Advanced Statistics Assignment#2

Abdul Saboor 20L-1113 BDS-4A

Question # 1:

Formulas being used:

$$\hat{y}$$
 = a + b x where
b = [N Σ (xy) – Σ x Σ y] / [N Σ (x²) – (Σ x)²]
a = \bar{y} - b \bar{x}

(a)

Time (X)	Temperature (Y)	X^2	XY	
0	82	0	0	
1	71	1	71	
2	59	4	118	
3	52	9	156	
4	43	16	172	
5	35	25	175	
Total = 15	Total = 35	Total = 55	Total = 692	
$\bar{x} = 15 / 6 = 2.582$	$\bar{y} = 342 / 6 = 57$			

Putting values in formulae:

$$b = [6 * 692 - 15 * 342] / [6 * 55 - 15^2]$$

 $b = -978 / 105 = -9.3143$

 $\hat{y} = 80.28 - 9.31 \times (Least Square Regression Line)$

(b)

$$x = 6$$

 $\hat{y} = 80.28 - 9.31x$
 $\hat{y} = 80.28 - 9.31(6)$
 $\hat{y} = 24.42$

The temperature of the coffee after 6 minutes would be 24.42 Fahrenheit.

Question # 2:

(a) Final regression line:

```
import pandas as pd
import numpy as np
data=pd.read_csv('Chem_Process.csv')

x=np.array(data['Temperature'])
y=np.array(data['Yield'])
x=np.vstack([x,np.ones(len(x))]).T
m,c=np.linalg.lstsq(x,y)[0]
print(f'Regression line is: yhat = ({m})x + {c}')

0.2s

Regression line is: yhat = (1.9951684696867256)x + 17.001591728645355
```

(b) The yield of chemical process at 35 degrees Celsius:

```
11 x=35
12 print(f'The yield of chemical process at 35 degrees Celsius: {m*x+c}')

v 0.2s

The yield of chemical process at 35 degrees Celsius: 86.83248816768075
```

Question #3:

Homoscedasticity:

This is the term referred to a situation where our residuals or error is almost constant across the values of independent variables.

What kind of insights can we draw out of homoscedasticity?

If the variance in error is homoscedastic, we can say that our model is well defined. For large variance in error the model is not fitting well to the given data.

Heteroscedasticity:

This is the term referred to situation where there is large variance in the error or residuals across all the values of independent variables.

What kind of insights can we draw out of homoscedasticity?

Heteroscedasticity in a prediction may not cause a bias in the coefficient estimates but it does tend to make the values less precise. This lower precision tends to deviate the estimates further away from the actual values.

Question # 4:

Formulas being used:

$$\begin{split} \hat{y} &= b0 + b1*x1 + b2*x2 \\ b0 &= y - b1X1 - b2X2 \\ b1 &= \left[(\Sigma x2^2)(\Sigma x1y) - (\Sigma x1x2)(\Sigma x2y) \right] / \left[(\Sigma x1^2)(\Sigma x2^2) - (\Sigma x1x2)^2 \right] \\ b2 &= \left[(\Sigma x1^2)(\Sigma x2y) - (\Sigma x1x2)(\Sigma x1y) \right] / \left[(\Sigma x1^2)(\Sigma x2^2) - (\Sigma x1x2)^2 \right] \end{split}$$

(a)

у	<i>x</i> 1	<i>x</i> 2	$x1^2$	x2 ²	x1y	x2y	<i>x</i> 1 <i>x</i> 2
140	60	22	3600	484	8400	3080	1320
155	62	25	3844	625	9610	3875	1550
159	67	24	4489	576	10653	3816	1608
179	70	20	4900	400	12530	3580	1400
192	71	15	5041	225	13632	2880	1065
200	72	14	5184	196	14400	2800	1008
212	75	14	5625	196	15900	2968	1050
215	78	11	6084	121	16770	2365	858
Total =	Total = 555	Total = 145	Total =	Total =	Total =	Total	Total =
1542			38767	2823	101895	25364	9859
ÿ = 1452/8	x1 = 555/8	x2 = 145/8					
=181.5	= 69.375	= 18.125					

$$\Sigma x 1^2 = \Sigma x 1^2 - (\Sigma x 1)^2 / n$$

 $\Sigma x 1^2 = 38767 - (555)^2 / 8$

$$\Sigma x 1^2 = 263.875$$

$$\Sigma x 2^2 = \Sigma x 2^2 - (\Sigma x 2)^2 / n$$

$$\Sigma x 2^2 = 38767 - (145)^2 / 8$$

$$\Sigma x 2^2 = 194.875$$

$$\Sigma x1y = \Sigma X1y - (\Sigma X1\Sigma y) / n$$

$$\Sigma x1y = 101895 - (555*1452) / 8$$

$$\Sigma x1y = 1162.5$$

$$\Sigma x2y = \Sigma X2y - (\Sigma X2\Sigma y) / n$$

$$\Sigma x2y = 25364 - (145*1452) / 8$$

$$\Sigma x2y = -953.5$$

$$\Sigma x1x2 = \Sigma X1X2 - (\Sigma X1\Sigma X2) / n$$

$$\Sigma x1x2 = 9859 - (555*145) / 8$$

$$\Sigma x1x2 = -200.375$$

```
Putting values in formulas: b1 = [(194.875)(1162.5) - (-200.375)(-953.5)] / [(263.875)(194.875) - (-200.375)2] \\ b1 = 3.148 \\ b2 = [(263.875)(-953.5) - (-200.375)(1152.5)] / [(263.875)(194.875) - (-200.375)2] \\ b2 = -1.656 \\ b0 = 181.5 - 3.148(69.375) - (-1.656)(18.125) \\ b0 = -6.867 \hat{\mathbf{y}} = -6.867 + 3.148 \times 1 - 1.656 \times 2 \text{ (Multiple Linear Regression Line)}
```

(b)

$$x1 = 76$$

 $x2 = 13$
 $\hat{y} = -6.867 + 3.148x1 - 1.656x2$
 $\hat{y} = -6.867 + 3.148(76) - 1.656(13)$
 $\hat{y} = 210.853$