_	م	KESTRICTED PARP.	VIT	
		Solution	Marks	Remarks
1.	(a)	Increase percentage = $(\frac{1000}{8000} \times 100)$ %	1A	for $\frac{1000}{8000}$
•.	•	= 12.5%	1A 2	Accept 12.5
	(b)	His savings = $$9000 \times \frac{3}{10}$	1A	
		= \$2700	1 <u>A</u> 2	
2.	(a)	$x + 1 > \frac{1}{5}(3x + 2)$		OR 2
		5x - 3x > 2 - 5	1M	$ x - \frac{3}{5}x > \frac{2}{5} - 1$ 1M
		2x > -3		$\frac{2}{5} \times > -\frac{3}{5}$ $\times > -\frac{3}{2}$ 1A
		$x > -\frac{3}{2}$	1A 2	2
	(b)	Furthermore, if $-4 \le x \le 4$, then the range of x is	,	
		$-\frac{3}{2} < x \leq 4.$	2A	-1 if '=' incorrect Accept graphical
				representation
3.	(a)	Since $(x + 1)$ is a factor of $x^4 + x^3 - 8x + k$, $(-1)^4 + (-1)^3 - 8(-1) + k = 0$	1M	
		k = -8	1A 2	
	(b)	$x^4 + x^3 - 8x - 8 = (x + 1)(x^3 - 8)$	1M+1A	lM for (x+1) X cubic
		$= (x + 1)(x - 2)(x^2 + 2x + 4)$	1A+1A	exp.
			4	***
		$\underline{OR} (2)^4 + (2)^3 - 8(2) - 8 = 0$		
		-> x - 2 is another factor	1A 2A	
		$\therefore x^4 + x^3 - 8x - 8 = (x + 1)(x - 2)(x^2 + 2x + 4) $	1M+2a/F	lM for (x+1)(x-2) X quadratic exp.
		ir.	<u> </u>	
		•		1

4	•	KESIKICIED MIND	LIT	0, 02 110 0 0 -
		Solution	Marks	Remarks
4.	(a)	C M	1A	For circle with A,B,M
		A B.	1 <u>A</u> 2	Indication of BM = MC
	(b)	Consider A ABM and A ACM (OR joining AM, AC)	1	In this part, candi- dates are expected to
	Int:	Since AB is a diameter, LAMB = 90° (LAMB = LAMC) = LAMC indicate in the gays	1 (o k .	give brief reasons.
_	,	As AM is common and BM = MC, the two triangles are congruent. (SAS)	1	State A AMD = A AMC.
		LBAM = LCAM, i.e. AM bisects LBAC.		state A Am B= A Am C (mith reason) (mark) conclude. A m biscel 1800
5.	(a)	$\begin{cases} x + 2y = 5 & \dots & (i) \\ 5x - 4y = 4 & \dots & (ii) \end{cases}$		Buch
		$2 \times (i) + (ii) \Rightarrow 7x = 14$ x = 2	1M 1A	For elim. or subs.
		Putting $x = 2$ in (i), $2y = 3$,	
		$y = \frac{3}{2}$	1A	0
		$\therefore \text{ the solution is } \begin{cases} x = 2 \\ y = \frac{3}{2} \end{cases}$	3	
	(b)	By (a), $\frac{a}{c} = 2$ and $\frac{b}{c} = \frac{3}{2}$	TM JY	
		a : b : c = 4 : 3 : 2 (or equivalent ratios)	2A 1A	
6.	(a)	$\angle ABD = \angle ACD = 60^{\circ}$	1A	le chown in disperio
		Since ABCD is a cyclic quadrilateral,	concel	or LBDA = 40°
		$L_{BAD} + L_{BCD} = 180^{\circ}$ $L_{BAD} = 180^{\circ} - (60 + 40)^{\circ}$ $= 80^{\circ}$	1.L' 1A 3	I RAD = SEO hat wray was
	(b)	By the sine rule, $\frac{10}{\sin 60^{\circ}} = \frac{BD}{\sin 80^{\circ}}$	1M+1A	60° 40° B
		$BD = \frac{10 \sin 80^{\circ}}{\sin 60^{\circ}}$		D (10)
		= 11.37 cm (corr. to 2 d.p.)	1A 3	10 cm

•	RESTRICTED F	Marks	Remarks	
	Solution			
$3\tan\theta = 2\cos\theta$ $3\frac{\sin\theta}{\cos\theta} = 2\cos\theta$		1M	·	
$-4-0 = \frac{1}{2}$		1M 1A 1A 1A 1A+1A	Accept sinθ sinθ = ½ or Deduct 1 fo extraneous	-Z r each
[as cos30° and	cos150° ≠ 0].	7		
		es E		44.

