```
In [ ]:
```

About Dataset

Hello My name is Ben Roshan D, doing MBA in Business Analytics at Jain University Bangalore . We have practical sessions in Python,R as subjects. Faculties provide us with such data sets to work on with it, So here is one of the data set which our class worked on

· What is in it?

This data set consists of Placement data of students in a XYZ campus. It includes secondary and higher secondary school percentage and specialization. It also includes degree specialization, type and Work experience and salary offers to the placed students

Acknowledgement

I would like to thank Dr. Dhimant Ganatara, Professor Jain University for helping the students by providing this data for us to train R programming

- Questions
- 1. Which factor influenced a candidate in getting placed?
- 2.Does percentage matters for one to get placed?
- 3. Which degree specialization is much demanded by corporate?
- 4. Play with the data conducting all statistical tests.

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

```
# display all the columns of dataframe
pd.pandas.set_option("display.max_columns", None)
```

In [3]:

```
# import the dataset
data=pd.read_csv(r"C:\Users\Mukul\Downloads\Placement Requirement Dataset Classification
```

```
In [4]:
```

```
# top 5 rows
data.head()
```

Out[4]:

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex
0	1	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No
1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes
2	3	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No
3	4	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No
4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No
4										•

In [5]:

```
# last 5 rows
data.tail()
```

Out[5]:

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	worke
210	211	М	80.6	Others	82.0	Others	Commerce	77.6	Comm&Mgmt	<u></u>
211	212	М	58.0	Others	60.0	Others	Science	72.0	Sci&Tech	١
212	213	М	67.0	Others	67.0	Others	Commerce	73.0	Comm&Mgmt	Ye
213	214	F	74.0	Others	66.0	Others	Commerce	58.0	Comm&Mgmt	١
214	215	М	62.0	Central	58.0	Others	Science	53.0	Comm&Mgmt	1

In [6]:

```
# check the columns
data.columns
```

Out[6]:

Description of the column labels in this dataset:

```
sl_no = Serial Number
gender = Male - 'M' and Female - 'F'
```

```
ssc p = Secondary Education Percentage (Middle School)
ssc b = Board of Education (middle)
hsc_p = Higher Secondary School Percentage (Senior)
hsc_b = Board of Education (senior)
hsc s = Specialization in Higher Secondary Education
degree p = Degree Percentage
degree_t = Degree type- Field of degree education
workex = Work Experience
etest p = Employability test percentage (conducted by college)
specialisation = Post Graduation(MBA)- Specialization
mba_p = MBA percentage
status = Status of placement- Placed/Not placed
salary = Salary offered by corporate to candidates
Change the columns name
In [7]:
data.columns
Out[7]:
Index(['sl_no', 'gender', 'ssc_p', 'ssc_b', 'hsc_p', 'hsc_b', 'hsc_s',
        'degree_p', 'degree_t', 'workex', 'etest_p', 'specialisation', 'mba
_p',
        'status', 'salary'],
      dtype='object')
In [8]:
data.rename(columns={'ssc_p':"Secondary Education Percentage (middle school)",'ssc_b':"B
                      'hsc_b':"Board of Education (senior)",'hsc_s':"Specialization in Hig
                      'degree_t':"Degree type- Field of degree education",'workex':"Work E
                      'mba_p':"MBA Percentage",'status':"Status of placement"},inplace=Tru
```

```
data.columns
Out[9]:
Index(['sl_no', 'gender', 'Secondary Education Percentage (middle schoo
1)',
       'Board of Education (middle)',
       'Higher Secondary School Percentage (senior)',
       'Board of Education (senior)',
       'Specialization in Higher Secondary Education', 'Degree Percentag
e',
       'Degree type- Field of degree education', 'Work Experience',
       'Employability test percentage (conducted by college)',
       'specialisation', 'MBA Percentage', 'Status of placement', 'salar
y'],
      dtype='object')
In [10]:
len(data.columns)
Out[10]:
15
In [11]:
# check the shape of dataset
data.shape
Out[11]:
(215, 15)
```

In [9]:

In [12]:

```
# check the information of dataset
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 215 entries, 0 to 214
Data columns (total 15 columns):
    Column
                                                           Non-Null Count
Dtype
----
                                                           215 non-null
0 sl_no
int64
                                                           215 non-null
1
    gender
object
     Secondary Education Percentage (middle school)
                                                           215 non-null
float64
    Board of Education (middle)
                                                           215 non-null
3
object
     Higher Secondary School Percentage (senior)
                                                           215 non-null
float64
     Board of Education (senior)
                                                           215 non-null
object
     Specialization in Higher Secondary Education
                                                           215 non-null
object
                                                           215 non-null
7
     Degree Percentage
float64
     Degree type- Field of degree education
                                                           215 non-null
8
object
     Work Experience
                                                           215 non-null
9
object
10 Employability test percentage (conducted by college) 215 non-null
float64
11 specialisation
                                                           215 non-null
object
                                                           215 non-null
12 MBA Percentage
float64
                                                           215 non-null
13 Status of placement
object
                                                           148 non-null
14 salary
float64
dtypes: float64(6), int64(1), object(8)
memory usage: 25.3+ KB
```

In [13]:

```
# drop the sl_no columns
data.drop(['sl_no'],axis=1,inplace=True)
```

In [14]:

```
# check the missing value
data.isnull().sum()
```

Out[14]:

gender	0
Secondary Education Percentage (middle school)	0
Board of Education (middle)	0
Higher Secondary School Percentage (senior)	0
Board of Education (senior)	0
Specialization in Higher Secondary Education	0
Degree Percentage	0
Degree type- Field of degree education	0
Work Experience	0
Employability test percentage (conducted by college)	0
specialisation	0
MBA Percentage	0
Status of placement	0
salary	67
dtype: int64	

• it is indicated the 67 missing value in salary columns

In [15]:

```
# check the % of missing values
data.isnull().mean()*100
```

Out[15]:

gender	0.000000
Secondary Education Percentage (middle school)	0.000000
Board of Education (middle)	0.000000
Higher Secondary School Percentage (senior)	0.000000
Board of Education (senior)	0.000000
Specialization in Higher Secondary Education	0.000000
Degree Percentage	0.000000
Degree type- Field of degree education	0.000000
Work Experience	0.000000
Employability test percentage (conducted by college)	0.000000
specialisation	0.000000
MBA Percentage	0.000000
Status of placement	0.000000
salary	31.162791
dtype: float64	

• it is indiacted the 31.16 % missing value in salary columns

In []:

In [16]:

```
# check the unique value
data.nunique()
```

Out[16]:

gender	2
Secondary Education Percentage (middle school)	103
Board of Education (middle)	2
Higher Secondary School Percentage (senior)	97
Board of Education (senior)	2
Specialization in Higher Secondary Education	3
Degree Percentage	89
Degree type- Field of degree education	3
Work Experience	2
Employability test percentage (conducted by college)	100
specialisation	2
MBA Percentage	205
Status of placement	2
salary	45
dtype: int64	

In [17]:

```
# check the duplicated values
data.duplicated().sum()
```

Out[17]:

0

In [18]:

```
# check the memory usage
data.memory_usage()
```

Out[18]:

Index	128
gender	1720
Secondary Education Percentage (middle school)	1720
Board of Education (middle)	1720
Higher Secondary School Percentage (senior)	1720
Board of Education (senior)	1720
Specialization in Higher Secondary Education	1720
Degree Percentage	1720
Degree type- Field of degree education	1720
Work Experience	1720
Employability test percentage (conducted by college)	1720
specialisation	1720
MBA Percentage	1720
Status of placement	1720
salary	1720
dtype: int64	

In [19]:

Central

Others

116 99

Name: Board of Education (middle), dtype: int64

```
# Getting the count of each category from data
for feature in data.columns:
    print(data[feature].value_counts())
     139
Μ
F
      76
Name: gender, dtype: int64
62.00
         11
63.00
         10
67.00
          9
52.00
          9
73.00
          9
69.70
          1
80.92
          1
83.00
          1
86.50
          1
80.60
Name: Secondary Education Percentage (middle school), Length: 103, dtyp
e: int64
```

