STUI	DENT	IDEN	NTIFI(CATIO	ON NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2017/2018 SESSION

BMS2024 - ADVANCED MANAGERIAL STATISTICS

(All Sections / Groups)

17 MARCH 2018 2.30 p.m. – 4.30 p.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 12 pages excluding the cover page.
- 2. This question paper consists of FOUR structured questions. Attempt ALL questions.
- 3. Students are allowed to use non-programmable scientific calculators with no restrictions.
- 4. A formulae list and statistical tables are attached at the end of the question paper.

OUESTION 1

- a) Suppose a pickup and delivery company states that its packages arrive within two days or less on average. You want to find out whether the actual average delivery time is longer than the company's claim. You conduct a hypothesis test.
 - (i) Set up the null and alternative hypotheses.

[3 marks]

- (ii) Suppose you conclude wrongly that the company's statement about average delivery time is within two days. What type of error is being committed and what is the impact of that error? [3 marks]
- (iii) Suppose you conclude wrongly that the delivery company's average time to deliver packages is in fact longer than two days. What type of error did you commit and what is the impact of this error?
 [3 marks]
- (iv) Which error is worse from the company's standpoint; a Type I or a Type II error? Why? [2 marks]
- (v) Which error is worse from a consumer standpoint; a Type I or a Type II error?
 Why? [2 marks]
- b) Determine a Type II error for the following test of hypothesis, given that $\mu_T = 48$, $\sigma = 10$, n = 40. Use $\alpha = 0.05$.

*H*₀: $\mu = 50$ *H*₁: $\mu < 50$

• •

Compute and explain the power of the test.

[12 marks]

[Total: 25 Marks]

Continued...

QUESTION 2

- a) Differentiate between Kruskal-Wallis test and the One-Way Analysis of Variance in terms of their assumptions and the circumstances under which each should be applied. [4 marks]
- b) Explain the similarity and difference between the Wilcoxon rank sum technique and Kruskal-Wallis test. [4 marks]
- c) In an experiment to determine which of three different systems is preferable, the efficiency rate is measured. The data, after coding, are given in the table below. At the 0.05 level of significance, can we conclude that the median efficiency rates for the three systems are the same? Show all steps and workings. [17 marks]

Efficiency Rates

	System	
1	2	3
24.0	23.2	18.4
16.7	19.8	19.1
22.8	18.1	17.3
19.8	17.6	17.3
18.9	20.2	19.7
	17.8	18.9
		18.8
		19.3

[Total: 25 Marks]

Continued...

 X_2

 X_3

QUESTION 3

The business problem facing a real estate developer involves predicting air-conditioner consumption (in kilowatt Hour, kWH) in a particular house. The independent variables considered are atmosphere temperature (°F), X_1 ; the amount of roof insulation (inches), X_2 and the number of storeys in a house, X_3 . Data are collected from a sample of 15 houses. The data are analysed and the summary output of the analysis is shown below:

Regression Statistics				
Multiple R	0.9942			
R Square	0.9884			
Adjusted R	0.9853			
Square				
Standard Error	15.7489			
Observations	15			

ANOVA					
	df	SS	MS	\overline{F}	Significance F
Regression	3	233406.9094	77802.3031	313.6822	0.0000
Residual	11	2728.3200	248.0291		
Total	14	236135.2293			
	Coefficients	Std Error	t Stat	P-value	
Intercept	592.5401	14.3370	41.3295	0.0000	
X_{I}	-5.5251	0.2044	-27.0267	0.0000	

1.4480

8.3584

-14.7623

4.6627

0.0000

0.0007

a) State the multiple linear regression equation for the above data.

-21.3761 38.9727

- [5 marks]
- b) Interpret all the three regression coefficients, b_1 , b_2 and b_3 for the equation in (a). [6 marks]
- c) Compare and interpret the values of the coefficient of determination with the adjusted coefficient of determination. Explain why the values differ. [4 marks]
- d) At the 1 percent level of significance, test if the model is valid. Use the p-value approach.
 [5 marks]
- e) At the 1 percent level of significance, test if each independent variable have a significant contribution to the model. Use the p-value approach. [5 marks]

[Total: 25 Marks]

Continued...

