Arquitetura de Redes de Computadores

Dr. Edson Moreira Silva Neto

Professor/Redes de Computadores

Modelo de Camadas

Agenda

- 1) Introdução
- 2) Vantagens do Modelo de Camadas
- 3) Modelo de Cinco Camadas
 - 1) Comunicação Vertical
 - 2) Comunicação Horizontal
 - 3) Encapsulamento
- 4) Funções das Camadas
 - 1) Camada Física
 - 2) Camada de Enlace
 - 3) Camada de Rede
 - 4) Camada de Transporte
 - 5) Camada de Aplicação
- 5) Protocolos de Rede
- 6) Arquitetura de Redes
- 7) Modelo OSI
- 8) Modelo Internet
- 9) Modelo IEEE 802
- 10) Órgãos de Padronização

Introdução

- Modelo de Camadas
 - Um dos principais conceitos para a compreensão da arquitetura de redes de computadores
 - Serão apresentadas:
 - Suas Vantagens
 - Seu Funcionamento
 - O conceito de Arquitetura de Redes
 - Os modelos mais importantes
 - Os órgãos de padronização

Vantagens do Modelo de Camadas

- ♦ O desenvolvimento de uma arquitetura de redes é uma tarefa complexa:
 - Envolve inúmeros aspectos de hardware e software
 - ♦ Interface com o meio de transmissão
 - ♦ Especificação, verificação e implementação de protocolos
 - Integração com o SO
 - Controle de Erros
 - Segurança
 - Desempenho

Vantagens do Modelo de Camadas

- ♦ O Modelo de camadas reduz a complexidade do projeto
- - Dividir o projeto de redes em funções independentes e agrupálas em camadas
 - Cada nível é responsável por determinados serviços, e apenas aquela camada pode oferecê-los
 - Também são implementadas regras para a comunicação entre as camadas:
 - Isolamento total de suas funções (caixa-preta)

Vantagens do Modelo de Camadas

♦ Beneficios:

- Facilita a implementação
- Facilita a manutenção
- Facilita a introdução de novas funcionalidades em uma camada, sem afetar as demais
- Vantagens comerciais diferentes empresas podem oferecer soluções de acordo com o padrão
- Facilita o entendimento. Permitem uma visão mais clara e estruturada da arquitetura de redes

Modelo de Cinco Camadas

- No Modelo de Camadas, os níveis são organizados hierarquicamente, formando uma espécie de pilha.
- Cada nível possui um nome e um número associados.
- ◆ Cada camada possui um conjunto bem definido de funções, que podem ser implementadas em hardware, software ou firmware.

Modelo de Cinco Camadas

Funções de Cada Camada

Camada	Funções
Física	Sinalização, interface com o meio de transmissão, início e término de conexões, sincronização e multiplexação.
Enlace	Enquadramento, detecção e tratamento de erros, controle de fluxo e controle de acesso ao meio.
Rede	Endereçamento, roteamento, fragmentação, qualidade de serviço e controle de congestionamento.
Transporte	Comunicação fim a fim, início e término de conexões lógicas, e controle de fluxo fim a fim.
Aplicação	Web, correio eletrônico, transferência de arquivos e serviços de nomes.

Comunicação vertical

- Os serviços são oferecidos através de interfaces.

Comunicação vertical

Comunicação Horizontal

Comunicação Vertical e Horizontal

- ♦ A comunicação vertical ocorre entre camadas dentro de um mesmo dispositivo.
- ♦ A comunicação entre as camadas em dispositivos distintos se dá através das entidades pares: Comunicação Horizontal.

Encapsulamento

- O conceito de encapsulamento permite esconder de um determinado nível as informações de controle referente aos níveis superiores, criando o efetivo isolamento e a independência entre as camadas.
- ♦ O desencapsulamento é o processo inverso.

Encapsulamento

Funções das Camadas

Camada Física

- ♦ É o nível mais próximo do canal de comunicação
- ♦ É responsável pela efetiva transmissão dos bits.
- Nessa camada:
 - São definidas as características da codificação dos dados (ex: intensidade e duração dos sinais)
 - Define a interface de comunicação entre o dispositivo e o meio de transmissão (tipo do conector, número de pinos, função de cada pino, ...)

Camada Física

- Nessa camada:
 - Define as características do meio (tipo do meio: metálico, FO, etc; comprimento máximo dos cabos, tamanho das antenas, etc)
 - ♦ É responsável pela inicialização e término das conexões físicas, digitalização, multiplexação e sincronização da transmissão.

Camada de Enlace

- Qualquer transmissão está sujeita a problemas que podem modificar a forma original do sinal e, consequentemente, alterar o significado dos bits transmitidos.
- ♦ A principal função deste nível é detectar possíveis erros na transmissão e e, quando necessário, corrigi-los.
- CAMADA FÍSICA: preocupa-se apenas com a transmissão dos bits.
- ◆ CAMADA DE ENLACE: preocupa-se em transmiti-los de forma correta.

