Probability Summarization

Contents

1	Set 1.1 1.2 1.3	Set Operations 3 Set Relations 3 Set Algebra 4					
2	Con	enting 4					
_	2.1	The Counting Principle(Multiplication Principle)					
	2.2	Counting Results					
3	Probability Axioms 4						
	3.1	Probability Laws					
	3.2	Some Properties of Probability Laws					
4	Con	ditional Probability 5					
	4.1	Definition					
	4.2	Multiplication Rule					
	4.3	Total Probability Theorem					
	4.4	Bayes' Rule					
	4.5	Independence					
		4.5.1 Definition					
	4.6	Conditioning Independence					
		4.6.1 Definition					
	4.7	Independence of Events					
		4.7.1 Definition					
5	Disc	crerte Random Variables 6					
	5.1	Probability Mass Function					
		5.1.1 Definition					
	5.2	Cumulative Distribution Function					
		5.2.1 Definition					
	5.3	Expectation					
		5.3.1 Definition					
	5.4	Variance					
		5.4.1 Definition					
		5.4.2 Standard Deviation					
	5.5	nth Moment					

		5.5.1 Definition
	5.6	Functions of Random Variables
		5.6.1 Expectation for Functions of Random Variables
		5.6.2 Linear Function of a Random Variable
	5.7	Joint PMF
		5.7.1 Definition
		5.7.2 Marginal PMF
		5.7.3 Functions of Multiple Random Variable
	5.8	Conditional PMF on Events
		5.8.1 Definition
	5.9	Conditional PMF on Random Variable
	0.0	5.9.1 Definition
	5.10	Conditional Expectation
	0.10	5.10.1 Definition
	5 11	Independence of a Random Variable from an Event
	0.11	5.11.1 Definition
	5 12	Independence of a Random Variable from a Random Variable
	0.12	5.12.1 Definition
	5 13	Conditional Independence
	0.10	5.13.1 Definition
		o.io.i Deminion
6	Con	tinuous Random Variable
	6.1	Probability Density Function(PDF)
		6.1.1 Definition
	6.2	Expectation
		6.2.1 Definition
	6.3	Variance
		6.3.1 Definition
	6.4	Cumulative Distribution Funciton(CDF)
		6.4.1 Definition
	6.5	Relation Between CDF and PDF
	6.6	Joint PDF
		6.6.1 Definition
		6.6.2 Marginal PDF
	6.7	Joint CDF
		6.7.1 Definition
	6.8	Relation Between Joint CDF and Joint PDF
	6.9	Conditioning a Random Variable on an Event
		6.9.1 Definition
	6.10	Joint Conditional PDF
		6.10.1 Definition
	6.11	Conditioning a Random Variable on another Random Variable
		6.11.1 Definition
	6.12	Condition Expectation
	•	6.12.1 Definition
	6.13	Total Expectation Theorem
		Independence
		6.14.1 Definition

	6.15	Bayes' Rule for Continuous Random Variable	2
7	Furt 7.1 7.2 7.3 7.4 7.5 7.6	her Topics on Random Variables12Calculating PDF of $Y=g(X)$ from Continuous RV X15Convelution15Covariance157.3.1 Definition16Correlation Coefficient177.4.1 Definition18Variance of the Sum of Random Variables18Conditional Expectation and Variance Revisited187.6.1 Law of Iterated Expectation187.6.2 Law of Total Variance19Moment Generating Function197.7.1 Definition10	2 3 3 3 3 3 3 4 4
		7.7.1 Definition 14 7.7.2 From MGF to Moments 14 7.7.3 MGF of Independent Random Variables 14	4
8	8.1 8.2 8.3 8.4 8.5 8.6 8.7	t Theorems Markov Inequality	4 5 5 5 5
9	Refe	rences 10	3
1 1.	Se 1 S	et Operations	
		Intersection: $A \cap B$	

1.2 Set Relations

Disjoint: In a collection of sets, no two of theem have a common element. **Partition:** In a collection of sets which are disjoint and their union is Ω .

