Quantitative and qualitative computational analysis of language and text similarities, clustering and classification

Damir Ćavar CLS 2010, September 2010 University of Zadar

Agenda

- Term Weighting
- Geometrical approaches:
 - Vector spaces
 - Clustering

Term Weighting

- Term frequency
 - Specific documents mention specific terms more frequently than others.
 - Remember the term distribution and frequency from earlier slides?
- Take document frequency into account

Intuition:

- A term that is well distributed across all documents is less relevant for each individual document
- Scale term weights such that these terms drop down in the frequency profile over all documents

Inverse document frequency:

$$idf_t = log \frac{N}{df_t}$$

- *N* = number of documents in a corpus
- df_t = number of documents in which term t occurs
- rare terms will tend to have a high idf
- frequent terms will more likely have a lower idf

Weighting terms in documents:

$$tf\text{-}idf_{t,d} = tf_{t,d} \times idf_t$$

- High: for t that occurs frequently in a small number of documents
- Low: for t that has a low frequency in the document d, or occurs in many documents
- Lowest: for t that occurs in all or most of the documents

- Example:
 - tfidf.py and make-tfidf.py
 - generate first a df table, then test with tfidf.py on one particular document

Document Representation Models 2

Vector Space

- Mapping of terms to documents in a matrix:
 - A is a boolean (IR) or a frequency value, marking the frequency of a term t in document d

	D ₁	D ₂	D_3	
t ₁	A _{1,1}	A _{1,2}	A _{1,3}	
t ₂	A _{2,1}	A _{2,2}	A _{2,3}	
t ₃	A _{3,1}	A _{3,2}	A _{3,3}	

- Vector distance
 - Euclidean distance
 - Cosine similarity
- Centroid of a set of vectors

 Euclidean distance for two ndimensional vectors:

$$d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}$$

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

- Euclidean distance example:
 - $v_1 = [10, 3, 56, 3]$
 - $v_2 = [8, 2, 45, 1]$
- What is the distance?

Cosine similarity

$$similarity = cos(\theta) = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel}$$

Dot product:

$$A \cdot B = \sum_{i=1}^{n} a_i b_i$$

Magnitude:

$$\parallel a \parallel := \sqrt{\sum_{i=1}^{n} x_i^2}$$

- Cosine similarity:
 - 1 means two vectors are exactly the same
 - 0 means independence
 - -1 means opposite
- Cosine similarity looks at the angle between vectors, i.e. their direction, thus is used with frequency-based vectors

Centroid

$$C_{ab} = \frac{1}{2}(a+b) = \left(\frac{1}{2}(a_1+b_1), \frac{1}{2}(a_2+b_2), \dots, \frac{1}{2}(a_n+b_n)\right)$$

What can we now do with it?

Classification

- Class properties mapped to the centroid of document vectors that belong to the class
 - Distance metric for the decision of an unknown document either belonging to some class or not, i.e. distances between unknown document vector and class centroid

Classification

- Optimize the cluster by calculating density and identifying outliers
- Processing of probability-based vectors, frequency vectors, other properties etc.

- Identification of potential classes via identification of point clouds with a certain density
- Identify outliers for class centroids
- Empirically experiment with data

- Given a clustering criterion
 - How to find a partition into k groups that optimizes the criterion?
- Find all possible partitions and calculate their value of the given criterion.
- Choose the partition with the optimal value.

- Data analysis:
 - Exploratory
 - Hypothesis creation
 - Confirmatory
 - Decision-making

- Grouping of data:
 - Is there a correlation between data patterns?
 - Which data patterns are similar?
 - Which words are similar?
 - What kind of constructions are similar?

- See: Robert Choate Tryon (1939) Cluster analysis. Edward Brothers, Ann Arbor.
 - Cluster Analysis: Unsupervised classification of observed groups (clusters).

- Use:
 - No a priori hypothesis.
 - Grouping of Objects or Individuals.
 - Grouping of Variables.

