Linearizability of dynamical systems by embeddings

Matthew D. Kvalheim (joint with Philip Arathoon)

Department of Mathematics and Statistics University of Maryland, Baltimore County

kvalheim@umbc.edu

January 6, 2024

Linearizability of dynamical systems by embeddings

"Applied Koopmanism" assumes globally linearizable dynamics

Which dynamical systems are globally linearizable?

1-parameter subgroups of torus actions with asymptotic phase

"Applied Koopmanism"

"A central focus of modern Koopman analysis is to find a finite set of nonlinear measurement functions, or coordinate transformations, in which the dynamics appear linear."

— Brunton, Budišić, Kaiser, and Kutz. "Modern Koopman Theory for Dynamical Systems." SIAM Review, 64.2 (2022)

More formally, they seek *embeddings* of *nonlinear* dynamical systems into *linear* ones as invariant subsets, so that existing theoretical and algorithmic linear tools can be utilized.

Linearizing embeddings

Let f be a locally Lipschitz vector field on a manifold M. Consider

$$\dot{x} = \frac{d}{dt}x = f(x),$$

assume this ODE's solutions $x(t) = \Phi^t(x_0)$ are defined for all time.

 $F \colon M \to \mathbb{R}^n$ is a **topological embedding** if F is a one-to-one continuous map with a continuous inverse $F^{-1} \colon F(M) \to M$, and is a **smooth embedding** if additionally F, F^{-1} are smooth.

Such an embedding F is **linearizing** if $F \circ \Phi^t = e^{Bt} \circ F$ for some $n \times n$ matrix B. In the smooth case, y = F(x) satisfies $\dot{y} = By$.

Fundamental question: when is (M, Φ) linearizable in this sense?

When is a dynamical system (M, Φ) globally linearizable?

- Not when M is connected and Φ has a countable number ≥ 2 of omega limit sets (Liu, Ozay, Sontag 2023).
- Not when M is connected and Φ has a non-global compact attractor A, since the open basin(A) would also be closed (Jordan normal form theorem) and hence empty or all of M.

Thus, we study linearizability of the restriction (S, Φ) of Φ to

- 1. compact invariant sets S, and
- 2. basins S of compact attractors A.

For these 2 cases we obtain **necessary and sufficient conditions** for global linearizability of (S, Φ) by an embedding, for the 2 cases of topological and smooth embeddings (4 cases total).¹

¹MDK and P. Arathoon, Linearizability of flows by embeddings (2023).

Torus preliminaries

The *n*-torus $T = T^n$ is Lie group isomorphic to $(\mathbb{R}/\mathbb{Z})^n$, vectors with *n* real entries but with addition defined elementwise modulo 1.

A **torus action** on S is a map $\Theta \colon T \times S \to S$ satisfying $\Theta^{\tau_1 + \tau_2}(s) = \Theta^{\tau_1} \circ \Theta^{\tau_2}(s)$ for all $s \in S$ and $\tau_1, \tau_2 \in T$.

The flow (S, Φ) is a **1-parameter subgroup of a torus action** if $\Phi^t = \Theta^{\omega t \mod 1}$ for some torus action Θ on S, $\omega \in \mathbb{R}^n \cong \text{Lie}(T^n)$.

The linearizability theorem, case 1: compact, smooth

Observation: If (S, Φ) is linearizable with S compact, the Jordan normal form theorem implies (S, Φ) embeds into the flow on \mathbb{C}^n of a diagonal imaginary matrix, so (S, Φ) is a 1-parameter subgroup of restriction of standard torus action of T^n on \mathbb{C}^n to a subtorus.

This gives one implication below; the Mostow-Palais equivariant embedding theorem gives the other.

Theorem (MDK and P. Arathoon). If S is a compact embedded submanifold, (S, Φ) is linearizable by a smooth embedding \iff (S, Φ) is a 1-parameter subgroup of a smooth torus action.

We use this theorem to construct examples of smoothly linearizable (S, Φ) having isolated equilibria with e.g. S = a sphere, torus, Klein bottle. On the other hand, regarding *non*linearizability...

