Pioneer

Service Manual

DEH-P8000R/UC

ORDER NO. CRT2344

MULTI-CD/DAB CONTROL HIGH POWER CD PLAYER WITH RDS TUNER

DEH-P8000R

UC

MULTI-CD CONTROL HIGH POWER CD PLAYER WITH FM/AM TUNER

E5

- See the separate manual CX-916(CRT2300) for the CD mechanism description, disassembly and circuit description.
- The CD mechanism employed in this model is one of S8 series.

SERVICE PRECAUTION

In the first production, the following parts had been mounted temporarily to support the microcomputer <DEH-P8000R/UC> IC601 (PD5487A): R591 (RS1/16S473J), R592 (RS1/16S102J), and IC591 (Non spare part). When replacing IC601 PD5487A, use PD5487B as IC601, and then remove the 3 parts listed above. <DEH-P8050/ES> IC601 (PD5488A): R591 (RS1/16S473J), R592 (RS1/16S102J), and IC591 (Non spare part). When replacing IC601 PD5488A, use PD5488B as IC601, and then remove the 3 parts listed above.

www.manualscenter.com

CONTENTS

1. SAFETY INFORMATION	2	7. GENERAL INFORMATION	5
2. EXPLODED VIEWS AND PARTS LIST	3	7.1 DIAGNOSIS	5
3. BLOCK DIAGRAM AND SCHEMATIC DIAGR	AM10	7.1.1 TEST MODE	5
4. PCB CONNECTION DIAGRAM	28	7.1.2 DISASSEMBLY	5
5. ELECTRICAL PARTS LIST	38	7.2 IC	60
6. ADJUSTMENT	47	8. OPERATIONS AND SPECIFICATIONS	7

PIONEER ELECTRONIC CORPORATION
4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS SERVICE INC.
P.O.Box 1760, Long Beach, CA 90801-1760 U.S.A.
PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium
PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 253 Alexandra Road, #04-01, Singapore 159936

DEH-P8000R.P8050

CD Player Service Precautions

- For pickup unit(CXX1285) handling, please refer to "Disassembly" (see page 51).
 - During replacement, handling precautions shall be taken to prevent an electrostatic discharge(protection by a short pin).
- During disassembly, be sure to turn the power off since an internal IC might be destroyed when a connector is plugged or unplugged.
- 3. Please checking the grating after changing the service pickup unit(see page 49).

1. SAFETY INFORMATION

CAUTION

This service manual is intended for qualified service technicians; it is not meant for the casual do-it-yourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.

Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely; you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING

This product contains lead in solder and certain electrical parts contain chemicals which are known to the state of California to cause cancer, birth defects or other reproductive harm.

Health & Safety Code Section 25249.6 - Proposition 65

www.manualscenter.com

2. EXPLODED VIEWS AND PARTS LIST

2.1 PACKING

DEH-P8000R,P8050

NOTE:

- Parts marked by "*" are generally unavailable because they are not in our Master Spare Parts List.
- lacktriangle Screws adjacent to ∇ mark on the product are used for disassembly.

PACKING SECTION PARTS LIST

			Part No.			
Mark	No.	Description	DEH-P8000R/UC	DEH-P8050/ES		
	1	Cord Assy	CDE5854	CDE5854		
	2	Base Assy	CEA2426	CEA2426		
*	3	Base	CNS5031	CNS5031		
*	4	Sheet	CZA3371	CZA3371		
	5	Polyethylene Bag	CZE3188	CZE3188		
	6	••••				
	7	Spring	CBH-865	CBH-865		
	8	Case Assy	CXB3520	CXB3520		
	9	Screw	BMZ50P060FMC	BMZ50P060FMC		
	10	Screw	CBA-102	Not used		
	11	Screw	CBA1002	CBA1002		
	12	Screw	CBA1120	CBA1120		
*	13	Polyethylene Bag	CEG-127	CEG-127		
	14	Screw	CMZ50P060FMC	CMZ50P060FMC		
	15	Nut	NF50FMC	Not used		
*	16	Polyethylene Bag	CEG-158	CEG-158		
	17	Handle	CNC5395	CNC5395		
	18	Strap	CNF-111	Not used		
	19	Bush	CNV1917	CNV1917		
	20-1	Polyethylene Bag	CEG1116	CEG1116		
	20-2	Owner's Manual	CRD2974	CRD2980		
	20-3	Owner's Manual	Not used	CRD2981		
	20-4		CRD2975	CRD2982		
*	20-5	Caution Card	CRP1207	CRP1207		
*	20-6	Card	ARY1048	Not used		
*	20-7	Caution Card	CRP1209	CRP1210		
	21	Polyethylene Bag	CEG1185	* CEG1088(Cover)		
	22	••••				
	23	Battery	CEX1006	CEX1006		
	24	Carton	CHG3775	CHG3773		
	25	Contain Box	CHL3775	CHL3773		
	26	Protector	CHP2032	CHP2032		
	27	Protector	CHP2033	CHP2033		
	28	Remote Control Assy	CXB3875	CXB3875		

Owner's Manual, Installation Manual

9 - 1111-01 - 11141114411, 111-014114411					
Model	Part No.	Language			
DEH-P8000R/UC	CRD2974	English, French			
	CRD2975	English, French			
DEH-P8050/ES	CRD2980	English, Spanish			
	CRD2981	Portuguese, Arabic			
	CRD2982	English, Spanish, Portuguese, Arabic			

2.2 EXTERIOR

DEH-P8000R,P8050

(1) EXTERIOR SECTION PARTS LIST

Mark	No.	Description	Part No.	Mark	No.	Description	Part No.
	1	Screw	BSZ26P060FMC			Heat Sink	CNR1535
	2	Screw	BSZ30P050FMC		52	FM/AM Tuner Unit	CWE1501
	3	Cap	See Contrast table(2)		53	Holder	CNC7532
	4	Cord Assy	See Contrast table(2)		54	••••	
		Cord Assy	CDE5842		55	•••••	
		Cord Assy	See Contrast table(2)			••••	
		Connector	CDE5846			••••	
		Cord Assy	CDE5854			••••	
		IC(IC301)	PAL005A			Chassis Unit	CXB3556
	10	Transistor(Q803,921,998)	2SD2396		60	Panel Assy	CXB3578
		Fuse(10A)	CEK1136			Screw	BMZ20P030FMC
		Cap	CNS1472			Screw	CBA1154
		Cord Assy	See Contrast table(2)			Screw	BPZ20P060FMC
		Resistor	RS1/2PMF102J			Screw	CBA1060
	15	Antenna Cable	CDH1256		65	Screw	CBA1061
		Case	CNB2426			Screw	CBA1082
		Holder	CNC6798			Screw	CBA1430
		Earth Terminal	See Contrast table(2)			Screw	CBA1454
		Holder	CNC8170			Spring	CBH2130
	20	Spacer	See Contrast table(2)		70	••••	
		Cushion	CNM6065			Cord	CDE5960
		Cushion	CNM6387			•••••	01/0000
		Panel	See Contrast table(2)			Connector	CKS3997
.,		Сар	See Contrast table(2)			Roller	CLA3583
*	25	PCB	CNP5508		75	Frame	CNC8201
	26	Screw	BSZ30P200FMC		76	Spacer	CNM6155
	27	Screw	CBA1447		77	Spacer	CNM6156
	28	Insulator	CNM6135		78	Spacer	CNM6419
	29	Cover	CNM6489		79	PCB	CNP5321
	30	Tuner Amp Unit	See Contrast table(2)		80	•••••	
	31	Screw	BMZ26P160FMC		81	PCB	CNP5355
		Clamper	CEF1004			Panel	CNS5247
	33	Clamper	See Contrast table(2)		83	Lighting Conductor	CNV5605
	34	Clamper	CEF1009		84	Cover	CNV5610
	35	Plug(CN901)	CKM1278		85	Guide	CNV5672
		•••••				Guide	CNV5696
	37	••••				Rack	CNV5697
		••••			88	Gear	CNV5698
		Plug(CN851)	CKS-786		89	Gear	CNV5761
*	40	Plug(CN101)	CKS1058		90	Torque Limiter Unit	CNV5762
		Connector(CN801)	CKS1532			Holder	CNV5763
	42	Connector(CN991)	CKS1960		92	Switch(S951)	CSN1012
		Connector(CN681)	See Contrast table(2)		93	Switch(S952)	CSN1022
	44	Connector(CN351)	See Contrast table(2)		94	Arm Unit	CXB3574
	45	•••••			95	Frame Unit	CXB3575
	46	Mini Pin Jack(CN451)	CKX1046			Holder Unit	CXB3576
	47	Holder	See Contrast table(2)			Bracket Unit	CXB3577
		Holder	CNC8168			Arm Unit	CXB3866
		Holder	CNC8169			Motor(M951)	CXM1085
	50	Insulator	See Contrast table(2)		100	••••	

Mark No.	Description	Part No.	Mark N	Vo.	Description	Part No.
101	••••		1	116	Keyboard Unit	CWM6226
102	••••		1	117	Connector(CN1902)	CKS3995
103	••••		1	118	Connector(CN1901)	CKS3996
104	••••		1	119	OEL Module	MXK8002
105	••••		1	120	Grille Unit	See Contrast table(2)
106	Detach Grille Assy	See Contrast table(2)	1	121	Cover Unit	See Contrast table(2)
107	Screw	BPZ20P060FMC	1	122	Case Assy	CXB3520
108	Screw	BPZ20P080FZK	1	123	Remote Control Assy	CXB3875
109	Button(⊜)	See Contrast table(2)	1	124	Battery Cover	CNS5032
110	Button(D)	CAC5891	1	125	CD Mechanism Module(S8)	CXK5251
	Button(SOURCE)	See Contrast table(2)	1	126	Washer	2-1816-0035-D2-00
112	Button(⋖⊳)	See Contrast table(2)	1	127	Washer	2-1821-0045-D2-00
113	Button(EQ)	See Contrast table(2)				
114	Button(1-6)	See Contrast table(2)				
115	Housing	CNV5606				

(2) CONTRAST TABLE DEH-P8000R/UC and DEH-P8050/ES are constructed same except for the following:

			Part	Part No.		
Mark	No.	Description	DEH-P8000R/UC	DEH-P8050/ES		
	3	Cord Assy	Not used	CDE5841		
	4	Cord Assy	CDE5840	Not used		
	6	Cord Assy	Not used	CDE5844		
	13	Cap	Not used	CNV2680		
	18	Earth Terminal	CNC7358	CNC6469(Holder)		
	20	Spacer	CNM6482	CNM4870(Cushion)		
	23	Panel	CNS5256	CSN5548		
	24	Cap	CNV2680	Not used		
	30	Tuner Amp Unit	CWM6222	CWM6224		
	33	Clamper	Not used	CEF1088		
	43	Connector(CN681)	Not used	CKS3597		
	44	Connector(CN351)	CKS3606	CKS3602		
	47	Holder	CNC7533	Not used		
	50	Insulator	CNM5967	Not used		
	106	Detach Grille Assy	CXB3980	CXB3288		
	109	Button(≙)	CAC5890	CAC6126		
	111	Button(SOURCE)	CAC5892	CAC5901		
	112	Button(<>>)	CAC5893	CAC6045		
	113	Button(EQ)	CAC5894	CAC5899		
	114	Button(1-6)	CAC5910	CAC5911		
	120	Grille Unit	CXB3984	CXB3286		
	121	Cover Unit	CXB4309	CXB4310		

2.3 CD MECHANISM MODULE

OD MECHANISM MODULE SECTION PARTS LIST

Mark No.	Description	Part No.	Mark No.	Description	Part No.
1	Control Unit	CWX2358	46	Sheet	CNM6215
2	Connector(CN802)	CKS2192	47	Ball	CNR1189
3	Connector(CN801)	CKS2193	48	Belt	CNT1086
	Connector(CN701)	CKS2771	49	Roller	CNV4509
	Connector(CN101)	CKS3486		Arm	CNV5246
	,				
6	Screw	BMZ20P030FZK	51	Arm	CNV5247
	Screw	BSZ20P040FZK		Arm	CNV5248
	Screw(M2×3)	CBA1077		Arm	CNV5249
	Screw(M2×6)	CBA1489		Guide	CNV5254
	Screw	CBA1243		Guide	CNV5255
11	Screw(M2×4)	CBA1362	56	Gear	CNV5257
	Washer	CBF1037	57	Gear	CNV5256
	Washer	CBF1038	58	Guide	CNV5869
14	Washer	CBF1060		Damper	CNV5266
	Washer	CBF1075		Arm	CNV5359
		02			
16	Spring	CBH2079	61	Arm	CNV5360
	Spring	CBH2117	62	Arm	CNV5361
	Spring	CBH2278		Guide	CNV5509
	Spring	CBH2110		Guide	CNV5510
	Spring	CBH2282		Holder	CNV5578
	- F3		-		
21	Spring	CBH2114	66	Guide	CNV5751
	Spring	CBH2115	67	Clamper	CNV5758
	Spring	CBH2080		Gear	CNV5813
	Spring	CBH2118		Motor Unit(M1)	CXB2190
	Spring	CBH2161		Screw Unit	CXB2191
	- 1- 3				
26	Spring	CBH2163	71	Chassis Unit	CXB2192
27	Spring	CBH2189	72	Gear Unit	CXB2193
	Spring	CBH2249	73	Arm Unit	CXB2194
	Spring	CBH2260	74	Motor Unit(M2)	CXB2195
	Spring	CBH2262		Lever Unit	CXB2553
	. 0				
31	Spring	CBL1367	76	Arm Unit	CXB2554
32	Spring	CBL1369	77	Motor Unit(M3)	CXB2562
	Connector	CDE5531	78	Arm Unit	CXB2795
34	Connector	CDE5532	79	Bracket Unit	CXB4071
	Shaft	CLA3304		Screw	JFZ20P025FMC
36	Screw(M2.6×6)	CBA1458	81	Screw	JGZ17P025FZK
37	Frame	CNC7544	82	Washer	YE15FUC
38	Frame	CNC7545	83	Pickup Unit(Service)(P8)	CXX1285
	Lever	CNC7546		Screw	IMS26P030FMC
	Arm	CNC7739	* 85	PCB	CNX2982
	Bracket	CNC7798	86	Photo-transistor(Q1, 2)	CPT230SX-TU
	Plate	CNC8090			
43	Spacer	CNM3315			
44	Sheet	CNM6170			
45	Cushion	CNM6204			

3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM

3.1 BLOCK DIAGRAM

В

С

D

3.2 OVERALL CONNECTION DIAGRAM(GUIDE PAGE)

Note: When ordering service parts, be sure to refer to "EXPLODED VIEWS AND PARTS LIST" or "ELECTRICAL PARTS

3

Α

С

D SWITCH PCB

6

6

A

7

13

В

С

Α

В

С

D

3

www.manualscenter.com

3

5

www.manualscenter.com

6

A-a D

7

15

В

С

A-a A-b

В

С

D

3

A-b

16

2

A-b

A-a

В

С

D

7

6

5

5

6

A-b

7

2

3.3 FM/AM TUNER UNIT

Α

В

С

D

B

18

1 ____

2

www.manualscenter.com

7

6

6

5

5

7

В

С

D

www.manualscenter.com

В

С

D

Α

В

С

D

2

3

BB

22

2

В

С

D

www.manualscenter.com

www.manualscenter.com

Note:1. The encircled numbers denote measuring pointes in the circuit diagram.

