

Algorithms and Data Structures

Lecture 2 How to measure running time?

Jiamou Liu The University of Auckland

Age of the Universe. 1 13.86 × 10⁹ × 356 × 24 × 3600 = $^{4.2763}$ × 10¹⁷ seconds.

Lecture 2 How to measure running time?

¹https://www.newscientist.com/question/how-old-is-the-universe/

Nanometers from the Neptune to the Sun.² $4.50 \times 10^9 \times 10^3 \times 10^9 = 4.5 \times 10^{21}$ nanometers.

Lecture 2 How to measure running time?

Algorithms and Data Structures

²https://solarsystem.nasa.gov/planets/neptune/in-depth/

Drops of Water in the Oceans.³ $1.5 \times 10^9 \times 10^{15} \times 25 = 3.75 \times 10^{25}$ drops.

Lecture 2 How to measure running time?

 $^{^3}$ "Ocean Volume and Depth." Van Nostrand's Scientific Encyclopedia 10th ed. 2008.

Total Number of Particles in the Universe.⁴ Between 10⁷² to 10⁸⁷.

Lecture 2 How to measure running time?

Characterising an Algorithm

There are three main characteristics of an algorithm:

• **Domain of definition:** The set of legal inputs.

E.g.

- The input to the **FASTFIB** algorithm is a natural number $n \in \mathbb{N}$
- Suppose an algorithm takes an array of integers and looks for the maximum element in the array. The domain of definition is an array of integers (of arbitrary length).
- Correctness: Whether the algorithm gives the intended output for each legal input.
 - **E.g. SLOWFIB** and **FASTFIB** are both correct as they output the nth Fibonacci number F(n) on input $n \in \mathbb{N}$.
- **Resource use:** Running time and memory space used by the algorithm.

Algorithm analysis is the rigorous (i.e., mathematical) study of the resource use of algorithms.

Resource Use

Computational resource use

- Time: Execution time of an algorithm
- Space: Memory space taken by an algorithm

Note.

- Resource use depends on input size: usually grows as input becomes larger.
 - **E.g.** Computing F(0), F(1), F(2), F(3), F(4), F(5), ...
 - We usually only when the input becomes large.
- Time-space trade-off.
- Running time is usually more important than memory space use.

Running Time

- Running time of an algorithm depends on various implementation details (e.g., hardware, operating system, programming, language, etc.).
- Analysis of the algorithm must be based on the assumption that it is implemented with certain underlying model of computation.

Definition [Machine model]

- A models of computation is a collection of assumptions/idealisation about the type of machines and system environment that the algorithm is running on.
- We mostly assume the random access machine (RAM) model: A single processor connected to memory which it can access each part in constant time.

Definition [elementary operation]

An elementary operation is the basic measuring unit of running time, and it represents any instruction whose execution time does not depend on the input size.

Note.

- The elementary operations are usually assumed by a model of computation.
- RAM assumes that the following operations are elementary:
 - creating and accessing a single primitive variable.
 - arithmetic instructions (e.g. addition/multiplication) on primitive variables.
 - memory dereferencing
 - logical operations
 - control flow
 - creating/accessing an array
 - etc.

Definition [running time]

The running time of an algorithm algo running on input inp is defined as T(inp) which is the number of elementary operations used when inp is fed into algo.

E.g. Recall: Algorithm FASTFIB

```
1: function FASTFIB(integer n)
2: if n < 0 then return 0
3: else if n = 0 then return 0
4: else if n = 1 then return 1
5:
     else
6: a \leftarrow 1
7: b \leftarrow 0
8: for i \leftarrow 2 to n do
9:
        t \leftarrow a
10:
              a \leftarrow a + b
11:
              b \leftarrow t
12:
        return a
```

The running time of **FASTFIB** on input n is a linear function An + B for some constants A > 0 and B.

Definition [running time]

The running time of an algorithm algo running on input inp is defined as T(inp) which is the number of elementary operations used when inpis fed into algo.

E.g. Recall: Algorithm FASTFIB

```
1: function slowfib(integer n)
2: if n < 0 then return 0
3: else if n = 0 then return 0
4: else if n = 1 then return 1
5: else return slowfib(n - 1) + slowfib(n - 2)
```

The running time of **SLOWFIB** on input n is bigger than 1.618 n .

Running Time Scales with Input Size

- Assume that algo has running time 1 on input of size 10.
- We use a function to describe the growth rate of running time of algo.

Growth rate			Running time			
Function	Notation	10	100	1000	10^{7}	
Constant	1	1	1	1	1	
Logarithmic	lg n	1	2	3	7	
Linear	n/10	1	10	100	10^{6}	
"Linearithmic"	$\frac{1}{10}n \lg n$	1	20	300	7×10^{6}	
Quadratic	$(n/10)^2$	1	100	10000	10^{12}	
Cubic	$(n/10)^3$	1	1000	10^{6}	10^{18}	
Exponential	2^{n-10}	1	10^{27}	10^{298}	$10^{3010296}$	

Supercomputer Fugaku is the leader in the TOP500 list of the world's fastest supercomputers, which achieved more than 1 exaFLOPS (10¹⁸ floating point operations per second)⁵.

