SOME DETAILS ABOUT REWIRING SYSTEMS

Edmundo López B. 30/10/14

Strongly based on a présentation of Roel de Vrijer and Alexis Marechal

RECALL

- Signature $\Sigma = \langle S, F \rangle$
- From Σ we can derive the set T_{Σ} , *i.e.*, the set of all terms generated by Σ .
- Give a set X of S indexed variables, we can derive the set $T_{\Sigma,X}$ of terms with variables.
- We can give a semantics to all of that by adding equations (called axioms), the whole pack $\Sigma + X + Axioms = Adt$

$$\Sigma = \langle S, F \rangle$$
 $S = \{\text{nat, bool}\}$ $X_s = \{x_{\text{nat, bool}}\}$

 $F = \{true_{\epsilon,bool}, false_{\epsilon,bool}, zero_{\epsilon,nat}, suc_{nat,nat}, +_{nat,nat,nat}, not_{bool,bool}\}$

SYNTACTIC DERIVATION

- Two types of terms: atoms and composite terms.
 - atoms: true, false, zero; composite: suc(zero), +(zero, zero), etc.)

COMPOSITETERM ASTREE

CONTEXT

$$+(zero, +(suc(zero), suc(_))) =$$

$$c[] = +(zero, +(suc(zero), suc(_)))$$

SYNTACTIC DERIVATION PRINCIPLE

- c[t] = c[t'] iff t = t', which is the same as
 - c[t] = c[t'] implies t = t', and
 - t = t' implies c[t] = c[t']
- Example: if not(true) = false is the equation, and c[_] = not(_) the context, we can **deduce by syntactic derivation that:**
 - $not(true) = false \vdash not(not(true)) = not(false)$

GRAPHICALLY

if and only if, t = t'

REPLACEMENT

• The operation that takes a term c[t] and a new term t' and returns a c[t'] is called a **replacement**.

$$\Sigma = \langle S, F \rangle$$
 $S = \{\text{nat, bool}\}$ $X_s = \{x_{\text{nat, bool}}\}$

 $F = \{true_{\epsilon,bool}, false_{\epsilon,bool}, zero_{\epsilon,nat}, suc_{nat,nat}, +_{nat,nat,nat}, not_{bool,bool}\}$

Axioms = $\{not(true) = false, not(false) = true, +(x, zero) = x\}$

Systèmes axiomatiques:

$$f(\$a) = g(\$a)$$

(2) $g(\$a) = 0$

Systèmes de réécriture:

$$f(\$a) \rightarrow g(\$a)$$

$$2g(\$a) \rightarrow 0$$

Orientation!

Definition (Rewrite step)

Let $\Sigma = \langle S, F \rangle$ be a signature and X be a S-sorted set of variables and $I \rightsquigarrow r$, $I, r \in T_{\Sigma}(X)$ a rewrite rule.

- $filter(t, I) = \langle \sigma, c \rangle \Leftrightarrow \exists \sigma \in S \ \exists c, c[\sigma I] = t^a$
- $t' = c[\sigma r]$
- $< t, t' > \in Rew_{l \rightarrow r}$ a rewrite step
- a. $c[_{-}]$ denotes the context of a term, i.e. a term with a place holder

Rew. rule:

$$f(\$a) \rightarrow \$a$$

Rew. step:

$$g(f(0)) \rightarrow g(0)$$

$$l \Leftrightarrow f(\$a)$$

$$t \Leftrightarrow g(f(0))$$

$$\sigma \Leftrightarrow [0/a]$$

$$t' \Leftrightarrow g(0)$$

$$c[t] \Leftrightarrow g(t)$$

Notations non-officielles!

Definition (Rewrite step)

Let $\Sigma = \langle S, F \rangle$ be a signature and X be a S-sorted set of variables and $I \rightsquigarrow r$, $I, r \in T_{\Sigma}(X)$ a rewrite rule.

- $filter(t, l) = \langle \sigma, c \rangle \Leftrightarrow \exists \sigma \in S \ \exists c, c[\sigma l] = t^a$
- $t' = c[\sigma r]$
- $\bullet < t, t' > \in Rew_{l \sim r}$ a rewrite step
- a. $c[_{-}]$ denotes the context of a term, i.e. a term with a place holder

$$\Sigma = \langle S, F \rangle$$
 $S = \{\text{nat, bool}\}$ $X_s = \{x_{\text{nat, bool}}\}$

 $F = \{true_{\epsilon,bool}, false_{\epsilon,bool}, zero_{\epsilon,nat}, suc_{nat,nat}, +_{nat,nat,nat}, not_{bool,bool}\}$

