

CUSTOMIZING OPENAI GYM ENVIRONMENTS AND IMPLEMENTING REINFORCEMENT LEARNING AGENTS WITH STABLE BASELINES

Introduction to Intelligent and Autonomous Systems

DEVELOPED BY

Catarina Monteiro - 202105279

Gonçalo Monteiro - 202105821

Lara Sousa - 202109782

Overview

- The aim of this project was to introduce specific changes or customizations to the environment Bipedal Walker, from box2D, and train a reinforcement learning agent using the Stable Baselines library.
- The goal is to assess how these changes impact the agent's learning process and performance.

The environment chosen's characteristics

Action Space

• Actions are motor speed values in the [-1, 1] range for each of the 4 joints at both hips and knees.

Rewards

• Reward is given for moving forward, totaling 300+ points up to the far end. If the robot falls, it gets -100. Applying motor torque costs a small amount of points. A more optimal agent will get a better score.

States

 The initial state places the robot standing at the left end with a horizontal hull, legs in a specific position, and a slight knee angle. Episodes end if the hull touches the ground or the robot exceeds the terrain length (200 steps) to the right.

Percepts (Observations)

• Observations include various details such as hull angle speed, angular velocity, horizontal and vertical speed, joint positions, joint angular speed, leg contact with the ground, and lidar range measurements.

Changes made to the agent

- Density of the hull;
- Changing the penalties of the actions; (Creation of a penalty for sudden movements the values were changes to optimize it)

Changes made to the environment

RL algorithms chosen

- PPO;
- TQC;
- A2C;
- RecurrentPPO;

This changes were made as a "measure" of the robustness of the model

- Addition of humps;
- Addition of ditches;

Approach taken

(for each of the 3) was

chosen

Hull changes

PPO_head_attempt1_0

PP0_head_attempt2_0

PPO_head_attempt3_0

Penalties changes

Hull Density_2 - Wrappers_2 - Hull Density_2 and Wrappers_2

A2C - TQC - PPO - RPPO - Original

The best model's performance and robustness test

TQC - positive performance

TQC - negative performance

TQC - robustness test

Conclusions

- It was concluded that the modification that improved the model the most has the decreasing of the hull density.
- As for the algorithms, PPO and TQC were the ones with best performance.
- In sum it was concluded that the best Reinforcement Learning algorithm was TQC, eventhoug it colapsed at 6M.
- TQC reached over 300+ points, which means, it exceeded the maximum reward expected.
- On the future, to obtain a better and more robust model, we should take an similar approach but train the model with more timesteps as well as train the model in a environment with obstacles, so that it is possible for the model to try other exploits