# MA 6.101 Probability and Statistics

Tejas Bodas

Assistant Professor, IIIT Hyderabad

- ► Intro to Stochastic Simulation
  - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.

- Intro to Stochastic Simulation
  - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.
- Limit theorems for Convergence of random variables

- Intro to Stochastic Simulation
  - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.
- Limit theorems for Convergence of random variables
  - Sure convergence

- Intro to Stochastic Simulation
  - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.
- Limit theorems for Convergence of random variables
  - Sure convergence
  - Almost sure convergence

- Intro to Stochastic Simulation
  - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.
- Limit theorems for Convergence of random variables
  - Sure convergence
  - Almost sure convergence & SLLN

- Intro to Stochastic Simulation
  - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.
- Limit theorems for Convergence of random variables
  - Sure convergence
  - Almost sure convergence & SLLN
  - Convergence in probability

- Intro to Stochastic Simulation
  - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.
- Limit theorems for Convergence of random variables
  - Sure convergence
  - Almost sure convergence & SLLN
  - Convergence in probability
  - ightharpoonup Convergence in  $r^{th}$  mean

- Intro to Stochastic Simulation
  - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.
- Limit theorems for Convergence of random variables
  - Sure convergence
  - Almost sure convergence & SLLN
  - Convergence in probability
  - ightharpoonup Convergence in  $r^{th}$  mean
  - Weak Convergence or Convergence in distribution

- Intro to Stochastic Simulation
  - We will generate samples from discrete or continuous r.v's using samples from uniform distribution.
- Limit theorems for Convergence of random variables
  - Sure convergence
  - Almost sure convergence & SLLN
  - Convergence in probability
  - ightharpoonup Convergence in  $r^{th}$  mean
  - Weak Convergence or Convergence in distribution & CLT

Generate samples using uniform distribution

Suppose you have access to samples from a uniform random variable U over support [0,1].

- Suppose you have access to samples from a uniform random variable U over support [0,1].
- import numpy as np import matplotlib.pyplot as plt uni\_samples = np.random.uniform(0, 1, 5000) plt.hist(uni\_samples, bins = 10, density = True) plt.show()

- Suppose you have access to samples from a uniform random variable U over support [0,1].
- import numpy as np import matplotlib.pyplot as plt uni\_samples = np.random.uniform(0, 1, 5000) plt.hist(uni\_samples, bins = 10, density = True) plt.show()



- Suppose you have access to samples from a uniform random variable U over support [0,1].
- import numpy as np import matplotlib.pyplot as plt uni\_samples = np.random.uniform(0, 1, 5000) plt.hist(uni\_samples, bins = 10, density = True) plt.show()



 $ightharpoonup uni\_samples$  is a vector of 5000 realizations of uniform random variable U.

- Suppose you have access to samples from a uniform random variable U over support [0,1].
- import numpy as np
  import matplotlib.pyplot as plt
  uni\_samples = np.random.uniform(0, 1, 5000)
  plt.hist(uni\_samples, bins = 10, density = True)
  plt.show()



- ightharpoonup uni\_samples is a vector of 5000 realizations of uniform random variable U.
- You can also see it as a realization of  $U_1, U_2, \dots U_{5000}$  i.i.d uniform variables.

➤ Can you use these 5000 samples and convert them into outcomes of a dice ?

Can you use these 5000 samples and convert them into outcomes of a dice ?

```
t=0
dice_samples=np.zeros(5000)
for u in uni_samples:
  if u < 1/6:
    dice_sample = 1
  if 1/6 < u < 2/6:
    dice_sample = 2
  if 2/6 < u < 3/6:
    dice_sample = 3
  if 3/6 < u < 4/6:
    dice_sample = 4
  if 4/6 < u < 5/6:
    dice_sample = 5
  if 5/6 < u < 6/6:
    dice_sample = 6
  dice_samples[t] = dice_sample
  t = t+1
plt.hist(dice_samples, bins = 6, density = True)
```

