Tablica izvoda:				
Funkcija $f(x)$	Izvod f'(x)			
c = const	0			
x	1			
x^{α}	$\alpha x^{\alpha-1}$			
a^x	$a^x \ln a$			
e^x	e^x			
$\log_a x$	$\frac{1}{x \ln a}$			
ln x	$\frac{1}{x}$			
sin x	cos x			
cos x	$-\sin x$			
tgx	$\frac{1}{\cos^2 x}$			
ctgx	$-\frac{1}{\sin^2 x}$			
arcsin x	1			
arccos x	$ \frac{1}{\sqrt{1-x^2}} $ $ -\frac{1}{\sqrt{1-x^2}} $ $ 1 $			
arctgx	$\frac{1}{1+x^2}$			
arcctgx	$-\frac{1}{1+x^2}$			

	Tablica integrala:				
$\int dx =$	=x+c				
$\int x^n dx$	$dx = \frac{x^{n+1}}{n+1} + c$				
$\int \frac{dx}{x}$	$=\ln x + c$				
$\int e^x dx$	$dx = e^x + c$				
$\int a^x d$	$x = \frac{a^x}{\ln a} + c$				
$\int \sin x$	$xdx = -\cos x + c$				
∫cos	$xdx = \sin x + c$				
$\int \frac{d}{\cos x}$	$\frac{x}{2} = tgx + c$				
$\int \frac{ds}{\sin^2 s}$	$\frac{x}{2} = -ctgx + c$				
$\int \frac{d}{x^2}$	$\frac{dx}{+a^2} = \frac{1}{a} \arctan \frac{x}{a} + c = -\frac{1}{a} \arctan \frac{x}{a} + c_1, \ a \neq 0$				
$\int \frac{a}{x^2}$	$\frac{dx}{-a^2} = \frac{1}{2a} \ln \left \frac{x-a}{x+a} \right + c, \ a \neq 0$				
$\int \sqrt{\sqrt{x}}$	$\frac{dx}{2 \pm a^2} = \ln \left x + \sqrt{x^2 \pm a^2} \right + c, \ a \neq 0$				
$\int \frac{1}{\sqrt{a}}$	$\frac{dx}{(2-x^2)^2} = \arcsin\frac{x}{a} + c = -\arccos\frac{x}{a} + c_1, \ a > 0$				
$\int \frac{dx}{\sin x}$	$\frac{d}{dx} = \ln \left tg \frac{x}{2} \right + c$				
$\int \frac{ds}{\cos s}$	$\frac{c}{x} = \ln \left tg(\frac{x}{2} + \frac{\pi}{4}) \right + c$				
$\int \sqrt{a^2}$	$\frac{x^{2}-x^{2}}{2}dx = \frac{x}{2}\sqrt{a^{2}-x^{2}} + \frac{a^{2}}{2}\arcsin\frac{x}{a} + c, \ a > 0$				
$\int \sqrt{x^2}$	$\frac{1}{2} + A dx = \frac{x}{2} \sqrt{x^2 + A} + \frac{A}{2} \ln \left x + \sqrt{x^2 + A} \right + c$				

Površine ravnih figura:

$$P = \int_{a}^{b} |f(x)| dx, \ P = \int_{t_{1}}^{t_{2}} y(t) \cdot x'_{t}(t) dt, \ P = \frac{1}{2} \int_{\alpha}^{\beta} \rho^{2}(\varphi) d\varphi.$$

Dužina luka krive:
$$l = \int_{a}^{b} \sqrt{1 + (f'(x))^2} dx$$
, $l = \int_{t_1}^{t_2} \sqrt{(x'_t(t))^2 + (y'_t(t))^2} dt$, $l = \int_{\alpha}^{\beta} \sqrt{\rho^2(\varphi) + (\rho'(\varphi))^2} d\varphi$.

Zapremina obrtnih tela:
$$V = \pi \int_{a}^{b} f^{2}(x) dx$$
, $V = \pi \int_{t_{1}}^{t_{2}} y^{2}(t) \cdot x'_{t}(t) dt$, $V = \frac{2\pi}{3} \int_{\alpha}^{\beta} \rho^{3}(\varphi) \sin \varphi d\varphi$.

Površina omotača obrtnih tela:

$$P = 2\pi \int_{a}^{b} |f(x)| \sqrt{1 + (f'(x))^{2}} \, dx \,, \ P = 2\pi \int_{t_{1}}^{t_{2}} |y(t)| \sqrt{(x'(t))^{2} + (y'(t))^{2}} \, dt \,, \ P = 2\pi \int_{\alpha}^{\beta} \rho(\varphi) \sqrt{\rho^{2}(\varphi) + (\rho'(\varphi))^{2}} \sin \varphi \, d\varphi \,.$$

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} , \quad x \in \mathbb{R},$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!} , \quad x \in \mathbb{R},$$

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!} , \quad x \in \mathbb{R},$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n} , \quad x \in (-1,1],$$

$$(1+x)^{a} = \sum_{n=0}^{\infty} \binom{a}{n} x^{n} , \quad x \in (-1,1), \quad a \in \mathbb{R} \setminus \mathbb{N}_{0}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n} , \quad x \in (-1,1).$$

	Trig	onometrija:	
$\sin(x+y) = \sin x \cos y + \cos x \sin y$ $\cos(x+y) = \cos x \cos y - \sin x \sin y$ $tg(x+y) = \frac{tgx + tgy}{1 - tgx \cdot tgy}$ $ctg(x+y) = \frac{ctgxctgy - 1}{ctgx + ctgy}$		$\sin(x - y) = \sin x \cos y - \cos x \sin y$ $\cos(x - y) = \cos x \cos y + \sin x \sin y$ $tg(x - y) = \frac{tgx - tgy}{1 + tgx \cdot tgy}$ $ctg(x - y) = \frac{ctgxctgy + 1}{ctgy - ctgx}$	
$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$ $\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$ $tgx + tgy = \frac{\sin(x+y)}{\cos x \cos y}$ $ctgx + ctgy = \frac{\sin(x+y)}{\sin x \sin y}$		$\sin x - \sin y = 2\sin \frac{x - y}{2} \cos \frac{x + y}{2}$ $\cos x - \cos y = -2\sin \frac{x + y}{2} \sin \frac{x - y}{2}$ $tgx - tgy = \frac{\sin(x - y)}{\cos x \cos y}$ $ctgx - ctgy = \frac{\sin(y - x)}{\sin x \sin y}$	
$\sin 2x = 2 \sin x \cos x$ $\cos 2x = \cos^2 x - \sin^2 x$ $tg2x = \frac{2tgx}{1 - tg^2 x}$ $ctg2x = \frac{ctg^2 x - 1}{2ctgx}$		$\sin x \cos y = \frac{1}{2} \left[\sin(x) \right]$ $\sin x \sin y = \frac{1}{2} \left[\cos(x) \right]$ $\cos x \cos y = \frac{1}{2} \left[\cos(x) \right]$	$(x-y)-\cos(x+y)$
$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$	$\sin x = \frac{2tg\frac{x}{2}}{1 + tg^2\frac{x}{2}}$		$\sin^2 x = \frac{tg^2 x}{1 + tg^2 x}$
$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$	$\cos x = \frac{1 - tg^2 \frac{x}{2}}{1 + tg^2 \frac{x}{2}}$		$\cos^2 x = \frac{1}{1 + tg^2 x}$