4293. Найти работу, производимую силой тяжести, когда точка массы m перемещается из положения (x_1, y_1, z_1) в положение (x_2, y_2, z_2) (ось Oz направлена вертикально вверх).

4294. Найти работу упругой силы, направленной к началу координат, величина которой пропорциональна удалению материальной точки о начала координат, если эта точка описывает в направлении, противоположном ходу часовой стрелки, положительную четверть эллипса $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

4295. Найти работу силы тяготения $F=k/r^2$, где $r=\sqrt{x^2+y^2+z^2}$, действующей на единичную массу, когда последняя перемещается и точки M_1 (x_1, y_1, z_1) в точку M_2 (x_2, y_2, z_2) .

§ 12. Формула Грина

 1° . Связь криволинейного интеграла с двойным. Если C — замкнутый простой кусочио гладкий контур, ограничивающий конечную односвязную область S, пробегаемый так, что область S остается слева, и функции $P\left(x,y\right),Q\left(x,y\right)$ непрерывны вместе со свонми частными производными первого порядка $P_{y}'(x,y)$ и $Q_{x}'(x,y)$ в области S и на ее границе, то имеет место формула Γ рина

$$\oint_{C} P(x, y) dx + Q(x, y) dy = \iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$
(1)

Формула (1) справедлива также и для конечной области S, ограниченной несколькими простыми контурами, если под границей C последней понимать сумму всех граничных контуров, направление обхода которых выбирается так, что область S остается слева.

2°. Площадь плоской области. Площадь S фигуры, ограниченной простым кусочно гладким контуром C, равна

$$S = \oint_C x \, dy = -\oint_C y \, dx = \frac{1}{2} \oint_C (x \, dy - y \, dx).$$

В этом параграфе, если не оговорено протнвное, предполагается, что замкнутый контур интеграции простой (без точек самопересечения) и пробегается так, что ограниченная нм область, не содержащая бесконечно удаленной точки, остается слева (положительное направление).

4296. С помощью формулы Грина преобразовать криволинейный интеграл