

CSE-231 Digital Logic Design

Section: 07

Faculty: MD. SHAHRIAR HUSSAIN (HSM)

Project Fall 2021

Name: Ferdous Hasan Zihad Akash ID: 2021309642

Date of Submission: 1stth January, 2022

Contents:

Part 1: Combinational part

- > Basic gates implementations
- Universal gate(NAND) implementation(page
- > Decoder implementation
- > Multiplixer implementation(page-

Part 2: Sequential part:

> Decoder Sequential circuit implementation

For Instructor's use only							
SCORE:	REMARKS:						
PENALTY:							

Name: - Feridous Hasan Zihad Akash ID: - 2021309642

	Proj	sect:- 2	aused))	1	9		0	9
?ra	spendies e	3 lb						3	
	ID	ABC.	a	b	C	d	0	f. 1	9.7
	2	0 0 0	1	1	0	1	1	0	1
	0	0 01	1	1	1	1	1	1	0
	2	0 10	1	1	0	1	1		1
	_1	0 11	0	1.	1	0	0	0	0
	3	400	1	1	1	1	0	0.	1
	0	101	1	1	1	1	1	1	0
	9	110	1	1	1	1	0	1	1
	1	111	×	X	X	\times	X	X	×
1									

equation for:

aquation for Basic gates:

$$b = 1$$

$$d = \overline{B} + \overline{c}$$

$$Q = \overline{A}\overline{C} + \overline{B}C$$

$$f = \overline{B}C + AB$$

Universal gate implementation.

Forc universal gate I've used the basic equation of them I converted those equations to NAND gate. Which is a universal gate.

Using Docoders

used minterems from the basic gate: -Simplified equations.

$$Q' = 2(111011118)$$

$$D = 2(11101118)$$

$$C = 2(01011118)$$

$$d = 2(11100108)$$

$$e' = 2(11100108)$$

$$f = 2(01000148)$$

$$f = 2(10101018)$$

$$C = \begin{cases} 0.001111 \times \\ 101.1213 \\ \hline A & m_0 & m_1 & m_2 \\ \hline A & m_0 & m_0 & m_0 \\ \hline A & 1 & A & A \\ \hline 0 = \begin{cases} 0.0010 \times \\ \hline A & m_0 & m_0 & m_0 \\ \hline A & m_0$$

$$g = \sum (400101x)$$

$$\frac{1}{4} = \sum (10112)$$

$$\frac{1}{4} = \sum (1012)$$

$$\frac{1}{4} = \sum (1010)$$

equation for MUX:-

a = 1110

b = 111A

 $C = A1A\bar{A}$

d = 1110

Q = AJÃO

f = 01A0 9 = 1010

Synahrronous counter:

State Diagram: 2->0>2>1>3>0>9>0

State table:

3	,			
A(y) B(y) C(y)	· A(+1) B(+1) ((+1)	JA KA	Joko	Jeke
000	0 0 1	ox	0	1×
0 0 1	0 -1 0	DX	18	X2 1X
0 10	0 1 1	0× 4×	×2 ×4	*1
0 11	1 0 0	Xo	0×	1 ×
201	1 1 0	XO	1X	×1
110	000	×1	×1	0 %
111	X X X	* ×	XX	**

State oquations:

$$J_A = E(0001 \times x \times x)$$

$$J_B = E(01 \times x \times 01 \times x)$$

$$J_C = E(1 \times 1 \times 1 \times 0 \times x)$$

$$K_A = E(x \times x \times 0.01 \times x)$$

$$K_B = E(x \times x \times 0.01 \times x)$$

$$K_B = E(x \times x \times 0.01 \times x)$$

$$K_B = E(x \times x \times 0.01 \times x)$$

State Diagram!

 $J_0 = \mathcal{E} \left(01 \times \times 01 \times \times \right)$

K-map :-

equation for sequential ckt:

$$J_{A} = B(+) C(+)$$

$$J_{B} = C(+)$$

$$J_{C} = \overline{A}(+) + \overline{B}(+)$$

$$K_{A} = B(+)$$

$$K_{B} = C(+) + \overline{A}(+)$$

$$K_{C} = 1$$