

DFT 2 Demystifying Dynamic Fit Indices

Jay Jeffries

TABLE OF CONTENTS

01

INTRODUCTION

Fit indices, flaws in cutoffs, "but what do I do?"

R WALKTHROUGH

Manual & automatic entry of one- and multi-factor models into {dynamic} package

03

SHINY APP

Web-based application requires no knowledge of simulation or software

DISCUSSION

Limitations, *activity*, questions and comments

GOALS AND CURIOSITIES

EXPLORATION

Practice and implement DFI simulation with real data.

MODEL IDENTIFICATION

How do DFIs change depending on method of model identification?

- Specifically, do effects-coding scaled factors change the cutoff for a hypothesized model?
 - > Test the 3 common model identification methods

How do DFIs change depending on factor reliability?

Compare factor models of differing reliability

MODEL SPECIFICATION

Important step in the process of model building that includes:

- Rationalizing the inclusion or omission of causal pathways
- Operationalizing constructs
- Specifying direction of paths
- Indicating correlated residuals & variances

TRADITIONAL MODEL FIT INDICES

NAME	DEFINITION				
X _s	Exact fit test that identifies if hypothesized model and observed data are equal; sensitive to N , as an increasing N and constant df results in increased χ^2 .				
CFI	Incremental fit index that examines discrepancy between obtained covariance matrix to independence covariance matrix and mostly unaffected by N				
RMSEA	Absolute fit index that assesses how far the observed model is from a perfect (saturated) model; parsimony-adjusted index that is unaffected by N				
SRMR	Absolute fit index comparing the average of standardized residuals between the observed and hypothesized covariance matrices; relatively unaffected by N				

FLAWS IN FIXED CUTOFFS

Hu & Bentler (1999)

- Unless models match, these cutoffs may not generalize
- Fit can be compared between full/reduced models but not across models with different characteristics

Model Conditions

- Narrow and discordant model subspace
- Cutoff values change depending on number of items & factors, df, size of loadings, factor reliability, model type

Misspecifications

- Biased parameters lead to inaccurate conclusions
- "All models are wrong" but we should aspire for better

Table 1
Path diagrams of different model and misspecification conditions in Hu and Bentler (1999)

Note: Error variances for the observed variables are present but not shown in the path diagrams.

Loadings not manipulated across models.

"Complex" model adds away cross-loadings.

.70	.70	.75	.80	.80	.00	.00	.00	.00	.00	.00	.00	.00	.00	[00.
														.00
.70	.00	.00	.00	.00	.00.	.00	.00	.70	.00	.70	.70	.75	.80	.80

Loadings not manipulated across models.
Orange indicates cross-loadings.

WHAT DO I DO?

DYNAMIC FIT INDICES

- Use the web-hosted or software-based custom sims (approachable tool – little manual code required)
- Algorithm generalizes misspecifications derived from Hu & Bentler (1999)

SYSTEM-LEVEL CHANGE

- Consider cost-benefit of reporting simulated cutoffs for your model
- Difficult if reviewers are content with traditional, fixed cutoffs

TRADITIONAL CUTOFFS

- Hu & Bentler (1999) used 200 replications (samples) drawn from a known population to simulate and model conditions
 - Iteratively compare true model vs. different levels of misspecified models (i.e., simple/complex, minor/major, different sample sizes)
 - Tendency to commit Type I error evaluated based on over-rejection rates obtained from difference in rates from both models
 - Track fit index values that discriminate between the distributions of misspecified and true fit indices
 - Thresholds: 95% rejection of misspecified and 5% of true models

MECHANISMS OF DFI

- DFI utilizes the same algorithm as Hu & Bentler (1999) but allows user to alter their model conditions
 - Similar to a power analysis
 - Rather than sample size needed to detect an effect, the goal is to uncover fit indices that detect misspecification
 - o If 95%/5% thresholds cannot be met, 90%/10% are computed
 - If neither of above can be computed, then a dynamic fit index cutoff between true and misspecified models cannot be determined with the available tools

01

Fit empirical model and obtain standardized parameter estimates

• Preference for Lavaan object, but not required

- 01
- Fit empirical model and obtain standardized parameter estimates

 Preference for Lavaan object, but not required
- 02
- Standardized estimates are used to create a data generation model for simulation (empirical model is not used as data generation model)
 - Path is purposefully added to data generation model to elicit

 misspecification (i.e., the extra path is not in the empirical mode).

Need a degree of freedom! misspecification (i.e., the extra path is not in the empirical model).

- 01
- Fit empirical model and obtain standardized parameter estimates
 - Preference for Lavaan object, but not required

- 02
- Standardized estimates are used to create a data generation model for simulation (empirical model is not used as data generation model)
 - Path is purposefully added to data generation model to elicit misspecification (i.e., the extra path is not in the empirical model)

- 03
- Model created in step 2.) used to generate 500 datasets to which the empirical model is fit to. Distribution of fit index values are created.

04

- Fit empirical model and obtain standardized parameter estimates
 - Preference for Lavaan object, but not required
- Standardized estimates are used to create a data generation model for simulation (empirical model is not used as data generation model)
 - Path is purposefully added to data generation model to elicit misspecification (i.e., the extra path is not in the empirical model)
- Model created in step 2.) used to generate 500 datasets to which the empirical model is fit to. Distribution of fit index values are created.
 - The 5th percentile (for lower-is-better) and 95th percentile (for higher is better) of fit indices values from these distributions are found.

Repeat step 2 through 5 but use the empirical model in place of the data generation model.

- Empirical model treated as "True" model
- Essentially reverse-engineer a plausible misspecified model to which you compare the empirical model

	SRMR	RMSEA	CFI
Level 1: 95/5	.035	NONE	NONE
Level 1: 90/10		.026	.983
Level 2: 95/5	.051	.049	.948
Level 2: 90/10			

OUTPUT OF DFI

	SRMR	RMSEA	CFI
Level 1: 95/5	.035	NONE	NONE
Level 1: 90/10		.026	.983
Level 2: 95/5	.051	.049	.948
Level 2: 90/10			

R AND SHINY APP DEMONSTRATION

LIMITATIONS

(OF CURRENT VERSION)

COMPUTATION

CODING

Need light manual coding or .txt file for app

SETTLING

Using traditional cutoffs requires no additional effort; reviewers may be content

DATA TYPES

ASSUMED NORMALITY

Robust variance estimators not available

CONTINUOUS DATA

Categorical items and WLS a high-priority for extension of package

MODEL TYPES

CFA

Path or mixed models not considered

BASIC DESIGNS

Measurement
Invariance, Growth
Models, Multi-Level,
and Bi-Factor Models
not yet available

QUESTIONS OR CONCERNS?

000.000

000.000

000.000

000.000