

Álgebra Lineal. Prueba de evaluación

1- Pregunta

Se dice que dos matrices A y B son semejantes, si existe una matriz invertible P tal que $B = P^{-1}AP$. Entonces una de las siguientes afirmaciones es falsa.

- A) Si A es invertible y B es semejante a A, entonces B es invertible.
- B) Si A y B son invertibles y semejantes entonces A^{-1} y B^{-1} son semejantes.
- C) Si A es invertible y B es semejante a A, entonces B no tiene porque ser invertible.

A)
$$B^{-1} = P^{-1}A^{-1}P$$

B)
$$A^{-1} = P B^{-1}P^{-1}, B^{-1} = P^{-1}A^{-1}P$$

Falsa C)
$$P^{-1}APP^{-1}A^{-1}P = I$$

2- Pregunta

Sean $A \in M_{mxn}$ y $C \in M_{nxp}$. sobre un cuerpo K. Entonces una de las siguientes afirmaciones no es correcta.

A)
$$(A^t)^t = A$$

B)
$$(\lambda A)^t = \lambda A^t$$
 para todo λ perteneciente a K .

C)
$$(A.C)^t = A^t.C^t$$

No es correcta C)
$$(A.C)^t = C^t.A^t$$
 A= $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}$

3- Pregunta

Sea A una matriz mxp y sea B una matriz pxn. Entonces:

i)
$$rango(A.B) \leqslant rango(A)$$
 y $rango(A.B) > rango(B)$.

ii)
$$rango(A.B) \leqslant rango(A)$$
 $\lor rango(A.B) > rango(A)$.

iii)
$$rango(A.B) \leqslant rango(A) \lor rango(A.B) \leqslant rango(B)$$
.

¿Cuántas de estas afirmaciones son correctas?

A) Una. B) Dos. C) Tres.

Correcta A) Es la iii) $rango(A.B) \leqslant min\{rango(A), rango(B)\}$

4- Pregunta

- ¿Cuántas de las siguientes afirmaciones son correctas?
- i) Aplicando una operación elemental a un sistema homogéneo, resulta otro sistema homogéneo.
- ii) Si dos sistemas son equivalentes y uno de ellos es homogéneo, el otro también lo es.
- iii) Todo sistema lineal homogéneo compatible indeterminado tiene más incógnitas que ecuaciones.
 - A) Una. B) Dos. C) Tres.
 - B) dos la iii) no es correcta por x-y=0, 2x-2y=0,

5- Pregunta

Dado el sistema 3x + ay = 1, -x + 4y = b, bx + 5y = 3. Entonces una de las siguientes afirmaciones es correcta.

A) Si $a \ne 1$ y b = 2, el sistema es compatible indeterminado. B) Si a = 1 y $b \ne 2$, el sistema es compatible indeterminado. C) Si a = 1, entonces existe un b que hace el sistema compatible determinado.

La correcta es la C)

$$\begin{vmatrix} 3 & a & 1 \\ -1 & 4 & b \\ b & 5 & 3 \end{vmatrix} = ab^2 - 19b + 3a + 31$$

$$ab^2 - 19b + 3a + 31 = 0,$$

$$4a - 38 + 3a + 31 = 0, a = 1$$

$$b^2 - 19b + 3 + 31 = 0 : 17, 2$$

$$b=17, 2$$