COMPSCI/SFWRENG 2FA3 Discrete Mathematics with Applications II Winter 2020

2 Recursion and Induction

William M. Farmer

Department of Computing and Software McMaster University

February 3, 2020

Admin — January 10

- In memory of Iman Aghabali and Mehdi Eshaghian and the other victims of UIA flight PS752 that crashed in Iran.
- Week 02 Exercises are posted on Avenue. The solutions will be posted at the end of next week.
- Assignment 1 and Extra Credit Assignment 1 will be posted at the end of next week.
- Office hours: To see me please send me a note with times.
- Are there any questions?

Review

- What is a mathematical proof
- Purposes of mathematical proofs
- Styles of mathematical proofs
- Traditional proofs vs. formal proofs
- Methods of proof
- Proof terminology

Mathematical Proof (iClicker)

How much of the 1 Mathematical Proof lecture was a review?

- A. 0%.
- B. 25%.
- C. 50%
- D. 75%.
- E. 100%

What is Recursion?

- Recursion is a method of defining a function or structure in terms of itself.
 - One of the most fundamental ideas of computing.
 - ► Can make specifications, descriptions, and programs easier to express, understand, and prove correct.
- A problem is solved by recursion as follows:
 - 1. The simplest instances of the problem are solved directly.
 - 2. Each other instance of the problem is solved by reducing the instance to simpler instances of the problem.
 - 3. As a result of 1 and 2, each instance can be solved by reducing the instance to simpler instances and then reducing these instances to simpler instances and continuing in this fashion until a simplest instance is reached, which has already been solved.
- Recursion employs a divide and conquer strategy.

What is Induction?

- Induction is a method of proof based on a inductive set, a well-order, or a well-founded relation.
 - Most important proof technique used in computing.
 - ▶ The proof method is specified by an induction principle.
 - Induction is especially useful for proving properties about recursively defined functions.
- Note: The terms "recursion" and "induction" are often used interchangeably — which is confusing and unfortunate!

Outline

- 1. Natural number recursion and induction.
- 2. Structural recursion and induction.
- 3. Orders.
- 4. Ordinal recursion and induction.
- 5. Well-founded recursion and induction.
- 6. Summary

1. Natural Number Recursion and Induction

Natural Number Recursion

- Let $(\mathbb{N}, <)$ be the natural numbers with the usual order.
- A function f: I → O is defined by natural number recursion as follows:
 - ▶ The definition of f has the form

$$f(x) = E(f(a_0(x)), \ldots, f(a_n(x))).$$

- ▶ Each $i \in I$ is assigned a complexity $c(i) \in \mathbb{N}$.
- ▶ For all $i \in I$ and $m \in \mathbb{N}$ with $0 \le m \le n$,

$$c(a_m(i)) < c(i).$$

• This approach works since $(\mathbb{N}, <)$ is Noetherian, i.e., every descending sequence

$$\cdots < n_2 < n_1 < n_0.$$

of natural numbers is finite.

• A recursive definition of a function is nonsensical if, for some $i \in I$ and $m \in \mathbb{N}$, $c(a_m(i)) \ge c(i)$.

Example: Recursively Defined Function

• Let $h: \mathbb{N} \times \mathbb{N} \times (\mathbb{N} \to \mathbb{R}) \to \mathbb{R}$ be defined as:

$$h(m,n,f) = \begin{cases} 0 & \text{if } m > n \\ f(n) + h(m,n-1,f) & \text{if } m \leq n \end{cases}$$

Notice that

$$h(m,n,f)=\sum_{i=m}^n f(i).$$

• *h* is defined by natural number recursion using the following complexity function:

$$c(m, n, f) = \begin{cases} 0 & \text{if } m > n \\ n - m + 1 & \text{if } m < n \end{cases}$$

We must check that, for all $m, n \in \mathbb{N}$, with m < n,

$$c(m, n-1, f) < c(m, n, f).$$

Natural Number Induction

• Weak induction is:

$$(P(0) \land \forall x \in \mathbb{N} . (P(x) \Rightarrow P(x+1))) \Rightarrow \forall x \in \mathbb{N} . P(x)$$

holds for every property P of \mathbb{N} . This induction principle is also called mathematical induction.

