Motivation

Chapter 4: Least Squares

Liangda Fang

Dept. of Computer Science Jinan University

Conclusions

Liangda Fang 1/73

QR Factorization

• In Chapter 2, we study how to solve a linear equation.

Liangda Fang 2/73

QR Factorization

Motivation

- In Chapter 2, we study how to solve a linear equation.
- What to do if the equation is inconsistent?
- For example,

$$x_1 + x_2 = 2$$

$$x_1 - x_2 = 1$$

$$x_1 + x_2 = 3.$$

Liangda Fang 2/ 73

- Motivation
- Least squares and the normal equations
 - Inconsistent systems of equations
 - Fitting models to data
- A Survey of Models
 - Periodic data
 - Data linearization
- QR Factorization
 - Conditioning of least squares
 - Gram-Schmidt orthogonalization and least squares
 - Householder reflectors
- Conclusions

Liangda Fang 3/73

Outline

- Least squares and the normal equations
 - Inconsistent systems of equations
 - Fitting models to data
- - Periodic data
 - Data linearization
- - Conditioning of least squares
 - Gram-Schmidt orthogonalization and least squares
 - Householder reflectors

Liangda Fang 4/73

$$x_1 + x_2 = 2$$

 $x_1 - x_2 = 1$
 $x_1 + x_2 = 3$.

- The above linear equation is inconsistent.
- We can find a vector \bar{x} that comes the closest to being a solution.

Liangda Fang 5/73

$$x_1 + x_2 = 2$$

 $x_1 - x_2 = 1$
 $x_1 + x_2 = 3$.

- The above linear equation is inconsistent.
- \bullet We can find a vector \overline{x} that comes the closest to being a solution.
- Question: How to define the vector \bar{x} ?

Liangda Fang 5/ 73

Motivation

The matrix form of the inconsistent system is as follows:

$$x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

Liangda Fang 6/73

Least squares and the normal equations

The matrix form of the inconsistent system is as follows:

$$x_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}.$$

Any $m \times n$ system Ax = b can be viewed as a vector equation

$$x_1v_1 + x_2v_2 + \cdots + x_nv_n = b.$$

b is a linear combination of the columns v_i of A, with coefficients x_1, \ldots, x_n .

Liangda Fang 6/73

- $v_1x_1 + v_2x_2$ forms a plane inside R^3 ;
- b is out of the plane;
- There is no solution satisfying $v_1x_1 + v_2x_2 = b$;
- A special vector \bar{x} in the plane $v_1x_1 + v_2x_2$ is closest to b;
- $b v_1 \bar{x}_1 v_2 \bar{x}_2$ is perpendicular to the plane $v_1 x_1 + v_2 x_2$.

Liangda Fang 7/73

- A: a $m \times n$ matrix A:
- *b*: *m*-dimensional vector;
- The least squares solution \bar{x} satisfies $(b A\bar{x}) \perp \{Ax \mid x \in \mathbb{R}^n\}$.

Liangda Fang 8/73

Least squares and the normal equations

Liangda Fang 9/73

Motivation

$$(Ax)^{\top}(b - A\bar{x}) = 0 \text{ for all } x \in \mathbb{R}^n;$$

Liangda Fang 9/73

$$(Ax)^{\top}(b - A\bar{x}) = 0 \text{ for all } x \in \mathbb{R}^n;$$

Liangda Fang 9/73

Motivation

- $(Ax)^{\top}(b A\bar{x}) = 0 \text{ for all } x \in \mathbb{R}^n;$
- **1** The vector $A^{\top}(b A\bar{x})$ is perpendicular to every vector $x \in \mathbb{R}^n$;

9/73 Liangda Fang

Motivation

- $(Ax)^{\top}(b A\bar{x}) = 0 \text{ for all } x \in \mathbb{R}^n;$
- **1** The vector $A^{\top}(b-A\bar{x})$ is perpendicular to every vector $x \in \mathbb{R}^n$;
- **6** $A^{\top}(b A\bar{x}) = 0;$

Liangda Fang 9/73

- $(Ax)^{\top}(b A\bar{x}) = 0 \text{ for all } x \in \mathbb{R}^n;$
- **1** The vector $A^{\top}(b A\bar{x})$ is perpendicular to every vector $x \in \mathbb{R}^n$;
- **6** $A^{\top}(b A\bar{x}) = 0;$
- **6** Reduce obtaining the least squares solution to Ax = b to solving the equation $A^{\top}A\bar{x} = A^{\top}b$;
- **1** $A^{\top}A\bar{x} = A^{\top}b$ is called the **normal equations** of Ax = b.

Liangda Fang 9/ 73

Theorem

Motivation

Let A be a $m \times n$ matrix and b m-dimensional vector. Let \bar{x} be the solution of $A^{\top}Ax = A^{\top}b$. Then, the minimum value of $\|Ax - b\|_2$ is achieved when $x = \bar{x}$.

Liangda Fang 10/73

Example

$$\bullet \ \ A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \ \text{and} \ \ b = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix};$$

$$\bullet \ A^{\top}A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix};$$

$$\bullet \ A^{\top}b = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix};$$

- ullet The normal equation is $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$;
- $\bullet \ \bar{x} = \begin{bmatrix} \frac{7}{4} & \frac{3}{4} \end{bmatrix}^{\top}.$

Liangda Fang

Example

Motivation

$$\bullet \ \ A\bar{x} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{7}{4} \\ \frac{3}{4} \end{bmatrix} = \begin{bmatrix} 2.5 \\ 1 \\ 2.5 \end{bmatrix} \neq \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$$

• The residual:
$$r=d-A\bar{x}=\begin{bmatrix}2\\1\\3\end{bmatrix}-\begin{bmatrix}2.5\\1\\2.5\end{bmatrix}=\begin{bmatrix}-0.5\\0\\0.5\end{bmatrix}$$

Liangda Fang 12/73 Motivation

Three ways to express the size of residual

- **1** 2-norm: $||r||_2 = \sqrt{r_1^2 + \dots + r_m^2}$;
- 2 The squared error (SE): $r_1^2 + \cdots + r_m^2$;
- **3** The root mean squared error (RMSE): $\sqrt{\frac{r_1^2+\cdots+r_m^2}{m}}=\frac{\|r\|_2}{\sqrt{m}}$.

Liangda Fang

Three ways to express the size of residual

- **1** 2-norm: $||r||_2 = \sqrt{r_1^2 + \dots + r_m^2}$;
- 2 The squared error (SE): $r_1^2 + \cdots + r_m^2$;
- **3** The root mean squared error (RMSE): $\sqrt{\frac{r_1^2+\cdots+r_m^2}{m}}=\frac{\|r\|_2}{\sqrt{m}}$.

Example

2 SE:
$$0.5^2 + 0^2 + (-0.5)^2 = 0.5$$
;

3 RMSE:
$$\sqrt{\frac{0.5^2+0^2+(-0.5)^2}{3}} = \frac{1}{\sqrt{6}} \approx 0.408.$$

Liangda Fang

Motivation

• Remind that the problem which Chapter 3 focuses on.

Liangda Fang 14/73

Fitting models to data

- Remind that the problem which Chapter 3 focuses on.
- How to generate a polynomial given data points?

Liangda Fang

Motivation

- Remind that the problem which Chapter 3 focuses on.
- How to generate a polynomial given data points?
- Generally, given n points, a degree n-1 polynomial is generated.

Liangda Fang 14/73

Fitting models to data

- Remind that the problem which Chapter 3 focuses on.
- How to generate a polynomial given data points?
- Generally, given n points, a degree n-1 polynomial is generated.
- Actually, we hope that the function is simpler, e.g., $c_0 + c_1 x$, $c_0 + c_1 x + c_2 x^2$, $c_0 + c_1 \sin(x) + c_2 \cos(x)$.

4 □ > 4 □

Liangda Fang 14/73

QR Factorization

Example

Find the best line for the four data points (-1,1), (0,0), (1,0), (2,-2).

