Graph Theory and Complex Networks: An Introduction

Maarten van Steen

VU Amsterdam, Dept. Computer Science Room R4.20, steen@cs.vu.nl

Chapter 05: Trees

Version: April 21, 2014

vrije Universiteit amsterdam

.

Contents

Chapter	Description	
01: Introduction	History, background	
02: Foundations	Basic terminology and properties of graphs	
03: Extensions	Directed & weighted graphs, colorings	
04: Network traversal	Walking through graphs (cf. traveling)	
05: Trees	Graphs without cycles; routing algorithms	
06: Network analysis	Basic metrics for analyzing large graphs	
07: Random networks	Introduction modeling real-world networks	
08: Computer networks	The Internet & WWW seen as a huge graph	
09: Social networks	Communities seen as graphs	

2/25

Trees 5.1/5.2 Fundamentals	Trees 5.1/5.2 Fundamentals
Introduction	
Definition	
Definition	
A connected graph without cycles is a tree.	
Connector problem: Set up a communication infrastructure such that the total costs are minimized.	
Communication network: Set up an overlay network such that the total	
costs from a source to all destinations are minimized.	
Formalities	
Spanning trees	
Routing in communication networks	
- Housing in communication notworks	

Fundamentals: characterization (1) Theorem For any connected (simple) graph G with n vertices and m edges, $n \le m+1$. Proof by induction on m
Theorem For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.
Theorem For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.
For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.
For any connected (simple) graph G with n vertices and m edges, $n \le m+1$.
<i>n</i> ≤ <i>m</i> + 1.
Proof by induction on m
Proof by induction on m
Troot by induction on m
• $m = 1 \Rightarrow n = 2 \Rightarrow$ OK. Consider G with $k > 1$ edges.
• Assume G has a cycle C. Let $e \in E(C)$ and $G^* = G - e$.
G* is still connected
• $n = V(G^*) \le E(G^*) + 1 = k - 1 + 1 = k \le k + 1$.
Assume G is acyclic. Let P be a longest path in G, connecting
vertices u and \dot{w} .
• P is longest path $\Rightarrow \delta(u) = \delta(w) = 1$
• Let $G^* = G - u \Rightarrow E(G^*) = E(G) - 1 = k - 1$
• $ V(G^*) = n - 1 \le E(G^*) + 1 = k \Rightarrow n \le k + 1$

Fundamentals: characterization (2)

Theorem

A connected graph G with n vertices and m edges for which n=m+1, is a tree.

Proof by contradiction

• Assume G contains a cycle C and let $e \in E(C)$.

• $G^* = G - e$ is connected $\Rightarrow n = |V(G^*)| \le |E(G^*)| + 1 = (m-1) + 1 = m$.

Contradicts fact that n = m+1. G must be acyclic, i.e., a tree.

Trees 5.1/5.2 Fundamentals	Trees 5.1/5.2 Fundamentals
Fundamentals: characterization (3)	
Theorem	
A graph G is a tree iff $\forall u, v \in V(G)$: $\exists ! (u, v)$ -path. (Notation: $\exists !$ means exists exactly one.)	
Proof G tree $\Rightarrow \forall u, v \in V(G)$: $\exists !(u, v)$ -path	
• Let $u, v \in V(G)$ and (u, v) -path P .	
 Assume another distinct (u, v)-path Q. 	
• Let x be last vertex common to P and Q, and y first common one	
succeeding $x \Rightarrow$ have identified a cycle:	
0	
u	
P	
6/25	6/25

