Evaluation of the Cell Allocation Mechanism in 6TiSCH Minimal Scheduling Function for Wireless Sensor Networks

TUHH

Technische Universität Hamburg

Benjamin Ko Supervisor: Yevhenii Shudrenko First Examiner: Prof. Timm-Giel

		ТИНН
	1. Introduction	
Agenda:	2. Motivation	
	3. Analytical Model	
	4. Experimental validation	
	5. Results	
[]	6. Conclusion	
		2

1. Introduction	TUHH
	3

TUHH 1. Introduction **Evaluation of the Cell Allocation** Mechanism in 6TiSCH Minimal Scheduling Function for Wireless **Sensor Networks**

TUHH

1. Introduction - Wireless sensor networks

- Wireless sensor networks (WSN) as used in industrial settings
- Enables the collection of environmental data
- Characteristics:
 - Cheap and easy to operate
 - Scalable
 - Energy efficient

Figure 1. General architecture of a WSN. [1]

TUHH 1. Introduction **Evaluation of the Cell Allocation** Mechanism in 6TiSCH Minimal Scheduling Function for Wireless Sensor Networks

1. Introduction - 6TiSCH

- IPv6 over the TSCH mode of IEEE 802.15.4
- Utilizes 6LoWPAN for e.g. header compression
- Defines 6top sublayer
- Defines the tasks of scheduling functions

Figure 2. Protocol stack of 6TiSCH [2]

1. Introduction - 6TiSCH

TUHH

- TSCH used as MAC protocol
 - Mix of TDMA/FDMA
 creating a matrix of cells
 for communication
 - 6top Protocol (6P) used for cell negotiation[3]

⇒ Scheduling function handles the schedule

Figure 3. TSCH TDM/FDM schedule [4]

1. Introduction - Scheduling Function

- Tasks of the scheduling function[5]:
 - When and how many cells to add/delete
 - Which cells to include in
 CellList of the 6P ADD request
- The only scheduling function defined by a RFC is the Minimal Scheduling Function (MSF)

TUHH 1. Introduction **Evaluation of the Cell Allocation** Mechanism in 6TiSCH Minimal Scheduling Function for Wireless Sensor Networks 10

1. Introduction - Minimal Scheduling Function (MSF)

- Has mechanisms to decide when to add/delete/relocate cells
- Example: Relocation of a cell

Name	RECOMMENDED value
SLOTFRAME_LENGTH	101 slots
	16
MAX_NUM_CELLS	100
+	75
LIM_NUMCELLSUSED_LOW	25
	256
+	
RELOCATE_PDRTHRES	50 %
QUARANTINE_DURATION	
transmire the comment of the comment	30 s
+ WAIT_DURATION_MAX	60 s
+	+

Figure 4. MSF recommended values [2]

TUHH 1. Introduction Evaluation of the Cell Allocation Mechanism in 6TiSCH Minimal Scheduling Function for Wireless Sensor Networks

1. Introduction - Cell allocation mechanism

1. Introduction - Cell allocation mechanism

TUHH

- 1. Default cell allocation mechanism
 - MSF randomly uniformly selects cells

All free cells

CellList

1. Introduction - Cell allocation mechanism

- 2. Sensing cell allocation mechanism as proposed by RFC 9033 [4]
 - A candidate cell list is maintained where MSF senses for traffic
 - When traffic detected cell is dropped

2. Motivation - Previous work

- Previous work on MSF has focused on:
 - Analytical and Simulation based evaluation of MSF parameters by Tangfei Chang et al. [6] and David Hauweele et al. [7] [8]
 - Proposing improved version of MSF by for instance varying the number of cells allocated Tangfei Chang et al [6] and Manas Khatua Karnish et al.
 [9]
 - Experimental evaluation of 6P and MSF by Francesca Righetti et al. [10]
- ⇒ Lacking research of cell allocation mechanism and experimental validation

2. Motivation - This work

TUHH

- Evaluate the default and sensing cell allocation mechanism for MSF
- Using the KPI:
 - T_s : Time it takes to allocate μ_{max} cells and the network to stabilize
 - Stabilize: No more relocations necessary
 - **p**_{ov}: Probability of overlap

