HOMEWORK 6

Exercise are from Freedman.

7.A.12, 7.D (all, but turn in 2, 7, 13), 7.E (all, but turn in 6), Discussion Questions: 6, 7

Also, submit the "Class Laboratory" labelled lab2.pdf, answering the questions there. (It is on Canvas under "Pages/Class Laboratories").

Problem Freedman 7A12. Suppose X,Y,Z are independent normal random variables, each having variance 1. The means are $\alpha+\beta,\alpha+2\beta,2\alpha+\beta$, respectively: α,β are parameters to be estimated. Show that maximum likelihood and OLS give the same estimates. Note: this won't usually be true – the result depends on the normality assumption.

Solution to Problem Freedman 7A12. If

$$\boldsymbol{D} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 2 & 1 \end{bmatrix} ,$$

then

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \boldsymbol{D} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \boldsymbol{\varepsilon} \,,$$

where $\varepsilon \sim N(\mathbf{0}, I_3)$. The OLS estimate is

$$\begin{bmatrix} \hat{\alpha} \\ \hat{\beta} \end{bmatrix} = (\mathbf{R}'\mathbf{R})^{-1}\mathbf{R}' \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 1 & -4 & 7 \\ 1 & 7 & -4 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \frac{1}{11} \begin{bmatrix} X - 4Y + 7Z \\ X + 7Y - 4Z \end{bmatrix}.$$

On the other hand, we have

$$f(x,y,z;\alpha,\beta) = \frac{1}{(2\pi)^{3/2}} e^{-\frac{1}{2}[(x-(\alpha+\beta^2)+(y-(\alpha+2\beta))^2+(z-(2\alpha+\beta))^2]}$$

and so the log-likelihood is

$$\ell(\alpha, \beta) = -\frac{1}{2} \left[(X - (\alpha + \beta))^2 + (Y - (\alpha + 2\beta))^2 + (Z - (2\alpha + \beta))^2 \right] - \frac{3}{2} \log(2\pi).$$

Thus

$$\frac{\partial \ell}{\partial \alpha} = (X - (\alpha + \beta)) + (Y - (\alpha + 2\beta)) + 2(Z - (2\alpha + \beta))$$
$$\frac{\partial \ell}{\partial \beta} = (X - (\alpha + \beta)) + 2(Y - (\alpha + 2\beta)) + (Z - (2\alpha + \beta))$$

Setting to 0 and solving two linear equations for two unknowns yields

$$\hat{\alpha} = \frac{1}{11}(X - 4Y + 7Z)$$

$$\hat{\beta} = \frac{1}{11}(X + 7Y - 4Z)$$

Problem Freedman 7D2. Conversely, if U is uniform on [0,1], show that $F^{-1}(U)$ has distribution function F.

Solution to Problem Freedman 7D2. Let $Y = F^{-1}(U)$. Then

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(F^{-1}(U) \le y) = \mathbb{P}(U \le F(y)) = F_U((F(y)) = F(y),$$

since $F(u) = u$ for $u \in (0,1)$. Thus, Y has distribution function F.

Problem Freedman 7D7. What is the distribution of $\log U - \log(1 - U)$, where U is uniform on [0, 1]?

Solution to Problem Freedman 7D7. Let $g(u) = \log(u/1 - u)$. Then

$$g'(u) = \frac{1-u}{u} \frac{1}{(1-u)^2} = \frac{1}{u(1-u)} > 0$$

for $u \in (0,1)$; whence g is increasing in u. In particular, it is 1-1 from (0,1) to $(-\infty,\infty)$, with inverse

$$g^{-1}(x) = \frac{e^x}{1 + e^x} \,.$$

Thus, the cdf $F_{g(U)}$ of g(U) is given by

$$F_{g(U)}(t) = \mathbb{P}(g(U) \le t) = \mathbb{P}(U \le g^{-1}(t)) = F_U(g^{-1}(t)) = g^{-1}(t) = \frac{e^x}{1 + e^x}.$$

Problem Freedman 7D13. Show that the log likelihood for the probit model is concave, and strictly concave if X has full rank.

