Ex13

Chathrua Gunasekara

1.a Preprocessing steps done in chapter 12 are repeated in the same way in this exercise too.

Preprocessing done on both bio and chem and combined data sets.

- i. Remove nearzero variance predictors
- ii. Remove high correlated predictors
- iii. Remove linear combination predictors
- iv. Splitting data set using stratified sampling

Following diagram illustrates the class distribution in predictor variable.

1. Mixture Discriminant Analysis

```
225 samples
 96 predictor
  3 classes: 'Mild', 'None', 'Severe'
Pre-processing : Center and Scale
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 225, 225, 225, 225, 225, 2...
Resampling results across tuning parameters:
  subclasses Accuracy
                                    Accuracy SD
                                                 Kappa SD
                        Kappa
  1
             0.4145599 0.05659400 0.05389300
                                                 0.06594883
  2
             0.4239917 0.06274809 0.03231601
                                                 0.04932816
  3
             0.4361365 0.07152077
                                    0.03558633
                                                 0.05913592
  4
             0.3832163 0.01625659 0.02123588
                                                 0.02585894
  5
             0.4129537 0.05560859 0.06633504
                                                 0.08922207
```

Kappa was used to select the optimal model using the largest value. The final value used for the model was subclasses = 3.

Confusion Matrix and Statistics

Reference

Prediction Mild None Severe
Mild 19 12 3
None 6 9 2
Severe 4 0 1

Overall Statistics for Testing set

Accuracy : 0.5179

95% CI: (0.3803, 0.6534)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.5537

Kappa : 0.1424 Mcnemar's Test P-Value : 0.2464

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.6552 0.4286 0.16667 Specificity 0.4444 0.7714 0.92000

2. Neural Network

225 samples
96 predictor

3 classes: 'Mild', 'None', 'Severe'

Pre-processing: spatial sign transformation, scaled, centered

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 2...

Resampling results across tuning parameters:

size	decay	Accuracy	Карра	Accuracy SD	Kappa SD
1	0.0	0.3912201	-0.0005849393	0.07975896	0.05673328
1	0.1	0.4407795	-0.0262458622	0.04372911	0.07310105
1	1.0	0.4600638	-0.0362919794	0.04409184	0.06066712
1	2.0	0.4921698	-0.0068195868	0.07045113	0.01971180
2	0.0	0.3856094	-0.0004402377	0.08293128	0.07808454

```
0.0
5
          0.4096316 -0.0014802390 0.05190740
                                               0.07650497
    0.1
5
          0.4270451 0.0019751218 0.04324519
                                               0.06628027
5
    1.0
          0.4633821 -0.0181128791 0.04928725
                                               0.07184842
5
    2.0
          0.4947387 -0.0061781221 0.06236068
                                               0.01782982
    0.0
          0.4095587 0.0010321192 0.04626995
                                               0.05163436
6
6
    0.1
          0.4321282 0.0098848259 0.04536148
                                               0.07110344
6
    1.0
          0.4618823 -0.0210948650 0.04883736
                                               0.07177771
    2.0
          0.4947387 -0.0061781221
                                   0.06236068
                                               0.01782982
6
7
    0.0
          0.4185346 0.0122778107
                                   0.05351421
                                               0.08608156
          0.4320596 0.0091119355 0.04101778
7
    0.1
                                               0.06640802
7
    1.0
          0.4628187 -0.0189470605 0.04884592
                                               0.07115908
    2.0 0.4947387 -0.0061781221 0.06236068
7
                                               0.01782982
8
    0.0
         0.4288824 0.0154870583 0.04395671
                                               0.06638126
8
    0.1 0.4280180 0.0038667622 0.04409914
                                               0.06890253
          0.4623368 -0.0200885878 0.04870877
8
    1.0
                                               0.07126549
8
   2.0
         0.4947387 -0.0061781221 0.06236068
                                               0.01782982
         0.4200026 -0.0016920521 0.04874879
9
    0.0
                                               0.07801793
9
    0.1 0.4280546 0.0062862751 0.04730466
                                               0.07316046
9
    1.0
        0.4617518 -0.0207221916 0.04745530
                                               0.07010182
9
    2.0
          0.4947387 -0.0061781221 0.06236068
                                               0.01782982
```

Kappa was used to select the optimal model using the largest value. The final values used for the model were size = 8 and decay = 0.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 20 13 5 None 7 7 1 Severe 2 1 0

Overall Statistics

Accuracy : 0.4821

95% CI: (0.3466, 0.6197)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.7482

Kappa : 0.0453

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.6897 0.3333 0.00000 Specificity 0.3333 0.7714 0.94000

3. Flexible Discriminant Analysis

225 samples
96 predictor

3 classes: 'Mild', 'None', 'Severe'

Pre-processing : Center and Scale Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 2...

Resampling results across tuning parameters:

nprune	Accuracy	Карра	Accuracy SD	Kappa SD
2	0.4861072	0.006071507	0.05023715	0.05087418
35	0.4402642	0.046216816	0.04940299	0.08463509
69	0.4361744	0.048250463	0.05527767	0.08147733

Tuning parameter 'degree' was held constant at a value of 1
Kappa was used to select the optimal model using the largest value.
The final values used for the model were degree = 1 and nprune = 69.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 25 16 5 None 1 4 1 Severe 3 1 0

Overall Statistics

Accuracy : 0.5179

95% CI: (0.3803, 0.6534)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.553730

Kappa: 0.0847

Mcnemar's Test P-Value : 0.003289

Statistics by Class:

Class: Mild Class: None Class: Severe

 Sensitivity
 0.8621
 0.19048
 0.00000

 Specificity
 0.2222
 0.94286
 0.92000

4. Support Vector Machines with Radial Basis Function Kernel

```
225 samples
 96 predictor
  3 classes: 'Mild', 'None', 'Severe'
Pre-processing : Center and Scale
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 225, 225, 225, 225, 225, 2...
Resampling results across tuning parameters:
  C
          Accuracy
                     Kappa
                                  Accuracy SD Kappa SD
  0.0625 0.5121283 0.000000000 0.04002546
                                               0.000000000
  0.1250 0.5121283 0.000000000 0.04002546
                                               0.000000000
  0.2500 0.5097409 0.000987425 0.03592039
                                               0.008526046
  0.5000 0.4977915 -0.009749648 0.03509011
                                              0.028841709
  1.0000 0.4932844 0.005611551 0.04567346
                                              0.076477763
  2.0000 0.4863447 0.012146986 0.04611067 0.097487928
  4.0000 0.4837670 0.035061047 0.03573951
                                              0.073209728
  8.0000 0.4860284 0.063532606 0.03820134 0.071332936
  16.0000 0.4700797 0.048854218 0.04206646
                                               0.076239954
Tuning parameter 'sigma' was held constant at a value of 0.002492319
Kappa was used to select the optimal model using the largest value.
The final values used for the model were sigma = 0.002492319 and C = 8.
Confusion Matrix and Statistics Testing set
         Reference
Prediction Mild None Severe
   Mild
            22 13
                  8
   None
             6
                        1
                  0
   Severe
             1
                         0
Overall Statistics
              Accuracy : 0.5357
                95% CI: (0.3974, 0.6701)
   No Information Rate: 0.5179
   P-Value [Acc > NIR] : 0.4475
                 Kappa : 0.1202
 Mcnemar's Test P-Value: 0.1003
Statistics by Class:
```

Class: Mild Class: None Class: Severe Sensitivity 0.7586 0.3810 0.00000 Specificity 0.3333 0.8000 0.98000

5. k-Nearest Neighbors

225 samples

96 predictor

3 classes: 'Mild', 'None', 'Severe'

Pre-processing : Center and Scale

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 2...

