QUENTIN BERGÉ - BENJAMIN DEPRAT

ÉTUDE CIRCUIT RLC: RÉGIME LIBRE OU FORCÉ

RÉGIME LIBRE

PROBLEMATISATION

$$\frac{1}{LC} = \omega_0^2$$
 et $\frac{R}{L} = \frac{\omega_0}{Q}$

$$u_L + u_R + u_C = 0$$

$$L\frac{di}{dt} + Ri + u_C = 0.$$

$$i = dq/dt$$

$$\frac{d^2q}{dt^2} + \frac{R}{L}\frac{dq}{dt} + \frac{1}{LC}q = 0.$$

$$u_C = q/C$$

$$Q = 1/R\sqrt{L/C}$$
 $\omega_0 = 1/\sqrt{LC}$

C'est donc une équation différentielle du second ordre à résoudre avec les constantes suivantes :

- L = 10 mH
- $C = 10 \mu F$

R variant entre 160 Ω , 63 Ω ou 3 Ω selon les différents facteurs de qualité Ω 0.2, 0.5, ou 10.5

RÉSULTATS

VITESSE D'EXÉCUTION

RÉGIME FORCÉ

PROBLÉMATISATION

Cette fois - ci, cas d'un régime soumis à une excitation sinusoïdale avec les mêmes caractéristiques que précédemment enrichie de :

- f = 100 Hz
- Amplitude = 10 V

R variera toujours entre 160 Ω , 63 Ω et 3 Ω pour avoir les régimes apériodique, critique et pseudo-periodique.

RÉSULTATS

VITESSE D'EXÉCUTION

CONCLUSION

	EULER	ODEINT
AVANTAGES	- FACILITÉ DE MISE EN PLACE - FIABILITÉ ELEVÉ LORSQUE PAS D'INTÉGRATION GRAND	- EFFICACE POUR PAS D'INTÉGRATION FAIBLE - PEU INFLUENCÉ PAR PAS D'INTÉGRATION
INCONVÉNIENTS	- GRANDEMENT INFLUENCÉE PAR PAS D'INTÉGRATION - TEMPS DE CALCUL ELEVÉ LORSQUE PAS GRAND - FIABILITÉ FAIBLE LORSQUE PAS PETIT	- PLUS COMPLIQUÉE À METTRE EN PLACE

Il s'agit alors de trouver le meilleur compromis entre facilité à mettre en place, précision des résultats et temps de calcul