Solution to Problem Freedman 7D13. Let x_k be the k-th row of X.

$$L(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{x}) = \prod_{k=1}^{n} \Phi(\boldsymbol{x}_{k} \boldsymbol{\beta})^{y_{k}} (1 - \Phi(\boldsymbol{x}_{k} \boldsymbol{\beta})^{1-y_{k}})$$
$$\ell(\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{x}) = \sum_{k=1}^{n} y_{k} \log \Phi(\boldsymbol{x}_{k} \boldsymbol{\beta}) + (1 - y_{k}) \log(1 - \Phi(\boldsymbol{x}_{k} \boldsymbol{\beta}))$$

Let $g = \log \Phi$ and $h = \log(1 - \Phi)$; we know from Exercise 12 that g'' < 0 and h'' < 0 everywhere. Then

$$\frac{\partial \ell}{\partial \beta_i} (\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{x}) = \sum_{k=1}^n y_k g'(\boldsymbol{x}_k \boldsymbol{\beta}) x_{k,i} + (1 - y_k) h'(\boldsymbol{x}_k \boldsymbol{\beta}) x_{k,i}
\frac{\partial^2 \ell}{\partial \beta_j \partial \beta_i} (\boldsymbol{\beta} \mid \boldsymbol{y}, \boldsymbol{x}) = \sum_{k=1}^n y_k g''(\boldsymbol{x}_k \boldsymbol{\beta}) x_{k,i} x_{k,j} + (1 - y_k) h''(\boldsymbol{x}_k \boldsymbol{\beta}) x_{k,i} x_{k,j}
= \sum_{k=1}^n x'_{i,k} (y_k g''(\boldsymbol{x}_k \boldsymbol{\beta}) + (1 - y_k) h''(\boldsymbol{x}_k \boldsymbol{\beta})) x_{k,j}
= -\boldsymbol{X}' \boldsymbol{D} \boldsymbol{X},$$

where D is the diagonal matrix with k-th diagonal entry

$$d_k = y_k(-g''(x_k\beta)) + (1 - y_k)(-h''(x_k\beta)).$$

Note that $d_k > 0$ since it is impossible that both y_k and $1 - y_k$ equal 0, and -g'' and -h'' are strictly positive everywhere.

L

Let \boldsymbol{u} be any p column vector. Then

$$u'XDXu = (\sqrt{D}Xu)'(\sqrt{D}Xu) = ||\sqrt{D}Xu||^2 \ge 0$$

whence $-\ell''$ is non-negative definite. This implies that ℓ is concave.

Suppose now that X has full rank. Let $u \neq 0$. Then $Xu \neq 0$, since X has full rank. Since D is a strictly positive diagonal matrix, $\sqrt{D}Xu \neq 0$. We conclude that $-u'\ell''u > 0$, and $-\ell''$ is positive definite. This implies that ℓ is strictly concave.

Problem Freedman 7E6. Student #77 is Presbyterian, went to public school, and graduated. What does this subject contribute to the likelihood function? Write your answer using ϕ in equation (15).

Solution to Problem Freedman 7E6. We have $C_i = 0$ and $Y_i = 1$. This student contributed the factor

$$\mathbb{P}(C_i = 0, Y_i = 1 \mid X_i, IsCat_i = 0) = \mathbb{P}(U_i < -X_i b, V_i > -X_i \beta)$$
$$= \iint_{\substack{u < -X_i b \\ v > -X_i \beta}} \phi(u, v) du dv$$

to the likelihood function.

Problem Freedman 7Dis6. Powers and Rock (1999) consider a two-equation model for the effect of coaching on SAT scores:

$$X_{i} = \begin{cases} 1 & \text{if } U_{i}\alpha + \delta_{i} > 0 \\ 0 & \text{otherwise.} \end{cases}$$
$$Y_{i} = cX_{i} + V_{i}\beta + \sigma\varepsilon_{i}.$$

Here, $X_i=1$ if subject i is coached, else $X_i=0$. The response variable Y_i is subject i's SAT score; U_i and V_i are vectors of personal characteristics for subject i, treated as data. The latent variables $(\delta_i, \varepsilon_i)$ are IID bivariate normal with mean 0, variance 1, and correlation ρ ; they are independent of the U's and V's. (In this problem, U and V are observable, δ and ε are latent.)

- (a) Which parameter measures the effect of coaching? How would you estimate it?
- (b) State the assumptions carefully (including a response schedule, if one is needed). Do you find the assumptions plausible?
- (c) Why do Powers and Rock need two equations, and why do they need ρ ?
- (d) Why can they assume that the disturbance terms have variance 1?

Solution to Problem Freedman 7Dis6. (a) The parameter c measures the effect of coaching. The parameters can be estimated via maximum likelihood.

(b) The vector (U_i, V_i) needs to be independent of $(\delta_i, \varepsilon_i)$, the variable X_i is generated from the first equation, then put in the response schedule

$$Y_{i,x} = cx + V_i \beta + \sigma \varepsilon_i$$
.

Why is the effect c of coaching the same for all individuals?

(c) X_i may be related to unmeasured variables represented in the error term. Thus ρ allows for correlation between X_i and the error ε_i .

(d) The parameter σ scales the error term in the second equation. Parameters are not identifiable in the second if δ_i can have arbitrary variance.