Московский Физико-Технический Институт

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №1.2.2

Резонанс напряжений в последовательном контуре

Маршрут III

29 сентября 2018 г. 6 октября 2018 г.

Работу выполнил Ринат Валиев, 711 гр.

Под руководством Г.И. Лапушкина, к.ф.-м.н.

Постановка эксперимента

Цель работы: исследование резонанса напряжений в последовательном колебательном контуре с изменяемой емкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

Оборудование: генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной емкостью, двулучевой осциллограф, цифровые вольтметры.

Теоретическая часть

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рис. 1. Синусоидальный сигнал от генератора GFG8255A поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Источник напряжения, обладающий по определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала $E=E_0\cos(\omega t+\varphi_0)$ на меняющейся по величине нагрузке — последовательном колебательном контуре, изображенном на рис. 1 в виде эквивалентной схемы. Источник напряжения с согласующей цепочкой, колебательный контур и блок питания заключены в отдельный корпус с названием «Резонанс напряжений», отмеченный на рисунке штриховой линией.

Рис. 1: Схема экспериментальной установки для исследования резонанса напряжений

В нашем контуре катушка индуктивности L на ферритовом каркасе обладает малым сопротивлением по постоянному току и высокой собственной частотой $f_r \geq 1.3$ МГц. В общем случае индуктивность $L_{eff} = L/(1-f^2/f_r^2)$, но у нас $f \ll f_r$, так что $L_{eff} = L$.

Рис. 2: Последовательная эквивалентная схема конденсатора с потерями

Конденсаторы, конечно, тоже не идеальные. R_S – эквивалентное последовательное сопротивление (ЭПС), обусловленное электрическим сопротивлением материала обкладок, выводов, контактов, потерями в диэлектрике. Тогда, учитывая сдвиг фаз – φ :

$$R_S = rac{U_{RS}}{I} = rac{U_{RS}}{\omega C U_{CS}} = rac{1}{\omega C} an \delta,$$
 где $\delta = \pi/2 - arphi$

В нашем эксперименте $\tan \delta < 10^{-3}$ – хороший показатель для конденсатора с твердым диэлектриком.

Активное сопротивление в итоге: $R_{\Sigma}=R+R_L+R_S$, далее будем пользоваться методом комплексных амплитуд. Получаем импедансы:

$$Z_L = R_L + i\omega L, \qquad Z_C = R_S - i\frac{1}{\omega C}, \qquad Z = R_\Sigma + i\left(\omega L - \frac{1}{\omega C}\right)$$

В работе используются стандартные обозначения: $\omega_0 = 1/\sqrt{LC}$ — собственная частота из условия ${\rm Im}Z=0,~\rho=\sqrt{L/C}$ — реактивное сопротивление контура, Q — добротность колебательного контура:

$$Q = \rho/R_{\Sigma} = \omega_0 L/R_{\Sigma} = 1/\omega_0 CR_{\Sigma} \gg 1$$

При данном условии ω_0 называют резонансной частотой. Также наибольший интерес представляет случай $|\Delta\omega|\ll\omega_0$:

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0}$$

Используя этот факт, можем выразить добротность контура через ширину резонансной кривой:

$$\begin{split} \frac{I_0}{I_{0, \text{ pe3}}} &= \frac{1}{\sqrt{1 + Q^2 \left(\frac{\omega_0}{\omega} - \frac{\omega}{\omega_0}\right)^2}} \\ \frac{I_0}{I_{0, \text{ pe3}}} &= \frac{1}{\sqrt{1 + Q^2 \left(\frac{2\Delta\omega}{\omega_0}\right)^2}} \\ Q &= \frac{\omega_0}{2\Delta\omega} \qquad \text{при } \frac{I_0}{I_{0, \text{ pe3}}} &= \frac{1}{\sqrt{2}} \end{split}$$

Выполнение эксперимента

Измерения

1. Настроим оборудование и приступим к работе. Для контуров с 7 различными C_n измерим резонансные частоты f_0 и напряжения $U_C(f_0)$ и $E(f_0)$. Резонанс легче ловить по фигурам Лисажу.

n	1	2	3	4	5	6	7
C_n , н Φ	24,8	32,3	47,6	57,5	68,0	81,6	102,8
f_0 , к Γ ц	32,05	27,72	23,17	21,08	19,39	17,70	15,77
U_C, B	7,30	6,57	5,69	5,26	4,89	4,54	4,11
E, B	0,3	0,3	0,3	0,3	0,3	0,3	0,3

Таблица 1: Резонансные частоты f_0 для контуров с разными емкостями C_n , также напряжения на конденсаторе $U_C(f_0)$ и в контуре $E(f_0)$ (рис. 1) для каждого случая

2. Для контуров с двумя различными емкостями снимем данные для АЧХ $U_C(f)$ при том же напряжении E=0.3 В.