Strong induction is:

$$\forall x \in \mathbb{N} . (\forall y \in \mathbb{N} . (y < x \Rightarrow P(y)) \Rightarrow P(x))$$

 $\Rightarrow \forall x \in \mathbb{N} . P(x)$

holds for every property P of \mathbb{N} . This induction principle is also called complete induction and course-of-values induction.

- Theorem. The following are equivalent:
 - 1. Weak induction.
 - 2. Strong induction.

Admin — January 14

- M&Ms.
- Exercises and assignments.
- Office hours: To see me please send me a note with times.
- Are there any questions?

Review

- Natural number recursion.
- Weak induction.
- Strong induction.

Weak Induction vs. Strong Induction

• Weak induction:

$$(P(0) \land \forall x \in \mathbb{N} . (P(x) \Rightarrow P(x+1))) \Rightarrow \forall x \in \mathbb{N} . P(x).$$

Form of Proof:

- 1. Base case: x = 0. Show P(0).
- 2. Induction step: $x \ge 0$. Assume P(x). Show P(x+1).
- Strong induction:

$$\forall x \in \mathbb{N} . (\forall y \in \mathbb{N} . (y < x \Rightarrow P(y)) \Rightarrow P(x))$$

\Rightarrow \forall x \in \mathbb{N} . P(x).

Form of Proof:

- 1. Base case: x = 0. (Assume nothing.) Show P(0).
- 2. Induction step: x > 0. Assume P(y) for all y < x. Show P(x).
- Strong induction is called "strong" because it provides a stronger induction hypothesis than weak induction.

Example: Weak Induction

Theorem. $\forall n \in \mathbb{N}$. $\sum_{i=0}^{n-1} 2^i = 2^n - 1$.

Proof. Let P(n) be $\sum_{i=0}^{n-1} 2^i = 2^n - 1$. We will prove P(n) for all $n \in \mathbb{N}$ by weak induction.

Base case: n = 0. We must show P(0).

$$\sum_{i=0}^{0-1} 2^i = \sum_{i=0}^{-1} 2^i = 0 = 1 - 1 = 2^0 - 1$$

So P(0) holds.

Induction step: $n \ge 0$. Assume P(n). We must show P(n+1).

$$\begin{array}{ll} \sum_{i=0}^{(n+1)-1} 2^i = \sum_{i=0}^n 2^i & \langle \operatorname{arithmetic} \rangle \\ &= 2^n + \sum_{i=0}^{n-1} 2^i & \langle \operatorname{definition of} \sum_{i=m}^n f(i) \rangle \\ &= 2^n + 2^n - 1 & \langle \operatorname{induction hypothesis} \rangle \\ &= 2 * 2^n - 1 & \langle \operatorname{arithmetic} \rangle \\ &= 2^{n+1} - 1 & \langle \operatorname{arithmetic} \rangle \end{array}$$

So P(n+1) holds. Thus, the theorem holds by weak induction.

Example: Strong Induction

Theorem. If $n \in \mathbb{N}$ with n > 2, then n is a product of prime numbers.

Proof. Let P(n) be $n = p_0 * \cdots * p_m$ where $m \ge 0$ and p_0, \ldots, p_m are prime numbers. We will prove P(n) for all n > 2 by strong induction.

Base case: n = 2. We must show P(2). But P(2) holds since 2 is a prime number.

Induction step: n > 2. Assume $P(2), \ldots, P(n-1)$ hold. We must show P(n). If n is a prime number, then P(n) holds. Otherwise, n = x * y with 2 < x, y < n - 1. By the induction hypothesis, P(x) and P(y) hold, so $x = p_0 * \cdots * p_i$ and $y = q_0 * \cdots * q_i$ where $p_0, \ldots, p_i, q_0, \ldots, q_i$ are prime numbers. Thus, $n = p_0 * \cdots * p_i * q_0 * \cdots * q_i$ and so P(n) holds.

Therefore, the theorem holds by strong induction.

