18.01 Single Variable Calculus

2023.10.1

Yining Wang Nanjing University wyn20010707@gmail.com

Unit 1: Differentiation

Part A: Definition and Basic Rules

Definition 1. The derivative $f'(x_0)$ of f at x_0 is the slope of the tangent line to y = f(x) at the point $P = (x_0, f(x_0))$.

Formula for the derivative:

$$f'(x_0) = \lim_{x \to 0} \frac{\Delta f}{\Delta x} = \lim_{x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$
derivative of f at x_0

$$\lim_{x \to 0} \frac{\Delta f}{\Delta x} = \lim_{x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

Problem 1

Does $f(x) = \lfloor x \rfloor$ have a derivative? If so, what is it? If not, why not?

Solution. The "limit as Δx approaches 0" isn't well defined, so f(x) is not differentiable at x = 0. (The left-hand limit and right hand limit are not equal)

Notations

Just as there are many ways to express the same thing, there are many notations for the derivative.

- a) $\Delta y = \Delta f$
- b) Taking the limit as $\Delta x \to 0$, we get
 - (a) $\frac{\Delta y}{\Delta x} \to \frac{\mathrm{d}y}{\mathrm{d}x}$ (Leibniz' notation)
 - (b) $\frac{\Delta f}{\Delta x} \to f'(x_0)$ (Newton's notation)

Example 1. Find the derivative of $f(x) = x^n$ where n = 1, 2, 3 ...

Here we have:

$$\frac{\Delta y}{\Delta x} = \frac{(x + \Delta x)^n - x^n}{\Delta x}$$

The binomial theorem tells us that:

$$x^n + n(\Delta x)x^{n-1} + O((\Delta x)^2)$$

where $O(\Delta x)^2$ is shorthand for "all of the terms with $(\Delta x)^2, (\Delta x)^3$, and so on up to $(\Delta x)^n$ " Now we have:

$$\frac{\Delta y}{\Delta x} = \frac{(x+\Delta x)^n - x^n}{\Delta x} = \frac{(x^n + n(\Delta x)(x^{n-1}) + O(\Delta x)^2) - x^n}{\Delta x} = nx^{n-1} + O(\Delta x)$$

and therefore,

$$\frac{d}{dx}x^n = nx^{n-1}$$

Since we think about $\frac{\Delta y}{\Delta x}$ as the average change in y over an interval of size Δx The derivatives $\frac{dy}{dx}$ can also be taken as the instantaneous rate of change.

Definition 2. The **right(left)-hand limit** of a function f(x) as x approaches a, denoted as $\lim_{x\to a^+} f(x)$, represents the value that f(x) approaches as x gets arbitrarily close to a from the right (left) side (i.e., from values greater than a).

Definition 3. A function f is **continuous** at x_0 if $\lim_{x\to x_0} f(x) = f(x_0)$. Which means:

- * $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x)$; both of these one sided limits exist.
- * $f(x_0)$ is defined.
- $* \ \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0).$

Definition 4. Discontinuity

- a) A **jump discontinuity** occurs when the right-hand and left-hand limits exist but are not equal.
- b) At a **removable discontinuity**, the left-hand and right-hand limits are equal but either the function is not defined or not equal to these limits:

$$\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) \neq f(x_0)$$

c) In an **infinite discontinuity**, the left- and right-hand limits are infinite.(e.g hyper-bola)

Theorem 1. If f is differentiable at x_0 , then f is continuous at x_0 .

Proof. To show that:

$$\lim_{x \to x_0} f(x) - f(x_0) = 0$$

$$\begin{split} \lim_{x \to x_0} f(x) - f(x_0) &= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} (x - x_0) \\ &= f'(x_0) \cdot 0 \\ &= 0 \end{split}$$

(we used the assumption that f was differentiable when we wrote down f'(x).)