1 Choose the function $c_0 + c_1 x$;

Least squares and the normal equations

- Force the model to fit the data yields $\begin{bmatrix} 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -2 \end{bmatrix};$
- **3** The normal equations are $\begin{bmatrix} 4 & 2 \\ 2 & 6 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$;
- $y = c_0 + c_1 x = 0.2 0.9x$ is the best line.

Liangda Fang 15/73

Example

Motivation

The residuals are

X	у	line	error
-1	1	1.1	-0.1
0	0	0.2	-0.2
1	0	-0.7	0.7
2	-2	-1.6	-0.4

2 SE:
$$(-0.1)^2 + (-0.2)^2 + 0.7^2 + (-0.4)^2 = 0.7$$
;

3 RMSE:
$$\sqrt{\frac{0.7}{4}} \approx 0.418$$
.

Liangda Fang

Fitting models to data

Example

Find the best parabola for the four data points (-1,1),(0,0),(1,0),(2,-2).

1 Choose the function $c_0 + c_1 x + c_2 x^2$;

Least squares and the normal equations

- Force the model to fit the data yields $\begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix};$
- 3 The normal equations are $\begin{bmatrix} 4 & 2 & 6 \\ 2 & 6 & 8 \\ c & 9 & 19 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c \end{bmatrix} = \begin{bmatrix} -1 \\ -5 \\ 7 \end{bmatrix};$
- $y = c_0 + c_1 x + c_2 x^2 = 0.45 0.65x 0.25x^2$ is the best parabola.

Liangda Fang 17/73

QR Factorization

Fitting models to data

Least squares and the normal equations

Example

The residuals are

ſ	Х	у	line	error
	-1	1	0.85	0.15
	0	0	0.45	-0.45
	1	0	-0.45	0.45
	2	-2	-1.85	-0.15

- **2** SE: $0.15^2 + (-0.45)^2 + 0.45^2 + (-0.15)^2 = 0.45 < 0.7$ (SE of 0.2 - 0.9x):
- **3** RMSE: $\sqrt{\frac{0.45}{4}} \approx 0.335 < 0.418$ (RMSE of 0.2 0.9x).

Liangda Fang 18/73

Outline

- - Inconsistent systems of equations
 - Fitting models to data
- A Survey of Models
 - Periodic data
 - Data linearization
- - Conditioning of least squares
 - Gram-Schmidt orthogonalization and least squares
 - Householder reflectors

Liangda Fang 19/73

- The sampling data may be sometimes periodic, e.g., the daily or yearly temperatures in a city.
- But the polynomial is not a periodic function.
- We need some periodic functions, e.g., sine and cosine functions.

Liangda Fang 20/73

Periodic data

Example

Fit the recorded temperatures in Washing, D.C., on Jan. 1, 2001 as listed in the following table, to a periodic model:

time of day	у	temp(C)
0:00	0	-2.2
3:00	$\frac{1}{8}$	-2.8
6:00	$\frac{1}{4}$	-6.1
9:00	$\frac{3}{8}$	-3.9
12:00	$\frac{1}{2}$	0.0
15:00	$\frac{5}{8}$	1.1
18:00	1 84 43 84 25 83 47 8	-0.6
21:00	$\frac{7}{8}$	-1.1

Liangda Fang 21/73

QR Factorization

Periodic data

Example

Firstly, we choose the model $y = c_1 + c_2 \cos 2\pi t + c_3 \sin 2\pi t$, and substitute the date into the model.

Least squares and the normal equations

$$c_1 + c_2 \cos 2\pi(0) + c_3 \sin 2\pi(0) = -2.2$$

$$c_1 + c_2 \cos 2\pi(\frac{1}{8}) + c_3 \sin 2\pi(\frac{1}{8}) = -2.8$$

$$c_1 + c_2 \cos 2\pi(\frac{1}{4}) + c_3 \sin 2\pi(\frac{1}{4}) = -6.1$$

$$c_1 + c_2 \cos 2\pi(\frac{3}{8}) + c_3 \sin 2\pi(\frac{3}{8}) = -3.9$$

$$c_1 + c_2 \cos 2\pi(\frac{1}{2}) + c_3 \sin 2\pi(\frac{1}{2}) = 0.0$$

$$c_1 + c_2 \cos 2\pi(\frac{5}{8}) + c_3 \sin 2\pi(\frac{5}{8}) = 1.1$$

$$c_1 + c_2 \cos 2\pi(\frac{3}{4}) + c_3 \sin 2\pi(\frac{3}{4}) = -0.6$$

$$c_1 + c_2 \cos 2\pi(\frac{7}{8}) + c_3 \sin 2\pi(\frac{7}{8}) = -1.1$$

Liangda Fang

Motivation

Example

Liangda Fang

We get the inconsistent equation Ax = b where

$$A = \begin{bmatrix} 1 & \cos 0 & \sin 0 \\ 1 & \cos \frac{\pi}{4} & \sin \frac{\pi}{4} \\ 1 & \cos \frac{\pi}{2} & \sin \frac{\pi}{2} \\ 1 & \cos \frac{3}{4}\pi & \sin \frac{3}{4}\pi \\ 1 & \cos \pi & \sin \pi \\ 1 & \cos \frac{5}{4}\pi & \sin \frac{5}{4}\pi \\ 1 & \cos \frac{3}{2}\pi & \sin \frac{5}{2}\pi \\ 1 & \cos \frac{7}{4}\pi & \sin \frac{7}{4}\pi \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 1 & 0 & 1 \\ 1 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 1 & -1 & 0 \\ 1 & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ 1 & 0 & -1 \\ 1 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{bmatrix}$$

and
$$b = \begin{bmatrix} -2.2 \\ -2.8 \\ -6.1 \\ -3.9 \\ 0.0 \\ 1.1 \\ -0.6 \\ 1.1 \end{bmatrix}$$

23/ 73

Motivation

Example

ullet The normal equations $A^{\top}Ac=A^{\top}b$ are

$$\begin{bmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -15.6 \\ -2.9778 \\ -10.2376 \end{bmatrix};$$

Liangda Fang 24/73

Periodic data

Example

• The normal equations $A^{\top}Ac = A^{\top}b$ are

$$\begin{bmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -15.6 \\ -2.9778 \\ -10.2376 \end{bmatrix};$$

•
$$c = \begin{bmatrix} -1.95 & -0.7445 & -2.5594 \end{bmatrix}^{\mathsf{T}};$$

Liangda Fang 24/73

Liangda Fang

Periodic data

Example

 \bullet The normal equations $A^\top A \, c = A^\top b$ are

$$\begin{bmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -15.6 \\ -2.9778 \\ -10.2376 \end{bmatrix};$$

- $c = \begin{bmatrix} -1.95 & -0.7445 & -2.5594 \end{bmatrix}^{\mathsf{T}};$
- The model: $y = -1.95 0.7445 \cos 2\pi t 2.5594 \sin 2\pi t$;

< □ ▷ < ② ▷ < 호 ▷ < 호 ▷ < 호 ▷ < 호 ▷ < 호 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ▷ < 조 ○ < 조 ▷ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조 ○ < 조

Periodic data

Example

 \bullet The normal equations $A^\top A \, c = A^\top b$ are

$$\begin{bmatrix} 8 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -15.6 \\ -2.9778 \\ -10.2376 \end{bmatrix};$$

- $c = \begin{bmatrix} -1.95 & -0.7445 & -2.5594 \end{bmatrix}^{\mathsf{T}};$
- The model: $y = -1.95 0.7445 \cos 2\pi t 2.5594 \sin 2\pi t$;
- The RMSE: 1.063.

