Course: Machine Learning

Assignment: Week 6 _ Programming Assignment

Student: Han Yun Chen (112652010)

1. Introduction

This report presents the implementation and results of Week 5 Machine Learning assignment, which includes two major tasks: (1) classification using Gaussian Discriminant Analysis (GDA), and (2) regression-based piecewise function modeling. The datasets used are derived from the Week 4 assignment.

2. Classification using Gaussian Discriminant Analysis (GDA)

The Gaussian Discriminant Analysis (GDA) assumes that each class follows a multivariate normal distribution with shared covariance. Parameters are estimated using Maximum Likelihood Estimation (MLE):

$$\phi$$
 = P(y=1), μ_0 = mean(x|y=0), μ_1 = mean(x|y=1), Σ = shared covariance matrix.

The decision boundary is defined as
$$\theta^T x + \theta_0 = 0$$
, where: $\theta = \Sigma^{-1}(\mu_1 - \mu_0)$, $\theta_0 = -\frac{1}{2}\mu_1^T \Sigma^{-1}\mu_1 + \frac{1}{2}\mu_0^T \Sigma^{-1}\mu_0 + \log(\phi / (1 - \phi))$.

The model was trained on 80% of the dataset, achieving an accuracy of approximately 0.54. The resulting decision boundary visualization is shown below.

3. Regression Model

The regression task uses a linear regression model solved with the Normal Equation: $\theta = (X^TX)^{-1}X^Ty$.

The model was trained on the regression dataset with 80/20 train-test split. Performance metrics were: MSE \approx 32.33 and R² \approx 0.097.

4. Piecewise Function

The piecewise model combines the classification and regression outputs as: $h(x) = \{ R(x), \text{ if } C(x) = 1; -999, \text{ if } C(x) = 0 \}$

This function returns regression predictions only for the positive class region, and assigns –999 otherwise. The visualization below illustrates this piecewise behavior.

5. Discussion and Conclusion

The GDA classifier demonstrated moderate performance, which may be attributed to overlapping class distributions or non-Gaussian data. The regression model yielded a relatively low R², suggesting that the temperature (or target variable) may not follow a simple linear relationship with the input features. The piecewise model successfully integrates classification and regression logic, producing distinct output regions as expected. Future improvements may include using non-linear kernels or feature transformations to better capture the data structure.