Grupos y Anillos. Grado en Matemáticas. 2012-13. Hoja de problemas 3.

- 1. Construir la tabla de multiplicación de los siguientes grupos.
 - a) Los grupos de unidades de \mathbb{Z}_7 y \mathbb{Z}_{16} .
 - b) El subgrupo de $GL_2(\mathbb{C})$ generado por las matrices $\begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$. Este grupo se llama grupo de cuaterniones y se denota Q_8 .
 - c) El subgrupo del grupo de la permutaciones de $A = \mathbb{R} \setminus \{0, 1, 2\}$ generado por f y g, donde $f(x) = 2 - x \text{ y } g(x) = \frac{2}{x}.$
- 2. Construir el diagrama de los subgrupos de los grupos del ejercicio 1, indicando cuáles de ellos son normales.
- 3. Sean G un grupo y X un subconjunto de G. Se llama centralizador de X en G al conjunto $C_G(X) = \{g \in G : gx = xg, \text{ para todo } x \in X\}$. El centro de G es $Z(G) = C_G(G)$. Demostrar que $C_G(X)$ es un subgrupo de G y Z(G) es un subgrupo normal de G.

Calcular el centro de los grupos del ejercicio 1 y de $GL_n(K)$ para K un cuerpo.

- 4. Demostrar que la intersección de una familia de subgrupos normales de un grupo también es un subgrupo normal.
- 5. Sea H un subgrupo de un grupo G. Demostrar que $\cap_{g \in G} g^{-1} H g$ es el mayor subgrupo normal de G contenido en H y el subgrupo generado por $\bigcup_{g \in G} g^{-1} Hg$ es el menor subgrupo normal de G que contiene a H.
- 6. Probar que todo grupo G de orden menor o igual a cinco es abeliano.
- 7. Sea G un grupo. Probar que las siguientes afirmaciones son equivalentes:
 - a) G es abeliano.
 - $\stackrel{\circ}{b}(ab)^2=a^2b^2$ para cualesquiera $a,b\in G$.
 - c) $(ab)^{-1} = a^{-1}b^{-1}$ para cualesquiera $a, b \in G$.
 - d) $(ab)^n = a^n b^n$ para todo $n \in \mathbb{N}$ y para cualesquiera $a, b \in G$.
- 8. Para $n=2,\ldots,10$, determinar cuáles de los grupos \mathbb{Z}_n^* son cíclicos.
- 9. Sea G un grupo arbitrario. Mostrar que si K y L son subgrupos de G de índice finito y $K \subseteq L$ entonces $[G:K] = [G:L] \cdot [L:K]$.
- 10. Calcular el orden de cada elemento del grupo diedrico D_n , el centro de D_n y todos los subgrupos normales de D_n .
- 11. ¿Es cíclico el producto directo de dos grupos cíclicos infinitos?
- 12. Sea K un cuerpo. Demostrar que:
 - a) El subconjunto G de $GL_2(K)$ formado por las matrices invertibles de la forma $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ es un subgrupo de $GL_2(K)$.
 - b) El conjunto N de las matrices en G con unos en la diagonal es un subgrupo normal de G.
 - c) El cociente G/N es abeliano.
- 13. Demostrar que la propiedad de "ser normal" no es transitiva. Es decir, dar un ejemplo de un grupo G con subgrupos H y K tales que H sea normal en K, K sea normal en G, y H no sea normal en G.
- 14. Demostrar que si H y K son dos subgrupos de un grupo G entonces HK es un subgrupo de G si y sólo si HK = KH. Demostrar que esta propiedad se verifica si H ó K es normal es normal en G.
- 15. Sean N y M subgrupos normales de un grupo G tales que $N \cap M = \{1\}$. Probar que nm = mnpara todo $n \in N$ y $m \in M$.
- 16. Sea N un subgrupo normal de índice n de un grupo G. Demostrar que $g^n \in N$ para todo $g \in G$, y dar un ejemplo que muestre que esta propiedad falla si N no es normal en G.
- 17. Si N es un subgrupo normal en un grupo G y $a \in G$ tiene orden n, probar que el orden de Na en G/N es un divisor de n.

