Работа 3.4.5

Петля гистерезиса (динамический метод).

Работу выполнил Матренин Василий Б01-006

Цель работы: Изучение петель гистерезиса ферромагнитных материалов с помощью осциллографа.

В работе используются: Автотрансофрматор, понижающий трансформатор, амперметр и вольтметр (мультиметры), резистор, делитель напряжения, интегрирующая цепочка, электронный осциллограф, тороидальные образцы с двумя обмотками.

1 Теория

Магнитную индукцию удобно определять с помощью ЭДС, возникающей при изменении потока в катушке, намотанной на образец. Пусть катушка плотно обхватывает образец, а индукция \vec{B} однородна. Тогда:

$$\varepsilon = -\frac{d\Phi}{dt}, \Phi = BSN_{\text{\tiny M}} \Rightarrow |B| = \frac{1}{SN_{\text{\tiny M}}} \int \mathcal{E}dt,$$
 (1)

где $N_{\rm u}$ — число витков в измерительной катушке, S — площадь витка. То есть для определения B нужно проинтегрировать сигнал, наведённый на измерительную катушку.

Используя интегрирующую схему из конденсатора C опротивления $R\gg \frac{1}{\Omega C}$ (Ω – частота сигнала в сети), с учётом $U_{\rm вых}\ll U_{\rm вx}$, получим:

$$U_{\text{\tiny BMX}} = \frac{1}{C} \int I dt \approx \frac{1}{RC} \int U_{\text{\tiny BX}} dt \tag{2}$$

Если $R_{\rm u}$ и $C_{\rm u}$ – параметры интегрирующей ячейки, то получим:

$$|B| = \frac{R_{\rm M}}{C} S N_{\rm M} U_{\rm BMX} \tag{3}$$

2 Установка

Схема установки представлена на рисунке 1.

Рис. 1: Схема установки

Напряжение сети с помощью регулировочного трансформатора Ат через разделительный понижающий трансформатор Тр подаётся на намагничивающую обмотку N_0 образца. Значение тока в обмотке измеряется амперметром A, с ним последовательно включено сопротивление R_0 , напряжение с которого подается на вход X электронного осциллографа (ЭО). Это напряжение пропорционально току в обмотке N_0 , а значит и напряжённости магнитного поля H в образце.

Для измерения магнитной индукции B в обмотке $N_{\rm u}$ на вход интегрирующей цепочки подаётся напряжение $U_{\rm u}$, пропорциональное $\frac{dB}{dt}$, а с выхода снимается напряжение U_C , пропорциональное B, которое подаётся на вход Y ЭО. Кривая, возникающая на экране – петля гистерезиса.

По данным формулам можно произвести калибровку ЭО:

$$H = \frac{IN_0}{2\pi R}, B = \frac{R_{\text{\tiny H}}C_{\text{\tiny H}}U_{\text{\tiny Bbix}}}{SN_{\text{\tiny H}}},\tag{4}$$

где $I=K_X/R_0, U_{\text{вых}}=K_Y, K_X, K_Y$ – чувствительность усилителя ЭФ соответствующих шкал, можно провести калиброку ЭО.

При закороченной обмотке N_0 амперметр измеряет эффективное значение синусоидального тока $I_{\ni \varphi}$ через сопротивление R_0 . Если 2x – длина горизонтальной прямой на экране, то чувствительность канала X:

$$m_X = \frac{2\sqrt{2}R_0I_{9\Phi}}{2x} \tag{5}$$

При отключённом тороиде сигнал с обмотки 12.6 В подаётся на делитель, и его часть снимается с делителя с каоэффициетном деления и подаётся на Y \ni O вместо U_C . Вольтметр измеряет напряжение $U_{\ni \Phi}$ на этих клеммах делителя. Если 2y — длина вертикальной прямой на экране, то чувствительность канал Y:

$$m_Y = \frac{2\sqrt{2}U_{3\Phi}}{2y} \tag{6}$$

Если измерить с помощью 90 поочерёдно амлитуды сигналов $U_{\text{вх}}$ и $U_{\text{вых}}$ RC-цепочки, можно рассчитать постоянную времени:

$$\tau = RC = \frac{U_{\text{BX}}}{\Omega U_{\text{BMX}}} \tag{7}$$

3 Ход работы

3.1 Подготовка установки к работе

Собирал схему, включил в сеть. Параметры установки R=20к
Ом, C=20мкФ. Параметры образцов:

Taettada I. IIapatteniput copacido					
_	Феррит	Пермаллой	Кремнистое железо		
N_0	42	20	25		
$N_{\scriptscriptstyle m M}$	400	300	250		
S, m ²	3	0.76	2		
$2\pi R$, cv	25	13.3	11		

Таблица 1. Параметры образцов

3.2 Предельная петля гистерезиса

Подбирал ток питания и коэффициенты усиления ЭО так, чтобы предельная петля гистерезиса занимала большую часть экрана.

