Homework

Encrypt the first three letters of your first name in uppercase letter

ENCRYPTION TYPE: RSA

PUBLIC KEY: n = 187, e=3 (to encrypt)

PRIVATE KEY: p=11, q=17, d=107 (to decrypt)

*Background information: pxq=n (11x17=187)

p, q - chosen prime numbers, the bigger the better, more secure

e - chosen prime number

m - message to encrypt in corresponding ASCII code

c - ciphered text (me mod n)

ASCII Table:

Α	В	С	D	E	F	G	н	1	J	К	L	М
65	66	67	68	69	70	71	72	73	74	75	76	77
N	0	Р	Q	R	s	Т	U	٧	w	x	Υ	Z
78	79	80	81	82	83	84	85	86	87	88	89	90

ENCRYPTION					
Instructions	Example: H	First Letter: [letter]	Second Letter: [letter]	Third Letter: [letter]	
1. Find the corresponding ASCII code to your letter	72 80		69	84	
2. Calculate m ^e	72 ³ = 373248	80 ³ = 512000	69³ = 328509	84 ³ = 592704	
3. Find c = me mod n	373248 mod 187 = 183	512000 mod 187 = 181	328509 mod 187 = 137	592704 mod 187 = 101	
4. Your ciphered letter (c value)	183	181	137	101	

DECRYPTION					
Instructions	Example: 183	Ciphered letter: 77	Ciphered letter: 166	Ciphered letter: 137	
Calculate m=c ^d mod n	$m = c^d \mod n = 183^{107} \mod 187 = 72$	m = c ^d mod n = 77 ¹⁰⁷ mod 187	m = c ^d mod n = 166 ¹⁰⁷ mod 187	m = c ^d mod n = 137 ¹⁰⁷ mod 187	
2. Convert m to letter based on ASCII table	72 = H	66 = B	89 = Y	69 = E	

Use https://www.wolframalpha.com/ to calculate modulo mathematics and huge exponents

Extension: Encrypt your full first name (add columns to the table above - right click on the table and choose "insert column right" option)

Use this code to check your work in the Homework above for Encryption ONLY:

```
import math

message = input("Enter the letter to be encrypted: ")
ascii_code = ord(message)

p = 11 #private key
q = 17 #private key
e = 3 #public key

n = p*q #public key

#Encryption, c = m^e mod n
def encrypt(msg):
    m_power_e = math.pow(msg,e) #calculates m to the power of e
    c = m_power_e % n #find modulo to get the ciphered text
    print("Encrypted Message is: ", c)
    return c

print("ASCII Code is: ", ascii_code)
c = encrypt(ascii_code)
```

https://github.com/hunter-teacher-cert/work-topics-leungbenson/blob/master/public_key/RSA.md

ASYNC:

Find another type of encryption and give a brief summary of how it works. Post on Slack and comment on one other person's post.

PGP uses a combination of symmetric private key and public key. A sender sends the public key to the receiver and encrypt the key with the receiver's public key. For now, this system of encryption has not been broken, but the complicated dance in the use of PGP results in limited use by people.