1.3 Set Algebra

Theorem:

Commutative laws: $A \cup B = B \cup A$

Associative laws: $(A \cup B) \cup C = A \cup (B \cup C)$

 $(A \cap B) \cap C = A \cap (B \cap C)$

Distributive laws: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

 $(A\cap B)\cup C=(A\cup C)\cap (B\cup C)$

2 Counting

2.1 The Counting Principle (Multiplication Principle)

Consider a process that consist of r stages, and there are n_i possible results at the ith stage. Then the total number of possible results of the r-stage process is:

Theorem:

$$n_1 n_2 \cdot \cdot \cdot \cdot \cdot n_r$$

2.2 Counting Results

Theorem:

Permutation(Distinguishable, without replacement, order matters)

n!

K-Permutation(Distinguishable, without replacement, order matters)

$$\frac{n!}{(n-k)!}$$

Combination(Distinguishable, without replacement, order no matters)

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Partition(Distinguishable, without replacement, order no matters)

$$\binom{n}{n_1, n_2, \cdots, n_r} = \frac{n!}{n_1! n_2! \cdots n_r!}$$

Number of Subsets

 2^n

3 Probability Axioms

3.1 Probability Laws

1. Nonnegativity

$$P(A) \ge 0$$

2. Additivity

If A and B are two disjoint events then:

$$P(A \cup B) = P(A) + P(B)$$

3. Normalization

$$P(\Omega) = 1$$

3.2 Some Properties of Probability Laws

- 1. If $A \subset B$, then $P(A) \leq P(B)$
- 2. $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- 3. $P(A \cup B) < P(A) + P(B)$

4 Conditional Probability

4.1 Definition

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

4.2 Multiplication Rule

Theorem:

$$P\left(\bigcap_{i=1}^{n} = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2)\cdots P(A_n|\bigcap_{i=1}^{n-1} A_i\right)$$

4.3 Total Probability Theorem

Theorem

$$P(B) = P(A_1)P(B|A_1) + P(A_2)P(B|A_2) + \dots + P(A_n)P(B|A_n)$$

4.4 Bayes' Rule

Bayes' rule is often used for inference. There are a number of "cause" that may result in a certain "effect". We observe the effect and we wish to infer the cause. Let A_i associate with "cause" and B represents "effect". $P(A_i)$ is called *prior probability* and $P(A_i|B)$ is called *posterior probability*. What Bayes want to do is to find out posterior probability given prior probability.

Bayes' Rule

Let $A_1, A_2, \dots A_n$ be disjoint events that form a partition of the sample space and assume that $P(A_i) > 0$, for all i. Then for any event B we have:

$$P(A_i|B) = \frac{P(A_i)P(B|A_i)}{P(B)}$$

$$= \frac{P(A_i)P(B|A_i)}{P(A_1)P(B|A_1) + \dots + P(A_n)P(B|A_n)}$$

- 4.5 Independence
- 4.5.1 Definition

$$P(A|B) = P(A)$$

- 4.6 Conditioning Independence
- 4.6.1 Definition

$$P(A \cap B|C) = P(A|C)P(B|C)$$

- 4.7 Independence of Events
- 4.7.1 Definition

$$P\left(\bigcap_{i\in B}A_i\right) = \prod_{i\in S}P(A_i)$$

- 5 Discrerte Random Variables
- 5.1 Probability Mass Function
- 5.1.1 Definition

$$P_X(x) = P(X = x)$$

- 5.2 Cumulative Distribution Function
- 5.2.1 Definition

$$F_X(x) = P(X \le x)$$

- 5.3 Expectation
- 5.3.1 Definition

$$E[X] = \sum_{x} x P_X(x)$$

- 5.4 Variance
- 5.4.1 Definition

$$Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

5.4.2 Standard Deviation

Definition:

$$\sigma_X = \sqrt{Var[X]}$$

5.5 nth Moment

5.5.1 Definition

$$E[X^n]$$

5.6 Functions of Random Variables

Let Y = g(X) then we have:

Theorem:

$$P_Y(y) = \sum_{\{x | g(x) = y\}} P_X(x)$$

5.6.1 Expectation for Functions of Random Variables

Theorem:

$$E[g(X)] = \sum_{x} g(x) P_X(x)$$

5.6.2 Linear Function of a Random Variable

Let Y = aX + b then:

