

有限元方法及应用

设计题目:Matlab 有限元程序设计学生姓名:叶梦影学 号:\$230200221专业:机械工程任课教师:王琥

2023年1月27日

目 录

1.4节	点六面	面体单元程序设计	1
1.1	问题	描述	1
1.2	问题	求解	1
	1.2.1	平面4节点矩形单元描述	1
	1.2.2	结构的离散化与编号	3
1.3	Mai	tlab 有限元分析	5
	1.3.1	计算单元刚度矩阵	5
	1.3.2	计算整体刚度矩阵	5
	1.3.3	边界条件的处理及各节点位移求解	6
	1.3.4	各单元节点应力计算	7
1.4	Aba	<i>iqus</i> 建模仿真	7
2.8节	点六面	面体单元程序设计	9
2.1	问题	描述	9
2.2	问题	求解	9
	2.2.1	空间8节点六面体单元描述	9
	2.2.2	结构的离散化与编号1	1
2.3	Mai	tlab 有限元分析1	2
	2.3.1	计算单元刚度矩阵1	2
	2.3.2	建立整体刚度方程1	3
	2.3.3	边界条件的处理及节点求解1	3
	2.3.4	各单元节点应力计算1	4

2.4	4 hagus	建模仿直	1	5
 ⊤	лициз	对		۔ ۔

1.4 节点六面体单元程序设计

1.1 问题描述

如图 1-1 所示,一个正方形薄板,边长为 l=4m,厚度为 0.1m, 弹性模量 $E=7\times10^{10}$ Pa,泊松比 $\mu=0.33$,右方受均布载荷 $q_0=100$ KN/m, 左方固定,计算各个节点的 x 方向、y 方向位移与节点应力。

图 1-1 正方形薄板

1.2 问题求解

1.2.1 平面 4 节点矩形单元描述

在平面四节点矩形单元中,其有两个位移分量,节点条件共有 8个,即 x 方向 4个(u_1 , u_2 , u_3 , u_4),y 方向 4个(v_1 , v_2 , v_3 , v_4),如图 1-2 所示。

图 1-2 平面四节点矩形单元

因此, *x* 和 *y* 方向的位移场可以各有 4 个待定系数, 即取以下多项式作为单元的位移场模式:

$$u(x, y) = a_0 + a_1 y + a_2 y + a_3 xy$$

$$v(x, y) = b_0 + b_1 y + b_2 y + b_3 xy$$
(1-1)

由节点条件, 在 $x=x_i$, $y=y_i$ 处, 有

$$u(x_i, y_i) = u_i$$

$$v(x_i, y_i) = v_i$$

$$i = 1,2,3,4$$

$$(1-2)$$

将式(1-2)代入式(1-1)中,可以求解出待定系数 a_0 ,…, a_3 和 b_0 ,…, b_3 ,然后再代回式(1-1)中,经整理后有

$$u(x,y) = N_1(x,y)u_1 + N_2(x,y)u_2 + N_3(x,y)u_3 + N_4(x,y)u_4$$

$$v(x,y) = N_1(x,y)v_1 + N_2(x,y)v_2 + N_3(x,y)v_3 + N_4(x,y)v_4$$
(1-3)

形函数表达式

$$N_{1} = \frac{1}{4} (1 - \frac{x}{a})(1 - \frac{y}{b})$$

$$N_{2} = \frac{1}{4} (1 - \frac{x}{a})(1 - \frac{y}{b})$$

$$N_{3} = \frac{1}{4} (1 - \frac{x}{a})(1 - \frac{y}{b})$$

$$N_{4} = \frac{1}{4} (1 - \frac{x}{a})(1 - \frac{y}{b})$$

将1-3写成矩阵形式,有

$$\mathbf{u}(x,y) = \begin{bmatrix} u(x,y) \\ v(x,y) \end{bmatrix} = \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 \end{bmatrix} \begin{bmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_4 \\ v_4 \end{bmatrix} = N \cdot q^e \quad (1-4)$$

有弹性力学平面问题的几何方程, 可的单元应变的表达式

$$\mathcal{E}_{(3\times 1)}(x,y) = \begin{bmatrix} \mathcal{E}_{xx} \\ \mathcal{E}_{yy} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \widehat{\partial} \end{bmatrix} \mathbf{u}_{(3\times 2)} = \begin{bmatrix} \widehat{\partial} \end{bmatrix} \mathbf{N} \cdot \mathbf{q}^e = \mathbf{B} \cdot \mathbf{q}^e \\ (3\times 8) \quad (8\times 1) \end{bmatrix} \tag{1-5}$$

