Линейная алгебра в задачах векторного представления слов

Алексей Зобнин

Яндекс, Факультет компьютерных наук НИУ ВШЭ

azobnin@hse.ru

Основано на совместной работе

► A. Zobnin and E. Elistratova, Learning Word Embeddings without Context Vectors, Repl4NLP - 2019.

План

Что будет в докладе:

- ▶ вспомним реализацию word2vec sgns;
- ▶ рассмотрим классические явные SVD-эмбеддинги;
- сформулируем модель, не требующую «контекстных» векторов.

План

Чего не будет в этом докладе:

- решения прикладных задач;
- драматического улучшения метрик;
- ▶ новых глубоких архитектур обработки текстов.

Векторные модели

Обычно модель содержит два сорта векторов: для слов и для контекстов.

Считается, что один из сортов отвечает за синонимическую близость слов, а другой — за синтагматическую сочетаемость.

Утверждается также, что одним сортом векторов не обойтись.

Посмотрим, так ли это в классических моделях.

Как работает модель:

- ightharpoonup инициализируем векторы слов W и контекстов C;
- ightharpoonup идём скользящим окном радиуса k по тексту;
- рассматриваем текущее слово w и его настоящий контекст c_0 ;
- ightharpoonup семплируем k случайных контекстов c_1, \ldots, c_k ;
- оптимизируем градиентным спуском функционал

$$\mathcal{L} = -\log \sigma(\mathbf{w}\mathbf{c}_0^T) - \sum_{j=1}^k \log \sigma(-\mathbf{w}\mathbf{c}_j^T).$$

Пусть в строках матриц W и C стоят векторы слов и контекстов.

Пусть в строках матриц W и C стоят векторы слов и контекстов.

Факт 1

 $\mathcal L$ зависит только от элементов произведения $W\mathcal C^T$.

Пусть в строках матриц W и C стоят векторы слов и контекстов.

Факт 1

 $\mathcal L$ зависит только от элементов произведения $W\mathcal C^T$.

Факт 2

 \mathcal{L} не меняется при замене $W\mapsto WS$, $C\mapsto C\left(S^{-1}\right)^T$.

Проблема word2vec sgns

Решение $\left(WS,C\left(S^{-1}\right)^{T}\right)$ будет таким же оптимальным, как и $\left(W,C\right)$.

На практике C часто игнорируют и используют только W. Например, скалярные произведения между всеми векторами слов — WW^T — превратятся в WSS^TW^T .

Проблема word2vec sgns

Решение $\left(WS,C\left(S^{-1}\right)^{T}\right)$ будет таким же оптимальным, как и $\left(W,C\right)$.

На практике C часто игнорируют и используют только W. Например, скалярные произведения между всеми векторами слов — WW^T — превратятся в WSS^TW^T .

Если S не ортогональна, то они могут сильно измениться!

Хочется, чтобы оптимальные решения могли бы отличаться только на ортогональное преобразование.

Подходы к решению проблемы: теория

Haверное, sgd оптимизирует функционал как-то по-особенному, предпочитая одни решения другим...

- ► S. Gunasekar et al., Implicit Regularization in Matrix Factorization, NIPS 2017.
- ▶ B. Neyshabur et al., Geometry of Optimization and Implicit Regularization in Deep Learning, 2017.
- ► S. Arora et al., Implicit regularization in deep matrix factorization, NeurIPS 2019.

Подходы к решению проблемы: практика

Давайте оптимизировать другой функционал...

- ► S. Li et al., PSDVec: A toolbox for incremental and scalable word embedding, 2017.
- ► A. Fonarev et al., Riemannian optimization for skip-gram negative sampling, ACL 2017.
- ► C. Mu et al., Revisiting Skip-Gram Negative Sampling Model with Rectification, 2019.

Почему вектора слова и контекстов различаются?

Классическое объяснение:

- скалярный квадрат вектора должен быть большим;
- ▶ но слово само с собой встречается очень редко.

Давайте обратимся к классическим моделям и сделаем некоторое наблюдение...