Can you use these 5000 samples and convert them into outcomes of a dice?

```
t=0
dice_samples=np.zeros(5000)
for u in uni_samples:
  if u < 1/6:
    dice_sample = 1
  if 1/6 < u < 2/6:
    dice_sample = 2
  if 2/6 < u < 3/6:
    dice_sample = 3
  if 3/6 < u < 4/6:
    dice sample = 4
  if 4/6 < u < 5/6:
    dice_sample = 5
  if 5/6 < u < 6/6:
    dice_sample = 6
  dice_samples[t] = dice_sample
  t = t+1
plt.hist(dice_samples, bins = 6, density = True)
```

- **(**0.02, 0.8, 0.6, 0.03)
- **▶** [1, 5, 4, 1]



Consider a discrete random variable X with support set  $\{x_0, x_1, \ldots\}$  and pmf  $p_X(x_j) = p_j$  for  $j = 0, 1, \ldots$  such that  $\sum_j p_j = 1$ .

- Consider a discrete random variable X with support set  $\{x_0, x_1, \ldots\}$  and pmf  $p_X(x_j) = p_j$  for  $j = 0, 1, \ldots$  such that  $\sum_i p_j = 1$ .
- Cardinality of the support set of X could be finite or infinite.

- Consider a discrete random variable X with support set  $\{x_0, x_1, \ldots\}$  and pmf  $p_X(x_j) = p_j$  for  $j = 0, 1, \ldots$  such that  $\sum_i p_j = 1$ .
- Cardinality of the support set of X could be finite or infinite.
- ightharpoonup Our aim: Create i.i.d. samples of r.v. X using i.i.d. random samples of U.

- Consider a discrete random variable X with support set  $\{x_0, x_1, \ldots\}$  and pmf  $p_X(x_j) = p_j$  for  $j = 0, 1, \ldots$  such that  $\sum_j p_j = 1$ .
- Cardinality of the support set of X could be finite or infinite.
- ightharpoonup Our aim: Create i.i.d. samples of r.v. X using i.i.d. random samples of U.
- We shall now formally see the inverse transform method to do this.

Aim: We wish to create i.i.d. samples of a discrete r.v. X with  $p_X(x_i) = p_i$  using i.i.d. samples of a uniform r.v. U over [0,1].

Aim: We wish to create i.i.d. samples of a discrete r.v. X with  $p_X(x_i) = p_i$  using i.i.d. samples of a uniform r.v. U over [0,1].

- Aim: We wish to create i.i.d. samples of a discrete r.v. X with  $p_X(x_j) = p_j$  using i.i.d. samples of a uniform r.v. U over [0,1].
- Let  $u \in [0,1]$  be a realization of r.v. U. Then the corresponding sample of X is generated as follows

- Aim: We wish to create i.i.d. samples of a discrete r.v. X with  $p_X(x_j) = p_j$  using i.i.d. samples of a uniform r.v. U over [0,1].
- Let  $u \in [0,1]$  be a realization of r.v. U. Then the corresponding sample of X is generated as follows

$$X = \begin{cases} x_0 & \text{if } u < p_0 \\ x_1 & \text{if } p_0 \le u < p_0 + p_1 \\ x_2 & \text{if } p_0 + p_1 \le u < p_0 + p_1 + p_2 \\ \vdots \\ x_j & \text{if } \sum_{i=0}^{j-1} p_i \le u < \sum_{i=0}^{j} p_i \\ \vdots \\ \vdots \end{cases}$$

- Aim: We wish to create i.i.d. samples of a discrete r.v. X with  $p_X(x_j) = p_j$  using i.i.d. samples of a uniform r.v. U over [0,1].
- Let  $u \in [0,1]$  be a realization of r.v. U. Then the corresponding sample of X is generated as follows

$$X = \begin{cases} x_0 & \text{if } u < p_0 \\ x_1 & \text{if } p_0 \le u < p_0 + p_1 \\ x_2 & \text{if } p_0 + p_1 \le u < p_0 + p_1 + p_2 \\ \vdots \\ x_j & \text{if } \sum_{i=0}^{j-1} p_i \le u < \sum_{i=0}^{j} p_i \\ \vdots \\ \vdots \end{cases}$$

