9 Réseau de neurones

9.1 Un problème bayésien

Soit (θ, X) un couple aléatoire à valeurs dans $\mathbb{R} \times \mathbb{R}^d$ et soit $g : \mathbb{R} \to \mathbb{R}$ une fonction. A partir de l'observation de X, on cherche à estimer au mieux $g(\theta)$ dans le sens suivant : on veut trouver la fonction $\hat{\theta} : \mathbb{R}^d \to \mathbb{R}$ pour laquelle

$$\mathbb{E}\left[\left(\hat{\theta}(X) - g(\theta)\right)^2\right] \tag{1}$$

est minimale. C'est le cas si et seulement si $\hat{\theta}(X) = \mathbb{E}[g(\theta) | X]$ presque sûrement, mais cette espérance conditionnelle n'est pas calculable si on ne connaît pas la loi du couple (θ, X) . Même si la loi du couple (θ, X) est connue, cette espérance conditionnelle peut être difficile à approcher numériquement.

9.2 Réseau de neurones

On suppose que l'on dispose d'une suite de couples aléatoires (θ_k, X_k) , $1 \le k \le K$, i.i.d. et de même loi que (θ, X) . On se donne une famille de fonctions $F_\alpha : \mathbb{R}^d \to \mathbb{R}$, $\alpha \in \mathbb{R}^N$, et on cherche à minimiser

$$\alpha \to \mathbb{E}\left[\left(F_{\alpha}(X) - g(\theta)\right)^{2}\right]$$

Pour cela on peut utiliser un algorithme de gradient stochastique : on construit une suite $(\alpha_k)_{0 \le k \le K}$ de la manière suivante : on se donne un pas $\gamma > 0$, $\alpha_0 \in \mathbb{R}^N$ et on pose

$$\alpha_{k+1} = \alpha_k - \gamma \frac{\partial}{\partial \alpha_k} (F_{\alpha_k}(X_{k+1}) - g(\theta_k))^2 \quad k = 0, \dots, K-1$$

Un exemple de réseau de neurones correspond à la famille F_{α} suivante. On se donne :

- des entiers $N_{\ell} \in \mathbb{N}^*$, $\ell = 0, ..., L$ avec $N_0 = d$ et $N_L = 1$.
- des vecteurs $b^{(\ell)} \in \mathbb{R}^{N_{\ell+1}}$, des matrices $a^{\ell} \in \mathbb{R}^{N_{\ell+1} \otimes N_{\ell}}$ pour $0 \le \ell \le L-1$.
- des fonctions d'activation $h_{\ell}: \mathbb{R} \to \mathbb{R}$ pour $0 \le \ell \le L 1$.

Pour $\alpha = (b^{(\ell)}, a^{(\ell)})_{0 \le \ell \le L-1}$ on définit $F(\alpha, X)$ comme suit :

- On pose $X^{(0)} = X$
- Pour $\ell = 0, \dots, L-1$ on pose

$$X_i^{(\ell+1)} = h_{\ell} \left(b_i^{(\ell)} + \sum_{i=1}^{N_{\ell}} a_{ij}^{(\ell)} X_j^{(\ell)} \right), \quad 1 \le i \le N_{\ell+1}$$

— On pose $F(\alpha, X) = X^{(L)}$ On choisit $h_{L-1}(x) = x$ et $h_{\ell}(x) = x^+$ pour $\ell \le L - 2$.

9.3 Calcul du gradient

Comment calcule-t-on le gradient $\frac{\partial}{\partial a}H$ où $H = (F_a(X) - g(\theta))^2$? On le fait par récurrence arrière :

