

Mecanismos de interconexão Arquitetura de Computadores

Bruno Prado

Departamento de Computação / UFS

Por que são necessários mecanismos de interconexão em computadores?

- Por que são necessários mecanismos de interconexão em computadores?
 - Para suportar a transferência de dados entre os dispositivos da plataforma, como processador, memória ou periféricos de E/S

- Por que são necessários mecanismos de interconexão em computadores?
 - Para suportar a transferência de dados entre os dispositivos da plataforma, como processador, memória ou periféricos de E/S

O barramento é uma das principais formas de interconectar os componentes da plataforma

- Interconexão com barramentos
 - Conectam todos os componentes do sistema com modos de operação assíncrono (protocolo) ou síncrono (relógio) e diferentes organizações

- Interconexão com barramentos
 - Conectam todos os componentes do sistema com modos de operação assíncrono (protocolo) ou síncrono (relógio) e diferentes organizações
- √ Escalabilidade
- ✓ Baixo custo

- Interconexão com barramentos
 - Conectam todos os componentes do sistema com modos de operação assíncrono (protocolo) ou síncrono (relógio) e diferentes organizações
- Escalabilidade X Gargalo (congestionamento)
- Baixo custo X Concorrência (retenção)

- Modos de operação de barramento
 - Síncrono
 - Com uma referência de tempo (horários de aulas), os dispositivos sincronizam a transferência de dados

13:00	Aula I
15:00	Aula 2
17:00	Aula 3

- Modos de operação de barramento
 - Síncrono
 - Com uma referência de tempo (horários de aulas), os dispositivos sincronizam a transferência de dados

13:00	Aula I
15:00	Aula 2
11:00	Aula 3

- Assíncrono
 - Através de um protocolo de comunicação (semáforo de trânsito), são definidas as etapas da comunicação

- Papel dos dispositivos no barramento
 - Mestre: iniciam ou solicitam as transações para o barramento, como o processador ou DMA
 - Escravo: atendem ou respondem as transações do barramento, como a memória ou periférico

- Papel dos dispositivos no barramento
 - Mestre: iniciam ou solicitam as transações para o barramento, como o processador ou DMA
 - Escravo: atendem ou respondem as transações do barramento, como a memória ou periférico

As transações de escrita e leitura de dados no barramento são atômicas

- Sinais de reinicialização e sincronismo
 - Reinicialização (reset)
 - Restaura uma condição ou estado inicial do sistema
 - Pode ser utilizado para limitação de tempo (timeout) ou de recuperação de falha (fail recovery)

- Sinais de reinicialização e sincronismo
 - Reinicialização (reset)
 - Restaura uma condição ou estado inicial do sistema
 - Pode ser utilizado para limitação de tempo (timeout) ou de recuperação de falha (fail recovery)
 - ▶ Sincronismo (clock)
 - Simplifica o projeto de circuitos digitais através de uma referência de ciclo de relógio para todas as operações
 - Implementado como uma onda quadrada de 1 bit com período igual ao inverso da frequência

- Sinais de reinicialização e sincronismo
 - Reinicialização (reset)
 - Restaura uma condição ou estado inicial do sistema
 - Pode ser utilizado para limitação de tempo (timeout) ou de recuperação de falha (fail recovery)
 - ► Sincronismo (*clock*)
 - Simplifica o projeto de circuitos digitais através de uma referência de ciclo de relógio para todas as operações
 - Implementado como uma onda quadrada de 1 bit com período igual ao inverso da frequência

$$T = \frac{1}{f} = \frac{1}{2.4 \text{ GHz}} = \frac{1}{2.4 \times 10^9} \approx 0,42 \text{ ns}$$

- Diagrama de tempo
 - Especifica o comportamento de sinais no tempo

- A estrutura lógica de um barramento consiste em uma série de linhas de controle e dados
 - Controle + Endereçamento + Dados