Derivative of $\sin x$ and $\cos x$, Algebraic Proof

Begin with the definition of the derivative:

$$\frac{d}{dx}\sin x = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin(x)}{\Delta x}$$

By using $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$ we can get:

$$\frac{d}{dx}\sin x = \lim_{\Delta x \to 0} \frac{\sin x \cos \Delta x + \cos x \sin \Delta x - \sin(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \sin x \left(\frac{\cos \Delta x - 1}{\Delta x}\right) + \lim_{\Delta x \to 0} \cos x \left(\frac{\sin \Delta x}{\Delta x}\right)$$

Here we introduce two important facts: \mathbf{a}) $\lim_{x\to 0} \frac{\sin x}{x} = 1$ \mathbf{b}) $\lim_{x\to 0} \frac{\cos x-1}{x}$. Hence, we conclude:

$$\frac{d}{dx}\sin x = \cos x$$

The calculation of the derivative of $\cos x$ is similar to that of the derivative of $\sin x$. The proof of the two properties above are ommitted here.

Theorem 2. Product Rule

$$(uv)' = u'v + uv'$$

Proof.

$$\begin{split} (uv)' &= \lim_{\Delta x \to 0} \frac{(uv)(x + \Delta x) - (uv)(x)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{u(x + \Delta x)v(x + \Delta x) - u(x)v(x)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{u(x + \Delta x)v(x) - u(x)v(x) + u(x + \Delta x)v(x + \Delta x) - u(x + \Delta x)v(x)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \left[\left(\frac{u(x + \Delta x) - u(x)}{\Delta x} \right) v(x) + u(x + \Delta x) \left(\frac{v(x + \Delta x) - v(x)}{\Delta x} \right) \right] \\ &= u'(x)v(x) + u(x)v'(x) \end{split}$$

Theorem 3. Quotient Rule

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

Theorem 4. Chain Rule: The derivative of a composition of functions is a product.

$$\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = \frac{dy}{dt} = \frac{dy}{dx} \frac{dx}{dt}$$

Notations

Higher derivatives are derivatives of derivatives.

The symbol $\frac{d}{dx}$ represent "operators" which can be applied to a function. This explains why the two powers are in different locations.

Part B: Implicit Differentiation and Inverse Functions

Implicit Differentiation (Rational Exponent Rule)

$$(x^a)' = ax^{a-1}, \forall x \in \mathbb{Q}$$

Example 2. Slope of a line tangent to a circle - Direct version

The graph of $x^2 + y^2 = 1$ is a circle of ridius 1 centered at the origin. This equation can't be written in a form of y = f(x) since every x has two corresponding y values.

$$x^2 + y^2 = 1$$

$$y = \pm \sqrt{1 - x^2}$$

Now we just focus on the top half of the unit circle. By using the chain rule, we can have:

$$\frac{dy}{dx} = \frac{1}{2}u^{-1/2} \cdot (-2x) = -x \cdot (1 - x^2)^{-1/2} = \frac{-x}{\sqrt{1 - x^2}}.$$

Slope of a line tangent to a circle - Implicit version

Instead of solving for y, we could just imply the operator $\frac{d}{dx}$ to both side of the original equation:

$$x^{2} + y^{2} = 1$$

$$\frac{d}{dx}(x^{2}) + \frac{d}{dx}(y^{2}) = 0$$

$$2x + 2y\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{x}{y}$$

We get the same answer and it works for both sides of the unit circle. Implicit differentiation simplified this calculation.