⇒ Using an analytical model and experimental validation

TUHH 3. Analytical Model 19

3. Analytical model

TUHH

- Calculate the T_s for μ_{max} cells to be allocated:

$$T_s = T_a + T_r$$

 $T_a = \text{allocation time},$

 $T_r = \text{relocation time}$

Figure 5. Network topology of analytical model

3. Analytical model - Cell allocation time

TUHH

$$T_a = \sum_{i=2}^{\mu_{\text{max}}} \left(\frac{M}{i-1} + \frac{1}{i} + 0.5 \right)$$

Time to next cell allocation 6P ADD request 6P ADD response

 $\mu_{\text{max}} = \text{target service rate}, M = MAX_NUM_CELLS$

3. Analytical model - Relocation time

$$T_r = t_h \min(\lfloor E_{\Sigma}[O] \rfloor, 1) + \left(\frac{1}{\mu_i} + 0.5\right) \left\lceil \frac{\lfloor E_{\Sigma}[O] \rfloor}{r_l} \right\rceil$$
 Time until all cells are evaluated
$$E_{\Sigma}[O] = \sum_{i=1}^{\mu_{\max}} \frac{p_{ov}(\mu_i)}{1 \cdot p_{ov}}$$
 Maximum cells per relocation

Example:
$$E_{\Sigma}[O] < 1$$
 \longrightarrow $T_r = 0$

3. Analytical model - Probability of overlap

TUHH

1. Default cell allocation mechanism:

$$p_{ov}(\mu_i) = \frac{N}{X - \mu_{i-1}}, \quad X = n_{ch} n_{sf},$$

2. Sensing cell allocation mechanism:

$$p_{ov}^{(C)} = 1 - (1 - \frac{N}{X'})^C, \quad X' = X - n_{min} - \mu_i - n_{auto}$$

- The time it takes for allocating a cell allows for the candidate cell list to become non overlapped (its relatively fast)

N = Cells with interference, X = Total number of cells, C = Candidate cells

	TUHH	
4. Experimental validation		
	24	

4. Experimental validation

Figure 6. Experimental setup

 Testbed consisting of Openmote-B boards running Contiki-NG

- 3 Openmote-B nodes:
 - Parent (TSCH-coordinator, RPL-root)
 - Network emulator
 - Child

4. Experimental validation

4. Experimental validation - Parameters

		_	
	ч		
•	_		

Parameters	Values
Test runs per setup	10
MAX_NUM_CELLS	100 , 50
Network interference	20% , 10%
HOUSEKEEPINGCOLLISION_PERIOD	60s
Channels	4
MAX_NUMTX	32
Slotframe length	100

	ТИНН
5. Results	
	29

5. Results - Scheduling time

Figure 8. Experimental and analytical results with 20% interference.

5. Results - Scheduling time

Figure 9. Experimental and analytical results with 10% interference.

5. Results - Probability of overlap

Figure 10. Probability of overlap without sensing.

- Probability of overlap higher with higher network interference
- Probability of overlap for sensing mechanism is 0
- Experimental data confirms analytical predictions

6. Conclusion	ТИНН
	33

TUHH 6. Conclusion Sensing mechanism reduces cell overlaps and allocation time, avoiding relocations Network interference impacts allocation time across all mechanisms Lower MAX_NUM_CELLS reduces the allocation time but has insignificant effect on probability of overlap Experimental results confirm the model's accuracy \rightarrow Future work: Full experimental implementation of sensing mechanism & refined model considering multiple relocations and 6P timeouts

