

Prof. Bernd Finkbeiner, Ph.D. Jana Hofmann, M.Sc. Reactive Systems Group



# Programmierung 1 (WS 2020/21) Zusatztutorium 3 (Lösungsvorschläge) Mathematische Prozeduren

Hinweis: Diese Aufgaben wurden von den Tutoren für das Zusatztutorium erstellt. Sie sind für die Klausur weder relevant noch irrelevant. im markiert potentiell schwerere Aufgaben.

## Mengen und Graphen

**Aufgabe Z3.1** (Dom, Ran und Ver) Betrachten Sie folgende Relation:

$$R = \{(1,4), (2,2), (2,3), (3,2), (4,2), (4,3), (5,5), (5,6)\}$$

Bestimmen Sie den Definitions- und Wertebereich sowie die Knotenmenge von R und zeichnen Sie die graphische Darstellung.

Lösungsvorschlag Z3.1

$$Dom R = \{1, 2, 3, 4, 5\}$$

$$Ran R = \{2, 3, 4, 5, 6\}$$

$$Ver R = \{1, 2, 3, 4, 5, 6\}$$



## Aufgabe Z3.2 (Rekursion)

Sei folgende Prozedur gegeben:

$$\begin{split} p: \mathbb{N} \times \mathbb{N} &\to \mathbb{N} \\ p\left(x,y\right) = x + y & \text{für } x < 7 \\ p\left(x,y\right) = p\left(x-2,y\right) & \text{für } 6 < x < 13 \\ p\left(x,y\right) = p\left(x-3,y\right) + p\left(x-3,y\right) & \text{sonst} \end{split}$$

(a) Zeichen Sie den Rekursionsbaum für das Argument (13, 37).

- (b) Bestimmen Sie die Rekursionsfunktion von p.
- (c) Geben Sie die Rekursionsrelation von p an.
- (d) Geben Sie eine natürliche Terminierungsfunktion von p an.

## Lösungsvorschlag Z3.2

(a) Rekursionsbaum für das Argument (13, 37):



(b) Rekursionsfunktion:

$$r = \lambda(x,y) \in \mathbb{N}^2$$
. if  $x < 7$  then  $\langle \rangle$  else if  $x < 13$  then  $\langle (x-2,y) \rangle$  else  $\langle (x-3,y), (x-3,y) \rangle$ 

(c) Rekursionsrelation:

$$R = \{((x,y), (x-2,y) \in (\mathbb{N} \times \mathbb{N})^2 \mid 6 < x < 13\} \ \cup \ \{((x,y), (x-3,y) \in (\mathbb{N} \times \mathbb{N})^2 \mid x > 12\}$$

(d) Terminierungsfunktion:

$$\lambda(x,y) \in \mathbb{N}^2$$
.  $x$ 

# Aufgabe Z3.3 (Ein Graph)

Gegeben sei der folgende Graph:



- (a) Finden Sie, wenn vorhanden, eine Wurzel, eine Quelle, eine Senke, einen isolierten Knoten sowie einen Zyklus.
- (b) Geben Sie die Relation an, die der Graph darstellt.
- (c) Ist diese Menge funktional? Falls nein, geben Sie die größte funktionale Teilmenge dieser Relation an.
- (d) Ist diese Menge injektiv? Falls nein, geben Sie die größte injektive Teilmenge dieser Relation an.
- (e) Ist diese Menge total auf  $\{n \in \mathbb{N}_+ \mid n \leq 8\}$ ? Falls nein, geben Sie die größte Menge an, auf der diese Relation total ist.

