系訊系統專論 HW1

60947037S 吳羽倫

October 16, 2020

1	なの一つ時	· 沒有所謂的"第9佳到第m	- 1隻馬",因此數學歸納法不成立	•
Ι.	44n = 2时	, 及 有 ///	- 亏 向 , 凶 此 数 字 跡 納 法 个 放 立	0

2. 設三根木樁從左到右依序命名爲A, M, B, n個碟子所需要的最少步數爲 a_n :

 $a_1 = 2$ (將碟子從A移到M再移到B)

claim: $a_n = 3a_{n-1} + 2 \ \forall n \ge 2$

Proof. 想要將最大的碟子從A移到B必須先移到M才能移到B,而想要將最大的碟子從A移到M,必須先把前n-1個碟子通通從A移到B;而後想要將最大的碟子從M移到B,必須先把前n-1個碟子通通從B移到A。最大的碟子到B後,再把前n-1個碟子通通從A移到B,這就是最快的方法了。

- 1) 前n-1個碟子通通從A移到B 至少需要 a_{n-1} 步
- 2) 最大的碟子從A移到M ⇒ 至少需要1步
- 3) 前n-1個碟子通通從B移到A至少需要 a_{n-1} 步
- 4) 最大的碟子從M移到B ⇒ 至少需要1步
- 5) 前n-1個碟子通通從A移到B 至少需要 a_{n-1} 步

$$\Rightarrow a_n = a_{n-1} + 1 + a_{n-1} + 1 + a_{n-1} = 3a_{n-1} + 2 \ \forall n \ge 2$$

Closed form:

$$a_n = 3a_{n-1} + 2$$

 $\Rightarrow a_n + 1 = 3(a_{n-1} + 1) = 3^{n-1}(a_1 + 1) = 3^n$
 $\Rightarrow a_n = 3^n - 1, n \in \mathbb{N}$

- 3. 若過程中第m步與第m+k步時的排列相同,則代表中間的k步是多餘的。因此我們可以知道最一開始的排列以及過程的 3^n-1 步,共 3^n 個排列皆不相同。
 - m_n 個碟子在三個木樁上總共會有 3^n 種排列,因此可以知道所有的排列都會剛好遇到一次。 \square
- 4. 無論開始與結束的排列爲何,皆不需要超過2ⁿ-1個步驟。

Proof. n = 1 時,碟子要嘛就在它該在的木樁上(共需0步)、要嘛需要1步將它移動到它該在的木樁上,而 $max\{0,1\} = 1 \le 1 = 2^1 - 1$.

設 $n = k(k \in N)$ 時,無論開始與結束的排列爲何,皆不需要超過 $2^n - 1$ 個步驟,則當n = k + 1時,分爲兩個情況討論:

• 最大的碟子已在它該在的木樁上: 此時只須要處理前n-1個碟子,共需至 32^k-1 步。 • 最大的碟子不在它該在的木樁上:

先將前n-1個碟子移動到不是最大的碟子的所在位置以及目的地的木樁上,然後將 最大的碟子移到目的地,最後將前n-1個碟子移到各自該在的木樁上,共需要不超 ${\mathfrak{Q}}(2^k-1)+1+(2^k-1)=2^{k+1}-1 {\mathfrak{p}} \circ$

 $\widehat{max}\{2^{k}-1,2^{k+1}-1\}=2^{k+1}-1=2^{n}-1<2^{n}-1$,根據數學歸納法得證。

5. 設 $a_n(n \in N)$ 爲n個圓最多能將平面分割的區域個數。

 $a_1 = 2$ $a_n = a_{n-1} + 2(n-1)$ (第n個圓能跟前面的每個圓多分割2個區域)

$$\Rightarrow a_n = 2 + \sum_{k=1}^{n} 2(k-1) = 2 + n(n-1) \ n(n \in N)$$

 $a_4 = 14 < 16$,因此4個圓沒辦法區分16種不同情況。

6. 設 a_n 爲n條直線可劃分的bounded area 的最大數量,則:

For $n \leq 2$, $a_n = 0$

For $n \ge 3$, $a_n = a_{n-1} + (n-2)$

 $(\hat{\pi}_n$ 條直線最多可以跟前n-1條直線產生n-1個不同的交點,進而多分割n-2個不同的bound

 $\Rightarrow a_n = \frac{(n-1)(n-2)}{2}, n \in \mathbb{N}$

- 7. 沒檢查初始情況: $H(1) = J(2) J(1) = 1 1 = 0 \neq 2$

$$Q_2 = \frac{1+Q_1}{Q_0} = \frac{1+\beta}{\alpha}$$

$$Q_3 = \frac{1+Q_2}{Q_1} = \frac{1+\frac{\alpha}{\alpha}}{\beta} = \frac{1+\alpha+\beta}{\alpha\beta}$$

