

OVERVIEW

The SM5007 series are crystal oscillator module ICs, that feature low current consumption. Highly accurate thin-film feedback resistors and high-frequency capacitors are built-in, eliminating the need for external components to make a stable fundamental-harmonic oscillator.

FEATURES

- lacktriangle Capacitors C_G , C_D built-in
- Standby function (oscillator stops)
- 6 µA (typ.) low standby current (5 V operation)
- Power-save pull-up resistor built-in
- Inverter amplifier feedback resistor built-in
- 3.2 mA (V_{DD} = 4.5 V), 1.6 mA (V_{DD} = 2.7 V) drive capability
- 2.7 to 5.5 V supply voltage
- Low current consumption
- Oscillator frequency output $(f_O \text{ or } f_O/2, \text{ determined by internal connection})$
- 8-pin VSOP (SM5007AL×V)
- Chip form (CF5007A××)

SERIES CONFIGURATION

Version		mended ating cy [MHz]	Output frequency	gm ratio	Built-in ca [p	pacitance F]	Input level	Input level Output duty level	
	3 V	5 V			C _G	C _D			·
CF5007AA1	30	30	f ₀	2	10	10	TTL	CMOS	LOW
CF5007AA2	30	30	f _O /2	2	10	10	TTL	CMOS	LOW
SM5007AL1V CF5007AL1	20	30	f ₀	1	10	10	CMOS	CMOS	High impedance
SM5007AL2V CF5007AL2	20	30	f _O /2	1	10	10	CMOS	CMOS	High impedance

Note: Recommended operating frequency is not the guaranteed value but is measured using NPC's standard crystal.

Since the product feature is targeted at low current consumption, please evaluate oscillation margins seriously before actual use.

ORDERING INFORMATION

Device	Package
SM5007AL×V	8-pin VSOP
CF5007A××-1	Chip form

PACKAGE DIMENSIONS

(Unit:mm)

• 8-pin VSOP

PAD LAYOUT

$(Unit:\mu m) \\$

PINOUT

(Top view)

PIN DESCRIPTION and PAD DIMENSIONS

Number	Name	1/0	Description		Pad dimen	sions [µm]
Number	Name	1/0		Description		Υ
1	ĪNH	I	Output state control input. Oscillator stopped when LOW. Power-saving pull-up resistor built in		195	212
2	ХТ	I	Amplifier input.	Crystal oscillator connection pins.	385	212
3	ΧT	0	Amplifier output.	Crystal oscillator connected between XT and $\overline{\text{XT}}$	575	212
4	VSS	-	Ground		766	212
5	Q	0	Output. Output freque	ncy (f _O or f _O /2) determined by internal connection	765	882
6	NC	-	No connection		-	-
7	NC	-	No connection		-	-
8	VDD	-	Supply voltage		162	882

BLOCK DIAGRAM

SPECIFICATIONS

Absolute Maximum Ratings

$$V_{SS} = 0 V$$

Parameter	Symbol	Condition	Rating	Unit
Supply voltage range	V _{DD}		-0.5 to 7.0	٧
Input voltage range	V _{IN}		-0.5 to V _{DD} + 0.5	٧
Output voltage range	V _{OUT}		-0.5 to V _{DD} + 0.5	٧
Operating temperature range	T _{opr}		-40 to 85	°C
Storage temperature range	т	Chip form	-65 to 150	°C
Storage temperature range	T _{stg}	8-pin VSOP	-55 to 125	
Output current	l _{out}		15	m A
Power dissipation	PD	8-pin VSOP	300	m W
Soldering temperature	T _{sld}	8-pin VSOP	255	°C
Soldering time	t _{sld}	8-pin VSOP	10	S

Recommended Operating Conditions

$$V_{SS} = 0 V$$

Parameter	Symbol Condi			Rating			
raiailletei	3 9 111 10 1	Colluttion	min	typ	max	Unit	
Supply voltage	V _{DD}		2.7	-	5.5	V	
Input voltage	V _{IN}		V _{SS}	-	V _{DD}	V	
Operating temperature	T _{OPR}		-20	-	80	°C	

Note: Since the recommended operating conditions will change in accordance with operating frequency, load capacitance, power dissipation, or crystal characteristics, please evaluate oscillation margins seriously before actual use.

