NASA CR-152186

(NASA-CR-152186) AN ANALYSIS OF PROP-FAN/AIRFRAME AERODYNAMIC INTEGRATION Final Report (Boeing Commercial Airplane Co., Seattle) 74 p HC A04/MF A01 CSCL 01A

N84-19281

Unclas 3/02 11928

An Analysis of Prop-Fan/Airframe Aerodynamic Integration

The Boeing Commercial Airplane Company

P.O. Bex 3787 Seattle, Washington 98124

Prepared for Ames Research Center under contract NAS2-9104

National Aeronautics and Space Administration

October 1978

1. Report No. NASA CR-152186	2. Government Access	on No.	3	Recipient's Catalog No.
4 Title and Subtitle FINAL REPORT— An Analysis of Prop-Fan/Airframe Aerodynamic Integration				Report Date October 1978
			6.	Performing Organization Code B-7200
7 Author(s) M.L. Boctor, C.W. Clay, C.F. Wats	on			Performing Organization Report No. D6-47113
9 Performing Organization Name and Address Boeing Commercial Airplane Com	Dany			. Wark Unit No.
P.O. Box 3707 Seattle, Washington 98124	,			Contract or Grant No NAS2-9104
12 Sponsoring Agency Name and Address National Aeronautics and Space A	dministration			Type of Report and Period Covered Final Report October 1978
Ames Research Center Moffet Field, California 94035			14	Sponsoring Agency Code FVS
	ams Research Center , California 94035			
16. Abstract				
placed upon wing-mounted install dynamic integration of the prop-frames. Three basic configuration: Wing-mounted prop-fan at a Wing-mounted prop-fan in a	fan propulsion cond s were defined and cruise Mach numbe	ept with a analyzed: er of 0.8		- · ·
● Aft-mounted prop-fan at a cruise Mach number of 0.8				
17. Key Words (Suggested by Author(s))		19 Durante	ion Statement	
potential-flow analysis prop-fan slipstream prop-fan swirl		ie. Unitidut	UNL IMI	TED
19. Security Classif. (of this report) 20 Unclassified	Security Classif (of this Unclassified	page)	21. No of Pag	ges 22. Price*

CONTENTS

		Page
1.0	SUMMARY	1
	1.1 General	1
	1.2 Conclusions	1
	1.3 Recommendations	4
2.0	INTRODUCTION	6
	2.1 Background	6
	2.2 Study Objective and Scope	7
3.0	ABBREVIATIONS AND SYMBOLS	8
4.0	ANALYSIS AND DESIGN METHODS	10
	4.1 Computer Program A 230 Description	10
	4.2 Analysis Using Slipstream and Pre- and Post-Processors	10
	4.3 Computer Program A 236 Description	12
	4.4 Design Method	13
5.0	WING-MOUNTED PROP-FAN-CRUISE	17
	5.1 Configuration and Flight Conditions	17
	5.2 Slipstream Characteristics	20
	5.3 Pressure Coefficient Data	21
	5.4 Wing Isobars	26
	5.5 Force Data	28
	5.6 Propeller Thrust Recovery Assessment	30
	5.7 Assessment	33
6.0	WING-MOUNTED PROP-FAN-LOW SPEED	34
	6.1 Geometrical Definition	34
	6.2 Design Procedure	37
	6.3 Slipstream Characteristics	39
	6.4 Pressure Coefficient Data	40
	6.5 Force Data	40
	6.6 Drag and Thrust Recovery	44
	6.7 Effect of One-Engine Failure	44
	6.8 Assessment	46
7.0	AFT-MOUNTED PROP-FAN	47
	7.1 Configuration and Flight Conditions	47
	7.2 Slipstream Characteristics	49
	7.3 Pressure Distribution and Span Loading	49
	7.4 Drag and Thrust Recovery	54
	7.5 Assessment	55
8.0	REFERENCES	56
AP	PENDIX A BASELINE AND MODIFIED WING GEOMETRY	A !

FIGURES

No.		Page
	SECTION 1.0	
1	Summary of Study Approach and Results	2 5
2	Typical Modification Concept for Prop-Fan Cruise Wing	5
	SECTION 4.0	
3	Technique for Modeling Prop Slipstream	11
4	Test Case—Flow Over Stub Wing: Strip 2	12
5	Prop-Fan Wing Design Technique	14
6	Cruise Wing Geometry	15
7	Cruise Wing Twist Distribution	16
8	Cruise Wing Thickness Distribution	16
	SECTION 5.0	
9	Baseline Wing Body Model	17
10	Baseline Wing Body/Nacelle Model	18
11	Paneling of Modified Cruise Wing	19
12	Modified Cruise Wing	19
13	Radial Distribution of Swirl and Total Pressure in Prop Slipstream	20
14	Effect of Slipstream on Chordwise Pressure Distribution: Strip 3	22
15	Effect of Slipstream on Chordwise Pressure Distribution: Strip 4	22
16	Effect of Slipstream on Chordwise Pressure Distribution: Strip 5	23
17	Effect of Slipstream on Chordwise Pressure Distribution: Strip 6	23
18	Wing Pressure Profiles: Strip 3	24
19	Wing Pressure Profiles: Strip 4	24
20	Wing Pressure Profiles: Strip 5	25
21	Wing Pressure Profiles: Strip 6	25
22	Upper Surface Wing Isobars-Clear Wing	26
23	Upper Surface Wing Isobars—Baseline Wing + Nacelle	27
24	Upper Surface Wing Isobars - Baseline Wing + Nacelle + Slipstream	27
25	Upper Surface Wing Isobars-Modified Wing + Nacelle + Slipstream	28
26	Cruise Wing Lift Curves	29
27	Effect of Slipstream on Span Loading	29
28	Wing Spanwise Load Distribution	30
29	Spanwise Distribution of Cp _{MIN}	31
30	Wing Drags Incremented from Clean Wing	32

No.		Page
	SECTION 6.0	
31	Leading- and Trailing-Edge Flaps for Low-Speed Configuration	34
32	Krueger Flap Definition	35
33	Paneling Scheme – Low-Speed Configuration	36
34	Krueger Wing-Low-Speed Configuration	36
35	Krueger Flap Deflection Schedule	37
36	Low-Speed Wing Pressure Profiles: Strip 3	38
37	Low-Speed Wing Pressure Profiles: Strip 6	38
38	Radial Distribution of Swirl and Total Pressure in Prop Slipstream	39
39	Radial Distribution of Axial Velocity Increment in Prop Slipstream	40
40	Low-Speed Wing Pressure Profiles with Slipstream: Strip 3	41
41	Low-Speed Wing Pressure Profiles with Slipstream: Strip 4	41
42	Low-Speed Wing Pressure Profiles with Slipstream: Strip 5	42
43	Low-Speed Wing Pressure Profiles with Slipstream: Strip 6	42
44	Krueger Wing-Low-Speed Configuration Lift Curve	43
45	Krueger Wing-Low-Speed Configuration Spanwise Load Distribution	43
46	Krueger Wing-Low-Speed Configuration Induced Drag Due to Slipstream	44
47	Krueger Wing-Low-Speed Configuration Rolling Moment Coefficient	45
48	Rolling Moment Due to Engine-Out Comparison with Preliminary Estimates	45
	SECTION 7.0	
49	Paneling of Aft-Mounted Prop-Fan	47
50	Aft-Mounted Prop-Fan Isometric Projection	48
51	Aft-Mounted Prop-Fan Cross Sectional Area Distribution	48
52	Aft-Mounted Prop-Fan Side-of-Fody Pressure Profile	49
53	Aft-Mounted Prop-Fan Strut Pressure Profiles: Strip 1	50
54	Aft-Mounted Prop-Fan Strut Pressure Profiles: Strip 2	51
55	Aft-Mounted Prop-Fan Strut Pressure Profiles: Strip 3	51
56	Aft-Mounted Prop-Fan Vertical Tail Pressure Profiles: Strip 1	52
57	Aft-Mounted Prop-Fan Vertical Tail Pressure Profiles: Strip 2	52
58	Aft-Mounted Prop-Fan Vertical Tail Pressure Profiles: Strip 3	53
59	Aft-Mounted Prop-Fan Vertical Tail Pressure Profiles: Strip 4	53
60	Aft-Mounted Prop-Fan Effect of Slipstream on Strut Loading	54
61	Aft-Mounted Prop-Fan Effect of Slipstream on Induced Drag	55
	APPENDIX A	
A-i	Wing Plantorm Dimensions	A1

1.0 SUMMARY

1.1 GENERAL

Previous NASA/industry advanced-turboprop-propeller and prop-fan studies and wind tunnel tests indicate that point design, installed propulsive efficiencies on the order of 80% at Mach 0.8 are achievable; and that a net reduction of 18% in TSFC could be expected over a comparable, by pass-ratio-six, turbofan-powered airplane. In the absence of any associated penalties, this reduction in TSFC (18%) would result in a net fuel saving of approximately 25% for a twin-engine, 180-passenger, Mach 0.8, commercial transport designed for 3300-km (1800-nmi) range. However, the weight and drag of the prop-fan-powered airplanes were judged to be larger than those of the turbo-fan-powered airplanes. When these penalties were assessed in one study (ref 1), the fuel savings of 25% for the 3300-km (1800-nmi) design range were reduced to 9.7% for the wing-mounted prop-fan and 5.8% for the aft-mounted prop-fan airplanes. This earlier study recommended additional analysis and design to add realism to these preliminary assessments.

This study, implemented in response to one of these recommendations, addresses an approach to the aerodynamic integration of turbo-props and airframes. Both the wing-mounted and aft-mounted prop-fan installations were considered, but emphasis was placed upon the wing-mounted installation as it represented the most difficult task.

Potential flow techniques were employed to study the aerodynamic integration of the propfan propulsion concept with the airframe of advanced subsonic commercial transports. Three basic configurations were defined and analyzed:

- A wing-mounted prop-fan at a cruise Mach number of 0.8
- A wing-mounted prop-fan in a low-speed configuration
- An aft-mounted prop-fan at cruise Mach number of 0.8

In each case, the propeller slipstream was modeled and its interaction with the configuration calculated.

To minimize aerodynamic interference penalties, the cruise wing of the wing-mounted configuration was redesigned to reproduce or approximate the clean-wing pressure distribution after inclusion of nacelle and slipstream effects.

1.2 CONCLUSIONS

This study has demonstrated the feasibility of using potential flow analysis techniques to calculate prop-fan airplane aerodynamics. The study objective of minimizing propeller slip-stream effects upon a wing was accomplished (fig. 1). However, the resulting wing was structurally unsatisfactory because of an arbitrary ground rule to hold the leading edge constant, with the remaining wing geometry contoured to reduce or eliminate prop slipstream effects. The resulting wing with sheared front and rear spars would be impractical due to excessive weight penalties, particularly when other solutions would be available with addi-

Figure 1. Summary of Study Approach and Results

tional analysis and/or wind tunnel testing. Therefore, wind tunnel testing of the configuration developed by this study is not recommended. Additional studies of alternate means to achieve the same or better aerodynamic results for a practical wing design are needed, and wind tunnel testing should then be done to validate the resulting wing design.

Additional conclusions resulting from this study are discussed in the following paragraphs.

1.2.1 WING-MOUNTED PROP-FAN-HIGHSPEED

- Predicated on the assumption of isentropic flow over the inboard wing, the baseline wing has the potential for recovering up to 50% of the thrust lost due to swirl by de-rotating the slipstream. However, the upwash from the propeller results in high pressure peaks on the upper surface of the inboard wing, a condition that renders the wing susceptible to shock waves, flow separation, high drag, and buffet. This condition could more than offset the potential thrust recovery.
- The wing, modified for minimum cruise drag, generally accomplishes the objective of neutralizing the adverse effects of the slipstream, but in so doing fails to de-rotate the slipstream. The profile drag penalties are mostly eliminated; however, the potential thrust recovery gains are also eliminated.
- The approach taken results in a modified wing that has large variations in twist and thickness and is considered structurally undesirable due to potential manufacturing cost and weight penalties. Alternate approaches for modifying the wing and/or nacelle are recommended for further study.

