T.P. IV - Fonctions & Suites

I - Fonctions

Exercice 1. (Fonction définie par morceaux) On considère la fonction g définie sur $\mathbb R$ par

$$\forall x \in \mathbb{R}, g(x) = \begin{cases} 0 \text{ si } x < 0 \\ e^{-2x} \text{ si } x \geqslant 0 \end{cases}.$$

Compléter le script Python suivant pour que la fonction ${\sf g}$ prenne en entrée un réel x et calcule g(x).

```
import numpy as np

def g(x):
    if x < 0:
        ....
    else:
        ....</pre>
```

1. Utilisez le script précédent pour afficher les valeurs de g(-1) et $g(\ln(2))$.

```
print (...)
print (...)
```

Exercice 2. (Une suite d'intégales) Pour tout n entier naturel, on note $f_n(x) = \frac{x^n}{1+x}$ et $I_n = \int_0^1 f_n(x) dx$. Le graphique ci-dessous contient des représentations graphiques des fonctions f_1 , f_5 , f_{10} , f_{20} et f_{50} sur l'intervalle [0,1].

1. Compléter le code ci-dessous pour qu'il trace les courbes des fonctions ci-dessus.

```
import numpy as np
import matplotlib.pyplot as plt

def f(x):
    return ...

X = np.linspace(0, 1, 100)

for n in [...]:
    plt.plot(..., ..., "--", label=r"fn pour n="+str(n))

plt.legend()
...
```

- **2.** Pour tout $n \in \mathbb{N}$, interpréter géométriquement l'intégrale I_n .
- **3.** En utilisant le graphique ci-dessus, conjecturer la limite de la suite (I_n) lorsque n tend vers $+\infty$.

Chapitre IV - Fonctions & Suites ECT 2

II - Suites

Exercice 3. (Étude de suite) Pour tout n entier naturel, on pose $c_n = 2 - \frac{3^n + 25}{4^{n-1}}$.

- 1. Déterminer $\lim_{n\to+\infty} c_n$.
- 2. On considère le code Python suivant :

```
egin{array}{lll} n &= 1 \\ c &= 2 - (3**n + 25)/4**(n-1) \\ 	extbf{while} & c &< 1.95 : \\ n &= n + 1 \\ c &= 2 - (3**n + 25)/4**(n-1) \\ 	extbf{print}(n) \\ \end{array}
```

On obtient l'affichage suivant : 16.

Interpréter le résultat dans le contexte de l'énoncé.

Exercice 4. (Suite récurrente double) On considère la suite définie par $u_0 = 0$, $u_1 = 1$ et $\forall n \in \mathbb{N}^*$, $u_{n+1} = 4u_n + 2u_{n-1}$.

Complter les 3 lignes du script Python ci-dessous pour qu'il calcule et affiche la valeur de u_{10} .

```
v = 0
u = 1
for i in range(..., ...):
    a = u
    ...
    v = a
print(u)
```

III - Suites et fonctions : la dichotomie

Exercice 5. (Exemple de dichotomie) On pose $h(x) = x^3 + 1 + \frac{1}{x^3} - 4$.

1. Montrer que h est strictement croissante sur]0,1] et strictement décroissante sur $[1,+\infty[$.

- **2.** Montrer que l'équation h(x) = 0 possède une unique solution α dans l'intervalle $[1, +\infty[$.
- 3. Compléter le code Python suivant pour qu'il renvoie une valeur approchée à 10^{-5} près de α par la méthode de dichotomie.

```
def h(x):
    return ....

a = ...
b = ...
while (b - a) ...:
    m = ...
    if h(m) * h(a) <= 0:
        b = ...
    else:
        ...
print (...)</pre>
```

IV - Introduction au produit matriciel

Le module numpy, importé via la ligne de commande import numpy as np permet de manipuler les matrices avec Python.

* A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) permet de définir une matrice ligne par ligne et d'obtenir ainsi la matrice

```
\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} qui sera ici stockée dans la variable A.
```

- * 3 * A permet de multiplier A par le nombre 3.
- $\ast\,$ Si A et B sont des matrices de mêmes tailles, A + B permet d'en calculer la somme.
- * Si A et B sont des matrices de tailles compatibles, np.dot(A, B) permet de multiplier les matrices A et B.

Chapitre IV - Fonctions & Suites

Exercice 6. (Produit matriciel) Soit $A = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$. On définit les suites $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ par

$$u_0 = 0, v_0 = 1 \text{ et } \forall n \in \mathbb{N}, \begin{cases} u_{n+1} = u_n + v_n \\ v_{n+1} = 2u_n \end{cases}.$$

Pour tout n entier naturel, on note $C_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$.

- **1.** Calculer C_0 .
- **2.** Montrer que, pour tout n entier naturel, $C_{n+1} = AC_n$.
- 3. Montrer par récurrence que, pour tout n entier naturel, $C_n = A^n C_0$.
- **4.** Compléter le script suivant pour qu'il calcule et affiche les termers u_{12} et v_{12} .