + 2
- Index of parent of $p = \lfloor (f(p)-1)/2 \rfloor$

Example

(12,B)	(18,P)	(14,K)	(24,D)	(18,A)	(61,V)	(47,H)	(27,L)	(43,G)	(36,0)	(51,M)	(75,E)
0	_	_									

- HeapPriorityQueue class implements a priority queue using a heap.
- A heap is implemented using ArrayList.
- Will briefly discuss upheap, downheap, insert, and removeMin methods.
- HeapPriorityQueue.java code (Ch. 9.3 Page 377)

Priority Queues Analysis of Heap-Based Priority Queue

- insertion:
 - upheap method takes O(log n)
 - So, insertion takes O(log n)
- removeMin:
 - downheap method takes O(log n)
 - So, removeMin takes O(log n)

Method	Running Time
size, isEmpty	O(1)
min	O(1)
insert	O(log n)
removeMin	O(log n)

Priority Queues Bottom-up Heap Construction

- Given n elements, we can build a heap with n successive insertions => takes O(n log n) time.
- O(*n*) time algorithm
 - Begin at the parent of the last node, move backward to the root.
 - At each node, perform down-heap bubbling.

Priority Queues Bottom-up Heap Construction

Priority Queues Bottom-up Heap Construction

Java implementation

```
public HeapPriorityQueue(K[] keys, V[] values) {
    super();
    for (int j=0; j < Math.min(keys.length, values.length); j++)
3
4
       heap.add(new PQEntry<>(keys[j], values[j]));
5
    heapify();
6
   protected void heapify() {
    int startIndex = parent(size()-1); // start at PARENT of last entry
8
    for (int j=startIndex; j \ge 0; j--) // loop until processing the root
10
       downheap(j);
11 }
```

How is this heap construction O(n)?

- Runtime is controlled by the down-heap bubbling + O(n) steps to arbitrarily place nodes in the heap
- Down-heap takes total O(n) time
- Need to compute the total # of steps the nodes have to take to reach their destination
- Proportional to path length if each node follows the path: right child, left child, left, left, ..., leaf
- Total of these paths is O(n) as no edges belong to multiple paths and a binary tree has n edges

Figure 9.6: Visual justification of the linear running time of bottom-up heap construction. Each edge e is labeled with a node v for which π_v contains e (if any).

Priority Queues Java's Priority Queue

- java.util.PriorityQueue
- An entry is a single element.
- Some operations in Java's PriorityQueue
 - add(E e): Inserts the specified element e to the priority queue.
 - isEmpty(): Returns true if the priority queue contains no element.
 - peek(): Retrieves, but does not remove, a minimal element from the priority queue.
 - remove(): Removes a minimal element from the priority queue.
 - size(): Returns the number of elements in the priority queue.

Priority Queues Heap-Sort

- Uses array-based heap data structure.
- In-place sorting: no additional storage is used.
- Uses a maximum-oriented heap.
- maximum-oriented heap: In a heap T, for every position p, except the root, the key stored at p is smaller than or equal to the key stored at p's parent.
- Sorting steps:
 - 1. Given *n* elements are inserted into a maximum-oriented heap.
 - 2. Repeat the following until only one node is left in the heap: Root is swapped with the last node, heap size is decremented, perform down-heap bubbling.

Illustration

The root node is swapped with the last node. Heap size is decremented.

Down-heap bubbling is applied on the root.

Illustration

The root node is swapped with the last node. Heap size is decremented.

At this time the array is sorted.

Priority Queues Adaptable Priority Queue

- Can remove arbitrary entry (not just the root).
- Can replace the key of an entry.
- Can replace the value of an entry.

References

 M.T. Goodrich, R. Tamassia, and M.H. Goldwasser, "Data Structures and Algorithms in Java," Sixth Edition, Wiley, 2014.