2. Reference voltage REFO:2.5V

Waveforms

www.manualscenter.com

DEH-P8000R,P8050

4.1 TUNER AMP UNIT NOTE FOR PCB DIAGRAMS

 The parts mounted on this PCB include all necessary parts for several destination.

For further information for respective destinations, be sure to check with the schematic diagram.

2. Viewpoint of PCB diagrams

www.manualscenter.com

3

2

28

С

3

TUNER AMP UNIT Q401 IC591 Q153 Q155 Q152 Q151 Q154 Q454 Q302 I C 5 0 1 Q351 Q301 Q356 Q355 Q354 Q353 Q352 Q501 Q101 Q922 Q102 I C 1 0 1 Q913 Q991 Q 9 7 1 Q853 Q981 Q261 Q852 Q641 IC231 Q132 Q807 Q805 Q131

В

С

www.manualscenter.com

6

5

SIDE B

A

31

В

С

D

5

6

4.2 FM/AM TUNER UNIT

www.manualscenter.com SIDE A

FM/AM TUNER

B

32

2

SIDE B

3

0

www.manualscenter.com

3

B FM/AM TUNER UNIT

1

2

B

33

_

2

С

В

D

4.3 KEYBOARD UNIT

3

3

34

С

4.4 SWITCH PCB

F SWITCH PCB

3

В

С

_

D

www.manualscenter.com

3

2

SIDE B

В

С

D

IC, Q

3

2

www.manualscenter.com

CONTROL UNIT

2

3

5. ELECTRICAL PARTS LIST

NOTES:

- Parts whose parts numbers are omitted are subject to being not supplied.
- The part numbers shown below indicate chip components.

Chip Resistor

 $\mathsf{RS1/} \bigcirc \mathsf{S} \bigcirc \bigcirc \cup \mathsf{J,RS1/} \bigcirc \cup \mathsf{S} \bigcirc \bigcirc \cup \mathsf{J}$

Chip Capacitor (except for CQS.....)

CKS....., CCS....., CSZS.....

====Ci	rcuit Symbol and No.===Part Name	Part No.	====	==Circu	uit Symbol and No.===Part Name	Part No.
	nit Number : CWM6222([nit Number : CWM6224([nit Name : Tuner Amp LLANEOUS	DEH-P8000R/UC) DEH-P8050/ES) Unit	Q Q Q Q D	981 982 991 998 231	Transistor Transistor Transistor Transistor Diode Network	2SC2412K 2SC2412K IMD2A 2SD2396 DA204U
IC 101 IC 203 IC 231 IC 271 IC 301	IC IC IC	CA0008AM PML004AF NJM2068MD PA2028A PAL005A	D D D D	232 233 234 401 402	Diode Network Diode Network Diode Network Diode Diode	DA204U DA204U DA204U 1SR154-400 HZS16(2)
IC 401 IC 501 IC 601 IC 851 IC 961	IC IC IC	S-81250SGUP See Contrast table See Contrast table BA6288FS S-80735ANDZI	D D D D	683 801 802 803 804	LED Diode Network Diode Network Diode Network Diode Network	BR4361F DA204U DA204U DA204U DA204U DA204U
Q 101 Q 102 Q 261 Q 301 Q 302	Transistor Transistor Transistor	2SA1162 DTC124EK IMD2A DTC124EK DTC124EK	D D D D	805 806 807 808 809	Diode Diode LED LED LED	MA3056(M) HZS9L(C2) CL170PGCD CL170PGCD CL170PGCD
O 351 O 352 O 353 O 354 O 355	Transistor Transistor Transistor	2SC3326 2SC3326 2SC3326 2SC3326 See Contrast table	D D D D	810 851 852 853 901	Diode Diode Diode Diode Diode	MA3062(M) HZS7L(C3) 1SS133 1SS133 ERA15-02VH
Q 356 Q 401 Q 501 Q 641 Q 681	Transistor Transistor Transistor	See Contrast table 2SC2412K See Contrast table DTC114EK 2SA1162	D D D D	902 903 911 912 921	Diode Diode Diode Diode Diode	ERA15-02VH ERA15-02VH ERA15-02VH HZS6L(B1) HZS9L(C1)
O 682 O 683 O 684 O 685 O 801	Transistor Transistor Transistor	DTC124EK 2SC2412K See Contrast table See Contrast table 2SD1760F5	D D D D	931 932 933 941 942	Diode Diode Diode Diode Diode	HZS7L(A1) HZS7L(C3) ERA15-02VH ERA15-02VH ERA15-02VH
Q 802 Q 803 Q 805 Q 806 Q 806	Transistor Transistor Transistor	IMD2A 2SD2396 2SC2412K 2SB1238 DTC143EK	D D D D	951 961 981 982 983	Diode Diode Diode Diode Diode	MA152WK MA152K MA152WK HZS9L(A2) MA152K
Q 808 Q 851 Q 852 Q 853 Q 911	Transistor Transistor Transistor	IMD2A 2SD1760F5 DTA114EK DTC124EK 2SD1760F5	D D D ZNR L	984 985 991 451 101	Diode Diode Diode Inductor	MA152WK 1SS133 HZS9L(B1) DSPS-201M-S00B LAU3R3K
O 913 O 921 O 922 O 923 O 931	Transistor Transistor Transistor	IMD2A 2SD2396 DTC114EK 2SB1238 IMX1	L L L L	251 271 401 402 403	Ferri-Inductor Ferri-Inductor Ferri-Inductor Inductor Inductor	LAU2R2K LAU101K LAU2R2K LCTB4R7K2125 CTF1420
O 932 O 941 O 942 O 951 O 962	Transistor ! Transistor Transistor	DTC114EK 2SB1243 DTC124EK 2SA1162 2SC2412K	L L L L	404 501 502 601 801	Inductor Inductor Inductor Inductor Inductor	LCTA1R0J3225 See Contrast table See Contrast table LAU100K LAU100K

www.manualscenter.com

====Circuit Symbol and No.===Part Name		iit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name		Part No.	
L X X	802 951 501 601	Inductor Ferri-Inductor Crystal Resonator 3.648MHz Radiator 10.00MHz	CTF1484 LAU2R2K See Contrast table CSS1475	R R R	371 372 373 374	RS1/16S471J RS1/16S471J See Contrast table See Contrast table	
SP	641	Buzzer FM/AM Tuner Unit	CPV1012 CWE1501	R R R	375 376 377	RS1/10S0R0J RS1/10S0R0J See Contrast table	
RE	SISTO	RS		R R R	401 402 403	RS1/10S473J RS1/10S473J RS1/10S681J	
R R R R	101 102 103 104 105		RS1/10S101J RS1/10S620J RS1/10S101J RS1/10S222J RS1/10S103J	R R R R R	404 409 410 411 412	RS1/10S681J RS1/16S681J RS1/16S103J RS1/16S681J RS1/16S681J	
R R R R	106 107 108 109 110		RS1/10S562J RS1/10S332J RS1/16S102J RS1/16S102J RS1/16S223J	R R R R	413 414 415 416 417	RS1/16S681J RS1/16S473J RS1/16S472J RS1/16S473J RS1/16S473J	
R R R R	111 112 113 151 152		RS1/16S223J RS1/16S181J RS1/16S181J RS1/10S0R0J RS1/10S0R0J	R R R R	418 419 420 423 424	RS1/10S473J RS1/10S222J RS1/10S222J RS1/10S0R0J RS1/16S393J	
R R R R	161 162 163 164 201		RS1/16S272J RS1/16S272J RS1/16S162J RS1/16S162J RS1/10S0R0J	R R R R	431 501 502 503 507	RS1/8S151J See Contrast table See Contrast table See Contrast table See Contrast table	
R R R R	203 204 205 231 232		RS1/10S102J RS1/10S102J RA3C102J RS1/10S474J RS1/10S474J	R R R R	508 511 512 513 514	See Contrast table See Contrast table See Contrast table See Contrast table See Contrast table	
R R R R	233 234 235 236 283		RS1/10S104J RS1/10S104J RS1/10S273J RS1/10S273J RS1/10S203J	R R R R	518 591 592 601 602	See Contrast table RS1/16S473J RS1/16S102J RS1/16S473J RS1/16S472J	
R R R R	284 301 302 303 304		RS1/10S0R0J RS1/10S103J RS1/10S103J RS1/10S103J RS1/10S331J	R R R R	603 604 605 606 607	RS1/16S221J RS1/16S682J RS1/16S221J RS1/16S682J RS1/16S602J	
R R R R	351 352 353 354 355		RS1/10S820J RS1/10S820J RS1/10S820J RS1/10S820J See Contrast table	R R R R R	608 609 610 611 614	RS1/16S102J RS1/16S102J RS1/16S473J RS1/16S473J RS1/16S473J RS1/16S221J	
R R R R	356 357 358 359 360		See Contrast table RS1/16S223J RS1/16S223J RS1/16S223J RS1/16S223J	R R R R	615 616 617 618 619	RS1/16S682J RS1/16S221J RS1/16S473J RS1/16S221J RS1/16S682J	
R R R R	361 362 363 364 365		See Contrast table See Contrast table RS1/16S103J RS1/16S103J RS1/16S103J	R R R R	620 623 627 628 633	RS1/16S473J RS1/16S473J RS1/16S473J RS1/16S473J RS1/10S0R0J	
R R R R	366 367 368 369 370		RS1/16S103J See Contrast table See Contrast table RS1/16S471J RS1/16S471J	R R R R	634 637 641 642 654	RS1/10S102J RS1/16S473J RS1/10S202J RS1/10S102J RS1/10S0R0J	

www.manualscenter.com

===	===Circuit Symbol and No.===Part Name	Part No.	==:	===Circuit Symbol and No.===Part Name	Part No.
R R R R	655 656 658 659 681	RS1/10S0R0J RS1/10S0R0J RS1/16S473J RS1/16S0R0J RS1/8S102J	R R R R	953 954 962 963 964	RS1/10S472J RS1/16S102J RS1/10S102J RS1/10S473J RS1/10S822J
R R R R	682 683 685 686 687	See Contrast table See Contrast table See Contrast table RS1/10S103J RS1/10S223J	R R R R	981 982 983 984 985	RS1/16S223J RS1/10S473J RS1/10S103J RS1/10S473J RS1/10S102J
R R R R	688 689 690 691 692	RS1/10S223J RS1/10S223J RS1/10S272J See Contrast table See Contrast table	R R R	986 989 991 992	RS1/10S224J RS1/10S473J RD1/4PU221J RS1/10S221J
R R	693 694	See Contrast table See Contrast table		PACITORS	CVCOVP104V16
R R R	695 696 697	RS1/16S473J See Contrast table See Contrast table	CCCCC	101 102 161 162	CKSQYB104K16 CKSQYB104K16 CKSQYB183K25 CKSQYB183K25
R R R	698 699 700 801	RS1/8S471J RS1/10S102J RS1/10S103J RS1/8S222J	C	171 172 173	CEJA470M16 CKSQYB104K16 CEJA100M16 CKSYP22EK16
R R R	802 803 804	RS1/8S222J RS1/8S222J RS1/8S103J	C C	203 204 205	CKSYB225K16 CKSYB225K16 CKSYB224K16
R R R	805 806 807	RS1/8S472J RS2PMF220J RS1/8S221J	C C C	206 207 208 209	CKSYB224K16 CKSYB105K16 CKSYB105K16 CKSYB105K16
R R R	809 810 811	RS1/10S103J RS1/10S222J RD1/4PU102J	C C	210 211	CKSYB105K16 CEJANP4R7M16
R R	812 813	RS1/10S152J RS1/4S221J	C C	212 213 214	CEJANP4R7M16 CEJANP4R7M16 CEJANP4R7M16
R R R R	814 818 819 820 821	RD1/4PU391J RS1/10S103J RS1/8S221J RS1/10S1R0J RS1/10S1R0J	C C C C	215 216 217 218	CKSQYB473K50 CKSQYB473K50 CKSQYB473K50 CKSQYB473K50
R R	851 852	RD1/4PU271J RS1/10S102J	C C	219 220	CKSYB105K16 CKSYB105K16
R R R	853 862 864	RS1/10S102J RS1/10S102J RS1/10S102J	CCCC	221 222 223 224	CKSYB105K16 CKSYB105K16 CKSYB105K16 CKSYB105K16
R R R R	911 912 913 914 921	RS1/10S0R0J RS1/10S152J RS1/10S512J RS1/10S1R0J RS1/10S1R0J	C C C C	225 226 227 228	CKSQYB333K50 CKSQYB123K50 CKSQYB473K50 CKSQYB153K50
R R	922 923	RD1/4PU221J RS1/10S102J	Ċ C	229 231	CKSQYB153K50 CKSQYB103K50
R R R	924 926 931	RS1/4S152J RS1/10S223J RS1/10S472J	0000	233 234 235 236	CKSQYB474K16 CKSQYB474K16 CKSQYB104K16 CKSQYB104K16
R R R R	932 933 934 935 936	RS1/10S473J RS1/10S103J RS1/10S473J RS1/10S103J RS1/10S103J	C C C C	237 238 239 240	CKSQYB104K25 CKSQYB104K25 CCSQCH470J50 CCSQCH470J50
R R	941 942	RS1/10S472J RS1/4S221J	C C	241 242	CKSQYB152K50 CKSQYB152K50
R R R	943 951 952	RS1/4S221J RS1/8S153J RS1/10S472J	00000	262 277 278 279 280	CKSYB475K10 CEJA4R7M35 CEJA101M16 CEJA100M16 CEJA100M16