- Linha de controle
 - Define que operação será realizada pela transação
 - Escrita e leitura de memória (código e dados) ou de dispositivos conectados ao barramento (E/S)
 - Gerenciamento de interrupção

- Linha de controle
 - Define que operação será realizada pela transação
 - Escrita e leitura de memória (código e dados) ou de dispositivos conectados ao barramento (E/S)
 - Gerenciamento de interrupção
 - Sequência de controle de uma transação
 - Requisição de operação (request)
 - Concessão de permissão (grant)
 - Reconhecimento de requisição (acknowledgement)

- Linha de endereço
 - Armazena o endereço de origem ou destino do dispositivo que será acessado no barramento

# Bits	Endereçamento
8	0x00
	-
	OxFF
16	0x0000
	-
	OxFFFF
32	0x00000000
	-
	OxFFFFFFF
64	0x000000000000000000000000000000000000
	-
	OxFFFFFFFFFFFFF

- Linha de dados
 - É o caminho para transferência dos dados entre os componentes da plataforma, com principal parâmetro a quantidade de bits que podem ser transmitidos ou a largura do barramento

- Linha de dados
 - É o caminho para transferência dos dados entre os componentes da plataforma, com principal parâmetro a quantidade de bits que podem ser transmitidos ou a largura do barramento
 - Apesar do fluxo bidirecional, a recepção e transmissão podem não acontecer simultaneamente
 - ► Mestre → Escravo (escrita)
 - ▶ Mestre ← Escravo (leitura)

- Arbitração de barramento
 - É necessário quando existe no sistema mais de um dispositivo mestre no barramento, o que pode causar inconsistências em acessos concorrentes

- Arbitração de barramento
 - É necessário quando existe no sistema mais de um dispositivo mestre no barramento, o que pode causar inconsistências em acessos concorrentes
 - Sequência de controle
 - 1. Um dos dispositivos mestre ganha exclusividade para acesso do barramento, bloqueando os demais (lock)

- Arbitração de barramento
 - É necessário quando existe no sistema mais de um dispositivo mestre no barramento, o que pode causar inconsistências em acessos concorrentes
 - Sequência de controle
 - Um dos dispositivos mestre ganha exclusividade para acesso do barramento, bloqueando os demais (lock)
 - 2. É feita a transferência dos dados entre os dispositivos

- Arbitração de barramento
 - É necessário quando existe no sistema mais de um dispositivo mestre no barramento, o que pode causar inconsistências em acessos concorrentes
 - Sequência de controle
 - Um dos dispositivos mestre ganha exclusividade para acesso do barramento, bloqueando os demais (lock)
 - 2. É feita a transferência dos dados entre os dispositivos
 - 3. Com o término da transação, o barramento é liberado para acesso dos outros dispositivos mestres (*unlock*)

- Método centralizado de arbitração
 - O árbitro centralizado define a prioridade dos dispositivos mestres para acessar o barramento

- Método descentralizado de arbitração
 - É feito um controle colaborativo para acesso dos dispositivos mestres ao barramento

- A estrutura física de um barramento pode ser implementada através de linhas paralelas e seriais
 - Podem existir linhas dedicadas para sincronismo de reinicialização (reset) e relógio (clock)

- A estrutura física de um barramento pode ser implementada através de linhas paralelas e seriais
 - Podem existir linhas dedicadas para sincronismo de reinicialização (reset) e relógio (clock)
 - Em linhas compartilhadas, é utilizada a técnica de multiplexação para chaveamento de função

- A estrutura física de um barramento pode ser implementada através de linhas paralelas e seriais
 - Podem existir linhas dedicadas para sincronismo de reinicialização (reset) e relógio (clock)
 - Em linhas compartilhadas, é utilizada a técnica de multiplexação para chaveamento de função
 - Na comunicação paralela, todos os bits são transmitidos simultaneamente, enquanto que na transmissão serial, os bits são enviados um bit por vez

