Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia
Pedro Sánchez Terraf Mauricio Tellechea
Guido Ivetta César Vallero

FaMAF, 3 de septiembre de 2020

Avisos

- Las clases prácticas tienen una nueva dinámica de trabajo.
- Se asientan los temas del teórico inmediato anterior.

¡Participen!

Contenidos estimados para hoy

- Repaso
 - Representación de posets
 - Álgebras de Boole

- Teorema de Representación de álgebras de Boole finitas
 - Átomos y resultados básicos
 - Atomicidad y Separación
 - Prueba del Teorema

Sea (P,\leq) un poset, y sea $F:P o \mathscr{P}(P)$ definida por

$$F(d) := d \downarrow = \{ x \in P : x \le d \}$$

$$y \le x \in D \Rightarrow y \in D$$

Sea (P,\leq) un poset, y sea $F:P\to \mathscr{P}(P)$ definida por

$$F(d) := d \downarrow = \{x \in P : x \le d\}$$
 ciertos **decrecientes**.

Sea (P,\leq) un poset, y sea $F:P\to \mathscr{P}(P)$ definida por

$$F(d) := d \downarrow = \{x \in P : x \le d\}$$
 ciertos decrecientes.

■ F es inyectiva: para todos $d, c \in P$, $d \downarrow = c \downarrow \implies d = c$

Sea (P,\leq) un poset, y sea $F:P\to \mathscr{P}(P)$ definida por

$$F(d) := d \downarrow = \{x \in P : x \le d\}$$
 ciertos decrecientes.

■ F es inyectiva: para todos $d, c \in P$, $d \downarrow = c \downarrow \implies d = c$ porque tiene inversa, \sup .

Sea (P, \leq) un poset, y sea $F: P \to \mathcal{P}(P)$ definida por

$$F(d) := d \downarrow = \{x \in P : x \le d\}$$
 ciertos decrecientes.

- F es inyectiva: para todos $d, c \in P$, $d \downarrow = c \downarrow \implies d = c$ porque tiene inversa, \sup
- F preserva orden: para todos $d, c \in P$, $d \leq c \iff d \downarrow \subseteq c \downarrow$.

Sea (P,\leq) un poset, y sea $F:P o \mathscr{P}(P)$ definida por

- $F(d) := d \downarrow = \{x \in P : x \le d\}$ ciertos decrecientes.
- F es inyectiva: para todos $d, c \in P$, $d \downarrow = c \downarrow \implies d = c$ porque tiene inversa, \sup .
- F preserva orden: para todos $d, c \in P$, $d \leq c \iff d \downarrow \subseteq c \downarrow$.

Teorema

- $lacksquare (P,\leq)$ es isomorfo a un subposet de $(\mathcal{P}(P),\subseteq)$.
- $F: P \rightarrow F(P)$ es un isomorfismo entre P y su imagen.

Repaso: Álgebras de Boole

Un **álgebra de Boole** $(B, \lor, \land, \neg, 0, 1)$ es una estructura donde $(B, \lor, \land, 0, 1)$ es un retículo distributivo acotado y $\neg: B \to B$ da un complemento:

$$a \lor \neg a = 1$$
 $a \land \neg a = 0$.

Repaso: Álgebras de Boole

Un **álgebra de Boole** $(B,\vee,\wedge,\neg,0,1)$ es una estructura donde $(B,\vee,\wedge,0,1)$ es un retículo distributivo acotado y $\neg:B\to B$ da un complemento:

$$a \lor \neg a = 1$$
 $a \land \neg a = 0$.

Ejemplo

Álgebra de partes $(\mathcal{P}(A), \cup, \cap, (\cdot)^c, \varnothing, A)$, para cualquier conjunto A.

Teorema

Para toda álgebra de Boole finita B existe A tal que B es isomorfa a $\mathcal{P}(A)$.

Teorema

Para toda álgebra de Boole finita B existe A tal que B es isomorfa a $\mathcal{P}(A)$.

El conjunto *A* será exactamente el de los átomos de *B*:

Definición

 $a \in B$ es un **átomo** si a cubre a 0. At(B) es el conjunto de los átomos de B.

Teorema

Para toda álgebra de Boole finita B existe A tal que B es isomorfa a $\mathcal{P}(A)$.

El conjunto A será exactamente el de los átomos de B:

Definición

 $a \in B$ es un **átomo** si a cubre a 0. At(B) es el conjunto de los átomos de B.

$$Si \ a, b \in At(B), \ a \wedge b = 0 \ \delta \boxed{a = b = a \wedge b.}$$

$$A \wedge b = 0 \ \delta \boxed{a = b = a \wedge b.}$$

$$A \wedge b = 0 \ \delta \boxed{a = b = a \wedge b.}$$

Teorema

Para toda álgebra de Boole finita B existe A tal que B es isomorfa a $\mathcal{P}(A)$.

