H4	D/A nřovodník	3D2
9. 4. 2018	D/A převodník	Meinlschmidt

ZADÁNÍ:

- 1. Převodník D/A:
 - a) Popište princip
 - b) Popište konstrukci
 - c) Vysvětlete pojmy LSB a MSB
 - d) Uveďte praktické příklady použití
- 2. Určete velikost napětí U_{LSB} změřením napětí U_{00} a U_{FF}
- 3. Změřte hodnotu napětí jednotlivých bitů 8 bitového převodníku
- 4. Změřte závislost výstupního analogového napětí U_A na vstupním digitálním napětí U_D , které odpovídá vstupní hodnotě X_D
 - a) Nastavujte horních 5 bitů, dolní 3 bity nastavte na 0
 - b) Nastavujte dolní 4 bity, horní 4 bity nastavte na hodnotu zadanou vyučujícím
- 5. Vypočtěte chyby, sestrojte grafy závislosti $U_{DH5}=f(U_{AH5})$ a korekční křivku $K=f(U_{DH5})$

ODPOVĚDI NA OTÁZKY:

Popište princip D/A převodníku:

D/A převodník převádí digitální signál na analogový výstup reprezentovaný napětím. Pro své fungování je potřeba připojit také napájení (referenční napětí), jelikož se jedná o aktivní prvek. D/A převodník není standardně součástí mikroprocesorů, a musí se tak využívat vnější obvod připojený k mikroprocesoru.

Možnosti tohoto připojení jsou přibližně 2:

- 1. Digitální vstupy připojit přímo na paralelní výstupní port mikroprocesoru
- 2. Využít sériovou sběrnici (I²C, SPI, Microwire atd.) pro připojení digitálních vstupů

První způsob je sice jednoduchý, ale silně nepraktický – vyžaduje zbytečně velké množství portů. Výhodnější je využití druhé možnosti – využít sériovou sběrnici pro připojení převodníku k mikroprocesoru. K tomuto řešení je potřeba myslet na záchytný registr.

Vysvětlete pojmy LSB a MSB:

LSB – Least Significant Bit je hodnota nejméně významného bitu. Jako ten se zpravidla označuje bit nejvíce vpravo.

MSB – Most Significant Bit je hodnota nejvíce významného bitu. Jako ten se zpravidla označuje bit nejvíce vlevo.

Popište konstrukci D/A převodníku:

Konstrukce D/A převodníků jsou vesměs na stejném principu, a to na principu sumátoru (sčítací operační zesilovač). Jednotlivé odpory mají jinou velikost elektrického odporu, tudíž na každém se vyskytuje jiné napětí. Toto napětí odpovídá jedné úrovni převodníku.

V případě "aktivování" dané úrovně se elektronický přepínač přepne do polohy kdy jím prochází proud. Vzhledem k připojení další větve zátěže do paralelního zapojení, klesne nepatrně celkový odpor paralelního zapojen, spolu s tím ale vzroste velikost proudu a napětí. Vzroste tedy napětí na záporné svorce operační zesilovače a dojde k zesílení výstupního signálu.

Celkový odpor paralelního zapojení (vzhledem k překlopené hodnotě klesá s další připojenou větví):

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} atd.$$

Uveďte praktické příklady použití A/D převodníků

D/A převodník se dnes používá všud, kde je třeba z digitálního signálu udělat zpět analogový. Tedy především ve všech analogových audio přehrávačích, zvukových kartách v počítačích apod.

SCHÉMA ZAPOJENÍ:

TEORIE:

Napětí připadající na nejméně významný bit ... $U_{LSB}[V]$ Napětí odpovídající nejvyšší hodnotě D/A převodníku (FF) ... $U_{FF}[V]$ Napětí odpovídající nejnižší hodnotě D/A převodníku (00) ... $U_{00}[V]$

$$U_{LSB} = \frac{U_{FF} - U_{00}}{2^N}$$

Decimální hodnota výstupu D/A převodníku ... Y_D Digitální napětí (teoretická hodnota vstupního napětí) ... U_D [V]; $U_D = Y_D \cdot U_{LSB}$ Analogové napětí (skutečná hodnota vstupního napětí) ... U_A [V]

Absolutní chyba ... Δ m [V]; $\Delta m = U_A - U_D$

Korekce ... K [V]; $K = -\Delta m$

Relativní chyba ... $\delta m \ [\%]; \ \delta m = \frac{\Delta m}{U_A} \cdot 100\%$

Chyba převodníku je zpravidla do $\frac{1}{2}U_{LSB}$ (tj. do poloviny kvantizační úrovně).

