BLM1612 - Circuit Theory

The Instructors:

```
Dr. Öğretim Üyesi Erkan Uslu <a href="mailto:euslu@yildiz.edu.tr">euslu@yildiz.edu.tr</a>
```

Dr. Öğretim Üyesi Hamza Osman İlhan hoilhan@yildiz.edu.tr

Lab Assistants:

```
Arş. Gör. Hasan Burak Avcı <a href="http://avesis.yildiz.edu.tr/hbavci/">http://avesis.yildiz.edu.tr/hbavci/</a>
```

Arş. Gör. Kübra Adalı http://avesis.yildiz.edu.tr/adalik/

Arş. Gör. Alper Eğitmen http://avesis.yildiz.edu.tr/aegitmen/

Impedance and Ohm's Law

- Objective of Lecture
 - Describe the mathematical relationships between ac voltage and ac current for a resistor, capacitor, and inductor .
 - Discuss the phase relationship between the ac voltage and current.
 - Explain how Ohm's Law can be adapted for inductors and capacitors when an ac signal is applied to the components.
 - Derive the mathematical formulas for the impedance and admittance of a resistor, inductor, and capacitor.

Resistors

• Ohm's Law

$$v(t) = Ri(t) = RI_m \cos(\omega t + \theta)$$

 $V = RI_m \angle \theta = RI$ where $\theta = \phi$

• The voltage and current through a resistor are in phase as there is no change in the phase angle between them.

Capacitors

$$i(t) = C dv(t)/dt \text{ where } v(t) = V_m \cos(\omega t)$$

$$i(t) = -C\omega V_m \sin(\omega t)$$

$$i(t) = \omega C V_m \sin(\omega t + 180^\circ)$$

$$i(t) = \omega C V_m \cos(\omega t + 180^\circ - 90^\circ)$$

$$i(t) = \omega C V_m \cos(\omega t + 90^\circ)$$

Capacitors

$$\mathbf{V} = \mathbf{V}_{m} \angle 0^{\circ}$$

$$\mathbf{I} = \omega \mathbf{C} \mathbf{V}_{m} \cos(\omega t + 90^{\circ})$$

$$\mathbf{V}_{m} \cos(\omega t + 90^{\circ}) = \mathbf{V} e^{j90^{\circ}} = \mathbf{V} \angle 90^{\circ} = j\mathbf{V}$$

$$\mathbf{I} = j\omega \mathbf{C} \mathbf{V}$$

or

$$\mathbf{V} = (1/j\omega \mathbf{C}) \mathbf{I} = -(j/\omega \mathbf{C}) \mathbf{I}$$

Capacitors

- 90° phase difference between the voltage and current through a capacitor.
 - Current needs to flow first
 to place charge on the
 electrodes of a capacitor,
 which then induce a voltage
 across the capacitor
- Current leads the voltage (or the voltage lags the current) in a capacitor.

Inductors

$$v(t) = L d i(t)/dt \text{ where } i(t) = I_m \cos(\omega t)$$

$$v(t) = -L\omega I_m \sin(\omega t) = \omega L I_m \cos(\omega t + 90^\circ)$$

$$\mathbf{V} = \omega L I_m \angle 90^\circ$$

$$\mathbf{I} = I_m \cos(\omega t)$$

$$I_m \cos(\omega t + 90^\circ) = \mathbf{I} e^{j90^\circ} = \mathbf{I} \angle 90^\circ = j\mathbf{I}$$

$$\mathbf{V} = j\omega L \mathbf{I}$$
or

$$I = (1/j\omega L) V = -(j/\omega L) V$$

Inductors

- 90° phase difference between the voltage and current through an inductor.
- The voltage leads the current (or the current lags the voltage).

Impedance

• If we try to force all components to following Ohm's Law, V = Z I, where Z is the impedance of the component.

