Lecture 11

Instructor: Subrahmanyam Kalyanasundaram

23rd September 2019

Plan

- Complete the proof of correctness of BFS
- After that, we see shortest path in weighted graphs

Algorithm 1 Breadth-first Search from vertex s 1: Color all vertices WHITE.

2: For all $u \in V$, $d[u] \leftarrow \infty$, $\pi[u] \leftarrow \text{NIL}$.

3:
$$d[s] \leftarrow 0$$
, $\operatorname{color}[s] \leftarrow \operatorname{GRAY}$.

4: Initialize queue
$$Q \leftarrow \emptyset$$
.

5:
$$\mathsf{ENQUEUE}(Q,s)$$

6: while
$$Q \neq \emptyset$$
 do

$$u \leftarrow \mathsf{DEQUEUE}(Q)$$

for each
$$v \in \mathcal{N}(u)$$
 do

: **if** color(
$$v$$
) =WHITE **then**

9: **if** color(
$$v$$
) =W
10: color[v] \leftarrow C

end if

end for

17: end while

11:

12:

13:

14:

15:

16:

$$if \ color(v) = WF$$

$$color[v] \leftarrow GF$$

 $color[u] \leftarrow BLACK.$

$$color(v) = 0$$

$$color[v] \leftarrow$$

if color(
$$v$$
) =WHITE color[v] \leftarrow GRAY

$$\operatorname{color}[v] \leftarrow \operatorname{GR}_{v}$$

$$v[v] \leftarrow GRAY$$

 $\leftarrow d[u] + 1$

$$d[u] + 1$$

$$d[v] \leftarrow d[u] + 1$$
$$\pi[v] \leftarrow u$$

ENQUEUE(Q, v)

$$[u] + 1$$

Queue: \emptyset

Dequeued vertex: Queue: s

Dequeued vertex: s Queue: r g

Dequeued vertex: r Queue: g f

Dequeued vertex: g Queue: f a b

Dequeued vertex: f Queue: a b

Dequeued vertex: a Queue: b e d

Dequeued vertex: b Queue: e d c

Dequeued vertex: e Queue: d c j h i

Dequeued vertex: \boxed{d} Queue: \boxed{c} \boxed{j} \boxed{h} \boxed{i}

Dequeued vertex: c Queue: j h i

Dequeued vertex: j Queue: h i

Dequeued vertex: h Queue: i

Dequeued vertex: i Queue: \emptyset

Algorithm 2 Breadth-first Search from vertex s 1: Color all vertices WHITE.

- 2: For all $u \in V$, $d[u] \leftarrow \infty$, $\pi[u] \leftarrow \text{NIL}$.
- 3: $d[s] \leftarrow 0$, color[s] \leftarrow GRAY.
- 4: Initialize queue $Q \leftarrow \emptyset$.
- 5: ENQUEUE(Q, s)
- 6: while $Q \neq \emptyset$ do
 - $u \leftarrow \mathsf{DEQUEUE}(Q)$

end if

end for

17: end while

 $color[v] \leftarrow GRAY$ 10:

11:

12:

13:

14:

15:

16:

if color(v) = WHITE then

 $\pi[v] \leftarrow u$

 $color[u] \leftarrow BLACK.$

- **for** each $v \in \mathcal{N}(u)$ **do**

 $d[v] \leftarrow d[u] + 1$

ENQUEUE(Q, v)

Time Complexity of BFS

- ► Each enqueue/dequeue takes *O*(1) time.
- ► Total queue operations take O(|V|) time.
- ▶ Each list in the adj. list is scanned once. This requires total $\Theta(|E|)$. This is assuming the graph is provided using adjacency list.
- ▶ Initialization required $\Theta(|V|)$.
- ▶ Total running time is O(|V| + |E|).

