2.2 Electrons, bonding and structure

2.2.1 Electron structure

• Definitions

•	Term	Definition
	Atomic orbitals	A region around the nucleus that can hold up to two electrons with opposite spins.
	Sub-shells	A group of orbitals of the same type within a shell.
	Electron configuration	A shorthand method for showing how electrons occupy sub-shells in an atom.

· Number of electrons that can fit in each shell

•	Shell number n	Number of electrons (= $2n^2$)
	1	2
	2	8
	3	18
	4	32

- Types of orbitals
 - s-orbitals
 - o **Spherical** shape
 - \circ Each shell from n = 1 contains 1 s-orbital
 - \circ Greater shell number n = greater radius of its s-orbital

- p-orbitals
 - o **Dumb-bell** shape
 - Three separate p-orbitals at right angles to one another: p_x, p_y, p_z
 - \circ Each shell from n=2 contains 3 p-orbitals
 - \circ Greater shell number n = its p-orbital is further from the nucleus

- d-orbitals
 - Each shell from n = 3 contains 5 d-orbitals
- f-orbitals
 - \circ Each shell from n = 4 contains 7 f-orbitals
- Filling of sub shells and orbitals
 - Sub shells fill in the order of increasing energy (1s \rightarrow 2s \rightarrow 2p ...)

- * 4s is filled before 3d
- Inside each sub-shell
 - o The orbitals all have the same energy within a sub-shell
 - One electron occupies each orbital before pairing starts to prevent any repulsion between paired electrons
 - Opposite spins within each orbital (one \uparrow and one \downarrow) as both electrons are negatively charged and repel one another so this minimises repulsion
 - o The paired electrons are easier to remove than the unpaired ones

- More than one orbital within a sub-shell = the orbitals are degenerate (all the same)
- Writing electron configuration of atoms
 - e.g. Li = $1s^22s^1$, F = $1s^22s^12p^5$
 - Shorthand notation: in terms of the previous noble gas + outer electron sub-shells
 - \circ e.g. Krypton = $1s^22s^22p^63s^23p^63d^{10}4s^24p^6 = [Ar] 3d^{10}4s^24p^6$
 - o Always show outer shell electrons
 - (4s can be written before 3d)
- Exceptions of atom electron configurations
 - Chromium: [Ar]3d54s1
 - Copper: [Ar]3d104s1
 - Chromium and copper do not follow the expected pattern
 - o Half-filled / fully filled d sub-shell gives additional stability
- Electron configuration of ions
 - The highest energy subshell gain or lose electrons
 - d-block elements
 - o 4s is at a lower energy level than 3d sub-shell so it is filled first
 - o Once filled the energy level of 3d falls below 4s so 4s empties before 3d

2.2.2 Bonding and structure

Definitions

Term	Definition
Polarity	There is an uneven distribution of electrons.
Polar molecule	A molecule with an overall dipole, having taken into account any dipole across bonds and the shape of the molecule.
Bond angle	The angle between 2 bonds in an atom.
Electronegativity	A measure of the attraction of a bonded atom for the pair of electrons in a covalent bond.
Dipole	A separation in electrical charge so that one atom of a polar covalent bond, or one end of a polar molecule, has a small positive charge, δ +, and

	the other has a small positive charge, δ
Intermolecular forces	An attractive force between molecules. Can be London forces, permanent dipole-dipole interactions or hydrogen bonding.
Giant ionic lattice	A three dimensional structure of oppositely charged ions, bonded together by strong ionic bonds.
Simple molecular lattice	A three dimensional structure of molecules, bonded together by weak intermolecular forces.

- Ionic bonding
 - The electrostatic attraction between positive and negative ions
 - Occurs between atoms that have a big difference in electronegativity (usually metals and non-
- Dot and cross diagram

- · Structure of ionic compounds
 - Each ion attracts oppositely charged ions strongly in all directions
 - Forms a giant lattice structure containing many ions
 - Every positive ion is surrounded by negative ions; every negative ion is surrounded by positive
 - Regular arrangement of ions = regular, predictable shapes depending on size of ions
 - NaCl = always cubic
 - MgSO₄, CuSO₂, etc. = not cubic

Properties

- High melting and boiling points
 - Strong electrostatic forces of attraction between oppositely charged ions in the giant
 - A high temperature is needed to provide the large amount of energy needed to overcome the strong electrostatic attraction
 - o Higher for ions with greater ionic charges due to stronger attraction between ions
 - Ionic substances with complex ions: can decompose before they reach melting point
- Dissolve in polar solvents (e.g. water)

- Salvation / hydration
 - Polar solvent molecules attract the ions
 - Anions to positive dipole, cations to negative dipole
 - Energy is released in the process
 - Molecules break down the lattice + surround each ion in solution
- Strong ionic bond must be overcome for the substance to dissolve
 - Energy to do this is supplied by solvating / hydrating the ions / absorbed from the surroundings
- If the compound is made of ions with strong charges the attraction can be too strong to be broken down → less soluble
- Solubility depends on
 - Relative strengths of attractions within the lattice
 - Attraction between ions + water molecules