References

- [1] Big Data Collection in Large-Scale Wireless Sensor Networks Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/General-architecture-of-a-wireless-sensor-network-WSN_fig1_329012374 [accessed 14 Apr 2025]
- [2] Tengfei Chang, Mališa Vučinić, Xavier Vilajosana et al. 6TiSCH Minimal Scheduling Function (MSF). RFC 9033. May 2021. doi: 10 . 17487 / RFC9033. url: https://www.rfc-editor.org/info/rfc9033.
- [3] Qin Wang, Xavier Vilajosana and Thomas Watteyne. 6TiSCH Operation Sublayer (6top) Protocol (6P). RFC 8480. November 2018. doi: 10.17487/RFC8480. Url: https://www.rfc-editor.org/info/rfc8480.
- [4] Lukas Borutta. 'Evaluation of the Minimal Scheduling Function for 6TiSCH-based Wireless Sensor Networks'. (16 September 2021)
- [5] Pascal Thubert . 'An Architecture for IPv6 over the Time-Slotted Channel Hopping Mode of IEEE 802.15.4 (6TiSCH)' . RFC 9030 . May 2021 . url: https://datatracker.ietf.org/doc/html/rfc9030.
- [6] Tengfei Chang, Mališa Vučinić, Xavier V. Guillén et al. '6TiSCH Minimal Scheduling Function: Performance Evaluation'. In: Internet Technology Letters 3 (June 2020). Visited on 12th March 2021. doi: 10.1002/itl2.170.
- [7] David Hauweele, Remous-Aris Koutsiamanis, Bruno Quoitin et al. 'Pushing 6TiSCH Minimal Scheduling Function (MSF) to the Limits'. In: HAL (Le Centre pour la Communication Scientifique Directe) (July 2020). Visited on 16th October 2023. doi: 10.1109/iscc50000.2020.9219692.
- [8] David Hauweele, Remous-Aris Koutsiamanis, Bruno Quoitin et al. 'Thorough Performance Evaluation and Analysis of the 6TiSCH Minimal Scheduling Function (MSF)'. In: Journal of Signal Processing Systems 94 (January 2022). doi: 10.1007/ss11265-021-01668-w.
- [9] Manas Khatua Karnish and Venkatesh Tamarapalli. 'IMSF: Improved Minimal Scheduling Function for Link Scheduling in 6TiSCH Networks'. In: Proceedings of the International Conference on Distributed Computing and Networking (ICDCN).
 January 2022. doi: 10.1145/3491003.3491027.
- [10] Francesca Righetti, Carlo Vallati and Sajal K. Das et al. 'An Experimental Evaluation of the 6top Protocol for Industrial IoT Applications'. In: 2019 IEEE Symposium on Computers and Communications (ISCC). 2019, pp. 1–6. doi: 10.1109/ISCC47284.2019.8969590.
- [11] Freepik. (n.d.). Free graphic resources for everyone. https://www.freepik.com/. Visited on 14th April 2025

Thank you!

Technische Universität Hamburg (TUHH) Ko Benjamin

tuhh.de

TUHH Technische Universität Hamburg

1. Introduction - Cell relocation

TUHH

37

3. Analytical model

$$T_r = t_h \min(\lfloor E_{\Sigma}[O] \rfloor, 1) + \left(\frac{1}{\mu_i} + 0.5\right) \left\lfloor \frac{\lfloor E_{\Sigma}[O] \rfloor}{r_l} \right\rfloor$$

$$t_h = \left\lceil \frac{MAX_{NUMTXt_{slotframe}}}{t_{housekeeping}} \right\rceil t_{housekeeping} \qquad E_{\Sigma}[O] = \sum_{i=1}^{\mu_{\max}} \frac{p_{ov}(\mu_i)}{1 - p_{ov}} \qquad r_l = \left\lfloor \frac{P_{\max}}{(\eta + 1)c} \right\rfloor, \quad \eta \ge 1$$

4. Experimental validation

3 Openmote-B nodes:

- Parent (TSCH-coordinator, RPL-root)
- Network emulator
- Child

Additional implementation added in Contiki-NG code:

- Setting up of autonomous cells
- Relocation mechanism
- Interferer mechanism of broadcasting
- Sensing approach

3. Analytical model - Sensing approach

TUHH

- Initially upon selection of the cells the probability of overlap is

$$p_{ov}^{(C)}=1-(1-rac{N}{X'})^C, \quad X'=X-n_{min}-\mu_i-n_{auto}$$
 Probability of no overlap at all

 The time it takes for allocating a cell allows for the candidate cell list to become non overlapped (its relatively fast)