Лабораторная работа №1 по курсу "Технологии машинного обучения"

Выполнила Попова Дарья, студентка группы РТ5-61Б

Разведочный анализ данных. Исследование и визуализация данных.

Текстовое описание набора данных

В качестве датасета будем использовать игрушечный набор данных Wine recognition dataset от Scikit-learn.

В датасете приведены различные характеристики различных вин, такие как: флавоноиды, содержание алкоголя, фенолы, осадок в бокале, интенсивность цвета и другие.

Датасет состоит из 1 файла, файл содержит следующие колонки с данными:

- Alcohol (содержание спирта)
- Magnesium (содержание магния)
- Malic acid (яблочная кислота)
- Total phenols (общее содержание фенолов)
- Ash (осадок)
- Alcalinity of ash (щёлочность осадка)
- Proanthocyanins (проантоцианидины)
- Flavanoids (флавоноиды)
- Nonflavanoid phenols (нефлавоноидные фенолы)
- Color intensity (интенсивность цвета)
- Ние (оттенок)
- OD280/OD315 of diluted wines (показатель OD280/OD315 определения содержания протеинов для разбавленных вин)
- Proline (пролин)

Загрузка библиотек и датасета

```
In [2]:
# загрузим библиотеки numpy и pandas
import numpy as np
import pandas as pd
from sklearn.datasets import *

In [3]:
# загрузим данные
wine = load_wine()
```

Основные характеристики набора данных

```
In [4]:
# посмотрим на классификацию
wine['target_names']

Out[4]:
array(['class_0', 'class_1', 'class_2'], dtype='<U7')

# выведем атрибуты (названия колонок)
wine['feature_names']
```

```
Out[5]:
['alcohol',
 'malic acid',
 'ash',
 'alcalinity_of_ash',
 'magnesium',
 'total phenols',
 'flavanoids',
 'nonflavanoid_phenols',
 'proanthocyanins',
 'color_intensity',
 'hue',
 'od280/od315 of diluted wines',
 'proline']
                                                                                                                          In [7]:
wine['data'].shape
 # увидим, что у нас в наличии 178 образцов данных(instances) и 13 атрибутов
                                                                                                                         Out[7]:
(178, 13)
                                                                                                                          In [6]:
 # преобразование в PandasDataframe
my_data = pd.DataFrame(data=np.c_[wine['data'], wine['target']], columns=wine['feature_names']+['target'])
                                                                                                                         In [17]:
 # верхние пять строк датасета
my_data.head()
                                                                                                                       Out[17]:
   alcohol malic_acid ash alcalinity_of_ash magnesium total_phenols flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue od
0
     14.23
                1.71 2.43
                                   15.6
                                             127.0
                                                          2.80
                                                                    3.06
                                                                                       0.28
                                                                                                      2.29
                                                                                                                   5.64 1.04
1
     13.20
                1.78 2.14
                                   11.2
                                             100.0
                                                          2.65
                                                                    2.76
                                                                                       0.26
                                                                                                      1.28
                                                                                                                   4.38 1.05
                                                                                                                   5.68 1.03
2
                2.36 2.67
                                   18.6
                                             101.0
                                                          2.80
                                                                                       0.30
                                                                                                      2.81
     13.16
                                                                    3.24
     14.37
                1.95 2.50
                                   16.8
                                             113.0
                                                          3.85
                                                                    3.49
                                                                                       0.24
                                                                                                      2.18
                                                                                                                   7.80 0.86
     13.24
                2.59 2.87
                                   21.0
                                             118.0
                                                          2.80
                                                                    2.69
                                                                                       0.39
                                                                                                      1.82
                                                                                                                   4.32 1.04
                                                                                                                         In [19]:
my_data.dtypes
 # все колонки с типами данных
                                                                                                                       Out[19]:
                                    float64
alcohol
                                    float64
malic_acid
                                    float64
ash
alcalinity_of_ash
                                     float64
                                    float64
magnesium
total phenols
                                    float64
flavanoids
                                    float64
                                    float64
nonflavanoid phenols
                                     float64
proanthocyanins
color intensity
                                    float64
                                    float64
od280/od315 of diluted wines
                                    float64
                                    float64
proline
target
                                     float64
dtype: object
                                                                                                                          In [8]:
# проверим наличие пустых значений
```

my data.isnull().any()

```
Out[8]:
alcohol
                               False
malic_acid
                              False
                              False
alcalinity_of_ash
                              False
                              False
magnesium
total phenols
                              False
                              False
flavanoids
nonflavanoid_phenols
                             False
proanthocyanins
                              False
                              False
color_intensity
                              False
od280/od315_of_diluted_wines
                               False
proline
                              False
                              False
target
dtype: bool
                                                                                                      In [23]:
# основные показатели
my data.describe()
                                                                                                     Out[23]:
```

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_inter
count	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.00
mean	13.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590899	5.05
std	0.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572359	2.31
min	11.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410000	1.28
25%	12.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250000	3.22
50%	13.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.555000	4.69
75%	13.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950000	6.20
max	14.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580000	13.00
4										F

my_data['target'].unique()

определим уникальные значения для целевого признака

array([0., 1., 2.])

Визуальное исследование датасета

 $\textbf{import} \ \texttt{matplotlib.pyplot} \ \textbf{as} \ \texttt{plt}$

import seaborn as sns
%matplotlib inline
sns.set(style="ticks")

Диаграмма рассеяния

fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='flavanoids', y='total phenols', data=my data)

Out[26]:

In [26]:

In [30]:

In [47]:

Гистограмма

In [43]:

fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(my_data['total_phenols'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a depre cated function and will be removed in a future version. Please adapt your code to use either `displot` (a figu re-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='total phenols', ylabel='Density'>

Out[43]:

•

KDE

In [65]:

```
f, ax = plt.subplots(figsize=(8, 8))
ax.set_aspect("equal")

# Draw a contour plot to represent each bivariate density
sns.kdeplot(
    data=my_data,
    x="malic_acid",
    y="proanthocyanins",
    thresh=.1,
)
```

<AxesSubplot:xlabel='malic_acid', ylabel='proanthocyanins'>

Out[65]:

Ящик с усами

sns.boxplot(x=my_data['magnesium'])

<AxesSubplot:xlabel='magnesium'>

In [53]:

Out[53]:

Catplot

По краям отображаются распределения плотности.

sns.violinplot(x=my_data['malic_acid'])

<AxesSubplot:xlabel='malic acid'>

In [54]:

Out[54]:

Информация о корреляции признаков

									Out[44]:
	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	tlavanoids	nonflavanoid_phenols	proanth
alcohol	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	-0.155929	
malic_acid	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.292977	-
ash	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.186230	
alcalinity_of_ash	0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	0.361922	-
magnesium	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	-0.256294	
total_phenols	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.449935	
flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.537900	
nonflavanoid_phenols	0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.000000	-
proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	-0.365845	
color_intensity	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	0.139057	-
hue	- 0.071747	-0.561296	0.074667	-0.273955	0.055398	0.433681	0.543479	-0.262640	
od280/od315_of_diluted_wines	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	-0.503270	
proline	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193	-0.311385	
target	0.328222	0.437776	0.049643	0.517859	-0.209179	-0.719163	-0.847498	0.489109	-
1									F

Тепловая карта

<AxesSubplot:>

sns.heatmap(my_data.corr(), annot=True)

In [58]:

Out[58]:

