

Aula 04 – Gestão do Tempo

Gant, PERT, Milestones, Compressão de redes, Nivelamento de recursos

Prof Dr. Renato de Oliveira Moraes remo@usp.br

Gráfico de Gantt

- O Gráfico de Gantt é o método mais popular de programação. É, basicamente, um cronograma, onde cada barra representa o período de execução de uma atividade.
- Seu grande apelo é a facilidade de leitura e interpretação. Contudo, ele não considera formalmente as relações de precedência entre as atividades e nem a limitação de recursos. Por isso, a habilidade do programador é essencial para o resultado. É recomendado para projetos de baixa complexidade.
- O Gráfico de Gantt pode ser utilizado não como ferramenta de programação, mas como uma forma de ilustrar graficamente um programa (cronograma) obtido com uma técnica mais elaborada.

Gráfico de Gantt

Problema de aula anterior

Atividade	Duração	Ativid Precedente
Α	8	_
В	10	_
С	3	Α
D	7	Α
E	6	B; C
F	7	B; C
G	5	D; E
Н	3	F

Atividades nos Nós

Gráfico de Gantt

Probabilistic Evaluation Review Technique (PERT)

- A diferença básica entre o Probabilistic Evaluation Review Technique (PERT) e o CPM é que a duração das atividades no PERT é probabilística e no CPM, determinística. No PERT a duração das atividades é uma variável aleatória com distribuição Beta. Isto faz com a sua operacionalização também seja diferente.
- Para cada atividade devemos estimar três durações (e não apenas uma, como no CPM)
 - a duração otimista, (A)
 - a duração pessimista (B)
 - a duração mais provável. (M)

Probabilistic Evaluation Review Technique (PERT)

Exercício

A parir dos tempos estimados (tabela abaixo) para as atividades da rede acima. Qual a probabilidade de projeto ser completado em:

- a) 21 dias?
- b) 22 dias?
- c) 25 dias?

	Pessimista	Mais Provável	Pessimista
Atividade	(a)	(m)	(b)
A	6	7	14
В	8	10	12
С	2	3	4
D	6	7	8
E	5	5,5	9
F	5	7	9
G	4	6	8
H	2,5	3	3,5

			Duração				
	Atividade		Mais	Pessi-			Desvio
Ativi-	Predeces-		Provável	mista	Média	Variância	Padrão
dade	sora	Otimista (a)	(m)	(c)	μ	σ^2	σ
Α	ı	6	7	14	8	1,78	1,33
В	-	8	10	12	10	0,44	0,67
С	Α	2	3	4	3	0,11	0,33
D	Α	6	7	8	7	0,11	0,33
E	B, C	5	5,5	9	6	0,44	0,67
F	B, C	5	7	9	7	0,44	0,67
G	D, E	3	5	7	5	0,44	0,67
Н	F	2,5	3	3,5	3	0,03	0,17

Atividades nos Nós

Caminho Crítico: $A \rightarrow C \rightarrow E \rightarrow G$

(c) Qual a probabilidade de projeto ser completado em 25 dias?

$$P(Dur \le 25) = ?$$
 $P(Dur \le 25) = P\left(z \le \frac{25 - 22}{1,667}\right)$
 $P(z \le 1,8) = 0,9641 = 96,41\%$

29

PRO3861 – Fundamentos de Gestão de Projetos

Programação por marco (milestones)

Método do Caminho Crítico (CPM)

- O Critical Path Method (CPM), ou Método do Caminho Crítico, surgiu na segunda metade da década de 50, na DuPont, como ferramenta para trabalhos de manutenção. Era o nascimento da principal técnica de programação de projetos. O CPM é relativamente simples e quase sempre apresenta resultados satisfatórios. Atualizou-se com a informática e hoje uma grande quantidade de software suporta a sua aplicação.
- A estrutura do CPM assenta-se na teoria dos grafos. Os projetos são representados através de um grafo (ou rede) e a análise deste grafo permite programar o projeto com maior facilidade.