Resistor:
$$\mathbf{Z_R} = R$$
 $R \angle 0^\circ$

Capacitor:
$$\mathbf{Z_C} = -j/(\omega C)$$
 $1/\omega C \angle -90^\circ$
Inductor: $\mathbf{Z_L} = j\omega L$ $\omega L \angle 90^\circ$

Inductor:
$$\mathbf{Z}_{\mathbf{L}} = i\omega L$$
 $\omega L \angle 90^{\circ}$

Admittance

- If we rewrite Ohm's Law:
- I = Y V (Y = 1/Z), where Y is admittance of the component

Resistor:
$$\mathbf{Y_R} = 1/R = G$$
 $G \angle 0^\circ$

Capacitor:
$$\mathbf{Y_C} = j\omega C$$
 $\omega C \angle 90^\circ$

Inductor:
$$\mathbf{Y_L} = -j/(\omega L)$$
 $1/\omega L \angle -90^\circ$

Impedances-Admittances

Impedances	Value at ω =		Admittances	Value at ω =	
	0 rad/s	∞ rad/s		0 rad/s	∞ rad/s
$Z_{R} = R = 1/G$	R	R	$Y_R = 1/R = G$	G	G
$Z_{L} = j\omega L$	Ω	$\Omega \propto$	$Y_L = -j/(\omega L)$	$\Omega \propto$	0Ω
$Z_{\rm C} = -j/(\omega C)$	$\infty\Omega$	$0~\Omega$	$Y_C = j\omega C$	0 Ω	$\infty\Omega$

- Inductors act like short circuits under d.c. conditions and like open circuits at very high frequencies.
- Capacitors act like open circuits under d.c. conditions and like short circuits at very high frequencies.

Impedance

Generic component that represents a resistor, inductor, or capacitor.

$$Z = |Z| \angle \phi$$

$$Z = R + jX$$

$$|Z| = \sqrt{R^2 + X^2}$$

$$\phi = \tan^{-1}(X/R)$$

$$R = |Z|\cos(\phi)$$
$$X = |Z|\sin(\phi)$$

Admittance

$$\mathbf{Y} = \mathbf{1}/\mathbf{Z} = \frac{1}{R+jX}$$

$$\mathbf{Y} = \mathbf{1}/\mathbf{Z}$$

$$\mathbf{Y} = G+jB$$

$$|Y| = \sqrt{G^2 + B^2}$$

$$|Y| = \sqrt{G^2 + B^2}$$

$$\gamma = \tan^{-1}(B/G)$$

$$B = \frac{-X}{R^2 + X^2}$$

$$G = |Y|\cos(\gamma)$$

$$B = |Y|\sin(\gamma)$$

Summary

- Ohm's Law can be used to determine the ac voltages and currents in a circuit.
 - Voltage leads current through an inductor.
 - Current leads voltage through a capacitor.

Component		Impedance		Admittance	
Resistor	Z_{R}	R	$R \angle 0^{\circ}$	G	$G \angle 0^{\circ}$
Capacitor	Z_{C}	$-j/\omega C$	$1/\omega C \angle -90^{\circ}$	jωC	$\omega C \angle + 90$
Inductor	Z_{L}	jωL	$\omega L \angle + 90$	$-j/\omega L$	$1/\omega L \angle -90^{\circ}$

Ohm's Law with Series and Parallel Combinations

- Objective of Lecture
 - Derive the equations for equivalent impedance and equivalent admittance for a series combination of components.
 - Derive the equations for equivalent impedance and equivalent admittance for a parallel combination of components.
- Ohm's Law in Phasor Notation

$$\mathbf{V} = \mathbf{I} \mathbf{Z}$$
 $\mathbf{V} = \mathbf{I}/\mathbf{Y}$ $\mathbf{I} = \mathbf{V}/\mathbf{Z}$ $\mathbf{I} = \mathbf{V} \mathbf{Y}$

Series Connections

Using Kirchhoff's Voltage Law:

$$\mathbf{V_1} + \mathbf{V_2} - \mathbf{V_s} = 0$$

Since \mathbb{Z}_1 , \mathbb{Z}_2 , and \mathbb{V}_s are in series, the current flowing through each component is the same.

