2020届考研数学全真模拟卷(数学三)

命题人 向禹

考试形式:闭卷 考试时间:180 分钟 满分:150 分 姓名:

题号	选择题 1~8	填空题 9 ~ 14	解答题 15 ~ 23	总 分
满分	32	24	94	150
得分				

—,	选择题,	1	~ 8	3 题、	每题	4分,	共	32	分.
----	------	---	-----	------	----	-----	---	----	----

1. 已知函数 f(x) 在 x = 0 处可导,则函数 |f(|x|)| 在 x = 0 处可导的充要条件是) (A) f(0) = 0(B) $f(0) \neq 0$ (C) f'(0) = 0(D) $f'(0) \neq 0$

2. 设在区间 [a,b] 上有 f(x) > 0, f'(x) > 0, f''(x) > 0, 令

$$M = \int_{a}^{b} f(x) dx$$
, $N = \frac{f(b) + f(a)}{2}(b - a)$, $P = (b - a)f\left(\frac{a + b}{2}\right)$,

则

(A) M < N < P (B) P < M < N (C) P < N < M (D) M < P < N

)

3. 已知微分方程 $y'' + ay' + by = ce^x$ 的通解为 $y = (C_1 + C_2 x + x^2)e^x$, 则 a, b, c 依次为 (A) 1, -2, 1 (B) $1, 0, \frac{1}{2}$ (C) $2, 1, \frac{1}{2}$ (D) -2, 1, 2

4. 已知数列 a_n, b_n 均非零, 且满足 $\lim_{n\to\infty} \frac{a_n}{b} = 0$, 则

(A) 如果级数 $\sum_{n=1}^{\infty} b_n$ 收敛,则级数 $\sum_{n=1}^{\infty} a_n$ 收敛 (B) 如果级数 $\sum_{n=1}^{\infty} |b_n|$ 收敛,则级数 $\sum_{n=1}^{\infty} a_n$ 收敛 (C) 如果级数 $\sum_{n=1}^{\infty} a_n$ 发散,则级数 $\sum_{n=1}^{\infty} b_n$ 发散

5. 设 A 为 $m \times n$ 矩阵, $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\mathrm{T}}$, 则 $A\mathbf{x} = \mathbf{0}$ 只有零解是 $A^{\mathrm{T}}A$ 正定的)

(A) 充分而非必要条件

(B) 必要而非充分条件

(C) 充要条件

(D) 既非充分也非必要条件

6. 设 α , β 是 n 维正交的单位列向量, 矩阵 $A = E + \alpha \beta^{T} + \beta \alpha^{T}$, 则下列说法错误的是)

(A) 1 必为 A 的特征值

(B) 2 必为 A 的特征值

(C) E + A 为正定矩阵

(D) 方程组 Ax = b 有唯一解

- 7. 已知随机事件 A, B 满足 0 < P(A) < 1, 0 < P(B) < 1, P(A|B) + P(B|A) = 2, 则)
 - (A) $A \subset B$
- (B) $B \subset A$
- (C) $P(A|\bar{B}) = 0$ (D) $P(B|\bar{A}) = 1$
- 8. 已知随机变量 $X \sim t(n), Y \sim F(1, n)$, 给定 $\alpha \in (0.5, 1)$ 时, $P(X < x_{\alpha}) = \alpha$, 则 $P(Y < x_{\alpha}^{2}) = ($
 - (A) $2\alpha 1$
- $(C) \alpha$

(D) $1-\alpha$

- 二、填空题,9~14题,每题4分,共24分.
- $9. \lim_{x \to 0} \frac{\sin\left(\pi\sqrt{\cos x}\right)}{x^2} = \underline{\qquad}.$
- 10. 设连续函数 f(x) 满足 $f(x) = \ln x 2x^2 \int_1^e \frac{f(x)}{x} dx$, 则 f(x) =______.
- 11. 设函数 f(x) 连续, 则交换累次积分 $\int_0^{\pi} dx \int_0^{-\sin x} f(x) dy$ 的积分顺序的结果为______.
- 12. 差分方程 $\Delta y_x \Delta y_{x-1} y_{x-1} = 2^x$ 的通解为_____
- 13. 设 A 为三阶矩阵, $|\lambda E A| = \lambda^3 + 2\lambda + 1$, λ_1 , λ_2 , λ_3 为 A 的特征值, 则 $\begin{vmatrix} \lambda_1 & \lambda_2 & \lambda_3 \\ \lambda_3 & \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 & \lambda_1 \end{vmatrix} = \underline{\qquad}$.
- 14. 袋子里面有一红一白两个球, 随机从中有放回地取球, 直到两种颜色的球均取到为止, 则取球次数的 数学期望为
- 三、解答题, 15~23题, 共94分.
- 15. (本题满分 10 分) 设函数 f(x) 在 x = 0 处二阶可导, 令

