Language Models are Few-Shot Learners

OpenAl

• GPT1.0

- 12层单向transformer
- Finetune
- 不如bert

• Gpt2.0

- 参数15亿
- 输入加入任务描述
- 没有放出来商用 closeAl

GPT3.0

- 不需finetune
- 单向Transformer
- 基本延续GPT2.0
- •参数1750亿
 - 700G硬盘
- 训练花费1200万美元
- 31位作者
- 付费商用 提供接口 waitinglist
- 72页
- Geoffrey Hinton: 鉴于GPT3在未来的惊人前景,可以得出结论:生命、宇宙和万物的答案,就只是4.398万亿个参数而已

 While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples.

- Finetune缺点
 - 过分依赖领域数据集
 - 数据少过拟合
- 对于所有任务,应用GPT-3无需进行任何梯度更新或微调,而仅 通过与模型的文本交互指定任务和少量演示即可

Approach

- Fine-Tuning(FT)
 - 可以没必要
- Few-Shot(FS)
 - Giving K examples of context and completion,
- One-shot(1S)
 - Giving 1 examples of context and completion,
- Zero-shot(0s)
 - Giving 0 examples of context and completion,

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

```
Translate English to French: ← task description

cheese => ← prompt
```

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

```
Translate English to French: ← task description

sea otter => loutre de mer ← example

cheese => ← prompt
```

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

task description

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Model Name	$n_{ m params}$	$n_{ m layers}$	$d_{ m model}$	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1 M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1 M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

Dateset

- Common Crawl dataset
 - A Trillion words
- We use filtered versions of Common Crawl.
- 基本思路
 - 文档级别、数据集之间进行模糊重复消除 防止冗余
 - 加入一些已知高质量语料库
- 45TB数据
- 但是不幸的是去重也不完美,还是看到了一些下游任务的数据,但是由于训练成本,就没停止,后来证明没影响

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning performance on a simple task requiring the model to remove random symbols from a word, both with and without a natural language task description (see Sec. 3.9.2). The steeper "in-context learning curves" for large models demonstrate improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range of tasks.

LAMBADA

- Test the modeling of long-range dependencies in text
- predict the last word of sentences
- The HellaSwag dataset involves picking the best ending to a story or set of instructions.

Setting	LAMBADA (acc)	LAMBADA (ppl)	StoryCloze (acc)	HellaSwag (acc)
SOTA GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	68.0 ^a 76.2 72.5 86.4	8.63 ^b 3.00 3.35 1.92	91.8 ^c 83.2 84.7 87.7	85.6 ^d 78.9 78.1 79.3

Table 3.2: Performance on cloze and completion tasks. GPT-3 significantly improves SOTA on LAMBADA while achieving respectable performance on two difficult completion prediction datasets. ^a[Tur20] ^b[RWC⁺19] ^c[LDL19] ^d[LCH⁺20]

Setting	En→Fr	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA (Supervised)	45.6 ^a	35.0 ^b	41.2 ^c	40.2^{d}	38.5^{e}	39.9^{e}
XLM [LC19] MASS [STQ ⁺ 19] mBART [LGG ⁺ 20]	33.4 <u>37.5</u>	33.3 34.9	26.4 28.3 29.8	34.3 35.2 34.0	33.3 35.2 35.0	31.8 33.1 30.5
GPT-3 Zero-Shot GPT-3 One-Shot GPT-3 Few-Shot	25.2 28.3 32.6	21.2 33.7 39.2	24.6 26.2 29.7	27.2 30.4 40.6	14.1 20.6 21.0	19.9 38.6 <u>39.5</u>

Table 3.4: Few-shot GPT-3 outperforms previous unsupervised NMT work by 5 BLEU when translating into English reflecting its strength as an English LM. We report BLEU scores on the WMT'14 Fr \leftrightarrow En, WMT'16 De \leftrightarrow En, and WMT'16 Ro \leftrightarrow En datasets as measured by multi-bleu.perl with XLM's tokenization in order to compare most closely with prior unsupervised NMT work. SacreBLEU^f [Pos18] results reported in Appendix H. Underline indicates an unsupervised or few-shot SOTA, bold indicates supervised SOTA with relative confidence. a [EOAG18] b [DHKH14] c [WXH+18] d [oR16] e [LGG+20] f [SacreBLEU signature: BLEU+case.mixed+numrefs.1+smooth.exp+tok.intl+version.1.2.20]

PIQA common sense Reasoning

To Make a Breakfast Pizza

• "To prepare eggs to top your breakfast pizza, pour five beaten eggs into a pan and gently scramble over low-medium heat. Season with salt and pepper and be careful not to overcook."

Setting	PIQA	ARC (Easy)	ARC (Challenge)	OpenBookQA
Fine-tuned SOTA	79.4	92.0 [KKS ⁺ 20]	78.5 [KKS ⁺ 20]	87.2 [KKS ⁺ 20] 57.6 58.8 65.4
GPT-3 Zero-Shot	80.5 *	68.8	51.4	
GPT-3 One-Shot	80.5 *	71.2	53.2	
GPT-3 Few-Shot	82.8 *	70.1	51.5	

Table 3.6: GPT-3 results on three commonsense reasoning tasks, PIQA, ARC, and OpenBookQA. GPT-3 Few-Shot PIQA result is evaluated on the test server. See Section 4 for details on potential contamination issues on the PIQA test set.

• 2 digit subtraction (2D-) – The model is asked to subtract two integers sampled uniformly from [0, 100); the answer may be negative. Example: "Q: What is 34 minus 53? A: -19".

Arithmetic

Figure 3.10: Results on all 10 arithmetic tasks in the few-shot settings for models of different sizes. There is a significant jump from the second largest model (GPT-3 13B) to the largest model (GPT-3 175), with the latter being able to reliably accurate 2 digit arithmetic, usually accurate 3 digit arithmetic, and correct answers a significant fraction of the time on 4-5 digit arithmetic, 2 digit multiplication, and compound operations. Results for one-shot and zero-shot are shown in the appendix.

SAT Analogies

- audacious is to boldness (胆大 大胆)
- sanctimonious is to hypocrisy, (谦虚虚伪)
- anonymous is to identity (匿名 身份)

Figure 3.12: Zero-, one-,and few-shot performance on SAT analogy tasks, for different sizes of model. The largest model achieves 65% accuracy in the few-shot setting, and also demonstrates significant gains to in-context learning which are not present in smaller models.

• GPT想证明的事情,像是人类对基于广泛阅读的语境理解能力的极限探索。

• 量变引起质变