1.2.2 WING-MOUNTED PROP-FAN-LOW SPEED

- The chordwise velocity increase in the slipstream is the predominant effect at low speed, and is more important than the effect of swirl.
- Large increments in chordwise velocity result in overloading the wing both inboard and outboard of the nacelle.
- A high-lift system designed for achieving high power-off C_{LMAX} does de-rotate the slipstream to some extent and results in partial thrust recovery.
- When considering all-engine slipstream effects, the high-lift condition drag polar is improved because of the large increase in C_L combined with thrust recovery.
- Rolling moment caused by one engine being inoperative is much less than the estimates for the Reference 1 study and does not appear to be a major concern.

1.2.3 AFT-MOUNTED PROP-FAN

• The aft-mounted prop-fan configuration is aerodynamically similar to a comparable turbofan configuration.

- The prop slipstream effects extend beyond the strut to the body and vertical tail and influence the longitudinal cross section area distribution.
- Partial (≅ 10%) thrust recovery resulting from the straightening effect of the strut on the slipstream appears as an increment in strut C_L, rather than a decrement in drag. The opposing tendencies of the wing downwash and the propeller swirl influence the flow about the leading edge of the strut and in turn, the thrust recovery vector.
- Overall, the prop slipstream has little effect on the aerodynamics of the airplane for aftmounted engines as compared to wing-mounted engines.

1.3 RECOMMENDATIONS

This study was directed at applying analytical techniques to minimize propeller slipstream/airplane aerodynamic interference effects and to maximize overall aircraft aerodynamic efficiency during cruise. Potential flow analysis techniques to calculate prop-fan airplane aerodynamics were applied. Additional studies of alternate methods for achieving the same or better results with a more practical wing design are required. Therefore, the following efforts are recommended to ensure a balanced, logical development of prop-fan technology; and ultimately, a convincing evaluation of the economic and energy saving potential for prop-fan propulsion systems.

1.3.1 PROP-FAN/AIRFRAME AERODYNAMIC INTEGRATION

- Develop a cruise wing design that incorporates changes to the planform and leading/ trailing edges, but that essentially maintains the structural wing box. This may include changes in local wing sweep, leading- and trailing-edge camber, wing aspect ratio, thickness ratio, and nacelle contouring.
- Determine the influence of the wing on wing propeller environment and aft-mounted propfan installations.

1.3.2 NOISE RADIATION AND ATTENUATION

- These recommendations result from the Reference 1 study.
- Develop a data base and theoretical methods for predicting noise radiation from prop-fans.
- Develop a light-weight structure to attenuate noise at the prop-fan blade passing frequencies.

1.3.3 PROP-FAN MISSIONS AND APPLICATION

- Determine the optimum range and Mach number for a prop-fan airplane.
- Conduct a fully integrated study that includes all technical elements of airplane design.

As indicated, the cruise wing design should incorporate changes to the planform. For example, leading-edge extensions on both sides of the nacelle could effectively reduce the local thickness ratio without reducing the physical wing thickness. This leading-edge extension permits incorporation of local leading-edge camber without distorting the wing structural box. The large suction peaks caused by the swirling slipstream inboard of the nacelle could be mitigated by merely drooping the extended leading-edge. Conversely, the wing leading-edge could be upcambered on the outboard side to compensate for the loss of load on that side. This concept is shown in Figure 2.

Figure 2. Typical Modification Concept for Prop-Fan C ise Wing

2.0 INTRODUCTION

2.1 BACKGROUND

Elementary considerations of momentum and energy lead to the conclusion that, in the absence of compensating losses, propulsive efficiency is improved by accelerating more fluid by a smaller velocity increment. Introduction of the high-bypass-ratio turbofan engine stimulated a new generation of transport aircraft by using this principle to reduce fuel consumption without substantially sacrificing the simplicity, reliability, and low maintenance costs that have come to be expected by the airlines since reciprocating engines were replaced by turbojets.

The increase in the relative cost of fuel following the 1973 Arab oil embargo, along with national concern over the need of fuel conservation, have prompted Government and industry to examine possibilities for further reducing aircraft fuel consumption.

A 1976 NASA-sponsored study (ref 1) concluded that modest gains in efficiency could be achieved by pushing turbofan technology further through the application of geared fans, higher overall pressure ratios, and higher turbine inlet temperatures. The same study also noted that the propeller offered more dramatic gains than advanced turbofans if it could be adapted to the Mach 0.75+ cruise speed favored by airframe technology and expected by the traveling public.

The high propulsive efficiency of propellers is difficult to maintain at cruise speeds above Mach 0.7 because:

• The helical-tip Mach number becomes supersonic, and the outer section of the blade incurs increased drag, leading to increased noise and the associated penalties,

or,

• The rotational speed must be reduced to the point where excessive slipstream swirl necessitates the added weight and complexity of dual rotation.

In 1975, the Hamilton Standard Division of United Technologies Corporation proposed the prop-fan concept. This concept is one in which a slightly supersonic outer blade speed is accepted, and alleviation of increased drag and noise is accomplished by the use of thin and swept-back blade sections. Also, to keep the diameter reasonable while absorbing the very high power required for high-speed transport designs, eight to ten broad blades are used.

Wind tunnel tests conducted by Hamilton Standard and the NASA Lewis Research Center indicate a point-design installed propulsive efficiency of 80% at Mach 0.8 cruise is achievable, and a net reduction of 18% in TSFC over a comparable technology bypass-ratio-six turbofan may be expected.

Study results reported in Reference 1 indicate that this 18% advantage in cruise TSFC for a twin-engine, Mach 0.8 commercial transport designed for 3300-km (1800-nmi) range with

180 passengers could result in a net fuel savings of approximately 25% in there were not compensating penalties. However, both the installation weight and drag penalties of the prop-fan-powered airplanes were judged to be larger than those of the turbo-fan.

When these penalties are assessed, the estimated fuel savings are reduced to 9.7% for the wing-mounted prop-fan airplane and 5.8% for the aft-mounted prop-fan.

Early analysis and design work are necessary to add realism to these assessments and to help guide decisions regarding the development of prop-fan technology.

2.2 STUDY OBJECTIVE AND SCOPE

The objective of the current study is to apply analytical techniques to the problem of the wing and aft-body installation, thus minimizing propeller slipstream/airplane interference, to maximize overall aircraft aerodynamic efficiency in cruise, and to define appropriate high-lift devices for takeoff and landings.

2.2.1 TASK I-WING-MOUNTED PROP-FAN-HIGH SPEED

A "clean" wing of appropriate geometry is defined and analyzed (using a 3-D potential-flow computer program, Boeing A 230) to provide a baseline pressure distribution. The nacelle and slipstream then are added, and the resulting distorted isobar pattern examined to identify problem areas associated with pressure peaks, adverse pressure gradients, and local loss of effective sweepback. Design changes are defined to alleviate these problems, and a revised wing-nacelle geometry analyzed to provide new pressure distribution data for validation of the proposed changes. A wing model for high-speed wing tunnel testing is defined and thrust recovery due to slipstream de-rotation estimated.

2.2.2 TASK II-WING-MOUNTED PROP-FAN-LOW SPEED

Leading- and trailing-edge flap geometry and the fan flow field is examined at takeoff and landing approach flight conditions. Pressures and streamline patterns at the leading edge (with and without slipstream) are computed, and leading-edge devices required to mitigate pressure peaks and to provide reasonable protection from flow separation are defined and analyzed. Probable power-off behavior and requirements for automatic retraction or angle adjustment in case of engine failure are estimated and thrust recovery due to slipstream derotation is calculated.

2.2.3 TASK III-AFT-MOUNTED PROP-FAN

Aerodynamic integration of aft-mounted engines poses a completely different set of problems. Most of the requirements constraining the wing do not apply to a strut having only the function of supporting the propulsion pod (and possibly to develop some thrust by removing slipstream swirl). On the other hand, the drag of the aft-body may be sensitive to disturbances caused by the nacelle and propeller because of the thick boundary layer and adverse pressure gradient to be expected there. Potential flow methods are used to compute pressure distributions and streamline paths.

3.0 ABBREVIATIONS AND SYMBOLS

A Cross sectional area

bREF	Reference span
C CD CDi CDp Ck Cl CL CLMAX CMX Cp CpMIN CREF	Chord Drag coefficient Induced drag coefficient Profile drag coefficient Krueger flap chord Lift coefficient per unit span Lift coefficient Maximum lift coefficient Rolling moment coefficient Pressure coefficient Minimum pressure coefficient Reference chord
D	Propeller diameter
G GF G0	Geometry Error-free initial geometry Clean-wing initial geometry
LE	Leading edge
M MAC M _∞	Local Mach number Mean aerodynamic chord Freestream Mach number
n nmi	Unit normal Nautical mile
p(r) p _∞ P(r) P0	Static pressure at radius r Static pressure at infinity Total pressure at radius r Total pressure at infinity
q	Dynamic head
r R	Radial distance Propeller radius
S S/C	Arc length Arc length from leading edge/chord

Shaft horsepower

SHP

T Thrust
TE Trailing edge
t/c Thickness ratio

TSFC Thrust specific fuel consumption

U₀₀ Freestream velocity

V Local velocity

V_{ii} Normal velocity component
 VPROP Slipstream perturbation velocity
 V_t Tangential velocity component

V_X Axial velocity

w/U Uniform cross-flow

W Vertical component of velocity vector

WBL Wing buttock line

WL Water line

X,Y,Z Cartesian coordinates

a Angle-of-attackδ Swirl angle

 $\begin{array}{ll} \delta_F & \text{Trailing-edge flap deflection} \\ \delta_K & \text{Krueger flap deflection} \\ \Delta & \text{Incremental quantity} \\ \eta & \text{Fractional semispan} \end{array}$

 θ Wing twist

γ Ratio of specific heats for air

4.0 ANALYSIS AND DESIGN METHODS

Three-dimensional potential flow techniques have been in use for many years for analysis and design of complex aerodynamic configurations. These techniques have been found to be adequate even though local patches of supersonic flow and shock waves at high subsonic Mach numbers are not simulated. Consistent with current design practices, this analysis was conducted at Mach 0.7.

4.1 COMPUTER PROGRAM A 230 DESCRIPTION

The Boeing-developed computer program A 230 (ref 2) is a general boundary-value problem solver that uses source and doublet panels distributed on the configuration boundary surfaces and internally. The flow field over the configuration is determined by a computational routine, which calculates the strengths of the sources and Joublets that produce a flow field satisfying the boundary conditions. Each boundary condition statement consists of the following specifications:

- Spacial coordinates of the boundary point
- Direction cosines of a unit vector
- The desired velocity component along the unit vector

For a general impermeable surface, the boundary point is positioned at the panel centroid, with the unit vector directed normal to the panel. The condition of zero velocity along the normal vector produces a flow that is parallel to the surface. This type of boundary condition is provided automatically by the program and requires no input from the user. However, if a nonzero velocity component is specified along the unit normal vector, problems such as controlling the inflow distribution into a simulated fan face may be formulated. This option has been exercised in the present study to represent the interaction of the slipstream with the configuration without actually generating the swirling flow behind the propeller.

4.2 ANALYSIS USING SLIPSTREAM AND PRE- AND POST-PROCESSORS

The methodology for inclusion of the prop slipstream in the three-dimensional, potential-flow analysis model is presented in this section. The swirling flow behind the propeller disc, impinging on the surface of the configuration is simulated mathematically through a restatement of the boundary conditions at those boundary points that are washed by the wake. The obtained solution is corrected to ensure satisfaction of the tangency condition at all points in the presence of the slipstream.

The boundary conditions underlying the potential flow problem are described schematically in Figure 3. The slipstream perturbation velocity (V_{PROP}) is resolved into a normal (V_n) and tangential (V_t) component to the local panel. The boundary condition at the panel center is expressed as:

$$V. n = -V_n$$

Figure 3. Technique for Modeling Prop Slipstream

The requirement that there be a normal flow through the surface of magnitude $-V_n$ is equivalent to requiring the local singularity strength to oppose V_{PROP} , had the latter been generated by an appropriate distribution of singularities in the flow field. Post-solution addition of V_{PROP} to the local velocity vector ensures satisfaction of the tangency condition and yields the effect of the slipstream on the configuration.

