機器學習原理及工業應用 FINAL PROJECT

糖尿病風險預測

報告人:109611099 機械 大三 顔彥臣

109611090 機械大三 劉定珩

為甚麼選這個題目????

皿中日皿球(WBC)	8.54	4~10		~
血中紅血球(RBC)	5.56	男:4.5~6、女:4~5.5		~
血紅棗(Hgb)	16.4	男:13.5~17.5女:12~16		~
血容積(B_HCT)	47.5	男:41~53、女:36~46		~
平均血球體積(MCV)	85.4	80~100		~
平均血球血红素(MCH)	29.5	26~34		~
平均血球濃度(MCHC)	34.5	31~37		~
血小板(Platelet)	402	150~450		~
轉胺酶SGOT	65	13~39		~
轉胺胂SGPT	187	7~52		~
B肝表面抗原HBsAg		<1 Negative COI		~
B型肝炎表面抗體(Anti-HBs)		>10 Positive IU/L		~
尿素氮(BUN)	13	7~25		~
肌酸酐(Creatinine)	0.95	男:0.7~1.3、女:0.6~1.2		~
尿酸(Uric Acid)	9.9	男:4.4~7.6、女:2.3~6.6		~
飯前血髓	83	70~99		~
總體圖醇(CHOL)	214	<200	mg/d	~
三酸甘油脂(TG)	198	<150	mg/dl	
高密度階蛋白體固醇(HDL)	37	男:≧40;女≧50	mg/dl	~
低密度指蛋白膽固醇(LDL)	172	<130	mg/dl	

目標:預測自己及室友目前是否有得到糖尿病之風險

收集資料

資料選用(刪去不合適的資料集)

Α	В	С	D	E	F	G	Н	1	J	K	L
regnancie	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree	Age	Outcome			
6	148	72	35	0	33.6	0.627	50	1			
1	85	66	29	0	26.6	0.351	31	0			
8	183	64	0	0	23.3	0.672	32	1			
1	89	66	23	94	28.1	0.167	21	0			
0	137	40	35	168	43.1	2.288	33	1			
5	116	4	0	0	25.6	0.201	30	0			
3	78	50	32	88	31	0.248	26	1			
10	115	0	0	0	35.3	0.134	29	0			
2	197	70	45	543	30.5	0.158	53	1			
8	125	96	0	0		0.232	54	1			
4	110	92	0	0	37.6	0.191	30	0			
10	168	74	0	0	38	0.537	34	1			
10	139	80	0	0	27.1	1.441	57	0			
1	189	60	23	846	30.1	0.398	59	1			
5	166	72	19	175	25.8	0.587	51	1			
7	100	0	0	0	30	0.484	32	1			
0	118	84	47	230	45.8	0.551	31	1			
7	107	74	0	0	29.6	0.254	31	1			
1	103	30	38	83	43.3	0.183	33	0			
1	115	70		96	34.6	0.529	32	1			
3	126	88	41	235	39.3	0.704	27	0			
8	99	84	0	0	35.4	0.388	50	0			
7	196	90	0	0	39.8	0.451	41	1			
9	119	80		0	29		29	1			

А	В	С	D	E	F	G	Н	I
Pregnancies(懷孕次數)	Glucose(葡萄糖濃度)	BloodPressure(血壓)	SkinThickness(皮下肌肉厚度)	Insulin(胰島素濃度)	BMI	DiabetesPedigreeFunction	Age	Outcome
1	89	66	23	94	28.1	0.167	21	0
0	137	40	35	168	43.1	2.288	33	1
3	78	50	32	88	31	0.248	26	1
2	197	70	45	543	30.5	0.158	53	1
1	189	60	23	846	30.1	0.398	59	1
5	166	72	19	175	25.8	0.587	51	1
0	118	84	47	230	45.8	0.551	31	1
1	103	30	38	83	43.3	0.183	33	0
1	115	70	30	96	34.6	0.529	32	1
3	126	88	41	235	39.3	0.704	27	0

資料比數:392 資料來源: UCI

特徵(變數量):8種

- Pregnancies(懷孕次數)
- Glucose(葡萄糖濃度)
- BloodPressure(血壓)
- SkinThickness(皮下肌肉厚度)
- Insulin(胰島素濃度)
- BMI
- DiabetesPedigreeFunction(糖尿病函數) 這個函數使用了家族糖尿病史來導出個人得糖尿病的風險值
- Age(年紀)

對照結果:

1:得到糖尿病

0:未得糖尿病(健康)