Liangda Fang 24/73

Periodic data

Example

Now, consider the improved model
$$y = c_1 + c_2 \cos 2\pi t + c_3 \sin 2\pi t + c_4 \cos 4\pi t.$$

$$c_1 + c_2 \cos 2\pi (0) + c_3 \sin 2\pi (0) + c_4 \cos 4\pi (0) = -2.2$$

$$c_1 + c_2 \cos 2\pi (\frac{1}{8}) + c_3 \sin 2\pi (\frac{1}{8}) + c_4 \cos 4\pi (\frac{1}{8}) = -2.8$$

$$c_1 + c_2 \cos 2\pi (\frac{1}{4}) + c_3 \sin 2\pi (\frac{1}{4}) + c_4 \cos 4\pi (\frac{1}{4}) = -6.1$$

$$c_1 + c_2 \cos 2\pi (\frac{3}{8}) + c_3 \sin 2\pi (\frac{3}{8}) + c_4 \cos 4\pi (\frac{3}{8}) = -3.9$$

$$c_1 + c_2 \cos 2\pi (\frac{1}{2}) + c_3 \sin 2\pi (\frac{1}{2}) + c_4 \cos 4\pi (\frac{1}{2}) = 0.0$$

$$c_1 + c_2 \cos 2\pi (\frac{1}{2}) + c_3 \sin 2\pi (\frac{1}{2}) + c_4 \cos 4\pi (\frac{5}{8}) = 1.1$$

$$c_1 + c_2 \cos 2\pi (\frac{3}{4}) + c_3 \sin 2\pi (\frac{3}{4}) + c_4 \cos 4\pi (\frac{3}{4}) = -0.6$$

$$c_1 + c_2 \cos 2\pi (\frac{3}{4}) + c_3 \sin 2\pi (\frac{3}{4}) + c_4 \cos 4\pi (\frac{3}{4}) = -0.6$$

Liangda Fang

《四》《圖》《意》《意》

Periodic data

Example

 \bullet The normal equations $A^{\top}Ac=A^{\top}b$ are

$$\begin{bmatrix} 8 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} -15.6 \\ -2.9778 \\ -10.2376 \\ 4.5 \end{bmatrix};$$

Liangda Fang 26/73

Motivation

Example

• The normal equations $A^{\top}Ac = A^{\top}b$ are

$$\begin{bmatrix} 8 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} -15.6 \\ -2.9778 \\ -10.2376 \\ 4.5 \end{bmatrix};$$

Liangda Fang 26/73

Periodic data

Example

 \bullet The normal equations $A^{\top}Ac=A^{\top}b$ are

$$\begin{bmatrix} 8 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} -15.6 \\ -2.9778 \\ -10.2376 \\ 4.5 \end{bmatrix};$$

•
$$c = \begin{bmatrix} -1.95 & -0.7445 & -2.5594 & 1.125 \end{bmatrix}^{\mathsf{T}};$$

• The model:

$$y = -1.95 - 0.7445\cos 2\pi t - 2.5594\sin 2\pi t + 1.125\cos 4\pi t$$

Liangda Fang 26/73

Periodic data

Example

ullet The normal equations $A^{\top}Ac=A^{\top}b$ are

Least squares and the normal equations

$$\begin{bmatrix} 8 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} -15.6 \\ -2.9778 \\ -10.2376 \\ 4.5 \end{bmatrix};$$

- \bullet $c = \begin{bmatrix} -1.95 & -0.7445 & -2.5594 & 1.125 \end{bmatrix}^{\top}$;
- The model: $y = -1.95 - 0.7445\cos 2\pi t - 2.5594\sin 2\pi t + 1.125\cos 4\pi t$
- The RMSE: 0.705.
- This model is better than the last one since its RMSE is less than that of the latter.

Liangda Fang 26/73

Outline

- - Inconsistent systems of equations
 - Fitting models to data
- A Survey of Models
 - Periodic data
 - Data linearization
- - Conditioning of least squares
 - Gram-Schmidt orthogonalization and least squares
 - Householder reflectors

Liangda Fang 27/73

- Exponential growth is very popular.
- To describe the growth, we need the exponential model $y = c_1 e^{c_2(t-t_1)}$.
- The model cannot be directly fit by least squares because c_2 does not appear linearly in the model equation.
- We can linear this model as $\ln y = \ln(c_1 e^{c_2(t-t_1)}) = \ln c_1 + c_2(t-t_1).$

QR Factorization

Data linearization

Example

The number of transistors on Intel CPU since the early 1970s is given in the following table. Fit the model $y=c_1e^{c_2(t-1970)}$ to the data.

CPU	year	transistors
4004	1971	2,250
8008	1972	2,500
8080	1974	5,000
8086	1978	29,000
286	1982	120,000
386	1985	275,000
486	1989	1,180,000
Pentium	1993	3,100,000
Pentium II	1997	7,500,000
Pentium III	1999	24,000,000
Pentium 4	2000	42,000,000
Itanium	2002	220,000,000
Itanium 2	2003	410,000,000

Liangda Fang 29/73

Example

Substitute the date into the linearized model $c'_1 + c_2(t - 1970) = \ln y$ where $c'_1 = \ln c_1$:

$$c'_1 + c_2(1) = \ln 2250$$

$$c'_1 + c_2(2) = \ln 2500$$

$$c'_1 + c_2(4) = \ln 5000$$

$$c'_1 + c_2(8) = \ln 29000$$

$$\vdots$$

$$c'_1 + c_2(33) = \ln 410000000$$

Example

Motivation

We get the inconsistent equation Ax = b where

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 4 \\ 1 & 8 \end{bmatrix} \text{ and } b = \begin{bmatrix} \ln 2250 \\ \ln 2500 \\ \ln 5000 \\ \ln 29000 \\ \vdots \\ \ln 410000000 \end{bmatrix}$$

Example

Motivation

• The normal equations $A^{\top}Ac = A^{\top}b$ are

$$\begin{bmatrix} 13 & 235 \\ 235 & 5927 \end{bmatrix} = \begin{bmatrix} c_1' \\ c_2 \end{bmatrix} = \begin{bmatrix} 176.90 \\ 3793.23 \end{bmatrix};$$

Example

- The normal equations $A^{\top}Ac = A^{\top}b$ are $\begin{bmatrix} 13 & 235 \\ 235 & 5927 \end{bmatrix} = \begin{bmatrix} c_1' \\ c_2 \end{bmatrix} = \begin{bmatrix} 176.90 \\ 3793.23 \end{bmatrix};$
- $c_1' \approx 7.197$ and $c_2 \approx 0.3546$;
- $c_1 = e^{c_1'} \approx 1335.3$:

Example

- $c_1' \approx 7.197$ and $c_2 \approx 0.3546$;
- $c_1 = e^{c_1'} \approx 1335.3$;
- The model: $y = 1335.3e^{0.3546t}$;

Example

- The normal equations $A^{\top}Ac = A^{\top}b$ are $\begin{bmatrix} 13 & 235 \\ 235 & 5927 \end{bmatrix} = \begin{bmatrix} c_1' \\ c_2 \end{bmatrix} = \begin{bmatrix} 176.90 \\ 3793.23 \end{bmatrix};$
- $c_1' \approx 7.197$ and $c_2 \approx 0.3546$;
- $c_1 = e^{c_1'} \approx 1335.3$:
- The model: $y = 1335.3e^{0.3546t}$;
- The doubling time for the law is $\ln 2/c_2 \approx 1.95$ years;
- Gordon C. Moore, cofounder of Intel, predicted in 1965 that over the ensuing decade, computing power would double every 2 years.

Outline

Motivation

- - Inconsistent systems of equations
 - Fitting models to data
- - Periodic data
 - Data linearization
- QR Factorization
 - Conditioning of least squares
 - Gram-Schmidt orthogonalization and least squares
 - Householder reflectors

- The least squares problem of Ax = b reduces to solving the normal equation $A^{\top}Ax = A^{\top}b$.
- The condition number of $A^{\top}A$ may be too large.

Conditioning of least squares

- The least squares problem of Ax = b reduces to solving the normal equation $A^{\top}Ax = A^{\top}b$.
- The condition number of $A^{\top}A$ may be too large.