#### Lösungsvorschlag Z3.3

- (a) Wurzel: 7
  - Quelle: nicht vorhanden
  - Senke: 4
  - isolierter Konten: nicht vorhanden
  - Zyklus: (1, 7, 6, 5, 1)

- (b)  $\{(1,2),(1,4),(1,7),(2,3),(3,4),(5,1),(6,5),(7,4),(7,6),(7,8),(8,4)\}$
- (c) Nein, sie ist nicht funktional. Funktionale Teilmenge: z.B. {(1,2), (2,3), (3,4), (5,1), (6,5), (7,4), (8,4)}
- (d) Nein, sie ist nicht injektiv. Injektive Teilmenge: z.B.  $\{(1,2),(1,4),(1,7),(2,3),(5,1),(6,5),(7,6),(7,8)\}$
- (e) Nein, die Menge ist nicht total auf  $\{n \in \mathbb{N}_+ \mid n \leq 8\}$ , aber total auf  $\{n \in \mathbb{N}_+ \mid n \leq 8 \land n \neq 4\}$

## Terminierung

Aufgabe Z3.4 (Welche sind gültig?)

Gegeben sei die folgende mathematische Prozedur p:

$$\begin{split} p: \mathscr{L}\left(\mathbb{N}\right) \times \mathbb{N} &\to \mathbb{N} \\ p\; (nil,n) &= 0 \\ p\; (xs,0) &= 0 & \text{für } xs \neq nil \\ p\; (x::xr,n) &= p(xr,n-1) & \text{für } n > 0 \end{split}$$

Welche der folgenden Funktionen sind gültige Terminierungsfunktionen für p? Begründen Sie, falls sie ungültig sind.

- $\square \lambda n \in \mathbb{N}$ . n (ungültiger Argumentbereich)
- $\square \lambda z \in \mathbb{Z}$ . |z| (ungültiger Argumentbereich)
- $\lambda(xs,n) \in \mathcal{L}(\mathbb{N}) \times \mathbb{N}. xs$
- $\lambda(xs,n) \in \mathcal{L}(\mathbb{N}) \times \mathbb{N}. |xs|$
- $\lambda(xs,n) \in \mathcal{L}(\mathbb{N}) \times \mathbb{N}. |xs| + 42$

- $\square \lambda(x::xr,n) \in \mathcal{L}(\mathbb{N}) \times \mathbb{N}. x$  (Argument ([1,2,3], 5))
- $\square \ \lambda(xs,n) \in \mathcal{L}(\mathbb{N}) \times \mathbb{N}. \ 42 :: xs$ (ungültiger Wertebereich)
- $\square \lambda(xs,n) \in \mathcal{L}(\mathbb{N}) \times \mathbb{N}. \ xs @ xs$ (ungültiger Wertebereich)

Aufgabe Z3.5 (Terminierungsfunktionen)

Geben Sie (wenn vorhanden) Terminierungsfunktionen für folgende Prozeduren an:

$$a: \mathbb{N} \to \mathbb{N}$$

(a) 
$$a(n) = 0$$
  $n < 10$   
 $a(n) = a(n-3) \cdot a(n-1)$   $n \ge 10$ 

$$e: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

(e) 
$$e(m,n) = e(m-1,n)$$
  $m > 4$   
 $e(m,n) = e(m,n-1)$   $m \le 4 \land n > 10$   
 $e(m,n) = m^n \cdot m$   $m \le 4 \land n \le 10$ 

$$\begin{array}{ccc} b: \mathbb{Z} \to \mathbb{N} \\ (\mathrm{b}) & b(n) = 7 - n & n < -100 \\ b(n) = b(n-1) - b(n-1) & n \geq -100 \end{array}$$

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
  
f)  $f(m, n) = 100$ .

