Exercice N°1:

On considère la suite (U_n) définie sur par : U₀=2 et U_{n+1} = $\frac{3U_n-1}{2U_n}$

- a) Montrer gue pour tout entier naturel n on a Un >1. 1)
 - b) Montrer que (Un) est une suite décroissante.
 - c) En déduire que la suite (Un) est convergente et trouver sa limite.
- 2) Soit (V_n) la suite définie sur IN par : $V_n = \frac{2Un 2}{2Un 1}$
 - a) Montrer que (V_n) est une suite géométrique de raison $\frac{1}{2}$
 - b) Exprimer V_n en fonction de n . En déduire U_n en fonction de n.
 - c) Retrouver alors la limite de la suite (U_n) quand n tend vers $+\infty$.

Exercice Nº2

Partie A : choisir la bonne réponse :

- 1) (U_n) est une suite réelle vérifiant pour tout n ϵ IN *: $-1-\frac{1}{n} \le U_n \le \frac{1}{n}$ a. $\lim_{n\to+\infty} U_n=0$ b. $\lim_{n\to+\infty} U_n=-1$ c. (U_n) est bornée

- 2)soit la suite (U_n) définie sur IN par : U_n = $\frac{n+(-1)^n}{n-2}$ alors on a

 - a. $\lim_{n\to+\infty} U_n = 0$ b. $\lim_{n\to+\infty} U_n = 1$
- c.(U_n) n'a pas de limite
- 3) Pour tout n \in IN on pose S_n= $\sum_{k=0}^{n} (\frac{1}{2})^n$ alors on a :
- a. $\lim_{n \to +\infty} S_n = 0$ b. $\lim_{n \to +\infty} \bar{S_n} = 2$ c. $\lim_{n \to +\infty} S_n = +\infty$

Partie B : Répondre par vrai ou faux :

- 1) Si (U_n) est une suite croissante alors elle est convergente
- 2) Si (Un) est une suite non minorée alors $\lim_{n\to+\infty} U_n = -\infty$
- 3) Si(U_n) une suite qui admet une limite en + ∞ alors elle est convergente.

Exercice N 3

Soit la suite U_n pour $n \in IN$ définie par : $\begin{cases} U_0 = a \\ U_{n+1} = \frac{1}{2}U_n + 5 \end{cases}$

- 1) Calculer U₁ et U₂ en fonction de a.
- 2)On pose $W_n = U_n a$
 - a) Trouver le réel a pour que soit une suite géométrique. Pour la suite de l'exercice, on prendra cette valeur.
 - b) Déterminer W_n puis U_n en fonction de n.
- 3) Etudier la convergence de chacune des suites W_n et U_n .

Exercice N 4

Soit (U_n) la suite définie sur IN par : U₀ = 2 et U_{n+1} = $\frac{2}{5}$ U_n + 3

- 1) Calculer (U₁) et (U₂); U est-elle géométrique? Est-elle arithmétique?
- 2) Montrer que pour tout $n \in IN : 2 \le U_n \le 5$
- 3)a) Montrer que (U_n) est une suite croissante.
 - b) En déduire alors que (U_n) est convergente et déterminer sa limite.
- 4) On pose pour tout $n \in IN$ par $V_n = U_n 5$.

Montrer que (V_n) est une suite géométrique.

- 5)a) Exprimer (V_n) et (U_n) en fonction de n.
 - b) En déduire $\lim_{n\to+\infty} V_n$ puis retrouver $\lim_{n\to+\infty} U_n$.

Soit (U_n) la suite définie sur IN par : $\begin{cases} U_0 &= -3 \\ U_{n+1} &= \frac{2U_n + 4}{U_n + 5} \end{cases}$

- 1) Calculer (U₁) et (U₂); U est-elle géométrique? Est-elle arithmétique?
- 2) Montrer que pour tout $n \in IN : -4 \le U_n \le 1$
- 3)a) Montrer que (U_n) est une suite croissante
 - b) En déduire alors que (U_n) est convergente et déterminer sa limite.

