Main notions. Subject area of the course. History of Computer Architecture. Introduction to computer components.

Sabina Batyrkhanovna

Course objectives

- To develop an understanding of the fundamentals of hardware and software technologies that underlie contemporary computer-based information systems
- To develop an understanding of the underlying structure and theories of computers and programming
- To provide the skills needed to develop algorithms for programming solutions

Learning outcomes

- Identify the basic elements of hardware
- Explain how data is represented, manipulated and stored within a computer system
- Read an assembly code
- Explain how internal components of computer operate
- Design basic computer schemes
- Program microcontrollers

What is the Computer Architecture?

- Description of the requirements for the various parts of a computer
- Attributes of the system visible to programmer that have a direct impact on the execution of a program

History of Computer Architecture

History of Computer Architecture

- There are four generations of in computer architecture history:
 - The first generation (1945-1958)
 - The second generation (1958-1964)
 - The third generation (1964-1974)
 - The fourth generation (1974-present)

Features

- Vacuum tubes
- Machine code, assembly language
- Use of magnetic core memory
 - Data were loaded using paper tape or punch cards
- 2 Kb memory

- Two types of models for a computing machine:
 - Harvard architecture
 - Von Neumann architecture

- 1943-46, ENIAC (Electronic Numerical Integrator and Calculator)
 - Developed by by J. Mauchly and J. Presper Eckert
 - The first general purpose electronic computer.
 - Built to calculate trajectories for ballistic shells during WWII, programmed by setting switches and plugging & unplugging cables.
 - Could perform 5000 additions and 357 multiplications per second
 - Weighted 30 tons

- 1949, Whirlwind computer by Jay Forrester (MIT) with 5000 vacuum tubes
 - main innovation magnetic core memory

- 1951 UNIVAC (Universal Automatic Computer)
 - the first commercial computer
 - built by Eckert and Mauchly

The second generation (1958-1964)

Features

- Transistors small, low-power, low-cost, more reliable than vacuum tubes,
- Floating point arithmetic
- Reduced the computational time from milliseconds to microseconds
- High level languages
- The first Operating Systems: handled one program at a time

The second generation (1958-1964)

• IBM 7090

- the most powerful data processing system at that time
- fully-transistorized system has computing speeds six times faster than those of its vacuum-tube predecessor, the IBM 709
- contains more than 50,000 transistors plus extremely fast magnetic core storage

The third generation (1964-1974)

Features

- Introduction of integrated circuits combining thousands of transistors on a single chip
- Semiconductor memory
- Timesharing, graphics, structured programming
- 2 Mb memory
- Use of cache memory

The third generation (1964-1974) cont.

• IBM System/360 Model 91:

- was introduced in **1966** as the fastest, most powerful computer then in use
- designed in scientific purposes
- could solve more than 1,000 problems involving about 200 billion calculations.

The fourth generation (1974 - present)

Features

- Introduction of Very Large-Scale Integration (VLSI)/Ultra Large Scale Integration (ULSI) combines millions of transistors
- Single-chip processor and the single-board computer emerged
- Smallest in size because of the high component density
- Creation of the Personal Computer (PC)
- Wide spread use of data communications
- Object-Oriented programming: Objects & operations on objects
- Artificial intelligence: Functions & logic predicates

Fourth generation (1974 - present) cont.

- 1974 1977 the first personal computers introduced on the market as kits (major assembly required).
 - Scelbi (SCientific, ELectronic and Blological) and designed by the Scelbi Computer Consulting Company, based on Intel's 8008 microprocessor, with 1K of programmable memory,
 - Mark-8 (also Intel 8008 based) designed by Jonathan Titus.
 - Altair (based on the the new Intel 8080 microprocessor), built by MITS (Micro Instrumentation Telemetry Systems). The computer kit contained an 8080 CPU, a 256 Byte RAM card

Fourth generation (1974 - present) cont.

- 1976 Steve Wozniak and Steve Jobs released the Apple I computer and started Apple Computers.
 - Apple I was the first single circuit board computer. It came with a video interface, 8k of RAM and a keyboard.
- 1977 Apple II computer model was released, also based on the 6502 processor, but it had color graphics, and used an audio cassette drive for storage.
 - Its original configuration came with 4 kb of RAM, but a year later this was increased to 48 kb of RAM and the cassette drive was replaced by a floppy disk drive.

Computer components

Major computer components

- Input devices
 - Keyboard
 - Mouse, etc.
- Output devices
 - Monitor
 - Speakers, etc.
- Central Processing Unit (CPU) and memory
- Motherboard
- Expansion cards
 - Video card
 - Sound card
- Hard Drive Ports and Connections
 - USB
 - Firewire, etc.

Central Processing Unit

- A device that interprets and runs the commands that you give to the computer
- Also referred to as the processor
- Two major brands are Intel and AMD
- Examples
 - Intel Core 2 Duo
 - AMD Turion X2

Memory

- Memory is where information is stored and retrieved by the CPU.
- There are two main types of memory:
 - Random Access Memory (RAM)
 - It is the main memory and allows you to temporarily store commands and data.
 - Read Only Memory (ROM)
 - It is the memory that retains its contents even after the computer is turned off.

Motherboard

- It is the main circuit board inside the computer
- Has tiny electronic circuits and other components on it
- Connects input, output, and processing devices together (CPU, Memory, Hard Drive)
- Tells the CPU how to run

Expansion Cards

Video Card

• is connected to the computer monitor and is used to display information on the monitor

Sound Card

• converts audio signals (microphone or audio tape) which can be stored as a computer audio file

Ports and Connections

- Universal Serial Bus (USB) Port
- FireWire (similar to USB) but faster
- Network Port (Ethernet)
- Display adapter
- Power

Thank you for attention!