(f) 
$$f(m,n) = 100 \cdot n - m$$
  $m > n$   
 $f(m,n) = f(m+2, n+1)$   $m \le n$ 

$$c:\mathbb{N}\to\mathbb{N}$$

(c) 
$$c(n) = 123$$
  $n > 15$   
 $c(n) = c(n+1)$   $n \le 15$ 

$$g: \mathbb{Z} \times \mathbb{Z} \to \mathbb{N}$$

(g) 
$$g(m,n) = g(m-1,n)$$
  $m > n$   
 $g(m,n) = g(n,m+1)$   $m < n$   
 $g(m,n) = 3$   $m = n$ 

$$d:\mathbb{Z}\to\mathbb{Z}$$

(d) 
$$d(n) = 100 + d(n \operatorname{div} 10)$$
  $n \mod 2 = 0$   
 $d(n) = d(n+1)$   $n \mod 2 \neq 0$ 

$$h:\mathscr{L}\left( X\right) \rightarrow\mathbb{N}$$

(h) 
$$h(nil) = 4$$
  
 $h(x :: xr) = 2 \cdot h(xr) + 1$ 

Lösungsvorschlag Z3.5

- (a)  $\lambda n \in \mathbb{N}.n$
- (b)  $\lambda n \in \mathbb{Z}$ .if n < -100 then 0 else n + 101
- (c)  $\lambda n \in \mathbb{N}$ .if n > 15 then 0 else 16 n
- (d) d terminiert nicht.
- (e)  $\lambda(m,n) \in \mathbb{N} \times \mathbb{N}.m + n$
- (f)  $\lambda(m,n) \in \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ . if m > n then 0 else n m + 1

(g) 
$$\lambda(m,n) \in \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$
.  $|m-n|$ 

(h)  $\lambda xs \in \mathcal{L}(X).xs$ 

## Aufgabe Z3.6 (Strukturelle Terminierung)

Die Konkatenation von Listen sei wie folgt definiert:

$$@: \mathcal{L}(X) \times \mathcal{L}(X) \to \mathcal{L}(X)$$
 
$$nil@ys = ys$$
 
$$(x :: xr)@ys = x :: (xr@ys)$$

Welche der folgenden Funktionen ist eine strukturelle Terminierungsfunktion für @?

- $\square \lambda(xs, ys) \in \mathcal{L}(X)^2$ . |xs|
- $\lambda(xs, ys) \in \mathcal{L}(X)^2$ . xs
- $\square \lambda(xs, ys) \in \mathcal{L}(X)^2$ . ys
- $\lambda(xs,ys) \in \mathcal{L}(X)^2$ . xs@ys, wobei @ die Ergebnisfunktion der oben definierten Prozedur ist.

# Korrektheitssatz

## Aufgabe Z3.7 (Korrektheit I)

Zeigen Sie, dass die Prozedur  $p: \mathbb{N} \to \mathbb{N}$ , die durch

$$p n = \text{if } n < 1 \text{ then } 1 \text{ else } p(n-1) + 2n + 1$$

definiert ist, die Funktion  $\lambda n \in \mathbb{N}$ .  $(n+1)^2$  berechnet.

Lösungsvorschlag Z3.7

Sei  $f = \lambda n \in \mathbb{N}$ .  $(n+1)^2$ .

Beweis mit dem Korrektheitssatz.

Die natürliche Terminierungsfunktion  $\lambda n \in \mathbb{N}$ . n zeigt, dass  $Dom p = \mathbb{N}$  und somit  $Dom f \subseteq Dom p$ .

Laut Satz 9.10 wird f dann von p berechnet, falls f die definierenden Gleichungen von p für alle  $n \in \mathbb{N}$  erfüllt. Für den Fall n = 0 ist dies klar, da  $(0+1)^2 = 1$ . Sei also n > 0, dann gilt

$$f n = (n+1)^2$$
 (Definition von  $f$ )  
 $= n^2 + 2n + 1$  (Binomische Formel)  
 $= ((n-1)+1)^2 + 2n + 1$  (Arithmetik)  
 $= f(n-1) + 2n + 1$  (Definition von  $f$ )  
 $= \text{if } n < 1 \text{ then } 1 \text{ else } f(n-1) + 2n + 1$  ( $n > 0$ )

# Aufgabe Z3.8 (Korrektheit II)

Gegeben seien folgende Prozeduren, geben Sie jeweils die Ergebnisfunktion an und beweisen Sie ihre Korrektheit mit dem Korrektheitssatz.

