Lenguajes de primer orden. Formas normales.

Ejercicio 5.1. Para las siguientes fórmulas escríbelas en forma de árbol. Calculas sus subfórmulas. Determina el carácter de las ocurencias de sus variables, halla sus variables libres y sus variables ligadas y dí si las fórmulas son sentencias.

- 1. $\forall x (R(x,y) \land \neg \forall y R(x,y))$
- 2. $x \not\approx y \rightarrow y \approx z$
- 3. $\forall x (R(x,y) \to \forall y S(x)) \to (\exists y S(y) \to \forall z R(y,z))$
- 4. $\exists x (R(x,y) \lor \neg \forall y S(x)) \to (\neg \exists y S(y) \land \forall y S(y))$
- 5. $\exists x R(x,y) \lor [S(x) \land \neg \exists z R(a,z)]$
- 6. $\exists x \exists y \exists z (x \not\approx y \land x \not\approx z \land y \not\approx z)$
- 7. $\exists x (S(x) \to R(x,y)) \to (\exists y A(y) \to \forall z B(y,z))$
- 8. $\forall x R(x,y) \land (\neg S(z) \lor \neg \forall z R(x,z))$
- 9. $\forall x \forall y \forall (x \approx y \lor x \approx z \lor y \approx z)$
- 10. $\forall x P(x) \to Q(x,b) \lor \exists y Q(y,y)$.
- 11. $P(x) \leftrightarrow \exists x Q(x, g(a, x))$.
- 12. $\exists x \exists y (P(g(x,a)) \rightarrow \forall y Q(y,x)) \land Q(y,x)$.

Ejercicio 5.2. Sea el lenguaje de primer orden con:

- Símbolos de constante: a, b, c.
- Símbolos de variable: x, y, z, \dots
- Símbolos de relación monaria: H, M.
- Símbolos de relación binaria: P, A, Hr.

Consideramos la estructura cuyo universo es el conjunto formado por todos los seres humanos, e interpretamos cada uno de los símbolos como sigue:

- a = Antonio, b = Begoña, c = Carmen.
- H(x): x es hombre.
- $\blacksquare M(x)$: x es mujer.
- P(x,y): x es progenitor de y.
- A(x,y): x es antepasado de y.

• Hr(x,y): x es hermano de y.

Expresa con este lenguaje los siguiente enunciados:

- 1. Begoña es la madre de Carmen
- 2. Begoña es tia de Antonio
- 3. Antonio es abuelo de Begoña
- 4. Begoña es nieta de Antonio
- 5. Todo el mundo tiene padre.
- 6. Todo el mundo tiene dos progenitores.
- 7. Nadie es progenitor de sí mismo.
- 8. Hay gente que no tiene hermanos.
- 9. Los antepasados de Begoña son antepasados de Carmen
- 10. Hay quien tiene hijos y quien no
- 11. Dos personas son hermanas si, y sólo si, tienen los mismos progenitores
- 12. Begoña es hermana de un hijo de Antonio
- 13. Un progenitor de un antepasado es un antepasado
- 14. Los padres son antepasados
- 15. Nadie es progenitor de sus hermanos
- 16. Toda persona tiene una única madre
- 17. Begoña es abuela materna de Carmen
- 18. Carmen es bisabuela de Antonio
- 19. Todos tenemos abuelos
- 20. Todos tenemos bisabuelos
- 21. Algunos antepasados de Begoña no son antepasados de Carmen
- 22. Begoña tiene al menos dos hermanos
- 23. Begoña tiene exactamente dos hermanos

Añadimos al lenguaje los siguientes elementos:

ullet Símbolos de función monaria: p, m

que interpretamos como sigue:

- p(x): El padre de x.
- m(x): La madre de x.

Expresa ahora, los enunciados anteriores en este lenguaje, utilizando alguno de los nuevos símbolos (siempre que puedas).