$$g(x) = \begin{cases} \frac{\ln(1+x) + xf(x)}{x^2}, & x \neq 0\\ \frac{1}{2}, & x = 0 \end{cases},$$

若 g'(0) = 1, 求 f(0), f'(0), f''(0).

- 16. (本题满分 10 分) 设区域 $D = (x, y)|x + y \le 1, x \ge 0, y \ge 0$, 计算积分 $\iint_{D} \cos \frac{x - y}{x + y} d\sigma$.
- 17. (本题满分 10 分) 设函数 $u = f\left(\ln\sqrt{x^2 + y^2}\right)$ 满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = (x^2 + y^2)^{\frac{3}{2}}$, 且 f(0) = f'(0) = 0, 求 f(v) 的表达 式.
- 18. (本题满分10分) 求曲线 $y = e^{-\frac{x}{2}} \sqrt{|\cos x|} (x \ge 0)$ 与 x 轴所围成的区域绕 x 轴旋转所得旋转体的体积.

- 19. (本题满分 10 分) 设函数 F(x) 是函数 f(x) 的一个原函数, 且 F(0) = 1, $F(x)f(x) = \cos 2x$, $a_n = \int_0^{n\pi} |f(x)| \, \mathrm{d}x \, (n = 1, 2, \cdots)$.
 - (1) 求出 a_n 的表达式;
 - (2) 求幂级数 $\sum_{n=2}^{\infty} \frac{a_n}{n^2 1} x^n$ 的收敛域与和函数.
- 20. (本题满分11分)

设 A 为三阶矩阵, $\lambda_1, \lambda_2, \lambda_3$ 是 A 的三个不同特征值, 对应的特征向量为 $\alpha_1, \alpha_2, \alpha_3$, 令 $\beta = \alpha_1 + \alpha_2 + \alpha_3$.

- (1) 证明: β , $A\beta$, $A^2\beta$ 线性无关;
- (2) 若 $A^3\beta = A\beta$, 求秩 r(A E) 及行列式 |A + 2E|.
- 21. (本题满分 11 分)

已知三元二次型 $x^T A x$ 经过正交变换化为 $2y_1^2 - y_2^2 - y_3^2$, 又知矩阵 B 满足矩阵方程

$$\left[\left(\frac{1}{2}A\right)^*\right]^{-1}BA^{-1}=2AB+4E,$$

且 $A^*\alpha = \alpha$, 其中 $\alpha = (1, 1, -1)^T$, A^* 为 A 的伴随矩阵, 求二次型 x^TBx 的表达式.

22. (本题满分 11 分)

设二维随机变量 (X,Y) 在抛物线 $y = x^2 - 2x - 3$ 与 $y = -x^2 + 2x + 3$ 所围成的区域内服从均匀分布.

- (1) 求 (X, Y) 的联合密度 f(x, y);
- (2) 求 X, Y 的边缘密度 $f_X(x), f_Y(y)$;
- (3) 求条件密度 $f_{Y|X}(y|x)$;
- (4) 计算 Cov(X, Y).
- 23. 设总体 X 服从双参数指数分布, 其密度为

$$f(x; \mu, \theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{x-\mu}{\theta}}, & x > \mu \\ 0, & x \leq \mu \end{cases}.$$

其中 $-\infty < \mu < +\infty, 0 < \theta < +\infty$ 未知, X_1, X_2, \dots, X_n 为其样本.

- (1) 求参数 μ , θ 的矩估计量 $\hat{\mu}_1$, $\hat{\theta}_1$;
- (2) 求参数 μ , θ 的最大似然估计量 $\hat{\mu}_2$, $\hat{\theta}_2$.