Example

- x_1, \ldots, x_{11} : equally spaced points in [2, 4];
- $\bullet \ y_i = 1 + x_i + x_i^2 + x_i^3 + x_i^4 + x_i^5 + x_i^6 + x_i^7 \ \text{for} \ 1 \le i \le 11;$
- Find the least squares polynomial $P(x) = c_0 + c_1 x + \cdots + c_7 x^7$ fitting the (x_i, y_i) ;

Conditioning of least squares

Example

• Substituting the data points into the model P(x) yields Ac = y as follows:

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^7 \\ 1 & x_2 & x_2^2 & \cdots & x_2^7 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{11} & x_{11}^2 & \cdots & x_{11}^7 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_7 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_1 1 \end{bmatrix}$$

• The condition number of $A^{\top}A$ is 1.4359×10^{19} ;

35 / 73

Conditioning of least squares

Example

• Substituting the data points into the model P(x) yields Ac = y as follows:

$$\begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^7 \\ 1 & x_2 & x_2^2 & \cdots & x_2^7 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{11} & x_{11}^2 & \cdots & x_{11}^7 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_7 \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_1 1 \end{bmatrix}$$

- The condition number of $A^{\top}A$ is 1.4359×10^{19} ;
- The correct least squares solution is $c_0 = \cdots = c_7 = 1$;
- The solution computed by Matlab is $c_0 = 1.5134, c_1 = -0.2644, c_2 = 2.3211, c_3 = 0.2408, c_4 =$ $1.2592, c_5 = 0.9474, c_6 = 1.0059, c_7 = 0.9997.$

Outline

Motivation

- - Inconsistent systems of equations
 - Fitting models to data
- - Periodic data
 - Data linearization
- **QR** Factorization
 - Conditioning of least squares
 - Gram-Schmidt orthogonalization and least squares
 - Householder reflectors

Liangda Fang

Least squares and the normal equations

• Given n linear independent vectors $\{A_1, \dots, A_n\}$;

- Generate a set $\{q_1, \dots, q_n\}$ of vectors satisfying:
 - **1** Each q_i is a unit vector: $||q_i||_2 = 1$ for $1 \le i \le n$;
 - The set are pairwise perpendicular: $q_i^{\top}q_i=0$ for $i\neq j$;
 - Two subspaces are equal: $(A_1, \dots, A_n) = (q_1, \dots, q_n)$.

37 / 73

 y_i : an auxiliary vector which is perpendicular to $q_1, \cdots q_{i-1}$.

 y_i : an auxiliary vector which is perpendicular to q_1, \dots, q_{i-1} .

1 Let
$$y_1 = A_1$$
;

 y_i : an auxiliary vector which is perpendicular to q_1, \dots, q_{i-1} .

- **1** Let $y_1 = A_1$;
- ② Normalize y_1 : $q_1 = \frac{y_1}{\|y_1\|_2}$, i.e., $q_1^\top q_1 = 1$;

 y_i : an auxiliary vector which is perpendicular to $q_1, \cdots q_{i-1}$.

- **1** Let $y_1 = A_1$:
- **2** Normalize y_1 : $q_1 = \frac{y_1}{\|y_1\|_2}$, i.e., $q_1^{\top} q_1 = 1$;
- **3** Acquire y_2 via orthogonalization: $y_2 = A_2 q_1 q_1^{\top} A_2$;

•
$$q_1^{\top} y_2 = q_1^{\top} (A_2 - q_1 q_1^{\top} A_2) = q_1^{\top} A_2 - q_1^{\top} A_2 = 0.$$

 y_i : an auxiliary vector which is perpendicular to $q_1, \cdots q_{i-1}$.

- **1** Let $y_1 = A_1$;
- **2** Normalize y_1 : $q_1 = \frac{y_1}{\|y_1\|_2}$, i.e., $q_1^{\top} q_1 = 1$;
- **3** Acquire y_2 via orthogonalization: $y_2 = A_2 q_1 q_1^{\top} A_2$;

•
$$q_1^{\top} y_2 = q_1^{\top} (A_2 - q_1 q_1^{\top} A_2) = q_1^{\top} A_2 - q_1^{\top} A_2 = 0.$$

1 Normalize y_2 : $q_2 = \frac{y_2}{\|y_2\|_2}$;

 y_i : an auxiliary vector which is perpendicular to $q_1, \cdots q_{i-1}$.

- **1** Let $y_1 = A_1$:
- **2** Normalize y_1 : $q_1 = \frac{y_1}{\|y_1\|_2}$, i.e., $q_1^{\top} q_1 = 1$;
- **3** Acquire y_2 via orthogonalization: $y_2 = A_2 q_1 q_1^{\top} A_2$;

•
$$q_1^{\top} y_2 = q_1^{\top} (A_2 - q_1 q_1^{\top} A_2) = q_1^{\top} A_2 - q_1^{\top} A_2 = 0.$$

- **4** Normalize y_2 : $q_2 = \frac{y_2}{\|y_2\|_2}$;
- **6**
- **6** Acquire y_i : $y_i = A_i q_1(q_1^{\top} A_i) \cdots q_{i-1}(q_{i-1}^{\top} A_i)$;

 y_i : an auxiliary vector which is perpendicular to $q_1, \cdots q_{i-1}$.

- **1** Let $y_1 = A_1$;
- **2** Normalize y_1 : $q_1 = \frac{y_1}{\|y_1\|_2}$, i.e., $q_1^{\top} q_1 = 1$;
- **3** Acquire y_2 via orthogonalization: $y_2 = A_2 q_1 q_1^{\top} A_2$;

•
$$q_1^{\top} y_2 = q_1^{\top} (A_2 - q_1 q_1^{\top} A_2) = q_1^{\top} A_2 - q_1^{\top} A_2 = 0.$$

- **4** Normalize y_2 : $q_2 = \frac{y_2}{\|y_2\|_2}$;
- 6
- **6** Acquire y_i : $y_i = A_i q_1(q_1^\top A_i) \cdots q_{i-1}(q_{i-1}^\top A_i)$;
- **1** Normalize y_j : $q_j = \frac{y_j}{\|y_i\|_2}$;

 y_i : an auxiliary vector which is perpendicular to $q_1, \cdots q_{i-1}$.

A Survey of Models

- **1** Let $y_1 = A_1$:
- **2** Normalize y_1 : $q_1 = \frac{y_1}{\|y_1\|_2}$, *i.e.*, $q_1^{\top} q_1 = 1$;
- **3** Acquire y_2 via orthogonalization: $y_2 = A_2 q_1 q_1^{\top} A_2$;

•
$$q_1^{\top} y_2 = q_1^{\top} (A_2 - q_1 q_1^{\top} A_2) = q_1^{\top} A_2 - q_1^{\top} A_2 = 0.$$

- **4** Normalize y_2 : $q_2 = \frac{y_2}{\|y_2\|_2}$;
- **6**

Motivation

- **6** Acquire y_i : $y_i = A_i q_1(q_1^{\top} A_i) \cdots q_{i-1}(q_{i-1}^{\top} A_i)$;
- **1** Normalize y_j : $q_j = \frac{y_j}{\|y_i\|_2}$;
- **1** Until q_n is computed.

Theorem

 q_i and q_j are perpendicular for $i \neq j$.

QR Factorization

Gram-Schmidt orthogonalization

Theorem

 q_i and q_j are perpendicular for $i \neq j$.

Proof.

- Assume that $i < j \le n$.
- It is sufficient to prove that $q_i^{\top} y_i = 0$.

Theorem

 q_i and q_i are perpendicular for $i \neq j$.

Proof.

- Assume that $i < j \le n$.
- It is sufficient to prove that $q_i^{\top} y_i = 0$.
- Base case (j=2): $q_1^{\top}y_2=0$.

Least squares and the normal equations

Theorem

 q_i and q_j are perpendicular for $i \neq j$.

Proof.

- Assume that $i < j \le n$.
- It is sufficient to prove that $q_i^{\top} y_i = 0$.
- Base case (j=2): $q_1^{\top}y_2=0$.
- Inductive step: assume that $q_i^\top y_l = 0$ for $i \neq l$ and i, l < k.
- We now prove that $q_i^{\top} y_l = 0$ for $i \neq l$ and i, l < k + 1.
- It is sufficient to prove that $q_i^{\top} y_k = 0$.

Proof.

