現代解析学 I 第1回小テスト

2016年5月24日 第4時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を認める.

解答用紙のみを提出し、問題用紙は持ち帰ること.

問題1は全員が答えよ. 問題2以降について,2題以上を選択して答えよ.

問題 1.

次の各問いに答えよ. ただし, **答えのみを書くこと**. 分母の有理化は しなくてよい.

- (1) $\boldsymbol{x} = (1,0,1), \, \boldsymbol{y} = (0,2,1), \, \boldsymbol{z} = (1,-1,1)$ とする.
 - (a) $(\mathbf{x} \times \mathbf{y}) \times \mathbf{z}$ を求めよ.
 - (b) $\mathbf{x} \times (\mathbf{y} \times \mathbf{z})$ を求めよ.
- (2) $a = (2, -3, -1), b = (1, 4, -2) \text{ \(\beta \) \(\beta \) \(\beta \) \(\beta \).$
 - (a) $2\mathbf{a} + 3\mathbf{b}$ と同じ向きの単位ベクトル (長さが1のベクトル) を求めよ.
 - (b) a と b に直交する単位ベクトルを求めよ.
- (3) $\mathbf{F}(t) := (e^{-2t}, \log(t^3 + 1), -\cos t)$ とおく.
 - (a) $\frac{d\mathbf{F}}{dt}$ を求めよ.
 - (b) $\frac{d^2 \mathbf{F}}{dt^2}$ を求めよ. ただし, 第 2 成分は通分をせよ.
- $(4) f(x, y, z) := xz^2 y^3z$ とおく.
 - (a) $\nabla f(1,1,1)$ を求めよ.
 - (b) (1,1,1) を通る, f の等高面の単位法線ベクトルを求めよ.
- (5) $a \in \mathbb{R}$ に対して

$$F(x, y, z) := (x^2y, -2xz^2, y^3z),$$

 $G(x, y, z) := (x + 3e^y, y - 2\sin z, \cos x + az)$

- (a) div **F** を求めよ.
- (b) すべての $(x, y, z) \in \mathbb{R}^3$ に対して, div $\mathbf{G} = 0$ となるように, a を定めよ.
- (6) F(x, y, z) := (2xy, -3xz, yz) とおく.
 - (a) div **F** を求めよ.
 - (b) rot **F** を求めよ.

(7)
$$f(x,y,z) := \frac{1}{\sqrt{x^2 + y^2 + z^2}}$$
 $((x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\})$ とおく.

(a)
$$\frac{\partial f}{\partial x}$$
 を求めよ.

(b)
$$\frac{\partial^2 f}{\partial x^2}$$
 を求めよ.

(c)
$$\frac{\partial^2 f}{\partial x \partial y}$$
 を求めよ.

(d) Δf を求めよ.

以下余白 計算用紙として使ってよい.

問題 1 の答え

$$(1)$$
 (a) $(1,4,3)$

(b)
$$(-1,5,1)$$

(2) (a)
$$\frac{1}{\sqrt{149}}(7,6,-8)$$

(b) $\frac{\pm 1}{\sqrt{230}}(10,3,11)$

(b)
$$\frac{\pm 1}{\sqrt{230}}$$
 (10, 3, 11)

(3) (a)
$$(-2e^{-2t}, \frac{3t^2}{t^3+1}, \sin t)$$

(b) $(4e^{-2t}, \frac{-3t^4+6t}{(t^3+1)^2}, \cos t)$

(b)
$$(4e^{-2t}, \frac{-3t^4+6t}{(t^3+1)^2}, \cos t)$$

(4) (a)
$$(1, -3, 1)$$

(4) (a)
$$(1, -3, 1)$$

(b) $\frac{\pm 1}{\sqrt{11}}(1, -3, 1)$

(5) (a)
$$y^3 + 2xy$$

(b)
$$a = -2$$

(6) (a)
$$3y$$

(b)
$$(3x+z,0,-2x-3z)$$

(7) (a)
$$-\frac{x}{(\sqrt{x^2+y^2+z^2})^3}$$

(7) (a)
$$-\frac{x}{(\sqrt{x^2+y^2+z^2})^3}$$

(b) $-\frac{1}{(\sqrt{x^2+y^2+z^2})^3} + \frac{3x^2}{(\sqrt{x^2+y^2+z^2})^5}$
(c) $\frac{3xy}{(\sqrt{x^2+y^2+z^2})^5}$