- Clustering algorithms
 - Vast number
 - Selection on the basis of:
 - Way in forming clusters
 - Data-structure
 - Robustness (changes, data types)

- Further criteria
 - Data normalization
 - Choice of similarity measure
 - Data amount (small, large)
 - Use of domain knowledge or heuristics

- Types of algorithms and techniques:
 - Hierarchical
 - Optimization
 - Density or mode-seeking
 - Clumping
 - K-means Clustering
 - Expectation Maximization (EM)

- Formalization:
 - Feature Vector, Datum, Pattern: With d measurements: $x = (x_1, x_2, ..., x_d)$
 - x₁,x₂,..., in general: x_i is a feature or attribute of x
 - d = dimension of pattern or pattern space

Vector Space

- Map of features and individuals to vectors: Feature Matrix
 - in our case e.g. documents on rows, terms on columns (or the other way around), and fill in the frequencies x term in document

$$\mathscr{X} = \left[egin{array}{ccccc} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,d} \\ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,d} \\ \vdots & & & & \\ \mathbf{x}_{k,1} & \mathbf{x}_{k,2} & \cdots & \mathbf{x}_{k,d} \end{array}
ight]$$

- Formalization:
 - Pattern set: $X = \{x_1, x_2, ..., x_n\}$
 - The ith pattern in $X : x_i = (x_{i,1}, x_{i,2}, ..., x_{i,d})$
 - or

Class:

- Refers to the state of nature that governs the pattern generation process.
- Clustering techniques group patterns to classes.

Hard clustering techniques:

- Assign a label l_i to each pattern x_i identifying its class.
- For a set of patterns X the set of labels is $L = \{I_1, I_2, ..., I_n\}$ with $I_i \in \{1, ..., k\}$, with k the number of clusters

Fuzzy clustering:

 Assign each pattern x_i a fractional degree of membership f_{ij} in each output cluster j.

• Distance measure:

- Specialization of a proximity measure
- Metric on the feature space for quantifying the similarity of patterns.

- Similarity measure:
 - For example: Euclidean Distance,
 Cosine Similarity, etc.

- Using a vector space:
 - Covariance:
 - variance = average of the squared deviation of a feature from its mean
 - covariance = average of the products of the deviations of feature values from their means

- Covariance of two features
 - Measures their tendency to vary together, i.e. co-vary.
 - Variance is the average of the squared deviation of a feature from its mean.
 - Covariance is the average of the products of the deviations of feature values from their means.

- Covariance of two features
 - Feature *i* and Feature *j*:
 - Let $\{x_{1,i}, x_{2,i}, \dots, x_{n,i}\}$ be a set of n examples of Feature i,
 - Let $\{x_{1,j}, x_{2,j}, ..., x_{n,j}\}$ be a corresponding set of n examples of Feature j
 - $x_{k,i}$ and $x_{k,j}$ are features of the same pattern k

- Covariance of two features
 - Let m_i be the mean of Feature i, and m_j be the mean of Feature j
 - Then the covariance c_{i,j} of Feature i and Feature j is:

$$\{[x_{1,i}-m_i][x_{1,j}-m_j]+\cdots+[x_{n,i}-m_i][x_{n,j}-m_j]\}/(n-1)$$

K-Means Clustering Algorithm

- K-means (Optimization Clustering): generates
 - *k* number of disjoint clusters (non-hierarchical)
 - globular clusters (spherical, elliptical, convex)
- properties:
 - numerical
 - unsupervised
 - iterative

- K-means
 - k clusters
 - At least one element per cluster
 - No overlapping clusters
 - Not hierarchical

• Hierarchical clusters:

K-means

- Every member of a cluster is closer (given a metric, e.g. Euclidean Distance, Cosine Similarity) to its cluster than to any other cluster
- Procedure

K-means

- Initial partitioning of data set into k clusters
- For each data point: calculate distance to each cluster
- If one data point is closer to another cluster, relocate it
- Repeat until no further relocations possible

• Example:

Individual	Feature 1	Feature 2	
1	1.0	1.0	
2	1.5	2.0	
3	3.0	4.0	
4	5.0	7.0	
5	3.5	5.0	
6	4.5	5.0	
7	3.5 4.5		

• **Initialization Step 1:** *k*=2, pick the most distant individuals and assign them each to one cluster:

	Individual	Centroid
Cluster I		(1.0, 1.0)
Cluster 2	4	(5.0, 7.0)