A pre- and post-processor computer program has been developed to handle the boundary value problem described above. In the pre-processor section, the slipstream velocity vector VPROP is generated from swirl angle and total pressure data aft of the propeller (see derivation in Section 5.0). This vector (VPROP) is then resolved normal to the configuration panels within reach of the wake. The normal velocity $(-V_n)$ is generated and entered (as the boundary condition) into potential flow program A 230. A solution is obtained and the post-processor then is called upon to:

- 1. Regenerate the slipstream velocity vector VPROP at all affected boundary points
- 2. Vectorially add VPROP to the velocity vector arising from the potential flow solution
- 3. Recompute pressure coefficient, Cp
- 4. Integrate the pressures for forces and moments on a column-by-column basis

This technique described above can be used to superimpose any velocity field on a boundary value problem. An example is given in Figure 4 for the flow over a stub wing at an angle of attack, $\alpha = 5^{\circ}$. The solution obtained superimposes a uniform cross-flow of magnitude w/U = tan α to the configuration at $\alpha = 0^{\circ}$. The excellent agreement with the exact solution at $\alpha = 5^{\circ}$ supports applicability of the method.

Figure 4. Test Case-Flow Over Stub Wing: Strip 2

4.3 DESCRIPTION OF COMPUTER PROGRAM A 236

The Boeing A 236 computer program (ref 3) is a design-analysis-optimization program, which has been used in the present study to redesign the baseline wing of the wing-mounted prop-fan. In the design mode, A 236 calculates the wing geometry required to support a specified pressure distribution. To achieve design capabilities, a number of limitations were

imposed upon A 236, as compared with the more general program, A 230. The variations between these two programs are:

1. Analysis only	Analysis, design, and optimization
2. Accepts general configurations of any shape	Accepts wing/body only
3. Exact boundary conditions (applied on surface)	Linearized wing boundary conditions (applied on wing

A 236

design plane, exact boundary conditions on body

4. Lifting surfaces treated as a whole

Wing split into camber and thickness

5. Paneling external to program Automatic paneling provided

Features of A 236 include:

A 230

- It handles wing/body configurations only. The wing may be designed in the presence of the body, but nacelle and slipstream are excluded.
- Linearized boundary conditions are applied on the wing design plane, eliminating the need to estimate the initial geometry when designing the wing.
- Wing camber and thickness are treated separately and their effects are superimposed. This is a necessary limitation of the linear theory.
- Since only wing/body configurations are admissible into A 236, automatic paneling is provided. The wing is considered flat and is paneled over its planform.

4.4 DESIGN METHOD

The problem of redesigning the baseline wing of the wing-mounted prop-fan for favorable interaction with the slipstream was as follows:

"Find the wing geometry which, in the presence of the nacelle and slipstream will support the pressure distribution of the clean wing". Because the nacelle and slipstream could not be modeled on the design program A 236, a scheme employing both programs A 230 and A 236 was devised (fig. 5). The clean wing-body configuration was analyzed on A 236, resulting in the pressure distribution, C_{p_I} (only one wing section is used for illustration in the figure). The increment C_p of the nacelle-slipstream over the clean wing, calculated by A 230, was then subtracted from C_{p_I} to produce $C_{p_{II}}$, thus:

$$C_{pij} = C_{pj} - \Delta C_{p}$$

Figure 5. Prop-Fan Wing Design Technique

In an attempt to eliminate errors inherent in the solution of the design problem, two design runs were executed on A 236; one for C_{pII} and another for C_{pII} . The resulting wing geometries are symbolically denoted G_{II} and G_{II} , respectively in the figure. The final wing geometry was then calculated from:

$$GF = GO + GII - GI$$

where GO is the initial geometry of the clean wing. GI - GO represents the error attributable to the lack of reversibility in the analysis-design-analysis cycle on A 236. By subtracting it from GII, an error-free final geometry (GF) is obtained.

Figure 6 shows a comparison of baseline and redesigned wing sections on the two sides of the nacelle. Large changes in twist, thickness, and airfoil shape are evident as a result of the design exercise. Figure 7 defines the twist distribution of the baseline and modified wings. A twist increment of approximately $+6^{\circ}$ outboard and -5° inboard of the nacelle appears to be almost equal and opposite to the swirl angles at cruise stated in Section 5.0. The wing thickness distribution of the baseline and modified wings is shown in Figure 8. As a result of this design exercise, the maximum wing thickness ratio has been reduced by 18% inboard and by 10% outboard of the nacelle.

Figure 6. Cruise Wing Geometry

Figure 7. Cruise Wing Twist Distribution

Figure 8. Cruise Wing Tnickness Distribution

5.0 WING-MOUNTED PROP-FAN-CRUISE

5.1 CONFIGURATION AND FLIGHT CONDITIONS

Potential-flow analysis of the wing-mounted prop-fan in a cruise configuration is presented in this section. The analysis was carried out on the Boeing A 230 general potential flow computer system (Section 4.0) at values of α from -3° to +3°, and at 0.7 freestream Mach number. Several configurations comprising wing, body, nacelle and slipstream were modeled and analyzed in a systematic buildup toward achieving a broad understanding of the phenomena involved. The baseline wing employed in the study was essentially that of a twinturbofan airplane meeting similar requirements and available from previous Boeing studi-s. This wing was subsequently redesigned, using the method described in Section 4.0, with the objective of achieving the clean wing pressure distribution in the presence of the nacelle and slipstream. Figures 9 and 10 show the paneling arrangement for the clean wing and the

Figure 9. Baseline Wing Body *!lodel

Figure 10. Baseline Wing Body/Nacelle Model

wing plus nacelle, respectively, as defined for potential flow analysis. In each case, the wing has been subdivided into 14 strips having 48 source panels each. The modified wing-nacelle-body configuration is shown in Figures 11 and 12. Definition of the baseline and modified wings is given in Appendix A. Sharp discontinuities in twist and thickness across the nacelle make this wing structurally undesirable. For this reason, although wind tunnel testing to validate the theory and to assess the extent to which the design objectives were achieved could be conducted, they are not recommended for this wing geometry, Instead, further research to define a more realistic wing geometry is recommended.

Figure 11. Paneling of Modified Cruise Wing

Figure 12. Modified Cruise Wing

5.2 SLIPSTREAM CHARACTERISTICS

Figure 13 presents a comparison of the measured and calculated total pressure ratios and swirl angles along the blade radius as stated by Hamilton Standard in reference 4. The measured data, taken one blade chord behind the propeller, indicated that the root sections were overloaded and the top portions were underloaded compared to the design objectives. Because further refinements were contemplated by Hamilton Standard to achieve the design objectives, the theoretical distribution was selected for inclusion in the potential flow model.

Figure 13. Radial Distribution of Swirl and Total Pressure in Prop Slipstream

The 1 agnitude of the velocity vector V(r) in the propeller slipstream is isentropically related to the total pressure ratio $P(r)/P_0$ as follows:

$$\frac{V(r)}{U_{\infty}} = \frac{1}{M_{\infty}} \left[\left(\frac{P(r)}{P_{O}} \right)^{\frac{\gamma - 1}{\gamma}} \left(\frac{2}{\gamma - 1} + M_{\infty}^{2} \right) - \frac{2}{\gamma - 1} \right]^{\frac{1}{2}}$$

with the assumption that the local static pressure is constant: p(r) = p

ORIGINAL PAGE IS

The axial velocity component, V_X/U_∞ is determined from V(r) and the swirl angle $\delta(r)$ thus,

$$\frac{V_X}{U_{\infty}} = \frac{V(r)}{U_{\infty}} \cos \delta(r)$$

The pressure coefficient is calculated from:

$$C_{p} = \frac{\left[1 + \frac{\gamma - 1}{2} M_{\infty}^{2} \left(1 - \frac{V(r)^{2}}{U_{\infty}^{2}}\right)\right] \frac{\gamma}{\gamma - 1} - 1}{\frac{\gamma}{2} M_{\infty}^{2}} + \frac{\Delta P(r)}{q}$$

where q is the dynamic head and $\Delta P(r)/a$ is a correction term to account for the change in total head across the propeller disc. It is given by:

$$\frac{\Delta P(r)}{q} = \left(\frac{P(r)}{P_0} - 1\right) \frac{\left[1 + \frac{\gamma - 1}{2} - M_{\infty}^2\right] \frac{\gamma}{\gamma - 1}}{\frac{\gamma}{\gamma} - M_{\infty}^2}$$

The above formulation has been used for all potential flow calculations in the present document.

5.3 PRESSURE COEFFICIENT DATA

Pressure profiles for the baseline wing on the two sides of the nacelle are shown in Figures 14 through 17. On the inboard side (strips 3 and 4), the effect of the nacelle is to increase the supervelocities on both upper and lower surfaces. This is equivalent to an increased-thickness effect. The propeller slipstream induces a local upwash which further aggravates the upper surface pressure peaks. Local Mach numbers of up to 1.5, corresponding to a freestream Mach number of 0.7, have been calculated. It is thus postulated that severe penalties in drag may be incurred as a result of shock formation on the inboard wing. On the outboard side of the nacelle (strips 4 and 5), both the nacelle and the slipstream contribute to unloading the local wing sections. The nacelle produces a diminished-thickness effect, whereas the swirl reduces the effective local incidence.

Pressure profiles for the modified wing are compared with the baseline profiles in Figures 18 through 21. These figures indicate that, to a large extent, the design objective of achieving the clean wing pressure distribution has been attained. The design procedure (outlined in Section 40) necessitated changes in the wing twist, thickness, and airfoil shape and was limited to a single design cycle.

Figure 14. Effect of Slipstream on Chordwise Pressure Distribution: Strip 3

Figure 15. Effect of Slipstream on Chordwise Pressure Distribution: Strip 4

ORIGINAL PAGE IS

Figure 16. Effect of Slipstream on Chordwise Pressure Distribution: Strip 5

Figure 17. Effect of Slipstream on Chordwise Pressure Distribution: Strip 6

Figure 18. Wing Pressure Profiles: Strip 3

Figure 19. Wing Pressure Profiles: Strip 4

5.4 WING ISOBARS

Wing upper surface isobars for the baseline and modified wings are presented in Figures 22 through 25. The effect of the nacelle alone (fig. 23) is to disrupt the isobar pattern near the wing leading edge. Increased suction peaks inboard of the nacelle, which die out near the side of the body, appear as elongated puddles. The effect of the swirl (fig. 24) is to further increase the suction peaks inboard of the nacelle and to cause puddling of the isobars on the outboard side.

The modified wing (fig. 25) exhibits an outboard isobar pattern similar to that of the clean wing. Inboard, the isobar pattern reveals the presence of suction peaks higher than those of the clean wing that have not been fully mitigated through the design exercise.

rigaro 12. Oppor Carraco tring isobais Great tring

Figure 25. Upper Surface Wing Isobars—Modified Wing + Nacelle + Slipstream

5.5 FORCE DATA

 C_L vs a curves for the cruise wing-body-nacelle configuration are shown in Figure 26. At $a = 0^{\circ}$, the effect of the slipstream is to increase the total lift by approximately 5%. The slope of the lift curve is slightly lower for the modified wing relative to the baseline in the absence of slipstream effects. In all cases, a design C_L value of 0.5 is achieved at a close to 0° .

Wing spanwise load distributions are presented in Figures 27 and 28. Figure 27 shows the incremental effects of the nacelle and slipstream on the loading of the baseline wing. The asymmetry created by the prop slipstream is compatible with the pressure profiles of Figures 13 through 16. The wing, in this case, acts as a pair of stators tending to straighten the swirling flow behind the propeller and thus contribute to thrust recovery. Figure 28 gives the span load distribution for the modified wing which is in agreement with that of the clean wing, as set forth in the design objective.

Spanwise distribution of C_{pMIN} for the baseline and modified wing is presented in Figure 29 at $a = 0^{\circ}$. Inboard of the nacelle, the baseline wing is highly critical because of upwash from the swirling slipstream. At 0.8 cruise Mach number, strong shock waves and, possibly,

Figure 26. Cruise Wing Lift Curves

Figure 27. Effect of Slipstream on Span Loading

Figure 28. Wing Spanwise Load Distribution

shock-induced separation are likely to occur on the inboard baseline wing. Corresponding penalties in profile drag are difficult to assess without a full-scale wind tunnel test. However, these penalties are expected to outweigh gains accrued from propeller thrust recovery. The modified wing (fig. 29) exhibits substantially reduced pressure peaks, although still higher than those of the clean wing.

5.6 PROPELLER THRUST RECOVERY

Swirl velocities in the prop slipstream represent lost thrust and hence lower efficiency. In Reference 1, these losses were estimated at 8% during cruise and 13% at takeoff. The wing, acting as a large chord stator, may be expected to recover some of the lost thrust by derotating the slipstream. Physically, the slipstream induces a local angle-of-attack, which causes the lift vector to tilt forward, producing thrust.