Topological implications for case 1 (compact, smooth)

If (S,Φ) is a 1-parameter subgroup of a smooth torus action, Bochner's linearization theorem yields an $n\times n$ skew matrix B_e and a system of local coordinates on a neighborhood of each equilibrium $e\in S$ such that $\Phi^t\approx e^{B_e t}$. Hence if e is isolated then B_e is invertible, $n=\dim S$ is even, and the Hopf index of e is +1.

Corollary (MDK and PA). If S is an odd-dimensional connected compact submanifold with at least one isolated equilibrium, then (S, Φ) cannot be linearized by a smooth embedding.

Corollary (MDK and PA). If S is a compact submanifold containing at most finitely many equilibria such that (S, Φ) is linearizable by a smooth embedding, $\chi(S) = \#\{\text{equilibria}\} \ge 0$.

²Apply the Poincaré-Hopf theorem.

The linearizability theorem, case 2: compact, continuous

The theorem for case 2 is similar for case 1, but an additional assumption is needed to rule out a pathology not possible in case 1.

A torus action has **finitely many orbit types** if there are only finitely many subgroups $H \subset T$ such that $H = \{\tau \in T : \Theta^{\tau}(s) = s\}$ is the fixed point set of some $s \in S$.

Theorem (MDK and PA). If S is compact, (S, Φ) is linearizable by a topological embedding $\iff (S, \Phi)$ is a 1-parameter subgroup of a continuous torus action with finitely many orbit types.

Another point of view: quasiperiodic pinched torus families

Figure: examples of quasiperiodic pinched torus families

Proposition (MDK and PA). If S is compact, (S, Φ) is linearizable by a topological embedding $\iff (S, \Phi)$ is a quasiperiodic pinched torus family.

Definition. P is a **pinched torus family** if there are $m, n \in \mathbb{N}$, closed subsets $C_1, \ldots, C_n \subset B \subset T^m$, and a continuous group homomorphism $F \colon T^n \to T^m$ such that P is the quotient of $F^{-1}(B)$ by collapsing the j-th (\mathbb{R}/\mathbb{Z}) -factor of $F^{-1}(C_j) \subset T^n$ for all j. A pinched torus family P is **quasiperiodic** if it is equipped with the induced flow generated by any $\omega \in \mathbb{R}^n$ with $\mathsf{T} F(\omega) = 0$.

The linearizability theorem, case 3: basin, continuous

If S is the basin of an asymptotically stable compact set $A \subset S$, A has continuous (smooth) **asymptotic phase**³ if there is a continuous (smooth) **asymptotic phase map** $P \colon S \to A$, i.e.,

$$P|_A = \mathrm{id}_A, \qquad P \circ \Phi^t|_S = \Phi^t \circ P \quad \text{for all } t \in \mathbb{R}.$$

Theorem (MDK and PA). (S, Φ) is linearizable by a topological embedding \iff A has continuous asymptotic phase and (A, Φ) is a 1-parameter subgroup of a continuous torus action with finitely many orbit types.

Example. The basin of an asymptotically stable limit cycle is linearizable by a topological embedding \iff the cycle has continuous asymptotic phase. This is not always the case, but it is the case if $\Phi \in C^1$ and the cycle is hyperbolic.

³This notion has roots in oscillator theory and more generally NHIM theory.

The linearizability theorem, case 4: basin, smooth

Theorem (MDK and PA). (S, Φ) is linearizable by a smooth embedding \iff A is an embedded submanifold with smooth asymptotic phase, (A, Φ) is a 1-parameter subgroup of a smooth torus action, and for some open $U \supset A$, (U, Φ) embeds in a reducible linear flow covering Φ on some vector bundle over A.

When does the final condition hold? Classical linearization theorems and recent linearizing semiconjugacy theorems (MDK and Revzen, 2023) give answers in the special cases that A is an equilibrium or periodic orbit, and some things are known if A is quasiperiodic, but the general case seems to be an open problem.

A necessary condition for A to satisfy all conditions of the theorem is that A be a (eventually relatively ∞ -)normally hyperbolic invariant manifold. See Eldering, MDK, Revzen (2018) for related results on asymptotic phase and linearizability.

Linearizability of dynamical systems by embeddings

"Applied Koopmanism" assumes globally linearizable dynamics

Which dynamical systems are globally linearizable?

1-parameter subgroups of torus actions with asymptotic phase