$$f(x,y,z)=(x+y)z$$

$$f(x,y,z)=(x+y)z$$

$$f(x, y, z) = (x + y)z$$

e.g. x = -2, y = 5, z = -4

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Fei-Fei Li & Justin Johnson & Serena Yeung

Lecture 4 - 18

April 13, 2017

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \hspace{0.5cm} rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g. x = -2, y = 5, z = -4

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

$$f(x,y,z)=(x+y)z$$

e.g.
$$x = -2$$
, $y = 5$, $z = -4$

$$q=x+y$$
 $\frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Another example: $f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1 + w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_c(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

gradient

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0x_0 + w_1x_1)}}$$

Another example:
$$f(w,x) = \frac{1}{1+e^{-(u)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \ f(x)=rac{1}{x} \ f_c(x)=c+x \$$

$$egin{array}{ll}
ightarrow & rac{df}{dx} = -1/x \
ightarrow & rac{df}{dx} = 1/x \
ightarrow & 1/x \
ightarrow & 1/x \
ightarrow & 1/x \
ightarrow & 1/x \
ho = 1/x \
h$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ \hline f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \hline \end{pmatrix} egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ \hline f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \hline \end{pmatrix}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_1 + w_2 x_2 + w_3 x_1 + w_3 x_2 + w_3 x_2 + w_3 x_3 + w_3 x_4 + w_3 x_4 + w_3 x_5 + w_3 x_5$$

$$f(x) = e^x \qquad o \qquad rac{df}{dx} = e^x \ f_a(x) = ax \qquad o \qquad rac{df}{dx} = a$$

$$f(x) = rac{1}{x}
ightarrow rac{df}{dx} = -1/x
ightarrow f_c(x) = c + x
ightarrow rac{df}{dx} = 1$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_1 x_2 + w_2 x_1 + w_2 x_2 + w_2 x_2$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2 x_1 + w_2 x_2 + w_3 x_2 + w_3 x_2 + w_3 x_3 + w_3 x_4 + w_3 x_4$$

Another example:
$$f(w,x) = \frac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x) = e^{x} \qquad \rightarrow \qquad \frac{df}{dx} = e^{x} \qquad f(x) = c + x \qquad \rightarrow \qquad \frac{df}{dx} = 1$$

Another example:

 $f(x) = e^x$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f_a(x) = ax$$
 o $frac{af}{dx} = a$

$$f_c(x)=c+x$$

$$rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

$$\sigma(x) = rac{1}{1 + e^{-x}}$$
 sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \, \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \, \left(1 - \sigma(x)
ight)\sigma(x)$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Computational graph representation may not be unique. Choose one where local gradients at each node can be easily expressed!

$$\sigma(x) = rac{1}{1 + e^{-x}}$$
 sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

add gate: gradient distributor

add gate: gradient distributor

Q: What is a max gate?

add gate: gradient distributor

max gate: gradient router

add gate: gradient distributor

max gate: gradient router

Q: What is a **mul** gate?

add gate: gradient distributor

max gate: gradient router

mul gate: gradient switcher

Gradients add at branches

Vectorized operations

Vectorized operations

$$rac{\partial L}{\partial x} = egin{bmatrix} rac{\partial f}{\partial x} rac{\partial L}{\partial f} \end{bmatrix}$$
Jacobian matrix

4096-d input vector

Q: what is the size of the

Jacobian matrix?

f(x) = max(0,x) (elementwise)

4096-d output vector

Vectorized operations

$$\frac{\partial L}{\partial x} = \frac{\partial f}{\partial x} \frac{\partial L}{\partial f}$$

Jacobian matrix

4096-d output vector

A vectorized example: $f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

Lecture 4 - 60

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$
 $\in \mathbb{R}^n\in\mathbb{R}^{n\times n}$

A vectorized example: $f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$= \begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$$

$$q=W\cdot x=\begin{pmatrix} W_{1,1}x_1+\cdots+W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1+\cdots+W_{n,n}x_n \end{pmatrix}$$

 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$

A vectorized example:
$$f(x,W)=||W\cdot x||^2=\sum_{i=1}^n(W\cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$
$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.16 \\ 1.00 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$\frac{\partial f}{\partial q_i} = 2q_i$$

$$\nabla_q f = 2q$$

 $f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 \\ 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 \\ 0.7 \\ 0.7 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 \\ 0.7 \\ 0.7 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 \\ 0.7 \\ 0.7 \end{bmatrix}$$

$$\begin{bmatrix} 0.7 \\ 0.7 \end{bmatrix}$$

$$\begin{bmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \cdots + q_n^2$$

Fei-Fei Li & Justin Johnson & Serena Yeung

April 12, 2018

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix}_W$$

$$\begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\frac{\partial q_k}{\partial W_{i,j}} = \mathbf{1}_{k=i}x_j$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= 2a_i x_i$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \\ 0.104 & 0.208 \end{bmatrix} W \begin{bmatrix} 0.22 \\ 0.4 \end{bmatrix} \times \begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix} \underbrace{\begin{bmatrix} 0.22 \\ 0.26 \end{bmatrix}} \underbrace{\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}} \underbrace{\begin{bmatrix} 0.116 \\ 0.104 \\ 0.104 \end{bmatrix}} \underbrace{\begin{bmatrix} 0.116 \\ 0.104 \\ 0.104 \end{bmatrix}} \underbrace{\begin{bmatrix}$$

A vectorized example:
$$f(x,W) = ||W \cdot x||^2 = \sum_{i=1}^n (W \cdot x)_i^2$$

$$\begin{bmatrix} 0.1 & 0.5 \\ -0.3 & 0.8 \end{bmatrix} W$$

$$\begin{bmatrix} 0.088 & 0.176 \\ 0.104 & 0.208 \end{bmatrix} W$$

$$\begin{bmatrix} 0.2 \\ 0.4 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.2 \\ 0.44 \end{bmatrix}_X$$

$$\begin{bmatrix} 0.44 \\ 0.52 \end{bmatrix}$$

$$\begin{bmatrix} 0.116 \\ 1.00 \end{bmatrix}$$

$$q = W \cdot x = \begin{pmatrix} W_{1,1}x_1 + \dots + W_{1,n}x_n \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{pmatrix}$$

$$\begin{bmatrix} \frac{\partial q_k}{\partial x_i} = W_{k,i} \\ \frac{\partial f}{\partial x_i} = \sum_k \frac{\partial f}{\partial q_k} \frac{\partial q_k}{\partial x_i} \\ \vdots \\ W_{n,1}x_1 + \dots + W_{n,n}x_n \end{bmatrix}$$

$$f(q) = ||q||^2 = q_1^2 + \dots + q_n^2$$

$$= \sum_k 2q_k W_{k,i}$$