

Matematik A

Studentereksamen

Onsdag den 18. maj 2011 kl. 9.00 - 14.00

Opgavesættet er delt i to dele.

Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven med hjælpemidler består af opgave 7-14 med i alt 19 spørgsmål.

De 25 spørgsmål indgår med lige vægt i bedømmelsen.

Bedømmelsen af det skriftlige eksamenssæt

I bedømmelsen af besvarelsen af de enkelte spørgsmål og i helhedsindtrykket vil der blive lagt vægt på, om eksaminandens tankegang fremgår klart af besvarelsen. Dette vurderes blandt andet ud fra kravene beskrevet i de følgende fem kategorier:

1. TEKST

Besvarelsen skal indeholde en forbindende tekst fra start til slut, der giver en klar præsentation af, hvad den enkelte opgave og de enkelte delspørgsmål går ud på.

2. NOTATION OG LAYOUT

Der kræves en hensigtsmæssig opstilling af besvarelsen i overensstemmelse med god matematisk skik, herunder en redegørelse for den matematiske notation, der indføres og anvendes, og som ikke kan henføres til standardviden.

3. REDEGØRELSE OG DOKUMENTATION

Besvarelsen skal indeholde en redegørelse for den anvendte fremgangsmåde og dokumentation i form af et passende antal mellemregninger og/eller en matematisk forklaring på brugen af de forskellige faciliteter, som et værktøjsprogram tilbyder.

4. FIGURER

I besvarelsen skal der indgå en hensigtsmæssig brug af figurer og illustrationer, og der skal være en tydelig sammenhæng mellem tekst og figurer.

5. KONKLUSION

Besvarelsen skal indeholde en afrunding af de forskellige spørgsmål med præcise konklusioner, præsenteret i et klart sprog og/eller med brug af almindelig matematisk notation.

Delprøven uden hjælpemidler

- **Opgave 1** Løs ligningen $x^2 + x 12 = 0$.
- **Opgave 2** I et koordinatsystem er to vektorer \vec{a} og \vec{b} bestemt ved

$$\vec{a} = \begin{pmatrix} 2 \\ t+1 \end{pmatrix}$$
 og $\vec{b} = \begin{pmatrix} t-1 \\ 3 \end{pmatrix}$.

Bestem den værdi af t, så \vec{a} og \vec{b} er ortogonale.

Opgave 3 I en population af bananfluer kan udviklingen i antal fluer beskrives ved modellen

$$N(t) = 23 \cdot 1,386^t$$

hvor N(t) betegner antal fluer til tidspunktet t (målt i døgn).

Gør rede for, hvad konstanterne i modellen fortæller om udviklingen i antal fluer i populationen.

Opgave 4 En funktion f er bestemt ved

$$f(x) = e^x - x - 1.$$

Undersøg, om f er en løsning til differentialligningen

$$\frac{dy}{dx} = y + x.$$

Opgave 5 En funktion f er bestemt ved

$$f(x) = 2x + \frac{1}{x}, \quad x > 0.$$

Bestem den stamfunktion til f, hvis graf går gennem P(1,3).

Opgave 6 Figuren viser i intervallet [-3, 6] grafen for den afledede funktion f' for en funktion f.

Bestem monotoniforholdene for funktionen f i intervallet [-3; 6].

Besvarelsen afleveres kl. 10.00

Delprøven med hjælpemidler

Kl. 09.00 - 14.00

Opgave 7

Krager kan knække en nød ved gentagne gange at flyve op og lade nødden falde til jorden. I tabellen ses resultaterne af en række sammenhørende observationer af faldhøjden i meter og det gennemsnitlige antal fald, der skal til, før nødden knækker.

Faldhøjde (m)	1,7	2,0	2,9	4,1	5,6	6,3	7,0	8,0	10,0	13,9
Gennemsnitlige antal fald	42,0	21,0	10,3	6,8	5,1	4,8	4,4	4,1	3,7	3,2

I en model kan sammenhængen beskrives ved

$$f(x) = b \cdot x^a$$
,

hvor x betegner faldhøjden i meter, og f(x) er det gennemsnitlige antal fald.

