Informatik.Softwaresysteme Vorlesung - Übung - Praktikum

IT-Sicherheit und Datenschutz

Zusammenfassung der Vorlseung

 $Sommersemester:\ 2019$

Student:

 ${\bf Steffen\ Holtkamp}$ ${\bf Matrikelnummer:\ 2016xxxxx}$

Westfälische Hochschule - Bocholt Prof. G. Kroesen Münsterstraße 265 46397 Bocholt

Zusammenfassung der Vorlseung

In halts verzeichn is

Inhaltsverzeichnis

Abbild	ungsverzeichnis	II
Tabelle	enverzeichnis	III
Listing	js S	IV
1	Einleitung	1
1.1	Beschreibung	1
2	Vorlesung 1	1
2.1	Gruppen	1
2.2	Diffi-Hellmann	3
2.3	Gruppendarstellung und Untergruppen	3
2.4	Generatorpolynom	4

Abbildungs verzeichnis

Abbildungsverzeichnis

Zusammenfassung der Vorlseung

Tabel lenverzeichnis

Tabellenverzeichnis

1	Diffi-Hellmann - Schlüsselvereinbarung	3
2	abstracte Menge mit 3 Elementen	3
3	Menge 3 mit Zahlen	3
6	Generatorpolynom	4
4	XOR Menge 4	4
5	Untergruppe Menge 2	4

Listings

Listings

1 Einleitung

1.1 Beschreibung

IT-Sicherheit und Datenschutz

2 Vorlesung 1

Montag: 08.April 2019

2.1 Gruppen

Damit wir eine Gruppe bilden können, müssen folgende drei Regeln erfüllt werden.

$$a * (b * c) = (a * b) * c \tag{1}$$

$$id * a = a \tag{2}$$

$$a^{-1} * a = id \tag{3}$$

Dabei sei M eine Menge, in der IT endlich und * eine Operation zwischen zwei Elementen der Menge M. Man beachte, dass eine Gruppe nur das Kommutativ Gesetz erfüllt.

Des weiteren gilt in den betrachteten Gruppen:

$$a * id = id * a = a \tag{4}$$

da,

$$a * id = a * (a^{-1} * a) (5)$$

$$= (a * a^{-1}) * a (6)$$

(7)

Zusammenfassung der Vorlseung

W

2 Vorlesung 1

und

$$a * id = id * a = a \tag{8}$$

$$a = id * a | erweitert mita^{-1}$$
 (9)

$$a * a^{-1} = id * a^{-1} | mit(c * a^{-1} = id)$$
 (10)

$$= (c * a^{-1}) * (a * a^{-1})$$
(11)

$$= ((c*a^{-1})*a)*a^{-1}$$
(12)

$$= (c * (a^{-1} * a)) * a^{-1}$$
(13)

$$= (c*(id))*a^{-1}|idisteinneutralesElement$$
 (14)

$$= c * a^{-1} | mitc * a^{-1} = id$$
 (15)

$$= id$$
 (16)

(17)

Sei # die Menge der Elemente in \mathbb{M} . # wird auch als Leiterchen bezeichnet.

Sei $a^m = a^n$, dann ist die kleinst mögliche differenz zwischen den beiden k und es gilt.

$$a^m = a^n (18)$$

$$a^{m+k} = a^n (19)$$

$$a^m * a^k = a^n \tag{20}$$

$$=>a^k=id\tag{21}$$

Sei a * b = a * c ist b = c

Es gibt die Menge $\mathbb{M} = \{id, b_1, b_2, ..., b_{\#-1}\}$ und die Menge $\mathbb{M}_0 = \{id, a, a^2, a^3, ..., a^{k-1}\}$ in der es keine Dubletten gibt, das die erste Dublette $id = a^k$ wäre.

Wenn man nun neue Mengen bildet aus \mathbb{M} und \mathbb{M}_0 gibt es # viele Mengen. Enthält eine Menge nur ein Element, dass auch in einer anderen Menge vorkommt, so sind beide Mengen identisch.