Using Ohm's Law:
$$V_1 = I Z_1$$
 and $V_2 = I Z_2$

Substituting into the equation from KVL:

$$\mathbf{I} \ \mathbf{Z}_1 + \mathbf{I} \ \mathbf{Z}_2 - \mathbf{V}_s = 0 \mathbf{V}$$
$$\mathbf{I} \ (\mathbf{Z}_1 + \mathbf{Z}_2) = \mathbf{V}_s$$

Equivalent Impedance: Series Connections

We can replace the two impedances in series with one equivalent impedance, \mathbf{Z}_{eq} , which is equal to the sum of the impedances in series.

$$\mathbf{Z}_{eq} = \mathbf{Z}_1 + \mathbf{Z}_2$$

$$V_s = Z_{eq} I$$

Parallel Connections

Using Kirchoff's Current Law,

$$\mathbf{I_1} + \mathbf{I_2} - \mathbf{I_S} = 0$$

Since Z_1 and Z_1 are in parallel, the voltage across each component, V, is the same.

Using Ohm's Law:

$$\mathbf{V} = \mathbf{I}_1 \; \mathbf{Z}_1$$

$$V = I_2 Z_2$$

$$V/Z_1 + V/Z_2 = I_S$$

 $I_S (1/Z_1 + 1/Z_2)^{-1} = V$

Equivalent Impedance: Parallel Connections

We can replace the two impedances in series with one equivalent impedance, \mathbf{Z}_{eq} , where $1/\mathbf{Z}_{eq}$ is equal to the sum of the inverse of each of the impedances in parallel.

$$1/\mathbf{Z}_{eq} = 1/\mathbf{Z}_1 + 1/\mathbf{Z}_2$$

Simplifying

(only for 2 impedances in parallel)

$$\boldsymbol{Z}_{eq} = \boldsymbol{Z}_1 \boldsymbol{Z}_2 / (\boldsymbol{Z}_1 + \boldsymbol{Z}_2)$$

• An abbreviated means to show that Z_1 is in parallel with Z_2 is to write $Z_1 \parallel Z_2$.

If you used Y instead of Z

In series:

The reciprocal of the equivalent admittance is equal to the sum of the reciprocal of each of the admittances in series

In this example

$$1/Y_{eq} = 1/Y_1 + 1/Y_2$$

Simplifying

(only for 2 admittances in series)

$$Y_{eq} = Y_1 Y_2 / (Y_1 + Y_2)$$

If you used Y instead of Z

• In parallel:

The equivalent admittance is equal to the sum of all of the admittance in parallel

In this example:

$$\mathbf{Y}_{eq} = \mathbf{Y}_1 + \mathbf{Y}_2$$

Example 03...

Impedance

$$\begin{split} Z_R &= 10~\Omega \\ Z_L &= j\omega L = j(100)(10mH) = 1j~\Omega \\ Z_{eq} &= Z_R + Z_L = 10~+1j~\Omega~~(rectangular~coordinates) \end{split}$$

In Phasor notation:

$$\begin{split} & \mathbf{Z_{eq}} = (Z_R^2 + Z_L^2)^{\frac{1}{2}} \angle \ tan^{-1}(Im/Re) \\ & \mathbf{Z_{eq}} = (100 + 1)^{\frac{1}{2}} \angle \ tan^{-1}(1/10) = 10.05 \ \angle \ 5.7^{\circ} \ \Omega \\ & \mathbf{Z_{eq}} = 10.1 \ \angle \ 5.7^{\circ} \ \Omega \end{split}$$

Impedances are easier than admittances to use when combining components in series.