Motivation

$$q_{i}^{\top} y_{k} = q_{i}^{\top} (A_{k} - q_{1} q_{1}^{\top} A_{k} - \dots + q_{i} q_{i}^{\top} A_{k} - \dots - q_{k-1} q_{k-1}^{\top} A_{k})$$

$$= q_{i}^{\top} A_{k} - q_{i}^{\top} q_{1} q_{1}^{\top} A_{k} - \dots + q_{i}^{\top} q_{i} q_{i}^{\top} A_{k} - \dots - q_{i}^{\top} q_{k-1} q_{k-1}^{\top} A_{k}$$

$$= q_{i}^{\top} A_{k} - q_{i}^{\top} q_{i} (q_{i}^{\top} A_{k})$$

$$= q_{i}^{\top} A_{k} - q_{i}^{\top} A_{k}$$

$$= 0$$

A Survey of Models

Liangda Fang 40/73 • What is the relation between A_1, \ldots, A_n and q_1, \ldots, q_n ?

Liangda Fang 41/73

Reduced QR factorization

• What is the relation between A_1, \ldots, A_n and q_1, \ldots, q_n ?

•
$$(A_1|\cdots|A_n) = (q_1|\cdots|q_n) \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & \cdots & r_{2n} \\ & & \ddots & \vdots \\ & & & r_{nn} \end{bmatrix}$$
.

•
$$r_{jj} = ||y_j||_2$$
 and $r_{ij} = q_i^{\top} A_j$;

•
$$A_j = r_{1j}q_1 + \cdots + r_{j-1,j}q_{j-1} + r_{jj}q_j$$
;

Liangda Fang 41/73

• What is the relation between A_1, \ldots, A_n and q_1, \ldots, q_n ?

•
$$(A_1|\cdots|A_n) = (q_1|\cdots|q_n) \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & \cdots & r_{2n} \\ & & \ddots & \vdots \\ & & & r_{nn} \end{bmatrix}$$
.

- $r_{jj} = ||y_j||_2$ and $r_{ij} = q_i^{\top} A_j$;
- $A_i = r_{1i}q_1 + \cdots + r_{i-1,i}q_{i-1} + r_{ii}q_i$;
- QR is the **reduced QR factorization** of A.

Liangda Fang 41/73

Reduced QR factorization

Example

Find the reduced QR factorization of $A = \begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix}$.

$$\bullet \ y_1 = A_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix};$$

•
$$r_{11} = ||y_1||_2 = \sqrt{1^2 + 2^2 + 2^2} = 3;$$

Liangda Fang 42/73

Reduced QR factorization

Example

•
$$y_2 = A_2 - q_1 q_1^{\mathsf{T}} A_2 = \begin{bmatrix} -4\\3\\2 \end{bmatrix} - \begin{bmatrix} \frac{1}{3}\\ \frac{2}{3}\\ \frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} -4\\3\\2 \end{bmatrix} = \begin{bmatrix} -\frac{14}{3}\\ \frac{5}{3}\\ \frac{2}{3} \end{bmatrix};$$

- \bullet $r_{12} = q_1^{\top} A_2 = 2$ and $r_{22} = ||y_2||_2 = 5$;
- $\bullet \ A = \begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} \\ & r_{22} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & -\frac{14}{15} \\ \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{2}{15} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & 5 \end{bmatrix} = QR.$

Full QR factorization

In reduced QR factorization:

Least squares and the normal equations

- \mathbf{Q} is $m \times n$;
- \mathbf{Q} R is $\mathbf{n} \times \mathbf{n}$.
- In full QR factorization:
 - \mathbf{Q} is $m \times m$;
 - \mathbf{Q} R is $\mathbf{m} \times n$.

$$(A_1|\cdots|A_n) = (q_1|\cdots|q_n|\cdots|q_m)$$

$$\bullet \ \, (A_1|\cdots|A_n) = (q_1|\cdots|q_n|\cdots|q_m) \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & \cdots & r_{2n} \\ & & \ddots & \vdots \\ & & & r_{nn} \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix}.$$

QR is the **full QR factorization** of A.

Liangda Fang 44/73

Example

Find the full QR factorization of $A = \begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix}$.

- Construct a vector $A_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ linearly independent of A_1 and A_2 ;
- $y_3 = A_3 q_1 q_1^{\top} A_3 q_2 q_2^{\top} A_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \frac{1}{3} \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix} \left(-\frac{14}{15} \right) \begin{bmatrix} -\frac{14}{15} \\ \frac{1}{3} \\ \frac{2}{15} \end{bmatrix} = \begin{bmatrix} 2 & 3 \end{bmatrix}$

$$\frac{2}{225} \begin{bmatrix} 2\\10\\-11 \end{bmatrix};$$

1900

Full QR factorization

Example

Motivation

•

$$A = \begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} \\ & r_{22} \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{3} & -\frac{14}{15} & \frac{2}{15} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{15} & -\frac{11}{15} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix}$$
$$= QR$$

Liangda Fang 46/73

A Survey of Models

Motivation

Algorithm 1: Classical Gram-Schmidt orthogonalization

```
Input: A: an m \times n matrix
   Output: Q: an orthogonal matrix
            R: an upper triangular matrix s.t. A = QR
3
4 for j = 1, 2, ..., n do
      y = A_i
      for i = 1, 2, ..., j - 1 do
6
       8
      r_{ij} = ||y||_2
      q_i = \frac{y}{r_{ij}}
10
```


Liangda Fang 47 / 73

Definition

A square matrix Q is **orthogonal** if $Q^{\top} = Q^{-1}$.

Liangda Fang 48/73

Definition

A square matrix Q is **orthogonal** if $Q^{\top} = Q^{-1}$.

Proposition

A square matrix is orthogonal iff its columns are pairwise orthogonal unit vectors.

Liangda Fang 48/73

Proof.

Let
$$Q = (q_1 | \cdots | q_n)$$
.

Liangda Fang 49/73

Proof.

Let
$$Q = (q_1 | \cdots | q_n)$$
.

 $\bullet \ \ Q \ {\rm is \ orthogonal} \ \Longleftrightarrow \\$

 ✓ □ ▷ ✓ ⓓ ▷ ✓ Ễ ▷ ✓ Ễ ▷ ◯

 Liangda Fang
 49/73

Proof.

Let $Q = (q_1 | \cdots | q_n)$.

- ullet Q is orthogonal \Longleftrightarrow

4 D > 4 B > 4 B > 4 B > 9 Q C

Liangda Fang 49/ 73

Proof.

Let $Q = (q_1 | \cdots | q_n)$.

- Q is orthogonal \iff
- $\bullet (q_1 | \cdots | q_n)^{\top} (q_1 | \cdots | q_n) = I \iff$

$$\bullet \begin{bmatrix} q_1^\top q_1 & q_1^\top q_2 & \cdots & q_1^\top q_n \\ q_2^\top q_1 & q_2^\top q_2 & \cdots & q_2^\top q_n \\ \vdots & \vdots & \ddots & \vdots \\ q_n^\top q_1 & q_n^\top q_2 & \cdots & q_n^\top q_n \end{bmatrix} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & \ddots & & \\ & & & 1 \end{bmatrix} \Longleftrightarrow$$

Liangda Fang 49/73

Proof.

Let $Q = (q_1 | \cdots | q_n)$.

- ullet Q is orthogonal \Longleftrightarrow

$$\bullet \begin{bmatrix} q_1^\top q_1 & q_1^\top q_2 & \cdots & q_1^\top q_n \\ q_2^\top q_1 & q_2^\top q_2 & \cdots & q_2^\top q_n \\ \vdots & \vdots & \ddots & \vdots \\ q_n^\top q_1 & q_n^\top q_2 & \cdots & q_n^\top q_n \end{bmatrix} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix} \Longleftrightarrow$$

$$\bullet \ q_i^{\top} q_j = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

1905 E

4 D > 4 A > 4 B > 4 B > B = 90 0

Liangda Fang 49/73

A Survey of Models

Application to least squares

Lemma

Motivation

If Q is an orthogonal $m \times m$ matrix and x is an m-dimensional *vector, then* $||Qx||_2 = ||x||_2$.