	f , к Γ ц	16,73	17,71	18,68	19,93	20,53	22,09	23,06	24,45	25,24	26,65	27,57
	U_C, B	0,470	0,503	0,543	0,610	0,650	0,791	0,927	1,250	1,578	3,143	6,431
	$f/f_{\rm pes}$	0,60	0,64	0,67	0,72	0,74	0,80	0,83	0,88	0,91	0,96	0,99
C_2	$U/U_{\rm pes}$	0,07	0,08	0,08	0,09	0,10	0,12	0,14	0,19	$0,\!24$	0,48	0,98
	f , к Γ ц	27,72	28,37	29,44	30,35	31,38	32,33	33,68	35,22	36,44	37,97	38,72
	U_C, B	6,570	4,752	$2,\!456$	1,636	1,156	0,898	0,678	$0,\!523$	$0,\!437$	0,362	0,333
	$f/f_{ m pes}$	1,00	1,02	1,06	1,09	1,13	1,17	1,22	$1,\!27$	1,31	1,37	1,40
	$U/U_{\rm pes}$	1,00	0,72	0,37	0,25	0,18	0,14	0,10	0,08	0,07	0,06	0,05
	f , к Γ ц	10,64	11,58	12,25	13,52	14,60	15,57	16,21	17,06	17,52		
	U_C, B	0,466	0,518	0,566	0,698	0,888	1,213	1,632	3,050	4,350		
	$f/f_{ m pes}$	0,60	0,65	0,69	0,76	0,82	0,88	0,92	0,96	0,99		
C_6	$U/U_{\rm pes}$	0,10	0,11	0,12	$0,\!15$	0,20	$0,\!27$	0,36	0,67	0,96		
6	f , к Γ ц	17,70	18,17	19,11	20,08	20,94	21,79	22,60	23,76	24,40		
	U_C, B	4,540	3,620	1,815	1,100	0,797	0,620	0,505	$0,\!397$	$0,\!353$		
	$f/f_{\rm pes}$	1,00	1,03	1,08	1,13	1,18	1,23	1,28	1,34	1,38		
	$U/U_{\rm pes}$	1,00	0,80	0,40	$0,\!24$	0,18	$0,\!14$	0,11	0,09	0,08		

Таблица 2: Зависимость напряжения на конденсаторе U_C от частоты подаваемого сигнала для емкостей C_2 и C_6 , а также приведенные частота и напряжение для дальнейшего использования при построении графика АЧХ

3. Построим график АЧХ $U_C(f)$ в приведенных координатах (значения в таблице 2) при напряжении E=0.3 В для емкостей C_2 и C_6 :

Рис. 3: График АЧХ напряжения $U_C(f)$ для контуров с конденсаторами C_2 и C_6 при одном напряжении E=0.3 В в приведенных координатах (таб. 2) (широкая — для C_6)

4. Для тех же двух контуров снимем $\Phi \mathsf{HX} \, \varphi_C(f)$ при том же напряжении $E \, = \, 0.3 \, \mathrm{B}.$

Расстояние x от начала отсчета до точки первого обращения в нуль напряжения $U_C(t)$, которое показано на рисунке 4, характеризует разность фаз $\Delta \varphi = (x/x_0)\pi$.

Результаты измерений для ФЧХ с конденсатором C_2 :

Рис. 4: Осциллограммы сигналов E(t) и $U_C(t)$

	f , к Γ ц	16,40	22,72	25,00	25,38	26,00	26,35	27,00
	x/x_0	0,00	0,05	0,08	0,08	0,11	0,13	$0,\!21$
C	$f/f_{ m pes}$ f , к Γ ц	0,59	0,82	0,90	0,92	0,94	0,95	0,97
$ C_2 $	f , к Γ ц	27,44	27,77	28,26	28,60	29,40	31,57	35,00
	x/x_0	0,37	0,53	0,70	0,78	0,88	0,94	1,00
	$f/f_{\rm pes}$	0,99	1,00	1,02	1,03	1,06	1,14	1,26

Таблица 3: Сдвиг фаз $(\varphi \pi = x/x_0)$ в зависимости от частоты сигнала f для контура с конденсатором C_2 , также приведенная частота для дальнейшего использования при построении графика Φ ЧХ

Результаты	измерений л	ппя ФЧХ	с конденсатором	C_c .
1 COVIDIALDI	MOMODOLIMI Z	T/1/1 25 17.7	с конденсатором	Oh.

	f , к Γ ц								
	x/x_0		0,03						
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	$f/f_{ m pe3}$ $f,$ к Γ ц	0,72	0,82	0,88	0,92	0,94	0,96	0,97	0,99
C_6	f , к Γ ц	17,53	17,77	18,28	18,67	19,10	20,10	22,85	27,00
	x/x_0		$0,\!54$	0,74	0,81	0,88	0,92	0,95	1,00
	$f/f_{\rm pes}$	0,99	1,00	1,03	1,05	1,08	1,14	1,29	1,53

Таблица 4: Сдвиг фаз $(\varphi \pi = x/x_0)$ в зависимости от частоты сигнала f для контура с конденсатором C_6 , также приведенная частота для дальнейшего использования при построении графика Φ ЧХ

5. Построим график ФЧХ $\varphi(f)$ в приведенных координатах (данные из таблиц 3 и 4) при напряжении E=0.3 В для емкостей C_2 и C_6 :

Рис. 5: График ФЧХ $\varphi(f)$ для контуров с конденсаторами C_2 и C_6 при одном напряжении E=0.3 В в приведенных координатах (таб. 3 и 4) (С меньшим углом наклона около $f_{\rm прив}=1\longrightarrow$ для C_6)

Замечание

На графиках 3 и 5 не показаны погрешности, т.к. они настолько малы, что кресты не были бы видны. К примеру: погрешность показаний вольтметра всего лишь 1 мВ, в то время как наименьший результат измерения 300 мВ. Подробнее погрешности разобраны ниже.

