Feb. 5/19

Example: | Consider non-linear equation x3 = 2x+1 which has root on 1.5. 2 - Using Fixed point method $X_0 = 1.5$

$$X^3 = 2x+1$$
 -0 $f(x) = X^3-2x-1 = 0$

$$X_0 = 1.5$$

$$X_0 = 1.5$$
 I $X_{101} = \frac{1}{\chi^2 - 2} = 9.(X_i)$

		2		
	9,	9 2	93	94
i	X.)C;	X.	Xi
Ø	1.5	1.5	1.5	1.6
l l	1.1875	4	1.632993	1.5874
2	0.33728	0.071429	1.616282	1.61096
3	- 0.4808816	- 0.601279	& converging	a converging
4	- 0.5166579	-0.571847		
5	- 0.586745	-0.597731		
·	DIVERGING	DIVERGING		

$$\mathfrak{I}$$
 $x_{i+1} = \sqrt{\frac{2x+1}{x_i}} = 9_3(x_i)$

$$\mathbb{Z}$$
 $\chi_{i+1} = \sqrt[3]{2x+1} = 94(x_i)$

Example:
$$f(x) = e^{-x} - x$$
 (Initial guess: 0)

$$e^{-x} - x = 0$$

(I)
$$x_{i+1} = e^{-x} = g(x_i)$$

$$\overline{x}$$
 $X_{i+1} = -\ln x = g(x_i)$

$$x = -hx$$

		-4			
	ī	x;	Eal %	18214.	leeli-1
~	Ø	Ø		100.00	
	(1	100		
	2	0.3679		000	
	3	0.6922			
1	4	0.5005			

$$X_{n+1} = X_n + 1 - X_n^2 / 5$$

 $X_{n+1} = \frac{1}{3} \left[3 \times n + 1 - X_n^2 / 5 \right]$

$$g_1 = x + 1 - x^2/5$$
 $g_1' = 1 - 2x/5$
 $g_1'(\sqrt{5}) = |1 - 2(\sqrt{5})| = 0.1056 |2|$
 $g_2 = \frac{1}{3}(3x + 1 - x^2/5)$
 $g_3' = 1 - \frac{2x}{15}$
 $g_3' = 1 - \frac{2x}{15}$
 $g_3'(\sqrt{5}) = |1 - \frac{2(\sqrt{5})}{15}| = 0.701186 |2|$

Example | Newton-Rhapson method to estimate

$$f(x) = e^{-x} - x$$

$$5(x) = -e^{-x} - 1$$

$$X_{i+1} = X_i - \frac{e^{-x} - x_i}{-e^{-x} - 1}$$

$$X_i = X_i - \frac{e^{-x} - x_i}{-e^{-x} - 1}$$

ſ	0.5
2	0.5663

Example Use Newton-Rhapson method to locate

the root of
$$f(x) = x^{10} - 1$$
 and initial guess $x = 0.5$

$$f(x) = x^{\circ} - 1$$

$$\hat{\mathcal{F}}(x) = 10x^{q}$$

į	٠,	x;	Eu (4.)	1		
	Ø	0.5		[.	٥	
	•	61.65	99.632	0	Ü	Ü
1	2	46.485	(1.111)			

i) X;	Eu(1.)
41	1.066624	0.229
42		0.002

Feb. 7/19

Midterm material (to end of lecture)

(true error / approximate error (review for midterm)

$$\frac{3'(x_i)^2}{x_{i-1}-x_i}$$

backward differencing

 $f'(x) \stackrel{?}{=} \frac{f(x_{i+1}) - f(x_i)}{X_{i+1} - X_i}$ Forward differencing

Example | use secont method

$$f(x) = e^{-x} - x$$

X :- (= @

 $X_i = X_0 = 1$

$$X_{i+1} = X_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

$$S(x_{i-1}) = 1$$

 $S(x_i) = e^{-1} - 1$

For true values:
(Given):
Xtrue = 0.56714329

$$X_{i+1} = 1 - (e^{-1})(0-1)$$

$$1 - (e^{-1}-1)$$

$$= 1 - \frac{(-0.6321)(-1)}{1 - (-0.6321)} = 0.612670$$

$$E_{\text{true}} = \frac{|App - frue}{|frue} \times 100 \text{ True} = \frac{0.612670 - 0.367...}{0.567...}$$

$$E_{\text{app}} = \frac{0.612670 - 1}{0.567...} = 63.2$$

- he has to give:

-number of iterations

- initial guesses

- true value (for true error.)