

Grupo #3

Medidor de calidad de energía

Christian Fernando Morales López Leo José Oropin Seguro José David Morales García

Planteamiento del problema

Medidor de energía ION8650 en CT FRJ1N

El dataset contiene mediciones de las variables de energía en periodos de 15 minutos, hasta la fecha promedio de las 3 líneas (sistema trifásico)

Objetivo

Features

Feature	Description
Date	Fecha y hora de la medicion
voltage_ab	Voltaje linea a linea entre fases a y b
voltage_bc	Voltaje linea a linea entre fases b y c
voltage_ca	Voltaje linea a linea entre fases c y a
voltage_avg	Voltaje promedio de las 3 lineas
voltage_unbalance	Voltaje de desbalance
current_a	Corriente linea a
current_b	Corriente linea b
current_c	Corriente linea c
current_avg	Corriente promedio de las 3 lineas
true_power	Potencia Activa total
reactive_power	Potencia Reactiva total
apparent_power	Potencia Aparente total
frequency	Frecuencia
commute	Conmutación de enegía comercial a planta de emergencia (<i>variable respuesta)</i>

VOLTAGE_AVG
CURRENT_AVG

TRUE_POWER REACTIVE_POWER

VOLTAGE_AVG

CURRENT_AVG

REACTIVE_POWER

TRUE_POWER

Rendimiento

Conclusiones

- Los 2 métodos que se mantuvieron con buenos rendimientos en todas las iteraciones y con todas las features transformaciones fueron:
 - Kneighbors
 - Random Forest
- Los métodos antes mencionados parecen ser los más robustos y se sugiere realizar pruebas adicionales con estos. En próximas iteraciones, la idea sería experimentar con diferentes combinaciones de features y evaluar como afectar el modelado.
- Es importante mencionar que se refleja mucho overfitting en los resultados, esto es producto de las features que representan la corriente y la potencia. Ya que ambas se vuelven 0 luego de la conmutación de energía comercial a energía propia. Porque se deja de consumir la energía comercial.
- Valdría la pena realizar un análisis eléctrico para determinar si cabe tomar en cuenta éstas variable o no y verificar si vale la pena separarlas en dos grupos que son bimodales.