In the present context, the thrust increment due to the slipstream has been obtained by integration of the surface pressure. Figure 30 gives a drag buildup for the baseline and the modified wing, each incremented from the clean wing. The increments in profile drag (CDP) were postulated on the basis of the spanwise distribution of C_{pMIN} of Figure 29. Early shock formation could lead to an early break in the polar as suggested in Figure 30. Uncertainty factors for the increments in CD_p may be as high as 100%.

Vector ΔCD_i in Figure 30 represents the increment in induced drag between the wing plus nacelle and the clean wing. It was calculated by the induced drag program A 323 (ref. 5) and is strictly a function of the span load distribution. This vector is negligible for the baseline wing, but significant (4.5 drag counts) for the modified wing.

ORIGINAL PAGE IS OF POOR QUALITY M = 0.7 α = 0° Clean wing Wing + nacelle + slipstream Modified wing + nacelle + slipstream -1.2 Nacelle Cp_{MIN} -1.0 -0.8 -0.6 -0.4

Figure 29. Spanwise Distribution of C

0.5

Fractional semi-span (η) , percent

0.6

0.7

8.0

0.9

1.0

0.4

The thrust recovery vector was calculated by potential flow program A 230 as the difference in integrated surface pressures between the configuration with and without swirl. For the modified wing this vector is composed of a ΔC_L of 0.026 and a ΔC_D of one drag count. It is considered inconsequential.

The baseline wing shows a thrust recovery vector equivalent to 11 counts of thrust. At Mach 0.8 and 10 700m (35 000 ft), this translates into 2.97 kN (668 lb) of thrust. The total thrust of the airplane may be estimated from the propeller power loading given by Reference 4:

$$\frac{\text{SHP}}{\text{D}^2}$$
 = 37.5 per engine

0.1

0.2

0.3

Where SHP is shaft horsepower and D = 5.97m (19.6 ft) is propeller diameter. At Mach 0.8 and 10 700m (35 000 ft), the total thrust, assuming a propeller efficiency of 0.8, is:

$$T = 72.427 \text{ kN} (16 283 \text{ lb})$$

Figure 30. Wing Drags Incremented from Clean Wing

C_D, Drag counts

0.2 L

From the above, the recovered thrust for the baseline wing is 4.1% of the total, or approximately 50% of the estimated thrust lost due to swirl.

This estimate of thrust recovery is predicated on the ability of the baseline wing to sustain the calculated pressure profiles in shock and separation-free flow.

5.7 ASSESSMENT

The influence of the nacelle (without slipstream) on the baseline wing is significant as is indicated in Figures 14, 15, 24, and 27. The present study did not consider recontouring the nacelle. However, future study efforts should include this consideration, perhaps in combination with some thrust line toe-out to align it with the local flow.

The swirl produced by the wing-mounted prop-fan imparts a strong local upwash to the wing inboard of the nacelle and a downwash on the outboard side. Large leading edge suction pressures appearing on the inboard wing were found to produce a thrust force, equivalent to the momentum removed from the swirling slipstream through the straightening effect of the wing. The analysis further indicated that at high cruise Mach number (M = 0.8), isentropic flow could not be maintained on the inboard wing and that shock waves were likely to occur. If this occurs, the readjustment of pressure on the inboard wing would largely eliminate the calculated thrust increment and would further lead to sizeable penalties in profile drag. To alleviate the adverse effects of the nacelle and swirl on the wing, the latter was redesigned to neutralize these effects. The resulting wing is characterized by large variations in twist and thickness and shows little potential for thrust recovery. The trade between profile drag and thrust recovery must ultimately be determined through wind tunnel testing.

6.0 WING-MOUNTED PROP-FAN-LOW SPEED

Low-speed analysis of the takeoff configuration and flight condition was selected because the slipstream effects are much greater than in the landing approach condition.

6.1 GEOMETRICAL DEFINITION

Leading- and trailing-edge flap geometries have been defined for the modified cruise wing (described in sec. 5.0) to simulate the takeoff flight condition. Figure 31 depicts a streamwise section of the flapped wing as defined for potential flow analysis. A trailing-edge flap of 22% chord, extending over the entire wing span was assumed. A flap deflection δ_F of 10° was selected for the takeoff condition and was achieved by rotating the trailing-edge about the 78% chord line.

Figure 31. Leading- and Trailing-Edge Flaps for Low-Speed Configuration

The leading-edge Krueger flap geometry was defined as shown in Figure 32 and described by:

- Point A—A point of tangency on the wing upper surface at 2% chord from the leadingedge.
- Point B-Located at the intersection of the tangent from A and the wing chord line.
- The Krueger leading edge (point C) was determined by constructing from point B a line at an angle δ_K to the wing chord line and equal in length to the Krueger flap chord. The latter was fixed at 15% of the basic wing chord. The Krueger angle δ_K was initially selected equal to 63°. In a subsequent design cycle, it was varied between 50° and 55° spanwise, in an attempt to improve the flow pattern over the leading edge.

ORIGINAL PAGE IS

- The Krueger upper surface profile was extracted from an existing Booing design and geometrically stretched to fit between points B and C while remaining tangent to line AB.
- The Krueger lower surface profile was faired in arbitrarily to complete the section definition. It does not significantly impact the performance of the wing.

Figure 32. Krueger Flap Definition

The above procedure was fully automated for rapid generation of the entire wing, given a set of Krueger flap angles and chord ratios (C_K/C) .

Paneling of the low-speed configuration for potential flow analysis is shown in Figures 33 and 34. Particular attention was required in modeling the wing-body intersection because of the Krueger flap dipping below the body. Bound vortices within the wing lifting system, located in the Kreuger flap region, could not be extended to the body centerplane as is normally done. Instead, they were routed to a point aft of the Krueger, deflected to the plane of symmetry, then shed aft to infinity.

Figure 33. Paneling Scheme-Low-Speed Configuration

Figure 34. Krueger Wing-Low-Speed Configuration

6.2 DESIGN PROCEDURE

Initial definition of the low-speed configuration included a Krueger flap of constant deflection angle, $\delta_{\rm K}=63^{\rm O}$ and chord ratio $C_{\rm K}/C=0.15$ (see fig. 32). This configuration was analyzed, less slipstream effects on potential flow program A 230. The results indicated a nonuniform stagnation pattern along the Krueger leading edge, partly because of the large variations in the wing twist distribution. In a second design cycle, the Krueger flap was redefined in accordance with the deflection schedule of Figure 35. A comparison of pressure profiles along strips 3 and 6 for the two design cases is given in Figures 36 and 37. The data are plotted versus arc length (S/C) from the Krueger flap leading edge. At $\alpha=4^{\rm O}$, the stagnation point is located on the upper side of the leading edge in both design cases. At higher angles-of-attack and/or increasing trailing-edge flap deflections ($\delta_{\rm F}$), the stagnation point is expected to move down past the leading edge toward a more favorable location corresponding to $C_{\rm LMAX}$. Because of a more uniform distribution of the stagnation line along the wing leading edge, the second iteration design was selected for further analysis.

Figure 35. Krueger Flap Deflection Schedule

Figure 36. Low-Speed Wing Pressure Profiles: Strip 3

Figure 37. Low-Speed Wing Pressure Profiles: Strip 6

....

ORIGINAL PAGE IS

6.3 SLIPSTREAM CHARACTERISTICS

Radial distribution of total pressure ratio and swirl angle aft of the propeller for the cruise and takeoff conditions are given in Figure 38. The takeoff data at Mach 0.2 were obtained by Hamilton Standard through wind tunnel testing. Swirl angles of about 9 degrees are predicted, compared to 6 degrees at cruise. The incremental axial velocity $(\Delta V_X/U_{\infty})$ corresponding to the above data (calculated by the method described in sec. 5.0) is presented in Figure 39. These increments are very large during takeoff and have a significant impact on the wing aerodynamic characteristics.

Cruise: M = 0.8 Low speed: M = 0.2

Figure 38. Radial Distribution of Swirl and Total Pressure in Prop Slipstream

Figure 39. Radial Distribution of Axial Velocity Increment in Prop Slipstream

6.4 PRESSURE COEFFICIENT DATA

Pressure profiles for strips 3 through 6 at $a = 4^{\circ}$, showing the effect of the propeller slip-stream, are given in Figures 40 through 43. On the inboard side of the nacelle, the swirl angles and the increments in axial velocity have additive effects, resulting in high loading of the local wing sections. On the outboard side, these effects are subtractive with the axial velocity slightly more predominant. The net effect is an increase in load on the outboard, as well as the inboard wing. The effect of the slipstream on the wing as a whole is discussed further below.

6.5 FORCE DATA

The lift curve for the low-speed configuration is shown in Figure 44. At $a = 4^{\circ}$, the effect of the slipstream is to increase C_L from 1.328 to 1.610, a 21% increase. Preliminary design estimates in Reference 1 give a climbout C_L value of 1.63 with a trailing-edge flap setting of 10° .

Figure 45 shows the effect of the slipstream on the wing-span load distribution. Local increases in the wing loading on both sides of the nacelle correspond to the pressure profiles of Figures 40 through 43.

Figure 40. Low-Speed Wing Pressure Profiles with Slipstream: Strip 3

Figure 41. Low-Speed Wing Pressure Profiles with Slipstream: Strip 4

Figure 42. Low-Speed Wing Pressure Profiles with Slipstream: Strip 5

Figure 43. Low-Speed Wing Pressure Profiles with Slipstream: Strip 6

Figure 44. Krueger Wing-Low-Speed Configuration Lift Curve

Figure 45. Krueger Wing-Low-Speed Configuration Spanwise Load Distribution

6.6 DRAG AND THRUST RECOVERY

Induced drag of the wing/body/nacelle configuration, calculated from the span load distribution of Figure 45, is shown in Figure 46. The effect of the slipstream (shown in fig. 46) was calculated as an increment in the integrated surface pressures over the configuration. This vector is largely composed of a C_L increment ($\Delta C_L = 0.282$) with 36 counts of drag reduction, which contributes to thrust recovery. If, however, the effect of the slipstream is to be considered at constant C_L , the thrust recovery could be as high as 350 counts, depending on the general shape of the polar.

Figure 46. Krueger Wing-Low-Speed Configuration Induced Drag Due to Slipstream

6.7 EFFECT OF ONE-ENGINE FAILURE

In the case of a one-engine failure, the aerodynamic forces and moments attributed to the slipstream will act only on one side of the airplane, creating a general aerodynamic imbalance that must be trimmed.

Figure 47 depicts the rolling moment CMX as a function of C_L for only one-half of the configuration. The effect of the slipstream, calculated by integration of the surface pressures, is shown on the figure as a vector composed of:

$$\begin{array}{l} \Delta C_L = 0.141 \\ \Delta C_{MX} = 0.018 \end{array}$$

This represents the engine-out increment of the prop-fan over the turbofan. It is substantially smaller than preliminary estimates for the Reference 1 study, as indicated in Figure 48.

Figure 47. Krueger Wing-Low-Speed Configuration Rolling Moment Coefficient

Figure 48. Rolling Moment Due to Engine-Out Comparison with Preliminary Estimates

6.8 ASSESSMENT

Leading- and trailing-edge flaps were defined for the modified cruise wing, and are suitable for both landing and takeoff. The flap definition was intended for potential flow analysis only, and would normally undergo extensive tailoring prior to hardware application. The analysis showed the nature and extent of the problems associated with the wing-slipstream interaction during takeoff; landing approach problems would be similar but less severe. Based upon the calculated data, the following observations were made:

- Leading-edge Krueger flaps had more than enough deflection (δK) to eliminate all pressure peaks on the upper surface. The extra margin in δK ensures safe operation at C_{LMAX} . For maximum L/D during climb, the Krueger flap should be partially retracted.
- Unlike the high-speed condition, the axial velocity increment, rather than the swirl, dominates the slipstream effect at the takeoff condition. As a consequence, the portions of the wing scrubbed by the slipstream experience large, local increases in loading.
- An engine failure at takeoff results in an asymmetric loading that appears to be well within the trim capabilities of the lateral control system for this type of airplane.