Camada de Enlace

- Nessa camada:
 - Transmite os dados em blocos (quadros)
 - Criar e interpretar corretamente os quadros
 - Fazer controle de fluxo
 - Permite que o transmissor regule o volume de dados enviados de forma a não sobrecarregar o receptor (para evitar o descarte e retransmissões).
 - Em redes multiponto (Ethernet, por exemplo):

Camada de Rede

- Principal Função:
 - Permitir que uma mensagem enviada pelo transmissor chegue ao destino utilizando dispositivos intermediários: um processo chamado COMUTAÇÃO.
- ◆ CAMADA DE ENLACE: preocupa-se com a comunicação entre dispositivos Diretamente Conectados.
- ◆ CAMADA DE REDE: preocupa-se em permitir a comunicação entre dispositivos não adjacentes.
 - No modelo INTERNET, essa função é chamada ROTEAMENTO.

Comutação

Rede de interconexão

Camada de Rede

- Na maioria das redes: é implementada a técnica de Comutação por Pacotes.
 - A C-3 pode oferecer 2 tipos de serviços à C-4, no que concerne a forma como os pacotes são tratados pela rede de interconexão:
 - Serviço Datagrama (não-orientado à Conexão)
 - ♦ Um serviço sem garantia (modelo Internet Prot. IP)
 - Serviço Circuito Virtual (orientado à Conexão)
 - Um serviço que garante a entrega e a sequencia dos pacotes transmitidos no destino

Camada de Rede

- ♦ A figura a seguir relaciona o modelo de camadas ao conceito de comutação.
- Os dispositivos A e B implementam as 5 camadas.
- Os comutadores apenas as camadas que permitem o processo de comutação:
 - Camadas Física e Enlace: permitem a conexão entre os dispositivos vizinhos
 - Camada de Rede: que permite conectar A e B, utilizando os comutadores que forma a rede de interconexão.

Modelo de Camadas e Comutação

Camada de Rede

- ▶ Para que a comunicação seja possível, é necessário algum esquema de endereçamento que permita a identificação dos dispositivos, dos roteadores e dos possíveis caminhos disponíveis para a implementação do roteamento.
- ♦ No modelo Internet: Implementado através do Endereço IP.

Camada de Rede

- ♦ A camada de Rede também tem a função de:
 - Controlar o funcionamento da rede de interconexão para evitar problemas de congestionamento; e,
 - Garantir a qualidade dos serviços oferecidos por ela.

Camada de Transporte

- ▲ Camada de TRANSPORTE é responsável pela comunicação Fim-a-Fim entre os dispositivos transmissor e receptor.
- ▲ A comunicação Fim-a-Fim permite que os dispositivos se comuniquem como se existisse uma ligação direta entre eles, tornando a rede de interconexão totalmente transparente.
- ▲ Camada de transporte cria a abstração de que os dispositivos
 A e B estão conectados ponto a ponto.

Comunicação fim a fim

Camada de Transporte

- ♦ A Camada de Transporte pode oferecer dois tipos de serviços para a camada de aplicação:
 - Serviço com garantia de entrega de dados e a sequencia
 - Implementado pelo TCP
 - Serviço sem garantia
 - Implementado pelo UDP
 - ♦ A C-4 também:

 - ♦ Controle de Fluxo Fim-a-Fim
 - ♦ Endereçamento e segmentação de mensagens

Camada de Aplicação

- ♦ A Camada de Transporte é a camada mais próxima dos usuários e aplicações.
- ♦ As camadas inferiores estão preocupadas com os detalhes de comunicação propriamente dita.
- ♦ A Camada de Aplicação permite o uso da rede e de suas facilidades de forma mais transparente possível.
- Existem vários protocolos: um para cada tipo de serviço.

Protocolo

- ◆ Definição básica: um conjunto de regras pré-definidas que devem ser seguidas pelos dispositivos para que a comunicação ocorra de forma efetiva.
- Definição mais completa:
 - É formado pelas informações de controle contidas no cabeçalho e pelo processamento dessas informações nas respectivas camadas de origem e destino.
- ▲ A seguir: representação simplificada da PDU de enlace utilizado em Redes Locais Ethernet.

Quadro Ethernet

Protocolo e Serviço

Pilha de Protocolos

Aplicação

Transporte

Rede

Enlace

Física

HTTP
TCP
IP
PPP
V.92

Gateway ou Conversor

- Nem sempre é possível ou viável que um dispositivo suporte mais de uma pilha de protocolos. Nesse caso, uma forma de contornar esse problema é a utilização de gateways ou conversores.
- ♦ Eles funcionam como tradutores, que convertem a pilha de protocolos do dispositivo A para a pilha do dispositivo B e vice-versa.

