Continuité

Exercice 1 ★★

Point fixe de l'exponentielle complexe

Le but de cet exercice est de montrer l'existence de points fixes de l'exponentielle complexe, c'est-à-dire qu'il existe $z \in \mathbb{C}$ tel que $e^z = z$.

- **1.** L'exponentielle admet-elle des points fixes sur \mathbb{R} ? On justifiera sa réponse.
- 2. Pour $x \in \left]0, \frac{\pi}{2}\right[$, on pose

$$f(x) = \exp\left(\frac{x}{\tan x}\right) - \frac{x}{\sin x}$$

Déterminer les limites de f en 0 et $\frac{\pi}{2}$.

- 3. En déduire qu'il existe $b \in \left[0, \frac{\pi}{2}\right]$ tel que f(b) = 0.
- **4.** On pose $a = \frac{b}{\tan b}$ et z = a + ib. Montrer que $e^z = z$.

Exercice 2 ***

Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ une application continue telle que $f \circ f = \mathrm{Id}_{\mathbb{R}_+}$. Déterminer f.

Exercice 3 ★★

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}^2$ une application continue. Soit D une droite de \mathbb{R}^2 et P^+ et P^- les demi-plans de \mathbb{R}^2 délimités par D. On suppose qu'il existe $(a,b) \in I^2$ tel que $f(a) \in P^+$ et $f(b) \in P^-$. Montrer qu'il existe $c \in I$ tel que $f(c) \in D$.

Exercice 4 ★★

Soit f une fonction continue sur un segment $\mathbf{I} = [a,b]$ telle que $\mathbf{I} \subset f(\mathbf{I})$.

- **1.** Montrer que f prend les valeurs a et b sur I.
- **2.** En déduire que f admet un point fixe.

Exercice 5 ★★

Soit f une fonction décroissante et continue sur $\mathbb R$. Montrer que f admet un unique point fixe

Dérivabilité

Exercice 6 ***

Equation fonctionnelle de l'exponentielle matricielle

Déterminer les applications M : $\mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ dérivables en 0 vérifiant :

$$\forall (s,t) \in \mathbb{R}^2, \ M(s+t) = M(s)M(t)$$

Exercice 7 ***

Banque Mines-Ponts MP 2019

Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que tr(A) > 0, et $x : \mathbb{R} \to \mathcal{M}_{n,1}(\mathbb{R})$ de classe \mathcal{C}^1 , telle que $\forall t \in \mathbb{R}$, x'(t) = Ax(t) et $\lim_{t \to +\infty} x(t) = 0$.

Montrer qu'il existe une forme linéaire non nulle ℓ , telle que $\forall t \in \mathbb{R}, \ \ell(x(t)) = 0$.

Exercice 8 ★★

Soit $(a, b) \in \mathbb{R}^2$ tel que a < b. Soient f et g deux applications de [a, b] dans \mathbb{R} continues sur [a, b] et dérivables sur [a, b] et dérivables sur [a, b] :

$$\Delta(x) = \begin{vmatrix} f(a) & f(b) & f(x) \\ g(a) & g(b) & g(x) \\ 1 & 1 & 1 \end{vmatrix}$$

- 1. Montrer que Δ est continue sur [a,b], dérivable sur]a,b[et calculer $\Delta'(x)$ pour $x \in]a,b[$.
- **2.** En déduire qu'il existe $c \in]a, b[$ tel que

$$(g(b) - g(a)) f'(c) = (f(b) - f(a)) g'(c)$$

Exercice 9 ★★

Soient E un espace vectoriel de dimension finie et $f: \mathbb{R} \to E$ dérivable en 0 telle que

$$\forall x \in \mathbb{R}, \ f(2x) = 2f(x)$$

Montrer que f est linéaire.

Exercice 10 ★★

On considère deux matrices A et B de $\mathcal{M}_n(\mathbb{K})$ qui commutent.

- **1.** Montrer que A commute avec exp(B).
- **2.** On considère l'application φ : $t \in [0,1] \mapsto \exp(t(A+B))\exp(-tB)\exp(-tA)$. Justifier que φ est dérivable et calculer sa dérivée.
- 3. En déduire que exp(A + B) = exp(A) exp(B).