Electrical Characteristics

3 V operation: V_{DD} = 2.7 to 3.3 V, V_{SS} = 0 V, Ta = -20 to 80 °C unless otherwise noted.

Parameter	Symbol	Condition	Condition				Unit
Parameter	Symbol	Condition		min	typ	max	UIII
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, I _{OH} = 1.6 mA		2.2	-	-	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 1, I _{OL} = 1.6 m A		-	-	0.4	V
Output leakage current		Q: Measurement cct 2, $\overline{\text{INH}}$ = LOW, V_{OH} =	V _{DD}	-	-	10	
(AL series only)	I _Z	Q: Measurement cct 2, $\overline{\text{INH}}$ = LOW, V_{OL} =	V _{SS}	-	-	10	μA
HIGH-level input voltage	V _{IH}	INH	SM5007AL×V CF5007AL×	0.7V _{DD}	-	-	V
			CF5007AA×	2.0	-	-	
LOW-level input voltage	V _{IL}	INH	SM5007AL×V CF5007AL×	-	-	0.3V _{DD}	V
			CF5007AA×	-	-	0.3	1
		INH = open, Measurement cct 3, No load, f = 30 MHz crystal oscillator	CF5007AA1		1.8	4.8	
	I _{DD1}		SM5007AL1V CF5007AL1		1.2	3.2	m A
			CF5007AA2		1.4	3.6	
Occasion and a second live			SM5007AL2V CF5007AL2		0.8	2.0	
Current consumption		INH = open, Measurement cct 3, C L = 15 pF, f = 30 MHz crystal oscillator	CF5007AA1		3.4	6.8	
			SM5007AL1V CF5007AL1		2.8	5.2	
			CF5007AA2		2.2	4.6	
			SM5007AL2V CF5007AL2		1.6	3.0	
Standby current	I _{ST}	INH = V _{SS} , Measurement cct 3	-	-	2	5	μA
INII null un registence	R _{UP1}	Measurement cct 4, V _{DD} = 3 V, INH = V _{SS}		0.6	-	12	MΩ
INH pull-up resistance	R _{UP2}	Measurement cct 4, V _{DD} = 3 V, INH = 2.1 V	1	40	-	200	kΩ
			CF5007AA×		-140		
Negative resistance	-R _L	V _{DD} = 3 V, Ta = 25 °C, 30 MHz	SM5007AL×V CF5007AL×		-70		Ω
Feedback resistance	R _f	Measurement cct 5		50	-	300	kΩ
Duilt in something	C _G	Dacina value		9.3	10	10.7	pF
Built-in capacitance	C _D	Design value		9.3	10	10.7	pF

SM5007 series

5 V operation: V_{DD} = 4.5 to 5.5 V, V_{SS} = 0 V, Ta = -20 to 80 °C unless otherwise noted.

Danamatan	Cum h a l	Condition			Rating		
Parameter	Symbol	Condition			typ	max	Unit
HIGH-level output voltage	V _{OH}	Q: Measurement cct 1, I _{OH} = 3.2 mA		4.0	-	-	V
LOW-level output voltage	V _{OL}	Q: Measurement cct 1, I _{OL} = 3.2 m A		-	-	0.4	V
Output leakage current		Q: Measurement cct 2, $\overline{\text{INH}}$ = LOW, V_{OH} =	V _{DD}	-	-	10	0
(AL series only)	IZ	Q: Measurement cct 2, $\overline{\text{INH}}$ = LOW, V_{OL} =	V _{SS}	-	-	10	μA
HIGH-level input voltage	V _{IH}	ĪNĦ	SM5007AL×V CF5007AL×	0.7V _{DD}	-	-	٧
			CF5007AA×	2.0	-	-	
LOW-level input voltage	V _{IL}	ĪNĦ	SM5007AL×V CF5007AL×	-	-	0.3V _{DD}	V
			CF5007AA×	-	-	0.8	
		INH = open, Measurement cct 3, No load, f = 30 MHz crystal oscillator	CF5007AA1		3.0	6.8	m A
			SM5007AL1V CF5007AL1		2.2	4.8	
	I _{DD1}		CF5007AA2		2.2	5.0	
Current concumption			SM5007AL2V CF5007AL2		1.4	3.0	
Current consumption	I _{DD2}	INH = open, Measurement cct 3, C _L = 15 pF, f = 30 MHz crystal oscillator	CF5007AA1		5.6	9.8	
			SM5007AL1V CF5007AL1		4.8	7.8	
			CF5007AA2		3.6	6.6	
			SM5007AL2V CF5007AL2		2.8	4.6	
Standby current	I _{ST}	INH = V _{SS} , Measurement cct 3	1	-	6	15	μA
INH pull-up resistance	R _{UP1}	Measurement cct 4, V _{DD} = 5 V, INH = V _{SS}		0.3	-	6	MΩ
INH pull-up resistance	R _{UP2}	Measurement cct 4, V _{DD} = 5 V, INH = 3.5 V	,	40	-	200	kΩ
			CF5007AA×		-360		
Negative resistance	-R _L	V _{DD} = 5 V, Ta = 25 °C, 30 MHz	SM5007AL×V CF5007AL×		-190		Ω
Feedback resistance	R _f	Measurement cct 5		50	-	300	kΩ
Duilt in conscitores	C _G	Docian value		9.3	10	10.7	pF
Built-in capacitance	C _D	Design value		9.3	10	10.7	pF

