GGNN: Gated Graph Neural Network (门控图神经网络)

基本概念

GGNN是一种基于GRU的经典的空间域 message passing 的模型

问题描述

一个图 G=(V,E), 考点 VEV中存储 D维向量, 也 eEE 中存储 DxD维矩阵,目的是构建网络GGNN.实现每一次参数更新时,每个节点、既接受相邻节点的信息,又向相邻节点、发送信息

主要贡南尤

基于GRU提出JGGNN,利用RNN类似原理定现J信息在graph 中的传递

传播模型

$$h_{v}^{(i)} = [X_{v}^{\mathsf{T}}, o]^{\mathsf{T}} \tag{1}$$

hi 是节点V的初态,是D维向量,

当节点、输入特征×健度小子D时、在后面补 0

$$Q_{v}^{(t)} = A_{v}^{T} : \left[h_{1}^{(t-1)T} \cdots h_{v}^{(t-1)T} \right]^{T} + b \qquad (2)$$

Qto 是 2D 维向量,表示节点而相邻节点间通过 edges的相互作用的结果, Av 是矩阵 A中选出对应节点 V 的两列

update gate	$= 6(W^{\Xi}a_{v}^{(t)} + U^{\Xi}h_{v}^{(t-1)})$	(3)
	E(T) = 6 (W av + U hv)	(4)
	(- (his) = tanh (War + U(r Ohr))	(کا
是这更新角	$\langle h_{v} \rangle = (1 - Z_{v}^{t}) \otimes h_{v}^{(t-1)} + Z_{v}^{t} \otimes h_{v}^{(t)}$	16)
诺总状态, (3)-(6) 类似于GRU的计算过程,又扩控制造忘	传息,
Yv 控	制新产生信息, 选择遗忘哪些信息.	决定从哪些
过去的	信息、中产生新信息、	
輸出模型	2	
	輸出: D 每个结点、分别等的出值	
	②整张图输出一个值	
D : [D=g(hu, Xv) ラ 利用逐个 nodes 的量	终状态和初始
	新入分别来输出	
② h	g: tanh(E/6 (i (h), X,)) ① tanh(,j 表示神经网络, / 输入: Concat (jehr. X.))
i	j表示神经网络、编入:Concat L	hv, Xv)
	輸出: 定值向量	
	- 神 attention 机制	
	用于选出哪些节点和整个graph取输	出象相关
	~ ·	