Time Complexity of BFS

- ► Each enqueue/dequeue takes *O*(1) time.
- ► Total queue operations take O(|V|) time.
- ▶ Each list in the adj. list is scanned once. This requires total $\Theta(|E|)$. This is assuming the graph is provided using adjacency list.
- ▶ Initialization required $\Theta(|V|)$.
- ▶ Total running time is O(|V| + |E|).
- ▶ **Note:** The colors can be omitted. Instead, check if $d[v] = \infty$

Correctness of BFS

Notation: Let $\delta(s, v)$ denote the minimum number of edges on a path from s to v.

Theorem

Let G = (V, E) be a graph. When BFS is run on G from vertex $s \in V$:

- 1. Every vertex that is reachable from *s* gets discovered.
- 2. On termination, $d[v] = \delta(s, v)$ for all v.

We will first show (2).

Proof

Suppose, for the sake of contradiction, (2) does not hold. Let v be the vertex with smallest $\delta(s, v)$ such that $d[v] \neq \delta(s, v)$.

Claim 1: $d[v] \ge \delta(s, v)$

Choose a *shortest* path from *s* to *v*.

Let u be the vertex immmediately preceding v.

Then $\delta(s, v) = \delta(s, u) + 1 = d[u] + 1$.

So we have:

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Proof cont...

We have:

$$d[v] > \delta(s, v) = \delta(s, u) + 1 = d[u] + 1$$

Consider the time step when u is dequeued.

- Case 1: v was white. The algo sets d[v] = d[u] + 1.
- This contradicts the eq above. ► Case 2: v is black.
- Then, v was dequeued before u. Claim 2: If v was dequeued before u, then $d[v] \le d[u]$.

Proof cont...

► Case 3: *v* was gray.

Vertex v was colored gray after dequeuing some vertex w earlier.

So d[v] = d[w] + 1.

By Claim 2, $d[w] \le d[u]$ since w was dequeued before u.

This gives: $d[v] = d[w] + 1 \le d[u] + 1$.

Exercise

Show (1) using (2). That is, given that $d[v] = \delta(s, v)$, show that every vertex reachable from s gets discovered.

Claim 3

Let $(u, v) \in E$. Then we have:

$$\delta(s,v) \leq \delta(s,u) + 1$$

Proof

If *u* is reachable from *s*, then:

Take the shortest path from s to u. Then take the edge (u, v).

This gives a path from *s* to *v*.

The shortest path from s to v can only be shorter than the above path.

Claim 1

$$\forall v \in V, d[v] \geq \delta(s, v)$$

Proof

Induction on the number of enqueue operations.

Hypothesis: same as claim.

Base case: The time when the first vertex enqueued.

The first vertex enqueued is *s*. At this time we have:

$$\forall v \in V \setminus \{s\}, d[v] = \infty$$

$$b d[s] = \delta(s,s) = 0.$$

Hence the claim holds for the base case.

Proof

Hypothesis: $\forall v \in V, d[v] \geq \delta(s, v)$

Step: A white (undiscovered) vertex v gets discovered while we are visiting a vertex u with $(u, v) \in E$.

From induction, we have: $d[u] \ge \delta(s, u)$.

The algorithm assigns $d[v] \leftarrow d[u] + 1$. So:

$$d[v] = d[u] + 1$$

$$\geq \delta(s, u) + 1$$

$$\geq \delta(s, v)$$

Last inequality follows from Claim 3.

Claim 2

If v was dequeued before u, then $d[v] \leq d[u]$.

We will show a stronger claim:

Claim 4

If at some point, the queue contained v_1, v_2, \ldots, v_r where v_1 was the head. Then:

- (a) $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Proof of Claim 2:

Write down vertices in the order they went through the queue.

By claim 4 (a), the calculated d values for them are non-decreasing.

Vertex *v* will appear before *u* in this order.

Hence claim 2 follows.

Claim 4

If queue contains v_1, v_2, \ldots, v_r where v_1 is the head. Then:

- (a) $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Proof

Induction on number of queue operations.

Hypothesis: Same as claim. We show that the claim holds after every enqueue and dequeue.

Base case: The first queue operation - enqueuing *s*.

The claim trivially holds.

