Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu^{†*} Yutong Lin^{†*} Yue Cao^{*} Han Hu^{*‡} Yixuan Wei[†] Zheng Zhang Stephen Lin Baining Guo Microsoft Research Asia

Members: Jongmin-Woo, Bongwon-Jang, Chanhyun-Jung

INDEX

1. Each Members' Task

2. Simple summary of Swin

3. Method

4 Experiments

1. Each Members' Task

Jongmin-Woo: Paper Review

Speech

Bongwon-Jang: Code Review

Speech

Changhyung-Jeong: Write Jupyter

Notebook & Run Experiment

2. Simple Summary of Swin

Linear Computational Complexity by Image Size

Use Shifted Window, Self Attention

Achieve better accuracy-time tradeoff

Make General Purpose Backbone. (for classification, object detection, segmentation ...)

2. Simple Summary

Merge Related Works' merit

CNN

Good at find local feature

Transformer-Attention

Good at find distant dependency

+ Shifted Windows

3. Method – Window to patch. To token

• First. Split RGB image into non-overlapping patches

patch

Token projected arbitrary dimension denoted as C

3. Method – Token to Arbitrary dimension

Token length: Patch height x Patch width x Channels

FeatureFeatureFeatureFeatureFeatureFeatureFeature

Projected dimension Size : C

3. Method – Patch merging layer

Concat 2x2 Neighboring patches.

featuresfeaturesfeaturesfeaturesfeaturesfeatures

featuresfeaturesfeaturesfeaturesfeaturesfeatures

featuresfeaturesfeaturesfeaturesfeaturesfeatures

featuresfeaturesfeaturesfeaturesfeaturesfeatures

Patch Merging

Merged Patch's Length: 4C

PreviousFeatures.....PreviousFeatures

Down sampling

2C Dimensional Features

FeaturesFeaturesFeatures

Length: 2C

3. Method – Swin Transformer blocks

3. Method – Swin Transformer blocks

2C Dimensional Features

FeaturesFeaturesFeaturesFeaturesFeaturesFeatures

3. Method – stage name at Repeating

Input image (H x W)

3. Method - Repeat

(b) Two Successive Swin Transformer Blocks

3. Method – problem of global self attention (computational complexity)

Input feature's shape: (h, w, C)

QKV	QK ^T	Softmax(QK ^T) • V	Attention value
input Projection matrix (hw x C) • (C x C)	$Q \qquad K^{T}$ (hw x C) • (C x hw)	QK ^T V (hw x hw) \cdot (hw x C)	QK ^T V \rightarrow projection matrix (hw x C) · (C x C)
Shape : (hw x C)	Shape : (hw x hw)	Shape : (hw x C)	Shape : (hw x C)
$\Omega(\text{step1}): 3 * (hw)C^2$	$\Omega(\text{step2})$: $(\text{hw})^2C$	$\Omega(\text{step3})$: $(\text{hw})^2C$	$\Omega(\text{step4})$: (hw) C^2

Total computational Complexity (summation of all step)

→ $\Omega(MSA)$: 3(hw)C² + (hw)²C + (hw)²C + (hw)C²

 $\Omega(MSA)$: 4(hw)C² + 2(hw)²C

3. Method – Non-overlapped Windows

If patch size is M x M.
The number ov patches: h/M x w/M

Q K V	QK ^T	Softmax(QK ^T) · V	Attention value
input Projection matrix $(M^2 \times C) \cdot (C \times C)$	Q K^T ($M^2 \times C$) · ($C \times M^2$)	QK^{T} V $(M^{2} \times M^{2}) \cdot (M^{2} \times C)$	QK ^T V \rightarrow projection matrix (M ² x C) · (C x C)
Shape : (M² x C)	Shape: $(M^2 \times M^2)$	Shape : (M² x C)	Shape : (M² x C)
Ω(step1) : (h/M * w/M) * 3 * (M ²)C ² = 3 * hwC ²	Ω(step2): (h/M * w/M) * ((M ²) ²)C =hw* M ² C	Ω(step3): (h/M * w/M) * ((M ²) ²) C =hw* M ² C	Ω(step4): (h/M * w/M) * M ² C ² =hwC ²

Total computational Complexity (summation of all step) $\rightarrow \Omega(MSA)$: 3 * hwC² + hw* M²C + hw* M²C + hwC² $\Omega(MSA)$: 4(hw)C² + 2M²(hw)C

3. Method – Cyclic Shift

Lack of connection between Windows

Originally this regions are not adjacent. This region's features must not be globalized.

3. Method – Architecture Variants

Token length

Stage {1, 2, 3, 4} layer repeat number

- Swin-T: C = 96, layer numbers = $\{2, 2, 6, 2\}$
- Swin-S: C = 96, layer numbers = $\{2, 2, 18, 2\}$
- Swin-B: C = 128, layer numbers = $\{2, 2, 18, 2\}$
- Swin-L: C = 192, layer numbers = $\{2, 2, 18, 2\}$