Resampling results across tuning parameters:

k	Accuracy	Карра	Accuracy SD	Kappa SD
1	0.4798202	0.096591515	0.05429008	0.085075079
5	0.4644326	0.068348020	0.05141708	0.068566556
9	0.4749089	0.055596568	0.05450278	0.076484795
13	0.5054816	0.077005867	0.06561231	0.080430756
17	0.5148153	0.079358231	0.06213484	0.069301861
251	0.5256963	0.000000000	0.04019658	0.000000000
301	0.5256963	0.000000000	0.04019658	0.000000000
351	0.5256963	0.000000000	0.04019658	0.000000000
401	0.5256963	0.000000000	0.04019658	0.000000000
451	0.5256963	0.000000000	0.04019658	0.000000000

Kappa was used to select the optimal model using the largest value.

The final value used for the model was k = 13.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 27 16 5 None 2 5 0 Severe 0 0 1

Overall Statistics

Accuracy: 0.5893

95% CI: (0.4498, 0.719)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.1747 Kappa : 0.1904

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: Mild Class: None Class: Severe

Sensitivity 0.9310 0.23810 0.16667 Specificity 0.2222 0.94286 1.00000

6. Naive Bayes

225 samples

96 predictor

3 classes: 'Mild', 'None', 'Severe'

Pre-processing : Center and Scale

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 225, ...

Resampling results across tuning parameters:

usekernel Accuracy Kappa Accuracy SD Kappa SD

FALSE NaN NA NA

TRUE 0.2618047 0.02044771 0.1022174 0.04616507

Tuning parameter 'fL' was held constant at a value of 0

Kappa was used to select the optimal model using the largest value.

The final values used for the model were fL = 0 and usekernel = TRUE.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 2 1 1 None 3 4 0 Severe 24 16 5

Overall Statistics

Accuracy : 0.1964

95% CI: (0.1023, 0.3243)

No Information Rate : 0.5179

P-Value [Acc > NIR] : 1

Kappa: 0.0319

Mcnemar's Test P-Value : 2.614e-08

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.06897 0.19048 0.83333 Specificity 0.92593 0.91429 0.20000

From Ex 12:

FOR Testing set:

LIEAR MODEL	Accuracy	Карра
Logistic Reg (averaged)	0.5833	0.02
<u>LDA</u>	0.5179	0.102
PLSDA	0.5893	0.04
NSC	0.625	0.07

NON LIEAR MODEL	Accuracy	Карра
<u>MDA</u>	<u>0.5179</u>	<u>0.1424</u>
NNet	0.4821	0.0453
FDA	0.5179	0.0847
SVM	0.5357	0.1202
KNN	0.5893	0.1904
Naïve Bayes	0.1964	0.0319

Best Models for Biological predictors is MDA model. Yes it does do a better job than all of the Linear models from chapter 12 for the biological data.

Chemical Predictors

(Same preprocessing has been done as the Ex 12 and biological predictors)

1. Mixture Discriminant Analysis

```
225 samples
105 predictors
```

3 classes: 'Mild', 'None', 'Severe'

Pre-processing : Center and Scale Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, ...

Resampling results across tuning parameters:

subclasses	Accuracy	Карра	Accuracy SD	Kappa SD
1	0.4768575	0.1407148	0.04461386	0.06389823
2	0.4809074	0.1380243	0.04511030	0.06184408
3	0.4790951	0.1497179	0.04332225	0.06019336
4	0.4930027	0.1261193	0.02066666	0.06079511
5	0.4935065	0.1365727	NA	NA

Kappa was used to select the optimal model using the largest value. The final value used for the model was subclasses = 3.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 19 12 6 None 7 4 0 Severe 3 5 0

Overall Statistics

Accuracy : 0.4107

95% CI: (0.281, 0.5502)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.95910

Kappa : -0.0359

Mcnemar's Test P-Value: 0.06249

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.6552 0.19048 0.0000 Specificity 0.3333 0.80000 0.8400

2. Neural Network

225 samples105 predictors

3 classes: 'Mild', 'None', 'Severe'

Pre-processing: spatial sign transformation, scaled, centered

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 2...

Resampling results across tuning parameters:

size	decay	Accuracy	Карра	Accuracy SD	Kappa SD
1	0.0	0.4362578	0.0643256215	0.09454080	0.086041032
1	0.1	0.5397015	0.1535189601	0.05579580	0.090870709
1	1.0	0.5319810	0.1108969983	0.05090369	0.075931592
1	2.0	0.5029356	0.0000000000	0.07226298	0.000000000
2	0.0	0.4656351	0.1232237996	0.07902498	0.083677834
2	0.1	0.5220552	0.1522592843	0.05154941	0.080289755
2	1.0	0.5276783	0.1028643224	0.05041837	0.088945147
2	2.0	0.5029356	0.0000000000	0.07226298	0.000000000
3	0.0	0.4837104	0.1179377366	0.05773742	0.083631879
3	0.1	0.5289381	0.1632786716	0.05074972	0.086573708
3	1.0	0.5262686	0.1016492490	0.05092069	0.088742193
3	2.0	0.5038245	-0.0011502054	0.06931202	0.005751027
4	0.0	0.4652746	0.0940609344	0.06512006	0.089810182
4	0.1	0.5360214	0.1756546192	0.05396036	0.088262583
4	1.0	0.5276264	0.1036408713	0.05074551	0.088828979
4	2.0	0.5038245	-0.0011502054	0.06931202	0.005751027
5	0.0	0.4855815	0.1182206895	0.04985448	0.080637664
6	0.1	0.5326444	0.1667321278	0.04741452	0.079481441
6	1.0	0.5276311	0.1037629926	0.05048460	0.087904638
6	2.0	0.5042690	-0.0007327586	0.06789757	0.003663793
7	0.0	0.4965067	0.1325307242	0.05740434	0.087491481

Kappa was used to select the optimal model using the largest value. The final values used for the model were size = 4 and decay = 0.1.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe
Mild 20 7 6
None 5 10 0
Severe 4 4 0

Overall Statistics for Testing set

Accuracy : 0.5357

95% CI: (0.3974, 0.6701)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.4475

Kappa : 0.1982 Mcnemar's Test P-Value : 0.1924

Statistics by Class:

	Class: Mild	Class: None	Class: Severe
Sensitivity	0.6897	0.4762	0.0000
Specificity	0.5185	0.8571	0.8400
Pos Pred Value	0.6061	0.6667	0.0000
Neg Pred Value	0.6087	0.7317	0.8750
Prevalence	0.5179	0.3750	0.1071
Detection Rate	0.3571	0.1786	0.0000
Detection Prevalence	0.5893	0.2679	0.1429
Balanced Accuracy	0.6041	0.6667	0.4200

3. Flexible Discriminant Analysis

225 samples

105 predictors

3 classes: 'Mild', 'None', 'Severe'

Pre-processing : Center and Scale Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 2...