In [20]:

```
# Getting the count of each categories from unique data
for feature in data.columns:
    print(data[feature].unique())
```

```
['M' 'F']
[67.
      79.33 65.
                  56.
                        85.8 55.
                                   46.
                                         82.
                                               73.
                                                     58.
                                                           69.6 47.
77.
            63.
                             69.8 77.4
                                         76.5 52.58 71.
                  60.
                        79.
                                                           76.76 64.
      62.
      87.
            69.
                  51.
                        81.
                             78.
                                   74.
                                         49.
                                               76.
                                                     70.89 50.
                                                                 75.2
61.
54.4 40.89 80.
                  60.4 68.
                             52.6 84.2 86.5 54.
                                                     83.
                                                           80.92 69.7
75.
      84.86 64.6 56.6 59.
                             66.5 84.
                                         81.7 70.
                                                     83.84 59.6 66.
            60.23 70.5 45.
                             61.08 69.5 73.96 68.2 60.8 72.
85.
      52.
     74.9 77.44 77.67 89.4 44.
                                   75.4 53.
                                               51.57 55.6 74.2 67.16
76.7
                  59.96 63.4 73.24 77.8 56.28 88.
63.3 67.9 48.
                                                     78.5 61.8 65.2
83.96 54.2 55.68 41.
                        83.33 43.
                                   80.6]
['Others' 'Central']
                        73.6 49.8 49.2 64.
[91.
      78.33 68.
                  52.
                                               79.
                                                     70.
                                                           61.
                                                                 68.4
55.
      87.
            47.
                  75.
                        66.2 67.
                                   66.
                                         65.
                                               76.
                                                     60.8 60.
54.6 76.5 73.5 53.
                              51.
                                         44.
                                                     77.
                                                           63.16 39.
                        81.
                                   78.
                                               58.
                  37.
                        73.2 61.12 45.83 66.6 71.4 65.58 73.4 64.2
73.
      71.98 62.
74.
      78.5 70.29 83.83 64.8 70.4 80.
                                         90.9 63.
                                                     89.83 90.
                                                                 57.
69.
      62.5 82.
                  72.
                        50.
                             54.
                                   72.8 40.
                                               66.8 59.
                                                           71.
                                                                 89.7
                             58.66 60.5 74.66 69.4 49.
92.
            64.89 65.66 86.
                                                           87.6 72.5
      56.
42.16 67.2 50.83 97.
                       71.5 60.33 62.83 65.5 77.6 70.2 61.4 61.33
42. ]
['Others' 'Central']
['Commerce' 'Science' 'Arts']
[58.
      77.48 64.
                 52.
                       73.3 67.25 79.
                                         66.
                                               72.
                                                     61.
                                                           60.
                                                                 78.3
      59.
            50.
                  69.
                        65.6 70.
                                         72.23 64.74 78.86 50.2 67.5
65.
                                   85.
                                                     61.4 74.
73.
      66.4 81.
                  57.
                        80.
                                   68.4 56.2 53.
                                                                 72.11
                             68.
66.89 67.4 75.
                  67.
                        72.7 62.
                                   71.
                                         78.
                                               71.72 70.2 77.5 71.93
64.5 77.2 82.
                  50.8 54.
                             76.
                                               66.6 64.6 69.6 69.3
                                   63.
                                         83.
64.33 75.5 77.72 77.
                       69.5 73.43 70.67 71.25 56.
                                                     55.
                                                           84.
60.9 57.5 77.25 63.35 61.26 64.27 64.2 62.8 64.21 59.79 54.38 69.2
64.8 56.3 91.
                  56.87 77.6 ]
['Sci&Tech' 'Comm&Mgmt' 'Others']
['No' 'Yes']
      86.5 75.
[55.
                  66.
                        96.8 74.28 67.
                                         91.34 54.
                                                     62.
                                                           60.
                                                                 68.
            50.48 50.
                             55.53 92.
                                         97.4 94.
76.
      72.
                        95.
                                                     73.35 77.
                                                                 52.
64.
      50.89 88. 68.44 71.
                              58.
                                   53.7 93.
                                               65.
                                                     63.
                                                           89.
                  74.
                        57.6 61.6 59.
71.2 87.
            80.
                                         68.5 61.
                                                     89.69 68.92 68.71
            95.5 86.
      70.
                        84.27 69.
                                   86.04 82.
                                               84.
                                                     78.74 53.88 95.46
93.91 56.39 57.5 85.
                        57.2 72.15 96.
                                         97.
                                               82.66 73.
                                                           55.67 80.4
55.5 81.2 90.
                  74.4 55.6 56. 83.
                                         57.
                                               64.25 98.
                                                           56.15 93.4
57.63 75.2 53.04 58.1 54.48 58.06 63.79 87.5 75.5 95.65 59.32 87.55
61.28 88.56 92.66 91.
['Mkt&HR' 'Mkt&Fin']
[58.8 66.28 57.8 59.43 55.5 51.58 53.29 62.14 61.29 52.21 60.85 63.7
65.04 68.63 54.96 64.66 62.54 67.28 64.08 77.89 56.7 69.06 68.81 63.62
74.01 65.33 57.55 57.69 64.15 51.29 58.32 62.21 72.78 62.77 62.74 51.45
55.47 56.86 62.56 66.72 69.76 51.21 62.9 69.7 66.53 71.63 54.55 62.46
56.11 62.98 62.65 65.49 71.04 65.56 52.71 66.88 63.59 57.99 56.66 57.24
62.48 59.69 59.5 58.78 57.1 58.46 60.99 59.24 68.07 65.45 66.94 68.53
59.75 67.2 67. 64.27 57.65 59.42 67.99 62.35 70.2 60.44 66.69 62.
76.18 57.03 59.08 64.36 62.36 68.03 62.79 59.47 55.41 54.97 62.16 64.44
69.03 57.31 64.95 61.31 65.83 58.23 55.3 65.69 73.52 58.31 56.09 54.8
60.64 53.94 63.08 55.01 60.5 70.85 67.05 70.48 64.34 58.81 71.49 71.
61.26 73.33 68.2 58.4 76.26 68.55 60.78 53.49 60.98 67.13 65.63 61.58
60.41 71.77 54.43 56.94 61.9 60.39 58.52 63.23 55.14 62.28 58.54 61.3
 58.87 65.25 53.2 65.99 52.72 55.03 61.87 60.59 72.29 62.72 66.06 66.46
65.52 74.56 52.38 75.71 58.79 65.48 69.28 66.04 52.64 59.32 66.23 60.69
57.9 70.81 72.14 56.6 60.02 59.81 61.82 57.29 71.43 62.93 64.86 56.13
62.5 61.01 57.34 56.63 64.74 58.95 54.48 69.71 71.96 55.8 52.81 58.44
60.11 58.3 67.69 56.81 53.39 71.55 62.92 56.49 74.49 53.62 69.72 60.23
60.22]
['Placed' 'Not Placed']
```

```
[270000. 200000. 250000.
                             nan 425000. 252000. 231000. 260000. 218000.
300000. 236000. 265000. 393000. 360000. 240000. 350000. 278000. 320000.
411000. 287000. 204000. 450000. 216000. 220000. 268000. 275000. 336000.
230000. 500000. 400000. 210000. 420000. 380000. 280000. 276000. 940000.
225000. 233000. 690000. 340000. 255000. 285000. 290000. 650000. 264000.
295000.]
```

