

Generalized Block-Diagonal Structure Pursuit Learning Soft Latent Task Assignment against Negative Transfer

Zhiyong Yang, Qianqian Xu, Yangbangyan Jiang, Xiaochun Cao, and Qingming Huang IIE, CAS; ICT, CAS; UCAS; BDKM, CAS;PCL.

Overview

To avoid negative transfer, we propose a novel MTL method with the following contribution:

- ✓ disentangled latent task assignments with a block-diagonal constraint
- ✓ a novel regularizer for generalized block-diagonal structure pursuit
- ✓ explicit connection with optimal transport
- ✓ theoretical guarantee for structual recovery.

Latent Task Representation: A Probabilist View

- lacktriangledown Given T tasks, the per-task parameter W is defined as $W=[W^{(1)},\cdots,W^{(T)}]\in\mathbb{R}^{d imes T}.$
- To model the relationship among the tasks o_1, \cdots, o_T , we assume that $W^{(i)}$ could be represented as a linear combination of latent tasks l_1, \cdots, l_k , with W = LS.
- From a probabilist perspective, we regard $S_{i,j}$ as $\mathbb{P}(l=i|o=j)$, namely the possibility of choosing l_i to represent o_j .
- Another variable of interest is the joint distribution matrix $S^{\ddagger}_{i,j} = \mathbb{P}(l=i,o=j)$. Given marginal distribution a, b for l, \emptyset , we must have $S^{\ddagger}1_T = a$, $S^{\ddagger}1_k = b$.
- In order to avoid suppress, we hope the possibility to assign l_i to o_j is nonzero if and only if (i,j) belongs to the same group. This leads to a block-diagonal structure of S^{\ddagger} up to row and column permutations.

Block-diagonal Structure Pursuit

Auxiliary Bipartite Graph. $A_{l\cup o}=egin{bmatrix}0&S^{\ddag}\S^{\ddag}&0\end{bmatrix}$, $\Delta(S^{\ddag})=diag(A_{l\cup o}1)$ -

 $A_{l\cup o}$. The following shows that squeezing the bottom K eigenvalues of $\Delta(S^{\ddagger})$ Then leverages the block diagonal property.

Theorem

If $S^{\ddagger} \in \Pi(\mathsf{a},\mathsf{b})$, $\chi_S = K$ holds if and only if $\dim(Null(\Delta(S^{\ddagger}))) = K$, i.e, the 0 eigenvalue of $\Delta(S^{\ddagger})$ has multiplicity K. Moreover, denote $\mathcal{A}^{(i)}$ as the set of latent and output tasks belonging to the i-th block of S, the eigenspace of 0 is spanned by $\iota_{\mathcal{A}^{(1)}}, \iota_{\mathcal{A}^{(2)}}, \cdots, \iota_{\mathcal{A}^{(K)}}$, where $\iota_{\mathcal{A}^{(i)}} \in \mathbb{R}^{(k+T)\times 1}$, $[\iota_{\mathcal{A}^{(i)}}]_j = 1$ if $j \in \mathcal{A}^{(i)}$, otherwise $[\iota_{\mathcal{A}^{(i)}}]_j = 0$.

From the variational property of eigenvalues, we reach the regularizer $\Omega(S^\ddagger)=\inf\left\{\left\langle \Delta(S^\ddagger),U\right\rangle:U\in\mathcal{M}\right\}$, where

$$\mathcal{M} = \{U: U \in \mathbb{S}^N, I \succeq U \succeq 0, tr(U) = K\}$$

Objective Function

Exact problem: Loss + Reg. of L + Structural Reg.

$$\min \ \widetilde{\mathcal{J}} + \Omega_1 + \Omega_2 \ s.t. \ S^{\ddagger} \in \Pi(\mathsf{a},\mathsf{b}), \ U \in \mathcal{M}, \ S = TS^{\ddagger}.$$
 (1)

Inexact problem: Exact + Variable Splitting Between S and TS^{\ddagger} .

$$\min \widetilde{\mathcal{J}} + \Omega_1 + \Omega_2 + \Omega_3 \ s.t. \ S^{\ddagger} \in \Pi(\mathsf{a},\mathsf{b}), \ U \in \mathcal{M}.$$
 (2)

$$\Omega_1=lpha_1\cdot||L||_F^2/2,$$
 $\Omega_2=lpha_3\cdotig\langle\Delta(S^{\ddagger}),Uig
angle,$ $\Omega_3=lpha_2\cdot d(S,TS^{\ddagger})/2$

Optimization

We present an alternative optimization method to solve.

