# Neural Network Pruning



PD Dr. Haojin Yang Multimedia and Machine Learning Group

Hasso Plattner Institute

Design IT. Create Knowledge.



## What is Network Pruning?



- Pruning is a method for model compression.
- It is inspired by **Synaptic Pruning** of biological neuron system.
- It also utilizes the fact that large models are often overparameterized.



newborn 50 trillion synapses



1 year old 1000 trillion synapses



10 years old 500 trillion synapses

| Model      | Model Size            | ImageNet Top-1 Accuracy |  |
|------------|-----------------------|-------------------------|--|
| AlexNet    | 240MB                 | 57.1%                   |  |
| SqueezeNet | 4.8MB ( <b>-98%</b> ) | 57.5% ( <b>+0.4%</b> )  |  |

# Weight Pruning



- Rank the weights using  $L_{(1)}$ -"norm"  $||x||_{1}$  as the importance score
- Set the x% weight values with smaller scores to 0
- Skipping zeros during inference for speedup (specific implementation required)



#### Neuron Pruning



- Rank the weight columns using  $L_{2}$  -"norm"  $||x||_{2}$  as the importance score
- Set the x% weight columns with smaller scores to 0
- Equivalent to delete the corresponding output neurons



## **Iterative Training**



- Weight or neuron pruning will cause performance degradation.
- Iterative pruning can effectively preserve accuracy.
- For each layer do:
  - 1. Set a relative small pruning step, e.g. 5%
  - 2. Calculate the importance score of weights or weight columns
  - 3. Prune the least important 5% items
  - 4. Fine-tune for recovering the accuracy
  - 5. If the final pruning rate is achieved, then stop. Otherwise, go to step 1

# A case study: YOLOv3 for Hand Detection



Dataset: VGG Hand, 13050 annotated hand instances, train-img: 4807, test-img:
821











Images from VGG Hand

Model: YOLOv3 object detection model

| Model    | Params               | Size                  | FLOPs               | Inference            | mAP                     |
|----------|----------------------|-----------------------|---------------------|----------------------|-------------------------|
| Original | 61.5M                | 246.4MB               | 32.8B               | 15.0ms               | 0.7692                  |
| Pruned   | 10.9M( <b>-82%</b> ) | 43.6MB( <b>-82%</b> ) | 9.6B( <b>-71%</b> ) | 7.7ms( <b>-49%</b> ) | 0.7722( <b>+0.003</b> ) |
| Finetune | 10.9M( <b>-82%</b> ) | 43.6MB( <b>-82%</b> ) | 9.6B( <b>-71%</b> ) | 7.7ms( <b>-49%</b> ) | 0.775( <b>+0.006</b> )  |

https://github.com/Lam1360/YOLOv3-model-pruning

23.04.2025 Efficient AI Techniques in the LLM Era

## Summary



- Pruning is a method for model compression.
- Basic pruning methods
  - Individual weight pruning
  - Neuron (channel) pruning
- A case study on YOLOv3 hand detection
- Disadvantages: Iterative pruning and fine-tuning can be very time consuming.