Handling the Missing Value

```
In [21]:
```

```
data.isnull().sum()
Out[21]:
gender
Secondary Education Percentage (middle school)
                                                          0
Board of Education (middle)
                                                          0
Higher Secondary School Percentage (senior)
Board of Education (senior)
                                                          0
Specialization in Higher Secondary Education
                                                          0
                                                          0
Degree Percentage
Degree type- Field of degree education
Work Experience
                                                          a
Employability test percentage (conducted by college)
specialisation
                                                          а
MBA Percentage
                                                          0
Status of placement
                                                          0
salary
                                                         67
dtype: int64
In [22]:
data["salary"].unique()
Out[22]:
                                       nan, 425000., 252000., 231000.,
array([270000., 200000., 250000.,
       260000., 218000., 300000., 236000., 265000., 393000., 360000.,
       240000., 350000., 278000., 320000., 411000., 287000., 204000.,
       450000., 216000., 220000., 268000., 275000., 336000., 230000.,
       500000., 400000., 210000., 420000., 380000., 280000., 276000.,
       940000., 225000., 233000., 690000., 340000., 255000., 285000.,
       290000., 650000., 264000., 295000.])
```

In [23]:

```
data['salary'].value_counts()
```

```
Out[23]:
300000.0
            22
250000.0
            18
240000.0
            15
260000.0
             7
360000.0
             6
200000.0
             6
             6
265000.0
220000.0
             5
             5
275000.0
210000.0
             4
400000.0
             4
             4
270000.0
216000.0
             3
             3
350000.0
500000.0
             3
             2
252000.0
236000.0
             2
230000.0
             2
             2
280000.0
218000.0
             2
204000.0
             2
             2
276000.0
             1
255000.0
285000.0
             1
340000.0
             1
690000.0
             1
             1
233000.0
290000.0
             1
650000.0
             1
264000.0
             1
225000.0
             1
940000.0
             1
393000.0
             1
380000.0
             1
420000.0
             1
425000.0
             1
336000.0
             1
231000.0
             1
268000.0
             1
             1
450000.0
287000.0
             1
411000.0
             1
320000.0
             1
278000.0
             1
295000.0
             1
Name: salary, dtype: int64
```

In [24]:

```
sns.countplot(data['salary'])
```

Out[24]:

```
<AxesSubplot:xlabel='salary', ylabel='count'>
```


In [25]:

```
data['salary'].dtypes
```

Out[25]:

dtype('float64')

- We are observerd the salary columns is missing value and it is indicated the float dtypes.
- Salary----> This feature are float dtypes. We decided the filling missing values by means()

In [26]:

```
data['salary'] = data['salary'].fillna(data['salary'].mean())
```

In [27]:

```
data.isnull().sum()
Out[27]:
gender
                                                          0
Secondary Education Percentage (middle school)
Board of Education (middle)
Higher Secondary School Percentage (senior)
                                                          0
Board of Education (senior)
                                                          0
Specialization in Higher Secondary Education
                                                          0
                                                          0
Degree Percentage
Degree type- Field of degree education
                                                          0
Work Experience
                                                          0
Employability test percentage (conducted by college)
                                                          0
specialisation
                                                          0
MBA Percentage
Status of placement
                                                          0
                                                          0
salary
dtype: int64
```

no missing values

Segregate the Numerical and Categorical columns

In [28]:

```
# Numerical Columns

num_columns = [feature for feature in data.columns if data[feature].dtypes != 'object']
print("Number of Numerical Feature ", len(num_columns))
print(num_columns)
Number of Numerical Feature 6
```

```
['Secondary Education Percentage (middle school)', 'Higher Secondary School Percentage (senior)', 'Degree Percentage', 'Employability test percentage (conducted by college)', 'MBA Percentage', 'salary']
```

In [29]:

```
data.hist(figsize=(15,12))
```

```
Out[29]:
```

```
array([[<AxesSubplot:title={'center':'Secondary Education Percentage (midd</pre>
le school)'}>,
          <AxesSubplot:title={'center':'Higher Secondary School Percentage</pre>
(senior)'}>],
         [<AxesSubplot:title={'center':'Degree Percentage'}>,
          <AxesSubplot:title={'center':'Employability test percentage (condu</pre>
cted by college)'}>],
         [<AxesSubplot:title={'center':'MBA Percentage'}>,
          <AxesSubplot:title={'center':'salary'}>]], dtype=object)
      Secondary Education Percentage (middle school)
                                                           Higher Secondary School Percentage (senior)
                                                    70
 40
                                                    60
                                                    50
 30
                                                    40
 20
                                                    30
 10
                                                    10
                Degree Percentage
                                                         Employability test percentage (conducted by college)
 60
                                                    30
                                                    25
 40
                                                    20
 30
                                                    15
 20
                                                    10
 10
                 MBA Percentage
                                                                         salary
 35
                                                    100
 30
                                                    80
 25
 20
 15
                                                    40
 10
                                                    20
```

In [30]:

```
# Categorical Columns

cat_columns = [feature for feature in data.columns if data[feature].dtypes=='object']
print("Number of Categorical Columns" , len(cat_columns))
print(cat_columns)
```

200000 300000 400000 500000 600000 700000 800000 900000

```
Number of Categorical Columns 8 ['gender', 'Board of Education (middle)', 'Board of Education (senior)', 'Specialization in Higher Secondary Education', 'Degree type- Field of deg ree education', 'Work Experience', 'specialisation', 'Status of placemen t']
```

```
In [31]:
# Fetching the Unique value of categorical data
for i in cat_columns:
   print(i , data[i].unique())
   print()
gender ['M' 'F']
Board of Education (middle) ['Others' 'Central']
Board of Education (senior) ['Others' 'Central']
Specialization in Higher Secondary Education ['Commerce' 'Science' 'Arts']
Degree type- Field of degree education ['Sci&Tech' 'Comm&Mgmt' 'Others']
Work Experience ['No' 'Yes']
specialisation ['Mkt&HR' 'Mkt&Fin']
Status of placement ['Placed' 'Not Placed']
In [32]:
```

```
# Fetch the only categorical columns
cat_df = data[cat_columns]
cat df
```

Out[32]:

	gender	Board of Education (middle)	Board of Education (senior)	Specialization in Higher Secondary Education	Degree type- Field of degree education	Work Experience	specialisation	
0	М	Others	Others	Commerce	Sci&Tech	No	Mkt&HR	
1	М	Central	Others	Science	Sci&Tech	Yes	Mkt&Fin	
2	М	Central	Central	Arts	Comm&Mgmt	No	Mkt&Fin	
3	М	Central	Central	Science	Sci&Tech	No	Mkt&HR	
4	М	Central	Central	Commerce	Comm&Mgmt	No	Mkt&Fin	
210	М	Others	Others	Commerce	Comm&Mgmt	No	Mkt&Fin	
211	М	Others	Others	Science	Sci&Tech	No	Mkt&Fin	
212	М	Others	Others	Commerce	Comm&Mgmt	Yes	Mkt&Fin	
213	F	Others	Others	Commerce	Comm&Mgmt	No	Mkt&HR	
214	М	Central	Others	Science	Comm&Mgmt	No	Mkt&HR	
215	v 0	aalumana						

215 rows × 8 columns

Visulization of Categorical Columns

In [33]:

```
plt.figure(figsize=(20,18))
cat_columns = ['gender', 'Board of Education (middle)', 'Board of Education (senior)', 'Spe
for i in range (0 , len(cat_columns)):
    plt.subplot(10,5,i+1)
    sns.countplot(x=data[cat_columns[i])
    plt.xlabel(cat_columns[i])
    plt.xticks(rotation=10)
    plt.tight_layout()
```

In [34]:

```
data['specialisation'].value_counts()
```

Out[34]:

Mkt&Fin 120 Mkt&HR 95

Name: specialisation, dtype: int64

In [35]:

```
sns.countplot(data['specialisation'])
```

Out[35]:

<AxesSubplot:xlabel='specialisation', ylabel='count'>

In [36]:

```
data['Specialization in Higher Secondary Education'].value_counts()
```

Out[36]:

Commerce 113 Science 91 Arts 11

Name: Specialization in Higher Secondary Education, dtype: int64

In [37]:

```
sns.countplot(data['Specialization in Higher Secondary Education'])
```