Axioms = $\{\text{not(true)} \rightarrow \text{false}, \text{not(false)} \rightarrow \text{true}, +(x, zero) \rightarrow x\}$

$$f(0) \rightarrow s(0)$$

$$2) g(f(\$x)) \rightarrow g(\$x)$$

$$(3) h(\$x) \rightarrow h(s(\$x))$$

$$g(f(0)) \rightarrow g(s(0))$$

$$g(f(0)) \xrightarrow{2} g(0)$$

Problème: confluence

f(0)
$$\rightarrow$$
 s(0)
g(f(\$x)) \rightarrow g(\$x)
h(\$x) \rightarrow h(s(\$x))

$$h(0) \rightarrow h(s(0)) \rightarrow h(s(s(0))) \rightarrow \dots$$

Problème: terminaison

Confluence / terminaison

Confluence:

Knuth-Bendix

Terminaison:

Critical Pairs - Knuth-Bendix theorem

Let $l_1 \rightsquigarrow r_1$ and $l_2 \rightsquigarrow r_2$ be two rules of a term rewriting system. we suppose that these rules have no variables in common. If l_1^{sub} is a subterm (and not a variable) of l_1 (or the term itself) with $l_1^{context}[l_1^{sub}] = l_1$ and there exist a most general unifier σ such that $l_1^{sub}\sigma = l_2\sigma$, then $r_1\sigma$ and $l_1^{context}[r_2\sigma]$ are called a critical pair.

(I) e.x \rightarrow x

(2) $I(x).x \rightarrow e$

 $(3) (x.y).z \rightarrow x.(y.z)$

$$)$$
 e.x \rightarrow x

Objectif:

$$e.x \rightarrow x$$

$$(2)$$
 $I(x).x \rightarrow e$

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$(x.y).z \rightarrow x.(y.z)$$

$$(4)$$
 x.e \rightarrow x

$$(5)$$
 $\times I(x) \rightarrow e$

$$(7)$$
 $I(e) \rightarrow e$

$$9) |(x,y) \rightarrow |(y).|(x)$$

 $\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

	ı	2	3
I			
2			
3			

 $\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

 $\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$

$$(2)$$
 $I(x).x \rightarrow e$

$$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

- $e.x \rightarrow x$ $I(x).x \rightarrow e$ $(x.y).z \rightarrow x.(y.z)$

$$(2)$$
 $I(x).x \rightarrow e$

$$(3) (x.y).Z \rightarrow x.(y.Z)$$

$$(4) | (x).(x.z) \rightarrow z$$

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$(4) | (x).(x.z) \rightarrow z$$

$$e.x \rightarrow x$$

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$4) |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$\left(\right)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$(4) | (x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$\left(\right)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$(4) | (x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

() e.x \rightarrow x

(2) $I(x).x \rightarrow e$

(3) $(x.y).z \rightarrow x.(y.z)$

 $\boxed{4} \quad |(x).(x.z) \rightarrow z$

(5) $I(e).z \rightarrow z$

(6) $I(I(x)).e \rightarrow x$

7 $|(x.y).(x.(y.z)) \rightarrow z$

Mêmes règles, autre substitution!

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$7$$
 $|(x.y).(x.(y.z)) \rightarrow z$

$$(8) \quad |(|(x)).y \rightarrow x.y$$

$$()$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$7) |(x.y).(x.(y.z)) \rightarrow z$$

$$(8) |(|(x)).y \rightarrow x.y$$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$(7)$$
 $I(x.y).(x.(y.z)) \rightarrow z$

$$(8) |(|(x)).y \rightarrow x.y$$

$$\left(\right)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$7$$
 $|(x.y).(x.(y.z)) \rightarrow z$

$$(8) \quad |(|(x)).y \rightarrow x.y$$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$7$$
 $|(x.y).(x.(y.z)) \rightarrow z$

$$(8)$$
 $I(I(x)).y \rightarrow x.y$

$$()$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$(7)$$
 $I(x.y).(x.(y.z)) \rightarrow z$

$$(8) \quad |(|(x)).y \rightarrow x.y$$

Mêmes règles, autre substitution!

