REAL -TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED

NALAIYA THIRAN PROJECT BASED LEARNING

on

HX8001 -PROFESSIONAL READINESS FOR INNOVATION EMPLOYABILITY AND ENTREPRENEURESHIP (PRIEE)

TEAM ID: PNT2022TMID23501 Submitted by

AMISHA KUMARI.A (113219041010)

ASWINI.M (113219041015)

GUNUPUDI VENKATA LAKSHMI DURGA SUNAINA (113219041033)

KHAVYA.P (113219041051)

BACHELOR OF ENGINEERING

IN

ELECTRONICS AND COMMUNICATION ENGINEERING

VELAMMAL ENGINEERING COLLEGE, CHENNAI-66

(An Autonomous Institution, Affiliated to Anna University, Chennai)

November 2022

VELAMMAL ENGINEERING COLLEGE CHENNAI-66

BONAFIDE CERTIFICATE

Certified that this project report, "REAL-TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED" is the bonafide work of "AMISHA KUMARI.A, ASWINI.M, GUNUPUDI VENKATA LAKSHMI DURGA SUNAINA, KHAVYA.P" who carried out the project work under my supervision and industry mentor.

SIGNATURE

Dr. S. Mary Joans

PROFESSOR &
HEAD OF THE DEPARTMENT

Department of Electronics & Communication Engineering Velammal Engineering College Ambattur-Redhills road, Chennai -66

SIGNATURE

Mr.K.Radhakrishnan

MENTOR ASSISTANT PROFESSOR I

Department of Electronics & Communication Engineering Velammal Engineering College Ambattur-Redhills road,

Chennai-66

CERTIFICATE OF EVALUATION

COLLEGE NAME: VELAMMAL ENGINEERING COLLEGE

DEPARTMENT: Electronics & Communication Engineering

SEMESTER : VII Semester

PROJECT MEMBERS	TITLE OF THE PROJECT	MENTOR
1.AMISHA KUMARI.A (113219041010) 2.ASWINI.M (113219041015) 3.GUNUPUDI VENKATA LAKSHMI DURGA SUNAINA (113219041033) 4.KHAVYA.P (113219041051)	REAL-TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED	Mr.K.RADHAKRISHNAN ASSISTANT PROFESSOR I (ECE)

The report of the project work submitted by the above students in the partial fulfillment for the award of Bachelor of Engineering Degree in **ELECTRONICS AND COMMUNICATION ENGINEERING** of Anna University, Chennai was evaluated and confirmed to be the report of the work done by the above students and then evaluated.

Submitted for Internal Evaluation held on___/___/2022.

MENTOR EVALUATOR

ABSTRACT:

In our society, we have people with disabilities. The technology is developing day by day but no significant developments are undertaken for the betterment of these people. Communications between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people. Since normal people are not trained on hand sign language. In emergency times conveying their message is very difficult. The human hand has remained a popular choice to convey information in situations where other forms like speech cannot be used. Voice Conversion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an impaired person in any language.

The project aims to develop a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb. We are making use of a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output.

TABLE OF CONTENTS

S.N O		TITLE	PAGE NO.
1		INTRODUCTION	1
	1.1	Project overview	1
	1.2	Purpose	1
2		LITERATURE SURVEY	2-3
	2.1	Existing problems	2
	2.2	References	3
	2.3	Problem statement and definition	3
3		IDEATION & PROPOSED SOLUTION	4-11
	3.1	Empathy Map Canvas	4
	3.2	Ideation & Brainstorming	5
	3.3	Proposed Solution	9
	3.4	Problem Solution fit	11
4		REQUIREMENT ANALYSIS	12-13
	4.1	Functional requirement	12
	4.2	Non-Functional requirements	13
5		PROJECT DESIGN	14-21
	5.1	Data Flow Diagrams	14
	5.2	Solution & Technical Architecture	15
	5.3	User Stories	20
6		PROJECT PLANNING &SCHEDULING	22-25
	6.1	Sprint Planning & Estimation	22
	6.2	Sprint Delivery Schedule	23
	6.3	Reports from JIRA	23
7		CODING & SOLUTIONING	26-27
		(Explain the features added in the project along with code)	
	7.1	Feature 1	26
	7.2	Feature 2	27

