Total marks – 120
Attempt Questions 1–8
All questions are of equal value

All questions are of equal value SCEGES 2005 Ext. 2 trial Answer each question in a SEPARATE writing booklet.

Question 1 (15 marks)

- (a) Integrate:
- (ii) $\int \frac{x^2}{x^2-9} dx$
- (iii) $\int \sin^{-1} x \, dx$ using Integration by Parts.
- (b) Prove that $\int_0^{\frac{\pi}{3}} \frac{d\theta}{1 + \sin \theta} = \sqrt{3} 1 \text{ using the substitution } t = \tan \frac{\theta}{2}.$
- (c) Evaluate $\int_0^4 \sin^3\theta \cos^3\theta d\theta$.

Question 2 (15 marks) BEGIN A NEW BOOKLET

- Consider the complex number $u = 1 \sqrt{3}i$. (a)
- (i) Express u in mod-arg form.

Marks

- (ii) Evaluate u^{6n} if n is an integer.
- (iii) On an Argand Diagram, sketch the curve |z-u|=2 showing important features.
- (iv) Find the maximum value of |z| on the curve.

ව

NOT TO SCALE 0 OABC is a square on an Argand Diagram where O is the origin. The points A and C represent the complex numbers z and iz respectively.

- (i) Find the complex number represented by B.
- (ii) The square is now rotated about O through $\frac{\pi}{4}$ in an anti-clockwise direction. 2 Prove that the new position of B is given by the complex number $\sqrt{2}iz$.

Question 2 continues on page 4

page 2

Marks

Question 2 (continued)

(c) In an Argand Diagram, an equilateral triangle has its vertices on the circle centre the origin, radius 2 units. One of the vertices is represented by the point whose argument is \(\pi \).

- (i) Find the 3 vertices in Cartesian form.
- (ii) Prove that the complex numbers represented by these vertices form the roots of the equation $z^3 + 8 = 0$.
- (iii) Find the area of the triangle.

End of Question 2

Question 3 (15 marks) BEGIN A NEW BOOKLET

(a) The curve $y = f(x) = \frac{\log_e x}{x}$ is shown below.

Given the maximum stationary point is $\begin{pmatrix} e, \frac{1}{e} \end{pmatrix}$, sketch the following curves

showing essential features, taking at least $\frac{1}{3}$ page for each.

(i)
$$y = |f(x)|$$

(ii)
$$y = f(|x|)$$

(iii) y = f(x+1)

(iv)
$$y = \frac{1}{f(x)}$$

Question 3 continues on page 6

Higher School Certificate Trial Examination, 2005 Methematics Edension 2 NOT TO SCALE

Question 3 (continued)

Consider the polynomial Ð

$$P(x) = x^4 + 2x^3 + x^2 - 1$$

It is given that one zero is
$$\frac{-1}{2} + \frac{\sqrt{3}}{2}i$$
.

Find the other three zeros.

- Consider $f(x) = x^3 3cx$ (c is a constant). <u>ම</u>
- (i) Prove that f(x) = 0 has only one real root if c < 0.
- (ii) Prove that $x^3 3cx = k$ has 3 real different roots if:

End of Question 3

Question 4 (15 marks) BEGIN A NEW BOOKLET

Marks

æ

P,Q,R and A lie on the circumference of a circle. $PA \perp QR$ meeting QR at M.

QN ⊥ PR meeting PA at H.

Let $< MQA = x^{\circ}$.

Prove QR bisects HA.

A solid has as its base the ellipse $\frac{x^2}{4} + y^2 = 1$ in the x - y plane. Find the **@**

volume of the solid such that every cross section by a plane parallel to the y axis is a semi circle with its diameter in the x-y plane.

A diagram and a clear explanation should accompany your solution.

(c) Let $I_n = \int_{0}^{\frac{\pi}{2}} \sin^n x \, dx$ where *n* is a non-negative integer.

(i) Use Integration by Parts to prove that

$$I_n = (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x \, dx \quad \text{for } n \ge 2.$$

(ii) Deduce that $I_n = \frac{n-1}{n} I_{n-2}$ for $n \ge 2$.

(iii) Evaluate I4.

Higher School Certificate Trial Examination, 2005 Mathematics Extension 2

page 6

r School Certificate Trial Examination, 2005

раде 7

The equation $x^3 - x^2 - 3x + 5 = 0$ has roots α , β and γ .

