AC32008 Theory of Computation Tutorial Sheet 6 - Time Complexity of Turing Machines, Class ${\cal P}$

- 1. Show that (for $n \ge 1$)
 - (a) $\frac{3n^2}{n+2\log n} = O(n)$.
 - (b) Any polynomial of degree k (in one variable n) is $O(n^k)$.
- 2. Construct a 1-tape Turing machine M, which accepts the set of binary palindromes i.e. the set $L = \{w \mid w \in \{0,1\}^*, w = w^R\}$ where w^R is the string w reversed, so that for example $01^R = 10$, $00110^R = 01100$ and $000^R = 000$.

The machine M should halt on all inputs. How many moves does the machine make on an input of length n?

- 3. Recall that if L is a (binary) language, the complement \overline{L} of L is the set of binary strings not in L. Show that if L is in the class \mathcal{P} , then so is \overline{L} .
- 4. Show that if L is regular, then L is in \mathcal{P} .