Artificial Intelligence-C11

Fuzzy Reasoning

Interim Semester 2021-22 BPL

CSE3007-LT-AB306

Faculty: SIMI V.R.

Fuzzy Sets: Introduction

- Proposed by Lotfi A. Zadeh
- Generalization of classical set theory
- Uncertainty (Incomplete knowledge, generality, vagueness, ambiguity)
- Effective solving of uncertainty in the problem.
- A classical set is a set with a crisp boundary.
- An element : Belongs to / not belongs to a set (0 or 1)

Eg.: C classical set A of real numbers greater than 6

$$A = \{x \mid x > 6\}$$

- Fuzzy set many degrees of membership (0 & 1)
- Membership function $\mu_A(x)$ associated with a fuzzy set A such that the function maps every element of the universe of discourse X to the interval [0,1]

Classical set theory

Fuzzy set theory

- Classes of objects with sharp
 Classes of objects with unboundaries.
 - sharp boundaries.
- A classical set is defined by A fuzzy set is defined by its boundaries.
- crisp(exact) boundaries, i.e., ambiguous boundaries, i.e., there is no uncertainty about there exists uncertainty about the location of the set the location of the set boundaries.
- Widely used in digital system
 Used in fuzzy controllers. design

The areas of potential fuzzy implementation are numerous and not just for control:

- Speech recognition
- fault analysis
- decision making
- image analysis
- scheduling

Example

Fuzzy Sets

Sets with fuzzy boundaries

A = Set of tall people

Membership Functions (MFs)

Characteristics of MFs:

- Subjective measures
- Not probability functions

Fuzzy Sets

Formal definition:

A fuzzy set A in X is expressed as a set of ordered pairs:

A fuzzy set is totally characterized by a membership function (MF).

Alternative Notation

A fuzzy set A can be alternatively denoted as follows:

X is discrete
$$A = \sum_{x_i \in X} \mu_A(x_i) / x_i$$
X is continuous
$$A = \int_X \mu_A(x) / x$$

- Note that Σ and integral signs stand for the union of membership grades; "I" stands for a marker and does not imply division.
- Membership Function (MF) Maps each element of X to a membership grade (membership value) between 0 and 1

Fuzzy Sets with Discrete Universes

Fuzzy set C = "desirable city to live in"

X = {SF, Boston, LA} (discrete and nonordered)

 $C = \{(SF, 0.9), (Boston, 0.8), (LA, 0.6)\}$

Fuzzy set A = "sensible number of children"

 $X = \{0, 1, 2, 3, 4, 5, 6\}$ (discrete universe)

 $A = \{(0, .1), (1, .3), (2, .7), (3, 1), (4, .6), (5, .2), (6, .1)\}$

Fuzzy Sets with Cont. Universes

Fuzzy set B = "about 50 years old"

X = Set of positive real numbers (continuous)

B =
$$\{(x, \mu_{B}(x)) \mid x \text{ in } X\}$$

$$\mu_B(x) = \frac{1}{1 + \left(\frac{x - 50}{10}\right)^2}$$

Triangular membership function

A triangular membership function is specified by three parameters $\{a, b, c\}$ a, b and c represent the x coordinates of the three vertices of $\mu_{x}(x)$ in a fuzzy set A (a: lower boundary and c: upper boundary where membership degree is zero, b: the centre where membership degree is 1)

$$\mu_{A}(x) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ \frac{c-x}{c-b} & \text{if } b \le x \le c \\ 0 & \text{if } x \ge c \end{cases}$$

- Trapezoid membership function
- A trapezoidal membership function is specified by four parameters {a, b, c, d} as follows:

$$\mu_{A}(x) = \begin{cases} 0 & \text{if } x \leq a \\ \frac{x - a}{b - a} & \text{if } a \leq x \leq b \\ 1 & \text{if } b \leq x \leq c \\ \frac{d - x}{d - c} & \text{if } c \leq x \leq d \\ 0 & \text{if } d \leq x \end{cases}$$

Gaussian membership function

$$\mu_A(x,c,s,m) = \exp\left[-\frac{1}{2}\left|\frac{x-c}{s}\right|^m\right]$$

- c: centre

- s: width

- m: fuzzification factor (e.g., m=2)

$$c=5$$
 $s=5$
 $m=2$

Fuzzy Partition

Fuzzy partitions formed by the linguistic values "young", "middle aged", and "old":

More Definitions

- Fuzzy set is uniquely specified by its MF
- To define membership functions more specifically

Support

Core

Normality

Crossover points

Fuzzy singleton

 $\square \alpha$ -cut, strong α -cut

MF Terminology

MF Terminology (Cont'd)

The support of a fuzzy set A is the set of all points x in X such that $\mu_A(x) > 0$:

$$support(A) = \{x | \mu_A(x) > 0\}.$$

The core of a fuzzy set A is the set of all points x in X such that $\mu_A(x) = 1$:

$$core(A) = \{x | \mu_A(x) = 1\}.$$

A fuzzy set A is **normal** if its core is nonempty. In other words, we can always find a point $x \in X$ such that $\mu_A(x) = 1$.