Классические (явные) векторные представления

Общая схема:

- ▶ определяется, что такое «контекст» слова;
- выбирается функция f(w, c), как-то описывающая связь слова и контеста;
- ightharpoonup рассматривается матрица M = (f(w, c));
- ► строится её SVD: $M = U\Sigma V^T$;
- lacktriangle ранг понижается до требуемого размера d: $M pprox U_d \Sigma_d V_d^T$;
- lacktriangle представления слов и контекстов получаются как $W=U_d\sqrt{\Sigma_d}$ и $C=V_d\sqrt{\Sigma_d}$, откуда, $M\approx WC^T$.

Явные представления: примеры функций f

- ightharpoonup суммарная частота появления слова w в контексте c;
- логарифм этой частоты;
- $\blacktriangleright \ \mathsf{PMI}(w,c) = \log \tfrac{P(w,c)}{P(w)P(c)};$
- ▶ shifted PMI: $PMI(w, c) \log k$;
- ▶ shifted PPMI: $\max (PMI(w, c) \log k, 0)$.

Неявные векторные представления

В чём отличие неявных представлений от явных?

- ightharpoonup матрицы W и C получаются не разложением большой матрицы M, а иначе.
- ightharpoonup смысл произведения WC^T заранее не ясен.

Примеры: word2vec, fastText, GloVe, StarSpace, ...

Неявные векторные представления

В чём отличие неявных представлений от явных?

- ightharpoonup матрицы W и C получаются не разложением большой матрицы M, а иначе.
- ightharpoonup смысл произведения WC^T заранее не ясен.

Примеры: word2vec, fastText, GloVe, StarSpace, ...

Утверждение (Levy & Goldberg, 2014)

Для модели word2vec sgns WC^T сходится к shifted PMI-матрице, где k — количество отрицательных примеров.

Явные представления: примеры контекстов

- документ (латентно-семантический анализ);
- ▶ слово;
- лемма;
- ▶ да что угодно (см. StarSpace).

Предположения о симметричности

Мы будем рассматривать классический случай, когда контексты — это те же слова.

В этом случае функция f обычно бывает симметричной:

$$f(w,c)=f(c,w).$$

Вспомним линейную алгебру!

Задача

Дана симметричная действительная матрица M. Что можно сказать о её SVD-разложении $M=U\Sigma V^T$?

Вспомним линейную алгебру!

Задача

Дана симметричная действительная матрица M. Что можно сказать о её SVD-разложении $M = U \Sigma V^T$?

Неверный ответ

$$U = V$$
.

Вспомним линейную алгебру!

Задача

Дана симметричная действительная матрица M. Что можно сказать о её SVD-разложении $M = U \Sigma V^T$?

Неверный ответ

U = V.

Правильный ответ

Существует такое согласованное SVD-разложение M, в котором столбцы матриц U и V либо совпадают, либо отличаются знаком.

Существование согласованного разложения

M симметрична $\Longrightarrow M$ диагонализируется: $M = V \Lambda V^{-1}$, причём V можно выбрать ортогональной: $V^{-1} = V^T$.

Собственные значения, стоящие в Λ на диагонали, вещественны.

Перенесём знаки от отрицательных лямбд в столбцы левого множителя, получим SVD-разложение.

Если матрица M положительно определена, то U=V, а сингулярные числа совпадают с собственными значениями M:

$$M = U\Sigma U^T$$
.

Если матрица M положительно определена, то U=V, а сингулярные числа совпадают с собственными значениями M:

$$M = U\Sigma U^T$$
.

В противном случае, вообще говоря, это неверно:

$$M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \neq UU^T.$$

Если матрица M положительно определена, то U=V, а сингулярные числа совпадают с собственными значениями M:

$$M = U\Sigma U^T$$
.

В противном случае, вообще говоря, это неверно:

$$M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \neq UU^{\mathsf{T}}.$$

Эта же матрица показывает, что не всякое SVD-разложение согласовано:

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} \cos x & \sin x \\ \sin x & -\cos x \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix}^{T}.$$

Столбцы U и V в согласованном SVD-разложении симметричной матрицы отличаются знаком в точности тогда, когда они соответствуют её отрицательным собственным значениям.