Frekvence dat převodníku se zpravidla volí dvojnásobná oproti maximální možné, kterou převodník dokáže. Při použití nižších frekvencí může dojít k výraznému zkreslení.

POUŽITÉ PŘÍSTROJE A POMŮCKY:

Název	Typové označení	Inventární číslo
Napájecí zdroj	SZ 3.81	S 054
Panel s D/A převodníkem	P-02	
Voltmetr	UNI-T UT804	S 304

POPIS PRÁCE:

Před samotným měřením jsme si připravili potřebné pomůcky a součástky – například napájecí zdroj, panel s D/A převodníkem atd. Jejich typové značky, evidenční čísla a jiné nutné údaje jsme řádně zapsali do záznamu o měření.

V první úloze jsme digitální hodnoty, pomocí přepínačů, nastavili na hodnoty v zadání. Následně jsme voltmetrem odečetli napětí na analogovém výstupu D/A převodníku.

Jako další jsme změřili napětí U_{FF} a U₀₀, což jsou nejvyšší a nejnižší hodnoty převodníku. Nastavili jsme digitální vstup tak, aby vstupní hodnoty byly 0000 0000 a 1111 1111. Jelikož víme počet úrovní převodníku, můžeme výpočtem určit také U_{LSB}. Jelikož se jedná o 8 bitový převodník, počet úrovní bude 2⁸ tj. 256 úrovní.

Následně se přesunuli na vyhotovení poslední úlohy. Úkolem je měřit závislost vstupní hodnoty a výstupního napětí U_A převodníku. A to - nejdříve pomocí nastavování pouze horních pěti bitů (zbylé 3 bity jsme dle zadání přepínačem nastavili na nulu). Digitální hodnota v zadání odpovídá celkové hodnotě digitálního vstupu. Jelikož hodnoty pro digitální vstup jsou v zadání zapsané v hexadecimální soustavě, je potřeba je převést do soustavy binární. Postup je velmi jednoduchý – jednotlivé znaky čísla reprezentují čtveřici bytů v binární soustavě. Tedy zápis E8 bude E8 $hexa = E \rightarrow 14$ $deci \rightarrow 1110$ a $8 \rightarrow 8$ $deci \rightarrow 1000 = 1110$ 1000 binárně.

Pro každý záznam měření jsme pomocí U_{LSB} vypočetli U_{D} , kterou následně porovnáváme se skutečnou naměřenou U_{A} .

Druhá část poslední úlohy je stejná, avšak nastavujeme dolní čtyři bity na hodnoty, které nám zadal vyučující. Tyto hodnoty vždy začínají písmenem E a druhá hodnoty je postupně v intervalu od $0 \dots F$. Jediná chyba během měření byl špatný zápis, kdy místo E jsem si zapsal F, a proto nejdříve měřil špatné zadaní. To bylo potřeba opravit a naměřit znovu s hodnotou správnou.

Jelikož průběh závislosti U_D na U_A je u převodníku lineární, tak při jeho vykreslování jsem zvolil pouhé body do grafu a ty jsem následně proložil přímkou. Díky tomu jsou lépe vidět odchylky proti očekávanému průběhu. Při sestavování korekční křivky jsem si všiml, že hodnoty systematicky klesají. V korekční křivce se zpravidla projevují následující chyby:

- Chyba převodníku
- Chyba měřícího přístroje (např. jeho vnitřní odpor)
- Náhodné chyby měření (lidská chyba)

Chyba, která zapříčiňovala neustálé klesání hodnot, se opakovala s každým měřením, čímž lze vyloučit náhodné chyby měření. Tuto chybu nazýváme **systematickou** a po její identifikaci ji lze **kompenzovat** tak, abychom získali výsledky, které jsou bližší těm skutečným.