(c)
$$\frac{3xy}{(\sqrt{x^2+y^2+z^2})^5}$$

$$(d) \hat{0}$$

問題 4の答え

$$(1) \left(\frac{x^2 + y^2 + z^2}{4t^2} - \frac{3}{2t} \right)$$

(2)
$$\nabla \rho = -\frac{\rho}{2t}(x, y, z), \ \Delta \rho = (\frac{x^2 + y^2 + z^2}{4t^2} - \frac{3}{2t})\rho$$

問題5の答え

(1)
$$(2-n)|\boldsymbol{x}|^{-n}x_1$$

(1)
$$(2-n)|\mathbf{x}|^{-n}x_1$$

(2) $\frac{\partial^2\Gamma}{\partial x_1^2}=(2-n)|\mathbf{x}|^{-n}-(2-n)n|\mathbf{x}|^{-n-2}x_1^2$ である. 同様に他の成分も計算して和をとればよい.

問題 2.

 $x, y, z \in \mathbb{R}^3$ とする.

- $(1) (\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z} = \mathbf{x} \cdot (\mathbf{y} \times \mathbf{z})$ を示せ.
- (2) $(\boldsymbol{x} \times \boldsymbol{y}) \cdot \boldsymbol{z} = \det(\boldsymbol{x} \ \boldsymbol{y} \ \boldsymbol{z})$ を示せ.

問題 3.

開集合 $\Omega \subset \mathbb{R}^3$ 上のスカラー場 f とベクトル場 F, G について, 次の等式をそれぞれ示せ.

- (1) $\operatorname{div}(\boldsymbol{F} + \boldsymbol{G}) = \operatorname{div} \boldsymbol{F} + \operatorname{div} \boldsymbol{G}$
- (2) $\operatorname{div}(f\mathbf{F}) = f \operatorname{div} \mathbf{F} + \nabla f \cdot \mathbf{F}$

問題 4.

 $t > 0, (x, y, z) \in \mathbb{R}^3$ に対して

$$\rho(t, x, y, z) := \frac{1}{(4\pi t)^{\frac{3}{2}}} \exp\left(-\frac{x^2 + y^2 + z^2}{4t}\right)$$

とおく.

- $(1) \ \frac{\partial \rho}{\partial t}(t,x,y,z) = C(t,x,y,z) \rho(t,x,y,z) \ と書いた時, \ C(t,x,y,z)$ を求めよ.
- (2) $\nabla \rho$, $\Delta \rho$ をそれぞれ求めよ. ただし, ∇ や Δ は (x,y,z) 変数に対する勾配, Laplacian である.

問題 5.

 $n \in \mathbb{N}, n \geq 3, \boldsymbol{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}$ に対して,

$$\Gamma(\boldsymbol{x}) := \frac{1}{|\boldsymbol{x}|^{n-2}}$$

- (1) $\frac{\partial \Gamma}{\partial r_1}$ を求めよ.
- (2) $-\Delta\Gamma=0$ となることを示せ.

以下余白 計算用紙として使ってよい.

現代解析学 I 第1回追テスト

担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を認める.

解答用紙のみを提出し、問題用紙は持ち帰ること.

問題1は全員が答えよ. 問題2以降について,2題以上を選択して答えよ.

問題 1.

次の各問いに答えよ. ただし, **答えのみを書くこと**. 分母の有理化は しなくてよい.

