Équations différentielles - Partie 2 : Notion d'équation différentielle

Exercice 1.

Vérifier que les fonctions f suivantes sont solutions de l'équation différentielle donnée.

- 1. $f(x) = -e^{2x}$, y' = 2y.
- 2. $f(x) = \frac{1}{2-x}$, $y' = y^2$.
- 3. $f(x) = (3+2x)e^x$, y'' 2y' + y = 0.
- 4. $f(x) = Ce^{-x} + \sin(x) \cos(x)$ (quelle que soit la constante *C*), $y' + y = 2\sin(x)$

Exercice 2.

Déterminer toutes les solutions constantes des équations différentielles suivantes.

- 1. y' + y = 5
- 2. $y' = y^2 y$
- 3. $y' = y^2 4y + 1$
- 4. y' = y + x

Exercice 3.

Le dessin représente quelques solutions de l'équation différentielle y' = y - 1.

- 1. Répondre graphiquement aux questions suivantes :
 - (a) Quelle est la limite d'une solution en $-\infty$?
 - (b) Quelle est la solution constante?
 - (c) En fonction de la valeur f(0) d'une solution f, discuter si f est croissante ou décroissante et déterminer la limite en $+\infty$.
 - (d) Tracer la tangente à la courbe solution qui passe par le point (0,2); en déduire une équation approchée de cette tangente.
 - (e) Tracer la tangente à la courbe solution qui passe par le point (1,−1); en déduire une équation approchée de cette tangente.
- 2. Répondre par le calcul aux questions suivantes (il n'y a pas besoin de résoudre l'équation) :
 - (a) Soit f la solution dont le graphe passe par le point (0,0). Combien vaut f(0)? Combien vaut f'(0)? En déduire la pente de la tangente en ce point, puis l'équation de cette tangente.
 - (b) Soit g la solution dont le graphe passe par le point (1,2). Combien vaut g(1)? Combien vaut g'(1)? En déduire l'équation de la tangente en ce point.

Exercice 4.

Une tasse de café de température $T_0=100$ degrés Celsius est posée dans une pièce de température $T_\infty=100$

20 degrés. La loi de Newton affirme que la vitesse de décroissance de la température est proportionnelle à l'écart entre sa température T(t) et la température ambiante T_{∞} .

Sachant qu'au bout de 3 minutes la température du café est passée à 80 degrés, quelle sera sa température au bout de 5 minutes?

Les questions détaillent les étapes de la résolution de ce problème :

- 1. Justifier que la fonction température T(t) satisfait l'équation différentielle y' = -k(y-20) pour une certaine constante k > 0.
- 2. Vérifier que $T(t) = Ce^{-kt} + 20$ est solution de cette équation différentielle pour toute constante C.
- 3. Calculer C en fonction de T(0).
- 4. Quelle est la température au bout d'un temps très long?
- 5. Déterminer la constante k en utilisant que T(3) = 80.
- 6. Trouver la solution du problème.