1 Study guide

1.1 Midterm 1

- ☑ Binary numbers, Hexadecimal, Sign-magnitude, One's-complement and Two's complement. Conversions between them.
- ✓ Generate minterms, maxterms, SOP canonical form and POS canonical forms and convert between them
- **☑** Understand and use the laws and theorems of Boolean Algebra
- ✓ Perform algebraic simplification using Boolean algebra
- ✓ Simplification using K-maps
- ✓ Derive sum of product and product of sums expressions for a combinational circuit
- ☑ Convert combinational logic to NAND-NAND and NOR-NOR forms
- ✓ Simplification using Quine-McCluskey method

1.2 Midterm 2

- ✓ Understand the difference between synchronous and asynchronous inputs
- Derive a state graph or state table from a word description of the problem
- ✓ Implement a design using JK, SR, D or T flip-flops
- ✓ Analyze a sequential circuit and derive a state-table and a state-graph
- ✓ Analyse and design both Mealy and Moore sequential circuits with multiple inputs and multiple outputs
- \square Reduce the number of states in a state table using row reduction and implication tables
- ☐ Perform a state assignment using the guideline method
- \square Convert between Mealy and Moore designs

	1.3	Final	(includes	previous	topics'
--	-----	-------	-----------	----------	---------

.3	Final (includes previous topics)
	Design combinational circuits for positive and negative logic
	Design Hazard-free two level circuits.
	Compute fan out and noise margin of one device driving the same time
	Compute noise margin of one device
	Describe how tri-state and open-collector outputs are different from to tempole outputs.
	Different between and limitations of level-triggered latches and edge-triggered flip-flops.
	Know the differences and similarities between PAL, PLA, and ROMs and can use each for logic design
	Design combinational circuits using multiplexers and decoders
	Partition a system into multiple state machines