1.
$$F_{\alpha}(X) = X_1^{(L)} \text{ donc}$$

$$\frac{\partial}{\partial X_1^{(L)}} H = 2(F_{\alpha}(X) - g(\theta))$$

Comme

$$X_1^{(L)} = h_{L-1} \left(b_1^{(L-1)} + \sum_{j=1}^{N_{L-1}} a_{1j}^{(L-1)} X_j^{(L-1)} \right)$$

il vient, avec $Y_1^{(L-1)} = b_1^{(L-1)} + \sum_{j=1}^{N_{L-1}} a_{1j}^{(L-1)} X_j^{(L-1)}$

$$\frac{\partial}{\partial b_{1}^{(L-1)}}H = h'_{L-1}(Y_{1}^{(L-1)})\frac{\partial}{\partial X_{1}^{(L)}}H \qquad \frac{\partial}{\partial a_{1,i}^{(L-1)}}H = h'_{L-1}(Y_{1}^{(L-1)})X_{j}^{(L-1)}\frac{\partial}{\partial X_{1}^{(L)}}H$$

De plus on a

$$\frac{\partial}{\partial X_{j}^{(L-1)}} H = \frac{\partial X_{1}^{(L)}}{\partial X_{j}^{(L-1)}} \frac{\partial}{\partial X_{1}^{(L)}} H = h'_{L-1} (Y_{1}^{(L-1)}) a_{1j}^{(L-1)} \frac{\partial}{\partial X_{1}^{(L)}} H$$

2. Pour $1 \le \ell \le L$, étant donné les $\frac{\partial}{\partial X_i^{(\ell)}} H$, $1 \le i \le N_\ell$, on calcule

$$\begin{split} \frac{\partial}{\partial \, b_i^{(\ell-1)}} H &= \frac{\partial X_i^{(\ell)}}{\partial \, b_i^{(\ell-1)}} \frac{\partial}{\partial X_i^{(\ell)}} H = h_{\ell-1}' \big(Y_i^{(\ell-1)} \big) \frac{\partial}{\partial X_i^{(\ell)}} H \\ \text{où } Y_i^{(\ell-1)} &= b_i^{(\ell-1)} + \sum_{j=1}^{N_{\ell-1}} a_{ij}^{(\ell-1)} X_j^{(\ell-1)}, \\ \frac{\partial}{\partial \, a_{ij}^{(\ell-1)}} H &= X_j^{(\ell-1)} h_{\ell-1}' \big(Y_i^{(\ell-1)} \big) \frac{\partial}{\partial X_j^{(\ell)}} H \end{split}$$

De plus

$$\frac{\partial}{\partial X_j^{(\ell-1)}} H = \sum_i \frac{\partial X_i^{(\ell)}}{\partial X_j^{(\ell-1)}} \frac{\partial}{\partial X_i^{(\ell)}} H = \sum_i a_{ij}^{(\ell-1)} h'_{\ell-1} (Y_i^{(\ell-1)}) \frac{\partial}{\partial X_i^{(\ell)}} H$$

9.4 Premier modèle

Le script rneurones.py met en œuvre cet algorithme pour le modèle où θ est de loi uniforme sur $[-\pi, \pi]$ et où, sachant $\theta, X = (X_1, \dots, X_n)$ est une famille i.i.d. de variables aléatoires gaussiennes de loi $\mathcal{N}(\theta, 1)$. On cherche à estimer $g(\theta) = \cos(\theta)$.

Au cours de l'entraînement, on compare la performance du réseau neurones avec celle de l'estimateur $\cos(\frac{1}{n}\sum X_i)$.

- 1. Augmenter le nombre de couches pour essayer de construire un meilleur estimateur.
- 2. Modifier le programme pour considérer le cas où $g(\theta)$ est la partie entière de θ .

9.5 Second modèle

Soit U et Z_i , $1 \le i \le n$, des variables i.i.d. $\mathcal{N}(0,1)$. On pose

$$\theta_i = Z_i + 2U, \quad 1 \le i \le n$$

et considère $X=(X_1,\ldots,X_n)$ tel que, conditionnellement à $\theta=(\theta_1,\ldots,\theta_n)$, les X_i sont indépendantes et $X_i\sim\mathcal{N}(\theta_i,1)$. On choisit

$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\theta_i > 0\}}$$

Comparer un réseau de neurones avec l'estimateur

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{X_i > 0\}}$$