4. Experiments

Dataset : ImageNet-1K

Task: Classification

(a) Regular ImageNet-1K trained models								
		#param.			ImageNet			
RegNetY-4G [48]	224^{2}	21M	4.0G	1156.7	80.0			
RegNetY-8G [48]	224 ²	39M	8.0G	591.6	81.7			
RegNetY-16G [48]	224 ²	84M	16.0G	334.7	82.9			
EffNet-B3 [58]	300^{2}	12M	1.8G	732.1	81.6			
EffNet-B4 [58]	380^{2}	19M	4.2G	349.4	82.9			
EffNet-B5 [58]	456 ²	30M	9.9G	169.1	83.6			
EffNet-B6 [58]	528 ²	43M	19.0G	96.9	84.0			
EffNet-B7 [58]	600^{2}	66M	37.0G	55.1	84.3			
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	77.9			
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	76.5			
DeiT-S [63]	224 ²	22M	4.6G	940.4	79.8			
DeiT-B [63]	224 ²	86M	17.5G	292.3	81.8			
DeiT-B [63]	384 ²	86M	55.4G	85.9	83.1			
Swin-T	224^{2}	29M	4.5G	755.2	81.3			
Swin-S	224 ²	50M	8.7G	436.9	83.0			
Swin-B	224 ²	88M	15.4G	278.1	83.5			
Swin-B	384 ²	88M	47.0G	84.7	84.5			
(b) ImageNet-22K pre-trained models								
method	image size	#param.	FLOPs	throughput (image / s)				

method	image #param.		FI OPe	throughput		
size		πparaiii.	TLOIS	(image / s)	top-1 acc.	
R-101x3 [38]	384 ²	388M	204.6G	-	84.4	
R-152x4 [38]	$ 480^{2} $	937M	840.5G	-	85.4	
ViT-B/16 [20]	384 ²	86M	55.4G	85.9	84.0	
ViT-L/16 [20]	384 ²	307M	190.7G	27.3	85.2	
Swin-B	224 ²	88M	15.4G	278.1	85.2	
Swin-B	384 ²	88M	47.0G	84.7	86.4	
Swin-L	384 ²	197M	103.9G	42.1	87.3	

Table 1. Comparison of different backbones on ImageNet-1K classification. Throughput is measured using the GitHub repository of [68] and a V100 GPU, following [63].

4. Experiments

Dataset: COCO

Task: Object Detection

(a) Various frameworks									
Method	Backbone	AP ^{box}	AP ₅₀ ^{box}	AP ₇₅	#param.	FLOPs	FPS		
Cascade	R-50	46.3	64.3	50.5	82M	739G	18.0		
Mask R-CNN	Swin-T	50.5	69.3	54.9	86M	745G	15.3		
ATSS	R-50	43.5	61.9	47.0	32M	205G	28.3		
AISS	Swin-T	47.2	66.5	51.3	36M	215G	22.3		
PanPoints V2	R-50	46.5	64.6	50.3	42M	274G	13.6		
RepPointsV2	Swin-T	50.0	68.5	54.2	45M	283G	12.0		
Sparse	R-50	44.5	63.4	48.2	106M	166G	21.0		
R-CNN	Swin-T	47.9	67.3	52.3	110M	172G	18.4		
(b) Various backbones w. Cascade Mask R-CNN									
AP ^{box} AP ^{box} ₅₀ AP ^{box} ₇₅ AP ^{mask} AP ^{mask} ₅₀ AP ^{mask} ₇₅ paramFLOPsFPS									

46.3 64.3 50.5 43.4 82M 739G 18.0 50.5 69.3 54.9 **43.7 66.6 47.1** 86M 745G 15.3 X101-32 48.1 66.5 52.4 45.2 101M 819G 12.8 Swin-S 51.8 70.4 56.3 48.5 107M 838G 12.0 X101-64 48.3 66.4 52.3 140M 972G 10.4 45.0 68.4 48.7 145M 982G 11.6

(c) System-level Comparison

Swin-B 51.9 70.9 56.5

Method	mini-val			t-dev	#======	EI ODe	
Method	AP ^{box}	AP ^{mask}	AP ^{box}	AP^{mask}	#param.	FLOFS	
RepPointsV2* [12]	-	-	52.1	-	-	-	
GCNet* [7]	51.8	44.7	52.3	45.4	-	1041G	
RelationNet++* [13]	-	-	52.7	-	-	-	
SpineNet-190 [21]	52.6	-	52.8	-	164M	1885G	
ResNeSt-200* [78]	52.5	-	53.3	47.1	-	-	
EfficientDet-D7 [59]	54.4	-	55.1	-	77M	410G	
DetectoRS* [46]	-	-	55.7	48.5	-	-	
YOLOv4 P7* [4]	-	-	55.8	-	-	-	
Copy-paste [26]	55.9	47.2	56.0	47.4	185M	1440G	
X101-64 (HTC++)	52.3	46.0	-	-	155M	1033G	
Swin-B (HTC++)	56.4	49.1	-	-	160M	1043G	
Swin-L (HTC++)	57.1	49.5	57.7	50.2	284M	1470G	
Swin-L (HTC++)*	58.0	50.4	58.7	51.1	284M	-	
Table 2 Desults on C	000	alada ar d		and 1			

Table 2. Results on COCO object detection and instance segmentation. †denotes that additional decovolution layers are used to produce hierarchical feature maps. * indicates multi-scale testing.

4. Experiments – Execution Time.

method	MSA	Arch. (FPS)					
method	S 1	S2	S 3	S 4	T	S	В
sliding window (naive)	122.5	38.3	12.1	7.6	183	109	77
sliding window (kernel)	7.6	4.7	2.7	1.8	488	283	187
Performer [14]	4.8	2.8	1.8	1.5	638	370	241
window (w/o shifting)	2.8	1.7	1.2	0.9	770	444	280
shifted window (padding)	3.3	2.3	1.9	2.2	670	371	236
shifted window (cyclic)	3.0	1.9	1.3	1.0	755	437	278

Table 5. Real speed of different self-attention computation methods and implementations on a V100 GPU.