R을 활용한 연관성 분석

호서대학교 빅데이터경영공학부 연규필

양적자료간 연관성 분석

- 1. 산점도
- 2. 상관분석
- 3. 편상관계수

■ 산점도

- 산점도 (scatter plot)
 - n 개의 개체에 대해 이변량 관측벡터 $(X_1,Y_1),(X_2,Y_2),\cdots,(X_n,Y_n)$ 의 n 쌍의 관측값이 주어질 때, 이들각 개체에 대한 관측값들을 2차원 공간에서 한 점으로 표현한 그래프를 산점도(scatter plot)라 함.
 - 산점도를 통해서 두 변수의 관계가 선형(linear)인지 비선형(non-linear)인지 탐색하고 이상치를 찾아낼수 있으며 변수관계를 시각적으로 표현할 수 있음

■ 산점도

- 예제 cars 데이터
 - 차량의 속도(speed)와 정지까지의 거리(stopping distance)에 대한 실험 데이터 (1920년)
 - speed: 자동차의 주행속도, dist: 브레이크를 밟았을 때의 제동 거리

```
> str(cars)
'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist: num 2 10 4 22 16 10 18 26 34 17 ...
> attach(cars)
> plot(speed,dist)
```


■ 산점도

- 예제 mtcars 데이터
 - 1974년 Moto US magazine의 1973-1974년 32개 자동차 모형에 대한 자료

[, 1]	mpg	Miles/(US) gallon
[, 2]	cyl	Number of cylinders
[, 3]	disp	Displacement (cu.in.)
[, 4]	hp	Gross horsepower
[, 5]	drat	Rear axle ratio
[, 6]	wt	Weight (1000 lbs)
[, 7]	qsec	1/4 mile time
[, 8]	VS	V/S
[, 9]	am	Transmission (0 = automatic, 1 = manual)
[,10]	gear	Number of forward gears
[,11]	carb	Number of carburetors

■ 산점도

예제 mtcars 데이터

Scatterplot Example

- 산점도 행렬 (scatter plot matrix)
 - 예제 mtcars 데이터

> pairs(~mpg + disp + drat + wt, main = "scatterplot matrix")

scatterplot matrix

- 산점도 행렬 (scatter plot matrix)
 - 예제 mtcars 데이터

- 산점도 행렬 (scatter plot matrix)
 - 예제 mtcars 데이터

2. 상관분석

■ 표본상관계수

- 이변량 (bivariate) 데이터 $(X_1,Y_1),(X_2,Y_2),\cdots,(X_n,Y_n)$ 가 주어질 때, 두 확률변수 사이의 관련성은 상관계수를 통해 나타낸다.
- 모집단 상관계수

$$\rho = cor(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}}$$

■ 표본 상관계수(Pearson correlation coefficient)

$$r = \hat{\rho} = \frac{s_{XY}}{\sqrt{s_{XX}s_{YY}}} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \bar{X}}{s_X}\right) \left(\frac{Y_i - \bar{Y}}{s_Y}\right)$$

여기서

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_{i}, \qquad s_{XY} = \sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y}), s_{XX} = \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$s_{XY} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}, s_{Y} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}, s_{XY} = \sum_{i=1}^{n} (X_{i} - \overline{X})(Y_{i} - \overline{Y})$$

- 상관계수의 범위: $-1 \le \rho \le 1$, 표본상관계수의 범위: $-1 \le r \le 1$
 - 직선관계를 설명, 부호는 방향을 나타내고, 절대값 크기는 정도를 나타낸다.
 - r이 1에 가까울수록 양의 상관관계가 강하고, r이 -1에 가까울수록 음의 상관관계가 강함을 의미함.
- 상관계수의 검정
 - 검정통계량

$$T = \sqrt{n-2} \, \frac{r}{\sqrt{1-r^2}}$$

• 기각역

귀무가설	대립가설	유의수준 $_{lpha}$ 인 기각역		
$H_0: \rho \leq 0$	$H_0: \rho \leq 0$	$T \ge t(n-2, \alpha)$		
$H_0: \rho \ge 0$	$H_0: \rho \ge 0$	$T \leq -t(n-2,\alpha)$		
$H_0: \rho = 0$	$H_0: \rho = 0$	$ T \ge t(n-2, \alpha/2)$		

• cor 함수를 이용하여 상관계수를 구하고 cor.test 함수를 이용하여 상관성검정을 함

■ 표본상관계수

■ 상관계수의 종류

- Pearson 상관계수 (Pearson's product-moment correlation coefficient)
 - 가장 보편적인 상관계수로 간격/비율 척도로 측정된 자료들 간의 선형관계를 나타냄 (예) $y = x^2$, $x = -20, -19, \dots, 19, 20$
- Spearman 상관계수
 - 서열 척도로 측정된 자료들 간의 상관 관계
- Kendall's Tau 상관계수
 - 서열 척도로 측정된 자료들 간의 상관 관계
- Spearman 상관계수와 Kendall's Tau 상관계수
 - 한 변수가 증가할 때 다른 변수가 증가하는 지의 관계를 봄으로 이 관계가 선형일 필요는 없음.
 - 증가정도가 계산에 반영되지 않아 연속형 변수라도 이상치가 있는 경우 유용하게 사용할 수 있음
 (예) (x, y) = (0,1),(10,100),(101,1000),(102,5000)