El conjunto A será exactamente el de los átomos de B:

Definición

 $a \in B$ es un **átomo** si a cubre a 0. At(B) es el conjunto de los átomos de B.

- $a \wedge (a_1 \vee \ldots \vee a_n) =$

Teorema

Para toda álgebra de Boole finita B existe A tal que B es isomorfa a $\mathcal{P}(A)$.

El conjunto A será exactamente el de los átomos de B:

Definición

 $a \in B$ es un **átomo** si a cubre a 0. At(B) es el conjunto de los átomos de B.

- \blacksquare Si $a, b \in At(B)$, $a \wedge b = 0$ ó $a = b = a \wedge b$.
- $Si \ a, a_1, \ldots, a_n \in At(B)$, entonces $a \land (a_1 \lor \ldots \lor a_n) = (a \land a_1) \lor \ldots \lor (a \land a_n)$

Teorema

Para toda álgebra de Boole finita B existe A tal que B es isomorfa a $\mathcal{P}(A)$.

El conjunto A será exactamente el de los átomos de B:

Definición

 $a \in B$ es un **átomo** si a cubre a 0. At(B) es el conjunto de los átomos de B.

- \blacksquare Si $a, b \in At(B)$, $a \land b = 0$ ó $a = b = a \land b$.
- $Sia, a_1, \ldots, a_n \in At(B)$, entonces $a \wedge (a_1 \vee \ldots \vee a_n) = (a \wedge a_1) \vee \ldots \vee (a \wedge a_n) = 0$ ó existe j tal que $a = a_j$. $\left(\wedge \not \subseteq \gamma \not \subseteq \bowtie \right)$

Teorema

Para toda álgebra de Boole finita B existe A tal que B es isomorfa a $\mathcal{P}(A)$.

El conjunto A será exactamente el de los átomos de B:

Definición

 $a \in B$ es un **átomo** si a cubre a 0. At(B) es el conjunto de los átomos de B.

- \blacksquare Si $a, b \in At(B)$, $a \land b = 0$ ó $a = b = a \land b$.
- Para todos $x, y \in B$, $x \le y \iff x \land \neg y = 0$.

Teorema

Sea $(B, \vee, \wedge, \neg, 0, 1)$ un álgebra de Boole finita. Luego

In álgebra de Boole finita. Luego
$$F: B \to \mathcal{P}(At(B)) \\ x \mapsto \{a \in At(B) : a \leq x\} \qquad (At(B)) \in \mathcal{P}(At(B))$$

es un isomorfismo entre $(B, \vee, \wedge, \neg, 0, 1)$ y $(\mathcal{P}(At(B)), \cup, \cap, (\cdot)^c, \varnothing, B)$.

Teorema

Sea $(B, \vee, \wedge, \neg, 0, 1)$ un álgebra de Boole finita. Luego

$$F: B \to \mathcal{P}(At(B))$$
$$x \mapsto \{a \in At(B) : a \le x\}$$

es un isomorfismo entre $(B, \vee, \wedge, \neg, 0, 1)$ y $(\mathscr{P}(At(B)), \cup, \cap, (\cdot)^c, \varnothing, B)$.

Teorema

Sea $(B, \vee, \wedge, \neg, 0, 1)$ un álgebra de Boole finita. Luego

$$F: B \to \mathcal{P}(At(B))$$
$$x \mapsto \{a \in At(B) : a \le x\}$$

es un isomorfismo entre $(B, \vee, \wedge, \neg, 0, 1)$ y $(\mathscr{P}(At(B)), \cup, \cap, (\cdot)^c, \varnothing, B)$.

- Es biyectiva.
- Preserva el orden $c \le b \iff F(c) \subseteq F(b)$.

Teorema

Sea $(B, \vee, \wedge, \neg, 0, 1)$ un álgebra de Boole finita. Luego

$$F: B \to \mathcal{P}(At(B))$$
$$x \mapsto \{a \in At(B) : a \le x\}$$

es un isomorfismo entre $(B, \vee, \wedge, \neg, 0, 1)$ y $(\mathscr{P}(At(B)), \cup, \cap, (\cdot)^c, \varnothing, B)$.

- Es biyectiva. Tiene inversa $\sup : \mathscr{P}(At(B)) \to B$. A continuación.
- Preserva el orden $c \le b \iff F(c) \subseteq F(b)$.

Teorema

Sea $(B, \vee, \wedge, \neg, 0, 1)$ un álgebra de Boole finita. Luego

$$F: B \to \mathcal{P}(At(B))$$
$$x \mapsto \{a \in At(B) : a \le x\}$$

es un isomorfismo entre $(B, \vee, \wedge, \neg, 0, 1)$ y $(\mathscr{P}(At(B)), \cup, \cap, (\cdot)^c, \varnothing, B)$.