QUESTION 4

In an experiment to determine the effect of nutrition on the attention spans of primary school students, a group of 15 students were randomly selected and assigned to each of three meal plans: no breakfast, light breakfast and full breakfast. Their attention spans (in minutes) were recorded during a morning reading period and are shown in the following table:

No breakfast	Light Breakfast	Full Breakfast
7	14	16
10	17	15
8	16	10
9	11	12
13	12	12

Summary Output

Groups	Count	Sum	Mean	Variance
No breakfast	5	47	9.4	5.3
Light breakfast	5	70	14	6.5
Full breakfast	5	65	13	6.0

ANOVA

Source of Variation	SS	df	MS	F
Among groups	58.53	2	29.265	4.933
Within groups	71.2	12	5.933	
Total	129.73	14		

- a) State the required conditions or assumptions for the ANOVA test to be conducted? [3 marks]
- b) What kind of ANOVA test will be appropriate for this study? What are the dependent variable and the independent variables (factors) that needs to be identified? Conduct an appropriate statistical procedure in testing the difference in the attention spans received by the three sample means? Test at $\alpha = 0.05$.

[12 marks]

c) Conduct the Tukey-Kramer post-hoc test to examine if there is any significant change in the attention spans received by the three sample means. (NB: The value of Ou in the Critical Range formula is 3.77)

[10 marks]

[Total: 25 marks]

End of Paper

STATISTICAL FORMULAE

A. DESCRIPTIVE STATISTICS

Sample Mean =
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 Sample Standard Deviation = $s = \sqrt{\frac{\sum_{i=1}^{n} X_i^2}{n-1} - \frac{\left(\sum_{i=1}^{n} X_i\right)^2}{n(n-1)}}$

where n = number of observations $X_i = the i^{th} observation of the data$

B. HYPOTHESIS TESTING

Types of Error

Type I Error = α = P(Rejecting H₀ | H₀ is true) where, Confidence Interval = 1 - α

Type II Error = β = P(Not Rejecting H₀ | H₀ is false)

One Samp	ole Mean Test
σ Known	σ Unknown
$z = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$	$t = \frac{\overline{x} - \mu}{\sqrt[s]{\sqrt{n}}}$

Two Sample Mean Test

Comparing Means for Two Independent Populations

[Standard Deviation (o) Known]

$$z = \frac{\overline{(x_1 - x_2) - (\mu_1 - \mu_2)}}{\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2}}$$

[Standard Deviation (o) Not Known]

$$t = \frac{\overline{(x_1 - x_2)} - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \binom{1}{n_1} + \frac{1}{n_2}}}$$

where
$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 + n_2 - 2)}$$

Two Sample Mean Test

Comparing Means for Two Paired Populations

Comparing Means for Two Faired Populations
$$t = \frac{\left(\overline{D} - \mu_D\right)}{S_D / \sqrt{n}} \qquad \text{where } \overline{D} = \frac{\sum_{i=1}^n D_i}{n} \quad \text{and } S_D = \sqrt{\frac{\sum_{i=1}^n D_i^2}{n-1} - \frac{\left(\sum_{i=1}^n D_i\right)^2}{n(n-1)}}$$

Non-Parametric Analysis					
Wilcoxon Rank Sum Test	Wilcoxon Signed Rank Sum Test				
$Z = \frac{\left(T_{1} - \mu_{T_{1}}\right)}{\sigma_{T_{1}}}$ where	$Z = \frac{\left(T_{+} - \mu_{T_{+}}\right)}{\sigma_{T_{+}}}$ where				
$\mu_{T1} = \frac{n_1(n+1)}{2} \qquad \text{and} \qquad$	$\mu_{T+} = \frac{n(n+1)}{4} \text{and} $				
$\sigma_{T_1} = \sqrt{\frac{n_1 n_2 (n+1)}{12}}$ where $n = n_1 + n_2$	$\sigma_{T_{+}} = \sqrt{\frac{n(n+1)(2n+1)}{24}}$				

Kruskal-Wallis Rank Test

$$H = \left[\frac{12}{n(n+1)} \sum_{j=1}^{c} \frac{T_j^2}{n_j} \right] - 3(n+1) \text{ where the critical value is } \chi^2 \text{ with } df = c - 1$$

Check ranking sum: $\sum T_j = n(n+1)/2$

Chi-Square Test
$$\chi^2 = \sum_{}^{n} \frac{(O-E)^2}{E}$$
 where $O = Frequency$ of Observed Values and $E = Frequency$ of Expected Values with $df = c - 1$ where $c = number$ of categories or with $df = (r - 1)(c - 1)$ where $r = number$ of rows and $c = number$ of columns

