(joint work with Alan Dow)

Definition 1. Two functions f, g are almost compatible if $\{a \in \text{dom} f \cap \text{dom} g : f(a) \neq g(a)\}$ is finite.

Definition 2. $S'(\theta)$ states that there exists a cofinal family $S \subseteq [\theta]^{\omega}$ and a collection of pairwise almost compatible finite-to-one functions $\{f_S \in \omega^S : S \in S\}$

Definition 3. $S(\theta)$ strengthens $S'(\theta)$ by requiring the collection to contain one-to-one functions.

We wish to show that Scheeper's original $S(\theta)$ is strictly stronger than $S'(\theta)$.

Definition 4. A topological space is said to be ω -bounded if each countable subset of the space has compact closure.

Theorem 5. For each $n \in \omega$, there is a locally countable, ω -bounded topology on ω_n . Note that this means that the closure of any set has the same cardinality and weight as the set.

To prove the theorem, we must actually prove a stronger lemma.

Lemma 6. Assume that X has cardinality at most ω_n (for any $n \in \omega$), and is locally countable, locally compact, and the closure of each set has the same cardinality as the set. Then X has an ω -bounded extension with the same properties.

Proof. We prove this by induction on n. In fact, we make our inductive statement that if \tilde{X} is the extension of X, then $\tilde{X} \setminus X$ also has cardinality ω_n . If n=0, then we can just take the free union of two copies of X and then the one-point compactification. So suppose n>0 and that X is such a topology on the ordinal ω_n . For each $\alpha<\omega_n$, the closure of the initial segment α is bounded by some γ_α . Also, because X is locally countable, γ_α can be chosen so that α is contained in the interior of γ_α . There is a cub $C\subset\omega_n$ with the property that for each $\delta\in C$ and $\alpha<\delta$, γ_α is also less than δ . This implies that for each $\delta\in C$, the initial segment δ is open, and if δ has uncountable cofinality, then δ is clopen.

The proof will be easier to visualize if we now identify the points of X with the point set $\omega_n \times \{0\}$ and we will add the points $\omega_n \times \{1\}$ to create the extension. By induction on $\lambda \in C$ we define a topology on $\omega_n \times \{0\} \cup \lambda \times \{1\}$ so that $\omega_n \times \{0\}$ is an open subset. We also ensure, by induction, for each $\alpha < \lambda$, the closure of $\alpha \times 2$ is an ω -bounded subset of $\lambda \times 2$.

In the case that n=1, then choose any sequence $\lambda_n: n \in \omega$ increasing cofinal in λ . If λ is a limit in C, then we simply take the topology we have constructed so far on $\lambda \times 2$ and there's nothing more needs to be done. Otherwise we may assume that λ_0 is the predecessor of $\lambda \in C$ and we set Y_{λ} to equal the countable set $\overline{\lambda} \setminus \lambda$. For convenience, and with no loss, we assume that λ itself is a limit of limits. And we have a topology on

$$\lambda_0 \times 2 \cup (\lambda \cup Y_\lambda) \times \{0\}$$
.

Recursively choose clopen sets U_n in this topology so that $\lambda_0 \times 2 \subset U_0$, $U_n \cup \lambda_{n+1} \times \{0\}$ is contained U_{n+1} while U_{n+1} is disjoint from Y_{λ} . It is easy to see that we can have all the points in $(\lambda \setminus \{\lambda_n : n \in \omega\}) \times \{1\}$ be isolated, and arrange that $(\lambda_n, 1)$ is the point at infinity in the one-point compactification $U_n \cup (\lambda_n \times \{1\})$.

Now we handle the case n>1 and we can shrink C and now assume that C is the closure of $\{\lambda \in C : \operatorname{cf}(\lambda) > \omega\}$. We again proceed by induction on $\lambda \in C$. If λ is a limit in C, then there is nothing to do: we simply have defined an appropriate topology on $\omega_n \times \{0\} \cup \lambda \times \{1\}$ so that for each $\mu \in C \cap \lambda$ with $\operatorname{cf}(\mu) > \omega$, $\mu \times 2$ is a clopen ω -bounded subspace. In case λ is not a limit of C, then λ has uncountable cofinality and a predecessor $\mu \in C$. We therefore have that $\lambda \times \{0\}$ is clopen in $\omega_n \times \{0\}$. We apply the induction hypothesis to the space $\lambda \times \{0\} \cup \mu \times 2$ to choose the topology on $\lambda \times 2$.

Definition 7. A Kurepa family $\mathcal{K} \subseteq [\theta]^{\omega}$ on θ satisfies that $\mathcal{K} \upharpoonright A = \{K \cap A : K \in \mathcal{K}\}$ is countable for each $A \in [\theta]^{\omega}$.

