In the Abstract:

Page 10, please make the following changes:

Abstract

A stator of an electric machine, which stator has an annular stator core (13) comprised of at least one stator core segment (14), having a welding seam (20) that joins the at least one stator core segment (14). In the stator, the welding seam depth (T_s) of the welding seam is a function of a yoke height (H_{yoke}) and a tolerance value (ΔT_s) and is described by the function $T_s = 0.5 \text{mm} * (H_{yoke}/\text{mm} - 1) \pm \Delta T_s$. (Fig.2)

The method for making a stator includes making individual strip-shaped laminas (15) for it; stacking the laminas (15) to form a stator core (13) with grooves (18) on one side extending through the core; producing a subassembly by inserting a stator winding (17) into the grooves (18); bending the subassembly to form a cylindrical cavity so that the grooves (18) end in the cavity and connecting two ends (23) of the stator core (13) to each other by a welding seam (20) to maintain this configuration. To produce a welding seam of sufficient strength which does not exert excessive influence on magnetic properties, the welding seam depth (T_S) is given by $T_S = 0.5 \text{ mm} * (H_{yoke}/\text{mm} - 1) \pm \Delta T_S$, wherein H_{yoke} is yoke height and ΔT_S is a tolerance value. An electric machine including the stator made by this method is also described.