8		TESTING	28-29
	8.1	Test Cases	28
	8.2	User Acceptance Testing	28
9		RESULTS	30
	9.1	Performance Metrics	30
10		ADVANTAGES & DISADVANTAGES	31
11		CONCLUSION	32
12		FUTURE SCOPE	33
13		APPENDIX	34-40

LINKS:

1.GITHUB - https://github.com/IBM-EPBL/IBM-Project-22773-1659857836 2.VIDEO LINK

 $https://drive.google.com/file/d/1yhxJrevoME7vLkmcCJyRDrHzD29tni9U/view?usp=share_linkwarder_and the control of the control o$

1. INTRODUCTION

1.1Project Overview

Real-time communications (RTC) are any mode of telecommunications in which all users can exchange information instantly. Communication plays a significant role in making the world better place. It creates a bonding and relations among the people. People get to know one another by sharing their ideas, thoughts, and experiences with those around them. There are numerous ways to accomplish this, the best of which is the gift of "Speech." Everyone can very convincingly transfer their thoughts and understand each other through speech. It will be unjust if we overlook those who are denied this priceless gift: the deaf and dumb. In such cases, the human hand has remained the preferred method of communication.

1.2Purpose

The Project's purpose is to create a system that translates sign language into a human understandable language so that ordinary people may understand it. In our society, we have people with disabilities. The technology is developing day by day but no significant developments are undertaken for the betterment of these people. Communications between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people. Since normal people are not trained on hand sign language. In emergency times conveying their message is very difficult. The human hand has remained a popular choice to convey information in situations where other forms like speech cannot be used. Voice Conversion System with Hand Gesture Recognition and translation will be very useful to have a proper conversation between a normal person and an impaired person in any language. The project aims to develop a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb. We are making use of a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to humanunderstandable language and speech is given as output.

2.LITERATURE SURVEY

A literature review is a comprehensive summary of previous research on a topic. The literature review surveys scholarly articles, books, and other sources relevant to a area of research. The review should enumerate, describe, summarize ,objectively evaluate and clarify this previous research.

In our project, We have taken the literature survey on IEEE papers. An intelligent communication device is developed to assist nonverbal, motor-disabled persons in the generation of written and spoken messages. The device is centered on knowledge base of the grammatical rules and message elements. A belief reasoning scheme based on both the information from external sources and the embedded knowledge issued to optimize the process of message search

2.1 Existing problem

Some of the existing solutions for solving this problem are:

Communications between deaf-mute and a normal person has always been a challenging task. It is very difficult for mute people to convey their message to normal people.

Technology

One of the easiest ways to communicate is through technology such as a phone or laptop. A deaf person can type out what they want to say and a person who is blind or has low vision can use a screen reader to read the text out loud.

A blind person can also use voice recognition software to convert what they are saying in to text so that a person who is Deaf can then read it.

Interpreter

If a sign language interpreter is available, this facilitates easy communication if the person who is deaf is fluent in sign language. The deaf person and person who is blindcan communicate with each other via the interpreter. The deaf person can use sign language and the interpreter can speak what has been said to the person who is blind and then translate anything spoken by the blind person into sign language for the deaf person.

However, this is often not the most effective form of communication, as it is very dependent on the individual circumstances of both people and their environment (for example, some places may have too much background noise).

2.2 References

- 1. Upendran, S., and Thamizharasi, A., "American Sign Language interpreter system for deaf and dumb individuals", In the Proceedings of the International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), pp. 1477-1481, 2014
- 2. Rajamohan, A., Hemavathy, R., and Dhanalakshmi, M., "Deaf-Mute Communication Interpreter", International Journal of Scientific Engineering and Technology, Vol.2, No.5, pp.336-341, 2013.

2.3 Problem statement definition

Only specially abled people are taught sign language and the common person is unaware its working causing a communication gap. Under emergency situations, it is even more difficult for specially abled people to get help. Non-Emergency normal environments can also be hard for them to navigate needing special assistance. In this project we have designed and developed a system which lowers the communication gap between speech hearing impaired people and normal people that is we have built a system that enables communications between deaf-dumb person and a normal person. A convolution neural network is being used to develop a model that is trained on various hand movements. This model is used to create an app. This program allows deaf and hard of hearing persons to communicate using signs that are then translated into human readable text.

3.IDEATION AND PROPOSED SOLUTION

Ideation is the process where you generate ideas and solutions through techniques such as Empathy Map Canvas, Brainstorming. Ideation is also the third stage in the Design Thinking Process.