Question. How long would take algo to run on Supercomputer Fugaku over inputs of different sizes?

 \circ If algo has linear n/10 running time growth rate:

Growth rate	Running time					
Function	10	100	150	300		
n/10	1	10	15	30		
Time taken	1attosecond	10attosecond	15attosecond	30attosecond		

• If algo has exponential 2^{n-10} running time growth rate:

Growth rate	Running time					
Function	10	100	150	300		
2^{n-10}	1	10^{27}	10^{42}	10^{87}		
Time taken	1 attosecond	31.7 years	31,700 trilion years	npiu		

"npiu" stands for "number of particles in the universe".

⁵as of Feb 2022: https://en.wikipedia.org/wiki/Fugaku_(supercomputer)

(a) A quadratic algorithm with running time $T(n) = cn^2$ uses 500 elementary operations for processing 10 data items. How many will it use for processing 1000 data items?

(a) A quadratic algorithm with running time $T(n) = cn^2$ uses 500 elementary operations for processing 10 data items. How many will it use for processing 1000 data items?

Answer.

- We know that $T(10) = c \times 10^2 = 100c = 500$.
- Thus c = 5.
- Therefore $T(1000) = 5 \times 1000^2 = 5000,000$
- (b) Algorithm *A* takes n^2 elementary operations to sort a file of *n* lines, while Algorithm *B* takes $50n \lg n$. Which algorithm is better when n = 10? When $n = 10^6$?

(a) A quadratic algorithm with running time $T(n) = cn^2$ uses 500 elementary operations for processing 10 data items. How many will it use for processing 1000 data items?

Answer.

- We know that $T(10) = c \times 10^2 = 100c = 500$.
- Thus c = 5.
- Therefore $T(1000) = 5 \times 1000^2 = 5000,000$
- (b) Algorithm *A* takes n^2 elementary operations to sort a file of *n* lines, while Algorithm *B* takes $50n \lg n$. Which algorithm is better when n = 10? When $n = 10^6$?

(a) A quadratic algorithm with running time $T(n) = cn^2$ uses 500 elementary operations for processing 10 data items. How many will it use for processing 1000 data items?

Answer.

- We know that $T(10) = c \times 10^2 = 100c = 500$.
- Thus *c*= 5.
- Therefore $T(1000) = 5 \times 1000^2 = 5000,000$
- (b) Algorithm *A* takes n^2 elementary operations to sort a file of *n* lines, while Algorithm *B* takes $50n \lg n$. Which algorithm is better when n = 10? When $n = 10^6$?

Answer.

- n = 10: A takes $10^2 = 100$, B takes $50 \times 10 \lg 10 = 500$ elementary operations.
- $n = 10^6$: A takes $(10^6)^2 = 10^{12}$, B takes $50 \times 10^6 \log 10^6 = 3 \times 10^8$ elementary operations.

To decide which algorithm to use, we need to have a rough idea about the size of the input which we will run the algorithm on.

(c) Algorithms A and B use exactly $T_A(n) = c_A n \lg n$ and $T_B(n) = c_B n^2$ elementary operations, respectively, for a problem of size n. Find the faster algorithm for processing $n = 2^{20}$ data items if A and B spend 10 and 1 operations, respectively, to process $2^{10} = 1024$ items.

(c) Algorithms *A* and *B* use exactly $T_A(n) = c_A n \lg n$ and $T_B(n) = c_B n^2$ elementary operations, respectively, for a problem of size *n*. Find the faster algorithm for processing $n = 2^{20}$ data items if *A* and *B* spend 10 and 1 operations, respectively, to process $2^{10} = 1024$ items.

Answer. We first need to find c_A and c_B .

•
$$T_A(2^{10}) = c_A 2^{10} \lg 2^{10} = 10$$
. Thus $10c_A 2^{10} \lg 2 = 10$. Therefore $c_A = \frac{1}{2^{10}}$.

•
$$T_B(2^{10}) = c_B(2^{10})^2 = 1$$
. Thus $2^{20}c_B = 1$. Therefore $c_B = \frac{1}{2^{20}}$.

Then we compute the running time when $n = 2^{20}$.

•
$$T_A(2^{20}) = \frac{1}{2^{10}} 2^{20} \lg 2^{20} = 20 \times 2^{10}$$
.

$$T_B(2^{20}) = \frac{1}{2^{20}}(2^{20})^2 = 2^{20}.$$

Therefore the faster algorithm for this task is *A*.

Summary

In this lecture, we covered the following:

- Main characteristics of an algorithm: input, correctness, resource use.
- Algorithm analysis is the rigorous study of the resource use of algorithms.
- Time and space resource use
- Machine model and RAM
- Elementary operations
- Running time: the number of elementary operations expressed as a function of input size
- Different growth rate: constant, logarithmic, linear, linearithmic, quadratic, cubic, exponential

