Event detection scope

Event

- Find all events or just a single one? → ALL
- What kind of events can be detected? → ALL
 - Regular / anomalous?
- Spatial & temporal extension predefined? → ALL
 - Recurrent event vs outbreak
- Specific or general event detection?

Assumption on the form of the event? → **None**, **but a parametric method may be used in the general case?**

Parametric vs non-parametric

Data

- What kind of dataset? → **Spatial time series** = **Neill classic framework**
- Nature: counts vs categorical → Counts
- Univariate vs Multivariate → Univariate
- Scale
 - Space: 4000 locations
 - Time
 - Resolution: hourly/daily
 - Period: couple of years

Priority Neill techniques

Scan statistics / Fast subset scan with parametric modeling, 2012

- · Kulldorff-like, faster
- · Parametric modeling
 - Expectation-Based Poisson model
 - Expectation-Based Gaussian model
 - Parameters calculated by inference
- (Variants: different expectation forecasting time series techniques
 - An empirical comparison of spatial scan statistics for outbreak detection, 2009)
- Article: Fast subset scan for spatial pattern detection, 2012

Scan statistics / Non-parametric scan statistics, 2007

- Only assumption of the model: iid counts from stationary time series
- May benefit from fast subset scan 2012 progress
- Article: A Nonparametric Scan Statistic for Multivariate Disease Surveillance, 2007

Bayesian statistics / Bayesian parametric scan statistic – univariate, 2006, papers focus on

• Hierarchical Gamma-Poisson model – inference

- Better with prior knowledge of event, but can be used without it
- Looks for
 - a given event
 - a set of multiplicative increase event: {counts x 0.5, counts x 1.5, counts x 2,...}
- Article: A Bayesian Scan Statistic for Spatial Cluster Detection, 2006

<u>Extra - Scan statistics</u> / Fast subset scan with connectivity constraint – GraphScan

- Extends fast subset scan space-time framework to graphs → road network
- Article: Scalable detection of anomalous patterns with connectivity constraints, 2015

Rather old, new papers focus on multivariate data

Important questions

Should a parametric approach be used even if we have no information on the probability distribution of counts?

- What parametric model would best fit our taxi data? Poisson? Gaussian?
- Should instead a non-parametric approach be used?
- We can compare them

What are the non-parametric options?

What is the state-of-the-art in <u>univariate</u> event detection techniques?

 Papers compare univariate vs multivariate, but not much univariate techniques between each other

What is the code available?

Almost all techniques are tested on real data in papers

What techniques did Neill use for urban data analysis?

- CityScan: monitors 311 data in Chicago, maybe other
- CrimeScan: monitors 911 data in Chicago

Prioritarian Neill techniques - backup

Univariate BSS → **GO FOR IT, 2006**

- Neill 2006
- Similar extension of Fast Subset sums? http://www.cs.cmu.edu/~./neill/papers/StatMed2011.pdf

Univariate FSS + (EBP / Gaussian) modeling, 2012

- k-NN/ r-circles
- model: poisson learnt on historical data → relevant model for taxi data?
- output: most at risk region → can it be adapted to get all significant clusters?

NPSS univariate before 2007 (with LTSS property)? 2009 + FGSS 2013

- based on p-values of the day(s) in the time window period: (Tbeat + 1) / (T+1) where T is total number of days in window and Tbeat number of days in window with higher counts // OR total past days??
- what randomization needed?
- hypothesis: independence and stationarity (each location has stationary time series)
- Then, for a region = locations x time, check whether a significant number of p-values are lower than expected
- statistical significance by randomization: generated U[0,1] p-values
- univariate available

GraphScan (Maybe)

- LTSS on Graphs?
- Check

Ask for new features of old techniques / Check with Neill whether it is state of the art in univariate ED

- NPSS may have been combined with LTSS
- · New features for Univariate BSS?

Prioritarian Neill techniques - backup 2

Neill DB, An empirical comparison of spatial scan statistics for outbreak detection, 2009 - quite old, before LTSS

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1373&context=heinzworks

Comparison of ED techniques

- EBP
- EBG
- PBP/PBG (need population file → out)
- Robust Bernouilli-Poisson ??

Comparison of time series forecasting method

- x5 techniques

Possible Niell techniques backup 3 - Out-of-scope work

MBSS → Univariate BSS available!

- Relevent in univariate? → check article, maybe univariate tool used for comparison
- can display a heatmap of risk + most at risk region
- specify form of the events: multiplicative increase relevant?
 - can monitor x0.33, x0.5, x1.5, x2, x3... events / Will not use FIT model which adapts to a single event
- test on 16x16 grid (but 3 variables)
- Powerful with prior: no prior for taxis but uniform prior works in test
- Gamma-Poisson expected probability distribution with inference adapted to disease surveillance

GFSS

- Similar to MBSS, useful for univariate?

FGSS