인공지능 비전 기반 RT 필름 결함 자동 판독 기술

소속 정보컴퓨터공학부

분과 C

팀명 이지정의 필름쇼

이현규, 지민철, 정다현 참여학생

지도교수 김종덕

과제 소개

RT 필름에서 인공지능 비전 기술을 활용하여 결함을 자동으로 판독하는 서비스 개발

RT 필름은 조선소에서 용접 부위 결함 판독을 위해 사용하는 매체이다.

현재는 RT 필름을 <mark>검사원이 직접 판독</mark>하고 있다. 이는 실수 등으로 잘못된 결과를 도출해 낼 수 있고 많은 시간도 걸린다.

인공지능 모델을 통한 자동 판독 서비스를 도입한다면, 검사원보다 정확하고 빠른 판독이 가능하다.

정상 용접 부위를 추출해 내, 이를 학습시키고 이를 바탕으로 비정상 이미지, 즉 결함이 존재하는 이미지를 찾아내는 모델을 제작하고 이를 사용자에게 제공하는 서비스를 제작한다.

과제 내용

UNet

- ✓ RT 필름 이미지를 소형, 중형, 대형으로 분류
- ✔ 이미지가 가로로 긴 형태인 중형관과 소형관은 이미지를 분할하여 저장
- ✔ RT 필름 용접 부위 라벨링을 진행
- ✓ Unet 모델을 사용하여 학습
- ✓ RT 필름 이미지에서 용접 부위를 추출

Cut-Paste + ResNet

- ✓ 추출한 용접 부위를 전처리하여 정사각형 형태로 변환
- ✓ 전처리한 용접 부위 중 정상 이미지를 ResNet을 이용해 학습
- ✓ Cut-Paste 방식을 사용하여 결함 이미지를 생성 후 ResNet을 이용해 학습
- ✓ 용접 부위 결함을 판독

My SQL + Flask

- ✔ RT 필름 촬영자가 RT 필름을 업로드하면, 전처리된 이미지가 DB에 저장되게 구현
- ✓ 용접 부위 추출 모델을 사용하여 RT 필름에서 용접 부위를 추출하도록 구현
- ✔ 용접 부위 결함 판독 모델을 사용하여 이미지의 결함 유무를 판독하도록 구현
- ✓ RT 필름 검사원이 결과를 확인하도록 구현

결과 및 이후 과제

RT 필름 자동 판독 서비스 페이지

RT 필름 쵤영 담당자

결함 검사 담당자

수정 요구

용접 담당자

- ✔ 용접선 검출 페이지에서 소형, 중형, 대형관 RT 필름 이미지의 용접 부위를 확인 할 수 있다.
- ✔ 용접 부위 결함 판독 페이지에서 소형, 중형, 대형관 RT 필름 이미지의 용접 부위에 결함이 있는지 확인 할 수 있다.
- ✓ 현재 용접 부위 추출 정확도 80%, 용접 결함 탐지 정확도 95%로 준수하지만, 더 정확한 모델 개발을 목표로 한다면 상용화 또한 가능할 것이다.