Out[37]:

<AxesSubplot:xlabel='Specialization in Higher Secondary Education', ylabel
='count'>

• it is indicated the Art specialization is low category and Commerce specialization is Higher Category and Science specialization is more than intermediate category

In [38]:

```
data['Work Experience'].value_counts()
```

Out[38]:

No 141 Yes 74

Name: Work Experience, dtype: int64

In [39]:

sns.countplot(data['Work Experience'])

Out[39]:

<AxesSubplot:xlabel='Work Experience', ylabel='count'>

In [40]:

```
# gender , # Secondary Eduaction Percentage, #Work Experience
# gender
plt.figure(figsize=(15,12))
plt.subplot(1,3,1)
labels = data['gender'].value_counts().index
size=data['gender'].value_counts()
explode = None
plt.pie(size, labels=labels, explode=explode, autopct='%1.1f%%')
plt.title('gender')
# Secondarey Education Percentage
plt.figure(figsize=(15,12))
plt.subplot(1,3,2)
labels = data['Specialization in Higher Secondary Education'].value_counts().index
size=data['Specialization in Higher Secondary Education'].value_counts()
explode=None
plt.pie(size, labels=labels, explode=explode, autopct='%1.1f%%')
plt.title('Specialization in Higher Secondary Education')
# Work Experience
plt.figure(figsize=(15,12))
plt.subplot(1,3,3)
labels=data['Work Experience'].value_counts().index
size=data['Work Experience'].value_counts()
explode = None
plt.pie(size, labels=labels , explode=explode, autopct='%1.1f%%')
plt.title('Work Experience')
```

Out[40]:

Text(0.5, 1.0, 'Work Experience')

gender

Specialization in Higher Secondary Education

Work Experience

No 65.6%

In [

Create a dataframe Secondary Education Percentage and find out how many total student of 34.4%

secondary_edu_perc_data=data['Secondary Education Percentage (middle school)'].value_cou
secondary_edu_perc_data.columns = ['Secondary Education Percentage (middle school)' , 'T
secondary_edu_perc_data

Out[41]:

Secondary Education Percentage (middle school)	Total Student
--	----------------------

0	62.00	11
1	63.00	10
2	67.00	9
3	52.00	9
4	73.00	9
98	69.70	1
99	80.92	1
100	83.00	1
101	86.50	1
102	80.60	1

103 rows × 2 columns

In [42]:

```
# check the which type of more dergee in gender category
data.groupby(['gender'])['Degree type- Field of degree education'].value_counts()
```

Out[42]:

```
        gender
        Degree type- Field of degree education

        F
        Comm&Mgmt
        53

        Sci&Tech
        17

        Others
        6

        M
        Comm&Mgmt
        92

        Sci&Tech
        42

        Others
        5
```

Name: Degree type- Field of degree education, dtype: int64

- it is indicated the Female have Commerce and Management 53 degree , Science and Technology 17 degree and other categegory is 6 degree
- Male have Commerce and Management 92 degree , Science and Technology 42 degree and other category is 6 degree

In [43]:

```
# plot barcahrt

plt.subplots(figsize=(15,12))
sns.set_style('whitegrid')
sns.countplot(x='Degree type- Field of degree education',hue='gender',data=data,ec='blac
plt.title('Pepole have collage Degree' , weight='bold')
plt.xlabel('Degree Type')
plt.grid(alpha=0.5,axis='y')
plt.show()
```


In [44]:

```
# check the Specialization in Higher Secondary Education

plt.figure(figsize=(30,20))
secon_edu=pd.crosstab(data['Specialization in Higher Secondary Education'],data['Board or secon_edu.plot(kind='bar',figsize=(14,12))
```

Out[44]:

<AxesSubplot:xlabel='Specialization in Higher Secondary Education'>

<Figure size 2160x1440 with 0 Axes>

- we are observed that other Board of Education in high demand Commerce and Science specialization in Higher Secondary education and the other Board of education in low demand in Art Background Student
- Central Board of education high demand in Commercee, Science and Art Background Student

In [45]:

```
data.columns
```

```
Out[45]:
```

In [46]:

```
board_edu = pd.crosstab(data['Board of Education (middle)'],data['Board of Education (se
board_edu.plot(kind='bar',figsize=(12,10))
```

Out[46]:

<AxesSubplot:xlabel='Board of Education (middle)'>

Which Board of Education have a more specilization

In [47]:

board_education = pd.crosstab(data['Board of Education (middle)'],data['Degree type- Fie
board_education.plot(kind='bar',figsize=(12,10))

Out[47]:

<AxesSubplot:xlabel='Board of Education (middle)'>

- we are observed that Central Borad of Education have a more degree type Commerce and Management Background of students, 28 % ofdegree type of Science and Technology background students, or 5 % of degree type of other background of students
- Other Board of Education have a more degree type Commerce and Management Background of students, 32 % of Degree types of Science and Technology background of student or 4% of degree type of other background of students

Which Degree type- Field of degree education have a more work experience?

In [48]:

degree_type = pd.crosstab(data['Degree type- Field of degree education'],data['Work Expe
degree_type.plot(kind='bar',figsize=(12,10))

Out[48]:

<AxesSubplot:xlabel='Degree type- Field of degree education'>

What is the Degree type- Field of degree education is each distribution of Gender Category

In [49]:

```
data.groupby(['Degree type- Field of degree education'])['gender'].value_counts()
```

Out[49]:

Degree type- Field of degree education Comm&Mgmt	gender M	92
	F	53
Others	F	6
	Μ	5
Sci&Tech	М	42
	F	17

Name: gender, dtype: int64

In [50]:

```
plt.subplots(figsize=(12,10))
sns.countplot(x='Degree type- Field of degree education',data=data , ec='black')
plt.title('Distribution of Gender Category')
plt.xlabel('Distribution Channel')
plt.ylabel('Degree Type')
plt.grid(alpha=0.5)
```


What is the Employability test percentage each distribution of Degree type field of degree education?

In [51]:

```
data.groupby(['Degree type- Field of degree education'])['Employability test percentage
```

Out[51]:

type: int64

Degree type- Field of degree education ducted by college)	Employability test percentage (con
Comm&Mgmt	60.0
5	67.0
	68.0
5	89.0
5	62.0
4	
 Sci&Tech	95.0
1	96.0
1	97.0
1	
1	97.4
1	98.0
Name: Employability test percentage (co	nducted by college), Length: 136, d

 We are observed that Highest Employability Test Percentage is Science and Technology background of student 98 %

WHich background of student come under the top 10 percentage?

In [137]:

```
employability_test=data.groupby(['Employability test percentage (conducted by college)']
employability_test.sort_values(ascending=False)[0:10]
```

Out[137]:

Employability test f degree education	percentage	(conducted	by	college)	Degree type	- Field o
60.0					0	
11 67.0					0	
5						
89.0 5					0	
68.0					0	
5					0	
72.0 4					0	
62.0					0	
4 78.0					0	
4					0	
84.0					0	
4 80.0					0	
4						
75.0 3					2	
3						

Name: Degree type- Field of degree education, dtype: int64

• it is indicated the 9 student is Commerce and Management background and 1 student is Science and Technology backgrounfd student

In [53]:

```
plt.subplots(figsize=(14,7))
sns.countplot(x='Employability test percentage (conducted by college)',data=data,ec='bla
plt.title('Test Percentage',weight='bold',fontsize=20)
plt.ylabel('Counts')
plt.xlabel('Employability test percentage')
plt.xticks(rotation=45)
plt.xlim(-1,10.5)
plt.show()
```


Which background of student is the top 10 highest percentage?