其中几何矩阵 B(x,y)为

$$\mathbf{B}_{(3\times8)}(x,y) = \begin{bmatrix} \partial \\ \partial \\] \mathbf{N}_{(3\times2)}(2\times8) = \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 & 0 \\ 0 & N_1 & 0 & N_2 & 0 & N_3 & 0 & N_4 \end{bmatrix} \\
= \begin{bmatrix} \mathbf{B}_1 & \mathbf{B}_2 & \mathbf{B}_3 & \mathbf{B}_4 \\ \frac{(3\times2)}{(3\times2)} & \frac{(3\times2)}{(3\times2)} & \frac{(3\times2)}{(3\times2)} & \frac{(3\times2)}{(3\times2)} \end{bmatrix}$$
(1-6)

式(1-6)中的子矩阵 B_i 为

$$\mathbf{B}_{i} = \begin{vmatrix} \frac{\partial N_{i}}{\partial x} & 0\\ 0 & \frac{\partial N_{i}}{\partial y}\\ \frac{\partial N_{i}}{\partial y} & \frac{\partial N_{i}}{\partial x} \end{vmatrix}, \quad i = 1, 2, 3, 4$$

$$(1-7)$$

则平面四节点矩形单元的单元刚度矩阵为:

$$\mathbf{K}_{(8\times8)} = \int_{A^{e}} \mathbf{B}^{T} \mathbf{D} \cdot \mathbf{B}_{(3\times8)} \cdot \mathbf{B}_{(3\times3)} \cdot \mathbf{B}_{(3\times3)} dA \cdot t = \begin{bmatrix} \mathbf{k}_{11} \\ \mathbf{k}_{21} & \mathbf{k}_{22} \\ \mathbf{k}_{31} & \mathbf{k}_{32} & \mathbf{k}_{33} \\ \mathbf{k}_{41} & \mathbf{k}_{42} & \mathbf{k}_{43} & \mathbf{k}_{44} \end{bmatrix}$$
(1-8)

其中 t 为平面问题的厚度,式(1-8)中的各个子块矩阵为

$$\mathbf{k}_{rs} = \int_{A^e} \mathbf{B}_{r}^{T} \mathbf{D}_{(3\times8)} \mathbf{B}_{s}^{s} t dx dy, \qquad r, s = 1, 2, 3, 4$$
(1-9)

1.2.2 结构的离散化与编号

该空间块体结构的厚度较小,可对其进行平面分析。首先将其结构离散为4×4=16个四边形单元。每个单元有4个节点,一共有25个节点。黑色数字代表节点,带圈序号代表单元,单元的编号以及节点编号如图1-3所示。各单元节点编号及坐标如表1-1所示。

图 1-3 离散单元

表 1-1 各单元节点编号及节点坐标

		<i>V</i> -	* 1	1 / 3	1. W. 20 1. W. = 14.
单元号		节点	点号		节点坐标
1	1	10	9	2	(0,0) (1,0) (1,1) (0,1)
2	2	9	8	3	(0,1) $(1,1)$ $(1,2)$ $(0,2)$
3	3	8	7	4	(0,2) $(1,2)$ $(1,3)$ $(0,3)$
4	4	7	5	6	(0,3) $(1,3)$ $(1,4)$ $(0,4)$
5	7	14	15	6	(1,3) (2,3) (2,4) (1,4)
6	8	13	14	7	(1,2) $(2,2)$ $(2,3)$ $(1,3)$
7	9	12	13	8	(1,1) $(2,1)$ $(1,2)$ $(2,2)$
8	10	11	12	9	(1,0) $(2,0)$ $(2,1)$ $(1,1)$
9	11	20	19	12	(2,0) $(3,0)$ $(3,1)$ $(2,1)$
10	12	19	18	13	(2,1) $(3,1)$ $(3,2)$ $(2,2)$
11	13	18	17	14	(2,2) (3,2) (3,3) (2,3)
12	14	17	16	15	(2,3) (3,3) (3,4) (2,4)
13	17	24	25	16	(3,3) $(4,3)$ $(4,4)$ $(3,4)$
14	18	23	24	17	(3,2) (4,2) (4,3) (3,3)
15	19	22	23	18	(3,1) $(4,1)$ $(4,2)$ $(3,2)$
16	20	21	22	19	(3,0) $(4,0)$ $(4,1)$ $(3,1)$

