Recurrent Neural Network

PHYS591000 Spring 2021

Reading:

- Stanford cs-230 RNN
- Colah's blog

Sequence Data

Image

Sequence Data

Image

Sequence - Audio

RNN

One-to-one

Binary Classification

Pass vs Fail

One-to-one

Many-to-One

Binary Classification

Sentiment Classification

"There is nothing to like in this movie."

Pass vs Fail

Binary Classification

Pass vs Fail

Sentiment Classification

"There is nothing to like in this movie."

Image Captioning

A man is running.

One-to-one Many-to-One One-to-Many Many-to-Many \hat{y} \hat{y}

Binary Classification

Pass vs Fail

Sentiment Classification

"There is nothing to like in this movie."

Image Captioning

A man is running.

Machine Translation

«Hey Siri, où puis-je acheter une Tesla?»

"Hey Siri, where can I buy a Tesla?"

Neurons with Recurrence

Output vector

Input vector

$$y^{<1>} = f(x^{<1})$$
Output Input

Output vector

Input vector

$$y^{} = f(x^{
Output Input Past memory$$

$$y^{} = f(x^{)

Output Input Past memory$$

Recurrent Neural Network

Apply a recurrence relation at every step to process a sequence:

Function with weights W
$$a^{} = f_{W}(x^{}, a^{})$$
Cell State Input Old State

The same function and set of parameters are used at every time step

Cell state **a**^{<t>} is updated at each time step t as a sequence is processed.

RNN State Update and Output

RNN State Update and Output

Update Hidden State

$$a^{< t>} = g_1(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)$$

Input Vector

 $x^{< t>}$

RNN State Update and Output

Output Vector

$$y^{< t>} = g_2 (W_{ya} a^{< t>} + b_y)$$

Update Hidden State

$$a^{< t>} = g_1(W_{aa}a^{< t-1>} + W_{ax}x^{< t>} + b_a)$$

Input Vector

$$x^{< t>}$$

For each timestep t, the activation a^{cp} and the output y_{cp}

 $W_{\rm aa}$, $W_{\rm ax}$, $b_{\rm a}$, $W_{\rm ya}$, $b_{\rm y}$ are coefficients that are shared temporally and g_1 , g_2 activation functions.

Pros and Cons of RNN

Advantages	Drawbacks
Possibility of processing input of any length	Computation being slow
Model size not increasing with size of input	Difficulty of accessing information from a long time ago
Computation takes into account historical information	Cannot consider any future input for the current state
Weights are shared across time	

RNN in Practice

Encoding for numerical representation

One-hot encoding

"I grew up in France and moved to United States, therefore I speak _____"

$$\mathcal{L}(\widehat{y},y) = \sum_{t=1}^{T_y} \mathcal{L}(\widehat{y}^{< t>}, y^{< t>})$$

$$rac{\partial \mathcal{L}^{(T)}}{\partial W} = \sum_{t=1}^{T} \left. rac{\partial \mathcal{L}^{(T)}}{\partial W}
ight|_{(t)}$$

Vanishing/Exploding Gradients

Vanishing gradients (propagation of small gradients): Gated Structure

Exploding gradients (propagation of big gradients): Gradient Clipping

Types of Gates

$$\Gamma = \sigma(Wx^{< t>} + Ua^{< t-1>} + b)$$

W,U,b are coefficients specific to the gate and σ is the sigmoid function.

Type of gate	Role
Update gate Γ_u	How much past should matter now?
Relevance gate Γ_r	Drop previous information?
Forget gate Γ_f	Erase a cell or not?
Output gate Γ_o	How much to reveal of a cell?

Long-Short Term Memory (LSTM)

Forget 2) Update 3) Store 4) Output
 LSTM forget irrelevant part of the previous state.

$c^{< t>}$	$\Gamma_u\star ilde{c}^{< t>} + \Gamma_f\star c^{< t-1>}$
C	$u \wedge c + i f \wedge c$

1) Forget 2) Update 3) Store 4) Output

LSTM selectively update cell state value

$ anh(W_c[\Gamma_r\star a^{< t-1>},x^{< t>}]+b_c)$
$\Gamma_u\star ilde{c}^{< t>} + \Gamma_f\star c^{< t-1>}$

1) Forget 2) Update 3) Store 4) Output

LSTM store relevant new information into the cell state

$ ilde{c}^{< t>}$	$ anh(W_c[\Gamma_r\star a^{< t-1>},x^{< t>}]+b_c)$
$c^{< t>}$	$\Gamma_u\star ilde{c}^{< t>} + \Gamma_f\star c^{< t-1>}$
$a^{< t>}$	$\Gamma_o \star c^{< t>}$

1) Forget 2) Update 3) Store 4) Output

The output ate controls what information is sent to the next time step.

$ ilde{c}^{< t>}$	$ anh(W_c[\Gamma_r\star a^{< t-1>},x^{< t>}]+b_c)$
$c^{< t>}$	$\Gamma_u\star ilde{c}^{< t>} + \Gamma_f\star c^{< t-1>}$
$a^{< t>}$	$\Gamma_o \star c^{< t>}$

Long Short-Term Memory units (LSTM) deal with the vanishing gradient problem encountered by traditional RNN

$ ilde{c}^{< t>}$	$ anh(W_c[\Gamma_r\star a^{< t-1>},x^{< t>}]+b_c)$
$c^{< t>}$	$\Gamma_u\star ilde{c}^{< t>} + \Gamma_f\star c^{< t-1>}$
$a^{< t>}$	$\Gamma_o \star c^{< t>}$

LSTM Key-Concepts

- 1. Maintain a separate cell state from what is outputted
- 2. Use gates to control the flow information
 - a. **Forget** gate gets rid of irrelevant information
 - b. **Update** selected cell state
 - c. **Store** relevant information from current input
 - d. **Output** gate returns a filtered version of the cell state
- 3. Backpropagation through time with uninterrupted gradient flow

"I grew up in France and moved to United States, therefore I speak _____"

Less relevant

"I grew up in France and moved to United States, therefore I speak _____"

More relevant

"I grew up in France and moved to United States, therefore I speak ______"

Jet Tagging as Images

https://arxiv.org/pdf/1902.09914

Jet Tagging as Images

Credit: Angelo Monteux [URL]

Credit: Angelo Monteux [URL]

https://arxiv.org/pdf/1702.00748.pdf

 \mathbf{v}_i = properties of each hadrons, e.g. 4-vector, charge.

- Standord S230 Amidi, Recurrent Neural Network
- MIT 6.S191 Soleiman, Deep Sequence Modeling
- LSTM <u>Colah's blog</u>