

Also30: Probability and Stochastic Processes Mid-Term Exam 01

DATE: 24 SEPTEMBER 2025

Instructions:

- This question paper consists of 6 questions, and is worth for a total of 40 MARKS.
- Questions 1-5 are mandatory and constitute 30 MARKS. Question 6 is a bonus question and is optional.
- Combined marks scored in questions 1-5 will be scaled to 20 (contributing 20% towards overall assessment).
- · Any marks scored in the bonus question will be used as is at the time of grade assignment.
- You may use any result covered in class/homeworks directly without proof.
- Hints are provided for some questions.
 However, it is NOT mandatory to solve the question using the approach in the hints.
- Show all your working clearly.

 We want to see your thought process, and possibly provide partial credit for the intermediate logical steps.
- Plagiarism will NOT be entertained at any length.
 If you are caught cheating during the exam, you will be awarded 0 MARKS.

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Assume that all random variables appearing in the questions below are defined with respect to \mathscr{F} .

1. (a) (1 Mark)

If $\mathbb{P}(A|B) = \mathbb{P}(A|B^{\complement})$, then show that $A \perp \!\!\! \perp B$.

(b) **(2 Marks)**

On a probability space $(\Omega, \mathscr{F}, \mathbb{P})$, for events $A, B \in \mathscr{F}$, we say that A suggests B if

$$\mathbb{P}(A \cap B) \geq \mathbb{P}(A) \mathbb{P}(B).$$

Let $A, B, C \in \mathcal{F}$. Suppose that A suggests B and B suggests C.

Must it follow that A suggests C? Either prove the implication or provide a concrete counterexample.

(c) (2 Marks)

Consider events $A, B, C \in \mathscr{F}$ such that $A \perp \!\!\! \perp B$ and $A \perp \!\!\! \perp C$. Show that

$$A \perp\!\!\!\perp B \cup C \iff A \perp\!\!\!\perp B \cap C.$$

2. (4x1.5 = 6 Marks)

State whether the following statements are True or False. Give a brief justification.

- (a) The limit of a sequence of sets $\{A_n\}_{n\in\mathbb{N}}$, $\lim_{n\to\infty}A_n$, exists only if $\{A_n\}_{n\in\mathbb{N}}$ is either increasing or decreasing.
- (b) An event A can be self independent only if $\mathbb{P}(A) = 0$ or $\mathbb{P}(A) = 1$.
- (c) Let S be the collection of all singleton subsets of \mathbb{R} . Then, $\sigma(S) = 2^{\mathbb{R}}$.
- (d) A finite union of σ -algebras is a σ -algebra.

3. Let Ω be the unit square $[0,1] \times [0,1]$.

Let $\mathscr{B}([0,1])$ denote the Borel σ -algebra of subsets of [0,1]. Let \mathscr{F} denote the collection

$$\mathscr{F} := \bigg\{ B \times [0,1] : B \in \mathscr{B}([0,1]) \bigg\}.$$

Let $\mathbb{P}: \mathscr{F} \to [0,1]$ be given by

$$\mathbb{P}(B \times [0,1]) = \lambda(B),$$

where λ is the Lebesgue measure on $\mathcal{B}([0,1])$.

(a) **(3 Marks)**

Show that \mathscr{F} is a σ -algebra of subsets of Ω .

(b) (2 Marks)

Show that $\mathbb{P}: \mathscr{F} \to [0,1]$ is a probability measure.

4. (a) (2 Marks)

Buses arrive at ten-minute intervals starting at noon. A man arrives at the bus stop at a random time X minutes post noon, where X has the CDF

$$F_X(x) = \begin{cases} 0, & x < 0, \\ \frac{x}{60}, & 0 \le x \le 60, \\ 1, & x > 60. \end{cases}$$

What is the probability that the man waits more than six minutes for a bus?

(b) Given $p \in \mathbb{R}$ and $\theta \in \mathbb{R}$, let X be a random variable with CDF F given by

$$F(x) = \begin{cases} 0, & x < 0, \\ p, & 0 \le x < 1, \\ p + (1-p)\frac{x-1}{\theta}, & 1 \le x < 1 + \theta, \\ 1, & x \ge 1 + \theta. \end{cases}$$

i. (1 Mark)

Find all values of p and θ for which F is a valid CDF on \mathbb{R} .

ii. (3 Marks)

Specify the range of values for p and θ such that X is:

- A. Continuous.
- B. Discrete.
- C. Mixed.

5. Let $(\Omega, \mathscr{F}, \mathbb{P}) = ([0,1], \mathscr{B}([0,1]), \lambda)$, where λ is Lebesgue measure.

Define $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ as

$$orall \, \omega \in \Omega, \qquad X(\omega) = \left | rac{1}{\omega}
ight |, \qquad Y(\omega) = \mathrm{sgn}(\sin{(2\pi\omega)}),$$

where sgn is defined as

$$\mathrm{sgn}(x) := \begin{cases} -1, & x < 0, \\ 0, & x = 0, \\ 1, & x > 0 \end{cases}$$

(a) (4 Marks)

Determine $\mathbb{P}_X, \mathbb{P}_Y$.

(b) (2 Marks)

Let $\sigma(Y)$ be defined as the collection

$$\sigma(Y) := \left\{ Y^{-1}(B) : B \in \mathscr{B}(\mathbb{R}) \right\}.$$

Determine $\sigma(Y)$ explicitly for Y as defined above.

(c) (2 Marks)

Determine $\mathbb{P}(E)$, where E is defined as

$$E := \{ \omega \in \Omega : X(\omega) \ge Y(\omega) \}.$$

6. (Bonus Question)

(a) (3 Marks)

Consider the following two-player game between A and B.

- Both players are constructing the decimal expansion of a number in [0,1].
- They take turns writing digits: A writes the first digit D_1 , then B writes D_2 , then A writes D_3 , and so on indefinitely, where $D_i \in \{0, 1, \dots, 9\}$ for each $i \in \mathbb{N}$.

$$x = 0.D_1D_2D_3 \cdots \in [0, 1].$$

The winning rule is as follows:

- If x is **rational**, then A wins.
- If x is **irrational**, then B wins.

Show that B can always win.

(b) (3 Marks)

Consider one of our standard probability spaces $(\Omega, \mathscr{F}, \mathbb{P})$ = $([0,1], \mathscr{B}([0,1]), \lambda)$, where λ is the Lebesgue measure. To every element $\omega \in \Omega$ we assign its infinite decimal representation. We disallow decimal representations that end with an infinite string of nines (thus, for e.g., 1/10 = 0.1 and not $0.0999999 \cdots$).

Define an event E as

$$E := \{\omega \in [0,1] : \text{the decimal expansion of } \omega \text{ contains all digits in } \{0,1,\ldots,9\}\}.$$

Find $\lambda(E)$.