$$\begin{array}{lll} a:\mathbb{N}\to\mathbb{N} & & b:\mathbb{Z}\times\mathbb{N}\to\mathbb{Z}\\ \text{(a)} & a\;n=1 & \text{für}\;n=0\\ & a\;n=2\cdot a(n-1)+2\cdot a(n-1) & \text{für}\;n>0 & b(n,m)=1 & \text{für}\;m=0\\ & b(n,m)=n\cdot b(n,m-1) & \text{für}\;m\neq0 \end{array}$$

$$\begin{array}{ll} c: \mathbb{N} \to \mathbb{Z} \\ (c) & c \ 0 = 0 \\ & c \ n = c \ (n-1) - 2 \quad \text{für } n > 0 \end{array}$$

$$\begin{aligned} d: \mathbb{N} &\to \mathbb{N} \\ d & 0 = 0 \\ d & 1 = 1 \\ d & n = 1 + d(n-2) \end{aligned} \text{ für } n > 1$$

## Lösungsvorschlag Z3.8

(a) Ergebnisfunktion:  $f = \lambda n \in \mathbb{N}.4^n$ 

Beweis mit dem Korrektheitssatz. Wir zeigen zuerst, dass  $Dom\ f\subseteq Dom\ a$  gilt. Dafür zeigen wir mithilfe einer natürlichen Terminierungsfunktion, dass a für alle  $n\in\mathbb{N}$  terminiert:  $\lambda n\in\mathbb{N}.n$ 

Somit gilt  $Dom\ f = \mathbb{N} = Dom\ a$ 

Nun bleibt noch zu zeigen, dass f die definierenden Gleichungen von a erfüllt.

• 1. Fall: n = 0

$$1 = 4^0$$
 Arithmetik  
=  $f \ 0$  Definition von f

• 2. Fall: n > 0

$$\begin{aligned} 2 \cdot f(n-1) + 2 \cdot f(n-1) &= 2 \cdot 4^{n-1} + 2 \cdot 4^{n-1} & \text{Definition von } f \\ &= 2 \cdot (2 \cdot 4^{n-1}) & \text{Arithmetik} \\ &= 4 \cdot 4^{n-1} & \text{Arithmetik} \\ &= 4^n & \text{Arithmetik} \\ &= f \ n & \text{Definition von } f \end{aligned}$$

(b) Ergebnisfunktion:  $g = \lambda(n, m) \in \mathbb{Z} \times \mathbb{N}.n^m$ 

Beweis mit dem Korrektheitssatz. Wir zeigen zuerst, dass  $Dom\ g\subseteq Dom\ b$  gilt. Dafür zeigen wir mithilfe einer natürlichen Terminierungsfunktion, dass b für alle  $(n,m)\in\mathbb{Z}\times\mathbb{N}$  terminiert:  $\lambda(n,m)\in\mathbb{Z}\times\mathbb{N}.m$  Somit gilt  $Dom\ g=\mathbb{N}=Dom\ b$ 

Nun bleibt noch zu zeigen, dass g die definierenden Gleichungen von b erfüllt.

• 1. Fall: m = 0

$$1 = n^0$$
 Arithmetik  $= g(n, 0)$  Definition von  $g$ 

• 2. Fall: m > 0

$$n \cdot g \ (n, m-1) = n \cdot n^{m-1}$$
 Definition von  $g$   
=  $n^m$  Arithmetik  
=  $g \ (n, m)$  Definition von  $g$ 

(c) Ergebnisfunktion:  $h = \lambda n \in \mathbb{N}.-2 \cdot n$ 

Beweis mit dem Korrektheitssatz. Wir zeigen zuerst, dass  $Dom\ h\subseteq Dom\ c$  gilt. Dafür zeigen wir mithilfe einer natürlichen Terminierungsfunktion, dass c für alle  $n\in\mathbb{N}$  terminiert:  $\lambda n\in\mathbb{N}.n$  Somit gilt  $Dom\ h=\mathbb{N}=Dom\ c$ 

Nun bleibt noch zu zeigen, dass h die definierenden Gleichungen von c erfüllt.

