United States Air Force 611th Civil Engineer Squadron

Elmendorf AFB, Alaska

Final

Remedial Investigation Report Galena Airport and Campion Air Station

Volume 2—Appendix A

Approvide the public releases

(Regulated the public releases

19960404 092

APPENDIX A

Analytical Data

APPENDIX A

DETAILED ANALYTICAL RESULTS

CONTENTS LIST -

FO	$\gamma T \gamma$	$\sqrt{1}$	ΓE	DE	FIN	ודדו	\bigcap	N	ς
$T \setminus \mathcal{N}$	J	$\mathbf{V} \mathbf{V}$	1	ועע	1 11 1		\sim	1 N	-

- TABLE A1 RESULTS FOR FIELD PARAMETERS FOR WATER SAMPLES, GALENA 1992 EVENT
- TABLE A2 RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT
- TABLE A3 RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT
- TABLE A4 RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT
- TABLE A5 RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT
- TABLE A6 RESULTS FOR FIELD PARAMETERS FOR WATER SAMPLES, GALENA 1993 EVENT
- TABLE A7 RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT
- TABLE A8 RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT
- TABLE A9 RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT
- TABLE A10 RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT
- TABLE A11 RESULTS OF ORGANIC ANALYSES FOR SOIL (DRM, BLM) SAMPLES, GALENA 1993 EVENT

APPENDIX A

DETAILED ANALYTICAL RESULTS

CONTENTS LIST (continued) -

- TABLE A12 RESULTS OF INORGANIC ANALYSES FOR SOIL (DRM, BLM) SAMPLES, GALENA 1993 EVENT
- TABLE A13 RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1994 EVENT
- TABLE A14 RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1994 EVENT
- TABLE A15 RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1994 EVENT
- TABLE A16 RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1994 EVENT

FOOTNOTE DEFINITIONS

Sample concentration was less than or equal to the upper tolerance level В (UTL) calculated for the blanks for that analyte in that media. These data are considered indistinguishable from blank concentrations. E Analyte exceeded calibration range, but did not saturate the detector, therefore data is usable. F Co-elution or interference was suspected in the determination of the concentration of the flagged compound. These data may be biased high due to interference, although the QA/QC data for the sample were within acceptance criteria. These data are considered conservative (biased high) concentrations and are used in the risk assessment. J Result is less than sample specific detection limit. Data with this flag should be interpreted with caution. The presence of the analyte was not confirmed because the compound was K not detected on both the primary and secondary columns. Only "KJ" flagged data are reported and are intended for use as proxy values for risk assessment. This flag is used on methods requiring second column confirmation (SW8010, SW8015, SW8015MP, SW8020, and SW8080). L QC evaluation determined that the result may be biased low, see QA report. This flag is used only on 1992 data. NA Sample not analyzed for the indicated parameter. In the case of SW8080, when results are reported for some compounds, the NA indicate that high concentrations of other target analytes precluded the determination of the flagged compound. ND Not detected. No instrument response for analyte or result less than zero. P The identification of the compound is not confirmed because the ratio of results from the primary and secondary columns differ by greater than a factor of three. The lower of the two values is reported with a "P" flag, since co-elution with a non-target compound is suspected. Although they do not meet the confirmation criteria, it is likely that the compound is present, however the concentration should be regarded as an estimate. This flag is used on methods requiring second column confirmation (SW8010, SW8015, SW8015MP, SW8020, and SW8080).

FOOTNOTE DEFINITIONS- continued

- R Data did not meet QA/QC criteria. See QA/QC evaluation in Appendix F for explanation and discussion.
- Metal concentration reported was obtained using the method of standard additions. This indicates that the analyst had some reason to believe that there was an interference with the determination, and therefore, the method of standard additions was used to determine the concentration.
- Second column confirmation was not performed for the flagged compound. In these cases, the sample was analyzed at two different dilutions and the conformational analyses were performed for the samples analyzed at the higher dilution. These data should be considered estimates as they are not confirmed and were measured in the presence of compounds at much higher concentrations.
- X The recoveries of one or more of the internal standards were outside the applicable acceptance criteria. Method appropriate (SW8240, SW8260, and SW8270) corrective actions were implemented to confirm matrix interferences. The X-flag indicates which compounds were quantitated using the affected internal standard(s).
- Z Oily drops suspended in sample extract. An homogenous sub-sample of the extract was analyzed.

	0 01.	01 01-MW-01 01-MW-01-01		L 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LOCATION ID SAMPLE ID 01 01-MW-02 01-MW-02-01	01-PS-07 Dup	01 01-MW-02 01-DS-07 Dup of 01-MW-02-01	01	01	01 01-MW-03 01-MW-03-01	
A403 - Alkalinity (mg/L)											
	269	С		780	С	772	С		832)	_
E120.1 - Specific Conductance (umhos/cm)	mhos/cm)										
	577	С		865	C	865	0		916	\Box	
E150.1 - pH, Electrometric (pH units)	nits)										
	6.2	С	_	9.9	С	9.9	С		6.7	C	
E170.1 - Temperature (deg. C)											
	1.4	С		1.6	С	1.6	С		1.2	С	

NA = Not Applicable

	_	0 (0 (0 (.) (
	01 01-MW-06 01-MW-06-01))		_
	 	780	650	6.8	1.5
	· ;	0	· 🖂		
	01 01-MW-05 01-MW-05-01	C	0	С	0
		900	440	7	1.8
	; 	0			
SITE ID LOCATION ID SAMPLE ID	01 01-MW-04 01-MW-04-01	0	С	С	С
		648	595	4.9	2.7
	-MW-03-01				
		С	С	С	0
	01 01-MW-03 01-DS-06 Dup of 01	840 (umhos/cm)	916 units)	6.7	1.2
	PARAMETER 	A403 - Alkalinity (mg/L) Alkalinity E120.1 - Specific Conductance (umhos/cm)	Conductivity E150.1 - pH,Electrometric (pH units)	pH E170.1 - Temperature (deg. C)	Temperature

6.6 () [] 6.5 () [] 6.7 () [] erature (deg. C) () [] 19.1 () [] 4.6 () []	PARAMETER A403 - Alkalinity (mg/L) Alkalinity E120.1 - Specific Conductance (umhos/cm) Conductivity E150.1 - pH,Electrometric (pH units)	280 /cm)	01 01-SW-01 01-SW-01-01 ()	0	SITE ID LOCATION ID SAMPLE ID 01 01-SW-02 01-SW-02 () ()		02 02-6W-01 02-6W-01-01 ()			02 02-GW-02 02-GW-02-01 ()	i
13.7 () [] 19.1 () [] 4.6 () []	pH E170.1 - Temperature (deg. C)	9.9	С	6.5	С	6.7	С	0	7.1		\Box
	Temperature	13.7	С	19.1	С	4.6	С		5.3		С

			s 07	SITE ID LOCATION ID SAMPLE ID						
PARAMETER 		02 02-6W-03 02-6W-03-01	02 02-DS-01 Du	02 02-GW-03 02-DS-01 Dup of 02-GW-03-01	01	0.50	02 02-GW-04 02-GW-04-01	03	03 03-GW-01 03-GW-01-01	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
A403 - Alkalinity (mg/L)										
Alkalinity 240 E120.1 - Specific Conductance (umhos/cm)	240 (umhos/cm)	С	242	С		240	С	316	0	0
Conductivity E150.1 - pH,Electrometric (pH units)	304 units)	С	298	С		269	С	253	С	
pH E170.1 - Temperature (deg. C)	6.8	С	8.8	0		7	С	7.3	С	
Temperature	ND	0	ND	()		QN	С	2.7	0	

	03 03-GW-03 03-DS-01 Dup of 03-GW-03-01 03-DS-01 Dup of 03-GW-03-01
	03 3-GW-03 up of 03-GW-03-01
	03-03-01 Do
DCATION ID	1
LOCATION ID SAMPLE ID	03 '03-GW-03 03-GW-03-01
	03 03-6W-02 03-6W-02-01
	03
	PARAMETER

			_	SITE ID LOCATION ID SAMPLE ID							
PARAMETER 		04 04-MW-02 04-MW-02-01	70	04 04-MW-03 04-MW-03-01	; ; ;	0 04	04 04-SW-01 04-SW-01	1 	04-DS-03 Du	04 04-SW-01 04-DS-03 Dup of 04-SW-01-01	-01
A403 - Alkalinity (mg/L)											
Alkalinity E120.1 - Specific Conductance (umhos/cm)	580 1mhos/cm)	С	598	С		148	0		144	0	
Conductivity E150.1 - pH,Electrometric (pH units)	570 nits)	С	632	C		266	0		273	С	
рН E170.1 - Temperature (deg. C)	5.9	0	6.9	0		7.6	0		7.7	С	
Temperature	1.6	0	9.5	С		22.1	0		23.1	0	

Compiled: 20 Mary

				3	SITE ID LOCATION ID SAMPLE ID							
PARAMETER 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	04 04-SW-02 04-SW-02-01	1 1 1 1 1 1	00,	04 - 04 - 04 - 04 - 04 - 04 - 03 - 01 - 04 - 03 - 01 - 04 - 04 - 04 - 04 - 04 - 04 - 04		04-	04 - SW - 04 04 - SW - 04 04 - SW - 04 - 01	: :	00	05 05-MW-01 05-MW-01-01	! ! !
A403 - Alkalinity (mg/L)	-		5	- -	S	Ε	•	\$	Ε	Š	;	
Alkaiinily E120.1 - Specific Conductance (umhos/cm)	IIO umhos/cm)	-		118	0	3	100	=	3	QN N	С	=
Conductivity E150 1 - nH Flactromatric (nH units)	210	С	0	222	С		208	0		909	С	
pH E170.1 - Temperature (deg. C)	7.5	0		7.8	С		7.5	С		ON N	С	
Temperature	21	С		22.9	С		22.6	С		1.3	0	

				_	SITE ID LOCATION ID SAMPLE ID				2			
PARAMETER	05 05-MW-0 05-MW-0	05 05-MW-02 05-MW-02-01	1	0 1	05 05-MW-03 05-MW-03-01		0055	05 05-MW-04 05-MW-04-01		300	05 05-MW-05 05-MW-05-01	
A403 - Alkalinity (mg/L) Alkalinity E120.1 - Specific Conductance (umhos/cm)	488 (umhos/cm)	С		788	0	<u> </u>	ND	, C		006	С	
Conductivity E150.1 - pH,Electrometric (pH units)	333 units)	С		527	С		969	С		629	0	
рН E170.1 - Temperature (deg. C)	6.3	С		7	0		6.1	С		6.9	С	
Temperature	1.3	0		2	0		1.1	С		0.7	С	

	05 05-MW-09 05-MW-09-01		С		С		С		С
	05-		296		492		7		1.6
·	1 2 1 1 1								
	05 05-MW-08 05-MW-08-01		С		С		С		С
	05-		716		541		8.9		4
	i : :								
SITE ID LOCATION ID SAMPLE ID	05 05-MW-07 05-MW-07-01		С		С		C		С
Ţ	0 02		1056		969		10.4		1.7
	!								
	05 05-MW-06 05-MW-06-01		С		С		С		С
	050		716	mhos/cm)	622	iits)	6.7		3.1
	PARAMETER 	A403 - Alkalinity (mg/L)	Alkalinity	E120.1 - Specific Conductance (umhos/cm)	Conductivity	E150.1 - pH, Electrometric (pH units)	Hd	E170.1 - Temperature (deg. C)	Temperature

					SITE ID LOCATION ID SAMPLE ID							
PARAMETER 	0 0 0 0 0 0 0	05 05-MW-09 05-DS-08 Dup of 05-MW-09-01	-01		05 05-MW-10 05-MW-10-01	!	00	05 05-MW-11 05-MW-11-01	¦	0 05	05 05-MW-12 05-MW-12-01	L
A403 - Alkalinity (mg/L)												
Alkalinity 620	620	С		728	0		880	0		824	С	
Conductivity E150.1 - pH.Electrometric (pH units)	(umnos/cm) 492 units)	С		504	0		1283	С		1224	()	
рН E170.1 - Temperature (deg. C)		С		6.7	0		6.8	С		6.6	0	
Temperature	1.6	0		2.1	0		0.4	0		1.4))	

Compiled: 20 Mar

			-	SITE ID LOCATION ID SAMPLE ID						
PARAMETER 	0 05	05 05-SW-01 05-SW-01-01	00	05 05-SW-02 05-SW-02-01	. !	0 050	05 05-SW-03 05-SW-03-01	05 05-DS-07	05 05-SW-03 05-DS-07 Dup of 05-SW-03-01	
A403 - Alkalinity (mg/L) Alkalinity	134	С	148	С		126	0	126	C	=
E120.1 - Specific Conductance (umhos/cm) Conductivity 223	umhos/cm) 223	С	223	С		213	· C	208	: C	
E150.1 - pH,Electrometric (pH units) pH	nits) 7.6	0	7.4	0	0	7.4	С	7.3	0	
LI/U.1 - lemperature (deg. U) Temperature	16	С	15.2	С		16.4	С	15.3	С	

	-01				
	06 06-DS-08 Dup of 06-MW-03-01	С	С	С	С
	ng 80-SQ-90 90	656	873	7.3	4.8
·	; ;	8			
	06 06-MW-03 06-MW-03-01	С	С	С	С
	90	809	873	6.5	4.8
			0		
SITE ID LOCATION ID SAMPLE ID	06 06-MW-02 06-MW-02-01	0	С	С	C
_	90	812	1330	6.8	4
	06 06-MW-01 06-MW-01-01	С	C ,	0	0
	0	1072 (umhos/cm)	1728 units)	6.7	5.5
	PARAMETER 	A403 - Alkalinity (mg/L) Alkalinity E120.1 - Specific Conductance (umhos/cm)	Conductivity E150.1 - pH,Electrometric (pH units)	pH E170.1 - Temperature (deg. C)	Temperature

06 06-SW-01 06-DS-07 Dup of 06-SW-01-01 610 () 7.6 ()	06-DS-07 610 7.6	0			PARAMETER A403 - Alkalinity (mg/L) A1kalinity E120.1 - Specific Conductance (umhos/cm) Conductivity E150.1 - pH,Electrometric (pH units) pH E170.1 - Temperature (deg. C) Temperature
06-DS-07 06-DS-07 610 1113			SITE 10 LOCATION ID SAMPLE 10 06 06-MW-06 06-MW-06 () [] 610 () [] 1090 () [] 7.5	SITE 10 LOCATION 1D SAMPLE 10 06 06-MW-06 06-MW-06 1 1296 1 1296 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396	SAMPLE ID LOCATION ID SAMPLE ID O6-MW-04 O6-MW-06-01 () [] 852 () [] 610 () [] 1296 () [] 1090 () [] 8,7 () [] 10,7
06-DS-07		0 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1	SITE 10 LOCATION ID SAMPLE 10 06 06-MW-06 06-MW-06 () [] 610 () [] 1090 () [] 7.5	SITE 10 LOCATION 1D SAMPLE 10 06 06-MW-06 06-MW-06 1 1296 1 1296 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396 1 1396	SAMPLE ID LOCATION ID SAMPLE ID O6-MW-04 O6-MW-06-01 () [] 852 () [] 610 () [] 1296 () [] 1090 () [] 8,7 () [] 10,7
	06 06-SW-01 06-SW-01-01 () [] ()	SITE ID LOCATION ID SAMPLE ID 06 06 S-MW-06-01 () () () ()	0	0 0 0 0 852 0 0 1296 0 0 0 1296	06 06-MW-04-01 06-MW-04-01 () [] 852 () [] 1296 () [] 6.7
06 06-SW-01 06-SW-01-01 ()		SITE ID LOCATION ID SAMPLE ID 06 3-MW-06-01 () () ()	0	0 0 0 0 852 0 0 1296 0 0 0 1296	06 06-MW-04-01 06-MW-04-01 () [] 852 () [] 1296 () [] 6.7
06 06-SW-01 06-SW-01-01 ()			0	0 0 0 0 852 0 0 1296 0 0 0 1296	06 06-MW-04-01 06-MW-04-01 () [] 852 () [] 1296 () [] 6.7
S1TE 1D LOCATION ID SAMPLE ID 06 06-NW-06 06-NW-06 06-NW-01 06-SW-01 06-SW	SITE ID LOCATION ID SAMPLE ID 06 06-MW-06 06-MW-06 1296 () [] 1296 () () () () () () () () () () () () ()				

		0			
	07 07-MW-02 07-MW-02-01	0	0	С	0
) A-70 AM-70	740	806	7.5	2.7
				0	
	07 07-DS-09 Oup of 07-MW-01-01	С	()	С	0
	07 −N − 70 07 −DS −09 Dup	630	691	6.8	3.3
	!				
SITE ID LOCATION ID SAMPLE ID	07 07-MW-01 07-MW-01-01	С	0	0	0
	0 070	625	753	6.8	2.4
	; ! !				
	06 06-SW-02 06-SW-02-01	С	С	С	C .
	90	615 mhos/cm)	1117 1117 11ts)	6,5	16.6
	PARAMETER 	A403 - Alkalinity (mg/L) Alkalinity (mg/L) E120.1 - Specific Conductance (umbos/cm)	Conductivity E150.1 - pH,Electrometric (pH units)	рН E170.1 - Temperature (deg. C)	Temperature

Compiled: 20 Mar

PARAMETER	07- 07-DS-10 Dup	07 07-MW-02 07-DS-10 Dup of 07-MW-02-01	01		SITE ID LOCATION ID SAMPLE ID 07 07-MW-03	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	07 07-MW-04 07-MW-04-01	.0	07 07-SW-01 07-SW-01-01	
A403 - Alkalinity (mg/L)										
Alkalinity	750	С		770	С	725	С	800	0	
E120.1 - Specific Conductance (umhos/cm)	(nmhos/cm)								:	!
Conductivity	857	С		869	C	715	С	2000	0	
E150.1 - pH, Electrometric (pH units)	units)									
Hd	7.5	С		7.4	С	7	0	. 1	С	
E170.1 - Temperature (deg. C)										1
Temperature	2.7	С		2.9	С	1.7	С	21.6	С	

					SITE ID LOCATION ID SAMPLE IO						
PARAMETER 		07 07-SW-02 07-SW-02-01	! ! !	 	09 09-MW-01 09-MW-01-01	09 09-MW-01 09-DS-07 Dup of 09-MW-01-01	-01 f 09-MW-01-03	_	1 -60	09 09-MW-02 09-MW-02-01	
A403 - Alkalinity (mg/L)								t I			1 1 1 1
Alkalinity E120.1 - Specific Conductance (umhos/cm)	920 (umhos/cm)	С		572	0	566	\Box		420	0	
Conductivity E150.1 - pH,Electrometric (pH units)	1779 units)	С		830	С	830	0		1079	С	
pH E170.1 - Temperature (deg. C)	7.4	С		6.4	0	6.4	0		7.3	С	
Temperature	17.3	С		5.1	С	5.1	0		5	С	

A403 - Alkalinity (mg/L) Alkalinity Alkalinity Alkalinity E120.1 - Specific Conductance (umhos/cm) Conductivity E150.1 - pH, Electrometric (pH units) PH E170.1 - Temperature (deg. C) E170.1 - Temperature Conductivity	PARAMETER 		09 09-MM-03 09-MM-03-01		09-80-80 01 01 01 01 01 01 01 01 01 01 01 01 01	SITE ID LOCATION ID SAMPLE ID 09 09-08-08 Dup of 09-MW-03-01	01	90	09 09-MW-04 09-MW-04-01	-60	09 09-MW-05 09-MW-05-01	
536 () [3 684 () [3 680 ()	nity (mg/L)											
(m) 454 (1) (2) (3) (1) (2) (454 (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1		536	С		684	С		089	С	444	0	
454 () <t< td=""><td>fic Conductance</td><td>(nmhos/cm)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>I</td></t<>	fic Conductance	(nmhos/cm)										I
6.8 () [] 6.8 () [] 6.7 () [] 2.3 () [] 2.3 () [] 2.7 () []			С	0	454	С		859	0	449		
6.8 () [] 6.8 () [] 6.7 () [] [] 2.3 () [] 2.7 () []	ectrometric (pH	units)										1
2.3 () [] 2.3 () [] 2.7 () []			С		6.8	С		6.7	С	6.8		♬
$()$ \Box 2.3 $()$ \Box 2.7 $()$ \Box	erature (deg. C)											ŀ
		2.3	С		2.3	С		2.7	С	1.8	С	

					SITE ID LOCATION ID SAMPLE ID					
PARAMETER		09 09-MW-06 09-MW-06-01	! ! ! !	0	09 09-MW-07 09-MW-07-01	60	09 09-MW-08 09-MW-08-01) 00	09 09-MW-10 09-MW-10-01	
A403 - Alkalinity (mg/L)										
Alkalinity 452 E120.1 - Specific Conductance (umhos/cm)	452 umhos/cm)	С		632	С	972	С	656	0	
Conductivity E150.1 - pH,Electrometric (pH units)	260 nits)	О		457	0	623	С	1335	0	
рН E170.1 - Temperature (deg. C)	6.8	С		6.9	С	6.9	С	6.7	0	
Temperature	2	С		1.7	0	ო	0	2.5	0	

	10 10-MW-01 10-MW-01-02		С		C		\Box		С
	10- 10-h		069		703		6.5		4.3
	09 09-MW-14 09-MW-14-01		C		С		С		C
	-60		660		441		9.9		2.5
				,					
SITE ID LOCATION ID SAMPLE ID	09 09-MW-12 09-MW-12-01		С		С		С		
<u> </u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		904		569		6.9		3.2
							0		0
	09 09-МW-11 09-МW-11-01		C		С		С		С
	-60		928	mhos/cm)	1403	its)	7.3		1.6
	PARAMETER 	A403 - Alkalinity (mg/L)	Alkalinity	E120.1 - Specific Conductance (umhos/cm)	Conductivity	E150.1 - pH, Electrometric (pH units)	Hq	E170.1 - Temperature (deg. C)	Temperature

		1 1 1 1					
		11 11-MW-01 11-MW-01-01		0	0	0	С
		11-11-		099	655	6.1	3.4
		10 10-MW-03 10-MW-03-02		С		0	0
		1 10		290	627	7	4.1
1	SITE ID LOCATION ID SAMPLE ID	10 10-MW-02 10-DS-06 Dup of 10-MW-02-02		0	С	()	С
	/S 707	!		830	881	5.9	4.1
		10 10-MW-02 10-MW-02-02		С	С	0	0
		10		840 (umhos/cm)	881 units)	5.9	4.1
		PARAMETER	A403 - Alkalinity (mg/L)	Alkalinity 840 E120.1 - Specific Conductance (umhos/cm)	Conductivity E150.1 - pH,Electrometric (pH units)	pH E170.1 - Temperature (deg. C)	Temperature

			7	SITE ID LOCATION ID SAMPLE ID				
PARAMETER 		11 11-MW-02 11-MW-02-01	12	12 12-MW-01 12-MW-01-01	;		12 12-MW-02 12-MW-02-01	
A403 - Alkalinity (mg/L)								
Alkalinity	740	С	492			504	0	
E120.1 - Specific Conductance (umhos/cm)	(umhos/cm)							
Conductivity	1507	С	975	С		971	С	
E150.1 - pH, Electrometric (pH units)	ınits)							
Hd	6.7	0	8.9	С		6.7	С	
E170.1 - Temperature (deg. C)								
Temperature	4.7	С	2.3	C		3.9	С	

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

11.1.1.2.1.2.1.2.1.2.2.1.2.2.2.2.2.2.2.					SI LOCA SAN	SITE ID LOCATION ID SAMPLE ID					-		
tetrach volatile Organics (ug/1) (2.5) [1] ND (2.5) [1] ND (0.55) [1] ND (0.55) [1] ND (0.55) (2.6) [1] ND (0.55) [1] ND (0.55) [1] ND (0.55) [1] ND (0.55) (2.6) [1] ND (0.55) [1] ND (0.55) [1] ND (0.55) [1] ND (0.55) (2.6) [1] ND (0.5) [1] ND (0.5) [1] ND (0.5) (2.7) [1] ND (0.5) [1] ND (0.5) [1] ND (0.5) (2.7) [1] ND (0.5) [1] ND (0.5) (2.8) [1] ND (0.5) [1] ND (0.5) (2.9) [1] ND	PARAMETER	01~ 01-M	01 MW-01 W-01-01		01-P	11 1W-02 1-02-01			01 1-MW-02 up of 01-MW-02	-01	0	01 01-MW-03 1-MW-03-01	
Control Cont		(1/2/1)											
tech oreethane No (0.55) [1] N		(ag/ r/	(2.5)	[1]	R	(5.2)	Ξ	R	(2.5)	[1]	QN	(2.5)	Ξ
Control cont	1,1,1-Trichloroethane	ON	(0.55)	Ξ	2	(0.55)	Ξ	2	(0.55)	Ξ	2	(0.55)	ΞΞ
Control continue No (0.2) [1] No (0.2) [1] No (0.5)	1,1,2,2-Tetrachloroethane	QN	(0.3)	Ξ	ND	(0.3)	Ξ	Q	(0.3)	Ξ	QN N	(0.3)	Ξ
Conceptance NO (0.5) [1] NO (0.5) [1] NO (0.5) [1] NO (0.5)	1,1,2-Trichloroethane	QN	(0.2)	Ξ	ON	(0.2)	Ξ	Q.	(0.2)	Ξ	QN	(0.2)	Ξ
Conception Con	1,1-Dichloroethane	QN	(0.5)	Ξ	ND	(0.5)	Ξ	R	(0.5)	Ξ	Q.	(0.5)	Ξ
Control Cont	1,1-Dichloroethene	Q.	(0.7)	Ξ	NO	(0.7)	Ξ	Q	(0.7)	Ξ	N	(0.7)	Ξ
No. (0.25)	1,2,3-Trichloropropane	ON	(1.6)	Ξ	QN	(1.6)	Ξ	NO NO	(1.6)	Ξ	QN	(1.6)	
Continue ND (0.15) [1] ND (0.15) (1.15) (1.15) (1.15) (1.15) (1.	1,2-Dichlorobenzene	QN	(0.25)	Ξ	QN	(0.25)	Ξ	N	(0.25)	Ξ	N	(0.25)	Ξ
Conception	1,2-Dichloroethane	Q	(0.15)	[1]	ND	(0.15)	Ξ	R	(0.15)	Ξ	N	(0.15)	Ξ
No	1,2-Dichloropropane	ON.	(0.15)	[1]	ND	(0.15)	Ξ	QN	(0.15)	Ξ	QN	(0.15)	Ξ
No. 10, 25 [1] No. 10, 25	1,3-Dichlorobenzene	N	(0.32)	[1]	ND	(0.32)	Ξ	Q.	(0.32)	Ξ	QN	(0.32)	Ξ
ND (3.4) [1] ND (0.6) [1] ND (0.1) [1] ND (0.6) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.3)	1,4-Dichlorobenzene	QN	(0.25)	Ξ	ND	(0.25)	Ξ	Q	(0.25)	Ξ	QN	(0.25)	Ξ
sthylvinylether ND (0.6) [1] ND (0.1) [1] ND (0.5) [1] ND (0.7) [1] ND (0.7) [1] ND (0.7) [1] ND <td>1-Chlorohexane</td> <td>Q.</td> <td>(3.4)</td> <td>Ξ</td> <td>ND</td> <td>(3.4)</td> <td>Ξ</td> <td>Q</td> <td>(3.4)</td> <td>Ξ</td> <td>Q</td> <td>(3.4)</td> <td>Ξ</td>	1-Chlorohexane	Q.	(3.4)	Ξ	ND	(3.4)	Ξ	Q	(3.4)	Ξ	Q	(3.4)	Ξ
Comparison	2-Chloroethylvinylether	ON	(0.0)	[1]	ND	(0.6)	[1]	Q	(0.6)	Ξ	ON	(0.6)	Ξ
No	Bromobenzene	QN	(1.6)	[1]	ND	(1.6)	Ξ	R	(1.6)	Ξ	N	(1.6)	Ξ
n ND (0.5) [1] ND (0.5) [1] ND (0.5) strachloride ND (0.35) [1] ND (0.35) [1] ND (0.55) trachloride ND (0.35) [1] ND (0.35) [1] ND (0.35) zeree ND (0.37) [1] ND (0.37) [1] ND (0.35) name ND (0.77) [1] ND (0.77) [1] ND (0.75) mane ND (0.15) [1] ND (0.77) [1] ND (0.75) mane ND (0.15) [1] ND (0.15) [1] ND (0.75) mane ND (0.15) [1] ND (0.15) [1] ND (0.15) thane ND (0.25) [1] ND (0.25) [1] ND (0.15) thane ND (1.6) [1]	Bromodichloromethane	Q.	(0.1)	Ξ	ND	(0.1)	Ξ	N	(0.1)	Ξ	2	(0.1)	Ξ
name ND (0.35) [1] ND (0.75) [1] <td>Bromoform</td> <td>QN</td> <td>(0.5)</td> <td>Ξ</td> <td>ND</td> <td>(0.5)</td> <td>Ξ</td> <td>QN</td> <td>(0.5)</td> <td>Ξ</td> <td>2</td> <td>(0.5)</td> <td>Ξ</td>	Bromoform	QN	(0.5)	Ξ	ND	(0.5)	Ξ	QN	(0.5)	Ξ	2	(0.5)	Ξ
etrachloride ND (0.35) [1] ND (0.37) [1] ND (0.77) [1] ND (0.75) [1] ND (0.75) <th< td=""><td>Bromomethane</td><td>QN Q</td><td>(0.35)</td><td>[1]</td><td>ND</td><td>(0.35)</td><td>Ξ</td><td>2</td><td>(0.35)</td><td>Ξ</td><td>QN</td><td>(0.35)</td><td>Ξ</td></th<>	Bromomethane	QN Q	(0.35)	[1]	ND	(0.35)	Ξ	2	(0.35)	Ξ	QN	(0.35)	Ξ
name ND (0.3) [1] ND (0.3) [1] ND (0.3) mane ND (0.7) [1] ND (0.7) [1] ND (0.7) m ND (0.15) [1] ND (0.15) [1] ND (0.15) thane ND (0.5) [1] ND (0.5) [1] ND (0.15) sthane ND (0.2) [1] ND (0.2) [1] ND (0.5) sthane ND (0.4) [1] ND (0.2) [1] ND (0.2) sthane ND (0.4) [1] ND (0.4) [1] ND (0.4) sthane ND (0.4) [1] ND (0.4) [1] ND (0.1) sthoride ND (0.2) [1] ND (0.2) [1] ND (0.1) sthoride ND (0.1) [1] ND	Carbon tetrachloride	2	(0.35)	Ξ	QN	(0.35)	Ξ	2	(0.35)	Ξ	S	(0.35)	Ξ
The control of the co	Chlorobenzene	S	(0.3)	Ξ	QN	(0.3)	Ξ	2	(0.3)	Ξ	R	(0.3)	Ξ
thane ND (0.15) [1] ND (0.15)	Chloroethane	2	(0.7)	Ξ	Q.	(0.7)	Ξ	2	(0.7)	Ξ	9	(0.7)	Ξ
thane ND (0.5) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.1) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.25) [1] ND (0.	Chloroform	Q	(0.15)	Ξ	QN	(0.15)	Ξ	S	(0.15)	Ξ	Q.	(0.15)	Ξ
ND (0.2) [1] ND (0.2) [1] ND (0.2) sthane ND (1.6) [1] ND (1.6) [1] ND (0.2) schloride ND (0.4) [1] ND (0.4) [1] ND (0.4) proethene ND (0.1) [1] ND (0.1) [1] ND (0.1) pethene ND (0.2) [1] ND (0.2) [1] ND (0.2) pfluoromethane ND (0.55) [1] ND (0.55) [1] ND (0.55) pfluoromethane ND (0.25) [1] ND (0.25) [1] ND (0.25)	Chloromethane	2	(0.5)	Ξ	QN	(0.5)	Ξ	2	(0.5)	Ξ	N	(0.5)	Ξ
thane ND (1.6) [1] ND (0.4) [1] ND (0.4) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.1) [1] ND (0.1) [1] ND (0.2) [1] ND (0.25) [1]	Dibromochloromethane	Q	(0.2)	Ξ	N O N	(0.5)	Ξ	8	(0.2)	Ξ	2	(0.2)	Ξ
e chloride ND (0.4) [1] ND (0.4) [1] ND (0.4) proethene ND (0.1) [1] ND (0.1) [1] ND (0.1) ethene ND (0.2) [1] ND (0.2) [1] ND (0.2) pfluoromethane ND (0.55) [1] ND (0.55) [1] ND (0.55) loride ND (0.25) [1] ND (0.25) [1] ND (0.25)	Dibromomethane	S	(1.6)	Ξ	ND	(1.6)	Ξ	QN	(1.6)	Ξ	S	(1.6)	Ξ
ND (0.1) [1] ND (0.1) [1] ND (0.1) bethene ND (0.2) [1] ND (0.2) [1] ND (0.2) fluoromethane ND (0.55) [1] ND (0.55) [1] ND (0.55) loride ND (0.25) [1] ND (0.25) [1] ND (0.25)	Methylene chloride	S	(0.4)	Ξ	QN	(0.4)	Ξ	N	(0.4)	Ξ	S	(0.4)	Ξ
Oethene ND (0.2) [1] ND (0.2) [1] ND (0.2) Independent of Including Inc	Tetrachloroethene	2	(0.1)	Ξ	ND	(0.1)	Ξ	QN	(0.1)	Ξ	N	(0.1)	Ξ
ofluoromethane ND (0.55) [1] ND (0.55) [1] ND (0.55) [1] ND (0.55) [1] Oride ND (0.25) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25)	Trichloroethene	9	(0.5)	Ξ	ND	(0.5)	Ξ	2	(0.2)	Ξ	9	(0.2)	Ξ
oride ND (0.25) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25)	Trichlorofluoromethane	2	(0.55)	Ξ	ND	(0.55)	Ξ	QN	(0.55)	Ξ	R	(0.55)	Ξ
() - D. L. L. 1007	Vinyl chloride	QN	(0.25)	Ξ	Q	(0.25)	Ξ	QN	(0.25)	[1]	QN	(0.25)	[1]
						41.				ľ			

				-	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	0	01 01-MW-01 01-MW-01-01		01	01 01-MW-02 01-MW-02-01		01 01-03-07	01 01-MW-02 Dup of 01-MW-02-01	-01	01	01 01-MW-03 01-MW-03-01	
cis-1,3-Dichloropropene	QN	(0.2)	[1]	ND	(0.2)	Œ	N	(0.2)	[1]	QN	(0.2)	Ξ
trans-1,2-Dichloroethene	ON	(0.25)	[1]	QN	(0.25)	Ξ	QN	(0.25)	ΞΞ	S	(0.5)	ΞΞ
trans-1,3-Dichloropropene	ON	(0.15)	[1]	Q	(0.15)	Ξ	N	(0.15)	[1]	2 Q	(0.25) (0.15)	ΞΞ
SW8015 - Nonhalogenated Volatile Organics (ug/L	Organics (ug	_										,
Ethanol	Q	(2000)	Ξ	QN	(2000)	Ξ	ND	(2000)	[1]	QN	(2000)	
Ethyl ether	QN	(10000)	Ξ	ND	(10000)	[1]	ON	(10000)	Ξ	ND	(10000)	Ξ
Methyl ethyl ketone	Q	(3000)	[1]	QN	(3000)	Ξ	QN	(3000)		N	(3000)	ΞΞ
Methyl isobutyl ketone	QN	(2000)	Ξ	ON	(2000)	Ξ	N	(2000)	[]	NO	(2000)	ΞΞ
SW8015MEMP - Nonhalogenated Volatile Organics	ile Organics	(ng/L)							1		(2222)	5
Diesel Range Organics (2)	390	(210)	[1.06]	QN	(210)	[1.05]	ND	(200)	[1.02]	QV	(200)	Ξ
SW8020 - Aromatic Volatile Organics	ss (ng/L)					1				1	(202)	7
1,2-Dichlorobenzene	QN	(0.8)	[2]	QN	(0.4)	[1]	QN	(0.4)	Ξ	QN	(0.4)	Ξ
1,3-Dichlorobenzene	QN	(0.4)	[5]	QN	(0.2)	Ξ	ON	(0.2)	ΞΞ	QN	(0.2)	ΞΞ
1,4-Dichlorobenzene	QN	(0.8)	[5]	QN	(0.4)	[1]	ND	(0.4)	ΞΞ	QN	(0.4)	ΞΞ
Benzene	38	(0.6)	[2]	ON	(0.3)	Ξ	ND	(0.3)	Ξ	Q	(0.3)	ΞΞ
Chlorobenzene	ON	(0.4)	[5]	QN .	(0.2)	Ξ	ND	(0.2)	ΞΞ	2 2	(0.5)	ΞΞ
Ethylbenzene	ND	(0.4)	[2]	ON	(0.2)	Ξ	QN	(0.2)	ΞΞ	2	(0.5)	ΞΞ
Gasoline Range Organics (2)	QN	(200)	[5]	QN	(100)	Ξ	ND	(100)	ΞΞ	QN	(100)	ΞΞ
Toluene	QN	(0.4)	[2]	ND	(0.2)	Ξ	ON	(0.5)	Ξ	Q.	(0.2)	ΞΞ
Total xylenes	ON	(0.6)	[2]	QN	(0.3)	Ξ	ND	(0.3)	ΞΞ	2	(0.3)	ΞΞ
SW8080 - Organochlorine Pesticides and	PCBs	(ng/L)						•	1			3
4,4'-DDD	QN	(0.0039)	[0.990099]	N	(0.01) [1.	[1.030927]	QN	(0.01) [1.0	[1.020408]	QN	(0,0098) [0	[0.980392]
4,4'-DDE	QN	(0.0039)	[0.990099]	QN	(0.01) [1.	[1.030927]	ND		[1.020408]	Q		[0.980392]
4,4'-DDT	QN	(0.02)	[0.990099]	0.016 KJ	(0.021) [1.	[1.030927]	0.0004 PJB		[1.020408]	0.011 KJ		[0.980392]
Aldrin	ON] (6600.0)	[0.990099]	QN	(0.01) [1.	[1.030927]	ND		[1.020408]			[0.980392]
Chlordane	ON		[0.990099]	QN		[1.030927]	ON		[1.020408]	ON		[0.980392]
Dieldrin	0.0047 JB		[0.990099]	0.012	(0.01) [1.	[1.030927]	0.01	(0.01) [1.6	[1.020408]	0.0083 JB		[0.980392]
Endosulfan I	Q		[0.990099]	ON	(0.01) [1.	[1.030927]	QN	(0.01) [1.0	[1.020408]	0.0027 KJB		0.980392]
Endosulfan II	QN	_	[0.990099]	0.0003 KJB		[1.030927]	0.0008 KJB		[1.020408]			0.980392]
Endosulfan Sulfate	0.011 JB		[0.990099]	QN		[1,030927]	QN		[1.020408]	0.011 KJB		[0.980392]
Endrin	QN N	(0.0099)	[0.990099]	0.018 B	(0.01) [1.	[1.030927]	0.018 8		[1.020408]	QN	(0.0098) [0.9	[0.980392]

Compiled: 23 Mar

[] = Factor () = Detection Limit

Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				S 01	SITE ID LOCATION ID SAMPLE ID					
ANAMETED	0 5	01 01-MW-01		01	01 01-MW-02		01 01-MW-02	0 ;	01 01-MW-03	
rakame i en	10 1			-10	TO-70-MW	OI-D2-0/ D1		01.	01-MW-03-01 	
Endrin Aldehyde	0.0036 KJB	(0.05)	[0.990099]	0.014 JB	(0.021) [1.030927]	0.0029 JB	(0.02) [1.020408]	0.0034 JB	(0.02) [0.8	[0.980392]
Heptachlor		(0.009)	[0.990099]			0.0043 KJB	(0.01) [1.020408]	0.009 KJB	(0.0098)	[0.980392]
Heptachlor epoxide	0.0075 KJB	(0.0039)	[0.990099]	0.0039 KJB		QN	(0.01) [1.020408]	ON	(0.0098)	[0.980392]
Methoxychlor pre-1016	Q	(0.05)	[0.990099]	2 8	(0.052) [1.030927]	Q S	(0.051) [1.020408]	QN S		[0.980392]
PCB-1221	2 2	(0.2)	[0.990093]	2 2		2 5		S S	(0.098) [0.3 (0.2) [0.9	[0.980392] [0.980392]
PCB-1232	QN	(0.2)	[0.990099]	QN		QN.		<u>2</u>	_	[0.980392]
PCB-1242	QN	(0.03)	[0.990099]	ND	(0.1) [1.030927]	QN		QN		[0.980392]
PCB-1248	ND	(0.03)	[0.990099]	QN	(0.1) [1.030927]	QN	(0.1) [1.020408]	N	_	[0.980392]
PCB-1254	QN	(0.2)	[0.990099]	ND	(0.21) [1.030927]	QN	(0.2) [1.020408]	QN	(0.2) [0.8	[0.980392]
PCB-1260	ON	(0.2)	[0.990099]	QN	(0.21) [1.030927]	QN	(0.2) [1.020408]	QN	(0.2) [0.8	[0.980392]
Toxaphene	ON .	(0.5)	[0.990099]	QN	(0.52) [1.030927]	Q	(0.51) [1.020408]	Q	(0.49) [0.9	[0.980392]
alpha-BHC	0.025	(0.0030)	[0.990099]	ND	(0.01) [1.030927]	QN	(0.01) [1.020408]	QN	(0.0098)	[0.980392]
beta-BHC	QN	(0.0030)	[0.990099]	ND	(0.01) [1.030927]	0.0074 JB	(0.01) [1.020408]	QN	(0.0098)	[0.980392]
delta-BHC	QN	(0.0030)	[0.990099]	Q.	(0.01) [1.030927]	N	(0.01) [1.020408]	0.017 8	(0.0098)	[0.980392]
gamma-BHC	QN	(0.0030)	[0.990099]	Q	(0.01) [1.030927]	Q	(0.01) [1.020408]	0.01 B	(0.0098)	[0.980392]
SW8310 - Polynuclear Aromatic Hydrocarbons	rocarbons (ug/L)	/r)								
Acenaphthene	QN	(1.8)	Ξ	ON	(1.9) [1.041666]	QN	(1.9) [1.047120]	Q.	(2) [1.	[1.086956]
Acenaphthylene	QN	(2.3)	[1]	QN	(2.4) [1.041666]	QN	(2.4) [1.047120]	Q.	(2.5) [1.0	[1.086956]
Anthracene	Q	(0.66)	[1]	N Q		QN	(0.69) [1.047120]	QN	(0.72) [1.0	[1.086956]
Benzo(a)anthracene	QN	(0.013)	Ξ	Q	_	QN	(0.014) [1.047120]	ND	(0.014) [1.0	[1.086956]
Benzo(a)pyrene	Q	(0.023)	Ξ	QN	(0.024) [1.041666]	QN	(0.024) [1.047120]	QN	(0.025) [1.0	[1.086956]
Benzo(b)fluoranthene	Q	(0.018)	[1]	QN	(0.019) [1.041666]	Q	(0.019) [1.047120]	QN	(0.02) [1.0	[1.086956]
Benzo(g,h,i)perylene	QN	(0.076)	[1]	ND	(0.079) [1.041666]	QN	(0.08) [1.047120]	QN	(0.083) [1.0	[1.086956]
Benzo(k)fluoranthene	QN	(0.017)	Ξ	Q.	(0.018) [1.041666]	ON	(0.018) [1.047120]	QN	(0.018) [1.0	. 086956]
Chrysene	Q	(0.15)	[1]	Q	(0.16) [1.041666]	QN	(0.16) [1.047120]	QN	(0.16) [1.0	[1.086956]
Dibenzo(a,h)anthracene	QN	(0.03)	Ξ	0.01 JB	(0.031) [1.041666]	QN	(0.031) [1.047120]	ON	(0.033) [1.0	[1.086956]
Fluoranthene	QN	(0.21)	[1]	2	(0.22) [1.041666]	QN	(0.22) [1.047120]	QN	(0.23) [1.0	[1.086956]
Fluorene	<u>Q</u>	(0.21)	[]	Q.	_	QN	(0.22) [1.047120]	QN	(0.23) [1.0	[1.086956]
Indeno(1,2,3-cd)pyrene	QN	(0.043)	Ξ	QN		Q		ND	(0.047) [1.0	[1.086956]
Naphthalene	Q N	(1.8)	Ξ	QN	(1.9) [1.041666]	QN	(1.9) [1.047120]	QN	(2) [1.([1.086956]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

Compiled: 23 March 1995

					SITE ID OCATION ID SAMPLE ID				
PARAMETER	0 !	01 01-MW-01 01-MW-01-01	!	010	01 01-MW-02 01-MW-02-01	01-DS-07	01 01-MW-02 01-DS-07 Dup of 01-MW-02-01		01 01-MW-03 01-MW-03-01
Phenanthrene Pyrene	QN QN	(0.64)	33	ON ON	(0.67) [1.041666] (0.28) [1.041666]	ON ON	(0.67) [1.047120] (0.28) [1.047120]	ON ON	(0.7) [1.086956] (0.29) [1.086956]

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

	-			S LOC SA	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	0 01-DS-06 DI	01 01-MW-03 Dup of 01-MW-03-01	-01	01- 01-M	01 01-MW-04 01-MW-04-01	ļ	0.0	01 01-MW-05 01-MW-05-01		0	01 01-MW-06 01-MW-06-01	
SW8010 - Halogenated Volatile Organics	anics (ua/L)											
		(2.5)	Ξ	QN	(2.5)	Ξ	QN	(2.5)	Ξ	9	(2.5)	[1]
1,1,1-Trichloroethane	ON	(0.55)	Ξ	ND	(0.55)	Ξ	QN	(0.55)	Ξ	QN	(0.55)	
1,1,2,2-Tetrachloroethane	QN	(0.3)	Ξ	NO NO	(0.3)	Ξ	Q	(0.3)	Ξ	S	(0.3)	Ξ
1,1,2-Trichloroethane	ON	(0.5)	Ξ	QN	(0.5)	Ξ	Q	(0.2)	Ξ	QN	(0.2)	Ξ
1,1-Dichloroethane	QN	(0.2)	Ξ	ND	(0.5)	Ξ	Q	(0.5)	Ξ	QN	(0.5)	Ξ
1,1-Dichloroethene	Q	(0.7)	Ξ	ND	(0.7)	Π	R	(0.7)	Ξ	9	(0.7)	Ξ
1,2,3-Trichloropropane	ON	(1.6)	[1]	ND	(1.6)	Ξ	Q	(1.6)	Ξ	S	(1.6)	[1]
1,2-Dichlorobenzene	Q	(0.25)	Ξ	2	(0.25)	Ξ	Q	(0.25)	[1]	Q.	(0.25)	Ξ
1,2-Dichloroethane	QN	(0.15)	Ξ	9	(0.15)	Ξ	9	(0.15)	Ξ	0.46	(0.15)	Ξ
1,2-Dichloropropane	QN	(0.15)	Ξ	Q	(0.15)	Ξ	Q	(0.15)	Ξ	Q	(0.15)	Ξ
1,3-Dichlorobenzene	QN	(0.32)	[]	ND	(0.32)	Ξ	S	(0.32)	Ξ	QN	(0.32)	Ξ
1,4-Dichlorobenzene	QN	(0.25)	Ξ	QN	(0.25)	Ξ	ON	(0.25)	Ξ	QN	(0.25)	[1]
1-Chlorohexane	QN	(3.4)	Ξ	QN	(3.4)	Ξ	QN	(3.4)	Ξ	QN	(3.4)	[]
2-Chloroethylvinylether	ON N	(0.6)	Ξ	QN	(0.0)	Ξ	S	(0.0)	[1]	ON	(0.6)	Ξ
Bromobenzene	Q.	(1.6)	Ξ	ND	(1.6)	Ξ	S	(1.6)	[1]	QN	(1.6)	Ξ
Bromodichloromethane	Q	(0.1)	Ξ	QN	(0.1)	Ξ	Q	(0.1)	Ξ	Q	(0.1)	Ξ
Bromoform	QN :	(0.5)	Ξ	2	(0.5)	Ξ	2	(0.5)	[]	8	(0.5)	Ξ
Bromomethane	Q	(0.35)	Ξ	ND	(0.35)	Ξ	Q	(0.35)	Ξ	2	(0.35)	Ξ
Carbon tetrachloride	Q :	(0.35)	Ξ	2 :	(0.35)	Ξ	2	(0.35)	Ξ	N N	(0.35)	[1]
Chlorobenzene Chloroothano	2 5	(0.3)	ΞΞ	9 9	(0.3)	ΞΞ	2 9	(0.3)	ΞΞ	2 9	(0.3)	Ξ3
Chloroform	2	(0.15)	E E	2 S	(0.15)	ΞΞ	2 5	(0.7)	ΞΞ	2 S	(0.7)	ΞΞ
Chloromethane	QN.	(0.5)	ΞΞ	2	(0.5)	ΞΞ	2 2	(0.5)	ΞΞ	2 2	(0.5)	ΞΞ
Dibromochloromethane	QN	(0.5)	Ξ	Ş	(0.2)	Ξ	2	(0.2)	ΞΞ	2	(0.2)	ΞΞ
Dibromomethane	ND	(1.6)	Ξ	QN	(1.6)	Ξ	QN Q	(1.6)	Ξ	S	(1.6)	Ξ
Methylene chloride	QN	(0.4)	Ξ	QN Q	(0.4)	[1]	S	(0.4)	[]	Q	(0.4)	Ξ
Tetrachloroethene	QN	(0.1)	[1]	QN	(0.1)	Ξ	2	(0.1)	[1]	8	(0.1)	Ξ
Trichloroethene	QN	(0.2)	Ξ	ON	(0.5)	Ξ	S	(0.2)	Ξ	9	(0.2)	Ξ
Trichlorofluoromethane	QN	(0.55)	[1]	QN	(0.55)	Ξ	S	(0.55)	Ξ	2	(0.55)	Ξ
Vinyl chloride	Q.	(0.25)	Ξ	ND	(0.25)	[1]	QN	(0.25)	[1]	QN	(0.25)	[1]
Compiled: 23 March 1995		() = Detec	= Detection Limit	[] = Factor	= GN	Not Detected	NA = Not	Not Applicable				
			1		2	3	l	> - 250 - 1 ddv				

				_	SITE ID LOCATION ID SAMPLE ID		-					
PARAMETER	01 01-DS-06 Du	01 01-MW-03 01-DS-06 Dup of 01-MW-03-01	33-01	010	01 01-MW-04 01-MW-04-01	! !	01	01 01-MW-05 01-MW-05-01		0 01	01 01-MW-06 01-MW-06-01	
cis-1,3-Dichloropropene	ND	(0.2)	[1]	QN ON	(0.2)	Ξ	QN	(0.5)		ÛN	(6 0)	
trans-1,2-Dichloroethene	ON	(0.25)	[1]	ND	(0.25)	ΞΞ	Q	(0.25)	ΞΞ	2 2	(0.55)	ΞΞ
trans-1,3-Dichloropropene	_		[1]	ON	(0.15)	ΞΞ	Q.	(0.15)	E E	<u>8</u>	(0.15)	ΞΞ
SW8VIS - NONNALOGENATED VOLATILE Urganics	rganics (ug/L)	_										
Ethanol	Q :	(2000)	Ξ	QN	(5000)	Ξ	ON	(2000)	Ξ	QN	(2000)	[1]
tthy! ether	Q.	(10000)	[1]	ND	(10000)	[]	ND	(10000)	[1]	ON	(10000)	Ξ
Methyl ethyl ketone	Q	(3000)	Ξ	QN	(3000)	Ξ	QN	(3000)	Ξ	ND	(3000)	[1]
Methyl isobutyl ketone	QN	(2000)	[1]	QN	(2000)	[1]	QN	(2000)	Ξ	QN	(2000)	ΞΞ
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)							:		()	3
Diesel Range Organics (2)	QN	(200)	[0.985]	980	(200)	Ξ	ND	(210)	[1.04]	260	(200)	[1 02]
SW8020 - Aromatic Volatile Organics	s (ng/L)					1		•	•	1	(222)	[4.06]
1,2-Dichlorobenzene	QN	(0.4)	[1]	ND	(0.4)	Ξ	QN	(0.4)	[1]	QN	(0,4)	[1]
1,3-Dichlorobenzene	QN	(0.2)	Ξ	QN	(0.2)	Ξ	QN	(0.2)	ΞΞ	2	(0.2)	3 5
1,4-Dichlorobenzene	ND	(0.4)		ON	(0.4)	Ξ	ND	(0.4)	ΞΞ	Q	(0.4)	35
Benzene	ND	(0.3)	Ξ	QN	(0.3)	Ξ	QN	(0.3)	ΞΞ	420	(7.5)	[24]
Chlorobenzene	ON	(0.2)	Ξ	QN	(0.2)	[1]	QN	(0.5)	Ξ	e e	(0,2)	
Ethylbenzene	QN	(0.5)	[1]	QN	(0.2)	ΞΞ	QN	(0.2)	ΞΞ	2	(0.2)	ΞΞ
Gasoline Range Organics (2)	QN	(100)	[1]	QN	(100)	[1]	ON	(100)	ΞΞ	1400 E	(100)	ΞΞ
Toluene	ND	(0.2)	[]	NO	(0.2)	[1]	QN	(0.2)		0.87	(0.2)	ΞΞ
Total xylenes	QN	(0.3)	[1]	QN	(0.3)	Ξ	QN	(0.3)	Ξ	1.4	(0.3)	ΞΞ
SW8080 - Organochlorine Pesticides and PCBs	and PCBs (ug/L)	(L)							3		(21.2)	3
4,4'-DDD	QN	(0.01) [1	[1.041666]	QN.	(0.01) [1.020408]	0408]	QN	(0.01)	Ξ	CN	(10 0)	[1]
4,4'-DDE	N	(0.01) [1	[1.041666]	QN		0408]	QN	(0.01)	ΞΞ	G C	(0.01)	ΞΞ
4,4'-DDT	0.0087 KJB	(0.021) [1	[1.041666]	0.0086 KJB	(0.02) [1.020408]	0408]	0.0005 PJB	(0.05)	ΞΞ	Q.	(0:05)	ΞΞ
Aldrin	N N	(0.01) [1	[1.041666]	0.018 B	(0.01) [1.020408]	0408]	QN	(0.01)	ΞΞ	: Z	(0.01)	ΞΞ
Chlordane	Q.	(0.052) [1	[1.041666]	ND		0408]	ND	(0.05)	ΞΞ	. Z	(0.01)	ΞΞ
Dieldrin	0.0088 J	(0.01) [1	[1.041666]	0.016		0408]	0.0099 J	(0.01)	ΞΞ	0.0068 KJB	(0.01)	ΞΞ
Endosulfan I	0.0059 JB	(0.01) [1	[1.041666]	ND		3408]	0.0047 KJB	(0.01)	ΞΞ		(0.01)	ΞΞ
Endosulfan II	ON	(0.031) [1	[1.041666]	ON	(0.031) [1.020408]	0408]		(0.03)	ΞΞ	0.0084 KJB	(0.03)	ΞΞ
Endosulfan Sulfate	0.0063 KJB		[1.041666]	0.0097 JB	(0.051) [1.020408]	_	0.0071 KJB	(0.02)	[1]	0.017 JB	(0.02)	ΞΞ
Endrin	9	(0.01) [1	[1.041666]	QN	(0.01) [1.020408]	0408]	ON	(0.01)			(0.01)	[1]

Compiled: 23 Mar

[] = Factor () = Detection Limit

Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

Comparison Com				7	SITE ID -LOCATION ID SAMPLE ID						
(b. 0.21) [1.041666] 0.0083 KJB (0. 0.2) [1.020408] 0.0063 KJB (0. 0.0) [1] 0.0023 KJB (0. 0.0) [1.020408] 0.0064 KJB (0. 0.0) [1] 0.0023 KJB (0. 0.0) [1.020408] 0.0064 KJB (0. 0.0) [1] 0.005 KJB (0. 0.0) [, PARAMETER 	01 01-DS-06 Du	01 -MW-03 p of 01-MW-03-01		01)1-MW-04 MW-04-01	01-10	01 -MW-05 WW-05-01	i !	01.	01 -MW-06 4W-06-01	
(0.01) [1.041666] 0.02 8 (0.01) [1.020408] 0.0035 48 (0.01) [1] 0.005 KB (0.01) [1.041666] 0.02 8 (0.01) [1.020408] 0.0035 48 (0.01) [1] 0.005 KB (0.01) [1.041666] 0.02 [1.020408] 0.0035 48 (0.01) [1] 0.005 KB (0.01) [1.041666] 0.02 [1.020408] 0.0035 48 (0.01) [1.041666] 0.00 (0.21) [1.020408] 0.0035 48 (0.01) [1.041666] 0.00 (0.21) [1.020408] 0.0035 48 (0.01) [1.041666] 0.00 (0.21) [1.020408] 0.00 (0.22) [1.020408] 0.00 (0.22) [1.020408] 0.00 (0.22) [1.020408] 0.00 (0.21) [1.041666] 0.00 (0.01) [1.020408] 0.00 (0.01) [1.041666] 0.00 (0.01) [1.020408] 0.00 (0.01) [1.041666] 0.00 (0.01) [1.020408] 0.00 (0.01) [1.041666] 0.00 (0.01) [1.020408] 0.00 (0.01) [1.041666] 0.01 (0.01) [1.020408] 0.00 (0.01) [1.041666] 0.01 (0.01) [1.020408] 0.01 (0.01) [1.041666] 0.01 (0.01) [1.020408] 0.01 (0.01) [1.041666] 0.01 (0.01) [1.020408] 0.01 (0.01) [1.041666] 0.01 (0.01) [1.020408] 0.01 (0.01) [1.041666] 0.01 (0.01) [1.020408] 0.01 (0.01) [1.041666] 0.01 (0.01) [1.020408] 0.01 (0.01) [1.041666] 0.01 (0.01) [1.020408] 0.01 (0.01) [1.041666] 0.01 (0.01) [1.0	Endrin Aldehyde	0.0068 KJB		0.0083			(0.02)	ΞΞ	0.0023 KJB	(0.02)	ΞΞ
(0.052) [1.041666] NO (0.051) [1.020406] NO (0.10) [1.041666] NO (0.11) [1.020408] NO (0.11) [1.020408] NO (0.11) [1.041666] NO (0.11) [1.020408] NO (0.11) [1.041666] NO (0.12) [1.020408] NO (0.12) [1.041666] NO (0.12) [1.020408] NO (0.13) [1.041666] NO (0.13) [1.020408] NO (0.13) [1.041666] NO (0.23) [1.041666] NO (0.21) [1.020408] NO (0.23) [1.041666] NO (0.21) [1.020408] NO (0.23) [1.041666] NO (0.23) [1.041666] NO (0.21) [1.020408] NO (0.23) [1.041666] NO (0.04)	neptachlor epoxide			0.012			(0.01)	ΞΞ	0.005 KJB	(0.01)	ΞΞ
(0.21) [1.041666] NO (0.2) [1.020408] NO (0.2) [1] NO (0.2) (0.2) (0.21) [1.041666] NO (0.2) [1.020408] NO (0.2) [1] NO (0.2) (0.2) (0.21) [1.041666] NO (0.2) [1.020408] NO (0.2) [1] NO (0.2) (0.2) (0.2) [1.041666] NO (0.2) [1.020408] NO (0.2) [1] NO (0.2) (0.2) (0.2) [1.041666] NO (0.2) [1.020408] NO (0.2) [1] NO (0.2) (0.2) (0.2) [1.041666] NO (0.2) [1.020408] NO (0.2) [1] NO (0.2) (0.2) (0.2) [1.041666] NO (0.2) [1.020408] NO (0.2) [1] NO (0.2) (0.2) (0.2) (0.2) (0.2) [1.041666] NO (0.2) [1.020408] NO (0.2) [1] NO (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) [1.041666] NO (0.2) [1.020408] NO (0.2) [1] NO (0.2)	Methoxychlor pre-1016	ON ON				S 8	(0.05)	ΞΞ	2 5	(0.05)	ΞΞ
(0.11) [1.041666] NO (0.12) [1.020408] NO (0.12) [1] NO (0.13) (0.1466) ND (0.14) (0.14466) ND (0.14) (0.14466) ND (0.1	PCB-1221	g Q				2 2	(0.5)	ΞΞ	2 S	(0.1)	ΞΞ
(0.1) [1.041666] ND (0.1) [1.020408] ND (0.1) [1] ND (0.1) [0.1) (0.1) [1.041666] ND (0.1) [1.020408] ND (0.1) [1] ND (0.2) [0.1) (0.2) [0.20408] ND (0.2) [1] ND (0.2) [0.2) (0.2) [1.020408] ND (0.2) [1] ND (0.2) [0.2) (0.2) [1.020408] ND (0.2) [1] ND (0.2) [1.020408] ND (0.2) [1.041666] ND (0.22) [1.041666] N	PCB-1232	QN				ON	(0.2)	Ξ	QN	(0.2)	Ξ
(0.1) [1.041665] ND (0.1) [1.020408] ND (0.1) [1] NO (0.2) [1.020408] ND (0.2) [1] ND (0.2) [1.020408] ND (0.2) [1.041666] N	PCB-1242	QN				ON	(0.1)	Ξ	ON ON	(0.1)	Ξ
(0.21) [1.041666] ND (0.2) [1.020408] ND (0.2) [1] ND (0.2) (0.2) (0.21) [1.041666] ND (0.21) [1.020408] ND (0.21) [1] ND (0.2) (0.22) (0.23) [1] ND (0.2) (0.22) (0.21) [1.041666] ND (0.01) [1.020408] ND (0.01) [1] ND (0.01) [1] ND (0.01) [1.020408] ND (0.01) [1] ND (0.01) [1.041666] ND (0.02) [1.04166	PCB-1248	QN	—	_		ON	(0.1)	Ξ	ON	(0.1)	Ξ
(0.21) [1.041666] ND (0.2) [1.020408] ND (0.2) [1] ND (0.2) (0.2) (0.25) [1.041666] ND (0.51) [1.020408] ND (0.55) [1] ND (0.5) (0.5) (0.5) [1.041666] ND (0.51) [1.020408] ND (0.51) [1] ND (0.51) [1.020408] ND (1.9) [1] ND (0.51) [1.020408] ND (1.9) [1.041666] ND (1.9) [1.041666] ND (1.9) [1.041666] ND (1.9) [1.041666] ND (0.51) [1.041666] ND (0.51) [1.041666] ND (0.51) [1.041666] ND (0.51) [1.041666] ND (0.52)	PCB-1254	ON				QN	(0.2)	Ξ	ON	(0.2)	Ξ
(0.07) [1.041666] ND (0.51) [1.020408] ND (0.55) [1] ND (0.55) [1.041666] O.031 (0.01) [1.020408] ND (0.01) [1.020408] O.011 (0.01) [1.041666] O.031 (0.01) [1.020408] O.011 (0.01) [1] ND (0.01) [1.020408] O.011 (0.01) [1] ND (0.01) [1.020408] O.014 B (0.01) [1] ND (0.01) [1.041666] O.015 [1] ND (0.01) [1.041666] ND (0.023) [1.041666] ND (0.023) [1.041666] ND (0.024) [1.041666] ND (0.024) [1.041666] ND (0.024) [1.041666] ND (0.024) [1.041666] ND (0.023) [1.041666] ND (0.024) [1.041666] ND (0.024) [1.041666] ND (0.024) [1.041666] ND (0.025) [1.041666] ND	PCB-1260	QN				Q.	(0.2)	Ξ	QN	(0.5)	Ξ
(0.01) [1.041666] 0.031 (0.01) [1.020408] ND (0.01) [1] 0.014 B (0.01) (0.01) [1.041666] 0.033 (0.01) [1.020408] 0.011 (0.01) [1] ND (0.01) [1.020408] 0.011 (0.01) [1] ND (0.01) [1.020408] 0.014 B (0.01) [1] ND (0.01) [1.041666] ND (0.014) [1.041666] ND (0.015) [1.041666] ND (0.021) [1.041666] ND (0.022) [1.041666] ND (0.023) [1.041666] ND (0.022) [1.041666] ND (0.023) [1.041666] ND (0.023) [1.041666] ND (0.023) [1.041666] ND (0.022) [1.0	Toxaphene	Q				Q	(0.5)	Ξ	ON	(0.5)	Ξ
(0.01) [1.041666] (0.01) [1.020408] (0.01) (0.01) (1.041666] (0.01) [1.020408] (0.01) (0.01) (1.041666] (0.01) [1.020408] (0.01) (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (1.041666] (0.01) (0.013	alpha-BHC	QN		.0		QN	(0.01)	Ξ		(0.01)	Ξ
B (0.01) [1.041666] ND (0.01) [1.020408] 0.017 B (0.01) [1] ND (0.01) (0.01) (0.01) [1.041666] ND (0.01) [1.020408] 0.014 B (0.01) [1] ND (0.01) (0.01) [1.041666] ND (1.9) [1.041666] ND (2.4) [1.041666] ND (2.4) [1.041666] ND (2.4) [1.041666] ND (2.6) [1.041666] ND (2.6) [1.041666] ND (2.03) [1.041666] ND (2.03) [1.041666] ND (2.03) [1.041666] ND (2.023) [1.041666] ND (2.023) [1.041666] ND (2.024) [1.041666] ND (2.024) [1.041666] ND (2.024) [1.041666] ND (2.018) [1.041666] ND (2.043) [1.041666] ND (2.044) [1.041666] ND (2.044) [1.041666] ND (2.044) [1.041666] ND (2.044) [1.041666] ND (2.	beta-BHC	Q		0.		0.011	(0.01)	[1]	QN	(0.01)	Ξ
(0.01) [1.041666] ND (0.01) [1.024068] 0.014 B (0.01) [1] ND (1.91) [1.024068] ND (1.91) [1.041666] ND (1.8) (2.3) (1.3) [1] ND (2.4) [1.041666] ND (2.3) (0.66) [1] ND (2.4) [1.041666] ND (2.4) [1.041666] ND (2.3) (0.013) [1] ND (0.69) [1.041666] ND (0.69) [1.041666] ND (0.603) (0.013) [1] ND (0.044) [1.041666] ND (0.014) [0.0424) [0.04466] ND (0.044) (0.01466] ND (0.044666] ND (0.044666] ND (0.044666] ND (0.044666] ND (0.044666] ND (0.044666] ND (0.0446666] ND (0.0446666] ND (0.0446666] ND (0.0446666] ND (0.0446666] ND (0.0446666] ND (0.04466666] ND (0.0446666] ND <t< td=""><td>delta-BHC</td><td></td><td></td><td></td><td></td><td></td><td>(0.01)</td><td>Ξ</td><td>QN</td><td>(0.01)</td><td>Ξ</td></t<>	delta-BHC						(0.01)	Ξ	QN	(0.01)	Ξ
(ug/L) (1.8) [1] ND (1.9) [1.041666] ND (1.9) [1.041666] ND (2.4) [1.041666] ND (2.3) (2.3) [1] ND (0.69) [1.041666] ND (0.60) [1.041666] ND (0.013) (0.013) [1] ND (0.014) [1.041666] ND (0.013) (0.013) (0.023) [1] ND (0.014) [1.041666] ND (0.013) (0.013) (0.023) [1] ND (0.024) [1.041666] ND (0.018) (0.018) (0.019) [1.041666] ND (0.018) (0.018) [1] ND (0.018) [1.041666] ND (0.018)	gamma-BHC		(0.01)				(0.01)	Ξ	ND	(0.01)	Ξ
ne ND (1.8) [1] ND (1.9) [1.041666] ND (1.9) [1.041666] ND (2.3) lene ND (2.3) [1] ND (2.4) [1.041666] ND (2.4) [1.041666] ND (2.3) thracene ND (0.013) [1] ND (0.014) [1.041666] ND (0.023) [1.041666] ND (0.014) [1.041666] ND (0.013) (0.013) (0.013) [1.041666] ND (0.014)	SW8310 - Polynuclear Aromatic Hyd		۲)								
thracene ND (2.3) [1] ND (2.4) [1.041666] ND (2.4) [1.041666] ND (0.69) (2.3) thracene ND (0.66) [1] ND (0.014) [1.041666] ND (0.014) [1.041666] ND (0.013) thracene ND (0.013) [1] ND (0.014) [1.041666] ND (0.014) [1.041666] ND (0.014) [1.041666] ND (0.013) trene ND (0.023) [1] ND (0.024) [1.041666] ND (0.024) [1.041666] ND (0.024) [1.041666] ND (0.023) [1.041666] ND (0.019) [1.041666] ND (0.021) [1.041666] ND (0.043) [1.041666] ND (0.045) [1.041666] ND (0.04	Acenaphthene	QN				ND		141666]	ND	(1.8)	Ξ
thracene ND (0.66) [1] ND (0.014) [1.041666] ND (0.014) [1.041666] ND (0.013) (0.013) (0.013) (0.014) [1.041666] ND (0.014) [1.041666] ND (0.014) [1.041666] ND (0.013) (0.013) (0.013) (0.013) (0.014) [1.041666] ND (0.014	Acenaphthylene	QN				Q		141666]	QN	(2.3)	Ξ
ND (0.013) [1] ND (0.014) [1.041666] ND (0.024) [1.041666] ND (0.024) [1.041666] ND (0.023) (0.023) ND (0.023) [1] ND (0.019) [1.041666] ND (0.024) [1.041666] ND (0.018) ND (0.076) [1] ND (0.019) [1.041666] ND (0.018) [1.041666] ND (0.018) ND (0.017) [1] ND (0.018) [1.041666] ND (0.021) [1.041666] ND (0.021) [1.041666] ND (0.021) [1.041666] ND (0.021) [1.041666] ND	Anthracene	ND				Q	_	141666]	QN	(0.66)	Ξ
ND (0.023) [1] ND (0.024) [1.041666] ND (0.024) [1.041666] ND (0.023) ND (0.018) [1.041666] ND (0.019) [1.041666] ND (0.018) ND (0.076) [1.041666] ND (0.079) [1.041666] ND (0.076) ND (0.018) [1.041666] ND (0.018) [1.041666] ND (0.017) ND (0.015) [1.1 ND (0.016) [1.041666] ND (0.16) [1.041666] ND (0.15) ND (0.021) [1.1 ND (0.021) [1.041666] ND (0.16) [1.041666] ND (0.15) ND (0.21) [1.1 ND (0.22) [1.041666] ND (0.042) [1.041666] ND (0.042) [1.041666]	Benzo(a)anthracene	QN				QN		141666]	ND	(0.013)	Ξ
ND (0.018) [1] ND (0.019) [1.041665] ND (0.019) [1.041665] ND (0.018) ND (0.076) [1.041665] ND (0.079) [1.041665] ND (0.076) ND (0.018) [1.041665] ND (0.018) [1.041665] ND (0.017) ND (0.015) [1.041665] ND (0.016) [1.041665] ND (0.015) ND (0.021) [1] ND (0.031) [1.041665] ND (0.021) (0.031) ND (0.21) [1] ND (0.22) [1.041666] ND (0.22) [1.041666] ND (0.22) [1.041666] ND (0.22) [1.041666] ND (0.045) [1.041666] ND (0.04	Benzo(a)pyrene	QN				QN		141666]	QN	(0.023)	Ξ
ND (0.076) [1] ND (0.079) [1.041666] ND (0.079) [1.041666] ND (0.017) ND (0.017) [1] ND (0.018) [1.041665] ND (0.16) [1.041665] ND (0.15) ND (0.03) [1] ND (0.031) [1.041665] ND (0.15) ND (0.15) ND (0.21) [1] ND (0.22) [1.041665] ND (0.22) [1.041665] ND (0.21) ND (0.21) [1] ND (0.22) [1.041666] ND (0.22) [1.041666] ND (0.21) ND (0.21) [1] ND (0.22) [1.041666] ND (0.22) [1.041666] ND (0.045) [1.041666] ND (0.045) [1.041666] ND (0.045) [1.041666] ND (0.045) [1.041666] ND (1.9) [1.041666] ND (1.9) [1.041666] ND (1.9) <t< td=""><td>Benzo(b)fluoranthene</td><td>QN</td><td></td><td></td><td></td><td>ON.</td><td></td><td>141666]</td><td>QN</td><td>(0.018)</td><td>Ξ</td></t<>	Benzo(b)fluoranthene	QN				ON.		141666]	QN	(0.018)	Ξ
ND (0.017) [1] ND (0.18) [1.041665] ND (0.16) [1.041665] ND (0.15) ND (0.15) [1] ND (0.16) [1.041665] ND (0.15) ND (0.15) ND (0.03) [1] ND (0.031) [1.041665] ND (0.21) ND (0.21) ND (0.21) [1] ND (0.22) [1.041665] ND (0.22) [1.041665] ND (0.21) ND (0.043) [1] ND (0.045) [1.041665] ND (0.045) [1.041665] ND (0.043) ND (1.8) [1] ND (1.9) [1.041665] ND	Benzo(g,h,i)perylene	ON				ND		141666]	ND	(0.076)	Ξ
ND (0.15) [1] ND (0.16) [1.041666] ND (0.16) [1.041666] ND (0.15) ND (0.031) [1] ND (0.031) [1.041666] ND (0.031) [1.041666] ND (0.021) [1.041666] ND (0.021) (0.031) (0.031) [1.041666] ND (0.121) (0.021) (0.021) (0.021) (0.021) ND (0.021) (0.021) ND (0.021) (0.021) ND (0.	Benzo(k)fluoranthene	ON				NO	_	141666]	ON	(0.017)	[1]
ND (0.03) [1] ND (0.031) [1.041666] ND (0.031) [1.041666] ND (0.03) ND (0.21) [1] ND (0.22) [1.04166] ND (0.22) [1.041666] ND (0.21) ND (0.043) [1] ND (0.045) [1.04166] ND (0.045) [1.04166] ND (0.043) ND (1.8) [1] ND (1.9) [1.04166] ND (1.9) [1.04166] ND (1.9) [1.04166] ND (1.9) [1.04166]	Chrysene	ON				QN		141666]	QN	(0.15)	Ξ
nene ND (0.21) [1] ND (0.22) [1.041666] ND (0.22) [1.041666] ND (0.21) ND (0.21) ND (0.21) ND (0.22) [1.041666] ND (0.22) [1.041666] ND (0.22) [1.041666] ND (0.23) ND (0.043) ND (0.045) [1.041666] ND (0.045) [1.041666] ND (0.045) [1.041666] ND (1.9)	Dibenzo(a,h)anthracene	QN				QN		141666]	QN	(0.03)	Ξ
ND (0.21) [1] ND (0.22) [1.041666] ND (0.22) [1.041666] ND (0.21) (0.21) (0.21) (0.23) (0.243) (0.243) (0.245) [1.041666] ND (0.045) [1.041666] ND (0.043) (0.043) (0.043) (0.245) (0.	Fluoranthene	ON				N		141666]	ON	(0.21)	[1]
ND (0.043) [1] ND (0.045) [1.041666] ND (0.045) [1.041666] ND (0.043) ND (1.8) .[1] ND (1.9) [1.041666] ND (1.9) [1.041666] ND (1.9)	Fluorene	ON				QN		141666]	QN	(0.21)	Ξ
ND (1.8) [1] ND (1.9) [1.041666] ND (1.9) [1.041666] ND (1.8)	Indeno(1,2,3-cd)pyrene	ON				QN	_	141666]	ND	(0.043)	Ξ
	Naphthalene	Q.	•			N		141666]	ND	(1.8)	Ξ

ND = Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

Compiled: 23 March 1995

		[1]
	01 01-MW-06 01-MW-06-01	(0.64)
	1 1 1 1 1 1 1	QN QN
	01 01-MW-05 01-MW-05-01	(0.67) [1.041666] (0.28) [1.041666]
		N ON
SITE ID LOCATION ID SAMPLE ID	01 01-MW-04 01-MW-04-01	(0.67) [1.041666] (0.28) [1.041666]
		ON ON
		ΞΞ
	01 01-MW-03 01-DS-06 Dup of 01-MW-03-01	(0.64) (0.27)
	0 . 01-05-06 D.	0.083 J ND
	PARAMETER 	Phenanthrene Pyrene

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

01-SW-02 01-SW-02 01-SW-02-01 (0.5) [1] (0.5) [1] (0.5) [1] (0.5) [1] (0.7) [1] (0.15) [1] (0.15) [1] (0.15) [1] (0.15) [1] (0.16) [1] (0.10) [1] (0.11) [1] (0.12) [1] (0.13) [1] (0.14) [1] (0.15) [1] (0.16) [1] (0.17) [1] (0.18) [1] (0.19) [1]						
- Halogenated Volatile Organics (ug/L) 2-Tetrachloroethane No (0.55) [1] No (0.55) [1] Trichloroethane No (0.25) [1] No (0.55) [1] Trichloroethane No (0.2) [1] No (0.2) [1] Trichloroethane No (0.2) [1] No (0.2) [1] Chloroethane No (0.7) [1] No (0.7) [1] Trichloroephane No (0.55) [1] No (0.7) [1] Chloroephane No (0.25) [1] No (0.25) [1] Chloromethane No (0.25) [1] No (0.25) [1] Chloromethane No (0.25) [1] No (0.25) [1] Chloromethane No (0.25) [1] No (0.25) [1] Chan No (0.25) [1]	01-SW-02 01-SW-02-01		02 02-6W-01 02-6W-01-01		02 02-GW-02 02-GW-02-01	
Trichloroethane ND (0.55) [1] ND (2.5) [1] ND (2.5) [1] ND (0.55) [1] ND					t	
thane ND (0.55) [1] ND (0.55) [1] thane ND (0.2) [1] ND (0.2) [1] thane ND (0.2) [1] ND (0.25) [1] ND (0.25		ON C	(5.5)	(1) ND	(2.5)	[1]
thane ND (0.3) [1] ND (0.3) [1] ND (0.2) [1] ND (0.2) [1] ND (0.7) [1] ND (0.5) [1] ND (0.15) [1] ND (0.25) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.20) [1] ND (0.25) [1] ND (0.21) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25) [1] ND (0.21) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25) [1]			(0.55)		_	ΞΞ
e ND (0.2) [1] ND (0.2) [1] ND (0.7) [1] ND (0.7) [1] ND (0.7) [1] ND (0.7) [1] ND (0.25) [1] ND (0.25) [1] ND (0.15) [1] ND (0.25) [1] ND (0.15) [1] ND (0.15) [1] ND (0.25) [1] ND (0.15) [1] ND (0.25) [1] ND (0.15) [1] ND (0.25) [1] ND (0.25) [1] ND (0.1) [1] ND (0.2) [1] ND (0.25) [1] ND (0.25) [1]			(0.3)			Ī
ND (0.5) [1] ND (0.5) [1] ND (0.7) [1] ND (0.7) [1] ND (0.25) [1] ND (0.25) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.25) [1] ND (0.15) [1] ND (0.25) [1] ND (0.15) [1] ND (0.25) [1] ND (0.25) [1] ND (0.35) [1] ND (0.35) [1] ND (0.45) [1] ND (0.25) [1] ND (0.45) [1] ND (0.25) [1] ND (0.40) [1] ND (0.25) [1] ND (0.55) [1] ND (0.25) [1]			(0.2)	[1] ND		Ξ
ND (0.7)			(0.5)			Ξ
No			(0.7)		(0.7)	Ξ
ND (0.25) [1] ND (0.25) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.25) [1] ND (0.26) [1] ND (0.25) [1] ND (0.27) [1] ND (0.27) [1] ND (0.27) [1] ND (0.27) [1] ND (0.25) [1] ND (0.27) [1] ND (0.25) [1] ND (0.27) [1]			(1.6)			Ξ
ND (0.15) [1] ND (0.15) [1] ND (0.32) [1] ND (0.15) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25) [1] ND (0.26) [1] ND (0.25) [1] ND (0.1) [1] ND (0.26) [1] ND (0.1) [1] ND (0.1) [1] ND (0.35) [1] ND (0.36) [1] ND (0.35) [1] ND (0.36) [1] ND (0.36) [1] ND (0.36) [1] ND (0.36) [1] ND (0.4) [1] ND (0.5) [1] ND (0.5) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.5) [1] ND (0.4) [1] ND (0.5) [1] ND (0.4) [1] ND (0.5) [1] ND (0.5) [1] ND (0.55) [1] ND (0.25) [1] ND (0.55) [1] ND (0.25) [1]			(0.25)		(0.25)	Ξ
ND (0.15) [1] ND (0.15) [1] ND (0.32) [1] ND (0.32) [1] ND (0.25) [1] ND (0.25) [1] ND (0.6) [1] ND (0.25) [1] ND (0.6) [1] ND (0.6) [1] ND (0.1) [1] ND (0.1) [1] ND (0.35) [1] ND (0.7) [1] ND (0.35) [1] ND (0.7) [1] ND (0.7) [1] ND (0.15) [1] ND (0.2) [1] ND (0.15) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.5) [1] ND (0.4) [1] ND (0.5) [1] ND (0.5) [1] ND (0.5) [1] ND (0.4) [1] ND (0.5) [1]			(0.15)			Ξ
ND (0.25) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25) [1] ND (0.6) [1] ND (0.6) [1] ND (0.1) [1] ND (0.6) [1] ND (0.1) [1] ND (0.1) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.37) [1] ND (0.35) [1] ND (0.7) [1] ND (0.35) [1] ND (0.7) [1] ND (0.7) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.25) [1] ND (0.2) [1] ND (0.25) [1] ND (0.25) [1] ND (0.25) [1]			(0.15)			Ξ
ND (0.25) [1] ND (0.25) [1] ND (3.4) [1] ND (3.4) [1] ND (0.6) [1] ND (0.6) [1] ND (0.1) [1] ND (0.1) [1] ND (0.35) [1] ND (0.35) [1] ND (0.15) [1] ND (0.35) [1] ND (0.15) [1] ND (0.2) [1] ND (0.15) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.2) [1] ND (0.5) [1] ND (0.2) [1] ND (0.5) [1] ND (0.2) [1] ND (0.1) [1] ND (0.2) [1] ND (0.25) [1] ND (0.25) [1]			(0.32)		(0.32)	Ξ
her ND (3.4) [1] ND (3.4) [1] her ND (0.6) [1] ND (0.6) [1] ND (0.1) [1] ND (0.1) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.3) [1] ND (0.35) [1] ND (0.7) [1] ND (0.3) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.5) [1] ND (0.4) [1] ND (0.5) [1] ND (0.5) [1]			(0.25)			Ξ
her ND (0.6) [1] ND (0.6) [1] ND (1.6) [1] ND (1.6) [1] ND (0.1) [1] ND (0.1) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.7) [1] ND (0.7) [1] ND (0.7) [1] ND (0.7) [1] ND (0.5) [1] ND (0.5) [1] ND (0.5) [1] ND (0.5) [1] ND (0.6) [1] ND (0.5) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1]			(3.4)			Ξ
ND (1.6) [1] ND (1.6) [1] ND (0.1) [1] ND (0.1) [1] ND (0.35) [1] ND (0.5) [1] ND (0.35) [1] ND (0.35) [1] ND (0.3) [1] ND (0.35) [1] ND (0.7) [1] ND (0.7) [1] ND (0.5) [1] ND (0.15) [1] ND (0.5) [1] ND (0.5) [1] ND (0.6) [1] ND (0.5) [1] ND (0.7) [1] ND (0.5) [1] ND (0.10) [1] ND (1.6) [1] ND (0.10) [1] ND (1.6) [1] ND (0.10) [1] ND (0.1) [1] ND (0.10) [1] ND (0.1) [1] ND (0.10) [1] ND (0.1) [1] ND (0.10) [1] ND (0.10 [1] ND (0.10) [1] ND (0.10 [1] ND (0.10) [1] ND (1.65) [1]			(0.6)			Ξ
ND (0.1) [1] ND (0.1) [1] ND (0.5) [1] ND (0.5) [1] ND (0.35) [1] ND (0.35) [1] ND (0.3) [1] ND (0.3) [1] ND (0.7) [1] ND (0.7) [1] ND (0.5) [1] ND (0.15) [1] ND (0.5) [1] ND (0.5) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.2) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.5) [1] ND (0.5) [1] ND (0.5) [1] ND (0.5) [1]			(1.6)			Ξ
ND (0.5) [1] ND (0.5) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.3) [1] ND (0.3) [1] ND (0.15) [1] ND (0.15) [1] ND (0.5) [1] ND (0.5) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.2) [1] ND (0.1) [1] ND (0.2) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1]			(0.1)			Ξ
ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] ND (0.3) [1] ND (0.3) [1] ND (0.7) [1] ND (0.7) [1] ND (0.5) [1] ND (0.5) [1] ND (0.2) [1] ND (0.5) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.4) [1] ND (0.1) [1] ND (0.2) [1] ND (0.1) [1] ND (0.2) [1] ND (0.25) [1]			(0.5)			Ξ
ND (0.35) [1] ND (0.35) [1] ND (0.3) [1] ND (0.3) [1] ND (0.7) [1] ND (0.7) [1] ND (0.15) [1] ND (0.15) [1] ND (0.5) [1] ND (0.5) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.4) [1] ND (0.1) [1] ND (0.1) [1] ND (0.2) [1] ND (0.25) [1] ND (0.25) [1]			(0.35)		(0.35)	Ξ
ND (0.3) [1] ND (0.3) [1] ND (0.7) [1] ND (0.7) [1] ND (0.15) [1] ND (0.15) [1] ND (0.5) [1] ND (0.5) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.4) [1] ND (0.1) [1] ND (0.2) [1] ND (0.55) [1]			(0.35)			Ξ
ND (0.7) [1] ND (0.7) [1] ND (0.15) [1] NO (0.15) [1] ND (0.5) [1] ND (0.5) [1] ND (0.2) [1] ND (0.2) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.5) [1] ND (0.5) [1] ND (0.55) [1]			(0.3)			Ξ
ND (0.15) [1] ND (0.15) [1] ND (0.5) [1] ND (0.5) [1] ND (0.2) [1] ND (0.2) [1] ND (1.6) [1] ND (1.6) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.55) [1]			(0.7)			Ξ
ND (0.5) [1] ND (0.5) [1] ND (0.2) [1] ND (0.2) [1] ND (1.6) [1] ND (1.6) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.5) [1] ND (0.55) [1]			(0.15)			Ξ
ND (0.2) [1] ND (0.2) [1] ND (1.6) [1] ND (1.6) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] ND (0.55) [1] ND (0.55) [1]			(0.5)			Ξ
ND (1.6) [1] ND (1.6) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.1) [1] ND (0.2) [1] ND (0.5) [1] ND (0.55) [1]			(0.2)			Ξ
ND (0.4) [1] ND (0.4) [1] ND (0.1) [1] ND (0.1) [1] ND (0.2) [1] ND (0.2) [1] hane ND (0.55) [1]			(1.6)			Ξ
ne ND (0.1) [1] ND (0.1) [1] ND [1] [1] ND (0.2) [1] ND (0.2) [1] ND (0.5) [1] ND (0.55) [1]			(0.4)		(0.4)	Ξ
ND (0.2) [1] ND (0.2) [1] ND (1.5) [1] ND (0.55) [1]			(0.1)		(0.1)	Ξ
ND (0.55) [1] ND (0.55) [1]	_		(0.2)		(0.2)	Ξ
[r] (cc:c) au [r] (cc:c) au			(0.55)	[1] ND	(0.55)	Ξ
[1]			(0.25)		(0.25)	Ξ

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

Compiled: 23 March 1995

		 	Ξ	ΞΞ		[]	ΞΞ	ΞΞ	ΞΞ	ר ני	Ξ	[1]	Ξ		ΞΞ		[]	ΞΞ	ΞΞ	[]		[*]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]
	02 02-6W-02	02-GW-02-01	(0.2)	(0.25)	(0.15)	(2000)	(10000)	(3000)	(2000)	(1)	(200)	(202)	(0.4)	(0.5)	(0.4)	(0.3)	(0.2)	(2:5)	(100)	(0.2)	(0.3)		(0.01) [-					(0.01) [0
	C	02	Q	QN	ON	CZ	2 2	2 8	2		CN	2	QN	QN	QN	Q	Q.	CN	Q	QN	Q	!	Q	QN	0.0062 KJB		ND	0.009 KJ	ON	QN	0.017 KJB	NO
] 	Ξ	Ξ	[1]	[1]	ΞΞ	ΞΞ	Ξ	1	[0.971]		[]	ΞΞ	[1]] [ΞΞ	Ξ		j	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]	[0.995024]
	02 02-GW-01	02-GW-01-01	(0.2)	(0.25)	(0.15)	(2000)	(10000)	(3000)	(2000)	•	(190)	(2)	(0.4)	(0.2)	(0.4)	(0.3)	(0.2)	(0.2)	(100)	(0.5)	(0.3)		(0.01) [0			_	(0.02)	(0.01) [0	(0.01) [0	(0.03) [0		(0.01) [0
	õ	-20	ON	QN	QN	QN	QN	ND	ON		QN		ND	ON	QN	ND	ND	QN	ON	ON	QN		N O	ND	ND	QN	ND	0.0079 KJB	QN	0.0056 KJB	0.011 KJB	QN
			[1]	[1]	[1]	Ξ	Ξ	[]	Ξ		[0.952]	1	Ξ	Ξ	[1]	[1]		[1]	[1]	[1]	[1]		[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]
SITE ID LOCATION ID SAMPLE ID	01 01-SW-02	01-SW-02-01	(0.2)	(0.25)	(0.15)	(5000)	(10000)	(3000)	(2000)		(190)	,	(0.4)	(0.2)	(0.4)	(0.3)	(0.2)	(0.2)	(100)	(0.2)	(0.3)		(0.0095)	(0.0095)	0.019)	(0.0095)	(0.048) [(0.0095)			(0.0095) [0
	0	01	ON	ON	QN	QN	QN	QN	QN		1600		ND	ON	ND	QN	ON	ON	ND	8.6	ND		0.0021 PJB	0.015	QN	0.0038 PJB	ON	0.0071 JB	0.0022 KJB		0.044 KJ	0.0085 KJB
		 	[1]	[1]	[1]	Ξ	[1]	Ξ	[1]		[0.952]		[1]	[1]	[1]	[1]	[1]	[1]	Ξ	[1]	[1]		[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]	[0.952380]
	01 01-SW-01	01-SW-01-01	(0.2)	(0.25)	(0.15)	(2000)	(10000)	(3000)	(2000)	(ng/L)	(190)		(0.4)	(0.2)	(0.4)	(0.3)	(0.2)	(0.2)	(100)	(0.2)	(0.3)	/r)	(0.0035)	(0.005)	(0.019)	(0.0095)			_			(0.0095) [(
	0	01.	ON	QN	ND qanics (ua/L)	ON ON	ND	ON	QN		1200	(ng/L)	ND	QN	QN	QN	QN	QN	QN	QN	QN	and PCBs (ug/L)	0.0019 PJB	0.0006 PJB	0.0006 PJB	ON		0.0068 JB	QN	0.015 JB	0.028 KJB	O.
		PARAMETER 	cis-1,3-Dichloropropene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene ND SW8015 - Nonhalogenated Volatile Organics	Ethanol	Ethyl ether	Methyl ethyl ketone	Methyl isobutyl ketone	SW8015MEMP - Nonhalogenated Volatile Organics	Diesel Range Organics (2)	SW8020 - Aromatic Volatile Organics	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Benzene	Chlorobenzene	Ethylbenzene	Gasoline Range Organics (2)	Toluene	Total xylenes	SW8080 - Organochlorine Pesticides and PCBs		4,4'-DDE	4,4'-DDT	Aldrin	a)		Endosulfan I	Endosulfan II	Endosultan Sultate	בותניונו

() = Detection Limit [] = Factor

Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID

			•	SAMPLE ID							
	0	01 01-SW-01	Ċ	01 01-SW-102		- 00	02 02-6W-01			02	
PARAMETER	01.	01-SW-01-01	01.	01-SW-02-01	1	9-20	02-GW-01-01	1 1 1 1 1	02	02-GW-02-01	
والريامان الم	Ş	[405070 0] (010 0)	Š	(676	2000			, ,			,
Filal III At deflyde	2		S	(610.0)	[0.852380]	0.0049 KJB	(0.02) [0.3	[0.995024]	2	(0.05)	[0.995024]
Heptachlor	0.0021 KJB	_	0.0034 JB	(0.005)	[0.952380]	Q	(0.01) [0.3	[0.995024]	QN	(0.01)	[0.995024]
Heptachlor epoxide	0.056 B	(0.0095) [0.952380]	0.012 PB	(0.0095)	[0.952380]	QN	(0.01) [0.3	[0.995024]	ON	(0.01)	[0.995024]
Methoxychlor	0.023 KJ	(0.048) [0.952380]	0.0006 KJ	(0.048)	[0.952380]	QN	(0.05) [0.3	[0.995024]	QN	(0.02)	[0.995024]
PCB-1016	ON	(0.095) [0.952380]	QN	(0.095)	[0.952380]	N		[0.995024]	QN	(0.1)	[0.995024]
PCB-1221	ON	(0.19) [0.952380]	QN	(0.19)	[0.952380]	ND	(0.2) [0.3	[0.995024]	ON	(0.2)	[0.995024]
PCB-1232	QN	(0.19) [0.952380]	QN	(0.19)	[0.952380]	Q.	(0.2) [0.3	[0.995024]	ON	(0.5)	[0.995024]
PCB-1242	QN	(0.095) [0.952380]	QN	(0.095)	[0.952380]	QN	(0.1) [0.3	[0.995024]	ON	(0.1)	[0.995024]
PCB-1248	Q	(0.095) [0.952380]	ND	(0.095)	[0.952380]	QN	(0.1) [0.3	[0.995024]	ON	(0.1)	[0.995024]
PCB-1254	QN	(0.19) [0.952380]	QN	(0.19)	[0.952380]	Q	(0.2) [0.3	[0.995024]	QN	(0.2)	[0.995024]
PCB-1260	QN	(0.19) [0.952380]	ON	(0.19)	[0.952380]	QN	(0.2) [0.3	[0.995024]	ND	(0.2)	[0.995024]
Toxaphene	QN	(0.48) [0.952380]	ON	(0.48)	[0.952380]	QN	(0.5) [0.3	0.995024]	N	(0.5)	[0.995024]
alpha-BHC	0.012 B	(0.0095) [0.952380]	0.02	(0.0095)	[0.952380]	QN	(0.01) [0.3	[0.995024]	ND	(0.01)	[0.995024]
beta-BHC	ON	(0.0095) [0.952380]	0.0009 PJB	(0.0095)	[0.952380]	ND	(0.01) [0.8	[0.995024]	ON	(0.01)	[0.995024]
delta-BHC	0.025	(0.0095) [0.952380]	0.039 P	(0.0095)	[0.952380]	0.017 B	(0.01) [0.8	[0.995024]	0.018 B	(0.01)	[0.995024]
gamma-BHC	0.013 B	(0.0095) [0.952380]	0.016 8	(0.0095)	[0.952380]	QN	(0.01) [0.8	[0.995024]	ON	(0.01)	[0.995024]
rganics	(ng/L)							Ī			1
1,2,4-Trichlorobenzene	-	NA .	_	NA		QN	(10)	[1]	ND	(6.9)	[0.990099]
1,2-Dichlorobenzene	•	NA	-	NA		QN	(10)	Ξ	QN	(6.6)	[0.990099]
1,3-Dichlorobenzene		NA	_	NA		QN	(10)	Ξ	QN	(6.6)	[0.990099]
1,4-Dichlorobenzene	_	NA	~	NA		QN	(10)	Ξ	QN	(9.9)	[0.990099]
2,4,5-Trichlorophenol	_	NA	_	NA		QN	(10)	Ξ	QN	(6.6)	[660066.0]
2,4,6-Trichlorophenal	~	NA	_	NA		QN	(10)	Ξ	QN	(6.6)	[0.990099]
2,4-Dichlorophenol		NA	2	NA		ND	(10)	Ξ	QN	(6.6)	[660066.0]
2,4-Dimethylphenol	•	NA	_	NA		N	(10)	Ξ	8	(6.6)	[0.990099]
2,4-Dinitrophenol	-	NA	~	NA		ON	(20)	Ξ	N	(20)	[660066.0]
2,4-Dinitrotoluene		NA	~	NA		N	(10)	Ξ	QN	(6.6)	[6.990099]
2,6-Dinitrotoluene	_	NA	~	NA		Q	(10)	Ξ	ND	(6.6)	[0.990099]
2-Chloronaphthalene	~	NA	_	NA		QN	(10)	Ξ	QN	(6.6)	[660066.0]
2-Chlorophenol	_	NA	~	NA	•	QN	(10)	Ξ	QN	(6.6)	[0.990099]
2-Methylnaphthalene		NA	~	NA		QN	(10)	Ξ	QN	(6.6)	[0.990099]

ND = Not Detected NA = Not Applicable

() = Detection Limit [] = Factor

		SITE ID LOCATION ID						
		SAMPLE ID	N,					
	01	01		02			05	
	01-SW-01	01-SW-02	02	02-GW-01		O	02-GW-02	
PARAMETER	01-SW-01-01	01-SW-02-01	02-(02-GW-01-01	:	02	02-GW-02-01	
2-Methylphenol(o-cresol)	NA	Ą	CN	(01)	Ξ	Ş		-
2-Nitroaniline	NA	ΨN	2 2	(IO) (EO)	ΞΞ	2 4		[6600
2-Nitrophenol	. AN	ĄN	9 9	(30)	ΞΞ	5 5		0099]
3,3'-Dichlorobenzidine	NA	NA NA	Q	(30)	3 3	5 5		3099] 3099]
3-Nitroaniline	NA NA	Ą	2 9	(20)	3 5	ב א		1099]
4,6-Dinitro-2-methylphenol	AN	Ą N	2 5	(50)	ΞΞ	2 5		1099]
4-Bromophenyl phenyl ether	NA	V	2 9	(30)	3 5	Z 8		1099]
4-Chloro-3-methylphenol	NA	NA	Q. N	(10)	ΞΞ	2 5	[3.5] [3.5] [0.000000] [0.6]	[660]
4-Chlorophenyl phenyl ether	NA	NA	QN	(10)	ΞΞ	2 2		[660]
4-Methylphenol(p-cresol)	NA	NA	QN	(10)	ΞΞ	<u>8</u>		[660
4-Nitroaniline	NA	NA	ON	(20)	ΞΞ	8	. –	[660
4-Nitrophenol	NA	NA	QN	(20)	[]	Q		[660
Acenaphthene	NA	NA	ON	(10)	[1]	QN		099]
Acenaphthy!ene	NA :	NA	QN	(10)	[1]	QN N		099]
Anthracene	NA ::	NA	ND	(10)	[1]	N S	(9.9) [0.990099	[660
benzo(a)anthracene	NA ::	NA	QN	(10)	[]	ON	660066.0] (6.6)	0600]
benzo(a)pyrene	NA ::	NA	QN	(10)	[1]	QN	660066.0] (6.6)	[660
Benzo(a h i hanvione	NA	NA :	ON	(10)	[1]	QN	[660066.0] [6.6)	[660
Senzo(V)fl.ovanthene	NA NA	AN :	ON	(10)	[1]	ON	_	[660
Benzoic acid	A A	NA	0 H	(10)	Ξ	QN		1099]
Benzyl alcohol	¥ ×	AN AN	QN :	(50)		Q		[660]
Butylbenzvlohthalate	(A .	ON :	(10)	= :	2	_	[660]
	ζ.	NA :	QN	(10)	[1]	N N	[660066.0] [6.6)	[660]
Oi vootale	NA	NA	QN	(10)	Ξ	Q	[6:6) [0:990099]	[660]
Di-m-octylphtmalate	WA:	NA	QN	(10)	Ξ	ON	[6:0066:0] [6:6)	[660
Ulbenz(a,n)anthracene	NA	NA	QN	(10)	Ξ	R	[6:6] [0:990099]	[660
Ulbenzoturan	VA :	NA	QN	(10)	Ξ	9	[6:6] [0:6)	099]
Dibutyiphthalate	NA	NA	QN	(10)	Ξ	QN	[6:6] [0:60066]	[660
Ulethylphthalate	NA ::	AN	QN	(10)	[]	QN		_ [660
Ulmetny(phthalate	NA	NA	ON	(10)	Ξ	S	[6:60066:0] [0:60066]	[660
Fluoranthene	NA	NA	ND	(10)	[1]	ON		099]

[] = Factor () = Detection Limit

Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE ID

			_	SAMPLE ID						
		01		01		02			02	
	0	01-SW-01	_	01-SW-02	05	02-GW-01			02-GW-02	
PARAMETER 	01	01-SW-01-01	0.	01-SW-02-01	02-	02-GW-01-01	! ! ! !	0	02-GW-02-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Fluorene		NA		NA	Q.	(10)	Ξ	QN	(9.9)	[0:990099]
Hexachlorobenzene		NA		NA	S	(10)	Ξ	S	(6.9)	
Hexachlorobutadiene		NA			S	(10)	Ξ	S	(6.6)	
Hexachlorocyclopentadiene		NA		NA	ON.	(10)	Ξ	QN	(6.6)	
Hexachloroethane		NA		NA	9	(10)	Ξ	QN	(6.6)	[0.990099]
Indeno(1,2,3-cd)pyrene		NA		NA	9	(10)	Ξ	QN	(6.6)	[0.990099]
Isophorone		NA		NA	S	(10)	Ξ	S	(6.6)	[0.990099]
N-Nitrosodiphenylamine		NA		NA	S	(10)	[1]	Q	(6.6)	[660066.0]
N-Nitrosodipropylamine		NA		NA	S	(10)	[1]	QN	(6.6)	[0.990099]
Naphthalene		NA		NA	ND	(10)	Ξ	Q.	(6.6)	[0.990099]
Nitrobenzene		. AN		NA	S	(10)	Ξ	Q	(6.9)	[0.990099]
Pentachlorophenol		NA		NA	9	. (20)	Ξ	ND	(20)	[0.990099]
Phenanthrene		NA		NA	S	(10)	Ξ	QN	(6.6)	[0.990099]
Phenol		NA		NA	Q	(10)	Ξ	QN	(6.6)	[0.990099]
Pyrene		NA		NA	2	(10)	Ξ	QN	(6.6)	[0.990099]
bis(2-Chloroethoxy)methane		NA		NA	9	(10)	Ξ	QN	(6.6)	[0.990099]
bis(2-Chloroethyl)ether		NA		NA	2	(10)	Ξ	QN	(6.6)	[0.990099]
bis(2-Chloroisopropyl)ether		NA		NA	2	(10)	Ξ	Q.	(6.6)	[0.990099]
bis(2-Ethylhexyl)phthalate		NA		NA	S	(10)	[]	QN	(6.6)	[0.990099]
p-Chloroaniline		NA		NA	S	(10)	Ξ	QN	(6.6)	[0.990099]
SW8310 - Polynuclear Aromatic Hydrocarbons	drocarbons (ug/L)	/\r)								
Acenaphthene	1.1 J	(1.7) [0.952380]	7	(1.7) [0.952380]	Z	NA			NA	
Acenaphthylene	ON.	(2.2) [0.952380]	0.67 J	(2.2) [0.952380]	Z	A			NA	
Anthracene	QN	(0.63) [0.952380]	QN	(0.63) [0.952380]	Z	NA			NA	
Benzo(a)anthracene	QN	(0.012) [0.952380]	QN	(0.012) [0.952380]	Z	A			NA	
Benzo(a)pyrene	QN	(0.022) [0.952380]	Q	(0.022) [0.952380]	Z	A			NA	
Benzo(b)fluoranthene	QN	(0.017) [0.952380]	Q	(0.017) [0.952380]	Z	A			NA	
Benzo(g,h,i)perylene	QN		2	(0.072) [0.952380]	2	A			NA	
Benzo(k)fluoranthene	0.0048 JB		9		Z	NA			NA	
Chrysene	QN	(0.14) [0.952380]	QN	(0.14) [0.952380]	z	NA			NA	
Dibenzo(a,h)anthracene	ON	(0.029) [0.952380]	Q	(0.029) [0.952380]	z	A			NA	

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

	02 02-GW-02 02-GW-02-01	N N N N N N N N N N N N N N N N N N N			
	02 02-GW-01 02-GW-01-01	N N N N N N N N N N N N N N N N N N N			
SITE ID OCATION ID SAMPLE ID	01 01-SW-02 01-SW-02-01	(0.2) [0.952380] (0.2) [0.952380] (0.041) [0.952380] (1.7) [0.952380] (0.61) [0.952380] (0.26) [0.952380]			
\$ FICE	01-01-01-01-01-01-01-01-01-01-01-01-01-0	ND ND 0.026 J ND ND ND			
	01-SW-01 01-SW-01 01-SW-01-01 (0.2) [0.952380] N (0.041) [0.952380] N (1.7) [0.952380] N (0.61) [0.952380] N (0.26) [0.952380] N				
	010	ND ND .00.0 ND ND ND			
	PARAMETER 	Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene			

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				_	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	0	02 02-GW-03 02-GW-03-01	 	02-08-01	02 02-6W-03 Dup of 02-6W-03-01	-01	- 80	02 02-GW-04 02-GW-04-01		0	03 03-GW-01 03-GW-01-01	
SW8010 - Halogenated Volatile Organics			Ş	:	; ;	į	!	í	;			,
1,1,1,2-letrachloroethane 1,1,1-Trichloroethane	2 S	(2.5) (0.55)	ΞΞ	2 S	(2.5)	33	<u> </u>	(2.5)	ΞΞ	Q S	(2.5)	ΞΞ
1,1,2,2-Tetrachloroethane	2	(0.3)	ΞΞ	2 2	(0.3)	ΞΞ	2 2	(0.3)	ΞΞ	2 2	(0.33)	ΞΞ
1,1,2-Trichloroethane	S	(0.2)	ΞΞ	8	(0.2)	E	8	(0.2)	ΞΞ	2	(0.2)	ΞΞ
1,1-Dichloroethane	QN	(0.5)	Ξ	2	(0.5)	Ξ	Q	(0.5)	Ξ	QN N	(0.5)	ΞΞ
1,1-Dichloroethene	ON	(0.7)	[1]	R	(0.7)	Ξ	QN	(0.7)	Ξ	Q.	(0.7)	Ξ
1,2,3-Trichloropropane	ON	(1.6)	Ξ	2	(1.6)	Ξ	Q	(1.6)	Ξ	Q.	(1.6)	Ξ
1,2-Dichlorobenzene	ON	(0.25)	Ξ	R	(0.25)	Ξ	Q	(0.25)	Ξ	QV	(0.25)	Ξ
1,2-Dichloroethane	QN	(0.15)	Ξ	2	(0.15)	Ξ	QN	(0.15)	Ξ	ND	(0.15)	Ξ
1,2-Dichloropropane	QN	(0.15)	· [1]	Q	(0.15)	Ξ	Q.	(0.15)	[]	QN	(0.15)	Ξ
1,3-Dichlorobenzene	QN	(0.32)	Ξ	2	(0.32)	Ξ	QN	(0.32)	Ξ	QN	(0.32)	[1]
1,4-Dichlorobenzene	ON	(0.25)	[1]	R	(0.25)	Ξ	Q.	(0.25)	Ξ	Q	(0.25)	ΞΞ
1-Chlorohexane	QN	(3.4)	Ξ	2	(3.4)	Ξ	Q	(3.4)	Ξ	Q	(3.4)	Ξ
2-Chloroethylvinylether	ND	(0.6)	Ξ	2	(0.6)	Ξ	ON	(0.0)	[1]	S	(0.6)	Ξ
Bromobenzene	ND	(1.6)	Ξ	2	(1.6)	Ξ	S	(1.6)	Ξ	Q	(1.6)	[1]
Bromodichloromethane	ND	(0.1)	Ξ	2	(0.1)	Ξ	S	(0.1)	Ξ	QN	(0.1)	[1]
Bromoform	Q	(0.5)	Ξ	2	(0.5)	[1]	Q	(0.5)	Ξ	Q	(0.5)	[1]
Bromomethane	Q	(0.35)	Ξ	2	(0.35)	Ξ	Q	(0.35)	Ξ	S	(0.35)	[1]
Carbon tetrachloride	Q.	(0.35)	Ξ	2	(0.35)	Ξ	QN	(0.35)	Ξ	ON	(0.35)	Ξ
Chlorobenzene	Q.	(0.3)	Ξ	2	(0.3)	Ξ	9	(0.3)	Ξ	S	(0.3)	Ξ
Chloroethane	Q.	(0.7)	Ξ	2	(0.7)	Ξ	Q	(0.7)	Ξ	R	(0.7)	Ξ
Chloroform	ND	(0.15)	Ξ	2	(0.15)	Ξ	8.6	(0.15)	Ξ	Q	(0.15)	Ξ
Chloromethane	Q	(0.5)	Ξ	2	(0.2)	Ξ	S	(0.5)	Ξ	Ş	(0.5)	Ξ
Dibromochloromethane	Q	(0.2)	Ξ	QN	(0.5)	Ξ	Q	(0.2)	Ξ	S	(0.2)	Ξ
Dibromomethane	Q	(1.6)	Ξ	2	(1.6)	Ξ	QN	(1.6)	Ξ	QN	(1.6)	Ξ
Methylene chloride	ND	(0.4)	Ξ	2	(0.4)	Ξ	Q	(0.4)	Ξ	QN	(0.4)	Ξ
Tetrachloroethene	QN	(0.1)	Ξ	2	(0.1)	[1]	QN	(0.1)	Ξ	ON	(0.1)	Ξ
Trichloroethene	QN	(0.2)	Ξ	Q	(0.2)	Ξ	Q	(0.2)	Ξ	QN	(0.2)	Ξ
Trichlorofluoromethane	QN	(0.55)	Ξ	2	(0.55)	Ξ	2	(0.55)	Ξ	QN	(0.55)	Ξ
Vinyl chloride	Q	(0.25)	Ξ	2	(0.25)	Ξ	Q	(0.25)	Ξ	QN	(0.25)	Ξ

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

				S Por	SITE ID LOCATION ID SAMPLE ID							
PARAMETER		02 02-6W-03 02-6W-03-01		02 02-DS-01 Du	02 02-GW-03 Dup of 02-GW-03-01	3-01	00 02	02 02-GW-04 02-GW-04-01	 	! ! ! ! !	03 03-GW-01 03-GW-01-01	
cis-1,3-Dichloropropene ND trans-1,2-Dichloroethene ND trans-1,3-Dichloropropene ND SW8015 - Nonhalonenated Volatile Organics	ND ND ND ND ND	(0.2) (0.25) (0.15)	888	ND ND ND	(0.2) (0.25) (0.15)	EEE	N ON ON	(0.2) (0.25) (0.15)	232	ON ON ON	(0.2) (0.25) (0.15)	E E E
et et E	ND N	(2000) (10000) (3000) (2000) (ua/l)	E E E E	ON O	(2000) (10000) (3000) (2000)	333E	N N N N N N N N N N N N N N N N N N N	(2000) (10000) (3000) (2000)	5555		NA NA NA	
Diesel Range Organics (2)	ON ,	(210)	[1.04]	QN	(200)	[1.00]	210	(200)	[0.980]	QN	(200)	[0.985]
SW8U2U - Aromatic Volatile Organics 1,2-Dichlorobenzene	SS (ug/L) ND	(0.4)	[1]	ND	(0.4)	[]	QN	(0,4)	Ξ	S	(2)	[5]
1,3-Dichlorobenzene	QN	(0.2)	[1]	QN	(0.2)		Q	(0.2)	ΞΞ	<u>8</u>	(E) (1)	<u> </u>
1,4-Dichlorobenzene Benzene	8 8	(0.4) (0.3)	ΞΞ	QN QN	(0.4)	ΞΞ	ON CN	(0.4)	[1]	S S	(2)	<u> </u>
Chlorobenzene F+hvlhenzene	S &	(0.2)	[3]	ON S	(0.2)	E 3	ON :	(0.2)	E = 9	R 9	(1)	[2]
ctification (2) Gasoline Range Organics	2 S	(0.2)	[1]	ND 110	(0.2) (100)	E E	Q QV	(0.2)		2 2	(1) (500)	[5]
Toluene	ON	(0.2)	[1]	Q.	(0.2)	[1]	ND	(0.2)	ΞΞ	S S	(1)	[5]
lotal xylenes \$W8080 - Organochlorine Pesticides and	ND PCBs	(0.3) (ug/L)	[1]	QN	(0.3)	[1]	ND	(0.3)	[1]	Q	(1.5)	[2]
4,4'-000	S	0.011)	[1.098901]	N	(0.01) [1	[1.030927]	QN	(0.011)	[1.052631]	Š	J] (6600 U)	Lo gannaal
4,4'-DDE	ON		[1.098901]	ND		[1.030927]	QN		[1.052631]	2		[0.99009]
4,4'-00T	S		[1.098901]	QN	(0.021) [1.	[1.030927]	ON	(0.021)	[1.052631]	ON		[0.990099]
Aldrin	2 5		[1.098901]	0.011 B		[1.030927]	0.011 B		[1.052631]	QN		[0.990099]
omor uane Dieldrin	0 01 K.1	(0.055)	[1.098901]	UN 1. 7000 0	(0.052) [1.	[1.030927]	ND 9000	(0.053)	[1.052631]	2 9		[0.990099]
Endosulfan I	2 2 2		[1.098901]		1 1	[1.030927]	CV 0600.0		[1.02c031] [1.052631]	2 2	0] (8600.0)	[0.990099] [0.990099]
Endosulfan II	ND		[1.098901]	0.014 KJB		[1.030927]	QN		[1.052631]	9		[0.99009]
Endosulfan Sulfate Endrin	0.0074 KJB ND	(0.055) [(0.011) [[1.098901] [1.098901]	0.021 KJB ND	(0.052) [1. (0.01) [1.	[1.030927] [1.030927]	0.002 KJB ND	(0.053) [(0.011) [[1.052631] [1.052631]	ON ON		[0.990099] [0.990099]

"n = Not Detected [] = Factor () = Detection Limit

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			s D	SITE ID LOCATION ID SAMPLE ID						
PARAMETER	, 0	02 02-GW-03 02-GW-03-01	02 02-DS-01 Du	02 02-GW-03 Dup of 02-GW-03-01	-	02 02-GW-04 02-GW-04-01		0	03 03-GW-01 03-GW-01-01	
Fndrin Aldehyde	0 0041		0 0038 JB	(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (100 0)				
Hentachlor	S II S		2		2 2		1.052631	2 9	(0.02)	[0.990099]
Heptachlor epoxide	<u> </u>		2 2		2 2	(0.011)	[1.052631] [1.052631]	<u>8</u> ~	(0.0039)	[0.990099]
Methoxychlor	ND	(0.055) [1.098901]	ON		2		[1.052631]	. S	(0.05)	[6:3366:6]
PCB-1016	ON	(0.11) [1.098901]	ON	(0.1) [1.030927]	S	_	1.052631]	2	(0.099)	[0.990093]
PCB-1221	ON	(0.22) [1.098901]	QN	(0.21) [1.030927]	9	(0.21)	[1.052631]	2	(0.2)	[0.99009]
PCB-1232	QN	_	QN	(0.21) [1.030927]	R	(0.21) [1	[1.052631]	Q	(0.2)	[0.990099]
PCB-1242	QN	_	QN	(0.1) [1.030927]	S	(0.11) [1	[1.052631]	QN	(0.09)	[0.990099]
PCB-1248	QN		Q.	(0.1) [1.030927]	Q.	(0.11) [1	[1.052631]	QN	(0.099)	[0.990099]
PCB-1254	QN		QN .	(0.21) [1.030927]	Q.	(0.21) [1	[1.052631]	QN	(0.2)	[0.990093]
PCB-1260	QN	(0.22) [1.098901]	ON	(0.21) [1.030927]	QN	(0.21) [1	[1.052631]	ON	(0.2)	[660066.0]
Toxaphene	QN	(0.55) [1.098901]	Q	(0.52) [1.030927]	ON	(0.53) [1	[1.052631]	N	(0.5)	[0.990099]
alpha-BHC	ON	(0.011) [1.098901]	N	(0.01) [1.030927]	QN	(0.011) [1	[1.052631]	0.017 P	(0.003)	[0.990099]
beta-BHC	QN	(0.011) [1.098901]	0.0002 KJB	(0.01) [1.030927]	QV		1.052631]	0.061 P	(0.003)	[0.990099]
delta-BHC	0.016 B	(0.011) [1.098901]	S	(0.01) [1.030927]	0.018 B	(0.011) [1	[1.052631]	N	(0.003)	[0.990093]
gamma-BHC	QN	(0.011) [1.098901]	QN	(0.01) [1.030927]	0.012 B		[1.052631]	QN	(0.0099)	[660066.0]
SW8270 - Semivolatile Organics	(ng/L)						•			.
1,2,4-Trichlorobenzene	ON	(11) [1.086956]	QN	(10) [1.041666]	Q.	(10)	[1]	S	(6.7)	[0.970873]
1,2-Dichlorobenzene	QN	(11) [1.086956]	ON	(10) [1.041666]	S	(10)	Ξ	QN	(8.7)	[0.970873]
1,3-Dichlorobenzene	QN N	(11) [1.086956]	QN	(10) [1.041666]	QN	(10)	Ξ	ND	(6.7)	[0.970873]
1,4-Dichlorobenzene	ON	(11) [1.086956]	ON	(10) [1.041666]	QN	(10)	Ξ	QN	(6.7)	[0.970873]
2,4,5-Trichlorophenol	ON	(11) [1.086956]	QN	(10) [1.041666]	ON	(10)	[1]	QN	(6.7)	[0.970873]
2,4,6-Trichlorophenol	QN N	(11) [1.086956]	QN	(10) [1.041666]	QN	(10)	[1]	ON	(6.7)	[0.970873]
2,4-Dichlorophenol	QN	(11) [1.086956]	QN	(10) [1.041666]	QN	(10)	[1]	QN	(6.7)	[0.970873]
2,4-Dimethylphenol	QN	(11) [1.086956]	ON	(10) [1.041666]	ON	(10)	Ξ	N	(8.7)	[0.970873]
2,4-Dinitrophenol	ON	(54) [1.086956]	QN	(52) [1.041666]	S	(20)	[1]	ON	(48)	[0.970873]
2,4-Dinitrotoluene	QN	(11) [1.086956]	QN	(10) [1.041666]	QN	(10)	[1]	ON	(6.7)	[0.970873]
2,6-Dinitrotoluene	Q	_	ON	(10) [1.041666]	ON	(10)	[1]	S	(6.7)	[0.970873]
2-Chloronaphthalene	QN	_	QN	_	ON	(10)	Ξ	QN	(6.7)	[0.970873]
2-Chlorophenol	Q		ND	(10) [1.041666]	ON	(10)	Ξ	QN	(6.7)	[0.970873]
2-Methylnaphthalene	QN	(11) [1.086956]	Q	(10) [1.041666]	S	(10)	Ξ	QN	(8.7)	[0.970873]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				SITE 10					
			s 07	LOCATION ID SAMPLE ID					
		02		02		02			03
	02~	02~GW-03	02	02-GW-03	05	02-GW-04		-60	03-GW-01
PARAMETER	02-6	02-GW-03-01	02-DS-01 Du	02-DS-01 Dup of 02-GW-03-01	02-	02-GW-04-01		03-(03-GW-01-01
111111111111111111111111111111111111111			\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$: 1	-	: : : : : : : : : : : : : : : : : : :	; ; ;	: : : : : : : : : : : : : : : : : : :	
Fluorene	ON	(11) [1.086956]	ON	(10) [1.041666]	Q.	(10)	Ξ	QN	(9.7) [0.970873]
Hexachlorobenzene	QN	(11) [1.086956]	ND	(10) [1.041666]	2	(10)	[1]	ND	(9.7) [0.970873]
Hexachlorobutadiene	ON	(11) [1.086956]	QN	(10) [1.041666]	9	(10)	Ξ	ND	(9.7) [0.970873]
Hexachlorocyclopentadiene	ND	(11) [1.086956]	ND	(10) [1.041666]	S	(10)	Ξ	ND	(9.7) [0.970873]
Hexachloroethane	ND	(11) [1.086956]	ON	(10) [1.041666]	9	(10)	Ξ	N ON	(9.7) [0.970873]
Indeno(1,2,3-cd)pyrene	QN	(11) [1.086956]	QN	(10) [1.041666]	2	(10)	Ξ	NO	(9.7) [0.970873]
Isophorone	ON	(11) [1.086956]	QN	(10) [1.041666]	Q	(10)	Ξ	QN	(9.7) [0.970873]
N-Nitrosodiphenylamine	ON	(11) [1.086956]	QN	(10) [1.041666]	S	(10)	Ξ	QN	(9.7) [0.970873]
N-Nitrosodipropylamine	ND	(11) [1.086956]	QN	(10) [1.041666]	S	(10)	Ξ	ND P	(9.7) [0.970873]
Naphthalene	QN	(11) [1.086956]	QN	(10) [1.041666]	2	(10)	Ξ	NO	(9.7) [0.970873]
Nitrobenzene	QN	(11) [1.086956]	ON	(10) [1.041666]	2	(10)	Ξ	ON	(9.7) [0.970873]
Pentachlorophenol	ON	(54) [1.086956]	ON	(52) [1.041666]	S	(20)	Ξ	ND	(49) [0.970873]
Phenanthrene	ND	(11) [1.086956]	ON	(10) [1.041666]	2	(10)	Ξ	ND	(9.7) [0.970873]
Phenol	ON	(11) [1.086956]	QN	(10) [1.041666]	QN	(10)	Ξ	ND	(9.7) [0.970873]
Pyrene	ON	(11) [1.086956]	ND	(10) [1.041666]	9	(10)	Ξ	ND	(9.7) [0.970873]
bis(2-Chloroethoxy)methane	Q	(11) [1.086956]	ND	(10) [1.041666]	ND	(10)	Ξ	ND	(9.7) [0.970873]
bis(2-Chloroethyl)ether	QN	(11) [1.086956]	ON	(10) [1.041666]	S	(10)	Ξ	ND	(9.7) [0.970873]
bis(2-Chloroisopropyl)ether	N	(11) [1.086956]	ON	(10) [1.041666]	2	(10)	Ξ	ND	(9.7) [0.970873]
bis(2-Ethylhexyl)phthalate	1.9 JB	(11) [1.086956]	37	(10) [1.041666]	Q	(10)	Ξ	3.3 JB	(9.7) [0.970873]
p-Chloroaniline	Q	(11) [1.086956]	QN	(10) [1.041666]	QN	(10)	Ξ	ND	(9.7) [0.970873]

					SITE ID LOCATION ID SAMPLE ID							
PARAMETER	03	03 03-GW-02 03-GW-02-01	! ! ! !	0	03 03-GW-03 03-GW-03-01		03-DS-01	03 03-GW-03 Dup of 03-GW-03-01	3-01		03 03-GW-04 03-GW-04-01	; ; ;
SW8010 - Halogenated Volatile Organics	(ng/F)											
1,1,1,2-Tetrachloroethane	ON	(2.5)	[1]	Q	(2.5)	[1]	N	(2.5)	Ξ	ND	(2.5)	Ξ
1,1,1-Trichloroethane	Q.	(0.55)	Ξ	QN	(0.55)	[1]	ON	(0.55)	ΞΞ	1.4	(0.55)	ΞΞ
1,1,2,2-Tetrachloroethane	Q	(0.3)	[1]	S	(0.3)	[1]	QN	(0.3)	Ξ	QN	(0.3)	Ξ
1,1,2-Trichloroethane	2	(0.2)	Ξ	QN	(0.2)	Ξ	ON	(0.2)	[1]	QN	(0.2)	Ξ
1,1-Vichloroethane	2	(0.5)	Ξ	N S	(0.5)	[1]	ON	(0.5)	[]]	0.97	(0.5)	Ξ
1,1-Dichloroethene	2	(0.7)	Ξ	Q	(0.7)	Ξ	QN	(0.7)	[1]	QN	(0.7)	Ξ
1,2,3-Irichloropropane	2 :	(1.6)	Ξ	QV	(1.6)	Ξ	QN	(1.6)	[1]	QN	(1.6)	Ξ
1,2-Vichlorobenzene	2 :	(0.25)	Ξ	2	(0.25)	Ξ	QN	(0.25)	Ξ	QN	(0.25)	Ξ
1,2-Ulchloroethane	2 :	(0.15)	Ξ	QN	(0.15)	Ξ	ND	(0.15)	[1]	Q.	(0.15)	[1]
1,2~Ulchloropropane	2 :	(0.15)		QN	(0.15)	Ξ	Q	(0.15)	[1]	S	(0.15)	Ξ
1,3-Dichiorobenzene	2	(0.32)	Ξ	Q.	(0.32)	[]	N	(0.32)	Ξ	QN	(0.32)	Ξ
1,4~Ulchlorobenzene	2	(0.25)	Ξ	Q	(0.25)	Ξ	8	(0.25)	Ξ	Q.	(0.25)	Ξ
1-Chlorohexane	2	(3.4)	Ξ	Q	(3.4)	Ξ	S	(3.4)	Ξ	N	(3.4)	Ξ
Z-Chloroethylvinylether	Q :	(0'0)	[1]	N	(0.6)	Ξ	Q	(0.0)	[1]	ND	(0.6)	ΞΞ
Bromobenzene Bromolista	S :	(1.6)	Ξ	Q	(1.6)	Ξ	2	(1.6)	Ξ	N	(1.6)	[1]
bromodichloromethane Bromoform	2 9	(0.1)	Ξ	2 :	(0.1)	Ξ:	Q.	(0.1)	Ξ	N	(0.1)	[1]
Dromomothano	5 5	(0.5)	Ξ3	2 :	(0.5)	Ξ	9	(0.5)	Ξ	N	(0.5)	Ξ
Carbon tetrachloride	S S	(0.35)		2 2	(0.35)	Ξ3	2 9	(0.35)	Ξ	Q	(0.35)	[1]
Chlorobenzene	<u> </u>	(0.3)	[1]	Q. Q.	(0.3)	ΞΞ	2 2	(0.35)	ΞΞ	2	(0.35)	ΞΞ
Chloroethane	QN	(0.7)	ΞΞ	Q	(0.7)	ΞΞ	2 Q	(0.2)		2 S	(0.3)	ΞΞ
Chloroform	ON	(0.15)	[1]	N Q	(0.15)	[1]	ND	(0.15)	ΞΞ	2	(0.15)	ΞΞ
Chloromethane	QN	(0.5)	Ξ	NO	(0.5)	Ξ	QN	(0.5)	<u> </u>	QN	(0.5)	ΞΞ
Dibromochloromethane	Q.	(0.2)	[1]	QN	(0.2)	Ξ	QN	(0.2)	Ξ	S	(0.2)	ΞΞ
Dibromomethane	QN	(1.6)	[1]	QN	(1.6)	Ξ	QN	(1.6)	Ξ	QN	(1.6)	ΞΞ
Methylene chloride	SN	(0.4)	Ξ	N	(0.4)	Ξ	QN	(0.4)	[1]	N	(0.4)	Ξ
etrach oroethene	2	(0.1)	Ξ	ND	(0.1)	Ξ	Q	(0.1)	[1]	QN	(0.1)	ΞΞ
rich oroethene	Q :	(0.2)	Ξ	ON	(0.2)	[]	QN	(0.2)	[1]	2	(0.2)	Ξ
Fich Orof uoromethane	2 9	(0.55)	Ξ:	QN	(0.55)	Ξ	S	(0.55)	Ξ	N	(0.55)	[1]
vinyl chloride	2	(0.25)	Ξ	Q	(0.25)	[1]	Q	(0.25)	Ξ	ON	(0.25)	[]

() = Detection Limit [] = Factor

"s = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				S 01	SITE ID LOCATION ID SAMPLE ID							
	c	03		Č	03		ć	03			03	
PARAMETER	03	U3-GW-02 03-GW-02-01		03	03-GW-03 03-GW-03-01	:	03-05-01 Dul	03-GW-03 Dup of 03-GW-03-01 	03-01	03	03-GW-04 03-GW-04-01 	
cis-1,3-Dichloropropene	, Q	(0.2)	Ξ	QN	(0.2)	[1]	ON	(0.2)	Ξ	QN	(0.2)	Ξ
trans-1,2-Dichloroethene	QN	(0.25)	[1]	ON	(0.25)	[]	QN	(0.25)	[1]	QN	(0.25)	[1]
trans-1,3-Dichloropropene	Q.	(0.15)	Ξ	QN	(0.15)	[1]	ON.	(0.15)	[1]	ON	(0.15)	ΞΞ
SW8015 - Nonhalogenated Volatile Organics (ug/L	ganics (ug/	_										
Ethanol	ON	(2000)	[1]	ND	(2000)	Ξ	ND	(2000)	[1]	QN	(2000)	[1]
Ethyl ether	QN	(10000)	[1]	QN	(10000)	Ξ	QN	(10000)	[1]	ON	(10000)	[1]
Methyl ethyl ketone	ON	(3000)	Ξ	QN	(3000)	[]	QN	(3000)	Ξ	ON	(3000)	[1]
Methyl isobutyl ketone	ND	(2000)	Ξ	ON	(2000)	Ξ	QN	(2000)	[1]	QN	(2000)	[1]
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)										1
Diesel Range Organics (2)	QN	(200)	[0.980]	N	(200)	[1]	QN	(200)	Ξ	ON	(200)	[0.990]
SW8020 - Aromatic Volatile Organics	(ng/L)										•	ı
1,2-Dichlorobenzene	QN	(0.4)	Ξ	QN	(0.4)	[1]	ON	(0.4)	Ξ	QN	(0.4)	[1]
1,3-Dichlorobenzene	QN	(0.2)	Ξ	QN	(0.2)	Ξ	QN	(0.5)	Ξ	QN	(0.5)	[1]
1,4-Dichlorobenzene	ND	(0.4)	Ξ	ON	(0.4)	Ξ	QN	(0.4)	[1]	ND	(0.4)	[1]
Benzene	QN	(0.3)	[1]	QN	(0.3)	Ξ	N QN	(0.3)	[1]	ON	(0.3)	[1]
Chlorobenzene	ON	(0.2)	Ξ	0.22 B	(0.2)	[1]	N	(0.5)	Ξ	ON	(0.2)	[1]
Ethylbenzene	ND	(0.2)	Ξ	QN	(0.2)	[1]	QN	(0.5)	Ξ	QN	(0.2)	Ξ
Gasoline Range Organics (2)	QN	(100)	Ξ	ON	(100)	[1]	QN	(100)		ON	(100)	[1]
Toluene	ON	(0.5)	Ξ	QN	(0.2)	Ξ	Q	(0.2)	[1]	ND	(0.2)	Ξ
Total xylenes	ON.	(0.3)	Ξ	ND	(0.3)	Ξ	QN	(0.3)	[1]	QN	(0.3)	Ξ
SW8080 - Organochlorine Pesticides and	PCBs	(ng/L)										
4,4'-DDD	Q] (6600.0)	[0.990099]	ON	(0.01) [1	[1.030927]	ND	(0.01)	[1.030927]	Q	(0.011) [1	[1.086956]
4,4'-DDE	ON] (6600.0)	[0.990099]	Q.	(0.01) [1	[1.030927]	QN	(0.01)	[1.030927]	ON		[1.086956]
4,4'-DDT	ND	(0.05)	[0.990099]	ON	(0.021) [1.	[1.030927]	ND		[1.030927]	QN	(0.022) [1	[1.086956]
Aldrin	ON .	(0.0099)	[0.990099]	Q.	(0.01) [1	[1.030927]	N	(0.01)	[1.030927]	QN		[1.086956]
Chlordane	QN	(0.05)	[0.990099]	NO	(0.052) [1.	[1.030927]	QN		[1.030927]	QN		[1.086956]
Dieldrin	ON	(0.0099)	[0.990099]	0.011	(0.01) [1.	[1.030927]	0.011	(0.01)	[1.030927]	0.0099 KJ		[1.086956]
Endosulfan "I	ND)] (6600.0)	[0.990099]	QN	(0.01) [1.	[1.030927]	Q.	(0.01)	[1.030927]	QN	(0.011) [1	[1.086956]
Endosulfan II	ON	(0.03)	[0.990099]	QN	(0.031) [1.	[1.030927]	0.012 KJB	(0.031)	[1.030927]	QN	(0.033) [1	[1.086956]
Endosulfan Sulfate	0.029 KJB	(0.02)	[0.990099]	0.003 KJB	(0.052) [1.	[1.030927]	0.0085 KJB	(0.025)	[1.030927]	0.0046 KJB	(0.054) [1	1.086956]
Endrin	ON	0.0099)	[660066.0]	N	(0.01) [1.	[1.030927]	QN	(0.01)	[1.030927]	0.011 B	_	[1.086956]
												•

Compiled: 23 March 1995

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

	03 03-6W-04 03-6W-04-01		(0.022) [1.086956]	(0.011) [1.086956]		_						-				<u> </u>				(11) [1 052631]		-					-	בונ					
			ON	2	2	Q	2	Q.	QN	QN	Q	Q	S	Q.	Q.	QN	Q.	CN	2	C	Q.	QN	QN	ON	QN	QN	Q.	Q.	QN QN	QN	G	ž Š	Q.
	03 03-GW-03 Dup of 03-GW-03-01		(0.021) [1.030927]	(0.01) [1.030927]	(0.01) [1.030927]	(0.052) [1.030927]		(0.21) [1.030927]	(0.21) [1.030927]	(0.1) [1.030927]	(0.1) [1.030927]	(0.21) [1.030927]	(0.21) [1.030927]			(0.01) [1.030927]	(0.01) [1.030927]			(11) [1,075268]		(11) [1.075268]	(11) [1.075268]		(11) [1.075268]	(11) [1.075268]	(11) [1.075268]		(11) [1.075268]	(11) [1.075268]	(11) [1.075268]		_
	03 03-DS-01 Du		0.01 KJB	ND	0.015 B	ND	ND	ND	ND	ON	ON	QN	ON	QN	QN	0.0028 KJB	QN	0.0092 KJB		QN	QN	ND	QN	ND	QN	ND	ON	ND	ON	N	QN	QN QN	QN
SITE ID LOCATION ID SAMPLE ID	03 03-GW-03 03-GW-03-01		(0.021) [1.030927]	(0.01) [1.030927]	(0.01) [1.030927]	(0.052) [1.030927]	(0.1) [1.030927]	(0.21) [1.030927]	(0.21) [1.030927]	(0.1) [1.030927]	(0.1) [1.030927]	(0.21) [1.030927]	(0.21) [1.030927]	(0.52) [1.030927]	(0.01) [1.030927]	(0.01) [1.030927]	(0.01) [1.030927]	(0.01) [1.030927]		(10)	(10) [1]	(10) [1]	(10) [1]	(10) [1]	(10) [1]	(10) [1]	(10) [1]	(50) [1]	(10) [1]	(10) [1]	(10) [1]	(10) [1]	
S LOC. SAI	03-6		0.0092 KJB	Q	0.016 B	ND	ND	QN	NO	ND	ND	ON	ND	QN	QN	QN	N	QN		QN	ND	QN	ND	QN	QN	ON	ND	ND	N	ND	N	ND	ND
	-	i				5) [0.990099]	[0.990099]	_			[0.990099]	[0.990099]	[0.990099]	(5) [0.990099]	[0.990099]	[0.990099]	[0.990099]	(0.990099]		(1]	(1]	(1]	(1)					(1]		(1]	[1]	(1)	[1]
	03 03-GW-02 03-GW-02-01		(0.05)	(0.0038)	(0.0099)	(0.05)	(0.03)	(0.2)	(0.2)	(0.099)	(0.099)	(0.2)	(0.2)	(0.5)	(0.0038)	(0.003)	(0.003)	(0.0099)		(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(20)	(10)	(10)	(10)	(10)	(10)
	0 03		0.0056 KJB	QN	QN	QN	QV	ON	QN	QN	QN	Q	QN	ON	QN	QN	0.019 PB	0.01 B	(ng/L)	ND	ON	ND	Q	QN	QN	QN	N N	ON	QN	ND	QN N	QN	ON
	PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Endrin Aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	a]pha~BHC	beta-BHC	delta-BHC	gamma-BHC	SW8270 - Semivolatile Organics	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene

" = Not Detected NA = Not Applicable

() = Detection Limit [] = Factor

Compiled: 23 May

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID						
DADAMETED	c	03 03-GW-02		03 03-6W-03	03 03-GW-03			03 03-6W-03	c	03 03-GW-04	
TANANIC I EN	0	TO-70-MD-0		MD - 00		1	ing To-eg-eg	TO-co-adm-oo-lo dna	0	U3-GW-U4-U1	
2-Methylphenol(o-cresol)	ND	(10)	[1]	N	(10)	Ξ	ND	(11) [1.075268]	QN	(11)	[1.052631]
2-Nitroaniline	ON	(20)	Ξ	ND	(20)	Ξ	Q.	(54) [1.075268]	Q.	(53)	[1.052631]
2-Nitrophenol	Q	(10)	Ξ	ND	(10)	Ξ	ND	(11) [1.075268]	QN	(11)	[1.052631]
3,3'-Dichlorobenzidine	QN	(20)	Ξ	QN	(50)	Ξ	ON	(22) [1.075268]	QN	(21)	[1.052631]
3-Nitroaniline	Q	(20)	Ξ	QN	(20)	Ξ	Q	(54) [1.075268]	QN	(53)	[1.052631]
4,6-Dinitro-2-methylphenol	QN	(20)	Ξ	ND	(20)	Ξ	QN	(54) [1.075268]	QN	(53)	[1.052631]
4-Bromophenyl phenyl ether	Q	(10)	Ξ	Q.	(10)	Ξ	ON	(11) [1.075268]	QN	(11)	[1.052631]
4-Chloro-3-methylphenol	QN	(10)	[1]	ND	(10)	Ξ	QN	(11) [1.075268]	QN	(11)	[1.052631]
4-Chlorophenyl phenyl ether	QN	(10)	Ξ	QN	(10)	Ξ	Q	(11) [1.075268]	QN	(11)	[1.052631]
4-Methylphenol(p-cresol)	QN	(10)	Ξ	Q	(10)	Ξ	ON	(11) [1.075268]	QN	(11)	[1.052631]
4-Nitroaniline	QN	(20)	Ξ	ND	(20)	Ξ	ON	(54) [1.075268]	QN	(53)	[1.052631]
4-Nitrophenol	QN	(20)	Ξ	QN	(20)	Ξ	Q	(54) [1.075268]	QN	(53)	[1.052631]
Acenaphthene	QN	(10)	Ξ	QN	(10)	Ξ	N	(11) [1.075268]	ON	(11)	[1.052631]
Acenaphthylene	Q.	(10)	Ξ	QN	(10)	Ξ	ON	(11) [1.075268]	QN	(11)	[1.052631]
Anthracene	QN	(10)	[1]	QN	(10)	Ξ	QN		QN	(11)	[1.052631]
Benzo(a)anthracene	QN	(10)	Ξ	QN	(10)	Ξ	Q	_	Q.	(11)	[1.052631]
Benzo(a)pyrene	QN	(10)	Ξ	QN	(10)	Ξ	Q	_	QN	(11)	[1.052631]
Benzo(b)fluoranthene	ON	(10)	[1]	QN	(10)	Ξ	QN	(11) [1.075268]	ON	(11)	[1.052631]
Benzo(g,h,i)perylene	QN	(10)	[]	Q	(10)	=	QN	(11) [1.075268]	ND	(11)	[1.052631]
Benzo(k)fluoranthene	Q	(10)	Ξ	Q.	(10)	Ξ	Q	_	Q	(11)	[1.052631]
Benzoic acid	Q	(20)	[]	QN	(20)	Ξ	0.88 J	_	Q	(53)	[1.052631]
Benzyl alcohol	Q	(10)	[1]	QN	(10)	Ξ	Q.	ニ	S S	(11)	[1.052631]
Butylbenzylphthalate	QN	(10)	[1]	Q	(10)	Ξ	Q	(11) [1.075268]	Q	(11)	[1.052631]
Chrysene	QN	(10)	[1]	QN	(10)	Ξ	Q	(11) [1.075268]	Q.	(11)	[1.052631]
Di-n-octylphthalate	Q	(10)	Ξ	QN	(10)	Ξ	QN	(11) [1.075268]	QN	(11)	[1.052631]
Dibenz(a,h)anthracene	Q	(10)	Ξ	Q	(10)	Ξ	Q	(11) [1.075268]	QN	(11)	[1.052631]
Dibenzofuran	ON	(10)	Ξ	QN	(10)	Ξ	QN	(11) [1.075268]	ND	(11)	[1.052631]
Dibutylphthalate	QN	(10)	[1]	QN	(10)	Ξ	QN	(11) [1.075268]	QN	(11)	[1.052631]
Diethylphthalate	Q	(10)	Ξ	QN	(10)	Ξ	Q	(11) [1.075268]	QN	(11)	[1.052631]
Dimethylphthalate	QV	(10)	Ξ	QN	(10)	Ξ	ON	(11) [1.075268]	QN	(11)	[1.052631]
Fluoranthene	ND	(10)	[1]	Q	(10)	Ξ	Q	(11) [1.075268]	Q	(11)	[1.052631]
Compiled: 23 March 1995		() = Detec	= Detection Limit	[] = Factor	ND = Not [Not Detected	NA = Not Ap	= Not Applicable			

				ro S	SITE ID LOCATION ID SAMPLE ID					
PARAMETER 	03-60	03 03-GW-02 03-GW-02-01		03-	03 03-GW-03 03-GW-03-01	į	03 03-DS-01 Du	03 03-GW-03 03-DS-01 Dup of 03-GW-03-01	0	03 03-GW-04 03-GW-04-01
Fluorene	QN O	(10)	[1]	ND	(10)		ON	(11) [1.075268]	GN GN	[11]
Hexachlorobenzene	ND	(10)	[1]	QN	(10)	Ξ	ND		2	
Hexachlorobutadiene	ON	(10)	Ξ	N	(10)	Ξ	ND	(11) [1.075268]	N	
Hexachlorocyclopentadiene	QN	(10)	[1]	N _O	(10)	Ξ	QN	(11) [1.075268]	QN	_
Hexachloroethane	ND	(10)	Ĕ	ND	(10)	Ξ	QN	(11) [1.075268]	N N	_
Indeno(1,2,3-cd)pyrene	ND	(10)	[1]	N	(10)	[1]	ND		N	
Isophorone	QN	(10)	[1]	Q	(10)	Ξ	ND	(11) [1.075268]	QN	(11) [1.052631]
N-Nitrosodiphenylamine	ON	(10)	Ξ	Q.	(10)	Ξ	ON	(11) [1.075268]	ON N	(11) [1.052631]
N~Nitrosodipropylamine	ND	(10)	[<u>1</u>]	QN	(10)	[1]	ND	(11) [1.075268]	QN	
Naphthalene	ND	(10)	[1]	ON	(10)	Ξ	ND	(11) [1.075268]	Q.	(11) [1.052631]
Nitrobenzene	QN	(10)	[1]	QN	(10)	Ξ	QN	(11) [1.075268]	QN	(11) [1.052631]
Pentachlorophenol	QN	(20)	Ξ	Q	(20)	[1]	ON	(54) [1.075268]	QN	(53) [1.052631]
Phenanthrene	ON	(10)	[]	ON	(10)	[1]	ON	(11) [1.075268]	ON	(11) [1.052631]
Phenol	QN	(10)	[]	S	(10)		NO	(11) [1.075268]	QN	(11) [1.052631]
Pyrene	QN	(10)	[]	QN	(10)	[1]	QN	(11) [1.075268]	QN	(11) [1.052631]
bis(2-Chloroethoxy)methane	ON	(10)	[1]	Q.	(10)	Ξ	ND	(11) [1.075268]	QN	(11) [1.052631]
bis(2-Chloroethyl)ether	Q.	(10)	Ξ	2	(10)	Ξ	QN	(11) [1.075268]	QN	(11) [1.052631]
bis(2-Chloroisopropyl)ether	Q	(10)	Ξ	2	(10)	Ξ	QN	(11) [1.075268]	8	(11) [1.052631]
bis(2-Ethylhexyl)phthalate	ON	(10)	Ξ	9	(10)	Ξ	41	(11) [1.075268]	Q	(11) [1.052631]
p-Chloroaniline	ON	(10)	Ξ	ON	(10)	[1]	QN	(11) [1.075268]	ON	(11) [1.052631]

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

Column					8 S	SITE ID LOCATION ID SAMPLE ID					
Fet rach forcethane No (2.5) 11 No (2.5) 12 No (2.5) 13 No (2.5) 14 No (2.5) 15 No (PARAMETER	04-	04 МW-02 МW-02-01		04- 04-P	04 -MW-03 IW-03-01			0 04	04 4-SW-01 -SW-01-01	
Care	SWR010 - Halomenated Volatile Organics	(1/511)		; ; ;	1 1 1 1 1 1 1 1 1 1	 	i 1 1 1 1				
tchi coethane ND (0.55) [1] ND (0.55) [1] NA ND (0.55) [1] ND (0.55) [1] NA ND (0.55) [1] ND (0.	1,1,1,2-Tetrachloroethane	(ag/ c) ND	(2.5)	[1]	QN	(5.5)	Ξ	\$Z	S	(2.5)	Ξ
Control Cont	1,1,1-Trichloroethane	Q.	(0.55)	Ξ	2	(0.55)	ΞΞ	V	2	(0.55)	ΞΞ
	1,1,2,2-Tetrachloroethane	QN	(0.3)	Ξ	QN	(0.3)	Ξ	NA	QN	(0.3)	ΞΞ
	1,1,2-Trichloroethane	Q	(0.2)	Ξ	QN	(0.2)	Ξ	NA	QN	(0.2)	Ξ
	1,1-Dichloroethane	Q	(0.5)	Ξ	ND	(0.5)	Ξ	NA	N	(0.5)	Ξ
	1,1-Dichloroethene	Q.	(0.7)	Ξ	ND	(0.7)	Ξ	NA	ON	(0.7)	Ξ
	1,2,3-Trichloropropane	S	(1.6)	Ξ	ND	(1.6)	Ξ	NA	QN	(1.6)	Ξ
	1,2-Dichlorobenzene	Q	(0.25)	Ξ	Q.	(0.25)	Ξ	NA	QN	(0.25)	Ξ
	1,2-Dichloroethane	Q	(0.15)	Ξ	Q	(0.15)	Ξ	NA	.19	(0.15)	Ξ
No (0.22) [1] NO (0.23) [1] NA NO (0.25) (0.25	1,2-Dichloropropane	2	(0.15)	[1]	ON	(0.15)	Ξ	NA	ON	(0.15)	Ξ
No (0.25) (1) NO (0.25) (1) NA NA NO (0.25) (1) NA NA NO (0.25) (1) NA NA NO (0.25) (1) NA NO (0.25) (1.2	1,3-Dichlorobenzene	S S	(0.32)	Ξ	ND	(0.32)	Ξ	NA	QN	(0.32)	[]
ND (3.4) [1] ND (3.4) [1] NA ND (3.4) ethylvinylether ND (0.6) [1] ND (0.6) [1] NA ND (0.6) ethylvinylether ND (0.1) [1] NA ND (0.6) nloromethane ND (0.1) [1] NA ND (0.1) nloromethane ND (0.35) [1] ND (0.35) [1] NA ND (0.5) nane ND (0.35) [1] ND (0.35) [1] NA ND (0.53) nane ND (0.35) [1] ND (0.35) [1] NA ND (0.53) nane ND (0.35) [1] ND (0.35) [1] NA ND (0.53) nane ND (0.15) [1] ND (0.75) [1] NA ND (0.75) nane ND	1,4-Dichlorobenzene	Q.	(0.25)	Ξ	ND	(0.25)	Ξ	NA	ON	(0.25)	Ξ
ethylvinylether ND (0.6) [1] ND (0.6) [1] ND (0.6) [1] ND (0.6) [1] NA ND (0.6) Acare ND (0.1) [1] ND (0.1) [1] NA ND (0.1) Anne ND (0.5) [1] ND (0.5) [1] NA ND (0.5) Anne ND (0.35) [1] ND (0.35) [1] NA ND (0.5) Anne ND (0.35) [1] ND (0.35) [1] NA ND (0.5) Anne ND (0.35) [1] ND (0.35) [1] NA ND (0.35) Anne ND (0.15) [1] ND (0.75) [1] NA ND (0.75) Anne ND (0.15) [1] ND (0.25) [1] NA ND (0.75) Anne	1-Chlorohexane	2	(3.4)	Ξ	QN	(3.4)	Ξ	NA	QN	(3.4)	Ξ
cene ND (1.6) [1] ND (1.6) [1] NA ND (0.1) n (0.1) [1] ND (0.5) [1] NA ND (0.5) n (0.55) [1] NA (0.5) [1] NA ND (0.5) n (0.35) [1] ND (0.35) [1] NA ND (0.35) n (0.35) [1] ND (0.37) [1] NA ND (0.35) n (0.15) [1] ND (0.37) [1] NA ND (0.35) n (0.15) [1] ND (0.15) [1] NA ND (0.15) [1] ND (0.15) [1] ND (0.15)	2-Chloroethylvinylether	S	(0.0)	Ξ	ON	(0.6)	Ξ	NA	ND	(0.6)	Ξ
ND (0.1) [1] ND (0.1) [1] NA ND (0.1) n (0.5) [1] ND (0.5) [1] NA ND (0.5) nane ND (0.35) [1] NA ND (0.35) nzene ND (0.35) [1] NA ND (0.35) nzene ND (0.3) [1] ND (0.35) [1] NA ND (0.35) nane ND (0.7) [1] ND (0.7) [1] NA ND (0.35) m ND (0.15) [1] ND (0.15) [1] NA ND (0.15) thane ND (0.5) [1] NA NA ND (0.15) thane ND (0.5) [1] NA ND (0.15) [1] NA ND (0.15) sthane ND (0.5) [1] ND (0.7)	Bromobenzene	Q	(1.6)	Ξ	ND	(1.6)	Ξ	NA	QN	(1.6)	Ξ
n ND (0.5) [1] ND (0.5) [1] NA ND (0.5) hane ND (0.35) [1] ND (0.35) [1] NA ND (0.35) retrachloride ND (0.35) [1] ND (0.35) [1] NA ND (0.35) name ND (0.7) [1] ND (0.7) [1] ND (0.7) rm ND (0.15) [1] NA NA ND (0.15) rm ND (0.15) [1] NA NA ND (0.15) rm ND (0.25) [1] NA NA ND (0.15) rb (0.25) [1] ND (0.25) [1] NA ND (0.15) rb (0.15) [1] ND (0.15) [1] NA ND (0.15) rb (0.15) [1] ND (0.10) [1]<	Bromodichloromethane	QN	(0.1)	Ξ	QN	(0.1)	Ξ	NA	QN	(0.1)	Ξ
hane ND (0.35) [1] ND (0.35) [1] ND (0.35) [1] NA ND (0.35) strachloride ND (0.35) [1] NA NA ND (0.35) name ND (0.7) [1] ND (0.7) [1] NA ND (0.7) thane ND (0.15) [1] ND (0.15) [1] NA ND (0.15) thane ND (0.15) [1] ND (0.15) [1] NA ND (0.15) thane ND (0.15) [1] ND (0.15) [1] NA ND (0.15) thane ND (0.15) [1] ND (0.16) [1] NA ND (0.16) thane ND (0.10) [1] ND (0.10) [1] NA ND (0.16) schloride ND (0.10) [1] ND (Bromoform	Q.	(0.5)	Ξ	QN	(0.5)	Ξ	NA	QN	(0.5)	Ξ
etrachloride ND (0.35) [1] ND (0.35) [1] NA ND (0.35) nzene ND (0.3) [1] ND (0.3) [1] NA ND (0.3) hane ND (0.7) [1] NA ND (0.7) rm ND (0.15) [1] NA ND (0.15) thane ND (0.5) [1] NA ND (0.15) thane ND (0.2) [1] NA NA ND (0.5) thane ND (0.2) [1] NA NA ND (0.2) sthane ND (0.4) [1] NA NA ND (0.4) srothere ND (0.4) [1] NA NA ND (0.1) schene ND (0.2) [1] NA NA ND (0.2) schoride ND (0.1) [1] N	Bromomethane	QN	(0.35)	Ξ	QN	(0.35)	Ξ	NA	N	(0.35)	Ξ
name ND (0.3) [1] ND (0.3) [1] NA ND (0.7) name ND (0.7) [1] NA ND (0.7) rm ND (0.15) [1] NA ND (0.15) thane ND (0.5) [1] NA ND (0.5) thane ND (0.2) [1] NA ND (0.5) sthane ND (0.2) [1] NA ND (0.2) sthane ND (0.4) [1] ND (0.4) [1] NA ND (0.2) sthane ND (0.4) [1] ND (0.4) [1] NA ND (0.1) rocthene ND (0.1) [1] ND (0.2) [1] NA ND (0.2) rocthene ND (0.2) [1] ND (0.2) [1] NA ND (0.2) rocthen	Carbon tetrachloride	2	(0.35)	[]	ON	(0.35)	Ξ	NA	QN	(0.35)	Ξ
name ND (0.7) [1] ND (0.7) [1] ND (0.7) rm ND (0.15) [1] ND (0.15) [1] NA ND (0.15) thane ND (0.2) [1] NA ND (0.5) nloromethane ND (0.2) [1] NA ND (0.2) ethane ND (0.4) [1] ND (0.4) (0.6) schloride ND (0.1) [1] NA ND (0.1) schloride ND (0.1) [1] NA ND (0.1) schloride ND (0.2) [1] NA ND (0.1) schloride ND (0.2) [1] NA ND (0.2) schloride ND (0.2) [1] NA ND (0.2) schloride ND (0.2) [1] NA ND (0.2) schloride	Chlorobenzene	9	(0.3)	Ξ	Q	(0.3)	Ξ	NA	QN	(0.3)	Ξ
rm ND (0.15) [1] ND (0.15) [1] ND (0.15) thane ND (0.5) [1] NA ND (0.5) nloromethane ND (0.2) [1] NA ND (0.2) ethane ND (1.6) [1] NA ND (0.1) schloride ND (0.4) [1] NA ND (0.4) schloride ND (0.1) [1] NA ND (0.1) schloride ND (0.2) [1] NA ND (0.1) schloride ND (0.2) [1] NA ND (0.2) schloride ND (0.25) [1] NA ND (0.25) schloride ND (0.25) [1] NA ND (0.25)	Chloroethane	윤 .	(0.7)	Ξ	QN	(0.7)	Ξ	NA	Q.	(0.7)	Ξ
thane ND (0.5) [1] ND (0.5) thane ND (0.2) [1] ND (0.2) ethane ND (1.6) [1] ND (0.2) ethane ND (0.4) [1] ND (0.4) ethane ND (0.4) [1] ND (0.4) proteine ND (0.1) [1] ND (0.1) porthene ND (0.2) [1] NA ND (0.2) porthene ND (0.55) [1] NA ND (0.55) foride ND (0.25) [1] NA ND (0.25)	Chloroform	2	(0.15)	Ξ	ON	(0.15)	Ξ	NA	QN	(0.15)	Ξ
ND (0.2) [1] ND (0.2) ethane ND (1.6) [1] NA ND (1.6) ethane ND (0.4) [1] NA ND (0.4) e chloride ND (0.4) [1] NA ND (0.4) proethene ND (0.1) [1] NA ND (0.2) sethene ND (0.2) [1] NA ND (0.2) porthene ND (0.55) [1] NA ND (0.25) loride ND (0.25) [1] NA ND (0.25)	Chloromethane	S	(0.5)	Ξ	QN	(0.5)	Ξ	NA	QN	(0.5)	[]
thane ND (1.6) [1] ND (1.6) [1] NA ND (1.6) [1] ND (0.4) [1] ND (0.4) [1] ND (0.4) [1] ND (0.4) [1] ND (0.1) ND (0.1) ND (0.1) ND (0.2) [1] ND (0.25) [1] ND (0.	Dibromochloromethane	Q	(0.5)	Ξ	QN	(0.2)	Ξ	NA	ON	(0.2)	Ξ
e chloride ND (0.4) [1] ND (0.4) proethene ND (0.1) [1] NA ND (0.1) poethene ND (0.2) [1] NA ND (0.2) polluoromethane ND (0.55) [1] ND (0.55) loride ND (0.25) [1] NA ND (0.25)	Dibromomethane	QN	(1.6)	Ξ	ND	(1.6)	Ξ	NA	N	(1.6)	Ξ
ordethene ND (0.1) [1] ND (0.1) bethene ND (0.2) [1] NA ND (0.2) offluoromethane ND (0.55) [1] ND (0.55) [1] NA ND (0.55) loride ND (0.25) [1] ND (0.25) [1] NA ND (0.25)	Methylene chloride	9	(0.4)	Ξ	ND	(0.4)	Ξ	NA	ON	(0.4)	Ξ
Oethene ND (0.2) [1] ND (0.2) Ofluoromethane ND (0.55) [1] ND (0.55) Ioride ND (0.25) [1] NA ND (0.25)	Tetrachloroethene	Q.	(0.1)	Ξ	QN	(0.1)	Ξ	NA	ND	(0.1)	Ξ
Ofluoromethane ND (0.55) [1] ND (0.55) [1] NA ND (0.55) [1] Oride ND (0.25) [1] ND (0.25) [1] NA ND (0.25) (0.25)	Trichloroethene	S S	(0.2)	Ξ	Q	(0.2)	Ξ	NA	ON .	(0.2)	Ξ
loride ND (0.25) [1] ND (0.25) [1] NA ND (0.25)	Trichlorofluoromethane	QN	(0.55)	Ξ	QN	(0.55)	Ξ	NA	QN	(0.55)	Ξ
20 Name 100E	Vinyl chloride	ND	(0.25)	[1]	Q	(0.25)	[1]	NA	ND	(0.25)	[1]
	Committee . 00 Name 1005		10000	4 5 - 5 - 5 - 5		1					

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

·					SITE ID LOCATION ID SAMPLE ID					
PARAMETER 	04	04 04-MW-02 04-MW-02-01		04	04 04-MW-03 04-MW-03-01		04-MW-03 04-DS-06 Dup of 04-MW-03-01	04-	04 04-SW-01 04-SW-01-01	
cis-1,3-Dichloropropene	ND	(0.2)	[1]	N	(0.2)	[]	NA	QN	(0.2)	[1]
trans-1,2-Dichloroethene	Q	(0.25)	[1]	QN	(0.25)	Ξ	NA	QN	(0.25)	[1]
trans-1,3-Dichloropropene	ON .	(0.15)	[1]	NO	(0.15)	[1]	NA	QN	(0.15)	<u> </u>
SWOUIS - NORMALOGENATED VOIATILE Urganics (ug/L)	Urganics (ug/	L) (2000)	Ξ	Š	(0000)	3	:			
Ethy] ether	2 S	(10000)	ΞΞ	2 8	(2000)	ΞΞ	AN .	Q.	(2000)	ΞΞ
Methyl ethyl ketone	<u>S</u>	(3000)	ΞΞ	S S	(3000)	ΞΞ	AN AN	2 8	(10000)	ΞΞ
Methyl isobutyl ketone	QN	(2000)	ΞΞ	Q. Q.	(2000)		K N	§ 8	(2000)	ΞΞ
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)	1		()	7		Ē	(5000)	77
Diesel Range Organics (2)		(190)	[0.952]	QN	(200)	[1.02]	ĄN	CZ	(200)	[0 076]
SW8020 - Aromatic Volatile Organics	cs (ng/L)				,			È	(503)	[0.370]
1,2-Dichlorobenzene	QN	(0.4)	[1]	ND	(0.4)	[1]	NA	ON	(0.4)	Ξ
1,3-Dichlorobenzene	QN	(0.2)	Ξ	QN	(0.2)	[1]	NA	QN	(0.2)	3 =
1,4-Dichlorobenzene	ND	(0.4)	[1]	QN	(0.4)	[1]	NA	ON	(0.4)	ΞΞ
Benzene	QN	(0.3)	Ξ	N	(0.3)	Ξ	NA	ND	(0.3)	Ξ
Chlorobenzene	QN	(0.2)	Ξ	ON	(0.2)	Ξ	NA	QN	(0.2)	ΞΞ
Ethylbenzene	QN	(0.2)	Ξ	ON	(0.2)	Ξ	NA	QN	(0.2)	Ξ
Gasoline Range Organics (2)	120	(100)	[1]	QN	(100)	Ξ	NA	ND	(100)	
Toluene	ND	(0.5)	Ξ	QN	(0.2)	Ξ	NA	0.25 B	(0.2)	Ξ
Total xylenes		(0.3)	Ξ	QN	(0.3)	[]	NA	QN	(0.3)	Ξ
5W8U8U - Organochlorine Pesticides and PCBs										
4,4'-DDD	QN		[1.098901]	QN	(0.01) [1	[1.041666]	NA	ON	(0.01)	Ξ
4,4'-DDE	Q	(0.011)	[1.098901]	ND	(0.01) [1	[1.041666]	NA	0.012 PB	(0.01)	
4,4'-DDT	Q.		[1.098901]	QN	(0.021) [1	[1.041666]	NA	0.0009 PJB	(0.05)	Ξ
Aldrin	ON		[1.098901]	ON	(0.01) [1	[1.041666]	NA	ON	(0.01)	Ξ
Chlordane	QN		[1.098901]	ON		[1.041666]	NA	ND	(0.02)	ΞΞ
Dieldrin	0.0073 KJB		[1.098901]	0.0094 J		[1.041666]	NA	0.0086 J	(0.01)	[1]
Endosulfan I	QN		[1.098901]	0.0078 KJB		[1.041666]	NA	ON	(0.01)	Ξ
Endosulfan II	0.0097 KJB		[1.098901]			[1.041666]	NA	0.028 JB	(0.03)	Ξ
Endosultan Sultate	0.012 JB	_	[1.098901]			[1.041666]	NA	QN	(0.05)	[1]
Endrin	Q	(0.011) [1	[1.098901]	0.025 B	(0.01) [1	[1.041666]	NA	ND	(0.01)	[1]

() = Detection Limit [] = Factor

= Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID					
	04	04 04-MW-02		04-M	04 04-MW-03		04 04-MW-03	-04-	04 04-SW-01	
PARAMETER 	- 40	04-MW-02-01		04-Mv	04-MW-03-01		04-DS-06 Dup of 04-MW-03-01	04-5	04-SW-01-01	1 1 1 1
Endrin Aldehyde	0.0033 KJB	(0.022)	[1.098901]	0.0035 KJB	(0.021)	[1.041666]	NA	0.0064 KJB	(0.05)	Ξ
Heptachlor	0.0064 KJB	(0.011)	[1.098901]	QN	(0.01)	[1.041666]	NA	0.0028 KJB	(0.01)	Ξ
Heptachlor epoxide	QN	(0.011)	_	N	(0.01)	[1.041666]	NA	0.0033 JB	(0.01)	Ξ
Methoxychlor	QN	(0.055)	[1.098901]	0.018 KJ	(0.052)	[1.041666]	NA	QN	(0.02)	Ξ
PCB-1016	ON	(0.11)	[1.098901]	QN	(0.1)	[1.041666]	NA	ON	(0.1)	Ξ
PCB-1221	QN	(0.22)	[1.098901]	ND	(0.21)	[1.041666]	NA	ND	(0.2)	Ξ
PCB-1232	ON	(0.22)	[1.098901]	QN	(0.21)	[1.041666]	NA	QN	(0.2)	Ξ
PCB-1242	ON	(0.11)	[1.098901]	QN	(0.1)	[1.041666]	NA	ON	(0.1)	Ξ
PCB-1248	QN	(0.11)	[1.098901]	N N	(0.1)	[1.041666]	NA	QN	(0.1)	Ξ
PCB-1254	QV	(0.22)	[1.098901]	QN	(0.21)	[1.041666]	NA	QN	(0.2)	Ξ
PCB-1260	QN	(0.22)	[1.098901]	ND	(0.21)	[1.041666]	NA	ND	(0.5)	Ξ
Toxaphene	QN	(0.55)	[1.098901]	ND	(0.52)	[1.041666]	NA	QN	(0.5)	Ξ
alpha-BHC	0.0073 JB	(0.011)	[1.098901]	0.014 B	(0.01)	[1.041666]	NA	0.015 B	(0.01)	Ξ
beta-BHC	ON	(0.011)	[1.098901]	0.023	(0.01)	[1.041666]	NA	QN	(0.01)	Ξ
delta-BHC	QN	(0.011)	[1.098901]	0.019 B	(0.01)	[1.041666]	NA	N	(0.01)	Ξ
gamma-BHC	QN	(0.011)	[1.098901]	0.0086 KJB	(0.01)	[1.041666]	NA	0.004 PJB	(0.01)	Ξ
SW8270 - Semivolatile Organics	(ng/L)									
1,2,4-Trichlorobenzene	ON	(10)	[1.030927]	QN	(10)	[1.036269]	NA	QN	(9.4) [0.	[0.943396]
1,2-Dichlorobenzene	QN	(10)	[1.030927]	QN	(10)	[1.036269]	NA	ON	(9.4) [0.	[0.943396]
1,3-Dichlorobenzene	QN	(10)	[1.030927]	ON	(10)	[1.036269]	NA	ON	(9.4) [0.	[0.943396]
1,4-Dichlorobenzene	QN	(10)	[1.030927]	QN	(10)	[1.036269]	NA	ON		[0.943396]
2,4,5-Trichlorophenol	ON	(10)	[1.030927]	ON	(10)	[1.036269]	NA	ON	(9.4) [0.	[0.943396]
2,4,6-Trichlorophenol	QN	(10)	_	ON	(10)	[1.036269]	NA	QN	(9.4) [0.	[0.943396]
2,4-Dichlorophenol	QN	(10)	[1.030927]	QN	(10)	[1.036269]	NA	QN	(9.4) [0.	[0.943396]
2,4-Dimethylphenol	QN	(10)	[1.030927]	QN	(10)	[1.036269]	NA	ON	(9.4) [0.	[0.943396]
2,4-Dinitrophenol	QN	(25)	[1.030927]	ON	(25)	[1.036269]	. VN	QN	(47) [0.	[0.943396]
2,4-Dinitrotoluene	QN	(10)	[1.030927]	QN	(10)	[1.036269]	NA	Q.	(9.4) [0.	[0.943396]
2,6-Dinitrotoluene	QN	(10)	[1.030927]	ON	(10)	[1.036269]	NA	QN	(9.4) [0.	[0.943396]
2-Chloronaphthalene	ND	(10)	_	ON	(10)	[1.036269]	٧N	QN	(9.4) [0.	[0.943396]
2-Chlorophenol	QN	(10)	[1.030927]	ND	(10)	[1.036269]	NA	QN	(9.4) [0.	[0.943396]
2-Methylnaphthalene	ON	(10)	[1.030927]	ND	(10)	[1.036269]	NA	ON	(9.4) [0.	[0.943396]
1 00 H					9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Compiled: 23 March 1995] = ()	= Detection Limit	t [] = Factor	= Q	Not Detected	NA = Not Applicable			

	4 04	04-SW-01 04-DS-06 Dup of 04-MW-03-01 04-SW-01-01		ND (9.4) [0.943396]	_	ND (9.4) [0.943396]	ND (19) [0.943396]	ND (47) [0.943396]	ND (47) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (47) [0.943396]	ND (47) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	3 J (47) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]	ND (9.4) [0.943396]					
	04	04-MW-03 04-DS-06 Dup of 0		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SITE ID LOCATION ID SAMPLE ID	04	04-MW-03 04-MW-03-01		(10) [1.036269]	(52) [1.036269]	(10) [1.036269]	(21) [1.036269]	(52) [1.036269]		(10) [1		_	(10) [1	(52) [1			(10) [1			(10) [1		(10) [1.036269]		ر (52)	(10)	(10)	(10) [1.036269]			(10) [1.036269]	(10)	(10) [1.036269]		(10) [1.036269]
	04	04-MW-02 04-MW-02-01		[1.030927]	(52) [1.030927] ND	(10) [1.030927] ND	[1.030927]	(52) [1.030927] ND	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	(10) [1.030927] ND	二		[1.030927] 5	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	[1.030927]	(10) [1.030927] ND	[1.030927]	(10) [1.030927] ND
		Ö		ON	ON	ON	ON	QN	QN	QN	QN	QN	QN	QN	QN	QN	ND	QN	QN	Q.	QN	QN	QN	QN	QN	ND	QN	ON	Q.	Q	QN	QN	ON	ND
		PARAMETER	! ! ! ! !	2-Methylphenol(o-cresol)	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chlorophenyl phenyl ether	4-Methylphenol(p-cresol)	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Butylbenzylphthalate	Chrysene	Di-n-octylphthalate	Dibenz(a,h)anthracene	Dibenzofuran	Dibutylphthalate	Diethylphthalate	Dimethylphthalate	Fluoranthene

() = Detection Limit [] = Factor

Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				SITE ID LOCATION ID SAMPLE ID					
	70	04 04-mw-02	č	04 04 - MW - 03		04 ∩4-M⊌∩3	è	04	
PARAMETER	04	04-MW-02-01	04.	04-MW-03-01	04-DS-06 Dt	04-DS-06 Dup of 04-MW-03-01	04-	04-SW-01-01	
Fluorene	QN	(10) [1.030927]	QN	(10) [1.036269]	٤	NA	N	(9.4)	[0.943396]
Hexachlorobenzene	QN	(10) [1.030927]	S	(10) [1.036269]	_	NA	ON		[0.943396]
Hexachlorobutadiene	ON	(10) [1.030927]	QN	(10) [1.036269]	_	NA	QN	(9.4)	[0.943396]
Hexachlorocyclopentadiene	ND	(10) [1.030927]	QN	(10) [1.036269]	_	NA	QN	(9.4)	[0.943396]
Hexachloroethane	QN	(10) [1.030927]	ON	(10) [1.036269]	~	NA	QN	(9.4)	[0.943396]
Indeno(1,2,3-cd)pyrene	ND	口	Q.	二	~	NA	ON	(9.4)	[0.943396]
Isophorone	S	(10) [1.030927]	ON	(10) [1.036269]	~	NA	QN	[9.4]	[0.943396]
N-Nitrosodiphenylamine	QV		Q	(10) [1.036269]	~	NA	ND	(9.4)	[0.943396]
N-Nitrosodipropylamine	Q		ND	(10) [1.036269]	~	NA	, QN	(9.4)	[0.943396]
Naphthalene	QN		QN	(10) [1.036269]	~	NA	QN	(9.4)	[0.943396]
Nitrobenzene	Q	二	QN	(10) [1.036269]	~	NA	QN	(9.4)	[0.943396]
Pentachlorophenol	ON		ND	(52) [1.036269]	_	NA	QN	(47)	[0.943396]
Phenanthrene	QN	<u>=</u>	ND	(10) [1.036269]	_	NA	QN	(9.4)	[0.943396]
Phenol	ON.		QN	_	~	NA	QN	(9.4)	[0.943396]
Pyrene	ND	_	Q		~	NA	QN	(9.4)	[0.943396]
bis(2-Chloroethoxy)methane	ON		ND	(10) [1.036269]	~	NA	QN	(9.4)	[0.943396]
bis(2-Chloroethyl)ether	ON	(10) [1.030927]	N	(10) [1.036269]	~	NA	QN	(9.4)	[0.943396]
bis(2-Chloroisopropyl)ether	QN	(10) [1.030927]	ND	(10) [1.036269]	_	NA	QN	(9.4)	[0.943396]
bis(2-Ethylhexyl)phthalate	6.5 JB		75	(10) [1.036269]	_	NA	0.82 JB	(9.4)	0.943396]
p-Chloroaniline		(10) [1.030927]	Q	(10) [1.036269]	2	NA	ON	(9.4)	[0.943396]
SW8310 - Polynuclear Aromatic Hydrocarbons	rocarbons (ug/L)	/r)							
Acenaphthene '	ON	(1.9) [1.052631]	ND	(1.8) [1.025641]	QN	(1.8) [1.010101]	QN	(1.9)	[1.052631]
Acenaphthylene	QN	(2.4) [1.052631]	ND	(2.4) [1.025641]	QN	(2.3) [1.010101]	QN	(2.4)	[1.052631]
Anthracene	QN	(0.69) [1.052631]	ND	(0.68) [1.025641]	Q	(0.67) [1.010101]	ND] (69.0)	[1.052631]
Benzo(a)anthracene	ON	(0.014) [1.052631]	NO	(0.013) [1.025641]	QN	(0.013) [1.010101]	0.0086 J	(0.014)	[1.052631]
Benzo(a)pyrene	QN	(0.024) [1.052631]	ND	(0.024) [1.025641]	QN	(0.023) [1.010101]	0.012 J	(0.024)	[1.052631]
Benzo(b)fluoranthene	N	(0.019) [1.052631]	QN	(0.018) [1.025641]	QN	(0.018) [1.010101]	QN	(0.019)	[1.052631]
Benzo(g,h,i)perylene	QN	(0.08) [1.052631]	ON	(0.078) [1.025641]	QN	(0.077) [1.010101]	0.025 J	[0.08]	[1.052631]
Benzo(k)fluoranthene	QN		ND		ON	(0.017) [1.010101]	0.01 J	(0.018)	[1.052631]
Chrysene	Q.	_	QN		ND	(0.15) [1.010101]	QN	(0.16)	[1.052631]
Dibenzo(a,h)anthracene	Q	(0.032) [1.052631]	Q	(0.031) [1.025641]	ND	(0.03) [1.010101]	0.0095 JB	(0.032)	[1.052631]
		+imi no:+no+on = ()	-	CIN	1	1 5 1-1 -			
compiled: 23 March 1995		() = Detection Limit	LJ = ractor	cor NU = Not Detected	Z Z	= Not Applicable			

PARAMETER	O O O O O	04-MW-02 04-MW-02-01 	SITE 1D LOCATION ID SAMPLE ID 04 04-MW-03-01 04-MW-03-MW-03-01 04-MW-03-MW-03-01 04-MW-03-MW-03-01 04-MW-03-MW-03-01 04-MW-03-MW-03-01 04-MW-03-MW-03-MW-03-01 04-MW-03-	F I ID 110N ID 11E ID 1-03 03-01 (0.22) [1.025641] 0.044) [1.025641] (1.8) [1.025641]	0 04-DS-06 D ND ND ND	04 04-MW-03 04-DS-06 Dup of 04-MW-03-01 	0. 04. 04. 0.016 JB	04-SW-01 04-SW-01 04-SW-01-01 (0.22) [1.052631] (0.22) [1.052631] (0.045) [1.052631]
Phenanthrene	QN	(0.67) [1.052631]	(0.66)	(0.66) [1.025641]	ON	(0.65) [1.010101]	ND	(0.67) [1.052631
Pyrene	QN	(0.28) [1.052631]	ND (0,28)	(0.28) [1.025641]	QN	(0.27) [1.010101]	. C	(0.28) [1.052631]

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

·				/s 1007	SITE ID LOCATION ID SAMPLE ID					***		
	04	04 04-SW-01	-	. 04-	04 04-SW-02		J	04 04-SW-03	·		04-SW-04	
PARAMETER 	04-DS-03 Du	Dup of 04-SW-01-01	-01	04-8	04-SW-02-01		04	04-SW-03-01		0	04-SW-04-01	
SW8010 - Halogenated Volatile Organics	rganics (ug/L)											
1,1,1,2-Tetrachloroethane	QN	(5.5)	[1]	Q	(2.5)	Ξ	Q	(2.5)	[1]	N	(2.5)	[1]
1,1,1-Trichloroethane	2	(0.55)	Ξ3	2 :	(0.55)	Ξ	2	(0.55)	Ξ	Q	(0.55)	Ξ
<pre>1,1,2,2~!etrachloroethane 1,1,2_Twichloroethane</pre>	2 2	(0.3)	ΞΞ	2 5	(0.3)	ΞΞ	2 5	(0.3)	ΞΞ	2 9	(0.3)	ΞΞ
1,1,2-iriciloroethane	2 2	(0.5)	ΞΞ	2 5	(0.6)	ΞΞ	2 2	(0.2)	ΞΞ	2 2	(0.2)	ΞΞ
1,1-Dichloroethene	QN	(0.7)	ΞΞ	8	(0.7)	ΞΞ	2 8	(0.7)	ΞΞ	2 2	(0.7)	ΞΞ
1,2,3-Trichloropropane	QN	(1.6)	Ξ	S	(1.6)	Ξ	QN	(1.6)	ΞΞ	2	(1.6)	ΞΞ
1,2-Dichlorobenzene	QN	(0.25)	Ξ	Q.	(0.25)	Ξ	QN	(0.25)	Ξ	Q	(0.25)	Ξ
1,2-Dichloroethane	ON	(0.15)	Ξ	QN	(0.15)	Ξ	Ñ	(0.15)	[]	2	(0.15)	Ξ
1,2-Dichloropropane	QN	(0.15)	Ξ	N Q	(0.15)	Ξ	Q.	(0.15)	Ξ	2	(0.15)	[1]
1,3-Dichlorobenzene	QN N	(0.32)	Ξ	ND	(0.32)	Ξ	Q	(0.32)	Ξ	R	(0.32)	Ξ
1,4-Dichlorobenzene	ND	(0.25)	Ξ	ON	(0.25)	Ξ	QN	(0.25)	Ξ	9	(0.25)	Ξ
1-Chlorohexane	Q	(3.4)	Ξ	ND	(3.4)	Ξ	2	(3.4)	Ξ	Q	(3.4)	Ξ
2-Chloroethylvinylether	ON	(0.6)	Ξ	ND	(0.0)	Ξ	2	(0.6)	Ξ	2	(0.6)	Ξ
Bromobenzene	Q.	(1.6)	Ξ	Q	(1.6)	Ξ	2	(1.6)	Ξ	2	(1.6)	Ξ
Bromodichloromethane	QN	(0.1)	Ξ	Q	(0.1)	Ξ	R	(0.1)	Ξ	2	(0.1)	Ξ
Bromoform	Q	(0.5)	Ξ	QN	(0.5)	Ξ	2	(0.5)	Ξ	2	(0.5)	Ξ
Bromomethane	Q	(0.35)	Ξ	QN	(0.35)	Ξ	2	(0.35)	Ξ	N	(0.35)	Ξ
Carbon tetrachloride	QN	(0.35)	Ξ	Q.	(0.35)	Ξ	2	(0.35)	Ξ	2	(0.35)	Ξ
Chlorobenzene	QN :	(0.3)	Ξ	Q.	(0.3)	Ξ	2	(0.3)	[1]	R	(0.3)	Ξ
Chloroethane	Q :	(0.7)	ΞΞ	2 :	(0.7)	Ξ	2	(0.7)	Ξ:	2	(0.7)	Ξ
Chloroform	Q :	(0.15)	ΞΞ	9 :	(0.15)	Ξ3	2	(0.15)	Ξ	2	(0.15)	Ξ
cniorometnane	מא :	(0.5)	Ξ	ON !	(0.5)	Ξ	Q.	(0.5)	Ξ	2	(0.5)	Ξ
Dibromochloromethane	Q :	(0.2)	Ξ	Q	(0.2)	Ξ	2	(0.2)	Ξ	2	(0.2)	Ξ
Dibromomethane	QN	(1.6)	Ξ	QN	(1.6)	Ξ	2	(1.6)	Ξ	2	(1.6)	[1]
Methylene chloride	QN	(0.4)	Ξ	NO NO	(0.4)	Ξ	S	(0.4)	Ξ	S	(0.4)	Ξ
Tetrachloroethene	Q	(0.1)	Ξ	Q	(0.1)	Ξ	8	(0.1)	Ξ	Q	(0.1)	[1]
Trichloroethene	QN	(0.5)	[]	Q	(0.2)	Ξ	2	(0.2)	Ξ	S	(0.2)	Ξ
Trichlorofluoromethane	9	(0.55)	Ξ	N _O	(0.55)	Ξ	2	(0.55)	Ξ	S	(0.55)	Ξ
Vinyl chloride	ON	(0.25)	[1]	QN	(0.25)	Ξ	N N	(0.25)	Ξ	ND	(0.25)	[1]
100F			47		9							
Compiled: 23 March 1995		() = Detect	= Detection Limit	[] = Factor	# Q	Not Detected	NA = Not	Not Applicable				

					SITE ID LOCATION ID SAMPLE ID						i i	
PARAMETER	0 04-DS-03 DI	04 04-SW-01 04-DS-03 Dup of 04-SW-01-01	01-01	040	04 - SW - 02 04 - SW - 02 - 01		04	04 - SW - 03 04 - SW - 03 04 - SW - 03 - 01		04-	04 04-SW-04 04-SW-04-01	
cis-1,3-Dichloropropene	ON SA	(0.2)	Ξ:	ON S	(0.2)	[]	Q	(0.2)	[1]	ND	(0.2)	Ξ
trans-1,2-Dichloropene trans-1,3-Dichloropropene	ON N	(0.25) (0.15)		O ON	(0.25) (0.15)	ΞΞ	S S	(0.25) (0.15)	[1]	ON ON	(0.25) (0.15)	ΞΞ
SW8015 - Nonhalogenated Volatile Organics (ug/L. Frhanol	Organics (ug/l	(2000)		ğ	(6000)	3	<u>.</u>		1 f			
Ethyl ether	Q.	(10000)	ΞΞ	2 S	(1000)	ΞΞ	S S	(2000)	ΞΞ	2 2	(2000)	ΞΞ
Methyl ethyl ketone	ND	(3000)	ΞΞ	2	(3000)	ΞΞ	2 2	(3000)	ΞΞ	Q Q	(10000)	ΞΞ
Methyl isobutyl ketone	QN	(2000)	Ξ	QN	(2000)	ΞΞ	QN	(2000)		Q. Q.	(2000)	
SW8015MEMP - Nonhalogenated Volatile Organics		(ug/L)				1			7		(222)	7,
Diesel Range Organics (2)		(210)	[1.05]	ND	(190)	[0.966]	ON	(190)	[0.952]	QN ON	(220)	[1.12]
SW8020 - Aromatic Volatile Organics	cs (ng/L)		•									,
1,2-Dichlorobenzene	ON	(0.4)	Ξ	ON	(0.4)	Ξ	QN	(0.4)	Ξ	N	(0.4)	[1]
1,3-Dichlorobenzene	ND	(0.2)	[1]	QN	(0.2)	[1]	ND	(0.2)	Ξ	ND	(0.5)	ΞΞ
1,4-Dichlorobenzene	QN	(0.4)	[1]	QN	(0.4)	[1]	ND	(0.4)	Ξ	ND	(0.4)	ΞΞ
Benzene	ON	(0.3)	Ξ	QN	(0.3)	[1]	ND	(0.3)	Ξ	ND	(0.3)	Ξ
Chlorobenzene	ND	(0.5)	Ξ	ON	(0.5)	[]	ND	(0.2)	Ξ	ON	(0.2)	ΞΞ
Ethylbenzene	QN	(0.2)	Ξ	QN	(0.2)	[1]	ON	(0.2)	Ξ	ND	(0.2)	Ξ
Gasoline Range Organics (2)	QN	(100)	[1]	QN	(100)	[1]	ON	(100)	Ξ	ND	(100)	ΞΞ
Toluene	0.25 B	(0.2)	[1]	QN	(0.2)	[1]	ON	(0.2)	Ξ	QN	(0.2)	Ξ
Total xylenes		(0.3)	[1]	QN	(0.3)	Ξ	QN	(0.3)	[1]	ND	(0.3)	Ξ
SW8080 - Organochlorine Pesticides and PCBs												
4,4'-DDD	ON		[0.995024]	N N	0] (5600.0)	[0.952380]	QN	0] (2600.0)	[0.952380]	QN	(0.011) [1.	[1.052631]
4,4'-DDE	0.011 B		[0.995024]	0.0082 KJB	(0.0095) [0	[0.952380]	0.011 8	(0.0095) [0	[0.952380]	0.01 KJB		[1.052631]
4,4'-00T	0.0027 PJB		[0.995024]	0.0085 KJB	(0.019)	[0.952380]	0.0018 PJB	(0.019)	[0.952380]	0.0098 KJB		[1.052631]
Aldrin	QN		[0.995024]	ND	(0.0095) [0	[0.952380]	ND	(0.0095) [0	[0.952380]	0.0001 PJB	(0.011) [1.	[1.052631]
Chlordane	ND	_	[0.995024]	QN	(0.048) [0	[0.952380]	ND	(0.048) [0.	[0.952380]	ON		[1.052631]
Dieldrin	0.0073 JB	_	[0.995024]	0.0073 JB	(0.0095)	[0.952380]	0.007 JB	(0.0095)	[0.952380]	0.009		[1.052631]
Endosulfan I	ON		[0.995024]	0.0014 KJB	0] (5600.0)	[0.952380]	ON		[0.952380]	0.0027 KJB		[1.052631]
Endosulfan II	0.024 JB		[0.995024]	0.014 JB	(0.029)	[0.952380]	0.025 JB		[0.952380]			[1.052631]
Endosulfan Sulfate	ND		[0.995024]	0.021 KJB	(0.048) [0	[0.952380]	ND		[0.952380]	0.036 KJB		[1.052631]
Endrin	QN	(0.01) [([0.995024]	QN	(0.0095) [0	[0.952380]	QN	(0.0095) [0.	[0.952380]	QN		[1.052631]

() = Detection Limit [] = Factor

"N = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

04-Sv-01 04-05-03 bup of 04-Sv-01-01 0 0.0024 KJB (0.01) [0.995024] 0.0078 KJB (0.019) [0.952380] 0 0.0024 KJB (0.01) [0.995024] 0.0078 KJB (0.019) [0.952380] 0 0.0024 KJB (0.01) [0.995024] ND (0.095) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.095) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.1) [0.995024] ND (0.005) [0.952380] ND (0.1) [0.995024] ND (1.0) [1.030927] ND (0.1) [0.993396] ND (1.0) [1.030927] ND (0.1) [0.943396] ND (1.0) [1.030927] ND (0.4) [0.943396] ND (1.0) [1.030927] ND (04		04		04		04
ND (0.02) [0.995024] 0.0076 KJB (0.019) [0.952380] 0.0054 JB (0.01) [0.995024] 0.0028 KJB (0.0095) [0.952380] 0.0054 JB (0.01) [0.995024] 0.01 PB (0.0095) [0.952380] 0.0054 JB (0.01) [0.995024] ND (0.098) [0.952380] ND ND (0.098) [0.9623380] ND (0.098) [0.9622380] ND (0.098) [0.	METER	04 04-05-03 Du	-SW-01	04-	-SW-02 SW-02-01	70	04-SW-03	00	04-SW-04
ND (0.02) [0.995024] 0.0076 KJB (0.019) [0.952380] 0.0024 KJB (0.01) [0.995024] 0.0028 KJB (0.0095) [0.952380] 0.0054 JB (0.01) [0.995024] 0.01 PB (0.0095) [0.952380] 0.0054 JB (0.01) [0.995024] ND (0.095) [0.952380] ND (0.05) [0.995024] ND (0.095) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.11) [0.995024] ND (0.0995) [0.952380] ND (0.01) [0.993396] ND (0.0995) [0.1030927] ND (0.94) [0.943396] ND (10) [1.030927] ND (10) [1.030927] ND (0.94) [0.943396] ND (0.94) [0.943396] ND (0.94) [0.9433							TO-50-86	.40	U4-3W-U4-UI
0.0024 KJB (0.01) [0.995024] 0.0028 KJB (0.0095) [0.952380] (0.0054 JB (0.01) [0.995024] 0.01 PB (0.0095) [0.952380] (0.0054 JB (0.01) [0.995024] ND (0.048) [0.952380] (0.051 [0.995024] ND (0.095) [0.952380] (0.01) [0.995024] ND (0.19) [0.952380] (0.01) [0.995024] ND (0.19) [0.952380] (0.01) [0.995024] ND (0.19) [0.952380] (0.01) [0.995024] ND (0.095) [0.952380] (0.01) [0.995024] ND (0.095) [0.952380] (0.003) KJB (0.01) [0.995024] ND (0.095) [0.952380] (0.0055) [0.9	∵in Aldehyde	ON		9/00		QN	(0.019) [0.952380]	0.0083 KJB	(0.021) [1.052631]
0.0054 JB (0.01) [0.995024] 0.01 PB (0.0095) [0.952380] ND (0.05) [0.995024] ND (0.048) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.01) [0.995024] ND (0.19) [0.952380] ND (0.01) [0.995024] ND (0.19) [0.952380] ND (0.01) [0.995024] ND (0.0995) [0.952380] ND (0.01) [0.9935024] ND (10) [1.030927] ND (0.48) [0.943396] ND (10) [1.030927] ND (0.49) [0.943396] ND (10) [1.030927] ND (0.41) [0.943396] ND (10) [1.030927] ND (0.42) [0.943396] ND (10) [1.030927] ND (0.44) [0.943396] ND (10	tachlor	0.0024 KJB		3028	_	0.0014 PJB	(0.0095) [0.952380]	0.0069 KJB	
ND (0.05) [0.995024] ND (0.048) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.01) [0.995024] ND (0.0995) [0.952380] ND (0.01) [0.995024] ND (0.0995) [0.952380] ND (0.01) [0.995024] ND (0.0995) [0.952380] ND (0.01) [0.9943396] ND (10) [1.030927] ND (0.4) [0.943396] ND (10) [1.030927]	tachlor epoxide	0.0054 JB	_		_	0.0048 JB	(0.0095) [0.952380]	0.0093 PJB	
ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.01) [0.995024] ND (0.19) [0.952380] ND (0.01) [0.995024] ND (0.19) [0.952380] ND (0.01) [0.995024] ND (0.095) [0.952380] ND (0.01) [0.995024] ND (10) [1.030927] ND (9.4) [0.943396] ND (10) [1.030927] ND (ıoxychlor	ON	_	QN	_	QN	(0.048) [0.952380]	QN	
ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.01) [0.995024] ND (0.19) [0.952380] O.0033 KJB (0.01) [0.995024] ND (0.095) [0.952380] O.0033 KJB (0.01) [0.995024] ND (0.095) [0.952380] ND (0.01) [0.995024] ND (0.095) [0.952380] O.0056 KJB (0.01) [0.995024] ND (0.095) [0.952380] ND (0.01) [0.995024] ND (10) [1.030927] ND (9.4) [0.943396] ND (10) [1.03092	-1016	QN		ON		QN	(0.095) [0.952380]	ON	
ND (0.1) [0.995024] ND (0.19) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] O.015 B (0.01) [0.995024] ND (0.095) [0.952380] O.0033 KJB (0.01) [0.995024] ND (0.0095) [0.952380] O.0056 KJB (0.01) [0.995024] ND (0.0095) [0.952380] O.0056 KJB (0.01) [0.995024] ND (0.0095) [0.952380] ND (0.01) [0.995024] ND (0.0095) [0.952380] ND (0.01) [0.995024] ND (10) [1.030927] ND (9.4) [0.943396] ND (10) [1.030927]	-1221	QN	_	Q.		QN	(0.19) [0.952380]	ND	(0.21) [1.052631]
ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] O.015 B (0.01) [0.995024] ND (0.095) [0.952380] O.0033 KJB (0.01) [0.995024] ND (0.0095) [0.952380] O.0056 KJB (0.01) [0.995024] ND (0.0095) [0.952380] O.0056 KJB (0.01) [0.995024] ND (0.0095) [0.952380] ND (0.01) [0.995024] ND (10) [1.030927] ND (9.4) [0.943396] ND (10) [1.030927]	-1232	QN		QN		QN	(0.19) [0.952380]	ON	_
ND (0.1) [0.995024] ND (0.095) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.48) [0.952380] 0.015 B (0.01) [0.995024] ND (0.095) [0.952380] 0.0033 KJB (0.01) [0.995024] ND (0.0095) [0.952380] ND (0.01) [0.995024] ND (0.0095) [0.952380] 0.0056 KJB (0.01) [0.995024] ND (0.0095) [0.952380] ND (9.4) [0.943396] ND (10) [1.030927] ND (9.4)	-1242	QN	_	ON		QN	(0.095) [0.952380]	N	
ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.5) [0.995024] ND (0.48) [0.952380] 0.015 B (0.01) [0.995024] ND (0.0095) [0.952380] 0.0033 KJB (0.01) [0.995024] ND (0.0095) [0.952380] ND (0.01) [0.995024] ND (0.0095) [0.952380] 0.0056 KJB (0.01) [0.995024] ND (0.0095) [0.952380] 0.0056 KJB (0.01) [0.995024] ND (10) [1.030927] ND (9.4) [0.943396] ND (10) [1.030927]	-1248	QN	_	Q	_	QN	(0.095) [0.952380]	QN	(0.11) [1.052631]
ND (0.2) [0.995024] ND (0.19) [0.952380] ND (0.5) [0.995024] ND (0.48) [0.952380] 0.015 B (0.01) [0.995024] ND (0.0095) [0.952380] 0.0033 KJB (0.01) [0.995024] ND (0.0095) [0.952380] ND (0.01) [0.995024] ND (0.0095) [0.952380] 0.0056 KJB (0.01) [0.995024] ND (0.0095) [0.952380] 0.0056 KJB (0.01) [0.99396] ND (10) [1.030927] ND (9.4) [0.943396] ND (10) [1.030927]	-1254	Q	_	QN		QN	(0.19) [0.952380]	QN	(0.21) [1.052631]
ND (0.5) [0.995024] ND (0.48) [0.952380] 0.0033 KJB (0.01) [0.995024] ND (0.0095) [0.952380] 0.0033 KJB (0.01) [0.995024] ND (0.0095) [0.952380] ND (0.01) [0.995024] ND (0.0095) [0.952380] 0.0056 KJB (0.01) [0.943396] ND (10) [1.030927] ND (9.4) [0.943396] ND (10) [1.030927]	-1260	QN		QN	_	QN	(0.19) [0.952380]	QN	(0.21) [1.052631]
0.015 B (0.01) [0.995024] ND (0.0095) [0.952380] 0.0033 KJB (0.01) [0.995024] ND (0.0095) [0.952380] ND (0.01) [0.995024] ND (0.0095) [0.952380] 0.0056 KJB (0.01) [0.995024] 0.014 B (0.0095) [0.952380] 0.0056 KJB (0.01) [0.943396] ND (10) [1.030927] ND (9.4) [0.943396] ND (10) [1.030927]	ıphene	QN		QN	_	ON	(0.48) [0.952380]	ON	
0.0033 KJB (0.01) [0.995024] ND (0.0095) [0.952380] ND (0.01) [0.995024] ND (0.0095) [0.952380] 0.0056 KJB (0.01) [0.995024] 0.014 B (0.0095) [0.952380] (ug/L) ND (9.4) [0.943396] ND (10) [1.030927]	na-BHC	0.0158		QN	_	0.012 B	(0.0095) [0.952380]	Q	(0.011) [1.052631]
ND (0.01) [0.995024] ND (0.0095) [0.952380] 0.0056 KJB (0.01) [0.995024] 0.014 B (0.0095) [0.952380] (ug/L) ND (9.4) [0.943396] ND (10) [1.030927]	ı-BHC	0.0033 KJB		QN		QN	(0.0095) [0.952380]	ND	(0.011) [1.052631]
0.0056 KJB (0.01) [0.995024] 0.014 B (0.0095) [0.952380] (ug/L) ND (9.4) [0.943396] ND (10) [1.030927] ND (10) [1.030927] ND (9.4) [0.943396] ND	ta-BHC	QN	_	ON		QN	(0.0095) [0.952380]	0.023	(0.011) [1.052631]
(ug/L) ND (9.4) [0.943396] ND (10) ND (9.4) [0.943396] ND	та-ВНС	0.0056 KJB		.014		0.0044 KJB	(0.0095) [0.952380]	ON	(0.011) [1.052631]
He ND (9.4) [0.943365] ND (10) (10)	70 - Semivolatile Organics	(ng/L)							
ND (9.4) [0.94336] ND (10) ND (9.4) [0.94336] ND (9.4)	4-Trichlorobenzene	ON	(9.4) [0.943396]	QN	_	ON	(9.4) [0.943396]	N	(9.4) [0.943396]
ND (9.4) [0.943396] ND (10) ND (9.4) [0.943396] ND (52) ND (9.4) [0.943396] ND (10) ND (9.4) [0.943396] ND (9.	-Dichlorobenzene	ON		ON		Q	(9.4) [0.943396]	QN	(9.4) [0.943396]
ND (9.4) [0.943396] ND (10) ND (9.4) [0.943396] ND (9.	-Dichlorobenzene	QN	_	QN		QN	(9.4) [0.943396]	Q	(9.4) [0.943396]
ND (9.4) [0.943396] ND (10) ND (9.4) [0.943396] ND (52) ND (9.4) [0.943396] ND (10) ND (9.	.Dichlorobenzene	ON		Q.	_	Q	(9.4) [0.943396]	ON	(9.4) [0.943396]
ND (9.4) [0.943396] ND (10) ND (10) ND (9.4) [0.943396] ND (10) ND (9.4) [0.943396] ND (10) ND (9.4) [0.943396] ND (52) ND (9.4) [0.943396] ND (10) ND (9.4) [0.943396] ND (9.4)	5-Trichlorophenol	ON	_	QN		QN	(9.4) [0.943396]	Q.	(9.4) [0.943396]
ND (9.4) [0.94336] ND (10) ND (10) ND (9.4) [0.94336] ND (10) ND (9.4) [0.94336] ND (10) ND (52) ND (10) ND (9.4) [0.94336] ND (9.4) [0.9436] ND (9.4) [0.94336] ND (9.4) [0.94336] ND (9.4) [0.94336] ND (9	6-Trichlorophenol	ON	_	NO NO		ON	(9.4) [0.943396]	ON	(9.4) [0.943396]
ND (9.4) [0.943396] ND (10) (47) [0.943396] ND (52) (52) (6.943396] ND (10) (6.94396] ND (1	.Dichlorophenol	ON		QN		ON	(9.4) [0.943396]	ND	(9.4) [0.943396]
ND (47) [0.943396] ND (52) ND (52) ND (10) ND (9.4) [0.943396] ND (9.4) [0.94339	.Dimethylphenol	QN N	_	QN	二	ON	(9.4) [0.943396]	ND	(9.4) [0.943396]
ND (9.4) [0.943396] ND (10) ND (10	.Dinitrophenol	QN	_	ND	_	QN	(47) [0.943396]	QN	(47) [0.943396]
ND (9.4) [0.943396] ND (10) ND (10	.Dinitrotoluene	ON	_	N		Q	(9.4) [0.943396]	QN	(9.4) [0.943396]
ND (9.4) [0.943396] ND (10) [ND (9.4) [0.94339] ND (10) [ND (9.4) [0.943	.Dinitrotoluene	QV .		QN	_	N	(9.4) [0.943396]	ON	(9.4) [0.943396]
ND (9.4) [0.943396] ND (10) [oloronaphthalene	ON		QN N	_	QN	(9.4) [0.943396]	ON	(9.4) [0.943396]
NN (0.4) [0.432505]	Jorophenol	QN		ND	_	Q	(9.4) [0.943396]	QV	(9.4) [0.943396]
ND (9.4) [0.943396] ND (10)	2-Methylnaphthalene	QN	(9.4) [0.943396]	ND	(10) [1.030927]	QN	(9.4) [0.943396]	ND	(9.4) [0.943396]

ND = Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

				SITE ID LOCATION ID SAMPLE ID				
	0	04 04-SW-01		04 04-5W-02		04 04-814-03		04
PARAMETER	04-DS-03 D	Dup of 04-SW-01-01		04-SW-02-01	040	04-SW-03-01	70	04-SW-04 04-SW-04-01
2-Methylphenol(o-cresol)	N	(9.4) [0.943396]	QN	(10) [1.030927]	QN	(9.4) [0.943396]	C	[9 4] [0 043306]
2-Nitroaniline	ON	(47) [0.943396]	QN	_	2		2 2	
2-Nitrophenol	QN	(9.4) [0.943396]	QN	(10) [1.030927]	QN Q	_	2	
3,3'-Dichlorobenzidine	Q	(19) [0.943396]	Q	(21) [1.030927]	2	(19) [0.943396]	S	
3-Nitroaniline	QN	(47) [0.943396]	ND	(52) [1.030927]	S	(47) [0.943396]	QN	
4,6-Dinitro-2-methylphenol	Q.		Q	(52) [1.030927]	Q	(47) [0.943396]	ON	(47) [0.943396]
4-bromopheny pheny ether	Q :		R	_	Q	(9.4) [0.943396]	QN	(9.4) [0.943396]
4-cnlore-3-methy/pheno/	QN :		Q		N Q	(9.4) [0.943396]	QN	(9.4) [0.943396]
4-chlorophenyl phenyl ether	QN :		2	□	N	_	QN	(9.4) [0.943396]
4-Methylphenol(p-cresol)	Q :		2		QN	(9.4) [0.943396]	ON	(9.4) [0.943396]
4-Nitroaniine	ON S		2		2	(47) [0.943396]	NO	(47) [0.943396]
4-Nitrophenol	<u> </u>		Q	_	R	(47) [0.943396]	QN	(47) [0.943396]
Acenaphthene	QN :		Q.		QN	(9.4) [0.943396]	Q.	(9.4) [0.943396]
Acenaphtnylene	Q :		2	_	QN	(9.4) [0.943396]	Q	(9.4) [0.943396]
Anthracene	QN	_	2	(10) [1.030927]	QN	(9.4) [0.943396]	2	(9.4) [0.943396]
Benzo(a)anthracene	Q :		R	(10) [1.030927]	QN	(9.4) [0.943396]	N	(9.4) [0.943396]
Benzo(a)pyrene	QN		S	(10) [1.030927]	QN	(9.4) [0.943396]	운	(9.4) [0.943396]
Benzo(b)†luoranthene	QN		Q.		Q.	(9.4) [0.943396]	QN Q	(9.4) [0.943396]
benzo(g,h,l)perylene	QN	_	Q	(10) [1.030927]	Q	(9.4) [0.943396]	QN	(9.4) [0.943396]
<pre>benzo(K)Tluoranthene b</pre>	Q :	ш.	2		N	_	ON N	(9.4) [0.943396]
Denzul alanta	D :		2		2.2 J		Q.	(47) [0.943396]
Denizyl alcohol	ON :		Q :		2		N	(9.4) [0.943396]
butyibenzyiphinalate Chamber	QV :		Q :	_	2		SN	(9.4) [0.943396]
chrysene	QN :		2	ニ	9	(9.4) [0.943396]	ND	(9.4) [0.943396]
Ul-n-octylphthalate	2		9	_	2	(9.4) [0.943396]	S	(9.4) [0.943396]
Ulbenz(a,n)anthracene	QN :		Q	_	S	(9.4) [0.943396]	Q.	(9.4) [0.943396]
Dibenzoturan Balantai III i	Q.		2	_	Q.	(9.4) [0.943396]	QN	(9.4) [0.943396]
Ulbutyiphthalate Nicthia Lithalate	Q.		2	_	ND	_	QN	(9.4) [0.943396]
Uletnyiphthalate Dimothulathalate	QN S		2 :		N		QN	(9.4) [0.943396]
Ulmetnylphthalate	Q :		₽.		Q		QN	(9.4) [0.943396]
riuoranthene	2	(9.4) [0.943396]	QN	(10) [1.030927]	ND	(9.4) [0.943396]	QN	(9.4) [0.943396]

[] = Factor () = Detection Limit

- Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE 10

		04		04		04			04	
O D L	0 20 - 20 - 70	04-SW-01		04-SW-02	c	04~SW-03		0 3	04-SW-04	
	04-03-03	04-D3-03 Dup 01 04-3M-01-01	Ö :		0 1	U4-5W-U3-U1 			04-SW-04-01	
Fluorene	QV	(9.4) [0.943396]	ON	(10) [1.030927]	ON	(9.4)	[0.943396]	QN	(9.4)	[0.943396]
Hexachlorobenzene	ON	(9.4) [0.943396]	ON	(10) [1.030927]	QN	(9.4)	[0.943396]	ON	(9.4)	[0.943396]
Hexachlorobutadiene	N	(9.4) [0.943396]	QN	(10) [1.030927]	NO	(9.4) [([0.943396]	QN QN	(9.4)	[0.943396]
Hexachlorocyclopentadiene	QN	(9.4) [0.943396]	QN	(10) [1.030927]	ND	(9.4) [([0.943396]	ND	(9.4)	[0.943396]
Hexachloroethane	ON.	(9.4) [0.943396]	N	(10) [1.030927]	QN	(9.4) [([0.943396]	N	(9.4)	[0.943396]
Indeno(1,2,3-cd)pyrene	ON	(9.4) [0.943396]	QN	(10) [1.030927]	QN	(9.4) [([0.943396]	QN	(9.4)	[0.943396]
Isophorone	QN	(9.4) [0.943396]	ON	(10) [1.030927]	ND	(9.4) [([0.943396]	QN	(9.4)	[0.943396]
N-Nitrosodiphenylamine	QN	(9.4) [0.943396]	QN	(10) [1.030927]	QN	(9.4) [([0.943396]	QN	(9.4)	[0.943396]
N-Nitrosodipropylamine	Q	(9.4) [0.943396]	QN	(10) [1.030927]	N	(9.4) [([0.943396]	N	(9.4)	[0.943396]
Naphthalene	QN	(9.4) [0.943396]	QN	(10) [1.030927]	QN	(9.4) [([0.943396]	QN	(9.4)	[0.943396]
Nitrobenzene	QN	(9.4) [0.943396]	QN	(10) [1.030927]	ND	(9.4) [([0.943396]	ON	(9.4)	[0.943396]
Pentachlorophenol	QN	(47) [0.943396]	QN	(52) [1.030927]	QN	(47) [([0.943396]	Q	(47)	[0.943396]
Phenanthrene	QN	(9.4) [0.943396]	QN	(10) [1.030927]	QN	(9.4) [([0.943396]	QN	(9.4)	[0.943396]
Phenol	QN	(9.4) [0.943396]	ND	(10) [1.030927]	QN	(9.4) [([0.943396]	QN	(9.4)	[0.943396]
Pyrene	QN	(9.4) [0.943396]	QN	(10) [1.030927]	QN	(9.4) [([0.943396]	QN	(9.4)	[0.943396]
bis(2-Chloroethoxy)methane	QN	(9.4) [0.943396]	QN	(10) [1.030927]	Q	(9.4) [([0.943396]	Q	(9.4)	[0.943396]
bis(2-Chloroethyl)ether	QN	(9.4) [0.943396]	QN	(10) [1.030927]	QN	(9.4) [([0.943396]	Q	(9.4)	[0.943396]
bis(2-Chloroisopropyl)ether	Q	(9.4) [0.943396]	ON	(10) [1.030927]	QN	(9.4) [([0.943396]	ON	(9.4)	[0.943396]
bis(2-Ethylhexyl)phthalate	QN	(9.4) [0.943396]	ND	(10) [1.030927]	QN	(9.4) [([0.943396]	0.58 JB	(9.4)	[0.943396]
p-Chloroaniline		(9.4) [0.943396]	Q	(10) [1.030927]	Q	(9.4) [([0.943396]	R	(9.4)	[0.943396]
SW8310 - Polynuclear Aromatic Hydrocarbons	drocarbons (ug/L)	/L}								
Acenaphthene	Q		QN	(1.8) [0.985221]	QN	(1.7) [0	[0.961538]	ON	(1.7)	[0.952380]
Acenaphthylene	QN	(2.2) [0.975609]	QN	(2.3) [0.985221]	ON	(2.2) [([0.961538]	QN	(2.2)	[0.952380]
Anthracene	QN N	(0.64) [0.975609]	ON	(0.65) [0.985221]	ON	(0.63)	[0.961538]	QN	(0.63)	[0.952380]
Benzo(a)anthracene	0.0085 J	(0.013) [0.975609]	0.012 J	(0.013) [0.985221]	0.0089 J	(0.012) [([0.961538]	QN	(0.012)	[0.952380]
Benzo(a)pyrene	0.011 J	(0.022) [0.975609]	0.01	(0.023) [0.985221]	0.01	(0.022) [([0.961538]	QN	(0.022)	[0.952380]
Benzo(b)fluoranthene	QN	(0.018) [0.975609]	0.0083 J	(0.018) [0.985221]	ND	(0.017) [([0.961538]	QN	(0.017)	[0.952380]
Benzo(g,h,i)perylene	ON	(0.074) [0.975609]	0.024 J	(0.075) [0.985221]	Q	(0.03)	[0.961538]	QN	(0.072)	[0.952380]
Benzo(k)fluoranthene	0.0087 J	(0.017) [0.975609]	0.0096 J	(0.017) [0.985221]	0.0089	(0.016)	[0.961538]	0.0046 JB	(0.016)	[0.952380]
Chrysene	ON	(0.15) [0.975609]	QN	(0.15) [0.985221]	Q	(0,14) [([0.961538]	QN	(0.14)	[0.952380]
Dihenza(a h)anthracene	4000	LOCATED OF COOL OF		[100100 0] (00 0)						

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

DADAMETED	000	04 04-SW-01		SITE ID LOCATION ID SAMPLE ID 04 04-SW-02		04 04-SW-03		04 - SW-04
	04-D3-03 L	04-15-03 bdp 01 04-5W-01-01	04-	J4-SW-0Z-0J		04-SW-03-01		34-SW-04-01
Fluoranthene	ND	(0.2) [0.975609]	0.12 J	(0.21) [0.985221]	QN	(0.2) [0.961538]	QN	(0.2) [0.952380]
Fluorene	ON	(0.2) [0.975609]	QN	(0.21) [0.985221]	QN	(0.2) [0.961538]	9	(0,2) [0,952380]
Indeno(1,2,3-cd)pyrene	QN	(0.042) [0.975609]	ND	(0.042) [0.985221]	QN	(0.041) [0.961538]	2	(0.041) [0.952380]
Naphthalene	QN	(1.8) [0.975609]	QN	(1.8) [0.985221]	QN	(1.7) [0.961538]	Q	(1.7) [0.952380]
Phenanthrene	QN	(0.62) [0.975609]	0.17 J	(0.63) [0.985221]	QN	(0.62) [0.961538]	R	(0.61) [0.952380]
Pyrene	ON	(0.26) [0.975609]	Q.	(0.27) [0.985221]	QN	(0.26) [0.961538]	QN	(0.26) [0.952380]