Nivelamento de Recursos

 A falta de consideração pelo consumo e pela limitação de recursos no projeto, faz com que na técnica CPM a taxa de consumo dos recursos flutue significativamente. Para evitar verbas ociosas, acabamos por assumir custos de mobilização e desmobilização (admissão e demissão). Nivelar os recursos equivale à tentativa de *suavizar* o consumo dos recursos, procurar diminuir a variação da taxa de consumo do recurso.

Técnicas de Nivelamento de Recursos

Técnicas de Nivelamento de Recursos

Utilizando apenas as folgas das atividades não-críticas, podemos construir um novo cronograma para o projeto onde o consumo do recurso "operário" fica suavizado

Gerenciamento do Tempo – Compressão de redes

- Podemos dividir os custo associados a uma atividade em duas categorias:
 - custos diretos ou internos, e
 - custos indiretos ou externos
- Desta forma, podemos determinar o custo de cada atividade em função da duração. Está na hora de perguntar: Qual deve ser a duração de cada atividade para que o projeto possa ser realizado dentro do prazo estipulado a um mínimo custo?

Modelos de Compressão de redes

Compressão de redes

Existem dois caminhos possíveis:

- Constrói-se uma rede CPM com todas as atividades executadas em ritmo normal (mínimo custo).
 Se nestas condições o projeto pode ser concluído dentro do prazo, o problema está resolvido. Caso contrário, verifica-se em qual das atividades que compõem o caminho crítico é mais barato acelerar o projeto. A rede CPM é
 - revista para se saber se o prazo de execução do projeto está sendo atendido. Este processo é repetido até que o projeto possa ser executado dentro do
 - prazo.
- 2. Através de uma formulação de programação linear determina-se a duração de cada atividade, para permitir que o projeto seja executado dentro do prazo a um custo mínimo.

Para comprimir um projeto utilize os seguintes passos:

- 1. Atribua a cada atividade do projeto sua duração normal
- 2. Calcule a duração do projeto
- 3. Se a duração for menor ou igual ao prazo do projeto, você encontrou a solução de mínimo custo
- 4. Caso a duração ainda seja maior que o prazo, determine as atividades que compõem o caminho crítico
- 5. Dentre as atividade críticas selecione aquela onde a redução de uma unidade em sua duração terá o menor incremento de custo
- 6. Reduza a duração desta atividade em uma unidade, e retorne ao passo 2

Exemplo – Prazo do projeto 150 dias

	Atividade	Ritmo Normal		Ritmo Acelerado	
Atividade	Precedente	Duração (dias)	Custo	Duração (dias)	Custo
A	-	21	300	15	366
В	-	25	120	18	190
С	A	28	150	21	206
D	B, C	21	160	15	190
Е	С	45	200	30	305
F	D	28	300	20	388
G	Е	26	450	23	486
Н	G, F	25	270	20	315
I	Н	26	125	20	215

Rede de Atividades

Rede com todas as atividades no ritmo normal (mínimo custo)

Qual atividade acelerar?

	Prece-	Ritmo Normal		Ritmo acelerado		Δ\$
Atividade	dente	Dur	Custo	Dur	Custo	$\overline{\Delta t}$
Α	-	21	300	15	366	-11
В	-	25	120	18	190	-10
С	Α	28	150	21	206	-8
D	B, C	21	160	15	190	-5
Е	С	45	200	30	305	-7
F	D	28	300	20	388	-11
G	Е	26	450	23	486	-12
Н	G, F	25	270	20	315	-9
I	Н	26	125	20	215	-15

Acelerando a atividade E

Qual atividade acelerar?

	Prece-	Ritmo Normal		Ritmo acelerado		Δ\$
Atividade	dente	Dur	Custo	Dur	Custo	$\overline{\Delta t}$
Α	-	21	300	15	366	-11
В	-	25	120	18	190	-10
С	Α	28	150	21	206	-8
D	B, C	21	160	15	190	-5
E	С	45	200	30	305	-7
F	D	28	300	20	388	-11
G	Е	26	450	23	486	-12
Н	G, F	25	270	20	315	-9
I	Н	26	125	20	215	-15

Acelerando a atividade C

Exercício

Se o prazo desse projeto fosse de apenas 140, qual deveria ser a duração de cada atividade que minimiza o custo total do projeto? E qual seria o custo total do projeto?