Рис. 2: Предельная петля гистерезиса.

3.3 Снятие значений для частных петель

Снял значения $I_{\ni \Phi}$ и $U_{\scriptscriptstyle \mathrm{BMX}}$ для частных петель:

Таблица 2. Значения для Феррита

$I_{\Theta\Phi}$, MA	$I_{9\Phi}\sqrt{2}$, MA	$H, \frac{A}{M}$	$U_{\text{вых}}, \text{мВ}$	B, Тл	$\mu = \frac{B}{H\mu_0}$
22	31,1	11,0	0,8	3,52E-03	254
25	35,4	12,5	1,7	7,48E-03	475
38	53,7	19,0	4,6	2,02E-02	846
62	87,7	31,1	10,2	4,49E-02	1150
93	131,5	46,6	18,5	8,14E-02	1390
138	195,2	69,1	30,9	1,36E-01	1565
165	233,3	82,6	37,0	1,63E-01	1567
198	280,0	99,2	43,1	1,90E-01	1521
260	367,7	130,2	51,1	2,25E-01	1373
368	520,4	184,3	59,6	2,62E-01	1132
416	588,3	208,4	62,3	2,74E-01	1046
508	718,4	254,4	65,9	2,90E-01	906
653	923,5	327,1	70,4	3,10E-01	753

Таблица 3. Значения для Пермаллоя

1иолица 5. Зничения оля Пермаллоя					
$I_{ m эф}$, мА	$I_{ m эф}\sqrt{2}$, мА	$H, \frac{A}{M}$	$U_{\text{вых}}$, мВ	B, Тл	$\mu = \frac{B}{H\mu_0}$
81	114,55	19,92	7,10	0,03	1260
90	127,28	22,14	10,50	0,05	1678
105	148,49	25,82	19,80	0,09	2712
110	155,56	27,05	24,70	0,11	3229
116	164,05	28,53	32,20	0,14	3992
119	168,29	29,27	37,80	0,17	4568
127	179,61	31,24	52,30	0,23	5922
134	189,50	32,96	65,60	0,29	7040
139	196,58	34,19	75,20	0,33	7780
142	200,82	34,92	81,40	0,36	8243
147	207,89	36,15	92,90	0,41	9088
153	216,37	37,63	110,70	0,49	10404
159	224,86	39,11	122,00	0,54	11034
165	233,35	40,58	130,20	0,58	11347
190	268,70	46,73	143,20	0,64	10838
215	304,06	52,88	150,30	0,67	10053
287	405,88	70,59	160,00	0,71	8017
403	569,93	99,12	168,10	0,75	5998

Таблица 4. Значения для Кремнистого железа

$I_{9\Phi}$, MA	$I_{9\Phi}\sqrt{2}$, MA	$H, \frac{A}{M}$	$U_{\text{вых}}, \text{мВ}$	B, Тл	$\mu = \frac{B}{H\mu_0}$
22	31,1	18	10,8	0,04	1654
32	45,3	27	19,9	0,07	2095
36	50,9	30	28,3	0,10	2648
44	62,2	36	39,2	0,14	3002
69	97,6	57	69,7	0,24	3403
82	116,0	68	83,8	0,29	3443
103	145,7	85	103,8	0,36	3395
134	189,5	111	125,4	0,44	3153
155	219,2	128	137,2	0,48	2982
184	260,2	152	150,7	0,53	2759
233	329,5	193	168,1	0,59	2431
291	411,5	241	183,3	0,64	2122
345	487,9	286	194,2	0,68	1896
439	620,8	364	211,3	0,74	1621
571	807,5	473	227,6	0,80	1343

3.4 Графики

Также данные значения предоставлены на графиках:

Рис. 3: Феррит.

Рис. 4: Пермаллой.

Рис. 5: Кремнистое экселезо.

3.5 Рассчет коэрцетивной силы и индукции насыщения

Рассчитал коэрцетивную силу H_c и индукцию насыщения B_s для каждого образца:

• Феррит:

$$H_c = 81, 8$$
 $\frac{A}{M}$ $B_s = 0, 29$ $T_{\rm JI}$

• Пермаллой:

$$H_c=24,8$$
 $\frac{\mathrm{A}}{\mathrm{M}}$ $B_s=0,75$ $\mathrm{T}\pi$

• Кремнистое железо:

$$H_c = 118, 3$$
 $\frac{A}{M}$ $B_s = 0, 80$ T_{π}

4 Вывод

В ходе данной работы были получены весьма правдоподобные графики для кривой намагничивания трех образцов (см рис. 3-5).

Также для этих образцов были рассчитаны H_c и B_s .

Рассчетные значения вполне реалестично выглядят.