C. ANALYSIS OF VARIANCE (ANOVA)

Source Among Groups	Degrees of Freedom					
TIMONE CIOMPO I	c - 1	SSA	MSA = SSA/c-1	MSA/MSW		
Within Groups	n - c	SSW	MSW = SSW/n-c			
Total	n - I	SST				
$SST = \sum_{j=1}^{c} \sum_{i=1}^{n_{j}} \left(X_{ij} - \overline{X} \right)^{2} \text{ or alternative formula:}$ $SST = \left(\sum_{j=1}^{c} \sum_{i=1}^{n_{i}} X_{ij}^{2} \right) - \frac{\left(\sum_{j=1}^{c} \sum_{i=1}^{n_{i}} X_{ij} \right)^{2}}{n}$ $SSA = \sum_{j=1}^{c} n_{j} \left(\overline{X}_{j} - \overline{X} \right)^{2} \text{ and } SSW = SST - SSA$ $\text{where } n = \text{number of observations, } c = \text{number of groups and } \overline{\overline{X}} = \text{overall mean}$						

6/12

TCH

Tukey-Kramer Procedure

Critical Range =
$$Q_U \sqrt{\frac{MSW}{2} \left[\frac{1}{n_i} + \frac{1}{n_j} \right]}$$

where Q_u = the upper tail critical value from a Studentized Range Distribution having (c) degrees of freedom in the numerator and (n-c) degrees of freedom in the denominator at a given level of significance

Two-Wa	vanova.	Commence of the Commence of th		
Source	Degrees of Freedom	Sum of Squares	Mean Squares	F-statistic
A	r1	SSA	MSA = SSA/(r-1)	MSA / MSE
В	c-1	SSB	MSB = SSB/(c-1)	MSB / MSE
AB	(r-1)(c-1)	SSAB	MSAB = SSAB/(r-1)(c-1)	MSAB / MSE
Error	rc (n -1)	SSE	MSE = SSE/rc(n'-1)	
Total	n-1	SST		

where,

Factor A levels are represented by the rows and Factor B levels are represented by the columns

n = number of observations

 $c = number\ of\ columns$

r = number of rows

n' = number of replicates

$$n' = number of replicates$$

$$SST = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{n} \left(X_{ijk} - \overline{X} \right)^{2}$$

$$SSA = cn \sum_{i=1}^{r} \left(\overline{X}_{i} - \overline{X} \right)^{2}$$

$$SSB = rn \sum_{j=1}^{c} \left(\overline{X}_{j} - \overline{X} \right)^{2}$$
where \overline{X} = overall mean

$$SSB = rn'\sum_{j=1}^{c} \left(\overline{X}j - \overline{\overline{X}}\right)^2$$
 where $\overline{\overline{X}} = overall\ means$

 $SSE = (n'-1)[S_1^2 + S_2^2 + \dots + S_k^2] \quad \text{where } S_i^2 = \text{variance of each block}$

REGRESSION ANALYSIS D.

Multiple Linear Regression

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$ Population Model:

 $y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_k x_k + e$ Sample Model:

Adjusted R-Square = $1 - \left[\frac{(1-R^2)(n-1)}{(n-p-1)} \right]$ where p = number of independent/predictor variables

7/12

ANOVA Table for	Regression		
Source	Degrees of Freedom	Sum of Squares	Mean Squares
Regression	p	SSR	MSR = SSR/p
Error/Residual	n-p-1	SSE	MSE = SSE/(n-p-1)
Total	n-1	SST	

Test Statistic for Significance of the Overall Regression Model F = MSR/MSE

Test Statistic for Significance of Each Predictor Variable

$$t_i = \frac{b_i}{S_{b_i}}$$
 and the critical value = $\pm t_{\alpha/2,(n-p-1)}$

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

The function tabulated is $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-1t^2} dt$. $\Phi(x)$ is

the probability that a random variable, normally distributed with zero mean and unit variance, will be less than or equal to x. When x < 0 use $\Phi(x) = x - \Phi(-x)$, as the normal distribution with zero mean and unit variance is symmetric about zero.