A crossover point of a fuzzy set A is a point $x \in X$ at which $\mu_A(x) = 0.5$:

$$crossover(A) = \{x | \mu_A(x) = 0.5\}.$$

A fuzzy set whose support is a single point in X with $\mu_A(x) = 1$ is called a fuzzy singleton.

MF Terminology (Cont'd)

The α -cut or α -level set of a fuzzy set A is a crisp set defined by

$$A_{\alpha} = \{x | \mu_{A}(x) \ge \alpha\}.$$

Strong α -cut or strong α -level set are defined similarly:

$$A'_{\alpha} = \{x | \mu_A(x) > \alpha\}.$$

Let A be a fuzzy set. $A = \{(x_1, 0.1), (x_2, 0.5), (x_3, 0.8), (x_4, 1.0), (x_5, 0.7), (x_6, 0.2)\}$

support(A) =
$$\{x_1, x_2, x_3, x_4, x_5, x_6\}$$

core= $\{x_4\}$
The α -cuts of the fuzzy set A are:
 $A_{0.1} = \{x_1, x_2, x_3, x_4, x_5, x_6\}$
 $A_{0.2} = \{x_2, x_3, x_4, x_5, x_6\}$
 $A_{0.5} = \{x_2, x_3, x_4, x_5\}$
 $A_{0.7} = \{x_3, x_4, x_5\}$
 $A_{0.8} = \{x_3, x_4\}$
 $A_{1.0} = \{x_4\}$

The Strong α -cuts of the fuzzy set A are:

$$A_{0.1} = \{ x_2, x_3, x_4, x_5, x_6 \}$$

$$A_{0.2} = \{ x_2, x_3, x_4, x_5 \}$$

$$A_{0.5} = \{ x_3, x_4, x_5 \}$$

$$A_{0.7} = \{ x_3, x_4 \}$$

$$A_{0.8} = \{ x_4 \}$$

Set-Theoretic Operations

Subset:

$$A \subseteq B \Leftrightarrow \mu_A \leq \mu_B$$

Complement:

$$\overline{A} = X - A \Leftrightarrow \mu_{\overline{A}}(X) = 1 - \mu_{A}(X)$$

Union:

$$C = A \cup B \Leftrightarrow \mu_{c}(x) = \max(\mu_{A}(x), \mu_{B}(x)) = \mu_{A}(x)^{\vee} \mu_{B}(x)$$

Intersection:

$$C = A \cap B \Leftrightarrow \mu_c(x) = \min(\mu_A(x), \mu_B(x)) = \mu_A(x)^{\wedge} \mu_B(x)$$

Let A and B be two fuzzy sets.

$$A = \{(1, 0.1), (2, 0.5), (3, 0.8), (4, 1)\}$$
 and $B = \{(1, 1), (2, 0.8), (3, 0.4), (4, 0.1)\}$

Perform union and intersection operations on those fuzzy sets.

Answer:

```
A \cup B = \{(1, max(0.1, 1)), (2, max(0.5, 0.8)), (3, max(0.8, 0.4)), (4, max(1, 0.1))\}
= \{(1, 1), (2, 0.8), (3, 0.8), (4, 1)\}
A \cap B = \{(1, min(0.1, 1)), (2, min(0.5, 0.8)), (3, min(0.8, 0.4)), (4, min(1, 0.1))\}
= \{(1, 0.1), (2, 0.5), (3, 0.4), (4, 0.1)\}
```

Fuzzy System

Fuzzy System elements

- Input Vector: $X = [x_1, x_2, \dots x_n]^T$ are crisp values, which are transformed into fuzzy sets in the fuzzification block.
- Output Vector: Y = [y₁, y₂, ... y_m] T comes out from the defuzzification block, which transforms an output fuzzy set back to a crisp value.
- Fuzzification: a process of transforming crisp values into grades of membership for linguistic terms, "far", "near", "small" of fuzzy sets.
- Fuzzy Rule base: a collection of propositions containing linguistic variables; the rules are expressed in the form:

If (x is A) AND (y is B) THEN (z is C)
where x, y and z represent variables (e.g. distance, size) and
A, B and Z are linguistic variables (e.g. `far', `near', `small').

- Membership function: provides a measure of the degree of similarity of elements in the universe of discourse U to fuzzy set.
- Fuzzy Inferencing: combines the facts obtained from the Fuzzification with the rule base and conducts the Fuzzy reasoning process.
- Defuzzyfication: Translate results back to the real world values.

References:

- J-S R Jang and C-T Sun, Neuro-Fuzzy and Soft Computing, Prentice Hall, 1997
- S. Rajasekaran and G.A. Vijayalaksmi Pai , Neural Network, Fuzzy Logic, and Genetic Algorithms Synthesis and Applications, (2005), Prentice Hall.