

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

YEARS ANNIL

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Lesson 6 Storage and Index

Outline

- Overview of database storage structures
- Physical database files
- Database index

Objectives

- Upon completion of this lesson, students will be able to:
 - Understand the physical database files
 - Understand the role of database indexes

Keywords

Heap file	Files of Unordered Records
Ordered file	Physically order the records of a file on disk based on the values of one of their fields (key field)
Index	A data structure that improves the speed of data retrieval operations
B-tree	A self-balancing tree data structure that keeps data sorted

3-tier Schema Model (ANSI-SPARC Architecture)

How does Mariadb store data

```
MariaDB [(none)]> SHOW VARIABLES LIKE 'datadir';
  Variable_name | Value
                //var/lib/mysql/
MariaDB [student_management]> show tables;
                                                :/var/lib/mysql/student_management# ls -la
  Tables_in_student_management
                                                           4096 Mar 12 02:05 .
                                               al mysal
                                               ql mysql
                                                           4096 May
                                                                     5 06:06
  class
                                               al mysal
                                                           1547 Mar 12 02:05 class.frm
  enrolled
                                               gl mysgl 114688 Mar 12 02:21 class.ibd
  faculty
                                                             65 Mar 12 01:59 db.opt
                                               ql mysql
                                                           1466 Mar 12 02:03 enrolled.frm
  student
                                               ql mysql
                                               gl mysgl 114688 Mar 12 vz.18 enrolled.ibd
       the .frm table file stores the table's format
                                                           1005 Mar 12 02:04 faculty.frm
                                               ql mysql
                                               ql mysql
                                                          98304 Mar 12 02:16 faculty.ibd
       the .ibd file stores the table's data
                                                           1101 Mar 12 02:00 student.frm
                                               ql mysql
                                               gl mysgl 98304 Mar 12 02:23 student.ibd
```

How does Mariadb store data

the .frm file stores the table's format

MariaDB [student_management]> describe student;					
Field	Туре	Null	Key	Default	Extra
snum sname major level age	int(11) varchar(40) varchar(30) varchar(10) int(11)	NO YES YES YES YES	PRI 	NULL NULL NULL NULL	

How does Mariadb store data

the .ibd file stores the table's data

riaDB	[student_management]> select : +	k from s	tudent
snum	sname	major	level	age
1	Nguyen Van A	CS	JR	18
2	Nguyen Viet Cuong	History	JR	19
3	Nguyen nong Ngoc	US	JK	19
4	Mark Juke	History	JR	20
5	Elon Mulk	CS	JR	20
6	Donal Trump	CS	JR	20
7	Obama	CS	JR	20
8	Tan Dung	History	SR	30

pCSJR?@'?W??ObamaCSJRH?????Tan DungHistorySR?pc??Q?'??root@285e07e9458f:/var/lib/mys

2. Physical database files

Motivation

Magnetic disks as data storage

2.1. Motivation

- Databases typically store large amounts of data persistently on disks:
 - Databases are too large to fit entirely in main memory.
 - Disk nonvolatile storage vs. Main memory volatile storage
 - The cost of storage per unit is much cheaper

2.2. Magnetic disks as data storage

- A disk is a random access addressable device.
- Transfer of data between main memory and disk takes place in units of disk blocks.
- Typical disk block sizes: 4KB 8KB.
- Disk I/O (read/write from disk to main memory) overhead is the key factor of database performance optimization.

2.2.1. Physical database design

- The process of physical database design involves choosing the particular data organization techniques that best suit the given application requirements (on SELECT, INSERT, UPDATE, DELETE).
- The data stored on disk is organized as files of records:
 - Primary file organizations: determine how the file records are physically placed on the disk, and hence how the records can be accessed.
 - Secondary organization or auxiliary access structure allows efficient access to file records based on alternate fields.

