

CURSO PROFISSIONAL TÉCNICO DE GPSI

PROGRAMAÇÃO E SISTEMAS DE INFORMAÇÃO

Módulo 3 - SubProgramas

TESTE DE AVALIAÇÃO PRÁTICA

Crie uma pasta no ambiente de trabalho cujo nome deve identificar a sua turma, o seu número e o seu nome. Por exemplo **10H_01_AnaPeres**. O nome do ficheiro deve identificar o número do problema. Por exemplo **PROBLEMA_01.PY**. Compacte a pasta criada e submeta-a na tarefa "**MOD03_AVALIAÇÃO**", na plataforma Teams.

INTRODUÇÃO

Numa prova é registado o tempo de cada atleta em segundos. O resultado é depois mostrado no formato MM:SS.

PROGRAMA

Faça um programa que use uma função que receba como parâmetro o tempo obtido numa prova em **segundos** e retorne como valores de saída os **minutos** e **segundos** a que esse tempo corresponde. No programa deve depois ser escrito como output o tempo no formato **MM:SS**. A string deve ter sempre 5 caracteres.

DADOS DE ENTRADA

DADOS DE SAÍDA

Uma linha com um número inteiro correspondente aos segundos que demorou a prova.

O tempo no formato MM:SS ------EXEMPLOS ---- Exemplo 1 INPUT Tempo obtido na prova (em segundos): 64 OUTPUT O Tempo total foi 01:04 Exemplo 2

<u>INPUT</u>

Tempo obtido na prova (em segundos): 130

OUTPUT

O Tempo total foi 02:10

INTRODUÇÃO

Na astrologia ocidental, o zodíaco é dividido em doze signos, cada um ocupando 30° de longitude celestial e correspondendo aproximadamente às constelações estelares. Cada signo corresponde a um intervalo de tempo na qual a data de nascimento se pode encaixar. Na seguinte tabela estão representados esses intervalos:

γ	Áries	21 de março - 20 de abril
R	Touro	21 de abril - 20 de maio
П	Gémeos	21 de maio - 20 de junho
69	Câncer	21 de junho - 21 de julho
ઈ	Leão	22 de julho - 22 de agosto
m	Virgem	23 de agosto - 22 de setembro
<u>ਨ</u>	Libra	23 de setembro - 22 de outubro
m,	Escorpião	23 de outubro - 21 de novembro
×	Sagitário	22 de novembro - 21 de dezembro
Y _o	Capricórnio	22 de dezembro - 20 de janeiro
222	Aquário	21 de janeiro - 19 de fevereiro
)(Peixes	20 de fevereiro - 20 de março

PROGRAMA

Faça um programa em Python que use uma função para determinar o signo a que uma pessoa pertence. A função deve receber como parâmetros 2 valores inteiros correspondentes ao dia e ao mês da data de nascimento do utilizador. Deve depois devolver o nome do signo correspondente para o programa. Preveja a hipótese de a pessoa ter dado valores incorretos para a sua data de nascimento. Nesse caso a função deve retornar uma mensagem de erro com o texto "data incorreta).

DADOS DE ENTRADA

2	linhae	com a	informa	ഹമ്വ	sohre a	data	dρ	nascimento	dο	utilizador
_	umas	COIII	3 IIIIOIIII C	เบลบ	2001E	ı uata	uе	Hascillelito	uυ	utitizauoi.

- **Dia** da data de nascimento {1-31}
- Mês da data de nascimento {1-12}

DADOS DE SAÍDA

Uma linha com o nome do **signo** correspondente

Se a data estiver incorreta deve aparecer a mensagem de erro "**Data incorreta**"

------ **EXEMPLOS** -------

Exemplo 1

<u>INPUT</u>

Dia: **12** Mês: **2**

OUTPUT

Aquário

Exemplo 2

INPUT

Dia: **30** Mês: **13**

OUTPUT

Data incorreta

INTRODUÇÃO

Os depósitos a prazo são aplicações financeiras que permitem capitalizar os rendimentos numa poupança no sistema bancário. Este tipo de produto tem uma taxa de juro associada que é somada como bónus no final do período contratado. Por exemplo se investirmos 5000 euros num depósito a prazo de 5 anos com taxa anual líquida de juro de 3%: no final do 1° ano teríamos $5150,00 \in$, no final do 2° ano teríamos $5304,50 \in$, uma vez que os juros neste ano incidem sobre os $5150,00 \in$, e assim sucessivamente.

No final teríamos no banco a quantia de 5796,37 euros.

PROGRAMA

Faz um programa que use uma função para imprimir o valor acumulado anualmente num depósito a prazo. A função deve receber como parâmetros o valor a depositar, a taxa de juro anual líquida (TANL) e o número de anos que vai manter o deposito. Deve depois imprimir os valores que são capitalizados anualmente, ano a ano. No final a função deve devolver o valor ganho no deposito para fazer o output no programa.

DADOS DE ENTRADA

Três linhas com as informações do deposito:

- Quantia a colocar no deposito (valor real)
- Taxa de juro anual líquida (TANL) em percentagem (valor inteiro)
- Número de anos do deposito (valor inteiro)

DADOS DE SAÍDA

N linhas (tantas como o número de anos do deposito) com o valor acumulado anualmente.

Valor total acumulado no deposito ao fim do deposito

----- EXEMPLOS -----

Exemplo 1

<u>INPUT</u>

Quantia: **5000**

TANL: 3
Anos: 5

OUTPUT

Valor ao fim do 1º ano: **5150,00 €** Valor ao fim do 2º ano: **5304,50 €** Valor ao fim do 3º ano: **5463,64 €** Valor ao fim do 4º ano: **5627,54 €** Valor ao fim do 5º ano: **5796,37 €**

Ganhou 796,36 euros

Exemplo 2

INPUT

Quantia: 1000

TANL: 4
Anos: 2

OUTPUT

Valor ao fim do 1º ano: **1040,00 €** Valor ao fim do 2º ano: **1081,60 €**

Ganhou 81,60 euros

Cotações

Problema 1	
Input	10
Função	30
Output	10
Eficiência	10
Problema 2	
Input	10
Função	40
Output	10
Eficiência	10
Problema 3	
Input	10
Função	40
Output	10
Eficiência	10