- Tipos de linhas físicas de interconexão
 - Dedicadas
 - São meios físicos exclusivas para certos tipos de dados
 - Apresenta baixa retenção e grande vazão de dados, porém com área física e custos de produção maiores

- Tipos de linhas físicas de interconexão
 - Dedicadas
 - São meios físicos exclusivas para certos tipos de dados
 - Apresenta baixa retenção e grande vazão de dados, porém com área física e custos de produção maiores
 - Multiplexadas
 - Permitem por um tempo determinado o compartilhamento do meio físico de transmissão
 - Possui área física e custo reduzidos, entretanto, o compartilhamento reduz o desempenho

- Linhas de dados dedicadas ou paralelas
 - ► Controle (1) + Endereço (32) + Dados (32 + 32)

- Linhas de dados dedicadas ou paralelas
 - ► Controle (1) + Endereço (32) + Dados (32 + 32)

Comunicação full-duplex com 97 linhas dedicadas

- Linhas de dados dedicadas ou paralelas
 - Cada sinal possui sua própria linha

- Linhas multiplexadas ou seriais
 - ► Controle (1) + Endereço/dados (32)

Estrutura física

- Linhas multiplexadas ou seriais
 - Controle (1) + Endereço/dados (32)

Comunicação *half-duplex* com 33 linhas físicas, representando uma redução de 66% das linhas e demandando o dobro da frequência de operação para ter o mesmo desempenho com relação à dedicada

Estrutura física

- Linhas multiplexadas ou seriais
 - Os sinais são intercalados em linhas compartilhadas

- Os eventos do barramento são coordenados com utilização de ciclos de relógio (clock)
 - Os sinais de dados são sincronizados pelo relógio

- Os eventos do barramento são coordenados com utilização de ciclos de relógio (clock)
 - Os sinais de dados s\u00e3o sincronizados pelo rel\u00f3gio

A transmissão pode ser paralela ou serial

- Serial Peripheral Interface (SPI)
 - Desenvolvido pela Motorola
 - Comunicação full-duplex serial

- ► Serial CLock (SCL)
- Master Output Slave Input (MOSI)
- Master Input Slave Output (MISO)
- Slave Select (SS)

- Serial Peripheral Interface (SPI)
 - Envio e recepção dos dados

 Frequência de SCL fixada entre 1 e 100 MHz e seleção do escravo (SS) ativado em nível negativo

- Serial Peripheral Interface (SPI)
 - Envio e recepção dos dados

 Frequência de SCL fixada entre 1 e 100 MHz e seleção do escravo (SS) ativado em nível negativo

- Comunicação síncrona
 - Vantagens
 - ✓ Alto desempenho
 - √ Menor complexidade

- Comunicação síncrona
 - Vantagens
 - ✓ Alto desempenho
 - √ Menor complexidade
 - Desvantagens
 - X Menor flexibilidade de uso
 - X Taxa fixa de transmissão

Aplicações

- Padrões síncronos de comunicação
 - ► Inter-Integrated Circuit (I2C)
 - Projetado pela Philips
 - Conexão e controle de periféricos com baixa velocidade (SDRAM, DAC/ADC, LCD, ...)
 - Controller Area Network (CAN)
 - Desenvolvido pela Bosch
 - Utilizado em componentes eletrônicos da indústria automotiva (Direção elétrica, airbags, ABS, ...)
 - Local Interconnect Network (LIN)
 - Criado por BMW, VW, Volvo e Daimler-Chrysler
 - Alternativa mais barata ao CAN

- Neste tipo de barramento os dados são transmitidos através de um protocolo de comunicação
 - ▶ É feita a sinalização do início e término da transmissão

- Neste tipo de barramento os dados são transmitidos através de um protocolo de comunicação
 - ▶ É feita a sinalização do início e término da transmissão

