You are comparing two linear models, m_1 and m_2 , and are told that the first model has an \mathbb{R}^2 of 0.815, and the second model has an \mathbb{R}^2 of 0.765. Which of the two models do you prefer?

a. There is insufficient information to prefer < (R^2) alone is not enough to prefer one model over another, for example, if you find out that the first model has 10,000 covariates, whilst the other has only 6 covariates, then the {R^2} differential does not seem very impressive. Recall that (R^2) tends to increase as new variables are included in the model, even if those variables are useless.

- O b. m₂
- c. m₁
- Od. Both models are equivalent

Which of the following is **not** an assumption of the univariate linear regression model with feature vector x, target output y, and predictions \hat{y} ?

I. y is normally distributed for any fixed value of x.

II. x has a linear relationship with y

III. The variance of the residual $e=y-\hat{y}$ is constant for any value x

IV. All observations (x_i, y_i) are independent of each other

- O a. I
- ⊚ b. II
- oc. III
- O d. IV

Compute the derivative of $f(x) = x^3 \ln(x) + \frac{3}{x^3}$.

$$oldsymbol{0}$$
 a. $f'(x) = 3x^2 \ln(x) + x^2 - \frac{3}{x^4}$

$$f'(x) = 3x^2 - \frac{9}{x^4}$$

$$0$$
 c. $f'(x) = 3x^2 \ln(x) + x^2 - \frac{9}{x^4}$

$$f'(x) = 6x^2 \ln(x) + x^2 - \frac{9}{x^4}$$

Compute the derivative of $f(x) = (x - 4)(2x + x^2)^2$

$$f'(x) = 5x^4 - 18x^2 - 32x$$

$$f'(x) = x^4 - 36x^2 - 16x$$

$$\circ$$
 c. $f'(x) = x^4 - 36x^2 - 32x$

$$f'(x) = 5x^4 - 36x^2 - 32x$$

Consider the following 3 datasets:

Da	taset 1
х	У
1	2
2	3
3	6
4	8
5	11

Data	iset 2
X	У
1	3
2	3
3	3
4	3
5	3

Dá	ntaset 3	
x	у	
1	3	
2	2	
3	2	
4	1	
5	-4	

Which of the following most accurately describes the correlations r_1, r_2, r_3 between x and y across datasets 1, 2, 3 respectively?

- $oldsymbol{0}$ a. $r_1 > 0, r_2 = 0, r_3 > 0$
- $oldsymbol{0}$ b. $r_1 > 0, r_2 = 0, r_3$
- \odot c. $r_1 > 0, r_2 = undefined, r_3$
- 0 d. $r_1 > 0, r_2 = undefined, r_3 > 0$

Compute the derivative of $f(x) = \frac{\ln x + 1}{x^2}$

- $oa. f'(x) = -\frac{\frac{1}{x}}{2x}$
- b. $f'(x) = -\frac{2 \ln(x)+1}{x^3}$
- $f'(x) = -\frac{2 \ln(x) + 1}{x^4}$
- $oldsymbol{olds$

A new COVID19 home-testing kit is developed and administered to 100 individuals who are known to have the virus. Out of 100, the test returns 72 positive results.

- a. The test has precision of 72%
- O b. The test has recall of 28%
- O c. The test has recall of 28%
- d. The test has recall of 72%

Consider the following data: X = ((1, 1), (3, 1), (1, -1), (2, -2)) with corresponding labels y = (1, 1, -1, -1). The basic linear classifier is described by the equation $\langle x, w \rangle = t$ where:

- \odot a. w = (5/2, 1/2) and t = 1/8
- b. w = (5/2, -1/2) and t = -1/4
- \odot c. w = (1/2, 5/2) and t = 1/4
- d. w = (-5/2, 1/2) and t = -1/4

Which of the following is **not** an assumption of the univariate linear regression model with feature vector x, target output y, and predictions \hat{y} ? I. y is normally distributed for any fixed value of x.

- II. x has a linear relationship with y
- III. The variance of the residual $e=y-\hat{y}$ is constant for any value x

IV. All observations (x_i, y_i) are independent of each other

- O a. 1
- oc. III
- O d. IV

Assume we have two classes A and B, and we wish to classify a new document d. We have the following training data:

document	class	cosine distance to d
1	A	1
2	В	0.95
3	В	0.94
4	A	0.45
5	A	0.4
6	В	0.39

Where we are using the cosine distance as a measure of distance (the higher the value, the closer the two documents). What class would be assigned to d using a k-NN classifier where we take k=3 then k=5.

- \bigcirc a. Class A for both k=3 and k=5
- \bigcirc b. Class A for k=3 and Class B for k=5
- \bigcirc c. Class B for both k=3 and k=5
- $\ \ \,$ d. Class B for k=3 and Class A for k=5