

Árbol

Considera un **árbol** que consiste de N **vertices** numerados del 0 al N-1. El vértice 0 es llamado la **raíz**. Cada vértice, excepto por la raíz, tiene un sólo **padre**. Para cada i, tal que $1 \le i < N$, el padre del vértice i es un vértice P[i], donde P[i] < i. También asumimos P[0] = -1.

Para cualquier vértice i ($0 \le i < N$), el **subárbol** de i es el conjunto de los siguientes vértices:

- i, y
- cualquier vértice cuyo padre es i, y
- cualquier vértice para el cual el padre de su padre es i, y
- cualquier vértice para el cual el padre de su padre de su padre es i, y
- etc.

La figura siguiente muestra un árbol de ejemplo que consiste de N=6 vértices. Cada flecha conecta un vértice a su padre, excepto por la raíz, que no tiene padre. El subárbol del vértice 2 contiene a los vértices 2,3,4 y 5. El subárbol del vértice 0 contiene a todos los 6 vértices del árbol y el subárbol del vértice 4 contiene únicamente al vértice 4.

A cada vértice se le asigna un **peso** entero no negativo. Denotamos al peso del vértice i $(0 \le i < N)$ como W[i].

Tu tarea es escribir un programa que conteste Q preguntas, cada una especificada por un par de enteros positivos (L,R). La respuesta a la pregunta debe ser calculada de la siguiente manera.

Considera asignar un entero, llamado un **coeficiente**, a cada vértice del árbol. Dicha asignación es descrita por una secuencia $C[0],\ldots,C[N-1]$, donde C[i] ($0 \le i < N$) es el coeficiente asignado al vértice i. Llamemos a esta secuencia una **secuencia de coeficientes**. Nota que los elementos de la secuencia de coeficientes puede ser negativos, 0, o positivos.

Para una pregunta (L,R), una secuencia de coeficientes es **válida** si, para cada vértice i $(0 \le i < N)$, se cumple la siguiente condición: la suma de los coeficientes de los vértices en el subárbol del vértice i no es menor que L ni mayor que R.

Para una secuencia de coeficientes $C[0], \ldots, C[N-1]$, el **costo** de un vértice i es $|C[i]| \cdot W[i]$, donde |C[i]| denota el valor absoluto de C[i]. Finalmente, el **costo total** es la suma de los costos de todos los vértices. Tu tarea es calcular, para cada pregunta, el **mínimo costo total** que puede ser obtenido por una secuencia de coeficientes válida.

Puede demostrarse que para cualquier pregunta, existe al menos una secuencia de coeficientes válida.

Detalles de implementación

Debes implementar los siguientes dos procedimientos:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: arreglos de enteros de largo N especificando los padres y los pesos.
- Este procedimiento es llamado exactamente una vez al inicio de la interacción entre el calificador y tu programa en cada caso de prueba.

```
long long query(int L, int R)
```

- *L*, *R*: enteros describiendo una pregunta.
- ullet Este procedimiento es llamado Q veces después de la llamada a init en cada caso de prueba.
- Este procedimiento debe retornar la respuesta a la pregunta dada.

Restricciones

- $1 \le N \le 200\,000$
- $1 \le Q \le 100000$
- P[0] = -1
- $0 \le P[i] < i$ para cada i tal que $1 \le i < N$
- $0 < W[i] < 1\,000\,000$ para cada i tal que 0 < i < N
- $1 \le L \le R \le 1000000$ en cada pregunta.

Subtasks

Subtarea	Puntuación	Restricciones Adicionales	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ para cada i tal que $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ para cada i tal que $0 \leq i < N$	
5	11	$W[i] \leq 1$ para cada i tal que $0 \leq i < N$	
6	22	L=1	
7	19	Sin restricciones adicionales.	

Ejemplo

Considere las llamadas siguientes:

El árbol que consiste de 3 vértices: la raíz y sus 2 hijos. Todos los vértices tienen peso 1.

En esta pregunta L=R=1, que significa que la suma de los coeficientes en cada subárbol debe ser igual a 1. Considere la secuencia de coeficientes [-1,1,1]. El árbol y los coeficientes correspondientes (en rectángulos sombreados) son ilustrados a continuación.

Para cada vértice i ($0 \le i < 3$), la suma de los coeficientes de todos los vértices en el subárbol de i es igual a 1. Por lo tanto, esta secuencia de coeficientes es válida. El costo total se calcula de la siguiente manera:

Vértice	Peso	Coeficiente	Costo
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$ 1 \cdot 1 = 1$

Por lo tanto, el costo total es 3. Esta es la única secuencia válida de coeficientes; por lo tanto, esta llamada debe retornar 3.

```
query(1, 2)
```

El costo mínimo total de esta pregunta es 2, y es obtenida cuando la secuencia de coeficientes es [0,1,1].

Calificador Local

Formato de entrada:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

donde L[j] y R[j] (para $0 \le j < Q$) son los parámetros de entrada en la j-ésima llamada a query. Nota que la segunda línea de entrada contiene **únicamente** N-1 **enteros**, ya que el calificador local no lee el valor de P[0].

Formato de salida:

```
A[0]
A[1]
...
A[Q-1]
```

donde A[j] (para $0 \leq j < Q$) es el valor retornado por la j-ésima llamada a query.