		*									
x	$\Phi(x)$	æ	$\Phi(x)$	æ	$\Phi(x)$	æ	$\Phi(x)$	x	Φ(x)	x	$\Phi(x)$
		0.40	0.6554	0.80	0.7881	1'20	0-8849	1.60	0.9452	2.00	0'97725
0.00	0.2000	•	·6591	·81	7910	.21	·886 ₉	-6x	·9463	.ox	97778
.ox	-5040	·41		·82	7939	.22	-8888	-62	9474	.02	·97831
02	•5080	-42	-6628	83		23	-8907	63	-9484	.03	197882
-03	.2120	. 43 .	·666 _. 4		.7967	.24	-8925	-64	*9495	.04	.07932
-04	-5160	`44	6700	-84.	*7995	44	0923		9-195	•	
		0:45	0.6736	0.85	0.8023	1.25	0.8944	1.62	0,8202	2.05	0.97982
0.02	0.2199	0.45	.6772	·86	·8051	-26	-8962	-66	.9512	-06	98030
-06	-5239	-46	·68o8	.87	8078	.27	-8980	-67	.9525	-07	·98077
.07	-5279	47		·88	-8106	.28	-8997	∙68	9535	∙08	98124
-08	5319	48	·6844	.89	·8133	•29	9015	-69	9545	.09	·98169
.09	5359	'49	-6879	- 09	0133	9	y - ~ _	•			
	215208	0.20	0.6915	0.90	0.8159	1.30	0.0032	x.20	0.9554	2.10	0 98214
0.10	0.5398	.21	-6950	-91	·8186	31	.9049	•7×	·9564	.II	98257
·II	.5438	_	-6985	-92	-8212	-32	მინნ	.72	9573	.13	-08300
·12	·5478	.52		.93	·8238	.33	·9082	.73	-9582	.13	98341
.13	·5517	53	7019		·8264	34	.9099	.74	-959I	'14	-98382
'I 4	·5557	·5 4	7054	⁻ 94	0204	JT	7-77				
	0.5596	0.55	0.7088	0.95	0.8289	1.32	0.9112	x-75	0.9599	2·15	0.98422
0.12	-5636	·56	.7123	.96	·8315	-36	-9131	-76	-9608	16	·98461
·x6		57	71.57	.97	-8340	-37	9147	.77	.961 6	.1 <u>7</u>	-98500
17	.5675		7190	.98	-8365	.38	9162	·78	·9625	·18	-98537
·18	15714	.58		.00	·8389	-39	.9177	79	·9633	61.	98574
.19	.5753	.59	7224	99	0309	Q.y	,				
				1.00	0.8413	140	0.0102	x-80	0.9641	2-20	0.98610
0.30	0.5793	0.60	0.7257		·8438	'4I	-9207	·8x	9649	·2I	-98645
.21	-5832	-6x	7291	.01		·42	9222	.82	-9656	-22	-98679
.22	·5871	-62	•	02	·8461	_	-9236	-83	.9664	.23	.98713
.23	.5910	∙63	7357	-03	8485	.43		.84	·967I	.24	98745
124	-5948	-64	7389	.04	-8508	'44	·9251	04	90/1		• • • •
		0.65	0.7422	1.02	0.8531	1.45	0.9265	x·85	0.9678	2-25	0.98778
0.52	0.5987	-66		06	_ ·	.46	-9279	-86	-9686	. •26	-98809
.26	-6026			.07	·8577	.47	9292	-87	-9693	*27	•98840 <u> </u>
.27		-67		·08		·48	-9306	-88	9699	·28	-98870
.28	_	68			~=	·49		-89	-9706	.29	-98899
•29	-6141	-69	'75 49	.09	1200.	47	93.7	-3	**		0.0
0.00	0.6179	0.20	0.7580	1,10	0.8643	r·50	0.9332	1.90	019713	2.30	0.08028
0.30		71		II.		·51	⁻ 9345	-9x	-9719	.3x	-98956
3x		•	• ,	.12		-52	.9357	.93	19726	-3≈	.98983
32		.72		.13		·53		93	9732	.33	.39010
.33		'73		-	~ ~	·54		.94	•9738	.34	•99036
'34	•6331	74	1 '77°4	•14	0/29	7	, ,,,	,	***		_
0.32	o-6368	0.75	0.7734	1.15	0.8749	x 55		¥ 95	0.9744	2.35	0-9906I
-36		•76		·ré	-8770	-56		.96	9750	'36	• -
.37		•77		·I	-8790	·57	9418	197	9756	.37	
138		-78		·r8		158	19429	.98	9761	-38	_
'39	•	·79		·ro	22	'5 9	19441	-99	-9767	39	199158
0.40		0.80	, ,	1.20	0.8849	x-60	0'9452	2.00	0.9772	2:40	0-99180

