Verificação da Autenticidade de Assinaturas Manuscritas Utilizando Redes Neurais Convolucionais

Defesa do Trabalho de Conclusão de Curso I

por

Marcos Wenneton V. de Araujo

Orientadora: Elloá B. Guedes

{mwvda.eng, ebgcosta}@uea.edu.br

do

Grupo de Pesquisa em Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

Manaus - Amazonas - Brasil

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais
- 10. Referências

1. Introdução

- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais
- 10. Referências

Introdução 3/39

Verificação de autenticidade

- Segurança em sistemas computacionais
- Biometria
 - Características fisiológicas
 - Traços comportamentais
- Assinaturas manuscritas como forma de biometria
 - Utilização desde os tempos primórdios
 - Método não-invasivo
 - Baixo custo de aquisição
 - Difícil verificação de autenticidade devido a grande variabilidade dos padrões encontrados nas assinaturas

Introdução 4/3

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais
- 10. Referências

Objetivos 5/39

Objetivos

Objetivo Geral

Verificar a autenticidade de assinaturas manuscritas utilizando Redes Neurais Convolucionais

Objetivos 6/39

Objetivos

Objetivo Geral

Verificar a autenticidade de assinaturas manuscritas utilizando Redes Neurais Convolucionais

Objetivos Específicos

- Realizar a fundamentação teórica acerca dos conceitos das redes neurais convolucionais;
- Consolidar uma base de dados representativa de assinaturas manuscritas;
- Descrever o problema considerado segundo uma tarefa de Aprendizado de Máquina;
- Propor, treinar e testar diferentes redes neurais convolucionais para a tarefa considerada;
- Analisar os resultados obtidos.

Objetivos 6/3:

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais
- 10. Referências

Justificativa 7/39

Justificativa

- Autenticação de assinaturas manuscritas
 - Ampla utilização em documentos oficiais e transações financeiras atualmente
 - Pode ser utilizada em documentos e obras de arte históricas
- Redes Neurais Convolucionais
 - Prática de conceitos, técnicas e tecnologias de uma área emergente da Computação
 - Proposta alinhada com as atividades desenvolvidas pelo Laboratório de Sistemas Inteligentes

ustificativa 8/3

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais
- 10. Referências

Metodologia 9/39

Metodologia

A condução das atividades obedece à metodologia apresentada a seguir, composta dos seguintes passos:

- Estudo dos conceitos relacionados à Aprendizado de Máquina, Redes Neurais Convolucionais e Deep Learning;
- 2. Descrição do problema considerado como uma tarefa de Aprendizado de Máquina;
- 3. Consolidação de uma base de dados representativa de assinaturas originais e forjadas;
- Levantamento do ferramental tecnológico para implementação das redes neurais convolucionais;
- Proposição de modelos de redes neurais convolucionais para o problema considerado, contemplando arquitetura, parâmetros e hiperparâmetros;

Metodologia 10/39

Metodologia

- 6. Treino das redes propostas para a tarefa de aprendizado considerada;
- 7. Teste das redes previamente treinadas com vistas a coleta de métricas de desempenho;
- Análise dos resultados e identificação dos modelos mais adequados para o problema considerado;
- 9. Escrita da proposta de Trabalho de Conclusão de Curso;
- 10. Defesa da proposta de Trabalho de Conclusão de Curso;
- 11. Escrita do Trabalho de Conclusão de Curso; e
- 12. Defesa do Trabalho de Conclusão de Curso.

Metodologia 11/39

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais
- 10. Referências

Cronograma 12/39

Cronograma

Tabela 1: Cronograma de atividades

						2019					
	02	03	04	05	06	07	08	09	10	11	12
Atividade 1	Х	Х	Х								
Atividade 2		Χ									
Atividade 3		Χ	Χ								
Atividade 4			Χ								
Atividade 5				Χ	Χ	Χ	Χ				
Atividade 6				Χ	Χ	Χ	Χ				
Atividade 7							Χ	Χ			
Atividade 8									Χ	Χ	
Atividade 9	X	Χ	Χ	Χ	Χ						
Atividade 10					Χ						
Atividade 11						Χ	Χ	Χ	Χ	Χ	Χ
Atividade 12											Χ

Cronograma 13/39

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais
- 10. Referências

Fundamentação Teórica 14/39

Aprendizado de Máquina

- Algoritmos capazes de aprender padrões por meio de exemplos, baseando-se em dados previamente disponíveis
- As técnicas de **Aprendizado de Máquina** têm sido aplicadas com sucesso em um grande número de problemas reais em diversos domínios
- Características: natureza inferencial e a boa capacidade de generalização
- Paradigmas de aprendizado supervisionado e não-supervisionado

Fundamentação Teórica 15/3:

Redes Neurais Artificiais

- Inspiradas na capacidade de processamento de informações do cérebro humano
- Neurônios artificiais são as unidades fundamentais de uma RNA
- Função de ativação fornece a resposta de um neurônio para uma dada entrada
- Neurônios artificiais são conectados entre si na forma de uma rede e distribuídos em uma ou mais camadas ocultas
- Algoritmo Backpropagation
 - Fase forward produz uma saída para uma dada entrada
 - Fase backwards calcula a diferença entre as saídas para minimizar o erro

Fundamentação Teórica 16/3

Deep Learning e Redes Neurais Convolucionais

- Deep Learning é uma subárea específica do Aprendizado de Máquina
- Redes Neurais Convolucionais (CNNs):
 - Possuem camadas hierárquicas e profundas
 - ♣ Aproveitam-se da operação matemática denominada convolução
 - Destacam-se pelo reconhecimento de padrões em dados de alta dimensionalidade

Figura 1: Papel das camadas convolucionais e feature maps das CNNs

Fundamentação Teórica 17/3:

Arquiteturas Canônicas de Redes Neurais Convolucionais

- Arquiteturas com bom desempenho em competições de Visão Computacional
- ➡ Comuns ainda hoje no cenário de Deep Learning
- LeNet (1998)
- ♣ AlexNet (2012)
- **VGG** (2014)
- Inception (2014)
- ResNet (2015)

Fundamentação Teórica 18/3:

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais
- 10. Referências

Solução Proposta 19/39

Tarefa de Aprendizado

- ▶ Problema abordado como uma tarefa de classificação binária
- > Entrada:
 - Imagem em escala de cinza com dimensões de 256 x 256 pixels contendo duas assinaturas manuscritas (uma de referência e outra para a inferência)
- Saída:
 - Classificação da assinatura quanto à sua autenticidade (autêntica ou forjada)

Figura 2: Visão geral da tarefa de aprendizado considerada

Solução Proposta 20/39

Tarefa de Aprendizado

- Partição dos exemplos utilizando o método holdout
 - ▶ 70% para treinamento;
 - ▶ 10% para validação;
 - ▶ 20% para teste.
- Utilização das métricas Acurácia e F-score para análise de desempenho dos modelos

Solução Proposta 21/39

Coleta do conjunto de Dados

- ➡ Signature Verification Competition 2009 (SigComp2009)
- Dois conjuntos de dados foram utilizados na competição:
 - Norwegian Information Security Donders Centre for Cognition (NISDCC)
 - Netherlands Forensic Institute (NFI)
- ▶ Informações online e offline das assinaturas

Tabela 2: Quantitativo de indivíduos e assinaturas offline por conjunto de dados.

Conjunto	Autores originais	Autores forjadores	Autores originais com assinaturas forjadas	Assinaturas genuínas	Assinaturas forjadas	Total de assinaturas
NISDCC	12	31	12	60	1.838	1.898
NFI	79	33	19	940	624	1.564

olução Proposta 22/3

Preparação dos Dados

- Combinação e redimensionamento das imagens
- ▶ Separação dos exemplos autênticos conforme o método holdout
- ▶ Exemplos **forjados** necessitaram de um diferente tipo de separação

Tabela 3: Quantitativo de exemplos.

Conjunto	Tipo de Exemplo	Quantidade de Dados	Proporção
Treinamento	Autêntico	8.072	43%
	Forjado	10.887	57%
Validação	Autêntico	1.179	38%
	Forjado	1.976	62%
Teste	Autêntico	2.271	38%
	Forjado	3.577	62%

iolução Proposta 23/3:

Preparação dos Dados

Figura 3: Representação gráfica da proporção dos exemplos por classe e finalidade na tarefa de aprendizado considerada.

Normalização dos *pixels* das imagens ao serem fornecidas às CNNs

Solução Proposta 24/39

Modelos, Parâmetros e Hiperparâmetros Utilizados

Arquiteturas de CNNs escolhidas: LeNet, AlexNet, MobileNet, SqueezeNet, VGG-16 e Inception

Tabela 4: Valores dos hiperparâmetros selecionados para a elaboração dos modelos.

Épocas	pocas <i>Patience</i> Otimiza		Função de ativação
200	5, 10 e 15	SGD, Adam e RMSprop	ReLU, ELU, SELU e Leaky ReLU

- ▶ Busca em grid nos hiperparâmetros quando possível
- Demais casos, hiperparâmetros típicos

iolução Proposta 25/3:

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciai
- 10. Referências

Resultados Parciais 26/39

Resultados Parciais

- Utilização de um servidor para treinamento das CNNs:
 - Processador Intel Core i7
 - 16 GB de RAM
 - GPU Nvidia GeForce GTX 1080 com 11 GB de memória
- LeNet e AlexNet
- Modelos degenerados tiveram seus resultados descartados
 - Dying ReLU problem
 - > Permanência em mínimos locais no treinamento

Resultados Parciais 27/3:

Tabela 5: Detalhamento dos melhores modelos obtidos com a arquitetura LeNet.