General Form of a Proof by Induction

A proof by induction should have the following components:

- 1. The definition of the relevant property P.
- 2. The theorem A of the form

$$\forall x \in S . P(x)$$

that is to be proved.

- 3. The induction principle *I* to be used in the proof.
- 4. Verification of the cases needed for induction principle *I* to be applied. (The cases include one or more base cases and one or more induction steps.)
- 5. A concluding statement that the theorem *A* has been proved by the induction principle *I*.

2. Structural Recursion and Induction

Inductive Sets [1/2]

• An inductive set (or inductive type) is a set S defined by a finite set of constructors (where $m_1, \ldots, m_n \ge 0$)

$$C_1: S_1^1 \times \cdots \times S_{m_1}^1 \to S.$$

 \vdots
 $C_n: S_1^n \times \cdots \times S_{m_2}^n \to S.$

such that each $a \in S$ can be constructed from the constructors in exactly one way.

- ▶ That is, "no junk and no confusion".
- S is recursive if some of the sets S_i^i are S itself.
 - ► A recursive inductive set is well-defined iff it contains a member (called a base case) that is not constructed from other members of the set.
- The constructors C_1, \ldots, C_n define a language whose expressions serve as literals for the members of S.

Inductive Sets [2/2]

 The definition of t induces a structural induction principle: A property P holds for all members of S provided for every constructor C_i

if P holds for every $x_j \in S$ in $C_i(x_1, ..., x_{m_i})$, then P holds for $C_i(x_1, ..., x_{m_i})$.

Less formally, a property P holds for all members of S provided:

- 1. P holds for all members of S having minimal structure.
- 2. P holds for a structural combination of members of S whenever it holds for the members themselves.
- A function f on S can be defined by structural recursion using pattern matching.
 - ► Each recursive application of *f* must be applied to at least one argument with reduced structure.
 - *f* is defined by several equations, one for each pattern.

Inductive Sets (iClicker)

How familiar are you with the definition of an inductive set (a.k.a., inductive type or algebraic type)?

- A. Never saw it before.
- B. Have seen it, but not understood it.
- C. Understand it, but never used it.
- D. Have used it occasionally.
- E. Have routinely defined inductive sets using a programming language (e.g., Haskell).

Natural Numbers (iClicker)

How many constructors are needed to define the natural numbers as an inductive set?

- A. 1.
- B. 2.
- C. 3.
- D. 4.

Example 1: Natural Numbers as an Inductive Set

- Nat is the inductive set representing the natural numbers defined by the following constructors:
 - 1. $0 : Nat (i.e., 0 : \rightarrow Nat).$
 - 2. $S : Nat \rightarrow Nat$.
- Nat is recursive.
- The members of Nat correspond to the expressions

$$0, S(0), S(S(0)), \dots$$

which denote the natural numbers

$$0, 1, 2, \ldots$$

• The structural induction principle for Nat is:

$$(P(0) \land \forall x \in \mathsf{Nat} . (P(x) \Rightarrow P(S(x))))$$

 $\Rightarrow \forall x \in \mathsf{Nat} . P(x)$

holds for every property P of Nat.

This principle is weak induction!

Example 1: Functions Defined by Pattern Matching

 Addition (+ : Nat × Nat → Nat) is defined by pattern matching as:

- 1. x + 0 = x.
- 2. x + S(y) = S(x + y).
- Multiplication (* : Nat × Nat → Nat) is defined by pattern matching as:
 - 1. x * 0 = 0.
 - 2. x * S(y) = (x * y) + x.
- The function fib : Nat → Nat that maps n to the nth Fibonacci number is defined by pattern matching as:
 - 1. fib(0) = 0.
 - 2. fib(S(0)) = S(0).
 - 3. fib(S(S(x))) = fib(S(x)) + fib(x).

Example 1: Structural Induction for Nat

Theorem. $\forall x \in \text{Nat} . 0 + x = x$.

Proof. Let $P(x) \equiv 0 + x = x$. We will prove P(x) for all $x \in N$ by structural induction.

Base case: x = 0. We must show P(0). $P(0) \equiv 0 + 0 = 0$ by the definition of P. 0 + 0 = 0 is an instance of x + 0 = x. Hence P(0) holds.