讀取檔案

```
def readfinal(inFileName):
    # init
    recArr = []
    clsArr = []
   # open input text data file, format is given
inFile = open(inFileName, 'r')
s = inFile.readline() # skip
    row = 0
    while True:
        s = inFile.readline()
        data1 = s.strip() # remove leading and ending blanks
         if (len(data1) <= 0):
             break
         # since we use append, value must be created in the loop
         value = []
        strs9 = data1.split(',') # array of 31 str
         # convert to real
         for ix in range(8):
             value.append( eval(strs9[ix]) )
         # end for
         target = eval(strs9[8])
         recArr.append(value); # add 1 record at end of array
        clsArr.append(target); # add 1 record at end of array
         row = row+1 # total read counter
    # end while
    # close input file
    inFile.close()
   # convert list to Numpy array
npXY = np.array(recArr)
npC = np.array(clsArr)
# pass out as Numpy array
return npXY, npC
# end function
```

5-fold cross validation

取兩筆資料做TEST(目的僅是為了看各種METHOD的預測差異) 剩餘390比資料用作5折交叉驗證

#392比資料 2比做test 390比做5折驗證

X_5fold, X_check, y_5fold, y_check = train_test_split(X, y, test_size = 2, random_state = 0)

取兩筆資料做預測(test case)

146	2	146	70	38	360	28	0.337	29	1
282	8	186	90	35	225	34.5	0.423	37	1

```
[[predict1=np.array([[2,146,70,38,360,28,0.337,29]])
Ttest1=[1]
Tpredict2=np.array([[8,186,90,35,225,34.5,0.423,37]])
Ttest2=[1]
```

使用library

取用sklearn的四種方法

KNN

```
cocar_cesc - o
from sklearn.neighbors import KNeighborsClassifier
neighbors_setting=range(1,11)
training_accuracy=[]
test accuracy-[]
for num in neighbors setting:
    total train = U
   total test = 0
   for fold in range(num_folds):
        X_train, X_test, y_train, y_test = TrainTestSplit_Fold(X_5fold, y_5fold, fold, test_size)
        knn=KNeighborsClassifier(n_neighbors=num)
        knn.fit(X_train,y_train)
       y_predict=knn.predict(X_test)
       train_s=knn.score(X_train, y_train)
       test s=knn.score(X test,y test)
       total train += train s
       total_test += test_s
    average_train = total_train/num_folds
   average_test = total_test/num_folds
   training_accuracy.append(average_train)
    test_accuracy.append(average_test)
plt.plot(neighbors_setting, training_accuracy, label="training score")
plt.plot(neighbors_setting,test_accuracy, label="test score")
plt.ylabel("accuracy")
plt.xlabel("n_neighbors")
plt.legend()
plt.show()
plt.savefig('knn model比較')
```


N=9時會是最佳模型!

5-fold Training score=0.78 5-fold Testscore=0.75

對兩筆測試數據做預測 兩者皆為預測皆為**1** 和結果相同。

LogisticRegression

```
from sklearn.linear model import LogisticRegression
# loop through folds
total train = 0
total\_test = 0
for fold in range(num_folds):
   X_train, X_test, y_train, y_test = TrainTestSplit_Fold(X_5fold, y_5fold, fold, test_size)
#c=1
   logreg=LogisticRegression(C=1,max_iter=1000).fit(X_train, y_train)
   train_s=logreg.score(X_train, y_train)
test_s=logreg.score(X_test,y_test)
   total_train += train_s
   total test += test s
average_train = total_train/num_folds
average_test = total_test/num_folds
print("logic regression for c=1 train/test :{:.3f}/{:.3f}".format(average_train,average_test))
total_train = 0
total test = 0
```

logic regression for c=1 train/test score :0.794/0.782

嘗試調整C

當C=100

logic regression for c=100 train/test score :0.795/0.785 model在training準確度提高一些但test score略降 當C=0.01

logic regression for c=0.01 train/test score :0.787/0.774 model在training 和test 準確度都下降

結論:更多或更少的正則化或更複雜的模型並不一定會使模型的預測效果 更好。

對testcase 做預測

```
C=100
                                                                                                                                                                                                                                                                                                                                                                            C=0.001
  feature=["Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin", "BMI", "DiabeticFunction", "Age"]

plt.figure(figsize=(8,8))

plt.plot(logreg.coef_.T, 'o', label="C=1")

plt.plot(logreg100.coef_.T, '^', label="C=100")

plt.plot(logreg001.coef_.T, 'v', label="C=0.001")

plt.xticks(range(8), feature, rotation=35)

plt.hlines(0, 0, 9)

plt.ylim(-5, 5)
                                                                                                                                                                                                                      Coefficient magnitude
                                                                                                                                                                                                                            -2
   plt.xlabel("Feature")
   plt.ylabel("Coefficient magnitude")
   plt.legend()
   plt.show()
   plt.savefig('log11')
                                                                                                                                                                                                                                                                           SkinThickness
```

• C=1

使用LogisticRegression 做預測時

DiabetesPedigreeFunction(家族糖尿病函數)影響很大!!!!!

