ECE380 Digital Logic

Synchronous Sequential Circuits: State Assignment Problem, Mealy State Machines

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 29-1

State assignment problem

- For the sequential circuit examples shown thus far, we have considered only a simple, straightforward state assignment
- Could another, different state assignment lead to a simpler solution?

	Present	Next state		
	state	w=0	w=1	Output z
	y_2y_1	Y_2Y_1	Y_2Y_1	
Α	00	00	01	0
В	01	00	10	0
С	10	00	10	1
	11	dd	dd	d

Electrical & Computer Engineering

Alternate state assignment

 If we change the state assignment for the previous problem such that A=00, B=01, C=11 and 10 is the unused state, the state assigned state table becomes the following

Present	Next	state	Output	
state	w=0	w=1	z	
Α	Α	В	0	
В	Α	С	0	
С	Α	С	1	

	Present	Next state		
	state	w=0	w=1	Output 7
	y_2y_1	Y_2Y_1	Y_2Y_1	۷
Α	00	00	01	0
В	01	00	11	0
С	11	00	11	1
	10	dd	dd	d

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 29-3

Simplified circuit implementation

Electrical & Computer Engineering

State assignment problem

- In general, circuits are much larger than the example given, and different state assignments can have a significant impact on the cost of the final implementation
- It is often impossible (impractical) to find the best assignment for a large circuit because the number of available states is large
- CAD tools usually perform state assignment using heuristic techniques

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 29-5

State assignment guidelines

- Does <u>not</u> guarantee a minimum solution
- Assignments for states are adjacent if they differ in only one state variable
 - 1. States that have the same next state for a given input should be given adjacent assignments
 - 2. States that are the next state of the same state should be given adjacent assignments
 - 3. States that have the same output for a given input should be given adjacent assignments (groups '1's on the output K-map)

Electrical & Computer Engineering

State assignment guidelines

 States that have the same next state for a given input should be given adjacent assignments

2. States that are the next state of the same state should be given adjacent assignments

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 29-7

State assignment guidelines

- Keep the following in mind:
 - 1. Assign the starting state to the '0' cell on the map (i.e. the starting state has all flip-flop outputs=0)
 - 2. Satisfy guideline 1 and multiple occurrences of guideline 2 first
 - 3. If the guidelines require that 3 or 4 states be adjacent, place these states within a group of 4 adjacent squares on the map
 - 4. Guideline 3 is less important than 1 or 2 unless the circuit is to have multiple outputs

Electrical & Computer Engineering

Example Moore state diagram

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 29-9

Example state assignment

- Two state variables y₁y₀
- · According to guidelines
- A=00
- 1. {A,D}, {B,D}, {A,C}
- 2. {A,D}, {B,C}
- 3. {A,B,C}

Electrical & Computer Engineering

One hot encoding

- One possibility for state assignment is to use as many state variables as there are states in a sequential circuit
- For each state, all but one of the state variables are
 0
- The variable whose value is 1 is deemed to be hot
 - **One-hot encoding** method
- Increases the number of flip-flops needed for implementation, but tends to lead to simpler output expressions
 - Simpler output expressions may lead to a faster circuit since there may be less propagation delay from the flip-flop outputs to the final outputs of the sequential circuit

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 29-11

Mealy state model

- Mealy model: circuit outputs depend on the present state of the circuit and the primary inputs, giving additional flexibility in designing sequential circuits
- Greater flexibility often leads to simpler circuits

Mealy state diagram

- For the Mealy model, outputs are no longer associated with a particular state
 - Outputs are associated with transitions between states
- Typical Mealy model state diagram
 - Detects w=11 sequence

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 29-13

Mealy model state table

 The state table for a Mealy model FSM differs from the Moore model FSM only in how the outputs are viewed

Present	Next state		Output z	
state	w = 0	w = 1	w = 0	w = 1
Α	Α	В	0	0
В	Α	В	0	1

Electrical & Computer Engineering

State-assigned state table

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 29-15

Design example

 Construct a Mealy state diagram for a sequence detector that detects the input sequence w=101

Electrical & Computer Engineering