Preza0:
Gradivo labosa ulazi u MI/ZI!!!
Preza1:

Mjesta i prijelazi -> metoda duologa

MI ZADATAK!!! -> TEKST MODELIRAJ U KONAČNI AUTOMAT:

(Sve treba označavati – inače znaju skidati bodove)

X – predaja poruke

Y – prijem podataka

Z – unutarnje stanje

2.2.2. Metoda duologa

Karakterističan postupak utemeljen na obradi sljedova prijelaza je metoda duologa, koja će biti predočena jednostavnim primjerom. Duologom se naziva zajednički slijed prijelaza za dva komunicirajuća automata.

Primjer 2.2.

Neka dva procesa P_A i P_B opisana automatima A i B komuniciraju tako da P_A šalje poruku p prema P_B koji je prima i vraća potvrdu r (sl.2.4).

Automat A opisan je stanjima:

- a₀ pripravan za predaju poruke
- a1 čeka potvrdu
- a₂ primio potvrdu

5

MODELIRANJE KOMUNIKACIJE KONAČNIM AUTOMATOM

i prijelazima:

- x_p predaja poruke
- y_r prijam potvrde
- z_a unutrašnji prijelaz.

Automat B ima stanja:

- b₀ pripravan za prijam poruke
- b₁ primio poruku
- b₂ predao potvrdu

i prijelaze:

- y_p prijam poruke
- x_r predaja potvrde
- z_b unutrašnji prijelaz.

Slika 2.4. Model komunikacije dva automata

A: (x_p, y_r, z_a) B: (y_p, x_r, z_b) .

 $A \times B_1$: $(x_p, y_p, x_r, y_r, z_a, z_b)$.

6

MODELIRANJE KOMUNIKACIJE KONAČNIM AUTOMATOM

Međutim potpuni opis ponašanja može se dobiti samo ako se izvedu svi duolozi:

A × B₂: $(x_p, y_p, x_r, y_r, z_b, z_a)$

A × B₃: $(x_p, y_p, x_r, z_b, y_r, z_a)$,

Dakle, uvijek je potrebno provjeriti sve duologe da bi se ustanovila ispravnost komunikacije.

MODELIRANJE KOMUNIKACIJE KONAČNIM AUTOMATOM

Slika 2.5. Graf stanja sustava komunicirajućih automata

Pridružena stanja

$$a_0 \leftrightarrow (b_0, b_2)$$

$$a_1 \leftrightarrow (b_0, b_1, b_2)$$

$$a_2 \leftrightarrow (b_0, b_2)$$

$$b_0 \leftrightarrow (a_0, a_1, a_2)$$

$$b_1 \leftrightarrow (a_1)$$

$$b_2 \leftrightarrow (a_0, a_1, a_2)$$

"Ako se nalazim u stanju a0, u kojim se sve stanjima mogu tada naći?" ->očitava se iz grafa stanja

Prodi zadatak s ploče na satu -> naglasi da smo rjesavali jedan s ispita također (ima rjesenje na studosima)

Preza 2 ->

Labos! – rok za predaju je prošao za prvi dio

Preza 3:

Petrijeva mreža:

Struktura:

P – skup mjesta (uvjet) {places} **O**

T – skup prijelaza, (transitions) I, I

I – ulazna funkcija ("preduvjet") O->I

O – izlazna funkcija ("postuvjet") I->O

pi e I (tj) – ulazno mjesto za tj

pi e **O** (tj) – izlazno mjesto za tj

 $\#(pi,I(tj)) = x \rightarrow ako je x 0 - pi nije ulaz u tj$

#(pi, O(tj)) = x -> ako je x 1 - pi jednostruko povezan sa tj, ako je n -> višestruko povezan za tj

Primjer 3.1.