节点位移列阵

$$\mathbf{q} = \begin{bmatrix} u_1 & v_1 & u_2 & v_2 & u_3 & v_3 & \dots & u_{25} \end{bmatrix}^{\mathrm{T}}$$

节点外载荷列阵

$$\boldsymbol{p} = \begin{bmatrix} 0 & 0 & 0 & \dots & \boldsymbol{F}_{21} & \boldsymbol{F}_{22} & \boldsymbol{F}_{23} & \boldsymbol{F}_{24} & \boldsymbol{F}_{25} \end{bmatrix}^T$$

其中

$$\mathbf{F}_{22} = \mathbf{F}_{23} = \mathbf{F}_{24} = \begin{bmatrix} \underline{q}\,l \\ 8 \\ 0 \end{bmatrix}$$

$$\mathbf{F}_{22} = \mathbf{F}_{23} = \mathbf{F}_{24} = \begin{bmatrix} \frac{ql}{4} \\ 0 \end{bmatrix}$$

约束的支反力列阵

$$\mathbf{R}_{(24\times1)} = \begin{bmatrix} \mathbf{R}_1^T & \mathbf{R}_2^T & \mathbf{R}_3^T & \mathbf{R}_4^T & \mathbf{R}_5^T & 0 & \dots & 0 \end{bmatrix}^T$$

其中

$$\mathbf{R}_{i} = \begin{bmatrix} R_{ix} \\ R_{iy} \end{bmatrix} \qquad i = 1, 2, 3, 4, 5$$

总的节点载荷矩阵

$$\mathbf{P}_{(24\times 1)} = \mathbf{F} + \mathbf{R} = \begin{bmatrix} \mathbf{R}_1^T & \mathbf{R}_2^T & \mathbf{R}_3^T & \mathbf{R}_4^T & \mathbf{R}_5^T & 0 & \dots & 0 & \mathbf{F}_{21} & \mathbf{F}_{22} & \mathbf{F}_{23} & \mathbf{F}_{24} & \mathbf{F}_{25} \end{bmatrix}^T$$

1.3 Matlab 有限元分析

1.3.1 计算单元刚度矩阵

首先在 Main 函数中,输入弹性模量 E、泊松比 μ ,然后针对各节点单元,分别 16 次调用 Quad2D4Node_Stiffness 函数就可以得到单元的刚度矩阵 $k1(6\times6)\sim k16(6\times6)$ 。

k1 = Quad2D4Node_Stiffness(E, NU, h, x1, y1, x10, y10, x9, y9, x2, y2);

k2 = Quad2D4Node_Stiffness(E, NU, h, x2, y2, x9, y9, x8, y8, x3, y3);

 $k3 = Quad2D4Node_Stiffness(E, NU, h, x3, y3, x8, y8, x7, y7, x4, y4);$

:

k16 = Quad2D4Node_Stiffness(E, NU, h, x20, y20, x21, y21, x22, y22, x19, y19);

1.3.2 计算整体刚度矩阵

由于该结构共有 25 个节点,则总共的自由度数为 50,因此,结构总的刚度矩阵为 $KK(50\times50)$,首先对 KK 清零,然后分别调用 16 次组装函数 Quad2D4Node_Assembly 进行单元刚度矩阵的组装。 KK = zeros(50,50);

KK = Quad2D4Node Assembly(KK, k1, 1, 10, 9, 2);

KK = Quad2D4Node_Assembly(KK, k2, 2, 9, 8, 3); KK = Quad2D4Node_Assembly(KK, k16, 20, 25, 24, 19);

1.3.3 边界条件的处理及各节点位移求解

由图 1-3 离散单元图可以看出,节点 1、2、3、4、5 处为固定约束,故其在 x, y 方向上的位移将为零,即

$u_1 = v_1 = u_2 = v_2 = u_3 = v_3 = u_4 = v_4 = u_5 = v_5 = 0$

故需将 1 到 10 行、1 到 10 列删掉,将其余节点生成对应的载荷列阵 p,再采用高斯消去法进行求解,结果 u 为位移。通过 Matlab程序,计算出其余各节点的位移,如表 1-2 所示。