Resampling results across tuning parameters:

nprune	Accuracy	Карра	Accuracy SD	Kappa SD
2	0.5015368	0.03112774	0.04447235	0.06885291
37	0.4923910	0.12518750	0.05192218	0.06916835
72	0 4839631	0 12240884	0 05371793	0 07259106

Tuning parameter 'degree' was held constant at a value of 1
Kappa was used to select the optimal model using the largest value.
The final values used for the model were degree = 1 and nprune = 37.

Confusion Matrix and Statistics for Testing set

Reference

Prediction Mild None Severe

Mild 18 10 5 None 7 10 1 Severe 4 1 0

Overall Statistics

Accuracy: 0.5

95% CI: (0.3634, 0.6366)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.6562

Kappa : 0.1146 Mcnemar's Test P-Value : 0.8871

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.6207 0.4762 0.00000 Specificity 0.4444 0.7714 0.90000

4. Support Vector Machines with Radial Basis Function Kernel

225 samples

105 predictors

3 classes: 'Mild', 'None', 'Severe'

Pre-processing : Center and Scale Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 2...

Resampling results across tuning parameters:

C	Accuracy	Карра	Accuracy SD	Kappa SD
0.0625	0.5145799	0.000000000	0.03848358	0.00000000
0.1250	0.5145799	0.000000000	0.03848358	0.00000000
0.2500	0.5136192	0.001083215	0.03693514	0.00978591
0.5000	0.5183040	0.035416932	0.03409514	0.04878818
1.0000	0.5396650	0.111770968	0.03903374	0.07316135
2.0000	0.5581065	0.171586409	0.05365454	0.09837376
4.0000	0.5638349	0.201461792	0.04848978	0.08507142
8.0000	0.5527656	0.195408110	0.04879124	0.08445991
16.0000	0.5491559	0.194837858	0.05111048	0.08646477

Tuning parameter 'sigma' was held constant at a value of 0.002809725 Kappa was used to select the optimal model using the largest value. The final values used for the model were sigma = 0.002809725 and C = 4.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 23 13 6 None 6 8 0 Severe 0 0 0 Overall Statistics

Accuracy : 0.5536

95% CI: (0.4147, 0.6866)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.3448

Kappa : 0.1379

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: Mild Class: None Class: Severe

Sensitivity 0.7931 0.3810 0.0000 Specificity 0.2963 0.8286 1.0000

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 19 9 3 None 10 12 2 Severe 0 0 1

Overall Statistics

Accuracy : 0.5714

95% CI: (0.4322, 0.7029)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.2524

Kappa: 0.2218

Statistics by Class:

Class: Mild Class: None Class: Severe

Sensitivity 0.6552 0.5714 0.16667 Specificity 0.5556 0.6571 1.00000

5. k-Nearest Neighbors

225 samples

105 predictors

3 classes: 'Mild', 'None', 'Severe'

Pre-processing: Center and Scale

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 225, ...

Resampling results across tuning parameters:

k Accuracy Kappa Accuracy SD Kappa SD

```
3 0.5454926 0.2131093798 0.04922864 0.085427893
```

5 0.4854528 0.1079461141 0.04748937 0.069487519

9 0.4861334 0.0839134159 0.05149011 0.089374177

 $13\ 0.4918352\ 0.0866274922\ 0.04852894\ 0.080135955$

17 0.4907008 0.0854200474 0.06183916 0.092388082

21 0.4873642 0.0756337978 0.05701704 0.084778743

Kappa was used to select the optimal model using the largest value.

The final value used for the model was k = 3

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 23 12 3 None 5 5 2 Severe 1 4 1

Overall Statistics

Accuracy : 0.5179

95% CI: (0.3803, 0.6534)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.5537

Kappa : 0.134

Statistics by Class:

Class: Mild Class: None Class: Severe

Sensitivity 0.7931 0.23810 0.16667 Specificity 0.4444 0.80000 0.90000

6. Naive Bayes

225 samples

105 predictors

3 classes: 'Mild', 'None', 'Severe'

Pre-processing: Center and Scale

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 225, ...

Resampling results across tuning parameters:

usekernel Accuracy Kappa Accuracy SD Kappa SD

FALSE NaN NA NA

TRUE 0.5012535 0.06762174 0.05173594 0.07834722

Tuning parameter 'fL' was held constant at a value of 0

Kappa was used to select the optimal model using the largest value.

The final values used for the model were fL = 0 and usekernel = TRUE.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 25 15 5

None 4 5 1

Severe 0 1 0

Overall Statistic

Accuracy: 0.5357

Kappa: 0.0985

For Testing set:

LINEAR	Accuracy	Карра
LDA	0.5179	0.102
PLSDA	0.5357	0.145
NSC	0.51	0

Non Linear Model	Accuracy	Карра
MDA	0.4107	-0.012
NNEt	0.5389	0.1982
FDA	0.5	0.1146
SVM	0.5536	0.1379
KNN	0.5179	0.134
Naïve Bayes	0.5357	0.0985

Non Lenear model Neural network is better for the Chemical predictor comparing all the models linear and non linear.

Combined Predictors(BIO+CHEM)

1. Non linear Discrimination Analysis

```
mda(formula = trainY ~ ., data = train)
 Dimension: 8
 Pre Process: Center and Scale
 Percent Between-Group Variance Explained:
                  v3
                         v4
                               v5
            v2
                                       ν6
                                              v7
  45.62 70.54 79.58 87.30 92.60 96.98 99.22 100.00
 Deviance: 0
 Confusion Matrix and Statistics
           Reference
  Prediction Mild None Severe
     Mild
              11 11
     None
              11
                   4
                          1
     Severe
              7
                          2
 Overall Statistics for Testing set
                Accuracy : 0.3036
```

95% CI: (0.1878, 0.441)

No Information Rate: 0.5179 P-Value [Acc > NIR] : 0.9996

Kappa : -0.1003

Mcnemar's Test P-Value : 0.1597

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.3793 0.19048 0.33333 Specificity 0.4815 0.65714 0.74000

2. Neural Network

```
225 samples
202 predictors
  3 classes: 'Mild', 'None', 'Severe'
Pre-processing: spatial sign transformation, scaled, centered
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 225, 225, 225, 225, 225, ...
Resampling results across tuning parameters:
```

size	decay	Accuracy	Kappa	Accuracy SD	Kappa SD
1	0.0	0.4537836	0.07471607	0.08057553	0.06684354
1	0.1	0.5133845	0.12088479	0.06281646	0.10210564
2	0.0	0.4428505	0.08085378	0.06288195	0.07227809
2	0.1	0.5023176	0.11916586	0.05634693	0.09123446
3	0.0	0.4676187	0.08745088	0.04241189	0.07151448
3	0.1	0.4956529	0.10897236	0.05547206	0.08962320
4	0.0	0.4686464	0.09977135	0.04895218	0.07394145

Kappa was used to select the optimal model using the largest value. The final values used for the model were size = 1 and decay = 0.1.

