Berechenbare Funktionen und (semi-)entscheidbare Mengen

Die Menge der μ -rekursiven Funktionen ist die kleinste Menge von (möglicherweise partiellen) Funktionen, die alle primitiv rekursiven Funktionen enthält, unter Komposition und primitiver Rekursion abgeschlossen ist, und außerdem Folgendes erfüllt:

Wenn $f: \mathbb{N}^k \times \mathbb{N}$ total und μ -rekursiv ist, dann ist die partielle Funktion $\vec{x} \mapsto \min\{y: f(\vec{x}, y) = 0\}$ auch μ -rekursiv.

- 212. Es gibt eine Menge $A \subseteq \mathbb{N}$, die zwar semi-entscheidbar ist, aber nicht entscheidbar.
- 213. Es gibt eine berechenbare partielle Funktion $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, sodass die partielle Funktion $g(x) := \min\{y: f(x,y) = 0\}$ nicht berechenbar ist. Hinweis: Verwenden Sie die vorige Aufgabe. Man kann eine Funktion f mit f(x,1) = 0 für alle x finden.
- 214. Sei $f : \mathbb{N} \to \mathbb{N}$ eine berechenbare streng monotone totale Funktion. $(x < y \Rightarrow f(x) < f(y))$. Dann ist die Wertemenge von f entscheidbar.
- 215. Sei $f : \mathbb{N} \to \mathbb{N}$ eine berechenbare schwach monotone totale Funktion. $(x < y \Rightarrow f(x) \le f(y))$. Dann ist die Wertemenge von f entscheidbar.
- 216. Für alle $(n_1, \ldots, n_k) \in \mathbb{N}^k$ definieren wir $(n_1, \ldots, n_k) := p_1^{n_1+1} \cdots p_k^{n_k+1}$, wobei $(p_1, p_2, p_3, \ldots) = (2, 3, 5, 7, \ldots)$ die Folge der Primzahlen ist. (Runde Klammern für Folgen, spitze Klammern für einzelne Zahlen, die Folgen codieren.)

Für jede Funktion $f: \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ definieren wir $\hat{f}: \mathbb{N}^k \times \mathbb{N} \to \mathbb{N}$ so:

$$\hat{f}(\vec{x}, y) = \langle f(\vec{x}, 0), \dots, f(\vec{x}, y - 1) \rangle,$$

also inbesondere $f(\vec{x},0) = \langle \rangle = 1$, und $f(\vec{x},1) = \langle f(\vec{x},0) \rangle = 2^{f(\vec{x},0)+1}$. Zeigen Sie:

- (a) f is primitiv rekursiv genau dann, wenn \hat{f} primitiv rekursiv ist.
- (b) Wenn f total ist, dann ist f genau dann berechenbar, wenn \hat{f} berechenbar ist.
- 217. Sei $F: \mathbb{N} \to \mathbb{N}$ die Fibonacci-Folge: F(0) = 0, F(1) = 1, F(n+2) = F(n+1) + F(n) für alle $n \ge 0$. Zeigen Sie, dass F primitiv rekursiv ist, indem Sie zunächst eine primitive Rekursion für \hat{F} angeben.
- 218. Zeigen Sie (mit Induktion nach Aufbau der Formeln), dass jedes Σ_0 -Menge entscheidbar ist.
- 219. Zeigen Sie, dass jede Σ_1 -Menge semientscheidbar ist.
- 220. Wenn $f: \mathbb{N}^k \to \mathbb{N}$ eine totale Funktion ist, die (als Relation) eine Σ_1 -Menge ist, dann ist f auch Δ_1 (d.h., die Menge ($\mathbb{N}^k \times \mathbb{N}$) \ f ist auch Σ_1).
- 221. Es gibt eine partielle Funktion $f: \mathbb{N}^k \to \mathbb{N}$, die zwar Σ_1 aber nicht Δ_1 ist. (Für ein k; für beliebige $k \geq 1$.) Hinweis: Verwenden Sie den noch unbewiesenen Satz aus der Vorlesung, dass es Σ_1 -Mengen gibt, deren Komplement nicht Σ_1 ist.
- 222. Geben Sie ein primitiv rekursive Funktionen $f,g:\mathbb{N}\to\mathbb{N}^2$ an, sodass f eine Bijektion ist, und g surjektiv ist und jede Menge $g^{-1}(\{(n,m)\})$ unendlich groß ist. Verallgemeinern Sie dies zu $f_k,g_k:\mathbb{N}\to\mathbb{N}^k$.