Corollary 8. There exists a Kurepa family cofinal in $[\omega_k]^{\omega}$ for each $k < \omega$.

Proof. This is actually a corollary of an observation of Todorcevic communicated by Dow in [TODO cite Gen Prog in Top I]: if every Kurepa family of size at most θ extends to a cofinal Kurepa family, then the same is true of θ^+ . So the result follows as every Kurepa family \mathcal{K} of size ω extends to the cofinal Kurepa family $[\bigcup \mathcal{K}]^{\omega}$.

We may alternatively obtain the result from the previous topological argument by using the family \mathcal{K} of compact sets in the constructed topology on ω_k as our witness. Of course, every Lindelöf set in a locally countable space is countable. Thus \mathcal{K} is cofinal in $[\omega_k]^{\omega}$ since for every countable set A, \overline{A} is compact and countable. It is Kurepa since for every countable set A, let (TODO)

Theorem 9. $S'(\theta)$ holds whenever there exists a cofinal Kurepa family on θ .

Proof. Let $k < \omega$, and $\mathcal{K} = \{K_{\alpha} : \alpha < \kappa\}$ be a cofinal Kurepa family on θ . We should define $f_{\alpha} : K_{\alpha} \to \omega$ for each $\alpha < \kappa$.

Suppose we've defined pairwise almost compatible $\{f_{\beta}: \beta < \alpha\}$. To define f_{α} , we first recall that $\mathcal{K} \upharpoonright K_{\alpha}$ is countable, so we may choose $\beta_n < \alpha$ for $n < \omega$ such that $\{K_{\beta}: \beta < \alpha\} \upharpoonright K_{\alpha} \setminus \{\emptyset\} = \{K_{\alpha} \cap K_{\beta_n}: n < \omega\}$. Let $K_{\alpha} = \{\delta_{i,j}: i \leq \omega, j < w_i\}$ where $w_i \leq \omega$ for each $i \leq \omega$, $K_{\alpha} \cap (K_{\beta_n} \setminus \bigcup_{m < n} K_{\beta_m}) = \{\delta_{n,j}: j < w_n\}$, and $K_{\alpha} \setminus \bigcup_{n < \omega} K_{\beta_n} = \{\delta_{\omega,j}: j < w_{\omega}\}$. Then let $f_{\alpha}(\delta_{n,j}) = \max(n, f_{\beta_n}(\delta_{n,j}))$ for $n < \omega$ and $f_{\alpha}(\delta_{\omega,j}) = j$ otherwise.

We should show that f_{α} is finite-to-one. Let $n < \omega$. We need only worry about $\delta_{m,j}$ for $m \le n$ since $f_{\alpha}(\delta_{m,j}) \ge m$. Since each f_{β_m} is finite-to-one, $f_{\beta_m}(\delta_{m,j}) \le n$ for only finitely many j. Thus f_{α} maps to n only finitely often.

We now want to demonstrate that $f_{\alpha} \sim f_{\beta_n}$ for all $n < \omega$. We again need only concern ourselves with $\delta_{m,j}$ for $m \le n$ since otherwise $\delta_{m,j} \not\in K_{\beta_n}$. For m = n, we have $f_{\alpha}(\delta_{n,j}) = \max(n, f_{\beta_n}(\delta_{n,j}))$ which differs from $f_{\beta_n}(\delta_{n,j})$ for only the finitely many j which are mapped below n by f_{β_n} . For m < n and $\delta_{m,j} \in K_{\beta_n}$, we have $f_{\alpha}(\delta_{m,j}) = \max(m, f_{\beta_m}(\delta_{m,j}))$ which can only differ from $f_{\beta_n}(\delta_{m,j})$ for only the finitely many j which are mapped below m by f_{β_m} or the finitely many j for which the almost compatible $f_{\beta_n} \sim f_{\beta_m}$ differ. \square

Corollary 10. $S'(\omega_k)$ holds for all $k < \omega$.

As noted in [TODO cite Dow], Jensen's one-gap two-cardinal theorem under V = L [TODO cite] can be used to show that there exist cofinal Kurepa families on every cardinal.

Corollary 11 (V = L). $S'(\theta)$ holds for all cardinals.

In particular, $S(\omega_2)$ fails under CH, showing the two are unique. Actually, CH is not required to have $S(\omega_2)$ fail.

Theorem 12. Adding ω_2 Cohen reals to a model of CH forces $\mathfrak{c} = \omega_2$ and $\neg S(\omega_2)$.

Proof. TODO add Alan's proof