In [54]:

```
employability_test.sort_values(ascending=False)[0:10]
```

Out[54]:

<pre>Employability test percentage (conducted by college)</pre>	Degree type- Field o		
f degree education			
60.0	Comm&Mgmt		
11			
67.0	Comm&Mgmt		
5			
89.0	Comm&Mgmt		
5			
68.0	Comm&Mgmt		
5			
72.0	Comm&Mgmt		
4	Cammo Manut		
62.0	Comm&Mgmt		
4	Comm ^Q Mam+		
78.0 4	Comm&Mgmt		
84.0	Comm&Mgmt		
4	Commangine		
80.0	Comm&Mgmt		
4	comma ignic		
75.0	Sci&Tech		
3			
Name: Degree type- Field of degree education, dtype:	int64		

In [136]:

data.groupby(['Employability test percentage (conducted by college)'])['Degree type- Fie

Out[136]:

<AxesSubplot:ylabel='Degree type- Field of degree education'>

In []:			
In []:			
In []:			

In [55]:

data.groupby(['Employability test percentage (conducted by college)'])['Degree type- Fie

Out[55]:

<AxesSubplot:ylabel='Degree type- Field of degree education'>

which is most popular degree type - field of degree education?

In [56]:

data['Degree type- Field of degree education'].value_counts().plot.pie(figsize=(15,12),a

Out[56]:

<AxesSubplot:ylabel='Degree type- Field of degree education'>

it is indicated the most popular degree Commerce and Managemat Background of student 67.4%,
 Science and Technology background of student is 27.4% and other background of student is 5.1 %

Which education is the most specialisation of students?

In [57]:

```
data['specialisation'].value_counts().plot.pie(figsize=(12,10),autopct="%1.1f%%")
```

Out[57]:

<AxesSubplot:ylabel='specialisation'>

Chcek the which specialisation is highest MBA Percentage

```
In [58]:
```

```
data.groupby(['MBA Percentage'])['specialisation'].value_counts()
```

Out[58]:

MBA Percentage	specialisation	
51.21	Mkt&Fin	1
51.29	Mkt&Fin	1
51.45	Mkt&Fin	1
51.58	Mkt&Fin	1
52.21	Mkt&Fin	1
		• •
74.56	Mkt&Fin	1
74.56 75.71	Mkt&Fin Mkt&Fin	
		1
75.71	Mkt&Fin	1 1
75.71 76.18	Mkt&Fin Mkt&Fin	1 1 1

Name: specialisation, Length: 208, dtype: int64

In [59]:

```
mba_perc=data.groupby(['MBA Percentage'])['specialisation'].value_counts()
mba_perc.sort_values(ascending=False)
mba_top_10_percentage=mba_perc.head(int(len(mba_perc)*0.1))
```

In [60]:

```
mba_top_10_percentage
```

Out[60]:

MRA P	ercentage	snecia	alisatio	าท
51.21	. centuge	Mkt&F:		1
51.29		Mkt&F:		1
51.45		Mkt&F:		1
51.58		Mkt&F:		1
52.21		Mkt&F:	in	1
52.38		Mkt&HI		1
52.64		Mkt&HI		1
52.71		Mkt&HI	R	1
52.72		Mkt&HI	R	1
52.81		Mkt&F:	in	1
53.20		Mkt&F:	in	1
53.29		Mkt&F:	in	1
53.39		Mkt&F:	in	1
53.49		Mkt&HI	R	1
53.62		Mkt&F:	in	1
53.94		Mkt&HI	R	1
54.43		Mkt&F:	in	1
54.48		Mkt&F:	in	1
54.55		Mkt&F:	in	1
54.80		Mkt&H	R	1
Name:	specialis	ation,	dtype:	int64

check the which specialistaion is higest salary

In [61]:

```
salary = pd.crosstab(data['salary'],data['specialisation'])
salary.plot(kind='bar', figsize=(14,12))
```

Out[61]:

<AxesSubplot:xlabel='salary'>

· we are observed that Marketing and HR sector is higest salary

check the what is status of palcement of MBA Students

In [62]:

```
placement = pd.crosstab(data['Status of placement'],data['specialisation'])
placement.plot(kind='bar',figsize=(12,8))
```

Out[62]:

<AxesSubplot:xlabel='Status of placement'>

Check the which MBA specialisation is get higest package?

In [63]:

```
salary = pd.crosstab(data['salary'],data['specialisation'])
salary.plot(kind='bar',figsize=(12,8))
```

Out[63]:

<AxesSubplot:xlabel='salary'>

In [64]:

```
# Gender and Status of placement

x= pd.crosstab(data['gender'],data['Status of placement'])
x.div(x.sum(1).astype(float),axis=0).plot(kind='bar',stacked=False,figsize=(12,8))
plt.title('Effect of Gender on Status of placement')
plt.show()
```


In [65]:

```
# Degree Percentage and Status of placement
sns.boxenplot(data['Status of placement'],data['Degree Percentage'])
plt.title('effect of Degree Percentage on Placement')
plt.show()
```


In [66]:

```
# salary and #Stauts of placement

plt.figure(figsize=(12,8))
sns.barplot(data['Status of placement'],data['salary'],hue=data['gender'])
plt.title('Chance of placement in salary')
plt.xlabel('Status of placement')
plt.ylabel('salary')
plt.show()
```


In [67]:

```
# salary #Work Experience

plt.figure(figsize=(12,8))
sns.barplot(data['Work Experience'],data['salary'],hue=data['gender'])
plt.title('Check the Work Experience is high than salary is high ')
plt.xlabel('Work Experience')
plt.ylabel('salary')
plt.show()
```


In [68]:

cat_columns

Out[68]:

```
['gender',
  'Board of Education (middle)',
  'Board of Education (senior)',
  'Specialization in Higher Secondary Education',
  'Degree type- Field of degree education',
  'Work Experience',
  'specialisation',
  'Status of placement']
```

```
In [69]:
```

```
num_columns
```

Out[69]:

```
['Secondary Education Percentage (middle school)',
    'Higher Secondary School Percentage (senior)',
    'Degree Percentage',
    'Employability test percentage (conducted by college)',
    'MBA Percentage',
    'salary']
```

In [70]:

```
plt.figure(figsize=(12,8))
sns.barplot(data['Status of placement'],data['Employability test percentage (conducted by
plt.title('Status of placement is depend upon the Employability of test Percentage')
plt.xlabel('Status of placement')
plt.ylabel('Employability test percentage (conducted by collage)')
plt.show()
```


Target Columns

```
In [71]:
```

```
data['Status of placement'].value_counts()
```

Out[71]:

Placed 148 Not Placed 67

Name: Status of placement, dtype: int64

```
In [72]:
data['Status of placement'].unique()
Out[72]:
array(['Placed', 'Not Placed'], dtype=object)
In [73]:
plt.figure(figsize=(8,8))
sns.countplot(data['Status of placement'])
```

Out[73]:

<AxesSubplot:xlabel='Status of placement', ylabel='count'>

it is imblance data

We need s handle imblance data

```
In [ ]:
```

Visulization of Target Columns

In [74]:

```
plt.subplots(figsize=(10,5))
sns.histplot(data['Status of placement'],ec='Black',color='blue',kde=True)
plt.title('Status of placement', weight='bold',fontsize=20,pad=20)
plt.ylabel('Count',weight='bold',fontsize=14)
plt.xlabel('Status of placement',weight='bold',fontsize=12)
plt.show()
```

Status of placement

Statistical Based Analysis

In [75]:

```
# check summary of stats columns
data.describe()
```

Out[75]:

	Secondary Education Percentage (middle school)	Higher Secondary School Percentage (senior)	Degree Percentage	Employability test percentage (conducted by college)	MBA Percentage	salary
count	215.000000	215.000000	215.000000	215.000000	215.000000	215.000000
mean	67.303395	66.333163	66.370186	72.100558	62.278186	288655.405405
std	10.827205	10.897509	7.358743	13.275956	5.833385	77457.900102
min	40.890000	37.000000	50.000000	50.000000	51.210000	200000.000000
25%	60.600000	60.900000	61.000000	60.000000	57.945000	250000.000000
50%	67.000000	65.000000	66.000000	71.000000	62.000000	288655.405405
75%	75.700000	73.000000	72.000000	83.500000	66.255000	288655.405405
max	89.400000	97.700000	91.000000	98.000000	77.890000	940000.000000

