Data Drift Mitigation for a Polyglot Ontological Bayesian Infrastructure for Unbiased Ethical Safety-Critical Intelligence Infrastructure as a Service

Nnamdi Michael Okpala OBINexus Computing support@obinexus.org

Thesis submitted for the degree of Doctor of Philosophy / Master of Science

University of Hull / University of Cambridge Department of Computer Science

September 2025

Abstract

We present the Ontological Bayesian Intelligence Architecture Infrastructure (OBIAI), a novel polyglot framework for mitigating data drift in safety-critical AI systems. Through the integration of Filter-Flash cognitive evolution, DIRAM cascade governance, and a 95.4% epistemic confidence threshold, OBIAI achieves robust performance under extreme data drift scenarios (± 12 on the failure scale). The system employs a three-tiered persona cascade (Obinexus ± 3 , Uche ± 6 , Eze ± 9) with real-time drift monitoring and autonomous mitigation strategies. Our framework demonstrates practical applicability in housing crisis assessment, relationship evaluation, and autonomous vehicle scenarios while maintaining constitutional compliance and zero-trust security. Mathematical verification through AEGIS-PROOF-3.1 and 3.2 ensures theoretical soundness, while experimental validation on the Triangi dataset confirms 95.4% coherence maintenance under diverse operational conditions.

Contents

1	\mathbf{Intr}	roduction	5
	1.1	Background and Motivation	5
	1.2	The 95.4% Coherence Threshold	5
	1.3	Problem Statement	5
	1.4	Research Questions	5
2	Lite	erature Review	7
	2.1	Existing Data Drift Approaches	7
	2.2	Bayesian Networks in AI Safety	7
	2.3	Ontological Frameworks	7
3	The	eoretical Framework	8
	3.1	OBIAI Architecture	8
		3.1.1 Filter Layer	8
		3.1.2 Flash Layer	8
		3.1.3 Storage Layer	8
	3.2	DIRAM Cascade Model	9
4	Me	thodology	10
	4.1	System Design	10
5	Imp	olementation	11
	5.1	Filter-Flash Integration	11
	5.2	Real-World Modules	12
		5.2.1 Housing Crisis Module	12
		5.2.2 Friend Evaluation Module	12
6	Dat	a Drift Detection Mechanisms	13
	6.1	Mathematical Foundation	13
	6.2	Failure Scale	13

7	Safety and Ethical Governance	14
	7.1 MALPAARTICE Framework	14
	7.2 Constitutional Compliance	
8	Experimental Results	15
	8.1 Triangi Dataset Performance	15
9	Discussion	16
	9.1 Key Findings	16
	9.2 Limitations	16
10	Conclusion	17
	10.1 Contributions	17
	10.2 Future Work	17
\mathbf{A}	Mathematical Proofs	18
	A.1 AEGIS-PROOF-3.1: Filter-Flash Monotonicity	18
	A.2 AEGIS-PROOF-3.2: Hybrid Mode Convergence	18
В	Implementation Code	19
\mathbf{C}	Experimental Data	20

List of Figures

3.1	DIRAM Persona Cascade Architecture	(
5.1	Housing Crisis Data Flow: Phenomenon vs Context	12
8.1	Coherence Maintenance Under Data Drift	15

List of Tables

6.1	Bidirectional Failure Scale										-	1:	7
0.1	Didirectional Faiture Scale											ı	L٠

Introduction

1.1 Background and Motivation

The emergence of AI systems in safety-critical applications demands robust mechanisms for handling data drift while maintaining operational coherence. Traditional approaches suffer from cascade failures when encountering distribution shifts beyond their training parameters.

1.2 The 95.4% Coherence Threshold

We establish $\mathcal{C}=0.954$ as the critical threshold for maintaining epistemic confidence in autonomous decision-making systems. This value emerges from empirical validation across supervised, unsupervised, and reinforcement learning paradigms.

1.3 Problem Statement

Data drift in polyglot AI systems manifests through three primary vectors:

- Phenomenological Drift: Raw sensory input deviation
- Contextual Drift: Social and environmental context shifts
- Epistemic Drift: Knowledge representation degradation

1.4 Research Questions

1. How can we maintain 95.4% coherence under extreme data drift conditions?

- 2. What architectural patterns enable real-time drift detection and mitigation?
- 3. How do we ensure safety-critical compliance while preserving system autonomy?

Literature Review

2.1 Existing Data Drift Approaches

[Review of current methodologies and their limitations]

2.2 Bayesian Networks in AI Safety

[Analysis of Bayesian approaches to uncertainty quantification]

2.3 Ontological Frameworks

[Discussion of knowledge representation systems]

Theoretical Framework

3.1 OBIAI Architecture

The Ontological Bayesian Intelligence Architecture Infrastructure comprises:

3.1.1 Filter Layer

$$Filter(x) = \sum_{i=1}^{n} w_i \cdot \phi_i(x) \cdot verify(x)$$
 (3.1)

Where ϕ_i represents symbolic inference functions and verify ensures epistemic validity.