=====Circuit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name	Part No.
C 281 C 282 C 283 C 286 C 287	CKSYB225K16 CEJA330M25 CEJA330M25 CASAQ3R3M16 CKSYB684K25	C 807 C 808 C 809 C 810 C 811	CKSQYB102K50 CKSYB221K50 CKSYB103K50 CKSYB475K10 CKSYB225K16
C 301 C 302 C 303 C 304 C 306	CKSQYB224K16 CKSQYB224K16 CKSQYB224K16 CKSQYB224K16 CEJA330M10	C 812 C 813 C 814 C 851 C 852	CCSCH101J50 CKSQYB103K50 CKSQYB105K10 CKSQYB103K50 CKSYB104K16
C 307 470μF/16 C 309 C 310 C 311 C 351	CCH1339 CKSQYB104K16 CEJA100M16 CKSYB105K16 CEJA100M35	C 853 C 855 C 856 C 857 C 901	CEJA220M16 CKSQYB102K50 CCSQCH101J50 CCSQCH101J50 CKSYB103K50
C 352 C 353 C 354 C 355 C 356	CEJA100M35 CEJA100M35 CEJA100M35 See Contrast table See Contrast table	C 911 470μF/16V C 912 C 913 C 914 C 915 470μF/16V	CCH1183 CKSQYB472K50 CKSQYB103K50 CEJA470M10 CCH1183
C 357 C 358 C 359 C 360 C 361	CKSRYB222K50 CKSRYB222K50 CKSRYB222K50 CKSRYB222K50 See Contrast table	C 921 330μF/10V C 922 C 923 C 931 C 951	CCH1181 CKSQYB103K50 CEJA101M16 CKSYB105K16 CKSYB103K50
C 362 C 403 C 404 C 405 C 406	See Contrast table CKSQYB473K16 CEJA101M10 CKSQYB103K50 CEJA220M10	C 961 C 962 C 963 C 981 C 991	CKSQYB102K50 CKSQYB104K16 CEJA2R2M50 CEJA220M16 CKSQYB473K50
C 407 C 408 C 409 C 411 C 413	CKSQYB103K50 CKSQYB223K50 CKSQYB223K50 CKSRYB472K50 See Contrast table	C 992 C 993	CKSQYB102K50 CEJA101M10
C 431 C 432 C 433 C 435 C 502	CEJA101M16 CKSQYB104K16 See Contrast table CCSQCH101J50 See Contrast table		
C 503 C 504 C 505 C 506 C 507	See Contrast table See Contrast table See Contrast table See Contrast table See Contrast table		
C 508 C 509 C 511 C 512 C 601	See Contrast table See Contrast table See Contrast table See Contrast table CEJA4R7M35		
C 602 C 603 C 604 C 605 C 651	CKSQYB103K50 CCSQCH101J50 CCSQCH150J50 CCSQCH220J50 CKSYB225K16		
C 683 C 684 C 685 C 686 C 801	CKSQYB103K50 See Contrast table See Contrast table CKSQYB473K16 CKSYB475K10		
C 802 C 803 C 804 C 805 C 806	CKSQYB104K16 CEJA470M10 CKSQYB103K50 CEJA470M10 CKSQYB103K50		

CONTRAST TABLE of TUNER AMP UNIT DEH-P8000R/UC and DEH-P8050/ES are constructed same except for the following:

		Part No.				
Symbol and	d Description	DEH-P8000R/UC	DEH-P8050/ES			
IC501	IC	PM4009A	Not used			
IC601	IC	PD5487A	PD5488A			
Q355,356	Transistor	2SC3326	Not used			
Q501	Transistor	DTA124EK	Not used			
Q684,685	Transistor	Not used	2SC2412K			
L501	Inductor	CTF1295	Not used			
L502	Inductor	CTF1420	Not used			
X501	Crystal Resonator 3.648MHz	CSS1447	Not used			
R355,356		RS1/10S820J	Not used			
R361,362		RS1/16S223J	Not used			
R367,368		RS1/16S103J	Not used			
R373,374		RS1/16S471J	Not used			
R377,514		RS1/10S0R0J	Not used			
R501,502,5	03,511	RS1/16S102J	Not used			
R507		RS1/10S0R0J	Not used			
R508,512		RS1/16S0R0J	Not used			
R513		RS1/16S225J	Not used			
R518		RS1/16S681J	Not used			
R682,683		Not used	RS1/8S102J			
R685		Not used	RS1/10S103J			
R691,693		Not used	RS1/10S223J			
R692,694		Not used	RS1/10S272J			
R696,697		Not used	RS1/16S473J			
C355,356		CEJA100M35	Not used			
C361,362		CKSRYB222K50	Not used			
C413,511		CKSQYB103K50	Not used			
C433		Not used	CCSQCH101J50			
C502		CCSQCH101J50	Not used			
C503,504		CCSQCH270J50	Not used			
C505		CKSQYB104K16	Not used			
C506,507		CKSQYB471K50	Not used			
C508		CKSQYB104K16	Not used			
C509		CEJA220M6R3	Not used			
C512		CCSRCH101J50	Not used			
C684,685		Not used	CKSQYB103K50			

====Circu	uit Symbol and No.===Part Name	Part No.	=====Circuit Symbol and No.===Part Name	Part No.
	it Number : CWE1501 it Name : FM/AM Tuner ANEOUS		R 104 R 106 R 108 R 110 R 111	RS1/16S562J RS1/16S0R0J RS1/16S0R0J RS1/16S154J RS1/16S273J
IC 1 IC 2 IC 3 Q 1 Q 2	IC IC IC Transistor Transistor	PML002A PM4008A BR9010FV 2SC4081 DTC124EU	R 113 R 114 R 115 R 116 R 202	RS1/16S222J RS1/16S333J RS1/16S334J RS1/16S473J RS1/16S472J
O 3 O 51 O 201 O 202 O 204	FET Transistor FET Transistor Transistor	3SK263 2SC4081 2SK932 DTC124EU 2SC4081	R 203 R 204 R 205 R 206 R 208	RS1/16S225J RS1/16S102J RS1/16S220J RS1/16S471J RS1/16S104J
D 1 D 2 D 6 D 201 D 202	Diode Diode Diode Diode Diode	KV1410(23) 1SV248 KV1410(23) MA143 MA147	R 209 R 210 R 213 R 902 R 904	RS1/16S104J RS1/16S563J RS1/16S223J RS1/16S103J RS1/16S473J
D 903 D 904 L 1 L 3 L 4	Diode Diode Coil Inductor Coil	KV1410(23) SVC253 CTC1155 LCTB1R5K2125 CTC1155	R 907 R 908 R 909 R 914	RS1/16S103J RS1/16S681J RS1/16S473J RS1/16S562J
L 201 L 202 L 203 L 901 L 902	Inductor Inductor Inductor Coil Inductor	LCTB330K1608 CTF1287 LCTA121J3225 CTC1154 LCTA3R3J3225	CAPACITORS C 1 C 6 C 8 C 10	CCSQCH4R0C50 CKSQYB105K10 CKSRYB222K50 CCSRCH220J50
L 904 L 905 T 51 CF 51 CF 52	Inductor Inductor Coil Ceramic Filter Ceramic Filter	LCTBR47K1608 LCTBR47K1608 CTE1132 CTF1442 CTF1442	C 11 C 12 C 14 C 15 C 16	CCSRCH150J50 CCSRCH8R0D50 CCSRCJ3R0C50 CKSRYB103K50 CKSRYB222K50
CF 53 CF 202 X 901 RESISTO	Ceramic Filter Ceramic Filter Crystal Resonator 10.250MHz RS	CTF1442 CTF1476 CSS1432	C 17 C 18 C 19 C 20 C 21	CKSRYB222K50 CCSRCJ3R0C50 CKSRYB103K50 CKSRYB103K50 CKSRYB103K50
R 1 R 2 R 5 R 7 R 8		RS1/16S183J RS1/16S103J RS1/16S0R0J RS1/16S273J RS1/16S473J	C 24 C 26 C 30 C 32 C 35	CKSQYB334K16 CKSRYB472K50 CCSRCH220J50 CCSRCH470J50 CKSRYB103K50
R 9 R 10 R 11 R 12 R 13		RS1/16S223J RS1/16S473J RS1/16S221J RS1/16S103J RS1/16S104J	C 51 C 52 C 53 C 54 C 55	CKSRYB103K50 CKSRYB473K16 CCSRCK2R0C50 CKSRYB103K50 CKSRYB104K16
R 16 R 17 R 18 R 19 R 20		RS1/16S223J RS1/16S221J RS1/16S221J RS1/16S473J RS1/16S470J	C 56 C 58 C 101 C 102 C 103	CKSRYB104K16 CKSQYB224K16 CEALNP100M10 CCSRCH151J50 CKSRYB473K16
R 31 R 51 R 52 R 53 R 54		RS1/16S0R0J RS1/16S470J RS1/16S103J RS1/16S103J RS1/16S331J	C 105 C 106 C 107 C 108 C 109	CKSRYB682K25 CEALR68M50 CKSRYB103K50 CKSQYB474K16 CKSQYB474K16
R 55 R 56 R 57 R 58 R 59		RS1/16S331J RS1/16S560J RS1/16S560J RS1/16S102J RS1/16S225J	C 109 C 110 C 111 C 112 C 113 C 114	CKSRYB104K16 CKSRYB104K16 CKSRYB104K16 CKSRYB104K16 CKSRYB123K25 CEAL220M6R3
R 60 R 61 R 101 R 102 R 103		RS1/16S133J RS1/16S433J RS1/16S333J RS1/16S103J RS1/16S333J	C 114 C 115	CKSRYB473K16

=====Circuit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name	Part No.
C 116	CEAL2R2M50	L 1904 Inductor	LCTA220J2520
C 117	CKSRYB102K50	L 1905 Inductor Array	CTF1421
C 120	CKSRYB183K25	L 1906 Inductor Array	CTF1421
C 121	CKSRYB332K50	L 1907 Inductor	CTF1295
C 122	CKSRYB562K25	L 1908 Inductor	CTF1295
C 123	CKSRYB681K50	X 1901 Ceramic Resonator 15.62MHz S 1901 Push Switch S 1902 Push Switch S 1903 Push Switch S 1904 Push Switch	CSS1458
C 125	CKSRYB103K50		CSG1112
C 126	CKSRYB103K50		CSG1112
C 127	CEAL2R2M50		CSG1111
C 128	CKSRYB103K50		CSG1111
C 201	CCSRCH471J50	S 1905 Push Switch S 1906 Push Switch S 1907 Push Switch S 1908 Push Switch S 1909 Push Switch	CSG1112
C 202	CCSRCH100D50		CSG1112
C 203	CKSRYB104K16		CSG1112
C 204	CKSRYB332K50		CSG1112
C 205	CKSRYB103K50		CSG1112
C 206	CKSRYB104K16	S 1910 Push Switch S 1911 Push Switch S 1912 Push Switch S 1913 Push Switch S 1914 Push Switch	CSG1112
C 207	CKSRYB473K16		CSG1112
C 208	CCSRCH560J50		CSG1112
C 209	CEAL470M6R3		CSG1112
C 210	CKSRYB103K50		CSG1112
C 211	CKSRYB103K50	S 1915 Push Switch S 1916 Push Switch S 1917 Push Switch S 1918 Push Switch S 1919 Push Switch	CSG1112
C 212	CCSRCH101J50		CSG1112
C 215	CKSRYB223K25		CSG1112
C 216	CKSQYB334K16		CSG1112
C 217	CKSRYB103K50		CSG1112
C 219	CKSQYB105K10	S 1920 Push Switch S 1921 Push Switch S 1922 Push Switch S 1923 Push Switch S 1924 Push Switch	CSG1112
C 220	CKSRYB104K16		CSG1112
C 221	CKSRYB473K16		CSG1112
C 222	CKSQYB334K16		CSG1112
C 223	CKSQYB474K16		CSG1112
C 224 C 225 C 226 C 902 C 904	CKSRYB104K16 CKSRYB272K50 CKSRYB682K25 CCSRCH270J50 CKSRYB223K25	S 1925 Push Switch RESISTORS R 1901	CSG1111 RS1/16S154J
C 905	CKSRYB103K50	R 1902	RS1/16S473J
C 906	CCSRTH100D50	R 1903	RA4C101J
C 907	CCSRTH150J50	R 1904	RA3C101J
C 909	CCSRTH100D50	R 1905	RA3C101J
C 910	CKSRYB332K50 CKSQYB474K16 CKSRYB223K25 CKSRYB682K25 CKSQYB223K25	R 1906	RA4C101J
C 912		R 1907	RS1/16S473J
C 913		R 1908	RA3C101J
C 914		R 1909	RA3C101J
C 915		R 1910	RA4C101J
C 916	CKSQYB474K16 CKSYB475K10 CKSRYB223K25 CKSQYB225K10 CCSRCH270J50	R 1911	RA4C101J
C 917		R 1912	RA4C101J
C 918		R 1913	RA3C101J
C 919		R 1914	RA4C101J
C 920		R 1915	RA4C101J
C 921 C 922 C 923	CCSRCH270J50 CKSYB105K16 CKSRYB103K50	R 1922 R 1923 R 1924 R 1925 R 1930	RS1/10S121J RS1/10S2R2J RS1/8S222J RS1/8S222J RS1/16S472J
Unit Number : CWM6226 Unit Name : Keyboard Unit MISCELLANEOUS	it PD5471A	R 1931 R 1956 R 1957 R 1958 R 1959	RS1/16S473J RS1/10S0R0J RS1/10S0R0J RS1/10S0R0J RS1/10S0R0J
IC 1902 IC IC 1903 HIC Module D 1901 Diode Network D 1902 Diode Network D 1904 Diode	PD8051A RS-140 DA204U DA204U MA110	R 1960 R 1961 R 1962 R 1963 R 1964	RS1/8S911J RS1/8S911J RS1/10S511J RS1/10S511J
D 1905 LED L 1901 Chip Inductor L 1902 Chip Inductor L 1903 Inductor	CL170UBX LCTA2R2J3225 LCTA2R2J3225 CTF1484	R 1965 R 1966 R 1967 R 1968 R 1969	RS1/10S511J RS1/10S511J RS1/8S511J RS1/8S511J RS1/8S511J RS1/8S511J

