Worksheet 5

1. Which of the following terms describe $(\mathbb{N}, +)$?

magma, (commutative) semigroup, (commutative) monoid, (abelian) group

2. Fix a set A and consider the set

$$\operatorname{Fun}(A, A) = \{ f \mid f : A \to A \}$$

of functions from A to itself, equipped with the binary product \circ of function composition. Which of the following terms necessarily apply to $(\operatorname{Fun}(A, A), \circ)$?

magma, (commutative) semigroup, (commutative) monoid, (abelian) group

3. Fix an integer $n \ge 1$ and equip the set $\mathbb{Z}_n = \{0, \dots, n-1\}$ with multiplication modulo n,

$$k * \ell = k\ell \mod n$$
.

Which of the following terms describe $(\mathbb{Z}_3, *)$? Which describe $(\mathbb{Z}_4, *)$?

magma, (commutative) semigroup, (commutative) monoid, (abelian) group

4. Let A be a nonempty set and define the product * by

$$a * b = b$$
.

Show that every element $a \in A$ is a left identity in (A, *). Explain why this does not contradict the uniqueness of identity elements that we proved in class.

- 5. Define a binary operation $*: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that every $x \in \mathbb{R}$ is a right identity for *.
- 6. Show that if a magma (A, *) has a left identity $e_L \in A$ and a right identity $e_R \in A$ then $e_L = e_R$. Furthermore, prove that $e = e_L = e_R$ is an identity element for (A, *).
- 7. A zero element for a binary operation $*: A \times A \to A$ is an element $z \in A$ satisfying

$$\forall a \in A : a * z = z = z * a.$$

Prove that if $z \in A$ is a zero for *, then z is unique with this property.

8. Let (A, *) be a group. Prove that if (A, *) has a zero element $z \in A$, then $A = \{z\}$.

9. A band is a semigroup (A, *) with the property that

$$\forall a \in A: a*a=a.$$

Define the relation \leq on A by

$$a \le b \iff a * b = a.$$

Prove that \leq is a partial order on A.

10. Suppose that (A, *) is a group with three elements. Prove that (A, *) is abelian.