8.
$$Q_0 = \alpha, Q_1 = \beta$$

$$Q_2 = \frac{1+Q_1}{Q_0} = \frac{1+\beta}{\alpha}$$

$$Q_3 = \frac{1+Q_2}{Q_1} = \frac{1+\frac{1+\beta}{\alpha}}{\beta} = \frac{1+\alpha+\beta}{\alpha\beta}$$

$$Q_4 = \frac{1+Q_3}{Q_2} = \frac{1+\frac{1+\alpha+\beta}{\alpha\beta}}{\frac{1+\beta}{\alpha\beta}} = \frac{1+\alpha+\beta+\alpha\beta}{\beta+\beta^2} = \frac{(1+\alpha)(1+\beta)}{\beta(1+\beta)} = \frac{1+\alpha}{\beta}$$

$$Q_5 = \frac{1+Q_4}{Q_3} = \frac{1+\frac{1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\alpha\beta}} = \frac{\alpha+\alpha^2+\alpha\beta}{1+\alpha+\beta} = \alpha$$

$$Q_6 = \frac{1+Q_5}{Q_4} = \frac{1+\alpha}{\frac{1+\alpha}{\beta}} = \beta$$

$$Q_5 = \frac{1+Q_4}{Q_3} = \frac{1+\frac{1+\alpha}{\beta}}{\frac{1+\alpha+\beta}{\beta}} = \frac{\alpha+\alpha^2+\alpha\beta}{1+\alpha+\beta} = \alpha$$

$$Q_6 = \frac{1+Q_5}{Q_4} = \frac{1+\alpha}{\frac{1+\alpha}{\beta}} = \beta$$

因爲 $(Q_5,Q_6)=(Q_0,Q_1)$ 且新的一項只跟前兩項有關,因此可以知道此數列是週期性的,且對於 非負整數n:

$$Q_n = \begin{cases} \alpha, & n = 5k \text{ for sime } k \in \mathbb{Z} \\ \beta, & n = 5k + 1 \text{ for some } k \in \mathbb{Z} \\ \frac{1+\beta}{\alpha}, & n = 5k + 2 \text{ for some } k \in \mathbb{Z} \\ \frac{1+\alpha+\beta}{\alpha\beta}, & n = 5k + 3 \text{ for some } k \in \mathbb{Z} \\ \frac{1+\alpha}{\beta}, & n = 5k + 4 \text{ for some } k \in \mathbb{Z} \end{cases}$$

a 設P(n)成立,即 9.

 $x_1 x_2 ... x_n \le \left(\frac{x_1 + x_2 + ... + x_n}{n}\right)^n, \ x_1, x_2, ..., x_n \ge 0 \ \diamondsuit x_n = \frac{x_1 + x_2 + ... + x_{n-1}}{n-1} \ , \ \mathbb{N} \ :$ $x_1 x_2 ... x_n \le \left(\frac{x_1 + x_2 + ... + x_{n-1} + x_n}{n}\right)^n = \left(\frac{(n-1)x_n + x_n}{n}\right)^n = x_n^n$ $\Rightarrow x_1 x_2 ... x_{n-1} \le x_n^{n-1} = \frac{x_1 + x_2 + ... + x_{n-1}}{n-1}\right)^{n-1}$

$$x_1 x_2 ... x_n \le \left(\frac{x_1 + x_2 + ... + x_{n-1} + x_n}{n}\right)^n = \left(\frac{(n-1)x_n + x_n}{n}\right)^n = x_n^n$$

$$\Rightarrow x_1 x_2 ... x_{n-1} \le x_n^{n-1} = \frac{x_1 + x_2 + ... + x_{n-1}}{n-1})^{n-1}$$
$$\Rightarrow P(n-1) 成立$$