Theorem:

$$E[Y] = aE[X] + b$$
$$Var[Y] = a^{2}Var[X]$$

5.7 Joint PMF

5.7.1 Definition

$$P_{X,Y}(x,y) = P(X = x, Y = y)$$

5.7.2 Marginal PMF

Theorem:

$$P_X(x) = \sum_{y} P_{X,y}(x,y)$$
$$P_Y(y) = \sum_{x} P_{X,y}(x,y)$$

5.7.3 Functions of Multiple Random Variable

Let Z = g(X, Y) then:

Theorem:

$$P_{Z}(z) = \sum_{\{(x,y)|g(x,y)=z\}} P_{X,Y}(x,y)$$

$$E[g(x,y)] = \sum_{x} \sum_{y} g(x,y) P_{X,Y}(x,y)$$

$$E[aX + bY + c] = aE[X] + bE[Y] + c$$

5.8 Conditional PMF on Events

5.8.1 Definition

$$P_{X|A}(x) = P(X = x|A) = \frac{P(\{X = x\} \cap A)}{P(A)}$$

Theorem:

$$P_X(x) = \sum_{i=1}^{n} P(A_i) P_{X|A_i}(x)$$

5.9 Conditional PMF on Random Variable

5.9.1 Definition

$$P_{X|Y}(x|y) = P(X = x|Y = y)$$

$$= \frac{P(X = x, Y = y)}{P(Y = y)}$$

$$= \frac{P_{X,Y}(x,y)}{P_{Y}(y)}$$

Theorem:

$$P_{X,Y}(x,y) = P_Y(y)P_{X|Y}(x|y)$$

$$P_X(x) = \sum_{y} P_Y(y)P_{X|Y}(x|y)$$

5.10 Conditional Expectation

5.10.1 Definition

$$E[X|A] = \sum_{x} x P_{X|A}(x)$$

Theorem:

$$E[g(x)|A] = \sum_{x} g(x) P_{X|A}(x)$$

If A_1, A_2, \dots, A_n are disjoint partition then:

$$E[X] = \sum_{i=1} P(A_i)E[X|A_i]$$

- 5.11 Independence of a Random Variable from an Event
- 5.11.1 Definition

$$P_{X|A}(x) = P_X(x)$$

- 5.12 Independence of a Random Variable from a Random Variable
- 5.12.1 Definition

$$P_{X|Y}(x|y) = P_X(x)$$

Theorem:

If X and Y are independent then:

$$\begin{split} E[X|Y] &= E[X]E[Y] \\ E[g(X)h(Y)] &= E[g(X)]E[h(Y)] \\ Var[X+Y] &= Var[X] + Var[Y] \end{split}$$

- 5.13 Conditional Independence
- 5.13.1 Definition

$$P_{X,Y|A}(x,y) = P_{X|A}(x)P_{Y|A}(y)$$

- 6 Continuous Random Variable
- 6.1 Probability Density Function(PDF)
- 6.1.1 Definition

$$P(X \in B) = \int_{B} f_{X}(x)dx$$
$$f_{X}(x) isPDF$$

- 6.2 Expectation
- 6.2.1 Definition

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

Theorem:

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

6.3 Variance

6.3.1 Definition

$$Var[X] = E[(X - E[X])^2]$$

Theorem:

$$Var[X] = \int_{-\infty}^{\infty} (x - E[x])^2 f_X(x) dx$$
$$Var[X] = E[X^2] - (E[X])^2$$

If Y = aX + b then we have:

$$E[Y] = aE[X] + b$$
$$Var[Y] = a^{2}Var[X]$$

6.4 Cumulative Distribution Function(CDF)

6.4.1 Definition

$$F_X(x) = P(X \le x) = \begin{cases} \sum\limits_{k \le x} P_X(k) & \text{if X is discrete} \\ \int_{-\infty}^x f_X(t) dt & \text{if X is continuous} \end{cases}$$

6.5 Relation Between CDF and PDF

Theorem:

$$f_X(x) = \frac{dF_X(x)}{dx}$$

6.6 Joint PDF

6.6.1 Definition

$$P((X,Y) \in B) = \int \int_{(x,y)\in B} f_{X,Y}(x,y) dxdy$$
$$f_{X,Y}(x,y) isPDF$$

6.6.2 Marginal PDF

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$
$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dx$$

6.7 Joint CDF

6.7.1 Definition

$$F_{X,Y}(x,y) = P(X \le x, Y \le y)$$
$$= \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(s,t)dtds$$