3.1 Empathy map canvas

3.2 Ideation & Brainstorming

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Brainstorm

Write down any ideas that come to mind that address your problem statement.

10 minutes

Khavya

normal people can try to understand dumb people by their lip movement

sign language

must be learnt

by both the

persons for

understanding

dumb people can also use text messages to convey

their needs and vide

calls to express their facial gestures and

sign languages.

gesture a translator

The app should be easy to use like whatsapp,

they can communicate by hand

can also be used as an intermediary

messenger,etc

American sign language (ASL)can be implemented

these people can also write and communicate to normal people

These messaging apps are really helpful but can be enhanced with ew more features

Amisha kumari

Sign language

They must also learnt sign language to uderstand

Eye language can also be introduced

using their visual sense

they can use ear machine to hear

Facial expressions can be introduced for actions

sign language must be tolerable

having the sense to use new software can be handy

sensory techniques can be used

Aswini

Learn how they prefer to

The Text

Messaging Module helps the user to

send the SMS/Text

messages to any user.

The app should be user-friendly even an Illiterate person can use It

The emergency module, helps the person to send an person to send an emergency message along with present GPS location to the added emergency contact.

The app uses Google- speech API to achieve that result

user login for the first time and they can customize their app accordingly

Google speech recognition Module can be used

The Help Center Introduced which is a learning tool Indian sign Language

Different options like sending text message, votes to text message, emergency message, sending GPS location and also a feeture that actions the indian Sign Language to the normal people

Gunupudi Venkata Lakshmi Durga Sunaina

lmages taken and processed by web camera will avoid objects

The user flow must be easy to understand by urban users too.

After Sign recognition. Voice translation should e provided in use language

Translation should be faultless.

Making a modular software for quicker response.

Figure out if the user is showing a wrong sign and show error

Step by step usage guide and FAQs are provided.

Design the application with inclusivity to all types of people.

Group ideas

Take turns sharing your ideas while clustering similar or related notes as you go. In the last 10 minutes, give each cluster a sentence-like label. If a cluster is bigger than six sticky notes, try and see if you and break it up into smaller sub-groups.

Step-3: Idea Prioritization

Prioritize

Your team should all be on the same page about what's Important moving forward. Place your ideas on this grid to determine which ideas are important and which are feasible.

① 20 minutes

3.3 Proposed Solution

Proposed Solution Template:

S.N	Parameter	Description
0		
1.	Problem Statement (Problem to besolved)	Dumb people use hand signs to communicate, hence normal people face problem in recognizing their language by signs made. Hence there is a need of the systems which recognizes the different signs and conveys the information to the normal people in a two way communication.
2.	Idea / Solution description	Developing a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb. The idea is to create an end-end application that predicts the ISL signs from a live video and translates the same to voice such that conversing is at ease
3.	Novelty / Uniqueness	Since the application is AI based, it adjusts to human input accordingly, and communication becomes easier. We are making use of a convolution neural network to create a model that is trained on different hand gestures.
4.	Social Impact / Customer Satisfaction	 This device also eliminates the need of the interpreter and also avoids miscommunication. No additional hardware support is needed to use the application Improve their career opportunities in the industry Can provide instant results to users

5.	Business Model (Revenue Model)	Our proposed system includes a number of technologies like voice to text conversion speech to text conversion The product will be assigned an initial margin price and price will be updated as we add new updates to it.
6.	Scalability of the Solution	By virtue of this device the communication of the deaf and dumb person with normal person is made possible. This device also eliminates the need of the interpreter and also avoids miscommunication. Thus, the final system will not be much expensive making it accessible to every needful person. With proper planning this system can be used in different organizations. Different types of sign conventions can be stored in the device.

Proposed solution is the one in which we are making use of a convolution neural network to create a model that is trained on different hand gestures. A website is built which uses this model. The proposed solution section should offer the solution specifically, with enough detail so that the reader understands exactly what we're proposing.

3.4 Problem solution fit:

The Problem-Solution Fit is based on the principles of Lean Startup and User Experience design. It helps us to identify behavioral patterns and recognize what would work and why. It is used to identify solutions with higher chances of solution adoption, reduce time spent on testing.

