Exercitii

1. Fie
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} 9^{ax} - 4 \cdot 3^{ax+1} + 12 ; x < 1 \\ -15x^2 - ax + a ; x \ge 1. \end{cases}$

Determinati a ER artfel încât f să fie continuă.

2. Fie $x_0 \in \mathbb{R}$, $f_1, g_1: \mathbb{R} \to \mathbb{R}$ dou**a** function continue in x_0 in $h: \mathbb{R} \to \mathbb{R}$, $h(x) = \begin{cases} f(x); & x \in \mathbb{R} \\ g(x); & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$.

tratati că h este continuă în x_0 dacă și numai dacă $f(x_0) = g(x_0) = h(x_0)$.

3. Fie $x_0 \in \mathbb{R}$, $f, g: \mathbb{R} \to \mathbb{R}$ două funcții derivabile în x_0 și $h: \mathbb{R} \to \mathbb{R}$, $h(x) = \begin{cases} f(x); x \in \mathbb{R} \\ g(x); x \in \mathbb{R} \\ \end{cases}$

tratați că h este derivabilă în x_0 dacă și numai dacă $f(x_0) = g(x_0)$ și $f'(x_0) = g'(x_0)$.

4. Studiați uniform continuitatea funcțiilor următoare:

a)
$$f: \mathbb{R} \rightarrow \mathbb{R}$$
, $f(x) = \begin{cases} x \text{ sol} \frac{1}{x} ; x \neq 0 \\ 0 ; x = 0. \end{cases}$

- b) $f: (0, 1] \to \mathbb{R}, \ f(x) = \ell^{\frac{1}{x}}.$ c) $f: (0, 1] \to \mathbb{R}, \ f(x) = \ell^{\frac{1}{x}}.$
- 5. Fie f, g: R->R două funcții uniform continue.
- a) tratati că f+g este funcție uniform continuă, unde f+g: R>R, (f+g)(x)=f(x)+g(x).
- b) Dați exemplu de două funcții f și g ca în enunț artfel încât f:g nu este funcție uniform continuă, unde f:g:R > R, $(f\cdot g)(*) = f(*)\cdot g(*)$.
 - -c) Tresupurem, în plus, că funcțiile f și g sunt mărginite. Itatați că funcția f. g este uniform continuă.
 - 6. Fie A C R & multime marginità i f: A > R & functie arther incât, + (**n)_n C +, (**n)_n ir bauchy, aven sa (f(**n))_n exte si bauchy. Iratati ca. f exte functie uniform continua.

7. Studiați convergența simplă și uniformă pentru umatoarele siruri de funcții:

a)
$$f_n:(0,1) \rightarrow \mathbb{R}$$
, $f_n(x) = \frac{1}{1+nx} + n \in \mathbb{H}^*$.

b)
$$f_n:[1,2] \rightarrow \mathbb{R}$$
, $f_n(x) = \frac{n \times}{1+n \times} + n \in \mathbb{R}^*$.

-c)
$$f_n: \mathbb{R} \to \mathbb{R}$$
, $f_n(x) = e^{-nx^2} \sin nx + n \in \mathbb{N}^*$.

d)
$$f_n:[0,\infty)\to\mathbb{R}$$
, $f_n(x)=\frac{x+n}{x+n+1}$ $\forall n\in\mathbb{H}^*$.

2)
$$f_n: [q_m) \rightarrow \mathbb{R}, f_n(x) = \frac{x}{n^2 + x^2} + n \in \mathbb{H}^*$$

f)
$$f_n:(0,1)\to\mathbb{R}$$
, $f_n(x)=\frac{x^n}{\ell^x+x^n}+n\in\mathbb{H}^*$.

g)
$$f_n:(0,1)\rightarrow\mathbb{R}, f_n(x)=\frac{\ell^x\cdot x^n}{1+x^n}+n\in\mathbb{H}^*.$$

h)
$$f_n: [3,5] \rightarrow \mathbb{R}$$
, $f_n(x) = \frac{(x+n)^3}{n^4} + n \in \mathbb{H}^*$.

i)
$$f_n: [0,1] \rightarrow \mathbb{R}, f_n(x) = x^n (1-x^n) + n \in \mathbb{H}^*.$$

$$\dot{y}$$
 fm: $[0,1] \to \mathbb{R}$, fm(\dot{x}) = $\dot{x}^n (1-\dot{x})^n + n \in H^*$.

 \dot{k} fm: $(0,\infty) \to \mathbb{R}$, fm(\dot{x}) = $\frac{\dot{x}^3}{n^3+\dot{x}^3} + n \in H^*$.

l)
$$f_n: [0, \infty) \rightarrow \mathbb{R}$$
, $f_n(x) = \frac{e^{-nx}}{n} + n \in \mathbb{H}^*$.

8. stratați că următoarele serii de funcții converg uniform:

$$\Delta) \sum_{n=1}^{\infty} \frac{x}{1+n^8 x^2}.$$

$$b) \approx \frac{\arctan m \times}{n(n+1)}$$

9. Determinați mulțimea de convergență pentru următoarele serii de puteri:

a)
$$\sum_{N=1}^{\infty} (N+1) x^{N}$$
.

$$b) \sum_{n=0}^{\infty} \frac{(-1)^n}{3^n \sqrt{n+1}} \times^n.$$

$$\mathcal{L}) \sum_{m=0}^{\infty} \frac{(-1)^m x^m}{(m+1) \cdot 2^m}.$$

$$\lambda) \sum_{n=0}^{\infty} \frac{(-1)^n 2^n}{(n+1)^2 \sqrt{3^n}} (x+2)^n.$$

$$2) \sum_{n=1}^{\infty} \frac{(x-1)^n}{(2m-1)\sqrt{n}}.$$

$$f) \sum_{n=1}^{\infty} \frac{1}{\sqrt{n+2} \sqrt[n+1]{n+1}} \cdot \chi^{n}.$$

$$h) \sum_{m=0}^{\infty} \frac{m^2+1}{2m^2+5}, x^m.$$

10. Dați exemplu de à serie de puteri ∑anix au raza de convergența R=5. Justificați alegerea făcută.

11. La se dezvolte în serie de puteri ale lui x urmatorarele funcții:

a)
$$f:\mathbb{R}\to\mathbb{R}$$
, $f(x)=\text{LOS}x$.

b)
$$f:(-1,1] \rightarrow \mathbb{R}$$
, $f(x) = lm(1+x)$.

-0)
$$f: [-1,1] \to \mathbb{R}, f(x) = \ln(1+x^2).$$