Student Number:

Name: Bryan Hoang

5. (5 points)

(a) Answer:

Proof. Let Y = F(X) with the CDF F_Y and let F_U be the CDF of a U(0,1) random variable, where

$$F_U(u) = \begin{cases} 0 & \text{for } u < 0, \\ x & \text{for } u \in [0, 1], \\ 1 & \text{for } u > 1, \end{cases}$$

It is sufficient to show that $Y \sim U(0,1)$ by showing that $F_Y = F_U$.

For y < 0, $F_Y(y) = P(F(X) \le y) = P(F(X) \le 0) = 0$ by the definition of a CDF.

For y > 1, $F_Y(y) = P(F(X) \le y) = P(F(X) \le 1) = 1$ by the definition of a CDF.

For $y \in [0, 1]$,

$$F_Y(y) = P(F(X) \le y)$$

$$= P(X \le F^{-1}(y))$$

$$= F(F^{-1}(y))$$

$$= y$$

since F is continuous and strictly increasing, and thus invertible. Thus, we have

$$F_Y(y) = \begin{cases} 0 & \text{for } y < 0, \\ y & \text{for } y \in [0, 1], \\ 1 & \text{for } y > 1, \end{cases}$$
$$= F_U(y)$$

Therefore, $Y = F(X) \sim U(0, 1)$.

(b) **Answer**:

Proof. Let $Y = F^{-1}(U)$ with CDF F_Y and let F_U be the CDF of $U \sim U(0,1)$. Then it is sufficient to show that $F_Y = F$.

For $y \in \mathbb{R}$, we have

$$F_Y(y) = P(F^{-1}(U) \le y)$$

$$= P(U \le F(y))$$

$$= F_U(F(y))$$

$$= F(y) \qquad \because F(y) \in [0, 1] \text{ by the definition of a CDF}$$

Thus, we have that $Y = F^{-1}(U) \sim X$.