Custom LaTeX Commands

SIZE ADAPTIVE MATH

 (x)	parantneses
 [x]	brackets
 x	absolute value

\absvsq{..} $|x|^2$ absolute value squared

 $\begin{array}{lll} \texttt{(}x,y\texttt{)} & \texttt{(}x,y\texttt{)} & \texttt{(}x,y\texttt{)} \\ \texttt{(}x,y\texttt{)} & \texttt{(}x,$

Bra Ket Notation

	$\langle x $	bra
	$ x\rangle$	ket
{}	$\langle x y\rangle$	scalar product
{}	$ x\rangle\langle y $	ket-bra operator
\braketop(3 arguments)	$\langle x y z\rangle$	matrix element
\smallbraketop(3 arguments)	$\langle x y z\rangle$	small matrix element

SPECIAL FUNCTIONS

 $\delta(x)$	delta function
 $\theta(x)$	theta function
 $\exp(x)$	exponential function
 e^x	exponential function

NAMED STATES

\ketPsi	$ \Psi angle$
\ketpsi	$ \psi angle$
\ketphi	arphi angle

\ketup	$ \!\!\uparrow\rangle$	spin up
\ketdo	$ \downarrow\rangle$	spin down
\ketzero	$ 0\rangle$	
\ketone	$ 1\rangle$	
\ketg	$ g\rangle$	ground state
\kete	$ e\rangle$	excited state
\vac	$ { m vac}\rangle$	vacuum

VECTORS

\vecr	\mathbf{r}
\vecrone	\mathbf{r}_1
\vecrtwo	$\mathbf{r_2}$
\vecrn	$\mathbf{r_N}$
\vecri	$\mathbf{r_{i}}$
\vecrj	$\mathbf{r_{j}}$
\vecx	x
\vecy	\mathbf{y}
\vecz	${f z}$
\vecxi	$\mathbf{x_i}$
\vecxj	$\mathbf{x_j}$
\veck	k
\vecq	\mathbf{q}
\vecp	p

DIFFERENTIATION

	$\frac{\partial}{\partial x}$	partial differentiation
\laplace	$ abla^2$	laplace operator

INTEGRATION

\integral{..} $\int dx \qquad integral$

\integralb(3 arguments) $\int_{z}^{y} dz$ integral with boundaries

\integralf{...}{...} $\int \frac{dx}{y}$ integral with fraction \intvol $\int d^3r$ integral over r space \intvolp $\int d^3r'$ integral over r' space

\intvold $\int d^3r \int d^3r'$ double integral over space

\intk $\int d^3k$ integral over k space \intkp $\int d^3k'$ integral over k' space

\intkn $\int \frac{\mathrm{d}^3k}{(2\pi)^3} \qquad \text{normalized integral over k space}$ \intkpn $\int \frac{\mathrm{d}^3k'}{(2\pi)^3} \qquad \text{normalized integral over k' space}$

SPECIAL SYMBOLS

 $\begin{array}{ccc} \text{h.c.} & \text{h.c.} & \text{hermitian conjugate} \\ \text{hamil} & \hat{H} & \text{Hamilton operator} \end{array}$

\hastobe $\stackrel{!}{=}$ has to be

SECOND QUANTIZATION

annihilation operator \aop a a^{\dagger} \aopd creation operator bannihilation operator \bop b^{\dagger} \bopd creation operator \cop annihilation operator c c^{\dagger} \copd creation operator number operator

\nop n number operato $\hat{\psi}$ field operator

\psiopd $\hat{\psi}^{\dagger}$ \PsiOp $\hat{\Psi}$

\PsiOpd $\hat{\Psi}^{\dagger}$

DIFFERENCES

\Dx Δx \Dy Δy \Dz Δz \Dt Δt

FIGURES

\igopt{..}{..}
\ig{..}{..}
\figopt(4 arguments)
\fig(3 arguments)
\doublefigopt(8 arguments)
\doublefig(7 arguments)
\figref{..}