=====Circuit Symbol and No.===Part Name	Part No.	====Circuit Symbol and No.===Part Name	Part No.
R 1970 R 1971 R 1972 R 1973 R 1974	RS1/8S511J RS1/8S511J RS1/8S511J RS1/8S511J RS1/8S751J	R 503 R 504 R 505 R 506 R 511	RS1/16S681J RS1/16S681J RS1/16S681J RS1/16S681J RS1/16S0R0J
R 1975 R 1976 R 1977 CAPACITORS	RS1/8S751J RS1/8S751J RS1/8S751J	R 601 R 602 R 603 R 604 R 606	RS1/16S102J RS1/16S102J RS1/16S223J RS1/16S223J RS1/16S0R0J
C 1901 C 1902 C 1903 C 1904 C 1906	CKSQYB105K10 CKSRYB103K25 CSZS100M6R3 CSZS100M6R3 CKSQYB103K25	R 607 R 612 R 801 R 802 R 901	RS1/16S0R0J RA4C0R0J RS1/8S751J RS1/8S751J RS1/16S222J
C 1907 C 1908 C 1911 C 1914 C 1916	CSZS100M6R3 CKSRYB473K16 CKSRYB473K16 CKSRYB103K25 CKSQYB104K25	R 902 R 903 R 904 R 905 R 906	RS1/16S473J RS1/16S222J RS1/16S473J RN1/16SE1502D RS1/16S473J
C 1917 C 1918 C 1919	CSZSR100M16 CKSRYB102K50 CCSQCH221J50	R 908 R 909 R 910 R 911 R 912	RS1/16S222J RS1/16S104J RS1/16S103J RS1/16S223J RS1/16S473J
Unit Number : Switch PCB		R 917	RS1/16S0R0J
S 951 Switch(CLOSE) S 952 Switch(OPEN)	CSN1012 CSN1022	CAPACITORS	
Unit Number: CWX2358 Unit Name: Control Unit MISCELLANEOUS		C 101 C 102 C 103 C 104 C 105	CCSRCH102J25 CKSQYB104K16 CEV101M6R3 CEV470M6R3 CKSQYB334K16
IC 201 IC IC 301 IC IC 602 IC IC 701 IC IC 901 IC	UPD63710GC BA5985FM AK4321VF BA05SFP PE5011C	C 106 C 107 C 201 C 202 C 203	CKSQYB334K16 CKSQYB334K16 CKSQYB104K16 CEV101M6R3 CKSQYB104K16
Q 101 Transistor Q 901 Transistor D 801 LED D 802 LED TH 901 Thermistor	2SB1132 UN2111 CL200IRX CL200IRX CCX1037	C 204 C 205 C 206 C 207 C 208	CKSRYB332K50 CKSQYB104K16 CKSRYB392K50 CKSQYB224K16 CCSRCH270J50
X 201 Ceramic Oscillator 16.934MHz X 901 Radiator 8.380MHz S 801 Spring Switch(HOME) S 802 Spring Switch(CLAMP)	CSS1456 CSS1453 CSN1051 CSN1052	C 209 C 210 C 211 C 212 C 213	CCSRCJ3R0C50 CCSRCH221J50 CCSRCH101J50 CKSRYB682K25 CKSQYB104K16
RESISTORS		C 214 C 215	CKSRYB104K16 CKSQYB104K16
R 101 R 102 R 103 R 201	RS1/8S120J RS1/8S100J RS1/16S222J RS1/16S104J	C 216 C 217 C 218	CKSRYB104K16 CKSRYB104K16 CKSRYB104K16
R 205 R 206 R 207 R 208 R 210 R 212	RS1/16S103J RS1/16S393J RS1/16S182J RS1/16S304J RS1/16S0R0J RS1/16S103J	C 219 C 220 C 223 C 301 C 601	CKSRYB104K16 CKSRYB104K16 CKSQYB471K50 CEV101M10 CEV4R7M35
R 213 R 214 R 215 R 216 R 217	RS1/16S103J RS1/16S123J RS1/16S273J RS1/16S273J RS1/16S681J	C 602 C 603 C 604 C 605 C 606	CEV4R7M35 CCSQSL152J50 CCSQSL152J50 CEV470M6R3 CKSRYB104K16
R 218 R 309 R 310 R 501 R 502	RS1/165661J RS1/16S681J RS1/16S473J RS1/16S102J RS1/16S681J	C 607 C 608 C 609 C 610 C 612	CKSRYB104K16 CKSRYB104K16 CEV100M16 CKSRYB104K16 CKSRYB104K16

===	==Circu	it Symbol and No.===Part Name	Part No.
CCCC	701 702 703 801 802	22μF/6.3V	CEV101M6R3 CCH1300 CKSQYB334K16 CKSRYB103K25 CKSRYB103K25
C C C	901 902 903		CKSRYB472K50 CKSYB475K10 CKSRYB103K25
G		t Number: t Name: Photo Unit	
Q Q	1 2	Photo-transistor Photo-transistor	CPT230SX-TU CPT230SX-TU
Mis	scellar	neous Parts List	
M M M	1 2 3 951	Pickup Unit(Service)(P8) Motor Unit(CARRIAGE) Motor Unit(LOADING) Motor Unit(SPINDLE) Motor (AUTO FLAP)	CXX1285 CXB2190 CXB2195 CXB2562 CXM1085

6. ADJUSTMENT

6.1 CD ADJUSTMENT

1) Precautions

This unit uses a single power supply (+5V) for the regulator. The signal reference potential, therefore, is connected to REFO(approx. 2.5V) instead of GND.

If REFO and GND are connected to each other by mistake during adjustments, not only will it be impossible to measure the potential correctly, but the servo will malfunction and a severe shock will be applied to the pick-up. To avoid this, take special note of the following.

Do not connect the negative probe of the measuring equipment to REFO and GND together. It is especially important not to connect the channel 1 negative probe of the oscilloscope to REFO with the channel 2 negative probe connected to GND.

Since the frame of the measuring instrument is usually at the same potential as the negative probe, change the frame of the measuring instrument to floating status.

If by accident REFO comes in contact with GND, immediately switch the regulator or power OFF.

- Always make sure the regulator is OFF when connecting and disconnecting the various filters and wiring required for measurements.
- Before proceeding to further adjustments and measurements after switching regulator ON, let the player run for about one minute to allow the circuits to stabilize.
- Since the protective systems in the unit's software are rendered inoperative in test mode, be very careful to avoid mechanical and /or electrical shocks to the system when making adjustment.
- Disc detection during loading and eject operations is performed by means of a photo transistor in this unit. Consequently, if the inside of the unit is exposed to a strong light source when the outer casing is removed for repairs or adjustment, the following malfunctions may occur.
 - *During PLAY, even if the eject button is pressed, the disc will not be ejected and the unit will remain in the PLAY mode.
 - *The unit will not load a disc.

When the unit malfunctions this way, either re-position the light source, move the unit or cover the photo transistor.

2) Test Mode

This mode is used for adjusting the CD mechanism module of the device.

- Test mode starting procedure
 Reset while pressing the 4 and 6 keys together.
- Test mode cancellation Switch ACC, back-up OFF.
- After pressing the EJECT key, do not press any other key until the disk is completely ejected.
- If the

 or

 key is pressed while focus search is in progress, immediately turn the power off (otherwise the actuator may be damaged due to adhesion of the lenses).
- Jump operation of TRs other than 100TR continues after releasing the key. CRG move and 100TR jump operations are brought into the "Tracking close" status when the key is released.
- Powering Off/On resets the jump mode to "Single TR (91)", the RF AMP gain setting to 0 dB, and the automatic adjustment value to the initial value.

Flow Chart

6.2 CHECKING THE GRATING AFTER CHANGING THE PICKUP UNIT

• Note:

The grating angle of the PU unit cannot be adjusted after the PU unit is changed. The PU unit in the CD mechanism module is adjusted on the production line to match the CD mechanism module and is thus the best adjusted PU unit for the CD mechanism module. Changing the PU unit is thus best considered as a last resort. However, if the PU unit must be changed, the grating should be checked using the procedure below.

Purpose :

To check that the grating is within an acceptable range when the PU unit is changed.

• Symptoms of Mal-adjustment :

If the grating is off by a large amount symptoms such as being unable to close tracking, being unable to perform track search operations, or taking a long time for track searching.

· Method:

Measuring Equipment

· Oscilloscope, Two L.P.F.

Measuring Points

• E, F, REFO • ABEX TCD-784

DiscMode

TEST MODE

· Checking Procedure

- 1. In test mode, load the disc and switch the 5V regulator on.
- 2. Using the ▶ and ◀ buttons, move the PU unit to the innermost track.
- 3. Press key 3 to close focus, the display should read "91". Press key 2 to implement the tracking balance adjustment the display should now read "81". Press key 3 2 times. The display will change, returning to "81" on the fourth press.
- 4. As shown in the diagram above, monitor the LPF outputs using the oscilloscope and check that the phase difference is within 75°. Refer to the photographs supplied to determine the phase angle.
- 5. If the phase difference is determined to be greater than 75° try changing the PU unit to see if there is any improvement. If, after trying this a number of times, the grating angle does not become less than 75° then the mechanism should be judged to be at fault.

Note

Because of eccentricity in the disc and a slight misalignment of the clamping center the grating waveform may be seen to "wobble" (the phase difference changes as the disc rotates). The angle specified above indicates the average angle.

Hint

Reloading the disc changes the clamp position and may decrease the "wobble".

Grating waveform

Ech \rightarrow Xch 20mV/div, AC Fch \rightarrow Ych 20mV/div, AC

7. GENERAL INFORMATION

7.1 DIAGNOSIS

7.1.1 TEST MODE

Error Messages

If a CD is not operative or stopped during operation due to an error, the error mode is turned on and cause(s) of the error is indicated with a corresponding number. This arrangement is intended at reducing nonsense calls from the users and also for facilitating trouble analysis and repair work in servicing.

(1) Basic Indication Method

1) When SERRORM is selected for the CSMOD (CD mode area for the system), error codes are written to DMIN (minutes display area) and DSEC (seconds display area). The same data is written to DMIN and DSEC. DTNO remains in blank as before.

2) Main unit display examples

Depending on display capability of LCD used, display will vary as shown below. xx contains the error number.

8-digit display	6-digit display	4-digit display
ERROR-xx	ERR-xx	E-xx
	OR	
	Err-xx	

(2) Error Code List

(Z) LIIC	2) Effor Code List				
Code	Class	Displayed error code	Description of the code and potential cause(s)		
10	Electricity	Carriage Home NG	CRG can't be moved to inner diameter.		
			CRG can't be moved from inner diameter.		
			ightarrow Failure on home switch or CRG move mechanism.		
11	Electricity	Focus Servo NG	Focusing not available.		
			ightarrow Stains on rear side of disc or excessive vibrations on REWRITABLE.		
12	Electricity	Spindle Lock NG	Spindle not locked. Sub-code is strange (not readable).		
			ightarrow Failure on spindle, stains or damages on disc, or excessive vibrations.		
		Subcode NG	A disc not containing CD-R data is found. Turned over disc are found,		
			though rarely.		
			ightarrow Failure on home switch or CRG move mechanism.		
		RF AMP NG	An appropriate RF AMP gain can't be determined.		
			ightarrow CD signal error.		
17	Electricity	Setup NG	APC protection doesn't work. Focus can be easily lost.		
			ightarrow Damages or stains on disc, or excessive vibrations.		
30	Electricity	Search Time Out	Failed to reach target address.		
			ightarrow CRG tracking error or damages on disc.		
A0	System	Power Supply NG	Power (VD) is ground faulted.		
			ightarrow Failure on SW transistor or power supply (failure on connector).		

Remarks: Mechanical errors are not displayed (because a CD is turned off in these errors).

Unreadable TOC does not constitute an error. An intended operation continues in this case.

A newly designed main unit must conform to the example given above.

Upper digits of an error code are subdivided as shown below:

1x: Setup relevant errors, 3x: Search relevant errors, 3x: Search relevant errors, Ax: Other errors.

New Test Mode

S-CD plays the same way as before.

If an error such as off focus, spindle unlocking, unreadable sub-code, or sound skipping occurs after setup, its cause and time occurred (in absolute time) are displayed.

During setup, operational status of the control software (internal RAM: CPOINT) is displayed.

These displays and functions are prepared for enhancing aging in the servicing and efficiency of trouble analysis.

(1) Shifting to the New Test Mode

- ① Turn on the current test mode by starting the reset from the key (it varies between the products).
- ② Select S-CD for the source through the specified procedure including use of the [SOURCE] key, and inserting the disc. Then, press the [6] key while maintaining the regulator turned off.
- ③ After the above operations, the new test mode remains on irrespective of whether the S-CD is turned on or off. You can reset the new test mode by turning on the reset start.
- * With some products, the new test mode can be reset through the same operations as that employed for shifting to the STBY mode (while maintaining the Acc turned off).

(2) Key Correspondence

Key	Test mode			ew test mode
	Power Off	Power On	In-play	Error Production
BAND	To power on	To power off	_	Time/Err.No. switching
	(offset adjustment performed)			
>	_	FWD-Kick	FF/TR+	_
◀	_	REV-Kick	REV/TR-	_
1	_	T.Close (AGC performed)	Scan	_
		/parameter display switching		
2	RF AMP gain switching	Parameter display switching	Mode	_
		/T.BAL adjustment/T.Open		
3	To power on	F.Close/RF AGC/F.T.AGC	_	_
	(offset adjustment not performed)			
6	_	F.Mode switching	Auto/Manu	T.No./Time switching
		/T.Close (no AGC)/Jump switching		

Note: Eject and CD on/off is performed in the same procedure as that for the normal mode.

(3) Cause of Error and Error Code

Code	Class	Contents	Description and cause	
40	Electricity	Off focus detected.	FOK goes low.	
			ightarrow Damages/stains on disc, vibrations or failure on servo.	
41	Electricity	Spindle unlocked.	FOK = Low continued for 50 msec.	
			ightarrow Damages/stains on disc, vibrations or failure on servo.	
42	Electricity	Sub-code unreadable.	Sub-code was unreadable for 50 msec.	
			ightarrow Damages/stains on disc, vibrations or failure on servo.	
43	Electricity	Sound skipping detected.	Last address memory function was activated.	
			ightarrow Damages/stains on disc, vibrations or failure on servo.	

Note: Mechanical errors during aging are not displayed.

The error codes should be indicated in the same way as in the normal mode.

(4) Display of Operational Status (CPOINT) during Setup

	f Operational Status (CPOINT) during Setup	
Status No.		Protective action
00	CD+5V ON process in progress.	None
01	Servo LSI initialization (1/3) in progress.	None
02	Servo LSI CRAM initialization in progress.	None
03	Servo LSI initialization (2/3) in progress.	None
04	Offset adjustment (1/3) in progress.	None
05	Offset adjustment (2/3) in progress.	None
06	Offset adjustment (3/3) in progress.	None
07	FZD adjustment in progress.	None
08	Servo LSI initialization (3/3) in progress.	None
10	Carriage move to home position started.	None
11	Carriage move to home position started.	None
12	Carriage is moving toward inner diameter.	Specified 10 seconds has been passed or failure
'-	ournage to moving toward inner diameter.	on home switch.
13	Carriage is moving toward outer diameter.	Specified 10 seconds has been passed or failure
13	Carriage is moving toward outer diameter.	on home switch.
14	Carriage outer kick in progress	None
15	Carriage outer kick in progress.	None
	Carriage outer diameter feed (1 second) in progress.	
20	Servo close started.	None
21	Pre-processing for focus search started.	None
22	Spindle rotation and focus search started.	None
23	Waiting for focus close (XSI=Low).	Specified focus search time has been passed.
24	Standing by after focus close is over.	Specified focus search time has been passed.
25	Focus search preprocessing is in	None
	progress while setup protection is turned on.	
26	Focus search preprocessing is in	None
	progress while focus recovery is turned on.	
27	Wait time after focus close is set up.	Off focus.
28	Standing by after focus close is over.	Off focus.
29	Setup (1/2) before T balance adjustment is started.	Off focus.
30	Setup (2/2) before T balance adjustment is started.	Off focus.
31	T balance adjustment started.	Off focus.
32	T balance adjustment (1/2).	Off focus.
33	T balance adjustment (2/2).	Off focus.
34	Waiting for spindle rotation to end.	Off focus.
	Spindle rough servo.	
35	Standing by after spindle rough servo is over.	Off focus.
36	RF AGC started.	Off focus.
37	RF AGC started.	Off focus.
38	RF AGC ending process in progress.	Off focus.
39	Tracking close in progress.	Off focus.
40	Standing by after tracking is closed.	Off focus.
	Carriage closing in progress.	
41	Focus/tracking AGC started.	Off focus.
42	Focus AGC started.	Off focus.
43	Focus AGC in progress.	Off focus.
44	Tracking AGC in progress.	Off focus.
45	Standing by after focus/tracking AGC are over.	Off focus.
46	Spindle processes applicable servo.	Off focus.
47	Check for servo close is started.	Off focus.
48	Check of LOCK pin started.	Off focus or spindle not locked.
49	RF AGC started.	Off focus.
50	RF AGC in progress.	Off focus.
51	Standing by after RF AGC is over.	Off focus.
່ວ I	Standing by after NF AGC is over.	OII IOCUS.

www.manualscenter.com

- (5) Display Examples
- 1) During Setup (When status no. = 11)

TRK No. MIN. SEC. 11 11' 11"

2) During Operation (TOC read, TRK search, Play, FF and REV)

The same as in the normal mode.