In [76]:

check the summary of stats categorical columns
data.describe(include='object')

Out[76]:

	gender	Board of Education (middle)	Board of Education (senior)	Specialization in Higher Secondary Education	Degree type- Field of degree education	Work Experience	specialisatio
count	215	215	215	215	215	215	21
unique	2	2	2	3	3	2	:
top	М	Central	Others	Commerce	Comm&Mgmt	No	Mkt&Fiı
freq	139	116	131	113	145	141	12
4							

In [77]:

check the transpose summary of stats columns
data.describe().T

Out[77]:

	count	mean	std	min	25%	50%	
Secondary Education Percentage (middle school)	215.0	67.303395	10.827205	40.89	60.600	67.000000	
Higher Secondary School Percentage (senior)	215.0	66.333163	10.897509	37.00	60.900	65.000000	
Degree Percentage	215.0	66.370186	7.358743	50.00	61.000	66.000000	
Employability test percentage (conducted by college)	215.0	72.100558	13.275956	50.00	60.000	71.000000	
MBA Percentage	215.0	62.278186	5.833385	51.21	57.945	62.000000	
salary	215.0	288655.405405	77457.900102	200000.00	250000.000	288655.405405	28
4							

In [78]:

check the covariance
data.cov()

Out[78]:

	Secondary Education Percentage (middle school)	Higher Secondary School Percentage (senior)	Degree Percentage	Employability test percentage (conducted by college)	MBA Percentage	
Secondary Education Percentage (middle school)	117.228377	60.348373	42.897137	37.659225	24.535952	1.976
Higher Secondary School Percentage (senior)	60.348373	118.755706	34.819820	35.461678	22.555846	4.600
Degree Percentage	42.897137	34.819820	54.151103	21.929469	17.272020	-8.064
Employability test percentage (conducted by college)	37.659225	35.461678	21.929469	176.251018	16.886973	1.571
MBA Percentage	24.535952	22.555846	17.272020	16.886973	34.028376	6.611
salary	19767.643976	46008.057275	-8064.357161	157157.850783	66115.509283	5.999

In [79]:

check the standard deviation
data.std()

Out[79]:

Secondary Education Percentage (middle school)	10.827205
Higher Secondary School Percentage (senior)	10.897509
Degree Percentage	7.358743
Employability test percentage (conducted by college)	13.275956
MBA Percentage	5.833385
salary	77457.900102
dtype: float64	

In [80]:

check the skewness data.skew()

Out[80]:

Secondary Education Percentage (middle school)	-0.132649
Higher Secondary School Percentage (senior)	0.163639
Degree Percentage	0.244917
Employability test percentage (conducted by college)	0.282308
MBA Percentage	0.313576
salary	4.288799
dtype: float64	

In [81]:

check the correlation
data.corr()

Out[81]:

	Secondary Education Percentage (middle school)	Higher Secondary School Percentage (senior)	Degree Percentage	Employability test percentage (conducted by college)	MBA Percentage	salary
Secondary Education Percentage (middle school)	1.000000	0.511472	0.538404	0.261993	0.388478	0.023571
Higher Secondary School Percentage (senior)	0.511472	1.000000	0.434206	0.245113	0.354823	0.054506
Degree Percentage	0.538404	0.434206	1.000000	0.224470	0.402364	-0.014148
Employability test percentage (conducted by college)	0.261993	0.245113	0.224470	1.000000	0.218055	0.152829
MBA Percentage	0.388478	0.354823	0.402364	0.218055	1.000000	0.146324
salary	0.023571	0.054506	-0.014148	0.152829	0.146324	1.000000

In [82]:

check the cumalative value
data.cummax()

Out[82]:

		Secondary	D	Higher	D	Specialization		D
	gender	Education Percentage (middle school)	Board of Education (middle)	Secondary School Percentage (senior)	Board of Education (senior)	in Higher Secondary Education	Degree Percentage	Fi d educ
0	М	67.00	Others	91.0	Others	Commerce	58.00	Sci
1	М	79.33	Others	91.0	Others	Science	77.48	Sci
2	М	79.33	Others	91.0	Others	Science	77.48	Sci
3	М	79.33	Others	91.0	Others	Science	77.48	Sci
4	М	85.80	Others	91.0	Others	Science	77.48	Sci
210	М	89.40	Others	97.7	Others	Science	91.00	Sci
211	М	89.40	Others	97.7	Others	Science	91.00	Sci
212	М	89.40	Others	97.7	Others	Science	91.00	Sci
213	М	89.40	Others	97.7	Others	Science	91.00	Sci
214	М	89.40	Others	97.7	Others	Science	91.00	Sci

215 rows × 14 columns

check the Kurotosis
data.kurt()

Out[83]:

Secondary Education Percentage (middle school)	-0.607510
,	
Higher Secondary School Percentage (senior)	0.450765
Degree Percentage	0.052143
Employability test percentage (conducted by college)	-1.088580
MBA Percentage	-0.470723
salary	28.012383

dtype: float64

In [84]:

```
# check the quantile
data.quantile()
```

Out[84]:

Secondary Education Percentage (middle school) 67.000000
Higher Secondary School Percentage (senior) 65.000000
Degree Percentage 66.000000
Employability test percentage (conducted by college) 71.000000
MBA Percentage 62.000000
salary 288655.405405

Name: 0.5, dtype: float64

In [85]:

#check the mean absolute deviation
data.mad()

Out[85]:

Secondary Education Percentage (middle school) 8.882360
Higher Secondary School Percentage (senior) 8.342326
Degree Percentage 5.757694
Employability test percentage (conducted by college) 11.391207
MBA Percentage 4.750406
salary 39441.106223

dtype: float64

In [86]:

check the mean
data.mean()

Out[86]:

Secondary Education Percentage (middle school) 67.303395
Higher Secondary School Percentage (senior) 66.333163
Degree Percentage 66.370186
Employability test percentage (conducted by college) 72.100558
MBA Percentage 62.278186
salary 288655.405405

dtype: float64

In [87]:

check the median
data.median()

Out[87]:

Secondary Education Percentage (middle school) 67.000000
Higher Secondary School Percentage (senior) 65.000000
Degree Percentage 66.000000
Employability test percentage (conducted by college) 71.000000
MBA Percentage 62.000000
salary 288655.405405

dtype: float64

```
In [88]:
```

```
# check the min values
data.min()
```

Out[88]:

gender Secondary Education Percentage (middle school) 40.89 Board of Education (middle) Central Higher Secondary School Percentage (senior) 37.0 Board of Education (senior) Central Specialization in Higher Secondary Education Arts Degree Percentage 50.0 Degree type- Field of degree education Comm&Mgmt Work Experience No Employability test percentage (conducted by college) 50.0 specialisation Mkt&Fin MBA Percentage 51.21 Status of placement Not Placed salary 200000.0 dtype: object

In [89]:

```
# check the maximum value
data.max()
```

Out[89]:

gender	М
Secondary Education Percentage (middle school)	89.4
Board of Education (middle)	Others
Higher Secondary School Percentage (senior)	97.7
Board of Education (senior)	Others
Specialization in Higher Secondary Education	Science
Degree Percentage	91.0
Degree type- Field of degree education	Sci&Tech
Work Experience	Yes
Employability test percentage (conducted by college)	98.0
specialisation	Mkt&HR
MBA Percentage	77.89
Status of placement	Placed
salary	940000.0
dtype: object	

In [90]:

```
# Calculate the value range of ecah variable that is the difference between the maximum #data.max() - data.min()
```

Plot the Heatmap

In [91]:

data.corr()

Out[91]:

