Animal models of human affective disorders: Models relevant to psychiatric disorders

- Depression
- Animal model validity
- Rat/Mouse model of chronic unpredictable mild stress (CUMS) and reduced reward motivation
- Rat/Mouse model of CUMS and increased floating in forced swim test
- Rat/Mouse model of CUMS and decreased neuronal Plasticity in Hippocampus and PFC
- Mouse model of chronic social defeat (CSD) and hyper-fear conditioning
- Mouse model of CSD and Generalised Helplessness
- Mouse model of CSD and altered transcriptome expression in Amygdala
- Rat/Monkey model of early deprivation (ED) and reduced reward motivation
- Optogenetics and animal models of depression

Understanding a complex psychiatric disorder in terms of neuro-behavioural components

Depression is altered emotional processing of aversive and rewarding stimuli

Aversive life events/stimuli	Rewarding life events/stimuli
Reactivity to UCS (个)	Motivation/Interest (↓)
Learning about CS (个)	Learning about CS (\downarrow)
Uncontrollability of stimuli (个)	Uncontrollability of stimuli (个)
Expectancy of stimuli (个)	Expectancy of stimuli (↓)
Fatigue due to aversive stimuli (个)	Pleasure from (=↓)

 (\uparrow) (\downarrow) Direction of change, Depression vs Healthy control

 $(=\downarrow)$ Evidence is not convincing

Not all patients will exhibit all symptoms/states

Animal models must have validity

Environmental manipulation: Chronic unpredictable mild stress (CUMS)

	Morning	Afternoon
Monday	8 AM 1-h confinement in restricted space	1 рм 1-h confinement in restricted space
		4 РМ overnight illumination
Tuesday	8 AM self-stimulation	2 РМ 1-h confinement in restricted space
	11 ам 1-h confinement in restricted space	4 рм food and water deprivation for 18 h
Wednesday	8 AM access to restricted food for 2 h	1 РМ 1-h confinement in restricted space
		4 рм water deprivation for 18 h
Thursday	8 ам exposure to empty bottle for 1 h	2 РМ 1-h confinement in restricted space
	11 ам 1-h confinement in restricted space	4 рм group-housed in soiled cage for 18 h
Friday	8 AM self-stimulation	
	11 ам 1-h confinement in restricted space	4 PM reversed light/dark cycle throughout the weekend

Food reward in Rodents - Adaptive goal-directed behaviours

Major modulating function of mesocorticolimbic Dopamine system on Motivation

Consummation Tests

Operant Response-Outcome Tests

Progressive ratio schedule test

Session Time

CUMS chronically reduces Sucrose-preference in Rats

2-bottle preference test

Sucrose preference =
Sucrose consumed
Sucrose + Water consumed

CUMS chronically reduces VTA self-stimulation in Rats

VTA = Ventral tegmental area

CUMS chronic reduction of Sucrose-Intake is reversed by Dopamine-receptor agonist in Rats

CUMS increases floating in the Forced swim test in Mice

Stress decreases Neurotrophins and Synaptic Proteins in Hippocampus and Cortex

Brain-derived neurotrophic factor (BDNF)

Pizarro et al (2004) Brain Res 1025: 10 Duman & Monteggia (2006) 59: 1116 Zhu et al. (2014) Brain Res 1576: 81

Axon

SUBORDINATE

CONTROL

Basal dendrites

CUMS reduced sucrose preference in Rats is reversed by Antidepressants

Environment: From Uncontrollability to Helplessness to emotional disorder

Uncontrollable Stressful life events:

- Employment
- Finance
- Health
- Housing
- Family
- Social relationships

Physical

No wounds

= Helplessness

Lack of social control

Chronic social defeat decreases Interest in Reward

Progressive Ratio Schedule for sugar reinforcement

PR32

Chronic social defeat leads to Hyper-fear conditioning

Chronic social defeat (CSD)

Fear Conditioned Freezing

Day 16: Fear Conditioning

Day 17: Fear expression test

The specific learned helplessness effect in mice

Chronic social defeat leads to Generalized helplessness

Chronic social defeat (CSD)