3) When a Protection Error Occurred

Switch to the following displays (A) and (B) using the [BAND] switch:

(A) Error occurrence timing display in absolute time.

An example: Error occurred in 12th tune at 34'56" in absolute time.

TRK No. MIN. SEC. 12 34' 56"

(B) Error No. display

An example: Error #40 (Off focus is detected)

ERROR-40

7.1.2 DISASSEMBLY

Removing the Case (Not shown)

1. Remove the two screws, and then remove the Case.

■ Removing the CD Mechanism Module

- 1. Remove the four screws A.
- 2. Disconnect the connector, and then remove the CD Mechanism Module.

Removing the Tuner Amp Unit (1/2)

- 1. Disconnect the two connectors.
- 2. Remove the four screws A.
- 3. Disconnect the two stoppers indicated by arrows, and then remove the Grille Assy.

■ Removing the Tuner Amp Unit (2/2)

- 1. Remove the screw A, four screws C, and then remove the Antenna Cable and Holder.
- 2. Remove the screw B.
- 3. Stretch the four tabs, and then remove the Tuner Amp Unit.

Removing the Upper Frame

- Remove six Springs A, two Springs B and four Screws.
- 2. Remove two Tabs situated on rear side of the Upper Frame, remove two Arms on the front side, then remove two Tabs on the front side.

Removing the Carriage Mechanism

 Disengage the Carriage Mechanism from the two dampers situated in the front side by driving it up, then disengage and remove the mechanism from the two dampers by driving it up aslant into front side direction.

Note: When assembling the Carriage Mechanism, coat the dampers with alcohol prior to the assembly.

Removing the Clamp Arm Assy

- 1. Remove a Spring A, a B and a Spring C.
- Drive the Clamp Arm Assy up into rear side direction, then disengage the arm from its current position Finally, drive the assembly approximately 45 degrees upward, then slide the assembly toward right side to remove it.

www.manualscenter.com

Removing the Guide Arm Assy

- 1. Remove a connector, a spring A and B
- Drive the Guide Arm Assy up aslant into rear side direction, then remove it from a Pin. Finally, drive the assembly approximately 45 degrees upward, then slide the assembly toward left side to remove it.

Note: When assembling the guide arm assembly, route the cord inside the assembly. In this operation, care must be exercised so that cord may be caught by the gear.

Removing the LO Arm Assy

1. Remove two Pins to dismount the LO Arm Assy.

Removing the Control Unit and the Spindle Motor

- 1. Remove from the connector after mounting the short pin on the flexible PCB of the pickup unit.
- 2. Remove two Soldered joints, then remove two Screws A.
- 3. Remove two connectors and a Screw B.
- 4. Disengage the Control Unit from two Tabs, then dismount the unit by sliding it toward left.
- 5. Dismount the Spindle Motor.

Removing the Loading Motor and Carriage Motor

- 1. Remove the Spring and two Screws A.
- 2. Dismount the Loading Motor.
- 3. Remove the Belt, a Screw B, two Screws C, a Guide and a Screw Unit.
- 4. Dismount the Carriage Motor.

Note: When assembling the Belt, use care so that it may not be contaminated by grease.

Removing the Pickup Unit

- 1. Remove two Screws and a Shaft.
- 2. Dismount the Pickup Unit.

7.2 IC

PML004AF PD5487A, PD5488A BA5985FM PA2028A BA6288FS PE5011C

PAL005A BR9010FV S-81250SGUP PD5471A PM4009A UPD63710GC

PML004AF

PA2028A

PAL005A

S-81250SGUP

● Pin Functions (PD5487A, PD5488A)

	Tetions (i Dotora, i E				
Pin No.	Pin Name	I/O	Function and Operation		
1	TUNPDO	0	PLL data output		
2	TUNPCK	0	PLL clock output		
3	TUNPCE	0	PLL chip enable output		
4	TUNPCE2	0	PLL chip enable output 2		
5	MOSENS	I	Motion/window damage sensor input		
6	DLSENS	1	Door lock sense input		
7	IPPW	0	IP-BUS power supply control output		
8,9	VSS1,2		GND		
10	ASENBO	0	IP-BUS slave power supply control output		
11	TELIN	ı	Cellular mute input		
12	RESET	ı	Reset input		
13	OSC1	0	Oscillator connection pin 1		
14	VSS3		GND		
15	OSC2	0	Oscillator connection pin 2		
16	VCC1		5V		
17	NMI		Pull up		
18	RCK	ı	RDS clock input		
19	NC		Not used		
20	DALMON	0	DFS alarm output		
21	RX2	I	IP-BUS data input 2		
22	SYSPW	0	System power supply control output		
23	ISENS	I	Illumination sense input		
24	PEE	0	Beep tone output		
25	RDS57K	I	57kHzBP-OUT sense input		
26	FLPPW	0	Flap motor driver power ON/OFF output		
27	MUTE	0	Mute output		
28	NC		Not used		
29	RX	I	IP-BUS data input		
30	TX	0	IP-BUS data output		
					

Dia Na	Din Nama	1/0	Function and Occuption	
Pin No.	Pin Name	I/O	Function and Operation	
31	BSO	0	P-BUS communication data output	
32	BSI	I	P-BUS communication data input	
33	BSCK	I/O	P-BUS serial clock input/output	
34	FLPOPN	0	Flap motor open output	
35	DPDT	0	Display serial data output	
36	KYDT	I	Display enable data input	
37	FLPCLS	0	Flap motor close output	
38	FOPENSW	I	Flap open switch input	
39	NC		Not used	
40	FCLSSW	I	Flap close switch input	
41	DLED	0	Alarm LED output	
42	NC		Not used	
43	FLPILM	0	Inside of flap illumination output	
44	ILMPW	0	Illumination power supply control output	
45	SWVDD	0	Display chip select output	
46	OELPW	0	OEL module power supply control output	
47	DSENS	ı	Grille detach sense input	
48	ST	I	FM stereo input	
49	SD	ı	SD input	
50-61	NC		Not used	
62	VCC3		5V	
63	NC		Not used	
64	VSS4		GND	
65	VCK/ROMCLK	0	E-VOL clock output / ROM correction clock output	
66	VDT/ROMDATA	O/I	E-VOL data output / ROM correction data input	
67	VST/BSRQ2	O/I	E-VOL strobe pulse output / P-BUS communication input/output	
68	NC NC	0/1	Not used	
69	BRXEN	I/O	P-BUS communication input/output	
70	BRST	0	P-BUS reset output	
71	BSRQ	1/0	P-BUS communication request input/output	
71	NC	1/0	Not used	
73	BSENS		Back up power sense input	
	ASENS	ı		
74	NC	1	ACC power sense input	
75			Not used	
76	DRELAY	0	External relay output	
77	LOCH	0	Local "H" output	
78	LOCL	0	Local "L" output	
79	NC		Not used	
80	NC		Open	
81	FM/AM	0	FM/AM power select output	
82	TMUTE	0	Tuner mute output	
83	DRST	0	RDS decoder reset output	
84	RDSLK		RDS lock signal input	
85	RDT		RDS data input	
86	DRSENS	I	Door open/close sense input	
87	DRSYS	0	Door system select output	
88	TESTIN	I	Test mode IN/test enable	
89,90	NC		Not used	
91	LEVELR	I	Level meter "R" AD input	
92	LEVELL	I	Level meter "L" AD input	
93	NC		Not used	
94	SD_BW	I	SD input	
95	NC		Not used	
96	VSS5		GND	
97	SL	I	Signal level input	
98	VREF		A/D converter reference voltage	
99	VCC4		5V	
100	TUNPDI	ı	PLL data input	
	•		•	

*PD5487A, PD5488A

IC's marked by* are MOS type.

Be careful in handling them because they are very liable to be damaged by electrostatic induction.

BR9010FV

● Pin Functions (PD5471A)

Pin Functions (PD5471A)						
Pin No.	Pin Name	I/O	Format	Function and Operation		
1–4	NC			Not used		
5	REM	I		Remote control reception		
6	BYTE	I		External data BUS width select input		
7	CNVSS	I		Processor mode select input		
8,9	NC			Not used		
10	RESET	1		Reset input		
11	XOUT	0		Crystal oscillating element connection pin		
12	VSS			GND		
13	XIN	ı		Crystal oscillating element connection pin		
14	VDD			VDD		
15	NMI			NMI input		
16	NC			Not used		
17–20	KD1-4			Key data 1-4		
21–26	KS1-6	I/O		Key strobe input/output 1-6		
27–31	NC	,, -		Not used		
32	ILMD	0	С	Dual illumination		
33	KYDT	0	C	Key data output		
34	DPDT	T i		Display data input		
35	NC			Not used		
36	OEL	0	С	OEL controller ON		
37	RDY			OEL controller ready input		
38	NC			Not used		
39	HOLD			Hold input		
40,41	NC			Not used		
40,41	RD	0	С	Read strobe		
43	NC NC	-		Not used		
43	WR	0	С	Write strobe		
45	NC			Not used		
46	CS2	0	С	Bank address (High)		
47	<u>CS2</u> <u>CS</u> 1	0	C	Bank address (High)		
47	<u>CS</u> 0	0	C	External ROM chip select		
49	A19		C	·		
50	NC		C	Address bus Output Not used		
	A17-9		С			
51-59	VDD	0	C	Address bus Output VDD		
60	A8					
61	VSS	0	С	Address bus Output		
62				GND		
63–69	A7-1	0	С	Address bus Output		
70	NC D15.0	1/0		Not used		
71–86	D15-0	I/O		Data bus input/output		
87–93	NC AVCC			Not used		
94	AVSS			Connect to VSS		
95	NC			Not used		
96	VREF			Connect to VSS		
97	AVCC			Connect to VCC		
98-100	NC			Not used		

*PD5471A

Format	Meaning
С	C MOS

● Pin Functions (UPD63710GC)

Pin Functions (UPD63710GC)					
Pin No.	Pin Name	I/O	Function and Operation		
1	GND		Logic circuit GND		
2	HOLD	I/O	Defect detection output		
3	MIRR	I/O	MIRR output		
4	FOK	0	RFOK signal output		
5	RST	1	Reset signal input		
6	A0	1	Command/parameter identification signal input		
7	STB	i	Data strobe signal input		
8	SCK	i	Clock signal input for serial data input/output		
9	SO	Ö	Serial data and status signal output		
10	SI	i	Serial data input		
11	VDD	 	Positive power supply terminal to logic circuit		
12	DA.VDD		Positive power supply terminal to Togic circuit		
13	NC NC		Not used		
14, 15	DA.GND		D/A converter GND		
14, 15	NC NC		Not used		
17	DA.VDD	+			
		_	Positive power supply terminal to D/A converter		
18	R+	0	Right channel audio data output		
19	R-	0	Right channel audio data output		
20	L-	0	Left channel audio data output		
21	L+	0	Left channel audio data output		
22	X.VDD		Positive power supply terminal to crystal oscillation circuit		
23	XTAL	0	Crystal oscillator connect pin		
24	XTAL	I	Crystal oscillator connect pin		
25	X.GND		Crystal oscillation circuit GND		
26	VDD		Positive power supply terminal to logic circuit		
27	EMPH	0	Output pin for the pre-emphasis data in the sub-Q code		
28	FLAG	0	Flag output pin to indicate that audio data currently being output consists		
			of noncorrectable data		
29	DIN	1	Serial data input to internal DAC		
30	DOUT	0	Serial audio data output		
31	SCKIN	I	Serial clock input to internal DAC		
32	SCKO	0	Audio data that is output from DOUT changes at rising edge of this clock		
33	LRCKIN	I	LRCK signal input to internal DAC		
34	LRCK	0	Signals to distinguish the right and left channels of the audio data output		
			from DOUT		
35	WDCK	0	Output double the frequency of LRCK		
36	TX	0	Digital audio interface data output		
37	GND	•	Logic circuit GND		
38	C16M	0	Oscillator clock buffering output		
39	LIMIT	i	Status of the pin is output at Bit 5 of the status output		
40	VDD	+ ' +	Positive power supply terminal to logic circuit		
41	LOCK	0	EFM synchronous detection signal		
41	RFCK	0	Frame synchronous signal of XTAL-system		
	WFCK		Frame synchronous signal of PLL-system		
43		0	Monitor pin of bit clock		
44	PLCK	0			
45	GND	+ -	Logic circuit GND		
46	C1D1	0	Output pin for indicating the C1 error correction results		
47	C1D2	0	Output pin for indicating the C1 error correction results		
48	C2D1	0	Output pin for indicating the C2 error correction results		
49	C2D2	0	Output pin for indicating the C2 error correction results		
50	C2D3	0	Output pin for indicating the C2 error correction results		
51	VDD		Positive power supply terminal to logic circuit		
52	PACK	0	CD-TEXT PACK synchronous signal		
53	TSO	0	CD-TEXT data serial output		
54	TSI	1	CD-TEXT control parameter serial input		
55	TSCK	I	CD-TEXT serial clock input		
56	TSTB	1	CD-TEXT parameter strobe signal input		
57	GND		Logic circuit GND		
58	TEST	1	Test pin		

Pin No.	Pin Name	I/O	Function and Operation		
59	ATEST	I/O	Test pin		
60	RFMODE	i	Use/not use select for internal RF amplifier		
61	A.GND		Analog circuit GND		
62	FD	0	Focus drive output		
63	TD	0	Tracking drive output		
64	SD	0	Sled drive output		
65	MD	0	Spindle drive output		
66	DACO	0	DAC output for adjustment		
67	FBAL	0	DAC output for adjustment		
68	TBAL	0	DAC output for adjustment		
69	TEVCA	0	DAC output for adjustment		
70	A.VDD		Power supply terminal to analog circuit		
71	EFM	0	EFM signal output		
72	ASY	ı	EFM comparator reference voltage input		
73	C3T		3T detection capacitor additional pin		
74	RFI	1	RF signal input for EFM data regulation		
75	AGCO	0	RF signal output of after gain adjustment		
76	AGCI	1	RF-AGC amplifier input		
77	RFO	0	RF summing amplifier output		
78	EQ2		RF amplifier equalizer parts additional pin		
79	EQ1		RF amplifier equalizer parts additional pin		
80	RF-	I	RF summing amplifier inverted input		
81	A.GND		Analog circuit GND		
82	Α	I	Photo detector A input		
83	С	I	Photo detector C input		
84	В	I	Photo detector B input		
85	D	I	Photo detector D input		
86	F	I	Photo detector F input		
87	E	I	Photo detector E input		
88	A.VDD		Positive power supply terminal to analog circuit		
89	REFOUT	0	Reference electric potential output		
90	FE-	I	Focus error amplifier inverted input		
91	FEO	I/O	Focus error amplifier output		
92	TE-	I	Tracking error amplifier inverted input		
93	TEO	I/O	Tracking error amplifier output		
94	TE2	I/O	Tracking error output of after amplification		
95	TEC	I	Tracking comparator input		
96	A.GND		Analog circuit GND		
97	PD	I	PD detection signal input for LD output monitor		
98	LD	0	LD control current output		
99	PN	I	APC circuit control polarity set pin		
100	A.VDD		Positive power supply terminal to analog circuit		

