$University\ of\ Lethbridge$

Department of Mathematics and Computer Science

MATH 1560 - Tutorial #6

Monday, February 26

Some additional practice (discuss the answers but don't write anything down):

- 1. Find the absolute (global) maximum and minimum values of the given function on the given interval:
 - (a) $f(x) = x^2 \sqrt{4 x^2}$, on [-2, 2].
 - (b) $g(x) = x + \frac{3}{x}$, on [1, 5].
 - (c) $h(x) = e^x \sin(x)$, on $[0, \pi]$
- 2. Find all critical numbers for each function, and determine if each one is a local maximum, local minimum, or neither:
 - (a) $f(x) = x^4 6x^2 + 4$
 - (b) $g(x) = x^3 \ln(x)$
 - (c) $h(x) = x^2 e^{-2x}$

1. Determine the global maximum and minimum values of the given function on the given interval. (Note: these values can occur at either a critical number or an end point.)

(a)
$$f(x) = x^3 - x^2$$
, on $[-1, 2]$.

(b)
$$g(x) = 3x^{2/3} - 2x$$
, on $[-1, 8]$.

2. Determine the intervals on which $f(x) = \frac{x^2 + 3}{x - 1}$ is increasing and decreasing.

- 3. Sketch the graph of $f(x) = (x-3)\sqrt{x}$. You will need the following:
 - ullet The domain of f, and any x or y intercepts.
 - The "end behaviour": are there any asymptotes?
 - The first derivative, location of any critical points (turning points), and intervals of increase/decrease.
 - The second derivative, location of any inflection points, and intervals of concave up/down.

- 4. Extra fun: The graph of the *derivative* of a **continuous** function f is given below. From the graph, determine:
 - (a) The intervals on which f is increasing/decreasing.
 - (b) The x-coordinates of any local maxima or minima.
 - (c) The intervals on which f is concave up/down.
 - (d) The x-coordinates of any inflection points.
 - (e) A rough graph of f, assuming that f(0) = 0.

