Amendments to the Claims:

A listing of the entire set of pending claims (including amendments to the claims, if any) is submitted herewith per 37 CFR 1.121. This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1. (Currently Amended) A system for positioning a product, comprising a chuck for supporting the product, an intermediate stage supporting said chuck, and a stationary base supporting said intermediate stage, whereby the chuck can move with respect to the intermediate stage in a first direction X, and the intermediate stage can move with respect to said stationary base in a second direction Y, furthermore comprising at least one-a first and a second laser interferometer for measuring the position of the chuck relative to the stationary base, a first and a second main part of said respective first and second laser interferometer interferonmeters including optical components for receiving and directing a first and a second laser respectively, the first and second main part-parts being attached to said intermediate stage and being movable therewith for measuring respectively the distance between [[an]] a first elongated plane mirror reflector on the chuck that is elongated in the first direction X and an elongated plane mirror reflector on the stationary base that is elongated in the second direction Y, and the distance between a second elongated plane mirror reflector on the chuck that is elongated in the first direction X and the elongated plane mirror reflector on the stationary base.
- 2. (Currently Amended) A system as claimed in claim 1, the second elongated plane mirror reflector on the stationary base having a length larger than the maximal displacement of the intermediate stage in said second direction Y.
- 3. (Currently Amended) A system as claimed in claim 1, further comprising two a third laser interferometer interferometers each having a main part that is attached to

said-intermediate stage and movable therewith stationary base, each the main part including optical components for receiving and directing a third laser for measuring the distance between a respective first-third elongated reflector on the chuck that is elongated in the first direction X and the same elongated plane mirror reflector main part on the stationary base.

- 4. (Previously Presented) A system as claimed in claim 1, further comprising three laser interferometers each having a main part, the respective main parts of the three laser interferometers are attached to said intermediate stage and movable therewith, for measuring distances in the first direction X between one or more first reflectors on the chuck and one or more plane mirror reflectors in the stationary base.
- 5. (Previously Presented) A system as claimed in claim 1, the chuck further comprising a cube corner reflector.
- 6. (Currently Amended) A system as claimed in claim 1, wherein the <u>first and second</u> main <u>part is-parts are</u> attached to said intermediate stage for measuring <u>respectively</u> the distance in the third direction Z between the <u>first elongated plane mirror</u> reflector on the chuck and the <u>elongated plane mirror</u> reflector on the stationary base, and the distance in the third direction Z between the second <u>elongated plane mirror reflector on the chuck and the elongated plane mirror reflector on the stationary base</u>, which third direction Z is perpendicular to the first direction X and the second direction Y.
- 7. (Currently Amended) A method for positioning a product by means of a system comprising a chuck for supporting the product, an intermediate stage supporting said chuck, and a stationary base supporting said intermediate stage, whereby the chuck can move with respect to the intermediate stage in a first direction X, and the intermediate stage can move with respect to said stationary base in a second direction Y, the method comprising attaching at least one a first and a second laser interferometer to the intermediate stage, the first and second laser

Appl. No. 10/597,708 Reply to Final Office Action of 19 February 2009

interferometer interferometers respectively further comprising a first and a second main part including optical components for receiving and directing a first and a second laser, the first and second main part-parts being movable with the intermediate stage, and measuring the position of the chuck relative to the stationary base by measuring a first distance between a first elongated reflector on the chuck and a second an elongated reflector on the stationary base using the first laser interferometer, and a second distance between a second elongated reflector on the chuck and the elongated reflector on the stationary base using the second laser interferometer.

- 8. (Currently Amended) A method as claimed in claim 7, wherein the first and second elongated reflector is reflectors on the chuck are elongated in the first direction X and the second-elongated reflector on the stationary base is elongated in the second direction Y.
- 9. (Previously Presented) A method as claimed in claim 7, further comprising moving the chuck relative to the stationary base and measuring the position of the chuck relative to the stationary base during such movement.