*UPD63710GC

● Pin Functions (BA5985FM)

	JIIS (DASSOSI IVI				
Pin No.	Pin Name	I/O	Function and Operation		
1	FWD	I	Loading driver FWD input		
2	OPIN1(+)	I	CH1 pre-amplifier input		
3	OPIN1(–)	I	CH1 pre-amplifier inverted input		
4	OPOUT1	0	CH1 pre-amplifier output		
5	OPIN2(+)	I	CH2 pre-amplifier input		
6	OPIN2(–)	I	CH2 pre-amplifier inverted input		
7	OPOUT2	0	CH2 pre-amplifier output		
8	VCC		Power supply		
9	VOL(–)	0	Loading driver negative output		
10	VOL(+)	0	Loading driver positive output		
11	VO2(-)	0	Driver CH2 negative output		
12	VO2(+)	0	Driver CH2 positive output		
13	VO1(–)	0	Driver CH1 negative output		
14	VO1(+)	0	Driver CH1 positive output		
15	VO4(+)	0	Driver CH4 positive output		
16	VO4(-)	0	Driver CH4 negative output		
17	VO3(+)	0	Driver CH3 positive output		
18	VO3(-)	0	Driver CH3 negative output		
19	GND		GND		
20	BIAS	I	Bias input		
21	MUTE		Mute control		
22	OPOUT3	0	CH3 pre-amplifier output		
23	OPIN3(–)	I	CH3 pre-amplifier inverted input		
24	OPIN3(+)	I	CH3 pre-amplifier input		
25	OPOUT4	0	CH4 pre-amplifier output		
26	OPIN4(-)	I	CH4 pre-amplifier inverted input		
27	OPIN4(+)	I	CH4 pre-amplifier input		
28	REV	I	Loading driver REV input		

BA5985FM

● Pin Functions(PE5011C)

Pin Functi	ons(PE5011C)			
Pin No.	Pin Name	I/O	Format	Function and Operation
1	EJTSNS			Disc eject position sense input
2	DSCSNS			Disc insert position sense input
3	VDSENS			VD power supply short sense input
4	TEMP			Temperature sense input
5-8	NC			Not used VSS
9	AVREF	+		A/D reference voltage input
	RESET			
10		 		System reset input
11	XT1	<u> </u>		VDD
12	XT2			Open
13	IC(VPP)			VSS
14	X1	ı		Main clock radiator(8.38MHz)connection
15	X2			Main clock radiator(8.38MHz)connection
16	VDD			Power supply(+5V)
17	VSS			GND
18	XSCK	0	С	CD LSI serial clock output
19	XSO	0	С	CD LSI serial data output
20	XSI	ī		CD LSI serial data input
21	BRST	<u> </u>		P-Bus reset input
22	PACK			CD-TEXT pack sync signal input
		+		
23, 24	NC			Not used Open
25	XA0	0	С	CD LSI data discrimination control signal output
26	XSTB	0	С	CD LSI strobe output
27	XRST	0	С	CD LSI reset output
28	FOK	l		Focus OK input
29	MIRR	I		Specular surface detection input
30	LOCK	1		Spindle lock input
31	CD5VON	0	С	CD +5V power supply control output
32, 33	NC			Not used Open
34	EMPH	0	С	Emphasis information output
35-44	NC			Not used Open
45	VSS			GND
46	VDD	+		Power supply(+5V)
47	ADENA	0	С	A/D reference voltage supply control output
48		0	C	
	VDCONT	- 0	L C	VD power supply control output
49	NC	<u> </u>		Not used Open
50	CSENS	l		Flap close sense input
51	BRXEN	I/O	/C	Input/output by which P-Bus can be received
52	BSRQ	0	С	P-Bus polling request output
53, 54	NC			Not used Open
55	CONT	0	С	Servo driver power supply control output
56	CDMUTE	0	С	CD mute control output
57	CDEJET	0	C	Load/Eject motor Eject control output
58	CDLOAD	0	C	Load/Eject motor Load control output
59	BMUTE	0	C	Bus mute output
60	CLAMP	ī		Disc clamp input
	NC	+ '-		
61, 62		+		Not used Open
63-66	NC TYARI	 		Not used VDD or VSS
67	TXARI			Tx output set selection input
68	FSCK	0	С	Flash writing clock input(Open)
69	FTXD	0	С	Flash writing data output(Open)
70	FRXD	0	С	Flash writing data input(Open)
71	BSCK	I/O	/C	P-Bus serial clock input/output
72	BDATA	I/O	/C	P-Bus serial data input/output
73	TESTIN	i i		Test program start input
74	NC	† ·		Not used Open
75	TSTB	0	С	CD-TEXT strobe output
76	NC	+ -		Not used Open
	INC		I .	Not used Open

Pin No.	Pin Name	I/O	Format	Function and Operation
77	TSCK	0	С	CD-TEXT serial clock output
78	TSO	0	С	CD-TEXT serial data output
79	TSI	I		CD-TEXT serial data input
80	AVSS			A/D GND

*PE5011C

8. OPERATIONS AND SPECIFICATIONS

● Connection Diagram (DEH-P8000R/UC)

Connection Diagram (DEH-P8050/ES)

8.1 OPERATIONS (DEH-P8000R/UC))

ATT button

This lets you quickly lower volume level (by about 90%). Press once more to return to the original volume level.

† AM

Basic Operation

To Listen to Music

The following explains the initial operations required before you can listen to music.

Note:

• Loading a disc in this product.

Select the desired source (e.g. Tuner). 1;

ON AIR

FM-1

Each press changes the Source ...

Built-in CD player (Compact Disc) → TV (Television) → Tuner → DAB (Digital Audio Each press of the SOURCE/OFF button selects the desired source in the following order: Broadcasting) Tuner → Multi-CD player → AUX

- In the following cases, the sound source will not change:
 - * No TV tuner is connected to this product.
- * No Multi-CD player is connected to this product. (When "Multi-CD" display is OFF.)
 - No DAB tuner is connected to this product.
 - No disc is set in this product.
- No magazine is set in the Multi-CD player.
 - AUX (external input) is set to OFF.

Raise or lower the volume. તં

ONAIR FM-1

CSTM

8 7 . 9 MHz

Source OFF.

ઌ

Hold for 1 second or more

Basic Operation of Tuner

Manual and Seek Tuning

· You can select the tuning method by changing the length of time you press the **◄/►** button.

CSTM

0.5 seconds or less	0.5 seconds or more	
Manual Tuning (step by step)	Seek Tuning	

- If you continue pressing the button for longer than 0.5 seconds, you can skip broadcast stations. Seek Tuning starts as soon as you stop pressing the button. "\(\times\)" stereo indicator lights when a stereo station is selected.

· You can memorize broadcast stations in buttons 1 through 6 for easy, one-touch station recall.

2 seconds or less	2 seconds or more
Preset station recall	Broadcast station preset memory

- Up to 18 FM stations (6 in FM-1, FM-2 and FM-3) and 6 AM stations can be stored in memory
 - You can also use the ▲ or ▼ buttons to recall broadcast stations memorized in buttons 1 through 6.

Basic Operation

Basic Operation of Built-in CD Player

Press the EJECT button, and Each press of the DISPLAY button changes **Switching the Display**

you can open the front panel before ejection. the display in the following order:

Playback mode (Play Time) **→** Disc Title

panel, you can just eject a CD.

In case of opening the front

· The CD function can be turned

Note:

• If you switch a display when the disc title has not been input, "No Title" is displayed.

ON/OFF with the disc remaining in this product.

after ejection may incur dam-Discs left partially inserted age or fall out.

Play Time Indicator

= 9 **6** 9 0 **Track Number Indicator** 0 Θ SCHOOL ENT (NAM)

Switching the Display (only for CD TEXT Discs)

With text longer than 20 letters, you can scroll to see the rest of the text by pressing the Playback mode (Play Time) → Disc Title → Disc Artist → Track Title → Track Artist Each press of the DISPLAY button changes the display in the following order: DISPLAY button for 2 seconds or more.

- · A CD TEXT disc is a CD featuring recorded text information such as Disc Title, Artist Name and Track Title.
 - If you switch a display when the disc artist has not been input, "No Artist Name" is displayed. If you switch a display when the disc title has not been input, "No Title" is displayed.
 - If you switch a display when the track title has not been input, "No Title" is displayed.
- If you switch a display when the track artist has not been input, "No Artist Name" is displayed.

Track Search and Fast Forward/Reverse

· You can select between Track Search or Fast Forward/Reverse by pressing the $\triangleleft/\triangleright$ button for a different length of time.

0.5 seconds or less	Continue pressing	
Track Search	Fast Forward/Reverse	

www.manualscenter.com

Disc Loading Slot

The Built-in CD player plays one standard 12 cm or 8 cm (single) CD at a time. Do not use an adapter when playing 8 cm CD. If a CD is inserted, the front panel is closed automatically.

- If a disc cannot be inserted fully or playback fails, make sure the recorded side is down. Push the EJECT button and check the disc for damage before reinserting it.
- If the Built-in CD player cannot operate properly, an error message (such as "ERROR-14") appears on the display.

• When opening the front panel, the 1 to 6 buttons are not available.

In case of opening the front panel, you can close it. front panel without ejecting a CD.

Press the EJECT button for 1 second or more, and you can open the

! WARNING:

• Do not use with the front panel left open. If you do leave it open, it may result in injury in the event of an accident.

Basic Operation

Basic Operation of Multi-CD Player

This product can control a Multi-CD player. (With certain old type Multi-CD players, using a multiple connection adapter lets you connect multiple units which you can control with this product.)

Frack Search and Fast Forward/Reverse

• You can select between Track Search or Fast Forward/Reverse by pressing the ◄/► button for a different length of time.

0.5 seconds or less	Continue pressing	
Track Search	Fast Forward/Reverse	

Track Number Indicator

Switching the Display

Each press of the DISPLAY button changes the display in the following order: Playback mode (Play Time)

→ Disc Title

ore:

• If you switch displays when disc titles have not been input, "No Title" is displayed.

Switching the Multi-CD Player

When two or more Multi-CD players are connected using a multiple connection adapter, you can select the Multi-CD player by pressing the BAND button.

Magazine 1 → Magazine 2 → Magazine 3 (Displayed about for 2 seconds.)

Disc Number Search (for 6-Disc, 12-Disc types)

 You can select discs directly with the 1 to 6 buttons. Just press the number corresponding to the disc you want to listen to.

ote

 When a 12-Disc Multi-CD Player is connected and you want to select disc 7 to 12, press the 1 to 6 buttons for 2 seconds or longer.

Disc Number Rough Search (for 50-Disc type only)

This handy function lets you select discs loaded in a 50-Disc Multi-CD Player using the 1 to 5 buttons. The 50 discs are divided into five blocks, with each of the 1 to 5 buttons assigned to a block.

Select the desired block with the 1 to 5 buttons.

Note:

After completing a rough search, use the ▲ and ▼ buttons to select a desired disc.

ote:

- The Multi-CD player may perform a preparatory operation, such as verifying the presence of a disc or reading disc information, when the power is turned ON or a new disc is selected for playback. "READY" is displayed.
- When a magazine is loaded into a 50-Disc type Multi-CD Player, information on all the discs in the magazine is read.

 If you start playing a disc on a 50-Disc type Multi-CD Player before reading of information on all discs has been completed reading of information stone and two through This will present you.

discs has been completed, reading of information stops part way through. This will prevent you from using the ITS function. (If you try and use this function, "Not Ready" is displayed.) If this happens, reading of information begins again when you switch to a component other than the 50-Disc Type Multi-CD Player.

- the 50-Disc Type Multi-CD Player.

 If the Multi-CD player cannot operate properly, an error message such as
 - "ERROR-14" is displayed. Refer to Multi-CD Player Owner's Manual.
- If there are no discs in the Multi-CD player magazine, "No Disc" is displayed.
 - "LOADING" will be displayed in the following cases:
 - * If the disc in the extra tray in selected.
- * If the disc in moved from the extra tray to the magazine.
- (Refer to the 50-Disc Type Multi-CD Player Owner's Manual.)
- You cannot use the "Ejecting a Single Disc", "Frequency Play", "Music Group Play" or "ABC Disc Title Search" functions with this product.

When playing a CD TEXT disc on a CD TEXT compatible Multi-CD Player such as the CDX-P650:

- You can use the following two functions. Refer to Multi-CD Player's Owner's Manual for operation details
- * Title display switching
 - Title scroll
- You cannot switch to the Disc Title Input mode in the Detailed Setting Menu.