TABLE 4. THE NORMAL DISTRIBUTION FUNCTION

æ	$\Psi(x)$	æ	$\Phi(x)$	æ	$\Phi(x)$	x	$\Phi(x)$	æ	$\Phi(x)$	x	$\Phi(x)$
2,40	0.99180	2.55	0.99461	2.70	0.99653	2.85	0.99781	3.00	0.99865	0.77	•
.4I	.00202	·56	99477	·7x	-99664	-86	199788	.01	-gg86g	3.12	0.09918
42	99224	-57	99492	-72	99674	.87	99705			-16	.09921
43	99245	-58	199506	.73	.99683	.88	.00801	.02	·99874	·17	99924
-44	99266							.03	-998 7 8	8x٠	-99926
44	99200	.29	199520	⁻ 74	-99693	.89	.99807	-04	199882	-19	199929
2.45	0.99286	2.60	0.99534	2.75	0199702.	2.90	0.99813	3.02	0.99886	0.50	
46	199305	-6x	99547	.76	99711	.61	.00810	-06		3-20	0.00031
47	99324	62	99560			-			199889	'21	99934
48	99343	-63		.77	99720	.92	.99822	.07	.68863	*22	.99936
			99573	.78	99728	.63	.66831	-08	199896	.53	.09938
•49	·99361	-64	99585	.79	199736	'94	199836	.00	-99900	.24	99940
2.20	0.99379	2.65	0.99598	2.80	0'99744	2.95	0.99841	3.10	0100000		
·51	99396	-6č	199600	-81	-99752	- 95	-99846	-	0.99903	3.25	0.99943
52	99413	67	99621	.82		-		.XX	.99906	•26	. 99944
-					-99760	.97	99851	.12	.99910	.27	199946
:53	99430	-68	-99632	.83	-9976 7	∙98	·99856	• ± 3	.99913	·28	-99948
54	· 9 9446	-69	199643	-84	*99774	*99	199861	·14	*99916	.29	'99950
2.55	0.99461	2.70	0-99653	2.85	0-9978x	3.00	0.99865	3.12	0.99918	3-30	0.99952

The critical table below gives on the left the range of values of x for which $\Phi(x)$ takes the value on the right, correct to the last figure given; in critical cases, take the upper of the two values of $\Phi(x)$ indicated.

3-075	3'262 °'9994	3144 0.00000	3.916 0.99992
3.102 0.0990	3.320 0.9994 3.320 0.9995	3.734 0.99991	3.976 0.99996
3.138 0.0001	3.380 0.0006	3 739 0.99992	3 970 0 99997
3.075 3.105 0.9991 3.138 0.9992 3.174 0.9993 3.215 0.9994	3·389 0·9996 3·480 0·9997	3'73x 0'99990 3'759 0'99992 3'79x 0'99993 3'826 0'99993	4.055 0.99999 4.173 0.99999 4.417 1.00000
3.215 0.0993	3.612 0.9998	3.86m 0.99994	4 173 0.99999
0.9994	3 723 O.0000	3·867 0·99994 0·99995	4.417 1.00000

When x > 3.3 the formula $1 - \Phi(x) = \frac{e^{-ix^3}}{x\sqrt{2\pi}} \left[1 - \frac{1}{x^2} + \frac{3}{x^4} - \frac{15}{x^8} + \frac{105}{x^8} \right]$ is very accurate, with relative error less than $945/x^{16}$.

TABLE 5. PERCENTAGE POINTS OF THE NORMAL DISTRIBUTION

This table gives percentage points x(P) defined by the equation

$$\frac{P}{100} = \frac{\pi}{\sqrt{2\pi}} \int_{x(P)}^{\infty} e^{-\frac{1}{2}t^2} dt.$$

If X is a variable, normally distributed with zero mean and unit variance, P/100 is the probability that $X \ge x(P)$. The lower P per cent points are given by symmetry as -x(P), and the probability that $|X| \ge x(P)$ is 2P/100.

