Университет ИТМО Кафедра ВТ

Теория автоматов

Практическое задания №3 «Канонический метод структурного синтеза» Вариант 5

Выполнил студент 3 курса

Группы Р3311 Романов Олег

Преподаватель: Ожиганов А.А.

Санкт-Петербург 2018 год

Постановка задачи

Абстрактный автомат задан табличным способом. Причем абстрактный автомат Мили представлен таблицами переходов и выходов, а абстрактный автомат Мура - одной отмеченной таблицей переходов. Для синтеза структурного автомата использовать функционально полную систему логических элементов И, ИЛИ, НЕ и автомат Мура, обладающий полнотой переходов и полнотой выходов. Синтезированный структурный автомат представить в виде ПАМЯТИ и КОМБИНАЦИОННОЙ СХЕМЫ

Исходный абстрактный автомат

$T_1(\delta)$	a_1	a_2	a_3	a_4
z_1	a_2		a_2	a_3
$\boldsymbol{z_2}$	a_3	a_4	a_4	a_2

Таблица 1. Функция переходов

$T_2(\lambda)$	a_1	a_2	a_3	a_4
z_1	w_1		w_2	w_2
z_2	W_2	w_1	w_2	W_2

Таблица 2. Функция выходов

Перехода от абстрактного автомата к структурному автомату

Закодируем буквы входного алфавита, выходного алфавита и состояния абстрактного автомата двоичными кодами.

T_3	x
z_1	0
\mathbf{Z}_2	1

Таблица 3. Кодир. входов автомата

T_4	y
w_1	0
W_2	1

Таблица 4. Кодир. выходов автомата

T	0	0
T_5	$oldsymbol{Q_1}$	$oldsymbol{Q}_2$
a_1	0	0
a_2	0	1
a_3	1	0
$a_{\scriptscriptstyle A}$	1	1

Таблица 5. Кодирование состояний автомата

$$T_6 \quad Q_1 Q_2 = \delta(Q_1, Q_2, x)$$

Q_1Q_2	00	01	10	11
0	01	-	01	10
1	10	11	11	01

Таблица 6. Функция переходов

$$T_7 \quad y = \lambda(Q_1, Q_2, x)$$

Q_1Q_2 χ	00	01	10	11
0	0	-	1	1
1	1	0	1	1

Таблица 7. Функция выходов

По таблице выходов структурного автомата получим аналитическое выражение для выходного сигнала в виде ДНФ $y=Q_1Q_2\lor Q_1\overline{Q_2}\lor x\overline{Q_1}\ \overline{Q_2}$

Сигналы функции возбуждения для триггеров

D-триггер

Q	0	1
x		
0	0	0
1	1	1

Таблица 8. Закон функционирования D-триггера

На основе закона функционирования D-триггера по таблице переходов структурного автомата построим таблицу сигналов функции возбуждения.

Q_1Q_2	00	01	10	11
x				
0	01	1	01	10
1	10	11	11	01
	D_1D_2	D_1D_2	D_1D_2	D_1D_2

Таблица 9. Таблица сигналов функции возбуждения $D_1D_2=\mu(Q_1,Q_2,x)$

Построим ДНФ для сигналов функции возбуждения:

$$\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
D_1 &= x\overline{Q_1} \overline{Q_2} \lor x\overline{Q_1} Q_2 \lor xQ_1\overline{Q_2} \lor \overline{x}Q_1 Q_2 \\
D_2 &= \overline{x}\overline{Q_1} \overline{Q_2} \lor x\overline{Q_1} Q_2 \lor Q_1\overline{Q_2} \lor xQ_1 Q_2
\end{array}$$

Входное закодированное слово: [1,0,1,0,1,1,1] Выходное закодированное слово: [1,1,0,1,1,1,0]

Ожидаемое закодированное слово: [1, 1, 0, 1, 1, 1, 0]

Т-триггер

Q	0	1
x		
0	0	1
1	1	0

Таблица 10. Закон функционирования Т-триггера

На основе закона функционирования Т-триггера по таблице переходов структурного автомата построим таблицу сигналов функции возбуждения.