- a) Benyt tabellens data til at bestemme *a* og *b*.
- b) Benyt modellen til at bestemme faldhøjden, når det gennemsnitlige antal fald er 15.
- c) Benyt modellen til at bestemme, hvor mange procent det gennemsnitlige antal fald ændres med, når faldhøjden øges med 50%.

Opgave 8 I en periode har man på en bestemt tankstation opgjort mængden af økobenzin, som kunderne tankede.

Mængde (liter)	0-10	10-20	20-30	30-40	40-50	50-60
Antal kunder	10	23	16	21	10	9

a) Tegn en sumkurve, og bestem kvartilsættet.

Opgave 9

Foto: Opgavekommissionen

Billedet ovenfor viser et ottekantet fiskerhus. På figur 1 ses et lodret tværsnit gennem fiskerhusets tagspids, hvor nogle af husets mål er angivet.

a) Bestem længden af linjestykket s, og bestem vinkel w.

På figur 2 ses fiskerhusets grundflade, der har form som en regulær ottekant.

b) Bestem arealet af fiskerhusets grundflade.

Figur 2

Opgave 10

En pyramideformet bygning skal bygges på en skråning. På figuren ses en model af bygningen indtegnet i et koordinatsystem med enheden 1 m. Modellens fem hjørnepunkter betegnes A, B, C, D og T. I modellen svarer kvadratet EFCD til et vandret gulv i bygningen, og firkanten ABCD svarer til bygningens grundplan. Firkanten ABCD er en del af planen α med ligningen

$$x + 3z + 20 = 0$$
.

- Bestem afstanden fra T til α .
- b) Bestem vinklen mellem α og sidefladen, der indeholder T, D og C.
- c) Bestem en parameterfremstilling for linjen gennem T og F, og bestem koordinatsættet til punktet B i planen α .

Opgave 11 To funktioner f og g er givet ved

$$f(x) = 17 - x^2$$
 og $g(x) = 8$.

Graferne for de to funktioner afgrænser et område M, der har et areal.

- a) Bestem arealet af M.
- b) Bestem rumfanget af det omdrejningslegeme, der fremkommer, når M drejes 360° omkring førsteaksen.

Opgave 12 I en model kan længden af dagen i Anchorage Alaska som funktion af tiden beskrives ved

$$f(t) = 6.61 \cdot \sin(0.0167t - 1.303) + 12.2$$
, $0 \le t \le 365$,

hvor f(t) er længden af dagen (målt i timer) til tidspunktet t (målt i døgn efter 1. januar 2011).

- a) Benyt modellen til at bestemme længden af dagen i Anchorage Alaska til tidspunktet t = 100.
- b) Benyt modellen til at bestemme det tidspunkt, hvor længden af dagen i Anchorage Alaska er størst.
- c) Bestem f'(100), og gør rede for, hvad dette tal fortæller.

Kilde: http://aa.usno.navy.mil

Opgave 13 I et bestemt kredsløb er strømstyrken I(t) (målt i ampere) en funktion af tiden t (målt i sekunder). Det oplyses, at I(t) er løsning til differentialligningen

$$0, 4 \cdot \frac{dI}{dt} + 10I = 9,$$

og I(0) = 0.

- a) Bestem strømstyrkens væksthastighed, når strømstyrken er 0,3 ampere.
- b) Bestem en forskrift for I(t).

Opgave 14 En funktion f er bestemt ved

$$f(x) = (x-3)^2$$
.

a) Bestem en ligning for tangenten til grafen for f i punktet (1, f(1)).

Tangenten til grafen for f i punktet P(a, f(a)) skærer koordinatsystemets akser i punkterne Q og R, når $0 \le a < 3$.

b) Bestem koordinatsættene til hvert af punkterne Q og R udtrykt ved a.

Det oplyses, at arealet af trekant OQR er givet ved

$$T(a) = \frac{1}{4}(9-a^2)(a+3)$$
, $0 \le a < 3$.

c) Bestem den værdi af a, der gør arealet af trekant OQR størst muligt.

