Determining Word–Emotion Associations from Tweets by Multi-Label Classification

Felipe Bravo-Marquez

Chief Supervisor: Bernhard Pfahringer

Supervisor: Eibe Frank

External Collaborator: Saif Mohammad (NRC-Canada)

University of Waikato Computer Science Department

November 13, 2015

Social Media

- Microblogging services are increasingly being adopted by people in order to access and publish information.
- Twitter: Massively used Microblogging platform where users post messages limited to 140 characters.
- The words used in Twitter include many abbreviations, acronyms, and misspelled words, e.g., Iol, omg, hahaha, #hatemonday.

#Emotional Tweets

- Posts in Twitter or tweets are provided freely and voluntarily by users.
 - Hey @Apple, pretty much all your products are amazing. You blow minds every time you launch a new gizmo. That said, your hold music is crap.
 - #windows sucks... I want #imac so bad!!! why is it so damn expensive :(@apple please give me free imac and I will love you :D
- Analysing the emotions behind those messages has important applications in product marketing, politics, and even for stock market analysis [Bollen et al., 2011].

The NRC Emotion Lexicon

- A well known lexical resource for automatically analysing emotions from textual data is the NRC word-emotion association lexicon (NRC-10) [Mohammad and Turney, 2013]
- It contains more than 14,000 English words manually annotated according to ten non-exclusive emotional and polarity categories.
- Examples: achieved is mapped to anticipation, joy, and trust, and exile is mapped into anger, fear, and sadness.

- NRC-10 does not cover informal expressions used in Twitter.
- It suffers from limitations for analysing emotions from tweets.

Proposal

- We propose a method to automatically expand NRC-10 from a target corpus of 10 million tweets using a multi-label classifier.
- Multi-label classification techniques assign instances to multiple non-exclusive classes such as the ones provided by NRC-10.
- All words from the corpus will be mapped into emotional categories.
- We study which combinations of word-level features and learning techniques are most effective for this task.

Proposal (2)

Previous work on emotion lexicon expansion

- In [Mohammad and Kiritchenko, 2015], tweets annotated with hashtags corresponding to the six emotions: #anger, #disgust, #fear, #happy, #sadness, and #surprise were collected.
- Example: Dad, close the door when you piss. No one wants to hear you're waterfall #disqust.
- The corpus was used for creating a Twitter-specific emotion-association lexicon using Point-wise Mutual Information (PMI) associations:

$$PMI(term_1, term_2) = \log_2 \left(\frac{Pr(term_1 \land term_2)}{Pr(term_1)Pr(term_2)} \right)$$
 (1)

$$SoA(w,e) = PMI(w,e) - PMI(w,\neg e)$$

Limitations of previous approach

- Words that do not co-occur with those emotion-oriented hashtags will be excluded.
- It would be unsuitable for creating domain-specific emotion lexicons for domains in which hashtags are not frequently used to express emotions such as politics.
- In contrast, our approach takes a target corpus of unlabaled tweets from any domain and a seed lexicon to perform the expansion.

Word-level features with the Tweet-Centroid Model

- We treat a whole tweet as a word's context.
- We model tweets as vectors calculated from the content.
- We calculate word-level vectors based on the centroids of the tweet-vectors where a word occurs.

From Tweet-level features to Word-level vectors

- 1. Word unigrams (UNI): based on an unigram frequency count.
- Brown clusters (BWN): in which the tweet is tagged according to low-dimensional Brown clusters of words.
- POS n-grams (POS): in which the frequency of each POS unigram and bigram is counted.
- Distant Polarity (DP): in which a logistic regression model is trained from a corpus of tweets with positive:) and negative: (emoticons and applied to the tweet.

W2V word-level features

- Word embeddings are low-dimensional continuous dense word vectors trained from document corpora.
- We train **skip-gram word-embeddings (W2V)** from the target corpus.
- In this method, a neural network with one hidden layer is trained for predicting the words surrounding a center word within a window that is shifted along the target corpus.

Multi-Label Classification of word into Emotions

- The NRC-10 words occurring in the target corpus are labeled according to the corresponding emotions.
- Their feature-vectors (UNI, BWN, POS, DP, W2V) are used for training a multi-label classifier.
- The resulting classifier is used to classify the remaining unlabeled words into emotions.

Multi-Label Classification Models

- Binary Relevance (BR): in which one separated binary classifier is trained per label.
- Classifier Chains (CC) [Read et al., 2011]: in which the predictions for each binary classifier are cascaded as additional features along a random permutation of labels.
- Bayesian Classifier Chains (BCC) [Zaragoza et al., 2011]: in which a Bayesian network that represents dependency relations between the labels is learned and used to build a classifier chain.

Intrinsic Evaluation

- We compare the micro-averaged F1 for the ten affective categories on the labeled words using 10-fold cross-validation.
- We use logistic regression as the base learner in the different models.
- We compare different combinations of features and classifiers.

