Team Name: Example

Your Task

Assemble a circuit using the materials in front of you, **carbon paint and copper tape**, that follows the following constraints.

1. The circuit must light up exactly 2 LEDs

- 2. The circuit path must cover at least 20 squares of distance
- 3. You need to generate 1 mW of power @ 9 V
- 4. The circuit must fit within the board
- 5. You do not get any more materials

Your goal is to create a circuit that satisfies the constraints while having the least carbon cost.

Embodied Carbon

Choose one from the following:

1. Processing - Converting raw materials into a form you can work with

- 2. Manufacturing Turning processed materials into the final product
- 3. <u>Distribution</u> *Transporting materials from the factory to the user*

Materials Extraction

Material	Length (squares)	Cost (g/in.)	Subtotal
Carbon Paint	<u>20</u> sq.	6.5 g/sq.	<u>130</u> <i>g</i> CO₂e
Copper Tape	<u>0</u> sq.	50 g/sq.	<u>0</u> <i>g</i> CO₂e
Total Cost			<u>130</u> <i>g</i> CO₂e

Disposal – Estimated to be 20 g CO₂e

Embodied Carbon – Carbon Paint: $\underline{130} g \text{ CO}_2 e$

Embodied Carbon – Copper Tape: <u>0</u> *g* CO₂e

Operational Carbon $-0.45 * 9 V_{battery} * 550 mAh_{battery} = 2227.5 g CO_2e$

<u>Total Carbon Cost</u> = ($C_{embodied}$ + $C_{operational}$) = <u>2357.5</u> g CO₂e