7.0 AFT-MOUNTED PROP-FAN

7.1 CONFIGURATION AND FLIGHT CONDITIONS

Paneling of the aft-mounted prop-fan configuration is shown in Figures 49 and 50. The wing was moved aft for longitudinal stability and was represented by a single vortex panel network placed over its mean surface. Accordingly, wing thickness effects were ignored in calculating the flow over the aft-body assembly and the body was partially coke-bottled in the vicinity of the empennage for improved area distribution. The vertical tail and the strut have symmetrical profiles of 12 and 10.5% thick, respectively. The strut plane of symmetry has 2.6° of pitch and 19° of dihedral and the horizontal tail has a cambered, 10.5 percent thick section.

The longitudinal, cross sectional area distribution along the aft body stations has a direct bearing on the local pressure. Figure 51 shows a buildup of the cross sectional area in that region. Maximum area occurs at body station 1640 and generally corresponds to the location of minimum body pressure in Figure 52. Smoothing the cross sectional area distribution could greatly improve the flow field in the body-nacelle channel but is not readily feasible. For example, additional necking of the body is limited by structural considerations. Moving the strut-nacelle assembly forward could require large increases in body noise attenuation provisions. It should be noted that the area profile of Figure 51 is typical of T-tail, aft-mounted engine arrangements and is not necessarily objectionable or undesirable.

Figure 49, Paneling of Aft-Mounted Prop-Fan

Figure 50. Aft-Mounted Prop-Fan Isometric Projection

Figure 51. Aft-Mounted Prop-Fan Cross Sectional Area Distribution

Figure 52. Aft-Mounted Prop-Fan Side-of-Body Pressure Profile

The configuration was analyzed on potential flow program A 230 at Mach 0.7 and angles-of-attack of -2 to 50.

7.2 SLIPSTREAM CHARACTERISTICS

Radial distribution of swirl angle and total pressure ratio aft of the propeller corresponds to the cruise condition defined in Figure 13 for the wing mounted prop-fan. Only the strut, in the present case, is washed by the propeller slipstream. However, the effect of the slipstream extends to the body and the vertical tail because of its impact on the channel cross sectional area distribution.

7.3 PRESSURE DISTRIBUTION AND SPAN LOADING

The pressure distribution along the side of the body is shown in Figure 52. The pressure is most critical at about 50% chord of the strut-body intersection on the upper side of the strut. This condition is further aggravated by the propeller slipstream, in spite of the fact

that the latter does not impinge on the body. From the point of minimum pressure, the pressure recovery occurs over a relatively short distance, increasing the danger of separation over the tail end of the body and possibly increasing drag by one or two counts.

Strut pressure profiles showing the effect of the slipstream are presented in Figures 53 through 55. In the absence of the slipstream, the strut is influenced by the downwash from the wing and suction peaks are in evidence on its lower surface. The chordwise load distribution exhibits two loops of opposite signs that integrate to produce a strut C_L close to zero. The propeller slipstream produces a strong upwash counteracting the downwash from the wing and it causes a collapse of the negative pressure loop on the strut leading edge, generally increasing the total load on the strut. This effect is particularly pronounced on strip 2 because, as shown in the figure inserts, strip 3 is close to the axis of the propeller and strip 1 is out of its range. Vertical-tail pressure profiles are presented in Figures 56 through 59 and show that the influence of the propeller slipstream clearly extends to the vertical tail and that this effect is more pronounced on the lower parts of the vertical tail and diminishes toward the tip.

Figure 53. Aft-Mounted Prop-Fan Strut Pressure Profiles: Strip 1

Figure 54. Aft-Mounted Prop-Fan Strut Pressure Profiles: Strip 2

Figure 55. Aft-Mounted Prop-Fan Strut Premure Profiles: Strip 3

Figure 56. Aft-Mounted Prop-Fan Vertical Tail Pressure Profiles: Strip 1

Figure 57. Aft-Mounted Prop-Fan Vertical Tail Pressure Profiles: Strip 2

ORIGINAL PAGE IS

Figure 58. Aft-Mounted Prop-Fan Vertical Tail Pressure Profiles: Strip 3

Figure 59. Aft-Mounted Prop-Fan Vertical Tail Pressure Profiles: Strip 4

Figure 60, strut spanwise load distribution, shows that the propeller slipstream clearly increases the upward load on the strut, which, to some extent, contributes to thrust recovery. This force, however, is very small due to the limited strut area. Because loading the strut serves no useful purpose, the strut could be twisted and pitched down to uniformly eliminate the span load in the presence of the slipstream. The load increment of the slipstream would probably remain unaffected as would the thrust recovery and the strut drag would be reduced.

Figure 60. Aft-Mounted Prop-Fan Effect of Slipstream on Strut Loading

7.4 DRAG AND THRUST RECOVERY

Figure 61 shows a plot of induced drag of the clean wing versus C_L . The lift and drag increments due to the slipstream were calculated by integration of the surface pressures and are shown as a thrust recovery vector. Computed at $a = 0^{\circ}$, this vector is

$$\Delta C_L = 0.017$$

 $\Delta C_D = 0.8$ drag counts.

Considered at constant C_L , an equivalent three counts of drag reduction could be interpreted as thrust recovery. However, the uncertainties in the above calculations are sufficient to offset any gain attributed to thrust recovery.

Figure 61. Aft-Mounted Prop-Fan Effect of Slipstream on Induced Drag

7.5 ASSESSMENT

In the absence of the wing-slipstream interference problem, there is little aerodynamic difference between the aft-mounted prop-fan and an equivalent turbofan configuration. Therefore, only airplane size and power plant characteristics for a given mission determine the difference in operating economics between the two airplanes.

The aft-mounted prop-fan requires relatively long struts for the propeller to clear the side of the body, so a higher incentive exists to optimize these struts for minimum drag and maximum thrust recovery. The present analysis shows the type and extent of strut loading caused by the prop slipstream and the interference effects between the various components involved. Proper loading of the strut and careful contouring of its leading edge should enhance thrust recovery without incurring drag penalties.

8.0 REFERENCES

- 1. Energy Consumption Characteristics of Transports Using the Prop-Fan Concept. NASA CR-137937, October 1976.
- 2. Rubbert, P.E. et al.; A General Method for Determining the Aerodynamic Characteristics of Fan-in-Wing Configurations. Technical Report 67-61A, USAAVLABS, 1967.
- 3. Geller, E.W. and Bailey, D.C.; TEA 236, Subsonic Wing Design and Analysis Program. Boeing Document D6-29337, 1968.
- 4. Rohrback, Carl; A Report on the Aerodynamic Design and Wind Tunnel Test of a Prop-Fan Model. AIAA Paper No. 76-667, July 1976.
- 5. Lundry, J.L.; The Calculation of Lift and Induced Drag from a Curve-Fitting of Sparse Span Loading Points. Boeing Document D6-40274 TN, August 1972.

APPENDIX A

BASELINE AND MODIFIED WING GEOMETRY

Definitions of the baseline and modified cruise wing are given in the following pages. Figure A-1 gives the planform definition which is common to both wings. The wing has the following reference quantities:

Area, m^2 (ft ²)	260.8 (2807)
Aspect ratio	10
Taper ratio	0.353
C/4 sweep, deg	30
MAC, m (in)	5.496 (216.37)
Span, m (in)	51.066 (2010.49)

Each of the two wings is defined at 16 wing buttock lines, including one on each side of the nacelle.

Figure A-1. Wing Planform Dimensions

MBL: 2.7686 m (9.0833 FT) 7 = .1084

BASELINE WING		MODIFIED WING	
X	Z	X	Z
25,714227	3.05/153	25,719227	3.052120
25.469891	3,906314	25,470049	3,899554
25.0958A3	3,980513	25.040084	3,470905
24,701932	4.059131	24,702110	4,040687
24,113495	4.177095	2u,113693	4,160154
25,525058	4,295674	23,525259	4,271640
22,440612	4.400045	22,900711	4.373733
22,355173	4.496513	22,35,273	4,468338
21,764725	4,586399	21.709824	4,552925
21,161269	4,066473	21,181388	4,62998
20.590856	4.754596	20,590957	4,695828
20,004418	4,791426	20,004517	4,751019
19,415981	4,836274	19,416080	4,794746
16.037519	4,866086 4,878393	18,837618 18,259209	4,824557
18,239110 17,740434	4.870072	17.740432	4,032204
17.241761	4.839536	17.201756	4,005365
16.910540	4.809508	10.910538	4.776215
16,615023	4.772312	16,015021	4.744049
16.354007	4.728383	16.359005	4.703603
16.134948	0.677306	10,134945	4.054769
15,961662	4.598637	15,401660	4.579422
15,832206	4,496833	15,032206	4,482493
15,759501	4.364234	15.759499	4.351342
15,745737	4.207303	15,728649	4,241906
15,754501	4,170462	15,784946	4,154094
15.432206	4,001628	15,836743	4.063622
15,901062	5.951200	15,901000	3,955436
16,139968	3.837074	16,139965	3,844160
16,359007	3,754727	16,354005	3,763510
15,015023	5.079629	16,015023	3,089642
16,710540	3,609868	16,910540	3,021150
17.241/61	3,548575 3,483786	17,241759	3,561113
17,740454	3,482386 3,445673	17.740432 18.239207	3,490256 3,46027c
18,234110 18,437519	5.421078	10,437618	3.430485
19,415981	3,413376	19.410080	3,427500
20.004416	3.424362	20.004517	3,437557
20.590858	5.456429	20.540957	3.464364
21,101269	5.517024	21.161368	3.527263
21,764725	3,000455	21.769624	3.004172
22,355173	5.041481	22,353273	3,094281
22.940612	3,775761	22,440711	5.741529
23,525058	3.440128	23,525,259	5.444435
24,113495	3.577739	24,113096	3,480556
24,701932	3.845192	24,702130	3,000000
25,045865	3.866794	25.092084	3,865606
25,464891	3,831647	25.470089	3.425369
25,714227	3.797417	25.714227	3,792083

WBL: 4.1786 m (13.7092 FT) η = .1637

BASELINE WING		MODIFIED WING	
X	Z	X .	Z
25.714227	4.046955	25,714227	4.002755
25,441926	4.144831	25,492106	4,135700
25,150475	4.214737	25.15115n	4.205046
24.791839	4,287256	24.792021	4.254871
24.255409	4,393529	24.255541	4.390094
23./16479	4,495015	25.714160	4.503843
25,160186	4.568094	21,180276	4.594264
22,050004	4.012040	22.654755	4.05554
22,118760	4.746030	22,116670	4.760730
21,582350	4.612642	21,582440	4,427575
21.044101	4.408400	21.044191	4.002461
20,509490	4,914525	20,509579	4.426796
19.473059	4.949525	19,973149	4,459721
19,445721	4.471574 4.976265	19,445410	4,476175
14,400199	4.967814	18,90025A	4,461757
17.440995	4.434255	1#,445595 17,440493	4,457697
17.089048	4.909845	17,564046	4.904811
17,420197	4.075105	17,420195	4,006952
17,160259	4.854555	17.100256	4.624311
16.400597	4.707566	14.440595	4.752205
10.424032	4.717245	10,524030	4.71465)
16,700017	4.026593	16,700015	4.028645
16,039736	4,513540	10.039734	4.519141
10,02/189	453656	16.62/187	4.437090
10,039750	4.53n27b	10.059734	4.356769
10.700017	4.239875	10.700015	4.205144
1n.504032	4,142001	10.024030	4,172775
10,400547	4.045158	19,940545	4.074557
17.10259	3,973747	17.15n25n	4.008964
17,420197	3,405924	17.420195	3,943974
17,059048	3,040930 5,746214	17,664046	5,882575 1 827112
17,990995 14,445597	1,734322	17.440943 18.445595	3,827332 3,765547
12.400199	5.707099	445004	3.727624
19.445721	3.000320	19,445810	3.049664
19.475059	3.079397	19.975149	3.085400
27.507490	3.009600	20,504579	1.000151
21.044101	5.718625	21,044141	5.709901
21.5m2350	3.773065	21,542440	3.751476
22.110740	5.848972	22.114470	3.420067
22.050764	3,933625	22.05u755	3,910135
23,1h0186	4.014073	25.180276	3.400440
23,715979	4,078432	23.714166	4.054070
24,255409	4,110412	24,255591	4,095911
24,791459	4.124750 4.111710	24,192021 35,151155	4,110107
25,150975	4.111/10	25,151156 25,492108	4.162052
25.491926 25.719227	4.041040	25,714227	4,028130
670117661		67,117661	4 6 45 41 30

