

ElastiQuant: Elastic Quantization Strategy for Communication Efficient Distributed Machine Learning in IoT

Bharath Sudharsan

A World Leading SFI Research Centre

Overview

Training ML models on Google TPU Pod v4 - MLPerf

Training ML models on IoT devices - Globe2Train

- Distributed ML in Data Centers/TPU Pods/GPU Clusters Train SOTA models faster, at greater scale, and at lower cost
- Distributed ML in IoT On-device training with privacy preservation. Distribute neural workloads on 1000s of idle IoT devices

Related Work

Table 1: ElastiQuant comparison with related papers. Not Applicable (NA), Not Investigated (NI), No Guarantee/assurance (NG).

Paper	Test Setup	Gradients; Momentum	Variance	Com bits	Scalability	Worst-case	Highlight
ATOMO [30]	AWS EC2 cloud	Atomic sparsification; N	I NG	Bounds	Within cluster nodes	s NI	Sparsification to minimize variance
Terngrad [32]	128-node each with 4 Nvidia P100	 Quantize to ternary levels; Yes 	NI	NI	Within cluster nodes	s NI	Need only three levels to aggressively reduce communication time
Globe2Train [20]] MCUs, CPUs	NA	NI	NI	Global IoT devices	NI	Latency, congestion tolerance
AD-PSGD [13]	32-node each with 4 Nvidia P100	NI	Bounds	NI	Within cluster nodes	s NI	Robust to heterogeneity
QSGD [1]	AWS EC2 cloud	Lossy compression; NI	Bounds	Bounds	Within cluster nodes	s NI	Good practical performance
NUQSGD [15]	8 NVIDIA 2080 Ti GPUs	Nonuniform quantization; Yes	Assurance, bounds	Bounds	Within cluster nodes	Yes	Stronger guarantees, higher empirical performance
D2 [27]	16 workers	NI	Assurance, bounds	NI	Within cluster nodes	s NI	Much improve convergence rate, robust to data variance
EF-SignSGD [11]	Multiple workers	Error-feedback; Yes	NI	NI	Within cluster nodes	s NI	Simply add EF to recover performance
DGC [14]	64-node each with 4 Nvidia Titan XP		NI	NI	Within cluster nodes, mobiles	NI	270 x - 600 x gradient compression ratio without losing accuracy
PowerSGD [29]	8-node each with 2 Nvidia Titan X	Low-rank compression; Yes	NI	NI	Within cluster nodes	s NI	Consistent wall-clock speedups, test performance on par with SGD
ElastiQuant	18 IoT boards, edge GPUs	Elastic quantization; Yes	Assurance, bounds	Bounds	IoT boards, mobiles, edge GPUs	Yes	Higher solution quality, scalability - assurance with results

(1

ElastiQuant Quantization Strategy 2

ElastiQuant Efficient Encoding ElastiQuant
Theoretical
Assurance

Variance
Bound

Bound on Number of Commn Bits 4

ElastiQuant with Momentum

For Convex Optimization

For Smooth Nonconvex Optimization 5

ElastiQuant for Decentralized Training (6)

Worst-case Variance Analysis

Generally Spaced Levels

Exponentially Spaced Levels

1

ElastiQuant Quantization Strategy

- Existing schemes that compress gradients does not take into consideration the properties of gradient vectors
 - ✓ Leads to slowing overall convergence as the gradient variance increase
 - ✓ To optimize overall performance, the communication savings should be balanced with variance
- ElastiQuant elastically distributes quantization levels in the unit interval
 - ✓ Uses a custom parameterized generalization to control communication cost and gradient variance
 - ✓ Reduces quantization error and variance as it can match the properties of gradient vectors
 - ✓ It increases the number of quantization levels near zero to obtain a stronger variance bound.