Confusion Matrix and Statistics for Testing set

Reference

Prediction Mild None Severe

Mild 17 16 5 None 12 5 5 Severe 0 0

Overall Statistics

Accuracy : 0.3929

95% CI: (0.265, 0.5325)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.97778

Kappa : -0.1498

Mcnemar's Test P-Value: 0.08689

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.5862 0.23810 0.0000 Specificity 0.2222 0.62857 1.0000

3.Flexible Discriminant Analysis

225 samples

202 predictors

3 classes: 'Mild', 'None', 'Severe'

Pre-processing : Center and Scale Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 2...

Resampling results across tuning parameters:

```
nprune Accuracy Kappa Accuracy SD Kappa SD 2 0.4850801 0.01561390 0.04515211 0.06310917 38 0.4773120 0.11601226 0.05975337 0.09750591 74 0.4413228 0.08431081 0.07197247 0.10911220
```

Tuning parameter 'degree' was held constant at a value of 1
Kappa was used to select the optimal model using the largest value.
The final values used for the model were degree = 1 and nprune = 38.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe
Mild 22 14 2
None 6 6 2
Severe 1 1 2

Overall Statistics

Accuracy : 0.5357

95% CI: (0.3974, 0.6701)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.4475

Kappa : 0.1515 Mcnemar's Test P-Value : 0.2762

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.7586 0.2857 0.33333 Specificity 0.4074 0.7714 0.96000

4. Support Vector Machines with Radial Basis Function Kernel

0.2500 0.5119341 0.005702462 0.04175516 0.02721642

```
0.50000.51475710.0407197940.036827830.060752671.00000.52282230.0788641230.035923250.066883092.00000.53743300.1287099710.037442460.062124694.00000.53743550.1478965080.046520340.082071688.00000.52328910.1381260800.046649730.0785721416.00000.51076180.1239365610.053967260.09679151
```

Tuning parameter 'sigma' was held constant at a value of 0.001278265 Kappa was used to select the optimal model using the largest value. The final values used for the model were sigma = 0.001278265 and C = 4.

Confusion Matrix and Statistics for testing set

Reference

Prediction Mild None Severe
Mild 20 17 6
None 8 4 0
Severe 1 0 0

Overall Statistics

Accuracy : 0.4286

95% CI: (0.2971, 0.5678)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.9294

Kappa : -0.0987

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.6897 0.19048 0.00000 Specificity 0.1481 0.77143 0.98000

5. k-Nearest Neighbors

225 samples

202 predictors

3 classes: 'Mild', 'None', 'Severe'

pre-processing: Center and Scale

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 225, ...

Resampling results across tuning parameters:

k Accuracy Kappa Accuracy SD Kappa SD

 $1\ 0.4604128\ 0.1026969919\ 0.04571765\ 0.077625979$

5 0.4770297 0.1049465821 0.06632193 0.077520150

9 0.4769611 0.0710456864 0.07567141 0.095280731

13 0.4775598 0.0496226638 0.07097258 0.077295030

17 0.4853737 0.0475059905 0.06182266 0.062205010

21 0.4850623 0.0382689613 0.06228243 0.079176958

41 0.4952677 0.0311927608 0.05836922 0.081458116

Kappa was used to select the optimal model using the largest value.

The final value used for the model was k = 5.

Confusion Matrix and Statistics for Testing set

Reference

Prediction Mild None Severe

Mild 18 12 4

None 9 8 2

Severe 2 1 0

Overall Statistics

Accuracy : 0.4643

95% CI: (0.3299, 0.6026)

No Information Rate: 0.5179

P-Value [Acc > NIR] : 0.8254

Kappa : 0.0306

Mcnemar's Test P-Value : 0.6989

Statistics by Class:

Class: Mild Class: None Class: Severe

Sensitivity 0.6207 0.3810 0.00000

Specificity 0.4074 0.6857 0.94000

6.Naive Bayes

225 samples

202 predictors

3 classes: 'Mild', 'None', 'Severe'

Pre-processing : Center and Scale

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 225, 225, 225, 225, 225, 225, ...

Resampling results across tuning parameters:

usekernel Accuracy Kappa Accuracy SD Kappa SD

FALSE NaN NA NA

TRUE 0.4643774 0.08191371 0.08246112 0.07702208

Tuning parameter 'fL' was held constant at a value of 0

Kappa was used to select the optimal model using the largest value.

The final values used for the model were fL = 0 and usekernel = TRUE.

Confusion Matrix and Statistics Testing set

Reference

Prediction Mild None Severe

Mild 22 18 5 None 4 2 0 Severe 3 1 1

Overall Statistics

Accuracy : 0.4464

95% CI: (0.3134, 0.5853)

No Information Rate : 0.5179 P-Value [Acc > NIR] : 0.88561

Kappa : -0.0364

Statistics by Class:

Class: Mild Class: None Class: Severe Sensitivity 0.7586 0.09524 0.16667 Specificity 0.1481 0.88571 0.92000

Testing set:

Linear	Accuracy	Карра	Sensitivity	Specificity
LDA	0.3571	0.03	0.412	0.695
PLSDA	0.5357	0.09	0.4562	0.6298
NSC	0.4643	0.09	0	0.905

Non Linear Models	Accuracy	Карра
MDA	0.3069	0.032
NNet	0.3929	0.0132
FDA	0.5357	0.1515
SVM	0.4268	0.031
KNN	0.4643	0.036
Naïve Bayes	0.4464	0.03

Both Linear and Non-linear models discussed in here do NOT do better on the combined data set. Only F DA shows somewhat better performance.

$20\ most$ important variables shown (out of 96) for $\underline{\textbf{Biological Data}}$