Why is this method correct?

ightharpoonup A sample of X is generated using the sample of U as follows

ightharpoonup A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if  $\sum_{i=0}^{j-1} p_i \leq U < \sum_{i=0}^{j} p_i$ 

ightharpoonup A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if  $\sum_{i=0}^{j-1} p_i \leq U < \sum_{i=0}^{j} p_i$ 

Why the name "inverse transform method"?

ightharpoonup A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if  $\sum_{i=0}^{j-1} p_i \leq U < \sum_{i=0}^{j} p_i$ 

- Why the name "inverse transform method"?
  - Recall that  $\{x_0, x_1, x_2, ...\}$  is the support set of X and without loss of generality (WLOG), suppose  $x_0 < x_1 < x_2 < ...$

ightharpoonup A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if  $\sum_{i=0}^{j-1} p_i \leq U < \sum_{i=0}^{j} p_i$ 

- Why the name "inverse transform method"?
  - Recall that  $\{x_0, x_1, x_2, ...\}$  is the support set of X and without loss of generality (WLOG), suppose  $x_0 < x_1 < x_2 < ...$
  - Let  $F_X(x) := \mathbb{P}[X \le x]$  denote the cdf of X

ightharpoonup A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if  $\sum_{i=0}^{j-1} p_i \leq U < \sum_{i=0}^{j} p_i$ 

- Why the name "inverse transform method"?
  - Recall that  $\{x_0, x_1, x_2, ...\}$  is the support set of X and without loss of generality (WLOG), suppose  $x_0 < x_1 < x_2 < ...$
  - Let  $F_X(x) := \mathbb{P}[X \le x]$  denote the cdf of X and thus we have

$$F_X(x_j) = \sum_{i=0}^k p_i$$

ightharpoonup A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if  $\sum_{i=0}^{j-1} p_i \leq U < \sum_{i=0}^{j} p_i$ 

- Why the name "inverse transform method"?
  - Recall that  $\{x_0, x_1, x_2, ...\}$  is the support set of X and without loss of generality (WLOG), suppose  $x_0 < x_1 < x_2 < ...$
  - Let  $F_X(x) := \mathbb{P}[X \le x]$  denote the cdf of X and thus we have

$$F_X(x_j) = \sum_{i=0}^k p_i$$

This implies that

$$X = x_i$$
 if  $F_X(x_{i-1}) \leq U < F_X(x_i)$  (

ightharpoonup A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if  $\sum_{i=0}^{j-1} p_i \leq U < \sum_{i=0}^{j} p_i$ 

- ▶ Why the name "inverse transform method"?
  - Recall that  $\{x_0, x_1, x_2, ...\}$  is the support set of X and without loss of generality (WLOG), suppose  $x_0 < x_1 < x_2 < ...$
  - Let  $F_X(x) := \mathbb{P}[X \le x]$  denote the cdf of X and thus we have

$$F_X(x_j) = \sum_{i=0}^k p_i$$

This implies that

$$X = x_i$$
 if  $F_X(x_{i-1}) \le U < F_X(x_i)$  (implying  $p_X(x_i) = p_i$ )

 $\triangleright$  A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if  $\sum_{i=0}^{j-1} p_i \leq U < \sum_{i=0}^{j} p_i$ 

- Why the name "inverse transform method"?
  - Recall that  $\{x_0, x_1, x_2, ...\}$  is the support set of X and without loss of generality (WLOG), suppose  $x_0 < x_1 < x_2 < ...$
  - Let  $F_X(x) := \mathbb{P}[X \le x]$  denote the cdf of X and thus we have

$$F_X(x_j) = \sum_{i=0}^k p_i$$

► This implies that

$$X = x_j$$
 if  $F_X(x_{j-1}) \le U < F_X(x_j)$  (implying  $p_X(x_j) = p_j$ )

After generating a random number U, we determine the value of X by finding the interval  $\left[F_X(x_{j-1}), F_X(x_j)\right)$  in which u lies.

