PREPARATION A L'ORAL DE TP

PSI - PSI★

MODELISATION DU CONTROL'X

Compétences Visées :

- Analyser un système pluritechnologique.
- Réaliser et valider un modèle.
- Réaliser la correction du système.
- Caractériser les écarts entre le besoin du client, les résultats expérimentaux et les résultats de la simulation.

1 CONTEXTE INDUSTRIEL

Les systèmes de manutentions industrielles prennent différentes formes : robots à bras, convoyeurs à bandes, robots cartésiens, chariots autonomes, etc. Schneider propose différents portiques qui par l'association d'axes numériques permet d'obtenir des solutions performantes.

Le Control X est un axe complet qui peut être asservi avec différents capteurs. Cet axe est un démonstrateur qui permet de valider un axe numérique en vue de concevoir un portique complet.

Objectif: Dans le but de déplacer des objets entre deux points, on cherche à optimiser les réglages du Control'X afin de satisfaire le cahier des charges. Pour cela, on demande :

- 1. d'établir un modèle fiable du système ;
- 2. de proposer un correcteur pour satisfaire le cahier des charges grâce au modèle puis d'implanter ce correcteur.

2 DECOUVRIR LE SYSTEME

Activité 1. Mettre en œuvre le système en utilisant la fiche 3. Pour cela ouvrir le fichier Commande_en_BF_seule.slx (situé dans le dossier Control_X_PSI) situé sur le bureau. Le cahier des charges est-il validé ? (On traitera des exigences 1.4, 1.3.2 et 1.2.3).

Activité 2. Réaliser la chaîne fonctionnelle du système. Proposer un schéma bloc du système.

Prénaration Ranaue PT

3 MODELISATION DU SYSTEME

3.1 Modélisation linéaire en Boucle Ouverte

Ouvrir le fichier *Commande_et_Modele.slx*.

- Activité 3. Lancer une expérimentation/simulation. Qu'observez-vous ?
- **Activité 4.** Expliquer l'intérêt d'identifier le comportement du système en boucle ouverte ? Quelle est la nature du signal de commande ? la nature du signal mesuré ?
- Activité 5. Expliquer le choix d'utiliser un système d'ordre 1 suivi d'un intégrateur pour réaliser l'identification ?
- **Activité 6.** Identifier les caractéristiques du premier ordre en précisant votre méthode (utiliser l'annexe des transformées de Laplace usuelles).

3.2 Modélisation des non linéarités.

Pour modifier le schéma bloc vous aurez éventuellement besoin des blocs situés dans le fichier Bibliotheque PT.slx.

- **Activité 7.** En utilisant la documentation (Fiche 4), donner une méthode pour modéliser la saturation en tension de la commande du moteur. Mettre en œuvre cette modélisation.
- **Activité 8.** Proposer en protocole expérimental pour déterminer globalement les frottements secs. Mettre en œuvre ce protocole. Modéliser ensuite le frottement **sec.**

3.3 Modélisation en boucle fermée

- **Activité 9.** Réaliser le bouclage de l'asservissement. Définir la grandeur d'entrée et la grandeur de sortie. Définir le plus grand déplacement possible pour ne pas dépasser le régime saturé.
- Activité 10. Sur un échelon de 50 mm, comparer les performances du système et les résultats de la simulation.
- Activité 11. Conclure sur la validité du modèle.

4 INFLUENCE DU CORRECTEUR PROPORTIONNEL

- Activité 12. Sur un échelon de 50 mm, faire évoluer le gain proportionnel de 0,1 à 5. Qu'observez-vous ?
- Activité 13. Proposer une méthode pour choisir un gain permettant de répondre au cahier des charges.

5 SYNTHESE

- **Activité 14.** Au vu des activités proposées, un gain proportionnel permet-il la satisfaction du cahier des charges ? Si non, proposer (et mettre en œuvre, si le temps le permet) une démarche permettant de corriger le système.
- **Activité 15.** Réaliser sous forme de poster une synthèse des activités réalisées lors de ce TP. Attention, il ne s'agit pas d'un résumé, mais d'une synthèse globale!

6 ANNEXES: TRANSFORMEE DE LAPLACE USUELLES

f(t)	F(p)	f(t)	F(p)
δ(t)	1	$K\left(t-\tau+\tau e^{-\frac{t}{\tau}}\right).u(t)$	$\frac{K}{p^2(1+\tau p)}$
K.u(t)	<u>K</u> p	sin ωt	$\frac{\omega}{\left(p^2+\omega^2\right)}$
K.t.u(t)	$\frac{K}{p^2}$	cosωt	$\frac{p}{(p^2 + \omega^2)}$
t n	$\frac{n!}{p^{n+1}}$	$e^{-at} \sin \omega t$	$\frac{\omega}{(p+a)^2+\omega^2}$
e ^{-at}	$\frac{1}{p+a}$	$e^{-at}\cos\omega t$	$\frac{p+a}{(p+a)^2+\omega^2}$

Prénaration Ranque PT