Claim 4

If queue contains v_1, v_2, \dots, v_r where v_1 is the head. Then:

- (a) $d[v_1] \le d[v_2] \le \cdots \le d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Proof

Step:

Dequeue: After v_1 is dequeued, v_2 is the new head.

Part (a): From induction,

 $d[v_1] \leq d[v_2] \leq d[v_3] \leq \cdots \leq d[v_r].$

Hence (a) holds.

Part (b): From induction, $d[v_r] \le d[v_1] + 1$. And so:

$$d[v_r] \le d[v_1] + 1$$

$$\le d[v_2] + 1$$

Proof

Enqueue: When a vertex *v* is enqueued:

It was enqueued because:

- it was undiscovered so far.
- ▶ it was present in the adjacency list of a vertex *u* that was just dequeued.

Since *u* was the previous head of the list, from induction we have:

- $d[u] \leq d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r].$
- $b d[v_r] \leq d[u] + 1.$

We assign $d[v] \leftarrow d[u] + 1$ and then enqueue v. Hence, we have:

- ▶ $d[v_r] \le d[u] + 1 = d[v]$
- $b d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r] \leq d[v].$

Loop Invariant

Claim 4

If queue contains v_1, v_2, \ldots, v_r where v_1 is the head. Then:

- (a) $d[v_1] \leq d[v_2] \leq \cdots \leq d[v_r]$
- (b) $d[v_r] \leq d[v_1] + 1$

Claim 4 is actually a loop invariant!

Another loop invariant

The queue *Q* consists of the set of GRAY vertices.

Weighted Graphs

A weighted graph is a graph G = (V, E) with a weight function:

$$w: E \to \mathbb{Z}$$

The weight of an edge $(u, v) \in E$ is w((u, v)).

For this lecture, we look at directed weighted graphs with weight function $w: E \to \mathbb{Z}^+$.

Shortest path in weighted graphs

Input:

- Graph G = (V, E)
- ▶ Weight function $w: E \to \mathbb{Z}^+$
- ▶ Source vertex $s \in V$.

Goal: Compute the shortest path from *s* to all reachable vertices.

Example graph

Dijkstra's Algorithm Pseudocode

Algorithm 3 Dijkstra's algorithm

```
1: For all u \in V, d[u] \leftarrow \infty, \pi[u] \leftarrow \text{NIL}
 2: d[s] \leftarrow 0
 3: Initialize min-priority queue Q \leftarrow V
 4: S \leftarrow \emptyset
 5: while Q \neq \emptyset do
     u \leftarrow \mathsf{Extract-Min}(Q)
 7: S \leftarrow S \cup \{u\}
    for each v \in \mathcal{N}(u) do
 8:
            if d[u] + w(u, v) < d[v] then
               d[v] \leftarrow d[u] + w(u, v)
10:
               DECREASE-KEY(v, d[v]).
11:
               \pi[v] \leftarrow u
12:
            end if
13:
        end for
14:
15: end while
```


Dijkstra's algorithm

"It is the algorithm for the shortest path, which I designed in about twenty minutes. One morning I was shopping in Amsterdam with my young fiancée, and tired, we sat down on the café terrace to drink a cup of coffee and I was just thinking about whether I could do this, and I then designed the algorithm for the shortest path. As I said, it was a twenty-minute invention."

-Edsger Dijkstra

Dijkstra's Algorithm Pseudocode

Algorithm 4 Dijkstra's algorithm

```
1: For all u \in V, d[u] \leftarrow \infty, \pi[u] \leftarrow \text{NIL}
 2: d[s] \leftarrow 0
 3: Initialize min-priority queue Q \leftarrow V
 4: S \leftarrow \emptyset
 5: while Q \neq \emptyset do
     u \leftarrow \mathsf{Extract-Min}(Q)
 7: S \leftarrow S \cup \{u\}
    for each v \in \mathcal{N}(u) do
 8:
            if d[u] + w(u, v) < d[v] then
               d[v] \leftarrow d[u] + w(u, v)
10:
               DECREASE-KEY(v, d[v]).
11:
               \pi[v] \leftarrow u
12:
            end if
13:
        end for
14:
15: end while
```

Time Complexity of Dijkstra's

- ▶ Initialization: O(|V|)
- ▶ We need to do |V| Extract-Min's and |E| Decrease-Key's
- Depends on the implementation of the priority queue.