Predočite grafički strukturu Petrijeve mreže ako je zadano:

$$\begin{split} P &= \{p_1, p_2, p_3, p_4\} \\ T &= \{t_1, t_2, t_3\} \\ I(t_1) &= (p_1) & \#(p_1, I(t_1)) = 2 \\ I(t_2) &= (p_2, p_3) & \#(p_2, I(t_2)) = 1 & \#(p_3, I(t_2)) = 1 \\ I(t_3) &= (p_3) & \#(p_3, I(t_3)) = 1 \\ O(t_1) &= (p_2, p_3) & \#(p_2, O(t_1)) = 1 & \#(p_3, O(t_1)) = 1 \\ O(t_2) &= (p_4) & \#(p_4, O(t_2)) = 1 \\ O(t_3) &= (p_4) & \#(p_4, O(t_3)) = 2. \end{split}$$

Rješenje je predočeno slikom 3.1.

Slika 3.1. Struktura Petrijeve mreže

Dualna mreža Petrijeve mreže C = (P, T, I, O) je mreža $\overline{C} = (T, P, I, O)$, a izvodi se zamjenom mjesta i prijelaza.

Inverzna Petrijeva mreža je mreža -C = (P, T, O, I), a izvodi se zamjenom ulaza i izlaza.

Dual idemo iz **O->I** u **I->O**Inverz idemo iz **O->I** u **O<-I**

Označavanje PM

 $M = \{P,T,I,O, \mu\}$

'->broj uvjeta koji moraju biti ispunjeni u PM da bi se dogodio neki prijelaz

To označavamo tako da nacrtamo točkicu unutar nekog mjesta

Izvođenje PM

Pokazi sliku iz biljeznice

Obilježja PM

Slika

Konfliktnost i simultanost prijelaza

Konflikt kod nas – izvodi se t2 ili t3

Simultanost – mozemo izvesti dvije stvari istovremeno

dostupnost -

Inhibicijska grana (neispunjeni uvjet)

O-o - bas kad ne bi smio izvesti prijelaz ga izvedes

Ordinarna Petrijeva mreža

Mreža C = (P, T, I, O) naziva se ordinarnom ako vrijedi:

ne smiju iz nekog stanja 2 strelice ogranicenost - gleda se najveci broj u bilokojem od stanja (k)

ne smije biti oznaka da se izvede

PETRIJEVA MREŽA

$$\#(p_i, O(t_i)) \le 1.$$

Automat stanja

Automat stanja je Petrijeva mreža za koju svaki prijelaz t_j ima samo jedno ulazno i izlazno mjesto:

 $|I(t_j)| = 1$ i gleda se prijelaz i broj strelica s lijeve strane mora biti jednak

 $|O(t_j)| = 1$. desnom

sigurnost - oznaka (stupac|broj) mora biti <=1 za svako stanje reverzibilnost - povrat u pocetno stanje iz SVAKOG STANJA aktivnost - 0

3- aktivna (izvodi se inf puta

2-aktivna (izvodi se n puta), 1- jednom se izvodi (aktivna - stanje u kojem zapnes i ne mozes se izvuci(mrtvo stanje))

konzervira oznake (isti zbroj stupaca)

Preza4:

Disclaimer – predavac je UŽASAN

Pokazi sliku istvoremeno konfliktnih i simultanih stanja

Pokazi sliku osnovnog modela za komunikaciju

^istovremeno pokazi i graf stanja

Na grafu stanja imamo i ekstra prijelaz?

Model petrijeve mreže je malo krut pa ga proširujemo -> uvodimo vremenski prijelaz (X_{PP}(tau))

Slika 4.8. Model protokola s pozitivnom i negativnom potvrdom

Prijelazi xr i xnr, te yr i ynr su konfliktni

crno je taj trik koji se dodaje

Pokazi sliku koju nam je profesor pokazao: "trik" za ograničavanje količine točkica koje ulaze otprije iz procesa t1

t2, pazi, 2 strelice ulaze ali samo jedna izade, tako tockice putuju,

s lijeve strane je broj strelica potrebnih da se okine akcija

a s desne broj koliko ce novih nastati

