CIS507: Design & Analysis of Algorithms Quiz 6, Spring 2012 (VERSION WITH ANSWERS)

Duration: 20 minutes Total weight: 5%

Student N	Name:		
Student I	D:		
Problem	Points Obtained	Points Possible	
1		1	
2		4	
Total		5	

Cheat list:

P: problems for which a polynomial time algorithm exists.

NP: problems which are polynomial time verifiable.

CoNP: problems which are complements of problems in NP.

NP-Hard: problems to which every problem in NP can be reduced in polynomial time.

CoNP-Hard: problems which are complements of NP-Hard problems.

 $NP-Complete=NP\cap NP-Hard$

CoNP-Complete: problems which are complements of NP-Complete problems. Equivalently: problems in CoNP to which every problem in CoNP can be reduced in polynomial time.

1 True/False (1 point)

- 1. (0.5 point) Suppose there exists a coNP complete problem L that is also in NP. Then $coNP \subseteq NP$.
- 2. (0.5 point) Suppose there exists a coNP complete problem L that is also in NP. Then $NP \subseteq coNP$.

ANSWER:

- 1. True. Consider arbitrary problem $L' \in coNP$. Since L is coNP Complete, then $L' \leq_p L$. And since L is in NP, then L' is also in NP.
- 2. True. Consider arbitrary problem $L'' \in NP$. Therefore problem "is $x \notin$ L''?" is in coNP. Since L is coNP - Complete, then "is $x \notin L''$?" $\leq_p L$. Therefore, "is $x \in L''$?" \leq_p "is $x \notin L$?". But we assumed L is in NP, so $x \notin L$?" is in coNP. Therefore, "is $x \in L''$?" is also coNP.

$\mathbf{2}$ Multiple Choice (4 points)

For each of the following, circle all (zero or more) correct answer(s). You will be graded 0.25 points on each choice.

o Stated 0.20 points on each energe.						
1.	(1.5 point) 3-SAT is: (a) P (d) NP-Hard	(b) NP (e) coNP-Hard	(c) CoNP (f) NP-Comple	te		
2.	2. (1.5 point) Consider the problem of determining, for a given boolean formula, whether every assignment to the variables satisfies it. The problem is:					
	(a) EXP (d) NP-Hard	(b) NP (e) coNP-Hard	(c) CoNP (f) CoNP-Comp	plete		
3.	(1 point) Showing a pX proves that X is:(a) P(b)	·	tion from 3-SAT P-Complete	to problem (d) NP-Hard		
		Complete, this implies EXP (c) P		(d) NP-Hard		
	TIVED.					

ANSWER:

- 1. (b), (d), (f): 3-SAT is NP-complete. So it is also NP, NP-Hard.
- 2. (a), (c), (e), (f): Tautology is the complimentary problem to Satisfiability, which is NP-complete, so Tautology is CoNP-complete, which also implies it is CoNP, CoNP-hard. EXP incompasses all of coNP.
- 3. (d) This only shows NP-hardness, since X is not NP.
- 4. (a), (b), (d): Definition of NP-complete implies NP and NP Hard. And $NP \subseteq EXP$.