2.2.2. Placing File Records on Disk

© Elmasri, Ramez. Fundamentals of database systems. Pearson Education India, 2008

- Files of Unordered Records (Heap Files)
- Files of Ordered Records (Sorted Files)
- Hashing Techniques

- Files of Unordered Records (Heap Files)
 - · Records are placed in the file in the order in which they are inserted
 - INSERT: Inserting a new record is very efficient
 - New records are inserted at the end of the file
 - UPDATE/SELECT: Searching for a record on any search condition is not efficient – linear search
 - DELETE: leaves unused space in the disk block
 - require periodic reorganization

- Files of Ordered Records (Sorted Files)
 - Physically order the records of a file on disk based on the values of one of their fields (key field)
 - SELECT: binary search (very fast)
 - INSERT/DELETE/UPDATE: more expensive

- Hash files
 - The address of the disk block in which the record is stored is the result of applying a hash function to the value of a particular field (hash field) of the record.
 - Very fast access to records for search on equality condition on the hash field.

3. Database indexes

- 1. What is database index?
- 2. Index data structures
- 3. B+tree
- 4. Spare vs. Dense index
- 5. Clustered vs. Non-clustered index
- 6. Index creation in SQL

3.1. What is database index?

 Auxiliary access structure (commonly index) allows efficient access to file records based on alternate fields

3.2. Index data structures

- Indexes can be implemented with different data structures.
 - B+-tree index
 - hash index
 - bitmap index (briefly)
 - dynamic hash indexes: number of buckets modified dynamically
 - R-tree: index for special data (points, lines, shapes)
 - quadtree: recursively partition a 2D plane into four quadrants
 - octree: quadtree version for three dimensional data
 - main memory indexes: T-tree, binary search tree

3.3. B+Tree

- Balanced tree of key-pointer pairs
- Keys are sorted by value
- Nodes are at least half full
- Access records for key: traverse tree from root to leaf

3.3.1. Example: B+ tree

© Gulutzan, Peter, and Trudy Pelzer. SQL Performance Tuning. Addison-Wesley Professional, 2003.

3.4. Spare vs. Dense index

- Sparse index
 - pointers to disk pages
 - at most one pointer per disk page
 - usually much less pointers than records
- Dense index
 - pointers to individual records
 - one key per record
 - usually more keys than sparse index optimization: store repeating keys only once, followed by pointers

3.5. Clustered vs. Non-Clustered

- Clustered index on attribute X
 - This index controls the placement of records on disk
 - only one clustering index per table
 - dense or sparse
- Non-clustered index on attribute X
 - no constraint on table organization
 - Can have more than one index per table
 - always dense

3.5.1. Example: Non-clustered index

© Gulutzan, Peter, and Trudy Pelzer. SQL Performance Tuning. Addison-Wesley Professional, 2003.

3.6. Creating Index

- CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name [index_type] ON tbl_name (index_col_name,...) [index_option] [algorithm_option | lock_option] ...
- index_type: USING {BTREE | HASH}

Remark

- Databases typically store data persistently on disks
 - Files of unordered records (Heap files)
 - Files of ordered records (Sorted files)
 - Hash files
- Index allows efficient access to file records based on "indexed" fields

Quiz 1.

Quiz Number	1	Quiz Type	OX	Example Select
Quiz Number	1			
Question	Does heap files support INSERT query efficiently?			
Example	A. Yes B. No			
Answer	A			
Feedback	New records are appended to the end of the head file			

Quiz 2.

Quiz Numbor	2	Ouiz Type	OX	Example Select
Quiz Number 2		Quiz Type		
Question	Are ordered files better for heavy Insert operation?			
Example	A. Yes B. No			
Answer	В			
Feedback	Insertion to ordered files requires reorganizing w.r.t. new records			

Summary

- Overview of database storage structures
 - 3-tier Schema Model (ANSI-SPARC Architecture)
 - How Mariadb stores data
- Physical database file structures
 - Motivation
 - Magnetic disks as data storage
 - Primary file organizations
- Database index
 - · What is database indexes?
 - Index data structures
 - B+tree
 - Spare vs. Dense index
 - Clustered vs. Non-clustered index
 - Index creation in SQL

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Next lesson: Query processing

- Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom. Database Systems: The Complete Book. Pearson Prentice Hall. the 2nd edition. 2008: Chapter 7
- Nguyen Kim Anh, Nguyên lý các hệ cơ sở dữ liệu, NXB Giáo dục. 2004: Chương 7