- Does not conduct electricity in solid state
 - Ions held in fixed positions
 - No mobile charge carriers
- Conduct electricity when dissolved or molten
 - The solid ionic lattice breaks down
 - o lons are free to move as mobile charge carriers
- Covalent bonding
 - The strong electrostatic attraction between a shared pair of electrons and the nuclei of the bonded atoms
 - Occur between atoms that have a small difference in electronegativity
 - Formed when the atomics orbitals of the two atoms overlap and combine to form a new orbital (still holding 2 electrons max)
- Covalent substance structure
 - Attraction is localised between the shared pair of electrons and the nuclei of the bonded atoms only
 - Results in small molecules consisting two or more atoms (simple molecular lattice if solid)
- Lone pairs / non-bonding pair
 - · Paired electrons that are not shared

- Multiple covalent bond
 - The electrostatic attraction is between two / three shared pairs of electrons and the nuclei of the bonded atoms
- Dative covalent bonds / coordinate bonds
 - The shared pair of electrons is supplied by one of the bonding atoms only
 - The shared pair is originally a lone pair of electrons on one of the bonded atoms
 - e.g. ammonia molecule donates its lone pair of electrons to a H⁺ ion to form NH₄⁺ ion

Hydronium ion

- Exceptions
 - Boron
 - Only 3 outer shell electrons can be paired → only forms 3 pairs
 - e.g. BF₃ only has 6 electrons around the boron atom
 - Phosphorus, sulfur, chlorine (expansion of the octet)
 - Outer electrons are in n = 3 shell which can hold up to 18 electrons
 - More electrons are available for bonding (can have more than 8 electrons in outer shell e.g. CIF₇)
- · Average bond enthalpy
 - A measurement of covalent bond strength
 - Higher average bond enthalpy = stronger covalent bond
- Molecule shape and bond angles
 - Electron pairs around the central atom repel each other as far apart as possible
 - · Lone pairs repel more strongly than bonded pairs
 - They repel bonded pairs slightly closer together → reducing the bond angle
 - o 4 pairs / regions: bond angle reduced by approx. 2.5° per lone pair
 - The greater the number of electron pairs the smaller the bond angle
 - (Mention the number of bonded pairs and lone pairs)

	Electron pairs / regions	Name	Shape and bond angle
	2	Linear	0 <u>C</u> 0
	3	Trigonal planar	F 120°
	4 (no lone pairs)	Tetrahedral	H 109.5° H
•	4 (1 lone pair)	Pyramidal	H 107° H
	4 (2 Ione pairs)	Non-linear	H 104.5° H
	6	Octahedral	Ë Ë Ë Ë
			Remember SF ₆ as an example of this

Bond representations

- Predicting molecular shape of ions
 - lons with oxygen
 - Add an electron to an oxygen atom for every negative charge
 - o Bonds can be single or double bond
 - Cations with hydrogen
 - Add positive charge by H⁺ ions
 - Others
 - o Add / remove electrons from the central atom to match the charge
 - o Pair up surrounding atoms and count bonded pairs and lone pairs
- Electronegativity
 - A measure of the attraction of a bonded atom for the pair of electrons in a covalent bond
 - Measured using Pauling electronegativity values (higher = attract bonded electrons more strongly)

	H 2.1																	He
	Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	Ne
	Na 0.9	Mg 1.2											Al 1.5	Si 1.8	P 2.2	S 2.5	Cl 3.0	Ar
•	K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr 3.0
	Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5	Xe 2.6
	Cs 0.7	Ba 0.9	La-Lu 1.1-1.2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2	Rn
	Fr 0.7	Ra 0.9	Ac-No 1.1-1.7															

• Important electronegativity values

	Element	Electronegativity				
	Fluorine	4.0				
	Oxygen	3.5				
•	Chlorine	3.0				
	Nitrogen	3.0				
	Carbon	2.5				
	Hydrogen	2.1				

- Electronegativity pattern
 - Electronegativity increases across the periodic table and up the periodic table
 - Across the periodic table the nuclear charge increases and the atomic radius decreases
 attraction increases
 - Atomic radius increases down the table → attraction decreases
 - Fluorine is the most electronegative element
- Predicting type of bond

Bond type	Electronegativity difference
Covalent	0

Polar covalent	0 - 1.8
Ionic	> 1.8

- Pure covalent bond
 - Non-polar bond
 - The bonded electron is shared equally between the bonded atoms
 - · Happen when:
 - o The bonded atoms are the same
 - The bonded atoms have same / similar electronegativity (e.g. carbon and hydrogen)
- Polar covalent bonds
 - Polar bond
 - The bonded electron pair is shared unequally between the bonded atom
 - When the bonded atoms are different and have different electronegativity values
 - Form permanent dipole: small positive (δ +) / negative charge (δ -) on the two bonded atoms, oppositely charged on each

