Civil Engineering I

- introduction to structural mechanics-Newton's 2nd law and Vector Algebra

Excersises 1

• Exercise 1-1: Verify that the vector addition is associative, i.e.,

$$a + (b + c) = (a + b) + c$$

using graphic representation of vectors.

- Exercise 1-2: For vectors \boldsymbol{a} and \boldsymbol{b} given in Fig.1, work out $\boldsymbol{a} + \boldsymbol{b}$ by the component based method when $|\boldsymbol{a}| = 1$ and $|\boldsymbol{b}| = 2$. Also, obtain $|\boldsymbol{a} + \boldsymbol{b}|$ numerically.
- Exercise 1-3: For vectors given in Fig.2 Prove that

$$a+b+c=0$$

if |a| = |b| = |c|.

• Exercise 1-4: Suppose that a perfectly rigid bar AB is supported horizontally by a wall as shown in Fig.3, and is subjected to infinitely many vertical forces $\boldsymbol{f}_i(i=1,2,...)$ whose magnitude decreases monotonically as

$$\frac{|\boldsymbol{f}_{i+1}|}{|\boldsymbol{f}_i|} = \frac{9}{10}$$

Determine the direction and the magnitude of the total force acting on the bar.

• Exercise 1-5: Suppose that an iron weight is hung from a ceiling by a string AB as shown in Fig.4-(a). Determine the magnitude of the horizontal force F required to hold the weight as in the position shown in Fig4-(b). Note that m is mass and g is gravity constant.

Figure 1: Vectors \boldsymbol{a} and \boldsymbol{b} in 2-dimensional space with an xy Cartesian coordinate system.

Figure 2: Vectors a, b and c of equal magnitude.

Figure 3: Infinitely many downward forces acting to a horizontally supported bar AB.

Figure 4: An weight of mass m hung from a ceiling by a string AB.