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

05-MM-01 SW8010 - Halogenated Volatile Organics (ug/L) 1.1.1.2.2-Tetrachloroethane ND (0.3) [1] ND 1.1.2.2-Tetrachloroethane ND (0.3) [1] ND 1.1.2.3-Trichloroethane ND (0.2) [1] ND 1.2.3-Trichloroethane ND (0.2) [1] ND 1.2.3-Trichloroethane ND (0.2) [1] ND 1.2.3-Trichloroethane ND (0.2) [1] ND 1.2.0ichloroethane ND (0.25) [1] ND 2.chloroethane ND (0.25) [1] ND Bromobenzene ND (0.5) [1] ND Carbon tetrachloride ND (0.5) [1] ND Chloroethane ND (0.3) [1] ND Chloromethane ND (0.5) [1] ND Chloromethane ND (0.5) [1] ND Chloromethane ND (0.1) [1] ND Chloromethane ND (0.1) [1] ND Chloroethane ND (0.1) [1] ND	05 05-MW-02			05 05-MW-03		05		
- Halogenated Volatile Organics (ug/L) 2-Tetrachloroethane ND (2.5) [1] 7-Trichloroethane ND (0.55) [1] 7-Trichloroethane ND (0.2) [1] 8-Trichloroenzene ND (0.25) [1] 8-Trichloroenzene ND (0.25) [1] 8-Trichloroenzene ND (0.25) [1] 8-Trichloroenzene ND (0.25) [1] 8-Trichloroenzene ND (0.2) [1] 8-Trichloroenzene ND (0.2) [1] 8-Trichloroenzene ND (0.3) [1] 8-Trichloroenze	05-MW-02-01		05-N 05-M	05-MW-03-01		05-MW-04 05-MW-04-01)4 -01	
- natogenated Volatile Organics (ug/L) - ratogenated Volatile Organics (ug/L) - Trichloroethane ND (0.55) [1] - Trichloroethane ND (0.2) [1] - Irichloroethane ND (0.2) [1] - Irichloroethane ND (0.2) [1] - Irichloroethane ND (0.2) [1] - Irichloroenzene ND (0.25) [1] - Irichloroenzene ND (0.32) [1] - Irichloroenzene ND (0.32) [1] - Irichloromethane ND (0.25) [1] - Irichloromethane ND (0.2) [1] - Irichloroethane ND (0.2) [1] - Irichloroethane ND (0.3) [1] - Irichloroethane ND (0.4) [1] - Irichloroethane ND			 					!
nnorbetrane ND (2.3) [1] oethane ND (0.55) [1] hloroethane ND (0.2) [1] hane ND (0.2) [1] hane ND (0.2) [1] nzene ND (0.25) [1] nylether ND (0.25) [1	(1	Ξ	2	1			í	
All orethane ND (0.3) [1] hane ND (0.2) [1] hane ND (0.5) [1] hane ND (0.7) [1] hane ND (0.7) [1] hane ND (0.25) [1] hane ND (0.15) [1] hane ND (0.15) [1] hane ND (0.25) [1] hane ND (0.2) [1] h	(5.5)	ΞΞ	2 5	(2.5) (0.55)	ΞΞ		(2.5) (0.55)	ΞΞ
name ND (0.2) [1] hane ND (0.7) [1] ppropane ND (1.6) [1] nzene ND (0.15) [1] hane 1.5 (0.15) [1] nzene ND (0.15) [1] nzene ND (0.25) [1] nzene ND (0.25) [1] nnylether ND (0.25) [1] ethane ND (0.5) [1] nnylether ND (0.35) [1] nnylether ND (0.5) [1] nnylether ND (0.7) [1] nnylether ND (0.5) [1] nnylether ND (0.5)	(0.3)	ΞΞ	2 2	(0.3)		GN CN	(0.3)	ΞΞ
hane ND (0.5) [1] hene ND (0.7) [1] opropane ND (0.25) [1] hane ND (0.15) [1] nzene ND (0.15) [1] nzene ND (0.25) [1] nzene ND (0.25) [1] nylether ND (0.25) [1] ethane ND (0.5) [1] nylether ND (0.5) [1] nylether ND (0.35) [1] nyl	(0.2)	ΞΞ	Q	(0.5)	ΞΞ		0.2)	ΞΞ
hene ND (0.7) [1] opropane ND (1.6) [1] nzene ND (0.25) [1] hane 1.5 (0.15) [1] nzene ND (0.32) [1] nzene ND (0.25) [1] nzene ND (0.25) [1] inylether ND (0.5) [1] inylether ND (0.6) [1] inylether ND (0.6) [1] sthane ND (0.35) [1] nD (0.36) [1] nD (0.37) [1] nD (0.38) [1] nD (0.39)	(0.5)	Ξ	QN	(0.5)			(0.5)	ΞΞ
opropane ND (1.6) [1] hane 1.5 (0.15) [1] hane 1.5 (0.15) [1] opane ND (0.32) [1] nzene ND (0.25) [1] nzene ND (0.25) [1] nzene ND (0.6) [1] inylether ND (0.6) [1] inylether ND (0.5) [1] ethane ND (0.5) [1] no (0.35) [1] no (0.77) [1] no (0.5) [1] no (0.6) [1] no (0.70) [1] no (0.71) [1] no (0.7	(0.7)	Ξ	ON	(0.7)			0.7)	Ξ
nzene ND (0.25) [1] hane 1.5 (0.15) [1] opane ND (0.15) [1] nzene ND (0.25) [1] nzene ND (0.25) [1] nzene ND (0.6) [1] inylether ND (0.6) [1] nylethane ND (0.1) [1] nb (0.35) [1] nb (0.35) [1] nb (0.35) [1] nb (0.15) [1] ncide ND (0.15) [1] ncide ND (0.16) [1] ncide ND (0.16) [1] ncide ND (0.10) [1] ncide ND (0.16) [1] ncide ND (0.16) [1]	(1.6)	Ξ	QN	(1.6)) ON	(1.6)	Ξ
hane 1.5 (0.15) [1] ppane NO (0.15) [1] nzene NO (0.32) [1] nzene NO (0.25) [1] inylether ND (0.6) [1] thylether ND (0.1) [1] ethane ND (0.35) [1] ND (0.15) [1] sthane ND (0.15) [1] ride ND (0.1) [1] ride ND (0.1) [1] nne ND (0.1) [1]	(0.25)	Ξ	NO ON	(0.25)	Ξ		.25)	[1]
opane ND (0.15) [1] nzene ND (0.25) [1] nzene ND (0.25) [1] inylether ND (0.6) [1] inylether ND (0.6) [1] ethane ND (0.1) [1] nD (0.35) [1] loride ND (0.35) [1] nD (0.35) [1] nD (0.7) [1] nD (0.7) [1] ethane ND (0.15) [1] ride ND (0.2) [1] nne (0.4) [1]	(0.15)	Ξ	Q.	(0.15)		۵	(0.15)	Ξ
nzene ND (0.32) [1] nzene ND (0.25) [1] inylether ND (0.6) [1] thylether ND (0.6) [1] ethane ND (0.1) [1] ND (0.35) [1] ND (0.36) [1] ND (0.37) [1] ND (0.37) [1] ND (0.37) [1] ND (0.38) [1] ND (0.38) [1] ND (0.39) [1] Title ND (0.49) [1] Title ND (0.4) [1] Title ND (0.4) [1]	(0.15)	Ξ	QN	(0.15)	[1]	ON ON	(0.15)	[1]
nzene ND (0.25) [1] inylether ND (0.6) [1] thane ND (0.6) [1] thane ND (0.5) [1] ND (0.5) [1] ND (0.35) [1] ND (0.36) [1] ND (0.37) [1] ND (0.77) [1] Tide ND (0.5) [1] Tide ND (0.5) [1] Tide ND (0.5) [1] Tide ND (0.4) [1]	(0.32)	Ξ	QN	(0.32)			.32)	Ξ
inylether ND (3.4) [1] ethane ND (0.6) [1] ethane ND (0.1) [1] ND (0.35) [1] ND (0.36) [1] ND (0.37) [1] ND (0.15) [1] ND (0.15) [1] ND (0.15) [1] Athane ND (0.2) [1] ride ND (0.4) [1] ane ND (0.4) [1]	(0.25)	Ξ	N Q	(0.25)).25)	Ξ
inylether ND (0.6) [1] ethane ND (1.6) [1] ethane ND (0.3) [1] ND (0.35) [1] ND (0.35) [1] ND (0.7) [1] ND (0.7) [1] ND (0.7) [1] ND (0.7) [1] ride ND (0.5) [1] ride ND (0.4) [1] ride ND (0.4) [1]	(3.4)	Ξ	NO	(3.4)			(3.4)	Ξ
thane ND (1.6) [1] ND (0.1) [1] ND (0.5) [1] ND (0.35) [1] ND (0.35) [1] ND (0.7) [1] ND (0.15) [1] Thane ND (0.5) [1] Tide ND (0.4) [1] Thane ND (0.4) [1] Thane ND (0.4) [1]	(0.6)	Ξ	QN ON	(0.6)) ON	(0.6)	[1]
ethane ND (0.1) [1] ND (0.5) [1] ND (0.35) [1] ND (0.35) [1] ND (0.7) [1] ND (0.15) [1] Sthane ND (0.5) [1] ride ND (0.4) [1] ride ND (0.1) [1]	(1.6)	Ξ	QN	(1.6)			(1.6)	Ξ
ND (0.5) [1] ND (0.35) [1] loride ND (0.35) [1] ND (0.3) [1] ND (0.7) [1] ND (0.15) [1] Athane ND (0.2) [1] ride ND (0.4) [1] ane ND (0.1) [1]	(0.1)	Ξ	S	(0.1)			(0.1)	Ξ
ND (0.35) [1] loride ND (0.35) [1] ND (0.3) [1] ND (0.7) [1] ND (0.15) [1] sthane ND (0.2) [1] ride ND (0.4) [1] ane ND (0.1) [1]	(0.5)	Ξ	2	(0.5)			(0.5)	Ξ
loride ND (0.35) [1] ND (0.3) [1] ND (0.7) [1] ND (0.15) [1] Sthane ND (0.2) [1] ride ND (0.4) [1] ane ND (0.1) [1]	(0.35)	Ξ	QN	(0.35)			(0.35)	Ξ
ND (0.3) [1] ND (0.7) [1] ND (0.15) [1] Sthane ND (0.2) [1] ride ND (0.4) [1] ane ND (0.1) [1]	(0.35)	Ξ	QN	(0.35)	[1]		.35)	[1]
ND (0.7) [1] ND (0.15) [1] Sthane ND (0.5) [1] ND (0.2) [1] ND (1.6) [1] Tide ND (0.4) [1] Ane ND (0.1) [1]	(0.3)	Ξ	QN	(0.3)			(0.3)	[1]
ND (0.15) [1] ND (0.5) [1] ethane ND (0.2) [1] ride ND (1.6) [1] ane ND (0.4) [1]	(0.7)	Ξ	Q.	(0.7)			(0.7)	Ξ
ND (0.5) [1] ethane ND (0.2) [1] ride ND (0.4) [1] ane ND (0.1) [1]	(0.15)	Ξ	Q :	(0.15)	Ξ).15)	Ξ
ethane ND (0.2) [1] ND (1.6) [1] ride ND (0.4) [1] ane ND (0.1) [1]	(0.5)		2	(0.5)			(0.5)	Ξ
ND (1.6) [1] ride ND (0.4) [1] ane ND (0.1) [1]	(0.2)	Ξ	9 :	(0.2)			0.2)	
e ND (0.4) [1] ND (0.1) [1]	(1.6)	<u>.</u>	S S	(1.6)			1.6)	[]
(L) (N)	(0.4)	Ξ	Q	(0.4)			(0.4)	Ξ
[+7] (+:0) ((0.1)	Ξ	Q	(0.1)	Ξ		(0.1)	Ξ
ND (0.2) [1]	(0.2)	Ξ	QN	(0.5)			(0.2)	[1]
omethane ND (0.55) [1] 1	(0.55)	Ξ	2	(0.55)		O) ON	0.55)	Ξ
Vinyl chloride ND (0.25) [1] ND	(0.25)	Ξ	S	(0.25)	Ξ)	0.25)	Ξ

					SITE ID LOCATION ID SAMPLE ID							
PARAMETER 	0 0 0 0 0 5	05 05-MW-01 05-MW-01-01			05 05-MW-02 05-MW-02-01	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05 05-MW-03 05-MW-03-01	! ! ! !	06-	05 05-MW-04 05-MW-04-01	; ; ;
cis-1,3-Dichloropropene	S	(0.2)	Ξ	S	(6.0)	Ξ	2	(60)	[1]	2	(6.0)	Ξ
trans-1,2-Dichloroethene	Q	(0.25)		S	(0.25)	ΞΞ	2 2	(0.25)		2 2	(0.5)	ΞΞ
	ON	_	ΞΞ	QN	(0.15)	ΞΞ	Q	(0.15)	ΞΞ	ON N	(0.15)	ΞΞ
SW8015 - Nonhalogenated Volatile Organics	rganics (ug/L)											
Ethanol	QN	(2000)	[1]	2	(2000)	Ξ	QN	(2000)	[1]	QN	(2000)	[1]
Ethyl ether	QN	(10000)	[1]	ND	(10000)	[1]	Q.	(10000)	[1]	QN	(10000)	Ξ
Methyl ethyl ketone	QN N	(3000)	[1]	S	(3000)	Ξ	2	(3000)	[1]	ON	(3000)	Ξ
Methyl isobutyl ketone	QN	(5000)	[1]	ON	(2000)	[1]	S	(2000)	[1]	ND	(2000)	[1]
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)										i i
Diesel Range Organics (2)	870	(200)	[0.990]	Q	(200)	[0.980]	12000	(1900)	[9.71]	9500	(1000)	[5.05]
SW8020 - Aromatic Volatile Organics	(ng/L)											
1,2-Dichlorobenzene	QN	(0.4)	[]	Q.	(0.4)	Ξ	QN	(800)	[2000]	ND	(800)	[2000]
1,3-Dichlorobenzene	ON	(0.2)	[1]	Q	(0.2)	Ξ	R	(400)	[2000]	QN	(400)	[2000]
1,4-Dichlorobenzene	QN	(0.4)	[1]	ON	(0.4)	Ξ	N	(800)	[2000]	ND	(800)	[2000]
Benzene	24	(0.3)	[1]	10	(0.3)	[1]	36000	(009)	[2000]	45000	(009)	[2000]
Chlorobenzene	QN	(0.5)	[1]	N	(0.2)	[1]	QN	(400)	[2000]	QN	(400)	[2000]
Ethylbenzene	0.32	(0.5)	[1]	0.9	(0.2)	Ξ	1400	(400)	[2000]	1300	(400)	[2000]
Gasoline Range Organics (2)	260	(100)	Ξ	110	(100)	[1]	270000	(200000)	[2000]	270000	(200000)	[2000]
Toluene	0.41 B	(0.2)	Ξ	16	(0.2)	[1]	33000	(400)	[2000]	31000	(400)	[2000]
Total xylenes	Q	(0.3)	Ξ	2.4	(0.3)	[1]	4500	(009)	[2000]	4200	(009)	[5000]
SW8080 - Organochlorine Pesticides and PCBs												
4,4'-000	QN	(0.003)	[0.990099]	Q	[0.0099]	[0.985221]	0.026 P	(0.01)	[1.010101]	N Q N	(0.01) [1.	[1.010101]
4,4'-DDE	QN		[660066.0]	Q] (6600.0)	[0.985221]	0.021	(0.01)	[1.010101]	QN		[1.010101]
4,4'-DDT	0.0088 JB		[0.990099]	2	(0.02)	[0.985221]	0.014 J	(0.05)	[1.010101]	0.01 JB	(0.02) [1.	[1.010101]
Aldrin	0.014 B	(0.003)	[0.990099]	웃	(0.0099)	[0.985221]	0.014 8	(0.01)	[1.010101]	0.023 P	(0.01) [1	[1.010101]
Chlordane	ND	(0.02)	[0.990099]	Q.	(0.049)	[0.985221]	QN	(0.051)	[1.010101]	QN		[1.010101]
Dieldrin	0.0088 J	(0.003)	[0.990099]	0.017] (6600.0)	[0.985221]	QN	(0.01)	[1.010101]	0.026		[1.010101]
Endosulfan I	ND		[0.990099]	Q.] (6600.0)	[0.985221]	QN	(0.01)	[1.010101]	ND	(0.01) [1.	[1.010101]
Endosulfan II	0.0013 KJB		[0.990099]	ON		[0.985221]	ON	(0.03)	[1.010101]	0.0016 KJB	(0.03) [1.	[1.010101]
Endosulfan Sulfate	0.0073 KJB		[0.990099]	N N		[0.985221]	QN	(0.021)	[1.010101]	0.011 KJB	(0.051) [1.	[1.010101]
Endrin	ON N	(0.0099)	[0.990099]	0.023 B	(0.0099)	[0.985221]	0.026 B	(0.01)	[1.010101]	0.018	(0.01) [1.	[1.010101]

() = Detection Limit [] = Factor

"A = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

		-		S I	SITE ID LOCATION ID SAMPLE ID				
PARAMETER 	00 02	05 05-MW-01 05-MW-01-01		050	05 05-MW-02 05-MW-02-01	050	05 05-MW-03 05-MW-03-01	0520	05 05-MW-04 05-MW-04-01
Endrin Aldehyde	0.0056 KJB	(0.02)	[0.990099]			0.0003 PJB			
Heptachlor Heptachlor epoxide	0.0045 KJB 0.0046 PJB	(0.0039) (0.0039)	[0.990099]	0.0073 PJB	(0.0099) [0.985221] (0.0099) [0.985221]	0.006 KJB 0.0062 PJB	(0.01) [1.010101] (0.01) [1.010101]	0.021 B 0.048 PB	(0.01) [1.010101] (0.01) [1.010101]
Methoxychlor pre_1016	S S	(0.05)	[0.990099]	8 8	(0.049) [0.985221]	QN ON	[1.010101] [1.010101]	S 8	(0.051) [1.010101]
PCB-1221	Q	(0.2)	[0.990093]	2 2		2 2		2 2	
PCB-1232	QN	(0.2)	[0.990099]	S	_	QN	_	QN	(0.2) [1.010101]
PCB-1242	QV :	(0.099)	[0.990099]	2 :		Q.		Q :	
PCB-1248 PCB-1254	ON ON	(0.099)	[0.990099]	2 2	(0.099) [0.985221] (0.2) [0.985221]	e S	(0.1) [1.010101] (0.2) [1.010101]	2 2	(0.1) [1.010101]
PCB-1260	QN	(0.2)	[0.990099]	S		QN		Q.	
Toxaphene	QN	(0.5)	[0.990099]	ON	(0.49) [0.985221]	QN	(0.51) [1.010101]	QV	(0.51) [1.010101]
alpha-BHC	ON	(0.003)	[0.990099]	QN	(0.0099) [0.985221]	0.013 B	(0.01) [1.010101]	0.094	(0.01) [1.010101]
beta-BHC	0.014	(0.003)	[6:0066.0]	QN		QN	_	0.086	
delta-BHC	QN	(0.0099)	[0.990099]	0.017 PB		0.018 PB		Q	(0.01) [1.010101]
gamma-BHC	0.011 B	(0.003)	[0.990099]	0.012 B	(0.0099) [0.985221]	QN	(0.01) [1.010101]	0.033 PB	(0.01) [1.010101]
SW8270 - Semivolatile Organics	(ug/L)	(41)	[000110	9		4		į	-
1,2,4-iricniorobenzene 1 2-Dichlorobenzene	Q Q	(10)	[1.015228]	g S	(9.7) [0.970873]	2 2	[8:8) [0:890088]	2 5	(10) [1.005025] (10) [1.005025]
1,3-Dichlorobenzene	QN	(10)	[1.015228]	9		QN	_	2 2	
1,4-Dichlorobenzene	QN	(10)	[1.015228]	ON	(9.7) [0.970873]	QN	[6:6) [0:990099]	QN	(10) [1.005025]
2,4,5-Trichlorophenol	ON	(10)	[1.015228]	ON		ND	_	QN	(10) [1.005025]
2,4,6-Trichlorophenol	QN	(10)	[1.015228]	QN		QN	_	ND	_
2,4-Dichlorophenol	ON	(10)	[1.015228]	QN	_	Q	_	Q	_
2,4-Dimethylphenol	QN	(10)	[1.015228]	Q		QN	_	230	_
2,4-Dinitrophenol	QN :	(51)	[1.015228]	Q :		QN	_	Q	
2,4-Dinitrotoluene	QN	(10)	[1.015228]	QN		QN		Q	_
2,6-Dinitrotoluene	QN :	(10)	[1.015228]	Q :		QN :		Q :	
2-Chloronaphthalene	Q :	(10)	[1.015228]	Q :		Q.		Q	
2-Chlorophenol	QN	(10)	[1.015228]	Q		Q		Q	_
2-Methylnaphthalene	QN	(10)	[1.015228]	Q	(9.7) [0.970873]	100	[6:6) [0:60066]	33	(10) [1.005025]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

				SITE ID LOCATION ID SAMPLE ID				
PARAMETER 	000	05 05-MW-01 05-MW-01-01	_	05 05-MW-02 05-MW-02-01	0	05 05-MW-03 05-MW-03-01		05 05-MW-04 05-MW-04-01
2-Methylphenol(o-cresol)	S	(10) [1 015228]	C	[2 7] [0 070873]	0			į
2-Nitroaniline	£ 5		2 5				72N	
2-Nitrophenol	2 Q		2 2	(49) [0.9/08/3] [47 7] [0 42/08/3]	O S	[60066.0] (09) [600000 0] (0 6)	S	
3,3'-Dichlorobenzidine	QN		2 8		2 5		2 9	(10) [1.005025]
3-Nitroaniline	QN		2		2 2		2 8	(50) [1.005025] (50) [1.005025]
4,6-Dinitro-2-methylphenol	ND	(51) [1.015228]	Q.	_	QN		2 2	: =
4-Bromophenyl phenyl ether	ND	_	QN	(9.7) [0.970873]	ND	_	Q	
4-Chloro-3-methylphenol	QN		QN	(9.7) [0.970873]	QN	[6:0) [0:300093]	QN	
4-Chlorophenyl phenyl ether	QN	_	QN	(9.7) [0.970873]	QN	[6:6) [0:60066]	QN	(10) [1.005025]
4-Methylphenol(p-cresol)	QN	_	Q	(9.7) [0.970873]	13	[660066.0] (6.6)	140	_
4-Nitroaniline	ND		QN	(49) [0.970873]	ND	[660066.0] [030099]	ON	(50) [1.005025]
4-Nitrophenol	QN	二	Q	(49) [0.970873]	QN	(50) [0.990099]	QN	(50) [1.005025]
Acenaphthene	QN	_	QN	(9.7) [0.970873]	1.4 J	[660066.0] (6.6)	ON	(10) [1.005025]
Acenaphthylene	ON		QN	(9.7) [0.970873]	QN	[6:0066:0] [6:6)	QN	(10) [1.005025]
Anthracene	2		Q	_	QN	[6:60066:0] [6:6)	ND	(10) [1.005025]
Benzo(a)anthracene	Q :		QN	_	ND	[6:0066:0] [6:6)	QN	(10) [1.005025]
benzo(a)pyrene	Q :		Q		ON	[6:0066:0] [6:6)	ON	(10) [1.005025]
benzo(b)Tluorantnene Bonzo(z h i)wowylowo	2 2		2 :		ND		QN	(10) [1.005025]
Bonzo(b)€lucasathono	O 2		2		QN		ON	_
Benzoic acid	2 2	(10) [1.015228] (E1) [1.015338]	2 9		QN .		S	_
Benzyl alcohol	2 2		2 5	(49) [0.9/08/3] [0.9/08/3]	1/00	(990) [19.80198]	29000	
Butylbenzylphthalate	QN		2		o		2 9	(10) [1.005025]
Chrysene	ND	(10) [1.015228]	Q.		Q N		2 8	
Di-n-octylphthalate	QN	(10) [1.015228]	Q.	[9.7] [0.970873]	QN		2	
Dibenz(a,h)anthracene	ND	(10) [1.015228]	Q.	[0.970873]	QN		QN	: <u>_</u>
Dibenzofuran	ND	(10) [1.015228]	QN	[0.970873]	2 J		QN	5 =
Dibutylphthalate	ND	(10) [1.015228]	QN	[0.970873]	QN	_	QN	5 =
Diethylphthalate	QN	(10) [1.015228]	QN	(9.7) [0.970873]	ND	[6:6] [0:990099]	QN	. <u> </u>
Dimethylphthalate	ND		QN		QN	[6:0) [0.990099]	QN	
Fluoranthene	<u>Q</u>	(10) [1.015228]	QN	(9.7) [0.970873]	QN	[6:0) [0:990099]	ON	(10) [1.005025]

() = Detection Limit [] = Factor

MP = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			75 70 70 70 70 70	SITE ID LOCATION ID SAMPLE ID				
	40	05 or mag or	Ċ	05	i.	05		05
PARAMETER	-cn N-90	US-MW-U1 05-MW-01-01	-co N-20	US-MW-02 05-MW-02-01	-90 N-90	US-MW-U3 05-MW-03-01	05- M-50 05-M	05-MW-04 05-MW-04-01
Fluorene	ON	(10) [1.015228]	Q	(9.7) [0.970873]	1.3 J	[6:0066:0]	QN	(10) [1.005025]
Hexachlorobenzene	ON	(10) [1.015228]	ON	(9.7) [0.970873]	QN	[6:0066:0] (6:6)	ON	(10) [1.005025]
Hexachlorobutadiene	QN	(10) [1.015228]	ON	(9.7) [0.970873]	Q	[6:0) [0:00000]	ON	(10) [1.005025]
Hexachlorocyclopentadiene	QN	(10) [1.015228]	QN	(9.7) [0.970873]	ND	[6:006:0] [6:6)	QN	(10) [1.005025]
Hexachloroethane	QN	(10) [1.015228]	QN	(9.7) [0.970873]	QN	[660066.0] [6.6)	N	(10) [1.005025]
Indeno(1,2,3-cd)pyrene	QN	(10) [1.015228]	ON	(9.7) [0.970873]	QN	[6:0066:0] [6:6)	QN	(10) [1.005025]
Isophorone	QN	(10) [1.015228]	ON	(9.7) [0.970873]	1.9 J	[6:0066:0] (6:6)	QN	(10) [1.005025]
N-Nitrosodiphenylamine	ON	(10) [1.015228]	QN	(9.7) [0.970873]	Q	[6:0066:0] [6:6)	ND	(10) [1.005025]
N-Nitrosodipropylamine	QN	(10) [1.015228]	ON	(9.7) [0.970873]	QN	[6:0) [0:00000]	ND	(10) [1.005025]
Naphthalene	QN	(10) [1.015228]	ON	(9.7) [0.970873]	130	[6:0066:0] (6:6)	130	(10) [1.005025]
Nitrobenzene	QN	(10) [1.015228]	QN	(9.7) [0.970873]	QN	[6:60066:0] [6:6)	N	(10) [1.005025]
Pentachlorophenol	QN		QN	(49) [0.970873]	ON	(50) [0.990099]	ON	(50) [1.005025]
Phenanthrene	QN	(10) [1.015228]	QN	[0.970873]	QN	[6:6) [0:80088]	QN	(10) [1.005025]
Phenol	QN		ND	(9.7) [0.970873]	21	[6:60066:0] [6:6)	230	(10) [1.005025]
Pyrene	QN	(10) [1.015228]	ND	(9.7) [0.970873]	QN	[6:0066:0] [6:6)	N	(10) [1.005025]
bis(2-Chloroethoxy)methane	QN	_	QN	(9.7) [0.970873]	QN	[6:0066:0] [6:6)	N	(10) [1.005025]
bis(2-Chloroethyl)ether	QN	(10) [1.015228]	ND	(9.7) [0.970873]	QN	[6:6) [0:990099]	ND	(10) [1.005025]
bis(2-Chloroisopropyl)ether	ND	(10) [1.015228]	QN	(9.7) [0.970873]	Q.	[6:0066:0] [6:6)	QN	(10) [1.005025]
bis(2-Ethylhexyl)phthalate	0.88 JB	(10) [1.015228]	5.7 JB	(9.7) [0.970873]	16 8	[6:0066:0] [6:6)	3.9 J	(10) [1.005025]
p-Chloroaniline	QN	(10) [1.015228]	Q	(9.7) [0.970873]	QN	[6:6] [0:60066]	QN	(10) [1.005025]

				S LOC SA	SITE ID LOCATION ID SAMPLE ID							
PARAMETER 	0.00	05 05-MW-05 05-MW-05-01		05-1 05-M	05 05-MW-06 05-MW-06-01		0	05 05-MW-07 05-MW-07-01		D	05 05-MW-08 05-MW-08-01	
SW8010 - Halogenated Volatile Organics	anics (ud/L)					1 1 1 1 1 1 1	f 	1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	† 1 1 1 2 2 2 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,1,1,2-Tetrachloroethane		(5)	[2]	ON	(5.5)	[1]	N	(2)	[2]	Q	(5.5)	Ξ
1,1,1-Trichloroethane	QN	(1.1)	[2]	ND	(0.55)	ΞΞ	QN	(1.1)	[2	2	(0.55)	ΞΞ
1,1,2,2-Tetrachloroethane	ON	(0.6)	[2]	ND	(0.3)	Ξ	N	(0.6)	[2]	Q.	(0.3)	ΞΞ
1,1,2-Trichloroethane	QN	(0.4)	[2]	QN	(0.2)	Ξ	QN	(0.4)	[2]	QN	(0.2)	ΞΞ
1,1-Dichloroethane	ND	(1)	[2]	ND	(0.5)	Ξ	QN	(1)	[2]	QN	(0.5)	[]
1,1-Dichloroethene	QN	(1.4)	[5]	ND	(0.7)	Ξ	QN	(1.4)	[2]	QN	(0.7)	ΞΞ
1,2,3-Trichloropropane	QN	(3.2)	[2]	QN	(1.6)	Ξ	QN	(3.2)	[2]	QN	(1.6)	ΞΞ
1,2-Dichlorobenzene	QN	(0.5)	[2]	QN	(0.25)	[1]	QN	(0.5)	[5]	QN	(0.25)	Ξ
1,2-Dichloroethane	ON	(0.3)	[2]	QN	(0.15)	[1]	37	(0.3)	[2]	QN	(0.15)	[]
1,2-Dichloropropane	ND	(0.3)	[2]	QN	(0.15)	Ξ	QN	(0.3)	[2]	QN	(0.15)	[1]
1,3-Dichlorobenzene	QN	(0.64)	[2]	ON	(0.32)	[1]	QN	(0.64)	[2]	QN	(0.32)	Ξ
1,4-Dichlorobenzene	QN	(0.5)	[2]	ND	(0.25)	[1]	QN	(0.5)	[2]	QN	(0.25)	Ξ
1-Chlorohexane	QN	(6.8)	[2]	QN	(3.4)	[1]	ND	(8.8)	[2]	QN	(3.4)	
2-Chloroethylvinylether	ON	(1.2)	[2]	ND	(0.0)	[1]	QN	(1.2)	[2]	ON	(0.6)	Ξ
Bromobenzene	ON	(3.2)	[2]	ND	(1.6)	Ξ	Q	(3.2)	[5]	Q	(1.6)	Ξ
Bromodichloromethane	ND	(0.2)	[2]	ON	(0.1)	[1]	N	(0.2)	[5]	Q	(0.1)	Ξ
Bromoform	QN	(1)	[2]	ON	(0.5)	[1]	QN	(1)	[2]	2	(0.5)	Ξ
Bromomethane	QN	(0.7)	[5]	QN	(0.35)	[1]	QN	(0.7)	[2]	R	(0.35)	Ξ
Carbon tetrachloride	Q :	(0.7)	[5]	QN	(0.35)	. [Ξ]	QN	(0.7)	[2]	QN	(0.35)	[1]
Chlorobenzene	Q :	(0.6)	[2]	QN :	(0.3)		8	(0.0)	[2]	QN	(0.3)	[]
Chloroform	2 2	(1.4)	[2]	O S	(0.7)	Ξ:	2 :	(1.4)	[5]	S	(0.7)	Ξ
Chloromethane	QN ON	(0.3)	[2]	2 2	(0.15)	ΞΞ	2 9	(0.3)	[2]	2 :	(0.15)	Ξ
Nihromochloromethane	2 2	(1)	[4]	5 5	(6.9)	ΞΞ	O. 4	(1)	[7]	2 :	(0.5)	Ξ;
Di bromomethane	Q	(0.4)	[5]	2 2	(0.5)	Ξ:	ON C	(0.4)	[2]	€ :	(0.2)	
Mother one objection		(3.6)	[7]	Q :	(1.6)	ΞΞ	2	(3.2)	[5]	QN	(1.6)	Ξ
Metnylene thloride	8 / 7	(0.8)	[2]	Q :	(0.4)	Ξ;	QN	(0.8)	[2]	S	(0.4)	Ξ
errach Oroethene	ON S	(0.2)	[2]	Q	(0.1)	Ξ	QN	(0.2)	[2]	R	(0.1)	[1]
richloroethene	Q.	(0.4)	[2]	QN	(0.2)	[1]	ND	(0.4)	[2]	ND	(0.2)	Ξ
richlorof uoromethane	QN :	(1.1)	[2]	ND	(0.55)	Ξ	ND	(1.1)	[2]	QN	(0.55)	Ξ
Vinyl chloride	QN	(0.5)	[2]	Q	(0.25)	Ξ	ND	(0.5)	[2]	QN O	(0.25)	[1]
Committee 23 May 1005		100+00 - ()	4;;		1	-		, .				
רט יומן			= Detection Limit	[] = Factor		Not Detected	NA = Not A	Not Applicable				

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				s Lo	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	30	05 05-MW-05 05-MW-05-01	1 1 1 1 1 2 1	06	05 05-MW-06 05-MW-06-01	i 1 1 1 1 1 1 2	05	05 05-MW-07 05-MW-07-01	1 1 1 1 1 1 1 1 1 1 1	05-	05 05-MW-08 05-MW-08-01	! ! ! !
cis-1,3-Dichloropropene	ND	(0.4)	[2]	QN	(0.2)	[1]	ND	(0.4)	[2]	ND	(0.2)	[1]
trans-1,2-Dichloroethene	QN	(0.5)	[5]	ON ON	(0.25)	[]	N N	(0.5)	[2]	ON	(0.25)	Ξ
trans-1,3-Dichloropropene	_	(0.3)	[2]	QN	(0.15)	[1]	Q	(0.3)	[2]	Q.	(0.15)	Ξ
SW8UIS - Nonnalogenated Volatile Organics Ethanol	Jrganics (ug/L) ND	(2000)	[1]	9	(2000)	[1]	QN	(2000)	[1]	Q.	(5000)	[1]
Ethyl ether	QN	(10000)	Ξ	QN	(10000)	Ξ	ND	(10000)	Ξ	QN	(10000)	Ξ
Methyl ethyl ketone	ON	(3000)	Ξ	ON	(3000)	[1]	Q	(3000)	Ξ	QN	(3000)	Ξ
Methyl isobutyl ketone	QN	(2000)	[1]	QN	(2000)	Ξ	ON	(2000)	[1]	QN .	(2000)	Ξ
SW8015MEMP - Nonhalogenated Volatile Organics	ile Organics	(ng/L)										
Diesel Range Organics (2)		(2000)	[9.80]	Q	(200)	[0.985]	71000	(0086)	[48.8]	QN	(210)	[1.06]
SW8020 - Aromatic Volatile Organics									1			1
1,2-Dichlorobenzene	19000	(8000)	[20000]	ON	(0.4)	Ξ	QN	(800)	[2000]	Q	(0.4)	Ξ
1,3-Dichlorobenzene	QN	(4000)	[20000]	ON	(0.2)	Ξ	ND	(400)	[2000]	QN	(0.2)	Ξ
1,4-Dichlorobenzene	ON	(8000)	[20000]	ON	(0.4)	[1]	Q.	(800)	[5000]	ON	(0.4)	[1]
Benzene	63000	(0009)	[20000]	Q	(0.3)	Ξ	35000	(009)	[2000]	Q	(0.3)	Ξ
Chlorobenzene	QN	(4000)	[20000]	QN	(0.2)	Ξ	Q.	. (400)	[2000]	Q	(0.5)	Ξ
Ethylbenzene	ON	(4000)	[20000]	QN	(0.2)	[1]	830	(400)	[2000]	QN	(0.2)	Ξ
Gasoline Range Organics (2)	3000000	(2000000)	[20000]	QN	(100)	Ξ	200000	(100000)	[1000]	Q	(100)	Ξ
Toluene	160000	(4000)	[20000]	ON	(0.2)	[]	31000	(400)	[2000]	NO	(0.2)	Ξ
Total xylenes	270000	(0009)	[20000]	QN	(0.3)	[]	4900	(009)	[5000]	QN	(0.3)	[]
SW8080 - Organochlorine Pesticides	and PCBs	(ng/L)										
4,4'-DDD	0.025	(0.003)	[0.990099]	0.021 B		[0.990099]	0.038		[1.036269]	Q		[0.970873]
4,4'-DDE	S	(0.003)	[0.990099]	ON)] (6600.0)	[0.990099]	QN		[1.036269]	Q	(0.0097) [0.	[0.970873]
4,4'-DDT	0.0007 PJB	(0.05)	[0:990099]	0.0009 PJB	(0.05)	[0.990099]	ND	(0.021)	[1.036269]	0.0081 KJB		[0.970873]
Aldrin	0.026	(0.003)	[0.990099]	0.013 B)] (6600.0)	[0.990099]	0.018 B	(0.01)	[1.036269]	QN	(0.0097)	[0.970873]
Chlordane	ON	(0.02)	[0.990099]	QN	(0.05)	[0.990099]	QN		[1.036269]	QN		0.970873]
Dieldrin	0.0087 J	(0.003)	[0.990099]	0.0095 J	_	[0.990099]	QN	(0.01)	[1.036269]	QN		[0.970873]
Endosulfan I	QN	(0.003)	[0.990099]	0.0089 KJB)] (6600.0)	[660066.0]	QN		[1.036269]	Q	(0.0097)	[0.970873]
Endosulfan II	0.0008 KJB	(0.03)	[0.990099]	QN	(0.03)	[0.990099]	0.018 KJB	(0.031)	[1.036269]	ON	(0.029) [0.	[0.970873]
Endosulfan Sulfate	0.018 KJB	(0.02)	[0.990099]	0.0061 KJB	(0.05)	[0.990099]	0.028 JB	(0.025)	[1.036269]	0.016 KJB	(0.049) [0	[0.970873]
Endrin	ND	(0.003)	[660066.0]	0.019 B	0.0099)	[0.990099]	QN	(0.01)	[1.036269]	QN	(0.0097)	[0.970873]

ND = Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

					SITE ID LOCATION ID SAMPLE ID					
PARAMETER 	0 10	05 05-MW-05 05-MW-05-01		0 05	05 05-MW-06 05-MW-06-01	 	05-	05 05-MW-07 05-MW-07-01	- 60	05 05-MW-08 05-MW-08-01
Endrin Aldehyde Hentachlor	0.0089 KJB	(0.05)	[0.990099]	0.0054 JB	(0.02)	[0.990099]			0.0005	_
Heptachlor epoxide	0.023 PB	(0.0099)	[0.990099]		(0.0039) (0.0099)	[0.990099]	0.071 P	(0.01) [1.036269] (0.01) [1.036269]	9] 0.0034 KJB 9] 0.0011 KJB	(0.0097) [0.970873] (0.0097) [0.970873]
Methoxychlor PCB-1016	9 9 8	(0.05)	[0.990099]	S 8	(0.05)	[0.990099]	ON N	(0.052) [1.036269]	ON [e	(0.049) [0.970873]
PCB-1221	ND	(0.2)	[0.990099]	S S	(0.2)	[0.990099]	Q N			(0.19) [0.970873]
PCB-1232	ND	(0.2)	[0.990099]	ON	(0.2)	[0.990099]	QN			
PCB-1242 PCB-1248	ON S	(0.099)	[0.990099]	9 :	(0.099)	[0.990099]	Q	_		
PCB-1254	2 8	(0.039)	[0.990099]	2 2	(0.099)	[0.990099]	2 2	(0.1) [1.036269] (0.21) [1.036269]	ON [e	(0.097) [0.970873]
PCB-1260	ON	(0.2)	[0.990099]	. 2	(0.2)	[0.990099]	Q.			
Toxaphene	QN	(0.5)	[0.990099]	QN	(0.5)	[0.990099]	ND			
alpha-BHC	0.054	(0.0030)	[0.990099]	0.016	(0.0099)	[0.990099]	0.038			
beta-BHC	0.072	(0.0099)	[0.990099]	0.011	(0.0099)	[0.990099]	0.11			
delta-BHC	0.029	(0.0030)	[0.990099]	QN	(0.0099)	[0.990099]	QN	(0.01) [1.036269]		
gamma-BHC	0.068	(0.0099)	[660066'0]	0.011 B	(0.0099)	[0.990099]	0.046	(0.01) [1.036269]		
rganics	(ng/L)									•
1,2,4-Trichlorobenzene	Q.	(8.8)	[0.980392]	QN	(10)	[1]	QN	(10) [1]	[] ND	(10) [1.030927]
1,2-Dichlorobenzene	QN	(8.8)	[0.980392]	ND	(10)	[1]	QN	(10) [1]	ON [1	(10) [1.030927]
1,3-Dichlorobenzene	Q :	(9.8)	[0.980392]	QV :	(10)	[1]	ND	(10) [1]		(10) [1.030927]
1,4-01cHlorobenzeHe	2 9	(9.8)	[0.980392]	Q S	(10)		Q :			
2,4,6-Trichlorophenol	2 8	(9.6)	[0.300332] [0.480342]	S &	(10)	ΞΞ	2 2	(10) [1]		
2,4-Dichlorophenol	QN	(9.8)	[0.980392]	9	(10)	E []	Q. Q.		ON CN	[10] [1.030927] [10] [1.030927]
2,4-Dimethylphenol	61	(9.8)	[0.980392]	ON	(10)	[1]	Q.			
2,4-Dinitrophenol	ON	(48)	[0.980392]	ND	(20)	[1]	Q.			
2,4-Dinitrotoluene	ON	(8.8)	[0.980392]	ND	(10)	[1]	N			
2,6-Dinitrotoluene	ON	(8.8)	[0.980392]	ND	(10)	[1]	QN			
2-Chloronaphthalene	ND	(8.8)	[0.980392]	QN	(10)	[1]	N	(10)		
2-Chlorophenol	QN	(8.8)	[0.980392]	· QN	(10)	[1]	QN	(10) [1]	J ND	
2-Methylnaphthalene	260	(48)	[4.901960]	QN	(10)	Ξ	099	(100) [10]	J ND	(10) [1.030927]

"Not Detected NA = Not Applicable

() = Detection Limit [] = Factor

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			SIT LOCAT SAMF	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	0 90	05 05-MW-05 05-MW-05-01	05 05-MW-06 05-MW-06-01	5 4-06 -06-01		05-1	05 05-MW-07 05-MW-07-01		0	05 05-MW-08 05-MW-08-01	
2-Methylphenol(o-cresol)	160	(9.8) [0.980392]	ND	(10)	[1]	570	(100)	[10]	S	(10) [1.0	[1.030927]
2-Nitroaniline	ON		ND	(20)	[1]	ND	(20)	[1]	R		[1.030927]
2-Nitrophenol	QN	_	QN	(10)	Ξ	9	(10)	Ξ	9		[1.030927]
3,3'-Dichlorobenzidine	Q 9	(20) [0.980392]	<u> </u>	(20)	<u> </u>	2 2	(20)	ΞΞ	2 9	_ :	[1.030927]
3-Nitroaniine 4 6-Dinitro-2-methvlnbenol	2 2		מ כא	(20)	ΞΞ	2 5	(50)	ΞΞ	2 5	(52) [1.0	1.03092/]
4-Bromophenyl phenyl ether	2 2		Q.	(10)	ΞΞ	2	(10)	ΞΞ	2 2		.030927]
4-Chloro-3-methylphenol	QN	_	ND	(10)	Ξ	S.	(10)	ΞΞ	9		[1.030927]
4-Chlorophenyl phenyl ether	QN	(9.8) [0.980392]	QN	(10)	Ξ	S	(10)	Ξ	Q	(10) [1.0	.030927]
4-Methylphenol(p-cresol)	290	(49) [4.901960]	ND	(10)	[]	200	(100)	[10]	ON	_	[1.030927]
4-Nitroaniline	QN	(49) [0.980392]	QN	(20)	Ξ	R	(20)	Ξ	Q	二	.030927]
4-Nitrophenol	ON	_	QN	(20)	[1]	Q	(20)	Ξ	Q	_	[1.030927]
Acenaphthene	1.3 J	_	QN	(10)	Ξ	12	(10)	[1]	Q		.030927]
Acenaphthylene	QN	_	ND	(10)	Ξ	ON	(10)	Ξ	S	ij	.030927]
Anthracene	QN	_	ND	(10)	Ξ	2	(10)	Ξ	S	_	.030927]
Benzo(a)anthracene	Q	_	Q.	(10)	Ξ	ON	(10)	[1]	Q	_	[1.030927]
Benzo(a)pyrene	ON	_	ND	(10)	Ξ	QN	(10)	Ξ	N N		.030927]
Benzo(b)fluoranthene	Q		ON	(10)	Ξ	ON	(10)	Ξ	Q	_	1.030927]
Benzo(g,h,i)perylene	NO	_	QN	(10)	Ξ	S	(10)	Ξ	Q		.030927]
Benzo(k)fluoranthene	ON		Q	(10)	Ξ;	욷	(10)	Ξ	S	_	[1.030927]
Benzoic acid	510		Q :	(50)	Ξ3	7200	(2500)	[50]	2	그 i	.030927]
Benzyl alconol	S S	(9.8) [0.980392]	O S	(10)	ΞΞ	2 9	(10)	ΞΞ	2 9	(10) [1.0	. 03092/ [
Chrysphe	£ 5		2 5	(10)	ΞΞ	2 5	(16)	ΞΞ	2 2		1.030327]
Di-n-octvlohthalate	Q.	_	2 2	(10)	ΞΞ	Q Q	(10)	ΞΞ	2		030927
Dibenz(a,h)anthracene	QN	. —	QN	(10)	Ξ	2	(10)	ΞΞ	N N	. =	1.030927]
Dibenzofuran	5 J	(9.8) [0.980392]	ND	(10)	[]	18	(10)	Ξ	Q.		. 030927]
Dibutylphthalate	QV	(9.8) [0.980392]	NO	(10)	Ξ	ON	(10)	[1]	9	(10) [1.0	[1.030927]
Diethylphthalate	QN	(9.8) [0.980392]	ND	(10)	Ξ	ND	(10)	Ξ	Q.	(10) [1.0	.030927]
Dimethylphthalate	QN	(9.8) [0.980392]	ON	(10)	Ξ	ND	(10)	Ξ	NO NO	(10) [1.0	[1.030927]
Fluoranthene	QN	(9.8) [0.980392]	ON	(10)	[1]	0.37 J	(10)	Ξ	QV	(10) [1.0	[1.030927]
1007			ı	1		-					
Compiled: 23 March 1995		() = Detection Limit	[] = ractor	ND = Not L	Not Detected	NA = Not Ap	Not Applicable				

			S/S	SITE ID LOCATION ID SAMPLE ID						
PARAMETER 	06	05 05-MW-05 05-MW-05-01	05-1	05 05-MW-06 05-MW-06-01	: : : !	05-	05 05-MW-07 05-MW-07-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05-1	05 05-MW-08 05-MW-08-01
Fluorene	3.5 J		QN	(10)	Ξ	13	(10)	Ξ	ND	
Hexachlorobenzene	QN :		ON.	(10)	Ξ	QN	(10)	[1]	ND	
Hexachlorobutadiene	Q.		물 :	(10)	Ξ:	Q.	(10)	[1]	ND	
Hexachlorocyclopentadiene	Q :		Q :	(10)	Ξ	운 :	(10)	[1]	QN	
Hexachloroethane	2 9		2 :	(10)	ΞΞ	Q :	(10)	Ξ:	QN	(10) [1.030927]
Indeno(1,2,3-cd)pyrene	QV .		QN :	(10)	Ξ:	QN :	(10)	Ξ	ON	
Isophorone	Q N		Q	(10)	Ξ	QN	(10)	Ξ	ND	(10) [1.030927]
N-Nitrosodiphenylamine	QN		QN	(10)	Ξ	QN	(10)	[1]	QN	
N-Nitrosodipropylamine	QN		QN	(10)	[1]	QN	(10)	[1]	ND	
Naphthalene	270		QN O	(10)	[1]	430	(100)	[10]	QN	
Nitrobenzene	QN		NO	(10)	[1]	ND	(10)	Ξ	NO	(10) [1.030927]
Pentachlorophenol	QN		QN	(20)	[1]	QN	(20)	Ξ	ND	
Phenanthrene	1.2 J	_	QN	(10)	[1]	1.7 J	(10)	Ξ	ND	(10) [1.030927]
Phenol	330	_	QN	(10)	[1]	380	(100)	[10]	QN	(10) [1.030927]
Pyrene	Q	(9.8) [0.980392]	QN	(10)	[]	0.37 J	(10)	Ξ	ON	(10) [1.030927]
bis(2-Chloroethoxy)methane	Q	(9.8) [0.980392]	N	(10)	[1]	ND	(10)	Ξ	QN	(10) [1.030927]
bis(2-Chloroethyl)ether	QN	(9.8) [0.980392]	ON	(10)	[1]	ON	(10)	Ξ	ON	(10) [1.030927]
bis(2-Chloroisopropyl)ether	Q.	(9.8) [0.980392]	ON	(10)	[]	ON	(10)	Ξ	QN	(10) [1.030927]
bis(2-Ethylhexyl)phthalate	110	(9.8) [0.980392]	1.7 JB	(10)	Ξ	880	(100)	[10]	1.6 JB	(10) [1.030927]
p-Chloroaniline	QN	(9.8) [0.980392]	QN	(10)	[1]	QN	(10)	[1]	NO	(10) [1.030927]

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				S. LOCA	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	0;0	05 05-MW-09 05-MW-09-01		05-DS-08 Bup	05 05-MW-09 5-DS-08 Dup of 05-MW-09-01	-01	03	05 05-MW-10 05-MW-10-01		0 99	05 05-MW-11 05-MW-11-01	
	1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	! !	! ! ! ! ! !			i 	[: : : : : :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		! ! ! !
<pre>>>W6UIU - halogehated Volatile Organics 1 1 1 2-Tetrachloroethane</pre>	(ng/ r)	(2.5)	[]	S	(2.5)	Ξ	S	(2.5)	[1]	S	(2 5)	[1]
1,1,1,2 - Trichloroethane	2 2	(0.55)	ΞΞ	2 8	(0.55)	ΞΞ	2 9	(0.55)	ΞΞ	2 2	(0,55)	ΞΞ
1,1,2,2-Tetrachloroethane	QN	(0.3)	Ξ	QN	(0.3)	Ξ	Q.	(0.3)	Ξ	S	(0.3)	ΞΞ
1,1,2-Trichloroethane	QN	(0.5)	Ξ	QN	(0.2)	[1]	Q	(0.2)	Ξ	ON	(0.2)	ΞΞ
1,1-Dichloroethane	N	(0.5)	Ξ	ND	(0.5)	Ξ	Q.	(0.5)	Ξ	N	(0.5)	Ξ
1,1-Dichloroethene	QN	(0.7)	Ξ	ON	(0.7)	Ξ	QN	(0.7)	Ξ	QN	(0.7)	[1]
1,2,3-Trichloropropane	Q	(1.6)	[1]	QN	(1.6)	Ξ	NO NO	(1.6)	Ξ	QN	(1.6)	Ξ
1,2-Dichlorobenzene	ND	(0.25)	[1]	QN	(0.25)	Ξ	S S	(0.25)	Ξ	R	(0.25)	Ξ
1,2-Dichloroethane	Q.	(0.15)	Ξ	QN	(0.15)	[1]	8.9	(0.15)	[]	0.43	(0.15)	Ξ
1,2-Dichloropropane	9	(0.15)	Ξ	QN	(0.15)	Ξ	Q	(0.15)	Ξ	QN	(0.15)	Ξ
1,3-Dichlorobenzene	Q.	(0.32)	[3]	ON	(0.32)	Ξ	N	(0.32)	Ξ	Q	(0.32)	Ξ
1,4-Dichlorobenzene	9	(0.25)	Ξ	QN	(0.25)	[1]	N Q	(0.25)	Ξ	QN	(0.25)	Ξ
1-Chlorohexane	2	(3.4)	Ξ	QN	(3.4)	[1]	S	(3.4)	[1]	ON	(3.4)	Ξ
2-Chloroethylvinylether	Q	(0.6)	Ξ	ON	(0.0)	[1]	QN Q	(0.6)	Ξ	2	(0.6)	Ξ
Bromobenzene	2	(1.6)	[1]	ON	(1.6)	[1]	Q	(1.6)	Ξ	QN	(1.6)	Ξ
Bromodichloromethane	QN	(0.1)	Ξ	QN	(0.1)	[1]	ON	(0.1)	Ξ	Q	(0.1)	Ξ
Bromoform	S	(0.5)	Ξ	ON	(0.5)	Ξ	Q.	(0.5)	Ξ	Q.	(0.5)	Ξ
Bromomethane	S	(0.35)	Ξ	QN	(0.35)	Ξ	S	(0.35)	Ξ	2	(0.35)	Ξ
Carbon tetrachloride	9	(0.35)	Ξ	S S	(0.35)	Ξ	9	(0.35)	Ξ	R	(0.35)	Ξ
Chlorobenzene	Q.	(0.3)	Ξ	Q	(0.3)	[1]	Q.	(0.3)	Ξ	Q	(0.3)	Ξ
Chloroethane	2	(0.7)	Ξ	Q.	(0.7)	Ξ	2	(0.7)	Ξ	Q	(0.7)	Ξ
Chloroform	Q	(0.15)	Ξ	Q.	(0.15)	[1]	2	(0.15)	Ξ	Q.	(0.15)	Ξ
Chloromethane	2	(0.5)	[1]	Q	(0.5)	[1]	S	(0.2)	Ξ	QN	(0.5)	[1]
Dibromochloromethane	2	(0.2)	Ξ	QN	(0.2)	Ξ	9	(0.2)	Ξ	N	(0.2)	Ξ
Dibromomethane	9	(1.6)	Ξ	QN	(1.6)	Ξ	9	(1.6)	Ξ	QN	(1.6)	Ξ
Methylene chloride	Q	(0.4)	Ξ	ON	(0.4)	Ξ	S	(0.4)	Ξ	QN	(0.4)	Ξ
Tetrachloroethene	2	(0.1)	Ξ	ON	(0.1)	Ξ	Q	(0.1)	Ξ	Q	(0.1)	Ξ
Trichloroethene	S	(0.2)	Ξ	ND	(0.2)	Ξ	S	(0.5)	Ξ	QN	(0.2)	Ξ
Trichlorofluoromethane	S	(0.55)	Ξ	QN Q	(0.55)	Ξ	2	(0.55)	Ξ	QN	(0.55)	[]
Vinyl chloride	Q.	(0.25)	Ξ	Q.	(0.25)	Ξ	Q.	(0.25)	Ξ	QN	(0.25)	[1]
Compiled: 23 March 1005		too+o(= ()	Detection limit	[] = Eactor	N.	Not Detected	+oN =	Not Applicable				
		it	יווווי	I		חבוברוכח	it	Applicable				

三三三 [4.81] [25] [25] [25] [25] [25] [25] [25] [0.980392] [0.980392][0.980392][0.980392][0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392](0.25) (0.15) (0.2)(2000)(10000)(3000)(2000) (096)(10)(7.5)(2500)(0.0098) (0.0098)(0.02)(0.0098)(0.049)(0.0098) (0.0098) (0.049)(2) (5) (0.029)(0.0098)05-MW-11-01 05-MW-11 0.0006 KJB 0.0013 KJB 0.018 KJB 0.0035 KJB В 0.0089 0.0064 문 문 문 2 2 2 2 8100 S 윤 2 333 [97.1] 50007 5000] 5000] 5000 50007 5000] [1000] 5000] 5000] (0.25)(0.15)(2000)(2000)10000) (3000)(2000)(19000)(2000)(1000)(1500)(0.02)(0.05)(1000)(1000)(10000)(0.01)(0.01)(0.01)(0.01)(0.01)(0.03)(1000)(0.05)(1500)(0.01)05-MW-10-01 05-MW-10 0.021 PB 3 0.049 일 및 일 2 2 2 3800 54000 1800 270000 48000 6700 0.27 0.16 일 일 일 9 S S 0.074 130000 윤 2 22222222 833 Ξ 05-DS-08 Dup of 05-MW-09-01 LOCATION ID (0.2)(0.25)(0.4)(0.15)(2000)(10000)(3000)(2000)(0.2)(0.3)(0.2)(0.2)(100)(0.2)SAMPLE ID (0.01)(0.01)(0.02)(0.01)(0.05)(0.01)(0.01)(0.03)(0.01)SITE 10 05-MW-09 05 0.01 KJB 0.023 JB 0.009 일 및 2 2 2 2 S 9999999 9 웆 9 S 2 2 $\Xi\Xi\Xi$ [0.976] [1.081081][1.081081] [1.081081] [1.081081] [1.081081] [1.081081] [1.081081] [1.081081][1.081081] [1.081081] (0.054)(0.011)(0.054)(0.011)(0.011)(0.15)(2000)(2000)(200)(0.2)(0.4)(0.3)(0.011)(0.022) (0.011)(0.032)(10000)(3000)(0.2)(0.2)(100)(0.011)(0.2)(0.3)05-MW-09-01 05-MW-09 (ng/Γ) W8080 - Organochlorine Pesticides and PCBs (ug/L) (nd/L) SW8015MEMP - Nonhalogenated Volatile Organics 0.017 KJB 0.014 KJ 0.0092 KJ (ng/L) 물 물 물 2 9 2 2 2 2 2 2 2 2 2 8W8015 - Nonhalogenated Volatile Organics S S 웆 2 2 SW8020 - Aromatic Volatile Organics Gasoline Range Organics (2) trans-1,3-Dichloropropene Diesel Range Organics (2) trans-1,2-Dichloroethene cis-1,3-Dichloropropene Methyl isobutyl ketone Methyl ethyl ketone 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene Endosulfan Sulfate Fotal xylenes Chlorobenzene Endosulfan II Ethylbenzene Endosulfan, I Ethyl ether PARAMETER Chlordane 4,4'-DDE 4,4'-000 4,4'-DDT Dieldrin Benzene Toluene Aldrin Indrin

Compiled: 23 May

[] = Factor = Detection Limit

 \Box

= Not Detected

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID

			SA	SAMPLE ID							
		05		05			05			90	
PARAMETER		05-MW-09 05-MW-09-01	-50 -05-08 Dup	05-MW-09 05-0S-08 Dup of 05-MW-09-01	-01	-20 M-20	05-MW-10 05-MW-10-01		05 05-	05-MW-11 05-MW-11-01	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ;	
Endrin Aldehyde	0.0068 JB	(0.022) [1.081081]	0.0022 KJB	(0.05)	[1]	0.019 KJB	(0.05)	Ξ	0.0023 KJB	(0.05)	[0.980392]
Heptachlor	QN	(0.011) [1.081081]	ON	(0.01)	Ξ	0.01 PB	(0.01)	[1]	QN	(0.0098)	[0.980392]
Heptachlor epoxide	ON	(0.011) [1.081081]	0.0013 KJB	(0.01)	Ξ	0.078 P	(0.01)	Ξ	QN	(0.0098)	[0.980392]
Methoxychlor	QN	(0.054) [1.081081]	QN	(0.02)	Ξ	NO	(0.02)	Ξ	ON.	(0.049)	[0.980392]
PCB-1016	QN	(0.11) [1.081081]	QN	(0.1)	[1]	QN	(0.1)	Ξ	QN	(0.098)	[0.980392]
PCB-1221	QN	(0.22) [1.081081]	N	(0.2)	Ξ	QN	(0.2)	Ξ	QN	(0.2)	[0.980392]
PCB-1232	QN	(0.22) [1.081081]	QN	(0.2)	Ξ	QN	(0.5)	Ξ	Q.	(0.2)	[0.980392]
PCB-1242	QN	(0.11) [1.081081]	NO.	(0.1)	Ξ	ND	(0.1)	[1]	QN	(0.098)	[0.980392]
PCB-1248	QN	(0.11) [1.081081]	QN	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(0.038)	[0.980392]
PCB-1254	QN	(0.22) [1.081081]	ON	(0.2)	Ξ	ON	(0.5)	Ξ	QN	(0.2)	[0.980392]
PCB-1260	QN	(0.22) [1.081081]	QN	(0.2)	Ξ	QN	(0.5)	Ξ	QN	(0.2)	[0.980392]
Toxaphene	ON	(0.54) [1.081081]	QN	(0.5)	Ξ	QN	(0.5)	Ξ	QN	(0.49)	[0.980392]
alpha-BHC	N	(0.011) [1.081081]	QN	(0.01)	Ξ	0.13	(0.01)	[]	0.016	(0.0098)	[0.980392]
beta-BHC	ON	(0.011) [1.081081]	QN	(0.01)	Ξ	0.14	(0.01)	Ξ	0.006 KJB	(0.0098)	[0.980392]
delta-BHC	QN	(0.011) [1.081081]	0.02 B	(0.01)	Ξ	0.12	(0.01)	[1]	0.018 B	(0.0098)	[0.980392]
gamma-BHC	ON	(0.011) [1.081081]	0.027 8	(0.01)	Ξ	0.073	(0.01)	Ξ	0.0083 JB	(0.0098)	[0.980392]
SW8270 - Semivolatile Organics	(ng/L)										
1,2,4-Trichlorobenzene	ON	(9.7) [0.970873]	ON	(10) [1.	[1.041666]	QN	(83) [8.3	[8.333332]	ND	(9.6)	[0.956937]
1,2-Dichlorobenzene	ON	[0.970873]	QN	(10) [1.	1.041666]	N	(83) [8.3	[8.33332]	Q.	(9.6)	[0.956937]
1,3-Dichlorobenzene	QN	[0.970873]	ON	(10) [1.	1.041666]	ND	(83) [8.3	[8.33332]	Q.	(9.6)	[0.956937]
1,4-Dichlorobenzene	ON	[0.970873]	ON	(10) [1.	[1.041666]	ND	(83) [8.3	[8.33332]	N	(9.6)	[0.956937]
2,4,5-Trichlorophenol	ON	[0.970873]	QN	(10) [1.	[1.041666]	ND	(83) [8.3	[8.333332]	Q	(9.6)	[0.956937]
2,4,6-Trichlorophenol	QN	(9.7) [0.970873]	ON	(10) [1.	[1.041666]	QN	(83) [8.3	[8.33332]	Q.	(9.6)	[0.956937]
2,4-Dichlorophenol	QN	[0.970873]	ON	(10) [1.	[1.041666]	QN	(83) [8.3	[8.33332]	N Q	(9.6)	[0.956937]
2,4-Dimethylphenol	QN	(9.7) [0.970873]	ND	_	[1.041666]	QN	(83) [8.3	[8.333332]	QN	(9.6)	[0.956937]
2,4-Dinitrophenol	QN	(49) [0.970873]	ON	_	1.041666]	ON	(420) [8.3	[8.33332]	N	(48)	[0.956937]
2,4-Dinitrotoluene	Q		NO	_	1.041666]	ON	(83) [8.3	[8.333332]	QN	(9.6)	[0.956937]
2,6-Dinitrotoluene	QN	(9.7) [0.970873]	QN	(10) [1.	[1.041666]	ON	(83) [8.3	[8.333332]	ON	(9.6)	[0.956937]
2-Chloronaphthalene	QN	(9.7) [0.970873]	QN	_	[1.041666]	QN	(83) [8.3	[8.333332]	ON	(9.6)	[0.956937]
2-Chlorophenol	Q	(9.7) [0.970873]	ON	(10) [1.	[1.041666]	Q.	(83) [8.3	[8.333332]	ND	(9.6)	[0.956937]
2-Methylnaphthalene	ON	[0.970873]	1.1 J	(10) [1.	[1.041666]	1200	(210) [20.	[20.83333]	QN	(9.6)	[0.956937]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

[0.956937][0.956937][0.956937][0.956937] [0.956937][0.956937]0.956937] [0.956937] [0.956937][0.956937][0.956937] 0.956937] [0.956937][0.956937][0.956937] [0.956937] [0.956937] 0.956937 [0.956937] [0.956937] 0.956937 [0.956937] [0.956937] [0.956937]0.956937] [0.956937]0.956937 [0.956937][0.956937] [0.956937][0.956937](9.6)(9.6)(9.6)(48) (48) (9.6)(9.6)(9.6)(9.6)(9.6)(9.6)(9.6)(9.6)(48) (9.6)(9.6)(9.6)(9.6)(9.6)(48) (9.6)(9.6)(9.6)05-MW-11-01 05-MW-11 [8.33332][8.333332][8.333332] [8.33332] [8.333332] [8.333332] [8.33332] [8.333332] [8.333332]8.33332 8.333332 8.333332 8.333332 8.33332 [8.33332] [8.333332] [8.333332] [8.333332] [8.333332] [8.333332] [8.333332] [8.33332] [8.33332] [8.33332] [8.33332] [8.333332] [8.33332][8.333332 420) 420) (83) (83) (83)(83) (83) 420) (83) (83) (83) (83) (83) (83) (83)(83) (83) (83) (83) (83) 05-MW-10-01 05-MW-10 22 J 2.6 J 999 350 2 9 9 2 2 340 2 2 2 2 2 2 2 [1.041666][1.041666] [1.041666][1.041666][1.041666] [1.041666] [1.041666][1.041666][1.041666] [1.041666][1.041666][1.041666][1.041666][1.041666][1.041666] [1.041666] [1.041666][1.041666][1.041666][1.041666] 1.041666 [1.041666][1.041666][1.041666] [1.041666][1.041666][1.041666][1.041666]05-DS-08 Dup of 05-MW-09-01 (10)(25) LOCATION ID (10)(10)(25) (10)(10)(10)(10)(10)(52)(52)(10)(10)(10)(10)(55) (10)(10)(10)(10)10) 10) 10) SAMPLE ID SITE 1D 05-MM-09 2222222 2 S 9 9 2 [0.970873][0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873 0.970873 [0.970873]0.970873 [0.970873][0.970873][0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873](9.7)(9.7)(9.7) (9.7)(49)(9.7)(9.7)(9.7)(9.7)(9.7)(9.7)(9.7)(9.7)(9.7)(9.7)(9.7)(9.7)(48) (49)(49)05-MW-09-01 05-MW-09 운 운 Q. 9 욷 2 2 2 2 2 1-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether 4,6-Dinitro-2-methylphenol 2-Methylphenol(o-cresol) 4-Methylphenol(p-cresol) 4-Chloro-3-methylphenol 3,3'-Dichlorobenzidine Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Butylbenzylphthalate Di-n-octylphthalate Benzo(a)anthracene Dimethylphthalate Dibutylphthalate Diethylphthalate 2-Nitroaniline 3-Nitroaniline **Acenaphthylene** Benzo(a)pyrene 4-Nitroaniline Benzyl alcohol 2-Nitrophenol 4-Nitrophenol Acenaphthene Benzoic acid Dibenzofuran -luoranthene Anthracene PARAMETER Chrysene

AD = Not Detected [] = Factor

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			S LOC.	SITE ID LOCATION ID SAMPLE ID				
		05		05		05		05
PARAMETER	05- 05-1	05-MW-09 05-MW-09-01	05-08-08 Dup	05-MW-09 05-DS-08 Dup of 05-MW-09-01	- 10	05-MW-10 05-MW-10-01	0	05-MW-11 05-MW-11-01
					096	(82) [8 322229]		
	2 2		2 5		3		2 5	
Hexachlorobenzene	O.		2 9		2 9		2 9	<u>a</u> .
Hexachlorobutadlene	ON.		2	_	2	_	2	_
Hexachlorocyclopentadiene	QN	[0.970873]	QN	(10) [1.041666]	QN	(83) [8.33332]	ND	(9.6) [0.956937]
Hexachloroethane	ON	(9.7) [0.970873]	N	(10) [1.041666]	Q	(83) [8.33332]	QN .	(9.6) [0.956937]
Indeno(1,2,3-cd)pyrene	ON	(9.7) [0.970873]	QN	(10) [1.041666]	Q.	(83) [8.33332]	QN	(9.6) [0.956937]
Isophorone	QN	(9.7) [0.970873]	QN	(10) [1.041666]	Q.	(83) [8.33332]	Q	(9.6) [0.956937]
N-Nitrosodiphenylamine	QN	(9.7) [0.970873]	N	(10) [1.041666]	2	(83) [8.33332]	N	(9.6) [0.956937]
N-Nitrosodipropylamine	QN	(9.7) [0.970873]	ND	(10) [1.041666]	S	(83) [8.333332]	ON.	(9.6) [0.956937]
Naphthalene	QN	(9.7) [0.970873]	0.73 J	(10) [1.041666]	880	(210) [20.83333]	ON	(9.6) [0.956937]
Nitrobenzene	QN	(9.7) [0.970873]	QN QN	(10) [1.041666]	S	(83) [8.33332]	S	(9.6) [0.956937]
Pentachlorophenol	ND	(49) [0.970873]	N	(52) [1.041666]	Q	(420) [8.33332]	QN	(48) [0.956937]
Phenanthrene	QN	(9.7) [0.970873]	QN	(10) [1.041666]	23 J	(83) [8.333332]	Q	(9.6) [0.956937]
Phenol	ON	(9.7) [0.970873]	QN	(10) [1.041666]	1600	(83) [8.333332]	S	(9.6) [0.956937]
Pyrene	QN	(9.7) [0.970873]	Q	(10) [1.041666]	5.7 J	(83) [8.33332]	S	(9.6) [0.956937]
bis(2-Chloroethoxy)methane	QN	(9.7) [0.970873]	ND	(10) [1.041666]	QN	(83) [8.33332]	QN.	(9.6) [0.956937]
bis(2-Chloroethyl)ether	ON	(9.7) [0.970873]	ND	(10) [1.041666]	Q	(83) [8.33332]	S	(9.6) [0.956937]
bis(2-Chloroisopropyl)ether	ON	(9.7) [0.970873]	ND	(10) [1.041666]	S	(83) [8.33332]	Q	(9.6) [0.956937]
bis(2-Ethylhexyl)phthalate	3.4 JB	(9.7) [0.970873]	1.8 JB	(10) [1.041666]	Q	(83) [8.33332]	Q.	(9.6) [0.956937]
p-Chloroaniline	QN	(9.7) [0.970873]	ON	(10) [1.041666]	Q	(83) [8.333332]	QN	(9.6) [0.956937]

				S 07	SITE ID LOCATION ID SAMPLE ID							
PARAMETER)	05 05-MW-12 05-MW-12-01	1	05-05-09	05 05-MW-12 Dup of 05-MW-12-01	-01	- 0	05 05-SW-01 05-SW-01-01			05 05-SW-02 05-SW-02-01	! ! ! !
SW8010 - Halogenated Volatile Organics	s (ug/L)	(9 5)	Ξ	Ç	(3)	5	Ş		Ξ	Š	3	į
1,1,1-Trichloroethane	Q Q	(6.5)	ΞΞ	ON ON	(5) (1.1)	[2]	O O	(2.5)	E	Q Q	(2.5)	<u> </u>
1,1,2,2-Tetrachloroethane	ND	(0.3)	Ξ	QN	(0.6)	[2]	QN	(0.3)	ΞΞ	9	(0.3)	ΞΞ
1,1,2-Trichloroethane	ND	(0.2)	[1]	QN	(0.4)	[2]	ON	(0.2)	[1]	9	(0.2)	
1,1-Dichloroethane	QN	(0.5)	[1]	ON.	(1)	[2]	QN	(0.5)	Ξ	QN	(0.5)	Ξ
1,1-Dichloroethene	QN	(0.7)	Ξ	QN	(1.4)	[2]	Q	(0.7)	[1]	Q	(0.7)	Ξ
1,2,3-Trichloropropane	QN	(1.6)	Ξ	Q	(3.2)	[2]	Q	(1.6)	[]	N	(1.6)	Ξ
1,2-Dichlorobenzene	운 :	(0.25)	[1]	QN	(0.5)	[2]	QN	(0.25)	[1]	QN	(0.25)	[1]
1,2-Dichloroethane	Q	(0.15)	Ξ	Q	(0.3)	[2]	QN	(0.15)	[1]	Q	(0.15)	Ξ
1,2-Dichloropropane	Q	(0.15)	[1]	Q.	(0.3)	[2]	QN	(0.15)	Ξ	QN	(0.15)	Ξ
1,3-Dichlorobenzene	9	(0.32)	Ξ	QN	(0.64)	[2]	NO	(0.32)	Ξ	Q.	(0.32)	[1]
1,4-Dichlorobenzene	QN	(0.25)	Ξ	QN	(0.5)	[2]	ON	(0.25)	Ξ	S	(0.25)	[1]
1-Chlorohexane	Q	(3.4)	[]	QN	(8.8)	[5]	QN	(3.4)	Ξ	QN	(3.4)	Ξ
2-Chloroethylvinylether	2	(0.6)	[1]	Q	(1.2)	[2]	2	(0.6)	Ξ	Q	(0.6)	Ξ
Bromobenzene	9	(1.6)	[1]	N	(3.2)	[5]	2	(1.6)	Ξ	QN	(1.6)	Ξ
Bromodichloromethane	2	(0.1)	Ξ	QN	(0.2)	[5]	Q	(0.1)	Ξ	ND	(0.1)	[1]
Bromotorm	2	(0.5)	Ξ:	Q	(1)	[2]	Q.	(0.5)	Ξ	QN	(0.5)	[1]
Bromomethane	2	(0.35)	Ξ	QN	(0.7)	[2]	S	(0.35)	Ξ	Q	(0.35)	[1]
Carbon tetrachloride	2 :	(0.35)	Ξ	QN	(0.7)	[2]	QN	(0.35)	Ξ	ND	(0.35)	[1]
Chlorobenzene	2 9	(0.3)	Ξ3	0N :	(0.6)	[5]	8	(0.3)	Ξ	Q	(0.3)	[1]
citor de citalle	2 5	(0.7)	Ξ3	ON:	(1.4)	[2]	9	(0.7)	Ξ	Q.	(0.7)	[1]
	2 5	(0.15)	ΞΞ	ND.	(0.3)	[2]	2	(0.15)	[1]	Q	(0.15)	Ξ
CITOTOMECHANE	2 :	(0.5)	Ξ:	ON !	(1)	[2]	2	(0.5)	Ξ	Q.	(0.5)	Ξ
Ulbromochloromethane	2	(0.2)	Ξ	QN	(0.4)	[2]	Ş	(0.2)	[1]	QN	(0.2)	Ξ
Dibromomethane	2	(1.6)	Ξ	ND	(3.2)	[2]	Q.	(1.6)	[1]	QN	(1.6)	[1]
Methylene chloride	S	(0.4)	Ξ	2.68	(0.8)	[2]	Ñ	(0.4)	Ξ	QN	(0.4)	[1]
Tetrachloroethene	Q.	(0.1)	[1]	ND	(0.2)	[2]	QN	(0.1)	Ξ	QN	(0.1)	Ξ
Trichloroethene	QN	(0.2)	[1]	QN	(0.4)	[2]	Q.	(0.2)	[1]	ND	(0.2)	Ξ
Trichlorofluoromethane	Q	(0.55)	Ξ	QN	(1.1)	[2]	QN	(0.55)	[1]	QN	(0.55)	Ξ
Vinyl chloride	Q.	(0.25)	[1]	QN	. (2'0)	[2]	QN	(0.25)	[1]	ON	(0.25)	[1]

ND = Not Detected NA = Not Applicable

() = Detection Limit [] = Factor

Compiled: 23 Marra 1995

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

					SITE ID LOCATION ID SAMPLE ID							
	0 .	05 05-MW-12		ŏ	05 05-MW-12	;	05	05 05-SW-01		05	05 05-SW-02	
PAKAME I EK	30	05-MW-12-01 		05-08-09 Dt	Dup of 05-MW-12-01	12-01	-90	05-SW-01-01	:	-90	05-SW-02-01 	
cis-1,3-Dichloropropene	QN	(0.2)	Ξ	ND	(0.4)	[2]	QN	(0.2)	[1]	ND	(0.2)	Ξ
trans-1,2-Dichloroethene	ON	(0.25)	[1]	QN	(0.5)	[2]	ON	(0.25)	Ξ	ON	(0.25)	Ξ
trans-1,3-Dichloropropene	QN	(0.15)	Ξ	QN	(0.3)	[2]	ON	(0.15)	Ξ	QN	(0.15)	[]
SW8015 - Nonhalogenated Volatile Organics (ug/L	Irganics (ug/	(1)										
Ethanol	ND	(2000)	[1]	QN	(2000)	Ξ	ON	(2000)	Ξ	ON	(2000)	Ξ
Ethyl ether	ON	(10000)	[1]	QN	(10000)	Ξ	ON	(10000)	Ξ	QN	(10000)	Ξ
Methyl ethyl ketone	ON	(3000)	[1]	QN	(3000)	Ξ	ON	(3000)	Ξ	QN	(3000)	[1]
Methyl isobutyl ketone	QN	(2000)	[1]	QN	(2000)	[1]	ON	(2000)	[1]	QN	(2000)	Ξ
SW8015MEMP - Nonhalogenated Volatile Organics	le Organics	(ng/L)										i I
Diesel Range Organics (2)	910	(200)	[0.980]	11000	(1900)	[9.71]	QN	(200)	Π	QN	(200)	[1]
SW8020 - Aromatic Volatile Organics	:s (ng/L)											
1,2-Dichlorobenzene	ON	(0.4)	[1]	ON	(800)	[2000]	QN	(0.4)	[1]	QN	(0.4)	Ξ
1,3-Dichlorobenzene	ON	(0.2)	[1]	ON	(400)	[5000]	QN	(0.2)	Ξ	N	(0.2)	Ξ
1,4-Dichlorobenzene	ON	(0.4)	[]	ON	(800)	[5000]	QN	(0.4)	Ξ	ON	(0.4)	[1]
Benzene	QN	(0.3)	[1]	20000	(009)	[2000]	QN	(0.3)	[1]	QN.	(0.3)	Ξ
Chlorobenzene	QN	(0.2)	Ξ	ND	(400)	[5000]	QN	(0.2)	Ξ	QN	(0.2)	Ξ
Ethylbenzene	QN	(0.2)	Ξ	1400	(400)	[2000]	ON	(0.2)	Ξ	ON	(0.5)	[1]
Gasoline Range Organics (2)	QN	(100)	Ξ	440000	(200000)	[2000]	NO ON	(100)	Ξ	QN ON	(100)	[1]
Toluene	QN	(0.2)	[]	37000	(400)	[2000]	QN	(0.5)	[1]	Q.	(0.2)	Ξ
Total xylenes	QN	(0.3)	Ξ	2000	(009)	[2000]	QN	(0.3)	[1]	NO	(0.3)	[3]
SW8080 - Organochlorine Pesticides and	PCBs	(ng/L)										
4,4'-DDD	Q	(0.0097)	[0.970873]	0.023 B	0.0098)	[0.980392]	QN	(0.01)	[0.995024]	QN	(0.01) [0.	[0.995024]
4,4'-DDE	QN	(0.0097)	[0.970873]	0.027	0.0098)	[0.980392]	ND	(0.01) [[0.995024]	QN	(0.01) [0.	[0.995024]
4.4'-DDT	ON	(0.019)	[0.970873]	0.016 J	(0.05)	[0.980392]	0.031	(0.05)	[0.995024]	0.001 PJB	(0.02) [0.	[0.995024]
Aldrin	QN	(0.0097)	[0.970873]	0.024	(0.0098)	[0.980392]	QN	(0.01)	[0.995024]	0.0055 PJB	(0.01) [0.	[0.995024]
Chlordane	QN	(0.049)	[0.970873]	QN	(0.049) [([0.980392]	QN	(0.05) [([0.995024]	QN	(0.05) [0.	[0.995024]
Dieldrin	ON	(0.0097)	[0.970873]	0.0088 J	(0.0098)	[0.980392]	0.007 JB		[0.995024]	0.008 JB	(0.01) [0.	[0.995024]
Endosulfan I		(0.0097)	[0.970873]	QN	(0.0098)	[0.980392]	0.0069 KJB	(0.01) [([0.995024]	0.0053 KJB	(0.01) [0.	[0.995024]
Endosulfan II	0.0022 KJB		[0.970873]	QN	_	[0.980392]	0.022 KJB	(0.03) [([0.995024]	0.02 JB	(0.03) [0.	[0.995024]
Endosulfan Sulfate	QN		[0.970873]	0.0092 KJB		[0.980392]	QN		[0.995024]	0.044 KJ	_	[0.995024]
Endrin	QN	(0.003)	[0.970873]	QN	(0.0098)	[0.980392]	QN	(0.01)	[0.995024]	ON		[0.995024]

[] = Factor ND \approx Not Detected NA = Not Applicable

() = Detection Limit

SITE 1D

222222222222 [0.995024][0.995024] [0.995024] [0.995024] [0.995024][0.995024] [0.995024] [0.995024] [0.995024] [0.995024][0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] (0.1)(0.1)(0.01)(0.05)(0.1)(0.2)(0.2)(0.2)(0.2)(0.5)0.01) (0.01)(0.01)(0.01)(10)(10)(10)(10)(10)(10)50) (10)(10)(10)(10)05-SW-02-01 05-SW-02 0.0011 KJB 0.0061 PJB 0.0072 KJB 8 0.015 2 8 9 2 운 문 운 문 2 2 9 2 [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024][0.995024] [0.995024][0.995024] [0.995024] [0.995024] [0.995024] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] (0.01)(0.1)(0.2)(0.1)(0.1)(0.2)(0.01) (0.01)(0.01)(0.01)(0.05)(0.2)(0.2)(0.5)(6.6)(6.6)(9.9)(9.9)(9.9)(9.9)(6.6)(9.9)(9.9)(49)(6.6)(9.9)(6.6)05-SW-01-0] 05-SW-01 0.0021 KJB 0.0053 PJB 0.017 B 운 9 S 8888 2 운 운 2 2 S 222222 2 2 2 2 2 [0.980392] [0.980392][0.980392] [0.980392][0.980392][0.980392] [0.980392][0.980392][0.980392][0.980392][0.980392] [0.980392][0.980392] [0.990099][4.950495] [0.990099] 0.980392 [0.980392] [0.980392][0.990099] [0.990099][0.990099] [0.990099] [0.990099] [0.990099] [0.990099] [0.990099] [0.990099] [0.990099] [4.950495] 05-DS-09 Dup of 05-MW-12-01 (0.05)(0.2)(0.2)(0.0038) (0.0098)(0.049)(0.098)(0.2)(0.2)(0.49)(6.6)LOCATION ID (0.098)(0.098)(0.0098)(0.0098) (0.0098)(0.0098) (9.9)(6.6)(6.6)(6.6)(6.6)(20)(20)(6.6)(9.9)(9.9)(50)(9.9)SAMPLE ID 05-MW-12 02 0.0064 KJB 0.022 PB 0.018 B 문 9 2 9 2 2 2 0.054 0.071 0.029 2 0.063 2 2 2 9 [0.970873] [0.970873] [0.970873] [0.970873][0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873][1.020408][1.020408]1.020408 [1.020408] [1.020408][1.020408][1.020408][1.020408][1.020408][1.020408][1.020408] [1.020408]1.020408 [1.020408](0.049)(0.097)(0.19)(0.19)(0.097)(0.097)(0.19)(10)(0.19)(10)(10)(10)(10)(10)(10)(51)(10)(10)(0.019)0.0097) (0.0097) (0.49)(0.0097)(0.0097)(10)(10)(0.0097) (0.0097) 05-MW-12-01 05-MW-12 0.0078 KJB 0.0057 PJB 0.01 PB 0.014 B 9 2 2 \exists 2 욷 2 욷 욷 2 2 222222 ₽ 문 문 2 SW8270 - Semivolatile Organics (ug/L) 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chloronaphthalene 2-Methylnaphthalene Heptachlor epoxide 2,6-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol Endrin Aldehyde 2-Chlorophenol Methoxychlor leptachlor PARAMETER delta-BHC Toxaphene alpha-BHC gamma-BHC PCB-1016 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1260 beta-BHC PCB-1221

1995 Compiled: 23 May

[] = Factor () = Detection Limit

= Not Detected

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			SITI LOCAT SAMP	SITE ID -OCATION ID SAMPLE ID					
		05 05-MW-12	05 05-MW-12	-12	-90	05 05-SW-01	0	05 05-SW-02	
PARAMETER		05-MW-12-01	05-DS-09 Dup o	Dup of 05-MW-12-01	05-8	05-SW-01-01	05	05-SW-02-01	
2-Methylphenol(o-cresol)	N	(10) [1.020408]	170	(50) [4.950495]	ND	(9.9) [0.985221]	QN	(10)	Ξ
2-Nitroaniline	ON	(51) [1.020408]	ON	_	ND	(49) [0.985221]	QN	(20)	Ξ
2-Nitrophenol	QN	(10) [1.020408]	ON		NO		QN	(10)	Ξ
3,3'-Dichlorobenzidine	ON N	_	ON		NO	_	QN	(20)	Ξ
3-Nitroaniline	ND	(51) [1.020408]	QN	[660066.0] (05)	NO	(49) [0.985221]	QN	(20)	Ξ
4,6-Dinitro-2-methylphenol	ND	(51) [1.020408]	QN		ND	(49) [0.985221]	QN	(20)	Ξ
4-Bromophenyl phenyl ether	QN	(10) [1.020408]	QN	[660066.0] (6.6)	ON	(9.9) [0.985221]	QN	(10)	Ξ
4-Chloro-3-methylphenol	ON	(10) [1.020408]	ND	[660066.0] (6.6)	ON	(9.9) [0.985221]	QN	(10)	Ξ
4-Chlorophenyl phenyl ether	ON	(10) [1.020408]	QN	[660066.0] (6.6)	QN	(9.9) [0.985221]	QN	(10)	Ξ
4-Methylphenol(p-cresol)	QN	(10) [1.020408]	300	(50) [4.950495]	QN	(9.9) [0.985221]	QN	(10)	Ξ
4-Nitroaniline	QN	(51) [1.020408]	ON	[0:0006:0]	ND	(49) [0.985221]	QN	(20)	Ξ
4-Nitrophenol	QN	(51) [1.020408]	QN	[660066.0] (09)	QN	(49) [0.985221]	ON	(20)	Ξ
Acenaphthene	ND	(10) [1.020408]	2.3 J	[660066.0] (6.6)	QN	(9.9) [0.985221]	QN	(10)	Ξ
Acenaphthylene	ND	(10) [1.020408]	QN .	[660066.0] (6.6)	ND	(9.9) [0.985221]	QN	(10)	Ξ
Anthracene	QN	(10) [1.020408]	QN	[660066.0] (6.6)	ND	(9.9) [0.985221]	QN	(10)	Ξ
Benzo(a)anthracene	ON	(10) [1.020408]	ON	[6:60066:0] (6:6)	ND	(9.9) [0.985221]	QN	(10)	Ξ
Benzo(a)pyrene	QN	(10) [1.020408]	ON	[660066.0] (6.6)	QN	(9.9) [0.985221]	ON	(10)	Ξ
Benzo(b)fluoranthene	QN	(10) [1.020408]	ON	[6:0066:0] [6:6)	QN	(9.9) [0.985221]	QN	(10)	Ξ
Benzo(g,h,i)perylene	QN	(10) [1.020408]	Q.	[660066.0] (6.6)	NO	(9.9) [0.985221]	QN	(10)	Ξ
Benzo(k)fluoranthene	ND	(10) [1.020408]	QV	[660066.0] (6.6)	ON	(9.9) [0.985221]	QN	(10)	Ξ
Benzoic acid	QN	(51) [1.020408]	41 J	[660066.0] (05)	1.5 J	(49) [0.985221]	1.9 J	(20)	Ξ
Benzyl alcohol	QN	(10) [1.020408]	QN	[660066.0] (6.6)	QN	(9.9) [0.985221]	QN	(10)	Ξ
Butylbenzylphthalate	QN	(10) [1.020408]	N	[660066.0] (6.6)	Q.	(9.9) [0.985221]	QN	(10)	Ξ
Chrysene	QN	(10) [1.020408]	ON	[660066.0] (6.6)	Q	_	Q.	(10)	Ξ
Di-n-octylphthalate	QN	(10) [1.020408]	0.59 J	[660066.0] (6.6)	ND	(9.9) [0.985221]	ON	(10)	Ξ
Dibenz(a,h)anthracene	QN	(10) [1.020408]	ND	[660066.0] (6.6)	QN	(9.9) [0.985221]	ON	(10)	Ξ
Dibenzofuran	QN	(10) [1.020408]	7.7 3	[660066.0] (6.6)	QN	(9.9) [0.985221]	QN	(10)	Ξ
Dibutylphthalate	QN	(10) [1.020408]	0.53 J	[660066.0] (6.6)	QN	(9.9) [0.985221]	QN	(10)	Ξ
Diethylphthalate	QN	(10) [1.020408]	ND	[6:6) [0:60066]	QN	(9.9) [0.985221]	QN	(10)	Ξ
Dimethylphthalate	ON	(10) [1.020408]	QN	[660066.0] (6.6)	QN	(9.9) [0.985221]	QN	(10)	Ξ
Fluoranthene	N	(10) [1.020408]	ON	[6:6) [0:38003]	QN	(9.9) [0.985221]	S	(10)	[1]
			1	ŀ	1				
Compiled: 23 March 1995		() = Detection Limit	t [] = Factor	ND = Not Detected	NA = Not Ap	Not Applicable			

			9	SITE ID					
			. σ	SAMPLE ID					
		05		05		05		05	
PARAMETER	0.50	05-MW-12 05-MW-12-01	05-DS-09 Du	05-MW-12 -DS-09 Dup of 05-MW-12-01	05-	05-SW-01 05-SW-01-01	05-	05-SW-02 05-SW-02-01	
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									! ! !
Fluorene	ND	(10) [1.020408]	6.2 J	[6:60066:0] (6:6)	QN	(9.9) [0.985221]	Q	(10)	Ξ
Hexachlorobenzene	NO		QN	[6:6) [0:60066]	QN	(9.9) [0.985221]	ND	(10)	ΞΞ
Hexachlorobutadiene	QN	(10) [1.020408]	ND	(9.9) [0.990099]	ND	(9.9) [0.985221]	QN	(10)	ΞΞ
Hexachlorocyclopentadiene	ND		QN	[6:6) [0:330033]	ND	(9.9) [0.985221]	QN	(10)	Ξ
Hexachloroethane	QN	(10) [1.020408]	Q	[8:8] [0:890088]	ON	(9.9) [0.985221]	ND	(10)	Ξ
Indeno(1,2,3-cd)pyrene	QN		QN	[6:6) [0:60066]	ND	(9.9) [0.985221]	ON	(10)	ΞΞ
Isophorone	QN		QN	[6:60066:0] [6:6)	QN	(9.9) [0.985221]	ND	(10)	
N-Nitrosodiphenylamine	ON		QN	[6:60066:0] (6:6)	ON	(9.9) [0.985221]	ON	(10)	Ξ
N-Nitrosodipropylamine	QN		ON	[6:6) [0:680083]	QN	(9.9) [0.985221]	ON	(10)	Ξ
Naphthalene	QN		370	(50) [4.950495]	ON	(9.9) [0.985221]	ON	(10)	Ξ
Nitrobenzene	QN	(10) [1.020408]	QN	[6:6) [0:380088]	QN	(9.9) [0.985221]	QN	(10)	
Pentachlorophenol	QN		ND	(50) [0.990099]	NO	(49) [0.985221]	ON	(20)	Ξ
Phenanthrene	QN		1.1 J	[6:6) [0:60066]	QN	(9.9) [0.985221]	QN	(10)	Ξ
Phenol	Q		400	(50) [4.950495]	N Q	(9.9) [0.985221]	QN	(10)	[1]
Pyrene	ND	(10) [1.020408]	ND	[6:6) [0:390039]	QN Q	(9.9) [0.985221]	ND	(10)	Ξ
bis(2-Chloroethoxy)methane	ND		QN	[6:6) [0:380088]	ND	(9.9) [0.985221]	QN	(10)	Ξ
bis(2-Chloroethyl)ether	ND ON	(10) [1.020408]	ON	[6:6) [0:380089]	ND	(9.9) [0.985221]	ND	(10)	Ξ
bis(2-Chloroisopropyl)ether	QN	(10) [1.020408]	QN	[6:6) [0:380088]	ND	(9.9) [0.985221]	QN	(10)	Ξ
bis(2-Ethylhexyl)phthalate	Q.	(10) [1.020408]	200	(50) [4.950495]	1.8 JB	(9.9) [0.985221]	1.2 JB	(10)	Ξ
p-Chloroaniline	Q	(10) [1.020408]	ND	[660066.0] [6.6)	QN	(9.9) [0.985221]	ND	(10)	[1]

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	05-	05 05-SW-03 05-SW-03-01		0 05-05 05-05-07	05 05-SW-03 Dup of 05-SW-03-01	01	-90	06 06-MW-01 06-MW-01-01	٠	90	06 06-MW-02 06-MW-02-01	
CLIONIO - Hilanostod Volatile Organic	(/					! ! !	1 1 1 1 1 1 1 1	6 6 9 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 	1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! !
	(ag/ c) ND	(2.5)	[1]	QN	(5.5)	[1]	QN	(1200)	[200]	S	(2.5)	Ξ
1,1,1-Trichloroethane	Q	(0.55)	ΞΞ	QN	(0.55)	ΞΞ	S	(580)	[200]	QN	(0.55)	Ξ
1,1,2,2-Tetrachloroethane	ON	(0.3)	[1]	QN	(0.3)	Ξ	Q.	(150)	[200]	ON	(0.3)	[1]
1,1,2-Trichloroethane	QN	(0.2)	Ξ	ON	(0.2)	Ξ	QN	(100)	[200]	QN	(0.2)	[1]
1,1-Dichloroethane	Q	(0.5)	Ξ	ND	(0.5)	[1]	QN	(220)	[200]	QN	(0.5)	[1]
1,1-Dichloroethene	ON	(0.7)	Ξ	ND	(0.7)	Ξ	ND	(320)	[200]	QN	(0.7)	[]
1,2,3-Trichloropropane	QN	(1.6)	Ξ	ND	(1.6)	Ξ	ND	(800)	[200]	QN	(1.6)	Ξ
1,2-Dichlorobenzene	QN	(0.25)	[1]	QN	(0.25)	Ξ	QN	(120)	[200]	QN	(0.25)	Ξ
1,2-Dichloroethane	S	(0.15)	Ξ	ND	(0.15)	Ξ	ND	(72)	[200]	QN	(0.15)	Ξ
1,2-Dichloropropane	S	(0.15)	Ξ	ND	(0.15)	[1]	ND	(72)	[200]	QN	(0.15)	Ξ
1,3-Dichlorobenzene	QN	(0.32)	[1]	ON	(0.32)	[1]	ON	(160)	[200]	QN	(0.32)	Ξ
1,4-Dichlorobenzene	QN	(0.25)	Ξ	QN	(0.25)	Ξ	ND	(120)	[200]	QN	(0.25)	Ξ
1-Chlorohexane	QN	(3.4)	Ξ	ON	(3.4)	Ξ	ND	(1700)	[200]	Q	(3.4)	Ξ
2-Chloroethylvinylether	QN	(0.0)	Ξ	QN	(0.6)	Ξ	ND	(300)	[200]	QN	(0.6)	Ξ
Bromobenzene	9	(1.6)	[1]	Q.	(1.6)	Ξ	QN	(800)	[200]	S	(1.6)	Ξ
Bromodichloromethane	2	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(20)	[200]	2	(0.1)	Ξ
Bromoform	Q.	(0.5)	Ξ	QN	(0.5)	Ξ	ND	(250)	[200]	Q	(0.5)	Ξ
Bromomethane	S S	(0.35)	Ξ	QN	(0.35)	Ξ	QN	(180)	[200]	S	(0.35)	Ξ
Carbon tetrachloride	S	(0.35)	Ξ	ON	(0.35)	Ξ	QN	(180)	[200]	Q	(0.35)	Ξ
Chlorobenzene	QN	(0.3)	Ξ	ND	(0.3)	Ξ	Q	(150)	[200]	Ş	(0.3)	Ξ
Chloroethane	S	(0.7)	Ξ	Q	(0.7)	Ξ	Q	(320)	[200]	2	(0.7)	Ξ
Chloroform	Q	(0.15)	Ξ	Q	(0.15)	Ξ	ND	(72)	[200]	9	(0.15)	Ξ
Chloromethane	2	(0.5)	Ξ	Q	(0.5)	Ξ	QN	(250)	[200]	2	(0.5)	Ξ
Dibromochloromethane	P	(0.2)	Ξ	Q	(0.2)	Ξ	S	(100)	[200]	2	(0.5)	Ξ
Dibromomethane	Q	(1.6)	Ξ	QN	(1.6)	Ξ	Q.	(800)	[200]	Q	(1.6)	Ξ
Methylene chloride	S	(0.4)	Ξ	ON	(0.4)	Ξ	QN	(200)	[200]	S	(0.4)	Ξ
Tetrachloroethene	Q	(0.1)	Ξ	ON	(0.1)	Ξ	QN	(20)	[200]	Q.	(0.1)	Ξ
Trichloroethene	Q	(0.5)	Ξ	QN	(0.2)	Ξ	13000	(100)	[200]	13	(0.2)	Ξ
Trichlorofluoromethane	QN	(0.55)	Ξ	NO	(0.55)	Ξ	QN	(280)	[200]	2	(0.55)	Ξ
Vinyl chloride	Q	(0.25)	Ξ	Q	(0.25)	Ξ	QN	(120)	[200]	S	(0.25)	Ξ
100E		100+00	+ imit	20404	I GN	10+00+00 +0N	A + CM = AM	n i co i la				
Compiled: 23 March 1995			= חפרפכרומת רושור		2	חפופרופת	1	Not Applicable				

 $\Xi\Xi$ [0.980][1.941748] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] [0.970873] (0.019)(0.049)(0.25)(0.15)(2000)(3000) (0.4)10000) (2000) (200)(0.2)(0.3)(0.2)(0.2)(100)(0.2)(0.0097) (0.019)(0.0097)(0.049)(0.0097)(0.0097) (0.029)(0.0097)06-MW-02-01 06-MW-02 KJBKJB $\kappa_{\rm JB}$ PJB 0.004 0.0022 0.01 일 일 일 9999 0.0025 2 웆 2 2 [500] [500] [500] [0.980][25] [25] [25] [25] [25] [25] [25] [25] ======== (120)(75) (2000)[10000] (3000)(2000)(200)(10)(7.5)(2500)(2) (5)(5)(0.01)(0.05)(2) (7.5)(0.01)(0.02)(0.01)(0.01)(0.03)(0.01)(0.05)(0.01)06-MW-01-01 06-MW-01 0.0043 KJB 문 모 문 14000 0.160.56 9999 욷 22222 2 2 2 9 S 2 2 8 E E E E $\Xi\Xi\Xi$ [0.98][0.952380][0.952380] [0.952380][0.952380][0.952380] [0.952380] [0.952380][0.952380][0.952380] [0.952380]05-DS-07 Dup of 05-SW-03-01 LOCATION ID (0.2)(0.25)(0.15)(2000)(0.0095)10000) (3000)(200)(0.2)(0.4)(2000)(0.3)(0.2)(0.2)(0.0095)(0.019)(0.029)SAMPLE ID (100)(0.2)(0.0095)(0.048)(0.0095)(0.0095)(0.048)0.0095) SITE ID 05-SW-03 05 0.0021 PJB 0.0051 PJB 0.0024 KJB 0.033 KJB 0.0073 JB 0.018 JB 일 및 일 2 2 2 2 2 2 2 **EEEE** [0.96] $\Xi\Xi\Xi$ [0.952380][0.952380] [0.952380][0.952380][0.952380] [0.952380] [0.952380][0.952380][0.952380][0.952380] (0.029)(0.15)(2000)(10000)(3000)(2000)(190)(0.2)(0.4)(0.3)(0.2)(0.2)(100)(0.2)(0.3)(0.0095)(0.0095)(0.019)(0.0095)(0.048)0.0095) (0.048)(0.0095)0.0095) 05-SW-03-01 05-SW-03 (ng/Γ) (ng/Γ) SW8015 - Nonhalogenated Volatile Organics (ug/L) 0.003 PJB 0.0046 PJB 0.0066 KJB W8015MEMP - Nonhalogenated Volatile Organics 0.017 JB 0.0071 JB 0.043 KJ W8080 - Organochlorine Pesticides and PCBs (ng/L) 일 등 등 S 9 9 S 9 9 S S S S 2 8 S S SW8020 - Aromatic Volatile Organics Gasoline Range Organics (2) trans-1,3-Dichloropropene Diesel Range Organics (2) trans-1,2-Dichloroethene cis-1,3-Dichloropropene Methyl isobutyl ketone Methyl ethyl ketone 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene Endosulfan Sulfate Chlorobenzene Total xylenes Endosulfan II Ethylbenzene Endosulfan I Ethyl ether PARAMETER Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Benzene Toluene Aldrin Endrin

Compiled: 23 Mar

[] = Factor

() = Detection Limit

Mn = Not Detected

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

	;	05		05		. 90			90	
PARAMETER	-90 -05-	05-SW-03 05-SW-03-01	05-03-07	05-SW-03 Dup of 05-SW-03-01	-90 ₩-90	06-MW-01 06-MW-01-01		-90 W-90	06-MW-02 06-MW-02-01	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			!			
Endrin Aldehyde	QN	(0.019) [0.952380]	ND	(0.019) [0.952380]	0.034	(0.05)	[1] 0.	0.014 JB	(0.019)	[0.970873]
Heptachlor	0.0034 KJB	(0.0095) [0.952380]	0.0021 KJB	(0.0095) [0.952380]	0.0019 KJB	(0.01)	[1]	QN QN	(0.0097) [0.9	[0.970873]
Heptachlor epoxide	0.0097 PB	(0.0095) [0.952380]	0.006 PJB	(0.0095) [0.952380]	QV	(0.01)	[]	S S	(0.0097) [0.9	[0.970873]
Methoxychlor	0.018 KJ	(0.048) [0.952380]	QN	(0.048) [0.952380]	ND	(0.02)	Ξ	S	(0.049) [0.9	[0.970873]
PCB-1016	QN	(0.095) [0.952380]	QN	(0.095) [0.952380]	S	(0.1)	Ξ	9	6.0] (20.0)	[0.970873]
PCB-1221	ON	(0.19) [0.952380]	ON	(0.19) [0.952380]	QV	(0.2)	[1]	9	(0.19)	[0.970873]
PCB-1232	QN	(0.19) [0.952380]	ON	(0.19) [0.952380]	Q.	(0.2)	[1]	Q	(0.19) [0.9	[0.970873]
PCB-1242	QN	(0.095) [0.952380]	ND	(0.095) [0.952380]	QV	(0.1)	[1]	QN Q	(0.097)	[0.970873]
PCB-1248	NO	(0.095) [0.952380]	QN	(0.095) [0.952380]	QN	(0.1)	Ξ	8	(0.097)	[0.970873]
PCB-1254	QN	(0.19) [0.952380]	QN	(0.19) [0.952380]	QN	(0.2)	Ξ	9	(0.19) [0.9	[0.970873]
PCB-1260	ON	(0.19) [0.952380]	0.02 KJ	(0.19) [0.952380]	QV	(0.2)	[1]	8	(0.19) [0.9	[0.970873]
Toxaphene	QN	(0.48) [0.952380]	ON	(0.48) [0.952380]	QN	(0.5)	[1]	2	(0.49) [0.9	[0.970873]
alpha-BHC	Q.	(0.0095) [0.952380]	N _O	(0.0095) [0.952380]	0.0096 KJB	(0.01)		0.0076 KJB	(0.0097) [0.9	0.970873]
beta-BHC	ON.	(0.0095) [0.952380]	QN	(0.0095) [0.952380]	QV QV	(0.01)	[1]	2	(0.0097) [0.9	0.970873]
delta-BHC	ON	(0.0095) [0.952380]	ON	(0.0095) [0.952380]	0.0047 PJB	(0.01)		0.0042 PJB	(0.0097) [0.9	[0.970873]
gamma-BHC	0.0046 PJB	(0.0095) [0.952380]	0.0039 PJB	(0.0095) [0.952380]	0.013 B	(0.01)	[1] 0.0	0.0082 JB	(0.0097)	[0.970873]
SW8270 - Semivolatile Organics	(ng/L)									
1,2,4-Trichlorobenzene	QN N	(9.6) [0.956937]	ON	(9.6) [0.961538]	ON	(9.8) [0.980392]	392]	N S	(10)	[1]
1,2-Dichlorobenzene	QN	(9.6) [0.956937]	QN	(9.6) [0.961538]	ON	(9.8) [0.980392]	392]	9	(10)	[1]
1,3-Dichlorobenzene	ON	(9.6) [0.956937]	ON	(9.6) [0.961538]	QN	[0.980392]	392]	N S	(10)	Ξ
1,4-Dichlorobenzene	ON	(9.6) [0.956937]	ON	(9.6) [0.961538]	QN	(9.8) [0.980392]	392]	N Q	(10)	Ξ
2,4,5-Trichlorophenol	ON	(9.6) [0.956937]	ON	(9.6) [0.961538]	QN	[0.980392]	392]	S	(10)	Ξ
2,4,6-Trichlorophenol	QV	(9.6) [0.956937]	ON	(9.6) [0.961538]	QN	(9.8) [0.980392]	392]	N S	(10)	Ξ
2,4-Dichlorophenol	QV	(9.6) [0.956937]	QN	(9.6) [0.961538]	ON	(9.8) [0.980392]	392]	S	(10)	[1]
2,4-Dimethylphenol	ON	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	392]	N ON	(10)	[1]
2,4-Dinitrophenol	ON	(48) [0.956937]	S	(48) [0.961538]	Q	(49) [0.980392]	392]	N	(20)	Ξ
2,4-Dinitrotoluene	QN	(9.6) [0.956937]	ON	(9.6) [0.961538]	QV	(9.8) [0.980392]	392]	NO ON	(10)	Ξ
2,6-Dinitrotoluene	ON	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	392]	Q.	(10)	[1]
2-Chloronaphthalene	QN	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	392]	ON	(10)	[1]
2-Chlorophenol	QN	(9.6) [0.956937]	Q.	(9.6) [0.961538]	N	(9.8) [0.980392]	392]	NO	(10)	[1]
2-Methylnaphthalene	ON	(9.6) [0.956937]	ON	(9.6) [0.961538]	ON	(9.8) [0.980392]	392]	Q.	(10)	[1]
		The state of the s								

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

SITE ID LOCATION ID SAMPLE ID

. 05-3	05 05-SW-03	10	05 05-SW-03		06 06-MW-01		06 06-MW-02	
05-51	05-SW-03-01	07 Du	Dup of 05-SW-03-01	 	06-MW-01-01	0	06-MW-02-01	
	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	[1]
	(48) [0.956937]	QN	(48) [0.961538]	S	(49) [0.980392]	QN	(20)	Ξ
	(9.6) [0.956937]	ON	(9.6) [0.961538]	N _D		ND	(10)	ΞΞ
	(19) [0.956937]	ND	(19) [0.961538]	9	(20) [0.980392]	ND	(20)	Ξ
	(48) [0.956937]	QN	(48) [0.961538]	S	(49) [0.980392]	ON	(20)	Ξ
	(48) [0.956937]	QN	(48) [0.961538]	QN.	_	QN	(20)	ΞΞ
	(9.6) [0.956937]	ON	(9.6) [0.961538]	QN		ND	(10)	ΞΞ
	(9.6) [0.956937]	ND	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	ΞΞ
	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	ND	(10)	ΞΞ
	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	ND	(10)	ΞΞ
	(48) [0.956937]	ON	(48) [0.961538]	QN	(49) [0.980392]	ON	(20)	Ξ
	(48) [0.956937]	QN	(48) [0.961538]	QN	(49) [0.980392]	ND	(20)	Ξ
	(9.6) [0.956937]	QN	(9.6) [0.961538]	Q	(9.8) [0.980392]	QN	(10)	ΞΞ
	(9.6) [0.956937]	ND	(9.6) [0.961538]	ON	(9.8) [0.980392]	QN	(10)	Ξ
	_	ON	(9.6) [0.961538]	ND	(9.8) [0.980392]	ON	(10)	Ξ
	_	ON	(9.6) [0.961538]	Q	(9.8) [0.980392]	ON	(10)	Ξ
		QN	(9.6) [0.961538]	ND	(9.8) [0.980392]	ON	(10)	Ξ
	_	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	Ξ
		QN		ON	(9.8) [0.980392]	QN	(10)	Ξ
		QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	[1]
ŋ	_	1.9 J	(48) [0.961538]	9	(49) [0.980392]	QN	(20)	Ξ
		Q	(9.6) [0.961538]	QN	(9.8) [0.980392]	ON	(10)	Ξ
	(9.6) [0.956937]	QN	(9.6) [0.961538]	Q	(9.8) [0.980392]	ND	(10)	Ξ
	(9.6) [0.956937]	QN	(9.6) [0.961538]	N	(9.8) [0.980392]	QN	(10)	
	(9.6) [0.956937]	ON	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	Ξ
	(9.6) [0.956937]	ND	(9.6) [0.961538]	Q.	[9.8] [0.980392]	QN	(10)	ΞΞ
	(9.6) [0.956937]	N	(9.6) [0.961538]	S	(9.8) [0.980392]	ND	(10)	Ξ
	(9.6) [0.956937]	ND	(9.6) [0.961538]	N	[9.8] [0.980392]	ND	(10)	Ξ
	(9.6) [0.956937]	ND	(9.6) [0.961538]	Q.	(9.8) [0.980392]	QN	(10)	ΞΞ
	(9.6) [0.956937]	ND	(9.6) [0.961538]	N N	(9.8) [0.980392]	QN	(10)	ΞΞ
	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	ND	(10)	ΞΞ

Compiled: 23 March 1995

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			_	SITE ID -OCATION ID SAMPLE ID					
	0 1	05 05-SW-03		05 05-8W-03	90	06 06-MW-01	- (06 06-MW-02	
PARAMETER		05-SW-03-01	05-08-07	05-DS-07 Dup of 05-SW-03-01	-90	06-MW-01-01	0 1	06-MW-02-01 	1
Fluorene	ND	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	Ξ
Hexachlorobenzene	ND	(9.6) [0.956937]	ON	(9.6) [0.961538]	QN	(9.8) [0.980392]	Q.	(10)	Ξ
Hexachlorobutadiene	QN	(9.6) [0.956937]	QN	(9.6) [0.961538]	NO	(9.8) [0.980392]	9	(10)	Ξ
Hexachlorocyclopentadiene	ND	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	Q	(10)	[1]
Hexachloroethane	QN	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	Q	(10)	[1]
Indeno(1,2,3-cd)pyrene	ON	(9.6) [0.956937]	ND	(9.6) [0.961538]	Q	(9.8) [0.980392]	Q	(10)	Ξ
Isophorone	QN	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	Q	(10)	Ξ
N-Nitrosodiphenylamine	QN	(9.6) [0.956937]	ON	(9.6) [0.961538]	Q	(9.8) [0.980392]	Q	(10)	Ξ
N-Nitrosodipropylamine	ON	(9.6) [0.956937]	ON	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	Ξ
Naphthalene	QN	(9.6) [0.956937]	QN	(9.6) [0.961538]	2	(9.8) [0.980392]	QN	(10)	[1]
Nitrobenzene	N	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	Q	(01)	Ξ
Pentachlorophenol	ON	(48) [0.956937]	QN	(48) [0.961538]	QN N	(49) [0.980392]	Q	(20)	Ξ
Phenanthrene	ND	(9.6) [0.956937]	ON	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	Ξ
Phenol	ON	(9.6) [0.956937]	ND	(9.6) [0.961538]	N	(9.8) [0.980392]	Q	(10)	[1]
Pyrene	QN	(9.6) [0.956937]	QN	(9.6) [0.961538]	Q	(9.8) [0.980392]	Q	(10)	[1]
bis(2-Chloroethoxy)methane	ON	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	[1]
bis(2-Chloroethyl)ether	QN	(9.6) [0.956937]	QN	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	Ξ
bis(2-Chloroisopropyl)ether	QN	(9.6) [0.956937]	QN	(9.6) [0.961538]	N	(9.8) [0.980392]	QN	(10)	Ξ
bis(2-Ethylhexyl)phthalate	GN	(9.6) [0.956937]	ND	(9.6) [0.961538]	7.5 JB	(9.8) [0.980392]	160	(100)	[10]
p-Chloroaniline	NO	(9.6) [0.956937]	S	(9.6) [0.961538]	QN	(9.8) [0.980392]	QN	(10)	Ξ

(0.2) (0.5) (0.7)(1.6)(3.4)0.25) (0.15)(0.15) (0.32) (0.25) (0.6) (1.6) (0.1)(0.5)(0.35) (0.3)(0.7)[0.15](0.5)(0.2)(0.2)06-MW-06-01 90-MM-90 888888888888888888888888888888888 (0.7)(0.25) (0.15) (0.15) (0.32) (0.25) (3.4)(0.6)(1.6)(0.1)(0.5)(0.35) (0.35) (0.3)(0.7)(0.5)(0.2)(0.15)(1.6)(0.4)(0.1)06-MW-04-01 06-MW-04 2 문 운 2 28222222222222222222222222222 06-DS-08 Dup of 06-MW-03-01 LOCATION ID (0.5)(1.6)(0.25)(0.15)(0.15)(0.32) (0.7)(3.4) (0.6) (1.6) SAMPLE ID (0.1)(0.5)(0.35) (0.35) (0.3)(0.7) (0.15)(0.5)(0.4)SITE ID 06-MW-03 90 (0.7)(1.6)(0.25)(0.15)(0.15)(0.32) (3.4) (0.6) (1.6) (0.1) (0.5) (0.35) (0.35) (0.3)(0.7)0.15) (0.5)06-MW-03-01 06-MW-03 W8010 - Halogenated Volatile Organics 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 2-Chloroethylvinylether ,2,3-Trichloropropane richlorofluoromethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Bromodichloromethane Carbon tetrachloride Dibromochloromethane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene ,1-Dichloroethane ,1-Dichloroethene 1,2-Dichloroethane Methylene chloride [etrach] oroethene richloroethene I-Chlorohexane Dibromomethane /inyl chloride Chloromethane Chlorobenzene Chloroethane Bromobenzene Bromomethane Chloroform PARAMETER Bromoform

Compiled: 23 Mars

[] = Factor

() = Detection Limit

MA = Not Detected

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				S	SITE ID LOCATION ID SAMPLE ID					-		
PARAMETER	-90 -90	06 06-MW-03 06-MW-03-01		90 90-90-90	06 06-MW-03 Dup of 06-MW-03-01	-01	90	06 06-MW-04 06-MW-04-01		-90	06 06-MW-06 06-MW-06-01	
cis-1.3-Dichloropropene		(0.2)	· []	C C	(0.2)	Ξ		(0'0)	· []	S S	(0.0)	Ξ
trans-1.2-Dichloroethene	2 2	(0.25)	ΞΞ	2 S	(0.25)	ΞΞ	S	(0.5)		2 2	(0.25)	ΞΞ
trans-1,3-Dichloropropene	S	(0.15)	ΞΞ	2 2	(0.15)	ΞΞ	9 9	(0.15)	ΞΞ	2 9	(0.15)	ΞΞ
SW8015 - Nonhalogenated Volatile Organics	ics (ug/L)											
Ethanol	ON	(2000)	[1]	ND	(2000)	Ξ	9	(2000)	[1]	QN	(2000)	[1]
Ethyl ether	QN	(10000)	Ξ	ND	(10000)	Ξ	ND	(10000)	[1]	QN	(10000)	Ξ
Methyl ethyl ketone	ON	(3000)	Ξ	ON	(3000)	Ξ	N	(3000)	Ξ	QN	(3000)	[1]
Methyl isobutyl ketone	Q.	(2000)	[1]	ND	(2000)	Ξ	ND	(2000)	[1]	QN	(2000)	[1]
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)										
Diesel Range Organics (2)	Q	(200)	[1.01]	QN	(200)	[1]	2900	(410)	[2.03]	3300	(380)	[1.92]
SW8020 - Aromatic Volatile Organics (L	(ng/L)											
1,2-Dichlorobenzene	ON	(0.4)	[1]	ON	(0.4)	[1]	ND	(10)	[52]	QN	(0.4)	Ξ
1,3-Dichlorobenzene	ON	(0.2)	[1]	ON	(0.2)	Ξ	ON	(2)	[22]	0.26	(0.2)	Ξ
1,4-Dichlorobenzene	ON	(0.4)	Ξ	QN	(0.4)	[1]	25 P	(10)	[22]	QN	(0.4)	Ξ
Benzene	Q	(0.3)	[1]	QN	(0.3)	Ξ	510	(7.5)	[22]	0.73	(0.3)	Ξ
Chlorobenzene	QN	(0.2)	[1]	QN	(0.2)	Ξ	QN	(2)	[52]	Q	(0.2)	Ξ
Ethylbenzene	Q.	(0.2)	Ξ	QN	(0.2)	[1]	250	(2)	[22]	ON	(0.2)	Ξ
Gasoline Range Organics (2)	Q.	(100)	[1]	ON	(100)	[1]	12000	(2500)	[52]	QN	(100)	Ξ
Toluene	QN	(0.2)	[1]	QN	(0.2)	Ξ	320	(2)	[52]	0.32 B	(0.2)	Ξ
Total xylenes	QN	(0.3)	[1]	Q	(0.3)	Ξ	970	(7.5)	[22]	N	(0.3)	[]
SW8080 - Organochlorine Pesticides and PCBs	PCBs (ug/L)	(٦										
4,4'-DDD	QN	(0.01)	[1.020408]	ON	(0.0099)	[0.990099]	QN	(0.0039)	[0.985221]	QN	0] (8600.0)	[0.975609]
4,4'-DDE	2	(0.01)	[1.020408]	QN	(0.0099)	[6.990099]	QN	(0.003)	[0.985221]	QN	(0.0098)	[0.975609]
)1	0.0083 KJB	(0.05)	[1.020408]	0.0078 KJB	_	[0.990099]	0.016 KJ	(0.05)	[0.985221]	QN	(0.02) [0	[0.975609]
Aldrin	문	(0.01)	[1.020408]	QV	0.0099) (0.009	[0.990099]	0.011 LB	(0.0039)	[0.985221]	0.0058 JB	(0.0098)	[0.975609]
Chlordane	S	(0.051)	[1.020408]	Q	_	[0.990099]	ON	(0.049)	[0.985221]	QN	(0.049) [0	[0.975609]
Dieldrin 0.(0.0081 JB	(0.01)	[1.020408]	Q	(0.0099)	[0.990099]	ND	(0.003)	[0.985221]	0.0067 PJB	(0.0098)	[0.975609]
Endosulfan I	Q.	(0.01)	[1.020408]	Q.		[0.990099]	ND	(0.0030)	[0.985221]	0.0005 KJB	(0.0098)	[0.975609]
Endosulfan II	Q.	(0.031)	[1.020408]	ON		[660066.0]	0.0016 KJB	(0.03)	[0.985221]	0.0005 KJB	(0.029)	[0.975609]
Endosulfan Sulfate 0.	0.012 KJB	(0.021)	[1.020408]	0.011 KJB		[660066.0]	ON	(0.049)	[0.985221]	0.015 KJB		[0.975609]
Endrin	ON ON	(0.01)	[1.020408]	9	(0.0099)	[0.990099]	0.0118	(0.0039)	[0.985221]	QN	0] (8600.0)	[0.975609]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

LOCATION ID

SITE 1D

[0.975609][0.975609][0.975609][0.995024] [0.995024] [0.975609][0.975609][0.975609][0.975609][0.975609][0.975609][0.975609] [0.975609][0.975609] [0.975609][0.975609] [0.975609] [0.975609] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024][0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] (0.049)(0.038) (0.2)(0.2)(0.098)(0.2)(0.02)(0.0098) (0.098)(0.2)0.0098) (0.49)(0.0098)(10)(10)(10)(0.0098)(0.0098)(10)(10)(10)(10)(10)(10)(0.0098)(50)(10)06-MW-06-01 90-MM-90 0.0078 KJB 0.0046 PJB 8 0.027 S 9 9 0.071 2 2 2 2 2 2 2 9 999 [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] [0.985221] 0.985221 [0.985221][0.985221] [1.005025] [1.005025] [1.005025][1.005025][1.005025][1.005025] [1.005025][1.005025] [1.005025] [1.005025][1.005025][1.005025][1.005025][1.005025](0.02)(0.2)(0.2)(0.2)(0.2)(0.49)(10)(10)(10)(0.0099)(0.0099)(0.049)(0.099)(0.099)(0.099)(0.0099)(0.0099)(0.0039)(0.0099)(10)(10)(10)(10)(10)(20) (10)(10) (10) (10) (10)06-MW-04-01 06-MW-04 0.0086 PJB 0.0068 PJB 0.0012 PJB 0.0053 JB 0.025 PB 0.022 PB 9999 2 2 9 2 2 2 9 9 9 ND 85 [0.990099][0.990099] [0.990099] [0.990099] [0.990099][0.990099][0.990099] [0.990099][0.990099][0.990099] [0.990099][0.990099] [0.990099] [0.990099] [0.990099][0.990099] [0.975609][0.975609][0.975609] [0.975609][0.975609][0.975609] [0.975609] [0.975609] [0.975609] [0.975609] [0.975609][0.975609] [0.975609] [**0**.975609] 06-DS-08 Dup of 06-MW-03-01 (0.2)(0.2)(0.02)(0.05)(0.099)(0.2)(0.003)(0.0099)(0.0099)(0.099)(0.03) (0.2)(0.5)(9.8)(9.8)(9.8)(9.8)(8.8)(9.8)(9.8)(49)(9.8)SAMPLE ID (0.0099)(0.0099)(0.003)(8.8)(9.8)(8.8)(9.8)06-MW-03 0.0059 KJB 0.0041 KJB 9 2 2 문 문 2 S 9 9 2 S 2 2 S 윤 9 9 운 운 문 2 2 2 S 2 9 [1.020408][1.020408] [1.020408] [1.020408][1.020408] [1.020408][1.020408] [1.020408] [1.052631] [1.052631] [1.020408][1.020408][1.020408][1.020408] [1.020408] [1.020408] [1.020408][1.020408] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631][1.052631] [1.052631][1.052631] [1.052631] [1.052631] (0.01)(0.051)(0.1)(0.2)(0.2)(0.2)(0.1)(0.1)(0.2)(0.01)(0.01)(11) (11)(0.51)(0.01)(11) (11)(11)(11)(23) (11) (11) (11) (11)(0.01)06-MW-03-01 06-MW-03 0.0056 KJB 2 2 2 2 2 2 999 2 문 문 문 S S S S W8270 - Semivolatile Organics (ug/L) 1,2,4-Trichlorobenzene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chloronaphthalene 2-Methylnaphthalene deptachlor epoxide 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol Endrin Aldehyde 2-Chlorophenol Methoxychlor **deptachlor** PARAMETER Foxaphene alpha-BHC delta-BHC gamma-BHC PCB-1016 PCB-1248 PCB-1242 PCB-1254 beta-BHC PCB-1232 PCB-1260 PCB-1221

NA = Not Applicable

- Not Detected

[] = Factor

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE 1D

			LOCAT SAMP	LOCATION ID SAMPLE ID					
		90	90			90		90	
		06-MW-03	06-MW-03	-03	-90	06-MW-04	90	90-WM-90	
PARAMETER 	0	06-MW-03-01	06-DS-08 Dup o	Dup of 06-MW-03-01	4-90	06-MW-04-01	-90	06-MW-06-01	
2-Methylphenol(o-cresol)	N	(11) [1.052631]	QN	[6.8] [0.975609]	Q	(10) [1.005025]	Q	(10) (01)	[0.995024]
2-Nitroaniline	ND	(53) [1.052631]	QN		Q.		2		[0.995024]
2-Nitrophenol	QN	(11) [1.052631]	ND		9		<u> </u>		0.995024
3,3'-Dichlorobenzidine	QN	(21) [1.052631]	N	(20) [0.975609]	S	(20) [1.005025]	NO		0.995024
3-Nitroaniline	QN	(53) [1.052631]	ND	(49) [0.975609]	ND	(50) [1.005025]	ND		[0.995024]
4,6-Dinitro-2-methylphenol	ND	(53) [1.052631]	QN	(49) [0.975609]	ND	(50) [1.005025]	ND	(50) [0.	0.995024]
4-Bromophenyl phenyl ether	Q	_	ON	(9.8) [0.975609]	QN	(10) [1.005025]	ND	(10) [0.	[0.995024]
4-Chloro-3-methylphenol	S	(11) [1.052631]	QN	(9.8) [0.975609]	Q.	(10) [1.005025]	QN	(10) [0.	0.995024]
4-Chlorophenyl phenyl ether	Q.	ニ	ON	(9.8) [0.975609]	N	(10) [1.005025]	QN	(10) [0.	0.995024]
4-Methylphenol(p-cresol)	Q	_	QN	[6.8] [0.975609]	QN	(10) [1.005025]	QN	(10) [0.	[0.995024]
4-Nitroaniline	Q N	_	QN		NO	(50) [1.005025]	QN	(50) [0.	0.995024]
4~Nitrophenol	QN	_	N	(49) [0.975609]	QN	(50) [1.005025]	ND	(50) [0.	[0.995024]
Acenaphthene	QV	_	QN	(9.8) [0.975609]	QN	(10) [1.005025]	N	(10) [0.	[0.995024]
Acenaphthylene	Q	_	QN	(9.8) [0.975609]	ND	(10) [1.005025]	Q	(10) [0.	0.995024]
Anthracene	ON	_	ND	_	ND	(10) [1.005025]	ND	(10) [0.	0.995024]
Benzo(a)anthracene	QN	_	QN		ND	(10) [1.005025]	ND	(10) [0.	[0.995024]
Benzo(a)pyrene	NO		QN	_	ND	(10) [1.005025]	N	(10) [0.	0.995024]
Benzo(b)fluoranthene	QN	(11) [1.052631]	N	(9.8) [0.975609]	QN	(10) [1.005025]	QN	(10) [0.	[0.995024]
Benzo(g,h,i)perylene	ON	(11) [1.052631]	ND	[6.8] [0.975609]	ND	(10) [1.005025]	QN ON	(10) [0.	0.995024]
Benzo(k)fluoranthene	QN	_	ON	_	ND	(10) [1.005025]	QN	(10) [0.	[0.995024]
Benzoic acid	QN		QN	(49) [0.975609]	13 J	(50) [1.005025]	3.8 J	(50) [0.	[0.995024]
Benzyl alcohol	Q	_	ND	_	ND	(10) [1.005025]	QN	(10) [0.	[0.995024]
Butylbenzylphthalate	QN	_	ND	_	N	ニ	QN	(10) [0.	[0.995024]
Chrysene	ON	二	Q	(9.8) [0.975609]	QN	(10) [1.005025]	QN	(10) [0.	[0.995024]
Di-n-octylphthalate	Q Q	二	QN	_	ND	(10) [1.005025]	QN	(10) [0.	[0.995024]
Dibenz(a,h)anthracene	QN	_	N	[6.8] [0.975609]	ND	(10) [1.005025]	ND	(10) [0.	[0.995024]
Dibenzofuran	Q	_	Q.	[6.8] [0.975609]	ND	(10) [1.005025]	QN	(10) [0.	[0.995024]
Dibutylphthalate	QN	_	Q	_	ND	(10) [1.005025]	ND	(10) [0.	[0.995024]
Diethylphthalate	Q	二	Q.	(9.8) [0.975609]	QN	(10) [1.005025]	QN	(10) [0.	[0.995024]
Dimethylphthalate	QN	ニ	QN	[6.8] [0.975609]	QN	(10) [1.005025]	ON	(10) [0.	[0.995024]
Fluoranthene	Q	(11) [1.052631]	Q	(9.8) [0.975609]	Q	(10) [1.005025]	QN	(10) [0.	[0.995024]
Compiled: 23 March 1995		() = Detection Limit	[] = Factor	ND = Not Detected	NA = Not Ap	Not Applicable			

			S	SITE ID LOCATION ID SAMPLE ID				
PARAMETER	-90 -90	06 06-MW-03 06-MW-03-01	nq 80-8q-90 90	06 06-DS-08 Dup of 06-MW-03-01	I-90	06 06-MW-04 06-MW-04-01	-90 -90	06 06-MW-06 06-MW-06-01
Fluorene	QV	(11) [1.052631]	QN	[60 87 5609]		(10) [1 005095]	CZ	(10) [0 005024]
Hexachlorobenzene	QN	(11) [1.052631]	QN		ON ON		2 Q	
Hexachlorobutadiene	QN	(11) [1.052631]	ON	(9.8) [0.975609]	QN	_	QN	
Hexachlorocyclopentadiene	QN	(11) [1.052631]	QN	(9.8) [0.975609]	QN	(10) [1.005025]	QN	(10) [0.995024]
Hexachloroethane	QN	(11) [1.052631]	QN	(9.8) [0.975609]	QN	(10) [1.005025]	ON	(10) [0.995024]
Indeno(1,2,3-cd)pyrene	ND	(11) [1.052631]	QN	(9.8) [0.975609]	QN	(10) [1.005025]	ND	(10) [0.995024]
Isophorone	ND	(11) [1.052631]	ND	(9.8) [0.975609]	QN	(10) [1.005025]	ND	(10) [0.995024]
N-Nitrosodiphenylamine	QN	(11) [1.052631]	QN	(9.8) [0.975609]	ON	(10) [1.005025]	ND	(10) [0.995024]
N-Nitrosodipropylamine	QN	(11) [1.052631]	ND	(9.8) [0.975609]	ON	(10) [1.005025]	ON	(10) [0.995024]
Naphthalene	QN	_	ON	(9.8) [0.975609]	160	(10) [1.005025]	0.69 J	(10) [0.995024]
Nitrobenzene	QN	(11) [1.052631]	ON	(9.8) [0.975609]	QN	(10) [1.005025]	QN	(10) [0.995024]
Pentachlorophenol	ON	_	ON	(49) [0.975609]	ON	(50) [1.005025]	ND	(50) [0.995024]
Phenanthrene	QN	(11) [1.052631]	ON	[6.8] [0.975609]	ND	(10) [1.005025]	0.69 J	(10) [0.995024]
Phenol	QN	(11) [1.052631]	QN	[6.8] [0.975609]	ND	(10) [1.005025]	ON	(10) [0.995024]
Pyrene	Q	(11) [1.052631]	QN	[0.875609]	QN	(10) [1.005025]	QN	(10) [0.995024]
bis(2-Chloroethoxy)methane	ND	(11) [1.052631]	ND	[0.8] [0.975609]	N	(10) [1.005025]	QN	(10) [0.995024]
bis(2-Chlaroethyl)ether	ON	(11) [1.052631]	QN	[0.875609]	ND	(10) [1.005025]	QN	(10) [0.995024]
bis(2-Chloroisopropyl)ether	Q	(11) [1.052631]	QN	(9.8) [0.975609]	QN	(10) [1.005025]	ON	(10) [0.995024]
bis(2-Ethylhexyl)phthalate	1.6 JB	(11) [1.052631]	1.7 JB	[8.8] [0.975609]	2.5 JB	(10) [1.005025]	3.1 JB	(10) [0.995024]
p-Chloroaniline	ON	(11) [1.052631]	QN	(9.8) [0.975609]	ON	(10) [1.005025]	QN	(10) [0.995024]

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				SI LOCA SAN	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	-90	06 06-SW-01 06-SW-01-01		dng	06 06-SW-01 Dup of 06-SW-01-01	01	90	06 06-SW-02 06-SW-02-01		- 0	07 07-MW-01 07-MW-01-01	
	!						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
<pre>>W8UIU = Halogenated Volatile Urganics 1 1 1 2 Totuschlossothus</pre>	(ng/L)	(6)	[6]	Ç	(9 E)	Ξ	Š	(2 6)	Ξ	Ş	5	Ξ
1,1,1,2 lettachlorethane	2 2	(1.1)	[2]	2 2	(0.55)	ΞΞ	2 2	(5.3)	ΞΞ	Q Q	(6.5)	ΞΞ
1,1,2,2-Tetrachloroethane	S	(0.6)	[5]	. Q	(0.3)	ΞΞ	2	(0.3)	ΞΞ	2	(0.3)	ΞΞ
1,1,2-Trichloroethane	QN	(0.4)	[5]	QN	(0.2)	Ξ	QN	(0.2)	ΞΞ	S	(0.2)	Ξ
1,1-Dichloroethane	ND	(1)	[5]	ND	(0.5)	Ξ	N	(0.5)	Ξ	Q	(0.5)	Ξ
1,1-Dichloroethene	NO	(1.4)	[2]	Q	(0.7)	Ξ	Q	(0.7)	Ξ	Q	(0.7)	Ξ
1,2,3-Trichloropropane	N Q	(3.2)	[2]	QN	(1.6)	Ξ	Q.	(1.6)	Ξ	QN	(1.6)	Ξ
1,2-Dichlorobenzene	Q	(0.5)	[2]	QN	(0.25)	Ξ	Q	(0.25)	Ξ	Q.	(0.25)	Ξ
1,2-Dichloroethane	9	(0.3)	[2]	QN	(0.15)	Ξ	0.42	(0.15)	Ξ	Q.	(0.15)	[1]
1,2-Dichloropropane	Q	(0.3)	[2]	ND	(0.15)	Ξ	Q	(0.15)	Ξ	QN	(0.15)	Ξ
1,3-Dichlorobenzene	S	(0.64)	[2]	ND	(0.32)	Ξ	Q	(0.32)	Ξ	Q.	(0.32)	Ξ
1,4-Dichlorobenzene	Q	(0.5)	[2]	ON	(0.25)	Ξ	QN	(0.25)	Ξ	S	(0.25)	Ξ
1-Chlorohexane	Q.	(8.8)	[2]	QN	(3.4)	Ξ	Q.	(3.4)	Ξ	Q	(3.4)	Ξ
2-Chloroethylvinylether	QN	(1.2)	[2]	ND	(0.0)	Ξ	Q	(0.6)	Ξ	Q	(0.6)	[1]
Bromobenzene	2	(3.2)	[2]	N	(1.6)	Ξ	S	(1.6)	Ξ	S	(1.6)	Ξ
Bromodichloromethane	Q	(0.2)	[2]	ON	(0.1)	Ξ	QN	(0.1)	Ξ	ON	(0.1)	Ξ
Bromoform	S	(1)	[2]	ND	(0.5)	Ξ	QN	(0.5)	Ξ	Q.	(0.5)	Ξ
Bromomethane	Q	(0.7)	[2]	ND	(0.35)	Ξ	Q	(0.35)	Ξ	Q	(0.35)	Ξ
Carbon tetrachloride	N S	(0.7)	[2]	QN	(0.35)	Ξ	Q	(0.35)	Ξ	QN	(0.35)	Ξ
Chlorobenzene	QN	(0.6)	[2]	N	(0.3)	Ξ	Q.	(0.3)	Ξ	Q	(0.3)	Ξ
Chloroethane	QN	(1.4)	[2]	Q	(0.7)	Ξ	2	(0.7)	Ξ	2	(0.7)	Ξ
Chloroform	2	(0.3)	[2]	Q	(0.15)	Ξ	Q	(0.15)	Ξ	Q.	(0.15)	Ξ
Chloromethane	QN	(1)	[5]	Q	(0.5)	Ξ	9	(0.5)	Ξ	S	(0.5)	Ξ
Dibromochloromethane	Q.	(0.4)	[2]	QN	(0.2)	Ξ	Q	(0.2)		QN	(0.5)	Ξ
Dibromomethane	Q.	(3.2)	[2]	ND	(1.6)		ON	(1.6)	Ξ	QN	(1.6)	Ξ
Methylene chloride	Q.	(0.8)	[2]	QN	(0.4)	Ξ	R	(0.4)	Ξ	QN	(0.4)	Ξ
Tetrachloroethene	S	(0.2)	[2]	QN	(0.1)	Ξ	2	(0.1)	Ξ	Q.	(0.1)	Ξ
Trichloroethene	Q.	(0.4)	[2]	NO	(0.2)	Ξ	NO.	(0.2)	Ξ	S	(0.2)	Ξ
Trichlorofluoromethane	QN	(1.1)	[2]	ND	(0.55)	Ξ	8	(0.55)	Ξ	Q	(0.55)	Ξ
Vinyl chloride	ND	(0.5)	[5]	QN	(0.25)	Ξ	ON	(0.25)	[1]	Q.	(0.25)	[1]
Committed: 22 March 100E		- Dotor	- Do+oo+in-	[] - [20+00	CN	70,400		Ann 1 to th 1 o				
Compiled: 23 March 1995			ושור ביושור.		!! 2	Not Detected	NA = NOT	Not Applicable				

3 5 5 **3**223 [0.985][0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392][0.980392] [0.980392][0.980392] [0.980392] (0.029)(0.25) (0.15) (2000) (3000)(200)(0.2)(0.4)(0.3)(0.2)(0.2)(100)(0.2)(0.0098)(0.0098)(0.0098)(0.0098)(0.0098)(2000)(0.3)(0.02)(0.049)(0.0098)(0.049)07-MW-01-01 07-MW-01 0.0028 PJB κ_{38} \Im 0.014 0.014 0.034 일 일 일 2 2 2 2 9 운 문 2 0.012 ş 2 3333 [10.1][10][10] [10] [10] [10] [10] [10] [0.952380][0.952380][0.952380][0.952380][0.952380][0.952380][0.952380][0.952380] [0.952380][0.952380](0.25) (0.15) (3000)(2000)(4) (1000)(0.0095)(0.0095)(0.019)(0.0095)(0.048)(0.0095)(0.0095)(0.029)(2000)(10000) (2000)(2) (2) (0.048)(0.0095)(2) (2) 06-SW-02-01 06-SW-02 **2**8 0.0013 PJB 0.009 JB 0.015 0.02 1100 0.023 일 일 일 2 2 2 2 운 운 76 ND S 9 22000 60 57 2 2 EEE [4.81][0.956937] [0.956937] [0.956937] [0.956937] [0.956937] [0.956937] [0.956937] [0.956937] [0.956937] [0.956937]06-DS-07 Dup of 06-SW-01-01 LOCATION ID (0.2)(0.029)(0.25)(0.15)(0.4)(0.0096) (0.0006) (2000)(10000)(3000)(2000)(096)(0.2)(0.3)(0.2)(0.2)(100)(0.0036)(0.048)(0.048)SAMPLE ID (0.0096)(0.019)(0.0096)(0.0006) SITE 10 06-SW-01 90 0.0049 KJB 0.0001 PJB 0.0063 PJB 0.0072 JB 0.0062 JB 0.014 B 운 모 모 2 2 2 2 0.26 9000 0.62 9 S 웆 2 2 2 2 8 [2] EEEE [4.81]33333333 [0.961538][0.961538][0.961538][0.961538][0.961538][0.961538][0.961538][0.961538][0.961538][0.961538](0.019)(0.0000) (0.048)(0.048)(0.5)(0.3)(096)(2000)(0.4)(0.0036)(0.0096)(3000)(0.2)(0.3)(0.2)(0.2)(100)(0.3)(0.0096) (0.0036) (0.029)(0.2)0.0096) 10000 06-SW-01-01 06-SW-01 (ng/Γ) (ng/L) W8015 - Nonhalogenated Volatile Organics (ug/L) W8015MEMP - Nonhalogenated Volatile Organics 0.019 KJB 0.0066 JB 0.0068 JB 0.0067 JB 0.013 8 3W8080 - Organochlorine Pesticides and PCBs (ng/L)0.5 88 9 5900 0.51 0.36 2 2 8 9 2 2 1.1 운 2 운 문 W8020 - Aromatic Volatile Organics Gasoline Range Organics (2) trans-1,3-Dichloropropene Diesel Range Organics (2) trans-1,2-Dichloroethene cis-1,3-Dichloropropene Methyl isobutyl ketone Methyl ethyl ketone 1,3-Dichlorobenzene 1,2-Dichlorobenzene 1,4-Dichlorobenzene Endosulfan Sulfate Chlorobenzene Total xylenes Endosulfan II Ethylbenzene Endosulfan I Ethyl ether PARAMETER Chlordane 4,4'-DDE Dieldrin 4,4'-000 4,4'-DDT Ethanol Benzene Toluene Aldrin Endrin

1995 Compiled: 23 Mar

[] = Factor () = Detection Limit

- Not Detected

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE 10

06-SW-01 07-ST	1 ID 10		Dup of 06-SW-01-01 06-SW-02-01 07-MW-01-01	119) [0.956937] 0.0025 KJB (0.019) [0.952380] 0.0069 KJB (0.02)	196) [0.956937] 0.0003 PJB (0.0095) [0.952380] 0.0049 KJB (0.0098)	96) [0.956937] 0.43 P (0.0095) [0.952380] 0.0039 PJB (0.0098)	[0.956937] ND (0.048) [0.952380] ND	996) [0.956937] ND (0.095) [0.952380] ND (0.098)	(0.19) [0.956937] ND (0.19) [0.952380] ND (0.2)	(0.19) [0.956937] ND (0.19) [0.952380] ND (0.2)		[0.956937] ND (0.095) [0.952380]	[0.956937] ND (0.19) [0.952380]	(0.19) [0.956937] ND (0.19) [0.952380] ND (0.2)	(0.48) [0.956937] ND (0.48) [0.952380] ND (0.49)	96) [0.956937] 0.013 PB (0.0095) [0.952380] ND (0.0098)	996) [0.956937] 0.03 (0.0095) [0.952380] ND (0.0098)	996) [0.956937] 0.011 PB (0.0095) [0.952380] 0.017 B (0.0098)	96) [0.956937] 0.018 B (0.0095) [0.952380] 0.012 B (0.0098)	(10) [1] ND (9.5) [0.952380] ND (9.8)	(9.8) [1] ND (9.5) [0.952380] ND (9.8)	(10) [1] ND (9.5) [0.952380] ND (9.8)	(10) [1] ND (9.5) [0.952380] ND (9.8)	(10) [1] ND (9.5) [0.952380] ND (9.8)	(9.5) [1] ND (9.5) [0.952380] ND (9.8)	(10) [1] ND (9.5) [0.952380] ND (9.8)	[1]	(48) [0.952380] ND (49)	(9.8) [1] ND (9.5) [0.952380] ND (9.8)	(10) [1] ND (9.5) [0.952380] ND (9.8)	[1]	[1] ND (9.5) [0.952380] ND (9.8)
06 06-SW-01 06-SW-01-01 KJB (0.0096) PJB (0.0096) (0.19) (0.19) (0.19) (0.096) (0.096) (0.096) (0.0096	LOCATION ID SAMPLE ID		6-05-07	.013		.017	ND (0.048)	ND (0.096)				(0.096) ON				(0.00e) (0.0096)	(0.00e) (N	0.025 (0.0096)		_				_)			_	_
,		06 06-SW-01	06-SW-01-01	(0.019)	(9600'0)	(0.0096)	(0.048)	(0.096)	(0.19)	(0.19)	(0.096)	(0.096)	(0.19)	(0.19)	(0.48)	(0.0096)	(0.0096)	_	(0.0096)	(8.8)	(8.8)	(8.6)	(8.6)] (8.6)] (8.8)] (8.6)	(8.6)] (64)] (8.6)] (8.8)] (8.6)	[9.8]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

[0.975609][0.975609] [0.975609][0.975609][0.975609][0.975609] [0.975609][0.975609][0.975609] [0.975609][0.975609] [0.975609] [0.975609] [0.975609][0.975609][0.975609] [0.975609] [0.975609] [0.975609] [0.975609] [0.975609] [0.975609][0.975609][0.975609][0.975609] [0.975609][0.975609][0.975609] 0.975609 (49) (9.8)(9.8)(9.8)(9.8)(9.8)(8.8)(8.8) (48) (9.8)(9.8)(49)(43) (9.8)(9.8)(9.8)(9.8)(8.8)(48) (9.8)(9.8)(9.8)(8.8) 07-MW-01-01 07-MW-01 2.1 J 9 2 2 2 2 2 S [0.952380] [0.952380][0.952380][0.952380][0.952380][0.952380] [0.952380][0.952380] [0.952380] [0.952380][0.952380][0.952380][0.952380][0.952380] [0.952380][0.952380][0.952380][0.952380]0.952380] [0.952380][0.952380] [0.952380][0.952380][0.952380][0.952380][0.952380][0.952380][0.952380] (9.5)(48) (9.5)(9.5)(9.5)(48) (48) (9.5)(9.5)(9.5)(9.5)(9.5)(9.5)(9.5)(48) (9.5)(9.5)(9.5)(9.5)(9.5)(9.5)(9.5)(9.5)(9.5)(9.5)06-SW-02-01 06-SW-02 7.5 J ND ND 운 문 2 9 읒 68 06-DS-07 Dup of 06-SW-01-01 LOCATION ID (10)(10)20) 50) 50) 10) 10) (10)50) (50)(10)(10)(10) (10)(10)(10)(10)SAMPLE ID 10) 10) 50) 10) 10) 10) 10) 10) 10) 10) SITE 10 06-SW-01 14 J .6 J S 2 2 2 S 2 2 운 운 2 S 2 [0.980392] [0.980392][0.980392][0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392] [0.980392][0.980392][0.980392][0.980392] [0.980392][0.980392][0.980392][0.980392] [0.980392][0.980392] [0.980392][0.980392] [0.980392] [0.980392] (8.8) (9.8)(9.8)(9.8)(49)(9.8)(9.8)(9.8)(9.8)(9.8)(9.8)(9.8)(9.8)(9.8)(9.8)(8.8)(9.8)(49)(49)(49)(9.8)(8.8)06-SW-01-01 06-SW-01 8.2 J 1.9 J 2 2 1-Chlorophenyl phenyl ether 1-Bromophenyl phenyl ether 4,6-Dinitro-2-methylphenol 2-Methylphenol(o-cresol) 4-Methylphenol(p-cresol) 4-Chloro-3-methylphenol 3,3'-Dichlorobenzidine Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Butylbenzylphthalate Benzo(k)fluoranthene Di-n-octylphthalate Benzo(a)anthracene Dimethylphthalate Dibutylphthalate **Jiethylphthalate** 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline Acenaphthylene Benzo(a)pyrene Benzyl alcohol 2-Nitrophenol 4-Nitrophenol Acenaphthene Benzoic acid Dibenzofuran Fluoranthene Anthracene PARAMETER Chrysene

Compiled: 23 May

"D = Not Detected [] = Factor () = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

•			. 0. S	SITE ID LOCATION ID SAMPLE ID					
	Ċ	90	Ġ	90			90	ļ	07
PARAMETER	-90 S-90	06-SW-01	.06-DS-07 Dul	06-5W-01 06-DS-07 Dup of 06-SW-01-01	01	-90 S-90	06-SW-02 06-SW-02-01	07. -70	07-MW-01 07-MW-01-01
Fluorene	N	(9.8) [0.980392]	QN	(10)	: : Ξ	3.4 J	(9.5) [0.952380]	QN	[6.8] [0.975609]
Hexachlorobenzene	QN	(9.8) [0.980392]	QN	(10)	Ξ	QN	(9.5) [0.952380]	QN	[0.8] [0.975609]
Hexachlorobutadiene	ND	(9.8) [0.980392]	QN	(10)	Ξ	ON	(9.5) [0.952380]	QN	[6.8] [0.975609]
Hexachlorocyclopentadiene	ND	(9.8) [0.980392]	Q	(10)	Ξ	QN	(9.5) [0.952380]	QN	(9.8) [0.975609]
Hexachloroethane	ON ON	(9.8) [0.980392]	QV	(10)	Ξ	QN	(9.5) [0.952380]	NO	[6.8] [0.975609]
Indeno(1,2,3-cd)pyrene	QN	(9.8) [0.980392]	N	(10)	Ξ	QN	(9.5) [0.952380]	ON	[6.8] [0.975609]
Isophorone	Q	(9.8) [0.980392]	N	(10)	Ξ	N	(9.5) [0.952380]	QN	[6.8] [0.975609]
N-Nitrosodiphenylamine	N	(9.8) [0.980392]	QN	(10)	Ξ	QN	(9.5) [0.952380]	QN	[6.8] [0.975609]
N-Nitrosodipropylamine	S	(9.8) [0.980392]	QN	(10)	Ξ	QN	(9.5) [0.952380]	QN	[6.8] [0.975609]
Naphthalene	1.7 J	(9.8) [0.980392]	1.5 J	(10)	Ξ	49	(9.5) [0.952380]	ND	[6.8] [0.975609]
Nitrobenzene	Q	(9.8) [0.980392]	QN	(10)	Ξ	N	(9.5) [0.952380]	ND	[6.8] [0.975609]
Pentachlorophenol	QN	(49) [0.980392]	NO	(20)	Ξ	ND	(48) [0.952380]	ND	[0.975609]
Phenanthrene	Q	[3.8] [0.980392]	QN	(10)	Ξ	1.3 J	(9.5) [0.952380]	ND	(9.8) [0.975609]
Phenol	Q	(9.8) [0.980392]	ND	(10)	[1]	53	(9.5) [0.952380]	ND	[0.92/6.0] [0.8/609]
Pyrene	QN	(9.8) [0.980392]	ND	(10)	[1]	0.21 J	(9.5) [0.952380]	ND	(9.8) [0.975609]
bis(2-Chloroethoxy)methane	QN	(9.8) [0.980392]	ND	(10)	[1]	QN	(9.5) [0.952380]	QN	[6.8] [0.975609]
bis(2-Chloroethyl)ether	Q.	(9.8) [0.980392]	ND	(10)	Ξ	QN	(9.5) [0.952380]	ND	[6.8] [0.975609]
bis(2-Chloroisopropyl)ether	Q	(9.8) [0.980392]	ON	(10)	[1]	ON	(9.5) [0.952380]	ND	[0.8] [0.975609]
bis(2-Ethylhexyl)phthalate	1.1 JB	(9.8) [0.980392]	53	(10)	[1]	5 JB	(9.5) [0.952380]	3.5 JB	[0.975609]
p-Chloroaniline	ND	(9.8) [0.980392]	QN	(10)	[1]	QN	(9.5) [0.952380]	QN	[6.8] [0.975609]

					SITE ID LOCATION ID SAMPLE ID					·		
PARAMETER	0 07-DS-09 D	07 07-MW-01 Dup of 07-MW-01-01	-01	1 1 1 1 1 1	07 07-MW-02 07-MW-02-01	: : : : : : !	07-DS-10	07 07-DS-10 Dup of 07-MW-02-01	-01		07 07-MW-03 07-MW-03-01	
SW8010 - Halogenated Volatile Organics		í	r i	!		,						
1,1,1,2-letrachloroethane 1,1,1-Trichloroethane		(2.5)	<u> </u>	2 2	(2.5)	ΞΞ	QN CN	(2.5)	=======================================	2 5	(2.5)	ΞΞ
1,1,2,2-Tetrachloroethane	£ 8	(0.3)	[1]	2	(0:3)	ΞΞ	2 2	(0.3)	ΞΞ	2 8	(0.33)	E E
1,1,2-Trichloroethane	N _O	(0.2)	ΞΞ	QN	(0.2)	[1]	. Q	(0.2)	ΞΞ	2 8	(0.5)	ΞΞ
1,1-Dichloroethane	ND	(0.5)	[1]	ND	(0.5)	[1]	QN	(0.5)	ΞΞ	S	(0.5)	Ξ
1,1-Dichloroethene	ND	(0.7)	[1]	QN	(0.7)	[]	Q.	(0.7)	[]	Q	(0.7)	ΞΞ
1,2,3-Trichloropropane	Q	(1.6)	Ξ	Q.	(1.6)	[1]	ON	(1.6)	[1]	QN	(1.6)	Ξ
1,2-Dichlorobenzene	QN	(0.25)	[1]	N	(0.25)	[1]	Q	(0.25)	[1]	Q.	(0.25)	Ξ
1,2-Dichloroethane	QN	(0.15)	Ξ	QN	(0.15)	Ξ	ND	(0.15)	Ξ	QN	(0.15)	[1]
1,2-Dichloropropane	QN	(0.15)	Ξ	9	(0.15)	[1]	S	(0.15)	[1]	QN Q	(0.15)	[1]
1,3~Dichlorobenzene	QN	(0.32)	Ξ	R	(0.32)	[1]	ON	(0.32)	[1]	QN	(0.32)	Ξ
1,4-Dichlorobenzene	Q	(0.25)	Ξ	Q.	(0.25)	Ξ	ND	(0.25)	[]	QV	(0.25)	Ξ
1-Chlorohexane	QN	(3.4)	Ξ	R	(3.4)	[1]	ON	(3.4)	[1]	QN	(3.4)	Ξ
2-Chloroethylvinylether	Q	(0.6)	Ξ	N	(0.6)	[1]	ON	(0.0)	[1]	QN N	(0.6)	Ξ
Bromobenzene	Q	(1.6)	Ξ	QN	(1.6)	[1]	QN	(1.6)	[1]	R	(1.6)	Ξ
Bromodichloromethane	QN	(0.1)	[1]	QN	(0.1)	[1]	ON	(0.1)	[1]	ON	(0.1)	Ξ
Bromoform	QN	(0.5)	Ξ	S	(0.5)	[1]	QN	(0.5)	Ξ	Q.	(0.5)	[1]
Bromomethane	QN	(0.35)	Ξ	ND	(0.35)	Ξ	QN	(0.35)	Ξ	Q.	(0.35)	[1]
Carbon tetrachloride	QN :	(0.35)	Ξ	ON	(0.35)	[1]	QN	(0.35)	[1]	QN	(0.35)	[1]
Chlorobenzene	Q :	(0.3)	Ξ	2	(0.3)	Ξ	Q	(0.3)	Ξ	QN	(0.3)	Ξ
Chloroethane	9	(0.7)	Ξ	S	(0.7)	Ξ	QN	(0.7)	[]	QN	(0.7)	Ξ
Chlorotorm	QN :	(0.15)	Ξ	용	(0.15)	Ξ	QN	(0.15)	Ξ	QN	(0.15)	Ξ
chloromethane	2	(0.5)	Ξ	2	(0.5)	Ξ	QN	(0.5)	[1]	ON	(0.5)	Ξ
Dibromochloromethane	ON	(0.2)	Ξ	S	(0.2)	Ξ	QN	(0.2)	[]	Q.	(0.2)	[1]
Dibromomethane	QN	(1.6)	Ξ	QN N	(1.6)		ND	(1.6)	[]	QN	(1.6)	Ξ
Methylene chloride	QN	(0.4)	Ξ	QN	(0.4)	Ξ	ND	(0.4)	[1]	QN	(0.4)	Ξ
Tetrachloroethene	QN	(0.1)	Ξ	QN	(0.1)	Ξ	ON	(0.1)	[1]	9	(0.1)	Ξ
Trichloroethene	QN	(0.2)	Ξ	2	(0.2)	[1]	ND	(0.2)	[1]	S	(0.2)	[1]
Trichlorofluoromethane	QN	(0.55)	Ξ	S	(0.55)	Ξ	NO	(0.55)	Ξ	QN	(0.55)	Ξ
Vinyl chloride	QV	(0.25)	[1]	QN	(0.25)	[1]	QN	(0.25)	[1]	R	(0.25)	[]
				i								

Compiled: 23 Mar

"S = Not Detected NA = Not Applicable () = Detection Limit [] = Factor

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				3	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	.0 .0 07-DS-09	07 07-MW-01 Dup of 07-MW-01-01	-01-01	0.070	07 07-MW-02 07-MW-02-01		07 07-08-10 Du	07 07-MW-02 07-DS-10 Dup of 07-MW-02-01	-02-01	07	07 07-MW-03 07-MW-03-01	
						!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			1	; ; ; ;		
cis-1,3-Dichloropropene	QN	(0.2)	[1]	QN	(0.2)	[1]	QN	(0.2)	[1]	ND	(0.5)	[]
trans-1,2-Dichloroethene	ON	(0.25)	Ξ	Q.	(0.25)	Ξ	QN	(0.25)	[1]	ON	(0.25)	Ξ
trans-1,3-Dichloropropene	QN	(0.15)	Ξ	QN	(0.15)	[]	QN	(0.15)	Ξ	ND	(0.15)	Ξ
SW8015 - Nonhalogenated Volatile Organics	rganics (ug/L)	(
Ethanol	ND	(2000)	Ξ	ND	(2000)	Ξ	QN	(2000)	Ξ	ND	(2000)	Ξ
Ethyl ether	QN	(10000)	[1]	ND	(10000)	Ξ	QN	(10000)	[1]	QN	(10000)	Ξ
Methyl ethyl ketone	QN	(3000)	[1]	QN	(3000)	Ξ	ND	(3000)	[1]	QN	(3000)	Ξ
Methyl isobutyl ketone	QN	(2000)	[1]	QN	(2000)	[1]	QN	(2000)	[1]	QN	(2000)	[1]
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)							,			
Diesel Range Organics (2)	QN	(190)	[0.957]	QN	(190)	[0.966]	ND	(190)	[0.952]	2300	(190)	[0.952]
SW8020 - Aromatic Volatile Organics	s (ng/L)											
1,2-Dichlorobenzene	QN	(0.4)	[]	QN	(0.4)	Ξ	QN	(0.4)	Ξ	14	(2)	[2]
1,3-Dichlorobenzene	QN	(0.5)	[1]	ON	(0.2)		QN	(0.5)	[1]	3.2	(1)	[2]
1,4-Dichlorobenzene	ND	(0.4)	[]	ND	(0.4)	[1]	QN	(0.4)	Ξ	2.4 P	(2)	[2]
Benzene	QN	(0.3)	[1]	ON	(0.3)	Ξ	ND	(0.3)	[1]	QN	(1.5)	[2]
Chlorobenzene	ND	(0.2)	[1]	ON	(0.2)	Ξ	ON	(0.5)	Ξ	QN	(1)	[2]
Ethylbenzene	QN	(0.5)	[1]	QN	(0.2)	Ξ	ON	(0.5)	Ξ	4.8	(1)	[2]
Gasoline Range Organics (2)	ND	(100)	[1]		NA		QN	(100)	Ξ	ND	(200)	[2]
Toluene	QN	(0.2)	Ξ	QN	(0.2)	Ξ	QN	(0.2)	Ξ	ND	(1)	[3]
Total xylenes	ND	(0.3)	Ξ	ON	(0.3)	[1]	Q.	(0.3)	Ξ	21	(1.5)	[2]
SW8080 - Organochlorine Pesticides and PCBs		(ng/L)										
4,4'-DDD	QN	(0.0097)	[0.966183]	ON	(0.0095)	[0.952380]	ON	(0.0000)	[0.961538]	0.03	0] (9600.0)	[0.961538]
4,4'-DDE	Q	(0.0097)	[0.966183]	ON	(0.0095)	[0.952380]	QN	(0.0036)	[0.961538]	ON	0] (9600.0)	[0.961538]
4,4'-DDT	0.0009 PJB	(0.019)	[0.966183]	QN	(0.019)	[0.952380]	QN	(0.019)	[0.961538]	QN	(0.019)	[0.961538]
Aldrin	0.012 B	(0.0097)	[0.966183]	QN	(0.0095)	[0.952380]	QN	(0.0000)	[0.961538]	QN	0] (9600.0)	[0.961538]
Chlordane	ND	(0.048)	[0.966183]	QN	(0.048)	[0.952380]	QN	(0.048)	[0.961538]	ON	(0.048) [0	[0.961538]
Dieldrin	0.012	(0.0097)	[0.966183]	QN	(0.005)	[0.952380]	0.0069 KJB	(0.000)	[0.961538]	0.0053 KJB	0] (9600.0)	[0.961538]
Endosulfan I	0.0046 KJB	(0.0097)	[0.966183]	ON	(0.0095)	[0.952380]	ON	(0.0006)	[0.961538]	ON	0] (9600.0)	[0.961538]
Endosulfan II	0.0024 KJB	(0.029)	[0.966183]	0.0022 KJB	(0.029)	[0.952380]	0.0015 KJB	(0.029)	[0.961538]	QN	(0.029)	[0.961538]
Endosulfan Sulfate	0.012 KJB	(0.048)	[0.966183]	0.01 JB	(0.048)	[0.952380]	0.0098 JB	(0.048)	[0.961538]	0.014 PJB	(0.048) [0	[0.961538]
Endrin	Q	(0.0097)	[0.966183]	Q	(0.0095)	[0.952380]	QV	(0.0000)	[0.961538]	QN	0] (9600.0)	[0.961538]

ND = Not Detected NA = Not Applicable

() = Detection Limit [] = Factor

	07 07-MW-03	07-MW-03-01	(0.019) [0.961538]					(0.19) [0.961538]		_				_	(0.0096) [0.961538]				(9.7) [0.970873]			(9.7) [0.970873]	. —	. —			_	(9.7) [0.970873]		[0.970873]	(9.7) [0.970873]	_
	20		0.0003 KJB			0.0029 KJ	Q.	O V	2 5	2	QN	2	Q	0.02	0.0089 KJB		0.0083 PJB		QN	QN	ND	QN	QN	ND	QN	ND	ON	ON	QN	ND	ND	39
	07 07-MW-02	Dup of 07-MW-02-01	(0.019) [0.961538]	(0.0096) [0.961538]	_	_ :		(0.19) [0.951538]		_		_		(0.0096) [0.961538]	(0.0096) [0.961538]	(0.0096) [0.961538]	(0.0096) [0.961538]		(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(48) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]
		07-DS-10 Du	0.0037 KJB	0.0035 PJB	ON	Q :	O S	2 8	Q. Q.	QN	ND	NO	ND	ND	0.024	ND	0.0097 B		QN	ON	ND	ON	NO	QN	QN	QN	ON	ND	ON	ND	QN	QN
SITE ID LOCATION ID SAMPLE ID	07 07-MW-02	07-MW-02-01	(0.019) [0.952380]	(0.0095) [0.952380]	_		(0.095) [0.952380] (0.10) [0.05256]				(0.19) [0.952380]	(0.19) [0.952380]	(0.48) [0.952380]	(0.0095) [0.952380]	(0.0095) [0.952380]	(0.0095) [0.952380]	(0.0095) [0.952380]		(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(48) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]
S T	. 0	 	ND	0.0071 JB	0.0039 KJB	2	2 2	2 5	QN	QN	QN	QN	ON	QN	0.004 PJB	QN	0.01 B		QN	ND	QN	ON	QN	QN	ND	ON	ON	ON	QN	QN	ON	QN
	07 07-MW-01	Dup of 07-MW-01-01	(0.019) [0.966183]	(0.0097) [0.966183]	_	(0.048) [0.966183]				(0.097) [0.966183]	(0.19) [0.966183]	(0.19) [0.966183]	(0.48) [0.966183]		(0.0097) [0.966183]	(0.0097) [0.966183]	(0.0097) [0.966183]		(9.7) [0.966183]	(9.7) [0.966183]		(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(48) [0.966183]	(9.7) [0.966183]				(9.7) [0.966183]
	70	08-08-09	0.0063 KJB	0.0054 KJB	0.0028 PJB	ON W	2 2	2	ND	QN	QN	ON	QN		0.0056 PJB		0.015 B	(ng/L)	ON	QN	QN	Q	QN	ON	QN	QN	QN	QN	QN	QN	QN	QN
		PAKAME I EK	Endrin Aldehyde	Heptachlor	Heptachlor epoxide	Methoxychior PC8-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC	SW8270 - Semivolatile Organics	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	l,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene

Compiled: 23 Marg 1995

() = Detection Limit [] = Factor

 MD = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			SIT LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID					
DABANETED)	07 07-MW-01 07-DS-09 Dim of 07-MW-01-01	07 07-MW-02 07-MM-02	-02 02-01	07.	07 07-MW-02 07-RE-10 Pura of 07-MM-02-01	0 6	07 07-MW-03	
111111111111111111111111111111111111111					01-01-0	TO 30 MIL 10 TO 10)	10-50-Mil-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2-Methylphenol(o-cresol)	QN	(9.7) [0.966183]	QN	(9.5) [0.952380]	QN	(9.5) [0.952380]	QN	(9.7)	[0.970873]
2-Nitroaniline	Q	(48) [0.966183]	QN	-	QN		QN	(49)	[0.970873]
2-Nitrophenol	QN	(9.7) [0.966183]	QN	(9.5) [0.952380]	ND	(9.5) [0.952380]	QN	(9.7)	[0.970873]
3,3'-Dichlorobenzidine	QN	(19) [0.966183]	ON	(19) [0.952380]	ND	(19) [0.952380]	Q.	(19)	[0.970873]
3-Nitroaniline	QN	(48) [0.966183]	NO ON	(48) [0.952380]	QN	(48) [0.952380]	QN	(48)	[0.970873]
4,6-Dinitro-2-methylphenol	ON	(48) [0.966183]	ND	(48) [0.952380]	QN	(48) [0.952380]	QN	(49)	[0.970873]
4-Bromophenyl phenyl ether	ON	(9.7) [0.966183]	ON	(9.5) [0.952380]	QN	(9.5) [0.952380]	QN	(6.7)	[0.970873]
4-Chloro-3-methylphenol	ON	(9.7) [0.966183]	NO	(9.5) [0.952380]	QN	(9.5) [0.952380]	ON	(8.7)	[0.970873]
4-Chlorophenyl phenyl ether	ON		QN	(9.5) [0.952380]	ON	(9.5) [0.952380]	QN	(6.7)	[0.970873]
4-Methylphenol(p-cresol)	QN	(9.7) [0.966183]	QN	(9.5) [0.952380]	ND	(9.5) [0.952380]	QN	(6.7)	[0.970873]
4-Nitroaniline	QN	(48) [0.966183]	ND	(48) [0.952380]	ND	(48) [0.952380]	QN	(49)	[0.970873]
4-Nitrophenol	QN	(48) [0.966183]	QN	(48) [0.952380]	ON	(48) [0.952380]	QN	(49)	[0.970873]
Acenaphthene	NO	(9.7) [0.966183]	NO	(9.5) [0.952380]	ON	(9.5) [0.952380]	QN	(6.7)	[0.970873]
Acenaphthylene	QN	_	QN	_	QN	(9.5) [0.952380]	QN	(6.7)	[0.970873]
Anthracene	QN	(9.7) [0.966183]	ND	(9.5) [0.952380]	ON	(9.5) [0.952380]	ND	(6.7)	[0.970873]
Benzo(a)anthracene	ON	_	NO	(9.5) [0.952380]	ON	(9.5) [0.952380]	QN	(6.7)	[0.970873]
Benzo(a)pyrene	QN	(9.7) [0.966183]	ON	(9.5) [0.952380]	QN	(9.5) [0.952380]	QN	(6.7)	[0.970873]
${ t Benzo(b)fluoranthene}$	ON		ND	(9.5) [0.952380]	ON	(9.5) [0.952380]	ND	(8.7)	[0.970873]
Benzo(g,h,i)perylene	QN	_	QN	_	ND	(9.5) [0.952380]	QN	(6.7)	[0.970873]
Benzo(k)fluoranthene	Q		QN		ND		QN	(6.7)	[0.970873]
	QN		6.1 J		6.6 J		6 J	(48)	[0.970873]
Benzyl alcohol	9		QN	_	QN	(9.5) [0.952380]	ON	(8.7)	[0.970873]
Butylbenzylphthalate	QN		ON	(9.5) [0.952380]	QN	(9.5) [0.952380]	ON	(6.7)	[0.970873]
Chrysene	QN	(9.7) [0.966183]	ND	(9.5) [0.952380]	N	(9.5) [0.952380]	QN	(6.7)	[0.970873]
Di-n-octy]phthalate	QN	(9.7) [0.966183]	ND	(9.5) [0.952380]	N O	(9.5) [0.952380]	QN	(6.7)	[0.970873]
Dibenz(a,h)anthracene	QN	(9.7) [0.966183]	QN	(9.5) [0.952380]	ND	(9.5) [0.952380]	QN	(6.7)	[0.970873]
Dibenzofuran	QN	(9.7) [0.966183]	QN	(9.5) [0.952380]	ON	(9.5) [0.952380]	QN	(6.7)	[0.970873]
Dibutylphthalate	QN	(9.7) [0.966183]	QN	(9.5) [0.952380]	QN	(9.5) [0.952380]	Q	(6.7)	[0.970873]
Diethylphthalate	QN	(9.7) [0.966183]	QN	(9.5) [0.952380]	N N	(9.5) [0.952380]	ND	(6.7)	[0.970873]
Dimethylphthalate	ON		QN	(9.5) [0.952380]	ON	(9.5) [0.952380]	ON	(6.7)	[0.970873]
Fluoranthene	QV ·	(9.7) [0.966183]	Q.	(9.5) [0.952380]	Q	(9.5) [0.952380]	QN	(6.7)	[0.970873]
Compiled: 23 March 1995		() = Detection Limit	[] = Factor	ND = Not Detected	NA = Not A	Not Applicable			

	07 07_MK_03	07-MW-03-01	[2.8078.0]		(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]		(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]	(49) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]	(9.7) [0.970873]
			QX	R	Q.	Q.	Q.	QN	QN	Q	QN	32	2	QN	N S	Q.	QN QN	QN	QN	QN	S	QN
	07 07-MW-02	07-DS-10 Dup of 07-MM-02-01	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(48) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]
		07-DS-10 D	N	ON	QN	QN	ON	S.	QN	S	2	2	2	QN	Q.	Q.	ND	N S	ND	N.	ON	ND
SITE ID LOCATION ID SAMPLE ID	07 07-MW-02	07-MW-02-01	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(48) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]	(9.5) [0.952380]
		0	ON	Q	ND	Q	2	Q	2	QN	9	N	Q.	QN	Q	R	Q.	S	Q	ON	QN	N
	07 07-MW-01	07-DS-09 Dup of 07-MW-01-01	(9.7) [0.966183]	(9.7) [0.966183]		(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(48) [0.966183]			(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]	(9.7) [0.966183]		(9.7) [0.966183]
	0	0 90-SQ-20	QN	QN	QN	S	QN	ND	QN	ND	QN	QN	Q	Q	QN	QN	N	QN	ND	ON .	QN	Q
		PARAMETER	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitrosodiphenylamine	N-Nitrosodipropylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	p-Chloroaniline

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				S1 LOCA SAIV	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	0	07 07-MW-04 07-MW-04-01) 3-70 3-70	07 07-SW-01 07-SW-01-01		0 07.	07 07-SW-02 07-SW-02-01		0	09 09-MW-01 09-MW-01-01	
	1	 			1 1 1 1 1 1 1 1 1	!			!		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SW8010 - Halogenated Volatile Organics		(10)	5	9	(1	-	ģ	(1	Ē	2	3	3
1,1,1,2-letrachloroethane 1 1 1-Trichloroethane	N 8	(0.5)	ΞΞ	2 5	(5.5)	ΞΞ	§ §	(2.5)	ΞΞ	2 2	(2.5)	ΞΞ
1,1,2,2-Tetrachloroethane	Q.	(0.3)	ΞΞ	8 8	(0.3)	ΞΞ	2 2	(0.3)	ΞΞ	2 2	(0:33)	ΞΞ
1,1,2-Trichloroethane	QN	(0.2)	ΞΞ	2	(0.2)	ΞΞ	Q.	(0.2)	ΞΞ	2	(0.2)	ΞΞ
1,1-Dichloroethane	ND	(0.5)	Ξ	ND	(0.5)	Ξ	QN	(0.5)	Ξ	8	(0.5)	Ξ
1,1-Dichloroethene	ON	(0.7)	Ξ	ON	(0.7)	Ξ	N	(0.7)	[1]	S	(0.7)	Ξ
1,2,3-Trichloropropane	QN	(1.6)	Ξ	QN	(1.6)	Ξ	S	(1.6)	Ξ	Q	(1.6)	Ξ
1,2-Dichlorobenzene	QN	(0.25)	Ξ	QN	(0.25)	Ξ	Q	(0.25)	Ξ	S	(0.25)	Ξ
1,2-Dichloroethane	QN	(0.15)	Ξ	QN	(0.15)	Ξ	QN	(0.15)	[]	QN	(0.15)	Ξ
1,2-Dichloropropane	ON	(0.15)	Ξ	N	(0.15)	Ξ	S	(0.15)	Ξ	Q	(0.15)	Ξ
1,3-Dichlorobenzene	ON	(0.32)	[1]	QN	(0.32)	Ξ	2	(0.32)	Ξ	Q	(0.32)	Ξ
1,4-Dichlorobenzene	ON	(0.25)	[1]	ND	(0.25)	Ξ	9	(0.25)	Ξ	Q	(0.25)	Ξ
1-Chlorohexane	ON.	(3.4)	Ξ	ND	(3.4)	Ξ	ON	(3.4)	Ξ	QN	(3.4)	Ξ
2-Chloroethylvinylether	QN	(0.6)	[1]	QN	(0.6)	[1]	ON	(0.0)	Ξ	Q	(0.6)	[1]
Bromobenzene	QN	(1.6)	[1]	QN	(1.6)	Ξ	S	(1.6)	[1]	Q	(1.6)	Ξ
Bromodichloromethane	QN	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(0.1)	[1]	QN	(0.1)	Ξ
Bromoform	Q	(0.5)	Ξ	Q	(0.5)	Ξ	S	(0.5)	Ξ	Q	(0.5)	Ξ
Bromomethane	Q	(0.35)	[1]	Q	(0.35)	Ξ	Q	(0.35)	Ξ	R	(0.32)	Ξ
Carbon tetrachloride	Q	(0.35)	[1]	Q	(0.35)	Ξ	Q	(0.35)	Ξ	Q	(0.35)	Ξ
Chlorobenzene	Q :	(0.3)	Ξ3	2 9	(0.3)	Ξ	오 :	(0.3)	ΞΞ	2	(0.3)	Ξ
Chloroethane 2.1		(0.7)		O. S	(0.7)	ΞΞ	2 5	(0.7)	ΞΞ	2 9	(0.7)	Ξ3
Chlorotorm	0 10.0 N	(0.15)	35	2 5	(0.15)	ΞΞ	2 5	(0.15)	ΞΞ	2 5	(0.15)	ΞΞ
Oithomochloromethane	£ 5	(0.5)	[1]	2 2	(0.5)	ΞΞ	2 2	(0.9)	ΞΞ	2 5	(0.9)	ΞΞ
Dibromomethane	2	(1.6)	Ξ	2	(1.6)	ΞΞ	2	(1.6)	ΞΞ	2 8	(1.6)	ΞΞ
Methylene chloride	QN	(0.4)	[1]	QN	(0.4)	[1]	ON	(0.4)	Ξ	8	(0.4)	ΞΞ
Tetrachloroethene	ON	(0.1)	[1]	QN	(0.1)	Ξ	QN	(0.1)	Ξ	8	(0.1)	Ξ
Trichloroethene	ON	(0.2)	Ξ	QN	(0.2)	Ξ	Q	(0.2)	Ξ	0.3	(0.2)	Ξ
Trichlorofluoromethane	ON	(0.55)	[1]	QN	(0.55)	Ξ	S	(0.55)	Ξ	Q	(0.55)	Ξ
Vinyl chloride	QN	(0.25)	Ξ	QN	(0.25)	Ξ	QN	(0.25)	Ξ	Q.	(0.25)	Ξ
Compiled: 23 March 1995		() = Detec	= Detection Limit	[] = Factor	= S	Not Detected	NA = Not	Not Applicable				
								-				

				Τ.	SITE ID LOCATION ID SAMPLE ID							
	ŗ	07		,	07			07			60	
PARAMETER 	-/0 W-/0	0/-MW-04 07-MW-04-01 	1 1 1 1 1	; ; ; ; ; ;	07~SW-01 07~SW-01-01		0.70	07-SW-02 07-SW-02-01		-60 -60	09-MW-01 09-MW-01-01	
cis-1.3-Dichloropropene	Q	(0.5)	Ξ	C	(6 0)	5	C	(6.0)	Ξ			1 5
trans-1,2-Dichloroethene	QN	(0.25)	ΞΞ	2	(0.25)	ΞΞ	2 8	(0.5)	ΞΞ	ND O 46 P	(0.2)	ΞΞ
trans-1,3-Dichloropropene	Q.	(0.15)	ΞΞ	Q.	(0.15)	ΞΞ	9	(0.15)	ΞΞ		(0.23) (0.15)	
SW8015 - Nonhalogenated Volatile Organics	yanics (ug/L)								1			[
Ethanol	ND	(2000)	Ξ	ON	(2000)	[1]	ND	(5000)	[1]	QN	(2000)	[1]
Ethyl ether	QN	(10000)	Ξ	ND	(10000)	[1]	ON	(10000)	Ξ	ON	(10000)	ΞΞ
Methyl ethyl ketone	ND	(3000)	Ξ	QN	(3000)	[1]	QN	(3000)	Ξ	Q.	(3000)	Ξ
Methyl isobutyl ketone	QN	(2000)	Ξ	QN	(2000)	Ξ	ND	(5000)	[1]	QN	(2000)	ΞΞ
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)						•	,]
Diesel Range Organics (2)	QN	(220)	[1.09]	3500	(820)	[4.76]	2900	(400)	[2]	QN	(190)	[0.971]
SW8020 - Aromatic Volatile Organics	(ng/L)					1			1	!		
1,2-Dichlorobenzene	ON	(0.4)	[1]	1.5	(0.4)	[1]	ND	(0.4)	[1]	ND	(4)	[10]
1,3-Dichlorobenzene	QN	(0.2)	[1]	2	(0.2)	Ξ	ND	(0.2)	Ξ	QN	(5)	[10]
1,4-Dichlorobenzene	QN	(0.4)	[1]	0.4 P	(0.4)	Ξ	QN	(0.4)	[1]	ON	(4)	[10]
Benzene	QN	(0.3)	Ξ	ND	(0.3)	Ξ	ON	(0.3)	[1]	110	(3)	[10]
Chlorobenzene	0.25	(0.2)	Ξ	ON	(0.2)	[1]	ND	(0.2)	Ξ	ON	(2)	[10]
Ethylbenzene	ND	(0.2)	[]	QN	(0.2)	Ξ	ND	(0.2)	ΞΞ	16	(2)	[10]
Gasoline Range Organics (2)	ND	(100)	[1]	N	(100)	[1]	QN	(100)		1500	(1000)	[10]
Toluene	ND	(0.2)	[1]	ON	(0.5)	[1]	2.8	(0.2)	[1]	ND	(2)	[10]
Total xylenes	QN	(0.3)	Ξ	1.4	(0.3)	Ξ	ND	(0.3)	[1]	6	(3)	[10]
SW8080 - Organochlorine Pesticides and PCBs	nd PCBs (ug/L)	•									•	1
4,4'-000	QN	(0.01) [1.0)	[1.020408]	0.81	(0.0095) [0	[0.952380]	0.34	(0.0095) [0.9	[0.952380]	ND	(0.0096) [0.	[0.961538]
	0.0097 KJB	(0.01) [1.03	[1.020408]	0.046	(0.0095)	[0.952380]	0.032		[0.952380]	Q		[0.961538]
4,4'-DDT	QN	(0.02) [1.03	[1.020408]	0.0052 PJB	(0.019)	[0.952380]	0.004 PJB		[0.952380]	0.0015 PJB		[0.961538]
Aldrin	QN	(0.01) [1.03	[1.020408]	0.019 B	(0.0095) [0	[0.952380]	QN	(0.0095) [0.9	0.952380]	ND		[0.961538]
Chlordane	ND	(0.051) [1.03	[1.020408]	ND	(0.048) [0	[0.952380]	QN		[0.952380]	ON		[0.961538]
	0.0074 KJB		[1.020408]	QN	(0.0095) [0	[0.952380]	0.011	(0.0095) [0.99	[0.952380]	0.0084 KJB		[0.961538]
Endosulfan I	ON		[1.020408]	ND	(0.0095) [0	[0.952380]	ON	(0.0095) [0.95	[0.952380]	ON		[0.961538]
	0.013 KJB		[1.020408]	0.028 KJB	(0.029)	[0.952380]	0.019 KJB	(0.029) [0.95	[0.952380]	QN ON	(0.029) [0.	[0.961538]
lfan Sulfate	0.0092 JB		[1.020408]	QN		[0.952380]	ON	(0.048) [0.95	[0.952380]	0.0053 KJB		[0.961538]
Endrin	QN	(0.01) [1.03	[1.020408]	0.0013 KJB	(0.0095)	[0.952380]	ND	(0.0095) [0.95	[0.952380]	QN	(0.0096) [0.	[0.961538]

Compiled: 23 March

() = Detection Limit [] = Factor

MA = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

Data Name	07						
0.0007 KJB (0.02) [1.020408] 0.0037 KJB (0.019) ND (0.01) [1.020408] 0.0065 KJB (0.0055) ND (0.01) [1.020408] 0.0065 J (0.0085) ND (0.01) [1.020408] 0.0065 J (0.0085) ND (0.01) [1.020408] ND (0.095) ND (0.02) [1.020408] ND (0.095) ND (0.03) [1.020408] ND (0.095) ND (0.04) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.095) ND (10) [1.036269] ND (0.095) ND (10) [1.036269] ND (0.096) ND (10) [1.036269] ND (0.096) ND (10) [1.036269] ND (0.9.4)	07 - MW - 04	07 07-SW-01	07	07 07-SW-02	60	09 09-MW-01	
0.0007 KJB (0.02) [1.020408] 0.0037 KJB (0.019) ND (0.01) [1.020408] 0.0051 KJB (0.0055) ND (0.051) [1.020408] ND (0.095) ND (0.051) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.095) ND (0.02) [1.020408] ND (0.095) ND (0.02) [1.020408] ND (0.095) ND (0.01) [1.036269] ND (0.095) ND (10) [1.036269] ND (0.94)	07-MW-04-01	07-SW-01-01	-70	07-SW-02-01	-60	09-MW-01-01	
ND (0.01) [1.020408] 0.0051 KJB (0.0095) ND (0.01) [1.020408] 0.0065 JJ (0.048) ND (0.051) [1.020408] 0.0065 JJ (0.048) ND (0.01) [1.020408] ND (0.095) ND (0.2) [1.020408] ND (0.19) ND (0.10) [1.020408] ND (0.19) ND (0.10) [1.020408] ND (0.095) ND (0.10) [1.036269] ND (0.095) ND (10) [1.036269] ND (0.19)	(0.02) [1.020408] 0.0037		0.0006 PJB	(0.019) [0.952380]	0.0057 KJB	(0.019)	[0.961538]
ND (0.01) [1.020408] 0.0069 PJB (0.0095) ND (0.051) [1.020408] 0.0065 J (0.048) ND (0.01) [1.020408] ND (0.050 ND (0.02) [1.020408] ND (0.19) ND (0.02) [1.020408] ND (0.19) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.036269] ND (0.096) ND (10) [1.036269] ND (9.4)	(0.01) [1.020408] 0.0051	_	0.0081 KJB	(0.0095) [0.952380]	QN	(0.0096)	[0.961538]
ND (0.051) [1.020408] 0.0065 J (0.048) ND (0.1) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.1) [1.020408] ND (0.19) ND (0.1) [1.020408] ND (0.19) ND (0.1) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.01) [1.020408] ND (0.19) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.0095) ND (0.01) [1.020408] ND (0.0095) ND (10) [1.036269] ND (9.4)	(0.01) [1.020408] 0.0069	_	0.018 PB	(0.0095) [0.952380]	0.0032 PJB	(0.0006)	[0.961538]
ND (0.1) [1.020408] ND (0.095) ND (0.2) [1.020408] ND (0.19) ND (0.1) [1.020408] ND (0.19) ND (0.1) [1.020408] ND (0.095) ND (0.1) [1.020408] ND (0.095) ND (0.2) [1.020408] ND (0.095) ND (0.2) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.036269] ND (0.095) ND (10) [1.036269] ND (9.4)	(0.051) [1.020408] 0.0065	(0.048)	0.036 J		QN	(0.048)	[0.961538]
ND (0.2) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.1) [1.020408] ND (0.19) ND (0.1) [1.020408] ND (0.095) ND (0.2) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.21) [1.020408] ND (0.19) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.036269] ND (0.095) ND (10) [1.036269] ND (0.94)	(0.1) [1.020408]		QN		ND	(0.096)	[0.961538]
ND (0.2) [1.020408] ND (0.19) ND (0.1) [1.020408] ND (0.095) ND (0.1) [1.020408] ND (0.095) ND (0.2) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.21) [1.020408] ND (0.19) ND (0.01) [1.020408] 0.02 PB (0.0095) ND (0.01) [1.020408] ND (0.0095) ND (0.01) [1.020408] ND (0.0095) ND (0.01) [1.036269] ND (0.095) ND (10) [1.036269] ND (0.44)	(0.2) [1.020408]	_	QN		ON	(0.19)	[0.961538]
MD (0.1) [1.020408] ND (0.095) ND (0.2) [1.020408] ND (0.095) ND (0.2) [1.020408] ND (0.19) ND (0.2) [1.020408] ND (0.19) ND (0.21) [1.020408] ND (0.19) ND (0.21) [1.020408] ND (0.19) ND (0.01) [1.020408] ND (0.095) ND (0.01) [1.020408] ND (0.0095) ND (0.01) [1.020408] ND (0.0095) ND (0.01) [1.036269] ND (0.0095) ND (10) [1.036269] ND (0.44) ND (10) [1.036269] ND (0.47)	(0.2) [1.020408]	_	Q		ON	(0.19)	[0.961538]
ND (0.1) [1.020408] ND (0.095) ND (0.2) [1.020408] ND (0.19) ND (0.21) [1.020408] ND (0.19) ND (0.51) [1.020408] ND (0.19) ND (0.01) [1.020408] 0.02 (0.0095) ND (0.01) [1.020408] 0.02 PB (0.0095) ND (0.01) [1.020408] ND (0.0095) ND (0.01) [1.036269] ND (0.0095) ND (10) [1.036269] ND (9.4)	(0.1) [1.020408]	_	Q		ON ON	(0.096)	[0.961538]
ND (0.2) [1.020408] ND (0.19) ND (0.21) [1.020408] ND (0.19) ND (0.51) [1.020408] ND (0.19) ND (0.01) [1.020408] 0.02 (0.0095) ND (0.01) [1.020408] 0.02 PB (0.0095) ND (0.01) [1.020408] ND (0.0095) ND (0.01) [1.036269] ND (0.0095) ND (10) [1.036269] ND (9.4)	(0.1) [1.020408]		Q		ON	(0.096)	[0.961538]
ND (0.2) [1.020408] ND (0.19) ND (0.51) [1.020408] ND (0.48) 0.0077 JB (0.01) [1.020408] 0.02 (0.095) ND (0.01) [1.020408] 0.02 PB (0.0095) ND (0.01) [1.020408] ND (0.0095) ND (0.01) [1.036269] ND (0.0095) ND (10) [1.036269] ND (0.44) ND (10) [1.036269] ND (0.47)	(0.2) [1.020408]	_	Q		QN	(0.19)	[0.961538]
ND (0.51) [1.020408] ND (0.48) 0.0077 JB (0.01) [1.020408] 0.02 (0.0095) ND (0.01) [1.020408] 0.024 KJB (0.0095) ND (0.01) [1.020408] 0.02 PB (0.0095) ND (0.01) [1.020408] ND (0.0095) ND (0.01) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4)	(0.2) [1.020408]	_	Q	(0.19) [0.952380]	ON	(0.19)	[0.961538]
0.0077 JB (0.01) [1.020408] 0.02 (0.0095) ND (0.01) [1.020408] 0.0024 KJB (0.0095) ND (0.01) [1.020408] 0.02 PB (0.0095) ND (0.01) [1.026269] ND (0.0095) ND (10) [1.036269] ND (9.4)	(0.51) [1.020408]	(0.48) [0.952380]	ND	(0.48) [0.952380]	QN	(0.48)	[0.961538]
ND (0.01) [1.020408] 0.0024 KJB (0.0095) ND (0.01) [1.020408] 0.02 PB (0.0095) ND (0.01) [1.020408] ND (0.0095) ND (10) [1.036269] ND (9.4)	JB (0.01) [1.020408]	(0.0095) [0.952380]	0.0058 PJB	(0.0095) [0.952380]	QN	(0.0096)	[0.961538]
ND (0.01) [1.020408] 0.02 PB (0.0095) ND (0.01) [1.020408] ND (0.0095) (ug/L) ND (10) [1.036269] ND (9.4)	(0.01) [1.020408] 0.0024	_	ND	(0.0095) [0.952380]	0.0055 KJB	(0.0006)	[0.961538]
ND (0.01) [1.020408] ND (0.0095) (ug/L) ND (10) [1.036269] ND (9.4) ND (22) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4)	(0.01) [1.020408] 0.02	_	0.036 P	(0.0095) [0.952380]	0.017 B	(0.0006)	[0.961538]
(ug/L) ND (10) [1.036269] ND (9.4) ND (10) [10] [10] [10] [10] [10] [10] [10] [10]	(0.01) [1.020408]	(0.0095) [0.952380]	QN	(0.0095) [0.952380]	0.012 B	(0.0006)	[0.961538]
zene ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4) nol ND (10) [1.036269] ND (9.4) nol ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) ND (52) [1.036269] ND (47) ND (10) [1.036269] ND (9.4)							
e ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4) nol ND (10) [1.036269] ND (9.4) nol ND (10) [1.036269] ND (9.4) ND (52) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4)	(10) [1.036269]	(9.4) [0.943396]	ND	(9.4) [0.943396]	QN	(6.6)	[0.990099]
e ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4) nol ND (10) [1.036269] ND (9.4) nol ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) ND (52) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4)	(10) [1.036269]	(9.4) [0.943396]	ON	(9.4) [0.943396]	NO NO	(6.6)	[0.990099]
e ND (10) [1.036269] ND (9.4) No (52) [1.036269] ND (9.4) No (10) [1.036269] ND (10) [1.0	(10) [1.036269]	_	Q	(9.4) [0.943396]	NO	(6.9)	[0.990099]
nol ND (10) [1.036269] ND (9.4) nol ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) ND (52) [1.036269] ND (9.4) ND (10) [1.036269] ND (47) ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4)	(10) [1.036269]	_	ON	(9.4) [0.943396]	ON	(6.6)	[0.990099]
nol ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) ND (52) [1.036269] ND (47) ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4)	(10) [1.036269]	(9.4) [0.943396]	N	(9.4) [0.943396]	QN	(6.6)	[0.990099]
ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) ND (52) [1.036269] ND (47) ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4)	(10) [1.036269]	(9.4) [0.943396]	QN	(9.4) [0.943396]	QN	(6.6)	[6.99006]
ND (10) [1.036269] ND (9.4) ND (52) [1.036269] ND (47) ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4)	(10) [1.036269]	(9.4) [0.943396]	ON	(9.4) [0.943396]	ON	(6.6)	[0.990099]
ND (52) [1.036269] ND (47) ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4)	(10) [1.036269]	(9.4) [0.943396]	ND	(9.4) [0.943396]	ON	(6.6)	[0.990099]
ND (10) [1.036269] ND (9.4) ND (10) [1.036269] ND (9.4) e ND (10) [1.036269] ND (9.4)	(52) [1.036269]	(47) [0.943396]	QN	(47) [0.943396]	QN	(20)	[0.990099]
ND (10) [1.036269] ND (9.4) ND	(10) [1.036269]	(9.4) [0.943396]	QN	(9.4) [0.943396]	ON	(6.6)	[6.990099]
ND (10) [1.036269] ND (9.4)	(10) [1.036269]	(9.4) [0.943396]	QN	(9.4) [0.943396]	QN	(6.6)	[0.990099]
	(10) [1.036269]	(9.4) [0.943396]	QN	(9.4) [0.943396]	ND	(6.6)	[0.990099]
(10) [1.036269] ND (9.4)	(10) [1.036269]	(9.4) [0.943396]	QN	(9.4) [0.943396]	ON	(6.9)	[0.990099]
2-Methylnaphthalene ND (10) [1.036269] ND (9.4) [0.94339	(10) [1.036269]	(9.4) [0.943396]	QN	(9.4) [0.943396]	Q.	(6.6)	[6.99009]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

[0.990099][0.990099] [0.990099][0.990099] [0.990099] [0.990099][0.990099][0.990099][0.990099][0.990099][0.990099][0.990099][0.990099] [0.990099][0.990099] [0.990099][0.990099] [0.990099][0.990099] [0.990099][0.990099][0.990099] [0.990099] [0.990099][0.990099] 0.990099 0.990099 0.990099(6.6)(6.6)(6.6)(6.6)(6.6)(9.9)(6.6)(6.6)(9.9)(50)(50)(9.9)(9.9)(20)(6.6)(6.6)(9.9)(9.9)(9.9)(6.6)(6.6)09-MW-01-01 09-MW-01 3.9 J 1.5 J 9 9 2 9 S S S 9 2 S 2 2 2 2 [0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396] [0.943396][0.943396] [0.943396][0.943396]0.943396] [0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396] [0.943396][0.943396][0.943396][0.943396](9.4)(47) (9.4)(9.4) (9.4)(47) (47) (9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(47) (9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)07-SW-02-01 07-SW-02 2.8 J ND ND 윤 2222 [0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396][0.943396] [0.943396][0.943396][0.943396] [0.943396] [0.943396] [0.943396][0.943396] [0.943396]0.943396 0.943396 [0.943396][0.943396] [0.943396][0.943396][0.943396](9.4)(9.4)(9.4)LOCATION ID (19)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(9.4)(47) (9.4)(9.4)(47) (47) (9.4)(9.4)(47)(9.4)(9.4)SAMPLE ID 07-SW-01-01 SITE 10 07-SW-01 07 8.7 J 0.42 J 2 2 무 무 모 S S 2 운 운 모 모 운 운 [1.036269][1.036269] [1.036269] [1.036269][1.036269] [1.036269][1.036269] [1.036269][1.036269][1.036269] [1.036269] [1.036269][1.036269][1.036269][1.036269]1.036269 [1.036269][1.036269][1.036269] [1.036269][1.036269][1.036269] [1.036269] [1.036269][1.036269][1.036269] [1.036269][1.036269][1.036269][1.036269][1.036269](10)(52)(10) 21) (10)(10)52) 52) (10)(10) (10)(10)52) 52) (10)10) 10) 10) (10)(10)(10)(10)(10)07-MW-04-01 07-MW-04 4.3 J S 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether 4,6-Dinitro-2-methylphenol 2-Methylphenol(o-cresol) 1-Methylphenol(p-cresol) 1-Chloro-3-methylphenol 3,3'-Dichlorobenzidine Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Butylbenzylphthalate Benzo(k)fluoranthene Di-n-octylphthalate Benzo(a)anthracene Dimethylphthalate Dibutylphthalate Diethylphthalate 3-Nitroaniline 2-Nitroaniline Benzo(a)pyrene 4-Nitroaniline Acenaphthylene Benzyl alcohol 2-Nitrophenol 4-Nitrophenol Acenaphthene Dibenzofuran Benzoic acid Fluoranthene Anthracene PARAMETER

Compiled: 23 Marg

NO = Not Detected [] = Factor

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			FOC	SITE ID LOCATION ID				
			ls	SAMPLE ID				
		07		07		07		60
PARAMETER	0 07	07-MW-04 07-MW-04-01	- 70	07-SW-01 07-SW-01-01	07- 07-9	07-SW-02 07-SW-02-01	-60 N-60	09-MW-01 09-MW-01-01
I I I I I I I I		ı		ı		i		
Fluorene	ON .	(10) [1.036269]	Q	(9.4) [0.943396]	9	(9.4) [0.943396]	2	[6:0066:0] [6:6)
Hexachlorobenzene	N	(10) [1.036269]	QN	(9.4) [0.943396]	QN	(9.4) [0.943396]	QN	[6:6) [0:60066]
Hexachlorobutadiene	QN	(10) [1.036269]	ON	(9.4) [0.943396]	ND	(9.4) [0.943396]	QN	[6:6) [0:60066]
Hexachlorocyclopentadiene	QN	(10) [1.036269]	ON	(9.4) [0.943396]	ND	(9.4) [0.943396]	N	[6:6) [0:60066]
Hexachloroethane	Q	(10) [1.036269]	QN	(9.4) [0.943396]	QN	(9.4) [0.943396]	ON	[6:6) [0:60066]
Indeno(1,2,3-cd)pyrene	QN	(10) [1.036269]	QN	(9.4) [0.943396]	ON	(9.4) [0.943396]	ON	[6:6) [0:60066]
Isophorone	QN	(10) [1.036269]	1 J	(9.4) [0.943396]	ON	(9.4) [0.943396]	ON	[6:60066:0] (6:6)
N-Nitrosodiphenylamine	QN	(10) [1.036269]	QN	(9.4) [0.943396]	ON	(9.4) [0.943396]	ON	[6:6) [0:60066]
N-Nitrosodipropylamine	QN	(10) [1.036269]	QN	(9.4) [0.943396]	ON	(9.4) [0.943396]	ON	[6:0066:0] (6:6)
Naphthalene	QV	(10) [1.036269]	QN	(9.4) [0.943396]	ON	(9.4) [0.943396]	ON	[6:6) [0:60066]
Nitrobenzene	QN	(10) [1.036269]	QN	(9.4) [0.943396]	ON	(9.4) [0.943396]	ND	[6:6) [0:60066]
Pentachlorophenol	ND	(52) [1.036269]	QN	(47) [0.943396]	ON	(47) [0.943396]	ON	[0.990099]
Phenanthrene	QN	(10) [1.036269]	ON	(9.4) [0.943396]	ON	(9.4) [0.943396]	ON	[6:6) [0:60066]
Phenol	N	(10) [1.036269]	QN	(9.4) [0.943396]	ON	(9.4) [0.943396]	ON	[6:6) [0:60066]
Pyrene	QN	(10) [1.036269]	ON	(9.4) [0.943396]	ON	(9.4) [0.943396]	ND	[6:60066:0] (6:6)
bis(2-Chloroethoxy)methane	QN	(10) [1.036269]	Q	(9.4) [0.943396]	ND	(9.4) [0.943396]	QN	[6:60066:0] [6:6)
bis(2-Chloroethyl)ether	QN	(10) [1.036269]	Q	(9.4) [0.943396]	ON	(9.4) [0.943396]	ON	[6:6) [0:60066]
bis(2-Chloroisopropyl)ether	QN	(10) [1.036269]	Q	(9.4) [0.943396]	QN	(9.4) [0.943396]	QN	[660066.0] (6.6)
bis(2-Ethylhexyl)phthalate	ON		0.72 JB	(9.4) [0.943396]	4.3 JB	(9.4) [0.943396]	1.8 JB	[6:6) [0:990099]
p-Chloroaniline	ND	(10) [1.036269]	ON	(9.4) [0.943396]	ND	(9.4) [0.943396]	ND	[6:0066:0] (6:6)

09-DS-08 Dup of 09-MW-03-01 (0.7)(1.6)(0.25)(0.15)(0.15) (0.32) (0.25) (3.4)(0.6)(1.6)(0.1)(0.5)(0.35)(0.35)(0.3)(0.7) 0.15) (0.5)(0.2)(1.6)(0.4)09-MW-03 2.6 ND ND 2.2 ND 222222 (0.7)(1.6)(0.25)(0.15) (0.15) (0.32) (3.4)(0.6)(0.1)(0.25)(1.6)(0.5)(0.35)(0.3)(0.7)(0.15)(0.5)(0.35)(0.2)09-MW-03-01 09-MM-03 ON ON ON 2222222222222222222222222222222 OCATION ID (0.2)(0.5)(0.7)(1.6)(0.25)(0.15)(0.15)(3.4) (0.6) (1.6) (0.32)(0.25)(0.1)(0.5)(0.35) (0.3) (0.15)(0.5)SAMPLE ID 09-MW-02-01 SITE 10 09-MW-02 2222222222222222222222222222222222 09-DS-07 Dup of 09-MW-01-01 (0.2) (0.5) (0.7) (1.6)0.15) (0.15) (0.32) (0.25) (3.4) (0.6) (1.6) (0.1) (0.5) (0.35) (0.7)(0.3)0.15)(0.5)09-MW-01 SW8010 - Halogenated Volatile Organics 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane 2-Chloroethylvinylether ,2,3-Trichloropropane richlorofluoromethane 1,1,1-Trichloroethane .,1,2-Trichloroethane Bromodichloromethane Carbon tetrachloride Dibromochloromethane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,3-Dichlorobenzene 1,4-Dichlorobenzene .,1-Dichloroethane ,1-Dichloroethene 1,2-Dichloroethane Methylene chloride **Tetrachloroethene** [richloroethene I-Chlorohexane Dibromomethane inyl chloride Chloromethane Chlorobenzene Bromobenzene Chloroethane Bromomethane Chloroform Bromoform PARAMETER

Sompiled: 23 March

[] = Factor

() = Detection Limit

NO = Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				1	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	0 0 09-DS-07	09 09-DS-07 Dup of 09-MW-01-01	-01-01	30	09 09-MW-02 09-MW-02-01		J	09 09-MW-03 09-MW-03-01		09-DS-08	09 09-MW-03 Dup of 09-MW-03-01	03-01
;							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
cis-1,3-Dichloropropene	ON	(0.2)	[1]	ON	(0.2)	[1]	QN	(0.2)	[1]	ND	(0.2)	[1]
trans-1,2-Dichloroethene	ON	(0.25)	[1]	Q.	(0.25)	Ξ	,QN	(0.25)	Ξ	ON.	(0.25)	[1]
trans-1,3-Dichloropropene	S S	(0.15)	[1]	QN	(0.15)	Ξ	ON	(0.15)	[1]	Q	(0.15)	[11]
SW8015 - Nonhalogenated Volatile Organics (ug/L)	rganics (ug/	_	1	!		r t	:	•	3		•	1
Ethanol	9	(2000)	Ξ	QN :	(2000)	Ξ	2	(2000)	Ξ	2	(2000)	[1]
Ethyl ether	QN	(10000)	[1]	Q	(10000)	Ξ	R	(10000)	[]	QN	(10000)	[]
Methyl ethyl ketone	ND	(3000)	[1]	2	(3000)	Ξ	Q	(3000)	Ξ	Q	(3000)	[1]
Methyl isobutyl ketone	Q.	(2000)	[[]	QN	(2000)	Ξ	2	(2000)	[1]	QN	(2000)	[1]
SW8015MEMP - Nonhalogenated Volatile Organics	le Organics	(ng/L)										
Diesel Range Organics (2)		(200)	[0.980]	QN	(500)	Ξ	Q	(210)	[1.03]	N N	(200)	[0.980]
SW8020 - Aromatic Volatile Organics	s (ng/L)											
1,2-Dichlorobenzene	NO	(2)	[2]	QN	(0.4)	Ξ	Q	(0.4)	[1]	QN	(0.4)	[1]
1,3-Dichlorobenzene	QN	Ξ	[2]	ND	(0.2)	Ξ	Q	(0.2)	[1]	ND	(0.5)	[1]
1,4-Dichlorobenzene	QN	(2)	[2]	ND ON	(0.4)	Ξ	Q	(0.4)	[1]	ND	(0.4)	[1]
Benzene	27	(1.5)	[2]	0.79	(0.3)	Ξ	Q.	(0.3)	[1]	ND	(0.3)	[1]
Chlorobenzene	ON	Ξ	[2]	QN	(0.5)	Ξ	ON	(0.2)	Ξ	2	(0.2)	[1]
Ethylbenzene	6.1	Ξ)	[2]	Q	(0.5)	[1]	QN	(0.2)	Ξ	S	(0.2)	[1]
Gasoline Range Organics (2)	750	(200)	[2]	Q	(100)	Ξ	QN	(100)	Ξ	S	(100)	[1]
Toluene	ON	Ξ	[2]	N	(0.2)	Ξ	QN	(0.2)	Ξ	S	(0.2)	[1]
Total xylenes		(1.5)	[2]	Q	(0.3)	Ξ	Q	(0.3)	Ξ	2	(0.3)	[1]
SW8080 - Organochlorine Pesticides and PCBs		(ng/L)										
4,4'-DDD	QN	(0.0091)	[0.966183]	0.014 B		[0.995024]	Q	(0.01)	[1.005025]		NA	
4,4'-DDE	ON	(0.0097)	[0.966183]	QN	(0.01) [0	[0.995024]	QN	(0.01)	[1.005025]		NA	
4,4'-DDT	0.0086 KJB	(0.019)	[0.966183]	0.017 J		[0.995024]	QN	(0.05)	[1.005025]		NA	
Aldrin	0.0158	(0.0097)	[0.966183]	QN		[0.995024]	S	(0.01)	[1.005025]		NA	
Chlordane	QN	(0.048)	[0.966183]	ND		[0.995024]	Q	(0.02)	[1.005025]		NA	
Dieldrin	0.0083 KJB	(0.0091)	[0.966183]	0.011		[0.995024]	0.0083 JB	(0.01)	[1.005025]		NA	
Endosulfan ·I	Q	(0.0091)	[0.966183]	Q		[0.995024]	Q	(0.01)	[1.005025]		NA	
Endosulfan II	Q.	(0.05)	[0.966183]	QN		[0.995024]	Q	(0.03)	[1.005025]		NA	
Endosulfan Sulfate	0.0057 PJB	(0.048)	[0.966183]	QN		[0.995024]	Q	(0.02)	[1.005025]		NA	
Endrin	QN	(0.0097)	[0.966183]	QN	(0.01) [0	[0.995024]	QN	(0.01)	[1.005025]		NA	

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

[0.961538][0.961538][0.961538][0.961538][0.961538]0.961538] [0.961538][0.961538][0.961538][0.961538][0.961538][0.961538] [0.961538][0.961538]09-DS-08 Dup of 09-MW-03-01 (9.6)(9.6)(9.6)(9.6)(9.6)(9.6)(9.6)(9.6)(9.6)(9.6)(9.6)(48) (9.6)09-MW-03 [1.005025][1.005025][1.005025] [1.005025][1.005025]1.005025] [1.005025] [1.005025][1.005025][1.005025] [1.005025] [1.005025][1.005025] [1.005025][1.005025][1.005025](0.5)(0.02)(0.01)(0.01) (0.05)(0.1)(0.2)(0.2)(0.1)(0.1)(0.2)(0.2)(0.01)(0.01)(0.01)(0.01)(10)(10)(10)(10)(10)10) 10) 50) (10)(10)(10)10) 10) 09-MW-03-01 09-MM-03 0.0048 KJB 0.0094 KJB 9999 2 9 2 2 S 2 2 999999 S S 운 용 모 2 2 [0.995024] [0.995024] [0.995024][0.995024] [0.995024] [0.995024][0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [0.995024] [1.052631][1.052631][1.052631][1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] 1.052631 1.052631 [1.052631][1.052631][1.052631](0.1)(0.1)(0.2)(0.01)(0.02)(0.1)(0.2)(0.2)(0.2)(0.5)(0.01)(0.01)(11) (11) (11)(11) (11)(11)(23) (11) (11)LOCATION ID (11)(11)(11)SAMPLE ID SITE ID 09-MW-02-01 09-MW-02 60 0.0058 JB 2 9 9 99999 2 S 2 2 9 9 [0.966183] [0.966183][0.966183][0.966183][0.966183][0.966183][0.966183]0.966183 [0.966183][0.966183][0.966183] [0.966183] [0.966183][0.966183][0.980392] [0.980392] [0.980392][0.980392] [0.980392] [0.966183][0.980392][0.980392] [0.980392]0.980392 [0.980392] [0.980392] [0.980392] [0.980392] [0.980392] 09-DS-07 Dup of 09-MW-01-01 (0.019)(0.048)(0.097)(0.19)(0.097) (0.097)(0.19)(0.19)(0.48)(9.8)(9.8)(9.8)0.0097) (0.19)0.0097) (9.8)(8.8)(8.8)(9.8)(9.8)(9.8)0.0097) 0.0097) (0.0097) 0.0097) (49)(9.8)(9.8)(9.8)09-MW-01 0.0061 KJB 0.0054 KJB 0.0032 PJB മാ 8 0.017 0.013 2 2 2 2 2 운 윤 2 2 2 2 2 2 2 Ş 2 2 SW8270 - Semivolatile Organics (ug/L) 1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,3-Dichlorobenzene 2-Chloronaphthalene 2-Methylnaphthalene Heptachlor epoxide 2,6-Dinitrotoluene 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,4-Dinitrophenol Indrin Aldehyde Methoxychlor Heptachlor PARAMETER **Foxaphene** delta-BHC alpha-BHC gamma-BHC PCB-1016 PCB-1248 PCB-1232 PCB-1242 PCB-1254 PCB-1260 seta-BHC PCB-1221

NA = Not Applicable

= Not Detected

[] = Factor

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				SAMFLE IU					
PARAMETER 	0 09-08-07 0	09-MW-01 Dup of 09-MW-01-01) 3	09 09-MW-02 09-MW-02-01	30	09 09-MW-03 09-MW-03-01		-60	09 09-MW-03 Dup of 09-MW-03-01
2-Methylphenol(o-cresol)	QN	(9.8) [0.980392]	QN	(11) [1.052631]	QN	(10)	[1]	QN	(9.6) [0.961538]
2-Nitroaniline	QN S		Q. S		2 :	(20)	ΞΞ	Q :	_
2-Nitrophenol		[3.8] [0.980392]	S &	(11) [1.052631]	2 9	(10)	ΞΞ	9 9	
3-Nitroaniline	2 Q		<u> </u>		2 S	(02)	ΞΞ	2 2	(19) [0.961538] (48) [0.961538]
4,6-Dinitro-2-methylphenol	ON	(49) [0.980392]	Q.	(53) [1.052631]	QN	(20)	Ξ	ND	
4-Bromophenyl phenyl ether	QN	_	QN		QN	(10)	Ξ	ON	(9.6) [0.961538]
4-Chloro-3-methylphenol	QN	_	Q.		ND	(10)	Ξ	QN	
4-Chlorophenyl phenyl ether	QN :	ш.	S	二 :	Q.	(10)	Ξ	ON	_
4-Methylphenol(p-cresol)	QN :		2		QN	(10)	Ξ	QN	
4-Nitroaniline	Q :	_ `	2		Q :	(20)	Ξ	QN	_
4-Nitrophenol	ON :		Q i	Ξ,	Q	(20)	Ξ	2	_
Acenaphthene	QN .		S		QN	(10)	Ξ	QN	
Acenaphthylene	QN :		2		ND	(10)	Ξ	NO	_
Anthracene	QN		2		Q	(10)	Ξ	Q	
Benzo(a)anthracene	2 :		2		Q	(10)	Ξ	QN	_
Benzo(a)pyrene	QN :		2		Q	(10)	Ξ	Q	_
Benzo(b)fluoranthene	Q :		운 :	二 :	Q :	(10)	Ξ	Q.	_
Benzo(g,h,i)perylene	Q.		2 9		2 9	(10)	ΞΞ	Q :	_ `
benzo(K)Tluorantnene Renzaic acid	2 8	(9.8) [0.980392] (49) [0.980392]	2 5	(11) [1.052631] (E3) [1.052631]	2 8	(10)	ΞΞ	2 9	(9.6) [0.961538]
Benzyl alcohol	QN		<u>8</u>		2	(33)	ΞΞ	2 2	
Butylbenzylphthalate	Q.	(9.8) [0.980392]	QN	(11) [1.052631]	Q	(10)	Ξ	Q	_
Chrysene	QN	(9.8) [0.980392]	S	(11) [1.052631]	ON	(10)	[1]	QN	(9.6) [0.961538]
Di-n-octylphthalate	ON	(9.8) [0.980392]	QN	(11) [1.052631]	ON	(10)	Ξ	ON	(9.6) [0.961538]
Dibenz(a,h)anthracene	QN	_	Q	(11) [1.052631]	QN	(10)	Ξ	ND	(9.6) [0.961538]
Dibenzofuran	Q	(9.8) [0.980392]	2	(11) [1.052631]	QN	(10)	Ξ	QN	(9.6) [0.961538]
Dibutylphthalate	Q		S	_	1.3 J	(10)	Ξ	0.95 J	(9.6) [0.961538]
Diethylphthalate	Q		9		Q	(10)	Ξ	ON	(9.6) [0.961538]
Dimethylphthalate	QN		Q		Q	(10)	Ξ	N	
Fluoranthene	Q.	(9.8) [0.980392]	Q.	(11) [1.052631]	Q	(10)	[1]	Q	(9.6) [0.961538]

NA = Not Applicable

[] = Factor ND = Not Detected

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

					SITE ID LOCATION ID SAMPLE ID							
PARAMETER	50	09 09-MW-04 09-MW-04-01)O	09 09-MW-05 09-MW-05-01		- 6	09 09-MW-06 09-MW-06-01		- 0	09 09-MW-07 09-MW-07-01	
SW8010 - Halogenated Volatile Organics	(1/011) 8:			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				! ! ! ! ! ! ! !				
		(2.5)	[1]	Q	(2.5)	[1]	8	(2.5)	[1]	Q.	(2.5)	[1]
1,1,1-Trichloroethane	QN	(0.55)	Ξ	2	(0.55)	[1]	2	(0.55)	Ξ	2	(0,55)	ΞΞ
1,1,2,2-Tetrachloroethane	S	(0.3)	Ξ	Q.	(0.3)	Ξ	Q	(0.3)	Ξ	9	(0.3)	Ξ
1,1,2-Trichloroethane	Q.	(0.2)	Ξ	S	(0.2)	[1]	QN	(0.2)	Ξ	QN Q	(0.2)	Ξ
1,1-Dichloroethane	Q.	(0.5)	[]	S	(0.5)	Ξ	2	(0.5)	Ξ	QN	(0.5)	Ξ
1,1-Dichloroethene	ON	(0.7)	Ξ	Q	(0.7)	Ξ	Q	(0.7)	Ξ	Q	(0.7)	Ξ
1,2,3-Trichloropropane	Q.	(1.6)	[1]	NO	(1.6)	Ξ	2	(1.6)	Ξ	S	(1.6)	Ξ
1,2-Dichlorobenzene	ON	(0.25)	Ξ	Q.	(0.25)	Ξ	QN	(0.25)	Ξ	2	(0.25)	[1]
1,2-Dichloroethane	QN	(0.15)	Ξ	QN	(0.15)	Ξ	2	(0.15)	Ξ	2	(0.15)	Ξ
1,2-Dichloropropane	Q	(0.15)	Ξ	Q.	(0.15)	Ξ	QN	(0.15)	Ξ	R	(0.15)	[1]
1,3-Dichlorobenzene	ON .	(0.32)	Ξ	QN Q	(0.32)	Ξ	2	(0.32)	Ξ	2	(0.32)	[1]
1,4-Dichlorobenzene	S	(0.25)	Ξ	2	(0.25)	Ξ	S	(0.25)	Ξ	R	(0.25)	Ξ
1-Chlorohexane	Q	(3.4)	Ξ	Q.	(3.4)	Ξ	Q.	(3.4)	Ξ	R	(3.4)	Ξ
2-Chloroethylvinylether	S	(0.6)	Ξ	9	(0.6)	[1]	Q	(0.0)	Ξ	R	(0.6)	Ξ
Bromobenzene	2	(1.6)	Ξ	R	(1.6)	Ξ	2	(1.6)	Ξ	Q	(1.6)	Ξ
Bromodichloromethane	QN	(0.1)	Ξ	Q.	(0.1)	Ξ	9	(0.1)	[1]	9	(0.1)	Ξ
Bromoform	S	(0.2)	Ξ	S	(0.5)	[1]	2	(0.5)	Ξ	N	(0.5)	Ξ
Bromomethane	2	(0.35)	Ξ	S	(0.35)	Ξ	9	(0.35)	Ξ	Q	(0.35)	Ξ
Carbon tetrachloride	Q	(0.35)	Ξ	Q	(0.35)	Ξ	R	(0.35)	Ξ	2	(0.35)	Ξ
Chlorobenzene	Q	(0.3)	Ξ	R	(0.3)	[1]	Q	(0.3)	Ξ	R	(0.3)	Ξ
Chloroethane	2	(0.7)	Ξ	2	(0.7)	Ξ	2	(0.7)	Ξ	2	(0.7)	Ξ
Chloroform	Q	(0.15)	Ξ	2	(0.15)	Ξ	S	(0.15)	Ξ	9	(0.15)	Ξ
Chloromethane	2	(0.5)	[1]	2	(0.2)	Ξ	S	(0.2)	Ξ	2	(0.2)	[1]
Dibromochloromethane	R	(0.5)	Ξ	2	(0.5)	Ξ	8	(0.2)	Ξ	2	(0.2)	[1]
Dibromomethane	Q	(1.6)	Ξ	Q.	(1.6)	Ξ	N	(1.6)	Ξ	2	(1.6)	Ξ
Methylene chloride	QN	(0.4)	Ξ.	2	(0.4)	[1]	QN	(0.4)	Ξ	S	(0.4)	Ξ
Tetrachloroethene	Q	(0.1)	Ξ	9	(0.1)	[1]	Q	(0.1)	Ξ	R	(0.1)	Ξ
Trichloroethene	QN	(0.2)	Ξ	2	(0.2)	Ξ	Q.	(0.2)	Ξ	2	(0.2)	Ξ
Trichlorofluoromethane	Q	(0.55)	Ξ	2	(0.55)	Ξ	QN	(0.55)	Ξ	9	(0.55)	Ξ
Vinyl chloride	Q	(0.25)	[1]	Q	(0.25)	[1]	QN	(0.25)	[1]	2	(0.25)	Ξ
			4 5 5		4							
Compiled: 23 March 1995		() = Detect	<pre>= Detection Limit</pre>	[] = Factor	= 2	Not Detected	NA = Not	Not Applicable				

