

LSTM을 활용한 연속보행에서 보행 단계 추정

2022. 05. 27.

이진원

고려대학교 기계공학부

Gait phase estimation with LSTM

- 목적: <u>LSTM</u>(Long-Short Term Memory)을 활용하여 보행 단계 추정
- 보행 데이터 수집
 - 3개의 센서(Torso & Thigh IMU, Heel force sensor)
 - 。 3명의 성인 남성
- 딥러닝 네트워크 구축
 - 。 입력: Torso position, Torso velocity, Thigh position, Thigh velocity, (Heel force sensor)
 - S1: 2개의 IMU, S2: 2개의 IMU + force sensor
 - 네트워크: 5개의 레이어(LSTM-BiLSTM-LSTM-BiLSTM-FC)
 - 출력: 보행 단계 (sine & cosine label → linear label)

Gait phase estimation with LSTM

• 결과

- ∘ Force sensor를 사용한 S2가 S1보다 6배 예측결과가 좋음
- ∘ 두 모델 모두 mid-stance(40%-60%)에서 결과가 좋지 못함
- 한계점 및 향후 연구
 - 。 Subject의 숫자가 적음 → 공공 데이터를 활용하여 신뢰도 있는 많은 데이터 사용
 - 。 Mid-stance(Toe-off 부근)에서 정확도가 떨어짐 → 보행 단계를 비선형으로 표현 시도
 - 。 소형 보드에서 실시간 처리할 수 없음 → 더 적은 연산으로 처리 가능한 경량 네트워크 모델 필요

Walking speed	4 variables (S1)	5 variables (S2)
0.5 m/s	$18.75 \pm 10.68 \text{ ms}$	$3.75 \pm 3.11 \text{ ms}$
1.0 m/s	$17.08 \pm 10.75 \text{ ms}$	$2.08 \pm 2.57 \; \mathrm{ms}$
1.5 m/s	20.83 ± 13.29 ms	$5.00 \pm 3.02 \text{ ms}$
2.0 m/s	$22.50 \pm 8.12 \text{ ms}$	$3.75 \pm 3.11 \text{ ms}$

보행 단계에 대한 공공 데이터

Schreiber, C., & Moissenet, F. (2019)

데이터 정보

- 50명의 subject
- Marker data(52 points) → (torso & thigh) position, velocity
- Force data(2 force platform)
- Gait event(Left/Right HS&TO) → gait phase labeling
- Speed: C1(0~0.4m/s), C2(0.4~0.8m/s), C3(0.8~1.2m/s), C4(self-selected spontaneous), C5(self-selected fast speed)
- 1개의 데이터 시퀀스마다 1개의 걸음걸이 데이터

Effect of Torso Kinematics on Gait Phase

- 목적: Torso velocity, position은 보행 단계 예측에 도움이 되는가?
- 보행 데이터 수집
 - Schreiber, C., & Moissenet, F 의 공공 데이터셋을 활용
 - 。 Marker data → 허벅지와 몸통부의 마커 정보를 활용하여 position, velocity 계산
 - 50명의 건강한 성인(42명 학습 데이터, 8명 테스트 데이터)
- 딥러닝 네트워크 구축
 - 。 입력: Torso position, Torso velocity, Thigh position, Thigh velocity
 - Set1: Thigh position, Thigh velocity, Torso position, Torso velocity
 - · Set2: Thigh position, Thigh velocity, Torso velocity
 - · Set3: Thigh position, Thigh velocity, Torso position
 - Set4: Thigh position, Thigh velocity
 - 네트워크: 5개의 레이어(LSTM-BiLSTM-LSTM-BiLSTM-FC)
 - 출력: 보행 단계 (sine & cosine label → linear label)

Effect of Torso Kinematics on Gait Phase

• 결과

- ∘ Set 2가 가장 좋음(-Torso position)
- 느린 속도일수록 예측 정확도가 떨어짐

• 한계점 및 향후 연구

- 1개의 시퀀스 데이터에 1개의 걸음걸이 데이터만 있고, 연속 걸음 데이터 부재
- 정확도와 성능을 높일 수 있는 딥러닝 네트워크 필요
- Torso의 velocity만 얻기 위해 Torso IMU 부착이 필요한가?