Столбцы U и V в согласованном SVD-разложении симметричной матрицы отличаются знаком в точности тогда, когда они соответствуют её отрицательным собственным значениям.

Несогласованные разложения существуют в случае, когда у матрицы есть кратные сингулярные числа, соответствующие собственным значениям разных знаков.

В частности, если все сингулярные числа различны, то любое SVD-разложение согласовано.

А что на практике?

Для построения SVD-представлений выбираются d максимальных сингулярных значений.

Попадают ли туда те, что соответствуют смене знака? Если да, то за что отвечают эти компоненты?

Количество «отрицательных» компонент

Проведём эксперимент для явных матриц shifted PPMI:

k = 1: k = 5:

	100	200	300	100	200	300
en wiki	15	27	39	9	16	24
fr wiki	10	22	34	7	15	22
ru wiki	11	22	31	7	14	20

Количество «отрицательных» компонент

Проведём эксперимент для явных матриц shifted PPMI:

k = 1: k = 5:

	100	200	300	100	200	300
en wiki	15	27	39	9	16	24
fr wiki	10	22	34	7	15	22
ru wiki	11	22	31	7	14	20

Доля «отрицательных компонент» почти не меняется при увеличении размерности и при переходе к другому языку.

Векторы слов и контекстов

Для явных SVD-моделей верны следующие следствия:

- ▶ векторы контекстов так же «хороши» для прикладных задач, как векторы слов;
- векторы контекстов получаются из векторов слов отражением по некоторым размерностям.

Векторы слов и контекстов

Для явных SVD-моделей верны следующие следствия:

- ▶ векторы контекстов так же «хороши» для прикладных задач, как векторы слов;
- векторы контекстов получаются из векторов слов отражением по некоторым размерностям.

Похожий результат (но с утверждением про половину размерностей) был получен в работе

➤ Zh. Assylbekov, R. Takhanov, Context vectors are reflections of word vectors in half the dimensions, 2019.

Смысл «отрицательных» компонент

Построим SVD-модель по ruwiki и посмотрим на слова с min/max значениями «отрицательной» компоненты:

top positive	е
решил	0.386144
МОГ	0.371851
пытался	0.362951
СМОГ	0.353824
пытается	0.347533
хотел	0.344098
вынужден	0.337988
сам	0.332514
должен	0.332267

bottom negative		
биться	-0.387683	
соблазнить	-0.380923	
слугой	-0.370942	
мечтать	-0.361095	
сойти	-0.360904	
смириться	-0.360609	
простить	-0.356762	
признаться	-0.357335	
мириться	-0.356923	

Смысл «отрицательных» компонент

Ещё пример:

top positive				
белецкий	0.387469			
артамонов	0.381354			
превратить	0.377891			
карасёв	0.374371			
нефёдов	0.370402			
прояснить	0.366967			
пиотровский	0.36689			
азаров	0.365763			
перечислить	0.36311			
анохин	0.362307			

bottom negative						
необходимость	-0.35352					
намерена	-0.340987					
планировала	-0.340456					
намереваясь	-0.318498					
николай	-0.317861					
позволив	-0.317704					
владимир	-0.316368					
михаил	-0.312346					
намеревались	-0.310583					
успела	-0.309929					

Для сравнения: «обычные» компоненты

top positive	
механик	0.510821
конструктор	0.473496
инженер	0.473464
помощник	0.431185
хирург	0.430888
адвокат	0.421821
машинист	0.420466
стрелок	0.420015
водитель	0.419628

bottom negative					
веках	-0.440756				
средневековье	-0.417509				
столетий	-0.411927				
племён	-0.411305				
западных	-0.406677				
веков	-0.405829				
племена	-0.405003				
веками	-0.403318				
христианские	-0.400342				

У неё есть преимущества перед явной SVD-моделью:

- требует меньше времени и памяти для обучения;
- слегка выигрывает на практике.