Ejercicio 5.3. Consideramos el lenguaje de primer orden con:

- ullet Símbolos de constante: $c \ y \ d$.
- Símbolos de variable: x, y, z, \dots
- Símbolos de predicado monádico: P, Q.
- Símbolos de predicado diádico: R, S.

Sea la estructura dada por:

- El universo es \mathbb{Z}_4 .
- c = 0 y d = 1.

$$P(x) = \begin{cases} 1 & \text{si } x^2 = 0 \\ 0 & \text{si } x^2 \neq 0 \end{cases}$$

$$Q(x) = \begin{cases} 1 & \text{si } x^2 = 2 \\ 0 & \text{si } x^2 \neq 2 \end{cases}$$

- $R = \{(0,1), (0,2), (2,3), (2,2), (1,2), (3,0)\}$
- $S = \{(0,1), (0,2), (0,3), (2,3), (0,0)\}$

Estudia cuáles de las siguientes sentencias son verdaderas para esta estructura:

- 1. P(c)
- $2. \neg P(d)$
- 3. $P(c) \wedge P(d)$.
- 4. $P(c) \rightarrow \neg Q(d)$
- 5. $\exists x Q(x)$
- 6. $\neg(\exists x Q(x))$
- 7. $\exists x \neg Q(x)$
- 8. $\exists x (P(x) \land Q(x))$
- 9. $\forall x Q(x)$
- 10. $\forall x (P(x) \to Q(x))$
- 11. $\forall x (Q(x) \rightarrow \neg P(x))$
- 12. $\forall x(Q(x) \to \exists y(P(x) \lor Q(y)))$
- 13. $\forall x R(c,x)$
- 14. $\forall x S(c,x)$
- 15. $\forall x (R(c,x) \rightarrow S(c,x))$

- 16. $\exists y \forall x (R(c,x) \rightarrow S(c,x))$
- 17. $\forall x \forall y (R(x,y) \rightarrow S(x,y))$
- 18. $\forall x \forall y (R(x,y) \rightarrow \exists z (S(x,z)))$
- 19. $\forall x (P(x) \to \exists y (R(x,y)))$
- 20. $\forall x (P(x) \rightarrow \exists y (S(x,y) \land R(y,x)))$
- 21. $\forall x \exists y R(x,y)$
- 22. $\forall x \exists y S(x,y)$
- 23. $\exists y \forall x R(x,y)$
- 24. $\exists y \forall x S(x,y)$
- 25. $\exists y \forall x R(y,x)$
- 26. $\forall x \forall y \forall z ((S(x,y) \land S(y,z)) \rightarrow R(x,z))$
- 27. $\forall x \forall y (R(x,y) \rightarrow \neg R(y,x))$
- 28. $\forall x \forall y (\neg S(x,y) \rightarrow \neg S(x,y))$
- 29. $\forall x \forall y (\exists z (R(x,z) \land R(z,y)) \rightarrow R(x,y))$
- 30. $\forall x \forall y (\exists z (R(x,z) \land S(z,y)) \rightarrow R(x,y))$

- 31. $\forall x \forall y (\exists z (S(x,z) \land R(z,y)) \rightarrow R(x,y))$
- 34. $\forall x((x \approx c) \rightarrow \exists y R(y, x))$
- 32. $\forall x \forall y (\exists z (R(x,z) \land R(z,y)) \rightarrow S(x,y))$
- 35. $\forall x (\exists y R(y, x) \to P(x))$

33. $\forall x (P(x) \to \exists y R(y, x))$

36. $\forall x((x \approx d) \leftrightarrow R(c, x))$

Ejercicio 5.4. Para las siguientes fórmulas calcula una forma normal prenexa y una forma normal de Skolem. La forma prenexa, debe ser calculada con el menor número posible de cuantificadores.