WBL: 5.8169 m (19.0842 FT) 7 = .2278

BASELINE WING		MODIFIE	MODIFIED WING	
X	Z	X	Z	
25.714227	4.575522	25.714227	4.460109	
25,51/531	4.421977	25,517693	4,492497	
25.214988	4.480495	25,215149	4,5307/6	
24.690308	4,552327	24.696470	4.574997	
24.420500	4.045016	24,420467	4.030619	
25. 144304	4.751125	23,944465	4.655800	
25.471529	4.006601	23,471609	4.731471	
22,496534	4.413670	55.946#1#	4.750703	
22.524305	4.931514	52.52444h	4.793827	
22.440564	4.982484	22.048444	4.614739	
21,570744	5,024052	21,570828	4.426905	
21,090500	5.057129	21.096439	4.431500	
20,020354	5,001110	20.620437	4.52761/	
20.152423	5.044144	20.152502	4.014053	
14.564354	5.094354	19,008433	4.747219	
19.204962	5.081384	19,264960	4.752681	
18.4015/0	5.052929	18,861569	4.704113	
14.595038	5.020169	18,593636	4.005077	
14,355072	4,994674	18,455070	. 4,625064	
18,147407	4,957921	18,147485	4.581990	
17,970317	4.415550	17,970315	4.535204	
17.020064	4,855100	17.420002	4.475494	
17.721344	4,77430H	17,721,541	4,401988	
17.052529	4 . 061250	17.002527	4.527207	
11,051346	4.505264	17,651393	4,270243	
17,662529	4,553272	17,062527	4.225142	
17,721344	4,440705	17,721341	4,154951	
17.827004	4,505705	17.620062	4,092522	
17,970317	4,265942 4 . 2242 3 7	17.970315	4,036838	
18,147487	4.175353	1 4, 147465 1 4,3 55070	3,498072	
18.355072	4.126720	14,593636	3.965083 3.936413	
18.593036	4.063961	18,861569	3.914732	
19.264902	4.057870	19.264960	1.490644	
14,66354	4.010504	19,004433	3,444524	
20.152425	3.443044	20,152502	3.402015	
20.629358	3.788501	20.620437	1,414516	
21.040350	3.497744	21.096439	5.948044	
21.570748	4.023204	21.570828	3.490452	
22.044364	4.070571	55.048444	4.052260	
22,524306	4.157759	22.524446	4.131956	
22, 190334	4.214654	22,996414	4.280010	
23,471529	4.549445	53,471009	4,505417	
23,944304	4,355335	23,444465	4.380000	
24,420346	4.394926	24,420467	4.43444	
24,590308	4.011751	24,640470	4.401424	
25.21498	4.546541	25,215149	4.457502	
25,517531	4.501524	25,51/693	4.415817	
25.714227	4,520175	25,717227	4.410161	

BASELI	NE WING	MODIFIED	WING
X	Z	Χ .	Z
25.714227	4.054121	25.717227	4.797032
25.543137	4.594123	25,545277	4.041405
25,279001	4.759050	25,279141	4.040044
25,000778	4,517397	25.000914	4. 13.349
24,505204	4.040502	24,565344	4. +62752
24.109630	4,966235	24,164770	5.013419
23.750873	5.025109	23.150943	5.031104
23.342004	5.075301	25,542075	5,039005
22,929952	5,116948	22.930021	5.030509
22,514376	5.152325	22.514447	5.051043
22,04/395	5.179~30	22,09/465	5,015159
21,083230	5.199931	51.043549	4.445594
21,207656	5,212711	21.267725	4,471557
50,424150	5,216715	50.454145	4,425414
20,430509	5,210424	20,430577	4.571154
20.064327	5,194954	20.064325	4.617800
19,732146	5.167605	19,732144	4.752925
19,440227	5,143014	19,448225	4.700479
19,269947	5.114103	19.259945	4.051511
19,100715	5.vä1207	19,1 5713	4,602165
18.954037	5.043605	14.454034	4.544300
18,825097	4,445059	18,020094	4.482310
14,730070	4,430145	14.730664	4.419654
14,685322	4.444913	14,005320	4.305462
14,075002	4.786871	19,075000	4,559550
14.665322	4.725250	14.002.550	4.502927
18,730e70	4.055001	14.7300nm	4.647522
13,020097	4,564549	10.020094	4.195710
18.454037	4.524720	14,454034	4.102641
19,104715	4.462727	19,100713	4.143742
10.284947	4.441781	19,24945	4.151523
19,498227	4,404565	19,498225	4.109#21
19,732146	4.3/1749	19.732144	4.100715
20.064327	4.530419	20.004325 20.47522	4.196079
20,430509	4,514630	20,430577	4,099,19
20,657126	4.300801	20,459195 31,267725	4.111167
21,267656	4.297605	21,00723	4.126120
21,003230	4,305987	72.047465	4,153449
22,09/395	4,327944	22.514447	4,169400
22,514578	4.566977	22,930021	0.241649
22,929952	4.426505	23.342075	4,311203
23,342004 23,755873	4,495944 4.567840	23.750043	4,480075
24.167630	4.05/07V 4.03223b	24.167770	4.500410
24,167630 24,167630	4.032230	24.585344	3.044053
25.000778	4.694753	25.000918	1.793#5c
25.279001	4.020672	25,279141	9.730490
25.545137	4.040203	25.543277	4.747200
25,719227	4.010350	25,719227	4.744410
		-	•

WBL:	8.3820 m	(27.5000 FT)	η	•	.3283
------	----------	--------------	---	---	-------

BASELINE WING		MODIFIED WING	
X	Z	X	· Z
25,719227	4.811735	25.714227	4,553132
25,557622	4,855914	25,551752	4.912020
25,315215	4.413016	. 25.315344	4.960457
25.054479	4,407350	25.00008	5.047257
24,678443	5.030776	24.070622	5,115547
24.297104	5,099246	24,297254	5,107622
23,916304	5,148725	23,910367	5.205453
23,55/563	5,189370	23,53/626	5.232055
23,159408	5,221933	23.159469	5.246446
22,170019	5.246412	22,770082	5.253640
22,395337	5,267654	22,195404	5,251869
22.015244	5,280718	22.015308	5.242204
21,034856	5.287157	71,053919	5.224061
21,250934	5,286057	21.258995	5,196273
20.871081	5.276068	20.871144	5,159840
20.547871	5,259205	20.5478n8	5,116500
20.224661	5,232486	20,224659	5.002307
20.009985	5,200971 5.101743	26,004963	5,020567
19,416840 14,052516	5.151079	19,015836	4.973654
19.510503	5.110045	19.514563	4.671000
19.194983	5.071059	19,344480	4.811349
19.411076	5.015443	19.311109	4.743544
19.201965	4.943191	19.203905	4.084310
19.255034	4.488588	19.255031	4.048152
19.263970	4.737359	19.203970	4.609158
19.311193	4.769140	19.511100	4.546663
19.305.94	4.715523	19.345168	4.570555
19.510402	4.004547	19,510402	4.464723
19.652776	4,625955	14.052776	4.457751
19.014046	4.592061	19,619046	4.413005
20.010006	4.561622	20.010013	4.192092
20.224661	4.534550	20.224661	4.372315
20.547671	4,505317	20,547871	4,350583
20.071081	4,480461	20.871144	u,336118
21.255934	4,474716	21,258995	4.324031
21.033850	4,472475	51,033422	4,324955
22.015244	4,480344	72,015306	4.352270
22.595557	4,500301	22,395404	4,551114
22.776019	4,530367	22,1700H2	0,300811
23,159408	4,569871	25,159471	0,441759
23.537563	4.05482	23,337626	4,511751
25.918304 24.297104	4,124541	23,910307	9,590959
24.070493	4,786 <u>2</u> 91 4,837514	24,297754	4.009244
25.054679	4.654857	24,676n20	4,739645
25.315215	4.641670	25,00000	4.767547
25,557622	4.807255	25.315544	4.805637
25.714227	4,171126	25,557752	4.M14351 4.E11291
		25.714227	-1-11641

WBL: 10.1600 m (33.3333 FT) 7 = .3979

(DIMENSIONS IN METERS)

BASELINE WING		MODIFIED WING	
X	Z	X .	Z
20.040189	5,042913	26.046189	4.559948
25,904198	5.084458	25.404312	4.724806
25,691214	5,13/396	25,691325	4.796348
25,466868	5.145809	25,460980	4,863170
25,131771	5,246754	25,131883	4,950396
24.796674	5,295342	24,796786	5,028143
24.46.5847	5,333162	24,465903	5.098324
24,129319	5,362242	24,129375	5,161519
23.747062	5,583900	23.797118	5,217443
75,401965 21 125712	5,399959	23,462018	5,268443
23,125732 22,791771	5,409824 5,409824	23,125788 22,791824	5,313142
22,450673		72,450727	5,351958
22.127256	5,413880 5,407172	22.127309	5,384848
21,700479	5.395355	21.780532	5.410972 5.430830
21,502497	5.375275	21,502497	5.440053
21.218517	5.349814	21,218515	5.440644
21.024897	5,328001	21,029804	5.435362
20.061950	5.303203	20.861947	5.424500
20,715813	5.275600	20,715613	5.408605
20,591069	5,244349	20.591087	5. 586415
20.489537	5.206573	20.484537	5.355021
20.415816	5,169350	20,415814	5.314035
20.374412	5.100970	20.37,4409	5,236169
20,500576	5.056754	20.366573	5.203274
20.374412	5.015367	20,574409	5,159246
20,415516	4.950005	20.415814	5.098713
20,489537	4,911908	20.464537	5.052197
20.591089	4,675706	20,591089	5.004559
20.715813	4.845764	20.715813	4,962345
20.861950 21.029897	4.414651 4.796838	20.861947 21.029894	4,922091
21.210517	4.176645	21,210515	4,862294
21.502497	4.754923	21.502494	4.842807 4.791479
21.780479	4.759947	21.760532	4.747133
22,12/256	4./30650	22,127309	4.705542
22,450073	4.729940	22,450727	4.070621
22.791771	4.737204	22.791826	4.647123
25.125732	4.754646	23.125780	4,030170
25.461965	4.785553	25,462021	4.041541
25,747002	4.052305	25.797115	4,006671
24,124519	4.590945	24,124375	4.706644
24,463847	4.956371	24.465903	4.754405
24.196674	5.019093	24,740786	4.793800
25,131771	5.068509	25,131683	4,809866
25,40000	5.08/422	25,466480	4,785145
25,691214	5.075763	25,691325	4,744725
25,904148	5.042215	25,404309	4.084819
20.046189	5.00667	26,046189	4.633227

ORIGINAL PAGE IS

WBL: 10.7317 m (35.2088 FT) 7 - .4203

BASELI	NE WING	MODIFIE	D WING
X	Ž	X	Z
24,261434	5.101470	20,221433	4.705616
20.003947	5.143212	26,004106	4,757215
25,077642	5,194314	25.877451	4, 424367
25,060691	5,241149	25,000800	4,007670
25,330334	5,299739	25,150448	4.970644
25,011988	5.345800	24,012047	5.044540
24.004830	5,381109	24.064544	5.117242
\$4.300034	5,407969	24.3000AE	5,174007
24,044431	5,427547	24.044455	5,229037
25.720080	5,441655	23,720133	5.279619
23,394629	5,449814	23,3940112	5.324753
23.071377	5,453118	25.071430	5,364940
.22.741025	5,451171	22,747078	5,400000
22,425171	5,443557	22,426274	5,429052
55.044175	5,429193	22.098375	5,452641
21.425446	5.411052 5.380005	21.073440 21.548572	5,406105 5,4/2328
21,300002	5.304604	21.100001	5.471203
21.203442	5.340552	21.203440	404404
21,061992	5,313729	21,061490	5.453430
20.441267	5.283389	20,441205	5,434310
20.042972	5.247125	20,842970	5.408084
20.771615	5,202920	20,771613	5.370544
20,731534	5.140193	20,731536	5.271040
20.723951	5.104067	20.723949	5.271147
20,731536	5,064755	20,731536	5,246901
20.771015	5,008100	2n,771a13	5,100000
50.405015	4.465171	20.842970	5,140717
20.441207	4.435044	20,441265	5,102162
51.001005	4.403444	21,051490	5,001143
21,203002	4,879641	21,205440	5,422050
21.3noo62	4.856234	21,300001	4.44446
21,540574	u, 439425	21.546572	4.440004
21.323448	4.819216	21,025446	4,097741
22,098522	4.805040	22,046375	4,653449
22,420171	4.796589 4.795440	52,425524	4.610526
22.747025 23.071377	4.005152	22,74707# 23,071430	u./70907 u./513^2
23.04429	4.620060	23,594662	u.736874
23.720080	4.649850	23,720153	4./36568
24.044431	4.095125	24.04.44.5	4.753812
24.300034	4,952097	24,30000	4.784433
24.004830	5.010171	24.064869	4.721755
25.011966	5.074026	25.012047	4.450744
24,559559	5.127114	25.350440	4.05:50/
25,000041	5,146200	25.650800	4.524457
25,077842	5.134846	25, 677951	4,765021
20,055497	5.101 #68	7: ,3#410#	4,725471
20,221434	5,000000	20.221433	4,004700

