Modely farieb

MODELY FARIEB

- HW orientované:
- RGB, CMYK, televízne normy
- Užívateľsky orientované:
- HLS, HSV, HSI
- Vnemovo rovnomerné (perceptually uniform):
- CIE Lab, Luv, WUV
- Iné:
- XYZ, oponent, TSV, LUX, YES, ...

RGB

Najznámejší model Používaný v monitoroch Farebné svetlá

Hodnoty R,G,B $\in \langle 0, 1 \rangle$ Kocka

RGB

Aditívne skladanie farieb: čím viac farieb zložíme, tým je výsledok svetlejší (spočítava sa ich intenzita).

- Veľa rôznych modelov RGB
- Každý ma iné hodnoty základných farieb užívateľovi obvykle nedostupné
- TV spoločnosti si určili hodnoty základných farieb RGB podľa použitých technológií

RGB PRÍKLAD

Original

Red Band

Green Band

Blue Band

No Red

No Green

No Blue

MODELY RGB

CIE RGB – E

NTSC – pôvodne C, teraz D65

EBU (European Broadcast Union) – Calebo D65

CCIR (Comité Consultatif International des Radiocommunications) – D65 ITU-R BT.709 standard

SMPTE (Society of Motion Picture and Television Engineers) – D65

Medzinárodná dohoda pre HDTV ITU-R BT.709 standard

TABLE 3.5-2. XYZ Chromaticity Coordinates of Standard Primaries

Standard		х	у	Z
CIE	R_C	0.640000	0.330000	0.030000
	$G_{\mathbb{C}}$	0.300000	0.600000	0.100000
	B_C	0.150000	0.06000	0.790000
NTSC	R_N	0.670000	0.330000	0.000000
	G_N	0.210000	0.710000	0.080000
	$B_{\mathbf{N}}$	0.140000	0.080000	0.780000
SMPTE	R_S	0.630000	0.340000	0.030000
	$G_{\mathbb{S}}$	0.310000	0.595000	0.095000
	$B_{\mathbf{S}}$	0.155000	0.070000	0.775000
EBU	R_E	0.640000	0.330000	0.030000
	G_E	0.290000	0.60000	0.110000
	B_{E}	0.150000	0.060000	0.790000
CCIR	R_R	0.640000	0.330000	0.030000
	G_R	0.30000	0.600000	0.100000
	B_R	0.150000	0.060000	0.790000

$RGB \rightarrow XYZ$

Lineárna transformácia

Súradnice základných farieb

Súradnice bieleho bodu

$$\begin{bmatrix} a(1) \\ a(2) \\ a(3) \end{bmatrix} = \begin{bmatrix} x_R & x_G \\ y_R & y_G \\ z_R & z_G \end{bmatrix} \begin{bmatrix} x_W/y_W \\ 1 \\ z_W/y_W \end{bmatrix}$$

$$\begin{bmatrix} M(1,1) & M(1,2) & M(1,3) \\ M(2,1) & M(2,2) & M(2,3) \\ M(3,1) & M(3,2) & M(3,3) \end{bmatrix} = \begin{bmatrix} x_R & x_G & x_B \\ y_R & y_G & y_B \\ z_R & z_G & z_B \end{bmatrix} \begin{bmatrix} a(1) & 0 & 0 \\ 0 & a(2) & 0 \\ 0 & 0 & a(3) \end{bmatrix}$$

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{bmatrix} M_{1,1} & M_{1,2} & M_{1,3} \\ M_{2,1} & M_{2,2} & M_{2,3} \\ M_{3,1} & M_{3,2} & M_{3,3} \end{bmatrix} \cdot \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

RGB R

G

B

- Lineárne RGB
 - lineárna transformácia z XYZ
 - vnemovo neuniformný
 - Device independent
- Nelineárne RGB
 - lineárne RGB pomocou gamma korekcie -> nelineárne RGB
 - Obrazovky CRT
 - Device dependent

GAMA KOREKCIA

- γ reprezentuje numerický parameter vyjadrujúci nelinearitu reprodukcie intenzity svetla
- CRT nelineárne
 - Intenzita svetla reprodukovaného na monitore je nelineárna funkcia napätia

NTSC $\gamma = 2.2$

RGBA

RGBA- α kanál, informácia o priehľadnosti, akým pomerom sa farba mieša s pozadím.