Gateway ou Conversor

Arquitetura de Redes

- ♦ A definição das funções de cada camada é uma das principais tarefas no projeto de uma arquitetura de redes
 - Tem influência direta no desempenho

Arquitetura de Redes

- ♦ A seguir três modelos:
 - O Modelo OSI (7 camadas)
 - O Modelo Internet (4 camadas)
 - O Modelo IEEE 802

Modelo OSI

Aplicação 7 Apresentação 6 Sessão 5 Transporte 4 Rede 3 2 Enlace Física 1

Protocolos do Modelo OSI

Protocolo	Camada	Descrição
V.24	Física	Padrão para conexões seriais, utilizado, por exemplo, para a conexão de
		um dispositivo ao modem.
X.21	Física	Interface digital para redes públicas de pacotes X.25.
HDLC	Enlace	Utilizado em conexões seriais ponto a ponto ou multiponto.
X.25	Rede	Protocolo para a interconexão de redes públicas de pacotes.
IS-IS	Rede	Protocolo de roteamento semelhante ao protocolo Internet OSPF.
TP4	Transporte	Protocolo de transporte que oferece serviços semelhantes ao protocolo
		Internet TCP.
ANS.1	Apresentação	Define uma notação e regras para a transmissão de estruturas de dados.
FTAM	Aplicação	Utilizado para implementar o serviço de transferência de arquivos.
VT	Aplicação	Utilizado para implementar o serviço de terminal remoto.
MHS	Aplicação	Utilizado para implementar o serviço de correio eletrônico.
CMIP	Aplicação	Utilizado para implementar o serviço de gerência remota.

Modelo Internet

	Modelo de cinco camadas		Modelo Internet		Modelo OSI		
				7	Aplicação		
5	Aplicação	4	Aplicação	6	Apresentação		
				5	Sessão		
4	Transporte	3	Transporte	4	Transporte		
3	Rede	2	Internet	3	Rede		
2	Enlace	1	Acesso	2	Enlace		
1	Física	'	à rede	1	Física		

Protocolos da Camada de Rede

Protocolo	Descrição
ICMP	Utilizado para o controle de erro e testes na rede.
IGMP	Utilizado no endereçamento multicast.
RIP	Utilizado no roteamento de pacotes baseado no algoritmo
	de vetor de distância.
OSPF	Utilizado no roteamento de pacotes baseado no algoritmo
	de estado do enlace.

Protocolos Camada de Aplicação

Protocolo	Descrição
HTTP	Utilizado no serviço Web.
FTP	Utilizado no serviço de transferência de arquivos.
SMTP	Utilizado no serviço de correio eletrônico.
Telnet	Utilizado no serviço de terminal remoto.
DNS	Utilizado no serviço de nomes.
SNMP	Utilizado no serviço de gerência remota.

Modelo Internet e Protocolos

Modelo	Pilha de			
Internet	protocolos			
Aplicação		HTTP, FTP, SMTP, Telnet, DNS, SNMP		
Transporte		TCP e UDP		
Rede		IP		
Acesso à rede		Ethernet V.92/PPP ADSL/PPPoE		

Encapsulamento Modelo Internet

Modelo IEEE 802

Modelo de cinco camadas

Aplicação								
Transporte								
Rede	Modelo IEEE 802		Modelo IEEE 802					
Enlace	LLC		LLC					
Lillace	MAC		8	4	5	_	15	91
Física	Física		802.	802.4	802.5	802.11	802.1	802.16

- Os órgãos de padronização existem para criar e desenvolver padrões que, a princípio, devem ser seguidos pela indústria.
- São órgãos formados por governos, entidades de classe, usuários, comunidade acadêmica, organizações sem fins lucrativos e empresas em geral.
- Padrão de jure x Padrão de facto.

- ▶ ITU International Telecommunications Union
 - Criado em 1865, a partir da necessidade de se padronizarem os diversos sistemas de telegrafia utilizados na época.
 - Atualmente, é parte da ONU
 - 3 setores:
 - **▶** ITU-R (*Radio Communication Sector*)
 - **▲** ITU-T (*Telecommunication Standardization Sector*)
 - Substituiu o CCITT (Comité Consultatif International Télégraphique et Téléphonique)
 - **▲** ITU-D (*Telecommunication Development Bureau*)

- ♦ ISO International Organization for Standardization
 - Criado em 1946, e é responsável por definir padrões internaciontais nas mais diferentes áreas, incluindo computação e tecnologia da informação.
 - O Brasil participa com a ABNT

- ▶ IEEE Institute of Electrical and Electronics Engineers
 - Uma das maiores instituições sem fins lucrativos do mundo
 - Desenvolve padrões em diversas áreas incluindo engenharia e computação

Padrões Internet

- ♦ A principal entidade responsável pela padronização da Internet e seus protocolos é a ISOC (*Internet Society*)
- Fundada em 1992
- É responsável pelo projeto, infraestrutura e manutenção da Internet, além de coordenar os esforços ao seu desenvolvimento.
- É formado pelo:
 - **♦** IAB − *Internet Architecture Board*
 - **♦** IETF − *Internet Engineering Task Force*
 - **♦** IRFT − *Internet Research Task Force*

- Padrões Internet
 - Um padrão Internet é publicado na forma de RFC (Request for Comment) e um número associado.
 - Ex: A RFC-791 define o protocol IP.
 - ▲ A RFC-793 define o protocol TCP.
 - As RFCs estão disponíveis para acesso gratuito na própria Internet.