0.1. Lección 9

0.1.1. Infinitésimos equivalentes.

Diremos que f es un infinitésimo en x=a (donde $a\in\mathbb{R}$ o $a=\infty$ o $a=-\infty$) si $\lim_{x\to a}f(x)=0$. Diremos que f es un infinito en a si $\lim_{x\to a}f(x)=\infty$ o $-\infty$.

Diremos que dos infinitésimos f(x), g(x) o infinitos en a son equivalentes, y lo denotamos por $f(x) \sim g(x)$ en x = a si

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$$

Las equivalencias más importantes son:

 \triangleright sen $(x) \sim x$ si $x \to 0$. Más generalmente, sen $(f(x)) \sim f(x)$ en x = a si $\lim_{x \to a} f(x) = 0$ siendo $a \in \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$.

 $ightharpoonup \log(1+x) \sim x$ si $x \to 0$. Más generalmente, $\log(1+f(x)) \sim f(x)$ en x=a si $\lim_{x \to a} f(x) = 0$ siendo $a \in \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$. Otra formulación equivalente de la equivalencia: $\log(f(x)) \sim f(x) - 1$ en a si $\lim_{x \to a} f(x) = 1$.

★ Uso de infinitésimos equivalentes en el cálculo de límites: Podemos sustituir un infinitésimo o infinito por otro equivalente en <u>productos</u> y <u>cocientes.</u> pero *nunca* en sumas (o restas) o potencias funcionales.

Sean f(x), g(x) dos infinitésimos o infinitos equivalentes en x = a,

1.
$$\lim_{x \to a} f(x)h(x) = \lim_{x \to a} g(x)h(x)$$

2.
$$\lim_{x \to a} \frac{h(x)}{f(x)} = \lim_{x \to a} \frac{h(x)}{g(x)}$$

Ejemplo:

$$\lim_{x \to \infty} x \operatorname{sen}(\frac{1}{x}) \underbrace{\frac{\operatorname{sen} \frac{1}{x} \sim \frac{1}{x} \operatorname{en} \infty}_{=} \lim_{x \to \infty} x \frac{1}{x} = 1$$

Consecuencia: obtención de la fórmula para límites del tipo 1^{∞} : Si $\lim_{x\to a} f(x) = 1$ y $\lim_{x\to a} g(x) = \infty$,

$$\lim_{x \to a} (f(x))^{g(x)} = \lim_{x \to a} g(x) (f(x) - 1)$$

Demostraci'on. Utilizando la identidad $e^{\log x} = x$ si x > 0 tenemos que

$$\lim_{x \to a} (f(x))^{g(x)} = \lim_{x \to a} g(x) \log f(x)$$

Utilizando la equivalencia: $\log f(x) = \log (1 + (f(x) - 1)) \sim f(x) - 1$ si $x \to a$ (nótese que $\lim_{x \to a} f(x) - 1 = 0$. De este forma obtenemos el resultado.

Observación 1. No se puede sustituir un infinito por otro equivalente en restas o sumas.

Por ejemplo. Las funciones $f(x)=xe^{1/x}$ y g(x)=x son infinitos en ∞ y además son equivalentes , puesto que

$$\lim_{x\to\infty} x e^{1/x} = \lim_{x\to\infty} x = \infty, \qquad \lim_{x\to\infty} \frac{x e^{1/x}}{x} = 1 \text{ luego} f \sim g \text{ en } \infty.$$

Sin embargo:

$$\lim_{x\to\infty}xe^{1/x}-x\neq\lim_{x\to\infty}x-x=0$$

puesto que el límite anterior presenta una indeterminación de tipo $\infty - \infty$ que se resuelve de la siguiente forma:

$$\lim_{x \to \infty} x(e^{1/x} - 1) = \lim_{x \to \infty} \frac{e^{1/x} - 1}{1/x} \stackrel{\left[\frac{0}{0}\right]}{=} \text{L'Hopital } \lim_{x \to \infty} \frac{-1/x^2 e^{1/x}}{-1/x^2} = \infty.$$

⊠ En cada uno de los límites siguientes indica el tipo de indeterminación y calcula el límite, si existe.