(2)

ElastiQuant Efficient Encoding

- To provide tighter bounds on the code-length:
 - ✓ **Encode** function encodes quantized gradients before transmission
 - ✓ Uses *b* bits floating point
 - ✓ b set to 4 produces 4-bit-ElastiQuant
 - ✓ In rounds, the **Decode** function reads b bits, uses ERC⁻¹ to reconstruct gradients

ElastiQuant Theoretical Assurance

- Bound on Number of Communication Bits:
 - ✓ Variance bound + code-length bound = total commn costs bound
 - Suboptimal commn **savings** as compared to other schemes
- ElastiQuant Variance Bound models with high variance fail to generalize
 - ✓ ElastiQuant bound is **tighter** than related schemes
- Both bounds demonstrated by training ResNets on CIFAR & ImageNet

Stochastic Gradient Descent with Momentum

- Momentum helps accelerate gradients
 - ✓ Consistently in the right directions
 - ✓ Also dampens oscillations
 - ✓ Leads to faster convergence

ElastiQuant with Momentum

- Momentum is added to ElastiQuant training algorithm
- For nonconvex optimization, there can exist multiple locally optimal points requires extra computation
- For convex optimization, there can be only one optimal solution
- We establish convergence assurance for momentum ElastiQuant for both optimizations:
 - ✓ ElastiQuant with Momentum for Convex Optimization
 - ✓ ElastiQuant with Momentum for Smooth Nonconvex Optimization

- For gradient communication, low latency and high bandwidth cannot be guaranteed to all devices
 - ✓ ElastiQuant can integrate with communication-efficient variants of decentralized parallel SGD
 - ✓ Provides a solution for distributed training of deep networks in constrained networked systems

ElastiQuant for Decentralized Training

6

Worst-case Variance Analysis

- Incorporated into any solution selection process for a robust system design
- Performed to gain insights on the behavior of the variance upper bound
 - An upper bound for tight worst-case variance is established
 - ✓ Analysis shows ElastiQuant is nearly optimal in the worst-case
- Extend elastic quantization to arbitrary sequence of levels
 - ✓ Generally Spaced Levels
 - ✓ Exponentially Spaced Levels

Experimental Evaluation

- **Setup.** 18 development boards wirelessly set up to replicate realworld heterogeneous IoT:
 - ✓ 7 Jetson Xaviers
 - ✓ 4 Jetson Nanos inserted on a Jetson Mate carrier board
 - ✓ 3 accelerated Google Coral boards
 - ✓ 4 Intel Movidius NCS accelerated Raspberry Pi
- **Data.** Portions of ImageNet, CIFAR-10, CIFAR-100 datasets are supplied to these boards for distributed training
- **Network.** ResNet family ResNet-18, ResNet-20, ResNet-34, ResNet-50, Resnet-110 are trained
- Implementation. ElastiQuant in TensorFlow

Solution Quality

- Training Loss Distributed training on 18 GPUs
 - ✓ ImageNet ElastiQuant, QSGD-V has lower loss compared to QSGD
 - ✓ CIFAR10 Significant gap in training loss which grows as training progresses

Test Accuracy

- ✓ Unlike ElastiQuant, QSGD does not achieve the accuracy of FP-SGD
- For both datasets, ElastiQuant and QSGD-V outperform QSGD
- ✓ The gap between ElastiQuant and QSGD is significant on ImageNet
- ✓ ElastiQuant and QSGD-V show lower variance in comparison to QSGD

Scalability and Speedup Behavior

Table 3: Evaluating scalability performance of ElastiQuant by distributed training on 2 to 7 devices, and comparison with SGD: Calculating speedup (Sp) and total time (T) per epoch in minutes - sum of computation (Cp), encoding (En), transmission (Tx).

Network,	Scheme	2 Edge GPUs			4 Edge GPUs				7 Edge GPUs						
Dataset		Ср	En	Tx	T	Ср	En	Tx	T	Sp	Ср	En	Tx	T	Sp
	SGD	16.06	NA	17.93	33.99	10.47	NA	20.62	31.09	-2.9 ↑	15.34	NA	26.84	42.18	11.09 ↓
ResNet-34,	8-bit-ElastiQuant	14.61	4.15	16.16	34.92	7.98	4.04	11.92	23.94	-10.98 ↑	10.05	4.04	10.26	25.35	1.41 ↓
ImageNet	4-bit-ElastiQuant	15.75	0.93	15.55	32.23	11.19	1.25	9.32	21.76	-10.47 ↑	9.64	1.34	7.47	18.45	-3.31 ↑
	E-ElastiQuant	14.72	1.34	15.24	31.3	10.57	1.55	8.29	20.41	-10.89 ↑	8.91	1.35	6.01	16.27	-4.14 ↑
	SGD	177.23	NA	222.53	399.76	167.9	NA	265.17	433.07	33.31 ↓	85.28	NA	465.06	550.34	117.27 ↓
ResNet-50,	8-bit-ElastiQuant	179.21	38.65	190.55	409.09	145.25	39.97	145.25	330.49	-78.62 ↑	99.94	38.64	183.89	322.47	-8.02 ↑
ImageNet	4-bit-ElastiQuant	179.89	9.33	183.89	373.11	142.58	8.12	118.59	269.17	-103.94 ↑	110.6	6.66	126.59	243.85	-25.32 ↑
	E-ElastiQuant	169.23	21.32	171.9	362.45	126.59	18.66	103.93	249.18	-113.27 🕇	119.93	19.99	78.62	218.54	-30.64 ↑