Switching Characteristics

3 V operation: V_{DD} = 2.7 to 3.3 V, V_{SS} = 0 V, Ta = -20 to 80 °C unless otherwise noted.

Doromotor	Cumbal	Condition			Rating		
Parameter	Symbol				typ	max	Unit
Output rise time	t _r	Measurement cct 2, load cct 1, 0.1V _{DD} to 0.9V _D	_D , C _L = 15 pF	-	5	15	ns
Output fall time	t _f	Measurement cct 2, load cct 1, 0.9V _{DD} to 0.1V _{DD} , C _L = 15 pF		-	5	15	ns
Output duty cycle ¹	Duty	Measurement cct 2, load cct 1, Ta = 25 $^{\circ}$ C, V $_{DD}$ = 3 V, C $_{L}$ = 15 pF	f _O = 16MHz	45	-	55	- %
			f _O = 30MHz	40	-	60	
Output disable delay time	t _{PLZ}	M	0.1/ 045 5	-	-	100	ns
Output enable delay time ²	t _{PZL}	Measurement cct 6, load cct 1, Ta = 25 °C, V_{DD} = 3 V, $C_L \le$ 15 pF		-	-	100	ns
Maximum operating frequency	f _{max}	Measurement cct 2, load cct 1, C _L ≤ 15 pF		30	-	-	MHz
Minimum operating frequency	f _{min}	Measurement cct 2, load cct 1, C _L ≤ 15 pF		-	-	4	MHz

- 1. Determined by the lot monitor.
- 2. Oscillator stop function is built-in. When $\overline{\text{INH}}$ goes LOW, normal output stops. When $\overline{\text{INH}}$ goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

5 V operation: $V_{DD} = 4.5$ to 5.5 V, $V_{SS} = 0$ V, Ta = -20 to 80 °C unless otherwise noted.

Parameter	Symbol	Condition	Rating			Unit
Parameter	Symbol	Condition		typ	max	UIIII
Output rise time	t _r	Measurement cct 2, load cct 1, 0.1V _{DD} to 0.9V _{DD} , C _L = 15 pF	-	3	9	ns
Output fall time	t _f	Measurement cct 2, load cct 1, 0.9V _{DD} to 0.1V _{DD} , C _L = 15 pF	-	3	9	ns
Output duty cycle ¹	Duty	Measurement cct 2, load cct 1, Ta = 25 °C, V _{DD} = 5 V, C _L = 15 pF	45	-	55	%
Output disable delay time	t _{PLZ}	Measurement cct 6, load cct 1, Ta = 25 °C, V_{DD} = 5 V, $C_L \le$ 15 pF		-	100	ns
Output enable delay time ²	t _{PZL}			-	100	ns
Maximum operating frequency	f _{max}	Measurement cct 2, load cct 1, C _L ≤ 15 pF	30	-	-	MHz
Minimum operating frequency	f _{min}	Measurement cct 2, load cct 1, C _L ≤ 15 pF	-	-	4	MHz

- 1. Determined by the lot monitor.
- 2. Oscillator stop function is built-in. When $\overline{\text{INH}}$ goes LOW, normal output stops. When $\overline{\text{INH}}$ goes HIGH, normal output is not resumed until after the oscillator start-up time has elapsed.

Current consumption and Output waveform with NPC's standard crystal

FUNCTIONAL DESCRIPTION

Standby Function

The oscillator stops when \overline{INH} goes LOW. When the oscillator stops, the oscillator output on Q changes as shown in the following table.

ĪNH	Q	Oscillator
HIGH (or open)	f _O or f _O /2 output frequency	Normal operation
LOW	AA series : LOW AL series : High impedance	Stopped

Power-save Pull-up Resistance

The \overline{INH} pull-up resistance changes in response to the input level (HIGH or LOW). When \overline{INH} goes LOW (standby state), the pull-up resistance becomes large to reduce the current consumption during standby.

MEASUREMENT CIRCUITS

Measurement cct 1

 $\text{R1}:50\Omega$

R2 : $1.25 k\Omega$ (V_{DD} = 4.5V), $1.375 k\Omega$ (V_{DD} = 2.7V) R3 : $1.285 k\Omega$ (V_{DD} = 4.5V), $1.44 k\Omega$ (V_{DD} = 2.7V)

Measurement cct 4

Measurement cct 2

Measurement cct 5

Measurement cct 3

Measurement cct 6

 $\text{R1}:50\Omega$

Load cct 1

Switching Time Measurement Waveform

Output duty level (CMOS)

Output duty cycle (CMOS)

Output Enable/Disable Delay

The following figure shows the oscillator timing during normal operation. Note that when the device is in standby, the oscillator stops. When standby is released, the oscillator starts and stable oscillator output occurs after a short delay.

NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.

NIPPON PRECISION CIRCUITS INC.

4-3, Fukuzumi 2-chome Koto-ku, Tokyo 135-8430, Japan Telephone: 03-3642-6661 Facsimile: 03-3642-6698

NC9703EE 2000.08