Sampling Distributions 2

Mainak Thakur

08.09.2020

t-distribution

t-distribution DATE
Let $2 \sim \mathcal{N}(0,1)$, $u \sim \mathcal{X}(v)$ and
they are independent. Then
The distribution of the roudon
leaniable of the form $\frac{2}{12}$ is
known to have t distribution
with I degrees of freedom
pdf: f(+)=-1 (1+±)-2+
- 20 < t < ~.

Notation

mean = 0.

$$t_{\alpha, \gamma}$$
: The realize of t poith $df = \gamma$
 $s.t. \theta(t > t_{\alpha, \gamma}) = \alpha$.
 $t_{1-\alpha, \gamma} = -t_{\alpha, \gamma}$. [Symmetry]

Graph

Suppose De haile a Wormal population with mean M and S.d. J. $\times \sim N(H, \sigma^2)$. Jane niid samples X, X, X, ..., Xn from the population. $\times \sim \mathcal{N}\left(\mathcal{M}, \sigma^2/n\right)$.

Suppose De haile a Wormal population with mean 14 and S.d. J. X~ N(H, 02). Jane niid samples X, X, X, ..., Xn from the population. $X \sim N \left(M, \sigma^2/n\right)$.

The problem is that we might
not know or always. So what
could be the best quess of J
given a sample?
'S' is the am extimator of o.
X-M

$T = \frac{\overline{X} - \mu}{\sqrt{m}} = \frac{(\overline{X} - \mu)}{\sqrt{m}} \rightarrow \frac{2}{\sqrt{m}}$ $= \frac{S}{\sqrt{m}} \rightarrow \sqrt{\frac{M}{m-1}}$
$u = \frac{(m-1)s^2}{\sigma^2} \sim \chi^2(m-1)$
numerator and denominator are independent.
X-M ~ to with (n-1) df.

F-distribution

Let Y, and Y2 be independently distributed as X with I, and V2 d.f. respectively. Ine randon rearrable - Y1/V1 is said to have F distribution with (2, , 72) degnier

Properties

$$pq: f(F) = \frac{(2,12)^{2+12}}{B(2,12)^{2+12}} \cdot \frac{(2,-2)/2}{(1+\frac{2}{2})^{2+12}} \cdot \frac{(2,-2)/2}{(1+\frac{2}{2})^{2+12}} \cdot \frac{(2,-2)/2}{(1+\frac{2}{2})^{2+12}} \cdot \frac{(2,-2)/2}{(2,-2)/2} \cdot$$

Mean =
$$\frac{\sqrt{2}}{\sqrt{2}-2}$$
, f dist "toely skewed.

 $\times v t(n)$ then, $\times v F(1,n)$.

Notation

Graph

Ref: Fundamentals of Statistics, Vol 1 by Gun, Gupta, Dasgupta wikipedia

F-distribution often arises When the valios of naviances ave investreed. X(n2-1)/(n2-1)

Question

Let X_1, X_2, \ldots, X_{2n} are i.i.d random samples from a Normal population with mean μ and variance σ^2 . Find the distribution of the following statistic:

$$[x_1 + x_2 + \ldots + x_n - x_{n+1} - x_{n+2} - \ldots - x_{2n}]/\sqrt{2n}$$