表 1-2 其余各点的位移(6~16)

	及 1-2 共示 台 点 的 区 位	9(0-10)
	位移	(<i>m</i>)
节点	<i>u</i> (10 ⁻⁴)	v(10 ⁻⁴)
6	0.1499	-0.0757
7	0.1285	-0.0307
8	0.1273	-0.0000
9	0.1285	0.0307
10	0.1499	0.0757
11	0.2843	0.0918
12	0.2732	0.0465
13	0.2680	-0.0000
14	0.2732	-0.0465
15	0.2843	-0.0918
16	0.4220	-0.0961
17	0.4170	-0.0488
18	0.4139	-0.0000
19	0.4170	0.0488
20	0.4220	0.0961
21	0.5638	0.0982
22	0.5605	0.0502
23	0.5584	-0.0000
24	0.5605	-0.0502
25	0.5638	-0.0982

1.3.4 各单元节点应力计算

首先构造先从整体位移列阵 U,然后用整体刚度矩阵乘以 U 即可得到各节点应力矩阵 P。

U = [0;0;0;u(1:24);0;0;0;0;0;0;u(25:48);0;0;0;0;0;0;0;0;u(49:72);0;0;0]; P = KK*U

在 Matlab 中计算出六面体单元各节点应力分量,如表 1-3 所示。

表 1-3	六面体各节点应力分	<u> </u>
节点	应力(Pa)	
17 <i>T</i> T	$\sigma_{x}(10^{5})$	$\sigma_{y}(10^{5})$
1	-0.5922	-0.1873
2	-0.9458	-0.0763
3	-0.9240	0.0000
4	-0.9458	0.0763
5	-0.5922	0.1873
6	0.0000	0.0000
7	-0.0000	-0.0000
8	-0.0000	0.0000
9	-0.0000	-0.0000
10	-0.0000	0.0000
11	-0.0000	-0.0000
12	-0.0000	0.0000
13	-0.0000	-0.0000
14	-0.0000	-0.0000
15	-0.0000	-0.0000
16	-0.0000	0.0000
17	-0.0000	0.0000
18	-0.0000	-0.0000
19	0.0000	0.0000
20	0.0000	0.0000
21	0.5000	0.0000
22	1.0000	-0.0000
23	1.0000	0.0000
24	1.0000	-0.0000
25	0.5000	-0.0000

1.4 Abaqus 建模仿真

通过使用 Abaqus 建模软件进行有限元分析,可得到应力云图、合成位移云图、x 方向位移云图和 y 方向位移云图如图 1-4 所示。

图 1-4 abqus 仿真云图

x 方向位移误差:

$$\frac{0.6136 - 0.5638}{0.6136} = 0.081 = 8.1\%$$

y 方向位移误差:

$$\frac{0.1184 - 0.0982}{0.1184} = 0.1706 = 17.06\%$$

通过 Abaqus 建模分析,进行输出数据结果比对,应力,x、y 方向位移云图和合成位移云图所展示数据与 Matlab 程序所运算数据大 致相符,数量级上保持一致,仍具有一定误差。

2.8 节点六面体单元程序设计

2.1 问题描述

如图 1-1 所示,一个空间长方形实体,受到右上角集中力 F 作用。已知外力 F=1000N、 弹性模量 $E=7\times10^{10}$ 、泊松比 $\mu=0.33$,长方体的长、宽、厚依次为 0.6m、0.4m、0.2m, 蓝色实体部分为固定约束。计算各个节点的 x 方向、y 方向位移与节点应力。

2-1 长方形实体

2.2 问题求解

2.2.1 空间 8 节点六面体单元描述

图 2-2 为由 8 节点组成的正六面体单元,每个节点有 3 个位移(即 3 个自由度)。

图 2-2 八节点矩形单元

该单元的节点位移共有 24 个自由度(DOF)。单元的节点位移列 阵 \mathbf{q}^e 和节点力列阵为 \mathbf{P}^e

$$\mathbf{q}^{e} = \begin{bmatrix} u_{1} & v_{1} & w_{1} & u_{2} & v_{2} & w_{2} & \dots & u_{8} & v_{8} & w_{8} \end{bmatrix}^{T}$$