- (1) $\boldsymbol{x} = (1, 1, 0), \, \boldsymbol{y} = (0, -2, 1), \, \boldsymbol{z} = (-2, 1, 2)$ とする.
 - (a) $(\mathbf{x} \times \mathbf{y}) \times \mathbf{z}$ を求めよ.
 - (b) $\mathbf{x} \times (\mathbf{y} \times \mathbf{z})$ を求めよ.
- (2) $\mathbf{a} = (2,3,1), \mathbf{b} = (-1,2,1) \ \text{とする}.$
 - (a) 3a b と同じ向きの単位ベクトル (長さが1のベクトル) を求めよ.
 - (b) a と b に直交する単位ベクトルを求めよ.
- (3) $\mathbf{F}(t) := (e^{t^2}, \log(t^2 + 1), \sin t)$ とおく.
 - (a) $\frac{d\mathbf{F}}{dt}$ を求めよ.
 - (b) $\frac{d^2 \mathbf{F}}{dt^2}$ を求めよ. ただし, 第 2 成分は通分をせよ.
- (4) $f(x, y, z) := x^3 + y^2z z^2$ とおく.
 - (a) $\nabla f(1,1,1)$ を求めよ.
 - (b) (1,1,1) を通る, f の等高面の単位法線ベクトルを求めよ.
- (5) $a \in \mathbb{R}$ に対して

$$F(x, y, z) := (xy^2, -2y^3z^2, xyz),$$

 $G(x, y, z) := (-x + 3e^y, y - 2\sin z, \cos x + az)$

- (a) div **F** を求めよ.
- (b) すべての $(x, y, z) \in \mathbb{R}^3$ に対して, div $\mathbf{G} = 0$ となるように, a を定めよ.
- (6) $\mathbf{F}(x, y, z) := (2x^2, -3xyz, xz^2)$ とおく.
 - (a) div **F** を求めよ.
 - (b) rot **F** を求めよ.

(7)
$$f(x,y,z) := \frac{e^x}{\sqrt{x^2 + y^2 + z^2}}$$
 $((x,y,z) \in \mathbb{R}^3 \setminus \{(0,0,0)\})$ とおく.

- (a) $\frac{\partial f}{\partial x}$ を求めよ.
- (b) $\frac{\partial^2 f}{\partial x^2}$ を求めよ.
 (c) $\frac{\partial^2 f}{\partial x \partial y}$ を求めよ.
 (d) Δf を求めよ.

以下余白 計算用紙として使ってよい.

問題 2.

 $x, y, z \in \mathbb{R}^3$ とする.

- (1) $\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})\mathbf{y} (\mathbf{x} \cdot \mathbf{y})\mathbf{z}$ を示せ.
- (2) $(\mathbf{x} \times \mathbf{y}) \times \mathbf{z} = (\mathbf{x} \cdot \mathbf{z})\mathbf{y} (\mathbf{y} \cdot \mathbf{z})\mathbf{x}$ を示せ.

問題 3.

開集合 $\Omega \subset \mathbb{R}^3$ 上のスカラー場 f とベクトル場 F, G について, 次の等式をそれぞれ示せ.]

- (1) $\operatorname{rot}(\boldsymbol{F} + \boldsymbol{G}) = \operatorname{rot} \boldsymbol{F} + \operatorname{rot} \boldsymbol{G}$
- (2) $\operatorname{rot}(f\mathbf{F}) = f \operatorname{rot} \mathbf{F} + \nabla f \times \mathbf{F}$

問題 4.

 $n \in \mathbb{N}, t > 0, \boldsymbol{x} \in \mathbb{R}^n$ に対して

$$\rho(t, \boldsymbol{x}) := \frac{1}{(4\pi t)^{\frac{n}{2}}} \exp\left(-\frac{|\boldsymbol{x}|^2}{4t}\right)$$

とおく.

- (1) $\frac{\partial \rho}{\partial t}(t, \boldsymbol{x}) = C(t, \boldsymbol{x})\rho(t, \boldsymbol{x})$ と書いた時, $C(t, \boldsymbol{x})$ を求めよ.
- (2) $\nabla \rho$, $\Delta \rho$ をそれぞれ求めよ. ただし, ∇ や Δ は x 変数に対する 勾配, Laplacian である.

問題 5.

 $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ に対して,

$$\Gamma(\boldsymbol{x}) := \log(x^2 + y^2)$$

- (1) $\frac{\partial \Gamma}{\partial x}$ を求めよ.
- (2) $-\Delta\Gamma = 0$ となることを示せ.

以下余白 計算用紙として使ってよい.