`		NEST NICTED 内部	VIL	
		Solution	Marks	Remarks
8.	(a)	E = (1, 2)	1A 1	E=1,2 pp1
	(b)	From $x + 7y - 40 = 0$, we have $x = 40 - 7y$		200
		$(\text{ or } y = \frac{40 - x}{7})$		
		Putting in ℓ_1 , $(40-7y)^2 + y^2 - 2(40-7y) - 4y - 20 = 0$	1M	·
		$50y^2 - 550y + 1500 = 0$	1A	
		$y^2 - 11y + 30 = 0$ (or $x^2 - 3x - 10 = 0$)		
		(y - 5)(y - 6) = 0		·
		y = 5 or 6 (or x = 5 or -2)	1 A	y=+ and y=6. sp-1
		x = 5 or -2		
		P = (-2, 6), Q = (5, 5)	1 A	Accept P = (5, 5)
			4	Q = (-2, 6)
	(c)	ℓ_2 is given by $\frac{y-6}{x+2} \cdot \frac{y-5}{x-5} = -1$	1M+1A	$\frac{OR}{Ctr.}$ of $\mathcal{C}_2 = (\frac{3}{2}, \frac{11}{2})$
		i.e. $x^2 + y^2 - 3x - 11y + 20 = 0$	1A	$\begin{bmatrix} \frac{5R}{Ctr.} & \text{of } \mathcal{G}_2 = (\frac{3}{2}, \frac{11}{2}) \\ \text{radius} &= \frac{5\sqrt{2}}{2} \ (=3.54) \end{bmatrix}$
		•		Eqt. of \mathcal{C}_2 :
				$\left(x-\frac{3}{2}\right)^2 + \left(y-\frac{11}{2}\right)^2 = \frac{50}{4}$
				Answer 1M+1A
		⊕. 10	3	
	(d)	Putting $(x, y) = (1, 2)$ in L.H.S. of b_2	1M	OR Slope of PE x slope of
-		$1^2 + 2^2 - 3(1) - 11(2) + 20 = 0$	1A	QE = -1
		\cdot . ℓ_2 passes through E	*	
		(As PQ is a diameter of \mathcal{C}_{2}) $\angle PEQ = 90^{\circ}$	1M)	$\frac{OR}{Let} P = (-2,6), Q = (5,1)$
		(Since PE = QE (radii of \mathcal{C}_1)	, ,	Slope of PQ = $-\frac{1}{7}$
		$LEPQ = \frac{90^{\circ}}{2} = 45^{\circ}$)	Slope of PE = $-\frac{4}{3}$
		2		
		P		$\tan L EPQ = \frac{-\frac{1}{7} - \frac{-4}{3}}{1 + \frac{1}{7} \times \frac{4}{3}}$ 11
		Q		/ 3 = 1
				LEPQ = 45° 1A
		$E(I_1^2)$		OR
		$\begin{array}{c c} & & & x \\ \hline & & & & \end{array}$		171.87° - 126.87° 1M = 45°
				- 43 /A
		8,	4	
	GA 29	RESTRICTED 內部3	八件	

	RESTRICTED 内部文件		89 CE Maths I-5	
******	Solution	Marks	Remarks	
9.	(a) $\frac{k}{l} = \frac{\frac{1}{2}}{k}$ $k^2 = \frac{1}{2}$	1M		
	$k = \frac{1}{\sqrt{2}} (\text{ or } \frac{\sqrt{2}}{2}) (\text{as } k > 0)$	1A	Do not accept ± $\frac{1}{\sqrt{2}}$ but follow through	
	(b) $T(n) = \left(\frac{1}{\sqrt{2}}\right)^{n-1}$ [or $\frac{1}{(\sqrt{2})^{n-1}}$, $2^{-\frac{n-1}{2}}$, etc.]	1M+1A	$\frac{1}{\sqrt{2}} n-1 p \cdot p.$	
	(c) Sum to infinity = $\frac{1}{1 - \frac{1}{\sqrt{2}}}$	1M+1A		
_	$= \frac{\sqrt{2}}{\sqrt{2}-1}$			
	$=\frac{\sqrt{2}(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}$	1M	and the state of t	
	$= 2 + \sqrt{2} \dots$	1A 4	6. 	
	(d) No. of terms in the product = $\frac{2n-1-1}{2}+1=n$			
	T(1) x T(3) x T(5) x x T(2n-1) = 1 x $\frac{1}{2}$ x $\frac{1}{4}$ x $(\frac{1}{\sqrt{2}})^{2n-2}$ [or 1 x $\frac{1}{(\sqrt{2})^2}$ x $\frac{1}{(\sqrt{2})^n}$ x x $\frac{1}{(\sqrt{2})^{2n-2}}$]	1 A		
	$= 1 \times \frac{1}{2} \times \frac{1}{2^{2}} \times \dots \times \frac{1}{2^{n-1}}$ $= \frac{1}{2^{1+2+\dots+(n-1)}}$	1M		
	$\frac{1}{2} \frac{n(n-1)}{2}$ [or 2 $\frac{-n(n-1)}{2}$, etc.]	1M+1A	lM for summing index as A.P.	
		4		
	*			

