

Strengthening Parametric Disjunctive Cuts

Shannon Kelley¹, Aleksandr M. Kazachkov², Ted Ralphs¹

¹Lehigh University ²University of Florida

Parameterization can weaken disjunctive cuts

Why parametric disjunctive cuts need strengthening

The challenge:

- Disjunctive cuts are strong but costly to compute.
- Parameterization enables faster reuse across MILP sequences. [3]
- However, parameterization can weaken disjunctive cuts.

A solution is strengthening parametric disjunctive cuts when

- an incumbent solution is known (Figure 1),
- the coefficient matrix changes (Figure 2),
- an infeasible disjunctive term becomes feasible (Figure 3), or
- the supporting basis becomes infeasible (Figure 4).

Our approach:

- Prune terms made irrelevant by incumbent solution bound (Algorithm 2).
- Recalculate supporting Farkas multipliers and reapply parameterization (Algorithm 3).

Results include stronger root node relaxations (Table 1) and faster overall solve times (Table 3).

When disjunctive cuts support relaxations

Input: A sequence of mixed integer linear optimization problems (MILPs), IP-1, ..., sharing same variables, a **disjunction** $\{\mathcal{X}^t\}_{t\in T}$, where $\mathcal{X}^t := \{x \in \mathbb{R}^n : D^t x \geq D^t_0\}$, and the inequality (α, β) .

Denote the following for each problem and disjunctive term:

$$\min_{x \in \mathcal{S}^k} c^k x \qquad (\text{IP-}k)$$

where

$$\mathcal{S}^k = \{x \in \mathcal{P}^k : x_j \in \mathbb{Z} \text{ for all } j \in \mathcal{I}\},\$$

 $\mathcal{P}^k = \{x \in \mathbb{R}^n : A^k x \ge b^k\},$

 $A^{kt} = \begin{bmatrix} A^k \\ D^t \end{bmatrix}, \ b^{kt} = \begin{bmatrix} b^k \\ D_0^t \end{bmatrix},$

and
$$\mathcal{Q}^{kt} = \mathcal{P}^k \cap \mathcal{X}^t$$
.

Definition 1: The inequality (α, β) valid for \mathcal{Q}^{kt} supports \mathcal{Q}^{kt} if there exists $x' \in \mathcal{Q}^{kt}$ such that $\alpha^{\mathsf{T}}x'=\beta.$

Solve LP- $kt(\alpha)$ to find β such that (α, β) supports \mathcal{Q}^{kt} .

$$\min \begin{array}{ccc} & \alpha^{\mathsf{T}} x & & \max & b^{kt}^{\mathsf{T}} v \\ & A^{kt} x \geq b^{kt} & & (\mathsf{LP}\text{-}kt(\alpha)) & & & A^{kt}^{\mathsf{T}} v = \alpha \\ & & v \geq 0 & \end{array} \right\} (\mathcal{D}^{kt}(\alpha)) \qquad (\mathsf{Dual}\text{-}kt(\alpha))$$

Lemma 1: Let $t \in T$. If $\mathcal{Q}^{kt} \neq \emptyset$ and $(x^t, v^t) = \left(\arg \min_{x \in \mathcal{Q}^{kt}} \{\alpha^\mathsf{T} x\}, \arg \max_{v \in \mathcal{D}^{kt}(\alpha)} \{b^{kt}^\mathsf{T} v\} \right)$, the cut $(\alpha, b^{kt}^\mathsf{T} v^t)$ supports \mathcal{Q}^{kt} at x^t . We refer to $\{v^t\}_{t\in[T]}$ as Farkas multipliers. [2]

How we use parametric disjunctive cuts

Overview:

- Calculate Farkas multipliers for an inequality valid for \mathcal{S}^k .
- 2) Change IP-k to IP- ℓ .
- 3) Generate a parametric disjunctive cut with $PDCG(\ell, \{\mathcal{X}^t\}_{t \in T}, \{v^t\}_{t \in T}).$ [3]

Algorithm 1:

Parametric Disjunctive Cut Generator (PDCG)

Require: $k, \{\mathcal{X}^t\}_{t \in T}, \{v^t\}_{t \in T}$

1: return $\left(\max_{t \in T} \{A^{kt^\mathsf{T}} v^t\}, \min_{t \in T} \{b^{kt^\mathsf{T}} v^t\}\right)$

Try it yourself

Code and examples are available on GitHub: github.com/spkelle2/vws/tree/dev

Prune disjunction and reparameterize to strengthen

When can we strengthen parametric disjunctive cuts

Answer: When an incumbent solution exists (Figure 1) or when disjunctive hull support is lost (Figures 2 - 4). In practice, this looks like the following:

2) generate parametric

1) change

0.50 -

0.25 -

0.00 -

Figure 1. Pruning the disjunction with a Figure 2. Restoring disjunctive hull support

Figure 3. Finding a Farkas multiplier, v^t , for perturbation-induced feasible terms

Figure 4. Restoring disjunctive hull support for perturbation-induced infeasible bases

How to strengthen parametric disjunctive cuts

Solution: Tighten parametric disjunctive cuts by

- (PD) pruning $\{\mathcal{X}^t\}_{t\in T}$ with an incumbent solution, x^* , (Figure 1) and
- (SPDCG) recalculating Farkas multipliers and reapplying parameterization (Figures 2 4).

Algorithm 2: Prune Disjunction (PD)

Require: $k, \{\mathcal{X}^t\}_{t \in T}, x^*$

1: **return**
$$\{t \in T : \min_{x \in \mathcal{Q}^{kt}} \{c^{k^\mathsf{T}} x\} < c^{k^\mathsf{T}} x^*\}$$
 \triangleright Drop terms that can't improve upon x^*

Algorithm 3: Supporting Parametric Disjunctive Cut Generator (SPDCG)

Require: $k, \{\mathcal{X}^t\}_{t \in T}, \{v^t\}_{t \in T}$

- 1: $(\alpha, \beta) \leftarrow \mathsf{PDCG}(k, \{\mathcal{X}^t\}_{t \in T}, \{v^t\}_{t \in T})$ 2: **for all** $t \in T$ such that $(\alpha, b^{kt} v^t)$ does not support \mathcal{Q}^{kt} **do** \triangleright Find an initial α
- ▷ Recalculate Farkas multipliers (reparameterize) $v^t \leftarrow \arg\max\{v^\mathsf{T}b^{\ell t}\}$
- end for
- : return PDCG(ℓ , $\{\mathcal{X}^t\}_{t \in T}, \{v^t\}_{t \in T}$)
- Reapply parameterization (regenerate)

Why our fix always supports the disjunctive hull

Claim: SPDCG supports the disjunctive hull. [2]

Proof Sketch:

- Generate an initial cut (α, β) in Line 1.
- Recalculate Farkas multipliers in Line 3 such that $A^{\ell t^{\mathsf{T}}}v^t = \alpha$ for all $t \in T$.
- Reapply PDGC yielding $(\alpha, \min_{t \in T} \{b^{kt^T}v^t\})$. This cut supports \mathcal{Q}^{kt} for some $t \in T$ (Lemma 1); thus, it supports the disjunctive hull.

Tighter root relaxations and faster solve times ensue

How does strengthening improve performance

We compare 4 different ways of generating disjunctive cuts in Gurobi:

- **Default**: no disjunctive cuts
- PRLP: via Point-Ray LP relaxation [1]
- While varying:

3) reparameterize

coefficient

changed

matrix

- degree of perturbation (1, 4)
- number of disjunctive **terms** (4, 64)
- type of perturbation (objective, coefficient matrix, right hand side (rhs))
- PDCG: via PDCG
- Strength: via PD + SPDCG
- MILP instance randomly perturbed
- count of random perturbations for the combination of degree, terms, instance, and type (2-10, 20)

, , , , , , , , , , , , , , , , , , , ,	8	
gend		
Higher is better	Lower is better	Percentage-corresponding values

Strengthened parametric disjunctive cuts can close 10% more root optimality gap

Degree	Terms	Type	Default	PRLP	PDPC	Strength	Count
1	64	matrix	39.90	68.28	62.78	66.12	20
Т	O T	rhs	39.78	70.24	66.37	66.1268.93	20
	64	matrix	39.61	65.62	39.46	49.92	20
-	0-1	rhs	42.15	69.10	52.15	56.45	20

Table 1. Root optimality gap closed (%) averaged across 20 perturbations of bm23.**

While reducing root cut generation time 80%

Degree	Terms	Type	Default	PRLP	PDPC	Strength	Count
1	64	matrix	0.108	0.547	0.117	0.170	20
Τ.	01	rhs	0.121	0.543	0.111	0.1700.119	20
1	64	matrix	0.117	0.552	0.168	0.198	20
7	U -1	rhs	0.098	0.554	0.130	0.1980.146	20

Table 2. Root node processing time (s) averaged across 20 perturbations of bm23. **

And producing 55% faster solves overall

Degree	Terms	Туре	Instance	Default	PRLP	PDCG	Strength	Count
1	4	matrix	neos-860300	129.2	97.85	70.47	56.30	10
Τ.	64	objective	neos18	26.50	51.96	24.83	20.32	3
	4	rhs	blp-ir98	12.69	143.3	8.673	7.341	2
7	64	matrix	ran13x13	54.50	66.37	77.42	45.97	10

Table 3. Instance solve time (in seconds) averaged across randomly perturbed MILP sequences.

* Degree is the angle between two flattened coefficient vectors. ** PRLP and PDCG bound Strength from above and below.

[†] 4-term and objective cases excluded: PRLP \approx PDCG. [‡] Matched exclusions from Table 1.

What we learned and are planning next

Benefits:

When to strengthen:

- An incumbent solution is available
- Disjunctive hull support is lost
- Next steps:
- Extend experiments to full MIPLIB 2017.
 - Compare vs. warm-started node pools. [4]

Train a neural network to choose

Faster overall solves

Stronger root relaxations

disjunction reuse strategies.

References

- [1] Egon Balas and Aleksandr M. Kazachkov. \mathcal{V} -polyhedral disjunctive cuts, 2022.
- [2] Shannon Kelley, Aleksandr Kazachkov, and Ted Ralphs. Strengthening parametric disjunctive cuts. 2025.
- [3] Shannon Kelley, Aleksandr Kazachkov, and Ted Ralphs. Warm starting of mixed integer linear optimization problems via parametric disjunctive cuts. 2025.
- [4] T.K. Ralphs and M. Güzelsoy. Duality and Warm Starting in Integer Programming. In The Proceedings of the 2006 NSF Design, Service, and Manufacturing Grantees and Research Conference, 2006.