 \mathbf{b} 若P(n)及P(2)成立,則:

$$x_1 x_2 \dots x_{2n} = (x_1 x_2 \dots x_n) (x_{n+1} x_{n+2} \dots x_{2n}) \le (\frac{x_1 + x_2 + \dots + x_n}{n})^n \times (\frac{x_{n+1} + x_{n+2} + \dots + x_{2n}}{n})^n = [(\frac{x_1 + x_2 + \dots + x_n}{n}) (\frac{x_{n+1} + x_{n+2} + \dots + x_{2n}}{n})]^n$$

$$\leq \left(\left(\frac{\frac{x_1 + x_2 + \dots + x_n}{n} + \frac{x_{n+1} + x_{n+2} + \dots + x_{2n}}{n}}{2} \right)^2 \right)^n$$

$$= \left(\frac{x_1 + x_2 + \dots + x_{2n}}{2n} \right)^{2n}$$

$$\Rightarrow P(2n) 成立$$

 \mathbf{c} 從 \mathbf{b} 部分可以知道對所有非負整數k, $P(2^k)$ 皆成立。

 $\forall n \in \mathbb{N}, \exists k \in \mathbb{N} \text{ s.t. } n < 2^k, \text{ since } P(2^k) \text{ is true, we can know } P(n) \text{ is also true from part } \mathbf{a}.$

10. 令另一個木椿爲C:

 Q_n :

 $Q_0 = 0$ is trivial.

要把最大的碟子從A放到B前,必須先把前n-1個碟子放到C,才能將最大的碟子從A放到B。 放完後,再把前n-1個碟子放到B就是最快的方法了。

- 1) 把前n-1個碟子從A放到C(最少 R_{n-1} 步)
- 2) 把最大的碟子從A放到B(最少1步)
- 3) 把前n-1個碟子從C放到B(最少 R_{n-1} 步)

$$\Rightarrow Q_n = R_{n-1} + 1 + R_{n-1} = 2R_{n-1} + 1$$

 R_n :

 $R_0 = 0$ is trivial.

要把最大的碟子從B移到A前,必須先把前n-1個碟子放到A(因爲移動的順序是 $B\to C\to A$,放到C也會擋到最大的碟子的路),然後把最大的碟子從B移到C。再來把前n-1個碟子從A移到B,就可以把最大的碟子從C移到A,最後再把前n-1個碟子從B移到A就結束了。

- 1) 把前n-1個碟子從B放到A(最少 R_{n-1} 步)
- 2) 把最大的碟子從B放到C(1步)
- 3) 把前n-1個碟子從A放到B(最少 Q_{n-1} 步)
- 4) 把最大的碟子從C放到A(1步)
- 5) 把前n-1個碟子從B放到A(最少 R_{n-1} 步)

$$\Rightarrow R_n = R_{n-1} + 1 + Q_{n-1} + 1 + R_{n-1} = (2R_{n-1} + 1) + Q_{n-1} + 1$$

$$= Q_n + Q_{n-1} + 1$$

11. a Solution1:

 $a_0 = 0, a_1 = 2$ (trivial)

For n > 1:

將最大的兩個碟子從左放到右之前,必須先將前面的2n-2個碟子從左移到中,等最大的碟子都移到右之後,再把那2n-2個碟子從中移到右,這樣的步數就是最少的了。

- 1) 把前2n-2個碟子從左放到中(最少需要 a_{n-1} 步)
- 2) 把最大的兩個碟子從左放到右(最少2步)
- 3) 把前2n-2個碟子從中放到右(最少需要 a_{n-1} 步)

$$\Rightarrow a_n = a_{n-1} + 2 + a_{n-1} = 2a_{n-1} + 2$$

$$\Rightarrow (a_n + 2) = 2(a_{n-1} + 2) = 2^{n-1}(a_1 + 2) = 2^{n+1}$$

$$\Rightarrow a_n = 2^{n+1} - 2, \text{ for } n \ge 0$$

Solution2:

比較小的碟子放到兩個不同的木樁(如果能的話)會讓比較大的碟子動不了,所以最快的方

法就是一次移動兩個相同大小的碟子(需要2步),也因此所需步數就是最原始的問題的兩倍。

設此題答案爲 a_n ,則 $a_n = 2(2^n - 1) = 2^{n+1} - 2 \ (n \ge 0)$

b 設此題答案為 b_n ,則 $b_0 = 0, b_1 = 3(trivial)$,且對於 $n \ge 2$:

Possible solution1:

最大的碟子(上)從左移到中 \rightarrow 最大的碟子(下)從左移到右 \rightarrow 最大的碟子(上)從中移到右。過程中視情況把前2n-2個碟子移到適當的位置。