Pomocí spojnice trendu jsem naměřené hodnoty aproximoval a získal lineární průběh, který lze popsat rovnicí v pravém dolním rohu. Tuto rovnici jsem využil k vytvoření bodů na dané

přímce, které mají shodnou pozici X s body naměřenými. Následně jsem na každý z bodů aplikoval rovnici:

$$korekce_Y = aproximace_Y + |mereni_Y|$$

Díky tomu jsem získal body po eliminaci systémové chyby. Zbylé chyby jsou v toleranci do $\frac{1}{2}U_{LSB}$, avšak vyskytují se i náhodné chyby měření, které pravděpodobně vznikly lidskou chybou. Do grafu korekční křivky jsem také zakreslil hranice tolerance.

TABULKY:

	BIN	U _A [<i>V</i>]
D0	0000 0001	0,0380
D1	0000 0010	0,0772
D2	0000 0100	0,1556
D3	0000 1000	0,3138
D4	0001 0000	0,6266
D5	0010 0000	1,2601
D6	0100 0000	2,5228
D7	1000 0000	5,0240

$U_{FF}[V]$	10,0230
$U_{00}[V]$	0,00290
$U_{LSB}\left[V\right]$	0,03914

Horních 5 bitů			
$\Delta \mathbf{m} [V]$	K [V]	δm [%]	
0,0029	-0,0029	100,0000	
0,0007	-0,0007	0,2141	
0,0004	-0,0004	0,0708	
0,0025	-0,0025	0,2671	
0,0079	-0,0079	0,6258	
0,0101	-0,0101	0,6384	
0,0098	-0,0098	0,5206	
0,0120	-0,0120	0,5446	
0,0184	-0,0184	0,7282	
0,0204	-0,0204	0,7203	
0,0203	-0,0203	0,6447	
0,0225	-0,0225	0,6487	
0,0278	-0,0278	0,7334	
0,0253	-0,0253	0,6185	
0,0252	-0,0252	0,5717	
0,0281	-0,0281	0,5942	
0,0160	-0,0160	0,3173	
0,0178	-0,0178	0,3337	
0,0177	-0,0177	0,3129	
-0,0074	0,0074	-0,1251	
0,0254	-0,0254	0,4045	
0,0273	-0,0273	0,4136	
0,0272	-0,0272	0,3930	
0,0291	-0,0291	0,4018	
0,0349	-0,0349	0,4626	
0,0578	-0,0578	0,7329	
0,0367	-0,0367	0,4484	
0,0395	-0,0395	0,4655	
0,0444	-0,0444	0,5040	
0,0473	-0,0473	0,5180	
0,0472	-0,0472	0,4995	
0,0490	-0,0490	0,5025	

Horních 5 bitů			
HEX	BIN	$U_{D}[V]$	U _A [<i>V</i>]
00	0000 0000	0,0000	0,0029
08	0000 1000	0,3131	0,3138
10	0001 0000	0,6263	0,6267
18	0001 1000	0,9394	0,9419
20	0010 0000	1,2525	1,2604
28	0010 1000	1,5656	1,5757
30	0011 0000	1,8788	1,8886
38	0011 1000	2,1919	2,2039
40	0100 0000	2,5050	2,5234
48	0100 1000	2,8182	2,8386
50	0101 0000	3,1313	3,1516
58	0101 1000	3,4444	3,4669
60	0110 0000	3,7575	3,7853
68	0110 1000	4,0707	4,0960
70	0111 0000	4,3838	4,4090
78	0111 1000	4,6969	4,7250
80	1000 0000	5,0101	5,0260
88	1000 1000	5,3232	5,3410
90	1001 0000	5,6363	5,6540
98	1001 1000	5,9494	5,9420
A0	1010 0000	6,2626	6,2880
A8	1010 1000	6,5757	6,6030
В0	1011 0000	6,8888	6,9160
В8	1011 1000	7,2019	7,2310
C0	1100 0000	7,5151	7,5500
C8	1100 1000	7,8282	7,8860
D0	1101 0000	8,1413	8,1780
D8	1101 1000	8,4545	8,4940
E0	1110 0000	8,7676	8,8120
E8	1110 1000	9,0807	9,1280
F0	1111 0000	9,3938	9,4410
F8	1111 1000	9,7070	9,7560