Exercice 11 ★★

Soit f continue sur [a, b], dérivable sur [a, b[, à valeurs dans \mathbb{R}^2 . Montrer qu'il existe $c \in]a, b[$ tel que f'(c) est colinéaire à f(b) - f(a).

Exercice 12 ★★

Mouvement à force centrale

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}^3$ de classe \mathcal{C}^2 tel que pour tout $t \in I$, f(t) et f''(t) soient colinéaires. On suppose de plus qu'il existe $t_0 \in I$ tel que $(f(t_0), f'(t_0))$ est libre.

- 1. Montrer que f est à valeurs dans un plan vectoriel de \mathbb{R}^3 . On pourra utiliser le produit vectoriel.
- 2. Montrer que l'aire orientée du triangle porté par les vecteurs f(t) et f'(t) est constante.

Exercice 13 ★★★

Soient I un intervalle de \mathbb{R} et A : I $\to \mathcal{M}_n(\mathbb{R})$ une application de classe \mathcal{C}^1 . Montrer que φ : $t \in I \mapsto \det(A(t))$ est de classe \mathcal{C}^1 sur I et que

$$\forall t \in I, \ \varphi'(t) = \operatorname{tr}(\operatorname{com}(A(t))^{\mathsf{T}}A'(t))$$

Exercice 14 ★★

Soit $f: x \mapsto \arctan(x)$.

- **1.** Démontrer que pour tout $n \in \mathbb{N}^*$, il existe un unique polynôme P_{n-1} tel que $\forall x \in \mathbb{R}$, $f^{(n)}(x) = \frac{P_{n-1}(x)}{(1+x^2)^n}$.
- 2. Préciser le degré, la parité et le coefficient dominant de P_n .
- 3. Déterminer les limites de $f^{(n)}$ en $-\infty$ et $+\infty$ pour $n \ge 1$.
- **4.** Montrer que pour tout $n \in \mathbb{N}$, toutes les racines de P_n sont réelles et simples. Raisonner par récurrence en utilisant le théorème de Rolle.

Exercice 15 ★★

Soit f la fonction définie sur \mathbb{R} par

$$\forall t \in \mathbb{R}, \ f(t) = \begin{cases} e^{-\frac{1}{t}} & \text{si } t > 0\\ 0 & \text{si } t \le 0 \end{cases}$$

1. Montrer que pour tout $n \in \mathbb{N}$, il existe $P_n \in \mathbb{R}[X]$ tel que

$$\forall t \in \mathbb{R}_+^*, \ f^{(n)}(t) = \frac{P_n(t)e^{-\frac{1}{t}}}{t^{2n}}$$

2. Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Exercice 16 ***

Centrale MP

Soient f dérivable sur un intervalle I à valeurs dans \mathbb{R} , A et B deux points distincts de sa courbe représentative \mathcal{C} tels que B est sur la tangente à \mathcal{C} en A. Montrer qu'il existe un point M de \mathcal{C} , distinct de A, tel que A est sur la tangente à \mathcal{C} en M.

Intégration

Exercice 17 ★★★

On munit $\mathcal{M}_n(\mathbb{C})$ d'une norme d'algèbre $\|\cdot\|$. On se donne $A \in \mathcal{M}_n(\mathbb{C})$.

- 1. On suppose dans cette question que $\|A\| < 1$. Montrer que $I_n A$ est inversible et que $(I_n A)^{-1} = \sum_{k=0}^{+\infty} A^k$.
- **2.** Soit $z \in \mathbb{C}$ tel que |z| > ||A||. Montrer que $zI_n A$ est inversible et exprimer son inverse sous la forme d'une somme de série.
- **3.** Soit $r \in \mathbb{R}$ tel que r > ||A||. Justifier que

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (re^{i\theta})^{k+1} (re^{i\theta} \mathbf{I}_n - \mathbf{A})^{-1} d\theta = \mathbf{A}^k$$

4. Justifier que

$$\chi_{\mathbf{A}}(\mathbf{A}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} r e^{i\theta} \operatorname{com}(r e^{i\theta} - \mathbf{A})^{\mathsf{T}} d\theta$$

5. En déduire une démonstration du théorème de Cayley-Hamilton.

Exercice 18 ***

Soit E un espace vectoriel de dimension finie et $f: [a, b] \to E$ de classe C^1 .

