O problema da elaboração de grade de horários: estudo de caso em uma Universidade brasileira

Rodrigo Leppaus de Araujo

Graduando do Curso de Bacharelado em Matemática, CEUNES, UFES 29930-000, São Mateus, ES E-mail: lemao.ara@hotmail.com

Leonardo Delarmelina Secchin

Departamento de Matemática Aplicada, CEUNES, UFES 29930-000, São Mateus, ES E-mail: lsecchin@ceunes.ufes.br

Palavras-chave: problema de horários, programação inteira, branch-and-cut, timetabling.

Resumo: O problema da elaboração de grade de horários (timetabling problem) é objeto de vasto estudo. É frequente na literatura a abordagem via programação inteira para sua resolução. Neste trabalho, estudamos o problema de grade de horários escolares no Departamento de Matemática Aplicada da UFES. Modelamos o problema no contexto da programação inteira, baseado no trabalho de MirHassani [4], de forma a balancear fidelidade à realidade e eficiência computacional na resolução. Um método clássico branch-and-cut foi utilizado na resolução. Testes mostram que a estratégia desenvolvida é adequada e pode ser utilizada na prática mediante pequenas modificações.

1 Introdução

O problema da elaboração de grade de horários (timetabling problem) - PGH - consiste, no contexto escolar, no escalonamento de um conjunto de disciplinas entre professores e salas de aula, durante um período de tempo pré-definido. É objeto de estudo de vários autores. Dentre eles, MirHassani [4] relata o problema na Faculdade de Matemática da Universidade de Tecnologia de Sharood, no Irã, onde um modelo de programação inteira é proposto. Tais modelos são frequentes na descrição do problema (outro exemplo interessante é o trabalho de Daskalaski e Birbas [2]). MirHassani propõe uma formulação simplificada e eficiente do ponto de vista computacional, já que algumas formulações de programação inteira requerem muito esforço computacional em sua resolução, por se tratar de um problema NP-difícil [4].

Várias técnicas foram utilizadas na resolução do PGH. Dentre elas, Simulating annealing, Busca Tabu, relaxação Lagrangeana e o método de Geração de Colunas. Para uma referenciação adequada, consulte [4, 1]. Em nossa abordagem, utilizamos um algoritmo *Branch-and-cut* para programação inteira.

Nossa proposta é contextualizar o problema à realidade do Departamento de Matemática Aplicada (DMA) da Universidade Federal do Espírito Santo. Com base no trabalho de MirHassani [4], utilizamos um modelo de programação inteira, propondo a adição de novas restrições e variáveis.

2 Testes computacionais

No trabalho de MirHassani [4], questões como a distribuição balanceada de carga horária entre os docentes, e a condensação de horários (diminuição das horas vagas entre aulas) não são contempladas. É de se observar que tais questões são fundamentais na realidade analisada. Propomos então a inserção de novas variáveis e restrições no modelo. Com basicamente duas simples novas restrições, o problema da distribuição de carga horária foi contornado, sem aumento significativo no tempo computacional em relação ao modelo original de MirHassani. O problema da condensação dos horários foi amenizado com a adição de restrições que impediam certos horários ocorrerem simultaneamente. Neste ponto, precisamos balancear o número desses impedimentos com a eficiência na resolução.

Os dados colhidos no DMA, e utilizados na simulação, têm as seguintes características, referentes ao semestre letivo 2012/1:

Descrição	Quantidade
Disciplina	46
Sala	20
Professor Efetivo em exercício	16
Professor Substituto	3

Tabela 1: Características dos dados coletados.

Das 20 salas de aula, 16 são salas de aula normal, 2 laboratórios de informática, 1 laboratório de matemática e 1 laboratório de ensino. Os 16 professores do quadro efetivo em exercício estavam disponíveis para aulas, chefia de Departamento e duas coordenações de cursos. Quase a totalidade dos professores disponíveis podiam ministrar aulas em qualquer horário da semana, a menos dos horários da reunião departamental.

Utilizamos nos testes um computador Intel Core 2 Quad 2.33 GHz, 2Gb de memória RAM e sistema operacional GNU/Linux 64 bits. O modelo, construído com auxílio da ferramenta ZIMPL [3], foi resolvido utilizando o IBM CPLEX 12.4. Realizamos testes trocando algumas restrições por outras equivalentes, de modo a avaliar o desempenho computacional nas diferentes configurações. Sem especificar aqui quais restrições, apresentamos os dados globais dos testes na Tabela 2.

Descrição	Teste 1	Teste 2	Teste 3	Teste 4
Número de variáveis	34.089	34.089	34.089	34.089
Número de restrições	4.464	4.464	4.464	4.464
Elementos não nulos	343.291	375.371	371.123	339.043
Tempo da resolução	152.06 sec	161.95 sec	175.56 sec	78.20 sec

Tabela 2: Testes computacionais

Observamos que o número de restrições e variáveis em todos os testes são os mesmos. No entanto, o número de elementos não nulos na matriz das restrições do problema varia. Nota-se que o Teste 4 tem melhores resultados, e é o de menor número de elementos não nulos. O melhor desempenho do Teste 4 deve-se, a nosso ver, principalmente às restrições desse tipo

$$\sum_{i=1}^{n} y_i = 1,\tag{1}$$

onde $y_i \in \{0,1\}$ para todo i: existem ramificações computacionalmente eficientes sobre restrições do tipo (veja o tópico Generalized Upper Bound em [5]).

3 Discussão e Conclusões

Diante dos testes e tendo em vista a realidade do Departamento de Matemática Aplicada da UFES, nossa adaptação do modelo proposto por MirHassani [4] apresenta-se como uma boa alternativa ao trabalho manual que hoje é empregado. Em relação ao trabalho de MirHassani, avançamos no equilíbrio da carga horária entre os docentes e na condensação dos horários de cada professor.

No entanto, uma limitação em nosso trabalho é que consideramos somente disciplinas de cargas horárias 30, 60 e 90 horas, que podem ser divididas em janelas de 2 horas na semana. Disciplinas de 45 e 75 horas não foram contempladas. Para tanto, devemos considerar janelas de tempo de diferentes tamanhos, e logo, a quantidade de variáveis e complexidade das restrições aumenta.

Outra questão é que não tratamos da alocação de salas de aula. O artigo proposto por Daskalaki e Birbas [2] propõe uma maneira interessante de contornar essa questão. Os autores resolvem o problema em duas fases. A primeira é similar ao presente trabalho, ou seja, aloca disciplinas para os professores e estabelece os horários das mesmas, levando em consideração somente a capacidade total de espaço físico. A segunda fase cuida da alocação de salas, onde tenta-se minimizar, dentre outras coisas, a variedade de salas de aula que uma mesma turma usa. É relatado neste trabalho que esta segunda fase é de fácil resolução frente à primeira. Acreditamos, portanto, ser fácil o uso dessa técnica em nossa proposta.

Referências Bibliográficas

- [1] E.K. Burke, S. Petrovic, Recent research directions in automated timetabling. *European Journal of Operational Research*, 140 (2002), 266-280.
- [2] S. Daskalaki, T. Birbas, Efficient solutions for a university timetabling problem through integer programming. *European Journal of Operational Research*, 160 (2005), 106-120.
- [3] T. Koch, "ZIMPL User Guide 3.2.0", 2011.
- [4] S.A. MirHassani, A computational approach to enhancing course timetabling with integer programming, *Applied Mathematics and Computation*, 175 (2006), 814-822.
- [5] L.A. Wolsey, "Integer Programming", Series in Discrete Mathematics and Optimization, John Wiley & Sons, 1998.