	Secondary Education Percentage (middle school)	Higher Secondary School Percentage (senior)	Degree Percentage	Employability test percentage (conducted by college)	MBA Percentage	salary
Secondary Education Percentage (middle school)	1.000000	0.511472	0.538404	0.261993	0.388478	0.023571
Higher Secondary School Percentage (senior)	0.511472	1.000000	0.434206	0.245113	0.354823	0.054506
Degree Percentage	0.538404	0.434206	1.000000	0.224470	0.402364	-0.014148
Employability test percentage (conducted by college)	0.261993	0.245113	0.224470	1.000000	0.218055	0.152829
MBA Percentage	0.388478	0.354823	0.402364	0.218055	1.000000	0.146324
salary	0.023571	0.054506	-0.014148	0.152829	0.146324	1.000000

In [92]:

```
plt.figure(figsize=(12,10))
sns.heatmap(data.corr(),annot = True)
```

Out[92]:

<AxesSubplot:>

check the Distribution of Numerical Columns

In []:

In [93]:

```
for i in num_columns:
    sns.distplot(data[i])
    plt.show()
```


Visualization the variable distribution with histograme
data.hist(bins=30,figsize=(12,10),density=True)
plt.show()

Check Multicollinearity for Categorical Feature

- A Chi-squared test(also chi-squared or x2 test) is a statistical hypothesis test that is valid to perform
 when the test statistic is chi-squared distribution under the null hypothesis, specifically Pearson's ChiSquared Test
- A Chi- Squared statistic is one way to show a relationship between two Categorical Variable.
- Here we test correlation of Categorical Columns with Target columns .i.e. Status of placement

In [95]:

```
from scipy.stats import chi2_contingency

chi2_test = []
for feature in cat_columns:
    if chi2_contingency(pd.crosstab(data['Status of placement'], data[feature]))[1] <0.0
        chi2_test.append('Reject the Null Hypothesis')
    else:
        chi2_test.append('Fail to Reject Null Hypothesis')

result = pd.DataFrame(data=[cat_columns,chi2_test]).T

result.columns = ['Column', 'Hypothesis Result']

result</pre>
```

Out[95]:

	Column	Hypothesis Result
0	gender	Fail to Reject Null Hypothesis
1	Board of Education (middle)	Fail to Reject Null Hypothesis
2	Board of Education (senior)	Fail to Reject Null Hypothesis
3	Specialization in Higher Secondary Education	Fail to Reject Null Hypothesis
4	Degree type- Field of degree education	Fail to Reject Null Hypothesis
5	Work Experience	Reject the Null Hypothesis
6	specialisation	Reject the Null Hypothesis
7	Status of placement	Reject the Null Hypothesis

Pair plot

In [96]:

```
sns.pairplot(data , diag_kind = 'kde')
```

Out[96]:

<seaborn.axisgrid.PairGrid at 0x13ef9cda190>


```
In [139]:
plt.figure(figsize=(20,15))
sns.pairplot(data, hue='Status of placement', size=1.5)
plt.show()
                  "or a callable."
    552
    553
            raise ValueError(msg)
--> 555 self._compute_covariance()
File ~\anaconda3\lib\site-packages\scipy\stats\_kde.py:567, in gaussian
kde. compute covariance(self)
    563 if not hasattr(self, '_data_inv_cov'):
            self._data_covariance = atleast_2d(cov(self.dataset, rowvar
    564
=1,
    565
                                                bias=False,
                                                aweights=self.weights))
    566
--> 567
            self._data_inv_cov = linalg.inv(self._data_covariance)
    569 self.covariance = self._data_covariance * self.factor**2
    570 self.inv_cov = self._data_inv_cov / self.factor**2
File ~\anaconda3\lib\site-packages\scipy\linalg\_basic.py:956, in inv
(a, overwrite_a, check_finite)
            inv_a, info = getri(lu, piv, lwork=lwork, overwrite_lu=1)
    954
```

Scatter Plot

955 **if** info > 0:

```
In [97]:
```

```
plt.figure(figsize=(20,15))
plt.suptitle('Scatter plot for each numerical feature', fontsize = 20 , fontweight = 'bo
for i in range(0 , len(num_columns)):
    plt.subplot(5,3,i+1)
    sns.scatterplot(y=num_columns[i],x=data.index, data = data)
    plt.tight_layout()
```


In [98]:

```
# check the scatter plot
plt.figure(figsize=(30,15))
sns.scatterplot(data=data)
```

Out[98]:

<AxesSubplot:>

Box PLot

In [99]:

```
plt.figure(figsize=(12,8))
sns.boxplot(data=data , orient = 'v')
```

Out[99]:

<AxesSubplot:>

In [100]:

```
plt.figure(figsize=(20,45))
plotnumber=1

for i in num_columns:
    if plotnumber<=7:
        ax=plt.subplot(8,2,plotnumber)
        sns.boxplot(data[i])
        plt.xlabel(i,fontsize=20)

    plotnumber+=1
plt.show()</pre>
```


• it is indicated the two columns are outliers 1. Higher Secondary Sechool Percentage and 2 . Salary

Droping the Outliers

```
In [101]:
```

```
IQR = data['Higher Secondary School Percentage (senior)'].quantile(0.75) - data['Higher
lower_fence = data['Higher Secondary School Percentage (senior)'].quantile(0.25) - 1.5*I
upper_fence = data['Higher Secondary School Percentage (senior)'].quantile(0.75) + 1.5*I
lower_fence , upper_fence
```

Out[101]:

(42.75, 91.15)

In [102]:

```
data['Higher Secondary School Percentage (senior)']=np.where(data['Higher Secondary Scho
```

In [103]:

```
sns.boxplot(data['Higher Secondary School Percentage (senior)'])
```

Out[103]:

<AxesSubplot:xlabel='Higher Secondary School Percentage (senior)'>

In [104]:

```
IQR = data['salary'].quantile(0.75) - data['salary'].quantile(0.25)
lower_fence = data['salary'].quantile(0.25) - 1.5*IQR
upper_fence = data['salary'].quantile(0.75) + 1.5*IQR
lower_fence , upper_fence
```

Out[104]:

(192016.89189189192, 346638.5135135135)

```
In [105]:
```

```
data['salary'] = np.where(data['salary']>upper_fence , upper_fence , np.where(data['sala
```

In [106]:

```
sns.boxplot(data['salary'])
```

Out[106]:

<AxesSubplot:xlabel='salary'>

Encoding Categorical Variables

In [107]:

```
cat_column = [feature for feature in data.columns if data[feature].dtype=='object']
print('Number of Categorical Feature : ', len(cat_column))
```

Number of Categorical Feature: 8

In [108]:

```
# checking the unique value categories in each columns

for feature in cat_column:
    print(feature , ':' , data[feature].unique())
```

```
gender : ['M' 'F']
Board of Education (middle) : ['Others' 'Central']
Board of Education (senior) : ['Others' 'Central']
Specialization in Higher Secondary Education : ['Commerce' 'Science' 'Art s']
Degree type- Field of degree education : ['Sci&Tech' 'Comm&Mgmt' 'Others']
Work Experience : ['No' 'Yes']
specialisation : ['Mkt&HR' 'Mkt&Fin']
Status of placement : ['Placed' 'Not Placed']
```

```
In [109]:
```

```
# indicated the unique value in each categorical column

for feature in cat_column:
    print(feature , ':' , data[feature].nunique())

gender : 2
Board of Education (middle) : 2
Board of Education (senior) : 2
Specialization in Higher Secondary Education : 3
Degree type- Field of degree education : 3
Work Experience : 2
specialisation : 2
Status of placement : 2
```

Binary Encoding

In [110]:

```
data['gender'] = data['gender'].replace({'M':0 , 'F':1})
data['Board of Education (middle)'] = data['Board of Education (middle)'].replace({'Othe data['Board of Education (senior)'] = data['Board of Education (senior)'].replace({'Othe data['Work Experience'] = data['Work Experience'].replace({'No':0,"Yes":1})
data['specialisation'] = data['specialisation'].replace({'Mkt&HR':0,'Mkt&Fin':1})
data['Status of placement'] = data['Status of placement'].replace({'Placed':1,'Not Place
```