 $\triangleright$  A sample of X is generated using the sample of U as follows

$$X = x_j$$
 if  $\sum_{i=0}^{j-1} p_i \leq U < \sum_{i=0}^{j} p_i$ 

- Why the name "inverse transform method"?
  - Recall that  $\{x_0, x_1, x_2, ...\}$  is the support set of X and without loss of generality (WLOG), suppose  $x_0 < x_1 < x_2 < ...$
  - Let  $F_X(x) := \mathbb{P}[X \le x]$  denote the cdf of X and thus we have

$$F_X(x_j) = \sum_{i=0}^k p_i$$

This implies that

$$X = x_j$$
 if  $F_X(x_{j-1}) \le U < F_X(x_j)$  (implying  $p_X(x_j) = p_j$ )

- After generating a random number U, we determine the value of X by finding the interval  $\left[F_X(x_{j-1}), F_X(x_j)\right)$  in which u lies.
- We are thus finding the inverse of  $F_X(U)$ !

# How to generate samples of a continuous random variable

(Using samples of a continuous uniform variable over [0,1])

Suppose you have access to samples from a uniform random variable *U* over support [0, 1].(We will not study how to generate such samples.)

- Suppose you have access to samples from a uniform random variable *U* over support [0, 1].(We will not study how to generate such samples.)
- Consider a continuous random variable X with support set  $\mathcal{X}$  and let  $F_X(x)$  denotes its cdf.

- ➤ Suppose you have access to samples from a uniform random variable *U* over support [0, 1].(We will not study how to generate such samples.)
- Consider a continuous random variable X with support set  $\mathcal{X}$  and let  $F_X(x)$  denotes its cdf.
- Support set of X could be arbitrary.

- ➤ Suppose you have access to samples from a uniform random variable *U* over support [0, 1].(We will not study how to generate such samples.)
- Consider a continuous random variable X with support set  $\mathcal{X}$  and let  $F_X(x)$  denotes its cdf.
- Support set of X could be arbitrary.
- $lackbox{Our aim:}$  Create i.i.d. samples of r.v. X using i.i.d. random samples of U.

- ➤ Suppose you have access to samples from a uniform random variable *U* over support [0, 1].(We will not study how to generate such samples.)
- Consider a continuous random variable X with support set  $\mathcal{X}$  and let  $F_X(x)$  denotes its cdf.
- Support set of X could be arbitrary.
- $lackbox{Our aim:}$  Create i.i.d. samples of r.v. X using i.i.d. random samples of U.
- ► We shall again see the inverse transform method to do this.

#### Lemma

Let U be uniform random variable over [0,1].

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous cdf F(.).

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

#### **Proof:**

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

#### **Proof:**

ightharpoonup Let  $F_X(x)$  be the cdf of X,

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

#### **Proof:**

▶ Let  $F_X(x)$  be the cdf of X, i.e.,  $F_X(x) := \mathbb{P}[X \le x]$ .

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

#### **Proof:**

▶ Let  $F_X(x)$  be the cdf of X, i.e.,  $F_X(x) := \mathbb{P}[X \le x]$ . Then

$$F_X(x) = \mathbb{P}[F^{-1}(U) \leq x]$$

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

#### **Proof:**

▶ Let  $F_X(x)$  be the cdf of X, i.e.,  $F_X(x) := \mathbb{P}[X \le x]$ . Then

$$F_X(x) = \mathbb{P}[F^{-1}(U) \leq x]$$

$$= \mathbb{P}[U \leq F(x)]$$

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

#### **Proof:**

Let  $F_X(x)$  be the cdf of X,i.e.,  $F_X(x) \coloneqq \mathbb{P}[X \le x]$ . Then  $F_X(x) = \mathbb{P}[F^{-1}(U) \le x]$ 

$$= \mathbb{P}[U \leq F(x)]$$

$$=F(x)$$

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

#### **Proof:**

Let  $F_X(x)$  be the cdf of X,i.e.,  $F_X(x) \coloneqq \mathbb{P}[X \le x]$ . Then  $F_X(x) = \mathbb{P}[F^{-1}(U) \le x]$ 

$$= \mathbb{P}[U \leq F(x)]$$

$$=F(x)$$

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

Using this lemma, how to generate samples of a continuous random variable X using samples of uniform random variable U?

