

Departamento de Matemáticas 1º Bachillerato

Autoevaluación de Estadística y Probabilidad

- 1. au31e01 Se realiza una encuesta a un grupo de 10 personas acerca del número de veces que acuden a la peluquería a lo largo de un a \tilde{n} o, obteniéndose los siguientes resultados: 3 5 5 2 3 4 5 8 4 4
 - (a) Realiza una tabla de frecuencias

	Sol:						
	x_i	f_i	F_i	h_i	H_i	%_i	%A_i
	2	1	1	0.1	0.1	10	10
	3	2	3	0.2	0.3	20	30
	4	3	6	0.3	0.6	30	60
	5	3	9	0.3	0.9	30	90
	8	1	10	0.1	1	10	100
ı							

(b) Realiza un diagrama de barras

(c) Calcular los parámetros de centralización

 $\begin{tabular}{ll} \bf Sol: 'media': 4.3, 'mediana': 4.0, 'moda': & ModeResult(mode=array([4]), \\ count=array([3])) \end{tabular}$

(d) Calcular los parámetros de posición P70, Q1, Q3, D4

Sol: 'P70': 5.0, 'Q1': 3.25, 'Q3': 5.0, 'D4': 4.0

(e) Calcular los parámetros de dispersión

Sol: 'rango': 6, 'varianza': 2.41, 'desviación típica': 1.55241746962600, 'coeficiente variación': 0.361027318517675

2. au31e02 - En una consulta médica la distribución de pacientes por su edad ha sido, en la última semana, la siguiente:

beilialia, la bigalettee.							
	Duración	Cantidad					
0	[0, 30)	10					
1	[30, 60)	20					
2	[60, 90)	25					
3	[90, 120)	3					

(a) Haz una tabla de frecuencias

		\lim_{-i} inf	\lim_{-sup}	x_i	f_{-i}	F_i	h_i	$_{\mathrm{H}}$ _i	x_if_i	$x^2_if_i$
	0	0	30	15	10	10	0.172414	0.172414	150	2250
Sol:	1	30	60	45	20	30	0.344828	0.517241	900	40500
501;	2	60	90	75	25	55	0.431034	0.948276	1875	140625
	3	90	120	105	3	58	0.0517241	1	315	33075
	4	nan	nan	nan	58	nan	1	nan	3240	216450

(b) Calcula media, la varianza, la desviación típica y el coeficiente de variación

Sol: 'media': 55.86206896551724, 'varianza': 611.3258026159338, 'desviación típica': 24.7250035918285, 'coeficiente de variación': 0.442608088989523

(c) La edad mas frecuente de los pacientes

Sol: 'Intervalo modal': '

left[60,0,90,0]

right)', 'moda': 65.555555555556

(d) El percentil 47

Sol: 'k': 47, 'N': 58.0, ' L_i ': 30.0, ' f_i ': 20.0, ' F_{i-1} ': 10.0, ' C_i ': 30.0, 'percentil': 55.89

(e) ¿Qué porcentaje de pacientes tenían una edad superior a 60 años?

Sol: 'valor': 60, 'N': 58.0, ' L_i ': 60.0, ' f_i ': 25.0, ' F_{i-1} ': 30.0, ' C_i ': 30.0, 'Porcentaje': 51.7241379310345

3. au31e03 - La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

	0	1	2	3
Temperatura (grados)	10	14	17	20
Gasto (euros)	150	102	55	18

(a) Haz una tabla de frecuencias con los datos que necesites para hace el resto de apartados

		X	У	xy	x2	y2
	0	10	150	1500	100	22500
Sol:	1	14	102	1428	196	10404
301:	2	17	55	935	289	3025
	3	20	18	360	400	324
	4	61	325	4223	985	36253

(b) Calcula el gasto medio

Sol: 'media': 81.25

(c) Halla el coeficiente de correlación lineal e interprétalo Sol: 'media de x': 15.25, 'desviación de x': 3.6996621467371855, 'media de y': 81.25, 'desviación de y': 49.61539579606314, 'covarianza': -183.3125, 'coeficiente de correlación': -0.9986505695692516