보행단계를 비선형 표현

- 보행 단계에 따라 속도가 변화하는데 선형으로 표현이 적절한가?
- 선형으로 표현하지 않는다면 적절한 표현 방식은?
 - ∘ 의족 제어에서 중요한 포인트: Heel-strike, Toe-off

Heel-strike ~ Toe-off: 0 ~ 50%

Toe-off ~ Heel strike: 50% ~ 100%

Piecewise Linear Labeling

- 목적: 보행 단계의 레이블링 방식은 선형이 적절한가? 부분선형이 적절한가?
- 레이블링 방식
 - Linear(기존): heel-strike ~ heel-strike (0~100%)
 - Piecewise linear(제안): heel-strike ~ toe-off(0~50%) / toe-off ~ heel-strike(50~100%)
- 딥러닝 네트워크 구축 (이전과 동일)
 - 。 입력: Torso position, Torso velocity, Thigh position, Thigh velocity
 - 네트워크: 5개의 레이어(LSTM-BiLSTM-LSTM-BiLSTM-FC)
 - 출력: 보행 단계 (sine & cosine label → linear label)

Piecewise Linear Labeling

• 결과

- ∘ 일반적인 속도에서 Piecewise linear가 더 좋은 정확도를 보임
- 느린 속도에서는 비슷하거나 근소하게 PLN이 좋음

한계점

- 연속걸음이 포함되지 않은 공공 데이터셋
- 느린 걸음 데이터에 대한 실효성

연속 걸음이 포함된 새로운 공공데이터

Fukuchi, C. A., Fukuchi, R. K., & Duarte, M. (2018).

데이터 정보

- 42명의 subject
- Marker data(22 points) → thigh position, velocity
- Force data(2 force platform)
- Gait event(Left/Right HS&TO) → gait phase labeling
- Speed: T1~T8(0.5, 0.68, 0.87, 1.05, 1.24, 1.43, 1.62*, 1.8* m/s)
- 1개의 데이터 시퀀스마다 200개의 걸음걸이 데이터

고성능 경량 네트워크 모델 (CNN+LSTM)

- Convolutional Neural Network (CNN)
 - 1. 특징을 추출하기 위한 단계 (Filter mask, Convolution)
 - 인공지능이 필터 값을 조절하면서 학습
 - 2. 추출된 특징 중에서 의미 있는 값을 강화 단계 (Subsampling)
 - 최대값, 평균값을 활용하여 데이터 크기 감소
 - 3. 정리된 특징을 클래스에 매칭하는 단계 (Fully Connection)
 - 결과값 (loss)과 객체의 값을 비교

CNN 흐름도

Filter mask example

12	20	30	0			
8	12	2	0	2×2 Max-Pool	20	30
34	70	37	4		112	37
112	100	25	12			

Subsampling example

Fully Connection example

CNN + LSTM

· LSTM: 연산 속도가 느림

· Sliding window (d): 300

Input

Torso velocity

Torso position

Thigh velocity

Thigh position

CNN(중요한 특징을 학습) + LSTM(전후 특징을 학습)

LSTM vs CNN+LSTM 성능 비교

Gait phase estimation with LSTM dataset (IEEE TNSRE)

	처리시간	파라미터 수	Loss value
LSTM	0.043s (23Hz)	958,722	4.91×10^{-3}
CNN + LSTM	0.00310s(320Hz)	85,410	3.71×10^{-3}

- 처리시간: 1개 데이터 (300개의 sliding window기준)
- ∘ 파라미터 수: 연산시간에 영향
- 。 Loss value (MSE): 성능 지표
- 。 CNN+LSTM 네트워크 구조
 - (300, 5) CNN(1×1) (300,64) BN CNN (300,64) pooling(10) CNN (30,64) pooling (10) (3, 64) BN CNN (1, 64) LSTM (16) Dropout(0,2) FC (2)

(CNN+LSTM) → Transfer learning

- 연속 걸음 데이터셋 (42명)
 - ∘ 학습: 36명 / 테스트: 6명
 - 테스트 데이터에 대해 개별 전이 학습을 통해 커스터마이징하여 성능 비교

감사합니다!