(a)

- 300ki br
- (i) Find $\alpha + \beta + \gamma$.
- (ii) Find the equation whose roots are $2\alpha + \beta + \gamma$, $\alpha + 2\beta + \gamma$, $\alpha + \beta + 2\gamma$.
 - (b) The points $P\left(2t, \frac{2}{t}\right)$ and $Q\left(2s, \frac{2}{s}\right)$ lie on the hyperbola xy = 4.
- $\left(t\neq 0, s\neq 0, t^2\neq s^2\right)$
- (i) Prove that the equation of the tangent to the hyperbola at the point P is $x + t^2 y = 4t.$
- (ii) Prove that the tangents at P and Q intersect at

$$M\left(\frac{4st}{s+t}, \frac{4}{s+t}\right)$$

Suppose that $s = \frac{-1}{t}$

- (iii) Prove that the locus of M is a straight line and state any conditions that may apply.
- A tennis match between two players consists of a number of sets.
 The match continues until one of the players has won 3 sets.

Whenever Pat and John play, on average, for each set they play, there is a probability of $\frac{2}{3}$ that Pat wins and a probability of $\frac{1}{3}$ that John wins.

Find the probability that:

- (i) Pat wins 2 of the first 3 sets.
- (ii) Pat wins the match.

Higher School Certificate Trial Examination, 2005 Mathematics Extension 2

Marks

Question 6 (15 marks) BEGIN A NEW BOOKLET

Marks

(a)

The region contained by the curve $y = (x-1)^2$ and the axes is rotated about the line x = 2.

(i) Taking slices perpendicular to the line of rotation prove that the volume obtained is

$$\lim_{\delta y \to 0} \pi \sum_{y=0}^{1} (3 + 2\sqrt{y} - y) \delta y$$

- (ii) Hence find this volume.
- (b) (i) Find the centre and radius of the circle $x^2 + y^2 + 4x = 0$.
- (ii) Prove that the line y = nx + b will be a tangent to the circle if.

$$4(mb+1) = b^2$$

(iii) P is the point whose co-ordinates are (k, 0). If P lies on the line y = mx + b and is exterior to the circle, find possible values for k if the two tangents from P to the circle are perpendicular.

реде 8

Marks

Question 7 (15 marks) BEGIN A NEW BOOKLET

- (i) Prove $\int_0^a f(x) dx = \int_0^a f(a-x) dx$ using the substitution y = a x. (a)
- (ii) Hence evaluate $\int_0^1 x^2 \sqrt{1-x} \ dx$
- (i) Prove $\cos(A+B) + \cos(A-B) = 2\cos A \cos B$. Ð
- (ii) Hence solve:

$$\cos 5x + \cos 3x - \cos x = 0 \text{ for } 0 \le x \le \frac{\pi}{2}$$

- An object of mass m kg is thrown vertically upwards. Air resistance is given by $R = 0.05m v^2$ where R is in newtons and $v m s^{-1}$ is the speed of the object. Take $g = 9.8 \, \text{ms}^{-2}$. <u>ق</u>
- (i) Explain why the equation of motion is

$$\ddot{x} = -\frac{196 + v^2}{20}$$

where x is the height of the object in metres above the point from which it is thrown.

If the initial velocity was 50ms⁻¹, find:

- (ii) the maximum height attained.
- (iii) the time taken to reach this maximum height.

page 10

Question 8 (15 marks) BEGIN A NEW BOOKLET

a

Use the method of cylindrical skills to find the volume formed when the shaded region is rotated about the y axis. The curve $y = e^x + e^{-x}$ is shown.

ē

RQ is the diameter of the ellipse parallel to the tangent at P. *P* is the point $(a\cos\theta, b\sin\theta)$ on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

(i) Prove that the equation of RQ is

$$= -\frac{bx\cos\theta}{a\sin\theta}$$

(ii) Hence find the co-ordinates of R and Q.

Question 8 continues on the next page

Higher School Certificate Trial Examination, 2005 Mathematics Extension 2

Question 8 (continued)

Marks

(b) (iii) Prove that the length of RQ is:

$$2\sqrt{a^2\sin^2\theta+b^2\cos^2\theta}$$

- (iv) Explain the relationship between this result and the length of the diameter of a circle centre the origin radius a units.
- (c) (i) Find the sum of:

$$x + x^2 + x^3 + \dots + x^n$$

(ii) Hence prove:

$$x + 2x^2 + 3x^3 + 4x^4 + \dots + nx^n = \frac{x}{(x-1)^2} \left[nx^{n+1} - (n+1)x^n + 1 \right]$$

End of Paper

BLANK PAGE