Induction step: x = S(y). Assume P(y). Show P(S(y)).

$$0 + S(y) = S(0 + y)$$
 (instance of $x + S(y) = S(x + y)$)
 $0 + y = y$ (induction hypothesis)
 $0 + S(y) = S(y)$ (equality reasoning using (1) and (2))

Hence P(S(y)) holds.

Thus, the theorem holds by structural induction.

Base Cases (iClicker)

A constructor $C: S_1 \times \cdots \times S_m \to S$ for an inductive set produces a base case if

- A. There are no S_i (i.e., C is 0-ary).
- B. None of the S_i are S.
- C. Some of the S_i are S.
- D. All of the S_i are S.

Example 2: Binary Trees of Natural Numbers

- BinTree is the inductive set representing binary trees of natural numbers defined by the following constructors:
 - 1. Leaf : Nat \rightarrow BinTree.
 - 2. Branch : BinTree \times Nat \times BinTree \rightarrow BinTree.
- BinTree is recursive.
- The structural induction principle for BinTree is:

holds for every property P of BinTree.

Example 2: Functions Defined by Pattern Matching

- The function nodes: BinTree → Nat that maps a binary tree to the number of nodes in it is defined by pattern matching as:
 - 1. $\operatorname{nodes}(\operatorname{Leaf}(n)) = 1$.
 - 2. $\operatorname{nodes}(\operatorname{Branch}(t_1, n, t_2)) = 1 + \operatorname{nodes}(t_1) + \operatorname{nodes}(t_2)$.
- The function sum : BinTree → Nat that maps a binary tree to the sum of the natural numbers attached to its nodes is defined by pattern matching as:
 - 1. $\operatorname{sum}(\operatorname{Leaf}(n)) = n$.
 - 2. $sum(Branch(t_1, n, t_2)) = n + sum(t_1) + sum(t_2)$.
- The function ht : BinTree → Nat that maps a binary tree to its height is defined by pattern matching as:
 - 1. ht(Leaf(n)) = 0.
 - 2. $ht(Branch(t_1, n, t_2)) = 1 + max(ht(t_1), ht(t_2)).$

Binary Trees (iClicker)

Let t be a member of BinTree. Which of the following formulas is true?

- A. $nodes(t) = 2^{ht(t)}$.
- B. $\operatorname{nodes}(t) \leq 2^{\operatorname{ht}(t)}$.
- C. $nodes(t) = 2^{ht(t)+1} 1$.
- D. $|\operatorname{nodes}(t)| \leq 2^{\operatorname{ht}(t)+1} 1.$

Example 2: Structural Induction for BinTree

Theorem. $\forall t \in BinTree . nodes(t) \leq 2^{ht(t)+1} - 1.$

Proof. Let $P(t) \equiv \operatorname{nodes}(t) \leq 2^{\operatorname{ht}(t)+1} - 1$. We will prove P(t) for all $t \in \operatorname{BinTree}$ by structural induction.

Base case: t = Leaf(n). We must show P(t). nodes(t) = 1 and ht(t) = 0. So $\text{nodes}(t) = 2^{\text{ht}(t)+1} - 1$. Hence P(t) holds.

Induction step: $t = Branch(t_1, n, t_2)$. Assume $P(t_1)$ and $P(t_2)$. We must show P(t).

$$\begin{split} \mathsf{nodes}(t) &= 1 + \mathsf{nodes}(t_1) + \mathsf{nodes}(t_2) & \langle \mathsf{definition \ of \ nodes} \rangle \\ &\leq 1 + \left(2^{\mathsf{ht}(t_1)+1} - 1\right) + \left(2^{\mathsf{ht}(t_2)+1} - 1\right) & \langle \mathsf{induction \ hypothesis} \rangle \\ &\leq 2 * 2^{\mathsf{max}(\mathsf{ht}(t_1),\mathsf{ht}(t_2))+1} - 1 & \langle \mathsf{arithmetic} \rangle \\ &= 2^{1+\mathsf{max}(\mathsf{ht}(t_1),\mathsf{ht}(t_2))+1} - 1 & \langle \mathsf{arithmetic} \rangle \\ &= 2^{\mathsf{ht}(t)+1} - 1 & \langle \mathsf{definition \ of \ ht} \rangle \end{split}$$

Hence P(t) holds.

