

Descriptive Analytics Exploring and Visualizing Data

Veterans Analytics Course

September 16-17, 2020

Provided by: CANA Advisors

Case Study National Parks

- National park visitors by year
- ▶ Data fields:
 - Year
 - National park name
 - Region
 - State
 - Visitors
 - Visit Type

Data: structured vs. unstructured

Structured

- Lists, data frames, spreadsheets, databases, 'big' data
- May contain -
 - Numeric values
 - Logicals (True/False)
 - Factors
 - Strings with set format

Unstructured

- Multiple formats (no rigid structure)
- May contain -
 - Images
 - Free Text
 - Speech
 - Others

Data Attributes

Accuracy – How correct is the data?

Confidence – what are the 'error bars' around the data provided?

Authority – how authoritative is the source of the data?

Question - Is it better to have Accurate or Authoritative data?

Tidy Data

Optimally organized data

Tidy data

- Each variable must have its own column
- Each observation must have its own row
- Each value must have its own cell

For Excel, this means the first row is the header / list of field names and each row underneath is a record / observation

- No blank rows
- No merged cells

This data is tidy

- Each variable has its own column
- Each observation has its own row
- Each value has its own cell

Tidy or untidy?

religion	<\$10k	\$10-20k	\$20-30k	\$30–40k	\$40–50k	\$50-75k
Agnostic	27	34	60	81	76	137
Atheist	12	27	37	52	35	70
Buddhist	27	21	30	34	33	58
Catholic	418	617	732	670	638	1116
Don't know/refused	15	14	15	11	10	35
Evangelical Prot	575	869	1064	982	881	1486
Hindu	1	9	7	9	11	34
Historically Black Prot	228	244	236	238	197	223
Jehovah's Witness	20	27	24	24	21	30
Jewish	19	19	25	25	30	95

Table 4: The first ten rows of data on income and religion from the Pew Forum. Three columns, \$75–100k, \$100–150k and >150k, have been omitted.

Wickham, H. (2014). Tidy Data. Journal of Statistical Software, 59(10), 1 - 23. doi: http://dx.doi.org/10.18637/jss.v059.i10

Common data issues

- Improperly stored data
- Duplicate records
- Outliers
- Missing data
- Invalid entries

Garbage data, garbage visual

What underlying issues impact this graph?

Summarizing Data

Slice and dice data with Pivot Tables

Functions compute summary statistics

- ► SUM()
- ► MIN()
- ► MAX()
- ► MEDIAN()
- ► AVERAGE()
- ► COUNTA()

PivotTables

- Allow you to quickly summarize data by groups
- ▶ Select Insert → PivotTable
- You typically want the default options:
 - Entire sheet as your range
 - PivotTable in a new window

Power Query + PivotTables

Power Query offers an intuitive way to construct

PivotTables

Practical Examples

Let's see it in practice!

Visualizing Data

Uncovering relationships in complex data

Discovering relationships in data

Collecting and summarizing data

- Basic statistics are helpful in summarizing data
- Box plots, scatter plots, box and whisker plots provide compact representations of how data is distributed
- Useful for exploring data but may not always be the best choice for communicating the data to your audience.

Discovering relationships in data

▶ **PLOT** the data in a meaningful way

Discovering relationships in data

A note on Machine Learning

Supervised Learning

- Learn a function that approximates the relationship between input and output observable in the data
- Labeled data
- Examples:
 - Classification
 - Regression

Unsupervised Learning

- Uncover the natural structure present within a set of data points
- Unlabeled data
- Examples:
 - Clustering

Clustering

https://www.mygreatlearning.com/blog/clustering-algorithms-in-machine-learning/

Storytelling with Data

Communicating meaning from complex data

Dashboard Design

- Composed of "elements" (aka "cards")
- Often laid out on a grid.
- Each element has a specific purpose – tells its own story.
- Choose size, color, and placement of elements to draw attention to what is important.

Most Noteworthy Information

Important Details

Background Information

Types of Elements

- ► Big Numbers
- ► Charts / Graphs
- Maps
- ► Heat map
- ➤ Slicers
- **►** Tables
- **►** Sparklines

Dashboard Best Practices

Consider visual hierarchy

Consider your goal

Provide Context

Keep it Simple

Provide user controls

Select relevant KPIs

Use the right visuals

Iterate & Improve

Dashboard Critique

Practical Examples

Let's see it in practice!