1

- 18. Demostrar que, si el grupo G no es abeliano, entonces existe un subgrupo abeliano de G que contiene estrictamente al centro Z(G).
- 19. Demostrar que si H es un subgrupo de G y $g \in G$, entonces $H^g = \{h^g : h \in H\}$ es un subgrupo de H con $|H| = |H^g|$. Demostrar además que H es normal en G si y sólo si lo es cualquier H^g .
- 20. Si G y H son grupos, Hom(G, H) denota el conjunto de los homomorfismos de G a H.
 - a) Demostrar que si H es abeliano, entonces Hom(G, H) es un grupo con la operación natural: $(\varphi\phi)(g) = \varphi(g)\phi(g)$, $\text{Hom}(\mathbb{Z}, G) \cong G$ y $\text{Hom}(\mathbb{Z}_n, G) \cong \{g \in G : g^n = e\}$.
 - b) Calcular $\operatorname{Hom}(\mathbb{Z}_3,\mathbb{Z}_8)$ y $\operatorname{Hom}(\mathbb{Z}_3,\mathbb{Z}_{21})$.
 - c) Probar que $\operatorname{Aut}(\mathbb{Z}_n) \cong \mathbb{Z}_n^*$ y describir $\operatorname{Aut}(\mathbb{Z})$.
 - d) Mostrar que, aun cuando G sea cíclico, Aut(G) no tiene por qué ser cíclico.
- 21. Un subgrupo H del grupo G es característico si, para cualquier automorfismo f de G, se verifica $f(H) \subseteq H$. Se pide:
 - a) Demostrar que todo subgrupo característico de G es un subgrupo normal de G.
 - b) Dar un ejemplo de un grupo con un subgrupo normal que no sea característico.
 - c) Demostrar que si H es un subgrupo normal de G y K es un subgrupo característico de H entonces K es un subgrupo normal de G.
 - d) Demostrar que el centro de un grupo es un subgrupo característico.
- 22. Supongamos que H es el único subgrupo de un grupo G con un cierto cardinal. Demostrar que H es un subgrupo característico (y por tanto normal) de G.
- 23. Sea G un grupo finito con un subgrupo normal H tal que |H| y [G:H] son coprimos. Si |H| = n, probar que H es el único subgrupo de G de orden n.
- 24. Sean N_1 y N_2 dos subgrupos normales de dos grupos G_1 y G_2 . Demostrar que $N_1 \times N_2$ es un subgrupo normal de $G_1 \times G_2$ y que $(G_1 \times G_2)/(N_1 \times N_2) \cong G_1/N_1 \times G_2/N_2$.
- 25. Sean H y N subgrupos de G. Supongamos que H tiene orden finito, que N tiene índice finito en G y que |H| y [G:N] son coprimos. Se pide:
 - a) Mostrar que si N es normal en G, entonces $H \subseteq N$.
 - b) Mostrar que si H es normal en G, entonces $[NH:N] = [H:N\cap H]$.
 - c) Deducir que si H es normal en G, entonces $H \subseteq N$.
- 26. Sea p un entero primo. Probar que $\mathbb{Z}_{p^{\infty}} = \{a/b + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z} : a, b \in \mathbb{Z}, b = p^n \text{ para algún } n \in \mathbb{N}\}$ es un subgrupo infinito de \mathbb{Q}/\mathbb{Z} en el que el orden de cada elemento es una potencia de p.
- 27. Demostrar que, si G es el grupo diédrico D_4 o el de cuaterniones Q_8 , entonces $Z(G) \cong \mathbb{Z}_2$ y $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, y sin embargo $D_4 \not\cong Q_8$.
- 28. Probar que, salvo isomorfismos, sólo hay dos grupos no abelianos de orden 8. ¿Cuáles son? Probar que todo grupo no abeliano de orden 6 es isomorfo a S_3 .
- 29. Probar las siguientes afirmaciones sobre el grupo abeliano Q de los números racionales.
 - a) Si un subgrupo H de \mathbb{Q} es finitamente generado, entonces H es cíclico.
 - b) \mathbb{Q} no es cíclico; ni siquiera es finitamente generado.
- 30. Demostrar que si H es un subgrupo abeliano de un grupo G tal que HZ(G) = G, entonces G es abeliano. Deducir que si G/Z(G) es cíclico, entonces G es abeliano.
- 31. Demostrar que si H es un subgrupo cíclico normal de G entonces todo subgrupo de H es normal en G.
- 32. (Teorema Chino de los Restos). Demostrar que si a y b son dos elementos de órdenes finitos n y m entonces $\langle a, b \rangle$ es cíclico de orden nm si y sólo si ab = ba y mcd(n, m) = 1.
- 33. Calcular las clases de conjugación de D_3 , D_4 y Q_8 .
- 34. Sea G un grupo. Demostrar que el conjunto Inn(G) de los automorfismos internos de G es un subgrupo normal del grupo de los automorfismos de G isomorfo a G/Z(G).
- 35. Sea p un número primo. Demostrar que, para cualquier grupo no abeliano de orden p^3 , su centro tiene orden p.
- 36. Probar que todo grupo de orden par posee un elemento de orden 2.