- 223. Seien $A \subseteq \mathbb{N}^k$ und $B \subseteq \mathbb{N}$, und sei $f : \mathbb{N}^k \to \mathbb{N}$ eine (totale oder partielle) Funktion, deren Graph eine Σ_1 -Menge ist. Zeigen Sie (am besten durch Angabe von expliziten Σ_1 -Formeln):
 - (a) Wenn A und B jeweils Σ_1 -Mengen sind, dann auch $f[A] := \{f(\vec{x}) : \vec{x} \in A\}$ und $f^{-1}[B] := \{\vec{x} : f(\vec{x}) \in B\}.$
 - (b) Wenn B eine Δ_1 -Menge ist, dann auch $f^{-1}[B]$.
 - (c) Es gibt eine Σ_1 -Funktion f und eine Δ_1 -Menge A, sodass f[A] keine Δ_1 -Menge ist (äquivalent: nicht entscheidbar ist). (Hinweis: Verwenden Sie den (noch unbewiesenen) Satz aus der VO, dass es Σ_1 -Mengen gibt, deren Komplement nicht Σ_1 ist. .)
- 224. Für i=0,1 sei P_i die Menge aller Programme p, die bei Eingabe p halten und i ausgeben. Es gilt offenbar $P_0 \cap P_1 = \emptyset$. Zeigen Sie, dass die Mengen P_0 und P_1 semi-entscheidbar sind (indem Sie Programme skizzieren, die die jeweiligen partiellen charakteristischen Funktionen $\tilde{\chi}_{P_i}$ berechnen), es aber keine entscheidbare Menge E mit $P_0 \subseteq E$, $P_1 \subseteq \mathbb{N} \setminus E$ gibt.

Eine Menge $A \subseteq \mathbb{N}$ heißt Π_1 -Menge, wenn $\mathbb{N} \setminus A$ eine Σ_1 -Menge ist. Eine Menge $B \subseteq \mathbb{N}$ heißt Δ_1 -Menge, wenn B sowohl Σ_1 - als auch Π_1 -Menge ist.

- 225. a. Seien $S_0, S_1 \subseteq \mathbb{N}$ Σ_1 -Mengen mit $S_0 \cup S_1 = \mathbb{N}$. Dann gibt es eine Δ_1 -Menge E, sodass $S_0 \setminus S_1 \subseteq E \subseteq S_0$ gilt. (Hinweis: für $n \in S_0 \cap S_1$ vergleiche die jeweils kleinsten Zeugen für $n \in S_0$ und $n \in S_1$.)
 - b. Seien $Q_0, Q_1 \subseteq \mathbb{N}$ Π_1 -Mengen mit $Q_0 \cap Q_1 = \emptyset$. Dann gibt es eine Δ_1 -Menge E, die Q_0 und Q_1 trennt. (D.h., $Q_0 \subseteq E$, $Q_1 \subseteq \mathbb{N} \setminus E$.) (Hinweis: (a))

Berechenbare Funktionen auf Strings

Im Folgenden sei S die Menge aller Strings über einem festen endlichen Alphabet A. Für $x \in S$ sei |x| die Länge von x.

Um zu zeigen, dass eine Menge A von Strings entscheidbat oder semi-entscheidbar ist, geben Sie (informell) eine Algorithmus an, der χ_A bzw. $\tilde{\chi}_A$ berechnet.

- 226. Seien $f: S \times S \to S$ und $g: S \to S$ berechenbare Funktionen; für $B \subseteq S$ definieren wir \bar{B} als die kleinste Menge, die B enthält und unter f und g abgeschlossen ist. Zeigen Sie: Wenn B semi-entscheidbar ist, dann auch \bar{B} .
- 227. Seien f und g wie in der vorigen Aufgabe, mit der zusätzlichen Eigenschaft, $|f(x,y)| > \max(|x|,|y|)$ und |g(x)| > |x| für alle x,y. Wenn B entscheidbar ist, dann auch \bar{B} .
- 228. Schließen Sie aus einer geeigneten Verallgemeinerung der vorigen Aufgabe, dass die Menge aller Formeln entscheidbar ist.

Für jede Menge Σ von geschlossenen Formeln sei $cl(\Sigma)$ die Menge aller aus Σ ableitbaren geschlossenen Formeln.

- 229. Die Menge aller logischen Axiome ist entscheidbar.
- 230. Wenn Σ semi-entscheidbar ist, dann auch $cl(\Sigma)$.
- 231. Sei Σ semi-entscheidbar. Dann gibt es eine entscheidbare Menge Σ' mit $cl(\Sigma')=cl(\Sigma)$. Hinweis: $\varphi \wedge \varphi$.
- 232. Sei Σ eine vollständige semi-entscheidbare Theorie. Dann ist $cl(\Sigma)$ entscheidbar.
- 233. Gegeben sei eine beliebige semi-entscheidbare aber nicht entscheidbare Menge A. Geben Sie eine vollständige semi-entscheidbare Theorie Σ_A (in einer geeigneten Sprache an, die nicht entscheidbar ist. (Hinweis: $\top^1 := \top$, $\top^{n+1} := (\top^n) \wedge \top$.)