4.REQUIREMENT ANALYSIS

4.1 Functional requirement:

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail Registration through LinkedIN
FR-2	User Confirmation	Confirmation via Email Confirmation via OTP
FR-3	User Verification	The user should receive a verification e-mail which they have to confirm to complete the registration.
FR-4	Compliance to rules or laws	Terms and conditions, Privacy policy, End user licensing agreement.
FR-5	Authorization levels	There are two levels of authorization namely standard access level and advanced access level.
FR-6	Legal Requirements	Medical Certificate is produced

4.2 Non Functional requirement:

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description
No.	Requirement	
NFR-	Usability	The designed system is easy to use for
1		specially abled persons as it is portable and platform independent.
NFR- 2	Security	Converted information using signs into speech is accessed only by the user.
NFR-	Reliability	System is tested with large number of data and Provides insight into issues.
NFR- 4	Performance	Quick Launch time of application and faster in converting signs into speech
NFR-	Availability	Provides automatic recovery and
5		User access.
NFR- 6	Scalability	Standard network condition the device should convert information within second.

5.PROJECT DESIGN

Project design is an early phase of the project lifecycle where ideas, processes, resources, and deliverables are planned out. A project design comes before a project plan as it's a broad overview whereas a project plan includes more detailed information.

5.1 Data Flow Diagrams

A data flow diagram is a traditional visual representation of the information flow within a system. It shows how data enters and leaves the system. It uses defined symbols like rectangles, circles and arrows, plus short text labels, to show data inputs, outputs, storage points and the routes between each destination.

5.2 Solution Architecture & Technical Architecture

Solution Architecture:

FROM DUMB TO NORMAL PERSON:

- In this architecture we are developing a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable sign language for the deaf and dumb.
- Here we are first processing the image through image processing using deep learning technique, then the processed image is segmented and classified based on

- features and gestures.
- Then the classified feature is used to detect what the dumb person has conveyed by using the dataset in the cloud.
- Then the sign language gesture is converted to text by AI and the output is given through speaker. Here the text is converted to voice.

FROM NORMAL TO DEAF PERSON:

- In this architecture, the normal person is trying to communicate with the deaf person.
- The voice is recognised from the normal person and then converted to text using google speech to text converted.
- Then the text is converted to sign alphabets using dataset in the IBM Watson cloud .

Solution architecture is the process of developing solutions based on predefined processes, guidelines and best practices with the objective that the developed solution fits within the enterprise architecture in terms of information architecture, system portfolios, integration requirements and many more.

Technical Architecture:

Technical Architecture is a form of Information Technology(IT) architecture that is used to design a system. It involves the development of a technical blueprint with regard to the arrangement, interaction, and interdependence of all elements so that system- relevant requirements are met.

Table-1 : Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	How user interacts with application e.g. Web UI, Mobile App, Chatbot etc.	HTML, CSS, JavaScript / Angular Js / React Js etc.
2.	Application Logic-1	It deals with variety of frameworks, libraries and supports required to develop the project	Java / Python
3.	Application Logic-2	Helps in converting human voice into written words, In simple it is used to convert speech to text.	IBM Watson STT service
4.	Application Logic-3	Provides fast ,consistent and accurate answers during the execution phase of the project	IBM Watson Assistant
5.	Database	It can be numerical, categorical or time-series data	MySQL, NoSQL, etc.
6.	Cloud Database	Enables the user to use host database without buying the additional hardware	IBM DB2, IBM Cloudant etc.
7.	File Storage	File storage should be highly flexible, scalable and effective	IBM Block Storage or Other Storage Service or Local Filesystem
8.	External API-1	Used to access the information in the cloud	IBM Weather API, etc.
9.	External API-2	Used to access the information for data driven decision making	Aadhar API, etc.
10.	Machine Learning Model	Machine Learning Model deals with various algorithms that are needed for the implementation	Real time communication using Al for specially abled
11.	Infrastructure (Server / Cloud)	Application Deployment on Local System / Cloud Local Server Configuration: Install the windows version and execute the installer Select APPACHE to install web server	Local, Cloud Foundry, Kubernetes, etc.

