

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE TLAXIACO

DISPOSITIVOS DE ENTRADA Y SALIDA SERIAL Y PARALELO, INTERPRETACION DE CEROS Y UNO

Carrera:

INGENIERIA EN SISTEMAS COMPUTACIONALES.

Asignatura:

ARQUITECTURA DE COMPUTADORAS

5BS

Presenta:

ANA KIMBERLY HERNANDEZ PEREZ 22620053

Docente:

ING. OSORIO SALINAS EDWARD

Tlaxiaco, Oax., 14 de octubre 2024. "educación, ciencia y tecnología, progreso día con día"

Dispositivos de Entrada/Salida Serial

En la transmisión serial, los datos se envían bit por bit a través de un solo canal o línea. Es más lenta que la transmisión paralela, pero es eficiente para largas distancias, ya que minimiza el ruido y las interferencias.

Ventajas del I/O Serial:

- Ideal para largas distancias.
- Menos cables y conectores necesarios.
- Más fácil de gestionar en términos de diseño de hardware.

Desventajas del I/O Serial:

- Menor velocidad de transmisión comparado con paralelo.
- Requiere técnicas de sincronización para garantizar la entrega correcta de los datos.

Dispositivos de Entrada/Salida Paralelo

En la transmisión paralela, los datos se envían simultáneamente en varios bits a través de múltiples canales o líneas, lo que permite una transferencia más rápida de información, pero es más propenso a interferencias y ruido, especialmente en largas distancias.

Ventajas del I/O Paralelo:

- Mayor velocidad de transmisión, ya que varios bits se envían al mismo tiempo.
- Ideal para distancias cortas, como dentro de una computadora (memorias, buses).

Desventajas del I/O Paralelo:

- · Requiere más cables y conectores.
- Más susceptible al ruido y a la interferencia en largas distancias.
- Puede ser costoso debido a la complejidad de múltiples líneas de transmisión.

Dispositivos de Entrada y Salida Serial

En una transmisión serial, los datos se envían bit a bit a través de un único canal o línea. Es un método más lento comparado con la transmisión paralela, pero es más eficiente para largas distancias porque reduce la interferencia.

Dispositivos de Entrada Serial

- Ratón (Mouse) Serial: Un dispositivo de entrada que utiliza un puerto serial para enviar datos a la computadora. Es un ejemplo de los primeros ratones que usaban el puerto RS-232.
- **Escáneres seriales**: Algunos escáneres antiguos usaban el puerto serial RS-232 para transmitir los datos de las imágenes escaneadas.
- Teclado serial: Aunque en la actualidad la mayoría de los teclados son USB, los primeros teclados podían conectarse a la computadora a través de puertos seriales.

Dispositivos de Salida Serial

- **Impresoras seriales**: Usan el puerto serial RS-232 para recibir datos de la computadora y generar una impresión.
- Modems: Dispositivos de salida que permiten la transmisión de datos sobre líneas telefónicas mediante la conversión de señales digitales a señales analógicas (y viceversa).

Interfaces Seriales Comunes

- RS-232: Uno de los puertos seriales más antiguos y usados en la informática.
 Transmite un bit a la vez.
- USB (Universal Serial Bus): Aunque es un protocolo más avanzado que RS-232, también es serial. Es mucho más rápido y admite una gama más amplia de dispositivos, tanto de entrada como de salida.
- I2C (Inter-Integrated Circuit): Un bus serial usado en la electrónica para la comunicación entre microcontroladores y dispositivos periféricos.

Dispositivos de Entrada y Salida Paralelo

En una transmisión paralela, varios bits de datos se envían simultáneamente a través de múltiples canales o líneas, lo que permite una transferencia de datos más rápida en distancias cortas. Sin embargo, tiene desventajas, como la interferencia electromagnética y la atenuación de la señal en distancias largas.

Dispositivos de Entrada Paralelo

- Teclado paralelo: Aunque la mayoría de los teclados son seriales, existen configuraciones de teclado paralelas que permiten el envío simultáneo de datos a través de varias líneas.
- Escáneres paralelos: Algunos escáneres, sobre todo más antiguos, usaban interfaces paralelas como el puerto paralelo IEEE 1284 para enviar datos de las imágenes digitalizadas a la computadora.
- Sistemas de adquisición de datos: Muchos sistemas industriales o científicos de adquisición de datos utilizan buses paralelos para capturar grandes cantidades de datos de manera simultánea.