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

- Using this lemma, how to generate samples of a continuous random variable X using samples of uniform random variable U?
- ▶ **Answer:** Draw  $u \sim U$  and obtain  $F^{-1}(u)$ . This is a sample from X.

#### Lemma

Let U be uniform random variable over [0,1]. Consider any continuous  $cdf\ F(.)$ . Consider a random variable X defined as follows

$$X := F^{-1}(U)$$

Then the cdf of X is F(.).

- Using this lemma, how to generate samples of a continuous random variable X using samples of uniform random variable U?
- ▶ **Answer:** Draw  $u \sim U$  and obtain  $F^{-1}(u)$ . This is a sample from X.
- Do you observe anything "special" about this lemma?

► Lemma:  $X = F^{-1}(U)$  has distribution F(.).

- ▶ Lemma:  $X = F^{-1}(U)$  has distribution F(.).
- ▶ What will be cdf of a random variable Y = F(X)?

- ▶ Lemma:  $X = F^{-1}(U)$  has distribution F(.).
- ▶ What will be cdf of a random variable Y = F(X)?**Uniform!**

- ▶ Lemma:  $X = F^{-1}(U)$  has distribution F(.).
- ▶ What will be cdf of a random variable Y = F(X)?**Uniform!**
- ightharpoonup A consequence of this lemma is that F(X) is a uniform distribution.

- ▶ Lemma:  $X = F^{-1}(U)$  has distribution F(.).
- ▶ What will be cdf of a random variable Y = F(X)?**Uniform!**
- ightharpoonup A consequence of this lemma is that F(X) is a uniform distribution.
- This property is known as "probability integral transform or universality of uniform".

- ▶ Lemma:  $X = F^{-1}(U)$  has distribution F(.).
- ▶ What will be cdf of a random variable Y = F(X)?**Uniform!**
- ightharpoonup A consequence of this lemma is that F(X) is a uniform distribution.
- This property is known as "probability integral transform or universality of uniform".
- This property is used to test whether a set of observations can be modelled as arising from a specified distribution G(.) or not.

- ▶ Lemma:  $X = F^{-1}(U)$  has distribution F(.).
- ▶ What will be cdf of a random variable Y = F(X)?**Uniform!**
- ightharpoonup A consequence of this lemma is that F(X) is a uniform distribution.
- This property is known as "probability integral transform or universality of uniform".
- This property is used to test whether a set of observations can be modelled as arising from a specified distribution G(.) or not.
  - Given set of data samples  $s_1, s_2, \ldots, s_n$ , plot  $G(s_i)$  for different samples.
  - If these points are spread uniformly over the interval [0,1] then it indicates that the samples are indeed from G(.).

## Stochastic Simulation

## Stochastic Simulation

► This was a brief introduction to this area of stochastic simulation.

- ► This was a brief introduction to this area of stochastic simulation.
- Refer the book Simulation by Sheldon Ross!

- ► This was a brief introduction to this area of stochastic simulation.
- Refer the book Simulation by Sheldon Ross!
- Some popular techniques in simulation are:

- ► This was a brief introduction to this area of stochastic simulation.
- Refer the book Simulation by Sheldon Ross!
- Some popular techniques in simulation are:
- ► The inverse transform method
  - Accept-Reject method (rejection sampling)
  - Importance sampling
  - Markov Chain Monte Carlo (MCMC) methods

- This was a brief introduction to this area of stochastic simulation.
- Refer the book Simulation by Sheldon Ross!
- Some popular techniques in simulation are:
- ► The inverse transform method
  - Accept-Reject method (rejection sampling)
  - Importance sampling
  - Markov Chain Monte Carlo (MCMC) methods
    - Hasting-Metropolis algorithm
    - Gibbs sampling
    - Slice sampling

# Convergence of Random Variables

▶ When do we say that  $\{x_n\}$  converges to  $x \in \mathbb{R}$  ?