- Es biyectiva. Tiene inversa $\sup : \mathcal{P}(At(B)) \to B$. A continuación.
- Preserva el orden $c \le b \iff F(c) \subseteq F(b)$. Sale directo de:
 - \blacksquare (\Rightarrow) la transitividad de \leq ;

Teorema

Sea $(B, \vee, \wedge, \neg, 0, 1)$ un álgebra de Boole finita. Luego

$$F: B \to \mathcal{P}(At(B))$$
$$x \mapsto \{a \in At(B) : a \le x\}$$

es un isomorfismo entre $(B, \vee, \wedge, \neg, 0, 1)$ y $(\mathscr{P}(At(B)), \cup, \cap, (\cdot)^c, \varnothing, B)$.

- Es biyectiva. Tiene inversa $\sup : \mathscr{P}(At(B)) \to B$. A continuación.
- Preserva el orden $c \le b \iff F(c) \subseteq F(b)$. Sale directo de:
 - \blacksquare (\Rightarrow) la transitividad de \leq ;
 - $\blacksquare \ (\Leftarrow) \ X \subseteq Y \implies \sup X \le \sup Y.$

Teorema

Sea $(B, \vee, \wedge, \neg, 0, 1)$ un álgebra de Boole finita. Luego

$$F: B \to \mathcal{P}(At(B))$$
$$x \mapsto \{a \in At(B) : a \le x\}$$

es un isomorfismo entre $(B, \vee, \wedge, \neg, 0, 1)$ y $(\mathscr{P}(At(B)), \cup, \cap, (\cdot)^c, \varnothing, B)$.

Para probarlo, necesitamos ver que F:

- Es biyectiva. Tiene inversa $\sup : \mathcal{P}(At(B)) \to B$. A continuación.
- Preserva el orden $c \le b \iff F(c) \subseteq F(b)$. Sale directo de:
 - \blacksquare (\Rightarrow) la transitividad de \leq ;
 - $\blacksquare \ (\Leftarrow) \ X \subseteq Y \implies \sup X \le \sup Y.$

Nos enfocamos en el caso $|B| \geqslant 2$.

Lema (Álgebras de Boole finitas son atómicas)

Para todo $b \in B$ distinto de 0 existe $a \in At(B)$ tal que $a \le b$.

Lema (Álgebras de Boole finitas son atómicas)

Para todo $b \in B$ distinto de 0 existe $a \in At(B)$ tal que $a \le b$.

Demostración.

Basta encontrar un minimal del subposet finito $b \downarrow \setminus \{0\}$ de B

Lema (Álgebras de Boole finitas son atómicas)

Para todo $b \in B$ distinto de 0 existe $a \in At(B)$ tal que $a \le b$.

Demostración.

Basta encontrar un minimal del subposet finito $b\downarrow \smallsetminus \{0\}$ de B.

Lema (Separación)

Para todo $x, y \in B$ tales que $x \nleq y$ existe $a \in At(B)$ tal que $a \leq x$ y $a \nleq y$.

Lema (Álgebras de Boole finitas son atómicas)

Para todo $b \in B$ distinto de 0 existe $a \in At(B)$ tal que $a \le b$.

Demostración.

Basta encontrar un minimal del subposet finito $b\downarrow \setminus \{0\}$ de B.

Lema (Separación)

Para todo $x, y \in B$ tales que $x \nleq y$ existe $a \in At(B)$ tal que $a \leq x$ y $a \nleq y$.

Demostración.

Ver pr $Q \neq y$. Paral stand, $\leq X_{1} = y$.

Badano Granding

Lema (Álgebras de Boole finitas son atómicas)

Para todo $b \in B$ distinto de 0 existe $a \in At(B)$ tal que $a \le b$.

Demostración.

Basta encontrar un minimal del subposet finito $b\downarrow \setminus \{0\}$ de B.

Lema (Separación)

Para todo $x, y \in B$ tales que $x \nleq y$ existe $a \in At(B)$ tal que $a \leq x$ y $a \nleq y$.

Demostración.

Porque $x \land \neg y \neq 0$ y hay un átomo debajo.

SUP F(x) = x tx63

Pasamos entonces a la prueba principal, la correspondencia entre conjuntos de átomos y elementos de B.

Separación Para todo $x,y\in B$ tales que $x\nleq y$ existe $a\in At(B)$ tal que $a\leq x$ y $a\nleq y$.

negar
$$\exists \alpha \in AT(b)$$
 $\alpha \in X$ y $\alpha \notin y$.
 $\forall \alpha \in AT(B)$ $\alpha \in X \Rightarrow \alpha \in y$.
 $\forall \alpha \in AT(B)$ $\forall \alpha \in X \Rightarrow \alpha \in Y$.
 $\forall \alpha \in AT(B)$ $\forall \alpha \in X \Rightarrow \alpha \in Y$.