• 1. Fall: n = 0

$$0 = -2 \cdot 0$$
 Arithmetik  
=  $h \ 0$  Definition von  $h$ 

#### • 2. Fall: n>0

$$h(n-1)-2=-2\cdot(n-1)-2$$
 Definition von  $h$ 

$$=-2n+2-2$$
 Arithmetik
$$=-2n$$
 Arithmetik
$$=h\ n$$
 Definition von  $h$ 

## (d) Ergebnisfunktion: $i := \lambda n \in \mathbb{N}$ . $\lceil \frac{n}{2} \rceil$

Beweis mit dem Korrektheitssatz. Wir zeigen zuerst, dass  $Dom\ i\subseteq Dom\ d$  gilt. Dafür zeigen wir mithilfe einer natürlichen Terminierungsfunktion, dass d für alle  $n\in\mathbb{N}$  terminiert:  $\lambda n\in\mathbb{N}.n$ 

Somit gilt  $Dom \ i = \mathbb{N} = Dom \ d$ 

Nun bleibt noch zu zeigen, dass i die definierenden Gleichungen von d erfüllt.

• 1. Fall: n = 0

$$i \ 0 = \left\lceil \frac{0}{2} \right\rceil$$
 Definition  $i$   
= 0 Arithmetik, Definition von  $\lceil \cdot \rceil$ 

• 2. Fall: n = 1

$$i \ 1 = \left\lceil \frac{1}{2} \right\rceil$$
 Definition von  $i$  = 1 Arithmetik, Definition von  $\lceil \cdot \rceil$ 

• 3. Fall: n > 1

$$\begin{array}{l} i\; n = \left\lceil \frac{n}{2} \right\rceil & \text{Definition von } i \\ = 1 + \left\lceil \frac{n}{2} \right\rceil - 1 & \text{Arithmetik} \\ = 1 + \left\lceil \frac{n}{2} - 1 \right\rceil & \text{Arithmetik, Definition von } \lceil \cdot \rceil \\ = 1 + \left\lceil \frac{n-2}{2} \right\rceil & \text{Arithmetik} \\ = 1 + i\; (n-2) & \text{Definition von } i \end{array}$$

# Aufgabe Z3.9 (Korrektheit III)

Beweisen Sie, dass die Prozedur

$$\begin{aligned} fak: \mathbb{N} &\to \mathbb{N} \\ fak(n) &= 1 & \text{für } n = 0 \\ fak(n) &= n \cdot fak(n-1) & \text{für } n > 0 \end{aligned}$$

die Funktion  $fac := \lambda n \in \mathbb{N}.n!$  berechnet.

Lösungsvorschlag Z3.9

Beweis mit dem Korrektheitssatz.

Zunächst zeigen wir, dass die Prozedur fak terminiert. Dazu geben wir eine natürliche Terminierungsfunktion an:  $\lambda n \in \mathbb{N}.n$ . Also ist  $Dom fac \subseteq Dom fak$ .

Nun bleibt zu zeigen, dass fac die definierenden Gleichungen von fak erfüllt. Dafür machen wir eine Fallunterscheidung:

• 1. Fall: n = 0:

$$1 = 0!$$
 Arithmetik  
=  $fac(0)$  Definition  $fac$ 

• 2. Fall: n > 0:

$$n \cdot fac(n-1) = n \cdot (n-1)!$$
 Definition von  $fac$   
=  $n!$  Arithmetik  
=  $fac(n)$  Definition von  $fac$ 

#### Aufgabe Z3.10 (Addition)

Wir wollen zeigen, dass sich Addition nur mit Inkrementierung (Erhöhen einer Zahl um 1) und Dekrementierung (Reduzieren einer Zahl um 1) berechnen lässt.