P	$\alpha(P)$	P	x(P)	P	x(P)	P	x(P)	P	x(P)	\boldsymbol{P}	x(P)
50	0.0000	5.0	1-6449	3.0	x-8808	2.0	2.0537	1.0	2-3263	0.10	3.0902
45	0.1257	4.8	1.6646	2.0	1.8957	x-o	2 0749	0.0	2-3656	0.00	3.1514
40	0-2533	4-6	1.6849	2.8	1.0110	∓ ∙8	2.0060	8.0	2.4089	0.08	3.1224
35	∽ 3853	4.4	1.7060	2.7	x-9268	I.2	2.1201	0.7	2.4573	0'07	3.1042
30	0.244	4.5	1-7279	2.6	1.9431	1.6		0.6	2.2121	0.06	3.5389
25	0.6745	4.0	1.7507	2.5	1.0600	I'S	2.1701	0.2	2.5758	0.02	3.2002
20	0.8416	3.8	I.7744	24	1.9774	1.4	•	0.4	2.0221	0.01	3.2100
15	1.0364	3.6	I 7991	2.3	1-9954	X-3	2.2262	0.3	2.7478	0.002	3.8906
ro	1.2816	3.4	1.8250	2.2	2.0141	1.5	2.2571	0.3	2-8782	0.001	4.2640
5	1.6449	3.5	1 8522	2.1	2.0335	I.I	2.2004	0.1	3.0002	0.0002	4°2049

TABLE 8. PERCENTAGE POINTS OF THE x²-DISTRIBUTION

This table gives percentage points $\chi^2_{\nu}(P)$ defined by the equation

$$\frac{P}{100} = \frac{1}{2^{\nu/2} \; \Gamma(\frac{\nu}{2})} \int_{\chi^2_{\nu}(P)}^{\infty} x^{\frac{1}{4}\nu - 1} \; e^{-\frac{1}{4}x} \; dx.$$

If X is a variable distributed as χ^2 with ν degrees of freedom, P/100 is the probability that $X \geqslant \chi^2_{\nu}(P)$.

For $\nu > 100$, $\sqrt{2X}$ is approximately normally distributed with mean $\sqrt{2\nu-1}$ and unit variance.

(The above shape applies for $v \geqslant 3$ only. When v < 3 the mode is at the origin.)