				ب	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	0 60 1	09 09-MW-04 09-MW-04-01	1	0 0	09 09-MW-05 09-MW-05-01	i	-60	09 09-MW-06 09-MW-06-01		60	09 09-MW-07 09-MW-07-01	
cis-1,3-Dichloropropene	Q	(0.2)	[1]	ND	(0.2)	[1]	ND	(0.2)	[1]	QN	(0.2)	[1]
trans-1,2-Dichloroethene	Q 9	(0.25)	ΞΞ	2 9	(0.25)	Ξ3	Q. S	(0.25)	Ξ	QN :	(0.25)	[1]
trais-1,3-Dichioropropene SW8015 - Nonhalogenated Volatile Organics	ND anics (ug/L	(0.15) L)	[1]	ON N	(0.15)	Ξ	Q	(0.15)	[1]	QN	(0.15)	Ξ
Ethanol	QN	(2000)	[1]	QN	(2000)	[1]	ND	(2000)	[1]	9	(2000)	Ξ
Ethyl ether	QN	(10000)	[1]	ON	(10000)	Ξ	ND	(10000)	Ξ	ND	(10000)	ΞΞ
Methyl ethyl ketone	ON	(3000)	[1]	QN	(3000)	[]	ND	(3000)	Ξ	ND	(3000)	
Methyl isobutyl ketone	QN	(2000)	Ξ	QN	(2000)	[1]	QN	(2000)	[]	ND	(2000)	Ξ
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)										
Range Organics (2)	ON	(200)	[0.990]	320	(200)	Ξ	ND	(200)	[1.01]	ND	(200)	[]
latile Organics	(ng/L)											1
1,2-Dichlorobenzene	QN	(0.4)	[1]	0.58	(0.4)	[1]	ON	(0.4)	[1]	ND	(0.4)	[1]
1,3-Dichlorobenzene	QN	(0.2)	[1]	ND	(0.2)	[1]	ON	(0.2)	[1]	ND	(0.2)	Ξ
1,4-Dichlorobenzene	2	(0.4)	[1]	ON	(0.4)	Ξ	QN	(0.4)	[1]	QN	(0.4)	Ξ
Benzene	ND	(0.3)	[1]	QN	(0.3)	[1]	QN	(0.3)	[1]	2.5	(0.3)	[1]
Chlorobenzene	Q	(0.2)	[1]	ON	(0.2)	Ξ	QN	(0.2)	Ξ	ND	(0.2)	Ξ
Ethylbenzene	Q	(0.2)	[1]	ND	(0.2)	[1]	ON	(0.5)	[1]	0.46	(0.2)	Ξ
Gasoline Range Organics (2)	110	(100)	[1]	QN	(100)	[1]	QN	(100)	[1]	QN	(100)	
Toluene	N	(0.2)	[1]	QN	(0.2)	Ξ	0.39 8	(0.2)	Ξ	9	(0.5)	
Total xylenes	S	(0.3)	[1]	QN	(0.3)	[1]	QN	(0.3)		2	(0.3)	ΞΞ
SW8080 - Organochlorine Pesticides and PCBs		(ng/L)										:
4,4'-DDD	ND	(0.0097)	[0.970873]	0.023 B	(0.01) [1.010101]	0101]	0.028	(0.01) [1	[1.020408]	QN	(0.01) [1	[1.036269]
	ND	(0.0097)	[0.970873]	QN	(0.01) [1.010101]	0101]	0.017		[1.020408]	QN		[1.036269]
JT	0.0097 KJB	(0.019)	[0.970873]	ND	(0.02) [1.010101]	0101]	0.0033 PJB	(0.05)	[1.020408]	QN		[1.036269]
Aldrin	QN	(0.0097)	[0.970873]	ON	(0.01) [1.010101]	0101]	0.013 B	(0.01) [1	[1.020408]	ND		[1.036269]
Chlordane	Q	(0.049)	[0.970873]	ON	(0.051) [1.010101]	0101]	ON ,	(0.051) [1	[1.020408]	QN		[1.036269]
	0.0097	(0.0097)	[0.970873]	0.011	(0.01) [1.010101]	0101]	ND	(0.01) [1	[1.020408]	0.0083 KJB		[1.036269]
□	QN	(0.0097)	[0.970873]	ND	(0.01) [1.010101]	0101]	ND	(0.01) [1	[1.020408]	ND		[1.036269]
11	0.0003 KJB	(0.029)	[0.970873]	ND	(0.03) [1.010101]	0101]	0.0007 KJB		[1.020408]	ND		[1.036269]
lfan Sulfate		(0.049)	[0.970873]	0.02 KJB		0101]	0.013 KJB		[1.020408]	N Q	(0.052) [1	[1.036269]
Endrin	0.015 B	(0.0097)	[0.970873]	Q	(0.01) [1.010101]	0101]	0.018 B	(0.01) [1	[1.020408]	ON .	(0.01) [1	[1.036269]

Compiled: 23 Mar

[] = Factor () = Detection Limit

Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				S 07	SITE ID LOCATION ID SAMPLE ID						
	0	09 09-MW-04		60	09-MM-05	60	90-MW-60		60	09 09-MM-07	
PARAMETER 	60	09-MW-04-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-60	09-MW-05-01	1-60	09-MW-06-01		1-60	09-MW-07-01	
Endrin Aldehyde	0.0075 KJB	(0.019)	[0.970873]	0.0002 PJB	(0.02) [1.010101]	0.0092 KJB	(0.05)	[1.020408]	0.0046 KJB	(0.021) [1.	[1.036269]
Heptachlor	0.0052 JB	(0.003)	[0.970873]	QN	(0.01) [1.010101]	0.0038 KJB	(0.01)	[1.020408]	ON		[1.036269]
Heptachlor epoxide	0.0029 PJB	(0.0097)	[0.970873]	ON	(0.01) [1.010101]	0.0039 JB	(0.01)	[1.020408]	0.0003 KJB	(0.01) [1.	[1.036269]
Methoxychlor	ON :	(0.049)	[0.970873]	Q		ND	(0.051)	[1.020408]	QV		[1.036269]
PCB-1016	QN :	(0.097)	[0.970873]	Q		Q	(0.1)	[1.020408]	QN	_	[1.036269]
PCB-1221	QN N	(0.19)	[0.970873]	Q		Q	(0.2)	[1.020408]	Q	(0.21) [1.	[1.036269]
PCB-1232	ON I	(0.19)	[0.970873]	Q		QN	(0.2)	[1.020408]	Q	(0.21) [1.	[1.036269]
PCB-1242	QN	(0.097)	[0.970873]	Q		QN	(0.1)	[1.020408]	ND	(0.1) [1.	[1.036269]
PCB-1248	QN	(0.03)	[0.970873]	Q		Q	(0.1)	[1.020408]	QN	(0.1) [1.	[1.036269]
PCB-1254	ON	(0.19)	[0.970873]	2		QN	(0.5)	[1.020408]	QN	(0.21) [1.	[1.036269]
PCB-1260	QN	(0.19)	[0.970873]	Q	(0.2) [1.010101]	N N	(0.5)	[1.020408]	N	(0.21) [1.	[1.036269]
Toxaphene	Q	(0.49)	[0.970873]	Q	(0.51) [1.010101]	QN	(0.51)	[1.020408]	QN	(0.52) [1.	[1.036269]
alpha-BHC	QN	(0.0097)	[0.970873]	Q	(0.01) [1.010101]	QN	(0.01)	[1.020408]	N	(0.01) [1.	1.036269]
beta-BHC	QN	(0.0097)	[0.970873]	QN	(0.01) [1.010101]	QN	(0.01)	[1.020408]	ON	(0.01) [1.	[1.036269]
delta-BHC	0.016 PB	(0.0097)	[0.970873]	0.017 B	(0.01) [1.010101]	QN	(0.01)	[1.020408]	Q	(0.01) [1.	[1.036269]
gamma-BHC	0.01 B	(0.0097)	[0.970873]	Q.	(0.01) [1.010101]	ND	(0.01)	[1.020408]	QN		[1.036269]
SW8270 - Semivolatile Organics	(ng/L)							1			•
1,2,4-Trichlorobenzene	QN	(8.8)	[0.975609]	QN	[6:6) [0:80088]	ON	(10)	Ξ	QN	(9.8) [0.	[0.980392]
1,2-Dichlorobenzene	QN	(8.8)	[0.975609]	QN	[6:6) [0:30003]	QN	(10)	[1]	N	(9.8) [0.	[0.980392]
1,3-Dichlorobenzene	QN	(8.8)	[0.975609]	QN	[6:6) [0:30003]	QN	(10)	Ξ	ON	(9.8) [0.	[0.980392]
1,4-Dichlorobenzene	QN	(8.8)	[0.975609]	QN	[6:6) [0:30003]	QN	(10)	[1]	Q	(9.8) [0.	[0.980392]
2,4,5-Trichlorophenol	Q	(8.8)	[0.975609]	QN		QN	(10)	[1]	QN	(9.8) [0.	[0.980392]
2,4,6-Trichlorophenol	QN	(8.8)	[0.975609]	QN	[660066.0] (6.6)	QN .	(10)	[1]	ON	(9.8) [0.	[0.980392]
2,4-Dichlorophenol	Q	(8.8)	[0.975609]	QN	[6:0066:0] [6:6)	QN	(10)	[1]	QN	(9.8) [0.	0.980392]
2,4-Dimethylphenol	QN	(8.8)	[0.975609]	QN	[660066.0] (6.6)	QN	(10)	Ξ	ON	(9.8) [0.	[0.980392]
2,4-Dinitrophenol	ON	(48)	[0.975609]	QN	[660066.0] (05)	QN	(20)	[1]	NO ON	(49) [0.	[0.980392]
2,4-Dinitrotoluene	QN	(8.8)	[0.975609]	QN	[660066.0] (6.6)	QN	(10)	[1]	N Q	(9.8) [0.	[0.980392]
2,6-Dinitrotoluene	QN	(8.8)	[0.975609]	ON		ON	(10)	[1]	QN	(9.8) [0.	[0.980392]
2-Chloronaphthalene	QN	(8.8)	[0.975609]	ND		QN	(10)	[1]	QN	(9.8) [0.	[0.980392]
2-Chlorophenol	Q	(8.8)	[0.975609]	ND	[660066.0] [6.6)	QN	(10)	[1]	QN	(9.8) [0.	[0.980392]
2-Methylnaphthalene	ON	(8.8)	[0.975609]	0.17 J	[6:6) [0:60066]	QN	(10)	Ξ	QN	(9.8) [0.	[0.980392]
									-		

ND = Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

	60	09-MW-07	09-MW-07-01	[8.8]	(49) [0.980392]		(20) [0.980392]	(49) [0.980392]	(49) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(49) [0.980392]	(49) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(49) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]
			!	QN	Q	QN	Q.	QN	QN	N N	ND ND	ON	ND	QN	QN	QN.	QN	ON	QN	Q	QN	S	9	Q	QN	QN	N O	QN N	Q.	QN	0.99 J	N N	ON.	QN
				Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[1]	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[1]	Ξ	[1]		[1]	Ξ	[1]	[1]	[1]	Ξ	[1]	Ξ	[]]	[1]	Ξ	[1]
	60	90-MM-60	09-MW-06-01 	(10)	(20)	(10)	(20)	(20)	(20)	(10)	(10)	(10)	(10)	(20)	(20)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(20)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)	(10)
			50	9	Q	ND	QN	ND	QN	Q.	QN	ND	Q	ND	QN	ON	Q	ND	ON	Q	2	2	NO NO	Q.	R	Q	Q	Q.	N	Q	1.4 J	ND	Q	Q
SITE ID LOCATION ID SAMPLE ID	60	09-MW-05	09-MW-05-01 	[6.9] [0.990099]	[60066.0] (20)	[6:0066:0] [0:6)	(20) [0.990099]	(50) [0.990099]		[660066.0] (6.6)	_	[660066.0] (6.6)	[660066.0] (6.6)		[660066.0] (20)	[660066.0] (6.6)	[660066.0] (6.6)	[6:0066:0] (6:6)	[6:6] [0:60066]		_		_	_		[6:6) [0:60066]	[660066.0] (6.6)	[6:60066:0] [6:6)	[0:0066:0] [0:6)	[660066.0] (6.6)		_		[6:6] [0:990099]
		•		ND	ON	QN	ND	QN	QN	QN	Q	Q	ND	Q	2	QN	9	2	2	2	2	Q	2	Q.	S	S	Q.	QN	Q.	Q.	QN	QN	S	QN
	60	09-MW-04	US-MW-04-01	(9.8) [0.975609]	(49) [0.975609]	_			_	_		_										_			_	_		_						(9.8) [0.975609]
		0 6	80 	QN	Q	ND	QN	QN	Q.	2	2	Q	S	2	Q	2	2	N N	S	2	ON N	2	2	2	QN	2	QN	ND	QN	Q	S :	S :	Q	QN N
		DADAMETED		2-Methylphenol(o-cresol)	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chlorophenyl phenyl ether	4-Methylphenol(p-cresol)	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	<pre>Benzo(b)fluoranthene</pre>	Benzo(g,h,i)perylene	<pre>benzo(k)tluoranthene</pre>	benzolc acid	Benzyl alcohol	Butylbenzylphthalate 	Chrysene	Di-n-octy!phthalate	Dibenz(a,h)anthracene	Dibenzofuran	Dibuty!phthalate	Diethylphthalate	Uimethy phtha ate	Fluoranthene

Compiled: 23 March 1995

() = Detection Limit [] = Factor

MD = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID

			0,	SAMPLE ID					
		60		60		60			60
	-60	09-MW-04		09-MW-05	60	90-MM-60		-60	09-MW-07
PARAMETER	1-60	09-MW-04-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	09-MW-05-01	-60	09-MW-06-01	: : : : : : :	4-60	09-MW-07-01
Fluorene	QN	[6.972609]	QN	[6.6] [0.990099]	QN	(10)		Q	(9.8) [0.980392]
Hexachlorobenzene	ON	[6.8] [0.975609]	S		R	(10)	Ξ	Q	
Hexachlorobutadiene	QN	[6.8] [0.975609]	ON	[660066.0] (6.6)	ON	(10)	Ξ	ND	
Hexachlorocyclopentadiene	QN	[0.8] [0.975609]	ON	[6:0066:0] [6:6)	ON	(10)	[1]	QN	(9.8) [0.980392]
Hexachloroethane	ON	(9.8) [0.975609]	ON	[6:0066:0] [6:6)	N	(10)	Ξ	QN	(9.8) [0.980392]
Indeno(1,2,3-cd)pyrene	ON	(9.8) [0.975609]	ON	[6:0066:0] [6:6)	QN	(10)	Ξ	QN	(9.8) [0.980392]
Isophorone	QN	[0.875609]	QN	[6:6) [0:990099]	QN	(10)	Ξ	QN	(9.8) [0.980392]
N-Nitrosodiphenylamine	QN	[0.875609]	QN	[6:6) [0:390093]	QN	(10)	Ξ	QN	(9.8) [0.980392]
N-Nitrosodipropylamine	ON	[6.8] [0.975609]	QN	[6:6) [0:380088]	QN	(10)	[1]	Q.	(9.8) [0.980392]
Naphthalene	QN	[6.8] [0.975609]	0.58 J	[6:6) [0:30063]	QN	(10)	Ξ	QN	(9.8) [0.980392]
Nitrobenzene	QN	[6.8] [0.975609]	QN	[6:6) [0:30003]	QN	(10)	Ξ	QN	(9.8) [0.980392]
Pentachlorophenol	ON	[49] [0.975609]	QN	[660066.0] (05)	ND	(20)	Ξ	QN	(49) [0.980392]
Phenanthrene	ON	[6.8] [0.975609]	QN	[6:6) [0:380038]	QN	(10)	Ξ	Q.	(9.8) [0.980392]
Phenol	QN	[6.875609]	QN	[6:6) [0:390033]	QN	(10)	Ξ	QN Q	(9.8) [0.980392]
Pyrene	QN	[6.8] [0.975609]	QN	[6:6) [0:380083]	N	(10)	[]	QN	(9.8) [0.980392]
bis(2-Chloroethoxy)methane	QN	[6.8] [0.975609]	ND	[6:6) [0:39003]	N Q	(10)	Ξ	N N	(9.8) [0.980392]
bis(2-Chloroethyl)ether	QN	[6.8] [0.975609]	QN	[6:6) [0:30003]	QN	(10)	Ξ	Q.	(9.8) [0.980392]
bis(2-Chloroisopropyl)ether	ON	[6.8] [0.975609]	Q	[6:60066:0] [6:6)	QN	(10)	Ξ	QN	(9.8) [0.980392]
bis(2-Ethylhexyl)phthalate	2.1 JB	[6.8] [0.975609]	15 B	[6:6) [0:30008]	13 B	(10)	Ξ	1.1 JB	(9.8) [0.980392]
p-Chloroaniline	QN	[0.975609]	N S	[660066.0] [6.6)	Q	(10)	Ξ	S	(9.8) [0.980392]

Compiled: 23 Mar

() = Detection Limit [] = Factor

MR = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				3 "	SITE ID LOCATION ID SAMPLE ID							
PARAMETER	0 60	. 09 09-MW-08 09-MW-08-01		ÖÖ	09 09-MW-10 09-MW-10-01		ŏ	09 09-MW-11 09-MW-11-01		Ö	09 09-MW-12 09-MW-12-01	
						!			, 		77 77	
cis-1,3-Dichloropropene	ND OX	(0.2)	[1]	QN V	(0.2)	[1]	QN	(0.2)	[1]	ND	(0.2)	[1]
trans-1,2-Dichloroethene	QN	(0.25)	[1]	QN	(0.25)	[1]	QN	(0.25)	[1]	QN	(0.25)	[1]
trans-1,3-Dichloropropene SW8015 - Nonhalogenated Volatile Organics	ND Organics (ug/L)	(0.15)	[1]	QN	(0.15)	[1]	QN	(0.15)	[1]	ND	(0.15)	[1]
Ethanol		(2000)	[1]	QN	(2000)	Ξ	Q	(2000)	[1]	QN	(2000)	[1]
Ethyl ether	QN	(10000)		QN	(10000)	Ξ	QN	(10000)	Ξ	QN	(10000)	[1]
Methyl ethyl ketone	QN	(3000)		ON	(3000)	[1]	ON	(3000)	Ξ	ON	(3000)	[1]
Methyl isobutyl ketone	QN	(2000)		7600	(2000)	[1]	6200	(2000)	Ξ	ND	(2000)	[1]
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)										
Diesel Range Organics (2)	95000	(20000)	[100]	14000	(2000)	[10.1]	2900000	(39000)	[196]	33000	(4000)	[19.9]
SW8020 - Aromatic Volatile Organics	ics (ug/L)											
1,2-Dichlorobenzene	5800	(400)	[1000]	7100	(200)	[200]	QV	(400)	[1000]	16000	(2000)	[2000]
1,3-Dichlorobenzene	3800	(200)	[1000]	1900	(100)	[200]	Q	(200)	[1000]	1200	(1000)	[2000]
1,4-Dichlorobenzene	1400 P	(400)	[1000]	1000 P	(200)	[200]	770	(400)	[1000]	QN	(2000)	[2000]
Benzene	340	(300)		6100	(150)	[200]	12000	(300)	[1000]	2800	(1500)	[2000]
Chlorobenzene	280	(200)	[1000]	140 P	(100)	[200]	QN	(200)	[1000]	Q.	(1000)	[2000]
Ethylbenzene	210	(200)	[1000]	2100	(100)	[200]	420 P	(200)	[1000]	1000	(1000)	[2000]
Gasoline Range Organics (2)	160000	(100000)	[1000]	480000	(20000)	[200]	260000	(100000)	[1000]	000099	(200000)	[2000]
Toluene	QN	(200)	[1000]	7900	(100)	[200]	15000	(200)	[1000]	2300	(1000)	[2000]
Total xylenes	810	(300)	[1000]	0066	(120)	[200]	1200 P	(300)	[1000]	6800	(1500)	[2000]
SW8080 - Organochlorine Pesticides and PCBs		(ng/L)										
4,4'-000	ON	(0.05)		0.016 PB	(0.003)	[0.985221]	0.0015 PJB	(0.0097)	[0.970873]	0.088	(0.051)	[5.128205]
4,4'-DDE	ON	(0.02)	[4.975124]	0.0091 KJB	(0.003)	[0.985221]	0.0061 KJB	(0.0097)	[0.970873]	QN	(0.051)	[5.128205]
4,4'-DDT	Q	(0.1)	[4.975124]	ON	(0.02)	[0.985221]	0.0029 JB	(0.019)	[0.970873]	ND	(0.1)	[5.128205]
Aldrin	Q	(0.05)	[4.975124]	ON	(0.003)	[0.985221]	0.012 B	(0.0097)	[0.970873]	0.053	(0.021)	[5.128205]
Chlordane	QN	(0.25)	[4.975124]	ON	(0.049)	[0.985221]	QN	(0.049)	[0.970873]	QN	(0.26)	[5.128205]
Dieldrin	0.046 KJ	(0.02)	[4.975124]	QN	(0.003)	[0.985221]	ND	(0.0097)	[0.970873]	QN	(0.051)	[5.128205]
Endosulfan I	ON	(0.02)	[4.975124]	QN	(0.003)	[0.985221]	QN	(0.0097)	[0.970873]	Q	(0.051)	[5.128205]
Endosulfan II	0.0053 PJB	(0.15)	[4.975124]	0.0004 KJB	(0.03)	[0.985221]	0.0027 KJB	(0.029)	[0.970873]	QN	(0.15)	[5.128205]
Endosulfan Sulfate	0.062 KJ	(0.25)	[4.975124]	QN	(0.049)	[0.985221]	QN	(0.049)	[0.970873]	0.069 KJ	(0.26)	[5.128205]
Endrin	ON	(0.05)	[4.975124]	Q	(0.0099)	[0.985221]	0.0088 KJB	(0.0097)	[0.970873]	0.053	(0.021)	[5.128205]
			100		9	Not Octob		Accel to the				
Compiled: 23 March 1995] 	= Vetection Limit	" 	ractor NU =	Not Detected		NA = Not Applicable				

			3 "	SITE ID LOCATION ID SAMPLE ID					
PARAMETER 	0 0	09-MW-08 09-MW-08-01	60	09 09-MW-10 09-MW-10-01	0	09 09-MW-11 09-MW-11-01	-60 30	09 09-MW-12 09-MW-12-01	
Endrin Aldehyde	0.027 KJ	(0.1) [4.975124]	0.014 KJB	(0.02) [0.985221]	QN	(0.019) [0.970873]	0.021 JB		[5.128205]
Heptachlor	0.042 PJ	(0.05) [4.975124]	ON		0.0097 PB				[5:128205] [5:128205]
Heptachlor epoxide	0.027 JB	(0.05) [4.975124]	ON			_			[5.128205]
Methoxychlor	ON	(0.25) [4.975124]	QN	(0.049) [0.985221]	QN	_			[5.128205]
PCB-1016	QN	(0.5) [4.975124]	QN	(0.099) [0.985221]	QN	(0.097) [0.970873]	QN	_	5.128205]
PCB-1221	QN	(1) [4.975124]	QN	(0.2) [0.985221]	ND	(0.19) [0.970873]	ON		5.128205]
PCB-1232	QN		QN	(0.2) [0.985221]	QN	(0.19) [0.970873]	QN	(1) [5.12	[5.128205]
PCB-1242	QN		QN	_	QN	(0.097) [0.970873]	QN	(0.51) [5.12	[5.128205]
PCB-1248	QN		QN	(0.099) [0.985221]	QN	(0.097) [0.970873]	QN	(0.51) [5.12	[5.128205]
PCB-1254	QN		QN		QN	(0.19) [0.970873]	NO	(1) [5.12	[5.128205]
PCB-1260	QN		QN	(0.2) [0.985221]	ON	(0.19) [0.970873]	QN	(1) [5.12	[5.128205]
Toxaphene	QN		ON	(0.49) [0.985221]	QN	(0.49) [0.970873]	NO	(2.6) [5.12	[5.128205]
alpha-BHC	QN	(0.05) [4.975124]	0.053	(0.0099) [0.985221]	0.013 PB	(0.0097) [0.970873]	0.19	(0.051) [5.12	5.128205]
beta-BHC	0.019 PJ	(0.05) [4.975124]	ND	(0.0099) [0.985221]	ON	(0.0097) [0.970873]	0.15		5.128205]
delta~BHC	QN	(0.05) [4.975124]	0.012 PB	(0.0099) [0.985221]	0.0037 PJB	(0.0097) [0.970873]	0.17		[5.128205]
gamma-BHC	0.21 P	(0.05) [4.975124]	0.016 B	(0.0099) [0.985221]	0.0034 PJB	(0.0097) [0.970873]	0.18		[5.128205]
SW8270 - Semivolatile Organics	(ng/L)) ! !	_	
1,2,4-Trichlorobenzene	QN	(100) [10.36269]	ND	(99) [9.852216]	QN	(9.8) [0.980392]	ON	6.6] (66)	[6.9006.6]
1,2-Dichlorobenzene	ON		ND	(99) [9.852216]	ON	[9.8] [0.980392]	QN		[66006.6]
1,3-Dichlorobenzene	ON		ON	(99) [9.852216]	QN	(9.8) [0.980392]	ON	6.6] (66)	[6.9006.6]
I,4-Dichlorobenzene	ON		ON	(99) [9.852216]	QN	(9.8) [0.980392]	QN ON	6.6] (66)	[66006.6]
2,4,5-Trichlorophenol	ON		N Q	(99) [9.852216]	QN	(9.8) [0.980392]	ND	6.6] (66)	[66006.6]
2,4,6-Trichlorophenol	ON	_	ON	(99) [9.852216]	QN	(9.8) [0.980392]	QN	6.6] [6.8]	9.90099]
2,4-Dichlorophenol	ON	_	ND	(99) [9.852216]	QN	(9.8) [0.980392]	ON	6.6] (66)	[6.9009]
2,4-Dimethylphenol	NO NO		ON	(99) [9.852216]	ON	(9.8) [0.980392]	QN		[66006.6]
2,4-Dinitrophenol	Q	(520) [10.36269]	ON	(490) [9.852216]	ON	(49) [0.980392]	ON	(200) [9.9	[6.9009]
2,4-Dinitrotoluene	QN		ND	(99) [9.852216]	ND	(9.8) [0.980392]	ON	(66)	[66006.6]
2,6-Dinitrotoluene	QN	_	ON	(99) [9.852216]	N	(9.8) [0.980392]	ON	6.6] (66)	[6.9009]
2-Chloronaphthalene	QN	_	QN	(99) [9.852216]	ON	(9.8) [0.980392]	QN	6.6] (66)	[6.9006.6]
2-Chlorophenol	QN		ND		QN	(9.8) [0.980392]	QN	16.6] (66)	[6.9006.6]
Z-Methylnaphthalene	2500	(210) [20.72538]	1500	(99) [9.852216]	48	(9.8) [0.980392]	630)6.6] (66)	[6.9006.6]

Compiled: 23 Mar

[] = Factor () = Detection Limit

- Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				SITE ID LOCATION ID SAMPLE ID		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7				
	30	80-MW-08	60	09 09-MW-10	J	09 09-MW-11		-60	09 09-MW-12	
PARAMETER	.60	09-MW-08-01	-60	09-MW-10-01	30	09-MW-11-01		V-60	09-MW-12-01	
2-Methylphenol(o-cresol)	ON	(100) [10.36269]	110	[96] [9.852216]	21	(8.8)	[0.980392]	21 J	(66)	[66006.6]
2-Nitroaniline	ND	(520) [10.36269]	QN	(490) [9.852216]	R	(49)	[0.980392]	QN	(200)	[6:006:6]
2-Nitrophenol	ND	_	ON	(99) [9.852216]	2	(8.8)	[0.980392]	ON	(66)	[6.9006.6]
3,3'-Dichlorobenzidine	QN	_	ND		Q	(20)	[0.980392]	QN	(200)	[66006.6]
3-Nitroaniline	QN	_	QN	(490) [9.852216]	2	(49)	[0.980392]	QN	(200)	[66006.6]
4,6-Dinitro-2-methylphenol	Q	_	QN	(490) [9.852216]	운	(49)	[0.980392]	ON	(200)	[6:006:6]
4-Bromophenyl phenyl ether	Q	_	ND		2	(8.8)	[0.980392]	ON	(66)	[6:3006]
4-Chloro-3-methylphenol	QN	_	QN		Q	(8.8)	[0.980392]	QN	(66)	[6:006:6]
4-Chlorophenyl phenyl ether	Q		NO	(99) [9.852216]	QN	(8.8)	[0.980392]	QN	(66)	[66006.6]
4-Methylphenol(p-cresol)	Q	_	160		32	(8.8)	[0.980392]	39 J	(66)	[66006.6]
4-Nitroaniline	QN	_	QN	(490) [9.852216]	2	(43)	[0.980392]	ND	(200)	[66006.6]
4-Nitrophenol	QN VD	(520) [10.36269]	QN	(490) [9.852216]	QN	(48)	[0.980392]	N	(200)	[66006.6]
Acenaphthene	20 J	_	14 J	(99) [9.852216]	2	(8.8)	[0.980392]	QN	(66)	[66006.6]
Acenaphthylene	Q	_	QN	(99) [9.852216]	2	(8.8)	[0.980392]	QN	(66)	[66006.6]
Anthracene	QN	_	QN	(99) [9.852216]	QN	(8.8)	[0.980392]	QN	(66)	[66006.6]
Benzo(a)anthracene	QN	_	QN	(99) [9.852216]	Q	(8.8)	[0.980392]	QN	(66)	[6.9006.6]
Benzo(a)pyrene	QN	_	QN	(99) [9.852216]	2	(8.8)	[0.980392]	NO	(66)	[66006.6]
Benzo(b)fluoranthene	NO	_	QN	(99) [9.852216]	2	(8.8)	[0.980392]	ON	(66)	[6.006.6]
Benzo(g,h,i)perylene	Q.	_	ON	(99) [9.852216]	2	(8.8)	[0.980392]	QN	(66)	[66006.6]
Benzo(k)fluoranthene	QN	_	Q.	(99) [9.852216]	R	(8.8)	[0.980392]	QN	(66)	[6.3006]
Benzoic acid	QN	_	1100	_	410 J	(490)	[9.803921]	ON	(200)	[66006.6]
Benzyl alcohol	QN	_	QN	(99) [9.852216]	Q	(8.8)	[0.980392]	QN	(66)	[66006.6]
Butylbenzylphthalate	QN		ND	_	운	(8.8)	[0.980392]	ON	(66)	[66006.6]
Chrysene	N		ND	(99) [9.852216]	QN	(8.8)	[0.980392]	QN	(66)	[66006.6]
Di-n-octylphthalate	NO		Q.	(99) [9.852216]	QN	(8.8)	[0.980392]	Q.	(66)	[6.3006.6]
Dibenz(a,h)anthracene	QN		Q	(99) [9.852216]	QN	(8.8)	[0.980392]	QN	(66)	[60066.6]
Dibenzofuran	15 J		11 J	_	ON	(8.8)	[0.980392]	QN	(66)	[6.9006.6]
Dibutylphthalate	Q		ON	(99) [9.852216]	S S	(8.8)	[0.980392]	QN	(66)	[6.3006]
Diethylphthalate	Q	_	ND	_	ND	(8.8)	[0.980392]	ON	(66)	[66006.6]
Dimethylphthalate	QN		ND		Q	(8.8)	[0.980392]	N	(66)	[66006.6]
Fluoranthene	Q	(100) [10.36269]	QN	(99) [9.852216]	Q	(8.8)	[0.980392]	QN	(66)	[66006.6]

NA = Not Applicable

ND = Not Detected

[] = Factor

() = Detection Limit

	 	[6:90093]	[6:006:6]	[6.90093]	[9.90099]	[6.9008]	[6.9009]	[66006.6]	[66006.6]	[6.9009]	[6.9008]	[66006.6]	[66006.6]	[66006.6]	[66006.6]	[6.9006]	[6:006:6]	[66006.6]	[66006.6]	[6.9009]	[6:006:6]
	09 09-MW-12 09-MW-12-01	(66)	(66)	(66)	(66)	(66)	(66)	(66)	(66)	(66)	(66)	(66)	(200)	(66)	(66)	(66)	(66)	(66)	(66)	(66)	(66)
	60	8.6 J	9	ND	ND	ND	QN	ND	QN	ND	560	ON	QN	4.3 J	61 J	ON	QN	ON	ON	QN	ND
	09 09-MW-11 09-MW-11-01	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(49) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]	(9.8) [0.980392]
	30	1.6 J	ND	ND	QN	QN	QN	ON	ND	QN	09	ND	QN	2.6 J	43	QN	ND	ND	ON	1.3 JB	ND
SITE ID LOCATION ID SAMPLE ID	09 09-MW-10 09-MW-10-01	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(490) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]	(99) [9.852216]
S SA SA	-60 -60	33 J	ND	QN	QN	QN	QN	QN	ND	QN	1100	ON	ND	13 J	160	QN	ND	QN	QN	11 JB	QN
	09 09-MW-08 09-MW-08-01	(100) [10.36269]				(100) [10.36269]	(100) [10.36269]	(100) [10.36269]	(100) [10.36269]	(100) [10.36269]	(100) [10.36269]	(100) [10.36269]		(100) [10.36269]	(100) [10.36269]	(100) [10.36269]	(100) [10.36269]	_	(100) [10.36269]	(100) [10.36269]	(100) [10.36269]
	-60	36 J	QN	ND	QN	QN	QN	NO	QN	Q	1300	QN	QN	24 J	18 J	QN	2	QN	QN	QN	QN
	PARAMETER 	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitrosodiphenylamine	N-Nitrosodipropylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	p-Chloroaniline

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				SITI LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID						
PARAMETER	-60	09 09-MW-14 09-MW-14-01	; ; ;	09 09-MW-14 09-DS-10 Dup of 0	09 09-MW-14 Dup of 09-MW-14-01		10 10-MW-01 10-MW-01-02	1 1 1 1 1	10	10 10-MW-02 10-MW-02-02	! ! !
SW8010 - Halomenated Volatile Ormanics	(/ l/a/) s:										
1,1,1,2-Tetrachloroethane		(2.5)	[1]	NA		9	(5.5)	[1]	Q.	(2.5)	[1]
1,1,1-Trichloroethane	Q.	(0.55)	Ξ	NA		QN	(0.55)	Ξ	N _S	(0.55)	Ξ
1,1,2,2-Tetrachloroethane	9	(0.3)	[1]	NA		2	(0.3)	Ξ	N	(0.3)	[1]
1,1,2-Trichloroethane	ND	(0.2)	Ξ	AN		8	(0.2)	[1]	QN	(0.2)	[1]
1,1-Dichloroethane	Q.	(0.5)	Ξ	N		R	(0.5)	Ξ	Q	(0.5)	[1]
1,1-Dichloroethene	2	(0.7)	Ξ	N		2	(0.7)	[1]	S	(0.7)	[1]
1,2,3-Trichloropropane	QN	(1.6)	Ξ	NA		9	(1.6)	Ξ	N Q	(1.6)	[1]
1,2-Dichlorobenzene	N	(0.25)	Ξ	NA .		R	(0.25)	Ξ	S	(0.25)	Ξ
1,2-Dichloroethane	R	(0.15)	Ξ	NA		2	(0.15)	Ξ	N	(0.15)	[1]
1,2-Dichloropropane	QN	(0.15)	Ξ	NA		9	(0.15)	Ξ	QN	(0.15)	Ξ
1,3-Dichlorobenzene	QN	(0.32)	Ξ	NA		8	(0.32)	Ξ	N N	(0.32)	Ξ
1,4-Dichlorobenzene	QN	(0.25)	Ξ	NA		9	(0.25)	Ξ	Q.	(0.25)	Ξ
1-Chlorohexane	ON	(3.4)	Ξ	NA		2	(3.4)	[1]	Q	(3.4)	[1]
2-Chloroethylvinylether	ON	(0.0)	Ξ	NA		8	(0.6)	Ξ	Q	(0.6)	Ξ
Bromobenzene	QN	(1.6)	Ξ	NA		2	(1.6)	Ξ	Q.	(1.6)	Ξ
Bromodichloromethane	ON	(0.1)	Ξ	NA		8	(0.1)	[1]	QN	(0.1)	Ξ
Bromoform	ND	(0.5)	Ξ	N		2	(0.5)	[1]	Q	(0.5)	Ξ
Bromomethane	ND	(0.35)	Ξ	NA		9	(0.35)	[1]	Q	(0.35)	Ξ
Carbon tetrachloride	QN	(0.35)	Ξ	ΝΑ		2	(0.35)	Ξ	2	(0.35)	[]
Chlorobenzene	QN	(0.3)	Ξ	NA		2	(0.3)	Ξ	2	(0.3)	Ξ
Chloroethane	Q	(0.7)	Ξ	NA		2	(0.7)	[1]	2	(0.7)	Ξ
Chloroform	ND	(0.15)	Ξ	NA		2	(0.15)	Ξ	2	(0.15)	Ξ
Chloromethane	2	(0.5)	Ξ	N		2	(0.5)	Ξ	Q	(0.2)	[1]
Dibromochloromethane	NO	(0.2)	Ξ	N		S	(0.2)	Ξ	8	(0.2)	Ξ
Dibromomethane	QN	(1.6)	Ξ	NA		문	(1.6)	[1]	2	(1.6)	Ξ
Methylene chloride	ON	(0.4)	Ξ	NA		P	(0.4)	[]	R	(0.4)	Ξ
Tetrachloroethene	ND	(0.1)	Ξ	NA		S	(0.1)	Ξ	Q.	(0.1)	Ξ
Trichloroethene	ND	(0.2)	Ξ	NA		0.27	(0.2)	Ξ	8.0	(0.5)	Ξ
Trichlorofluoromethane	ND	(0.55)	Ξ	NA		S	(0.55)	Ξ	운	(0.55)	[1]
Vinyl chloride	Q.	(0.25)	Ξ	NA		Q	(0.25)	[1]	Q	(0.25)	[1]
Compiled: 23 March 1995		() = Detect	= Detection Limit	[] = Factor	ND = Not Detected	NA = Not	Not Applicable				
							•				

					SITE ID LOCATION ID SAMPLE ID						
PARAMETER	0	09 09-MW-14 09-MW-14-01		09-DS-10	09 09-MW-14 09-DS-10 Dup of 09-MW-14-01	10	10 10-MW-01 10-MW-01-02	1 1 1 1	100000000000000000000000000000000000000	10 10-MW-02 10-MW-02-02	
cis-1,3-Dichloropropene	ON S	(0.2)	[1]		NA 	QN ?	(0.2)	[1]	QN	(0.2)	[1]
trans-1,2-Dichloroetnene trans-1,3-Dichloropropene	ON ON	(0.25) (0.15)	E		NA NA	ND Q	(0.25) (0.15)	ΞΞ	QN QN	(0.25)	ΞΞ
SW8015 - Nonhalogenated Volatile Organics (ug/L Ethanol	Organics (ug ND	/L) (2000)	[1]		ΔN	C	(0000)		2	(0000)	3
Ethyl ether	ND	(10000)	[]		N	2 2	(10000)	ΞΞ	2 8	(10000)] [
Methyl ethyl ketone	QN	(3000)	Ξ		NA	QN	(3000)	ΞΞ	Z S	(3000)	ΞΞ
Methyl isobutyl ketone	QN	(2000)	[1]		NA	QN	(2000)	ΞΞ	9 9	(2000)	ΞΞ
SW8015MEMP - Nonhalogenated Volatile Organics	le Organics	(ng/L)									:
Diesel Range Organics (2)	ON (1/2/1) St	(200)	[0.990]		NA	ND	(200)	[0.980]	2400	(380)	[1.97]
1,2-Dichlorobenzene		(0.4)	Ξ		NA	S	(0.4)	Ξ	S	(10)	נזפן
1,3-Dichlorobenzene	QN	(0.2)	[[]		NA	2 Q	(0.2)	ΞΞ	14	(5)	[25]
1,4-Dichlorobenzene	QN	(0.4)	[1]		NA	QN	(0.4)	ΞΞ	Q.	(3)	[25]
Benzene	1.2	(0.3)	[1]		NA	QN	(0.3)	Ξ	310	(7.5)	[25]
Chlorobenzene	Q	(0.2)	Ξ		NA	ND	(0.2)	Ξ	S	(2)	[25]
Ethylbenzene	0.3	(0.2)	Ξ		NA	ON	(0.2)	[1]	230	(2)	[25]
Gasoline Range Organics (2)	QN	(100)	Ξ		NA	NO	(100)	[1]	14000	(2500)	[25]
Toluene	3.7	(0.2)	Ξ		NA	QN	(0.2)	Ξ	79	(2)	[22]
Total xylenes		(0.3)	[1]		NA	QN	(0.3)	Ξ	980	(7.5)	[25]
A A A DAM	,										
7,4 - DDE	0.02 8		[1.010101]	0.02 8		0.027		[1.025641]	Q.		[0.990099]
4,4'-001	0.032	(0.01)	[1.010101] [1.010101]	0.015	(0.0099) [0.990099]	ND 91 0 000 0	(0.01) [1.0	[1.025641]	S 5		[0.990099]
Aldrin	0.012 B		[1.010101]	0.014 B				[1.023041] [1.025641]	0.01 NUD	0 (20.02)	[0.990099]
Chlordane	QN		[1.010101]			2 2		[1.025041]			[0.990099] [0.990099]
Dieldrin	0.013	(0.01)	[1.010101]	0.012		QN		[1,025641]	Q.		[660066.0]
Endosulfan I	QN		[1.010101]	ND	(0.0099) [0.990099]	ON		[1.025641]	0.0027 KJB		[0.99009]
Endosulfan II	ND		[1.010101]	QN	[0.03) [0.990099]	QN		[1.025641]			[6.99009]
Endosulfan Sulfate Endrin	0.0094 KJB ND	(0.051) [(0.01) [[1.010101] [1.010101]	0.0066 KJB ND	[050066.0] (0.0) [050066.0] (0.00)	0.013 KJB	(0.051) [1.0	[1.025641]	0.013 KJB		[0.990099]
			1	!		5		7740C7	D.		Leeunee

Compiled: 23 Mar

() = Detection Limit [] = Factor

Material NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			-	SITE ID LOCATION ID SAMPLE ID					Water Adjusted to the Control of the
PARAMETER	60	09 09-MW-14 09-MW-14-01	0 09-DS-10 D	09 09-DS-10 Dup of 09-MW-14-01	10-	10 10-MW-01 10-MW-01-02	10	10 10-MW-02 10-MW-02-02	
Endrin Aldehyde	0.01 KJB		ND		0.0064 KJB				[0.990099]
Heptachlor Heptachlor epoxide	0.0082 KJB 0.0079 JB	(0.01) [1.010101] (0.01) [1.010101]	0.00/5 KJB 0.0068 JB	(0.0099) [0.990099] (0.0099) [0.990099]	Q Q	(0.01) [1.025641] (0.01) [1.025641]	0.0043 PJB 0.0036 PJB	(0.0099)	[0.990099] [0.990099]
Methoxychlor pcg-1016	ON S	[1.010101] [1.010101]	Q 9	[0.05) [0.990099]	2 2	(0.051) [1.025641]	2 2	(0.05)	[0.990099]
PCB-1221	QN N		9 9		2 Q		2 2		[0.990099]
PCB-1232	QN		QN	(0.2) [0.990099]	N N		Q	(0.2)	[6.99069]
PCB-1242	QN :		Q.		QN		ND	(0.099)	[0.990099]
PCB-1248 PCR-1254	Q C	(0.1) [1.010101] (0.7) [1.010101]	2 2	[0:090) [0:990099]	2 2	(0.1) [1.025641]	· Q	(0.099)	[0.990099]
PCB-1260	Q.		2 2		2 2		2 Q	(0.2)	[0.990099]
Toxaphene	ON	(0.51) [1.010101]	ON	(0.5) [0.990099]	QN		QN	(0.2)	[0.990099]
alpha-BHC	ON	(0.01) [1.010101]	ON ON	[0.0099) [0.990099]	ON	(0.01) [1.025641]	QN	(0.003)	[660066.0]
beta-BHC	0.022	(0.01) [1.010101]	0.025	(0.0099) [0.990099]	0.038	(0.01) [1.025641]	0.038	(0.003)	[0.990099]
delta-BHC	ON	(0.01) [1.010101]	0.023	[0.0099) [0.990099]	0.02 B	(0.01) [1.025641]	QN	(0.003)	[0.990099]
gamma-BHC	QN	(0.01) [1.010101]	ON	[0.0099) [0.990099]	ON	(0.01) [1.025641]	QN	(0.0099)	[660066.0]
SW8270 - Semivolatile Organics	(ng/L)								
1,2,4-Trichlorobenzene	QN	(10) [1.020408]		NA	ON	(10) [1.010101]	ND	(10)	[1.010101]
1,2-Dichlorobenzene	QN			NA	ON	(10) [1.010101]	ND	(10)	[1.010101]
1,3-Dichlorobenzene	QN	_		NA	QN		ON		[1.010101]
1,4-Dichlorobenzene	QN .			NA	Q		QN		[1.01010]
2,4,5-Trichlorophenol	Q :			NA :	Q:	-	QN	_	[1.01010]
2,4,6-Trichlorophenol	QN :			NA:	Q		Q.		[1.010101]
2,4-Dichlorophenol	QN :			YN :	Q.		ND		[1.010101]
2,4-Dimethylphenol	Q			NA	2	二	QN	_	[1.01010]
2,4-Dinitrophenol	QN :			NA	2		QN	_	[1.010101]
2,4-Dinitrotoluene	QN			NA	2		Q		[1.010101]
2,6-Dinitrotoluene	QN			NA	Q	_	QN		[1.010101]
2-Chloronaphthalene	QN :			NA	Q		QN		[1.010101]
2-Chlorophenol	QN				QN		Q		[1.01010]
2-Methylnaphthalene	QN	(10) [1.020408]		NA	Q	(10) [1.010101]	46	(10)	[1.010101]

NA = Not Applicable

ND = Not Detected

[] = Factor

() = Detection Limit

		SITE ID LOCATION ID SAMPLE ID				
0	09 09-MW-14 09-MW-14-01	09 09-MW-14 09-DS-10 Dup of 09-MW-14-01	101	10 10-MW-01 10-MW-01-02	10	10 10-MW-02 10-MW-02-02
QV	(10) [1.020408]	NA	QN	(10) [1.010101]	3.3 J	(10) [1.010101]
ND	(51) [1.020408]	NA	QN	(51) [1.010101]	ON	
ND	(10) [1.020408]	NA	QN	(10) [1.010101]	QN	
ON	(20) [1.020408]	NA	QN	(20) [1.010101]	ON	
ND	(51) [1.020408]	NA	QN	(51) [1.010101]	QN	. 二
ON	(51) [1.020408]	NA	QN	(51) [1.010101]	QN	
ON	(10) [1.020408]	NA	QN	(10) [1.010101]	QN	
ND	(10) [1.020408]	NA	QN	(10) [1.010101]	ND	
N	(10) [1.020408]	NA	ND	(10) [1.010101]	ND	(10) [1.010101]
ON	(10) [1.020408]	NA	QN	(10) [1.010101]	13	ij
QN N	(51) [1.020408]	NA	ND	(51) [1.010101]	ND	. =
ON	(51) [1.020408]	NA	ND	(51) [1.010101]	ND	. =
N		NA	ON	(10) [1.010101]	QN	_
QN		NA	QN	(10) [1.010101]	ND	(10) [1.010101]
Q		NA	QN	(10) [1.010101]	QN	(10) [1.010101]
QN		NA	QN	(10) [1.010101]	N	(10) [1.010101]
QN	_	NA	ON	(10) [1.010101]	ND	(10) [1.010101]
ON	_	NA	QN	(10) [1.010101]	ON	(10) [1.010101]
QN		NA	ON	(10) [1.010101]	ND	(10) [1.010101]
QN :	_	NA	QN	(10) [1.010101]	QN	(10) [1.010101]
Q.		NA	QN	(51) [1.010101]	QN	(51) [1.010101]
QN	_	NA	ON	(10) [1.010101]	QN	(10) [1.010101]
Q.	_	NA	ND	(10) [1.010101]	QN	(10) [1.010101]
Q	(10) [1.020408]	NA	QN	(10) [1.010101]	QN	(10) [1.010101]
Q	(10) [1.020408]	NA	QN	(10) [1.010101]	ON	(10) [1.010101]
QN	_	NA	ND	(10) [1.010101]	QN	(10) [1.010101]
QN		NA	ON	(10) [1.010101]	ON	(10) [1.010101]
ND	_	NA	ON	(10) [1.010101]	QN	(10) [1.010101]
QN		NA	QN	(10) [1.010101]	QN	(10) [1.010101]
QN		NA	QN	(10) [1.010101]	QN	(10) [1.010101]
QN	(10) [1.020408]	NA	QN	(10) [1.010101]	N	(10) [1.010101]

+oN = NA heterted NA = No+

stected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

			SITE ID				
			LOCATION ID SAMPLE ID				
		60	60		10		01
	30	09-MW-14	09-MW-14	10~	10-MW-01	10-1	10-MW-02
PARAMETER	-60	09-MW-14-01	09-DS-10 Dup of 09-MW-14-01	10-M	10-MW-01-02	10-M	10-MW-02-02
Fluorene	QN	(10) [1.020408]	NA	QN	(10) [1.010101]	Q	(10) [1.010101]
Hexach lorobenzene	QN	(10) [1.020408]	NA	ND	_	ND	_
Hexachlorobutadiene	QN	(10) [1.020408]	NA	ND	(10) [1.010101]	ND	
Hexachlorocyclopentadiene	N	(10) [1.020408]	NA	N	(10) [1.010101]	ND	(10) [1.010101]
Hexachloroethane	ON	(10) [1.020408]	NA	QN	(10) [1.010101]	QN	(10) [1.010101]
Indeno(1,2,3-cd)pyrene	QN	(10) [1.020408]	NA	ND	_	ND	(10) [1.010101]
Isophorone	ND	(10) [1.020408]	NA	ND	(10) [1.010101]	ND	(10) [1.010101]
N-Nitrosodiphenylamine	QN	(10) [1.020408]	NA	QN	(10) [1.010101]	ND	(10) [1.010101]
N-Nitrosodipropylamine	ND	(10) [1.020408]	NA	ND	(10) [1.010101]	QN	(10) [1.010101]
Naphthalene	QN	(10) [1.020408]	NA	ON	(10) [1.010101]	85	(10) [1.010101]
Nitrobenzene	QN	(10) [1.020408]	NA	QN	(10) [1.010101]	QN	(10) [1.010101]
Pentachlorophenol	N	(51) [1.020408]	NA	ND	(51) [1.010101]	ON	(51) [1.010101]
Phenanthrene	QN	(10) [1.020408]	NA	QN	(10) [1.010101]	ND	(10) [1.010101]
Phenol	QN	(10) [1:020408]	NA	ON	(10) [1.010101]	20	(10) [1.010101]
Pyrene	QN	(10) [1.020408]	NA	ON	(10) [1.010101]	ON	(10) [1.010101]
bis(2-Chloroethoxy)methane	ND	(10) [1.020408]	NA	ND	(10) [1.010101]	QN QN	(10) [1.010101]
bis(2-Chloroethyl)ether	ON	(10) [1.020408]	NA	ND	(10) [1.010101]	ND	(10) [1.010101]
bis(2-Chloroisopropyl)ether	QN	(10) [1.020408]	NA	ND	(10) [1.010101]	ND	(10) [1.010101]
bis(2-Ethylhexyl)phthalate	QN	(10) [1.020408]	NA	1.8 JB	(10) [1.010101]	1.2 JB	(10) [1.010101]
p-Chloroaniline	ND	(10) [1.020408]	N.	QN	(10) [1.010101]	QN	(10) [1.010101]

			SITE ID LOCATION ID SAMPLE ID							
PARAMETER	10 10-MW-02 10-DS-06 Dun of 10-MW-02-02	_	10 10-MW-03 10-MW-03-02		-	11 11-MW-01 11-MW-01-01			11 11-MW-02	
i	 			:		TO TO LAIL .	:	-	TO-20-MU-T	! ! !
SW8010 - Halogenated Volatile Organics	ganics (ug/L)									
1,1,1,2-Tetrachloroethane	NA	ON.	(2.5)	[1]	ON	(2.5)	[]	QN	(5.5)	Ξ
1,1,1-Trichloroethane	NA	Q	(0.55)	[1]	ND	(0.55)	Ξ	Q.	(0.55)	Ξ
1,1,2,2-Tetrachloroethane	NA	QN	(0.3)	Ξ	QN	(0.3)	Ξ	QN	(0.3)	Ξ
1,1,2-Trichloroethane	NA	2	(0.2)	[1]	Q	(0.2)	Ξ	QN	(0.2)	Ξ
1,1-Dichloroethane	NA	S	(0.5)	Ξ	ND	(0.5)	Ξ	N N	(0.5)	Ξ
1,1-Dichloroethene	NA	R	(0.7)	Ξ	QN	(0.7)	[1]	ON	(0.7)	Ξ
1,2,3-Trichloropropane	NA	2	(1.6)	Ξ	QN	(1.6)	[1]	Q	(1.6)	Ξ
1,2-Dichlorobenzene	NA	QN	(0.25)	Ξ	QN	(0.25)	Ξ	QN	(0.25)	Ξ
1,2-Dichloroethane	NA	S	(0.15)	[1]	QN	(0.15)	Ξ	N	(0.15)	[1]
1,2-Uichforopropane	NA	S	(0.15)	Ξ	N	(0.15)	[1]	ON	(0.15)	Ξ
1,3-Dichlorobenzene	NA	S	(0.32)	Ξ	QN	(0.32)	Ξ	ON	(0.32)	[1]
1,4-Dichlorobenzene	NA	N N	(0.25)	[1]	Q	(0.25)	Ξ	QN	(0.25)	[1]
I-Chlorohexane	NA	S	(3.4)	Ξ	S	(3.4)	[1]	QN	(3.4)	[1]
2-Chloroethylvinylether	NA	ND	(0.6)	[1]	QN	(0.6)	[1]	Q	(0.6)	[1]
Bromobenzene	NA	Q.	(1.6)	[1]	QN	(1.6)	[]	QN	(1.6)	[1]
Bromodichloromethane	NA	Q	(0.1)	[1]	ND ON	(0.1)	[1]	2	(0.1)	[1]
Bromotorm	NA	Q.	(0.5)	Ξ	Q	(0.5)	[1]	Q.	(0.5)	[1]
Bromomethane	NA :	QV	(0.35)	[1]	Q	(0.35)	Ξ	QN	(0.35)	Ξ
Carbon tetrachloride	NA ::	9	(0.35)	Ξ	QN	(0.35)	[1]	Q	(0.35)	[1]
Chloropenzene	₹.	Q :	(0.3)	Ξ	Q.	(0.3)	[1]	Q.	(0.3)	Ξ
Chloroform	AA N	9	(0.7)	[1]	2	(0.7)	Ξ:	9	(0.7)	[1]
	45	O !	(0.15)	Ξ;	Q.	(0.15)	Ξ	Q.	(0.15)	[1]
chloromethane	NA :	QN	(0.5)	Ξ	9	(0.5)	Ξ	S	(0.5)	Ξ
Ulbromochloromethane	NA	Q.	(0.2)	Ξ	N N	(0.2)	[1]	QN	(0.2)	Ξ
Ulbromomethane	NA	QN	(1.6)	Ξ	QN	(1.6)	Ξ	Q.	(1.6)	[1]
Methylene chloride	NA	운	(0.4)	[1]	QN	(0.4)	Ξ	N S	(0.4)	[1]
Tetrachloroethene	NA	N	(0.1)	Ξ	ON	(0.1)	Ξ	QN	(0.1)	
Trichloroethene	AN :	Q.	(0.2)	Ξ	QN	(0.2)	Ξ	QN	(0.2)	Ξ
rlch oroT uoromethane	¥.	2	(0.55)	Ξ	S	(0.55)	Ξ	Q	(0.55)	[1]
Vinyl chloride	NA	QN	(0.25)	[1]	Q	(0.25)	Ξ	Q	(0.25)	Ξ

Compiled: 23 Marsh 1995

() = Detection Limit [] = Factor

"R = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				r S	SITE ID LOCATION ID SAMPLE ID							
	•	10		•	10		Ţ	11		•	11	
PARAMETER	10-08-06 Dr	10-DS-06 Dup of 10-MW-02-02	1-02-02	10	10-MW-03 10-MW-03-02 	1	11.	11-MW-01 11-MW-01-01		11.	11-MW-02 11-MW-02-01	
cis-1,3-Dichloropropene	2	ΑA		QN	(0.5)	[1]	QN	(0.2)	Ξ	QX	(0.5)	[1]
trans-1,2-Dichloroethene	~	NA		QN	(0.25)	[1]	QN	(0.25)	ΞΞ	Q	(0.25)	ΞΞ
trans-1,3-Dichloropropene		NA		N	(0.15)	Ξ	ON	(0.15)	Ξ	ON.	(0.15)	[1]
SW8015 - Nonhalogenated Volatile Organics	Organics (ug/L)											
Ethanol	Q	(2000)	Ξ	QN	(2000)	[1]	2	(2000)	Ξ	ON	(2000)	Ξ
Ethyl ether	QN	(10000)	[1]	QN	(10000)	[1]	QN	(10000)	[1]	ON	(10000)	[1]
Methyl ethyl ketone	ON	(3000)	[1]	QN	(3000)	Ξ	QN	(3000)	[1]	QN	(3000)	[1]
Methyl isobutyl ketone	ND	(2000)	[1]	Q.	(2000)	Ξ	QN	(2000)	[1]	Q.	(2000)	Ξ
SW8015MEMP - Nonhalogenated Volatile Organics		(ng/L)										
Diesel Range Organics (2)	2400	(210)	[1.03]	200	(190)	[0.971]	QN	(190)	[0.962]	760	(220)	[1.09]
SW8020 - Aromatic Volatile Organics	ics (ug/L)										,	,
1,2-Dichlorobenzene	09	(10)	[25]	QN	(0.8)	[2]	QN	(0.4)	[1]	0.91 P	(0.4)	[1]
1,3-Dichlorobenzene	14	(2)	[25]	ON	(0.4)	[2]	ON	(0.2)	Ξ	0.71	(0.2)	[1]
1,4-Dichlorobenzene	14	(10)	[22]	QN	(0.8)	[2]	QN	(0.4)	[1]	QN	(0.4)	[]
Benzene	280	(7.5)	[22]	27	(0.6)	[2]	ND	(0.3)	[1]	ON	(0.3)	[1]
Chlorobenzene	QN	(2)	[22]	QN	(0.4)	[2]	QN	(0.2)	[1]	ON	(0.5)	Ξ
Ethylbenzene	230	(2)	[22]	Q	(0.4)	[2]	QN	(0.2)	[1]	QN	(0.2)	[1]
Gasoline Range Organics (2)	14000	(2500)	[25]	380	(200)	[2]	QN	(100)	[1]	ON	(100)	[1]
Toluene	73	(2)	[22]	NO	(0.4)	[2]	ND	(0.2)	[1]	0.41 B	(0.2)	Ξ
Total xylenes	970	(7.5)	[22]	13	(0.6)	[5]	QN	(0.3)	[1]	0.51 P	(0.3)	[1]
SW8080 - Organochlorine Pesticides and PCBs		(ng/L)										
4,4'-DDD	ON	(0.01)	[1.010101]	QN	(0.01)	[1.010101]	0.016 B	(0.0097)	[0.970873]	QN	(0.011)	[1.063829]
4,4'-DDE	QN Q	(0.01)	[1.010101]	QN	(0.01)	[1.010101]	QN	(0.0097)	[0.970873]	QV	(0.011)	[1.063829]
4,4'-DDT	0.0074 KJB	(0.05)	[1.010101]	0.01 KJB	(0.05)	[1.010101]	0.021	(0.019)	[0.970873]	0.011 KJ	(0.021)	[1.063829]
Aldrin	0.013 B	(0.01)	[1.010101]	QN QN	(0.01)	[1.010101]	QN	(0.0097)	[0.970873]	0.0064 JB	(0.011)	[1.063829]
Chlordane	QN	(0.051)	[1.010101]	N	(0.051)	[1.010101]	QN	(0.049)	[0.970873]	Q.	(0.053)	[1.063829]
Dieldrin	QN	(0.01)	[1.010101]	QN	(0.01)	[1.010101]	0.0094 KJ	(0.0097)	[0.970873]	QN	(0.011)	[1.063829]
Endosulfan I	Q	(0.01)	[1.010101]	0.0053 KJB	(0.01)	[1.010101]	QN	(0.003)	[0.970873]	NO	(0.011)	[1.063829]
Endosulfan II	0.0082 KJB	(0.03)	[1.010101]	0.0067 JB	(0.03)	[1.010101]	QN	(0.058)	[0.970873]	ON	(0.032)	[1.063829]
Endosulfan Sulfate	0.015 KJB	(0.051)	[1.010101]	0.0075 KJB	(0.051)	[1.010101]	0.016 KJB	(0.049)	[0.970873]	ON	(0.053)	[1.063829]
Endrin	QV	(0.01)	[1.010101]	0.019 B	(0.01)	[1.010101]	QN	(0.0097)	[0.970873]	QN	(0.011)	[1.063829]
Compiled: 23 March 1995		ad = ()	= Detection Limit	it [] = Factor	= QN	Not Detected	NA =	Not Applicable				

			NS N	SITE ID LOCATION ID SAMPLE ID					
PARAMETER	10 10-DS-06 Du	10 10-MW-02 10-DS-06 Dup of 10-MW-02-02	10-1	10 10-MW-03 10-MW-03-02	11	11 11-MW-01 11-MW-01-01		11-11-	11 11-MW-02 11-MW-02-01
Endrin Aldehyde Heptachlor	0.0077 KJB	(0.02) [1.010101]	0.007 KJB	(0.02) [1.010101]	0.0062 KJB		[0.970873]		
Heptachlor epoxide			0.0042 PJB		ON ON	(0.0097) [0. (0.0097) [0.	[0.970873] [0.970873]	0.015 B ND	(0.011) [1.053829] (0.011) [1.063829]
Methoxychlor PCB-1016	g R	(0.051) [1.010101] (0.1) [1.010101]	ON ON	(0.051) [1.010101] [101010 1] (1.0)	QN O	(0.049) [0.	[0.970873]	QN .	
PCB-1221	QN		S S		2 2	_	[0.970873]	Q Q	
PCB-1232	QN	(0.2) [1.010101]	QN	(0.2) [1.010101]	QN		[0.970873]	QN	
PCB-1242	Q :		QN		ON		[0.970873]	ON	
PCB-1248 PCB-1254	2 9		Q.		QV :		[0.970873]	ON.	
PCB-1234	O Z	(0.2) [1.010101] (0.3) [1.010101]	2 2		9 9		[0.970873]	QN :	
Toxaphene	Q N		2	[1.010101] (2.0)	2 2	(0.19) [0. (0.49) [0	[0.9/08/3] [n 970873]	8 5	(0.21) [1.063829]
alpha-BHC	ON	-	0.022		Q.		[0.970873]	2 2	
beta-BHC	0.047	(0.01) [1.010101]	0.043		0.0031 KJB		[0.970873]	0.044	
delta-BHC	N N	(0.01) [1.010101]	QN	(0.01) [1.010101]	0.013 B		[0.970873]	0.036	
gamma-BHC	0.025 PB	(0.01) [1.010101]	ON	(0.01) [1.010101]	QN	(0.0097)	[0.970873]	0.049	
SW8270 - Semivolatile Organics	(ug/L)						1		_
1,2,4-Trichlorobenzene	ND	[6:00066:0] [6:6)	ND	(9.8) [0.980392]	ND	(10)	[1]	ON	(11) [1.086956]
1,2-Dichlorobenzene	ON	[6:6) [0.990099]	ND	(9.8) [0.980392]	QN	(10)	Ξ	N	
1,3-Dichlorobenzene	QN		ND	(9.8) [0.980392]	ND	(10)	[1]	ND	
1,4-Dichlorobenzene	QN	_	ON		ND	(10)	[1]	QN	(11) [1.086956]
2,4,5-Trichlorophenol	QN		ND		ON	(10)	Ξ	ND	(11) [1.086956]
2,4,6-Trichlorophenol	ND		QN		ND	(10)	Ξ	QN	(11) [1.086956]
Z,4-Dichlorophenol	QN		QN	(9.8) [0.980392]	ON	(10)	Ξ	ND	(11) [1.086956]
2,4-Dimethylphenol	ON		QN	(9.8) [0.980392]	ND	(10)	Ξ	ON	(11) [1.086956]
2,4-Dinitrophenol	Q	_	QN	(49) [0.980392]	QN	(20)	[1]	ND	(54) [1.086956]
2,4-Dinitrotoluene	QN	_	QN	(9.8) [0.980392]	QN	(10)	[]	ND	(11) [1.086956]
2,6-Dinitrotoluene	QN		QN	(9.8) [0.980392]	ND	(10)	[1]	ON	(11) [1.086956]
2-Chloronaphthalene	QN		QN	(9.8) [0.980392]	ON	(10)	Ξ	ND	(11) [1.086956]
2-Chlorophenol	QN		ON		ND	(10)	Ξ	QN	(11) [1.086956]
2-Methylnaphthalene	51	[6:6] [0:60066]	ON N	(9.8) [0.980392]	NO	(10)	[1]	ND	(11) [1.086956]

Not Detected NA = Not Applicable

() = Detection Limit [] = Factor

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE ID

		10	1	10		11			11	
PARAMETER 	10 10-DS-06 Du	10-DS-06 Dup of 10-MW-02-02	10-M 10-MW	10-MW-03 10-MW-03-02	11	11-MW-01 11-MW-01-01	;	11-	11-MW-02 11-MW-02-01	
2-Methylphenol(o-cresol)	2.5 J	[6:6]	QN	(9.8) [0.980392]	Q	(10)	[1]	Q.	(11)	086956
2-Nitroaniline	ON		NO ON		Q.	(20)	ΞΞ	2		[1.086956]
2-Nitrophenol	ON	[6:60066:0]	QN		ND	(10)	ΞΞ	Q		.086956
3,3'-Dichlorobenzidine	QN	(20) [0.990099]	QN	(20) [0.980392]	ND	(20)	Ξ	QN	(22) [1	.086956
3-Nitroaniline	ON	[60066.0] (20)	NO	(49) [0.980392]	ND	(20)	Ξ	N.	(54) [1	. 086956
4,6-Dinitro-2-methylphenol	QN	[660066.0] (20)	ON	(49) [0.980392]	ND	(20)	Ξ	Q.	(54) [1	.086956
4-Bromophenyl phenyl ether	ON	[660066.0] (6.6)	QN	(9.8) [0.980392]	ON	(10)	[1]	R	(11) [1	.086956
4-Chloro-3-methylphenol	ON	[660066.0] (6.6)	ND	(9.8) [0.980392]	QN	(10)	Ξ	QN	(11) [1	.086956
4-Chlorophenyl phenyl ether	QN	[6:6) [0:60066]	QN	(9.8) [0.980392]	ND	(10)	[1]	QN	(11) [1	.086956]
4-Methylphenol(p-cresol)	11	[660066.0] (6.6)	QN	(9.8) [0.980392]	ND	(10)		ND	(11) [1	.086956]
4-Nitroaniline	QN	[660066.0] (05)	QN	(49) [0.980392]	QN	(20)	Ξ	8	(54) [1	.086956
4-Nitrophenol	QN	[660066.0] (05)	ND	(49) [0.980392]	QN	. (50)	Ξ	ND	(54) [1	.086956]
Acenaphthene	QN	[6:6) [0:630088]	QN	(9.8) [0.980392]	QN	(10)	[]	QN	(11) [1	.086956
Acenaphthylene	QN	[6:6] [0:60066]	ND	(9.8) [0.980392]	ND	(10)	Ξ	2	(11) [1	.086956
Anthracene	QN	[660066.0] (6.6)	ON .	(9.8) [0.980392]	ON	(10)	Ξ	QN	(11) [1	.086956
Benzo(a)anthracene	QN	_	QN		QN	(10)	Ξ	ON	(11) [1	.086956
Benzo(a)pyrene	QN	[6:6) [0:80088]	ND	(9.8) [0.980392]	QN	(10)	Ξ	ND	(11) [1	.086956
Benzo(b)fluoranthene	QN	[6:6) [0:60066]	NO	(9.8) [0.980392]	QN	(10)	Ξ	QN	(11) [1	.086956
Benzo(g,h,i)perylene	QN	[660066.0] (6.6)	ON	(9.8) [0.980392]	QN	(10)	Ξ	QN	(11) [1	.086956
Benzo(k)fluoranthene	QN	[6:6] [0:60066]	ND	(9.8) [0.980392]	ON	(10)	Ξ	QN	(11) [1	.086956
Benzoic acid	QN		QN	_	ON	(20)	[1]	4 J	(54) [1	. 086956
Benzyl alcohol	Q	[6:6) [0:60066]	ON	(9.8) [0.980392]	ON	(10)	[1]	QN	(11) [1	[1.086956]
Butylbenzylphthalate	QN	[6:6] [0:60066]	QN	(9.8) [0.980392]	ON	(10)	Ξ	QN	(11) [1	.086956
Chrysene	QN	[660066.0] (6.6)	ND	(9.8) [0.980392]	QN	(10)	Ξ	QN	(11) [1	.086956
Di-n-octylphthalate	ON	[6:6) [0:6006]	QN	(9.8) [0.980392]	QN	(10)	Ξ	ON	(11) [1	.086956]
Dibenz(a,h)anthracene	Q	[6:6] [0:60066]	ON	(9.8) [0.980392]	QN	(10)	[]	QN ON	(11) [1	.086956
Dibenzofuran	QN	[6:60066:0] [6:6)	ND	(9.8) [0.980392]	QN	(10)	[1]	N	(11) [1	.086956]
Dibutylphthalate	ON	[6:60066:0] [6:6)	NO	(9.8) [0.980392]	ON	(10)	Ξ	QN	(11) [1	.086956]
Diethylphthalate	QN	[660066.0] (6.6)	ND	(9.8) [0.980392]	ON	(10)	Ξ	2	(11) [1	.086956]
Dimethylphthalate	QN	[660066.0] (6.6)	QN	(9.8) [0.980392]	QN	(10)	Ξ	NO	(11) [1	.086956]
Fluoranthene	QV	[6:60066:0] [6:6)	ᄝ	(9.8) [0.980392]	N N	(10)	[:]	N Q	(11) [1	. 086956]

			07	SITE ID OCATION ID SAMPLE ID					
PARAMETER 	1 10-DS-06 D	10 10-MW-02 10-DS-06 Dup of 10-MW-02-02	10	10 10-MW-03 10-MW-03-02	11 -11	11 11-MW-01 11-MW-01-01	:	11-M	11 11-MW-02 11-MW-02-01
Fluorene	N	[6.9] [0.990099]	QN	(9.8) [0.980392]	QN	(10)	[1]	QN	(11) [1,086956]
Hexachlorobenzene	QN ,	[6.99066.0] [6.6)	N	(9.8) [0.980392]	Q.	(10)	Ξ	ND	
Hexachlorobutadiene	QN		ND	(9.8) [0.980392]	S	(10)	Ξ	QN	(11) [1.086956]
Hexachlorocyclopentadiene	QN		ND	(9.8) [0.980392]	QN	(10)	Ξ	ND	(11) [1.086956]
Hexachloroethane	QN	[6.60066.0] (6.6)	ON	(9.8) [0.980392]	QN	(10)	Ξ	N QN	(11) [1.086956]
Indeno(1,2,3-cd)pyrene	Q		QN	(9.8) [0.980392]	ND	(10)	Ξ	QN	(11) [1.086956]
Isophorone	QN		QN	(9.8) [0.980392]	ND	(10)	Ξ	ON	(11) [1.086956]
N-Nitrosodiphenylamine	QN		QN	(9.8) [0.980392]	QN	(10)	Ξ	ND	(11) [1.086956]
N-Nitrosodipropylamine	QN	[6.6] [0.990099]	QN	(9.8) [0.980392]	QN	(10)		ND	(11) [1.086956]
Naphthalene	85	[6:6) [0:60066]	QN	(9.8) [0.980392]	ND	(10)	Ξ	ND	_
Nitrobenzene	QN	[6:0066:0] (6:6)	QN	(9.8) [0.980392]	ND	(10)	Ξ	ND	(11) [1.086956]
Pentachlorophenol	QN		QN	(49) [0.980392]	ND	(20)	Ξ	ND	(54) [1.086956]
Phenanthrene	ON	[6.9] [0.990099]	QN	(9.8) [0.980392]	QN	(10)	Ξ	QN	(11) [1.086956]
Phenol	14	[6:0) [0:0006:0]	QN	(9.8) [0.980392]	QN	(10)	Ξ	ND	(11) [1.086956]
Pyrene	QN	[6:006:0] [6:6)	QN	(9.8) [0.980392]	QN	(10)	[1]	ON	_
bis(2-Chloroethoxy)methane	QN	[6:6) [0:60068]	ON	(9.8) [0.980392]	ND	(10)	[1]	QN	(11) [1.086956]
bis(2-Chloroethyl)ether	Q	[6:6] [0:6006]	ON	(9.8) [0.980392]	QN	(10)	Ξ	NO	(11) [1.086956]
bis(2-Chloroisopropyl)ether	QN	[6:0066:0] [6:6)	ND	(9.8) [0.980392]	ND	(10)	[1]	QN	(11) [1.086956]
bis(2-Ethylhexyl)phthalate	ND	[660066.0] [6.6)	3.9 JB	(9.8) [0.980392]	ND	(10)	[1]	4.4 JB	
p-Chloroaniline	QN	[6:0066:0] [6:6)	QN	(9.8) [0.980392]	QN	(10)	[1]	QN	

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

PARAMETER 12-M SW8010 - Halogenated Volatile Organics (ug/L) 1,1,1,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND 1,1,2,2-Tetrachloroethane ND	12 12-MW-01 12-MW-01-01					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	12 12-MW-02 12-MW-02-	12 12-MW-02 12-MW-02-01		
hane	(2.5)	Ξ	ND	(5.5)	[1]	
hane	(0.55)	Ξ	ND	(0.55)	Ξ	
	(0.3)	Ξ	ND	(0.3)	ΞΞ	
	(0.2)	Ξ	ND	(0.2)	Ξ	
1,1-Dichloroethane ND	(0.5)	[1]	ND	(0.5)	[1]	
1,1-Dichloroethene ND	(0.7)	[1]	ON	(0.7)	[1]	
1,2,3-Trichloropropane ND	(1.6)	[1]	ON	(1.6)	[1]	
,2-Dichlorobenzene ND	(0.25)	Ξ	QN	(0.25)	[1]	
1,2-Dichloroethane ND	(0.15)	Ξ	ND	(0.15)	[1]	
1,2-Dichloropropane ND	(0.15)	Ξ	QN	(0.15)	Ξ	
1,3-Dichlorobenzene ND	(0.32)	Ξ	ND	(0.32)	Ξ	
1,4-Dichlorobenzene ND	(0.25)	Ξ	ND	(0.25)	Ξ	
1-Chlorohexane ND	(3.4)	Ξ	QN	(3.4)	Ξ	
2-Chloroethylvinylether ND	(0.0)	Ξ	QN	(0.0)	Ξ	
Bromobenzene	(1.6)	Ξ	ND	(1.6)	Ξ	
Bromodichloromethane	(0.1)	[1]	ND	(0.1)	Ξ	
Bromoform ND	(0.5)	Ξ	QN	(0.5)	Ξ	
Bromomethane	(0.35)	Ξ	ON	(0.35)	Ξ	
Carbon tetrachloride ND	(0.35)	Ξ	QN	(0.35)	Ξ	
Chlorobenzene	(0.3)	[]	ON	(0.3)	Ξ	
Chloroethane	(0.7)	Ξ	ON	(0.7)	Ξ	
Chloroform	(0.15)	Ξ	ON	(0.15)	Ξ	
Chloromethane	(0.5)	Ξ	QN	(0.5)	Ξ	
Dibromochloromethane	(0.2)	Ξ	QN	(0.2)	Ξ	
Dibromomethane	(1.6)	[1]	QN	(1.6)	Ξ	
Methylene chloride ND	(0.4)	Ξ	ND	(0.4)	[1]	
[etrach]onoethene ND	(0.1)	Ξ	ND	(0.1)	Ξ	
Trichloroethene	(0.5)	Ξ	ND	(0.2)	Ξ	
Trichlorofluoromethane	(0.55)	Ξ	ND	(0.55)	Ξ	
Vinyl chloride ND	(0.25)	Ξ	ND	(0.25)	[1]	
Committee: 23 March 1995	() = Netect	Detection limit	[] = Factor	GN	Not Detected	NA = Not Applicable

12-M4-01 12-M4-02						SITE ID LOCATION ID SAMPLE ID		
(ug/L) (u	NRAMETER		12 12-MW-01 .2-MW-01-01	1	1	12 12-MW-02 12-MW-02-01	1	
(ug/L) (ug/L) (2000) (1) (2000) (1) (2000) (1) (2000) (1) (2000) (1) (2000) (1) (2000) (1) (2000) (1) (2000) (1) (2000) (1) (2000) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	is-1,3-Dichloropropene	ON C	(0.2)	Ξ3	Q.	(0.2)	[1]	
(ug/L) (2000) [1] ND (2000) (10000) [1] ND (10000) (2000) [1] ND (10000) (2000) [1] ND (2000) (2000) [1] ND (2000) (0.2) [1] ND (0.2) (0.3) [1] ND (0.2) (0.4) [1] ND (0.2) (0.5) [1] ND (0.2) (0.6) [1] ND (0.2) (0.1) [1.058201] ND (0.051) [1.01010 (0.011) [1.058201] ND (0.051) [1.01010 (0.0053) [1.058201] ND (0.051) [1.01010	ans-1,3-Dichloropropene	8 8	_	ΞΞ	2 2	(0.25) (0.15)	ΞΞ	
ther (1000) [1] ND (2000) [1] ND (2000) [1] ND (3000) [1] ND (2000) [1]	3015 - Nonhalogenated Volatile Org	anics (ug	_	Ξ	Š	(0000)	į	
(3000) (2000) (2000) (2000) (2000) (2100) (1] (0.4) (0.2) (0.4) (0.4) (0.2) (0.4) (0.2) (1] (0.4) (0.2) (1] (0.2) (1] (0.3) (0.2) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.3) (0.3) (1] (0.01) (1.058201] (0.01) (1.058201] (0.01) (1.058201] (0.01) (1.058201] (0.01) (1.058201] (0.01) (1.058201] (0.01) (1.058201] (0.01) (1.058201] (0.01) (1.058201] (0.01) (1.058201] (0.01) (1.01010 (0.011) (1.058201] (0.01) (1.01010 (0.032) (1.058201] (0.01) (1.058201] (0.01) (1.01010 (0.033) (1.058201] (0.01) (1.01010 (0.011) (1.058201] (0.01) (1.01010 (0.011) (1.058201] (0.01) (1.01010 (0.011) (1.058201] (0.01) (0.01) (1.01010 (0.011) (0.011) (1.058201] (0.011) (0.011) (1.058201] (0.011) (0.	chyl ether	<u> </u>	(10000)] [S S	(10000)	ΞΞ	
(2000) (2000) (210) (210) (210) (210) (210) (210) (210) (210) (210) (211) (221	thy] ethy] ketone	QN	(3000)	ΞΞ	2	(3000)	ΞΞ	
cs (ug/L) (0.4) [1.05] ND (200) [1.0 (0.2) [1] ND (0.2) (0.3) [1] ND (0.2) (0.3) [1] ND (0.2) (0.2) [1] ND (0.2) (0.2) [1] ND (0.2) (0.2) [1] ND (0.2) (0.3) [1] ND (0.2) (0.3) [1] ND (0.2) (0.3) [1] ND (0.2) (0.1) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.053) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.053) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.052) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.053) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.053) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.053) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010	thyl isobutyl ketone	ND	(2000)	ΞΞ	QN	(2000)	Ξ	
(210) [1.05] ND (200) [1.06] (0.4) [1] ND (0.4) (0.2) [1] ND (0.2) (0.3) [1] ND (0.2) (0.2) [1] ND (0.2) (0.2) [1] ND (0.2) (0.2) [1] ND (0.2) (0.3) [1] ND (0.2) (0.01) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016	1015MEMP - Nonhalogenated Volatile	Organics	(ng/L)					
(0.4) [1] ND (0.4) (0.2) (0.4) (0.4) (0.4) (0.3) (0.3) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (1] ND (0.2) (0.2) (0.2) (0.2) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3) (0.3) (0.3) (0.3) (0.3) (0.01) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.032) [1.058201] ND (0.01) [1.01016 (0.032) [1.058201] ND (0.01) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.051) [1.0516 (0.051) [1.0516 (0.051) [esel Range Organics (2)	ON (1)	(210)	[1.05]	QN	(200)	[1.01]	
(ug/L) (u	ozo - Aromatic Volatile Organics 2-Dichlorobenzene	(ng/ L) Nn	(7 0)	Ξ	Š	()	[1]	
(0.4) (0.4) (0.3) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (1] ND (0.2) (0.2) (1.00) (0.2) (0.2) (1.00) (0.2) (0.2) (1.00) (0.2) (1.00) (0.2) (0.3) (0.3) (0.3) (0.3) (0.3) (0.3) (0.01) [1.058201] ND (0.01) [1.01010 (0.021) [1.058201] ND (0.01) [1.01010 (0.053) [1.058201] ND (0.01) [1.01010 (0.011) [1.01010	3-Dichlorobenzene	2 2	(0.4)	35	2 2	(0.4)	ΞΞ	
(0.2) [1] ND (0.2) (0.2) [1] ND (0.2) (0.2) [1] ND (0.2) (100) [1] ND (0.2) (0.3) [1] ND (0.2) (0.3) [1] ND (0.2) (0.3) [1] ND (0.2) (0.011) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.032) [1.058201] ND (0.03) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.053) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016 (0.011) [1.058201] ND (0.01) [1.01016	4-Dichlorobenzene	QN	(0.4)	Ξ	9 Q	(0.4)	ΞΞ	
(0.2) [1] ND (0.2) (0.2) [1] ND (0.2) (100) [1] ND (0.2) (0.3) [1] ND (0.2) (0.3) [1] ND (0.2) (0.01) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.02) [1.058201] ND (0.01) [1.01010 (0.053) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.053) [1.058201] ND (0.051) [1.01010	nzene	S	(0.3)	[1]	QN	(0.3)		
(0.2) [1] ND (0.2) (100) [1] ND (100) (0.2) [1] ND (100) (0.3) [1] ND (0.3) (0.01) [1.058201] ND (0.01) [1.0101 (0.011) [1.058201] ND (0.01) [1.0101 (0.053) [1.058201] ND (0.01) [1.0101 (0.011) [1.058201] ND (0.01) [1.0101 (0.053) [1.058201] ND (0.01) [1.0101 (0.011) [1.058201] ND (0.01) [1.0101	lorobenzene	Q	(0.2)	Ξ	ON	(0.2)	ΞΞ	
(100) [1] ND (100) (0.2) [1] ND (0.2) (0.3) [1] ND (0.2) (0.3) [1] ND (0.3) (0.011) [1.058201] ND (0.01) [1.0101 (0.021) [1.058201] ND (0.02) [1.0101 (0.021) [1.058201] ND (0.02) [1.0101 (0.053) [1.058201] ND (0.01) [1.0101 (0.011) [1.058201] ND (0.01) [1.0101 (0.011) [1.058201] ND (0.01) [1.0101 (0.011) [1.058201] ND (0.03) [1.0101 (0.032) [1.058201] ND (0.03) [1.0101 (0.0402) [1.058201] ND (0.051) [1.0101 (0.053) [1.058201] ND (0.051) [1.0101 (0.011) [1.058201] ND (0.01) [1.0101	hylbenzene	QN	(0.2)	[1]	QN	(0.2)	[1]	
(0.2) [1] ND (0.2) (0.3) (1] ND (0.3) (ug/L) (0.011) [1.058201] ND (0.01) [1.0101) (0.021) [1.058201] ND (0.01) [1.0101) (0.021) [1.058201] ND (0.02) [1.0101) (0.032) [1.058201] ND (0.01) [1.0101) (0.011) [1.058201] ND (0.01) [1.0101) (0.011) [1.058201] ND (0.01) [1.0101) (0.011) [1.058201] ND (0.01) [1.0101) (0.032) [1.058201] ND (0.03) [1.0101) (0.053) [1.058201] ND (0.01) [1.0101) (0.053) [1.058201] ND (0.01) [1.0101) (0.011) [1.058201] ND (0.01) [1.0101]	soline Range Organics (2)	Q	(100)	[1]	QN	(100)		
(ug/L) (0.011) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.021) [1.058201] ND (0.02) [1.01010 (0.053) [1.058201] ND (0.051) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.011) [1.058201] ND (0.01) [1.01010 (0.032) [1.058201] ND (0.03) [1.01010 (0.053) [1.058201] ND (0.01) [1.01010 (0.053) [1.058201] ND (0.051) [1.01010 (0.053) [1.058201] ND (0.051) [1.01010 (0.053) [1.058201] ND (0.051) [1.01010 (0.051) [1.01010 (0.051) [1.058201] ND (0.051) [1.01010 (0.055) [1.058201] ND (0.055) [1.05	Juene	9.0	(0.2)	[1]	ND	(0.2)	[1]	
(ug/L) (0.011) [1.058201] ND (0.01) (0.011) [1.058201] ND (0.01) (0.021) [1.058201] ND (0.01) (0.021) [1.058201] ND (0.02) (0.011) [1.058201] ND (0.05) (0.011) [1.058201] ND (0.01) (0.011) [1.058201] ND (0.01) (0.032) [1.058201] ND (0.01) (0.032) [1.058201] ND (0.03) (0.053) [1.058201] ND (0.01)	tal xylenes	Q.	(0.3)	[1]	QN	(0.3)	[1]	
ND (0.011) [1.058201] ND (0.011) ND (0.011) [1.058201] ND (0.011) ND (0.021) [1.058201] ND (0.021) ND (0.011) [1.058201] ND (0.011) ND (0.011) [1.058201] ND (0.011) ND (0.032) [1.058201] ND (0.031) ND (0.053) [1.058201] ND (0.031) ND (0.053) [1.058201] ND (0.031) ND (0.011) [1.058201] ND (0.031)	080 - Organochlorine Pesticides ar		ng/L)					
ND (0.011) [1.058201] ND (0.012) ND (0.021) [1.058201] ND (0.022) ND (0.011) [1.058201] ND (0.022) ND (0.011) [1.058201] ND (0.012) ND (0.032) [1.058201] ND (0.012) ND (0.032) [1.058201] ND (0.032) ND (0.012) [1.058201] ND (0.012) ND (0.011) [1.058201] ND (0.012)	4'-DDD	2		1.058201]	S	(0.01)	1.010101]	
ND (0.021) [1.058201] ND (0.021) [0.022) ND (0.012) ND (0.013) ND	4'-DDE	Q.		1.058201]	2	(0.01) [1	1.010101]	
ND (0.011) [1.058201] ND (0.011) [0.011) ND (0.051) ND (0.011) [1.058201] ND (0.011) ND (0.011) ND (0.011) ND (0.051) ND	4'-DDT	QN		1.058201]	S		1.010101]	
ND	drin	QN		1.058201]	N		1.010101]	
ND (0.011) [1.058201] ND (0.01) ND (0.011) [1.058201] ND (0.01) ND (0.032) [1.058201] ND (0.03) 1fate ND (0.053) [1.058201] ND (0.051) ND (0.011) [1.058201] ND (0.051)	lordane	Q.		1.058201]	QN		1.010101]	
ND (0.011) [1.058201] ND (0.01) ND (0.032) [1.058201] ND (0.03) 1fate ND (0.053) [1.058201] ND (0.051) ND (0.011) [1.058201] ND (0.051)	əldrin	NO		1.058201]	ON		1.010101]	
1fate ND (0.032) [1.058201] ND (0.03) (0.03) ND (0.051)	dosulfan I	ON		1.058201]	ND		1.010101]	
ND (0.053) [1.058201] ND (0.051) ND (0.051) ND (0.011) [1.058201] ND (0.01)	dosulfan II	ON		1.058201]	QN		1.010101]	
ND (0.011) [1.058201] ND (0.01)	dosulfan Sulfate	ON		1.058201]	N		1.010101]	
	hrin	Q.		1.058201]	QN		1.010101]	

Compiled: 23 Ma

() = Detection Limit [] = Factor

= Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE 1D

12 12-MW-02 12-MW-02-01
12-MW-02 12-MW-02-01
0.016 KJB (0.02) [1.010101]
ND (0.01) [1.010101]
ND (0.01) [1.010101]
ND (0.051) [1.010101]
ND (0.1) [1.010101]
ND (0.2) [1.010101]
ND (0.2) [1.010101]
ND (0.1) [1.010101]
ND (0.1) [1.010101]
ND (0.2) [1.010101]
ND (0.2) [1.010101]
ND (0.51) [1.010101]
ND (0.01) [1.010101]
ND (0.01) [1.010101]
ND (0.01) [1.010101]
0.0047 KJB (0.01) [1.010101]
ND (10) [1.041666]
ND (10) [1.041666]
ND (10) [1.041666]
_
•
ND (10) [1.041666]
ND (10) [1.041666]
ND (10) [1.041666]
ND (52) [1.041666]
ND (10) [1.041666]
(10) [1.041666]
2 2 l

					SAMPLE ID
PARAMETER	1	12 12-MW-01 12-MW-01-01		12.	12 12-MW-02 12-MW-02-01
2-Methylphenol(o-cresol)	N	.0] (6·6)	[0.985221]	ON	(10) [1.041666]
2-Nitroaniline	QN	(49) [0.8	[0.985221]	N N	(52) [1.041666]
2-Nitrophenol	QN	(6.6)	0.985221]	QN	(10) [1.041666]
3,3'-Dichlorobenzidine	ON	(20) [0.8	[0.985221]	ON	(21) [1.041666]
3-Nitroaniline	QN	(49) [0.9	[0.985221]	QN	(52) [1.041666]
4,6-Dinitro-2-methylphenol	ND	(49) [0.8	0.985221]	NO	(52) [1.041666]
4-Bromophenyl phenyl ether	ND	6.9) [0.8]	[0.985221]	Q	(10) [1.041666]
4-Chloro-3-methylphenol	ND	6.9) (0.8)	0.985221]	ND	(10) [1.041666]
4-Chlorophenyl phenyl ether	ON	6.9) (8.9)	0.985221]	N Q	(10) [1.041666]
4-Methylphenol(p-cresol)	NO	6.9) [0.5]	0.985221]	ON	(10) [1.041666]
4-Nitroaniline	QV	(49) [0.9	0.985221]	QN	(52) [1.041666]
4-Nitrophenol	QN	(49) [0.9	0.985221]	R	(52) [1.041666]
Acenaphthene	ON	3.0] (8.8)	0.985221]	R	(10) [1.041666]
4cenaphthylene	ND	3.0] (8.6)	0.985221]	QN	(10) [1.041666]
Anthracene	QN	6.9) [0.9	0.985221]	Q	(10) [1.041666]
Benzo(a)anthracene	QN	6.0] (6.6)	0.985221]	QN	(10) [1.041666]
Benzo(a)pyrene	ON	6.0] (6.6)	0.985221]	QN	(10) [1.041666]
Benzo(b)fluoranthene	QN	6.0] (6.6)	0.985221]	ON	(10) [1.041666]
Benzo(g,h,i)perylene	ON	6.9) (6.8)	0.985221]	QN	(10) [1.041666]
Benzo(k)fluoranthene	QN	_	0.985221]	QN	(10) [1.041666]
Benzoic acid	QN	(49) [0.9	0.985221]	2	(52) [1.041666]
Benzyl alcohol	QN	6.0] (6.6)	0.985221]	QN	(10) [1.041666]
Butylbenzylphthalate	QN		0.985221]	S	(10) [1.041666]
Chrysene	ON	6.0] (6.6)	0.985221]	QN Q	(10) [1.041666]
Di-n-octylphthalate	ND	6.0] (6.6)	0.985221]	ND	(10) [1.041666]
Dibenz(a,h)anthracene	QN	6.0] (6.6)	0.985221]	QN	(10) [1.041666]
Dibenzofuran	QN	6.0] (6.6)	0.985221]	QN	(10) [1.041666]
Dibutylphthalate	ON	6.0] (6.6)	0.985221]	N Q	(10) [1.041666]
Diethylphthalate	ND	6.0] (6.6)	0.985221]	N O	(10) [1.041666]
Jimethylphthalate	ND	6.0] (6.6)	0.985221]	ON	(10) [1.041666]

Compiled: 23 Map

() = Detection Limit [] = Factor

"" = Not Detected NA = Not Applicable

	6	12 12-mu-01	12	12 12-MJ-02	
PARAMETER 	12	12-MW-01-01	12-	12-MW-02-01	
Fluorene	Q.	(9.9) [0.985221]	QN	(10) [1.041666]	
Hexachlorobenzene	QV	(9.9) [0.985221]	Q	(10) [1.041666]	
Hexachlorobutadiene	Q	(9.9) [0.985221]	ON	(10) [1.041666]	
Hexachlorocyclopentadiene	ON	_	ND	_	
Hexachloroethane	Q	(9.9) [0.985221]	QN	(10) [1.041666]	
Indeno(1,2,3-cd)pyrene	QN ·	(9.9) [0.985221]	Q	(10) [1.041666]	
Isophorone	Q	(9.9) [0.985221]	ON	(10) [1.041666]	
N-Nitrosodiphenylamine	Q	(9.9) [0.985221]	QN	(10) [1.041666]	
N-Nitrosodipropylamine	QN	(9.9) [0.985221]	QN	(10) [1.041666]	
Naphthalene	QN	(9.9) [0.985221]	ON	(10) [1.041666]	
Nitrobenzene	QN	(9.9) [0.985221]	QN	(10) [1.041666]	
Pentachlorophenol	N O	(49) [0.985221]	QN	(52) [1.041666]	
Phenanthrene	Q.	(9.9) [0.985221]	0.92 J	(10) [1.041666]	
Phenol	QN	(9.9) [0.985221]	QN	(10) [1.041666]	
Pyrene	QN Q	(9.9) [0.985221]	QN	(10) [1.041666]	
bis(2-Chloroethoxy)methane	QN	(9.9) [0.985221]	QN	(10) [1.041666]	
bis(2-Chloroethyl)ether	QN	(9.9) [0.985221]	QN	(10) [1.041666]	
bis(2-Chloroisopropyl)ether	QN	(9.9) [0.985221]	QN	(10) [1.041666]	
bis(2-Ethylhexyl)phthalate	2.9 JB	(9.9) [0.985221]	4.2 JB	(10) [1.041666]	
p-Chloroaniline	Q	(9.9) [0.985221]	QN	(10) [1.041666]	
nuclear Aromatic	Hydrocarbons (ug/L)	(1			
Acenaphthene	QN	(1.9) [1.052631]	ON	(1.8) [0.995024]	
Acenaphthylene	QN	(2.4) [1.052631]	ON	(2.3) [0.995024]	
Anthracene	QN	(0.69) [1.052631]	QN	(0.66) [0.995024]	
Benzo(a)anthracene	Q	(0.014) [1.052631]	Q.	(0.013) [0.995024]	
Benzo(a)pyrene	ND	(0.024) [1.052631]	S	(0.023) [0.995024]	
Benzo(b)fluoranthene	QN	(0.019) [1.052631]	QN	(0.018) [0.995024]	
Benzo(g,h,i)perylene	Q	(0.08) [1.052631]	QN	(0.076) [0.995024]	
Benzo(k)fluoranthene	ON	(0.018) [1.052631]	QN	(0.017) [0.995024]	
Chrysene	ND	(0.16) [1.052631]	ND	(0.15) [0.995024]	
Dibenzo(a,h)anthracene	Q	(0.032) [1.052631]	Q	(0.03) [0.995024]	
1000				-	-

							(0.21) [0.995024]	(0.21) [0.995024]	0.043) [0.995024]	.995024]	(0.64) [0.995024]	(0.27) [0.995024]
	10	_			_	! ! !	S) (1	S (1	3) [5	3) [0	0] (#	7) [0
SITE ID	LOCATION ID	SAMPLE ID	12	12-MW-02	12-MW-02-01		(0.21	(0.21	(0.043	(1.8	79.0)	(0.2)
			Q. S						0.075	QN	QN	ON
							(0.22) [1.052631]	(0.22) [1.052631]	0.045) [1.052631]	(1.9) [1.052631]	(0.67) [1.052631]	(0.28) [1.052631]
					01		22) [1	22) [1	45) [1	1) (6:	37) [1	28) [1
			12	12 12-MW-01 12-MW-01-01			0)	0.	(0.0)	(1	.e)	(0.
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QN	QN	0.07	S	Q.	QN
									Ø)			
							ne		Indeno(1,2,3-cd)pyrene	a)	ne	
					PARAMETER		Fluoranthene	Fluorene	no(1,2	Naphthalene	Phenanthrene	ne
					PARA		Fluo	Fluo	Inde	Naph	Phen	Pyrene

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

101 01 01 01 01 01 01 0			
- Residue, Filterable (TDS) (mg/L) - Metals (mg/L) - Metals (mg/L) ND (0.2) [1] ND (0.2) [1] ND (0.3) [1] ND (0.3) [1] 10 0.39 (0.01) [1] ND (0.03) [1] 11 0.33 (0.01) [1] ND (0.002) [1] ND (0.002) [1] Inm ND (0.003) [1] ND (0.003) [1] Inm ND (0.01) [1] ND (0.01) [1] Inm ND (0.02) [1] ND (0.01) [1] Inm ND (0.05) [1] ND (0.05) [1] Inm ND (0.01) [1] ND (0.05) [1] Inm ND (0.01) [1] ND (0.05) [1] Inm ND (0.02) [1] ND (0.05) [1] Inm ND (0.01) [1] ND (0.01) [1] Inm ND (0.02) [1] ND (0.02) [1] Inm ND (0.02) [1] ND	01 01-MW-02 01-DS-07 Dup of 01-MW-02-01		01 01-MW-03 01-MW-03-01
dissolved solids - Metals (mg/L) ND (0.2) [1] ND (0.2) [1] ND (0.3) [1] ND (0.3) [1] It nn (0.3) [1] ND (0.3) [1] It nn (0.3) [1] ND (0.3) [1] It nn (0.002) [1] ND (0.002) [1] ND (0.002) [1] ND (0.002) [1] It nn (0.002) [1] ND (0.002) [1] It nn (0.001) [1] ND (0.002) [1] It nn (0.001) [1] ND (0.002) [1] It nn (0.001) [1] ND (0.001) [1] It nn (0.002) [1] ND (0.002) [1] It nn (0.002) [1] ND (0.01) [1] It nn (0.002) [1] It nn			1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
num ND (0.2) [1] ND (0.2) [1] ND (0.1) [1] ND (0.01) [1] ND (0.02) [1]	880 (10)	[1.000000] 930	(10) [1.000000]
ony ND (0.3) (1) (1) ND (0.3) (1) ND (0.3) (1) ND (0.002) (1) ND (0.002) (1) ND (0.005) (1) ND (0.005) (1) (1) ND (0.005) (1) (1) ND (0.001) (1) (1) ND (0.002) (1) (1) ND (0.002) (1) (1) (1) (1) (1) (1) (1) ([1] ND	[1] (2.0)
ic hold (0.3) [1] hD (0.3) [1] hD (0.3) [1] hum (0.39 (0.01) [1] hum (0.03) [1] hum (0.03) [1] hum (0.002) [1] hum (0.002) [1] hD (0.002) [1]	QN		
1	N		
1 mm ND	0.32	0.	(0.01)
um ND (0.065) [1] ND (0.05) [1] timm 190 (1) [1] 240 (1) [1] timm ND (0.01) [1] ND (0.01) [1] r ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] sium ND (0.05) [1] ND (0.05) [1] ND (0.05) [1] denum ND (0.05) [1] ND (0.05) [1] ium ND (0.05) [1] ND (0.01) [1] ium) ON		
um 190 (1) [1] 240 (1) [1] tum ND (0.01) [1] ND (0.01) [1] r ND (0.01) [1] ND (0.01) [1] r ND (0.02) [1] ND (0.02) [1] sium 29 (1) [1] ND (0.05) [1] nese 2.2 (0.01) [1] ND (0.05) [1] nese 2.2 (0.01) [1] ND (0.05) [1] denum ND (0.05) [1] ND (0.05) [1] denum ND (0.02) [1] ND (0.05) [1] sium ND (0.02) [1] ND (0.02) [1] ium ND (0.01) [1] ND (0.02) [1] ium ND (0.02) [1] ND (0.02) [1] <t< td=""><td>ON</td><td>[1] ND</td><td></td></t<>	ON	[1] ND	
tr ND (0.01) [1] ND (0.01) [1] tr ND (0.01) [1] ND (0.01) [1] r ND (0.02) [1] ND (0.02) [1] 6.8 (0.05) [1] ND (0.05) [1] stum 29 (1) [1] ND (0.05) [1] nesse 2.2 (0.01) [1] 1.5 (0.01) [1] denum ND (0.05) [1] ND (0.05) [1] stum (0.02) [1] ND (0.05) [1] rium ND (0.02) [1] ND (0.05) [1] rium ND (0.01) [1] ND (0.02) [1] itum ND (0.01) [1] ND (0.01) [1] itum ND (0.02) [1] ND (0.01) [1] - Arsenic (mg/L) ND (0.02) [1] ND (0.02) [1] - Lead (mg/L) ND (0.003) [1] ND (0.003) [1] - Lead (mg/L) ND (0.003) [1] ND (0.003) [1]	230 (1)	8	
t t ND (0.01) [1] ND (0.01) [1] r ND (0.02) [1] ND (0.02) [1] stimm	ND (0.01)	[1] ND	(0.01) [1]
Francisco (mg/L) ND (0.02) [1] ND (0.02) [1] ND (0.05) [1] ND (0.01) [1] ND (0.02) [1]		[1] ND	(0.01)
sium 6.8 (0.05) [1] 0.12 B (0.05) [1] sium 29 (1) [1] 45 (1) [1] denum 2.2 (0.01) [1] 45 (1) [1] denum ND (0.05) [1] ND (0.05) [1] denum ND (0.05) [1] ND (0.05) [1] stum ND (0.02) [1] ND (0.02) [1] tum ND (0.01) [1] ND (0.02) [1] tum ND (0.01) [1] ND (0.01) [1] tum ND (0.01) [1] ND (0.01) [1] tum ND (0.02) [1] ND (0.02) [1] - Arsentc (mg/L) ND (0.02) [1] ND (0.02) [1] - Lead (mg/L) ND (0.003) [1] 0.0042 [1] 1]	ON	[1] ND	
sium 29 (1) [1] ND (0.05) [1] ND (0.05) [1] nese 2.2 (0.01) [1] 45 (1) [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.13 B (0.05)	[1] ND	
sium 29 (1) [1] 45 (1) [1] nese 2.2 (0.01) [1] 1.5 (0.01) [1] denum ND (0.05) [1] ND (0.05) [1] 1 ND (0.02) [1] ND (0.02) [1] sium ND (0.02) [1] ND (0.02) [1] r ND (0.03) [1] ND (0.03) [1] r ND (0.01) [1] ND (0.01) [1] r ND (0.01) [1] ND (0.02) [1] r Arsenic (mg/L) ND (0.02) [1] ND (0.02) [1] r Lead (mg/L) ND (0.004) [1] ND (0.004) [1] r Lead (mg/L) (0.003) [1] 0.0042 R (0.003) [1]	ND (0.05)	[1] ND	(0.05) [1]
1.5 1.5	44 (1)	[1] 50	(1) [1]
Jenum ND (0.05) [1] ND (0.02) [1] 1 ND (0.02) [1] ND (0.02) [1] 1 sium A.6 (3) [1] ND (0.3) [1] 1 ium ND (0.01) [1] ND (0.01) [1] 1 ium ND (0.02) [1] ND (0.02) [1] 1 ium ND (0.02) [1] ND (0.02) [1] 2 Arsenic (mg/L) ND (0.02) [1] ND (0.02) [1] 1 c Lead (mg/L) ND (0.004) [1] 0.0042 [1] 0.0042 [1]	1.5	[1] 0.022	(0.01)
ND (0.02) [1] ND (0.02) [1] Strain ND (0.02) [1] Strain ND (0.03) [1] Strain ND (0.03) [1] Strain ND (0.01) [1] ND (0.01) [1] Strain ND (0.01) [1] ND (0.01) [1] ND (0.02) [1] ND (0.03) [1] ND (0.004) [1] ND (0.004) [1] ND (0.003) [1	ND (0.05)	[1] ND	(0.05)
sium		[1] ND	(0.02) [1]
ium ND (0.3) [1] ND (0.3) [1] ND (0.01) [1] ND (0.01) [1] In 5.5 (1) [1] ND (0.01) [1] ium ND (0.02) [1] ND (0.02) [1] - Arsenic (mg/L) ND (0.04) [1] ND (0.02) [1] - Lead (mg/L) 0.0037 B (0.003) [1] 0.0042 B (0.003) [1]		[1] 5.9	(3)
ND	QN	[1] ND	
n 5.5 (1) [1] 9.3 (1) [1] [1] ium ND (0.1) [1] ND (0.1) [1] [1] ND (0.01) [1] [1] ND (0.02) [1] ND (0.03) [1] ND (0.004) [1] ND (0.004) [1] ND (0.004) [1] ND (0.003) [1] ND (0.003) [1]	ND (0.01)	[1] ND	(0.01)
ium ND (0.1) [1] ND (0.1) [1] ium ND (0.02) [1] ND (0.02) [1] - Arsenic (mg/L) ND (0.02) [1] - Lead (mg/L) ND (0.004) [1] 0.0037 B (0.003) [1] 0.0042 B (0.003) [1]		[1] 30	(1)
- Arsenic (mg/L) - Lead (mg/L)		[1] ND	
- Arsenic (mg/L) - Lead (mg/L) - Lead (mg/L) - Look (mg/L)		[1] ND	(0.02)
- Arsenic (mg/L) ND (0.004) [1] ND (0.004) [1] - Lead (mg/L) 0.0037 B (0.003) [1] 0.0042 B (0.003) [1]	ON	0.	
ic - Lead (mg/L)			
- Lead (mg/L) 0.0037 B (0.003) [1] 0.0042 B (0.003) [1]		[1] ND	(0.004)
0.0037 B (0.003) [1] 0.0042 B (0.003) [1]			
		[1] ND	(0.003) [1]
Compiled: 20 March 1005			

					SITE ID LOCATION ID SAMPLE ID							
PARAMETER		01 01-MW-01 01-MW-01-01	; ; ; ;		01 01-MW-02 01-MW-02-01		01-05-07	01 01-MW-02 01-DS-07 Dup of 01-MW-02-01	1	0	01 01-MW-03 01-MW-03-01	
SW7470 - Mercury (mg/L) Mercury SW7740 - Selenium (mg/L) Selenium	0.00032 B	0.00032 B (0.00018) ND (0.005)	E E	0 . 0004 ND	(0.00018)	[1] 0	[1] 0.00033 B	(0.00018)	[1] 0.00036 [1] ND	00036 ND	(0.00018)	[1]

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

					LOCATION ID SAMPLE ID							
PARAMETER	01-DS-06	01 01-MW-03 01-DS-06 Dup of 01-MW-03-01	-01	- 0	01 01-MW-04 01-MW-04-01		_	01 01-MW-05 01-MW-05-01	! !	0	01 01-MW-06 01-MW-06-01	
E160.1 - Residue, Filterable (TDS) Total dissolved solids SW6010 - Metals (mg/l)	(mg/L) 940	(10) [1.000000]	[000000]		N N		640	(10) [1	(10) [1.000000]		NA	
	QV	(0.2)	[1]	ON	(0.2)	Ξ	ND	(0.2)	Ξ	ON	(0.2)	Ξ
Antimony	윤 :	(0.1)	Ξ	S	(0.1)	Ξ	2	(0.1)	Ξ	ON	(0.1)	[1]
Arsenic	8 ((0.3)	Ξ		(0.3)	[1]	R	(0.3)	Ξ	Q	(0.3)	Ξ
Barium	0.2	(0.01)	Ξ	0.32	(0.01)	Ξ	0.23	(0.01)	Ξ	0.42	(0.01)	Ξ
Beryllium	2 9	(0.002)	ΞΞ	2	(0.002)	Ξ	2	(0.005)	Ξ	8	(0.005)	Ξ
Cadmium	2 8	(0.005)	ΞΞ	Q .	(0.005)	Ξ;	2	(0.002)	Ξ	Q	(0.002)	[]
Calcium	230	(1)	ΞΞ	210	(1)	ΞΞ	180	(1)	Ξ	210	(1)	Ξ
Chromium Cobalt	<u> </u>	(0.01)	ΞΞ	2 9	(0.01)	ΞΞ	Q 9	(0.01)	ΞΞ	운 :	(0.01)	Ξ
Conner	2 2	(0.01)	ΞΞ	2 2	(0.01)	ΞΞ	2 9	(0.01)	ΞΞ	2 9	(0.01)	ΞΞ
Iron	2 8	(0.05)	ΞΞ	2 2	(0.05)	ΞΞ	2 2	(0.02)	ΞΞ	N D	(0.0Z) (0.0E)	ΞΞ
Lead	ON	(0.02)	ΞΞ	2	(0.05)	Ξ		(0:02)	ΞΞ	• ₽	(0.02)	ΞΞ
Magnesium	51	(1)	Ξ	18	(1)	Ξ	27	(1)	Ξ	51	(1)	ΞΞ
Manganese	0.023	(0.01)	[]	0.63	(0.01)	Ξ	0.05	(0.01)	Ξ	9.3	(0.01)	ΞΞ
Molybdenum	Q	(0.02)	[]	ND	(0.02)	Ξ	R	(0.02)	Ξ	S	(0.02)	Ξ
Nickel	Q	(0.05)	Ξ	QN	(0.05)	Ξ	8	(0.05)	[1]	0.039	(0.05)	Ξ
Potassium	9	(3)	Ξ	3.9	(3)	Ξ	3.7	(3)	Ξ	5.6	(3)	Ξ
Selenium	8	(0.3)	Ξ	QN	(0.3)	Ξ	9	(0.3)	Ξ	QN	(0.3)	Ξ
Silver	Q.	(0.01)	Ξ	ND	(0.01)	Ξ	S	(0.01)		QN	(0.01)	Ξ
Sodium	31	(1)	[1]	5.5	(1)	Ξ	2	(1)	Ξ	12	(1)	Ξ
Thallium	QN	(0.1)	Ξ	ND	(0.1)	Ξ	N N	(0.1)	Ξ	QN	(0.1)	Ξ
Vanadium	Q	(0.05)	Ξ	ON	(0.05)	Ξ	S	(0.05)	Ξ	ND	(0.05)	Ξ
	S	(0.05)	[1]	Q	(0.05)	Ξ	QN	(0.05)	[1]	Q	(0.05)	Ξ
SW7060 - Arsenic (mg/L)												
Arsenic SW7421 - Lead (mg/L)	ON O	(0.004)	Ξ	Q.	(0.004)	Ξ	QN	(0.004)	[1]	QN	(0.004)	[1]
במם –	S	(0.003)	Ξ	0 0038 B	(0 003)	[1]	, S	(00 00)	[1]	9 0000	(000 0)	-

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

	01 01-MW-06 01-MW-06-01	(0.00018)
		0.00033 B
		[1]
	01 01-MW-05 01-MW-05-01	(0.00018)
		0.00034 B
		[1]
SITE ID LOCATION ID SAMPLE ID	01 01-MW-04 01-MW-04-01	(0.00018)
	 	0.00031 B
	-03-01	= =
	01 01-DS-06 Oup of 01-MW-03-01	(0.00018)
	01-08-(0.00036 ND
	PARAMETER 	SW7470 - Mercury (mg/L) Mercury SW7740 - Selenium (mg/L) Selenium
	PA	SW7 Me SW7

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

Residue, Filterable (TDS) (mg/ Ssolved solids 4 Metals (mg/L)	01-SW-01 01-SW-01-01			•			05				
., Filterable (TDS) (mg isolids (mg/L)	01-SW-01-01		C	01 01-5W-02		-	02-GW-01		-	02	
e, Filterable (TDS) (mg 1 solids (mg/L)		:	01	01-SW-02-01	! ! ! ! !	0	02-GW-01-01		0	02-GW-02-01 	; ; ;
fsolids (mg/L)	(, ()	,									
	(10) [1.00000]	[00000]	640	(10) [1.000000]	[000000	260	(10)	(10) [1.000000]	270	(10) [1.000000]	[000000
	(0.2)	[1]	QN	(0.2)	[1]	QN	(0.2)	[1]	S	(0.2)	[1]
Antimony ND	(0.1)	Ξ	QN	(0.1)	Ξ	N	(0.1)	Ξ	S	(0.1)	[1]
Arsenic ND	(0.3)	Ξ	ON	(0.3)	[1]	ND	(0.3)	Ξ	QN	(0.3)	Ξ
Barium 0.17	(0.01)	Ξ	0.5	(0.01)	[1]	0.4	(0.01)	Ξ	0.42	(0.01)	Ξ
Wr.	(0.002)	Ξ	N	(0.005)	[]	N	(0.005)	Ξ	QN	(0.005)	Ξ
	(0.002)	Ξ	Q	(0.002)	Ξ	ND	(0.002)	[1]	QN	(0.002)	Ξ
	(1)	Ξ	110	(1)	Ξ	61	(1)	Ξ	09	(1)	[1]
Chromium ND	(0.01)	Ξ	Q	(0.01)	Ξ	QN	(0.01)	Ξ	QN	(0.01)	Ξ
	(0.01)	Ξ	QN	(0.01)	[1]	ON.	(0.01)	[1]	ON	(0.01)	[1]
Copper	(0.05)	Ξ	Q	(0.05)	Ξ	QN	(0.05)	Ξ	ON	(0.05)	Ξ
Iron 1.8	(0.02)	Ξ	0.3 B	(0.02)	Ξ	5.3	(0.02)	Ξ	4.9	(0.02)	[1]
	(0.02)	Ξ	QN	(0.02)	Ξ	ND	(0.02)	[1]	QN	(0.02)	Ξ
	(1)	Ξ	16	(1)	[1]	16	(1)	[1]	. 17	(1)	Ξ
	(0.01)	Ξ	1.6	(0.01)	[1]	0.35	(0.01)	Ξ	0.32	(0.01)	Ξ
Molybdenum	(0.02)	Ξ	QN	(0.02)	[]	QN	(0.02)	Ξ	QN	(0.02)	Ξ
Nickel	(0.05)	Ξ	Q	(0.05)	Ξ	ON	(0.05)	Ξ	QN	(0.05)	Ξ
Potassium 19	(3)	Ξ	28	(3)	Ξ	ON	(3)	[1]	QN	(3)	Ξ
ET.	(0.3)	Ξ	Q.	(0.3)	[1]	QN	(0.3)	Ξ	QN	(0.3)	Ξ
Silver . ND	(0.01)	[1]	Q	(0.01)	Ξ	ON	(0.01)	Ξ	QN	(0.01)	[]
Sodium 2.2	(1)	Ξ	5.6	(1)	[1]	2.9	(1)	Ξ	3.3	(1)	[1]
Thallium ND	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(0.1)	Ξ	ND	(0.1)	Ξ
Vanadium	(0.05)	[1]	Q	(0.05)	Ξ	ON	(0.05)	[]	ON	(0.05)	[1]
Zinc	(0.05)	Ξ	QN	(0.05)	Ξ	0.025	(0.05)	Ξ	QN ON	(0.05)	[1]
SW7060 - Arsenic (mg/L)											
Arsenic . 0.0085	(0.004)	Ξ	0.043	(0.004)	[1]	Q	(0.004)	Ξ	QN	(0.004)	[1]
SW7421 - Lead (mg/L)											
Lead 0.01	(0.003)	Ξ	0.011	(0.003)	Ξ	0.0044 B	(0.003)	[]	0.0047 B	(0.003)	Ξ

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

TABLE A3

	[1]
(0.00018)	(0.005)
QN	NO
[1]	[1]
(0.00018)	(0.002)
Q.	QN
[1]	[1]
(0.00018)	(0.005)
0.00018 B	ND
[]	[1]
(0.00018)	(0.002)
ND	ON
Mercury SW7740 - Selenium (mg/L)	Selenium
	ND (0.00018) [1] 0.00018 B (0.00018) [1] ND (0.00018) [1] ND

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

					SAMPLE ID						
PARAMETER		02 02-GW-03 02-GW-03-01	i ! ! ! !	02-08-01	02 02-6W-03 02-DS-01 Dup of 02-6W-03-01	3-01		02 02-GW-04 02-GW-04-01	! ! ! !	02-08-02 D	02 02-GW-04 02-DS-02 Dup of 02-GW-04-01
E160.1 - Residue, Filterable (TDS) Total dissolved solids	300 (mg/L)	(10) [1.000000]	[000000]	300	(10) [1.	[1.000000]	280	(10) [1.0	[1.000000]	280	(10) [1.000000]
woolo - metals (mg/L) Aluminum	ON	(0.2)	Ξ	N	(0.2)	Ξ	ND	(0.2)	[1]		NA
Antimony	QN :	(0.1)	Ξ	QN	(0.1)	[1]	QN	(0.1)	Ξ		NA
Arsenic	S S	(0.3)	Ξ3	2 2	(0.3)	ΞΞ	9 <u>(</u>	(0.3)	Ξ3		NA:
barium Bervllium	0.43 N	(0.01)	ΞΞ	0.41 N	(0.01)	[]	2.0 CM	(0.01)	ΞΞ		NA NA
Cadmium	8	(0.005)	ΞΞ	8	(0.005)	ΞΞ	2 S	(0.005)	ΞΞ		NA NA
Calcium	62	(1)	Ξ	58	(1)	Ξ	45	(1)	ΞΞ		NA
Chromium	QN	(0.01)	[]	QN	(0.01)	Ξ	QN	(0.01)	Ξ		NA
Cobalt	ON	(0.01)	Ξ	ND	(0.01)	Ξ	ON	(0.01)	[1]		NA
Copper	ON	(0.05)	Ξ	QN	(0.05)	Ξ	S	(0.05)	Ξ		NA
Iron	4.5	(0.05)	Ξ	4.2	(0.02)	Ξ	0.098 B	(0.02)	Ξ		NA
Lead	QN	(0.02)	Ξ	QN	(0.02)	Ξ	S	(0.02)	Ξ		NA
Magnesium	17	(1)	Ξ	16	(1)	Ξ	14	(1)	[1]		NA
Manganese	0.33	(0.01)	Ξ	0.31	(0.01)	Ξ	0.19	(0.01)	[1]		NA
Molybdenum	QN	(0.05)	Ξ	R	(0.02)	Ξ	S	(0.02)	Ξ		NA
Nickel	ON	(0.05)	Ξ	R	(0.05)	Ξ	S	(0.05)	[1]		NA
Potassium	QN	(3)	Ξ	QN	(3)	Ξ	윤	(3)	[1]		NA
Selenium	ON	(0.3)	Ξ	2	(0.3)	Ξ	8	(0.3)	Ξ		NA
Silver	ON	(0.01)	Ξ	QN	(0.01)	Ξ	S	(0.01)	Ξ		NA
Sodium	3.2	(1)	Ξ	5.9	(1)	Ξ	24	(1)	Ξ		NA
Thallium	QN	(0.1)	Ξ	R	(0.1)	Ξ	O.	(0.1)	Ξ		NA
Vanadium	ON	(0.05)	Ξ	ON	(0.05)	Ξ	ON	(0.05)	Ξ		NA
Zinc	0.058	(0.05)	[1]	0.063	(0.05)	Ξ	0.041	(0.05)			NA
SW7060 - Arsenic (mg/L)											
Arsenic	QN	(0.004)	Ξ	QN Q	(0.004)	[1]	QN	(0.004)	[1]		NA
SW7421 - Lead (mg/L)											
- Ceal	CN	(0 003)	Ξ	2	(0 003)	Ξ	S	(0 003)	[1]		< 7

NA = Not Applicable

ND = Not Detected

[] = Factor

() = Detection Limit

	02 02-GW-04 02-DS-02 Dup of 02-GW-04-01	NA	NA
		[1]	[1]
	02 02-GW-04 02-GW-04-01	(0.00018)	(0.005)
	0	QN	ND
	11	[1]	
SITE ID LOCATION ID SAMPLE ID	02 02-GW-03 02-DS-01 Dup of 02-GW-03-01	(0.00018)	(0.005)
	02-DS-01	ND	ON
	; ; ; ;	[1]	[1]
	02 02-GW-03 02-GW-03-01	(0.00018)	(0.005)
		ON	ND
	PARAMETER 	SW7470 - Mercury (mg/L) Mercury SW7740 - Selenium (mg/L)	Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

	-				SITE ID LOCATION ID SAMPLE ID							
		03 03-6W-01			03 03-6W-02			03 03-6W-03			03 03-6W-03	
PARAMETER		03-GW-01-01	1 1 1		03-GW-02-01	! ! !	0	03-GW-03-01		03-DS-01	Dup of 03-GW-03-01	3-01
a ==	(mg/L) 340	(10) [1.000000]	[00000]	430	(10)	(10) [1.000000]	480	(10) [1	(10) [1.000000]	450	(10) [1	[1000000]
SWbUlu - Metals (mg/L) Aluminum	QN	(0.2)	[1]	QN	(0.2)	[1]	ND	(0.2)	[1]	QN	(0.2)	[1]
Antimony	8	(0.1)	[1]	QN	(0.1)	Ξ	Ñ	(0.1)	[1]	2	(0.1)	Ξ
Arsenic	ON	(0.3)	Ξ	ON.	(0.3)	Ξ	N	(0.3)	Ξ	ON	(0.3)	Ξ
Barium	0.28	(0.01)	Ξ	0.42	(0.01)	Ξ	0.43	(0.01)	Ξ	0.43	(0.01)	Ξ
Beryllium	Q.	(0.005)	Ξ	Q	(0.005)	[1]	N	(0.005)	Ξ	S	(0.005)	Ξ
Cadmium	Q.	(0.005)	Ξ	N N	(0.002)	Ξ	Q	(0.002)	Ξ	2	(0.002)	Ξ
Calcium	9/	(1)	Ξ	110	(1)	Ξ	100	(1)	Ξ	100	(1)	[1]
Chromium	QN	(0.01)	Ξ	QV	(0.01)	Ξ	QN	(0.01)	Ξ	QN	(0.01)	[1]
Cobalt	ON	(0.01)	[1]	QN	(0.01)	Ξ	9	(0.01)	Ξ	QN	(0.01)	[1]
Copper	ON	(0.05)	Ξ	Q	(0.05)	[1]	2	(0.05)	Ξ	QN	(0.05)	[1]
Iron	15	(0.02)	Ξ	15	(0.02)	[1]	7.3	(0.02)	[]	7.4	(0.02)	[1]
Lead	Q	(0.05)	Ξ	QN	(0.02)	Ξ	QN	(0.02)	Ξ	ON	(0.02)	Ξ
Magnesium	16	(1)	Ξ	23	(1)	Ξ	18	(1)	Ξ	18	(1)	[1]
Manganese	0.86	(0.01)	Ξ	1.7	(0.01)	Ξ		(0.01)	Ξ	-1	(0.01)	Ξ
Molybdenum	QN	(0.05)	Ξ	S	(0.02)	Ξ	S	(0.02)	Ξ	QN	(0.02)	Ξ
Nickel	ON	(0.05)	Ξ	0.02	(0.05)	Ξ	Q.	(0.05)	Ξ	ND	(0.05)	[1]
Potassium	ec	(3)	Ξ	3.8	(3)	Ξ	2	(3)	Ξ	QN	(3)	[1]
Selenium	QN	(0.3)	Ξ	S	(0.3)	Ξ	Q	(0.3)	Ξ	QN	(0.3)	[1]
Silver	QN	(0.01)	Ξ	S	(0.01)	Ξ	2	(0.01)	Ξ	QN	(0.01)	[1]
Sodium	13	(1)	Ξ	10	(1)	Ξ	30	(1)	Ξ	30	Ξ)	[1]
Thallium	ON	(0.1)	Ξ	QN	(0.1)	Ξ	8	(0.1)	Ξ	QN	(0.1)	[1]
Vanadium	QN	(0.03)	Ξ	Q	(0.05)	Ξ	8	(0.05)	Ξ	ON	(0.05)	
Zinc	0.023	(0.05)	Ξ	0.029	(0.05)	Ξ	2	(0.05)	Ξ	QN	(0.05)	[1]
SW7060 - Arsenic (mg/L)												
Arsenic	QN	(0.004)	Ξ	S	(0.004)	Ξ	ND	(0.004)	Ξ	QN	(0.004)	[1]
SW7421 - Lead (mg/L)												
Lead	Q	(0.003)	[1]	0.0084	(0.003)	Ξ	0.0032 B	(0.003)	Ξ	Q.	(0.003)	Ξ

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

					SITE ID LOCATION ID SAMPLE IO							
PARAMETER 		03 03-GW-01 03-GW-01-01		0	03 03-6W-02 03-6W-02-01		! !	03 03-GW-03 03-GW-03-01			03 03-GW-03 03-DS-01 Dup of 03-GW-03-01	11
SW7470 - Mercury (mg/L) Mercury SW7740 - Selenium (mg/L)	0.00034 B	0.00034 B (0.00018)	[1]	[1] 0.00034 B	(0.00018)	[1]	QN	(0.00018)	Ξ	Q.	(0.00018)	[1]
Selenium	ND	(0.005)	[1]	QN	(0.005)	[1]	ON	(0.005)	[1]	QN	(0.002)	[1]

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

		_	LOCATION ID SAMPLE ID							
	03 03-6M-03		03			04 04_M/_02		c	04 04. M/L 02	
PARAMETER	3-GW-03-01	03	03-GW-04-01 		0	04-MW-02-01	; ; ; ;	04	04-MW-03-01 	1 2 1
E160.1 - Residue, Filterable (TDS) (mg/L)	. (mg/L)									
Total dissolved solids SW6010 - Metals (mq/L)	580 (10) [1.000000]	570	(10) [1.000000]	[000000		NA			NA	
	NA	N	(0.2)	Ξ	QN	(0.2)	Ξ	S	(0.2)	Ξ
Antimony	NA	ND	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(0.1)	Ξ
Arsenic	NA	ND	(0.3)	Ξ	ON	(0.3)	[1]	QN:	(0.3)	Ξ
Barium	NA	0.35	(0.01)	Ξ	0.21	(0.01)	[1]	0.43	(0.01)	Ξ
Beryllium	NA	QN	(0.005)	Ξ	QN	(0.005)	Ξ	ON	(0.002)	Ξ
Cadmium	NA	QN	(0.002)	Ξ	8	(0.002)	[1]	ND	(0.002)	Ξ
Calcium	NA	130	(1)	Ξ	190	(1)	Ξ	160	(1)	Ξ
Chromium	NA	QN	(0.01)	Ξ	ND	(0.01)	Ξ	QN	(0.01)	Ξ
Cobalt	NA	ON	(0.01)	[1]	QN	(0.01)	Ξ	0.017	(0.01)	Ξ
Copper	NA	ON	(0.05)	Ξ	QN	(0.05)	Ξ	QN	(0.05)	Ξ
Iron	NA	0.168	(0.02)	Ξ	ND	(0.02)	Ξ	18	(0.02)	Ξ
Lead	NA	QN	(0.02)	Ξ	QN	(0.02)	[1]	QN	(0.02)	Ξ
Magnesium	NA	23	(1)	[]	37	(1)	Ξ	27	(1)	Ξ
Manganese	NA	1.2	(0.01)	Ξ	0.027	(0.01)	Ξ	9.5	(0.01)	Ξ
Molybdenum	NA.	QN	(0.02)	[1]	QN	(0.02)	[1]	ON	(0.02)	[1]
Nickel	NA	ON	(0.05)	Ξ	ON	(0.05)	[1]	0.026	(0.05)	Ξ
Potassium	NA	5.4	(3)	Ξ	4.9	(3)	[1]	7.3	(3)	Ξ
Selenium	NA	ON	(0.3)	[1]	ON	(0.3)	Ξ	QN	(0.3)	Ξ
Silver	NA	ON	(0.01)	[1]	ON	(0.01)	Ξ	QN	(0.01)	[]
Sodium	NA	43	(1)	Ξ	5.2	(1)	[1]	4.5	(1)	[1]
Thallium	NA	QN	(0.1)		ON	(0.1)	Ξ	ND	(0.1)	[1]
Vanadium	NA	QN	(0.05)	Ξ	ON	(0.05)	Ξ	ON	(0.05)	[1]
Zinc	NA	QN	(0.05)	Ξ	ND	(0.05)	Ξ	QN	(0.05)	[1]
SW7060 - Arsenic (mg/L)										
Arsenic	NA	ON	(0.004)	Ξ	ND	(0.004)	Ξ	0.019	(0.004)	[1]
SW7421 - Lead (mg/L)										
Lead	NA	0.0036 B	(0.003)	[1]	0.0037 B	(0.003)	Ξ	0.004 B	(0.003)	Ξ
·										

ND = Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

		ΞΞ
	04 04-MW-03 04-MW-03-01	(0.0018)
	0	0.00034 B
	1 1 1 1 1	E
	04 04-MW-02 04-MW-02-01	(0.00018)
	0	0.00031 B
		E E
SITE ID LOCATION ID SAMPLE ID	03 03-GW-04 03-GW-04-01	(0.00018)
		ON ON
	03 03-6W-03 03-DS-02 Dup of 03-6W-03-01	NA NA
	PARAMETER 	SW7470 - Mercury (mg/L) Mercury SW7740 - Selenium (mg/L) Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

PARAMETER SW6010 - Metals (mg/L) Aluminum Antimony												
	J	04 04-SW-01			04 04-SW-01			04 04-SW-02			04 04-SW-03	
	70	04-SW-01-01	!	04-DS-03	Dup of 04-SW-01-01	-01)	04-SW-02-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)	04-SW-03-01	
Aluminum Antimony												
Antimony	9	(0.2)	Ξ	Q	(0.2)	Ξ	Q.	(0.2)	Ξ	S	(0.2)	[]
	2	(0.1)	Ξ	ON N	(0.1)	Ξ	2	(0.1)	Ξ	S	(0.1)	[1]
0	Q ((0.3)	Ξ:		(0.3)	Ξ	2	(0.3)	Ξ	Ð	(0.3)	Ξ
	0.086	(0.01)	ΞΞ	980.0	(0.01)	Ξ	90.0	(0.01)	Ξ	90.0	(0.01)	Ξ
Beryllum	2 :	(0.002)	ΞΞ	Q :	(0.002)	Ξ	Q :	(0.005)	Ξ	Q	(0.002)	Ξ
Cadmium	⊋ :	(0.005)	Ξ3	Q !	(0.005)	Ξ:	9	(0.005)	Ξ	QN	(0.002)	Ξ
Calcium	45	(1)	Ξ	45	(1)	Ξ	35	(1)	Ξ	35	(1)	Ξ
Chromium	2	(0.01)	Ξ	Q.	(0.01)	Ξ	Q	(0.01)	Ξ	QN	(0.01)	Ξ
	9	(0.01)	Ξ	Q.	(0.01)	[1]	ON	(0.01)	Ξ	Q	(0.01)	Ξ
Copper 0.	0.02	(0.05)	Ξ	ON	(0.05)	Ξ	QN	(0.05)	Ξ	N	(0.05)	Ξ
Iron	-	(0.02)	[1]	0.95	(0.02)	[]	0.43 B	(0.02)	Ξ	0.58	(0.02)	Ξ
Lead	QN	(0.02)	Ξ	QN	(0.02)	Ξ	2	(0.05)	Ξ	Q.	(0.02)	Ξ
Magnesium	7.8	(1)	Ξ	7.7	(1)	[1]	9.9	(1)	Ξ	9.9	(1)	Ξ
	0.16	(0.01)	Ξ	0.13	(0.01)	[1]	0.1	(0.01)	Ξ	0.02	(0.01)	Ξ
Molybdenum	S	(0.02)	Ξ	QN	(0.02)	[1]	QN	(0.02)	Ξ	S	(0.02)	Ξ
Nickel	Q	(0.05)	Ξ	QN	(0.05)	[1]	8	(0.05)	Ξ	ON	(0.05)	[1]
E	4.9	(3)	Ξ	4.9	(3)	[1]	4.1	(3)	Ξ	3.8	(3)	Ξ
Selenium	Q	(0.3)	Ξ	Q.	(0.3)	Ξ	2	(0.3)	Ξ	Q	(0.3)	[1]
	QN Q	(0.01)	Ξ	QN	(0.01)	[1]	QN	(0.01)	Ξ	ON	(0.01)	Ξ
	2.7	(1)	Ξ	2.1	(1)	[1]	2	(1)	Ξ	1.9	(1)	[]
Thallium	QN	(0.1)	Ξ	ON	(0.1)	Ξ	ON	(0.1)	Ξ	QN	(0.1)	Ξ
Vanadium	Q	(0.05)	Ξ	QN	(0.05)	Ξ	QN	(0.05)	Ξ	ON	(0.05)	Ξ
Zinc 0.0	0.039	(0.05)	Ξ	ND	(0.05)	[1]	ON	(0.05)	Ξ	QN	(0.05)	Ξ
SW7060 - Arsenic (mg/L)												
o	Q.	(0.004)	[1]	Q	(0.004)	Ξ	2	(0.004)	Ξ	S	(0.004)	[1]
SW7421 - Lead (mg/L)												
Lead	9	(0.003)	Ξ	0.0078 8	(0.003)	Ξ	0.0065 B	(0.003)	[1]	S	(0.003)	[1]
SW7470 - Mercury (mg/L)												
Mercury	QN	(0.00018)	Ξ	2	(0.00018)	Ξ	2	(0.00018)	Ξ	QN	(0.00018)	Ξ

	! ! ! !	[1]
	04 04-SW-03 04-SW-03-01	(0.005)
		ON
	: : :	[]
·	04 - 04 - 02 - 01 - 04 - SW - 02 - 01	(0.002)
	-	N
		[1]
SITE ID LOCATION ID SAMPLE ID	04 04-SW-01 04-DS-03 Dup of 04-SW-01-01	(0.005)
	04-DS-03	ND
	ī	[1]
	04 04-SW-01 04-SW-01-01	(0.005)
		ND
	PARAMETER	SW7740 - Selenium (mg/l) Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

					SAMPLE ID							
PARAMETER	0	04 04-SW-04 04-SW-04-01			05 05-MW-01 05-MW-01-01		· C	05 05-MW-02 05-MW-02-01		c	05 05-MW-03 05-MW-03-01	
				1 1 1 1 1 1 1		! ! !						
SW6010 - Metais (mg/L) Aluminum	Q	(0.5)	[1]	Q	(0.2)	[1]	QN	(0.2)	[1]	Q	(0.2)	[1]
Antimony	QN	(0.1)	ΞΞ	Q	(0.1)	Ξ	9	(0.1)	ΞΞ	2	(0.1)	ΞΞ
Arsenic	QN	(0.3)	Ξ	QN	(0.3)	Ξ	S.	(0.3)	Ξ	ON	(0.3)	ΞΞ
Barium	0.057	(0.01)	Ξ	0.33	(0.01)	Ξ	0.16	(0.01)	Ξ	0.65	(0.01)	Ξ
Beryllium	ON	(0.002)	Ξ	Q.	(0.005)	[]	S	(0.002)	[]	R	(0.005)	[1]
Cadmium	QN	(0.005)	Ξ	Q.	(0.002)	Ξ	QN	(0.002)	Ξ	QN	(0.002)	[1]
Calcium	33	(1)	Ξ	210	(1)	Ξ	120	(1)	[]	210	(1)	[1]
Chromium	QN	(0.01)	Ξ	QN	(0.01)	Ξ	N	(0.01)	Ξ	ON	(0.01)	Ξ
Cobalt	QN	(0.01)	Ξ	0.021	(0.01)	Ξ	Q.	(0.01)	Ξ	0.03	(0.01)	Ξ
Copper	QN	(0.05)	Ξ	QN	(0.05)	Ξ	Q	(0.05)	[1]	ON	(0.05)	Ξ
Iron	0.338	(0.02)	Ξ	19	(0.02)	[1]	N	(0.02)	Ξ	13	(0.02)	Ξ
Lead	ON	(0.02)	Ξ	QN	(0.02)	Ξ	Q	(0.05)	Ξ	QN	(0.02)	Ξ
Magnesium	6.5	(1)	Ξ	41	(1)	Ξ	92	(1)	[1]	36	(1)	Ξ
Manganese	0.075	(0.01)	Ξ	12	(0.01)	Ξ	0.17	(0.01)	[1]	22	(0.01)	Ξ
Molybdenum	ON	(0.02)	[]	Q.	(0.02)	Ξ	QN	(0.02)	[]	QN	(0.02)	Ξ
Nickel	ON.	(0.05)	[1]	0.026	(0.05)	Ξ	QN	(0.05)	Ξ	0.031	(0.05)	Ξ
Potassium	4.1	(3)	[1]	4.4	(3)	Ξ	3.6	(3)	Ξ	8.6	(3)	Ξ
Selenium	QN	(0.3)	Ξ	S	(0.3)	Ξ	QN	(0.3)	Ξ	QN	(0.3)	Ξ
Silver	QN	(0.01)	Ξ	QN	(0.01)	Ξ	Q.	(0.01)	[1]	QN	(0.01)	Ξ
Sodium	5	(1)	Ξ	9.1	(1)	Ξ	4.2	(1)	Ξ	2	(1)	[1]
Thallium	Q	(0.1)	Ξ	QV	(0.1)	Ξ	QN	(0.1)	Ξ	ON	(0.1)	[]
Vanadium	QN	(0.05)	Ξ	Q.	(0.05)	[1]	QN	(0.05)	Ξ	ON	(0.05)	Ξ
Zinc	QN	(0.05)	Ξ	S	(0.05)	Ξ	ND	(0.05)	Ξ	ON	(0.05)	[]
SW7060 - Arsenic (mg/L)												
Arsenic	ON	(0.004)	[1]	0.0047	(0.004)	Ξ	QN	(0.004)	Ξ	0.005	(0.004)	Ξ
SW7421 - Lead (mg/L)												
Lead	0.0096	(0.003)	Ξ	Q	(0.003)	Ξ	0.0037 B	(0.003)	Ξ	0.0069 B	(0.003)	Ξ
SW7470 - Mercury (mg/L)												
Mercury	QN	(0.00018)	[1]	Q	(0.00018)	[1]	0.00035	(0.00018)	Ξ	0.00019 B	(0.00018)	Ξ

	05 05-MW-02 05-MW-03 05-MW-03 05-MW-03-01	ND (0.005) [1]
		[1]
SITE ID LOCATION ID SAMPLE ID	05 05-MW-01 05-MW-01-01	(0.005)
		ND
	; ; ; ; ;	[1]
	04 - SW - O4 04 - SW - O4 - O1	(0.005)
	 	ON

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

				7	SITE ID LOCATION ID SAMPLE ID							
		05 05-MW-04		0	05 05-MW-05			05-MW-06		J	05 05-MW-07	
PARAMETER		05-MW-04-01	1	90	05-MW-05-01		0	05-MW-06-01		30	05-MW-07-01	
E160.1 - Residue, Filterable (TDS) (mg/L)	3) (mg/L)											
Total dissolved solids SW6010 - Metals (mg/L)		NA			NA		770	(10) [1	(10) [1.000000]		NA	
Aluminum	QN	(0.2)	[1]	2	(0.2)	[1]	QN	(0.2)	Ξ	ON	(0.2)	Ξ
Antimony	ON	(0.1)	Ξ	ND	(0.1)	Ξ	Q	(0.1)	Ξ	QN QN	(0.1)	Ξ
Arsenic	QN	(0.3)	[1]	QN	(0.3)	Ξ	S	(0.3)	Ξ	NO	(0.3)	Ξ
Barium	-	(0.01)	[1]	1.2	(0.01)	Ξ	0.19	(0.01)	Ξ	0.68	(0.01)	Ξ
Beryllium	Q.	(0.005)	Ξ	ON	(0.005)	[1]	ON	(0.002)	[1]	ON	(0.005)	Ξ
Cadmium	ON	(0.002)	Ξ	ND	(0.002)	[1]	Q	(0.005)	Ξ	NO NO	(0.002)	Ξ
Calcium	270	(1)	Ξ	220	(1)	Ξ	210	(1)	[1]	. 270	(1)	Ξ
Chromium	QN	(0.01)	Ξ	ND	(0.01)	Ξ	R	(0.01)	[1]	ON	(0.01)	Ξ
Cobalt	0.031	(0.01)	[1]	ON	(0.01)	Ξ	Q	(0.01)	Ξ	0.012	(0.01)	[]]
Copper	ON	(0.05)	[]	ND	(0.05)	Ξ	R	(0.05)	[1]	QN	(0.05)	Ξ
Iron	84	(0.05)	Ξ	120	(0.02)	Ξ	0.079 B	(0.02)	[]	13	(0.02)	Ξ
Lead	QN	(0.02)	Ξ	QN	(0.02)	Ξ	Q	(0.02)	Ξ	QN	(0.05)	Ξ
Magnesium	54	(1)	Ξ	40	(1)	Ξ	46	(1)	[1]	59	(1)	Ξ
Manganese	30	(0.01)	Ξ	19	(0.01)	Ξ	0.64	(0.01)	Ξ	21	(0.01)	Ξ
Molybdenum	Q.	(0.02)	[1]	ND	(0.02)	Ξ	ON	(0.02)	Ξ	QN	(0.02)	[1]
Nickel	0.028	(0.05)	Ξ	QN	(0.05)	[1]	2	(0.05)	[1]	0.031	(0.03)	Ξ
Potassium	4.9	(3)	Ξ	4.2	(3)	Ξ	4.7	(3)	Ξ	6.7	(3)	Ξ
Selenium	QN	(0.3)	Ξ	QN	(0.3)	Ξ	ON	(0.3)	Ξ	Q	(0.3)	Ξ
Silver	Q	(0.01)	Ξ	NO	(0.01)	Ξ	QN	(0.01)	Ξ	ON	(0.01)	Ξ
Sodium	7.7	(1)	Ξ	9.5	(1)	Ξ	11	(1)	Ξ	16	(1)	Ξ
Thallium	QN	(0.1)	[1]	ON	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(0.1)	Ξ
Vanadium	QN	(0.05)	Ξ	ND	(0.05)	Ξ	QN	(0.05)	[1]	QN	(0.05)	[1]
Zinc	ON	(0.05)	Ξ	NO	(0.05)	Ξ	S	(0.05)	[1]	ON	(0.05)	Ξ
SW7060 - Arsenic (mg/L)												
Arsenic	0.021	(0.004)	[]	0.028	(0.004)	[1]	R	(0.004)	Ξ	0.0047	(0.004)	Ξ
SW7421 - Lead (mg/L)		,	1			,						
Lead	8	(0.003)	Ξ	0.0034 B	(0.003)	Ξ	0.011	(0.003)	Ξ	0.0031 B	(0.003)	[1]

Compiled: 20 March 1995

[] = Factor ND = Not Detected NA = Not Applicable () = Detection Limit

	05 05-MW-04 05-MW-04	SW7470 - Mercury (mg/L) Mercury SW7740 - Selenium (mg/L)	ND
	.04 14-01	(0.00018) [1]	(0.005) [1]
_	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00021 B	ON .
SITE ID LOCATION ID SAMPLE ID	05 05-MW-05 05-MW-05-01	(0.00018)	(0.002)
		[1]	[1]
	30	QN	ND
	05 05-MW-06 05-MW-06-01	(0.00018)	(0.005)
	}	[1]	[1]
)	[1] 0.00035	QN
	05 05-MW-07 05-MW-07-01	(0.00018)	(0.002)
	1 1 1 1	[1]	[1]

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

					SITE ID LOCATION ID SAMPLE ID							
PARAMETER		05 05-MW-08 05-MW-08-01		0	05 05-MW-09 05-MW-09-01		05-08	05 05-MW-09 05-DS-08 Dup of 05-MW-09-01	1-01	J	05 05-MW-10 05-MW-10-01	
SWE010 - Metals (mm/!)	; ; ; ; ; ; ;	1	! ! !		; ; ; ; ; ; ;	! ! !						
	ON	(0.2)	[1]	QN	(0.5)	[1]	Ņ	(0.2)	[1]	QN	(0.5)	[1]
Antimony	QN	(0.1)	[1]	QN	(0.1)	Ξ	ON	(0.1)	ΞΞ	Q	(0.1)	ΞΞ
Arsenic	ON	(0.3)	Ξ	QN N	(0.3)	Ξ	QN	(0.3)	[1]	QN	(0.3)	Ξ
Barium	0.17	(0.01)	Ξ	0.11	(0.01)	Ξ	0.12	(0.01)	[1]	0.56	(0.01)	Ξ
Beryllium	QN	(0.005)	Ξ	QN	(0.005)	Ξ	S	(0.002)	Ξ	ON	(0.005)	Ξ
Cadmium	QN	(0.002)	Ξ	QN	(0.002)	Ξ	Q	(0.002)	[1]	QN	(0.002)	Ξ
Calcium	200	(1)	Ξ	180	(1)	Ξ	180	(1)	[1]	180	(1)	Ξ
Chromium	QN	(0.01)	[1]	Q	(0.01)	Ξ	ON.	(0.01)	[1]	ON	(0.01)	Ξ
Cobalt	ON	(0.01)	[1]	N	(0.01)	Ξ	Q.	(0.01)	Ξ	0.028	(0.01)	Ξ
Copper	QN	(0.05)	Ξ	QN	(0.05)	Ξ	S	(0.05)	Ξ	ND	(0.05)	Ξ
Iron	QN	(0.02)	[]	QN	(0.02)	Ξ	0.21 B	(0.02)	[]	4.3	(0.02)	Ξ
Lead	QN	(0.02)	[1]	QN	(0.02)	Ξ	용	(0.02)	Ξ	QN	(0.02)	Ξ
Magnesium	44	(1)	Ξ	43	(1)	Ξ	45	(1)	Ξ	40	(1)	Ξ
Manganese	0.025	(0.01)	Ξ	QN	(0.01)	Ξ	Q	(0.01)	Ξ	27	(0.01)	Ξ
Molybdenum	QN	(0.02)	Ξ	ON	(0.02)	Ξ	2	(0.02)	Ξ	QN	(0.02)	[1]
Nickel	QN	(0.05)	Ξ	QN	(0.05)	Ξ	Q	(0.05)	Ξ	0.038	(0.05)	Ξ
Potassium	5.5	(3)	Ξ	4.9	(3)	Ξ	4.7	(3)	Ξ	6.2	(3)	Ξ
Selenium	Q	(0.3)	[1]	ON	(0.3)	Ξ	Q.	(0.3)	Ξ	QN	(0.3)	Ξ
Silver	S	(0.01)	Ξ	ON	(0.01)	Ξ	ᄝ	(0.01)	Ξ	QN	(0.01)	Ξ
Sodium	6	(1)	[1]	7.3	(1)	Ξ	7.4	(1)	[1]	6.3	(1)	Ξ
Thallium	QN	(0.1)	Ξ	QN	(0.1)	Ξ	S	(0.1)	[1]	QN	(0.1)	Ξ
Vanadium	ON	(0.05)	Ξ	Q	(0.05)	Ξ	QN	(0.05)	[1]	QN	(0.05)	Ξ
Zinc	0.046	(0.05)	Ξ	QN	(0.05)	Ξ	QN	(0.05)	Ξ	ON	(0.05)	Ξ
SW7060 - Arsenic (mg/L)												,
Arsenic	QN	(0.004)	Ξ	QN	(0.004)	Ξ	Q.	(0.004)		QN	(0.004)	Ξ
SW7421 - Lead (mg/L)						1		•	1]
Lead '	QN	(0.003)	Ξ	0.0053 B	(0.003)	Ξ	2	(0.003)	[1]	0.003 B	(0.003)	[1]
SW7470 - Mercury (mg/L)												
Mercury	0.00035	(0.00018)	Ξ	0.00032 B	(0.00018)	Ξ	0.00036	(0.00018)	[1]	0.00038	(0.00018)	Ξ

		[1]
	05 05-MW-10 05-MW-10-01	(0.005)
		ND
		[1]
	05 05-MW-09 05-DS-08 Dup of 05-MW-09-01	(0.005)
	05-DS-08	[1] 0.0088
		[1]
SITE ID LOCATION ID SAMPLE ID	05 05-MW-09 05-MW-09-01	(0.005)
		0.0091
	 	[1]
	05 05-MW-08 05-MW-08-01	(0.005)
		QN
	PARAMETER 	SW7740 - Selenium (mg/L) Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE ID

					LOCATION ID SAMPLE ID							
		05 05MW-11			05 05-MW-12			05 05-MW-12			05	
PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05-MW-11-01	i i i i		05-MW-12-01	! !	05-DS-09	Oup of 05-MW-12-01	-01		05-SW-01 05-SW-01-01	
SW6010 - Metals (mg/L)												
	QN	(0.2)	[1]	QN	(0.2)	Ξ	0.21	(0.2)	Ξ	N	(0.2)	[1]
Antimony	QN	(0.1)	[1]	R	(0.1)	[1]	ON	(0.1)	Ξ	QN	(0.1)	Ξ
Arsenic	QV V	(0.3)	Ξ	ON	(0.3)	Ξ	QN	(0.3)	Ξ	QN	(0.3)	Ξ
Barium	0.26	(0.01)	Ξ	0.18	(0.01)	Ξ	1.2	(0.01)	[1]	0.076	(0.01)	[1]
Beryllium	QN	(0.005)	Ξ	QN	(0.005)	Ξ	S	(0.005)	Ξ	QN	(0.005)	Ξ
Cadmium	QN	(0.002)	[1]	R	(0.002)	Ξ	ON	(0.005)	[1]	Q	(0.002)	Ξ
Calcium	260	(1)	[1]	260	(1)	[1]	210	(1)	[1]	43	(1)	Ξ
Chromium	QN	(0.01)	[1]	Q	(0.01)	Ξ	QN	(0.01)	[1]	QN	(0.01)	Ξ
Cobalt	0.014	(0.01)	Ξ	Q.	(0.01)	[1]	0.011	(0.01)	Ξ	ON	(0.01)	Ξ
Copper	QN	(0.05)	[1]	2	(0.05)	Ξ	Q	(0.05)	[1]	ON.	(0.05)	Ξ
Iron	4.5	(0.02)	[1]	Q	(0.02)	Ξ	110	(0.02)	Ξ	0.79	(0.02)	Ξ
Lead	ON	(0.02)	[1]	ON	(0.02)	[1]	S	(0.02)	Ξ	QN	(0.05)	Ξ
Magnesium	09	(1)	[1]	28	(1)	[1]	40	(1)	[1]	7.9	(1)	Ξ
Manganese	14	(0.01)	Ξ	2	(0.01)	Ξ	18	(0.01)	Ξ	0.14	(0.01)	Ξ
Molybdenum	QN	(0.02)	Ξ	2	(0.05)	Ξ	S	(0.02)	Ξ	N	(0.05)	[1]
Nickel	0.032	(0.05)	Ξ	S	(0.05)	Ξ	0.02	(0.05)	Ξ	QN	(0.05)	Ξ
Potassium	5.7	(3)	Ξ	6.2	(3)	Ξ	4.1	(3)	Ξ	4.8	(3)	Ξ
Selenium	QN	(0.3)	Ξ	2	(0.3)	Ξ	QN	(0.3)	[1]	ND	(0.3)	Ξ
Silver	QN	(0.01)	Ξ	2	(0.01)	Ξ	QN	(0.01)	[1]	ND	(0.01)	Ξ
Sodium	11	(1)	Ξ	15	(1)	Ξ	9.3	(1)	Ξ	1.8	(1)	Ξ
Thallium	QN	(0.1)	Ξ	Q	(0.1)	Ξ	QN	(0.1)	Ξ	Q	(0.1)	Ξ
Vanadium	QN	(0.05)	Ξ	2	(0.05)	Ξ	QN	(0.05)	Ξ	QN	(0.05)	Ξ
Zinc	QN	(0.05)	Ξ	S	(0.05)	[1]	QN	(0.05)	[1]	QN	(0.05)	Ξ
SW7060 - Arsenic (mg/L)												
Arsenic	0.0081	(0.004)	Ξ	2	(0.004)	Ξ	0.028	(0.004)	Ξ	0.0074	(0.004)	Ξ
SW7421 - Lead (mg/L)												
Lead	0.014	(0.003)	Ξ	0.011	(0.003)	Ξ	0.0086	(0.003)	Ξ	Q	(0.003)	Ξ
SW7470 - Mercury (mg/L)												
Mercury	QN	(0.00018)	Ξ	2	(0.00018)	Ξ	0.00021 B	(0.00018)	[1]	R	(0.00018)	Ξ
Compiled: 20 March 1995		() = Deter	= Detection limit	=	Factor ND = Not	Not Detected	AN AN	Not Applicable				
ממולו וכתי בי יוכו כי יוכו				3	2	,	ا <u>د</u>	3 - 252 - 250				

		[1]
	05 05-SW-01 05-SW-01-01	(0.005)
		ND
		[1]
	05 05-MW-12 05-DS-09 Dup of 05-MW-12-01	(0.005)
	02-03-09	QN
		[1]
SITE ID LOCATION ID SAMPLE ID	05 05-MW-12 05-MW-12-01	(0.005)
		0.0073
		[1]
	05 05-MW-11 05-MW-11-01	(0.005)
		ND
	PARAMETER 	SW7740 - Selenium (mg/L) Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

					LOCATION ID SAMPLE ID							
		05			05			05			90	
PARAMETER		05-SW-02 05-SW-02-01			05-SW-03 05-SW-03-01		05-03-07	05- Dup	-01		06-MW-01 06-MW-01-01	
SW6010 - Metals (mo/!)							 		, 	1 1 1 1 1 1 1 1 1 1		
	QN	(0.5)	[1]	QN	(0.5)	[1]	QN	(0.2)	Ξ	S	(0 0)	[1]
Antimony	ON	(0.1)	[1]	QN	(0.1)	ΞΞ	2	(0.1)	ΞΞ	2	(0.1)	ΞΞ
Arsenic	QN	(0.3)	Ξ	QN	(0.3)	Ξ	Q	(0.3)	ΞΞ	2 8	(0.3)	ΞΞ
Barium	0.07	(0.01)	Ξ	0.07	(0.01)	Ξ	0.074	(0.01)	ΞΞ	6.0	(0.01)	ΞΞ
Beryllium	ON	(0.002)	[1]	N	(0.005)	Ξ	S	(0.002)	Ξ	S	(0.002)	ΞΞ
Cadmium	ON	(0.005)	[1]	QN	(0.002)	Ξ	QN	(0.002)	Ξ	Q.	(0.002)	
Calcium	42	(1)	Ξ	40	(1)	Ξ	40	(1)	[1]	240	(1)	Ξ
Chromium	ON	(0.01)	Ξ	Q	(0.01)	Ξ	QN	(0.01)	Ξ	QN	(0.01)	
Cobalt	QN	(0.01)	Ξ	S	(0.01)	Ξ	Q	(0.01)	Ξ	ON	(0.01)	Ξ
Copper	QN	(0.05)	Ξ	Q	(0.05)	Ξ	Q	(0.05)	Ξ	ON	(0.05)	Ξ
Iron	0.46 B	(0.02)	[]	0.44 B	(0.02)	Ξ	0.43 B	(0.02)	Ξ	1.4	(0.02)	Ξ
Lead	QN	(0.02)	Ξ	S	(0.02)	[1]	QN	(0.02)	[1]	QN	(0.02)	[1]
Magnesium	7.8	(1)	Ξ	7.5	(1)	Ξ	7.4	(1)	Ξ	53	(1)	Ξ
Manganese	0.088	(0.01)	[]	0.064	(0.01)	Ξ	0.061	(0.01)	Ξ	0.92	(0.01)	Ξ
Molybdenum	QN	(0.02)	Ξ	ON	(0.02)	Ξ	9	(0.02)	Ξ	QN	(0.02)	Ξ
Nickel	QN	(0.05)	Ξ	QN	(0.05)	Ξ	Q	(0.05)	[1]	QN	(0.05)	Ξ
Potassium	4.8	(3)	Ξ	4.3	(3)	Ξ	4.6	(3)	[1]	6.5	(3)	Ξ
Selenium	QN	(0.3)	[1]	R	(0.3)	Ξ	Q.	(0.3)	Ξ	QN	(0.3)	Ξ
Silver	QN	(0.01)	Ξ	8	(0.01)	Ξ	9	(0.01)	[1]	QN	(0.01)	Ξ
Sodium	1.9	(1)	Ξ	2.1	(1)	Ξ	1.8	(1)	[1]	28	(1)	Ξ
Thallium	QN	(0.1)	Ξ	2	(0.1)	Ξ	Q.	(0.1)	Ξ	Q.	(0.1)	Ξ
Vanadium	QN	(0.05)	[1]	2	(0.05)	Ξ	Q.	(0.05)	Ξ	QN	(0.05)	Ξ
Zinc	ON	(0.05)	Ξ	S	(0.05)	Ξ	QN	(0.05)	[1]	Q	(0.05)	[1]
SW7060 - Arsenic (mg/L)												! !
Arsenic	0.004	(0.004)	Ξ	QN	(0.004)	Ξ	9	(0.004)	Ξ	8	(0.004)	[1]
SW7421 - Lead (mg/L)									!		•	
Lead	0.0042 B	(0.003)	Ξ	0.0084	(0.003)	Ξ	0.01	(0.003)	Ξ	0.014	(0.003)	[1]
SW7470 - Mercury (mg/L)											•	1
Mercury	QN	(0.00018)	Ξ	Q	(0.00018)	Ξ	Q	(0.00018)	Ξ	QN Q	(0.00018)	[1]
Committed: 20 March 1005		- ()	- Dotootion	-	- UN	7.7.7.0		A 1				
Compried: 20 March 1995			בומוו רווויו	" 	IJ	Not Detected	NA = NO	Not Applicable				

			PARAMETER		SW7740 - Selenium (mg/L)	Selenium
				1 1 1 1 1 1 1 1 1		QN
	05	05-SW-02	05-SW-02-01	6 L L L L L L L L L L L L L L L L L L L		(0.005)
				t t t t t t t t t t t t t t t t t t t		[1]
_		0	90			QN
SITE ID .OCATION ID SAMPLE ID	05	05-SW-03	05-SW-03-01	: : : : : : : : : : : : : : : : : : :		(0.005)
						Ξ
	0	05-8	05-DS-07 Dup	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ND
	05	05-SW-03	05-DS-07 Dup of 05-SW-03-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(0.005)
			1			[1]
		0	90			QN
	90	06-MW-01	06-MW-01-01			(0.005)
				1 1		[1]

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

Recomplementary Recompleme				-		SITE ID LOCATION ID SAMPLE ID							
NO (0.1) [1] ND (0.2) [1] ND (0.3) [1] ND (0	PARAMETER		06 06-MW-02)6-MW-02-01	1		06 06-MW-03)6-MW-03-01	! ! ! !		06 06-MW-03 Dup of 06-MW-03	3-01	! ! ! !	06 06-MW-04 06-MW-04-01	<u> </u>
ND		Q	(0.2)	Ξ	Q	(0.2)	Ξ	S	(0.0)	[1]	S	(6.0)	Ξ
No	Antimony	QN	(0.1)	ΞΞ	<u>8</u>	(0.1)	ΞΞ	S S	(0.1)	ΞΞ	<u> </u>	(0.1)	ΞΞ
0.25 (0.01) [1] 0.3 (0.01) [1] 0.3 (0.01) [1] 0.3 (0.01) [1] 0.99 (0.002) [1] ND (0.005) [1] ND (0.01) [1] ND (0.02) [1]	Arsenic	ON	(0.3)	[]	ON	(0.3)	[1]	Q	(0.3)	Ξ	ON	(0.3)	Ξ
NO (0.002) [1] NO (0.002) [1] NO (0.002) [1] NO (0.002) [1] NO (0.003) [1] NO (0.	Barium	0.25	(0.01)	[1]	0.3	(0.01)	[1]	0.3	(0.01)	Ξ	0.99	(0.01)	Ξ
230 (1,0 (6.05) [1] ND (0.005) [1] ND (0.005) [1] ND (0.005) [1] ND (0.010) [1] ND (0.011) [1] ND (0.012) [1] N	Beryllium	QN	(0.002)	Ξ	S	(0.005)	[1]	Q.	(0.005)	[]	QN	(0.002)	Ξ
230 (1) [1] 190 (1) 19	Cadmium	NO	(0.005)	Ξ	S	(0.002)	Ξ	QN	(0.002)	Ξ	QN	(0.005)	Ξ
MD	Calcium	230	(1)	Ξ	190	(1)	[1]	190	(1)	Ξ	160	(1)	Ξ
ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND (0.02) [1] ND (0.05) [1] ND (0.01) [1] ND (0.02) [1] ND	Chromium	ON	(0.01)	[1]	QN	(0.01)	Ξ	QN	(0.01)	Ξ	2	(0.01)	[1]
ND (0.02)	Cobalt	QN	(0.01)	Ξ	QN	(0.01)	[1]	ON	(0.01)	Ξ	0.019	(0.01)	Ξ
0.091 B (0.05) [1] 0.35 B (0.05) [1] 0.21 B (0.05) [1] 100 ND (0.05) [1] ND (0.05) [1] ND (0.05) [1] ND (0.05) [1] ND 1.9 (0.01) [1] 0.43 (0.01) [1] 0.28 (0.01) [1] 14 ND (0.02) [1] ND (0.05) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.03) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND ND (0.02) [1] ND (0.01) [1] ND (0.01) [1] ND ND (0.02) [1] ND (0.01) [1] ND (0.01) [1] ND ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.004) [1] ND (0.004) [1] ND (0.004) [1] ND (0.003) [1] ND ND (0.004) [1] ND (0.003) [1] ND (0.004) [1] ND (0.003) [1] ND ND (0.004) [1] ND (0.003) [1] ND (0.003) [1] 0.0054 [1] 0.0054	Copper	Q	(0.05)	Ξ	Q.	(0.05)	Ξ	QN	(0.05)	Ξ	Q	(0.05)	[1]
ND (0.05) [1] ND (0.01) [1] 26 (1) [1] 26 (1) [1] 26 (1) [1] 26 (1) [1] 26 (1) [1] 26 (1) [1] 26 (1) [1] 26 (1) [1] 26 (1) [1] 26 (1) [1] 26 (1) [1] ND (0.02) [1] ND (0.03) [1] ND (0.01) [1] ND (0.02) [1] ND (0.0	Iron		(0.02)	[1]	0.35 B	(0.02)	Ξ		(0.02)	Ξ	100	(0.02)	Ξ
53 (1) [1] 33 (1) [1] 32 (1) [1] 26 1.9 (0.01) [1] 0.43 (0.01) [1] 0.28 (0.01) [1] 14 ND (0.05) [1] ND (0.05) [1] ND (0.05) [1] ND 4 (3) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.03) [1] ND (0.03) [1] ND (0.03) [1] ND ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND ND (0.02) [1] ND (0.01) [1] ND (0.01) [1] ND ND (0.02) [1] ND (0.01) [1] ND (0.01) [1] ND ND (0.02) [1] ND (0.01) [1] ND (0.02) [1] ND ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.004) [1] ND (0.004) [1] ND (0.003) [1] 0.0074 B (0.003) [1] 0.012	Lead	QN	(0.05)	[1]	QN	(0.02)	Ξ	QN	(0.02)	Ξ	QN	(0.02)	Ξ
1.9 (0.01) [1] 0.43 (0.01) [1] 0.28 (0.01) [1] 14 ND (0.05) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.03) [1] ND (0.03) [1] ND (0.01) [1] ND (0.02) [1] ND (0.03) [1] ND (0.004) [1] ND (0.003) [1] ND (0.0	Magnesium	53	(1)	[1]	33	(1)	Ξ	32	(1)	[1]	56	(1)	[1]
ND (0.05) [1] ND (0.05) [1] ND (0.02) [1] ND (0.03) [1] ND (0.03) [1] ND (0.01) [1] ND (0.02) [1] ND (0.03) [1] ND (0.003) [1] N	Manganese	1.9	(0.01)	[1]	0.43	(0.01)	Ξ	0.28	(0.01)	Ξ	14	(0.01)	Ξ
ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.03) [1] ND (0.03) [1] ND (0.03) [1] ND (0.03) [1] ND (0.01) [1] ND (0.02) [1] ND (0.03) [1] ND (0.03) [1] ND (0.03) [1] ND (0.004) [1] ND (0.003) [1] ND (0.	Molybdenum	QN	(0.02)	Ξ	S	(0.02)	Ξ	ON	(0.02)	[]	9	(0.05)	[]
4 (3) [1] 5 (3) [1] 5 (4) 6 (6) 6 (7) 6 (1) 6 (1) 6 (1) 6 (1) 6	Nickel	ON	(0.05)	Ξ	ON	(0.05)	Ξ	Q	(0.05)	[1]	Q	(0.05)	Ξ
ND (0.3) [1] ND (0.3) [1] ND (0.01) [1] ND (0.02) [1] ND (0.03) [1] ND (0.004) [1] ND (0.004) [1] ND (0.003) [1]	Potassium	4	(3)	[1]	S	(3)	Ξ	ភ	(3)	Ξ	4.9	(3)	Ξ
ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND (1) ND	Selenium	Q	(0.3)	Ξ	2	(0.3)	Ξ	ON	(0.3)	Ξ	2	(0.3)	Ξ
13 (1) [1] 21 (1) [1] 41 ND (0.1) [1] ND (0.1) [1] ND (0.1) [1] ND ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND ND (0.004) [1] ND (0.004) [1] ND (0.004) [1] 0.036 ND (0.003) [1] ND (0.003) [1] 0.0074 B (0.003) [1] 0.012	Silver	ON .	(0.01)	Ξ	Q	(0.01)	Ξ	QN	(0.01)	Ξ	S.	(0.01)	Ξ
ND (0.1) [1] ND (0.1) [1] ND (0.02) [1] ND (0.03) [1] ND (0.03) [1] ND (0.004) [1] ND (0.004) [1] ND (0.004) [1] ND (0.003) [1] ND (Sodium	13	(1)	Ξ	21	(1)	Ξ	20	(1)	Ξ	41	(1)	Ξ
ND (0.02) [1] ND (0.03) [1] ND (0.03) [1] ND (0.004) [1] ND (0.004) [1] ND (0.003) [1] ND (0.003) [1] 0.012	Thallium	QN	(0.1)	Ξ	ON	(0.1)	Ξ	QN	(0.1)	Ξ	S	(0.1)	Ξ
ND (0.02) [1] ND (0.02) [1] ND (0.03) [1] ND (0.036) [1] ND (0.004) [1] 0.036 (0.0074 B (0.003) [1] 0.012	Vanadium	ON	(0.05)	Ξ	ON	(0.05)	[1]	ON	(0.05)	Ξ	N _S	(0.05)	Ξ
ND (0.004) [1] NO (0.004) [1] ND (0.004) [1] 0.036 0.017 (0.003) [1] ND (0.003) [1] 0.0074 B (0.003) [1] 0.012	Zinc	ND	(0.05)	Ξ	2	(0.05)	[1]	QN	(0.05)	Ξ	S	(0.05)	Ξ
ND (0.004) [1] ND (0.004) [1] ND (0.005) [1] 0.0056 0.017 (0.003) [1] ND (0.003) [1] 0.0074 B (0.003) [1] 0.012	SW7060 - Arsenic (mg/L)					•				,			,
0.017 (0.003) [1] ND (0.003) [1] 0.0074 B (0.003) [1] 0.012	Arsenic	ON	(0.004)	Ξ	2	(0.004)	[]	QN	(0.004)	[1]	0.036	(0.004)	Ξ
0.017 (0.003) [1] ND (0.003) [1] 0.0074 B (0.003) [1] 0.012										! :		•	1
ON THE TOTAL OF TH		0.017	(0.003)	[1]	Q.	(0.003)	[1]		(0.003)	Ξ	0.012	(0.003)	Ξ
NN (01000 0) 4 15000 0 [1] (0 00019) [1] (N	SW7470 - Mercury (mg/L)												
ND (0.00018) [1] 0.00018) [1] 0.00018) [1] ND	Mercury	ON	(0.00018)	[3]	0.00035	(0.00018)	Ξ	0.00034 B	(0.00018)	[1]	QN	(0.00018)	Ξ

		[1]
	06 06-MW-04 06-MW-04-01	(0.005)
	1	ND
		[1]
,	06 06-MW-03 06-DS-08 Dup of 06-MW-03-01	(0.005)
	06-DS-08	N
		[:]
SITE ID LOCATION ID SAMPLE ID	06 06-MW-03 06-MW-03-01	(0.002)
		ND
		[1]
	06 06-MW-02 06-MW-02-01	(0.005)
		QN
	PARAMETER 	SW7740 - Selenium (mg/L) Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

Mathematical mat						SITE ID LOCATION ID SAMPLE ID							
ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.2) [1] ND (0.3) [1] ND (0	PARAMETER		06 06-MW-06 06-MW-06-01	1 	0 !	06 06-SW-01 16-SW-01-01	! ! !	0-02-02		1-01	0	06 06-SW-02 16-SW-02-01	
No. (0.1) (1.1)		S	(0.2)	[1]	S	(0 0)	Ξ	S	(0 0)	Ξ	Z	(6.0)	Ξ
ND (0.3) [1] ND (0.3) [1] ND (0.3) [1] ND (0.3) [1] ND (0.02) [1] ND (0.02) [1] ND (0.03) [1] ND (0.002) [1]	Antimony	QN	(0.1)	ΞΞ	0.11	(0.1)	ΞΞ	0.12	(0.2)	ΞΞ	2 Q	(0.1)	ΞΞ
0.43 (0.01) [1] 0.32 (0.01) [1] 1 0.32 (0.01) [1] 0.32 (0.01) [1] 0.04 (0.002) [1] NO (0.002) [1	Arsenic	QN	(0.3)	[1]	QN	(0.3)	Ξ	QN	(0.3)	Ξ	Q.	(0.3)	Ξ
NO (0.002)	Barium	0.43	(0.01)	Ξ	0.32	(0.01)	[1]	0.32	(0.01)	Ξ	0.4	(0.01)	Ξ
NO (0.005)	Beryllium	ND	(0.002)	Ξ	QN	(0.005)	[1]	QN	(0.005)	Ξ	Q.	(0.005)	[1]
No. Control	Cadmium	QN	(0.005)	Ξ	2	(0.002)	Ξ	Q	(0.002)	Ξ	QN	(0.005)	[]
NO (0.01) [1] NO (0.01) [1] NO (0.02) [1] NO (0.0018) [1] NO (0.0018) [1] 0.00027 [1] 0.00029	Calcium	210	(E)	Ξ	190	(1)	Ξ	190	(1)	Ξ	190	(1)	Ξ
0.024 (0.01) (11) ND (0.01) (11) ND (0.01) (11) ND (0.01) NB (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) NB (0.05) [1] ND (0.05) [1] ND (0.05) [1] ND (0.05) 22 (0.01) [1] ND (0.05) [1] ND (0.05) [1] ND (0.05) ND (0.05) [1] ND (0.05) [1] ND (0.05) [1] ND (0.05) ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND	Chromium	ON S	(0.01)	Ξ	2 :	(0.01)	Ξ	2	(0.01)	Ξ	<u>R</u>	(0.01)	[1]
NO (0.02) [1] NO (0.05) [1] NO	Cobalt	0.024	(0.01)	Ξ	2	(0.01)	Ξ	S	(0.01)	Ξ	0.016	(0.01)	Ξ
No	Copper	QN	(0.02)	Ξ	Q	(0.05)	Ξ	QN	(0.05)		QN	(0.05)	Ξ
NO (0.05) [1] NO (0.01) [1] NO (0.05) [1] NO (0.01) [1] NO (0.05) [1] NO (0.005)	Iron		(0.02)	Ξ	Q	(0.02)	Ξ	QN	(0.02)	Ξ	31	(0.05)	Ξ
37 (1) [1] 35 (1) [1] 35 (1) [1] 36 (1) [1] 37 (1) [1] 37 (1) [1] 37 (1) (1) 37 (1)	Lead	QN	(0.02)	Ξ	QN	(0.02)	Ξ	ON	(0.02)	Ξ	Q	(0.02)	Ξ
22 (0.01) [1] 3.2 (0.01) [1] 3.1 (0.01) [1] 3.1 (0.01) [1] 6 (0.01) ND (0.05) [1] ND (0.05) [1] ND (0.05) [1] ND (0.05) 5 (3) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) ND (0.3) [1] ND (0.3) [1] ND (0.03) [1] ND (0.03) O(0.01) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) O(0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) O(0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) O(0.058 B (0.003) [1] ND (0.0027 B (0.00018) [1] 0.0052 B (0.00018) [1] 0.00029 B (0.00018) [1] 0.00029 B (0.00018)	Magnesium	37	(1)	Ξ	35	(1)	Ξ	35	(1)	Ξ	34	(1)	Ξ
ND (0.05)	Manganese	22	(0.01)	Ξ	3.2	(0.01)	[]	3.1	(0.01)	Ξ	9	(0.01)	Ξ
0.02 (0.02) [1] ND (0.03) [1] ND (0.03) [1] ND (0.03) [1] ND (0.01) [1] ND (0.02) [1] ND (0.002) [1] ND (0.00018) [1] ND (0.00018) [1] ND (0.00018)	Molybdenum	QN	(0.02)	Ξ	QN	(0.02)	Ξ	9	(0.05)		Q	(0.05)	Ξ
5 (3) [1] 15 (3) [1] 14 (3) [1] 13 (3) (3) [1] 14 (6) 3) [1] 13 (3) (3) (6) 3) [1] ND (0.3) [1] ND (0.3) [1] ND (0.3) [1] ND (0.01) [1] ND (0.02) [1] ND (0.002) [1] ND (0.003) [1] ND (0.003) [1] ND (0.003) [1] ND (0.003) [1] ND (0.0018) [1] ND (0.0018) [1] ND (0.0018)	Nickel	0.02	(0.05)	Ξ	QN	(0.05)	Ξ	Q	(0.05)	Ξ	Q	(0.05)	[1]
ND (0.3) [1] ND (0.01) [1] ND (0.02) [1] ND (0.002) [1] ND (0.0018)	Potassium	5	(3)	[1]	15	(3)	Ξ	14	(3)	Ξ	13	(3)	[1]
ND (0.01) [1] ND (0.02) [1] ND (0.002) [1] ND (0.0029 B (0.00018) [1] ND (0.0029 B (0.00018) [1] ND (Selenium	ON	(0.3)	Ξ	QN	(0.3)	Ξ	ON	(0.3)	Ξ	QN	(0.3)	Ξ
30 (1) [1] 40 (1) [1] 39 (1) [1] 36 (1) [1] ND (0.1) [1] ND (0.01) [1] ND (0.1) [1] ND (0.01) [1] ND (0.01) [1] ND (0.02) [1] ND (0.002) [1] ND (0.002) [1] ND (0.003) [1] ND (0.003) [1] ND (0.0018) [1] ND (0.00018)	Silver	ON N	(0.01)	Ξ	ON	(0.01)	Ξ	QN	(0.01)	Ξ	ON	(0.01)	[1]
ND (0.02) [1] ND (0.002) [1] ND (0.002) [1] ND (0.003) [1] ND (0.003) [1] ND (0.0018) [1] ND (0.00018) [1] 0.00029 B (0.00018) [1] 0.00029 B (0.00018) [1] 0.00029 B (0.00018)	Sodium	30	(1)	Ξ	40	(1)	Ξ	39	(1)	Ξ	36	(1)	[1]
ND (0.02) [1] ND (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.002)	Thallium	ON	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(0.1)	Ξ
ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.004) [1] 0.0052 (0.004) [1] 0.0058 B (0.00018) [1] 0.00027 B (0.00018) [1] 0.00029 B (0.00018) [1] 0.00029 B (0.00018)	Vanadium	QN	(0.05)	Ξ	ON	(0.05)	[I]	QV	(0.05)	Ξ	QN	(0.05)	Ξ
0.0058 B (0.00018) [1] 0.00027 B (0.00018) [1] 0.00022 B (0.00018) [1] 0.00029 B (0.00018)	Zinc	QN	(0.05)	Ξ	QN	(0.05)	Ξ	QN Q	(0.05)	Ξ	0.02	(0.05)	Ξ
0.0061 (0.004) [1] 0.0049 (0.004) [1] 0.0052 (0.004) [1] 0.016 (0.004) (0.004) (0.003) (1] ND (0.003) (1] ND (0.003) (1] ND (0.003) (1] 0.00027 B (0.00018) (1] 0.00029 B (0.00018) (1] 0.00029 B (0.00018)	SW7060 - Arsenic (mg/L)												
0.0058 B (0.003) [1] ND (0.003) [1] ND (0.003) [1] ND (0.003) (0.00018) (1] 0.00029 B (0.00018) (1] 0.00029 B (0.00018)	Arsenic	0.0061	(0.004)	Ξ		(0.004)	[1]	0.0052	(0.004)	Ξ	0.016	(0.004)	Ξ
0.0058 B (0.003) [1] ND (0.003) [1] ND (0.003) [1] ND (0.003) ND (0.00018) [1] 0.00027 B (0.00018) [1] 0.00029 B (0.00018)													
ND (0.00018) [1] 0.00027 B (0.00018) [1] 0.00029 B (0.00018) [1] 0.00029 B (0.00018)	Lead		(0.003)	Ξ	QN	(0.003)	[1]	ON	(0.003)	Ξ	Q	(0.003)	[1]
ND (0.00018) [1] 0.00018) [1] 0.00018) [1] 0.00029 B (0.00018) [1] 0.00029 B (0.00018)	SW7470 - Mercury (mg/L)												
	Mercury	QN	(0.00018)	Ξ	00027	(0.00018)	Ξ	0.00029 B	(0.00018)	Ξ		(0.00018)	Ξ

		[1]
	06 06-SW-02 06-SW-02-01	(0.005)
	0	QN
		. [1]
	06 06-SW-01 06-DS-07 Dup of 06-SW-01-01	(0.005)
	20-90-02	QN
		[1]
SITE ID LOCATION ID SAMPLE ID	06 06-SW-01 06-SW-01-01	(0.005)
	 	QV
	1	[1]
	06 06-MW-06 06-MW-06-01	(0.005)
		ND
	PARAMETER	SW7740 - Selenium (mg/L) Selenium

Compiled: 20 Mars 1995

() = Detection Limit [] = Factor

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

O7-MM-01						SITE ID LOCATION ID SAMPLE ID							
Control (TOS) (May1.) Cont	PARAMETER		07 07-MW-01 07-MW-01-01	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		07 37-MW-01 3up of 07-MW-01	-01		07 07-MW-02 07-MW-02-01		07-DS-10 E	07)7-MW-02)up of 07-MW-02	2-01
NO (0.2) [1] NO (0.2) [1] NO (0.1) [1] NO (0	E160.1 - Residue, Filterable (TDS) Total dissolved solids		(10) [1.	[000000]	640	(10) [1.	[000000]	006	(10)	[000000]	860	(10) [1.	[000000]
0.12 (0.1) [1] ND	י אפנמו א וחש	QN	(0.2)	[1]	QN.	(0.2)	[1]	QN	(0.2)	Ξ	S	(0 0)	Ξ
0.5 (0.01) [1] ND (0.02) [1] ND (0.02) [1] ND (0.002) [1] ND (0.00	Antimony	0.12	(0.1)	Ξ	Q.	(0.1)	ΞΞ	2	(0.1)	ΞΞ	2	(0.1)	ΞΞ
0.5 (0.01) [1] 0.5 (0.01) [1] 0.6 (0.01) [1] 0.72 (0.01) [1] 0.72 (0.01) [1] 0.72 (0.01) [1] 0.05 (0.002) [1] 0.005 (0.0	Arsenic	QN N	(0.3)	[1]	ON	(0.3)	Ξ	QN N	(0.3)	Ξ	QN	(0.3)	ΞΞ
NO	Barium	0.5	(0.01)	Ξ	0.5	(0.01)	[1]	0.69	(0.01)	Ξ	0.72	(0.01)	Ξ
No	Beryllium	QN	(0.005)	Ξ	ON	(0.005)	[1]	2	(0.002)	Ξ	QN	(0.005)	Ξ
95 (1) [1] 100 (1) [1] 97 (1) [1] 100 (1) [1] 97 (1) [1] 100 (1) [1] 100 (1) 1	Cadmium	QN	(0.002)	[1]	٥.	(0.002)	Ξ	8	(0.002)	Ξ	QN	(0.002)	[1]
N	Calcium	92	(1)	[1]	100	(1)	Ξ	6	(1)	Ξ	100	(1)	Ξ
ND (0.01) [1] NO (0.01) [1] ND (0.01) [1] ND (0.02)	Chromium	Q	(0.01)	[1]	ON	(0.01)	Ξ	S	(0.01)	Ξ	QN	(0.01)	[1]
ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.05) [1] ND (0.01) [1] ND (0.02) [1] ND	Cobalt	Q	(0.01)	[1]	ON	(0.01)	Ξ	S	(0.01)	[1]	QN	(0.01)	Ξ
6.3 (0.05) [1] 6 (0.05) [1] 9.4 (0.05) [1] 9.5 (0.05) 0.054 (0.05) [1] ND (0.05) [1] ND (0.05) [1] 0.052 (0.05) 70 (1) [1] 73 (1) [1] ND (0.05) [1] ND (0.05) [1] 0.052 (0.05) 0.022 (0.01) [1] ND (0.05) [1] ND (0.05) [1] ND (0.05) 0.021 (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.05) 4.4 (3) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) 23 (1) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) ND (0.02) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) ND (0.02) [1] ND (0.02) [1] ND (0.01) [1] ND (0.01) ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) O.017 (0.004) [1] 0.0088 (0.004) [1] 0.0057 (0.004) [1] 0.0088 (0.003) O.017 (0.003) [1] D.0088 (0.003) [1] ND (0.003) [1] 0.0081 (0.003)	Copper	QN	(0.05)	Ξ	QN	(0.05)	Ξ	S	(0.05)	Ξ	QN	(0.05)	Ξ
0.054 (0.05) [1] ND (0.05) [1] ND (0.05) [1] ND (0.05) [1] 0.052 (0.05) 70 (1) [1] 73 (1) [1] 90 (1) [1] 90 (1) [1] 94 (1) 82 (0.01) [1] 0.95 (0.01) [1] ND (0.05) [1] ND (0.05) [1] ND (0.05) 90.021 (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) 84.4 (3) [1] ND (0.03) [1] ND (0.01) [1] ND (0.03) [1] ND (0.03) 85.2 (3) [1] ND (0.03) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) 85.4 (3) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) 90.017 (0.004) [1] ND (0.02) [1] ND (0.02) [1] ND (0.01) 90.0075 (0.004) [1] 0.0068 B (0.003) [1] ND (0.003) [1] ND (0.003) 90.017 (0.003) [1] 0.0068 B (0.003) [1] ND (0.003) [1] ND (0.003) 90.017 (0.003) [1] 0.0068 B (0.003) [1] ND (0.003) [1] 0.0031 B (0.003)	Iron	6.3	(0.02)	Ξ	9	(0.02)	Ξ	9.4	(0.02)	[1]	9.5	(0.02)	Ξ
0.021 (0.05) [1] ND (0.01) [1] ND (0.02) [1]	Lead	0.054	(0.02)	[1]	QN	(0.02)	Ξ	S	(0.02)	Ξ	0.052	(0.02)	Ξ
0.82 (0.01) [1] 0.95 (0.01) [1] 0.05 (0.01) [1] 0.045 (0.01) (0.05) [1] ND (0.02) [1] ND (0.01) [1] ND (0.02) [1]	Magnesium	70	(1)	Ξ	73	(1)	Ξ	06	(1)	Ξ	94	(1)	Ξ
ND (0.05) [1] ND (0.02) [1] ND (0.03) [1] ND (0.01) [1] ND (0.02) [1] ND	Manganese	0.82	(0.01)	Ξ	0.95	(0.01)	Ξ	0.41	(0.01)	Ξ	0.45	(0.01)	[1]
0.021 (0.02) [1] ND (0.03) [1] ND (0.01) [1] ND (0.02) [1]	Molybdenum	QN	(0.02)	[1]	QN	(0.02)	Ξ	N	(0.02)	Ξ	QN	(0.02)	Ξ
ND (0.3) [1] 4.6 (3) [1] 5.2 (3) [1] 5.4 (3) ND (0.01) [1] ND (0.01) [1] ND (0.01) [1] ND (0.01) 23 (1) [1] 24 (1) [1] 59 (1) [1] ND (0.01) ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) Occidental (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) Occidental (0.02) [1] 0.0085 (0.004) [1] 0.0057 (0.004) [1] 0.0068 (0.003)	Nickel	0.021	(0.05)	Ξ	Q	(0.05)	Ξ	QN	(0.05)	Ξ	N	(0.05)	[1]
ND (0.3) [1] ND (0.3) [1] ND (0.3) [1] ND (0.3) [1] ND (0.01) [1] ND (0.02) [1] ND (0.03) [1] ND (0.03) [1] ND (0.003) [1] N	Potassium	4.4	(3)	Ξ	4.6	(3)	Ξ	5.2	(3)	Ξ	5.4	(3)	[1]
ND (0.01) [1] ND (0.02) [1] ND (0.003)	Selenium	Q	(0.3)	Ξ	QN	(0.3)	[]]	QN	(0.3)	Ξ	QN	(0.3)	[1]
23 (1) [1] 24 (1) [1] 59 (1) [1] 60 (1) ND (0.1) [1] ND (0.1) [1] ND (0.1) ND (0.02) [1] ND (0.02) [1] ND (0.02) ND (0.02) [1] ND (0.02) [1] ND (0.02) O.0075 (0.004) [1] 0.0085 (0.004) [1] 0.0057 (0.004) [1] 0.0068 B (0.003) O.017 (0.003) [1] 0.0068 B (0.003) [1] ND (0.003) [1] 0.0031 B (0.003)	Silver	R	(0.01)	[1]	QV	(0.01)	[1]	Q.	(0.01)	Ξ	QN	(0.01)	Ξ
ND (0.1) [1] ND (0.1) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) [1] ND (0.02) (Sodium	23	(1)	Ξ	24	(1)	Ξ	29	(1)	Ξ	09	(1)	Ξ
ND (0.02) [1] ND (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)	Thallium	ON	(0.1)	Ξ	ON	(0.1)	[1]	Q	(0.1)	[]	QN	(0.1)	Ξ
0.0075 (0.004) [1] 0.0068 B (0.003) [1] ND (0.02) [1] ND (0.02) (1] ND (0.004) (0.004) (1] 0.0068 B (0.003) (1] ND (0.003) (1] 0.0068 B (0.003) (1] ND (0.003) (1] 0.0031 B (0.003)	Vanadium	ON	(0.05)	Ξ	Q	(0.05)	[1]	QN	(0.05)	Ξ	QN	(0.05)	Ξ
0.0075 (0.004) [1] 0.0085 (0.004) [1] 0.0057 (0.004) [1] 0.0068 (0.004) 0.017 (0.003) [1] 0.0068 B (0.003) [1] ND (0.003) [1] 0.0031 B (0.003)	Zinc	2	(0.05)	Ξ	ON	(0.05)	Ξ	Q	(0.05)		QN	(0.05)	Ξ
0.0075 (0.004) [1] 0.0085 (0.004) [1] 0.0057 (0.004) [1] 0.0068 (0.004) 0.017 (0.003) [1] 0.0068 B (0.003) [1] ND (0.003) [1] 0.0031 B (0.003)	SW7060 - Arsenic (mg/L)									1		•	3
0.017 (0.003) [1] 0.0068 B (0.003) [1] ND (0.003) [1] 0.0031 B (0.003)	Arsenic	0.0075	(0.004)	Ξ		(0.004)	Ξ	0.0057	(0.004)	Ξ	0.0068	(0.004)	Ξ
0.017 (0.003) [1] 0.0068 B (0.003) [1] ND (0.003) [1] 0.0031 B (0.003)	SW7421 - Lead (mg/L)												
- Dotootion limit [] - Endow MD - Not Detected MA	Lead	0.017	(0.003)	Ξ	. 0068	(0.003)	[1]	QN	(0.003)	[1]		(0.003)	[1]
- Detection M = Motor M = Mot Detection M = Mot Detection M = Motor													
	Commiled: 20 March 1995		() = Nater	+ion -imi	=	ON I	00+00+00	I VIV	+ Annlinel				

	2-01	[1]
	07 07-MW-02 07-DS-10 Dup of 07-MW-02-01	(0.00018)
	07-08-10	[1] 0.00032 B
	!	[1]
	07 07-MW-02 07-MW-02-01	(0.00018)
	0	0.0003 B
	-01	[1]
SITE ID LOCATION ID SAMPLE ID	07 07-MW-01 07-DS-09 Dup of 07-MW-01-01	(0.00018)
	07-DS-09	0.0003 B
		8 8
	07 07-MW-01 07-MW-01-01	0.0003 B (0.00018) ND (0.005)
	0	0.0003 B
		cury (mg/L) anium (mg/L)
	PARAMETER	SW7470 - Mercury (mg/L) Mercury SW7740 - Selenium (mg/L) Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

					SITE ID LOCATION ID SAMPLE ID	:						
		07 07-MW-03		C	07 07-MW-04		_	07			07	
PARAMETER	 	07 -MW-03-01		70	07-MW-04-01	:	0.0	07-SW-01-01	, 	0	07-5W-02-01 	
E160.1 - Residue, Filterable (TDS)	(mg/L)											
Total dissolved solids SW6010 - Metals (mg/L)	870	(10) [1	(10) [1.000000]	840	(10) [1.000000]	[000000	6300	(10) [1.000000]	[000000	2000	(10) [1.000000]	[000000
Aluminum	QN N	(0.2)	[1]	S	(0.2)	Ξ	QN	(0.2)		ON	(0.2)	Ξ
Antimony	8	(0.1)	Ξ	S	(0.1)	Ξ	0.12	(0.1)	Ξ	0.18	(0.1)	Ξ
Arsenic	S	(0.3)	Ξ	Q	(0.3)	Ξ	S	(0.3)	[1]	QN	(0.3)	Ξ
Barium	0.14	(0.01)	Ξ	0.17	(0.01)	Ξ	0.82	(0.01)	[1]	0.74	(0.01)	[1]
Beryllium	QN	(0.005)	[1]	Q.	(0.002)	Ξ	ON	(0.002)	[1]	S	(0.002)	[1]
Cadmium	QN	(0.002)	[1]	S	(0.002)	[1]	QN	(0.005)	Ξ	S	(0.002)	Ξ
Calcium	110	(1)	[1]	120	(1)	Ξ	270	(1)	Ξ	220	(1)	Ξ
Chromium	QN	(0.01)	Ξ	2	(0.01)	Ξ	QN	(0.01)	[1]	QN ON	(0.01)	Ξ
Cobalt	Q	(0.01)	Ξ	2	(0.01)	Ξ	Q	(0.01)	Ξ	QN	(0.01)	Ξ
Copper	R	(0.05)	Ξ	2	(0.05)	[1]	QN	(0.05)	Ξ	QN	(0.05)	Ξ
Iron	1.3	(0.02)	[1]	1.2	(0.02)	Ξ	9.7	(0.05)	Ξ	09	(0.05)	Ξ
Lead	QN	(0.02)	[1]	2	(0.02)	Ξ	ON	(0.02)	[1]	9	(0.02)	Ξ
Magnesium	100	(1)	Ξ	82	(1)	[1]	140	(1)	Ξ	96	(1)	Ξ
Manganese	1.2	(0.01)	Ξ	2.1	(0.01)	[1]	2.1	(0.01)	[1]	2.2	(0.01)	Ξ
Molybdenum	ON.	(0.02)	[1]	2	(0.02)	Ξ	Q	(0.05)	Ξ	ND	(0.02)	Ξ
Nickel	Q	(0.05)	[]	2	(0.05)	Ξ	Q	(0.05)	Ξ	ON	(0.05)	Ξ
Potassium	4.5	(3)	Ξ	6.1	(3)	Ξ	7.1	(3)	[1]	ON	(3)	[]
Selenium	S	(0.3)	Ξ	2	(0.3)	Ξ	Q	(0.3)	Ξ	ON	(0.3)	Ξ
Silver	S	(0.01)	[1]	2	(0.01)	[1]	Q	(0.01)	Ξ	Q.	(0.01)	Ξ
Sodium	53	(1)	[1]	35	(1)	Ξ	1800	(4)	[4]	330	(1)	Ξ
Thallium	QN	(0.1)	Ξ	QN	(0.1)	Ξ	Q	(0.1)	Ξ	S	(0.1)	Ξ
Vanadium	ON	(0.05)	Ξ	9	(0.05)	Ξ	Q.	(0.05)	Ξ	QN	(0.05)	Ξ
Zinc	QN	(0.05)	Ξ	9	(0.05)	Ξ	0.022	(0.05)	Ξ	ON	(0.05)	Ξ
SW7060 - Arsenic (mg/L)												:
Arsenic ,	S	(0.004)	Ξ	S	(0.004)	Ξ	QN	(0.004)	Ξ	0.0069	(0.004)	Ξ
SW7421 - Lead (mg/L)												
Lead	0.0034 B	(0.003)	[1]	QN	(0.003)	[1]	0.046	(0.003)	[1]	0.01	(0.003)	[1]
Commiled: 20 March 1995		() = Deter	= Detection limit	[] = Fac	Factor ND = Not	Not Detected	NA = Not	Not Applicable				
כטווף וופטי בע יומוכון נייט			1011	ı	1	תפופסופת	ı	Applicable				

		[1]	[1]
	07 07-SW-02 07-SW-02-01	(0.00018)	(0.002)
		Q.	ND
		[1]	[1]
	07 07-SW-01 07-SW-01-01	(0.00018)	(0.005)
		ON	QN
		[1]	[1]
SITE ID LOCATION ID SAMPLE ID	07 07-MW-04 07-MW-04-01	(0.00018)	(0.005)
		0.00029 B	QN
		[1]	[1]
	07 07-MW-03 07-MW-03-01	(0.00018)	(0.002)
	07 07-MW-03 07-MW-03-01	0.00031 B (0.00018)	ND
		(mg/L)	
	PARAMETER	SW7470 - Mercury (mg/L) Mercury SW7740 - Selenium (mg/L)	Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

PARAMETER												
PARAMETER		09 09-MW-01			09 09-MW-01			09 09-MM-02			09 09-WM-03	
		09-MW-01-01		09-02-07	Dup of 09-MW-01-01	1-01		09-MW-02-01	1 1 1 1)	09-MW-03-01	! ! !
SW6010 - Metals (mg/L)												
Aluminum	Q	(0.2)	Ξ	Q	(0.2)	Ξ	Q	(0.2)	[]	QN	(0.2)	Ξ
Antimony	QN	(0.1)	Ξ	9	(0.1)	Ξ	QN	(0.1)	Ξ	ON	(0.1)	Ξ
Arsenic	QN	(0.3)	Ξ	QN	(0.3)		Q	(0.3)	Ξ	ON	(0.3)	Ξ
Barium	0.3	(0.01)	Ξ	0.29	(0.01)	Ξ	0.22	(0.01)	Ξ	0.38	(0.01)	Ξ
Beryllium	QN N	(0.005)	Ξ	Q.	(0.005)	Ξ	S	(0.005)	Ξ	ON	(0.005)	[1]
Cadmium	QN	(0.002)	[]	Q	(0.002)	Ξ	N	(0.005)	Ξ	QN	(0.005)	Ξ
Calcium	160	(1)	Ξ	160	(1)	Ξ	150	(1)	[1]	160	(1)	Ξ
Chromium	ON	(0.01)	Ξ	Q	(0.01)	[1]	Q	(0.01)	Ξ	QN	(0.01)	Ξ
Cobalt	QN	(0.01)	Ξ	Q	(0.01)	[1]	QN	(0.01)	Ξ	ND	(0.01)	Ξ
Copper	QN	(0.05)	Ξ	Q	(0.05)	[]	R	(0.05)	[1]	ND	(0.05)	Ξ
Iron	22	(0.02)	Ξ	50	(0.02)	Ξ	5.9	(0.02)	[1]	9.6	(0.02)	Ξ
Lead	QN	(0.02)	Ξ	S	(0.02)	Ξ	QN	(0.05)	Ξ	QN	(0.02)	[]
Magnesium	53	(1)	Ξ	58	(1)	[]	17	(1)	[1]	23	(1)	Ξ
Manganese	4	(0.01)	Ξ	3.8	(0.01)	Ξ	96.0	(0.01)	Ξ	1.1	(0.01)	Ξ
Molybdenum	QN	(0.02)	Ξ	QN	(0.02)	[1]	QN	(0.02)	Ξ	ND	(0.02)	Ξ
Nickel	QN	(0.05)	[]	0.024	(0.05)	Ξ	QN	(0.05)	Ξ	QN	(0.05)	Ξ
Potassium	5.1	(3)	Ξ	4.9	(3)	[]	3.1	(3)	[1]	4.6	(3)	Ξ
Selenium	QN	(0.3)	Ξ	S	(0.3)	Ξ	QN	(0.3)	[1]	QN N	(0.3)	Ξ
Silver	QN	(0.01)	Ξ	ᄝ	(0.01)	Ξ	QN	(0.01)	Ξ	QN	(0.01)	Ξ
Sodium	15	(1)	Ξ	15	(1)	Ξ	8.4	(1)	[1]	34	(1)	Ξ
Thallium	QN	(0.1)	Ξ	QN	(0.1)	[1]	QN	(0.1)	Ξ	QN	(0.1)	Ξ
Vanadium	QN	(0.05)	[1]	QN	(0.05)	Ξ	S	(0.05)	Ξ	N N	(0.05)	Ξ
Zinc	QN	(0.05)	Ξ	0.021	(0.05)	Ξ	QN	(0.05)	Ξ	ND	(0.05)	[1]
SW7060 - Arsenic (mg/L)												
Arsenic	QN	(0.004)	Ξ	Q	(0.004)	[1]	QN	(0.004)	Ξ	0.0043	(0.004)	Ξ
SW7421 - Lead (mg/L)												
Lead	ON	(0.003)	Ξ	0.039	(0.003)	[1]	Q	(0.003)	[1]	0.018	(0.003)	Ξ
SW7470 - Mercury (mg/L)										•		
Mercury	0.00036	(0.00018)	Ξ	0.00036	(0.00018)	Ξ	Q	(0.00018)	[1]	0.00034 B	(0.00018)	Ξ

ND = Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

					SITE ID LOCATION ID SAMPLE ID							
PARAMETER 		09 09-MW-01 09-MW-01-01		09-02-07	09 09-MW-01 09-DS-07 Dup of 09-MW-01-01		60	09 09-MW-02 09-MW-02-01		0	09 09-MM-03 09-MW-03-01	
SW7740 - Selenium (mg/L) Selenium	N	(0.005)	Ξ	QN	(0.005)	[1]	ND	(0.005)	[1]	ND	(0.005)	[1]

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE ID

		60			60			60			60	
PARAMETER 	80-S0-60	09-DS-08 Dup of 09-MW-03-01	-01	 	09-MW-04 09-MW-04-01			09-MW-05 09-MW-05-01			09-MW-06 09-MW-06-01	
SW6010 - Metals (mg/L)												
Aluminum	QN	(0.2)	[1]	QN	(0.5)	Ξ	S	(0.2)	[1]	S	(0.5)	[1]
Antimony	ON	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(0.1)	Ξ	QN	(0.1)	ΞΞ
Arsenic	QN	(0.3)	Ξ	ON	(0.3)	Ξ	Q.	(0.3)	Ξ	2	(0.3)	ΞΞ
Barium	0.37	(0.01)	Ξ	0.26	(0.01)	Ξ	0.28	(0.01)	Ξ	0.19	(0.01)	Ξ
Beryllium	QN	(0.002)	Ξ	QN	(0.005)	Ξ	S	(0.005)	[1]	Q	(0.002)	Ξ
Cadmium	ON	(0.005)	Ξ	N	(0.002)	Ξ	QV	(0.002)	[1]	ON	(0.005)	Ξ
Calcium	160	(1)	Ξ	230	(1)	Ξ	130	(1)	[1]	110	(1)	ΞΞ
Chromium	QN	(0.01)	Ξ	Q	(0.01)	Ξ	ND	(0.01)	[1]	Q	(0.01)	
Cobalt	ON	(0.01)	[1]	Q	(0.01)	Ξ	ON	(0.01)	Ξ	2	(0.01)	[1]
Copper	QN	(0.05)	Ξ	Q	(0.05)	Ξ	Q	(0.05)	Ξ	8	(0.05)	[1]
Iron	8.1	(0.05)	Ξ	2.2	(0.02)	Ξ	3.8	(0.05)	Ξ	2	(0.02)	Ξ
Lead	ON	(0.02)	Ξ	Q	(0.02)	Ξ	ND	(0.05)	[1]	QN	(0.02)	Ξ
Magnesium	24	(1)	[1]	34	(1)	Ξ	21	(1)	[1]	16	(1)	Ξ
Manganese	1	(0.01)	Ξ	0.76	(0.01)	[1]	1.9	(0.01)	Ξ	0.081	(0.01)	Ξ
Molybdenum	QN	(0.02)	Ξ	Q	(0.02)	Ξ	QN	(0.02)	[1]	ON	(0.02)	Ξ
Nickel	QN	(0.05)	Ξ	Q	(0.05)	Ξ	QN	(0.05)	[1]	ON	(0.05)	Ξ
Potassium	5,3	(3)	[1]	5.4	(3)	[1]	4.4	(3)	Ξ	3.9	(3)	Ξ
Selenium	QN	(0.3)	Ξ	Q	(0.3)	Ξ	ON	(0.3)	[1]	QN	(0.3)	
Silver	ND	(0.01)	Ξ	2	(0.01)	Ξ	NO	(0.01)	[1]	ND	(0.01)	Ξ
Sodium	32	(1)	Ξ	22	(1)	Ξ	40	(1)	[1]	3.8	(1)	Ξ
Thallium	ON	(0.1)	[]	2	(0.1)	Ξ	ON	(0.1)	[1]	QN	(0.1)	Ξ
Vanadium	QN	(0.05)	Ξ	2	(0.05)	Ξ	QN	(0.05)	[1]	QN	(0.05)	Ξ
Zinc	QN	(0.05)	Ξ	9	(0.05)	. [1]	ND	(0.05)	[1]	QN	(0.05)	Ξ
SW7060 - Arsenic (mg/L)									l		•	,
Arsenic	ON	(0.004)	Ξ	S	(0.004)	[1]	QN	(0.004)	[1]	QN	(0.004)	Ξ
SW7421 - Lead (mg/L)						1		•	1	!]
Lead	0.0043 B	(0.003)	Ξ	S	(0.003)	Ξ	0.005 B	(0.003)	[1]	0.0071 B	(0.003)	
SW7470 - Mercury (mg/L)									1			3
Mercury	0.00032 B	(0.00018)	[1] 0.	0.00035	(0.00018)	Ξ	0.00033 8	(0.00018)	[1.000000]	0.00036	(0.00018) [1.000000]	[000000]

	! ! ! !	[1]
	09 09-MW-06 09-MW-06-01	(0.002)
		QN
		[1]
	09 09-MW-05 09-MW-05-01	(0.005)
		ND
		[1]
SITE ID LOCATION ID SAMPLE ID	09 09-MW-04 09-MW-04-01	(0.005)
	1 ! !	Q
	-01	[:]
	09 09-MW-03 09-DS-08 Dup of 09-MW-03-01	(0.005)
	09-08-08	QN
	PARAMETER 	SW7740 - Selenium (mg/L) Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

		60			60			60			60	
PARAMETER	0	09-MW-07 09-MW-07-01	! ! !		09-MW-08 09-MW-08-01	,		09-MW-10 09-MW-10-01			09-MW-11 09-MW-11-01	
SW6010 - Metals (mg/L)												! ! ! ! ! !
	QN	(0.5)	Ξ	Q	(0.5)	[1]	2	(0.5)	Ξ	CN	(0.2)	Ξ
Antimony	ON.	(0.1)	Ξ	S	(0.1)	ΞΞ	2	(0.1)	ΞΞ	2	(0:1)	ΞΞ
Arsenic	ON	(0.3)	Ξ	Q.	(0.3)	Ξ	2	(0.3)	ΞΞ	2 2	(0.3)	ΞΞ
Barium	0.16	(0.01)	Ξ	0.73	(0.01)	Ξ	0.65	(0.01)	Ξ	1.1	(0.01)	ΞΞ
Beryllium	QN	(0.002)	[1]	9	(0.005)	Ξ	Q	(0.005)	Ξ	QN	(0.002)	ΞΞ
Cadmium	QN	(0.005)	Ξ	2	(0.002)	[1]	QN N	(0.002)	Ξ	ON.	(0.002)	ΞΞ
Calcium	170	(1)	Ξ	190	(1)	Ξ	150	(1)	[1]	210	(1)	Ξ
Chromium	ON	(0.01)	Ξ	Q	(0.01)	[1]	ON	(0.01)	Ξ	S	(0.01)	Ξ
Cobalt	ON.	(0.01)	Ξ	0.027	(0.01)	Ξ	0.052	(0.01)	Ξ	0.015	(0.01)	
Copper	ON	(0.05)	Ξ	Q	(0.05)	Ξ	2	(0.05)	Ξ	ON	(0.05)	[1]
Iron	ON	(0.02)	Ξ	130	(0.02)	[1]	65	(0.02)	Ξ	110	(0.02)	[1]
Lead	QN	(0.02)	Ξ	Q	(0.02)	Ξ	Q.	(0.02)	Ξ	N N	(0.02)	
Magnesium	40	(1)	Ξ	28	(1)	[1]	24	(1)	Ξ	33	(1)	Ξ
Manganese	QN	(0.01)	Ξ	16	(0.01)	Ξ	6	(0.01)	[]	15	(0.01)	Ξ
Molybdenum	QN	(0.02)	Ξ	S	(0.02)	Ξ	9	(0.02)	Ξ	2	(0.02)	Ξ
Nickel	QN	(0.05)	Ξ	0.033	(0.05)	Ξ	0.039	(0.05)	Ξ	Q.	(0.05)	Ξ
Potassium	5	(3)	Ξ	3.4	(3)	Ξ	4.3	(3)	Ξ	7.9	(3)	[1]
Selenium	QN	(0.3)	Ξ	2	(0.3)	Ξ	9	(0.3)	Ξ	Q.	(0.3)	Ξ
Silver	QN	(0.01)	[1]	9	(0.01)	Ξ	R	(0.01)	[1]	S	(0.01)	Ξ
Sodium	7.5	(1)	[1]	7.1	(1)	Ξ	8.2	(1)	Ξ	6.8	(1)	[1]
Thallium	ON	(0.1)	[1]	2	(0.1)	Ξ	9	(0.1)	Ξ	Q.	(0.1)	. [1]
Vanadium	QN	(0.05)	Ξ	R	(0.05)	Ξ	R	(0.05)	[1]	Q.	(0.05)	
Zinc	QN	(0.05)	Ξ	2	(0.05)	Ξ	9	(0.05)	Ξ	QN	(0.05)	Ξ
SW7060 - Arsenic (mg/L)									1		•	1
Arsenic	QN	(0.004)	Ξ	0.029	(0.004)	Ξ	0.013	(0.004)	Ξ	0.025	(0.004)	Ξ
SW7421 - Lead (mg/L)												
Lead	0.0065 B	(0.003)	Ξ	N	(0.003)	[1]	0.02	(0.003)	[1]	0.014	(0.003)	Ξ
SW/4/0 - Mercury (mg/L)			į									
Mercury	0.00037	(0.00018)	Ξ	£	(0.00018)	[1]	ON	(0.00018)	[]	Q	(0.00018)	Ξ

SITE ID LOCATION ID SAMPLE ID	09 09-MW-08 09-MW-10 09-MW-10-01	(0.005) [1] ND (0.005)
SI LOCA SAM		005) [1] ND
	09 09-MW-07 09-MW-07-01	0.0063 (0.005)
	PARAMETER 	SW7740 - Selenium (mg/L) Selenium

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

PARAMETER SW6010 - Metals (mg/L)					משוו רד זה							
	3	09 09-MW-12			09 09-MW-14			10 10-MW-01			10 10-MW-02	
	0	09-MW-12-01)	09-MW-14-01	1 1 1 1	1	10-MW-01-02	, ! ! ! !	1	10-MW-02-02	! ! !
Aliminim												
	QN	(0.2)	Ξ	QN	(0.2)		S	(0.2)	[1]	QN	(0.2)	Ξ
Antimony	QN	(0.1)	[1]	ON	(0.1)	[1]	2	(0.1)	[1]	2	(0.1)	Ξ
Arsenic	Q	(0.3)	Ξ	ջ	(0.3)	Ξ	ON	(0.3)	Ξ	ON	(0.3)	Ξ
Barium	8.0	(0.01)	[1]	0.13	(0.01)	[1]	0.3	(0.01)	Ξ	0.94	(0.01)	Ξ
Beryllium	QN	(0.002)	Ξ	Q	(0.005)	Ξ	QN	(0.005)	Ξ	QN	(0.005)	Ξ
Cadmium	QN	(0.005)	Ξ	Q	(0.002)	Ξ	ON	(0.005)	Ξ	QN	(0.002)	Ξ
Calcium	230	(1)	Ξ	170	(1)	Ξ	190	(1)	[]	160	(1)	[1]
Chromium	Q.	(0.01)	Ξ	QN	(0.01)	[1]	ON	(0.01)	Ξ	QN	(0.01)	[]
Cobalt	0.026	(0.01)	Ξ	Q	(0.01)	[1]	QN	(0.01)	[1]	0.016	(0.01)	Ξ
Copper	ON	(0.05)	Ξ	Q	(0.05)	[1]	ON	(0.05)	[1]	QN	(0.05)	[1]
Iron	130	(0.05)	Ξ	R	(0.02)	Ξ	2.7	(0.02)	Ξ	150	(0.02)	Ξ
Lead	Q	(0.02)	Ξ	2	(0.02)	Ξ	Q	(0.05)	[1]	8	(0.02)	[1]
Magnesium	47	(1)	Ξ	36	(1)	Ξ	34	(1)	[1]	25	(1)	Ξ
Manganese	2.9	(0.01)	Ξ	0.032	(0.01)	Ξ	0.88	(0.01)	Ξ	8.5	(0.01)	Ξ
Molybdenum	QN	(0.05)	Ξ	S	(0.02)	Ξ	QN	(0.02)	[1]	QN	(0.02)	Ξ
Nickel	0.053	(0.05)	Ξ	Q	(0.05)	Ξ	0.026	(0.05)	[]	QN	(0.05)	[1]
Potassium	10	(3)	[1]	5.1	(3)	Ξ	9.9	(3)	Ξ	5.7	(3)	[1]
Selenium	ON	(0.3)	Ξ	ON	(0.3)	Ξ	ON	(0.3)	Ξ	ON	(0.3)	[1]
Silver	ON	(0.01)	Ξ	QN	(0.01)	[1]	QN	(0.01)	Ξ	QN	(0.01)	[1]
Sodium	27	(1)	Ξ	15	(1)	Ξ	30	(1)	[1]	27	(1)	Ξ
Thallium	ON	(0.1)	Ξ	S	(0.1)	Ξ	Q	(0.1)	[1]	QN	(0.1)	Ξ
Vanadium	QN	(0.05)	Ξ	ON	(0.05)	Ξ	Q	(0.05)	Ξ	QN	(0.05)	Ξ
Zinc	QN	(0.05)	Ξ	QN	(0.05)	[1]	Q.	(0.05)	Ξ	QN	(0.05)	[1]
SW7060 - Arsenic (mg/L)												
Arsenic	90.0	(0.004)	Ξ	Q	(0.004)	Ξ	N	(0.004)	Ξ	0.039	(0.004)	[1]
SW7421 - Lead (mg/L)												
Lead	0.0081 B	(0.003)	Ξ	QN	(0.003)	Ξ	0.0083	(0.003)	Ξ	0.0089	(0.003)	[1]
SW7470 - Mercury (mg/L)												
Mercury	QV	(0.00018)	[1]	0.00036	(0.00018)	Ξ	0.0003 B	(0.00018)	[1]	0.0003 B	(0.00018)	[1]

SW7740 - Selenium (mg/L)

Selenium

PARAMETER

	10 10-MW-02 10-MW-02-02	(0.005)			
		Q N			
		Ξ			
	10 10-MW-01 10-MW-01-02	(0.005)			
		Q _N			
		[1]			
SITE ID LOCATION ID SAMPLE ID	09 09-MW-14 09-MW-14-01	(0.005)			
	; ; ; 1 1 ;	Q			
	; 1 1 1 1	[1]			
	09 09-MW-12 09-MW-12-01	(0.005)			
		QN			

 \Box

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

					LOCATION ID SAMPLE ID							
		10			10			11			11	
PARAMETER	10-05-06	10-DS-06 Dup of 10-MW-02-02			10-MW-03 10-MW-03-02	,		11-MW-01 11-MW-01-01			11-MW-02 11-MW-02-01	
(1) only Motors												
	ON.	(0 0)	[1]	CN	(6 0)	[1]	Š	(6.0)	[1]	Ş	6	Ξ
	0 0	(0.5)	ΞΞ	2 4	(0.2)	[7]	2 9	(0.7)	Ξ:	2 €	(0.2)	∃ :
Antimony	0.12	(0.1)	Ξ3	Q :	(0.1)	Ξ:	2	(0.1)	∃;	2	(0.1)	Ξ
Arsenic	QN QN	(0.3)	Ξ	Q.	(0.3)	[1]	2	(0.3)	Ξ	2	(0.3)	Ξ
Barium	0.95	(0.01)	Ξ	0.23	(0.01)	Ξ	0.2	(0.01)	Ξ	0.44	(0.01)	Ξ
Beryllium	QN	(0.005)	Ξ	문	(0.005)	Ξ	Q	(0.005)	Ξ	Q.	(0.002)	Ξ
Cadmium	ON	(0.005)	Ξ	Q.	(0.002)	Ξ	Q	(0.002)	Ξ	윤	(0.005)	Ξ
Calcium	160	(1)	Ξ	180	(1)	Ξ	260	(1)	[]	200	(1)	[1]
Chromium	QN	(0.01)	Ξ	Q	(0.01)	Ξ	Q	(0.01)	Ξ	Q.	(0.01)	[1]
Cobalt	0.013	(0.01)	Ξ	Q	(0.01)	Ξ	Q.	(0.01)	Ξ	0.032	(0.01)	[1]
Copper	ON	(0.05)	Ξ	Q	(0.05)	Ξ	Q	(0.05)	Ξ	S	(0.05)	[1]
Iron	140	(0.02)	Ξ	1.6	(0.02)	Ξ	Q	(0.02)	Ξ	5.6	(0.02)	[1]
Lead	ON	(0.02)	Ξ	Q	(0.02)	Ξ	S	(0.02)	[]	ON	(0.02)	Ξ
Magnesium	52	(1)	Ξ	21	(1)	Ξ	43	(1)	[1]	34	(1)	Ξ
Manganese	8.5	(0.01)	Ξ	0.57	(0.01)	[1]	2	(0.01)	Ξ	30	(0.01)	[1]
Molybdenum	ND	(0.02)	Ξ	S	(0.02)	Ξ	Q	(0.02)	Ξ	QN	(0.02)	[1]
Nickel	QN	(0.05)	[1]	0.021	(0.05)	Ξ	Q	(0.05)	Ξ	0.042	(0.05)	[1]
Potassium	5.4	(3)	Ξ	4	(3)	Ξ	5.9	(3)	Ξ	3.6	(3)	Ξ
Selenium	ON	(0.3)	Ξ	Q	(0.3)	[1]	Q	(0.3)	Ξ	S	(0.3)	Ξ
Silver	Q	(0.01)	Ξ	QN	(0.01)	Ξ	Q	(0.01)	Ξ	S	(0.01)	Ξ
Sodium	27	(1)	Ξ	12	(1)	Ξ	19	(1)	Ξ	15	(1)	[1]
Thallium	ON	(0.1)	[1]	2	(0.1)	Ξ	Q.	(0.1)	[1]	Q	(0.1)	Ξ
Vanadium	QN	(0.05)	[1]	Q	(0.05)	Ξ	Q	(0.05)	[]	QN	(0.05)	Ξ
Zinc	QN	(0.05)	[]	0.023	(0.05)	[1]	Q	(0.05)	[1]	Q.	(0.05)	
SW7060 - Arsenic (mg/L)												1
Arsenic	0.037	(0.004)	Ξ	QN	(0.004)	Ξ	Q	(0.004)	Ξ	0.005	(0.004)	
SW7421 - Lead (mg/L)												1
Lead	0.021	(0.003)	Ξ	0.05	(0.003)	Ξ	QN	(0.003)	Ξ	0.018	(0.003)	[1]
SW7470 - Mercury (mg/L)												
Mercury	0.0003 B	(0.00018)	[1]	0.0003 B	(0.00018)	Ξ	ON	(0.00018)	Ξ	ON	(0.00018)	[1]

					SITE ID LOCATION ID SAMPLE ID				, , , , , , , , , , , , , , , , , , ,			
PARAMETER 	10-03-06	10 10-MW-02 10-DS-06 Dup of 10-MW-02-02		1	10 10-MW-03 10-MW-03-02			11 11-MW-01 11-MW-01-01		11 11-	11 11-MW-02 11-MW-02-01	
SW7740 - Selenium (mg/L) Selenium	ND	(0.005)	[1]	ND	(0.005)	[1]	[1] 0.007	(0.005)	[1]	QN	(0.002)	[1]

RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1992 EVENT.