Time Complexity of Dijkstra's

- ▶ Initialization: O(|V|)
- ▶ We need to do |V| Extract-Min's and |E| Decrease-Key's
- Depends on the implementation of the priority queue.
- ► Array: Extract-Min takes O(|V|) and Decrease-Key takes O(1)
- lacktriangle Heap: Extract-Min and Decrease-Key both take $O(\log |V|)$
- ► Fibonacci Heap: Decrease-Key takes O(1) amortized time

Theorem

At the end of Dijkstra's algorithm, we have:

$$\forall u \in V, d[u] = \delta(s, u)$$

Proof

Loop Invariant:

At the start of each iteration, we have $\forall v \in S, d[v] = \delta(s, v)$.

Init: At the start of the first iteration, $S = \emptyset$.

Maintenance: Let $u \in V$ be the first vertex for which $d[u] \neq \delta(s, u)$.

If *u* is not reachable from *s*, then $d[u] = \delta(s, u) = \infty$, so *u* must be reachable. Why?

If u = s, then the claim holds. So assume $u \neq s$.

Take a shortest path σ from s to u.

Let y be the first vertex on σ that is outside S.

Let $x \in S$ be the vertex on σ just before y.

So the path σ looks like:

$$s \stackrel{\sigma_1}{\leadsto} x \rightarrow y \stackrel{\sigma_2}{\leadsto} u$$

Claim 1: $d[y] = \delta(s, y)$.

$$\sigma = s \stackrel{\sigma_1}{\leadsto} x \to y \stackrel{\sigma_2}{\leadsto} u$$

Claim 1: $d[y] = \delta(s, y)$.

Since y appears before u in σ , we have $\delta(s, y) \leq \delta(s, u)$.

Claim 2: $d[u] \geq \delta(s, u)$.

Thus:

$$d[y] = \delta(s, y) \le \delta(s, u) \le d[u]$$

Although y and u were in $V \setminus S$, Extract-Min returned u. This means $d[u] \leq d[y]$. Hence:

$$d[y] = \delta(s, y) = \delta(s, u) = d[u]$$

Claim 1

$$\sigma = s \stackrel{\sigma_1}{\leadsto} x \rightarrow y \stackrel{\sigma_2}{\leadsto} u$$

We have $d[y] = \delta(s, y)$

Proof

From loop invariant, for all vertices that were added to S before u, we computed the correct shortest distance.

So $d[x] = \delta(s, x)$.

We updated d[y] when we added x to S.

Now we note a *convergence* property:

Let $s \rightsquigarrow x \rightarrow y$ be a shortest path, and $d[x] = \delta(s, x)$.

Then, relaxing the edge (x, y) sets $d[y] = \delta(s, y)$.

Claim 2

$$d[u] \geq \delta(s, u)$$

Proof

Induction on number of times d is updated after initialization.

Base case: Immediately after init, $\forall v, d[v] = \infty$ except d[s] = 0. So the claim holds.

Step: Assume claim for up to k many updates on d.

The value of d[u] is updated when:

- We visit a vertex v and there exists edge (v, u).
- | d[u] > d[v] + w((v, u)).

Claim 2

$$d[u] \geq \delta(s, u)$$

Proof

Induction on number of times d is updated after initialization. **Base case:** Immediately after init, $\forall v, d[v] = \infty$ except d[s] = 0

0. So the claim holds.

Step: Assume claim for up to k many updates on d.

- The value of d[u] is updated when:
 - We visit a vertex v and there exists edge (v, u).
 - | d[u] > d[v] + w((v, u)).

The new d[u] = d[v] + w((v, u)).

The hypothesis holds for vertex $v: d[v] \ge \delta(s, v)$. So:

$$d[u] = d[v] + w((u,v)) \ge \delta(s,v) + w((u,v)) \ge \delta(s,u)$$