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$(4) |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$7$$
 $|(x,y).(x,(y,z)) \rightarrow z$

$$(8) |(|(x)).y \rightarrow x.y$$

$$\left(\right)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$(7) | (x.y).(x.(y.z)) \rightarrow z$$

$$(8)$$
 $I(I(x)).y \rightarrow x.y$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$(4) |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$7$$
 $|(x.y).(x.(y.z)) \rightarrow z$

$$(8) \quad |(|(x)).y \rightarrow x.y$$

$$(9)$$
 $\times I(x) \rightarrow e$

- $e.x \rightarrow x$
- (2) $I(x).x \rightarrow e$
- (3) $(x.y).z \rightarrow x.(y.z)$
- $\boxed{4} \quad |(x).(x.z) \rightarrow z$
- (5) $I(e).z \rightarrow z$
- (6) $I(I(x)).e \rightarrow x$
- $(7) | (x,y).(x,(y,z)) \rightarrow z$
- $(8) \quad |(|(x)).y \rightarrow x.y$
- (9) $\times I(x) \rightarrow e$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(6)$$
 $I(I(x)).e \rightarrow x$

$$(7)$$
 $I(x.y).(x.(y.z)) \rightarrow z$

$$(8) \quad |(|(x)).y \rightarrow x.y$$

$$9$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$\left(\right)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$(4) | (x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$6 \quad |(|(x)).e \rightarrow x \quad 8 + |0|$$

$$7) |(x.y).(x.(y.z)) \rightarrow z$$

$$(8) \quad |(|(x)).y \rightarrow x.y$$

$$9$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

Useless rule!

 $e.x \rightarrow x$

(2) $I(x).x \rightarrow e$

(3) $(x.y).z \rightarrow x.(y.z)$

 $(4) | (x).(x.z) \rightarrow z$

(5) $I(e).z \rightarrow z$

 $(7) | (x.y).(x.(y.z)) \rightarrow z$

 $(8) \quad |(|(x)).y \rightarrow x.y$

(9) $\times I(x) \rightarrow e$

(10) x.e \rightarrow x

$$\left(\right)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$7) |(x.y).(x.(y.z)) \rightarrow z$$

$$(8) \quad |(|(x)).y \rightarrow x.y$$

$$(9)$$
 $x.I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(7) | (x,y).(x,(y,z)) \rightarrow z$$

$$(8)$$
 $I(I(x)).y \rightarrow x.y$

$$(9)$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$(II) \quad |(I(x)) \rightarrow X$$

$$(1)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$(7) | (x,y).(x,(y,z)) \rightarrow z$$

$$8) \xrightarrow{\text{I(I(x)).y}} \times \cdot y$$

$$(9)$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

(I) e.x \rightarrow x

(2) $I(x).x \rightarrow e$

(3) $(x.y).z \rightarrow x.(y.z)$

 $(4) |(x).(x.z) \rightarrow z$

(5) $I(e).z \rightarrow z$

 $7) | (x.y).(x.(y.z)) \rightarrow z$

(9) $\times .I(x) \rightarrow e$

(10) x.e \rightarrow x

$$(1)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5)$$
 $I(e).z \rightarrow z$

$$7$$
 $|(x,y).(x,(y,z)) \rightarrow z$

$$9$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$(12)$$
 $I(e) \rightarrow e$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(5) \quad I(e).Z \rightarrow Z \quad (12) + (1)$$

$$(7) | (x,y).(x,(y,z)) \rightarrow z$$

$$9$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$(12)$$
 $I(e) \rightarrow e$

 $\left(\right)$ e.x \rightarrow x

(2) $I(x).x \rightarrow e$

(3) $(x.y).z \rightarrow x.(y.z)$

 $\boxed{4} \quad |(x).(x.z) \rightarrow z$

 $(7) | (x,y).(x,(y,z)) \rightarrow z$

(9) $\times I(x) \rightarrow e$

(10) x.e \rightarrow x

(12) $I(e) \rightarrow e$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$(4) | (x).(x.z) \rightarrow z$$

$$7) | (x.y).(x.(y.z)) \rightarrow z$$

$$(9)$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$(13) y.(|(y).x) \rightarrow x$$

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$(4) | (x).(x.z) \rightarrow z$$

$$7$$
 $|(x.y).(x.(y.z)) \rightarrow z$

$$(9)$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$(12)$$
 $I(e) \rightarrow e$

(13)
$$y.(I(y).x) \rightarrow x$$

$$)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$(4) |(x).(x.z) \rightarrow z$$

$$7$$
 $|(x.y).(x.(y.z)) \rightarrow z$

$$(9)$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$(12)$$
 $I(e) \rightarrow e$

(13)
$$y.(I(y).x) \rightarrow x$$

$$14) \times (y.|(x.y)) \rightarrow e$$

Mêmes règles, autre substitution!