Dolní 4 bity			
$\Delta \mathbf{m} [V]$	K [V]	δm [%]	
0,0454	-0,0454	0,5153	
0,0463	-0,0463	0,5227	
0,0421	-0,0421	0,4740	
0,0450	-0,0450	0,5038	
0,0458	-0,0458	0,5111	
0,0447	-0,0447	0,4963	
0,0456	-0,0456	0,5036	
0,0444	-0,0444	0,4889	
0,0493	-0,0493	0,5398	
0,0471	-0,0471	0,5143	
0,0460	-0,0460	0,4998	
0,0469	-0,0469	0,5069	
0,0487	-0,0487	0,5247	
0,0466	-0,0466	0,4996	
0,0474	-0,0474	0,5067	
0,0473	-0,0473	0,5031	

Dolní 4 bity			
HEX	BIN	U _D [V]	U _A [V]
E0	1110 0000	8,7676	8,8130
E1	1110 0001	8,8067	8,8530
E2	1110 0010	8,8459	8,8880
E3	1110 0011	8,8850	8,9300
E4	1110 0100	8,9242	8,9700
E5	1110 0101	8,9633	9,0080
Е6	1110 0110	9,0024	9,0480
E7	1110 0111	9,0416	9,0860
E8	1110 1000	9,0807	9,1300
E9	1110 1001	9,1199	9,1670
EA	1110 1010	9,1590	9,2050
EB	1110 1011	9,1981	9,2450
EC	1110 1100	9,2373	9,2860
ED	1110 1101	9,2764	9,3230
EE	1110 1110	9,3156	9,3630
EF	1110 1111	9,3547	9,4020

VÝPOČTY:

Napětí připadající na nejméně významný bit U_{LSB} [V]:

$$U_{LSB} = \frac{U_{FF} - U_{00}}{2^8}$$

$$U_{LSB} = \frac{10,0230 - 0,00290}{256}$$

$$U_{LSB} = 0,03914 V$$

Převod hexadecimální do binární soustavy:

 $08 \ hexa \rightarrow 0000 \ 1000 \ binárně$

Převod hexadecimální do decimální soustavy:

$$08 \ hexa \rightarrow 0 \cdot 16^{1} + 8 \cdot 16^{0}$$
 $08 \ hexa \rightarrow 0 \cdot 16 + 8 \cdot 1$
 $08 \ hexa \rightarrow 0 + 8$
 $08 \ hexa \rightarrow 8 \ decimálně$

Digitální napětí U_D [V]:

$$U_D = Y_D \cdot U_{LSB}$$

$$U_D = 8 \cdot 0.03914$$

$$U_D = 0.3131 \text{ V}$$

Absolutní chyba $\Delta m [V]$:

$$\Delta m = U_A - U_D$$

 $\Delta m = 0.3138 - 0.3131$

 $\Delta m = 0.0007 \text{ V}$

Korekce K [V]

$$K = -\Delta m$$
$$K = -0.0007 \text{ V}$$

Relativní chyba $\delta m [V]$

$$\delta m = \frac{\Delta m}{U_A} \cdot 100\%$$

$$\delta m = \frac{0,0007}{0,3138} \cdot 100\%$$

$$\delta m = 0,002141 \cdot 100\%$$

$$\delta m = 0,214100\%$$

GRAFY

Korekční křivka D/A převodníku při nastavování horních 5 bitů

SPOLUPRACOVALI:

Kropáček Tomáš

ZÁVĚR:

Všechny úkoly se zadání byly splněny. Při tvorbě průběhů jsem si všiml, že korekční křivka má tendenci s každým měřením klesat mimo toleranci do $\frac{1}{2}U_{LSB}$. Chybu, která tento jev způsobovala, jsem identifikoval jako systematickou (pravděpodobně chyba měřícího přístroje), tu jsem následně kompenzoval, a výsledné hodnoty jsou v toleranci $\frac{1}{2}U_{LSB}$. V korekční křivce se však vyskytují dvě náhodné chyby měření (pravděpodobně lidská chyba). Tyto dvě chyby měření v toleranci již nejsou.

Chyba během samotného měření, která nás při měření zdržela bylo špatné zapsání hodnoty horních 4 bitů, kde se lidskou chybou napsalo místo písmene E písmeno F. Práce s převodníkem jinak proběhla dle očekávání. Závislost U_D na U_A odpovídá očekávanému lineárnímu průběhu.