Therefore, the theorem holds by structural induction.

Admin — January 15

- The following will be posted on Friday:
 - 1. 02 Exercises with Solutions.
 - 2. 03 Exercises.
 - 3. Assignment 1.
 - 4. Extra Credit Assignment 1.
- Friday will be the first discussion session.
- See the announcement on Avenue for the invitation to Discord and how to post M&Ms.
- All Questions Answers! is happening in next week's tutorials.
- Office hours: To see me please send me a note with times.
- Are there any questions?

Review

- Inductive sets.
- Recursive definition with pattern matching.
- Structural induction.

3. Orders

Orders (iClicker)

Let (H, A) where H is a set of humans and A is a binary relation on H such that h_1 A h_2 means h_1 is an ancestor of h_2 . (H, A) is

- A. A weak partial order.
- B. A strict partial order.
- C. A weak total order.
- D. A strict total order.

Pre-Orders

- A pre-order is a mathematical structure (S, \leq) where \leq is a binary relation on S that is:
 - ▶ Reflexive: $\forall x \in S . x < x$.
 - ▶ Transitive: $\forall x, y, z \in S$. $x \leq y \land y \leq z \Rightarrow x \leq z$.
- Example: (F,⇒) is a pre-order where F is a set of formulas and ⇒ is implication.
- A pre-order can have cycles.
- Every binary relation R on a set S can be extended to a pre-order on S by taking the reflexive and transitive closure of R.
- A equivalence relation is a pre-order (S, E) that is:
 - ▶ Symmetric: $\forall x, y \in S . x E y \Rightarrow y E x$.

Partial Orders

- A weak partial order is a mathematical structure (S, \leq) where \leq is a binary relation on S that is:
 - ▶ Reflexive: $\forall x \in S . x < x$.
 - ▶ Antisymmetric: $\forall x, y \in S$. $(x \le y \land y \le x) \Rightarrow x = y$.
 - ▶ Transitive: $\forall x, y, z \in S$. $(x \le y \land y \le z) \Rightarrow x \le z$.
- A strict partial order is a mathematical structure (S, <) where < is a binary relation on S that is:
 - ▶ Irreflexive: $\forall x \in S$. $\neg(x < x)$.
 - ▶ Asymmetric: $\forall x, y \in S : x < y \Rightarrow \neg(y < x)$.
 - ▶ Transitive: $\forall x, y, z \in S$. $(x < y \land y < z) \Rightarrow x < z$.
- Examples: $(\mathcal{P}(S), \subseteq)$ and $(\mathcal{P}(S), \subset)$ are weak and strict partial orders.
- A partial order does not have cycles.
- Every pre-order can be interpreted as a partial order.

Weak vs. Strict Orders (iClicker)

If (S, \leq) is a weak partial order, then (S, <) will be the same order expressed as strict partial order if < is defined as

- A. a < b iff $a \le b \land a = b$.
- B. a < b iff $a < b \lor a = b$.
- C. $a < b \text{ iff } a \leq b \land a \neq b$.
- D. a < b iff $a \le b \lor a \ne b$.

Some Basic Order Definitions

- Let (P, \leq) be a weak partial order and $S \subseteq P$.
- A maximal element [minimal element] of S is a $M \in S$ [$m \in S$] such that $\neg (M < x)$ [$\neg (x < m)$] for all $x \in S$.
- The maximum element or greatest element [minimum element or least element] of S, if it exists, is the $M \in S$ [$m \in S$] such that $x \leq M$ [$m \leq x$] for all $x \in S$.
- An upper bound [lower bound] of S is a $u \in P$ $[I \in P]$ such that $x \le u$ $[I \le x]$ for all $x \in S$.
- The least upper bound or supremum [greatest lower bound or infimum of S, if it exists, is a $U \in P$ [$L \in P$] such that U is an upper bound of S and, if u is an upper bound of S, then $U \le u$ [L is a lower bound of S and, if I is a lower bound of S, then I < L].

