Topic: Iterative methods: Gauss – Seidel (linear); successive substitution, Newton-Raphson-(non-linear)

Read: Chapter 12: 12.1 (omit 12.1.3) 12.2.

Remember to press Cntl C if your computer becomes unresponsive

Handwork problems:

HW 6_1 Before you begin, verify if this system will converge for Gauss-Seidel method. If yes, explain why you think so. If not, rearrange to take the system to a form so that convergence is assured.

$$\begin{array}{c} 10c_1+2c_2-c_3=27\\ \text{System:} & c_1+c_2+5c_3=-21\\ -3c_1-6c_2+2c_3=-60 \end{array}$$

Finally, solve using Gauss-Seidel to $e_s = 5\%$.

HW6_2 Solve the system of equations at right using the Newton-Raphson method. Start with x = 1.2 and y = 1 and use es = 0.5%. Show your work & describe your steps. Use Cramer's rule to solve the Jacobian equation.

$$x^2 + y - x = 0.75$$
$$x^2 - y^2 = 5xy$$

Coding problems:

HW6_3 For a system of nine interconnected tanks (shown at right), the mass-balance equations are:

$$r_{01}c_{01} + r_{41}c_{4} = (r_{12} + r_{15})c_{1}$$

$$r_{02}c_{02} + r_{12}c_{1} + r_{52}c_{5} = (r_{23} + r_{26})c_{2}$$

$$r_{03}c_{03} + r_{23}c_{2} = r_{36}c_{3}$$

$$r_{04}c_{04} + r_{74}c_{7} = (r_{41} + r_{48} + r_{45})c_{4}$$

$$r_{15}c_{1} + r_{45}c_{4} = (r_{52} + r_{58} + r_{59})c_{5}$$

$$r_{06}c_{06} + r_{26}c_{2} + r_{36}c_{3} = r_{69}c_{6}$$

$$r_{07}c_{07} + r_{87}c_{8} = r_{74}c_{7}$$

$$r_{08}c_{08} + r_{58}c_{5} + r_{48}c_{4} = (r_{87} + r_{89})c_{8}$$

$$r_{59}c_{5} + r_{69}c_{6} + r_{89}c_{8} = rc_{9}$$

The concentration of chemical inflow into tank T_i is designated c_i and the initial concentration in tank T_i is designated c_{0i} . The flow rate from tank T_i to T_j is designated r_{ij} . Furthermore, the total flow into each tank must equal the flow out, r (from tank 9).

Given initial concentrations:

$$c_{01}=1$$
, $c_{02}=2$, $c_{03}=1$, $c_{04}=2$, $c_{06}=1$, $c_{07}=1$ and $c_{08}=1$, in g/L

given flow rate between tanks:

$$r_{12}=6$$
, $r_{15}=2$, $r_{23}=5$, $r_{26}=5$, $r_{36}=8$, $r_{41}=5$, $r_{45}=1$, $r_{48}=1$, $r_{52}=1$, $r_{58}=2$, $r_{59}=1$, $r_{69}=15$, $r_{74}=4$, $r_{87}=2$, $r_{89}=3$, in L/min and given external flow rates (i.e., inflow into the tanks from outside):

$$r_{01}=3$$
, $r_{02}=3$, $r_{03}=3$, $r_{04}=3$, $r_{06}=2$, $r_{07}=2$, $r_{08}=3$, in L/min

Note:
$$r = r_{01} + r_{02} + r_{03} + r_{04} + r_{06} + r_{07} + r_{08}$$

With these given parameters we can solve for the concentrations in the tanks. Write a MATLAB script to solve for these concentrations using Gauss-Seidel, to an accuracy of 5 sig figs. Use fprintf statement to print the final answer.

HW6_4: Write code to solve the following system of equations using the Newton-Raphson method.

Let x = 1, y = 1, z = 1 for starting guesses and determine the solution to 4 sig figs. Display the final answers on screen using an fprintf statement.

$$f(x,y,z) = x^3 - 10x + y - z = -3$$

$$g(x,y,z) = y^3 + 10y - 2x - 2z = 5$$

$$h(x,y,z) = x + y - 10z + 2\sin(z) = -5$$