Trees 5.1/5.2 Fundamentals	lrees 5.1/5.2 Fundamentals
Fundamentals: characterization (3)	
()	
Proof $\forall u, v \in V(G) : \exists !(u, v)$ -path $\Rightarrow G$ is a tree	
By contradiction: assume G is not a tree.	
Note: G is connected.	
 G is connected, not a tree ⇒ there exists a cycle 	
$C = [v_1, v_2, \dots, v_n = v_1].$	
 ∀v_i, v_j ∈ V(C): there are <i>two</i> distinct paths: P_{i→j} = [v_i, v_{i+1},, v_{j-1}, v_j] 	
$ \bullet P_{j\to i} = [v_i, v_{i+1}, \dots, v_{j-1}, v_j] \\ \bullet P_{j\to i} = [v_i, v_{i-1}, \dots, v_{j+1}, v_j] $	
7/25	7/25
1123	1/23

Trees 5.1/5.2 Fundamentals	Trees 5.1/5.2 Fundamentals
Fundamentals	<u> </u>
Theorem	
An edge e of a graph G is a cut edge if and only if e is not part of any	
cycle of G.	
	·
Proof e is not part of a cycle $\Rightarrow e$ is a cut edge of G	
• By contradiction: assume that $e = \langle u, v \rangle$ is not a cut edge $\Rightarrow u, v$ in	
the same component in $G-e$.	
• $\exists (u, v)$ -path P in $G - e$.	
 But: P + e is a cycle in G. Contradiction. 	

Trees 5.1/5.2 Fundamentals	Trees 5.1/5.2 Fundamentals
Fundamentals	
Proof e is cut edge $\Rightarrow e$ is not in any cycle of G	
• By contradiction: assume $e = \langle u, v \rangle$ was part of a cycle C .	
 Let x and y be in different components of G – e. 	
• e is cut edge $\Rightarrow \exists (x,y)$ -path P in G and $e \in E(P)$.	
• Assume u precedes v when traversing from x to y . $P_1 = (x, u)$ -part of P , $P_2 = (v, y)$ -part of P .	
• Note: $C - e$ is (u, v) -path in $G - e$.	
 u* is first vertex common to P₁ and C - e; v* is first vertex common to P₂ and C - e. x P₁ / u* C-e / v* P₂ / y is an (x, y)-path in G - e, contradicting that 	
x and y are in different components.	
9/25	9/25

Spanning tree

Definition $T \subseteq G$ is a minimal spanning tree of G iff V(T) = V(G) and $\sum_{e \in E(T)} w(e)$ is minimal.

Algorithm (Kruskal) G is connected, weighted graph. $\forall e \in E(G) : w(e) \in \mathbb{R}$. Choose edge e_1 with minimal weight.

Assume edges $E_k = \{e_1, e_2, \dots, e_k\}$ have been chosen so far. Choose next edge $e_{k+1} \in E(G) \setminus E_k$ such that:

(1) $G_{k+1} = G[\{e_1, e_2, \dots, e_k, e_{k+1}\}]$ is acyclic (but not necessarily connected).

(2) $\forall e \in E(G) \setminus E_k : w(e) \geq w(e_{k+1})$.

Stop when no such edge e_{k+1} can be selected.

lifees 5.3 Spanning trees	lifees 5.3 Spanning trees
Correctness Kruskal's algorithm	
Theorem	
Any spanning tree T _{opt} of a weighted connected graph G constructed	
by Kruskal's algorithm has minimal weight.	
by Ni donaro algoritimi nao minima wolgini.	
Proof by construction and contradiction	
• Notation: \forall spanning $T \neq T_{opt}$, $\iota(T)$ smallest index $i : e_i \notin E(T)$.	
• Assume T_{opt} is not optimal. Let T be spanning with maximal $\iota(T)$.	
• $\iota(T) = k \Rightarrow e_1, e_2, \dots, e_{k-1} \in E(T) \cap E(T_{opt}).$	
• Note: $T + e_k$ contains a unique cycle C (Why?)	
Thotal 1 + og comains a amque eyele e (my)	
13/25	13/25