SITE 1D

		12			12	
PARAMETER 	. 1	12-MW-01 12-MW-01-01	1	1	12-MW-02 12-MW-02-01	; ; ;
SW6010 - Metals (mg/L)						
Aluminum	QN	(0.2)	[1]	9	(0.2)	Ξ
Antimony	ON	(0.1)	Ξ	ON	(0.1)	Ξ
Arsenic	QN	(0.3)	Ξ	9	(0.3)	Ξ
Barium	0.18	(0.01)	Ξ	0.18	(0.01)	Ξ
Beryllium	QN	(0.005)	[1]	Q	(0.005)	[1]
Cadmium	QN .	(0.005)	Ξ	ON	(0.002)	Ξ
Calcium	150	(1)	Ξ	150	(1)	Ξ
Chromium	ON	(0.01)	Ξ	N	(0.01)	Ξ
Cobalt	QN	(0.01)	Ξ	QN	(0.01)	Ξ
Copper	ON	(0.05)	[1]	QN	(0.05)	Ξ
Iron	0.059 8	(0.02)	Ξ	0.053 B	(0.02)	Ξ
Lead	ON	(0.02)	Ξ	2	(0.02)	Ξ
Magnesium	27	(1)	Ξ	87	(1)	Ξ
Manganese	0.034	(0.01)	Ξ	S	(0.01)	Ξ
Molybdenum	ON	(0.05)	Ξ	ON	(0.02)	Ξ
Nickel	QN	(0.05)	Ξ	QN	(0.05)	Ξ
Potassium	3.5	(3)	Ξ	3.4	(3)	Ξ
Selenium	QN	(0.3)	Ξ	QN	(0.3)	[]
Silver	QN	(0.01)	Ξ	Q.	(0.01)	Ξ
Sodium	5.9	(1)	Ξ	5.6	(1)	Ξ
Thallium	QN	(0.1)	Ξ	ND	(0.1)	Ξ
Vanadium	QN	(0.05)	Ξ	QN	(0.05)	Ξ
Zinc	ND	(0.05)	[1]	QN	(0.05)	Ξ
SW7060 - Arsenic (mg/L)						
Arsenic	ND	(0.004)	Ξ	QN	(0.004)	Ξ
SW7421 - Lead (mg/L)		,				
Lead ,	0.0085	(0.003)	Ξ	0.0046 B	(0.003)	Ξ
SW7470 - Mercury (mg/L)						
Mercury	GN	(0.00018)	Ξ	GN	(0 00018)	ניי

NA = Not Applicable

() = Detection Limit [] = Factor

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

PARAMETER	3 10	01 141 01 00		-01-	01-MW-02		01.	01-58-01		01	01-SB-01	
		5 - 7	! ! !	S	W-02-02 5 - 7		10	3 - 5		%-T0 8	01-56-01-02 8 - 10 	
SW8015MEMP - Nonhalogenated Volatile Organics		(mg/kg)										
Diesel Range Organics (2)	27	(27)	[133]	ND	(24)	[122]	100	(24)	[118]	51	(24)	[122]
Gasoline Range Organics (2)	ND	(13)	[128]	16 B	(12)	[122]	QN	(230)	[2270]	QN	(12)	[118]
SW8080 - Organochlorine Pesticides and PCBs	and PCBs (ug/kg)	kg)										
4,4'-DDD	3.9	(0.44) [44.4	[44.48398]	3.3	(0.41)	[41.00041]	13	(0.4)	39.72983]	1.8	(0.41)	[41.33939]
4,4'~DDE	1.5	(0.44) [44.4	[44.48398]	2.1	(0.41)	[41.00041]	1.6	(0.4)	39.72983]	0.13 PJB	(0.41)	[41.33939]
4,4'-DDT	6.3	(0.89) [44.4	[44.48398]	4.2	(0.82)	[41.00041]	1.1	3 (62.0)	39.72983]	0.24 JB	(0.83)	[41.33939]
Aldrin	0.04 PJB	(0.44) [44.4	44.48398]	ND	(0.41)	[41.00041]	0.6 B	(0.4)	39.72983]	0.032 PJB	(0.41)	41.33939]
Chlordane	ND	(2.2) [44.4	[44.48398]	QN	(2.1)	[41.00041]	QV Qv	(2)	39.72983]	ND	(2.1)	41.33939]
Dieldrin	0.42 KJ	(0.44) [44.4	[44.48398]	ON	(0.41)	[41.00041]	Q	(0.4)	39.72983]	ON	(0.41)	[41.33939]
Endosulfan I	Q	(0.44) [44.4	44.48398]	ND	(0.41)	[41.00041]	0.49 B	(0.4)	39.72983]	0.12 KJB	(0.41)	41.33939]
Endosulfan II	1.1 KJB	(1.3) [44.4	44.48398]	0.92 KJB	(1.2)	[41.00041]	0.7 KJB	(1.2)	39.72983]	0.66 KJB	(1.2)	41.33939]
Endosulfan Sulfate	ON		[44.48398]	QV	(2.1)	[41.00041]	QN	(2)	39.72983]	0.04 KJB	(2.1)	41.33939]
Endrin	NO		[44.48398]	QN	(0.41)	[41.00041]	ND	(0.4)	39.72983]	QN	(0.41)	41.33939]
Endrin Aldehyde	ND	(0.89) [44.4	[44.48398]	0.19 KJB	(0.82)	[41.00041]	0.052 PJB	[0.79]	39.72983]	0.29 KJB	(0.83)	[41.33939]
Heptachlor	QN	(0.44) [44.4	44.48398]	QN	(0.41)	[41.00041]	QN	(0.4)	39.72983]	ON	(0.41)	[41.33939]
Heptachlor epoxide	0.056 PJB	(0.44) [44.4	[44.48398]	0.14 JB	(0.41)	[41.00041]	0.23 PJB	(0.4)	39.72983]	0.056 PJB	(0.41)	[41.33939]
Methoxychlor	0.27 KJ	(2.2) [44.4	[44.48398]	0.12 KJ	(2.1)	[41.00041]	Q.	(2)	39.72983]	QN	(2.1)	[41,33939]
PCB-1016	QN		44.48398]	QN	(4.1)	[41.00041]	ND	(4)	[39.72983]	QN	(4.1)	[41.33939]
PCB-1221	QN	_	[44.48398]	Q.	(8.2)	[41.00041]	ND	3 (6.7)	39.72983]	QN	(8.3)	[41.33939]
PCB-1232	NO	(8.9) [44.4	44.48398]	QN	(8.2)	[41.00041]	QN	3 (6.7)	39.72983]	ON	(8.3)	[41.33939]
PCB-1242	ON	(4.4) [44.4	44.48398]	QN	(4.1)	[41.00041]	QN	(4)	[39.72983]	QN	(4.1)	[41.33939]
PCB-1248	ON	_	44.48398]	Q	(4.1)	[41.00041]	QN	(4)	[39.72983]	QN	(4.1)	[41.33939]
PCB-1254	ND	(8.9) [44.4	44.48398]	ND	(8.2)	[41.00041]	QN	[7.9]	39.72983]	QN	(8.3)	41.33939]
PCB-1260	QN	(8.9) [44.4	44.48398]	QN	(8.2)	[41.00041]	NO	3 (6.7)	[39.72983]	QN	(8.3)	[41.33939]
Foxaphene	ON	(22) [44.4	44.48398]	ND	(21)	[41.00041]	QN	(20) [3	39.72983]	QN	(21)	[41.33939]
a1pha-BHC	0.32 KJB	(0.44) [44.4	44.48398]	0.26 KJB	(0.41)	[41.00041]	0.24 KJB	(0.4)	39.72983]	0.27 KJB	(0.41)	[41.33939]
beta-BHC	0.013 PJB	(0.44) [44.4	44.48398]	ON	(0.41)	[41.00041]	QN	(0.4)	39.72983]	0.066 KJB	(0.41)	[41.33939]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

			LC S S BEG. DEPTH	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
		01 01-MW-01	. 01	01 01-MW-02	01-	01 01-SB-01	0	01 01-S8-01
PARAMETER 		5 - 7 5 - 7	011-	5 - 7 5 - 7	01-51	01-SB-01-01 3 - 5 	01-	01-58-01-02 8 - 10
gamma-BHC SW8240 - Volatile Organics (u	1.4 B (ua/ka)	(0.44) [44.48398]	0.47 8	(0.41) [41.00041]	0.54 PB	(0.4) [39.72983]	0.44 B	(0.41) [41.33939]
		(6.7) [1.338688]	N	(6.2) [1.234567]	QN	(130) [26.10966]	N	(6.2) [1.242236]
1,1,2,2-Tetrachloroethane	QN	=	ND	(6.2) [1.234567]	ON	(130) [26.10966]	QN	
1,1,2-Trichloroethane	Q q	(6.7) [1.338688]	Q :		QN :		QV	
1,1-Dichloroethene	Q. Q.		2 5	(6.2) [1.23456/]	2 2	(130) [26.10966] (130) [36.10866]	2 9	二 :
1,2-Dichloroethane	QN		2 Q		<u> </u>		2 2	(6.2) [1.242236] (6.2) [1.242236]
1,2-Dichloropropane	QN	(6.7) [1.338688]	ND	_ 二	QN	_	9	: =
2-Chloroethyl vinyl ether	QN	(13) [1.338688]	· QN	(12) [1.234567]	ND	(260) [26.10966]	QN	
2-Hexanone	QN		ND	(62) [1.234567]	ON	(1300) [26.10966]	QN	(62) [1.242236]
4-Methyl-2-pentanone(MIBK)	QN :		ON	口	ND	(1300) [26.10966]	ND	(62) [1.242236]
Acetone	QN :		QN		QN	(2600) [26.10966]	ND	(120) [1.242236]
Benzene Bromodiohlowomothoro	QN S		Q :		QN :	_	R	
Bromomethane	QN N	<u> </u>	Q :		Q :		ND	ij
oromomethane Carbon disulfide	ON ON	(13) [1.338688] (6.7) [1.338688]	Q 9	(12) [1.234567]	2 2	(260) [26.10966] (120) [26.1066]	2 9	
Carbon tetrachloride	QN		<u>8</u> 9		Q.	(130) [26.10966] (130) [26.10966]	2 2	(6.2) [1.242235] (6.2) [1.242236]
Chlorobenzene	ON	(6.7) [1.338688]	QN	(6.2) [1.234567]	QN	(130) [26.10966]	QN	ij
Chloroethane	QN	_	ND	(12) [1.234567]	QN	(260) [26.10966]	ON	ij
Chlorotorm	Q :		ON	ニ	ND	(130) [26.10966]	QN	(6.2) [1.242236]
Chloromethane	ON :		QN	二	ND	(260) [26.10966]	ND	(12) [1.242236]
Ulbromochlorometnane Ethyl honzono	2 4	= :	Q :	二 :	QN	_	Q.	二
Methyl behall betone	O N	(6.7) [1.338688]	Q .	:	Q :		Q :	
Methylene chloride	9 9 9				ON CI		QN :	
Stvrene	S S		N .	(6.2) [1.23456/] [6.3] [1.234567]	2 9		2 9	그 :
Tetrachloroethene	2 2	3 5	2 2		2		O :	
Toluene	C Z			(6.2) [1.23456/] (6.2) [1.234567]	ON N	(130) [26.10966] (130) [36.10065]	2 9	
		_	2		Ē		2	(6.2) [1.242235]

() = Detection Limit [] = Factor " = 1

" - Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			07 S	SITE ID LOCATION ID SAMPLE ID				
			DEG. VEFIN	. DERIN - END DERIN (FI.)				
		01		01		01		01
		01-MW-01	01	01-MW-02	0	01-38-01	01	01-58-01
	0	01-MW-01-02	-10	01-MW-02-02	01	-0	-10	01-58-01-02
PARAMETER 		5 - 7		5 - 7		3 - 5	8	- 10
Tribromomethane(Bromoform)	QN	(6.7) [1.338688]	ND	(6.2) [1.234567]	QN	(130) [26.10966]	QN	(6.2) [1.242236]
Trichloroethene	QN		ON	(6.2) [1.234567]	QN	(130) [26.10966]	QN	(6.2) [1.242236]
Vinyl acetate	QN		QN	(6.2) [1.234567]	QN	(130) [26.10966]	QN	(6.2) [1.242236]
Vinyl chloride	QN		QN	(12) [1.234567]	QN	(260) [26.10966]	ND	(12) [1.242236]
Xylenes	QN		Q	(6.2) [1.234567]	53 J	(130) [26.10966]	QN	(6.2) [1.242236]
cis-1,3-Dichloropropene	QN	(6.7) [1.338688]	QN	(6.2) [1.234567]	ND	(130) [26.10966]	R	(6.2) [1.242236]
trans-1,2-Dichloroethene	Q		QN	(6.2) [1.234567]	QN	(130) [26.10966]	QN	(6.2) [1.242236]
trans-1,3-Dichloropropene		(6.7) [1.338688]	QN	(6.2) [1.234567]	ND	(130) [26.10966]	QN	(6.2) [1.242236]
SW8310 - Polynuclear Aromatic Hydrocarbons		(ug/kg)						
Acenaphthene	ON	(80) [44.58314]	Q	(220) [122.6993]	QN	(2100) [1190.476]	7.6 J	(220) [124.2236]
Acenaphthylene	QN		ON	(280) [122.6993]	QN	(2700) [1190.476]	QN	(290) [124.2236]
Anthracene	Q.	(29) [44.58314]	Q	(81) [122.6993]	680 J	(790) [1190.476]	QN	(82) [124.2236]
Benzo(a)anthracene	QN	(0.58) [44.58314]	0.7 J	(1.6) [122.6993]	1400	(150) [11904.76]	0.63 J	(1:6) [124.2236]
Benzo(a)pyrene	Q		0.92 J	_	1500	(270) [11904.76]	1.4 J	(2.9) [124.2236]
Benzo(b)fluoranthene	1	_	1.7 J	_	940	(210) [11904.76]	3.1	(2.2) [124.2236]
Benzo(g,h,i)perylene	Q	_	12	_	750 J	(900) [11904.76]	8.1 J	(9.4) [124.2236]
Benzo(k)fluoranthene	QN	_	0.53 J	_	650		QN	(2.1) [124.2236]
Chrysene	QN	_	QN	(18) [122.6993]	2900	(1800) [11904.76]	QN	(19) [124.2236]
Dibenzo(a,h)anthracene	Q		QN	(3.7) [122.6993]	260	(36) [1190.476]	QV	(3.7) [124.2236]
Fluoranthene	Q	_	QN		4200	(2500) [11904.76]	QN QN	(26) [124.2236]
Fluorene	Q.		Q	(26) [122.6993]	ר 97	(250) [1190.476]	S	(26) [124.2236]
Indeno(1,2,3-cd)pyrene	ND		7.4	(5.3) [122.6993]	73	(51) [1190.476]	5.8	(5.3) [124.2236]
Naphthalene	Q	_	Q	(220) [122.6993]	260 J	(2100) [1190.476]	QN	(220) [124.2236]
Phenanthrene	2	_	110	(79) [122.6993]	1300	(760) [1190.476]	110	(80) [124.2236]
Pyrene	Q	(12) [44.58314]	ND N	(33) [122.6993]	630	(320) [1190.476]	ND	(34) [124.2236]

LOCATION ID

SITE ID

SAMPLE ID

[1300] 43.74453] [43.74453] 43.74453] [43.74453] 43.74453] [43.74453] [43.74453] 43.74453] [43.74453] [43.74453] [43.74453] 43.74453] [43.74453] [43.74453] [43.74453] [43.74453] [43.74453] [43.74453] [43.74453] 43.74453 [43.74453] (0.44)(0.87)(0.44) (0.44)(2.2)(0.44) (1.3)(2.2)(0.44)(0.87)(0.44) 0.44) (2.2)(4.4) (8.7)(8.7)(4.4)(4.4)(8.7)0.44) 0.44) 01-SB-02-03 12 - 1501-SB-02 0.56 KJB 0.59 KJB 0.38 KJB 0.22 PJB 1.4 PB 3.4 5.6 읒 2 [12800] [51300] [42.51700] 42.51700 [42.51700][42.51700] [42.51700] [42.51700] [42.51700] [42.51700] [42.51700] 42.51700 [42.51700][42.51700][42.51700][42.51700] [42.51700] [42.51700] [42.51700] 42.51700] [42.51700]42.51700] 42.51700] [42.51700](0.43)(2.1)(2600)0.43) (2.1)(1.3)(0.43)(2.1)(0.85)0.43) 0.85) (0.43)(4.3)(0.43)(5100)0.43) (8.5)(8.5)(4.3)(4.3)(8.5)(8.5)01-58-02-02 01-SB-02 5 - 7 0.48 KJB 0.38 KJB 0.96 KJB 1.9 KJB 0.36 KJB 0.017 KJB 0.21 KJB 0.63 PB 0.53 PB 13000 2 S 9 2 [57300] [43400] [38.69969][38.69969] [38.69969] [38.69969] [38.69969] [38.69969] 38.69969 [38.69969] [38.69969] [38.69969] [38.69969] [38.69969] [38.69969] [38.69969][38.69969] [38.69969] [38.69969] [38.69969] [38,69969] [38.69969] [38.69969][38.69969] 38.69969 BEG. DEPTH - END DEPTH (FT.) (0.39)(0.39)(1.9)(0.39)(0.39)(1.2)(1.9)(0.39)(0.77)(0.39)(0.39)(1.9)(3.9)(7.7) (7.7) (3.9)(19)(3.9)(7.7) (7.7)01-SB-02-01 01-58-02 3 - 5 01 0.89 KJB 1 PB 0.32 KJ 0.84 B 2.8 24000 30000 2 1.3 S 9 9 2 2 2 S 2 2 [124][124] (0.41) [41.42502] [41.42502] [41.42502][41.42502] [41.42502]41.42502] [41.42502][41.42502] [41.42502] 41.42502 [41.42502] [41.42502][41.42502] [41.42502] [41.42502] [41.42502][41.42502] 41.42502 [41.42502] [41.42502] [41.42502] [41.42502][41.42502] [41.42502] (0.41)(8.3)(0.41)(4.1)(8.3) (4.1)(0.83)(0.41)(0.41)(2.1)(0.41)(4.1)(0.41)01-58-01-03 01-SB-01 12 - 15W8015MEMP - Nonhalogenated Volatile Organics (mg/kg) W8080 - Organochlorine Pesticides and PCBs (ug/kg) 0.14 PJB 0.05 PJB 0.85 KJB 1.8 KJB 0.21 KJB 0.35 KJB 0.026 PJB 0.091 KJ 2 9 9 S 2 2 9 읒 8 8 2 Gasoline Range Organics (2) Diesel Range Organics (2) Endosulfan Sulfate Heptachlor epoxide Endrin Aldehyde Endosulfan II Endosulfan I **Methoxychlor** Heptachlor PARAMETER Chlordane Dieldrin 4,4'-DDE 4,4'-DDD 4,4'-DDT [oxaphene PCB-1016 alpha-BHC delta-BHC CB-1248 PCB-1221 PCB-1232 PCB-1242 PCB-1254 PCB-1260 beta-BHC Aldrin Endrin

Compiled: 23 March 1995

() = Detection Limit [] = Factor M

Mn = Not Detected N

ed NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH ~ END DEPTH (FT.)

		01			01			01		01	
	01:	01-SB-01 01-SB-01-03		0 [0	01-SB-02 01-SB-02-01		_	01-SB-02 01-SB-02-02	01	01-SB-02 01-SB-02-03	
PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12 - 15			3 - 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 - 7		12 - 15	
riamma - RHC	0 46 B	(0.41)	(0.41) [41.42502]	~ ~	(0. 30)	[38 60060]	Ş	[0 42] [40 61700]	90	47 (44 0)	74459
SW8240 - Volatile Organics (ug/kg)		1 (**:0)	[30031.11.		(20.0)		€	[00/15:34] [64:0]		(0.44) [43./4433]	0.74430]
	S	(6.2)	[1.25]	2	(2800)	[1161.440]	S	(32000) [6410.256]	ON	(130) [2	[26.31578]
1,1,2,2-Tetrachloroethane	QN	(6.2)	[1.25]	QN	(2800)	[1161.440]	2	(32000) [6410.256]	QN		[26.31578]
1,1,2-Trichloroethane	ND	(6.2)	[1.25]	QN	(2800)	[1161.440]	Q	(32000) [6410.256]	QN		26.31578]
1,1-Dichloroethane	ON	(6.2)	[1.25]	QN	(2800)	[1161.440]	QN	(32000) [6410.256]	QN	(130) [2	[26.31578]
1,1-Dichloroethene	ND	(6.2)	[1.25]	ON	(2800)	[1161.440]	S	(32000) [6410.256]	· QN	(130) [2	[26.31578]
1,2-Dichloroethane	ND	(6.2)	[1.25]	QN	(2800)	[1161.440]	Q	(32000) [6410.256]	Q	(130) [2	[26.31578]
1,2-Dichloropropane	ON	(6.2)	[1.25]	ON	(2800)	[1161.440]	QN	(32000) [6410.256]	QN	(130) [2	26.31578]
2-Chloroethyl vinyl ether	ON	(12)	[1.25]	QN	(12000)	[1161.440]	S	(64000) [6410.256]	ON	(260) [2	[26.31578]
2-Hexanone	QN	(62)	[1.25]	QN .	(28000)	[1161.440]	Q	(320000) [6410.256]	QN	(1300) [2	[26.31578]
4-Methyl-2-pentanone(MIBK)	QN	(62)	[1.25]	QN	(28000)	[1161.440]	S	(320000) [6410.256]	QN	(1300) [2	26.31578]
Acetone	ND	(120)	[1.25]	ON	(120000)	[1161.440]	Q	(640000) [6410.256]	QN	(2600) [2	[26.31578]
Benzene	ND	(6.2)	[1.25]	120000	(5800)	[1161.440]	49000	(32000) [6410.256]	3000	(130) [2	[26.31578]
Bromodichloromethane	QN	(6.2)	[1.25]	ON	(2800)	[1161.440]	Q	(32000) [6410.256]	QN	(130) [5	[26.31578]
Bromomethane	QN	(12)	[1.25]	ON	(12000)	[1161.440]	Q	(64000) [6410.256]	ND	[5] (392)	[26.31578]
Carbon disulfide	NO NO	(6.2)	[1.25]	ON	(2800)	[1161.440]	S	(32000) [6410.256]	ON	(130) [2	26.31578]
Carbon tetrachloride	QN	(6.2)	[1.25]	ND	(2800)	[1161.440]	Q	(32000) [6410.256]	QN	(130) [2	[26.31578]
Chlorobenzene	QN	(6.2)	[1.25]	QN	(2800)	[1161.440]	Q.	(32000) [6410.256]	QN O	(130) [2	[26.31578]
Chloroethane	QN	(12)	[1.25]	QN	(12000)	[1161.440]	N	(64000) [6410.256]	QN	(260) [2	[26.31578]
Chloroform	S S	(6.2)	[1.25]	QN	(2800)	[1161.440]	S	(32000) [6410.256]	QN	(130) [2	[26.31578]
Chloromethane	ND	(12)	[1.25]	QN	(12000)	[1161.440]	8	(64000) [6410.256]	QN	(260) [2	[26.31578]
Dibromochloromethane	Q	(6.2)	[1.25]	QN	(2800)	[1161.440]	Q	(32000) [6410.256]	QN	(130) [2	[26.31578]
Ethyl benzene	QN	(6.2)	[1.25]	200000	(2800)	[1161.440]	74000	(32000) [6410.256]	2300	(130) [2	[26.31578]
Methyl ethyl ketone	ND	(120)	[1.25]	QN .	(120000)	[1161.440]	Q	(640000) [6410.256]	QN	(2600) [2	[26.31578]
Methylene chloride	9.58	(6.2)	[1.25]	Q	(2800)	[1161.440]	2	(32000) [6410.256]	QN	(130) [2	[26.31578]
Styrene	QN	(6.2)	[1.25]	Q	(2800)	[1161.440]	2	(32000) [6410.256]	QN	(130) [2	[26.31578]
Tetrachloroethene	Q	(6.2)	[1.25]	Q	(2800)	[1161.440]	R	(32000) [6410.256]	QN	(130) [2	[26.31578]
Toluene	0.48 JB	(6.2)	[1.25]	1100000	(29000)	[5807.200]	370000	(32000) [6410.256]	14000	(330) [6	[65.78947]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

PARAMETER Tribromomethane(Bromoform) Trichloroethene Vinyl acetate Vinyl chloride Xylenes cis-1,3-Dichloropropene trans-1,2-Dichloroethene		01 01-SB-01 01-SB-01 12 - 15 12 - 15 (6.2) (6.2) (6.2) (6.2) (6.2) (6.2) (6.2) (6.2) (6.2) (6.2)	[1.25] [1.25] [1.25] [1.25] [1.25] [1.25] [1.25] [1.25]	BEG. DE ND ND ND ND ND ND ND ND ND	SITE ID LOCATION ID SAMPLE ID SPTH - END DE 01 01-SB-02 01-SB-02 01-SB-02-01 3 - 5 01-SB-02 0	SITE ID LOCATION ID SAMPLE ID 01 01-SB-02 01-SB-03 01-SB-03	N D N D N D N D N D N D N D N D N D N D	01 01-SB-02 01-SB-02-02 5 - 7 (32000) [6410.256] (32000) [6410.256] (32000) [6410.256] (32000) [6410.256] (32000) [6410.256] (32000) [6410.256] (32000) [6410.256] (32000) [6410.256]	ND ND ND ND ND ND ND ND ND	01 01-SB-02 01-SB-02-03 12 - 15 (130) [26.31578] (130) [26.31578] (130) [26.31578] (260) [26.31578] (260) [26.31578] (130) [26.31578] (130) [26.31578] (130) [26.31578] (130) [26.31578]
SW8310 - Polynuclear Aromatic Hydrocarbons Acenaphthene ND Achaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(g,h,i)perylene Chrysene Chrysene Dibenzo(a,h)anthracene ND Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene ND Fluorene Indeno(1,2,3-cd)pyrene ND Phenanthrene ND Phenanthrene ND Phenanthrene ND Phenanthrene ND Phenanthrene ND Phenanthrene	Irocarbons (ug/kg) ND ND ND 0.31 J 0.95 J 10 0.46 J ND	(220) (280) (82) (1.6) (1.6) (2.3) (2.1) (2.1) (2.1) (2.1) (2.6) ([123.7623] [123.7623] [123.7623] [123.7623] [123.7623] [123.7623] [123.7623] [123.7623] [123.7623] [123.7623] [123.7623] [123.7623] [123.7623] [123.7623]		A A A A A A A A A A A A A A A A A A A		ND 140 J ND ND ND ND ND ND ND ND ND ND ND ND ND	(2300) [1275.510] (2900) [1275.510] (840) [1275.510] (17) [1275.510] (29) [1275.510] (29) [1275.510] (20) [1275.510] (20) [1275.510] (20) [1275.510] (20) [1275.510] (20) [1275.510] (210) [1275.510] (220) [1275.510] (2300) [1275.510] (2300) [1275.510] (2300) [1275.510] (2300) [1275.510] (2300) [1275.510] (2300) [1275.510] (2300) [1275.510]	ND ND 140 2 3.8 2.2 0.62 J ND ND ND ND ND 2800 960 290	(230) [129.7016] (300) [129.7016] (86) [129.7016] (1.7) [129.7016] (2.3) [129.7016] (2.3) [129.7016] (2.2) [129.7016] (2.2) [129.7016] (3.9) [129.7016] (3.9) [129.7016] (27) [129.7016] (27) [129.7016] (28) [129.7016] (38) [129.7016] (39) [129.7016]

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

PARAMETER	-T0	01-20-01					i					
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	01-5	01-SD-01-01 0 - 0.5		01-05-01 01-DS-01 Dup of 0 0 - 0.5	01-SD-01 Dup of 01-SD-01-01 0 - 0.5	.01	01- 01-5 0	01-50-02 01-SD-02-01 0 - 0.5		uu 01-08-03 Du 0	01-SD-01 01-DS-03 Dup of 01-SD-02-01 0 - 0.5	-02-01
SW8015MEMP - Nonhalogenated Volatile Organics (mg/kg)	atile Organics (m	a/ka)										i i i i i
Diesel Range Organics (2)	280	(62)	[143]	120	(20)	[100]	340	(53)	[143]	290	(53)	[143]
Gasoline Range Organics (2)	QN	(14)	[145]	20 B	(13)	[133]	QN QN	(14)	[138]	QN	(14)	[135]
SW8080 - Organochlorine Pesticides and	des and PCBs (ug/kg)	kg)										
4,4'-000	180	(4.9)	[488.9975]	290	(4.6) [461	461.2120]	30	(0.48)	[47.60771]	32	(0.47)	[47.25004]
4,4'-DDE	110	(4.9)	[488.9975]	170	(4.6) [461	461.2120]	32	(0.48)	[47.60771]	35	(0.47)	[47.25004]
4,4'-DDT	330	(8.8)	[488.9975]	480	(9.2) [461	461.2120]	26	(0.95)	[47.60771]	27	(0.95)	[47.25004]
Aldrin	ON	(4.9)	[488.9975]	QN	(4.6) [461	[.2120]	0.8 B	(0.48)	[47.60771]	0.75 B	(0.47)	[47.25004]
Chlordane	QN	(54)	[488.9975]	QN	(23) [461	[.2120]	QN	(2.4)	[47.60771]	QN	(5.4)	[47.25004]
Dieldrin	ON	(4.9)	[488.9975]	QN	(4.6) [461	461.2120]	QN	(0.48)	[47.60771]	QN	(0.47)	[47.25004]
Endosulfan I	3.8 KJ	(4.9)	[488.9975]	4.5 KJ	(4.6) [461	461.2120]	QN	(0.48)	[47.60771]	QN	(0.47)	[47.25004]
Endosulfan II	ON	(15)	[488.9975]	ND	(14) [461.	.2120]	ON	(1.4)	[47.60771]	ND	(1.4)	[47.25004]
Endosulfan Sulfate	7 KJ	(24)	[488.9975]	7.2 KJ	(23) [461.	.2120]	ON	(2.4)	[47.60771]	QN	(5.4)	[47.25004]
Endrin	ON	(4.9)	[488.9975]	QN	(4.6) [461.	.2120]	QN	(0.48)	[47.60771]	QN	(0.47)	[47.25004]
Endrin Aldehyde	N N	(8.8)	[488.9975]	QN	(9.2) [461	461.2120]	0.044 KJB	(0.95)	[47.60771]	QN	(0.92)	[47.25004]
Heptachlor	2.1 KJ	(4.9)	[488.9975]	2.3 KJ	(4.6) [461	461.2120]	0.45 KJB	(0.48)	[47.60771]	ND	(0.47)	[47.25004]
Heptachlor epoxide	2 PJB	(4.9)	[488.9975]	2.2 PJB		461.2120]	0.59 PB	(0.48)	[47.60771]	0.59 PB	(0.47)	[47.25004]
Methoxychlor	ON	(24)	[488.9975]	ND	(23) [461	461.2120]	QN	(2.4)	[47.60771]	QN	(5.4)	[47.25004]
PCB-1016	ON	(49)	[488.9975]	ND	(46) [461.	2120]	QN	(4.8)	[47.60771]	QN	(4.7)	[47.25004]
PCB-1221	QN	(86)	[488.9975]	Q	_	461.2120]	QN	(9.5)	[47.60771]	QN	(6.6)	[47.25004]
PCB-1232	QN	(88)	[488.9975]	QN	(92) [461	461.2120]	QN	(9.5)	[47.60771]	QN	(6.5)	[47.25004]
PCB-1242	QN	(49)	[488.9975]	Q.	(46) [461	461.2120]	Q	(4.8)	[47.60771]	QN	(4.7)	[47.25004]
PCB-1248	ON	(49)	[488.9975]	QN	(46) [461	461.2120]	Q	(4.8)	[47.60771]	QN	(4.7)	[47.25004]
PCB-1254	ON	(86)	[488.9975]	QN	(92) [461	461.2120]	QN	(9.5)	[47.60771]	QN	(6.6)	[47.25004]
PCB-1260	ON	(86)	[488.9975]	QN	(92) [461	461.2120]	Q	(9.5)	[47.60771]	QN	(9.5)	[47.25004]
Toxaphene	QN	(240)	[488.9975]	QN	(230) [461	461.2120]	Q	(24)	[47.60771]	ND	(54)	[47.25004]
alpha-BHC	QN	(4.9)	[488.9975]	QN	(4.6) [461	[461.2120]	0.728	(0.48)	[47.60771]	0.77 B	(0.47)	[47.25004]
beta-BHC	QN	(4.9)	[488.9975]	QN	(4.6) [461	[461.2120]	ON	(0.48)	[47.60771]	ON	(0.47)	[47.25004]
delta-BHC	ON	(4.9)	[488.9975]	QN	(4.6) [461	2120]	1 8	(0.48)	[47.60771]	1.18	(0.47)	[47.25004]
Compiled: 23 March 1995) = De	= Detection Limit	[] = Factor	ND = Not	= Not Detected	NA = Not Ap	= Not Applicable				

01-S0-01 01-02-01 01-05-03 0up of 01-51 01-55 0 - 0.5			01	l BEG. DEPT	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH (FT.) 01				-
Harring Harr	RAMETER	2	01-SD-01 01-SD-01-01 0 - 0.5	01-DS-01	11-SD-01 http of 01-SD-01-01 0 - 0.5	001	11-SD-02 (-SD-02-01 0 - 0.5	0 01-DS-03 D	1-SD-01 up of 01-SD-02-01 0 - 0.5
(ug/kg) (7.3) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.468428] NO (6.9) [1.385441] NO (7.2) [1.430615] NO (7.1) [1.430615] NO	mna-BHC	ND	(4.9) [488.9975]	QN				1	(0.47) [47.25004]
Toethane ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.430615] ND (7.1) [1.430615] ND (7.2) [1.430615] ND (7.1) [1.430615] ND (7.2) [1.430615] ND (7.1) [1.486428] ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.486428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.486428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.486428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.486428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.486428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.486428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.486428] ND (89) [1.385041] ND (7.2) [1.430615] ND (7.2) [1.430615				Z	Ξ	Ş			
No	.,2,2-Tetrachloroethane	ON.		2 2	1 =	2 9		S 8	(7.1) [1.418439]
N	,2-Trichloroethane	QN		QN		Q.		2	
ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1)	-Dichloroethane	QN :	_	QN		ON		ND	
House, Carlotte, Carlott	∼Uichloroethene Dichloroethene	Q :		ON	二	QN		ND	(7.1) [1.418439]
Colored Colo	-Dichloroetnane -Dichloronronane	9 S		2 9		QN :		Q	
NO (73) [1.468428] NO (69) [1.385041] NO (72) [1.430615] NO (71)	hloroethyl vinyl ether	2 2		2 S		2 2		S 8	
ND (73) [1.468428] ND (69) [1.385041] ND (72) [1.430615] ND (71) ND (150) [1.468428] ND (140) [1.385041] ND (72) [1.430615] ND (71) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.406128] ND (7.2) [1.430615] ND (7.1) [1.406128] ND (7.1) [1.406128] ND (7.2) [1.430615] ND (7.1) [1.406128] ND (7.1) [1.406128] ND (7.1) [1.406128] ND (7.2) [1.430615] ND (7.2) [1.430615] ND (7.2) [1.430615] ND (7.2) [1.430615	exanone	QN		QN	: =	2 S		2 2	(14) [1.418439]
ND (150) [1.468428] ND (140) [1.385041] ND (140) [1.430615] ND (140) [1.400615] ND	sthyl-2-pentanone(MIBK)	ON		QN		QN		2 2	
ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1)	cone	ND		ND		QN		QN	
ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (14) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (8.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (8.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (8.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.40015] ND (7.2) [1.430615] ND (7.1) [1.468428] ND (8.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.40015] ND (7.2) [1.430615] ND (7	zene	QN		QN		N N		ON	
ND (15) [1.468428] ND (14) [1.385041] ND (17.2) [1.430615] ND (7.1)	nodichloromethane	QN :		ON	_	Q		ND	
ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1)	nomethane	Q !		ND	二	ND		QN	(14) [1.418439]
Color	oon disulfide	QV :		ND	ニ	R	_	ON	(7.1) [1.418439]
NO (1.5) [1.468428] NO (6.9) [1.385041] NO (7.2) [1.430615] NO (7.1) [4 [4 [4 [4 [4 [4 [4 [4	oon tetrachioride orobenzene	O C		QN :		S		QN	(7.1) [1.418439]
ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1)	noethane			2 8		2 :		ND	
No. (7.2) [1.430615] No. (7.1) [1.430615] No. (7.1) [1.430615] No. (7.1) [1.468428] No. (14) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (140) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.430615] No. (7.1) [1.468428] No. (6.9) [1.385041] No. (7.2) [1.430615] No. (7.1) [1.468428] No. (7.1) [1.488428] No. (7.2) [1.430615] No. (7.1) [1.488428] No. (7.1) [1.488428] No. (7.1) [1.488428] No. (7.2) [1.430615] No. (7.1) [1.488428] No. (7.1) [1.48842	roform	2 2		2 5		2 9		Q :	_
ne ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [E ND (150) [1.468428] ND (140) [1.385041] ND (7.2) [1.430615] ND (140) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (7.3) [1.468428] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (7.3) [1.468428] ND (7.3) [1.488428] ND (7.3)	romethane	QN		Q N		2 8		2 8	
ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.430615] ND (150) [1.468428] ND (140) [1.385041] ND (7.2) [1.430615] ND (7.1) [1.430615] 60 (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [omochloromethane	QN	. —	QN		2 8		§ 8	(14) [1.418439]
e (150) [1.468428] ND (140) [1.385041] ND (140) [1.430615] ND (140) [1.406128] SG (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [/l benzene	ON		QN		QN		2 2	
60 (7.3) [1.468428] 56 (6.9) [1.385041] ND (7.2) [1.430615] 11 B (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) [yl ethyl ketone	QN		ND ND	_	ND	_	Q.	
ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.2) [1.430615] ND (7.1) ND (7.1) ND (7.2) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.1) ND (7.2) [1.430615] ND (7.1) ND (7.2) [1.430615] ND (7.1) ND (7.2) [1.468428] ND (7.1) ND (7.2) [1.468428] ND (7.1) ND (7.2) [1.430615] ND (7.1) ND (7.2) [1.430615] ND (7.1) ND (7.2) [1.430615] ND (7.2) ND (7.2) ND (7.2) ND (7.2) ND (7.3) ND (7.2) ND (7.3) ND	ylene chloride	09		56	_	S	. <u></u>		
ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) ND (7.2) [1.430615] ND (7.1) ND (7.1) ND (7.1) ND (7.2) [1.468428] ND (7.1) ND (7.2) [1.430615] ND (7.1) ND (7.2) ND (7.3) N	ene	QN	_	QN		ON	_	ON	_
ND (7.3) [1.468428] ND (6.9) [1.385041] ND (7.2) [1.430615] ND (7.1) (7.1)	achloroethene	QN	_	ND	_	ND		ON	. <u> </u>
	lene	QN		QN		ON		ON	_

Compiled: 23 Mary 995

() = Detection Limit [] = Factor $\dot{}$

Not Detected

ted NA = Not Applicable

able

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

		01		01		01		01	
	0 01	01-SD-01 01-SD-01-01	0. 01-DS-01	01-SD-01 Dup of 01-SD-01-01	0 01	01-SD-02 01-SD-02-01	01-DS-03 D	01-SD-01 01-DS-03 Dup of 01-SD-02-01	
PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5	1	0 - 0.5		0 - 0.5		0 - 0.5	1
Tribromomethane(Bromoform)	QN	(7.3) [1.468428]	N	(6.9) [1.385041]	. ds	(7.2) [1.430615]	S	(7.1) [1.418439]	39]
Trichloroethene	ON	(7.3) [1.468428]	ON	(6.9) [1.385041]	ON		QN		39]
Vinyl acetate	QN	(7.3) [1.468428]	ON	(6.9) [1.385041]	ON	(7.2) [1.430615]	ON	(7.1) [1.418439]	39]
Vinyl chloride	QN	(15) [1.468428]	ND	(14) [1.385041]	QN	(14) [1.430615]	ND	_	39]
Xylenes	QN	(7.3) [1.468428]	QN	(6.9) [1.385041]	Q.	(7.2) [1.430615]	ON	(7.1) [1.418439]	39]
cis-1,3-Dichloropropene	QN	(7.3) [1.468428]	ND	(6.9) [1.385041]	N _O	(7.2) [1.430615]	ON	(7.1) [1.418439]	39]
trans-1,2-Dichloroethene	QN	(7.3) [1.468428]	ND	(6.9) [1.385041]	Q	(7.2) [1.430615]	QN	(7.1) [1.418439]	39]
trans-1,3-Dichloropropene	QN	(7.3) [1.468428]	QN	(6.9) [1.385041]	QV	(7.2) [1.430615]	QN	(7.1) [1.418439]	39]
SW8310 - Polynuclear Aromatic Hydrocarbons	drocarbons (ug/kg	/kg)							ı
Acenaphthene	16 J	(88) [49.01960]	ND	(83) [46.29629]	QN	(86) [47.55111]	QN	(85) [46.94835]	[32]
Acenaphthylene	QN	(110) [49.01960]	ON	(110) [46.29629]	QV	(110) [47.55111]	ON	(110) [46.94835]	35]
Anthracene	QN	(32) [49.01960]	QN	(31) [46.29629]	QN	(31) [47.55111]	QV	(31) [46.94835]	35]
Benzo(a)anthracene	2.2	(0.64) [49.01960]	3.5	(0.6) [46.29629]	QN	(0.62) [47.55111]	1.5	(0.61) [46.94835]	35]
Benzo(a)pyrene	2.7	(1.1) [49.01960]	3.6	(1.1) [46.29629]	0.73 J	(1.1) [47.55111]	2	(1.1) [46.94835]	35]
Benzo(b)fluoranthene	5.5	(0.88) [49.01960]	9.9	(0.83) [46.29629]	96.0	(0.86) [47.55111]	1.9	(0.85) [46.94835]	(35)
Benzo(g,h,i)perylene	2.3 J		2.2 J	(3.5) [46.29629]	1.4 J	(3.6) [47.55111]	2.2 J	(3.6) [46.94835]	35]
Benzo(k)fluoranthene	1.5	_	2.2	(0.79) [46.29629]	0.29 J	(0.81) [47.55111]	0.81	(0.8) [46.94835]	35]
Chrysene	8.8	(7.4) [49.01960]	12	(6.9) [46.29629]	2.9 J	(7.1) [47.55111]	3 J	(7) [46.94835]	35]
Dibenzo(a,h)anthracene	1.4 J	(1.5) [49.01960]	1.4	(1.4) [46.29629]	0.36 JB	(1.4) [47.55111]	0.52 J	(1.4) [46.94835]	35]
Fluoranthene	8.3 J	(10) [49.01960]	14	(9.7) [46.29629]	QN	(10) [47.55111]	6.3 J	(9.9) [46.94835]	35]
Fluorene	QN	(10) [49.01960]	QN	(9.7) [46.29629]	QN	(10) [47.55111]	NO	(9.9) [46.94835]	35]
Indeno(1,2,3-cd)pyrene	17	(2.1) [49.01960]	12	(2) [46.29629]	1.7 J	(2) [47.55111]	3.6	(2) [46.94835]	35]
Naphthalene	QN	(88) [49.01960]	ON	(83) [46.29629]	QN	(86) [47.55111]	QN	(85) [46.94835]	35]
Phenanthrene	12 J	(31) [49.01960]	15 ປ	(30) [46.29629]	QN	(30) [47.55111]	QN	(30) [46.94835]	35]
Pyrene	7.8 J	(13) [49.01960]	13	(12) [46.29629]	QN	(13) [47.55111]	7.6 J	(13) [46.94835]	35]
						-			

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

				SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	SITE ID LOCATION ID SAMPLE ID TH - END DEF	тн (ғт.)						
	01	01 01SS-01		01	01 01-SS-02		01	01 01-SS-03		01-	01 01-SS-04	
PARAMETER	0 0	- 0.5	; ; ; ;	010	01-SS-02-01 0 - 0.5 	; ! ! ! !	01-0	01-SS-03-01 0 - 0.5] 	01-5	01-SS-04-01 0 - 0.5	
SW8015MEMP - Nonhalogenated Volatile Organics		(mg/kg)										
Diesel Range Organics (2) Gasoline Range Organics (2)	130 ND	(21) (9.8)	[104] [98.4]	130 ND	(21)	[103] [99_4]	410 13 B	(24)	[118]	210	(23)	[113]
SW8080 - Organochlorine Pesticides and PCBs		(ug/kg)		2	(2:2)	[;		(17)	[116]	3/0	(520)	[2180]
4,4'-DDD	150		[103.5947]	19	(0.35)	[34.55425]	55	(0.39)	[39.49447]	24	(0.38)	38.13882]
4,4'-DDE	38		[103.5947]	2	(0.35)	[34.55425]	5	(0.39)	[39.49447]	7.5	. —	38.13882]
4,4 -DDI	400	_ `	[517.9736]	21	(0.69)	[34.55425]	2.9		[39.49447]	81	(3.8)	190.6941]
Alarin Chloudone	0.094 KJB		103.5947]	Q.	(0.35)	[34.55425]	QN		[39.49447]	0.12 KJB	(0.38)	[38.13882]
Oil Ordane Diol duin	2		103.5947]	Q :	(1.7)	[34.55425]	QN		[39.49447]	QN	(1.9)	[38.13882]
Dielarin Endonifon I			[103.5947]	Q :	(0.35)	[34.55425]	QN		[39.49447]	ON	_	[38.13882]
Endosultan 1	3.2 P		103.5947]	QN	(0.35)	[34.55425]	QN		[39.49447]	ND	(0.38)	[38.13882]
Endosultan II Endosulfan Sulfata	2.5 KJ	_ `	103.5947]	Q :	(E)	[34.55425]	QN	_	[39.49447]	QN	(1.1) [3	[38.13882]
Endosultan sultate Endrin	Q 9		103.5947]	Q :	(1.7)	[34.55425]	ND		[39.49447]	QN	(1.9) [3	[38.13882]
Endrin Aldehyde	2 E		103.594/]	ND 2	(0.35)	[34.55425]	Q ,	_ `	39.49447]			[38.13882]
Heptachlor	0.48 JB		103.5947]	0.32 KJB	(0.69)	[34.55425] [34.55425]	1.5	(0.79)	39.49447]			38.13882]
Heptachlor epoxide	0.21 PJB		103.5947]	0.2 JB	(0.35)	[34,55425]	0.67 PB		[39.49447] [39.49447]	0.28 JB 0.17 P.18	(0.38) [3 (0.38) [3	[38.13882]
Methoxychlor	0.89 KJ		103.5947]	0.017 KJ	(1.7)	[34.55425]	1.3 KJ		39.49447]			38.13882]
PCB-1016	QN :		103.5947]	8	(3.5)	[34.55425]	ND	(3.9)	[39.49447]	ON		38.13882]
FUB-1221 DCB-1333	Q 9		103.5947]	Q :	(6.9)	[34.55425]	ON		[39.49447]	ND	_	[38.13882]
PCB-1242	Q CN	[] (17)	103.594/]	2 4	(6.9)	[34.55425]	Q :	— :	39.49447]	ON		38.13882]
PCB-1248	2 5		103.534/]	⊋ ⊈	(3.5)	[34.55425]	ON ::		39.49447]	QN	_	38.13882]
PCB-1254	2 8		103.5947]	O N	(3.5)	[34.55425]	O 1		39.49447]	QN :		38.13882]
PCB-1260	C Z		103.5347]	2 2	(6.9)	[34.33423] [34 cc436]	O N		39.4944/]	Q s		38.13882]
Toxaphene	i C		103 5947]	2 5	(0.3)	[34.33423] [34 EEA2E]	2 5	5] (8.7)	39.4944/]	ON.		38.13882]
alpha-BHC	Q		103.5947	0.34 PJB	(17)	[34.55425]	0 5 PB		39.4944/]	NU 0.61.0		38.13882]
beta-BHC	ON		103.5947]	QN ON	(0.35)	34.55425]			39.49447]	0.01 B	(0.38) [3	38.13882] 38.13882]
delta-BHC	QN	(1) [1	103.5947]	QN	(0.35)	34.55425]	QN		[39.49447]	ND ON		[38.13882]
							•					1

Compiled: 23 Marc

() = Detection Limit [] = Factor

"A = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

		01	. 01			01		01
		01-55-01	01-58-02	3-02	10	01-55-03	0	01-55-04
PARAMETER		01-SS-01-01 0 - 0.5	01-SS-02-01 0 - 0.5	:S-02-01 - 0.5	01-5 0	01-SS-03-01 0 - 0.5	01.	01-SS-04-01 0 - 0.5
gamma-BHC	2.1	(1) [103.5947]	0.19 PJB	(0.35) [34.55425]	1.2 B	(0.39) [39,49447]	0.82 B	(0.38) [38 13882]
SW8240 - Volatile Organics (ug/kg)								
1,1,1-Trichloroethane	2	(5.3) [1.052631]	ND	(5.2) [1.038421]	QN	(590) [118.4834]	QN	(570) [114.8105]
1,1,2,2-Tetrachloroethane	S	(5.3) [1.052631]	ND	(5.2) [1.038421]	N		270 J	
1,1,2-Trichloroethane	2	(5.3) [1.052631]	ON	(5.2) [1.038421]	QN		Q Q	
1,1-Dichloroethane	Q	(5.3) [1.052631]	ND	(5.2) [1.038421]	S		Q	[114.
1,1-Dichloroethene	Q	(5.3) [1.052631]	ND	(5.2) [1.038421]	NO	(590) [118.4834]	N	[114.
1,2-Dichloroethane	Q	(5.3) [1.052631]	ND	(5.2) [1.038421]	QN .	(590) [118.4834]	QN	(570) [114.8105]
1,2-Dichloropropane	2	(5.3) [1.052631]	ND	(5.2) [1.038421]	QN	(590) [118.4834]	ND	(570) [114.8105]
2-Chloroethyl vinyl ether	S	(11) [1.052631]	QN	(10) [1.038421]	QN	(1200) [118.4834]	ON	(1100) [114.8105]
2-Hexanone	2	(53) [1.052631]	QN	(52) [1.038421]	QN	(5900) [118.4834]	3700 J	
4-Methyl-2-pentanone(MIBK)	2	(53) [1.052631]	QN	(52) [1.038421]	ND	(5900) [118.4834]	ND	(5700) [114.8105]
Acetone	2		QN	(100) [1.038421]	N	(12000) [118.4834]	QN	(11000) [114.8105]
Benzene	2	(5.3) [1.052631]	ND	(5.2) [1.038421]	48 J	(590) [118.4834]	QN	(570) [114.8105]
Bromodichloromethane	2		ND	(5.2) [1.038421]	ND	(590) [118.4834]	500 J	(570) [114.8105]
Bromomethane	2		QN	(10) [1.038421]	ND	(1200) [118.4834]	QN	(1100) [114.8105]
Carbon disulfide	2		QN	(5.2) [1.038421]	ND	(590) [118.4834]	QN	(570) [114.8105]
Carbon tetrachloride	9		ND	(5.2) [1.038421]	QN	(590) [118.4834]	ON	(570) [114.8105]
Chlorobenzene	용	_	ON	(5.2) [1.038421]	55 J	(590) [118.4834]	ND	(570) [114.8105]
Chloroethane	S	_	ON	(10) [1.038421]	QN	(1200) [118.4834]	N	(1100) [114.8105]
Chloroform	2		NO NO	(5.2) [1.038421]	QN	(590) [118.4834]	QN	(570) [114.8105]
Chloromethane	2	_	Q.	(10) [1.038421]	ON	(1200) [118.4834]	NO	(1100) [114.8105]
Dibromochloromethane	2	(5.3) [1.052631]	Q	(5.2) [1.038421]	ON	(590) [118.4834]	QN	(570) [114.8105]
Ethyl benzene	Q	(5.3) [1.052631]	ON	(5.2) [1.038421]	NO	(590) [118.4834]	QN	(570) [114.8105]
Methyl ethyl ketone	Q	(110) [1.052631]	ND	(100) [1.038421]	400 3	(12000) [118.4834]	15000	(11000) [114.8105]
Methylene chloride	2	(5.3) [1.052631]	QN	(5.2) [1.038421]	QN	(590) [118.4834]	QN	(570) [114.8105]
Styrene	Q	(5.3) [1.052631]	QN	(5.2) [1.038421]	ND	(590) [118.4834]	ON	(570) [114.8105]
Tetrachloroethene	2	(5.3) [1.052631]	QN	(5.2) [1.038421]	QN	(590) [118.4834]	ON	(570) [114.8105]
Toluene	2	(5.3) [1.052631]	QN	(5.2) [1.038421]	100 J	(590) [118.4834]	550 J	(570) [114.8105]
Compiled: 23 March 1995		() = Detection Limit	[] = Factor	ND = Not Detected	NA = Not Ap	Not Applicable		

[114.8105][114.8105][114.8105][114.8105] [229.6211] [114.8105][114.8105] [114.8105] [38.15337][38.15337] [38.15337] [38.15337] [38.15337][38.15337] [38.15337] [38.15337][38.15337][38.15337][38.15337] 38.15337] [38.15337] [38.15337] [38.15337][38.15337](570)(570)1100) (570)(570)(220) (1100) (25)0.88) 0.69) (2.9)0.65) (1.1)(5.7)(1.6)(69) (24) (8) 01-55-04-01 0 - 0.501 - SS - 043.8 8.8 J ND ND 0.23 J 12000 120000 4.2 2 2 2 9 2 2 2 999999 8 [118.4834] [118.4834]118.4834] [118.4834][118.4834][118.4834] [118,4834] [118.4834][39.37007] [39.37007] [39.37007] [393,7007] [393.7007] [393.7007] [393.7007] [393.7007] [393.7007] [393.7007] [39.37007] [39.37007] [39.37007] [39.37007] 39.37007 39.37007 230) (280)(280)1200) (280) (280) (280) 590) 5.1) 9.1) (7.1) (6.7)(58) (30)(59)(12)8.3) (8.3)1.7) 01-55-03-01 0 - 0.501-55-03 77 J ND ND ND 3.1 J 8.8 J 9.1 47 4.1 3 2.1 J 2.8 J 67 J 8 Q 2 2 2 8 [5.2] [1.038421] [5.2] [1.038421] [1.038421] [1.038421] [1.038421] [1.038421] [1.038421] [1.038421] [346.0207] [34.60207] [34.60207] 34.60207] 34.60207] 346.0207] [346.0207] 346.0207] [346.0207][34.60207] [34.60207] [34.60207] [34.60207] [34.60207] [34.60207] [34.60207] BEG. DEPTH - END DEPTH (FT.) (5.2)(10) (5.2)(5.2)(5.2)LOCATION ID (23) (0.45)(6.2)(52) (5.9)(8) (5.2)(10) (7.3) (1.5)(62) SAMPLE ID 01-55-02-01 SITE 10 0 - 0.501-55-02 01 4.2 J 5.8 J 34 52 J ND ND 3.1 J 3.7 J 4.9 J 1.4 8.9 9.1 운 운 9 9 9 9 9 9 9 9 [1.052631] [1.052631] [1.052631] [1.052631] [1.052631][1.052631] [1.052631] [1.052631] [35.00542] [35.00542][35.00542][349.6503] [349.6503] [349.6503] [349.6503][349.6503][349.6503][35.00542] [35.00542] [35.00542] 349.6503 [35.00542] [35.00542] [35,00542] (5.3)(5.3)(5.3)(5.3)(11) (5.3)(5.3)(63) (81) (23) (4.5)(6.3)(5.9)(7.4) (27)(52)(10)(7.4)(1.5)(63) (8) 01-55-01-01 0 - 0.501 - SS - 01SW8310 - Polynuclear Aromatic Hydrocarbons (ug/kg) 28 J 5.4 J 2222 9 2 8 [ribromomethane(Bromoform) trans-1,3-Dichloropropene trans-1,2-Dichloroethene cis-1,3-Dichloropropene Dibenzo(a,h)anthracene Indeno(1,2,3-cd)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(a)anthracene **Trichloroethene** Vinyl chloride **Acenaphthylene** Benzo(a)pyrene Vinyl acetate Acenaphthene Fluoranthene Phenanthrene Naphthalene Anthracene PARAMETER Chrysene Fluorene Xylenes

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID

		01			01			01			01	
	~	01-SS-05		01	01-55-06		0.1	01-55-07		01	01-55-07	
PARAMETER	0	01-SS-05-01 0 - 0.5		01-S 0	01-SS-06-01 0 - 0.5		01-8	01-SS-07-01 0 - 0.5		01-DS-02 Du	Oup of 01-SS-07-01 0 - 0.5	7-01
			: : : : : : : :					 				1
SW8015MEMP - Nonhalogenated Volatile Organics	ile Organics	E)	,									
Diesel Range Organics (2)	72000	(11000)	[55100]	220	(21)	[107]	15000	(4000)	[20200]	16000	(2100)	[10600]
Gasoline Range Organics (2)		(11)	[109]	Q	(11)	[107]	130	(6)	[971]	140	(86)	[981]
SW6U6U - Urganochiorine resticides and russ		(ng/kg)										
4,4'-000	5.5	(0.37)	[36.7647]	17	(0.36)	[36.02305]	5.2	(0.34)	[33.67003]	5.1	(0.34) [3	33.94433
4,4'-DDE	1.1 P	(0.37)	[36.76470]	6.0	(0.36)	[36.02305]	ND	(0.34)	[33.67003]	QN	(0.34) [3	33.94433
4,4'-DDT	1.9	(0.74)	[36.7647]	6.8	(0.72)	[36.02305]	0.52 JB	(0.67)	[33.67003]	0.39 JB	(0.68)	33.94433]
Aldrin	33	(0.37)	[36.7647]	0.23 KJB	(0.36)	[36.02305]	QN	(0.34)	[33.67003]	QN	(0.34) [3	33.94433
Chlordane	QN	(1.8)	[36.7647]	N Q	(1.8)	[36.02305]	N	(1.7)	[33.67003]	ND	(1.7) [3	33.94433
Dieldrin	2.5 P	(0.37)	[36.7647]	0.25 JB	(0.36)	[36.02305]	96.0	(0.34)	[33.67003]	0.95	(0.34) [3	33.94433
Endosulfan I	2.9	(0.37)	[36.7647]	0.27 PJB	(0.36)	[36.02305]	0.29 PJB	(0.34)	[33.67003]	ND	_	33.94433
Endosulfan II	10	(1.1)	[36.7647]	Q	(1.1)	[36.02305]	0.12 PJB	(1)	[33.67003]	N	(1) [3	33.94433
Endosulfan·Sulfate	ON	(1.8)	[36.7647]	Q	(1.8)	[36.02305]	ON N	(1.7)	[33.67003]	ON	(1.7) [3	[33.94433]
Endrin	9	(0.37)	[36.7647]	QN	(0.36)	[36.02305]	QN	(0.34)	[33.67003]	QN	(0.34) [3	33.94433]
Endrin Aldehyde	3 P	(0.74)	[36.76470]	0.5 KJB	(0.72)	[36.02305]	ON	(0.67)	[33.67003]	QN	(0.68)	[33.94433]
Heptachlor	2.2 P	(0.37)	[36.76470]	0.096 PJB	(0.36)	[36.02305]	1.7	(0.34)	[33.67003]	1.5	(0.34) [3	33.94433
Heptachlor epoxide	10 P	(0.37)	[36.76470]	0.15 JB	(0.36)	[36.02305]	0.11 PJB	(0.34)	[33.67003]	0.94 PB	(0.34) [3	33.94433
Methoxychlor	QN	_	[36.76470]	0.24 KJ	(1.8)	[36.02305]	0.89 KJ	(1.7)	[33.67003]	0.96 KJ	(1.7) [3	[33.94433]
PCB-1016	QN ,	(3.7)	[36.7647]	QN	(3.6)	[36.02305]	Q	(3.4)	[33.67003]	ON	(3.4) [3	[33.94433]
PCB-1221	ON ON	(7.4)	[36.7647]	ND	(7.2)	[36.02305]	QN	(6.7)	[33.67003]	ON	(6.8)	33.94433]
PCB-1232	ON	(7.4)	[36.7647]	ON	(7.2)	[36.02305]	QN	(6.7)	[33.67003]	ON	(8.8)	[33.94433]
PCB-1242	QN	(3.7)	[36.7647]	QN	(3.6)	[36.02305]	QN	(3.4)	[33.67003]	ON	(3.4) [3	[33.94433]
PCB-1248	QN	(3.7)	[36.7647]	QN	(3.6)	[36.02305]	ON	(3.4)	[33.67003]	ON	(3.4) [3	[33.94433]
PCB-1254	Q	(7.4)	[36.7647]	QN	(7.2)	[36.02305]	Q.	(6.7)	[33.67003]	QN	(6.8)	33.94433
PCB-1260	QN	(7.4)	[36.7647]	QN	(7.2)	[36.02305]	2	(6.7)	[33.67003]	N	(6.8)	33.94433
Toxaphene	S.	(18)	[36.7647]	QN	(18)	[36.02305]	QN	(17)	[33.67003]	ND	(17) [3	[33.94433]
a1pha-BHC	4.6 P	(0.37)	[36.76470]	0.838	(0:36)	[36.02305]	1.8 P	(0.34)	[33.67003]	6.1	(0.34) [3	33.94433]
beta-BHC	2.3 P	(0.37)	[36.76470]	N	(0.36)	[36.02305]	0.45 PB	(0.34)	[33.67003]	2.5 P	(0.34) [3	33 944337
					•		•				_	00110.0

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

	01 01-SS-07 Dup of 01-SS-07-01 0 - 0.5	(0.34) [33.94433]	(510) [102.0408]		(510) [102.0408] (510) [102.0408]	_	(510) [102.0408]	(510) [102.0408]		(5100) [102.0408]			(510) [102.0408]	(1000) [102.0408]		(510) [102.0408]			(1000) [102.0408]	(510) [102.0408]	(510) [102.0408]	(10000) [102.0408]	(510) [102.0408]	(510) [102.0408]	(510) [102.0408]	(510) [102.0408]
	01-08-02	QN	QN	Q.	Q &	2 Q	QN	ON		7 O	540 J	QN	Q.	ND ND	오 :	טא ר 24		QN	ND	ON	NO	1500 J	QN	Q	Q	84 J
	01 01-SS-07 01-SS-07-01 0 - 0.5	(0.34) [33.67003]	(500) [100.9998]		(500) [100.9998] (500) [100.9998]		(500) [100.9998]	_	(1000) [100.9998]	(5000) [100.9998]		(500) [100.9998]	(500) [100.9998]			(500) [100.9998] (500) [100 9998]		(500) [100.9998]	(1000) [100.9998]	(500) [100.9998]	(500) [100.9998]	(10000) [100.9998]	(500) [100.9998]	_		(500) [100.9998]
		N	· Q	S .	2 2	QN	ND	QN :	2 2	2 R	2	R	Q	Q :	S 5	ON 5.		QN	QN	ON	QN	Q	130 J	Q.		43 J
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	01 01-SS-06 01-SS-06-01 0 - 0.5	(0.36) [36.02305]	(5.4) [1.082251]	(5.4) [1.082251]	(5.4) [1.082251]				(11) [1.082251] (54) [1.082251]		. 二	(5.4) [1.082251]	IJ		(5.4) [1.082251] (5.4) [1.082251]	1 =	ı L	(5.4) [1.082251]	(11) [1.082251]		二					(5.4) [1.082251]
BEG. DEF		ND	QN	8 8	2 Q	QN	2	2 9	2 S	Q.	QN	QN	QN	2 9		2 Q	QN	QN	2	R	2	2	2	2 :	Q :	Q.
	01-5S-05 01-5S-05-01 0 - 0.5	(0.37) [36.76470]		(5.5) [1.103752] (5.5) [1.103752]					(11) [1.103/52] (55) [1.103752]		(110) [1.103752]			(11) [1.103752]			(11) [1.103752]								(5.5) [1.103752]	[5.5] [1.103/52]
	01 01-	2 P	ND	2 S	Q.	2	2 9	2 5	2 Q	QN	QN	Q :	2 :	Q Q	g g	Q.	ND	Q :	2	Q !	2 :	2 4	2 9	2 5	2 4	U.S.
	PARAMETER	gamma-BHC SW8240 - Volatile Organics (ug/kg)		1,1,2,2-letrachloroethane 1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2~Ulchloroethane 1 2-Nichlowspass	1,2-Dichioropropane 2-Chloroethvl vinvl ether	2-Hexanone	4-Methyl-2-pentanone(MIBK)	Acetone	Benzene	Bromodich!oromethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chlorotorm	Chloromethane	Ulbromocnioromethane	Linyl benzene Mathul othul kataa	Methylone oblowide	Styrono	olyrene Tetrachloroethene	Tolliene	

Compiled: 23 March 1995

[] = Factor "B = Not Det

() = Detection Limit

NO Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

		01		01		01		01	
	01	01-SS-05 01-SS-05-01	01.0	01-SS-06 01-SS-06-01	01-	01-SS-07 01-SS-07-01	0 01-DS-02	01-SS-07 01-DS-02 Dup of 01-SS-07-01	<u></u>
PARAMETER		0 - 0.5		0 - 0.5	J	0 - 0.5		0 - 0.5	·
			t t t t t t t t t		1 1 1 1 1 1 1 1 1		† † † † † † † † † † † † † † † † † † †	t t t t t t t t t t t t t t t t t t t	-
Tribromomethane(Bromoform)	QN	(5.5) [1.103752]	Q.	(5.4) [1.082251]	Q	(500) [100.9998]	Q	(510) [102.	102.0408]
Trichloroethene	QN	(5.5) [1.103752]	QN	(5.4) [1.082251]	ON	(500) [100.9998]	QN	(510) [102.	102.0408]
Vinyl acetate	ON	(5.5) [1.103752]	ON	(5.4) [1.082251]	ON	(500) [100.9998]	QN	(510) [102.	102.0408]
Vinyl chloride	QN	(11) [1.103752]	ON	(11) [1.082251]	QN	(1000) [100.9998]	QN	(1000) [102.	102.0408]
Xylenes	ON	(5.5) [1.103752]	QN	(5.4) [1.082251]	ON	(500) [100.9998]	89 J	(510) [102.	102.0408]
cis-1,3-Dichloropropene	ND	(5.5) [1.103752]	QN	(5.4) [1.082251]	NO	(500) [100.9998]	QN	(510) [102.	102.0408]
trans-1,2-Dichloroethene	QN	(5.5) [1.103752]	Q	(5.4) [1.082251]	ND	(500) [100.9998]	QV	(510) [102.	102.0408]
trans-1,3-Dichloropropene	QN	(5.5) [1.103752]	QN	(5.4) [1.082251]	ON	(500) [100.9998]	N	(510) [102.	[102.0408]
SW8310 - Polynuclear Aromatic Hydrocarbons	lrocarbons (ug/kg)	'kg)							
Acenaphthene	QN	[68) [36.65689]	ND	(65) [36.07503]	QN	(61) [33.63605]	N	(61) [33.9	[33.92130]
Acenaphthylene	410	(84) [36.65689]	QN	(83) [36.07503]	310	(77) [33.63605]	85	(78) [33.9	[33.92130]
Anthracene	3700	(2400) [3665.689]	QN	(24) [36.07503]	1300	(220) [336.3605]	1600 J	(2200) [3392	3392.130]
Benzo(a)anthracene	63	(48) [3665.689]	0.73	(0.47) [36.07503]	18	(4.4) [336.3605]	30 J	(44) [3392	3392.130]
Benzo(a)pyrene	د 27 کا	(84) [3665.689]	1.5	(0.83) [36.07503]	19	(7.7) [336.3605]	20 J	(78) [3392	3392.130]
Benzo(b)fluoranthene	21 J		1.6		25	(6.1) [336.3605]	16 J	(61) [3392	3392.130]
Benzo(g,h,i)perylene	QN	_	9.8	(2.7) [36.07503]	45	(26) [336.3605]	84 J	(260) [3392	[3392.130]
Benzo(k)fluoranthene	20 J	(62) [3665.689]	8.0	(0.61) [36.07503]	12	(5.7) [336.3605]	21 J	(58) [3392	3392.130]
Chrysene	N		ON	(5.4) [36.07503]	33 J	(50) [336.3605]	S	(5.1) [33.9	[33.92130]
Dibenzo(a,h)anthracene	QN		0.53 J	_	4.2 J	(10) [336.3605]	QN	(1) [33.9	[33.92130]
Fluoranthene	QN	_	Q	(7.6) [36.07503]	Q	(71) [336.3605]	QN	_	33.92130]
Fluorene	3900	(770) [3665.689]	QN	(7.6) [36.07503]	670	(71) [336.3605]	890	_	3392.130]
Indeno(1,2,3-cd)pyrene	34	(1.6) [36.65689]	NO	(1.6) [36.07503]	33	(14) [336.3605]	Q.	(1.5) [33.9	33.92130]
Naphthalene	12000	(66) [36.65689]	3.5 J	(65) [36.07503]	4200	(610) [336.3605]	6200		3392.130]
Phenanthrene	16000	(2300) [3665.689]	ND	(23) [36.07503]	3600	(220) [336.3605]	4700	(2200) [3392	3392.130]
Pyrene	980 J	(990) [3665.689]	Q	(9.7) [36.07503]	240	(91) [336.3605]	290 J	(920) [3392	[3392.130]

					SITE ID							
				S BEG. DEPTH	SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	н (FT.)						
		01			01			01			0.4	
	0	01-55-08		01	01-88-09		01	01-58-10		04	04-MW-01	
	01	01-88-01		-10	01-SS-09-01		01-	01-SS-10-01		04-1	04-MW-01-02	
PARAMETER 		0 - 0.5		0	0 - 0.5	[0	0 - 0.5	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		4 - 6	! ! !
SW8015MEMP - Nonhalogenated Volatile Organics		(mg/kg)										
Diesel Range Organics (2)	190	(21)	[107]	32	(24)	[122]	1500	(200)	[1020]	52	(35)	[161]
Gasoline Range Organics (2) ND SUBORO - Organisation Professional Parts		(11)	[106]	QN	(240)	[2440]	ND	(10)	[102]	QN	(16)	[162]
7 4 4 'nn		(ug/kg)	; ;			1						
1,4	83	(1.8)	[1//./461]	2.4		40.89979]	37	(0.34)	[34.24657]	11	(0.54) [53	[53.96654]
4,4 -DDE	1 1	(0.36)	[35.54923]	4.5		40.89979]	9.8	(0.34)	[34.24657]	5.1	(0.54) [53	[53.96654]
4,4 -DDI	//	(3.6)	[177.7461]	3.1		[40.89979]	310	(8.8)	[342.4657]	3.6	(1.1) [53	53.96654]
Aldrin	0.14 KJB	(0.36)	[35.54923]	QN	(0.41) [4	[40.89979]	0.17 KJB	(0.34)	[34.24657]	ND	(0.54) [53	53.96654]
Chlordane	Q	(1.8)	[35.54923]	QN	(2) [7	40.89979]	ND	(1.7)	[34.24657]	ON	(2.7) [53	53.96654]
Dieldrin	QN	(0.36)	[35.54923]	QN	(0.41) [4	40.89979]	QN	(0.34)	34.24657]	N	_	53.96654]
Endosulfan I	ON	(0.36)	[35.54923]	QN	(0.41) [4]	40.89979]	ND	(0.34)	34.24657]	0.5 KJB	. —	53.96654]
Endosulfan II	0.32 PJB	(1.1)	[35.54923]	1 KJB	(1.2) [4	[40.89979]	0.78 KJB	(1)	34.24657]			[53.96654]
Endosulfan Sulfate	Q	(1.8)	[35.54923]	QN	(2) [7	[40.89979]	0.84 KJB	(1.7)	34.24657]	0.12 PJB		53.96654]
Endrin	QN	(0.36)	[35.54923]	QN		[40.89979]	ON	(0.34)	34.24657]	0.26 PJB	_	53.96654]
Endrin Aldehyde	0.63 JB	(0.71)	[35.54923]	QN	(0.82) [4	[40.89979]	0.31 KJB	(0.68)	34.24657]	1 KJ	_	53.96654]
Heptachlor		(0.36)	[35.54923]	0.093 PJB	(0.41) [4	[40.89979]	0.11 JB	(0.34)	34.24657]	0.48 PJB		53.96654]
Heptachlor epoxide	0.91 PB	(0.36)	[35.54923]	0.13 PJB	(0.41) [4	40.89979]	0.16 JB	(0.34)	34.24657]	ON		53.96654]
Methoxychlor	Q :	(1.8)	[35.54923]	QN	(2) [4	[40.89979]	1.5 KJ	(1.7)	34.24657]	ON	_	53.96654]
PCB-1016	Q :	(3.6)	[35.54923]	ND		[40.89979]	QN	_	34.24657]	QN	(5.4) [53	53.96654]
PUB-1221	Q.		[35.54923]	QN		[40.89979]	QN	(8.8)	34.24657]	ON	(11) [53,	53.96654]
PUB-1232	Q :		[35.54923]	QN	_	40.89979]	ND	(8.8)	34.24657]	QN	(11) [53	53.96654]
PCB-1242	QN	(3.6)	[35.54923]	QN		40.89979]	ND	(3.4)	34.24657]	QN	(5.4) [53.	53.96654]
PCB-1248	QN		[35.54923]	ON	(4.1) [4	40.89979]	QN	(3.4)	34.24657]	ND		53.96654]
PCB-1254	QN	_	[35.54923]	ND	(8.2) [4	40.89979]	ND	(8.8)	34.24657]	ND		53.96654]
PCB-1260	QN .		[35.54923]	QN		40.89979]	QN	[6.8]	34.24657]	ND	(11) [53.	53.96654]
loxaphene	Q :		[35.54923]	ND		[40.89979]	ON	(17)	34.24657]	QN	(27) [53.	53.96654]
alpha-BHC	QN		[35.54923]	Q	_	[40.89979]	QN	(0.34)	34.24657]	QN	(0.54) [53.	53.96654]
beta-BHC	Q.		[35.54923]	0.17 KJB		[40.89979]	ND	(0.34)	34.24657]	QN	(0.54) [53.	53.96654]
delta-BHC	Q	(0.36)	[35.54923]	Q.	(0.41) [4	[40.89979]	ND	(0.34)	[34.24657]	0.52 JB	(0.54) [53.	[53.96654]

[] = Factor () = Detection Limit

- Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

	c	01	01		5	01	3	04
	010	01-55-06 01-55-08-01	01-55-09 01-55-09-01	-09-01	01 -10	01-55-10 01-55-10-01	04 104	04-MW-01 04-MW-01-02
PARAMETER 		0 - 0.5	0 - 0.5	0.5	0	- 0.5	,	4 - 6
					 	; t	 	
gamma-BHC	0.68 B	(0.36) [35.54923]	0.75 B	(0.41) [40.89979]	0.788	(0.34) [34.24657]	1.18	(0.54) [53.96654]
SW8240 - Volatile Organics (ug/kg)	g)							
1,1,1-Trichloroethane	QN	(5.4) [1.071466]	ND	(6.1) [1.228501]	ON	(5.2) [1.033057]	ND	(8.1) [1.620745]
1,1,2,2-Tetrachloroethane	QN	(5.4) [1.071466]	ON	(6.1) [1.228501]	Q	(5.2) [1.033057]	QN	(8.1) [1.620745]
1,1,2-Trichloroethane	ON	(5.4) [1.071466]	QN	(6.1) [1.228501]	2		ND	
1,1-Dichloroethane	QN	(5.4) [1.071466]	ND	(6.1) [1.228501]	QN	_	ND	
1,1-Dichloroethene	QN	(5.4) [1.071466]	ND	(6.1) [1.228501]	QN	(5.2) [1.033057]	QN	(8.1) [1.620745]
1,2-Dichloroethane	QN	(5.4) [1.071466]	ND	(6.1) [1.228501]	QN	(5.2) [1.033057]	ND	(8.1) [1.620745]
1,2-Dichloropropane	QN	(5.4) [1.071466]	QN	(6.1) [1.228501]	QN	(5.2) [1.033057]	ND	(8.1) [1.620745]
2-Chloroethyl vinyl ether	QN	(11) [1.071466]	QN	(12) [1.228501]	N	(10) [1.033057]	ND	(16) [1.620745]
2-Hexanone	QN	(54) [1.071466]	NO	(61) [1.228501]	Q	(52) [1.033057]	ON	(81) [1.620745]
4-Methyl-2-pentanone(MIBK)	ON	(54) [1.071466]	ON	(61) [1.228501]	QN	(52) [1.033057]	N ON	(81) [1.620745]
Acetone	QN	(110) [1.071466]	N	(120) [1.228501]	QN	(100) [1.033057]	200	(160) [1.620745]
Benzene	QN	(5.4) [1.071466]	QN	(6.1) [1.228501]	QN	(5.2) [1.033057]	QN QN	(8.1) [1.620745]
Bromodichloromethane	ND		QN	(6.1) [1.228501]	QN	(5.2) [1.033057]	QN	(8.1) [1.620745]
Bromomethane	ND	(11) [1.071466]	Q	(12) [1.228501]	QN	(10) [1.033057]	ND	(16) [1.620745]
Carbon disulfide	ON	_	QN	(6.1) [1.228501]	NO	(5.2) [1.033057]	ND	(8.1) [1.620745]
Carbon tetrachloride	QN		Q	(6.1) [1.228501]	QN	(5.2) [1.033057]	QN	(8.1) [1.620745]
Chlorobenzene	QN		Q	(6.1) [1.228501]	QN	(5.2) [1.033057]	N	(8.1) [1.620745]
Chloroethane	Q) Q	(12) [1.228501]	ON	(10) [1.033057]	Q	(16) [1.620745]
Chloroform	QN		Q	_	QN	(5.2) [1.033057]	ND	(8.1) [1.620745]
Chloromethane	QN		Q.	_	QN	(10) [1.033057]	QN	(16) [1.620745]
Dibromochloromethane	QN		QN	(6.1) [1.228501]	QN	(5.2) [1.033057]	QN	(8.1) [1.620745]
Ethyl benzene	QN	(5.4) [1.071466]	ON	(6.1) [1.228501]	ND	(5.2) [1.033057]	QN	(8.1) [1.620745]
Methyl ethyl ketone	N	_	ON	(120) [1.228501]	QN	(100) [1.033057]	14 JB	(160) [1.620745]
Methylene chloride	QN	(5.4) [1.071466]	NO	(6.1) [1.228501]	ND	(5.2) [1.033057]	31	(8.1) [1.620745]
Styrene	QN	(5.4) [1.071466]	QN	(6.1) [1.228501]	QN	(5.2) [1.033057]	QN	(8.1) [1.620745]
Tetrachloroethene	QN	(5.4) [1.071466]	QN	(6.1) [1.228501]	QN	(5.2) [1.033057]	QN	(8.1) [1.620745]
Toluene	QN	(5.4) [1.071466]	QN	(6.1) [1.228501]	Q	(5.2) [1.033057]	2.6 J	(8.1) [1.620745]
Compiled: 23 March 1995		() = Detection Limit	[] = Factor	ND = Not Detected	NA = Not A	= Not Applicable		
		1	ŧ	ı		ppiicanie		

[1.620745][1.620745] [1.620745] [1.620745][1.620745] [1.620745][1.620745] [1.620745][0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791][0.053791][0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791][0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791] (8.1) (8.1)(8.1)(8.1)(8.1)(8.1)(8.1)(16)(0.54)(0.54)(0.54)(0.54)(2.7)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(1.1)(0.54)(0.54)(2.7)(0.54)(2.7)04-MW-01-02 04-MW-01 4 - 6 운 운 2 [1.033057][1.033057][1.033057][1.033057][1.033057][1.033057] [1.033057][1.033057](5.2)(5.2)(5.2)(5.2)(5.2)(5.2)(10)(5.2)01-SS-10-01 0 - 0.501-SS-10 ΝA N N N N 9 9 9 9 9 9 9 [6.1] [1.228501] [6.1] [1.228501] [1.228501] [1.228501] [1.228501] (6.1) [1.228501] [1.228501] [6.1] [1.228501] BEG. DEPTH - END DEPTH (FT.) (12)(6.1)(6.1) LOCATION ID SAMPLE ID 01-55-09-01 SITE 10 0 - 0.501-55-09 01 [1.071466][1.071466] [1.071466] 1.071466 [1.071466] [1.071466] [1.071466][1.071466](5.4)(5.4)(11) (5.4)(5.4)(5.4)(5.4)01-55-08-01 01-55-08 0 - 0.52222222 SW8270 - Semivolatile Organics (mg/kg) Tribromomethane(Bromoform) trans-1,3-Dichloropropene 4,6-Dinitro-2-methylphenol trans-1,2-Dichloroethene cis-1,3-Dichloropropene 2-Methylphenol(o-cresol) 1,2,4-Trichlorobenzene 3,3'-Dichlorobenzidine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chloronaphthalene 2-Methylnaphthalene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol Trichloroethene Vinyl chloride 2-Chlorophenol 2-Nitroaniline 3-Nitroaniline Vinyl acetate 2-Nitrophenol PARAMETER Xylenes

Me = Not Detected NA = N

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

	The state of the s	SITE 1D			
		LOCATION ID			
		SAMPLE ID BEG. DEPTH - END DEPTH (FT.)			
	01	01	01		04
	01-55-08	01-55-09	01-55-10	Ü	04-MW-01
	01-55-08-01	01-55-09-01	01-55-10-01	70	04-MW-01-02
PARAMETER	0 - 0.5	0 - 0.5	0 - 0.5		4 - 6
4-8romonhenv] other	ĄN	₹ N	∀	S	(0 54) [0 053701]
4-Chloro-3-methylphenol	V	 AN	V	2 2	
4-Chlorophenyl phenyl ether	NA	NA	NA NA	9	
4-Methylphenol(p-cresol)	NA	NA	NA	QN	
4-Nitroaniline	NA	NA	NA	ON	(2.7) [0.053791]
4-Nitrophenol	NA	NA	NA	ON	(2.7) [0.053791]
Acenaphthene	NA	NA	NA	QN	(0.54) [0.053791]
Acenaphthylene	NA	NA	NA	QN	(0.54) [0.053791]
Anthracene	NA	NA	NA	ON	(0.54) [0.053791]
Benzo(a)anthracene	NA	NA	NA	QN	(0.54) [0.053791]
Benzo(a)pyrene	NA	NA	NA	QN	(0.54) [0.053791]
Benzo(b)fluoranthene	NA	NA	NA	QN	(0.54) [0.053791]
Benzo(g,h,i)perylene	NA	NA	NA	QN	(0.54) [0.053791]
Benzo(k)fluoranthene	NA	NA	NA	ON	(0.54) [0.053791]
Benzoic acid	NA	NA	NA	ON.	(2.7) [0.053791]
Benzyl alcohol	NA	NA	NA	QN	(0.54) [0.053791]
Butylbenzylphthalate	NA	NA	NA	ON	(0.54) [0.053791]
Chrysene	NA	. VA	NA NA	ON	(0.54) [0.053791]
Di-n-octy]phthalate	NA	NA	NA	QN	(0.54) [0.053791]
Oibenz(a,h)anthracene	NA	NA	NA	QN	(0.54) [0.053791]
Dibenzofuran	NA	NA	NA	ON	(0.54) [0.053791]
Dibutylphthalate	NA	NA	NA	ON	(0.54) [0.053791]
Diethylphthalate	NA	NA	NA	QN	(0.54) [0.053791]
Dimethylphthalate	NA	NA	NA	ON	(0.54) [0.053791]
Fluoranthene	NA	NA	NA	ON	(0.54) [0.053791]
Fluorene	NA	NA	NA	QN	(0.54) [0.053791]
Hexachlorobenzene	NA	NA	NA	QN	
Hexachlorobutadiene	NA	NA	NA	QN	(0.54) [0.053791]
Hexachlorocyclopentadiene	NA	NA .	NA	ON	(0.54) [0.053791]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

[0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791] [0.053791][0.053791] [0.053791] [42.01680] [0.053791] [42.01680][42.01680][2.01680] [42.01680] [42.01680][42.01680][42.01680]42.01680 [42.01680] [42.01680][42.01680](0.54)(0.54)(0.54)(0.54)(0.54)(2.7)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(61) (88) (8.8) (0.76)(1.3)(8.8)(0.026)(0.97)(3.2)(0.71)(6.3)04-MW-01-02 04-MW-01 1.4 J 0.45 S 2 2 8 2 2 [34.36426] [34.36426] [34.36426][34.36426] [343.6426][343.6426] [343.6426] [34.36426] (1) [34.36426] [343.6426][34.36426] [34.36426] (5.2)(7.2)(0.45)(6'2) (6.2)(58) (5.8)(7.2)01-SS-10-01 01-SS-10 0 - 0.5N N N 6.1 J 4.4 J 4.7 J 3.4 J 유 문 2.3 40 윤 S 13 [40.84967] [40.84967][40.84967] [40.84967] [40.84967] [40.84967] [40.84967][40.84967] [40.84967] [40.84967] [40.84967] [40.84967] BEG. DEPTH - END DEPTH (FT.) LOCATION ID (0.94)(3.1)(0.53)(0.74)(0.69)(6.1)(1.2)SAMPLE ID (8.6)(8.6)01-55-09-01 SITE ID 01-55-09 0 - 0.56 0.19 J 0.32 J 9 98.0 ON ON 2 2 2 [106.95][106.95][106.95][106.95] [106.95][106.95]106.95] [106.95]106.95] [106.95][106.95]106.95] (71) (1.4)(1.9)(8.1)(250)(2.5)(1.8)(16)(3.2)01-55-08-01 01 - 55 - 080 - 0.5SW8310 - Polynuclear Aromatic Hydrocarbons (ug/kg) NA Ä Ä Ϋ́ WA NA WA Ν 4.6 J 1.1 J 5.6 1.8 5.4 6.1 S S 8 bis(2-Chloroisopropyl)ether bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate bis(2-Chloroethyl)ether Indeno(1,2,3-cd)pyrene N-Nitrosodiphenylamine N-Nitrosodipropylamine Dibenzo(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(a)anthracene Pentachlorophenol -lexachloroethane p-Chloroaniline Benzo(a)pyrene **Acenaphthylene** Phenanthrene Nitrobenzene Acenaphthene Naphthalene Fluoranthene sophorone Anthracene PARAMETER Chrysene Fluorene Phenol

Compiled: 23 Mare

[] = Factor () = Detection Limit

MA = Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

					SITE ID				
					LOCATION ID				
					SAMPLE ID				
				BEG. DEPT	BEG. DEPTH - END DEPTH (FT.)				
		01			01		01		04
	01	01-55-08		0	01-55-09	0	01-55-10		04-MW-01
	-10	01-88-01		01	SS-09-01	01	31-SS-10-01	Õ	1-MW-01-02
PARAMETER	0	0.5			0 - 0.5		0 - 0.5		4 - 6
1 1 1 1 1 1 1 1								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Indeno(1,2,3-cd)pyrene	7.4	(4.6)		ND	(1.8) [40.84967]	9.1	(1.5) [34.36426]	ON	(1.8) [42.01680]
Naphthalene	10 J	(190)		Q	(74) [40.84967]	ON	(62) [34.36426]	QV	(76) [42.01680]
Phenanthrene	96	(89)	[106.95]	N	(26) [40.84967]	QN	(22) [34.36426]	9	(27) [42.01680]
Pyrene	QN	(53)	[106.95]	ND	(11) [40.84967]	3.3 J	(9.3) [34.36426]	QN	(11) [42.01680]

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			LC 8 BEG. DEPTH	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)						
	04	04 04-MW-02	70	04 04-MW-03	04	04 04-MW-04		04	04 04-SD-01	
PARAMETER 	04-1/2	04-MW-0Z-0Z 5 - 6.5 	04-	04-MW-03-02 5 - 6.5	- 40	04-MW-04-02 4 - 6		04-	04-SD-01-01 0 - 0.5	! ! !
SW8015MEMP - Nonhalogenated Volatile Organics										
Ulesel Kange Urganics (2) Gasoline Range Organics (2)	52 ND	(30) [148] (15) [148]	8] 67 NA	(29) [147]	170 ND	(37)	[185]	2	(21)	[103]
SW8080 - Organochlorine Pesticides and PCBs					Q.	(19)	[18/]	N	(10)	[103]
4,4'-DDD	ND	(0.5) [49.80079]) 0.11 PJB	(0.49) [49.21259]	ND	(0.62)	[62.2665]	0.95 B	(0.35) [3	[34.57814]
4,4'-DDE	Q		0.22	(0.49) [49.21259]	ON	(0.62)	[62.2665]			[34.57814]
4,4'-DD	QN .] 0.91 JB	_	0.85 JB	(1.2)	[62.2665]	1.1 P	_	1.57814]
Aldrin	ON	_]	(0.49) [49.21259]	1.1	(0.62)	[62.2665]	ND	(0.35) [34.	1.57814]
Chlordane	QN			_	QN	(3.1)	[62.2665]	ND	(1.7) [34.	.57814]
Dieldrin	ON		ON [(0.49) [49.21259]	QN	(0.62)	[62.2665]	ON	(0.35) [34.	.57814]
Endosulfan I	0.43 KJB	(0.5) [49.80079] 0.34 KJB	(0.49) [49.21259]	0.43 KJB	(0.62)	[62.2665]	QN		.57814]
Endosulfan II	1.4 KJB	(1.5) [49.80079]	J ND	(1.5) [49.21259]	ND	(1.9)	[62.2665]	1.5		.57814]
Endosulfan Sulfate	0.068 PJB] 0.014 PJB	(2.5) [49.21259]	0.21 PJB	(3.1)	[62.2665]	0.83 PJB	-	.57814]
Endrin	ON	(0.5) [49.80079] 0.068 KJB	(0.49) [49.21259]	0.062 KJB	(0.62)	[62.2665]	0.18 PJB		.57814]
Endrin Aldehyde] ND	(0.98) [49.21259]	N	(1.2)	[62.2665]			.57814]
Heptachlor	0.44 PJB		1	(0.49) [49.21259]	1.1 P	(0.62)	[62.2665]	0.36 PB	_	34.57814]
Heptachlor epoxide	ON	_	0.84	_	QN	(0.62)	[62.2665]	QN	_	34.57814]
Methoxychlor pre-1016	Q S		· -		QN	(3.1)	[62.2665]	ON	(1.7) [34	[34.57814]
PCB-1019	2 2	(5) [49.80079]			QN :	(6.2)	[62.2665]	QN	_	34.57814]
PCB-1232	2 5			_ :	ON:	(12)	[62.2665]	Q		[34.57814]
PCB-1242	S S	(10) [49.800/9	ON [(9.8) [49.21259]	Q 4	(12)	[62.2665]	QN:		34.57814]
PCB-1248	2 2				2 2	(2.0)	[66.2665]	a :	(34.57814]
PCB-1254	2 2		_		2 4	(2.0)	[62.2665]	ON !		.57814]
PCB-1260	e S				2 2	(77)	[62.2665]	2 8		.57814]
Toxaphene	S				2 5	(71)	[64.2665]	<u> </u>		.5/814]
alpha-BHC	2				5 8	(31)	[62.2665] [62.2665]	2 9		.57814]
beta-BHC	0.44 KJ		5		ND 0.8 PB	(0.62)	[62.2065] [62.2665]	ND 0.23 P.1	(0.35) [34.	[34.57814]
delta-BHC	0.52 B		0			(0.62)	[62.2665]	0. C7.0		[34.57814]
							:			7. ()

Compiled: 23 May

[] = Factor () = Detection Limit

= Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			LO S S BEG. DEPTH	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
		04 04-MW-02	04	04 04-MW-03	.04	04 04-MW-04	•	04 04-SD-01
PARAMETER		04-mw-02-02 5 - 6.5 	90	04-MW-03-02 5 - 6.5 	04-1	04-MW-04-02 4 - 6 · · · · · · · · · · · · · · · · · ·) ! ! ! ! ! ! !	04-SD-01-01 0 - 0.5
	Q	(0.5) [49.80079]	0.588	(0.49) [49.21259]	0.6 JB	(0.62) [62.2665]	N	(0.35) [34.57814]
<pre>SW8240 - Volatile Organics (ug/kg) 1,1,1-Trichloroethane</pre>	ON ((7.5) [1.494768]	QV	(7.4) [1.477104]	QN	(9.3) [1.869158]	QN	(5.2) [1.037344]
1,1,2,2-Tetrachloroethane	QN		Q	(7.4) [1.477104]	8	(9.3) [1.869158]	ON.	
1,1,2-Trichloroethane	Q.		Q :	_	2		QN	
I,1-Dichloroethane	2 8	(7.5) [1.494/68]	2 5	(7.4) [1.47/104]	2 9	(9.3) [1.869158]	2 5	(5.2) [1.037344]
1,1-Dichloroethane	<u> </u>		2 2		<u> </u>		2	(5.2) [1.03/344] (5.2) [1.037344]
1,2-Dichloropropane	QN	(7.5) [1.494768]	QN	(7.4) [1.477104]	ND		N _S	
2-Chloroethyl vinyl ether	QN	(15) [1.494768]	QN	(15) [1.477104]	QN	(19) [1.869158]	ND	(10) [1.037344]
2-Hexanone	QN		QN	(74) [1.477104]	QN QN	(93) [1.869158]	N	(52) [1.037344]
4-Methyl-2-pentanone(MIBK)	S	_	Q	_	QN	_	Q	_
Acetone	Q		R		440	_	N	(100) [1.037344]
Benzene	2 9		2 9		2 9		운 :	
Bromodichloromethane	S 8	(7.5) [1.494/68]	2 2	(/.4) [1.4//104] (15) [1 477104]	2 5	(9.3) [1.869158]	2 9	
Carbon disulfide	2 2		2 S		2 2	<u> </u>	<u> </u>	(10) [1.03/344] (5.2) [1.03/344]
Carbon tetrachloride	Q	(7.5) [1.494768]	QN	_	QN		R	
Chlorobenzene	Q		QN	(7.4) [1.477104]	ND	(9.3) [1.869158]	QN	(5.2) [1.037344]
Chloroethane	Q		Q	二	QN	ニ	ND	(10) [1.037344]
Chloroform	Q		S		S	二	QN	
Chloromethane	QN		Q.		QN		Q.	(10) [1.037344]
Dibromochloromethane	QN		2		QN	_	ND	
Ethyl benzene	QN		S		QN	(9.3) [1.869158]	Q.	(5.2) [1.037344]
Methyl ethyl ketone	Q		Q		ر 67	(190) [1.869158]	QN	(100) [1.037344]
Methylene chloride	20		11 B	_	ND		QN	(5.2) [1.037344]
Styrene	Q	_	QN	_	ND	_	Q	(5.2) [1.037344]
Tetrachloroethene	S.		Q		ND		QN	(5.2) [1.037344]
Toluene	QN	(7.5) [1.494768]	2	(7.4) [1.477104]	2.5 J	(9.3) [1.869158]	S	(5.2) [1.037344]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

,				SITE ID				
				LOCATION ID				
				SAMPLE ID				
			BEG. DEF	DEPTH - END DEPTH (FT.)				
		04		04		04		0.4
		04-MW-02		04-MW-03		04-MW-04		04-SD-01
		04-MW-02-02)	04-MW-03-02		04-MW-04-02		04-SD-01-01
PAKAME I ER	1	5 - 6.5	 	5 - 6.5		4 - 6		0 - 0.5
					 		 	
rlbromomethane(Bromotorm)	2		N N	(7.4) [1.477104]	QN	[9.3] [1.869158]	Q	(5.2) [1.037344]
rich oroethene	2		QN	(7.4) [1.477104]	8	[1.869158]	9	
Vinyl acetate	2		S	(7.4) [1.477104]	8	(9.3) [1.869158]	9	
Vinyl chloride	S	(15) [1.494768]	QN	(15) [1.477104]	QN	(19) [1.869158]	2	
Xylenes	N	(7.5) [1.494768]	N	(7.4) [1.477104]	QN		2	
cis-1,3-Dichloropropene	S	(7.5) [1.494768]	Q	(7.4) [1.477104]	Q.		2	
trans-1,2-Dichloroethene	S S	(7.5) [1.494768]	R	(7.4) [1.477104]	QN		S	
	Q.	(7.5) [1.494768]	QN	(7.4) [1.477104]	QN		2	
rganics	(mg/kg)						1	
1,2,4-Trichlorobenzene	QN	(0.5) [0.049792]	QN	(0.49) [0.049089]	QN	(0.62) [0.062284]	QN	(0.34) [0.034497]
1,2-Dichlorobenzene	QN	(0.5) [0.049792]	S	(0.49) [0.049089]	ND		Q.	
1,3-Dichlorobenzene	S	(0.5) [0.049792]	S	(0.49) [0.049089]	Q.		2	
1,4-Dichlorobenzene	Q	(0.5) [0.049792]	R	(0.49) [0.049089]	Q.		Q Q	
2,4,5-Trichlorophenol	S	(0.5) [0.049792]	N	(0.49) [0.049089]	ON		S	
2,4,6-Trichlorophenol	S	2)	S	[0.49) [0.049089]	ND		2	
2,4-Dichlorophenol	운		QN	(0.49) [0.049089]	QN		Q.	
Z,4-Ulmethylphenol	₽ :	2	QN	(0.49) [0.049089]	QN	(0.62) [0.062284]	S.	
2,4-Dinitrophenol	2 9		운	_	QN	(3.1) [0.062284]	Q	(1.7) [0.034497]
2 A-Dinitrotolusus	€ €		2 :		S	(0.62) [0.062284]	9	(0.34) [0.034497]
2-Chloronanh+halano	2 2		2 :		Q	(0.62) [0.062284]	Q	(0.34) [0.034497]
2-chiotonaphinalene 2-chlonophonol	2 9		2	_	QN	(0.62) [0.062284]	Q.	(0.34) [0.034497]
2 - Critici Opriendi	2 :		S		Q	(0.62) [0.062284]	Q	(0.34) [0.034497]
2 Mathulabuthalene	S :		S	_	QV	(0.62) [0.062284]	QN	(0.34) [0.034497]
<pre>2-Withorniling 2-Withorniling</pre>	2 9		Q		ND	(0.62) [0.062284]	QN	_
2 Nitrophonal	2 9		Q		S	(3.1) [0.062284]	QN	(1.7) [0.034497]
2 3'-Nichlambanaidina	ON S		2		2	(0.62) [0.062284]	QN	(0.34) [0.034497]
3-Nithornilino	D 5		2	_	Q.	(1.2) [0.062284]	QN	(0.69) [0.034497]
7 8-Divitor 2 mothy 3-1	2 9		2		N Q	(3.1) [0.062284]	Q	(1.7) [0.034497]
4,0-7,0111110-2-metry/phenol	ND.	(2.5) [0.049792]	9	(2.5) [0.049089]	QN N	(3.1) [0.062284]	ND	(1.7) [0.034497]

Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

04-MW-03 04-MW-03-02	104-MM-00		
-03-02		04-SD-01	
- 6.5	04-MW-04-02 4 - 6	04-SD-01-01 0 - 0.5	-
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	4) [0.034497]
	_		
	(0.62)		
(0.49) [0.049089]	(0.62)		-
(2.5) [0.049089]	ND (3.1) [0.062284]	ND (1.7)	
(2.5) [0.049089]	ND (3.1) [0.062284]	ND (1.7)	7) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	4) [0.034497
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(2.5) [0.049089]	ND (3.1) [0.062284]	ND (1.7)	7) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	4) [0.034497]
(0.49) [0.049089]	ND (0.62) [0.062284]	ND (0.34)	(4) [0.034497]
(0.49) (0.49)		[0.049089] ND (0.62)	[0.049089] ND (0.62) [0.062284] ND (0.62) [0.062284] ND (0.62) [0.062284] ND (0.63)

				SITE ID	100			
			_	LOCATION ID				
				SAMPLE ID				
			BEG. DEPT	DEPTH - END DEPTH (FT.)				
		04		04		04		
	U	04-MW-02	0	04-MW-03	0	04-MW-04		04-SD-01
	00	04-MW-02-02	04	04-MW-03-02	04	04-MW-04-02	04	04-SD-01-01
PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 - 6.5	\$!! 	5 - 6.5	1 1 1 1 1 1 1 1 1	4 - 6		0 - 0.5
Hexachloroethane	S	(0.5) [0.049792]	S	F000000 07 (00 0)	ğ	_		1
Indeno(1.2.3-cd)pvrene	. C		2 2		2		Q !	
Isophorone	9		2 2		S CN	(0.62) [0.062284]	9 9	
N-Nitrosodiphenylamine	ND		QN		2 5		2 9	(0.34) [0.03449/]
N-Nitrosodipropylamine	ON	(0.5) [0.049792]	QN		2 2		2 2	
Naphthalene	QN	(0.5) [0.049792]	QV	(0.49) [0.049089]	QN		Q.	
Nitrobenzene	ON	(0.5) [0.049792]	QN	(0.49) [0.049089]	ND		S	
Pentachlorophenol	QN	(2.5) [0.049792]	ON	(2.5) [0.049089]	QN		Q.	_
Phenanthrene	ND		ND	(0.49) [0.049089]	ND		QN	
Phenol	QN		QN	(0.49) [0.049089]	ON	(0.62) [0.062284]	QN	
Pyrene	QN	_	QN	(0.49) [0.049089]	ND	(0.62) [0.062284]	ND	
bis(2-Chloroethoxy)methane	Q	(0.5) [0.049792]	ND	(0.49) [0.049089]	QN	(0.62) [0.062284]	ND	
bis(2-Chloroethyl)ether	Q	_	QN	(0.49) [0.049089]	QN		QN	_
bis(2-Chloroisopropyl)ether	QN	(0.5) [0.049792]	QN	(0.49) [0.049089]	ON	(0.62) [0.062284]	ND	
bis(2-Ethylhexyl)phthalate	0.061 JB	(0.5) [0.049792]	0.1 JB	(0.49) [0.049089]	0.087 JB	. —	0.06 JB	
p~Chloroaniline	ON	(0.5) [0.049792]	ND	(0.49) [0.049089]	QN	(0.62) [0.062284]	QN ON	
SW8310 - Polynuclear Aromatic Hydrocarbons		(ug/kg)					!	
Acenaphthene	QN		ND	(89) [49.21259]	ON	(74) [40.98360]	QN	(62) [34,48275]
Acenaphthylene	Q		QN	(110) [49.21259]	ND	(94) [40.98360]	ON	
Anthracene	QN		ND	(32) [49.21259]	N	(27) [40.98360]	QN	
Benzo(a)anthracene	QN		QN	(0.64) [49.21259]	0.24 J	(0.53) [40.98360]	0.28 J	
Benzo(a)pyrene	NO	(1.1) [49.75124]	ND	(1.1) [49.21259]	0.31 J	(0.94) [40.98360]	QN N	
Benzo(b)fluoranthene	0.7 J	(0.9) [49.75124]	0.53 J	(0.89) [49.21259]	QN	_	0.43 J	
Benzo(g,h,i)perylene	QN	(3.8) [49.75124]	ND	(3.7) [49.21259]	ND	(3.1) [40.98360]		
Benzo(k)fluoranthene	QN		QN	(0.84) [49.21259]	QN	(0.7) [40.98360]		
Chrysene	QN		ND	(7.4) [49.21259]	9.6	(6.1) [40.98360]	QN	_
Dibenzo(a,h)anthracene	Q		0.43 JB	(1.5) [49.21259]	ON	(1.2) [40.98360]	N	
Fluoranthene	QN		ND	(10) [49.21259]	QN	(8.6) [40.98360]	ND	
Fluorene	QN	(10) [49.75124]	ND	(10) [49.21259]	1.1 JB	(8.6) [40.98360]	ND	

Compiled: 23 March 1995

() = Detection Limit [] = Factor

Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID

	04 04-SD-01 04-SD-01	0 - 0.5		ND (1.5) [34.48275	ND (62) [34.48275	ND (22) [34.48275]	ND (9.3) [34.48275]
	04 04-MW-04 04-MW-04-02	4 - 6		(1.8) [40.98360]	(74) [40.98360]	(26) [40.98360]	(11) [40.98360]
	0 04		 	1.1 J	QN	QN	ON
SAMPLE ID DEPTH - END DEPTH (FT.)	04 04-MW-03 04-MW-03-02	- 6.5		(2.1) [49.21259]	(89) [49.21259]	(31) [49.21259]	(13) [49.21259]
S BEG. DEPTH	04-	5		0.78 J	Q	N N	R
	04 04-MW-02 14-MW-02-02	5 - 6.5		(2.1) [49.75124]	(90) [49.75124]	(32) [49.75124]	(13) [49.75124]
	04-	5		0.71 J	QN	QN	QN
		PARAMETER	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene

				S) LOC/ SAN BEG, DEPTH -	SITE ID LOCATION ID SAMPLE ID DEPTH - FND DEPTH (FT)	H (ET)						
		04			04			04			5	
	70	04-SD-02		04-8	04-SD-02		- 70	04-50-03		0	04-04-04	
	04-	04-SD-02-01		04-DS-01 Dup	Dup of 04-SD-02-01	02-01	04-S	04-50-03-01		40 0 - 40	04-50-04	
PARAMETER 		0 - 0.5	-	,	- 0.5		0	0 - 0.5		0	0 - 0.5	
SW8015MEMP - Nonhalogenated Volatile Organics		(mg/kg)										1 1 1 1 1 1
Diesel Range Organics (2)		(56)	[128]	QN	(56)	[132]	40	(30)	[151]	54	(35)	[160]
Gasoline Range Organics (2)	13 8	(13)	[129]	QN	(13)	[132]	2 8	(15)	[152]	Ş	(36)	[161]
SW8080 - Organochlorine Pesticides and PCBs	_	(ug/kg)			•	1			7) :	(0.7)	[101]
4,4'-D0D	46	(0.43) [43.	[43.02925]	49	(0.44)	[44.24778]	45	(0.5)	[50.37783]	ო	(0.54)	53.561861
4,4'-DDE	37	(0.43) [43.	[43.02925]	44	(0.44)	[44.24778]	40	(0.5)	50.37783]	4.5		53.56186]
4,4'-DDT	43	(0.86) [43.	[43.02925]	45	(0.88)	[44.24778]	16	(1)	50.37783]	2.5		53,56186]
Aldrin	QN		[43.02925]	0.3 JB	(0.44)	[44.24778]	0.33 KJB	(0.2)	50.37783]	ND	-	53,56186]
Chlordane	QN	(2.2) [43.	43.02925]	ND	(2.2)	[44.24778]	ND	(2.5)	50.37783]	ON		53,56186]
Dieldrin	QN	(0.43) [43.	[43.02925]	ON	(0.44)	[44.24778]	ND	_	50.37783]	QN		53,56186]
Endosulfan I	0.47 B	(0.43) [43.	43.02925]	0.3 PJB	(0.44)	[44.24778]	0.518		[50.37783]	QN	J	53,56186
Endosulfan II	1.2 KJB	(1.3) [43.	[43.02925]	QN	(1.3)	[44.24778]	1.1 KJB	(1.5)	[50.37783]	1.4 KJB		53,561861
Endosulfan Sulfate	0.56 PJB	(2.2) [43.	43.02925]	0.062 PJB	(2.2)	[44.24778]	0.3 PJB	(2.5)	[50.37783]			53,56186
Endrin	0.085 KJB	_	43.02925]	0.18 PJB	(0.44)	[44.24778]	0.091 PJB	(0.5)	[50.37783]	ND		53.56186]
Endrin Aldehyde	QN		[43.02925]	ND	(0.88)	[44.24778]	ON	(1)	[50.37783]	QN		53.56186]
Heptachlor	0.4 PJB	_	43.02925]	0.35 PJB	(0.44)	[44.24778]	0.43 PJB	(0.5)	[50.37783]	0.52 PJB		53.56186]
Heptachlor epoxide	1.9 B		43.02925]	N S		[44.24778]	QN	(0.5)	50.37783]	2.6 B	ــــا	53.56186]
Methoxychlor	1.5 KJ		43.02925]	1.2 KJ	(2.2)	[44.24778]	0.11 KJ	(2.5)	50.37783]	0.37 KJ	_	53.56186]
PCB-1016	QN		43.02925]	ON		[44.24778]	ND	(2)	50.37783]	ND		53.56186]
PCB-1221	Q.		43.02925]	QN		[44.24778]	ND	(10)	50.37783]	ON	(11)	53.56186]
PCB-1232	2		43.02925]	Q.		[44.24778]	QN	(10)	50.37783]	ON	(11)	53.56186]
PCB-1242	2	_	43.02925]	QN		[44.24778]	QN	(2)	50.37783]	ON	(5.4) [53.56186]
PCB-1248	QN	_	43.02925]	Q.		[44.24778]	QN	[2]	50.37783]	ND	(5.4)	53.56186]
PCB-1254	QN	_	43.02925]	QN	(8.8)	[44.24778]	QN	(10)	50.37783]	ON	(11)	53.56186]
PC8-1260	QN	_	[43.02925]	Q	(8.8)	44.24778]	ND	(10)	50.37783]	ND	(11)	53.56186]
Toxaphene	ON		43.02925]	ND	(55) [7	[44.24778]	QN	(52)	50.37783]	ON	(27) [53.56186]
alpha-BHC	QN	_	43.02925]	Q		[44.24778]	ON	(0.5)	50.37783]	ON	(0.54)	53.56186]
beta-BHC	0.94 B		[43.02925]	ND	(0.44) [4	[44.24778]	0.41 KJ	(0.5)	50.37783]	က	(0.54)	53.56186]
delta-BHC	0.4 KJB	(0.43) [43.0	[43.02925]	0.42 KJB	(0.44) [4	[44.24778]	0.41 PJB		[50.37783]	0.5 JB		[53.56186]
Compiled: 23 Mar. 1995			4 2 4 4 1 1 1 1	- 1	(
		() = Detect	= Detection Limit	[] = Factor	N N	Not Detected	NA = Not Applicable	licable				

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

		04	04			70		V	
	04	04-SD-02	04-SD-02	04-SD-02	04-	04-SD-03	04	04-SD-04	
PARAMETER	0	-30-02-01 0 - 0.5		0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	04-5	04-50-03-01 0 - 0.5	04-	04-SD-04-01 0 - 0.5	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		l 1
дапта-ВНС	1 B	(0.43) [43.02925]	1.2 B	(0.44) [44.24778]	1 8	(0.5) [50.37783]	1.2 B	(0.54) [53.56186]	<u>36</u>]
SW8240 - Volatile Organics (ug/kg)									1
1,1,1-Trichloroethane	QN	(6.5) [1.291989]	QN	(6.6) [1.329787]	ND	(7.6) [1.512859]	ON	(8) [1.607717]	[7]
1,1,2,2-Tetrachloroethane	ON	(6.5) [1.291989]	QN	(6.6) [1.329787]	ND	(7.6) [1.512859]	ON	(8) [1.607717]	[7]
1,1,2-Trichloroethane	Q	(6.5) [1.291989]	ND	(6.6) [1.329787]	ND	(7.6) [1.512859]	QN	(8) [1.607717	[7]
1,1-Dichloroethane	Q	(6.5) [1.291989]	ND	(6.6) [1.329787]	ND	(7.6) [1.512859]	ON	(8) [1.607717]	[7]
1,1-Dichloroethene	QN	(6.5) [1.291989]	ND	(6.6) [1.329787]	N QN	(7.6) [1.512859]	QN	(8) [1.607717	[7]
1,2-Dichloroethane	Q	(6.5) [1.291989]	ND	(6.6) [1.329787]	ND	(7.6) [1.512859]	QN	(8) [1.607717	[7]
1,2-Dichloropropane	ND	(6.5) [1.291989]	QN ON	(6.6) [1.329787]	QN	(7.6) [1.512859]	ND	(8) [1.607717	[7]
2-Chloroethyl vinyl ether	QN	(13) [1.291989]	QN	(13) [1.329787]	QN	(15) [1.512859]	ND	(16) [1.607717	[7]
2-Hexanone	QN	(65) [1.291989]	QN	(66) [1.329787]	QN	(76) [1.512859]	ND	(80) [1.607717	[7]
4-Methyl-2-pentanone(MIBK)	ON	(65) [1.291989]	ON	(66) [1.329787]	ND	(76) [1.512859]	QN	(80) [1.607717]	[7]
Acetone	Q	(130) [1.291989]	ON	(130) [1.329787]	ND	(150) [1.512859]	QN	(160) [1.607717	[7]
Benzene	Q.	(6.5) [1.291989]	ON	(6.6) [1.329787]	ND	(7.6) [1.512859]	ON	(8) [1.607717	[7]
Bromodichloromethane	S	(6.5) [1.291989]	QN	(6.6) [1.329787]	N O	(7.6) [1.512859]	ND	(8) [1.607717]	[7]
Bromomethane	QN	(13) [1.291989]	Q.	(13) [1.329787]	ND	(15) [1.512859]	QN	(16) [1.607717	[7]
Carbon disulfide	ON	(6.5) [1.291989]	ON	(6.6) [1.329787]	QN	(7.6) [1.512859]	ON	(8) [1.607717]	[7]
Carbon tetrachloride	QN	(6.5) [1.291989]	ON	(6.6) [1.329787]	ON	(7.6) [1.512859]	QN	(8) [1.607717]	[7]
Chlorobenzene	QN	(6.5) [1.291989]	QN	(6.6) [1.329787]	QN	(7.6) [1.512859]	QN	(8) [1.607717	[7]
Chloroethane	ON ON		QN	(13) [1.329787]	ND	(15) [1.512859]	QN	(16) [1.607717]	[7]
Chloroform	QN	_	QN	(6.6) [1.329787]	ON	(7.6) [1.512859]	ON	(8) [1.607717]	[7]
Chloromethane	ON		Q	(13) [1.329787]	QN	(15) [1.512859]	ND	(16) [1.607717]	[7]
Dibromochloromethane	QN		ON	(6.6) [1.329787]	ND	(7.6) [1.512859]	ON	(8) [1.607717]	[7]
Ethyl benzene	QN	(6.5) [1.291989]	QN	(6.6) [1.329787]	ND	(7.6) [1.512859]	QN	(8) [1.607717]	[7]
Methyl ethyl ketone	ND	(130) [1.291989]	ND	(130) [1.329787]	ND PD	(150) [1.512859]	ON	(160) [1.607717]	[7]
Methylene chloride	2.9 JB	(6.5) [1.291989]	9.4 B	(6.6) [1.329787]	7.5 JB	(7.6) [1.512859]	12	(8) [1.607717]	[7]
Styrene	Q	(6.5) [1.291989]	QN	(6.6) [1.329787]	QN	(7.6) [1.512859]	QN	(8) [1.607717	[7]
Tetrachloroethene	ON		ON	(6.6) [1.329787]	QN	(7.6) [1.512859]	Q	(8) [1.607717]	[7]
Toluene	QN	(6.5) [1.291989]	QN	(6.6) [1.329787]	24	(7.6) [1.512859]	7.5 J	(8) [1.607717]	[7]
Compiled: 23 March 1995		() = Detection Limit	[] = Factor	ND = Not Detected	NA = Not Ap	Not Applicable			

[1.607717] [1.607717] [1.607717] [1.607717] [1.607717] [1.607717] [1.607717] [1.607717] [0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537] [0.053537][0.053537] [0.053537] [0.053537] [0.053537][0.053537][0.053537](8) (16)(8) (8) (8) (0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(2.7)(0.54)(0.54)(0.54)(0.54)(0.54)(2.7)(8) (0.54)(1.1)(0.54)04-SD-04-01 0 - 0.504-SD-04 [1.512859][1.512859][1.512859][0.050344] [0.050344] [1.512859][1.512859] [1.512859][0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [1.512859][1.512859][0.050344] [0.050344] [0.050344][0.050344] [0.050344]0.050344 [0.050344][0.050344] [0.050344] [0.050344] (7.6) (9.7 (7.6)(15)(7.6)(7.6)(7.6)(0.5)(0.5)(0.5)(0.5)(0.5)(2.5)(0.5)(0.5)(0.5)(0.5)(0.5)(0.5)(0.5)(2.5)(0.5)(2.5)(2.5) Ξ 04-SD-03-01 04-SD-03 0 - 0.5222222 2 [0.044311] [0.044311] [1.329787] [1.329787] [1.329787] [1.329787] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [1.329787] [1.329787] [1.329787] [1.329787] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] BEG. DEPTH - END DEPTH (FT.) 04-DS-01 Dup of 04-SD-02-01 (9.9) (9.9)(9.9) (13) (9.9) (9.9) (9.9) LOCATION ID (0.44)(0.44)(0.44)(0.44)(0.44)(2.2)(0.44)(0.44)(0.44)(0.44)(2.2)(0.44)0.44) (0.44)(0.44)(0.44)(0.44)(0.89)(2.2)SAMPLE ID SITE ID 04-SD-02 2222222 8 8 8 윤 윤 윤 S 2 99999 2 9 9 [1.291989][1.291989] [1.291989] [1.291989][1.291989][1.291989][1.291989][1.291989][0.043008][0.043008] [0.043008] [0.043008][0.043008] [0.043008] [0.043008] [0.043008] [0.043008] [0.043008][0.043008][0.043008] [0.043008] [0.043008][0.043008] [0.043008] [0.043008][0.043008] [0.043008] [0.043008] (6.5)(6.5)(13)(6.5)(6.5)(6.5)(6.5)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(2.2)(0.43)(0.43)(0.43)(0.43)(0.43)(2.2)(0.86)(0.43)04-SD-02-01 0 - 0.504-50-02 04 222222 윤 2 2 윤 문 문 문 W8270 - Semivolatile Organics (mg/kg) 'ribromomethane(Bromoform) trans-1,3-Dichloropropene l,6-Dinitro-2-methylphenol trans-1,2-Dichloroethene cis-1,3-Dichloropropene 2-Methylphenol(o-cresol) 1,2,4-Trichlorobenzene 3,3'-Dichlorobenzidine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chloronaphthalene 2-Methylnaphthalene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol **Trichloroethene** Vinyl chloride 2-Chlorophenol 2-Nitroaniline 3-Nitroaniline Vinyl acetate 2-Nitrophenol PARAMETER

NA = Not Applicable

- Not Detected

[] = Factor

() = Detection Limit

Compiled: 23 May

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

		04		04		04		04	
	U	04-SD-02	04	04-SD-02	Ö	04-50-03	Ò	04-SD-04	
	04	04-SD-02-01	04-DS-01 Du	Dup of 04-SD-02-01	04	04-SD-03-01	04	04-SD-04-01	
PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5	0	0 - 0.5		0 - 0.5		0 - 0.5	
									† 1 1 1 1
4-Bromophenyl phenyl ether	QN	(0.43) [0.043008]	ON	(0.44) [0.044311]	ON	(0.5) [0.050344]	ND	(0.54)	[0.053537]
4-Chloro-3-methylphenol	QN	(0.43) [0.043008]	QN	(0.44) [0.044311]	QN	(0.5) [0.050344]	ND	(0.54)	[0.053537]
4-Chlorophenyl phenyl ether	QN	(0.43) [0.043008]	QN	(0.44) [0.044311]	QN	(0.5) [0.050344]	ND	(0.54)	[0.053537]
4-Methylphenol(p-cresol)	QN	(0.43) [0.043008]	ON	(0.44) [0.044311]	0.16 J	(0.5) [0.050344]	0.15 J	(0.54)	[0.053537]
4-Nitroaniline	QN	(2.2) [0.043008]	ON	(2.2) [0.044311]	QN	(2.5) [0.050344]	ND	(2.7)	[0.053537]
4-Nitrophenol	QN	(2.2) [0.043008]	ON	(2.2) [0.044311]	QN	(2.5) [0.050344]	ON	(2.7)	[0.053537]
Acenaphthene	ON	(0.43) [0.043008]	ON	(0.44) [0.044311]	QN	(0.5) [0.050344]	ND	(0.54)	[0.053537]
Acenaphthylene	QN	(0.43) [0.043008]	ON	(0.44) [0.044311]	N	(0.5) [0.050344]	ND	(0.54)	[0.053537]
Anthracene	QN	(0.43) [0.043008]	QN QN	(0.44) [0.044311]	QN	(0.5) [0.050344]	ND	(0.54)	0.053537]
Benzo(a)anthracene	QN	(0.43) [0.043008]	ON	(0.44) [0.044311]	Q.	(0.5) [0.050344]	ON	(0.54)	[0.053537]
Benzo(a)pyrene	ON	(0.43) [0.043008]	N	(0.44) [0.044311]	Q	(0.5) [0.050344]	ND	(0.54)	[0.053537]
Benzo(b)fluoranthene	ON	(0.43) [0.043008]	QN	(0.44) [0.044311]	QN	(0.5) [0.050344]	N	(0.54)	[0.053537]
Benzo(g,h,i)perylene	QN	(0.43) [0.043008]	ON	(0.44) [0.044311]	QN	(0.5) [0.050344]	ND	(0.54)	0.053537]
Benzo(k)fluoranthene	QN	(0.43) [0.043008]	ND	(0.44) [0.044311]	QN	(0.5) [0.050344]	QN	(0.54)	0.053537]
Benzoic acid	0.066 J	(2.2) [0.043008]	0.074 J	(2.2) [0.044311]	0.089 J	(2.5) [0.050344]	0.074 J	(2.7)	[0.053537]
Benzyl alcohol	QN	(0.43) [0.043008]	QN	(0.44) [0.044311]	ND	(0.5) [0.050344]	ND	(0.54)	[0.053537]
Butylbenzylphthalate	ON	(0.43) [0.043008]	QN	(0.44) [0.044311]	ND	(0.5) [0.050344]	ND	(0.54)	0.053537]
Chrysene	QN	(0.43) [0.043008]	QN	(0.44) [0.044311]	QV	(0.5) [0.050344]	QN	(0.54)	[0.053537]
Di-n-octylphthalate	ND	(0.43) [0.043008]	QN	(0.44) [0.044311]	ND	(0.5) [0.050344]	QN	(0.54)	[0.053537]
Dibenz(a,h)anthracene	Q.	(0.43) [0.043008]	QN	(0.44) [0.044311]	ND	(0.5) [0.050344]	ND	(0.54)	0.053537]
Dibenzofuran	Q.	(0.43) [0.043008]	QN	(0.44) [0.044311]	QN	(0.5) [0.050344]	ND	(0.54)	[0.053537]
Dibutylphthalate	QN	(0.43) [0.043008]	ND	(0.44) [0.044311]	QN	(0.5) [0.050344]	ON	(0.54)	0.053537]
Diethylphthalate	QN	(0.43) [0.043008]	QN	(0.44) [0.044311]	N	(0.5) [0.050344]	ND	(0.54)	[0.053537]
Dimethylphthalate	ON	(0.43) [0.043008]	ON	(0.44) [0.044311]	QN	(0.5) [0.050344]	ON	(0.54)	[0.053537]
Fluoranthene	QN	(0.43) [0.043008]	QN	(0.44) [0.044311]	QN	(0.5) [0.050344]	QN	(0.54)	[0.053537]
Fluorene	QN	(0.43) [0.043008]	ND	(0.44) [0.044311]	Q	(0.5) [0.050344]	QN	(0.54)	0.053537]
Hexachlorobenzene	ON	(0.43) [0.043008]	QN	(0.44) [0.044311]	QV	(0.5) [0.050344]	QN	(0.54)	0.053537]
Hexachlorobutadiene	ON	(0.43) [0.043008]	ON	(0.44) [0.044311]	ON	(0.5) [0.050344]	QN	(0.54)	0.053537]
Hexachlorocyclopentadiene	QN	(0.43) [0.043008]	QN	(0.44) [0.044311]	ND	(0.5) [0.050344]	QN	(0.54)	[0.053537]

ND = Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

[0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537][0.053537] [0.053537][53.47593] [0.053537][0.053537][0.053537][53.47593][53.47593][53.47593] [53.47593] [53.47593] [53.47593] [53.47593] [53.47593] [53.47593] [53.47593] [53.47593] (0.54)(2.7)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(0.7) 0.91) (120)(35)(1.2)(96.0 (4.1)(1.6)(11) 04-SD-04-01 0 - 0.504-SD-04 0.097 JB 0.019 J 4.6 J 2 2 2 9.9 9 9 9 S 5.6 S 운 16 9 26 13 15 [0.050344] [0.050344][0.050344][0.050344][0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [0.050344] [55.37098] [0.050344] [0.050344] [55.37098] [55.37098][55.37098] [55.37098] 55.37098] 55.37098] 55.37098] 55.37098] [55.37098] 55.37098] [55.37098](0.5)(0.5)(0.5)(0.5)(0.5)(2.5)(0.5)(0.5)(0.5)(0.5)(0.5)(1.7)(37)(0.72)(1.3)(1) (4.2)(0.94)(8.3)(12)(12)(130)04-SD-03-01 0 - 0.504-SD-03 0.026 J 0.13 J 3.7 J Q. 2 Q 2 8 2 2 2 2 S S S S 2 2 2 **운** [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311] [0.044311][0.044311] [0.044311] [0.044311] [44.18912] [44.18912] [44.18912] [44.18912] [44.18912] [44.18912] [44.18912] [44.18912] [44.18912] [44.18912] 44.18912 [44.18912] BEG. DEPTH - END DEPTH (FT.) 04-DS-01 Dup of 04-SD-02-01 LOCATION ID (0.44)(0.44)(0.44) (0.44)(0.44)(0.44)(2.2)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(53) (3.4)(0.75)(9.9) (1.3)(0.8)(9.3)SAMPLE ID SITE ID 04-SD-02 0.07 JB 0.74 J 2 9 Q 2 9 2 S S ₽ 2 2 [0.043008][0.043008] [0.043008][0.043008] [0.043008] [0.043008] [0.043008] [0.043008] [0.043008] [0.043008] [0.043008] [0.043008] [43.01075][43.01075] [0.043008] [43.01075][0.043008] [43.01075][43.01075][43.01075] [43.01075][43.01075][43.01075] [43.01075 [43.01075][43.01075](0.43)(0.43)(0.43)(0.43)(0.43)(2.2)(0.43)(6.5)(1.3)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(66)(58) (0.99)(0.77)(3.3)(0.73)(6) 04-SD-02-01 04-SD-02 0 - 0.504 SW8310 - Polynuclear Aromatic Hydrocarbons (ug/kg) 0.032 JB 0.51 J 2 2 2 2 2 S 2 2 문 문 문 S 9 2 2 bis(2-Chloroisapropy))ether bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate bis(2-Chloroethyl)ether Indeno(1,2,3-cd)pyrene N-Nitrosodiphenylamine N-Nitrosodipropylamine Dibenzo(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(a)anthracene Pentachlorophenol **Jexachloroethane** p-Chloroaniline Acenaphthylene Benzo(a)pyrene Nitrobenzene Phenanthrene Acenaphthene Fluoranthene Naphthalene Sophorone Anthracene PARAMETER Fluorene Pheno? Pyrene

NA = Not Applicable

= Not Detected

[] = Factor

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 10

			LOCA SAM BEG. DEPTH -	LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
PARAMETER	- ŏ	04-SD-02 04-SD-02-01 0 - 0.5	04-8 04-08-01 Dup	04 04-SD-02 04-DS-01 Dup of 04-SD-02-01 0 - 0.5	04 04-	04-SD-03 04-SD-03-01 0 - 0.5	04 04-	04-SD-04 04-SD-04-01 0 - 0.5
Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene		(1.8) [43.01075] (77) [43.01075] (28) [43.01075] (12) [43.01075]	1.1 J ND ND ND	(1.9) [44.18912] (80) [44.18912] (28) [44.18912] (12) [44.18912]	0.86 J ND ND ND ND	(2.4) [55.37098] (100) [55.37098] (35) [55.37098] (15) [55.37098]	1.7 J ND 31 J	(2.3) [53.47593] (96) [53.47593] (34) [53.47593] (14) [53.47593]

				SITE ID					11 100 0	
				LOCATION ID						
				SAMPLE ID						
				BEG. DEPTH - END DEPTH (FT.)						
		04		04		04			70	
		04-SS-01		04-55-01	04	04-55-02		04	04-SS-03	
	0	04-55-01-01		04-DS-02 Dup of 04-SS-01-01	- 40	04-55-02-01		04-	04-55-03-01	
PARAMETER 		0 - 0.5	:	0 - 0.5	0	0 - 0.5		0	- 0.5	
SW8015MEMP - Nonhalomenated Volatile Organics	ile Organice	(ma/ba)					t 1 1 1 1 1			
Diesel Range Organics (2)	120		[177]	× 2	7			į		
Gasoline Range Organics (2)	2	(18)	[178]	C 2) N	(56)	[129]	56	(32)	[162]
SW8080 - Organochlorine Pesticides and PCBs		(ug/kg)	F0 (*)		Q.	(12)	[151]	ON	(16)	[164]
4,4'-DDD	28	(0.59)	[59.24170]	NA	QN	(0.54) [5	[53 85029]	CN	(0.55)	EA EDECOT
4,4'-DDE	36	(0.59)	[59.24170]	NA	QN		[53.85029]	e S		54 52562
4,4'-DDT	64	(1.2)	[59.24170]	NA	Q		53.850293	81. 19 O		.04.06306j
Aldrin	QN	(0.59)	[59.24170]	NA	0.47 JB		[53.85029]	D CN		.34.36306] 54 52562]
Chlordane	QN	(3)	[59.24170]	NA	QN		[53.85029]	e S		54 52552
Dieldrin	QN	(0.59)	[59.24170]	NA	ND		53.850293	S S		54 52562]
Endosulfan I	0.4 JB	(0.59)	[59.24170]	NA	QN		[53.85029]	2 5		54.55.06.J
Endosulfan II	1.5 KJ	(1.8)	[59.24170]	NA	ON		[53.85029]	2 2		54.363023
Endosulfan Sulfate	QN	(3)	[59.24170]	NA	0.4 PJB		53.85029]	1 4 P.1B		54.36304] FA 52569]
Endrin	0.4 PJB	(0.59)	[59.24170]	NA	0.2 PJB	_	53.85029]	0 11 P.1B		.34.36302J
Endrin Aldehyde	ON	(1.2)	[59.24170]	NA			[53.85029]	ON UN		.04.0404] FA 52562]
Heptachlor	1.2	(0.59)	[59.24170]	NA	0.64 PB		53.850297	0.53 P.1B		54 525621
Heptachlor epoxide	3.68	(0.59)	[59.24170]	NA	2.6 B	_	[53.85029]	2.9 8		54.52562
Methoxychlor	QN	(3)	[59.24170]	NA	ND	(2.7) [5	[53.85029]			54.52562]
PCB-1016	Q :	(5.9)	[59.24170]	NA	QN	(5.4) [5	53.85029]	ND	_	54.52562]
rub-1221	ON :		[59.24170]	NA	Q	(11) [5	53.85029]	ON	(11)	54.52562]
FUB-1232	QN :		[59.24170]	NA	NO	(11) [5	[53.85029]	QN	(11)	54.52562]
PUB-1242	Q	_	[59.24170]	NA	ND	(5.4) [5	53.85029]	QN	(5.5)	54.52562]
PCB-1248	QN	_	[59.24170]	NA	QN		53.85029]	QN	_	54.52562]
PCB-1254	Q.	_	[59.24170]	NA	ND	(11) [5:	[53.85029]	ND		54.52562]
FCB-1250	Q !		[59.24170]	NA	QN	(11) [5	53.85029]	ND	(11)	54.52562]
loxaphene	Q.		[59.24170]	NA	QN	(27) [5:	53.85029]	QN	(27)	54.52562]
alpha-bhc	0.43 JB	_	[59.24170]	NA	QN	(0.54) [53	[53.85029]	1.9	,	54.52562]
beta-BHC			[59.24170]	NA	0.67 P	(0.54) [53	53.85029]	1.4 B	. –	54.52562]
delta-BHC	0.91 B	(0.59)	59.24170]	NA	ND	(0.54) [53	[53.85029]		_	[54.52562]

Compiled: 23 Margh 1995

() = Detection Limit [] = Factor Fr

Hot Date of Market

Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

		04 04-SS-01	04 04-55-01		04 04-SS-02	0	04 04-SS-03
PARAMETER	0	04-SS-01-01 0 - 0.5	04-DS-02 Dup of 04-SS-01-01 0 - 0.5		04-SS-02-01 0 - 0.5	04	04-SS-03-01 0 - 0.5
аанта – ВНС	9	(0.59) [59.24170]	AN	. 5	(0.54) [53.85029]		(0 55) [54 59569]
SW8240 - Volatile Organics (ug/kg)							
	Q	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	S	(8.2) [1.636661]
1,1,2,2-Tetrachloroethane	Q	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	QN	(8.2) [1.636661]
1,1,2-Trichloroethane	9	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	2	
1,1-Dichloroethane	QN	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	8	(8.2) [1.636661]
1,1-Dichloroethene	2	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	QN	(8.2) [1.636661]
1,2-Dichloroethane	Q.	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	Q	(8.2) [1.636661]
1,2-Dichloropropane	9	(8.9) [1.779359]	V	QN	(8.1) [1.618122]	QN	(8.2) [1.636661]
2-Chloroethyl vinyl ether	9	(18) [1.779359]	NA	QN	(16) [1.618122]	QN	(16) [1.636661]
2-Hexanone	Q.	(89) [1.779359]	NA	Q	(81) [1.618122]	QN	(82) [1.636661]
4-Methyl-2-pentanone(MIBK)	9	(89) [1.779359]	NA	QN	(81) [1.618122]	ON	(82) [1.636661]
Acetone	Q	(180) [1.779359]	NA	QN	(160) [1.618122]	QN	(160) [1.636661]
Benzene	8	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	ON	(8.2) [1.636661]
Bromodichloromethane	S	(8.9) [1.779359]	NA	ON	(8.1) [1.618122]	ON	(8.2) [1.636661]
Bromomethane	2	(18) [1.779359]	NA	QN	(16) [1.618122]	ND	(16) [1.636661]
Carbon disulfide	2	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	ON	(8.2) [1.636661]
Carbon tetrachloride	Q	(8.9) [1.779359]	NA	ON ON	(8.1) [1.618122]	QN	(8.2) [1.636661]
Chlorobenzene	2	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	Q	(8.2) [1.636661]
Chloroethane	Q.	(18) [1.779359]	NA	ON	(16) [1.618122]	QN	(16) [1.636661]
Chloroform	Q.	(8.9) [1.779359]	NA	ON	(8.1) [1.618122]	QN	(8.2) [1.636661]
Chloromethane	2	(18) [1.779359]	NA	QN	(16) [1.618122]	QN	(16) [1.636661]
Dibromochloromethane	2	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	QN	(8.2) [1.636661]
Ethyl benzene	N Q	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	QN ON	(8.2) [1.636661]
Methyl ethyl ketone	S	(180) [1.779359]	NA	QN	(160) [1.618122]	QN	(160) [1.636661]
Methylene chloride	14	(8.9) [1.779359]	NA	8.88	(8.1) [1.618122]	QN	(8.2) [1.636661]
Styrene	9	(8.9) [1.779359]	NA	Q	(8.1) [1.618122]	Q.	(8.2) [1.636661]
Tetrachloroethene	S	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	Q	(8.2) [1.636661]
Toluene	8	(8.9) [1.779359]	NA	QN	(8.1) [1.618122]	QN	(8.2) [1.636661]
Compiled: 23 March 1995		() = Detection Limit	[] = Factor ND = Not Detected	NA	= Not Applicable		

[1.636661] [1.636661] [1.636661] [1.636661] [1.636661] [1.636661] [1.636661] [0.054464] [1.636661] [0.054464][0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464][0.054464] [0.054464] [0.054464] [0.054464](8.2)(8.2)(8.2) (8.2)(8.2)(16)(8.2)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(2.7)(0.54)(0.54)(0.54)(0.54)(1.1)(0.54)(0.54)(0.54)(2.7)(0.54)04-55-03-01 0 - 0.504-55-03 9999999 2222 [0.053811] [1.618122] [1.618122] [0.053811] [0.053811] [0.053811] [1.618122] [1.618122][1.618122] [1.618122] [1.618122][1.618122][0.053811] [0.053811] [0.053811][0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] (8.1)(8.1)(8.1)(16)(8.1)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(2.7)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(2.7)(1.1)(0.54)(2.7)04-55-02-01 04--SS-02 0 - 0.5S [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] BEG. DEPTH - END DEPTH (FT.) 04-DS-02 Dup of 04-SS-01-01 LOCATION ID (0.56)(0.56)(0.56)(0.56)(2.8)(0.56)(0.56)(0.56)(0.56)(0.56)(0.56)(0.56)(2.8)SAMPLE ID (0.56)(2.8)SITE ID 04-55-01 Ϋ́ X 일 일 일 S 9 9 2 \mathbf{S} S 2 2 [1.779359] [0.059154] [1.779359] [1.779359][1.779359] [1.779359] [1.779359] [1.779359][1.779359] [0.059154][0.059154] [0.059154] [0.059154] [0.059154] [0.059154][0.059154] [0.059154][0.059154] [0.059154][0.059154] [0.059154] [0.059154][0.059154] [0.059154] [0.059154] [0.059154] [0.059154][0.059154] (8.8)(8.9)(8.9)(8.9)(18)(8.9)(8.9)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(3) (3) (0.59)04-55-01-01 (3) 0 - 0.504 - SS - 0104 9 9 9 9 물 물 물 2 2222 SW8270 - Semivolatile Organics (mg/kg) Tribromomethane(Bromoform) trans-1,3-Dichloropropene 1,6-Dinitro-2-methylphenol trans-1,2-Dichloroethene cis-1,3-Dichloropropene 2-Methylphenol(o-cresol) 1,2,4-Trichlorobenzene 3,3'-Dichlorobenzidine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chloronaphthalene 2-Methylnaphthalene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol **Trichloroethene** Vinyl chloride 2-Chlorophenol 3-Nitroaniline Vinyl acetate 2-Nitroaniline 2-Nitrophenol PARAMETER

NA = Not Applicable

■ Not Detected

[] = Factor

= Detection Limit

 \subset

Compiled: 23 Mar.

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			07	SITE ID LOCATION ID SAMPLE ID				
			BEG. DEPTH	DEPTH - END DEPTH (FT.)				
		04		04		. 04		04
·		04-SS-01	04	04-55-01		04-55-02)	04-55-03
	0	04-SS-01-01	04-DS-02 Dup	Dup of 04-SS-01-01		04-SS-02-01	70	04-55-03-01
PARAMETER 		0 - 0.5	0	0.5	1 1 1 1 1 1 1	0 - 0.5	1 3 8 8 8 8 8 1 1	0 - 0.5
4-Bromophenyl phenyl ether	QN	(0.59) [0.059154]	ON	(0.56) [0.056212]	Q.	(0.54) [0.053811]	ON	(0.54) [0.054464]
4-Chloro-3-methylphenol	QN		ON	(0.56) [0.056212]	S	(0.54) [0.053811]	QN	(0.54) [0.054464]
4-Chlorophenyl phenyl ether	ON		ON	(0.56) [0.056212]	Q	(0.54) [0.053811]	Q	(0.54) [0.054464]
4-Methylphenol(p-cresol)	Q		ON.	(0.56) [0.056212]	Q	(0.54) [0.053811]	ND	(0.54) [0.054464]
4-Nitroaniline	QN		QN	_	S	_	Q	(2.7) [0.054464]
4-Nitrophenol	QN	_	QN	_	Q	(2.7) [0.053811]	QN	(2.7) [0.054464]
Acenaphthene	Q	_	QN N		S	_	QN	(0.54) [0.054464]
Acenaphthylene	Q		ON	(0.56) [0.056212]	9	(0.54) [0.053811]	ND	(0.54) [0.054464]
Anthracene	ND	_	0.026 J	_	ON N	(0.54) [0.053811]	QN	(0.54) [0.054464]
Benzo(a)anthracene	ON	_	Q	(0.56) [0.056212]	QN	(0.54) [0.053811]	ON	(0.54) [0.054464]
Benzo(a)pyrene	0.021 J		0.039 J	(0.56) [0.056212]	Q	(0.54) [0.053811]	ND	(0.54) [0.054464]
Benzo(b)fluoranthene	0.029 J		0.029 J		9	(0.54) [0.053811]	ND	(0.54) [0.054464]
Benzo(g,h,i)perylene	Q	(0.59) [0.059154]	QN	(0.56) [0.056212]	2	(0.54) [0.053811]	ND	(0.54) [0.054464]
Benzo(k)fluoranthene	0.019 J	(0.59) [0.059154]	0.016 J	(0.56) [0.056212]	S	(0.54) [0.053811]	QN	(0.54) [0.054464]
Benzoic acid	0.24 J	_	0.27 J	(2.8) [0.056212]	0.096 J	(2.7) [0.053811]	0.12 J	(2.7) [0.054464]
Benzyl alcohol	ND	_	ON	(0.56) [0.056212]	S	(0.54) [0.053811]	Q.	(0.54) [0.054464]
Butylbenzylphthalate	N	_	QN	_	S	_	ND	(0.54) [0.054464]
Chrysene	0.045 J		0.045 J		Q.	(0.54) [0.053811]	ND	(0.54) [0.054464]
Di-n-octylphthalate	QN		QN	_	S	(0.54) [0.053811]	QN	(0.54) [0.054464]
Dibenz(a,h)anthracene	QN	_	S] (99	QN	(0.54) [0.053811]	QN	(0.54) [0.054464]
Dibenzofuran	QN	(0.59) [0.059154]	ON	(0.56) [0.056212]	QN	(0.54) [0.053811]	QN	(0.54) [0.054464]
Dibutylphthalate	Q	_	QN	(0.56) [0.056212]	QN	(0.54) [0.053811]	QN	(0.54) [0.054464]
Diethylphthalate	QN	_	Q	(0.56) [0.056212]	S	(0.54) [0.053811]	QN	(0.54) [0.054464]
Dimethylphthalate	ON	_	N	(0.56) [0.056212]	Q	(0.54) [0.053811]	QN	(0.54) [0.054464]
Fluoranthene	QN	_	ND	(0.56) [0.056212]	Q	(0.54) [0.053811]	QN	(0.54) [0.054464]
Fluorene	QN	_	QN	_	S	(0.54) [0.053811]	ON	(0.54) [0.054464]
Hexachlorobenzene	Q		ON	(0.56) [0.056212]	QN	(0.54) [0.053811]	QN	(0.54) [0.054464]
Hexachlorobutadiene	QN Q		ON	(0.56) [0.056212]	S	(0.54) [0.053811]	QN	(0.54) [0.054464]
Hexachlorocyclopentadiene	QN	(0.59) [0.059154]	QN	(0.56) [0.056212]	QN	(0.54) [0.053811]	QV	(0.54) [0.054464]

ND = Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

Compiled: 23 March 1995

[0.054464] 0.054464 [0.054464] [0.054464][0.054464] [0.054464][0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [0.054464] [54.40696][0.054464] [0.054464] [54.40696] [54.40696] [54.40696] [54.40696] [54.40696] [54.40696][54.40696][54.40696] [54.40696] [54.40696] [54.40696] (0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(2.7)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(130)(0.71)(1.3)(86.0 (4.1)(0.92)(8.2)(1.6)(11)(38)(11)04-55-03-01 04-55-03 0 - 0.50.051 JB 0.39 J 0.67 J 0.63 J 용 웆 2 S S 2 2 S Q. 2 2 2 2 S 2 2 운 운 [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [0.053811] [53.90835][53.90835] [53.90835] [53.90835] [53.90835][53.90835][53.90835][53.90835][53.90835] [53.90835] 53.90835] [53.90835] (0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(2.7)(0.54)(0.54)(0.54)(0.54)(0.54)(0.54)(4.1)(0.54)(0.7)(1.2)(0.97)(8.1)(38)(0.92)(1.6)(11) (11) 04-55-02-01 0 - 0.504-SS-02 0.085 JB 1.3 J 0.99 윤 문 S 2 S 2 2 9 9 [0.056212][0.056212] [0.056212][0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212] [0.056212][0.056212] [0.056212] [0.056212] [56.24296] [56.24296] [56.24296] [56.24296] [56.24296] [56.24296] [56.24296] [56.24296] [56.24296] [56.24296] [56.24296] [56.24296] BEG. DEPTH - END DEPTH (FT.) 04-DS-02 Dup of 04-SS-01-01 LOCATION ID (0.56)(0.56)(0.56)(0.56)(0.56)(0.56)(2.8)(0.56)(0.56)(0.56)(0.56)(0.56)(0.56)(130)(37)(0.73)(1.3)(4.3)(96.0)(8.4)(1.7)SAMPLE ID (12)SITE ID 0 - 0.504-55-01 04 0.084 JB 0.63 J 2.3 J 0.78 J 2.4 J 0.014 J 0.81 J 1.8 2 S 2.7 S 9 9 9 9 운 9 2 2 2 욷 용 2 운 운 [0.059154][0.059154] [0.059154][0.059154][0.059154][0.059154][0.059154] [0.059154] [0.059154] [0.059154] [0.059154] [0.059154] [0.059154] [0.059154][0.059154] [0.059154] [59.17159][59.17159] [59.17159][59.17159] [59.17159] [59.17159] [59.17159] [59.17159][59.17159][59.17159] [59.17159] [59.17159](0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(8.8)(1.8)(3) (140)(1.1)(4.5)(33)(0.77)(1.4)04-SS-01-01 0 - 0.504-55-01 04 3W8310 - Polynuclear Aromatic Hydrocarbons (ug/kg) 0.2 J 3.4 J 웆 1.6 3.1 6.9 3.3 2 운 8 Ξ 9 2 6 bis(2-Chloroisopropy))ether bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate bis(2-Chloroethyl)ether Indeno(1,2,3-cd)pyrene N-Nitrosodiphenylamine N-Nitrosodipropylamine Dibenzo(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene 3enzo(k)fluoranthene Benzo(a)anthracene Pentachlorophenol Hexachloroethane p-Chloroaniline **Acenaphthylene** Benzo(a)pyrene Phenanthrene Acenaphthene Ni trobenzene Fluoranthene **Vaphthalene** sophorone Anthracene PARAMETER Chrysene Fluorene Pyrene Phenol

Compiled: 23 Margin 995

() = Detection Limit [] = Factor

actor Not Detected

sected NA = Not Applicable

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	04 04 04-SS-01 04-SS-02 04-SS-01-01 04-DS-02 Dup of 04-SS-01-01 04-SS-02-01 0 - 0.5 0 - 0.5	Indeno(1,2,3-cd)pyrene 9.2 (2.5) [59.17159] 2.5 (2.4) [56.24296] ND (2.3) [53.90835] Naphthalene ND (110) [59.17159] ND (100) [56.24296] ND (37) [53.90835] Phenanthrene ND (38) [59.17159] ND (36) [56.24296] ND (35) [53.90835] Pyrene 5.2 J (16) [59.17159] ND (15) [56.24296] ND (15) [53.90835]
	01	2.3) [53.90835] (97) [53.90835] (35) [53.90835] (15) [53.90835]
	04 04-SS-03 04-SS-03-01 0 - 0.5	2 S N N N N N N N N N N N N N N N N N N N
	-03 03-01 0.5	(2.3) [54.40696] (98) [54.40696] (35) [54.40696] (15) [54.40696]

[123] [116] [1.228501] [1.228501] [1.228501][1.228501] [1.228501][1.228501] [1.228501][1.228501] [1.228501][1.228501][1.228501] [1.228501][24.57002] [1.228501][1.228501] [1.228501] [1.228501][1.228501] [1.228501] [1.228501][1.228501] [1.228501] [1.228501][1.228501] [1.228501]05-DS-02 Dup of 05-MW-03-02 (6.1)(6.1)(6.1)(25) (12) (12)(61)(61) (120)(6.1)(6.1)(6.1)(6.1)(120)(12)(12)(6.1)(6.1)(0.1) 120) 05-MW-03 20 JB 3.3 JB 1200 S S S S S S S 운 오 2 2 2 2 8 8 8 8 8 8 150 2 문 2 [122][120] [24.57002 [24.57002] [24.57002] [24.57002] (120)(120)(250)(1200)1200) (2500) (120)(120)(250)(120)(120)(2500) (120)(12)(120)(120)(120)(250)(120)(250)(120)(120)(120)05-MW-03-02 05-MW-03 8 - 12 31 J 540 J 2 8 2222222 2 9 2 무 문 문 2 S Ş [114] [1.156069][1.156069][1.156069][1.156069][1.156069][1.156069][1.156069] [1.156069][1.156069][1.156069 [1.156069][1.156069][1.156069][1.156069] [1.156069][1.156069] [1.156069][1.156069][1.156069][1.156069] [1.156069][1.156069][1.156069][1.156069][1.156069]BEG. DEPTH - END DEPTH (FT.) LOCATION ID (5.8)(5.8)(5.8)(5.8)(5.8)(5.8)(23) (11) (12)(5.8)(58)(58)(120)(5.8)(5.8)(5.8)(5.8)(12)(5.8)(5.8)SAMPLE ID (12)(12)05-MW-02-02 SITE 10 05-MW-02 7 - 9 2 8 문 문 2 문 Ş S 2 을 물 [128] [128] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694][25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] [25.70694] (56)(13)(130)(130)(130)(130)(260)1300) (1300)2600) (130)(260)(130)(130)(130)(130)(130)(130)(260)(260)(130)(130)2600) 05-MW-01-02 (130)(130)05-MW-01 0 - 0.5W8015MEMP - Nonhalogenated Volatile Organics (mg/kg) 540 J 2 문 문 2 2 2 2 SW8240 - Volatile Organics (ug/kg) Gasoline Range Organics (2) 4-Methyl-2-pentanone(MIBK) 2-Chloroethyl vinyl ether Diesel Range Organics (2) 1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane Bromodichloromethane Carbon tetrachloride Oibromochloromethane 1,2-Dichloropropane Methyl ethyl ketone 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane Methylene chloride Carbon disulfide Ethyl benzene Chlorobenzene Chloromethane Bromomethane Chloroethane 2-Hexanone Chloroform PARAMETER Acetone Benzene Styrene

Compiled: 23 Mar

() = Detection Limit

[] = Factor

Not Detected

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

PARAMETER Tetrachloroethene 340 Tribromomethane(Bromoform) ND Trichloroethene ND Vinyl acetate ND	0 - 0.5	05-MM	05-MW-02-02	05-MW-03-02	3-02		05-08-02	0.0 of 05-MW-03-02	-03-02
hene ne(Bromoform) ne		7	6 -	8 - 1	12			- 12	
ne(Bromoform) ne	(130) [25.70694]	QN	(5.8) [1.156069]	ND	(120) [24.57002]	002]	N	(6.1)	[1.228501]
ne(Bromoform) ne	(130) [25.70694]	ON	(5.8) [1.156069]	49 J	(120) [24.57002]	002]	1600	(120)	[24.57002]
Je	(130) [25.70694]	ND	(5.8) [1.156069]	ON		002]	Q	(6.1)	[1.228501]
	(130) [25.70694]	NO	(5.8) [1.156069]	QN		002]	S	(6.1)	[1.228501]
	(130) [25.70694]	ON	(5.8) [1.156069]	ON	(120) [24.57002]	002]	Q.	(6.1)	[1.228501]
Vinyl chloride ND	(260) [25.70694]	ON	(12) [1.156069]	ON	(250) [24.57002]	002]	2	(12)	[1.228501]
Xylenes 350	(130) [25.70694]	ON	(5.8) [1.156069]	4 3 J	(120) [24.57002]	002]	1300	(6.1)	[1.228501]
cis-1,3-Dichloropropene ND	(130) [25.70694]	QN	(5.8) [1.156069]	ND	(120) [24.57002]	002]	Q	(6.1)	[1.228501]
trans-1,2-Dichloroethene	(130) [25.70694]	QN QN	(5.8) [1.156069]	ON	(120) [24.57002]	002]	S	(6.1)	[1.228501]
trans-1,3-Dichloropropene	(130) [25.70694]	QN	(5.8) [1.156069]	N	(120) [24.57002]	002]	QN	(6.1)	[1.228501]
SW8270 - Semivolatile Organics (mg/kg)						ı		•	1
1,2,4-Trichlorobenzene ND	(0.43) [0.042844]	QN	(0.39) [0.038535]) QN	0.41) [0.04095]	095]	SN SN	(0.41)	[0.04095]
1,2-Dichlorobenzene ND	(0.43) [0.042844]	ND	(0.39) [0.038535]) ON	(0.41) [0.04095	095]	Q	(0.41)	[0.04095
1,3-Dichlorobenzene	(0.43) [0.042844]	QN	(0.39) [0.038535]) ON	(0.41) [0.04095	095]	Q	(0.41)	[0.04095]
1,4-Dichlorobenzene ND	(0.43) [0.042844]	QN	(0.39) [0.038535]) ON	(0.41) [0.04095]	095]	QN	(0.41)	[0.04095]
	_	ND	(0.39) [0.038535]) QN	(0.41) [0.04095	095]	N	(0.41)	[0.04095]
2,4,6-Trichlorophenol	(0.43) [0.042844]	ND	(0.39) [0.038535]) ON	(0.41) [0.04095]	095]	QN	(0.41)	[0.04095]
	(0.43) [0.042844]	QN	(0.39) [0.038535]) QN	(0.41) [0.04095]	095]	QN	(0.41)	[0.04095]
2,4-Dimethylphenol ND	(0.43) [0.042844]	QN	(0.39) [0.038535]) QN	(0.41) [0.04095]	[560	Q.	(0.41)	[0.04095]
	_	QN QN	(1.9) [0.038535]	QN	(2) [0.04095]	095]	Q	(2)	[0.04095]
		QN	(0.39) [0.038535]) ON	(0.41) [0.04095]	095]	ON	(0.41)	[0.04095]
2,6-Dinitrotoluene ND		QN Q	(0.39) [0.038535]) ON	(0.41) [0.04095]	095]	QN	(0.41)	[0.04095]
2-Chloronaphthalene		QN	(0.39) [0.038535]		(0.41) [0.04095]	095]	QN	(0.41)	[0.04095]
2-Chlorophenol		QN	(0.39) [0.038535]		(0.41) [0.04095]	095]	QN	(0.41)	[0.04095]
2-Methylnaphthalene	(0.43) [0.042844]	ND	(0.39) [0.038535]) ON	(0.41) [0.04095]	095]	S	(0.41)	[0.04095]
2-Methylphenol(o-cresol)	(0.43) [0.042844]	QN	(0.39) [0.038535]) ON	(0.41) [0.04095]	095]	Q	(0.41)	[0.04095]
2-Nitroaniline ND	(2.1) [0.042844]	QN	(1.9) [0.038535]	ND	(2) [0.04095]	095]	QN	(2)	[0.04095]
2-Nitrophenol	(0.43) [0.042844]	N	(0.39) [0.038535]) QN	[0.41] [0.04095]	095]	QN	(0.41)	[0.04095]
3,3'-Dichlorobenzidine ND	(0.86) [0.042844]	ON	(0.77) [0.038535]) ON	[0.82] [0.04095]	095]	Q.	(0.85)	[0.04095]

0.04095] 0.04095 [0.04095]0.04095 0.04095] 0.04095] [0.04095]0.04095 0.04095] 0.04095 [0.04095]0.04095 [0.04095] 0.04095] 0.04095] [0.04095] [0.04095][0.04095][0.04095][0.04095] [0.04095][0.04095][0.04095][0.04095] [0.04095]0.04095] [0.04095] 0.04095] 0.04095 05-DS-02 Dup of 05-MW-03-02 (0.41)(0.41)(0.41)(0.41)(0.41)(2) (2) (0.41)(0.41)(0.41)(0.41)(2)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(2) (0.41)(0.41)(0.41)05-MW-03 8 - 12 2 2 [0.04095] [0.04095][0.04095][0.04095] [0.04095] [0.04095] [0.04095] 0.04095] 0.04095 0.04095] 0.04095] 0.04095] [0.04095] 0.04095] [0.04095] [0.04095] [0.04095] [0.04095][0.04095] [0.04095][0.04095] [0.04095] [0.04095] [0.04095] 0.04095 [0.04095][0.04095][0.04095][0.04095](0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(2) (0.41)(0.41)(0.41)(0.41)(2)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)05-MW-03-02 (0.41)(0.41)(0.41)05-MW-03 8 - 12 S [0.038535][0.038535][0.038535][0.038535]0.038535 [0.038535][0.038535][0.038535][0.038535][0.038535][0.038535][0.038535][0.038535] [0.038535][0.038535][0.038535][0.038535] [0.038535][0.038535][0.038535][0.038535][0.038535][0.038535][0.038535][0.038535][0.038535][0.038535][0.038535][0.038535]BEG. DEPTH - END DEPTH (FT.) (1.9)LOCATION ID (0.39)(0.39)(0.39)(0.39)(1.9)(1.9)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(1.9)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)SAMPLE ID (0.39)(0.39)(0.39)(0.39)05-MW-02-02 SITE ID 05-MW-02 7 - 9 02 22222 2 2 S 2 2 운 ₽ 2 2 2 2 2 2 S 2 ₽ 2 9 2 [0.042844] [0.042844] [0.042844] [0.042844][0.042844] (0.43)(2.1)(2.1)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(2.1)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)05-MW-01-02 0 - 0.505-MW-01 9 9 9 9 9 9 2 2 2 2 2 2 2 P 99999 9 9 9 9 4-Chlorophenyl phenyl ether 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Methylphenol(p-cresol) 4-Chloro-3-methylphenol Dibenz(a,h)anthracene Benzo(g,h,i)perylene Benzo(b)fluoranthene Butylbenzylphthalate Benzo(k)fluoranthene Di-n-octylphthalate Benzo(a)anthracene **Dimethylphthalate** lexachlorobenzene Jibutylphthalate **Jiethylphthalate** 3-Nitroaniline 4-Nitroaniline Acenaphthylene Benzo(a)pyrene Benzyl alcohol 4-Nitrophenol Benzoic acid Acenaphthene Fluoranthene Dibenzofuran Anthracene PARAMETER Chrysene

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

				BEG. DE	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	PTH (FT.)						
PARAMETER	-	05 05-MW-04 05-MW-04-02 8 - 10		-	05 05-MW-05 05-MW-05-02 5 - 7		05. 05-1	05 05-MW-06 05-MW-06-02 7 - 0		C	35 38-	
; ; ; ; ;				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				ı i	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		
SW8015MEMP - Nonhalogenated Volatile Organics	ile Organics	(mg/										
Diesel Range Organics (2)	7600	(2500)	[12700]	6200	(30)	[152]	QN	(22)	[123]	3400	(280)	[2970]
SW8240 - Volatile Organics (2)	0079 1)	(4900)	[48800]	25000	(6100)	[61300]	13 В	(12)	[124]	17000	(4700)	[47400]
1,1,1-Trichloroethane	QN	(32000)	[6410.256]	Q	(7700)	[1533.742]	QN	(6.2)	[1 240694]	S	(3000)	[508 0861]
1,1,2,2-Tetrachloroethane	QN	(32000)	[6410.256]	ON.	(7700)	[1533.742]	QN		[1.240694]	2 5		[396.0601] [598_0861]
1,1,2-Trichloroethane	QN	(32000)	[6410.256]	QN	(7700)	[1533.742]	QN		[1.240694]	2 2		.350.0601] -598_0861]
1,1-Dichloroethane	QN	(32000)	[6410.256]	S	(7700)	[1533.742]	ND		1.240694]	2	(3000)	.598 0861]
1,1-Dichloroethene	ND	(32000)	[6410.256]	ND ND	(7700)	[1533.742]	QN	(6.2)	1.240694]	2	(3006)	598.0861]
1,2-Dichloroethane	ON	(32000)	[6410.256]	S	(7700)	[1533.742]	ND		[1.240694]	2	(3000)	598.0861]
1,2-Dichloropropane	ND	(32000)	[6410.256]	QN	(7700)	[1533.742]	QN		[1.240694]	2	(3000)	598.0861
2-Chloroethyl vinyl ether	QN .	(64000)	[6410.256]	QN	(15000)	[1533.742]	ON			2	(6009)	598.0861]
Z-Hexanone	QN :	(320000)	[6410.256]	1400 J	(77000)	[1533.742]	QN	(62)	1.240694]	QN	(30000)	598.0861]
4-metnyl-z-pentanone(MIBK) Acetone	2 9	(320000)	[6410.256]	운 :	(77000)	[1533.742]	QN	[62]	1.240694]	N Q	(30000)	598.0861]
Renzene	UN 160000	(640000)	[6410.256]	ON COOL	(150000)	[1533.742]	QN		1.240694]	Q	(00009)	598.0861]
Bromodichloromethane	ODDOGT	(32000)	[6410.256] [6410.256]	0009/	(7700)	[1533.742]	2 5	ш.	1.240694]	QN	_	598.0861]
Bromomethane	2 S	(35,000)	[0410.230] [6410.256]	S 8	(15000)	[1533./42]	Q.	(6.2)	1.240694]	오 :		598.0861]
Carbon disulfide	S	(32000)	[6410.256]	2 2	(12000)	[1553.742]	Q. Q] (71)	1.240594]	2 2	1 (0009)	598.0861]
Carbon tetrachloride	ND	(32000)	[6410.256]	Q	(1700)	[1533.742]	Q. Q.	(6.2)	1.240694]	Q 8		598 0861
Chlorobenzene	QN	(32000)	[6410.256]	9	(7700)	[1533.742]	NO	(6.2)	1.240694]	. S		598 0861]
Chloroethane	QN	(64000)	[6410.256]	QN	(15000)	[1533.742]	ND	(12)	1.240694]	QN		598 08617
Chlorotorm	ON		[6410.256]	Q	(7700)	[1533.742]	NO	(6.2)	1.240694]	Q	J L	598.0861]
Chloromethane	QN	_	[6410.256]	QN	(15000)	[1533.742]	QN	(12)	1.240694]	Q.	_	598,08611
Ulbromochloromethane	2	_	[6410.256]	Q.	(2200)	[1533.742]	QN	(6.2) [1	1.240694]	Q	. —	598.0861]
Ethyl benzene	100000		[6410.256]	83000	(2200)	[1533.742]	QN	(6.2)	1.240694]	14000	3 (0008)	598.0861]
Methyl etnyl Ketone	QN :		[6410.256]	38000 J	(150000)	[1533.742]	ND	(120) []	[1.240694]	S] (00009)	598.0861]
Metnylene chloride	Q :		[6410.256]	Q	(2200)	[1533.742]	1.8 JB	(6.2) [1	[1.240694]	QN N	(3000)	598.0861]
		(32000)	[6410.256]	Q	(1700)	[1533.742]	QV	(6.2) []	[1.240694]	QN	(3000)	[598.0861]

Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

Compiled: 23 Mar

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 10

		05		05		05		05	
		05-MW-04		05-MW-05	05	05-MW-06	J	05-SB-01	
		05-MW-04-02		05-MW-05-02	05~I	05-MW-06-02	ĭŏ	05-SB-01-01	
PARAMETER		8 - 10	; ; ; ; ; ;	5 - 7		9 - 7	; ; ; ; ; ;	2 - 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Tetrachloroethene	QN	(32000) [6410.256]	QN	(7700) [1533.742]	QN	(6.2) [1.240694]	QN	3] (0000)	598.0861]
Toluene	640000	(32000) [6410.256]	360000	(7700) [1533.742]	0.32 JB	(6.2) [1.240694]	20000	(3000)	598.0861]
Tribromomethane(Bromoform)	Q	(32000) [6410.256]	Q	(7700) [1533.742]	ND	(6.2) [1.240694]	ON	(3000) [2	598.0861]
Trichloroethene	QN	(32000) [6410.256]	Q	(7700) [1533.742]	QN	(6.2) [1.240694]	QN	(3000)	598.0861]
Vinyl acetate	ON	(32000) [6410.256]	Q	(7700) [1533.742]	QN	(6.2) [1.240694]	QN	(3000)	598.0861]
Vinyl chloride	QN	(64000) [6410.256]	S	(15000) [1533.742]	QN	(12) [1.240694]	QN	(0009)	598.0861]
Xylenes	480000	(32000) [6410.256]	9	(7700) [1533.742]	QN	(6.2) [1.240694]	120000	(3000)	598.0861]
cis-1,3-Dichloropropene	Q	(32000) [6410.256]	Q	(7700) [1533.742]	QN	(6.2) [1.240694]	QN	(3000)	[598.0861]
trans-1,2-Dichloroethene	QN	(32000) [6410.256]	Q	(7700) [1533.742]	ND	(6.2) [1.240694]	QN	(3000) [598.0861]
trans-1,3-Dichloropropene	Q	(32000) [6410.256]	Q.	(7700) [1533.742]	QN	(6.2) [1.240694]	QN	(3000)	[598.0861]
SW8270 - Semivolatile Organics	(mg/kg)								
1,2,4-Trichlorobenzene	QN	(12) [1.173708]	S	(1.5) [0.152611]	QN	(0.41) [0.041246]	ON	(12) [1	[1.184328]
1,2-Dichlorobenzene	QN		S	(1.5) [0.152611]	QN	(0.41) [0.041246]	ON		[1.184328]
1,3-Dichlorobenzene	QN	(12) [1.173708]	9	(1.5) [0.152611]	QN	(0.41) [0.041246]	QN	(12) [1	[1.184328]
1,4-Dichlorobenzene	QN	(12) [1.173708]	9	(1.5) [0.152611]	QN	(0.41) [0.041246]	QN	(12) [1	[1.184328]
2,4,5-Trichlorophenol	QN	(12) [1.173708]	Q	(1.5) [0.152611]	QN	(0.41) [0.041246]	ON	(12) [1	[1.184328]
2,4,6-Trichlorophenol	QN	(12) [1.173708]	S	(1.5) [0.152611]	ND	(0.41) [0.041246]	ON	(12) [1	[1.184328]
2,4-Dichlorophenol	QN	(12) [1.173708]	QV	(1.5) [0.152611]	QN	(0.41) [0.041246]	QN	(12)	[1.184328]
2,4-Dimethylphenol	ON	(12) [1.173708]	Q	(1.5) [0.152611]	QN	(0.41) [0.041246]	ON	(12) [1	[1.184328]
2,4-Dinitrophenol	Q	(59) [1.173708]	8	(7.6) [0.152611]	Q	(2.1) [0.041246]	QN	[] (65)	[1.184328]
2,4-Dinitrotoluene	Q	(12) [1.173708]	9	(1.5) [0.152611]	ON	(0.41) [0.041246]	QN		[1.184328]
2,6-Dinitrotoluene	QN	(12) [1.173708]	Q	(1.5) [0.152611]	QN	(0.41) [0.041246]	QN	(12) [1	[1.184328]
2-Chloronaphthalene	QN	(12) [1.173708]	Q	(1.5) [0.152611]	ND	(0.41) [0.041246]	QN	(12) [1	[1.184328]
2-Chlorophenol	QN	(12) [1.173708]	Q	(1.5) [0.152611]	QN	(0.41) [0.041246]	ON	(12) [1	[1.184328]
2-Methylnaphthalene	15		130	(15) [1.526111]	QN	(0.41) [0.041246]	3 J	(12) [1	[1.184328]
2-Methylphenol(o-cresol)	QN	(12) [1.173708]	9	(1.5) [0.152611]	QN	(0.41) [0.041246]	QN	(12) [1	[1.184328]
2-Nitroaniline	QN	(59) [1.173708]	S	(7.6) [0.152611]	QN	(2.1) [0.041246]	QN	[] (65)	[1.184328]
2-Nitrophenol	Q	(12) [1.173708]	Q.	(1.5) [0.152611]	QN	(0.41) [0.041246]	2	(12) [1	[1.184328]
									•

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

Compiled: 23 March 1995

			DEG. DEP	SITE IO LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
		05		05		ر بر		90
		05-MW-04	~	05-MW-05		05-MW-06		05~SB-01
	0	05-MW-04-02	ĩó	05-MW-05-02		05-MW-06-02	Ō	05-SB-01-01
PARAMETER 	! ! ! ! ! !	8 - 10	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 - 7	 	7 - 9	•	2 - 4
) Nit	!						i 1 1 1 1 1 1 1	
3-Nitroaniline	QN		QN	(7.6) [0.152611]	SN SN	(2.1) [0.041246]	9	(59) [1.184328]
4,6-Uinitro-2-methylphenol	QN		Q	(7.6) [0.152611]	QN		2	
4-bromophenyl phenyl ether	QN	(12) [1.173708]	Q	(1.5) [0.152611]	S	(0.41) [0.041246]	QN	
4-Chloro-3-methylphenol	ND	(12) [1.173708]	QN	(1.5) [0.152611]	QN		2	
4-Chlorophenyl phenyl ether	QN	(12) [1.173708]	QN	(1.5) [0.152611]	QN		2	
4-Methylphenol(p-cresol)	QN	(12) [1.173708]	ND	(1.5) [0.152611]	QN		R	
4-Nitroaniline	QN	(59) [1.173708]	ND	(7.6) [0.152611]	Q		Q.	
4-Nitrophenol	QN	(59) [1.173708]	ND	(7.6) [0.152611]	Q		Q.	
Acenaphthene	QN		QN	(1.5) [0.152611]	QN	(0.41) [0.041246]	QN	
Acenaphthylene	QN	(12) [1.173708]	QN	(1.5) [0.152611]	QN	(0.41) [0.041246]	QN	
Anthracene	QN		0.084 J	(1.5) [0.152611]	Q.		Q	
Benzo(a)anthracene	QN		QN	(1.5) [0.152611]	Q	(0.41) [0.041246]	N	
benzo(a)pyrene	Q. :		ND		ND		QN	_
benzo(b)riuorantnene Barra(a b :)	Q :		QN		QN	(0.41) [0.041246]	QN	
benzo(g,h,1)perylene	QN :		QN	(1.5) [0.152611]	Q	(0.41) [0.041246]	QN	
benzo(K)Tluorantnene Banzaia agid	ON I		QN		MD	(0.41) [0.041246]	QN	(12) [1.184328]
Benzult acid	Q .		Q		Q	(2.1) [0.041246]	QN	(59) [1.184328]
Butvlhenzvln4thalate	9 Y	(12) [1.1/3/08]	Q.		QN		ND	(12) [1.184328]
Chrysene	2 2	(12) [1.1/3/08]	2 2		2		QN	(12) [1.184328]
Di-n-octvlphthalate	2 5		2 2		Q.		Q	(12) [1.184328]
Oibenz(a h)anthracene	2 5		Q. 4		2	-	Q	(12) [1.184328]
Dibenzofinan	2 2		UN .		2		Q	(12) [1.184328]
0:5::::0::::::::::::::::::::::::::::::	Q. 9		0.86 J		9	(0.41) [0.041246]	Q	(12) [1.184328]
Diothylahthalate	ON S	_ `	Q.		R	(0.41) [0.041246]	ON	(12) [1.184328]
Dimothy lanthalate	ON S		Q.	_	S	(0.41) [0.041246]	QN	(12) [1.184328]
Dimethylphthalate	ON S		ON	_	QN	(0.41) [0.041246]	QN	(12) [1.184328]
Fluoranthene	Q S		0.16 J		Q	(0.41) [0.041246]	N O	(12) [1.184328]
r i dor ene Hossophosepes	<u> </u>		2.3		Q	(0.41) [0.041246]	QN	(12) [1.184328]
nexachiorobenzene	QN	(12) [1.173708]	S	(1.5) [0.152611]	ND	(0.41) [0.041246]	QN	_

Compiled: 23 Marr 1995

() = Detection Limit [] = Factor

= Not Detected NA = N

ected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

[12900][51600] [6476.683] 6476.683] 6476.683 6476.683] 6476.683 6476.683] [6476.683] [6476.683] [6476.683] 6476.683] [6476.683] [6476.683] [6476.683] [6476.683] [6476.683] 6476.683] [6476.683] [6476.683] [6476.683] 6476.683 [6476.683] 6476.683 6476.683 (2600)(32000) (32000)(32000) (32000) (32000)(32000)(5200)(65000)(320000) 320000) (650000) (32000)(32000)(65000)(32000)(32000)(65000) (32000)(32000)(32000)(65000) (32000) (32000)650000) (32000)05-SB-02-02 05-SB-02 5 - 7 16000 14000 200000 2 2 운 문 S [2960] [50400] [5931.198]5931.198 5931.198] 5931.198 [5931.198][5931.198][5931.198] [5931.198] [5931.198] 5931.198] [5931.198] [5931.198] [5931.198][5931.198][5931.198][5931.198] [5931.198][5931.198][5931.198] [5931.198] [5931.198] [5931,198] [5931.198][5931.198](30000) (30000) (290)(5000)(30000) (30000) (30000) (59000)300000) 300000) 590000) (30000) (30000)(23000) (30000)(30000) (29000)(30000) (28000) (30000) (30000) (30000)590000) (30000)05-SB-02-01 05-88-02 2 - 4 1800 15000 2 운 모 운 2 S 2 2 9 2 2 Not Detected [135][127] [1.358695][1.358695] [1.358695][1.358695][1.358695] [1.358695][1.358695][1.358695] [1.358695] [1.358695][1.358695][1.358695][1.358695][1.358695] [1.358695][1.358695] [1.358695][1.358695] [1.358695] [1.358695][1.358695][1.358695][1.358695][1.358695] BEG. DEPTH - END DEPTH (FT.) LOCATION ID (6.8)(8.9) (6.8)(27) (13) (6.8)(14)(8.8)(14)(140)(6.8)(8.8)(6.8)(6.8)(6.8)(89) (14)(14)(8.8) (140)SAMPLE ID (89) 05-SB-01-03 SITE ID 05-88-01 8 - 10 [] = Factor 130 JB 18 JB 38 53 2 S 2 9 9 2 92 ND 9 2 2 2 2 2 Q () = Detection Limit [130][49300] [1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390] [1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390] [1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390](6.5)(6.5)(6.5)(13)(65)(130)(6.5)(13)(6.5)(65)(6.5)(6.5)(13)(13)(130)(4900)05-SB-01-02 05-SB-01 WB015MEMP - Nonhalogenated Volatile Organics (mg/kg) 5 - 7 50 JB ND 230 20 ND ND ND ND ND ND SW8240 - Volatile Organics (ug/kg) Gasoline Range Organics (2) 1,1,2,2-Tetrachloroethane Diesel Range Organics (2) 2-Chloroethyl vinyl ether 4-Methyl-2-pentanone(MIBK) 1,1,1-Trichloroethane 1,1,2-Trichloroethane Bromodichloromethane Carbon tetrachloride Dibromochloromethane 1,2-Dichloropropane Methyl ethyl ketone 1,1-Dichloroethane l,1-Dichloroethene 1,2-Dichloroethane fethylene chloride Carbon disulfide Compiled: 23 Mar Chlorobenzene Chloromethane Ethyl benzene Bromomethane Chloroethane 2-Hexanone Chloroform PARAMETER Acetone **3enzene** Styrene

RESULTS OF ORGANIC AMALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

	Č	05	05	, 1		05			05	
	050	05-58-01 05-58-01-02	05-SB-01 05-SB-01-	U5-SB-U1 05-SB-01-03		05-SB-02 05-SB-02-01		0	05-SB-02 05-SB-02-02	
PARAMETER 	111111111111111111111111111111111111111	5 - 7	80	- 10		2 - 4			5 - 7	
Tetrachloroethene	QN	(6.5) [1.300390]	QN	(6.8) [1.358695]	QN QN	(30000)	[5931.198]	QN	(32000)	[6476.683]
Toluene	2100	(130) [26.00780]	520	(140) [27.17391]	710000	(30000)	[5931.198]	620000	(32000)	[6476.683]
Tribromomethane(Bromoform)	QN	(6.5) [1.300390]	ON	(6.8) [1.358695]	QN	(30000)	[5931.198]	ON	(32000)	[6476.683]
Trichloroethene	QN	(6.5) [1.300390]	ON	(6.8) [1.358695]	QN	(30000)	[5931.198]	QN	(32000)	[6476.683]
Vinyl acetate	QN	(6.5) [1.300390]	QV	(6.8) [1.358695]	QN	(30000)	[5931.198]	QN	(32000)	[6476.683]
Vinyl chloride	QN	(13) [1.300390]	ND	(14) [1.358695]	ND	(28000)	[5931.198]	QN.	(00059)	[6476.683]
Xylenes	1100	(6.5) [1.300390]	009	(6.8) [1.358695]	1500000	(30000)	[5931.198]	490000	(32000)	[6476.683]
cis-1,3-Dichloropropene	QN	(6.5) [1.300390]	QN Q	(6.8) [1.358695]	2	(30000)	[5931.198]	QN	(32000)	[6476.683]
trans-1,2-Dichloroethene	QN	(6.5) [1.300390]	ON	(6.8) [1.358695]	QN	(30000)	[5931.198]	ON	(32000)	[6476.683]
trans-1,3-Dichloropropene	QN	(6.5) [1.300390]	ND	(6.8) [1.358695]	Q	(30000)	[5931.198]	Q	(32000)	[6476.683]
SW8270 - Semivolatile Organics	(mg/kg)									ı
1,2,4-Trichlorobenzene	QN	(0.43) [0.043346]	ND	(0.45) [0.045289]	Q	(12)	[1.16298]	Q	(12)	[1.245516]
1,2-Dichlorobenzene	QN	(0.43) [0.043346]	ND	(0.45) [0.045289]	QN	(12)	[1.16298]	QN	(12)	[1.245516]
1,3-Dichlorobenzene	QN	(0.43) [0.043346]	ND	(0.45) [0.045289]	QN	(12)	[1.16298]	ON	(12)	[1.245516]
1,4-Dichlorobenzene	QN	(0.43) [0.043346]	ND	(0.45) [0.045289]	QN	(12)	[1.16298]	QN	(12)	[1.245516]
2,4,5-Trichlorophenol	QN	(0.43) [0.043346]	QN	(0.45) [0.045289]	S	(12)	[1.16298]	QN	(12)	[1.245516]
2,4,6-Trichlorophenol	ON	(0.43) [0.043346]	ND	(0.45) [0.045289]	Q.	(12)	[1.16298]	2	(12)	[1.245516]
2,4-Dichlorophenol	QN	(0.43) [0.043346]	N	(0.45) [0.045289]	R	(12)	[1.16298]	ON	(12)	[1.245516]
2,4-Dimethylphenol	ON	(0.43) [0.043346]	QN	(0.45) [0.045289]	QN	(12)	[1.16298]	8	(12)	[1.245516]
2,4-Dinitrophenol	ON	(2.2) [0.043346]	QN	(2.3) [0.045289]	QN	(58)	[1.16298]	ON	(62)	[1.245516]
2,4-Dinitrotoluene	ND	(0.43) [0.043346]	ON	(0.45) [0.045289]	QN	(12)	[1.16298]	QN	(12)	[1.245516]
2,6-Dinitrotoluene	QN	(0.43) [0.043346]	ND	(0.45) [0.045289]	QN	(12)	[1.16298]	ON	(12)	[1.245516]
2-Chloronaphthalene	ON	(0.43) [0.043346]	QN	(0.45) [0.045289]	QN	(12)	[1.16298]	Q	(12)	[1.245516]
2-Chlorophenol	QN	(0.43) [0.043346]	QV	(0.45) [0.045289]	Q	(12)	[1.16298]	QN	(12)	[1.245516]
2-Methylnaphthalene	0.044 J	(0.43) [0.043346]	ND	(0.45) [0.045289]	22	(12)	[1.16298]	140	(12)	[1.245516]
2-Methylphenol(o-cresol)	0.078 J	(0.43) [0.043346]	0.084 J	(0.45) [0.045289]	S	(12)	[1.16298]	ON	(12)	[1.245516]
2-Nitroaniline	QN	(2.2) [0.043346]	QN	(2.3) [0.045289]	QN	(28)	[1.16298]	ON	(62)	[1.245516]
2-Nitrophenol	QN	(0.43) [0.043346]	ND	(0.45) [0.045289]	Q	(12)	[1.16298]	QN	(12)	[1.245516]
3,3'-Dichlorobenzidine	ON	(0.87) [0.043346]	ON	(0.91) [0.045289]	2	(23)	[1.16298]	QN	(22)	[1.245516]
		+;:::			44					
Compiled: 23 March 1995		() = Detection Limit	[] = Factor	NU = Not Detected	NA N	Not Applicable				

[1.245516][1.245516] [1.245516] [1.245516][1.245516][1.245516] [1.245516][1.245516] [1.245516] [1.245516] [1.245516][1.245516][1.245516] [1.245516][1.245516][1.245516][1.245516] [1.245516][1.245516][1.245516][1.245516][1.245516][1.245516][1.245516][1.245516][1.245516][1.245516] [1.245516][1.245516](12)(12)(12)(12)(12)(12) (12)(12)(62)62) (12)(12)(12)(12)(12)(12)(12) (12)(12)(62)(12)(12)(12)(12)(12)05-SB-02-02 05-88-02 5 - 7 S 2 2 2 2 2 S Ş 2 2 윷 [1.16298][1.16298]1.16298[1.16298][1.16298][1.16298][1.16298][1.16298]1.16298] [1.16298][1.16298][1.16298]1.16298] [1.16298][1.16298] [1.16298] [1.16298] [1.16298] [1.16298][1.16298][1.16298]1.16298] [1.16298] [1.16298][1.16298][1.16298][1.16298][1.16298][1.16298]58) (12)(12)(12)(12)(89) (58)(12)(12)12) 12) (12)(12)(12)12) 58) (12)(12)(12)12) 12) 12) 12) 12) 112) (12)(12)05-SB-02-01 (12)05-SB-02 2 - 4 욷 2 2 2 9 2 2 읒 [0.045289] [0.045289] [0.045289][0.045289][0.045289][0.045289][0.045289] 0.045289 [0.045289][0.045289][0.045289][0.045289][0.045289][0.045289][0.045289] [0.045289] [0.045289][0.045289][0.045289][0.045289][0.045289] [0.045289][0.045289] [0.045289][0.045289] [0.045289][0.045289] [0.045289]BEG. DEPTH - END DEPTH (FT.) (2.3)LOCATION ID (0.45)(0.45)(0.45)(0.45)(2.3)(2.3)(0.45)(0.45)(0.45)(0.45)SAMPLE ID (0.45)(2.3)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)05-SB-01-03 (0.45)(0.45)SITE ID 05-SB-01 8 ~ 10 0.099 J 9 2 S 2 2 Ş S 2 2 욷 2 2 9 2 S 2 2 용 [0.043346][0.043346][0.043346][0.043346] [0.043346] [0.043346][0.043346] [0.043346] [0.043346][0.043346][0.043346] [0.043346] [0.043346] [0.043346][0.043346] [0.043346][0.043346][0.043346] [0.043346] [0.043346][0.043346] [0.043346] [0.043346] [0.043346] [0.043346][0.043346][0.043346][0.043346][0.043346](0.43)(2.2)(2.2)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(2.2)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)05-SB-01-02 05-SB-01 0.21 J 문 운 운 9 2 2 2 2 9 9 1-Chlorophenyl phenyl ether 1,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether -Methylphenol(p-cresol) 1-Chloro-3-methylphenol Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene **Butylbenzylphthalate** Di-n-octylphthalate Benzo(a)anthracene Dimethy|phthalate **dexachlorobenzene** Dibutylphthalate Diethy]phthalate 3-Nitroaniline Benzo(a)pyrene 4-Nitroaniline Acenaphthylene Benzyl alcohol 1-Nitrophenol Acenaphthene Benzoic acid Dibenzofuran Fluoranthene Anthracene PARAMETER Chrysene Fluorene

Compiled: 23 Marc

[] = Factor

() = Detection Limit

- Not Detected

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

	•	05	•	05	1	05		;	05
) 90	05-SB-01 15-SB-01-02	0 05	05-SB-01 05-SB-01-03	05 - 05-	05-SB-02 05-SB-02-01		05 05-	-SB-02 SB-02-02
PARAMETER		5 - 7		8 - 10		2 - 4			5 - 7
-			; ; ; ; ; ; ; ; ; ; ; ; ;		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Hexachlorobutadiene	ON.	(0.43) [0.043346]	2	(0.45) [0.045289]	2	(12)	[1.16298]	2	(12) [1.245516]
Hexachlorocyclopentadiene	ON	(0.43) [0.043346]	ND	(0.45) [0.045289]	Q.	(12)	[1.16298]	9	(12) [1.245516]
Hexachloroethane	ON	(0.43) [0.043346]	ON	(0.45) [0.045289]	QN	(12)	[1.16298]	2	(12) [1.245516]
Indeno(1,2,3-cd)pyrene	QN	(0.43) [0.043346]	ND	(0.45) [0.045289]	QN	(12)	[1.16298]	S	(12) [1.245516]
Isophorone	ON	(0.43) [0.043346]	QN	(0.45) [0.045289]	QN	(12)	[1.16298]	S	(12) [1.245516]
N-Nitrosodiphenylamine	QN	(0.43) [0.043346]	QN	(0.45) [0.045289]	QN	(12)	[1.16298]	9	(12) [1.245516]
N-Nitrosodipropylamine	QN	(0.43) [0.043346]	QN	(0.45) [0.045289]	QN	(12)	[1.16298]	9	(12) [1.245516]
Naphthalene	0.19 J	(0.43) [0.043346]	0.038 J	(0.45) [0.045289]	46	(12)	[1.16298]	36	(12) [1.245516]
Nitrobenzene	QN	(0.43) [0.043346]	QN	(0.45) [0.045289]	QN	(12)	[1.16298]	9	(12) [1.245516]
Pentachlorophenol	ON	(2.2) [0.043346]	ON	(2.3) [0.045289]	Q	(28)	[1.16298]	ND	(62) [1.245516]
Phenanthrene	QN	(0.43) [0.043346]	ON	(0.45) [0.045289]	QN	(12)	[1.16298]	ND	(12) [1.245516]
Phenol -	QN	(0.43) [0.043346]	ND	(0.45) [0.045289]	ON	(12)	[1.16298]	QN QN	(12) [1.245516]
Pyrene	QN	(0.43) [0.043346]	ON	(0.45) [0.045289]	ND	(12)	[1.16298]	QN	(12) [1.245516]
bis(2-Chloroethoxy)methane	QN	(0.43) [0.043346]	QN	(0.45) [0.045289]	QN	(12)	[1.16298]	QN	(12) [1.245516]
bis(2-Chloroethyl)ether	QN	(0.43) [0.043346]	QN	(0.45) [0.045289]	ND	(12)	[1.16298]	ND	(12) [1.245516]
bis(2-Chloroisopropyl)ether	QN	(0.43) [0.043346]	ON	(0.45) [0.045289]	ND	(12)	[1.16298]	QN	(12) [1.245516]
bis(2-Ethylhexyl)phthalate	QN	(0.43) [0.043346]	ON	(0.45) [0.045289]	QN	(12)	[1.16298]	Q	(12) [1.245516]
p-Chloroaniline	QN	(0.43) [0.043346]	8	(0.45) [0.045289]	N	(12)	[1.16298]	ON.	(12) [1.245516]

				BEG. DE	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	тн (гт.)						
		05 05-SB-02 05-SB-02-03			05 05-88-02 05-88-02		05	05 05-SB-03			05 05-SB-03	
PARAMETER		8 - 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! ! ! !	10 - 12	; 	-60	05-58-03-01 5 - 7 	; ; ; ; ;	05-DS-01 Dt	Dup of 05-SB-03-01 5 - 7 	03-01
SW8015MEMP - Nonhalogenated Volatile Organics Diesel Range Organics (2) 5200	cile Organic 5200	s (mg/kg) (630)	[3160]	2100	(570)	[2850]	200	(22)	13017	,	(00)	ŗ
Gasoline Range Organics (2) SW8240 - Volatile Organics (ug/kg)	28000	(2000)	[50100]	11000	(4500)	[45400]	22 B	(13)	[134]	59	(13)	[131] [131]
	N S	(32000)	[6329.113]	QN	(270)	[114.5475]	Q	(6.7) [1	[1.349527]	CN	7 (8 8)	[1 314060]
1,1,2,2-Tetrachloroethane	N	(32000)	[6329.113]	ND	(570)	[114.5475]	ND		[1.349527]	2 Q		[1.314060]
1,1,2-Trichloroethane	Q	(32000)	[6329.113]	ON	(220)	[114.5475]	ON		[1.349527]	Q.		[1.314060]
1,1-Ulchloroethane	Q :	(32000)	[6329.113]	QV	(220)	[114.5475]	ON	(6.7) [1	.349527]	Q	(9.9)	[1.314060]
1,1-Dlchloroethene	9 9	(32000)	[6329.113]	운 :	(270)	[114.5475]	QV		.349527]	ND	(9.9)	[1.314060]
1 2-Dichloropropano	2 5	(32000)	[6329.113]	QV :	(570)	[114.5475]	QN	_	[1.349527]	ON	[(9.9)	314060]
1,2-Vichioropropane 2-Chloroethvl vinvl ether		(32000)	[6329.113]	2 9	(570)	[114.5475]	QN :		.349527]	ON	(6.6) [1	314060]
2-Hexanone	2 S	(32000)	[6329.113] [6320 113]	S 8	(1100)	[114.5475]	Q :	二:	.349527]	QN	(13)	314060]
4-Methyl-2-pentanone(MIBK)	Q.	(320000)	[6329.113] [6329.113]	€ €	(5700)	[114.54/5] [114.5475]	S S	(6/) [1 (67) [1	1.34952/]	2 9		.314060]
Acetone	QN	(830000)	[6329.113]	₽ ₽	(11000)	[114.5475]	190		[1.349527]	150 B	(130)	[1.314060] [1.314060]
Benzene	310000	(32000)	[6329.113]	8300	(220)	[114.5475]	160	<u> </u>	.349527]			[1.314060]
Bromodichloromethane	Q :	(32000)	[6329.113]	, ON	(220)	[114.5475]	ND		1.349527]	N		.314060]
bromomethane Carbon diewlfide	Q 9	(63000)	[6329.113]	2 :		[114.5475]	N		[1.349527]	ND	(13) [1	.314060]
Carbon tetrachloride	2 2	(32000)	[6329.113] [6329.113]	O C	(570)	[114.5475]	Q 9		1.349527]	2 :	(6.6)	.314060]
Chlorobenzene	ON	(32000)	[6329.113]	2 2		[114.5475]	G K	(6.7)	[1.349327] [1.349527]	2 2	(0.0) (6.6)	[1.314060]
Chloroethane	QN	(83000)	[6329.113]	QN S		114.5475]	Q.		1.349527]	2 2		314060]
Chloroform	ON	(32000)	[6329.113]	QN	(220)	[114.5475]	QN	-	[1,349527]	QN QN	1) (9.9)	
Chloromethane	S	(00089)	[6329.113]	QN	(1100)	[114.5475]	ON		[1.349527]	QN		
Dibromochloromethane	Q.	(32000)	[6329.113]	Q	(220)	[114.5475]	ON	(6.7) [1.	[1.349527]	Q.	_	[1.314060]
Ethyl benzene	350000	(32000)	[6329.113]	28000	_	572.7376]	5.3 J	(6.7) [1.	[1.349527]	ND		1.314060]
Methy! ethy! Ketone	QN :	(930000)	[6329.113]	ON		[114.5475]	36 JB	(130) [1.	[1.349527]	28 JB		[1.314060]
metnylene chloride	QN :	(32000)	[6329.113]	ND	(220)	114.5475]	12	(6.7) [1.	1.349527]	4.7 JB	(6.6) [1	1.314060]
styrene	8	(32000)	[6329.113]	R	(220)	[114.5475]	QN	(6.7) [1.	[1.349527]	ON	_	[1.314060]

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

		05-SB-02			05-SB-02	,	05 05-SB-03		05-SB-03	
PARAMETER		8 - 10			us-sb-uz-u4 10 - 12 	Ď	05-58-03-01 5 - 7 	05-08-01	Dup of 05-SB-03-01 5 - 7 	. !
Tetrachloroethene	QN	(32000)	[6329.113]	QN	(570) [114.5475]	QN	(6.7) [1.349527]	QN	(6.6) [1.31	.314060]
Toluene	1400000	(00000)	12658.22]	00089	(2900) [572.7376]	73	. <u>_</u>	QN	5 =	.314060]
Tribromomethane(Bromoform)	QN	(32000)	6329.113]	S.	(570) [114.5475]	S		2	<u> </u>	.314060]
Trichloroethene	Q	(32000)	6329.113]	S	(570) [114.5475]	S	(6.7) [1.349527]	ON	. 二	.314060]
Vinyl acetate	Q	(32000)	[6329.113]	S	(570) [114.5475]	Q	(6.7) [1.349527]	QN	. <u> </u>	.314060]
Vinyl chloride	QN	(00089)	6329.113]	QN	(1100) [114.5475]	QN	(13) [1.349527]	Q	. 二	.314060]
Xylenes	1200000	(32000)	[6329.113]	110000	(2900) [572.7376]	QN	(6.7) [1.349527]	QN	_ =	.314060]
cis-1,3-Dichloropropene	QN	(32000)	[6329.113]	S	(570) [114.5475]	QN	(6.7) [1.349527]	QN	(6.6) [1.31	.314060]
trans-1,2-Dichloroethene	QN	(32000)	[6329.113]	S	(570) [114.5475]	QN	(6.7) [1.349527]	Q	(6.6) [1.314060]	1060]
trans-1,3-Dichloropropene	QN	(32000)	[6329.113]	QN	(570) [114.5475]	S	(6.7) [1.349527]	QN	(6.6) [1.314	.314060]
SW8270 - Semivolatile Organics (mg/kg)	(mg/kg)									1
1,2,4-Trichlorobenzene	QN	(12)	[1.194172]	Q.	(11) [1.090928]	Q	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
1,2-Dichlorobenzene	QN	(12)	[1.194172]	QN	(11) [1.090928]	QN	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
1,3-Dichlorobenzene	QN		[1.194172]	9	(11) [1.090928]	Q	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
1,4-Dichlorobenzene	ON	(12) [1	[1.194172]	Q	(11) [1.090928]	S	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
2,4,5-Trichlorophenol	QN	_	[1.194172]	Q	(11) [1.090928]	ON	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
2,4,6-Trichlorophenol	QN	(12) [1	[1.194172]	Q	(11) [1.090928]	8	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
2,4-Dichlorophenol	QN	(12) [1	[1.194172]	S	(11) [1.090928]	Q.	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
2,4-Dimethylphenol	QN	_	[1.194172]	8	Ξ.	S	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
2,4-Dinitrophenol	Q		[1.194172]	2	(55) [1.090928]	2	(2.2) [0.044984]	QN	(2.2) [0.043802]	3802]
2,4-Dinitrotoluene	GN.	_	[1.194172]	8	(11) [1.090928]	Q	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
2,6-Dinitrotoluene	Q	_	[1.194172]	S	(11) [1.090928]	Q	(0.45) [0.044984]	QN	(0.44) [0.043802	3802]
2-Chloronaphthalene	QN	(12)	[1.194172]	Q.	(11) [1.090928]	Q.	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
2-Chlorophenol	QN	(12) [1	1.194172]	<u>Q</u>	(11) [1.090928]	용	(0.45) [0.044984]	QN	(0.44) [0.043802]	3802]
2-Methylnaphthalene	99	(12) [1	1.194172]	20	(11) [1.090928]	2	(0.45) [0.044984]	ON	(0.44) [0.043802	3802]
2-Methylphenol(o-cresol)	ON	(12) [1	[1.194172]	2	(11) [1.090928]	R	(0.45) [0.044984]	QN	(0.44) [0.043802	3802]
2-Nitroaniline	QN	[] (09)	[1.194172]	2	(55) [1.090928]	2	(2.2) [0.044984]	QN	(2.2) [0.043802]	3802]
2-Nitrophenol	QN	(12)	[1.194172]	Q	(11) [1.090928]	R	(0.45) [0.044984]	ND	(0.44) [0.043802	3802]
3.3'-Dichlorohenzidine	S	(24)	[1 194172]	S	[22] [1, 090928]	S	[0 0] [0 0]	Ş	(00 U)	[0 043802]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

Compiled: 23 March 1995

[0.043802][0.043802] [0.043802][0.043802][0.043802][0.043802][0.043802][0.043802] [0.043802] [0.043802][0.043802] [0.043802] [0.043802] [0.043802] [0.043802] [0.043802][0.043802] [0.043802] [0.043802] [0.043802] [0.043802] [0.043802] [0.043802] [0.043802] [0.043802] [0.043802][0.043802] [0.043802]05-DS-01 Dup of 05-SB-03-01 (0.44) (0.44)(2.2)(2.2)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44) (2.2)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)05-SB-03 S 8 [0.044984] [0.044984] [0.044984] [0.044984] [0.044984] [0.044984] [0.044984] [0.044984] [0.044984] [0.044984][0.044984] [0.044984][0.044984] [0.044984] [0.044984] [0.044984] [0.044984][0.044984] [0.044984][0.044984] [0.044984] 0.044984 [0.044984] [0.044984] [0.044984] [0.044984] [0.044984] 0.044984 [0.044984] (2.2)(0.45)(0.45)(0.45)(2.2)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(2.2)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)05-58-03-01 05-SB-03 5 - 7 욷 [1.090928][1.090928][1.090928][1.090928] [1.090928] [1.090928] [1.090928] [1.090928] [1.090928] 1.090928 [1.090928][1.090928] [1.090928] [1.090928] [1.090928][1.090928][1.090928] [1.090928] [1.090928] [1.090928] [1.090928] [1.090928] [1.090928] [1.090928] [1.090928] [1.090928] [1.090928] [1.090928] [1.090928] BEG. DEPTH - END DEPTH (FT.) LOCATION ID (11) (11) (11) (11)(22) (11)(11) (11) (11) (11) (52) (11)(22) (55)(11) (11)(11)(11)SAMPLE ID (11)(11)(11)(11)(11)11) 05-SB-02-04 (11)SITE ID 05-SB-02 10 - 1205 222222222 2 8 ₽ S S 22222 S 2 2 9 2 S [1.194172] [1.194172] [1.194172][1.194172][1.194172] [1.194172][1.194172][1.194172][1.194172] [1.194172][1.194172][1.194172][1.194172] [1.194172][1.194172][1.194172][1.194172]1.194172] [1.194172] [1.194172][1.194172][1.194172][1.194172] [1.194172][1.194172][1.194172] [1.194172][1.194172][1.194172]12) 12) 60) (12)(12)(12)(12)(12)12) (09 12) (12)(12)(12)(12)(12)(09) (12)(12)(12)12) 12) 05-SB-02-03 05-58-02 8 - 10.7 ع 2 2 2 9 2 99 ON ON ON ON ON 1-Chlorophenyl phenyl ether 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Methylphenol(p-cresol) 4-Chloro-3-methylphenol Dibenz(a,h)anthracene Benzo(g,h,i)perylene Butylbenzylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Di-n-octylphthalate Benzo(a)anthracene Dimethy|phthalate 4exachlorobenzene Dibutylphthalate **Oiethylphthalate** 3-Nitroaniline 4-Nitroaniline Acenaphthylene Benzo(a)pyrene Benzyl alcohol 4-Nitrophenol Acenaphthene Benzoic acid Oibenzofuran Fluoranthene Anthracene PARAMETER Chrysene

[] = Factor

() = Detection Limit

= Not Detected

			; LO(S/ BEG, DEPTH	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)				
	05.	05 05-S8-02 n5-S8-n3-n3	05.	05 05-S8-02 na.ce.na.na.na	c	05 05-88-03 05-88-03-01	0	05 05-SB-03
PARAMETER	80 1	8 - 10	1	10 - 12	7 1 1 1 1 1 1 1	5 - 7	0 10-60-60	5 - 7
Hexachlorobutadiene	QN	(12) [1.194172]	QN	(11) [1.090928]	QN	(0.45) [0.044984]	QN	(0.44) [0.043802]
Hexachlorocyclopentadiene	QN		2	(11) [1.090928]	2		S	
Hexachloroethane	ND		Q	(11) [1.090928]	9	(0.45) [0.044984]	ON	(0.44) [0.043802]
Indeno(1,2,3-cd)pyrene	QN	(12) [1.194172]	N	(11) [1.090928]	2	(0.45) [0.044984]	ND	(0.44) [0.043802]
Isophorone	QN	(12) [1.194172]	N Q	(11) [1.090928]	9	(0.45) [0.044984]	QN	(0.44) [0.043802]
N-Nitrosodiphenylamine	QN	(12) [1.194172]	QN	(11) [1.090928]	2	(0.45) [0.044984]	ON	(0.44) [0.043802]
N-Nitrosodipropylamine	ON	(12) [1.194172]	N	(11) [1.090928]	N Q	(0.45) [0.044984]	S	(0.44) [0.043802]
Naphthalene	59	(12) [1.194172]	6.2 J	(11) [1.090928]	S	(0.45) [0.044984]	QN	
Nitrobenzene	QN O		N	(11) [1.090928]	S S	(0.45) [0.044984]	ON	(0.44) [0.043802]
Pentachlorophenol	N	(60) [1.194172]	NO	(55) [1.090928]	QN	(2.2) [0.044984]	QN	
Phenanthrene	QN	(12) [1.194172]	ND	(11) [1.090928]	N	(0.45) [0.044984]	QN	(0.44) [0.043802]
Pheno1	ON	(12) [1.194172]	QN	(11) [1.090928]	2	(0.45) [0.044984]	Q.	(0.44) [0.043802]
Pyrene	ND N		NO ON	(11) [1.090928]	S	(0.45) [0.044984]	Q.	(0.44) [0.043802]
bis(2-Chloroethoxy)methane	N	(12) [1.194172]	ON	(11) [1.090928]	N	(0.45) [0.044984]	QN	(0.44) [0.043802]
bis(2-Chloroethyl)ether	QN	(12) [1.194172]	N	(11) [1.090928]	S	(0.45) [0.044984]	QN	(0.44) [0.043802]
bis(2-Chloroisapropyl)ether	ND	(12) [1.194172]	ND	(11) [1.090928]	R	(0.45) [0.044984]	QN ON	(0.44) [0.043802]
bis(2-Ethylhexyl)phthalate	3.9 J	(12) [1.194172]	ND	(11) [1.090928]	S	(0.45) [0.044984]	QN	(0.44) [0.043802]
p-Chloroaniline	ON	(12) [1.194172]	QN	(11) [1.090928]	QN	(0.45) [0.044984]	QV Q	(0.44) [0.043802]

SITE ID LOCATION ID SAMPLE ID

05-SB-03-02 7 - 9 7 - 9 1:s (2)		0 - 0.5 ND (22) ND (22) ND (5.5) ND (5.5)			05-DS-04 Dup of 05-SD-01-01				
(ug/kg) (mg/kg) (21) (21) (21) (21) (21) (21) (21) (22) (22		a 2 2 2 2 3 3 3 5		05-DS-04 Dup	- 0.5	1-01	0 0 0 0 0 0 0 0 0 0	05-S0-02-01 0 - 0.5	
21 B (21) (ug/kg) ND (5.2) ND (10) ND (5.2) ND (10) ND (5.2) ND (10) ND (5.2)		a 2 2 2 2 3 3 3 5							
(ug/kg) (ug/kg) ND (5.2) ND (10) ND (5.2) ND (10) ND (5.2) ND (100) ND (5.2) ND (100) ND (5.2) ND (100) ND (5.2)		B B B B B B	[100]	Ş	(00)	[100]	9		
(ug/kg) ND (5.2)				17. a - 1-	(27)	[109]		(29)	[143]
thane ND (5.2) e ND (5.2) e ND (5.2) HD (100) HD (5.2) ND (5.2)					(11)	[103]	I3 B	(14)	[140]
e ND (5.2) e ND (5.2) ND (5.2) ND (5.2) ND (5.2) ND (5.2) ether ND (10) (52) ND (52) (MIBK) ND (52)			5) [1.094810]	QN	(5.5)	[1.093015]	CN	(7 1) [1	F1 4245017
e ND (5.2) ND (5.2)				Q		[1.093015]	2 5		[1.464501]
ND (5.2)				QN		[1.093015]	2 2		[1.424501]
ND (5.2) ND (5.2) ND (5.2) ND (5.2) ND (52) ND (52) ND (52) 410 (100) ND (5.2) ND (5.2) ND (5.2) ND (5.2) ND (5.2)			5) [1.094810]	QN		[1.093015]	Š		[1.754501]
ND (5.2) ND (5.2) HD (5.2) ND (52) ND (52) HD (100) ND (5.2) ND (5.2) ND (5.2) ND (5.2)			5) [1.094810]	NO		[1.093015]	2 2		[1.424501]
ND (5.2) [ether ND (10) [ND (52) [ND (52) [410 (100) [ND (5.2) [,		QN	۱ <u>۱</u>	.0930157	Q.		[1 424501]
ther ND (10) [ND (52) [ND (52) [S5 JB (100) [410 (100) [ND (5.2) [ND (5.2) [ND (5.2) [5) [1.094810]	ND	<u>ا</u> ت	.093015]	e S		1 424501
MD (52) (MIBK) ND (52) (52) (52) (52) (53) (54) (100)].041666] N	ND (11)	.) [1.094810]	ON		1,0930153	2		[1.424501]
(MIBK) ND (52) 65 JB (100) 410 (100) ND (5.2) ND (10)	[1.041666] N	ND (55)	(1.094810]	QN		[1.093015]	QN		1.4245017
65 JB (100) 410 (100) ND (5.2) ND (10)		ND (55)	(1.094810]	QN	(55) [1.	[1.093015]	QN		1.424501
410 (100) ND (5.2) ND (10) ND (5.2)	[1.041666] N	ND (110)) [1.094810]	ON	(110) [1.	[1.093015]	ND	_	1.424501]
ND (5.2) ND (10) ND (5.2)	[20.83333] N	ND (5.5)	(1.094810]	N	(5.5) [1.	1.093015]	N		[1,424501]
ND (10) ND (5.2)	[1.041666] N	ND (5.5)	(1.094810]	QN	(5.5) [1.	1.093015]	N		1.4245017
ND (5.2)	[1.041666] N	ND (11)	[1.094810]	ON		1.093015]	QN	_	1.424501]
		_	[1.094810]	ND		1.093015]	ND	-	[1.424501]
hloride (5.2)		ND (5.5)	(1.094810]	QN	(5.5) [1.	1.093015]	QN	_	.424501]
e (5.2))	(1.094810)	QN	(5.5) [1.	[1.093015]	QN	J	1.424501]
ле ND (10)		ND (11)	[1.094810]	ON	(11) [1.	[1.093015]	ND	_	1.424501]
ND (5.2)		ND (5.5)	[1.094810]	ON	(5.5) [1.	[1.093015]	ND		[1,424501]
(10) ND (10)		ND (11)	[1.094810]	ON	(11) [1.	[1.093015]	NO		1.424501]
nethane ND (5.2)		ND (5.5)	[1.094810]	QN	_	[1.093015]	QN		1.424501]
16 (5.2)	[1.041666] ND	0 (5.5)	[1.094810]	QN	(5.5) [1.	[1.093015]	QN	_	1.424501]
e 10 JB (100)	[1.041666] ND	0 (110)	[1.094810]	N	(110) [1.	[1.093015]	ND	-	1.424501]
ne chloride 6.2 B (5.2)	[1.041666] ND)	[1.094810]	QN	(5.5) [1.	[1.093015]	6.9 JB		1.4245017
Styrene ND (5.2) [1.	[1.041666] ND) (5.5)	[1.094810]	ND	(5.5) [1.	[1.093015]	ND		.424501]

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

		05	02	2		05		05
	0	05-SB-03 05-SB-03-02	05-SD-01	05-SD-01 05-SD-01-01	05-04-04	05-SD-01 Dun of 05-SD-01-01	c	05-SD-02
PARAMETER		7 - 9		0.5		0 - 0.5)	0 - 0.5
T - + - F	Š		ŝ	_	<u> </u>	i		i - '
letracniordethene	2		O.		Q.	(5.5) [1.093015]	9	(7.1) [1.424501]
Toluene	700	(100) [20.83333]	N Q	(5.5) [1.094810]	QN	(5.5) [1.093015]	QN	(7.1) [1.424501]
Tribromomethane(Bromoform)	QN	(5.2) [1.041666]	N Q	(5.5) [1.094810]	Q	(5.5) [1.093015]	Q	(7.1) [1.424501]
Trichloroethene	ON	(5.2) [1.041666]	ON	(5.5) [1.094810]	2	(5.5) [1.093015]	QN	
Vinyl acetate	QN	(5.2) [1.041666]	QN	(5.5) [1.094810]	9	(5.5) [1.093015]	S	
Vinyl chloride	QN	(10) [1.041666]	ND ND	(11) [1.094810]	9	(11) [1.093015]	Q	
Xylenes	25	(5.2) [1.041666]	ON	(5.5) [1.094810]	R	(5.5) [1.093015]	Q	
cis-1,3-Dichloropropene	ON	(5.2) [1.041666]	QN	(5.5) [1.094810]	Q.	(5.5) [1.093015]	S	_
trans-1,2-Dichloroethene	QN	(5.2) [1.041666]	ON	(5.5) [1.094810]	S	(5.5) [1.093015]	Q	
trans-1,3-Dichloropropene	QN	(5.2) [1.041666]	ND	(5.5) [1.094810]	S	(5.5) [1.093015]	QN	
SW8270 - Semivolatile Organics (mg	(mg/kg)							
1,2,4-Trichlorobenzene	QN	(0.35) [0.034722]	ND	(0.36) [0.036372]	8	(0.36) [0.036385]	QN	(0.41) [0.041099]
1,2-Dichlorobenzene	ON	(0.35) [0.034722]	ON	(0.36) [0.036372]	Q.	(0.36) [0.036385]	S	
1,3-Dichlorobenzene	ON	(0.35) [0.034722]	QN	(0.36) [0.036372]	R	(0.36) [0.036385]	Q.	(0.41) [0.041099]
1,4-Dichlorobenzene	ON	(0.35) [0.034722]	ON	(0.36) [0.036372]	2	(0.36) [0.036385]	QN	(0.41) [0.041099]
2,4,5-Trichlorophenol	QN	(0.35) [0.034722]	ND	(0.36) [0.036372]	2	(0.36) [0.036385]	Q	(0.41) [0.041099]
2,4,6-Trichlorophenol	QN	(0.35) [0.034722]	ND	(0.36) [0.036372]	2	(0.36) [0.036385]	ON	(0.41) [0.041099]
2,4-Dichlorophenol	QN	_	ND	(0.36) [0.036372]	2	(0.36) [0.036385]	QN	(0.41) [0.041099]
2,4-Dimethylphenol	Q	(0.35) [0.034722]	QN	(0.36) [0.036372]	9	(0.36) [0.036385]	Q	(0.41) [0.041099]
2,4-Dinitrophenol	QN	(1.7) [0.034722]	QV	(1.8) [0.036372]	S	(1.8) [0.036385]	Q	(2.1) [0.041099]
2,4-Dinitrotoluene	Q		QN	(0.36) [0.036372]	S	(0.36) [0.036385]	QN	(0.41) [0.041099]
2,6-Dinitrotoluene	Q		QN	(0.36) [0.036372]	S	(0.36) [0.036385]	Q	(0.41) [0.041099]
2-Chloronaphthalene	Q	(0.35) [0.034722]	QN	(0.36) [0.036372]	S	(0.36) [0.036385]	Q	(0.41) [0.041099]
2-Chlorophenol	Q	(0.35) [0.034722]	QN	(0.36) [0.036372]	SN SN	(0.36) [0.036385]	Q.	(0.41) [0.041099]
2-Methylnaphthalene	QN	(0.35) [0.034722]	QN	(0.36) [0.036372]	S	(0.36) [0.036385]	Q	(0.41) [0.041099]
2-Methylphenol(o-cresol)	QN	(0.35) [0.034722]	QN	(0.36) [0.036372]	2	(0.36) [0.036385]	Q.	(0.41) [0.041099]
2-Nitroaniline	QN	(1.7) [0.034722]	N	(1.8) [0.036372]	Q	(1.8) [0.036385]	QN	(2.1) [0.041099]
2-Nitrophenol	QN	(0.35) [0.034722]	ND	(0.36) [0.036372]	S	(0.36) [0.036385]	QN	(0.41) [0.041099]
3,3'-Dichlorobenzidine	QN	(0.69) [0.034722]	NO.	(0.73) [0.036372]	QN	(0.73) [0.036385]	ON	(0.82) [0.041099]
Committed, 92 March 1005		() - No+co+ion imit	1 1 1			A 1		
בסווקון במי בט וומו טון בססט			I	NV = NOT Detected	NA = NOT	Not Appilcable		

[0.041099] [0.041099][0.041099][0.041099][0.041099][0.041099][0.041099][0.041099] [0.041099] [0.041099][0.041099] [0.041099][0.041099][0.041099] [0.041099][0.041099] [0.041099] [0.041099] [0.041099][0.041099] [0.041099] [0.041099][0.041099][0.041099][0.041099][0.041099][0.041099][0.41)(0.41)(0.41)(0.41)(2.1)(2.1)(0.41)(0.41)(0.41)(0.41)(0.41)(2.1)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)(0.41)05-SD-02-01 05-SD-02 0 - 0.50.066 J 8 8 8 8 2 2 2 S S 2 문 2 2 2 2 2 9 9 S [0.036385] [0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385]0.036385 [0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385][0.036385]05-DS-04 Dup of 05-SD-01-01 (1.8)(0.36)(0.36)(0.36)(1.8)(0.36)(1.8)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(1.8)(98.0)(0.36)(0.36)(0.36)(9.36)(0.36)(98.0)(0.36)(9.36)(0.36)(98.0)0 - 0.505-SD-01 0.0073 J 0.01 J 0.0095 J 0.008 J 2 999 S 윤 윤 99 2 S 9 2 2 2 웊 [0.036372] [0.036372] [0.036372] [0.036372][0.036372] [0.036372][0.036372] [0.036372][0.036372] [0.036372] [0.036372] [0.036372][0.036372][0.036372][0.036372] [0.036372][0.036372][0.036372][0.036372] [0.036372] [0.036372] [0.036372] [0.036372] [0.036372][0.036372] [0.036372] [0.036372] [0.036372][0.036372]BEG. DEPTH - END DEPTH (FT.) LOCATION ID (1.8)(1.8)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(1.8)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)(0.36)SAMPLE ID 05-SD-01-01 SITE ID 0 - 0.505-SD-01 02 운 문 2 2 9 S 2 2 S 9 2 2 2 2 2 2 Q 9 9 2 8 S [0.034722] [0.034722][0.034722] [0.034722][0.034722][0.034722] [0.034722] [0.034722][0.034722] [0.034722] [0.034722] [0.034722] [0.034722] [0.034722] [0.034722][0.034722] [0.034722] [0.034722] [0.034722] [0.034722][0.034722] [0.034722] [0.034722] [0.034722] [0.034722] [0.034722] [0.034722][0.034722] [0.034722] (0.35)(0.35)(0.35)(1.7)(1.7)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(1.7)(0.35)(0.35)(0.35)(0.35)(0.35)05-SB-03-02 05-58-03 7 - 9 2 을 물 2 2 2 2 을 물 2 2 \mathbf{g} 2 99999 4-Chlorophenyl phenyl ether 1-Bromophenyl phenyl ether 4,6-Dinitro-2-methylphenol 4-Methylphenol(p-cresol) 1-Chloro-3-methylphenol Oibenz(a,h)anthracene Benzo(g,h,i)perylene Butylbenzylphthalate Benzo(b)fluoranthene Benzo(k)fluoranthene Di-n-octylphthalate Benzo(a)anthracene Dimethy | phthalate **lexachlorobenzene** Dibutylphthalate Diethylphthalate 3-Nitroaniline 4-Nitroaniline Acenaphthylene Benzo(a)pyrene Benzyl alcohol 4-Nitrophenol Acenaphthene Benzoic acid Dibenzofuran Fluoranthene Anthracene PARAMETER Chrysene

() = Detection Limit [] = Factor

Not Detected NA = |

	05	05-SB-03	05-58-03-02	9 - 7		Hexachlorobutadiene ND (0.35) [0.	Hexachlorocyclopentadiene ND (0.35) [0.	Hexachloroethane (0.35) [0.	(0.35)	ND (0.35)	(0.35)	N-Nitrosodipropylamine ND (0.35) [0.	(0.35)	ND (0.35) [0.	(1.7)		(0.35)	ND (0.35) [0.	(0.35)	ND (0.35)	(0.35)	bis(2-Ethylhexyl)phthalate ND (0.35) [0.	ND (0.35) [0.
BEG.						[0.034722] NE	[0.034722] NE	[0.034722] ND	[0.034722] ND	[0.034722] NE	[0.034722] ND	[0.034722] ND	[0.034722] ND	[0.034722] ND	[0.034722] ND	[0.034722] NC	[0.034722] NE	[0.034722] 0.014	[0.034722] ND	[0.034722] ND	[0.034722] ND	[0.034722] ND	[0.034722] ND
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	05	05-SD-01	05-SD-01-01	0 - 0.5		0.03 (0.36) [0.0	0.0] (0.36) [0.0	0.0] (0.36) [0.0	0.0] (0.36) [0.0	0.36) [0.0	0.0] (0.36) [0.0	(0.36)	(0.36)	(0.36)	(1.8)	0.0] (0.36) [0.0	0.0] (0.36) [0.0	J (0.36)	(0:36)	(0.36)	(0.36)	(0.36)	(0.36) [0.0
FT.)			-20			[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372] 0.013	[0.036372]	[0.036372]	[0.036372]	[0.036372]	[0.036372]
	05	05-SD-01	05-DS-04 Dup of 05-SD-01-01	0 - 0.5	8	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (1.8) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	13 J (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]	ND (0.36) [0.036385]
		30	-90	Ü	; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ON	QN	QN	ON	QN	QN	ON	ON	QN	N	0.021 J	N	0.015 J	QN	QN	QN	QN	QN
	05	05-SD-02	05-SD-02-01	0 - 0.5		(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]		(0.41) [0.041099]	(2.1) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]	(0.41) [0.041099]

LOCATION ID

SITE 1D

[144] [143] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178][1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] [1.447178] (7.2)(7.2)(7.2)(14) (14)(7.2)(14)(7.2)(7.2)(14)(7.2)(72) (72) (140)(7.2)(14)(7.2)(140)05-53-04-01 0 - 0.505-55-04 2 8 S 2 [131][131] [1.317523] [1.317523][1.317523][1.317523][1.317523][1.317523][1.317523][1.317523][1.317523][1.317523][1.317523]1.317523 [1.317523][1.317523][1.317523] [1.317523][1.317523][1.317523][1.317523][1.317523][1.317523 [1.317523][1.317523] [1.317523] [1.317523] (9.9)(9.9)(9.9)(9.9)(9.9)(9.9) (13) (9.9) (58) (13)(9.9) (13)(99) (130)(9.9)(9.9) (9.9) (13)(9.9)(13)(9.9)(9.9)(130)(9.9) (99)NA = Not Applicable 05-55-03-01 05-55-03 0 - 0.532 ND Q 9 2 S 9 2 2 2 2 9 9 9 Not Detected [123] [121] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993][1.226993] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993] [1.226993][1.226993][1.226993][1.226993][1.226993] [1.226993] [1.226993] BEG. DEPTH - END DEPTH (FT.) (61)(61)(120)(6.1)(6.1)(25)(12) (12)(6.1)(12)(6.1)(6.1)(12)(6.1)(12)(120)SAMPLE ID 05-55-02-01 0 - 0.505-SS-02 05 [] = Factor 29 N 2 9 읒 9 9 2 () = Detection Limit [112] [1.169590] [1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590][1.169590] [1.169590] [1.169590][1.169590] [1.169590][1.169590][1.169590] (11)(5.8)(12)(28) (5,8)(5.8)(5.8)(5.8)(5.8)(120)(5.8)(12)(5.8)(5.8)(12)(5.8)(28) (5.8)(12)05-SS-01-01 0 - 0.505-55-01 WW8015MEMP - Nonhalogenated Volatile Organics (mg/kg) 05 13 2 9 SW8240 - Volatile Organics (ug/kg) Gasoline Range Organics (2) 1,1,2,2-Tetrachloroethane 2-Chloroethyl vinyl ether 1-Methyl-2-pentanone(MIBK) Diesel Range Organics (2) 1,1,1-Trichloroethane 1,1,2-Trichloroethane **Bromodichloromethane** Carbon tetrachloride Dibromochloromethane 1,2-Dichloropropane Methyl ethyl ketone 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane Methylene chloride Carbon disulfide Compiled: 23 Mar Chlorobenzene Chloromethane Ethyl benzene Bromomethane Chloroethane Chloroform 2-Hexanone PARAMETER Acetone **3enzene** Styrene

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

				3		CO CO		O.S
	Ó	05-58-01		05-SS-02	J	05-55-03		05-SS-04
	05	05-SS-01-01	0	05-55-02-01	90	05-55-03-01	9	05-SS-04-01
PARAMETER 		0 - 0.5		0 - 0.5		0 - 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5
[etrach]oroethene	Q	(5.8) [1.169590]	Q	(6.1) [1,226993]	Z	(6 6) [1 317593]	S	[871711 1] (9 7)
n Juene	S		2		2	ב ב	2 5	
Tribromomethane(Bromoform)	£ 5		2 5		2 2	1 E	2 9	
Trioblessiant	2 2		2 5		2 9	:	2 :	
Licinor de Luene	2 :		Q :	_ : _	2	Ξ,	Q	
Vinyl acetate	ON.		2	_	QN	i	Q	(7.2) [1.447178
Vinyl chloride	Q	(12) [1.169590]	9	(12) [1.226993]	QN	(13) [1.317523]	Q.	(14) [1.447178]
Xylenes	QN	(5.8) [1.169590]	2	(6.1) [1.226993]	ON	(6.6) [1.317523]	9	(7.2) [1.447178
cis-1,3-Dichloropropene	QN	(5.8) [1.169590]	9	(6.1) [1.226993]	QN	(6.6) [1.317523]	S	(7.2) [1.447178]
trans-1,2-Dichloroethene	QN	(5.8) [1.169590]	Q	(6.1) [1.226993]	ON	(6.6) [1.317523]	2	(7.2) [1.447178]
trans-1,3-Dichloropropene	QN	(5.8) [1.169590]	N	(6.1) [1.226993]	QN	(6.6) [1.317523]	Q	(7.2) [1.447178]
SW8270 - Semivolatile Organics	(mg/kg)							
1,2,4-Trichlorobenzene	ON	(0.39) [0.038986]	S	(0.41) [0.040899]	2	(0.44) [0.043917]	S	(0.48) [0.048239]
1,2-Dichlorobenzene	ON	(0.39) [0.038986]	N N	(0.41) [0.040899]	2	(0.44) [0.043917]	S	(0.48) [0.048239
1,3-Dichlorobenzene	QN	(0.39) [0.038986]	S	(0.41) [0.040899]	Q.	(0.44) [0.043917]	S	(0.48) [0.048239]
1,4-Dichlorobenzene	QN.	(0.39) [0.038986]	Q	(0.41) [0.040899]	2	(0.44) [0.043917]	S	(0.48) [0.048239
2,4,5-Trichlorophenol	QN	[0.39) [0.038986]	Q	(0.41) [0.040899]	N	(0.44) [0.043917]	N O	(0.48) [0.048239]
2,4,6-Trichlorophenol	QN	(0.39) [0.038986]	S	(0.41) [0.040899]	QN	(0.44) [0.043917]	2	(0.48) [0.048239]
2,4-Dichlorophenol	QN	[0.39) [0.038986]	QN	(0.41) [0.040899]	S	(0.44) [0.043917]	Q	(0.48) [0.048239
2,4-Dimethylphenol	QN	_	QN	(0.41) [0.040899]	Q	(0.44) [0.043917]	S	(0.48) [0.048239
2,4-Dinitrophenol	ND N	[0.038986]	S	(2) [0.040899]	Q	(2.2) [0.043917]	S	(2.4) [0.048239]
2,4-Dinitrotoluene	QN	[0.39) [0.038986]	Q.	(0.41) [0.040899]	Q	(0.44) [0.043917]	SN SN	(0.48) [0.048239]
2,6-Dinitrotoluene	Q	_	S	(0.41) [0.040899]	Q	(0.44) [0.043917]	Q	(0.48) [0.048239]
2-Chloronaphthalene	Q.	(0.39) [0.038986]	S	(0.41) [0.040899]	QN	(0.44) [0.043917]	S	(0.48) [0.048239]
2-Chlorophenol	Q.	(0.39) [0.038986]	Q	(0.41) [0.040899]	QN	(0.44) [0.043917]	8	(0.48) [0.048239
2-Methylnaphthalene	0.035 J	(0.39) [0.038986]	Q	(0.41) [0.040899]	0.028 J	(0.44) [0.043917]	Q	(0.48) [0.048239
2-Methylphenol(o-cresol)	QN	(0.39) [0.038986]	Q	(0.41) [0.040899]	QN	(0.44) [0.043917]	QN	
2-Nitroaniline	QV	(1.9) [0.038986]	Q	(2) [0.040899]	QN	(2.2) [0.043917]	Q	(2.4) [0.048239]
2-Nitrophenol	Q	(0.39) [0.038986]	Q	(0.41) [0.040899]	ND	(0.44) [0.043917]	Q	(0.48) [0.048239
	!	1000000 07 (05 0)	9	[000010 0] (00 0)				

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

Compiled: 23 March 1995

				SITE ID LOCATION ID				
			BEG. DEP	BEG. DEPTH - END DEPTH (FT.)				
		05		05		05		05
		05-SS-01		05-SS-02	0	05-SS-03	٠	05-58-04
	0	-SS	0	05-SS-02-01	90	05-55-03-01	0	05-55-04-01
PARAMETER 		0 - 0.5		0 - 0.5	; ; ; ; ; ;	0 - 0.5		0 - 0.5
	!							
3-Nitroaniline	QN	_	QN	(2) [0.040899]	QN	(2.2) [0.043917]	S	(2.4) [0.048239]
4,6-Uinitro-2-methylphenol	QN		QN	(2) [0.040899]	QN	(2.2) [0.043917]	QN	(2.4) [0.048239]
4-Bromophenyl phenyl ether	QN	_	ND	(0.41) [0.040899]	QN Q	(0.44) [0.043917]	S	(0.48) [0.048239]
4-Chloro-3-methylphenol	QN	_	N	(0.41) [0.040899]	QN ·	(0.44) [0.043917]	QN	(0.48) [0.048239]
4-Chlorophenyl phenyl ether	Q		QN	_	QN	(0.44) [0.043917]	ON	(0.48) [0.048239]
4-Methylphenol(p-cresol)	ON !		QN	_	QN	(0.44) [0.043917]	N	(0.48) [0.048239]
4-Nitroaniline	ON :		QN	(2) [0.040899]	QN	(2.2) [0.043917]	QN	(2.4) [0.048239]
4-Nitrophenol	QN :		QN	(2) [0.040899]	ND	(2.2) [0.043917]	ND	(2.4) [0.048239]
Acenaphthene	ON :	السا	QN		ON	(0.44) [0.043917]	Q	(0.48) [0.048239]
Acenaphtnylene	QN :		Q	_	ND	(0.44) [0.043917]	QN	(0.48) [0.048239]
Anthracene	QN :		QN		ND	(0.44) [0.043917]	Q	(0.48) [0.048239]
benzo(a)anthracene			QN		QN	(0.44) [0.043917]	Q	(0.48) [0.048239]
Benzo(a)pyrene			Q		ND	(0.44) [0.043917]	N	(0.48) [0.048239]
<pre>benzo(b)tluoranthene</pre>			Q		QN	(0.44) [0.043917]	Q	(0.48) [0.048239]
Benzo(g,h,i)perylene			ON		ND	(0.44) [0.043917]	Q.	(0.48) [0.048239]
<pre>benzo(k)fluoranthene</pre>		_			QN	(0.44) [0.043917]	QN	(0.48) [0.048239]
Benzoic acid			0.062 J	_	0.092 J	(2.2) [0.043917]	9	(2.4) [0.048239]
Benzyl alcohol	0.24 J		Q		0.11 J	(0.44) [0.043917]	ON	(0.48) [0.048239]
Butylbenzylphthalate			Q.		ON		QN	(0.48) [0.048239]
Chrysene na	0.027 J		QN		ND	(0.44) [0.043917]	Q	(0.48) [0.048239]
U1-n-octylphthalate	Q :		ND	_	QN		N S	(0.48) [0.048239]
Ulbenz(a,n)anthracene	QN :		QN	_	ND	(0.44) [0.043917]	QN	(0.48) [0.048239]
Ulbenzoruran	Q :		Q		Q	(0.44) [0.043917]	N N	(0.48) [0.048239]
UlbutyIphthalate	2	_ '	Q	_	N	(0.44) [0.043917]	QN	(0.48) [0.048239]
Uletnylphthalate	Q :		Q		QN	(0.44) [0.043917]	Q.	(0.48) [0.048239]
Unmethy!phtha!ate	9 :		2		QN	(0.44) [0.043917]	ON	(0.48) [0.048239]
Fluoranthene	Q :		2	_	0.015 J	_	ON	(0.48) [0.048239]
r uorene	Q :		9		QN	(0.44) [0.043917]	QN	(0.48) [0.048239]
Hexachlorobenzene	Q N	(0.39) [0.038986]	QN	(0.41) [0.040899]	ND	(0.44) [0.043917]	QN	(0.48) [0.048239]

Compiled: 23 Man

[] = Factor () = Detection Limit

Not Detected

BEG. DEPTH - END DEPTH (FT.)

