```
    ▼ Lösung
    Welche der folgenden ARM-Assemblerbefehle können die Flags im Statusregister beeinflussen?
    □ a. LDR r4, =32
```


b. CMP r1, r0

☐ d. AND r0, r0, r1

Angenommen, Sie möchten ein ARM-Assembler-Programm auf einem x86-Linux-Computer kompilieren und ausführen. Der Programmcode befindet sich in der Datei prog.s. In welcher Reihenfolge müssen Sie die folgenden Befehle ausführen?

```
a.
   qemu-arm prog
   arm-linux-gnu-ld -o prog prog.o
   arm-linux-gnu-as -o prog.o prog.S
```

- b. arm-linux-gnu-ld -o prog prog.o qemu-arm prog arm-linux-gnu-as -o prog.o prog.S
- C. arm-linux-gnu-as -o prog.o prog.S qemu-arm prog arm-linux-gnu-ld -o prog prog.o
- d. arm-linux-gnu-as -o prog.o prog.S arm-linux-gnu-ld -o prog prog.o qemu-arm prog
- e.
 qemu-arm prog
 arm-linux-gnu-as -o prog.o prog.S
 arm-linux-gnu-ld -o prog prog.o
 - f.
 arm-linux-gnu-ld -o prog prog.o
 arm-linux-gnu-as -o prog.o prog.S
 qemu-arm prog

Welcher ARM-Assemblerbefehl drückt die folgende Zuweisung $r_2=r_1st 32$ aus?

○ a. ADD r2, r1, r1, LSL #4

○ b. MOV r2, r1, LSL #2

C. MOV r2, r1, LSL #5

O d. SUB r2, r1, r1, ASR #4

Welche Aussagen über synchrone und asynchrone Schaltwerke treffen zu?

a. Asynchrone Implementierungen derselben Funktion sind oft schneller als ein synchrones Äquivalent.

- b. Asynchrone Schaltwerke werden durch ein zentrales Taktsignal gesteuert.
- c. In synchronen Schaltwerken ist der Zeitpunkt stabiler Ausgangssignale oft nicht genau bestimmbar.

d. Synchrone Schaltwerke können leicht systematisch entworfen werden.

Stellenwertsysteme					
Status	Beantwortet				
Erreichte Punktzahl	1/1			100%	
Antwort Welche der folgenden Zahlen sind äquivalent zu (248) ₁₀ ? Tipp: Eine der Binärzahlen ist richtig. a. (371) ₈ b. (f8) ₁₆ c. (11110111) ₂ d. (2e8) ₁₆ e. (11111000) ₂ Lösung					

Welches ist die Negation der **Binärzahl** $ig(010011ig)_2$ im **Zweierkomplement**?

- \bigcirc a. $(010101)_2$
- O b. (101111)₂
- \circ c. $(101100)_2$

 \odot d. $(101101)_2$

Lösung
hren Sie die Addition der Binärzahlen $ig(0011000ig)_2$ und $ig(1101011ig)_2$ aus. Zählen Sie die Anzahl der Überträge
elche Aussage ist korrekt?

- b. Es kommt zu 5 Überträgen.
- c. Es kommt zu 4 Überträgen.

d. Es kommt zu 2 Überträgen.

Welches ist die Negation der **Binärzahl** $(101010)_2$ im **Zweierkomplement**?

a. $(010101)_2$

○ b. (011000)₂

c. (101100)₂
 d. (010110)₂

Gegeben sei p=5 und m=3. Was ist die Dezimaldarstellung von z=(0,0,1,1,1,1,0,0,1)? Gehen Sie davon aus, dass z nach dem in der Vorlesung besprochenen IEEE-754-Standard gebildet wurde. Erinnern Sie sich dabei an die Binärdarstellung von Gleitkommazahlen:

$$(s, e_{p-1}, \ldots, e_1, e_0, f_{m-1}, \ldots, f_1,$$

1 + p + m = n Bit

- a. 1.890625
- O b. 1.78125
- C. 1.5625

▼ Lösung b_{n-1} b_2 a_{n-1} a_2 a_1 a_0 . . . n-Bit-Addierer . . .

 y_{n-1} y_1 y_2 y_0 U (Überlauf) Es seien n=4, $a=(0110)_2$, und $b=(0010)_2$. Nutzen Sie das bekannte Addier- und Subtrahierwerk um a+b zu berechnen. Wie ist die Leitung s zu belegen? Was liegt danach an den

$$\bigcirc$$
 a. $s=0$, $c_{
m out}=1$, $v=0$

Ausgabeleitungen an?

- O b. s = 1, $c_{
 m out} = 0$, v = 1
- \odot c. s=0, $c_{
 m out}=0$, v=1
- o d. s = 1, $c_{\text{out}} = 1$, v = 0

Es seien n=4, $a=(1110)_2$, und $b=(0101)_2$. Nutzen Sie das bekannte Addier- und Subtrahierwerk um a+b zu berechnen. Wie ist die Leitung s zu belegen? Was liegt danach an den Ausgabeleitungen an?