Darauß ergibt sich, dass

$$n * k = \# \tag{22}$$

$$a^{\#} = a^{kn} = (a^k)^n = id^n = id \tag{23}$$

2.2 Diffi-Hellmann

	Alice	Bob
	M, *, #	M, *,#
	$g \in \mathbb{M}$	$g\in\mathbb{M}$
private Key	1 < x < #	1 <y <#<="" th=""></y>
public Key	g^x	g^y
Schlüsselvereinbarung	g^y	g^x
	$(g^y)^x$	$(g^x)^y$

Tabelle 1: Diffi-Hellmann - Schlüsselvereinbarung

Dabei muss # muss genau bekannt sein. g ist ein öffentliches Generatorpolynom. Und die Gruppe hat meist zwischen 2^{200} bis 2^{500} Werte.

Wenn man einen Text verschlüsselt, wird jedes Zeichen des Textes verschlüsselt und übertragen in der Form $c_i g^{x_i y_i}$ und dann mit Hilfe des inversen entschlüsselt: $c_i g^{x_i y_i} * g^{-x_i y_i} = c_i$

Das inverse ist einfach $g^{\#-x}$.

Einschub: Es git eine Angriffsform die die Laufzeit untersucht, um anhand der Laufzeit und geschätzten Anzahl an Operationen Rückschlüsse auf den Verschlüsselungsalgorithmus zu machen.

2.3 Gruppendarstellung und Untergruppen

Man kann eine Menge $\mathbb{M} = \{id, a, b\}$ als Tabelle aufschreiben.

*	id	a	b
id	id	a	b
a	a	b	id
b	b	id	a

Tabelle 2: abstracte Menge mit 3 Elementen

Mann kann auch einfach die + Operation mod 3 in einer solchen Tabelle aufschreiben. Das wichtige ist, dass in einer Spalte und einer Zeile, jedes Element der Menge M nur einmal vorkommen darf.

$+ \mod 3$	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

Tabelle 3: Menge 3 mit Zahlen

2 Vorlesung 1

Wenn man beide Tabellen vergleicht stellt man fest, dass sie isomorph sind. Das bedeutet, dass man einfach id = 0, a = 1 und b = 2 definieren kann und feststellt, dass die abstrakte Tabelle gleich der 3-Addition ist.

Des weiteren gilt, dass alle Gruppen die eine Größe # haben, die eine Primzahl sind haben genau eine Gruppe und besitzen keine Untergruppen. Daher sind alle Gruppen, die die selbe Größe # haben und diese Größe eine Primzahl ist isomorph.

Untergruppen entstehen wenn # keine Primzahl ist und so # einen Teiler hat. Jeder Teiler der durch Primfaktorzerlegung entsteht ist eine eigene Gruppe.

XOR	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Tabelle 4: XOR Menge 4

Diese Menge hat die Untergruppe:

XOR	0	1
0	0	1
1	1	0

Tabelle 5: Untergruppe Menge 2

Untergruppen spielen eine wichtige Rolle bei der Wahl des Generatorpolynoms.

2.4 Generatorpolynom

Das Generatorpolynom g^x muss so gewählt werden, dass es eine möglichst große Teilmenge von \mathbb{M} abdeckt. Wenn es nur einen kleinen Bereich abdeckt ist es leicht zu knacken.

Beispiel: Sei die Primzahl 11 -> Rechnung mit mod 11

Vergleich von Generatorpolynomen:

	1	2	3	4	5	6	7	8	9	10
g=2	2	4	8	5	10	9	7	3	6	1
g=4	4	5	9	3	1					
g=10	10	1								

Tabelle 6: Generatorpolynom

Zusammenfassung der Vorlseung

2 Vorlesung 1

Man erkennt wenn man mit g=2 rechnet, dass man alle Elemente des Körpers durchgeht, bevor man auf das neutrale Element, die 1 stößt. Wenn man g=4 nimmt, dann werden nur noch 5 Elemente der Menge genutzt. Wenn man g=10 nutzt werden sogar nur 2 Elemente genutzt. Je weniger unterschiedliche Elemente genommen werden, desto einfacher ist es herauszubekommen welchen Wert x hat, sprich was der private Key ist.