$$\mathbf{P}^{e} = \begin{bmatrix} p_{x1} & p_{y1} & p_{z1} & p_{x2} & p_{y2} & p_{z2} & \dots & p_{x8} & p_{y8} & p_{z8} \end{bmatrix}^{T}$$
该单元的位移模式为

$$u(x, y, z) = a_0 + a_1x + a_2y + a_3z + a_4xy + a_5yz + a_6zx + a_7xyz$$

$$v(x, y, z) = b_0 + b_1x + b_2y + b_3z + b_4xy + b_5yz + b_6zx + b_7xyz$$

$$w(x, y, z) = c_0 + c_1x + c_2y + c_3z + c_4xy + c_5yz + c_6zx + c_7xyz$$

形函数矩阵:

$$\mathbf{u}_{(3\times1)} = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} N_1 & 0 & 0 & N_2 & 0 & 0 & \dots & N_8 & 0 & 0 \\ 0 & N_1 & 0 & 0 & N_2 & 0 & \dots & 0 & N_8 & 0 \\ 0 & 0 & N_1 & 0 & 0 & N_2 & \dots & 0 & 0 & N_8 \end{bmatrix} \cdot \mathbf{q}^e$$

$$= \underbrace{\mathbf{N}}_{(3\times24)} \cdot \underbrace{\mathbf{q}}^e_{(24\times1)}$$

由弹性力学平面问题的几何方程(矩阵形式),有单元应变的表达

$$\underset{(6\times1)}{\mathcal{E}}(x,y,z) = \left[\partial \right] \mathbf{u}_{(6\times3)} = \left[\partial \right] \mathbf{N}_{(3\times24)} \cdot \mathbf{q}^e = \mathbf{B}_{(6\times24)} \cdot \mathbf{q}^e_{(24\times1)}$$

由弹性力学中平面问题的物理方程,可得到单元的应力表达,然后计算单元的势能,可以得到单元的刚度矩阵及等效节点载荷矩阵为

$$\mathbf{K}_{(24\times24)}^{e} = \int_{\Omega^{e}} \mathbf{B}^{T} \mathbf{D} \cdot \mathbf{B}_{(6\times24)} d\Omega$$

$$\mathbf{P}_{(24\times24)}^{e} = \int_{\Omega^{e}} \mathbf{N}^{T} \mathbf{b}_{(3\times1)} d\Omega + \int_{S_{p}^{e}} \mathbf{N}^{T} \mathbf{p}_{(24\times3)} dA$$

单元的刚度方程

$$\mathbf{K}^{e}_{(24\times24)}\mathbf{q}^{e}_{(24\times1)} = \mathbf{P}^{e}_{(24\times1)}$$

2.2.2 结构的离散化与编号

首先将其结构离散成 3*2*1=6 个 6 节点六面体单元, 共有 30 个节点, 如图 2-1 所示, 黑色数 字代表节点, 深色带圈序号代表单元号。各单元节点编号如表 1-1 所示, 节点坐标如表 1-2 所示。

图 2-3 离散单元

表 2-1 各单元节点编号

单元号	节点号
1	1 6 19 24 2 5 20 23
2	6 7 18 19 5 8 17 20
3	7 12 13 18 8 11 14 17
4	8 11 14 17 9 10 15 16
5	5 8 17 20 4 9 16 21
6	2 5 20 23 3 4 21 22

表 2-2 各节点坐标

节点 -		坐标(m)	
	x	у	Z
1	0.2	0	0
2	0.2	0	0.2
3	0.2	0	0.4
4	0.2	0.2	0.4
5	0.2	0.2	0.2
6	0.2	0.2	0
7	0.2	0.4	0
8	0.2	0.4	0.2

0.2	0.4	0.4
0.2	0.6	0.4
0.2	0.6	0.2
0.2	0.6	0
0	0.6	0
0	0.6	0.2
0	0.6	0.4
0	0.4	0.4
0	0.4	0.2
0	0.4	0
0	0.2	0
0	0.2	0.2
0	0.2	0.4
0	0	0.4
0	0	0.2
0	0	0
	0.2 0.2 0.2 0 0 0 0 0 0 0 0 0	0.2 0.6 0.2 0.6 0.2 0.6 0 0.6 0 0.6 0 0.4 0 0.4 0 0.4 0 0.2 0 0.2 0 0.2 0 0.2 0 0 0 0 0 0 0 0