						•					
\boldsymbol{P}	50	40	30	20	10	5	2.2	I	0.2	0.1	0.02
$\nu = \mathbf{I}$	0.4549	0.7083	1.074	1.642	2.706	3.841	5.024	6.635	7.879	10.83	12.12
2	1.386	1.833	2.408	3.219	4.605	5.001	7.378	9.210	10.60	13.82	15.50
3	2.366	2.946	3.665	4.642	6.251	7-815	9.348	11.34	12.84	16.27	17.73
4	3:357	4.045	4.878	5.989	7.779	9.488	11.14	13.28	14.86	18.47	20'00.
			4				_			-	
5	4.321	5.135	6.064	7.289	9 236	11.02	12.83	15.09	16.75	20.25	22.11
6	5.348	6 211	7.231	8.528	10.64	12.29	14.45	16.81	18.22	22.46	24.10
7	6.346	7 283	8-383	9.803	12.02	14.02	16.01	18.48	20 28	24.32	26.02
8	7.344	8-351	9.524	11.03	13.36	12.21	17.53	20.09	21 95	26.13	27.87
. 9	8.343	9.414	10.66	12.24	14.68	16.92	19.02	21.67	23.29	27.88	29.67
10	9.342	10.47	11:78	13.44	15.99	18.31	20.48	23.21	25.19	29.59	31.42
II	10.34	11.53	12.90	14.63	17.28	19.68	21.92	24.72	26.76	31.26	33.14
12	11.34	12-58	14.01	15.81	18.55	21.03	23.34	26.22	28.30	32.01	34.82
13	12.34	13 64	15.12	16.98	19.81	22.36	24.74	27.69	29.82	34'53	36.48
14	13.34	14.69	16.22	18.12	21.06	23.68	26.13	29.14	31.32	36.13	38.11
				#0.4 =		04100	08140	30-58	32.80	37.70	39.72
15	14.34	15.73	17.32	19.31	22.31	25.00	27·49 28·85	32.00	34.27	37 /S 39:25	41·31
16	15.34	16.78	18.42	20·47 21·61	23.24	26·30 27·59	30.10	33.4I	35.72	40·79	42.88
17 18	16.34	17·82 18·87	19·51 20·60	22.76	24·77 25·99	28·87	3x.23	34·81	37.16	42.31	44.43
	17·34 18·34	10.01	21.69	23 90	27·20	30.14	32·85	36.10	38.28	43.82	45'97
19	** 34	19 91	21.09	43 90	4, 40	24 -4	34 -3	. 50 - 7	5-5-	1,0	15 71
20	19.34	20.95	.22.77	25 04	28.41	31.41	34.17	37.57	40.00	45.31	47.50
21	20.34	21.99	23.86	26.17	29.62	32.67	35.48	38.93	41.40	46.80	49.01
22	21.34	23.03	24.94	27:30		33.92	36.78	40.29	42.80	48.27	50.21
23	22:34	24.07	26.02	28 43	32.01	35.17	38.08	41.64	44 18	49.73	52.00
24	23.34	25.11	27.10	29.55	33.30	36.42	39.36	42.98	45.26	21.18	53 48
25	24:34	26.14	28.17	30.68	34.38	37.65	40.65	44.31	46-93	52.62	54.95
26	25°34	27.18	29.25	31.79	35.26	38.89	41.02	45.64	48.29	54.05	56.41
27	26·34	28.21	30.32	32.01	36.74	40.11	43.19	46.96	49.64	55.48	57.86
28	27°34	29.25	31.30	34.03	37.92	41.34	44.46	48.28	50.99	56.89	59.30
29	28·34	30.28	32.46	35.14	39.09	42.56	45.72	49.59	52.34	58.30	60.73
	51	•	•				•				
30	29.34	31.32	33.23	36.25	40:26	43.77	46.98	50.89	53.67	59.70	62.16
32	31.34	33.38	35.66	38.47	42.58	46.19	49.48	53.49	56.33	62.49	65.00
34	33.34	35 ⁻ 44	37.80	40.68	44.90	48.60	51.97	56.06	58.96	65.25	67:80
36	35.34	37.50	39.92	42 88	47.21	21.00	54 44	58.62	61.28	67.99	70.59
38	37.34	39.56	42.05	45.08	49.21	53.38	56.90	61.16	64.18	70.70	73:35
40	39:34	41.62	44·16	47:27	51.81	55.76	59*34	63.69	66-77	73:40	76.09
40 50	39 34 49:33	51·8g	54.72	58.16	63.17	67.50	71.42	76.15	79:49	86.66	89.56
60	59·33	62.13	65.23	68.97	74.40	79.08	83.30	88.38	91.95	99.61	102.7
70	69.33	72.36	75.69	79.71	85.53	90.53	95.02	100.4	104.5	112.3	115.6
% 80	79:33	82·57	86.15	90.4I	96.58	101.0	106.6	112.3	116.3	124.8	128.3
-	17 33	57		,	, , J-			•		•	-
90	89.33	92.76	96.52	IOI.I	107.6	113.1	118.1	124'1	128-3	137:2	140.8
100	99.33	102.9	106.9	111.7	118.5	124.3	129.6	135.8	140.5	149.4	153.2
			<u> </u>							····	

TABLE 12(b). 5 PER CENT POINTS OF THE F-DISTRIBUTION

If $F=\frac{X_1}{\nu_1}\Big/\frac{X_2}{\nu_2}$, where X_1 and X_2 are independent random variables distributed as χ^2 with ν_1 and ν_2 degrees of freedom respectively, then the probabilities that $F\geqslant F(P)$ and that $F\leqslant F'(P)$ are both equal to P/roo. Linear interpolation in ν_1 and ν_2 will generally be sufficiently accurate except when either $\nu_1>12$ or $\nu_2>40$, when harmonic interpolation should be used.

(This shape applies only when $\nu_1\geqslant 3.$ When $\nu_1<3$ the mode is at the origin.)

