Strumenti Magnetoelettrici 2020_21

STRUMENTI INDICATORI ELETTROMECCANICI

Abbiamo un magnete permanente che "avvolge" una bobina mobile collegata all'asse che permette il movimento della lancetta. abbiamo anche una molla: quando l'asse si muove, la molla oppone resistenza al movimento dell'asse. La corrente arriva alla bobina tramite una (o eventualmente due) molla. Essenzialmente abbiamo un motorino in corrente continua.

Quando la bobina cerca di ruotare, la molla si oppone alla rotazione.

Si creano due forze (per via del campo magnetico) per via del fatto che il verso della corrente è opposto e quindi abbiamo una coppia che fa ruotare la bobina.

Abbiamo detto che è presente una molla: via via che la bobina ruota, la coppia resistente (della molla) aumenta.

Arriveremo ad un punto in cui la coppia motrice e la coppia resistente sono uguali.

F=I.e.B.m

CH = F. d-I.e.B.m.d

CR = K. O Cago lo più currentis la Resist.

Coppia Resistente

della molla

Abbiamo creato un sistema che fa

variare un angolo a partire da una corrente. Se poniamo una scala al di sotto di un ago collegato all'asse, possiamo misurare l'angolo, e quindi la corrente!

$$C_{M} = C_{R} = D$$
 I.e.d.m.B = $K \cdot Q = 0$ $Q = \frac{\ell \cdot d \cdot m \cdot B}{K} \cdot I$

$$Q = \frac{\ell \cdot d \cdot m \cdot B}{\kappa} \cdot I$$

MISURE IN SALITA ED IN DISCESA

l'ouvolo e furzione della correcte!

Attenzione

Le misurazioni potrebbero essere diverse a seconda che le misurazioni sono state fatte in salita o in discesa! Questo perché sono presenti degli attriti, sappiamo che ci sono ma non possiamo quantificarli.

CP = CM + CA

Quindi, nel momento in cui abbiamo l'equilibrio dobbiamo contare anche una coppia di attrito Ca. Di conseguenza:

- in salita: l'attrito ci ferma prima -> misuriamo un valore minore di quello che dovremmo
- in discesa: anche in questo caso l'attrito ci ferma prima -> misuriamo un valore maggiore di quello che dovremmo.

CORRENTI MISURABILI

Questi strumenti potrebbero misurare correnti davvero molto basse: questo perché le molle che collegano la bobina al circuito sono molto sottili, e se attraversate da una corrente alta potrebbero scaldarsi, e quindi perdere di elasticità.

da 10µA a 30mA.

la scala e politiamente limeone