1. On suppose f(a) = 0. Montrer que

$$\left\| \int_{a}^{b} f(t) \, dt \right\| \le \frac{(b-a)^{2}}{2} \max_{t \in [a,b]} \|f'(t)\|$$

2. On suppose maintenant que f(a) = f(b) = 0. Montrer que

$$\left\| \int_{a}^{b} f(t) \, dt \right\| \le \frac{(b-a)^{2}}{4} \max_{t \in [a,b]} \|f'(t)\|$$

Sommes de Riemann

Exercice 19

Déterminer un équivalent de $u_n = \sqrt{1}\sqrt{n-1} + \sqrt{2}\sqrt{n-2} + \dots + \sqrt{n-2}\sqrt{2} + \sqrt{n-1}\sqrt{1}$ quand n tend vers $+\infty$.

Exercice 20 X PC 2012

Montrer que

$$X^{2n} - 1 = (X^2 - 1) \prod_{k=1}^{n-1} \left(X^2 - 2X \cos \frac{k\pi}{n} + 1 \right)$$

En déduire pour r > 1

$$\int_{-\pi}^{\pi} \ln\left|1 - re^{i\theta}\right| \, d\theta$$

Exercice 21

- **1.** On pose $S_n = \frac{1}{n} \sum_{k=1}^n \ln\left(1 + \frac{k}{n}\right)$ pour $n \in \mathbb{N}^*$. Montrer que la suite (S_n) converge vers un réel à préciser.
- 2. On pose $u_n = \left(\frac{4^n n^n n!}{(2n)!}\right)^{\frac{1}{n}}$ pour $n \in \mathbb{N}^*$. Montrer que la suite (u_n) converge vers un réel à préciser.

Exercice 22 ★★★

Soient $f:[0,1]\to\mathbb{R}$ une fonction continue et $g:[0,1]\to\mathbb{R}$ une fonction de classe \mathcal{C}^1 à valeurs dans \mathbb{R} . Démontrer que

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) g\left(\frac{k+1}{n}\right) = \int_0^1 f(t)g(t) dt$$

Formules de Taylor

Exercice 23

Soit f une fonction de classe \mathcal{C}^2 sur [0,1] nulle en 0. On pose $S_n = \sum_{k=0}^n f\left(\frac{k}{n^2}\right)$ pour $n \ge 1$. Etudier la limite de (S_n) . On pourra utiliser l'inégalité de Taylor-Lagrange.

Exercice 24 ★★

Soit $f: \mathbb{R}_+ \to \mathbb{R}$ de classe \mathcal{C}^{∞} tel que f(0) = 1 et $\forall x \ge \frac{1}{2}$, f(x) = 0.

- 1. Montrer que $\forall n \in \mathbb{N}$, $\sup_{\mathbb{R}_+} |f^{(n)}| \ge 2^n n!$.
- **2.** Montrer que pour $n \ge 1$, $\sup_{\mathbb{R}_+} |f^{(n)}| > 2^n n!$.

Exercice 25 ★★

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^{∞} telle que $\forall n \in \mathbb{N}, f^{(n)}(0) = 0$. On suppose de plus que :

$$\exists \lambda > 0, \forall n \in \mathbb{N}, \sup_{\mathbb{R}} |f^{(n)}| \leq \lambda^n n!$$

Montrer que f est nulle sur $\left] -\frac{1}{\lambda}; \frac{1}{\lambda} \right[$ puis sur \mathbb{R} .

Exercice 26 **

Formule de Taylor-Lagrange

Soit f une fonction de classe C^n sur [a,b] et n+1 fois dérivable sur]a,b[. Montrer qu'il existe $c \in]a,b[$ tel que

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} + \frac{f^{(n+1)}(c)}{(n+1)!} (b-a)^{n+1}$$

On appliquera le théorème de Rolle à la fonction ϕ définie par

$$\varphi(x) = f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} (b-x)^{k} + A \frac{(b-x)^{n+1}}{(n+1)!}$$

avec une constante A bien choisie.

Exercice 27 ★★

On pose $u_n = \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k}$ pour $n \ge 1$.