其中节点位移列阵

$$\mathbf{q} = \begin{bmatrix} u_1 & v_1 & w_1 & u_2 & v_2 & w_2 & \dots & u_{24} & v_{24} & w_{24} \end{bmatrix}^{\mathrm{T}}$$

节点外载荷列阵

$$\mathbf{p}_{(72\times 1)} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 & F_{10} & 0 & 0 & 0 & \dots & 0 & 0 & F_{15} & 0 & 0 & 0 & \dots & \end{bmatrix}^{\mathrm{T}}$$

2.3 Matlab 有限元分析

2.3.1 计算单元刚度矩阵

首先在 MATLAB 环境下,输入弹性模量 E、泊松比 μ ,然后针对题中单元节点坐标,调用 6 次 Hexahedral3D8Node_Stiffness 函数,就可以得到单元的刚度矩阵 $k1(24\times24)\sim k8(24\times24)$ 。

k1=Hexahedral3D8Node_Stiffness(E,NU,x1,y1,z1,x6,y6,z6,x19,y19,z19, x24,y24,z24,x2,y2,z2,x5,y5,z5,x20,y20,z20,x23,y23,z23);

k2=Hexahedral3D8Node_Stiffness(E,NU,x6,y6,z6,x7,y7,z7,x18,y18,z18, x19,y19,z19,x5,y5,z5,x8,y8,z8,x17,y17,z17,x20,y20,z20);

k3=Hexahedral3D8Node_Stiffness(E,NU,x7,y7,z7,x12,y12,z12,x13,y13, z13,x18,y18,z18,x8,y8,z8,x11,y11,z11,x14,y14,z14,x17,y17,z17);

k4=Hexahedral3D8Node_Stiffness(E,NU,x8,y8,z8,x11,y11,z11,x14,y14, z14,x17,y17,z17,x9,y9,z9,x10,y10,z10,x15,y15,z15,x16,y16,z16);

k5=Hexahedral3D8Node_Stiffness(E,NU,x5,y5,z5,x8,y8,z8,x17,y17,z17, x20,y20,z20,x4,y4,z4,x9,y9,z9,x16,y16,z16,x21,y21,z21); k6=Hexahedral3D8Node_Stiffness(E,NU,x2,y2,z2,x5,y5,z5,x20,y20,z20, x23,y23,z23,x3,y3,z3,x4,y4,z4,x21,y21,z21,x22,y22,z22);

2.3.2 建立整体刚度方程

由于该结构共有 24 个节点,则总共的自由度数为 72,因此,结构总的刚度矩阵为 KK(72×72),先对 KK 清零,然后分别调用 6 次 Hexahedral3D8Node_Assembly 函数,进行刚度矩阵的组装。调用函数的过程如下:

KK=zeros(90,90);

KK=Hexahedral3D8Node Assembly(KK,k1,1,6,19,24,2,5,20,23);

KK=Hexahedral3D8Node Assembly(KK,k2,6,7,18,19,5,8,17,20);

KK=Hexahedral3D8Node Assembly(KK,k3,7,12,13,18,8,11,14,17);

KK=Hexahedral3D8Node_Assembly(KK,k4,8,11,14,17,9,10,15,16);

KK=Hexahedral3D8Node Assembly(KK,k5,5,8,17,20,4,9,16,21);

 $KK = Hexahedral 3D8Node_Assembly (KK, k6, 2, 5, 20, 23, 3, 4, 21, 22);$

2.3.3 边界条件的处理及节点求解

由图 2-2 可以看出由节点 1、节点 2、节点 3、节点 22、节点 23 和节点 24 均为固定约束,其三个方向的位移将为零,即:

$$u_1 = v_1 = w_1 = u_2 = v_2 = w_2 = u_3 = v_3 = w_3 = u_{22} = v_{22} = w_{22}$$

 $=u_{23}=v_{23}=w_{23}=u_{24}=v_{24}=w_{24}$

故,需从 KK(72×72)中删除 1 到 9 列、1 到 9 行,64 到 72 列、64 到 72 行,将其余节点生成对应的载荷列阵 p,再采用高斯消去法进行求解,结果 u 为位移。由 Matlab 计算出的其余各节点位移如表 2-3 所示。

表 2-3 其余各点的位移(4~21)