- 1) 把前2n-2個碟子從左放到右(不管順序,最少 a_{n-1} 步)
- 2) 把最大的碟子(上)從左放到中(1步)
- 3) 把前2n-2個碟子從右放到中(不管順序,最少 a_{n-1} 步)
- 4) 把最大的碟子(下)從左放到右(1步)
- 5) 把前2n-2個碟子從中放到左(不管順序,最少 a_{n-1} 步)
- 6) 把最大的碟子(上)從中放到右(1步)
- 7) 把前2n-2個碟子從左放到右(不管順序,最少 a_{n-1} 步)

可以注意到 a_{n-1} 有4次,所以相同大小的碟子的順序最後並不會改變。因此 $b_n=4a_{n-1}+3=2^{n+2}-5$

Possible solution2:

觀察不要求順序時的情況:

- 1) 把前2n-2個碟子從左放到中(不管順序)
- 2) 把最大的兩個碟子從左放到右(2步)
- 3) 把前2n-2個碟子從中放到右(不管順序)

及要求順序時的情況:

- 1) 把前2n-2個碟子從左放到右(不管順序)
- 2) 把最大的碟子(上)從左放到中(1步)
- 3) 把前2n-2個碟子從右放到中(不管順序)
- 4) 把最大的碟子(下)從左放到右(1步)
- 5) 把前2n-2個碟子從中放到左(不管順序)
- 6) 把最大的碟子(上)從中放到右(1步)
- 7) 把前2n-2個碟子從左放到右(不管順序)

可以注意到要求順序時,前2n-2碟子動的步數是不要求順序時的兩倍,而最大的碟子也接近不要求順序時的兩倍(再少1步),因此 $b_n=2a_n-1=2^{n+2}-5$

Possible solution3:

最大的兩個碟子從左移到中(目前順序顚倒) \rightarrow 從中移到右(回到原本的順序)。過程中視情況把前2n-2個碟子移到適當的位置。

- 1) 把前2n-2個碟子從左放到右(不管順序,最少 a_{n-1} 步,此時有些碟子順序可能會亂)
- 2) 把最大的兩個碟子從左放到中(2步)
- 3) 把前2n-2個碟子從右放到左(不管順序,最少 a_{n-1} 步,此時原本順序亂的碟子順序會回到初始情況)
- 4) 把最大的兩個碟子從中放到右(1步)
- 5) 把前2n-2個碟子從左放到右(管順序,最少 b_{n-1} 步)

$$\Rightarrow b_n = a_{n-1} + 2 + a_{n-1} + 2 + b_{n-1} = 2a_{n-1} + 4 + b_{n-1} = 2^{n+1} + b_{n-1}$$
$$\Rightarrow b_n = b_1 + \sum_{n=1}^{\infty} 2^{n+1} = 3 + \frac{2^3(2^{n-1} - 1)}{2^{n-1}} = 2^{n+2} - 5$$

Remark: 其實應該要這三個可能的答案中挑最小的一個(所以才稱其爲'possible'),但第二個可能的答案中的式子($b_n = 2a_n - 1$)保證了這三個是相等的。

$$16. g(1) = \alpha \tag{1}$$

$$g(2n+j) = 3g(n) + \gamma n + \beta_j \text{ for } j = 0, 1 \text{ and } n \in N$$
(2)

Solution1:(just use repertoire method)

$$g(n)$$
 must be the form: $A(n)\alpha + B(n)\beta_1 + C(n)\beta_2 + D(n)\gamma$ (3)