- SGD **negative** scalability T increases from 31.09 to 42.18 min for ResNet-34, and 433.07 to 550.34 min for ResNet-50
- 4-bit-ElastiQuant attains positive scalability 1.48 times speedup for ResNet-34 when GPUs scaled from 2 to 4
- 8-bit-ElastiQuant faces a scalability **stall** when GPUs scaled from 4 to 7 due to elevated encoding & communication costs
- E-ElastiQuant shows **top-of-the-class** scalability and communication compression

Results Comparison

- Time vs accuracy results:
 - ✓ All ElastiQuant variants match the nonquantized ResNet-50 accuracy, with speedups over SGD (baseline)
 - ✓ QSGD-V not plotted as its performance overlaps 4-bit-ElastiQuant
- EF-SignSGD needed intensive tuning to make it converge plus to bring up its accuracy
 - ✓ Tuning makes EF-SignSGD send additional scaling data reduced efficiency
- E-ElastiQuant offers competitive performance
 - ✓ Provides convergence assurances
 - ✓ Additional comn bandwidth savings from its gradients encoding feature

Results Comparison

Table 4: Accuracy comparison of ElastiQuant trained ResNets with models trained using DGC, compression ratio (CR) tuned DGC, Atomo, TernGrad, others. FP-SGD is baseline.

Network, Dataset	Scheme	Tune	Edge GPUs	Test Accuracy (%)			
	Atomo			87.6			
ResNet-20, CIFAR-10	TernGrad	Default	2	No convergence			
	FP-SGD			90.5			
	4-bit-ElastiQuant			86.3			
		0.02 CR	2	91.25			
	DGC	0.02 CR	6	88.87			
ResNet-18, CIFAR-10	DGC	0.12 CR	2	90.08			
		0.12 CR	6	87.36			
	FP-SGD	D - C 14	6	92.72			
	4-bit-ElastiQuant Default	6	91.96				
ResNet-18, CIFAR-100	DGC	0.02 CR	2	74.41			
	DGC	0.02 CR	6	72.69			
	FP-SGD	Default	6	74.33			
	4-bit-ElastiQuant	Default	0	73.63			
	SGD		6	89.76			
	QSGD	Default		89.22			
ResNet-110, CIFAR-10	QSGD-V			90.10			
	FP-SGD	Default		92.03			
	TernGrad			91.33			
	4-bit-ElastiQuant			90.80			

- ElastiQuant vs Deep Gradient Compression (DGC)
 - ✓ ResNet-18 on CIFAR-10, CIFAR-100 unlike ElastiQuant, DGC accuracy degrades when GPUs scaled from 2 to 4
 - ✓ So even if ElastiQuant could save lesser commn bandwidth than DGC, ElastiQuant is **practical** due to its better scalability
- ElastiQuant vs ATOMO and TernGrad
 - ✓ For ResNet-20, although ATOMO shows slightly higher accuracy than ElastiQuant, ATOMO has **high train time** plus GPU strain
 - ✓ TernGrad convergence was under par for standard parameters tuning to bring performance close to ATOMO & ElastiQuant
 - ✓ For ResNet-110, TernGrad shows the closest performance to FPSGD and slightly outperforms 4-bit-ElastiQuant

Conclusion

- ElastiQuant improves communication efficiency during distributed learning in IoT. It consistently demonstrated:
 - ✓ Improved solution quality as the resultant ResNet models achieved lower loss and better accuracy
 - ✓ Higher training scalability and speedup due to reduced communication volume.
 - ✓ Reduced quantization induced variance due to its elastic quantization approach
 - ✓ On-the-fly **communication efficiency** as ElastiQuant can re-use parameters of full-precision schemes with slight tuning

Contact: Bharath Sudharsan

Email: bharath.sudharsan@insight-centre.org

www.confirm.ie

