Matgeo Q.9.2.26

Harshvardhan Patidar - Al24BTECH11015 Dept. of Artificial Engg.

November 5, 2024

- Problem
- 2 Solution
 - Variables Used
 - General equation of a Conic in Matrix form
 - Parameters for given parabola
 - Matrix Parameters of given Parabola
 - Line Parameters
 - Points of Intersection
 - Calculating Area

Problem Statement

Find the area of the region included between $y^2 = 9x$ and y = x.

Variables Used

Variable	Description
е	Eccentricity of conic
F	Focus of conic
ı	Identity matrix
$\mathbf{n}^{T}\mathbf{x} = c$	Equation of directrix
n	Slope of normal to directrix
V	A symmetric matrix given by eigenvalue decomposition

Table: Variables

General equation of a Conic in Matrix Form

The general equation of a conic with directrix $\mathbf{n}^{\top}\mathbf{x} = c$, Focus **F** and eccentricity e is given by

$$g(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{V} \mathbf{x} + 2 \mathbf{u}^{\mathsf{T}} \mathbf{x} + f = 0 \tag{3.1}$$

where,

$$\mathbf{V} = \|\mathbf{n}\|^2 \mathbf{I} - e^2 \mathbf{n} \mathbf{n}^{\top} \tag{3.2}$$

$$\mathbf{u} = c\mathbf{e}^2\mathbf{n} - \|\mathbf{n}\|^2\mathbf{F} \tag{3.3}$$

$$f = \|\mathbf{n}\|^2 \|\mathbf{F}\|^2 - c^2 e^2 \tag{3.4}$$

Parameters for given parabola

For the parabola $y = 9x^2$, and,

directrix is
$$\begin{pmatrix} -1 & 0 \end{pmatrix} \mathbf{x} = \frac{9}{4}$$
 (3.5)

Focus
$$\mathbf{F} = \begin{pmatrix} \frac{9}{4} \\ 0 \end{pmatrix}$$
 (3.6)

and, eccentricity
$$e = 1$$
. (3.7)

Matrix Parameters of given Parabola

We can now find V, u, and f to represent given parabola in the matrix equation form given in 3.1.

From 3.2, we have

$$\mathbf{V} = \mathbf{I} - \begin{pmatrix} -1 \\ 0 \end{pmatrix} \begin{pmatrix} -1 & 0 \end{pmatrix} \implies \mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
 (3.8)

$$\mathbf{u} = \frac{9}{4} \begin{pmatrix} -1\\0 \end{pmatrix} - \begin{pmatrix} \frac{9}{4}\\0 \end{pmatrix} \implies \mathbf{u} = \begin{pmatrix} -\frac{9}{2}\\0 \end{pmatrix}$$
 (3.9)

$$f = \left(\frac{9}{4}\right)^2 - \left(\frac{9}{4}\right)^2 \implies f = 0 \tag{3.10}$$

Line Parameters

The given line y = x can be represented in matrix form

$$\mathbf{x} = \mathbf{h} + \kappa \mathbf{m} \tag{3.11}$$

where

$$\mathbf{h} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{3.12}$$

$$\mathbf{m} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{3.13}$$

Points of Intersection

The points of intersection of line and conic are given by

$$\mathbf{x} = \mathbf{h} + \kappa_i \mathbf{m} \tag{3.14}$$

where

$$\kappa_{i} = \frac{1}{\mathbf{m}^{\top} \mathbf{V} \mathbf{m}} \left(-\mathbf{m}^{\top} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \pm \sqrt{\left[\mathbf{m}^{\top} \left(\mathbf{V} \mathbf{h} + \mathbf{u} \right) \right]^{2} - g\left(\mathbf{h} \right) \left(\mathbf{m}^{\top} \mathbf{V} \mathbf{m} \right)} \right)$$
(3.15)

On putting values in 3.15, we get

$$\kappa_i = 0.9 \tag{3.16}$$

Using 3.16 in 3.14, we get points of intersection as $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 9 \\ 9 \end{pmatrix}$

Calculating Area

The area between the line and the parabola is given by

$$\int_{0}^{9} 3\sqrt{x} \, dx - \int_{0}^{9} x \, dx = \left(2(9)^{3/2} - 2(0)^{3/2}\right) - \left(\frac{(9)^{2}}{2} - \frac{(0)^{2}}{2}\right)$$

$$= (2 \cdot 27 - 0) - \left(\frac{81}{2} - 0\right)$$

$$= \frac{27}{2} \tag{3.17}$$

So, the area between the given parabola $y^2 = 9x$ and the line y = x is $\frac{27}{2}$.