SITE ID
LOCATION ID
SAMPLE ID

				05		05		05
	·50	05-SS-01	=*	05-55-02	0	15-55-03	90	05-55-04
)-90	05-SS-01-01	0	05-55-02-01	90	05-SS-03-01	-90	05-SS-04-01
PARAMETER	0	0 - 0.5	1 1 1 1 1 1	0 - 0.5	 1 1 1 1 1	0 - 0.5		0 - 0.5
Hexachlorobutadiene	QN	(0.39) [0.038986]	QN	(0.41) [0.040899]	S	(0.44) [0.043917]	C	(0.48) [n.048239]
Hexachlorocyclopentadiene	ND	(0.39) [0.038986]	S	(0.41) [0.040899]	Q.	(0.44) [0.043917]	<u> </u>	(0.48) [0.048239]
Hexachloroethane	QN	(0.39) [0.038986]	Q	(0.41) [0.040899]	QN		N ON	
Indeno(1,2,3-cd)pyrene	0.015 JB	(0.39) [0.038986]	QN	(0.41) [0.040899]	Q	(0.44) [0.043917]	ND	
Isophorone	ON	[0.39) [0.038986]	QN	(0.41) [0.040899]	QN	(0.44) [0.043917]	ND	
N-Nitrosodiphenylamine	QN	(0.39) [0.038986]	QN	(0.41) [0.040899]	Q.	(0.44) [0.043917]	ND	(0.48) [0.048239]
N-Nitrosodipropylamine	QN	(0.39) [0.038986]	QN	(0.41) [0.040899]	Q	(0.44) [0.043917]	ND	(0.48) [0.048239]
Naphthalene	0.029 J	(0.39) [0.038986]	QN	(0.41) [0.040899]	0.015 J	(0.44) [0.043917]	QN	(0.48) [0.048239]
Nitrobenzene	QN	(0.39) [0.038986]	Q	(0.41) [0.040899]	QN	(0.44) [0.043917]	ND	(0.48) [0.048239]
Pentachlorophenol	QN	(1.9) [0.038986]	2	(2) [0.040899]	QN	(2.2) [0.043917]	QN	(2.4) [0.048239]
Phenanthrene	QN	[0.39) [0.038986]	9	(0.41) [0.040899]	0.012 J	(0.44) [0.043917]	QN	(0.48) [0.048239]
Phenol	ND	(0.39) [0.038986]	Q.	(0.41) [0.040899]	Q	(0.44) [0.043917]	N	(0.48) [0.048239]
Pyrene	0.017 J	(0.39) [0.038986]	QN	(0.41) [0.040899]	0.012 J	(0.44) [0.043917]	QN	(0.48) [0.048239]
bis(2-Chloroethoxy)methane	QN	[0.39) [0.038986]	QN Q	(0.41) [0.040899]	QN	(0.44) [0.043917]	ND	(0.48) [0.048239]
bis(2-Chloroethyl)ether	QN	(0.39) [0.038986]	SN SN	(0.41) [0.040899]	QN	(0.44) [0.043917]	N	(0.48) [0.048239]
bis(2-Chloroisopropyl)ether	QN	(0.39) [0.038986]	QN	(0.41) [0.040899]	QN	(0.44) [0.043917]	ND	(0.48) [0.048239]
bis(2-Ethylhexyl)phthalate	0.02 JB	(0.39) [0.038986]	0.15 J	(0.41) [0.040899]	N ON	(0.44) [0.043917]	0.12 JB	(0.48) [0.048239]
p-Chloroaniline	QN	(0.39) [0.038986]	QN	(0.41) [0.040899]	QN	(0.44) [0.043917]	QN	(0.48) [0.048239]

٠		05			05			05			05	
	90	05-88-05		30	05-58-06		õ	05-88-07		Ö	05-88-08	
	05-	05-SS-05-01		-50	05-SS-06-01		05-	05-SS-07-01		05	05-55-08-01	
PARAMETER 	0	0 - 0.5		O	0 - 0.5		U	0 - 0.5			0 - 0.5	
CHOOL FURTHER NAME LANGE AND ADDRESS OF THE PARTY OF THE						1 1 1 1 1 1			:] ! 3 !
SWGUISMEMP - Nonhalogenated Volatile Organics		(mg/kg)										
Diesel Range Organics (2)	QN	(24)	[120]	ND	(22)	[112]	480	(110)	[532]	ND	(50)	[102]
$\overline{}$	15 B	(12)	[120]	ON	(11)	[112]	22 B	(11)	[108]	QN	(12)	[121]
SW8240 - Volatile Organics (ug/kg)												1
1,1,1-Trichloroethane	ON	(6.1)	[1.213592]	ND	(5.6) [1	.123595]	N	(270)	53.75766]	ND	(5.1) [1]	.019991]
1,1,2,2-Tetrachloroethane	ND	(6.1)	[1.213592]	QN	(5.6)	[1.123595]	QN	(270)	53.75766]	QN Q	: =	[1.019991]
1,1,2-Trichloroethane	ON	(6.1)	[1.213592]	ON	(5.6)	[1.123595]	Q	(270)	53.75766]	ND		[1,019991]
1,1-Dichloroethane	ND	(6.1)	[1.213592]	QN	(5.6) [1	[1.123595]	ND	(270)	53.75766]	QN		[1.019991]
1,1-Dichloroethene	Q	(6.1)	[1.213592]	N	(5.6) [1	[1.123595]	ON	(270)	53.75766]	QN	(5.1) [1.	[1.019991]
1,2-Dichloroethane	ND	(6.1)	[1.213592]	QN	(5.6) [1	[1.123595]	ND	(270)	53.75766]	QN		[1,019991]
1,2-Dichloropropane	QN	(6.1)	[1.213592]	QN	(5.6) [1	[1.123595]	QN	_	53.75766]	QV		[1.019991]
2-Chloroethyl vinyl ether	QN	(12)	[1.213592]	QN	(11) [1	[1.123595]	QN		53.75766]	S		[1.019991]
2-Hexanone	S	(61)	1.213592]	QN	(26) [1	[1.123595]	QN	(2700) [5	53.75766]	2		[1,019991]
4-Methyl-2-pentanone(MIBK)	ON	(61)	[1.213592]	ND	(56) [1	[1.123595]	Q.	(2700) [5	53.75766]	QN		[1,019991]
Acetone	QN	(120)	[1.213592]	ND	(110) [1	[1.123595]	ON	(5400) [5	53.75766]	N		1.019991]
Benzene	QN	_	1.213592]	QN	(5.6) [1	[1.123595]	QN	(270) [5	53.75766]	QN		[1.019991]
Bromodichloromethane	ND	_	[1.213592]	ND	(5.6) [1	[1.123595]	R	(270) [5	53.75766]	ND	-	[1.019991]
Bromomethane	QN	_	[1.213592]	QN	(11) [1	[1.123595]	ND	(540) [5	[53.75766]	ON	(10) [1.	[1.019991]
Carbon disulfide	Q.		1.213592]	QN	(5.6) [1	[1.123595]	ND	(270) [5	53.75766]	Q.		[1.019991]
Carbon tetrachloride	QN	_	[1.213592]	QN		[1.123595]	ON	(270) [5	53.75766]	ND	(5.1) [1.	[1.019991]
Chlorobenzene	QN	_	[1.213592]	ND		[1.123595]	QN	(270) [5	53.75766]	ND	(5.1) [1.	[1.019991]
Chloroethane	ND		1.213592]	ND	(11) [1	[1.123595]	ND	(540) [5	53.75766]	ON	_	1.019991]
Chlorotorm	ND		[1.213592]	ON	(5.6) [1	[1.123595]	ND	(270) [5	53.75766]	ND	(5.1) [1.	1.019991]
Chloromethane	Q	_	1.213592]	ND	(11) [1	[1.123595]	QN	(540) [5	[53.75766]	QN	(10) [1.	[1.019991]
Ulbromochloromethane	QN	(6.1)	[1.213592]	QN	(5.6) [1	[1.123595]	ND	(270) [5	53.75766]	ND	(5.1) [1.	1.019991]
thy! benzene	QN	_	[1.213592]	QN	(5.6) [1	[1.123595]	QN	(270) [5	53.75766]	QN	_	1.019991]
Methyl ethyl ketone	QN	_	[1.213592]	ON	(110) [1	[1.123595]	QN	(5400) [5	[53.75766]	ND		1.019991]
Methylene chloride	2.1 JB	(6.1)	[1.213592]	5.1 JB	_	[1.123595]	ND	(270) [5	53.75766]	QN	(5.1) [1.	1.019991]
Styrene	9	(6.1)	[1.213592]	QN	(5.6) [1	[1.123595]	QN	(270) [5	[53.75766]	QN		[1.019991]
700 H. O. Lat.												

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

		05	05	10		05		05
	Ö	05-SS-05	05-88-06	90-9	J	05-55-07		05-55-08
	05	Ś	05-SS	05-SS-06-01	ő	Š	0	05-SS-08-01
YAKAMELIEK 	1	0 - 0.5	- 0	0.5	1	0 - 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5
Tetrachloroethene	N	(6.1) [1.213592]	QN	(5.6) [1.123595]	QN QN	(270) [53.75766]	Q	(5.1) [1.019991]
Foluene	Q	(6.1) [1.213592]	0.18 JB	(5.6) [1.123595]	Q.		2	
Tribromomethane(Bromoform)	QN	(6.1) [1.213592]	NO	(5.6) [1.123595]	Ş		Q	
Trichloroethene	QN	(6.1) [1.213592]	ON	(5.6) [1.123595]	Q	(270) [53.75766]	Q	_
Vinyl acetate	S	(6.1) [1.213592]	NO	(5.6) [1.123595]	Q.	(270) [53.75766]	S	(5.1) [1.019991]
Vinyl chloride	QN	(12) [1.213592]	ND	(11) [1.123595]	QN	(540) [53.75766]	N N	(10) [1.019991]
Xylenes	Q	(6.1) [1.213592]	QN	(5.6) [1.123595]	S	(270) [53.75766]	QN	(5.1) [1.019991]
cis-1,3-Dichloropropene	QN	(6.1) [1.213592]	ND	(5.6) [1.123595]	Q.	(270) [53.75766]	8	(5.1) [1.019991]
trans-1,2-Dichloroethene	Q	(6.1) [1.213592]	ON	(5.6) [1.123595]	2	(270) [53.75766]	Q	[1.019991]
trans-1,3-Dichloropropene	Q	(6.1) [1.213592]	ON	(5.6) [1.123595]	2	(270) [53.75766]	Q	(5.1) [1.019991]
SW8270 - Semivolatile Organics (mg/kg	~							
1,2,4-Trichlorobenzene	Q.	(0.4) [0.040318]	NO NO	(0.37) [0.037453]	S	(1.1) [0.107086]	QN	(0.34) [0.033954]
1,2-Dichlorobenzene	NO NO	(0.4) [0.040318]	QN	(0.37) [0.037453]	2	(1.1) [0.107086]	Q	(0.34) [0.033954]
1,3-Dichlorobenzene	Q	(0.4) [0.040318]	QN	(0.37) [0.037453]	Q	(1.1) [0.107086]	QN	_
1,4-Dichlorobenzene	Q	(0.4) [0.040318]	ND	(0.37) [0.037453]	2	(1.1) [0.107086]	QN	(0.34) [0.033954]
2,4,5-Trichlorophenol	QN	(0.4) [0.040318]	QN	(0.37) [0.037453]	2	(1.1) [0.107086]	QN	(0.34) [0.033954]
2,4,6-Trichlorophenol	2	(0.4) [0.040318]	Q.	(0.37) [0.037453]	2	(1.1) [0.107086]	Q	(0.34) [0.033954]
2,4-Dichlorophenol	N Q	(0.4) [0.040318]	ON	(0.37) [0.037453]	2	(1.1) [0.107086]	Q	(0.34) [0.033954]
2,4-Dimethylphenol	Q	(0.4) [0.040318]	QN	(0.37) [0.037453]	9	(1.1) [0.107086]	Q	(0.34) [0.033954]
2,4-Dinitrophenol	Q		QN	(1.9) [0.037453]	Q	(5.4) [0.107086]	Q.	(1.7) [0.033954]
2,4-Dinitrotoluene	R		NO	(0.37) [0.037453]	₽	(1.1) [0.107086]	S	(0.34) [0.033954]
2,6-Dinitrotoluene	2	_	ND	(0.37) [0.037453]	S	(1.1) [0.107086]	S	(0.34) [0.033954]
2-Chloronaphthalene	2	(0.4) [0.040318]	N Q	(0.37) [0.037453]	2	(1.1) [0.107086]	2	(0.34) [0.033954]
2-Chlorophenol	2	_	ND	(0.37) [0.037453]	Q	(1.1) [0.107086]	2	(0.34) [0.033954]
2-Methylnaphthalene	2	(0.4) [0.040318]	QN	(0.37) [0.037453]	S	(1.1) [0.107086]	S	(0.34) [0.033954]
2-Methylphenol(o-cresol)	2	(0.4) [0.040318]	ON	(0.37) [0.037453]	S	(1.1) [0.107086]	2	(0.34) [0.033954]
2-Nitroaniline	N Q	(2) [0.040318]	QN	(1.9) [0.037453]	Q	(5.4) [0.107086]	2	(1.7) [0.033954]
2-Nitrophenol	S	(0.4) [0.040318]	QN	(0.37) [0.037453]	S	(1.1) [0.107086]	2	(0.34) [0.033954]
3,3'-Dichlorobenzidine	Q	(0.81) [0.040318]	QN	(0.75) [0.037453]	ON	(2.1) [0.107086]	Q.	(0.68) [0.033954]
Compiled: 23 March 1995		() = Detection Limit	[] = Factor	ND = Not Detected	NA = Not	Not Applicable	-	

				SITE ID LOCATION ID SAMPLE ID				
			BEG. DEP	BEG. VEPIH - ENU DEPIH (FI.)				
		05		05		05		05
	0	05-SS-05	0	05~SS-06	0	05-58-07		05-55-08
	05	05-88-05-01	0	05-55-06-01	90	05-SS-07-01	Ö	05-55-08-01
PAKAME I E.K 	t t 1 1 1 1	0 - 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5		0 - 0.5		0 - 0.5
3-Nitroaniline	QN	(2) [0.040318]	QN	(1.9) [0.037453]	Q	(5.4) [0.107086]	C	(1 7) [0 033954]
4,6-Dinitro-2-methylphenol	ND	(2) [0.040318]	N	(1.9) [0.037453]	QN		S	
4-Bromophenyl phenyl ether	QN	(0.4) [0.040318]	ON	(0.37) [0.037453]	ON		QN	-
4-Chloro-3-methylphenol	QN		QN	(0.37) [0.037453]	ND	(1.1) [0.107086]	QN	
4-Chlorophenyl phenyl ether	QN		ND	(0.37) [0.037453]	QN	(1.1) [0.107086]	QN	(0.34) [0.033954]
4-Methylphenol(p-cresol)	QV :		QV	37) [QN	(1.1) [0.107086]	QN	(0.34) [0.033954]
4-Nitroaniline	Q :		QN	_	QN	(5.4) [0.107086]	QN	(1.7) [0.033954]
4-Nitrophenol	Q :		Q.		QN	(5.4) [0.107086]	QN	(1.7) [0.033954]
Acenaphthene	9 :		Q		QN	(1.1) [0.107086]	QN	(0.34) [0.033954]
Acenaphthylene	Q :		Q		QN	(1.1) [0.107086]	ND	(0.34) [0.033954]
Anthracene	ON N		Q.	(0.37) [0.037453]	QN	(1.1) [0.107086]	QN	(0.34) [0.033954]
Benzo(a)anthracene	QN		ND	(0.37) [0.037453]	QN	(1.1) [0.107086]	0.024 J	(0.34) [0.033954]
Benzo(a)pyrene	QN	_	0.0044 J	(0.37) [0.037453]	QN	(1.1) [0.107086]	0.019 J	(0.34) [0.033954]
Benzo(b)fluoranthene	QN		0.0065 J	(0.37) [0.037453]	QN	(1.1) [0.107086]	0.022 J	(0.34) [0.033954]
Benzo(g,h,i)perylene	QN :	_			ON	(1.1) [0.107086]	ON	(0.34) [0.033954]
<pre>Benzo(K)tluoranthene</pre>	QN :				ND	(1.1) [0.107086]	0.024 J	(0.34) [0.033954]
Benzoic acid	Q :		0.043 J	_	ON	(5.4) [0.107086]	QN	(1.7) [0.033954]
Benzyl alconol	2 :		QN		QN	_	ON	(0.34) [0.033954]
butylbenzylphthalate Changes	ON S		Q.		QN		QN	(0.34) [0.033954]
Onrysene O:	ON N		9		QN		0.031 J	(0.34) [0.033954]
Dite (- 1) (- 1)	O. S		QN .		QN		QN	(0.34) [0.033954]
Ulbenz(a,n)anthracene	ON :		QN	_	NO	(1.1) [0.107086]	QN	(0.34) [0.033954]
Ulbenzoturan	QN		QN	_	ON	(1.1) [0.107086]	QN	(0.34) [0.033954]
Ulbutyiphthalate	QN		QN	(0.37) [0.037453]	ON	(1.1) [0.107086]	QN	(0.34) [0.033954]
Diethy phthalate	Q	_	Q		QN	(1.1) [0.107086]	QN	(0.34) [0.033954]
Uimethy!phthalate	QN		ND		QN	(1.1) [0.107086]	ON	(0.34) [0.033954]
Fluoranthene	0.023 J		QN :	_	0.028 J		0.031 J	(0.34) [0.033954]
Fluorene	Q :		Q		QN	(1.1) [0.107086]	ND	(0.34) [0.033954]
rexacn I orobenzene	QN N	(0.4) [0.040318]	QN	(0.37) [0.037453]	ND	(1.1) [0.107086]	ON	(0.34) [0.033954]

■ Not Detected [] = Factor () = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

				SITE ID				
			S רכ	LOCATION ID SAMPLE ID				
			BEG. DEPTH	DEPTH - END DEPTH (FT.)				
		05		05		05		05
	0	05-58-05	05	90-28-00		05-SS-07	30	05-55-08
	05	05-SS-05-01	-90	05-55-06-01	ŏ	05-58-07-01	-90	05-55-08-01
PARAMETER		0 - 0.5		0 - 0.5		0 - 0.5	Ŭ.	0 - 0.5
								‡ 1 1 1 1 1 1 1 1 1 1 1 1
Hexachlorobutadiene	ND	(0.4) [0.040318]	N	(0.37) [0.037453]	QN	(1.1) [0.107086]	ON	(0.34) [0.033954]
Hexachlorocyclopentadiene	ON	(0.4) [0.040318]	Q.	(0.37) [0.037453]	ON	(1.1) [0.107086]	ON	(0.34) [0.033954]
Hexachloroethane	QN	(0.4) [0.040318]	QN Q	(0.37) [0.037453]	ON	(1.1) [0.107086]	ON	
Indeno(1,2,3-cd)pyrene	QN	(0.4) [0.040318]	ND	(0.37) [0.037453]	QN	(1.1) [0.107086]	QN	
Isophorone	QN	(0.4) [0.040318]	ON ON	(0.37) [0.037453]	QN	(1.1) [0.107086]	ON	(0.34) [0.033954]
N-Nitrosodiphenylamine	ON	(0.4) [0.040318]	ND	(0.37) [0.037453]	ON	(1.1) [0.107086]	QN	(0.34) [0.033954]
N-Nitrosodipropylamine	QN	(0.4) [0.040318]	QN	(0.37) [0.037453]	ON	(1.1) [0.107086]	QN	(0.34) [0.033954]
Naphthalene	QN	(0.4) [0.040318]	ND	(0.37) [0.037453]	QN	(1.1) [0.107086]	QN	(0.34) [0.033954]
Nitrobenzene	ON	(0.4) [0.040318]	ND	(0.37) [0.037453]	ON	(1.1) [0.107086]	QN	(0.34) [0.033954]
Pentachlorophenol	QN	(2) [0.040318]	QN	(1.9) [0.037453]	ON	(5.4) [0.107086]	QN	(1.7) [0.033954]
Phenanthrene	0.015 J	(0.4) [0.040318]	ND	(0.37) [0.037453]	QN	(1.1) [0.107086]	0.02 J	(0.34) [0.033954]
Phenol	QN	(0.4) [0.040318]	QN QN	(0.37) [0.037453]	ND	(1.1) [0.107086]	QN	(0.34) [0.033954]
Pyrene	0.023 J	(0.4) [0.040318]	ND	(0.37) [0.037453]	0.049 J	(1.1) [0.107086]	0.033 J	(0.34) [0.033954]
bis(2-Chloroethoxy)methane	QN	(0.4) [0.040318]	ND	(0.37) [0.037453]	QN	(1.1) [0.107086]	QN	(0.34) [0.033954]
bis(2-Chloroethyl)ether	QN	(0.4) [0.040318]	ND	(0.37) [0.037453]	ND	(1.1) [0.107086]	ON	(0.34) [0.033954]
bis(2-Chloroisopropyl)ether	QN	(0.4) [0.040318]	N	(0.37) [0.037453]	QN	(1.1) [0.107086]	ON	(0.34) [0.033954]
bis(2-Ethylhexyl)phthalate	QN	(0.4) [0.040318]	0.06 JB	(0.37) [0.037453]	ND	(1.1) [0.107086]	ON	(0.34) [0.033954]
p-Chloroaniline	QN	(0.4) [0.040318]	N Q	(0.37) [0.037453]	ND	(1.1) [0.107086]	QN	(0.34) [0.033954]

[102] [103] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694] [1.026694][1.026694] 1.026694] [1.026694] [1.026694] [1.026694][1.026694] [1.026694][1.026694] (5.1)(5.1)(5.1)(10) (51)(51)(100)(5.1)(5.1)(10)(5.1)(5.1)(5.1)(10)(5.1)(10)(10)(5.1)(5.1)(100)05-58-12-01 0 - 0.5 05-SS-12 8 13 87 2 2 2 2 9 2 2 [2840] [113][22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904 [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] [22.77904] (110)(110)(110)(110)(110)(110)(230)1100) 1100) 2300) (110)(110)(230)(110)(110)(110)(230)(110)(230)(110)2300) (110)(110)05-SS-11-01 0 - 0.505-55-11 11 J 430 J 18 3700 S 2 2 S 9 2 9 S [110][111][1.116071][1.116071] [1.116071][1.116071] [1.116071] [1.116071] [1.116071][1.116071][1.116071] [1.116071] [1.116071] [1.116071][1.116071] [1.116071][1.116071] [1.116071][1.116071][1.116071] [1.116071][1.116071] [1.116071][1.116071]1.116071] 1.116071] [1.116071] BEG. DEPTH - END DEPTH (FT.) (5.6)(5.6)LOCATION ID (22)(11) (5.6)(5.6)(5.6)(5.6)(11)(5.6)(11)(5.6)(5.6)(5.6)(110)(5.6)(5.6)(99) (11) (5.6)(11) (5.6)(110)SAMPLE ID (28)05-SS-10-01 SITE 1D 05-88-10 0 - 0.58 14 40 운 운 문 2 2 9 9 2 2 S 2 웆 읒 S [118][47300] [5910.165] [5910.165][5910.165][5910.165]5910.165] [5910.165][5910.165][5910.165][5910.165][5910.165] [5910.165][5910.165] [5910.165] [5910.165] [5910.165][5910.165][5910.165][5910.165] [5910.165] 5910.165] [5910.165]5910.165] [5910.165][5910.165] 5910.165] (30000) (30000) (30000) (30000) (30000) (30000) (20006) (30000)(23000) (4700)(30000) 300000) 300000) 590000) (30000)(30000) (30000) (28000) 30000) 59000) 30000) 30000) 590000) (30000) (30000)05-55-09-01 0 - 0.505-55-09 W8015MEMP - Nonhalogenated Volatile Organics (mg/kg) 15000 J 44000 2 2 2 S 윤 2 2 2 2 SW8240 - Volatile Organics (ug/kg) Gasoline Range Organics (2) 4-Methyl-2-pentanone(MIBK) Diesel Range Organics (2) 1,1,2,2-Tetrachloroethane 2-Chloroethyl vinyl ether 1,1,1-Trichloroethane 1,1,2-Trichloroethane Bromodichloromethane Carbon tetrachloride Dibromochloromethane 1,2-Dichloropropane Methyl ethyl ketone 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane Methylene chloride Carbon disulfide Chlorobenzene Chloromethane Ethyl benzene Bromomethane Chloroethane 2-Hexanone Chloroform PARAMETER Acetone Benzene tyrene

NA = Not Applicable

Not Detected

[] = Factor

() = Detection Limit

Compiled: 23 Mar

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID

			BEG. DEP	SAMPLE ID DEPTH - END DEPTH (FT.)				
		05		05		05		05
		05-55-09		05-SS-10	05	05-SS-11		05-58-12
PARAMETER		0 - 0.5	0	05-SS-10-01 0 - 0.5	05-9	05-SS-11-01 0 - 0.5	0	05-SS-12-01 0 - 0.5
1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 			
Tetrachloroethene	QN	(30000) [5910.165]	QN	(5.6) [1.116071]	S	(110) [22.77904]	QN	(5.1) [1.026694]
Toluene	7400 J	(30000) [5910.165]	Q	(5.6) [1.116071]	30 J	(110) [22.77904]	Q.	(5.1) [1.026694]
Tribromomethane(Bromoform)	QN	(30000) [5910.165]	Q	(5.6) [1.116071]	QN	(110) [22.77904]	Q	(5.1) [1.026694]
Trichloroethene	QN	(30000) [5910.165]	Q	(5.6) [1.116071]	QN	(110) [22.77904]	QN	(5.1) [1.026694]
Vinyl acetate	QN		S	(5.6) [1.116071]	QN	(110) [22.77904]	S	(5.1) [1.026694]
Vinyl chloride	QN		S	(11) [1.116071]	ON	(230) [22.77904]	S	(10) [1.026694]
Xylenes	1200000	_	2	(5.6) [1.116071]	42 J	(110) [22.77904]	ON	(5.1) [1.026694]
cis-1,3-Dichloropropene	Q	(30000) [5910.165]	2	(5.6) [1.116071]	QN	(110) [22.77904]	Q	(5.1) [1.026694]
trans-1,2-Dichloroethene	ON	(30000) [5910.165]	S	(5.6) [1.116071]	QN	(110) [22.77904]	Q.	(5.1) [1.026694]
trans-1,3-Dichloropropene	QN	(30000) [5910.165]	2	(5.6) [1.116071]	QN	(110) [22.77904]	Q	(5.1) [1.026694]
SW8270 - Semivolatile Organics	(mg/kg)							
1,2,4-Trichlorobenzene	QN	(1.2) [0.117265]	Q	(0.37) [0.037140]	QN	(1.1) [0.113441]	Q.	(0.34) [0.034174]
1,2-Dichlorobenzene	QN	(1.2) [0.117265]	S	(0.37) [0.037140]	ON	(1.1) [0.113441]	QN	(0.34) [0.034174]
1,3-Dichlorobenzene	QN		Q	_	QN	(1.1) [0.113441]	QN	(0.34) [0.034174]
1,4-Dichlorobenzene	QN	_	S	(0.37) [0.037140]	ND	(1.1) [0.113441]	2	(0.34) [0.034174]
2,4,5-Trichlorophenol	QN		SN	(0.37) [0.037140]	ND	(1.1) [0.113441]	QN	(0.34) [0.034174]
2,4,6-Trichlorophenol	QN	_	S		QN	(1.1) [0.113441]	QN	(0.34) [0.034174]
2,4-Dichlorophenol	Q.	_	2	_	QN		QN	(0.34) [0.034174]
2,4-Dimethylphenol	QV :		2	_	Q		QN	(0.34) [0.034174]
2,4-Dinitrophenol	Q I		2	_	Q		Q	
2,4-Dinitrotoluene	2		2	_	Q.	(1.1) [0.113441]	R	(0.34) [0.034174]
2,6-Dinitrotoluene	ON.		2	_	QN	(1.1) [0.113441]	N	(0.34) [0.034174]
2-Chloronaphthalene	QN	_	QV Q		ON	(1.1) [0.113441]	QN	(0.34) [0.034174]
2-Chlorophenol	Q	_	2	(0.37) [0.037140]	ND	(1.1) [0.113441]	Q	(0.34) [0.034174]
2-Methylnaphthalene	87		2		QN		S	(0.34) [0.034174]
2-Methylphenol(o-cresol)	QN		2	_	ND	(1.1) [0.113441]	S	(0.34) [0.034174]
2-Nitroaniline	QN		S	_	Q	(5.7) [0:113441]	2	(1.7) [0.034174]
2-Nitrophenol	ON		2		QN	(1.1) [0.113441]	Q Q	(0.34) [0.034174]
3,3'-Dichlorobenzidine	Q.	(2.3) [0.117265]	QN	(0.74) [0.037140]	QN	(2.3) [0.113441]	Q	(0.68) [0.034174]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

Compiled: 23 March 1995

[0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174][0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] [0.034174] 0.034174 [0.034174] 0.034174 0.34) (1.7)0.34)0.34) (1.7)(0.34)(0.34)(0.34)(0.34)(0.34)(1.7)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)05-SS-12-01 05-SS-12 0 - 0.59992 2222 9 9 9 2 9 9 9 [0.113441][0.113441] [0.113441][0.113441][0.113441][0.113441][0.113441][0.113441]0.113441] [0.113441] [0.113441] [0.113441] [0.113441] [0.113441][0.113441][0.113441][0.113441][0.113441][0.113441] [0.113441][0.113441] [0.113441][0.113441][0.113441][0.113441][0.113441] [0.113441] [0.113441] [0.113441](1.1)(1.1)(1.1)(1.1)1.1) (1.1)1.1) (1.1)(1.1) (5.7)(1.1)(5.7)(1.1)(1.1)(1.1)(1.1)(1.1)5.7) (1.1)1.1) 1.1) (1.1)1.1) 1.1) 05-SS-11-01 0 - 0.505-SS-11 0.26 J 읒 2222 9 2 Ձ 2 9 9 9 9 222222 [0.037140][0.037140] [0.037140] [0.037140] [0.037140] [0.037140] [0.037140][0.037140] [0.037140] [0.037140] [0.037140][0.037140][0.037140] [0.037140] [0.037140][0.037140][0.037140] [0.037140] [0.037140][0.037140][0.037140] [0.037140] [0.037140] [0.037140][0.037140] [0.037140] [0.037140][0.037140] [0.037140]BEG. DEPTH - END DEPTH (FT.) (0.37)LOCATION ID (1.9)(0.37)(1.9)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(1.9)(0.37)(0.37)(1.9)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)SAMPLE ID 05-SS-10-01 SITE ID 05-55-10 0 - 0.505 0.1 J 0.056 J 0.14 J 0.082 J 0.097 J 0.11 J 0.084 J 0.017 J S S 9 2 2 2 S 2 2 2 2 2 2 9 [0.117265][0.117265][0.117265][0.117265] [0.117265][0.117265][0.117265][0.117265][0.117265] [0.117265][0.117265][0.117265][0.117265][0.117265][0.117265]0.117265 [0.117265][0.117265][0.117265][0.117265][0.117265][0.117265][0.117265][0.117265][0.117265][0.117265][0.117265][0.117265][0.117265](5.9)(1.2)(1.2)(1.2)(1.2)(5.9)(5.9)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(5.9)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)05-58-09-01 0 - 0.505-55-09 0.83 J 0.37 J 0.1 3 0.18 JF 0.15 J 0.18 JF 0.94 J 0.24 J 0.14 J 9 2 2 웆 2 S 2 2 2 S 2 2 S 2 2 9 2 1.4 !-Chloropheny] phenyl ether 1,6-Dinitro-2-methylphenol 1-Bromophenyl phenyl ether 1-Methylphenol(p-cresol) 1-Chloro-3-methylphenol Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene 3enzo(k)fluoranthene Butylbenzylphthalate Di-n-octylphthalate Benzo(a)anthracene Dimethylphthalate Hexachlorobenzene Dibutylphthalate Diethylphthalate 3-Nitroaniline 4-Nitroaniline Acenaphthy]ene Benzo(a)pyrene Benzyl alcohol 4-Nitrophenol Acenaphthene Benzoic acid -luoranthene Dibenzofuran Anthracene PARAMETER Chrysene

Compiled: 23 Marti 1995

() = Detection Limit [] = Factor $^{\text{MD}}$ = Not

"A = Not Detected NA

d NA = Not Applicable

SITE ID LOCATION ID SAMPLE ID

			вес. рертн	BEG. DEPTH - END DEPTH (FT.)				
		05		05		05		05
	90	05-88-09	90	-SS-10	02	-88-11		15-55-12
	-90	05-SS-09-01	-90	05-SS-10-01	05-	05-55-11-01	Ö	5-55-12-01
PARAMETER		0 - 0.5	0	- 0.5	0	- 0.5		0 - 0.5
					! ! ! ! ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i i i i i i	
Hexachlorobutadiene	QN	(1.2) [0.117265]	ON	(0.37) [0.037140]	ON	(1.1) [0.113441]	2	(0.34) [0.034174]
Hexachlorocyclopentadiene	ON	(1.2) [0.117265]	QN	(0.37) [0.037140]	QN ON	(1.1) [0.113441]	QN	(0.34) [0.034174]
Hexachloroethane	QN	(1.2) [0.117265]	ON	(0.37) [0.037140]	ON		S	(0.34) [0.034174]
Indeno(1,2,3-cd)pyrene	0.048 JB	(1.2) [0.117265]	0.052 JB	(0.37) [0.037140]	QN	(1.1) [0.113441]	QN	(0.34) [0.034174]
Isophorone	QN	(1.2) [0.117265]	QN	(0.37) [0.037140]	QN	(1.1) [0.113441]	QN	(0.34) [0.034174]
N-Nitrosodiphenylamine	QN	(1.2) [0.117265]	ON	(0.37) [0.037140]	ON	(1.1) [0.113441]	QN	(0.34) [0.034174]
N-Nitrosodipropylamine	ON	(1.2) [0.117265]	ON	(0.37) [0.037140]	ON	(1.1) [0.113441]	Q.	(0.34) [0.034174]
Naphthalene	140	(23) [2.345303]	0.019 J		0.044 J		S	(0.34) [0.034174]
Nitrobenzene	QN	(1.2) [0.117265]	Q	(0.37) [0.037140]	QN	(1.1) [0.113441]	QN	(0.34) [0.034174]
Pentachlorophenol	QN	(5.9) [0.117265]	QN	(1.9) [0.037140]	: ON	(5.7) [0.113441]	<u>Q</u>	(1.7) [0.034174]
Phenanthrene	2.3	(1.2) [0.117265]	0.047 J		QN		S	(0.34) [0.034174]
Phenol	QN	(1.2) [0.117265]	ND	(0.37) [0.037140]	Q	(1.1) [0.113441]	Q.	(0.34) [0.034174]
Pyrene	0.65 J	(1.2) [0.117265]	0.13 J	(0.37) [0.037140]	QN		Q.	(0.34) [0.034174]
bis(2-Chloroethoxy)methane	QN	(1.2) [0.117265]	ON	(0.37) [0.037140]	QN	(1.1) [0.113441]	9	(0.34) [0.034174]
bis(2-Chloroethyl)ether	ON	(1.2) [0.117265]	N N	(0.37) [0.037140]	QN	(1.1) [0.113441]	QN	(0.34) [0.034174]
bis(2-Chloroisopropyl)ether	ON	(1.2) [0.117265]	ON	(0.37) [0.037140]	QN		QN	(0.34) [0.034174]
bis(2-Ethylhexyl)phthalate	ON	(1.2) [0.117265]	0.37	(0.37) [0.037140]	0.16 J	(1.1) [0.113441]	S	(0.34) [0.034174]
p-Chloroaniline	ON	(1.2) [0.117265]	QN	(0.37) [0.037140]	Q.	(1.1) [0.113441]	QN	(0.34) [0.034174]

				SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	SITE ID LOCATION ID SAMPLE ID TH - END DEPTH	l (FT.)						
		05		05	ıc			50				
	J	05-SS-13		05-88-13	5-13		05-	05-SS-14		05-	05 05-SS-15	
PARAMETER	06	05-SS-13-01 0 - 0.5	0	05-DS-03 Dup o	Dup of 05-SS-13-01 0 - 0.5	3-01	05-3	05-SS-14-01 0 - 0.5		05-50	05-SS-15-01 0 - 0 5	
:			!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1				1		i	
SW8015MEMP - Nonhalogenated Volatile Organics	le Organics	(mg/kg)										
Diesel Range Organics (2)	23 B	20)	[101]	30	(50)	[100]	27	(50)	[101]	540	(40)	[199]
Gasoline Range Organics (2)	12 B	(10)	[102]	N	(8.8)	[97.7]	2	(10)	[99.7]	18 B	(8.8)	[97.8]
SW8240 - Volatile Organics (ug/kg)	~										,	,
1,1,1-Trichloroethane	QN	(5.1) [1.018329]	29]	ON	(5.1) [1]	[1.016260]	QN	(5.1) [1	[1.012145]	QN	(5.1) [1]	[1,012145]
1,1,2,2-Tetrachloroethane	QN	(5.1) [1.018329]	29]	ND		[1.016260]	QN		[1.012145]	QN		[1.012145]
1,1,2-Trichloroethane	QN	(5.1) [1.018329]	29]	ND	Π	.016260]	ND		[1.012145]	Q.N.		[1.012145]
1,1-Dichloroethane	ND	(5.1) [1.018329]	29]	ON		[1.016260]	ND N		[1.012145]	Q N		[1.012145]
1,1-Dichloroethene	QN	(5.1) [1.018329]	29]	ND	コ	.016260]	QN		[1.012145]	QN		[1.012145]
1,2-Dichloroethane	ND	(5.1) [1.018329]	29]	ND	(5.1) [1	[1.016260]	QN		[1.012145]	QN		[1.012145]
1,2-Dichloropropane	ND	(5.1) [1.018329]	29]	QN QN	(5.1) [1	[1.016260]	ND		[1.012145]	QN		[1.012145]
2-Chloroethyl vinyl ether	QN	(10) [1.018329]	29]	ON		[1.016260]	QN		[1.012145]	ND		[1.012145]
2-Hexanone	ND	(51) [1.018329]	29]	QN	(51) [1	[1.016260]	ND	(51) [1	[1.012145]	ND		[1.012145]
4-Methyl-2-pentanone(MIBK)	ON	(51) [1.018329]	29]	ON	(51) [1	[1.016260]	QN	(51) [1	[1.012145]	NON		[1.012145]
Acetone	QN		29]	N	(100) [1	[1.016260]	ON	(100) [1	[1.012145]	ND	_	[1.012145]
Benzene	ON	(5.1) [1.018329]	29]	ND	(5.1) [1	[1.016260]	ND	(5.1) [1	[1.012145]	ON		[1.012145]
Bromodichloromethane	ND	_	29]	ND	(5.1) [1.	[1.016260]	ON	(5.1) [1	1.012145]	QN		[1.012145]
Bromomethane	QN		29]	DN	(10) [1	[1.016260]	QN Q	(10) [1	[1.012145]	ND	(10) [1.	[1.012145]
Carbon disulfide	QN		[62	ND		[1.016260]	ND	(5.1) [1	[1.012145]	QN	(5.1) [1.	[1.012145]
Carbon tetrachloride	QN	_	29]	ND	_	[1.016260]	QN	(5.1) [1	[1.012145]	ON	(5.1) [1.	[1.012145]
Chlorobenzene	QN	_	29]	QN		[1.016260]	ND	(5.1) [1	[1.012145]	ND	(5.1) [1.	1.012145]
Chloroethane	QN	ニ	[6]	ND	(10) [1.	[1.016260]	ND	(10) [1	[1.012145]	ND	(10) [1.	[1.012145]
Chloroform	QN	_	29]	ND		[1.016260]	ND	(5.1) [1	[1.012145]	QN	(5.1) [1.	[1.012145]
Chloromethane	Q		[6]	ND	(10) [1.	[1.016260]	ND	(10) [1	[1.012145]	QN	(10) [1.	[1.012145]
Dibromochloromethane	QN	(5.1) [1.018329]	29]	ND	(5.1) [1.	[1.016260]	ND	(5.1) [1	[1.012145]	ND		[1.012145]
Ethyl benzene	N		[6]	QN	(5.1) [1.	[1.016260]	QN	(5.1) [1	[1.012145]	NO	(5.1) [1.	1.012145]
Methyl ethyl ketone	QN	_	[6]	N	(100) [1.	[1.016260]	QN	(100) [1	[1.012145]	2.4 JB	_	[1.012145]
Methylene chloride	ND		[6]	ND	(5.1) [1.	1.016260]	ND	(5.1) [1	[1.012145]	1.8 JB	(5.1) [1.	[1.012145]
Styrene	QN	(5.1) [1.018329]	[6]	. ON	(5.1) [1.	.016260]	QN	(5.1) [1	[1.012145]	NO		[1.012145]
Compiled: 23 May 1995		+imil noitoctol = ()	+ i = i	- Factor	101	7	A H H					
		() = Detection	ר - -			Not Detected	NA = Not Applicable	plicable				
))							

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			SA LOCA SAN BEG. DEPTH -	SILE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
		05	J	05		. 05		05
		05-55-13		05-SS-13	J	05-SS-14	O	05-SS-15
	0	05-SS-13-01	05-DS-03 Dup	Dup of 05-SS-13-01	ŏ	05-SS-14-01	02	05-SS-15-01
PARAMETER		0 - 0.5	- 0	- 0.5		0 - 0.5	 	0 - 0.5
Tetrachloroethene	ON	(5.1) [1.018329]	QN	(5.1) [1.016260]	QN	(5.1) [1.012145]	QN QN	(5.1) [1.012145]
Toluene	QN	(5.1) [1.018329]	ND	(5.1) [1.016260]	Q	(5.1) [1.012145]	S	(5.1) [1.012145]
Tribromomethane(Bromoform)	QN	(5.1) [1.018329]	QN	(5.1) [1.016260]	QN	(5.1) [1.012145]	2	(5.1) [1.012145]
Trichloroethene	ON	(5.1) [1.018329]	QN	(5.1) [1.016260]	ON	二	8	(5.1) [1.012145]
Vinyl acetate	QN	(5.1) [1.018329]	ON	(5.1) [1.016260]	Q	(5.1) [1.012145]	2	(5.1) [1.012145]
Vinyl chloride	QN		QN		Q		R	_
Xylenes	QN		Q.		QN	_	Q	
cis-1,3-Dichloropropene	QN	_	N		S	_	2	
trans-1,2-Dichloroethene	QN		Q		QN		Q	
trans-1,3-Dichloropropene	QN	(5.1) [1.018329]	ON	(5.1) [1.016260]	N N	(5.1) [1.012145]	2	(5.1) [1.012145]
rganics	(mg/kg)							
1,2,4-Trichlorobenzene	QN	(0.34) [0.033921]	QN	(0.34) [0.03373]	S	(0.34) [0.033664]	R	(1) [0.100004]
1,2-Dichlorobenzene	ON		QN		Q	_	2	(1) [0.100004]
1,3-Dichlorobenzene	QN	(0.34) [0.033921]	QN	(0.34) [0.03373]	ON.	(0.34) [0.033664]	Q.	(1) [0.100004]
1,4-Dichlorobenzene	ND	(0.34) [0.033921]	ND	(0.34) [0.03373]	ON	(0.34) [0.033664]	Q	(1) [0.100004]
2,4,5-Trichlorophenol	QN	(0.34) [0.033921]	ON	(0.34) [0.03373]	Q	(0.34) [0.033664]	QN	(1) [0.100004]
2,4,6-Trichlorophenol	QN	(0.34) [0.033921]	ND	_	ND	(0.34) [0.033664]	Q	(1) [0.100004]
2,4-Dichlorophenol	QN		ON		Q	(0.34) [0.033664]	R	(1) [0.100004]
2,4-Dimethylphenol	ON		Q		S		2	
2,4-Dinitrophenol	QN	_	ND	_	2	_	2	
2,4-Dinitrotoluene	ON		ND		윤	_	R	
2,6-Dinitrotoluene	QN		Q	_	2	_	R	_
2-Chloronaphthalene	ON	_	ND	_	Q	_	R	(1) [0.100004]
2-Chlorophenol	ON	(0.34) [0.033921]	ND	(0.34) [0.03373]	QN	(0.34) [0.033664]	QN	(1) [0.100004]
2-Methylnaphthalene	ON	(0.34) [0.033921]	QN	(0.34) [0.03373]	S	(0.34) [0.033664]	S	(1) [0.100004]
2-Methylphenol(o-cresol)	ON	(0.34) [0.033921]	ND	(0.34) [0.03373]	Q	(0.34) [0.033664]	QN	(1) [0.100004]
2-Nitroaniline	ON	(1.7) [0.033921]	ND	(1.7) [0.03373]	S	(1.7) [0.033664]	Q.	(5) [0.100004]
2-Nitrophenol	QN	(0.34) [0.033921]	QN	_	ON	(0.34) [0.033664]	Q.	(1) [0.100004]
3,3'-Dichlorobenzidine	ON	(0.68) [0.033921]	Q.	(0.67) [0.03373]	Q	(0.67) [0.033664]	ON	(2) [0.100004]
Compiled: 23 March 1995		() = Detection Limit	t [] = Factor	ND = Not Detected	NA = Not	Not Applicable		

	05 05-SS-15 06-SS-16 01	0 - 0.5	(5) [0.100004]		(1) [0.100004] (1) [0.100004]		(1) [0.100004]			(1) [0.100004]					(1) [0.100004]				(1) [0.100004]			_		(1) [0.100004]	(1) [0.100004]			_
			QN	2 9	S 8	2	QN	ND	2	S S	2 8	2	2	QN	QN	QN	QN	2 5	5 5	2 2	2 2	QN	S.	Q	QN	Q.	S	QN
	05 05-SS-14 05-SS-14-01	10 - 0 · 0 · 0 · 2	(1.7) [0.033664]	(1.7) [0.033664]	(0.34) [0.033664] (0.34) [0.033664]		(0.34) [0.033664]	_ `		(0.34) [0.033664] (0.34) [0.033664]		_	(0.34) [0.033664]	(0.34) [0.033664]	_	_		(0.34) [0.033664]	(0.34) [0.033664]				(0.34) [0.033664]	(0.34) [0.033664]	(0.34) [0.033664]	(0.34) [0.033664]	(0.34) [0.033664]	(0.34) [0.033664]
] 1 1 1 1 1	Ö	ON ON	Q. Q.	QN	ON	QN :	O S	Q Q	QN	QN	QN	QN	2	2	2 :	Q 9	2 2	2	QN	Q	QN	QN	QN	Q	QN	Q
РТН (FT.)	5-13-01		[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.033/3]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]	[0.03373]
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	05 05-SS-13 Dup of 05-SS-13-01	- 0.5	(1.7)	(1.7)	(0.34)	(0.34)	(0.34)	(1.7)	(1.7)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)	(1.7)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)	(0.34)
LC S BEG. DEPTH	05-08-03 Du		QN	QN QN	2 2	QN	QN	Q 9	S 8	2 9	ON	0.015 J	0.021 J	0.027 J		0.022 J	O 1	a S	0.03 J	ND	QN	ON	QN	QN	QN	0.029 J	QN	ND
	05 05-SS-13 05-SS-13-01	- 0.5	(1.7) [0.033921]	(1.7) [0.033921] (0.34) [0.033921]			_	(1.7) [0.033921]	(1.7) [0.0339ZI] (0.34) [0.033921]		(0.34) [0.033921]						(1.7) [0.033921]			(0.34) [0.033921]	(0.34) [0.033921]	_		_				(0.34) [0.033921]
	05-50	0	QN	ON ON	QN	QN	Q.	O V	O N	QN	ND	0.015 J	0.02 J	0.026 J	ND O	0.021 J	2 2	Q Q	0.027 J	ND	QN	N O	QN	QN	ON	0.029 J	QN	QN
		PARAMETER 	3-Nitroaniline	4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chlorophenyl phenyl ether	4-Methylphenol(p-cresol)	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,n,l)perylene	benzo(K)lluoranthene Benzoic acid	Benzyl alcohol	Butylbenzylphthalate	Chrysene	Di-n-octy]phthalate	Dibenz(a,h)anthracene	Dibenzofuran	DibutyIphthalate	Unethylphthalate	Unmethy!phthalate	Fluoranthene	Fluorene	Hexachlorobenzene

Compiled: 23 March 1995

[] = Factor

() = Detection Limit

ND = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

PARAMETER Hexachlorobutadiene Hexachlorocthane Indeno(1,2,3-cd)pyrene Isophorone N-Nitrosodiphenylamine N-Nitrosodiphenylamine Pentachlorophenol	0	05 05-SS-13 05-SS-13-01 0 - 0.5	BEG. DEP 05-DS-03 05-DS-03 ND ND ND ND ND ND	SAMPLE 1D TH - END DEP 05 05-SS-13 Dup of 05-SS 0 - 0.5	TH (FT.) -13-01 [0.03373] [0.03373] [0.03373] [0.03373] [0.03373] [0.03373] [0.03373] [0.03373]		i]
Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate p-Chloroaniline	0.028 0.028 0.028 0.00 0.00 0.00 0.00 0.			(0.34) (0.34) (0.34) (0.34) (0.34) (0.34) (0.34)	[0.03373] [0.03373] [0.03373] [0.03373] [0.03373] [0.03373]	ND ND ND ND ND ND O. 097 JB	(0.34) [0.033664] (0.34) [0.033664] (0.34) [0.033664] (0.34) [0.033664] (0.34) [0.033664] (0.34) [0.033664] (0.34) [0.033664]	ON O	(1) [0.100004] (1) [0.100004] (1) [0.100004] (1) [0.100004] (1) [0.100004] (1) [0.100004] (1) [0.100004]

				SA SA BEG. DEPTH	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH (FT.)	(FT.)					
	90	06 06-MW-01		-90	06 06-MW-02		90	06 06-MM-03		90	06-MW-03
PARAMETER	8	05-MW-01-02 8 - 10 	; ; ; ;	06-My	06-MW-02-02 3 - 5 		1-90	06-MW-03-02 4 - 7	! ! ! ! !	06-DS-01 Du	Dup of 06-MW-03-02 4 - 7
SW8015MEMP - Nonhalogenated Volatile Organics		(mg/kg)									
Uiesel Range Organics (2) Gasoline Range Organics (2)	Q	(24)	[120]	65 ND	(24)	[118]	43	(25)	[125]	33	
SW8080 - Organochlorine Pesticides and PCBs	s and PCBs (ug/kg)	_	[140]	2	(11)	[114]	φ	(15)	[124]	2	(12) [120.2]
4,4'-000	1.8		40.03202]	10000	(09)	5953.798]	7.3	(0.42)	[42.10526]	2.9	(0.42) [41.59733]
4,4'-DDE	4.3		[40.03202]	160	(09)	5953.798]	2	(0.42)	42.10526]	1.5	
4,4 -DD	8.2		40.03202]	3700		5953.798]	56	(0.84)	[42.10526]	18	(0.83) [41.59733]
Aldrin	0.05 PJB		40.03202]	0.45 PJB		[119.0759]	ND	(0.42)	42.10526]	0.79 B	(0.42) [41.59733]
On ordane	Q i		40.03202]	QN :		[119.0759]	QN	(2.1)	[42.10526]	ON	(2.1) [41.59733]
Endon's for I	2 :		40.03202]	Q	_	[119.0759]	ND	(0.45)	42.10526]	0.38 KJB	(0.42) [41.59733]
Endosultan 1	2 :		40.03202]	QN	_	[119.0759]	0.2 JB	(0.42)	42.10526]	0.11 KJB	(0.42) [41.59733]
Endosultan 11 Endosulfan Sulfate	0.51 JB 0.65 KJB		40.03202]			[119.0759]	QN .	(1.3)	42.10526]		_
Endrin	0.03 KJB)6] (7) (8 U)	40.03202]	4.8 PJB		119.0/59]	1.8 PJB	(2.1)	42.10526]		[41.
Endrin Aldehyde	0.76 KJ		[40.03202] [40.03202]	ND 0.54 PJB	(2.4) [11	119.0759]	. PB	(0.42)	.42.10526] .42.10526]	0.21 JB	<u> </u>
Heptachlor	ON	_	[40.03202]	0.55 KJB		119.0759]	0.23 KJB	(0.04)	.42.10320J	0 16 K.18	(0.63) [41.59/33] (0.42) [41.59733]
Heptachlor epoxide	0.35 PJB	(0.4) [40	[40.03202]	1.3 PB		119.0759]	9	(0.42)	42.10526]	QN	
Methoxychlor	QN :		[40.03202]	0.68 KJ		119.0759]	QN ON	(2.1)	42.10526]	ND	[41.
PCB-1016	2 2	(4) [40	40.03202]	S		119.0759]	QN :		42.10526]	QN	(4.2) [41.59733]
PCB-1232	Q. CN		40.03202]	2 9	(24) [11	119.0/59]	2 :		42.10526]	Q.	[41.
PCB-1242	Q QN		40.03202]	2 2		119.0759]	2 8	(8.4)	42.10526]	2 2	(8.3) [41.59733]
PCB-1248	ND	(4) [40	40.03202]	QN	نــا د	119.0759]	2 2		42.10526]	2 5	[4]
PCB-1254	ND	(8) [40	[40.03202]	ND		119.0759]	ON		42.10526]	QN QN	[41
PCB-1260	ND	_	40.03202]	QN	(24) [11	[119.0759]	ND	_	42.10526]	QN	[41.
loxaphene	QN (40.03202]	ON	_	[119.0759]	QN	(21)	42.10526]	ND	[41.
alpha-bHC hota-RHC	0.26 PJB	_ `	[40.03202]	1.8		119.0759]	NO		42.10526]	ND	(0.42) [41.59733]
delta=8HC	2 2		[40.03202] [40.03202]			119.0759]	Q		42.10526]	1.78	(0.42) [41.59733]
	N.O.	(0.4) [40	.40.03202]	1.6 PB	(1.2)	[119.0759]	2	(0.42) [[42.10526]	QN	(0.42) [41.59733]

Compiled: 23 Margi 1995

() = Detection Limit [] = Factor

Not Detected

ed NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

	-90	06 06-MW-01 06-MW-01-02	90	06 06-MW-02 06-MW-02-02	2 6	06 06-MW-03 06-MW-03-02	06 06-MW-03 06-DS-01 Dum of 06-MW-03-02	06 06-MW-03 Dun of 06-MW-	03-02
PARAMETER	8	8 - 10		3 - 5		4 - 7		4 - 7	
	0.65 PB	(0.4) [40.03202]	N	(1.2) [119.0759]	QN	(0.42) [42.10526]	QN	(0.42)	(0.42) [41.59733]
<pre>SW8240 - Volatile Organics (ug/kg) 1,1,1-Trichloroethane</pre>	QN	(30) [6.024096]	QN	(6) [1.191895]	ND	(130) [25.34854]	QV	(6.2)	[1.25]
1,1,2,2-Tetrachloroethane	ND		QN	(6) [1.191895]	QN		QN	(6.2)	[1.25]
1,1,2-Trichloroethane	ND	(30) [6.024096]	QN	(6) [1.191895]	Q.		QN	(6.2)	
1,1-Dichloroethane	QN	(30) [6.024096]	Q.	(6) [1.191895]	Q.	(130) [25.34854]	ON	(6.2)	•
1,1-Dichloroethene	QN	(30) [6.024096]	QN	_	QN	(130) [25.34854]	QN	(6.2)	[1.25]
1,2-Dichloroethane	QN		QN	_	Q	(130) [25.34854]	QN	(6.2)	[1.25]
1,2-Dichloropropane	QN	(30) [6.024096]	ON	(6) [1.191895]	Q	(130) [25.34854]	QN	(6.2)	[1.25]
2-Chloroethyl vinyl ether	QN	_	ND	(12) [1.191895]	ON	(250) [25.34854]	ON	(12)	[1.25]
2-Hexanone	QN	(300) [6.024096]	NO	(60) [1.191895]	Q	(1300) [25.34854]	N	(62)	[1.25]
4-Methyl-2-pentanone(MIBK)	QN	(300) [6.024096]	QN Q	(60) [1.191895]	QN	(1300) [25.34854]	QN	(62)	[1.25]
Acetone	18 JB	(600) [6.024096]	4.5 JB	(120) [1.191895]	570 J	(2500) [25.34854]	2.8 JB	(120)	[1.25]
Benzene	N	(30) [6.024096]	ND	(6) [1.191895]	S	(130) [25.34854]	QN	(6.2)	[1.25]
Bromodichloromethane	ON	(30) [6.024096]	N	(6) [1.191895]	Q	(130) [25.34854]	QN	(6.2)	[1.25]
Bromomethane	Q	(60) [6.024096]	N	(12) [1.191895]	R	(250) [25.34854]	ND	(12)	[1.25]
Carbon disulfide	ON	(30) [6.024096]	QN	(6) [1.191895]	Q	(130) [25.34854]	QN	(6.2)	[1.25]
Carbon tetrachloride	QN	(30) [6.024096]	QN	(6) [1.191895]	Q	(130) [25.34854]	QN	(6.2)	[1.25]
Chlorobenzene	Q	(30) [6.024096]	QN	(6) [1.191895]	Q	(130) [25.34854]	ON	(8.2)	[1.25]
Chloroethane	QN	(60) [6.024096]	QN	(12) [1.191895]	Q	(250) [25.34854]	ON	(12)	[1.25]
Chloroform	QN		QN	(6) [1.191895]	Q	(130) [25.34854]	QN	(6.2)	[1.25]
Chloromethane	QN	(60) [6.024096]	QN	(12) [1.191895]	ON	(250) [25.34854]	QN	(12)	[1.25]
Dibromochloromethane	Q	(30) [6.024096]	QN	(6) [1.191895]	QN	(130) [25.34854]	QN	(6.2)	[1.25]
Ethyl benzene	QN	(30) [6.024096]	ON	(6) [1.191895]	Q	(130) [25.34854]	QN	(6.2)	[1.25]
Methyl ethyl ketone	ON	(600) [6.024096]	QN	(120) [1.191895]	2	(2500) [25.34854]	QN O	(120)	[1.25]
Methylene chloride	18 J	(30) [6.024096]	9.4 B	(6) [1.191895]	Ş	(130) [25.34854]	0.99 JB	(6.2)	[1.25]
Styrene	QN	(30) [6.024096]	QN	(6) [1.191895]	S	(130) [25.34854]	QN	(6.2)	[1.25]
Tetrachloroethene	ND	(30) [6.024096]	QN	(6) [1.191895]	2	(130) [25.34854]	QN	(6.2)	[1.25]
Toluene	S	(30) [6.024096]	QN	(6) [1, 191895]	CN	(130) [25 34854]	2	(R 2)	[10.1]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

[1.25][1.25][1.25][1.25][1.25][1.25][0.041583][0.041583][0.041583][0.041583][0.041583][0.041583][0.041583][0.041583][0.041583] [0.041583] [0.041583] [0.041583][0.041583][0.041583] [0.041583] [0.041583][0.041583][0.041583][0.041583][0.041583]06-DS-01 Dup of 06-MW-03-02 (2.1)(0.42)(0.42)(6.2)(6.2)(12)(6.2)(6.2)(6.2)(6.2)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)0.42) (2.1)(0.42)(0.83)06-MM-03 4 - 7 0.14 J ND 22222 2 2 운 운 2 2 2 2 2 2 2 2 [25.34854] [25.34854] [25.34854] [25.34854] [25.34854] [25.34854] [25.34854] [25.34854] [0.042177][0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177 [0.042177] [0.042177](130)(130)(250)(130)(130)(130)(130)(0.42)(130)(0.42)(0.42)(0.42)(0.42)(0.42)(2.1)(0.42)(0.42)(0.42)(2.1)(0.84)(2.1)(0.42)(0.42)(0.42)(0.42)06-MW-03-02 06-MW-03 4 - 7 0.043 J 2222222 2 S 9 윤 2 9 9 9 [1.191895][1.191895][1.191895][1.191895][1.191895][1.191895][1.191895][1.191895] [0.118951][0.118951] [0.118951] [0.118951] [0.118951][0.118951] [0.118951][0.118951][0.118951][0.118951] [0.118951] [0.118951] [0.118951] [0.118951][0.118951] [0.118951] [0.118951] [0.118951] [0.118951] [0.118951]BEG. DEPTH - END DEPTH (FT.) LOCATION ID 12) (9) (9) (9) (9) (1.2)(1.2)(9) (1.2)(1.2)(1.2)(1.2)(5.9)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(5.9)(1.2)SAMPLE ID (2.4)06-MW-02-02 SITE ID 06-MW-02 3 - 5 90 0.11 J 운 운 99999 2 8888 2 S 운 ₽ 2 S S 2 S 9 2 [6.024096] [6.024096] [6.024096] [6.024096] [6.024096] [6.024096] [6.024096] [6.024096] [0.040093] [0.040093] [0.040093] [0.040093][0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] (0.4)(30)(30)(30)(0.4)(0.4)(0.4)(0.4)(2) (0.4)(0.4)(0.4)(0.4)(0.4)(0.4)30) (09 (0.8)06-MW-01-02 06-MW-01 8 - 10ND ND ND 54 F ND 읒 SSSS 9 2 운 운 문 문 9 SW8270 - Semivolatile Organics (mg/kg) [ribromomethane(Bromoform) trans-1,3-Dichloropropene 4,6-Dinitro-2-methylphenol trans-1,2-Dichloroethene cis-1,3-Dichloropropene 2-Methylphenol(o-cresol) 1,2,4-Trichlorobenzene 3,3'-Dichlorobenzidine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chloronaphthalene 2-Methylnaphthalene 2,6-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4-Dinitrophenol [rich]oroethene Vinyl chloride 2-Chlorophenol 2-Nitroaniline 3-Nitroaniline Vinyl acetate 2-Nitrophenol PARAMETER

Compiled: 23 Mar

[] = Factor

() = Detection Limit

- Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

		;				90		00
	0 9	06-MW-01		06-MW-02	Ō	06-MW-03		06-MW-03
PARAMETER		8 - 10	Ď ;	3 - 5	90	4 - 7	0.0-02-01	Dup of U6-MW-03-U2 4 - 7
4-Bromophenyl phenyl ether	QN	(0.4) [0.040093]	Q	(1.2) [0.118951]	CN	[712] [0.042]	C	(0.42) fo 041583
4-Chloro-3-methylphenol	QN		Š	_	: S		2	
4-Chlorophenyl phenyl ether	QN		Q.		2		2	
4-Methylphenol(p-cresol)	QN	_	Q		ON		Q.	
4-Nitroaniline	ON	(2) [0.040093]	Q.	(5.9) [0.118951]	ON		Q.	
4-Nitrophenol	QN	(2) [0.040093]	Q.	(5.9) [0.118951]	ON	(2.1) [0.042177]	QN	-
Acenaphthene	QN	(0.4) [0.040093]	Q.	(1.2) [0.118951]	ON	(0.42) [0.042177]	N	(0.42) [0.041583
Acenaphthylene	N	(0.4) [0.040093]	Q	(1.2) [0.118951]	QN	(0.42) [0.042177]	N	(0.42) [0.041583
Anthracene	QN	(0.4) [0.040093]	Q	(1.2) [0.118951]	ND	(0.42) [0.042177]	QN	(0.42) [0.041583
Benzo(a)anthracene	QN	(0.4) [0.040093]	2	(1.2) [0.118951]	0.025 J	(0.42) [0.042177]	0.011 J	(0.42) [0.041583
Benzo(a)pyrene	ON	(0.4) [0.040093]	S	(1.2) [0.118951]	0.026 J	(0.42) [0.042177]	0.0064 J	(0.42) [0.041583
Benzo(b)fluoranthene	QN	(0.4) [0.040093]	2	(1.2) [0.118951]	0.025 JF	(0.42) [0.042177]	0.016 JF	(0.42) [0.041583]
Benzo(g,h,i)perylene	QN	(0.4) [0.040093]	2	(1.2) [0.118951]	QN	(0.42) [0.042177]	ND	(0.42) [0.041583
Benzo(k)fluoranthene	QN	(0.4) [0.040093]	2	(1.2) [0.118951]	0.025 JF	(0.42) [0.042177]	0.016 JF	(0.42) [0.041583]
Benzoic acid	QN	(2) [0.040093]	N	(5.9) [0.118951]	0.05 J	(2.1) [0.042177]	QN	(2.1) [0.041583]
Benzyl ajcohol	QN	(0.4) [0.040093]	2	(1.2) [0.118951]	Q.	(0.42) [0.042177]	QN	(0.42) [0.041583
Butylbenzylphthalate	QN	(0.4) [0.040093]	ON	(1.2) [0.118951]	QN	(0.42) [0.042177]	ND	(0.42) [0.041583]
Chrysene	QN	(0.4) [0.040093]	R	(1.2) [0.118951]	0.032 J	(0.42) [0.042177]	ON	(0.42) [0.041583
Di-n-octylphthalate	ON	(0.4) [0.040093]	2	(1.2) [0.118951]	QN ON	(0.42) [0.042177]	ND	(0.42) [0.041583
Dibenz(a,h)anthracene	ON	(0.4) [0.040093]	운	(1.2) [0.118951]	ON	(0.42) [0.042177]	QN	(0.42) [0.041583
Dibenzofuran	QN	(0.4) [0.040093]	2	(1.2) [0.118951]	QN	(0.42) [0.042177]	QN	(0.42) [0.041583]
Dibuťylphthalate	ND	(0.4) [0.040093]	2	(1.2) [0.118951]	QN	(0.42) [0.042177]	QN	(0.42) [0.041583]
Diethylphthalate	QN	(0.4) [0.040093]	2	(1.2) [0.118951]	QN	(0.42) [0.042177]	QN	(0.42) [0.041583]
Dimethylphthalate	QN	(0.4) [0.040093]	2	(1.2) [0.118951]	QN	(0.42) [0.042177]	QN	(0.42) [0.041583]
Fluoranthene	ON	(0.4) [0.040093]	S	(1.2) [0.118951]	0.045 J	(0.42) [0.042177]	0.012 J	(0.42) [0.041583
Fluorene	QN	(0.4) [0.040093]	9	(1.2) [0.118951]	QN	(0.42) [0.042177]	QN	(0.42) [0.041583]
Hexachlorobenzene	QN	(0.4) [0.040093]	2	(1.2) [0.118951]	ND	(0.42) [0.042177]	ND	(0.42) [0.041583]
Hexachlorobutadiene	N	(0.4) [0.040093]	QN	(1.2) [0.118951]	QN	(0.42) [0.042177]	N	(0.42) [0.041583]
Hoverhouse and one	2	[[[[[[[[[[[[[[[[[[[[2	[1 2) [0 1100E1]	:		;	

ND = Not Detected NA = Not Applicable

() = Detection Limit [] = Factor

[0.041583][0.041583][0.041583][0.041583] [0.041583][0.041583] [0.041583] [0.041583][0.041583][0.041583][0.041583][0.041583][0.041583][0.041583][0.041583] [0.041583]06-DS-01 Dup of 06-MW-03-02 (0.42)(0.42) (0.42) (0.42) (0.42)(0.42)(0.42)(0.42)(2.1)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)06-MW-03 4 - 7 90 0.01 0.059 J 0.018 J 2 2 2 운 S 욷 무 문 2 2 2 [0.042177] [0.042177] [0.042177][0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177] [0.042177][0.042177] [0.042177] [0.042177] [0.042177] [0.042177 [0.042177] (0.42)(0.42)(2.1)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)(0.42)06-MW-03-02 06-MM-03 4 - 7 0.036 J 0.031 J 0.041 J 2 2 2 S 22222 S 2 2 2 [0.118951][0.118951][0.118951] [0.118951][0.118951] [0.118951][0.118951] [0.118951][0.118951][0.118951] [0.118951] [0.118951] [0.118951][0.118951]BEG. DEPTH - END DEPTH (FT.) (5.9)(1.2)(1.2)LOCATION ID (1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)SAMPLE ID 06-MW-02-02 SITE ID 06-MW-02 3 - 5 90 0.036 J 2 2 2 2 2 (0.4) [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.4) [0.040093][0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] [0.040093] (0.4)(0.4)(0.4)(0.4)(0.4)(2) (0.4)(0.4)(0.4)(0.4)(0.4)(0.4)(0.4)06-MW-01-02 06-MW-01 8 - 10 bis(2-Chloroisopropy))ether bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate bis(2-Chloroethyl)ether Indeno(1,2,3-cd)pyrene N-Nitrosodiphenylamine N-Nitrosodipropylamine Pentachlorophenol **Hexachloroethane** p-Chloroaniline Nitrobenzene Phenanthrene Naphthalene [sophorone PARAMETER Phenol Pyrene

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

	J	90			90			90			90	
	0-P	06-MW-04		-90	06-SB-01		-90	06-SB-01		90	06-SB-01	
	₩-90	06-MW-04-02		S-90	06-SB-01-01		06-DS-02 Dup	Dup of 06-SB-01-01	-01-01	3-90	06-SB-01-02	
PARAMETER	4	9 -		.9	6.5 - 9		9	6.5 - 9		10	10 - 12	
	: : : : : : : : : : : : : : : : : : :			 	! ! ! !				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
SW8015MEMP - Nonhalogenated Volatile Organics		(mg/kg)										
Diesel Range Organics (2)	37	(56)	[131.6]	5900	(1300)	[6440]	1400	(280)	[1390]	31	(27)	[134]
Gasoline Range Organics (2)	54	(13)	[131]	QN	(13)	[126]	NO	(13)	[127]	QN	(13)	[130]
SW8080 - Organochlorine Pesticides and PCBs	and PCBs (ug/kg)	(B)										•
4,4'-DDD	ON	(0.44)	[43.53504]	240	(13)	[1300.390]	640	(13)	[1262.626]	NO	(0.45)	[44.66279]
4,4'-DDE	ND	(0.44)	[43.53504]	32	(13)	[1300.390]	41	(13)	[1262.626]	ON	(0.45)	[44.66279]
4,4'-DDT	QN	(0.87)	[43.53504]	38	(56)	[1300.390]	170	(52)	[1262.626]	0.39 JB	(0.89)	[44.66279]
Aldrin	0.58 B	(0.44)	[43.53504]	3.6 PJ	(13)	[1300.390]	6.7 PJ	(13)	[1262.626]	0.15 PJB	(0.45)	[44.66279]
Chlordane	QN	(2.2)	[43.53504]	ND	(65)	[1300.390]	QN	(63)	[1262.626]	ND	(2.2)	[44.66279]
Dieldrin	0.4 KJB	(0.44)	[43.53504]	12 KJ	(13)	[1300,390]	10 KJ	(13)	[1262.626]	ND	(0.45)	[44.66279]
Endosulfan I	0.088 KJB	(0.44)	[43.53504]	10 KJ	(13)	[1300.390]	QN	(13)	[1262.626]	0.12 KJB	(0.45)	[44.66279]
Endosulfan II	ND	(1.3)	[43.53504]	19 J	(38)	[1300.390]	ND	(38)	[1262.626]	0.53 JB	(1.3)	[44.66279]
Endosulfan Sulfate	1.5 JB	(2.2)	[43.53504]	12 KJ	(65)	[1300.390]	11 KJ	(63)	[1262.626]	0.57 KJB	(2.2)	[44.66279]
Endrin	2.4 B	(0.44)	[43.53504]		(13)	[1300.390]	· ON	(13)	[1262.626]	QN	(0.45)	[44.66279]
Endrin Aldehyde	QN	(0.87)	[43.53504]	12 KJ	(56)	[1300.390]	17 KJ	(52)	[1262.626]	0.18 KJB	(0.89)	[44.66279]
Heptachlor	0.1 KJB	(0.44)	[43.53504]	9.9 KJ	(13)	[1300.390]	ON	(13)	[1262.626]	ON	(0.45)	[44.66279]
Heptachlor epoxide	ND N	(0.44)	43.53504]	12 PJ	(13)	[1300.390]	15 P	(13)	[1262.626]	0.36 PJB	(0.45)	[44.66279]
Methoxychlor	Q	(2.2)	43.53504]	Q	(65)	[1300.390]	ND	(63)	1262.626]	QN	(2.2)	[44.66279]
PCB-1016	QN	(4.4)	43.53504]	Q	(130)	[1300.390]	QN	(130)	[1262.626]	QN	(4.5)	[44.66279]
PCB-1221	Q.	(8.7)	43.53504]	Q	(260)	[1300.390]	QN	(520)	[1262.626]	ND	(8.9)	[44.66279]
PCB-1232	QN	(8.7)	43.53504]	Q	(500)	[1300.390]	ND	(520)	1262.626]	ON	(8.9)	[44.66279]
PCB-1242	Q	(4.4)	43.53504]	Q	(130)	[1300.390]	QN	(130)	[1262.626]	ON	(4.5)	[44.66279]
PCB-1248	Q	(4.4)	[43.53504]	QN	(130)	[1300.390]	NO NO	(130)	[1262.626]	QN	(4.5)	[44.66279]
PCB-1254	QN	(8.7)	[43.53504]	QN	(500)	[1300.390]	ON	(220)	[1262.626]	QN	(8.9)	[44.66279]
PCB-1260	Q	(8.7)	43.53504]	QN	(500)	[1300.390]	QN	(520)	[1262.626]	QN	(8.9)	[44.66279]
Toxaphene	NO NO	(22)	43.53504]	QN	(650)	[1300.390]	QN	(630)	[1262.626]	QN	(22)	[44.66279]
alpha-BHC	QN	_	43.53504]	11 KJ	(13)	[1300.390]	QN	(13)	[1262.626]	ON	(0.45)	[44.66279]
beta-BHC	1.1 P	(0.44)	[43.53504]	18 P	(13)	[1300.390]	370	(13)	[1262.626]	2.5	(0.45)	[44.66279]
delta-BHC	QN	(0.44)	[43.53504]	8	(13)	[1300.390]	QN	(13)	[1262.626]	QN	(0.45)	[44.66279]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

		90		90		90		90
	_	06-MW-04	90	06-SB-01	-90	06-58-01	0	06-SB-01
GETEN	ŏ	06-MW-04-02	-90	-	06-0S-02 Dup	Dup of 06-SB-01-01	90	06-SB-01-02
FAKAME I EK	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 - 6	9	6.5 - 9	6.	5 - 9		10 - 12
Old Same	<u> </u>							
yamma-bnc SW8240 - Volatile Organics (μα/kg)	ON.	(0.44) [43.53504]	20	(13) [1300.390]	N N	(13) [1262.626]	Q.	(0.45) [44.66279]
	QN	(130) [26.21231]	QN Q	(6.7) [1.345895]	CX	(6 5) [1 300390]	Q.	[6 7] [1 940409]
1,1,2,2-Tetrachloroethane	QN		QN ON		2 5		2 5	
1,1,2-Trichloroethane	ND		QN	5 =	Q. Q.	5) [2]	2 2	3 E
1,1-Dichloroethane	ON	(130) [26.21231]	ND	(6.7) [1.345895]	QN	5) [1	2	
1,1-Dichloroethene	N S	(130) [26.21231]	QN	(6.7) [1.345895]	ON	.5) [1	2	_
1,2-Dichloroethane	8	(130) [26.21231]	ON	(6.7) [1.345895]	ON	(6.5) [1.300390]	QN	(6.7) [1.340482]
1,2-Dichloropropane	N N		ON	(6.7) [1.345895]	N	(6.5) [1.300390]	S	(6.7) [1.340482]
2-Chloroethyl vinyl ether	2		ND	(13) [1.345895]	ON	(13) [1.300390]	ND	(13) [1.340482]
2-Hexanone	QN	(1300) [26.21231]	ND	(67) [1.345895]	1.6 JB	(65) [1.300390]	QN	(67) [1.340482]
4-Methyl-2-pentanone(MIBK)	QN	(1300) [26.21231]	ON	(67) [1.345895]	1.3 JB	(65) [1.300390]	QN	. 二
Acetone	QV	_	3.9 JB	(130) [1.345895]	9.5 JB	(130) [1.300390]	2.1 JB	(130) [1.340482]
Benzene	S		ON	(6.7) [1.345895]	ON	(6.5) [1.300390]	ON	(6.7) [1.340482]
Bromodichloromethane	Q.	_	ON	(6.7) [1.345895]	ND	(6.5) [1.300390]	ŇD	(6.7) [1.340482]
Bromomethane	Q	_	QN	(13) [1.345895]	QN	(13) [1.300390]	ND	(13) [1.340482]
Carbon disulfide	ON	_	ON	(6.7) [1.345895]	QN	(6.5) [1.300390]	ON	(6.7) [1.340482]
Carbon tetrachloride	9		QN	(6.7) [1.345895]	QN	(6.5) [1.300390]	QN	(6.7) [1.340482]
Chlorobenzene	2		QN	(6.7) [1.345895]	QN	(6.5) [1.300390]	QN	(6.7) [1.340482]
Chloroethane	2	_	QN	(13) [1.345895]	QN	(13) [1.300390]	ON	(13) [1.340482]
Chlorotorm	2		ND	(6.7) [1.345895]	ND	(6.5) [1.300390]	ND	(6.7) [1.340482]
Chloromethane	S	_	N	(13) [1.345895]	QN	(13) [1.300390]	ON	(13) [1.340482]
Ulbromochloromethane	QN	_	QN	(6.7) [1.345895]	QN	(6.5) [1.300390]	ON	(6.7) [1.340482]
Ethyl benzene	S		ND	(6.7) [1.345895]	ND	(6.5) [1.300390]	ON	(6.7) [1.340482]
Methy! ketone	410 J	_	ND	(130) [1.345895]	3 JB	(130) [1.300390]	QN	(130) [1.340482]
Methylene chloride	QN	_	13	(6.7) [1.345895]	1.6 JB	(6.5) [1.300390]	15	(6.7) [1.340482]
Styrene	Q	_	ND	(6.7) [1.345895]	ND	(6.5) [1.300390]	ND	(6.7) [1.340482]
Tetrachloroethene	Q.	_	ON	(6.7) [1.345895]	QN	(6.5) [1.300390]	S	(6.7) [1.340482]
ioluene	QN	(130) [26.21231]	2	(6.7) [1.345895]	QN	(6.5) [1.300390]	Q.	(6.7) [1.340482]

Compiled: 23 March 1995

"A = Not Detected NA = Not Applicable () = Detection Limit [] = Factor

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

				SITE ID				
			BEG. DEPT	SAMPLE ID DEPTH - END DEPTH (FT.)				
		. 90		90		90		90
		06-MW-04	0	06-SB-01	90	06-58-01		06-SB-01
		06-MW-04-02	90	06-58-01-01	06-DS-02 Du	Oup of 06-SB-01-01	U	06-SB-01-02
PARAMETER		4 - 6	1	6.5 - 9	9 !	6.5 - 9		10 - 12
Tribromomethane(Bromoform)	QN	(130) [26.21231]	Q.	(6.7) [1.345895]	N	(6.5) [1.300390]	Q	(6.7) [1.340482]
Trichloroethene	ND		5.7 J	(6.7) [1.345895]	QN	(6.5) [1.300390]	Q	(6.7) [1.340482]
Vinyl acetate	2		2		QN	(6.5) [1.300390]	Q	(6.7) [1.340482]
Vinyl chloride	S	_	S		ND	(13) [1.300390]	Q	(13) [1.340482]
Xylenes	S	_	Q	二	2.7 J	(6.5) [1.300390]	N	(6.7) [1.340482]
cis-1,3-Dichloropropene	S		Q		QN		Q	(6.7) [1.340482]
trans-1,2-Dichloroethene	Q	(130) [26.21231]	Q.	(6.7) [1.345895]	ON	(6.5) [1.300390]	Ş	(6.7) [1.340482]
trans-1,3-Dichloropropene	Q	(130) [26.21231]	2	(6.7) [1.345895]	ON	(6.5) [1.300390]	Q	(6.7) [1.340482]
SW8270 - Semivolatile Organics (mg	(mg/kg)							
1,2,4-Trichlorobenzene	Q	(1.3) [0.131061]	Q.	(13) [1.300390]	QN	(13) [1.287514]	R	(0.45) [0.044682]
1,2-Dichlorobenzene	QN	(1.3) [0.131061]	R	(13) [1.300390]	QN	(13) [1.287514]	2	(0.45) [0.044682]
1,3-Dichlorobenzene	S		S	(13) [1.300390]	QN	(13) [1.287514]	Q	(0.45) [0.044682]
1,4-Dichlorobenzene	Q	_	S	(13) [1.300390]	ON	(13) [1.287514]	Q	(0.45) [0.044682]
2,4,5-Trichlorophenol	R	(1.3) [0.131061]	R	_	QN	(13) [1.287514]	9	(0.45) [0.044682]
2,4,6-Trichlorophenol	R		Q	二	ON	(13) [1.287514]	2	(0.45) [0.044682]
2,4-Dichlorophenol	2	_	2	ニ	QN	(13) [1.287514]	Q	(0.45) [0.044682]
2,4-Dimethylphenol	S	_	2	ニ	ON	(13) [1.287514]	2	(0.45) [0.044682]
2,4-Dinitrophenol	Q		2		ND		9	(2.2) [0.044682]
2,4-Dinitrotoluene	Q.	_	2	_	QN	ニ	2	_
2,6-Dinitrotoluene	QN	_	8		Q	(13) [1.287514]	9	(0.45) [0.044682]
2-Chloronaphthalene	2		9	ニ	QN	_	2	(0.45) [0.044682]
2-Chlorophenol	8	_	2	ニ	Q	(13) [1.287514]	9	(0.45) [0.044682]
2-Methylnaphthalene	R	(1.3) [0.131061]	15	(13) [1.300390]	20	(13) [1.287514]	8	(0.45) [0.044682]
2-Methylphenol(o-cresol)	S		2	(13) [1.300390]	ON	(13) [1.287514]	Q	(0.45) [0.044682]
2-Nitroaniline	R		2	_	ON	(64) [1.287514]	Q	(2.2) [0.044682]
2-Nitrophenol	2	(1.3) [0.131061]	2	(13) [1.300390]	QN	(13) [1.287514]	2	(0.45) [0.044682]
3,3'-Dichlorobenzidine	Q		2	ニ	QN	(26) [1.287514]	2	(0.89) [0.044682]
3-Nitroaniline	Q		2	_	Q	(64) [1.287514]	R	(2.2) [0.044682]
4,6-Dinitro-2-methylphenol	Q	(6.6) [0.131061]	S	(65) [1.300390]	QN	(64) [1.287514]	QN	(2.2) [0.044682]
			<u>}</u>	_	<u>}</u>			[1:0/02:1]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

[0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682] [0.044682][0.044682] [0.044682] [0.044682] [0.044682] [0.044682] (2.2)(0.45)(0.45)[0.45)(2.2)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(2.2)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)06-SB-01-02 06-SB-01 10 - 12문 문 S [1.287514][1.287514][1.287514][1.287514] [1.287514][1.287514] [1.287514][1.287514][1.287514][1.287514][1.287514] [1.287514] [1.287514] [1.287514] [1.287514] [1.287514] [1.287514][1.287514][1.287514][1.287514] [1.287514][1.287514] 1.287514] [1.287514] [1.287514][1.287514][1.287514] [1.287514] [1.287514] 06-DS-02 Dup of 06-SB-01-01 (13)(13)(13)(64) (64) (13)(13) (13) (13)(13) (13)(13)(13) (64) (13)(13)(13)(13)(13)(13)(13)(13)(13)(13) 13) (13)(13)06-SB-01 2 2 9 2 2 [1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390][1.300390] [1.300390][1.300390][1.300390][1.300390][1.300390] [1.300390] [1.300390][1.300390][1.300390] [1.300390][1.300390][1.300390][1.300390] [1.300390][1.300390]BEG. DEPTH - END DEPTH (FT.) LOCATION ID (13)(13)(13)(13)65) (13)65) 13) (13)(13)(13)(13)(13)65) (13)(13)(13)SAMPLE ID 06-SB-01-01 13) 13) 13) 13) 13) (13)(13)(13)(13)SITE ID 6.5 - 906-SB-01 90 0.92 J 0.73 J 2 2 S 2 오 2 2 2 S 2 윤 S 2 2 윤 2 2 2 2 [0.131061][0.131061] [0.131061][0.131061] [0.131061] [0.131061] [0.131061] [0.131061][0.131061][0.131061][0.131061] [0.131061] [0.131061] [0.131061] [0.131061] [0.131061] [0.131061][0.131061] [0.131061] [0.131061] [0.131061][0.131061] [0.131061]0.131061 0.131061] [0.131061] (9.9)(6.6)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(6.6)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)06-MW-04-02 06-MW-04 S S 2 9 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether Hexachlorocyclopentadiene 4-Methylphenol(p-cresol) 4-Chloro-3-methylphenol Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene 3enzo(k)fluoranthene **Butylbenzylphthalate** Di-n-octylphthalate Hexachlorobutadiene Benzo(a)anthracene Dimethylphthalate **Hexachlorobenzene** Dibutylphthalate Diethylphthalate Benzo(a)pyrene Acenaphthylene 4-Nitroaniline Benzyl alcohol 4-Nitrophenol Acenaphthene Benzoic acid Dibenzofuran Fluoranthene Anthracene PARAMETER Chrysene Fluorene

NA = Not Applicable

= Not Detected

[] = Factor

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

	·	90				90		90
	90	06-MW-04 06-MW-04-02	-90 S-90	06-SB-01 06-SB-01-01	.90 .06-DS-02 Dur	-SB-01 n of 06-SB-01-01	C	06-SB-01 06-SB-01-02
PARAMETER		4 - 6	9.		9	6-2-9	•	10 - 12
Hexachloroethane	CN	(13) [0.131061]	C	[13] [1 3002001]	:	100 [10]		
Indeno(1.2.3-cd)byrene	Q Q	(1.3) [0.131061]	2 2		2 5		2 5	(0.45) [0.044662]
Isophorone	Q N	(1.3) [0.131061]	2		2 5		2 5	(0.45) [0.044662]
N-Nitrosodiphenylamine	2	(1.3) [0.131061]	2		2	(13) [1.287514]	2 8	(0.45) [0.044682] (0.45) [0.044682]
N-Nitrosodipropylamine	ON	(1.3) [0.131061]	QN QN	_	QN		2	
Naphthalene	QN	(1.3) [0.131061]	3.2 J		4.6 J	(13) [1.287514]	9	(0.45) [0.044682]
Nitrobenzene	QN	(1.3) [0.131061]	ON	(13) [1.300390]	QN		2	(0.45) [0.044682]
Pentachlorophenol	QN	(6.6) [0.131061]	ND		ON		9	(2.2) [0.044682]
Phenanthrene	QN	(1.3) [0.131061]	QN	(13) [1.300390]	ON		S	(0.45) [0.044682]
Phenol	QN	(1.3) [0.131061]	Q.	(13) [1.300390]	ON	(13) [1.287514]	QN	(0.45) [0.044682]
Pyrene	QN	(1.3) [0.131061]	ON	(13) [1.300390]	ND		9	(0.45) [0.044682]
bis(2-Chloroethoxy)methane	ON	(1.3) [0.131061]	QN	(13) [1.300390]	ND		S	(0.45) [0.044682]
bis(2-Chloroethyl)ether	QN	(1.3) [0.131061]	QN	(13) [1.300390]	QN	_	QN	(0.45) [0.044682]
bis(2-Chloroisopropyl)ether	ON	(1.3) [0.131061]	QN	(13) [1.300390]	QN		S	(0.45) [0.044682]
bis(2-Ethylhexyl)phthalate	QN	(1.3) [0.131061]	3.1 J	(13) [1.300390]	0.82 J		Q.	(0.45) [0.044682]
p-Chloroaniline	QN	(1.3) [0.131061]	Q	(13) [1.300390]	QN	(13) [1.287514]	QN	

			LO S BEG. DEPTH	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)					
		90		90		90		90	
	J	06-SB-02	90	06-58-02	90	06-SD-01	ō	06-SD-02	
	96	06-SB-02-01	-90	06-SB-02-02	-90	06-50-01-01	·90	06-SD-02-01	
PARAMETER 		2 - 4		5 - 7	0	- 0.5		0 - 0.5	! ! !
SW8015MEMP - Nonhalogenated Volatile Organics	ile Organics	(mg/kg)							
Diesel Range Organics (2)	ON	(20) [101]	56	(25) [126.6]	47000	(5000) [24900]	07 42	(25)	[123]
Gasoline Range Organics (2)	37	(8.8) [98]	43					(12)	[123]
SW8080 - Organochlorine Pesticides and PCBs		(ug/kg)					•		1
4,4'-000	2.8	(0.34) [34.28179]	35	(0.42) [42.22972]	57	(12) [1204.819]	9] 46	(0.41) [41.	[41.13533]
4,4'-DDE	2.5		11	(0.42) [42.22972]	17	(12) [1204.819]	9] 5	-	[41.13533]
4,4'-DDT	20		က	(0.84) [42.22972]	15 KJ	(24) [1204.819]	9] 18		[41.13533]
Aldrin	QN	_	0.578	(0.42) [42.22972]	ND	(12) [1204.819	9] 0.089 KJB		[41.13533]
Chlordane	QN		QN	(2.1) [42.22972]	ND	(60) [1204.819]	J ND		[41.13533]
Uleldrin [] []	QN	_	QN	(0.42) [42.22972]	8.8 J	(12) [1204.819]	J ND	(0.41) [41.	[41.13533]
Endosulfan I	0.036 PJB		QN	(0.42) [42.22972]	ON	(12) [1204.819]	J ND		[41.13533]
tndosultan II	Q	_	QN	(1.3) [42.22972]	31 KJ	(36) [1204.819]) 0.97 KJB	(1.2) [41.	[41.13533]
Endosulfan Sulfate	1.3 JB	_	1.5 JB	(2.1) [42.22972]	47 KJ	(60) [1204.819	J 1.7 KJB		[41.13533]
Endrin	2.5 B	_	2.9	(0.42) [42.22972]	ND	(12) [1204.819	ON [i		[41.13533]
Endrin Aldehyde	QN		ND		QN	(24) [1204.819]) 0.23 KJB		[41.13533]
Heptachlor	ON 1	_	0.27 KJB	(0.42) [42.22972]	1.6 KJ	(12) [1204.819]	ON [[41.13533]
Heptachlor epoxide	QN :		ND	_	1.2 PJB	(12) [1204.819]	J 0.048 PJB	(0.41) [41.1	[41.13533]
Methoxychlor pre 1016	9		, QN		ND] 0.078 KJ	_	[41.13533]
PCD-1016	2 9		Q :		QN	_	ON [(4.1) [41.1	[41.13533]
FCB-1221 DCB-1232	2 9		QN :		ON		J ND	(8.2) [41.1	[41.13533]
FCB-1232 BCB-1343	G A		QV :		QN				[41.13533]
FCB-1242	<u> </u>		ON !		Q		ON [(4.1) [41.1	41.13533]
FCB-1248	2 2		QN :	. د	S		ON [(4.1) [41.1	[41.13533]
PCB-1234	ON I		QN :		ON	_	J ND	(8.2) [41.1	[41.13533]
FCB-1200	Q i		S :		QN] ND	(8.2) [41.1	[41.13533]
loxaphene Jirt, pur	ON 4		Q :	_	QN	_] ND	(21) [41.1	41.13533]
alpha-bhc hota-pur	ND .		ON .		16] ND	(0.41) [41.1	[41.13533]
שובים שוויי	0.2 KJ		0.18 PJ		QN] 0.32 KJB		41.13533]
delta-bHC	QN	(0.34) [34.28179]	S	(0.42) [42.22972]	QN	(12) [1204.819]	J ND	(0.41) [41.1	[41.13533]

Compiled: 23 Mar

[] = Factor () = Detection Limit

- Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

PARAMETER gamma-BHC SW8240 - Volatile Organics (ug/kg) 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane	-90	÷ ,	-90	06-SB-02 06-SB-02-02	C	06SD-01	ŏ	06-SD-02
			?-90	フローロに	ర	06-SD-01-01	90	06-SD-02-01
		2 - 4		5 - 7	 	0 - 0.5	 ! ! ! ! ! ! !	0 - 0.5
	8	(0.34) [34.28179]	Q	(0.42) [42.22972]	15	(12) [1204.819]	0.86 B	(0.41) [41.13533]
 1,1-Trichloroethane 1,2,2-Tetrachloroethane 1,2-Trichloroethane 1,1-Dichloroethane 	_							
 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 	QN	(5.1) [1.028806]	ND	(6.3) [1.267427]	QN	(3100) [626.5664]	ND	(6.2) [1.239157]
1,1,2-Trichloroethane 1,1-Dichloroethane	QN	(5.1) [1.028806]	QN	(6.3) [1.267427]	QN	(3100) [626.5664]	N	
1,1-Dichloroethane	ON	(5.1) [1.028806]	QV	(6.3) [1.267427]	QN	(3100) [626.5664]	N	
	ND	(5.1) [1.028806]	ND	(6.3) [1.267427]	QN	(3100) [626.5664]	QN	
1,1-Dichloroethene	N	(5.1) [1.028806]	QN	(6.3) [1.267427]	QN	(3100) [626.5664]	QN	(6.2) [1.239157]
1,2-Dichloroethane	N	(5.1) [1.028806]	N _O	(6.3) [1.267427]	QN	(3100) [626.5664]	ND	(6.2) [1.239157]
1,2-Dichloropropane	QN	(5.1) [1.028806]	QN	(6.3) [1.267427]	QN	(3100) [626.5664]	ND	(6.2) [1.239157]
2-Chloroethyl vinyl ether	ON	(10) [1.028806]	QN	(13) [1.267427]	ND	(6300) [626.5664]	QN	(12) [1.239157]
2-Hexanone	ON	(51) [1.028806]	ND	(63) [1.267427]	1400 J	(31000) [626.5664]	N	(62) [1.239157]
4-Methyl-2-pentanone(MIBK)	QN	(51) [1.028806]	ON	(63) [1.267427]	NO	(31000) [626.5664]	ND	(62) [1.239157]
Acetone	1.6 JB	(100) [1.028806]	3.5 JB	(130) [1.267427]	ON	(63000) [626.5664]	ON	(120) [1.239157]
Benzene	ND	(5.1) [1.028806]	QN	(6.3) [1.267427]	ON	(3100) [626.5664]	QN	(6.2) [1.239157]
Bromodichloromethane	ON	(5.1) [1.028806]	QN	(6.3) [1.267427]	QN	(3100) [626.5664]	QN QN	(6.2) [1.239157]
Bromomethane	ON	(10) [1.028806]	ON	(13) [1.267427]	QN	(6300) [626.5664]	QN	(12) [1.239157]
Carbon disulfide	QN	(5.1) [1.028806]	QN	(6.3) [1.267427]	QN	(3100) [626.5664]	ND	(6.2) [1.239157]
Carbon tetrachloride	S.	_	QN	(6.3) [1.267427]	QN	(3100) [626.5664]	QN	(6.2) [1.239157]
Chlorobenzene	QN	(5.1) [1.028806]	QN	(6.3) [1.267427]	QN	(3100) [626.5664]	ND	(6.2) [1.239157]
Chloroethane	Q.	(10) [1.028806]	Q.	(13) [1.267427]	QN	(6300) [626.5664]	Q	(12) [1.239157]
Chloroform	Q.	(5.1) [1.028806]	NO	(6.3) [1.267427]	QN	(3100) [626.5664]	QN	(6.2) [1.239157]
Chloromethane	Q.	(10) [1.028806]	ON	(13) [1.267427]	QN	(6300) [626.5664]	QN	(12) [1.239157]
Dibromochloromethane	Q	(5.1) [1.028806]	Q	(6.3) [1.267427]	QN	(3100) [626.5664]	QN	(6.2) [1.239157]
Ethyl benzene	QN	(5.1) [1.028806]	ON	(6.3) [1.267427]	350 J	(3100) [626.5664]	NO	(6.2) [1.239157]
Methyl ethyl ketone	N	(100) [1.028806]	ON	(130) [1.267427]	ON	(63000) [626.5664]	QN	(120) [1.239157]
Methylene chloride	3.3 JB	(5.1) [1.028806]	9.78	(6.3) [1.267427]	ND	(3100) [626.5664]	QN	(6.2) [1.239157]
Styrene	QV	(5.1) [1.028806]	ND	(6.3) [1.267427]	QN	(3100) [626.5664]	ND	(6.2) [1.239157]
Tetrachloroethene	QV	(5.1) [1.028806]	Q	(6.3) [1.267427]	QN	(3100) [626.5664]	QN	(6.2) [1.239157]
Toluene	ND	(5.1) [1.028806]	ON.	(6.3) [1.267427]	1000	(3100) [626.5664]	QN	(6.2) [1.239157]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

				SITE ID				
				LOCATION ID				
			BEG. DEF	SAMPLE ID BEG. DEPTH - END DEPTH (FT.)				
		90		.00		90		90
	J	06-58-02		06-58-02		06-SD-01		06-50-02
	90	06-SB-02-01	0	06-SB-02-02		06-SD-01-01	Ŭ	06-SD-02-01
PARAMETER 	 	2 - 4	; ; ; ;	5 - 7	1	0 - 0.5	1	0 - 0.5
Tribromomethane(Bromoform)	ON	(5.1) [1.028806]	QV	(6.3) [1.267427]	ON	(3100) [626,5664]	Q	[73162]
Trichloroethene	ON	(5.1) [1.028806]	QN	(6.3) [1.267427]	QN	(3100) [626,5664]	QN	
Vinyl acetate	ON	(5.1) [1.028806]	Q	(6.3) [1.267427]	QN	(3100) [626.5664]	QN	
Vinyl chloride	QN	(10) [1.028806]	2	(13) [1.267427]	2	(6300) [626.5664]	QN	
Xylenes	ON		2	(6.3) [1.267427]	5800	(3100) [626.5664]	QN	(6.2) [1.239157]
cis-1,3-Dichloropropene	Q.		S	(6.3) [1.267427]	QN	(3100) [626.5664]	R	(6.2) [1.239157]
trans-1,2-Dichloroethene	S	(5.1) [1.028806]	8	(6.3) [1.267427]	Q	(3100) [626.5664]	Q	
trans-1,3-Dichloropropene	QN	(5.1) [1.028806]	N	(6.3) [1.267427]	QN	(3100) [626.5664]	QN	
SW8270 - Semivolatile Organics (mg/kg)	(g)							
1,2,4-Trichlorobenzene	ON	(1) [0.102368]	QN	(0.42) [0.042121]	QN	(12) [1.171152]	9	(0.35) [0.035326]
1,2-Dichlorobenzene	QN	(1) [0.102368]	N	(0.42) [0.042121]	S	(12) [1.171152]	S	
1,3-Dichlorobenzene	QN	(1) [0.102368]	ON	(0.42) [0.042121]	N N	(12) [1.171152]	2	
1,4-Dichlorobenzene	N	(1) [0.102368]	QN	(0.42) [0.042121]	Q.	(12) [1.171152]	S	
2,4,5-Trichlorophenol	Q.	(1) [0.102368]	QN	(0.42) [0.042121]	2	[1.171152]	Q	
2,4,6-Trichlorophenol	9	(1) [0.102368]	ON	(0.42) [0.042121]	QN	(12) [1.171152]	QN	
2,4-Dichlorophenol	N		QN	(0.42) [0.042121]	QN	(12) [1.171152]	QN	_
2,4-Dimethylphenol	Q		QN	(0.42) [0.042121]	QN	(12) [1.171152]	QN	(0.35) [0.035326]
2,4-Dinitrophenol	2		Q.		N	(59) [1.171152]	QN	(1.8) [0.035326]
Z,4-Dinitrotoluene	2		QN	(0.42) [0.042121]	QN	(12) [1.171152]	ON	(0.35) [0.035326]
2,6-Dinitrotoluene	2	_	QN		Q	(12) [1.171152]	ND	(0.35) [0.035326]
2-Chloronaphthalene	2		R	(0.42) [0.042121]	QN	(12) [1.171152]	QN	(0.35) [0.035326]
2-Chlorophenol	2		Q.	(0.42) [0.042121]	Q	(12) [1.171152]	ON	(0.35) [0.035326]
2-Methylnaphthalene	S S		N	(0.42) [0.042121]	24	(12) [1.171152]	QN	(0.35) [0.035326]
2-Methylphenol(o-cresol)	Q.	(1) [0.102368]	R	(0.42) [0.042121]	Q	(12) [1.171152]	QN	(0.35) [0.035326]
2-Nitroaniline	Q	(5.1) [0.102368]	S	(2.1) [0.042121]	Q	(59) [1.171152]	QN	(1.8) [0.035326]
2-Nitrophenol	S	(1) [0.102368]	R	(0.42) [0.042121]	QN	(12) [1.171152]	8	(0.35) [0.035326]
3,3'-Dichlorobenzidine	Q.		S	(0.84) [0.042121]	Q	(23) [1.171152]	Q.	(0.71) [0.035326]
3-Nitroaniline	QN	(5.1) [0.102368]	ON	(2.1) [0.042121]	Q.	(59) [1.171152]	Q.	
4,6-Dinitro-2-methylphenol	ND	(5.1) [0.102368]	QV	(2.1) [0.042121]	QN	(59) [1.171152]	R	

NA = Not Applicable

Not Detected

[] = Factor

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

and the state of t				SITE ID				
				LOCATION 10 SAMPLE 10				
			BEG. DEP	BEG. DEPTH - END DEPTH (FT.)				
		90		90		90		90
	U	06-58-02		06-58-02	·90	06-50-01		06-50-02
	90	06-58-02-01	0	06-58-02-02	-90	06-50-01-01	ō	06-SD-02-01
PARAMETER 		2 - 4		5 - 7	0	- 0.5	1	0 - 0.5
4-Bromophenyl phenyl ether	ND	(1) [0.102368]	Q	(0.42) [0.042121]	QN	(12) [1.171152]	QN	(0.35) [0.035326]
4-Chloro-3-methylphenol	QN	(1) [0.102368]	Q	(0.42) [0.042121]	ND		QN	
4-Chlorophenyl phenyl ether	ON	(1) [0.102368]	Q	(0.42) [0.042121]	ON		Q	
4-Methylphenol(p-cresol)	QN	(1) [0.102368]	Q.	(0.42) [0.042121]	QN	(12) [1.171152]	QN	(0.35) [0.035326]
4-Nitroaniline	QN		8		ND	(59) [1.171152]	QN	(1.8) [0.035326]
4-Nitrophenol	QN		2	_	QN	(59) [1.171152]	QN	(1.8) [0.035326]
Acenaphthene	Q		Q	(0.42) [0.042121]	ND	(12) [1.171152]	QN	(0.35) [0.035326]
Acenaphthylene	QN		QN		ND	(12) [1.171152]	QN	(0.35) [0.035326]
Anthracene	ND		2		QN	(12) [1.171152]	QN	(0.35) [0.035326]
Benzo(a)anthracene	Q		2	(0.42) [0.042121]	ON	(12) [1.171152]	Q.	(0.35) [0.035326]
Benzo(a)pyrene	ND	_	Q	(0.42) [0.042121]	ON	(12) [1.171152]	Q.	(0.35) [0.035326]
Benzo(b)fluoranthene	QN	_	2	(0.42) [0.042121]	QN	(12) [1.171152]	QN	(0.35) [0.035326]
Benzo(g,h,i)perylene	QN	_	R		QN	(12) [1.171152]	QN	(0.35) [0.035326]
Benzo(k)fluoranthene	QN	_	Q	_	ND	(12) [1.171152]	QN	(0.35) [0.035326]
Benzoic acid	ND	_	Q	_	Q.	_	QN	(1.8) [0.035326]
Benzyl alcohol	ON		Q		Q		QN	(0.35) [0.035326]
Butylbenzylphthalate	Q	_	QN	_	ND	(12) [1.171152]	QN	(0.35) [0.035326]
Chrysene	QN	_	S	_	QN	(12) [1.171152]	Q	(0.35) [0.035326]
Di-n-octylphthalate	Q	_	9	_	Q.		QN	(0.35) [0.035326]
Dibenz(a,h)anthracene	ND		2	_	Q	(12) [1.171152]	QN	(0.35) [0.035326]
Dibenzofuran	QN	_	9		N Q	(12) [1.171152]	QN	(0.35) [0.035326]
Dibutylphthalate	ON	_	8	_	ND	(12) [1.171152]	Q	(0.35) [0.035326]
Diethylphthalate	QN	_	S		ON	(12) [1.171152]	9	(0.35) [0.035326]
Dimethylphthalate	Q	_	Q.	_	QN	(12) [1.171152]	Q	(0.35) [0.035326]
Fluoranthene	QN		Q		Q	(12) [1.171152]	2	(0.35) [0.035326]
Fluorene	Q	_	Q		2.6 J	(12) [1.171152]	QN	(0.35) [0.035326]
Hexachlorobenzene	Q.	_	N		Q	(12) [1.171152]	Q	(0.35) [0.035326]
Hexachlorobutadiene	Q		2		QN	_	2	(0.35) [0.035326]
Hexachlorocyclopentadiene	Q	(1) [0.102368]	Q	(0.42) [0.042121]	QN	(12) [1.171152]	Q	(0.35) [0.035326]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

# 000000000000000000000000000000000000			06 06-58-02	BEG. DEI	LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) 06 06-SB-02		06 06-50-01		
	84. 1			1 1 1 1 1	06-SB-02-02 5 - 7	0	0 - 0.5		
ON O	loroethane	ND	(1) [0.102368]	QN	(0.42) [0.042121]	QN	(12) [1	[1.171152]	.171152] ND
ON O	(1,2,3~cd)pyrene	QN	(1) [0.102368]	Q	(0.42) [0.042121]	QN	(12) [1.	[1.171152]	171152] ND
ON O	rone	QN	(1) [0.102368]	2	(0.42) [0.042121]	ON	(12) [1.]	[1.171152]	171152] ND
O	osodiphenylamine	Q N	(1) [0.102368]	9	(0.42) [0.042121]	QN	(12) [1.1	1.171152]	71152] ND
O O O O O O O O O O O O	osodipropylamine	QN	(1) [0.102368]	R	(0.42) [0.042121]	Q.	(12) [1.1]	[1.171152]	71152] ND
O O O O O O O O O	a lene	QN	(1) [0.102368]	S	(0.42) [0.042121]	10 J	(12) [1.17	[1.171152]	1152] NO
0	Jenzene	QN	(1) [0.102368]	QN	(0.42) [0.042121]	Q.	(12) [1.17	[1.171152]	_
O O O O O O O	chlorophenol	QN	(5.1) [0.102368]	9	(2.1) [0.042121]	Q	(59) [1.17	[1.171152]	1152] ND
	ıthrene	QN	(1) [0.102368]	QN	(0.42) [0.042121]	9	(12) [1.171152]	1152]	1152] ND
		QN	(1) [0.102368]	N	(0.42) [0.042121]	Q.	(12) [1.171152]	1152]	
Q Q Q Q Q Q	0	QN	(1) [0.102368]	N S	(0.42) [0.042121]	QN	(12) [1.171152	1152]	1152] ND
ND (1) (1) (1) (1) (1) (1) (1) (1)	-Chloroethoxy)methane	QN	(1) [0.102368]	R	(0.42) [0.042121]	N N	(12) [1.171152]	152]	.152] ND
ND (1) (1) (1) (1)	-Chloroethyl)ether	QN	(1) [0.102368]	QN	(0.42) [0.042121]	NO	(12) [1.171152	152]	152] ND
ND (1) ND (1)	-Chloroisopropyl)ether	ND	(1) [0.102368]	Q	(0.42) [0.042121]	N ON	(12) [1.171152]	[25]	152] ND
ND (1)	Ethylhexyl)phthalate	QN	(1) [0.102368]	QN	(0.42) [0.042121]	ND ND	(12) [1.171152]	.52]	
	roaniline	ON	(1) [0.102368]	QN	(0.42) [0.042121]	Q	(12) [1.171152]	52]	52] ND

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

								3			00	
	0	06-55-01		3-90	06-55-02		-90	06-55-03		-90	06-55-04	
	90	06-SS-01-01		3S-90	06-55-02-01		S-90	06-55-03-01		3-90	06-55-04-01	
PARAMETER		0 - 0.5		. 0	0 - 0.5		0	- 0.5		0	0 - 0.5	
T. L. M. T. T. L. M. T.		1										
SW8015MEMP - Nonhalogenated Volatile Urganics	le Urganics	(mg/kg)				,						
Diesel Range Organics (2)	890	(100)	[521]	1600	(210)	[1060]	130	(20)	[101]	23 B	(20)	[102]
Gasoline Range Organics (2)	14 B	(6.6)	[66]	ON	(10)	[105]	11 B	(10)	[101]	QN	(9.8)	[98.3]
SW8080 - Organochlorine Pesticides and PCBs		(ug/kg)					-					
4,4'-DDD	14	(0.35) [35	[35.03854]	120	(1.1)	[105.6300]	09	(1) [1	[101.7708]	130 P	(3.4)	[340.4834]
4,4'-DDE	QN	(0.35) [35	[35.03854]	12	(1.1)	105.6300]	9.1	(1) [1	[101.7708]	140	(3.4)	[340.4834]
4,4'-DDT	24	(0.7) [35	[35.03854]	130	(2.1)	[105.6300]	170	(2) [1	[101.7708]	1200	(34)	1702.417]
Aldrin	ND	(0.35) [35	[35.03854]	0.63 KJB	(1.1)	[105,6300]	QN	(1) [1	[101.7708]	0.79 B	(0.34)	34.04834]
Chlordane	QN	(1.8) [35	[35.03854]	ND	(5.3)	[105.6300]	QN	(5.1) [1	[101.7708]	ON	(1.7)	[34.04834]
Dieldrin	ON	(0.35) [35	[35.03854]	QN	(1.1)	[105.6300]	QN	(1) [1	[101.7708]	QN	(0.34)	[34.04834]
Endosulfan I	ND	(0.35) [35	35.03854]	QN	(1.1)	[105.6300]	ND	(1)	[101.7708]	N	(0.34)	[34.04834]
Endosulfan II	0.32 PJB	(1.1) [35	[35.03854]	3.4	_	[105.6300]	2.3 KJ	(3.1) [1	[101.7708]	QN	(1)	[34.04834]
Endosulfan Sulfate	QN	(1.8) [35	[35.03854]	5.1 KJ	(2.3)	[105.6300]	ON	(5.1) [1	[101.7708]	1.9 PB	(1.7)	[34.04834]
Endrin	2.6 B	(0.35) [35	[35.03854]	N	_	[105.6300]	ON	(1) [1	[101.7708]	QV Q	(0.34)	[34.04834]
Endrin Aldehyde	0.038 PJB	(0.7) [35	[35.03854]	0.61 KJB	(2.1)	[105.6300]	0.62 JB	(2) [1	[101.7708]	1.7	(0.68)	[34.04834]
Heptachlor	0.42 B	(0.35) [35	[35.03854]	0.23 PJB		[105.6300]	0.069 PJB	(1) [1	[101.7708]	0.098 KJB	(0.34)	[34.04834]
Heptachlor epoxide	0.618	(0.35) [35	35.03854]	1.9 PB	_	[105.6300]	NO	(1) [1	[101.7708]	0.32 PJB	(0.34)	[34.04834]
Methoxychlor	QN	_	35.03854]	QN	(2.3)	[105.6300]	2.8 KJ	_	[101.7708]	6.6	(1.7)	[34.04834]
PCB-1016	QN	_	35.03854]	Q	_	[105.6300]	QN	_	101.7708]	ON	(3.4)	[34.04834]
PCB-1221	ND	_	[35.03854]	ND	(21)	[105.6300]	QN	(20) [1	[101.7708]	ON	(6.8)	[34.04834]
PCB-1232	Q	(2) (3)	35.03854]	QN	(21)	[105, 6300]	ON	(20) [1	[101.7708]	QN	(6.8)	[34.04834]
PCB-1242	QN	_	[35.03854]	ND	(11)	[105.6300]	QN	(10) [1	[101.7708]	ON	(3.4)	[34.04834]
PCB-1248	ON	(3.5) [32	35.03854]	ON	(11)	[105, 6300]	Q.	(10) [1	[101.7708]	QN	(3.4)	[34.04834]
PCB-1254	QN	(7) [35	35.03854]	ON	(21)	105.6300]	S	(20) [1	[101.7708]	ND	(6.8)	[34.04834]
PCB-1260	QN	(7) [35	[35.03854]	ON	(21)	105.6300]	N	(20) [1	[101.7708]	QN	(6.8)	34.04834]
Toxaphene	ON	(18) [35	[35.03854]	ON	(23)	[105.6300]	ND	(51) [1	[101.7708]	QN	(17)	[34.04834]
alpha-BHC	0.58 PB	(0.35) [35	[35.03854]	ON	(1.1)	[105.6300]	ND	(1) [1	[101.7708]	0.64 B	(0.34)	[34.04834]
beta-BHC	QN	(0.35) [35	[35.03854]	QN	(1.1)	[105.6300]	N	(1) [1	[101.7708]	ON	(0.34)	[34.04834]
delta-BHC	0.88.8	(0.35) [35	[35,03854]	Q	(1.1)	[105,6300]	CN	(1)	101,77081	0.2 P.JB	(0.34)	[34 04834]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

(0.34) [34.04834] 5.1) [1.022494] [1.022494] [1.022494][1.022494][1.022494][1.022494][1.022494][1.022494][1.022494][1.022494] [1.022494] [1.022494] [1.022494]1.022494 [1.022494] [1.022494] [1.022494] [1.022494][1.022494][1.022494]1.022494 [1.022494] [1.022494][1.022494][1.022494][1.022494] (5.1)(5.1)(5.1)(10)(51)(51)(100)(5.1)(10)(5.1)(5.1)(5.1)(5.1)(10)(5.1)(5.1)(5.1)(5.1)(10)(100)06-SS-04-01 0 - 0.506-55-04 8 6.1 B 0.74 2 S S S S 욷 2 (1) [101.7708] [1.032951][1.032951] [1.032951] [1.032951][1.032951][1.032951] [1.032951] [1.032951] [1.032951] [1.032951][1.032951][1.032951][1.032951] [1.032951][1.032951] [1.032951][1.032951][1.032951][1.032951] [1.032951][1.032951] 1.032951] [1.032951][1.032951][1.032951](2.5) (5.2)(5.2)(5.2)(5.2)(5.2)(10)(5.2)(10)(52)(52)(100)(5.2)(5.2)(10)(5.2)(10) (5.2)(5.2)(100)(5.2)(5.2)(5.2)06-55-03-01 0 - 0.506-55-03 2 일 및 일 욷 99 2 (1.1) [105.6300] [1.061571][1.061571][1.061571][1.061571] [1.061571] 1.061571] [1.061571][1.061571][1.061571] [1.061571][1.061571][1.061571] [1.061571] [1.061571] [1.061571][1.061571]1.061571] [1.061571][1.061571] [1.061571] [1.061571] [1.061571][1.061571] [1.061571][1.061571][1.061571] BEG. DEPTH - END DEPTH (FT.) [1.061571]LOCATION ID (5.3)(5.3)(5.3)5.3) (5.3)(5.3)(11) (23) (23) (110)(5.3)(11) (5.3)(5.3)(5.3)(5.3)(11) (5.3)(11)(5.3)(5.3)(110)5.3) SAMPLE ID (5.3)06-55-02-01 SITE ID 0 - 0.506-55-02 S 2 2 2 2 2 2 2 2 2 99 2 2 9 2 2 S (0.35) [35.03854] [1.052631] [1.052631][1.052631][1.052631][1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] 1.052631] [1.052631] [1.052631] [1.052631][1.052631][1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] [1.052631] (5.3)(5.3)(5.3)(53)(110)(5.3)(11) (5.3)(5.3)(5.3)(5.3)(11) (23) (5.3)(11)(5.3)(11) (5.3)(110)06-SS-01-01 06-55-01 0 - 0.590 S W8240 - Volatile Organics (ug/kg) 4-Methyl-2-pentanone(MIBK) 1,1,2,2-Tetrachloroethane 2-Chloroethyl vinyl ether 1,1,1-Trichloroethane 1,1,2-Trichloroethane Bromodichloromethane Carbon tetrachloride Dibromochloromethane 1,2-Dichloropropane 1,1-Dichloroethane ,1-Dichloroethene ,2-Dichloroethane Methyl ethyl ketone Methylene chloride etrachloroethene Carbon disulfide Chlorobenzene Chloromethane Ethyl benzene Chloroethane Bromomethane 2-Hexanone Chloroform PARAMETER gamma-BHC Acetone 3enzene Styrene oluene

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH (FT.)

		90		90		90		90
)	06-SS-01	_	06-SS-02	J	06-55-03		06-53-04
PARAMETER	ŏ	06-SS-01-01 0 - 0.5	ō	06-SS-02-01 0 - 0 5	ŏ	06-SS-03-01 0 - 0 5	ō	06-SS-04-01
			1					, ;
Tribromomethane(Bromoform)	S N	(F 3) [1 052631]	Q	[123130 1] (8 3)	Ş	Ξ	4	
Tx: ch10x02+t0x0	2 2		2 2		2 :		2	
Harri controlle	2 4		2 5		מן:	_ :	2	
Vinyl acetate	ON	_	2		Q	(5.2) [1.032951]	S	(5.1) [1.022494]
Vinyl chloride	QN	(11) [1.052631]	ND	(11) [1.061571]	QN	(10) [1.032951]	QN	(10) [1.022494]
Xylenes	ON	(5.3) [1.052631]	N	(5.3) [1.061571]	Q.	(5.2) [1.032951]	N N	(5.1) [1.022494]
cis-1,3-Dichloropropene	ON	(5.3) [1.052631]	ND	(5.3) [1.061571]	QN	(5.2) [1.032951]	S	(5.1) [1.022494]
trans-1,2-Dichloroethene	ON	(5.3) [1.052631]	S	(5.3) [1.061571]	ND		9	_
trans-1,3-Dichloropropene	QN	(5.3) [1.052631]	2	(5.3) [1.061571]	ND		S	
SW8270 - Semivolatile Organics	(mg/kg)						!	-
1,2,4-Trichlorobenzene	QN	(0.35) [0.035026]	QN	(1.1) [0.105106]	Q	(1) [0.102171]	S	(0.34) [0.034083]
1,2-Dichlorobenzene	QN	(0.35) [0.035026]	QN	(1.1) [0.105106]	Q.	(1) [0.102171]	S	
1,3-Dichlorobenzene	Q	(0.35) [0.035026]	QN	(1.1) [0.105106]	QN		Q	
1,4-Dichlorobenzene	QN	(0.35) [0.035026]	Q.	(1.1) [0.105106]	QN	(1) [0.102171]	S	
2,4,5-Trichlorophenol	QN	(0.35) [0.035026]	Q	(1.1) [0.105106]	QN	(1) [0.102171]	S	(0.34) [0.034083]
2,4,6-Trichlorophenol	QN	(0.35) [0.035026]	QN	(1.1) [0.105106]	QN	(1) [0.102171]	S	(0.34) [0.034083]
2,4-Dichlorophenol	QN	(0.35) [0.035026]	QN	(1.1) [0.105106]	QN	(1) [0.102171]	QN	(0.34) [0.034083]
2,4-Dimethylphenol	ON	(0.35) [0.035026]	QN	(1.1) [0.105106]	Ø	(1) [0.102171]	QN	(0.34) [0.034083]
2,4-Dinitrophenol	ON	_	Q	(5.3) [0.105106]	Q	(5.1) [0.102171]	Q.	(1.7) [0.034083]
2,4-Dinitrotoluene	QN		S		N N	(1) [0.102171]	S	(0.34) [0.034083]
2,6-Dinitrotoluene	ON.		S	(1.1) [0.105106]	Q	(1) [0.102171]	S	(0.34) [0.034083]
2-Chloronaphthalene	9		S	(1.1) [0.105106]	QN	(1) [0.102171]	QN	(0.34) [0.034083]
2-Chlorophenol	QN		2	_	S	(1) [0.102171]	S	(0.34) [0.034083]
2-Methylnaphthalene	0.021 J	(0.35) [0.035026]	S	(1.1) [0.105106]	ON	(1) [0.102171]	Q.	(0.34) [0.034083]
2-Methylphenol(o-cresol)	QN	(0.35) [0.035026]	Q	(1.1) [0.105106]	ON	(1) [0.102171]	Q	(0.34) [0.034083]
2-Nitroaniline	QN	_	S	(5.3) [0.105106]	2	(5.1) [0.102171]	Q	(1.7) [0.034083]
2-Nitrophenol	QN	_	2	(1.1) [0.105106]	QN	(1) [0.102171]	2	(0.34) [0.034083]
3,3'-Dichlorobenzidine	QN	_	2	(2.1) [0.105106]	2	(2) [0.102171]	S	(0.68) [0.034083]
3-Nitroaniline	QN		2	(5.3) [0.105106]	R	(5.1) [0.102171]	S	(1.7) [0.034083]
4,6-Dinitro-2-methylphenol	QN	(1.8) [0.035026]	Q	(5.3) [0.105106]	S	(5.1) [0.102171]	QN	(1.7) [0.034083]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

	90	06-55-04	06-55-04-01	0 - 0.5	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(1.7) [0.034083]	_			_	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(1.7) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]	(0.34) [0.034083]
		0	90		QN	ND	QN	QN	ON	ON	0.045 J	QN	0.25 J	0.76	0.52	0.52	0.23 J	0.52	ON	QN	ND	0.91	ON	0.17 J	QN	ON	QN	QN	1.4	0.042 J	ND	ON	NO
	90	06-55-03	06-55-03-01	0 - 0.5	(1) [0.102171]	(1) [0.102171]	(1) [0.102171]	(1) [0.102171]	_							(1) [0.102171]	(1) [0.102171]	(1) [0.102171]	(5.1) [0.102171]	(1) [0.102171]	(1) [0.102171]	(1) [0.102171]	(1) [0.102171]	_	(1) [0.102171]	(1) [0.102171]	(1) [0.102171]	(1) [0.102171]	(1) [0.102171]	(1) [0.102171]	_	(1) [0.102171]	(1) [0.102171]
		0	90		QN	ND	QN	ND	QN	QN	ON.	ON I	0.091 J	0.36 J	0.38 J	0.36 J	0.12 J	0.38 J	QN	QN	QN	0.42 J	QN	0.13 J	NO	ND	ON	ON	0.57 J	QN	ND	QN	Q.
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	90	06-55-02	06-55-02-01	- 0.5	(1.1) [0.105106]	(1.1) [0.105106]	(1.1) [0.105106]											_			_	_			_	(1.1) [0.105106]			_	_		(1.1) [0.105106]	(1.1) [0.105106]
S LOC SA BEG. DEPTH		-90	S-90	- 0	QN	ON	ND	QN	Q :	Q :	ON:		0.032 J			0.35 JF	QN	0.35 JF	QN	QN	Q	0.17 J	QN	QN	QN	QN	Q	QN	0.18 J	QN	QN	ON	QN
	90	06-55-01	06-SS-01-01	0 - 0.5	(0.35) [0.035026]	_							(0.35) [0.035026]				_		_	_			_ :		_								(0.35) [0.035026]
		0	90		ND	ON	QN :	Q.	ON S	2 4	Ş Ş	ON A	O N	2 4	D .	ON :	QV :	9	0.078 J	QN :	Q :	Q :	QV :	ON I	Q :	QN :	Q :	QN :	Q.	QN	Q :	Q	QN
			C. ++12 × C × C		4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chlorophenyl phenyl ether	4-Methylphenol(p-cresol)	4-Nitroaniine	Acaranthhono	Accelabilities	Actualming rene Anthracene	Antiliacene Renzo(a)anthracene	Ronand a havened	Denzo(a) pyrene Ponzo(k) £1 nomathoma	perizo(p) lluoranthene	benzo(g,n,1)perylene	<pre>benzo(k)fluoranthene</pre>	benzoic acid	Benzyl alcohol	Butylbenzylphthalate	Chrysene B:	Diton (2 t)	Ulbenz(a,n)anthracene	Ulbenzoruran S.: ' ' ' ' ' '	UlbutyIphthalate	Uletnyiphthalate	Ulmetny pnthalate	rluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadlene

[] = Factor () = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

		90		90		90		90
	-90	06-55-01	0	16-SS-02	90	SS-03	30	3-55-04
	3-90	06-SS-01-01	90	06-55-02-01	-90	SS-03-01	-90	-SS-04-01
PARAMETER	0	0 - 0.5		0 - 0.5	0	0 - 0.5	•	0 - 0.5
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		: : : : : : : :			
Hexachloroethane	QN	(0.35) [0.035026]	2	(1.1) [0.105106]	NO	(1) [0.102171]	N	(0.34) [0.034083]
Indeno(1,2,3-cd)pyrene	QN	(0.35) [0.035026]	Q	(1.1) [0.105106]	0.17 J	(1) [0.102171]	0.25 J	(0.34) [0.034083]
Isophorone	QN	(0.35) [0.035026]	QN	(1.1) [0.105106]	QN		Q	(0.34) [0.034083]
N-Nitrosodiphenylamine	QN	(0.35) [0.035026]	QN	(1.1) [0.105106]	QN		ON	(0.34) [0.034083]
N-Nitrosodipropylamine	QN	(0.35) [0.035026]	Q	(1.1) [0.105106]	QN	(1) [0.102171]	QN	(0.34) [0.034083]
Naphthalene	0.012 J	(0.35) [0.035026]	QN		ND		QN	(0.34) [0.034083]
Nitrobenzene	QN	(0.35) [0.035026]	Q		ON		QN	(0.34) [0.034083]
Pentachlorophenol	QN	(1.8) [0.035026]	QN	(5.3) [0.105106]	ON		QN	(1.7) [0.034083]
Phenanthrene	N	(0.35) [0.035026]	0.078 J	(1.1) [0.105106]	0.24 J		0.77	(0.34) [0.034083]
Phenol	N	(0.35) [0.035026]	QN	(1.1) [0.105106]	QN	(1) [0.102171]	Q	(0.34) [0.034083]
Pyrene	QN	(0.35) [0.035026]	0.27 J	(1.1) [0.105106]	0.68 J		1.3	(0.34) [0.034083]
bis(2-Chloroethoxy)methane	Q	(0.35) [0.035026]	Q	(1.1) [0.105106]	ND	(1) [0.102171]	QN	(0.34) [0.034083]
bis(2-Chloroethyl)ether	QN	(0.35) [0.035026]	QN	[0.105106]	QN		QN	(0.34) [0.034083]
bis(2-Chloroisopropyl)ether	QN	(0.35) [0.035026]	QN	[0.105106]	QN		ON	(0.34) [0.034083]
bis(2-Ethylhexyl)phthalate	0.13 J	(0.35) [0.035026]	1.6	(1.1) [0.105106]	0.069 JB	(1) [0.102171]	0.091 JB	(0.34) [0.034083]
p-Chloroaniline	QN	(0.35) [0.035026]	QN	[0.105106]	ON	(1) [0.102171]	Q	(0.34) [0.034083]

				7007 S	SITE ID LOCATION ID							
				SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	SAMPLE ID H - END DEPTH	(FT.)						
		90		J	90			07			20	
		06-55-05		5-90	06-55-06		. 20	07-MW-01		07	07-MW-02	
PARAMETER		0 - 0.5		- 0	Ub-55-Ub-01 0 - 0.5		07-1-	07-MW-01-02 5 - 6.5		- 20	07-MW-02-02 2 - 4	
SW8015MEMP - Nonhalogenated Volatile Organics		(mg/kg)			 	i ! ! ! !	1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1				 	
Diesel Range Organics (2)		(20)	[102]	68	(21)	[103]	72	(32)	[177]	3600	(760)	โจลกก
Gasoline Range Organics (2) ND SWRORO - Organical Organi		(10)	[100]	ON	(10)	[100]	19 B	(18)	[176]	21 B	(15)	[154]
A 4 '-NND			r !	į								
7,4	130		[340.9478]	79	_	103.0927]	1.5	(0.59)	[58.82352]	85	(0.51)	[51.22950]
4,4 -UUE 4,4 -DOT	32		34.09478]	96	_	103.0927]	2	(0.59)	[58.82352]	11	(0.51)	[51.22950]
4,4 - DOI	069	_ `	1704.739]	480		1030.927]	1.4	(1.2)	[58.82352]	2.2	(1)	[51.22950]
A147 111	2 :	_	34.09478]	0.64 PJB	_	103.0927]	-1	(0.59)	[58.82352]	ND	(0.51)	[51.22950]
Chlordane Ri-1 Just	QN :		34.09478]	ND		[103.0927]	ND	(5.9)	[58.82352]	ND	(2.6)	[51.22950]
Vieldrin : ': : : :	QN	_	34.09478]	ON	(1) [10	[103.0927]	QN	(0.59)	[58.82352]	ON	(0.51)	[51.22950]
Endosulfan I	ND		34.09478]	2.5 P	(1) [10	[103.0927]	0.58 KJB	(0.59)	[58.82352]	ND	(0.51)	[51,22950]
Endosulfan II	QN	_	[34.09478]	6.3	_	[103.0927]	1.7 KJ	(1.8)	[58.82352]	1.1 PJB	(1.5)	[51,22950]
Endosulfan Sulfate	QN		34.09478]	2.4 KJB	(5.2) [10	103.0927]	ND	(5.9)	[58.82352]		(2.6)	[51,22950]
Endrin	3.1	_	34.09478]	1.4 PB	(1) [10	103.0927]	N	(0.23)	[58.82352]	1.9 B	(0.51)	[51,22950]
Endrin Aldehyde	1.1	_	34.09478]	2.4	(2.1) [10	[103.0927]	0.021 PJB	(1.2)	[58.82352]	0.65 JB	(1)	[51.22950]
Heptachlor	0.17 KJB	_	[34.09478]	QN	(1) [10	103.0927]	0.062 PJB	(0.59)	[58.82352]	0.15 PJB	(0.51)	
Heptachlor epoxide	1.68		[34.09478]	1.3 PB	(1) [10	103.0927]	0.64 PB	(0.59)	[58.82352]		(0.51)	[51,22950]
Methoxychlor pre 1016	1.6 J		34.09478]	6.5		103.0927]	0.52 KJ	(5.9)	[58.82352]	4.3	(5.6)	[51.22950]
rcb-1010 pr8-1231	2 2		34.09478]	QN :		103.0927]	QN	(2.9)	[58.82352]	QN	(5.1)	[51.22950]
PCB-1232	QN 9	_ `	34.094/8]	ON :		103.0927]	ND	(15)	58.82352]	Q	(10)	[51.22950]
DCB-1242	2 2		34.094/8]	ON :		103.0927]	QN	(12)	58.82352]	QN	(10)	[51.22950]
DCB_1248	2 2		34.094/8]	O.		103.0927]	QN	(2.9)	58.82352]	Q	(5.1)	[51.22950]
PCD-1246	O. S.		34.09478]	Q		103.0927]	QN	(2.9)	58.82352]	QN	(5.1)	[51.22950]
PCD-1234	2 8		34.09478]	Q.		103.0927]	ND	(12)	58.82352]	QN	(10)	[51.22950]
Towarbono	Q G		34.09478]	QN :	_	103.0927]	QN	(12)	58.82352]	ND	(10)	[51.22950]
Oxaphene alpha_BHC	2 5		34.09478]	ON ,		103.0927]	QN	(53)	58.82352]	ND	(52)	[51.22950]
alpia-Dic hots-BHC	2		34.094/8]	1.5		103.0927]			58.82352]	0.71 B	(0.51)	51.22950]
delta-BHC	20.00		34.094/8]	Q :		103.0927]		_	[58.82352]	ND	(0.51)	51.22950]
מבן רמ-סוור	0.64 B	(0.34) [34.0	34.09478]	Q	(1) [10	[103.0927]	1.1 PB	(0.59)	[58.82352]	1.9 P	(0.51)	[51.22950]

- Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

Compiled: 23 Map

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

		90		90		07		07
	č	06-SS-05 06-SS-05	-90 -90	06-SS-06 06-SS-06	070	07-MW-01	0.00	07-MW-02
PARAMETER) i	0 - 0.5	0	- 0.5	5 2	20-TO-WI		-mw-uc-uc 2 - 4
					 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	
gamma-BHC	ND	(0.34) [34.09478]	QN	(1) [103.0927]	0.9 B	(0.59) [58.82352]	0.85 B	(0.51) [51,22950]
SW8240 - Volatile Organics (ug/kg)						•		
1,1,1-Trichloroethane	QN	(5.1) [1.024590]	NO	(5.2) [1.030927]	QN	(8.9) [1.776198]	QN	(7.7) [1.538461
1,1,2,2-Tetrachloroethane	S	(5.1) [1.024590]	QN	(5.2) [1.030927]	QN	(8.9) [1.776198]	QN	_
1,1,2-Trichloroethane	9	(5.1) [1.024590]	QN	(5.2) [1.030927]	QN	(8.9) [1.776198]	QN	. <u>=</u>
1,1-Dichloroethane	2	(5.1) [1.024590]	ON	(5.2) [1.030927]	ND	(8.9) [1.776198]	QN	-
1,1-Dichloroethene	S	(5.1) [1.024590]	QN	(5.2) [1.030927]	ON	(8.9) [1.776198]	ON	
1,2-Dichloroethane	2	(5.1) [1.024590]	QN	(5.2) [1.030927]	ON	(8.9) [1.776198]	QN	(7.7) [1.538461
1,2-Dichloropropane	Q.	(5.1) [1.024590]	ND	(5.2) [1.030927]	ON	(8.9) [1.776198]	QN	(7.7) [1.538461
2-Chloroethyl vinyl ether	Q	(10) [1.024590]	ON	(10) [1.030927]	QN	(18) [1.776198]	ON	(15) [1.538461
2-Hexanone	R	(51) [1.024590]	QN	(52) [1.030927]	ND	(89) [1.776198]	QN	(77) [1.538461
4-Methyl-2-pentanone(MIBK)	9	(51) [1.024590]	QN	(52) [1.030927]	QN	(89) [1.776198]	QN	(77) [1.538461
Acetone	N	_	3 JB	(100) [1.030927]	QN	(180) [1.776198]	320	(150) [1.538461]
Benzene	9	_	ON	(5.2) [1.030927]	ON	(8.9) [1.776198]	N	(7.7) [1.538461
Bromodichloromethane	QV		Q	(5.2) [1.030927]	QN	(8.9) [1.776198]	S	(7.7) [1.538461
Bromomethane	S	_	N	(10) [1.030927]	ON	(18) [1.776198]	QN	(15) [1.538461
Carbon disulfide	S N	_	QN	(5.2) [1.030927]	QN	(8.9) [1.776198]	QN	(7.7) [1.538461
Carbon tetrachloride	2	_	QN	(5.2) [1.030927]	QN	(8.9) [1.776198]	QN	(7.7) [1.538461
Chlorobenzene	N N	_	QN	(5.2) [1.030927]	ON	(8.9) [1.776198]	QN	(7.7) [1.538461
Chloroethane	S		QN	(10) [1.030927]	ON	(18) [1.776198]	ND	(15) [1.538461
Chloroform	S	(5.1) [1.024590]	QN	(5.2) [1.030927]	QN	(8.9) [1.776198]	ND	(7.7) [1.538461
Chloromethane	S	(10) [1.024590]	N	(10) [1.030927]	QN	(18) [1.776198]	QN	(15) [1.538461]
Dibromochloromethane	Q.	(5.1) [1.024590]	QN	(5.2) [1.030927]	QN	(8.9) [1.776198]	N O	(7.7) [1.538461]
Ethyl benzene	QN	(5.1) [1.024590]	QN	(5.2) [1.030927]	QN	(8.9) [1.776198]	ON	(7.7) [1.538461]
Methyl ethyl ketone	Q.	(100) [1.024590]	QN Q	(100) [1.030927]	QN QN	(180) [1.776198]	25 JB	(150) [1.538461
Methylene chloride	5.9 B	(5.1) [1.024590]	4.5 JB	(5.2) [1.030927]	13	(8.9) [1.776198]	7.9 B	(7.7) [1.538461
Styrene	QN	(5.1) [1.024590]	QN	(5.2) [1.030927]	QN	(8.9) [1.776198]	QN	(7.7) [1.538461]
Tetrachloroethene	QN	(5.1) [1.024590]	ON	(5.2) [1.030927]	QN	(8.9) [1.776198]	ND	(7.7) [1.538461]
Toluene	Q	(5.1) [1.024590]	ND	(5.2) [1.030927]	S	(8.9) [1.776198]	0.89 JB	

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

BEG. DEPTH - END DEPTH (FT.)

LOCATION ID

SITE 10

SAMPLE ID

[1.538461] [1.538461][1.538461] [1.538461] [1.538461] [1.538461] [1.538461] [1.538461] [1.373626] [1.373626] [1.373626][1.373626] [1.373626] [1.373626] [1.373626] [1.373626][1.373626][1.373626][1.373626][1.373626] [1.373626] [1.373626] [1.373626] [1.373626] [1.373626] [1.373626] [1.373626][1.373626] (7.7) (15)(7.7) (7.7)(7.7)(7.7)(14)(14)(14)(14)(14)(14) (14)(14)(14)(69) (14)(14)(14)(69)(14)(27) (69) (69) 07-MW-02-02 07-MW-02 2 - 4 2.5 J ND 2222222 S 2 8 2 2 2 2 2 2 2 2 2 2 [1.776198] [1.776198] [1.776198] [1.776198] [1.776198] [1.776198] [1.776198] [1.776198] [0.059009][0.059009] [0.059009] [0.059009] [0.059009] [0.059009] [0.059009] [0.059009] [0.059009] [0.059009] [0.059009] [0.059009] [0.059009] [0.059009][0.059009][0.059009] [0.059009] [0.059009] [0.059009][0.059009](8.9)(8.8) (8.9)(8.9)(8.9)(18)(8.9)(8.9)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(3) (0.59)(0.59)(0.59)(0.59)(0.59)(3) (0.59)(1.2)(3) (3) 07-MW-01-02 5 - 6.5 07-MW-01 2222222 2 2 2 2 S 웆 읒 [1.030927] [1.030927] [1.030927] [1.030927] [1.030927][1.030927] [1.030927] [1.030927] [0.103092][0.103092] [0.103092] [0.103092][0.103092] [0.103092][0.103092][0.103092][0.103092][0.103092][0.103092][0.103092][0.103092] [0.103092] [0.103092] [0.103092] [0.103092] [0.103092] [0.103092][0.103092] (5.2)(5.2)(10)(5.2)(5.2)(5.2)(5.2)(5.2) Ξ Ξ (1) (1) Ξ (5.2)06-55-06-01 0 - 0.590-88-90 90 9999999 웊 S 22222 2 S 을 문 99999 [1.024590][1.024590][1.024590][1.024590][1.024590] [1.024590][1.024590] [0.034073] [1.024590][0.034073] [0.034073][0.034073] [0.034073][0.034073] [0.034073] [0.034073] [0.034073] [0.034073] [0.034073] [0.034073][0.034073] [0.034073] [0.034073][0.034073][0.034073] [0.034073] [0.034073] [0.034073] (5.1)(5.1)(5.1)(10)(5.1)(5.1)(5.1)(5.1)(0.34)(1.7)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(0.34)(1.7)(0.34)06-SS-05-01 0 - 0.506-55-05 9999999 2 2 2 2 (mg/kg) SW8270 - Semivolatile Organics [ribromomethane(Bromoform) trans-1,3-Dichloropropene 1,6-Dinitro-2-methylphenol trans-1,2-Dichloroethene cis-1,3-Dichloropropene 2-Methylphenol(o-cresol) 1,2,4-Trichlorobenzene 3,3'-Dichlorobenzidine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Chloronaphthalene 2-Methylnaphthalene 2,6-Dinitrotoluene 2,4-Dinitrotoluene 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol richloroethene Vinyl chloride 2-Chlorophenol 2-Nitroaniline 3-Nitroaniline Vinyl acetate 2-Nitrophenol PARAMETER

Compiled: 23 March

[] = Factor

() = Detection Limit

MA = Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

		QD		90		07		07
	0	06-55-05	90	90-22-00		07-MW-01	0	07-MW-02
	90	06-55-05-01	-90	06-55-06-01	0	07-MW-01-02	07	07-MW-02-02
PARAMETER		0 - 0.5	0	0 - 0.5		5 - 6.5		2 - 4
4-Bromophenv] bhenv] ether	QN	(0.34) [0.034073]	S	(1) [0 103092]	S	נטטפין נט נפין (ט')	S	[303676 1] (11)
4-Chloro-3-methylnbenol	2		2		9 5		2 9	
4-Chlorophenyl phenyl other	2 5		2 2		2 5		2	ے ت
4 Mathylahonal (m. punch)	2 5		2 9		2 9	666	2 :	⊐ :
4-Methylphenol(p-cresol)	ON !		QN		2	_	9	(14) [1.373626
4-Nitroaniline	2		Q	س	Q.	(3) [0.059009]	Q	(69) [1.373626
4-Nitrophenol	ON	(1.7) [0.034073]	Q	(5.2) [0.103092]	Q	(3) [0.059009]	N	(69) [1.373626
Acenaphthene	QN	(0.34) [0.034073]	QN	(1) [0.103092]	QN	(0.59) [0.059009]	QN	(14) [1.373626]
Acenaphthylene	ON	(0.34) [0.034073]	QN	(1) [0.103092]	Q.	(0.59) [0.059009]	N	(14) [1.373626]
Anthracene	0.0039 J	(0.34) [0.034073]	QN	(1) [0.103092]	Q	(0.59) [0.059009]	ON	(14) [1.373626]
Benzo(a)anthracene	0.021 J	(0.34) [0.034073]	0.11 J	(1) [0.103092]	S	(0.59) [0.059009]	Q	(14) [1.373626]
Benzo(a)pyrene	0.033 J	(0.34) [0.034073]	0.17 J	(1) [0.103092]	2	(0.59) [0.059009]	N	(14) [1.373626]
Benzo(b)fluoranthene	0.03 J	(0.34) [0.034073]	0.081 J	(1) [0.103092]	QN	(0.59) [0.059009]	S	(14) [1.373626
Benzo(g,h,i)perylene	QN	(0.34) [0.034073]	0.21 J	(1) [0.103092]	N O	(0.59) [0.059009]	8	(14) [1.373626]
Benzo(k)fluoranthene	0.021 J	(0.34) [0.034073]	0.029 J	(1) [0.103092]	Q	[0.0830] [0.083009]	QN	(14) [1.373626]
Benzoic acid	ND	_	QN	(5.2) [0.103092]	Q	(3) [0.059009]	S	(69) [1,373626
Benzyl alcohol	Q	(0.34) [0.034073]	QN	(1) [0.103092]	QN	(0.59) [0.059009]	2	(14) [1.373626]
Butylbenzylphthalate	QN	(0.34) [0.034073]	ON	(1) [0.103092]	QN	(0.59) [0.059009]	2	(14) [1.373626
Chrysene	0.039 J	(0.34) [0.034073]	0.18 J	(1) [0.103092]	Q	(0.59) [0.059009]	2	(14) [1.373626]
Di-n-octylphthalate	QN		ND	(1) [0.103092]	Q	[0.59) [0.059009]	R	(14) [1.373626]
Dibenz(a,h)anthracene	QN	(0.34) [0.034073]	0.054 JB	(1) [0.103092]	Q	(0.59) [0.059009]	2	(14) [1.373626]
Dibenzofuran	Q	(0.34) [0.034073]	ND	(1) [0.103092]	Q.	(0.59) [0.059009]	2	(14) [1.373626]
Dibutylphthalate	Q	(0.34) [0.034073]	ND	(1) [0.103092]	Q	(0.59) [0.059009]	2	(14) [1.373626]
Diethylphthalate	QN	(0.34) [0.034073]	QN Q	(1) [0.103092]	QN	(0.59) [0.059009]	QN	(14) [1.373626]
Dimethylphthalate	QN	(0.34) [0.034073]	QN	(1) [0.103092]	QN	(0.59) [0.059009]	QN	(14) [1.373626]
Fluoranthene	0.037 J	_	0.046 J	(1) [0.103092]	Q	(0.59) [0.059009]	Q	(14) [1.373626]
Fluorene	QN	(0.34) [0.034073]	Q.	(1) [0.103092]	QN	(0.59) [0.059009]	QN	(14) [1.373626]
Hexachlorobenzene	QN	(0.34) [0.034073]	QN	(1) [0.103092]	Q	(0.59) [0.059009]	ND	(14) [1.373626]
Hexachlorobutadiene	QN	(0.34) [0.034073]	QN	(1) [0.103092]	S	(0.59) [0.059009]	NO	(14) [1.373626]
Hexachlorocyclopentadiene	2	Leroken of (ke o)	Ş	[000001 0] (1)	4	F 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

[1.373626] [1.373626][1.373626] [1.373626] [1.373626] [1.373626] [1.373626][1.373626] [1.373626] [1.373626] [1.373626] [1.373626][1.373626] [1.373626][1.373626][1508.295][1508.295] [1508.295][1508.295] [1508.295] [1.373626][1508.295] [1508.295][1508.295] [1508.295] [1508.295] [1508.295] [1508.295] (14)(14)(14)(14)(14)(14)(14) (14)(69) (14)(14) (14) (14)3500) (110)(58) 1000) (20) (35)(27)(230)(45)(320)07-MW-02-02 07-MW-02 18 J 9 9 9 9 9 8 S S 2 2 2 2 9 2 9 운 S 2 [0.059009][0.059009] [0.059009] [0.059009][0.059009] [0.059009] [0.059009] [0.059009] [0.059009][0.059009] [0.059009] [0.059009] [0.059009] [0.059009] [176.3668] [0.059009][0.059009] [176.3668] [176.3668] [176.3668] [176.3668] [176.3668] [176.3668] [176.3668][176.3668] [176.3668] [176.3668] [176.3668] (0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(0.59)(410)(2.3)(4.1)(3.2)(13)(3) (120)(58) (5.3)(3) (37) (37) 07-MW-01-02 07-MW-01 5 - 6.5 1.1 J 1.5 J 9.5 J 0.92 J 6.8 J 8.7 J 6.5 9 운 문 문 S 2 [0.103092] [0.103092][0.103092][0.103092][0.103092][0.103092] [0.103092][0.103092] [0.103092] [0.103092] [0.103092][0.103092] [0.103092][0.103092][0.103092][0.103092]BEG. DEPTH - END DEPTH (FT.) LOCATION ID (1) (1) (5.2) Ξ Ξ (1) Ξ Ξ Ξ SAMPLE ID 06-55-06-01 SITE ID 90-88-90 0 - 0.5Α 0.067 J 0.19 J 0.068 J 9 S 9 S 9 9 ₽ ₽ 2 S S [0.034073] [0.034073][0.034073] [0.034073] [0.034073] [0.034073] [0.034073] [0.034073] [0.034073] [0.034073] [0.034073][0.034073] [0.034073] [0.034073][0.034073] [0.034073](0.34)(0.34)(0.34)(0.34)(0.34)(1.7)(0.34)(0.34)(0.34)(0.34)(0.34)06-55-05-01 0 - 0.506-SS-05 S₩8310 - Polynuclear Aromatic Hydrocarbons (ug/kg) Ϋ́ ΑÃ NA ΑA A A Α NA ΑN 0.083 JB 0.025 J ND 0.04 J 9 9 9 9 9 2 Q. 을 모 모 bis(2-Chloroisopropyl)ether bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate bis(2-Chloroethyl)ether Indeno(1,2,3-cd)pyrene N-Nitrosodiphenylamine N-Nitrosodipropylamine Dibenzo(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(a)anthracene Pentachlorophenol Hexachloroethane p-Chloroaniline Acenaphthylene Benzo(a)pyrene Nitrobenzene Phenanthrene Acenaphthene Fluoranthene Vaphthalene Isophorone Anthracene PARAMETER Fluorene Phenol Pyrene

Compiled: 23 Marzi 1995

= Detection Limit [] = Factor

 \subset

tor " - Not Detected

tected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

				07	07-MW-02	07-MW-02-02	2 - 4		(65) [1508.295]		(970) [1508.295]	(410) [1508.295]
								1 1 2 2 2 1	160	890 J	1300	QN
			•	20	07-MW-01	-MW-01-02	5 - 6.5		(7.6) [176.3668]	(320) [176.3668]	(110) [176.3668]	(48) [176.3668]
				-	0	07			QN	ND	120	8.3 J
SITE ID	LOCATION ID	SAMPLE ID	BEG. DEPTH - END DEPTH (FT.)	90	90-88-90	06-55-06-01	0 - 0.5		NA	NA	NA	NA
				90	06-55-05	06-55-01	0 - 0.5		NA	NA	NA	NA
							PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene

[43.42162][43.42162] [43.42162] [43.42162] [43.42162] 43.42162] 43.42162 [43.42162] [43.42162] [43.42162][43.42162] [43.42162]43.42162] 43.42162] [43.42162] 43.42162] [43.42162] [43.42162] [43.42162] 43.42162 43.42162] (0.43)(0.87)(0.43)(2.2)(0.43) (0.43) (1.3)(2.2)(0.43)(0.87)(0.43)(0.43)(2.2)(13)(4.3)(8.7)(8.7)(4.3)(4.3)(8.7)(0.43)(8.7)(0.43)(0.43)(22)07-SB-01-01 07-SB-01 3 - 5 0.3 PJB 0.14 PJB 0.8 KJB 1.3 KJB 0.17 KJB 0.11 PJB 0.37 JB 2.1 KJ 8 1.4 160 S 2 [112][114][189.8974][37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [189.8974][37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] [37.97949] 0.38) (1.1)(1.9)(7.6)(22) (11) (1.9)0.38) (0.76)(0.38)(0.38)(1.9)(3.8)(7.6)(3.8)(3.8)(7.6)(7.6)(19)(0.38)07-MW-04-02 10 - 1207-MW-04 0.017 PJB 0.24 PJB 0.87 J 0.89 B 1.3 180 문모 3.2 9 0.82 ₽ 2 2 2 2 [60700] [51.02040] [51.02040][51.02040] [51.02040][51.02040][51.02040][51.02040] [51.02040][51.02040]51.02040 [51.02040][51.02040] [51.02040] [51.02040] [51.02040] [51.02040] [51.02040][51.02040] 51.02040 [51.02040][51.02040] [51.02040] [51.02040] [51.02040][51.02040] BEG. DEPTH - END DEPTH (FT.) 07-DS-01 Dup of 07-MW-03-02 (0.51)(0.51)(0.51)LOCATION ID (2.6)(0.51)(1.5)(2.6)(0.51)(6100)(2.6)(5.1)(10)(10)(5.1)(5.1)(10)SAMPLE ID (10)SITE ID 07-MW-03 1.5 - 31.4 KJB 1.2 KJB 0.37 KJB 0.19 PJB 0.61 PB 2.2 KJ S 2.8 읒 2 2 무 모 9 욷 9 S 2 윤 [15600][52.57623] [52.57623] [52.57623] [52.57623] [52.57623][52.57623] [52,57623] [52.57623] 52.57623] [52.57623] 52.57623 [52.57623] [52.57623] 52,57623] [52.57623] [52.57623] [52.57623] [52.57623] [52.57623] [52.57623] [52.57623] 52.57623 [52.57623] 52.57623 (2.6)(0.53)(0.53)(1.1)(0.1)(0.53)(1.6)(2.6)(0.53)(5.3)(11)(5.3)(58) (0.53)(0.53)(0.53)(0.53)(2.6)(11) (5.3)(11)07-MW-03-02 07-MW-03 1.5 - 3WW8015MEMP - Nonhalogenated Volatile Organics (mg/kg) (ng/kg) 0.69 KJB 0.17 PJB 0.42 PJB 0.84 PJ 0.02 PJ PB 8W8080 - Organochlorine Pesticides and PCBs 9 2 을 물 2 2 9 S 2 웆 2 Gasoline Range Organics (2) Diesel Range Organics (2) Endosulfan Sulfate Heptachlor epoxide Endrin Aldehyde Endosulfan II Endosulfan I **Methoxychlor deptachlor** PARAMETER Chlordane Dieldrin 4,4'-000 4,4'-DDE 4,4'-DDT 1] pha-BHC PCB-1016 [oxaphene delta-BHC PCB-1232 CB-1248 PCB-1221 PCB-1242 CB-1260 CB-1254 Aldrin Endrin

Compiled: 23 Mar

[] = Factor () = Detection Limit

Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

gamma-BHC	20 00	07_DC_01_Dur	0, 00 Dun of 07-MU-02-02		07-MW-04	07	07-SB-01
1.2 B (ug/kg) ND	- 3	1	.5 - 3	1	10 - 12	- /0	3 - 5
(ug/kg) ND	(0.53) [52.57623]	0.65 PB	(0.51) [51.02040]	QN	(0.38) [37.97949]	0.65 PB	(0.43) [43.42162]
chloroethane ND chloroethane ND thane ND thene ND thane ND thane ND tranone(MIBK) ND nethane ND no ND ND no ND N							
chloroethane ND thane ND thane ND thane ND thane ND vinyl ether ND N	(160) [31.64556]	QN	(1500) [306.7484]	QN	(14) [2.857142]	QN N	(6.5) [1.305483]
thane ND thane ND thane ND thane ND vinyl ether ND vinyl ether ND ntanone(MIBK) ND nethane ND ND ide ND N	(160) [31.64556]	ON	(1500) [306.7484]	QN	(14) [2.857142]	QN	(6.5) [1.305483]
thane ND thene ND thane ND vinyl ether ND vinyl ether ND ntanone(MIBK) ND (C) ND methane ND ND ide ND ND ide ND N	(160) [31.64556]	Q.	(1500) [306.7484]	QN	(14) [2.857142]	NO	(6.5) [1.305483]
thene ND thane ND vinyl ether ND vinyl ether ND ntanone(MIBK) ND (ND methane ND nloride ND N	(160) [31.64556]	QN	(1500) [306.7484]	QN	(14) [2.857142]	N	_
thane ND ropane ND vinyl ether ND (Itanone(MIBK) ND (Inethane ND Itanone(MIBK) ND Itanone	(160) [31.64556]	QN	(1500) [306.7484]	QN	(14) [2.857142]	QN	(6.5) [1.305483]
vinyl ether ND () ntanone(MIBK) ND () nethane ND () nothane ND () ND	(160) [31.64556]	QN	(1500) [306.7484]	QN	(14) [2.857142]	QN	(6.5) [1.305483]
vinyl ether ND ((160) [31.64556]	QN	(1500) [306.7484]	Q	(14) [2.857142]	ON	(6.5) [1.305483]
ND ntanone(MIBK) ND ND nethane ND ide ND	(320) [31.64556]	ON	(3100) [306.7484]	S	(29) [2.857142]	ON	(13) [1.305483]
ntanone(MIBK) ND ND ND nethane ND ND ide ND N	(1600) [31.64556]	ON	(15000) [306.7484]	Q	(140) [2.857142]	ON	二
ND Tethane ND Tide ND N	(1600) [31.64556]	Q.	(15000) [306.7484]	ON	(140) [2.857142]	QN	. <u>=</u>
ND ide ND hloride ND	(3200) [31.64556]	ND	(31000) [306.7484]	860	(290) [2.857142]	39 JB	(130) [1.305483]
nethane ND ND ide ND	_	QN	(1500) [306.7484]	130	(14) [2.857142]	ON	(6.5) [1.305483
ND hloride ND	_	QN	(1500) [306.7484]	9	(14) [2.857142]	ON	(6.5) [1.305483]
ide ND	(320) [31.64556]	ND	(3100) [306.7484]	Q	(29) [2.857142]	QN	(13) [1.305483]
hloride ND	(160) [31.64556]	ON	(1500) [306.7484]	2	(14) [2.857142]	N	(6.5) [1.305483
ND N	_	ON	(1500) [306.7484]	Q	(14) [2.857142]	ON	(6.5) [1.305483]
ND N		QN	(1500) [306.7484]	Q	(14) [2.857142]	QN	(6.5) [1.305483]
ND ND methane	(320) [31.64556]	QN	(3100) [306.7484]	2	(29) [2.857142]	QN	(13) [1.305483]
ND ND ND	(160) [31.64556]	Q	(1500) [306.7484]	Q	(14) [2.857142]	QN	(6.5) [1.305483]
Q	(320) [31.64556]	QN	(3100) [306.7484]	9	(29) [2.857142]	ND	(13) [1.305483]
	(160) [31.64556]	QN ON	(1500) [306.7484]	2	(14) [2.857142]	QN	(6.5) [1.305483]
Ethyl benzene 1200 (10	(160) [31.64556]	1700	(1500) [306.7484]	2	(14) [2.857142]	QN	(6.5) [1.305483]
		S	(31000) [306.7484]	63 J	(290) [2.857142]	QN	(130) [1.305483
	(160) [31.64556]	Q	(1500) [306.7484]	64	(14) [2.857142]	2.8 JB	(6.5) [1.305483]
Styrene ND (16	(160) [31.64556]	NO	(1500) [306.7484]	문	(14) [2.857142]	QN	(6.5) [1.305483]
	(160) [31.64556]	QN	(1500) [306.7484]	P	(14) [2.857142]	QN	(6.5) [1.305483]
Toluene 35 J (16	(160) [31.64556]	ON	(1500) [306.7484]	75	(14) [2.857142]	ND	(6.5) [1.305483]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

	07 07-SB-01	07-58-01-01 3 - 5	(6.5) [1.305483]			(13) [1.305483] (6 5) [1.305483]					(1.3) [0.129127]	(1.3) [0.129127]	(1.3) [0.129127]	(1.3) [0.129127]	(1.3) [0.129127]	(1.3) [0.129127]	(1.3) [0.129127]	(1.3) [0.129127]					(1.3) [0.129127]	[1.3] [0.129127] [1.3] [0.129127]					
	•	0	QN	QN	Q 9	2 2	2	9	ND		2	QN	Q	ND	QN	QN	QN	Q	QN	QN	2	2 9	טא ט דע		2 5	2 2	2 8	2	QN
	07 07-MW-04	0/-mw-04-02 10 - 12 	(14) [2.857142]	_	(14) [2.857142]		_		(14) [2.857142]		(0.38) [0.038069]	(0.38) [0.038069]	(0.38) [0.038069]	[0.38) [0.038069]	(0.38) [0.038069]	(0.38) [0.038069]	(0.38) [0.038069]	(0.38) [0.038069]				(0.38) [0.038069]	(0.38) [0.038069]			_		_	(1.9) [0.038069]
	<u> </u>	70	N	ND	2 5	5.1 J	N	N	QN		2	QN	ON	QN	QN	ON	QN	Q	QN :	9 :	2 9	2 2	2 5	2 8	2	S Q	2	QN	ON
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	07 07-MW-03	1.5 - 3	(1500) [306.7484]		(1500) [306.7484] (3100) [306 7484]		(1500) [306.7484]	(1500) [306.7484]	(1500) [306.7484]		(14) [1.446926]	(14) [1.446926]	(14) [1.446926]				_					(14) [1.446926]	_				. —	(72) [1.446926]	(72) [1.446926]
BEG. DEP	10-30-70	10-60-70	QN	QN	2 2	2600	ON	Q	QN		Q.	Q	Q	QN	QN	2	2	2	2 9	2 9	2 5	2 5	82	QN	Q.	Q.	ND	ON	ND
	07 07-MW-03 07-MW-03-02	1.5 - 3	(160) [31.64556]		(160) [31.64556] (320) [31.64556]			(160) [31.64556]	(160) [31.64556]									=ં ≀	_ :	(16) [1.5822/8]	~ -		_		(79) [1.582278]	(16) [1.582278]	(32) [1.582278]	(79) [1.582278]	(79) [1.582278]
	~ ~		ND	2 5	2 2	3500	QN	ON	QV ((mg/kg)	QN :	QN .	QN	Q.	Q :	2 :	2 :	2 :	2 2	2 2	2 5	Q Q	40	ON	ND	N	QN	ND	Q
		PARAMETER	Tribromomethane(Bromoform)	Trichloroethene Vinvl acetate	Vinyl chloride	Xylenes	cis-1,3-Dichloropropene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene		1,2,4-IrlcNlorobenzene	I,Z-Dichlorobenzene	I,3-Ulchlorobenzene	1,4-Ulchlorobenzene	2,4,5-Irichiorophenol	2,4,6-Irichiorophenol	2,4-Ulchlorophenol	2,4-Dimetny(pheno)	2,4-Dinitrophenol	2.6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol(o-cresol)	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

PARAMETER 4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	.0	07-MW-03	07-MW-03			07 - Mif_04			
^ARAMETER 			5	-03		U/ =MW=U4	0	07-SB-01	
 1-Bromophenyl phenyl ether 1-Chloro-3-methylphenol	07	07-MW-03-02 1.5 - 3	07-DS-01 Dup o	Dup of 07-MW-03-02 1.5 - 3	0	07-MW-04-02 10 - 12	07	07-SB-01-01 3 - 5	
4-Bromophenyl phenyl ether 4-Chloro-3-methylphenol	1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
↓-Chloro-3-methylphenol	QN	(16) [1.582278]	QN ON	(14) [1.446926]	8	(0.38) [0.038069]	QN	(1.3) [0	[0.129127]
•	ON	(16) [1.582278]	QN	(14) [1.446926]	QN	(0.38) [0.038069]	QN		[0.129127
4-Chlorophenyl phenyl ether	S		NO	. =	2		2		[0.129127] [0.129127]
4-Methylphenol(p-cresol)	ON	(16) [1.582278]	NO	. =	2		2		[0.129127
4-Nitroaniline	8	(79) [1.582278]	ON	. I	2		2		[0.129127]
4-Nitrophenol	ND	(79) [1.582278]	ND		Q	6:	QN	5	[0.129127]
Acenaphthene	Q	(16) [1.582278]	ND	(14) [1.446926]	8	(0.38) [0.038069]	N	.3)	[0.129127]
Acenaphthylene	QN	(16) [1.582278]	ON	(14) [1.446926]	Q	(0.38) [0.038069]	Q.		[0.129127]
Anthracene	QN	(16) [1.582278]	QN	(14) [1.446926]	2	(0.38) [0.038069]	N		[0.129127
Benzo(a)anthracene	ON	(16) [1.582278]	QV	(14) [1.446926]	2	(0.38) [0.038069]	Q.	.3)	[0.129127
Benzo(a)pyrene	Q.	(16) [1.582278]	ND	(14) [1.446926]	2	(0.38) [0.038069]	Q.	3	[0.129127]
Benzo(b)fluoranthene	ON	(16) [1.582278]	ND	(14) [1.446926]	2	(0.38) [0.038069]	2	(1.3) [0.	[0.129127]
Benzo(g,h,ì)perylene	QN	(16) [1.582278]	ON	(14) [1.446926]	Q	(0.38) [0.038069]	Q.	(1.3) [0.	[0.129127]
Benzo(k)fluoranthene	QV	(16) [1.582278]	ON	(14) [1.446926]	Q	(0.38) [0.038069]	Q	(1.3) [0.	[0.129127]
Benzoic acid	ND	_	QN	(72) [1.446926]	Q.	(1.9) [0.038069]	Q	(6.5) [0.	[0.129127]
Benzyl alcohol	QN	(16) [1.582278]	ON.	(14) [1.446926]	Q.	(0.38) [0.038069]	S		[0.129127]
Butylbenzylphthalate	ON	(16) [1.582278]	QN	(14) [1.446926]	R	(0.38) [0.038069]	QN	(1.3) [0.	[0.129127]
Chrysene	N	(16) [1.582278]	QN	(14) [1.446926]	N	(0.38) [0.038069]	QN	(1.3) [0.	[0.129127]
Di-n-octylphthalate	QN	(16) [1.582278]	ON	(14) [1.446926]	S	(0.38) [0.038069]	QN	(1.3) [0.	[0.129127]
Dibenz(a,h)anthracene	Q.	(16) [1.582278]	ON	(14) [1.446926]	N	(0.38) [0.038069]	QN	(1.3) [0.	[0.129127]
Dibenzofuran	Q	(16) [1.582278]	QN	(14) [1.446926]	N	(0.38) [0.038069]	QN	(1.3) [0.	[0.129127]
Dibutylphthalate	QN	(16) [1.582278]	ON	(14) [1.446926]	S	(0.38) [0.038069]	QN	(1.3) [0.	[0.129127]
Diethylphthalate	Q	(16) [1.582278]	QN	(14) [1.446926]	S	(0.38) [0.038069]	QN	(1.3) [0.	[0.129127]
Dimethylphthalate	QN	(16) [1.582278]	QN	(14) [1.446926]	QN	(0.38) [0.038069]	QN	(1.3) [0.	[0.129127]
Fluoranthene	QN	(16) [1.582278]	ON	(14) [1.446926]	Q	(0.38) [0.038069]	ND	(1.3) [0.	0.129127
Fluorene	QN	(16) [1.582278]	1.8 J	(14) [1.446926]	N	(0.38) [0.038069]	N	(1.3) [0.	0.129127
Hexachlorobenzene	ND	(16) [1.582278]	QN	(14) [1.446926]	S	(0.38) [0.038069]	QN	(1.3) [0.	0.129127
Hexachlorobutadiene	QN	(16) [1.582278]	QN	(14) [1.446926]	2	(0.38) [0.038069]	QN	(1.3) [0.	0.129127
Hexachlorocyclopentadiene	Q.	(16) [1.582278]	QN	(14) [1.446926]	QN	(0.38) [0.038069]	QN	(1.3) [0.	[0.129127]

				SITE ID				
			רטיבער היא אריבירים אריבירים איניירים איניירים איניירים איניירים איניירים איניירים איניירים איניירים איניירים	LOCATION ID SAMPLE ID DEDTH - FMD DEDTH (FT.)				
			. מינו					
	-	07		20		07		70
		07-MW-03	J	07-MW-03	_	07-MW-04		07-SB-01
	07	07-MW-03-02	07-DS-01 [Dup of 07-MW-03-02	0	07-MW-04-02	C	07-58-01-01
PARAMETER 	1 1 1 1 1 1 1 1	1.5 - 3		1.5 - 3	; ; ; ; ;	10 - 12		3 - 2
Hexachloroethane	C.	[070003 1] [18]	Ş		4	i	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	i
Indeno(1 2 3-cd)nyrene	2		2 :		ON ON		QN	(1.3) [0.129127]
Isophoropa	€ €		Q :		Q		QN	(1.3) [0.129127]
N-Ni+vocodintono	2		ON :		S	(0.38) [0.038069]	R	(1.3) [0.129127]
N Mittooodi prenylamine	Q :		Q	_	ND	(0.38) [0.038069]	QN	(1.3) [0.129127]
N-Witrosodipropylamine	Q		S	(14) [1.446926]	ND	(0.38) [0.038069]	QN	(1.3) [0.129127]
Naphrhalene Naturalene	8.6 J	_	19	(14) [1.446926]	ND	(0.38) [0.038069]	QN	(1.3) [0.129127]
Nitrobenzene	<u>Q</u>		QN	. (14) [1.446926]	ND	(0.38) [0.038069]	QN	(1.3) [0.129127]
Fentach oropheno	QN		ND	(72) [1.446926]	QN	(1.9) [0.038069]	ND	
rhenanthrene	QN	(16) [1.582278]	QN	(14) [1.446926]	QN	(0.38) [0.038069]	QN	
Phenol	QN	(16) [1.582278]	ND	(14) [1.446926]	ND	(0.38) [0.038069]	QN	
Pyrene	Q.	(16) [1.582278]	QN	(14) [1.446926]	QN	[0.38) [0.038069]	QN	
bis(2-Chloroethoxy)methane	QN		QN	(14) [1.446926]	QN	(0.38) [0.038069]	ND	
bis(2-Chloroethyl)ether	QN	_	QN	(14) [1.446926]	QN	[0.38) [0.038069]	QN	
bis(2-Chloroisopropyl)ether	QN	_	ON	(14) [1.446926]	ON	(0.38) [0.038069]	QN	
<pre>bis(2-Ethylhexyl)phthalate</pre>	QN	(16) [1.582278]	ON	(14) [1.446926]	QN	(0.38) [0.038069]	2.8	
p-Chloroaniline		(16) [1.582278]	ON	(14) [1.446926]	Q	(0.38) [0.038069]	QN	
SW8310 - Polynuclear Aromatic Hydrocarbons		(ug/kg)						
Acenaphthene	ND		ON	(2700) [1519.756]	12 J	(200) [112.6126]	120 J	(230) [127,3885]
Acenaphthylene	1800 J	_	1900 J	(3500) [1519.756]	QN	(260) [112.6126]	ON	
Anthracene	460 J		440 J	(1000) [1519.756]	ND	(74) [112.6126]	QN	(84) [127,3885]
benzo(a)anthracene	QN	_	QN	(20) [1519.756]	ON	(1.5) [112.6126]	2.6	_
benzo(a)pyrene	QN		QN	(35) [1519.756]	ND	(2.6) [112.6126]	2 J	-
Benzo(b) tluoranthene	ON		ON	(27) [1519.756]	က	(2) [112.6126]	8.4	_
Benzo(g,h,i)perylene	ON		QN	(120) [1519.756]	12	(8.6) [112.6126]	9.3 J	_
<pre>benzo(k)†!uoranthene</pre>	QN		QN	(26) [1519.756]	0.77 J	(1.9) [112.6126]	0.88 J	
Chrysene	QN		QN	(230) [1519.756]	ND	(17) [112.6126]	13 J	_
Dibenzo(a,h)anthracene	QN		QN	(46) [1519.756]	ND		S	
Fluoranthene	560		ND	(320) [1519.756]	ND	(24) [112.6126]	26 J	_
Fluorene	540	(330) [1557.632]	009	(320) [1519.756]	QN	(24) [112.6126]	ND	_

Compiled: 23 March

() = Detection Limit [] = Factor

#A = Not Detected NA = Not Applicable

	07 07-58-01 07-58-01-01 3 - 5	(5.5) [127.3885] (230) [127.3885] (82) [127.3885] (34) [127.3885]
	07-	ND 2.1 J 200 ND
	07 07-MW-04 07-MW-04-02 10 - 12	(4.8) [112.6126] (200) [112.6126] (72) [112.6126] (30) [112.6126]
	07 07- 1	4.7 J 16 J 1100 ND
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH (FT.)	07 07-MW-03 07-DS-01 Dup of 07-MW-03-02 1.5 - 3	(65) [1519.756] (2700) [1519.756] (970) [1519.756] (410) [1519.756]
L BEG. DEPT	0 07-DS-01	ND 32000 2800 490
	07 07-MW-03 07-MW-03-02 1.5 - 3	(67) [1557.632] (2800) [1557.632] (1000) [1557.632] (420) [1557.632]
	07 07-1 1	48 J 27000 2800 690
	PARAMETER	Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene

				07	SITE ID LOCATION ID							
				S BEG. DEPTH	SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	l (FT.)						
		07			07			07			07	
	_ c	07-SB-02		07	07-SB-03		07.	07-SD-01			07-SD-01	
PARAMETER		3 - 5	1 1 1 1 1	- /0	0/-s8-03-01 3 - 5 		0 0	07-SD-01-01 0 - 0.5		07-DS-03 Dup 0	Dup of 07-SD-01-01 0 - 0.5	-01-01
SW8015MEMP - Nonhalogenated Volatile Organics	ıtile Organics	(mg/kg)						; 1 1 1 1 1 1 1 1 1	i i i i i i	[
Diesel Range Organics (2)	790	(300)	[1490]	36	(27)	[133]	26000	(2000)	[28200]	45000	(7500)	[37700]
Gasoline Kange Organics (2) 17 B SW8080 - Organochlorine Pesticides and PCBs		(15) (ua/ka)	[150]	ON	(13)	[134]	ON	(1400)	[13900]	NO	(1300)	[13300]
4,4'-DDD		(0.5)	[49.82561]	N	(0.45) [4	44.80286]	1300	(6.4)	41 39797	810	(1 0)	[911 7016]
4,4'-DDE	1.5 P	(0.5)	49.82561]	0.53		44.80286]	120	(9.4)	[941.3979]	74	(9.1)	[911.7016]
4,4'-DDT	1.3		49.82561]	0.088 PJB	(0.9) [4	44.80286]	1.4 PJ		[941.3979]	0.89 PJB	(18)	[911.7016]
Aldrin	1.1	_	49.82561]	1.1		44.80286]	ND		[941.3979]		(0.65)	[64.85084]
Chlordane	QN	_	49.82561]		_	44.80286]	ND	(47)	[941.3979]	QN	(46)	[911.7016]
Dieldrin 	QN	_	49.82561]		(0.45) [4	44.80286]	20 P	(9.4)	[941.3979]	22 P	(9.1)	[911.7016]
Endosulfan I	0.45 JB		[49.82561]	0.19 KJB	(0.45) [4	44.80286]	8.5 KJ		[941.3979]	7.1 KJ	(9.1)	[911.7016]
Endosulfan II	QN	_	[49.82561]		(1.3) [4	44.80286]	5.1 KJ	(28)	941.3979]	ON	(27)	[911.7016]
Endosultan Sulfate	QN !		49.82561]	0.69 KJB		44.80286]	23 KJ	(47)	[941.3979]	12 KJ	(46)	[911.7016]
Endrin Granden Andresser	QN I		[49.82561]			44.80286]	59	(9.4)	[941.3979]	28	(8.1)	911.7016]
Endrin Aldenyde	0.74 KJ		49.82561]	0.34 KJB		[44.80286]	4 KJ	(19)	[941.3979]	5.3 KJ	(18)	[911.7016]
Heptachlor United Line and A	0.0065 PJB		49.82561]			44.80286]	5.5 J	(9.4)	941.3979]	5.1 J	(9.1)	911.7016]
Heptachlor epoxide Mothocycellor			[49.82561]			[44.80286]			941.3979]	5.8 PJ	(8.1)	[911.7016]
PCB-1016	I.I KU	7 (5.2)	49.82561]	0.36 KJ		44.80286]	16 KJ		941.3979]	ON	(46)	[911.7016]
PCB-1221	2		49.82561]	2 5	(6.4) (9)	44.80285	2 2	[(94)	941.3979]	O E	(91)	911.7016]
PCB-1232	QN	,	49.82561]	Q N		44 80286]	g		341.39/9]	2 2	(180)	911./016]
PCB-1242	ND	(5)	49.82561]	<u>8</u>		44.80286	2 S		941.3979]	S S	(100)	911./016]
PCB-1248	QN	(2) [4	[49.82561]	ND	(4.5) [4	44.80286]	QN ON	•	941.39797	9	(91)	911,7016
PCB-1254	ON		49.82561]	QN	(6) [4	44.80286]	ND	[190]	941.3979]	QN	(180)	911.7016
PCB-1260	QN	_	49.82561]	ND	(6) [47	44.80286]	QN	(190)	941.3979]	QN	(180)	911.7016]
oxaphene	QN :		[49.82561]	Q.	_	44.80286]	ND	(470)	[941.3979]	ND	(460)	911.7016]
alpha-BHC	QV :		49.82561]	ND		[44.80286]	16	(9.4)	941.3979]	16	(9.1)	911.7016]
beta-BHC			49.82561]		_	44.80286]	6.7 PJ	(9.4)	[941.3979]	ND	(9.1)	[911.7016]
uelta-bnc	4.1 P	(0.5) [4	49.82561]	1.8 P	(0.45) [44	[44.80286]	30	(9.4)	[941.3979]	27	(9.1)	[911.7016]

Compiled: 23 March 1995

[] = Factor () = Detection Limit

NN = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			SIT LOCAT SAMP BEG. DEPTH -	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)					
	07	07 07-58-02	07 07-58-03)-03	5-70	07 07-SD-01			07 07-SD-01
PARAMETER	-/0	sb-02-01 3 - 5 	0/-SB-03-01 3 - 5 	- 5		07-SD-01-01 0 - 0.5	! ! ! ! !	07-08-03 01	Dup of 07-SD-01-01 0 - 0.5
	1.18	(0.5) [49.82561]	0.73 PB	(0.45) [44.80286]	Ö	(9.4)	[941.3979]	ND	(9.1) [911.7016]
SW8240 - Volatile Organics (ug/kg) 1,1,1-Trichloroethane	QN	(7.5) [1.499250]	QN	(6.7) [1.349527]	QN	(140)	[28.28854]	S	(140) [27.35978]
1,1,2,2-Tetrachloroethane	ON	(7.5) [1.499250]	QN		QN		[28.28854]	QN	
1,1,2-Trichloroethane	Q.	(7.5) [1.499250]	ON	(6.7) [1.349527]	ND	(140)	28.28854]	ND	(140) [27.35978]
1,1-Dichloroethane	Q	(7.5) [1.499250]	ON	(6.7) [1.349527]	ON	(140) [[28.28854]	ON	(140) [27.35978]
1,1-Dichloroethene	R		QN	(6.7) [1.349527]	QN	(140)	[28.28854]	ON	(140) [27.35978]
1,2-Dichloroethane	2	_	QN	(6.7) [1.349527]	ON	(140)	[28.28854]	QN	(140) [27.35978]
1,2-Dichloropropane	2	_	ON	(6.7) [1.349527]	ND	(140)	28.28854]	QN	(140) [27.35978]
2-Chloroethyl vinyl ether	Q.	_	ON	ニ	ND	_	[28.28854]	QN	(270) [27.35978]
2-Hexanone	ND	_	ND	(67) [1.349527]	Q	(1400)	[28.28854]	QN	(1400) [27.35978]
4-Methyl-2-pentanone(MIBK)	Q	_	ON	(67) [1.349527]	ON	(1400)	[28.28854]	ND	(1400) [27.35978]
Acetone	41 JB	_	65 JB	(130) [1.349527]	ND	(3800)	[28.28854]	ND	(2700) [27.35978]
Benzene	ND	(7.5) [1.499250]	ND	(6.7) [1.349527]	ON	(140)	[28.28854]	ND	(140) [27.35978]
Bromodichloromethane	2		QN	二	QN	(140)	[28.28854]	ON	(140) [27.35978]
Bromomethane	ND	_	ND		ND	(580)	28.28854]	ON	(270) [27.35978]
Carbon disulfide	QN		ND	二	ND	(140)	28.28854]	QN	(140) [27.35978]
Carbon tetrachloride	Q.		ND		ND	_	28.28854]	QN	(140) [27.35978]
Chlorobenzene	2		QN	二	QN	_	[28.28854]	ND	
Chloroethane	QN :		ND		ND	_	[28.28854]	QN Q	_
Chloroform	2		ND		QN	_	[28.28854]	ND	
Chloromethane	Q		ND	二	ND	_	[28.28854]	Q	(270) [27.35978]
Dibromochloromethane	ND		Q		Q	(140)	[28.28854]	QN	(140) [27.35978]
Ethyl benzene	ND		QN	口	QN	(140)	[28.28854]	QN	(140) [27.35978]
Methyl ethyl ketone	QN	(150) [1.499250]	8.5 JB	(130) [1.349527]	N	(5800)	[28.28854]	ND	(2700) [27.35978]
Methylene chloride	6.3 JB		1.9 JB	(6.7) [1.349527]	ON	(140)	28.28854]	QN	(140) [27.35978]
Styrene	Q.		QN		ND	(140)	28.28854]	QN	(140) [27.35978]
Tetrachloroethene	ND	_	ND	(6.7) [1.349527]	QN	(140)	28.28854]	QN	(140) [27.35978]
Toluene	0.42 JB	(7.5) [1.499250]	Q.	(6.7) [1.349527]	ND	(140)	[28.28854]	ND	(140) [27.35978]
Compiled: 23 March 1995		() = Detection Limit	[] = Factor	ND = Not Detected	NA = Not Applicable	licable			

	0	07 07-58-02		07 07-58-03		07		07
	00	07-SB-02-01 3 - 5) i	07-SB-03-01 3 - 5	1 9 1 1 1	07-30-01 07-50-01-01 0 - 0.5	07-DS-03	07-DS-03 Dup of 07-SD-01-01 0 - 0.5
Tribromomethane(Bromoform)	ON	(7.5) [1.499250]	ON	(6.7) [1.349527]	S	(140) [28 28854]	Z Z	[140] [97 35070]
Trichloroethene	ON	(7.5) [1.499250]	QN		2		2 2	
Vinyl acetate	NO	(7.5) [1.499250]	QN	(6.7) [1.349527]	QN		2	
Vinyl chloride	QN	(15) [1.499250]	ON	(13) [1.349527]	QN		QN	
	QN	(7.5) [1.499250]	N	(6.7) [1.349527]	S	(140) [28.28854]	QN	
cis-1,3-Dichloropropene	QN		Q	(6.7) [1.349527]	S	(140) [28.28854]	QN	[27
trans-1,2-Dichloroethene	QN	(7.5) [1.499250]	Q	(6.7) [1.349527]	Q	(140) [28.28854]	QN	(140) [27.35978]
	QN	(7.5) [1.499250]	Q.	(6.7) [1.349527]	QN	(140) [28.28854]	ND	(140) [27.35978]
rganics	(mg/kg)							
1,2,4-Trichlorobenzene	QN	(1.5) [0.149925]	QN	(0.45) [0.044954]	Q	(13) [1.285842]	ON	(10) [1.005874]
,2-Dichlorobenzene	QN	(1.5) [0.149925]	QN	(0.45) [0.044954]	Q.	(13) [1.285842]	ND	
1,3-Dichlorobenzene	QN	2)	ON	(0.45) [0.044954]	QN	(13) [1.285842]	QN	-
1,4-Dichlorobenzene	ND		N N	(0.45) [0.044954]	Q.	(13) [1.285842]	QN	
2,4,5-Trichlorophenol	ON		ON	(0.45) [0.044954]	QN	(13) [1.285842]	ON	
2,4,6-Trichlorophenol	QN		Q	(0.45) [0.044954]	ND	(13) [1.285842]	QN	
2,4-Dichlorophenol	QN	(1.5) [0.149925]	2	(0.45) [0.044954]	QN	(13) [1.285842]	ND	, <u> </u>
2,4-Dimethylphenol	QN	.5)	2	(0.45) [0.044954]	ND	(13) [1.285842]	QN	
2,4-Dinitrophenol	QN		Q	(2.2) [0.044954]	QN	(64) [1.285842]	ON	(50) [1.005874]
2,4-Dinitrotoluene	Q :		QN		N	(13) [1.285842]	ND	(10) [1.005874
Z,b-Uınıtrotoluene	Q		2		Q	(13) [1.285842]	QN	(10) [1.005874]
Z-Chloronaphthalene	QN		S	(0.45) [0.044954]	9	(13) [1.285842]	ON	(10) [1.005874]
2-Chlorophenol	QN		R	(0.45) [0.044954]	QN	(13) [1.285842]	QN	(10) [1.005874]
2-Methylnaphthalene	0.8 J		ND	(0.45) [0.044954]	2	(13) [1.285842]	QN	(10) [1.005874]
2-Methylphenol(o-cresol)	QN	(1.5) [0.149925]	QN	(0.45) [0.044954]	QN	(13) [1.285842]	QN	
2-Nitroaniline	QN	(7.5) [0.149925]	Q.	(2.2) [0.044954]	Q.	(64) [1.285842]	ON	
2-Nitrophenol	QN	(1.5) [0.149925]	QN	(0.45) [0.044954]	S	(13) [1.285842]	QN	. <u>_</u>
3,3'-Dichlorobenzidine	QN	(3) [0.149925]	QN	(0.9) [0.044954]	QN	(26) [1.285842]	N	_
3-Nitroaniline	QN	(7.5) [0.149925]	Q	(2.2) [0.044954]	QN	[64] [1,285842]	CN	_
						_	2	_

[] = Factor () = Detection Limit

Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

			вес. рертн	TH - END DEPTH (FT.)					
		07		07		07		07	
	07	07-58-02		07-SB-03	.0	07-SD-01	07	07-SD-01	
DADAMETED	:-20	07-SB-02-01	0		. 70	07-SD-01-01	07-DS-03 Du	07-0S-03 Dup of 07-S0-01-01	
TAKANIL 1 EK						0.0 - 0		c.n -	
4-Bromophenyl phenyl ether	N	(1.5) [0.149925]	QN	(0.45) [0.044954]	Q.	(13) [1.285842]	QV	(10) [1.005874]	
4-Chloro-3-methylphenol	QN	(1.5) [0.149925]	QN	(0.45) [0.044954]	ON	(13) [1.285842]	Q	(10) [1.005874]	
4-Chlorophenyl phenyl ether	ON	_	S	(0.45) [0.044954]	ON	(13) [1.285842]	QN	(10) [1.005874]	
4-Methylphenol(p-cresol)	QN		2	(0.45) [0.044954]	ON	(13) [1.285842]	ON	(10) [1.005874]	
4-Nitroaniline	Q.	(7.5) [0.149925]	9	(2.2) [0.044954]	ON	(64) [1.285842]	QN	(50) [1.005874]	
4-Nitrophenol	ND	(7.5) [0.149925]	9	(2.2) [0.044954]	QN	(64) [1.285842]	ON	(50) [1.005874]	
Acenaphthene	QN	(1.5) [0.149925]	2	(0.45) [0.044954]	Q	(13) [1.285842]	QN	(10) [1.005874]	
Acenaphthylene	2	(1.5) [0.149925]	2	(0.45) [0.044954]	QN	(13) [1.285842]	QN	(10) [1.005874]	
Anthracene	ND	(1.5) [0.149925]	9	(0.45) [0.044954]	N	(13) [1.285842]	N	(10) [1.005874]	
Benzo(a)anthracene	ND	(1.5) [0.149925]	2	(0.45) [0.044954]	Q	(13) [1.285842]	QN	(10) [1.005874]	
Benzo(a)pyrene	QN	(1.5) [0.149925]	8	(0.45) [0.044954]	Q	(13) [1.285842]	ON	(10) [1.005874]	
Benzo(b)fluoranthene	QN ON	(1.5) [0.149925]	S	(0.45) [0.044954]	S	(13) [1.285842]	QN	(10) [1.005874]	
Benzo(g,h,i)perylene	QN	(1.5) [0.149925]	웊	(0.45) [0.044954]	Q.	(13) [1.285842]	QN	(10) [1.005874]	
Benzo(k)fluoranthene	ND	.5)	Q	(0.45) [0.044954]	Q	(13) [1.285842]	QN	(10) [1.005874]	
Benzoic acid	NO		S	(2.2) [0.044954]	2	(64) [1.285842]	QN	(50) [1.005874]	
Benzyl alcohol	QN	.5)	QN	(0.45) [0.044954]	Q	(13) [1.285842]	NO	(10) [1.005874]	
Butylbenzylphthalate	Q.	.5)	N N	(0.45) [0.044954]	2	(13) [1.285842]	QN	(10) [1.005874]	
Chrysene	Q	(1.5) [0.149925]	8	(0.45) [0.044954]	R	(13) [1.285842]	ND	(10) [1.005874]	
Di-n-octylphthalate	ND	_	S	(0.45) [0.044954]	2	(13) [1.285842]	Q	(10) [1.005874]	
Dibenz(a,h)anthracene	ON	_	S	(0.45) [0.044954]	2	(13) [1.285842]	QN	(10) [1.005874]	
Dibenzofuran	NO NO		S	(0.45) [0.044954]	2	(13) [1.285842]	QN	(10) [1.005874]	
Dibutylphthalate	QN		S	(0.45) [0.044954]	2	(13) [1.285842]	0.95 J	(10) [1.005874]	
Diethylphthalate	ON		S	(0.45) [0.044954]	S	(13) [1.285842]	QN	(10) [1.005874]	
Dimethylphthalate	ND		Q.	(0.45) [0.044954]	2	(13) [1.285842]	ON	(10) [1.005874]	
Fluoranthene	QN		2	_	2	(13) [1.285842]	0.35 J	(10) [1.005874]	
Fluorene	ND	(1.5) [0.149925]	S	(0.45) [0.044954]	QN	(13) [1.285842]	QN	(10) [1.005874]	
Hexachlorobenzene	QN		QN	(0.45) [0.044954]	2	(13) [1.285842]	QN	(10) [1.005874]	
Hexachlorobutadiene	NO	(1.5) [0.149925]	QN	(0.45) [0.044954]	2	(13) [1.285842]	ON	(10) [1.005874]	
Hexachlorocyclopentadiene	ᄝ	(1.5) [0.149925]	N _O	(0.45) [0.044954]	R	(13) [1.285842]	ON	(10) [1.005874]	

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

[1.005874] [1.005874] [1.005874][1.005874] [1.005874] [1.005874][1.005874][1.005874] [1.005874] [1.005874] [1.005874][1.005874][1.005874] [1.005874]1.005874] [1.005874] [454.5454] [454.5454] [454.5454] [454.5454] [454.5454] [454.5454] [454.5454] [454.5454] [454.5454] [454.5454] [454.5454] [454.5454] 07-DS-03 Dup of 07-SD-01-01 (10)(10)(10)(10)(20) (10) (10)(10)(10)(10)(10)(10)(8.2) 1000) (300)(5.9)(10)(35)(7.7) (89) (14)(98)(38) 0 - 0.507-SD-01 0.33 J 12 J 9.8 380 J 19 J 8.6 J 28 9 2 9 9 2 2 9 S 2 16 140 670 9 2 S 2 2 운 운 [1.285842] [1.285842] [1.285842][1.285842] [1.285842][1.285842][1.285842] [1.285842] [1.285842] [1.285842] [1.285842] [1.285842] [1.285842] [1.285842] [1.285842] [1.285842] (840) [467.2897] [467.2897] [467.2897] [467.2897] [467.2897] [467.2897] [467.2897] [467.2897] [467.2897] [467.2897] [467.2897] [467.2897] (64) (13) (13)(13)(13)(13) (13)(13)(13) (13) (13) (13) (13) (13)(1100)(11) (310)(6.1)(8.4) (7.9)(14)(38) (0/) (86) (86) 07-SD-01-01 0 - 0.507-SD-01 22 15 J 7.2 J ND 0.74 5.1 J 11 2 2 S 2 2 [0.044954] [0.044954][0.044954][0.044954] [0.044954][0.044954] [0.044954] [0.044954] [0.044954] [0.044954] [0.044954] [0.044954] [0.044954] [0.044954][0.044954] [0.044954] [132.4503] [132.4503][132.4503] [132.4503] [132.4503][132.4503][132,4503] [132.4503][132.4503][132.4503][132.4503]132.4503] BEG. DEPTH - END DEPTH (FT.) LOCATION ID (0.45)(0.45)(0.45)(0.45)(0.45)(2.2)(300)(0.45)(0.45)(0.45)(0.45)(87) (1.7)(0.45)(0.45)(0.45)(0.45)(3) (2.4)(10)(2.3)(50) SAMPLE ID (0.45)3 (28) (28) 07-SB-03-01 SITE ID 07-SB-03 3 - 5 07 0.049 JB 220 J 2.8 J 1.1 J 3.4 S S 10 9 ~ 오 99999 S S S 2 S [0.149925][0.149925] [0.149925][0.149925][0.149925]0.149925] [0.149925] [0.149925][0.149925][0.149925][0.149925][0.149925][0.149925][0.149925] [0.149925][0.149925][145.9854][145.9854][145.9854] [145.9854] [145.9854] [145.9854][145.9854] [145.9854] [145.9854] [145.9854][145.9854][145.9854] (1.5)(4.4) (1.5)(1.5)(1.5)(1.5)(7.5)(1.5)(1.5)(1.5)(1.5)(1.5)(3.4)(11) (22) (340)(1.9)(2.6)(2.5)(31)(96)(31)07-SB-02-01 07-SB-02 3W8310 - Polynuclear Aromatic Hydrocarbons (ug/kg) ND
ND
ND
O.32 J
ND
ND
ND
ND
ND
ND
ND
ND
ND
ND 310 J 2.3 J 10 J 1.3 J 14 J 2.7 2 S 욷 문 문 8 8 8 8 8 bis(2-Chloroisopropyl)ether bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate bis(2-Chloroethyl)ether Indeno(1,2,3-cd)pyrene N-Nitrosodiphenylamine N-Nitrosodipropylamine Dibenzo(a,h)anthracene Benzo(b)fluoranthene 3enzo(k)fluoranthene Benzo(g,h,i)perylene Benzo(a)anthracene Pentachlorophenol **lexachloroethane** p-Chloroaniline Acenaphthylene Benzo(a)pyrene Nitrobenzene Phenanthrene Acenaphthene Fluoranthene Naphthalene sophorone Anthracene PARAMETER Chrysene Fluorene Phenol

() = Detection Limit [] = Factor

Not Detected

ected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

PARAMETER	Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene
070	ND 170 J 900 ND
07 07-S8-02 07-S8-02-01 3 - 5	(6.3) [145.9854] (260) [145.9854] (93) [145.9854] (39) [145.9854]
1	2 J ND 500 ND
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) 07 07-S8-03 07-S8-03 3 - 5	(5.7) [132.4503] (240) [132.4503] (85) [132.4503] (36) [132.4503]
0 0 0 0 0	36 ND 310
07 07-SD-01 07-SD-01-01 0 - 0.5	(20) [467.2897] (840) [467.2897] (300) [467.2897] (130) [467.2897]
0 07-DS-03 Dr	46 ND 1200 120
07 07-SD-01 07-DS-03 Dup of 07-SD-01-01 0 - 0.5	(20) [454.5454] (820) [454.5454] (290) [454.5454] (120) [454.5454]

BEG. DEPTH - END DEPTH (FT.)

