WO 2005/061635 PCT/JP2004/019278 CLAIMS

- 1. An ink for ink jet comprising:
- a water-soluble dye having an anionic dissociable group; at least one of water and a water-soluble organic solvent; and at least one kind of cationic polymer capable of forming an ion pair with the anionic dissociable group.
- 2. An ink for ink jet according to claim 1, wherein the cationic polymer is a water-soluble polymer.
- 3. A method for producing an ink for ink jet, the method comprising: mixing in advance: a water-soluble dye having an anionic dissociable group; and at least one cationic polymer capable of forming an ion pair with the anionic dissociable group, in water, to form a resulting salt; and preparing the ink after desalting the resulting salt.
- 4. An ink for ink jet according to claim 1 or 2, wherein the ink is provided by: mixing in advance: said at least one kind of cationic polymer; and the water-soluble dye having the anionic dissociable group, in water, to form a resulting salt; and preparing the ink after desalting the resulting salt.
 - 5. An ink for ink jet according to any one of claims 1, 2 and 4, wherein said at least one kind of cationic polymer has a cation derived from a nitrogen atom.
- 6. An ink for ink jet according to any one of claims 1, 2, 4 and 5, wherein the water-soluble dye comprises at least one of compounds represented by general formulas (1) to (4): general formula (1):

 $(A_{11}-N=N-B_{11})_n-L$

in the general formula (1), A_{11} and B_{11} each independently represents a heterocyclic group that may be substituted; n represents 1 or 2; L represents a substituent bonded in an arbitrary position with one of A_{11} and B_{11} , and represents a hydrogen atom in case n = 1, a single bond or a divalent connecting group in case n = 2; general formula (2):

WO 2005/061635 PCT/JP2004/019278

In the general formula (2), X_{21} , X_{22} , X_{23} and X_{24} each independently represents -SO- Z_2 , -SO₂- Z_2 , -SO₂- Z_2 , a sulfo group, -CONR₂₁R₂₂, or -COOR₂₁; Z_2 each independently represents a substituted or non-substituted alkyl group, a substituted or non-substituted aralkyl group, a substituted or non-substituted aralkyl group, a substituted aryl group or a substituted or non-substituted heterocyclic group; and R₂₁ and R₂₂ each independently represents a hydrogen atom, a substituted or non-substituted alkyl group, a substituted or non-substituted cycloalkyl group, a substituted or non-substituted aralkyl group, a substituted aralkyl group, a substituted aralkyl group, a substituted aralkyl group, a substituted or non-substituted aralkyl group, a substituted aralkyl g

Y₂₁, Y₂₂, Y₂₃ and Y₂₄ each independently represents a monovalent substituent;

 a_{21} to a_{24} and b_{21} to b_{24} represent numbers of substituents respectively on X_{21} to X_{24} and Y_{21} to Y_{24} ; a_{21} to a_{24} each independently represents a number of 0 to 4, and at least one of a_{21} to a_{24} is not zero; b_{21} to b_{24} each independently represents a number of 0 to 4; and, in case any of a_{21} to a_{24} and a_{21} to a_{24} represents a number equal to or larger than 2, plural ones in a_{21} to a_{24} and a_{24} represents a number equal to or larger than 2, plural ones in a_{21} to a_{24} and a_{21} to a_{24} and a_{24} and a_{24} to a_{24} to a_{24} and a_{24} to a_{24} to a_{24} and a_{24} to a_{24} and a_{24} to a_{24} and a_{24} to a_{24} and a_{24} to a_{24}

M represents a hydrogen atom, a metal atom, an oxide of the metal atom, a hydroxide of the metal atom, or a halide of the metal atom;

general formula (3):

$$A_{31}-N=N A_{32}=B_{31}$$
 R_{35}
 R_{36}
 R_{36}

in the general formula (3), A₃₁ represents a 5-membered heterocyclic ring;

 B_{31} and B_{32} each represents = CR_{31} - or - CR_{32} =, or either one represents a nitrogen atom while the other one represents = CR_{31} - or - CR_{32} =;

WO 2005/061635 PCT/JP2004/019278

R₃₅ and R₃₆ each independently represents a hydrogen atom, an aliphatic group, an aromatic group, a heterocyclic group, an acyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a carbamoyl group, an alkyl- or arylsulfonyl group, or a sulfamoyl group, each of which may further have a substituent;

G₃, R₃₁ and R₃₂ each independently represent a hydrogen atom, a halogen atom, an aliphatic group, an aromatic group, a heterocyclic group, a cyano group, a carboxyl group, a carbamoyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, a heterocyclic oxycarbonyl group, an acyl group, a hydroxyl group, an alkoxy group, an aryloxy group, an aryloxycarbonyloxy group, an amino group (including an arylamino group and a heterocyclic amino group, an aryloxycarbonyloxy group, an ureido group, a sulfamoylamino group, an alkoxycarbonylamino group, an aryloxycarbonylamino group, an alkyl- or aryl sulfonylamino group, a heterocyclic sulfonylamino group, a nitro group, an alkyl- or arylthio group, an alkyl- or arylsulfonyl group, a sulfamoyl group, a sulfonyl group, a sulfonyl

 R_{31} and R_{35} , or R_{35} and R_{36} may be bonded to form a 5- or 6-membered ring; and general formula (4):

$$A_{41}$$
-N=N-B₄₁-N=N-C₄₁

in the general formula (4), A_{41} , B_{41} and C_{41} each independently represents an aromatic group or a heterocyclic group, each of which may be further substituted.

7. An ink for ink jet according to any one of claims 1, 2, 4, 5 and 6, wherein the dye represented by the general formula (2) is a dye represented by general formula (5):

general formula (5):

$$Y_{57}$$
 Y_{58}
 Y_{56}
 Y_{56}
 Y_{56}
 Y_{56}
 Y_{56}
 Y_{56}
 Y_{56}
 Y_{56}
 Y_{57}
 Y_{56}
 Y_{57}
 Y_{57}
 Y_{58}
 Y_{51}
 Y_{52}
 Y_{53}
 Y_{53}
 Y_{54}
 Y_{53}
 Y_{53}

in the general formula (5), X_{51} to X_{54} , Y_{51} to Y_{58} and M_1 respectively have same meanings as X_{21} to X_{24} , Y_{21} to Y_{24} and M in the general formula (2); and a_{41} to a_{54} each independently represents an integer 1 or 2.

8. An ink set for ink jet comprising an ink according to any one of claims 1, 2, 4, 5, 6 and 7.

WO 2005/061635 PCT/JP2004/019278

9. An ink jet recording method comprising executing an image recording on one of a plain paper and an ink jet exclusive paper with an ink jet printer by using at least one of: an ink according to any one of claims 1, 2, 4, 5, 6 and 7; and an ink set for ink jet according to claim 8.