- Solve for Current
 - Express voltage into cosine and then convert a phasor.

```
V1 = 12V cos (100t + 30° – 90°) = 12V cos (100t – 60°)

V1 = 12 \angle-60° V
```


Solve for Current

$$I = V/Z_{eq} = (12 \angle -60^{\circ} V)/(10.1 \angle 5.7^{\circ} \Omega)$$

$$\mathbf{V} = 12 \angle -60^{\circ} \,\mathrm{V} = 12 \mathrm{V} \,\mathrm{e}^{-\mathrm{j}60}$$
 (exponential form)
 $\mathbf{Z}_{eq} = 10.1 \angle 5.7^{\circ} \,\Omega = 10.1 \,\Omega \,\mathrm{e}^{\mathrm{j}5.7}$ (exponential form)

$$I = V/Z_{eq} = 12V e^{-j60}/(10.1 e^{j5.7}) = 1.19A e^{-j65.7}$$

 $I = 1.19A \angle -65.7^{\circ}$

$$\mathbf{I} = \mathbf{V}_{\rm m}/\mathbf{Z}_{\rm m} \angle (\mathbf{\theta}_{\rm V} - \mathbf{\theta}_{\rm Z})$$

...Example 03

Leading/Lagging

$$I = 1.19A e^{-j65.7} = 1.19 \angle -65.7^{\circ} A$$

 $V = 12V e^{-j60} = 12 \angle -60^{\circ} V$

The voltage has a more positive angle, voltage leads the current.

Example 04...

Admittance

$$\begin{split} Y_R &= 1/R = 1 \ \Omega^{-1} \\ Y_L &= -j/(\omega L) = -j/[(300)(1H)] = -j \ 3.33 \ m\Omega^{-1} \\ Y_C &= j\omega C = j(300)(1mF) = 0.3j \ \Omega^{-1} \\ Y_{eq} &= Y_R + Y_L + Y_C = 1 + 0.297j \ \Omega^{-1} \end{split}$$

Admittances are easier than impedances to use when combining components in parallel.

- Admittances:
 - In Phasor notation:

$$\mathbf{Y}_{eq} = (\mathbf{Y}_{Re}^{2} + \mathbf{Y}_{Im}^{2})^{\frac{1}{2}} \angle \tan^{-1}(Im/Re)$$
 $\mathbf{Y}_{eq} = (1^{2} + (.297)^{2})^{\frac{1}{2}} \angle \tan^{-1}(.297/1)$
 $\mathbf{Y}_{eq} = 1.04 \angle 16.5^{\circ} \Omega^{-1}$

It is relatively easy to calculate the equivalent impedance of the components in parallel at this point as $\mathbf{Z}_{eq} = \mathbf{Y}_{eq}^{-1}$.

$$\mathbf{Z_{eq}} = \mathbf{Y_{eq}}^{-1} = 1/1.04 \angle 0-16.5^{\circ} \Omega = 0.959 \angle -16.5^{\circ} \Omega$$

- Solve for Voltage
 - Convert a phasor since it is already expressed as a cosine.

$$I = 4A \cos(300t - 10^{\circ})$$

$$I = 4 \angle -10^{\circ} A$$

Solve for Voltage

$$\begin{aligned} \mathbf{V} &= \mathbf{I}/\mathbf{Y}_{eq} \\ \mathbf{V} &= I_{m}/Y_{m} \angle (\theta_{I} - \theta_{Y}) \end{aligned}$$

$$\mathbf{V} &= (4 \angle -10^{\circ} \text{ A})/(1.04 \angle 16.5^{\circ} \Omega^{-1})$$

$$\mathbf{V} &= 3.84 \text{ V} \angle -26.5^{\circ}$$

$$\mathbf{V} &= \mathbf{IZ}_{eq} \\ \mathbf{V} &= I_{m}Z_{m} \angle (\theta_{I} + \theta_{Z})$$

$$\mathbf{V} &= (4 \angle -10^{\circ} \text{ A})(0.959 \angle -16.5^{\circ} \Omega^{-1})$$

$$\mathbf{V} &= 3.84 \text{ V} \angle -26.5^{\circ}$$

...Example 04

• Leading/Lagging

$$I = 4 \angle -10^{\circ} A$$

$$V = 3.84V \angle -26.5^{\circ}$$

Current has a more positive angle than voltage so current leads the voltage.

