# Foundational Statistics Introduction to Analysis of Variance



From: Questionpro

### General Linear Models for a continuous response and a categorical predictor

Regression linear model:  $y_i = eta_0 + eta_1 x_i + arepsilon_i$ 



Simplified linear model notation:

$$y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$$

## General Linear Models for a continuous response and categorical predictors

- ANOVA: Analysis of Variance
- Fundamental statistical procedure in biology, developed in the early 20th century
- The core idea is to ask how much variation exists within vs.
   among groups
- The categorical predictors are also called factors, and can have two or more factor levels
- Each factor in an ANOVA model can have a hypothesis test, and levels within a factor can be contrasted
- Diversity of ANOVA model complexity: (e.g. nested, factorial, etc.)

#### ANOVA - an experimental example

### Percent time male mice experiencing discomfort spent "stretching".

Data are from an experiment in which mice experiencing mild discomfort (result of injection of 0.9% acetic acid into the abdomen) were kept in:

- (1) isolation,
- (2) with a companion mouse not injected, or
- (3) with a companion mouse also injected and exhibiting "stretching" behaviors associated with discomfort.

The results suggest that mice stretch the most when a companion mouse is also experiencing mild discomfort. Mice experiencing pain appear to "empathize" with co-housed mice also in pain.

#### ANOVA - an experimental example



#### In words:

stretching = intercept + treatment

The model statement includes a response variable, a constant (intercept), and an explanatory variable, which is categorical

#### ANOVA is a linear model, like regression

As before, anova compares the fit of "reduced" and "full" models:



#### Single factor ANOVA - getting the F-ratio

| Table 8.2ANOVA table for |                                                        |                          |                                                                                       |                               |
|--------------------------|--------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------------|-------------------------------|
| Source of                | SS                                                     | df                       | MS                                                                                    |                               |
| Between groups           | $\sum_{i=1}^{p} n_i (\bar{y}_i - \bar{y})^2$           | p-I                      | $\frac{\sum_{i=1}^{p} n_i (\bar{y}_i - \bar{y})^2}{p-1}$                              | Var. explained by groupings   |
| Residual                 | $\sum_{i=1}^{p} \sum_{j=1}^{n} (y_{ij} - \bar{y}_i)^2$ | $\sum_{i=1}^{p} n_i - p$ | $\frac{\sum_{i=1}^{p} \sum_{j=1}^{n} (y_{ij} - \bar{y}_i)^2}{\sum_{i=1}^{n} n_i - p}$ | Var. unexplained by groupings |
| Total                    | $\sum_{i=1}^{p} \sum_{j=1}^{n} (y_{ij} - \bar{y})^2$   | $\sum_{i=1}^{p} n_i - 1$ | <u> </u> =                                                                            |                               |

F-ratio = 
$$\frac{MS_{groups}}{MS_{residuals}}$$

#### Single factor ANOVA - getting the F-ratio



#### Single factor ANOVA Hypotheses

$$H_0$$
 :  $lpha_i=0$  No effect (all group means are equal)

$$H_A: \alpha_i \neq 0$$
 A non-zero effect (at least 2 group means are different)

These are for "fixed" effects (factors)

## Single factor ANOVA **Hypotheses** (random effects)

$$H_0: \sigma_{\alpha}^2 = 0$$
 No additional variance introduced by the factor levels

$$H_A: \sigma_{\alpha}^2 > 0$$
 Additional variance contributions from the factor levels

These are for "random" effects (factors)

#### Single factor ANOVA Assumptions

1. Response variable normally dist. in all groups

(Check using histograms, boxplots, etc.)

2. Variances equal among groups (no strong mean-var. or sample size-relationships)

(Check using histograms, boxplots, mean vs. var. plots, etc.)

3. Observations within groups are independent, random samples

(Your experimental design needs to ensure this)

#### Post-hoc comparisons among factor levels



Post-hoc comparisons test all group differences and correct for multiple hypothesis tests.

<u>Tukey tests</u>: compare all pairs of means

Scheffé contrasts: compare all combinations of means

Which of these 3 groups are different from one another?