A transmissão pode ser paralela ou serial

- Recommended Standard 232 (RS-232)
 - Desenvolvido pela Electronic Industries Alliance
 - Comunicação full-duplex serial

- ► Transmissão (TX)
- Recepção (RX)

- Recommended Standard 232 (RS-232)
 - ► Envio e recepção dos dados

- Recommended Standard 232 (RS-232)
 - Envio e recepção dos dados

- Recommended Standard 232 (RS-232)
 - Envio e recepção dos dados

- Recommended Standard 232 (RS-232)
 - Envio e recepção dos dados

- Recommended Standard 232 (RS-232)
 - ► Envio e recepção dos dados

- Recommended Standard 232 (RS-232)
 - Envio e recepção dos dados

- Comunicação assíncrona
 - Vantagens
 - ✓ Flexibilidade de uso
 - ✓ Taxa variável de transmissão

- Comunicação assíncrona
 - Vantagens
 - √ Flexibilidade de uso
 - ✓ Taxa variável de transmissão
 - Desvantagens
 - X Maior complexidade
 - X Menor vazão de dados

Aplicações

- Padrões assíncronos de comunicação
 - Universal Serial Bus (USB)
 - Criado por consórcio Compaq, DEC, IBM, Intel, Microsoft, NEC e Nortel
 - Padronização de interface para conexão, cabos e comunicação de dispositivos
 - Ethernet
 - Desenvolvido pela Xerox PARC
 - Adotado em redes de computadores e os dados são agrupados em quadros (frames)
 - Asynchronous Transfer Mode (ATM)
 - Definido pelo ANSI e ITU
 - Conjunto de padrões para transmissão de voz, dados e vídeo com dados em células (cells)

 O barramento possui o objetivo principal de interconectar todos os componentes do sistema

Eficiência, escalabilidade e padronização

- Apesar da escalabilidade ser um requisito importante, um número grande de componentes interconectados geram alguns problemas
 - ► + Conexões → + Extensão física
 - Maior atraso na propagação dos sinais elétricos
 - Redução de desempenho da comunicação

- Apesar da escalabilidade ser um requisito importante, um número grande de componentes interconectados geram alguns problemas
 - ► + Conexões → + Extensão física
 - Maior atraso na propagação dos sinais elétricos
 - Redução de desempenho da comunicação
 - Diferentes dispositivos no mesmo barramento
 - Tráfego excessivo por dispositivos de alto desempenho
 - Periféricos lentos causam grande retenção

- O que é hierarquia de barramento?
 - É a utilização de múltiplos barramentos, com diferentes especificações e requisitos que são interconectados por pontes (bridges)

- O que é hierarquia de barramento?
 - É a utilização de múltiplos barramentos, com diferentes especificações e requisitos que são interconectados por pontes (bridges)
 - ✓ Menor extensão física
 - √ Isolamento do tráfego
 - √ Tempo mais uniforme

Sistema com múltiplos barramentos

- Padrões de barramento hierárquico
 - Industry Standard Architecture (ISA)
 - Comunicação paralela
 - ► Taxa máxima de 16 MB/s e uso industrial (PC-104)
 - Peripheral Component Interconnect Express (PCI-Express)
 - Comunicação serial
 - ► Taxa máxima de 32 GB/s com diversos usos
 - Advanced Microcontroller Bus Architecture (AMBA)
 - Comunicação paralela
 - ▶ Uso embarcado em *System-on-Chip* (SoC)
 - **.**..

Interconexão em rede

- Network-on-Chip (NoC)
 - Comunicação baseada em pacotes com interfaces síncronas e assíncronas, baseado em redes mesh

Interconexão em rede

- Network-on-Chip (NoC)
 - Comunicação baseada em pacotes com interfaces síncronas e assíncronas, baseado em redes mesh

- NoC x Barramento
 - √ Maior escalabilidade
 - ✓ Flexibilidade de projeto
 - ✓ Redução no consumo de potência