Dispositivos de Salida Paralelo

- Impresoras paralelas: Conectadas a través de puertos paralelos (como el puerto LPT), fueron populares durante las décadas de los 80 y 90 para imprimir grandes volúmenes de información rápidamente.
- Discos duros IDE (Integrated Drive Electronics): Usaban interfaces paralelas (PATA, Parallel ATA) para transmitir datos entre la computadora y el disco duro.
- Monitores CRT (Cathode Ray Tube): Algunos modelos antiguos de monitores usaban un conector paralelo (VGA o similar) para la transmisión simultánea de varias señales de video.

Interfaces Paralelas Comunes

 Puerto paralelo (LPT): Utilizado principalmente para conectar impresoras y escáneres, permitía la transmisión de múltiples bits al mismo tiempo, con hasta 8 bits por canal.

- PATA (Parallel ATA): Usado en discos duros para la transmisión de datos en paralelo. Fue reemplazado por el estándar SATA (Serial ATA), más eficiente.
- IEEE 1284: Un estándar para comunicación paralelo utilizado por impresoras y otros dispositivos periféricos.

El sistema binario

El sistema binario es un sistema de numeración que solo utiliza dos dígitos: el 0 y el 1. Estos dos valores son llamados **bits**, y son la unidad mínima de información en la informática. A diferencia del sistema decimal (base 10) que usamos en la vida cotidiana, el binario es un sistema de base 2, donde cada posición representa una potencia de 2.

- 1 bit puede representar dos estados: 0 o 1.
- n bits pueden representar 2n2ⁿ2n combinaciones posibles.

Ejemplo:

- 2 bits: 00, 01, 10, 11 (4 combinaciones posibles).
- 3 bits: 000, 001, 010, 011, 100, 101, 110, 111 (8 combinaciones posibles).

Interpretación de los ceros y unos en diversos contextos

1. Números y datos:

- Representación numérica: Los ceros y unos pueden representar cualquier número en el sistema binario. Por ejemplo:
 - El número decimal 5 es representado en binario como 101.
 - El número decimal 10 es representado como **1010**.
- Códigos ASCII: En texto, los caracteres son representados por combinaciones de 8 bits en el sistema ASCII. Por ejemplo, la letra "A" en código ASCII es representada por el binario 01000001.

2. Estados lógicos (electrónica digital):

- Los **0s** y **1s** también representan dos posibles estados eléctricos en los circuitos digitales:
 - **0**: Voltaje bajo o estado apagado (por ejemplo, 0 voltios).
 - 1: Voltaje alto o estado encendido (por ejemplo, 5 voltios). Esto se utiliza en las puertas lógicas de los circuitos digitales, donde

cada operación (AND, OR, NOT, etc.) se basa en la manipulación de estos dos estados.

3. Almacenamiento de información:

- En medios de almacenamiento como discos duros, memorias USB, o SSD, la información se guarda en forma de bits (ceros y unos). Estos son almacenados físicamente como diferentes configuraciones magnéticas, eléctricas, o de carga.
- Por ejemplo, un solo archivo de texto podría estar compuesto por miles
 o millones de bits organizados en secuencias de 0s y 1s.

4. Operaciones lógicas y aritméticas:

- Operaciones lógicas: Las computadoras realizan operaciones lógicas utilizando el álgebra booleana, en la que los valores 0 y 1 corresponden a "falso" y "verdadero", respectivamente. Estas operaciones (AND, OR, XOR, NOT) son la base de la toma de decisiones en programas y circuitos.
- Operaciones aritméticas: Las operaciones matemáticas, como la suma y la multiplicación, también pueden realizarse en binario. Por ejemplo:
 - Suma de binario: 101+11=1000 (5 + 3 = 8 en decimal).101 + 11
 = 1000 \, \text{(5 + 3 = 8 en decimal).
 decimal)}.101+11=1000(5 + 3 = 8 en decimal).

5. Imágenes y multimedia:

- Las imágenes digitales, videos y sonidos también son almacenados y procesados como combinaciones de ceros y unos. Por ejemplo, un píxel en una imagen en blanco y negro puede ser representado por un solo bit: 0 (negro) o 1 (blanco).
- En imágenes en color, cada píxel puede ser representado por varios bits que indican la intensidad de los colores rojo, verde y azul (RGB).

Ejemplos prácticos de la interpretación de ceros y unos

1. Codificación de texto (ASCII):

La palabra "Hola" en ASCII:

H: 01001000

• o: 01101111

• I: 01101100

a: 01100001

Así, el texto "Hola" es interpretado por la computadora como la secuencia de bits: **01001000 01101111 01101100 01100001**.

2. Circuitos lógicos:

- En un circuito AND, la salida será 1 solo si ambas entradas son 1. Por ejemplo:
 - Entrada A = 1, Entrada B = $1 \rightarrow \text{Salida} = 1$.
 - Entrada A = 1, Entrada B = $0 \rightarrow \text{Salida} = 0$.