节点		位移 (m)	
	u(10 ⁻⁵)	v(10 ⁻⁵)	w(10 ⁻⁵)

4	-0.0358	0.0490	-0.0285
5	0.0001	-0.0003	-0.0201
6	0.0357	-0.0488	-0.0292
7	0.0634	-0.0773	-0.0843
8	0.0008	-0.0010	-0.0822
9	-0.0657	0.0790	-0.0844
10	-0.0936	0.0865	-0.1483
11	0.0095	-0.0029	-0.1533
12	0.0908	-0.0867	-0.1601
13	0.0854	-0.0652	-0.2359
14	0.0062	-0.0009	-0.2581
15	-0.0938	0.0789	-0.2831
16	-0.0591	0.0616	-0.1429
17	0.0007	-0.0016	-0.1412
18	0.0584	-0.0593	-0.1456
19	0.0197	-0.0318	-0.0569
20	-0.0001	0.0001	-0.0508
21	-0.0193	0.0316	-0.0569

2.3.4 各单元节点应力计算

首先构造先从整体位移列阵 U,然后用整体刚度矩阵乘以 U 即可得到各节点应力矩阵 P。

U = [0;0;0;u(1:24);0;0;0;0;0;0;u(25:48);0;0;0;0;0;0;0;0;u(49:72);0;0;0]; P = KK*U

在 Matlab 中计算出六面体单元各节点应力分量,如表 2-4 所示。 表 2-4 六面体各节点应力分量

节点		应力(MPa)	
M 11	σ_{x}	σ_y	σ_z
1	-0.6234	1.7109	0.5357
2	0.0013	-0.050	-0.3753
3	0.6224	-1.7059	0.5374
4	0.0000	0.0000	0.0000
5	-0.0000	0.0000	-0.0000
6	-0.0000	-0.0000	-0.0000
7	-0.0000	-0.0000	0.0000

8 -0.0000 0.0000 0.0000 9 -0.0000 0.0000 0.0000 10 -0.0000 -0.0000 0.0000 11 -0.0000 -0.0000 -0.0000 12 -0.0000 0.0000 -0.0000 13 -0.0000 0.0000 0.0000 14 0.0000 0.0000 0.0000 15 -0.0000 -0.0000 0.0000 16 0.0000 -0.0000 -0.0000 17 0.0000 0.0000 -0.0000
10 -0.0000 -0.0000 0.0000 11 -0.0000 -0.0000 -0.0000 12 -0.0000 0.0000 -0.0000 13 -0.0000 0.0000 0.0000 14 0.0000 0.0000 0.0000 15 -0.0000 -0.0000 0.0000 16 0.0000 -0.0000 -0.0000
11 -0.0000 -0.0000 -0.0000 12 -0.0000 0.0000 -0.0000 13 -0.0000 0.0000 0.0000 14 0.0000 0.0000 0.0000 15 -0.0000 -0.0000 0.0000 16 0.0000 -0.0000 -0.0000
12 -0.0000 0.0000 -0.0000 13 -0.0000 0.0000 0.0000 14 0.0000 0.0000 0.0000 15 -0.0000 -0.0000 0.0000 16 0.0000 -0.0000 -0.0000
13 -0.0000 0.0000 0.0000 14 0.0000 0.0000 0.0000 15 -0.0000 -0.0000 0.0000 16 0.0000 -0.0000 -0.0000
14 0.0000 0.0000 0.0000 15 -0.0000 -0.0000 0.0000 16 0.0000 -0.0000 -0.0000
15 -0.0000 -0.0000 0.0000 16 0.0000 -0.0000 -0.0000
16 0.0000 -0.0000 -0.0000
17 0.0000 0.0000 -0.0000
18 0.0000 0.0000 -0.0000
19 -0.2727 -1.2904 0.6303
20 -0.0029 -0.0024 0.0388
21 0.2754 1.2928 0.6331

2.4 Abaqus 建模仿真

通过使用 Abaqus 建模软件进行有限元分析,可得到应力云图、合成位移云图、x 方向位移云图、y 方向位移云图和 z 方向位移云图如图 2-4 所示。

图 2-4 abqus 仿真云图

通过 Abaqus 建模分析,进行输出数据结果比对。整体数据与程序运算所得数据变化趋势一致,数量级上基本保持一致,可能是由于网格单元划分过少,导致仿真的结果与基本实事存在一定差距。