Total Orders

- A weak total order is a mathematical structure (S, \leq) where \leq is a binary relation on S that is:
 - (Reflexive): $\forall x . x \leq x$.
 - ▶ Antisymmetric: $\forall x, y \in S$. $x \leq y \land y \leq x \Rightarrow x = y$.
 - ▶ Transitive: $\forall x, y, z \in S$. $x \leq y \land y \leq z \Rightarrow x \leq z$.
 - ▶ Total: $\forall x, y \in S . x \leq y \lor y \leq x$.
- A strict total order is a mathematical structure (S, <) where < is a binary relation on S that is:
 - ▶ Irreflexive: $\forall x \in S$. $\neg(x < x)$.
 - (Asymmetric): $\forall x, y \in S : x < y \Rightarrow \neg (y < x)$.
 - ▶ Transitive: $\forall x, y, z \in S$. $x < y \land y < z \Rightarrow x < z$.
 - ▶ Trichotomous: $\forall x, y \in S . x < y \lor y < x \lor x = y.$

Examples: (\mathbb{N}, \leq) , (\mathbb{Z}, \leq) , (\mathbb{Q}, \leq) , and (\mathbb{R}, \leq) are weak total orders.

Well-Orders

- A well-order is a strict total order (S, <) such that every nonempty subset of S has a minimum element with respect to <.
- ullet Proposition. Every well-order (S,<) is Noetherian, i.e., S contains no infinite descending sequences of the form

$$\cdots < x_2 < x_1 < x_0.$$

- Examples.
 - 1. $(\mathbb{N}, <)$ is a well-order where < is the usual order on \mathbb{N} .
 - 2. $(\mathbb{Z}, <)$ is **not** a well-order where < is the usual order on \mathbb{Z} .
 - 3. (S, <) is a well-order where S is $\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, 1, 1\frac{1}{2}, 1\frac{2}{3}, 1\frac{3}{4}, \dots\}$
 - and < is the usual order on \mathbb{Q} .
 - 4. $(\mathbb{N} \times \mathbb{N}, <_{lex})$ is a well-order where $<_{lex}$ is lexicographic order on $\mathbb{N} \times \mathbb{N}$.

4. Ordinal Recursion and Induction

Ordinal Recursion

- Let (S, <) be a well-order.
- A function f: I → O is defined by ordinal recursion on (S, <) as follows:
 - ▶ The definition of f has the form

$$f(x) = E(f(a_0(x)), \ldots, f(a_n(x))).$$

- ▶ Each $i \in I$ is assigned a complexity $c(i) \in S$.
- ▶ For all $i \in I$ and $m \in \mathbb{N}$ with $0 \le m \le n$,

$$c(a_m(i)) < c(i).$$

- Example. Ordinal recursion on $(\mathbb{N}, <)$ is natural number recursion.
- Ordinal recursion is also called well-ordered recursion.

Ordinal Induction

- Let (S, <) be a well-order.
- The ordinal induction principle for (S, <) is:

$$\forall x \in S . ((\forall y \in S . y < x \Rightarrow P(y)) \Rightarrow P(x))$$

 $\Rightarrow \forall x \in S . P(x)$

holds for every property P of S.

• Example. The ordinal induction principle for $(\mathbb{N}, <)$ is:

$$\forall x \in \mathbb{N} . ((\forall y \in \mathbb{N} . y < x \Rightarrow P(y)) \Rightarrow P(x))$$

 $\Rightarrow \forall x \in \mathbb{N} . P(x)$

holds for every property P of \mathbb{N} . This principle is strong induction!

- Ordinal induction is also called well-ordered induction.
- Ordinal induction is useful since complicated nested induction arguments can be expressed using the ordinal induction principle for $(\gamma, <)$ for a suitable ordinal γ .