WBL: 12.3784 m (40.6050 FT)

BASELINE WING MODIFI		MODIFIED	WING
X	Z	X	Z
S. Miner	h 33-37a	2. 42.44.4	
59,432106	5,2203/0	26,4348UM	4,nn9276
26,805764	5,264934	25,805347	4,951929
26.014095	5,512606	26.01V998	4,466352
76,4001R2	5.350262	26,400285	5,037229
26,10040b	5,41350# 6,4510#2	26,103510 25,784114	5.102629
25,794633	5,4530 <i>62</i> 5,455610	25,794/36	5,157829
25,490932	5.510157	25,440983	5.205742
25,185076	5.527954	25,155726	5.247198
24,662492	5,540653	20,082543	2.545102
24,576718	5.547612	24,570766	5.312365
24,269407		24,269958	5,337536
23,465169	5.550440 5.548171	25,9e5220	5,35e467
23,059395		23.059845	5,374861
25,550605	5,540627 5,520°37	23,350853	5,386134
23,047846		23,047896	5.592254
22.160115	5,509343 5,465569	22,780713	5,392047
22.529584	5.405354	22,524582	5. 185683
22,357469	5.442574	22.357467 22.464217	5.377246
55,204514	5.417242	22.204217 22.4735~8	5.364937
22.070870	5.380762	22,070608 457656	5,349440
21.957060	5,354767	21,864343	5,326254
21.364395 21.797125	5.513444	21.79/123	5,298309
·	5.200449	21,759341	5,260307
21.754343 21.754191	5.221039	21.752189	5,211954
21.759344	5.164490	21.759341	5.152254 5.162149
21,797125	5,131650	21,797123	. *
21,004395	5,092237	21, 224595	5.1103ro 5.175447
21,95706	5,000424	21,457058	5.045906
22.070376	5.034744	22, 170668	5.012140
55.504519	5.012321	22,204217	4.952761
27.35/409	4.992470	22.357407	4,454556
22,524544	4.475133	59,754565	4.927783
22,700715	4.450007	22,780713	4.044769
23.047646	4.445745	23.047846	4.007172
23,350803	4.430203	23,356853	4.041570
25.054345	4.930135	23.654445	4.625655
23,907109	4.945253	23.465220	4.012504
24.204907	4,459461	34.207958	4.869811
24.570718	4.907714	24,5/0766	4.414504
24.063492	5.330344	24.042543	4.541663
25.1656/6	5,003099	25.155726	0.074241
25,490932	5.144203	2ี่รั้งจบิจัยรั้	4.415277
25.744633	5.202011	25,794736	4.945495
25.100406	5.249050	20,100510	4.470975
24.446162	5.267610	25,405285	4.905212
20,010645	5,257047	26,51v998	4.939401
24.005244	5.220245	20,005347	4.595236
24,934689	5.193542	- 2m,434808	4,055510

MBL: 14.0211 m (46.0008 FT) 7 = .5491

RASE	LINE WING	MODIFIED WING	
X	2	X	Z
^	4		• · ₋
27.040140	5.350769	27,048159	5.056805
27.52644h	5.180640	27.526542	5,094979
21,545904	5.431011	27.344001	5,139937
27,151627	5.471359	27,151724	5.181456
20.664428	5.521343	50.364555	5,233642
20.577250	5.500357	24,577320	5,274901
20.29:416	5,590025	20.292026	5,300901
20.005207	5.012298	20.005314	5,331558
25.720502	5,628354	25.720550	5,349807
25,433303	5,639640	25,433351	5,363164
25.145131	5.045803	25,145179	5,371322
24,656906	5.647709	24,656954	5,375027
24.571708	5,045105	24,5/1755	5.374039
24,289377	5,037692	24,29424	5.368637
23.797310	5.024270	23,997356	5,355445
23.753922	5,60/728	23.753920	5,340400
23,510533	5,56512/	23,510542	5,318814
23,3488/5	5,500037	23,340873 23,204933	5,100302
23,204935	5,544543	25.079665	5,2791Au 5,255961
25,079me7	5.520850	22,972789	5,720305
22,472/90 22,685755	5,494168	72.005753	5.143907
22,022571	5,462441 5,462441	55,455569	5,157130
22.707085	5,423950 5.574698	22,787085	5.120820
22.704307	5.536003	22,760505	5.077289
22.767086	5,514236	22,767053	5.140952
22.622571	5.255120	22,422569	5,003603
22.885755	5.215695	22.005753	4.404305
22.972790	5.164755	22,412769	4.4350/7
23.079687	5,165650	23.074685	4,907946
25,204935	5.144942	25,204953	4,685078
23.348+75	5.120714	23,548873	0.366510
25.513553	5,110835	23,510532	4.444351
23,753922	5,093989	25,753920	. 4.030752
54,44/310	5.052465	25,447358	4.617602
74.209317	5,075970	54.59454	4.409430
24,571706	5.476267	24,571755	4.608213
24.455906	5.053300	24,550958	4,415740
25.145131	5.098 <u>8</u> 54	25,145179	4,527645
25,433303	5,125503	25,433351	4,052416
25.720502	5.165555	25,720550	4.690138
25.105207	5,215893	20,005314	4,437828
26.291976	5.2/2548	2n,292020	4,991405
26,577230 26,004428	5.327167 5.470275	26,577326 26,804525	5,04 3444 5,04 3444
21.151.27	5,379975	27,151724	5.084883
27.345904	5,369025 5,379241	27.344061	5.101073 5.090135
27.525446	5.350594	27.526542	5.000057
27.040140	5.520170	27.048139	5.024461
	34360114	£ ; § 6 ; 3 -	78463448

WBL: 15.6657 m (51.3967 FT) 7) = .6135

BASELINE WING		MODIFIED WING	
X	` Z	X	Z
26.301471	5.475161	28,501470	5,177551
28.247647	5.500362	26,247738	5,210414
23,970913	5.549355	28,077003	5.251108
27,097072	5.580458	27,897163	5,288251
27,020449	5.032202	27,626540	5,334527
27,554827	5,067655	27,359917	5,370704
27.093025	5.694440	27.095070	5.398295
26,424858	5.714460	50.454405	5,419239
20,558512	5.720755	26,558556	5,434523
50.584889	5,730639	26,289933	5,445436
20,020356	5,743794	26.020400	5.451737
25,752643	5.745091	25.752666	5,454173
25.484021	5.742159	25,464065	5,452474
25,214951	5,734757	25,219995	5,446269
24,940775	5,721815	24,940819	5,434650
24,719129	5.706063	24,719127	5,420061
24,441483	5.064665	24,491481	5,399884
24.340280	5.eno720	24.340276	5,382750
24.205650	5.040605	24,205648	5,363267
24,068503	5.724407	74_060501	5.341610
23,460521	5,594555	23,466519	5.316406
23,907114	5.570096	23,907113	5.285049
23,846017	5,534467	23,848016	5,250733
23.814627	5,466947	23.814625	5,212671
23,808543	5,454967	25,806542 25,414825	5,179267
23.814828	5,423906	25.64001b	5,151751 5,110502
25.407114	5.57ñ662 5.505.56	23,907113	5.070700
23,466521	5,345153	23,966519	5,046393
24.088503	5,316562 5,296478	24,068501	5.024031
24,205650	5,277505	24,205648	5.004412
24.540280	5.260943	24,340276	4.987011
24,441483	5.246538	190100.05	4,971881
24.719129	5.231371	24./19127	4,455508
24,940775	5,221170	24,946819	4,944254
25,214951	5,215650	25,219995	4.937360
25.464021	5.210402	25,464065	4,955810
25.152643	5.223379	25,752688	4.942203
26.020356	5.238247	26,020400	4.955468
26,244889	5,263412	26,289933	4.478802
20.550512	5,300760	26,558556	5,014107
2n.82465A	5.547786	26.824902	5,059052
27,093025	5,403492	27.093070	5.109703
27,554827	5.451763	27.359917	5,159157
27,62444	5.492499	27.623540	5,196918
27,697072	5,510435	27.497163	5,215460
28.070913	5,501355	28.u77003	5.205724
28,247647	5,474943	28,24773F	5,174352
28,301471	5,446770	24,501470	5,149377

ORIGINAL PAGE IS

BASELINE WING		MODIFIED WING	
X	Z	X	Z
24,074801	5.599554	29,074601	5,2' 3054
28.966849	5.030075	24,968934	5.3 3749
24,404921	5.657700	26,410006	5.3.1022
28.642517	5,701513	28,642601	5,394753
24.392470	5.743:21	24,39255	5.430461
24,142424	5.774446	28.142508	5,466764
27,694072	5.790855	27.894114	5,443240
21.044449	5.410021	27.544491	5,511601
27,396521	5,029155	27,340563	5.524701
21.140474	5,037632	27,140516	5,533830
20.845580	5.641766	26,895621	5,556e07
20.040361	5.842413	20.040422	5,540073
20.340334	5.039153	26,396375	5.517600
26.150525	5.631821	20,154500	5,531000
25.090240	5.619354	25.896281	5,519497
25.004330	5.804346	25.684335	5,505333
25,472432	5.784245	25,472431	5.465945
25,331685	5.707403	25.331684	5.269600
25,200365	5.744620	25,206364	5.451251
25,497319	5.727464	25,097314	5,451110
25,004251	5.794941	25.004249	5.407273
24,426474	5.077750	24,926473	5,363543
24.473464	5,644979	24,075462	5,351250
74.442568	5.003196	24,542567	5,309257
24.030720	5,571931	24.836716	5.279647
20.442570	5,543735	24.642567	5.250043
21,073404	5.502079	20.n7 <u>3</u> 4n2	5.212077
24.454474	5,471612	24,425473	5.100701
25.004251	5,447409	25,004249	5,159434
25,197519	5,427319	25,04731k	5,159730
25,206365	5.410167	25,206364	5,119762
25,331665	5.395177	25.351664	5.104145
25,472432	5.382240	25.4/2#51	5.090701
25,084336	5,368753	25,054335	5.076333
25.490240	5,359800	\$2.896581	5,000041
26,150525	5,355342	20,150566	5.061001
26, 349534	5.150530	26.396375	5.001220
26.646361	5,365452	50.00055	5.067016
26.4955#0	5,577,640	50.642051	5,000021
27,146474	5.401201	27,140516	2.105350
27, 396521	5.435977	27.396563	5,135683
27,044449	5,479600	27,844491	5.178085
27.094072	5.520590	27,694114	5,225798
28,142424	5,5/0339	28,142508	5,272603
28,392470	5,614824	28,392554	5,310520
24.042517	5.631842	28,642601	5,327351
24,804921	5,623506	24.610006	5,318424
29,968849	5,599292	28,968934	5,2940#2
29,074801	5,57336#	29,074801	5.267596