- (a) Schreiben Sie eine mathematische Prozedur, die Addition x+y für  $x,y\geq 0$  berechnet. Wenn sie den Operator + verwenden, dürfen Sie dabei nur x+1 für ein beliebiges x schreiben. Wenn Sie den Operator verwenden, dürfen Sie nur x-1 für ein beliebiges x schreiben.
- (b) Beweisen Sie mithilfe des Korrektheitssatzes, dass ihre Prozedur die folgende Funktion berechnet:

$$f \in \mathbb{N}^2 \to \mathbb{N}$$
$$f(x,y) = x + y$$

Lösungsvorschlag Z3.10

(a)

$$\begin{aligned} add: \mathbb{N} \times \mathbb{N} &\to \mathbb{N} \\ add(x,0) &= x \\ add(x,y) &= add(x,y-1) + 1 \end{aligned} \qquad \text{für y} > 0$$

- (b) Beweis mit dem Korrektheitssatz.
  - (i) Zu zeigen ist, dass  $Dom f \subseteq Dom \ add$ .

 $\lambda(x,y) \in \mathbb{N}^2$ . y ist eine natürliche Terminierungsfunktion für add. Also terminiert add für alle Argumente und daher gilt  $Dom\ add = \mathbb{N}^2 = Dom\ f$ .

- (ii) Nun ist zu zeigen, dass f für alle  $(x,y) \in \mathbb{N}^2$  die definierenden Gleichungen von add erfüllt. Wir unterscheiden zwei Fälle:
  - Fall x beliebig, y = 0:

$$f(x,y) = f(x,0) \qquad y = 0$$
  
=  $x + 0$  Definition  $f$   
=  $x$  Definition  $f$ , da  $x \in \mathbb{N}$ 

• Fall x beliebig, y > 0:

$$f(x,y) = f(x,y-1) + 1$$
 Definition add, y > 0  
 
$$x + y = x + (y-1) + 1$$
 Definition f,  $x, y - 1 \in \mathbb{N}$   
 
$$= (x+y) + (-1+1)$$
 Arithmetik  
 
$$= x + y$$
 Arithmetik

wahr.

#### Aufgabe Z3.11 (Quadratzahlen)

Gegeben sei folgenden mathematische Prozedur:

$$p:\mathbb{N}\to\mathbb{N}$$
 
$$p\;0=0$$
 
$$p\;n=p\;(n-1)+n\cdot n$$
 für  $n>0$ 

Beweisen Sie, dass diese Prozedur die Summe der ersten n Quadratzahlen, also die Funktion  $f \in \mathbb{N} \to \mathbb{N}$  mit  $f = \lambda n \in \mathbb{N}$ .  $\sum_{i=1}^{n} i^2$  berechnet.

#### Lösungsvorschlag Z3.11

Beweis mit dem Korrektheitssatz. Man zeige zunächst, dass gilt Dom  $f \subseteq Dom$  p. Dazu zeige man, dass Dom  $p = \mathbb{N}$ , indem man eine natürliche Terminierungsfunktion für p angibt und damit zeigt, dass p für alle Argumente terminiert:

 $\lambda n \in \mathbb{N}. n$  ist eine gültige natürliche Terminierungsfunktion, die die Terminierung von p garantiert.

Man zeige nun, dass f die definierenden Gleichungen von p erfüllt. Wir unterscheiden zwei Fälle.

• Fall: n = 0

$$f \ 0 = \sum_{i=1}^{0} i^2$$
 Definition  $f$  Arithmetik

• Fall: n > 0

$$f n = \sum_{i=1}^{n} i^2$$
 Definition  $f$ 

$$= \sum_{i=1}^{n-1} i^2 + n^2$$
 Arithmetik
$$= \sum_{i=1}^{n-1} i^2 + n \cdot n$$
 Arithmetik
$$= f (n-1) + n \cdot n$$
 Definition  $f$