Ordinals (Optional) [1/3]

- An ordinal is a set γ such that (γ, \in) is a well-order and, for all $\alpha \in \gamma$, $\alpha \subseteq \gamma$.
- Proposition.
 - 1. If β is an ordinal, then $\alpha \in \beta$ implies α is an ordinal.
 - 2. If α and β are ordinals, then $\alpha \subset \beta$ implies $\alpha \in \beta$.
- For ordinals α and β , let $\alpha < \beta$ mean $\alpha \in \beta$.
- The natural numbers are the finite ordinals where $0=\emptyset$ and $n + 1 = n \cup \{n\}$.
- $\omega = \{0, 1, 2, \ldots\} = \mathbb{N}$ is the first infinite ordinal.
 - ▶ The ordinal induction principle for $(\omega, <)$ is strong induction.
 - ▶ The ordinal induction principle for $(\gamma, <)$ is an instance of transfinite induction when $\omega < \gamma$.

Ordinals (Optional) [2/3]

- (□, <) is a well-order where □ is the collection of ordinals.
 - ▶ $\mathbb{N} \subset \mathbb{O} \subset \mathbb{S}$ where \mathbb{S} is the surreal numbers.
 - $(\mathbb{O}, 0, +, *)$ is a near-semiring algebraic structure.
- Theorem. For every well-order (S, <), there is some $\gamma \in \mathbb{O}$ such that (S, <) and $(\gamma, <)$ are isomorphic.
 - γ is called the order type of (S, <).

Ordinals (Optional) [3/3]

Examples of order types:

- 1. $\omega = \{0, 1, 2, 3, ...\}$ is the order type of $(\mathbb{N}, <)$.
- 2. $\omega + \omega = \{0, 1, 2, 3, \dots, \omega + 0, \omega + 1, \omega + 2, \omega + 3, \dots\}$ is the order type of (S, <) where S is $\{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \dots, 1, 1\frac{1}{2}, 1\frac{2}{3}, 1\frac{3}{4}, \dots\}.$
- 3. $\omega * \omega = \bigcup \{\omega * 0, \omega * 1, \omega * 2, \omega * 3, ...\}$ is the order type of $(\mathbb{N} \times \mathbb{N}, <_{\mathsf{lex}})$.
- 4. $\omega^{\omega} = \bigcup \{\omega^0, \omega^1, \omega^2, \omega^3, \ldots\}$ is the order type of (S, <) where S is the set of base ω numerals and < is base ω numeric order.
- 5. $\epsilon_0 = \bigcup \{1, \omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots \}$ is the order type of (S, <) where S is the set of finite rooted trees and < is a kind of lexicographic order. Note: $\epsilon_0 = \omega^{\epsilon_0}$.

Example: Ackermann Function

A leading version of the Ackermann function is

$$A: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$

recursively defined by:

$$A(0, n) = n + 1.$$

 $A(m, 0) = A(m - 1, 1)$ if $m > 0.$
 $A(m, n) = A(m - 1, A(m, n - 1))$ if $m, n > 0.$

- Theorem. A is not primitive recursive.
 Proof. Show A grows faster than every primitive recursive function.
- Theorem. A is a total computable function. Proof. By ordinal induction on $(\mathbb{N} \times \mathbb{N}, <_{lex})$.
- A is an extremely rapid growing function!
 - ► For example, $A(4,3) = 2^{2^{65538}} 3 = 2^{2^{2^{2^2}}} 3$.

Admin — January 21

- The following will be posted on Friday:
 - 1. 03 Exercises with Solutions.
 - 2. 04 Exercises.
 - 3. Assignment 2.
- Assignment 1.

Question 1. Prove

$$\prod_{i=1}^n \frac{i^2}{i+1} = \frac{\mathsf{fact}(n)}{n+1}.$$

for all $n \in \mathbb{N}$.

Question 2. Prove base-2-exp $(n) = 2^n$ for all $n \in \mathbb{N}$.

- All Questions Answers! this week in the tutorials.
- Office hours: To see me please send me a note with times.
- Are there any questions?

Issues Mentioned in the Week 02 M&Ms

- Recursion and complexity.
- Recursion vs. induction.
- Inductive sets.
- Orders.
- Ordinals.

Review

- Orders
- Ordinal recursion and induction.