Decision Tree

```
from sklearn.tree import DecisionTreeClassifier
# loop through folds
total_train = 0
total test = 0
tree=DecisionTreeClassifier(random_state=0)
for fold in range(num_folds):
   X_train, X_test, y_train, y_test = TrainTestSplit_Fold(X_5fold, y_5fold, fold, test_size)
   tree=DecisionTreeClassifier(random state=0)
   tree.fit(X_train,y_train)
   train_s=tree.score(X_train, y_train)
   test s=tree.score(X test,y test)
   total_train += train_s
   total test += test s
average_train = total_train/num_folds
average_test = total_test/num_folds
print("decision tree train/test score :{:.3f}/{:.3f}".format(average_train,average_test))
```

Train score:1.000

Test score:0.715

Overfit!!

Why???

引用:上課講義 ML_Ch02f.pdf

調整樹的最大深度

```
#max depth=3
 # loop through folds
 total train = 0
 total test = 0
 for fold in range(num folds):
   X_train, X_test, y_train, y_test = TrainTestSplit_Fold(X_5fold, y_5fold, fold, test_size)
    tree=DecisionTreeClassifier(max depth=3,random state=0)
    tree.fit(X_train,y_train)
   train_s=tree.score(X_train, y_train)
    test_s=tree.score(X_test,y_test)
    total_train += train_s
    total_test += test_s
 average_train = total_train/num_folds
 average_test = total_test/num_folds
print("decision tree max_depth=3 train/test score :{:.3f}/{:.3f}".format(average_train,average_test))
                                                                                                            Best model
decision tree max_depth=3 train/test score :0.829/0.754
decision tree max_depth=4 train/test score :0.862/0.744
decision tree max_depth=5 train/test score :0.901/0.728
```

```
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age
```

```
[[predict1=np.array([[2,146,70,38,360,28,0.337,29]])
  Ttest1=[1]
—Tpredict2=np.array([[8,186,90,35,225,34.5,0.423,37]])
  Ttest2=[1]
```

```
>>> p1
array([1])
>>> p2
array([1])
>>>
```

符合預測!

Decision Tree 各特徵重要性

```
N Figure 1
                                                                                       中Q苹≧ 🖺
n_feature=8
plt.barh(range(8),tree.feature_importances_)
plt.yticks(np.arange(8),feature,rotation=60)
plt.xlabel("feature importance")
plt.ylabel("feature")
                                                                         O'aberickinction
plt.show()
                                                                             hsulin
                                                                          Skinnickness
                                                                          81000p essure
    葡萄糖濃度影響最大!
                                                                             OMCOSe
                                                                                 0.00
                                                                                        0.05
                                                                                                           0.20
                                                                                                                 0.25
                                                                                                                        0.30
                                                                                                                               0.35
                                                                                              0.10
                                                                                                     0.15
                                                                                                                                     0.40
                                                                                                        feature importance
```

x=0.445318 y=

Random forest

ramdom forest tree train/test score :1.000/0.774

Overfitting!

調整樹的最大深度

```
ramdom forest tree train/test score :1.000/0.774
ramdom forest tree(max_depth=3) train/test score :0.956/0.785
ramdom forest tree(max_depth=4) tree train/test score :0.876/0.777

Best model ramdom forest tree(max_depth=5) train/test score :0.906/0.777
ramdom forest tree(max_depth=6) train/test score :0.949/0.779
ramdom forest tree(max_depth=7) train/test score :0.975/0.772
```

```
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction Age
```

```
[predict1=np.array([[2,146,70,38,360,28,0.337,29]])
Ttest1=[1]
Tpredict2=np.array([[8,186,90,35,225,34.5,0.423,37]])
Ttest2=[1]
```

```
>>> p1
array([0])
>>> p2
array([1])
```

1預測錯誤

各特徵重要性

相較decision tree 除了葡萄糖濃度依舊影響最大外 Age(年紀) insulin(胰島素)影響變大

random forest tree 考慮更多可能性,複雜 度更高,但model訓練分數反而較decision tree 差

預測自己!!

- 1	1	Pregnancies(懷	Glucose(葡萄糖	BloodPressure(SkinThickness()	Insulin(胰島素濃	ВМІ	DiabetesPedigr	Age
2	2	0	83	82	30	100	25.7	0	19
3	3	0	90	69	30	100	23.8	0	19

############# Tpredict3=np.array([[0,83,82,30.1,100,25.7,0,19]]) Tpredict4=np.array([[0,90,69,30,100,23.8,0,19]])

```
用knn model 預測結果[0],[0]
用logregression 預測結果[0],[0]
用logregression 預測結果[0],[0]
用random forest tree 預測結果[0],[0]
```

不用擔心!!

應用

Thank YOU!!!!!!!!!