Classifier	BR	CC	BCC	
UNI (Baseline)	0.389 ± 0.03	0.371 ± 0.03	0.378 ± 0.03	
UNI-BWN	0.410 ± 0.03 o	0.400 ± 0.03 \circ	0.407 ± 0.03 \circ	
UNI-BWN-POS	0.411 ± 0.03 o	0.405 \pm 0.02 \circ	$0.407 \pm 0.03 \circ$	
UNI-BWN-POS-DP	0.433 \pm 0.03 \circ	0.427 \pm 0.03 \circ	$0.432\pm0.03\circ$	
UNI-BWN-POS-DP-W2V	0.477 ± 0.03 o	0.474 \pm 0.03 \circ	$0.478\pm0.03\circ$	
W2V	0.473 ± 0.03 o	0.469 \pm 0.03 \circ	$0.472\pm0.03\circ$	
W2V-BWN	0.468 ± 0.03 \circ	0.469 \pm 0.03 \circ	0.47 \pm 0.03 \circ	
W2V-BWN-POS	0.465 \pm 0.03 \circ	0.466 \pm 0.03 \circ	0.466 \pm 0.02 \circ	
W2V-BWN-POS-DP	0.474 ± 0.03 o	0.473 \pm 0.03 \circ	$0.475\pm0.03\circ$	
W2V-DP	0.479 ± 0.03 ∘	$\textbf{0.476}\pm0.03\circ$	$0.479 \pm 0.03 \circ$	

- W2V-embeddings produce the strongest features!
- There are **no clear differences** between multi-label models!

Expanded Lexicon

spaz no-show shite dismisses >-/ frcking killn slapped s**t psychotic nazi siga & killings nem rik seja & fic g tukin laggy irks ** tukin laggy worryin -> worryin -> whate murders

anger

joy

ite #fishing onngg underway 70th thank profit carling a starshine calonngg to underway 70th carling a starshine on the start of the sta

anticipation

suckss missin bitter ignores missin bitter to withdrawls in the property of th

sadness

humiliated racists relle arrgh rapists hick what genocide ick liars raggedy b***h sena hmph \(\text{\rangle}\) \(\text{\rangle}

disgust

whooo #doodlejump duper #couponcabin moorning j—e—t—s 700 grinch pressie press

surprise

#sog psycho faked
#cotto #amnesty psoch executions
flus #hcrmovies
#dvd mutated prox
hitler #g deaths 13th
botnet for strangled
hippos grobbers
#child

fear

servants worthwhile cach meister clement
locum #happybirthoday \$1
y ny = 8 y hubbard 2 zig y hubbard 2 zig y hubbard 3 zig y servanta 2 zig y zig y

trust

Extrinsic Evaluation

- We conduct an extrinsic evaluation by studying the usefulness of the expanded lexicons for classifying Twitter messages annotated with emotional hashtags.
- We compare a logistic regression that uses NRC-10 alone with another one using NRC-10 and the expanded lexicon.

Lexicon		Kappa			AUC	
NRC-10 (alone)		0.0769			0.633	
NRC-10+Expanded	BR	CC	BCC	BR	CC	BCC
UNI	0.1912	0.2006	0.1977	0.711	0.714	0.713
UNI-BWN	0.174	0.1783	0.176	0.708	0.712	0.711
UNI-BWN-POS	0.1753	0.1767	0.1776	0.708	0.711	0.710
UNI-BWN-POS-DP	0.1803	0.1829	0.1835	0.713	0.715	0.714
UNI-BWN-POS-DP-W2V	0.1871	0.1966	0.1832	0.712	0.714	0.713
W2V	0.2234	0.2256	0.2256	0.720	0.723	0.723
W2V-BWN	0.1988	0.2007	0.1974	0.713	0.715	0.715
W2V-BWN-POS	0.195	0.2012	0.1956	0.710	0.713	0.712
W2V-BWN-POS-DP	0.1994	0.2041	0.1992	0.714	0.715	0.715
W2V-DP	0.2228	0.2234	0.2263	0.722	0.723	0.723

- All the expanded lexicons are **substantially better** than using NRC-10 alone.
- Lexicons created with CC and BCC are slightly better than the ones created using BR in most cases.

Conclusions

- The results obtained indicate that low-dimensional word-embeddings are better than distributional word-level features obtained by averaging tweet-level features.
- This is aligned with recent findings in NLP showing that representations learned from unlabeled data using neural networks outperform representations obtained from hand-crafted features.
- This method could be used for creating domain specific emotion lexicons for elections or sport competitions.

Future Work

- Study how to create time-evolving emotion lexicons from Twitter streams using incremental word-level representations and learning techniques.
- Explore low-dimensional dense word-embeddings obtained from the word-centroid model by training auto-encoders or restricted Boltzman machines on this representation.

Questions?

Thanks for your Attention!

Acknowledgments

- University of Waikato Doctoral Scholarship
- Machine Learning Group at the University of Waikato

References I

Bollen, J., Mao, H., and Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1):1–8.

Mohammad, S. and Turney, P. D. (2013). Crowdsourcing a word-emotion association lexicon. Computational Intelligence, 29(3):436–465.

Mohammad, S. M. and Kiritchenko, S. (2015). Using hashtags to capture fine emotion categories from tweets. *Computational Intelligence*, 31(2):301–326.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011). Classifier chains for multi-label classification. *Machine learning*, 85(3):333–359.

Zaragoza, J. H., Sucar, L. E., Morales, E. F., Bielza, C., and Larrañaga, P. (2011). Bayesian chain classifiers for multidimensional classification. In *IJCAI 2011*, *Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011*, pages 2192–2197. AAAI Press.