	Cloud Server Configuration :	
	This server deals with the additional storage	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	The frameworks used are	Tensor flow, Theano, RNN, PyTorch, Caffle 2
2.	Security Implementations	the security / access controls implemented, use of firewalls etc.	Identify, Prevent and Respond
3.	Scalable Architecture	the scalability of architecture (3 – tier, Microservices)	Data , models, operate at size, speed and complexity
4.	Availability	the availability of application (e.g. use of load balancers, distributed servers etc.)	Image and facial recognition, lip reading, text summarization, real time captioning
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN's) etc.	Full and effective participation , equality of opportunity, accessibility

5.3.User Stories:

User	Functional	User	User Story / Task	Acceptance	Priorit	Releas
Type	Requireme	Story		criteria	y	e
	nt (Epic)	Number				
Normal people and Deaf- mute people	Registratio n	USN-1	As a user, I can register for the application by entering my email, and password, and confirming my password	I can access my account/ dash boar d	High	Sprint-1
		USN-2	As a user, I will receive a confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1

Normal people	USN-3	Give access to camera to recognize the gestures	I can access messages given by the Deaf- mute people	Hig h	Sprint- 1
		Give access to microphone to give our message through voice			
Deaf- mute people		Give access to display to view the message sent by normal people.	I can access messages given by the Norma l people	Hig h	Sprint- 1

Administr	USN-4	Admin side in	all the	Hig	Sprint
ator		the company	requirements are	h	1
		should take	there.		
		care			
Sign up	USN-5	Need to sign up	Need valid	Hig	Sprint-
		to use it.	credentials.	h	1
Wish list	USN-6	Before availing	As a user can	Lo	Sprint-
		the service can	review and use the	W	2
		be kept aside.	service.		

A user story is an informal, general explanation of a design feature written from the perspective of the end user. Its purpose is to articulate how a design will provide value to the end user. A key component of agile software development is putting people first, and a user story puts end users at the center of the conversation. These stories use non-technical language to provide context for the development team and their efforts.

6.PROJECT PLANNING & SCHEDULING

Planning and scheduling are distinct but inseparable aspects of managing the successful project. The process of planning primarily deals with selecting the appropriate policies and procedures in order to achieve the objectives of the project. Scheduling converts the project action plans for scope, time cost and quality into an operating timetable.

6.1 Sprint Planning & Estimation

To create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	Collecting Dataset	5	High	Khavya Amisha Aswini Sunaina
	Image preprocessing	USN-2	Perform preprocessing techniques on the dataset	5	High	Khavya Amisha Aswini Sunaina
Sprint-2	Model Building	USN-3	Model initialisation with required layers	5	High	Khavya Amisha Aswini Sunaina
	Training	USN-4	Training the image classification model using CNN	5	Medium	Khavya Amisha Aswini Sunaina
Sprint-3	Testing	USN-5	Testing the model's performance	10	High	Khavya Amisha Aswini Sunaina
Sprint-4	Application development	USN-6	Converting text to speech using google API	10	Medium	Khavya Amisha Aswini Sunaina

Sprint planning & Estimation is the process for estimating the effort required to complete a

prioritized task in the product backlog. This effort is usually measured with respect to the time it will take to complete that task, which, in turn, leads to accurate sprint planning.

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	10	6 Days	24 Oct 2022	29 Oct 2022	10	29 Oct 2022
Sprint-2	10	6 Days	31 Oct 2022	05 Nov 2022	10	05 Nov 2022
Sprint-3	10	6 Days	07 Nov 2022	12 Nov 2022	10	12 Nov 2022
Sprint-4	10	6 Days	14 Nov 2022	19 Nov 2022	10	19 Nov 2022

6.2 Sprint Delivery Schedule

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Since sprints take place over a fixed period of time, it's critical to avoid wasting time during planning and development.

6.3 Reports from JIRAROADMAP

Sprint-1

Sprint-2

Sprint-3

Sprint-4

This are the final reports that is been generated from the jira software. Initially with the help of the jira software we have made a plan for the sprint delivery. By using it so we are getting the four phase sprint report with roadmap.

7. CODING & SOLUTIONING

In order to design website that coverts sign language into English alphabets we need to develop the website. For developing the website, primarly we need a platform that is uesful for developing the code. Coding is nothing that which are the applications developed by the developers in a certain computer language. Here we are using Python language for developing the website.