Identificação	Otimizador	Patience	Função de Ativação	Acurácia	F-Score
LeNet A	RMSprop	5	<i>Leaky</i> ReLU	0.9865	0.9755
LeNet B	RMSprop	15	ReLU	0.9858	0.9740
LeNet C	SGD	5	ELU	0.9787	0.9619
LeNet D	RMSprop	10	SELU	0.9707	0.9483

Resultados Parciais 28/39

Tabela 6: Detalhamento dos melhores modelos obtidos com a arquitetura LeNet.

Arquitetura	Otimizador	Patience	Função de Ativação	Acurácia	F-Score	EER
ShuffleNet	Adam	15	ReLU	0.8345	0.7705	23.8151
SqueezeNet	RMSprop	15	ReLU	0.8210	0.7709	20.1673

Resultados Parciais 29/39

Figura 4: Histórico de *loss* e acurácia durante o treinamento dos melhor modelos obtido com a arquitetura LeNet.

(a) Loss durante o treinamento da LeNet A

(b) Acurácia durante o treinamento da LeNet A

Resultados Parciais 30/39

Figura 6: Matrizes de confusão dos melhores modelos obtidos com a arquitetura LeNet.

Resultados Parciais Gussificação Verdaderra Gussificação Verdaderra 31/39

AlexNet

Tabela 7: Detalhamento dos melhores modelos obtidos com a arquitetura AlexNet.

Identificação	Otimizador	Patience	Função de Ativação	Acurácia	F-Score
AlexNet A	Adam	15	ELU	0.9654	0.9393
AlexNet B	SGD	10	<i>Leaky</i> ReLU	0.9601	0.9311
AlexNet C	SGD	5	SELU	0.9561	0.9244

Resultados Parciais 32/39

AlexNet

Figura 8: Histórico de *loss* e acurácia durante o treinamento dos melhor modelo obtido com a arquitetura AlexNet.

(a) Loss durante o treinamento da AlexNet A

(b) Acurácia durante o treinamento da AlexNet A

Resultados Parciais 33/39

AlexNet

Figura 10: Matrizes de confusão dos melhores modelos obtidos com a arquitetura AlexNet.

Resultados Parciais 34/39

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais
- 10. Referências

Considerações Parciais

▶ 72 redes foram treinadas e testadas com um total de 27.962 exemplos

Considerações Parciais 36/39

Considerações Parciais

- → 72 redes foram treinadas e testadas com um total de 27.962 exemplos
- Melhor desempenho: LeNet
 - ▶ Parâmetros e Hiperparâmetros: Otimizador RMSprop, patience 5 e função de ativação Leaky ReLU.
 - **Acurácia**: 0.9865
 - **F-Score**: 0.9755

Considerações Parciais 36/39

Considerações Parciais

- → 72 redes foram treinadas e testadas com um total de 27.962 exemplos
- Melhor desempenho: LeNet
 - ▶ Parâmetros e Hiperparâmetros: Otimizador RMSprop, patience 5 e função de ativação Leaky ReLU.
 - **Acurácia**: 0.9865
 - **F-Score**: 0.9755
- Próximos passos:
 - ♣ Arquiteturas com menos parâmetros (MobileNet, SqueezeNet)
 - ♣ Arquiteturas mais profundas (VGG-16, Inception)

Considerações Parciais 36/3:

- 1. Introdução
- 2. Objetivos
- 3. Justificativa
- 4. Metodologia
- 5. Cronograma
- 6. Fundamentação Teórica
- 7. Solução Proposta
- 8. Resultados Parciais
- 9. Considerações Parciais

10. Referências

Referências 37/39

Referências

Manuscritas Utilizando Redes Neurais Convolucionais

Conference on Document Analysis and Recognition. Barcelona, Catalonia, Spain: IEEE, 2009. p. 1403-1407. **Defesa do Trabalho de Conclusão de Curso I**

KHAN, S. et. al. A Guide to Convolutional Neural Networks for Computer Vision. Austrália: Morgan & Claypool, 2018.
Marcos Wenneton V. de Araujo

Orientadora: Elloá B. Guedes

LIWICKI, M. IAPR TC11 - புடும் இதி தெரியாத் பெற்ற இரை முறியாக பிரியாக பிரியில் பிரி

Grupo de Pesquisa em Sistemas Inteligentes Escola Superior de Tecnologia Universidade do Estado do Amazonas

Manaus - Amazonas - Brasil