An orthogonal matrix Q does not change the length of vector x.

Application to least squares

Lemma

Motivation

If Q is an orthogonal $m \times m$ matrix and x is an m-dimensional vector, then $||Qx||_2 = ||x||_2$.

An orthogonal matrix Q does not change the length of vector x.

Proof.

$$||Qx||_2^2 = (Qx)^\top (Qx) = x^\top Q^\top Qx = x^\top x = ||x||_2^2$$

A Survey of Models

Application to least squares

Motivation

- Least squares: minimize $||Ax b||_2$;
- Minimize $||QRx b||_2$ (A = QR);
- Minimize $||Rx Q^{T}b||_{2}$ ($||Rx Q^{T}b||_{2} = ||QRx b||_{2}$).

Least squares and the normal equations

 $Rx - Q^{\top}b = e$ where $||e||_2$ is the error between Ax and b.

$$\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & \cdots & r_{2n} \\ & & \ddots & \vdots \\ & & & r_{nn} \\ 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} - \begin{bmatrix} d_1 \\ \vdots \\ d_n \\ d_{n+1} \\ \vdots \\ d_m \end{bmatrix} = \begin{bmatrix} e_1 \\ \vdots \\ e_n \\ e_{n+1} \\ \vdots \\ e_m \end{bmatrix}$$

- \bullet $d = Q^{\top}b$:
- \bar{x} : the solution of the upper part;
- $||e||_2^2 = d_{n+1}^2 + \cdots + d_m^2$: the least squares error.

Application to least squares

Example

• Solve the least squares problem
$$\begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 15 \\ 9 \end{bmatrix};$$

Application to least squares

Example

• Solve the least squares problem
$$\begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 15 \\ 9 \end{bmatrix};$$

$$\bullet \ A = QR = \begin{bmatrix} \frac{1}{3} & -\frac{14}{15} & \frac{2}{15} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{15} & -\frac{11}{15} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix};$$

Least squares and the normal equations

Application to least squares

Example

• Solve the least squares problem
$$\begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 15 \\ 9 \end{bmatrix};$$

$$\bullet \ A = QR = \begin{bmatrix} \frac{1}{3} & -\frac{14}{15} & \frac{2}{15} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{15} & -\frac{11}{15} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix};$$

•
$$Rx = Q^{\top}b$$

Application to least squares

Example

- Solve the least squares problem $\begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 15 \\ 9 \end{bmatrix};$
- $\bullet \ A = QR = \begin{bmatrix} \frac{1}{3} & -\frac{14}{15} & \frac{2}{15} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{15} & -\frac{11}{15} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix};$
- $\bullet \ Rx = Q^{\top}b$

$$\bullet \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{14}{15} & \frac{1}{3} & \frac{2}{15} \\ \frac{2}{15} & \frac{2}{3} & -\frac{11}{15} \end{bmatrix} \begin{bmatrix} -3 \\ 15 \\ 9 \end{bmatrix} = \begin{bmatrix} 15 \\ 9 \\ 3 \end{bmatrix};$$

Application to least squares

Example

- Solve the least squares problem $\begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 15 \\ 9 \end{bmatrix};$
- $\bullet \ A = QR = \begin{bmatrix} \frac{1}{3} & -\frac{14}{15} & \frac{2}{15} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{2} & \frac{2}{2} & -\frac{11}{2} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix};$

Least squares and the normal equations

- \bullet $Rx = Q^{\top}b$
- $\bullet \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{14}{15} & \frac{1}{3} & \frac{2}{15} \\ 2^2 & 2 & -11 \end{bmatrix} \begin{bmatrix} -3 \\ 15 \\ 0 \end{bmatrix} = \begin{bmatrix} 15 \\ 9 \\ 3 \end{bmatrix};$
- Equating the upper parts yields $\begin{bmatrix} 3 & 2 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 15 \\ 9 \end{bmatrix}$;

Liangda Fang

Application to least squares

Example

- Solve the least squares problem $\begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 15 \\ 0 \end{bmatrix}$;
- $\bullet \ A = QR = \begin{bmatrix} \frac{1}{3} & -\frac{13}{15} & \frac{2}{15} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{11}{15} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix};$
- \bullet $Rx = Q^{\top}b$
- $\bullet \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{14}{15} & \frac{1}{3} & \frac{2}{15} \\ 2^2 & 2 & -11 \end{bmatrix} \begin{bmatrix} -3 \\ 15 \\ 0 \end{bmatrix} = \begin{bmatrix} 15 \\ 9 \\ 3 \end{bmatrix};$
- Equating the upper parts yields $\begin{bmatrix} 3 & 2 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 15 \\ 9 \end{bmatrix}$;
- The least squares solution: $\bar{x}_1 = 3.8$ and $\bar{x}_2 = 1.8$;

Application to least squares

Example

- Solve the least squares problem $\begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 15 \\ 9 \end{bmatrix};$
- $\bullet \ A = QR = \begin{bmatrix} \frac{1}{3} & -\frac{14}{15} & \frac{2}{15} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{15} & -\frac{11}{15} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix};$
- $\bullet \ Rx = Q^{\top}b$
- $\bullet \begin{bmatrix} 3 & 2 \\ 0 & 5 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{14}{15} & \frac{1}{3} & \frac{2}{15} \\ \frac{2}{15} & \frac{2}{3} & -\frac{11}{15} \end{bmatrix} \begin{bmatrix} -3 \\ 15 \\ 9 \end{bmatrix} = \begin{bmatrix} 15 \\ 9 \\ 3 \end{bmatrix};$
- Equating the upper parts yields $\begin{bmatrix} 3 & 2 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 15 \\ 9 \end{bmatrix}$;
- The least squares solution: $\bar{x}_1 = 3.8$ and $\bar{x}_2 = 1.8$;
- The least squares error: $||e||_2 = ||(0,0,-3)||_2 = 3$.

1906

A problem of Gram-Schmidt orthogonalization

Gram-Schmidt algorithm sometimes has the accuracy problem.

Liangda Fang

A problem of Gram-Schmidt orthogonalization

Gram-Schmidt algorithm sometimes has the accuracy problem.

Example

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ \delta & 0 & 0 \\ 0 & \delta & 0 \\ 0 & 0 & \delta \end{bmatrix}$$
 where $\delta = 10^{-10}$.

$$\bullet \ y_1 = A_1 = \begin{bmatrix} 1 \\ \delta \\ 0 \\ 0 \end{bmatrix};$$

•
$$r_{11} = ||y_1||_2 = \sqrt{1 + \delta^2} = \sqrt{1 + 10^{-20}} = 1$$
 after rounding;

$$\bullet \ q_1 = \frac{y_1}{r_{11}} = \begin{bmatrix} 1 \\ \delta \\ 0 \\ 0 \end{bmatrix}.$$

Liangda Fang

A problem of Gram-Schmidt orthogonalization

Example

$$\bullet \ y_2 = A_2 - q_1 q_1^{\top} A_2 = \begin{bmatrix} 1 \\ 0 \\ \delta \\ 0 \end{bmatrix} - \begin{bmatrix} 1 \\ \delta \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -\delta \\ \delta \\ 0 \end{bmatrix};$$

•
$$r_{22} = ||y_2||_2 = \sqrt{(-\delta)^2 + \delta^2} = \sqrt{2}\delta;$$

A problem of Gram-Schmidt orthogonalization

Example

$$\bullet \ y_3 = A_3 - q_1 q_1^{\top} A_3 - q_2 q_2^{\top} A_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \delta \end{bmatrix} - \begin{bmatrix} 1 \\ \delta \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -\delta \\ 0 \\ \delta \end{bmatrix};$$

•
$$r_{33} = ||y_3||_2 = \sqrt{(-\delta)^2 + \delta^2} = \sqrt{2}\delta;$$

•
$$q_2^{\top} q_3 = \begin{bmatrix} 0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 0 \end{bmatrix} \begin{bmatrix} 0 \\ -\frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \end{bmatrix} = \frac{1}{2} \neq 0.$$

Outline

- - Inconsistent systems of equations
 - Fitting models to data
- - Periodic data
 - Data linearization
- **QR** Factorization
 - Conditioning of least squares
 - Gram-Schmidt orthogonalization and least squares
 - Householder reflectors

Householder reflectors

Another alternative way to QR factorization based on Householder reflectors.