$\nu_1 =$	1	2	3	4	5	6	7	8	IO	12	24	00
$\nu_2 = 1$	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	241'9	243'9	249·1	254*3
2	18.51	10.00	19.16	19:25	19.30	19.33	19.35	19.37	19.40	19.41	19:45	19.50
3	10.13	9.552	9.277	9.117	9.013	8.941	8.887	8.845	8-786	8.745	8.639	8.526
4	7.709	6.944	6-501	6.388	6.256	6.163	6.094	6.041	5-964	5.912	5.774	5.628
•	• • •			•	-	_	• •	-				_
5	6-608	5.786	5.400	5.192	5.020	4.950	4.876	4.818	4.735	4.678	4'527	4.362
6	5.987	5.143	4.757	4'534	4.387	4.584	4.207	4'147	4-060	4.000	3.841	3.669
7	5.29I	4.737	4-347	4.130	3.972	3-866	3.787	3.726	3.637	3.575	3.410	3.230
8	5.318	4.459	4.066	3.838	3·687	3.281	3.200	3.438	3.347	3.284	3.112	2.928
9	5.117	4.256	3-863	3.633	3.482	3'374	3,593	3.530	3.137	3.023	2.900	2.707
									_			_
IO	4 965	4.103	3.708	3.478	3.326	3.212	3.132	3.02	2.978	2.913	2.737	2.238
II	4.844	3-982	3.587	3.357	3.304	3.092	3.015	2-948	2.854	2.788	2.609	2.404
12	4.747	3.885	3.490	3.259	3.100	2.996	2.913	2.849	2.753	2.687	2.202	2.296
13	4.667	3-806	3.411	3.179	3.022	2.012	2 832	2.767	2.671	2.604	2.420	2.206
14	4.600	3.739	3.344	3.115	2.958	2.848	2.764	2.699	2.602	2-534	2*349	2.131
				_						•		
15	4 543	3.682	3.287	3 056	2.901	2.790	2.707	2.641	~ *544	2.475	2.288	2-066
16	4.494	3.634	3.539	3 007	2.852	2.741	2.657	5,201	2.494	2:425	2.235	2.010
17	4 45 I	3.292	3.197	2.965	2.810	2.699	2.614	2.248	2.450	2.381	2.100	1.960
18	4.414	3.222	3,160	5.058	2.773	2.661	2.577	2.210	2.412	2.342	2.120	1.917
19	4.381	3:522	3.127	2.895	2.740	2.628	2.244	2:477	2:378	2.308	2.114	1.878
			0	- 966					0	0		0
20	4 35 I	3.493	3.008	2.866	2.711	2.599	2.214	2.447	2.348	2.278	2.082	1·843 1·812
21	4.322	3.467	3.025	2.840	2.685	2.573	2.488	2.420	2.321	2.250	2.054	1.912
22	4 301	3.443	3.040	2 817	2.661	2.249	2 464	2.397	2.297	2.226	2.028	
23	4.279	3.422	3.028	2.796	2.640	2.228	2 442	2.375	2.275	2 204	2.002	1.757
24	4 260	3.403	3.000	2.776	2.621	2.208	2.423	2.355	2-255	2.183	1.984	1.733
	4.242	3.385	2.991	2.759	2.603	2.490	2-405	2:337	2.236	2.165	1.064	1.711
25 26	4.222	3,369	2.075	2.743	2.587	2.474	2.388	2.351	2,220	2'148	1.946	1.601
27	4.210	3.324	- 2,960	2.728	2:572	2.459	2.373	2.305	2.204	2.133	1.030	1.672
28	4 196	3.340	2'947	2.714	2.228	2.445	2.359	2.301	2.100	2.118	1.012	1.654
20	4 183	3.328	2.934	2.701	2.242	2.432	2.346	2.278	2.177	2.104	1.001	1.638
29	4 103	3 320	~ 93 4	4 /01	~ 373	~ 73~	4 340	,-	//		- 9	3-
30	4'171	3-316	2.022	2.690	2:534	2'421	2.334	2.266	2.162	2.002	1 887	1.622
32	4.149	3.295	2.901	2.668	2.212	2.399	2,313	2.244	2.142	2.070	1.864	1.594
34	4.130	3.276	2-883	2.650	2.494	2.380	2.294	2.225	2.123	2.050	x 843	1.569
36	4.113	3.259	2.866	2.634	2.477	2.364	2.277	2.200	2.106	2.033	1.824	1.247
38	4.098	3*245	2.852	2.619	2.463	2.349	2-262	2.194	2.091	2.017	x-808	1.527
3-	4 - 72	J - 1J	•	,		,			•	•		
40	4.085	3.232	2.839	2.606	2.449	2.336	2.249	2.180	2.077	2.003	1.793	1.200
6o	4.001	3.120	2.758	2.222	2.368	2.254	2.167	2.097	1.993	1.917	1.700	1.380
120	3.020	3.072	2·680	2'447	2.290	2.175	2.087	2.016	1,010	1.834	1.608	1.254
00	3.841	2.996	2.605	2.372	2.214	2.099	2.010	1.938	1.831	1.752	1.217	1.000
-			•		•				-			