Locality Sensitive Hashing

Saeed Sharifian

Pinterest visual search

Given a query image patch, find similar images

How does it work?

- Collect billions of images
- Determine feature vector for each image (4k dim)
- Given a query Q, find nearest neighbors FAST

How does it work?

C

Nearest neighbor query in the embedding space

Application: visual search

Visually similar results

A common metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in <u>high-dimensional</u> space
- Examples:
 - Pages with similar words
 - For duplicate detection, classification by topic
 - Customers who purchased similar products
 - Products with similar customer sets
 - Images with similar features
 - Image completion
 - Recommendations and search

Problem

- Given: High dimensional data points $x_1, x_2, ...$
 - For example: Image is a long vector of pixel colors
- And some distance function $d(x_1, x_2)$
 - which quantifies the "distance" between x_1 and x_2
- Goal: Find all pairs of data points (x_i, x_j) that are within distance threshold $d(x_i, x_j) \le s$
- **Note:** Naïve solution would take $O(N^2)$ where N is the number of data points
- MAGIC: This can be done in O(N)!! How??

LSH

- LSH is really a family of related techniques
- In general, one throws items into buckets using several different "hash functions"
- You examine only those pairs of items that share a bucket for at least one of these hashings
- Upside: Designed correctly, only a small fraction of pairs are ever examined
- Downside: There are false negatives pairs of similar items that never even get considered

Finding similar DOCs

Saeed Sharifian

Motivation for Min-Hash/LSH

- Suppose we need to find near-duplicate documents among N = 1 million documents
 - Naïvely, we would have to compute pairwise similarities for every pair of docs
 - $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
 - For N = 10 million, it takes more than a year...
- Similarly, we have a dataset of 10m images, quickly find the most similar to query image Q

3 Essential Steps for Similar Docs

- Shingling: Converts a document into a set representation (Boolean vector)
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Candidate pairs!

The Big Picture

The set of strings of length k that appear in the document

Signatures:

short integer vectors that represent the sets, and reflect their similarity

Candidate

those pairs of signatures that we need to test for

Documents as High Dim data

Step 1: Shingling: Converts a document into a set

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles

Compressing Shingles

- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca} Hash the shingles: $h(D_1)$ = {1, 5, 7}
- k = 8, 9, or 10 is often used in practice

Benefits of shingles:

- Documents that are intuitively similar will have many shingles in common
- Changing a word only affects k-shingles within distance k-1 from the word

Similarity Metric for Shingles

- Document D₁ is represented by a set of its kshingles C₁=S(D₁)
- A natural similarity measure is the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

Jaccard distance: $d(C_1, C_2) = 1 - |C_1 \cap C_2|/|C_1 \cup C_2|$

3 in intersection. 8 in union. Jaccard similarity = 3/8

From Sets to Boolean Matices

Encode sets using 0/1 (bit, Boolean) vectors

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: sim(C₁,C₂) = ?
 - Size of intersection = 3; size of union = 6,
 Jaccard similarity (not distance) = 3/6
 - d(C₁,C₂) = 1 (Jaccard similarity) = 3/6

Documents

	1	1	1	0
	1	1	0	1
S	0	1	О	1
Shingles	0	О	О	1
S	1	О	О	1
	1	1	1	0
	1	0	1	0

We don't really construct the matrix; just imagine it exists

Outline review

- So far:
 - Documents → Sets of shingles
 - Represent sets as Boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures

Warnings:

- Comparing all pairs takes too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Min-Hashing: hashing columns

- Key idea: "hash" each column C to a small **signature** h(C), such that:
 - sim(C₁, C₂) is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Goal: Find a hash function h(·) such that:
 - If sim(C₁,C₂) is high, then with high prob. h(C₁) = h(C₂)
 If sim(C₁,C₂) is low, then with high prob. h(C₁) ≠ h(C₂)
- Idea: Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing Goal

- Goal: Find a hash function h(·) such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing overview