LOCATION ID

SITE ID

SAMPLE ID

[833] [248] [289.8550] 289.8550] [289.8550] [289.8550][289.8550] 289.8550] [289.8550] [289.8550][289.8550] [289.8550] [289.8550] [289.8550][289.8550][289.8550][289.8550] [289.8550] [289.8550][289,8550] [289.8550](8.7) (14)(2.9)(5.8)(2.9)(2.9)(14)(25)(53) (88) (58)(53) (53) (28) 07-55-02-01 0 - 0.507-55-02 3.9 KJ 8 Z 2 KJ 1.2 KJ S 2 R 9 9 [23300] [25400] [777.9074] 38.89537] [38.89537] [38.89537][38.89537] 38.89537] 38.89537] [38.89537] [38.89537] [38.89537] [38.89537] 38.89537 [38.89537] [38.89537] [38.89537] [38.89537] [38.89537] [38.89537] [38.89537][38.89537] 07-DS-02 Dup of 07-SS-01-01 (1.2)(0.78)(1.9)(0.39)(0.39)(1.9)(0.39)(0.78)(0.39)(0.39)(1.9)(3.9)(7.8) (7.8)(3.9)(3.9)(7.8)(2500)07-55-01 0 - 0.50.8 KJB 0.8 PJB 0.25 PJB 0.91 PB 0.76 J 1.2 37000 5500 S 2 2 9 QN 9 9 9 9 N 2 2 [23300] [12500][783.3920] [39.16960][39.16960] [39.16960][39.16960] [39.16960]39.16960 [39.16960][39.16960] [39.16960][39.16960][39.16960][39.16960][39.16960][39,16960] [39.16960] [39.16960] [39.16960] [39.16960] 39.16960] (7.8) (0.39)(3.9)(7.8) (7.8)(3.9)(0.39)(1.2)(0.39)(0.78)(0.39)(0.39)(2) (3.9)(7.8)07-SS-01-01 0 - 0.507-55-01 0 0.19 PJB 0.86 KJB 0.67 PJB 0.64 JB 1 B 0.46 KJ 3300 39000 1.5 2 S 2 2 S 2 S [2380][844] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327] [157.2327][157.2327] [157.2327] (84) (1.6)(7.9) (7.9)(1.6)(3.1)(1.6)(1.6)(7.9)(16)(31)(4.7)(31)(16)(31)(16)07-50-02-01 0 - 0.5WA8015MEMP - Nonhalogenated Volatile Organics (mg/kg) 07-SD-02 W8080 - Organochlorine Pesticides and PCBs (ug/kg) 2.6 PJ 0.53 KJB 2.9 KJ 2.8 JB 1.4 KJ 1.9 KJ 2 2 2 2 9 S S Gasoline Range Organics (2) Diesel Range Organics (2) Heptachlor epoxide Endosulfan Sulfate Endrin Aldehyde Endosulfan II Endosulfan I Methoxychlor Heptachlor PARAMETER Chlordane 4,4'-000 4,4'-DDE 4,4'-DDT Dieldrin PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 Aldrin Endrin

Compiled: 23 March 1995

ND = Not Detected [] = Factor

() = Detection Limit

[39.16960]

[38.89537]

[38.89537]

(0.39)

[289.8550][289.8550] [289.8550]

(28) 140) (2.9)(2.9)

> [38.89537] [38.89537]

[38.89537]

(7.8) (19)

9 2

[39.16960] 39.16960]

(7.8)

157.2327]

[157.2327]

157.2327] [157.2327]

(31)(62)

Toxaphene

PCB-1260

alpha-BHC

seta-BHC

Jelta-BHC

[157.2327]

[289.8550] [289.8550]

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

		07 07-SD-02		07 07-SS-01	_	07 07-SS-01	- 40	07 07-58-02	
PARAMETER		07-SD-02-01 0 - 0.5 		07-SS-01-01 0 - 0.5	07-08-02	Dup of 07-SS-01-01 0 - 0.5)-70 0	07-SS-02-01 0 - 0.5	1 1 1 2 1 1
gamma - BHC	13	(1.6) [157.2327]	9.8	(0.39) [39.16960]	Q	(0.39) [38,89537]	3.7 P	(2.9)	[289,8550]
SW8240 - Volatile Organics (ug/kg)					!				Facca : 00-1
	Q.	(24) [4.716981]	Q	(130) [26.07561]	S	(330) [66.05019]	ON	(13)	[2.570694]
1,1,2,2-Tetrachloroethane	QN	(24) [4.716981]	Q	(130) [26.07561]	ND		QN	(13)	[2.570694]
1,1,2-Trichloroethane	QN	(24) [4.716981]	QN	(130) [26.07561]	Q.	(330) [66.05019]	QN	(13)	[2.570694]
1,1-Dichloroethane	QN	(24) [4.716981]	Q	(130) [26.07561]	ON	(330) [66.05019]	ON	(13)	[2.570694]
1,1-Dichloroethene	QN	(24) [4.716981]	S	(130) [26.07561]	QN	(330) [66.05019]	QN	(13)	[2.570694]
1,2-Dichloroethane	QN	(24) [4.716981]	2	(130) [26.07561]	ON	(330) [66.05019]	QN	(13)	[2.570694]
1,2-Dichloropropane	ND	(24) [4.716981]	8	(130) [26.07561]	ON	(330) [66.05019]	N Q	(13)	[2.570694]
2-Chloroethyl vinyl ether	ON	(47) [4.716981]	QN	(260) [26.07561]	QN	(660) [66.05019]	ON	(58)	[2.570694]
2-Hexanone	ON	(240) [4.716981]	S	(1300) [26.07561]	ON	(3300) [66.05019]	QN	(130)	[2.570694]
4-Methyl-2-pentanone(MIBK)	ON	(240) [4.716981]	QN	(1300) [26.07561]	ON	(3300) [66.05019]	NO	(130)	[2.570694]
Acetone	QN	(470) [4.716981]	QN .	(2600) [26.07561]	QN	(6600) [66.05019]	83 JB	(500)	[2.570694]
Benzene	ON	(24) [4.716981]	Q.	(130) [26.07561]	ON	(330) [66.05019]	ND	(13)	[2.570694]
Bromodichloromethane	ND	(24) [4.716981]	2	(130) [26.07561]	ON	(330) [66.05019]	QN	(13)	[2.570694]
Bromomethane	QN	(47) [4.716981]	Q	(260) [26.07561]	ND	(660) [66.05019]	QN	(52)	[2.570694]
Carbon disulfide	QN	(24) [4.716981]	Q	(130) [26.07561]	ON	(330) [66.05019]	QN	(13)	[2.570694]
Carbon tetrachloride	QN QN	(24) [4.716981]	운	(130) [26.07561]	QN	(330) [66.05019]	ND	(13)	[2.570694]
Chlorobenzene	QN	_	S	_	QN	(330) [66.05019]	N	(13)	[2.570694]
Chloroethane	Q		9	(260) [26.07561]	QN	(660) [66.05019]	QN	(58)	[2.570694]
Chloroform	Q		운	(130) [26.07561]	ND	(330) [66.05019]	QN	(13)	[2.570694]
Chloromethane	ON	_	Q	(260) [26.07561]	ON	(660) [66.05019]	QN	(58)	[2.570694]
Dibromochloromethane	QN	(24) [4.716981]	S	(130) [26.07561]	ON	(330) [66.05019]	QN	(13)	[2.570694]
Ethyl benzene	ON	(24) [4.716981]	41 J	(130) [26.07561]	QN	(330) [66.05019]	QN	(13)	[2.570694]
Methyl ethyl ketone	QN	(470) [4.716981]	2	(2600) [26.07561]	QN	(6600) [66.05019]	ND	(560)	[2.570694]
Methylene chloride	QN	(24) [4.716981]	S	(130) [26.07561]	ON	(330) [66.05019]	QN	(13)	[2.570694]
Styrene	QN	(24) [4.716981]	R	(130) [26.07561]	ON	(330) [66.05019]	QN	(13)	[2.570694]
[etrach]oroethene	QN	(24) [4.716981]	2	(130) [26.07561]	QN	(330) [66.05019]	ON	(13)	[2.570694]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

BEG. DEPTH - END DEPTH (FT.)

SAMPLE ID

LOCATION ID

SITE ID

[2.570694] [2.570694] [2.570694] [2.570694] [2.570694] [2.570694] [2.570694] [2.570694] [0.866100] [0.866100] [0.866100][0.866100] [0.866100] [0.866100][0.866100] [0.866100][0.866100] [0.866100][0.866100] [0.866100][0.866100][0.866100][0.866100][0.866100] [0.866100] [0.866100] [0.866100] (13)(13)(13)(13)(13)(13)(8.7) (56)(8.7)(8.7) (8.7)(8.7)(8.7)(8.7)(43)(8.7)(8.7)(8.7) (8.7)(8.7)(43)(17) (43)07-58-02-01 0 - 0.507-55-02 2222222 문문 99999 [1.090524] [66.05019][66.05019] [66.05019][66.05019] [66.05019] [66.05019] [66.05019] [66.05019][1.090524][1.090524] [1.090524] [1.090524] [1.090524] [1.090524][1.090524][1.090524][1.090524] [1.090524] [1.090524][1.090524] [1.090524] [1.090524][1.090524][1.090524][1.090524] [1.090524] [1.090524] 07-DS-02 Dup of 07-SS-01-01 (11) 330) 330) (099 330) 330) (330) (330) (11)(11)(11)(11) (11) (11)(22) (11) (11) (11)(11) (11) (11) (11)(55)(22) (55)07-SS-01 0 - 0.517000 무 무 모 2 2 2 윤 65 S 윤 운 문 [26.07561] [26.07561] [26.07561] [26.07561][26.07561] [65.18904] [26.07561] [26.07561] [1.108573][1.108573][1.108573][1.108573][1.108573][1.108573] [1.108573 [1.108573][1.108573] [1.108573][1.108573][1.108573] [1.108573][1.108573][1.108573][1.108573 [1.108573][1.108573] [1.108573](330)(130)(130)(130)(260)(130)(130)(11)(11)(11)(11)(11) (11) (11) (11) (55)(11)(11)(11)(11)07-58-01-01 55) 22) 0 - 0.507-55-01 0 23000 일 및 일 2 2 운 운 S S S S 63 2 2 ₽ ₽ 2 2 [4.716981] [4.716981] [4.716981] [4.716981] [4.716981] [4.716981] [4.716981] [0.469351] [0.469351] [4.716981] [0.469351][0.469351] [0.469351] [0.469351] [0.469351][0.469351][0.469351][0.469351][0.469351] [0.469351][0.469351][0.469351] [0.469351] [0.469351] [0.469351][0.469351] [0.469351] [0.469351](54) (24) (47) (24) 24) (4.7)24) (4.7)(4.7)(23)(4.7)(4.7)(4.7)(4.7)(4.7)(4.7)(4.7)(4.7)(4.7)(23)07-SD-02-01 0 - 0.507-SD-02 9 9 9 9 9 9 9 9 2 2 9 (mg/kg) SW8270 - Semivolatile Organics [ribromomethane(Bromoform) trans-1,3-Dichloropropene 4,6-Dinitro-2-methylphenol trans-1,2-Dichloroethene cis-1,3-Dichloropropene 2-Methylphenol(o-cresol) 1,2,4-Trichlorobenzene 3,3'-Dichlorobenzidine 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Methylnaphthalene 2-Chloronaphthalene 2,6-Dinitrotoluene 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrotoluene 2,4-Dinitrophenol **[rich]oroethene** Vinyl chloride 2-Chlorophenol 2-Nitroaniline 3-Nitroaniline Vinyl acetate 2-Nitrophenol PARAMETER Kylenes

1995 Compiled: 23 March

[] = Factor

() = Detection Limit

NO. = Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

PARAMETER	0.	07-50-02	17-00-01				0.7		
PARAMETER			CC _ / A	-01	0	07-SS-01	,	0/-25-02	
PARAMETER 	- 20	07-SD-02-01	07-55-01-01	01-01	07-DS-02 Du	Dup of 07-SS-01-01	-70	07-58-02-01	
		0 - 0.5) - 0	- 0.5	0) - 0.5	0	0 - 0.5	
4-Bromophenyl phenyl ether	ND	(4.7) [0.469351]	QN	(11) [1.108573]	QN	(11) [1.090524]	Q	(8.7)	[0.866100]
4-Chloro-3-methylphenol	QN	(4.7) [0.469351]	QN	(11) [1.108573]	QN	(11) [1.090524]	QN	(8.7)	[0.866100]
4-Chlorophenyl phenyl ether	QN		CN	_	S N		2 2	(8 7)	[0 866100]
4-Methylphenol(p-cresol)	QN		. S	_) C		S S	(c o)	[0.866100]
4-Nitroaniline	2 8		Q.		S S		G C	(0.7)	[0.000100] [0.866100]
4-Nitrophenol	QN		Q		2	_	2	(43)	[0.866100]
Acenaphthene	ON	(4.7) [0.469351]	1.3 J		QN	. <u></u>	QN	(8.7)	[0.866100]
Acenaphthylene	ON	(4.7) [0.469351]	ND	(11) [1.108573]	QN	. <u></u>	N	(8.7)	[0.866100]
Anthracene	QN	(4.7) [0.469351]	ON	(11) [1.108573]	QN	(11) [1.090524]	N	(8.7)	[0.866100]
Benzo(a)anthracene	0.24 J	(4.7) [0.469351]	ON	(11) [1.108573]	QN	_	ND	(8.7)	[0.866100]
Benzo(a)pyrene	ND	(4.7) [0.469351]	ND	(11) [1.108573]	QN	(11) [1.090524]	ND	(8.7)	[0.866100]
Benzo(b)fluoranthene	QN	(4.7) [0.469351]	QN	(11) [1.108573]	QN	(11) [1.090524]	ND	(8.7)	[0.866100]
Benzo(g,h,i)perylene	QN	(4.7) [0.469351]	ON	(11) [1.108573]	Q.	(11) [1.090524]	QN	(8.7)	[0.866100]
Benzo(k)fluoranthene	QN	(4.7) [0.469351]	ON	(11) [1.108573]	QN	(11) [1.090524]	ND	(8.7)	[0.866100]
Benzoic acid	QN	(23) [0.469351]	QN	(55) [1.108573]	QN	(55) [1.090524]	2.3 J	(43)	[0.866100
Benzyl alcohol	Q	(4.7) [0.469351]	ON	(11) [1.108573]	ON	(11) [1.090524]	ND	(8.7)	[0.866100]
Butylbenzylphthalate	0.35 J	(4.7) [0.469351]	ON	(11) [1.108573]	QN	(11) [1.090524]	ND	(8.7)	[0.866100]
Chrysene	QN	(4.7) [0.469351]	ON	(11) [1.108573]	ND	(11) [1.090524]	QN	(8.7)	[0.866100]
Di-n-octylphthalate	QN	(4.7) [0.469351]	N	(11) [1.108573]	QN	(11) [1.090524]	QN	(8.7)	[0.866100]
Dibenz(a,h)anthracene	QN	(4.7) [0.469351]	ON	(11) [1.108573]	ON	(11) [1.090524]	Q.	(8.7)	[0.866100
Dibenzofuran	QN	(4.7) [0.469351]	ON	(11) [1.108573]	ON	(11) [1.090524]	QN	(8.7)	[0.866100]
Dibutylphthalate	0.13 J	(4.7) [0.469351]	ON	(11) [1.108573]	ON	(11) [1.090524]	QN	(8.7)	[0.866100]
Diethylphthalate	QN	(4.7) [0.469351]	QN	(11) [1.108573]	QN	(11) [1.090524]	NO	(8.7)	[0.866100]
Dimethylphthalate	ON	(4.7) [0.469351]	QN	(11) [1.108573]	ND	(11) [1.090524]	N ON	(8.7)	[0.866100]
Fluoranthene	0.094 J	(4.7) [0.469351]	ON	(11) [1.108573]	QN	(11) [1.090524]	QN	(8.7)	[0.866100]
Fluorene	QN	(4.7) [0.469351]	4 J	(11) [1.108573]	3.6 J	(11) [1.090524]	QN	(8.7)	[0.866100]
Hexachlorobenzene	QN	(4.7) [0.469351]	QN	(11) [1.108573]	QN	(11) [1.090524]	QN	(8.7)	[0.866100]
Hexachlorobutadiene	QN	(4.7) [0.469351]	QN	(11) [1.108573]	ON	(11) [1.090524]	N	(8.7)	[0.866100]
Hexachlorocyclopentadiene	QN	(4.7) [0.469351]	ON	(11) [1.108573]	ON	(11) [1.090524]	QN	(8.7)	[0.866100]
Compiled: 23 March 1995		() = Detection limit	[] = Factor	NO = Not Detected	NA = Not A	Not Applicable			

07 07 SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) 07 07

	. 70	07-SD-02 07-SD-02-01	0 07	07-SS-01 07-SS-01-01	0 U 20-80-70	07-SS-01		07-55-02
PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5		0 - 0.5		0 - 0.5		0 - 0.5
!							; ; ; ; ; ; ; ; ;	
Hexachloroethane	2	(4.7) [0.469351]	ND	(11) [1.108573]	QN	(11) [1,090524]	S	[8 7] [0 866100]
Indeno(1,2,3-cd)pyrene	S	(4.7) [0.469351]	QN	(11) [1.108573]	Q		2 5	
Isophorone	QN ON	(4.7) [0.469351]	ON		S	_	2 5	
N-Nitrosodiphenylamine	ND	(4.7) [0.469351]	QN		2 2		2 5	
N-Nitrosodipropylamine	ON	(4.7) [0.469351]	ON		S S		2 5	(0.7) [U.855100]
Naphthalene	0.21 J	(4.7) [0.469351]	12		. t		2 5	
Nitrobenzene	N	(4.7) [0.469351]	N		Q X		2 5	(0.7) [0.080100]
Pentachlorophenol	ON	(23) [0.469351]	QN		QN.		2 2	
Phenanthrene	ON	(4.7) [0.469351]	0.3 J	(11) [1.108573]	QN		2	
Phenol	QN	(4.7) [0.469351]	QN	(11) [1.108573]	N		Ş	
Pyrene	0.19 J	(4.7) [0.469351]	ON	(11) [1.108573]	QN	_	9	, ,
bis(2-Chloroethoxy)methane	QN	(4.7) [0.469351]	ND	(11) [1.108573]	QN		. S	
bis(2-Chloroethyl)ether	ND	(4.7) [0.469351]	ND	(11) [1.108573]	ON	_	9	
bis(2-Chloroisopropyl)ether	ON	(4.7) [0.469351]	QN	(11) [1.108573]	ND		2	
bis(2-Ethylhexyl)phthalate	QN	(4.7) [0.469351]	QN	(11) [1.108573]	ND	(11) [1.090524]	N	_
p-Chloroaniline	QN	(4.7) [0.469351]	QN	(11) [1.108573]	QN	(11) [1.090524]	Q	
SW8310 - Polynuclear Aromatic Hydrocarbons	ocarbons (ug/kg)	kg)		•		•	2	
Acenaphthene	QN	(1400) [792.3930]	150000	(350) [195.3125]	ND	(350) [193,6483]	S	(2700) [1510 574]
Acenaphthylene	ND	(1800) [792.3930]	570	(450) [195.3125]	200		2	
Anthracene	ND	(520) [792.3930]	350	(130) [195.3125]	ON		S S	
Benzo(a)anthracene	QN	(10) [792.3930]	1.5 J	(2.5) [195.3125]	QN	(2.5) [193.6483]	QN	[1510]
Benzo(a)pyrene	5.6 J	_	2 J	(4.5) [195.3125]	1.4 J	(4.5) [193.6483]	QN	_
Benzo(b)†luoranthene	QN	(14) [792.3930]	2.4 J	(3.5) [195.3125]	2.3 J	(3.5) [193,6483]	QN	
Benzo(g,h,i)perylene	29 J	(60) [792.3930]	24	(15) [195.3125]	ND		2	
Benzo(k)fluoranthene	1.3 J	(13) [792.3930]	1.5 J	(3.3) [195.3125]	0.34 J	[193.	Q.	
Chrysene	QN	(120) [792.3930]	QN	(29) [195.3125]	ND	(29) [193.6483]	Q	
Dibenzo(a,h)anthracene	QN	(24) [792.3930]	1.6 J	(5.9) [195.3125]	ON	_	9	
Fluoranthene	QN	(170) [792.3930]	QN	(41) [195.3125]	QN	(41) [193.6483]	QN	
Fluorene	<u>Q</u>	(170) [792.3930]	3100	(41) [195.3125]	4000	(41) [193.6483]	QN	
	i							

Compiled: 23 March 1995

() = Detection Limit [] = Factor

MA = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 10

			LO(S/ BEG. DEPTH	LOCATION ID SAMPLE ID . BEG. DEPTH - END DEPTH (FT.)				
PARAMETER	0 070	07 07-SD-02 07-SD-02-01 0 - 0.5	07-50	07 07-SS-01 07-SS-01-01 0 - 0.5	07 07 -05 -02 0u	07 07-SS-01 07-DS-02 Dup of 07-SS-01-01 0 - 0.5	0 0	07 07-SS-02 07-SS-02-01 0 - 0.5
Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	30 S ND ND ON	(34) [792.3930] (1400) [792.3930] (510) [792.3930] (210) [792.3930]	6.9 J 20000 1400	(8.4) [195.3125] (350) [195.3125] (120) [195.3125] (53) [195.3125]	6 J 17000 1500 95	(8.3) [193.6483] (350) [193.6483] (120) [193.6483] (52) [193.6483]		(65) [1510.574] (2700) [1510.574] (970) [1510.574] (410) [1510.574]

09-MW-01-02 09-MW-01 2 - 3 07-SS-05-01 0 - 0.5 07-55-05 07 LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) SITE 10 07-SS-04-01 0 - 0.5 07-55-04 07 07-SS-03-01 0 - 0.5 07-55-03 PARAMETER

SW8015MEMP - Nonhalogenated Volatile Organics (mg/kg)	le Organics	(mg/kg)										
Diesel Range Organics (2)	21000	(2200)	[11100]	1700	(120)	[625]	44000	(8200)	[47600]	230	(120)	[588]
Gasoline Range Organics (2)		(20)	[202]	QN	(65)	[646]	ND	(38)	[947]	QN	(12)	[117]
SW8U8U - Organochlorine Pesticides and PCBs		(ug/kg)										,
4,4'-000	830	(15)	[1515.151]	210	(2.2) [21	[215.5172]	1100	(33)	3278.688]		AA	
4,4'-DDE	45	(0.76)	[75.75757]	12		[215.5172]	76		163.9344]		Ψ.	
4,4'-DDT	19	(1.5)	[75.75757]	3.6 PJ		[215.5172]	4.2		163.9344]		Y AN	
Aldrin	QN	(0.76)	[75.75757]	ON			QN		[163.9344]	- ~	V.	
Chlordane	QN	(3.8)	[75.75757]	ON	(11) [21	[215.5172]	ND		163.9344]	. ~	. 4	
Dieldrin	QN	(0.76)	[75.75757]	QN			QN	(1.6)	[163.9344]	- ~	∀	
Endosulfan I	QN	(0.76)	[75.75757]	ON		[215.5172]	QN		163.9344]	- 2	. ≰	
Endosulfan II	QN	(2.3)	[75.75757]	3.1 KJ			QN		163.9344]	. ~		
Endosulfan Sulfate	1.1 JB	(3.8)	[75.75757]	4.9 J			3.6 JB		163.9344]	. 2	. Y	
Endrin	ON	(0.76)	[75.75757]	2 PJB			QN		163.93441	. ~	. A	
Endrin Aldehyde	1.4 J	(1.5)	[75.75757]	1.5 KJ		[215.5172]	2.1 KJ		[163.9344]	: 2	¥ 8	
Heptachlor	ON	(0.76)	[75.75757]	0.74 KJB			0.75 KJB		163.9344]	. 2	< ₹	
Heptachlor epoxide	QN	(0.76)	[75.75757]	QN	(2.2) [21!	[215.5172]	ND	(1.6)	[163.9344]		NA NA	
Methoxychlor	QN	(3.8)	[75.75757]	2.1 KJ			ND		163.9344]	· Z		
PCB-1016	ON	[7.6]	75.75757]	ND			QN		163.9344]	· Z	¥	
PCB-1221	QN	(15)	[75.75757]	ND			ND		163.9344]	Z	: ≪	
PCB-1232	ON	(12)	[75.75757]	ND			ON	(33)	[163.9344]	· 2	: ∢	
PCB-1242	QN	[7.6]	[75.75757]	ND			ND		[63.9344]	2	A	
PCB-1248	ON	(7.6)	[75.7575]	ND			QN		[63.9344]	. 2	: ⋖	
PCB-1254	QN	(15)	75.75757]	QN			QN		163.9344]	: 2	. ⊲	
PC8-1260	QN	(15)	[75.75757]	ND		5.5172]	QN		[163.9344]	: 2	(⊲	
Toxaphene	QN] (88)	[75.75757]	NO		[215.5172]	QN		63.9344]	. 2	. ⊲	
alpha-BHC	1.8 P	(0.76)	[75.75757]	N		5.5172]	QN		[163.9344]	: 2	. •	
beta-BHC	16	(0.76)	[75.75757]	ON	(2.2) [215	[215.5172]	QN		163.9344]	: 2	Y AN	
delta-BHC	Q.	(0.76)	[75.75757]	QN		[215.5172]	ON	(1.6)	[163.9344]	: z	Y.A	
									•			

Compiled: 23 March

() = Detection Limit [] = Factor

 MN = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

Control of the cont				SIT LOCAT SAMP BEG. DEPTH -	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)					
Control of the contro			07 07-55-03 07-55-03-01	07-85-70	-04 04-01	07	07 -SS-05 SS-01	-60	09 -MW-01	
Control or control of the control of	PARAMETER 		0 - 0.5	- 0	0.5	0	- 0.5	D	W-01-02	; ; ; ; ;
Controverthane No (25 5.050505] No (32 6.493506] No (25 4.350495] No (5.9)			(0.76) [75.75757]			· QV		×	_	
Controverthane NO (25) [5.05056] NO (32) [6.43356] NO (25) [4.35049] NO (5.9)				Q.		QN QN		QN	(2.9)	[1.189060]
Concertance ND (25) [5.05605] ND (32) [6.493506] ND (25) [4.356495] ND (5.9)	1,1,2,2-Tetrachloroethane	ON		N		Q		Q	(5.9)	[1.189060]
Carocathane ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9)	1,1,2-Trichloroethane	ON	_	QN		N	_	QN	(5.9)	[1.189060]
Carethene NO (25) [5.050505] NO (32) [6.493506] NO (25) [4.950495] NO (5.9)	1,1-Dichloroethane	QN	_	QN	_	Q.		ON	(5.9)	[1.189060]
Carethane ND (25) [5.050505] NO (32) [6.43306] NO (25) [4.950495] NO (5.9)	1,1-Dichloroethene	QN		QN		Q	_	QN	(5.9)	[1.189060]
Compropane ND (25) [5.05056] ND (32) [6.43356] ND (25) [4.95045] ND (2	1,2-Dichloroethane	QN		QN		Q		QN	(2.9)	[1.189060]
CSO E. 5.05095 ND CSO E. 493506 N	1,2-Dichloropropane	QN		Q	_	QN		NO	(5.9)	[1.189060]
No	2-Chloroethyl vinyl ether	ON	_	QN	_	Q.		QN	(12)	[1.189060]
-2-pentanone(M1BK) ND (250) [5.060565] ND (320) [6.433506] ND (250) [4.950495] ND (120) ND (250) [5.060505] ND (550) [6.433506] ND (550) [4.950495] ND (120) ND (25) [5.06505] ND (32) [6.433506] ND (25) [4.950495] ND (25) [2-Hexanone	QN	_	ND	_	QN		QN	(23)	[1.189060]
700 (510) [5.050505] 190 J (650) [6.493506] ND (50) [4.950495] ND (120) [4.950495] ND (1	4-Methyl-2-pentanone(MIBK)	QN		ND		QN		QN	(23)	[1.189060]
ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] 0.16 JB (5.9)	Acetone	700				ON		Q.	(120)	[1.189060]
No	Benzene	Q	_	ND	_	QN			(5.9)	[1.189060]
hane ND (51) [5.050505] ND (65) [6.493506] ND (50) [4.950495] ND (50) [7.9169505] ND (Bromodichloromethane	QN	_	QN	_	QN		QN	(5.9)	[1.189060]
Second Figure ND (25) [5.050505]	Bromomethane	Q		ON		QN		QN	(12)	[1.189060]
etrachloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) nzene ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) name ND (51) [5.050505] ND (65) [6.493506] ND (25) [4.950495] ND (12) name ND (25) [5.050505] ND (65) [6.493506] ND (25) [4.950495] ND (12) thane ND (25) [5.050505] ND (65) [6.493506] ND (25) [4.950495] ND (12) nloromethane ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (25) nloromethane ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (25) thyl ketone 120 J (510) [5.050505] ND (650) [6.493506] ND (25) [4.950495] ND (5.9) thyl ketone 120 J (510) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [4.950495] ND (25) [4.9504	Carbon disulfide	QN	_	QN	_	QN	_	ND	(5.9)	[1.189060]
nzene ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) hane ND (51) [5.050505] ND (65) [6.493506] ND (55) [4.950495] ND (12) rm ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) thane ND (51) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) nloromethane ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) thyl ketone 120 (510) [5.050505] ND (650) [6.493506] ND (25) [4.950495] ND (5.9) thyl ketone 120 (510) [5.050505] ND (650) [6.493506] ND (25) [4.950495] ND (5.9) chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) [4.950495] ND (5.9) [4.950495] ND	Carbon tetrachloride	Q .	_	NO	_	QN	_	N	(5.9)	[1.189060]
nane ND (51) [5.050505] ND (65) [6.493506] ND (50) [4.950495] ND (12) rm ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) thane ND (51) [5.050505] ND (65) [6.493506] ND (55) [4.950495] ND (5.9) nloromethane ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) thyl ketone 120 (510) [5.050505] ND (650) [6.493506] ND (25) [4.950495] ND (5.9) thyl ketone 120 (510) [5.050505] ND (650) [6.493506] ND (25) [4.950495] ND (5.9) thyl ketone 120 (510) [5.050505] ND (650) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) s chloride ND	Chlorobenzene	N	_	QN	_	QN	_	QN	(5.9)	[1.189060]
thane ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) Lhane ND (51) [5.050505] ND (65) [6.493506] ND (50) [4.950495] ND (12) Lhane ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) Lhyl ketone 120 J (510) [5.050505] ND (650) [6.493506] ND (25) [4.950495] ND (5.9) Lhyl ketone ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (25) [4.950495] ND (25) [5.050505] ND (25) [6.493506] ND (25) [4.950495] ND (25) [4.950495] ND (25) [6.493506] ND (25) [4.950495] ND (25) [6.493506] ND (25) [4.950495] ND (25) [6.93506] ND (25) [4.950495] ND (25)	Chloroethane	2		QN	_	QN	_	Q	(12)	[1.189060]
thane ND (51) [5.050505] ND (65) [6.493506] ND (50) [4.950495] ND (12) 10 10 10 10 10 10 10 1	Chloroform	2		QN	_	QN	_	ND	(5.9)	[1.189060]
ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) nzene 27 (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) thyl ketone 120 J (510) [5.050505] ND (650) [6.493506] ND (25) [4.950495] ND (5.9) e chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) oroethene ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) chiloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) chiloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9)	Chloromethane	ON		QN	_	QN	_	ND	(12)	[1.189060]
thyl ketone 27 (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.09) [4.950495] ND (5.9) [4.950495] ND	Dibromochloromethane	QN	_	Q.	_	ND		QN	(5.9)	[1.189060]
thyl ketone 120 J (510) [5.050505] ND (650) [6.493506] ND (500) [4.950495] ND (120) [7.05010] s chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] 17 (5.9) [7.05010] ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) [7.05010] S.4 J (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) [7.05010] S.4 J (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) [7.05010] S.4 J (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) [7.05010] S.4 J (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) [7.05010] S.4 J (25) [5.050505] ND (32) [6.493506] ND (32) [6.493506] ND (32) [6.493506] ND (32) [6.493506] ND (33) [6.493506] ND (34) [6.493506] ND (35) [6.493506]	Ethyl benzene	27		ND		ON		N	(5.9)	[1.189060]
e chloride ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] 17 (5.9) ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) 5.4 J (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] O.5 JB (5.9)	Methyl ethyl ketone			ON		QN		QN	(120)	[1.189060]
ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) 5.4 J (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] 0.5 JB (5.9)	Methylene chloride	ON	_	ND	_	QN	_	17	(5.9)	[1.189060]
oroethene ND (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] ND (5.9) 5.4 J (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] 0.5 JB (5.9)	Styrene	ON	_	QN	_	ON	_	N	(5.9)	[1.189060]
5.4 J (25) [5.050505] ND (32) [6.493506] ND (25) [4.950495] 0.5 JB (5.9)	Tetrachloroethene	QN		ON	_	ND	_	ND	(5.9)	[1.189060]
	Toluene		_	QN	_	ND	_		(2.9)	[1.189060]
22 Manah 1005	Omii] 201 92 March 1005		+ imi no+po+po - ()	20400	Letected to N - ON	A T-M - AM				

				SITE ID				
			BEG. DEP	COCALION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
		20				20		Ç
	_	07-55-03		07-SS-04		07-SS-05		09-MW-01
	0	07-55-03-01	.0	07-SS-04-01	0	07-SS-05-01	ŏ	09-MW-01-02
PARAMETER 		0 - 0.5		0 - 0.5		0 - 0.5	 	2 - 3
Trihromomethane(Bromoform)	C W		9		!			
Twick occupations	2 1		Q.		QN N		Q	(5.9) [1.189060]
Vinvl acotato	O. S		2		2		R	(5.9) [1.189060]
Vinyl chloride	2 9		Q :		Q.		QN	_
V. J. C. 1. C. 1. C. C. V. V. J. C. C. C. V. V. J. C.	QN C		ON :		Q		ND	(12) [1.189060]
Ajielas Piel 3-Dichlomomomom	300		2 :		QN		1.3 J	(5.9) [1.189060]
trans-1 2-Dishloweethers	2 4		n :		Q.		Q	(5.9) [1.189060]
than 1.2 Niellene	O		Q		QN		QN	(5.9) [1.189060]
Lrans-1,3-Dichloropropene	ON VIEW	(25) [5.050505]	Q	(32) [6.493506]	Q	(25) [4.950495]	2	(5.9) [1.189060]
	(mg/kg)							
1,2,4-Trichlorobenzene	QN	(2.3) [0.225245]	QN	(6.5) [0.645477]	QN	(5) [0.495049]	QN	(0.39) [0.039477]
1,2-Dichlorobenzene	QN	(2.3) [0.225245]	R	(6.5) [0.645477]	ON	(5) [0.495049]	Q.	
1,3-Dichlorobenzene	QN	(2.3) [0.225245]	QN	(6.5) [0.645477]	ND	(5) [0.495049]	QN	
1,4-Dichlorobenzene	QN		ON	(6.5) [0.645477]	QN	(5) [0.495049]	ND	(0.39) [0.039477]
2,4,5-Irichlorophenol	QN		Q.		QN	(5) [0.495049]	QN Q	
2,4,6-Trichlorophenol	ON		ND	(6.5) [0.645477]	QN	(5) [0.495049]	QN	(0.39) [0.039477]
2,4-Dichlorophenol	QN		웃	(6.5) [0.645477]	QN	(5) [0.495049]	QN	(0.39) [0.039477]
2,4-Dimethylphenol	QN .		Q.	(6.5) [0.645477]	QN	(5) [0.495049]	QN	(0.39) [0.039477]
Z,4-Dinitrophenol	9 :		Q		R	(25) [0.495049]	ON	(2) [0.039477]
2,4-Uinitrotoluene	ON :		QN		QN	(5) [0.495049]	QN	(0.39) [0.039477]
2, o-billitrocoluene	Q.	_ `	2	_	QN	_	QN	(0.39) [0.039477]
2-Chloronaphthalene	Q.		Q	_	QN	(5) [0.495049]	ND	(0.39) [0.039477]
z-cnloropnenol	ON :	_	QN		QN	(5) [0.495049]	ON	(0.39) [0.039477]
Z-Methylnaphthalene	0.72 J		S	(6.5) [0.645477]	0.63 J	(5) [0.495049]	N ON	(0.39) [0.039477]
Z-Methy!pheno!(o-creso!)	Q :		QN	(6.5) [0.645477]	ND	(5) [0.495049]	QN	(0.39) [0.039477]
Z-Nitroaniline	Q :		NO		ND	(25) [0.495049]	QN	(2) [0.039477]
2-3' Nichland	Q ::		S		ND	(5) [0.495049]	QN	(0.39) [0.039477]
3,3 -Ulchlorobenzidine	Q S		Q		Q.	_	N	(0.79) [0.039477]
3-Nitroaniiine 4 6-Dimitus 3 mathulatanai	9		2		Q		Q	(2) [0.039477]
4,o-Vinitro-Z-metnyipnenol	ON N	(11) [0.225245]	Q	(32) [0.645477]	Q	(25) [0.495049]	ON	(2) [0.039477]

Compiled: 23 Max

[] = Factor () = Detection Limit

- Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

				SITE ID					
			-	SAMPLE ID					
			BEG. DEPI	ВЕG. DEPTH – END DEPTH (FT.)					
		07		20		07		60	
	J	07-55-03	J	07-SS-04	_	07-SS-05	60	09-MW-01	
	07	07-SS-03-01	0)	07-55-04-01	0	07-55-05-01	-60	09-MW-01-02	
PARAMETER	; ; ; ; ;	0 - 0.5	 	0 - 0.5	1	0 - 0.5		2 - 3	
4-Bromophenyl phenyl ether	QN	(2.3) [0.225245]	N	(6.5) [0.645477]	N	(5) [0.495049]	Q	(0.39)	[0.039477]
4-Chloro-3-methylphenol	QN		QN		S		9		0.039477]
4-Chlorophenyl phenyl ether	8	(2.3) [0.225245]	Q.		S		2		0.039477
4-Methylphenol(p-cresol)	Q.	(2.3) [0.225245]	Q.	(6.5) [0.645477]	QN	(5) [0.495049]	NO		0.039477]
4-Nitroaniline	용	_	N	(32) [0.645477]	QN	(25) [0.495049]	QN	(2)	0.039477]
4-Nitrophenol	QN	_	2	_	QN	(25) [0.495049]	QN	(2)	[0.039477]
Acenaphthene	QN	_	2	_	QN	(5) [0.495049]	QN	(0.39)	0.039477]
Acenaphthylene	QN		2	(6.5) [0.645477]	Q	(5) [0.495049]	0.011 J	(0.39)	0.039477]
Anthracene	Q	_	N	(6.5).[0.645477]	Q.	(5) [0.495049]	0.048 J	(0.39)	0.039477]
Benzo(a)anthracene	QN	_	S	(6.5) [0.645477]	QN	(5) [0.495049]	0.17 J	(0.39)	0.039477]
Benzo(a)pyrene	ND	_	S	(6.5) [0.645477]	NO	(5) [0.495049]	0.36 J	(0.39)	0.039477
Benzo(b)fluoranthene	ON	_	S.		QN	(5) [0.495049]	0.47	(0.39)	0.039477]
Benzo(g,h,i)perylene	ND	_	Q.	(6.5) [0.645477]	QN	(5) [0.495049]	0.1 J	(0.39)	0.039477]
Benzo(k)fluoranthene	QN		Q	(6.5) [0.645477]	ON	(5) [0.495049]	0.44	(0.39)	0.039477]
Benzoic acid	QN		2 J	(32) [0.645477]	QN	(25) [0.495049]	QN	(2)	0.039477]
Benzyl alcohol	ON		S	(6.5) [0.645477]	Q	(5) [0.495049]	QN	(0.39)	0.039477
Butylbenzylphthalate	QN		S	_	S	(5) [0.495049]	ON	(0.39)	[0.039477]
Chrysene	Q	_	9		Q.	(5) [0.495049]	0.36 J	(0.39)	0.039477]
Di-n-octylphthalate	Q	_	2		8	(5) [0.495049]	ND	(0.39)	0.039477]
Dibenz(a,h)anthracene	Q N		2	_	2	(5) [0.495049]	0.057 J	(0.39)	[0.039477]
Dibenzofuran	Q	_	9	(6.5) [0.645477]	2	(5) [0.495049]	QN	(0.39)	0.039477]
Dibutylphthalate	Q		S	(6.5) [0.645477]	Q	(5) [0.495049]	S	(0.39)	0.039477]
Diethylphthalate	Q		S	_	Q	(5) [0.495049]	QN	(0.39)	[0.039477]
Dimethylphthalate	Q		Q		2	(5) [0.495049]	QN	(0.39)	0.039477]
Fluoranthene	Q	_	9	(6.5) [0.645477]	2	(5) [0.495049]	0.36 J	(0.39)	0.039477
Fluorene	QN		8	(6.5) [0.645477]	2	(5) [0.495049]	QN	(0.39)	[0.039477]
Hexachlorobenzene	QN		R	(6.5) [0.645477]	2	(5) [0.495049]	QN	(0.39)	[0.039477]
Hexachlorobutadiene	QN		2	(6.5) [0.645477]	2	(5) [0.495049]	NO	[0.39]	[0.039477]
Hexachlorocyclopentadiene	9	(2.3) [0.225245]	N QN	(6.5) [0.645477]	2	(5) [0.495049]	QN		[0.039477]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

[0.039477][0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] [0.039477] (0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(0.39)(2) 09-MW-01-02 09-MW-01 0.15 J 0.15 J S S S S 9 0.53 Q. 읒 S S [0.495049][0.495049][0.495049][0.495049][0.495049][0.495049][0.495049][0.495049] [0.495049][0.495049][0.495049][0.495049][0.495049][0.495049][0.495049][0.495049] [830.5647] [830.5647] [830.5647] [830.5647] [830.5647][830.5647][830.5647][830.5647] [830.5647] 830.5647 [830.5647] [830.5647] (5) (5) (5) (5) (2) (1900)(550)(11) (19)(15)(63) (14)(120)(52) (170)(22) (2) (2) (2) (2) (2) (2) (2) (170)07-58-05-01 07-55-05 0 - 0.50.22 J 8.4 J ND 33 J ND 9 9 9 9 2 2 2 99999 욷 문 2 2 2 2 S S 2 2 [0.645477] [0.645477] [0.645477] [0.645477][0.645477] [0.645477] [0.645477] [0.645477] [0.645477] [0.645477] [0.645477] [0.645477] [0.645477] [0.645477][0.645477] [222.222] [222.222] [222.222] [222.222] [222.222] [0.645477][222.222] [222.222] [222.222] [222.222] [222.222] [222.222] [222.222] BEG. DEPTH - END DEPTH (FT.) LOCATION ID (6.5)(6.5)(6.5)(6.5)(6.5)(6.5)(6.5)(35)(6.5)(6.5)(6.5)(6.5)(6.5)(2.9)(5.1)(3.8)(6.5)(510)(150)(4) (17)(33)(6.7) SAMPLE ID (47) 07-58-04-01 SITE 1D 07-55-04 0 - 0.507 2.2 J 2.4 J 5.9 J 200 J 0.96 J 2 S 4.7 물 물 운 운 2 2 2 2 2 9 9 9 9 9 9 Q [0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][0.225245][378.7878] [378.7878] [378.7878] [378.7878] [378.7878] [378.7878] [378.7878] [378.7878] [378,7878] [378.7878] [378.7878] [378.7878] (2.3)(2.3)(2.3)(2.3)(2.3)(11) (2.3)(2.3)(2.3)(089) (4.9)(2.3)(2.3)(2.3)(2.3)(2.3)(870)(250)(8.9) (8.7)(6.4)(53) (22) (11) 80) 07-55-03-01 (80) 0 - 0.507-55-03 0 W8310 - Polynuclear Aromatic Hydrocarbons (ug/kg) ND ND ND O.36 J 0.34 J 580 J 56 J 0.48 J 999 2 2 Q 9 2 2 문 일 일 2 2 9 8 bis(2-Chloroisopropyl)ether bis(2-Chloroethoxy)methane bis(2-Ethylhexyl)phthalate bis(2-Chloroethyl)ether ndeno(1,2,3-cd)pyrene N-Nitrosodiphenylamine N-Nitrosodipropylamine Dibenzo(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(a)anthracene Pentachlorophenol lexachloroethane p-Chloroaniline Benzo(a)pyrene Acenaphthylene Vitrobenzene Phenanthrene Acenaphthene Fluoranthene Vaphthalene sophorone Anthracene PARAMETER -----Chrysene Fluorene Phenol Pyrene

NA = Not Applicable

Not Detected

[] = Factor

() = Detection Limit

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			; LOC S/ BEG. DEPTH	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
	0 0	07 07-SS-03 07-SS-03-01	-70	07 07-SS-04 07-SS-04-01	0	07 07-SS-05 07-SS-05-01	09 09-MW-01 09-MW-01-02	
PAKAME EK 	1 2 2 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 - 0.5	0	- 0.5		0 - 0.5	2 - 3	1
Indeno(1,2,3-cd)pyrene	QN	(16) [378.7878]	15	(9.6) [222.2223]	49	(36) [830.5647]	NA	
Naphthalene	2700	(680) [378.7878]	9 J	(400) [222.222]	QV	(1500) [830.5647]	NA	
Phenanthrene	310	(240) [378.7878]	N	(140) [222.2223]	2	(530) [830.5647]	NA	
Pyrene	ON	(100) [378.7878]	QN	(60) [222.222]	QN	(220) [830.5647]	NA	

			BEG.		SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)							
		60		60			J	60			60	
		09-MW-02 09-MW-02-02		09-MM-03	33		4-60	09-MW-04			09-MM-05	
PARAMETER		2.5 - 4.5	1	2.5 -	4	!	νω	us-mw-u4-uz 3 - 3.5 		6 	09-MW-05-02 2.5 - 4	1 1 1 1 1 1
SW8015MEMP - Nonhalogenated Volatile Organics	ile Organics	(ma/ka)										
Diesel Range Organics (2)	ON ND		.61		(20)	[100]	ኒ	(26)	[125]	2	(30)	[101]
Gasoline Range Organics (2)	QN					[106]	8 8	(53)	[123]	2 E	(13)	[131]
SW8240 - Volatile Organics (ug/kg)	1)		ı			1	!	(21)	٦٠. ١٠.	<u>2</u>	(61)	[TOT]
1,1,1-Trichloroethane	QN	(120) [23.95209]	O9] ND		(5.3) [1.052631]	31]	ND	(6.4)	[1.273885]	Q	(6.6)	[1 324503]
1,1,2,2-Tetrachloroethane	ON	(120) [23.95209]	09] ND		(5.3) [1.052631]	31]	ND	(6.4)		Q	(9.6)	[1.324503]
1,1,2-Trichloroethane	ON	(120) [23.95209]	ON [60		[1.052631]	31]	ND	(6.4)	[1.273885]	2	(6.6)	[1.324503]
1,1-Dichloroethane	QN	(120) [23.95209]	J9] ND		[5.3] [1.052631	31]	QN	(6.4)	[1.273885]	QN	(6.6)	[1.324503]
1,1-Dichloroethene	QN	(120) [23.95209]	J9] ND		(5.3) [1.052631	31]	ND	(6.4)	[1.273885]	S	(9.9)	[1.324503]
1,2-Dichloroethane	QN	(120) [23.95209]	39] ND	_	(5.3) [1.052631]	31]	ND	(6.4)	[1.273885]	Q.	(9.9)	[1.324503]
1,2-Dichloropropane	QN	(120) [23.95209	ON [60		(5.3) [1.052631]	31]	QN	(6.4)	[1.273885]	QN	(9.9)	[1.324503]
2-Chloroethyl vinyl ether	QN				(11) [1.052631]	31]	ND	(13)	[1.273885]	S	(13)	[1.324503]
2-Hexanone	QN		ON [60		(53) [1.052631]	31]	ND	(64)	[1.273885]	QN	(99)	[1.324503]
4-Methyl-2-pentanone(MIBK)	ND				(53) [1.052631	31]	ND	(64)	[1.273885]	QN	(99)	[1.324503]
Acetone	QN				[110] [1.052631]	31]	82 JB	(130)	[1.273885]	2	(130)	[1.324503]
Benzene	Q)	5.3) [1.052631]	31]	ND	(6.4)	[1.273885]	N	(6.6)	[1.324503]
Bromodichloromethane	QN				[]	31]	ON	(6.4)	[1.273885]	N	(6.6)	[1.324503]
Bromomethane	QN				二	31]	QN	(13)	[1.273885]	ON	(13)	[1.324503]
Carbon disulfide	Q :			_	Ξ	31]	QN	(6.4)	[1.273885]	N	(6.6)	[1.324503]
carbon tetrachioride Chlorobenzene	<u> </u>					31]	QN	(6.4)	[1.273885]	QN	(9.9)	[1.324503]
Chloroethane	2 2	(120) [23.95209]	UN [6]		:	31]	ON I	(6.4)	[1.273885]	2	(9.9)	[1.324503]
Chloroform	2 2					51.5	מיי	(13)	[1.2/3885]	QN	(13)	[1.324503]
Chloromethane	2 8			_		51.]	ON :	(6.4)	[1.273885]	Q	(9.9)	[1.324503]
Dibromoohl occupations	2 4					31	QN	(13)	[1.273885]	Q	(13)	[1.324503]
Ulbromocriioromethane	QN :			_	二	31]	QN	(6.4)	[1.273885]	QN	(9.9)	[1.324503]
Ethyl benzene Math.3 ath.3 hat.	2 :			_		31]	QN	(6.4)	[1.273885]	ND	(9.9)	[1.324503]
Methyl Retone	Q.				_	31]	20 JB	(130)	[1.273885]	QN	(130)	[1.324503]
Methylene chloride	QN		9] 4.4	JB (5.3) [1.052631]	31]	24	(6.4)	[1.273885]	9.8 B	(8.6)	[1.324503]
Styrene	Q _N	(120) [23.95209]	9] ND	-	5.3) [1.052631]	31]	ND	(6.4)	[1.273885]	ND	(6.6)	[1.324503]
Compiled: 23 Mary 1995		+:=: = ()	2		4							
5.0 Ha		וו = חבובכווחוו	=	= Factor	Not Detected		NA = Not Applicable	licable				

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

SITE 10

				3		60		60
	J	09-MW-02	_	09-MW-03	60	09-MW-04		09-MW-05
	60	09-MW-02-02	ŏ	09-MW-03-02	-60	09-MW-04-02	ö	09-MW-05-02
PARAMETER	3	2.5 - 4.5		2.5 - 4	e :	- 3.5	1 1 1	2.5 - 4
Totwachlowoothone	S	(120) [23 05200]	S	(5 3) [1 059621]	Ş	[300676 1] (4 3)	Š	(6.6) [1.904509]
	2 :		2 :				2	
Toluene	Q.	_	QN N	(5.3) [1.052631]	2 J	(6.4) [1.273885]	S	(6.6) [1.324503]
Tribromomethane(Bromoform)	QN	(120) [23.95209]	운	(5.3) [1.052631]	ND	(6.4) [1.273885]	S	(6.6) [1.324503]
Trichloroethene	QN	(120) [23.95209]	S	(5.3) [1.052631]	ND	(6.4) [1.273885]	Q	(6.6) [1.324503]
Vinyl acetate	QN	(120) [23.95209]	S	(5.3) [1.052631]	ND	(6.4) [1.273885]	QN	. =
Vinyl chloride	QN	(240) [23.95209]	2	(11) [1.052631]	ND	(13) [1.273885]	QN	. <u> </u>
Xylenes	QN	(120) [23.95209]	S	(5.3) [1.052631]	ON	(6.4) [1.273885]	QN	
cis-1,3-Dichloropropene	QN	(120) [23.95209]	S	(5.3) [1.052631]	NO	(6.4) [1.273885]	QN	(6.6) [1.324503]
trans-1,2-Dichloroethene	QN	(120) [23.95209]	2	(5.3) [1.052631]	QN	(6.4) [1.273885]	S	
trans-1,3-Dichloropropene	QN	(120) [23.95209]	S	(5.3) [1.052631]	ND	(6.4) [1.273885]	S	(6.6) [1.324503]
SW8270 - Semivolatile Organics	(mg/kg)							
1,2,4-Trichlorobenzene	Q	(0.39) [0.039407]	9	(0.35) [0.035029]	ON	(1.3) [0.126377]	P	(0.44) [0.044032]
1,2-Dichlorobenzene	ON	(0.39) [0.039407]	Q	(0.35) [0.035029]	QN	(1.3) [0.126377]	QN	(0.44) [0.044032]
1,3-Dichlorobenzene	NO.	(0.39) [0.039407]	Q	(0.35) [0.035029]	QN	(1.3) [0.126377]	S	(0.44) [0.044032]
1,4-Dichlorobenzene	QN	(0.39) [0.039407]	S	(0.35) [0.035029]	QN	(1.3) [0.126377]	Q.	(0.44) [0.044032
2,4,5-Trichlorophenol	QN	(0.39) [0.039407]	S	(0.35) [0.035029]	QN	(1.3) [0.126377]	QN	(0.44) [0.044032]
2,4,6-Trichlorophenol	QN	(0.39) [0.039407]	Q	(0.35) [0.035029]	ND	(1.3) [0.126377]	QN	(0.44) [0.044032
2,4-Dichlorophenol	QN		2	(0.35) [0.035029]	QN	(1.3) [0.126377]	QN	(0.44) [0.044032
2,4-Dimethylphenol	ON	(0.39) [0.039407]	9	(0.35) [0.035029]	QN	(1.3) [0.126377]	QN	(0.44) [0.044032]
2,4-Dinitrophenol	QN	(2) [0.039407]	2	(1.8) [0.035029]	ON	(6.3) [0.126377]	QN	(2.2) [0.044032
2,4-Dinitrotoluene	Q	(0.39) [0.039407]	2	(0.35) [0.035029]	QN	(1.3) [0.126377]	Q	(0.44) [0.044032]
2,6-Dinitrotoluene	QN	(0.39) [0.039407]	2	(0.35) [0.035029]	ND	(1.3) [0.126377]	Q	(0.44) [0.044032]
2-Chloronaphthalene	QN	(0.39) [0.039407]	9	(0.35) [0.035029]	ON	(1.3) [0.126377]	Q.	(0.44) [0.044032]
2-Chlorophenol	QN	(0.39) [0.039407]	Q	(0.35) [0.035029]	QN	(1.3) [0.126377]	QN	(0.44) [0.044032]
2-Methylnaphthalene	ON	(0.39) [0.039407]	2	(0.35) [0.035029]	QN	(1.3) [0.126377]	Q.	(0.44) [0.044032]
2-Methylphenol(o~cresol)	ON	(0.39) [0.039407]	QN Q	(0.35) [0.035029]	QN	(1.3) [0.126377]	QV	(0.44) [0.044032]
2-Nitroaniline	QN	(2) [0.039407]	QN	(1.8) [0.035029]	QN	(6.3) [0.126377]	QN	(2.2) [0.044032]
2-Nitrophenol	ON	(0.39) [0.039407]	S	(0.35) [0.035029]	QN	(1.3) [0.126377]	Q	(0.44) [0.044032
0 0' 0'-L' L' L'	2	[TO 000 0] (01 0)	2	(0 7) [0 035020]	=	ניניסטו סן נין ס)	-	(00 0)

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

[0.044032][0.044032][0.044032] [0.044032] [0.044032] [0.044032] [0.044032] [0.044032] [0.044032] [0.044032] [0.044032] [0.044032] 0.044032] [0.044032] [0.044032] [0.044032] [0.044032] [0.044032][0.044032] [0.044032] [0.044032] [0.044032] [0.044032] [0.044032][0.044032] [0.044032] [0.044032] [0.044032] (0.44)(0.44) (0.44) (0.44) (2.2)(2.2)(0.44) (0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44) (0.44) (2.2)(0.44) (0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)09-MW-05-02 09-MM-05 2.5 - 4 0.092 J 2 8 2 2 2 S 용 2 S 9 9 [0.126377][0.126377][0.126377] [0.126377][0.126377][0.126377][0.126377] [0.126377][0.126377][0.126377][0.126377]0.126377] 0.126377 [0.126377][0.126377][0.126377] [0.126377][0.126377] [0.126377][0.126377][0.126377][0.126377][0.126377]0.126377] [0.126377][0.126377][0.126377][0.126377]0.126377 (1.3)(1.3)(1.3)(1.3)6.3) 6.3) 1.3) (1.3)1.3) (1.3)(1.3)(1.3)(1.3)(1.3)(6.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)1.3) 09-MW-04-02 09-MW-04 3 - 3.5 0.18 J 045 J 2 2 2 2 2 2 2 2 S S 2 [0.035029][0.035029][0.035029][0.035029][0.035029][0.035029][0.035029][0.035029][0.035029][0.035029][0.035029][0.035029][0.035029][0.035029] [0.035029][0.035029] [0.035029][0.035029] [0.035029][0.035029] [0.035029] [0.035029][0.035029][0.035029][0.035029] [0.035029] [0.035029][0.035029]BEG. DEPTH - END DEPTH (FT.) LOCATION ID (1.8)(1.8)(1.8)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(1.8)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)(0.35)SAMPLE ID 09-MW-03-02 (0.35)SITE 10 09-MM-03 2.5 - 4 60 2 2 9 9 9 S 운 운 2 2222 2 S 읒 2 S ₽ 2 [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] 0.039407 [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407] [0.039407][0.039407] [0.039407] [0.039407][0.039407] [0.039407] [0.039407] (0.39)(2) 09-MW-02-02 2.5 - 4.509-MW-02 222222 9 2 99999 1-Chlorophenyl phenyl ether 4,6-Dinitro-2-methylphenol 1-Bromophenyl phenyl ether 4-Chloro-3-methylphenol 1-Methylphenol(p-cresol) Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Butylbenzylphthalate Benzo(k)fluoranthene Di-n-octylphthalate Benzo(a)anthracene Dimethylphthalate 1exachlorobenzene Diethylphthalate Dibutylphthalate 3-Nitroaniline Acenaphthylene Benzo(a)pyrene 4-Nitroaniline Benzyl alcohol 4-Nitrophenol Acenaphthene Benzoic acid Dibenzofuran Fluoranthene Anthracene ARAMETER Chrysene

NA = Not Applicable

= Not Detected

[] = Factor

() = Detection Limit

1995

Compiled: 23 May

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			BEG. DEP	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)				
	60	09 09-MW-02 09-MM-02-02	Č	09 09-MW-03 00-MM-03	0 0	09 09-MW-04		09 09-MM-05
PARAMETER	2.	2.5 - 4.5	5 i	2.5 - 4		3 - 3.5		2.5 - 4
Hexachlorobutadiene	QN	(0.39) [0.039407]	Q	(0.35) [0.035029]	QN	(1.3) [0.126377]	9	(0.44) [0.044032]
Hexachlorocyclopentadiene	ND	(0.39) [0.039407]	9	(0.35) [0.035029]	QN		QN	
Hexachloroethane	QN	(0.39) [0.039407]	Q	(0.35) [0.035029]	Q	(1.3) [0.126377]	ON	(0.44) [0.044032]
Indeno(1,2,3-cd)pyrene	N	(0.39) [0.039407]	9	(0.35) [0.035029]	QN	(1.3) [0.126377]	Q	(0.44) [0.044032]
Isophorone	QN	(0.39) [0.039407]	2	(0.35) [0.035029]	QN	(1.3) [0.126377]	Q	(0.44) [0.044032]
N-Nitrosodiphenylamine	ND	(0.39) [0.039407]	8	(0.35) [0.035029]	QN	(1.3) [0.126377]	Q	(0.44) [0.044032]
N-Nitrosodipropylamine	ON	(0.39) [0.039407]	Ş	(0.35) [0.035029]	QN	(1.3) [0.126377]	Q.	
Naphthalene	QN	(0.39) [0.039407]	8	(0.35) [0.035029]	S	(1.3) [0.126377]	2	(0.44) [0.044032]
Nitrobenzene	QN	(0.39) [0.039407]	9	(0.35) [0.035029]	S	(1.3) [0.126377]	Q	(0.44) [0.044032]
Pentachlorophenol	Q	(2) [0.039407]	Q.	(1.8) [0.035029]	2	(6.3) [0.126377]	Q	(2.2) [0.044032]
Phenanthrene	QN	(0.39) [0.039407]	S	(0.35) [0.035029]	Q	(1.3) [0.126377]	QN	(0.44) [0.044032]
Phenol	ND	(0.39) [0.039407]	Q	(0.35) [0.035029]	Q.	(1.3) [0.126377]	QN	(0.44) [0.044032]
Pyrene	QN	(0.39) [0.039407]	Q	(0.35) [0.035029]	2	(1.3) [0.126377]	QN	(0.44) [0.044032]
bis(2-Chloroethoxy)methane	QN	(0.39) [0.039407]	S	(0.35) [0.035029]	S	(1.3) [0.126377]	QN	(0.44) [0.044032]
bis(2-Chloroethyl)ether	N	(0.39) [0.039407]	QN	(0.35) [0.035029]	S	(1.3) [0.126377]	QN	(0.44) [0.044032]
bis(2-Chloroisopropyl)ether	QN	(0.39) [0.039407]	QN	(0.35) [0.035029]	S	(1.3) [0.126377]	QN	(0.44) [0.044032]
bis(2-Ethylhexyl)phthalate	0.1 JB	(0.39) [0.039407]	QN	(0.35) [0.035029]	ND	(1.3) [0.126377]	0.14 J	(0.44) [0.044032]
p-Chloroaniline	QN	(0.39) [0.039407]	N	(0.35) [0.035029]	ND	(1.3) [0.126377]	ON	(0.44) [0.044032]

LOCATION ID

SITE ID

SAMPLE ID

[144] [96.20935] [96.20935] [96.20935] 96.20935] [96.20935] [96.20935] [96.20935] 96.209357 [96.20935] [96.20935] [96.20935] [96.20935] [96.20935] [96.20935] [96.20935] [96.20935] [96.20935] [96.20935] [96.20935] [96.20935] 96.20935] [96.20935] 96.20935] 96.20935] [96.20935] (4.8)(0.96)(96.0)(2.9)(4.8)(96.0 (1.9)(96.0) (96.0) (4.8)(9.6)(19)(19)(9.6)(9.6)(19)(19)(0.96) 09-55-02-01 09-55-02 0 - 0.54.6 KJB 0.94 KJB 0.3 PJB 88 R 85 .3 S 운 옷 욷 S 2 2 2 문문 [227] [129] [380.1992] [380.1992]380.1992 380.1992] 380.1992] [380,1992] [380.1992][380, 1992] 380.1992 [380, 1992] [380.1992] 380.1992] 380.1992] [380.1992][380.1992] [380.1992][380.1992] 380.1992] 380.1992 [380.1992][380.1992][380.1992][380.1992]380.1992 (45)(7.6)(13) (19)(11) (3.8)(3.8) (19)(3.8) (19)(38)(9/) (97) (38) (38)(9/) (92) (3.8) (3.8)(3.8)09-55-01-01 190) 0 - 0.509-SS-01 1.8 KJ 7.4 KJ 1.7 KJ 1.7 JB 1.8 KJ QN 2 Q 2 [123][133][44.54342] [44.54342] [44.54342] 44.54342 [44.54342]44.54342 [44.54342] [44.54342] [44.54342] [44.54342] [44.54342] [44.54342] [44.54342] 44.54342] 44.54342] [44.54342][44.54342] [44.54342] [44.54342] [44.54342] [44.54342] 44.54342] 44.54342] BEG. DEPTH - END DEPTH (FT.) [44.54342] 09-DS-01 Dup of 09-MW-06-02 (0.45)(2.2)(0.45)(0.89)(2.2)(0.45)(0.45)(1,3)(0.45)(4.5)(8.8) (13)(4.5)(8.9)(8.9) (4.5)(0.89)(0.45)(0.45)(2.2)(8.8) 90-MM-60 0.42 KJB 0.051 PJB 0.41 PJB 0.77 PB 욷 8 ₩ 7.1 1.3 2 9 2 2 2 [126] [41.56275][41.56275] [41.56275] [41.56275] [41.56275] 41.56275] 41.56275] 41.56275] [41.56275] [41.56275] 41.56275] 41.56275] [41.56275] [41.56275] [41.56275] [41.56275] 41.56275] [41.56275] [41.56275] [41.56275] [41.56275] [41.56275] [41.56275] [41.56275] 41.56275] (0.83) (13)(0.42)(1.2)(2.1)(0.42)(2.1)(0.42)0.83) (0.42)(0.42)(4.2)(8.3)(8.3)(4.2)(4.2)(8.3)(8.3)(0.42)0.42)09-MW-06-02 90-MM-60 W8015MEMP - Nonhalogenated Volatile Organics (mg/kg) 4 - 7 W8080 - Organochlorine Pesticides and PCBs (ug/kg) 0.78 KJB 0.15 PJB 0.75 PB 0.16 PJB 0.36 KJB 0.64 B 5.9 37 1.1 2 2 8 2 9 2 2 2 2 2 2 Gasoline Range Organics (2) Diesel Range Organics (2) Endosulfan Sulfate Heptachlor epoxide Endrin Aldehyde Endosulfan II Endosulfan I Methoxychlor leptachlor PARAMETER Chlordane Dieldrin 4,4'-DDE 4,4'-000 4,4'-DDT oxaphene PCB-1016 alpha-BHC delta-BHC CB-1232 CB-1260 PCB-1221 PCB-1242 PCB-1248 PCB-1254 beta-BHC Aldrin Endrin

Compiled: 23 March

MD = Not Detected [] = Factor

() = Detection Limit

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

		60	60			60		60
	0 6	09-MW-06	09-MW-06	09-MW-06	-60	09-55-01	0 6	09-55-02
PARAMETER) ! } ! ! ! !	4 - 7		1	0	- 0.5	2	0 - 0.5
\$ 6	<u> </u>		!		:			
	ON.	(0.42) [41.56275]	Q	(0.45) [44.54342]	Q	(3.8) [380.1992]	1.5	(0.96) [96.20935]
SW8240 - Volatile Organics (ug/kg)								
1,1,1-Trichloroethane	S	(6.2) [1.246882]	QN	(6.7) [1.338688]	N	(6.7) [1.342281]	QN	(7.4) [1.488095]
1,1,2,2-Tetrachloroethane	8	(6.2) [1.246882]	QN	(6.7) [1.338688]	QN	(6.7) [1.342281]	QN	(7.4) [1.488095]
1,1,2-Trichloroethane	Q	(6.2) [1.246882]	QN	(6.7) [1.338688]	ON	(6.7) [1.342281]	Q	(7.4) [1.488095]
1,1-Dichloroethane	N ON	(6.2) [1.246882]	ON	(6.7) [1.338688]	ON	(6.7) [1.342281]	8	(7.4) [1.488095]
1,1-Dichloroethene	S.	(6.2) [1.246882]	QN	(6.7) [1.338688]	QN	(6.7) [1.342281]	S	(7.4) [1.488095]
1,2-Dichloroethane	Q	(6.2) [1.246882]	ON	(6.7) [1.338688]	ON	(6.7) [1.342281]	9	(7.4) [1.488095]
1,2-Dichloropropane	Q.	(6.2) [1.246882]	ON	(6.7) [1.338688]	QN	(6.7) [1.342281]	QN	(7.4) [1.488095]
2-Chloroethyl vinyl ether	S	(12) [1.246882]	ON	(13) [1.338688]	QN	(13) [1.342281]	QV	(15) [1.488095]
2-Hexanone	2	(62) [1.246882]	ON	(67) [1.338688]	ND	(67) [1.342281]	S	(74) [1.488095]
4-Methyl-2-pentanone(MIBK)	QN	(62) [1.246882]	QN	(67) [1.338688]	QN	(67) [1.342281]	QN	(74) [1.488095]
Acetone	Q	(120) [1.246882]	ND	(130) [1.338688]	QN	(130) [1.342281]	S	(150) [1.488095]
Benzene	QN	(6.2) [1.246882]	NO	(6.7) [1.338688]	0.58 JB	(6.7) [1.342281]	S	(7.4) [1.488095]
Bromodichloromethane	Q	(6.2) [1.246882]	Q	(6.7) [1.338688]	Q	(6.7) [1.342281]	Q	(7.4) [1.488095]
Bromomethane	2	ニ	Q	(13) [1.338688]	ON	(13) [1.342281]	QV	(15) [1.488095]
Carbon disulfide	S	(6.2) [1.246882]	QN	(6.7) [1.338688]	QN Q	(6.7) [1.342281]	S	(7.4) [1.488095]
Carbon tetrachloride	Q	(6.2) [1.246882]	ND	(6.7) [1.338688]	Q.	(6.7) [1.342281]	QN	(7.4) [1.488095]
Chlorobenzene	Q	(6.2) [1.246882]	ON	(6.7) [1.338688]	ON	(6.7) [1.342281]	QN	(7.4) [1.488095]
Chloroethane	Q	(12) [1.246882]	QN	(13) [1.338688]	QN	(13) [1.342281]	QN	(15) [1.488095]
Chloroform	QN		QN	(6.7) [1.338688]	QN	(6.7) [1.342281]	S	(7.4) [1.488095]
Chloromethane	S.	(12) [1.246882]	ND	(13) [1.338688]	N	(13) [1.342281]	S	(15) [1.488095]
Dibromochloromethane	S	(6.2) [1:246882]	ND	(6.7) [1.338688]	QN	(6.7) [1.342281]	S	(7.4) [1.488095]
Ethyl benzene	Q	(6.2) [1.246882]	ON	(6.7) [1.338688]	ON	(6.7) [1.342281]	QV	(7.4) [1.488095]
Methyl ethyl ketone	QN	(120) [1.246882]	ND	(130) [1.338688]	QN	(130) [1.342281]	QN	(150) [1.488095]
Methylene chloride	3.2 JB	(6.2) [1.246882]	7.4 B	(6.7) [1.338688]	4.7 JB	(6.7) [1.342281]	15	(7.4) [1.488095]
Styrene	2	(6.2) [1.246882]	QN	(6.7) [1.338688]	QN	(6.7) [1.342281]	QN	(7.4) [1.488095]
Tetrachloroethene	Q	(6.2) [1.246882]	ND	(6.7) [1.338688]	QN	(6.7) [1.342281]	S	(7.4) [1.488095]
Toluene	QN	(6.2) [1.246882]	ND	(6.7) [1.338688]	0.85 JB	(6.7) [1.342281]	Q.	(7.4) [1.488095]
Compiled: 23 March 1995		() = Detection Limit	∏ = Factor	ND = Not Detected	NA = Not An	Not Applicable		
						2		

			L BEG. DEPT	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
		60	•	60		60		60
		09-MW-06 09-MW-06-02	0-08-01	09-MW-06 Dun of 09-MW-06-02	- 6	09-SS-01 09-SS-01-01	- 2	09-55-02
PARAMETER		4 - 7		4 - 7		0 - 0.5		0 - 0.5
Tribromomethane(Bromoform)	ND	(6.2) [1.246882]	Q.	(6.7) [1.338688]	S	[6 7] [1 342281]	Š	(7.4) [1.488005]
Trichloroethene	QN		9	1 7	2		2 5	
Vinyl acetate	ON	(6.2) [1.246882]	QN		S		2	
Vinyl chloride	ON	(12) [1.246882]	QN	(13) [1.338688]	QN		Q.	
Xylenes	ON	(6.2) [1.246882]	N S	(6.7) [1.338688]	ND		Q.	
cis-1,3-Dichloropropene	QN	(6.2) [1.246882]	ND	(6.7) [1.338688]	ON		QN	
trans-1,2-Dichloroethene	QN	(6.2) [1.246882]	ON	(6.7) [1.338688]	Q		QN	
trans-1,3-Dichloropropene	QN	(6.2) [1.246882]	ND	(6.7) [1.338688]	ND	(6.7) [1.342281]	ON	
SW8270 - Semivolatile Organics ((mg/kg)			1			!	
1,2,4-Trichlorobenzene	ON	(0.42) [0.042484]	QN	(0.41) [0.041029]	QN	[0.38] [0.037968]	8	(0.5) [0.049603]
1,2-Dichlorobenzene	ON	(0.42) [0.042484]	QN	(0.41) [0.041029]	QN	(0.38) [0.037968]	9	
1,3-Dichlorobenzene	QN	(0.42) [0.042484]	9	(0.41) [0.041029]	QN	(0.38) [0.037968]	2	
1,4-Dichlorobenzene	QN	(0.42) [0.042484]	QN	(0.41) [0.041029]	ND	(0.38) [0.037968]	2	
2,4,5-Trichlorophenol	ON	(0.42) [0.042484]	QN	(0.41) [0.041029]	ON	(0.38) [0.037968]	2	
2,4,6-Trichlorophenol	QN		QN	(0.41) [0.041029]	QN	(0.38) [0.037968]	S	
2,4-Dichlorophenol	QN		QN	(0.41) [0.041029]	ON	(0.38) [0.037968]	N N	_
2,4-Dimethylphenol	QN		QN	(0.41) [0.041029]	ND	(0.38) [0.037968]	Q	_
2,4-Dinitrophenol	QN		QN		QN	(1.9) [0.037968]	Q.	(2.5) [0.049603]
2,4-Dinitrotoluene	QN :		R		Q	(0.38) [0.037968]	N	(0.5) [0.049603]
Z,b-Ulnitrotoluene	Q.		2		QN		S	(0.5) [0.049603]
2-Unioronaphthalene	Q S		2		Q		Q.	(0.5) [0.049603]
	O .		ON		2	_	Q	(0.5) [0.049603]
Z-Methylnaphthalene	Q :		2	_	0.041 J	(0.38) [0.037968]	QN	(0.5) [0.049603]
Z-Methylphenol(o-cresol)	Q		ND	(0.41) [0.041029]	QN	(0.38) [0.037968]	QN	(0.5) [0.049603]
2-Nitroaniline	QN		Q	(2.1) [0.041029]	ND	(1.9) [0.037968]	QN	(2.5) [0.049603]
2-Nitrophenol	QN		N	(0.41) [0.041029]	Q	(0.38) [0.037968]	8	
3,3'-Dichlorobenzidine	QN		Q.	(0.82) [0.041029]	ND	(0.76) [0.037968]	ND	(0.99) [0.049603]
3-Nitroaniline	QN		Q.	(2.1) [0.041029]	QN	(1.9) [0.037968]	N	(2.5) [0.049603]
4,6-Dinitro-2-methylphenol	Q	(2.1) [0.042484]	Q	(2.1) [0.041029]	QN	(1.9) [0.037968]	ON	(2.5) [0.049603]
Commiled: 23 Mart 100E				٩				
K5 M8		() = Detection Limit	<pre>□ = Factor</pre>	or = Not Detected	NA = Not	= Not Applicable		

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

				SITE ID LOCATION ID					
			BEG. DE	SAMPLE ID BEG. DEPTH - END DEPTH (FT.)					
		60		60		60		60	
		90-MM-60		90-MM-60		09-55-01		09-55-02	
	J	09-MW-06-02	09-DS-01	Dup of 09-MW-06-02		09-55-01-01	0	09-55-02-01	
PARAMETER 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 - 7		4 - 7	1	0 - 0.5	1 1 1 1 1	0 - 0.5	!
4-Bromophenyl phenyl ether	Q.	(0.42) [0.042484]	QN	(0.41) [0.041029]	QN	[0.037968]	2	(0.5) [0.0	[0.049603]
4-Chloro-3-methylphenol	QN	(0.42) [0.042484]	S	(0.41) [0.041029]	S	(0.38) [0.037968]	QN		[0.049603]
4-Chlorophenyl phenyl ether	QN	(0.42) [0.042484]	Q.	(0.41) [0.041029]	9	(0.38) [0.037968]	S		[0.049603]
4-Methylphenol(p-cresol)	QN	(0.42) [0.042484]	QN	(0.41) [0.041029]	QN	(0.38) [0.037968]	2	(0.5) [0.0	[0.049603]
4-Nitroaniline	QN	_	Q	(2.1) [0.041029]	Q	(1.9) [0.037968]	QN	(2.5) [0.0	[0.049603]
4-Nitrophenol	S	_	2	(2.1) [0.041029]	S	(1.9) [0.037968]	2	(2.5) [0.0	[0.049603]
Acenaphthene	QN		S	(0.41) [0.041029]	R	(0.38) [0.037968]	2	(0.5) [0.0	[0.049603]
Acenaphthylene	Q	(0.42) [0.042484]	2	(0.41) [0.041029]	QN	(0.38) [0.037968]	2	(0.5) [0.0	[0.049603]
Anthracene	QN	_	QN	(0.41) [0.041029]	9	(0.38) [0.037968]	2	(0.5) [0.0	[0.049603]
Benzo(a)anthracene	QN	(0.42) [0.042484]	QN	(0.41) [0.041029]	QN	(0.38) [0.037968]	8	(0.5) [0.0	[0.049603]
Benzo(a)pyrene	ON	(0.42) [0.042484]	Q	(0.41) [0.041029]	9	(0.38) [0.037968]	8	_	0.049603]
Benzo(b)fluoranthene	ND	(0.42) [0.042484]	Q	(0.41) [0.041029]	8	(0.38) [0.037968]	9	(0.5) [0.0	[0.049603]
Benzo(g,h,i)perylene	ND	(0.42) [0.042484]	Q	(0.41) [0.041029]	2	(0.38) [0.037968]	Q	(0.5) [0.0	[0.049603]
Benzo(k)fluoranthene	QN		QN	(0.41) [0.041029]	N N	(0.38) [0.037968]	2	(0.5) [0.0	[0.049603]
Benzoic acid	QN	_	2	(2.1) [0.041029]	9	(1.9) [0.037968]	2	(2.5) [0.0	[0.049603]
Benzyl alcohol	QN	_	S	(0.41) [0.041029]	2	(0.38) [0.037968]	2	(0.5) [0.0	0.049603]
Butylbenzylphthalate	Q		QN	(0.41) [0.041029]	Q	(0.38) [0.037968]	2	(0.5) [0.0	0.049603]
Chrysene	Q	_	2	ш	S	(0.38) [0.037968]	9	(0.5) [0.0	0.049603]
Di-n-octylphthalate	Q		2	(0.41) [0.041029]	S	(0.38) [0.037968]	Q	(0.5) [0.0	0.049603]
Dibenz(a,h)anthracene	QN		8		2	(0.38) [0.037968]	2	(0.5) [0.0	0.049603]
Dibenzofuran	NO	_	Q	(0.41) [0.041029]	8	(0.38) [0.037968]	R	(0.5) [0.0	[0.049603]
Dibutylphthalate	QN	(0.42) [0.042484]	9	(0.41) [0.041029]	2	(0.38) [0.037968]	2	(0.5) [0.0	0.049603]
Diethylphthalate	Q	(0.42) [0.042484]	2	(0.41) [0.041029]	Q	(0.38) [0.037968]	2	(0.5) [0.0	0.049603]
Dimethylphthalate	QN		2	(0.41) [0.041029]	2	(0.38) [0.037968]	N N	(0.5) [0.0	[0.049603]
Fluoranthene	QN	_	S	_	S	(0.38) [0.037968]	N	(0.5) [0.0	[0.049603]
Fluorene	Q.	_	2	_	Q	(0.38) [0.037968]	Q.	(0.5) [0.0	0.049603]
Hexachlorobenzene	QN		2	_	Q	(0.38) [0.037968]	S	(0.5) [0.0	0.049603]
Hexachlorobutadiene	ND		S		Q	(0.38) [0.037968]	QN	(0.5) [0.0	0.049603]
Hexachlorocyclopentadiene	QN	(0.42) [0.042484]	QN	(0.41) [0.041029]	ND	(0.38) [0.037968]	ON	(0.5) [0.0	[0.049603]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

	PARAMETER	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitrosodiphenylamine	N-Nitrosodipropylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Pheno	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	<pre>bis(2-Ethylhexyl)phthalate</pre>	p-Chloroaniline
		NO	ON	ON	Q	2	QN	QN	2	S	QN Q	S	N N	ND	QN	QN	ON
	09 09-MW-06 09-MW-06-02 4 - 7	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(2.1) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]	(0.42) [0.042484]
BEG. DEP	09-DS-01	ON	ND	ND	ON	ON	ND	QN	ND	ON	QN	QN	QN	QN	ON .	QN	Q
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	09 09-MW-06 09-DS-01 Dup of 09-MW-06-02 4 - 7	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(2.1) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]	(0.41) [0.041029]
	0	QN	2	S	Q	Q.	QN	S	ON	Q.	QN	QN	ON	QN	QN	QN	ON
	09 09-SS-01 09-SS-01-01 0 - 0.5	(0.38) [0.037968]				(0.38) [0.037968]	(0.38) [0.037968]			(0.38) [0.037968]	(0.38) [0.037968]	(0.38) [0.037968]	(0.38) [0.037968]	(0.38) [0.037968]	(0.38) [0.037968]	(0.38) [0.037968]	(0.38) [0.037968]
	0	QN	2 S	. Q	Q	QN	Q	QN	Q	S	Q	2	QN	9	2	ND	QN
	09 09-SS-02 09-SS-02-01 0 - 0.5	(0.5) [0.049603]	(0.5) [0.049603]														

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 10

				LUC SA BEG. DEPTH	LUCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	н (гт.)					•	
		60			10			10			10	
	50	09~88-03		10-	10-MW-01		10-	10-MW-01		10-	10-MW-02	
	-60	09-55-03-01		10-h	10-MW-01-01		10-DS-01 Dup	of	11-01	10-⊩		
PARAMETER 		0 - 0.5			3 - 6	1		3 - 6	; ;	4	- 5.5	1
SW8015MEMP - Nonhalogenated Volatile Organics (mg/kg)	ile Organics (mg/kg)										
Diesel Range Organics (2)	48	(88)	[139]	ON	(56)	[128.2]	34	(22)	[125]	92	(56)	[131.6]
Gasoline Range Organics (2)		(13)	[133]	47	(12)	[124.9]	53	(12)	[124]	2000	(1300)	[13280]
SW8080 - Organochlorine Pesticides and PCBs		(ng/kg)										
4,4'-DDD	42	(0.46)	[46.26630]	10	(0.43)	[43.27131]	19	(0.42) [4	[42.22972]	290	(9.9)	[663.1299]
4,4'-DDE	13	(0.46)	[46.26630]	4.4	(.0.43)	[43.27131]	4.1	(0.42) [4	[42.22972]	19	(1.3)	[132,6259]
4,4'-DDT	53	(0.93)	[46.26630]	59	(0.87)	[43.27131]	49	(0.84) [4	[42.22972]	89	(2.7)	[132.6259]
Aldrin	Q	(0.46)	[46.26630]	0.58	_	43.27131]	0.49 B	(0.42) [4	[42.22972]	1.3	(1.3)	[132.6259]
Chlordane	Q	(2.3)	[46.26630]	ON	(2.2)	43.27131]	QN	(2.1) [4	[42.22972]	QN	(9.9)	[132.6259]
Dieldrin	ON	_	[46.26630]	QN	(0.43)	43.27131]	0.34 KJB	(0.42) [4	[42.22972]	ON	(1.3)	[132.6259]
Endosulfan I	Q	(0.46)	[46.26630]	0.092 PJB	(0.43)	[43.27131]	0.16 JB	(0.42) [4	[42.22972]	ON	(1.3)	[132.6259]
Endosulfan II	0.33 KJB	(1.4)	[46.26630]	ND	(1.3)	[43.27131]	ON	(1.3) [4	[42.22972]	NO	(4)	[132.6259]
Endosulfan Sulfate	Q.	_	[46.26630]	1.6 JB		43.27131]	9.3	(2.1) [4	[42.22972]	QN	(9.9)	[132.6259]
Endrin	QV	_	[46.26630]	2.28	ب	43.27131]	2.9	(0.42) [4	[42.22972]	14	(1.3)	[132.6259]
Endrin Aldehyde	0.47 KJB		[46.26630]	QN	(0.87)	43.27131]	ON		[42.22972]	0.81 KJ	(2.7)	[132.6259]
Heptachlor	0.022 PJB	(0.46)	[46.26630]	0.12 KJB	(0.43)	43.27131]	0.15 KJB	(0.42) [4	[42.22972]	0.21 KJB	(1.3)	[132.6259]
Heptachlor epoxide	0.4 PJB		[46.26630]	NO	_	43.27131]	QN	(0.42) [4	[42.22972]	0.061 KJB	(1.3)	[132.6259]
Methoxychlor	QV		[46.26630]	ND	_	43.27131]	ON	(2.1) [4	[42.22972]	QN	(9.9)	[132.6259]
PCB-1016	ON		[46.26630]	QN	_	43.27131]	QN		[42.22972]	Q _N	(13)	[132.6259]
PCB-1221	Q	_	[46.26630]	ND		43.27131]	Q	(8.4) [4	[42.22972]	ND	(27)	[132.6259]
PCB-1232	QN	(6.3)	[46.26630]	ND	(8.7)	[43.27131]	QN	(8.4) [4	[42.22972]	QN	(27)	[132.6259]
PCB-1242	QN	(4.6)	[46.26630]	ND	(4.3)	[43.27131]	QN	(4.2) [4	[42.22972]	QN	(13)	[132.6259]
PCB-1248	QN	(4.6)	[46.26630]	ON	(4.3)	[43.27131]	QN	(4.2) [4	42.22972]	Q	(13)	[132.6259]
PCB-1254	QN	[6.3]	[46.26630]	QN .	(8.7)	[43.27131]	QN	(8.4) [4	[42.22972]	QN	(27)	[132.6259]
PCB-1260	Q	_	[46.26630]	S S	(8.7)	[43.27131]	QN	(8.4) [4	[42.22972]	QN	(27)	[132.6259]
Toxaphene	QN	(23)	[46.26630]	N		[43.27131]	QN	(21) [4	[42.22972]	QN	(99)	[132.6259]
alpha-BHC	0.93 B	(0.46)	[46.26630]	QN	(0.43)	[43.27131]	0.59 PB	(0.42) [4	42.22972]	QN	(1.3)	[132.6259]
beta-BHC	3.4	(0.46)	[46.26630]	QN	(0.43)	[43.27131]	QN	(0.42) [4	42.22972]	5.7	(1.3)	[132.6259]
delta-BHC	QN	(0.46)	[46.26630]	QN	(0.43)	[43.27131]	QN	(0.42) [4	[42.22972]	QN	(1.3)	[132.6259]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

(1.3) [132.6259] [266.6666] [266.6666] 266.6666 266.6666 266.6666] [266,6666] [266.6666] [266.6666] 266.6666] [266.6666] [266.6666] [266.6666] [266.6666] 266.6666] [266.6666][266.6666] [266.6666] [266.6666] [266,6666] [266.6666] [266.6666] [3999.992] [266.6666] [266,6666] [266,6666] [266.6666] (1300)(1300)(1300)(1300)(1300)(2700)(1300)(1300)13000) 13000) (1300)(1300)27000) (1300)(1300)(2700)(1300)(2700)(1300)(2700)(1300)(1300)(27000) (1300)(1300)(1300)(1300)10-MW-02-01 4 - 5.5 10-MW-02 730 J 970 J 9 2 S S 2 9 2 [0.42] [42.22972] [1.270648] [1.270648] [1.270648] 1.270648 1.270648] [1.270648]1.270648] [1.270648] [1.270648] 1.270648 [1.270648][1.270648][1.270648] [1.270648] [1.270648] [1.270648][1.270648] [1.270648][1.270648] [1.270648] [1.270648] [1.270648][1.270648] [1.270648] [1.270648 [1.270648]10-DS-01 Dup of 10-MW-01-01 (6.4)(6.4)(6.4)(6.4)(6.4)(6.4)(6.4) (13) (64) (64) (130)(6.4)(6.4)(13)(6.4) (6.4) (6.4)(13)(6.4)(13)(6.4) 6.4) (130)(6.4)(6.4)(6.4)10-MW-01 6.5 JB 욷 222222 2 2 9 욷 9 2 S 2 2 2 16 읒 9 [0.43] [43.27131] [25.97402] [25,97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] 25.97402 [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] [25.97402] 25.97402 [25.97402] [25.97402] BEG. DEPTH - END DEPTH (FT.) LOCATION ID (130)(130)(130)(130)(130)(260)1300) (1300)2600) (130)(130)(260)(130)(130)(130)(260)(130)(260)(130)(130)(2000) (130)(130)SAMPLE ID 10-MW-01-01 SITE 10 10-MW-01 3 - 6 10 120 J L 0001 570 J 욷 2 Ş 2 윤 呈 S 2 2 운 2 9 S 9 9 2 (0.46) [46.26630] [1.388888][1.388888] [1.388888] 1.388888] [1.388888][1.388888][1.388888] [1.388888][1.388888][1.388888][1.388888] [1.388888][1.388888][1.388888][1.388888] [1.388888] [1.388888] [1.388888] [1.388888][1.388888][1.388888] [1.388888] [1.388888] [1.388888] [1.388888][1.388888] (6.9)(6.9)(6.9)(6.9)(6.9)(6.9)(14)(14) (69)(69)(140)(6.9)(6.9)(14)(6.9)(6.9)(6.9)(14)(6.9)(6.9)(6.9)(6.9) (140)09-55-03-01 0 - 0.509-55-03 9 2 9 2 2 2 2 SW8240 - Volatile Organics (ug/kg) 1-Methyl-2-pentanone(MIBK) 1,1,2,2-Tetrachloroethane 2-Chloroethyl vinyl ether 1,1,1-Trichloroethane 1,1,2-Trichloroethane Bromodichloromethane Dibromochloromethane Sarbon tetrachloride 1,2-Dichloropropane 1,1-Dichloroethane 1,1-Dichloroethene Methyl ethyl ketone 1,2-Dichloroethane Methylene chloride etrachloroethene Carbon disulfide Chloromethane Chlorobenzene Ethyl benzene Bromomethane Chloroethane 2-Hexanone Chloroform PARAMETER gamma-BHC Acetone Benzene Styrene [o] nene

Compiled: 23 Mars

[] = Factor () = Detection Limit

- Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

SITE 10

	- 6	09 09-SS-03 09-SS-03	_	10 10-MW-01 10-MM-01-01	20	10 10-MW-01 Pro of 10 MM 01 01	1	10 10-MW-02	
PARAMETER	5 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 :	0 - 0.5		3 - 6		3 - 6		10-MW-UZ-UI 4 - 5.5 	! ! ! ! !
Tribromomethane(Bromoform)	QN	(6.9) [1.388888]	. QN	(130) [25.97402]	Q.	(6.4) [1.270648]	QV	(1300)	[266,6666]
Trichloroethene	QV	(6.9) [1.388888]	S.	(130) [25.97402]	QN	_	QN		266.6666]
Vinyl acetate	QN	(6.9) [1.388883]	S	(130) [25.97402]	Q	(6.4) [1.270648]	ON		266.6666]
Vinyl chloride	ND	(14) [1.388883]	QN	(260) [25.97402]	S	(13) [1.270648]	N	_	266.6666]
Xylenes	QN	(6.9) [1.388888]	Q.	(130) [25.97402]	2	(6.4) [1.270648]	210000	. —	266.6666]
cis-1,3-Dichloropropene	QN	(6.9) [1.388888]	Q.	(130) [25.97402]	9	(6.4) [1.270648]	ON		[266.6666]
trans-1,2-Dichloroethene	QN	(6.9) [1.388888]	Q	(130) [25.97402]	QN	(6.4) [1.270648]	ON	(1300)	[266.6666]
trans-1,3-Dichloropropene	QN	(6.9) [1.388888]	S	(130) [25.97402]	ON	(6.4) [1.270648]	ON	(1300)	[266,6666]
SW8270 - Semivolatile Organics ((mg/kg)								
1,2,4-Trichlorobenzene	ON	(0.46) [0.046296]	QN	(0.43) [0.043218]	Q	(0.42) [0.042256]	ON	(0.44)	[0.044252]
1,2-Dichlorobenzene	QV	(0.46) [0.046296]	QN	(0.43) [0.043218]	N	(0.42) [0.042256]	QN		[0.044252]
1,3-Dichlorobenzene	ON	(0.46) [0.046296]	Q	(0.43) [0.043218]	2	(0.42) [0.042256]	ON	_	[0.044252]
1,4-Dichlorobenzene	QN	(0.46) [0.046296]	Q	(0.43) [0.043218]	2	(0.42) [0.042256]	N	(0.44)	0.044252]
2,4,5-Trichlorophenol	QN	(0.46) [0.046296]	ON	(0.43) [0.043218]	ND	(0.42) [0.042256]	QN	(0.44)	0.044252]
2,4,6-Trichlorophenol	QN	_	Q	(0.43) [0.043218]	S	(0.42) [0.042256]	QN	(0.44)	0.044252]
2,4-Dichlorophenol	QN		9	(0.43) [0.043218]	QN	(0.42) [0.042256]	Q	(0.44)	0.044252
2,4-Dimethylphenol	QN	(0.46) [0.046296]	2	(0.43) [0.043218]	QN	(0.42) [0.042256]	QN	(0.44)	0.044252]
2,4-Dinitrophenol	QN	(2.3) [0.046296]	S	(2.2) [0.043218]	S	(2.1) [0.042256]	QN	(2.2)	0.044252]
2,4-Dinitrotoluene	QN		2	(0.43) [0.043218]	QN	(0.42) [0.042256]	QN	(0.44)	0.044252]
2,6-Dinitrotoluene	Q		2	(0.43) [0.043218]	ON	(0.42) [0.042256]	ON	(0.44)	[0.044252]
2-Chloronaphthalene	QN		9	(0.43) [0.043218]	QN	(0.42) [0.042256]	QN	_	[0.044252]
2-Chlorophenol	QN		2	(0.43) [0.043218]	N	(0.42) [0.042256]	QN	(0.44)	[0.044252]
2-Methylnaphthalene	S	(0.46) [0.046296]	운	(0.43) [0.043218]	ON	(0.42) [0.042256]	0.24 J	(0.44)	0.044252]
2-Methylphenol(o-cresol)	Q	(0.46) [0.046296]	2	(0.43) [0.043218]	Q	(0.42) [0.042256]	NO	(0.44)	0.044252]
2-Nitroaniline	QN		2	(2.2) [0.043218]	ON	(2.1) [0.042256]	QN	(2.2)	0.044252]
2-Nitrophenol	ND	(0.46) [0.046296]	2	(0.43) [0.043218]	ON	(0.42) [0.042256]	N	(0.44)	0.044252]
3,3'-Dichlorobenzidine	QN	(0.93) [0.046296]	2	(0.86) [0.043218]	2	(0.85) [0.042256]	ND	_	0.044252]
3-Nitroaniline	Q		2	(2.2) [0.043218]	QN	(2.1) [0.042256]	QN	(2.2)	[0.044252]
4,6-Dinitro-2-methylphenol	QN	(2.3) [0.046296]	2	(2.2) [0.043218]	ON	(2.1) [0.042256]	QN	(2.2)	[0.044252]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

[0.044252][0.044252][0.044252] [0.044252] [0.044252] 0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252] [0.044252][0.044252][0.044252][0.044252][0.044252] [0.044252] [0.044252](2.2)(2.2)0.44) (0.44)(0.44)(0.44)(0.44)(0.44)(0.44) (0.44)(2.2)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44)(0.44) (0.44) 10-MW-02-01 4 - 5.510-MW-02 0.02 J 0.038 J 0.044 J 0.031 J 0.036 J 0.038 J 0.097 J 0.016 J 9 S 0.023 2 2 S S 2 2 9 2 呈 9 \mathbf{g} 8 [0.042256][0.042256] [0.042256][0.042256][0.042256][0.042256][0.042256][0.042256] [0.042256][0.042256]0.042256 [0.042256][0.042256 [0.042256][0.042256] [0.042256][0.042256][0.042256] 0.042256 [0.042256][0.042256] [0.042256][0.042256] [0.042256][0.042256][0.042256][0.042256]10-DS-01 Dup of 10-MW-01-01 (2.1)0.42) 0.42) (2.1)(2.1)(0.42)0.42) 10-MW-01 0.015 J 문 문 을 문 2 2 2 S S 2 S 2 윤 2 [0.043218][0.043218] [0.043218][0.043218][0.043218] [0.043218] [0.043218] [0.043218][0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218] [0.043218][0.043218] [0.043218] [0.043218] [0.043218][0.043218] BEG. DEPTH - END DEPTH (FT.) LOCATION ID (0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(2.2)(0.43)(2.2)(2.2)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)(0.43)SAMPLE ID (0.43)(0.43)10-MW-01-01 SITE 10 10-MW-01 3 - 6 10 윤 2 2 S 2 S S S 2 2 운 욷 읒 2 9 ş 2 [0.046296][0.046296] [0.046296] [0.046296] [0.046296] [0.046296][0.046296] [0.046296] [0.046296] [0.046296] [0.046296] [0.046296] [0.046296] [0.046296][0.046296] [0.046296] [0.046296] [0.046296][0.046296][0.046296] [0.046296] [0.046296][0.046296] [0.046296] 0.046296 [0.046296] [0.046296][0.046296] (0.46)(2.3)(2.3)(0.46)(0.46)(0.46)(2.3)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)(0.46)09-55-03-01 0 - 0.509-55-03 0.034 JB 0.039 JF 0.039 JF 0.043 J 0.051 J 0.076 J 0.11 J 9 2 2 2 2 2 2 운 운 운 2 2 2 S 2 9 9 2 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether fexachlorocyclopentadiene 4-Methylphenol(p-cresol) 4-Chloro-3-methylphenol Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene 3enzo(k)fluoranthene **Butylbenzylphthalate** Di-n-octylphthalate Hexachlorobutadiene 3enzo(a)anthracene Dimethy|phthalate lexach] orobenzene Dibuty|phthalate Diethylphthalate Acenaphthylene Benzo(a)pyrene 4-Nitroaniline Benzyl alcohol 4-Nitrophenol Acenaphthene 3enzoic acid Dibenzofuran Fluoranthene Anthracene PARAMETER Chrysene -1 uorene

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

10-M4-01			60		10		10		10
0 - 0.5 (0.46) [0.046296] ND (0.43) [0.043218] ND (0.47) [0.046296] ND (0.43) [0.043218] ND (0.48) [0.046296] ND (0.43) [0.043218] ND (0.49) [0.046296] ND (0.43) [0.043218] ND (0.40) [0.046296] ND (0.43) [0.043218] ND (0.41) [0.046296] ND (0.43) [0.043218] ND (0.42) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.046296] ND (0.43) [0.043218] ND (0.45) [0.046296] ND (0.43) [0.043218] ND (0.45) [0.046296] ND (0.43) [0.043218] ND (0.45) [0.046296] ND (0.43) [0.043218] ND (0.46) [0.046296] ND		0 0	9-SS-03	10.	-MW-01 MW-01-01)-MW-01 in of 10-MW-01-01	101	10-MW-02
(0.46) [0.046296] ND (0.43) [0.043218] ND (0.48) [0.043218] ND (0.48) [0.042218] ND (0.48) [0.04228] ND (0.48) [0.28021]	PARAMETER		0 - 0.5		3 - 6	,	3 - 6		4 - 5.5
JB (0.45) [20.046296] ND (0.43) [20.043218] ND (0.46) [0.046296] ND (0.43) [0.043218] ND (0.48) [0.046296] ND (0.43) [0.043218] ND (0.4	معوط + مصمو [طرموب دار	C X		2		Ç	(0 42) [O 0422EG]	S	[0 44] [0 044259]
U. (0.46) [0.046296] ND (0.43) [0.043218] ND (0.48) [0.046296] ND (0.43) [0.043218] ND (0.48)	חפאמכווו סו ספרוומוופ	יים ויים מיים ויים		2	_	Q :		2	
(0.46) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.046296] ND (0.43) [0.043218] ND (0.43) [0.043218] ND (0.44) [0.046296] ND (0.43) [0.043218] ND (0.43) [0	Indeno(1,2,3-cd)pyrene	0.027 JB	-	Q	_	2	(0.42) [0.042256]	2	(0.44) [0.044252]
(0.46) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.043218] ND (0.46) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.043218] ND (0.45) [0.043218] ND (0.46) [0.043218] ND (0.46) [0.046296] ND (0.43) [0.043218] ND (0.46) [0.046296] ND (0.43) [0.293218] ND (0.46) [0.046296] ND (0.43) [0.293218] ND (0.44) [0.44] [0	Isophorone	N		N	_	QN	(0.42) [0.042256]	0.097 J	(0.44) [0.044252]
(0.46) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.043218] ND (0.44) [0.043218] ND (0.44) [0.043218] ND (0.44) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.046296] ND (0.44) [0.043218] ND (0.44) [0	N-Nitrosodiphenylamine	N		ND	_	ON	(0.42) [0.042256]	QN	(0.44) [0.044252]
(0.46) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.046296] ND (0.43) [0.043218] ND (0.45) [129.8701] ND (0.45) [1	N-Nitrosodipropylamine	ND		ND	_	ON	(0.42) [0.042256]	QN	(0.44) [0.044252]
(0.46) [0.046296] ND (0.43) [0.043218] ND (2.3) [0.046296] ND (2.2) [0.043218] ND (0.46) [0.046296] ND (0.43) [0.043218] ND (0.45) [0.046296] ND (0.43) [0.043218] ND (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0.45) [0.20,8701] 18 (0	Naphthalene	ND		QN		QN	(0.42) [0.042256]	0.12 J	(0.44) [0.044252]
(ag/kg) (ag/kg) (b.46) (c) 46) (d) 47) (d) 43) (d) 40 (d) 43) (d) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) (d) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6) 6)	Nitrobenzene	QN		ON		QN	(0.42) [0.042256]	Q.	(0.44) [0.044252]
J (0.46) [0.046296] ND (0.43) [0.043218] ND (0.48) [0.042318] ND (0.46) [0.046296] ND (0.43) [0.043218] ND (0.46) [0.042218] ND (0.46) [0.042218] ND (0.46) [0.042218] ND (0.46) [0.042218] ND (0.49) [0.29 8701] S.3 ND (0.48) [0.20 8701] ND (0.49) [0.20 8701] ND (0.49) [0.20 8701] ND (0.49) [0.20 8701] ND (0.49) [0.20 8701] ND (0.20 870	Pentachlorophenol	QN	_	QN	_	ND	(2.1) [0.042256]	QN	(2.2) [0.044252]
(ug/kg) NA	Phenanthrene			ON	_	ND	(0.42) [0.042256]	0.094 J	(0.44) [0.044252]
(ug/kg) (ug	Phenol	QN		QN		ON	(0.42) [0.042256]	ON	(0.44) [0.044252]
(ug/kg) (0.46296] ND (0.43) [0.043218] ND (0.46) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.046296] ND (0.43) [0.043218] ND (0.46) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.046296] ND (0.43) [0.043218] ND (0.44) [0.043218] ND (0.44) [0.043218] ND (0.45) [129.8701] ND (0.45) [1	Pyrene	QN		QN			(0.42) [0.042256]	0.072 J	(0.44) [0.044252]
(0.46) [0.046296] ND (0.43) [0.043218] ND ND (0.44) [0.43) [0.043218] ND (0.45) [0.043218] ND (0	bis(2-Chloroethoxy)methane	QN		NDN	_	QN	(0.42) [0.042256]	ND	(0.44) [0.044252]
(0.46) [0.046296] ND (0.43) [0.043218] ND (0.46) [0.046296] ND (0.43) [0.043218] 0.019 JB (0.46) [0.046296] ND (0.43) [0.043218] ND (0.43) [0.043218] ND (0.45) [0.046296] ND (0.43) [0.043218] ND (0.45) [0.046296] ND (0.43) [0.043218] ND (0.45) [129.8701] ND (0.	bis(2-Chloroethyl)ether	NO		QN Q	_	QN	(0.42) [0.042256]	ON	(0.44) [0.044252]
(0.46) [0.046296] ND (0.43) [0.043218] 0.019 JB (0.46) [0.046296] ND (0.43) [0.043218] ND (0.48) [0.043218] ND (0.49) [0.043218] ND (0.49) [0.043218] ND (0.49) [0.043218] ND (0.49) [129.8701] ND (0.	bis(2-Chloroisopropyl)ether	ND	_	Q	_	ON	(0.42) [0.042256]	ON	(0.44) [0.044252]
(0.46) [0.046296] ND (0.43) [0.043218] ND (ug/kg) NA 18 J (230) [129.8701] ND NA ND (300) [129.8701] ND NA 5.4 (1.7) [129.8701] 18 NA 5.4 (1.7) [129.8701] 18 NA 7.6 (3) [129.8701] 26 NA 11 (2.3) [129.8701] 40 NA 4.2 (2.2) [129.8701] 5.3 NA 1.6 J (3.9) [129.8701] 29 NA 1.5 J (27) [129.8701] 95 NA 15 J (27) [129.8701] ND	bis(2-Ethylhexyl)phthalate	QN	_	Q.			(0.42) [0.042256]	0.27 J	(0.44) [0.044252]
(ug/kg) NA 18 J (230) [129.8701] ND NA ND (300) [129.8701] ND NA 5.4 (1.7) [129.8701] 18 NA 5.4 (1.7) [129.8701] 18 NA 7.6 (3) [129.8701] 7.3 NA 11 (2.3) [129.8701] 26 NA 4.2 (2.2) [129.8701] 5.3 NA 1.6 J (3.9) [129.8701] 29 NA 1.6 J (3.9) [129.8701] 95 NA 15 J (27) [129.8701] 95	p-Chloroaniline	QN		Q		QN	(0.42) [0.042256]	ON	(0.44) [0.044252]
NA 18 J (230) [129.8701] ND NA ND (300) [129.8701] ND NA 5.4 (1.7) [129.8701] ND NA 7.6 (3) [129.8701] 7.3 NA 11 (2.3) [129.8701] 26 NA 29 (9.9) [129.8701] 26 NA 4.2 (2.2) [129.8701] 5.3 NA ND (19) [129.8701] 29 NA 1.6 J (3.9) [129.8701] 95	SW8310 - Polynuclear Aromatic Hydro		/kg)						
NA ND (300) [129.8701] ND NA ND (86) [129.8701] ND NA ND (86) [129.8701] ND NA ND NA ND (31) [129.8701] ND NA NA ND NA ND NA ND ND NA ND	Acenaphthene	-	NA		_	ON	(230) [126.5822]	96 J	(240) [133.3333]
NA NA ND (86) [129.8701] ND NA 5.4 (1.7) [129.8701] ND NA 5.4 (1.7) [129.8701] 18 (17.8 (1	Acenaphthylene		NA	QN	_	ND	(290) [126.5822]	QN	(310) [133.3333]
NA 5.4 (1.7) [129.8701] 18 NA 7.6 (3) [129.8701] 7.3 NA 11 (2.3) [129.8701] 26 NA 29 (9.9) [129.8701] 26 NA 4.2 (2.2) [129.8701] 40 NA ND (19) [129.8701] 29 NA ND (19) [129.8701] 29 NA NA 15 J (27) [129.8701] 95	Anthracene		NA	Q	_	ON	(84) [126.5822]	30 J	(88) [133.3333]
NA 7.6 (3) [129.8701] 7.3 NA 11 (2.3) [129.8701] 26 NA 29 (9.9) [129.8701] 40 NA 4.2 (2.2) [129.8701] 5.3 NA ND (19) [129.8701] 29 NA 1.6 J (3.9) [129.8701] 95 NA NA 15 J (27) [129.8701] 95	Benzo(a)anthracene		NA	5.4	_	18	(1.6) [126.5822]	27	(1.7) [133.3333]
NA 11 (2.3) [129.8701] 26 (120.8701] 26 (120.8701] 26 (120.8701] 40 (120.8701] 40 (120.8701] 5.3 (120.8701] 5.3 (120.8701] 29 (120.8701] 29 (120.8701] 4.2 (Benzo(a)pyrene		NA	7.6	_	7.3	(2.9) [126.5822]	7.9	(3.1) [133.3333]
NA 29 (9.9) [129.8701] 40 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1	Benzo(b)fluoranthene		NA	11	_	56	(2.3) [126.5822]	46	(2.4) [133.3333]
NA 4.2 (2.2) [129.8701] 5.3 (NA ND (19) [129.8701] 29 NA 1.6 J (3.9) [129.8701] 4.2 (NA 15 J (27) [129.8701] 95	Benzo(g,h,i)perylene		NA	59		40	(9.6) [126.5822]	31	(10) [133.3333]
NA ND (19) [129.8701] 29 a,h)anthracene NA 1.6 J (3.9) [129.8701] 4.2 nene NA 15 J (27) [129.8701] 95	Benzo(k)fluoranthene	_	NA	4.2	_	5.3	(2.2) [126.5822]	6.3	(2.3) [133.3333]
NA 1.6 J (3.9) [129.8701] 4.2 (NA 15 J (27) [129.8701] 95 NA ND (27) [129.8701] ND	Chrysene	_	NA	QN	_	29	(19) [126.5822]	25	(20) [133.3333]
NA 15 J (27) [129.8701] 95	Dibenzo(a,h)anthracene		NA		_	4.2	(3.8) [126.5822]	7.7	(4) [133.3333]
UN [1020 261] (26) UN AN	Fluoranthene	_	NA		_	95	(27) [126.5822]	190	(28) [133.3333]
0N [10/0:571] (/7) ON W	Fluorene	_	NA	QN	(27) [129.8701]	QN	(27) [126.5822]	4.3 J	(28) [133.3333]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

	10 10-MW-02 10-MW-03 4 - 5.	222] 122]	10-MW- 10-DS-01 Dup of 3 - 3 - 21 ND	SITE ID SAMPLE ID H - END DEPTH (FT.) 10 0-MW-01 -MW-01-01 3 - 6 (5.6) [129.8701] (230) [129.8701]	BEG. DEPTI 10 10 11 ND 120	09 09-SS-03 09-SS-03-01 0 - 0.5 NA NA	PARAMETER Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene
NA 9.8 J (35) [129.8701] 27 J				(35) [129.8701]	9.8 J	NA	יאי פוזפ
VN		. ,		(83) [129.8701]	120	N N	Phenanthrene Pyrene
nA 120 (83) [129.8701] 98 (81) [126.5822] 190				[10/0.621]	OK :	***	0,000
hrene NA 120 (83) [129.8701] 98 (81) [126.5822] 190				[129,8701]	QN	NA	Naphthalene
lene NA ND (230) [129.8701] ND (230) [126.5822] ND (33) [129.8701] 98 (81) [126.5822] 190				(5.6) [129.8701]	11	NA	Indeno(1,2,3-cd)pyrene
1,2,3-cd)pyrene NA 11 (5.6) [129.8701] 21 (5.4) [126.5822] 20 1.5					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
1,2,3-cd)pyrene NA 11 (5.6) [129.8701] 21 (5.4) [126.5822] 20 lene NA 120 (83) [129.8701] 98 (81) [126.5822] 190	4 - 5.5	9	ب س	3 - 6			PARAMETER
FR 0 - 0.5 3 - 6 3 - 6 4 - 8 4 - 8 4 - 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10-MW-02-01	10-MW-01-01	10-DS-01 Dup of	-MW-01-01	10	09-55-03-01	
FR 09-SS-03-01 10-MW-01-01 10-DS-01 Dup of 10-MW-01-01 10-DM-01-01 10-DM-01-01 10-MW-01-01 10-MW-01 10-MW-01-01 10	10-MW~02	01	10-MW-	0-MW-01	1	09-55-03	
The color of the	10		10	10		60	
ER 10 10 10 10 10-MW-01 10-MW-01 <th< td=""><td></td><td></td><td></td><td>H - END DEPTH (FT.)</td><td>BEG. DEPT</td><td></td><td></td></th<>				H - END DEPTH (FT.)	BEG. DEPT		
BEG. DEPTH - END DEPTH (FT.) 09 09-SS-03 10-MW-01 09-SS-03-01 09-SS-03-01 10-MW-01 10-DS-01 Dup of 10-MW-01				SAMPLE ID			
SAMPLE ID BEG. DEPTH - END DEPTH (FT.) BEG. DEPTH - END DEPTH (FT.) 09 10 <				OCATION ID	_		
LOCATION ID SAMPLE ID SAMPLE ID BEG. DEPTH = END DEPTH (FT.) 09 09-SS-03 10-MW-01 1				SITE ID			
SITE ID LOCATION ID SAMPLE ID SAMPLE ID SAMPLE ID O9-SS-03 10-MW-01 1							

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

	10	10 10-MW-03		10	10 10-58-01		10	10 10-88-01		Ċ	10 10-SR-02	
PARAMETER	10-	10-MW-03-01 4 - 6		10-5	10-SB-01-01 2 - 4		10-	10-SB-01-02 5 - 7		10-01	10-SB-02-01 1 - 3	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	# # # # # # # # # # # # # # # # # # #	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :	:: :: :: :: :: :: :: :: :: :: :: :: ::	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	;			1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SW8015MEMP - Nonhalogenated Volatile Organics		(mg/kg)										
Diesel Range Organics (2)	30	(25)	[126.6]	150	(22)	[111]	31	(50)	[129.9]	13000	(2200)	[11236]
Gasoline Range Organics (2)	14 B	(14)	[135.8]	QN.	(11)	[106.3]	ON	(13)	[125.5]	200	(26)	[555]
SW8080 - Organochlorine Pesticides and PCBs		(ug/kg)							•			7
4,4'-DDD	4.8	(1.4)	[136.0544]	120	(1.8)	[184.5699]	ON	(0.43)	[43.15925]	140	(3.8)	[377.5009]
4,4'~DDE	2.3	(1.4)	[136.0544]	14	(0.37)	[36.91399]	0.94	(0.43)	[43.15925]	32	(3.8)	[377.5009]
4,4'-DDT	21	(2.7)	[136.0544]	100	(3.7)	[184.5699]	7.3	(0.86)	[43.15925]	370	(7.6)	[377.5009]
Aldrin	ON	(1.4)	[136.0544]	0.58	(0.37)	[36.91399]	QN	(0.43)	[43.15925]	0.8 B	(0.38)	[37.75009]
Chlordane	ND	(6.8)	[136.0544]	ND	(1.8)	[36.91399]	ON	(2.2)	[43.15925]	QN	(1.9)	[37.75009]
Dieldrin	QN	(1.4)	[136.0544]	QN	(0.37)	[36.91399]	QN	(0.43)	[43.15925]	ON	(0.38)	[37.75009]
Endosulfan I	0.19 JB	(1.4)	[136.0544]	ON	(0.37)	[36.91399]	QN	(0.43)	[43.15925]	QN	(0.38)	[37.75009]
Endosulfan II	ON	(4.1)	[136.0544]	QN	(1.1)	[36.91399]	QN	(1.3)	[43.15925]	0.29 KJB	(1.1)	[37.75009]
Endosulfan Sulfate	Q.	(8.8)	[136.0544]	ND	(1.8)	[36.91399]	ON	(2.2)	43.15925]	QN	(1.9)	[37.75009]
Endrin	11	(1.4)	[136.0544]	3.5	(0.37)	[36.91399]	QN	(0.43)	[43.15925]	4.2	(0.38)	[37.75009]
Endrin Aldehyde	ON	(2.7)	[136.0544]	Q.	(0.74)	[36.91399]	QN	(0.86)	[43.15925]	ND	(0.76)	[37.75009]
Heptachlor	0.17 KJB	(1.4)	[136.0544]	0.11 KJB	(0.37)	[36.91399]	QN	(0.43)	[43.15925]	ON	(0.38)	[37.75009]
Heptachlor epoxide	QN	(1.4)	[136.0544]	QN	(0.37)	[36.91399]	0.15 PJB	(0.43)	[43.15925]	QN	(0.38)	[37.75009]
Methoxychlor	QN	(8.8)	[136.0544]	QN	(1.8)	[36.91399]	1.6 KJ	(2.2)	[43.15925]	ON	(1.9)	[37.75009]
PCB-1016	QN	(14)	[136.0544]	QN	(3.7)	[36.91399]	QN	(4.3)	[43.15925]	ON	(3.8)	[37.75009]
PCB-1221	QN	(27)	[136.0544]	Q	(7.4)	[36.91399]	QN	(8.6)	43.15925]	ON	(7.6)	[37.75009]
PCB-1232	QN	(27)	[136.0544]	Q	(7.4)	[36.91399]	QN	[8.6]	[43.15925]	ND	(7.6)	[37.75009]
PCB-1242	QN	(14)	[136.0544]	ON	(3.7)	[36.91399]	QN	(4.3)	[43.15925]	QN	(3.8)	[37.75009]
PCB-1248	ON	(14)	[136.0544]	N	(3.7)	[36.91399]	QN	(4.3)	[43.15925]	QN	(3.8)	[37.75009]
PCB-1254	S S	(27)	[136.0544]	ND	(7.4)	[36.91399]	QN	(8.6)	[43.15925]	QN	(7.6)	[37.75009]
PCB-1260	Q	(27)	[136.0544]	ND	(7.4)	[36.91399]	ON	(8.6)	43.15925]	QN	(7.6)	[37.75009]
Toxaphene	Q	(89)	[136.0544]	Q	(18)	36.91399]	QN	[55]	43.15925]	QN	(19)	[37.75009]
alpha-BHC	QN	(1.4)	[136.0544]	Q	(0.37)	[36.91399]	N Q	(0.43)	[43.15925]	N	(0.38)	37.75009]
beta-BHC	QN	(1.4)	[136.0544]	1.4 P	(0.37)	[36.91399]	0.72 P	(0.43)	43.15925]	0.6 P	(0.38)	[37.75009]
delta-BHC	ON	(1.4)	[136.0544]	QN	(0.37)	[36.91399]	1.2 B		[43.15925]	1.2 B	(0.38)	[37.75009]
		,										ı

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

[0.38] [37.75009] [226.5005] [226,5005] [226.5005] [226.5005] 226,5005] 226.5005] [226.5005] [226.5005] [226,5005] [226.5005] [226.5005] [226.5005] [226,5005] [226.5005] [226.5005] [226.5005][226.5005] [226.5005] [226.5005] 226.5005] [226.5005] [226.5005] [226.5005] [226.5005] [226.5005] 226.5005 (1100)(1100)(1100)(1100)(1100)(1100)(1100)(2300)11000) (11000) 23000) (1100)(1100)(1100)(2300)(1100)(1100)(2300)(1100)(1100)(2300)(1100)23000) (1100)(1100)(1100)(1100)10-SB-02-01 10-SB-02 980 J S S 웆 윤 2 S 2 ₽ 2 8 12000 2 S (0.43) [43.15925][1.298701] [1.298701][1.298701] [1.298701] [1.298701] [1.298701] [1.298701] [1.298701] [1.298701] [1.298701][1.298701][1.298701] [1.298701] [1.298701] [1.298701] [1.298701][1.298701] [1.298701] [1.298701] [1.298701] [1.298701] [1.298701][1.298701][1.298701][1.298701] [1.298701] (6.5)(6.5)(6.5)(6.5)(13)(6.5)(65)(65)(130)(6.5)(6.5)(13)(6.5)(6.5)(13)(6.5)(13) (6.5)(6.5)(130)(6.5)(6.5)(6.5)10-SB-01-02 10-SB-01 5 - 7 9 JB .4 JB 욷 37 용 S 2 2 2 2 S 9 2 (0.37) [36.91399] [1.11111][1.111111][1.111111][1.111111][1.111111][1.111111][1.111111][1.111111][1.111111][1.111111][1.111111][1.111111][1.11111][1.111111][1.11111] [1.11111][1.11111] [1.111111][1.111111][1.11111] [1.111111][1.111111][1.111111][1.111111][1.11111]BEG. DEPTH - END DEPTH (FT.) (9.8)(5.6)LOCATION ID (5.6)(5.6)(9.8)(11) (5.6)(11) (26) (99) (110)(5.6)(5.6)(2.6) (5.6)(11)(5.6)(5.6)(5.6)(2.6)(2.6)(11)(110)SAMPLE ID 10-SB-01-01 10-SB-01 2 - 4 10 1.8 JB 욷 2 2 9 2 2 S 윤 9 2 2 2 (1.4) [136.0544] [1.377410][1.377410] [1.377410][1.377410][1.377410][1.377410][1.377410] [1.377410][1.377410][1.377410] [1.377410][1.377410][1.377410][1.377410][1.377410][1.377410][1.377410][1.377410][1.377410][1.377410] [1.377410][1.377410] [1.377410][1.377410] [1.377410][1.377410][1.377410] (6.9)(6.9)(6.9)(6.9)(140)(6.9)(14)(6.9)(6.9)(6.9)(14) (6.9)(14)(69) (69)(6.9)(6.9)(14)(6.9)(140)10-MW-03-01 10-MW-03 2.7 JB 운 2 9 S 운 운 S 9 2 2 2 2 2 운 운 8W8240 - Volatile Organics (ug/kg) 4-Methyl-2-pentanone(MIBK) 1,1,2,2-Tetrachloroethane 2-Chloroethyl vinyl ether 1,1,1-Trichloroethane 1,1,2-Trichloroethane Bromodichloromethane Carbon tetrachloride Dibromochloromethane 1,2-Dichloropropane 1,1-Dichloroethane Methyl ethyl ketone .,1-Dichloroethene ,2-Dichloroethane Methylene chloride etrachloroethene Carbon disulfide Chlorobenzene Chloromethane Ethyl benzene Bromomethane Chloroethane Chloroform 2-Hexanone PARAMETER Acetone Benzene Styrene roluene

Compiled: 23 Mar

= Not Detected [] = Factor

() = Detection Limit

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID

PARAMETER		10		10		10		10	
PARAMETER		10-MW-03 10-MW-03-01		10-SB-01 10-SB-01-01	-	10-SB-01 10-SB-01-02	_	10-SB-02	
	1 1 1 1 1	4 - 6		2 - 4		5 - 7		1 3	1 1 1 1 1 1
Tribromomethane(Bromoform)	QN	(6.9) [1.377410]	QN	(5.6) [1.111111]	Q.	(6.5) [1.298701]	QN	(1100)	[226.5005]
Trichloroethene	ON	(6.9) [1.377410]	Q	(5.6) [1.11111]	Q.	(6.5) [1.298701]	S	(1100)	[226.5005]
Vinyl acetate	QN	(6.9) [1.377410]	ND	(5.6) [1.111111]	S	(6.5) [1.298701]	ON	(1100)	[226.5005]
Vinyl chloride	QN	(14) [1.377410]	2	(11) [1.111111]	8	(13) [1.298701]	Q.	(2300)	[226.5005]
Xylenes	330	(6.9) [1.377410]	QN	(5.6) [1.11111]	QN	(6.5) [1.298701]	24000	(1100)	[226.5005]
cis-1,3-Dichloropropene	QN	(6.9) [1.377410]	Q.	(5.6) [1.11111]	Q.	(6.5) [1.298701]	QN	(1100)	[226.5005]
trans-1,2-Dichloroethene	QN	(6.9) [1.377410]	QN	(5.6) [1.111111]	2	(6.5) [1.298701]	ON	(1100)	[226.5005]
trans-1,3-Dichloropropene	QN	(6.9) [1.377410]	QN	(5.6) [1.111111]	Q	(6.5) [1.298701]	QN	(1100)	[226.5005]
SW8270 - Semivolatile Organics ((mg/kg)								
1,2,4-Trichlorobenzene	QN	(0.46) [0.045883]	ON	(0.37) [0.036852]	2	(0.43) [0.043189]	QN	(11)	[1.078574]
1,2-Dichlorobenzene	QN	(0.46) [0.045883]	QN	(0.37) [0.036852]	Q	(0.43) [0.043189]	QN	(11)	[1.078574]
1,3-Dichlorobenzene	ON	(0.46) [0.045883]	ON	(0.37) [0.036852]	Q	(0.43) [0.043189]	QN	(11)	[1.078574]
1,4-Dichlorobenzene	ON	(0.46) [0.045883]	ND	(0.37) [0.036852]	Q	(0.43) [0.043189]	QN	(11)	[1.078574]
2,4,5-Trichlorophenol	QN	(0.46) [0.045883]	ND	(0.37) [0.036852]	S	(0.43) [0.043189]	QN	(11)	[1.078574]
2,4,6-Trichlorophenol	QN		N	(0.37) [0.036852]	Q.	(0.43) [0.043189]	Q	(11)	[1.078574]
2,4-Dichlorophenol	QN		ND		Q	(0.43) [0.043189]	QN	(11)	[1.078574]
2,4-Dimethylphenol	QN		QN	(0.37) [0.036852]	S	(0.43) [0.043189]	QN	(11)	[1.078574]
2,4-Dinitrophenol	QN		QN	_	QN	(2.2) [0.043189]	QN	(54)	[1.078574]
2,4-Dinitrotoluene	QN		Q	_	QN	(0.43) [0.043189]	QN	(11)	[1.078574]
2,6-Dinitrotoluene	QN	_	Q.		Q.	(0.43) [0.043189]	QN	(11)	[1.078574]
2-Chloronaphthalene	QN QN		Q.	(0.37) [0.036852]	S	(0.43) [0.043189]	QN	(11)	[1.078574]
2-Chlorophenol	Q.	(0.46) [0.045883]	QN O	(0.37) [0.036852]	Q	(0.43) [0.043189]	QN	(11)	[1.078574]
2-Methylnaphthalene	QN	(0.46) [0.045883]	0.024 J	(0.37) [0.036852]	Q	(0.43) [0.043189]	130	(11)	[1.078574]
2-Methylphenol(o-cresol)	QN	(0.46) [0.045883]	ON	(0.37) [0.036852]	QN	(0.43) [0.043189]	QN	(11)	[1.078574]
2-Nitroaniline	ON	(2.3) [0.045883]	QN	(1.8) [0.036852]	QN	(2.2) [0.043189]	ND	(54)	[1.078574]
2-Nitrophenol	QN	(0.46) [0.045883]	QN	(0.37) [0.036852]	Q	(0.43) [0.043189]	QN	(11)	[1.078574]
3,3'-Dichlorobenzidine	QN	(0.92) [0.045883]	ON	(0.74) [0.036852]	Q	(0.86) [0.043189]	QN	(22)	[1.078574]
3-Nitroaniline	QN	(2.3) [0.045883]	QN	(1.8) [0.036852]	QN	(2.2) [0.043189]	QN	(54)	[1.078574]
4,6-Dinitro-2-methylphenol	Q	(2.3) [0.045883]	QN	(1.8) [0.036852]	9	(2.2) [0.043189]	Q.	(54)	[1.078574]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

	10	10 10-MW-03	10	10 10-58-01		10 10-SB-01	01	10 10-58-02
PARAMETER	10.	10-MW-03-01 4 - 6	10~	10~SB-01-01 2 - 4	1(10-SB-01-02 5 - 7	10-	10-SB-02-01 1 - 3
								1
4-Bromophenyl phenyl ether	ND	(0.46) [0.045883]	N	(0.37) [0.036852]	QN	(0.43) [0.043189]	S	(11) [1 028574]
4-Chloro-3-methylphenol	ON	(0.46) [0.045883]	NO	(0.37) [0.036852]	QN		C N	
4-Chlorophenyl phenyl ether	ON	(0.46) [0.045883]	QN	_	QN		2 K	
4-Methylphenol(p-cresol)	ON	(0.46) [0.045883]	QN	(0.37) [0.036852]	QN		e Q	
4-Nitroaniline	QN	(2.3) [0.045883]	ND	(1.8) [0.036852]	ON	(2.2) [0.043189]	QN	
4-Nitrophenol	QN	(2.3) [0.045883]	ND	(1.8) [0.036852]	ON		ND	
Acenaphthene	QN		QN	(0.37) [0.036852]	ON	(0.43) [0.043189]	QN	
Acenaphthylene	QN		ND	(0.37) [0.036852]	QN	(0.43) [0.043189]	QN	_
Anthracene	QN		ND	(0.37) [0.036852]	QN	(0.43) [0.043189]	QN	_
Benzo(a)anthracene	QN		0.011 J	(0.37) [0.036852]	0.015 J	(0.43) [0.043189]	ND	. =
Benzo(a)pyrene	0.011 J	(0.46) [0.045883]	0.014 J	(0.37) [0.036852]	QN	(0.43) [0.043189]	QN	. <u>_</u>
Benzo(b)fluoranthene	0.02 JF		0.017 JF	(0.37) [0.036852]	0.021 JF	(0.43) [0.043189]	QN	_
Benzo(g,h,i)perylene	ND		0.025 JB	(0.37) [0.036852]	NO	(0.43) [0.043189]	ON	_
Benzo(K)†luoranthene	0.02 JF		0.017 JF	(0.37) [0.036852]	0.021 JF	(0.43) [0.043189]	ON	(11) [1.078574]
Benzoic acid	QN		QN	(1.8) [0.036852]	ON	(2.2) [0.043189]	ON	(54) [1.078574]
Benzyl alcohol	QN	_	QV	(0.37) [0.036852]	ND	(0.43) [0.043189]	ON	_
Butylbenzylphthalate	0.058 J		ON	(0.37) [0.036852]	QN	(0.43) [0.043189]	QN	-
Chrysene	QN .	_	0.016 J	(0.37) [0.036852]	ND	(0.43) [0.043189]	QN	_
Ul-n-octylphthalate	Q :	_	QN	-	QN	(0.43) [0.043189]	QN	(11) [1.078574]
Uibenz(a,h)anthracene	Q :	_	S.	(0.37) [0.036852]	ND	(0.43) [0.043189]	ND	(11) [1.078574]
Ulbenzoturan	Q.		QN		ON	(0.43) [0.043189]	QN	(11) [1.078574]
Uibutyiphthalate	Q :		QN	(0.37) [0.036852]	ND	(0.43) [0.043189]	ND	(11) [1.078574]
Uletnyiphthalate	ON	_	QN	(0.37) [0.036852]	ON	(0.43) [0.043189]	QN	(11) [1.078574]
Dimethylphthalate	. QN	_	ND	(0.37) [0.036852]	ND	(0.43) [0.043189]	QN	(11) [1.078574]
Fluoranthene	0.01 J		0.01	(0.37) [0.036852]	ND	(0.43) [0.043189]	QN	(11) [1.078574]
Fluorene	QN	_	ND	(0.37) [0.036852]	N	(0.43) [0.043189]	3.1 J	(11) [1.078574]
Hexachlorobenzene	QV	(0.46) [0.045883]	QN	(0.37) [0.036852]	QN	(0.43) [0.043189]	ON	
Hexachlorobutadiene	QN .		QN	(0.37) [0.036852]	S	(0.43) [0.043189]	ND	
Hexachlorocyclopentadiene	QN	(0.46) [0.045883]	Q	(0.37) [0.036852]	QN	(0.43) [0.043189]	QN	_

Compiled: 23 Margt 1995

() = Detection Limit [] = Factor

Mn = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 1D
LOCATION 1D
SAMPLE 1D
BEG. DEPTH - END DEPTH (FT.)

		10	-	10		10		10
	1	10-MW-03	10-	10-SB-01	ī	10-SB-01	Ĭ	10-58-02
	10	10-MW-03-01	10-8	10-SB-01-01	10	10-58-01-02	10	10-58-02-01
PARAMETER		4 - 6	2	2 - 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 - 7		1 - 3
Hexachloroethane	Q.	_	S	_	Q	(0.43) [0.043189]	ND	(11) [1.078574]
Indeno(1,2,3-cd)pyrene	S	(0.46) [0.045883]	0.016 JB	(0.37) [0.036852]	QN	(0.43) [0.043189]	QN	(11) [1.078574]
Isophorone	ON	(0.46) [0.045883]	QN	(0.37) [0.036852]	QN	(0.43) [0.043189]	ND	(11) [1.078574]
N-Nitrosodiphenylamine	ON	(0.46) [0.045883]	QN	(0.37) [0.036852]	ND	(0.43) [0.043189]	QN	(11) [1.078574]
N-Nitrosodipropylamine	ON	(0.46) [0.045883]	QN	(0.37) [0.036852]	QN	(0.43) [0.043189]	QN	(11) [1.078574]
Naphthalene	QN	(0.46) [0.045883]	0.013 J	(0.37) [0.036852]	QN	(0.43) [0.043189]	90	(11) [1.078574]
Nitrobenzene	QN	(0.46) [0.045883]	QN	(0.37) [0.036852]	QN ON	(0.43) [0.043189]	ND	(11) [1.078574]
Pentachlorophenol	QN	(2.3) [0.045883]	QN	(1.8) [0.036852]	ON	(2.2) [0.043189]	ND	(54) [1.078574]
Phenanthrene	QN	(0.46) [0.045883]	0.012 J	(0.37) [0.036852]	0.02 J	(0.43) [0.043189]	ND	(11) [1.078574]
Phenol	QN	(0.46) [0.045883]	QN	(0.37) [0.036852]	QV.	(0.43) [0.043189]	ON	(11) [1.078574]
Pyrene	0.013 J	(0.46) [0.045883]	0.013 J	(0.37) [0.036852]	N	(0.43) [0.043189]	ND	(11) [1.078574]
bis(2-Chloroethoxy)methane	QN	(0.46) [0.045883]	QN	(0.37) [0.036852]	QN	(0.43) [0.043189]	ON	(11) [1.078574]
bis(2-Chloroethyl)ether	QN	(0.46) [0.045883]	QN	(0.37) [0.036852]	QN	(0.43) [0.043189]	QN	(11) [1.078574]
bis(2-Chloroisopropyl)ether	QN	(0.46) [0.045883]	N	(0.37) [0.036852]	ND	(0.43) [0.043189]	QN	(11) [1.078574]
bis(2-Ethylhexyl)phthalate	0.052 JB	(0.46) [0.045883]	QN	(0.37) [0.036852]	0.15 J	(0.43) [0.043189]	S	(11) [1.078574]
p-Chloroaniline	QN	(0.46) [0.045883]	QN	(0.37) [0.036852]	QN	(0.43) [0.043189]	ND	(11) [1.078574]
SW8310 - Polynuclear Aromatic Hydrocarbons	drocarbons (ug/kg	/kg)						
Acenaphthene	58 J	(250) [136.9863]	QN	(200) [111.1111]	87 J	(230) [129.8701]	ON.	(200) [113.6363]
Acenaphthylene	Q		QN	(260) [111.1111]	18 J	(300) [129.8701]	QN	(260) [113.6363]
Anthracene	QN	_	QN	(73) [111.1111]	ON	(86) [129.8701]	71 J	(75) [113.6363]
Benzo(a)anthracene	0.61 J	_	4.4	(1.4) [111.1111]	0.82 J	(1.7) [129.8701]	5.4	(1.5) [113.6363]
Benzo(a)pyrene	0.9 კ		11 J		0.77 J	(3) [129.8701]	7.7	(2.6) [113.6363]
Benzo(b)fluoranthene	5.5	(2.5) [136.9863]	15	(2) [111.1111]	2.5	(2.3) [129.8701]	15	(2) [113.6363]
Benzo(g,h,i)perylene	16	(10) [136.9863]	87	(84) [1111]	12	(9.9) [129.8701]	25	(8.6) [113.6363]
Benzo(k)fluoranthene	0.45 J	_	4.4 3	(19) [1111]	0.41 J	(2.2) [129.8701]	4.5	(1.9) [113.6363]
Chrysene	Q	(21) [136.9863]	3.6 J	(17) [111.1111]	ND	(19) [129.8701]	19	(17) [113.6363]
Dibenzo(a,h)anthracene	QN	(4.1) [136.9863]	QN	(3.3) [111.1111]	N	(3.9) [129.8701]	1.2 J	(3.4) [113.6363]
Fluoranthene	Q	(29) [136.9863]	14 J	(23) [111.1111]	QN	(27) [129.8701]	28	(24) [113.6363]
Fluorene	Q	(29) [136.9863]	ND	(23) [111.1111]	QN	(27) [129.8701]	2600	(1200) [5682]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	10 10 10-MW-03 10-MW-03-01 4 - 6 2 - 4	ND (5.9) [136.9863] 2 J (4.8) [111.1111] ND (250) [136.9863] ND (200) [111.1111] 220 (88) [136.9863] 40 J (71) [111.1111] 9.4 J (37) [136.9863] 8.9 J (30) [111.1111]
	10 10-SB-01 10-SB-01-02 5 - 7	ND (5.6) [129.8701] ND (230) [129.8701] 140 (83) [129.8701] ND (35) [129.8701]
	10 10-SB-02 10-SB-02-01 1 - 3	6.8 (4.9) [113.6363] 86000 (10000) [5682] 100 (73) [113.6363] 26 J (31) [113.6363]

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 10

10-58-02 10-58-02 10-58-03					LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	LOCATION ID SAMPLE ID TH - END DEPT	Н (FT.)						
10-58-02 10-58-03 10-			10			10			10			10	
10-58-02-02 10-58-03-01 10-58-03-02 10-58-03-03-03 10-58-03-03		1(0-88-02		10-	SB-03		10	-SB-03		10-	SB-03	
s (mg/kg) (620) [3086] ND (26) (ug/kg) (13) [110] (11) [1100] (520) [3086] ND (26) (ug/kg) (13) [133.2] 91 (11) [1100] (2600) [26284] 81 (11) (ug/kg) (0.45) [44.5442] 17 (1.1) [100.2886] 11 (2.7) [132.8021] ND (1.3) [122.8021] (0.45) [44.5442] 17 (1.1) [100.2886] 11 (2.7) [132.8021] ND (1.3) [122.8021] (0.45) [44.5442] 17 (1.1) [100.2886] ND (1.3) [132.8021] ND (1.3) [122.8021] ND (1.3) [122	PARAMETER	10	-SB-02-02 4 - 6		10-S 1	.8-03-01 - 2.5		10-	SB-03-02 - 5.5		10-51	8-03-03 - 8.5	
(a) [131.6] [131.6] [110 (42) [210.5] 87000 (620) [3086] NO (26) [110 (110 (110) (11	1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !				1								1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(26) [131.6] [110.6] (42) [210.5] 87000 (620) [5608] NO (26) [1008/49] (11) [110] [110] [1100] (620) [2608] [2608] NO (1.3) [122.8021] NO (1.3) [1	SW8015MEMP - Nonhalogenated Volatil	le Organics	(mg/kg)										
(13) [133.2] 91 (11) [110] [1100 (2600) [26284] 81 (11) (11) (1109/kg) (10.45) [44.54342] 220 (5.5) [546.4480] 50 (1.3) [132.8021] ND (1.3) [129.201 (0.45) [44.54342] 210 (2.2) [109.2896] 7.5 (1.3) [132.8021] ND (2.6) [129.201 (0.45) [44.54342] ND (2.2) [109.2896] ND (1.3) [132.8021] ND (2.6) [129.201 (0.45) [44.54342] ND (2.1) [109.2896] ND (2.7) [132.8021] ND (2.6) [129.201 (0.45) [44.54342] ND (1.1) [109.2896] ND (2.7) [132.8021] ND (2.5) [129.201 (0.45) [44.54342] ND (1.1) [109.2896] ND (2.7) [132.8021] ND (2.5) [129.201 (0.45) [44.54342] ND (1.1) [109.2896] ND (4.5) [132.8021] ND (4.5) [129.201 (0.45) [44.54342] ND (2.2) [109.2896] ND (4.5) [132.8021] ND (4.5) [129.201 (0.45) [44.54342] ND (2.2) [109.2896] ND (4.5) [132.8021] ND (4.5) [129.201 (0.45) [44.54342] ND (2.2) [109.2896] ND (4.5) [132.8021] ND (4.5) [129.201 (0.45) [44.54342] ND (2.2) [109.2896] ND (2.7) [132.8021] ND (2.5) [129.201 (0.45) [44.54342] ND (2.2) [109.2896] ND (2.7) [132.8021] ND (2.5) [129.201 (0.45) [44.54342] ND (2.2) [109.2896] ND (2.7) [132.8021] ND (2.5) [129.201 (0.45) [44.54342] ND (2.5) [109.2896] ND (2.7) [132.8021] ND (2.5) [129.201 (2.5) [44.54342] ND (2.5) [109.2896] ND (2.7) [132.8021] ND (2.5) [129.201 (4.5) [44.54342] ND (2.5) [109.2896] ND (2.7) [132.8021] ND (2.5) [129.2896] ND (2.7) [132.8021] ND (2.7) [132.8	Diesel Range Organics (2)	36	(52)	[131.6]	110	(45)	[210.5]	87000	(620)	[3086]	ON	(92)	[128]
(0.45) [44,54342] 220 (5.5) [546,4480] 50 (1.3) [132,8021] 1.9 P (1.3) [10,49/49] (0.45) [44,54342] 1.7 (1.1) [109,2896] 7.5 (1.3) [132,8021] 1.9 P (1.3) [1.3,41] (0.45) [44,54342] 210 (2.2) [109,2896] 1.1 (2.7) [132,8021] 1.0 D (2.6) [1.3] (1.3) [1.3,41] (1.3,41] (1	Gasoline Range Organics (2)		_	[133.2]	91	(11)	[110]	11000	(5000)	[26284]	81	(11)	[110]
0.72 B (0.45) [44.5442] 220 (5.5) [564.480] 50 (1.3) [132.802] 1.9 P (1.3) [132.802] 1.7 P (1.3) [132.802] 1.3	SW8080 - Organochlorine Pesticides		g/kg)										
0.59 (0.45) (44.54342) 17 (1.1) [109.2896] 7.5 (1.3) [132.8021] ND (1.3) [1.3]	4,4'-DDD	0.72 B		44.54342]	220		546.4480]	50		132.8021]		_	129.3661]
1.7 (0.89) [44,54342] 210 (2.2) [109.2895] 11 (2.7) [132.8021] ND (2.5) [1.91 ND (2.2) [1.92.895] ND (2.2) [1.92.8021] ND (2.3) [1.92.8021] ND (2.3) [1.92.8021] ND (2.2) [1.92.892] ND (2.2) [1.92.8021] ND (2.3) [1.92.80	4,4'-DDE	0.59	_	44.54342]	17	_	109.2896]	7.5	_	132.8021]	ON		129.3661]
ND (0.45) [44.5442] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.5) [10.2896] ND (2.5) [41.5442] ND (2.5) [400.2896] ND (2.5) [41.28021] ND (2.5) [41.5442] ND (1.1) [100.2896] ND (2.5) [41.28021] ND (3.5) [41.5442] ND (1.1) [100.2896] ND (4.5) [42.8021] ND (4.5) [41.5442] ND (4.5) [41.54442] ND (4.5) [41.5442] ND (4.5) [41.5442] ND (4.5)	4,4'-DDT	1.7		44.54342]	210	_	109.2896]	11	_	132.8021]	ND	_	129.3661]
ND (2.2) [44.54342] ND (5.5) [109.2896] ND (6.6) [132.8021] ND (6.5)	Aldrin	ON	(0.42)	44.54342]	QN		109.2896]	ON	_	132.8021]	QN	(1.3)	129.3661]
0.29 JB (0.45) [44.54342] ND (1.1) [109.2896] 1.1 KJ (1.3) [132.8021] 0.71 PJ (1.3) III NO (0.45) [44.54342] ND (1.1) [109.2896] 0.27 PJB (1.3) [132.8021] 0.73 KJB (1.3) III NO (1.3) [44.54342] ND (1.1) [109.2896] 0.27 PJB (1.3) [132.8021] ND (2.3) III ND (2.2) [44.54342] 1.2 (1.1) [109.2896] 4.5 JB (6.6) [132.8021] ND (2.3) III ND (2.2) [109.2896] ND (2.7) [132.8021] ND (2.6) III ND (0.45) [44.54342] ND (2.2) [109.2896] ND (2.7) [132.8021] ND (2.6) III ND (2.2) [109.2896] ND (2.7) [132.8021] ND (2.6) III ND (2.2) [109.2896] ND (2.7) [132.8021] ND (2.6) III ND (2.2) [44.54342] ND (2.5) [109.2896] ND (2.7) [132.8021] ND (2.6) III ND (2.7) [44.54342] ND (2.5) [109.2896] ND (2.7) [132.8021] ND (2.6) III ND (2.7) [44.54342] ND (2.5) [109.2896] ND (2.7) [132.8021] ND (2.7) [132.8021] ND (2.7) [132.8021] ND (2.6) III ND (2.7) [132.8021] ND (2.7) [132.8021] ND (2.6) III ND (2.7) [132.8021] ND (2.7) [132.8021] ND (2.6) III ND (2.7) [132.8021] ND (2.6) III ND (2.7) [132.8021] ND (2.7) [13	Chlordane	ON	(2.2)	44.54342]	ND	_	109.2896]	QN	_	132.8021]	ND	_	129.3661]
n I I	Dieldrin	0.29 JB		44.54342]	QN	_	109.2896]		_	132.8021]			129.3661]
n Sulfate 8.9 (4.5) [44.54342] ND (5.5) [109.2896] ND (4) [132.8021] ND (5.5) [109.2896] ND (4.5) [132.8021] ND (6.5) [132.802	Endosulfan I	0.03 KJB		44.54342]	ON	_	109.2896]			132.8021]		_	129.3661]
No (6.5) [44.54342] 5.4 J (5.5) [109.2896] 4.5 JB (6.6) [132.8021] ND (6.5) [1.3) [4.5] [4	Endosulfan II	QN	(1.3)	44.54342]	ND		109.2896]	ON		132.8021]	ON	_	129.3661]
0.72 PB (0.45) [44.54342] 12 (1.1) [109.2896] 8.9 (1.3) [132.8021] 8.5 (1.3) [dehyde	Endosulfan Sulfate	3.9 PB		44.54342]		_	109.2896]			132.8021]	QN	_	129.3661]
dehyde ND (0.89) [44.54342] ND (2.2) [109.2896] ND (2.7) [132.8021] ND (2.6) [109.2896] Co.52 KJB (1.3) [132.8021] ND (1.3) [1.3) [1.3] [1	Endrin		_	44.54342]	12	_	109.2896]	8.9		132.8021]	8.5	_	129.3661]
r epoxide ND (0.45) [44.54342] 0.18 KJB (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [137.8021] ND (1.3)	Endrin Aldehyde	Q.	(0.89)	44.54342]	ON	_	109.2896]	ND		[32.8021]	QN		129.3661]
r epoxide ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (2.2) [44.54342] ND (5.5) [109.2896] ND (6.6) [132.8021] ND (6.5) [lor ND (4.5) [44.54342] ND (11) [109.2896] ND (27) [132.8021] ND (26) [lor ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [lor ND (4.5) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [lor ND (4.5) [44.54342] ND (11) [109.2896] ND (13) [132.8021] ND (26) [lor ND (8.9) [44.54342] ND (11) [109.2896] ND (27) [132.8021] ND (26) [lor ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [lor ND (2.2) [44.54342] ND (2.2) [109.2896] ND (27) [132.8021] ND (26) [lor ND (2.2) [44.54342] ND (2.2) [109.2896] ND (2.7) [132.8021] ND (26) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [lor ND (0.45) [44.	Heptachlor	0.21 KJB		44.54342]	0.18 KJB	_	109.2896]	0.52 KJB	_	32.8021]	ON	_	129.3661]
Or	Heptachlor epoxide	ON		44.54342]	ON		109.2896]	QN	_	.32.8021]	QN	_	129.3661]
ND (4.5) [44.54342] ND (11) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (4.5) [44.54342] ND (11) [109.2896] ND (13) [132.8021] ND (13) [ND (4.5) [44.54342] ND (11) [109.2896] ND (13) [132.8021] ND (13) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (22) [44.54342] ND (22) [109.2896] ND (66) [132.8021] ND (65) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [1.1 B (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (1.3) [1.30.1811] ND (1.3) [1.30.1811] ND (1.3) [ND (1.3) [1.30.1811] ND (1.3) [1.30.1811] ND (1.3) [ND (1.3) [1.30.1811] ND (1.3) [ND (1.3) [1.30.1811] ND (1.3) [ND (Methoxychlor	ON		44.54342]	Q	_	109.2896]	ON	_	.32.8021]	ON		129.3661]
ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (4.5) [44.54342] ND (11) [109.2896] ND (13) [132.8021] ND (13) [ND (4.5) [44.54342] ND (11) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (1.3)	PCB-1016	QN		44.54342]	QN	_	109.2896]	QN	_	132.8021]	QN	_	129.3661]
ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (4.5) [44.54342] ND (11) [109.2896] ND (13) [132.8021] ND (13) [ND (4.5) [44.54342] ND (11) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [44.54342] N	PCB-1221	QN		44.54342]	ND	_	109.2896]	S	_	132.8021]	QN	_	129.3661]
ND (4.5) [44.54342] ND (11) [109.2896] ND (13) [132.8021] ND (13) [ND (4.5) [44.54342] ND (11) [109.2896] ND (13) [132.8021] ND (13) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [44.54342] ND (1.3) [44.54342] ND (1.3) [44.54342] ND (1.3) [PCB-1232	Q		44.54342]	Q	_	109.2896]	Q	_	32.8021]	ND		129.3661]
ND (4.5) [44.54342] ND (11) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (22) [44.54342] ND (55) [109.2896] ND (66) [132.8021] ND (65) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1)	PCB-1242	Q		44.54342]	Q.		109.2896]	QN	_	[32.8021]	ON		129.3661]
ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (22) [44.54342] ND (55) [109.2896] ND (66) [132.8021] ND (65) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [109.2896] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [109.2896] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [44.54342] ND (1.1	PCB-1248	S	(4.5)	44.54342]	Q		109.2896]	QN	_	32.8021]	ON	_	129.3661]
ND (8.9) [44.54342] ND (22) [109.2896] ND (27) [132.8021] ND (26) [ND (22) [44.54342] ND (55) [109.2896] ND (66) [132.8021] ND (65) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [1.1 B (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [PCB-1254	Q	[8.9]	44.54342]	QN	_	109.2896]	ON	_	32.8021]	QN		129.3661]
. ND (22) [44.54342] ND (55) [109.2896] ND (66) [132.8021] ND (65) [ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [1.1 B (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3) [PCB-1260	ON	(8.9)	44.54342]	NO O		109.2896]	QN	_	32.8021]	QN	_	[139.3661]
ND (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [1.1 B (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) [ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3)	Toxaphene .	NO	_	44.54342]	2	_	109.2896]	ND	_	[32.8021]	QN	_	129.3661]
1.1 B (0.45) [44.54342] ND (1.1) [109.2896] ND (1.3) [132.8021] ND (1.3) ND (1.3) [132.8021] ND (1.3) ND (alpha-BHC	Q		44.54342]	ND	_	109.2896]	QN	_	32.8021]	QN	_	129.3661]
ND (0.45) [44.54342] ND (1.1) [109.2896] 3.5 (1.3) [132.8021] ND (1.3)	beta-BHC			44.54342]	QN	_	109.2896]	NO	_	32.8021]	ON	_	129:3661]
	delta-BHC	ON	_	44.54342]	QN		109.2896]	3.5		.32.8021]	QN	_	129.3661]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

BEG. DEPTH - END DEPTH (FT.)

LOCATION ID

SITE 1D

SAMPLE ID

(1.3) [129.3661] [65.10416] [65.10416][65.10416] [65.10416]65.10416] [65.10416] [65.10416][65.10416] [65.10416] [65.10416][65.10416] [65.10416] [65.10416] [65.10416][65.10416] [65.10416] [65.10416] [65.10416][65.10416] [65.10416] [65.10416] [65.10416] [65.10416] [65.10416] 65.10416] (330)(330)(330)(330)(330)(330)(650)3300) 3300) 6500) (330)(330)(650)(330)(330)(330)(330)(650)(330)(650)6500) (330)(330)(330)10-SB-03-03 10-58-03 7 - 8.5 2 2 2 윤 (1.3) [132.8021] [268,0965] 268.0965 268.0965 268,0965] 268.0965] [268.0965] [268.0965] [268.0965] [268.0965] [268.0965] 268.0965 268.0965 268.0965 268.0965 [268.0965] [268.0965] [268.0965] [268.0965] [268.0965] [268.0965] 268.0965 [268.0965] [268.0965] [268.0965] [268.0965] [268.0965] (1300)(1300)(1300)(1300)(1300)(1300)(2700)(13000)(27000)(1300)(1300)(2700)(1300)(1300)(1300)(2700)(1300)(2700)(1300)(1300)(1300)(1300)(1300)(13000)(1300)(1300)27000) 10-SB-03-02 10-SB-03 4 - 5.5 3000 2 9 2 2 [1.1] [109.2896] [219.7802] 219.7802 [219.7802] 219.7802 219.7802 [219.7802] [219.7802] [219.7802] [219.7802] [219.7802] [219.7802] 219.7802 219.7802 [219.7802] [219.7802][219.7802] [219.7802] [219.7802] [219.7802] [219.7802] [219.7802] [219.7802] [219.7802 [219.7802] [219.7802] [219.7802] [219.7802] (11000) (1100)(2200)(22000)(1100)(1100)(1100)(1100)(11000)(1100)(1100)(2200)(1100)(2200)(1100)(1100)(1100)(1100)(22000) (1100)(1100)(2200)(1100)10-SB-03-01 10-SB-03 1 - 2.510 읒 9 9 9 9 9 ON ON ON ON ON ON 2 읒 2 2 2 9 2 ş 2 [0.45] [44.54342] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] 26.77376 [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] 26.77376 [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] [26.77376] (130)(130)(130)(130)(130)(270)(1300)(1300)(2700) (130)(130)(270)(130)(130)(130)(270)(270)(130)(130)(130)(130)2700) (130)(130)10-SB-02-02 10-SB-02 850 J 37 J 500 J 2 370 8888888 2 2 2 2 2 2 S 2 (ng/kg) SW8240 - Volatile Organics 1-Methyl-2-pentanone(MIBK) 1,1,2,2-Tetrachloroethane 2-Chloroethyl vinyl ether 1,1,1-Trichloroethane 1,1,2-Trichloroethane Bromodichloromethane Carbon tetrachloride Dibromochloromethane 1,2-Dichloropropane Methyl ethyl ketone 1,1-Dichloroethane 1,1-Dichloroethene ,2-Dichloroethane Methylene chloride etrachloroethene Carbon disulfide Chloromethane Chlorobenzene Ethyl benzene Bromomethane Chloroethane Chloroform 2-Hexanone PARAMETER gamma-BHC Acetone Benzene tyrene [o] uene

[] = Factor () = Detection Limit

" = Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

		10	10		10			10	
	101	10-SB-02	10-SB-03	3-03	10-SB-03	-03	1 ;	10-SB-03	
PARAMETER		4 - 6	10-35-	2.5	10-58-03-02	03-02 5.5	10	10-SB-03-03 7 - 8.5	
Tribromomethens (Bromoform)	C	[37077 30] [31]	Ş	[0007 010] (0011)	, , , , , , , , , , , , , , , , , , ,	_		i	! !
	2 :		2	_	Q.		ON.	(330) [65.10416	116]
Trichloroethene	QN		Q	(1100) [219.7802]	Q	(1300) [268.0965]	ON	(330) [65.10416]	116]
Vinyl acetate	ND	(130) [26.77376]	ND	(1100) [219.7802]	QN	(1300) [268.0965]	QN	(330) [65.10416]	116]
Vinyl chloride	QN	(270) [26.77376]	ND	(2200) [219.7802]	ON	(2700) [268.0965]	QN	(650) [65.10416]	[16]
Xylenes	43 J	(130) [26.77376]	380 J	(1100) [219.7802]	0089		QN	_	16]
cis-1,3-Dichloropropene	ND	(130) [26.77376]	QN	(1100) [219.7802]	QN	(1300) [268.0965]	QN		116]
trans-1,2-Dichloroethene	ON	(130) [26.77376]	ON	(1100) [219.7802]	ND	(1300) [268.0965]	N		[16]
trans-1,3-Dichloropropene	ON	(130) [26.77376]	QN	(1100) [219.7802]	ON	(1300) [268.0965]	Q	. —	116]
SW8270 - Semivolatile Organics (mg	(mg/kg)								,
1,2,4-Trichlorobenzene	ND	(0.45) [0.044608]	ND	(0.36) [0.035911]	ND ON	(9.6) [0.964375]	QN	(0.43) [0.042973]	73]
1,2-Dichlorobenzene	QN	(0.45) [0.044608]	QN	(0.36) [0.035911]	QN	(9.6) [0.964375]	QV	(0.43) [0.042973]	73]
1,3-Dichlorobenzene	QN	(0.45) [0.044608]	ON	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN		73]
1,4-Dichlorobenzene	QN	(0.45) [0.044608]	ND	(0.36) [0.035911]	N	(9.6) [0.964375]	QN	(0.43) [0.042973]	73]
2,4,5-Trichlorophenol	8	(0.45) [0.044608]	ND	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN	(0.43) [0.042973	73]
2,4,6-Trichlorophenol	ND		QN	(0.36) [0.035911]	NO	(9.6) [0.964375]	QN	(0.43) [0.042973]	73]
2,4-Dichlorophenol	ND	(0.45) [0.044608]	QN	(0.36) [0.035911]	NO	(9.6) [0.964375]	ND	(0.43) [0.042973	73]
2,4-Dimethylphenol	Q	(0.45) [0.044608]	ND	(0.36) [0.035911]	QN	(9.6) [0.964375]	ND	(0.43) [0.042973]	73]
2,4-Dinitrophenol	ND	(2.2) [0.044608]	ND	(1.8) [0.035911]	N	(48) [0.964375]	ON	(2.1) [0.042973]	173]
2,4-Dinitrotoluene	ON	(0.45) [0.044608]	ND	(0.36) [0.035911]	N	(9.6) [0.964375]	N	(0.43) [0.042973	73]
2,6-Dinitrotoluene	QN		QN	(0.36) [0.035911]	NO	(9.6) [0.964375]	ND	(0.43) [0.042973]	73]
2-Chloronaphthalene	ON	(0.45) [0.044608]	ND	(0.36) [0.035911]	QN	(9.6) [0.964375]	ND	(0.43) [0.042973]	73]
2-Chlorophenol	QN	(0.45) [0.044608]	ON	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN	(0.43) [0.042973	73]
2-Methylnaphthalene	0.057 J	(0.45) [0.044608]	0.023 J	(0.36) [0.035911]	15	(9.6) [0.964375]	0.046 J	(0.43) [0.042973	[73]
2-Methylphenol(o-cresol)	QN	(0.45) [0.044608]	ND	(0.36) [0.035911]	QN	(9.6) [0.964375]	ON	(0.43) [0.042973]	73]
2-Nitroaniline	Q	(2.2) [0.044608]	ON	(1.8) [0.035911]	QN	(48) [0.964375]	QV	(2.1) [0.042973]	73]
2-Nitrophenol	Q	(0.45) [0.044608]	QN	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN	(0.43) [0.042973]	73]
3,3'-Dichlorobenzidine	Q	(0.89) [0.044608]	QN	(0.72) [0.035911]	ON	(19) [0.964375]	ND	(0.86) [0.042973]	73]
3-Nitroaniline	QN		QN	(1.8) [0.035911]	QN	(48) [0.964375]	QN	(2.1) [0.042973]	73]
4,6-Dinitro-2-methylphenol	Q	(2.2) [0.044608]	Q.	(1.8) [0.035911]	QN	(48) [0.964375]	QN	(2.1) [0.042973]	73]
Compiled: 23 March 1995		() = Detection Limit	[] = Factor	ND = Not Detected	NA = Not Applicable	icable			

				SITE ID LOCATION ID SAMPLE ID				
			BEG. DEPT	DEPTH - END DEPTH (FT.)				
		10		10		10		10
		10-SB-02	1	10-SB-03	1(10-SB-03		10-SB-03
	,	10-58-02-02	10	10-58-03-01	10	10-SB-03-02	•	10-58-03-03
PARAMETER 	; ; ; ; ; ; ;	4 - 6	3	1 - 2.5	,	4 - 5.5		7 - 8.5
					: : : : : : : : : : : : : : : : : : :		1	
4-Bromophenyl phenyl ether	ON	(0.45) [0.044608]	QN	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN	(0.43) [0.042973]
4-Chloro-3-methylphenol	QN	(0.45) [0.044608]	N	(0.36) [0.035911]	ND	(9.6) [0.964375]	Q	
4-Chlorophenyl phenyl ether	QN		ON	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN	
4-Methylphenol(p-cresol)	ND		QN	(0.36) [0.035911]	QN	(9.6) [0.964375]	R	
4-Nitroaniline	ON		QN	(1.8) [0.035911]	QN	(48) [0.964375]	S.	(2.1) [0.042973]
4-Nitrophenol	QN		QN	(1.8) [0.035911]	ON	(48) [0.964375]	ON	(2.1) [0.042973]
Acenaphthene	QN .		QN		0.6 J	(9.6) [0.964375]	N	(0.43) [0.042973]
Acenaphthylene	Q :		Q	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN	(0.43) [0.042973]
Anthracene	QN	_	0.0071 J	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN	(0.43) [0.042973]
Benzo(a)anthracene	ND			(0.36) [0.035911]	ND	(9.6) [0.964375]	Q	(0.43) [0.042973]
Benzo(a)pyrene	ON		0.038 J	(0.36) [0.035911]	ON	(9.6) [0.964375]	QN	(0.43) [0.042973]
Benzo(b)fluoranthene	QN		0.099 JF	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN	(0.43) [0.042973]
Benzo(g,h,i)perylene	ON			(0.36) [0.035911]	ND	(9.6) [0.964375]	ND	(0.43) [0.042973]
Benzo(k)fluoranthene	QN		0.099 JF	(0.36) [0.035911]	ON	(9.6) [0.964375]	QN	(0.43) [0.042973]
Benzoic acid	ON.		ND	(1.8) [0.035911]	ON	(48) [0.964375]	ND	(2.1) [0.042973]
Benzyl alcohol	Q.	_	Q	(0.36) [0.035911]	ND	(9.6) [0.964375]	QN	
Butylbenzylphthalate ?:	Q Z		ND	_	0.49 J	(9.6) [0.964375]	QN	(0.43) [0.042973]
Chrysene	QV :		0.048 J		QN	(9.6) [0.964375]	8	(0.43) [0.042973]
U1-n-octy/phtha/ate	Q :		ON	_	QN	(9.6) [0.964375]	Q.	(0.43) [0.042973]
Ulbenz(a,n)anthracene	Q :		ON		Q		9	(0.43) [0.042973]
Ulbenzoluran S.:	ON :		ON		NO	(9.6) [0.964375]	9	(0.43) [0.042973]
Uibutyiphthalate	Q :		QN	_	ND	(9.6) [0.964375]	QN	(0.43) [0.042973]
Uletnylphthalate	9		ON		QN	(9.6) [0.964375]	2	(0.43) [0.042973]
Uimethy phthalate	QN	_	ND	(0.36) [0.035911]	ND	(9.6) [0.964375]	Q	(0.43) [0.042973]
Fluoranthene	QN		0.054 J	(0.36) [0.035911]	ND	(9.6) [0.964375]	ND N	(0.43) [0.042973]
Fluorene	QN		Q	(0.36) [0.035911]	0.89 J	(9.6) [0.964375]	QN	(0.43) [0.042973]
Hexachlorobenzene	QV		S	(0.36) [0.035911]	QN	(9.6) [0.964375]	S	(0.43) [0.042973]
Hexachlorobutadiene	QN		QN	(0.36) [0.035911]	ON	(9.6) [0.964375]	QN	(0.43) [0.042973]
Hexachlorocyclopentadiene	Q	(0.45) [0.044608]	QN	(0.36) [0.035911]	ND	(9.6) [0.964375]	N	(0.43) [0.042973]

Compiled: 23 May 1995

() = Detection Limit [] = Factor

= Not Detected N.

ed NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

	10-	10-SB-02-02	10-S	10-SB-03-01	10-01	10-58-03 10-58-03-02		10-SB-03 10-SB-03-03	
PARAMETER		4 - 6	1	- 2.5	4	- 5.5		7 - 8.5	1
Hexachloroethane	QN	(0.45) [0.044608]	08] ND	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN	(0.43)	[0.042973
Indeno(1,2,3-cd)pyrene	QN	(0.45) [0.044608]	0.03 JB	(0.36) [0.035911]	ND	(9.6) [0.964375]	QN		0.042973
Isophorone	QN	(0.45) [0.044608	0N [80	(0.36) [0.035911]	QN	(9.6) [0.964375]	Q		0.042973
N-Nitrosodiphenylamine	ON	(0.45) [0.044608	0N [80	(0.36) [0.035911]	ND		QN	_	0.042973
N-Nitrosodipropylamine	QN	(0.45) [0.044608	0N [80	(0.36) [0.035911]	ND	_	2		0.042973
Naphthalene	0.034 J	(0.45) [0.044608)8] 0.011 J	(0.36) [0.035911]	4.5 J	(9.6) [0.964375]	0.055 J		0.042973
Nitrobenzene	QN	(0.45) [0.044608]	0N [80	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN		0.042973
Pentachlorophenol	ON	(2.2) [0.044608]	J8] ND	(1.8) [0.035911]	ND	(48) [0.964375]	QN	_	0.042973
Phenanthrene	QN	(0.45) [0.044608	0.028 J	(0.36) [0.035911]	0.25 J	(9.6) [0.964375]	ON		0.042973
Phenol	ON	(0.45) [0.044608	ON [8î	(0.36) [0.035911]	ON	(9.6) [0.964375]	QN	-	0.042973
Pyrene	QN	(0.45) [0.044608]	0.065 3	(0.36) [0.035911]	ND	(9.6) [0.964375]	Q.		0.042973
bis(2-Chloroethoxy)methane	ON	(0.45) [0.044608]	J8] ND	(0.36) [0.035911]	QN	(9.6) [0.964375]	ON	_	0.042973
bis(2-Chloroethyl)ether	QN	(0.45) [0.044608]	J8] ND	(0.36) [0.035911]	ND	(9.6) [0.964375]	QN	(0.43)	0.042973
bis(2-Chloroisopropyl)ether	QN	(0.45) [0.044608]	0N [80	(0.36) [0.035911]	ND	(9.6) [0.964375]	QN		0.042973
bis(2-Ethylhexyl)phthalate	0.019 JB	(0.45) [0.044608]	0.74	(0.36) [0.035911]	2.4 J	(9.6) [0.964375]	0.31 J	(0.43)	[0.042973
p-Chloroaniline	QN	(0.45) [0.044608]	0N [80	(0.36) [0.035911]	QN	(9.6) [0.964375]	QN		[0.042973
SW8310 - Polynuclear Aromatic Hydrocarbons	drocarbons (ug/kg	kg)							
Acenaphthene	ON	(240) [133.3333]	3] 88 J	(200) [109.8901]	ON	(240) [133.3333]	QN	(230)	[129.8701]
Acenaphthylene	ON	(310) [133.3333]	33] ND	(250) [109.8901]	QN	(310) [133.3333]	Q		[129.8701]
Anthracene	Q	(88) [133.3333]	(3) ND	(73) [109.8901]	NO	(88) [133.3333]	Q] (98)	129.8701
Benzo(a)anthracene	0.44 J	(1.7) [133.3333]	10 10	(1.4) [109.8901]	5.5	(1.7) [133.3333]	Q		129.8701
Benzo(a)pyrene	0.89 J	(3.1) [133.3333]	13] 0.58 J	(2.5) [109.8901]	9.7	(3.1) [133.3333]	0.5 J	[3]	129.8701
Benzo(b)fluoranthene	2.8	(2.4) [133.3333]	13] 32	(2) [109.8901]	18	(2.4) [133.3333]	0.42 J	(2.3)	129.8701
Benzo(g,h,i)perylene	12	(10) [133.3333]	13] 64 J	(84) [1099]	34	(10) [133.3333]	10		[129.8701
Benzo(k)fluoranthene	0.43 J	(2.3) [133.3333]	13] 12 J	(19) [1099]	5.2	(2.3) [133.3333]	0.29 J	(2.2)	[129.8701]
Chrysene	Q	(20) [133.3333]	(S) ND	(16) [109.8901]	5.8 J	(20) [133.3333]	NO	[19]	129.8701
Dibenzo(a,h)anthracene	ON		3] 3.4	(3.3) [109.8901]	4.4	(4) [133.3333]	NO] (8.8)	129.8701
Fluoranthene	ON	(28) [133.3333]	13] 79	(23) [109.8901]	32	(28) [133.3333]	QN	[27]	129.8701
Fluorene	QV	(28) [133.3333]	(3] 0.42 JB	(23) [109.8901]	096	(140) [666.7]	ND	[27]	129.8701

			LOC S/ BEG. DEPTH	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
PARAMETER 	101	10 10-58-02 10-58-02-02 4 - 6	10-:	10 10-SB-03 10-SB-03-01 1 - 2.5	1	10-58-03 10-58-03-02 4 - 5.5	100	10 10-SB-03 10-SB-03-03 7 - 8.5
Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	ND 1.8 J 1.70 ND	(5.7) [133.3333] (240) [133.3333] (85) [133.3333] (36) [133.3333]	34 ND 70 20 J	(4.7) [109.8901] (200) [109.8901] (70) [109.8901] (30) [109.8901]	9.1 12000 ND 12 J	(5.7) [133.333] (1200) [666.7] (85) [133.333] (36) [133.3333]	ND ND 62 J ND	(5.6) [129.8701] (230) [129.8701] (83) [129.8701] (35) [129.8701]

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

	10-88-01					
10-55-01-01 0 - 0.5 0	30-CC-0T	10-55-03	m	10-	10 10-55-03	
25 (mg/kg) (ug/kg) (ug	10-58-02-01	10-55-03-01	-01	10-DS-02 Dup of 10-SS-03-01	of 10-SS-0	3-01
(19) (19) (21) (460) (460) (460) [4640] (460) (460) [4640] (400) (10) (10) (10) (10) (10) (10) (10) (0 - 0.5	0 - 0.5	5	0	- 0.5	
(460) [4640] ND (21) (460) [4640] ND (10) (460) [4640] ND (10) (0.37) [37.32736] 740 (7.1) [(0.37) [37.32736] ND (7.1) [(1.9) [37.32736] ND (7.1) [(1.9) [37.32736] ND (7.1) [(1.9) [37.32736] ND (140) [(7.5) [37.						
(ug/kg) (0.37) [37.32736] 740 (7.1) [7.1) [7.1) [7.1) [7.1]] 21 B	(20) [102]	22 B	(21)	[104]
(ug/kg) (0.37) [37.32736] 740 (7.1) [(0.37) [37.32736] 15 (7.1) [(0.37) [37.32736] ND (7.1) [(1.9) [37.32736] ND (7.1) [(0.37) [37.32736] ND (7.1) [(0.37) [37.32736] ND (7.1) [(1.9) [37.32736] ND (7.1) [(0.37) [37.32736] ND (7.1) [(1.9) [37.32736] ND (140) [(7.5) [37.3		QN [(10) [103]	NO	(10)	[105]
54 (0.37) [37.32736] 740 (7.1) [65 (0.75) [37.32736] 15 (7.1) [65 (0.75) [37.32736] 86 (14) [7.1) [7.1) [7.1) [80 (0.37) [37.32736] ND (7.1) [81 (1.2) [37.32736] ND (7.1) [81 (1.3) [37.32736] ND (7.1) [82 (1.3) [37.32736] ND (7.1) [83 (1.3) [37.32736] ND (7.1) [84 (1.3) [37.32736] ND (7.1) [85 (1.						
4.7 (0.37) [37.32736] 15 (7.1) [65 (0.75) [37.32736] 86 (14) [19 (0.75) [37.32736] ND (7.1) [19 (0.75) [37.32736] ND (7.1) [19 (0.37) [37.32736] ND (7.1) [10 (0.37) [37.32736] ND (7.1)		50	(1.7) [173.5508]	19	(1.7)	[173.3703]
65 (0.75) [37.32736] 86 (14) [0.68 8 (0.37) [37.32736] ND (7.1) [0.08 (0.37) [37.32736] ND (7.1) [0.37) [37.32736] ND (7.1) [0.73 KJB (1.1) [37.32736] ND (7.1) [0.73 KJB (1.1) [37.32736] ND (7.1) [0.0089 PJB (0.75) [37.32736] ND (7.1) [0.0089 PJB (0.75) [37.32736] ND (7.1) [0.21 KJB (0.37) [37.32736] ND (140) [0.22 KJB (0.37) [37.32736] ND (171) [0.22 KJB (0.37) [37.32736] ND (171) [0.22 KJB (0.37) [37.32736] ND (7.1) [0.22 KJB (0.37)		13	(1.7) [173.5508]	12	(1.7) [1	[173.3703]
0.68 B (0.37) [37.32736] ND (7.1) [ND (1.9) [37.32736] ND (7.1) [ND (0.37) [37.32736] ND (7.1) [ND (1.9) [37.32736] ND (7.1) [ND (1.9) [37.32736] ND (140) [ND (7.5) [37.32736] ND (7.1) [ND (7.5) [37.327		240	(3.5) [173.5508]	230	(3.5) [1	[173.3703]
ND (1.9) [37.32736] ND (7.1) [ND (0.37) [37.32736] ND (140) [ND (0.37) [37.32736] ND (17.1) [ND (0.37) [37.32736] ND (7.1) [37.32736] N		QN	(1.7) [173.5508]	ON	(1.7) [1	[173.3703]
n I ND (0.37) [37.32736] ND (7.1) [7.1] n II ND (0.37) [37.32736] ND (7.1) [7.1] n Sulfate ND (1.9) [37.32736] ND (7.1) [7.1] n Sulfate ND (0.37) [37.32736] ND (7.1) [7.1] dehyde 0.0089 PJB (0.75) [37.32736] ND (7.1) [7.1] r ND (0.37) [37.32736] ND (7.1) [7.1] lor ND (1.9) [37.32736] ND (7.1) [7.1] lor ND (7.5) [37.32736] ND (140) [7.1] ND		QN	(8.7) [173.5508]	ND	(8.7) [1	[173.3703]
n I		QN	(1.7) [173.5508]	N	(1.7) [1	[173.3703]
n II n Sulfate n O 0.089 PJB (0.37) [37.32736] ND (7.1) [36.0] [36.0] [37.32736] r epoxide n O 21 KJB (0.37) [37.32736] ND (7.1) [ND (7.5) [37.32736] ND (7.1) [37.32		QN	(1.7) [173.5508]	ON		[173.3703]
n Sulfate ND (1.9) [37.32736] 3.9 KJB (36) [2.5 KJ	(5.2) [173.5508]	2.1 KJ	_	[173.3703]
dehyde		2.4 KJB	(8.7) [173.5508]	2.6 KJB	_	[173.3703]
dehyde 0.0089 PJB (0.75) [37.32736] 1 KJ (14) [QN	(1.7) [173.5508]	QN	(1.7) [1	[173.3703]
r epoxide 0.21 KJB (0.37) [37.32736] ND (7.1) lor ND (1.9) [37.32736] ND (7.1) lor ND (3.7) [37.32736] ND (7.1) lor ND (3.7) [37.32736] ND (71) lor ND (7.5) [37.32736] ND (140) lor ND (7.5) [37.32736] ND (140) lor ND (7.5) [37.32736] ND (71) lor ND (7.5) [37.32736] ND (71) lor ND (7.5) [37.32736] ND (71) lor ND (7.5) [37.32736] ND (140) lor ND (7.5) [37.32736] ND (7.1) lor ND (7.1) [47.32736] ND (7.1) lor ND		QN	(3.5) [173.5508]	ON	(3.5) [1	[173.3703]
r epoxide 0.21 KJB (0.37) [37.32736] ND (7.1) [lor ND (1.9) [37.32736] ND (36) [ND (3.7) [37.32736] ND (71) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (3.7) [37.32736] ND (71) [ND (3.7) [37.32736] ND (71) [ND (7.5) [37.32736] ND (71) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (7.1) [ND (7.5) [37.3		QN	(1.7) [173.5508]	ND	(1.7) [1	173.3703]
lor ND (1.9) [37.32736] ND (36) [0.73 KJB	(1.7) [173.5508]	QN	(1.7) [1	[173.3703]
ND (3.7) [37.32736] ND (71) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (3.7) [37.32736] ND (71) [ND (3.7) [37.32736] ND (71) [ND (7.5) [37.32736] ND (71) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (19) [37.32736] ND (360) [ND (19) [37.32736] ND (7.1) [QN	(8.7) [173.5508]	ND	(8.7) [1	173.3703]
ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (3.7) [37.32736] ND (71) [ND (7.5) [37.32736] ND (71) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (19) [37.32736] ND (360) [O.25 JB (0.37) [37.32736] ND (7.1) [ND	(17) [173.5508]	QN	(17) [1	[173.3703]
ND (7.5) [37.32736] ND (140) [ND (3.7) [37.32736] ND (71) [ND (3.7) [37.32736] ND (71) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (19) [37.32736] ND (360) [0.25 JB (0.37) [37.32736] ND (7.1) [(140)	QN	(35) [173.5508]	ND	(32) [1	[173.3703]
ND (3.7) [37.32736] ND (71) [ND (3.7) [37.32736] ND (71) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (19) [37.32736] ND (360) [0.25 JB (0.37) [37.32736] ND (7.1) [ON	(35) [173.5508]	ND	(32) [1	173.3703]
ND (3.7) [37.32736] ND (71) [ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (19) [37.32736] ND (360) [0.25 JB (0.37) [37.32736] ND (7.1) [QN	(17) [173.5508]	QN	(17) [1	173.3703]
ND (7.5) [37.32736] ND (140) [ND (7.5) [37.32736] ND (140) [ND (19) [37.32736] ND (360) [0.25 JB (0.37) [37.32736] ND (7.1) [ON	(17) [173.5508]	N	(17) [1	[173.3703]
ND (7.5) [37.32736] ND (140) [ND (19) [37.32736] ND (360) [0.25 JB (0.37) [37.32736] ND (7.1) [QN	(35) [173.5508]	QN	(35) [1	[173.3703]
ND (1.9) [37.32736] ND (360) [0.25 JB (0.37) [37.32736] ND (7.1) [(35) [173.5508]	QN	(35) [1	173.3703]
0.25 JB (0.37) [37.32736] ND (7.1)	_	QN	(87) [173.5508]	Q.	(87) [1	173.3703]
	ND (7.1) [711.7437]	QN	(1.7) [173.5508]	QN	(1.7) [1	173.3703]
(7.1)		QN	(1.7) [173.5508]	4		173.3703]
_		QN	(1.7) [173.5508]	ON	_	173.3703]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

[1.7] [173.3703] [5.2] [1.047120] [1.047120] [1.047120] [1.047120][1.047120][1.047120][1.047120][1.047120] [1.047120] [1.047120] [1.047120][1.047120][1.047120] [1.047120][1.047120] [1.047120] [1.047120][1.047120] [1.047120][1.047120][1.047120] [1.047120][1.047120] [1.047120] [1.047120][1.047120] 10-DS-02 Dup of 10-SS-03-01 (5.2)(5.2)(5.2)(5.2)(5.2)(10)(5.2)(10)(52)(52)(100)(5.2)(10)(5.2)(5.2)(5.2)(5.2)(10)(5.2)(5.2)(100)5.2) (5.2)0 - 0.510 - SS - 034.5 JB 읃 S 2 2 2 2 2 2 S 2 S S S S (1.7) [173.5508] [1.046025] [1.046025][1.046025][1.046025][1.046025][1.046025][1.046025][1.046025] [1.046025] [1.046025] [1.046025] [1.046025] [1.046025] [1.046025] [1.046025] [1.046025] [1.046025] [1.046025] [1.046025] [1.046025][1.046025]1.046025 [1.046025] [1.046025] [1.046025] [1.046025][1.046025] (5.2)(5.2)(5.2)(5.2)(10)(52)(52)(100)(5.2)(5.2)(10)(5.2)(5.2)(10)(5.2)(10)(5.2)(5.2)(100)(5.2)(5.2)(5.2)(5.2)10 - 55 - 03 - 0110 - SS - 030 - 0.52 9 S [7.1] [711.7437] [1.069518] [1.069518] [1.069518][1.069518][1.069518][1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518][1.069518] [1.069518][1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518] [1.069518] BEG. DEPTH - END DEPTH (FT.) LOCATION ID (5.3)(5.3)(5.3)(5.3)(11) (23) (23) (110)(5.3)(5.3)(5.3)(5.3)(11) (5.3)(5.3)(5.3)(5.3)(5.3)(11) (5.3)(5.3)(110)(11)(5.3)SAMPLE ID 10-55-02-01 SITE ID 10-55-02 0 - 0.510 33 JB 0.85 JB 呈 2 8 S 2 2 S 9 9 2 ş 읒 운 문 9 2 2 2 2 S 2 (0.37) [37.32736] [22.49718] [22.49718] [22.49718] [22.49718] [22.49718] [22,49718] [22.49718] (1100)(110)(110)(110)(110)(220)(1100)(2200) (110)(110)(220)(110)(110)(220)(110)(110)(110)(220)(110)(110)(2200)(110)10-58-01-01 0 - 0.510-55-01 0.56 PB 34 J 2 S 9 9 2 운 문 W8240 - Volatile Organics (ug/kg) 1-Methyl-2-pentanone(MIBK) 1,1,2,2-Tetrachloroethane 2-Chloroethyl vinyl ether 1,1,1-Trichloroethane 1,1,2-Trichloroethane Bromodichloromethane Carbon tetrachloride Dibromochloromethane 1,2-Dichloropropane Methyl ethyl ketone 1,1-Dichloroethane 1,1-Dichloroethene 1,2-Dichloroethane Methylene chloride etrachloroethene Carbon disulfide Ethyl benzene Chlorobenzene Chloromethane Bromomethane Chloroethane 2-Hexanone Chloroform PARAMETER gamma-BHC 1 1 1 1 1 1 1 1 1 Acetone Benzene Styrene rol uene

1995

[] = Factor () = Detection Limit

- Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

				SITE 10				
			L BEG. DEPT	LOCATION ID SAMPLE IO DEPTH - END DEPTH (FT.)				
		10		10		10		10
	1	10-55-01	-	10-55-02		10-55-03		10-55-03
	10	10-55-01-01	10	10-55-02-01	1	10-55-03-01	10-DS-02	Dup of 10-SS-03-01
PARAMETER	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 - 0.5		0 - 0.5		0 - 0.5		0 - 0.5
Tribromomethane(Bromoform)	S	(110) [22 49718]	Q.	(5.3) [1.069518]	S	(5 2) [1 046025]	S	[6 2] [1 042120]
Trichloroethene	Q.		2 2		2 2		2 2	
Vinyl acetate	QN		9		S	-	2	
Vinyl chloride	ON	(220) [22.49718]	ON	(11) [1.069518]	QN	(10) [1.046025]	S	
Xylenes	12000	(110) [22.49718]	11	(5.3) [1.069518]	Q.	(5.2) [1.046025]	Q.	(5.2) [1.047120]
cis-1,3-Dichloropropene	QN	(110) [22.49718]	ON	(5.3) [1.069518]	Q	(5.2) [1.046025]	2	(5.2) [1.047120]
trans-1,2-Dichloroethene	ON	(110) [22.49718]	QN	(5.3) [1.069518]	8	(5.2) [1.046025]	QN	(5.2) [1.047120]
trans-1,3-Dichloropropene	ON	(110) [22.49718]	ND	(5.3) [1.069518]	Q	(5.2) [1.046025]	S.	(5.2) [1.047120]
SW8270 - Semivolatile Organics	(mg/kg)							
1,2,4-Trichlorobenzene	ON	(1.3) [0.125535]	ND	(0.38) [0.037866]	Q	(0.37) [0.036553]	QN	(0.37) [0.036633]
1,2-Dichlorobenzene	QN	(1.3) [0.125535]	ND	(0.38) [0.037866]	ON	(0.37) [0.036553]	N	(0.37) [0.036633]
1,3-Dichlorobenzene	QN		ND	(0.38) [0.037866]	Q.	(0.37) [0.036553]	S	(0.37) [0.036633]
1,4-Dichlorobenzene	QN	(1.3) [0.125535]	ND	(0.38) [0.037866]	Q	(0.37) [0.036553]	R	(0.37) [0.036633]
2,4,5-Trichlorophenol	ON		ON		R	(0.37) [0.036553]	N	(0.37) [0.036633]
2,4,6-Trichlorophenol	Q	(1.3) [0.125535]	ND		2	(0.37) [0.036553]	Q	(0.37) [0.036633]
2,4-Dichlorophenol	ON		ND		9	(0.37) [0.036553]	2	(0.37) [0.036633]
2,4-Dimethylphenol	QN		QN		9		2	(0.37) [0.036633]
2,4-Dinitrophenol	Q	_	Q		2	_	QN	
2,4-Dinitrotoluene	QN		QN		Q		N N	_
2,6-Dinitrotoluene	Q.	_	Q	_	8		Q	
2-Chloronaphthalene	ON.		Q.		2		Q	(0.37) [0.036633]
2-Chlorophenol	ON.	(1.3) [0.125535]	QN	(0.38) [0.037866]	Q	(0.37) [0.036553]	QN	(0.37) [0.036633]
2-Methylnaphthalene	0.49 J		0.045 J	(0.38) [0.037866]	2	(0.37) [0.036553]	QN	(0.37) [0.036633]
2-Methylphenol(o-cresol)	QN	_	QN		Q	(0.37) [0.036553]	N Q	(0.37) [0.036633]
2-Nitroaniline	Q.		QN		2	(1.8) [0.036553]	QN	(1.8) [0.036633]
2-Nitrophenol	ON		QN	_	2	_	2	(0.37) [0.036633]
3,3'-Dichlorobenzidine	ON		QN		2		2	(0.73) [0.036633]
3-Nitroaniline	QN		QN		2	(1.8) [0.036553]	2	(1.8) [0.036633]
4,6-Dinitro-2-methylphenol	QN	(6.3) [0.125535]	QN	(1.9) [0.037866]	2	(1.8) [0.036553]	QN	(1.8) [0.036633]

ND = Not Detected NA = Not Applicable

[] = Factor

() = Detection Limit

[0.036633][0.036633][0.036633][0.036633] [0.036633] [0.036633]0.036633 [0.036633]0.036633 [0.036633][0.036633][0.036633][0.036633][0.036633][0.036633] [0.036633][0.036633][0.036633] [0.036633] [0.036633] [0.036633][0.036633] [0.036633] [0.036633] [0.036633][0.036633][0.036633] [0.036633] 10-DS-02 Dup of 10-SS-03-01 (0.37)(0.37)(0.37)(1.8)(1.8)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37) (0.37)(1.8)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37) 10 - SS - 030.058 J 0.065 JF 0.065 JF 0.054 J 0.05 J 0.054 J 2 욷 2 S 2 2 S 8 8 2 9 [0.036553] [0.036553] [0.036553](0.37)(0.37)(0.37)(1.8)(1.8)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(1.8)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)(0.37)10 - SS - 03 - 0110-55-03 0 - 0.50.092 JF 0.092 JF 0.012 J 0.041 J 0.076 J 0.067 J 0.065 J 0.079 J 2 S 22222 S 2 운 2 Ş 운 2 S 9 [0.037866] [0.037866][0.037866] [0.037866] [0.037866][0.037866][0.037866][0.037866] [0.037866][0.037866] [0.037866][0.037866][0.037866][0.037866] [0.037866] [0.037866][0.037866][0.037866] [0.037866] [0.037866][0.037866][0.037866] [0.037866] [0.037866] [0.037866][0.037866] [0.037866] [0.037866][0.037866]BEG. DEPTH - END DEPTH (FT.) LOCATION ID (1.9)(1.9)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)(1.9)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)(0.38)SAMPLE ID 10-58-02-01 SITE 1D 10-55-02 0 - 0.510 0.042 JF 0.042 JF 0.06 J 0.044 J 0.031 J 0.039 J 0.047 J 9 9 S 8 2 9 2 2 2 2 9 9 S 9 [0.125535](6.3)(6.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(6.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)(1.3)10-58-01-01 0 - 0.510 - SS - 010.28 J 2 2 2 9 9 2 2 4-Chlorophenyl phenyl ether 4-Bromophenyl phenyl ether dexachlorocyclopentadiene 4-Methylphenol(p-cresol) 1-Chloro-3-methylphenol Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Butylbenzylphthalate 3enzo(k)fluoranthene Di-n-octylphthalate Hexachlorobutadiene Benzo(a)anthracene Dimethylphthalate Hexachlorobenzene Dibutylphthalate Diethylphthalate Benzo(a)pyrene 4-Nitroaniline Acenaphthylene 3enzyl alcohol 4-Nitrophenol Benzoic acid Acenaphthene Fluoranthene Dibenzofuran Anthracene PARAMETER Chrysene Fluorene

Compiled: 23 Mar

[] = Factor

() = Detection Limit

- Not Detected

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

	10-	10-SS-01 10-SS-01	10.	10-55-02		10-55-03		10-SS-03
PARAMETER 	0	0 - 0.5	0	0.5	OT	10-55-03-01 0 - 0.5 	10-DS-02 Dul 0	Dup of 10-SS-03-01 0 - 0.5
Hexachloroethane	N	(1.3) [0.125535]	ON	(0.38) [0.037866]	QV QV	(0.37) [0.036553]	S	(0.37) [0.036633]
Indeno(1,2,3-cd)pyrene	ON	(1.3) [0.125535]	0.051 JB	(0.38) [0.037866]	0.068 J		0.053 JB	
Isophorone	ND	(1.3) [0.125535]	ON	-				
N-Nitrosodiphenylamine	QN	(1.3) [0.125535]	S	(0.38) [0.037866]	ON	(0.37) [0.036553]	QN	_
N-Nitrosodipropylamine	QN	(1.3) [0.125535]	NO	(0.38) [0.037866]	ON	(0.37) [0.036553]	ON	
Naphthalene	QN	(1.3) [0.125535]	QN	(0.38) [0.037866]	QN	(0.37) [0.036553]	ND	_
Nitrobenzene	QN	(1.3) [0.125535]	QN	(0.38) [0.037866]	ON	(0.37) [0.036553]	ND	(0.37) [0.036633
Pentachlorophenol	QN	(6.3) [0.125535]	ND	(1.9) [0.037866]	ND	(1.8) [0.036553]	ND	(1.8) [0.036633]
Phenanthrene	ON	(1.3) [0.125535]	QN	(0.38) [0.037866]	0.037 J	(0.37) [0.036553]	ON	(0.37) [0.036633]
Phenol	QN	(1.3) [0.125535]	QN	(0.38) [0.037866]	Q	(0.37) [0.036553]	QN	(0.37) [0.036633]
Pyrene	ND	(1.3) [0.125535]	0.054 J	(0.38) [0.037866]	0.074 J	(0.37) [0.036553]	0.053 J	(0.37) [0.036633]
bis(2-Chloroethoxy)methane	QN	(1.3) [0.125535]	ON	(0.38) [0.037866]	Q	(0.37) [0.036553]	N ON	(0.37) [0.036633]
bis(2-Chloroethyl)ether	QN	(1.3) [0.125535]	QN	(0.38) [0.037866]	QN	(0.37) [0.036553]	QN	(0.37) [0.036633]
bis(2-Chloroisopropyl)ether	QN	(1.3) [0.125535]	QN	(0.38) [0.037866]	QN	(0.37) [0.036553]	ND	(0.37) [0.036633]
bis(2-Ethylhexyl)phthalate	0.4 J	(1.3) [0.125535]	0.32 J	(0.38) [0.037866]	N	(0.37) [0.036553]	ND	(0.37) [0.036633]
p-Chloroaniline	ND	(1.3) [0.125535]	QN	(0.38) [0.037866]	ON	(0.37) [0.036553]	ND	(0.37) [0.036633]
SW8310 - Polynuclear Aromatic Hydrocarbons	rocarbons (ug/kg	(g)						
Acenaphthene	QN	(670) [374.5318]	QV	(640) [356,5062]	QN	(630) [347.3428]	ON	(630) [348.4320]
Acenaphthylene	52 J	(860) [374.5318]	Q	(820) [356.5062]	Q	(800) [347.3428]	ND	(800) [348.4320]
Anthracene	8 J	(250) [374.5318]	N	(240) [356.5062]	QN	(230) [347.3428]	ND	(230) [348.4320]
Benzo(a)anthracene	5.9	(4.9) [374.5318]	8	(4.6) [356.5062]	16	(4.5) [347.3428]	15	(4.5) [348.4320]
Benzo(a)pyrene	Q.	_	16	(8.2) [356.5062]	40	(8) [347.3428]	37	(8) [348.4320]
Benzo(b)fluoranthene	8	_	16	(6.4) [356.5062]	43	(6.3) [347.3428]	38	(6.3) [348.4320]
Benzo(g,h,i)perylene	31	(28) [374.5318]	35	(27) [356.5062]	22 J	(26) [347.3428]	22 J	(26) [348:4320]
Benzo(k)fluoranthene	3.5 J	_	QN	(6.1) [356.5062]	16	(5.9) [347.3428]	14	(5.9) [348.4320]
Chrysene	Q.	(56) [374.5318]	ON O	(53) [356.5062]	24 J	(52) [347.3428]	19 J	(52) [348.4320
Dibenzo(a,h)anthracene	4.1 J	(11) [374.5318]	5 J	(11) [356.5062]	5.9 J	(10) [347.3428]	5.1 J	(10) [348.4320]
Fluoranthene	55 J	(79) [374.5318]	26 J	(75) [356.5062]	40 J	(73) [347.3428]	44 J	(73) [348.4320]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

	10-SS-01 10-SS-01 0 - 0.5	Indeno(1,2,3-cd)pyrene 11 J (16) [374.5318] Naphthalene 2300 (670) [374.5318] Phenanthrene 120 J (240) [374.5318] Pyrene 110 (100) [374.5318]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	10-SS-02 10-SS-02-01 0 - 0.5	61 (15) [356.5062] ND (640) [356.5062] ND (230) [356.5062] 34 J (96) [356.5062]
	10 10-55-03 10-55-03-01 0 - 0.5	49 (15) [347.3428] ND (630) [347.3428] ND (220) [347.3428] 41 J (94) [347.3428]
	10 10-SS-03 10-DS-02 Dup of 10-SS-03-01 0 - 0.5	46 (15) [348.4320] ND (630) [348.4320] ND (220) [348.4320] 43 J (94) [348.4320]

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 1D

				BEG. DEPTH - END DEPTH (FT.)	- END DEPT	н (FT.)						
		10			10			10			=	
	10	10-55-04		10-	10-88-05		10-	10-88-06		11-	11-SB-01	
PARAMETER	10-0	10-SS-04-01 0 - 0.5		10-S 0	10-SS-05-01 0 - 0.5		10-S 0	10-SS-06-01 0 - 0.5		11-5	11-SB-01-01 2 - 4	
		 			! ! ! ! !					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SW8015MEMP - Nonhalogenated Volatile Organics		(mg/kg)										
Diesel Range Organics (2)	78	(22)	[108]	38	(22)	[111]	94	(22)	[110]	29	(27)	[134]
Gasoline Range Organics (2) SW8080 - Organochlorine Pesticides and PCBs		(11) (ua/ka)	[106]	QN	(11)	[110]	QN	(11)	[112]	QN	(13)	[131]
4,4'-000		(18)	[1786.990]	1000	(9.4)	[937.0314]	750	(7,4) [7	744.6016]	QN	(0.45)	[44 82294]
4,4'-DDE	81	(18)	[1786.990]	200	_	[937.0314]	52	_	744.6016]	0.57		44.82294]
4,4'-DDT	1300] (98)	1786.990]	2400 E	(19)	937.0314]	350	_	744.6016]	0.83 JB	-	44.82294]
Aldrin	ON	(18)	[1786.990]	QN	(9.4)	937.0314]	ON	_	744.6016]	ND	_	44.82294]
Chlordane	ON] (68)	[1786.990]	N	(47)	937.0314]	ON	_	744.6016]	ND	. —	44.82294]
Dieldrin	Q	(18)	1786.990]	QN	(9.4)	937.0314]	QN		744.6016]	0.32 JB	. —	44.82294]
Endosulfan I	ND	_	[1786.990]	QN	(9.4)	[937.0314]	QN	(7.4) [7	744.6016]	ON	_	44.82294]
Endosulfan II	ON	_	[1786.990]	ND	(58)	937.0314]	6.7 KJ	_	[744.6016]	1.2 JB	_	44.82294]
Endosulfan Sulfate	5 KJ	_	[1786.990]	ND	_	937.0314]	4 KJB	(37) [7	[744.6016]	ON	(2.2)	44.82294]
Endrin	QN	(18)	1786.990]	N		[937.0314]	Q	(7.4) [7	[744.6016]	ND ON	(0.45)	44.82294]
Endrin Aldehyde	Q.	_	[1786.990]	ON		937.0314]	QN	_	744.6016]	0.3 KJB	(0.9)	44.82294]
Heptachlor	ON	_	[1786.990]	QN	(9.4)	937.0314]	ON	(7.4) [7	744.6016]	0.12 PJB	(0.45)	44.82294]
Heptachlor epoxide	QN	_	[1786.990]	ON	_	937.0314]	QN		744.6016]	0.24 PJB	_	44.82294]
Methoxychlor	2	_	[1786.990]	QN O	_	937.0314]	Q	_	744.6016]	QN	(2.2)	44.82294]
PCB-1016	Q	_	1786.990]	QN	_	937.0314]	QN		744.6016]	ON	(4.5)	44.82294]
PCB-1221	Q.		1786.990]	Q		937.0314]	QN	_	744.6016]	QN	·] (6)	44.82294]
PCB-1232	Q	_	[1786.990]	Q		937.0314]	QN .	(150) [7	744.6016]	ON	·] (6)	44.82294]
PCB-1242	QN	_	[1786.990]	Q		937.0314]	QN	_	744.6016]	ND	(4.5)	44.82294]
PCB-1248	ON	(180)	[1786.990]	ON	(64)	937.0314]	QN Q	(74) [7	744.6016]	Q	(4.5)	44.82294]
PCB-1254	QN	_	[1786.990]	Q	(190)	[937.0314]	QN	(150) [7	744.6016]	ON	·] (6)	44.82294]
PCB-1260	Q	_	[1786.990]	N	(190)	937.0314]	QN	(150) [7	744.6016]	ON	·] (6)	44.82294]
Toxaphene ,	QN] (068)	[1786.990]	Q.		937.0314]	ON	(370) [7	[744.6016]	N	(22) [44.82294]
alpha-BHC	QN	(18)	[1786.990]	QN	_	937.0314]	QN QN		[744.6016]	0.42 KJB		44.82294]
beta-BHC	Q	_	[1786.990]	2	(9.4)	[937.0314]	QN	(7.4) [7	[744.6016]	2.2 P		[44.82294]
delta-BHC	QN	(18)	[1786.990]	QN	(9.4)	[937.0314]	ND		[744.6016]	0.79 PB	-	[44.82294]
					į							ı

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

				SITE ID LOCATION ID SAMPLE ID				
			BEG. DEF	DEPTH - END DEPTH (FT.)				
		10		10		10		11
		10-SS-04 10-SS-04-01	-	10-55-05	•	10-SS-06	11	11-88-01
PARAMETER	; ; ; ; ;	0 - 0.5	-	0 - 0.5	-	10-55-06-01 0 - 0.5	11-	11-SB-01-01 2 - 4
gamma-BHC SUR2AM0 = Voletile Auction	ON ND	(18) [1786.990]	QN	(9.4) [937.0314]	QN QN	(7.4) [744.6016]	QN ON	(0.45) [44.82294]
	ON (6v /6n)	(5.4) [1.078748]	ON	(5.6) [1.127395]	Q.	(5.6) [1.126126]	CN	(6 7) [1 345895]
1,1,2,2-Tetrachloroethane	ON	(5.4) [1.078748]	QN	(5.6) [1.127395]	ON		9	
1,1,2-Trichloroethane	QN		QN		QN	(5.6) [1.126126]	QN	
1,1-Dichioroethane 1 1-Dichloroethono	ON A		2		Q		ON	(6.7) [1.345895]
1,1-Dichloroethane	2 8	(5.4) [1.0/8/48] (5.4) [1.078748]	2 2	(5.6) [1.127395]	2 9		QN :	
1,2-Dichloropropane			2 S		2 9		Q :	
2-Chloroethyl vinyl ether	QN		2 8		2 2	(5.6) [1.126126]	S 8	(6.7) [1.345895] (13) [1.345805]
2-Hexanone	QN	(54) [1.078748]	QN	(56) [1.127395]	Q		2 2	
4-Methyl-2-pentanone(MIBK)	QN		Q	(56) [1.127395]	ND N	_	Q	
Acetone	QN		QN	(110) [1.127395]	QN	(110) [1.126126]	QN	_
Benzene Desemblish	Q :		Q		ON	(5.6) [1.126126]	QN QN	_
Bromomethane	ON A		운 :		Q.		Q.	(6.7) [1.345895]
Carbon disulfide	ON R	(11) [1.0/8/48] (5 4) [1 078748]	S &	(11) [1.127395]	Q 9		QN :	[]
Carbon tetrachloride	9		Q Q		2 2	(5.6) [1.126126] (5.6) [1.126126]	2 C	(6.7) [1.345895] (6.7) [1.345895]
Chlorobenzene	QN	(5.4) [1.078748]	ON	_	QN		2 2	
Chloroethane	QN		Q	(11) [1.127395]	ON	(11) [1.126126]	9	
Chlorotorm	9 :	_	QN		N	(5.6) [1.126126]	ND	
Chloromethane	QN :		QN		R	(11) [1.126126]	ND	(13) [1.345895]
Ulbromochloromethane	ON I		QN		Q	(5.6) [1.126126]	N N	(6.7) [1.345895]
Linyl benzene Mathil attil	ON :		2	_	2	(5.6) [1.126126]	ND	(6.7) [1.345895]
Methyl ethyl Ketone		(110)	Q		QN	(110) [1.126126]	ND	(130) [1.345895]
Methylene chioride	7.4 B	(5.4)	12		N N	(5.6) [1.126126]	2.1 JB	(6.7) [1.345895]
Styrene Totrachlossothess	ON S		2		Q	(5.6) [1.126126]	Q.	(6.7) [1.345895]
etrach Oroethene Tolugha	ON K	_ :	2		Q.	(5.6) [1.126126]	QN	(6.7) [1.345895]
מפופ	מא	(5.4) [1.0/8/48]	Q	(5.6) [1.127395]	QN	(5.6) [1.126126]	Q	(6.7) [1.345895]

Compiled: 23 May 1995

() = Detection Limit [] = Factor

= Not Detected NA =

Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

				SITE ID LOCATION ID				
			BEG. DEF	SAMPLE ID DEPTH - END DEPTH (FT.)				
		10		10		10		11
	-	10-55-04		10-55-05		10-55-06		11-58-01
	1(10-55-04-01	. •	10-55-05-01		10-55-06-01	~	11-58-01-01
PARAMETER		0 - 0.5	1	0 - 0.5	! ! ! ! ! !	0 - 0.5	 	2 - 4
Tribromomethane(Bromoform)	QN	(5.4) [1.078748]	QN	(5.6) [1.127395]	Q.	[5 6] [1 126126]	S	(6.7) [1.345805]
Trichloroethene	ON	(5.4) [1.078748]	9		2		2	
Vinyl acetate	QN	(5.4) [1.078748]	Q.		9		2	
Vinyl chloride	QN	(11) [1.078748]	QN	(11) [1.127395]	QN		S	
Xylenes	QN	(5.4) [1.078748]	N N	(5.6) [1.127395]	9	(5.6) [1.126126]	8	. I
cis-1,3-Dichloropropene	QN	(5.4) [1.078748]	QN	(5.6) [1.127395]	QN .	(5.6) [1.126126]	Q.	(6.7) [1.345895]
trans-1,2-Dichloroethene	QN	(5.4) [1.078748]	8	(5.6) [1.127395]	8	(5.6) [1.126126]	S	(6.7) [1.345895]
trans-1,3-Dichloropropene	ON	(5.4) [1.078748]	QN	(5.6) [1.127395]	N O	(5.6) [1.126126]	Q.	
SW8270 - Semivolatile Organics ((mg/kg)							•
1,2,4-Trichlorobenzene	QN	(1.2) [0.122813]	QN	(0.48) [0.047539]	S	(0.36) [0.036393]	S	(0.45) [0.044833]
1,2-Dichlorobenzene	QV	(1.2) [0.122813]	2	(0.48) [0.047539]	Q.	(0.36) [0.036393]	S	(0.45) [0.044833]
1,3-Dichlorobenzene	QN	(1.2) [0.122813]	2	(0.48) [0.047539]	8	(0.36) [0.036393]	S	(0.45) [0.044833]
1,4-Dichlorobenzene	QN	(1.2) [0.122813]	2	(0.48) [0.047539]	Q.	(0.36) [0.036393]	N S	(0.45) [0.044833]
2,4,5-Trichlorophenol	QN		2	(0.48) [0.047539]	QN	(0.36) [0.036393]	N Q	(0.45) [0.044833]
2,4,6-Trichlorophenol	QN		9	(0.48) [0.047539]	Q	(0.36) [0.036393]	S	(0.45) [0.044833]
2,4-Dichlorophenol	ON		9		R	(0.36) [0.036393]	Q	(0.45) [0.044833]
2,4-Dimethylphenol	Q		2		S	(0.36) [0.036393]	Q	(0.45) [0.044833]
2,4-Dinitrophenol	Q		9		Q	(1.8) [0.036393]	ON	(2.2) [0.044833]
2,4-Dinitrotoluene	Q :		Q.		S		Q	(0.45) [0.044833]
2,6-Dinitrotoluene	Q		2		Q	(0.36) [0.036393]	QN	(0.45) [0.044833]
2-Chloronaphthalene	QN	_	2		R	(0.36) [0.036393]	Q	(0.45) [0.044833]
2-Chlorophenol	Q		Q	(0.48) [0.047539]	Q	(0.36) [0.036393]	QN	(0.45) [0.044833]
2-Methylnaphthalene	0.14 J	_	Q.	(0.48) [0.047539]	Q	(0.36) [0.036393]	S	(0.45) [0.044833]
2-Methylphenol(o-cresol)	QV		2	(0.48) [0.047539]	Q	(0.36) [0.036393]	S	(0.45) [0.044833]
2-Nitroaniline	QN		Q	(2.4) [0.047539]	Q	(1.8) [0.036393]	S	(2.2) [0.044833]
2-Nitrophenol	QN	_	Q	(0.48) [0.047539]	2	(0.36) [0.036393]	Q	(0.45) [0.044833]
3,3'-Dichlorobenzidine	QN		S	(0.95) [0.047539]	2	(0.73) [0.036393]	R	(0.9) [0.044833]
3-Nitroaniline	QN	(6.1) [0.122813]	Q	(2.4) [0.047539]	운	(1.8) [0.036393]	Q	(2.2) [0.044833]
4,6-Dinitro-2-methylphenol	ON	(6.1) [0.122813]	S	(2.4) [0.047539]	Q	(1.8) [0.036393]	ON	(2.2) [0.044833]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

[0.044833][0.044833] [0.044833] [0.044833][0.044833][0.044833] [0.044833] [0.044833] [0.044833] [0.044833][0.044833] [0.044833][0.044833] [0.044833] 0.044833 0.044833 0.044833] [0.044833] 0.044833 [0.044833] [0.044833][0.044833][0.044833]0.044833 [0.044833] [0.044833] (2.2)(0.45)(0.45)(0.45)(2.2)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(2.2)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)(0.45)11-SB-01-01 11-SB-01 888888 S [0.036393][0.036393][0.036393][0.036393][0.036393][0.036393] [0.036393] [0.036393] [0.036393][0.036393][0.036393][0.036393] [0.036393][0.036393][0.036393] [0.036393][0.036393][0.036393][0.036393][0.036393] [0.036393][0.036393] [0.036393] [0.036393] [0.036393] [0.036393][0.036393][0.036393] (0.36)(0.36)(1.8)(1.8)(0.36)10-SS-06-01 0 - 0.510 - SS - 060.088 J 0.12 JF 0.12 JF 0.099 J 0.11 J 0.12 J 0.059 J S 2 2 2 9 2 2 9 9 9 2 8 2 2 문 2 2 2 [0.047539][0.047539] [0.047539] [0.047539] [0.047539][0.047539] [0.047539] [0.047539][0.047539][0.047539][0.047539][0.047539][0.047539][0.047539][0.047539] [0.047539][0.047539] [0.047539][0.047539][0.047539] [0.047539][0.047539] [0.047539][0.047539] [0.047539][0.047539] [0.047539][0.047539]BEG. DEPTH - END DEPTH (FT.) (2.4)(0.48)(0.48)(0.48)(2.4)(0.48)(0.48)(0.48)LOCATION ID (0.48)(0.48)(0.48)(0.48)(2.4)(0.48)(0.48)(0.48)(0.48)(0.48)(0.48)(0.48)(0.48)(0.48)(0.48)(0.48)(0.48)SAMPLE ID 10-55-01 SITE 1D 10-SS-05 0 - 0.510 0.25 JF 0.25 JF 0.19 J 0.26 J 0.22 J 0.39 J 0.041 J 0.056 J 0.068 J 0.087 J 0.43 J 2 2 2 2 2 2 2 2 2 2 2 S 2 8 S S S S [0.122813][0.122813][0.122813][0.122813][0.122813] [0.122813][0.122813] [0.122813][0.122813][0.122813][0.122813][0.122813][0.122813] [0.122813][0.122813][0.122813][0.122813][0.122813][0.122813][0.122813] [0.122813] [0.122813][0.122813] [0.122813] [0.122813] [0.122813][0.614066]0.122813] [0.122813](1.2)(1.2)(1.2)(6.1)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)(1.2)10-55-04-01 0 - 0.510-55-04 13 F 6.7 13 F ND ND ND 0.48 J 0.74 J ND ND ND 31 1.9 7.9 14 13 3.1 9999 2 9 16 9 4-Chlorophenyl phenyl ether 1-Bromophenyl phenyl ether Hexachlorocyclopentadiene 1-Methylphenol(p-cresol) 1-Chloro-3-methylphenol Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Butylbenzylphthalate Di-n-octylphthalate dexachlorobutadiene Benzo(a)anthracene Dimethylphthalate Hexach] orobenzene Diethylphthalate Dibutylphthalate 4-Nitroaniline Acenaphthylene Benzo(a)pyrene Benzyl alcohol 1-Nitrophenol Acenaphthene Benzoic acid Dibenzofuran Fluoranthene Anthracene PARAMETER Fluorene Chrysene