Helplessness

Day 20: Two-way Escape Test

Effects of chronic social stress on CNS region-specific gene expression

Mouse models for the study of stress effects on amygdala gene expression

Mouse

Pin II

Human

CUMS vs Control

Depression vs Control

25'000 genes

299 genes

20'000 genes

44 genes	
$\uparrow\downarrow$	$\bigg)$

			Huma	n MDD	
			All MDD	MDD _{UCMS}	UCMS
	Gene	Entrez	Subjects	Subjects	Effect
Gene Title	Symbol	Gene	(alr)	(alr)	(alr)
Calcium channel, voltage-dependent, beta 2 subunit ^b	CACNB2	783	0.02	0.49	0.37
Calcium/calmodulin-dependent protein kinase II delta	CAMK2D	817	0.08	1.07	0.54
Ankyrin repeat domain 43	ANKRD43	134548	0.06	0.28	0.44
Rho GTPase activating protein 6	ARHGAP6	395	0.42	0.75	0.45
Cadherin 13, H-cadherin (heart)	CDH13	1012	0.18	0.42	0.45
Diacylglycerol kinase, gamma 90kDa	DGKG	1608	0.34	0.44	0.46
Early growth response 1	EGR1	1958	-0.29	-0.30	-0.29
Neuronal pentraxin I	NPTX1	4884	0.10	0.35	0.35
V-jun sarcoma virus 17 oncogene homolog ^b	JUN	3725	0.19	0.66	0.39
Protein phosphatase 1, regulatory (inhibitor) subunit 16A	PPP1R16A	84988	-0.01	-0.23	-0.27
Transmembrane protein 17	TMEM17	200728	0.09	0.26	0.37
Rabphilin 3A homolog	RPH3A	22895	-0.36	-0.47	-0.33
Matrilin 2	MATN2	4147	0.33	0.64	0.80
Zinc finger protein 703	ZNF703	80139	-0.09	-0.24	-0.33
Chromosome 5 open reading frame 22	C5orf22	55322	0.02	0.60	0.34
Potassium channel tetramerisation domain containing 12 ^b	KCTD12	115207	0.17	0.34	0.31
P18SRP protein ^b	P18SRP	285672	0.05	0.45	0.27
Carbohydrate (chondroitin) synthase 1	CHSY1	22856	0.02	0.30	0.30
Nuclear factor I/B	NFIB	4781	0.08	0.41	0.50
Integral membrane protein 2A ^b	ITM2A	9452	-0.15	-0.41	-0.35
Chromosome 5 open reading frame 13	C5orf13	9315	-0.16	-0.45	-0.46
Zinc finger protein, multitype 1	ZFPM1	161882	0.0	-0.25	-0.58
Copine family member IX	CPNE9	151835	-0.29	-0.65	-0.70
Myelin basic protein ^b	MBP	4155	-0.22	-0.41	-0.51
Aspartylglucosaminidase	AGA	175	-0.26	-0.19	-0.38
2',3'-cyclic nucleotide 3' phosphodiesterase ^b	CNP	1267	-0.12	-0.37	-0.56
Breast carcinoma amplified sequence 1	BCAS1	8537	0.02	-0.41	-0.65
Ectonucleotide pyrophosphatase/phosphodiesterase 2 ^b	ENPP2	5168	-0.12	-0.29	-0.50
Plasma membrane proteolipid (plasmolipin)	PLLP	51090	-0.16	-0.40	-0.56
Endothelial differentiation, lysophosphatidic acid GPCR 2b	EDG2	1902	-0.10	-0.40	-0.85
G protein-coupled receptor 37	GPR37	2861	-0.31	-0.52	-0.50
Myelin-associated oligodendrocyte basic protein	MOBP	4336	-0.11	-0.51	-0.88
3 1 1 1 1 1 11 - 11					

Gene expression up-regulated in depression/stress

Gene expression down-regulated in depression/stress

Early-life stress as an aetiological factor in depression

Examples of manipulations of the early-life environment

Rat and marmoset early deprivation

Long-term effects of early deprivation on reward wanting: progressive ratio reinforcement

Rüedi-Bettschen et al. (2005) Behav Brain Res 156: 297

Leventopoulos et al. (2009) Neuropharmacol 56: 692

Effects of ED on Reward motivation: progressive ratio reinforcement task

Session Time

- Rewarded with banana milkshake, no food/water deprivation
- Number of screen touches to obtain 0.1ml reward:
 1,2,3,4,5,6,7,8,10,12,14,16,18,20,22,24,28,32,36,40
- CON (N= 14)
 - ED (N= 14)

"Free" reward (mL)		
CON	11.1 <u>+</u> 1.6	
ED	14.9 <u>+</u> 2.8	
	<i>p</i> >0.9	

<u>Body Weight (g)</u>		
CON	346 <u>+</u> 9	
ED	331 <u>+</u> 10	
	<i>p</i> >0.17	

Optogenetic approach to investigation of neural circuits in animal models

Selective inhibition of VTA dopamine neurons induces loss of sucrose preference in mouse

Off

Off

Reversal of chronic-stress loss of sucrose preference by photoactivation of VTA dopamine neurons

Phasic light stimulation of channelrhodopsin-2-expressing VTA dopamine neurons

Electrophysiological recording of VTA neurons CMS leads to reduced cell firing in bursts

Human-unique features of emotions

- Due to cognitive-CNS evolution, emotional feelings are probably uniquely human -

Summary of Universal and Human-unique features of emotions

- Much is universal, and what is universal is essential to that which is human -

Animal models relevant to psychiatric disorders

- Effects of environmental stress on behaviour and neurobiology are the most-studied animal model
- Combining CUMS with sucrose preference test/ICSS of VTA provides a model with aetiological and face validity for reduced interest/motivation. Associated neurobiology suggests importance of VTA-dopamine
- Combining CUMS with forced swim test provides a model with possible aetiological and face validity for helplessness.
- In addition to dopamine changes, CUMS causes decreased synaptic plasticity in Hippocampus and PFC
- Combining CSD with Fear conditioning or 2-way Avoid-Escape test provides a model with aetiological and face validity for Generalised helplessness. Associated neurobiology suggests importance of Amygdala Oligodendrocyte-Myelin function
- Combining early life stress with Test of reward wanting on a progressive ratio schedule provides a model with aetiological and face validity for reduced interest/motivation
- Optogenetics allows for the study of the importance of specific types of neurons in valid animal models of depression
- Animal models of disrupted emotional processing are valid in terms of subconscious/impersonal processes