	Solution	Marks	Remarks
10. (a)	AB' = 10cos45°	:	- +-
	= $5\sqrt{2}$ m (or $\frac{10}{\sqrt{2}}$), (7.07107)	1A	Any figure roundable
	AC' = 10cos30°		to 7.07
	$= 5 \sqrt{3}m (8.66025)$	1A 2	
(b)	$BC = \sqrt{10^2 + 10^2}$	•	
	$= 10 \sqrt{2} m (14.14214)$	1A	No use -1 mol for
	$BB' = 10sin45^{\circ}$		No unit - I me for
	$= 5 \sqrt{2} m (7.07107)$	1A	N-
	CC' = 10sin30°	1.	
	= 5m	1 <u>A</u>	
	B' 10 m		c
	A	1	1

(d) By the cosine rule,
$$\cos B'AC' = \frac{50 + 75 - (125 + 50\sqrt{2})}{2 \times 5\sqrt{2} \times 5\sqrt{3}} (= -\frac{1}{\sqrt{3}}, -0.57735) \text{ 1M}$$

$$\angle B'AC' = 125^{\circ} (125.264)$$

$$Area of the shadow = \frac{1}{2} \times 5\sqrt{2} \times 5\sqrt{3} \sin 125.264^{\circ}$$

$$= 25m^{2}$$

$$1A \qquad 25.0 - 25.4$$

i		KESTRICTED 内部	文件	89 CE Maths I-7
		Solution	Marks	Remarks
11.	(a)	Area of cross-section = $\frac{50}{2}$ (2 + 10) = 300m ²		
		Vol: of water = $20 \times 300 = 6000 \text{m}^3$	1M+1A	lM for Vol.= Area of cross-section x width
			2	2 000 + (10x8) x20
	(b)	(i) When the depth of water at the deeper end is		<u>OR</u>
		8m, the cross-section of water is a triangle		Drop in water level = 2m
		of area $\frac{8 \times 50}{2} = 200 \text{m}^2$.		Water pumped out = $2x50x20 = 2000m^3$ 1A
		Vol. of water left = $200 \times 20 = 4000 \text{m}^3$.	2 A	Water left = 4000m ³ 1A
		(ii) Vol. of water pumped out in 8 hours		
		$= (0.125)^2 \pi \times 3600 \times 8 \times 3$	1M+1A	1M for area of cross-
		= 1350 m m ⁹		section
		= 4241 m ³ (correct to the nearest m ³) (4241.15)	1A	• •
		(iii) V ol. of water left after 8 hrs = 6000 - 4241	1M	•
		$= 1759 \mathbf{m}^3$		
		When the depths of water are 8m and h m, the		(i)
		corresponding cross-sections of water are	•	
		two similar triangles with bases $50m$ and b m.	3.	•
		$\frac{b}{h} = \frac{50}{8} \text{or} b = \frac{50}{8} h$	1 A	
		$\frac{1}{2}b = h = 20 = 1759$	1M]
		$\frac{20}{2} \frac{50}{8} h^2 = 1759$	1M	$\left(\begin{array}{c} \frac{h}{8} \right)^2 = \frac{1759}{4000}$
		h = 5.305 = 5.3 (correct to 1 d.p.)	1A 10	•
				•
		50		
		8 (2	·	· · · · · · · · · · · · · · · · · · ·

