

PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Programming

<u>Maxime Pelcat</u>, Karol Desnos, Julien Heulot Clément Guy, Jean-François Nezan, Slaheddine Aridhi

EDERC 2014 Conference, Milan, September 11th

Typical Single DSP Environment

Multicore DSP Rapid Prototyping

Reduce Software Productivity Gap

In early design phases: Metrics

- Design parallel algorithms
 - Automatic mapping and scheduling
- Predictable time and memory
 - choose the right algorithm and hardware

Reduce Software Productivity Gap

In late design phases: Rapid Prototyping

Automatic multi-core speedup

Inter-core communication

Guaranteed Deadlock-freeness

Reduce Software Productivity Gap

For migration to a new hardware

Seamless porting to a new architecture

- Legacy code reuseability
- Portable performance

Dataflow modelling can help

PREESM for C6678

Algo dataflow: PiSDF

K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, S. Aridhi "PiMM: Parameterized and Interfaced Dataflow Meta-Model for MPSoCs Runtime Reconfiguration", SAMOS XIII

K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, S. Aridhi "PiMM: Parameterized and Interfaced Dataflow Meta-Model for MPSoCs Runtime Reconfiguration", SAMOS XIII

PISDF

K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, S. Aridhi "PiMM: Parameterized and Interfaced Dataflow Meta-Model for MPSoCs Runtime Reconfiguration", SAMOS XIII

Size

PiSDF

Size

K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, S. Aridhi "PiMM: Parameterized and Interfaced Dataflow Meta-Model for MPSoCs Runtime Reconfiguration", SAMOS XIII

Algo dataflow: PiSDF

PiSDF MoC is:

- ✓ Hierarchical & Compositional
- √ Statically parameterizable
- ✓ Dynamically reconfigurable

PiSDF fosters:

- Predictability
- Parallelism
- Lightweight runtime overhead
- Developer-friendliness

K. Desnos, M. Pelcat, J.-F. Nezan, S. S. Bhattacharyya, S. Aridhi "PiMM: Parameterized and Interfaced Dataflow Meta-Model for MPSoCs Runtime Reconfiguration", SAMOS XIII

Archi: System-Level Archi. Model

Representing contentions as TDMA

PREESM: Multicore Scheduling

Scheduling based on latency and load balancing

PREESM: Multicore Scheduling

Scheduling based on latency and load balancing

PREESM: Multicore Scheduling

Scheduling based on latency and load balancing

PREESM: Memory Bounds

- Bounding the memory needs of an application graph to:
 - Evaluate the memory requirements
 - Adjust the size of architecture memory
 - Assess the optimality of a memory allocation

PREESM: Prototype Code Generation

PREESM Features

- Open Source Tool
 - Available on GitHub
- Research-Oriented Tool
 - New models, optimizations, scheduling
- Eclipse-based Integrated Tool
 - Several plug-ins, metamodels
- Extended Web Tutorials
 - http://preesm.sourceforge.net/website

Other Tools

- OpenMP, OpenEM
 - Adding Rapid Prototyping
- MAPS Compiler, Polycore Polymapper, SynDEx
 - Open-source code

PREESM Features

Some Results on Stereo Matching

Conclusion

- Reduce Software Productivity Gap
 - Design space exploration
 - Rapid Prototyping
 - Extract coarse grain parallelism
 - Portable performance

PREESM → Dataflow modelling can help!

Good decisions necessitate extensive information on both computation and data flow

Thanks!

M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, S. Aridhi, "PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Programming" EDERC, 2014.

PREESM Tutorial - 16:00 - 17:00 - Room: Oro Plenaria

M. Pelcat, S. Aridhi, J. Piat, J.-F. Nezan, "Physical Layer Multicore Prototyping: A Dataflow-Based Approach for LTE eNodeB". Springer, 2012.