Trees 5.3 Spanning trees	Trees 5.3 Spanning trees
Correctness Kruskal's algorithm	
Proof by construction and contradiction (cntd)	
• Let $\hat{e} \in \{E(C) \cap E(T)\} \setminus E(T_{opt})$.	
• $\hat{e} \in E(C) \Rightarrow \hat{T} = (T + e_k) - \hat{e}$ is connected and spanning tree of G .	
• $w(\hat{T}) = w(T) + w(e_k) - w(\hat{e})$ with $w(\hat{e}) \ge w(e_k)$ (Why?)	
 Implication: T must be optimal. However: e_k ∈ E(T) ⇒ ι(T) > ι(T). Contradiction. 	
14/25	14/

Trees 5.4 Routing in communication networks	Trees 5.4 Routing in communication networks
Routing	
Basics	
In a communication network, each node u maintains a routing table \mathbf{R}_u with $\mathbf{R}_u[i,j]=k$ meaning that messages from i to j should be forwarded to neighbor k .	
Issue	
Messages to destination u should follow a path along a spanning tree rooted at \mathbf{u} .	
Technically	
We need to construct a spanning tree optimized for all (v, u) -paths, called a sink tree .	
15/25	15/25

16/25 16/2

Example: Dijkstra's shortest path algorithm

5.4 Routing in communication networks

Example: Dijkstra's shortest path algorithm

5.4 Routing in communication networks

Theorem

Applying Dijkstra's algorithm vertex $u \in V(D)$, each time a vertex z is added to $S_t(u)$, $L_2(z)$ corresponds to the shortest (z,u)-path in D.

Proof by contradiction

• Let d(w,u) be total weight of shortest (w,u)-path.

• Let z be first vertex added to $S_t(u)$, such that $L_2(z) > d(z,u)$.

• Note: $L_2(z) < \infty$ (otherwise z would never have been added).

• Let y be last vertex on p not in $S_t(u)$, and x its successor (and thus in $S_t(u)$).

- Note: $L_2(x) = d(x, u)$ and $L_2(y) \le L_2(x) + w(\langle \overrightarrow{y, x} \rangle)$.
- Also: y is on shortest (z, u)-path $\Rightarrow L_2(y) = d(y, u)$.
- y was not selected at step $t \Rightarrow L_2(z) \le L_2(y)$.
- Note: d(z,y) + d(y,u) = d(z,u)
- $L_2(z) \le L_2(y) = d(y,u) \le d(y,u) + d(z,y) = d(z,u)$. Contradiction.

/25 19/25

Decentralized routing

Observation
In order to execute Dijkstra's algorithm, each vertex should know the topology of the entire network.

Alternative
Let nodes tell their neighbors on shortest paths to other nodes discovered so far.

Observation

Trees 5.4 Routing in communication networks

Bellman-Ford routing

Algorithm (Bellman-Ford)

• Consider node v_i . We proceed in **rounds**: in every round t, each node evaluates its routing table $\mathbf{R}_i[j] = d^t(i,j)$ with:

If a neighbor v of u knows about a path to w, and tells u, then u

$$d^0(i,j) \leftarrow \left\{ egin{array}{ll} 0 & \emph{if } i=j \\ \infty & \emph{otherwise} \end{array}
ight.$$

• Every round, adjust $d^t(i,j)$ to:

discovers a path to w (namely via v).

$$d^{t+1}(i,j) \leftarrow \min_{k \in \mathcal{N}(v_i)} w(\langle v_i, v_k \rangle) + d^t(k,j)$$

• With $d^{t}(i,j)$ thus denoting the total weight of optimal (v_i,v_j) -path, found by v_i after t rounds.

1/25

Trees 5.4 Routing in communication networks	Trees 5.4 Routing in communication networks
A note on efficiency	
Observation Dijkstra's algorithm roughly requires each node to inspect every other node once, implying a total of approximately n^2 steps. The Bellman-Ford algorithm requires that for each node we inspect exactly the tables of each of its neighbors. Because we have $\sum \delta(v) = 2m \text{ with } m \text{ the number of edges, there are a total of roughly } n \cdot m \text{ steps.}$	
24/25	24/25