Používa sa napríklad v OpenGL

 α = 1 perfektne nepriesvitné α = 0 úplne priehľadné $0 < \alpha < 1$ rôzne úrovne priesvitnosti

Blending je miešanie rôznych farieb: zdroja a miesta určenia

Priesvitný – čiastočne prepúšťajúci svetlo

CMY

Farebné filtre

Farba telies - farby sa ukladajú na seba, svetlo musí prejsť vrstvami (filtrami) a odraziť sa od podkladu

Komplementárny model k RGB:

$$C = 1 - R$$

$$M = 1 - G$$

$$Y = 1 - B$$

Subtraktívne skladanie farieb pridávaním pigmentu tvorí tmavšiu farbu

CMYK

Pri tlači sa používa CMYK (blacK)
Nemusia sa tlačiť 3 farby na seba - ušetrí sa na drahých farebných náplniach
Čierna sa tlačí samostatne

CMYK (K, blacK) $K^* = min(1-R, 1-G, 1-B)$ $C = 1 - R - uK^*$ $M = 1 - G - uK^*$ $Y = 1 - B - uK^*$ $K = bK^*$ $0 \le u, b \le 1$

Four color process printing

Four color process separations

Separating an image into the four process colors

MODELY FARIEB "TRIEDY Y"

Televízne a video štandardy

YIQ - NTSC

YUV - PAL

YCbCr – digital video

YPbPr – analógová TV

YCC – Kodak

Farebná zložka oddelená od jasovej (Y) Farebná zložka: zeleno/červený kanál modro/žltý kanál

Vo všeobecnosti:

$$Y' = 0.299R' + 0.587G' + 0.114B'$$

$$C_1 = a_1(R' - Y') + b_1(B' - Y')$$

$$C_2 = a_2(R' - Y') + b_2(B' - Y'),$$

$$\begin{bmatrix} Y' \\ C_1 \\ C_2 \end{bmatrix} = M * \begin{bmatrix} R' \\ G' \\ B' \end{bmatrix}$$

YIQ

- Y luma
- I in-phase, (orange-blue range)
- Q quadrature (purple-green range)
- 1950 NTSC štandard
- kompatibilita s jednofarebným TV
- väčšia šírka pásma pre Y ako pre I Q.
- oddelená jasová zložka manipulácia bez ovplyvnenia farebnej zložky (histogram equalization)
- vnemovo neuniformné Euklidovská vzdialenosť nefunguje
- Gama korekcia aplikovaná na lineárny RGB, vážený súčet nelineárnych komponentov RGB -> luma Y

YUV - PAL

Podobne ako YIQ YUV vzorkovacie formáty 4:4:4, 4:2:2, and 4:2:0

Y U V – vypočítané z RGB s gama korekciou (R G B)

Y'= 0.299*R' + 0.587*G' + 0.114*B'

U'=0.492*(B'-Y')

V'=0.877*(R'-Y')

R' = Y' + 1.140*V'

G' = Y' - 0.394*U' - 0.581*V'

B' = Y' + 2.032*U'

YCbC, a YCCK

- YCbCr component digital video
- Popísané v štandarde ITU-R BT.601
- YCbCr je škálovaná a posunutá verzia YUV
- Y'Cb'Cr' vypočítané z RGB s gama korekciou (R G B)
- YCCK špeciálne pre JPEG kompresiu obrazu
- Je variáciou YCrCb modelu s pridaným K (black) kanálom