- 1. $\forall x (R(x,y) \land \neg \forall y R(x,y))$
- 2. $\forall x (R(x,y) \to \forall y S(x)) \to (\exists y S(y) \to \forall z R(y,z))$
- 3. $\exists x (R(x,y) \lor \neg \forall y S(x)) \to (\neg \exists y S(y) \land \forall y S(y))$
- 4. $\exists x R(x,y) \lor [S(x) \land \neg \exists z R(a,z)]$
- 5. $\exists x(S(x) \to R(x,y)) \to (\exists y A(y) \to \forall z B(y,z))$
- 6. $\forall x R(x,y) \land (\neg S(z) \lor \neg \forall z R(x,z))$
- 7. $\forall x P(x) \to Q(x,b) \lor \exists y Q(y,y)$.
- 8. $P(x) \leftrightarrow \exists x Q(x, g(a, x))$.
- 9. $\exists x \exists y (P(q(x,a)) \rightarrow \forall y Q(y,x)) \land Q(y,x)$.

Ejercicio 5.5. Para las siguientes sentencias calcula una forma normal prenexa, una forma normal de Skolem y una forma normal clausular. La forma prenexa, debe ser calculada con el menor número posible de cuantificadores.

- 1. $\forall x S(x) \rightarrow \exists z \forall y R(z,y)$
- 2. $\exists x [R(x) \to \neg \exists y T(x,y)] \land \neg \exists z [\forall u P(u,z) \to \forall v Q(v,z)]$
- 3. $\forall x [P(x) \to (Q(x) \lor \neg R(x))] \land \exists y Q(y)$
- 4. $\forall x (P(x) \to Q(x)) \to (\forall y P(y) \to \forall z Q(z))$
- 5. $\forall x P(x) \rightarrow \exists x Q(x)$
- 6. $\forall x \forall y [\exists z (P(x,z) \land P(y,z)) \rightarrow \exists u Q(x,y,u)]$
- 7. $\forall x [P(x) \land \forall y (\neg Q(x,y) \rightarrow \forall z R(a,x,y))]$
- 8. $\forall x \forall y [\exists z P(z) \land \exists u (Q(x,u) \rightarrow \exists v Q(y,v))]$
- 9. $\exists x \forall y (\forall x \forall y R(a, x) \rightarrow \neg \forall z ((\neg R(z, y)) \rightarrow \forall x S(q(x), z)))$
- 10. $\exists x R(x, f(x)) \rightarrow \exists y \forall x R(y, x)$
- 11. $\neg \exists x (P(x) \land C(x))$
- 12. $\forall x (P(x) \rightarrow \neg V(x))$
- 13. $\exists x [P(x) \land E(x) \land \forall y (S(x,y) \land P(y))]$
- 14. $\forall x [(E(x) \land \neg V(x)) \rightarrow \exists y (S(x,y) \land C(y))]$
- 15. $\forall x (\exists x (R(x) \lor \forall y S(y, x)) \to \forall y (S(y, x) \lor \forall x R(y)))$

16.
$$\forall z (\exists y (\forall x R(a, x) \land \forall y R(y, a) \land Q(y)) \rightarrow (R(z, a) \lor \exists z Q(z)))$$

17.
$$\forall x (R(x) \lor \neg \exists x (P(x) \to \forall y Q(f(y), x)) \to \exists z (Q(z, a) \lor \forall y (P(f(y)) \to Q(x, z))))$$

18.
$$\forall x[Q(x) \to R(x, f(x))] \to \exists y[Q(y) \land R(y, f(y))]$$

19.
$$\forall x (P(x) \to \exists y R(y))$$

20.
$$\forall x \forall y (\exists z P(z) \land \exists u (Q(x, u) \rightarrow \exists v Q(y, v)))$$

21.
$$\exists x (\neg \exists y P(y) \rightarrow \exists z (Q(z) \rightarrow R(x)))$$

22.
$$\forall x \neg P(f(x)) \lor \exists x R(g(a,x))$$
.

23.
$$\neg \exists x \neg P(x) \land (\forall y Q(a, b) \lor \exists y P(y)).$$