	`		IVE2 I VIC	I ED ka	即人什	09 CE Maths 1-0
		Solu	tion .		Marks	Remarks
12.	(a)	(i) Area of \triangle OAB	$= \frac{1}{2}(2)(2)\sin\theta = 2\sin\theta$	nθ cm² u-1	14	
		(ii) The area is gro	eatest when $\theta = \frac{\pi}{2} \approx$	1.57	1 A	90° not acceptable
	(b)	Area of sector OAB	$=\frac{1}{2}(2)^2\theta = 2\theta \text{ (cm}^2)$		1A	
		$2\theta - 2\sin\theta = 2$	2(-)	plimal.	ım .	
		$\theta - \sin \theta - 1 =$	0		·	
					$\frac{1A}{3}$	
	(c)	f(0) = 0 - 0 - 1 < 0	r)		For sub. f(0), f(3)
_		$f(3) = 3 - \sin 3 - 1$	(=1.859) Z O)	1M	Accept graphical method
		· 0 < \alpha < 3	Muray: 1A 5 ~	ot fiven.	1A 2	
		omitted no	/ A			
	(d)	Interval	Mid-value θ	f(0)		
					1261.14	lM Testing of sign at mid-value of suitable
		0 < \alpha < 3	1.5	- '	1M+1A	interval IA Correct sign
		1.5 < ∝ < 3 1.5 < ∝ < 2.25	2.25	+	1M	Correct choice of sub- interval
		1.875 < \(< \ 2.25 1.875 < \(< \ < 2.063	1.875 (1.88) 2.063 (2.06)	+		
		1.875 < \(< \) 1.969 1.922 < \(< \) 1.969	1.969 (1.97) 1.922 (1.92)	+ -		wii .
_		1.922 \	1.946 (1.95)	+	1A	
		1.922 < ૡ < 1.946				
		We see that $<$ lies	petween 1.922 and 1	.946.		•
		\therefore \propto = 1.9 (correc	t to 1 d.p.)		1A 5	
		A 27	11/1/11/11/12			
		A				
		2 Cm				
			Ö			
			. /			•

	んこうしんじして 内部	义什	69 CE Maths 1-9
	Solution	Marks	Remarks
13. (a) Since p + q = 1,	1A	optional
	putting p = 3q		
	4q = 1		aly 8=4 1A.
	$q = \frac{1}{4}$	1A	
		1A 2	
(b) (1) The probability that the first ball drawn is		*
	black is $\frac{n}{10}$.	1A	
	After a black ball has been drawn, the probabilit	· ·	
	of drawing a second black ball is $\frac{n-1}{9}$.	1A	
	the probability that both balls are black		n n-1
	$=\frac{n}{10}\times\frac{n-1}{9}$	1M	10 × g 14+14+14
	$=\frac{n(n-1)}{90}$		10 × 9 14+14+114 10 × 10 14+114 wrong
	(ii) $\frac{n(n-1)}{90} > \frac{1}{3}$	1M	wrong
,	$3n^2 - 3n - 90 > 0$	1A	
	$n^2 - n - 30 > 0$		91
	(n-6)(n+5) > 0		
	n > 6 or n < -5	1A	Accept n > 6 with whit
	As n is integral and positive, $n = 7$, 8, 9 or 10.	<u>1</u> A	HZ
_	•	7	ly lesting n= 7.8.1.10 3.A
(c)	The probability that the first ball drawn is red		all connect
	and the second is also red = $\frac{1}{2} \times \frac{4}{6} \left(= \frac{1}{3} \right)$.	1 A	
	The probability that the first is green and the		·
	second is red = $\frac{1}{2} \times \frac{3}{6} \left(= \frac{1}{4} \right)$.	1 A	
	the probability that the ball drawn from N		
	is red = $\frac{1}{3} + \frac{1}{4} = \frac{7}{12}$.	1A 3	
	only explained pp-		,
	•		

	Solution	Marks	Remarks
14.		1A	1A for each line
(a).		+ 1A	±1 horizontal/
		+	vertical unit at
	100	1A	(100, 0),(0, 100); (20, 0),(60, 80);
			(0, 20), (100, 20)
	86		
	THE GEORGE STATES AND		
		1A	Region
	60		
) _j
	y Po	4	
	39,201		
			3
	50 50 100 100		
		,	
	1.x+u=0		
		,	0 .
_	(b) (i) $z = 100 - x - y$, 1A	<u> </u>
	(ii) Cost of mixture = $6x + 5y + 4z$	1A	
	= 6x + 5y + 4(100 - x - y)		
	= 2x + y + 400 dollars	1A	
	$(iii)400x + 600y + 400z \ge 44 000$	1A	,
	$800x + 200y + 4002 \ge 48000$	1A-	
	Putting $z=100-x-y$, $y \ge 20$		
	2x-y > 40		
			or hat extiniple.
	Further, (as $z \ge 0$, $100 - x - y \ge 0$) $x + y \le 100$	1A	of heart of
	(iv) Drawing the line $2x + y = 0$ in the figure,	1M	Any line.
	wrong line at.		Costs at (30,20),
	the least cost is attained when $x = 30$, $y = 20$.		$(80,20),(\frac{140}{3},\frac{160}{3})$
	x = 30, y = 20, z = 50	1A	
		: {	are 480, 580 and 546.7 (Any point)
		8	
		1	