# 离散数学-图论作业 8 生成树

如无特意说明,以后各题只考虑有限个点的图。

### Problem 1

分别用普林(Prim)算法和克鲁斯卡尔(Kruskal)算法求所给带权图的最小生成树。(按顺序写出选取的边及总的权值即可)



答案: 最小生成树权值应为 24。

Prim 选边序列: (a,d), (d,b), (b,c), (c,f), (f,e), (e,h), (h,i), (d,g)Kruskal 选边序列: (e,f), (a,d), (h,i), (b,d), (c,f), (e,h), (b,c), (d,g)

### Problem 2

证明或反驳:每条边权重均不相同的带权图

- 1) 有唯一的最小生成树。
- 2) 有唯一的"次小生成树"满足,存在一最小生成树的权值小于等于该树,且其他生成树的权值均大于等于该树。

#### 答案:

1) 反证,记不同的最小生成树 T,T' 边集按权重从小到大排序为  $T=\{e_1,e_2,\ldots,e_{n-1}\},T'=\{e_1',e_2',\ldots,e_{n-1}'\}$ 。



Figure 1: \*
Prim



Figure 2: \*
Kruskal

因为  $T \neq T'$ ,必存在最小的 k < n 使得  $e_k \neq e_k'$ ,不妨令  $w(e_k') < w(e_k)$ ,将  $e_k'$  加入 T,得到的  $T + e_k'$  中有一个包含  $e_k'$  的圈 C,因为  $\{e_1, e_2, \ldots, e_{k-1}, e_k'\} = \{e_1', e_2', \ldots, e_k'\} \subseteq T'$  无环,所以存在  $t > k.e_t \in C$ ,删去  $e_t$  得到 G 的另一个生成树  $T + e_k' - e_t$ , $w(T + e_k' - e_t) = w(T) + w(e_k') - w(e_t) < w(T) + w(e_k') - w(e_k) < w(T)$ ,与 T 是 G 上的最小生成树矛盾。

#### 2) 反驳,如下图

最小生成树  $\{(a,b),(b,c),(a,d)\}$ , 次小生成树  $\{(b,c),(a,c),(a,d)\}$  和  $\{(a,b),(b,c),(c,d)\}$ 



### Problem 3

令 G 为一无向带权连通图,假设图中存在一个回路. 试证明:在此回路上若存在一条边 e 其权值严格大于此回路上的其它各边,则 e 不在 G 的任何最小生成树中。

答案: 不妨假设该回路 C 是顶点不重复的简单回路,设 e = uv。以下使用反证法来证明 e 不在任何最小生成树中,假设 T 是包含 e 的最小生成树。 $T - \{e\}$  必含两个连通分支,设为 T1, T2。 $C - \{e\}$  是图 G 中的 uv-通路,其中必有一边满足其两个端点 x,y 分别在 T1, T2 中,设其为 e'。 $T' = T - \{e\}$   $\{e'\}$ ,显然 T' 是生成树。因 e 的权重大于 e' 的权重,T' 的权重比 T 更小,矛盾。所以,e 不在任何最小生成树中。

## Problem 4

用深度优先搜索和广度优先搜索来构造下图的生成树。选择 a 作为这个生成树的根,并假定顶点都以字母顺序来排序。



答案: DFS:  $\rightarrow a, a \rightarrow b, b \rightarrow c, c \rightarrow h, h \rightarrow g, g \rightarrow l, h \rightarrow i, i \rightarrow e, e \rightarrow d, e \rightarrow f, f \rightarrow k, k \rightarrow j, j \rightarrow n, i \rightarrow m$  BFS:  $\rightarrow a, a \rightarrow b, a \rightarrow g, b \rightarrow c, g \rightarrow h, g \rightarrow l, h \rightarrow m, h \rightarrow i, i \rightarrow e, i \rightarrow j, i \rightarrow n, e \rightarrow d, e \rightarrow f, j \rightarrow k$ 





Figure 3: \* DFS

Figure 4: \*
BFS