Принципы работы нейросети на примере распознавания символов

Автор:

Виноградов Всеволод Алексеевия

Научный руководитель:

Быстров Алекснадр Александрович

Введение

Искусственные нейронные сети активно развиваются и применяются в различных областях. Но многие считают их сложными для понимания. Я объясню принцип работы нейросетей на примере распознавания рукописных цифр.

Постановка задачи

Задача распознавания рукописных цифр заключается в преобразовании изображения с помощью «чёрного ящика» из 10 нейронов (функций вероятности), в вероятность соответствия каждой цифре от 0 до 9. Затем выбирается цифра с наибольшей вероятностью.

Работа с функциями вероятности

Эти нейроны (обозначим **P**(**X**,**0**) зависят от вектора весов **0** и вектора входов **X**. Изначально **0** можно заполнить случайно. А **P**(**X**,**0**) давайте зададим линейно:

$$P(X, \theta) = P(X, \theta) = \theta_0 + X_1 * \theta_1 + X_2 * \theta_2 + ... + X_n * \theta_n$$

Здесь θ_0 — сдвиг (первоначальная вероятность) нейрона.

Пример

Как видно нейрон заданый так способен находить вероятность

прогулки, однако 1,3 > 1 и не похожа на вероятность.

Функция активации

Чтобы внести значения нейронов в промежутки используют функции активации, нам подходит логистический

СИГМОИД **σ(x)**. 1_{0.9}

 $\sigma(1,3)=0,785$

Функция отклонений

Обучение - нахождение весов **0**.

Чтобы обучить нейросеть надо сделать отклонения ответов нейросети от верных минимальным.

Сумма квадратов отклонений:

$$E(Y,\hat{Y}) = (Y_1 - \hat{Y}_1)^2 + (Y_2 - \hat{Y}_2)^2 + ... + (Y_n - \hat{Y}_n)^2$$

Оптимизация функции отклонений

Для минимизации функций при градиентном спуске, мы от каждого веса отнимаем скорость роста функции при его росте на шаг обучения.

Global cost minimum

J_{min}(w)

Данные для обучения

Обучающие данные взяты из набора MNIST. Он содержит 60 000 изображений размером 28 на 28 пикселей, представленных числами от 0 до 255, для обучения и 10 000 изображений для валидации.

Создание нейросети на keras

- 1. Распаковываем MNIST.
- 2. Делим пиксели на 255.
- 3.Создаём модель из одного слоя с activation="sigmoid".
- 4. Компилируем с optimizer="sgd", loss="mean squared method".
- 5. Обучаем по распакованному.

Испытание

```
1875/1875
                              • 2s 1ms/step - accuracy: 0.2274 - loss: 0.1338 - val accuracy: 0.5357 - val loss: 0.0821
Epoch 2/30
1875/1875
                              - 2s 854us/step - accuracy: 0.5729 - loss: 0.0788 - val accuracy: 0.6338 - val loss: 0.0703
Epoch 3/30
1875/1875
                              — 2s 873us/step - accuracy: 0.6502 - loss: 0.0679 - val_accuracy: 0.6822 - val_loss: 0.0621
Epoch 4/30
1875/1875
                              - 2s 964us/step - accuracy: 0.6949 - loss: 0.0608 - val accuracy: 0.7223 - val loss: 0.0565
Epoch 5/30
1875/1875
                               2s 1ms/step - accuracy: 0.7305 - loss: 0.0556 - val accuracy: 0.7528 - val loss: 0.0524
Epoch 6/30
1875/1875
                               2s 947us/step - accuracy: 0.7604 - loss: 0.0518 - val_accuracy: 0.7795 - val_loss: 0.0492
Epoch 7/30
1875/1875
                               2s 901us/step - accuracy: 0.7867 - loss: 0.0488 - val_accuracy: 0.8019 - val_loss: 0.0466
Epoch 8/30
1875/1875
                               2s 884us/step - accuracy: 0.8027 - loss: 0.0463 - val accuracy: 0.8185 - val loss: 0.0445
Fnoch 9/30
1875/1875
                              · 2s 876us/step - accuracy: 0.8166 - loss: 0.0442 - val accuracy: 0.8283 - val loss: 0.0427
Epoch 10/30
1875/1875
                              — 2s 889us/step - accuracy: 0.8220 - loss: 0.0427 - val_accuracy: 0.8341 - val_loss: 0.0411
Epoch 11/30
1875/1875
                              - 2s 880us/step - accuracy: 0.8296 - loss: 0.0413 - val_accuracy: 0.8392 - val_loss: 0.0397
Epoch 12/30
1875/1875 -
                               2s 1ms/step - accuracy: 0.8333 - loss: 0.0399 - val_accuracy: 0.8431 - val_loss: 0.0385
Epoch 13/30
1875/1875 -
                              - 2s 891us/step - accuracy: 0.8356 - loss: 0.0391 - val_accuracy: 0.8463 - val_loss: 0.0375
Epoch 14/30
1875/1875 -
                              – 2s 902us/step - accuracy: 0.8426 - loss: 0.0376 - val_accuracy: 0.8490 - val_loss: 0.0366
Epoch 15/30
1875/1875 -
                              - 2s 950us/step - accuracy: 0.8446 - loss: 0.0369 - val_accuracy: 0.8529 - val_loss: 0.0358
Epoch 16/30
1875/1875 -
                              – 2s 937us/step - accuracy: 0.8462 - loss: 0.0361 - val_accuracy: 0.8553 - val_loss: 0.0350
Epoch 17/30
1875/1875 -
                              — 2s 951us/step - accuracy: 0.8484 - loss: 0.0354 - val_accuracy: 0.8577 - val_loss: 0.0343
Epoch 18/30
1875/1875 -
                              · 2s 946us/step - accuracy: 0.8533 - loss: 0.0345 - val accuracy: 0.8609 - val loss: 0.0337
Epoch 19/30
1875/1875 -
                               2s 922us/step - accuracy: 0.8527 - loss: 0.0342 - val_accuracy: 0.8624 - val_loss: 0.0332
Epoch 20/30
1875/1875 -
                               · 2s 933us/step - accuracy: 0.8541 - loss: 0.0336 - val_accuracy: 0.8638 - val_loss: 0.0326
```