Обработка данных

1. Для нахождения интересующих нас величин будут хорошо знакомые нам из теоретической части работы формулы:

$$L = \frac{1}{(2\pi f)^2 C}; \qquad Q = \frac{U_{C,\text{pes}}}{E}; \qquad \rho = \sqrt{\frac{L}{C}}; \qquad R_{\Sigma} = \frac{\rho}{Q};$$

$$R_S = \frac{1}{2\pi f C} \cdot \tan \delta < \frac{1}{2\pi f C} \cdot 10^{-3}; \qquad R_L = R_{\Sigma} - R - R_S$$

Результаты измерений и вычислений внесем в таблицу:

C_n , н Φ	f_0 , к Γ ц	U_C , B	E, B	L , мк Γ н	Q	ρ , Om	R_{Σ} , Om	R_S , Om	R_L , Om
24,8	32,1	7,30	0,3	994	24,3	200	8,2	0,20	4,5
32,3	27,7	6,57	0,3	1021	21,9	178	8,1	0,18	4,4
47,6	23,2	5,69	0,3	991	19,0	144	7,6	0,14	4,0
57,5	21,1	5,26	0,3	991	17,5	131	7,5	0,13	3,9
68,0	19,4	4,89	0,3	991	16,3	121	7,4	0,12	3,8
81,6	17,7	$4,\!54$	0,3	991	15,1	110	7,3	0,11	3,7
102,8	15,8	4,11	0,3	991	13,7	98	7,2	0,10	3,6
Среднее	значение)		996					4,0
Среднек	в. погреп	ІНОСТЬ		4,2					0,1
Максима	альное от	клонени	ıe	0,1	0,1	0,01	0,05	$3\cdot 10^{-5}$	0,1
Абсолют	гная погр	•	4,2					0,2	
Относит	ельная п	огрешно	сть	0,4%					4%

Таблица 5: Основные характеристики каждого контура с различными емкостями конденсаторов C_n и падениями напряжения U_C Пояснения к величинам даны сверху, также в теоретической части работы.

2. По графику АЧХ для конденсаторов C_2 и C_6 (рис. 3) по ширине резонансных кривых на уровне 0,707 определим добротности Q соответствующих контуров. Также оценим их погрешности:

$$Q_2 = 21.3 \pm 0.9$$

 $Q_6 = 14.6 \pm 0.4$

3. Также по графику ФЧХ для конденсаторов C_2 и C_6 (рис. 5) по расстоянию между точками по оси x, в которых y меняется от 1/4 до 3/4, равному 1/Q. Конечно же, определим погрешности:

$$Q_2 = 22.2 \pm 1.0$$

 $Q_6 = 14.7 \pm 0.4$

4. Построим график зависимости $R_L(f_0)$ (f_0 для контуров с разными емкостями C_n):

Рис. 6: Зависимость активного сопротивления потерь R_L катушки от частоты сигнала (резонанс).

Данная картина наблюдается в следствие того, что с увеличением частоты также возрастает реактивное сопротивление у катушки индуктивности. Импеданс для L: $Z_L = i \; \omega L$

Погрешности

Погрешности измерений рассматривались параллельно с нахождением каждой из величин. Все же отметим некоторые из них.

Конечно, главным источником ошибок во многих работах является человеческий фактор: в данной работе — снятие показаний с осциллографа. Приборные погрешности достаточно малы: у вольтметра — 1~MB, для частоты сигнала — 1~Гц; тогда как измерения превышают их в сотни раз.

Все же даже погрешности измерений на осциллографе меньше, чем случайные, которые рассчитаны в таблице 5.

Окончательные результаты для ошибок также находятся в таблице 5.

Итоги

В данной работе исследован резонанс напряжений в последовательном колебательном контуре с изменяемой емкостью. Также получили АЧХ и ФЧХ, определили основные параметры контура (таблица 5).

Нашли добротности для контуров с емкостями C_2 и C_6 тремя разными способами. Учитывая погрешности, результаты совпадают.

	Теоретически	АЧХ	ФЧХ
Q_2	$21,9 \pm 0,1$	$21,3 \pm 0,9$	$22,2 \pm 1,0$
Q_6	$15,1 \pm 0,1$	$14,6 \pm 0,4$	14.7 ± 0.4

Таблица 6: Добротности колебательных контуров с конденсаторами C_2 и C_6