- \circ a. s = 1, $c_{ ext{out}} = 1$, v = 0
- \odot b. s=0, $c_{
 m out}=1$, v=0
- \bigcirc c. s=0 , $c_{
 m out}=0$, v=1
- \bigcirc d. s=1, $c_{
 m out}=0$, v=1

Boolsche Funktion ■ Boolsche Funktion Boolsch					
Status	Beantwortet				
Erreichte Punktzahl	1/1	0%			
Antwort Welche Beschreibung passt zur dargestellten Funktion $f(x_1,x_2,x_3)$? $ \frac{x_1}{0} \frac{x_2}{0} \frac{x_3}{0} \frac{y}{0} $ $0 0 0$ 0 1 $0 0 1$ 0 1 $0 1$ 0 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1					
\bigcirc a. Die Funktion gibt 0 aus, wenn $oldsymbol{x_3}$ wahr ist.					
b. Die Funktion gibt 1 aus, wenn der Tatort letzten Sonntag spannend war.					
\circ c. Die Funktion gibt ${ t L}$ aus, wenn ${m x}{ t 1}$ den gleichen Wert hat wie ${m x}{ t 3}$.					
$^{\circ}$ d. Die Funktion gibt 1 aus, wenn genau einer der drei Eingänge x_1 , x_2 , x_3 den Wert 1 annimmt.					
▶ Lösung					

Aufgabe

Aufgabe					
Anzahl n-stelliger Boolescher Funktionen					
Status Beantwortet					
Erreichte Punktzahl	0/1			0%	
Antwort					
Wie viele $m{n}$ -stellige Boolesche Funktionen gibt es?					
\circ a. n^n					
O b. 16					
\circ c. $2^{(2^n)}$					
$ ext{ @ d. } n^{(2^n)}$					
▼ Lösung					
Wie viele <i>n</i> -stellige Boolesche Funktionen gibt es?					
\circ a. n^n					
O b. 16					
⊚ c. 2 ^(2*)					
\bigcirc d. $n^{(2^n)}$					

Was ist die Negation der Booleschen Funktion $y(x_1,x_2,x_3,x_4)=(x_1+\overline{x_2}+x_4)\cdot \overline{x_2}\cdot x_4$?

O b.
$$(x_1 + \overline{x_2} + \overline{x_4}) \cdot x_2 \cdot \overline{x_4}$$

 \odot c. $(\overline{x_1} \cdot x_2 \cdot \overline{x_4}) + x_2 + \overline{x_4}$

O a. $(x_1 \cdot x_2 \cdot x_4) + \overline{x_2} + x_4$

 \bigcirc d. $(x_1 + \overline{x_2} + \overline{x_4}) \cdot \overline{x_2} \cdot \overline{x_4}$

•	Lösung						
Wel	Velche Aussagen sind korrekt?						
	a. Alle Booleschen Funktionen können mithilfe der Konjunktion und der Disjunktion dargestellt werden.						
V	b. Alle Booleschen Funktionen können mithilfe der NOR-Verknüpfung dargestellt werden.						
	c. Jede Boolesche Funktion benötigt mindestens ein NOT.						
V	d. Alle Booleschen Funktionen können mithilfe der Negation und der Konjunktion dargestellt werden.						
	e. Alle Booleschen Funktionen können mithilfe der XOR-Verknüpfung dargestellt werden.						

Welche Aussagen sind korrekt?

- a. Alle Booleschen Funktionen können mithilfe der Konjunktion und der Disjunktion dargestellt werden.
- ☑ b. Alle Booleschen Funktionen können mithilfe der Negation und der Konjunktion dargestellt werden.
- c. Alle Booleschen Funktionen können mithilfe der NAND-Verknüpfung dargestellt werden.
- ☐ d. Jede Boolesche Funktion benötigt mindestens ein NOT.
- e. Alle Booleschen Funktionen können mithilfe der XOR-Verknüpfung dargestellt werden.

d. b = 011111110

		5		n	
_	u	2	u		۲
	_	_	_		$\overline{}$

Welche gegebene Bitfolge ist die **Festkommadarstellung** der Zahl 12.75 mit k=3?

- o a. 1010110
- O b. 1100101
- O c. 1001110
- d. 1100110
- O e. 0011110

Das folgende Schaltnetz besteht aus positiv-flankengesteuerten Flipflops. Wir interpretieren die Ausgänge $q=(q_2,q_1,q_0)$ als positive Ganzzahl in der Binärdarstellung. Welche Aussagen über die Schaltung treffen zu?

- $oxed{\Box}$ b. Der Ausgang q_2 ändert seinen Wert mit jeder zweiten positiven Taktflanke.
- c. Es handelt sich um ein synchrones Schaltwerk.
- d. Der Ausgang q₀ ändert seinen Wert mit jeder positiven Taktflanke.