1. $\lim_{x\to\infty} \left(\tan(\frac{\pi}{4}+\frac{1}{x})\right)^{3x}$ Indeterminación del tipo 1^∞

$$\lim_{x\to\infty} \left(\tan(\frac{\pi}{4} + \frac{1}{x}) \right)^{3x} = e^{\lim_{x\to\infty} 3x \left(\tan(\frac{\pi}{4} + \frac{1}{x}) - 1 \right)}$$

Ahora, en el exponente hay una indeterminación del tipo $0 \cdot \infty$

$$\lim_{x \to \infty} 3x \left(\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1 \right) = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \left[\frac{\infty}{\infty}, L'Hopital\right] = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x}} = \lim_{x \to \infty} \frac{\tan\left(\frac{\pi}{4} + \frac{1}{x}\right) - 1}{\frac{1}{3x$$

$$\lim_{x \to \infty} \frac{\frac{-1}{x^2} \left(1 + \tan^2\left(\frac{\pi}{4} + \frac{1}{x}\right)\right)}{\frac{-1}{3x^2}} = 6$$

Luego la solución es e^6 .

2. $\lim_{x\to\infty} \left(\log(1+\frac{1}{x})+1\right)^{x+3}$ Indeterminación del tipo 1^∞

$$\lim_{x \to \infty} \left(\log(1 + \frac{1}{x}) + 1 \right)^{x+3} = e^{\left(x+3\right)} \log(1 + \frac{1}{x})$$

$$\lim_{x \to \infty} (x+3) \log(1 + \frac{1}{x}) = \lim_{x \to \infty} \frac{\log(1 + \frac{1}{x})}{\frac{1}{x+3}} \xrightarrow{\log(1 + \frac{1}{x})} \sim \frac{1}{x} \text{ en } \infty \quad \lim_{x \to \infty} \frac{\frac{1}{x}}{\frac{1}{x+3}} = 1$$

Luego la solución es e.

$$\lim_{x \to \infty} \left(\frac{x^2 + x}{x + 1} \right)^{\frac{x+3}{3x^2 + 2}}$$
 Indeterminación del tipo ∞^0 .

$$\lim_{x \to \infty} \left(\frac{x^2 + x}{x + 1} \right)^{\frac{x+3}{3x^2 + 2}} = e^{\lim_{x \to \infty} \log \left(\frac{x^2 + x}{x + 1} \right)^{\frac{x+3}{3x^2 + 2}}}$$

$$\lim_{x \to \infty} \frac{x+3}{3x^2+2} \log \left(\frac{x^2+x}{x+1}\right) \xrightarrow{\frac{x+3}{3x^2+2}} \sim \frac{1}{3x} \text{ en } \infty \lim_{x \to \infty} \frac{\log \left(\frac{x^2+x}{x+1}\right)}{3x} = \left[\frac{\infty}{\infty}\right]$$

[L'Hopital] =
$$\lim_{x \to \infty} \frac{\frac{2x+1}{x^2+x} - \frac{1}{1+x}}{3} = 0$$

Luego

$$\lim_{x \to \infty} \left(\frac{x^2 + x}{x + 1} \right)^{\frac{x+3}{3x^2 + 2}} = e^0 = 1$$

0.1.2. Criterio del Sandwich.

Un límite distinto:

$$\lim_{x \to 0} x^2 \operatorname{sen}(\frac{1}{x}) =$$

(Criterio del Sandwich). Sean f,g,h funciones definidas en $(a-r,a+r)\setminus\{a\}$ para algún r>0. Supongamos que para todo $x\neq a$ tal que a-r< x< a+r se tiene que:

$$g(x) \le f(x) \le h(x),$$

Si
$$\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$$
 entonces

$$\lim_{x \to a} f(x) = L.$$

Demostración. Sea $\epsilon > 0$ tenemos que encontrar $\delta > 0$ tal que si $|x - a| < \delta$ y $x \neq a$ entonces $|f(x) - L| < \epsilon$ o equivalentemente $L - \epsilon < f(x) < L + \epsilon$.