На 30 шаге точность - 86%.

Добавление слоёв

Epoch 1/30							
1875/1875	3s 2ms/sten	- accuracy:	0.1678 - loss:	A 13A4 -	val accuracy:	A 3311 - val 1	nss: A A875
Epoch 2/30							3.55.
1875/1875	3s 1ms/step	- accuracy:	0.3760 - loss:	0.0859 -	val accuracy:	0.4604 - val l	oss: 0.0793
Epoch 3/30							
1875/1875	3s 2ms/step	- accuracy:	0.4700 - loss:	0.0770 -	val_accuracy:	0.5281 - val l	oss: 0.0699
Epoch 4/30							
1875/1875	3s 1ms/step	- accuracy:	0.5524 - loss:	0.0681 -	val_accuracy:	0.6438 - val_l	oss: 0.0610
Epoch 5/30							
1875/1875	3s 1ms/step	- accuracy:	0.6723 - loss:	0.0592 -	val_accuracy:	0.7594 - val_l	oss: 0.0520
Epoch 6/30							
1875/1875	3s 2ms/step	- accuracy:	0.7671 - loss:	0.0507 -	val_accuracy:	0.8054 - val_l	oss: 0.0444
Epoch 7/30							
1875/1875	3s 1ms/step	- accuracy:	0.8088 - loss:	0.0437 -	val_accuracy:	0.8293 - val_l	oss: 0.0388
Epoch 8/30							
1875/1875	3s 1ms/step	- accuracy:	0.8285 - loss:	0.0386 -	val_accuracy:	0.8462 - val_l	oss: 0.0348
Epoch 9/30							
1875/1875	3s 1ms/step	- accuracy:	0.8412 - loss:	0.0348 -	val_accuracy:	0.8592 - val_l	oss: 0.0317
Epoch 10/30							
1875/1875	· 3s 1ms/step	- accuracy:	0.8517 - loss:	0.0322 -	val_accuracy:	0.8670 - val_l	oss: 0.0293
Epoch 11/30 1875/1875	7- 1/		0.0/01 3	0.0007		0.0715	0 007/
Epoch 12/30	. 35 11115/51ep	- accoracy.	0.8621 - loss:	0.0297 -	val_accoracy.	0.0/13 - Val_L	055. 0.0274
1875/1875	3s 2ms/sten	- accuracy:	0.8675 - loss:	A A279 -	val accuracy:	A 8771 - val 1	oss: A A258
Epoch 13/30	23 2113,300						033. 0.0200
1875/1875	· 3s 1ms/step	- accuracy:	0.8733 - loss:	0.0263 -	val_accuracy:	0.8820 - val l	oss: 0.0245
Epoch 14/30							
1875/1875	3s 1ms/step	- accuracy:	0.8778 - loss:	0.0249 -	val_accuracy:	0.8867 - val_l	oss: 0.0234
Epoch 15/30							
1875/1875	3s 2ms/step	- accuracy:	0.8793 - loss:	0.0241 -	val_accuracy:	0.8886 - val_l	oss: 0.0225
Epoch 16/30							
1875/1875	3s 2ms/step	- accuracy:	0.8841 - loss:	0.0232 -	val_accuracy:	0.8918 - val_l	oss: 0.0216
Epoch 17/30							
1875/1875	· 3s 1ms/step	- accuracy:	0.8862 - loss:	0.0224 -	val_accuracy:	0.8942 - val_l	oss: 0.0209
Epoch 18/30							
1875/1875	3s 2ms/step	- accuracy:	0.8867 - loss:	0.0219 -	val_accuracy:	0.8977 - val_l	oss: 0.0203
Epoch 19/30 1875/1875 ————————————————————————————————————	70 2mg/s		0.0022 1	0 0200		0.0004	0001 0 0107
1875/1875 ————————————————————————————————————	- 35 Zms/step	- accuracy:	0.8922 - loss:	0.0208 -	vac_accuracy:	0.8994 - Val_L	055: 0.0197
1875/1875 ————————————————————————————————————	3s 1ms/ston	- accuracy:	0.8926 - loss:	A A2A5 -	val accuracy:	A 9887 - Val 1	nss: A A102
107071070	OS IMS/SCED	accor acv.	0.0720	0.0200	vac accoracy.	0.7007 Vac c	033. 0.0172

