Numerical Analysis of Burgers' Equation*

Andre Gormann agormann@sfu.ca

Ethan MacDonald jem21@sfu.ca

1 Introduction

1.1 The Inviscid Burgers' Equation

We have elected to study the Burgers' equation, or more correctly, the inviscid Burgers' equation.^[1] Given $u \in C^1(\Omega)$, where $\Omega \subset \mathbb{R}^{n+1}$ is a domain, the general form is written as

$$\partial_t u(\boldsymbol{x}, t) + u(\boldsymbol{x}, t) \cdot \nabla_{\boldsymbol{x}} u(\boldsymbol{x}, t) = 0 \tag{1}$$

where $\nabla_{\boldsymbol{x}}$ denotes the gradient with respect to the spatial variable $\boldsymbol{x} \in \mathbb{R}^n$. For pragmatic reasons though, we will be focusing on the n=1 case. Then (1) simplifies to

$$\partial_t u(x,t) + u(x,t)\partial_x u(x,t) = 0. (2)$$

There are two key observations to make. The first is that (2) is really a statement about the directional derivative, that is

$$\nabla u(x,t) \cdot (u(x,t),1) = 0^{[2]} \tag{3}$$

so the derivative of u in the direction of (u, 1) is 0 - in other words, u is constant in this direction. This is a consequence of (2) being first-order. While on the surface it may seem problematic that (2) is quasilinear (and so the direction (u, 1) is varied), this does not complicate the finding of an analytic solution.

1.2 The Method of Characteristics

Given data on some curve $\Gamma \subset \overline{\Omega}$, we are looking for parametric curves (x(t), t) which connect points $(x, t) \in \Omega$ to Γ . The upshot is that on these *characteristic curves*, the PDE (2) degenerates into an ODE. So

$$\frac{dx}{dt} = u(x(t), t) \tag{4}$$

^{*}Placeholder title!

^[1] We may decide later on to study the viscous Burgers' equation.

^[2]Technically we should be normalizing so that this is a unit vector.

Now supposing that u solves (2), let z(t) denote the value of u along a characteristic, i.e.

$$z(t) = u(x(t), t)$$

Then

$$\frac{dz}{dt} = \partial_x u(x(t), t) \frac{dx}{dt} u(x(t), t) + \partial_t u(x(t), t)$$
$$= \partial_t u(x(t), t) + u(x(t), t) \partial_x u(x(t), t)$$

References

Choksi, R. (2022). Partial differential equations: A first course. American Mathematical Society.

Kutz, J. N. (2013). Data-driven modeling & scientific computation: Methods for complex systems & big data. Oxford University Press.