20 most important variables shown (out of 96) for <u>Chemical Predictors</u>

111111111111111111111111111111111111111	
Z15 0.6013 0.6355 0.6355	Mild None Severe
Z100 0.6015 0.6108 0.6108	X139 0.6694 0.6870 0.6870
Z116 0.5990 0.5515 0.5990	X145 0.6566 0.6804 0.6804
Z59 0.5803 0.5434 0.5803	X1 0.6386 0.6711 0.6711
Z44 0.5801 0.5578 0.5801	X133 0.5903 0.6701 0.6701
Z56 0.5700 0.5782 0.5782	X132 0.6307 0.6672 0.6672
Z167 0.5756 0.5441 0.5756	X144 0.6471 0.6600 0.6600
Z64 0.5695 0.5695 0.4603	X101 0.6228 0.6576 0.6576
Z34 0.5658 0.5658 0.5241	X35 0.5867 0.6544 0.6544
Z121 0.5368 0.5581 0.5581	X138 0.6480 0.6346 0.6480
Z18 0.5580 0.5580 0.5090	X81 0.6221 0.6471 0.6471
Z101 0.5571 0.5461 0.5571	X150 0.6386 0.5990 0.6386
Z7 0.5548 0.5424 0.5548	X120 0.5744 0.6348 0.6348
Z46 0.5523 0.5523 0.4343	X171 0.6060 0.6297 0.6297
Z11 0.5514 0.5272 0.5514	X103 0.5997 0.6260 0.6260
Z71 0.5498 0.5498 0.4652	X127 0.6058 0.6240 0.6240
Z50 0.5487 0.5487 0.5208	X24 0.5961 0.6208 0.6208
Z42 0.5477 0.5477 0.4682	X28 0.5894 0.6196 0.6196
Z53 0.5016 0.5453 0.5453	X62 0.5824 0.6137 0.6137
Z48 0.5450 0.5450 0.4447	X142 0.6128 0.5953 0.6128
	X23 0.6124 0.5738 0.6124

c) Combined Predictors

only 20 most important variables shown (out of

202) BIO+CHEM Combined

Mild	None	Severe
------	------	--------

X1 0.6640 0.6757 0.6757

X172 0.6652 0.6373 0.6652

X139 0.6426 0.6608 0.6608

X150 0.6573 0.5880 0.6573

X142 0.6518 0.6162 0.6518

X132 0.6403 0.6458 0.6458

X138 0.6406 0.6272 0.6406

X141 0.6404 0.6071 0.6404

X28 0.6160 0.6370 0.6370

X24 0.5907 0.6331 0.6331

X120 0.5916 0.6331 0.6331

X144 0.6306 0.6284 0.6306

X151 0.6304 0.5716 0.6304

Z15 0.5675 0.6265 0.6265

X171 0.5729 0.6243 0.6243

X133 0.5445 0.6225 0.6225

X145 0.6036 0.6196 0.6196

X123 0.6144 0.6154 0.6154

Z40 0.5671 0.6125 0.6125

X85 0.6058 0.6110 0.61

d) **Biological data with Non-Linear model(SVM)** performs best out of other cases consider in this exercise.

2.a. Because the class imbalance the data set should be split using stratified sampling.

Based on the Correlation plot there are some correlated predictors which were removed.

1. Mixture Discriminant Analysis

```
74 samples
 6 predictor
 7 classes: 'A', 'B', 'C', 'D', 'E', 'F', 'G'
Pre-processing : Center and Scale
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 74, 74, 74, 74, 74, 74, ...
Resampling results across tuning parameters:
  subclasses Accuracy
                        Kappa
                                    Accuracy SD Kappa SD
              0.9268027 0.9000571 0.04613226
                                                 0.06230732
   1
              0.9136905 0.8766354 0.09978009
                                                 0.14252050
Kappa was used to select the optimal model using the largest value.
The final value used for the model was subclasses = 1.
Confusion Matrix and Statistics Testing set
          Reference
Prediction A B C D E F G
         A 9 0 0 0 0 0 0
         B 0 6 0 0 0 0 0
         C 0 0 1 0 0 0 0
         D 0 0 0 1 0 0 0
         E 0 0 0 0 2 0 0
         F 0 0 0 0 0 2 0
         G 0 0 0 0 0 0 1
Overall Statistics for Testing set :
               Accuracy: 1
                 95% CI: (0.8456, 1)
    No Information Rate : 0.4091
    P-Value [Acc > NIR] : 2.884e-09
                  Kappa: 1
 Mcnemar's Test P-Value : NA
Statistics by Class:
                     Class: A Class: B Class: C Class: D Class: E Class: F
                                1.0000 1.00000 1.00000 1.00000
Sensitivity
                       1.0000
                                                                   1.00000
                                1.0000 1.00000 1.00000 1.00000
Specificity
                       1.0000
                                                                   1.00000
                     Class: G
Sensitivity
                      1.00000
```

```
Variables are sorted by maximum importance across the classes

A B C D E F G

Stearic 1 1.00 1 1 1 1.0000 1

Palmitic 1 1.00 1 1 1 1.0000 1

Linolenic 1 1.00 1 1 1 1.0000 1

Oleic 1 1.00 1 1 1 1.0000 1

Eicosanoic 1 0.95 1 1 1 1.0000 1

Eicosenoic 1 1.00 1 1 1 0.8542 1
```

2. Neural Network

```
74 samples
6 predictor
7 classes: 'A', 'B', 'C', 'D', 'E', 'F', 'G'

Pre-processing: spatial sign transformation, scaled, centered Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 74, 74, 74, 74, 74, ...
```

Resampling results across tuning parameters:

```
size decay Accuracy
                     Kappa
                                Accuracy SD
                                            Kappa SD
           0.6987881 0.57791892 0.11334438
                                            0.14718124
1
     0.0
1
     0.1
           0.6366933 0.47999634 0.13745402
                                            0.15611758
3
     0.0
           0.8280413 0.76343216 0.10899117
                                            0.14861201
 3
     0.1
          0.9036922 0.86530845 0.09538117
                                            0.13467173
3
     1.0
           0.6731553 0.50692249 0.11053172
                                            0.14404744
 3
     2.0
          0.5259045 0.27195591 0.16456447
                                            0.22225626
4
     0.0
          0.8634232 0.81252625 0.10719723
                                            0.14398761
     0.1
          0.9088823 0.87356650 0.09228015
4
                                            0.12790248
4
     1.0
          0.6886408 0.53435636 0.11699580
                                            0.15801568
           0.5291096 0.27813048 0.16321931
     2.0
4
                                            0.21659432
5
     0.0 0.8754391 0.82796214 0.09683868
                                            0.13396598
           0.9148953 0.88264541 0.08742802
 5
     0.1
                                            0.11942961
5
     1.0
           0.6948350 0.54428195 0.11903585
                                            0.16212303
     2.0
           0.5470168 0.30760730 0.16391903
                                            0.21663562
```

Kappa was used to select the optimal model using the largest value. The final values used for the model were size = 5 and decay = 0.1.

Confusion Matrix and Statistics Testing set

```
Reference
Prediction A B C D E F G
A 9 0 0 0 0 0 0 0
B 0 6 0 0 0 0 1
C 0 0 1 0 0 0 0
D 0 0 0 0 0 0 0
E 0 0 0 0 1 0 2 0
G 0 0 0 0 0 0 0
```

Overall Statistics for Testing set

Accuracy : 0.9091

95% CI: (0.7084, 0.9888)

No Information Rate : 0.4091 P-Value [Acc > NIR] : 1.485e-06

Kappa : 0.8743

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: A Class: B Class: C Class: D Class: E Class: F Sensitivity 1.0000 1.00000 1.00000 1.00000 1.00000 1.00000 5pecificity 1.0000 0.9375 1.00000 1.00000 1.00000 0.95000

Class: G 0.00000

Sensitivity 0.00000 Specificity 1.00000

3. Flexible Discriminant Analysis

74 samples

6 predictor

7 classes: 'A', 'B', 'C', 'D', 'E', 'F', 'G'

Pre-processing : Center and Scale

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 74, 74, 74, 74, 74, 74, ...

