

GLA University, Mathura

I Mid Term Examination 2011-12

I Mid Term Examination 2011-12	
B.Tech : Ist Year Sub: Physics (AHP-101) Date: 27/9/2011 Sem : I	Time: 1½ Hr M.M.: 40
Section - A	
Q.1 This question contains ten parts. Attempt all parts. Q.1 (i) A square of length L is moving along one of its sides with relativistic velocity v frame. Area of square in this frame will be:	$1 \times 10 = 10$ with respect to a
(a) L^2 (b) $L^2(1-\frac{v^2}{c^2})^{1/2}$ (c) $L^3(1-\frac{v^2}{c^2})^{1/2}$ (d) $L^3(1-\frac{v^2}{c^2})^{3/2}$	
Q.1 (ii) A particle of rest mass m ₀ is moving with velocity c/2. Its relativistic mass will b (a) 2 m ₀ /(3) ^{1/2} (b) m ₀ /(3) ^{1/2} (c) 2 m ₀ (3) ^{1/2} (d) 2 m ₀ Q.1 (iii) Which of the following relation is correct:	e:
(i) $E^2 = p^2c^2 + m_0c^4$ (ii) $E = p^2c^2 + m_0c^4$ (iii) $E^2 = pc + m_0c^4$ (iv) $E^2 = p^2c^2 + m_0^2c^4$	
Q.1(iv) The correct Lorentz transformation is: (a) $x' = (x-vt)/[1-(v/c)^2]^{1/2}$ (b) $x' = (x-vt)[1-(v/c)^2]^{1/2}$ (c) $x' = (x-vt)/[1-(v/c)^2]^{3/2}$ (d) $x' = (x-vt)/[1-(v/c)^2]^{5/2}$	
Q.1(v) An observer moves with a speed c/2 towards a stationary source of light, speed of	of light appears to
the observer to be (a) 3c/2 (b) c (c) 2c (d) c/2	or right appears to
Q.1(vi) Which of the following is variant under Galilean transformations?	
(i) time (ii) torque (iii) angular momentum (iv) none of these	
Q.1(vi) Which of the following inequalities is correct for proper time (t_0) and improper (a) $t > t_0$ (b) (a) $t < t_0$ (c) $t = t_0$ (d) None of these	r time (t)?
Q.1(vii) Michelson -Morley experiment showed that	
(a) Newtonian mechanics is correct for all low and high speeds (b) there is no absolu	lute frame like ethe
(c) velocity of light is relative in all cases (d) there is no absolute frame, but all frame	
Q.1(viii) At absolute zero, semiconductors behaves as	
(i) insulators (ii) conductors (iii) superconductors (iv) none of these	
Q.1(ix) A p-type crystal is	
(i) positively charged (ii) negatively charged (iii) neutral (iv) none of these	
Q.1(x) Energy spacing in the sub energy levels of band is	
(a) 10^{-20} eV (b) 10^{-30} eV (c) 10^{-40} eV (d) 10^{-50} eV	
Section - B	
Attempt any three:	=12
Q.1 Derive Galilean transformations for position and velocity. (3+1)	1)
Q.2 Prove that the expression $x^2 - c^2t^2$ is invariant under Lorentz transformations.	
Q.3 A rod is moving with velocity 0.6c in a direction inclined at 30° to its own	length. Calculate
percentage contraction in the length of the rod.	
Q.4 Define (i) conductor (ii) semiconductor (iii) insulator (iv) energy band gap (1+) Q.5 Mean life of meson is 4× 10 ⁻⁸ sec. Calculate the mean life of meson moving with a v	
Attempt any two:	2=18
Q.1 What was the objective of Michelson - Morley experiment? Discuss the ex	
	6+2=9)
Derive Lorentz transformations. Under what condition Lorentz transformations red	duce to Galilean
Q.2 (a) Obtain the relativistic formula for addition of velocities. (5)	1-99
Q.2(b)What are donor and acceptor impurities? Explain their effect on con-	ductivity of the 2=4)
Q.3(a)Obtain Einstein's mass energy relationship (5)	
Q.3(b) What is meant by bands? Explain their formation in solids. (4)	