Нельзя ли сделать вектора слов и контекстов «одинаковыми»?

У неё есть преимущества перед явной SVD-моделью:

- требует меньше времени и памяти для обучения;
- слегка выигрывает на практике.

Нельзя ли сделать вектора слов и контекстов «одинаковыми»?

▶ Просто отождествить W и C не выйдет: M не является положительно определенной!

У неё есть преимущества перед явной SVD-моделью:

- требует меньше времени и памяти для обучения;
- слегка выигрывает на практике.

Нельзя ли сделать вектора слов и контекстов «одинаковыми»?

- ▶ Просто отождествить W и C не выйдет: M не является положительно определенной!
- ▶ Заманчиво выйти в \mathbb{C} и положить $C = \overline{W}$! Но тогда будут проблемы с вычислением $\log \sigma(\mathbf{wc}^T)$.

У неё есть преимущества перед явной SVD-моделью:

- требует меньше времени и памяти для обучения;
- слегка выигрывает на практике.

Нельзя ли сделать вектора слов и контекстов «одинаковыми»?

- ▶ Просто отождествить W и C не выйдет: M не является положительно определенной!
- ▶ Заманчиво выйти в \mathbb{C} и положить $C = \overline{W}$! Но тогда будут проблемы с вычислением $\log \sigma(\mathbf{wc}^T)$.
- ▶ Мы выберем другой способ.

Свяжем матрицы векторов слов и контекстов

Зафиксируем параметр q. Пусть

$$D_q = \operatorname{diag}(\underbrace{1, 1, \ldots, 1}_{p=d-q}, \underbrace{-1, \ldots, -1}_{q}).$$

Рассмотрим «скалярное произведение», заданное матрицей D_a :

$$\langle \mathbf{w_i}, \mathbf{w_j} \rangle_q = \mathbf{w_i} D_q \mathbf{w_j}^T$$
.

Такое «скалярное произведение» индефинитно: квадрат вектора может оказаться неположительным.

Теперь вместо WC^T будет неявная матрица WD_qW^T .

Context-free sgns

Заменим C на WD_q в целевой функции word2vec sgns:

$$WC^{\mathsf{T}} \longrightarrow WD_{q}W^{\mathsf{T}}.$$

$$\mathcal{L} = -\log \sigma(\mathbf{w}\mathbf{c_0}^T) - \sum_{j=1}^k \log \sigma(-\mathbf{w}\mathbf{c_j}^T)$$

$$\downarrow$$

$$\mathcal{L}_q = -\log \sigma(\mathbf{w}D_q\mathbf{w_0}^T) - \sum_{j=1}^k \log \sigma(-\mathbf{w}D_q\mathbf{w_j}^T).$$

Назовём эту модель context-free sgns.

Эксперименты

- ► Мы обучили sgns и context-free sgns на английской Википедии.
- ▶ За baseline мы взяли fastText без n-грамм.
- ▶ Мы провели две серии экспериментов в размерности 100.

Эксперимент 1

Фиксируем d = 100 и варьируем q:

Dataset	sgns	0	5	10	15	20	25
MEN-TR-3k	.731	.679	.723	.719	.717	.712	.709
MTurk-287	.667	.633	.657	.660	.662	.661	<u>.673</u>
RW-Stanford	.380	.286	.409	.420	<u>.422</u>	.415	.409
SIMLEX-999	.332	.252	.314	.320	.313	.310	<u>.323</u>
SimVerb-3500	.202	.132	.190	.195	<u>.198</u>	.194	.197
VERB-143	.300	.300	.332	.330	.350	<u>.383</u>	.360
WS-353-REL	.665	.614	.637	<u>.660</u>	.639	.631	.630
WS-353-SIM	.761	.708	.751	<u>.754</u>	.753	.751	.733
average	.438	.370	.435	<u>.439</u>	.438	.435	.434

Эксперимент 2

Строим векторы для d=100+q при разных q, затем берем только «положительную» часть векторов.