Resampling results across tuning parameters:

nprune	Accuracy	Карра	Accuracy SD	Kappa SD
2	0.5788969	0.3919771	0.12983654	0.17813099
7	0.9212303	0.8937645	0.04500279	0.06016160
13	0.9237493	0.8969303	0.04157087	0.05550361

Tuning parameter 'degree' was held constant at a value of 1
Kappa was used to select the optimal model using the largest value.
The final values used for the model were degree = 1 and nprune = 13.

```
Confusion Matrix and Statistics Testing set
         Reference
Prediction A B C D E F G
        A 9 0 0 0 0 0 0
       B 0 6 0 0 0 0 0
       C 0 0 1 0 0 0 0
       D 0 0 0 1 0 0 0
       E 0 0 0 0 2 0 0
       F 0 0 0 0 0 2 0
       G 0 0 0 0 0 0 1
Overall Statistics
             Accuracy : 1
                Kappa : 1
Statistics by Class:
                   Class: A Class: B Class: C Class: D Class: E Class: F Class: G
Sensitivity
                    1.0000
                             1.0000 1.00000 1.00000 1.00000 1.00000
Specificity
                    1.0000 1.0000 1.00000 1.00000 1.00000 1.00000
fda variable importance
          Overall
Palmitic 100.00
Oleic 93.04
Linolenic 84.83
Stearic 74.44
Eicosenoic 28.78
```

Eicosanoic 0.00

5. Support Vector Machines with Radial Basis Function Kernel

```
74 samples
 6 predictor
 7 classes: 'A', 'B', 'C', 'D', 'E', 'F', 'G'
Pre-processing : Center and Scale
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 74, 74, 74, 74, 74, 74, ...
Resampling results across tuning parameters:
  C
          Accuracy
                     Kappa
                                Accuracy SD Kappa SD
  0.0625 0.3675221 0.00000000 0.06691789
                                             0.00000000
  0.1250 0.3884587 0.03673462 0.08308983
                                             0.08448864
  0.2500 0.6864940 0.54756831 0.14405452
                                             0.18809785
  0.5000 0.8072887 0.73374931 0.11593993 0.15174910
  1.0000 0.8937349 0.85520193 0.09786982 0.13207147
```

2.00000.92192430.895106080.077001600.100677524.00000.93151900.907545810.078228480.102749818.00000.94004120.905730220.078000190.1022090816.00000.93157970.907957200.079019960.10368099

Tuning parameter 'sigma' was held constant at a value of 0.033386 Kappa was used to select the optimal model using the largest value. The final values used for the model were sigma = 0.033386 and C = 8.

Confusion Matrix and Statistics Testing set

Reference

Overall Statistics

Accuracy : 0.9545

95% CI: (0.7716, 0.9988)

No Information Rate : 0.4091 P-Value [Acc > NIR] : 9.454e-08

Kappa : 0.9382

Mcnemar's Test P-Value : NA

Statistics by Class:

Class: G
Sensitivity 1.00000
Specificity 0.95238

6. k-Nearest Neighbors

74 samples

6 predictor

7 classes: 'A', 'B', 'C', 'D', 'E', 'F', 'G'

Pre-processing : Center and Scale

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 74, 74, 74, 74, 74, 74, ...

Resampling results across tuning parameters:

k	Accuracy	Карра	Accuracy SD	Kappa SD
3	0.9437413	0.921563597	0.03115882	0.04654870
5	0.8974869	0.859998705	0.06600801	0.08908393
9	0.8526078	0.800567045	0.07350034	0.09467525
13	0.7864498	0.710750040	0.11679834	0.15233482
17	0.7380869	0.640733236	0.08764073	0.11421086
21	0.6747135	0.541849740	0.10598175	0.14161552
41	0.5024954	0.283891081	0.12272963	0.13262620
61	0.3530650	0.001767019	0.06639894	0.01560056
81	0.3461684	-0.002319588	0.06692049	0.01037351
101	0.3522029	0.002561380	0.07035510	0.02483029
401	0.3547891	0.009154930	0.06847409	0.04094209
451	0.3461684	-0.009472656	0.06692049	0.04236301

Kappa was used to select the optimal model using the largest value. The final value used for the model was k = 3.

Confusion Matrix and Statistics Testing set

Reference

```
Overall Statistics for Testing set :
                Accuracy : 0.9091
                  95% CI: (0.7084, 0.9888)
     No Information Rate : 0.4091
     P-Value [Acc > NIR] : 1.485e-06
                   Kappa : 0.8732
   Mcnemar's Test P-Value : NA
 Statistics by Class:
                      Class: A Class: B Class: C Class: D Class: E Class: F
 Sensitivity
                        1.0000
                                 1.0000 1.00000 0.00000 1.00000 1.00000
 Specificity
                        0.9231
                                 1.0000 1.00000 1.00000 1.00000 0.95000
                      Class: G
 Sensitivity
                       0.00000
 Specificity
                       1.00000
7. Naive Bayes Classifier for Discrete Predictors
 Call:
  naiveBayes.default(x = trainX, y = trainY)
 A-priori probabilities:
 trainY
                     В
                                C
 0.37837838 0.27027027 0.02702703 0.08108108 0.12162162 0.10810811
```

0.01351351

trainY

Conditional probabilities:

[,1]

A 10.95714 1.36474894 B 6.29000 0.36259300 C 9.65000 0.07071068 D 11.90000 1.56588633 E 10.41111 0.69362173 F 5.11250 0.40510140

[,2]

NA

Palmitic

G 10.00000

```
Stearic
trainY [,1] [,2]
    A 5.335714 0.58004743
    B 4.050000 0.40457905
    C 3.350000 0.07071068
    D 2.783333 0.14719601
    E 3.988889 0.26193723
    F 1.925000 0.20528726
    G 2.300000 NA
     Oleic
trainY [,1] [,2]
    A 33.38929 4.391434
    B 26.25000 1.883865
    C 58.50000 1.131371
    D 73.90000 3.055487
    E 25.81111 2.010873
    F 58.87500 4.089272
    G 36.90000 NA
    Linolenic
trainY [,1] [,2]
    A 1.014286 1.00764275
    B 0.635000 0.51633832
    C 0.150000 0.07071068
    D 0.700000 0.08944272
    E 6.766667 0.79056942
    F 8.312500 0.99058064
    G 2.200000 NA
    Eicosanoic
trainY [,1] [,2]
    A 0.4142857 0.2731358
    B 0.3550000 0.5835238
    C 1.5000000 0.0000000
    D 0.1500000 0.1224745
    E 0.3111111 0.2204793
    F 0.4375000 0.2924649
    G 0.5000000 NA
     Eicosenoic
trainY [,1] [,2]
    A 0.1821429 0.14920424
    B 0.2000000 0.17770466
    C 1.5000000 0.42426407
    D 0.1333333 0.08164966
    E 0.2444444 0.26977357
    F 1.0000000 0.65246784
```