Separación Para todo $x,y\in B$ tales que $x\nleq y$ existe $a\in At(B)$ tal que $a\leq x$ y $a\nleq y$.

Recordemos: $F(x) := \{a \in At(B) : a \le x\}.$

Separación Para todo $x,y\in B$ tales que $x\nleq y$ existe $a\in At(B)$ tal que $a\leq x$ y $a\nleq y$. $F(x)\subseteq F(y)$ implica $x\leq y$.

Recordemos: $F(x) := \{a \in At(B) : a \le x\}.$

Separación Para todo
$$x,y\in B$$
 tales que $x\nleq y$ existe $a\in At(B)$ tal que $a\leq x$ y $a\nleq y$. $F(x)\subseteq F(y)$ implica $x\leq y$.

Recordemos: $F(x) := \{a \in At(B) : a \le x\}.$

Prueba del Teorema de Representación.

Vemos que F y \sup son inversas una de la otra.

Separación Para todo
$$x,y\in B$$
 tales que $x\nleq y$ existe $a\in At(B)$ tal que $a\leq x$ y $a\nleq y$. $F(x)\subseteq F(y)$ implica $x\leq y$.

Recordemos: $F(x) := \{a \in At(B) : a \le x\}.$

Prueba del Teorema de Representación.

Vemos que F y \sup son inversas una de la otra.

 $\blacksquare x = \sup F(x) = \sup \{a \in At(B) : a \le x\}$ para todo $x \in B$:

 $\begin{array}{ll} \text{Separación} & \text{Para todo } x,y \in B \text{ tales que } x \nleq y \text{ existe } a \in At(B) \text{ tal que} \\ & a \leq x \text{ y } a \nleq y. & F(x) \subseteq F(y) \text{ implica } x \leq y. \end{array}$

Recordemos: $F(x) := \{a \in At(B) : a \le x\}.$

Prueba del Teorema de Representación.

Vemos que F y \sup son inversas una de la otra.

■ $x = \sup F(x) = \sup \{a \in At(B) : a \le x\}$ para todo $x \in B$: x es claramente cota de F(x). Y si y es cota, $F(x) \subseteq F(y)$, lo que implica $x \le y$ por Separación.

Separación Para todo
$$x,y\in B$$
 tales que $x\nleq y$ existe $a\in At(B)$ tal que $a\leq x$ y $a\nleq y$. $F(x)\subseteq F(y)$ implica $x\leq y$.

Recordemos: $F(x) := \{a \in At(B) : a \le x\}.$

Prueba del Teorema de Representación.

Vemos que F y \sup son inversas una de la otra.

■ $x = \sup F(x) = \sup \{a \in At(B) : a \le x\}$ para todo $x \in B$: x es claramente cota de F(x). Y si y es cota, $F(x) \subseteq F(y)$, lo que implica $x \le y$ por Separación.

Separación Para todo
$$x,y\in B$$
 tales que $x\nleq y$ existe $a\in At(B)$ tal que $a\leq x$ y $a\nleq y$.
$$F(x)\subseteq F(y) \text{ implica } x\leq y.$$

Recordemos: $F(x) := \{a \in At(B) : a < x\}.$

Prueba del Teorema de Representación.

Vemos que F y \sup son inversas una de la otra.

- $\blacksquare x = \sup F(x) = \sup \{a \in At(B) : a \le x\}$ para todo $x \in B$: x es claramente cota de F(x). Y si y es cota, $F(x) \subseteq F(y)$, lo que implica $x \le y$ por Separación. $S \circ F = \bigcup_{\mathcal{B}} F \circ S \circ F = \bigcup_{\mathcal{B}} F \circ S \circ F = \bigcup_{\mathcal{B}} F \circ S \circ F \circ F \circ S \circ F \circ S$

Separación Para todo $x,y\in B$ tales que $x\nleq y$ existe $a\in At(B)$ tal que $a\leq x$ y $a\nleq y$. $F(x)\subseteq F(y)$ implica $x\leq y$.

Recordemos: $F(x) := \{a \in At(B) : a \le x\}.$

Prueba del Teorema de Representación.

Vemos que F y \sup son inversas una de la otra.

- $x = \sup F(x) = \sup \{a \in At(B) : a \le x\}$ para todo $x \in B$: x es claramente cota de F(x). Y si y es cota, $F(x) \subseteq F(y)$, lo que implica $x \le y$ por Separación.
- $A = F(\sup A) = \{a \in At(B) : a \leq \sup A\}$ para todo $A \subseteq At(B)$: $A \subseteq F(\sup A)$ sale directo. Y $F(\sup A) \subseteq A$ por distributividad.