LINEÁRNE VZŤAHY

Color space	Matrix/cefficients				
YC_bC_r	$\begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.168736 & -0.331264 & 0.5 \\ 0.5 & -0.418668 & -0.081312 \end{bmatrix}$				
YCC	$\begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.299 & -0.587 & 0.886 \\ 0.701 & -0.587 & -0.114 \end{bmatrix}$				
YIQ	$\begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.59597799 & -0.27417610 & -0.32180189 \\ 0.21147017 & -0.52261711 & 0.31114694 \end{bmatrix}$				
YUV	$a_1 = 0$ $b_1 = 1/2.03$ $a_2 = 1/1.14$ $b_2 = 0$				

Polárne súradnice

$$Hue = \tan^{-1}\left(\frac{C_2}{C_1}\right)$$

$$Saturation = \sqrt{C_1^2 + C_2^2}.$$

Figure 1.18: Class Y' color spaces. Projection along the Y' axis. a) YC_bC_r , b) YCC, c) YIQ, d) YUV.

YIQ

Color space	Color mixing	Primary parameters	Used for	Pros and cons
RGB	Additive	Red, Green, Blue		Easy but wasting bandwidth
СМҮК	Subtractive	Cyan, Magenta, Yellow, Black	Printer	Works in pigment mixing
YCbCr YPbPr	additive	Y(luminance), Cb(blue chroma), Cr(red chroma)	Video encoding, digital camera	Bandwidth efficient
YUV	additive	Y(luminance), U(blue chroma), V(red chroma)	Video encoding for NTSC, PAL, SECAM	Bandwidth efficient
YIQ	additive	Y(luminance), I(rotated from U), Q(rotated from V)	Video encoding for NTSC	Bandwidth efficient

UŽÍVATEĽSKY ORIENTOVANÉ MODELY

Analógia s maliarskym pohľadom (odtieň, sýtosť, jas)

Vhodné pre vizualizáciu (color maps)

Nelineárny prevod z/do RGB

Tvar: kužeľ (aj dvojitý), ihlan, niekedy valec

TVARY

$RGB \rightarrow HSV$

max(R,G,B)min(R,G,B)

V = max

S = (max-min)/max $A = \pi/3(max-min)$

H = (G-B)A

(B-R)A

(R-G)A

ak max = R

ak max = G

ak max = B

Obr. 12.11 Transformácia RGB kocky na HSV ihlan

ak max = 0, S nie je definovaná ak R = G = B, H nie je definovaná

HSV → **RGB**

```
I = floor(3H/\pi)

f = H-I

p = V(1-S)

q = V(1-Sf)

t = = V(1-S(1-f))
```


[R G B] = [V t p]
$$ak I = 0$$

[q V p] $ak I = 1$
[p V t] $ak I = 2$
[p q V] $ak I = 3$
[t p V] $ak I = 4$
[V p q] $ak I = 5$
[0 0 0] $ak S = 0$

HSV PLANES

$RGB \rightarrow HSI$

H – normalizácia do $\langle 0,1 \rangle$: H/360 ak R = G = B, H nie je definovaná ak I = 0, S nie je definovaná

HSI → **RGB**

Záleží na tom, v ktorom sektore leží H

RG sektor $(0^0 \le H \le 120^0)$:

$$b = \frac{1}{3}(1 - S)$$

$$r = \frac{1}{3}\left[1 + \frac{S\cos(H)}{\cos(6\theta^0 - H)}\right]$$

$$g = 1 - (r + b)$$

GB sektor $(120^{0} \le H \le 240^{0})$:

$$H = H - 120^{0}$$

$$g = \frac{1}{3} \left[1 + \frac{S \cos(H)}{\cos(60^{0} - H)} \right]$$

$$r = \frac{1}{3} (1 - S)$$

$$b = 1 - (r + b)$$

BR sektor $(240^{0} \le H \le 360^{0})$:

$$g=rac{1-S}{3}, \qquad b=rac{1}{3}\left[1+rac{S\cos H}{\cos(60-H)}
ight], \qquad r=1-g-b$$

PROBLÉM?

