

FIG. 1





FIG. 3



ASSUME STORAGE OF 20 MINUTES OF PLAY TRACK (ty =  $t_0$  + 20 minutes) ON PRIMARY STORAGE, therefore tx =  $t_y$  FF/REW RATE

FIG. 4  $t_{\rm X}$  = TIME AT END OF FF TRACK AND REW TRACK ON PRIMARY STORAGE  $F_0 = FIRST\ FRAME\ IN\ PLAY\ TRACK\ ON\ PRIMARY\ STORAGE\ F_y = LAST\ FRAME\ IN\ PLAY\ TRACK\ ON\ PRIMARY\ STORAGE$ t<sub>0</sub> = TIME AT START OF EACH TRACK ON PRIMARY STORAGE  $t_{y} = TIME$  AT END OF PLAY TRACK ON PRIMARY STORAGE IF FF/REW RATE  $\approx 9 * PLAY$  RATE, THEN  $T_y = 9 * T_X$ 