- Deliver better orthogonality;
- 4 Has lower memory requirements.

Householder reflectors

Definition (Householder reflectors)

Let v be an n-dimensional **unit** vector.

Then the matrix $H = I - 2vv^{\top}$ is called a **Householder reflector**.

Householder reflectors

Definition (Householder reflectors)

Let v be an n-dimensional **unit** vector.

Then the matrix $H = I - 2vv^{T}$ is called a **Householder reflector**.

Proposition

A Householder reflector, $H = I - 2vv^{\top}$, is symmetric and orthogonal.

Definition (Householder reflectors)

Let v be an n-dimensional **unit** vector.

Then the matrix $H = I - 2vv^{T}$ is called a **Householder reflector**.

Proposition

A Householder reflector, $H = I - 2vv^{\top}$, is symmetric and orthogonal.

Proof.

• Symmetric:
$$H^{\top} = (I - 2vv^{\top})^{\top} = I^{\top} - 2(vv^{\top})^{\top}$$

= $I - 2[(v^{\top})^{\top}v^{\top}] = I - 2vv^{\top} = H$

Liangda Fang 59/73

QR Factorization

Householder reflectors

Definition (Householder reflectors)

Let v be an n-dimensional **unit** vector.

Then the matrix $H = I - 2vv^{\top}$ is called a **Householder reflector**.

Proposition

A Householder reflector, $H = I - 2vv^{T}$, is symmetric and orthogonal.

Proof.

- Symmetric: $H^{\top} = (I 2vv^{\top})^{\top} = I^{\top} 2(vv^{\top})^{\top}$ $= I - 2[(v^{\top})^{\top}v^{\top}] = I - 2vv^{\top} = H$
- Orthogonal: $HH^{\top} = (I 2vv^{\top})(I 2vv^{\top})$ $= I - 2vv^{\top} - 2vv^{\top} + 4vv^{\top}vv^{\top}$ $= I - 4vv^{\top} + 4vv^{\top} = I$

Liangda Fang

Motivation

A Householder reflector can be used to

- project an n dimensional vector on an n-1 dimensional plane;
- but not change the length of the vector.

Liangda Fang 60/73

Lemma

Motivation

Let x and w be two vectors with $||x||_2 = ||w||_2$. Then w-x and w+x are perpendicular.

Liangda Fang 61/73

Lemma

Let x and w be two vectors with $||x||_2 = ||w||_2$. Then w-x and w+x are perpendicular.

Proof.

$$(w-x)^{\top}(w+x) = w^{\top}w - x^{\top}w + w^{\top}x - x^{\top}x = ||w||_2 - ||x||_2 = 0$$

Liangda Fang 61/73

Theorem

Given the following:

- x and w: two vectors with $||x||_2 = ||w||_2$;
- u = w x and $v = \frac{u}{\|u\|_2}$;
- \bullet $H = I 2vv^{\top}$.

Then Hx = w and Hw = x.

Liangda Fang 62/73

Proof.

Firstly, we prove that Hx = w.

We that
$$Hx = w$$
.

$$Hx = x - 2vv^{T}x$$

$$= w - u - 2\frac{uu^{T}x}{\|u\|_{2}^{2}}$$

$$= w - \frac{uu^{T}u}{\|u\|_{2}^{2}} - \frac{uu^{T}x}{\|u\|_{2}^{2}} - \frac{uu^{T}(w - u)}{\|u\|_{2}^{2}}$$

$$= w - \frac{uu^{T}(w + x)}{\|u\|_{2}^{2}}$$

$$= w - \frac{u(w - x)^{T}(w + x)}{\|u\|_{2}^{2}} = w$$

Liangda Fang 63/73

Proof.

Firstly, we prove that Hx = w.

$$Hx = x - 2vv^{T}x$$

$$= w - u - 2\frac{uu^{T}x}{\|u\|_{2}^{2}}$$

$$= w - \frac{uu^{T}u}{\|u\|_{2}^{2}} - \frac{uu^{T}x}{\|u\|_{2}^{2}} - \frac{uu^{T}(w - u)}{\|u\|_{2}^{2}}$$

$$= w - \frac{uu^{T}(w + x)}{\|u\|_{2}^{2}}$$

$$= w - \frac{u(w - x)^{T}(w + x)}{\|u\|_{2}^{2}} = w.$$

Secondly, we prove that Hw = x.

$$Hx = w$$

$$H^{-1}Hx = H^{-1}w$$

$$x = H^{\top}w$$

Liangda Fang 63/73

Example

Motivation

- Let $x = \begin{bmatrix} 3 & 4 \end{bmatrix}^{\top}$ and $w = \begin{bmatrix} 5 & 0 \end{bmatrix}^{\top}$.
- Find a Householder reflector H s.t. Hx = w.

Liangda Fang 64/73

Example

• Let $x = \begin{bmatrix} 3 & 4 \end{bmatrix}^{\top}$ and $w = \begin{bmatrix} 5 & 0 \end{bmatrix}^{\top}$.

Least squares and the normal equations

• Find a Householder reflector H s.t. Hx = w.

$$\bullet \text{ Set } u=w-x=\begin{bmatrix} 5\\0\end{bmatrix}-\begin{bmatrix} 3\\4\end{bmatrix}=\begin{bmatrix} 2\\-4\end{bmatrix} \text{ and } v=\frac{u}{\|u\|_2}=\begin{bmatrix} \frac{\sqrt{5}}{5}\\-\frac{2\sqrt{5}}{5}\end{bmatrix}.$$

Liangda Fang 64/73

Example

- Let $x = \begin{bmatrix} 3 & 4 \end{bmatrix}^{\top}$ and $w = \begin{bmatrix} 5 & 0 \end{bmatrix}^{\top}$.
- Find a Householder reflector H s.t. Hx = w.

$$\bullet \text{ Set } u=w-x=\begin{bmatrix} 5\\0\end{bmatrix}-\begin{bmatrix} 3\\4\end{bmatrix}=\begin{bmatrix} 2\\-4\end{bmatrix} \text{ and } v=\frac{u}{\|u\|_2}=\begin{bmatrix} \frac{\sqrt{5}}{5}\\-\frac{2\sqrt{5}}{5}\end{bmatrix}.$$

$$\bullet \ \ H = I - 2vv^{\top} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} \frac{\sqrt{5}}{5} \\ -\frac{2\sqrt{5}}{5} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{5}}{5} & -\frac{2\sqrt{5}}{5} \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}.$$

Liangda Fang 64/73

QR Factorization

Householder reflectors

Example

- Let $x = \begin{bmatrix} 3 & 4 \end{bmatrix}^{\top}$ and $w = \begin{bmatrix} 5 & 0 \end{bmatrix}^{\top}$.
- Find a Householder reflector H s.t. Hx = w.

$$\bullet \text{ Set } u=w-x=\begin{bmatrix} 5\\0\end{bmatrix}-\begin{bmatrix} 3\\4\end{bmatrix}=\begin{bmatrix} 2\\-4\end{bmatrix} \text{ and } v=\frac{u}{\|u\|_2}=\begin{bmatrix} \frac{\sqrt{5}}{5}\\-\frac{2\sqrt{5}}{5}\end{bmatrix}.$$

$$\bullet \ \ H = I - 2vv^{\top} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} \frac{\sqrt{5}}{5} \\ -\frac{2\sqrt{5}}{5} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{5}}{5} & -\frac{2\sqrt{5}}{5} \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}.$$

•
$$Hx = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix} = w.$$

Liangda Fang 64/73

Example

• Let $x = \begin{bmatrix} 3 & 4 \end{bmatrix}^{\top}$ and $w = \begin{bmatrix} 5 & 0 \end{bmatrix}^{\top}$.

