Table of Contents

MATERIALES METÁLICOS

Se denomina a lo	os elementos químicos caract	terizados por ser buenos cond	luctores del
y la	, poseer alta	, y ser	a
temperaturas normales (excepto	o el mercurio y el galio). Ger	neralmente son	de
la luz, lo que les da su peculiar	brillo. El concepto de metal	refiere tanto a elementos pur	os, así
como a con	n características metálicas, co	omo el acero (
) y el bronce (). Los	s metales comprenden la may	or parte de
la tabla periódica de los elemen	<u>tos</u> y se separan de los no m	etales por una línea diagonal	entre el
boro y el polonio. Se extraen de	e los minerales de de las roca	as (menas). Los materiales m	etálicos
cuyo componente principal es e	·ls	e llaman ferrosos, el resto se	llaman no
ferrosos, como el		, etc.	
PRINCIPALES PROPIEDADE 1-Plasticidad Es la propiedad mecánica de los La plasticidad se define como la forma que les fue dada después altamente conservarán su nueva FORMA.	s metales completamente op a capacidad que tienen los m de ser sometidos a un esfue , por esta razón, u	uesta a la netales de rzo. Los metales, usualmente	la e son
2-Fragilidad La fragilidad es una propiedad el que un metal puede ser los metales son y poder tolerar más las cargas. I	una vez es somet unos con otros para red	tido a un esfuerzo. En mucha lucir su coeficiente de	as ocasiones,
resistencia mecánica de los met	ales. De esta manera, un me	tal puede ser sometido varias	veces al

Paulino Posada pág. 1 de 7

reducción de área. Una forma elemental de explicar dúctilidad de material, es su capacidad para ser

transformado en ______ o _____. Un metal altamente dúctil es el _____.

este sentido, es una propiedad mecánica completamente opuesta a la ______. La

ductilidad puede ser dada como un porcentaje de elongación máximo o como un máximo de

Paulino Posada pág. 2 de 7

6-Elast	10	าต	ลด

La elasticidad que define como la capacidad qu	e tiene un metal para recuperar su
después de haber sido sometido a una fuerza ex	terna. En general, los metales son muy
elásticos, por esta razón es común que presente	n o rastros de golpes de los
que nunca se recuperarán. Cuando un metal es o	elástico, también se puede decir que es resiliente, ya
que es capaz de absorber de forma elástica la _	que le está provocando una
deformación.	
7-Tenacidad	
La tenacidad es el concepto opuesto a la	, ya que denota la capacidad que
tiene un material de resistir la aplicación de una	a fuerza externa sin Los metales
y sus aleaciones son, generalmente, tenaces. Es	te es el caso del, cuya tenacidad le
permite ser apto para aplicaciones de construcc	ión que requieran de soportar altas
sin que haya lugar a rupturas. La tenacidad de l	os metales puede ser medida en diferentes escalas.
En algunas pruebas, se aplican cantidades relati	vamente pequeñas de fuerza a un metal, como
ligeros impactos o choques. En otras ocasiones,	es común que sean aplicadas fuerzas mayores. De
cualquier manera, el coeficiente de tenacidad de	e un metal será dado en la medida en la que éste no
presente ningún tipo de	_ después de haber sido sometido a un esfuerzo.
0.71.11	
8-Rigidez	
La rigidez es una propiedad mecánica propia de	e los metales. Esta tiene lugar cuando una fuerza
externa es aplicada a un metal y éste debe desar	rollar una fuerza interna para soportarla. Esta fuerza
interna se denomina "estrés". De esta manera, l	a rigidez es la capacidad que tiene un metal de
a la deformación duran	te la presencia del estrés.

Paulino Posada pág. 3 de 7

9-Variabilidad de las propiedades

Los tests de propiedades mecánicas de los metales no siempre producen los mismos resultados, esto se debe a los posibles cambios en el tipo de equipo, procedimiento, u operario que se usa durante las pruebas. Sin embargo, incluso cuando todos estos parámetros son controlados, existe un pequeño margen en la variación de los resultados de las propiedades mecánicas de los metales. Esto se debe a que en general la fabricación o proceso de extracción de los metales difiere. Por lo tanto, los resultados a la hora de medir las propiedades de los metales se pueden ver alterados. Con el objetivo de mitigar estas diferencias, se recomienda realizar varias veces la misma prueba de resistencia mecánica en el mismo material, pero en diferentes muestras seleccionadas de forma aleatoria.