Equations

Equivalent Impedances	Equivalent Admittances		
In Series:	In Series:		
$Z_{eq} = Z_1 + Z_2 + Z_3 \dots + Z_n$	$Y_{eq} = [1/Y_1 + 1/Y_2 + 1/Y_3 + 1/Y_n]^{-1}$		
In Parallel:	In Parallel:		
$Z_{eq} = [1/Z_1 + 1/Z_2 + 1/Z_3 + 1/Z_n]^{-1}$	$Y_{eq} = Y_1 + Y_2 + Y_3 \dots + Y_n$		

Summary

- The equations for equivalent impedance are similar in form to those used to calculate equivalent resistance and the equations for equivalent admittance are similar to the equations for equivalent conductance.
 - The equations for the equivalent impedance for components in series and the equations for the equivalent admittance of components in parallel tend to be easier to use.
 - The equivalent impedance is the inverse of the equivalent admittance.

Thévenin and Norton Transformation

Objective of Lecture

 Demonstrate how to apply Thévenin and Norton transformations to simplify circuits that contain one or more ac sources, resistors, capacitors, and/or inductors.

Source Transformation

 A voltage source plus one impedance in series is said to be equivalent to a current source plus one impedance in parallel when the current into the load and the voltage across the load are the same.

Equivalent Circuits

Example 05...

First, convert the current source to a cosine function and then to a phasor.

I₁ = 5mA sin(400t+50°) = 5mA cos(400t+50°-90°) = 5mA cos(400t-40°) I₁ = 5mA \angle -40°

- Determine the impedance of all of the components when $\omega = 400$ rad/s.
 - In rectangular coordinates

$$\begin{split} &Z_{C_1} = -j/(\omega C_1) = -j/[(400rad/s)1\mu F] = -j2.5k\Omega \\ &Z_{R_1} = R_1 = 3k\Omega \\ &Z_{L_1} = j\omega L_1 = j(400rad/s)(0.3H) = j120\Omega \\ &Z_{L_2} = j\omega L_2 = j(400rad/s)(2H) = j800\Omega \\ &Z_{R_2} = R_2 = 5k\Omega \\ &Z_{C_2} = -j/(\omega C_2) = -j/[(400rad/s)0.7\mu F] = -j3.57k\Omega \end{split}$$

Convert to phasor notation

$$Z_{C_1} = 2.5k\Omega \angle -90^{\circ}$$

$$Z_{R_1} = 3k\Omega \angle 0^{\circ}$$

$$Z_{L_1} = 120\Omega \angle 90^{\circ}$$

$$Z_{L_2} = 800\Omega \angle 90^{\circ}$$

$$Z_{R_2} = 5k\Omega \angle 0^{\circ}$$

$$Z_{R_2} = 3.57k\Omega \angle -90^{\circ}$$

$$V_{\text{th}_{1}} = I_{1}Z_{c_{1}} = \left(5mA\angle -40^{\circ}\right)\left(2.5k\Omega\angle -90^{\circ}\right)$$

$$V_{\text{th}_{1}} = (5mA)\left(2.5k\Omega\right)\angle\left(-40^{\circ} + \left(-90^{\circ}\right)\right)$$

$$V_{\text{th}_{1}} = 7.5V\angle -130^{\circ}$$

- Find the equivalent impedance for Z_{C1} and Z_{R1} in series.
 - This is best done by using rectangular coordinates for the impedances. $Z_{eq_1} = Z_{R_1} + Z_{C_1} = 3k\Omega - j2.5k\Omega$

$$\mathbf{Z}_{eq_1} = \sqrt{(3k\Omega)^2 + (-2.5k\Omega)^2} \angle \tan^{-1}(-2.5k/3k)$$

$$Z_{eq1} = 3.91 k\Omega \angle -39.8^{\circ}$$

• Perform a Norton transformation.

• Since it is easier to combine admittances in parallel than impedances, convert Z_{n1} to Y_{n1} and Z_{L1} to Y_{L1} .

