X Ray Dawgz

XRD analysis by CNN

Zhi-Hong Kao, Robert Biegaj, Cheng-yuan Wu, Yu-Hsuan Hsiao UNIVERSITY of WASHINGTON

Background

It is different from the BCC images and FCC images on XRD, so we would like to use the system to categorize them.

Bragg's law: $2dsin\theta = n\lambda$

we would choose the same λ(Cu-ka) for our system

FCC (face-centered cubic)

BCC (base-centered cubic)

UNIVERSITY of WASHINGTON

Technology Considered

Model: CNN Convolutional neural network
Using Keras instead of MXnet, Caffe, Theano

Preprocessing: Scikit-learn, statistic

Data: From paper studying on synthesizing metal nano-particles, ex Ag, Au, Cu

Application: Characterize unknown metal material from XRD image UNIVERSITY of WASHINGTON

Summary of project

XRD data (7 elements x 5 images = 35)
CNN model
Identify crystal type : FCC, BCC and HCP

Drawbacks of Keras

- > "Frontend" framework
- > Not easy to change training detail (ex: penalty)
- > Lacks some predefined trained model to use
- > Sometimes hard to debug

Appeal of Keras

- > Offers consistent & simple APIs
- > Easier to learn and use
- > Enables fast experimentation and prototyping
 - Quickly able to try out different configurations of our model
- > Allows usage of TensorFlow backend without actually "learning" it
 - Use Keras as a module of Tensorflow to combine the advantages of each of them

Thank you!

