Using Heaps in Algorithms

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Programming, Data Structures and Algorithms using Python
Week 6

Priority queues and heaps

- Priority queues support the following operations
 - insert()
 - delete_max() or delete_min()
- Heaps are a tree based implementation of priority queues
 - insert(), delete_max() / delete_min() are both $O(\log n)$
 - heapify() builds a heap from a list/array in time O(n)
- Heap can be represented as a list/array
 - Simple index arithmetic to find parent and children of a node
- What more do we need to use a heap in an algorithm?

- Maintain two dictionaries with vertices as keys
 - visited, initially False for all v
 - distance, initially infinity for all v
- Set distance[s] to 0
- Repeat, until all reachable vertices are visited
 - Find unvisited vertex nextv with minimum distance
 - Set visited[nextv] to True
 - Recompute distance[v] for every neighbour v of nextv

```
def dijkstra(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  (visited, distance) = ({},{})
 for v in range(rows):
    (visited[v],distance[v]) = (False,infinity)
 distance[s] = 0
 for u in range(rows):
    nextd = min([distance[v] for v in range(rows)
                    if not visited[v]])
    nextvlist = [v for v in range(rows)
                    if (not visited[v]) and
                        distance[v] == nextd]
    if nextvlist == []:
      break
    nextv = min(nextvlist)
    visited[nextv] = True
    for v in range(cols):
      if WMat[nextv,v,0] == 1 and (not visited[v]):
        distance[v] = min(distance[v], distance[nextv]
                                       +WMat[nextv,v,1])
 return(distance)
```

3/9

Bottleneck

- Find unvisited vertex *j* with minimum distance
 - Naive implementation requires an O(n) scan

```
def dijkstra(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  (visited, distance) = ({},{})
  for v in range(rows):
    (visited[v],distance[v]) = (False,infinity)
 distance[s] = 0
 for u in range(rows):
    nextd = min([distance[v] for v in range(rows)
                    if not visited[v]])
    nextvlist = [v for v in range(rows)
                    if (not visited[v]) and
                        distance[v] == nextd]
    if nextvlist == []:
      break
    nextv = min(nextvlist)
    visited[nextv] = True
    for v in range(cols):
      if WMat[nextv,v,0] == 1 and (not visited[v]):
        distance[v] = min(distance[v], distance[nextv]
                                       +WMat[nextv,v,1])
 return(distance)
```

Bottleneck

- Find unvisited vertex *j* with minimum distance
 - Naive implementation requires an O(n) scan
- Maintain unvisited vertices as a min-heap
 - delete_min() in $O(\log n)$ time

```
def dijkstra(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  (visited, distance) = ({},{})
  for v in range(rows):
    (visited[v],distance[v]) = (False,infinity)
 distance[s] = 0
 for u in range(rows):
    nextd = min([distance[v] for v in range(rows)
                    if not visited[v]])
    nextvlist = [v for v in range(rows)
                    if (not visited[v]) and
                        distance[v] == nextd]
    if nextvlist == []:
      break
    nextv = min(nextvlist)
    visited[nextv] = True
    for v in range(cols):
      if WMat[nextv,v,0] == 1 and (not visited[v]):
        distance[v] = min(distance[v], distance[nextv]
                                       +WMat[nextv,v,1])
 return(distance)
```

4/9

Bottleneck

- Find unvisited vertex *j* with minimum distance
 - Naive implementation requires an O(n) scan
- Maintain unvisited vertices as a min-heap
 - delete_min() in $O(\log n)$ time
- But, also need to update distances of neighbours
 - Unvisited neighbours' distances are inside the min-heap
 - Updating a value is not a basic heap operation

```
def dijkstra(WMat,s):
  (rows,cols,x) = WMat.shape
  infinity = np.max(WMat)*rows+1
  (visited, distance) = ({},{})
  for v in range(rows):
    (visited[v],distance[v]) = (False,infinity)
 distance[s] = 0
 for u in range(rows):
    nextd = min([distance[v] for v in range(rows)
                    if not visited[v]])
    nextvlist = [v for v in range(rows)
                    if (not visited[v]) and
                        distance[v] == nextd]
    if nextvlist == []:
      break
    nextv = min(nextvlist)
    visited[nextv] = True
    for v in range(cols):
      if WMat[nextv,v,0] == 1 and (not visited[v]):
        distance[v] = min(distance[v], distance[nextv]
                                       +WMat[nextv,v,1])
 return(distance)
```

■ Change 54 to 35

- Change 54 to 35
 - Reducing a value can create a violation with parent

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child
 - Swap downwards to restore heap, similar to delete_min()

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child
 - Swap downwards to restore heap, similar to delete_min()

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child
 - Swap downwards to restore heap, similar to delete_min()
- Both updates are $O(\log n)$
 - Are we done?

