Problem 1. (10pt) Determine if the following functions are injective, surjective, and/or bijective. Which of the functions have an inverse function? [No formal proofs required.]

- (a) $f: \mathbb{R} \to [0,1]$ defined by $f(x) = \sin^2 x$.
- (b) $g:[0,\frac{\pi}{2}] \to [-1,1]$ defined by $g(x) = \cos x$.
- (c) $h: \mathbb{N} \to \mathbb{Z}$ given by $h(x) = 3^n$.
- (d) $j: \mathbb{Z} \times \mathbb{Z}$ given by $j(x, y) = (x y + 3)^2$.

Problem 2. (10pt) Show that the function $f: \mathbb{R} \setminus \{-1\} \to \mathbb{R} \setminus \{3\}$ given by $f(x) = \frac{3x-5}{x+1}$ is a bijection. Explain why this implies f is invertible and then find the inverse for f(x).

Problem 3. (10pt) Let $S \subseteq \mathbb{R}$ and $f,g:S \to \mathbb{R}$ be monotone functions.

- (a) Prove that f+g is a monotone function.
- (b) If f and f+g are increasing on S, then is g necessarily increasing on S? Prove or give a counterexample.

Problem 4. (10pt) Let $f: X \to Y$ and let $A, B \in \mathcal{P}(X)$.

- (a) Prove that $f(A \cup B) = f(A) \cup f(B)$.
- (b) Is it true that $f(A \cap B) = f(A) \cap f(B)$? Prove or give a counterexample.

Problem 5. (10pt) Let $f: X \to Y$ and $A, B \subseteq Y$. Prove that $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

Problem 6. (10pt) For each of the following, find a function $f: \mathbb{N} \to \mathbb{Z}$ with the following properties:

- (a) f is injective but not surjective
- (b) f is surjective but not injective
- (c) f is neither surjective nor injective
- (d) f is a bijection