ANÁLISIS ESPACIAL DE LOS SISMOS EN COSTA RICA, 2010-2017

Moisés Coto Hernández Melissa Valverde Hernández

CONTENIDO

- Introducción
- Pregunta de Investigación
- Materiales y Métodos
- Resultados
- Conclusiones

INTRODUCCIÓN

• Un sismo consiste en la manifestación superficial de la liberación de energía interna del planeta, transmitida en ondas sísmicas.

Costa Rica se ve afectada por dos placas (Coco y Caribe)

• Se definen dos tipos de sismo: interplaca, intraplaca

• Distribución espacial de los sismos.

PREGUNTA DE INVESTIGACIÓN

¿La distribución de los sismos es igual o uniforme en el territorio de Costa Rica?

MATERIALES Y MÉTODOS

• Datos de la Red Sismológica Nacional, correspondiente a los sismos reportados en Costa Rica, con escala Ritcher superior a 4, de los años 2010-2017. Se tienen 1266 registros de sismos.

MATERIALES Y MÉTODOS

• Análisis espacial de los datos: patrón de puntos, densidad espacial de los datos, la función K de Ripley, además, se calculan estimaciones de dependencia con las funciones G y F.

• Análisis estadístico de un proceso puntual espacial, donde se analizó la aleatoriedad espacial completa.

• Se hizo un análisis sobre el proceso de poisson.

- Ventana de extensión de los datos
- Verificación de duplicados
- Primer vistazo al patrón de los sismos dentro del territorio de Costa Rica
 - Nubes de puntos
 - Zona Sur y sector de Guanacaste, más sismos

Distribución de los sismos en el territorio marítimo y terrestre de Costa Rica, 2010-2017

Diferentes patrones de los sismos en el territorio marítimo y terrestre de Costa Rica, 2010-2017

Patron de Puntos

Analisis por cuadrantes

Dirichlet

Delunay

Densidad espacial de los sismos en el territorio terrestre de Costa Rica, 2010-2017

Curvas de nivel de la densidad espacial de los sismos en el territorio terrestre de Costa Rica, 2010-2017

No se logra observar concretamente la distribución de los sismos, dado que la mayoría se encuentran en la costa del país

Agrupamiento

• La naturaleza exponencial complica la interpretación de los datos

 Las desviaciones de la distribución de Poisson "ideal" son mucho menos dramáticas a mayores radios que las indicadas por Ripley's K

La distribución observada de los sismos no se ajusta de manera apropiada

Modelo de Poisson con una intensidad que es log-lineal en las coordenadas cartesianas

Parámetro	Estimado	Intervalo de	confianza (95%)	Ztest	Zval
Intercepto	-37,33	-50,55	-24,11	0,00	-5,53
X	-0,63	-0,80	-0,45	0,00	-7,01
y	-1,13	-1,34	-0,91	0,00	-10,18

Modelo de Poisson con una intensidad que es log-cuadrático en las coordenadas cartesianas

Parámetro	Regulares	Exponenciales
Intercepto	1247.02	Inf
X	28,13	1,64 e+12
У	-15,73	0,00
x^2	0,16	1,17
x*y	-0,14	0,87
y^2	0,16	1,17

CONCLUSIONES

- Zonas donde se presentan la mayor cantidad de sismos en la costa pacífica del país, donde se ubica las placas Cocos y Caribe.
- Según lo estimado en las funciones K, L, G y F; se presentan agrupamientos de los sismos en el territorio marítimo y terrestre.
- La intensidad espacial de los sismos tiene una asociación con ubicación (latitud y longitud). Además, el modelo homogéneo log-cuadrático detecta mayor intensidad en el territorio nacional que el modelo no homogéneo log-lineal.