

Ramakrishna Mission Vivekananda University

Belur Math, Howrah, West Bengal

School of Mathematical Sciences, Department of Computer Science

M.Sc. in Big Data Analytic 2018-20, End Semester Exam

Course: DA310: Multivariate Statistics

Instructor: Dr. Sudipta Das Student signature and Id: Date: 05 May 2019

Time: 3 hrs

Max marks: 100

1. (a) You are given the following n=3 observations on p=2 variables:

variable 1:
$$x_{11} = 2, x_{21} = 3, x_{31} = 4$$

variable 2:
$$x_{12} = 1, x_{22} = 2, x_{32} = 4$$

- i. Plot the pairs of observations in the two-dimensional "variable space".
- ii. Plot the data as two points in the "item space".

[2+2=4]

(b) Let

$$A = \left[\begin{array}{cc} 9 & -2 \\ -2 & 9 \end{array} \right],$$

Write the spectral decomposition of A. Hence, find A^{-1} .

[4+2=6]

2. Let $\mathbf{X} = [X_1 \ X_2 \ X_3]'$ be distributed as $N_3(\mu, \Sigma)$, where $\mu' = [1, -1, 2]$ and

$$\Sigma = \left[\begin{array}{ccc} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{array} \right],$$

- (a) Find ρ_{13}
- (b) Find the correlation between X_1 and $\frac{1}{2}X_2 + \frac{1}{2}X_3$.
- (c) What is the conditional distribution of X_1 , given that $X_3 = x_3$.

[3+3+4=10]

- 3. Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{100}$ be a random sample of size 100 from a four-variate normal distribution having mean μ and covariance Σ . Specify each of the following completely (mention the parameters).
 - (a) Distribution of $\bar{\mathbf{X}}$
 - (b) Distribution of $(\mathbf{X}_1 \mu)' \Sigma^{-1} (\mathbf{X}_1 \mu)$
 - (c) Distribution of $n(\bar{\mathbf{X}} \mu)' \Sigma^{-1} (\bar{\mathbf{X}} \mu)$
 - (d) Approximate distribution of $n(\bar{\mathbf{X}} \mu)'\mathbf{S}^{-1}(\bar{\mathbf{X}} \mu)$

 $\bar{\mathbf{X}}$ and \mathbf{S} denote the sample mean and the sample variance of $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{100}$, respectively. $[2 \times 4 = 8]$

4. Let X_1, X_2, \ldots, X_5 be a random sample from $N_2(\mu, \Sigma)$, where

$$\bar{\mathbf{x}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $\mathbf{\Sigma} = \begin{bmatrix} 3 & 0.1 \\ 0.1 & 1 \end{bmatrix}$.

Test the hypothesis $H_0: \mu = (0,0)'$ Vs $H_1: \mu \neq (0,0)'$ at 5% level of significance. [12]

5. Perspiration from 20 healthy females was analyzed. Three components, X_1 = sweat rate, X_2 = sodium content and X_3 = potassium content, were measured. The sample mean and inverse of the sample covariance matrix are given as follows

$$\bar{\mathbf{x}} = \begin{bmatrix} 4.640 \\ 45.400 \\ 9.965 \end{bmatrix} \text{ and } \mathbf{S}^{-1} = \begin{bmatrix} 0.586 & -0.022 & 0.258 \\ -0.022 & 0.006 & -0.002 \\ 0.258 & -0.002 & 0.402 \end{bmatrix}.$$

Determine the axes of the 90% confidence ellipsoid for μ . Determine also the lengths of these axes.

- 6. Construct a 2 × 2 non-trivial covariance matrix for which the variation explained by the first principal component remains same irrespective of considering the covariance or corresponding correlation matrix. [6]
- 7. Find the principal components and the proportion of the total population variance explained by each when the correlation matrix is

$$\rho = \left[\begin{array}{ccc} 1 & a & a \\ a & 1 & a \\ a & a & 1 \end{array} \right].$$

[10]

8. Consider an m=1 factor model for the population with covariance matrix

$$\Sigma = \left[\begin{array}{ccc} 1 & .4 & .9 \\ .4 & 1 & .7 \\ .9 & .7 & 1 \end{array} \right].$$

Show that there is a unique choice of **L** and Ψ with $\Sigma = \mathbf{L}\mathbf{L}' + \Psi$, but that $\psi_3 < 0$, so the choice is not admissible.

- 9. Write short notes on the following
 - (a) Ridge Regression
 - (b) CART

[6+6=12]

10. Let

$$Y_{n\times 1} = Z_{n\times (p+1)}\beta_{(p+1)\times 1} + \epsilon_{n\times 1},$$

where $E(\epsilon) = 0_{n \times 1}$ and $Cov(\epsilon) = \sigma^2 I$. Show that the least square estimate of β is

$$\hat{\beta} = (Z'Z)^{-1}Z'Y.$$

Hence, prove that $Cov(\hat{\beta}) = \sigma^2(Z'Z)^{-1}$ and $Cov(\hat{\epsilon}) = \sigma^2[I - H]$, where $H = Z(Z'Z)^{-1}Z'$ and $\hat{\epsilon} = Y - Z\hat{\beta}$. [5+5+5=15]

You may need following values:

$$t_{41}(0.05) = 1.683, t_{41}(0.025) = 2.020, t_{41}(0.0125) = 2.327,$$

$$\chi^2_2(0.05) = 5.99$$

$$F_{3,17}(.05) = 0.115, F_{3,17}(.1) = 0.193, F_{3,17}(.9) = 2.437, F_{3,17}(.95) = 3.197$$

This exam has total 10 questions, for a total of 105 points and 0 bonus points.