<u>Chapter 5</u> Eigenvalues and Eigenvectors

- 5.1 Definition and basic properties
- ① <u>Def.</u> Let **A** be an $n \times n$ matrix. For a given scalar λ , if there exists a nonzero vector **x** in $C^{n \times 1}$ such that $A\mathbf{x} = \lambda \mathbf{x}$, then λ is said to be an eigenvalue of **A**.
 - Eigenvalue is also called characteristic value.
- \bigcirc <u>Def.</u> If **A** is an $n \times n$ matrix, then a nonzero vector **x** in $C^{n \times 1}$ is called an eigenvector of **A**

- if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ .
- \diamondsuit **x** is said to be an eigenvector of **A** wrt λ .
- Eigenvector is also known as characteristic vector.
- Finding eigenvalues and eigenvectors:

 - \Diamond Nontrivial solution (i.e. nonzero **x**) exists iff $det(\lambda \mathbf{I} \mathbf{A}) = 0$.
 - \Diamond det($\lambda \mathbf{I} \mathbf{A}$), seen as a polynomial in λ , is called the characteristic polynomial of \mathbf{A} .

- \Diamond det $(\lambda \mathbf{I} \mathbf{A}) = \mathbf{0}$ is called the characteristic equation of \mathbf{A} .
- ① *Thm*. The statements below are equivalent:
 - $\diamondsuit 1$ λ is an eigenvalue of **A**.
 - $\langle 2 \rangle$ The system of linear equations $(\lambda \mathbf{I} \mathbf{A})\mathbf{x} = \mathbf{0}$ has nontrivial solutions.
 - \diamondsuit 3 There exists a nonzero column vector **x** such that $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$.
 - 4λ is a solution of the characteristic equation $\det(\lambda \mathbf{I} \mathbf{A}) = 0$.

- \bigcirc *Thm.* Let λ be an eigenvalue of an $n \times n$ matrix **A**. The set of all eigenvectors wrt λ together with the zero vector is called the eigenspace of **A** wrt λ (denoted as $E_{\lambda}(\mathbf{A})$).
 - $\Diamond E_{\lambda}(\mathbf{A}) = \{ \mathbf{x} | \mathbf{A}\mathbf{x} = \lambda \mathbf{x} \}.$
 - \diamondsuit $E_{\lambda}(\mathbf{A})$ is a subspace of $\mathbb{R}^{n\times 1}$.
- \bigcirc Thm. A square matrix **A** is invertible iff $\lambda = 0$ is not an eigenvalue of **A**.

<u>Prf.</u> Combine the facts:

- (1). eigenvector: $\mathbf{A}\mathbf{x} = \lambda\mathbf{x}$ for some $\mathbf{x} \neq \mathbf{0}$
- (2). $\mathbf{A}\mathbf{x} = \lambda\mathbf{x} = \mathbf{0}$, if $\lambda = 0$

(3). A is invertible iff Ax = 0 has the trivial solution only.

- 5.2 Diagonalization of Matrices
- Def. A square matrix A is said to be diagonalizable if there is an invertible matrix P such that P⁻¹AP is a diagonal matrix (i.e., P⁻¹AP = D). In other words, A is similar to a diagonal matrix. The matrix P is said to diagonalize A.
 - \diamondsuit If **A** is diagonalizable, then **AP** = **PD**.

- \Diamond **AP** = [**Ap**₁, **Ap**₂,..., **Ap**_n]]
- \Diamond **AP** = **PD** \rightarrow **Ap**_k = λ_k **p**_k
- The diagonalization matrix **P** consists of the eigienvectors of **A**, and the diagonal matrix matrix **D** consists of the eigenvalues of **A**.

- Procedure for diagonalizing a matrix: If an n×n matrix A has n l.i. eigenvectors, then stack those eigenvectors into an n×n matrix P. This P diagonalizes A.
 - ♦ The matrix $\mathbf{P}^{-1}\mathbf{AP}$ will then be diagonal with $\lambda_1, \lambda_2, ..., \lambda_n$ as its successive diagonal entries, where λ_k is the eigenvalue corresponding to \mathbf{p}_k (\mathbf{k}^{th} column of \mathbf{P}), for k = 1, 2, ..., n.
- \bigcirc *Thm.* If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, are eigenvectors of **A** corresponding to distinct eigenvalues λ_1 ,

 $\lambda_2, \ldots, \lambda_k$, then { $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$ } is a l.i. set. *Prf.* Consider $k_1 v_1 + k_2 v_2 = 0$ -- (#) **A** ((#)): $k_1\lambda_1\mathbf{v}_1 + k_2\lambda_2\mathbf{v}_2 = \mathbf{0}$ -- (\$) $\lambda_2 \cdot (\#) - (\$): k_1(\lambda_2 - \lambda_1) \mathbf{v}_1 = \mathbf{0} \rightarrow k_1 = 0$ (because $\lambda_2 - \lambda_1 \neq 0$ and $\mathbf{v}_1 \neq \mathbf{0}$) Similarly, it can be shown $k_2=0$ Q: How do we continue to and beyond 3 eigenvalues?

- eigenvectors (so, we have enough l.i. eigenvectors for constructing \mathbf{P})
- <u>Thm.</u> Assume that an n×n matrix **A** is has m distinct eigenvalues, and their corresponding eigenspaces are $E_{\lambda 1}(\mathbf{A})$, $E_{\lambda 2}(\mathbf{A})$, ..., $E_{\lambda m}(\mathbf{A})$. Then, **A** is diagonalizable iff $\dim(E_{\lambda 1}(\mathbf{A}))+\dim(E_{\lambda 2}(\mathbf{A}))+\ldots+\dim(E_{\lambda m}(\mathbf{A}))=n$.
 - \diamondsuit dim(E_{\lambda k}(A)) is called the geometric multiplicity of λ_k .
 - \diamondsuit The number of times that $\lambda \lambda_k$ appears as a factor in the characteristic poly. of **A** is

- called the algebraic multiplicity of A.
- ♦ For every eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity.
- 5.3 Orthogonal Diagonalization
- \bigcirc <u>Def.</u> A square matrix **A** is said to be an orthogonal matrix iff $\mathbf{A}^{-1} = \mathbf{A}^{\mathrm{T}}$.

- \bigcirc <u>Def.</u> A square matrix **A** is said to be orthogonally diagonalizable iff there exists an orthogonal matrix **P** such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{P}^{T}\mathbf{A}\mathbf{P}$ is a didgonal matrix.
- - ♦ A is symmetric.
- To talk about "orthonormal" or "orthogonal",

- the concept of inner-product space is needed.
- \bigcirc Thm. If **A** is a symmetric matrix, then:
 - \Diamond The eigenvalues of **A** are real numbers.
 - Eigenvectors from different eigenspaces are orthogonal.
- Procedure for orthogonally diagonalizing an n×n symmetric matrix:

Step1: Find a basis for each eigenspace.

Step2: Apply the Gram-Schmidt process to find an o.n. basis for each eigenspace.

Step3: Form the matrix **P** whose columns are

the basis vectors constructed in Step2; this matrix orthogonally diagonalizes **A**.

Let us study inner-product space next.