Dataset	sgns	0	5	10	15	20	25
MEN-TR-3k	.731	.679	.733	.735	.735	.738	.737
MTurk-287	.667	.634	.661	.670	.672	<u>.675</u>	.665
RW-Stanford	.380	.286	.402	<u>.409</u>	.407	.402	.400
SIMLEX-999	.332	.252	.314	.313	.320	.317	.324
SimVerb-3500	.202	.132	<u>.193</u>	.192	.189	.191	.191
VERB-143	.300	.300	<u>.336</u>	.315	.314	.329	.332
WS-353-REL	.665	.614	.667	.671	<u>.677</u>	.672	.674
WS-353-SIM	.761	.708	<u>.763</u>	.748	.758	.755	.748
average	.438	.370	.438	.439	.439	.439	.439

Неоднозначность решения

В классическом word2vec можно было получить эквивалентное решение заменой $W\mapsto WS,\ C\mapsto C\left(S^{-1}\right)^T$ для произвольной обратимой матрицы S. А что в модели context-free?

Неоднозначность решения

В классическом word2vec можно было получить эквивалентное решение заменой $W\mapsto WS$, $C\mapsto C\left(S^{-1}\right)^T$ для произвольной обратимой матрицы S. А что в модели context-free?

Неоднозначность всё равно остаётся для матриц S, сохраняющих D_q :

$$SD_qS^T=D_q.$$

Такие матрицы не обязательно ортогональны: например, для

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

подойдёт

$$S = \begin{pmatrix} \operatorname{ch} x & \operatorname{sh} x \\ \operatorname{sh} x & \operatorname{ch} x \end{pmatrix}.$$

Пусть W — решение задачи context-free sgns. Можно ли среди эквивалентных решений WS, где $SD_qS^T=D_q$, выбрать какое-нибудь каноническое?

Пусть W — решение задачи context-free sgns. Можно ли среди эквивалентных решений WS, где $SD_qS^T=D_q$, выбрать какое-нибудь каноническое?

Заметим, что в явных SVD-моделях $W=U\sqrt{\Sigma}$. В этом случае $W^TW=\Sigma$ — диагональная матрица.

Пусть W — решение задачи context-free sgns. Можно ли среди эквивалентных решений WS, где $SD_qS^T=D_q$, выбрать какое-нибудь каноническое?

Заметим, что в явных SVD-моделях $W=U\sqrt{\Sigma}$. В этом случае $W^TW=\Sigma$ — диагональная матрица.

Можно ли взять такую S, чтобы $(WS)^T(WS) = \text{diag}$?

Пусть W — решение задачи context-free sgns. Можно ли среди эквивалентных решений WS, где $SD_qS^T=D_q$, выбрать какое-нибудь каноническое?

Заметим, что в явных SVD-моделях $W=U\sqrt{\Sigma}$. В этом случае $W^TW=\Sigma$ — диагональная матрица.

Можно ли взять такую S, чтобы $(WS)^T(WS) = \text{diag}$?

Ответ: да. Это следует из теоремы о приведении пары форм D_q и W^TW к диагональному виду.

Такую матрицу S можно найти из SVD-разложений для W и W^TW .

Увы, на практике такие канонические решения оказались хуже обычных.

Такую матрицу S можно найти из SVD-разложений для W и W^TW .

Увы, на практике такие канонические решения оказались хуже обычных.

Похожие идеи можно найти в работе

 Carrington et al., Invariance and identifiability issues for word embeddings, NeurIPS - 2019.

Открытые вопросы и задачи

- Как ведет себя доля «отрицательных» компонент PPMI-матриц для других языков и при больших размерностях?
- Какова лингвистическая роль «отрицательных» компонент?
- ▶ Внедрить context-free в GloVe.
- ► Добавить регуляризатор к context-free-модели.
- ▶ Найти связь с гиперболическими эмбеддингами.
- ▶ Описать неявную регуляризацию в word2vec.
- ightharpoonup Рассматривать слова как собственные контексты (это приблизит матрицу M к положительно определенной).