(d) Estima el gasto medio por habitante de una ciudad si la temperatura media hubiera sido 12° C

4. au31e04 - De los 30 alumnos de una clase, 16 escogieron francés como idioma y 24 inglés. 12 eligieron ambos idiomas y el resto no optó por ninguno de ellos. elegido un alumno al azar, calcula las probabilidades de que escogiera:

- (a) i) Francés
 - ii) Inglés
 - iii) Ambos idiomas
 - iv) Francés o Inglés
 - v) Francés, pero no inglés

vi) Inglés, pero no francés

Sol: $\left[\frac{8}{15}, \frac{4}{5}, \frac{2}{5}, \frac{14}{15}, \frac{2}{15}, \frac{2}{5}\right]$

- 5. au31e05 Se tiene una urna con 8 bolas negras y 14 blancas, y se realizan dos extracciones sucesivas de una bola. Halla la probabilidad de que las dos bolas sean blancas en los siguientes casos:
 - (a) i) Con devolución a la urna de la primera bola extraída ii) Sin devolución

Sol: $\left[\frac{49}{121}, \frac{13}{33}\right]$

- 6. au31e06 Dos máquinas se usan para producir marcapasos. La máquina A produce el 60El 2marcapasos producidos por la máquina B son defectuosos. Se selecciona un marcapasos al azar de entre todos los producidos
 - (a) i) calcular la probabilidad de que sea defectuoso ii) Si sabemos que el marcapasos es defectuoso, calcula la probabilidad de que haya sido producido por la máquina

A.

Sol: $\left[\frac{7}{250}, \frac{3}{7}\right]$

- 7. au31e07 Sea X una variable aleatoria discreta cuya función de probabilidad es $(x_i : p_i)$: 1: 0.2, 2: 0.2, 3: 0.3, 4: 0.2, 5: 0.1
 - (a) Calcula sus parámetros

Sol:

La media es: 2,8 La varianza: 1,56

(b) Calcula P(X < 4.5):, $P(X \ge 3)$, $P(2 \le X < 4)$

Sol: [0,9, 0,6, 0,5]

- 8. au31e08 En una distribución binomial B(5, 0.4) calcula:
 - (a) P(X > 3)

(c) P(X > 0)

Sol: 0,08704

Sol: 0,92224

(b) $P(X \ge 1)$

(d) $P(X \le 4)$

Sol: 0,92224

Sol: 0,98976

- 9. au31e09 La probabilidad de que un jugador de baloncesto enceste una tiro de 2 puntos es 0.75. Si tira 4 veces:
 - Describe la variable del ejercicio

Sol: {0:0,00390625, 1:0,046875,2:0,2109375,3:0,421875,4:0.31640625

(b) Calcula la probabilidad de que enceste 2

Sol: P(X = 2) = 0.2109375

Calcula la probabilidad de que enceste al menos 1

Sol: $P(X \ge 1) = 0.99609375$

Calcula la probabilidad de que enceste más de 2

Sol: P(X > 2) = 0.73828125

- 10. au31e10 En una distribución Normal Z(0, 1) calcula:
 - (a) $P(Z \le 1.43)$

Sol: 0,355691245199453

Sol: 0,135905121983278

Sol: 0,923641490463261

(c) $P(Z \ge -1.48)$

(e) $P(Z \leq 0)$

(b) P(Z > 0.37)

Sol: 0,930563376666668

Sol: 0,5

11. au31e11 - La duración media de un televisor es de 10 años, con una desviación típica igual a 2.5 años. Si la vida útil del electrodoméstico se distribuye normalmente:

(d) $P(Z \ge -2 \land Z \le -1)$

Halla la probabilidad de que al comprar un televisor, este dure más de 12 años

Sol: $P(X \ge 12) = 0.211855398583397$

- 12. au31e12 En un examen tipo test de 100 preguntas de elección múltiple, cada pregunta tiene una respuesta correcta y una incorrecta. Se aprueba si se contestan más de 55 respuestas correctas:
 - Suponiendo que se contesta al azar, calcula la probabilidad de aprobar el examen

Sol: La media: 50,0, la desviación: 5,0, P(X > 55,5) = 0,135666060946383