WBL: 18.9550 m (62.1883 FT) T = .7424

BASELINE WING		MODIFIED WING	
X	Z	X	Z
24.768132	5.725446	29,786132	5.404400
29.040051	5.751789	29.690129	5.455904
29.542930		29,545008	5.409805
29.341962		24.388040	5.500352
29,150491	5.455844	29,150509	5,537704
34.425020		28,925098	5.500443
24,045119	5,903269	24,095157	5,587954
24,464040	5.918762	24,464078	5.003890
26,234531	5,429555	28.244569	5,615138
24.003060	5,93e524	26,003098	5.622710
27.770804	5,939777	27,770842	5.626422
27,549118	5.434756	27,540156	5,020971
27.300047	5.436147	27,300085	5.024005
27,081099	5,928866	27,081137	5,617394
26,84570	5-916892	26.045743	5.000095
20.04954]		26.949542	5.592500
26.45 1341	5,853801	26.453580	5.574297
2n,323u91	- · · · · · · · · · · · · · · · · · · ·	56°353684	5,558950
26,207081	5.850636	26,207079	5,541756
26,160130	5.431522	26,100134	5,523025
26.014981		56.01998u	5,500950
25,444#3		25,949833	5,4/4251
25.49491		25,699904	5,440011
25,87031		25,470308	5.414233
55,404890		75.864644	5.364044
25.67031		25.670308	5,358129
25,49091		25.040909	5,320271
25,44943		25,949433	5,299164
20,01498		26,019980	5.274664
26,10015		26,106134	5.254600
26,20708		26,20/079	5.239037
26.32309		26,323089	5-225106
20,45338	_	20,453360 3	5,213156
20.04954		26.649542	5,200609
26,64570		26.845743	5,192315
27.08109	—	27.0M1137	5.187894
27,50564		27,508665	5.188624
27,54011		27.540150 27.77J842	5.194571
27,77480	· · · · · · · · · · · · · · · · · · ·	28.003098	5,207063
28,00306 38 31451		24.234569	5.228135
28.23453 28.46404		54.40401H	5,259100 5,298541
28.04511		24,095157	5,342831
26,92502	·	24,925098	5.380405
29,15049		24,150569	5.422000
29, 16796		29.380040	5.438624
29,54293	5.745662	29,545008	5.431040
29,69005		29.090129	5,408643
29.76013		29.760132	5.384550
	- ▼ ·	•	

WBL: 20.5997 m (67.5842 FT) T = .8068

BASELINE WING		NODIFIED WING		
X	Z	X	Z	
30,501463	5.648339	30,501463	5,522942	
30.411253	5.873503	30,411325	5,547850	
30.275939	5,904369	30,270011	5.578412	
30.155407	5.451060	30,133479	5,045689	
20,450512	5.964656	29.92058#	5,038805	
29.707617	5.989459	29,707689	5,063472	
29,490105	0.0076h4	29.496201	5.062544	
29.243631	P-0504na	29.203667	5.090177	
29.472540	6.029956	29.472576	5,705566	
24.859645	6.035617	28,854680	5.711643	
26.040029	6,037706	28,040064	5,714302	
24, 433855	6,037056	28,435690	5,714107	
28,220900	0.035141	24,220995	5,710730	
26,011073	6.025950	28.011706	5.704024	
27,795170	6,014851	27,795205	5,693128	
27,614750	6.001067	27.014749	5,680240	
27,434331	5,983359	27,434329	5,603131	
27.314496	5,968769	27.314495	5.646890	
21,207796	5,952652	27,207795	5,033040	
27,114952	5.435074	27,114951	5,015700	
27.035712	5.415714	27.035710	5,596200	
20.471194	5.093060	26,471192	5,572954	
26.90-357	5.000002	20.424355	5,550409	
26,690052	5.631694	20,440050	5,520791	
25.693072	5,805600	2n.893071	5,464947	
26,895654	5.763231	20.090050	5,260285	
20,924557	5.749031	25,924355	5,430271	
26.971194	5.724520	26,471192	5,410425	
27.035712	5.705003	27.035710	5,369704	
21,114952	5.069002	27,114951	5,572700	
27,207796	5.075430	27.207745	5.358610	
27.514496	5,603643	27.314495	3,540585	
27.434351	5.653644	27,434329	5,336147	
21,614750	5.043517	27.614749	5,325447	
27.795170	5.037247	27,795205	5,318560	
28,011575	5.034714	28.U11706	5.315311	
24.550466	5,036805	28,220995	5.310643	
28,433855	5.043597	28,453690	5.322719	
24,040029	5,056#25	28,040064	5,334753	
28.854645	5.676964	24.654080	5.354480	
29,072540	5.700346	29. 172576	5,38,5004	
24.203631	5,743406	29.283007	5,414377	
50.490105	5,784805	29,446201	5,400154	
29,707617	5.n25441"	29,707689	5,500458	
50.950215	5,058673	29,420584	5,533500	
30.155407	5,874659	30,133479	5.544795	
36,275959	5,067815	30,270011	5,543008	
30,411253	5,847940	30,411325	5,522960	
50,501463	5,426551	30,501463	5,501248	

WBL: 22.2 3 m (72.9800 FT) 7 = .8712

BASELI'VE WING		MODIFIED WING	
X	Z	·x	Z
51.214794	5,472731	31,214794	
31.132455	5,495217	31,132521	5,637265
31,008947	6.022755	31,409013	51059592
30.078852	6.046743	30,679916	5,686921
30,684533	6.075477	30.684599	5,71.0946 5,739891
30,496214	6.096735	30,490279	5.761450
30,297212	6.112099	30.297244	5.777101
.30,103555	6.123105	30,103255	5,786498
24,410550	0.130350	29,910582	5,796124
29,/1+231	0.134610	29.710263	5.800779
29,521253	6.135760	29,521285	5,002324
29,327592	6.134360	29.327624	5,001369
29,133273	6.130135	29,135305	5,797011
28,942247	6.123015	28,942279	5.740955
28,744635	6,111970	28.744067	5.780448
24,574958	6,099462	28.574956	5.768328
26,415260	6,082917	24.415279	5.752344
28,305901	0.069452	28,305400	5.739190
59.208512	0.054667	28,209510	5.724716
28,123766	h.u38657	28,123767	5.700952
28,051442	0.021100	24,051441	5.641911
27,492554	6.000714 6.076512	27,992552	5.671929
27,949603 27,925794	5.476513 5.445943	27,949602	5.647843
27,921248		27,925792	5,017061
27.425796	5.922825 5.902979	27,921247	5,594508
27.947803	5.672507	27,425792	5.574529
21.492554	5.050907	27,44462	5.544550
24.051442	5.435890	27,942552	5.522722
20.125/68	5.619844	28,051441	5,505500
24.268512	5.609652	25,123767	5,491334
24.305901	5.197877	28,208510	5,479250
28.415280	5,789340	28.305900	5,468757
20.579958	5.780899	28,415279 24 570554	5,459897
28.744635	5.775936	20,57956	5,450945
28,942247	5.774400	2A,144667 28,942279	5,445476
29,1332/3	5.776459	29,133305	5,443316
29.327592	5./83670	29.327624	5,445284
29.521253	5.795818	29.521285	5,451307
24,710231	5,814609	29,710203	5.462856
29,910550	5,841609	29.91,582	5,481154
30,103222	5.075361	30,103255	5,507248 5,540461
30.297212	5,912909	30,241244	5.577572
30,490214	5,950007	30,490279	5,014513
30,084533	5.980591	30,084549	5.045087
30.676852	5,796067	30.876918	5.660866
31,000947	5,989969	31,009013	5.654925
31,132455	5,972339	31,132521	5.037149
31,214794	5.455145	51.214794	5.017700

WBL: 23.8890 m (78.3758 FT) 7 = .9356

BASELINE WING		MODIFIED WING	
X	Z	X	· Z
31,420125	0.041124	31,428125	5.751647
\$1.053657	0.116951	31,053717	5.771345
31.741956	6.141076	31,742015	5.795345
31.624297	0.161820	31.624357	5.810204
31.448554	0.180290	31,448613	5,840925
31,272611	6.204010	31,272870	5.858919
31.090259	4.516514	31,090288	5.471727
30,922613	6,225207	30,922643	5.880797
30.745560	6.230757	30,748589	5,686650
30,572816	6,233602	30,572845	5,869811
30,390477	A.233751	30,390506	5.890311
30,221329	6.231703	30.821358	5,886617
30.045586	6,227129	30.045615	5.884452
29,672822	6,220079	29,872850	5,677783
29,094100	6.209509	29,694128	5,667644
24,545165	6,197737	29,545163	5.656277
34.346554	6.182475	50.746558	5.841449
29.297367	6.170135	29,297306	5,829365
29.204227	6,156682	29,204226	5.010219
29,132585	6,142194	29,132584	5.801906
24,467172	6,125467 2,142729	29,007171	5,780718
29.013914 28.975250	6,100309	29,013912 28,975249	5,768903 5,747604
28.453535	6,087025 6,080192	26.953534	5.721041
24,944425	6.039789	28,949423	5.700571
24,453537	5.022767	28,953534	5.083312
28,915256	5,495484	24.475249	5.050510
29.015914	5.977445	24,015915	5.651709
29,067172	5,962717	29,067171	5.022821
29,132555	5.950066	29.132584	5,010692
24,204227	5.940674	59.504556	5,600394
29.297307	5,932111	29,297306	5,591506
29.346229	5,925046	29 , 346228.	5,584202
29,545105	5.918261	29,545163	5,576944
\$0.044100	2.414658	29,694128	5,572818
29,672622	5,414000	29.872850	5,571714
50.045566	5.917074	30,045615	5,574173
30.221329	5.923742	30,221358	5,580291
30.590477	5,935211	30,390506	5,591205
30,572816	5,952658	30,572845	5,608083
30.740560	5,976620	30,748589	5,031605
30.922A13	6.007255	30,422643 31,098288	5,661545 5,695048
31,096259	5,041013	31.272870	5,720553
31,272811 31,446554	6,07464 5 6,074645	-31.448613	5,756583
31.024247	6,162521	31.024357	5,771693
31.741956	6.117476 6.112122	31.742015	5.700773
31.053057	6,19660	31.455717	5,751370
31,420125	5.074736	31,928125	5.734323
	San Line	•	* - *

WBL: 25.5332 m (83.7705 FT) \$\emptyset{\eta} = 1.0000

BASELINE WING		MODIFIED WING	
X.	Z .	X	Ž
32.041501	6.221464	32,641301	5.866040
32.574703	6.238616	32,574757	5.683132
32.474006	6.259397	32,474859	5.903860
32, 369581	0,276872.	32, 369634	5.921476
32,212410	6.297041	32,212463	5,941972
32,055238	6,311265	32,055291	5,956345
31.699132	6,320906	31,844159	5,966321
31.742227	6.327406	31,742254	5,473098
31,500388	6,331135	31,586414	5.977102
31.429216	6,332574	31.424242	5.978833
31,271512	6,331721	31,271538	5,974279
31.114874	6,329004	31,114899	5,475866
30,457702	6,324102	30,957728	5.971294
30,605194	6,317122	30,603220	5.964640
30.643359	6.307026	30.643385	5,954882
30.510163	6,296051	30,510162	5,944245
30, 370907	6.282012	30,370966	5,930571
50.286498	6,270797	30,288497 30,209725	5.419574
30,209726	6,256676 6,245729	30.141182	5,407736
30,141183 3û,V82683	6,231850	30,082662	5,895037
30,035052	6.21600U	30,035051	5.861568 5.86083
30.000475	6.197512	30.000473	5.047540
29, 481055	0.174410	29,481053	5.824656
29.97/378	0.156728	29,971377	5.806821
24, 481057	6.142444	29,961053	5,792205
30,000475	0.1194.53	30.000473	5.768937
311,035052	6,103876	\$0,035051	5.752972
30,062663	6,091515	30,082685	5.740425
30,141163	6,051499	30,141182	5,730292
30,209726	6,073268	30,209725	5,721733
50,288498	n.066315	30.288497	5.714479
30,376967	6.060721	30,376966	5.708613
30,510163	6,055633	30,510162	5.703040
30.045359	6.053289	30,643385	5.700221
30, MU3194	6,053742	30.03220 30.457728	5.700163
50,45/702	6.05717H	31,114899	5,703128
31.114874 31.271512	6,063785 6,074574	51,271538	5,709236
31,429216	6.090477	31.429242	5.735001
31,500388	6.112002	31,580414	5.756007
31.742227	6,159121	31.742254	5.702734
31,044132	6,169090	31,694159	5,812492
32,055238	0.144142	32.055291	5.842552
32,212410	6,224414	32,212403	5,868009
32,364581	0.238856	32,309634	5,602476
52.414806	6.254249	32,474859	5.878611
\$2,574703	6,22101V	32,574757	5,465542
32,041301	6.206305	32,641301	5,850946