Точность можно повысить до 91%, добавив 2 слоя с RELU функцией активации.

Кросс-энтропия

```
Epoch 1/30
1875/1875
                              - 3s 2ms/step - accuracy: 0.7169 - loss: 1.0543 - val accuracy: 0.9048 - val loss: 0.3237
Epoch 2/30
1875/1875
                             — 3s 2ms/step - accuracy: 0.9117 - loss: 0.3100 - val accuracy: 0.9257 - val loss: 0.2582
Fnoch 3/30
                              - 3s 2ms/step - accuracy: 0.9274 - loss: 0.2551 - val_accuracy: 0.9351 - val_loss: 0.2188
Epoch 4/30
1875/1875
                               3s 2ms/step - accuracy: 0.9385 - loss: 0.2140 - val_accuracy: 0.9435 - val_loss: 0.1915
Epoch 5/30
1875/1875
                              – 3s 2ms/step - accuracy: 0.9466 - loss: 0.1849 - val accuracy: 0.9484 - val loss: 0.1746
Epoch 6/30
1875/1875
                              – 3s 1ms/step - accuracy: 0.9524 - loss: 0.1657 - val_accuracy: 0.9522 - val_loss: 0.1613
Epoch 7/30
1875/1875
                             — 3s 2ms/step - accuracy: 0.9577 - loss: 0.1519 - val_accuracy: 0.9574 - val_loss: 0.1410
Epoch 8/30
                              · 3s 2ms/step - accuracy: 0.9635 - loss: 0.1291 - val_accuracy: 0.9605 - val_loss: 0.1339
Epoch 9/30
1875/1875
                               3s 2ms/step - accuracy: 0.9659 - loss: 0.1191 - val_accuracy: 0.9618 - val_loss: 0.1249
Epoch 10/30
1875/1875
                              – 3s 2ms/step - accuracy: 0.9701 - loss: 0.1104 - val_accuracy: 0.9643 - val_loss: 0.1169
Epoch 11/36
1875/1875
                             — 3s 2ms/step - accuracy: 0.9704 - loss: 0.1056 - val accuracy: 0.9662 - val loss: 0.1110
Epoch 12/30
1875/1875
                             — 3s 2ms/step - accuracy: 0.9732 - loss: 0.0944 - val_accuracy: 0.9676 - val_loss: 0.1061
Epoch 13/30
                              · 3s 2ms/step - accuracy: 0.9762 - loss: 0.0857 - val_accuracy: 0.9674 - val_loss: 0.1045
Epoch 14/30
1875/1875
                              · 3s 2ms/step - accuracy: 0.9770 - loss: 0.0828 - val_accuracy: 0.9692 - val_loss: 0.0991
Epoch 15/30
1875/1875
                              – 3s 2ms/step - accuracy: 0.9779 - loss: 0.0790 - val accuracy: 0.9712 - val loss: 0.0964
1875/1875
                             — 3s 2ms/step - accuracy: 0.9793 - loss: 0.0731 - val_accuracy: 0.9719 - val_loss: 0.0939
Epoch 17/30
1875/1875
                             — 3s 2ms/step - accuracy: 0.9808 - loss: 0.0686 - val_accuracy: 0.9726 - val_loss: 0.0906
Epoch 18/30
1875/1875
                              · 3s 2ms/step - accuracy: 0.9820 - loss: 0.0645 - val_accuracy: 0.9726 - val_loss: 0.0898
Epoch 19/30
                              - 3s 2ms/step - accuracy: 0.9834 - loss: 0.0618 - val_accuracy: 0.9734 - val_loss: 0.0893
1875/1875
Epoch 20/30
                              - 3s 2ms/step - accuracy: 0.9844 - loss: 0.0580 - val accuracy: 0.9730 - val loss: 0.086
```


Точность - 99.2%

Быстрее, точнее, сложнее

Всю презентацию мы использовали самую простую модель нейросети под названием перцептрон, но есть ещё много более сложных. Свёрточные для распознавания изображений, рекурентные - для генерации текста, глубокие - в сложных задачах, автокодировщики, генеративные и т.д.

Спасибо за внимание!