Examen 2 Session 1

Lundi 10 janvier 2022 - 2h

Merci d'indiquer de manière bien lisible sur votre copie votre numéro de groupe d'analyse

Documents et calculatrices interdits, hormis une feuille A4 Recto-Verso manuscrite.

N.B.: La rédaction sera prise en compte dans la notation. Les exercices sont indépendants et peuvent être traités dans n'importe quel ordre. Il est toutefois préférable de conserver l'ordre proposé (difficulté croissante)

Exercice 1

1. Soit $f \in L^2(\mathbb{R})$ et \widehat{f} sa transformée de Fourier. Comparer, en le justifiant par le cours,

$$\int_{-\infty}^{+\infty} |f(x)|^2 dx \quad et \quad \int_{-\infty}^{+\infty} |\widehat{f}(\nu)|^2 d\nu$$

2. En utilisant la relation précédente, calculer

$$\int_{-\infty}^{+\infty} \left(\frac{\sin x}{x}\right)^2 dx$$

Exercice 2

Pour $\alpha > 0$, on pose $f(x) = e^{-\alpha|x|}$.

- 1. Calculer la transformée de Fourier de f.
- 2. En utilisant la formule d'inversion (bien justifier!), en déduire la transformée de Fourier de la fonction $x \to \frac{1}{1+x^2}$.
- 3. Montrer que le produit de convolution f * f est égal à :

$$f * f(x) = e^{-\alpha|x|} \left(x + \frac{1}{\alpha} \right)$$

En déduire la transformée de Fourier de $x \to \frac{1}{(1+x^2)^2}$.

4. Déterminer la transformée de Fourier de $x \to \frac{x}{(1+x^2)^2}$. (Indication : calculer la dérivée de la fonction $x \to \frac{1}{1+x^2}$)

Exercice 3

Le but de cet exercice est de rechercher les fonctions u intégrables telles que, pour tout $x \in \mathbb{R}$,

$$u(x) = e^{-|x|} + \frac{1}{4} \int_{-\infty}^{+\infty} e^{-|x-s|} \ u(s) \ ds \tag{1}$$

- 1. On pose $f(x) = e^{-|x|}$. Calculer la transformée de Fourier de f (on pourra utiliser le résultat de la question 1 de l'exercice 2).
- 2. Ecrire l'équation (1) sous forme d'une équation faisant intervenir un produit de convolution.

- 3. On suppose que l'équation (1) admet une solution u. Déterminer sa transformée de Fourier \hat{u} .
- 4. Démontrer que l'équation (1) admet une unique solution et la déterminer.

Exercice 4

Soit E l'espace des fonctions continues sur [0,1] à valeurs dans \mathbb{R} . On définit pour $f \in E$:

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)| \quad ||f||_1 = \int_0^1 |f(x)| \ dx$$

- 1. Montrer que $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$ sont deux normes sur E.
- 2. Montrer que pour tout $f \in E$, on a :

$$||f||_1 \le ||f||_{\infty}$$

- 3. En déduire que l'application $f \to f$ est continue de (E, N_1) dans (E, N_2) où l'on explicitera les normes N_1 et N_2 .
- 4. Montrer que ces deux normes ne sont pas équivalentes. (Indication : utiliser la suite de fonctions $f_n(x) = x^n$)
 Que peut-on en déduire pour l'application $f \to f$ de (E, N_2) dans (E, N_1) ?

Exercices facultatifs. NB : ces exercices sont plus difficiles et il n'est pas conseillé de commencer par ceux-ci.

Exercice 5

On note g la fonction définie sur \mathbb{R} par $g(x) = e^{-\pi x^2}$. Pour tout réel t > 0, on considère la fonction g_t définie sur \mathbb{R} par $g_t(x) = g(\frac{x}{\sqrt{t}})$. Soient deux réels strictement positifs s et t.

- 1. Calculer la transformée de Fourier de $g_s \star g_t$.
- 2. En déduire que $g_s \star g_t = K(s,t)g_{s+t}$, où K(s,t) est une fonction que l'on explicitera.

Exercice 6

On considère dans cet exercice l'espace de Wiener W défini par $W = L^1(\mathbb{R}) \cap \mathcal{F}(L^1(\mathbb{R}))$ c'est à dire les fonctions de $L^1(\mathbb{R})$ qui sont des transformées de Fourier de fonctions de $L^1(\mathbb{R})$.

- 1. Montrer que si $f \in W$ alors $f \in C^0(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$.
- 2. Montrer que si $f \in W$, alors $f \in L^p(\mathbb{R})$ pour tout p > 1. On pourra remarquer que $|f(t)|^p = |f(t)|^{p-1}|f(t)|$.
- 3. Montrer que pour $f \in L^1(\mathbb{R})$, $f \in W$ si et seulement si $\widehat{f} \in W$.
- 4. Vérifier qu'en posant $||f|| = ||f||_1 + ||\widehat{f}||_1$ on définit une norme sur W.
- 5. Soit (f_n) une suite de Cauchy sur $(W, \|\cdot\|)$. Montrer qu'il existe $f, g \in L^1(\mathbb{R})$ telles que lorsque $n \to \infty$,

$$||f_n - f||_1 \to 0$$
 et $||\widehat{f}_n - g||_1 \to 0$

- 6. Montrer que $\|\widehat{f}_n \widehat{f}\|_{\infty} \to 0$ lorsque $n \to \infty$. En déduire que $g = \widehat{f}$ presque partout sur \mathbb{R} .
- 7. Déduire de ce qui précède que $(W,\|\cdot\|)$ est un espace de Banach.