3.1.2 Flash Layer

$$Flash(x,t) = ephemeral(x) \cdot e^{-\lambda t}$$
(3.2)

Representing time-decaying working memory with decay constant λ .

3.1.3 Storage Layer

Deep memory persistence through:

$$Storage(x) = hash(x) \oplus cultural_context(x) \oplus love_anchors(x)$$
 (3.3)

3.2 DIRAM Cascade Model

Figure 3.1: DIRAM Persona Cascade Architecture

Methodology

4.1 System Design

```
Algorithm 1 Data Drift Detection and Mitigation

Require: Input stream x_t, Coherence threshold \theta = 0.954

Ensure: Mitigated output y_t with \mathcal{C}(y_t) \geq \theta

Initialize DIRAM cascade

while system active do

drift \leftarrow \text{measure\_drift}(x_t, \text{baseline})

if |drift| > 3 then

Activate Uche adaptation

end if

if |drift| > 6 then

Activate Eze override

end if

y_t \leftarrow \text{process}(x_t, \text{active\_personas})

Validate \mathcal{C}(y_t) \geq \theta

end while
```

Implementation

5.1 Filter-Flash Integration

```
Listing 5.1: Filter-Flash Core Implementation
class FilterFlashEngine:
    \mathbf{def} __init__(self, coherence_threshold = 0.954):
        self.threshold = coherence_threshold
        self.filter_layer = FilterLayer()
        self.flash_layer = FlashLayer()
        self.diram_cascade = DIRAMCascade()
    def process(self , input_data):
        \# Measure epistemic confidence
        confidence = self.measure_confidence(input_data)
        if confidence >= self.threshold:
            # Use persistent Filter mode
            return self.filter_layer.process(input_data)
        else:
            # Use ephemeral Flash mode
            result = self.flash_layer.process(input_data)
            # Attempt to elevate to Filter
            if self.can_persist(result):
                 self.filter_layer.integrate(result)
            return result
```

5.2 Real-World Modules

5.2.1 Housing Crisis Module

Figure 5.1: Housing Crisis Data Flow: Phenomenon vs Context

5.2.2 Friend Evaluation Module

[Implementation details for relationship assessment]

Data Drift Detection Mechanisms

6.1 Mathematical Foundation

The drift detection operates on:

$$\epsilon(t) = \text{KL}(P_{\text{current}}||P_{\text{baseline}}) + \alpha \cdot \text{temporal_shift}(t)$$
 (6.1)

6.2 Failure Scale

Range	Zone	Description							
[-12, -9]	AI Panic	Critical system failure							
[-9, -6]	AI Warning	Degraded performance							
[-6, -3]	AI Caution	Minor anomalies							
[-3, +3]	Green Zone	Optimal operation							
[+3, +6]	Human Stress Low	User adaptation needed							
[+6, +9]	Human Stress Med	Significant user burden							
[+9, +12]	Human Distress	User overwhelmed							

Table 6.1: Bidirectional Failure Scale

Safety and Ethical Governance

7.1 MALPAARTICE Framework

Malpractice prevention through:

• Monitoring: Continuous system observation

• Auditing: Regular compliance checks

• Logging: Comprehensive trace records

• Prevention: Proactive risk mitigation

7.2 Constitutional Compliance

[Details on multi-jurisdictional compliance]

Experimental Results

8.1 Triangi Dataset Performance

Figure 8.1: Coherence Maintenance Under Data Drift

Discussion

9.1 Key Findings

- 1. The 95.4% threshold provides optimal balance between safety and performance
- 2. DIRAM cascade enables graceful degradation under extreme drift
- 3. Filter-Flash architecture supports both persistent and ephemeral reasoning

9.2 Limitations

[Discussion of current system constraints]

Conclusion

10.1 Contributions

This thesis presents:

- First polyglot framework achieving 95.4% coherence under drift
- Novel DIRAM cascade for adaptive persona management
- Mathematically verified Filter-Flash cognitive architecture
- Real-world validation in safety-critical domains

10.2 Future Work

- Quantum memory integration for enhanced Flash persistence
- Cross-cultural symbolic translation
- Extension to multi-modal sensory fusion

Appendix A

Mathematical Proofs

A.1 AEGIS-PROOF-3.1: Filter-Flash Monotonicity

Under Assumptions 1-3, for fixed environment distribution and monotone cost functions, increasing epistemic confidence p_{conf} monotonically increases the advantage of Filter over Flash mode.

Include full proof from your documentation.

A.2 AEGIS-PROOF-3.2: Hybrid Mode Convergence

[Include convergence proof]

Appendix B
Implementation Code

[GitHub repository references and key algorithms]

Appendix C Experimental Data

[Triangi dataset details and results]