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$7) | (x.y).(x.(y.z)) \rightarrow z$$

$$(9)$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$(13) y.(|(y).x) \rightarrow x$$

$$(14) \times (y.|(x.y)) \rightarrow e$$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(7) | (x.y).(x.(y.z)) \rightarrow z$$

$$9$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$|(|(x)) \rightarrow x$$

$$13) y.(|(y).x) \rightarrow x$$

$$(14) \times (y.|(x.y)) \rightarrow e$$

$$15) \times I(y.x) \rightarrow I(y)$$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad I(x).(x.z) \rightarrow z$$

$$7) |(x.y).(x.(y.z)) \rightarrow z$$

$$(9)$$
 $\times I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$|(|(x)) \rightarrow x$$

$$(12)$$
 $I(e) \rightarrow e$

$$13) y.(|(y).x) \rightarrow x$$

$$(14) \times (y.|(x.y)) \rightarrow c \qquad (15) + (9)$$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$7$$
 $|(x,y).(x,(y,z)) \rightarrow z$

$$9$$
 $\times .I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$| (|(x)) \rightarrow x$$

$$(13) y.(|(y).x) \rightarrow x$$

$$(15) \times 1(y.x) \rightarrow 1(y)$$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$(4) | (x).(x.z) \rightarrow z$$

$$(7) | (x,y).(x,(y,z)) \rightarrow z$$

$$9$$
 $\times .I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$|(|(x)) \rightarrow x$$

$$13) y.(|(y).x) \rightarrow x$$

$$15) \times 1(y.x) \rightarrow 1(y)$$

$$| (x,y) \rightarrow |(y),|(x)$$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$\boxed{4} \quad |(x).(x.z) \rightarrow z$$

$$(7) | (x.y).(x.(y.z)) \rightarrow z$$

$$9$$
 $\times .I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$|(|(x)) \rightarrow x$$

$$13) y.(I(y).x) \rightarrow x$$

$$\begin{array}{c} 15 \\ \times .1(y.x) \rightarrow 1(y) \\ \hline \end{array} (16) + (13)$$

$$(I)$$
 e.x \rightarrow x

- (2) $I(x).x \rightarrow e$
- (3) $(x.y).z \rightarrow x.(y.z)$
- $\boxed{4} |(x).(x.z) \rightarrow z$
- $\frac{7}{1(x.y).(x.(y.z))} \rightarrow z \qquad 16) + 3$
- $9) x.l(x) \rightarrow e + 4 + 4$
- (10) x.e \rightarrow x
- $|(|(x)) \rightarrow x$
- (12) $I(e) \rightarrow e$
- $(13) y.(|(y).x) \rightarrow x$
- $(16) | (x.y) \rightarrow | (y).|(x)$

$$(I)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3)$$
 (x.y).z \rightarrow x.(y.z)

$$(4) | (x).(x.z) \rightarrow z$$

$$(9)$$
 $\times .I(x) \rightarrow e$

$$(10)$$
 x.e \rightarrow x

$$(12) \qquad I(e) \rightarrow e$$

$$(13) y.(I(y).x) \rightarrow x$$

$$(16) \quad |(x.y) \rightarrow |(y).|(x)$$

Objectif:

$$)$$
 e.x \rightarrow x

$$(2)$$
 $I(x).x \rightarrow e$

$$(3) (x.y).z \rightarrow x.(y.z)$$

$$(4)$$
 x.e \rightarrow x

$$(5)$$
 $\times I(x) \rightarrow e$

$$7$$
 $I(e) \rightarrow e$

$$(8)$$
 $|(|(x)) \rightarrow x$

$$9) |(x.y) \rightarrow |(y).|(x)$$

 $e.x \rightarrow x$ $I(x).x \rightarrow e$ $(\times.y).Z \rightarrow \times.(y.Z)$ $I(x).(x.z) \rightarrow z$ $\times .I(\times) \rightarrow e$ $x.e \rightarrow x$ $|(|(\times)) \rightarrow \times$ $I(e) \rightarrow e$ $y.(|(y).x) \rightarrow x$

 $I(x.y) \rightarrow I(y).I(x)$

$$(1)$$
 e.x \rightarrow x

Objectif:

$$e.x \rightarrow x$$

(2)
$$I(x).x \rightarrow e$$

$$(2)$$
 $I(x).x \rightarrow e$

$$(3) (x.y).z \rightarrow x.(y.z)$$

$$(3)$$
 $(x.y).z \rightarrow x.(y.z)$

$$I(x).(x.z) \rightarrow z$$

$$4$$
 x.e \rightarrow x

$$(5)$$
 $\times .I(x) \rightarrow e$

$$(5)$$
 $x.I(x) \rightarrow e$

$$(4)$$
 x.e \rightarrow x

$$6) \times (y.z) \rightarrow (x.y).z$$

$$(8) \quad |(|(x)) \rightarrow x$$

$$7$$
 $I(e) \rightarrow e$

7
$$I(e) \rightarrow e$$

y. $(I(y).x) \rightarrow x$

$$(8) \quad |(|(x)) \rightarrow x$$

9
$$I(x.y) \rightarrow I(y).I(x)$$

9
$$|(x,y) \rightarrow |(y).|(x)$$