On pose pour tout $n \in IN$ par $V_n = \frac{U_n - 1}{U_n + 4}$

- 4) Montrer que (V_n) est une suite géométrique de raison $\frac{1}{C}$.
- 5)a) Exprimer (V_n) et (U_n) en fonction de n.
 - b) En déduire $\lim_{n\to+\infty} V_n$ puis retrouver $\lim_{n\to+\infty} U_n$

Exercice N°6

Soit (U_n) la suite définie sur IN par : $\begin{cases} T_0 &= 9 \\ T_{n+1} &= \frac{8T_n - 6}{T_n + 1} \end{cases}$

- 1) Montrer que pour tout $n \in IN : T_n \ge 6$
- 2)a) Montrer que $T_{n+1} T_n = \frac{(T_n 1)(6 T_n)}{T_n + 1}$
 - b) En déduire (T_n) est une suite décroissante
 - c) En déduire alors que (T_n) est convergente.
- 3) Montrer que pour tout $n \in IN |T_{n+1} 6| \le \frac{2}{7} |T_n 6|$.
- 4) En déduire $|T_n 6| \le 3 \left(\frac{2}{7}\right)^n$
- 5) En déduire $\lim_{n\to+\infty} T_n$.

Exercice N°7

et dans le graphique, on donne la courbe représentative C_f de la fonction $f(x) = \frac{2+4x}{2+x}$

pour $x \in]-1$, + ∞ [et la droite D d'équation y = x.

- 1) a)Déterminer graphiquement les abscisses α et β ; ($\alpha < \beta$) des points d'intersection de la courbe C_f et la droite D.
 - b) Placer sur l'axe des abscisses sans faire de calcule les termes U₀, U₁, U₂
- 2) a) Montrer que pour tout n, $U_n > 2$.
 - b) Montrer que la suite (U_n) est décroissante.
 - c) En déduire que la suite (U_n) est convergente et trouver sa limite l
- 3) Soit (V_n) la suite définie sur IN par $V_n = \frac{U_n 2}{1 + U_n}$
 - a) Montrer que (V_n) est une suite géométrique de raison $q = \frac{2}{\pi}$.
 - b) Exprimer V_n puis un en fonction de n.
 - c) Calculer la limite de la suite (V_n), puis retrouver la limite de la suite (U_n).

Exercice N°8

On considère les suites définie pour tout $n \in IN^*$, par $\begin{cases} U_1 = \frac{1}{3} \\ U_{n+1} = \frac{1+n}{3n}U_n \end{cases}$ et $V_n = \frac{U_n}{n}$

- 1) Montrer que V_n est une suite géométrique.
- 2) Exprimer V_n en fonction de n.
- 3) En déduire l'expression de un en fonction de n .
- 4) Soit la $S_n = \sum_{1}^{n} V_k$.

Calculer S_n en fonction de n et montrer que la suite S_n est convergente.

Exercice Nº 9

On considère la suite (U_n) pour $n \in IN$ définie par; $U_0=1$ et $U_{n+1}=\frac{1}{3}U_n+n-2$.

- 1) Calculer U_1 , U_2 et U_3 .
- 2) a) Démontrer que pour tout entier naturel $n \ge 4$; $U_n \ge 0$.
 - b) En déduire que pour tout entier naturel $n \ge 5$; $U_n \ge n-3$..
 - c) En déduire la limite de la suite (U_n) $n \in IN$.
- 3) On définit la suite V_n pour tout $n \in IN$: $V_n = -2U_n + 3n \frac{21}{3}$.
 - a) Démontrer que la suite (V_n) est une suite géométrique dont on donnera la raison et le premier terme.
 - b) En déduire que : pour tout $U_n = \frac{25}{4} (\frac{1}{3})^n + \frac{3}{2} 3n \frac{21}{4}$.
 - c) Soit la somme S_{n} définie pour tout entier naturel n par $:\!\mathsf{S}_{\mathsf{n}}\!\!=\!\sum_0^n U_k$. Déterminer l'expression de Sn en fonction de n .

Exercice N°10

On considère la suite (U_n) définie sur par : $U_0=2\sqrt{5}$ et $U_{n+1}=\frac{U_n^2+5}{2U_n}$

- 1) Montrer que pour tout entier naturel n on a $U_n > \sqrt{5}$.
- 2) Montrer que $(U_{n+1}-U_n)=\frac{-U_n^2+5}{2U_n}$ et en déduire que U_n une suite décroissante.
- 3) En déduire que la suite (Un) est convergente et trouver sa limite.