Label Encoder

```
In [111]:
```

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
```

In [112]:

```
data['Specialization in Higher Secondary Education'] = le.fit_transform(data['Specializa'
data['Degree type- Field of degree education'] = le.fit_transform(data['Degree type- Fie
```

```
In [113]:
```

```
data.head()
```

Out[113]:

	gender	Secondary Education Percentage (middle school)	Board of Education (middle)	Higher Secondary School Percentage (senior)	Board of Education (senior)	Specialization in Higher Secondary Education	Degree Percentage	Deg ty Field deg educat
0	0	67.00	0	91.00	0	1	58.00	
1	0	79.33	1	78.33	0	2	77.48	
2	0	65.00	1	68.00	1	0	64.00	
3	0	56.00	1	52.00	1	2	52.00	
4	0	85.80	1	73.60	1	1	73.30	
4								•

Train Test Split

- · Split the Dataframe X and Y
- X-- is independent columns and variable and Y is dependent columns "Status of placement"

In [140]:

```
data.shape
```

Out[140]:

(215, 14)

In [116]:

```
from sklearn.model_selection import train_test_split
```

In [144]:

```
X=data.drop(['Status of placement'],axis=1)
y=data['Status of placement']
```

In [145]:

```
X_train,X_test , y_train,y_test = train_test_split(X,y,test_size=0.30 , random_state = 3
```

In [146]:

```
X_train.shape , y_train.shape
```

Out[146]:

```
((150, 13), (150,))
```

```
In [147]:
```

```
X_test.shape , y_test.shape
Out[147]:
((65, 13), (65,))
```

Standardization or Feature Scaling

In [148]:

```
from sklearn.preprocessing import StandardScaler
```

In [149]:

```
std_scaler = StandardScaler()
std_scaler
```

Out[149]:

StandardScaler()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [150]:

```
X_train = std_scaler.fit_transform(X_train)
X_train
```

Out[150]:

```
array([[-0.72843136, -1.08682979, -1.1751393 , ..., -1.1751393 , 0.05028537, 0.29231618],
[-0.72843136, 0.85471545, 0.85096294, ..., 0.85096294, 1.00170375, -0.69945877],
[-0.72843136, -0.86599052, 0.85096294, ..., 0.85096294, -1.21446462, -0.44289053],
...,
[-0.72843136, -0.22187599, 0.85096294, ..., -1.1751393 , -0.09658882, -0.03238134],
[ 1.37281295, -0.22187599, 0.85096294, ..., 0.85096294, 0.36688085, -1.9823 ],
[ -0.72843136, -1.21565269, 0.85096294, ..., -1.1751393 , -0.64818301, 0.29231618]])
```

```
In [151]:
```

```
X test = std scaler.fit transform(X test)
X_test
Out[151]:
array([[ 1.30703226, -1.88396545, 1.11417203, -0.36336831, 1.4474937
3,
        -2.54950976, -0.07489567, -0.6494227, -0.64268459, 0.6105495
8,
        0.98473193, -0.07755965, 0.31256944],
       [ 1.30703226, 1.00946232, 1.11417203, 0.11416788, 1.4474937
3,
         1.09264704, -0.04700556, 1.63233274, -0.64268459, 0.4150572
6,
        -1.0155048 , 2.0241752 , 0.31256944],
       [-0.76509206, 1.21613573, -0.89752747, 0.97373304, -0.6908492
8,
        -0.72843136, 1.45906038, -0.6494227, -0.64268459, -0.7187981
9,
        0.98473193, -0.63483783, -1.11174583],
       [-0.76509206, 0.91176216, -0.89752747, 1.30800838, -0.6908492
8,
        -0.72843136. 0.41318125. -0.6494227 . 1.55597321. 0.2469338
```

Model Building

In [152]:

```
from sklearn.linear_model import LogisticRegression
log_reg = LogisticRegression()
log_reg.fit(X_train,y_train)
y_pred_log_reg = log_reg.predict(X_test)
y_pred_log_reg
```

Out[152]:

In []:

In [158]:

```
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier

from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score , classification_report, ConfusionMatrixDispl
```

```
In [167]:
```

```
models = {
    "Logistic Regression": LogisticRegression(),
    "Support Vector Classifier": SVC(),
    "Decision Tree Classifier ": DecisionTreeClassifier(),
    "Random Forest Classifier": RandomForestClassifier(),
    "Ada Boost Classifier ": AdaBoostClassifier(),
    " Navie Bayes" : GaussianNB()
}
for i in range(len(list(models))):
   model = list(models.values())[i]
   model.fit(X_train,y_train)
   # prediction
   y_train_pred = model.predict(X train)
   y_test_pred = model.predict(X_test)
   # training set performance
   model_train_accuracy = accuracy_score(y_train,y_train_pred)
   model_train_f1 = f1_score(y_train,y_train_pred)
   model_train_precision = precision_score(y_train,y_train_pred)
   model_train_recall = recall_score(y_train,y_train_pred)
   # Test set performance
   model_test_accuracy = accuracy_score(y_test, y_test_pred)
   model_test_f1 = f1_score(y_test, y_test_pred)
   model_test_precision = precision_score(y_test, y_test_pred)
   model_test_recall = recall_score(y_test, y_test_pred)
    print(list(models.keys())[i])
    print('Model performance for Training set')
   print("- Accuracy: {:.4f}".format(model_train_accuracy))
   print('- F1 score: {:.4f}'.format(model_train_f1))
   print('- Precision: {:.4f}'.format(model_train_precision))
   print('- Recall: {:.4f}'.format(model train recall))
   print('----')
   print('Model performance for Test set')
    print('- Accuracy: {:.4f}'.format(model_test_accuracy))
   print('- F1 score: {:.4f}'.format(model_test_f1))
   print('- Precision: {:.4f}'.format(model test precision))
   print('- Recall: {:.4f}'.format(model_test_recall))
   print("="*20)
   print('\n')
```

Logistic Regression

Model performance for Training set

- Accuracy: 0.9133 - F1 score: 0.9406 - Precision: 0.9196 - Recall: 0.9626

Model performance for Test set

- Accuracy: 0.8462 - F1 score: 0.8780 - Precision: 0.8780 - Recall: 0.8780

Support Vector Classifier

Model performance for Training set

- Accuracy: 0.9533 - F1 score: 0.9683 - Precision: 0.9386 - Recall: 1.0000

Model performance for Test set

- Accuracy: 0.9385 - F1 score: 0.9535 - Precision: 0.9111 - Recall: 1.0000

Decision Tree Classifier

Model performance for Training set

- Accuracy: 1.0000 - F1 score: 1.0000 - Precision: 1.0000 - Recall: 1.0000

Model performance for Test set

- Accuracy: 0.9846 - F1 score: 0.9877 - Precision: 1.0000 - Recall: 0.9756

Random Forest Classifier

Model performance for Training set

- Accuracy: 1.0000 - F1 score: 1.0000 - Precision: 1.0000 - Recall: 1.0000

Model performance for Test set

- Accuracy: 0.8923 - F1 score: 0.9213 - Precision: 0.8542 - Recall: 1.0000 Model performance for Training set

- Accuracy: 1.0000 - F1 score: 1.0000 - Precision: 1.0000 - Recall: 1.0000

Model performance for Test set

- Accuracy: 0.9846 - F1 score: 0.9877 - Precision: 1.0000 - Recall: 0.9756

Navie Bayes

Model performance for Training set

- Accuracy: 1.0000 - F1 score: 1.0000 - Precision: 1.0000 - Recall: 1.0000

Model performance for Test set

- Accuracy: 0.6308 - F1 score: 0.7736 - Precision: 0.6308 - Recall: 1.0000

We are observed that Our Model Decision Tree, Ada Boost and Navie Baise are accuracy is 100%

- Made By:---Mukul Singh
- Thank You