▶ When do we say that  $\{x_n\}$  converges to  $x \in \mathbb{R}$ ?

We say that  $\{x_n\}$  converges to  $x \in \mathbb{R}$  (denoted by  $x_n \to x$ ) if for every  $\epsilon > 0$ , we can find an  $N(\epsilon) \in \mathbb{N}$  such that for  $|x_n - x| < \epsilon$  for  $n > N(\epsilon)$ .

▶ When do we say that  $\{x_n\}$  converges to  $x \in \mathbb{R}$ ?

We say that  $\{x_n\}$  converges to  $x \in \mathbb{R}$  (denoted by  $x_n \to x$ ) if for every  $\epsilon > 0$ , we can find an  $N(\epsilon) \in \mathbb{N}$  such that for  $|x_n - x| < \epsilon$  for  $n > N(\epsilon)$ .

What about convergence of functions?

▶ When do we say that  $\{x_n\}$  converges to  $x \in \mathbb{R}$ ?

We say that  $\{x_n\}$  converges to  $x \in \mathbb{R}$  (denoted by  $x_n \to x$ ) if for every  $\epsilon > 0$ , we can find an  $N(\epsilon) \in \mathbb{N}$  such that for  $|x_n - x| < \epsilon$  for  $n > N(\epsilon)$ .

- What about convergence of functions?
- When do we say that a sequence of functions  $F_n(\cdot)$  converge to  $F(\cdot)$  on the domain  $\mathbb{R}$ ?

▶ When do we say that  $\{x_n\}$  converges to  $x \in \mathbb{R}$  ?

We say that  $\{x_n\}$  converges to  $x \in \mathbb{R}$  (denoted by  $x_n \to x$ ) if for every  $\epsilon > 0$ , we can find an  $N(\epsilon) \in \mathbb{N}$  such that for  $|x_n - x| < \epsilon$  for  $n > N(\epsilon)$ .

- What about convergence of functions?
- When do we say that a sequence of functions  $F_n(\cdot)$  converge to  $F(\cdot)$  on the domain  $\mathbb{R}$ ?

We say that the sequence of function  $F_n(\cdot)$  converge to  $F(\cdot)$  pointwise if the sequence  $\{F_n(x)\}$  converges to F(x)  $(F_n(x) \to F(x))$  for all  $x \in \mathbb{R}$ .

▶ For every x, the sequence  $\{F_n(x)\}$  coverges to F(x).

- ▶ For every x, the sequence  $\{F_n(x)\}$  coverges to F(x).
- ▶ For every  $\epsilon$ , there exists  $N(\epsilon, x)$  which can depend on x.

- ▶ For every x, the sequence  $\{F_n(x)\}$  coverges to F(x).
- ▶ For every  $\epsilon$ , there exists  $N(\epsilon, x)$  which can depend on x.
- ▶ Only those  $F_n(x)$  are  $\epsilon$  close to F(x) for which  $n > N(\epsilon, x)$ .

We say that the sequence of function  $F_n(\cdot)$  converge to  $F(\cdot)$  pointwise if the sequence  $\{F_n(x)\}$  converges to F(x)  $(F_n(x) \to F(x))$  for all  $x \in \mathbb{R}$ .

- ▶ For every x, the sequence  $\{F_n(x)\}$  coverges to F(x).
- ▶ For every  $\epsilon$ , there exists  $N(\epsilon, x)$  which can depend on x.
- ▶ Only those  $F_n(x)$  are  $\epsilon$  close to F(x) for which  $n > N(\epsilon, x)$ .

If  $N(\epsilon, x) = N(\epsilon)$  (i.e., independent of x) for every  $x \in \mathbb{R}$ , then such convergence of  $F_n(\cdot)$  to  $F(\cdot)$  is called as uniform convergence.