Math 2208: Ordinary Differential Equations

LECTURE 4 RECAP

Fall 2019	Subhadip Chowdhury	Sep 18
TITLE: Slope Field and Euler's Method		

■ Question 1.

Consider the differential equation y' = -t/y with initial condition y(0) = 1. Given that the exact solution is $y(t) = \sqrt{1 - t^2}$,

- a use the slope field to estimate y(1/2) for the solution that satisfies the given initial condition.
- b Compare your estimate with the exact value of y(1/2).
- C Use Euler's Method with $\Delta t = .25$ to estimate y(1/2).
- d Is your Euler's Method estimate and over-estimate or under-estimate? Explain why.

■ Question 2.

Complete the following sentences:

- a As the time step Δt _____ in magnitude, the numerical error in computing $y(t_1)$ using Eulers Method decreases in magnitude.
- b As the time step Δt _____ in magnitude, the numerical error in computing $y(t_1)$ using Eulers Method increases in magnitude.
- C When y' is _____ on $t_0 < t < t_1$ the function y(t) is concave up and estimates of $y(t_1)$ using Eulers Method will be _____.
- d When y' is _____ on $t_0 < t < t_1$ the function y(t) is concave down and estimates of $y(t_1)$ using Eulers Method will be _____.