... Normal/Reverse

Slope Level

Phase

Specifications (DEH-P8000R/UC)

General

(DIN) (chassis) 178 (W) \times 50 (H) \times 155 (D) mm	(nose)	$[7-3/8 \text{ (W)} \times 2-1/4 \text{ (H)} \times 3/4 \text{ (D) in.}]$	(chassis) 178 (W) \times 50 (H) \times 160 (D) mm	$[7 \text{ (W)} \times 2 \text{ (H)} \times 6 \cdot 1/4 \text{ (D) in.}]$	(nose) 170 (W) \times 46 (H) \times 15 (D) mm	$[6-3/4 \text{ (W)} \times 1-3/4 \text{ (H)} \times 5/8 \text{ (D) in.}]$	
е			<u>e</u>				Weight

Continuous power output is 22 W per channel min. into 4 ohms, both channels driven 50 to 15,000 Hz with no more than 5% THD

mm 2% tite:
Maximum power output
45 W \times 2 ch/4 Ω + 70 W \times 1 ch/2 Ω (for Subwoofer)
Load impedance

			output impedance4.0 V/100 Ω
oad impedance	$4 \Omega (4 - 8)$	reout maximum output level/	output impedance

Equalizer (3-Band Parametric Equalizer)	(Low) Frequency: 40/80/100/160 Hz	Q Factor: 0.35/0.59/0.95/1.15	(+6 dB when boosted)	Gain: ±12 dB
---	-----------------------------------	-------------------------------	----------------------	--------------

(High) Frequency: 3.15k/8k/10k/12.5k	(High)	
Gain: ±12 o		
(+6 dB when booste		
Q Factor: 0.35/0.59/0.95/1.		
(Mid) Frequency: 200/500/1k/2k	(Mid)	
Cam: #170		

(Mid) Frequency: 200/500/1k/2k Hz
Q Factor: 0.35/0.59/0.95/1.15
(+6 dB when boosted)
Gain: ±12 dB
(High) Frequency: 3.15k/8k/10k/12.5k Hz
Q Factor: 0.35/0.59/0.95/1.15
(+6 dB when boosted)
Gain: ±12 dB
Loudness contour
(Low)
(Mid)
(High)
(volume: -30 dB)

Frequency	Subwoofer output Frequency
	Frequency

CD player

	Signal format
	Lency characteristics
	Number of quantization bits: 16; linea
Grounding system	Usable discsCompact disc
1 Power source 14.2	SystemCompact disc audio system

FM tuner

Frequency range	Three-signal intermodulation
-----------------	------------------------------

... 30 dBf (two undesired signal level: 100 dBf) (desired signal level)

AM tuner

Frequency range	Usable sensitivity	Selectivity 50 dB (±10 kH	
Frequency range	Usable sensitivity	Selectivity	

General

Specifications (DEH-P8050/ES)

Frequency range	Usable sensitivity18 μV (S/N: 20 dB)	Selectivity 50 dB (±10 kHz)
Frequency range	Usable sensitivity	Selectivity

CD player

	op player
Power source 14.4 V DC (10.8 – 15.1 V allowable)	SystemCompact disc audio system
Grounding system Negative type	Usable discsCompact disc
Max. current consumption	Signal format
Difference (A) \times 178 (W) \times 50 (H) \times 155 (D) mm	Frequency characteristics 5 – 20 000 Hz (+1 dB)
(nose) $188 \text{ (W)} \times 58 \text{ (H)} \times 20 \text{ (D)} \text{ mm}$	Signal-to-noise ratio 95 dB (1 kHz) (TEC-A network)
(D) (chassis) 178 (W) × 50 (H) × 160 (D) mm	Dynamic range
	Number of channels
Weight1.8 kg	
:: V	
Naudice of the second of the s	Frequency range
Continuous power output is 22 W per channel min. into 4	Usable sensitivity
onms, both channels driven 50 to 15,000 Hz with no more	50 dB curiating concitivity 15 dBf (15 uV/75 0 mono)
Maximum power output	Signal-to-noise ratio 70 dB (TC-A network)
45 W \times 2 ch/4 Ω + 70 W \times 1 ch/2 Ω (for Subwoofer)	Distortion
Load impedance	Frequency response $30-15,000 \text{ Hz} \ (\pm 3 \text{ dB})$
	Stereo separation
Preout maximum output level/	
output impedance	AM tuner
Equalizer (3-Band Parametric Equalizer)	Frequency range 531 – 1.602 kHz (9 kHz)
(Low) Frequency: 40/80/100/160 Hz	530 – 1.710 kHz (10 kHz)
Q Factor: 0.35/0.59/0.95/1.15	Usable sensitivity18 uV (S/N: 20 dB)
(+6 dB when boosted)	
	50 dB (±10 kHz)
(Mid) Frequency: 200/500/1k/2k Hz	
Q Factor: 0.35/0.59/0.95/1.15	
(+6 dB when boosted)	
(High)	
Q Factor: 0.35/0.59/0.95/1.15	
(+0 db when boosted)	
Loudness contour	
(Low)+3.5 dB (100 Hz), +3 dB (10 kHz)	
(Mid)+10 dB (100 Hz), +6.5 dB (10 kHz)	
(High)+11 dB (100 Hz), +11 dB (10 kHz)	
(volume: -30 dB)	
Frequency 50/80/125 Hz	
Slope ————————————————————————————————————	
Subwoofer output	
Frequency	
Slope18 dB/oct.	

Gain

Slope

Phase

... -18 dB/oct.

.... Normal/Reverse

Pioneer

Service Manual

ORDER NO. CRT2300

CX-916

- This service manual describes the operation of the CD mechanism incorporated in models listed in the table below.
- When performing repairs use this manual together with the specific manual for model under repair.

Model	Service Manual	CD Mechanism Module	Mechanism Unit
DEH-P400/X1N/UC			
DEH-P4000/X1N/UC	CRT2308	CXK5200	CXB3100
DEH-P4050/X1N/ES			
DEH-P3000R/X1N/EW	CRT2309	CXK5200	CXB3100
DEH-P200/X1N/UC			
DEH-P300/X1N/UC	CRT2310	CXK5200	CXB3100
DEH-P3000/X1N/UC			
DEH-P20/X1N/UC			
DEH-P2000/X1N/UC	CRT2311	CXK5200	CXB3100
DEH-P2050/X1N/ES			
DEH-2000R/X1N/EW			
DEH-2020R/X1N/GR	CRT2312	CXK5200	CXB3100
DEH-2030R/X1N/EW			
DEH-10/X1N/UC			
DEH-1000/X1N/UC	CRT2313	CXK5200	CXB3100
DEH-1050/X1N/ES			

www.manualscenter.com

CONTENTS

1.	CIRCUIT DESCRIPTIONS	2
2.	MECHANISM DESCRIPTIONS	17
3.	DISASSEMBLY	18

PIONEER ELECTRONIC CORPORATION 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153-8654, Japan PIONEER ELECTRONICS SERVICE INC. P.O.Box 1760, Long Beach, CA 90801-1760 U.S.A. PIONEER ELECTRONIC [EUROPE] N.V. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 253 Alexandra Road, #04-01, Singapore 159936

1. CIRCUIT DESCRIPTIONS

The LSI (UPD63710GC) used on this unit comprises five main blocks; the pre-amp section, servo, signal processor, DAC and CD text decoder (not used on this model). It also equips with nine automatic adjustment functions.

1.1 PRE-AMP SECTION

This section processes the pickup output signals to create the signals for the servo, demodulator and control.

The pickup output signals are I-V converted by the preamp with the built-in photo-detector in the pickup, then added by the RF amp to obtain RF, FE, TE, TE zero cross and other signals.

This pre-amp section is built in the servo LSI UPD63710GC (IC201). The following describes function of each section.

Since this system has a single power supply (+5V), the reference voltage for this LSI and pickup are set to REFO (2.5V). The REFO is obtained by passing the REFOUT from the LSI through the buffer amplifier. The REFO is output from Pin 89 of this LSI. All measurements are done using this REFO as reference.

Note: During the measurement, do not try to short the REFO and GND.

1) APC Circuit (Automatic Power Control)

When the laser diode is driven with constant current, the optical output has large negative temperature characteristics. Thus, the current must be controlled from the monitor diode so that the output may be constant. APC circuit is for it. The LD current is obtained by measuring the voltage between LD1 and V+5. The value of this current is about 35mA.

Fig.1: BLOCK DIAGRAM OF BUILT-IN RF AMPLIFIER

Fig.2: APC CIRCUIT

2) RF Amplifier and RFAGC Amplifier

The photo-detector outputs (A + C) and (B + D) are added, amplified and equalized on this LSI and then output to the RFI terminal as the RF signal. (The eye pattern can be checked by this signal.)

The RFI voltage low frequency component is:

$$RFI = (A + B + C + D) \times 3.2$$

RFI is used on the FOK generator circuit and RF offset adjusting circuit.

R214 is an offset resistor for maintaining the bottom reference voltage of the RFI signal at 1.5 VDC. The D/A output used for the RF offset adjustment (to be described later) is entered via this resistor.

After the RFI signal from Pin 77 is externally AC coupled, entered to Pin 76 again, then amplified on the RFAGC amplifier to obtain the RFO signal.

The RFAGC adjustment function (to be described later) built-in the LSI is used for switching feedback gain of the RFAGC amplifier so that the RFO output may go to $1.5 \pm 0.3 \text{Vpp}$.

The RFO signal is used for the EFM, DFCT, MIRR and RFAGC adjustment circuits.

3) RFOK Circuit

This circuit generates the signal that is used for indicating the timing of closing the focus or state of the focus close currently being played. This signal is output from Pin 4 as the FOK signal. It goes high when the focus close and in-play.

The RFOK signal is generated by holding DC level of the RFI at its peak with the succeeding digital section, then comparing it at a specific threshold level. Thus, the RFOK signal goes high even if the pit is absent. It indicates that the focus close can take place on the disc mirror surface, too.

This signal is also supplied to the micro computer via the low pass filter as the FOK signal and used for the protection and the RF amplifier gain switching.

Fig.3: RFAMP, RFAGC AND FOK CIRCUIT

4) Focus Error Amplifier

The photo-detector outputs (A+C) and (B+D) are passed through a differential amplifier and an error amplifier, and then (A+C-B-D) is output from Pin 91 as the FE signal.

The FE voltage low frequency component is:

FE =
$$(A + C - B - D) \times \frac{16k}{10k} \times \frac{(80k//300k)}{20k}$$

= $(A + C - B - D) \times 5$

Using REFO as the reference, an S-curve of approximately 1.5 Vpp is obtained for the FE output. The final-stage amplifier cutoff frequency is 11.4 kHz.

Fig.4: FOCUS ERROR AMPLIFIER

5) Tracking Error Amplifier

The photo-detector outputs E and F are passed through a differential amplifier and an error amplifier, and then (E-F) is output from Pin 93 as the TE signal. The TE voltage low frequency component is:

$$TE = (E-F) \times \frac{224k}{(56k+27k)} \times \frac{80k}{38k}$$

= $(E - F) \times 5.7$ (Effective LSI output is 5.0).

Using REFO as the reference, the TE waveform of approximately 1.3 Vpp is obtained for the TE output. The final-stage amplifier cutoff frequency is 20 kHz.

6) Tracking Zero Crossing Amplifier

C210 220pF

TEC signal (the tracking zero crossing signal) is obtained by multiplying the TE signal four times. It is used for locating the zero crossing points of the tracking error. The zero cross point detection is done for the following two reasons:

- 1) To count tracks for carriage moves and track jumps.
- ② To detect the direction in which the lens is moving when the tracking is closed (it is used on the tracking brake circuit to be described later).

The TEC signal frequency range is 300 Hz to 20 kHz.

TEC voltage = TE level
$$\times$$
 4

Theoretical TEC level is 5.2V. The signal exceeds Drange of the operational amplifier and thus is clipped. It, however, can be ignored since this signal is used by the servo LSI only at the zero crossing point.

Fig.5 TRACKING ERROR AMPLIFIER AND TRACKING ZERO CROSSING AMPLIFIER

7) DFCT (Defect) Circuit

The DFCT signal is used for detecting defects on the mirrored disc surface. It allows monitoring from the HOLD pin (Pin 2). It goes high when defects are found on the mirrored surface.

The DFCT signal is generated by comparing the RF amplified signal (which is obtained by bottom holding the RFO signal) at a specific threshold level by the succeeding digital section.

Stains or scratches on the disc can constitute the defects on the mirrored disc surface. Thus, as long as the DFCT signal remains high in the LSI, the focus and tracking servo drives are held in the current state so that a better defect prevention may be ensured.

8) 3TOUT Circuit

The 3TOUT signal is generated by entering disturbance to the focus servo loop, comparing phase of fluctuations of the RF signal 3T component against that of the FE signal at that time, then converting the signal to DC level. This signal is used for adjusting bias of the FE signal (to be described later). This signal is not output from the LSI, thus its monitoring is not available.

9) MIRR (Mirror) Circuit

The MIRR signal shows the on track and off track data, and is output from Pin 3.

When the laser beam is

On track : MIRR = "L" Off track : MIRR = "H"

This signal is used on the brake circuit (to be described later) and also as the trigger to turn on track counting when jumping take place.

The MIRR signal is supplied to the micro computer, too, for the protection purpose.

Fig.6: DFCT, MIRR AND 3T DETECTION CIRCUIT

Fig.7: HOLD OUTPUT WAVEFORM (When surface defects are present)

Fig.8: MIRR OUTPUT WAVEFORM (When an access is made)

10) EFM Circuit

This circuit is used for converting the RF signal to digital signal consisting of "0" and "1". The RFO signal from Pin 75 is externally AC coupled, entered to Pin 74, then applied to the EFM circuit.

Loss of the RF signal due to scratches or stains on the disc, or vertical asymmetry of the RF due to variations in the discs manufactured can't be eliminated by AC coupling alone. This circuit, therefore, controls the reference voltage ASY on the EFM comparator by use of the fact that "0" and "1" appear fifty fifty in the EFM signal. By this arrangement, the comparate level is constantly maintained at almost center of the RFO signal level. The reference voltage ASY is generated when the EFM comparator output is passed through the low pass filter. The EFM signal is output from Pin 71. It is a 2.5 Vp-p amplitude signal centering on REFO.

Fig.9: EFM CIRCUIT

1.2 SERVO SECTION (UPD63710GC : IC201)

The servo section controls the operations such as error signal equalizing, in focus, track jump and carriage move. The DSP is the signal processing section used for data decoding, error correction and interpolation processing, among others.

This circuit implements analog to digital conversion of the FE and TE signals generated on the pre-amplifier, then outputs them through the servo block as the drive signal used on the focus, tracking and carriage system. The EFM signal is decoded on the signal processing section and finally output via the D/A converter as the audio signal. The decoding process also generates the spindle servo error signals which is fed to the spindle servo block to generate the spindle drive signal.

The focus, tracking, carriage and spindle drive signals are then amplified on the driver IC BA5985FM (IC301) and fed to respective actuators and motors.

1) Focus Servo System

The focus servo main equalizer is consisted of the digital equalizer. Fig.10 shows the focus servo block diagram.

When implementing the focus close on the focus servo system, the lens must be brought within the in-focus range. Therefore, the lens is moved up and down according to the triangular focus search voltage to find the focus point. During this time, the spindle motor is kicked and kept rotating as a set speed.

The servo LSI monitors the FE and RFOK signals and automatically carries out the focus close at an appropriate point.

The focus closing is carried out when the following three conditions are met:

- The lens approaches the disc from its current position.
- (2) RFOK = "H"
- ③ The FZC signal is latched at high after it has once crossed the threshold set on the FZD register (Edge of the FZD).

As the result, the FE (= REFO) is forced to low.

Fig.10: FOCUS SERVO BLOCK DIAGRAM

When the above conditions are all met and the focus is closed, the XSI pin goes to low from the current high, then 40 ms later, the microcomputer begins to monitor the RFOK signal after it that has been passed through the low pass filter.

When the RFOK signal is recognized as low, the micro computer carries out various actions including protection.

Fig.11 a series of operations carried out relevant to the focus close (the figure shows the case where focus close is not available).

You can check the S-curve, search voltage and actual lens behavior by selecting the Display 01 for the focus mode select in the test mode, and then pressing the focus close button.

Fig.11: FOCUS CLOSE SEQUENCE

2) Tracking Servo System

The digital equalizer is employed for the main equalizer on the tracking servo. Fig.12 shows the tracking servo block diagram.

Fig.12: TRACKING SERVO BLOCK DIAGRAM

a) Track jump

When the LSI receives the track jump command from the microcomputer, the operation is carried out automatically by the auto sequence function of the LSI. This system has five types of track jumps used for the search: 1, 4, 10, 32 and 32×3 . In the test mode, in addition to three jumps (1, 32 and 32×3), move of the carriage can be check by mode selection. For track jumps, the microcomputer sets almost half of tracks (5 tracks for 10 tracks, for instance) and counts the set number of tracks using the TEC signals. When the microcomputer has counted the set number of tracks, it outputs the brake pulse for a fixed period of time (duration can be specified with the command) to stop the lens. In this way, the tracking is closed and normal play is continued.