- Permute the rows of the Boolean matrix using some permutation \(\pi\)
 - Thought experiment not real
- Define minhash function for this permutation π , $\mathbf{h}_{\pi}(\mathbf{C})$ = the number of the first (in the permuted order) row in which column C has value 1.
 - Denoted this as: $h_{\pi}(C) = \min_{\pi} \pi(C)$
- Apply, to all columns, several randomly chosen permutations π to create a signature for each column
- Result is a signature matrix: Columns = sets, Rows = minhash values for each permutation π

Min-Hashing Example

2nd element of the permutation (row 1) is the first to map to a 1

Permutation # Input matrix (Shingles x Documents)

 $h_{\pi}(C) = \min_{\pi} \pi(C)$ Signature matrix M

			 /			
2	4	3	1	0	1	0
3	2	4	1	0	0	A
7	1	7	0	1	О	1
6	3	2	0	1	0	1
1	6	6	0	1	0	1
5	7	1	1	О	1	0
4	5	5	1	0	1	О

1	2	1	2	1
	2	1	4	1
	1	2	1	2

 $h_2(3)=1$ (permutation 2, column 3) 4^{th} element of the permutation (row 1) is the first to map to a 1

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Thus, the expected similarity of two signatures equals the Jaccard similarity of the columns or sets that the signatures represent
 - And the longer the signatures, the smaller will be the expected error

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	О	1
1	0	1	0
1	0	1	О

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	O	0

Locality Sensitive Hashing

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a hash function that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair

Locality Sensitive Hashing

- Pick a similarity threshold s (0 < s < 1)</p>
- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 - M(i, x) = M(i, y) for at least frac. s values of i
 - We expect documents x and y to have the same (Jaccard) similarity as their signatures

LSH for Min-Hash

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition M into b Bands

Signature matrix M

Partition M into b Bands

- Divide matrix M into b bands of r rows
- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing bands

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

Example of bands

Assume the following case:

- Suppose 100,000 columns of *M* (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40MB
- Goal: Find pairs of documents that are at least s = 0.8 similar
- Choose b = 20 bands of r = 5 integers/band

C1,C2 are 80% Similar

- Find pairs of \ge s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since sim(C₁, C₂) ≥ s, we want C₁, C₂ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C₁, C₂ identical in one particular band: (0.8)⁵ = 0.328
- Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

C1,C2 are 30% Similar

- Find pairs of \ge s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
- Probability C₁, C₂ identical in one particular band: (0.3)⁵ = 0.00243
- Probability C₁, C₂ identical in at least 1 of 20 bands: 1 (1 0.00243)²⁰ = 0.0474
 - In other words, approximately 4.74% pairs of docs with similarity 0.3 end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

Pick:

- The number of Min-Hashes (rows of M)
- The number of bands b, and
- The number of rows r per band to balance false positives/negatives
 - Note, M=b*r
- Example: If we had only 10 bands of 10 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH

Say "yes" if you are below the line.

Similarity $t = sim(C_1, C_2)$ of two sets ———

What 1 Band of 1 Row Gives You

Similarity $t = sim(C_1, C_2)$ of two sets \longrightarrow

What 1 Band of 1 Row Gives You

Say "yes" if you are below the line.

Similarity $t = sim(C_1, C_2)$ of two sets

B Bands, r rows/band

- Say columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = 1 t^r
- Prob. that no band identical = $(1 t^r)^b$
- Prob. that at least 1 band identical = $1 (1 t^r)^b$

What b Bands of r Rows Gives You

Example : b=20; r=5

- Similarity threshold s
- Prob. that at least 1 band is identical:

s	1-(1-s ^r) ^b
0.2	0.006
0.3	0.047
0.4	0.186
0.5	0.470
0.6	0.802
0.7	0.975
8.0	0.9996

Picking r and b: The S-Curve

- Picking r and b to get the best S-curve
 - 50 hash-functions (r=5, b=10)

Blue area: False Negative rate

Green area: False Positive rate

The S-Curve

LSH summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

LSH summary

- Shingling: Convert documents to set representation
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity ≥ s