Smart usage of context information for the analysis, design and generation of power-aware policies for mobile sensing apps

Rafael Pérez Torres

Dr. César Torres Huitzil Dr. Hiram Galeana Zapién

Doctoral seminar, 2017

Cinvestav-Tamaulipas | Smart usage of context information for the analysis, design and generation of power-aware policies for MSAs

Agenda

Solution

Environment

2 / 13

Perception components Mobility Events Detector

Figure: Individual's mobility as a sequence of high level states and associated events detected from raw sensor data [7, 8].

Mobility Events Detector

Aime at identifying:

- Ocarse-grain mobility events.
- Fine-grain mobility events.

Perception components Mobility Events Detector: Stay Points Detector module

Stay Points Detector module

- Focused on detecting stay points in user mobility.
- Event driven design, it incrementally processes each low-level mobility event (raw GPS data).

Figure: A conceptual representation of the stay points detection algorithm behavior.

Geofencing module

- Window-based approach with voting system.
- Requires an SPS_{candidate} list of stay points.
- $lack {f O}$ Incrementally analyzes GPS fixes for detecting coarsegrain mobility events under a $gf_{distance}$ threshold:

		Oldest fixes			Pivot gf _p ,	Newest fixes	
◆ SPS _{candidžee}	sp ₁		600m outside	610m outside	500m inside	250m inside	30m inside
	sp ₂		8 000m outside	8 100m outside	8 200m outside	8 100m outside	8 200m outside
			9 820m outside	9 900m outside	9 970m outside	10 500m outside	10 550m outside
	sp _n		15 200m outside	15 400m outside	15 500m outside	15 600m outside	15 700m outside
_	yindow size						

Figure: A conceptual representation of the window-based geofencing operation.

Perception components Mobility Events Detector: HAR module

HAR module

- Window-based approach.
- Detects transportation mode from accelerometer data.
- Underlying NaïveBayes classifier.

Figure: Distribution of mean and standard deviation features employed by the NaïveBayes classifier of the HAR module.

Layered perceptual memory

Short and long-term memory information

Layered perceptual memory

- Short-term memory information: current (observed) mobility status.
- Long-term memory information: the Expanded Spatial-Time model (STM).

Expanded Spatial-Time model

• The highest level of mobility information held by the system.

 $\begin{array}{l} \overline{\text{pp}_1\text{sp}_2} \text{ A summarized trajectory between sp, and sp,} \\ \overline{\text{sp}_2\text{sp}_1} \text{ A summarized trajectory between sp,} \text{ and sp,} \\ \overline{\text{sp}_2\text{sp}_3} \text{ A summarized trajectory between sp,} \text{ and sp,} \\ \overline{\text{sp}_3\text{sp}_3} \text{ Sp,} \text{ A summarized trajectory between sp,} \text{ and sp,} \\ \end{array}$

Figure: A conceptual representation of the STM's structure.

Layered perceptual memory

Expanded Spatial-Time model (STM)

Generation of the STM

• Incrementally built with the coarse-grain mobility events detected by the Mobility Events Detector.

Figure: A conceptual representation of the steps for generating the STM from raw sensors data.

Cinvestay-Tamaulipas | Smart usage of context information for the analysis, design and generation of power-aware policies for MSAs

Working memory

Probabilistic Reasoning Machine (PRM)

PRM features

- 1 It gives a meaning to the observed mobility information with respect of the STM information.
- It produces an estimation of future mobility state that links perceptual and working memory.

Interpretation

- The Event Miner traverses the STM for identifying whether learned information is:
 - Occupance of the consistent of the consistent or the consistency or the consi
 - Inconsistent (mismatch)

with respect of observed mobility information.

Estimation

- The Event Miner looks in the STM for a link (if any) with learned mobility information for generating spatial-time estimations:
 - Get next departure time.
 - Get next arrival time.

Cognitive controller (CC) Description

Goals

- To reduce the energy consumption of location tracking by relying on PRM's estimations.
- To reduce the system uncertainty about current user mobility.