To improve the servo loop retracting performance just after the track jump, the brake circuit is turned on for 50 ms after the brake pulse has been terminated to increase gain of the tracking servo.

Fast forward and reverse operations are realized by through consecutive signal track jumps. The speed is about 10 times as fast as that in the normal mode.

Fig.13: SINGLE TRACK JUMP

Fig.14: MULTI-TRACK JUMP

www.manualscenter.com

b) Brake Circuit

The servo retracting performance can be deteriorate during the setup or track jump operation. In this connection, the brake circuit is used to ensure steady retract of the tracking servo. The brake circuit detects in which direction the lens is moving, then slows down its move by outputting the drive signal that moves the lens into the opposite direction alone. Track slippage direction is determined by referencing the TEC and MIRR signals and their phase.

Note: Equalizer output assumed to have same phase as TEC.

Fig.15: TRACKING BRAKE CIRCUIT

3) Carriage Servo System

The carriage servo supplies the tracking equalizer's low-frequency component (lens position data) output to the carriage equalizer, then, after providing a fixed amount of gain to it, outputs the drive signal from the LSI. This signal is then applied to the carriage motor via the driver IC.

When the lens offset reaches a certain level during play, the entire pickup must be moved into the forward direction. Therefore, the equalizer gain is set to the level that allows to generate a voltage higher than the carriage motor starting voltage. In actual operations, a certain threshold level is set for the equalizer output by the servo LSI so that the drive voltage may be output from the servo LSI only when the equalizer output exceeds the threshold level. This arrangement helps reducing power consumption. Also, due to disc eccentricity or other factors, the equalizer output may cross the threshold level a number of times. In this case, the drive voltage output from the LSI will have pulse-like waveform.

Fig.16: CARRIAGE SERVO BLOCK DIAGRAM

Fig. 17: CARRIAGE SIGNAL WAVEFORM

4) Spindle Servo System

The spindle servo has the following modes.

① Kick:

This mode is used for accelerating the disc rotation during setup.

② Offset:

- (a) After the kick is over in the setup, this mode is turned on until changing to rough servo mode.
- (b) When focus is lost during play, this mode is turned on until the focus is restored.

Both of the above are used for maintaining the disc rotation rate near to the specified rate.

③ Applicable servo :

The CLV servo mode is turned on for the normal operations.

In the EFM demodulation block, the frame sync signal and internal counter output signal are sampled for every WFCK/16 and a signal is produced for indicating whether or not they are matching.

They are determined to be asynchronous only when this signal fails to match 8 times in succession. In all other cases, above two signals are assumed to be synchronous. In the applicable servo mode, the retracting servo is automatically selected if the two signals are synchronous. If not, the regular servo is automatically selected.

④ Brake:

This mode is turned on when stopping the spindle motor.

The microcomputer outputs the brake voltage through the servo LSI. The LSI monitors the EFM waveform and, if its longest pattern exceeds a certain interval (if the rotation is sufficiently slow), the flag is set the LSI and the microcomputer turns off the brake voltage. When the flag is not up within a specified period time, the microcomputer switches the mode from the brake to the stop mode, and maintains this mode for a fixed period of time. If this stop mode is continued for a fixed period of time, the disc will be ejected.

⑤ Stop:

This mode is used for powering on the system and the eject operation. When this mode is turned on, voltage across the spindle motor is 0V.

@ Rough servo:

This mode is used for when the carriage feed (carriage mode for the long search, etc.) is turned on. The linear speed is calculated from the EFM waveform and high or low level is entered to the spindle equalizer. In the test mode, this mode is also used for the grating check.

Fig.18: SPINDLE SERVO MOTOR BLOCK DIAGRAM

1.3 AUTOMATIC ADJUSTMENT FUNC-TIONS

Every circuit adjustment on the CD-LSI of this system is automated.

Every circuit adjustment is automatically implemented when the disc is inserted or the CD mode is selected from the source key. The following describes how the adjustments are executed.

1) FZD Cancel Setting

This setting is used for executing the focus close operation without fail.

When power is turned on, the FE offset level is read and a voltage opposite to this offset value is written to the CRAM on the IC to cancel the offset. In this manner, the FZD threshold level can be set to a constant value (+240mV), thereby ensuring to meet one of the requirements for the IC to execute the focus close that "the FZD signal is latched at high".

2) Automatic Adjustment of TE, FE and RF Offset

Using REFO as the reference, this function adjusts the pre-amp TE, FE and RF offsets to the respective target value when power is turned on (targets values of the TE, FE and RF are 0, 0 and -1V, respectively).

The following is the adjustment procedure:

- (1) Respective offset (LD off) is read by the microcomputer via the servo LSI.
- (2) The microcomputer calculates the voltages to be corrected from the read values, then sets them to the specified field.

3) Automatic Adjustment of Tracking Balance (T. BAL)

This adjustment is used for eliminating differences between the pickup E and F channels outputs by adjusting gain of the amplifier on the LSI. In the actual operation, the TE waveform is adjusted so that it may be vertically symmetric with REFO.

The following is the adjustment procedure:

- (1) Make sure the focus close is complete.
- (2) Kick the lens in the radial direction to generate the TE waveform.
- (3) At this time, the microcomputer reads the TE signal offset value (via the servo LSI) being calculated by the LSI.

www.manualscenter.com

(4) The microcomputer determines if the read offset value is positive, negative or zero.

If the offset value = 0, the adjustment is terminated. If the offset value = A positive or negative value, gain of the E and F channels amplifiers are modified according the predetermined rule.

Then above steps (2) through (4) are repeated until the "Offset value = 0" or "Specified limit count" is reached.

4) Automatic Adjustment of FE Bias

This adjustment is intended at maximizing the RFI level by optimizing the focus point in-play. This adjustment utilizes the phase difference between the RF waveform 3T level and the focus error signal when disturbance is applied.

Since disturbance is applied to the focus loop, this adjustment is designed to take place in the same timing as the auto gain control (to be described later).

The following is the adjustment procedure:

- Disturbance is injected to the focus loop by the command from the microcomputer (within the servo LSI).
- (2) The LSI detects fluctuation of the RF signal 3T component level.
- (3) The LSI determines relationship between fluctuation of the 3T component and the injected disturbance to detect magnitude and direction of the off-focus introduced.
- (4) The microcomputer reads the detected results from the LSI.
- (5) The microcomputer calculates necessary correction, then hands the calculated value to the bias adjustment term set on the LSI.

This adjustment is repeated several times, as it is so with the auto gain control, to ensure higher accuracy.

5) Focus and Tracking Automatic Gain Control

This function is used for implementing automatic control of the focus and tracking loop gain.

The following is the adjustment procedure:

- (1) Inject disturbance to the servo loop.
- (2) Extract the error signal (FE and TE) generated at when the disturbance is applied to obtain the signals G1 and G2 via the B.P.F.
- (3) The microcomputer reads the G1 and G2 signals via the LSI.
- (4) Based on the necessary correction calculated by the microcomputer, the LSI performs the loop gain adjustment.

Above adjustments are repeated several times to ensure higher adjustment accuracy.

6) Automatic RF Level Adjustment (RFAGC)

This adjustment is used for implementing intended signal transmission successfully by adjusting unevenness of the RF signal (RFO) levels, that results from disc and machine relevant factors, to a target value. The adjustment is actually done by varying gain of the amplifier provided between the RFI and RFO.

The following is the adjustment procedure:

- (1) Using the command, the microcomputer reads the output from the RF level detection circuit on the servo LSI.
- (2) Based on the read value, the microcomputer calculates an amplifier gain that will produce the target RFO level.
- (3) The microcomputer sends the corresponding command to the servo LSI so that the above gain value may be set.

This adjustment takes place at the following timing:

- When the focus close alone is completed during the setup process.
- Just before the setup is completed (just before the play takes place).
- After the off-focus has been corrected during the play.

7) Adjustment of Pre-Amp Stage Gain

It is used for adjusting the entire RFAMP (FE, TE and RF amplifiers) to +6dB or +12dB depending on given gain level when reflected light from the disc is significantly below the required level due to stained lens. This phenomena can be noticed when playing back the CD-RW

The following is the adjustment procedure:

When reflected light from disc is judged to be significantly below the required level during the setup, set the entire RFAMP to +6dB or +12dB. In this case, if the gain is modified, the setup have to be repeated from the first step.

Through the adjustment, if you judged the play becomes available by setting the entire RFAMP to +6dB, +6dB should be selected for the setup next time on.

See the figure below:

www.manualscenter.com

Fig.19: CONCEPTUAL DIAGRAM OF PRE-AMP GAIN ADJUSTMENT

8) Initial Adjusting Values

All the automatic adjustments are implemented using the previous adjustment values as the initial values unless the microcomputer power (the backup power) is not turned off (though there are some exceptions).

When the backup is turned off, automatic adjustment is executed based on the initial values rather than the previous adjustment values.

9) Displaying Coefficients After Adjustment

You can display and check results of some automatic adjustments (FE and RF offset, FZD cancel and F / T / RFAGC) from the test mode. The following coefficients are displayed in each automatic adjustment:

(1) FE and RF offset and FZD cancel

Reference value = 32 (The coefficient of 32 indicates that no adjustment was required).

The results are displayed in multiples of approximately 40 mV.

An example : When FZD cancel coefficient = 35

35 - 32 = 3

 $3 \times 40 \text{ mV} = 120 \text{ mV}$

Since the corrected value is approximately +120 mV, the FE offset before adjustment was -120 mV.

(2) F and T gain adjustment

Reference value = Focus/Tracking = 20

A coefficient displayed indicates an amount of adjustment conducted on the reference value.

An example: When AGC coefficient = 40

40/20 = Overall gain has bee doubled (+6dB). (The original loop gain of 1/2 has been doubled to have the targeted overall gain.)

(3) RF level adjustment (RFAGC)

Reference value = 8

Coefficient = 9 to 15 The direction in which the

RF level is increased (the gain is increased).

Coefficient = 7 to 0 The direction in which the

RF level is decreased (the gain is decreased).

Incrementing or decreasing the coefficient by "1" varies the gain by 0.7 to 1dB.

Maximum gain = Typically +6.5dB. Coefficient at this time is 15.

Minimum gain = Typically –6.0dB. Coefficient at this time is 0.

www.manualscenter.com

1.4 POWER SUPPLY AND LOADING SECTION

The power supply of the system uses VD (8.3V) from the mother board. VD is fed to 5 channel CD driver IC, 5V Reg IC and disc detection LED.

The microcomputer turns on or off the CD driver and the 5V using "CONT" and "CD5VON", respectively. The loading drive is turned on or off by the input signals "CDEJET" and "CDLOAD". No control terminal is provided for turning the loading drive on or off.

Fig.20: POWER SUPPLY AND LOADING SECTION

2. MECHANISM DESCRIPTIONS

Loading Operation (when a 12 cm disc is used)

- Insert a 12 cm disc (the sensor turns on the motor revolution).
- 2. The disc pushes the Lock Lever in, thereby resetting the lock currently applied to the Centering Arms.
- 3. The disc further pushes the Centering Arms in.
- 4. The right side and left side arms are engaged to perform centering of the disc.
- 5. The disc pushes the Disc Detection Arm in, thereby pushing the Disc Detection Lever forward.
- 6. Clamping action retracts the Disc Detection Lever toward forward side, thereby rotating the Relief Arm.
- 7. The Relief Arm further pushes the Centering Arm in, thus detaching it from the disc.

● Loading Operation (when a 8 cm disc is used)

- 1. Insert an 8 cm disc (the sensor turns on the motor revolution).
- The disc does not contact against the Lock Lever, thus centering of the disc is performed by the Centering Arm being locked.
- 3. When the right side slot is used, the lock currently applied to the Centering Arm remains turned on even if the disc may touch the Lock Lever because the disc leaves the lever before it reaches the Centering Arm.
- Succeeding procedures are the same as that for 12 cm discs.

Clamping Operation

- 1. Insert a disc.
- 2. The Detection Arm pushed forward by the Detection Lever turns on rotation of the Jump In Rack.
- 3. The Jump In Rack then engages with the Two Step Gear and moves toward right.
- 4. At the same time, the Mode Selector Lever connected to the Jump In Rack starts moving toward right, thereby rotating the Lock Arm and resetting the mechanical lock. The Clamp Up Arm too is rotated by the above action and, thus, the Clamp Up Arm now being lifted by shape of the cam of the Clamp Arm is lowered.
 - And, the Guide Arm is also moved down because of shape of the cam of the Mode Selector Lever.
- By use of the cam shape, the Jump In Rack being moved toward right retracts the Disc Detection Lever in forward direction, thereby turning on rotation of the Relief Arm.

www.manualscenter.com

3. DISASSEMBLY

Removing the Upper Frame

- Remove six Springs A, two Springs B and four Screws.
- 2. Remove two Tabs situated on rear side of the Upper Frame, remove two Arms on the front side, then remove two Tabs on the front side.

Removing the Carriage Mechanism

 Disengage the Carriage Mechanism from the two dampers situated in the front side by driving it up, then disengage and remove the mechanism from the two dampers by driving it up aslant into front side direction

Note: When assembling the Carriage Mechanism, coat the dampers with alcohol prior to the assembly.

Removing the Clamp Arm Assy

- 1. Remove a Spring A, a B and a Spring C.
- Drive the Clamp Arm Assy up into rear side direction, then disengage the arm from its current position Finally, drive the assembly approximately 45 degrees upward, then slide the assembly toward right side to remove it.

Removing the Guide Arm Assy

- 1. Remove a connector, a spring A and B
- Drive the Guide Arm Assy up aslant into rear side direction, then remove it from a Pin. Finally, drive the assembly approximately 45 degrees upward, then slide the assembly toward left side to remove it.

Note: When assembling the guide arm assembly, route the cord inside the assembly. In this operation, care must be exercised so that cord may be caught by the gear.

Removing the LO Arm Assy

1. Remove two Pins to dismount the LO Arm Assy.

Removing the Control Unit and the Spindle Motor

- 1. Remove from the connector after mounting the short pin on the flexible PCB of the pickup unit.
- 2. Remove two Soldered joints, then remove two Screws A.
- 3. Remove two connectors and a Screw B.
- 4. Disengage the Control Unit from two Tabs, then dismount the unit by sliding it toward left.
- 5. Dismount the Spindle Motor.

Removing the Loading Motor and Carriage Motor

- 1. Remove the Spring and two Screws A.
- 2. Dismount the Loading Motor.
- 3. Remove the Belt, a Screw B, two Screws C, a Guide and a Screw Unit.
- 4. Dismount the Carriage Motor.

Note: When assembling the Belt, use care so that it may not be contaminated by grease.

Removing the Pickup Unit

- 1. Remove two Screws and a Shaft.
- 2. Dismount the Pickup Unit.