- (a) Let $(\alpha, \beta_1, \beta_2, \gamma) = (1, 0, 0, 0)$, then g(n) = A(n). By(1), we know A(1) = 1. By(2), we know $A(2n + j) = 3A(n) \Rightarrow A(n) = 3^m, m = \lfloor \log 2n \rfloor$ $(\cancel{\sharp} \ m \ \)$ $(\cancel{\sharp} \ m \ \)$ $(\cancel{\sharp} \ m \ \ \)$ $(\cancel{\sharp} \ m \ \)$
- (b) Let $(\alpha, \beta_1, \beta_2, \gamma) = (0, 0, 0, 1)$: By(1), we know D(1) = 0. By(2), we know D(2n+j) = 3D(n) + n $\Rightarrow D(n) = \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor$ (如果不清楚A(n)跟D(n)的一般項怎麼得出的,建議設個n然後用二進位自己試一遍看看)
- (c) Let g(n) = 1: By(1), we know $\alpha = g(1) = 1$ By(2), we know $g(2n + j) = 3g(n) + \gamma n + \beta_j$ $\Rightarrow 1 = 3 \times 1 + n\gamma + \beta_j \text{ for } j = 0, 1$ $\Rightarrow \gamma = 0, \beta_0 = \beta_1 = -2$ $\Rightarrow \text{ by}(3), \text{ we know } 1 = A(n) - 2B(n) - 2C(n)$ $\Rightarrow B(n) + C(n) = \frac{3^m - 1}{2}$ (4)
- (d) Let g(n) = n: By(1), we know $\alpha = g(1) = 1$ By(2), we know $2n + j = 3n + \gamma n + \beta_j$ for j = 0, 1 $\Rightarrow \gamma = -1, \beta_0 = 0, \beta_1 = 1$ $\Rightarrow \text{by}(3)$, we know n = A(n) + C(n) - D(n) $\Rightarrow C(n) = n - A(n) + D(n) = n - 3^m + \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor$ By (4), we know $B(n) = \frac{3^m - 1}{2} - C(n) = \frac{1}{2} (3^{m+1} - 1) - n - \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor$

Finally, we know that for all $n \in N$, let $m = \lfloor \log 2n \rfloor$ then: $g(n) = 3^m \alpha + (\frac{1}{2}(3^{m+1} - 1) - n - \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor) \beta_0 + (n - 3^m + \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor) \beta_1 + \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor \gamma$

Remark: 如果你嘗試設 $g(n) = n^2$ 卻得不出結果,這是很正常的。這只是代表這個遞迴式不可能靠更動那些參數做到 $q(n) = n^2$ 。

Solution2:(use other methods)

Lemma:

If $g_1(n)$ is the solution for

$$\begin{cases} a(1) = \alpha \\ a(2n+j) = 3a(n) + \beta_j \text{ for } j = 0, 1 \text{ and } n \in \mathbb{N} \end{cases}$$

and $g_2(n)$ is the solution for

$$\begin{cases} b(1) = 0 \\ b(2n+j) = 3b(n) + \gamma n \text{ for } j = 0, 1 \text{ and } n \in \mathbb{N} \end{cases}$$

Then $(g_1 + g_2)(n)$ is the solution for

$$\begin{cases} g(1) = \alpha \\ g(2n+j) = 3g(n) + \gamma n + \beta_j \text{ for } j = 0, 1 \text{ and } n \in \mathbb{N} \end{cases}$$

Proof.
$$(g_1 + g_2)(1) = g_1(1) + g_2(1) = \alpha$$

For $j = 0, 1$ and $n \in N$, $(g_1 + g_2)(2n + j) = g_1(2n + j) + g_2(2n + j) = (3g_1(n) + \beta_j) + (3g_2(n) + \gamma n)$
 $= 3(g_1(n) + g_2(n)) + \gamma n + \beta_j$

Theorem1.18:(from text book) If $f(j) = \alpha_j$ and $f(dn + j) = cf(n) + \beta_j$ for j = 0, 1, ..., d - 1 and $n \in N$, then for $n = (b_m b_{m-1} ... b_1 b_0)_d$, $f((b_m b_{m-1} ... b_1 b_0)_d) = (\alpha_{b_m} \beta_{b_{m-1}} ... \beta_{b_1} \beta_{b_0})_c$.

Proof. 注意到在d進位的表示法中,n就是把dn+j的個位數拿掉的意思,而j就是拿掉前的個位數:

For
$$n = (b_m b_{m-1} ... b_1 b_0)_d$$
, $f((b_m b_{m-1} ... b_1 b_0)_d) = c f((b_m b_{m-1} ... b_2 b_1)_d) + \beta_{b_0}$
 $= c^2 f((b_m b_{m-1} ... b_3 b_2)_d) + c \beta_{b_1} + \beta_{b_0}$
 $= c^3 f((b_m b_{m-1} ... b_4 b_3)_d) + c^2 \beta_{b_2} + c \beta_{b_1} + \beta_{b_0}$
 $= ... \quad (持續 做遞迴)$
 $= c^m f((b_m)_d) + c^{m-1} \beta_{b_{m-1}} + c^{m-2} \beta_{b_{m-2}} + ... + c \beta_{b_1} + \beta_{b_0} \quad (遞迴結束)$
 $= c^m \alpha_{b_m} + c^{m-1} \beta_{b_{m-1}} + c^{m-2} \beta_{b_{m-2}} + ... + c \beta_{b_1} + \beta_{b_0} \quad (f(j) = \alpha_j)$
 $= (\alpha_{b_m} \beta_{b_{m-1}} ... \beta_{b_1} \beta_{b_0})_c. \quad (可以用 c進位表示)$

