Finite Automata

Introduction

Finite Automata: a model of computation with finite state (memory)

• Application: text processing, program verification, compilers

Outline

- Languages and Automata
 - Definitions
 - Example
- Deterministic Finite Automata (DFA)
- Nondeterministic Finite Automata (NFA)

Language and Automata

Definitions

Symbol: An abstract, primitive, atomic "thing"

Set: An unordered collection, without repetition

Alphabet: A non-empty, finite set of symbols

• Ex. $\sum_{B} = \{0, 1\}$ alphabet of booleans

Sequence: An ordered list of objects

• Ex. $(1, 2, 3, 5, 8, \dots)$

String: A sequence over some alphabet

• Ex. hello (if the alphabet is our actual alphabet)

Languages: A set of strings

Example Automata

Figure 1: Example Automata of traffic light system

States:

- NS = {red, yellow, green} (cars going north and south)
- $EW = \{red, yellow, green\}$ (cars going east and west)
- timeout = $\{0, 1\}$ (timer on the traffic light)

Events:

• $Q = \{timeout, ns-car, ew-car\}$

Transition Table:

State	timeout	ns-car	ew-car
gr	grt	-	
grt	-	-	yr
yr	rg	-	-
rg	rgt	-	-
rgt	-	ry	-
ry	gr	-	-

Deterministic Finite Automata (DFA)

Deterministic Finite Automata: a 5-tuple: $M=(Q, \sum, \delta, q_0, F)$, where:

- Q is a finite set called the **states**
- \sum is a finite set called the **alphabet** $\delta: Q \times \sum \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- F \subset Q is the set of accept states

Example:

- $\begin{array}{ll} \bullet & Q = \{q_a,\,q_b\} \\ \bullet & \sum = \{0,\,1\} \end{array}$
- $\overline{\delta}(q_a, 0) = q_b, \, \delta(q_b, 1) = q_a$
- $q_0 = q_a$
- $F = \{q_b\}$

Conceptual DFA Operation

 $M: \Sigma^* \to \{accept, reject\}$

Can represent a DFA as a machine with

- Finite Control state Q
- σ which is an input string (tape)
- At the end of the string two things can happen:
 - 1. Accept reach end of tape (string) with control in accept state $q \in F$
 - 2. Reject reach end of tape (string) with control not in accept state $q \notin F$

With this representation we could say the language of M is the set of strings accepted by M.

Meaning a DFA can produce a set of strings that end with an accepting state

Symbolic DFA Semantics

Transition Functions: transition from state q_{pred} to q_{succ} on symbol σ

$$\delta(q_{pred}, \sigma) = q_{succ}$$

Extended Transition Function: transition from state \mathbf{q}_0 to $\mathbf{q}_{\mathbf{n}}$ on string w

base: $\delta(q, \epsilon) = q$

recursive: For $a \in \Sigma$ and $B \in \Sigma^*$,

 $\hat{\delta}(q, aB) = \hat{\delta}(\delta(q, a), B)$

DFA Simulation

Input: DFA M and Input String w

Find: Does M accept the input string

Algorithm:

- 1. Evaluate the extended transition function on input string *w*
- 2. At the end of the input string:
 - If the resulting state is an accept state, return accept
 - Otherwise, return reject

Dumdum: Go through the states given the string transition, if it ends with accept then we good.

DFA Language Definitions

Acceptance: DFA M accepts string w when the extended transition function results in an accept state:

$$\hat{\delta}(\mathbf{q}_0, w) \in \mathbf{F}$$

Rejection: DFA M rejects string w when the extended transition function results in an non-accept state:

$$\hat{\delta}(\mathbf{q}_0, w) \notin \mathbf{F}$$

Recognition: DFA M recognizes the language L(M) consisting of the set of strings accept by M:

$$L(\mathbf{M}) = \{ w \mid \hat{\delta}(\mathbf{q}_0, w) \in \mathbf{F} \}$$

Regular Languages

Regular Languages (R): are languages that can be recognized by DFAs

$$R = \{L \mid \text{ for some DFA M, } L = L(M)\}$$

A language (L) is regular if and only if there exists a DFA (M) that recognizes it:

$$(L \in R) \leftrightarrow \exists M, (L = L(M))$$

Nondeterministic Finite Automata (NFA)

Nondeterministic Finite Automata: a 5-tuple: $N = (Q, \sum, \delta, q_0, F)$, where:

- Q is a finite set called the **states**
- Σ is a finite set called the **alphabet**
- $\delta: \mathbb{Q} \times \Sigma \to P(\mathbb{Q})$ is the transition function
- $q_0 \in Q$ is the start state
- F \subseteq Q is the set of accept states

NFA VS DFA

- DFA can only transition to a single state, NFA can transition to multiple states
- NFA cannot represent more languages than DFA

Proof that NFA cannot represent more languages than DFA:

- 1. Each nondeterministic step of an NFA, we are in a set of states
- 2. All such sets are the powerset of NFA states $P(Q_{NFA})$
- 3. The powerset of a finite set is still a finite set
- 4. We can create a DFA who's states correspond to $P(Q_{NFA})$