5. Well-Founded Recursion and Induction

Well-Founded Relations

- Let $R \subseteq U \times U$.
- y is an R-minimal element of $S \subseteq U$ if $y \in S$ and $\forall x \in U : x \in S \Rightarrow \neg(x R y)$.
- R is well-founded if every nonempty subset of U has an R-minimal element.
- (*U*, *R*) is well-founded if *R* is well-founded.
- Examples:
 - **▶** (N, <).
 - ▶ ($\mathbb{N} \times \mathbb{N}, <_{\text{lex}}$).
 - $(\mathbb{N}, R_{\text{suc}})$ where $m R_{\text{suc}} n$ iff n = m + 1.

Noetherian Structures

- Let $R \subseteq U \times U$.
- A sequence $\langle x_0, x_1, x_2, ... \rangle$ of members of U is a descending R-sequence if

$$\cdots x_2 R x_1 R x_0$$
.

- (U, R) is Noetherian if every descending R-sequence of members of U is finite.
- Proposition. (U, R) is well-founded iff (U, R) is Noetherian.

Well-Founded Relations (iClicker)

If $R \subseteq U \times U$ is a well-founded relation, then R need not be

- A. Irreflexive.
- B. Asymmetric.
- C. Transitive.
- D. None of the above.

Well-Founded Recursion and Induction [1/2]

- Let (U, R) be well-founded.
- A function f: I → O is defined by well-founded recursion on (U, R) as follows:
 - ▶ The definition of f has the form

$$f(x) = E(f(a_0(x)), \ldots, f(a_n(x))).$$

- ▶ Each $i \in I$ is assigned a complexity $c(i) \in U$.
- ▶ For all $i \in I$ and $m \in \mathbb{N}$ with $0 \le m \le n$,

$$c(a_m(i)) R c(i)$$
.

• The well-founded induction principle for (U, R) is:

$$\forall x \in U : ((\forall y \in U : y R x \Rightarrow P(y)) \Rightarrow P(x))$$

\Rightarrow \forall x \in U : P(x)

holds for every property P of U.

Well-Founded Recursion and Induction [2/2]

- Well-founded recursion and induction generalizes:
 - 1. Natural number recursion and induction.
 - 2. Structure recursion and induction.
 - 3. Ordinal recursion and induction.
- Proposition. If (U, R) is a strict total order, then (U, R) is well-founded iff (U, R) is a well-order.

Examples: Well-Founded Induction for $\mathbb N$

• The well-founded induction principle for $(\mathbb{N}, <)$ is:

$$\forall x \in \mathbb{N} . ((\forall y \in \mathbb{N} . y < x \Rightarrow P(y)) \Rightarrow P(x))$$

 $\Rightarrow \forall x \in \mathbb{N} . P(x)$

holds for every property P of \mathbb{N} .

This is identical to strong induction!

• The well-founded induction principle for $(\mathbb{N}, R_{\text{suc}})$ is:

$$\forall x \in \mathbb{N} . ((\forall y \in \mathbb{N} . y R_{\mathsf{suc}} x \Rightarrow P(y)) \Rightarrow P(x))$$

 $\Rightarrow \forall x \in \mathbb{N} . P(x)$

holds for every property P of \mathbb{N} .

This is essentially the same as weak induction!

6. Summary

Which Induction Principle should Your Use

- Use natural number induction (weak or strong) to prove a statement that involves natural numbers or that requires a simple induction argument.
- Use structural induction to prove statements in which the underlying values are members of an inductive set.
- Use ordinal induction to prove a statement that involves a well-order or that requires a complex induction argument.
- Use well-founded induction to prove statements that involve a well-founded relation that is not a total order.

Strengthening the Induction Hypothesis

- Sometimes a statement cannot be proved by induction because the the resulting induction hypothesis is too weak.
- The strategy of strengthening the induction hypothesis is to prove a stronger statement that results in a stronger induction hypothesis.
- Example: Every square number is the sum of two triangle numbers.
 - This cannot be directly proved by induction because the induction hypothesis is too weak.
 - The stronger statement "Every square number is the sum of two consecutive triangle numbers." — can be proved by induction because the induction hypothesis is stronger.