Q_1Q_2	00	01	10	11
0	01	-	11	01
1	10	10	01	10
	T_1T_2	T_1T_2	T_1T_2	T_1T_2

Таблица 11. Таблица сигналов функции возбуждения $T_1T_2=\mu(Q_1,Q_2,x)$

Построим ДНФ для сигналов функции возбуждения:

Входное закодированное слово: [1, 0, 1, 0, 0, 1, 1] Выходное закодированное слово: [1, 1, 1, 1, 1, 0, 1]

Ожидаемое закодированное слово: [1, 1, 1, 1, 1, 0, 1]

RS-триггер

Q	0	1
RS		
00	0	1
01	1	1
10	0	0
11	-	-

Таблица 12. Закон функционирования RS-триггера

$Q_i \rightarrow Q_{i+1}$	R	S
0 → 0	-	0
0 → 1	0	1
1 → 0	1	0
1 → 1	0	-

Таблица 13. Система подставок RS-триггера

Q_1Q_2 x	0	00		1	1	.0	1	1
0	-0	01	-		10	01	0-	10
1	01	-0	01	0-	0-	01	10	0-
	R_1S_1	R_2S_2	R_1S_1	R_2S_2	R_1S_1	R_2S_2	R_1S_1	R_2S_2

Таблица 14. Таблица сигналов функции возбуждения: $R_1S_1R_2S_2=\mu(Q_0,Q_1,x)$

Построим ДНФ для сигналов функции возбуждения:

$$R_1 = \overline{x}Q_1\overline{Q_2} \lor xQ_1Q_2
S_1 = x\overline{Q_1}\overline{Q_2} \lor x\overline{Q_1}Q_2
R_2 = \overline{x}Q_1Q_2
S_2 = \overline{x}\overline{Q_1}\overline{Q_2} \lor Q_1\overline{Q_2}$$

Входное закодированное слово: [0; 0; 1; 1; 0; 1; 0; 1; 1; 1]

Выходное закодированное слово: [0;0;1;0;1;0;1;1;0;0]

Ожидаемое закодированное слово: [0; 0; 1; 0; 1; 0; 1; 1; 1; 0; 0]

ЈК-триггер

Q	0	1
<i>JK</i> 00	0	1
01	0	0
10	1	1
11	1	0

Таблица 15. Закон функционирования ЈК-триггера

$Q_i o Q_{i+1}$	J	K
0 → 0	0	-
0 → 1	1	-
1 → 0	ı	1
1 → 1	-	0

Таблица 16. Система подставок ЈК-триггера

Q_1Q_2 x	00		01		10		11	
0	0-	1-	-		-1	1-	-0	-1
1	1-	0-	1-	-0	-0	1-	-1	-0
	J_1K_1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	J_2K_2	J_1K_1	J_2K_2

Таблица $\overline{17}$. Таблица сигналов функции возбуждения: $J_1K_1J_2K_2 = \mu(Q_0,Q_1,x)$

Построим ДНФ для сигналов функции возбуждения:

$$\begin{array}{c}
I_1 = x\overline{Q_1} \overline{Q_2} \lor x\overline{Q_1}Q_2 \\
K_1 = \overline{x}Q_1\overline{Q_2} \lor xQ_1Q_2 \\
J_2 = \overline{x}\overline{Q_1} \overline{Q_2} \lor Q_1\overline{Q_2} \\
K_2 = \overline{x}Q_1Q_2
\end{array}$$

Входное закодированное слово: [0;0;1;1;0;1;0;1;1;1]

Выходное закодированное слово: [0;0;1;0;1;0;1;0;0]

Ожидаемое закодированное слово: [0; 0; 1; 0; 1; 0; 1; 1; 1; 0; 0]

Выводы по работе

В ходе выполнения практической работы был изучен структурный автомат и принципы построения схем на его основе. Были построены схемы с памятью на основе исходного автомата на D-, T-, RS- и JK-триггерах. Минимальным количеством элементов обладает схема, построенная на T-триггерах.