Example 3. Derivative of the Inverse of a Function

If f(x) = y and g(y) = x, then g is the inverse of $f(g = f^{-1})$ and f is the inverse of g. The graph of f^{-1} is the reflection of the graph of f across the line y = x. So we have:

$$\frac{d}{dy}(f^{-1}(y)) = \frac{1}{\frac{dy}{dx}}.$$

An example of this is the derivative of $y = \arctan(x)$. We can start from its inverse: $\tan y = x$

$$\tan y = x$$

$$\frac{d}{dx} \tan y = \frac{d}{dx}x$$

$$\left(\frac{1}{(\cos y)^2}\right) \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \cos^2(y)$$

$$\frac{d}{dx} \arctan(x) = \frac{1}{1+x^2}.$$

Derivative of a^x

Proof.

$$a^{x} = (e^{\ln(a)})^{x} = e^{x \ln(a)}$$
$$\frac{d}{dx}e^{(\ln a)x} = (\ln a)e^{(\ln a)x}$$
$$\frac{d}{dx}a^{x} = (\ln a)a^{x}$$

Example 4. Derivative of x^x First, let x denote x^x , then we take the natural log of both sides:

$$\ln v = x \ln x$$

Next, we differentiate both sides of the equation,:

$$(\ln v)' = \ln x + x \cdot \frac{1}{x}$$
$$\frac{v'}{v} = \frac{1}{x}$$

Plugging in x^x for v and solving for v', we get:

$$\frac{d}{dx}x^x = x^x(1+\ln x)$$

Unit 2: Applications of Differentiation

Part A: Approximation and Curve Sketching

Linear Approximation

Example 5. Linear Approximation to lnx at x = 1

For a given curve y = f(x), it is approximately the same as its tangent line:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Let f(x) = lnx. Then the formula for linear approximation tells us that:

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0)$$

$$\ln x \approx \ln(1) + 1(x - 1)$$

$$\ln x \approx 0 + (x - 1)$$

$$\ln x \approx (x - 1)$$

When x is close to the base point x_0 , the point of linear approximation is that the curve is approximately the same as the tangent line.

Example 6. Approximations at 0 for Sine, Cosine and Exponential Functions Based on the formula $f(x) \approx f(0) + f'(0)x$, we have:

a)
$$\sin x \approx x \ (if \ x \approx 0)$$

b)
$$\cos x \approx 1$$
 (if $x \approx 0$)

c)
$$e^x \approx 1 + x \ (if \ x \approx 0)$$

Example 7. Approximations at 0 for ln(1+x) and $(1+x)^r$

1.
$$ln(1+x) \approx x \ (if \ x \approx 0)$$

2.
$$(1+x)^r \approx 1 + rx (if x \approx 0)$$

Quadratic Approximation

Quadratic approximation is an extension of linear approximation by adding one more term:

$$f(x) \approx \underbrace{f(x_0) + f'(x_0)(x - x_0)}_{\text{Linear Part}} + \underbrace{\frac{f''(x_0)}{2}(x - x_0)^2}_{\text{Quadratic Part}} \quad (x \approx x_0)$$

According to the equation above, we can calculate the following approximations:

•
$$\sin x \approx x$$
 (if $x \approx 0$)

•
$$\cos x \approx 1 - \frac{x^2}{2}$$
 (if $x \approx 0$)

•
$$e^x \approx 1 + x + \frac{1}{2}x^2$$
 (if $x \approx 0$)

•
$$\ln(1+x) \approx x - \frac{1}{2}x^2$$
 (if $x \approx 0$)

•
$$(1+x)^r \approx 1 + rx + \frac{r(r-1)}{2}x^2$$
 (if $x \approx 0$)

Problem 2

The linear approximation of $\frac{e^{-3x}}{\sqrt{1+x}} = e^{-3x}(1+x)^{-1/2}$.

Solution.

$$e^{-3x}(1+x)^{-1/2} \approx \left(1 + (-3x) + \frac{1}{2}(-3x)^2\right) \left(1 + \left(-\frac{1}{2}\right)x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}x^2\right)$$
$$e^{-3x}(1+x)^{-1/2} \approx 1 - \frac{7}{2}x + \frac{51}{8}x^2$$

Definition 5. If $f'(x_0) = 0$, we call x_0 a critical point and $y_0 = f(x_0)$ is a critical value of f.