McAdamove elipsy

V doteraz spomínaných modeloch:

Euklidovská vzdialenosť farieb nezodpovedá

vizuálnej "vzdialenosti"

McAdamove elipsy v xy – pre pozorovateľa nerozlíšiteľné farby

CIE UVW

Lineárna aproximácia vnemovo rovnomerného priestoru

$$\begin{bmatrix} \mathsf{U} \\ \mathsf{V} \\ \mathsf{W} \end{bmatrix} = \begin{bmatrix} 0.66 & 0 & 0 \\ 0 & 1 & 0 \\ -0.5 & 1.5 & 0.5 \end{bmatrix} \begin{bmatrix} \mathsf{X} \\ \mathsf{Y} \\ \mathsf{Z} \end{bmatrix}$$

Nerieši problém úplne

→ nelineárne transformácie

CIE YU'V'

$$u' = \frac{4X}{X+15Y+3Z}$$

$$v' = \frac{9Y}{X+15Y+3Z}$$

CIE L*U*V*

L* - jas u*, v* - farebné súradnice n – súradnice bieleho bodu

$$L^* = \begin{cases} 116 \left(\frac{Y}{Y_n}\right)^{\frac{1}{3}} - 16 & \text{ak } \frac{Y}{Y_n} > 0.008856 \\ 903.3 \frac{Y}{Y_n} & \text{ak } \frac{Y}{Y_n} \le 0.008856 \end{cases}$$

$$u^* = 13L^*(u'-u'_n)$$

 $v^* = 13L^*(v'-v'_n)$

CIE L*U*V*

Polárne súradnice Farebnosť Odtieň (u,v>0)

$$C = \sqrt{u^2 + v^2}$$
 $h_v = \operatorname{arc} t_u^2 = 1$

McAdamove elipsy

CIE L*A*B*

L* - jas výpočet ako pri CIE L*u*v* a*, b* - farebné súradnice n – súradnice bieleho bodu Používaný v priemysle

$$a^* = 500 \left(f \left(\frac{X}{X_n} \right) - f \left(\frac{Y}{Y_n} \right) \right)$$
$$b^* = 200 \left(f \left(\frac{Y}{Y_n} \right) - f \left(\frac{Z}{Z_n} \right) \right)$$

$$f(t) = \begin{cases} t^{\frac{1}{3}} & \text{ak } t > 0.008856 \\ 7.787t + \frac{16}{116} & \text{ak } t \le 0.008856 \end{cases}$$

CIE L*A*B*

Polárne súradnice Farebnosť Odtieň (a,b>0)

VZDIALENOSŤ FARIEB

Euklidovská vzdialenosť

CIE L*a*b*

CIE L*u*v* podobne

ΔE_{Lab}^*	Effect
< 3	Not perceptible
3 < 6	Perceptible, but acceptable
> 6	Not acceptable

VZDIALENOSŤ FARIEB

$$\Delta E = \sqrt{\left(\frac{\Delta L^*}{k_L S_L}\right)^2 + \left(\frac{\Delta C^*}{k_C S_C}\right)^2 + \left(\frac{\Delta H^*}{k_H S_H}\right) + R_T \phi(\Delta C^* \Delta H^*)}$$
(1.43)

where k_{ν} , k_{c} , k_{H} = positive, real-valued scaling parameters chosen based on the application where the formula is used

 S_{L} , S_{C} , S_{H} = lightness-, chroma-, and hue-dependent scaling functions, respectively

 R_T = an additional scaling function that depends on chroma and hue

NEKORELOVANÉ MODELY

Farebné zložky (vo väčšine modelov)

- korelované (medzi sebou a najmä s jasovou zložkou)
- s malou varianciou (nízkou možnosťou diskriminácie objektov)

Nové modely, kde zložky nie sú korelované

NEKORELOVANÉ MODELY

K₁K₂K₃ - Karhunen-Loeve transformácia (výpočtovo náročná, kovariančná matica, vlastné vektory, ...) Dátovo závislá – pre každý obrázok treba novú transformačnú maticu

$$\begin{bmatrix} K_1 \\ K_2 \\ K_3 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

