xorsort (Hungarian)

XOR rendezés

Adott egy S egész szám és egy A tömb, amiben N darab nemnegatív egész szám van, 1-től sorszámozva: $A_1, A_2, ..., A_N$. A következő műveletet hajthatjuk végre: egy i $(1 \le i \le N)$ sorszámú elemet kiválasztunk: A_i , majd valamelyik szomszédját, a j. elemet is kiválasztjuk $(1 \le j \le N, \text{ ahol } j = i - 1 \text{ vagy } j = i + 1)$. Ezután az A_i elemet lecseréljük az $(A_i \oplus A_j)$ értékre, ahol \oplus a bitenkénti XOR művelet. A XOR definíciója a leírás végén található.

A cél az A tömb rendezett tömbbé való alakítása.

- Ha S=1, akkor a végső tömbnek szigorúan monoton növekvőnek kell lennie, azaz minden i-re (ahol $1 \le i < N$) az $A_i < A_{i+1}$ kell legyen.
- Ha S = 2, akkor a végső tömbnek monoton növekvőnek kell lennie, azaz minden
 i-re (ahol 1 ≤ i < N) A_i ≤ A_{i+1} kell legyen.

Adj meg egy olyan műveletsort, ami eléri a fenti célt.

Nem kell a műveletek számának minimalizálásával foglalkoznod, míg a műveletek száma nem éri el a 40 000-et.

Bemenet

A bemenet első sora két egész számot tartalmaz: N-et és S-et.

A következő sorban N darab egész szám található, az A tömb elemei.

Kimenet

A kimenet első sora egyetlen K ($0 \le K \le 40000$) számot tartalmazzon, a végrehajtandó műveletek számát.

A következő K sor mindegyike két egészet tartalmazzon, amelyek végrehajtási sorrendben leírják az adott műveleteket: az első egész az i sorszám, annak az elemnek a sorszáma, amit lecserélünk, a másik egész a j sorszám: azon elem sorszáma, ami részt vesz a művelet végrehajtásában.

Korlátok

- $1 \le S \le 2$
- $2 \le N \le 1000$
- $0 \le A_i < 2^{20}$

xorsort Page 1 of 2

xorsort (Hungarian)

Részfeladatok

- 1. (25 pont) $2 \le N \le 150$, S = 1, az A tömb minden eleme különböző.
- 2. (35 pont) $2 \le N \le 200$, S = 1, az A tömb minden eleme különböző.
- 3. $(40 \text{ pont}) 2 \le N \le 1000, S = 2$

Példák

Bemenet	Kimenet
5 1 3 2 8 4 1	3 12 43 54
5 2 4 4 2 0 1	3 3 2 4 3 5 4

Az első példában a kimenet magyarázata (félkövérrel jelölve az i. elem):

A második példában a kimenet magyarázata (félkövérrel jelölve az *i.* elem):

Ha XOR bitműveletet hajtunk végre az x és y biteken, akkor az eredmény 0, ha x=y és 1 egyébként.

Ha a XOR műveletet hajtjuk végre az *a* és *b* egészeken, akkor a XOR eredménye a XOR bitművelet végrehajtása az *a* és *b* minden, egymásnak megfelelő sorszámú bitjére:

 $1001011 \oplus 0011101 = 1010110$

A C/C++/Java programozási nyelvben a ^ operátor (magyar billentyűzeten AltGr+3 karakter) hajtja végre a XOR műveletet.

xorsort Page 2 of 2