Least squares and the normal equations

• Find a Householder reflector H s.t. Hx = w.

$$\bullet \text{ Set } u=w-x=\begin{bmatrix} 5\\0 \end{bmatrix}-\begin{bmatrix} 3\\4 \end{bmatrix}=\begin{bmatrix} 2\\-4 \end{bmatrix} \text{ and } v=\frac{u}{\|u\|_2}=\begin{bmatrix} \frac{\sqrt{5}}{5}\\-\frac{2\sqrt{5}}{5} \end{bmatrix}.$$

$$\bullet \ \ H = I - 2vv^{\top} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} \frac{\sqrt{5}}{5} \\ -\frac{2\sqrt{5}}{5} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{5}}{5} & -\frac{2\sqrt{5}}{5} \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix}.$$

•
$$Hx = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix} = w.$$

•
$$Hw = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} 5 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} = x.$$

Liangda Fang 64/73

Given an $m \times n$ matrix

$$A = \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

$$\bullet \quad \mathsf{Let} \ x_1 = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \end{bmatrix}^\top;$$

Liangda Fang 65/73

Given an $m \times n$ matrix

$$A = \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

- **1** Let $x_1 = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \end{bmatrix}^{\top}$;
- ② Let $w_1 = [\operatorname{sgn}(x_{11}) || x_1 ||_2 \quad 0 \quad \cdots \quad 0]^\top$;

Liangda Fang

Given an $m \times n$ matrix

Motivation

$$A = \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

- $\bullet \quad \mathsf{Let} \ x_1 = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \end{bmatrix}^\top;$
- ② Let $w_1 = [\operatorname{sgn}(x_{11}) || x_1 ||_2 \quad 0 \quad \cdots \quad 0]^\top$;
- **3** So $u_1 = w_1 x_1$, $v_1 = \frac{u_1}{\|u_1\|_2}$ and $H_1 = I 2v_1v_1^{\top}$;

Liangda Fang 65/ 73

Given an $m \times n$ matrix

$$A = \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$

- **1** Let $x_1 = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \end{bmatrix}^\top$;
- 2 Let $w_1 = [\operatorname{sgn}(x_{11}) || x_1 ||_2 \quad 0 \quad \cdots \quad 0]^\top$;
- **3** So $u_1 = w_1 x_1$, $v_1 = \frac{u_1}{\|u_1\|_2}$ and $H_1 = I 2v_1v_1^{\top}$;

$$B = H_1 A = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ 0 & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & b_{m2} & \cdots & b_{mn} \end{bmatrix}$$

where $b_{11} = -\operatorname{sgn}(x_{11}) ||x_1||_2$.

Liangda Fang 65/73

- **1** Let $x_2 = \begin{bmatrix} b_{22} & b_{23} & \cdots & b_{2m} \end{bmatrix}^{\top}$;
- **2** Let $w_2 = [\operatorname{sgn}(x_{21}) || x_2 ||_2 \quad 0 \quad \cdots \quad 0]^\top$;
- **3** So $u_2 = w_2 x_2$, $v_2 = \frac{u_2}{\|u_2\|_2}$ and $\hat{H}_2 = I 2v_2v_2^{\top}$;

$$C = H_2 B = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & \hat{H}_2 & \\ 0 & & & \end{bmatrix} B = \begin{bmatrix} c_{11} & c_{12} & c_{13} & \cdots & c_{1n} \\ 0 & c_{22} & c_{23} & \cdots & c_{2n} \\ 0 & 0 & c_{33} & \cdots & c_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & c_{m3} & \cdots & c_{mn} \end{bmatrix}$$

where $c_{22} = \operatorname{sgn}(x_{21}) \|x_2\|_2$ and $c_{11} = b_{11}$.

6 $c_{1i} = b_{1i}$ for 1 < i < n.

Liangda Fang 66/73

$$\bullet \quad \mathsf{Let} \ x_n = \begin{bmatrix} b_{nn} & \cdots & b_{nm} \end{bmatrix}^\top;$$

Motivation

$$\mathbf{0} \quad R = \begin{bmatrix}
1 & \cdots & 0 & \cdots & 0 \\
\vdots & \ddots & 0 & \cdots & 0 \\
0 & \cdots & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \hat{H}_n \\
0 & \cdots & 0
\end{bmatrix} H_{n-1} \cdots H_1 A =$$

$$\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ 0 & r_{22} & \cdots & r_{2n} \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & 0 & r_{nn} \\ 0 & \cdots & \cdots & 0 \\ \vdots & 0 & 0 & \vdots \end{bmatrix}$$

Liangda Fang 67/73

Finally,
$$Q = H_1 \cdots H_n$$
 and $R = H_n \cdots H_1 A$.

Liangda Fang 68/73

Example

Use Householder reflectors to compute the full QR factorization of

$$A = \begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix}.$$

$$ullet$$
 $x_1 = \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^{ op}$ and $w_1 = \begin{bmatrix} \|x_1\|_2 & 0 & 0 \end{bmatrix}^{ op} = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}^{ op};$

$$\bullet \ u_1 = w_1 - x_1 = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}^\top - \begin{bmatrix} 1 & 2 & 2 \end{bmatrix}^\top = \begin{bmatrix} 2 & -2 & -2 \end{bmatrix}^\top;$$

•
$$v_1 = \frac{u_1}{\|u_1\|_2} = \begin{bmatrix} \frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} & -\frac{\sqrt{3}}{3} \end{bmatrix}^{\top};$$

Least squares and the normal equations

$$\bullet \ \ H_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} \frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix};$$

$$\bullet \ H_1 A = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{2} & -\frac{2}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & -3 \\ 0 & -4 \end{bmatrix}.$$

Liangda Fang 69/73

Example

Motivation

$$ullet$$
 $x_2 = \begin{bmatrix} -3 & -4 \end{bmatrix}^{ op}$ and $w_2 = \begin{bmatrix} -\|x_2\|_2 & 0 \end{bmatrix}^{ op} = \begin{bmatrix} -5 & 0 \end{bmatrix}^{ op};$

•
$$u_2 = w_2 - x_2 = \begin{bmatrix} -5 & 0 \end{bmatrix}^\top - \begin{bmatrix} -3 & -4 \end{bmatrix}^\top = \begin{bmatrix} -2 & 4 \end{bmatrix}^\top;$$

•
$$v_2 = \frac{u_2}{\|u_2\|_2} = \begin{bmatrix} -\frac{\sqrt{5}}{5} & \frac{2\sqrt{5}}{5} \end{bmatrix}^\top$$
;

$$\bullet \ \hat{H}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - 2 \begin{bmatrix} \frac{2}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{8}{5} \end{bmatrix} = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & -\frac{3}{5} \end{bmatrix};$$

$$\bullet \ R = H_2(H_1A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{5} & \frac{4}{5} \\ 0 & \frac{4}{5} & -\frac{3}{5} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & -3 \\ 0 & -4 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & -5 \\ 0 & 0 \end{bmatrix}.$$

Liangda Fang 70/73

Example

$$\bullet \quad Q = H_1 H_2 = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{3}{5} & \frac{4}{5} \\ 0 & \frac{4}{5} & -\frac{3}{5} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{14}{15} & \frac{2}{15} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{15} & -\frac{11}{15} \end{bmatrix}$$

$$\bullet \ \ A = QR = \begin{bmatrix} \frac{1}{3} & \frac{14}{15} & \frac{2}{15} \\ \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ \frac{2}{2} & -\frac{2}{15} & -\frac{11}{15} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 0 & -5 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -4 \\ 2 & 3 \\ 2 & 2 \end{bmatrix}.$$

Liangda Fang 71/73

- Solve the inconsistent problem Ax = b;
- Stimulate functions via the least squares method;
- Reduce it to solving $A^{\top}Ax = A^{\top}b$;
- Reduce it Ax = b to solving $Rx = Q^{T}b$ via QR Factorization A = QR;
- Use Householder reflectors to implement QR Factorization.

Liangda Fang 72/73 Motivation

Liangda Fang 73/73