INÉ FAREBNÉ MODELY

$$T = \arctan(r'/g')/\pi + 1/2$$

$$r'=(r-1/3)$$

$$S = [9/5(r'^2 + g'^2)]^{1/2}$$

$$g' = (g - 1/3)$$

$$V \quad = \quad (R+G+B)/3,$$

"Modrá = 0"

$$T = \begin{cases} \arctan(r'/g')/2\pi + 1/4 & g' > 0 \\ \arctan(r'/g')/2\pi + 3/4 & g' < 0 \\ 0 & g' = 0 \end{cases}$$

$$S = [9/5(r'^2 + g'^2)]^{1/2}$$

$$L = 0.299R' + 0.587G' + 0.114B',$$

"uhlový" model

$$\begin{bmatrix} I \\ v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{-1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & 0 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$L(x) = 105 \log_{10}(x + 10) + 100 \log_{$$

$$H = \arctan\left\{\frac{V_2}{V_1}\right\}$$

$$S = (V_1^2 + V_2^2)^{1/2}$$

111213 (Ohta) – oponent model lineárna transformácia

$$I_1 = (R + G + B)/3$$

 $I_2 = R - G$
 $I_3 = B - \frac{R + G}{2}$.

Log oponent model

$$\begin{split} L(x) &= 105 \log_{10}(x+1+n) \\ I &= L(G) \\ R_g &= L(R) - L(G) \\ B_y &= L(B) - \frac{L(G) + L(R)}{2}, \end{split}$$

$$L = (R+1)^{0.3}(G+1)^{0.6}(B+1)^{0.1} - 1$$

$$U = \begin{cases} \frac{M}{2} \frac{R+1}{L+1} & R < L \\ M - \frac{M}{2} \frac{L+1}{R+1} & otherwise \end{cases}$$

$$X = \begin{cases} \frac{M}{2} \frac{B+1}{L+1} & B < L \\ M - \frac{M}{2} \frac{L+1}{B+1} & otherwise, \end{cases}$$

contrast enhancement logarithmic image processing

$$\hat{U} = \begin{cases} 256 \frac{G}{R} & R > G \\ 255 & otherwise. \end{cases}$$

$$\begin{bmatrix} Y \\ E \\ S \end{bmatrix} = \begin{bmatrix} 0.253 & 0.684 & 0.065 \\ 0.5 & -0.5 & 0 \\ 0.25 & 0.25 & -0.5 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

XEROX – IR imagery

Table 1.3. Color Model

0.3.0		
Color System	Transform (from RGB)	Component correlation
RGB	_	highly correlated
R'G'B'	non linear	
XYZ	linear	correlated
YIQ	linear	uncorrelated
YCC	linear	uncorrelated
I1I2I3	linear	correlated
HSV	non linear	correlated
HSI	non linear	correlated
HLS	non linear	correlated
L*u*v*	non linear	correlated
L*a*b*	non linear	correlated
Munsell	non linear	correlated

Fig. 1.16. A taxonomy of color models

POUŽITIE MODELOV

Ľudské tváre

FARBOSLEPOTA

- porucha farbocitu (genetická alebo získaná)
 Ku genetickým patria
- Dichromázia jeden typ čapíkov chýba
 - 1. protanope nevidí červenú Daltonizmus,
 - 2. deuteranope nevidí zelenú,
 - 3. tritanope nevidí modrú Protanopia a deuteranopia = červeno-zelená slepota 8% mužov a 0.5% žien
- Anomálna trichromázia
 - Znížená citlivosť jedného typu čapíkov => Posunuté vnímanie farieb
- Monochromázia nerozlišuje farby vôbec

Protanopia

Deuteranopia

Tritanopia

TEST FARBOSLEPOTY

В

TEST FARBOSLEPOTY

Bludisko v intenzite farieb

viditeľné len pre farboslepých

Meryon (a colorblind painter), Le Vaisseau Fantôme