- Initialization Step 2: Assign each of the remaining vectors to its closest cluster
 - for each remaining vector:
 - calculate the distance to all centroids
 - assign it to the closest
 - recalculate the target centroid

Distance: for example Euclidean

Distance:

$$d(p,q) = \sqrt{\sum_{i=1}^{n} (p_i - q_i)^2}$$

Centroid:

$$C_{ab} = \frac{1}{2}(a+b) = \left(\frac{1}{2}(a_1+b_1), \frac{1}{2}(a_2+b_2), \dots, \frac{1}{2}(a_n+b_n)\right)$$

• Example: given two vectors p = (3, 5) and q = (7, 9), the Euclidean Distance is:

$$d(p,q) = \sqrt{(3-7)^2 + (5-9)^2} = \sqrt{32} \approx 5.657$$

- Example: Cluster x with two vectors assigned to it, $x = \{(3, 5), (7, 9)\}$
 - n = |x| = 2

$$\bar{x} = \frac{\sum_{i=1}^{2} x_i}{2} = \frac{(3,5) + (7,9)}{2} = \frac{(3+7,5+9)}{2} = \left(\frac{10}{2}, \frac{14}{2}\right) = (5,7)$$

Initial clustering after initialization

	Cluster I		Cluster 2	
	Individuals	Centroid	Individuals	Centroid
Step I	I	(1.0, 1.0)	4	(5.0, 7.0)
Step 2	1,2	(1.3, 1.5)	4	(5.0, 7.0)
Step 3	1, 2, 3	(1.8, 2.3)	4	(5.0, 7.0)
Step 4	1, 2, 3	(1.8, 2.3)	4, 5	(4.3, 6.0)
Step 5	1, 2, 3	(1.8, 2.3)	4, 5, 6	(4.3, 5.7)
Step 6	1, 2, 3	(1.8, 2.3)	4, 5, 6, 7	(4.1, 5.4)

Initial partitioning and clustering criterion:

	Individual	Centroid	Sum of errors
Cluster I	1, 2, 3	(1.8, 2.3)	6.84
Cluster 2	4, 5, 6, 7	(4.1, 5.4)	5.38
total			12.22

- Error = for every point distance to centroid
 - Criterion: the smaller the sum of square errors, the better the cluster
- Sum of all cluster errors, where the cluster error is the sum of square Euclidean Distances (for example) of each assigned vector to the centroid

- Optimization Loop:
 - For each vector
 - Check whether it is still closer to its centroid/cluster, and not to another
 - If closer to another centroid, reassign it to it, recalculate the two centroids again
 - If there is no improvement of the error over all, STOP

Comparison in the Optimization Step:

Individual	Distance to C1	Distance to C2
1	1.5	5.4
2	0.4	4.3
3	2.1	1.8
4	5.7	1.8
5	3.2	0.7
6	3.8	0.8
7	2.8	1.1

 Individual 3 should be assigned to cluster 2, instead of 1, which it is closer to, with a resulting improvement of the clustering criterion (from 12.22 to 8.53)

	Individual	Centroid	Sum of SQR errors
Cluster 1	1, 2	(1.3, 1.5)	0.63
Cluster 2	3, 4, 5, 6, 7	(3.9, 5.1)	7.9
total			8.53

- Robust and fast
- Supervised: you need to know how many clusters you expect
- Specific cluster shapes will not be discovered

- Initial set of k clusters can affect the results: Local Minima
- Not good with non-globular clusters
- Supervised, since k has to be predefined

Evaluation?

Evaluation:

- Pre-clustering evaluation: Cluster tendency
- Post-clustering evaluation: Cluster validity
 - Rather subjective
 - Valid: if clusters are not the result of an artifact or randomly chosen

- Evaluation: Cluster validity
 - External assessment:
 - Compare recovered structure to some a priori structure
 - Automatically compare taxonomies, hierarchical trees, distance of centroids etc.

- Evaluation: Cluster validity
 - Internal assessment:
 - Are resulting clusters intrinsically appropriate for the data.
 - Relative test:
 - Compare two resulting clusters and measure relative merit.