6.8 Relation Between Joint CDF and Joint PDF

$$f_{X,Y}(x,y) = \frac{\delta^2 F_{X,Y}(x,y)}{\delta x \delta y}$$

6.9 Conditioning a Random Variable on an Event

6.9.1 Definition

$$f_{X|A} = \frac{f_X(x)}{P(X \in A)}$$

If A_1, A_2, \dots, A_n are disjoint partition, then **Theorem:**

$$f_X(x) = \sum_{i=1}^{n} P(A_i) f_{X|A_i}(x)$$

6.10 Joint Conditional PDF

6.10.1 Definition

$$f_{X,Y|C}(x,y) = \frac{f_{X,Y}(x,y)}{P(C)}$$

Theorem:

$$f_{X|C}(x) = \int_{-\infty}^{\infty} f_{X,Y|C}(x,y)dy$$

6.11 Conditioning a Random Variable on another Random Variable

6.11.1 Definition

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Theorem:

$$P(X \in A|Y = y) = \int_{A} f_{X|Y}(x|y)dx$$

6.12 Condition Expectation

6.12.1 Definition

$$E[X|A] = \int_{-\infty}^{\infty} x f_{X|A}(x) dx$$
$$E[X|Y=y] = \int_{-\infty}^{\infty} x f_{X|Y}(x|y) dx$$

Theorem:

$$\begin{split} E[g(X)|A] &= \int_{-\infty}^{\infty} g(x) f_{X|A}(x) dx \\ E[g(X)|Y &= y] &= \int_{-\infty}^{\infty} g(x) f_{X|Y}(x|y) dx \end{split}$$

6.13 Total Expectation Theorem

$$E[X] = \sum_{i=1}^{n} P(A_i) E[X|A_i]$$
$$E[X|Y=y] = \int_{-\infty}^{\infty} E[X|Y=y] f_Y(y) dy$$

6.14 Independence

6.14.1 Definition

$$f_{X|Y}(x|y) = f_X(x)$$

If X, Y independent then:

Theorem:

$$f_{X,Y}(x,y) = f_X(x), f_Y(y)$$

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

$$E[XY] = E[X]E[Y]$$

$$E[g(X)h(Y)] = E[g(X)]E[h(Y)]$$

$$Var[X+Y] = Var[X] + Var[Y]$$

6.15 Bayes' Rule for Continuous Random Variable

If X is *continuous*, then:

$$f_Y(y)f_{X|Y}(x|y) = f_X(x)f_{Y|X}(y|x)$$

$$and$$

$$f_{X|Y}(x|y) = \frac{f_X(x)f_{Y|X}(y|x)}{f_Y(y)}$$

$$= \frac{f_X(x)f_{Y|X}(y|x)}{\int_{-\infty}^{\infty} f_X(t)f_{Y|X}(y|t)dt}$$

If N is discrete, then:

$$\begin{split} f_Y(y)P(N = n|Y = y) &= P_N(n)f_{Y|N}(y|n) \\ P(N = n|Y = y) &= \frac{P_N(n)f_{Y|N}(y|n)}{f_Y(y)} = \frac{P_N(n)f_{Y|N}(y|n)}{\sum_i P_N(i)f_{Y|N}(y|i)} \\ f_{Y|N}(y|n) &= \frac{f_Y(y)P(N = n|Y = y)}{P_N(n)} = \frac{f_Y(y)P(N = n|Y = y)}{\int_{-\infty}^{\infty} f_Y(t)P(N = n|Y = t)dt} \end{split}$$

7 Further Topics on Random Variables

7.1 Calculating PDF of Y=g(X) from Continuous RV X

• Step1. Calculate CDF F_Y

$$F_Y(y) = P(g(x) \le y) = \int_{\{x | g(x) \le y\}} f_X(x) dx$$

• Step2. Differentiate to obtain PDF f_Y

$$f_Y(y) = \frac{dF_Y(y)}{dy}$$

7.2 Convelution

If Z = X + Y, and X, Y are independent.

