Лабораторная работа 3(Б)

Определение коэффициента вязкости жидкостей по методу Стокса

<u>Цель работы:</u> экспериментальное определение коэффициента вязкости жидкостей метолом Стокса.

<u>В теоретическом введении</u> к работе самостоятельно разобрать и законспектировать следующие вопросы:

- 1. Внутреннее трение жидкости и газа. Природа силы внутреннего трения.
- 2. Формула Ньютона для силы вязкости:

$$F = \eta S \frac{\Delta V}{\Delta x}.\tag{1}$$

- 3. Ламинарное и турбулентное течение жидкости. Число Рейнольдса (Re).
- 4. Движение тел в жидкости и газах. Силы трения и лобового сопротивления. Подъемная сила.
- 5. Формула Стокса сила сопротивления движению шарика в жидкостях при малых значениях Re.

$$F = 6\pi \eta r V F = 6\pi \eta r V = 3\pi \eta dV .. \tag{2}$$

Описание установки

Экспериментальная установка для определения коэффициента внутреннего трения по методу Стокса, представляет собой два стеклянных цилиндрических сосуда 1 (рис. 1), наполненных жидкостями разной вязкости. На вертикальной стойке 2, расположенной между сосудами, смонтированы два подвижных указателя 3 и 4, расстояние между которыми L измеряется по линейке 5.

Для каждой жидкости проводят серию опытов. В сосуд через пробку 6 опускают поочередно пять небольших шариков, плотность которых \Box больше плотности жидкости \Box Диаметры шариков предварительно измеряют с помощью микрометра. Расстояние между поверхностью жидкости и верхним указателем 3 подбирают так, чтобы на этом участке скорость шарика стабилизировалась, при этом на участке L между указателями 3 и 4 движение шарика будет равномерным.

В опыте измеряют диаметр шариков микрометром, расстояние между указателями – линейкой и время движения каждого шарика на этом участке – секундомером. Температуру измеряют по комнатному термометру.

Рис. 1

При движении шарика в вязкой жидкости с постоянной скоростью V_0 на него будут действовать следующие силы (рис. 2): сила тяжести $F_{\text{тяж}} = \Box gV = F_1$, сила Архимеда $F_A = \Box gV = F_2$, сила Стокса $F_C = 3 \Box dV_0 \Box \Box \Box F_3$.

Рис. 2

Так как скорость шарика V_0 постоянна, то уравнение второго закона Ньютона в проекции на вертикальную ось можно записать в виде:

$$-F_1 + F_2 + F_3 = 0. (3)$$

Подставляя в (3) выражения для сил F_1 , F_2 , F_3 , а также учитывая, что объем шарика:

$$V = (1/6)\pi d^3, (4)$$

где: d — диаметр шарика, получаем выражение для коэффициента внутреннего трения жидкости:

$$\eta = (1/18)(\rho_1 - \rho_2)gd^2/V_0. \tag{5}$$

Установившуюся скорость движения шарика на участке L вычисляют по формуле:

$$V_0 = L/\tau$$

где: т— время движения шарика между указателями.

Окончательно формула для подсчета коэффициента внутреннего трения принимает вид:

$$\eta = (1/18)(\rho_1 - \rho_2)g\tau d^2/L.. \tag{6}$$

Порядок выполнения работы

- 1. Измерить диаметр шариков с помощью микрометра. Измерение каждого шарика повторить не менее трех раз, всякий раз поворачивая шарик (его форма может отличаться от сферической). Результаты измерений занести в табл. 1.
- 2. Определить температуру T воздуха в лаборатории, считая ее равной температуре жидкости. Включить подсветку сосудов.
- 3. Аккуратно через пробку 6 опустить шарик в сосуд.
- 4. Секундомером измерить время (\square прохождения шариком расстояния L между указателями 3 и 4. Следить, чтобы в моменты включения и выключения секундомера глаз наблюдателя располагался на уровне соответствующего указателя. Результаты измерения времени \square занести в табл. 2. Рассчитать среднее значение диаметра шарика.

Таблица 1

№ п/п	Измерение диаметра шарика					
	d_1 , mm	d_2 , mm	<i>d</i> ₃ , мм	$d_{ m cp}$, mm		
1						
2						
3						
4						
5						

				Таблица 2	Расстояние Л	L = [MM]	
		№ шарика					
		1	2	3	4	5	
Жидкость 1	τ (c)						
	η (Πa · c)						
Жидкость 2	τ (c)						
	η (Πa · c)						

5. Проделать подобный эксперимент для второй жидкости.

Обработка результатов измерений

- 1. По формуле (6) рассчитать коэффициент внутреннего трения жидкости для каждого опыта.
- 2. Определить среднее значение коэффициента внутреннего трения $\overline{\eta}$ для каждой жидкости.
- 3. Рассчитать погрешность измерения коэффициента вязкости
- 4. Окончательный результат представить в виде $\boxed{ }$ $\boxed{ }$ $\boxed{ }$ \uparrow $\boxed{ }$ \uparrow $\boxed{ }$

Плотность веществ

Вещество	Плотность, кг/м ³		
Свинец	$11.3 \cdot 10^3$		
Водный раствор глицерина	$1.26 \cdot 10^3$		
Касторовое масло	$0.9 \cdot 10^{3}$		