Prática de Física dos Dispositivos Eletrônicos FGA0100

Laboratório-9

LED e Fotodiodo

FGA

Universidade de Brasília

Forward Biased

LED de Heteroestrutura (Maior Eficiência)

Fig. 7.1. Illustration of a double heterostructure consisting of a bulk or quantum well active region and two confinement layers. The *confinement* layers are frequently called *cladding* layers.

Light-Emitting Diodes (Cambridge Univ. Press)
www.LightEmittingDiodes.org

Comparação de LEDs Diagrama de Bandas de Energia

(a) Homojunction under forward bias

(b) Heterojunction under forward bias

Fig. 7.2. Free carrier distribution in (a) a homojunction and (b) a heterojunction under forward bias conditions. In homojunctions, carriers are distributed over the diffusion length. In heterojunctions, carriers are confined to the well region.

Light-Emitting Diodes (Cambridge Univ. Press) www.LightEmittingDiodes.org

Tipos de LEDs

Color	Wavelength [nm]	Voltage drop [ΔV]	Semiconductor material
Infrared	λ > 760	∆V < 1.63	Gallium arsenide (GaAs) Aluminium gallium arsenide (AlGaAs)
Red	610 < \(\lambda\) < 760	1.63 < ΔV < 2.03	Aluminium gallium arsenide (AlGaAs) Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP)
Orange	590 < λ < 610	2.03 < ΔV < 2.10	Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP)
Yellow	570 < λ < 590	2.10 < ΔV < 2.18	Gallium arsenide phosphide (GaAsP) Aluminium gallium indium phosphide (AlGaInP) Gallium(III) phosphide (GaP)
Green	500 < λ < 570	$1.9^{[63]} < \Delta V < 4.0$	Traditional green: Gallium(III) phosphide (GaP) Aluminium gallium indium phosphide (AlGaInP) Aluminium gallium phosphide (AlGaP) Pure green: Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN)

Blue	450 < λ < 500	2.48 < ΔV < 3.7	Zinc selenide (ZnSe) Indium gallium nitride (InGaN) Silicon carbide (SiC) as substrate Silicon (Si) as substrate—under development	
Violet	400 < λ < 450	$2.76 < \Delta V < 4.0$	Indium gallium nitride (InGaN)	
Purple	multiple types	2.48 < ΔV < 3.7	Dual blue/red LEDs, blue with red phosphor, or white with purple plastic	
Ultraviolet	λ < 400	3.1 < ΔV < 4.4	Diamond (235 nm) ^[64] Boron nitride (215 nm) ^{[65][66]} Aluminium nitride (AIN) (210 nm) ^[67] Aluminium gallium nitride (AIGaN) Aluminium gallium indium nitride (AIGaInN)—down to 210 nm ^[68]	
Pink	multiple types	ΔV ~ 3.3 ^[69]	Blue with one or two phosphor layers: yellow with red, orange or pink phosphor added afterwards, or white with pink pigment or dye. [70]	
White	Broad spectrum	$\Delta V = 3.5$	Blue/UV diode with yellow phosphor	

https://en.wikipedia.org/wiki/Light-emitting_diode_physics#Materials

Potência Radiante e Eficiência vs. Corrente em LEDs

Potência Radiante por Comprimento de Onda em LEDs

Poder de Iluminação por Comprimento de Onda em LEDs

Luminescência

Fluorescência e Fosforescência

Lâmpadas Fluorescentes (Nenhum Afterglow)

Jaleco Fosforescente (Afterglow dura muito tempo)

https://en.wikipedia.org/wiki/Phosphorescence https://en.wikipedia.org/wiki/Fluorescence https://en.wikipedia.org/wiki/Phosphor

Iluminação com LED Branco

LED InGaN (Azul)

Filme de YAG:Ce3+ (Yttrium Aluminium Garnet) Y₃Al₅O₁₂:Ce³⁺

Obs: *garnet* = granada

COMPARATIVO DE TECNOLOGIAS

EQUIVALÊNCIA				
VIDA ÚTIL	50000 Hs	8000 Hs	1200 Hs	
CONSUMO	5 W	10 W 50 W		
CUSTO EM 6 MESES (KW SP)	R\$ 5,58	R\$ 10,50	R\$ 52,40 3 meses Muito Alta	
DURABILIDADE (ciclo 12hs)	10 anos	18 meses		
EMISSÃO DE CALOR	MUITO BAIXA	MÉDIA		
ECOLOGICA	não contem mercurio contem mercúrio		não contem mercúrio	

Fotodiodo

Optoisolador ou Optocoplador

Fototransistor

Optoisolador ou Optocoplador (4N25)

Célula Fotovoltaica

Fotodiodos: Curvas I vs. V

$$I_L = \frac{\eta e P_L \lambda}{hc} \qquad I = I_s \left(e^{eV/k_B T} - 1 \right) - I_L$$

Montagens Experimentais

P2 vs. P1 (Fotocondutivo)

Programa SCILAB: Optoacoplador.sce

Programa SCILAB: Optoacoplador.sce

Parte-III (Figura-C)

Cálculo da Constante de Planck com LEDs

Wave length λ [nm]	Frequency v [10 ¹⁴ Hz]	Threshold Voltage V _s [V]	Energy E [10 ⁻¹⁹ J]	Planck's Constant h [10 ⁻³⁴ Js]
430	6.98	2.50 ± 0.01	4.00	5.73
565	5.31	1.85 ± 0.01	3.51	6.61
590	5.08	1.70 ± 0.01	2.72	5.35
627	4.78	1.65 ± 0.01	2.64	5.52
700	4.29	1.73 ± 0.01	2.8	6.52
850	3.53	1.20 ± 0.01	1.87	5.29

Energia do Fóton:
$$E = \frac{hc}{\lambda} \simeq eV_S$$

Constante de Planck: $h \simeq \frac{eV_S\lambda}{c}$

https://www.researchgate.net/publication/328821557_From_led_light_signboards_to_the_Planck%27s_constant

Lambda vs. Vs

$$K = \frac{hc}{e} \simeq V_s \lambda$$
 $\lambda \simeq K \left(\frac{1}{V_s}\right)$ $h \simeq \frac{Ke}{c}$