G 0.5000000 NA

Confusion Matrix and Statistics Testing set

Reference

Prediction A B C D E F G

A 9 0 0 1 0 0 1 B 0 6 0 0 0 0 0

C 0 0 1 0 0 0 0

D 0 0 0 0 0 0

E 0 0 0 0 2 0 0

F 0 0 0 0 0 2 0

G 0 0 0 0 0 0 0

Overall Statistics for Testing set :

Accuracy : 0.9091

95% CI: (0.7084, 0.9888)

No Information Rate : 0.4091 P-Value [Acc > NIR] : 1.485e-06

Kappa : 0.8706

Mcnemar's Test P-Value : NA

Statistics by Class:

	Class: A	Class: B	Class: C	Class: D	Class: E	Class: F
Sensitivity	1.0000	1.0000	1.00000	0.00000	1.00000	1.00000
Specificity	0.8462	1.0000	1.00000	1.00000	1.00000	1.00000

Class: G

Sensitivity 0.00000 Specificity 1.00000

LINEAR MODELS	Карра	Accuracy
LDA	1	1
PLSDA	0.7413	0.8182
Penalised Models	0.8764	0.9091
NSC	0.9391	0.9545

Non – LINEAR MODELS	Карра	Accuracy
MDA	1	1
NNet	0.8743	0.9091
FDA	1	1
SVM	0.9382	0.9545
KNN	0.8732	0.9091
Naïve Bayes	0.8706	0.9888

a).Based on Kappa and accuracy MDA and FDA are best models for this dataset from Non linear models. LDA from Linear models have similar performance. Two of the Non Linear models were able to do perfect classification and one of the linear models also achieved the same. Also performance difference in other models is very close. So I assume this is LINEAR BOUNDARY.

b).

Best predice Oil type: A

Least accurate oil type: G

```
title: "Ex13"
author: "Chathrua Gunasekara"
output: word_document
library("caret")
library("AppliedPredictiveModeling")
data(hepatic)
barplot(table(injury))
#biological predictors
nzro <- nearZeroVar(bio)</pre>
length(nzro)
dim(bio[,-nzro])
filteredbio <- bio[,-nzro]
filteredbio <- filteredbio[,-findCorrelation(cor(filteredbio))]</pre>
comboInfo <- findLinearCombos(filteredbio)</pre>
comboInfo$remove
# No linear combinations
preProcValues <- preProcess(filteredbio, method = c("center", "scale"))</pre>
Transformedbio <- predict(preProcValues, filteredbio)
trainIndex <- createDataPartition(injury, p = .8, list = FALSE, times = 1)
trainX<-Transformedbio[trainIndex,]</pre>
trainY<-factor(injury[trainIndex])</pre>
testX<-Transformedbio[-trainIndex,]</pre>
testY<-factor(injury[-trainIndex])</pre>
mdaModel <- train(trainX,y = trainY,method = "mda",metric = "Kappa",tuneGrid = expand.grid(.subclasses=1:5))</pre>
mdaModel
mdaPred <-predict(mdaModel,testX)
confusionMatrix(mdaPred,testY)
plsImp <- varImp(mdaModel,scale=FALSE)</pre>
```{r,echo=FALSE}
 ----NN
"nnetGrid <-expand.grid(.size=1:10,.decay=c(0,0.1,1,2))</pre>
maxSize <- max(nnetGrid$.size)</pre>
numWts <- 1*(maxSize * (length(trainX) + 1) + maxSize + 1)</pre>
set.seed(476)
nnetModel <-
train(x=trainX,y=trainY,method="nnet",metric="Kappa",tuneGrid=nnetGrid,preProc="spatialSign",trace=FALSE,maxit=200,MaxN
confusionMatrix(predict(nnetModel,testX),testY)
```{r,echo=FALSE}
#----fda----
fdaModel <- train(trainX,y = trainY,method = "fda",metric = "Kappa")</pre>
fdaModel
fdaPred <-predict(fdaModel,testX)</pre>
confusionMatrix(fdaPred,testY)
plsImp <- varImp(fdaModel,scale=FALSE)</pre>
```{r,echo=FALSE}
#----SVM-
library(e1071)
library(kernlab)
library(klaR)
sigmaRange <- sigest(as.matrix(trainX))</pre>
svmRGrid <- expand.grid(.sigma = sigmaRange[1],.C = 2^(seg(-4, 4)))</pre>
svmRModel <- train(trainX, trainY,method = "svmRadial",metric = "Kappa",tuneGrid = svmRGrid,fit = FALSE)</pre>
svmRModel
svmPred<-predict(svmRModel,testX)</pre>
confusionMatrix(svmPred,testY)
```{r,echo=FALSE}
knnFit \leftarrow train(trainX, trainY, method = "knn", metric = "Kappa", tuneGrid = data.frame(.k = c(4*(0:5)+1,20*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(1:5)+1,50*(
(2:9)+1)))
```

```
confusionMatrix(knn(trainX,testX,trainY,k=13),testY)
```{r,echo=FALSE}
#----Naive Bayes--
NBFit <- train(trainX, trainY, method = "nb", metric = "Kappa")</pre>
NBPred<-predict(NBFit,testX)</pre>
confusionMatrix(NBPred,testY)
```{r,echo=FALSE}
{\tt library(AppliedPredictiveModeling)}
data(hepatic)
nzro <- nearZeroVar(chem)</pre>
length(nzro)
filteredChem <- chem[,-nzro]
filteredChem <- filteredChem[,-findCorrelation(cor(filteredChem))]
comboInfo <- findLinearCombos(filteredChem)</pre>
comboInfo$remove
filteredChem <- filteredChem[,-comboInfo$remove]</pre>
# No linear combinations
preProcValues <- preProcess(filteredChem, method = c("center", "scale"))
TransformedChem<- predict(preProcValues, filteredChem)</pre>
trainIndex <- createDataPartition(injury, p = .8,list = FALSE,times = 1)</pre>
trainX<-TransformedChem[trainIndex,]</pre>
trainY<-factor(injury[trainIndex])</pre>
testX<-TransformedChem[-trainIndex,]</pre>
testY<-factor(injury[-trainIndex])</pre>
```{r,echo=FALSE}
train<-cbind(trainY,trainX)</pre>
mdaModel <- mda(trainY~.,data=train)</pre>
 mdaModel
 mdaPred <-predict(mdaModel,testX)</pre>
 confusionMatrix(mdaPred,testY)
 mdaModel <- train(trainX,y = trainY,method = "mda",metric = "Kappa",tuneGrid = expand.grid(.subclasses=1:10))</pre>
 mdaModel
 mdaPred <-predict(mdaModel,testX)</pre>
 confusionMatrix(mdaPred,testY)
 plsImp <- varImp(mdaModel,scale=FALSE)</pre>
plsImp
```{r,echo=FALSE}
#----NN
nnetGrid <-expand.grid(.size=1:10,.decay=c(0,0.1,1,2))</pre>
maxSize <- max(nnetGrid$.size)</pre>
numWts <- 1*(maxSize * (length(trainX) + 1) + maxSize + 1)</pre>
set.seed(476)
nnetModel <-
train(x=trainX,y=trainY,method="nnet",metric="Kappa",tuneGrid=nnetGrid,preProc="spatialSign",trace=FALSE,maxit=200,MaxN
confusionMatrix(predict(nnetModel,testX),testY)
```{r,echo=FALSE}
#----fda----
fdaModel <- train(trainX,y = trainY,method = "fda",metric = "Kappa")</pre>
fdaModel
fdaPred <-predict(fdaModel,testX)</pre>
confusionMatrix(fdaPred,testY)
plsImp <- varImp(fdaModel,scale=FALSE)</pre>
```{r,echo=FALSE}
#----SVM--
library(e1071)
library(kernlab)
library(klaR)
sigmaRange <- sigest(as.matrix(trainX))</pre>
```

```
svmRGrid \leftarrow expand.grid(.sigma = sigmaRange[1],.C = 2^(seq(-4, 4)))
svmRModel <- train(trainX, trainY,method = "svmRadial",metric = "Kappa",tuneGrid = svmRGrid,fit = FALSE)</pre>
svmRModel
svmPred<-predict(svmRModel,testX)</pre>
confusionMatrix(svmPred,testY)
```{r,echo=FALSE}
#----Knn----
knnFit <- train(trainX, trainY,method = "knn",metric = "Kappa",tuneGrid = data.frame(.k = c(4*(0:5)+1,20*(1:5)+1,50*
(2:9)+1)))
confusionMatrix(knn(trainX,testX,trainY,k=13),testY)
```{r,echo=FALSE}
#----Naive Bayes--
NBFit <- train(trainX, trainY, method = "nb", metric = "Kappa")</pre>
NBPred<-predict(NBFit,testX)</pre>
confusionMatrix(NBPred,testY)
```{r,echo=FALSE}
#----combination----
data(hepatic)
dataset <- cbind(bio,chem)</pre>
nzro <- nearZeroVar(dataset)</pre>
length(nzro)
filtereddataset <- dataset[,-nzro]
filtereddataset <- filtereddataset[,-findCorrelation(cor(filtereddataset))]
comboInfo <- findLinearCombos(filtereddataset)</pre>
comboInfo$remove
filtereddataset <- filtereddataset[,-comboInfo$remove]
No linear combinations
preProcValues <- preProcess(filtereddataset, method = c("center", "scale"))</pre>
Transformed<- predict(preProcValues, filtereddataset)</pre>
trainIndex <- createDataPartition(injury, p = .8,list = FALSE,times = 1)</pre>
trainX<-Transformed[trainIndex,]</pre>
trainY<-factor(injury[trainIndex])</pre>
testX<-Transformed[-trainIndex,]</pre>
testY<-factor(injury[-trainIndex])</pre>
train<-cbind(trainY,trainX)</pre>
```{r,echo=FALSE}
mdaModel <- mda(trainY~.,data=train)</pre>
mdaModel
mdaPred <-predict(mdaModel,testX)</pre>
confusionMatrix(mdaPred,testY)
```{r,echo=FALSE}
 ---NN
nnetGrid <-expand.grid(.size=1:10,.decay=c(0,0.1,1,2))</pre>
maxSize <- max(nnetGrid$.size)</pre>
numWts <- 1*(maxSize * (length(trainX) + 1) + maxSize + 1)
set.seed(476)
nnetModel <-
nnetModel
confusionMatrix(predict(nnetModel,testX),testY)
```{r,echo=FALSE}
#----fda----
fdaModel <- train(trainX,y = trainY,method = "fda",metric = "Kappa")</pre>
fdaPred <-predict(fdaModel,testX)</pre>
confusionMatrix(fdaPred,testY)
plsImp <- varImp(fdaModel,scale=FALSE)</pre>
```{r,echo=FALSE}
#----SVM---
```