L,S subproblem. strongly convex, could be solved from off-the-shelf tools. U subproblem. $U=V_KV_K^{\top}$, where V_K denotes eigenvectors associated with the smallest k eigenvalues of $\Delta(S^{\ddagger})$. Define f_i from $V_K=[f_1,\cdots,f_{k+T}]^{\top}$. f_i has a strong grouping power when $\chi_{S^{\ddagger}}=K$. S^{\ddagger} subroutine: With U updated with $U=V_KV_K^{\top}$, we reformulate the subproblem as a regularized optimal transport problem:

Proposition (Regularized OT Reformulation)

Reformulation. The S^{\ddagger} subproblem could be reformulated as:

$$\min_{S^{\ddagger} \in \Pi(\mathsf{a},\mathsf{b})} \ rac{artheta}{2} \|S^{\ddagger} - ar{S}\|_F^2 + raket{\mathcal{D}, S^{\ddagger}} \ \qquad ext{ extit{(Primal)}}$$

Connection with OT. Under mild conditions, we have: $0 \le \mathcal{J}_{REG} - \mathcal{J}_{OT} = O(\vartheta/T)$.

Dual Solution The dual problem of (**Primal**) could be solved from:

$$rgmin_{h,\ g} rac{1}{2artheta} \cdot ig\| (h \oplus g - \mathcal{D} + artheta ar{S})_+ ig\|_F^2 - \langle h, \mathsf{a}
angle - \langle g, \mathsf{b}
angle \, ,$$
 with $S^{\ddagger \star} = \left[rac{h^\star \oplus g^\star - \mathcal{D}}{artheta} + ar{S}
ight]_+ .$

Negative transfers are punished via a large transportation cost, while positive transfers within group is encouraged with an almost zero cost.

Theoretical Analysis

The hypothesis space \mathcal{H} :

$$egin{aligned} \left\{ egin{aligned} \hat{Y}^{(i)}(X_i^{(t)}) &= (LS^{(i)})^ op X_i^{(t)}
ight\}_{ti} : \|L\|_F^2 \leq \xi_1, \ d(S,TS^\ddagger) &\leq \xi_2, \ \left\langle \Delta(S^\ddagger), U
ight
angle \leq \xi_3, S^\ddagger \in \Pi(\mathsf{a},\mathsf{b}), U \in \mathcal{M}
ight\} \ \xi_1 &= 2\mathcal{J}_0/lpha_1, \xi_2 = 2\mathcal{J}_0/lpha_2, \xi_3 = 2\mathcal{J}_0/lpha_3 \end{aligned}$$

Theorem (Performance Bounds)

Generalization Bound. Picking $\xi_1=O(1/T)$, $\xi_2=O(1/T)$, if ℓ is Lipschitz continuous, we have: $|\mathcal{R}(L,S)-\hat{\mathcal{R}}(L,S)|=O_P((nT)^{-1/2})$.

Implicit Spectrum Bound. Picking $\xi_3 = (1/T)^{-3/2}$, $\xi_2 = (1/T^2)$, we have $\sum_{i=N-K+1}^N \lambda_i(\Delta(S)) = O(T^{-1/2})$. Structure Recovery Bound. Assume that $k \leq T$, for all S^\ddagger obtained from the space $\mathcal H$ such that $\lambda_{K+1}(\Delta(S^\ddagger)) > \lambda_K(\Delta(S^\ddagger)) > 0$, there is a co-partition, such that:

$$egin{aligned} \|S^{\ddagger supp^c}\|_1 &= O\left(k^{1/2}/(T\cdot\lambda_{K+1}(\Delta(S^\ddagger))
ight), \ rac{|supp^c|}{kT} &= O\left(k^{-1/2}/\left(T\cdot\lambda_{K+1}(\Delta(S^\ddagger))
ight)
ight). \end{aligned}$$

Simulated Dataset

To test the effectiveness of GBDSP we generate a simple simulated annotation dataset with T=150 simulated tasks, where the dataset is produced according to the assumption in our model.

Figure: Visualizations over the Simulated Dataset. (a) shows The true LATM; (b) shows the LATM recovered by GBDSP(c) shows the spectral embedding GBDSP.

Real World Datasets

Figure: (a) Performance Comparison Curve over the Simulation Dataset, with varying training data ratio. (b) Performance Comparison over the Sun Dataset.

Table: Performance Comparison over General MTL Datasets (mean \pm std)

Algorithms	AWA2-Attr(↑)	AWA2-Cls (↑)	School (↓)
RAMUSA	88.60±0.66	93.06 ± 0.53	10.52±0.09
GOMTL	89.56 ± 0.33	88.22 ± 1.18	10.26 ± 0.11
CoCMTL	92.29 ± 0.35	94.69 ± 0.73	12.06 ± 0.09
CMTL	92.95 ± 0.35	94.81 ± 0.70	12.06 ± 0.09
VSTGMTL	89.31 ± 0.39	92.03 ± 0.94	10.17 ± 0.08
GAMTL	89.39 ± 0.42	92.55 ± 0.53	10.50 ± 0.12
NC-CMTL	92.99 ± 0.32	95.10 ± 0.60	10.53 ± 0.12
AMTL	92.15 ± 0.34	95.76 ± 0.44	12.15 ± 0.09
GBDSP	92.73±0.29	97.86±0.22	10.10±0.08
	•		•

Contact Information

Our Group:

https://qmhuang-ucas.github.io/ Email me: yangzhiyong@iie.ac.cn Visit my home page from QR code