- Polar / non-polar molecules
 - Polar molecules require polar bonds with dipoles that **do not cancel out** due to their direction
 - If the molecule is symmetrical in 3D and the polarities cancel out the molecule is non-polar
 - e.g. overall dipole in H₂O, cancels out in CO₂ and methane

H₂O, bend shape **polar**

CO₂, linear shape non-polar

- Types of intermolecular forces
 - London forces / induced dipole-dipole interactions / dispersion forces (van der Waals' forces)
 - Permanent dipole-dipole interactions (van der Waals' forces)
 - Hydrogen bonding (a special type of permanent dipole-dipole interactions)
- London forces / induced dipole-dipole interactions
 - Exist between all molecules, only temporary
 - Creation
 - Movement of electrons produces changing dipole in a molecule
 - o There is an uneven distribution of electrons which causes an instantaneous dipole
 - o At any instant an instantaneous dipole will exist but position shifts constantly
 - o Instantaneous dipole induces a dipole on a neighbouring molecule
 - The induced dipole induces dipoles on further molecules, they then attract one another
 - Electrons move and the dipole is gone and the attraction disappears and re-appears elsewhere
 - Very weak the weakest of all intermolecular forces
 - o The only intermolecular force that exist between non-polar simple covalent molecules
 - They have very low melting and boiling points (normally gases / volatile liquids under room temperature)
- London forces strength pattern
 - Stronger down the periodic table
 - More electrons in each molecule
 - Larger instantaneous + induced dipoles
 - Greater induced dipole-dipole interactions
 - Stronger attractive forces between molecules
- Permanent dipole-dipole interactions
 - Act between **permanent dipoles** in polar molecules

- Permanent dipole-dipole interactions is much stronger than London forces
 - o Polar molecules have both London forces and permanent dipole-dipole interactions
 - Mean melting and boiling point of polar molecules is much greater
- Hydrogen bond
 - Occurs when a highly de-shieled hydrogen in one molecule is attracted to a lone pair on a N, O
 or F atom in another molecule
 - Highly de-shielded hydrogen: a hydrogen atom directly bonded to an very electronegative atom (N, O or F)
 - A lone pair of electrons on an electronegative atom forms bond with the $\delta +$ of a hydrogen atom in a different molecule
 - Strongest type of intermolecular attractions
 - Molecules with hydrogen bonds between them have relatively high melting and boiling points
 - More hydrogen bond = greater increase in melting and boiling points
- Hydrogen bond diagram
 - Shown by a dotted line between lone pair + hydrogen atom
 - Should have a straight line through all the atoms involved

- Anomalous properties of H₂O
 - Solid less dense than liquid
 - Each water molecule can form 4 hydrogen bonds (2 lone pairs + 2 hydrogen atoms in O-H bond)
 - Hydrogen bonds extend outwards and hold water molecules apart in an open lattice structure
 - o Water molecules form an tetrahedral lattice full of holes
 - Water molecules in ice are further apart than in water
 - (Bond angle for hydrogen involved in hydrogen bond is 180°)

- Relatively high melting and boiling points
 - Has hydrogen bond (much stronger) + PDD + IDD between molecules
 - o A large quantity of energy is needed to break hydrogen bonds
 - When ice lattice breaks the arrangement of hydrogen bonds is broken
 - When water boils hydrogen bonds break completely
- Simple molecular substance
 - Made of simple molecules (small units with a definite number of atoms)
 - Simple molecules form a regular structure called a simple molecular lattice in the solid state
 - Shape of the lattice is determined by the packing pattern of the molecules
 - Molecules held together by weak intermolecular forces
 - Atoms within each molecule bonded together by strong covalent bonds (intramolecular forces)

- Properties of non-polar simple molecular substances
 - · Low melting and boiling point
 - Only weak London forces between molecules
 - Weak intermolecular forces can be broken by energy present at low temperatures
 - Solubility
 - Non-polar solvent
 - Tend to be soluble
 - Intermolecular forces form between the molecules and the solvent
 - Weaken the intermolecular forces in the simple molecular lattice
 - The intermolecular forces break and the compound dissolves
 - Polar solvent
 - Tend to be insoluble
 - Little interaction between the lattice and the solvent molecules
 - Intermolecular bonding in solvent too strong to be broken
 - Non-conductors of electricity
 - No free electrons or mobile ions in simple molecular substances, cannot complete a circuit
 - No mobile charge carriers
- Properties of polar simple covalent substance
 - Higher melting and boiling point
 - o Permanent dipole-dipole interactions are stronger than London forces
 - o More energy is required to break them
 - Solubility
 - Hard to predict
 - o Usually soluble polar solvents: polar solute/solvent molecules can attract each other
 - If they contain a significant non-polar region they may also be soluble in non-polar solvents
 - o Solubility depends on strength of dipole
 - Electrical conductivity
 - o Can conduct electricity if they can ionise and form mobile ions