CLASIFICADOR DE RAZAS DE PERROS

VISION TRANSFORMER & TRANSFER LEARNING DE RED NEURONAL CONVOLUCIONAL

Jose Luis Tavera

Universidad de los Andes

Abril 9, 2024

Tabla de Contenidos

- Problema y Relevancia
 - Problema
 - Relevancia
- Revisión de Literatura
 - Breakthrough Conventional Based Approach for Dog Breed Classification Using CNN with Transfer Learning
 - Dog Breed Classification Using CNN
 - Exploring Vision Transformers for Fine-grained Classification
- Opening the state of the sta
- Plan de Trabajo
- Resultados Esperados

Problema y Relevancia

Problema

Desde la aparición de las redes neuronales convolucionales y otros métodos de aprendizaje profundo para la detección de imágenes, uno de sus principales objetivos ha sido la clasificación de seres vivos, abarcando desde plantas hasta animales. Esto se debe a los múltiples casos de uso que tienen en la protección y preservación de estas especies.

Relevancia

Según el informe de la American Humane Association del año 2022, solo en los Estados Unidos hay más de 135 millones de perros y gatos como mascotas. Alarmantemente, más de un tercio de estos animales se pierden durante su vida, y el 80% de ellos nunca logra ser encontrado.

Breakthrough Conventional Based Approach for Dog Breed Classification Using CNN with Transfer Learning

Autores

Punyanuch Borwarnginn, Kittikhun Thongkanchorn, Sarattha Kanchanapreechakorn, Worapan Kusakunniran

Dataset

El conjunto de datos de perros con partes de Columbia, que contiene 8,351 imágenes de perros de 133 razas.

Método

- Enfoques basados en métodos convencionales: Patrón binario local (LBP), Histograma de gradientes orientados (HOG).
- ② Enfoque basado en aprendizaje profundo: Redes neuronales convolucionales (CNN) con transfer learning (utilizando la red Inception V3).

Breakthrough Conventional Based Approach for Dog Breed Classification Using CNN with Transfer Learning

Resultados

- El modelo CNN reentrenado logró una precisión del 96.75% en la clasificación de razas de perros.
- 2 Los métodos convencionales como HOG lograron una precisión del 79.25%.
- Section La CNN con transfer learning superó a los métodos convencionales.
- 4 La evaluación se extendió a 133 razas utilizando InceptionV3, MobileNetV2 y NASNet, logrando tasas de precisión de hasta el 91%.

Dog Breed Classification Using CNN

Autores

Sandra Varghese y Remya S Departamento de Ingeniería Informática y de Ingeniería, Colegio de Ingeniería Saintgits Kottukulam Hills, Pathamuttom, Kottayam, India

Dataset

No se especifica un dataset específico, pero se menciona el uso de imágenes de perros para entrenar y probar el modelo de clasificación de razas de perros.

Método

- Utilización de una Convolutional Neural Network (CNN) para clasificar diferentes razas de perros.
- 2 Empleo de estrategias innovadoras en deep learning, incluyendo redes neuronales convolucionales y transfer learning.

Dog Breed Classification Using CNN

Resultados

- El modelo de CNN propuesto logra una precisión del 93.53% y 90.86% en dos datasets diferentes.
- 2 La transferencia de aprendizaje (transfer learning) se utiliza para mejorar la precisión del modelo.
- Se discute que la CNN reentrenada supera significativamente a construir el modelo desde cero.
- Se plantean mejoras potenciales, como el uso de más datos, ajuste del modelo y aumento de datos para mejorar la precisión del modelo de clasificación de razas de perros.

Exploring Vision Transformers for Fine-grained Classification

Autores

Marcos V. Conde (Universidad de Valladolid) & Kerem Turgutlu (University of San Francisco)

Dataset

Utilizan varios datasets de fine grained models entre esos el Stanford Dogs con 120 clases, 12,000 imágenes en entrenamiento y 8,580 imágenes de prueba

Método

- Se utilizó un enfoque basado en Vision Transformers (ViT) para la clasificación de imágenes detalladas.
- ② Se propuso un marco multi-escenario multi-escala que utiliza ViT para localizar y reconocer regiones informativas en las imágenes.
- 3 Se hizo data augmentation para mejorar las capacidades del modelo.

Exploring Vision Transformers for Fine-grained Classification

Resultados

Método	Backbone	Precisión (%)
MaxEnt [5]	DenseNet-161	83.6
FDL [REF]	DenseNet-161	84.9
RA-CNN [6]	VGG-19	87.3
Cross-X [15]	ResNet-50	88.9
API-Net [26]	ResNet-101	90.3
ViT [4]	ViT-B/16	91.7
Ours	ViT-B/16	93.2

Stanford Dogs Dataset

Descripción

El conjunto de datos Stanford Dogs contiene imágenes de 120 razas de perros de todo el mundo. Este conjunto de datos se ha construido utilizando imágenes y anotaciones de ImageNet para la tarea de categorización de imágenes detalladas. Contenidos de este conjunto de datos:

- Número de categorías:120
- Número de imágenes: 20,580
- Anotaciones: Etiquetas de clase, Cuadros delimitadores

Stanford Dogs Dataset

Stanford Dogs Dataset

Plan de Trabajo

- Preparación del conjunto de datos: Descarga y organiza las imágenes de las 120 razas de perros del conjunto de datos Stanford Dogs, junto con las anotaciones necesarias.
- Cargar un modelo pre-entrenado: Selecciona una arquitectura pre-entrenada (Inception V3) y cargarla utilizando TensorFlow.
- Modificar la última capa: Reemplaza la última capa con una nueva capa de salida para las 120 clases de razas de perros.
- Congelar las capas previas: Bloquea las capas pre-entrenadas para preservar los pesos aprendidos.
- Data Augmentation: Aplica técnicas de aumento de datos como rotación, volteo horizontal, cambio de brillo, etc., para aumentar la variabilidad del conjunto de datos.

Abril 9, 2024

Plan de Trabajo

- Entrenamiento del modelo: Entrena el modelo utilizando el conjunto de datos Stanford Dogs, incluyendo las imágenes aumentadas.
- Fine Tunning (opcional): Si es necesario, fine tunning desbloqueando algunas capas y reduciendo la tasa de aprendizaje.
- Evaluación del modelo: Evalúa el rendimiento utilizando un conjunto de datos de prueba y métricas como accuracy, precisión, recall y F1-score.
- Deployment del modelo: Hacer Deploy del modelo en Firebase con tensorflow lite y conectarlo a un frontend en flutter para testear.

Resultados Esperados

- Obtener un accuracy entre el 90% 95% usando ambos modelos.
- Crear un caso de uso útil para la aplicación de los modelos a la contribución de la siminución de perdidas de animales domésticos.
- Con lo anterior generar la posibilidad de crear un sistema que permite aumentar el dataset con una clasificación hecha por los usuarios.
- Estudiar la posibilidad de implementar un algoritmo multiclase.