■ 표본상관계수

■ cor 함수

함수		Arguments
cor(x, y = NULL,	X	• 데이터 값의 숫자 벡터
method = c("pears	у	• 데이터 값의 숫자 벡터
on", "kendall", "sp earman")),	metho d	• "pearson"(default), "kendall", or "spearman"를 나타내는 문자

```
> attach(cars)
> cor(speed, dist)
[1] 0.8068949
> cor(speed, dist, method = "pearson")
[1] 0.8068949
> cor(speed, dist, method = "kendall")
[1] 0.6689901
> cor(speed, dist, method = "spearman")
[1] 0.8303568
```

■ 상관계수 유의성 검정

■ cor.test 함수

함수		Arguments
cor.test(x, y,	X	• 데이터 값의 숫자 벡터
alternative = c("two.sided", "less",	у	• 데이터 값의 숫자 벡터
"greater"),	alternative	• "two.sided"(default), "greater" or "less"의 양측, 단측
method = c("pearson", "kendall",	method	• "pearson"(default), "kendall", or "spearman"의 문자
"spearman"),	exact	• exact p-value
exact = NULL, conf.level = 0.95,	conf.level	• 신뢰수준
continuity = FALSE,)	continuity	• 연속성 보정
	formula	• formula (lhs ~ rhs) 형태. rhs는 집단을 나타내는 2 수준의 factor임
cor.test(formula, data, subset, na.action,)	data	• 메트릭스 또는 데이터프레임
subset, Ha.action,)	subset	• 부분집합을 나타내는 벡터
	na.action	• NA를 포함할 때 사용하는 함수

■ 상관계수 유의성 검정

cor.test 함수

```
> cor.test(speed, dist, method = "pearson")

Pearson's product-moment correlation

data: speed and dist

t = 9.464, df = 48, p-value = 1.49e-12

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.6816422 0.8862036

sample estimates:

cor

0.8068949
```

상관계수는 0.8068로 양의 상관성이 매우 강하고 상관성 검정결과 p-값=1.49e-12으로 유의수준 5%에서 매우 유의하여 귀무가설을 기각함. 즉 속도와 거기 간의 상관관계는 매우 유의하다.

2.2 상관계수의 해석

■ 표본상관 해석 시 유의사항

- 상관계수는 선형관계의 상관성만을 나타낸다.
 - 상관계수 r=0 은 선형관계가 아님을 의미하지 (X_i,Y_i) 가 관련성이 없음을 의미하는 것은 아니다.
- 상관관계가 유용하지 않은 경우

이탈값이 있는 경우

비선형회귀

■ 비선형 관계는 변수변환을 통하여 선형관계로 변환한다.

원래의 비선형 관계 선형 관계로 변환

2.2 상관계수의 해석

■ 표본상관 해석 시 유의사항

```
> x=seq(1,20,by=1)
> y=runif(20,min=-2, max=2)
> cor(x,y)
[1] -0.009058125
> plot(x,y)
> abline(h=0)
```



```
> x=seq(-1.0,1.0,by=0.1)

> y=x^2

> cor(x,y)

[1] 1.216307e-16

> plot(x,y)

> abline(h=0.35)
```


3. 편상관계수

- 표본상관 해석의 제약성: 의사상관
 - 실제적인 연관관계가 없음에도 불구하고 상관계수가 크게 나타나는 경우.
 - 제 3의 변수에 의하여 상관관계가 나타나는 경우.

• 편상관계수 (partial correlation coefficient)

■ 사례 분석

• Satis 데이터

ID	Age	Satis1	Satis2	ID	Age	Satis1	Satis2
1	28	0	70	11	31	40	75
2	23	0	55	12	33	50	80
3	26	5	65	13	39	55	95
4	27	5	65	14	36	60	90
5	25	10	60	15	30	65	75
6	26	20	65	16	36	65	90
7	29	25	70	17	32	80	80

```
Satis = read.csv("data/Satis.csv",header=TRUE)
cor(Satis[c("Age","Satis1","Satis2")])
cor.test(Satis$Satis1,Satis$Satis2)
```

Pearson's product-moment correlation

data: Satis\$Satis1 and Satis\$Satis2
t = 4.1944, df = 18, p-value = 0.000545

■ 사례 분석

• 편상관계수의 계산

```
install.packages("ggm")
library(ggm)
pcor(c("Satis1", "Satis2", "Age"), var(Satis))
Satis.pcor = pcor(c("Satis1", "Satis2", "Age"), var(Satis))
pcor.test(Satis.pcor,1,20)
> pcor(c("Satis1", "Satis2", "Age"), var(Satis))
[1] 0.1150319
> Satis.pcor = pcor(c("Satis1", "Satis2", "Age"), var(Satis))
> pcor.test(Satis.pcor,1,20)
$tval
[1] 0.477458
$df
[1] 17
$pvalue
[1] 0.6391169
```

■ 사례 분석

• 연령대별 산점도

```
Satis$Agegroup[Satis$Age>=30]=2
Satis$Agegroup = factor(Satis$Agegroup, labels=c("20대", "30대"))
library(car)
scatterplot(Satis2~Satis1, data=Satis, cex=2, regLine=list(col="green"), lwd=2, boxplots=FALSE, smooth=FALSE)
scatterplot(Satis2~Satis1, data=Satis, groups=Satis$Agegroup, cex=2, lwd=2, boxplots=FALSE, smooth=FALSE)
```