• As Y_{eq2} is equal to $Y_{L1} + Y_{n1}$, the admittances should be written in rectangular coordinates, added together, and then the result should be converted to phasor notation.

$$\mathbf{Y_{n1}} = 1/\mathbf{Z_{n1}} = 0.256m\Omega^{-1}\angle 39.8^{o}$$

$$Y_{n1} = 0.256m\Omega^{-1}\left[\cos(39.8^{o}) + j\sin(39.8^{o})\right]$$

$$Y_{n1} = (0.198 + j0.164)m\Omega^{-1}$$

$$\mathbf{Y_{L1}} = 1/\mathbf{Z_{L1}} = 8.33m\Omega^{-1}\angle -90^{0}$$

$$Y_{L1} = -j8.33m\Omega^{-1}$$

$$Y_{eq2} = (0.198 + j0.164)m\Omega^{-1} - j8.33m\Omega^{-1}$$

$$Y_{eq2} = (0.198 - j8.17)m\Omega^{-1}$$

$$\mathbf{Y_{eq2}} = \sqrt{(0.198)^{2} + (-8.17)^{2}}m\Omega^{-1}\angle \tan^{-1}(-8.17/0.198)$$

$$\mathbf{Y_{eq2}} = 0.817m\Omega^{-1}\angle -88.6^{0}$$

• Next, a Thévenin transformation will allow Y_{eq2} to be combined with Z_{L2} .

$$V_{\text{th}_{2}} = I_{\text{n}_{1}} / Y_{\text{th}_{2}}$$

$$V_{\text{th}_{2}} = \frac{1.92 m A \angle -90.2^{\circ}}{8.17 m \Omega^{-1} \angle -88.6^{\circ}}$$

$$V_{\text{th}_{2}} = 0.235 V \angle -1.6^{\circ}$$

$$V_{\text{th}_{2}} = \frac{Z_{\text{L}_{2}}}{800 \Omega \angle 90^{\circ}}$$

$$V_{\text{th}_{2}} = \frac{Z_{\text{R}_{2}}}{5k \Omega \angle 0^{\circ}} = \frac{Z_{\text{C}_{2}}}{3.57 k \Omega}$$

$$0.235 V \angle -1.6^{\circ}$$

$$\begin{split} & \mathbf{Z}_{\mathsf{th}_2} = 1/\mathbf{Y}_{\mathsf{th}_2} = 122\Omega \angle 88.6^o \\ & Z_{\mathit{th}_2} = 122\Omega \Big[\cos \big(88.6^o \big) + j \sin \big(88.6^o \big) \Big] \\ & Z_{\mathit{th}_2} = \big(2.98 + j122 \big) \Omega \\ & Z_{\mathit{L}_2} = j800\Omega \\ & Z_{\mathit{eq}_3} = Z_{\mathit{th}_2} + Z_{\mathit{L}_2} \\ & Z_{\mathit{eq}_3} = \big(2.98 + j122 \big) \Omega + j800\Omega \\ & Z_{\mathit{eq}_3} = \big(2.98 + j922 \big) \Omega \\ & \mathbf{Z}_{\mathit{eq}_3} = \sqrt{\big(2.98 \big)^2 + \big(922 \big)^2} \Omega \angle \big[\tan^{-1} \big(922/2.98 \big) \big] \\ & \mathbf{Z}_{\mathit{eq}_3} = 922\Omega \angle 89.8^o \end{split}$$

• Perform a Norton transformation after which Z_{eq3} can be combined with Z_{R2} .

$$\begin{split} \mathbf{I}_{\text{n2}} &= \mathbf{V}_{\text{th2}}/\mathbf{Z}_{\text{eq3}} \\ \mathbf{I}_{\text{n2}} &= \frac{0.235 V \angle -1.6^{0}}{922 \Omega \angle 89.8^{0}} \\ \mathbf{I}_{\text{n2}} &= 0.255 mA \angle -91.4^{0} \end{split}$$