Possible cognitive actions

- Exploitation policies: When system uncertainty is low for saving energy purposes.
- Exploration policies: When system uncertainty is high for recovering for accuracy loss.

Figure: A cognitive controller generic architecture

Stay point mode

- **3** A sampling based on the sigmoid function $sig(x) = \frac{1}{1+\rho-\alpha x}$ as a model for the mobility phase transitions.
- Higher sampling rate on arrival and departure, when the user is more likely to move, and slower at the middle of a visit.
- Central part is assisted by motion detection from the HAR module.

Figure: Approximation of the sigmoid through straight segments.

Figure: A snapshot of the process for producing a sigmoid sampling.

Cognitive controller

Trajectory mode

- The spatiotemporal characterization of people's motion during trajectory is complex: it is hard to produce a single spatiotemporal model for summarizing how all people move.
- No special modeling of motion during a trajectory is performed other than the user moves within a speed range.
- A hint of such speed is provided by the HAR module from the detected transportation mode.
- The speed tendency over a window of identified transportation modes is employed for adjusting GPS sampling.

Figure: GPS sampling adaptation based on the speed tendency of detected transportation modes.

Cognitive controller

Sampling Decision Maker module

- It filters from the pool of exploration-exploitation policies those apt for the mobility state detected by PRM.
- It implements one policy, employing the spatial-time estimation provided by the PRM.
- It updates its Executive Memory with the selected cognitive action for feedback in further executions.

Reaction for mobility events

- Reaction for arrival event:
 - The sampling rate is reduced by following a sigmoid-based sampling.
- Reaction for departure event:
 - $oldsymbol{\Theta}$ The sampling rate is increased by implementing a target sampling T_{target} .

Cinvestay-Tamaulipas | Smart usage of context information for the analysis, design and generation of power-aware policies for MSAs

Cognitive controller

Mismatches

- A mismatch represents a discrepancy between observed and learned mobility information.
- In general, the system increases the sampling rate for recovering the accuracy lost.

Reaction for mobility mismatches

- Reaction for early arrival:
 - The sampling rate is reduced by following a sigmoid-based sampling.
- Reaction for early departure:
- The fastest sampling rate is selected for recovering accuracy and improving system perception.
- Reaction for late arrival:
 - The fast sampling rate must be maintained as long as the user is still in trajectory.
- Reaction for late departure:
 - A conservative sampling rate is implemented for detecting the eventual departure.

Thank you for your attention!

Consider again that dot [Earth]. That's here. That's home. That's us.

Carl Sagan

References I

[1] Nayeem Islam and Roy Want.

Smartphones: Past, Present, and Future.

IEEE Pervasive Computing, 13(4):89–92, 2014.

[2] Mikkel Kjaergaard.

Location-based services on mobile phones: Minimizing power consumption. *IEEE Pervasive Computing*, 11:67–73, 2012.

[3] Xiao Ma, Yong Cui, and Ivan Stoimenovic.

Energy efficiency on location based applications in mobile cloud computing: A survey. In *Procedia Computer Science*, volume 10, pages 577–584, 2012.

[4] Eric C. Evarts.

Lithium batteries: To the limits of lithium. Nature, 526(7575):S93-S95, oct 2015.

[5] Opher Etzion and Peter Niblett.

Event Processing in Action.

Number ISBN: 9781935182214. Manning Publications, 2010.

[6] Ted Faison.Event-based programming: Taking events to the limit.

Apress, Berkely, CA, USA, 1st edition, 2006.

[7] Laura Alessandretti, Piotr Sapiezynski, Sune Lehmann, and Andrea Baronchelli.
 Multi-scale spatio-temporal analysis of human mobility.

PLOS ONE, 12(2):e0171686, feb 2017.

[8] Xiang-Wen Wang, Xiao-Pu Han, and Bing-Hong Wang.

Correlations and Scaling Laws in Human Mobility. PLoS ONE, 9(1):e84954, jan 2014.