1995 Compiled: 23 March

MD = Not Detected [] = Factor

() = Detection Limit

NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

	•	10	10	0	•	10		11
PARAMETER	10-5	10-5S-04 10-5S-04-01 0 - 0.5	10-SS-05 10-SS-05- 0 - 0.5	10-SS-05 10-SS-05-01 0 - 0.5	10	10-SS-06 10-SS-06-01 0 - 0.5	1 9 8 1 1 1 1	11-SB-01 11-SB-01-01 2 - 4
Hexachloroethane	N	(1.2) [0.122813]	QN	(0.48) [0.047539]	QN	(0.36) [0.036393]	QN	(0.45) [0.044833
Indeno(1.2.3-cd)pyrene	6.6		0.19 J		0.088.1		2	
Isophorone	QN				S S		2 2	
N-Nitrosodiphenylamine	QN	(1.2) [0.122813]	QV		2		2	
N-Nitrosodipropylamine	ON	(1.2) [0.122813]	ND	(0.48) [0.047539]	QN		Q.	
Naphthalene	0.14 J	(1.2) [0.122813]	ND	(0.48) [0.047539]	Q.	(0.36) [0.036393]	QN	
Nitrobenzene	QN	(1.2) [0.122813]	ND	(0.48) [0.047539]	ON	(0.36) [0.036393]	Q	(0.45) [0.044833
Pentachlorophenol	1.2 J	(6.1) [0.122813]	ND	(2.4) [0.047539]	S	(1.8) [0.036393]	ON.	(2.2) [0.044833]
Phenanthrene	17	(1.2) [0.122813]	0.19 J	(0.48) [0.047539]	0.055 J	(0.36) [0.036393]	Q	(0.45) [0.044833]
Phenol	QN	(1.2) [0.122813]	ND	(0.48) [0.047539]	S	(0.36) [0.036393]	Q	(0.45) [0.044833
Pyrene	28	(6.1) [0.614066]	0.46 J	(0.48) [0.047539]	0.12 J	(0.36) [0.036393]	QN	(0.45) [0.044833
bis(2-Chloroethoxy)methane	QN	(1.2) [0.122813]	ND	(0.48) [0.047539]	ND	(0.36) [0.036393]	QN	(0.45) [0.044833]
bis(2-Chloroethyl)ether	QN	(1.2) [0.122813]	QN	(0.48) [0.047539]	QN	(0.36) [0.036393]	S	(0.45) [0.044833
bis(2-Chloroisopropyl)ether	QN	(1.2) [0.122813]	ON		ND	(0.36) [0.036393]	R	(0.45) [0.044833]
bis(2-Ethylhexyl)phthalate	0.94 J	(1.2) [0.122813]	0.14 J	(0.48) [0.047539]	QN	(0.36) [0.036393]	2	(0.45) [0.044833]
p-Chloroaniline	QN	(1.2) [0.122813]	ON	(0.48) [0.047539]	ND	(0.36) [0.036393]	Q	(0.45) [0.044833]
SW8310 - Polynuclear Aromatic Hydrocarbons	drocarbons (ug/kg)	_						
Acenaphthene	ON	(3200) [1796.622]	ON	(670) [374.2514]	S	(670) [373.5524]		NA
Acenaphthylene	QN	(4100) [1796.622]	ON	(860) [374.2514]	ON	(860) [373.5524]		NA
Anthracene	300 J	(1200) [1796.622]	18 J	(250) [374.2514]	QN	(250) [373.5524]		NA
Benzo(a)anthracene	840	(47) [3593.244]	69	(4.9) [374.2514]	31	(4.9) [373.5524]		NA
Benzo(a)pyrene	200	(41) [1796.622]	72	(8.6) [374.2514]	29	(8.6) [373.5524]		NA
Benzo(b)fluoranthene	24 J	(32) [1796.622]	78	(6.7) [374.2514]	82	(6.7) [373.5524]		NA
Benzo(g,h,i)perylene	120 J	(140) [1796.622]	15 J	(28) [374.2514]	45	(28) [373.5524]		NA
Benzo(k)fluoranthene	260	(31) [1796.622]	37	(6.4) [374.2514]	38	(6.4) [373.5524]		NA
Chrysene	210 J	(270) [1796.622]	140	(56) [374.2514]	90	(56) [373.5524]		NA
Dibenzo(a,h)anthracene	170	(54) [1796.622]	9.8 J	(11) [374.2514]	24	(11) [373.5524]		NA
Fluoranthene	1600	(380) [1796.622]	140	(79) [374.2514]	96	(78) [373.5524]		NA
Fluorene	88 J	(380) [1796.622]	Q.	(79) [374.2514]	Q	(78) [373.5524]		ĄN

	11 11-SB-01 11-SB-01-01 2 - 4	N N N N N N N N N N N N N N N N N N N
	10 10-SS-06 10-SS-06-01 0 - 0.5	(16) [373.5524] (670) [373.5524] (240) [373.5524] (100) [373.5524]
	10-3	110 ND 87 J 96 J
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	10 10-SS-05 10-SS-05-01 0 - 0.5	(16) [374.2514] (670) [374.2514] (240) [374.2514] (100) [374.2514]
LO S Beg. Depth	10	18 ND 110 J 150
	10 10-5S-04 10-SS-04-01 0 - 0.5	(77) [1796.622] (3200) [1796.622] (1100) [1796.622] (490) [1796.622]
	10 10- 0	800 ND 960 J 1800
	PARAMETER	Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

SITE 10

PARAMETER SW8015MEMP - Nonhalogenated Volatile Organics Diesel Range Organics (2) ND Gasoline Range Organics (2) ND 4,4'-DDD 4,4'-DDE 4,4'-DDT A1drin 1.4	%	01 1-02 7 (25) (12) 0.42) 0.42) 0.42) 0.42)		11-5 11-5? 0	11-SS-01 11-SS-01-01		11-5S-01 11-DS-01 Dim of 11-55-01-01	11-55-01			12-MW-01 12-MW-01-	12-MW-01 12-MW-01-02	
PARAMETER W8015MEMP - Nonhalogenated Volatile Diesel Range Organics (2) W8080 - Organochlorine Pesticides ar 4,4'-DDD 4,4'-DDT Aldrin	% 3	g) (25) (12) (0.42) (0.42) (2.1) (0.42) (0.42)		. 0				2	- ニーニー///-		5 1. 37	70	
W8015MEMP - Nonhalogenated Volatile Diesel Range Organics (2) Gasoline Range Organics (2) W8080 - Organochlorine Pesticides ar 4,4'-DDE 4,4'-DDT	ss (u	(25) (12) (12) (0.42) (0.42) (2.1) (2.1) (0.42)			0 - 0.5	:		0 - 0.5			5	- 7	† † † † †
Diesel Range Organics (2) Gasoline Range Organics (2) WA080 - Organochlorine Pesticides ar 4,4'-DDE 4,4'-DDE 4,4'-DDT	3	(25) (12) 0.42) 0.42) 0.84) 0.42) (2.1) 0.42)											
Gasoline Range Organics (2) W8080 - Organochlorine Pesticides ar 4,4'-DDD 4,4'-DDE 4,4'-DDT	3	(12) 0.42) 0.84) 0.84) (2.1) 0.42)	[126]	1100	(530)	[1150]		NA			20 B	(50)	[102]
W8080 - Organochlorine Pesticides ar 4,4'-DDE 4,4'-DDT 4,4'-DDT Aldrin	3	0.42) 0.42) 0.84) 0.42) (2.1) 0.42)	[118]	24 B	(11)	[109]	56	_	(23) [24	[531]	ON	(10)	[104]
4,4'-DDD 4,4'-DDE 4,4'-DDT Aldrin	1.7 0.99 3 1.4 ND 0.37 KJB												
4,4'-DDE 4,4'-DDT Aldrin	0.99 3 1.4 ND 0.37 KJB		[41.99916]	NA	,			NA			NA		
4,4'-DDT Aldrin	3 1.4 ND 0.37 KJB		[41.99916]	NA				Ä			N		
Aldrin	1.4 ND 0.37 KJB		[41.99916]	N				Ā			NA		
	ND 0.37 KJB		[41.99916]	NA				NA			NA		
Chlordane	0.37 KJB		[41.99916]	N				N			NA		
Dieldrin			[41.99916]	NA				N			NA		
Endosulfan I	QN		[41.99916]	NA				N A			NA		
Endosulfan II	0.69 JB	(1.3) [41.8	[41.99916]	NA				NA			NA		
Endosulfan Sulfate	0.74 KJB	(2.1) [41.8	[41.99916]	NA				NA			NA		
Endrin	QN		[41.99916]	NA				NA			NA		
Endrin Aldehyde	0.41 KJB		[41.99916]	NA				NA			NA		
Heptachlor	0.12 KJB		[41.99916]	NA				NA			NA		
Heptachlor epoxide	0.46 PB	_	[41.99916]	NA				NA			NA		
Methoxychlor	QN	(2.1) [41.8	[41.99916]	NA				NA			NA		
PCB-1016	QN	(4.2) [41.8	41.99916]	NA				NA			NA		
PCB-1221	QN	(8.4) [41.9	41.99916]	NA				NA			NA		
PCB-1232	QN	(8.4) [41.9	41.99916]	NA				NA			NA		
PCB-1242	ON	(4.2) [41.9	41.99916]	NA				NA			NA		
PCB-1248	QN	(4.2) [41.9	[41.99916]	NA				NA			NA		
PCB-1254	ND	(8.4) [41.9	41.99916]	NA				NA			NA		
PCB-1260	ND	(8.4) [41.9	[41.99916]	NA				NA			NA		
Toxaphene	QN	(21) [41.9	[41.99916]	NA				NA			NA		
a]pha-BHC	QN	(0.42) [41.9	[41.99916]	NA				NA			NA		
beta-BHC	0.39 KJB	(0.42) [41.9	[41.99916]	NA				NA		•	NA		
delta-BHC	1.28	(0.42) [41.9	[41.99916]	NA				AN			NA		

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

PARAMETER	11-11	11 11-58-01 11-58-01-02 5 - 7	11	11 11-SS-01 11-SS-01-01 0 - 0.5	1 11-0S-01 D	11 11-SS-01 Dup of 11-SS-01-01 0 - 0.5	12-	12 12-MW-01 12-MW-01-02 5 - 7
gamna-BHC	0.61 B	(0.42) [41,99916]		Y V	! ! ! ! ! ! !	, , , , , , , , , , , , , , , , , , ,		
SW8240 - Volatile Organics (ug/kg)						V	2	NA NA
1,1,1-Trichloroethane	Q.	(6.3) [1.261034]	QN	(120) [23.17497]	QN	(110) [22.72727]	QN	(5.2) [1.039501]
1,1,2,2-Tetrachloroethane	QN	(6.3) [1.261034]	QN	(120) [23.17497]	ND	_	2	
1,1,2-Trichloroethane	QN	(6.3) [1.261034]	ON	(120) [23.17497]	QN		- - - - - - - -	
1,1-Dichloroethane	ON	(6.3) [1.261034]	QN Q	(120) [23.17497]	ND		Q.	
1,1-Dichloroethene	ND	(6.3) [1.261034]	ON	(120) [23.17497]	QN	(110) [22.72727]	NO	
1,2-Dichloroethane	QN	(6.3) [1.261034]	QN	(120) [23.17497]	QN		QN	
1,2-Dichloropropane	ND	(6.3) [1.261034]	QN	(120) [23.17497]	ND		ND	
2-Chloroethyl vinyl ether	QN		ON	(230) [23.17497]	ON	(230) [22.72727]	ND	
2-Hexanone	QN	(63) [1.261034]	ND	(1200) [23.17497]	N		ND	
4-Methyl-2-pentanone(MIBK)	ON		ON	(1200) [23.17497]	N		ON	
Acetone	6.3 JB		QN	(2300) [23.17497]	QN	(2300) [22.72727]	QN	. —
Benzene	Q		QN	(120) [23.17497]	QN	(110) [22.72727]	QN	(5.2) [1.039501]
Bromodichloromethane	Q :		S	_	Q.	(110) [22.72727]	ND	(5.2) [1.039501]
bromomethane	Q :	_	QN	(230) [23.17497]	QN	(230) [22.72727]	ND	(10) [1.039501]
Carbon disultide	Q		Q	(120) [23.17497]	ND	(110) [22.72727]	QN	
Carbon tetrachloride	QN	_	N S	(120) [23.17497]	N Q	(110) [22.72727]	QN	_
Chlorobenzene	9 :		Q	_	9	(110) [22.72727]	QN .	(5.2) [1.039501]
Chloroethane	Q :		QN		QN	_	QN	(10) [1.039501]
CHIOCOLORM Chlosomathas	ON I		9	_	QN	_	ON	(5.2) [1.039501]
Cilorometriane Ditemperature	ON :		QN		QN	(230) [22.72727]	ON	(10) [1.039501]
Ulbromocnioromethane	2		ON	_	QN	(110) [22.72727]	QN	(5.2) [1.039501]
thy! benzene	QN		9.6 J	(120) [23.17497]	8.5 J	(110) [22.72727]	QN	(5.2) [1.039501]
Methyl ketone			QN	(2300) [23.17497]	330 J	(2300) [22.72727]	QN	(100) [1.039501]
Methylene chloride	1.2 JB	_	QN	(120) [23.17497]	QN	(110) [22.72727]	2.1 JB	(5.2) [1.039501]
Styrene	Q		Q	(120) [23.17497]	Q	(110) [22.72727]	QN	
Tetrachloroethene	QN		ON	(120) [23.17497]	QN	(110) [22.72727]	ND	
Toluene	Q	(6.3) [1.261034]	29 J	(120) [23.17497]	22 J	(110) [22.72727]	QN	

() = Detection Limit [] = Factor

- Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 1D

			LC S BEG. DEPTH	LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
		11 11-58-01 11-58-01-02	11	11 11-55-01 11-85-01-01		11 11-58-01	•	12 12-MW-01
PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 - 7	1 1 1 1 1 1	0 - 0.5	dno 10-co-11	0 - 0.5	-	12-mw-01-02 5 - 7
Tribromomethane(Bromoform)	ND	(6.3) [1.261034]	N	(120) [23.17497]	ON	(110) [22.72727]	QN QN	(5.2) [1.039501]
Trichloroethene	Q		QN	(120) [23.17497]	QN	(110) [22.72727]	2	(5.2) [1.039501]
Vinyl acetate	운 :		Q.		ON	_	8	
Vinyl chloride	Q :					_	2	
Xylenes	Q :		55 J		ر 67		2	
cis-1,3-Dichloropropene trans-1 2-Dichloropthene	2 S	(6.3) [1.261034]	2 5	(120) [23.17497] (120) [23.17497]	9 9	(110) [22.72727] [110] [22.72727]	2 2	(5.2) [1.039501]
trans-1.3-Dichloropropene	2		2 2		2 5		2 9	
nics	(mg/kg)		2		È	_	2	
	S	(0.42) [0.042034]	N	(1.2) [0.115413]	AN		QN	(0.35) [0.034569]
1,2-Dichlorobenzene	Q	(0.42) [0.042034]	QN	(1.2) [0.115413]	AN		9	
1,3-Dichlorobenzene	S	(0.42) [0.042034]	QN	(1.2) [0.115413]	NA		QN	
1,4-Dichlorobenzene	QN	(0.42) [0.042034]	N	(1.2) [0.115413]	NA		Q.	(0.35) [0.034569]
2,4,5-Trichlorophenol	QN	(0.42) [0.042034]	Q.	(1.2) [0.115413]	NA		S	(0.35) [0.034569]
2,4,6-Trichlorophenol	QN		QN	(1.2) [0.115413]	NA		R	(0.35) [0.034569]
2,4-Dichlorophenol	2	_	QN		NA		QN	(0.35) [0.034569]
2,4-Dimethylphenol	Q.	_	QN		N		QV	(0.35) [0.034569]
2,4-Dinitrophenol	2		Q		AN N		Q	
2,4-Dinitrotoluene	2 9		Q :		YN :		2	_
Z,b-Dinitrotoluene	2 :		Q :		N :		2	
z-unioronaphinalene	2 :		2 :		NA :		ND	
2-Chlorophenol	QN :				AN		2	
2-Methylnaphthalene	Q.		0.13 J		NA		S	(0.35) [0.034569]
2-Methylphenol(o-cresol)	QN		QN		NA		S	(0.35) [0.034569]
2-Nitroaniline	Q		QN		N		S	(1.7) [0.034569]
2-Nitrophenol	QN	_	Q.		NA		Q	(0.35) [0.034569]
3,3'-Dichlorobenzidine	QN	_	NO		N		Q	(0.69) [0.034569]
3-Nitroaniline	Q		ON		NA		Q.	(1.7) [0.034569]
4,6-Dinitro-2-methylphenol	Q	(2.1) [0.042034]	QN	(5.8) [0.115413]	NA		QN	(1.7) [0.034569]

NA = Not Applicable

ND = Not Detected

[] = Factor

() = Detection Limit

				SITE IN			
			ے د	LOCATION ID			
			BEG. DEPT	DEPTH - END DEPTH (FT.)			
		11		11			12
		11-58-01		11-SS-01	11-55-01		12-MW-01
		11-58-01-02	11.	11-55-01-01	11-DS-01 Dup of 11-SS-01-01		12-MW-01-02
PARAMETER 		5 - 7		0 - 0.5	0 - 0.5		5 - 7
4-Bromophenyl phenyl ether	N	(0.42) [0.042034]	Q	(1.2) [0.115413]	۸	S	(0 35) fo 034560]
4-Chloro-3-methylphenol	QN		QN		V	2 2	
4-Chlorophenyl phenyl ether	QN		QN		N	2	
4-Methylphenol(p-cresol)	QN	(0.42) [0.042034]	QN	(1.2) [0.115413]	NA	Q	
4-Nitroaniline	QN	(2.1) [0.042034]	ON	(5.8) [0.115413]	NA	ND ,	
4-Nitrophenol	QN		Q	(5.8) [0.115413]	NA	ON	(1.7) [0.034569]
Acenaphthene	QN		ND	(1.2) [0.115413]	NA	QN	
Acenaphthylene	Q	_	QN	(1.2) [0.115413]	NA	N.	(0.35) [0.034569]
Anthracene	ND	_	QN	(1.2) [0.115413]	NA	Q.	(0.35) [0.034569]
Benzo(a)anthracene	QN		ON	(1.2) [0.115413]	NA	ON	(0.35) [0.034569]
Benzo(a)pyrene	QN		ON	(1.2) [0.115413]	NA	2	(0.35) [0.034569]
Benzo(b)fluoranthene	ND		ON	(1.2) [0.115413]	NA -	2	(0.35) [0.034569]
Benzo(g,h,i)perylene	QN		ND	(1.2) [0.115413]	NA	Q.	(0.35) [0.034569]
Benzo(k)fluoranthene	QN	(0.42) [0.042034]	Q	(1.2) [0.115413]	NA	9	(0.35) [0.034569]
Benzoic acid	ND		QN	(5.8) [0.115413]	NA	Q.	(1.7) [0.034569]
Benzyl alcohol	ON		QN	(1.2) [0.115413]	NA	2	(0.35) [0.034569]
Butylbenzylphthalate	ND	_	Q.	(1.2) [0.115413]	NA	ON	(0.35) [0.034569]
Chrysene	QN	_	Q	(1.2) [0.115413]	NA	Q.	(0.35) [0.034569]
Di-n-octylphthalate	ON		Q.	(2)	NA	9	(0.35) [0.034569]
Ulbenz(a,h)anthracene	ON		QN		NA	QN	(0.35) [0.034569]
Dibenzoturan	ON	_	NO	(1.2) [0.115413]	NA	QN	(0.35) [0.034569]
Dibutylphthalate	QN	_	Q	(1.2) [0.115413]	NA	N	(0.35) [0.034569]
Diethylphthalate	Q	_	QN		AM	ON	(0.35) [0.034569]
Dimethylphthalate	QN		QN	(1.2) [0.115413]	NA	ND	(0.35) [0.034569]
Fluoranthene	QN		ND		NA	QN	(0.35) [0.034569]
Fluorene	QN		S		NA	Q.	(0.35) [0.034569]
Hexachlorobenzene	QN :		S		NA	N	(0.35) [0.034569]
Hexachlorobutadiene	ND		N N		NA	N	(0.35) [0.034569]
Hexachlorocyclopentadiene	S	(0.42) [0.042034]	QN	(1.2) [0.115413]	NA	QN	(0.35) [0.034569]

- Not Detected NA = Not Applicable

() = Detection Limit [] = Factor

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

•				SITE ID LOCATION ID SAMPLE ID			
			BEG. DEP	BEG. DEPTH – END DEPTH (FT.)			
		11		11	11		12
	1	11-SB-01		11-55-01	11-55-01		12-MW-01
	11	11-58-01-02		11-55-01-01	11-DS-01 Dup of 11-SS-01-01	-	2-MW-01-02
PARAMETER		5 - 7	 	0 - 0.5	0 - 0.5	\$ 	5 - 7
Hexachloroethane	QN	(0.42) [0.042034]	QN	(1.2) [0.115413]	NA	QN	(0.35) [0.034569]
Indeno(1,2,3-cd)pyrene	QN	(0.42) [0.042034]	QN	(1.2) [0.115413]	NA	QN	(0.35) [0.034569]
Isophorone	QN	(0.42) [0.042034]	Q.	(1.2) [0.115413]	NA	QN	
N-Nitrosodiphenylamine	QN	(0.42) [0.042034]	Q	(1.2) [0.115413]	NA	QN	
N-Nitrosodipropylamine	QN	(0.42) [0.042034]	Q	(1.2) [0.115413]	NA	ND	
Naphthalene	QN	(0.42) [0.042034]	0.064 J	(1.2) [0.115413]	NA	ND	(0.35) [0.034569]
Nitrobenzene	QN	(0.42) [0.042034]	QN	(1.2) [0.115413]	NA	N	
Pentachlorophenol	Q	(2.1) [0.042034]	QN	(5.8) [0.115413]	NA	QN	
Phenanthrene	QN	(0.42) [0.042034]	ON	(1.2) [0.115413]	NA	QN	
Phenol	Q	(0.42) [0.042034]	ON	(1.2) [0.115413]	NA	ON	(0.35) [0.034569]
Pyrene	QN	(0.42) [0.042034]	ON	(1.2) [0.115413]	NA	QN	(0.35) [0.034569]
bis(2-Chloroethoxy)methane	QN	(0.42) [0.042034]	ON	(1.2) [0.115413]	NA	ND	
bis(2-Chloroethyl)ether	ON	(0.42) [0.042034]	Q	(1.2) [0.115413]	NA	QN	(0.35) [0.034569]
bis(2-Chloroisopropyl)ether	QN	(0.42) [0.042034]	ON	(1.2) [0.115413]	NA	ON	
bis(2-Ethylhexyl)phthalate	0.033 JB	(0.42) [0.042034]	QN	(1.2) [0.115413]	NA	ON	(0.35) [0.034569]
p-Chloroaniline	QN	(0.42) [0.042034]	8	(1.2) [0.115413]	NA	QN	(0.35) [0.034569]

BEG. DEPTH - END DEPTH (FT.) LOCATION ID SAMPLE ID SITE ID

12-MW-02-02 12-MW-02

10 - 12

PARAMETER

8W8015MEMP - Nonhalogenated Volatile Organics (mg/kg)

[109] [107] (11) SW8240 - Volatile Organics (ug/kg) Gasoline Range Organics (2) Diesel Range Organics (2)

1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane 1,1,2-Trichloroethane

[1.103752] [1.103752][1.103752][1.103752] [1.103752]

(5.5)(5.5)(5.5)(5.5)222222 1,1-Dichloroethane 1,1-Dichloroethene

(5.5)(5.5)(55)2-Chloroethyl vinyl ether 1,2-Dichloropropane 1,2-Dichloroethane

[1.103752] [1.103752]

[1.103752][1.103752][1.103752] [1.103752]

> 운 운 4-Methyl-2-pentanone(MIBK) 2-Hexanone

(55)(110)(5.5)

> 운 문 Acetone Benzene

Bromodichloromethane

[1.103752] [1.103752][1.103752]

(5.5)(11) [1.103752][1.103752][1.103752][1.103752][1.103752] [1.103752] [1.103752][1.103752][1.103752] [1.103752]

(5.5)(5.5)(5.5)(11) (5.5)

[1.103752]

S S Carbon disulfide Bromomethane

Carbon tetrachloride Chlorobenzene

Chloromethane Chloroethane Chloroform

2 Dibromochloromethane Methyl ethyl ketone Ethyl benzene

Methylene chloride

Styrene

Compiled: 23 March

(110)

() = Detection Limit

[] = Factor

"N = Not Detected NA = Not Applicable

RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.) LOCATION ID SAMPLE ID SITE 10

12 12-MW-02

	•	15 19 05 0 111 00 00	
	-	12-MM-02-02	
PARAMETER		10 - 12	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 8 8 8 8 8 8		
Tetrachloroethene	QN	(5.5) [1.103752]	
Toluene	N	(5.5) [1.103752]	
Tribromomethane(Bromoform)	QN	(5.5) [1.103752]	
Trichloroethene	QN	(5.5) [1.103752]	
Vinyl acetate	QN	(5.5) [1.103752]	
Vinyl chloride	QN N	(11) [1.103752]	
Xylenes	QN	(5.5) [1.103752]	
cis-1,3-Dichloropropene	QN	(5.5) [1.103752]	
trans-1,2-Dichloroethene	QN	(5.5) [1.103752]	
trans-1,3-Dichloropropene	QN	(5.5) [1.103752]	
SW8270 - Semivolatile Organics ((mg/kg)		
1,2,4-Trichlorobenzene	QN	(0.37) [0.036645]	
1,2-Dichlorobenzene	QN	(0.37) [0.036645]	
1,3-Dichlorobenzene	QN	(0.37) [0.036645]	
1,4-Dichlorobenzene	ON	(0.37) [0.036645]	
2,4,5-Trichlorophenol	QN	(0.37) [0.036645]	
2,4,6-Trichlorophenol	QN	(0.37) [0.036645]	
2,4-Dichlorophenol	QN	(0.37) [0.036645]	
2,4-Dimethylphenol	QN	(0.37) [0.036645]	
2,4-Dinitrophenol	QN	(1.8) [0.036645]	
2,4-Dinitrotoluene	QN	(0.37) [0.036645]	
2,6-Dinitrotoluene	QN	(0.37) [0.036645]	
2-Chloronaphthalene	QN	(0.37) [0.036645]	
2-Chlorophenol	QN	(0.37) [0.036645]	
2-Methylnaphthalene	QN	(0.37) [0.036645]	
2-Methylphenol(o-cresol)	QN	(0.37) [0.036645]	
2-Nitroaniline	ON	(1.8) [0.036645]	
2-Nitrophenol	QN	(0.37) [0.036645]	
3,3'-Dichlorobenzidine	QN	(0.73) [0.036645]	

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

12

	-	12-MW-02 12-MW-02-02	
PARAMETER	i	10 - 12	
† 1 1 1 1 2 5 5 5 5 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3-Nitroaniline	QN	(1.8)	[0.036645]
4,6-Dinitro-2-methylphenol	QN	(1.8)	[0.036645]
4-Bromophenyl phenyl ether	ON	(0.37)	[0.036645]
4-Chloro-3-methylphenol	QN	(0.37)	[0.036645]
4-Chlorophenyl phenyl ether	ON	(0.37)	[0.036645]
4-Methylphenol(p-cresol)	QN	(0.37)	[0.036645]
4-Nitroaniline	QN	(1.8)	[0.036645]
4-Nitrophenol	QN	(1.8)	[0.036645]
Acenaphthene	ON	(0.37)	[0.036645]
Acenaphthylene	ND	(0.37)	[0.036645]
Anthracene	QN	(0.37)	[0.036645]
Benzo(a)anthracene	QN	(0.37)	[0.036645]
Benzo(a)pyrene	QN	(0.37)	[0.036645]
Benzo(b)fluoranthene	QN	(0.37)	[0.036645]
Benzo(g,h,i)perylene	QN	(0.37)	[0.036645]
Benzo(k)fluoranthene	QN	(0.37)	[0.036645]
Benzoic acid	ON	(1.8)	[0.036645]
Benzyl alcohol	QN	(0.37)	[0.036645]
Butylbenzylphthalate	QN	(0.37)	[0.036645]
Chrysene	QN	(0.37)	[0.036645]
Di-n-octylphthalate	QN	(0.37)	[0.036645]
Dibenz(a,h)anthracene	Q	(0.37)	[0.036645]
Dibenzofuran	QN	(0.37)	[0.036645]
Dibutylphthalate	ON	(0.37)	[0.036645]
Diethylphthalate	ND	(0.37)	[0.036645]
Dimethylphthalate	ON	(0.37)	[0.036645]
Fluoranthene	QN	(0.37)	[0.036645]
Fluorene	ND	(0.37)	[0.036645]
Hexachlorobenzene	8	(0.37)	[0.036645]

() = Detection Limit [] = Factor

Compiled: 23 March

NS = Not Detected NA = Not Applicable

BEG. DEPTH - END DEPTH (FT.) LOCATION ID SAMPLE ID SITE ID

PARAMETER	13	12 12-MW-02 12-MW-02-02 10 - 12	
-			
Hexachlorobutadiene	ND	(0.37)	[0.036645]
Hexachlorocyclopentadiene	ND	(0.37)	[0.036645]
Hexachloroethane	ND	(0.37)	[0.036645]
Indeno(1,2,3-cd)pyrene	ND	(0.37)	[0.036645]
Isophorone	QN	(0.37)	[0.036645]
N-Nitrosodiphenylamine	QN	(0.37)	[0.036645]
N-Nitrosodipropylamine	Q.	(0.37)	[0.036645]
Naphthalene	QN	(0.37)	[0.036645]
Nitrobenzene	N	(0.37)	[0.036645]
Pentachlorophenol	QN	(1.8)	[0.036645]
Phenanthrene	QN	(0.37)	[0.036645]
Phenol	QN	(0.37)	[0.036645]
Pyrene	QN	(0.37)	[0.036645]
bis(2-Chloroethoxy)methane	NO	(0.37)	[0.036645]
bis(2-Chloroethyl)ether	Q	(0.37)	[0.036645]
bis(2-Chloroisopropyl)ether	QN	(0.37)	[0.036645]
bis(2-Ethylhexyl)phthalate	QN	(0.37)	[0.036645]
p-Chloroaniline	N	(0.37)	[0.036645]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			BEG. DE	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)				
		01		01		01		01
		01-MW-01		01-MW-02		01-88-01		01-SB-01
	0	01-MW-01-02		01-MW-02-02		01-SB-01-01	0	01-SB-01-02
PARAMETER 		5 - 7		5 - 7	1	3 - 5		8 - 10
SW6010 - Metals (mg/kg)								
	11000	(19) [96.15384]	7800	(21) [103.7344]	11000	(22) [112.3595]	9300	(20) [100.8064]
Antimony	ON	(9.6) [96.15384]	QN	(10) [103.7344]	S	(11) [112.3595]	N N	(10) [100.8064]
Arsenic	QN	(29) [96.15384]	Q	(31) [103.7344]	N N	(34) [112.3595]	QN .	(30) [100.8064]
Barium	210	_	130	(1) [103.7344]	200	(1.1) [112.3595]	170	(1) [100.8064]
Beryllium	0.28			(0.21) [103.7344]	0.23	(0.22) [112.3595]	0.21	(0.2) [100.8064]
Cadmium	QN	(0.48) [96.15384]	QN	(0.52) [103.7344]	S	(0.56) [112.3595]	N N	(0.5) [100.8064]
Calcium	16000		0006	(100) [103.7344]	13000	(110) [112.3595]	13000	(100) [100.8064]
Chromium	24	(0.96) [96.15384]	17	(1) [103.7344]	24	(1.1) [112.3595]	50	(1) [100.8064]
Cobalt	12	(0.96) [96.15384]	9.1	(1) [103.7344]	13	(1.1) [112.3595]	11	(1) [100.8064]
Copper	37	(1.9) [96.15384]	19	(2.1) [103.7344]	33	(2.2) [112.3595]	30	(2) [100.8064]
Iron	23000	_	18000	(5.2) [103.7344]	25000	(5.6) [112.3595]	21000	(5) [100.8064]
Lead	6.5	(4.8) [96.15384]	8.9	(5.2) [103.7344]	18	(5.6) [112.3595]	12	(5) [100.8064]
Magnesium	7800	(96) [96.15384]	0009	(100) [103.7344]	7800	(110) [112.3595]	7100	(100) [100.8064]
Manganese	440	(0.96) [96.15384]	310	(1) [103.7344]	440	(1.1) [112.3595]	380	(1) [100.8064]
Molybdenum	QN	_		(5.2) [103.7344]	ON.	(5.6) [112.3595]	QN	(5) [100.8064]
Nickel	28			(2.1) [103.7344]	59	(2.2) [112.3595]	25	(2) [100.8064]
Potassium	1000		790	(310) [103.7344]	1100	(340) [112.3595]	880	(300) [100.8064]
Selenium	QN	_	ND	(31) [103.7344]	QN	(34) [112.3595]	S	(30) [100.8064]
Silver	Q	(0.96) [96.15384]	ON	(1) [103.7344]	QN	(1.1) [112.3595]	ND	(1) [100.8064]
Sodium	340	(96) [96.15384]	240	(100) [103.7344]	300	(110) [112.3595]	260	(100) [100.8064]
Thallium	QN	(9.6) [96.15384]	ND	(10) [103.7344]	Q.	(11) [112.3595]	ON	(10) [100.8064]
Vanadium	40	(1.9) [96.15384]	31	(2.1) [103.7344]	41	(2.2) [112.3595]	34	(2) [100.8064]
Zinc	11	(1.9) [96.15384]	54	(2.1) [103.7344]	87	(2.2) [112.3595]	89	(2) [100.8064]
SW7060 - Arsenic (mg/kg)								
Arsenic	9.6	(0.83) [208.3333]	8	(0.75) [188.4836]	Ξ	(0.74) [186.0119]	9.5	(0.84) [210.0840]
SW7421 - Lead (mg/kg)								
Lead	11	(1.2) [416.6666]	10	(1.1) [376.9672]	10	(1.1) [372.0238]	7.8	(0.63) [210.0840]

SITE ID LOCATION ID

SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(mg/kg) 0.09 B (0.063) [350.8771] 0.12 (0.062) [342.9355] 0.11 (0.043) [238.0952] 0.11 (0.051) [284.0909]	(ms/ks) ND (0.52) [104.1666] ND (0.47) [94.24182] ND (0.47) [93.00595] ND (0.53) [105.0420]	25 () [1] 19 () [1] 16 () [1] 20 () [1]
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (ma/ka)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

PARAMETER				70-20-07		01-58-02		01-SB-02
		01-SB-01-03 12 - 15 	2 1 1 1 1 1 1 1	01-58-02-01 3 - 5	 	01-SB-02-02 5 - 7		01-58-02-03 12 - 15
SW6010 - Metals (mg/kg)								
Aluminum	0006	(20) [100.8064]	8700	(20) [102.0408]	9200	(25) [123.3045]	10000	(23) [114.4164]
Antimony	QN	(10) [100.8064]	Q	(10) [102.0408]	2	(12) [123.3045]	QN	(11) [114.4164]
Arsenic	ON .	(30) [100.8064]	Q.	(31) [102.0408]	Q	(37) [123.3045]	QN	(34) [114.4164]
Barium	160	(1) [100.8064]	190	(1) [102.0408]	150	(1.2) [123.3045]	180	(1.1) [114.4164]
Beryllium	ON	(0.2) [100.8064]	S	(0.2) [102.0408]	2	(0.25) [123.3045]	NO	(0.23) [114.4164]
Cadmium	ON	(0.5) [100.8064]	9.0	(0.51) [102.0408]	2	(0.62) [123.3045]	QN	(0.57) [114.4164]
Calcium	13000	(100) [100.8064]	10000	(100) [102.0408]	12000	(120) [123.3045]	16000	(110) [114.4164]
Chromium	20	(1) [100.8064]	20	(1) [102.0408]	20	(1.2) [123.3045]	23	(1.1) [114.4164]
Cobalt	11	(1) [100.8064]	11	(1) [102.0408]	11	(1.2) [123.3045]	11	(1.1) [114.4164]
Copper	23	(2) [100.8064]	97	(2) [102.0408]	27	(2.5) [123.3045]	32	(2.3) [114.4164]
Iron	21000	(5) [100.8064]	20000	(5.1) [102.0408]	20000	(6.2) [123.3045]	22000	(5.7) [114.4164]
Lead	13	(5) [100.8064]	71	(5.1) [102.0408]	37	(6.2) [123.3045]	14	(5.7) [114.4164]
Magnesium	0089	(100) [100.8064]	6400	(100) [102.0408]	6700	(120) [123.3045]	7600	(110) [114.4164]
Manganese	370		310	(1) [102.0408]	320	(1.2) [123.3045]	440	(1.1) [114.4164]
Molybdenum	QN	_	2	(5.1) [102.0408]	Q	(6.2) [123.3045]	ND	(5.7) [114.4164]
Nickel	24	_	23	(2) [102.0408]	56	(2.5) [123.3045]	28	(2.3) [114.4164]
Potassium	850	_	1100	(310) [102.0408]	1000	(370) [123.3045]	1100	(340) [114.4164]
Selenium	ON.		2	_	Q	(37) [123.3045]	Q	(34) [114.4164]
Silver	8	_	2	(1) [102.0408]	2	(1.2) [123.3045]	Q.	(1.1) [114.4164]
Sodium	260	(100) [100.8064]	230	(100) [102.0408]	280	(120) [123.3045]	340	(110) [114.4164]
Thallium	ON	(10) [100.8064]	Q	(10) [102.0408]	S	(12) [123.3045]	QN	(11) [114.4164]
Vanadium	34	(2) [100.8064]	31	(2) [102.0408]	35	(2.5) [123.3045]	38	(2.3) [114.4164]
Zinc	09	(2) [100.8064]	83	(2) [102.0408]	64	(2.5) [123.3045]	72	(2.3) [114.4164]
SW7060 - Arsenic (mg/kg)								
ပ	8.8	(0.76) [189.3939]	8.2	(0.68) [169.7504]	9.4	(0.98) [244.2002]	9.4	(0.84) [210.5263]
SW7421 - Lead (mg/kg)								-
Lead	6.5	(0.57) [189.3939]	85	(5.1) [1697.504]	28	(1.5) [488.4004]	13	(1.3) [421.0526]

01 01-SB-01 01-SB-01 12 - 15	SW7471 - Mercury (mg/kg) Mercury 0.095 B (0. SW7740 - Selenium (mg/kg)	ON (%)	Percent moisture
1-03	(0.045) [250.0000]	(0.47) [94.69696]	() [1]
ВЕG. DEPTH	0.084 B	ND	14
SITE ID LOCATION IO SAMPLE ID BEG. DEPTH - END DEPTH (FT.) 01 SB-02 01-SB-02-01 3 - 5	(0.042) [232.5581]	(0.42) [84.87523]	() [1]
0	0.11	ND	22
01 01-SB-02 01-SB-02-02 5 - 7	(0.048) [267.0940]	(0.61) [122.1001]	() [1]
	0.11	ND	24
01 01-SB-02 01-SB-02-03 12 - 15	(0.047) [263.1578]	(0.53) [105.2631]	() [1]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID

		01		01			01		01	
		01-50-01		01-SD-01			01-SD-02		01-SD-01	
	~	01-SD-01-01	01-0S-01	Dup of 01-SD-01-01	7-01-01		01-SD-02-01	01-08-03		-02-01
PARAMETER	3 3 3 3 3 4 1	0 - 0.5		0 - 0.5			0 - 0.5			
SW6010 - Metals (mg/kg)									1 1 1 1 1 1 1 1 1 1 1	
	12000	(20) [102.0408]	13000	(20)	[6600.66]	11000	(20) [102.0408]	12000	(19)	[95.23809]
Antimony	QN	(10) [102.0408]	16	(6.6)	[6600.66]	Q	(10) [102.0408]	9	(9.5)	[95.23809]
Arsenic	QN	(31) [102.0408]	QN	(30)	[6600.66]	QN	(31) [102.0408]	S	(29)	[95.23809]
Barium	190	(1) [102.0408]	200	(0.99)	[6600.66]	180	(1) [102.0408]	190	(0.92)	[95.23809]
Beryllium	0.25	(0.2) [102.0408]	0.3	(0.2)	[6600.66]	0.21	(0.2) [102.0408]	0.24	(0.19)	[95,23809]
Cadmium	QN	(0.51) [102.0408]	0.69	(0.5)	[6600.66]	0.68	(0.51) [102.0408]	ND	(0.48)	[95.23809]
Calcium	13000		14000	(66)	[6600.66]	14000	(100) [102.0408]	14000	(36)	[95.23809]
Chromium	56	_	25	(0.99)	[6600.66]	23	(1) [102.0408]	24	(0.95)	[95.23809]
Cobalt	12	_	12	(0.99)	[6600.66]	11	(1) [102.0408]	11	(0.95)	[95.23809]
Copper	30	_	30	(2)	[6600.66]	28	(2) [102.0408]	28	(1.9)	[95.23809]
Iron	23000		24000	(2)	[6600.66]	23000	(5.1) [102.0408]	23000	(4.8)	[95.23809]
Lead	22		10	(2)	[6600.66]	10	(5.1) [102.0408]	80	(4.8)	[95.23809]
Magnesium	7500	(100) [102.0408]	7900	(66)	[6600.66]	7600	(100) [102.0408]	7600	(36)	[95.23809]
Manganese	410	(1) [102.0408]	430	(0.99)	[6600.66]	420	(1) [102.0408]	410	(0.95)	[95.23809]
Molybdenum	QN	(5.1) [102.0408]	ND	(2)	[6600.66]	S	(5.1) [102.0408]	QN	(4.8)	[95.23809]
Nickel	28	_	59	(2)	[6600.66]	28	(2) [102.0408]	27	(1.9)	[95.23809]
Potassium	1400	_	1400	(300)	[6600.66]	1300	(310) [102.0408]	1400	(290)	[95.23809]
Selenium	QN	_	QN	(30)	[6600.66]	QN	(31) [102.0408]	QN	(62)	[95.23809]
Silver	QN	_	QN	(0.99)	[6600.66]	Q	(1) [102.0408]	QN	(0.95)	[95.23809]
Sodium	400	(100) [102.0408]	420	(66)	[6600.66]	340	(100) [102.0408]	400	(36)	[95.23809]
Thallium	QN	(10) [102.0408]	QN	(6.6)	[6600.66]	Q.	(10) [102.0408]	QN	(9.5)	[95.23809]
Vanadium	42	(2) [102.0408]	43	(2)	[6600.66]	38	(2) [102.0408]	40	(1.9)	[95.23809]
Zinc	7.7	(2) [102.0408]	78	(2)	[6600.66]	74	(2) [102.0408]	74	(1.9)	[95.23809]
SW7060 - Arsenic (mg/kg)										
Arsenic	11	(0.82) [204.2483]	10	(0.79)	[198.4126]	11	(0.82) [204.0816]	10	(0.76)	[190.3311]
SW7421 - Lead (mg/kg)									,	
Joe of L	1.0	[1 2] [400 4067]	V Ч	(1 2)	[1000 100]		[000, 001] (0 1)		10 11	[000, 000]

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

		01 01-SD-01		BEG. DEPT	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) 01 01-SD-01		01-50-02		01 01-50-01
PARAMETER 		01-SD-01-01 0 - 0.5		01-DS-01 D	01-DS-01 Dup of 01-SD-01-01 0 - 0.5	 	01-SD-02-01	01-DS-03	01-DS-03 Dup of 01-SD-02-01 0 - 0.5
SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	0.15	(0.063) [350.1400]	350.1400]	0.15	(0.066) [365.4970]	0.13	(0.051) [285.7142]	0.14	(0.063) [352.1126]
Selenium SW846 - Percent Moisture (%)	0.57	(0.51)	(0.51) [102.1241]	9.0	(0.5) [99.20634]	N	(0.51) [102.0408]	N	(0.48) [96.52509]
Percent moisture	32	С	[1]	28	()	30	()	59	() [1]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 10

		10			01			01		01	
		01-55-01			01-55-02			01-55-03		01-55-04	
	0	01-55-01-01			01-58-02-01			01-55-03-01	9	01-88-04-01	
PARAMETER 	1 1 1	0 - 0.5		! ! ! ! ! !	0 - 0.5	[1	0 - 0.5	! 1 1 1 1 1 1	0 - 0.5	
SW6010 - Metals (mg/kg)											
Aluminum	9500	(16)	[77.51938]	9100	(15)	[72.9927]	12000	(18) [90.90908]	11000	(16)	[81.30081]
Antimony	QN	(7.8)	[77.51938]	Q	(7.3)	[72.9927]	N	(9.1) [90.90908]	QN	(8.1)	[81.30081]
Arsenic	ON	(23)	[77.51938]	ON	(22)	[72.9927]	Q	(27) [90.90908]	Q	(24)	[81.30081]
Barium	160	(0.78)	[77.51938]	280	(0.73)	[72.9927]	240	(0.91) [90.90908]	190	(0.81)	[81.30081]
Beryllium	0.24	(0.16)	[77.51938]	0.21	(0.15)	[72.9927]	0.29	(0.18) [90.90908]	0.26	(0.16)	[81.30081]
Cadmium	QN	(0.39)	[77.51938]	QN	(0.36)	[72.9927]	N N	(0.45) [90.90908]	QN	(0.41)	[81.30081]
Calcium	9400	(78)	[77.51938]	8100	(73)	[72.9927]	11000	[90.90908]	14000	(81)	[81.30081]
Chromium	21	(0.78)	[77.51938]	21	(0.73)	[72.9927]	28	(0.91) [90.90908]	23	(0.81)	[81.30081]
Cobalt	11	(0.78)	[77.51938]	10	(0.73)	[72.9927]	13	(0.91) [90.90908]	12	(0.81)	[81.30081]
Copper	22	(1.6)	[77.51938]	21	(1.5)	[72.9927]	30	(1.8) [90.90908]	25	(1.6)	[81.30081]
Iron	19000	(3.9)	[77.51938]	18000	(3.6)	[72.9927]	23000	(4.5) [90.90908]	22000	(4.1)	[81.30081]
Lead	30	(3.9)	[77.51938]	38	(3.6)	[72.9927]	70	(4.5) [90.90908]	14	(4.1)	[81.30081]
Magnesium	6100	(78)	[77.51938]	2800	(73)	[72.9927]	7500	(91) [90.90908]	7400	(81)	[81.30081]
Manganese	360	(0.78)	[77.51938]	320	(0.73)	[72.9927]	370	(0.91) [90.90908]	400	(0.81)	[81.30081]
Molybdenum	QN	(3.9)	[77.51938]	8	(3.6)	[72.9927]	ON	(4.5) [90.90908]	ND	(4.1)	[81.30081]
Nickel	25	(1.6)	[77.51938]	22	(1.5)	[72.9927]	27	(1.8) [90.90908]	28	(1.6)	[81.30081]
Potassium	940	(230)	[77.51938]	1000	(220)	[72.9927]	1500	(270) [90.90908]	1100	(240)	[81.30081]
Selenium	QN	(23)	[77.51938]	S	(22)	[72.9927]	QN S	(27) [90.90908]	QN	(24)	[81.30081]
Silver	N	(0.78)	[77.51938]	Q	(0.73)	[72.9927]	S	(0.91) [90.90908]	ON	(0.81)	[81.30081]
Sodium	280	(78)	[77.51938]	280	(73)	[72.9927]	380	(91) [90.90908]	330	(81)	[81.30081]
Thallium	QN	(7.8)	[77.51938]	S	(7.3)	[72.9927]	Q.	(9.1) [90.90908]	QN	(8.1)	[81.30081]
Vanadium	34	(1.6)	[77.51938]	34	(1.5)	[72.9927]	44	(1.8) [90.90908]	39	(1.6)	[81.30081]
Zinc	9/	(1.6)	[77.51938]	83	(1.5)	[72.9927]	120	(1.8) [90.90908]	74	(1.6)	[81.30081]
SW7060 - Arsenic (mg/kg)											
Arsenic '	9.4	(0.65)	[161.9433]	7.6	(0.56)	(0.56) [140.3272]	10	(0.68) [168.8618]	9.6	(0.63)	[156.3843]
SW7421 - Lead (mg/kg)											
Lead.	37	(2.4)	(2 A) FRAG 7165]	27	(1 6)	[0 1] [701 6369]	Co	[6 1) [1600 610]	•	()	

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture 5
01 01-SS-01 01-SS-01-01 0 - 0.5	(0.047) [263.1578]	(0.4) [8	С
	263.1578]	(0.4) [80.97165]	[1]
BEG. DEPT	0.061 B	QN	3.7
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) 01 01-SS-02 01-SS-02 01-SS-02 0 - 0.5	(0.039) [216.3378]	(0.35) [70.16362]	0
	78] ND	52] ND	[1] 16
01 01-SS-03 01-SS-03-01 0 - 0.5			()
	(0.051) [283.4467]	(0.42) [84.43093]	[1]
0 0.10	0.07 8	QN	13
01 01-SS-04 01-SS-04-01 0 - 0.5	(0.045)	(0.39)	С
	(0.045) [249.8750]	(0.39) [78.19219]	[1]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID

		01		01		01		01
		01-55-05		01-55-06		01-55-07	-	01-55-07
	3	01-58-05-01	_	01-55-06-01		01-55-07-01	01-08-02	01 55 57 Dun of 01-55-07-01
PARAMETER	•	0 - 0.5		0 - 0.5		0 - 0.5		0 - 0.5
			i 		1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SW6UIU - Metals (mg/Kg)		-	6	•	1		•	-
Aluminum	00001		0006		0059		6300	
Antimony	ON :		ם צ		≘ :		9 :	[8]
Arsenic			ON.	_ '	2	Ξ.	QN	[8]
Barium	180	_	260		200	[71.	200	<u>8</u>
Beryllium	0.25		0.21	(0.16) [78.74015]	0.16	(0.14) [71.42857]	ON	(0.16) [81.30081]
Cadmium	QN	(0.38) [75.75757]	Q	(0.39) [78.74015]	0.81	(0.36) [71.42857]	0.86	(0.41) [81.30081]
Calcium	11000	(76) [75.75757]	8800	(79) [78.74015]	4400	(71) [71.42857]	4100	(81) [81.30081]
Chromium	28	(0.76) [75.75757]	24	(0.79) [78.74015]	15	(0.71) [71.42857]	15	(0.81) [81.30081]
Cobalt	12	(0.76) [75.75757]	10	(0.79) [78.74015]	8.6	(0.71) [71.42857]	7.5	(0.81) [81.30081]
Copper	27	(1.5) [75.75757]	20	(1.6) [78.74015]	18	(1.4) [71.42857]	17	(1.6) [81.30081]
Iron	20000	(3.8) [75.75757]	18000	(3.9) [78.74015]	14000	(3.6) [71.42857]	13000	(4.1) [81.30081]
Lead	29	(3.8) [75.75757]	99	(3.9) [78.74015]	53	(3.6) [71.42857]	58	(4.1) [81.30081]
Magnesium	7100	(76) [75.75757]	2600	(79) [78.74015]	4000	(71) [71.42857]	3900	(81) [81.30081]
Manganese	350	(0.76) [75.75757]	320	(0.79) [78.74015]	180	(0.71) [71.42857]	180	(0.81) [81.30081]
Molybdenum	QN	(3.8) [75.75757]	2	(3.9) [78.74015]	QN	(3.6) [71.42857]	QN	(4.1) [81.30081]
Nickel	56	(1.5) [75.75757]	22	(1.6) [78.74015]	19	(1.4) [71.42857]	16	(1.6) [81.30081]
Potassium	1500	(230) [75.75757]	970	(240) [78.74015]	720	(210) [71.42857]	740	(240) [81.30081]
Selenium	ON.		2	س	QN	(21) [71.42857]	ON	(24) [81.30081]
Silver	ON	(0.76) [75.75757]	2	(0.79) [78.74015]	Q	(0.71) [71.42857]	QN	(0.81) [81.30081]
Sodium	310	(76) [75.75757]	280	(79) [78.74015]	150	(71) [71.42857]	160	(81) [81.30081]
Thallium	QN	(7.6) [75.75757]	QN	(7.9) [78.74015]	Q	(7.1) [71.42857]	ON	(8.1) [81.30081]
Vanadium	36	(1.5) [75.75757]	34	(1.6) [78.74015]	24	(1.4) [71.42857]	23	(1.6) [81.30081]
Zinc	83	(1.5) [75.75757]	9/	(1.6) [78.74015]	100	(1.4) [71.42857]	100	(1.6) [81.30081]
SW7060 - Arsenic (mg/kg)						•		
Arsenic	7.3	(0.64) [161.1317]	7.3	(0.6) [149.2760]	4.4	(0.29) [71.63836]	4.6	(0.33) [83.64001]
SW7421 - Lead (mg/kg)						-		
7.0	89	(4.8) [1611.317]	65	(4.5) [1492.760]	7.3	(4.3) [1432 767]	78	(5) [1672 800]

	01 01-SS-07 01-DS-02 Dup of 01-SS-07-01 0 - 0.5	(0.042) [231.9109]	(0.42) [83.64001]	() [1]
	01-DS-	ND	ND	2
		(0.04) [219.5871]	(0.36) [71.63836]	[1]
	01 01-SS-07 01-SS-07-01 0 - 0.5	(0.04)	(0.36)	0
		. QN	QN	Н
РТН (FT.)		(0.051) [284.8029]	(0.37) [74.63800]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	01 01-SS-06 01-SS-06-01 0 - 0.5	(0.021)	(0.37)	0
BEG. [N	QN	9.7
		(0.045) [250.8528]	(0.4) [80.56589]	[1]
	01 01-SS-05 01-SS-05-01 0 - 0.5	(0.045)	(0.4)	С
		ON .	ND	9.4
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 10

		01		01		01		04
	0	01-55-08 01-55-08-01	J	01-SS-09-01		01-55-10	0	04-MW-01-02
PARAMETER	1 t t t t t t t t t t t t t t t t t t t	0 - 0.5		0 - 0.5		0 - 0.5		4 - 6
SW6010 - Metals (mg/kg)								
Aluminum	0089	(15) [74.07407]	11000	(17) [82.64462]	9 2700	(15) [73.52941]	10000	(31) [155.0868]
Antimony	QN	(7.4) [74.07407]	9	(8.3) [82.64462]	9	(7.4) [73.52941]	QN	(16) [155.0868]
Arsenic	ON	(22) [74.07407]	Q.	(25) [82.64462]	9	(22) [73.52941]	GN	(47) [155.0868]
Barium	120	(0.74) [74.07407]	180	(0.83) [82.64462]	66 [(0.74) [73.52941]	180	(1.6) [155.0868]
Beryllium	0.16	(0.15) [74.07407]	0.26	(0.17) [82.64462]] 0.15	(0.15) [73.52941]	QN ON	(0.31) [155.0868]
Cadmium	QN	(0.37) [74.07407]	2	(0.41) [82.64462]	Q I	(0.37) [73.52941]	N	(0.78) [155.0868]
Calcium	8800	(74) [74.07407]	12000	(83) [82.64462]	4500	(74) [73.52941]	14000	(160) [155.0868]
Chromium	15	(0.74) [74.07407]	24	(0.83) [82.64462]] 12	(0.74) [73.52941]	23	(1.6) [155.0868]
Cobalt	7.5	_	12	(0.83) [82.64462]	[6.7	(0.74) [73.52941]	12	(1.6) [155.0868]
Copper	16	(1.5) [74.07407]	27	(1.7) [82.64462]	12	(1.5) [73.52941]	27	(3.1) [155.0868]
Iron	14000	_	23000		11000	(3.7) [73.52941]	23000	(7.8) [155.0868]
Lead	17		7.5			[73.	15	(7.8) [155.0868]
Magnesium	4600	_	7500	_	3100	(74) [73.52941]	7300	(160) [155.0868]
Manganese	260	_	410	(0.83) [82.64462]] 220	(0.74) [73.52941]	430	(1.6) [155.0868]
Molybdenum	QN	(3.7) [74.07407]	2	(4.1) [82.64462]] ND	(3.7) [73.52941]	Q	(7.8) [155.0868]
Nickel	18	_	88	(1.7) [82.64462]		(1.5) [73.52941]	27	(3.1) [155.0868]
Potassium	099	_	1300	_] 200	(220) [73.52941]	1100	(470) [155.0868]
Selenium	QN	(22) [74.07407]	9	(25) [82.64462]	Q.	(22) [73.52941]	Q	(47) [155.0868]
Silver	Q.	(0.74) [74.07407]	QN	(0.83) [82.64462]	ON [(0.74) [73.52941]	Q	(1.6) [155.0868]
Sodium	210	(74) [74.07407]	340	(83) [82.64462]] 160	(74) [73.52941]	330	(160) [155.0868]
Thallium	QN.	(7.4) [74.07407]	Q	(8.3) [82.64462]	QN [(7.4) [73.52941]	QN	(16) [155.0868]
Vanadium	24	(1.5) [74.07407]	39	(1.7) [82.64462]] 23	(1.5) [73.52941]	39	(3.1) [155.0868]
Zinc	47	(1.5) [74.07407]	89	(1.7) [82.64462]] 47	(1.5) [73.52941]	29	(3.1) [155.0868]
SW7060 - Arsenic (mg/kg)								
Arsenic	7.1	(0.63) [156.4688]	10	(0.66) [165.7138]	4.1	(0.29) [72.24180]	12	(1.1) [279.4388]
SW7421 - Lead (mg/kg)								
Lead	21	(2.3) [782.3440]	10	(0.99) [331.4276]	18	(2.2) [722.4180]	-	[7380 876] (58 U)

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

01 01-SS-08 01-SS-08 01-SS-08-01 0 - 0.5 ND (0.04) [22 ND (0.39) [78	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	01 01 04 01-SS-09 01-SS-10 04-MW-01 01-SS-09-01 01-SS-10-01 04-MW-01-02 0 - 0.5 0 - 0.5 4 - 6	23.2940] ND (0.044) [246.9135] ND (0.04) [224.5777] 0.17 (0.076) [424.4482]	8.23440] ND (0.41) [82.85690] ND (0.36) [72.24180] ND (0.7) [139.0433]	[1] 19 () [1] 3.2 () [1] 38
01 01-55-08 01-55-08 01-55-08 01-55-08 01-55 0 - 0.5 0 - 0.5 (0.04) [223.2940] ND (0.39) [78.23440] ND		01	QN	QN	3.2
01 01-55-08 01-55-08 01-55-08 01-55-08 01-55 0 - 0.5 0 - 0.5 (0.04) [223.2940] ND (0.39) [78.23440] ND	О ЕРТН (FT.)) [246.9135]	[82.85690]	[1]
01 01-SS-08 01-SS-08-01 0 - 0.5 (0.04) [223.2940] (0.39) [78.23440]	SITE ID LOCATION II SAMPLE ID IEPTH - END DI	01 01-SS-09 01-SS-09-01 0 - 0.5	(0.044)	(0.41)	0
01 01-SS 01-SS- 0 -	BEG. D		QN	QN	19
01 01-SS 01-SS- 0 -)8 3-01 5	1.04) [223.2940]	.39) [78.23440]	() [1]
1		01-SS-0 01-SS-08 01-SS-08			6.7

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			SI	SITE ID LOCATION ID					
			SAM BEG. DEPTH -	SAMPLE IU DEPTH - END DEPTH (FT.)					
		04	04	4		04		04	
		04-MW-02	04-MW-03	04-MW-03		04-MW-04	70	04-SD-01	
PARAMETER		5 - 6.5	5 - 5	6.5	1 1		40	04-5D-01-01 0 - 0.5 	1
SW6010 - Metals (mg/kg)									
Aluminum	16000	_	14000	(24) [120.4819]	13000	(29) [145.1378]	5400	(17) [83.33333]	3]
Antimony	QN	_	QN	(12) [120.4819]	Q.	(15) [145.1378]	ND	(8.3) [83.33333]	3]
Arsenic	QN	_	ON	(36) [120.4819]	QN	(44) [145.1378]	QN	(25) [83.33333]	3]
Barium	230	_	220	(1.2) [120.4819]	240	(1.5) [145.1378]	7.0	(0.83) [83.33333]	3]
Beryllium	0.38	_	0.34	_	Q	(0.29) [145.1378]	ON	(0.17) [83.33333]	3]
Cadmium	QN	_	QN	(0.6) [120.4819]	QN	(0.73) [145.1378]	ND	(0.42) [83.33333]	<u></u>
Calcium	11000	_	12000	(120) [120.4819]	15000	(150) [145.1378]	4300	(83) [83.33333]	3]
Chromium	32	_	30	(1.2) [120.4819]	28	(1.5) [145.1378]	9.7	(0.83) [83.33333]	3]
Cobalt	13	_	13	(1.2) [120.4819]	12	(1.5) [145.1378]	7	(0.83) [83.33333]	3]
Copper	35	(2.5) [124.9999]	33	(2.4) [120.4819]	40	(2.9) [145.1378]	9.7	(1.7) [83.33333]	3]
Iron	28000	(6.2) [124.9999]	26000	(6) [120.4819]	26000	(7.3) [145.1378]	11000	(4.2) [83.33333]	3]
Lead	14	(6.2) [124.9999]	14	(6) [120.4819]	13	(7.3) [145.1378]	ON	(4.2) [83.33333]	3]
Magnesium	8000	(120) [124.9999]	7800	(120) [120.4819]	8000	(150) [145.1378]	2600	(83) [83.33333]	3]
Manganese	400	_	410	(1.2) [120.4819]	410	(1.5) [145.1378]	200	(0.83) [83.33333]	3]
Molybdenum	Q.	_	QN	(6) [120.4819]	QN	(7.3) [145.1378]	ND	(4.2) [83.3333]	3]
Nickel	32	_	31	_	32	(2.9) [145.1378]	17	(1.7) [83.33333]	3]
Potassium	1600		1300		1100	(440) [145.1378]	320	(250) [83.33333]	3]
Selenium	S		ND		QN		ON	(25) [83.33333]	3]
Silver	Q	_	Q	_	2	_	QN	(0.83) [83.33333]	3]
Sodium	200	_	410	(120) [120.4819]	380	(150) [145.1378]	QN	(83) [83.33333]	3]
Thallium	QN	(12) [124.9999]	Q	(12) [120.4819]	Q	(15) [145.1378]	QN	(8.3) [83.33333]	3]
Vanadium	54	(2.5) [124.9999]	47	(2.4) [120.4819]	44	(2.9) [145.1378]	20	(1.7) [83.33333]	3]
Zinc	87	(2.5) [124.9999]	81	(2.4) [120,4819]	95	(2.9) [145.1378]	27	(1.7) [83.33333]	3.
SW7060 - Arsenic (mg/kg)									1
Arsenic	14	(0.91) [227.8682]	12	(0.94) [235.2941]	11	(0.74) [185.0652]	4.2	(0.34) [85.02822]	2]
SW7421 - Lead (mg/kg)									
Lead	8.8	(0.68) [227.8682]	8.2	(0.71) [235.2941]	10	(1.1) [366.7033]	2.7 B	(0.26) [85.02822]	2]
Compiled: 21 March 1995		() = Detection Limit	t [] = Factor	ND = Not Detected	NA =	Not Applicable			
			3) · · · · · · · · · · · · · · · · · · ·			

	04-S0-01 04-S0-01-01 0 - 0.5	(0.039) [216.1134]	(0.43) [85.02822]	
	04-	0.076 B	ND 3.6	
	04 04-MW-04 04-MW-04-02 4 - 6	(0.11) [617.2839]	(0.92) [183.3516] () [1]	
	04-	0.26	ND 47	
SITE ID LOCATION ID SAMPLE ID 3EG. DEPTH - END DEPTH (FT.)	04 04-MW-03 04-MW-03-02 5 - 6.5	(0.058) [319.6930]	(0.59) [117.6470]	
BEG. DEF		0.15	ND 32	
	04-MW-02 04-MW-02-02 5 - 6.5	(0.067) [373.1343]	(0.57) [113.9341] () [1]	
		0.16	ND 33	
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%) Percent moisture	

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

		04 04-SD-02 04-SD-02-01	04-03-01	04 04-SD-02 Dun of 04-SD-02-01		04 04-SD-03 04-SD-03-01	C	04 04-SD-04 04-SD-04-01
PARAMETER 		0 - 0.5		0 - 0.5				0 - 0.5
SW6010 - Metals (mg/kg)								
Aluminum	12000	(22) [112.3595]	12000	(19) [95.23809]	12000	(23) [114.9425]	14000	(26) [129.8701]
Antimony	QN	(11) [112.3595]	QN	(9.5) [95.23809]	QN	(11) [114.9425]	ON	(13) [129.8701]
Arsenic	QN	(34) [112.3595]	Q	(29) [95.23809]	QN	(34) [114.9425]	QN	(39) [129.8701]
Barium	180	(1.1) [112.3595]	180	(0.95) [95.23809]	190	(1.1) [114.9425]	220	(1.3) [129.8701]
Beryllium	0.26	(0.22) [112.3595]	0.26	(0.19) [95.23809]	0.3	(0.23) [114.9425]	0.35	(0.26) [129.8701]
Cadmium	ON	(0.56) [112.3595]	QN	(0.48) [95.23809]	QN	(0.57) [114.9425]	QN	(0.65) [129.8701]
Calcium	15000	(110) [112.3595]	16000	(95) [95.23809]	15000	(110) [114.9425]	13000	(130) [129.8701]
Chromium	22	(1.1) [112.3595]	25	(0.95) [95.23809]	25	(1.1) [114.9425]	30	(1.3) [129.8701]
Cobalt	12	_	11	(0.95) [95.23809]	12	(1.1) [114.9425]	13	(1.3) [129.8701]
Copper	56		56	(1.9) [95.23809]	27	(2.3) [114.9425]	31	(2.6) [129.8701]
Iron	23000	(5.6) [112.3595]	22000	(4.8) [95.23809]	23000	(5.7) [114.9425]	26000	(6.5) [129.8701]
Lead	6.8	_	QN	(4.8) [95.23809]	8.5	(5.7) [114.9425]	7.8	(6.5) [129.8701]
Magnesium	7500	_	7900	(95) [95.23809]	7500	(110) [114.9425]	7900	(130) [129.8701]
Manganese	390		350	(0.95) [95.23809]	430	(1.1) [114.9425]	470	(1.3) [129.8701]
Molybdenum	QN		QN	(4.8) [95.23809]	S	(5.7) [114.9425]	QN	(6.5) [129.8701]
Nickel	27	(2.2) [112.3595]	27	(1.9) [95.23809]	53	(2.3) [114.9425]	32	(2.6) [129.8701]
Potassium	066	(340) [112.3595]	980	(290) [95.23809]	1200	(340) [114.9425]	1600	(390) [129.8701]
Selenium	QN	_	QN	(29) [95.23809]	ND	(34) [114.9425]	QN	(39) [129.8701]
Silver	QN N	(1.1) [112.3595]	QN	(0.95) [95.23809]	N	(1.1) [114.9425]	QV	(1.3) [129.8701]
Sodium	430	(110) [112.3595]	460	(95) [95.23809]	410	(110) [114.9425]	450	(130) [129.8701]
Thallium	QN	(11) [112.3595]	ON	(9.5) [95.23809]	QN	(11) [114.9425]	Q	(13) [129.8701]
Vanadium	42	(2.2) [112.3595]	43	(1.9) [95.23809]	42	(2.3) [114.9425]	48	(2.6) [129.8701
Zinc	62	(2.2) [112.3595]	64	(1.9) [95.23809]	7.1	(2.3) [114.9425]	79	(2.6) [129.8701]
SW7060 - Arsenic (mg/kg)								
Arsenic	11	(0.79) [198.275]	12	(0.8) [200.5012]	12	(1) [250.4382]	13	(1.1) [268.8172]
SW7421 - Lead (mg/kg)								
Lead	5.9	(0.3) [99.13750]	7.1	(0.6) [200.5012]	7.8	(0.75) [250.4382]	9.6	(0.81) [268.8172]

	-01	(0.058) [322.5806]	(0.67) [134.4086]	() [1]
	04 04-SD-04 04-SD-04-01 0 - 0.5	0.16 (0.0	.0) ON	38
	04-SD-03 04-SD-03-01 0 - 0.5	(0.072) [398.7240]	(0.63) [125.2191]	[1] 0
	0 44	0.16	ND	34
D ЕРТН (FT.)	SD-02-01	(0.063) [350.8771]	(0.5) [100.2506]	() [1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	04-SD-02 04-DS-01 Dup of 04-SD-02-01 0 - 0.5	(0.063	(0.5	C
BEG. (04-05-(0.14	Q	25
		(0.049) [270.5627]	(0.5) [99.13750]	[1]
	04 04-SD-02 04-SD-02-01 0 - 0,5	(0.049)	(0.5)	С
		0.13	ND	23
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

SITE 1D

		04-88-01	10-88-00		04	٠	04
	, 60	04-33-01 04-SS-01-01	04-DS-02 Dup of 04-SS-01-01	0.40	04-55-02 04-55-02-01		04-55-03 04-55-03-01
PARAMETER 		0 - 0.5	0 - 0.5		0 - 0.5		0 - 0.5
SW6010 - Metals (mg/kg)							
Aluminum	13000	(29) [147.0588]	NA	14000	(28) [138.8888]	14000	(26) [131.5789]
Antimony	QN	(15) [147.0588]	NA	QN	(14) [138.8888]	188] ND	(13) [131.5789]
Arsenic	QN	(44) [147.0588]	NA	QN	(42) [138.8888]	883 ND	(39) [131.5789]
Barium	210	(1.5) [147.0588]	NA	250	(1.4) [138.8888]	190	[131.
Beryllium	0.3	(0.29) [147.0588]	NA	0.36	(0.28) [138.8888	888] 0.31	(0.26) [131.5789]
Cadmium	QN	(0.74) [147.0588]	NA	QN	(0.69) [138.8888]	188] ND	(0.66) [131.5789]
Calcium	13000	(150) [147.0588]	NA	15000	(140) [138.8888]	11000	(130) [131.5789]
Chromium	27	(1.5) [147.0588]	NA	30	(1.4) [138.8888]	188] 29	(1.3) [131.5789]
Cobalt	12	(1.5) [147.0588]	NA	14	(1.4) [138.8888	13 13	(1.3) [131.5789]
Copper	37	(2.9) [147.0588]	NA	36	(2.8) [138.8888]	188] 33	(2.6) [131.5789]
Iron	24000	(7.4) [147.0588]	NA	27000	(6.9) [138.8888]	388] 25000	(6.6) [131.5789]
Lead	7.7	(7.4) [147.0588]	NA	8.4	(6.9) [138.8888]	388] 9.5	(6.6) [131.5789]
Magnesium	7500	_	NA	8700	(140) [138.8888]	883 8100	(130) [131.5789]
Manganese	440	(1.5) [147.0588]	NA	540	(1.4) [138.8888]	370	(1.3) [131.5789]
Molybdenum	QN	(7.4) [147.0588]	NA	ON	(6.9) [138.8888]	188] ND	(6.6) [131.5789]
Nickel	31	_	NA	34	(2.8) [138.8888]	188] 32	(2.6) [131.5789]
Potassium	1200	(440) [147.0588]	NA	1100	(420) [138.8888]	1100	(390) [131.5789]
Selenium	QN	(44) [147.0588]	NA	QN	(42) [138.8888]	188] ND	(39) [131.5789]
Silver	QN	(1.5) [147.0588]	NA	QN	(1.4) [138.8888]	188] ND	(1.3) [131.5789]
Sodium	410	(150) [147.0588]	NA	470	(140) [138.8888]	188] 440	(130) [131.5789]
Thallium	QN	(15) [147.0588]	NA	QN	(14) [138.8888]	188] ND	(13) [131.5789]
Vanadium	42	(2.9) [147.0588]	NA	48	(2.8) [138.8888]	188] 47	(2.6) [131.5789]
Zinc	82	(2.9) [147.0588]	NA	74	(2.8) [138.8888]	88] 80	(2.6) [131.5789]
SW7060 - Arsenic (mg/kg)							
jc	12	(1.2) [297.6190]	NA	15	(1) [260.1456]	56] 13	(0.94) [235.8768]
SW7421 - Lead (mg/kg)							
700	=	[0.89] [297, 6190]	AN	6 6	(0.78) [260.1456]	156] 8.4	(0.71) [235,8768]

	04-SS-01 04-SS-01 04-SS-01-0 PARAMETER 0 - 0.5	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium ND SW846 - Percent Moisture (%)	Percent moisture 44
	04-SS-01 04-SS-01 04-SS-01-01 0 - 0.5	(0.085) [469.9248]	(0.74) [148.8095]	() [1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	04-SS-01 04-DS-02 Dup of 04-SS-01-01 0 - 0.5	NA	NA	41 () [1]
		0.18	QN	38
	04 - SS - 02 04 - SS - 02 04 - SS - 02 0 0 - 0 . 5	(0.069) [384.0245]	(0.65) [130.0728]	() [1]
		0.18	ON	39
	04-SS-03 04-SS-03-01 0 - 0.5	(0.082) [455.3734]	(0.59) [117.9384]	С
		.3734]	9384]	[1]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

LOCATION ID SAMPLE IO BEG. DEPTH - END DEPTH (FT.)

SITE ID

Metals (mg/kg) 12000	(97) (97) (97) (97) (97) (97) (97) (97)		05-MW-02 7 - 9 (17) [83.33333] (8.3) [83.33333] (25) [83.33333] (0.83) [83.33333] (0.17) [83.33333] (0.17) [83.33333] (0.42) [83.33333] (0.83) [83.33333] (0.83) [83.33333] (0.83) [83.33333]		05-MW-03 05-MW-03-02 8 - 12 (19) [92.59258] (9.3) [92.59258] (8) [92.59258] (0.93) [92.59258] (0.19) [92.59258] (0.46) [92.59258] (0.93) [92.59258] (0.93) [92.59258] (0.93) [92.59258] (0.93) [92.59258]	-05	05-MW-03 Dup of 05-MW-03-02 8 - 12 (17) [85.47008] (8.5) [85.47008] (0.85) [85.47008] (0.085) [85.47008] (0.17) [85.47008] (0.43) [85.47008]	
(mg/kg) 12000 ND ND ND ND ND ND ND 16000 25 10 30 24000 6.6 6 8400 ND	[97] (97] (97] (97] (97] (97] (97] (97]	8800 ND ND 150 0.19 ND 17 8	(B3.) (B3.) (B3.) (B3.) (B3.)		[92.] [92.] [92.] [92.] [92.] [92.] [92.] [92.] [92.]	70	8 - 12 (17) [85.47008 (8.5) [85.47008 (26) [85.47008 (0.85) [85.47008 (0.17) [85.47008 (0.17) [85.47008 (0.17) [85.47008	
(mg/kg) 12000 ND ND 210 0.24 ND 16000 25 10 30 24000 6.6 8400 440 ND 30 1100 ND 440	[97] [97] [97] [97] [97] [97] [97]		[83] [83] [83] [83]	8300 ND ND 150 ND 13000 18 8.3	[92. [92. [92. [92. [92.	7500 ND 140 ND 12000		
(mg/ Kg) 12000 ND ND ND 210 210 0.24 ND 16000 25 10 30 24000 6.6 8400 A40 ND		8800 ND 150 0.19 ND 9700 17	(83. (83. (83. (83. (83. (83. (83. (83.	8300 ND ND 150 ND 13000 18 8.3 36	[92. [92. [92. [92. [92. [92.	7500 ND . ND 140 ND 12000		
12000 17		0.000 ND 150 0.19 ND 9700 17		0.000 ND 150 ND 13000 18 8.3	[92. [92. [92. [92. [92. [93.	, 500 ND ND 140 ND ND 12000		
tum 0.24 10 210 10 0.24 10 16000 10 30 24000 10 30 24000 10 30 1100 1100 III ON II		150 0.19 0.19 9700 17 8	[83	150 ND ND 13000 18 8.3	[92. [92. [92. [92. [92.	140 140 ND 12000 16		
210 10 0.24 10 16000 11 16000 12 25 11 26 12 30 24000 13 6.6 14 0 11 00		150 0.19 ND 9700 17 8	[83. [83. [83. [83. [83. [83. [83. [83.	150 ND ND 13000 18 8.3 36	[92.]	140 ND ND 12000		
ium 0.24 16000 1 16000 10 30 24000 24000 SSE 440 SND SND MD MM 11000 MM ND ND MM		0.19 ND 9700 17 8 8	[83. [83. [83. [83.	ND 13000 18 8.3 36	[92. [92. [92. [92.	ND ND 12000		
n 16000 m 25 m 25 m 26 m 30 m 30 m 8400 e.6 e.6 m 8400 m 1100 m ND		ND 9700 17 8 8	[83. [83. [83.	ND 13000 18 8.3 36	[92. [92. [92. [92.	ND 12000 16		
10 25 10 30 10 30 10 30 10 30 10 30 10 30 1100 110		9700 17 8 22	[83. [83.	13000 18 8.3 36	[92. [92. [92.	12000 16	_	
m 25 10 30 24000 6.6 um 8400 886 A40 num 1100 mm ND		17 8 22		18 8.3 36	[92. [92. [92.	16		
10 30 24000 6.6 6.6 sse 440 snum 8400 sse 440 um 1100 um 1100 mm ND		22		36	[92. [92.	t I	(0.85) [85.47008]	
30 24000 6.6 6.6 sse 440 snum 8400 um 1100 um 1100 um ND		22		36	[92.	7.7	(0.85) [85.47008]	
24000 6.6 sse		11000	_	0000		33	(1.7) [85.47008]	
6.6 see 440 snum 8400 ND nm 1100 ND mm ND ND ND ND		00061		18000	(4.6) [92.59258]	17000	(4.3) [85.47008]	_
um 8400 sse 440 snum ND num 1100 um ND ND nm ND ND		10	(4.2) [83.33333]	9	(4.6) [92.59258]	5.3	(4.3) [85.47008]	_
sse 440 snum ND 30 um 1100 mm ND		4900	(83) [83.33333]	6100	(93) [92.59258]	5700	(85) [85.47008]	_
num ND 30 30 1100 mm ND		270	(0.83) [83.33333]	290	(0.93) [92.59258]	300	(0.85) [85.47008	_
30 um 1100 Im ND (A40		Q	(4.2) [83.33333]	Q	(4.6) [92.59258]	ND	(4.3) [85.47008]	
um 1100 ND ND ND A40		19	(1.7) [83.33333]	22	(1.9) [92.59258]	24	(1.7) [85.47008]	_
m ND ND (C		1100	(250) [83.33333]	069	(280) [92.59258]	590	(260) [85.47008]	_
ND 440	(59) [97]	QN	(25) [83.33333]	ON	(28) [92.59258]	40	(26) [85.47008]	_
440	[6.0]	ND	(0.83) [83.33333]	QN	(0.93) [92.59258]	QN	(0.85) [85.47008]	_
	(67) [97]	280	(83) [83.33333]	310	(93) [92.59258]	270	(85) [85.47008]	_
Thallium ND (9		QN Q	(8.3) [83.33333]	QN	(9.3) [92.59258]	ON	(8.5) [85.47008]	_
Vanadium 45 (1		33	(1.7) [83.3333]	37	(1.9) [92.59258]	34	(1.7) [85.47008	_
72 (1		47	(1.7) [83.33333]	54	(1.9) [92.59258]	51		
SW7060 - Arsenic (mg/kg)								
Arsenic 12 (0. SW7421 - Lead (mg/kg)	(0.77) [192.7896]	6.4	(0.66) [163.7733]	8.1	(0.69) [171.4677]	6.8	(0.71) [176.3668]	
6.8	(0.58) [192.7896]	6.9	(0.49) [163.7733]	6.2	(0.51) [171.4677]	3.9	(0.26) [88.18342]	_

	W-03-02	(0.053) [293.9447]	(0.43) [86.33341]	() [1]
	05 05-DS-02 Dup of 05-MW-03-02 8 - 12	(0.053)	(0.43)	0
	05-05-0	ND	ND	19
		93.9447]	5.73388]	[1]
	05 05-MW-03 05-MW-03-02 8 - 12	(0.053) [293.9447]	(0.43) [85.73388]	С
	 	ND	ND	19
(FT.)		63.3720]	1.88666]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	05 05-MW-02 05-MW-02-02 7 - 9	(0.065) [363.3720]	(0.41) [81.88666]	С
BEG. DE		ND	QN	14
		20.5128]	6.39483]	[1]
	05 05-MW-01 05-MW-01-02 0 - 0.5	(0.058) [320.5128]	(0.48) [96.39483]	С
		ND	QN	22
	TER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture
	PARAMETER	SW7471 - Mercury SW7740 -	Selenium SW846 - Per	Percer

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

055-MW-04-02 PARAMETER SW6010 - Metals (mg/kg) Aluminum Antimony Arsenic Barium Cadmium Cadmium Cobalt Copper Lead 055-MW-04-02 8 - 10 (1889 (1899 (1.899 (0.899 (0.899 (0.891 (0.899 (0.891	-04 04-02 10 (18) [89.28571] (8.9) [89.28571] (27) [89.28571] (0.89) [89.28571] (0.18) [89.28571] (0.45) [89.28571] (0.45) [89.28571] (0.45) [89.28571]	LOCA SAM SAM BEG. DEPTH - 0 05-MW 05-MW 5 5 13000 ND 260 0.49 0.85 15000 29	LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.) 05 05-MW-05 05-MW-05-02 5 - 7 (21) [103.0927] (10) [103.0927] (31) [103.0927] (11) [103.0927] (12) [103.0927] (12) [103.0927] (13) [103.0927] (14) [103.0927] (15) [103.0927] (16) [103.0927] (17) [103.0927] (18) [18] [18] [18]	6000 ND ND 110 0.19 0.67 6700	[8] [8] [8] [8]	0 11000 ND ND 180 0.21 ND 15000	05 05-SB-01 05-SB-01-01 2 - 4
05 05-MW-04 05-MW-04 8 - 10 8 - 10 0 05-MW-04 8 - 10 0 00 0 00 0 00 0 0.21 (0 0 0.22 (0 0 0 0 0.22 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			END DEPTH (FT.) 5 W-05 -05-02 -7 (21) [103.0927] (10) [103.0927] (1) [103.0927] (1) [103.0927] (1) [103.0927] (1) [103.0927] (1) [103.0927] (0.52) [103.0927] (1) [103.0927] (1) [103.0927] (1) [103.0927] (1) [103.0927] (1) [103.0927] (1) [103.0927]	6000 ND ND 110 0.19 0.67	(81.) (8		999999
05-MW-04 05-MW-04 8 - 10 8 - 10 10000 ND 200 (0 0.21 (0 0.22 (0 15000 22 (0 15000 23000 (0 23000 (0) [103.) [103.) [103.) [103.) [103.) [103.) [103.	6000 ND ND 110 0.19 0.67 6700	(81.) (81.) (81.) (81.) (81.) (81.) (81.) (81.) (81.) (81.) (81.) (81.) (81.) (81.) (81.) (81.)		
05-MW-04 05-MW-04 8 - 10 8 - 10 0 - 10000 ND (0 0 0.21 (0 0 0.21 (0 15000 22 (0 15000 23000 (0		!) [103.) [103.) [103.) [103.) [103.) [103.) [103.	6000 ND ND 110 0.19 0.67	(81.00) (81.00	1	
05-MW-04 8 - 10 10000 ND 200 0.21 0 15000 22 (0 15000 23000 (6) 23000 (6) 24 25 (7) 26 (6) 26 (6) 26 (7)			(103. (103. (103. (103. (103. (103. (103. (103. (103.	6000 ND ND 110 0.19 0.67 6700	(81.) [81.) [81.) [81.) [81.) [81.] [8	1	0000000
(mg/kg) 10000 ND 200 0.21 0.21 0 15000 22 11 23000 6 23000 6 6 6 6 7 7 8 7 10 10 10 10 10 10 10 10 10	(18) (27) (2	o	(21) [103. (10) [103. (31) [103. (31) [103. (0.21) [103. (0.52) [103. (100) [103. (1) [103.	6000 ND ND 110 0.19 0.67	(16) [81. (25) [81. (25) [81. (0.82) [81. (0.41) [81. (0.82) [81. (0.41) [81. (0.82) [81.	11000 ND ND 180 0.21 ND 15000	(18) [(26) [(26) [(27) [(2
(mg/kg) 10000 ND ND 200 0.21 (0 0.21 (0 15000 22 (0 13000 26 (13000 ND ND 260 0.49 0.85 15000	[103.] [103.] [103.] [103.] [103.] [103.]	6000 ND ND 110 0.19 0.67 6700	[81. [81. [81. [81.	11000 ND ND 180 0.21 ND 15000	
10000 1y ND (200 (0 200 (0 1um 0.21 (0 1n ND (0 15000 (0 11 (0 26 (16000 (0 26 (0		13000 ND 260 0.49 0.85 15000	[103. [103. [103. [103. [103. [103. [103.	6000 ND 110 0.19 0.67 6700	[81. [81. [81.] [81.]	11000 ND ND 180 0.21 ND 15000	
1y ND ND S S S S S S S S S S S S S S S S S		ND ND 260 0.49 0.85 15000	[103. [103. [103. [103. [103. [103. [103.	ND ND 110 0.19 0.67 6700	[8] [8] [8] [8] [8]	ND ND 180 0.21 ND 15000	
100 100 100 100 110 111 110 110		260 0.49 0.85 15000	[103. [103. [103. [103. [103. [103.	110 0.19 0.67 6700	[8] [8] [8] [8] [8]	ND 180 0.21 ND 15000	
100 15000 1 15000 11 11 26 26 23000		200 0.49 0.85 15000 29	[103. [103. [103. [103. [103.	0.19 0.67 6700 12	8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	180 0.21 ND 15000	
In 15000 Im 22 Im 22 Im 22 Im 24 Im 25 Im 26 Im		0.85 15000 29	[103. [103. [103. [103.	0.67 6700 12	<u> </u>	0.21 ND 15000	
15000 15000 11 26 26 23000		15000	[103. [103.	6700	[8] [8]	15000	
um 22 11 26 23000 26		29	[103. [103.	12	(<u>m</u>	23	_
11 26 23000 26	-		[103.		. 3	3	(0.88) [87.71929]
26 23000 26	_	12		6.1	(0.82) [81.96721]	10	-
23000 26	(1.8) [89.28571]	37	(2.1) [103.0927]	16	(1.6) [81.96721]	53	_
56	_	26000	(5.2) [103.0927]	13000	(4.1) [81.96721]	22000	(4.4) [87.71929]
	_	15	(5.2) [103.0927]	8.3	(4.1) [81.96721]	17	(4.4) [87.71929]
7500		0006	(100) [103.0927]	4100	(82) [81.96721]	7800	[88] [87.71929]
430	(0.89) [89.28571]	460	(1) [103.0927]	240	(0.82) [81.96721]	650	(0.88) [87.71929]
enum ND	_	QN	_	ON.	(4.1) [81.96721]	ON	(4.4) [87.71929]
. 27	_	34		17	(1.6) [81.96721]	28	(1.8) [87.71929]
086	_	1400	_	520	(250) [81.96721]	930	(260) [87.71929]
ON wr		Q	(31) [103.0927]	QN	(25) [81.96721]	QN	(26) [87.71929]
ON	_	1.6	(1) [103.0927]	0.85	(0.82) [81.96721]	QN	(0.88) [87.71929]
290	(89) [89.28571]	450	(100) [103.0927]	200	(82) [81.96721]	350	(88) [87.71929]
Thallium ND (8	(8.9) [89.28571]	QN	(10) [103.0927]	Q.	(8.2) [81.96721]	QN	(8.8) [87.71929]
Vanadium 38 (1	(1.8) [89.28571]	40	(2.1) [103.0927]	19	(1.6) [81.96721]	41	(1.8) [87.71929]
Zinc 68 (1	(1.8) [89.28571]	26	(2.1) [103.0927]	38	(1.6) [81.96721]	99	(1.8) [87.71929]
SW7060 - Arsenic (mg/kg)							
Arsenic ' 8.8 (0	(0.7) [176.1804]	8.7	(0.82) [203.7697]	6.2	(0.64) [159.2990]	8.8	(0.65) [161.9695]
SW7421 - Lead (mg/kg)							
Lead 24 (1	(1.3) [427.3504]	12	(1.2) [394.4773]	5.4	(0.48) [159.2990]	17	(0.97) [323.9390]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

	-01	(0.054) [297.6190]	(0.4) [80.98477]	()
	05 05-SB-01 05-SB-01-01 2 - 4	0.11 (0.) QN	16
		(0.056) [308.6419]	(0.4) [79.64954]	[1]
	05 05-MW-06 05-MW-06-02 7 - 9	(0.056	(0.4	
		0.068 B	ND	19
РТН (FT.)		(0.058) [320.5128]	(0.51) [101.8848]	[=]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	05 05-MW-05 05-MW-05 5 - 7	(0.058)	(0.51)	0
BEG.		0.11	1.	35
		(0.052) [291.3752]	(0.53) [106.8376]	[1]
	05 05-MW-04 05-MW-04-02 8 - 10	(0.052)	(0.53)	С
		0.12	N	22
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

PARAMETER											
	05-SB	05-SB-01-02 5 - 7		05-SB-01- 8 - 10	05-SB-01-03 8 - 10		Ö	05-38-02 05-88-02-01 2 - 4	0	05-58-02 05-58-02-02 5 - 7	
SW6010 - Metals (mg/kg)	 	 	!	[1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		 		 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	00	(19)	[96]	9100	(50)	[100]	10000	(18) [88.49557]	13000	(18)	[90.90908]
Antimony	R	(9.6)	[96]	ND	(10)	[100]	N		N		90,90908
Arsenic	Q.	(53)	[96]	QN	(30)	[100]	N S		8		90.90908
Barium 18	180	(0.96)	[96]	200	Ξ	[100]	160		270		90 90908
Beryllium 0.	0.2	(0.19)	[96]	QN	(0.2)	[100]	0.18	٠ ـــ	0.33	-	90.90908
Cadmium	ON	(0.48)	[96]	ND	(0.5)	[100]	N S		9		90.90908
Calcium 14000	00	(96)	[96]	20000	(100)	[100]	13000		18000		90.90908
Chromium	23	(0.96)	[96]	19	(1)	[100]	21	(0.88) [88.49557]	28		90 606 06
Cobalt	10	(0.96)	[96]	8.5	(1)	[100]	8.9	(0.88) [88.49557]	12		90.90908
Copper	31	(1.9)	[96]	20	(2)	[100]	33	(1.8) [88.49557]	36	_	90.90908
Iron 22000	00	(4.8)	[96]	21000	(2)	[100]	21000	(4.4) [88.49557]	27000	_	90.90908
Lead 7.	7.2	(4.8)	[96]	ND	(2)	[100]	21	(4.4) [88.49557]	7.1	(4.5)	90.90908
Magnesium 7500	00	(96)	[96]	7700	(100)	[100]	7000	(88) [88.49557]	8900	[91]	90.90908]
Manganese 43	430	(0.96)	[96]	430	(1)	[100]	400	(0.88) [88.49557]	009	[0.91]	90.90908]
Molybdenum	ND	(4.8)	[96]	QN	(2)	[100]	Q	(4.4) [88.49557]	2	_	90.90908]
Nickel 2	59	(1.9)	[96]	25	(2)	[100]	28	(1.8) [88.49557]	36	(1.8)	90.90908]
Potassium 92	920	(580)	[96]	710	(300)	[100]	850	(270) [88.49557]	1200	(270)	90.90908
E	2	(53)	[96]	38	(30)	[100]	S	(27) [88.49557]	2	(27)	90.90908]
Silver	2	(0.96)	[96]	ND	(1)	[100]	S	(0.88) [88.49557]	2	(0.91)	90.90908]
Sodium 36	360	(96)	[96]	370	(100)	[100]	340	(88) [88.49557]	390	_	90.90908]
Thallium	N S	(9.6)	[96]	N	(10)	[100]	S	(8.8) [88.49557]	QN	(9.1) [[90.90908]
Vanadium	39	(1.9)	[96]	40	(2)	[100]	38	(1.8) [88.49557]	47	(1.8)	90.90908]
Zinc	69	(1.9)	[96]	53	(2)	[100]	64	(1.8) [88.49557]	95		[90.90908]
SW7060 - Arsenic (mg/kg)											
Arsenic SW7421 - Lead (mg/kg)	11	(0.78) [19	[193.8360]	9.5	(0.8) [200.2002]	00.2002]	5.2	(0.35) [86.26639]	11	(0.72)	[179.1312]
Lead 1	12	(1.2) [387.6720]	7.6720]	6.9	(0.6) [z	[200.2002]	19	(1) [345.0655]	12	(1.1)	(1.1) [358.2624]

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	05 05-SB-01 05-SB-01-02 5 - 7 8 - 10	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	ND (0.48) [96.91800] ND (%)	Percent moisture 23 () [1] 26
р , ЕРТН (FT.)		(0.064) [355.6187] 0.	(0.5) [100.1001]	(1)
	05 05-88-02 05-88-02-01 2 - 4	0.061 B (0.051) [283.4467]	ND (0.43) [86.26639]	16 () [1]
	05 05-SB-02 05-SB-02-02 5 - 7	ND (0.051) [282.3263]	ND (0.45) [89.56560]	23 () [1]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			SI	SITE ID LOCATION ID				-		
			SAM BEG. DEPTH -	SAMPLE ID DEPTH - END DEPTH (FT.)						
		05	0	05		05			05	
	0	05-SB-02 05-SB-02-03	05-S 05-SB	05-SB-02 05-SB-02-04		05-SB-03 05-SB-03-01		05-05-01	05-SB-03 Dun of 05-SB-03-01	-03-01
PARAMETER		8 - 10	10	10 - 12	, , , , , , , , , , , , , , , , , , ,	5 - 7		1	5 - 7	
SW6010 - Metals (mg/kg)										
Aluminum	7400	(17) [86.95652]	7000	(15) [74.62686]	13000	(19)	[63]	12000	(18)	[91.74311]
Antimony	QN	(8.7) [86.95652]	ND	(7.5) [74.62686]	2	(6.3)	[63]	QN	(8.5)	[91.74311]
Arsenic	ON	(26) [86.95652]	ON	(22) [74.62686]	33	(28)	[63]	88	(28)	[91.74311]
Barium	130		110	(0.75) [74.62686]	190	(0.93)	[63]	260	(0.95)	[91.74311]
Beryllium	QN	_	ND	_	0.23	(0.19)	[63]	0.28	(0.18)	[91.74311]
Cadmium	QN	_	QN		QN	(0.46)	[63]	ON	(0.46)	[91.74311]
Calcium	12000	_	6200	(75) [74.62686]	15000	(63)	[63]	17000	(35)	[91.74311]
Chromium	15	_	15	_	56	(0.93)	[63]	56	(0.92)	[91.74311]
Cobalt	7.2	(0.87) [86.95652]	7	(0.75) [74.62686]	11	(0.93)	[63]	11	(0.95)	[91.74311]
Copper	22	(1.7) [86.95652]	19	(1.5) [74.62686]	33	(1.9)	[63]	36	(1.8)	[91.74311]
Iron	16000	(4.3) [86.95652]	14000	(3.7) [74.62686]	25000	(4.6)	[63]	27000	(4.6)	[91.74311]
Lead	QN	(4.3) [86.95652]	4.6	(3.7) [74.62686]	Q	(4.6)	[63]	7.8	(4.6)	[91.74311]
Magnesium	2800	(87) [86.95652]	4500	(75) [74.62686]	8200	(83)	[63]	8800	(35)	[91.74311]
Manganese	280	_	300	(0.75) [74.62686]	430	(0.93)	[63]	510	(0.95)	[91.74311]
Molybdenum	QN	(4.3) [86.95652]	ND	(3.7) [74.62686]	R	(4.6)	[63]	QN	(4.6)	[91.74311]
Nickel	22	(1.7) [86.95652]	21	(1.5) [74.62686]	30	(1.9)	[63]	34	(1.8)	[91.74311]
Potassium	540	(260) [86.95652]	550	(220) [74.62686]	1100	(280)	[63]	980	(280)	[91.74311]
Selenium	QN	(26) [86.95652]	31	(22) [74.62686]	Q	(28)	[63]	QN	(28)	[91.74311]
Silver	QN	(0.87) [86.95652]	ND	(0.75) [74.62686]	9	(0.93)	[63]	QN	(0.95)	[91.74311]
Sodium	260	(87) [86.95652]	210	(75) [74.62686]	400	(63)	[63]	330	(36)	[91.74311]
Thallium	ON	(8.7) [86.95652]	ON	(7.5) [74.62686]	2	(6.3)	[63]	QN	(9.2)	[91.74311]
Vanadium	53	(1.7) [86.95652]	30	(1.5) [74.62686]	44	(1.9)	[63]	43	(1.8)	[91.74311]
Zinc	46	(1.7) [86.95652]	41	(1.5) [74.62686]	72	(1.9)	[63]	87	(1.8)	[91.74311]
SW7060 - Arsenic (mg/kg)										
Arsenic	5.1	(0.39) [98.12579]	5.8	(0.63) [158.5414]	14	(0.83)	[206.3131]	13	(1.5)	[368.0529]
SW7421 - Lead (mg/kg)										
Lead	5.7	(0.59) [196.2515]	3.6	(0.24) [79.27070]	8.4	(1.2)	(1.2) [397.4562]	8.6	(1.1)	(1.1) [368.0529]
Compiled: 21 March 1995		() = Detection Limit	t [] = Factor	ND = Not Detected	NA = No	Not Applicable				
)	!						

	05 05-SB-03 05-DS-01 Dup of 05-SB-03-01 5 - 7	(0.066) [365.4970]	(0.46) [92.01324]	() [1]
	05-DS-0	N O	Q	24
		(0.068) [375.3753]	(0.52) [103.1565]	[1]
	05 05-SB-03 05-SB-03-01 5 - 7	(0.068)	(0.52)	0
)	0.071 B	ND	26
Н (FT.)		(0.041) [229.8850]	(0.4) [79.27070]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH ~ END DEPTH (FT.)	05 05-SB-02 05-SB-02-04 10 - 12	(0.041)	(0.4)	С
		NO	QN	13
	;	(0.052) [287.6869]	(0.49) [98.12579]	[1]
	05 05-SB-02 05-SB-02-03 8 - 10	(0.052)	(0.49)	С
	05 05-88-0 05-88-02 8 - 10	0.052 8	N	21
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

		05		05		05		90	
	0	05-SB-03 05-SB-03-02		05-SD-01 05-SD-01-01	05-05-04	05-SD-01 Dup of 05-SD-01-01	c	05-SD-02	
PARAMETER 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 - 9		0 - 0.5		0 - 0.5	2	0 - 0.5	; ; ; ; ;
SW6010 - Metals (mg/kg)									
Aluminum	4700	(14) [69.93007]	6100	(15) [75.18796]	7100	(15) [76.33588]	14000	(18)	[90.09008]
Antimony	QN	(7) [69.93007]	Q	(7.5) [75.18796]	Q	(7.6) [76.33588]	QN	(6)	[90.09008]
Arsenic	QN	(21) [69.93007]	Q	(23) [75.18796]	8	(23) [76.33588]	ND	(27)	[90.09008]
Barium	63	(0.7) [69.93007]	100	(0.75) [75.18796]	100	(0.76) [76.33588]	220	(0.9)	[90.09008]
Beryllium	QN	(0.14) [69.93007]	0.2	(0.15) [75.18796]	0.28	(0.15) [76,33588]	0.39	(0.18)	[90.09008]
Cadmium	QN	(0.35) [69.93007]	2	(0.38) [75.18796]	0.46	(0.38) [76.33588]	0.5	(0.45)	[90.09008]
Calcium	2700	(70) [69.93007]	6400	(75) [75.18796]	0069	(76) [76.33588]	0096	(06)	[90.09008]
Chromium	10	(0.7) [69.93007]	13	(0.75) [75.18796]	15	(0.76) [76.33588]	30	(0.9)	[90.09008]
Cobalt	5	(0.7) [69.93007]	5.9	(0.75) [75.18796]	6.8	(0.76) [76.33588]	13	(0.9)	[90.09008]
Copper	12	(1.4) [69.93007]	14	(1.5) [75.18796]	17	(1.5) [76.33588]	28	(1.8)	[90.09008]
Iron	9200	(3.5) [69.93007]	13000	(3.8) [75.18796]	15000	(3.8) [76.33588]	26000	(4.5)	[90.09008]
Lead	6.4	(3.5) [69.93007]	6.3	_	6.6	(3.8) [76.33588]	14	(4.5)	[90.09008]
Magnesium	2700	(70) [69.93007]	4000	(75) [75.18796]	4500	(76) [76.33588]	8200	(06)	[90.09008]
Manganese	140	(0.7) [69.93007]	230	(0.75) [75.18796]	260	(0.76) [76.33588]	380	(0.9)	[90.09008]
Molybdenum	QN	(3.5) [69.93007]	Q	(3.8) [75.18796]	QN	(3.8) [76.33588]	QN	(4.5)	[90.09008]
Nickel	14	(1.4) [69.93007]	16	(1.5) [75.18796]	19	(1.5) [76.33588]	32	(1.8)	[90.09008]
Potassium	340	(210) [69.93007]	280	(230) [75.18796]	650	(230) [76.33588]	1600	(270)	[90.09008]
Selenium	QN	(21) [69.93007]	R	. (23) [75.18796]	S	(23) [76.33588]	ON	(27)	[90.09008]
Silver	QN	(0.7) [69.93007]	0.87	(0.75) [75.18796]	Q.	(0.76) [76.33588]	QN	(0.9)	[90.09008]
Sodium	120	(70) [69.93007]	180	(75) [75.18796]	210	(76) [76.33588]	430	(06)	[90.09008]
Thallium	QN	(7) [69.93007]	2	(7.5) [75.18796]	QN	(7.6) [76.33588]	QN	(6)	[90.09008]
Vanadium	21	(1.4) [69.93007]	20	(1.5) [75.18796]	24	(1.5) [76.33588]	20	(1.8)	[90.09008]
Zinc	24	(1.4) [69.93007]	43	(1.5) [75.18796]	46	(1.5) [76.33588]	89	(1.8)	[90.09008]
SW7060 - Arsenic (mg/kg)									
Arsenic	6.8	(0.57) [143.6781]	7.1	(0.61) [152.1236]	6.5	(0.56) [140.1148]	9.6	(0.84)	[210.0840]
SW7421 - Lead (mg/kg)									
•	•	11.11.11.11.11.11.11		E-1					•

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

	05 05-80-02 05-80-02-01 0 - 0.5	(0.048) [268.3843]	(0.53) [105.0420]	()
	0	0.08 8	0.84	30
	0-01-01	(0.052) [287.6042]	(0.35) [70.05744]	[1]
	05 05-SD-01 05-DS-04 Dup of 05-SD-01-01 0 - 0.5	(0.052)	(0.35)	С
	05-DS-04	ON O	0.43	8.5
тн (ғт.)	t 	(0.047) [260.7833]	(0.38) [76.06182]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	05 05-S0-01 05-S0-01-01 0 - 0.5	(0.047)	(0.38)	С
L BEG. DEPT	1 1 1 1 1	0.06 B	0.5	8.7
·		248.0158]	(0.37) [73.87706]	[1]
	05-SB-03 05-SB-03-02 7 - 9	(0.045) [248.0158]	(0.37)	С
		ND	QN	4
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID

		05			05	•	05		05
		05-SS-01			05-SS-02		05-55-03		05-SS-04
	Ö	05-SS-01-01		0	05-SS-02-01		05-55-03-01	ö	05-55-04-01
PARAMETER		0 - 0.5		 	0 - 0.5	; ; ; ; ; ;	0 - 0.5	; ; ; ; ; ;	0 - 0.5
SW6010 - Metals (mg/kg)									
Aluminum	13000	(17)	[84.0336]	12000	(18) [91.74311]	11] 13000	(19) [95.23809]	13000	(21) [103.0927]
Antimony	QN	(8.4)	[84.0336]	QN	(9.2) [91.74311]	11] NO	_	S	_
Arsenic	78	(25)	[84.0336]	QN	(28) [91.74311]	(1] ND	(29) [95.23809]	Q.	_
Barium	190	(0.84)	[84.0336]	180	(0.92) [91.74311]	11] 220	(0.95) [95.23809]	200	(1) [103.0927
Beryllium .	0.26	(0.17)	[84.0336]	0.24	(0.18) [91.74311]	0.27	(0.19) [95.23809]	0.31	(0.21) [103.0927]
Cadmium	0.51	(0.42)	[84.0336]	0.46	(0.46) [91.74311]	11] 0.88	(0.48) [95.23809]	QN	(0.52) [103.0927]
Calcium	14000	(84)	[84.0336]	14000	(92) [91.74311]	11] 14000	(95) [95.23809]	14000	(100) [103.0927]
Chromium	56	(0.84)	[84.0336]	24	(0.92) [91.74311]	[1] 28	(0.95) [95.23809]	24	(1) [103.0927]
Cobalt	12	(0.84)	[84.0336]	11	(0.92) [91.74311]	11] 13	(0.95) [95.23809]	11	(1) [103.0927
Copper	52	(1.7)	[84.0336]	23	(1.8) [91.74311]	11] 31	(1.9) [95.23809]	20	(2.1) [103.0927]
Iron	24000	(4.2)	[84.0336]	22000	(4.6) [91.74311]	11] 26000	(4.8) [95.23809]	23000	(5.2) [103.0927]
Lead	380	(4.2)	[84.0336]	15	(4.6) [91.74311]	11] 20	(4.8) [95.23809]	15	(5.2) [103.0927]
Magnesium	7700	(84)	[84.0336]	7100	(92) [91.74311]	11] 8200	(95) [95.23809]	7300	(100) [103.0927]
Manganese	400	(0.84)	[84.0336]	380	(0.92) [91.74311]	[1] 510	(0.95) [95.23809]	470	(1) [103.0927]
Molybdenum	ON	(4.2)	[84.0336]	S	(4.6) [91.74311]	[1] ND	(4.8) [95.23809]	QN	(5.2) [103.0927]
Nickel	56	(1.7)	[84.0336]	52	(1.8) [91.74311]	11] 32	(1.9) [95.23809]	27	(2.1) [103.0927]
Potassium	1500	(250)	[84.0336]	1500	(280) [91.74311]	11] 1600	(290) [95.23809]	1300	(310) [103.0927]
Selenium	QN	(52)	[84.0336]	Q	(28) [91.74311]	(1) ND	(29) [95.23809]	QN	(31) [103.0927]
Silver	QN	(0.84)	[84.0336]	2	(0.92) [91.74311]	[1] ND	(0.95) [95.23809]	QN N	(1) [103.0927]
Sodium	480	(84)	[84.0336]	390	(92) [91.74311]	11] 420	(95) [95.23809]	820	(100) [103.0927]
Thallium	QN	(8.4)	[84.0336]	R	(9.2) [91.74311]	1] ND	(9.5) [95.23809]	QN	(10) [103.0927]
Vanadium	48	(1.7)	[84.0336]	43	(1.8) [91.74311]	1] 47	(1.9) [95.23809]	43	(2.1) [103.0927]
Zinc	76	(1.7)	[84.0336]	65	(1.8) [91.74311]	1] 85	(1.9) [95.23809]	65	(2.1) [103.0927]
SW7060 - Arsenic (mg/kg)									
Arsenic	7.1	(7.2)	[1796.138]	5.6	(0.39) [97.21007]	12 12	(0.74) [184.0264]	9.7	(0.81) [202,6958]
SW7421 - Lead (mg/kg)									
Lead	480	(22)	(27) [8980.691]	9.3	(1.2) [388.8402]	15 15	(1.1) [368.0529]	15	(1.2) [405.3917]

SITE ID LOCATION ID

	05 05-SS-04 05-SS-04-01 0 - 0.5	(0.072) [402.5764]	(0.51) [101.3479]	() [1]
		QN	ND	31
		(0.059) [328.9473]	(0.46) [92.01324]	[1]
	05 05-SS-03 05-SS-03-01 0 - 0.5	(0.059	(0.46	<u> </u>
	00	0.18	ND	24
тн (ғт.)	; ; ; ; ; ; ;	(0.046) [257.2016]	(0.49) [97.21007]	[1]
SAMPLE ID BEG, DEPTH - END DEPTH (FT.)	05 05-SS-02 05-SS-02-01 0 - 0.5	(0.046)	(0.49)	С
BEG. DEPTI	05-	0.066 B	ND	19
		367.6470]	(0.45) [89.80691]	[1]
05	05 05-SS-01 05-SS-01-01 0 - 0.5	(0.066) [367.6470]	(0.45)	С
) 00	0.077 8	ON	15
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Solonium (mg/kg)	Selenium Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

05 05 05-58-07 1 06-58-07 1 06-58-07 1 106-64516] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 07-51938] 08-64516] 09-645	99) 905						SITE ID				
93)	93						LOCATION ID				
9) 5500 (17) [82,6462] 9400 (16) [90,64516] 6200 (16) [77,51939] 5800 (14) [77,51939] 620 (15) [77,51939] 620 (15) [77,51939] 620 (15) [77,51939] 620 (15) [77,51939] 620 (17) [77,51939]	9) 5900 (17) [82.6462] 9400 (18) [80.64516] 6200 (16) [77.51398] 8900 (23) [77.51398] 8900 (23) [77.51398] 8900 (23) [77.51398] 8900 (23) [77.51398] 8900 (23) [77.51398] 8900 (24) [77.51398] 8900 (2					ני	SAMPLE ID				
(g) 555-05-01 (d) 555-05-01 (d) 5-55-07-01 (d) 5-55	Color						111 - END DEFILI (F1.)				
99) 800 (17) [82 6442] 100 (18) [80 64516] 100 (19) [77,5138] 100 (14) [77, 171] 81 (10, 18) [82 6442] 110 (19, 18) [80 64516] 110 (19, 18) [77,5138] 110 (19, 1	Control Cont			05			05		05		05
(a) 5590 (17) [82,54452] 8400 (15) [80,64516] 800 (16) [77,51938] 8600 (14) [71, [71, [71, [71, [71, [71, [71, [71,	(4.1) [82.6462] 8900 (15) [80.64516] 8600 (16) [75.51986] 8800 (17) [82.6462] 8900 (18) [80.64516] 8000 (19) [75.51986] 8800 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [82.6462] 8900 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [80.64516] 8000 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [80.64516] 8000 (19) [75.51986] 8000 (19) [80.64516] 8000 (19) [75.51986] 8000 (17) [75.51986] 8000			05-88-05			05-55-06		05-53-07		05-55-08
(14) [71, [82, 64462] 9400 (16) [80, 64516] ND (7, 8) [77, 51938] 5800 (14) [71, 72] [71, 72] [71, 72] [72] [72] [72] [72] [72] [72] [72]	99 (17) [82.64462] 9400 (18) [90.64516] 6200 (18) [77.51393] 5800 (18) [82.64462] ND (8.1) [80.64516] ND (7.0) [77.51393] ND (8.1) [82.64462] ND (8.1) [80.64516] ND (7.0) [77.51393] ND (8.1) [82.64462] ND (8.1) [80.64516] ND (7.0) [77.51393] ND (8.1) [80.64516] ND (8.1) [80.64516] ND (7.0) [77.51393] ND (8.1) [80.64516] ND (05-SS-05-01		0	15-55-06-01		05-55-07-01	Ü	05-SS-08-01
(11) [82.64462] 9400 (16) [80.64516] 6200 (16) [77.51938] 5800 (14) [71. [81.6462] ND (2.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. [71. [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. [71. [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. [71. [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. [71. [82.64462] ND (9.4) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. [71. [82.64462] ND (9.4) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. [71. [82.64462] ND (9.4) [80.64516] ND (7.8) [77.51938] ND (7.8) [77.51938] ND (7.8) [71. [71. [82.64462] ND (9.4) [80.64516] ND (7.8) [77.51938] ND (7.8) [77. [71. [82.64462] ND (9.4) [80.64516] ND (7.8) [77.51938] ND (7.8) [77.51938] ND (7.8) [77. [71. [82.64462] ND (9.4) [80.64516] ND (7.8) [77.51938] ND (7.8) [77. [71. [82.64462] ND (9.4) [80.64516] ND (7.8) [77.51938] ND	(17) [82.64462] 9400 (16) [80.64516] ND (7.8) [77.51938] 5900 (17) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (8.2) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (8.2) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (9.2) [82.64462] ND (9.2)	PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5	1	- i - i
5900 (17) [82,64462] 9400 (16) [80,64516] 6200 (16) [77,51936] 5800 (14) [71,108] ND (53) [82,64462] ND (24) [80,64516] NO (73) [77,51936] NO (72) [71,718] 81 (6.38) [82,64462] 1.50 (0.41) [80,64516] 100 (0.78) [77,51936] 98 (0.72) [71,718] 9.23 (0.17) [82,64462] 1.50 (0.41) [80,64516] 100 (0.78) [77,51936] 9.6 (0.41) [71,718] 2300 (83) [82,64462] 1.9 (0.41) [82,6462] 1.9 (0.41) [77,51936] 9.6 (0.41) [71,718] 2300 (83) [82,6462] 1.9 (0.41) [71,718] 1.0 (0.78) [77,51936] 9.6 (0.41) [71,718] 1.3 (0.41) [82,6462] 1.9 (0.41) [71,718] 1.0 (0.78) [77,51936] 9.6 (0.78) [77,51936] 9.6 (0.78) [77,51936] 9.6 (0.78) [77,51936] 9.6 (0.78) [77,51936] 9.6 (0.78) [77,51936] 9.6 (0.78) [77,51936] 9.6 (0.78) [77,51936] 9.6 9.6 <td< th=""><th>5900 (17) [82, 64462] 9400 (16) [80, 64516] 6200 (17) [75,51936] 5800 ND (2.5) [82, 64462] ND (2.4) [80, 64516] ND (7.8) [77,51936] ND ND (2.8) [82, 64462] ND (2.4) [80, 64516] ND (7.8) [77,51936] ND 0.23 (0.17) [82, 64462] 1.90 (0.18) [80, 64516] 0.23 (0.18) [77,51936] ND 2900 (0.41) [82, 64462] ND (0.41) [80, 64516] 1.0 (0.78) [77,51936] 0.46 2900 (0.41) [82, 64462] ND (0.41) [80, 64516] 1.4 (0.78) [77,51936] 0.46 2900 (0.83) [82, 64462] 1.9 (0.18) [80, 64516] 1.4 (0.78) [77,51936] 0.46 13 (0.41) [82, 64462] 1.9 (0.18) [80, 64516] 1.4 (1.75) [77,51936] 1.7 14 (0.83) [82, 64462] 1.1 (1.8) [80, 64516] 1.4 (1.8) [77,51936] 1.7 1500 (1.73) [82, 64462] 1.1 (1.8) [82, 64462] 1.1 (1.8) [82, 6</th><th></th><th>4</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	5900 (17) [82, 64462] 9400 (16) [80, 64516] 6200 (17) [75,51936] 5800 ND (2.5) [82, 64462] ND (2.4) [80, 64516] ND (7.8) [77,51936] ND ND (2.8) [82, 64462] ND (2.4) [80, 64516] ND (7.8) [77,51936] ND 0.23 (0.17) [82, 64462] 1.90 (0.18) [80, 64516] 0.23 (0.18) [77,51936] ND 2900 (0.41) [82, 64462] ND (0.41) [80, 64516] 1.0 (0.78) [77,51936] 0.46 2900 (0.41) [82, 64462] ND (0.41) [80, 64516] 1.4 (0.78) [77,51936] 0.46 2900 (0.83) [82, 64462] 1.9 (0.18) [80, 64516] 1.4 (0.78) [77,51936] 0.46 13 (0.41) [82, 64462] 1.9 (0.18) [80, 64516] 1.4 (1.75) [77,51936] 1.7 14 (0.83) [82, 64462] 1.1 (1.8) [80, 64516] 1.4 (1.8) [77,51936] 1.7 1500 (1.73) [82, 64462] 1.1 (1.8) [82, 64462] 1.1 (1.8) [82, 6		4								
ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71.	ND (8.3) [82.6462] ND (8.1) [80.64516] ND (7.8) [77.51936] ND (7.8) [82.64462] ND (2.9) [80.64516] ND (2.9) [82.64462] ND (2.9) [82.64462] ND (2.9) [77.51936] ND		2900	(17)	[82.64462]	9400		6200		5800	(14) [71.94244]
ND (55) [82.64462] ND (24) [80.64516] ND (23) [77.5138] ND (22) [71. 1.0	ND (25) [82 64462] ND (24) [80 64516] ND (178) [77.51938] ND	Antimony	ON	(8.3)	[82.64462]	Q	_	QN	[77.	2	(7.2) [71.94244]
10	0.23 (0.17) [82.64462] 150 (0.81) [80.64516] 100 (0.70) [77.51936] 99 (0.12) [77.51936] 0.24 (0.17) [82.64462] 0.18 (0.18) [80.64516] 0.23 (0.16) [77.51938] 0.24 (0.18) [80.64516] 0.23 (0.16) [77.51938] 0.24 (0.18) [80.64516] 0.23 (0.16) [77.51938] 0.24 (0.18) [82.64462] 19 (0.18) [80.64516] 0.23 (0.18) [77.51938] 0.24 (0.18) [82.64462] 19 (0.18) [80.64516] 14 (0.70) [77.51938] 0.24 (0.18) [82.64462] 19 (0.18) [80.64516] 14 (0.70) [77.51938] 12 (0.18) [82.64462] 11 (1.6) [80.64516] 13000 (1.6) [77.51938] 12 (0.17) [82.64462] 11 (1.6) [80.64516] 13000 (1.6) [77.51938] 12 (0.17) [82.64462] 11 (1.6) [80.64516] 13000 (1.6) [77.51938] 12 (0.17) [82.64462] 11 (1.6) [80.64516] 13000 (1.6) [77.51938] 12 (0.18) [82.64462] 11 (1.6) [80.64516] 12 (0.78) [77.51938] 12 (0.18) [82.64462] 11 (1.6) [80.64516] 17 (1.6) [77.51938] 12 (0.18) [82.64462] 11 (1.6) [80.64516] 17 (1.6) [77.51938] 12 (0.18) [82.64462] 11 (1.6) [80.64516] 17 (1.6) [77.51938] 12 (0.18) [77.51938] 12 (0.18) [82.64462] 11 (1.6) [80.64516] 17 (1.6) [77.51938] 12 (0.18) [82.64462] 11 (1.6) [80.64516] 17 (1.6) [77.51938] 12 (0.18) [82.64462] 11 (1.6) [80.64516] 17 (1.6) [77.51938] 11 (1.6) [77.51938] 12 (1.6) [77.51	Arsenic	ON	(22)	[82.64462]	Q	_	QN	[77.	2	
0.23 (0.17) [82.64462] 0.18 (0.16) [80.64516] 0.23 (0.16) [77.51938] 0.24 (0.14) [71.612,6462] 0.18 (0.14) [82.64462] 0.18 (0.14) [80.64516] 0.53 (0.39) [77.51938] 0.24 (0.14) [71.612,6482] 0.18 (0.14) [80.64516] 0.53 (0.39) [77.51938] 0.24 (0.15) [77.51938] 0.24 (0.14) [71.612,6482] 0.18 (0.18) [80.64516] 0.19 (0.18) [77.51938] 0.19 (0.18) [77.51938] 0.19 (0.18) [77.51938] 0.19 (0.17) [71.712,713] 0.19 (0.17) [82.64462] 0.19 (0.18) [80.64516] 0.19 (0.18) [77.51938] 0.19 (0.17) [71.712,713] 0.19 (0.17) [82.64462] 0.19 (0.18) [80.64516] 0.19 (0.18) [77.51938] 0.19 (0.17) [71.712,713] 0.19 (0.17) [82.64462] 0.10 (0.18) [80.64516] 0.19 (0.18) [77.51938] 0.19 (0.17) [71.712,713] 0.19 (0.18) [82.64462] 0.19 (0.18) [80.64516] 0.19 (0.18) [77.51938] 0.19 (0.17) [71.712,713] 0.19 (0.17) [82.64462] 0.19 (0.18) [80.64516] 0.19 (0.18) [77.51938] 0.19 (0.17) [71.712,713] 0.19 (0.17) [71.712,712] 0.19 (0.17) [71.712,713]	0.23 (0.17) [82.64462] 0.18 (0.16) [80.64516] 0.23 (0.16) [77.51386] 0.24 ND (0.41) [82.64462] ND (0.4) [80.64516] 0.53 (0.16) [77.51386] 0.46 2900 (83) [82.64462] 19 (0.81) [80.64516] 5.00 (78) [77.51386] 0.46 6.4 (0.83) [82.64462] 19 (0.81) [80.64516] 14 (0.78) [77.51386] 12 12000 (4.1) [82.64462] 19 (0.81) [80.64516] 14 (1.6) [77.51386] 12 12000 (4.1) [82.64462] 11 (1.6) [80.64516] 14 (1.6) [77.51386] 12 12000 (4.1) [82.64462] 11 (1.6) [80.64516] 14 (1.6) [77.51386] 12 12000 (4.1) [82.64462] 11 (1.6) [80.64516] 10 (1.6) [77.51386] 120 13300 (4.1) [82.64462] 11 (4.1) [80.64516] 10 (7.8) [77.51386] 120 170 (0.83) [82.64462] 11 (4.1) [80.64516] 10 (7.8) [77.51386] 16 170 (0.83) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 16 170 (0.83) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 16 170 (0.83) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 16 170 (0.83) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 16 170 (0.83) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 16 170 (1.7) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 11 180 (8.3) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 11 180 (8.3) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 11 180 (8.3) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 11 180 (8.3) [82.64462] 11 (1.6) [80.64516] 11 (1.6) [77.51386] 11 180 (8.3) [82.64462] 1.00 (1.8) [80.64516] 11 (1.6) [77.51386] 11 180 (8.3) [82.64462] 1.00 (1.8) [80.64516] 11 (1.6) [77.51386] 11 180 (8.3) [82.64462] 1.00 (1.8) [80.64516] 11 (1.6) [77.51386] 11 180 (8.3) [82.64462] 1.00 (1.8) [80.64516] 1.00 (1.6) [77.51386] 1.00 180 (8.3) [82.64462] 1.00 (1.6) [80.64516] 1.00 (1.6) [77.51386] 1.00 180 (8.3) [82.64462] 1.00 (1.6) [80.64516] 1.00 (1.6) [77.51386] 1.00 180 (8.3) [82.64462] 1.00 (1.6) [80.64516] 1.00 (1.6) [77.51386] 1.00 180 (8.3) [82.64462] 1.00 (1.6) [80.64516] 1.00 (1.6) [77.51386] 1.00 180 (8.3) [82.64462] 1.00 (1.6) [80.64516] 1.00 (1.6) [77.51386] 1.00 180 (8.3) [82.64462] 1.00 (1.6) [80.64516] 1.00 (1.6) [77.51386] 1.00 180 (8.	Barium	81	(0.83)	[82.64462]	150	_	100	[77.	86	
No	ND (0.41) [R2.64462] ND (0.41) [80.64516] 0.53 (7.51938] 0.46 (8.81) [R2.64462] 19 (0.81) [R0.64516] 14 (0.78) [77.51938] 6300 (8.81) [R2.64462] 19 (0.81) [R0.64516] 14 (0.78) [77.51938] 5.6 (1.7) [R2.64462] 19 (0.81) [R0.64516] 14 (0.78) [77.51938] 5.6 (1.7) [R2.64462] 14 (1.6) [R0.64516] 14 (1.6) [77.51938] 12 (1.7) [R2.64462] 17000 (4.1) [R2.64462] 17000 (4.1) [R2.64462] 17000 (4.1) [R2.64462] 17000 (4.1) [R2.64462] 1.1 (4.1) [R2.64	Beryllium	0.23	(0.17)	[82.64462]	0.18	_	0.23	[77.	0.24	
2900 (83) [82.64462] 8900 (81) [80.64516] 5000 (78) [77.51938] 6300 (72) [71. 13 (0.83) [82.64462] 19 (0.81) [80.64516] 14 (0.78) [77.51938] 12 (0.72) [71. 14 (1.8) [80.64516] 13000 (3.9) [77.51938] 12 (0.72) [71. 12000 (4.1) [82.64462] 14 (1.8) [80.64516] 13000 (3.9) [77.51938] 12 (0.72) [71. 12000 (4.1) [82.64462] 17000 (4.1) [80.64516] 13000 (3.9) [77.51938] 12 (0.72) [71. 12000 (4.1) [82.64462] 110 (4.1) [80.64516] 13000 (3.9) [77.51938] 12 (0.72) [71. 12000 (4.1) [82.64462] 110 (4.1) [80.64516] 13000 (3.9) [77.51938] 12 (0.72) [71. 12000 (4.1) [82.64462] 110 (4.1) [80.64516] 13000 (7.8) [77.51938] 12 (6.8) [72.64462] 110 (6.83) [80.64516] 17 (1.8) [77.51938] 18 (6.8) [72.64462] 110 (6.81) [80.64516] 17 (1.8) [77.51938] 18 (6.8) [72.64462] 110 (7.8) [2900 (83) [82.64462] 8900 (81) [80.64516] 5000 (70) [77.5138] 6300 (83) [82.64462] 19 (0.81) [80.64516] 14 (0.78) [77.51388] 6300 (9.81) [80.64516] 14 (0.78) [77.51388] 12 (0.81) [80.64516] 14 (0.78) [77.51388] 12 (0.81) [80.64516] 14 (0.78) [77.51388] 12 (0.81) [80.64516] 14 (0.78) [77.51388] 12 (0.81) [80.64516] 14 (1.6) [77.51388] 12 (0.81) [80.64516] 13000 (3.9) [77.51388] 12 (0.81) [80.64516] 13000 (3.9) [77.51388] 12 (0.81) [80.64516] 13000 (3.9) [77.51388] 12 (0.81) [80.64516] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.9) [77.51388] 13000 (3.8) [82.64462] 1100 (3.9) [80.64516] 1100 (3.9) [77.51388] 14000 (3.8) [82.64462] 1000 (3.9) [80.64516] 1100 (3.9) [77.51388] 14000 (3.9) [82.64462] 1000 (3.9) [80.64516] 1100 (3.9) [77.51388] 14000 (3.9) [82.64462] 1300 (3.9) [77.51388] 14000 (3.9) [82.64462] 1300 (3.9) [77.51388] 14000 (3.9) [82.64462] 13000 (3.9) [80.64516] 13000 (3.9) [77.51388] 14000 (3.9) [82.64462] 13000 (3.9) [80.64516] 13000 (3.9) [77.51388] 18000 (3.9) [82.64462] 13000 (3.9) [80.64516] 13000 (3.9) [77.51388] 18000 (3.9) [82.64462] 13000 (3.9) [80.64516] 13000 (3.9) [77.51388] 18000 (3.9) [82.64462] 13000 (3.9) [80.64516] 13000 (3.9) [77.51388] 18000 (3.9) [82.64462] 13000 (3.9) [80.64516] 13000 (3.9) [82.64462] 1	Cadmium	QN	(0.41)	[82.64462]	S	_	0.53	[77.	0.46	
13 (0.83) [82.6462] 19 (0.81) [80.64516] 14 (0.76) [77.5138] 12 (0.72) [71.5138] 19 (0.81) [80.64516] 14 (0.78) [77.5138] 12 (0.72) [71.5138] 12 (0.72) [71.5138] 12 (0.72) [71.5138] 13 (0.72) [71.5138] 13 (0.72) [71.5138] 14 (1.6) [86.64516] 14 (1.6) [87.5138] 12 (1.75) [82.6462] 17 (1.6) [80.64516] 13 (1.6) [77.5138] 12	13 (0.83) [82.64462] 19 (0.81) [80.64516] 14 (0.78) [77.51938] 12	Calcium	2900	(83)	[82.64462]	8900	_	2000	[77.	6300	_
6.4 (0.83) [82.64462] 8.9 (0.81) [80.64516] 6.5 (0.78) [77.51938] 5.6 (0.72) [71. 72.54462] 1.0 (0.81) [80.64516] 1.0 (1.6) [77.51938] 1.2 (1.4) [71. 72.54462] 1.0 (1.6) [80.64516] 1.0 (1.6) [77.51938] 1.2 (1.4) [71. 72.54462] 1.0 (1.6) [80.64516] 1.0 (1.6) [77.51938] 1.2 (1.6) [71. 72.54462] 1.0 (1.6) [80.64516] 1.0 (1.6) [77.51938] 1.2 (1.6) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.2 (1.8) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.2 (1.8) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.0 (1.8) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.0 (1.8) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.0 (1.8) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.0 (1.8) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.0 (1.8) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.0 (1.8) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.0 (1.8) [71. 72.54462] 1.0 (1.8) [80.64516] 1.0 (1.8) [71.51938] 1.0	6.4 (0.83) [82.6462] 8.9 (0.81) [80.64516] 6.5 (0.78) [77.51936] 5.6 (9.6 (1.7) [82.6462] 14 (1.6) [80.64516] 14 (1.6) [77.51938] 12000 (4.1) [82.64462] 17000 (4.1) [80.64516] 13000 (3.9) [77.51938] 12000 (4.1) [82.64462] 17000 (4.1) [80.64516] 200 (3.9) [77.51938] 12000 (4.1) [82.64462] 17000 (81) [80.64516] 3000 (70) [77.51938] 12000 (70.83) [82.64462] 300 (0.81) [80.64516] 3000 (70) [77.51938] 3900 (70) [77.51938] 3900 (70) [77.51938] 16000 (70) [77.51938] (70) [77.51938	Chromium	13	(0.83)	[82.64462]	19	_	14	[77.	12	_
9.6 (1.7) [82.64462] 14 (1.6) [80.64516] 14 (1.6) [77.51936] 12 (1.4) [71. [71.6100] (1.7) [82.64462] 17000 (4) [80.64516] 13000 (3.9) [77.51938] 12000 (3.6) [71. [71.6100] (3.9) [77.51938] 12000 (3.6) [71. [71.6100] (3.9) [77.51938] 12000 (3.6) [71. [71.6100] (3.9) [77.51938] 12000 (7.5) [71. [71.6100] (3.9) [77.51938] 12000 (7.5) [71. [71.6100] (3.9) [77.51938] 12000 (7.5) [71. [71.6100] (3.9) [77.51938] 12000 (7.5) [71. [71.6100] (3.9) [77.51938] 12000 (7.5) [71. [71.6100] (3.9) [77.51938] 12000 (7.5) [71. [71.6100] (3.9) [77.51938] 12000 (7.5) [71. [71.6100] (3.9) [71.6100] (3.9) [77.51938] 12000 (7.5) [71. [71.6100] (3.9) [71.51938] 12000 (7.5) [71.6100] (3.9) [71.6100] (3	9.6 (1.7) [82.64462] 14 (1.6) [80.64516] 14 (1.6) [77.51938] 12 12000 (4.1) [82.64462] 17000 (4.1) [80.64516] 13000 (3.9) [77.51938] 12000 (4.1) [82.64462] 17000 (4.1) [80.64516] 13000 (3.9) [77.51938] 12000 (3.9) [82.64462] 5400 (0.81) [80.64516] 3900 (78) [77.51938] 3900 (83) [82.64462] 320 (0.81) [80.64516] ND (7.8) [77.51938] 280 (9.81) [82.64462] 170 (1.6) [80.64516] ND (1.7) [7.51938] 16 (1.6) [80.64516] ND (1.8) [77.51938] 16 (1.6) [80.64516] ND (1.8) [77.51938] 16 (1.6) [80.64516] ND (1.8) [77.51938] 16 (1.8) [80.64516] ND (1.8) [77.51938] 17 (1.8) [77.51938] 17 (1.8) [77.51938] 18 (1.8) [80.64516] ND (1.8) [77.51938] 18 (1.8) [80.64516] ND (1.8) [80	Cobalt	6.4	(0.83)	[82.64462]	8.9	_	6.5	[77.	5.6	_
12000 (4.1) [82.64462] 17000 (4) [80.64516] 13000 (3.9) [77.51938] 12000 (3.6) [71.51938] 12000 (4.1) [82.64462] 11 (4) [80.64516] 26 (3.9) [77.51938] 6.8 (3.6) [71.51938] 12000 (7.5) [71.51938] 120000 (7.5) [71.51938] 120	12000 (4.1) [82.64462] 17000 (4) [80.64516] 13000 (3.9) [77.51938] 12000 (4.1) [82.64462] 11 (4) [80.64516] 26 (3.9) [77.51938] 12000 (3.9) [77.51938] (8.8) [82.64462] 11 (4) [80.64516] 3900 (78) [77.51938] 3900 (78) [77.51938] 3900 (78) [77.51938] 3900 (78) [77.51938] 3900 (78) [77.51938] 3900 (78) [77.51938] 3900 (78) [77.51938] 3900 (78) [77.51938] 3900 (78) [77.51938] 16 (78) [77.51938] 16 (78) [77.51938] 16 (78) [77.51938] 16 (78) [77.51938] 16 (78) [77.51938] 16 (78) [77.51938] 10 (78) [7	Copper	9.6	(1.7)	[82.64462]	14	[80.	14	[77.	12	
38 (4.1) [82.64662] 11 (4) [80.64516] 26 (3.9) [77.51938] 6.8 (3.6) [71.61938] 3900 (72) [71.	38 (4.1) [82.64462] 11 (4) [80.64516] 26 (3.9) [77.51938] 6.8 3300 (83) [82.64462] 320 (0.81) [80.64516] 3900 (78) [77.51938] 3900 170 (0.83) [82.64462] 320 (0.81) [80.64516] 210 (0.78) [77.51938] 280 170 (0.83) [82.64462] 820 (0.81) [80.64516] 17 (1.6) [77.51938] 800 171 (1.7) [82.64462] 1100 (240) [80.64516] 17 (1.6) [77.51938] 16 180 (250) [82.64462] 1100 (240) [80.64516] 17 (1.6) [77.51938] 11 180 (0.83) [82.64462] 100 (0.81) [80.64516] 190 (78) [77.51938] 11.1 180 (8.3) [82.64462] 100 (0.81) [80.64516] 190 (7.8) [77.51938] 11.1 180 (8.3) [82.64462] 100 (8.1) [80.64516] 190 (7.8) [77.51938] 18 19 (1.7) [82.64462] 100 (8.1) [80.64516] 190 (7.8) [77.51938] 18 19 (1.7) [82.64462] 100 (1.6) [80.64516] 190 (7.8) [77.51938] 18 19 (1.7) [82.64462] 100 (1.6) [80.64516] 190 (1.6) [77.51938] 18 19 (1.7) [82.64462] 100 (1.6) [80.64516] 190 (1.6) [77.51938] 18 18 (1.2) [82.64462] 100 (1.6) [82.64516] 190 (1.6) [77.51938] 18 18 (1.2) [82.64462] 100 (1.6) [82.64516] 190 (1.6) [77.51938] 18 18 (1.2) [82.64462] 100 (1.6) [82.64516] 190 (1.6) [77.51938] 18 18 (1.2) [82.64462] 100 (1.6) [82.64516] 190 (1.6) [77.51938] 18 18 (1.2) [82.64462] 100 (1.6) [82.64516] 190 (1.6) [77.51938] 18 18 (1.2) [82.64462] 100 (1.6) [150.8181] 100 (1.6) [150.81	Iron	12000	(4.1)	[82.64462]	17000	[80.	13000	[77.	12000	
3300 (83) [82.64462] 5400 (81) [80.64516] 3900 (76) [77.51938] 3900 (72) [71. [71.51938] 10 (0.83) [82.64462] 10 (0.81) [80.64516] 10 (0.78) [77.51938] 10 (0.72) [71. [71.5182] 10 (0.83) [82.64462] 10 (0.81) [80.64516] 17 (1.6) [77.51938] 16 (1.4) [71. [71.5182] 10 (1.5) [82.64462] 1100 (240) [80.64516] 17 (1.6) [77.51938] 16 (1.4) [71. [71.5182] 10 (1.5) [82.64462] 1100 (240) [80.64516] 17 (1.6) [77.51938] 16 (1.4) [71. [71.5182] 10 (0.83) [82.64462] 10 (0.81) [80.64516] 11 (0.78) [77.51938] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71.5182] 11 (0.72) [71. [71.5182] 11 (0.72) [71.5182	3300 (83) [82.64462] 5400 (81) [80.64516] 3900 (78) [77.51938] 3900 (78) [77.51938] 3900 (78) [77.51938] 3900 (78) [77.51938] 280 (78) [77.51938]	Lead	38	(4.1)	[82.64462]	11	_	56	[77.	6.8	
170 (0.83) [82.64462] 320 (0.81) [80.64516] 210 (0.78) [77.51938] 280 (0.72) [71. ND (4.1) [82.64462] ND (4) [80.64516] ND (3.9) [77.51938] ND (3.6) [71. 17 (1.7) [82.64462] 21 (1.6) [80.64516] 17 (1.6) [77.51938] 16 (1.4) [71. 182.64462] 1100 (240) [80.64516] 17 (1.6) [77.51938] 16 (1.4) [71. ND (25) [82.64462] ND (24) [80.64516] ND (23) [77.51938] ND (22) [71. ND (0.83) [82.64462] ND (0.81) [80.64516] 1 (0.78) [77.51938] ND (22) [71. ND (0.83) [82.64462] ND (0.81) [80.64516] 10 (78) [77.51938] ND (7.2) [71. ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. ND (8.3) [82.64462] 36 (1.6) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. ND (8.3) [82.64462] A6 (1.6) [80.64516] A1 (1.6) [77.51938] 36 (1.4) [71. ND (8.3) [82.64462] S6 (1.6) [80.64516] A1 (1.6) [77.51938] B6 (1.4) [71. ND (8.3) [82.64462] S6 (1.6) [80.64516] A1 (1.6) [77.51938] B6 (1.4) [71. ND (8.3) [82.64462] S6 (1.6) [80.64516] A1 (1.6) [77.51938] B6 (1.4) [71. ND (8.3) [82.64462] S6 (1.6) [80.64516] A1 (1.6) [77.51938] B6 (1.4) [71. ND (8.3) [82.64462] S6 (1.6) [80.64516] A1 (1.6) [77.51938] B6 (1.4) [71. ND (8.3) [82.64462] S6 (1.6) [80.64516] A1 (1.6) [77.51938] S6 (1.4) [71. ND (8.3) [82.64462] S6 (1.6) [80.64516] A1 (1.6) [77.51938] S6 (1.4) [71. ND (8.3) [82.64462] S6 (1.6) [80.64516] A1 (1.6) [77.51938] S6 (1.4) [71. ND (8.3) [82.64462] S6 (1.6) [80.64516] A1 (1.6) [80.64516] S6 (1	170 (0.83) [82.64462] 320 (0.81) [80.64516] 210 (0.78) [77.51938] 280 ND (4.1) [82.64462] ND (4) [80.64516] ND (3.9) [77.51938] ND 17 (1.7) [82.64462] 21 (1.6) [80.64516] 17 (1.6) [77.51938] 16 430 (250) [82.64462] 1100 (240) [80.64516] 530 (230) [77.51938] 16 ND (25) [82.64462] ND (241) [80.64516] ND (23) [77.51938] ND ND (0.83) [82.64462] ND (0.81) [80.64516] 10 (0.78) [77.51938] 1.1 ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] 1.1 ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] 1.8 19 (1.7) [82.64462] 36 (1.6) [80.64516] 11 (1.6) [77.51938] 18 19 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 19 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 10 (2.5) [841.0428] 7.4 (0.6) [150.8181] 25 (2.2) [741.5647] 6.3 <	Magnesium	3300	(83)	[82.64462]	5400		3900	[77.	3900	_
ND (4.1) [82.64462] ND (4) [80.64516] ND (3.9) [77.51938] ND (3.6) [71.51938] ND (3.6) [71.51938] ND (1.4) [71.51938] ND (1.4) [71.51938] ND (1.4) [71.51938] ND (250) [82.64462] ND (240) [80.64516] ND (230) [77.51938] ND (220) [71.51938] ND (220)	ND (4.1) [82.64462] ND (4) [80.64516] ND (3.9) [77.51938] ND (1.7) [82.64462] 21 (1.6) [80.64516] 17 (1.6) [77.51938] 16 (1.6) [80.64516] 17 (1.6) [77.51938] 16 (1.6) [82.64462] 1100 (240) [80.64516] 17 (1.6) [77.51938] 530 (250) [82.64462] ND (241) [80.64516] ND (221) [77.51938] ND (251) [82.64462] ND (0.81) [80.64516] 110 (0.78) [77.51938] 1.1 (0.7	Manganese	170	(0.83)	[82.64462]	320	_	210	[77.	280	_
17 (1.7) [82.64462] 21 (1.6) [80.64516] 17 (1.6) [77.51938] 16 (1.4) [71. 430 (250) [82.64462] 1100 (240) [80.64516] 530 (230) [77.51938] 530 (220) [71. ND (25) [82.64462] ND (24) [80.64516] ND (23) [77.51938] ND (22) [71. ND (0.83) [82.64462] ND (0.81) [80.64516] 1 (0.78) [77.51938] 1.1 (0.72) [71. ND (0.83) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. Kg) (1.7) [82.64462] A6 (1.6) [80.64516] 41 (1.6) [77.51938] 36 (1.4) [71. Kg) 4.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 (0.55) [741.5647] 6.3 (0.66) [286	17 (1.7) [82.64462] 21 (1.6) [80.64516] 17 (1.6) [77.51938] 16 430 (250) [82.64462] 1100 (240) [80.64516] 530 (230) [77.51938] 530 ND (25) [82.64462] ND (24) [80.64516] ND (23) [77.51938] ND ND (0.83) [82.64462] ND (0.81) [80.64516] 1 (0.78) [77.51938] 1.1 ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND Rkg) (1.7) [82.64462] 36 (1.6) [80.64516] 41 (1.6) [77.51938] 18 A.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	Molybdenum	ON	(4.1)	[82.64462]	2	_	Q.	[77.	2	(3.6) [71.94244]
430 (250) [82.64462] 1100 (240) [80.64516] 530 (230) [77.51938] 530 (220) [71.51938] ND (25) [82.64462] ND (24) [80.64516] ND (23) [77.51938] ND (22) [71.51938] ND (25) [71.51938] ND (430 (250) [82.64462] 1100 (240) [80.64516] 530 (230) [77.51938] 530 ND (25) [82.64462] ND (24) [80.64516] ND (23) [77.51938] ND (28) [82.64462] ND (0.81) [80.64516] 1 (0.78) [77.51938] 1.1 ND (0.83) [82.64462] ND (0.81) [80.64516] ND (7.8) [77.51938] 1.1 ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.8) [77.51938] ND (7.9) [7	Nickel	17	(1.7)	[82.64462]	21		17	[77.	16	(1.4) [71.94244]
ND (25) [82.64462] ND (24) [80.64516] ND (23) [77.51938] ND (22) [71. ND (0.83) [82.64462] ND (0.81) [80.64516] 1 (0.78) [77.51938] 1.1 (0.72) [71. ND (8.3) [82.64462] ND (8.1) [80.64516] 190 (7.8) [77.51938] 420 (7.2) [71. ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71. ND (8.3) [82.64462] 36 (1.6) [80.64516] 21 (1.6) [77.51938] 18 (1.4) [71. 35 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 (1.4) [71. 35 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 (0.57) [142. 525 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3 (0.86) [285 (285 (285 (285 (285 (285 (285 (285 (ND (25) [82.64462] ND (24) [80.64516] ND (23) [77.51938] ND (0.83) [82.64462] ND (0.81) [80.64516] 1 (0.78) [77.51938] 1.1 (0.78) [77.51938] 1.1 (0.83) [82.64462] 360 (81) [80.64516] 190 (78) [77.51938] 420 (8.3) [82.64462] 86 (1.6) [80.64516] ND (7.8) [77.51938] ND (1.7) [82.64462] 36 (1.6) [80.64516] 21 (1.6) [77.51938] 18 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 (1.7) [82.64462] 5.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	Potassium	430	(220)	[82.64462]	1100		530	[77.	530	
ND (0.83) [82.64462] ND (0.81) [80.64516] 1 (0.78) [77.51938] 1.1 (0.72) [71.140 (83) [82.64462] 360 (81) [80.64516] 190 (78) [77.51938] 420 (72) [71.151938	ND (0.83) [82.64462] ND (0.81) [80.64516] 1 (0.78) [77.51938] 1.1 (140 (83) [82.64462] 360 (81) [80.64516] 190 (78) [77.51938] 420 (8.3) [82.64462] 860 (8.1) [80.64516] ND (7.8) [77.51938] 420 (1.7) [82.64462] 36 (1.6) [80.64516] 21 (1.6) [77.51938] 18 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 (1.8) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	Selenium	ON	(52)	[82.64462]	2	_	Q	[77.	Q	
140 (83) [82.64462] 360 (81) [80.64516] 190 (78) [77.51938] 420 (72) [71.51938] ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [71.51938] 19 (1.7) [82.64462] 36 (1.6) [80.64516] 21 (1.6) [77.51938] 18 (1.4) [71.51938] 35 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 (1.4) [71.51938] kg) 4.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 (0.57) [142.5647] 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3 (0.86) [285	140 (83) [82.64462] 360 (81) [80.64516] 190 (78) [77.51938] 420 ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND 19 (1.7) [82.64462] 36 (1.6) [80.64516] 21 (1.6) [77.51938] 18 35 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 4.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	Silver	Q	(0.83)	[82.64462]	2	_	-	[77.	1.1	_
ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (7.2) [7.51938] ND (7.2) [ND (8.3) [82.64462] ND (8.1) [80.64516] ND (7.8) [77.51938] ND (1.7) [82.64462] 36 (1.6) [80.64516] 21 (1.6) [77.51938] 18 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 (1.8) [82.64462] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	Sodium	140	(83)	[82.64462]	360		190	[77.	420	
19 (1.7) [82.64462] 36 (1.6) [80.64516] 21 (1.6) [77.51938] 18 (1.4) [35 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 (1.4) [kg) 4.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 (0.57) [25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3 (0.86) [19 (1.7) [82.64462] 36 (1.6) [80.64516] 21 (1.6) [77.51938] 18 35 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 36 (1.5) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	Thallium	ON	(8.3)	[82.64462]	S	_	S	[77.	S	(7.2) [71.94244]
35 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 (1.4) [35 (1.7) [82.64462] 46 (1.6) [80.64516] 41 (1.6) [77.51938] 36 kg) 4.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	Vanadium	19	(1.7)	[82.64462]	36	_	21	[77.	18	(1.4) [71.94244]
kg) 4.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 (0.57) 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3 (0.86)	kg) 4.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	Zinc	35	(1.7)	[82.64462]	46		41	[77]	36	(1.4) [71.94244]
4.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 (0.57) 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3 (0.86)	4.5 (0.34) [84.10428] 7.4 (0.6) [150.8181] 6.3 (0.59) [148.3129] 6.1 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	SW7060 - Arsenic (mg/kg)									
. 25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3 (0.86)	25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	Arsenic	4.5		[84.10428]	7.4		6.3		6.1	(0.57) [142.7144]
25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3 (0.86)	25 (2.5) [841.0428] 5.4 (0.45) [150.8181] 25 (2.2) [741.5647] 6.3	SW7421 - Lead (mg/kg)									
		Lead	52	(2.5)	[841.0428]	5.4		25	(2.2) [741.5647]	6.3	(0.86) [285.4288]

	05 05-SS-08 05-SS-08-01 0 - 0.5	(0.04) [221.8278]	(0.36) [71.35721]	() [1]
	0	0.062 B	0.37	2
	 	(0.044) [244.3792]	(0.37) [74.15647]	[1]
	05 05-SS-07 05-SS-07-01 0 - 0.5	(0.044)	(0.37)	С
		0.073 B	QN	7
) :PTH (FT.)		(0.063) [351.1235]	(0.38) [75.40909]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	05 05-SS-06 05-SS-06-01 0 - 0.5	(0.063)	(0.38)	C
BEG. DE		0.21	QN	11
		(0.058) [320.9242]	(0.42) [84.10428]	[1]
	05 05-SS-05 05-SS-05-01 0 - 0.5	(0.058)	(0.42)	С
	0	0.071 8	ND	18
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

SITE 10

Coloration Col
Hetals (mg/kg) Hetals (mg/kg)
Metals (mg/kg) Metals (mg/kg)
9500 (17) [84.74576] 8000 (14) [71.94244] 11000 (8.5) [84.74576] 15 (7.2) [71.94244] 11000 (8.5) [84.74576] 15 (7.2) [71.94244] 1000 (9.5) [84.74576] 130 (0.72) [71.94244] 170 (170) [84.74576] 130 (0.72) [71.94244] 170 (170) [84.74576] 130 (0.72) [71.94244] 170 (170) [84.74576] 130 (0.72) [71.94244] 170 (170) [84.74576] 130 (0.72) [71.94244] 12000 (170) [85] [84.74576] 22000 (170) [71.94244] 12000 (170) [85] [84.74576] 22000 (170) [71.94244] 12000 (170) [
y h (8.5) [84.74576] 15 (7.2) [71.94244] ND (25) [84.74576] ND (22) [71.94244] ND (23) (10.85) [84.74576] ND (22) [71.94244] ND (23) (10.17) [84.74576] ND (22) [71.94244] ND (23) (10.17) [84.74576] ND (24) [71.94244] ND (25) [84.74576] ND (25) [71.94244] ND (2
ND (25) [84.74576] ND (22) [71.94244] ND
160 (0.85) [84.74576] 130 (0.72) [71.94244] 170 (1.72) [71.94244]
um 0.31 (0.17) [84,74576] 0.26 (0.14) [71,94244] 0.35 n 0.79 (0.42) [84,74576] 0.26 (0.14) [71,94244] 0.36 n 20 (0.42) [84,74576] 220 (72) [71,94244] 12000 20 (0.85) [84,74576] 22 (0.72) [71,94244] 22 (72) [71,94244] 22 (72) [71,94244] 22 (72) [71,94244] 22 (72) [71,94244] 22 (72) [71,94244] 22 (72) [71,94244] 22 (72) [71,94244] 27 (72) [71,94244] 27 (72) [71,94244] 27 (72) [71,94244] 27 (72) [71,94244] 27 27 (72) 27 (72) 27 </td
0.79 (0.42) [84.74576] 0.48 (0.36) [71.94244] ND (85) [84.74576] 22000 (72) [71.94244] 12000 (85) [84.74576] 22000 (72) [71.94244] 12000 (72) [71.94244] 12000 (72) [71.94244] 22 (72) [71.94244] 22 (72) [71.94244] 22 (72) [72.94244] 22 (72) [
11000 (85) [84.74576] 22000 (72) [71.94244] 12000 120 (0.85) [84.74576] 22 (0.72) [71.94244] 22 (0.85) [84.74576] 22 (0.72) [71.94244] 22 (0.85) [84.74576] 22 (0.72) [71.94244] 27 (0.85) [84.74576] 22 (0.72) [71.94244] 27 (0.85) [84.74576] 2000 (4.2) [84.74576] 2000 (4.2) [84.74576] 2000 (4.2) [84.74576] 2000 (4.2) [84.74576] 2000 (4.2) [84.74576] 2000 (4.2) [84.74576] 200 (6.72) [71.94244] 2200 (6.85) [84.74576] 200 (6.72) [71.94244] 2200 (6.85) [84.74576] 200 (6.72) [71.94244] 370 (6.85) [84.74576] 200 (6.72) [71.94244] 370 (6.85) [84.74576] 200 (6.72) [71.94244] 370 (6.85) [84.74576] 200 (6.72) [71.94244] 370 (6.85) [84.74576] 200 (6.72) [71.94244] 370 (6.85) [84.74576] 200 (6.72) [71.94244] 310 (6.85) [84.74576] 200 (7.2) [71.94244] 310 (6.85) [84.74576] 200 (7.2) [71.94244] 310 (6.85) [84.74576] 200 (7.2) [71.94244] 310 (6.85) [84.74576] 200 (7.2) [71.94244] 310 (6.85) [84.74576] 200 (7.2) [71.94244] 310 (6.85) [84.74576] 200 (7.2) [71.94244] 310 (6.85) [84.74576] 200 (7.2) [71.94244] 310 (6.84) [6.90 (6.90) [6.90 (6.90) [7.2) [71.94244] 310 (6.90) [6.90 (6.90) [7.2) [71.94244] 310 (6.90) [6.90 (6.90) [7.2) [71.94244] 310 (6.90) [6.90 (6.90) [7.2) [71.94244] 310 (6.90) [6.90 (6.90) [7.2) [71.94244] 310 (6.90) [7.2) [7.1.94244] 310 (6.90) [7.1.2) [7.1.2] [7.1.94244] 310 (6.90) [7.1.2) [7.1.2] [7.1.2] [7.1.2] [7.1.2] [7.1.
1. 2.0 (0.85) [84.74576] 2.2 (0.72) [71.94244] 2.2 2
8.6 (0.85) [84.74576] 7.2 (0.72) [71.94244] 9.1 (2.2000) (1.7) [84.74576] 21 (1.4) [71.94244] 27 (2000) (4.2) [84.74576] 21 (1.4) [71.94244] 27 (2000) (4.2) [84.74576] 16000 (3.6) [71.94244] 22000 (4.2) [84.74576] 250 (3.6) [71.94244] 120 (2000) (4.2) [84.74576] 220 (7.2) [71.94244] 120 (2.20) [71.94244] 120 (2.20) (2.20) [71.94244] 120 (2.20) [71.94
25 (1.7) [84.74576] 21 (1.4) [71.94244] 27 20000 (4.2) [84.74576] 35 (3.6) [71.94244] 22000 200 (4.2) [84.74576] 35 (3.6) [71.94244] 120 200 (4.2) [84.74576] 35 (3.6) [71.94244] 120 200 (4.2) [84.74576] 35 (3.6) [71.94244] 120 200 (85) [84.74576] 260 (0.72) [71.94244] 370 (72) 24 (1.7) [84.74576] 80 (3.6) [71.94244] 870 24 (1.7) [84.74576] 80 (220) [71.94244] 80 25 (250) [84.74576] 80 (220) [71.94244] 80 27 (250) [84.74576] 80 (220) [71.94244] 80 28 (250) [84.74576] 80 (220) [71.94244] 80 29 (1.7) [84.74576] 80 (7.2) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 29 (1.7) [84.74576] 86 (1.4) [71.94244] 81 20 (1.7) [84.74576] 81 20
2000 (4.2) [84.74576] 16000 (3.6) [71.94244] 22000 200 (4.2) [84.74576] 35 (3.6) [71.94244] 120 se
200 (4.2) [84.74576] 35 (3.6) [71.94244] 120 se 270 (0.85) [84.74576] 5200 (72) [71.94244] 7200 1um ND (4.2) [84.74576] 260 (0.72) [71.94244] 7200 270 (0.85) [84.74576] 260 (0.72) [71.94244] 7200 274 (1.7) [84.74576] 20 (1.4) [71.94244] 80 1m 820 (250) [84.74576] 900 (220) [71.94244] 80 1.4 (0.85) [84.74576] 0.72 (0.72) [71.94244] 80 1.5 (85) [84.74576] 0.72 (0.72) [71.94244] 1.4 (1.4) [8.5] [84.74576] 80 Arsenic (mg/kg) 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
Lead (mg/kg) (85) (84,74576] 5200 (72) [71.94244] 7200 se 270 (0.85) [84.74576] 260 (0.72) [71.94244] 720 num Arsenic (0.85) [84.74576] 80 (0.72) [71.94244] 870 n (1.7) [84.74576] 20 (1.4) [71.94244] 82 n (250) [84.74576] 90 (220) [71.94244] 90 n (25) [84.74576] 0.72 (0.72) [71.94244] 1.4 (1.4) n (25) [84.74576] 290 (7.2) [71.94244] 1.4 (1.4) n (25) [84.74576] 29 (1.4) [71.94244] 1.4 (1.5) Arsenic (mg/kg) 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
se 270 (0.85) [84.74576] 260 (0.72) [71.94244] 370 (1um ND (4.2) [84.74576] ND (3.6) [71.94244] ND 24 (1.7) [84.74576] 20 (1.4) [71.94244] 25 25 (1.4) [71.94244] 25 26 (1.4) [71.94244] 25 27 (1.4) [71.94244] 25 28 (250) [84.74576] ND (22) [71.94244] ND 29 (25) [84.74576] 290 (7.2) [71.94244] 1.4 (0.85) [84.74576] 290 (7.2) [71.94244] 380 29 (1.7) [84.74576] 26 (1.4) [71.94244] 31 29 (1.7) [84.74576] 68 (1.4) [71.94244] 31 29 (1.7) [84.74576] 68 (1.4) [71.94244] 31 29 (1.7) [84.74576] 68 (1.4) [71.94244] 31 29 (1.7) [84.74576] 26 (1.4) [71.94244] 31 29 (1.7) [84.74576] 27 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
num ND (4.2) [84.74576] ND (3.6) [71.94244] ND 24 (1.7) [84.74576] 20 (1.4) [71.94244] 25 n 820 (250) [84.74576] 900 (220) [71.94244] 900 n ND (25) [84.74576] ND (22) [71.94244] ND 1.4 (0.85) [84.74576] 0.72 (0.72) [71.94244] ND n (8.5) [84.74576] ND (7.2) [71.94244] 380 n ND (8.5) [84.74576] ND (7.2) [71.94244] ND n ND (8.5) [84.74576] ND (7.2) [71.94244] ND Arsenic (mg/kg) 10 (0.64) [160.0640] 17 (1.4) [71.94244] 81 Lead (mg/kg) 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
24 (1.7) [84.74576] 20 (1.4) [71.94244] 25 n 820 (250) [84.74576] 900 (220) [71.94244] 900 n ND (25) [84.74576] ND (22) [71.94244] ND 1.4 (0.85) [84.74576] 0.72 (0.72) [71.94244] 1.4 (0.85) [84.74576] n ND (8.5) [84.74576] ND (7.2) [71.94244] ND Arsenic (mg/kg) (1.7) [84.74576] 68 (1.4) [71.94244] 81 Arsenic (mg/kg) 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
nm 820 (250) [84.74576] 900 (220) [71.94244] 900 n ND (25) [84.74576] ND (22) [71.94244] ND 1.4 (0.85) [84.74576] 0.72 (0.72) [71.94244] 1.4 (330 (85) [84.74576] 290 (7.2) [71.94244] 380 n ND (8.5) [84.74576] ND (7.2) [71.94244] ND 29 (1.7) [84.74576] 26 (1.4) [71.94244] 31 Arsenic (mg/kg) 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
n ND (25) [84.74576] ND (22) [71.94244] ND 1.4 (0.85) [84.74576] 0.72 (0.72) [71.94244] 1.4 (0.85) [84.74576] n (85) [84.74576] 290 (7.2) [71.94244] 380 n (8.5) [84.74576] 290 (7.2) [71.94244] ND n 29 (1.7) [84.74576] 26 (1.4) [71.94244] 31 Arsenic (mg/kg) 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
1.4 (0.85) [84.74576] 0.72 (0.72) [71.94244] 1.4 (0.85) [84.74576] 290 (72) [71.94244] 380 (8.5) [84.74576] 800 (7.2) [71.94244] 380 (7.2) [71.94244] 800 (71.94244] 800 (71.94244] 800 (71.94244] 800 (71.94244] 800 (71.9
330 (85) [84.74576] 290 (72) [71.94244] 380 ND (8.5) [84.74576] ND (7.2) [71.94244] ND 29 (1.7) [84.74576] 26 (1.4) [71.94244] 31 Arsenic (mg/kg) 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
n ND (8.5) [84.74576] NO (7.2) [71.94244] ND 29 (1.7) [84.74576] 26 (1.4) [71.94244] 31 31 41 41 41 41 41 41 41 41 41 41 41 41 41
Arsenic (mg/kg) Lead (mg/kg) 29 (1.7) [84.74576] 26 (1.4) [71.94244] 31 64 (1.7) [84.74576] 68 (1.4) [71.94244] 81 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 240 (19) [6402.561] 27 (2.2) [745.7121] 140
Arsenic (mg/kg) 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
Arsenic (mg/kg) 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
c , 10 (0.64) [160.0640] 17 (1.2) [298.2848] 12 - Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
- Lead (mg/kg) 240 (19) [6402.561] 27 (2.2) [745.7121] 140
240 (19) [6402.561] 27 (2.2) [745.7121] 140
Croton Wh - Mat Detected MA Mat A 11: 11

05 05-SS-09 05-SS-09 06-SS-09	0.077 B	(mg/kg) 0.76 oisture (%)	Percent moisture
09 9-01 5		(0.4) [80.03201]	()
BEG. DEPT 0	1.8	0.58	10
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) 05 05-SS-10 05-SS-10 06-SS-10	(0.045) [252.5252]	(0.37) [74.57121]	()
05-	0.077 B	0.85	12
05 05-SS-11 05-SS-11-01	0 - 0.5	(0.38) [76.26601]	() [1]
O .	S	Q. Q.	2.6
05 05-SS-12 05-SS-12-01	0 - 0.5 	(0.35) [70.80648]	() [1]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			.IS	SITE ID				
			SAMI BEG. DEPTH -	SAMPLE ID DEPTH - END DEPTH (FT.)				
		05	05	10		05		05
		05-SS-13 05-SS-13-01	05-SS-13	05-55-13		05-SS-14	c	05-SS-15
PARAMETER		10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1	. 0.5	1	0 - 0.5) ! ! ! ! ! ! ! !	0 - 0.5
SW6010 - Metals (mg/kg)								
Aluminum	5200	(15) [75.18796]	6100	(14) [69.4444]	4300	(14) [68.49314]	6300	(15) [76.92307]
Antimony	QN	(7.5) [75.18796]	ON	(6.9) [69.4444]	QN	(6.8) [68.49314]	QN	
Arsenic	QN		ND	(21) [69.4444]	QN	(21) [68.49314]	ON	(23) [76.92307]
Barium	100		35	(0.69) [69.4444]	26	(0.68) [68.49314]	110	(0.77) [76.92307]
Beryllium	ON	(0.15) [75.18796]	QN	(0.14) [69.4444]	0.17	(0.14) [68.49314]	QN	(0.15) [76.92307]
Cadmium	ON	(0.38) [75.18796]	ND	(0.35) [69.4444]	0.35	(0.34) [68.49314]	QN	(0.38) [76.92307]
Calcium	3800	_	4300	(69) [69.4444]	2200	(68) [68.49314]	0069	(77) [76.92307]
Chromium	11	_	12	(0.69) [69.4444]	8.6	(0.68) [68.49314]	14	(0.77) [76.92307]
Cobalt	6.2	_	6.9	_	4.9	(0.68) [68.49314]	7.7	(0.77) [76.92307]
Copper	8.6		10	(1.4) [69.4444]	7.7	(1.4) [68.49314]	14	(1.5) [76.92307]
Iron	11000		12000		8900	(3.4) [68.49314]	13000	(3.8) [76.92307]
Lead	20		13	(3.5) [69.4444]	4.4	(3.4) [68.49314]	40	(3.8) [76.92307]
Magnesium	3100	(75) [75.18796]	3300	(69) [69.4444]	2300	(68) [68,49314]	4100	(77) [76.92307]
Manganese	210		220	(0.69) [69.4444]	130	(0.68) [68.49314]	250	(0.77) [76.92307]
Molybdenum	QN	(3.8) [75.18796]	QN	(3.5) [69.4444]	QN	(3.4) [68.49314]	QN	(3.8) [76.92307]
Nickel	15		14		12	(1.4) [68.49314]	16	(1.5) [76.92307]
Potassium	420	_	200		370	(210) [68.49314]	630	(230) [76.92307]
Selenium	ON	_	ND		9	(21) [68.49314]	QN	(23) [76.92307]
Silver	QN	_	NO	(0.69) [69.44444]	9	(0.68) [68.49314]	QN	(0.77) [76.92307]
Sodium	130		150	_	100	(68) [68.49314]	170	(77) [76.92307]
Thallium	QN	(7.5) [75.18796]	ND	(6.9) [69.4444]	2	(6.8) [68.49314]	QN	(7.7) [76.92307]
Vanadium	22	(1.5) [75.18796]	56	(1.4) [69.44444]	15	(1.4) [68.49314]	25	(1.5) [76.92307]
Zinc	30	(1.5) [75.18796]	31	(1.4) [69.44444]	24	(1.4) [68.49314]	54	(1.5) [76.92307]
SW7060 - Arsenic (mg/kg)								
Arsenic	5.2	(0.56) [139.4972]	5.3	(0.52) [130.7890]	4	(0.31) [76.67770]	9	(0.56) [140.5757]
SW7421 - Lead (mg/kg)						-		
Lead	12	(0.84) [278.9945]	11	(0.78) [261.5781]	4.8	(0.46) [153.3554]	52	(4.2) [1405.757]
Compiled: 21 March 1995		() = Detection Limit	t [] = Factor	ND = Not Detected	NA = No	Not Applicable		

	05 05-SS-15 05-SS-15-01 0 - 0.5	(0.041) [230.0331]	(0.35) [70.28789]	(1) (1]
	; ; ; ; ;	QN	N	1.2
		(0.04) [220.0316]	[0.38] [76.67770]	[1]
	05 05-SS-14 05-SS-14-01 0 - 0.5	(0.04)	(0.38)	
	10	0.053 B	N	1.2
PTH (FT.)	S-13-01	(0.054) [297.6190]	(0.33) [65.39452]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	05 05-88-13 05-08-03 Dup of 05-88-13-01 0 - 0.5	(0.054)	(0.33)	С
BEG. DEI	05-DS-03	0.066 8	QN	1.6
		(0.055) [305.9975]	(0.35) [69.74862]	[1]
	05 05-SS-13 05-SS-13-01 0 - 0.5	(0.055)	(0.35)	С
	0 !	0.07 B	QN	1.8
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID

	0	06-MW-01 06-MW-01-02		06-MW-02 06-MW-02-02	J	06-MW-03 06-MW-03-02	06-DS-01	06-MW-03 Dup of 06-MW-03-02
PARAME I ER 		8 - 10		3 - 5		4 - 7		4 - 7
SW6010 - Metals (mg/kg)								
Aluminum	9800	(20) [98.03921]	9100	(16) [80.64516]	7200	(17) [85.47008]	7400	(18) [90.09008
Antimony	QN	(9.8) [98.03921]	ON	(8.1). [80.64516]	QN	(8.5) [85.47008]	QN	(9) [90.09008]
Arsenic	QN		QN	(24) [80.64516]	S.	(26) [85.47008]	ND	(27) [90.09008]
Barium	190	(0.98) [98.03921]	160	(0.81) [80.64516]	130	(0.85) [85.47008]	130	[80060.06] [6.0)
Beryllium	0.26	(0.2) [98.03921]	0.21	(0.16) [80.64516]	0.19	(0.17) [85.47008]	0.2	(0.18) [90.09008
Cadmium	QN	(0.49) [98.03921]	QN	(0.4) [80.64516]	N S	(0.43) [85.47008]	QN	(0.45) [90.09008]
Calcium	15000	(98) [98.03921]	13000	(81) [80.64516]	0069	(85) [85.47008]	8500	(90) [90.09008
Chromium	21	(0.98) [98.03921]	20	(0.81) [80.64516]	17	(0.85) [85.47008]	16	[80060.06] [6.0)
Cobalt	6.6	(0.98) [98.03921]	9.1	(0.81) [80.64516]	7.7	(0.85) [85.47008]	7.9	(0.9) [90.09008]
Copper	58	(2) [98.03921]	28	(1.6) [80.64516]	33	(1.7) [85.47008]	24	(1.8) [90.09008]
Iron	22000	(4.9) [98.03921]	20000	(4) [80.64516]	15000	(4.3) [85.47008]	16000	(4.5) [90.09008]
Lead	QN	(4.9) [98.03921]	7.9	(4) [80.64516]	9.8	(4.3) [85.47008]	6.9	(4.5) [90.09008]
Magnesium	7300		6500	(81) [80.64516]	4600	(85) [85.47008]	4900	[80060.06] [800608]
Manganese	480	(0.98) [98.03921]	370	(0.81) [80.64516]	270	(0.85) [85.47008]	290	[80060.06] [6.0)
Molybdenum	Q.	_	ON	(4) [80.64516]	2	(4.3) [85.47008]	ON	(4.5) [90.09008]
Nickel	59	(2) [98.03921]	24	(1.6) [80.64516]	18	(1.7) [85.47008]	19	(1.8) [90.09008]
Potassium	930		820	(240) [80.64516]	710	(260) [85.47008]	700	(270) [90.09008]
Selenium	QN	_	9	(24) [80.64516]	Q	(26) [85.47008]	ON	[30.00.00]
Silver	QN	(0.98) [98.03921]	9	(0.81) [80.64516]	ON	(0.85) [85.47008]	ND	[80060.06] [6.0)
Sodium	300	(98) [98.03921]	300	(81) [80.64516]	210	(85) [85.47008]	240	[80060.06] [800608]
Thallium	QN	(9.8) [98.03921]	9	(8.1) [80.64516]	QN	(8.5) [85.47008]	QN	[80060.06] [6)
Vanadium	36	(2) [98.03921]	35	(1.6) [80.64516]	27	(1.7) [85.47008]	28	(1.8) [90.09008]
Zinc	89	(2) [98.03921]	09	(1.6) [80.64516]	70	(1.7) [85.47008]	59	(1.8) [90.09008]
SW7060 - Arsenic (mg/kg)								
Arsenic	9.3	(0.73) [182.5483]	8.2	(0.68) [168.8618]	7.5	(0.78) [195.2934]	7.9	(0.71) [178.5714]
SW7421 - Lead (mg/kg)								
Lead	8.1	(1.1) [365.0967]	6.7	(0.88) [293.3691]	12	(1.1) [380.6985]	14	(1.1) [357.1428]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

	06 06-DS-01 Dup of 06-MW-03-02 4 - 7	(0.046) [253.1645] 0.049 B (0.049) [271.7391]	(0.48) [95.17464] ND (0.45) [89.28571]	[1] 20 () [1]
	06 06-MM-03 06-MW-03-02 4 - 7	ND (0.046)	1.7 (0.48)	21 ()
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	06 06-MW-02 06-MW-02-02 3 - 5	(0.051) [283.4467]	(0.42) [84.43093]	() [1]
BEG. DEI		0.06 B	ND	16
	02	(0.054) [301.2048]	(0.46) [91.27418]	() [1]
	06 06-MW-01 06-MW-01- 8 - 10	0.058 B	QN	17
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

٠	0	06-MW-04 06-MW-04-02		06 06-SB-01 06-SB-01-01) 00-30-90	06-SB-01		c	06 06-SB-01
PARAMETER		4 - 6	8 8 1 1 2 8 8	6.5 - 9		6.5 - 9		L	06-58-01-02 10 - 12
SW6010 - Metals (mg/kg)									
	12000	(17) [86.95652]	9100	(19) [95.23809]	8700	(50)	[100]	0066	[18] [87,71929]
Antimony	QN	(8.7) [86.95652]	ON	(9.5) [95.23809]	ON	(10)	[100]	QN	
Arsenic	QN	(26) [86.95652]	QN	(29) [95.23809]	ND	(30)	[100]	QN	
Barium	230	(0.87) [86.95652]	170	(0.95) [95.23809]	160	(1)	[100]	200	
Beryllium	0.31	(0.17) [86.95652]	0.29	(0.19) [95.23809]	0.24	(0.2)	[100]	0.31	
Cadmium	QN	(0.43) [86.95652]	ON	(0.48) [95.23809]	ON	(0.5)	[100]	ON	
Calcium	17000	(87) [86.95652]	11000	(95) [95.23809]	12000	(100)	[100]	15000	-
Chromium	25	(0.87) [86.95652]	20	(0.95) [95.23809]	19	(1)	[100]	22	
Cobalt	11	_	8.8	(0.95) [95.23809]	6	(1)	[100]	თ	_
Copper	33	(1.7) [86.95652]	56	(1.9) [95.23809]	59	(2)	[100]	39	_
Iron	26000	(4.3) [86.95652]	20000	(4.8) [95.23809]	20000	(2)	[100]	22000	_
Lead	QN	(4.3) [86.95652]	6.9	(4.8) [95.23809]	ND	(2)	[100]	5.1	_
Magnesium	8700	_	6200	(95) [95.23809]	0009	(100)	[100]	7300	(88) [87.71929]
Manganese	200	_	310	(0.95) [95.23809]	310	(1)	[100]	370	(0.88) [87.71929]
Molybdenum	QN	_	2	(4.8) [95.23809]	QN	(2)	[100]	QN	
Nickel	31	(1.7) [86.95652]	56	(1.9) [95.23809]	24	(2)	[100]	32	
Potassium	086	(260) [86.95652]	820	(290) [95.23809]	820	(300)	[100]	860	
Selenium	Q	_	2	(29) [95.23809]	QN	(30)	[100]	9	
Silver	S	(0.87) [86.95652]	2	(0.95) [95.23809]	ON	(1)	[100]	N	(0.88) [87.71929]
Sodium	410	(87) [86.95652]	280	(95) [95.23809]	260	(100)	[100]	260	. –
Thallium	QV	(8.7) [86.95652]	2	(9.5) [95.23809]	ON	(10)	[100]	ND	_
Vanadium	43	(1.7) [86.95652]	31	(1.9) [95.23809]	31	(2)	[100]	35	. —
Zinc	80	(1.7) [86.95652]	65	(1.9) [95,23809]	63	(2)	[100]	7.3	_
SW7060 - Arsenic (mg/kg)							r,	2	_
Arsenic	12	(0.85) [212.2241]	8.6	(0.78) [193.8360]	15	(1.6)	[390,5868]	10	[077 PT] [22 O)
SW7421 - Lead (mg/kg)									
Lead	9.5	(1.3) [424.4482]	9.5	(1.2) [387.6720]	11	(1.2)	[390.5868]	6.9	(1.1) [357.9418]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

	06 06-SB-01-01 06-SB-01-02 10 - 12	(0.058) [324.6753] 0.098 B (0.057) [317.4603]	(0.49) [97.64671] ND (0.45) [89.48545]	() [1] 25 () [1]
	06 06-SB-01 06-DS-02 Dup of 06-SB-01-01 6.5 - 9	0.077 8 (0	ON ON	23
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	06-SB-01 06-SB-01-01 6.5 - 9	(0.051) [282.3263]	(0.48) [96.91800]	() [1]
LC S BEG. DEPTH		0.055 B	ND	23
	06-MW-04 06-MW-04-02 4 - 6	(0.054) [299.0430]	(0.53) [106.1120]	()
	90	0.072 B	1.7	24
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

LOCATION ID SAMPLE ID

SITE 10

	•	90			90		90		90	
	90	06-SB-02 06-SB-02-01		-	06-SB-02 06-SB-02-02		06-SD-01 06-SD-01-01	J	06-SD-02 06-SD-02-01	
PARAMETER 		2 - 4			5 - 7	 	0 - 0.5		0 - 0.5	1
SW6010 - Metals (mg/kg)										
Aluminum	4600	(16)	[80.64516]	9600	(17) [86.20689]	11000	(18) [88.49557]	8200	(18) [91.7	[91.74311]
Antimony	QN	(8.1)	[80.64516]	S	(8.6) [86.20689]	R	(8.8) [88.49557]	Q.	(9.2) [91.7	91.74311]
Arsenic	ON	(24)		Q	(26) [86.20689]	R	(27) [88.49557]	R		[91.74311]
Barium	99	(0.81)	_	160	(0.86) [86.20689]	200	(0.88) [88.49557]	160	(0.92) [91.7	91.74311]
Beryllium	Q.	(0.16)	[80.64516]	0.23	(0.17) [86.20689]	0.28	(0.18) [88.49557]	0.21	(0.18) [91.7	[91.74311]
Cadmium	ON	(0.4)	[80.64516]	9	(0.43) [86.20689]	2	. (0.44) [88.49557]	ON	(0.46) [91.7	[91.74311]
Calcium	2800	(81)	_	11000	[86,20689]	15000	(88) [88.49557]	0066	(92) [91.7	[91.74311]
Chromium	12	(0.81)	_	20	(0.86) [86.20689]	24	(0.88) [88.49557]	18	(0.92) [91.7	91.74311
Cobalt	5.9	(0.81)	[80.64516]	8.7	(0.86) [86.20689]	13	(0.88) [88.49557]	10	(0.92) [91.7	[91.74311]
Copper	8.6	(1.6)	[80.64516]	56	(1.7) [86.20689]	31	(1.8) [88.49557]	21	_	[91.74311]
Iron	0096	(4)	[80.64516]	20000	(4.3) [86.20689]	23000	(4.4) [88.49557]	18000		91.74311]
Lead	ON	(4)	[80.64516]	QN	(4.3) [86.20689]	9.5	(4.4) [88.49557]	9.9		91.74311
Magnesium	2700	(81)	[80.64516]	6400	(86) [86.20689]	7800	(88) [88.49557]	0009	(92) [91.7	91.74311
Manganese	180	(0.81)	[80.64516]	340	(0.86) [86.20689]	440	(0.88) [88.49557]	360	(0.92) [91.7	[91.74311]
Molybdenum	ON	(4)	[80.64516]	QN	(4.3) [86.20689]	2	(4.4) [88.49557]	ON.	(4.6) [91.7	[91.74311]
Nickel	13	(1.6)	_	24	(1.7) [86.20689]	30	(1.8) [88.49557]	23	(1.8) [91.7	91.74311
Potassium	430	(240)		820	(260) [86.20689]	930	(270) [88.49557]	740	(280) [91.7	91.74311
Selenium	S	(24)	[80.64516]	31	(26) [86.20689]	2	(27) [88.49557]	R	(28) [91.7	91.74311
Silver	S	(0.81)		R	(0.86) [86.20689]	8	(0.88) [88.49557]	QN	(0.92) [91.7	[91.74311]
Sodium	100	(81)	[80.64516]	260	(86) [86.20689]	320	(88) [88.49557]	260	(92) [91.7	[91.74311]
[ha]]ium	ON	(8.1)	[80.64516]	2	(8.6) [86.20689]	9	(8.8) [88.49557]	ON	(9.2) [91.7	91.74311]
Vanadium	19	(1.6)	[80.64516]	34	(1.7) [86.20689]	38	(1.8) [88.49557]	53	(1.8) [91.7	91.74311]
Zinc	25	(1.6)	[80.64516]	63	(1.7) [86.20689]	98	(1.8) [88.49557]	99	(1.8) [91.7	[91.74311]
SW7060 - Arsenic (mg/kg)										
Arsenic	4.2	(0.56)	(0.56) [139.2573]	8.7	(0.85) [213.3333]	11	(0.73) [182.4817]	8.7	(0.72) [180.	[180.2288]
SW7421 - Lead (mg/kg)										
lead	r.	(0.84)	(0 84) [278 5146]	0 0	(1 2) [405 0632]	1.9	(1 1) [26/ 0625]	9	[1111 /25]	1114

() = Detection Limit

	06 06-SD-02 06-SD-02-01 0 - 0.5	(0.065) [363.1082]	(0.45) [90.11444]	() [1]
	0 06	0.074 B	QN	19
		(0.059) [328.9473]	(0.46) [91.24087]	[1]
	06 06-SD-01 06-SD-01-01 0 - 0.5	(0.059)	(0.46)	С
	1 1 1 1 1 1 1	QN	QN	20
I (FT.)		53.1645]	01.2658]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	06 06-SB-02 06-SB-02-02 5 - 7	(0.046) [253.1645]	(0.51) [101.2658]	С
BEG. DEI		0.056 B	1.9	21
		(0.04) [222.5090]	(0.35) [69.62867]	[1]
	06-SB-02 06-SB-02 06-SB-02-01 2 - 4	(0.04)	(0.35)	С
	0	ND	0.69	2.8
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

			,			00		0P
	c	06-SS-01	S-90	06-55-02		06-55-03		06~SS-04 ×
PARAMETER 		0 - 0.5	- 0	0 - 0.5		0 - 0.5	O :	0 - 0.5
SW6010 - Metals (mg/kg)								
Aluminum	6200	(15) [74.07407]	0099	(14) [69.44444]	0009	(15) [76.92307]	2000	(15) [76.33588]
Antimony	ON	(7.4) [74.07407]	ND	(6.9) [69.44444]	9	(7.7) [76.92307]	ND	_
Arsenic	QV	(22) [74.07407]	QV	(21) [69.44444]	ą		ND	
Barium	130	(0.74) [74.07407]	100	(0.69) [69.4444]	100	(0.77) [76.92307]	98	
Beryllium	0.16	(0.15) [74.07407]	0.15	(0.14) [69.44444]	2	(0.15) [76.92307]	S	[76.
Cadmium	0.41	(0.37) [74.07407]	0.41	(0.35) [69.4444]	0.47	(0.38) [76.92307]	2	[76.
Calcium	4500	(74) [74.07407]	2900	(69) [69.44444]	4300	(77) [76.92307]	2700	[76.
Chromium	14	(0.74) [74.07407]	15	(0.69) [69.4444]	18	(0.77) [76.92307]	10	[76.
Cobalt	7.8	(0.74) [74.07407]	6.5	(0.69) [69.4444]	6.5	(0.77) [76.92307]	5.8	(0.76) [76.33588]
Copper	41	(1.5) [74.07407]	13	(1.4) [69.4444]	14	(1.5) [76.92307]	7.6	(1.5) [76.33588]
Iron	14000	(3.7) [74.07407]	12000	(3.5) [69.4444]	11000	(3.8) [76.92307]	10000	(3.8) [76.33588]
Lead	32	(3.7) [74.07407]	13	(3.5) [69.4444]	15	(3.8) [76.92307]	27	(3.8) [76.33588]
Magnesium	3400	(74) [74.07407]	3500	(69) [69.4444]	3600	(77) [76.92307]	2900	(76) [76.33588]
Manganese	270		210	(0.69) [69.4444]	220	(0.77) [76.92307]	170	(0.76) [76.33588]
Molybdenum	ON		Q.	(3.5) [69.4444]	S	(3.8) [76.92307]	QN	(3.8) [76.33588]
Nickel	17		16	(1.4) [69.4444]	16	(1.5) [76.92307]	14	(1.5) [76.33588]
Potassium	029	(220) [74.07407]	089	(210) [69.4444]	620	(230) [76.92307]	310	(230) [76.33588]
Selenium	QN		N	(21) [69.4444]	2	(23) [76.92307]	2	(23) [76.33588]
Silver	QN		ON	(0.69) [69.4444]	9	(0.77) [76.92307]	8	(0.76) [76.33588]
Sodium	180	_	210	(69) [69.4444]	170	(77) [76.92307]	83	(76) [76.33588]
Thallium	9	(7.4) [74.07407]	QN	(6.9) [69.4444]	S	(7.7) [76.92307]	QN	(7.6) [76.33588]
Vanadium	52	(1.5) [74.07407]	56	(1.4) [69.4444]	22	(1.5) [76.92307]	20	(1.5) [76.33588]
Zinc	220	(1.5) [74.07407]	54	(1.4) [69.4444]	54	(1.5) [76.92307]	39	(1.5) [76.33588]
SW7060 - Arsenic (mg/kg)								
7	4.3	(0.28) [69.7107]	6.3	(0.66) [164.5846]	7.1	(0.59) [148.6414]	2.8	(0.3) [74.63466]
.w/421 - Lead (mg/kg) Lead	25	(2.1) [697.107]	14	(0.99) [329.1693]	17	(0.89) [297.2828]	59	(2.3) [754.8366]
Compiled: 21 March 1995		() = Detection limit		NO = Not Detected	toN = AN	Not Applicable		7.04

	06 06-SS-04 06-SS-04-01 0 - 0.5	(0.046) [255.6237]	(0.37) [74.63466]	() [1]
		QN	ND	2.2
	06 06-SS-03 06-SS-03-01 0 - 0.5	(0.037) [203.2520]	(0.37) [74.32070]	() [1]
	06 06-SS-03 06-SS-03-0	0.057 B	ND	3.2
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	06-SS-02 06-SS-02 06-SS-02-01 0 - 0.5	(0.04) [221.3760]	(0.41) [82.29233]	() [1]
LC S BEG. DEPTH) -90	0.051 B	QN	5.8
		(0.04) [220.0316]	(0.35) [69.7107]	[1]
	06-SS-01 06-SS-01 06-SS-01-01 0 - 0.5	(0.04)	(0.35)	С
	30	0.046 B	ND	2
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

-		90 06-SS-05		90-SS-90		07 07-MW-01		07 07-MW-02
PARAMETER 		06-SS-05-01 0 - 0.5 		06-SS-06-01 0 - 0.5		07-MW-01-02 5 - 6.5	0	07-MW-02-02 2 - 4
SW6010 - Metals (mα/kα)					•			
	4600	(17) [82.64462]	3800	(16) [77.51938]	11000	(20) [98.03921]	7900	(21) [104.1666]
Antimony	QV	(8.3) [82.64462]	ON	(7.8) [77.51938]	QN	(9.8) [98.03921]	QN	(10) [104.1666]
Arsenic	ND	(25) [82.64462]	QN	(23) [77.51938]	Q.	(29) [98.03921]	QN	(31) [104.1666]
Barium	99	(0.83) [82.64462]	63	(0.78) [77.51938]	350	(0.98) [98.03921]	190	(1) [104.1666]
Beryllium	QN	(0.17) [82.64462]	Q	(0.16) [77.51938]	0.38	(0.2) [98.03921]	0.23	(0.21) [104.1666]
Cadmium	QN	(0.41) [82.64462]	0.51	(0.39) [77.51938]	8	(0.49) [98.03921]	QN	(0.52) [104.1666]
Calcium	2800	(83) [82.64462]	2000	(78) [77.51938]	16000	(98) [98.03921]	13000	(100) [104.1666]
Chromium	6.7	(0.83) [82.64462]	7.8	(0.78) [77.51938]	22	(0.98) [98.03921]	19	(1) [104.1666]
Cobalt	5	(0.83) [82.64462]	4.8	(0.78) [77.51938]	12	(0.98) [98.03921]	7.9	(1) [104.1666]
Copper	11	(1.7) [82.64462]	7.3	(1.6) [77.51938]	53	(2) [98.03921]	20	(2.1) [104.1666]
Iron	11000	(4.1) [82.64462]	9100	(3.9) [77.51938]	24000	(4.9) [98.03921]	16000	(5.2) [104.1666]
Lead	12	(4.1) [82.64462]	8.9	(3.9) [77.51938]	10	(4.9) [98.03921]	QN	(5.2) [104.1666]
Magnesium	2700	_	2200	(78) [77.51938]	8300	(98) [98.03921]	5200	(100) [104.1666]
Manganese	190	(0.83) [82.64462]	150	(0.78) [77.51938]	310	(0.98) [98.03921]	240	(1) [104.1666]
Molybdenum	ON	(4.1) [82.64462]	Q	(3.9) [77.51938]	Q.	(4.9) [98.03921]	QN	(5.2) [104.1666]
Nickel	14	(1.7) [82.64462]	11	(1.6) [77.51938]	28	(2) [98.03921]	21	(2.1) [104.1666]
Potassium	350	(250) [82.64462]	330	(230) [77.51938]	1500	(290) [98.03921]	770	(310) [104.1666]
Selenium	ON	(25) [82.64462]	Q	(23) [77.51938]	ND	(29) [98.03921]	QN	(31) [104.1666]
Silver	ND	(0.83) [82.64462]	Q	(0.78) [77.51938]	SN.	(0.98) [98.03921]	QN	(1) [104.1666]
Sodium	110	(83) [82.64462]	98	(78) [77.51938]	280	(98) [98.03921]	450	(100) [104.1666]
Thallium	QN	(8.3) [82.64462]	S	(7.8) [77.51938]	ND	(9.8) [98.03921]	ON	(10) [104.1666]
Vanadium	19	(1.7) [82.64462]	16	(1.6) [77.51938]	45	(2) [98.03921]	30	(2.1) [104.1666]
Zinc	36	(1.7) [82.64462]	51	(1.6) [77.51938]	89	(2) [98.03921]	56	(2.1) [104.1666]
SW7060 - Arsenic (mg/kg)								
Arsenic .	3.2	(0.3) [74.78760]	4.2	(0.29) [72.09285]	13	(1) [253.2928]	5.9	(0.39) [98.61932]
SW7421 - Lead (mg/kg)								
[המט]	13	(0.9) [299.1504]	9.1	(0.87) [288.3714]	11	(1.5) [506.5856]	8.9	(1.2) [394.4773]

	07 07-MW-02 07-MW-02-02 2 - 4	(0.081) [452.4886]	(0.49) [98.61932]	() [1]
		0.17	0.5	35
	; ! ! !	(0.067) [372.0238]	(0.63) [126.6464]	() [1]
	07 07-MW-01 07-MW-01-02 5 - 6.5	(0.067)	(0.63)	()
		0.13	QN	44
тн (FT.)		(0.044) [245.459]	(0.36) [72.09285]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	06 06-SS-06 06-SS-06-01 06-SS-06-01	(0.044)	(0.36)	С
BEG. DEPT		0.053 B	QN	က
		(0.046) [256.1475]	(0.37) [74.78760]	[1]
	06 06-SS-05 06-SS-05 06-SS-05-01 0 - 0.5	(0.046)	(0.37)	0
	0	N	QN	2.4
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

Metals (mg/kg) Metals (mg/kg) Mo (10) Mo (10) Mo (27) Mo (0.2) Mo (2.1) Mo (2.1) Mo (2.1) Mo (2.1) Mo (2.1) Mo (310) Mo (310) Mo (310) Mo (100) Mo (100	88 88 99 91 77	07-MW-03 -01 Dup of 07-MW-03-02 1.5 - 3 (17) [84.0 (8.4) [84.0 (25) [84.0 (0.84) [84.0 (0.17) [84.0 (0.17) [84.0 (0.17) [84.0 (0.17) [84.0 (0.18) [84.0	-03-02 [84.0336] [84.0336] [84.0336] [84.0336] [84.0336] [84.0336] [84.0336]	07-0 07-N 1000 10000 ND ND ND	07-MW-04 07-MW-04-02 10 - 12	0 07		
(mg/kg) 9600 (20) ND (10) ND (31) 270 (1) 0.27 (0.2) ND (0.51) 13000 (100) 20 (1) 24 (2) 19000 (5.1) ND (5.1) ND (5.1) ND (5.1) ND (310) N	1		[84.036] [84.036] [84.036] [84.036] [84.036] [84.036] [84.036]		0 - 12	i	4	
(mg/kg) 9600 (20) ND (10) ND (31) 270 (1) 0.27 (0.2) ND (0.51) 13000 (100) 20 (1) 9.7 (1) 9.7 (1) 9.7 (1) 13000 (100) 24 (2) 1100 (5.1) ND (5.1) ND (310) ND (310) ND (310) ND (100) 180 (100) 180 (100)	1		[84.0336] [84.0336] [84.0336] [84.0336] [84.0336] [84.0336] [84.0336]	10000 ND ND		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 - 5	1 1 1 1 1 1 1 1
9600 (20) ND (10) ND (31) 270 (1) 13000 (0.51) 13000 (100) 20 (1) 9.7 (1) 9.7 (1) 13000 (100) 24 (2) 1100 (5.1) ND (5.1) ND (5.1) ND (310) ND (310) ND (310) ND (310) ND (310) ND (310) ND (100)	1		[84.0336] [84.0336] [84.0336] [84.0336] [84.0336] [84.0336] [84.0336]	10000 ND ND				
Ty ND (10) (10) (10) (10) (10) (10) (10) (10)	1		[84.0336] [84.0336] [84.0336] [84.0336] [84.0336] [84.0336]	ND ND 0.50	(16) [81.96721]	8900	(17)	[84.0336]
Lum			[84.0336] [84.0336] [84.0336] [84.0336] [84.0336] [84.0336]	ND 250	(8.2) [81.96721]	ND	(8.4)	[84.0336]
Lum			[84.0336] [84.0336] [84.0336] [84.0336] [84.0336]	250	(25) [81.96721]	Q.	(22)	[84.0336]
ium 0.27 (0.2) [13000 (100) [20 (1) [24 (2) [19000 (5.1) [19000 (5.1) [1000 [100 [1000	-		[84.0336] [84.0336] [84.0336] [84.0336]	2	(0.82) [81.96721]	240	(0.84)	[84.0336]
ND		(0.42) (84) (0.84) (0.84)	[84.0336] [84.0336] [84.0336] [84.0336]	0.25	(0.16) [81.96721]	0.24	(0.17)	[84.0336]
13000 (100) [20 (1) [24 (2) [24 (2) [19000 (5.1) [19000 (5.1) [19000 (5.1) [19000 (5.1) [19000 (5.1) [19000 (5.1) [1900 (310) [1900 (310) [1900 (310) [1900 (310) [1900 (310) [1900 (100)		(84) (0.84) (0.84)	[84.0336] [84.0336] [84.0336]	QN	(0.41) [81.96721]	QN	(0.42)	[84.0336]
10		(0.84)	[84.0336] [84.0336]	6500	(82) [81.96721]	0069	(84)	[84.0336]
9.7 (1) [24 (2) [19000 (5.1) [ND (5.1) [See 380 (100) [See 380 (1) [See (100) [See		(0.84)	[84.0336]	21	(0.82) [81.96721]	19	(0.84)	[84.0336]
24 (2) [19000 (5.1) [ND (5.1) [SSE 380 (100) [STAND (5.1) [STAND (5				9.6	(0.82) [81.96721]	6.6	(0.84)	[84.0336]
19000 (5.1) [ND (5.1) [Mm 5600 (100) [Um ND (5.1) [Mm 1100 (310) [ND		(1.7)	[84.0336]	21	(1.6) [81.96721]	23	(1.7)	[84.0336]
MD (5.1) [B 5600 (100) [B 380 (1) [UM			[84.0336]	20000	(4.1) [81.96721]	18000	(4.2)	[84.0336]
E 5600 (100) [I 380 (1) [I 100 (5.1) [I 1100 (310) [I 100 (310) [I 100 (100) [I 100	.102.0408] NU	(4.2)	[84.0336]	14	(4.1) [81.96721]	QN	(4.2)	[84.0336]
and the state of t	[102.0408] 4800	(84)	[84.0336]	4100	(82) [81.96721]	2000	(84)	[84.0336]
um ND (5.1) [24 (2) [1100 (310) [180 (100) [180 (100) [100 [100 [100] [_	(0.84)	[84.0336]	230	(0.82) [81.96721]	220	(0.84)	[84.0336]
24 (2) [1100 (310) [ND (31) [ND (1) [180 (100) [100 [100] [(4.2)	[84.0336]	ND	(4.1) [81.96721]	N ON	(4.2)	[84.0336]
1100 (310) [120 (31) [1310 (31) [1310 (31) [1310 (10) [1310 ([102.0408] 20	(1.7)	[84.0336]	22	(1.6) [81.96721]	25	(1.7)	[84.0336]
ND (31) [ND (1) [180 (100) [ND (10) [100] (10) [1	[102.0408] 620	(520)	[84.0336]	720	(250) [81.96721]	920	(220)	[84.0336]
ND (1) [180 (100) [100]	[102.0408] ND	(22)	[84.0336]	QN	(25) [81.96721]	QN	(22)	[84.0336]
180 (100) [ND (10) [[102.0408] ND	(0.84)	[84.0336]	ND	(0.82) [81.96721]	QN	(0.84)	[84.0336]
ON (10) ON 30	[102.0408] 150	(84)	[84.0336]	160	(82) [81.96721]	370	(84)	[84.0336]
36 (3)	102.0408] ND	(8.4)	[84.0336]	ND	(8.2) [81.96721]	QN	(8.4)	[84.0336]
1 (7)	102.0408] 31	(1.7)	[84.0336]	37	(1.6) [81.96721]	33	(1.7)	[84.0336]
Zinc 58 (2) [1	[102.0408] 48	(1.7)	[84.0336]	56	(1.6) [81.96721]	58	(1.7)	[84.0336]
SW7060 - Arsenic (mg/kg)								
Arsenic SW7421 - Lead (mg/kg)	(0.88) [218.9381] 7.3	(0.7)	[175.8241]	6	(0.66) [165.3849]	14	(1.1)	[285.4288]
6.7	(0.66) [218.9381] 7.1	(1.1)	[351.6483]	11	(0.99) [330.7698]	8.4	(0.86)	(0.86) [285.4288]

	07 07-SB-01 07-SB-01-01 3 - 5	(0.065) [360.7503]	(0.36) [71.35721]	() [1]
		0.14	ND	23
		(0.047) [261.2330]	(0.41) [82.69246]	[1]
	07 07-MW-04 07-MW-04-02 10 - 12	(0.047)	(0.41)	С
,	07 07- 1	0.1 B	ON O	13
I (FT.)	13-02	07.6923]	7.91208]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	07 07-MW-03 07-DS-01 Dup of 07-MW-03-02 1.5 - 3	(0.055) [307.6923]	(0.44) [87.91208]	С
BEG. DE	07-DS-01	0.11	QN	35
		140.9171]	.09.4690]	() [1]
	07 07-MW-03 07-MW-03-02 1.5 - 3	(0.079) [440.9171]	(0.55) [109.4690]	0
		0.15	0.61	37
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC AMALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

		000			•	;
- /0 S /0	07-5B-02-01	07-5B-03 07-5B-03-01	0 20	0/-5D-01 07-SD-01-01	07-DS-03 D	0/-SD-01 Dup of 07-SD-01-01
8	- 5	3 - 5		0 - 0.5		0 - 0.5
(mg/kg)						
0096	(16) [81.30081]	9000 (18) [89.28571]	. 0062	(16) [79.36507]	7500	(15) [74.62686]
QN	(8.1) [81.30081]	ND (8.9) [89.28571]	QN	[7.9] [79.36507]	Q	(7.5) [74.62686]
QN	(24) [81.30081]	ND (27) [89.28571]	QN	(24) [79.36507]	ON	(22) [74.62686]
180	(0.81) [81.30081]	250 (0.89) [89.28571]	1 260	(0.79) [79.36507]	230	(0.75) [74.62686]
0.26	(0.16) [81.30081]	0.27 (0.18) [89.28571]	0.2	(0.16) [79.36507]	0.18	(0.15) [74.62686]
ON	(0.41) [81.30081]	ND (0.45) [89.28571]	0.53	(0.4) [79.36507]	0.47	(0.37) [74.62686]
9500	(81) [81.30081]	8300 (89) [89.28571]	19000	[79, [79,36507]	15000	(75) [74.62686]
21	(0.81) [81.30081]	20 (0.89) [89.28571]	17	(0.79) [79.36507]	17	(0.75) [74.62686]
8.9	(0.81) [81.30081]	9.1 (0.89) [89.28571]	6	(0.79) [79.36507]	7.8	(0.75) [74.62686]
19	(1.6) [81.30081]	24 (1.8) [89.28571]	25	(1.6) [79.36507]	28	(1.5) [74.62686]
15000	(4.1) [81.30081] 19	19000 (4.5) [89.28571]	22000	(4) [79.36507]	19000	(3.7) [74.62686]
8.2	(4.1) [81.30081]	7.4 (4.5) [89.28571]	16	(4) [79.36507]	13	(3.7) [74.62686]
4700	(81) [81.30081]	5100 (89) [89.28571]	2000	(79) [79.36507]	4800	(75) [74.
200	(0.81) [81.30081]	230 (0.89) [89.28571]	200	(0.79) [79.36507]	380	(0.75) [74.62686]
ON	(4.1) [81.30081]	ND (4.5) [89.28571]	QN	(4) [79.36507]	ND	(3.7) [74.
19	(1.6) [81.30081]	23 (1.8) [89.28571]	21	(1.6) [79.36507]	21	(1.5) [74.
720	(240) [81.30081]	820 (270) [89.28571]	860	(240) [79.36507]	820	(220) [74.62686]
QN	(24) [81.30081]	ND (27) [89.28571]	QN	(24) [79.36507]	QN	(22) [74.62686]
QN	(0.81) [81.30081]	ND (0.89) [89.28571]	QN I	(0.79) [79.36507]	QN	(0.75) [74.62686]
970	(81) [81.30081]	190 (89) [89.28571]	200	(79) [79.36507]	470	(75) [74.62686]
ON	(8.1) [81.30081]	ND (8.9) [89.28571]	QN	(7.9) [79.36507]	QN	(7.5) [74.62686]
36	(1.6) [81.30081]	33 (1.8) [89.28571]	1 28	(1.6) [79.36507]	27	(1.5) [74.62686]
89	(1.6) [81.30081]	64 (1.8) [89.28571]	73	(1.6) [79.36507]	71	(1.5) [74.62686]
SW7060 - Arsenic (mg/kg)						
7.2	(0.72) [179.8237]	9 (0.64) [158.9825]	12	(1.3) [318.2939]	9.5	(0.6) [149.7118]
(mg/kg)						
8.6	(1.1) [359.6475]	8.1 (0.95) [317.9650]	16	(0.95) [318.2939]	14	(0.9) [299.4236]
		(0.95)			.2939]	

		07		BEG. DEP	SITE ID LOCATION ID SAMPLE ID SEG. DEPTH - END DEPTH (FT.)	(FT.)		07		07	
PARAMETER		07-SB-02 07-SB-02-01 3 - 5			07-SB-03 07-SB-03-01 3 - 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		07-SD-01 07-SD-01-01 0 - 0.5		07-DS-03 Dup of 07-SD-01-01 0 - 0.5	SD-01-01
SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	0.16	(0.071) [392.7729]	7729]	0.11	(0.049) [270.2702]	0.2702]	0.12	(0.053) [293.4272]	2] 0.12		(0.054) [297.7963]
Selenium SW846 - Percent Moisture (%)	ND	(0.45) [89.91188]	1188]	QN	(0.4) [79.49125]	.49125]	QN	(0.4) [79.57348]	3] ND		(0.35) [70.96728]
Percent moisture	33	0	[1]	56	0	[1]	59	() [1]	1] 27		[1]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

LOCATION ID SAMPLE ID

SITE ID

	- '0	07 07-SD-02 07-SD-02-01	0	0/ 07-SS-01 07-SS-01-01	07-08-02	07 07-SS-01 Dup of 07-SS-01-01	٦	07 07-58-02 07-58-02-01	
PARAMETER 		0 - 0.5		0 - 0.5		0 - 0.5		0 - 0.5	:
SW6010 - Metals (mg/kg)									
Aluminum	3100	(67) [333.0003]	5100	(18) [87.79631]	5300	(19) [93.02325]	3100	(120) [586.5102]	102]
Antimony	QN	(33) [333.0003]	ON	(8.8) [87.79631]	Q	(9.3) [93.02325]	QN	(59) [586.5102]	5102]
Arsenic	QN	(100) [333.0003]	ON	(26) [87.79631]	QN	(28) [93.02325]	QN	(180) [586.5	5102]
Barium	240	(3.3) [333.0003]	110	(0.88) [87.79631]	120	(0.93) [93.02325]	009	(5.9) [586.5	5102]
Beryllium	QN	(0.67) [333.0003]	Q	(0.18) [87.79631]	QN	(0.19) [93.02325]	ON	(1.2) [586.5	5102]
Cadmium	QN	(1.7) [333.0003]	8	(0.44) [87.79631]	ND	(0.47) [93.02325]	S	(2.9) [586.5	5102]
Calcium	14000	(330) [333.0003]	3500	(88) [87.79631]	3600	(93) [93.02325]	33000	(590) [586.5	5102]
Chromium	5.1	(3.3) [333.0003]	12	(0.88) [87.79631]	13	(0.93) [93.02325]	7.8	(5.9) [586.5	5102]
Cobalt	QN	(3.3) [333.0003]	5.3	(0.88) [87.79631]	6.1	(0.93) [93.02325]	11	(5.9) [586.5	5102]
Coppèr	52	(6.7) [333.0003]	10	(1.8) [87.79631]	12	(1.9) [93.02325]	24	(12) [586.5	5102]
Iron	10000	(17) [333.0003]	11000	(4.4) [87.79631]	12000	(4.7) [93.02325]	00099	(29) [586.5	5102]
Lead	ON	(17) [333.0003]	56	(4.4) [87.79631]	20	(4.7) [93.02325]	Q.	(29) [586.5	5102]
Magnesium	3000	(330) [333.0003]	2600	(88) [87.79631]	3000	(93) [93.02325]	6700	(590) [586.5	5102]
Manganese	83	(3.3) [333.0003]	180	(0.88) [87.79631]	200	(0.93) [93.02325]	790	(5.9) [586.5	5102]
Molybdenum	QN	(17) [333.0003]	ON	(4.4) [87.79631]	ON	(4.7) [93.02325]	ON	(29) [586.5	5102]
Nickel	13		13	(1.8) [87.79631]	16	(1.9) [93.02325]	24	(12) [586.5	5102]
Potassium	QN	(1000) [333.0003]	440	(260) [87.79631]	440	(280) [93.02325]	QN	(1800) [586.5	5102]
Selenium	QN	(100) [333.0003]	R	(26) [87.79631]	ND	(28) [93.02325]	Q.	(180) [586.5	5102]
Silver	QN	(3.3) [333.0003]	QN	(0.88) [87.79631]	QN	(0.93) [93.02325]	QN	(5.9) [586.5	5102]
Sodium	1600	(330) [333.0003]	100	(88) [87.79631]	100	(93) [93.02325]	ON	(590) [586.5	5102]
Thallium	QN	(33) [333.0003]	ON	(8.8) [87.79631]	QN	(9.3) [93.02325]	QN	(59) [586.5	5102]
Vanadium	11	(6.7) [333.0003]	20	(1.8) [87.79631]	21	(1.9) [93.02325]	22	(12) [586.5	5102]
Zinc	54	(6.7) [333.0003]	44	(1.8) [87.79631]	44	(1.9) [93.02325]	29	(12) [586.5	5102]
SW7060 - Arsenic (mg/kg)									1
Arsenic	10	(1.3) [333.0003]	8.7	(0.7) [175.5926]	11	(0.74) [186.0465]	72	(4.7) [1173.020]	020]
SW7421 - Lead (mg/kg)									
lead	9.7	(1) [333.0003]	16	(1.1) [351.1852]	21	(1.1) [372.0930]	10	(1.6) [537.6344]	3344]

	07 07-5S-02 07-5S-02-01 0 - 0.5	(0.41) [2272.727]	(2.9) [586.5102]	()
	i 	0.77	QN	88
	5-01-01	(0.05) [276.8549]	(0.47) [93.02325]	[1]
	07 07-SS-01 Dup of 07-SS 0 - 0.5	(0.02)	(0.47)	0
	07 07-SS-01 07-DS-02 Dup of 07-SS-01-01 0 - 0.5	0.1 B	ND	14
4 (FT.)	; ; ; ; ;	:35,2941]	7.79631]	[1]
SITE IO LOCATION ID SAMPLE ID BEG. DEPTH (FT.)	07 07-SS-01 07-SS-01-01 0 - 0.5	(0.042) [235.2941]	(0.44) [87.79631]	С
BEG. DEP		0.073 B	QN	15
		152.3809]	(1.7) [333.0003]	[1]
	07-SD-02 07-SD-02-01 07-SD-02-01 0 - 0.5	(0.17) [952.3809]	(1.7) [3	С
		0.35	ND	79
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

		07-55-03	-	70-55-20		07-55-05		00-Mi/-01
PARAMETER	07.	07-55-03-01 07-55-03-01 0 - 0.5	Ö	07-SS-04-01 0 - 0.5	0	07-58-05-01 07-58-05-01 0 - 0.5	Õ	09-MW-01-02 2 - 3
1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: : : : : : : : : : : : : : : : : : : :		1			
SW6010 - Metals (mg/kg)								
Aluminum	3200	(33) [165.8925]	0009	(83) [414.0786]	19000	(69) [347.2222]	6400	(16) [81.30081]
Antimony	ON	(17) [165.8925]	ON	(41) [414.0786]	QN	(35) [347.2222]	ON	(8.1) [81.30081]
Arsenic	QN	(50) [165.8925]	QN	(120) [414.0786]	QN	(100) [347.2222]	QN	(24) [81.30081]
Barium	130	(1.7) [165.8925]	330	(4.1) [414.0786]	620	(3.5) [347.2222]	140	[81.
Beryllium	QN	(0.33) [165.8925]	ON	(0.83) [414.0786]	ON	(0.69) [347.2222]	ON	(0.16) [81.30081]
Cadmium	QN	(0.83) [165.8925]	QN	(2.1) [414.0786]	QN	(1.7) [347.2222]	ON	(0.41) [81.30081]
Calcium	9100	(170) [165.8925]	17000	(410) [414.0786]	24000	(350) [347.2222]	6400	(81) [81.30081]
Chromium	6.2	(1.7) [165.8925]	11	(4.1) [414.0786]	40	(3.5) [347.2222]	14	(0.81) [81.30081]
Cobalt	2.4	(1.7) [165.8925]	QN	(4.1) [414.0786]	21	(3.5) [347.2222]	4.9	(0.81) [81.30081]
Copper	13	(3.3) [165.8925]	QN	(8.3) [414.0786]	99	(6.9) [347.2222]	21	(1.6) [81.30081]
Iron	9200	(8.3) [165.8925]	23000	(21) [414.0786]	57000	(17) [347.2222]	13000	(4.1) [81.30081]
Lead	ND	(8.3) [165.8925]	ON	(21) [414.0786]	28	(17) [347.2222]	20	(4.1) [81.30081]
Magnesium	2200	(170) [165.8925]	4300	(410) [414.0786]	12000	(350) [347.2223]	3600	(81) [81.30081]
Manganese	120	(1.7) [165.8925]	350	(4.1) [414.0786]	470	(3.5) [347.2222]	210	(0.81) [81.30081]
Molybdenum	Q.	(8.3) [165.8925]	ND	(21) [414.0786]	QN	(17) [347.2222]	QN	(4.1) [81.30081]
Nickel	9.9		15	(8.3) [414.0786]	50	(6.9) [347.2222]	15	(1.6) [81.30081]
Potassium	ND	(500) [165.8925]	QN	(1200) [414.0786]	1500	(1000) [347.2222]	1500	(240) [81.30081]
Selenium	N		ON	(120) [414.0786]	QN	(100) [347.2222]	Q	(24) [81.30081]
Silver	Q.	(1.7) [165.8925]	ON	(4.1) [414.0786]	Q.	(3.5) [347.2222]	Q	(0.81) [81.30081]
Sodium	2000	(170) [165.8925]	2100	(410) [414.0786]	1900	(350) [347.2222]	350	(81) [81.30081]
Thallium	ON	(17) [165.8925]	ON	(41) [414.0786]	Q	(35) [347.2222]	QN	(8.1) [81.30081]
Vanadium	9.5	(3.3) [165.8925]	16	(8.3) [414.0786]	54	(6.9) [347.2222]	25	(1.6) [81.30081]
Zinc	40	(3.3) [165.8925]	. 28	(8.3) [414.0786]	290	(6.9) [347.2222]	48	(1.6) [81.30081]
SW7060 - Arsenic (mg/kg)								
Arsenic SW7421 - Lead (mα/kα)	4.6	(0.66) [165.8925]	35	(3.3) [828.1573]	32	(2.8) [694.4444]	6.5	(0.71) [176.3668]
	2.9 B	(0.5) [165.8925]	11	(1.2) [414.0786]	53	(4.2) [1388.888]	15	(1.1) [352.7336]

TABLE A5

	09 09-MW-01 09-MW-01-02 2 - 3	(0.051) [283.4467]	(0.41) [81.53946]	() [1]
		QN QN	0.85	16
		(0.2) [1086.956]	(1.7) [347.2222]	[1]
	07 07-SS-05 07-SS-05 07-SS-05-01 0 - 0.5	(0.2)	(1.7)	С
		0.78	QN	80
РТН (FT.)		(0.3) [1666.666]	(2.1) [414.0786]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	07 07-5S-04 07-5S-04-01 0 - 0.5	(0.3)	(2.1)	С
BEG. D		0.53	ND	85
	, 	(0.1) [568.1818]	(0.83) [165.8925]	[1]
	07 07-5S-03 07-5S-03-01 0 - 0.5	(0.1)	(0.83)	C
		0.2	QN	56
	PARAMETER	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE 1D

		60			60			60		60	
		09-MW-02			09-MW-03			09-MW-04		09-MW-05	
	0	09-MW-02-02)	09-MW-03-02			09-MW-04-02	J	09-MW-05-02	
PARAMETER 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5 - 4.5	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5 - 4		1 1 1	3 - 3.5	. 1	2.5 - 4	1 1 1 1 1
SW6010 - Metals (mg/kg)											
Aluminum	12000	(20)	[6600.66]	2000	(17)	[84.0336]	10000	(18) [87.71929]	14000	(22)	[107.5268]
Antimony	QN	(6.6)	[6600.66]	S	(8.4)	[84.0336]	QN	(8.8) [87.71929]	QN	(11)	[107.5268]
Arsenic	QN	(30)	[6600.66]	NO.	(25)	[84.0336]	QN	(26) [87.71929]	QN	(32)	[107.5268]
Barium	210	(0.99)	[99.0093]	11	(0.84)	[84.0336]	180	(0.88) [87.71929]	210	(1.1)	[107.5268]
Beryllium	0.24	(0.2)	[6600.66]	S	(0.17)	[84.0336]	0.2	(0.18) [87.71929]	0.32	(0.22)	[107.5268]
Cadmium	QN	(0.5)	[6600.66]	9	(0.42)	[84.0336]	QN	(0.44) [87.71929]	ON	(0.54)	[107.5268]
Calcium	18000	(66)	[6600.66]	2900	(84)	[84.0336]	12000	(88) [87.71929]	16000	(110)	[107.5268]
Chromium	52	(0.99)	[660.066]	11	(0.84)	[84.0336]	22	(0.88) [87.71929]	28	(1.1)	[107.5268]
Cobalt	9.6	(0.99)	[99.0098]	6.3	(0.84)	[84.0336]	8.9	(0.88) [87.71929]	13	(1.1)	[107.5268]
Copper	27	(2)	[660.66]	15	(1.7)	[84.0336]	92	(1.8) [87.71929]	32	(2.2)	[107.5268]
Iron	23000	(2)	[6600.66]	9700	(4.2)	[84.0336]	20000	(4.4) [87.71929]	25000	(5.4)	[107.5268]
Lead	6.6	(2)	[6600.66]	QN	(4.2)	[84.0336]	35	(4.4) [87.71929]	7.5	(5.4)	[107.5268]
Magnesium	7900	(66)	[6600.66]	2600	(84)	[84.0336]	6400	(88) [87.71929]	8300	(110)	[107.5268]
Manganese	410	(0.99)	[6600.66]	200	(0.84)	[84.0336]	370	(0.88) [87.71929]	200	(1.1)	[107.5268]
Molybdenum	QN	(2)	[6600.66]	S	(4.2)	[84.0336]	QN	(4.4) [87.71929]	QN	(5.4)	[107.5268]
Nickel	59	(2)	[6600.66]	14	(1.7)	[84.0336]	24	(1.8) [87.71929]	32	(2.2)	[107.5268]
Potassium	1200	(300)	[6600.66]	200	(250)	[84.0336]	1100	(260) [87.71929]	1300	(320)	[107.5268]
Selenium	QN	(30)	[6600.66]	S	(25)	[84.0336]	N	(26) [87.71929]	QN	(32)	[107.5268]
Silver	QN	(0.99)	[6600.66]	QN	(0.84)	[84.0336]	QN	(0.88) [87.71929]	QN	(1.1)	[107.5268]
Sodium	470	(66)	[6600.66]	120	(84)	[84.0336]	330	(88) [87.71929]	460	(110)	[107.5268]
Thallium	QN	(6.6)	[6600.66]	QN	(8.4)	[84.0336]	Q	(8.8) [87.71929]	Q.	(11)	[107.5268]
Vanadium	45	(2)	[6600.66]	19	(1.7)	[84.0336]	38	(1.8) [87.71929]	46	(2.2)	[107.5268]
Zinc ·	89	(2)	[6600.66]	28	(1.7)	[84.0336]	78	(1.8) [87.71929]	74	(2.2)	[107.5268]
SW7060 - Arsenic (mg/kg)											
Arsenic	11	(1.4)	(1.4) [346.7105]	2	(0.34)	[84.88964]	7.8	(1.6) [397.5352]	14	(0.88)	[220.3856]
SW7421 - Lead (mg/kg)											
7 6 9	1 0	Ξ	(1) [2/6 710E]	2 2	(0 0)	(n oc) for coneal	1	[1 9] [207 [20]	c	(0, 1)	FALL DAY TO 1)

() = Detection Limit [] = Factor ND = Not Detected NA = Not Applicable

Compiled: 21 March 1995

	09 09-MW-05 09-MW-05-02 2.5 - 4	(0.06) [333.3333]	(0.55) [110.1928]	() [1]
	09- 8-60 2.	0.16	ND	25
	09 09-MW-04 09-MW-04-02 3 - 3.5	(0.058) [320.5128]	(0.44) [87.81173]	()
	- E - 8 - W-60	ON .	1.1	22
SITE ID LOCATION ID SAMPLE ID IEG. DEPTH - END DEPTH (FT.)	-03 03-02 - 4	(0.056) [309.5975]	(0.42) [84.88964]	() [1]
SIT LOCAT SAMP BEG. DEPTH -	09 09-MW-03 09-MW-03-02 2.5 - 4	0.12 (ND	5
		(0.054) [301.2048]	(0.49) [98.75567]	[1]
	09 09-MW-02 09-MW-02-02 2.5 - 4.5		(0.49)	C
		0.064 B	1.5	17
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID

		60	Š	60		60		60	
	0	U9-MW-U6 09-MW-06-02	-60 09-DS-01 Dup	09-MW-06 Dup of 09-MW-06-02		09-SS-01 09-SS-01-01	ő	09-SS-02 09-SS-02-01	
PARAMETER		4 - 7	4	1 - 7		0 - 0.5		0 - 0.5	! ! ! ! ! !
SW6010 - Metals (mg/kg)									
	9400	(25) [124.4709]	7000	(24) [118.7084]	9100	(17) [83.29168]	6300	(24)	[118.4553]
Antimony	ON	(12) [124.4709]	QN	(12) [118.7084]	S	(8.3) [83.29168]	R	(12)	[118.4553]
Arsenic	QN	(37) [124.4709]	QN	(36) [118.7084]	S.	(25) [83.29168]	ON	(38)	[118.4553]
Barium	150	(1.2) [124.4709]	120	(1.2) [118.7084]	96	(0.83) [83.29168]	94	(1.2)	[118.4553]
Beryllium	ON	(0.25) [124.4709]	ND	(0.24) [118.7084]	0.2	(0.17) [83.29168]	QN	(0.24)	[118.4553]
Cadmium	QN	(0.62) [124.4709]	QN	(0.59) [118.7084]	S	(0.42) [83.29168]	QN	(0.29)	[118.4553]
Calcium	8800	(120) [124.4709]	0069	(120) [118.7084]	8000	(83) [83.29168]	7600	(120)	[118.4553]
Chromium	20	(1.2) [124.4709]	15	(1.2) [118.7084]	15	(0.83) [83.29168]	14	(1.2)	[118.4553]
Cobalt	9.5	(1.2) [124.4709]	6.8	(1.2) [118.7084]	10	(0.83) [83.29168]	8.1	(1.2)	[118.4553]
Copper	20	(2.5) [124.4709]	15	(2.4) [118.7084]	20	(1.7) [83.29168]	14	(2.4)	[118.4553]
Iron	18000		14000	(5.9) [118.7084]	17000	(4.2) [83.29168]	13000	(6.3)	[118.4553]
Lead	14		7.2	_	17	(4.2) [83.29168]	12	(6.3)	[118.4553]
Magnesium	2200		4100		4500	(83) [83.29168]	3900	(120)	[118.4553]
Manganese	340		280	(1.2) [118.7084]	330	(0.83) [83.29168]	240	(1.2)	[118.4553]
Molybdenum	QN	(6.2) [124.4709]	ND	(5.9) [118.7084]	9	(4.2) [83.29168]	QN	(6.3)	[118.4553]
Nickel	22	(2.5) [124.4709]	16	(2.4) [118.7084]	23	(1.7) [83.29168]	18	(2.4)	[118.4553]
Potassium	1100	(370) [124.4709]	920	(360) [118.7084]	650	(250) [83.29168]	780	(360)	[118.4553]
Selenium	QN	_	QN	_	Q	(25) [83.29168]	QN	(38)	[118.4553]
Silver	QN		Q	(1.2) [118.7084]	2	(0.83) [83.29168]	Q	(1.2)	[118.4553]
Sodium	260	_	190	(120) [118.7084]	170	(83) [83.29168]	160	(120)	[118.4553]
Thallium	ON	(12) [124.4709]	QN	(12) [118.7084]	S	(8.3) [83.29168]	ND	(12)	[118.4553]
Vanadium	35	(2.5) [124.4709]	56	(2.4) [118.7084]	33	(1.7) [83.29168]	24	(2.4)	[118.4553]
Zinc	54	(2.5) [124.4709]	41	(2.4) [118.7084]	110	(1.7) [83.29168]	53	(2.4)	[118.4553]
SW7060 - Arsenic (mg/kg)									
	8.3	(0.9) [224.3460]	6.7	(0.48) [121.0360]	6.7	(0.65) [162.1073]	6.3	(0.55)	[136.5224]
SW/421 - Lead (mg/kg)									
Lead	7.2	(0.67) [224.9212]	7.1	(0.73) [242.0721]	9.4	(0.48) [161.1863]	7.6	(0.85)	(0.82) [273.8600]

		(0.079) [438.9815]	(0.68) [136.9300]	[1]
	09 09-55-02 09-55-02-01 0 - 0.5	(0.079)	(0.68)	С
		0.15	QN	33
	! ! ! !	(0.054) [302.4803]	(0.4) [80.59316]	[1]
	09 09-SS-01 09-SS-01-01 0 - 0.5	(0.054)	(0.4)	0
	0	0.097 B	ND	13
νтн (FT.)	7-06-02	(0.051) [280.5836]	(0.61) [121.0360]	Ξ
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	09 09-MW-06 09-DS-01 Dup of 09-MW-06-02 4 - 7	(0.051)	(0.61)	С
BEG. DEI	09-08-01	0.13	ND	19
·		(0.064) [356.1253]	(0.56) [112.4606]	[1]
	09 09-MW-06 09-MW-06-02 4 - 7	(0.064)	(0.56)	С
	0	0.15	ND	22
		ng/kg) (mg/kg)	sture (%)	
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID

	(mg/kg) 11000 ND ND 200 0.32 ND 255 13		. 00	w-U1 -01-01 - 6	10-DS-01	10-mw-01 Dup of 10-MW-01-01 3 - 6	1	10-MW-02 .0-MW-02-01 .1 - 5 5	
- Metal's (mg/kg) - Motol (11) [100.2222] 10000 (18) [98.49557] 11000 (18) [98.49557] 14000 (19) [91.4000 (19) [9	(mg/kg)		10000						
11000 (22) [110.2292] NO (8.8) [88.49557] NO (8.9) [88.49557] NO (9.6) [8.9] NO (11) [110.2292] NO (8.8) [88.49557] NO (9.8) [88.49557] NO (9.6) [9.6] NO (11) [110.2292] NO (9.8) [88.49557] NO (9.8) [88.49557] NO (9.6) [9.6] NO (11) [110.2292] NO (9.8) [88.49557] NO (9.8) [88.49557] NO (9.6) [9.6] NO (11) [110.2292] NO (9.8) [88.49557] NO (9.8) [88.49557] NO (9.6) [9.6] NO (11) [110.2292] NO (9.8) [88.49557] NO (9.4) [88.49557] NO (9.6) [9.6] NO (11) [110.2292] NO (9.8) [88.49557] NO (9.6) [88.49557] NO (9.6) [9.6] NO (11) [110.2292] NO (9.8) [88.49557] NO (9.6) [88.49557] NO (9.6) [9.6] NO (11) [110.2292] NO (9.8) [88.49557] NO (9.6) [88.49557] NO (9.6) [9.6] NO (11) [110.2292] NO (9.8) [88.49557] NO (9.6) [88.49557] NO (9.6) [88.49557] NO (11) [110.2292] NO (1.6) [188.49557] NO (1.6) [88.49557] NO (9.6) [88.49557] NO (11) [110.2292] NO (1.6) [88.49557] NO (1.6) [88.49557] NO (1.6) [88.49557] NO (11) [110.2292] NO (1.6) [88.49557] NO (1.6) [88.49557] NO (1.6) [88.49557] NO (1.1) [110.2292] NO (1.6) [88.49557] NO (1.6) [88.49557] NO (1.6) [88.49557] NO (1.1) [110.2292] NO (1.8) [88.49557] NO (10000				1 1 3 6 6 1 1 1	! ! ! ! ! ! ! ! !	
10 11 110, 12292 NO (2.1) 188, 49557 NO (2.1) 188, 49557 NO (2.2) 184, 4	c 2 ium 0. I90 um 190		222		11000	_	14000	(18)	[96 15384]
1.	c 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		QN		QN	-	2	(9.6)	[96.15384]
1,	ium n n 19		QN	_	Q		2	(53)	[96.15384]
1,00 0.32 (0.22) [110.2292] 0.26 (0.18) [88.49557] 0.26 (0.18) [88.49557] 0.38 (0.19) [98.49557] 0.38 (0.19) [98.49557] 0.28 [98.49557] 0.28 [98.49557] 0.28 [98.49557] 0.28 [98.49557] 0.28 [98.49557] 0.28 [98.49557] 0.28 [98.49557] 0.28 0.	ium n um		180	_	190		260	(0.96)	[96.15384]
Main	տ Մա		0.26		0.26		0.38	(0.19)	[96.15384]
19000 (110) [110.2292] 14000 (88) [88.49557] 15000 (88) [88.49557] 12000 (96) [8	E E		ND	_	QN		Q	(0.48)	[96.15384]
13 (1.1) [110.2292] 22 (0.88) [88.49557] 22 (0.88) [88.49557] 31 (0.96) [8 (1.9) [10.2292] 10 (0.88) [88.49557] 27 (1.88) [88.49557] 13 (0.96) [1.9] [1.9] (0.88) [1.9]	En .		14000		15000		12000	(96)	[96.15384]
13 (1.1) [110.2292]			22		22		31	(0.96)	[96.15384]
1.00 1.00		Ϊ.	10		6.6		13	(0.96)	[96.15384]
25000 (5.5) [110.2292] 21000 (4.4) [88.49557] 22000 (4.4) [88.49557] 30000 (4.8) [8.49557] 300000 (4.8) [8.49557] 300000 (4.8) [8.49557] 300000 (4.8) [8.49557] 3000000000000000000000000000000000000			30	_	27	_	69	(1.9)	[96.15384]
22 (5.5) [110.2292] 9 (4.4) [88.49557] ND (4.4) [88.49557] 16 (4.8) [88.49557] 16 (4.8) [88.49557] 160 (110) [110.2292] 6900 (88) [88.49557] 7400 (88) [88.49557] 8900 (96) [96) [96] [96] [96] [96] [96] [96] [96] [96]		_	21000		22000	_	30000	(4.8)	[96.15384]
Secondary Seco		_	6		QN	_	16	(4.8)	_ [96.15384]
Secondary Seco		_	0069	_	7400	_	8900	(96)	[96.15384]
Head		_	410		410	_	200	(0.96)	[96.15384]
1200 (330) [110.2292] 25 (1.8) [88.49557] 26 (1.8) [88.49557] 38 (1.9) [81.49557] 38 (1.9) [81.49557] 300 [110.2292] 1100 (270) [88.49557] 1100 (270) [88.49557] 1400 (290) [89.4957] 1400 (290) [89.4957] 1400 (290) [89.4957] 1400 (290) [89.4957] 1400 (290) [89.4957] 1400 (290) [89.4957] 1400 (290) [89.4957] 1400 (290) [89.4957]	enum	_	QN		QN		ND	(4.8)	[96.15384]
1200 (330) [110.2292] 1100 (270) [88.49557] 1100 (270) [88.49557] 1400 (290) [88.49557] 1400 (290) [88.49557] 1400 (290) [88.49557] 1400 (290) [88.49557] 1400 (290) [88.49557] 1400 (290) [88.49557] 1400 (2.96) [88.4957] 1400 (2.96) [88.4957] 1400 (2.96) [88.4957] 1400 (2.96) [88.4957] 1400 (2			25		26	_	38	(1.9)	[96.15384]
Um	=	_	1100	_	1100		1400	(290)	[96.15384]
ND	E	_	QN		QN	_	QN	(53)	[96.15384]
370 (110) [110.2292] 320 (88) [88.49557] 370 (88) [88.49557] 420 (96) [8 10m 1		_	QN		ON	_	ON.	(0.96)	[96.15384]
Um			320		370	_	420	(96)	[96.15384]
- Arsenic (mg/kg) - Lead (mg/kg) 41 (2.2) [110.2292] 38 (1.8) [88.49557] 40 (1.8) [88.49557] 50 (1.9) [(1.9) [88.49557] 110 (1.9) [(1.9) [88.4957] 110 (1.9) [(1.9) [88.4957]		ш	ND QN	_	QN	_	QN	(9.6)	[96.15384]
100 (2.2) [110.2292] 76 (1.8) [88.49557] 68 (1.8) [88.49557] 110 (1.9) [- Arsenic (mg/kg) 15 (1.8) [444.4444] 8.5 (0.81) [201.3490] 12 (0.72) [179.5493] 17 (1.5) [- Lead (mg/kg)		_	38	_	40		20	(1.9)	[96.15384]
- Arsenic (mg/kg) 15 (1.8) [444.4444] 8.5 (0.81) [201.3490] 12 (0.72) [179.5493] 17 (1.5) - Lead (mg/kg)			76		89		110	(1.9)	[96.15384]
c - Lead (mg/kg) 15 (1.8) [444.4444] 8.5 (0.81) [201.3490] 12 (0.72) [179.5493] 17 (1.5)	ı								
- Lead (mg/kg)		(1.8) [444.4444]	8.5		12		17		[367.8160]
	1								
$1/$ (1.3) $\lfloor 444.4444 \rfloor$ 15 (1.2) $\lfloor 402.6980 \rfloor$ 9.4 (1.1) $\lfloor 359.0986 \rfloor$ 13	Lead 17	(1.3) [444.4444]	15	(1.2) [402.6980]	9.4	(1.1) [359.0986]	13	(1.1)	(1.1) [367.8160]

				BEG. DEP	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)						
PARAMETER 		09 09-SS-03 09-SS-03-01 0 - 0.5	; ; ; ;		10 10-MW-01 10-MW-01-01 3 - 6	10-DS	10 10-MW-01 10-DS-01 Dup of 10-MW-01-01 3 - 6	MW-01-01		10 10-MW-02 10-MW-02-01 4 - 5.5	
SW7471 - Mercury (mg/kg) Mercury	0.12	(0.054) [301.9323]	01.9323]	Q	(0.047) [259.7402]	2] 0.081 8		(0.063) [351.6174]	QN	(0.057) [317.4603]	17.4603]
3W7/40 - Serenium (mg/kg) Selenium SW846 - Percent Moisture (%)	ND	(0.56) [111.1111]	11.1111]	0.99	(0.5) [100.6745]	5] 1.4	(0.45	(0.45) [89.77466]	1.8	(0.48) [95.92326]	5.92326]
Percent moisture	28	0	[1]	23) ()	[1] 21	Ü	[1]	25	С	[1]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END OEPTH (FT.)