$$\begin{split} \mathbf{Y}_{\text{eq4}} &= 1/\mathbf{Z}_{\text{eq3}} + 1/\mathbf{Z}_{\text{R}_2} \\ \mathbf{Y}_{\text{eq4}} &= 1.08 m \Omega^{-1} \angle - 89.8^o + 0.2 m \Omega^{-1} \angle 0^o \\ Y_{eq4} &= 1.08 m \Omega^{-1} \Big[\cos(-89.8^o) + j \sin(-89.8^o) \Big] + 0.2 m \Omega^{-1} \\ Y_{eq4} &= \Big(0.204 - j1.08 \Big) m \Omega^{-1} \\ \mathbf{Y}_{\text{eq4}} &= 1.10 m \Omega^{-1} \angle - 79.4^o \\ \mathbf{Z}_{\text{eq4}} &= 906 \Omega \angle 79.4^o \end{split}$$

Use the equation for $Y_{c_2} + Y_{eq4}$ equation for $Y_{c_2} = 1/Z_{c_2} = 0$ current division $Y_{c_2} = j0.280m\Omega$ to find the $Y_{eq4} = (0.204 - j1)$ current flowing through Z_{C2} and Z_{eq4} . $I_{c_2} = \frac{0.280m\Omega}{j0.280m\Omega}$

$$\begin{split} &\mathbf{I}_{\mathbf{C}_{2}} = \frac{\mathbf{Y}_{\mathbf{C}_{2}}}{\mathbf{Y}_{\mathbf{C}_{2}} + \mathbf{Y}_{eq4}} \mathbf{I}_{n2} \\ &\mathbf{Y}_{\mathbf{C}_{2}} = 1/\mathbf{Z}_{\mathbf{C}_{2}} = 0.280 m \Omega \angle 90^{\circ} \\ &\mathbf{Y}_{C_{2}} = j0.280 m \Omega \\ &\mathbf{Y}_{eq4} = \left(0.204 - j1.08\right) m \Omega \\ &\mathbf{I}_{\mathbf{C}_{2}} = \frac{0.280 m \Omega \angle 90^{\circ}}{j0.280 m \Omega + \left(0.204 - j1.08\right) m \Omega} \left(0.255 m A \angle -91.4^{\circ}\right) \\ &\mathbf{I}_{\mathbf{C}_{2}} = \frac{0.280 m \Omega \angle 90^{\circ}}{\left(0.204 - j0.8\right) m \Omega} \left(0.255 m A \angle -91.4^{\circ}\right) \\ &\mathbf{I}_{\mathbf{C}_{2}} = \frac{0.280 m \Omega \angle 90^{\circ}}{0.826 m \Omega \angle -75.7^{\circ}} \left(0.255 m A \angle -91.4^{\circ}\right) \\ &\mathbf{I}_{\mathbf{C}_{2}} = 86.0 \mu A \angle 74.3^{\circ} \end{split}$$

• Then, use Ohm's Law to find the voltage across $\mathbb{Z}_{\mathbb{C}^2}$ and then the current through $\mathbb{Z}_{\mathrm{eq4}}$.

$$V_{C_{2}} = I_{C_{2}} Z_{C_{2}} = (86.0 \mu A \angle 74.3^{\circ})(3.57 k\Omega \angle -90^{\circ})$$

$$V_{C_{2}} = 0.309 V \angle -15.7^{\circ}$$

$$V_{C_{2}} = V_{eq_{4}}$$

$$I_{eq_{4}} = \frac{V_{eq_{4}}}{Z_{eq_{4}}} = \frac{0.309 V \angle -15.7^{\circ}}{906\Omega \angle 79.4^{\circ}}$$

$$I_{eq_{4}} = 0.341 mA \angle -95.1^{\circ}$$

...Example 05

- Note that the phase angles of I_{n2} , I_{eq4} , and I_{C2} are all different because of the imaginary components of Z_{eq4} and Z_{C2} .
 - The current through $\mathbb{Z}_{\mathbb{C}^2}$ leads the voltage, which is as expected for a capacitor.
 - The voltage through \mathbb{Z}_{eq4} leads the current.
 - Since the phase angle of \mathbb{Z}_{eq4} is positive, it has an inductive part to its impedance.
 - Thus, it should be expected that the voltage would lead the current.

