Theory and Practice of Data Cleaning

Relational Data

From Syntax to Schema & Semantics

- Regular expressions
 - Define *patterns* (*syntax*) for matching and extracting data
 - Check conformance (e.g., ISO date format YYYY-MM-DD)
 - ... otherwise: bring into canonical form

OpenRefine

- Profile and clean data, one column at a time
- Powerful similarity-based clustering
 - ... bring into canonical form
- What about complex issues, spanning multiple columns?
 - What about *logical errors*?
 - How to deal with data quality at the schema and semantic level?

... after OpenRefine, "dirty data" can still make it into our database tables ...

PERSON

Id	Name	DOB	Age	Sex	Phone	Zip	Email
43	Doe, Joe	1970-02-27	56	M	(999)-999-999	94102	
43	Jane Dunbar	1.1.1990	26	W	NULL	61820	jdunbar@foobar.com
27	Joe Doe	2/30/70	46	F	+1-530-777-1234	D-6951	joe.doe@gargle.edu

ADDRESS

ZIP	City	State
94102	San Franzisco	CA
61821	Champagne	IL
D-6951	Obrigheim	Deutschland

• Errors and IC Violations:

- Different representations & formats
- Duplicates
- Incompleteness
- Incorrect values (typos, domain, ...)
- Uniqueness (primary key) violation
- Contradictions
- Referential Integrity (FK → PK)
 - PERSON.ZIP → ADDRESS.ZIP

• ...

From Syntax to Schema & Semantics

- After pattern-based cleaning
 - regular expressions, OpenRefine, ...
- ... load data into a database system!
- ... and then exploit database technology:
 - queries & integrity constraints!

Relational Databases

- Logic-based approach first: Datalog
 - Facts, rules, queries, integrity constraints
 - Rich body of research; theory & practice!
- Relational data everywhere: SQL

Relational Model

- Data in *relations* (tables) with ...
 - ... **rows** (tuples)
 - ... columns (attributes)
 - ... header (schema)
 - ... body (instances)

- Pioneered by Edgar F. Codd in the 1970s
- Some more **Terminology**:
 - Relational Model
 - Relational Schema
 - Relational Database (Instance)
 - RDBMS
 - Relational Database Management System

Relational Model ...

- ... is closely related to:
 - Predicate Logic
 - Entity-Relationship (ER) model
- ... can represent other data:
 - Object-oriented / object-relational model
 - XML data, graph data,
 - ...
- ... has powerful query languages:
 - First-order predicate logic (FOL, RC)
 - Datalog
 - Relational Algebra (RA)
 - Structured Query Language (SQL)
- ... for checking of integrity constraints

So many query languages, so little time: 4-in-1

```
SELECT ... FROM ... WHERE ...

SQL

                                                                                                \sigma, \pi, \bowtie, \delta, \cup, \setminus

Relational Algebra (RA)

                                                                     \forall x F, \exists x F, F \land G, F \lor G, \neg F

Relational Calculus (RC)

                                                                                            \approx RC + Recursion

Datalog
```

EXAMPLE: Given relations employee (Emp, Salary, DeptNo) and dept(DeptNo, Mgr) find all (employee, manager) pairs:

- SQL: SELECT Emp, Mgr FROM employee, dept WHERE employee.DeptNo = dept.DeptNo
- $\pi_{\text{Emp,Mgr}}(\text{employee} \bowtie \text{dept})$ RA:
- F(Emp, Mgr) = RC: ∃Salary, DeptNo: (employee(Emp, Salary, DeptNo)∧dept(DeptNo,Mgr))
- Datalog: boss(Emp, Mgr) ← employee(Emp, Salary, DeptNo), dept(DeptNo, Mgr)

Summary

- Syntax
 - Regular expressions define patterns that can be used to match, extract, and transform data, i.e., deal with syntactic variations
 - OpenRefine: open source tool for data wrangling
- Schema & Semantics
 - Using database technologies for querying and profiling; integrity constraint (IC) checking; and repair
 - Relational Model
 - Querying relational data: Datalog and SQL
- Synthesis
 - Workflow automation (ETL, scripts)
 - Provenance (data lineage and processing history)
 - YesWorkflow: modeling scripts as workflows, provenance