- Change 54 to 35
 - Reducing a value can create a violation with parent
 - Swap upwards to restore heap, similar to insert()
- Change 29 to 71
 - Increasing a value can create a violation with child
 - Swap downwards to restore heap, similar to delete_min()
- Both updates are $O(\log n)$
 - Are we done?
- Locate the node to update?

- Maintain two additional dictionaries
 - Vertices are $\{0,1,\ldots,n-1\}$
 - Heap positions are $\{0, 1, \ldots, n-1\}$
 - VtoH maps vertices to heap positions
 - HtoV maps heap positions to vertices

VtoH	0	1	2	3	4	5	6	7	8
	7	3	5	2	4	1	6	0	8
HtoV	0	1	2	3	4	5	6	7	8
	7	5	3	1	4	2	6	0	8
4 0 1 4 4 5 1 4 5 1							2 E N		

- Maintain two additional dictionaries
 - Vertices are $\{0,1,\ldots,n-1\}$
 - Heap positions are $\{0, 1, \ldots, n-1\}$
 - VtoH maps vertices to heap positions
 - HtoV maps heap positions to vertices
- Update node 1 to 35

VtoH	0	1	2	3	4	5	6	7	8
	7	3	5	2	4	1	6	0	8
HtoV	0	1	2	3	4	5	6	7	8
	7	5	3	1	4	2	6	0	8
スロレス側 レスコレス ヨト							. = .		

- Maintain two additional dictionaries
 - Vertices are $\{0,1,\ldots,n-1\}$
 - Heap positions are $\{0, 1, \dots, n-1\}$
 - VtoH maps vertices to heap positions
 - HtoV maps heap positions to vertices
- Update node 1 to 35
- Update VtoH and HtoV each time we swap values in the heap

VtoH	0	1	2	3	4	5	6	7	8
	7	1	5	2	4	3	6	0	8
HtoV	0	1	2	3	4	5	6	7	8
	7	1	3	15	4	2	6	0	8
							4 = 5		

- Using min-heaps
 - Identifying next vertex to visit is $O(\log n)$
 - Updating distance takes $O(\log n)$ per neighbour
 - Adjacency list proportionally to degree

- Using min-heaps
 - Identifying next vertex to visit is O(log n)
 - Updating distance takes $O(\log n)$ per neighbour
 - Adjacency list proportionally to degree
- Cumulatively
 - O(n log n) to identify vertices to visit across n iterations
 - O(m log n) distance updates overall

- Using min-heaps
 - Identifying next vertex to visit is $O(\log n)$
 - Updating distance takes $O(\log n)$ per neighbour
 - Adjacency list proportionally to degree
- Cumulatively
 - O(n log n) to identify vertices to visit across n iterations
 - O(m log n) distance updates overall
- Overall $O((m+n)\log n)$

Madhayan Mukund

Start with an unordered list

- Start with an unordered list
- Build a heap O(n)

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$
- After each delete_max(), heap shrinks by 1

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$
- After each delete_max(), heap shrinks by 1
- Store maximum value at the end of current heap

- Start with an unordered list
- Build a heap O(n)
- Call delete_max() n times to extract elements in descending order $O(n \log n)$
- After each delete_max(), heap shrinks by 1
- Store maximum value at the end of current heap
- In place $O(n \log n)$ sort

■ Updating a value in a heap takes $O(\log n)$

- Updating a value in a heap takes $O(\log n)$
- Need to maintain additional pointers to map values to heap positions and vice versa

- Updating a value in a heap takes $O(\log n)$
- Need to maintain additional pointers to map values to heap positions and vice versa
- With this extended notion of heap, Dijkstra's algorithm complexity improves from $O(n^2)$ to $O((m+n)\log n)$

- Updating a value in a heap takes $O(\log n)$
- Need to maintain additional pointers to map values to heap positions and vice versa
- With this extended notion of heap, Dijkstra's algorithm complexity improves from $O(n^2)$ to $O((m+n)\log n)$
- In a similar way, improve Prim's algorithm to $O((m+n)\log n)$

- Updating a value in a heap takes $O(\log n)$
- Need to maintain additional pointers to map values to heap positions and vice versa
- With this extended notion of heap, Dijkstra's algorithm complexity improves from $O(n^2)$ to $O((m+n)\log n)$
- In a similar way, improve Prim's algorithm to $O((m+n)\log n)$
- Heaps can also be used to sort a list in place in $O(n \log n)$