Example

- Explain why the circuit on the right is the result of a Norton transformation of the circuit on the left.
- Also, calculate the natural frequency ω_o of the RLC network.

Summary

- Circuits containing resistors, inductors, and/or capacitors can simplified by applying the Thévenin and Norton Theorems.
 - Transformations can easily be performed using currents, voltages, impedances, and admittances written in phasor notation.
 - Calculation of equivalent impedances and admittances requires the conversion of phasors into rectangular coordinates.
 - Use of the current and voltage division equations also requires the conversion of phasors into rectangular coordinates.

Voltage and Current Division

- Objective of Lecture
 - Explain mathematically how a voltage that is applied to components in series and how a current that enters the a node shared by components in parallel are distributed among the components.

Voltage Dividers

• Impedances in series share the same current

Voltage Dividers

From Kirchhoff's Voltage Law and Ohm's Law

$$0 = -\mathbf{V_S} + \mathbf{V_1} + \mathbf{V_2}$$

$$V_1 = IZ_1$$
 and $V_2 = IZ_2$

Therefore, $V_2 = \frac{V_1}{Z_1} Z_2$

$$V_1 = \frac{Z_1}{Z_1 + Z_2} V_s$$

$$V_2 = \frac{Z_2}{Z_1 + Z_2} V_s$$

Voltage Division

The voltage associated with one impedance Z_n in a chain of multiple impedances in series is:

$$V_{n} = \begin{bmatrix} \frac{Z_{n}}{S} \\ \frac{Z_{s}}{Z_{s}} \end{bmatrix} V_{total} \quad \text{or} \quad V_{n} = \begin{bmatrix} \frac{Z_{n}}{Z_{eq}} \end{bmatrix} V_{total}$$

where V_{total} is the total of the voltages applied across the impedances.

Voltage Division

• Because of changes in phase angle of the voltage that occur with inductors and capacitors, the calculation of the percentage of the total voltage associated with a particular impedance, Z_n , is not directly related to the percentage of the magnitude of that particular impedance, Z_n relative to the total equivalent impedance, Z_{eq} .

$$\mathbf{Z}_{\mathbf{n}} = \mathbf{Z}_{\mathbf{n}} \angle \phi_{\mathbf{n}}$$
 $\mathbf{Z}_{\mathbf{eq}} = \mathbf{Z}_{\mathbf{eq}} \angle \phi_{\mathbf{eq}}$

• All components in parallel share the same voltage

• From Kirchhoff's Current Law and Ohm's Law

$$0 = -I_S + I_1 + I_2 + I_3$$

$$V_s = I_1Z_1$$

$$V_s = I_2Z_2$$

$$V_s = I_3Z_3$$

where
$$Z_{eq} = Z_2 || Z_3 = \frac{Z_2 Z_3}{Z_2 + Z_3}$$
 and $I_1 = \frac{Z_{eq}}{Z_1 + Z_{eq}} I_s$

The current associated with one component Z_1 in parallel with one other component is:

The current associated with one component
$$Z_m$$
 in parallel with two or more components is:

$$\mathbf{I}_1 = \left[\frac{\mathbf{Z}_2}{\mathbf{Z}_1 + \mathbf{Z}_2} \right] \mathbf{I}_{\text{total}}$$

$$I_{m} = \begin{bmatrix} Z_{eq} \\ Z_{m} \end{bmatrix} I_{total}$$

where I_{total} is the total of the currents entering the node shared by the components in parallel.

Summary

• The equations used to calculate the voltage across a specific component Z_n in a set of components in series are:

$$V_{n} = \begin{bmatrix} Z_{n} \\ Z_{eq} \end{bmatrix} V_{total}$$

$$V_n = \left| \frac{Y_{eq}}{Y_n} \right| V_{total}$$

• The equations used to calculate the current flowing through a specific component Z_m in a set of components in parallel are:

$$I_{m} = \frac{Z_{eq}}{Z_{m}} I_{total}$$

$$I_{m} = \frac{Y_{m}}{Y_{eq}} I_{total}$$