Puesto que $\lim_{x\to a}g(x)=L$ para dicho $\epsilon>0$ podemos encontrar $\delta_1>0$ tal que si $|x-a|<\delta_1$ y $x\neq a$ se tiene que

$$L - \epsilon < g(x)$$
 $< L + \epsilon$

Por otra parte, usando que $\lim_{x\to a}h(x)=L$ para dicho $\epsilon>0$ podemos encontrar $\delta_2>0$ tal que si $|x-a|<\delta_2$ y $x\neq a$ se tiene que

$$L - \epsilon < h(x) < L + \epsilon$$

Combinando los dos resultados tenemos que si $\delta = \min\{\delta_1, \delta_2\} > 0$ y $|x - a| < \delta$ y $x \neq a$ entonces $x \neq a$ y $|x - a| < \delta_1$ y $|x - a| < \delta_2$ por lo que se tiene:

$$L - \epsilon < g(x) \le f(x) \le h(x) < L + \epsilon$$
.

Funciones acotadas:

Una de las principales consecuencias del criterio del sancwich es el resultado que afirma que si una función tiene límite cero en un punto y está acotada cerca de dicho punto entonces el producto tiene límite cero. Definimos las nociones de acotación de funciones:

- 1. Diremos que una función f está acotada superiormente en el conjunto I si existe M > 0 tal que $f(x) \leq M$ para todo $x \in I$, es decir, si el conjunto $A = \{f(x) : x \in I\}$ es un conjunto acotado superiormente.
- 2. Diremos que una función f está acotada inferiormente en el conjunto I si existe M > 0 tal que $f(x) \ge M$ para todo $x \in I$, es decir, si el conjunto $A = \{f(x) : x \in I\}$ es un conjunto acotado inferiormente.
- 3. Diremos que una función f está acotada en el conjunto I si está acotada superior e inferiormente en I, es decir, si el conjunto $A = \{f(x) : x \in I\}$ es un conjunto acotado.
- \star Criterio de acotación: f está acotada en un conjunto I si existe M>0 tal que

$$|f(x)| \le M$$
 para todo $x \in I$

Observación 2. Una función puede ser acotada en un intervalo pero no en otro; por ejemplo, $f(x) = \frac{1}{x}$ está acotada en (2,3) puesto que $\frac{1}{3} < \frac{1}{x} = f(x) < \frac{1}{2}$. Sin embargo f no está acotada en (0,1) puesto que $\lim_{x\to 0^+} \frac{1}{x} = \infty$.

Indica si las siguientes funciones están acotadas en el intervalo que se indica:

1.
$$f(x) = \frac{1}{x}$$
 en $[\frac{1}{2}, \infty)$.

2.
$$f(x) = x^2 \operatorname{sen}(\frac{1}{x}) \operatorname{en}[-100, 100] \setminus \{0\}$$

3.
$$f(x) = \frac{\sin x}{1 + \log^2 x}$$
 en $(0, \infty)$.

4.
$$f(x) = \frac{3}{2 - x^2}$$
 en $[0, 1]$.

Tipo de límite: infinitésimo por función acotada. 0.1.3.

Sean f(x), g(x) tales que:

$$\triangleright \lim_{x \to a} f(x) = 0.$$

 $\rhd \lim_{x\to a} f(x)=0.$ $\rhd g(x)$ una función acotada en algún intervalo $(a-r,a+r)\setminus\{a\}$ para algún r>0. Entonces:

$$\lim_{x \to a} f(x)g(x) = 0.$$

Ejemplo 3. Calculamos $\lim_{x\to 0^+} x \operatorname{sen}(\ln(x))$. Puesto que $\lim_{x\to 0} x = 0$ $y \operatorname{sen}(\ln(x))$ acotada en $(0,\infty)$ se tiene que:

$$\lim_{x \to 0^+} x \operatorname{sen}(\ln(x)) = 0.$$

0.1.4. Casos extremos del criterio del Sandwich.

(Casos extremos del criterio del Sandwich.) Sean f(x), g(x) funciones tales que para todo $x \in \mathbb{R}$ y sea $a \in \mathbb{R} \cup \{\infty\} \cup \{-\infty\}$

$$f(x) \le g(x)$$

- 1. Si $\lim_{x\to a} f(x) = \infty$, entonces $\lim_{x\to a} g(x) = \infty$.
- 2. Si $\lim_{x\to a} g(x) = -\infty$, entonces $\lim_{x\to a} f(x) = -\infty$