Paulino Posada pág. 4 de 7

EL ACERO.

Los materiales más	_ en cualquier taller de mantenimi	ento industrial son los
aceros. Generalmente acero al carbono	del tipo A42b. Aunque actualmen	te también se utilizan
mucho otros materiales como los aceros	s, el	, la fibra de
, los	o los materiales	El acero es una
aleación de	Se puede alear, ademá	s, con otros elementos para
obtener aleaciones de diferentes caracte	erísticas según sea necesario.	
Es el metal más usado del mundo con g	gran diferencia por sus elevadas pr	restaciones
así como su	Las aleaciones de hierro-carbon	o dan lugar a los aceros si
el porcentaje de carbono es menor del _	Si hay más carbono, dan	lugar a las fundiciones.
Las técnicas para la obtención del acerc	o se denominan	Empieza con los
minerales ricos en	como siderita, limonita, pirita, ma	ngnetita El hierro se
obtiene de sus óxidos, presentes en los	minerales anteriores, en un	En el
alto horno se reduce con	y carbonato cálcico.	

Esquema de un alto horno.

En la imagen an	terior se ve cómo el alto hor	no se alimenta por la _	con c	arbón,
mineral de hierro	o y caliza. El carbón se	, potenciár	idose el calor generado	con
	a presión. Se funden los	de hier	ro, mezclándose con el	carbono
presente en el ca	arbón. La mezcla		_ (llamada arrabio), más	pesada,
se va al	del alto horno (). En l	a parte intermedia (etala	aje) queda
la	El arrabio se extrae po	or la parte	del alto horno. E	l arrabio,
al contener alred	ledor del de carbon	o, es un material	, pero	, que
tiene menos apli	caciones practicas. Para con	vertirlo en acero se le	debe rebajar el contenid	lo
en	Asimismo, se le pu	ueden añadir otros	pai	ra obtener
características d	eterminadas que mejoren sus	s propiedades.		
	,			
CLASIFICACIO	ÓN DE LOS ACEROS.			
Segúnla norma U	UNE EN 10020:2001 define	al acero como aquel n	naterial en el que el	
es el elemento p	redominante, el contenido er	n	es, generalmente inferio	or al y
contiene además	s a otros elementos. El límite	superior del 2% en el	contenido de carbono (C) es el
límite que separa	a al acero de la	En general,	un aumento del conten	ido de
carbono en el ac	ero eleva su resistencia a la .		, pero como contraparti	da
incrementa su _	en frí	o y hace que disminuy	a la	y la
	En función de e	ste porcentaje, los ace	ros se pueden clasificar	de la
siguiente manera	a:			
	: Cuando el porcent			
	encia última de rotura en el 1		-	
	160 HB. Son aceros que pres		-	
	a. Aplicaciones: Piezas de re	sistencia media de bue	na tenacidad, deformac	ión en
frío, embutición	, plegado, herrajes, etc.			
-Aceros	: El porcentaje	e de carbono estáen el e	entorno del . T	iene una
	ua a la rotura de 55-62 kg/mn			

Paulino Posada pág. 6 de 7

Mecanizado	Materiales	02/24	
bajo un tratamiento térmico hasta 80 kg/mm2 y una dure	<u>-</u>	llcanzar una resistencia mecánica de	
Aplicaciones: Ejes, elemento herrajes.	os de maquinaria, piezas resistentes y	y tenaces, pernos, tornillos,	
-Aceros: Si el porcentaje de carbono es del Tienen una resistencia a la rotura de 62-70 kg/mm2 y una dureza de 280 HB. Después de someterlos a un tratamiento de templado su resistencia mecánica puede aumentar hasta alcanzar los 90 kg/mm2. Aplicaciones: Ejes y elementos de máquinas, piezas bastante resistentes, cilindros de motores de explosión, transmisiones, etc.			
-Aceros: El p	porcentaje de carbono es del	. Tienen una resistencia mecánica	

de 70-75 kg/mm2, y una dureza Brinell de 200-220 HB. Bajo un tratamiento de templado estos

Aplicaciones: Ejes, transmisiones, tensores y piezas regularmente cargadas y de espesores no muy

aceros pueden alcanzar un valor de resistencia de 100 kg/mm2 y una dureza de 275-300 HB.

elevados.

Paulino Posada pág. 7 de 7