When discrete:

$$P_Z(z) = \sum_x P_X(x)P_Y(z-x)$$

When continuous:

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

7.3 Covariance

7.3.1 Definition

$$Cov(X,Y) = E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Theorem:

$$Cov(X, X) = Var[X]$$

$$Cov(X, aY + b) = a \cdot Cov(X, Y)$$

$$Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)$$

7.4 Correlation Coefficient

7.4.1 Definition

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var[X]Var[Y]}} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$$

7.5 Variance of the Sum of Random Variables

Theorem:

$$Var[X_1 + X_2] = Var[X_1] + Var[X_2] + 2Cov(X_1, X_2)$$
$$Var\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} Var[X_i] + \sum_{\{(i,j)|i\neq j\}} Cov(X_i, X_j)$$

7.6 Conditional Expectation and Variance Revisited

7.6.1 Law of Iterated Expectation

$$E[E[X|Y]] = E[X]$$

7.6.2 Law of Total Variance

$$Var[X] = E[Var[X|Y]] + Var[E[X|Y]]$$

7.7 Moment Generating Function

7.7.1 Definition

$$M_X(s) = E[e^{sX}]$$

When discrete:

$$M_X(s) = \sum_{x} e^{sx} P_X(x)$$

When continuous:

$$M_X(s) = \int_{-\infty}^{\infty} e^{sx} f_X(x) dx$$

Theorem:

If Y = aX + b then we have:

$$M_Y(s) = E[e^{s(aX+b)}] = e^{sb}M_X(sa)$$

7.7.2 From MGF to Moments

$$\left. \frac{d^n M_X(s)}{d_{s^n}} \right|_{s=0} = \int_{-\infty}^{\infty} x^n f_X(x) dx = E[x^n]$$

7.7.3 MGF of Independent Random Variables

Theorem:

If X, Y independent , Z = X + Y then:

$$M_Z(s) = M_X(s)M_Y(s)$$

Generalization: If $Z = X_1 + \cdots + X_n$ then:

$$M_Z(s) = M_{X_1}(s) \cdots M_{X_n}(s)$$

8 Limit Theorems

8.1 Markov Inequality

If a randown variable X can only take nonnegative values, then:

$$P(X \ge a) \le \frac{E[X]}{a}$$
, for all $a > 0$

8.2 Chebyshev's Inequality

If X is a random variable with mean u and variance σ^2 , then:

$$P(|X-u| \ge c) \le \frac{\sigma^2}{c^2}$$
, for all $c > 0$

Corollary:

Let $C = k\sigma$ we have:

$$P(|X - u| \ge k\sigma) \le \frac{1}{k^2}$$

8.3 The weak law of large numbers

Let X_1, X_2, \cdots be a sequence of independent identically distributed random variables with mean u, For every $\varepsilon > 0$, we have:

$$P(|M_n - u| \ge \varepsilon) = P\left(\left|\frac{X_1 + \dots + X_n}{n} - u\right| \ge \varepsilon\right) \to 0, \ as \ n \to \infty$$

8.4 Convergence in Probability

Let Y_1, Y_2, \cdots be a sequence of random variables (not necessary independent) and let a be a real number, we say that the sequence Y_n converges to a in probability, if for every $\varepsilon > 0$ we have:

$$\lim_{n \to \infty} P(|Y_n - a| \ge \varepsilon) = 0$$

8.5 Convergence with Probability 1

Let Y_1, Y_2, \cdots be a sequence of random variables(not necessary independent) and let c be a real number, we say that Y_n convergeces to c with probability 1 if:

$$P\left(\lim_{n\to\infty} Y_n = c\right) = 1$$

8.6 The Strong Law of Large Numbers

Let X_1, X_2, \cdots be a sequence of independent identically distributed random variables with mean u. Then, the sequence of sample means $M_n = (X_1 + \cdots + X_n)/n$ converges to u with probability 1, that is

$$P\left(\lim_{n\to\infty}\frac{X_1+\dots+X_n}{n}=u\right)=1$$

8.7 Central Limit Theorem

Let X_1, X_2, \cdots be a sequence of independent identically distributed random variables with common mean u and variance σ^2 ,

Define $S_n = \sum_{i=1}^n X_i$ then:

$$\lim_{n \to \infty} P\left(\frac{S_n}{\sigma\sqrt{n}} \le x\right) = \Phi(x) , -\infty < x < \infty$$

9 References

1. Introduction to Probability, 2nd Edition, by Dimitri P. Betsekas and John N. Tsitsiklis, 2008, ISBN 978-1-886529-23-6