Vemos alguna aplicación de los resultados anteriores:

Ejemplo 4. Para calcular

$$\lim_{x \to 0} \frac{1}{x^2} + \operatorname{sen}(\frac{1}{x})$$

Nótese que $\lim_{x\to 0} \operatorname{sen}(\frac{1}{x})$ no existe, pero para todo $x\in\mathbb{R}, x\neq 0$

$$\frac{1}{x^2} + \sec(\frac{1}{x}) \ge \frac{1}{x^2} - 1$$

por lo tanto, puesto que $\lim_{x\to 0} \frac{1}{x^2} - 1 = \infty$, por el caso extremo del criterio del sandwich se tiene que:

$$\lim_{x \to 0} \frac{1}{x^2} + \operatorname{sen}(\frac{1}{x}) = \infty$$

Ejemplo 5. Para calcular

$$\lim_{x \to \infty} x^2 + x - [x]$$

Puesto que $x - [x] \ge 0$ siempre, se tiene que para todo x

$$x^2 + x - [x] \ge x^2$$

y puesto que $\lim_{x\to\infty} x^2 = \infty$, de nuevo se tiene que $\lim_{x\to\infty} x^2 + x - [x] = \infty$

Observación 6. El mismo tipo de resultados se puede obtener para límites laterales, donde las desigualdades entre funciones se consideran sólo para puntos a la derecha o a la izquiera del punto a en el que se estudia el límite.

$$|f(x)| \le g(x)$$

y $\lim_{x\to a} g(x) = 0$ entonces $\lim_{x\to a} f(x) = 0$.

0.1.5. Dos propiedades locales de los límites

Recordamos la definición $\epsilon - \delta$ de límite:

Para cada $\epsilon > 0$ existe $\delta > 0$ tal que si $0 < |x - a| < \delta$ (es decir, $x \in (a - \delta, a + \delta)$) se tiene que $|f(x) - L| < \epsilon$ (es decir, $f(x) \in (L - \epsilon, L + \epsilon)$).

(Propiedad de conservación del signo) Supongamos que $\lim_{x\to a} f(x) = L > 0$ entonces existe un $\delta > 0$ tal que si $x \in (a - \delta, a + \delta) \setminus \{a\}$ se tiene que:

$$f(x) > \frac{L}{2} > 0.$$

Demostración. Basta considerar $\epsilon = \frac{L}{2} > 0$ y aplicar la definición de límite para encontrar $\delta > 0$ tal que si $0 < |x - a| < \delta$ se tiene que:

$$|f(x) - L| < \frac{L}{2}$$

Por lo tanto

$$\frac{L}{2} = L - \frac{L}{2} < f(x) < L + \frac{L}{2}$$

Observación 7. El mismo tipo de resultado es cierto para L < 0 es cierto (formularlo y probarlo). Ahora, si sabemos por ejemplo que $\lim_{x\to a} f(x) = 0$ ¿Podemos decir algo acerca del signo de f en las proximidades de a? Pensar en la función $f(x) = x \operatorname{sen}(\frac{1}{x})$.

(Propiedad de acotación local). Supongamos que $\lim_{x\to a} f(x) = L > 0$ entonces existe un $\delta > 0$ tal que f está acotada en $(a - \delta, a + \delta) \setminus \{a\}$ para algún $\delta > 0$.

 $Demostraci\'on. \ \text{Basta considerar}\ \epsilon = \frac{L}{2} > 0\ \text{como antes y aplicar la definici\'on de límite}$ para encontrar $\delta > 0$ tal que si $0 < |x-a| < \delta$ se tiene que:

$$|f(x) - L| < \frac{L}{2}$$

Por lo tanto para todo $x \in (a - \delta, a + \delta) \setminus \{a\}$ se tiene que

$$\frac{L}{2} < f(x) < L + \frac{L}{2},$$

lo cual significa que f está acotada en dicho intervalo estrellado.