Midterm Cheat Sheet

Linear Regression

Given an input $X = \{x_1, \dots, x_n\}$, and output y,

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n$$

where β_0 is intercept, and $B = \{\beta_0, \beta_1, \dots, \beta_n\}$ are model coefficients.

Polynomial Regression

Given an input x, output y, and degree d

$$y = \beta_0 + \beta_1 x^1 + \dots + \beta_n x^n$$

where β_0 is intercept, and $B = \{\beta_0, \beta_1, \dots, \beta_n\}$ are model coefficients.

Logical Regression

Given an input $X = \{x_1, \dots, x_n\}$, weights $W = \{w_0, w_1, \dots, w_n\}$, and threshold t,

$$z = w_0 + w_1 x_1 + \dots + w_n x_n$$
$$y = \begin{cases} 1 & \text{if Sigmoid}(z) >= t \\ 0 & \text{if Sigmoid}(z) < t \end{cases}$$

Regularization

$$\sum_{i=1}^{M} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{M} (y_i - \sum_{j=0}^{N} w_j \cdot x_{ij})^2 + R$$

where, R is the regularization term.

L1 Regularization

$$R_{L1} = \lambda \sum_{j=0}^{N} |w_j|$$

L2 Regularization

$$R_{L2} = \lambda \sum_{j=0}^{N} w_j^2$$

Midterm Cheat Sheet

Multilayer Perceptron Model

Given an input $X = \{x_1, \dots, x_n\}$, bias $x_0 = 1$, and weights $W = \{w_0, w_1, \dots, w_n\}$,

$$z = w_0 + w_1 x_1 + \dots + w_n x_n$$

 $y = \text{Activation}(z)$

Activation Functions:

- BinaryStep(z) = $\begin{cases} 1 & \text{if } z >= 0 \\ 0 & \text{if } z < 0 \end{cases}$
- Sigmoid(z) = $\frac{1}{1 + e^{-z}}$
- $\bullet \quad \text{ReLU}(z) = \begin{cases} z & \text{if } z >= 0 \\ 0 & \text{if } z < 0 \end{cases}$
- LeakyReLU(z) = $\begin{cases} z & \text{if } z >= 0\\ 0.01z & \text{if } z < 0 \end{cases}$
- $\bullet \quad \tanh(z) = \frac{e^{2z} 1}{e^{2z} + 1}$

Residual Sum of Squares (RSS)

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \sum_{i=1}^{n} (y_i - w^T x_i)^2$$

Ordinary Least Squares (OLS) method

$$w \stackrel{\Delta}{=} argmin_w RSS = argmin_w (\sum_{i=1}^{m} (y_i - w^T x_i)^2)$$

Gradient Descent Method

Given w_j is current rate, $\frac{\delta RSS}{\delta w_j}$ is gradient, and α is learning rate, new weight w_j' is given by,

$$w_j' = w_j - \alpha \frac{\delta RSS}{\delta w_j}$$

- · 1. False . there is no Xi and Xi3 terms

 not all input's new degree terms are

 present.

 2. 6
 - 3. C.

1+e4.5 =0.01 -> signoid

relu: 0

4. N.: NAND Nz: DR Overall: XNOR 4. Long. X, X2 only o it x = x = 1 > 0.5 o.w. $N_1 = 1 - 0.5 \times 1 - 0.5 \times 2$ N2= -05+15X1+1.5X2 NZ = 1.5-N, -Nz >orry D it neight should increase

6. 0.1567

$$y_1 = -5$$
, $y_1 = 0.5 + 0.8 \times 1 - 0.6 \times 6 - 3$
 $= -5.3$
 $y_2 = 0.4$, $y_2 = 0.5 + 0.8 \times 2 - 0.6 \times 4 + 0.5$
 $= 0.2$
 $y_3 = 6.3$, $y_3 = 0.5 + 0.8 \times 8 - 0.6 \times 2 + 1.5$
 $= 7.2$

$$\frac{1}{2}\left(\frac{(5.3-5)^{2}+(0.4-0.2)^{2}+(7.2-63)^{2}}{3}\right)$$

\$ 0.1567

7. b.

8. d

9. b.

10. classify as 0,0,1, respectuly Z1 = 6.3×1.5+0.4×4-0.9×6 = -3.35 $(\mathcal{C}_{3}) = 0.0338 \Rightarrow classity$ Z2=0.3×7+0.4×3-5-0.9×5 \$ (82)= 0.2689 = classity 33 = 0.3×2+0.4×8-0.9×1 = 2.9 4(83) = 0.9478 -> classify

11. 0

12. C

13. 6.

0.8+0.5 \times 1+0.5 \times 2

Out bug at one \times ; is 1 $\gamma = 1 \quad \text{Since } 0.8 + 0.5 \ge 1$ So OR gate

$$\begin{aligned}
|A. & W^{(t+1)} = Bu^{(t)} B = \begin{bmatrix} 3/4 & 0 \\ 0 & 1/2 \end{bmatrix} \\
& J(w) = \frac{1}{2} w^{T} Aw
\end{aligned}$$

$$\frac{\partial J(w)}{\partial w} = \frac{1}{2} \frac{\partial (w^{T} Aw)}{\partial w}$$

$$= \frac{1}{2} (2Aw)$$

$$= Aw$$

$$\therefore \Delta J(w^{(t)}) = Aw^{(t)}$$

$$w^{(t+1)} = w^{(t)} - \frac{1}{4} \nabla J(w^{(t)})$$

$$= Aw^{(t)}$$

$$= (I - \frac{1}{4}A) w^{(t)}$$

$$= [3/4] w^{(t)}$$

$$= Bw^{(t)}$$

15.

No regularization term in 15.1

15.1 Min $\Sigma (y_i - w^T x_i)^2$ 15.2 Min $\Sigma (y_i - w^T x_i)^2 + \lambda \Sigma w_i^2$ 15.3 Min $\Sigma (y_i - w^T x_i)^2 + \lambda \Sigma_{i=1} |w_i|$ For large χ in 15.2

(c) because W (bias) is unaffected by regularization terms

(1)
$$\vec{e} = y - x \vec{\beta}$$

(1) $\vec{e} = y - x \vec{\beta}$
(2) $\vec{z}_i e_i^* = \vec{e}^{\dagger} \vec{e} = (y - x \hat{p})^T (y - x \hat{p})$
(3) $\vec{e}^{\dagger} \vec{e} = (y - x \hat{p})^T (y - x \hat{p})$
 $= (y^T - \hat{p}^T x^T) (y - x \hat{p})$
 $= y^T y - y^T x \hat{p} - \hat{p}^T x^T y + \hat{p}^T x^T x \hat{p}$
 $\frac{\partial (\vec{e}^{\dagger} \vec{e})}{\partial \vec{p}^*} = 0$ $\frac{\sin(x - \vec{e}^T)}{\cos(x - \vec{e}^T)} = \frac{\sin(x - \vec{e}^T)}{\cos(x - \vec{e}^T)} = \frac{\sin(x - \vec{e}^T)}{\cos(x - \vec{e}^T)} + 2x^T x \hat{p} = 0$
 $\frac{\partial (-2y^T x \hat{p})}{\partial \vec{p}^*} + 2x^T x \hat{p} = 0$
 $\vec{p}^* = (x^T x)^{-1} x^T y$