Unentscheidbare Mengen; universelle Mengen

- 234. Geben Sie für $k=2,3,\ldots$ eine Bijektion $p_k:\mathbb{N}^k\to\mathbb{N}$ mit folgender Eigenschaft an: Für alle $A\subseteq\mathbb{N}^k$ gilt: A ist Σ_1 -Menge genau dann, wenn $p_k[A]$ eine Σ_1 -Menge ist.
- 235. Es gibt eine Σ_1 -Menge $U_1 \subseteq \mathbb{N} \times \mathbb{N}$ mit folgender Eigenschaft: Für jede Σ_1 -Menge $B \subseteq \mathbb{N}$ gibt es ein $k \in \mathbb{N}$ mit $B = \{y \in \mathbb{N} : (k, y) \in A\}$. (Eine Menge mit dieser Eigenschaft heißt "universelle Σ_1 -Menge".)
- 236. (a) Sei $A \subseteq \mathbb{N}^2$ eine Σ_1 -Menge. Dann sind die Mengen $\{y \in \mathbb{N} : (5,y) \in A\}$ und $\{x \in \mathbb{N} : (x,x) \in A\}$ auch Σ_1 -Mengen.
 - (b) Es gibt eine Σ_1 -Menge $U \subseteq \mathbb{N}$, die keine Π_1 -Menge ist. (Das heißt: $\mathbb{N} \setminus U$ ist keine Σ_1 -Menge.) Hinweis: Verwenden Sie (a) sowie die beiden vorigen Aufgaben.

Wohlordnungen

Eine strikte lineare Ordnung (A,<) (mit der zugehörigen reflexiven Ordnung \leq) heißt Wohlordnung, wenn jede nichtleere Teilmenge von A ein kleinstes Element hat: $\forall B \subseteq A: (B \neq \emptyset \Rightarrow \exists b \in B \ \forall x \in B: b \leq x).$

- 237. Wenn (A, <) eine Wohlordnung ist, in der jede nichtleere Teilmenge ein größtes Element hat, dann ist A endlich.
- 238. Seien (A, <) und (B, <) Wohlordnungen, $A \cap B = \emptyset$. Finden Sie eine Wohlordnung auf $A \cup B$.
- 239. Seien (A, <) und (B, <) Wohlordnungen. Finden Sie eine Wohlordnung auf $A \times B$. (Hinweis: lexikographische Ordnung: $(x, y) < (x', y') \Leftrightarrow (x < x' \lor (x = x' \land y < y'))$.)
- 240. Definieren Sie die lexikographische Ordnung auf $\{0,1\}^{\mathbb{N}}$. Gibt es ein kleinstes Element? Zeigen Sie, dass diese Ordnung eine lineare Ordnung aber keine Wohlordnung ist.
- 241. Geben Sie eine Menge $A \neq \emptyset$ und eine Funktion $g: A \to A$ an, sodass es keine Funktion $f: \mathbb{Z} \to A$ gibt, die $\forall x \in \mathbb{Z}: f(x+1) = g(f(x))$ erfüllt.
- 242. Wie in der vorigen Aufgabe, aber diesmal soll es genau zwei verschiedene Funktionen f geben, die die obige Bedingung erfüllen.

Bijektionen

Beachten Sie, dass wir f(x) für den Funktionswert von f an der Stelle x schreiben. Für $U \subseteq \text{dom}(f)$ nennen wir die Menge $\{f(u): i \in U\}$ nicht f(U) sondern f[U].

- 243. Seien $f:A\to B$ und $g:B\to A$ injektiv. Der Einfachkeit halber seinen A und B disjunkt. Zeigen Sie, dass es eine Bijektion $h:A\to B$ gibt, indem Sie den folgenden Beweis vervollständigen: Wir definieren $A_0:=A,\,B_0:=B,\,A_{n+1}:=g[B_n],\,B_{n+1}:=f[A_n].$
 - Sei $X_1 :=: \bigcup_k A_{2k} \setminus A_{2k+1}$, $X_2 := \bigcup_k A_{2k+1} \setminus A_{2k+2}$, $X_3 := \bigcap_k A_k$, und definieren Sie $Y_1, Y_2, Y_3 \subseteq B$ analog.
 - a. Zeigen Sie, dass $\{X_1, X_2, X_3\}$ eine Partition von A ist.
 - b. Definieren Sie $h:A\to B$ mit eine Fallunterscheidung: Für $x\in X_1$ verwenden Sie f, um h(x) zu definieren, für $x\in X_2$ hingegen g. Und für $x\in X_3$?
 - c. Zeigen Sie, dass die so definierte Funktion wohldefiniert ist, und überdies eine Bijektion.