```
library(e1071)
library(kernlab)
library(klaR)
sigmaRange <- sigest(as.matrix(trainX))</pre>
svmRGrid <- expand.grid(.sigma = sigmaRange[1],.C = 2^(seq(-4, 4)))</pre>
svmRModel <- train(trainX, trainY,method = "svmRadial",metric = "Kappa",tuneGrid = svmRGrid,fit = FALSE)</pre>
svmRModel
svmPred<-predict(svmRModel,testX)</pre>
confusionMatrix(svmPred,testY)
```{r,echo=FALSE}
knnFit \leftarrow train(trainX, trainY,method = "knn",metric = "Kappa",tuneGrid = data.frame(.k = c(4*(0:5)+1,20*(1:5)+1,50*)) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5) + (1.5
(2:9)+1)))
confusionMatrix(knn(trainX,testX,trainY,k=13),testY)
```{r,echo=FALSE}
#----Naive Bayes-
NBFit <- train(trainX, trainY, method = "nb", metric = "Kappa")</pre>
NBPred<-predict(NBFit,testX)
confusionMatrix(NBPred, testY)
2.a. Becuase the extream class imbalance the data set should be split using stratified sampling.
 {r,echo=TRUE}
data(oil)
barplot(table(oilType))
library(corrplot)
fattyAcids <- fattyAcids[,-findCorrelation(cor(fattyAcids))]</pre>
trainIndex <- createDataPartition(oilType, p = 0.75,list = FALSE,times = 1)</pre>
trainX <-fattyAcids[trainIndex,]</pre>
trainY <- as.factor(oilType[trainIndex])</pre>
testX<-fattyAcids[-trainIndex,]
testY <-as.factor(oilType[-trainIndex])</pre>
```{r,echo=FALSE}
###Non-LDA--
library(mda)
mdaModel <- train(trainX,y = trainY,method = "mda",metric = "Kappa",tuneGrid = expand.grid(.subclasses=1:10))
mdaModel
mdaPred <-predict(mdaModel,testX)</pre>
confusionMatrix(mdaPred,testY)
plsImp <- varImp(mdaModel,scale=FALSE)</pre>
plsImp
```{r,echo=FALSE}
nnetGrid <-expand.grid(.size=1:10,.decay=c(0,0.1,1,2))</pre>
maxSize <- max(nnetGrid$.size)</pre>
numWts <- 1*(maxSize * (length(trainX) + 1) + maxSize + 1)</pre>
set.seed(476)
nnetModel <-
train(x=trainX,y=trainY,method="nnet",metric="Kappa",tuneGrid=nnetGrid,preProc="spatialSign",trace=FALSE,maxit=200,MaxN
confusionMatrix(predict(nnetModel,testX),testY)
```{r,echo=FALSE}
#----fda----
fdaModel <- train(trainX,y = trainY,method = "fda",metric = "Kappa")</pre>
fdaModel
fdaPred <-predict(fdaModel,testX)</pre>
confusionMatrix(fdaPred,testY)
plsImp <- varImp(fdaModel,scale=FALSE)</pre>
plsImp
```{r,echo=FALSE}
#----SVM---
sigmaRange <- sigest(as.matrix(trainX))</pre>
```