 $g_1(n)$:

- For $\gamma = 0$, it's clearly that $g_1(n) = 0$.
- For $\gamma \neq 0$, let $g_3(n) = \frac{g_1(n)}{\gamma}$, then $g_3(n) = 0$ and $g_3(2n+j) = \frac{g_1(2n+j)}{\gamma}$ $= \frac{3g_1(n) + \gamma n}{\gamma} = \frac{3g_1(n)}{\gamma} + n = g_3(n) + n$ Similarly from previous discussions in solution1, we can conclude that $g_3(n) = \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor$ $\Rightarrow g_1(n) = \gamma g_3(n) = \gamma \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor$

$$\Rightarrow g_1(n) = \gamma \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor$$
 (No matter what value γ is.)

 $g_2(n)$:

From theorem1.18, we know that for $n = (1b_{m-1}...b_1b_0)_2$, $g_2(n) = (\alpha\beta_{b_{m-1}}...\beta_{b_1}\beta_{b_0})_3$

Finally, according to the lemma, we can conclude that for $n = n = (1b_{m-1}...b_1b_0)_2$, $g(n) = g_1(n) + g_2(n)$

$$g(n) = (\alpha \beta_{b_{m-1}} ... \beta_{b_1} \beta_{b_0})_3 + \gamma \sum_{i=1}^{\infty} 3^{i-1} \left| \frac{n}{2^i} \right|$$

Bonus1: 如果你覺得式子一部份用進位表示一部份不是感覺很不舒服,沒問題,我們來處理那個惱人的 $\sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor$ 。 首先我們已經知道 $D(n) = \sum_{i=1}^{\infty} 3^{i-1} \lfloor \frac{n}{2^i} \rfloor$ 滿足

$$\begin{cases} D_1 = 0 \\ D(2n+j) = 3D(n) + n \text{ for } j = 0, 1 \text{ and } n \in \mathbb{N} \end{cases}$$

而我們等等也會用到這個事實。

$$= b_m(2^03^{m-1} + 2^13^{m-2} + \dots + 2^{m-1}3^0) + b_{m-1}(2^03^{m-2} + 2^13^{m-2} + \dots + 2^{m-2}3^0) + \dots + b_i(2^03^{i-1} + 2^13^{i-2} + \dots + 2^{i-1}3^0) + \dots + b_1(2^03^0)$$

(每個括號裡面的都是一個等比級數和,首項 3^{i-1} ,公比 $\frac{2}{3}$,共i項⇒ $3^{i}-2^{i}$) $=b_{m}(3^{m}-2^{m})+b_{m-1}(3^{m-1}-2^{m-1})+...+b_{1}(3^{1}-2^{1})+b_{0}(3^{0}-2^{0})$ (最後一項是自己補的,反正是0還會比較美觀) $=(b_{m}3^{m}+b_{m-1}3^{m-1}+...+b_{0}3^{0})-(a_{m}2^{m}+a_{m-1}2^{m-1}+...+a_{0}2^{0})$ $=(b_{m}b_{m-1}...b_{1}b_{0})_{3}-(b_{m}b_{m-1}...b_{1}b_{0})_{2}$

$$g(n) = (\alpha \beta_{b_{m-1}} \dots \beta_{b_1} \beta_{b_0})_3 + \gamma [(b_m b_{m-1} \dots b_1 b_0)_3 - (b_m b_{m-1} \dots b_1 b_0)_2]$$

Bonus2: 對於Bonus1,我們其實可以有類似於Theorem1.18的結論:

(1) $c, d \in N, d > 1$ and $c \neq d$

因此在solution2裡,可以改寫成:

- (2) $f(0) = \alpha$
- (3) $f(dn+j) = cf(n) + \gamma n$ for $n = (b_m b_{m-1} ... b_1 b_0)_d \ge 0$

Then:

$$f(n) = c^{m+1}\alpha + \gamma \left(\frac{(b_m b_{m-1} \dots b_1 b_0)_c - (b_m b_{m-1} \dots b_1 b_0)_d}{c - d} \right)$$