7.1.Feature 1

7.2 Feature 2

```
Testing the model
 In [22]: from keras.models import load_model
                import numpy as np
import cv2
In [23]: from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
import numpy as np
 In [34]:
                model=load_model("aslpng.h5")
img = image.load_img(r"/content/drive/MyDrive/IBM project/test_set/D/10.png",target_size=(64,64))
img
 Out[34]:
 In [35]: x = image.img_to_array(img)
Out[35]: array([[[0., 0., 0.], [0., 0., 0.], [0., 0., 0.],
                           [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
                          [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                           [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
                          [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                           [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
                          ...,
                          [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                           [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
                          [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                           [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]],
                          [[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.],
                          [0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]]], dtype=float32)
In [36]: x.shape
Out[36]: (64, 64, 3)
In [37]: x = np.expand_dims(x,axis=0)
    x.shape
Out[37]: (1, 64, 64, 3)
In [38]: pred = model.predict(x)
              1/1 [======] - 0s 63ms/step
In [39]: pred
Out[39]: array([[0., 0., 0., 1., 0., 0., 0., 0., 0.]], dtype=float32)
In [45]: class_name=["A","B","C","D","E","F","G","H","I"]
    pred_id = pred.argmax(axis=1)[0]
    pred_id
Out[45]: 3
```

8.TESTING

A Test report is an organized summary of testing objectives, activities, and results. Test Report is a document which contains a summary of all test activities and final test results of a design. Test report is an assessment of how well the Testing is performed. Based on the test report, we understand the designs quality and its performance.

8.1 Test cases

				Cone	12-him-21							
				Team D	PNT2022TM001158	1						
				Project Kama	Project Real time communication system powered by Alifor specially abled	3						
		-3 -3	<u> </u>	Madmum Marks	Amurta		W		W 3			
TesteaseID	Feeture Type	Component	Yest Scenaria	Preflequidle	Steps Ta Execute	Testibera	Expected Result	ActualResult	tion	Connents	TC for Automation (Y/N)	908
LogirRoge_TC_001	Functional	Home Page	Verify user is able to see the homepage	Mozilla Firefox Browser	Gror URL in browser and closings	http://127.0.0.15003	Homepage should be displayed	Working as expected	Pen	Steps are clear to liblion	NO	14
Log r Page_TO_002	w	НатиРаде	Verily the Utellements in borneyage	Months Findou Browner	I. Erier IIII, and det zo 2 Voolyformapse with yeer III elements Referencezamen access dist Syltropación i Oproject	http://127.0.0.1.5002	Application should show below UI elements p Reference c commo access digity c Introduction to project	Morking as expected	Puu	Siepe sie chorno lotow	NO	W
Log rPage,10,003	UI	Нотне разв	Verify whether reference page is working	Macalla Fassica Browner	1. Errier URL(H); //127 00 1:5000 and dish po 2.0 (ck.on relicence button	http://22.00.15002	Damahou'dnavigate to reference sage where askulphates image is skelved	working as expected	Para	Steps we clear to follow	Yes	NA
LogicPage_TC_001	Punctional	НатеРазе	Verily Comerciance ess	Mogilla Firefox Browser/Web- Carnera	I, Enter URI (<u>Imp. // 127.0 in 1-5000), and dick go</u> 2.Clade allow camera access	Mow carners access	Corres access is allowed and image is displayed	working as, expected	Pasa	Steps are clear to Tollow	Yes	NU
Log e1\ayx,10,004	Functional	HomePage	Costane detection	ModileFinelacCKK	I.Ementik <u>umsy myö 601 5000</u> anddek go 2 Okk carene socos 2 hanga digisyed A Defectional gastav occurs	Detectional gestures	Hand gestures reces to be detected and predicted	working as expected	Patt	Steps are clear to listow	Yes	NA
Log rPage_TC_005	Antimi	Home page	Output prediction	CNN trained model	LEner (Billion 2012 on 1-500) and disk go 2 Claic carren acons 3 hange disk led 4 December 1 grave ocors 5 Duren predictor	Precioned gestures	Hand geouses are descried and predicted ASS_alphabets are sleptlayed	working as expected	Pen	Predicted autour is displayed	Yes	H

A test case is nothing but a series of step executed on a design, using a predefined set of input data, expected to produce a pre-defined set of outputs, in a given environment. It describes "how" to implement those test cases.

8.2 User Acceptance Testing

User acceptance testing (UAT), also called application testing or end-user testing, is a phase of software development in which the software is tested in the real world by its intended audience.

1. Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of project-Real Time Communication System Powered By AI For Specially Abled at the time of the release to User Acceptance Testing (UAT).

2. Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	0	0	0	2	2
Duplicate	1	0	0	0	1
External	0	0	1	0	1
Fixed	0	1	1	0	2
Not Reproduced	0	1	0	0	1
Skipped	0	0	0	0	0
Won't Fix	0	1	0	0	1
Totals	1	3	2	2	8

3 Test Case

Analysis This report shows the number of test cases that have passed, failed, and untested

Section	Total Cases	Not Tested	Fail	Pass
View Home Page	7	0	1	6
Click Reference	15	0	3	12
Image displayed	12	0	0	12
Allow camera access	11	0	2	9
PrintEngine	8	0	0	8
ClientApplication	49	0	0	49
Security	4	0	0	4
OutsourceShipping	4	0	0	4
ExceptionReportin g	11	0	0	11
FinalReportOutput	2	0	0	2
VersionControl	1	0	0	1

9.RESULT

Finally we got the output for the desired input.our ultimate aim is to covert sign language into English alphanets. We have created the user interface for impleting it so. Thus the website was created successfully. As a result both the deaf and dump along with normal people can able to understand the desired language that is required for them.

9.1 Performance metrics

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Model - Sequential model Layers: Conv2D-(None,62,62,32) MaxPooling2D-(None,31,31,32) Flatten-(None,30752) Dense-(None,200) Dense_1 -(None,9)	model.summary() [-* Model: "sequential" Layer (type) Output Shape Param # conv2d (Conv2D) (None, 62, 62, 32) 896 max_pooling2d (MaxPooling2D (None, 31, 31, 32) 0) flatten (Flatten) (None, 30752) 0 dense (Dense) (None, 200) 6150600 dense_1 (Dense) (None, 9) 1809 Total params: 6,153,305 Trainable params: 6,153,305 Non-trainable params: 0
2.	Accuracy	Training Accuracy - 0.9622 Validation Accuracy -0.9826	Omodal.fiz/s, train,econs=19,validation data=x test,steps per_econ=lev(x,train)//15,validation_steps=lem(z_test)) ● Front 1/16 55/95 [************************************
3	Confidence Score	Class Detected – N/A Confidence Score -N/A	N/A

The proposed procedure was implemented and tested with set of images. The set of 15750 images of Alphabets from "A" to "I" are used for training database and a set of 2250 images of Alphabets from "A" to "I" are used for testing database. Once the gesture is recognize the equivalent Alphabet is shown on the screen.

10. ADVANTAGES & DISADVANTAGES

Advantages:

- 1. Create a mobile application to bridge the communication gap between deaf and dumb persons and the general public.
- 2. Sign language standards exist, their dataset can be added, and the usercan choose which sign language to read.

Disadvantages:

- 1. Model only works from alphabets A to I.
- 2. Absence of gesture recognition, alphabets from J cannot be identified.
- 3. As the quantity/quality of images in the dataset is low, the accuracy is not great.

11.CONCLUSION

Sign language is a useful tool for facilitating communication between deaf and hearing people. Because it allows for two-way communication, the system aims to bridge the communication gap between deaf people and the rest of society. The proposed methodology translates language into English alphabets that are understandable to humans. This system sends hand gestures to the model, who recognises them and displays the equivalent Alphabet on the screen. Deaf-mute people can use their hands to perform sign language, which will then be converted into alphabets and words.

12.FUTURE SCOPE

Having a technology that can translate hand sign language to its corresponding alphabet is a game changer in the field of communication and AI for the specially abledpeople such as deaf and dumb. With introduction of gesture recognition, the web app can easily be expanded to recognize letters beyond 'I', digits and other symbols plus gesture recognition can also allow controlling of software/hardware interfaces.

We can develop a model for ISL word and sentence level recognition. This will require a system that can detect changes with respect to the temporal space. We can also develop a complete product that will help the speech and hearing-impaired people, andthereby reduce the communication gap.

13.APPENDIX

Source Code for Model Training and Saving:


```
| Fig. | Edit | Yew | Navigate | Code | Refactor | Run | Iook | VCS | Window | Help | BMM project | Commercially | Project | Project | Project | Commercially | Project | P
```

```
| File Edit New Navigate Code Befactor Run Icols VCS Window Help IBM project camerapy | Security |
```