- **1.** Soit $f: x \mapsto \ln(1+x)$. Déterminer par récurrence une expression de $f^{(n)}$ pour tout $n \in \mathbb{N}^*$.
- 2. En appliquant l'inégalité de Taylor-Lagrange entre 0 et 1, montrer que $|u_n \ln(2)| \le \frac{1}{n+1}$ pour tout $n \in \mathbb{N}^*$.
- **3.** En déduire la convergence et la limite de (u_n) .

Exercice 28 **

Inégalité de Hadamard

Soit f une fonction de classe \mathcal{C}^2 sur \mathbb{R} . On suppose que f, f' et f'' sont bornées sur \mathbb{R} et on pose

$$\mathbf{M}_0 = \sup_{t \in \mathbb{R}} |f(t)| \qquad \qquad \mathbf{M}_1 = \sup_{t \in \mathbb{R}} |f'(t)| \qquad \qquad \mathbf{M}_2 = \sup_{t \in \mathbb{R}} |f''(t)|$$

On souhaite montrer que $M_1 \le 2\sqrt{M_0 M_2}$.

- 1. Démontrer l'inégalité demandée dans le cas où $M_0 = 0$ ou $M_2 = 0$. Dans la suite de l'énoncé on supposera M_0 et M_2 strictement positifs.
- **2.** Soient $x \in \mathbb{R}$ et h > 0. Justifier que

$$|f(x+h) - f(x) - f'(x)h| \le \frac{M_2 h^2}{2}$$

3. En déduire que

$$|f'(x)| \le \frac{2M_0}{h} + \frac{M_2h}{2}$$

- **4.** Soient a et b deux réels strictement positifs. On pose $g: t \in \mathbb{R}_+^* \mapsto \frac{a}{t} + bt$. Étudier les variations de g sur \mathbb{R}_+^* . En déduire que g admet un minimum sur \mathbb{R}_+^* et calculer celui-ci en fonction de a et b.
- **5.** Conclure.

Exercice 29 ***

Fonctions absolument monotones

Soient R > 0 et $f: I \to \mathbb{R}$ de classe \mathcal{C}^{∞} avec I =]-R, R[. On suppose que

$$\forall n \in \mathbb{N}, \forall x \in I, f^{(n)}(x) \ge 0$$

Pour $n \in \mathbb{N}$ et $x \in I$, on pose $S_n(x) = \sum_{k=0}^n \frac{f^{(k)}(0)}{k!} x^k$ et $R_n(x) = f(x) - S_n(x)$.

- 1. Soit $r \in]0, \mathbb{R}[$ et $x \in]-r, r[$. Montrer que $|\mathbb{R}_n(x)| \le \frac{|x|^{n+1}}{r^{n+1}} \mathbb{R}_n(r)$ pour tout $n \in \mathbb{N}$.
- **2.** En déduire que pour tout $x \in I$, $(S_n(x))_{n \in \mathbb{N}}$ converge vers f(x).

Exercice 30 ***

Soit f une fonction de classe \mathcal{C}^2 sur [0,1] nulle en 0. On pose $S_n = \sum_{k=0}^n f\left(\frac{k}{n^2}\right)$ pour $n \ge 1$. Etudier la limite de (S_n) . On pourra utiliser l'inégalité de Taylor-Lagrange.

Exercice 31

On considère la fonction $g: x \in]0,1] \mapsto x \ln(x)$.

- 1. Montrer que g est prolongeable par continuité en 0. On note encore g ce prolongement.
- 2. Etudier brièvement les variations de g sur [0, 1].
- **3.** On définit la suite $(t_n)_{n\in\mathbb{N}}$ par $t_0\in \left]\frac{e^{-1}}{3},e^{-1}\right[$ et $t_{n+1}=-g(t_n)$ pour tout $n\in\mathbb{N}$. Montrer que pour tout $n\in\mathbb{N}$, $t_0\leq t_n\leq e^{-1}$.
- **4.** Montrer que pour tout $x \in [t_0, e^{-1}]$,

$$|g(x) - g(e^{-1})| \le \frac{|x - e^{-1}|^2}{2t_0}$$

5. En déduire que pour tout $n \in \mathbb{N}^*$,

$$|t_n - e^{-1}| \le 2t_0 \left(\frac{e^{-1} - t_0}{2t_0}\right)^{2^n}$$

6. En déduire la limite de la suite (t_n) .