LIMITES ET CONTINUITÉ DES FONCTIONS

Quentin RIGGI

03-09-2022

L'objectif est d'étudié le comportement des valeurs f(x) prisent par une fonction f aux bornes ouvertes de son domaine de définition.

On introduit une nouvelle notion, celle de la continuité d'une fonction, plus forte qu'être définie mais plus faible que dérivable.

I) Limite en l'infini et droite asymptote

Par la suite on considère une fonction f, dont le domaine de définition Df contraint une contient une borne $+\infty$

Limite infinie en l'infini

Definition: On dit qu'une fonction f tend vers $+\infty$ lorsque x tend vers $+\infty$, si tout intervalle ouvert de la forme $]A; +\infty[$ où $A \in \mathbb{R}$ contient toutes les valeurs f(x) prisent par la fonction f dès que x est choisi suffisamment grand.

On note:

$$\lim_{x \to +\infty} f(x) = +\infty$$

Avec les quantificateurs:

$$\lim_{x \to +\infty} f(x) = +\infty$$

$$\Leftrightarrow \forall A \in \mathbb{R}_{+}^{*}, \exists \beta \in \mathbb{R}_{+}^{*}, \forall x \in D_{f} : (x \ge \beta \Rightarrow f(x) \ge A)$$

Définition: On dit qu'une fonction f tend vers $-\infty$ lorsque x tend vers $+\infty$ si tout intervalle ouvert de la forme $]-\infty; A[, A \in \mathbb{R},$ contient toutes les valeurs f(x) prisent par la fonction f dès que x est choisi assez grand.

On note:

$$\lim_{x \to +\infty} f(x) = -\infty$$

Avec les quantificateurs:

$$\lim_{x \to +\infty} f(x) = -\infty$$

$$\Leftrightarrow \forall A \in \mathbb{R}_{+}^{*}, \exists \beta \in \mathbb{R}_{+}^{*}, \forall x \in D_{f} : (x \ge \beta \Rightarrow f(x) \le A)$$

On a aussi les deux autres limites:

$$\lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall A \in \mathbb{R}_{+}^{*}, \exists \beta \in \mathbb{R}_{+}^{*}, \forall x \in D_{f} : (x \leq \beta \Rightarrow f(x) \geq A)$$
$$\lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall A \in \mathbb{R}_{-}^{*}, \exists \beta \in \mathbb{R}_{+}^{*}, \forall x \in D_{f} : (x \leq \beta \Rightarrow f(x) \leq A)$$

Propriétés (Admises):

$$\forall n \in \mathbb{N}^* : \lim_{x \to +\infty} x^n = +\infty \tag{1}$$

$$\forall n \in 2\mathbb{N}, n \neq 0: \lim_{x \to -\infty} x^n = +\infty$$
 (2)

$$\forall n \in 2\mathbb{N} + 1: \lim_{x \to -\infty} x^n = -\infty \tag{3}$$

$$\lim_{x \to +\infty} \exp x = +\infty \tag{4}$$

Exemple:

La fonction $x \mapsto x^2$ est définie sur \mathbb{R} Soit $A \in \mathbb{R}_+^*$, on cherche un réel β tel que:

$$x \ge \beta \Rightarrow x^2 \ge A$$

Soit:

$$\begin{aligned} x^2 &\geq A \Leftrightarrow |x|\sqrt{A} \\ &\Leftrightarrow x \in \left] -\infty; -\sqrt{A} \right] \cup \left[\sqrt{A}; +\infty \right[\end{aligned}$$

On pose
$$\beta = \sqrt{A}$$

$$\forall A \in \mathbb{R}_+^*, \exists \beta = \sqrt{A} \in \mathbb{R}_+^*, \forall x \in \mathbb{R} : x \ge \beta \Rightarrow f(x) \ge A$$

Limites finie en l'infini et asymptote horizontale

Définition: Soit l'un nombre réel.

On dit que la fonction f tend vers l, lorsque x tend vers $+\infty$ fi tout intervalle ouvert contenant l contient toutes les valeurs f(x) prisent par la fonction f dès que x est choisi suffisamment grand. On note:

$$\lim_{x \to +\infty} f(x) = l \Leftrightarrow \exists l \in \mathbb{R}, \forall \varepsilon \in \mathbb{R}_+^*, \exists x \in D_f : x \ge \beta \Rightarrow |f(x) - l| \le \varepsilon$$

Remarque:

- I. Graphiquement, cette définition signifie que dans un repère orthogonal la courbe C_f représentative de la fonction f admet une asymptote horizontale d'équation y = 1 au voisinage de $+\infty$
- II. On défini de même l'asymptote horizontale au voisinage de $-\infty$
- III. Si la limite de f(x) quand x tend vers $+\infty$ vaut l on dit simplement que C_f admet une asymptote horizontale d'équation y = l au voisinage de l'infini $(-\infty, +\infty)$

Exemple: Soit f la fonction définie par f(x) = 2 - $\frac{5}{x^2}$ Montrez qu'il existe un réel x_0 tel que x > $x_0 \Rightarrow 1.95 <$ f(x) < 2.05

$$D_f = \mathbb{R}^*$$

 $\forall x \in D_f$

$$1,95 < f(x) < 2,05 \Leftrightarrow -0,05 < f(x) - 2 < 0,05$$

$$\Leftrightarrow -0,05 < \frac{-5}{x^2} < 0,05^1$$

$$\Leftrightarrow -0,01 < \frac{1}{x^2} < 0,01$$

$$\Leftrightarrow -10^{-2} < \frac{1}{x^2} < 10^{-2}$$

$$\Leftrightarrow \begin{cases} -10^{-2} < \frac{1}{x^2}, \forall x \in \mathbb{R}^* \\ \frac{1}{x^2} < 10^{-2} \end{cases}$$

$$\frac{1}{x^2} < 10^{-2} \Leftrightarrow x^2 > 10^2$$

$$\Leftrightarrow |x| > 10$$

$$\Leftrightarrow x \in]-\infty; -10] \cup [10; +\infty[$$

En posant $x_0 = 10$

$$\forall \varepsilon \in \mathbb{R}_{+}^{*}, \exists x_{0} = 10 \in \mathbb{R}, \forall x \in \mathbb{R}^{*} : x > x_{0} \Leftrightarrow 1,95 < f(x) < 2,05$$
$$\Leftrightarrow |f(x) - 2| < \varepsilon$$

Graph: Dans un repère (O, \vec{i}, \vec{j}) , la courbe C_f admet la droite d'équation y = 2 pour asymptote horizontale au voisinage de $+\infty$.

Propriétés:

$$\forall n \in \mathbb{N}^* \lim_{x \to \pm \infty} \frac{1}{x^n} = 0 \tag{7}$$

$$\lim_{x \to -\infty} \exp x = 0 \tag{8}$$

¹On pose: $\varepsilon = 5 \times 10^{-2}$

Asymptote oblique