	. 1	10 10-MW-03 10-MW-03-01	-	10 10-SB-01 10-SR-01-01	-	10 10-SB-01 10-SB-01-02		10 10-SB-02 10-SR-02-01
PARAMETER 		9 - 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 - 4	4	5 - 7	 	1 - 3
SW6010 - Metals (mg/kg)								
	15000	(23) [113.6363]	7400	(15) [75.18796]	13000	(18) [90.90908]	7100	(18) [87.71929]
Antimony	QN	(11) [113.6363]	2	(7.5) [75.18796]	QN	(9.1) [90.90908]	2	_
Arsenic	ON	(34) [113.6363]	2	(23) [75.18796]	S	(27) [90.90908]	QN	
Barium	300	(1.1) [113.6363]	120	(0.75) [75.18796]	250	[0.91] [90.90908]	140	_
Beryllium	0.42	(0.23) [113.6363]	0.19	(0.15) [75.18796]	0.36	(0.18) [90.90908]	0.19	(0.18) [87.71929]
Cadmium	QN	(0.57) [113.6363]	R	(0.38) [75.18796]	S	(0.45) [90.90908]	S	(0.44) [87.71929]
Calcium	15000	(110) [113.6363]	8300	(75) [75.18796]	18000	(91) [90.90908]	0096	(88) [87.71929]
Chromium	33	(1.1) [113.6363]	16	(0.75) [75.18796]	58	(0.91) [90.90908]	16	(0.88) [87.71929]
Cobalt	12	(1.1) [113.6363]	7.2	(0.75) [75.18796]	12	(0.91) [90.90908]	7	(0.88) [87.71929]
Copper	43	(2.3) [113.6363]	62	(1.5) [75.18796]	41	(1.8) [90.90908]	21	(1.8) [87.71929]
Iron	29000	(5.7) [113.6363]	15000	(3.8) [75.18796]	28000	(4.5) [90.90908]	15000	(4.4) [87.71929]
Lead	7.9	(5.7) [113.6363]	9.9	(3.8) [75.18796]	6.2	(4.5) [90.90908]	11	(4.4) [87.71929]
Magnesium	8900	(110) [113.6363]	4800	(75) [75.18796]	9200	(91) [90.90908]	4700	(88) [87.71929]
Manganese	640	(1.1) [113.6363]	280	(0.75) [75.18796]	560	(0.91) [90.90908]	270	(0.88) [87.71929]
Molybdenum	QN	(5.7) [113.6363]	S	(3.8) [75.18796]	QN	(4.5) [90.90908]	QN	(4.4) [87.71929]
Nickel	39	(2.3) [113.6363]	19	(1.5) [75.18796]	31	(1.8) [90.90908]	19	(1.8) [87.71929]
Potassium	1700	(340) [113.6363]	780	(230) [75.18796]	1300	(270) [90.90908]	770	(260) [87.71929]
Selenium	QN	_	N	(23) [75.18796]	ON	(27) [90.90908]	QN	(26) [87.71929]
Silver	QN	_	S	(0.75) [75.18796]	ND	(0.91) [90.90908]	Q	(0.88) [87.71929]
Sodium	400	(110) [113.6363]	220	(75) [75.18796]	400	(91) [90.90908]	190	(88) [87.71929]
Thallium	ON	(11) [113.6363]	Q	(7.5) [75.18796]	QN	(9.1) [90.90908]	9	(8.8) [87.71929]
Vanadium	52	(2.3) [113.6363]	88	(1.5) [75.18796]	45	(1.8) [90,90908]	53	(1.8) [87.71929]
Zinc	100	(2.3) [113.6363]	29	(1.5) [75.18796]	06	(1.8) [90.90908]	52	(1.8) [87.71929]
SW7060 - Arsenic (mg/kg)								
Arsenic	11	(0.79) [197.1025]	7.6	(0.73) [182.1493]	13	(1.5) [363.2730]	7.7	(0.71) [178.2848]
SW7421 - Lead (mg/kg)								
Lead	8.5	(1.2) [394.2051]	11	(1.1) [364.2987]	9.6	(1.1) [363.2730]	62	(2.4) [800.2560]

	10 10-SB-02 10-SB-02-01 1 - 3	.2] ND (0.064) [355.1136]	7] 1 (0.4) [80.02560]	[1] 12 () [1]
	10 10-58-01 10-58-01-02 5 - 7	(0.047) [259.7402]	(0.45) [90.81827]	0
		0.073 B	2.2	23
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	10 10-SB-01 10-SB-01-01 2 - 4	(0.045) [252.5252]	(0.46) [91.07468]	() [1]
BEG. DI		ON	1.6	10
	10 10-MW-03 10-MW-03-01 4 - 6 		(0.57) [113.2118]	() [1]
		0.097 B	1.1	27
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

			IS	SITE 10					
			LUCA	LOCATION ID SAMPLE ID					
			BEG. DEPTH -	DEPTH - END DEPTH (FT.)					
		10	1	10		10		10	
		10-SB-02	10-8	10-SB-03		10-SB-03		10-88-03	
PARAMETER		10-5B-02-02 4 - 6	10-SE 1 -	10-58-03-01 1 - 2.5		10-SB-03-02 4 - 5.5		10-SB-03-03 7 - 8.5	
SW6010 - Metals (mg/kg)	 	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
	13000	(73) [363.6363]	5900	(15) [74.07407]	12000	(19) [96,15384]	0066	(19) [93.	[93.45793]
Antimony	QN	(36) [363.6363]	ON	(7.4) [74.07407]	ON		문		93.45793]
Arsenic	QN	(110) [363.6363]	QN	(22) [74.07407]	QN	(29) [96.15384]	Q	(28) [93.	93.45793]
Barium	240	(3.6) [363.6363]	87	(0.74) [74.07407]	170	(0.96) [96.15384]	150	(0.93) [93.	93.45793]
Beryllium	QN	(0.73) [363.6363]	QN	(0.15) [74.07407]	QN	(0.19) [96.15384]	2	(0.19) [93.	93.45793]
Cadmium	ON	(1.8) [363.6363]	0.53	(0.37) [74.07407]	Q.	(0.48) [96.15384]	S	(0.47) [93.	93.45793]
Calcium	19000	(360) [363.6363]	3700	(74) [74.07407]	14000	(96) [96.15384]	11000	(93) [93.	93.45793]
Chromium	27	(3.6) [363.6363]	14	(0.74) [74.07407]	24	(0.96) [96.15384]	20	(0.93) [93.	93.45793]
Cobalt	12	(3.6) [363.6363]	5.8	(0.74) [74.07407]	9.1	(0.96) [96.15384]	8.5	(0.93) [93.	93.45793]
Copper	33	(7.3) [363.6363]	13	_	52	(1.9) [96.15384]	52	(1.9) [93.	93.45793]
Iron	28000	_	12000	(3.7) [74.07407]	22000	(4.8) [96.15384]	21000	(4.7) [93.	93.45793]
Lead	QN	(18) [363.6363]	28	(3.7) [74.07407]	10	(4.8) [96.15384]	6.7	(4.7) [93.	93.45793]
Magnesium	9200	(360) [363.6363]	3200	(74) [74.07407]	7500	(96) [96.15384]	6300	(93) [93.	93.45793]
Manganese	520		190	(0.74) [74.07407]	360	(0.96) [96.15384]	340	(0.93) [93.	93.45793]
Molybdenum	ON	(18) [363.6363]	QN	(3.7) [74.07407]	QN	(4.8) [96.15384]	QN	(4.7) [93.	93.45793]
Nickel	32		17		27	(1.9) [96.15384]	23	(1.9) [93.	93.45793]
Potassium	1200	_	260	(220) [74.07407]	1100	(290) [96.15384]	860		93.45793]
Selenium	QN		QN	_	QN	(29) [96.15384]	S	(28) [93.	93.45793]
Silver	QN	_	ON	(0.74) [74.07407]	9	(0.96) [96.15384]	QN	(0.93) [93.	93.45793]
Sodium	420	(360) [363.6363]	170	(74) [74.07407]	530	(96) [96.15384]	440	(93) [93.	93.45793]
Thallium	ND	(36) [363.6363]	QN	(7.4) [74.07407]	Q.	(9.6) [96.15384]	N	(9.3) [93.	93.45793]
Vanadium	46	(7.3) [363.6363]	24	(1.5) [74.07407]	44	(1.9) [96.15384]	39	_	[93.45793]
Zinc	88	(7.3) [363.6363]	36	(1.5) [74.07407]	09	(1.9) [96.15384]	54		93.45793]
SW7060 - Arsenic (mg/kg)									1
Arsenic	12	(0.83) [208.3333]	5.2	(0.33) [81.40008]	11	(0.8) [200.5012]	10	(0.81) [201	[201.3490]
SW7421 - Lead (mg/kg)									ı
Lead	8.9	(1.2) [416.6666]	39	(2.4) [814.0008]	9.8	(1.2) [401.0025]	6.8	(0.6) [201.3490]	.3490]
Compiled: 21 March 1995		() = Detection Limit	mit [] = Factor	ND = Not Detected	NA = No	Not Applicable			
-			3			1 . L L L L L L			

				BEG. DEP	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	(:						
PARAMETER		10 10-58-02 10-58-02-02 4 - 6			10 10-SB-03 10-SB-03-01 1 - 2.5		10-10-5	10 10-SB-03 10-SB-03-02 4 - 5.5			10 10-SB-03 10-SB-03-03 7 - 8.5	
SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (ma/ka)	ND	(0.057) [317.4603]	17.4603]	ND	(0.047) [261.6431]	431]	ND	(0.06) [333.3333]	3.3333]	QN	(0.053)	(0.053) [295.1593]
Selenium SW846 - Percent Moisture (%)	1.8	(0.52) [104.1666]	04.1666]	0.53	(0.37) [74.25007]	[200	1.3	(0.48) [95.92326]	.92326]	1	(0.5)	(0.5) [99.92006]
Percent moisture	25	0	[1]	6	С	[1]	25	С	[1]	23	С	[1]

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

	·	10 10-55-01		10		10			10	
PARAMETER 	10.	10-SS-01-01 0 - 0.5		10-55-02-01 0 - 0.5	 	10-55-03 10-55-03-01 0 - 0.5		10-08-02	10-DS-03 10-DS-02 Dup of 10-SS-03-01 0 - 0.5	T
SW6010 - Metals (mg/kg)									-	
	7600	(15) [76.33588]	6500	(14) [69.44444]	6300	(15)	[72,9927]	5300	(13) [67.11	67.114097
Antimony	QN	(7.6) [76.33588]	Q.	(6.9) [69.44444]	8.2	(7.3)	[72.9927]	ON.		67.11409]
Arsenic	QN	(23) [76.33588]	Q.	(21) [69.44444]	S	(22)	[72.9927]	ON		67.11409]
Barium	140	(0.76) [76.33588]	110	(0.69) [69.44444]	86	(0.73)	[72.9927]	82		67.11409
Beryllium	QN	(0.15) [76.33588]	QN	(0.14) [69.44444]	2	(0.15)	[72.9927]	QN	_	.11409]
Cadmium	2	(0.38) [76.33588]	9.0	(0.35) [69.4444]	8	(0.36)	[72.9927]	QN	(0.34) [67.11409]	1409]
Calcium	7700	_	5400	(69) [69.44444]	4700	(73)	[72.9927]	4100	(67) [67.11409]	1409]
Chromium	16	(0.76) [76.33588]	14	(0.69) [69.44444]	11	(0.73)	[72.9927]	9.5	(0.67) [67.11409]	1409]
Cobalt	7.5	(0.76) [76.33588]	7	(0.69) [69.44444]	7.1	(0.73)	[72.9927]	5,6	(0.67) [67.11409]	1409]
Copper	20	_	32	(1.4) [69.44444]	47	(1.5)	[72.9927]	44	(1.3) [67.11409]	1409]
Iron	15000	(3.8) [76.33588]	13000	(3.5) [69.4444]	14000	(3.6)	[72.9927]	11000	(3.4) [67.11409]	1409]
Lead	15	(3.8) [76.33588]	24	(3.5) [69.44444]	17	(3.6)	[72.9927]	19	(3.4) [67.11409	1409]
Magnesium	4500		3300	(69) [69.44444]	3300	(73)	[72.9927]	2500	(67) [67.11409]	1409]
Manganese	260	_	230	(0.69) [69.4444]	210	(0.73)	[72.9927]	180	(0.67) [67.11409	1409]
Molybdenum	QN	(3.8) [76.33588]	2	(3.5) [69.4444]	Q	(3.6)	[72.9927]	QN	(3.4) [67.11409]	1409]
Nicke]	19	(1.5) [76.33588]	15	(1.4) [69.4444]	16	(1.5)	[72.9927]	12	(1.3) [67.11409]	1409]
Potassium	740	(230) [76.33588]	099	(210) [69.4444]	530	(220)	[72.9927]	510	(200) [67.11409]	1409]
Selenium	QN	(23) [76.33588]	<u>.</u>	(21) [69.4444]	9	(22)	[72.9927]	QN	(20) [67.11409]	1409]
Silver	ON	(0.76) [76.33588]	S	(0.69) [69.44444]	Q	(0.73)	[72.9927]	Q	(0.67) [67.11409]	1409]
Sodium	200	(76) [76.33588]	210	(69) [69.44443]	140	(73)	[72.9927]	120	(67) [67.11	[67.11409]
Thallium	Q	(7.6) [76.33588]	S	(6.9) [69.44444]	9	(7.3)	[72.9927]	Q.	(6.7) [67.11	67.11409]
Vanadium	31	(1.5) [76.33588]	24	(1.4) [69.44444]	52	(1.5)	[72.9927]	19	(1.3) [67.11409]	1409]
Zinc	52	(1.5) [76.33588]	110	(1.4) [69.44444]	150	(1.5)	[72.9927]	160	[67	.114097
SW7060 - Arsenic (mg/kg)							,		,	•
Arsenic	6.8	(0.61) [152.8701]	47	(3.7) [927.6437]	23	(1.5)	[365.7430]	32	(2.7) [671.2310]	2310]
SW7421 - Lead (mg/kg)										
Lead	14	(0.92) [305.7402]	21	(2.1) [694.4926]	22	(2.2)	[731.4860]	28	(2) [671.2310]	2310]

NA = Not Applicable

() = Detection Limit [] = Factor ND = Not Detected

Compiled: 21 March 1995

	10 10-SS-03 10-DS-02 Dup of 10-SS-03-01 0 - 0.5	(0.041) [227.6348]	(0.34) [67.12310]	() [1]
	10-08-02	0.084 B	QN	9.1
		(0.047) [261.5062]	(0.37) [73.14860]	[1]
	10-SS-03 10-SS-03-01 0 - 0.5	(0.047)	(0.37)	0
	1	0.094 B	QN	8.9
тн (ғт.)		(0.051) [281.4522]	(0.35) [69.44926]	[1]
SITE ID LOCATION ID SAMPLE ID TH - END DEP	10 10-SS-02 10-SS-02-01 0 - 0.5	(0.051)	(0.35)	0
11L 1D LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) 10 10-SS-02 10-SS-02	Ī	0.093 B	QN	12
		(0.046) [255.3626]	(0.38) [76.43506]	[1]
	10 10-55-01 10-55-01-01 0 - 0.5	(0.046)	(0.38)	С
	10	0.089 B	QN	20
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

Compiled: 21 Mar

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

SITE ID'
LOCATION ID
SAMPLE ID
BEG. DEPTH - END DEPTH (FT.)

		10 10-5S-04 10-5S-04-01		10 10-SS-05 10-SS-05-01		- X	10 10-SS-06 10-SS-06-01			11 11-88-01 11-88-01-01	
PARAMETER 		0 - 0.5	; ; ; ; ; ; ;	0 - 0.5	! ! ! ! !		0 - 0.5			2 - 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SW6010 - Metals (mg/kg)											
Aluminum	9300	(17) [86.20689]	18000	(32)	[162]	16000	(31)	[155]	12000	(19)	[94.33962]
Antimony	ON	(8.6) [86.20689]	N	(16)	[162]	QN	(16)	[155]	QN	(9.4)	[94.33962]
Arsenic	QN	(26) [86.20689]	QN	(49)	[162]	ND	(46)	[155]	ON	(28)	[94.33962]
Barium	150	(0.86) [86.20689]	340	(1.6)	[162]	230	(1.6)	[155]	210	(0.94)	[94.33962]
Beryllium	ON	(0.17) [86.20689]	QN	(0.32)	[162]	ON	(0.31)	[155]	0.31	(0.19)	[94.33962]
Cadmium	QN	(0.43) [86.20689]	1.4	(0.81)	[162]	0.81	(0.78)	[155]	QN	(0.47)	[94.33962]
Calcium	7300	(86) [86.20689]	12000	(160)	[162]	7800	(160)	[155]	15000	(94)	[94.33962]
Chromium	18	(0.86) [86.20689]	39	(1.6)	[162]	30	(1.6)	[155]	27	(0.94)	[94.33962]
Cobalt	8.3	(0.86) [86.20689]	16	(1.6)	[162]	16	(1.6)	[155]	11	(0.94)	[94.33962]
Copper	14	(1.7) [86.20689]	36	(3.2)	[162]	31	(3.1)	[155]	37	(1.9)	[94.33962]
Iron	15000	(4.3) [86.20689]	30000	(8.1)	[162]	28000	(7.8)	[155]	25000	(4.7)	[94.33962]
Lead	19	(4.3) [86.20689]	88	(8.1)	[162]	57	(7.8)	[155]	7.3	(4.7)	[94.33962]
Magnesium	4500	[88, 20689]	9100	(160)	[162]	7000	(160)	[155]	8700	(94)	[94.33962]
Manganese	280	(0.86) [86.20689]	520	(1.6)	[162]	520	(1.6)	[155]	440	(0.94)	[94.33962]
Molybdenum	ON	_	QN	(8.1)	[162]	ND	(7.8)	[155]	QN	(4.7)	[94.33962]
Nickel	20	(1.7) [86.20689]	40	(3.2)	[162]	39	(3.1)	[155]	31	(1.9)	[94.33962]
Potassium	930	(260) [86.20689]	2100	(480)	[162]	1600	(460)	[155]	1200	(280)	[94.33962]
Selenium	QN	(26) [86.20689]	Q	(48)	[162]	ND	(46)	[155]	ON	(28)	[94.33962]
Silver	QN	(0.86) [86.20689]	QN	(1.6)	[162]	QN	(1.6)	[155]	QN	(0.94)	[94.33962]
Sodium	240	(86) [86.20689]	510	(160)	[162]	410	(160)	[155]	410	(94)	[94.33962]
Thallium	ON	(8.6) [86.20689]	QN	(16)	[162]	QN	(16)	[155]	ON	(9.4)	[94.33962]
Vanadium	33	(1.7) [86.20689]	61	(3.2)	[162]	62	(3.1)	[155]	44	(1.9)	[94.33962]
Zinc	47	(1.7) [86.20689]	180	(3.2)	[162]	160	(3.1)	[155]	87	(1.9)	[94.33962]
SW7060 - Arsenic (mg/kg)											
Arsenic	4.5	(0.29) [71.91657]	6.1	(0.64)	[160.5136]	5.6	(0.6)	[148.8205]	12	(0.75)	[186.3932]
SW7421 - Lead (mg/kg)											
peal.	17	(0.86) [287.6663]	45	(2.4)	[802.5682]	53	(4.5)	[1488.205]	12	(1.1)	(1.1) [372.7865]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

Compiled: 21 March 1995

	11 11-58-01 11-58-01-01 2 - 4	(0.061) [337.8378]	(0.47) [93.19664]	() [1]
	1	0.11	ON	56
		(0.056) [312.1098]	(0.36) [71.56659]	[1]
	10 10-SS-06 10-SS-06-01 0 - 0.5	(0.056	(0.36)
		0.11	QN	8.5
Н (FT.)		(0.04) [224.7191]	(0.4) [80.25682]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	10 10-55-05 10-55-01 0 - 0.5	(0.04)	(0.4)	0
BEG. D		0.14	ON	30
	 	(0.049) [269.6871]	(0.36) [71.91657]	[1]
	10-SS-04 10-SS-04-01 0 - 0.5	(0.049)	(0.36)	С
	- i	0.094 B	ND	19
	PARAMETER 	SW7471 - Mercury (mg/kg) Mercury SW7740 - Selenium (mg/kg)	Selenium SW846 - Percent Moisture (%)	Percent moisture

Compiled: 21 May

RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1992 EVENT.

11-58-01 11-58-01				BEG. DE	SITE ID LOCATION ID SAMPLE ID . DEPTH - END DEPTH (FT.)						
FIER 11-56-01 11-56-0			11		11		1				
This control of the			11-58-01		11-55-01		1-58-01			12-MW-01	
- Metals (mg/kg) - More (g.1) [90.90908] - More (g.1)	PARAMETER		11-58-01-02 5 - 7		11-SS-01-01 0 - 0.5		up of 11-SS- 0 - 0.5	01-01	1	12-MW-01-02 5 - 7	
Name		1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 6 6		· · · · · · · · · · · · · · · · · · ·			 		1 1 1 1 1 1
1,		8700		9700	_	10000	(16)	[80]	7800	(15)	[72.9927]
1	Antimony	ON		QN	_	QN	(8)	[80]	QN	(7.3)	[72.9927]
1.0 0.24 0.19 90.30908] 210 0.87 86.56562 190 (0.8 (0.8 (0.8 110 (0.73) 7.2 1.	Arsenic	QN	_	99		28	(24)	[80]	QN	(22)	[72.9927]
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Barium	160		210		190	(0.8)	[80]	110	(0.73)	[72.9927]
1,000 (0.45) (0.40) (0.45) (0.40) (0.45) (0.40) (0.45) (0.40) (0	Beryllium	0.24		0.25		0.28	(0.16)	[80]	QN	(0.15)	[72.9927]
12000 (31) [30, 3908] 15000 (87) [86, 36582] 13000 (80) [89] [89] 7900 (73) [72. 1	Cadmium	QN :		2		0.76	(0.4)	[80]	Q	(0.36)	[72.9927]
18	Calcium	12000		15000	_	13000	(80)	[80]	7900	(73)	[72.9927]
Secondary Seco	Chromium	18	_ '	22		27	(0.8)	[80]	15	(0.73)	[72.9927]
1900	Cobalt	8.8		13	_	11	(0.8)	[80]	8.1	(0.73)	[72.9927]
19000 (4.5) 20.90908 31000 (4.3) 586.95622 24000 (4) [80] 15000 (3.6) [72. mose of the color of th	Copper	24		260	_	110	(1.6)	[80]	11	(1.5)	[72.9927]
ND (4.5 90.9008 69 (4.3) 86.95652 34 (4) (80) 801 8.1 (3.6) (7.5) (7	Iron	19000	_	31000	_	24000	(4)	[80]	15000	(3.6)	[72.9927]
Secondary Seco	Lead	QN	_	69	_	34	(4)	[80]	8.1	(3.6)	[72.9927]
172, 172, 173, 174,	Magnesium	6500		6100		6400	(80)	[80]	4800	(73)	[72.9927]
lenum ND (4.5) [90.90908] 6.2 (4.3) [86.95652] ND (4) [80] ND (3.6) [72. [12. [12. [12. [12. [12. [12. [12. [1	Manganese	380		410	_	360	(0.8)	[80]	260	(0.73)	[72.9927]
1.5 1.5	Molybdenum	Q		6.2	_	QN	(4)	[80]	QN	(3.6)	[72.9927]
tium 740 (270) [90.90908] 1200 (260) [86.95652] 1100 (240) [80] 620 (220) [72. Um (27) [90.90908] ND (26) [86.95652] ND (24) [80] ND (22) [72. ND (0.91) [90.90908] ND (0.87) [86.95652] ND (0.8) [80] ND (0.73) [72. 10 (0.91) [90.90908] ND (0.87) [86.95652] ND (0.8) [80] ND (0.73) [72. 10 (9.1) [90.90908] ND (8.7) [86.95652] ND (8) [80] ND (7.3) [72. 10 (9.1) [90.90908] ND (9.7) [86.95652] ND (8) [80] ND (7.3) [72. 10 (1.8) [90.90908] 1100 (1.7) [86.95652] ND (1.6) [80] ND (7.3) [72. 11 (1.2) [389.4839] 42 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7 (0.44) [146. 11 (1.2) [389.4839] 1200 (200) [80.95652] ND (2.6) [80.9020] 36 (2.5) [823.4519] 3.7 (0.44) [146. 12 (1.2) [389.4839] 12 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7 (0.44) [146. 12 (1.2) [389.4839] 12 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7 (0.44) [146. 12 (1.2) [389.4839] 12 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7 (0.44) [146. 13 (1.2) [389.4839] 12 (2.6) [380.9020] 36 (2.5) [323.4519] 3.7 (0.44) [146. 14 (1.2) [389.4839] 12 (2.6) [380.9020] 36 (2.5) [323.4519] 3.7 (0.44) [146. 15 (2.5) [323.4519] 3.7 (0.44) [146. 16 (2.5) [323.4519] 3.7 (0.44) [146. 17 (2.6) [320.9020] 36 (2.5) [323.4519] 3.7 (0.44) [146. 18 (2.6) [320.9020] 36 (2.5) [323.4519] 3.7 (0.44) [146. 18 (2.6) [320.9020] 36 (2.5) [323.4519] 3.7 (0.44) [146. 18 (2.6) [320.9020] 36 (2.6) [320.9020] 36 (2.5) [323.4519] 3.7 (0.44) [146. 18 (2.6) [320.9020] 36 (2.6) [320.902	Nickel	59	—	24		27	(1.6)	[80]	18	(1.5)	[72.9927]
Uum ND (27) [90.99908] ND (26) [86.95652] ND (24) [80] ND (27) [72.] . ND (0.91) [90.99908] ND (0.87) [86.95652] ND (0.8) [80] ND (0.73) [72.] . 290 (91) [90.99908] ND (8.7) [86.95652] ND (8) [80] RO (7.3) [72.] . </td <td>Potassium</td> <td>740</td> <td>_</td> <td>1200</td> <td></td> <td>1100</td> <td>(240)</td> <td>[80]</td> <td>620</td> <td>(220)</td> <td>[72.9927]</td>	Potassium	740	_	1200		1100	(240)	[80]	620	(220)	[72.9927]
ND (0.91) [90.99908] ND (0.87) [86.95652] ND (0.8) [80] ND (0.78) [80.35652] ND (0.89) [80] ND (0.73) (0.78) [90.99908] 270 (87) [86.95652] 340 (80) [80] 280 (73) (73) (13) (18) [90.90908] ND (8.7) [86.95652] ND (8.80.9052] ND (1.6) [80] ND (7.3) (1.5) (1.5) (1.5) (1.6) [80] ND (1.5) (1.5) (1.5) (1.6) [80] ND (1.5) (1.5) (1.5) (1.5) (1.6) [80] ND (1.5)	Selenium	QN	_	9	_	QN	(24)	[80]	Q	(22)	[72.9927]
1	Silver	ON		운		QN	(0.8)	[80]	QN	(0.73)	[72.9927]
um ND (9.1) [90.99098] ND (8.7) [86.95652] ND (8) [80] ND (7.3) um 30 (1.8) [90.99098] 36 (1.7) [86.95652] 38 (1.6) [80] 32 (1.5) - Arsenic (mg/kg) 6.78 [194.7419] 32 (3.5) [880.9020] 38 (3.3) [823.4519] 4.3 (0.29) - Lead (mg/kg) 11 (1.2) [389.4839] 42 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7 (0.44)	Sodium	290		270	_	340	(80)	[80]	280	(73)	[72.9927]
um 30 (1.8) [90.9908] 36 (1.7) [86.95652] 38 (1.6) [80] 32 (1.5) 58 (1.8) [90.90908] 1100 (1.7) [86.95652] 450 (1.6) [80] 39 (1.5) - Arsenic (mg/kg) 8.5 (0.78) [194.7419] 32 (3.5) [880.9020] 38 (3.3) [823.4519] 4.3 (0.29) - Lead (mg/kg) 11 (1.2) [389.4839] 42 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7 (0.44)	Thallium	QN	_	Q	_	QN	(8)	[80]	S	(7.3)	[72.9927]
- Arsenic (mg/kg) - Arsenic (mg/kg) - Lead (mg/kg) 11 (1.2) [389.4839] 1100 (1.7) [86.95652] 450 (1.6) [80] 39 (1.5) (1.5) [80.9020] 38 (3.3) [823.4519] 4.3 (0.29) (1.5) [80.9020] 36 (2.5) [823.4519] 3.7 (0.44)	Vanadium	30	_	36		38	(1.6)	[80]	32	(1.5)	[72.9927]
- Arsenic (mg/kg) 8.5 (0.78) [194.7419] 32 (3.5) [880.9020] 38 (3.3) [823.4519] 4.3 (0.29) c - Lead (mg/kg) 11 (1.2) [389.4839] 42 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7 (0.44)	Zinc	58		1100	_	450	(1.6)	[80]	39	(1.5)	[72.9927]
c - 8.5 (0.78) [194.7419] 32 (3.5) [880.9020] 38 (3.3) [823.4519] 4.3 (0.29) - Lead (mg/kg) 11 (1.2) [389.4839] 42 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7 (0.44)	SW7060 - Arsenic (mg/kg)										1
- Lead (mg/kg) 11 (1.2) [389.4839] 42 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7 (0.44)	Arsenic	8.5	(0.78) [194.7419]	32	(3.5) [880.9020]	38	(3.3)	823.4519]	4.3	(0.29)	[73.20429]
11 (1.2) [389.4839] 42 (2.6) [880.9020] 36 (2.5) [823.4519] 3.7										•	
	Lead	11	(1.2) [389.4839]	42	(2.6) [880.9020]	36	(2.5)	823.4519]	3.7	(0.44)	146.4085]

[] = Factor ND = Not Detected NA = Not Applicable

() = Detection Limit

Compiled: 21 March 1995

BEG. DEPTH - END DEPTH (FT.) LOCATION ID SAMPLE ID SITE 1D

			12	
			12-MW-02	
			12-MW-02-02	
PARAMETER			10 - 12	
1 1 1 1 2 8 8				
SW6010 - Metals	(mg/kg)			
Aluminum		4600	(16)	[81.30081]
Antimony		13	(8.1)	[81.30081]
Arsenic		QN	(24)	[81.30081]
Barium		84	(0.81)	[81.30081]
Beryllium		ND	(0.16)	[81.30081]
Cadmium		ND	(0.41)	[81.30081]
Calcium		2800	(81)	[81.30081]
Chromium		9.4	(0.81)	[81.30081]
Cobalt		5.3	(0.81)	[81.30081]
Copper		10	(1.6)	[81.30081]
Iron		8600	(4.1)	[81.30081]
Lead		QN	(4.1)	[81.30081]
Magnesium		2500	(81)	[81.30081]
Manganese		160	(0.81)	[81.30081]
Molybdenum		QN	(4.1)	[81.30081]
Nickel		12	(1.6)	[81.30081]
Potassium		310	(240)	[81.30081]
Selenium		ON	(24)	[81.30081]
Silver		ON	(0.81)	[81.30081]
Sodium		88	(81)	[81.30081]
Thallium		QN	(8.1)	[81.30081]
Vanadium		19	(1.6)	[81.30081]
Zinc		21	(1.6)	[81.30081]

(0.32) [81.15829] (0.49) [162.3165] 2.4 5.6 SW7060 - Arsenic (mg/kg) SW7421 - Lead (mg/kg)

Arsenic

Lead

Compiled: 21 March 1995

() = Detection Limit [] = Factor

ND = Not Detected NA = Not Applicable

SAMPLE ID BEG. DEPTH - END DEPTH (FT.) LOCATION ID SITE 10

12-MW-02-02 12-MW-02

10 - 12

PARAMETER

SW7471 - Mercury (mg/kg)

SW7740 - Selenium (mg/kg) Mercury

Selenium

SW846 - Percent Moisture (%)

Percent moisture

(0.047) [262.7982] 0.084 B

(0.41) [81.15829] 2

 \subset

9.4

Ξ

() = Detection Limit [] = Factor

"A = Not Detected NA = Not Applicable

PARAMETER	0 0	001 01-MW-01 01-MW-01-03		5.2 8 011 012	SAMPLE 1D SAMPLE 1D 001 01-MW-02 01-MW-02		01-01-01-01-01-01-01-01-01-01-01-01-01-0	001 01-MW-07 01-MW-07-01		010	001 01-MW-08 01-MW-08-01	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1
A403 - Alkalinity (mg/L) Total Alkalinity	N			989	С	[1]	680	С	[1]	764	С	Ξ
E120.1 - Specific Conductance (umhos/cm)	nhos/cm)							,			:	! !
Specific Conductivity F150 1 - nH Flectrometric (PH UNITS)	1200	С	[1]	1200	С	Ξ	1140	С	[1]	1230	С	[1]
Hd	6.77	С	Ξ	6.54	С	[1]	6.67	0	[1]	98.9	С	[1]
E170.1 - Temperature (degC)												
Temperature E180.1 - Turbidity (ntu)	2	С	[1]	1.5	С	Ξ		С	[1]	1.5	С	[1]
Turbidity	4.7	С	[1]	176	С	[1]	NA			NA		

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[5]	[1]	[1]	[1]	[1]	
	04 04-MW-03 04-MW-03-03			ξ		0	С	0	
	00-40		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	650		1080	9.9	3.5	NA
				Ξ	-	[1]	[1]	[1]	[1]
	04 04-MW-02 04-MW-02-03			C		С	0	С	С
	0			570) ;	1060	6.5	4	99
]]] [[[1]	j	[1]			
SITE 1D LOCATION 1D SAMPLE 1D	008 02-GW-03 02-GW-03-03			С	:	0			
	0 00	-		0		200	NA	NA	NA
			,	Ξ		[1]	[1]	[1]	[1]
	008 02-GW-01 02-GW-01-03			\Box	•	С	С	С	0
	.00			0	(umhos/cm)	480 JNITS)	4.5	4.5	0.7
	·	PARAMETER	A403 - Alkalinity (mg/L)	Total Alkalinity	E120.1 - Specific Conductance (umhos/cm)	Specific Conductivity E150.1 - pH, Electrometric (PH UNITS)	pH E170.1 - Temperature (degC)	Temperature E180.1 - Turbidity (ntu)	Turbidity

				S Po	SITE ID LOCATION ID SAMPLE ID							
)	005 05-MW-01 05-MW-01-03		05-	005 05-MW-02 05-MW-02-03		0	005 05-MW-03 05-MW-03-03		0.05	005 05-MW-04 05-MW-04-03	
PARAMETER												
A403 - Alkalinity (mg/L)							1	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		; ; ; ; ; ; ; ; ; ; ; ;	 	I I I I
Total Alkalinity 728	728	С	Ξ	410	С	Ξ	628	С	[1]	840	С	[1]
E120.1 - Specific Conductance (um	mhos/cm)											
Specific Conductivity	1240	С	Ξ	720	С	[1]	1160	С	[1]	1350	С	[1]
E150.1 - pH, Electrometric (PH UNITS)	ITS)											
Hd	6.82	С	Ξ	98.9	С	Ξ	97.9	С	Ξ	6.93	С	Ξ
E170.1 - Temperature (degC)												
Temperature	2.5	С	Ξ	2	С	Ξ	ო	С	Ξ	2.5	С	[1]
E180.1 - Turbidity (ntu)												
Turbidity	41	С	Ξ	37	С	[1]	44	C	Ξ	101	С	Ξ

		 	[1]	1	[1]	[1]		[1]	
005 05-WW-14	-MW-14-01		0	:	0	С		С	
ō	05	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	538		930	6.64		2	NA
		 	[1]		[1]	[1]		[1]	
005 05-MM-13	-MW-13-01	1 1 1 1 1 1 1 2 2 4 4 4 1			\Box	С		С	
0		1 1 1 1 1 1 1 1 1 1	644		1100	6.61		1.5	NA
			[1]		[1]	[1]		[1]	[1]
SITE ID LOCATION ID SAMPLE ID 005	05-MW-06-03		С		С	()		С	С
	0		400		920	6.75		က	8.6
	1		[1]		[1]	[1]	,	Ξ	[1]
005 05-MM-05	05-MW-05-03		\Box		С	0	;	С	0
	0 !		644	(nm/soymn)	1280 UNITS)	6.91	•	2	33
	PARAMETER 	A403 - Alkalinity (mg/L)	Total Alkalinity	E120.1 - Specific Conductance (umhos/cm)	Specific Conductivity E150.1 - pH,Electrometric (PH UNITS)	Hd	<pre>£1/0.1 - lemperature (degC)</pre>	lemperature E180.1 ~ Turbidity (ntu)	Turbidity

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

A6-4

1 1410 108					J	SITE ID LOCATION ID SAMPLE ID					·		
### Specific Conductance (umhos/cm)		i0 05-	005 5-MW-15 -MW-15-01		90	008 16-MW-01 1-MW-01-03		_	008 06-MW-02 06-MW-02-03		90	008 06-MW-03 06-MW-03-03	
Alkalinity (mg/L) Alkalinity = 506 () [1] 830 () [1] - Specific Conductance (umhos/cm) fic Conductivity = 890 () [1] 1410 () [1] - pH,Electrometric (PH UNITS) - Temperature (degC)	PARAMETER 		; ; ; ; ; ; ; ; ;	1 1 1 1 1 1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	! ! ! ! !	 1 1 2 1 1		! ! ! ! !			
Alkalinity 506 () [1] 830 () [1] - Specific Conductance (umhos/cm) fic Conductivity 890 () [1] 1410 () [1] - pH,Electrometric (PH UNITS) - PH,Electrometric (PH UNITS) - Temperature (degC) - Temperature (degC) - Turbidity (ntu) - Turbidity (ntu)	A403 - Alkalinity (mg/L)												
- Specific Conductance (umhos/cm) fic Conductivity 890 () [1] 1410 () [1] - pH,Electrometric (PH UNITS) 6.84 () [1] 6.67 () [1] rature 1 () [1] 6 () [1] - Turbidity (ntu)	Total Alkalinity	506	С	Ξ	830	С	[1]	764	С	Ξ	099	0	
fic Conductivity 890 () [1] 1410 () [1] - pH,Electrometric (PH UNITS) 6.84 () [1] 6.67 () [1] rature 1 () [1] 6 () [1] - Turbidity (ntu)	E120.1 - Specific Conductance	(nmhos/cm)											
- pH,Electrometric (PH UNITS) 6.84 () [1] 6.67 () [1] 6 rature (degC) 1 () [1] 6 () [1] - Turbidity (ntu)	Specific Conductivity	890	С	[1]	1410	С	[1]	1360	С	[1]	1160	С	<u></u>
6.84 () [1] 6.67 () [1] 6 rd () [1] 6 rd () [1] 6 rature 1 () [1] 6 () [1] 7 rd () () [1] 7 rd () () () () () ()	E150.1 - pH, Electrometric (PH	UNITS)											
- Temperature (degC) rature - Turbidity (ntu) [1] 6 () [1]	Hd		С	[]	6.67	С	Ξ	6.57	0	Ξ	6.73	С	
1 () [1] 6 () [1]	E170.1 - Temperature (degC)												
	Temperature	1	С	Ξ	9	С	[1]	5	0	[1]	5.5	С	سا
	E180.1 - Turbidity (ntu)												
Turbidity NA 82 () [1] 195 ()	Turbidity	NA			82	С	Ξ	195	C	Ξ	24	С	

Ξ

Ξ

Ξ

Ξ

Ξ

			[]	[1]	[1]	[1]	[1]
3 07-MW-02	17-MW-02-03		=	С	С	С	С
	0		/30	1420	7.52	1.5	69
		: : :	[1]	[1]	[1]	[1]	[1]
3 07-MW-01	-MW-01-03		>	0	С	С	С
0	07	000	0.20	1000	7.02	4	29.6
		Ε	[1]	[1]	[]	Ξ	
SITE ID LOCATION ID SAMPLE ID 008	3-MW-07-01	S		0	С	С	
_	ŏ	824		1400	6.56	4	NA
	! ! ! ! !	Ξ	74.	Ξ	[1]	[1]	[1]
008 06-MW-04	06-MW-04-03			\Box	С	С	С
•		590	(myos/cm)	1260 UNITS)	6.78	5.5	9.6
	PARAMETER	A403 - Alkalinity (mg/L) Total Alkalinity	E120.1 - Specific Conductance (umhos/cm)	Specific Conductivity 1 E150.1 - pH, Electrometric (PH UNITS)	pH E170.1 - Temperature (degC)	Temperature E180.1 - Turbidity (ntu)	Turbidity

[] = Dilution Factor

ND = Not Detected

A6-6

	11	 1 2 2 1 1 1 1 1	[1]		()	5					
ო	07-SW-04 07-SW-04-01		m		-			-		-	
			358		1700	9 99	5	NA		NA	
		! i ! !	[1]		[1]	Ξ	7				
က	07-SW-03 07-SW-03-01		0		С	C					
			338		1620	7.36		N		NA	
		i 	[1]		[1]	Ξ	ļ	Ξ		Ξ	
SITE ID LOCATION ID SAMPLE ID 3	07-MW-04 07-MW-04-03		С		С	C	;	С		О	
	J	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0		1390	7.23		2.5		0	
·		!	[1]		[1]	[1]	1	Ξ		Ξ	
ო	07-MW-03 07-MW-03-03		С		С	С	:	С		С	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	790	(umhos/cm)	1320	UNIIS) 7.04		က		96.3	
		PARAMETER 	A403 - Alkalinity (mg/L) Total Alkalinity	E120.1 - Specific Conductance (umhos/cm)	Specific Conductivity	<pre>E150.1 - pH,Electrometric (PH UNIIS) pH</pre>	E170.1 - Temperature (degC)	Temperature	E180.1 - Turbidity (ntu)	Turbidity	

		1 1 1		[1]	[1]	[1]
	7 08-SW-01 08-SW-01-01			С	С	0
	30		N	100	6.39	0.3
			[1]	[1]	[1]	
	3 07-SW-07 07-SW-07-01		С	0	0	
	0		340	1710	7.24	NA
			[1]	[1]	[1]	
SITE ID LOCATION ID SAMPLE ID	3 07-SW-06 07-SW-06-01		С	С	С	
	C		364	1670	7.37	NA
			[1]	[1]	[1]	
	3 07-SW-05 07-SW-05-01		С	С	С	
		 	Total Alkalinity 344 E120.1 - Specific Conductance (umhos/cm)	Specific Conductivity 1600 1600 1- pH, Electrometric (PH UNITS)	pH E170.1 - Temperature (degC)	ure NA
	PARAMETER	 A403 - A1k	Total Alk E120.1 - S	Specific E150.1 - p	рН E170.1 - T	Temperature

Ξ

Ξ

Ξ

Ξ

Ξ

					SITE ID LOCATION ID SAMPLE ID				-			
	S	008 09-MW-02 09-MW-02-03		0	008 09-MM-03 09-MM-03-03		٠	008 09-MW-04 09-MW-04-03		0	008 09-MW-05 09-MW-05-03	
PARAMETER												
A403 - Alkalinity (mg/L)	1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	! ! ! ! !	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Total Alkalinity	009	\Box	[1]	NA			NA			NA		
	NA			454	\Box	[1]	624	0	[1]	464		Ξ
E120.1 - Specific Conductance (umhos/cm)	(umhos/cm)					: :		;	,		:	5
Specific Conductivity 106 E150.1 - pH,Electrometric (PH UNITS)	1060 JNITS)	С	[1]	1090	С	[1]	1170	С	[1]	980	С	[1]
рН E170.1 - Temperature (degC)	6.81	С	[1]	6.72	С	[1]	6.74	С	Ξ	6.75	С	[1]
Temperature E180.1 - Turbidity (ntu)	4.5	С	[1]	က	С	[1]	3.5	()	[1]	က	С	[1]
Turbidity	16	С	[1]	65	0	[1]	15	С	[1]	32	С	[1]

				33 %	SITE ID LOCATION ID SAMPLE ID							
	-60 60	008 09-MM-00 09-MM-06-03) 0 0 0	008 09-MW-15 09-MW-15-01		1	008 10-MW-01 10-MW-01-03		÷.	008 10-MW-02 10-MW-02-03	
PARAMETER			!									
alinity (mg/L)			1 1 1 1 1 1		; ; ; ; ; ; ; ; ; ; ;	i ! ! !	! ! ! ! ! ! !	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! !
Total Alkalinity	132	C	[1]	550	С	[1]	630	С	Ξ	780	С	[1]
E120.1 - Specific Conductance (umhos/cm)	nos/cm)											
Specific Conductivity	340	C	Ξ	950	С	Ξ	1130	С	Ξ	1320	С	Ξ
E150.1 - pH, Electrometric (PH UNITS)	rs)											
hd	6.71	С	Ξ	6.83	С	Ξ	6.68	С	Ξ	6.83	0	Ξ
E170.1 - Temperature (degC)												
Temperature	ဇ	С	Ξ	4		Ξ	5	С	Ξ	4		Ξ
E180.1 - Turbidity (ntu)												
Turbidity	9/	С	[1]	NA			35.4	С	[1]	œ	С	[1]

		1 1	\Box	[1]	[1]	[1]	[1]
005 . 12-MW-02 12-WW-02-03				С	С	С	С
12			490	810	6.5	4	r.
			[1]	[1]	[1]	Ξ	[1]
005 12-MW-01 12-MW-01-03		1		0	С	С	0
12			040	910	6.17	4	170
		: : : :	[7]	[1]	[1]	[1]	
S1TE ID LOCATION ID SAMPLE ID 008 10-MW-04			5	С	С	С	
L 1 10		0 9	200	1110	6.85	2	ŃA
	; ; ;	[[+]	[1]	[1]	[1]	[1]
008 10-MW-03 10-MW-03-03			2	0	С	С	C
1 100	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	620	(mb/soymn)	990 UNITS)	4.6	E	39
	PARAMETER	A403 - Alkalinity (mg/L) Total Alkalinity	E120.1 - Specific Conductance (umhos/cm)	Specific Conductivity E150.1 - pH, Electrometric (PH UNITS)	pH E170.1 - Temperature (degC)	Temperature E180.1 - Turbidity (ntu)	Turbidity

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

LOCATION ID SAMPLE ID SITE ID

22-GP-02 22-GP-02-01 22-GP-01 22-GP-01-01

22-GP-03 22-GP-03-01

PARAMETER

	1 1 1 1 1 1			1111111111111111111111111111111				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
E120.1 - Specific Conductance (degC)	(degC)								
Specific Conductivity	1070		Ξ	1210	С	Ξ	940	С	Ξ
E150.1 - pH, Electrometric (umhos/cm)	s/cm)								
Hd	8.53	С	Ξ	7.23	С	Ξ	7.27	0	[1]
E170.1 - Temperature (PH UNITS)	_								
Temperature	0	0	Ξ	0	0	Ξ	0	С	[1]

¥

₹

¥

						SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID									
PARAMETER		001 01-MW-01 01-MW-01-	001 01-MW-01 01-MW-01-03			0 01-M 01-MW	001 01-MW-02 01-MW-02-03			001 01-MW-07 01-MW-07-	001 01-MW-07 01-MW-07-01			001 01-MW-08 01-MW-08-01	1 08 08-01	
Diesel Range Organics (ug/L)	4.00) BC	200)		4.00	JB (200)	[1]	2.00	JB (200)	Ξ	110	, r	200)	[1]
Gasoline Range Organics (ug/L) Gasoline Range Organics	. 610	<u> </u>	100)	[1]	36.0	JB (100)	[1]	30.0	JB (100)	[1]	68.0		100)	[1]
SW8010 - Halogenated Volatile Organics (ug/L) 1,1,1,2-Tetrachloroethane 0.00330 KJ	ganics (ug/l	/L) KJB (0.0220)	Ξ	QN	_	0.0400)	[1]	QN	_	0.0427)	Ξ	Q N	_	0.0427)	Ξ
1,1,1-Trichloroethane		KJB (0.150)	ΞΞ	Q		0.0920)	ΞΞ	0.00160	KJB (0.0924)	ΞΞ	2 Q	<i>-</i> _	0.0924)	ΞΞ
1,1,2,2-Tetrachloroethane	QN	_	0.100)	Ξ	QN	<u> </u>	0.100)	[1]	ON	_	0.104)	[1]	ON N	_	0.104)	Ξ
1,1,2-Trichloroethane	0.0243 k) Z	0.100)	Ξ	QN	_	0.100)	Ξ	S	_	0.102)	[1]	ON	_	0.102)	Ξ
1,1-Dichloroethane	QN	_	0.0480)	Ξ	QN	_	0.0480)	[1]	N	_	0.0481)	[1]	QN	_	0.0481)	Ξ
1,1-Dichloroethene	QN	_	0.100)	Ξ	0.00470	JB (0.100)	Ξ	Q	_	0.0962)	Ξ	QN Q	_	0.0962)	Ξ
1,2,3-Trichloropropane	Q.	_	0.120)	Ξ	2	_	0.120)	[]	2	_	0.115)	Ξ	0.0107	KJB (0.115)	Ξ
1,2-Dichlorobenzene		ب ر ج	0.170)	ΞΞ	2 £	<u> </u>	0.170)	Ξ3	Q :	<u> </u>	0.167)	ΞΞ	ON C	<u> </u>	0.167)	ΞΞ
1,2-Dichloroethane 1,2-Dichloropropane	0.00220 ND	_	0.0820)	ΞΞ	2 2		0.0540)	ΞΞ	2 Q		$0.0541) \\ 0.0751)$	ΞΞ	0.0727 ND		0.0541)	ΞΞ
1,3-Dichlorobenzene	QN	_	0.150)	Ξ	QN	_	0.150)	Ξ	Q		0.151)	ΞΞ	S	. <u> </u>	0.151)	ΞΞ
1,4-Dichlorobenzene	N	J	0.190)	Ξ	SN	<u> </u>	0.190)	Ξ	Q	_	0.195)	Ξ	ON	<u> </u>	0.195)	[1]
1-Chlorohexane	ND	_	0.120)	Ξ	ON	_	0.120)	Ξ	NO	_	0.120)	Ξ	S	_	0.120)	Ξ
2-Chloroethyl vinyl ether	ND	<u> </u>	0.170)	Ξ	Q	_	0.170)	Ξ	0.0693	_ ⊋	0.167)	Ξ	2	_	0.167)	Ξ
Bromobenzene	QN	_	0.530)	[1]	9	<u> </u>	0.530)	[1]	QN	_	0.525)	Ξ	QN	_	0.525)	Ξ
Bromodichloromethane	ON	<u> </u>	0.0680)	Ξ	Q	_	0.0680)	Ξ	S	_	0.0682)	Ξ	QN	_	0.0682)	Ξ
Bromomethane	QN	_	0.0560)	[]	2	_	0.0560)	[1]	S	_	0.0562)	[1]	S	_	0.0562)	Ξ
Carbon tetrachloride	ON	_	0.110)	Ξ	9	_	0.110)	[1]	S	_	0.107)	Ξ	2	_	0.107)	Ξ
Chlorobenzene	ON	_	0.140)	Ξ	QN	_	0.140)	[1]	QN	_	0.138)	[Ξ]	ON	<u> </u>	0.138)	[1]
Compiled: 16 March 1995	() = Detection Limit	on Lin		= Dilution	Factor	QN = QN	= Not Detected	A.	= Not Applicable	able	R = Invali	d Result	= Invalid Result. Refer to OC Report	OC Rer	ort	
	;		3			:	! ;							· ·		17.1

į į		[1]		ΞΞ	ΞΞ		[1]	ΞΞ	ΞΞ	[]	[1]			3 3	ΞΞ	[1]		[1]	[1]	[1]
	001 01-MW-08 01-MW-08-01	0.0499)	0.153)	0.138)	0.220)	0.141)	0.0387)	0.0603)	0.0745)	0.101)	0.0302)		2 38)	1 46)	0.301)	1.16)		0.136)	0.134)	0.131)
	001 01-MW-08 01-MW-08-	KJB ((K.1B		JB (KJB (<u> </u>	PJB (KJB (_	· _	_)	- ~		<i>-</i> _		_	_	_
		0.0117	0N 0.0272	QN	0.168	ON	0.00350	0.0124 AN	2 8	QN	N		QN	2	Q.	9 Q		ON	N	Q
		[1]	ΞΞ	ΞΞ	ΞΞ	ΞΞ	[1]	ΞΞ	ΞΞ	ΞΞ	[1]		Ξ	3 5	ΞΞ	Ξ		Ξ	Ξ	[1]
	001 01-MW-07 01-MW-07-01	0.113)	0.153)	0.138)	0.220)	0.141)	0.0387)	0.0751)	0.0745)	0.160)	0.0566)		2.38)	1.46)	0.301)	1.16)		0.136)	0.134)	0.131)
	001 01-MW-07 01-MW-07-) 87		PJB (<i>-</i>	Z	<u> </u>		_	<i>-</i>	· _	. <u> </u>		_	<u> </u>	_
		ON ON	Q Q	QN	0.0795 ND	ON	0.00370	Q Q	QN	0.00420	QN		QN	QN	QN	ON		ON.	QN :	2
		[1]	ΞΞ	ΞΞ	ΞΞ	ΞΞ	Ξ	ΞΞ		[1]	[1]] [ΞΞ	ΞΞ		[1]	ΞΞ	[1]
SITE ID LOCATION ID SAMPLE ID	001 01-MW-02 01-MW-02-03	0.110)	0.150)	0.140)	0.220)	0.140)	0.110)	0.0750)	0.0740)	0.100)	0.0570)		2.40)	1.50)	0.300)	1.20)		0.0710)	0.0990)	0.0950)
SI LOCA SAM	0 01-M 01-MW)) Bh		<u> </u>			_	_		_			_		_) 8,	_ _
		QN ND	8 8 8	ON COOR	0.000900 ND	ON	QN S	Q Q	ON	QN	Q		ON	ND	QN	QN		0.238	0.0614	0.0819
		[1]	ΞΞ	[1]	ΞΞ	[]	ΞΞ	ΞΞ	Ξ	[1]	[1]		[1]	[1]	[1]	[1]			ΞΞ	[1]
	001 01-MW-01 01-MW-01-03	(ug/L) (0.110) (0.0850)	0.150)	0.140)	0.220)	0.140)	0.110)	0.0/50)	0.0740)	0.100)	0.0570)		2.40)	1.50)	0.300)	1.20)		0.0710)	0.0990)	0.0950)
	001 01-MW-01 01-MW-01-					_	KJB (_	_	_	mg/L)	_	_	_	<u> </u>		 B	=	- B
			ON ON	Q S	ON ON	QN	0.00430	Q. Q.	QN	ON	QN QN	rganics (QN	QN	QN	ON		0.102		0.0386
	PARAMETER	SW8010 - Halogenated Volatile Organics, Chloroethane Chloroform	Chloromethane Dibromochloromethane	Dibromomethane Methylene chlomido	reciylene unioliue Tetrachloroethene	Tribromomethane(Bromoform)	Trichloroethene Trichlorofluoremethene	Vinyl chloride	cis-1,3-Dichloropropene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	SW8015 - Nonhalogenated Volatile Organics (mg/L)	2-Butanone(MEK)	4-Methyl-2-pentanone(MIBK)	Ethanol	Ethyl ether	SW8020 - Aromatic Volatile Organics	1,2-Dichlorobenzene	I,3~Ulchlorobenzene 1 A-Nichlorobenzene	די ל-טוכוויסן סמפולפום

() = Detection Limit Compiled: 16 March 1995

ND = Not Detected [] = Dilution Factor

NA = Not Applicable

R = Invalid Result, Refer to QC Report

					SITE ID	. GI N								
					SAMPLE ID	10								
		001			001				100			100		
	01	01-MW-01			01-MW-02	5		0	01-MW-07			01-MW-08		
PARAMETER	01	01-MW-01-03			01-MW-02-03	-03			01-MW-07-01		0	01-MW-08-01	_	
SW8020 - Aromatic Volatile Organics, cont.	ics, cont. (ug/L)	L)	1 1 1 1 1			! ! ! ! !	i				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		1
Benzene	372	(00.700)	[10]	0.111 E	0) 8	0.0700)	[1]	9	(0.0790)		29.4	(0.0790)		
Chlorobenzene	0.143	(0.0450)	[1]	2	0	0.0450)	[1]	Q	(0.116)		QN	(0.1		ΞΞ
Ethylbenzene	2.03	(0.0680)	[1]	0.0537	JB (0	0.0680)	Ξ	S	(0.121)		ON	(0.1		ΞΞ
Toluene	1.09 B	(0.0480)	Ξ	0.138 .	0) 8	0.0480)	[1]	Q	(0.112)	Ξ	0.0900 JB			ΞΞ
Xylene (total)	1.10 8	(0.0850)	[7]	0.167 E	B (0	0.0850)	[1]	QN	(0.130)		0.0446 KJB			ΞΞ
SW8080 - Organochlorine Pesticides and PCBs	es and PCBs (ug/L)	(L)												
4,4'-DDD		(0.00598)	[1]	9	0	0.00433)	[]	NA			AN			
4,4'-DDE	QN	(0.00629)	Ξ	S		0.00629)	Ξ	NA			NA			
4,4'-DDT	QN	(0.00680)	[1]	Q	0	0.00680)	Ξ	NA			NA			
Aldrin .	QN	(0.00546)	Ξ	8	0	0.00897)	Ξ	NA			NA			
Chlordane	NO	(0.00959)	Ξ	9	0.0	0.00959)	Ξ	NA			NA			
Dieldrin	QN	(0.00443)	Ξ	9	0	0.00443)	Ξ	NA			NA			
Endosulfan I	QN	(0.00320)	Ξ	9	0.0	0.00320)	Ξ	NA			NA			
Endosulfan II	QN	(0.00701)	Ξ	N	· · · · · · · · · · · · · · · · · · ·	0.00701)	[1]	NA			NA			
Endosulfan Sulfate	ND	(0.0134)	[1]	N	0	0.0134)	[]	NA			NA			
Endrin	QN	(0.0113)	[1]	N	0	0.0113)	Ξ	NA			NA			
Endrin Aldehyde	0.00380	(0.00298)	[1]	ON	0.	0.00598)	Ξ	NA			NA			
Heptachlor	Q.	(0.00227)	[1]	S	0)	0.00278)		NA			NA			
Heptachlor epoxide	ON	(0.00340)	Ξ	Q	0 0	0.00340)	[1]	NA			NA			
Methoxychlor	QN	(0.0412)	Ξ	S	0	0.0412)	Ξ	NA			NA			
PCB-1016	QN	(0.0567)	Ξ	S	0	0.0567)	Ξ	NA			NA			
PCB-1221 .	ON	(0.0763)	Ξ	9	0	0.0763)	Ξ	NA			NA			
PCB-1232	QN	(0.134)	Ξ	Q	_	0.134)	Ξ	NA			NA			
PCB-1242	QN	(0.0536)	Ξ	QN	0	0.0536)	Ξ	NA			NA			
Compiled: 16 March 1995	() = Detection Limit		= Dilution	Factor	ND = Not	= Not Detected	NA = Nc	= Not Applicable	11 22	Invalid Result,	, Refer to QC Report	C Report		

001	01-MW-08 01-MW-08-01		ΨN	NA	NA	NA	NA	NA	NA	NA		, VN	VV	A N	, d	NA NA		NA NA	NA	NA	N	NA	N	. V	V	NA
003	01-MW-07 01-MW-07-01		NA	AN	NA	NA	NA	NA	N	NA		ĄN	NA NA	AN	. AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		-	[1]	[1]	[1]	[1]	Ξ	Ξ	[1]	[1]		[2]	[2]	[2]	[2]	[2]	[2]	[5]	[2]	[2]	[5]	[5]	[2]	[2]	[2]	[5]
SITE ID LOCATION ID SAMPLE ID 001	01-MW-02 01-MW-02-03		(0.0289)	(0.0412)	(0.0546)	(0.0351)	(0.00206)	(0.00680)	(0.00258)	(0.00330)		(1.20)	(1.64)	(0.280)	(0.00560)	(0.00720)	(0.0220)	(0.0560)	(0.00320)	(0860.0)	(0.0170)	(00.100)	(0.160)	(0.00740)	(1.10)	(0.320)
3	01.		QN	QN	ON	QN	ON	ON	QN	Q		0.00540 JB	ND	QN	NO	ND	QN	ON	QN	QN	QN	QN	ND	0.0409 B	ON	ON
			[1]	Ξ	[1]	[1]	[1]	[1]	[1]	[1]		[5]	[2]	[5]	[2]	[5]	[5]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]
001	01-MW-01 01-MW-01-03	(ug/L)	0.0289)	0.0412)	0.0546)	0.0351)	0.00206)	0.00680)	0.00371)	0.00330)	_	1.20)	1.64)	0.280)	0.00560)	0.00720)	0.0220)	0.0560)	0.00320)	0.0980)	0.0170)	0.100)	0.160)	0.00740)	1.10)	0.320)
	01- 01-M	es and PCBs, cont.) QN) ON) ON		0.0109 B () QN	0.0131 B (0.0144 (drocarbons (ug/L)) ON) ON) QN) ON) ON) ON) ON) QN) ON) QN) QN	0.0403 B () QN	ON .
	PARAMETER	SW8080 - Organochlorine Pesticides and PCBs,	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	SW8310 - Polynuclear Aromatic Hydrocarbons	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

R = Invalid Result, Refer to QC Report

		001	01-MW-08	01-MW-08-01		NA
		001	01-MW-07	01-MW-07-01		NA
SITE ID	SAMPLE 1D	001	01-MW-02	. 01-MW-02-03		ND (0.106) [2]
		001	01-MW-01	01-MW-01-03		
					PARAMETER	SW8310 - Polynuclear Pyrene

	007 03-6W-02 03-6W-02-03	
	007 03-GW-01 . 03-GW-01-03	
SITE ID LOCATION ID SAMPLE ID	008 02-GW-03 02-GW-03-DS-03 Dup of 02-GW-03-03R	
	008 02-GW-03-03R Dup of 02-GW-03-03	
	PARAMETER	

	NA	N	NA	NA	NA	NA	NA	NA	NA	NA	AN	AN	ΑN	V V	ΑN	AN	AN	N AN	N A	A N	VV	Z N	Z Z	N	
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	NA	NA	V.	AN	AN	AZ	. An	NA	
																								0.140) [1]	
) NO [1																		
(ng/L)	0.00220 JB (0.0400) [1]	JB (0.0920)				(00.100)	(0.120)	(0.170)	(0.0540)																
SW8010 - Halogenated Volatile Organics (ug/L)	hane (hane	1,1,2-Trichloroethane	1,1-Dichloroethane		ane	a)				nzene		2-Chloroethyl vinyl ether	Bromobenzene	omethane		hloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	ethane	Dibromomethane	

[] = Dilution Factor () = Detection Limit

ND = Not Detected

02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 02-64-03 03-64-02 03-
[1] NA
(0.220) [1] NA (0.140) [1] NA (0.070) [1] NA (0.0950)
(0.220) [1] NA (0.140) [1] NA (0.140) [1] NA (0.0750) [1] NA (0.0750) [1] NA (0.0570) [1] NA (0.0570) [1] NA (0.0570) [1] NA (0.0950)
(0.220) [1] NA (0.100) [1] NA (0.140) [1] NA (0.140) [1] NA (0.0750) [1] NA (0.0740) [1] NA (0.0570) [1] NA (0.0570) [1] NA (0.0570) [1] NA (0.0950)
(0.100) [1] NA (0.140) [1] NA (0.140) [1] NA (0.0750) [1] NA (0.0740) [1] NA (0.0570) [1] NA (0.0570) [1] NA (0.0570) [1] NA (0.0950)
(0.140) [1] NA (0.0750) [1] NA (0.0750) [1] NA (0.0740) [1] NA (0.0570) [1] NA (0.0570) [1] NA (0.0570) [1] NA (0.0950) [1] NA
(0.0750) [1] NA (0.0750) [1] NA (0.0740) [1] NA (0.0570) [1] NA (0.0570) [1] NA (1.50) [1] NA (0.0300) [1] NA (0.0950) [1] NA
(0.0750) [1] NA (0.200) [1] NA (0.0740) [1] NA (0.0570) [1] NA (1.50) [1] NA (0.0300) [1] NA (0.0950) [1] NA
(0.070) [1] NA (0.070) [1] NA (0.0570) [1] NA (0.300) [1] NA (0.300) [1] NA (0.0950) [1] NA
(0.0740) [1] NA (0.0570) [1] NA (0.0570) [1] NA (0.300) [1] NA (0.300) [1] NA (0.0990) [1] NA (0.0950) [1] NA (0.0950) [1] NA (0.0480) [1] NA (0.0480) [1] NA (0.0480) [1] NA
(0.0570) [1] NA (0.0570) [1] NA (1.50) [1] NA (0.300) [1] NA (1.20) [1] NA (0.0990) [1] NA (0.0950) [1] NA
(0.0570) [1] NA (1.50) [1] NA (0.300) [1] NA (1.20) [1] NA (0.0950) [1] NA (0.0950) [1] NA (0.0950) [1] NA (0.0480) [1] NA (0.0480) [1] NA (0.0480) [1] NA
(2.40) [1] NA (1.50) [1] NA (0.300) [1] NA (1.20) [1] NA (0.0990) [1] NA (0.0950) [1] NA (0.0450) [1] NA (0.0450) [1] NA (0.0480) [1] NA (0.0480) [1] NA
(2.40) [1] NA (1.50) [1] NA (0.300) [1] NA (1.20) [1] NA (0.0950) [1] NA (0.0950) [1] NA (0.0450) [1] NA (0.0480) [1] NA (0.0480) [1] NA
(1.50) [1] NA (0.300) [1] NA (1.20) [1] NA (0.0990) [1] NA (0.0950) [1] NA (0.0450) [1] NA (0.0450) [1] NA (0.0480) [1] NA (0.0480) [1] NA
(0.300) [1] NA (1.20) [1] NA (0.090) [1] NA (0.0950) [1] NA (0.0450) [1] NA (0.0480) [1] NA (0.0480) [1] NA
(0.0710) [1] NA (0.0990) [1] NA (0.0950) [1] NA (0.0450) [1] NA (0.0480) [1] NA (0.0480) [1] NA
(0.0710) [1] NA (0.0990) [1] NA (0.0950) [1] NA (0.0700) [1] NA (0.0450) [1] NA (0.0680) [1] NA (0.0480) [1] NA
(0.0710) [1] NA (0.0990) [1] NA (0.0700) [1] NA (0.0450) [1] NA (0.0680) [1] NA (0.0680) [1] NA (0.0480) [1] NA
(0.0990) [1] NA (0.0950) [1] NA (0.0450) [1] NA (0.0450) [1] NA (0.0680) [1] NA (0.0480) [1] NA
(0.0950) [1] NA (0.0700) [1] NA (0.0450) [1] NA (0.0680) [1] NA (0.0480) [1] NA
(0.0700) [1] NA (0.0450) [1] NA (0.0680) [1] NA (0.0480) [1] NA
(0.0450) [1] NA (0.0680) [1] NA (0.0480) [1] NA
(0.0680) [1] NA (0.0480) [1] NA
(0.0480), [1] NA

			! ! ! !		Ξ	Ξ	Ξ	[1]	[1]	[1]	[1]	Ξ	[1]	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ		Ξ	Ξ	[1]
	007 03-GW-02 03-GM-02-03	50-50-8			0.0235)	0.00480)	0.00627)	0.00235)	0.0294)	0.00549)	0.00470)	0.0176)	0.0137)	0.0167)	0.0108)	0.00284)	0.00324)	0.0382)	0.0451)	0.0471)	0.0696)	0.0549)	0.0529)	0.0725)	0.0500)
	03-1		1 1 1 1 1		_)	_)	<u> </u>	_))	_	JB (_		_	_	_	_	_	_	_	_	_
			NA		ON	N.	S	QN	ND	QN	ND	QN	ND	0.00390	N N	NO.	0.0655	QN	QN	ON	S	ON	N	2	ND
					[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]	[100]
	007 03-GW-01 03-GW-01-03				0.592)	0.621)	0.666)	0.880)	0.945)	0.645)	0.312)	0.689)	1.35)	1.11)	0.590)	0.275)	0.336)	4.08)	5.58)	7.46)	12.9)	5.26)	2.80)	4.03)	5.34)
	03-6W	})	_	_	_ _	_	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	J	_	_	_	_	_	_	_	_	_	<u> </u>
			NA NA		ND	QN	QN	0.175	Q	ON	ON	QN	N	QN	QN	Q	Q.	QN	Q	ON	ON	QN N	Q	S	ON
•	u_		[1]																						
SITE ID LOCATION ID SAMPLE ID	008 02-6W-03 02-6W-03-Ds-03 Dup of	03-03R	0.0850)																						
SI LOCA SAM	008 02-6W-03 2-GW-03-DS-03	02-GW-03-03R) B (_	_																			
	Ö		0.110		NA	NA	NA	NA	NA	NA	NA	ν	N	N.	NA	Ν	AN	NA	NA	NA	NA	NA	NA	NA	NA
	<i>y</i> -03-03		[1]																						
	008 02-6W-03 02-6W-03-03R Dup of 02-6W-03-03		0.0850)	_																					
	008 02-GW-03 -03R Dup of		(ng/L) B ((ng/L)																					
	02-6W-03	! !	ont.	and PCBs	NA	NA	Y :	NA :	NA :	NA :	NA	NA	Y :	¥.	NA :	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Organics	sticides																					
			Volatile	orine Pe									ω				വ								
		~ .	Aromatic :otal))rganoch]					•		_ ;	in 1.1	ın Sulfat		dehyde	۔	r epoxid	lor							
		PARAMETER	SW8020 - Aromatic Volatile Organics, cont. Xylene (total) 0.157	SW8080 - Organochlorine Pesticides and PCBs	4,4'-000	4,4 -UDE	4,4 -001	Aldrin	Chiordane	Uleiarin	Endosulfan 1	Endosuifan II	Endosultan Sulfate	Endrin	Endrin Aldehyde	Heptachior	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260

[] = Dilution Factor () = Detection Limit

ND = Not Detected

						SITE 10 LOCATION 1D SAMPLE 1D	. ID ON ID E ID							
	008 02-GW-03 02-GW-03-03R Dup of 02-GW-03-03	008 02-GW-03 33R Dup of	03 of 02-GW	-03-03	02-6	008 02-GW-03 M-03-DS-03	008 02-6W-03 02-6W-03-DS-03 Dup of		03-6	007 03-GW-01 03-GW-01-03		J	007 03-GW-02 03-GW-02-03	
PARAMETER					_	02-GW-03-03R	-03R							
SW8080 - Organochlorine Pesticides and	des and PCBs,	cont.	(nd/L)		! ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	 	!			!
Toxaphene	NA				NA) QN	3.43)	[100]	QV	(0.0980)	[]
alpha-BHC	NA				NA				ON		[100]	2	(0.00137)	ΞΞ
beta-BHC	NA				NA) ON		[100]	ON.	(0.0461)	Ξ
delta-BHC	NA				NA) ON	0.254)	[100]	QN	(0.00176)	Ξ
gamma-BHC(Lindane)	NA				NA) QN	0.327)	[100]	ON	(0.00225)	Ξ
SW8240 - Volatile Organics (ug/L)	(Γ)													
1,1,1-Trichloroethane	ON	_	0.700)	[1]	QN	_	0.700)	Ξ	NA			NA		
1,1,2,2-Tetrachloroethane	QN	_	2.20)	[]	QN	_	2.20)	Ξ	ΝΑ			N		
1,1,2-Trichloroethane	ON	_	1.20)	Ξ	QN	_	1.20)	Ξ	NA			NA		
1,1-Dichloroethane	ON	_	1.60)	Ξ	Q	_	1.60)	Ξ	NA			NA		
1,1-Dichloroethene	QN	_	1.60)	Ξ	S	J	1.60)	Ξ	NA			NA		
1,2,3-Trichloropropane	ON	_	1.40)	Ξ	QN	_	1.40)	Ξ	NA			NA		
1,2-Dichloroethane	QN		1.30)	[1]	Q	J	1.30)	Ξ	NA			NA		
1,2-Dichloropropane	QN I		0.600)	Ξ	Q		0.600)	Ξ	NA			NA		
2-Butanone(MEK)	Q :	٠,	5.80)	Ξ3	9 :	<u> </u>	5.80)	Ξ	VN :			NA		
2-Chloroethyl vinyl ether	Q Q		8.10)	33	2 9		8.10)	ΞΞ	Α×:			NA :		
4-Methyl-2-pentanone(MIBK)	2 8		7.30)	ΞΞ	2 5		4.30)	ΞΞ	X			¥ ×		
Acetone	Q.		29.0)	ΞΞ	2 2	<i>-</i> _	29.0)	ΞΞ	X X			A N		
Benzene	ON	· —	0.700)	Ξ	QN		0.700)	Ξ	NA			N A		
Bromodichloromethane	ON	J	0.700)	Ξ	Q.	_	0.700)	Ξ	NA			N		
Bromomethane	QN	_	3.10)	Ξ	QN	_	3.10)	Ξ	NA			NA		
Carbon disulfide	Q	_	4.30)	Ξ	Q	_	4.30)	Ξ	NA			NA		
Compiled: 16 March 1995	() = Detection Limit	on Limi		= Dilution F	Factor	ND = Not	Not Detected	NA ==	Not Applicable	R = Invalid	Result,	= Invalid Result, Refer to QC Report	C Report	

	200	03-6W-02 03-6W-02-03			NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	AN	NA		NA	NA
	700	03-5W-01 03-6W-01-03			AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
				: : : : :	[1]	[1]	[1]	[1]		[1]	Ξ	[1]	Ξ	Ξ	[1]	Ξ	[1]	[1]	[1]	[1]	Ξ	[1]	[1]	Ξ	[1]	[1]	$[\Gamma]$	[1]
SITE ID LOCATION ID SAMPLE ID	~ ·	02-GW-03-DS-03 Dup of	3-03K	1	1.80)	1.10)	1.40)	1.00)		0.900)	1.50)	1.90)	8.30)	0.800)	2.20)	4.80)	0.700)	1.80)	0.900)	1.20)	1.20)	2.20)	3.20)	1.50)	1.50)	0.400)	1.60)	0.300)
SITE ID LOCATION I SAMPLE ID	800	02-6W-03 W-03-DS-03 DI	50-MD-70	 	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		02-6		 	R	S	S	Q.	NA	QN	QN	Q	Q	S	QN	QN	QN	QN	QN	QN	ON N	QN	S	QN	ND	9	2	QN
		03-03		:	[1]	[1]	Ξ	Ξ	[1]	[1]	[1]		Ξ	Ξ	[1]	[1]	[1]	Ξ	Ξ	Ξ	[1]	[]	Ξ	Ξ	[1]	Ξ	Ξ	[1]
	5	of 02-GW-			1.80)	1.10)	1.40)	1.00)	1.90)	0.900)	1.50)		8.30)	0.800)	2.20)	4.80)	0.700)	1.80)	0.900)	1.20)	1.20)	2.20)	3.20)	1.50)	1.50)	0.400)	1.60)	0.300)
	008	oz-aw- 3R Dup			Ų	_	_	_	_	J	_		_	_	_	J	_	_	_	_	_	_	_	_	<u> </u>	_	_	_
		02-GW-03-03R Dup of 02-GW-03-03		(ng/L)	QN	QN	QN	QN	QN	QN	S	NA	ND	9	Q.	QN	QN	ON N	2	Q	9	QN	2	QN	QN .	ND	Q	Q
			PARAMETER	SW8240 - Volatile Organics, cont.	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Dibromochloromethane	Dibromomethane	Diphenylamine/N-NitrosoDPA	Ethyl methacrylate	Ethylbenzene	Iodomethane	Methylene chloride	Styrene	Tetrachloroethene	Toluene	Tribromomethane(Bromoform)	Trichloroethene	Trichlorofluoromethane	Vinyl acetate	Vinyl chloride	Xylene (total)	cis-1,3-Dichloropropene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene

R = Invalid Result, Refer to QC Report NA = Not Applicable[] = Dilution Factor ND = Not Detected () = Detection Limit Compiled: 16 March 1995

	007 03-GW-02 03-GW-02-03	NA
	007 03-GW-01 03-GW-01-03	NA
SITE ID LOCATION ID SAMPLE ID	008 02-GW-03 02-GW-03-DS-03 Dup of 02-GW-03-03R	ND (2.60) [1]
	008 02-GW-03 02-GW-03-03R Dup of 02-GW-03-03	2.60) [1]
	PARAMETER	SW8240 - Volatile Organics, cont. (ug/L) trans-1,4-Dichloro-2-butene

			[1]	[1]	Ξ	E	ΞΞ	ΞΞ	[1]	<u> </u>	[]	ΞΞ	ΞΞ		Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	
	44 CC	04-MW-02-03	200)	100)	0000	0.0920)	0.100)	0.100)	0.0480)	0.100)	0.120)	0.0540)	0.0750)	0.150)	0.190)	0.120)	0.170)	0.530)	0.0680)	0.0560)	0.110)
	04 04_m1_02	04-MW	31.0 JB (35.0 JB (C N	ON ON) ON) ON) ON	ON W	ON ON) ON	ON ON) ON) ON) ON) ON) QN) ON) ON) ON
	007 03-6W-04	03-GW-04-03	NA NA	NA	9	Y. V	NA	NA	NA ::	V V	NA N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SITE ID LOCATION ID SAMPLE ID	007 03-6W-03	03-GW-03-03	NA NA	NA	₹	NA	NA	NA	NA 	A N	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	007 03-GW-02	03-GW-02-DS-03 Dup of 03-GW-02-03	NA NA	NA	s (ug/L) NA	NA	NA	NA	۷. A	NA N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		PARAMETER	Diesel Range Organics (ug/L)	Gasoline Range Organics (ug/L) Gasoline Range Organics	SW8010 - Halogenated Volatile Organics 1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Chlorohexane	2-Chloroethyl vinyl ether	Bromobenzene	Bromodichloromethane	Bromomethane	Carbon tetrachloride

R = Invalid Result, Refer to QC Report NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

	04	u4-mw-u2 04-MW-02-03			0.140) [1]	0.110) [1]	0.0850) [1]	0.150) [1]	0.170) [1]	0.140) [1]	0.220) [1]	0.100) [1]		0.110) [1]	0.0750) [1]	0.200) [1]	0.0740) [1]	0.100) [1]	0.0570) [1]			1.50) [1]				0.140) [1]	sport A7 12
		04~MW) ON) ON) ON) GN) QN) QN) QN) ON) QN) ON) QN) ON) ON) ON) ON) QN) QN) QN) QN) ON	= Invalid Result, Refer to QC Report
	007	03-GW-04-03																									~
					NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	d NA = Not Applicable
SITE ID LOCATION ID SAMPLE ID	007	03-GW-03-03																									ND = Not Detected
		Dup of			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	[] = Dilution Factor
	007	03-GW-02-UW-02 03-GW-02-DS-03 Dup of		Janics, cont. (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	Organics (mg/L)	NA	NA	NA	NA	cs (ng/L)	NA	() = Detection Limit
			PARAMETER	SW8010 - Halogenated Volatile Organics, cont.	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Dibromochloromethane	Dibromomethane	Methylene chloride	Tetrachloroethene	Tribromomethane(Bromoform)	Trichloroethene	Trichlorofluoromethane	Vinyl chloride	cis-1,3-Dichloropropene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	SW8015 - Nonhalogenated Volatile Organics (mg/L)	2-Butanone(MEK)	4-Methyl-2-pentanone(MIBK)	Ethanol	Ethyl ether	SW8020 - Aromatic Volatile Organics	1,2-Dichlorobenzene	Compiled: 16 March 1995

					SIT LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID										
		200			007	7				200				04		
		03-GW-02			03-GW-03	-03			03-(03-GW-04			04-	04-MW-02		
	03-6	03-GW-02-DS-03 Dup of	_		03-GW-03-03	03-03			03-61	03-GW-04-03			04-№	04-MW-02-03		
PARAMETER		03-aw-02-03														
SW8020 - Aromatic Volatile Organics, cont.	1	(ug/L)		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	 	1				1					!
1,3-Dichlorobenzene	NA			NA				NA				CN	_	0 130)		
1,4-Dichlorobenzene	NA			NA				NA				2		0.120)		
Benzene	NA			NA				NA				2 2		0.0790)		
Chlorobenzene	NA			NA				NA				Q Q	<i>-</i>	0.070		
Ethylbenzene	NA			NA				NA				2	_	0.120)		
Toluene	NA			NA				NA				2 2		0.120)		
Xylene (total)	NA			NA				NA				QN N	<i>-</i>	0.130)	ΞΞ	
SW8080 - Organochlorine Pesticides and PCBs	nd PCBs	(ng/L)										-				
4,4'-000	N N	(0.0235)	[1]	ON	J	0.00706)	Ξ	0.0225	JB.	0.0240)	Ξ	S	_	(30000)	[2]	
4,4'-DDE	QN	(0.00480)	ΞΞ	QN	. <u> </u>	0.00343)	ΞΞ	Q.	}	0.00490)	ΞΞ	0 0101	~ ~	0.00320)	ΞΞ	
4,4'-DDT	N	(0.00686)	[1]	ON		0.00686)	ΞΞ	Q.	_	0.00640)	E	0.0163		0.00985)	ΞΞ	
Aldrin	N	(0.00235)	[1]	ND	_	0.00402)	[1]	QN		0.00240)	ΞΞ	QN		0.00916)	[]	
Chlordane	ON	(0.0294)	[1]	QN	_	0.0294)	[1]	QN	_	0.0300)		N	<i>,</i> _	0.0296)	ΞΞ	
Dieldrin	ON	(0.00549)	[1]	QN	_	0.00461)	[1]	QN	_	0.00470)	[1]	QN	_	0.00788)	ΞΞ	
Endosulfan I	Q	(0.00470)	Ξ	QN	_	0.00470)	Ξ	ON	_	0.00480)	[1]	QN		0.00611)	ΞΞ	
Endosulfan II	Q	(0.0176)	[1]	QN	Ų	0.0176)	Ξ	SN	_	0.0180)	Ξ	9	_	0.00493)	Ξ	
Endosulfan Sulfate	S	(0.0137)	Ξ	ND	_	0.0137)	[1]	Q.	_	0.0140)	[1]	0.0147	_ _	0.0138)	ΞΞ	
Endrin	QN	(0.0167)	[1]	ON	_	0.00931)	[1]	0.0257	_	0.0170)	Ξ	9	·	0.0118)	ΞΞ	
Endrin Aldehyde	QV	(0.00892)	[1]	QN	_	0.0108)	Ξ	ON	_	0.0110)		QN		0,00650)		
Heptachlor	Q.	(0.00284)	[1]	QN	_	0.00255)	[1]	QN	_	0.00290)	[1]	QN	<i>,</i> _	0.0325)	ΞΞ	
Heptachlor epoxide	Q.	(0.00324)	[1]	0.00890 B	_	0.00324)	[1]	Q	_	0.00330)	Ξ	0.00430	PJB (0.0246)	ΞΞ	
Methoxychlor	2	(0.0382)	[1]	ON	_	0.0382)	[1]	9	_	0.0390)	[1]	QN	·	0.0483)	ΞΞ	
PCB-1016	QN	(0.0451)	[1]	ND	_	0.0451)	Ξ	QN	_	0.0460)	ΞΞ	ND		0.0985)	ΞΞ	

NA = Not Applicable R = Invalid Result, Refer to QC Report ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

						SITE LOCATI SAMPL	SITE ID LOCATION ID SAMPLE ID									
	-M9-6M-	007 03-GW-02 03-GW-02-03 Dup of	Dup of			007 03-GW-03 03-GW-03-03	, -03)3-03			007 03-GW-04 03-GW-04-03	04 4-03			04 04-MW-02 04-MW-02-	04 04-MW-02 04-MW-02-03	
PARAMETER	0	03-GW-02-03	03													
SW8080 - Organochlorine Pesticides and PCBs,		cont. (ug	(ug/L)	!			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		I ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	: : : : : : : : : : : : : : : : : : : :			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PCB-1221			0.0471)	[1]	ON N	_	0.0471)	Ξ	Q	_	0.0480)	Ξ	QN	_	0.187)	[1]
PCB-1232	N	0.0	0.0696)	[1]	QN	_	0.0696)	Ξ	N	_	0.0710)	ΞΞ	QN		0.0552)	[]
PCB-1242	QN	0.0	0.0549)	[1]	NO.	_	0.0549)	[]	Q	_	0.0560)	[1]	QN	_	0.0571)	[1]
PCB-1248	ON	0.0	0.0529)	Ξ	Q	_	0.0529)	Ξ	S	_	0.0540)	[1]	R	_	0.148)	[1]
PCB-1254	QN	0.0	0.0725)	[1]	QN	_	0.0725)	[1]	QN	_	0.0740)	[1]	9	_	0.0778)	[1]
PCB-1260	QN	0.0	0.0500)	Ξ	ON	_	0.0500)	Ξ	ON	_	0.0510)	[1]	QN	_	0.0443)	[1]
Toxaphene	ON	0.0	0.0980)	[1]	8	_	0.0880)	Ξ	N	_	0.100)	Ξ	9	_	0.00985)	[1]
alpha-BHC	QN	0.0	0.00196)	[1]	0.0108 E	9	0.00196)	[1]	QN	_	0.00200)	Ξ	9	<u> </u>	0.00345)	Ξ
beta-BHC	QN	0.0	0.0461)	Ξ	Q	_	0.0461)	Ξ	ON	_	0.0470)	Ξ	0.00120	٦ (0.00916)	[1]
delta-BHC	QN	0.0	0.00176)	Ξ	0.0196	9	0.00176)	Ξ	ON	_	0.00180)	[1]	2	_	0.00256)	Ξ
gamma-BHC(Lindane)	N	0.0	0.00225)	Ξ	QN	_	0.00225)	[1]	0.0178	_	0.00230)	Ξ	Q	<u> </u>	0.00453)	[1]
SW8270 - Semivolatile Organics	(ng/L)															
1,2,4-Trichlorobenzene	NA				NA				NA				9	_	0.590)	[1]
1,2-Dichlorobenzene	NA				NA				NA				9	_	0.640)	Ξ
1,3-Dichlorobenzene	NA				NA				NA				Q	_	0.720)	Ξ
1,4-Dichlorobenzene	NA				NA				NA				2	_	0.590)	[1]
2,4,5-Trichlorophenol	AN				AN				NA				2	_	0.510)	Ξ
2,4,6-Trichlorophenol	NA				NA				AN				2	_	0.500)	Ξ
2,4-Dichlorophenol	NA				NA				Ν				2	_	0.570)	Ξ
2,4-Dimethylphenol	VN :				Y.				NA				S	_	1.30)	Ξ
2,4-Dinitrophenol	NA				NA				NA				2	_	4.20)	Ξ
2,4-Dinitrotoluene	NA				Α				A				2	_	0.590)	Ξ
2,6-Dinitrotoluene	NA				NA				NA				Q	<u> </u>	0.860)	[1]
Compiled: 16 March 1995	() = Detection Limit	n Limit	0 = D	= Dilution Factor		ND = Not	Not Detected	NA =	Not Applicable	ole R	11	Result	Invalid Result, Refer to OC Report	OC Re	oort	
-									:					:	· •	

	007	SITE ID LOCATION ID SAMPLE ID 007	200		0.4		
	03-GW-02	03-6W-03	03~GW-04		04-MW-02	2	
	03-GW-02-DS-03 Dup of	03-GW-03-03	03-GW-04-03		04-MW-02-03	-03	
PARAMETER	50-30-85-50						
SW8270 - Semivolatile Organics, cont.	(ng/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					i
2-Chloronaphthalene	NA	NA	NA	QN	_	0.390)	
2-Chlorophenol	NA	NA	NA	QN	_	0.640)	
2-Methylnaphthalene	NA	. NA	NA	QN		0.360)	
2-Methylphenol (o-cresol)	NA	NA	NA	QN		0.310)	
2-Nitroaniline	NA	NA	NA	ON		0.660)	
2-Nitrophenol	NA	NA	NA	QN	_	0.520)	
3,3'-Dichlorobenzidine	NA	NA	NA	QN	_	0.330)	
3-Nitroaniline	NA	NA	NA	ON	_	0.390)	
4,6-Dinitro-2-methylphenol	NA	NA	NA	QV	_	0.430)	
4-Bromophenyl phenyl ether	NA	NA	NA	ON	_	0.490)	
4-Chloro-3-methylphenol	NA	NA	NA	QN	_	0.520)	
4-Chloroaniline	NA	NA	NA	QN	_	0.740)	
4-Chlorophenyl phenyl ether	NA	NA	NA	QN	_	0.420)	
4-Methylphenol(p-cresol)	NA	NA	NA	ON	_	0.460)	
4-Nitroaniline	NA :	NA	NA	QN	_	0.610)	
4-Nitrophenol	NA ::	NA	NA	QN	_	0.940)	
Acenaphthene	NA :	NA	NA	QN	_	0.270)	
Acenaphthy!ene	NA	NA	NA	QN	_	0.420)	
Anthracene	NA	NA	NA	2	_	0.370)	
Benzo(a)anthracene	NA	NA	NA	QN	_	0.450)	
Benzo(a)pyrene	NA	NA	NA	ND	_	0.520)	
Benzo(b)fluoranthene	NA	NA	NA	QN	_	0.910)	
Benzo(g,h,i)perylene	AA	NA	NA	QN	_	1.00)	
benzo(K)†!uoranthene	NA	NA	NA	ND	_	1.00)	

R = Invalid Result, Refer to QC Report NA = Not ApplicableND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

	04	04-MW-02 04-MW-02-03			ND (39.0) [1]	ND (0.610) [1]	ND (0.620) [1]	ND (0.540) [1]	ND (0.320) [1]		ND (0.810) [1]	ND (0.540) [1]		ND (0.340) [1]	ND (0.470) [1]	ND (0.380) [1]	ND (0.310) [1]	(0.510)	ND (5.90) [1]	ND (0.630) [1]	ND (1.30) [1]	ND (0.620) [1]	ND (0.650) [1]	ND (0.270) [1]	ND (0.480) [1]	ND (0.840) [1]	ND (0.890) [1]	ND (0.470) [1]	= Invalid Result, Refer to QC Report	A7_17
	200	03-6W-04 03-GW-04-03			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	٧N	AN	NA	NA	NA	NA	NA	NA	NA = Not Applicable R = Invalic	
SITE ID LOCATION ID SAMPLE ID	200	U3-GW-U3 tp of 03-GW-03-03			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	[] = Dilution Factor ND = Not Detected	
	007	03-GW-02-DS-03 Dup of	CO-70-80-CO	ont. (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	() = Detection Limit (
			PARAMETER	SW8270 - Semivolatile Organics, cont.	Benzoic acid	Benzyl alcohol	Butylbenzylphthalate	Chrysene	Di-n-butylphthalate	Di-n-octylphthalate	Dibenz(a,h)anthracene	Dibenzofuran	Diethylphthalate	Dimethylphthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Compiled: 16 March 1995	

		U3-GW-U4 04-MN-02 . 03-GW-04-03 04-MW-02-03			NA (0.880) (1)	ND (0.410)	(0.610)	(N) (N) (N) (N)	(008) ON ON			0.0678 .18 (0.625)	(235.2) (2) (N) (N 854)	(1923) 3. ON (146)	0.00120 JB (0.00292)	ND (0.00375)	(0.0115)	0.157 (0.0292)	0.00320 B (0.00167)	0.0117 J (0.0510)	0.00120 JB (0.00885)	ND (0.0521)	ND (0.0833)	0.111 B (0.00385)	0.102 JB (0.573)	ND (0.167)	O O
SITE ID LOCATION ID SAMPLE ID	700	0			NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	007 03-EM-AN	03-6W-02-03 Dup of	DS-GW-UZ-U3	SW8270 - Semivolatile Organics, cont. (ug/L)	NA	NA	ane		C .	bis(2-Ethylhexyl)phthalate NA	SW8310 - Polynuclear Aromatic Hydrocarbons (ug/L)	Acenaphthene	Acenaphthylene		sene				Benzo(K)†Iuoranthene 2.		nthracene	Fluoranthene		3-cd)pyrene		Phenanthrene	NA

ND ≈ Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

							SIT LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID									
PARAMETER		04-	04 04-MW-03 04-MW-03-03				005 05-MW-01 05-MW-01-03	5 -01 01-03		o	005 05-MW-02 05-MW-02-03	5 -02 32-03			0 M-50 05-MW	005 05-MW-03 05-MW-03-03	
Diesel Range Organics (ug/L) Diesel Range Organics	3.00	JB	(500)	! ! !		11.0 J	JB (200)	[1]	6.00 JB		200)	[1]	110) 7	200)	[1]
Gasoline Range Organics (ug/L) Gasoline Range Organics	61.0	ŋ	(100)		[1]	069	_	100)	[1]	42.0 JB	_	100)	[1]	11000	_	100)	[1]
<pre>SW8010 - Halogenated Volatile Organics 1,1,1,2-Tetrachloroethane</pre>	nics (ug/L) ND	(٦)	(0.0400)		[1]	QN	_	0.0220)	Ξ	QV	_	0.0220)	Ξ	S	_	0 0400)	Ξ
1,1,1-Trichloroethane	QN		(0.0920)		[1]	QN Q		0.150)	ΞΞ	2	<i>-</i> _	0.150)	ΞΞ		JB (0.0920)	ΞΞ
1,1,2,2-Tetrachloroethane	QN		(00.100)		[1]	9	_	0.140)	Ξ	R		0.140)			!	0.100)	ΞΞ
1,1,2-Trichloroethane	QN		(0.100)		[1]	QN	_	0.0450)	Ξ	ON	_	0.0450)	[1]	QN	_	0.100)	Ξ
1,1-Dichloroethane	2		(0.0480)			N _O	_	0.0220)		ON	<u> </u>	0.0220)	[]	0.00180	JB (0.0480)	Ξ
1,1-Dichloroethene	Q :		(0.100)		<u></u>	QN	_	0.110)	[1]	ON	<u> </u>	0.110)	[1]	QN	_	0.100)	Ξ
1,2,3-Irichloropropane	2 2		(0.120)			R		0.110)	[]	Q	_	0.110)	Ξ		_	0.120)	[1]
1,2-Dichloroethane	QN QN		(0.170) (0.0540)	ΞΞ		3 17 3 17		0.0950)	ΞΞ	Q. Q.		0.0950)	ΞΞ		JB (0.170)	ΞΞ
1,2-Dichloropropane	QN		(0.0750)			•		0.0230)	ΞΞ	2 S	۔ ر	0.0230)	ΞΞ	U. 0148	- ·-	0.0540)	ΞΞ
1,3-Dichlorobenzene	ON		(0.150)			QN	_	0.0880)	[1]	N		0.0880)	[1]	Q.	<i>-</i>	0.150)	ΞΞ
1,4-Dichlorobenzene	QN		(00.190)		نا	QN	_	0.0910)	[1]	ND	_	0.0910)	[1]	SN		0.190)	ΞΞ
1-Chlorohexane	QN		(0.120)		-	ND	_	0.0400)	[]	QN	_	0.0400)	[1]	0.0136	JB (0.120)	
2-Chloroethyl vinyl ether	ON		(0.170)		_	ON.	_	0.100)	[1]	ON	_	0.100)	ΞΞ		. <u> </u>	0.170)	
Bromobenzene	QN		(0.530)		_	ON	_	0.0450)	[1]	QN	_	0.0450)	[1]	ON.	_	0.530)	ΞΞ
Bromodichloromethane	QN		(0890')	_	_	ND	_	0.0890)	[1]	Q	_	0.0890)	[1]	0.00270	_	0.0680)	
Bromomethane	Q		0.0560	_		QN	_	0.0860)	Ξ	QN	_	0.0860)	[1]	QN		0.0560)	ΞΞ
Carbon tetrachloride	QN		(0.110)	(II)		QN	_	0.0850)	[1]	QN N	_	0.0850)		ON	<i>-</i> _	0.110)	ΞΞ
Chlorobenzene	ND		(0.140)	[1]	_	8	J	0.120)	[1]	QN	_	0.120)	[1]	0.0217 J	JB (0.140)	ΞΞ

ND = Not Detected () = Detection Limit [] = Dilution Factor

NA = Not Applicable

R = Invalid Result, Refer to QC Report

						S LOC	SITE ID LOCATION ID SAMPLE ID								
		04 04-MW-03	-03			05-	005 05-MW-01		05	005 05-MW-02		0	005 05-MW-03	~	
PARAMETER		04-MW-03-03	03-03			₩-90	U5-MW-01-03		05- <u>R</u>	05-MW-02-03		00	05-MW-03-03	-03	
SW8010 - Halogenated Volatile Organics, cont.	anics, cont.	(1/bn)		 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Chloroethane	QN		0.110)	[1]	8	, —	0.0800)	[1]) QN	0.0800)	Ξ	QN	_	0.110)	[1]
Chloroform	ON	_	0.0850)	Ξ	QN	_	0.0260)	[1]) QN	0.0260)	_	ND		0.0850)	Ξ
Chloromethane	QN	J	0.150)	Ξ	2	_	0.150)	Ξ) QN	0.150)	[1]	QN	_	0.150)	Ξ
Dibromochloromethane	QN	J	0.170)	Ξ	S	_	0.0820)	Ξ) QN	0.0820)	[1]	ND	_	0.170)	
Dibromomethane	QN	_	0.140)	Ξ	Q	_	0.0740)	[1]) QN	0.0740)		QN	_	0.140)	Ξ
Methylene chloride	Q	_	0.220)	[1]	0.00000.0	PJB (0.220)	Ξ) QN	0.220)		QN	_	0.220)	Ξ
Tetrachloroethene	ON	_	0.100)	Ξ	QN	_	0.0750)	[1]) QN	0.0750)	[]	0.00190 JB	_	0.100)	Ξ
Tribromomethane(Bromoform)	QN	_	0.140)	Ξ	0.120	PJB (0.140)	Ξ) ON	0.0940)	Ξ	QN	_	0.140)	
Trichloroethene	0.0185 J	_	0.110)	Ξ	ON.	_	0.0730)	[1]) ON	0.0730)	[1]	0.00370 JB	J	0.110)	Ξ
Trichlorofluoromethane	QN	_	0.0750)	[1]	S	_	0.0980)	Ξ) QN	0.0980)		ON	0	0.0750)	Ξ
Vinyl chloride	QN	Ų	0.200)	[1]	ON	_	0.150)	Ξ) QN	0.150)	Ξ	ON	_	0.200)	Ξ
cis-1,3-Dichloropropene	QN	_	0.0740)	[1]	ON	_	0.0800)	[1]) ON	0.0800)	Ξ	NO	0	0.0740)	Ξ
trans-1,2-Dichloroethene	QN	_	0.100)	[]	S	_	0.0870)	Ξ) QN	0.0870)	[1]	QN		0.100)	Ξ
trans-1,3-Dichloropropene	QN	_	0.0570)	Ξ	ON	<u> </u>	0.0720)	Ξ) QN	0.0720)	[1]	0.00560 JB	0	0.0570)	Ξ
SW8015 - Nonhalogenated Volatile Organics (mg/L)	Organics (m	ıg/L)													
2-Butanone(MEK)	QN	_	2.40)	Ξ	QN	_	2.40)	[1]) ON	2.40)		ND	J	2.40)	Ξ
4-Methyl-2-pentanone(MIBK)	QN	_	1.50)	Ξ	ON	_	1.50)	Ξ) ON	1.50)	Ξ	ND	_	1.50)	Ξ
Ethanol	QN	_	0.300)	Ξ	ON.	_	0.300)	[1]) ON	0.300)		ND	_	0.300)	Ξ
Ethyl ether	QN	_	1.20)	[]	QN	_	1.20)	Ξ) QN	1.20)		N	_	1.20)	Ξ
SW8020 - Aromatic Volatile Organics	cs (ng/L)														
1,2-Dichlorobenzene	QN	_	0.140)	[1]	0.184	PB (0.0710)	Ξ) QN	0.0710)		QN	_	17.8)	[250]
1,3-Dichlorobenzene	ND	_	0.130)	Ξ	0.151	_	0.0990)	Ξ) ON	0.0880)	Ξ	QN	_		[250]
1,4-Dichlorobenzene	QN	J	0.130)	Ξ	QN)	0.0950)	[1]) ON	0.0950)		ON			[250]
Compiled: 16 March 1995	() = Detection Limit	on Lim		= Dilutio	n Factor	N = 0	Not Detected	NA	= Not Applicable	R = Inva	lid Result	= Invalid Result, Refer to QC Report	Repor		
															;

						SI LOCAT	SITE ID LOCATION ID SAMPLE ID									
PARAMETER		04 04-MW-03 04-MW-03-03	.03 33-03			005 05-MW-01 05-MW-01-03	005 MW-01 W-01-03			005 05-MW-02 05-MW-02-03	15 1-02 02-03			005 05-MW-03 05-MW-03-03	5 -03 33-03	
SW8020 - Aromatic Volatile Organics, cont. Benzene 0.0538		 (ug/L) JB (0.0790)	[1]	246	,	0 7001				0000			,		
Chlorobenzene			0.120)	ΞΞ	0.146		0.0450)	[F]	2 S		0.0760)	ΞΞ	0087 ND		17.5)	[750]
Ethylbenzene	0.0669	JB (0.120)	[1]	1.37		0.0680)	[1]	Q.	<i>-</i> _	0.0680)	ΞΞ	117		17.0)	[250]
Toluene		JB (0.110)	[1]	0.271	PB (0.0480)	[1]	ON		0.0480)	ΞΞ	1530	<i>-</i>	12.0)	[250]
Xylene (total)	0.257) 8	0.130)	Ξ) 8	0.0850)	[1]	ND	_	0.150)	[1]	368		21.2)	[250]
SW8080 - Organochlorine Pesticides and PCBs		(ng/L)														
4,4'-DDD	ON	0	0.00913)	[1]	ON	_	0.0239)	[1]	QN	_	0.0239)		QN	_	0.0238)	Ξ
4,4'-DDE	ND	0	0.00524)	[1]	QN	_	0.00348)		ON		0.00488)	ΞΞ	QN		0.00485)	ΞΞ
4,4 -DDT		_	0.00971)	[1]	Q.	_	0.00696)	Ξ	QN	_	0.00696)	Ξ	ON		0.00693)	Ξ
Aldrin		PJB (0	0.00903)	[1]	N	_	0.00408)	Ξ	NO	_	0.00239)	Ξ	QN		0.00406)	ΞΞ
Chlordane	QN	Ū	0.0291)	[1]	QN	_	0.0298)	[1]	QN	_	0.0298)	[1]	QN		0.0297)	ΞΞ
Dieldrin	0.0113	°	0.00777)	Ξ	0.00920	B (0.00557)	Ξ	QN	_	0.00557)	[1]	S		0.00465)	Ξ
Endosulfan I	QN N	0	0.00602)	Ξ	QN	_	0.00478)	[1]	ON	J	0.00478)	[1]	ON	0	0.00475)	Ξ
Endosultan II			0.00524)	[]	Q		0.0179)	[1]	Q	_	0.0179)	[1]	8	_	0.0178)	Ξ
ridosultan sultate) 90	0.0136)	Ξ	S	_	0.0129)	[]	2	_	0.0129)	Ξ	QN	_	0.0139)	Ξ
Endrin	Q.	_	0.0116)	Ξ		ЭВ (0.0169)	Ξ	2	_	0.0169)	Ξ	QN	_	0.0168)	
Endrin Aldehyde		_	0.00641)	[1]	ON	_	0.0109)	[1]	N S	_	0.0109)	Ξ	ON	_	0.0109)	Ξ
heptachlor			0.0320)	Ξ		ٺ	0.00259)	[1]	S	_	0.00288)	Ξ	0.00870 B	J	0.00287)	Ξ
Heptachlor epoxide		PJB (0.0243)	Ξ		JB (0.00328)	[1]	QN	_	0.00328)	[1]	0.00820 PB	Ū	0.00327)	Ξ
Methoxychlor	Q	_	0.0476)	Ξ	ON	_	0.0388)	[1]	Q.	_	0.0388)	[1]	QN	_	0.0386)	Ξ
PCB-1016	Q.	_	0.0971)	[1]	QN	_	0.0458)	Ξ	S	_	0.0458)	[1]	ON	_	0.0455)	Ξ
PCB-1221	윤	_	0.184)	[1]	ON	_	0.0478)	Ξ	N	_	0.0478)	[1]	QN	J	0.0475)	Ξ
PCB-1232	Q	_	0.0544)	Ξ	8	_	0.0706)	Ξ	ON	_	0.0706)	[1]	ND	_	0.0703)	Ξ
PCB-1242	R	_	0.0563)	Ξ	QN	_	0.0557),	[1]	QN	_	0.0557)	[1]	ON	_	0.0554)	[1]

[] = Dilution Factor () = Detection Limit

ND = Not Detected

						SI	SITE ID LOCATION ID				:			-		
						SAMI	SAMPLE ID									
		04				ŏ	005			00	. 002			002	Ľ	
		04-MW-03	3			05-MW-01	4-01			05-MW-02	-02			05-MW-03	-03	
PARAMETER	•	04-mw-03-03	50			-MW-CO	02-MW-01-03			CS-MM-CU-U3	0z-03			U5-MM-U3-U3	03-03	
SW8080 - Organochlorine Pesticides and PCBs,	des and PCBs, c	cont. ((ng/L)			; ; ; ;	 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 - - - - - -	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
PCB-1248	QN		0.146)	[1]	ON	_	0.0537)	[1]	Q	_	0.0537)	Ξ	QN	_	0.0535)	Ξ
PCB-1254	QN	0	0.0767)	Ξ	ON	_	0.0736)	Ξ	QN		0.0736)	ΞΞ	QN		0.0733)	ΞΞ
PCB-1260	QN	0	0.0437)	Ξ	ND	_	0.0507)	[1]	QN	_	0.0507)	[1]	QN		0.0505)	Ξ
Toxaphene	ON		0.00971)	Ξ	QN	_	0.0995)	[1]	QN	_	0.0995)	[1]	Q	_	0.0800	Ξ
alpha-BHC	ON	0	0.00388)	Ξ	0.0173	_	0.00199)	[1]	N	_	0.00199)	Ξ	ND	_	0.00198)	[1]
beta-BHC	QN		0.00903)	Ξ	0.0139) T	0.0468)	Ξ	ON	_	0.0468)	Ξ	N N	J	0.0465)	Ξ
delta-BHC	0.0182 B	- - -	0.00214)	Ξ	0.0190	<u>)</u> В	0.00179)	Ξ	QN	_	0.00179)	[1]	S	_	0.00178)	Ξ
gamma-BHC(Lindane)	ON	0	0.0126)	Ξ	0.0140	_	0.00229)	[]]	ON	_	0.00229)	Ξ	0.0239	_	0.00228)	[1]
SW8270 - Semivolatile Organics	(ng/L)															
1,2,4-Trichlorobenzene	ON	_	0.590)	Ξ	QN	_	0.602)	Ξ	ND	_	0.602)	[1]	QN	_	0.599)	
1,2-Dichlorobenzene	ON	_	0.640)	Ξ	QN	_	0.796)	Ξ	QN	_	0.796)	Ξ	QN	J	0.650)	[1]
1,3-Dichlorobenzene	ON	_	0.720)	Ξ	QN	_	0.398)		QN	_	0.398)	[1]	SN SN	_	0.731)	Ξ
1,4-Dichlorobenzene	ON	_	0.590)	[1]	Q	_	0.827)	Ξ	ON	_	0.827)	[1]	Q	_	0.599)	[1]
2,4,5-Trichlorophenol	QN	_	0.510)	[1]	QN	_	0.337)	Ξ	QN	_	0.337)	Ξ	S	_	0.518)	[1]
2,4,6-Trichlorophenol	QN	_	0.500)	Ξ	QN	_	0.357)	Ξ	ON	_	0.357)	Ξ	Q	_	0.508)	[1]
2,4-Dichlorophenol	ON	_	0.570)	Ξ	Q	_	0.449)	Ξ	ON	_	0.449)	Ξ	Q	Ų	0.579)	Ξ
2,4-Dimethylphenol	QN	_	1.30)	[1]	QN	<u> </u>	1.12)	Ξ	ON	_	1.12)	Ξ	4.91	_	1.32)	[1]
2,4-Dinitrophenol	QN	_	4.20)	[1]	QN	_	7.65)	Ξ	QN	_	7.65)	Ξ	ON	_	4.26)	[1]
2,4-Dinitrotoluene	QN	_	0.590)	[]	ON	_	0.561)	Ξ	QN	_	0.561)	Ξ	SS SS	J	0.599)	Ξ
2,6-Dinitrotoluene	ON	_	0.860)	Ξ	N	_	0.357)	Ξ	QN	_	0.357)	Ξ	N N	_	0.873)	[1]
2-Chloronaphthalene	ON	_	0.390)	Ξ	Q	_	0.327)	Ξ	ON	_	0.327)	Ξ	QN N	J	0.396)	[1]
2-Chlorophenol	ON	_	0.640)	Ξ	Q	_	0.776)	Ξ	QN	<u> </u>	0.776)	Ξ	QN	J	0.650)	Ξ
2-Methylnaphthalene	QN	_	0.360)	Ξ	Q	_	0.673)	Ξ	QN	_	0.673)	Ξ	3.59	J	0.365)	Ξ
2-Methylphenol (o-cresol)	QN	_	0.310)	[1]	S	_	0.541)	Ξ	Q	_	0.541)	Ξ	21.4	_	0.315)	[1]
Compiled: 16 March 1995	() = Detection limit	n limit	"	= Dilution Factor	Factor	UN UN	Not Detected	Y Y	= Not Annlicable	0146	ileval = d	+ Lucal bileval +	Defend to Or Denset	0	4	

					7	SITE ID LOCATION ID SAMPLE ID	ID N ID ID									
	, 040	04 04-MW-03			0 (005 05-MW-01				005 05-MW-02	.02			005 05-MW-03	5 -03	
PARAMETER	0.4	04MW03-03			02	05-MW-01-03	-03		0	05-MW-02-03	12-03		0	05-MW-03-03	33-03	
SW8270 - Semivolatile Organics, cont.	(ng/L)	! ! ! ! ! !	: : : : :			1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! !		: : : : : : : : : : : : : : : : : : : :		1 1		-
2-Nitroaniline	NO	(099.0)	(09	[1]	QN	_	0.408)	[1]	QN	_	0.408)	Ξ	N Q	_	0.670)	[1]
2-Nitrophenol	Q.	(0.520)	20)	[1]	QN Q	_	0.449)	Ξ	Q.	_	0.449)	Ξ	N		0.528)	
3,3'-Dichlorobenzidine	ND	(0:330)	30)	Ξ	NO	_	0.500)	[1]	Q.	_	0.500)	[1]	QN		0.335)	Ξ
3-Nitroaniline	NO	(0.390)	90)	[1]	9	_	0.520)	[1]	R	_	0.520)	[]	QN	_	0.396)	
4,6-Dinitro-2-methylphenol	ON	(0.430)	30)	[1]	QN	_	0.867)	Ξ	QN	_	0.867)	[1]	QN	_	0.437)	Ξ
4-Bromophenyl phenyl ether	QN Q	(0.490)	(06	[1]	QN	_	0.469)	[1]	N	_	0.469)	[1]	QN	_	0.497)	ΞΞ
4-Chloro-3-methylphenol	Q	(0.520)	20)	[1]	QN	_	0.735)	[1]	N N	_	0.735)	Ξ	ON	_	0.528)	Ξ
4-Chloroaniline	Q	(0.740)	40)	[1]	Q	_	0.571)	[1]	QN	_	0.571)	[1]	ON	_	0.751)	Ξ
4-Chlorophenyl phenyl ether	QN	(0.420)	20)	[1]	QN	_	0.541)	[1]	ND	_	0.541)	[1]	QN	_	0.426)	Ξ
4-Methylphenol(p-cresol)	Q	0.4	90)	[1]	ND	_	0.592)	[1]	ON	_	0.592)	Ξ	24.8 F	_	0.467)	Ξ
4-Nitroaniline	Q	9.0	10)	[]	QN	_	0.490)	[1]	QN	_	0.490)	[1]	QN	_	0.619)	Ξ
4-Nitrophenol	Q.	0.9	10)	[1]	ON	_	0.704)	[1]	N	_	0.704)	[1]	ON	_	0.954)	Ξ
Acenaphthene	Q.	(0.270)	70)	[1]	QN	_	0.490)	[1]	QN	_	0.490)	[1]	QN	_	0.274)	Ξ
Acenaphthylene	Q.	0.4	20)	[1]	QN	_	0.235)	[1]	Q.	_	0.235)	[1]	ON	_	0.426)	[1]
Anthracene	2	0.3	(0,	<u>[</u>]	QN	_	0.592)	[Ξ]	ND	_	0.592)	[1]	QN	_	0.376)	[1]
benzo(a)anthracene	2	0.4	20)	[]	Q	_	0.520)	Ξ	QN	_	0.520)	[1]	QN	_	0.457)	[1]
benzo(a)pyrene	2	0.520)	50)	Ξ	9	_	0.388)	Ξ	QN	_	0.388)	[1]	QN	_	0.528)	Ξ
<pre>Benzo(b)tluoranthene</pre>	Q :	0.910)	(o)	Ξ	QN	_	0.582)	[1]	QN	_	0.582)	Ξ	QN	_	0.924)	Ξ
Benzo(g,h,i)perylene	Q Q	1.00)	00)	[1]	9	_	0.500)	[1]	QN	_	0.500)	[1]	Q.	_	1.02)	[1]
<pre>benzo(k)fluoranthene</pre>	Q Q	1.00)	00)	[1]	S	_ 	0.990)	[1]	QN	_	0.890)	Ξ	QN	_	1.02)	Ξ
Benzoic acid	Q Q	39.0)		[]	N N	_	4.29)	Ξ	QN	_	4.29)	Ξ	Q.	_	39.6)	
Benzyl alcohol	Q Q	0.610)		[]	N Q	_	1.12)	Ξ	QN	_	1.12)	[1]	2.84	_	0.619)	[1]
Butylbenzylphthalate	Q.	0.620)		[1]	9	_	0.398)	[1]	NO	_	0.398)	[1]	QN	_	0.629)	Ξ
Chrysene	Q.	0.540)		[1]	Q	_	0.684)	[]	QN	_	0.684)	Ξ	S	_	0.548)	Ξ
Oi-n-butylphthalate) ON	0.320)	(0;	[1]	ND	_	0.500)	[1]	ON	_	0.500)	[1]	ON	\cup	0.325)	[1]

R = Invalid Result, Refer to QC Report NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

					SITE ID LOCATION ID SAMPLE ID	ID NN ID E ID					-			
	04				002				900			J	005	
	04-MW-03	F-03			05-MW-01	11		05	05-MW-02			05-N	05-MW-03	
PARAMETER	04-MW-03-03	03-03			05-MW-01-03	-03		-90	05-MW-02-03			05-M	05-MW-03-03	
SW8270 - Semivolatile Organics, cont.	:ont. (ug/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! !	1 1 1 1			
Di-n-octylphthalate) GN	0.350)	[1]	Q.	_	0.929)	[1]	ON	(0.929)) [1]	N	_	0.355)	
Dibenz(a,h)anthracene) QN	0.810)	Ξ	QN	_	0.480)	[1]	NO	(0.480)	[1]	S	_	0.822)	
Dibenzofuran) GN	0.540)	Ξ	QN	_	0.418)	Ξ	ON	(0.418)		QN)	0.548)	Ξ
Diethylphthalate) QN	0.520)	Ξ	S	_	0.347)	[1]	QN	(0.347)) [1]	N.	_	0.528)	
Dimethylphthalate) QN	0.340)	[]	Q	<u> </u>	0.286)	[1]	QN	(0.286)		S	_	0.345)	[1]
Fluoranthene) ON	0.470)	[1]	Q	_	0.653)	Ξ	QN	(0.653)		QN	_	0.477)	Ξ
Fluorene) QN	0.380)	Ξ	S	_	0.347)	[1]	ON	(0.347)		S	_	0.386)	
Hexachlorobenzene) ON	0.310)	Ξ	S	_	0.235)	[1]	QN	(0.235)		S	_	0.315)	
Hexachlorobutadiene) QN	0.510)	Ξ	9	_	0.714)	[1]	ND	(0.714)		S	_	0.518)	
Hexachlorocyclopentadiene	ON ON	5.90)	Ξ	QN	J	9.08)	[1]	ND	(80.6)		S	_	5.99)	
Hexachloroethane) QN	0.630)	Ξ	QN	_	0.602)	[1]	QN	(0.602)		ON	_	0.640)	
Indeno(1,2,3-cd)pyrene) QN	1.30)	Ξ	ON	J	0.531)	[1]	QN	(0.531)		ON.	_	1.32)	
Isophorone) QN	0.620)	Ξ	Q	J	0.296)	[1]	QN	(0.296)		S	_	0.629)	
N-Nitroso-di-n-propylamine) ON	0.650)	[1]	Q	J	0.765)	[1]	QN	(0.765)		ON N	_	0.660)	
N-Nitrosodiphenylamine) QN	0.270)	Ξ	S	_	0.571)	[1]	ON	(0.571)		N	_	0.274)	
Naphthalene) QN	0.480)	Ξ	Q.	_	0.745)	[1]	QN	(0.745)	[1]	6.26	_	0.487)	Ξ
Nitrobenzene) QN	0.840)	Ξ	QN	_	0.541)	[1]	ND	(0.541)		QN	_	0.853)	Ξ
Pentachlorophenol) QN	0.890)	[1]	S	_	0.878)	Ξ	ND	(0.878)		GN	_	0.904)	
Phenanthrene) QN	0.470)	[1]	Q	_	0.633)	[1]	Q	(0.633)) [1]	QN	_	0.477)	Ξ
Phenol) ON	0.880)	Ξ	8.70	_	0.408)	Ξ	QN	(0.408)		92.5	_	0.893)	Ξ
Pyrene) QN	0.410)	Ξ	2	_	0.480)	Ξ	QN	(0.480)		QN	_	0.416)	
bis(2-Chloroethoxy)methane) QN	0.610)	Ξ	<u>Q</u>	_	0.571)	Ξ	QN	(0.571)		S	_	0.619)	Ξ
bis(2-Chloroethyl)ether) QN	0.380)	Ξ	Q.	_	0.745)	[1]	ND	(0.745)	[1]	S)	0.386)	Ξ
bis(2-Chloroisopropyl)ether) ON	0.800)	Ξ	Q	_	0.745)	Ξ	ND	(0.745)		S	_	0.812)	[]
bis(2-Ethylhexyl)phthalate	1.53 B (0.580)	Ξ	S	_	1.84)	Ξ	QN	(1.84)) [1]	22	<u> </u>	0.589)	Ξ
Compiled: 16 March 1995	() = Detection Limit	it [] =	Dilution F	Factor N	ND = Not	Not Detected	NA = A	Not Applicable	R = Inv	Invalid Result,		Refer to QC Report	port	

ı	005 05-MW-03	00-00-00-885-00		ĄN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	AN	NA
	005 05-MW-02 05-MW-03-03	00 NO 11 11 11 11 11 11 11 11 11 11 11 11 11		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SITE ID LOCATION ID SAMPLE ID	005 05-MW-01 05-MW-01-03			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		 		[1]	[1]	Ξ	[]	[1]	[]	[1]	Ξ	[]	[1]	Ξ	[1]	[1]	Ξ	[1]	[1]
	04 04-MW-03 04-MW-03-03		ydrocarbons (ug/L)	0.0911 JB (0.600)	ND (0.820)	ND (0.140)	_	0.00430 B (0.00360)	ND (0.0110)	ND (0.0280)	ND (0.00160)	ND (0.0490)	0.00730 J (0.00850)	ND (0.0500)	ND (0.0800)	0.00340 JB (0.00370)	ND (0.550)	0.113 JB (0.160)	ND (0.0530)
		PARAMETER	SW8310 - Polynuclear Aromatic Hydrocarbons (ug/L)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene

					SITE ID LOCATION ID SAMPLE ID	ID N ID ID									
	05-MW-03-1 05-MW-03-1	005 05-MW-03 05-MW-03-03 Dup of 05-MW-03-03	4	0	005 05-MW-04 05-MW-04-03	-03			005 05-MW-05 05-MW-05-03	35 5-03		0	005 05-MW-06 05-MW-06-03	90	
PARAMETER 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!		 						1	 	! ! !		
Diesel Range Organics (ug/L) Diesel Range Organics	220	200)	[1]	1500	_	200)	[1]	770	_	200)	[1]	4.00 JB	J	200)	[1]
Gasoline Range Organics (ug/L) Gasoline Range Organics	10000	100)	[]	170000	_	100)	[1]	42000	_	100)	[1]	42.0 JB	_	100)	[1]
SW8010 - Halogenated Volatile Organics (ug/L) 1,1,1,2-Tetrachloroethane 0.00370 JB	rganics (ug/L) 0.00370 JB (0.0400)	[1]	0.0408	0	0.0220)	[1]	QN	J	0.0219)	[1]	QN	_	0.0220)	Ξ
1,1,1-Trichloroethane) QN	0.0920)	[1]	0.368	_	0.150)	Ξ	QN	_	0.0920)	Ξ	ON		0.150)	Ξ
1,1,2,2-Tetrachloroethane	0.219 (0.100)	Ξ	QN	_	0.140)	[]	Q	_	0.144)	Ξ	Q	_	0.140)	Ξ
1,1,2-Trichloroethane		0.100)	ΞΞ			0.0450)	ΞΞ	QN S	<u> </u>	0.100)	ΞΞ	Q :		0.0450)	Ξ
1,1-Dichloroethane 1 1-Dichloroethene	0.00200 JB (0.0480)	ΞΞ	0.00480 JB		0.0220)	ΞΞ	2 5		0.0480)	ΞΞ	2 5		0.0220)	ΞΞ
1,1-Didnioloculene 1,2,3-Trichloropropane	QN QN	0.120)	ΞΞ	S 8	۔ ۔	0.110) 0.110)	ΞΞ	2 9	ب ر	0.120)	ΞΞ	2 S		0.110)	ΞΞ
1,2-Dichlorobenzene		0.170)	Ξ	0.0336 J		0.0950)	Ξ	ND		0.0949)	Ξ	ND	_	0.0950)	Ξ
1,2-Dichloroethane	0.0130 J (0.0540)	ΞΞ	2 9		0.0820)	ΞΞ	14.5 MD		0.0540)	ΞΞ	2 5	_ 、	0.0540)	ΞΞ
1,2-Dichloropropane 1,3-Dichlorobenzene	ON ON	0.150)	ΞΞ	2 Q		0.0880)	ΞΞ	2 2		0.150)	[1]	ND 0.0132 PJ		0.0230) 0.150)	ΞΞ
1,4-Dichlorobenzene) GN	0.190)	Ξ	0.127	0	0.0910)	[1]	QN	_	0.0908)	Ξ	QN	_	0.0910)	Ξ
1-Chlorohexane	0.0816 J (0.120)	[1]	0.0685	0	0.0400)	[1]	QN	_	0.0404)	Ξ	ON	_	0.0400)	Ξ
2-Chloroethyl vinyl ether) ON	0.170)		0.151	_	0.100)	[1]	S	_	0.170)	[1]	ND	_	0.100)	Ξ
Bromobenzene		0.530)	Ξ		0	0.0450)	Ξ	ON N		0.530)	Ξ	QN	_	0.0450)	Ξ
Bromodichløromethane	0.00280 J	0.0680)	Ξ	0.0335 J	o 	0.0890)	[1]	2	_	0.0886)	Ξ	S	_	0.0890)	[1]
Bromomethane	ON ON	0.0560)	\Box	ON	0	0.0860)	Ξ	2	_	0.0858)	Ξ	S	_	0.0860)	Ξ
Carbon tetrachloride) QN	0.110)	[]	QN	°	0.0850)	Ξ	QN	_	0.0854)	Ξ	Q	J	0.0850)	[]
Compiled: 16 March 1995	() = Detection Limit		= Dilution	Factor ND		= Not Detected	NA = No	= Not Applicable	e 8		Result.	= Invalid Result. Refer to OC Report	C Repo	r tt	
		3		5		;					;	7	- L	70-74	7.0

					SIT LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID									
)-MW-50	005 05-MW-03 05-MW-03-03 Dup of	of		005 05-MW-04 05-MW-04-03	15 04 04-03			05-h 05-h	005 05-MW-05 05-MW-05-03			005 05-MW-06 05-MW-06	005 05-MW-06 05-MW-06-03	
PARAMETER	ì	05-MW-03-03									,		<u> </u>		
SW8010 - Halogenated Volatile Organics, cont.	Organics, cont.	(na/L)	; ; ; ; ;	! ! ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			1			1 1 1		1
Chlorobenzene	0.0245 JB	(0.140)	[1]	ON	_	0.120)	Ξ	Q	_	0.124)	Ξ	S	_	0 120}	Ξ
Chloroethane	QN	(0.110)	[1]	0.194		0.080.0	ΞΞ	QN	<i>-</i> _	0.110)		2 2	-	0.0800)	ΞΞ
Chloroform	QN	(0.0850)		Q	_	0.0260)	[1]	S	· _	0.0850)	Ξ	Q.		0.0260)	ΞΞ
Chloromethane	ON	(0.150)	[1]	QN	~	0.150)	[1]	ND		0.150)		QN		0.150)	Ξ
Dibromochloromethane	ND	(0.170)		0.0957		0.0820)	[1]	ON		0.0820)		QN	<i>-</i>	0.0820)	E
Dibromomethane	0.0695 JB	(0.140)		QN	_	0.0740)	Ξ	ON	· _	0.140)	ΞΞ	ON	<i>-</i> _	0.0740)	ΞΞ
Methylene chloride	ND	(0.220)		0.162) B	0.0840)	Ξ	0.149	PJB (0.220)	Ξ	ON	<i>-</i>	0.220)	
Tetrachloroethene	0.00210 JB	(0.100)	Ξ	QN	_	0.0750)	[1]	ON	_	0.0750)	Ξ	S	· _	0.0750)	
Tribromomethane(Bromoform)		(0.140)		QN	_	0.0940)	[1]	QN	_	0.140)	Ξ	S		0.0940)	ΞΞ
Trichloroethene	0.00390 JB	(0.110)	Ξ) r	0.0730)	[1]	0.0105) (0.110)	Ξ	QN		0.0730)	Ξ
Inichlorofluoromethane	QN	(0.0750)		0.0108	JB (0.0980)	[1]	QN	_	0.0750)	[1]	N N	_	0.0980)	
Vinyl chloride	ON	(0.200)		ON	_	0.150)	[1]	QN	_	0.200)	Ξ	QN	_	0.200)	
cis-1,3-Dichloropropene	ON	(0.0740)		0.0139) [0.0800)	Ξ	S	_	0.0740)	[1]	QN	_	0.0800	
trans-1,2-Dichloroethene		(0.100)	[1]			0.0870)	[1]	N N	_	0.0870)	[1]	N N	_	0.0870)	[1]
trans-1,3-Dichloropropene	0.0119 J	(0.0570)	[]	0.158	_	0.0720)	[1]	QN	_	0.0719)	[1]	ON	_	0.0720)	[1]
SW8015 - Nonhalogenated Volatile Organics	le Organics (mg/L)	[]													
2-Butanone(MEK)	ON	(2.40)	Ξ	QN.	_	2.40)	[1]	Q.	_	2.40)	[1]	CN.	_	2 40)	[]
4-Methyl-2-pentanone(MIBK)	ON	(1.50)		ON	_	1.50)	[1]	Q		1.50)	ΞΞ	e e		1.50)	ΞΞ
Ethanol	QN	(00:300)		ON	_	0.300)	Ξ	ND	<i>-</i>	0.300)	ΞΞ	2 8		0.300)	
Ethyl ether	ND	(1.20)	[1]	QN	_	1.20)	Ξ	N N	_	1.30)	[1]	Q.	_	1.20)	ΞΞ
SW8020 - Aromatic Volatile Organics	anics (ug/L)														
1,2-Dichlorobenzene		(17.8)	[250]	QN	_	142) [2000]	[000	20.0	_	7.10)	[100]	QN	<u> </u>	0.0710)	[1]
Compiled: 16 March 1995	() = Detection Limit		= Dilution	Dilution Factor	ND = Not	= Not Detected	NA = N	= Not Applicable	able	R = Inva	id Result	= Invalid Result, Refer to QC Report	OC Repo	ort	

						_	SITE ID LOCATION ID SAMPLE ID	0 0										
	05-1	05- W-03-	005 05-MW-03 05-MW-03-DS-03 Dup of	o of		0	005 05-MW-04 05-MW-04-03	83	·		05- 05-	005 05-MW-05 05-MW-05-03				005 05-MW-06 05-MW-06-	005 05-MW-06 05-MW-06-03	
PARAMETER		¥-00 100 100 100 100 100 100 100 100 100	U5-MW-U3-U3															
SW8020 - Aromatic Volatile Organics,	anics, cont.	(ng/L)	(i i i i i i		! ! ! ! !	 	! !] 1 1 2 2 5	1 1 1 1	I I I I	 	!		 		
1,3-Dichlorobenzene	QN		24.8)	8) [250]		Q.	J	198) [2	[2000]	2.69	P. (9.	9.90) [100]	[0]	Q	_	0.0880)	[1]
1,4-Dichlorobenzene	ON	_	23.8)	8) [250]		NO ON	_	190) [2	[2000]	Q	_	16		[0	QN		0.0950)	
Benzene	2270	_	17.5)	5) [250]		33200	_	140) [2	[2000]	17300		7.0	70.0) [1000]	[0]	ON	_	0.100)	
Chlorobenzene	QN	_	11.2)	2) [250]	_	QN	ŝ 	90.0) [2	[2000]	2.57	3	4	4.50) [100]	[0]	QN	_	0.0450)	(E)
Ethylbenzene	119	_	17.0)	0) [250]		615	_	136) [2	[2000]	336	_	6.	6.80) [100]	[0]	QN	_	0.0680)	
Toluene	1330	_	12.0)	0) [250]		10200	5 	96.0) [2	[2000]	3900		4	4.80) [100]		0.0724) B	0.0480)	
Xylene (total)	374	_	21.2)	2) [250]		1570	J	170) [2	[2000]	923		80	8.50) [100]			JB (0.0850)	(1)
SW8080 - Organochlorine Pesticides and PCBs	ides and PCBs	(na/F)																
4,4'-DOD	Q	· ·	0.0242	2) [1]] 0.0308	808 B	0.0	0.0236)	[1]	0.101		0.0245)		[1]	S	_	0.0238)	[1]
4,4'-DDE	QN	_	0.00495)] 0.0113	.13 B	(0.00483	483)	[1]	8	_	0.00357	_	Ξ	8		0.00485)	
4,4'-DDT	QN	_	0.00707	_] 0.0196	96 B	0.00	0.00690)	[1]	QN		0.00714		Ξ	N N		0.00634)	[1]
Aldrin	ON	_	0.00414)] 0.0205	505	0.00	0.00236)	[1]	0.0344		0.00245)	_	Ξ	S	_	0.00238)	_
Chlordane	QN .	_	0.0303	3) [1]		S S	0.0	0.0296)	[1]	N N	_	0.0306)	_	[1]	Q	_	0.0297)	_
Dieldrin	QN	_	0.00566)		0.0140	40	0.00	0.00552)	[1]	Q	_	0.00480)		[1]	Q	_	0.00554	_
Endosulfan I	QN	_	0.00485)		_	ND	0.00	0.00473)	[1]	Q	_	0.00490	_	[1]	Q	_	0.00475)) [1]
Endosulfan II	Q	_	0.0182	_		NO	0.0	0.0177)	[1]	0.00960	~	0.0184	_	[]	Q	_	0.0178)	
Endosulfan Sulfate	QN	_	0.0141	_	_	ND	0.0	0.0138)	[1]	QN		0.0133	_	1]	N	_	0.0139)	
Endrin	QN	_	0.0172	_	0.0199	66	0.0	0.0167)	[1]	QN	_	0.00969	_	Ξ	2	_	0.0168)	_
Endrin Aldehyde	ND	_	0.0111	_		06	0.0	0.0108)	[1]	QN	_	0.0112	_	[1]	8	_	0.00901	_
Heptachlor	0.00780	9	0.00293)	_	0.0139	39	0.00	0.00286)	Ξ	0.0261	<u> </u>	0.00265)		[1]	9	_	0.00287	
Heptachlor epoxide	0.0111	PB (0.00333] 0.00420	.20 PB	0.00	0.00325)	Ξ	0.0237	<u>в</u>	0.00337)	_	Ξ	Q.	_	0.00327	
Methoxychlor	QN	_	0.0394)	t) [1]		ON	0.0	0.0384)	[1]	8	_	0.0398)	_	Ξ	Q.	_	0.0386)	[1]
PCB-1016	S	_	0.0465	5) [1		Q	0.0	0.0453)	Ξ	QN N	_	0.0469)		Ξ	QN	_	0.0455)	
Compiled: 16 March 1005	timi moitocton = ()	- 40	imi+	= 0:1u+ion	tion Eactor	Q.	- Not Detected	+ 00+	1 48	- Mot Andlington	14.0	-	0 100	+[5	0 t 0 t 0	2	+	
		2		İ		2	2	ם ני ני		101 101	מס			ה ה ה ה ה	- Invalla Result, Reler to to Report	ر د د	1.100	A7-29
																		;

				SIT LOCAT SAMPI	SITE ID LOCATION ID SAMPLE ID										
	002			002	r.			005				002			
	05-MW-03 05-MW-03-DS-03 Dup of	to of		05-MW-04 05-MW-04-03	-04 04-03			05-MW-05 05-MW-05-03				05-MW-06 05-MW-06-03)6 5-03		
GATAMAGAG	05-MW-03-03														
) 	1 1 1 1 1												
SW8080 - Organochlorine Pesticides and	des and PCBs, cont. (ug/L)	<u></u>						; ; ; ; ; ; ; ;	1 1 1 1 1	! ! !		t t t] 1 1 1 1 1 1	! ! !	
PCB-1221	ND (0.0485)	(1]	QN	_	0.0473)	Ξ	2	(0.0490)			2	_	0.0475)	[1]	
PCB-1232	ND (0.0717	_	ON	_	0.0700)	Ξ	QN	(0.0724)		1]	QN		0.0703)	ΞΞ	
PCB-1242	ND (0.0566)		QN	_	0.0552)	[1]	N	(0.0571)		17	9		0.0554)	ΞΞ	
PCB-1248	_	(2)	QN	_	0.0532)	[1]	QN	(0.0551)		[1]	QN Q		0.0535)	ΞΞ	
PCB-1254	<u> </u>		QN	_	0.0729)	Ξ	QN	(0.0755)		1]	QN	_	0.0733)		
PCB-1260	ND (0.0515)		QN	_	0.0502)	Ξ	Q.	(0.0520)	_	1]	N ON	_	0.0505)	Ξ	
Toxaphene	_	_	QN	_	0.0985)	Ξ	N N	(0.102)		1]	N Q	_	0.0990)	Ξ	
alpha-BHC) 	_	0.0457	_	0.00197)	Ξ	N	(0.00143	_	1]	Q.	0	0.00198)	[1]	
beta-BHC	_	_	QN	J	0.0463)	[]	ON	(0.0480)	_	1]	Q	_	0.0465)	[1]	
delta-BHC	_	_	0.0351 B	_	0.00177)	[1]	0.0942	(0.00184)	_	1]	QN	0	0.00178)	[1]	
gamma-BHC(Lindane)	0.0237 (0.00232	2) [1]	0.0629	_	0.00227)	Ξ	0.0624	(0.00235	_	1]	N _O	0	0.00228)	[1]	
SW8270 - Semivolatile Organics	(ng/L)														
1,2,4-Trichlorobenzene	ND (0.590)	0) [1]	ON	_	0.605)	[1]	QN	(0.587)		1]	QN	_	0.602)	Ξ	
1,2-Dichlorobenzene	_		QN	_	0.800)	Ξ	QN	(0.637)		1]	QN	_	0.796)	[1]	
1,3-Dichlorobenzene	_		QN	_	0.400)	[1]	ND	(0.716)		1]	QN	_	0.398)	Ξ	
1,4-Dichlorobenzene	_		ON	_	0.831)	[1]	QN	(0.587)		1]	QN	_	0.827)	Ξ	
2,4,5-Trichlorophenol	_		QN	_	0.338)	[1]	QN	(0.507)			ND	_	0.337)	[1]	
2,4,6-Trichlorophenol	_		QN	_	0.359)	Ξ	QN	(0.498)		[1]	ON	_	0.357)	[1]	
2,4-Dichlorophenol	_		ON	_	0.451)	[1]	ON	(0.567)		1]	QN	_	0.449)	[1]	
2,4-Dimethylphenol	_		42.9	_	1.13)	[1]	14.4	(1.29)		1]	QN	_	1.12)	[1]	
2,4-Dinitrophenol	ND (4.20)		QN	_	7.69)	[1]	QN	(4.18)		[]	ON	_	7.65)	Ξ	
2,4-Dinitrotoluene	ND (0.590)		ON	_	0.564)	[1]	QN	(0.587)			QN	_	0.561)	Ξ	
2,6-Dinitrotoluene	ND (0.860)	0) [1]	QN	_	0.359)	Ξ	2	(0.856)		[]	QN	_	0.357)		
														1	

[] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

	005 05-MW-06 05-MW-06-03	(0.327) [1] (0.776) [1] (0.673) [1] (0.541) [1] (0.449) [1] (0.520) [1] (0.692) [1] (0.541) [1] (0.541) [1] (0.541) [1] (0.542) [1] (0.543) [1] (0.540) [1] (0.540) [1] (0.541) [1] (0.541) [1] (0.542) [1] (0.543) [1] (0.543) [1] (0.543) [1]	(0.520) [1] (0.388) [1] (0.582) [1] (0.500) [1]
			ON ON ON ON
			2222
	5 -05 05-03	0.388) 0.637) 0.358) 0.308) 0.657) 0.517) 0.328) 0.428) 0.428) 0.428) 0.428) 0.428) 0.428) 0.428) 0.428) 0.428) 0.418)	0.448) 0.517) 0.905) 0.995)
	005 05-MW-05 05-MW-05-03		
		ND	2 2 2 2 <u>2</u>
-			22223
SITE ID LOCATION ID SAMPLE ID	5 -04 04-03	0.328) 0.779) 0.677) 0.544) 0.451) 0.503) 0.872) 0.738) 0.574) 0.574) 0.595) 0.798) 0.692) 0.798)	0.523) 0.390) 0.585) 0.503)
SITI LOCAT SAMP	005 05-MW-04 05-MW-04-03		
	,	21.7 80.0	0
			2222
	005 05-MW-03 05-MW-03-DS-03 Dup of 05-MW-03-03	0.390) 0.640) 0.640) 0.360) 0.520) 0.520) 0.430) 0.520) 0.740) 0.740) 0.740) 0.0420) 0.270) 0.270)	0.450) 0.520) 0.910) 1.00)
	005 05-MW-03 -03-DS-03 D 05-MW-03-03		
	05-MW-0	(ug/L) ND	2 2 2 2 S
	PARAMETER	SW8270 - Semivolatile Organics, cont. 2-Chloronaphthalene 2-Chlorophenol 2-Methylphenol (o-cresol) 2-Nitroaniline 2-Nitrophenol 3,3'-Dichlorobenzidine 3-Nitrophenol 4-6-Dinitro-2-methylphenol 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline 4-Chloroaniline A-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Nitrophenol Acenaphthylene Acenaphthylene	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

() = Detection Limit

Compiled: 16 March 1995

50 (1000) 43 (1.13) ND (0.400) ND (0.687) ND (0.503) ND (0.933) ND (0.342) ND (0.287) ND (0.349) ND (0.349) ND (0.287) ND (0.349) ND (0.349) ND (0.287) ND (0.287) ND (0.287) ND (0.286)	Dup of
	- }
	1 1 1 1 1 1 1
7 77	39.0) [1]
ND (ND (ND (ND (O.411 J (ND (O.221 J (O.304 J (ND (
ND (ND (ND (O.411 J (ND (O.221 J (O.304 J (
ND (ND (0.411 J (ND (ND (0.304 J (ND (
7 77	0.320) [1]
ND (0.411 J (ND (0.221 J (0.304 J (ND (
0.411 J (ND (0.221 J (0.304 J (ND	
ND (0.221 J (0.304 J (ND ()	0.520) [1]
77	
0.304 J (ND (
) ON	
CN	
٠ .	0.510) [1]
) \	
) \ QN ::	
_	
_	
_	0.650) [1]
ND (0.574)	
32.5 (0.749)	
ND (0.544)	
_	
ND (0.636)	0.470) [1]

R = Invalid Result, Refer to QC Report NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

						SIT LOCAT SAMI	SITE ID LOCATION ID SAMPLE ID									
	!	900				005	05			002	10			00	005	
	05-	05-MW-03			•	05-M	W-04			05-MW	-05			05-MW	90-	
	05-MW-03-DS-03 Dup of	DS-03	Dup of		_	.M-S(05-MW-04-03		_	05-MW-05-03)5-03			05-MW(06-03	
-	05-M	05-MW-03-03	03													
PARAMETER																
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1				!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1	1		1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SW8270 - Semivolatile Organics, cont. (ug/L)	ont. (ug/L)															
Phenol	43.2 (0	0.880)	Ξ	175	_	0.410)	[1]	134	_	0.876)	Ξ	Q.	_	0.408)	[1]
Pyrene) QN	0	0.410)	Ξ	QN	_	0.482)	[1]	9	_	0.408)	Ξ	2	_	0.480)	Ξ
bis(2-Chloroethoxy)methane) QN	0	0.610)	[]	Q.	_	0.574)	[1]	9	_	0.607)	Ξ	9	_	0.571)	Ξ
bis(2-Chloroethyl)ether) ON	0	0.380)	Ξ	Q	_	0.749)	[1]	S	_	0.378)	Ξ	Q	_	0.745)	Ξ
bis(2-Chloroisopropyl)ether) ON	0	0.800)	Ξ	QN	_	0.749)	[]	QN	_	0.796)	Ξ	Q	_	0.745)	
bis(2-Ethylhexyl)phthalate	R B (0	0.580)	[1]	17.6 8	_	1.85)	[1]	~	_	0.577)	Ξ	QN	_	1.84)	Ξ

						S1 LOCA SAM	SITE ID LOCATION ID SAMPLE ID										
) 30	.005 05-MW-13 05-MW-13-01	15 -13 13-01			0 05-M 05-MW	005 05-MW-14 05-MW-14-01		05-1	05- 1W-14-	005 05-MW-14 05-MW-14-DS-01 Dup of	up of			005 05-MW-15 05-MW-15-01	; 115 :5-01	
PARAMETER										05-№	05-MW-14-01						
Diesel Range Organics (ug/L) Oiesel Range Organics	320	-	200)	[1]	7.00 J	JB (200)	[1]	9.00	JB (2	200)	[1]	36.0 JB		200)	[1]
Gasoline Range Organics (ug/L) Gasoline Range Organics	26.0 JB	_	100)	[1]	17.0 J	JB (100)	[1]	18.0	JB (1	100)	[1]	49.0 JB	_ ~	100)	[1]
<pre>SW8010 - Halogenated Volatile Organics (ug/L) 1,1,2-Tetrachloroethane</pre>	nics (ug/L) ND	_	0.0852)	[1]	ON	_	0.0219)	[1]	Q	_	0.0219)		=	S	_	0 0852)	Ξ
1,1,1-Trichloroethane	0.287 B	_	0.166)	[1]	0.363	_	0.147)	Ξ	QN		0.147)		ΞΞ	2 2		0.166)	ΞΞ
1,1,2,2-Tetrachloroethane	ND	_	0.129)	[]	ON	_	0.144)	[1]	QN	_	0.144)		[<u>]</u>	QN		0.129)	ΞΞ
1,1,2-Trichloroethane	ON !		0.123)	Ξ	QN	_	0.0454)	Ξ	ON	_	0.0454)		[1]	ON	_	0.123)	ΞΞ
1,1-Dichloroethane 1 1-Dichloroethane	2 2	_ 、	0.0666)	ΞΞ	2 :	<u> </u>	0.0222)	ΞΞ	QN :	_ ,	0.0222)		[1]	QN	_	0.0666)	[1]
1,2,3-Trichloropropane	2 8		0.0501)	ΞΞ	2 4		0.112)	[]	Q \$	<u> </u>	0.112)		3	Q :		0.0501)	[1]
1,2-Dichlorobenzene	Q Q		0.0893)	ΞΞ	S S		0.109)	ΞΞ	Q Q		0.109		[]	2 2		0.154) n n893)	ΞΞ
1,2-Dichloroethane	QN	_	0.0800)	[1]	ON	_	0.0823)	Ξ	QN	, <u> </u>	0.0823		T. T.	8	<i>-</i> _	0.0800)	ΞΞ
1,2-Dichloropropane	QN :		0.0457)	[1]	ND	_	0.0228)	[1]	ON	_	0.0228	_	Ţ	QN		0.0457)	ΞΞ
1,3-Dichlorobenzene	Q :		0.0688)	Ξ	QN	_	0.0878)	[1]	ND	_	0.0878		Ξ	ND	_	0.0688)	[1]
1,4~Ulchlorobenzene	ON I		0.0553)	Ξ	S	_	0.0908)	Ξ	Q	_	0.0908)		1]	QN	_	0.0553)	[1]
1-cnloronexane 2-Chlomoathyl vinyl attor	ON S	_ 、	0.154)	Ξ3	Q.		0.0404)	Ξ	ON	_	0.0404	_	Ξ	QN	_	0.154)	[1]
Sromohenzene	Q. Q.	_	0.194)	ΞΞ	2 9	<u> </u>	0.101)	ΞΞ	Q :	<u> </u>	0.101)			QN	_	0.194)	[1]
Bromodichloromethane	Q. V		0.132)	ΞΞ	2 9	_ 、	0.0451)	Ξ3	Q :	<u> </u>	0.0451)	_	Ξ.	2	_	0.132)	[1]
Bromomethane	2 8		0.0448)	ΞΞ	Z 2		0.0886)	<u> </u>	2 9	<u> </u>	0.0886)		Ξ:	Q :	_ 、	0.0448)	
Carbon tetrachloride	Q.	<i>-</i> _	0.0693)	ΞΞ	2 K		0.0030)	E :	2 2	_	0.0838,		[1]	<u> </u>	_ \	0.252)	ΞΞ
		-			2	-	1,000.0	<u>-</u>	2	_	00	_	1,1	NO.	_	0.0693)	[1]

() = Detection Limit

Compiled: 16 March 1995

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT.

		[1]
	005 05-MW-15 05-MW-15-01	0.0756)
	005 05-MW-15 05-MW-15-C	_
	005 05-MW-1 05-MW-15	Q.
		ı
	005 05-MW-14 05-MW-14-DS-01 Dup of 05-MW-14-01	(0
	005 05-MW-14 MW-14-DS-01 Dup 05-MW-14-01	_
	MM-50	QN
	!	Ξ
SITE ID OCATION ID SAMPLE ID	4-01	0.0780) [1]
SITE ID LOCATION I	005 05-MW-14 05-MW-14-01	_
		QN
	 	[1]
	.3	.0756)
	005 05-MW-13 05-MW-13-01	nt. (ug/L) ND (0.0756)
		cont. (
		latile Organics,
	PARAMETER	<pre>SW8020 - Aromatic Volatile Organics, cont. (ug/L) 1,3-Dichlorobenzene ND (</pre>

		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1						
SW8020 - Aromatic Volatile Organics, cont.	ss, cont. (ug/L	(T)												! 	 	\$
1,3-Dichlorobenzene	QN	_	0.0756)	[1]	QN	_	0.0780)	[1]	QN	_	0.0780)	[1]	ND	_	0.0756)	[1]
1,4-Dichlorobenzene	ND	_	0.0813)	[1]	ON	_	0.0711)	[1]	QN	_	0.0711)	[1]	0.0391 JB		0.0813)	Ξ
Benzene	0.607 B	_	0.0519)	[1]	0.0309 JB	_	0.0832)	[1]	-	JB (0.0832)	[1]	0.0240 JB	_	0.0519)	Ξ
Chlorobenzene	0.0298 KJB	_	0.0452)	[1]	QN	_	0.0802)	[1]	0.0199) BC	0.0802)		QN		0.0452)	
Ethylbenzene	ON	_	0.0199)	[1]	QN	_	0.0813)	[1]		JB (0.0813)	Ξ	ON	_	0.0436)	
Toluene	0.162 B	_	0.0647)	[1]	0.0223 JB	_	0.0813)	[1]	0.119 8	_	0.0813)	Ξ	0.0732 B	_	0.0647)	Ξ
Xylene (total)	0.173 B	_	0.127)	[1]	0.0268 JB	_	0.0811)	[1]	0.112 B	_	0.0811)	[1]		_	0.127)	ΞΞ
SW8270 - Semivolatile Organics (u	(ng/L)															
	QN	J	0.597)	[1]	QN	J	0.588)	[1]	ON	_	0.588)	[1]	Q	_	0.579)	
1,2-Dichlorobenzene	ND	_	0.787)	[1]	ND	_	0.635)	Ξ	Q.	. <u> </u>	0.635)	Ξ	2		0.764)	Œ
1,3-Dichlorobenzene	QN	_	0.400)	[1]	ON	_	0.717)	[1]	QN	_	0.717)	[[]	NO		0.388)	ΞΞ
1,4-Dichlorobenzene	QN	_	0.816)	[1]	QN	_	0.588)	[]	QN	_	0.588)	[1]	QN		0.792)	[1]
2,4,5-Trichlorophenol	ND	_	0.333)	Ξ	ND	_	0.509)	[1]	QN	_	0.509)	[1]	QN	_	0.324)	[1]
2,4,6-Trichlorophenol	ON	_	0.353)	[1]	ND	_	0.506)	[1]	Q.	_	0.506)	[1]	ON	_	0.342)	[1]
2,4-Dichlorophenol	QN	_	0.447)	Ξ	ND	_	0.569)	Ξ	QN	_	0.569)	[1]	QN	_	0.434)	[1]
2,4-Dimethylphenol	QN N	_	1.11)	Ξ	ON	_	1.30)	[]	Q	_	1.30)	[1]	QN	_	1.08)	[1]
2,4-Dinitrophenol	QN	_	7.07)		ON	_	4.18)	[1]	N	_	4.18)	Ξ	QN	_	(98.9	[1]
2,4-Dinitrotoluene	QN	_	0.556)	[]	QN	_	0.591)	[1]	QN	_	0.591)	[1]	QN	_	0.539)	[1]
2,6-Dinitrotoluene	QN	_	0.349)	Ξ	QN	_	0.861)	[1]	Q	_	0.861)	[1]	ND	_	0.339)	Ξ
2-Chloronaphthalene	QN	_	0.327)	[1]	QN	_	0.392)	[1]	9	_	0.392)		ON	_	0.318)	Ξ
2-Chlorophenol	QN	_	0.772)	Ξ	ON	_	0.635)	Ξ	R	_	0.635)	[1]	ND	_	0.749)	Ξ
2-Methylnaphthalene	QN	_	0.667)	Ξ	QN	_	0.364)	[1]	QN	_	0.364)	Ξ	ON	_	0.647)	[1]
2-Methylphenol (o-cresol)	QN	_	0.539)	[1]	QN	Ų	0.310)	[1]	ON	<u> </u>	0.310)	[1]	QN	_	0.524)	[1]

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

R = Invalid Result, Refer to QC Report

				 	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[1]	[1]	Ξ	Ξ	[1]	[1]	[1]	Ξ	[1]	[1]	[1]	[1]	[1]	[1]	[1]	
	5 7	15-01		i ! ! ! !	0.394)	0.431)	0.480)	0.499)	0.776)	0.447)	0.709)	0.548)	0.518)	0.564)	0.475)	0.677)	0.469)	0.222)	0.570)	0.505)	0.375)	0.558)	0.477)	0.949)	3.88)	1.06)	0.385)	0.656)	ort
	005 05-MU-15	05-MW-15-01			_	_	J	_	_	_	_	_	_	J	J	J	_	J	J	_	_	_	J	_	_	_	Ų	_	QC Repo
				 	ON	Q.	QN	Q	Q	Q.	QN	Q	ON	R	S	S	QN	QN	QN	QN N	QN	S	QN	QN	QN	2	QN	N	Invalid Result, Refer to QC Report
		-		! !	[1]	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[]	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	d Result,
	- 14	05-MW-14-DS-01 Dup of	14-01		0.663)	0.522)	0.333)	0.393)	0.430)	0.484)	0.515)	0.745)	0.421)	0.459)	0.606)	0.937)	0.272)	0.418)	0.368)	0.449)	0.518)	0.908)	1.02)	(666.0)	38.6)	0.610)	0.625)	0.537)	R = Invali
	005 05-MW-14	7-14-DS	U2-MM-T4-U1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	J	_	_	_	Ų	_	_	۰	_	_	_	Ų	_	_	_	_	_	_	_	_	<u> </u>	_	_	
		05-M		 	Q	QN	Q.	QN	QN	QN	QN	Q.	Q	QN	Q	Q	QN	8	Q.	Q	Q.	QN	S	S	9	Q	9	QN	Not Applicable
				 	[1]	[1]	[]	Ξ	[]	Ξ	[1]	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[1]	Ξ	[1]	[1]	Ξ	NA = N
SITE ID LOCATION ID SAMPLE ID	5 -14	14-01		1 1 1 1 1 1 1 1 1	0.663)	0.522)	0.333)	0.393)	0.430)	0.484)	0.515)	0.745)	0.421)	0.459)	0.606)	0.937)	0.272)	0.418)	0.368)	0.449)	0.518)	0.908)	1.02)	0.999)	38.6)	0.610)	0.625)	0.537)	Not Detected
SIT LOCAT SAMP	005 05-MW-14	05-MW-14-01		 	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ND = No
				1 1 1 1 1 1 1 1	QN	QN	Q.	S	Q	ON	ON ON	ON	ON	QN	QN	ON	QN	QN	QN	QV	QN	Q	QN	Q	QN	S	S	QV	n Factor
					Ξ	Ξ	Ξ	[1]	[1]	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	[1]	[1]	[]	Ξ	Ξ	[1]	[1]	Ξ	[1]	Ξ	Ξ	Ξ	Dilutio
	5-13	13-01			0.406)	0.444)	0.495)	0.514)	0.800)	0.461)	0.730)	0.565)	0.533)	0.581)	0.489)	0.698)	0.483)	0.228)	0.587)	0.520)	0.387)	0.575)	0.492)	0.978)	4.00)	1.09)	0.397)	0.676)	it [] =
	005 05-MW-13	05-MW-13-01			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	on Limi
				(ng/L)	QN	R	2	9	N N	Q.	Q	S	ON.	Q	2	2	S	QN	Q.	Q.	9	QN	R	2	2	2	S	9	= Detection Limit
			ļ	tile Organics, cont.			zidine		thylphenol	enyl ether	lphenol		henyl ether	-cresol)						Э		nene	lene	nene			late		0
			PARAMETER	SW8270 - Semivolatile Organics,	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol(p-cresol)	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Butylbenzylphthalate	Chrysene	Compiled: 16 March 1995

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT.

						SI1 LOCA1 SAMF	SITE ID LOCATION ID SAMPLE ID									
	0	005 05-MW-13 05-MW-13-01	13 3-01			005 05-MW-14 05-MW-14-01	005 MW-14 W-14-01		05-M	005 05-MW-14 W-14-DS-01	005 05-MW-14 05-MW-14-DS-01 Dup of		J	005 05-MW-15 05-MW-15-01	5 15 5-01	
PARAMETER										05-MW-14-01	14-01					
SW8270 - Semivolatile Organics, cont.	(ng/L)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! !		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 				 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!
Di-n-butylphthalate	ON	_	0.498)	[1]	QN	_	0.324)	Ξ	QN	J	0.324)	[1]	QN	_	0.483)	[1]
Di-n-octylphthalate	N Q	_	0.920)	[1]	QN	_	0.352)	[1]	QN	_	0.352)	[1]	ND	_	0.893)	Ξ
Dibenz(a,h)anthracene	N N	_	0.479)	[1]	ON	_	0.811)		QN	_	0.811)	[1]	QN .	_	0.465)	Ξ
Dibenzofuran	Q.	_	0.412)	Ξ	QN	_	0.537)	Ξ	QN	_	0.537)	[1]	Q	_	0.400)	ΞΞ
Diethylphthalate	Q.	_	0.339)	[]	S	J	0.515)		ON	_	0.515)	[1]	QN	_	0.329)	Ξ
Dimethylphthalate	QN	_	0.283)	[1]	Q	J	0.336)	Ξ	ND	_	0.336)	Ξ	QN	_	0.275)	[]
Diphenylamine/N-NitrosoDPA	QN	_	0.572)	Ξ	Q	_	0.269)		Q.	_	0.269)		QN	_	0.555)	Ξ
Fluoranthene	QN	_	0.644)	Ξ	ON	_	0.471)		ON.	_	0.471)	Ξ	QN	_	0.625)	
Fluorene	QN	_	0.339)	Ξ	ND	<u> </u>	0.380)	[1]	QN	_	0.380)	Ξ	ON	_	0.329)	Ξ
Hexachlorobenzene	QN	_	0.236)	Ξ	2	_	0.314)	[1]	QN	_	0.314)	Ξ	N O	_	0.229)	[1]
Hexachlorobutadiene	ON	_	0.705)	Ξ	N	J	0.512)	[1]	ON	_	0.512)	Ξ	N	_	0.684)	[1]
Hexachlorocyclopentadiene	QN	_	9.01)	Ξ	QN	_	5.89)	[1]	ND	_	5,89)	Ξ	QN	_	8.75)	[1]
Hexachloroethane	2		0.600)	[1]	QN	~	0.635)	[1]	QN	_	0.635)	[1]	QN	_	0.582)	[Ξ]
Indeno(1,2,3-cd)pyrene	Q :		0.530)	Ξ	Q	_	1.33)	[1]	S	_	1.33)	[1]	ND	_	0.515)	Ξ
Isophorone	QN :	. ب	0.290)	Ξ	2	_	0.616)	Ξ	QN	_	0.616)	Ξ	S	_	0.281)	Ξ
N-N1troso-d1-h-propylamine	Q :		0.759)	Ξ	2	_	0.654)		ON	_	0.654)		ON	_	0.736)	[1]
Naphthalene	S		0.736)	Ξ	S	_	0.478)		QN	_	0.478)	[1]	MD	_	0.715)	Ξ
Nitrobenzene	9	_	0.533)		S	_	0.842)	Ξ	QN	_	0.842)	Ξ	QN	_	0.518)	[]
Pentachlorophenol	ON	ٺ	0.873)	Ξ	ON	<u> </u>	0.889)	[1]	유	_	0.889)	Ξ	ON	_	0.847)	[1]
Phenanthrene	Q.	_	0.628)	Ξ	Q	_	0.468)	[1]	ON	_	0.468)	Ξ	QN	_	0.610)	Ξ
Phenol	QN	_	0.403)	[1]	Q	_	0.883)	Ξ	R	_	0.883)	[1]	QN	_	0.391)	Ξ
Pyrene	QN	_	0.473)	[1]	QN	_	0.408)	Ξ	ON	_	0.408)	[1]	QN	J	0.459)	
bis(2-Chloroethoxy)methane	QN	_	0.568)	[1]	QN	_	0.606)	Ξ	ND	_	0.606)	Ξ	QN		0.551)	Ξ
bis(2-Chloroethyl)ether	ON ON	_	0.739)	[1]	Q	_	0.383)	[1]	QN	J	0.383)	[1]	QN	_	0.718)	[1]

NA = Not Applicable

ND = Not Detected

[] = Dilution Factor

() = Detection Limit

Compiled: 16 March 1995

									Ξ
	വ	-15	15-01					0.712)	1.79)
	00	05-MW-15	05-MW-15-01					_	_
								QN	QN
								[]	[1]
	ıo	-14	05-MW-14-DS-01 Dup of	14-01		1		0.798)	0.581)
	002	05-MW-	-14-DS-	05-MW-14-01				_	_
			05-MW					QN	1.86 B
								[1]	[1]
SITE ID LOCATION ID SAMPLE ID	2	-14	14-01			 		0.798)	0.581)
SITI LOCAT SAMPI	005	05-MW-14	05-MW-14-01			1		_	_
								Q	3.22 B
						1		[1]	[1]
	J.	-13	13-01					0.733)	1.85)
	002	05-MW-13	05-MW-13-01			1		_	_
							(ng/L)	2	Q
					PARAMETER		SW8270 - Semivolatile Organics, cont. (ug/L)	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate

						SITE ID LOCATION ID SAMPLE IO	1D N 1D 1D								
PARAMETER	0	008 06-MW-01 06-MW-01-03	1 -03			008 06-MW-01 06-MW-01-03A	l 33A			008 06-MW-02 06-MW-02-03	22 2-03		008 06-MW-02 06-MW-02-03A	02 -03A	
Diesel Range Organics (ug/L)	NA NA				8.00	JB (200)		NA				4.00 JB (200)	[1]
Gasoline Range Organics (ug/L) Gasoline Range Organics	NA				1700	_	100)	[:]	Ϋ́				79.0) (100)	[1]
SW8010 - Halogenated Volatile Organics															
1,1,1,2~letrachloroethane 1,1,1-Trichloroethane	Q Q		4.00) 9.20)	[100] [100]	A X				2 8		0.0400)	ΞΞ	N A		
1,1,2,2-Tetrachloroethane	ON		10.0)	[100]	NA				9 S		0.100)		X X		
1,1,2-Trichloroethane	QN		10.0)	[100]	NA				QN		0.0450)	ΞΞ	NA		
1,1-Dichloroethane	QV		4.80)	[100]	NA				QN	_	0.0480)	[1]	NA		
1,1-Dichloroethene	오 :		10.0)	[100]	NA				QN	_	0.100)	[1]	NA		
1,2,3-Irichloropropane 1,2-Nichlorophonagono	2 9		12.0)	[100]	AN :				N Q		0.120)	[1]	NA		
1,2-Dichloroethane	Q N		17.0) 5.40)	[100] [100]	A A				9 9		0.170)	ΞΞ	A A		
1,2-Dichloropropane	ON		7.50)	[100]	V V				2 2		0.0340)	ΞΞ	A N		
1,3-Dichlorobenzene	ND	_	15.0)	[100]	NA				QN		0.150)	ΞΞ	Ϋ́Α		
1,4-Dichlorobenzene	ND	J	19.0)	[100]	NA				QN Q		0.190)	ΞΞ	Υ N		
1-Chlorohexane	ND	_	12.0)	[100]	NA				QN	<i>,</i> _	0.120)	ΞΞ	AN.		
2-Chloroethyl vinyl ether	QN	_	17.0)	[100]	NA				QN	· _	0.170)	ΞΞ	. A		
Bromobenzene	ND	_	53.0)	[100]	NA				QN		0,530)	Ξ	NA		
Bromodichloromethane	QN	_	6.80)	[100]	NA				S		0.0680)	ΞΞ	Ϋ́		
Bromomethane	ND	_	5.60)	[100]	NA				S	· ·	0.0560)	ΞΞ	< 4		
Carbon tetrachloride	ND	_	11.0)	[100]	NA				Q Q	, 	0.110)	ΞΞ	V N		
Chlorobenzene	ND	_	14.0)	[100]	NA				Q.		0.140)	ΞΞ	X V		
												r_7			

() = Detection Limit [] = Dilution Factor ND = Not Detected

NA = Not Applicable

R = Invalid Result, Refer to QC Report

	0 90	008 06-MW-01 06-MW-01-03	1 -03		008 06-MW-01 06-MW-01-03A	008 MW-01 -01-03A		008 06-MW-02 06-MW-02-03	18 1-02 02-03		0	008 06-MW-02 06-MW-02-03A
PARAMETER												
SW8010 - Halogenated Volatile Organics,	cont.	(ng/L)	! ! ! ! !			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	2 2 3 5 6 6 1 1		t	 		; ; ; ; ; ; ; ; ; ; ;
Chloroethane	QN QN	_	11.0)	[100]	NA		QN N	J	0.110)	Ξ	NA	
Chloroform	Q.	_	8.50)	[100]	NA		Q	_	0.0850)	Ξ	N	
Chloromethane	ND	_	15.0)	[100]	NA		2	_	0.150)	Ξ	NA AN	
Dibromochloromethane	N Q	_	17.0)	[100]	NA		2	_	0.170)	[1]	NA	
Dibromomethane	N	_	14.0)	[100]	NA		2	_	0.140)	Ξ	NA	
Methylene chloride	ON ON	_	22.0)	[100]	NA		QN	_	0.220)	[]	N	
Tetrachloroethene	Q	_	10.0)	[100]	NA		QN	_	0.100)	Ξ	N	
Tribromomethane(Bromoform)	Q.	_	14.0)	[100]	NA		QN	_	0.140)	Ξ	N	
Trichloroethene 3	3500	J	11.0)	[100]	NA		9.14	_	0.110)	Ξ	NA	
Trichlorofluoromethane	QN Q	J	7.50)	[100]	NA		QN	_	0.0750)	Ξ	N	
Vinyl chloride	Q.	_	20.0)	[100]	NA		QN	_	0.200)	Ξ	NA	
cis-1,3-Dichloropropene	Q	_	7.40)	[100]	NA		ND	_	0.0740)	Ξ	A	
trans-1,2-Dichloroethene	143	_	10.0)	[100]	NA		QN	_	0.100)	Ξ	N	
trans-1,3-Dichloropropene	Q.	_	5.70)	[100]	NA		QN	_	0.0570)	[1]	NA	
SW8015 - Nonhalogenated Volatile Organics (mg/L)	cs (mg/	()										
2-Butanone(MEK)	Q.	_	2.40)	Ξ	NA		ON	_	2.40)	Ξ	N	
4-Methyl-2-pentanone(MIBK)	S	_	1.50)	[1]	NA		QN	J	1.50)	Ξ	N	
Ethanol	Q.	_	0.300)	Ξ	NA		S	_	0.300)	[1]	N	
Ethyl ether	Q.	J	1.20)	Ξ	NA		ON	_	1.20)	Ξ	NA	
SW8020 - Aromatic Volatile Organics (u	(ng/L)											
1,2-Dichlorobenzene	Q	_	0.120)	Ξ	NA		ND	_	0.0710)	Ξ	NA	
1,3-Dichlorobenzene	QN	0	0.0800	Ξ	NA		S	J	0.0990)	Ξ	N	
1.4-Dichlorobenzene	QN	0	0.0950)	Ш	NA		S	_	0.0950)	Ξ	ΔN	

	008 06-MW-02 06-MW-02-03A		4	. A		NA		∀ №	A N	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		V Z	Q N	A N	NA NA	NA NA	. d	N A	. 4	(e		. 4				
			. 2	: 2	. z	Z		2	: 2	: 2	. z	2	2	Z	2	ž	2	Z	AN	AM AM	AN	AN	AN	AN	N AN	
		Ξ		ΞΞ		Ξ		Ξ	ΞΞ	ΞΞ	ΞΞ	3 5	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	3 5	ΞΞ	1
	008 06-MW-02 06-MW-02-03	(002000)	(0.0450)	(0890)	(00.100)	(0.0850)		(0.00577)	0.00607)	0.00657)	0.00866)	0 00925)	0.00637)	0.00308)	0.00677)	0.0129)	0.0109)	0.00577)	0.00219)	0.00328)	0.0398)	0.0547)	0.0736)	0.129)	0.0517)	•
	90		_	_	_	_			PJB (_			_		_	<i>-</i>	<i>,</i> _	_	, _	<i>-</i> _	<i>,</i> _	<i>-</i>	<i>,</i> _	<i>.</i> _	
		QN	QN	ON	ON	ON		0.101	0.00120	0.0227	QN	ON ON	QN N	ON	QN	ON	QN N	ON	QN	GN CN	QN	QN	ON	QN N	QN	
SITE ID LOCATION ID SAMPLE ID	008 06-MW-01 06-MW-01-03A	NA NA	NA	NA	NA	NA		N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
			[1]	[1]	Ξ	[1]		[1]			Ξ	[1]	[1]	[1]	[1]	[1]	Ξ	[1]	Ξ	Ξ		[1]	[1]	[E]	[1]	
	008 06-MW-01 06-MW-01-03	/L) (0.0700)	(0.0450)	(0890)	(0.0480)	(0.0850)	۱/۲)	(0.00598)	(0.00629)	(0.00680)	(0.00897)	(0.00959)	(0.00660)	(0.00969)	(0.00701)	(0.0134)	(0.0113)	(0.00433)	(0.00227)	(0.00340)	(0.0412)	(0.0567)	(0.0763)	(0.134)	(0.0536)	
•	90	t. (ug/L) 82 B (QN	NO		33 PJB	CBs (ng/L)		60 JB	16	ND	QN ON	N N	QN	NO	ND	NO NO	ND	ON ON	QN	QN	ND ND	NO NO	ND	ND	
		ile Organics, cont.	_	_	0.161	0.0333	Pesticides and PO	0.00290	0.00560	0.0316	_	~	2	~	2	2	2	Z	Z	Z	Z	Z	Z	Z	Z	
	PARAMETER	SW8020 - Aromatic Volatile Organics, cont. Benzene 0.482	Chlorobenzene	Ethylbenzene	Toluene	Xylene (total)	SW8080 - Organochlorine Pesticides and PCBs	4,4'-DDO	4,4'-DDE	4,4'-DDT	Aldrin	Chlordane	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	

() = Detection Limit [] = Dilution Factor

ND = Not Detected

NA = Not Applicable R = Invalid Result, Refer to QC Report

					 																									ī
	800	06-MW-02	06-MW-02-03A		;	NA	NA	NA	NA	NA	NA	NA	NA		AN.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	, Refer to QC Report
					! { ! !	Ξ	Ξ	Ξ	Ξ	[1]	[1]	[]	[1]		[1]	ΞΞ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	[1]	Ξ	[1]	Ξ	Ξ	Invalid Result,
	008	06-MW-02	06-MW-02-03		1 1 1 1 1 1 1 1 1 1 1	0.0279)	0.0398)	0.0527)	0.0338)	0.00199)	0.00657)	0.00358)	0.00318)		0.631)	0.684)	0.770)	0.631)	0.545)	0.535)	0.610)	1.39)	4.49)	0.631)	0.920)	0.417)	0.684)	0.385)	0.332)	R = Invalic
		-90	₩-90) QN) ON) ON) QN) QN) QN) Q) ON) ON) : Q) ON) ON) QN) ON) ON) ON) ON) QN) QN) ON) QN) QN) QN	Not Applicable
																					_	_		_	_	_			_	NA = Not App
SITE ID LOCATION ID SAMPLE ID	008	06-MW-01	06-MW-01-03A																											ND = Not Detected
						NA	NA	NA	NA	NA	NA	NA	NA		N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Factor
	,					Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ		Ξ	ΞΞ	Ξ	Ξ	Ξ	Ξ	Ξ	[]	[1]	Ξ	[1]	[1]	Ξ	[1]	Ξ	= Dilution Factor
		01	1-03		(ng/L)	0.0289)	0.0412)	0.0546)	0.0351)	0.00206)	0.00680)	0.00371)	0.00330)		0.621)	0.674)	0.758)	0.621)	0.537)	0.526)	0.600)	1.37)	4.42)	0.621)	0.905)	0.411)	0.674)	0.379)	0.326)	
	008	06-MW-01	06-MW-01-03			J	J	J	_	0	0	0)		_		_	_	_	_	_	Ų	_	_	_	_	_	_	_	on Limit
					des and PCBs,	ND	QN	ND	ON	0.00810 B	ND	QN	0.0109 8	(na/F)	QN	ON .	QN	QN	QN	QN	QN	QN	QN	ON	ND	Q	QN	QN	QN	() = Detection Limit
				PARAMETER	SW8080 - Organochlorine Pesticides and PCBs, cont.	PCB-1248	PCB-1254	PCB-1260	Toxaphene	a]pha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	SW8270 - Semivolatile Ordanics	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol (o-cresol)	Compiled: 16 March 1995

008 06-MW-01 06-MW-01 06-MW-01-03 ND (0.695) [1] ND (0.347) [1] ND (0.453) [1] ND (0.453) [1] ND (0.453) [1] ND (0.453) [1] ND (0.442) [1] ND (0.547) [1] ND (0.442) [1] ND (0.442) [1] ND (0.642) [1] ND (0.642) [1] ND (0.547) [1] ND (0.547) [1] ND (0.547) [1] ND (0.474) [1] ND (0.547) [1]	ID NO ID E ID	008 06-MW-01 06-MW-02	06-MW-01-03A 06-MW-02-03 06-MW-02-03A		NA (0.706) [1] NA	[1]		[1]		ND (0.524) [1]	ND (0.556) [1]	ND (0.791) [1]	ND (0.449) [1]	ND (0.492) [1]	ND (0.652) [1]		[1]		[1]	[1]	[1]	ND (0.973) [1]		(1.07) [1]	(41.7) [1]	(0.652) [1]	NA (0.663) [1] NA	
008 006-MW-01 006-MW-01				 t 1 1 1	[1]	Ξ	Ξ	[1]	[1]	[1]	[1]	Ξ	[1]	[]	[1]	[1]	[1]	[1]	Ξ	[1]	Ξ	Ξ	[1]	[1]	[1]	[1]	[1]	Ξ
	ä	w-01	-01-03	; ; ; ! !	0.695)	0.547)	0.347)	0.411)	0.453)	0.516)	0.547)	0.779)	0.442)	0.484)	0.642)	0.989)	0.284)	0.442)	0.389)	0.474)	0.547)	0.958)	1.05)	1.05)	41.1)	0.642)	0.653)	0.568)
	C	M-90	MM−90	/L)	_	_	_	<u> </u>	<u> </u>	_	_	<u> </u>	_	_	_	_	_	<u> </u>	_	<u> </u>	_	<u> </u>	_	<u> </u>	_	_	_	_

R = Invalid Result, Refer to QC Report NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

	008 06-MM-02 06-MM-02-03A							•																				
	č	>	: ; ; ; ; ; ; ; ; ;	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
				Ξ	Ξ	Ξ	[1]	[1]	[1]	Ξ	[1]	[1]	[1]	[]	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	[1]	[1]	Ξ	Ξ	[1]	[1]
	02			0.374)	0.866)	0.578)	0.556)	0.364)	0.503)	0.406)	0.332)	0.545)	6.31)	0.674)	1.39)	0.663)	0.695)	0.289)	0.513)	0.898)	0.952)	0.503)	0.941)	0.439)	0.652)	0.406)	0.856)	0.620)
	008 06-MW-02 06-MW-03-03			J	_	_	J	_	_	_	_	_	_	J	_	Ų	J	Ų	_	J	_	_	_	_	_	_	_	<u> </u>
				QN	S	Q.	S	QN	S.	Q.	9	QV	2	2	Q	9	Q.	Q.	Ş	QN	S	Q.	9	S	8	Q.	2	1.21 8
SITE ID LOCATION ID SAMPLE ID	008 06-MW-01 06-MW-01-03A	; ; ; ; ; ;		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA	NA	NA	NA
		; ; ; ; ;		Ξ	[1]	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ		Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]
	-01 11-03	 		0.368)	0.853)	0.568)	0.547)	0.358)	0.495)	0.400)	0.326)	0.537)	6.21)	0.663)	1.37)	0.653)	0.684)	0.284)	0.505)	0.884)	0.937)	0.495)	0.926)	0.432)	0.642)	0.400)	0.842)	0.611)
	008 06-MW-01 06-MW-01-03			_	_	J	_	_	J	J	J	_	J	_	J	<u> </u>	_	J	_	_	_	Ų	J	_	_	J	Ų	<u> </u>
		! 1 1 1 1	(ng/L)	Q	Q	S	ON	QN	Q	QN	ON	QN	QN	QN	N N	Q	QN	Q	Q	Q	Q	Q	Q	QN	QN	Q	Q	1.36 B
		PARAMETER	SW8270 - Semivolatile Organics, cont.	Di-n-octylphthalate	Dibenz(a,h)anthracene	Dibenzofuran	Diethylphthalate	Dimethylphthalate	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	N-Nitrosodiphenylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate

SITE ID	LOCATION ID	SAMPLE ID
---------	-------------	-----------

06-MW-01-03A 06-MW-01 06-MW-01-03 06-MW-01 800

PARAMETER

800

800

06-MM-02

06-MW-02-03

06-MW-02-03A 06-MW-02 800

Compiled: 16 March 1995

() = Detection Limit

[] = Dilution Factor ND = Not Detected

NA = Not Applicable

					SITI LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID									
	W-90 -90	008 06-MW-03 06-MW-03-03			008 06-MW-04 06-MW-04-03	8 -04 04-03		-90 0	008 06-MW-04 06-MW-04-03A	3A			MW-90 0	008 06-MW-07 06-MW-07-01	
rakametek Diesel Range Organics (ug/L) Diesel Range Organics	4.00 JB (200)	[1]	NA	! ! ! ! !			850		200)		4.00	JB (200)	[1]
Gasoline Range Organics (ug/L) Gasoline Range Organics	47.0 JB (100)	[1]	N		,		2200	J	100)	[1]	45.0	JB (100)	[1]
SW8010 - Halogenated Volatile Organics		0000	Ξ	Š		6000	Ξ	*				Í	`	0	3
1,1,1,2-letrachloroethane 1,1,1-Trichloroethane	QN QN	0.0220)	ΞΞ	<u> </u>		0.0920)	ΞΞ	A A				2 S		0.0852)	ΞΞ
1,1,2,2-Tetrachloroethane) QN	0.140)	[1]	QN.	_	0.140)	Ξ	NA				0.0760	JB (0.129)	Ξ
1,1,2-Trichloroethane) QN	0.0450)	Ξ	QN	_	0.100)	Ξ	NA				S	_	0.123)	[1]
1,1-Dichloroethane) QN	0.0220)	[1]	QN	_	0.0480)	Ξ	NA				ON	_	0.0666)	[1]
1,1-Dichloroethene) QN	0.110)	Ξ	S	J	0.100)	Ξ	NA				9	_	0.0501)	Ξ
1,2,3-Trichloropropane) QN	0.110)	Ξ		<u> </u>	0.120)	Ξ	NA				9		0.154)	Ξ
1,2-Dichlorobenzene 1 2-Dichloroethane	Q CN	0.0950)	ΞΞ	0.00910) B	0.170)	ΞΞ	Y X				9 9		0.0893)	ΞΞ
1,2-Dichloropropane	QN QN	0.0230)	ΞΞ	0. 00 ND	۔ ۔	0.0340)	ΞΞ	¥ V				2 2		0.0800)	ΞΞ
1,3-Dichlorobenzene) QN	0.0880)	[1]	2	_	0.0880)	Ξ	NA				2	_	0.0688)	Ξ
1,4-Dichlorobenzene) QN	0.0910)	Ξ	Q.	J	0.190)	Ξ	NA				9	_	0.0553)	[1]
1-Chlorohexane) QN	0.0400)	[I]	Q	_	0.0400)	[1]	NA				2	<u> </u>	0.154)	Ξ
2-Chloroethyl vinyl ether) ON	0.100)	Ξ	2	J	0.170)	[1]	NA				2	_	0.194)	Ξ
Bromobenzene) ON	0.0450)	[1]	2	J	0.530)	[1]	NA				ON	_	0.132)	Ξ
Bromodichloromethane) ON	0.0880)	[1]	S	_	0.0680)	Ξ	NA				2	_	0.0448)	Ξ
Bromomethane) QN	0.0860)	[1]	S	_	0.0560)		NA				SN SN	_	0.252)	Ξ
Carbon tetrachloride) QN	0.0850)	Ξ	QN	_	0.110)	Ξ	NA				QN	_	0.0693)	Ξ
Chlorobenzene) QN	0.120)	Ξ	QN	_	0.140)	[1]	NA				QN	<u> </u>	0.0513)	Ξ
Compiled: 16 March 1995	() = Detection Limit	imit [] =	Dilution	Factor	ND = No	= Not Detected	NA = N	Not Applicable	~	= Invalid Result, Refer to QC Report	Result,	Refer t	o QC Re	port	

						S1 LOCA SAN	SITE ID LOCATION ID SAMPLE ID						
PARAMETER		₩-90 \-90	008 06-MW-03 06-MW-03) 06-M WM-80	008 06-MW-04 06-MW-04-03		008 06-MW-04 06-MW-04-03A		008 06-MW-07 06-MW-07-01	8 -07 37-01	
SW8010 - Halogenated Volatile Organics. cont.	anics. con	t. (ua/1)		 		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t 1 1			1	1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Chloroethane	ON .		0.110)	[1]	QN	_	0 110)	Ξ	V.	S			:
Chloroform	QN	<i>.</i> —	0.0260)	ΞΞ	Q. Q.		0.0850)	ΞΞ	A N	ON W		0.115)	ΞΞ
Chloromethane	ON	_	0.150)	Ξ	S	<i>-</i>	0,150)	ΞΞ	NA	G ON		0.0333)	ΞΞ
Dibromochloromethane	QN	_	0.0820)	Ξ	QN	· —	0.170)	ΞΞ	NA	Q. V		0.172)	ΞΞ
Dibromomethane	N N	<u> </u>	0.0740)	[1]	QN	_	0.140)	Ξ	AN	C N		0 118)	ΞΞ
Methylene chloride	R	_	0.220)	[1]	QN	_	0.220)	ΞΞ	Υ.	0.211		0.0562)	ΞΞ
Tetrachloroethene	NO	_	0.0750)	[1]	ON	_	0.100)	Ξ	AN		<i>-</i> -	0.0302)	ΞΞ
Tribromomethane(Bromoform)	ON	_	0.0940)	[1]	NO	_	0.140)	[1]	Ą.Z	C N	<i>-</i> _	0.0733)	ΞΞ
Trichloroethene	0.313	_	0.0730)	[1]	0.0111)	0.110)	Ξ	ĄN	QN N		0.103)	3 E
Trichlorofluoromethane	QN	_	0.0980)	Ξ	QN	_	0.0750)	Ξ	٩٧	QN N		0.0637)	ΞΞ
Vinyl chloride	ON	_	0.150)	[1]	S	_	0.200)	Ξ	V V	2	-	0.158)	ΞΞ
cis-1,3-Dichloropropene	QN)	0.0800)	[1]	QN	_	0.0740)	Ξ	AN	C N		0.0565)	ΞΞ
trans-1,2-Dichloroethene	ON	_	0.100)	Ξ	QN	_	0.100)	Ξ	N		ر ا	0.0303)	ΞΞ
trans-1,3-Dichloropropene	QN	_	0.0720)	[1]	QN	_	0.0570)	Ξ	NA	Q. O.		0.117)	ΞΞ
SW8015 - Nonhalogenated Volatile Organics (mg/L)	Organics (mg/L)		į									,

0.0796) 0.0756) 0.0813) A A A A A 999 N A A 3333 [5] 2.40) 1.50) 0.300) 1.20) 0.355) 0.650) 0.475) 2 2 2 2 12.8 ND 1.79 3333 333 0.0710) 0.0990) 0.0950) 2.40) 1.50) 0.300) 1.20) 0.193 B 0.0889 JB 0.0869 J 0,0889 S S S SW8020 - Aromatic Volatile Organics (ug/L) 4-Methyl-2-pentanone(MIBK) 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 2-Butanone(MEK) Ethyl ether Ethanol

Compiled: 16 March 1995

() = Detection Limit

[] = Dilution Factor ND = Not Detected

R = Invalid Result, Refer to QC Report NA = Not Applicable

 $\Xi\Xi$

					SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID						
		900			0	800		_	800	800	8	
	0	06-MW-03			M-90	06-MW-04		1-90	06-MW-04 06-MW-04-03	06-MW-07	1-07	
PARAMETER						3					10	
SW8020 - Aromatic Volatile Organics, cont.	ganics, cont. (ug/L)	/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		[]] [] [; ; ;	 		: 	! ! ! ! !	! ! !
Benzene	3.36	(0.0700)	[1]	428	_	1.75)	[52]	NA	0	0.0122 JB (0.0519)	[1]
Chlorobenzene	ND	(0.130)	[]	0.301) d	0.225)	[2]	NA) QN	0.0452)	Ξ
Ethylbenzene	0.0948 B	(0890)		27.8	_	0.340)	[2]	NA) ON	0.0436)	Ξ
Toluene	0.0741 B	(0.0480)	[1]	1.16	9	0.240)	[2]	NA		0.113 B (0.0647)	Ξ
Xylene (total)	0.187 B	(0.0850)		149	_	2.12)	[52]	NA) ON	0.127)	Ξ
SW8080 - Organochlorine Pesticides and PCBs		(na/L)										
4.4'-000		(0.00792)	Ξ	QN	_	0.00571)	Ξ	NA		NA		
4,4'-DDE	ND	(0.00653)		QN		0.00601)	ΞΞ	NA		NA		
4,4'-00T	QN	(0.0030)	Ξ	0.0163	ر ھ	0.00650)	Ξ	NA		NA		
Aldrin	0.00910 PJB	(0.00921)	Ξ	0.00360	JB (0.00522)	Ξ	NA		NA		
Chlordane	QN	(0.0297)	_	QN	_	0.00916)	Ξ	NA		NA		
Dieldrin	ON	(0.00792)	Ξ.	0.0113	_	0.00630)	Ξ	NA		NA		
Endosulfan I	ON	(0.00614)	Ξ	QN	_	0.00305)	[1]	NA		NA		
Endosulfan II	0.0331	(0.00495)	Ξ	ND	_	0.00670)	Ξ	NA		NA		
Endosulfan Sulfate	0.0347	(0.0139)	Ξ	QN	_	0.0128)	Ξ	NA		NA		
Endrin	ON	(0.0119)	Ξ	QN	_	0.0108)	[<u>1</u>]	NA		۸A		
Endrin Aldehyde	QN	(0.00653)	Ξ	QN	_	0.00571)	Ξ	NA		NA		
Heptachlor	ON	(0.00535)	Ξ	0.00560	PB (0.00266)	[1]	NA		NA		
Heptachlor epoxide	0.0428 8	(0.00337)	Ξ	ND	_	0.00325)	Ξ	NA		NA		
Methoxychlor	QN	(0.0485)	Ξ	QN	_	0.0394)	Ξ	NA		NA		
PCB-1016	QN	(0660.0)		QN	_	0.0542)	Ξ	NA		NA		
PCB-1221	ND.	(0.188)		QN	_	0.0729)	Ξ	NA		NA		
PCB-1232	QN	(0.0554)	Ξ	QN	_	0.128)	Ξ	NA		NA		
PCB-1242	ND	(0.0574)	Ξ	Q.	_	0.0512)	Ξ	NA		NA		
Compiled: 16 March 1995	() = Detection Limit	=	= Dilution	Factor	N = QN	Not Detected	NA =	Not Applicable	R = Invalid Result. Refer to OC Report	lefer to OC Rep	ort	
		3	i				É			ar		A7-49

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT.

						SI. LOCAT	SITE ID LOCATION ID SAMPLE ID						
PARAMETER		008 06-MW-03 06-MW-03-03	3 -03 13-03			008 06-MW-04 06-MW-04~	008 06-MW-04 06-MW-04-03		008 06-МW-04 06-МW-04-03A	0	008 06-MW-07 06-MW-07-01	3 -07 17-01	
SW8080 - Organochlorine Pesticides and PCBs, PCB-1248		cont.	(ug/L)				0.0276)		V W				
PCB-1254	QN		0.0782)	ΞΞ	Q. Q.		0.0394)	ΞΞ	C V	A N			
PCB-1260	QN	_	0.0446)	ΞΞ	Q.	<i>.</i> _	0.0522)	[1]	 NA	Y W			
Toxaphene	ND	0	0.00990)	[1]	QN	_	0.0335)	Ξ	NA	N			
alpha-BHC	0.0173	0	0.00396)	[1]	S	_	0.00197)	[1]	NA	NA			
beta-BHC	QN	0	0.00921)	[1]	0.0708	_	0.00650)	[1]	NA	AN			
delta-BHC	0.0166 B	_	0.00218)	Ξ	0.0535	_	0.00355)	[1]	NA	NA			
gamma-BHC(Lindane)	ON	0	0.00455)	[1]	QN	_	0.00197)	[1]	NA	NA			
rganics	(ug/L)												
1,2,4-Trichlorobenzene	QN	_	0.584)	[1]	QN	_	0.615)	[1]	NA	ON	_	0.591)	
1,2-Dichlorobenzene	QN	J	0.634)	[1]	QN	_	0.667)	ΞΞ	NA	QN N	<i>-</i>	0.779)	ΞΞ
1,3-Dichlorobenzene	ON	_	0.713)	[1]	ON N	_	0.750)	[1]	NA	ON		0.396)	ΞΞ
1,4-Dichlorobenzene	ND	_	0.584)	Ξ	ON	_	0.615)	[1]	NA	QN		0.808)	Ξ
2,4,5-Trichlorophenol	QN	_	0.505)	Ξ	QN N	_	0.531)	Ξ	NA	QN		0.330)	Ξ
2,4,6-Trichlorophenol	QN	_	0.495)	[:]	QN	_	0.521)	Ξ	NA	QN	_	0.349)	[]
2,4-Dichlorophenol	Q	_	0.564)	[]	ON	_	0.594)	[1]	NA	ON	_	0.443)	Ξ
2,4-Dimethylphenol	QN	_	1.29)	[1]	2.97	_	1.35)	Ξ	NA	QN	_	1.10)	Ξ
2,4-Dinitrophenol	QN	_	4.16)	[1]	QN	_	4.37)	[1]	NA	QN	_	7.00)	
2,4-Dinitrotoluene	ON	_	0.584)	Ξ	QN	J	0.615)	[1]	NA	ON	_	0.550}	Ξ
2,6-Dinitrotoluene	QN	~	0.851)	[1]	Q.	_	0.896)	[1]	NA	QN		0.346)	ΞΞ
2-Ghloronaphthalene	QN	_	0.386)	Ξ	QN	_	0.406)	[1]	NA	ND		0.324)	ΞΞ
2-Chlorophenol	ON	_	0.634)	[1]	QN	_	0.667)	[1]	NA	QN		0.764)	ΞΞ
2-Methylnaphthalene	ON	_	0.356)	Ξ	10.3	_	0.375)	[1]	NA	ND	· _	0.660)	
2-Methylphenol (o-cresol)	ON	_	0.307)	Ξ	QN	_	0.323)	Ξ	NA	Q		0.534)	Ξ
													ı

() = Detection Limit Compiled: 16 March 1995

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT.

						SIT LOCAT SAMF	SITE ID LOCATION ID SAMPLE ID		,					
		008	~			90	800			800		008	œ	
		06-MW-03	-03			06-MW-04	1-04		-90	06-MW-04		70-WM-90	-07	
PARAMETER			3				50-40			-04-05A		TO- /O-MW-90	10-70	
SW8270 - Semivolatile Organics, cont.	t. (ug/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 2					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		
2-Nitroaniline		_	0.653)	[1]	QN	_	0.687)	[1]	NA		9	_	0.402)	Ξ
2-Nitrophenol	9	_	0.515)	[1]	Q	_	0.542)	Ξ	NA		R	_	0.440)	Ξ
3,3'-Dichlorobenzidine	Q.	_	0.327)	Ξ	S	_	0.344)	Ξ	NA		Q	_	0.490)	Ξ
3-Nitroaniline	8	_	0.386)	Ξ	QN	_	0.406)	Ξ	NA		9	_	0.509)	[1]
4,6-Dinitro-2-methylphenol	N O	_	0.426)	Ξ	QN	_	0.448)	Ξ	NA		N	_	0.792)	Ξ
4-Bromophenyl phenyl ether	2	_	0.485)	Ξ	S	_	0.510)	Ξ	NA		9	_	0.456)	Ξ
4-Chloro-3-methylphenol	R	J	0.515)	Ξ	Q	_	0.542)	Ξ	NA		Q	_	0.723)	Ξ
4-Chloroaniline	Q	_	0.733)	[1]	ON	_	0.771)	Ξ	NA		Q	_	0.559)	Ξ
4-Chlorophenyl phenyl ether	Q.	_	0.416)	[1]	Q	_	0.437)	Ξ	NA		QN	_	0.528)	[1]
4-Methylphenol(p-cresol)	N N	_	0.455)	[1]	Q	_	0.479)	Ξ	NA		Q	_	0.575)	Ξ
4-Nitroaniline	S	J	0.604)	Ξ	8	_	0.635)	Ξ	NA		Q	_	0.484)	Ξ
4-Nitrophenol	S	J	0.931)	Ξ	R	_	0.979)	Ξ	NA		R	_	0.691)	Ξ
Acenaphthene	Q	J	0.267)	Ξ	9	_	0.281)	Ξ	NA		Q	_	0.478)	Ξ
Acenaphthylene	Q.	_	0.416)	[]	9	_	0.437)	Ξ	NA		QN	_	0.226)	Ξ
Anthracene	Q.	_	0.366)	Ξ	2	_	0.385)	Ξ	NA		Q.	_	0.581)	Ξ
Benzo(a)anthracene	N N	_	0.446)	Ξ	9	_	0.469)	Ξ	NA		9	_	0.515)	Ξ
Benzo(a)pyrene	S	_	0.515)	Ξ	2	_	0.542)	[1]	NA		S	_	0.383)	Ξ
Benzo(b)fluoranthene	9	_	0.901)	Ξ	9	_	0.948)	Ξ	NA		Q	_	0.569)	Ξ
Benzo(g,h,i)perylene	Q	_	0.990)	Ξ	2	_	1.04)	Ξ	NA		QN	J	0.487)	Ξ
Benzo(k)fluoranthene	Q	_	0.890)	[]	9	_	1.04)	Ξ	NA		2	J	0.968)	Ξ
Benzoic acid	9	_	38.6)	Ξ	Q	_	40.6)	Ξ	NA		ON	_	3.96)	Ξ
Benzyl alcohol	S	J	0.604)	Ξ	2	_	0.635)	Ξ	NA		9	_	1.08)	Ξ
Butylbenzylphthalate	QN	_	0.614)	Ξ	Q	_	0.646)	Ξ	NA		9	_	0.393)	Ξ
Chrysene	QN	_	0.535)	Ξ	S	_	0.562)	Ξ	NA		2	_	0.669)	Ξ
Di-n-butylphthalate	ON	_	0.317)	Ξ	S	_	0.333)	Ξ	NA		N N	_	0.493)	[1]
Compiled: 16 March 1995 ()	= Detection Limit	ın Limi	it [] =	Dilution Fac	Factor	ND = No	Not Detected	A A	= Not Applicable	R = Invalid Result,	, Refer to QC Report	QC Rep	ort	

		800	06-MW-07		70 70 81 00	
		800	06-MW-04	06-MW-04-03A		
SITE ID	SAMPLE ID	800	06-MW-04	06-MW-04-03		
		800	06-MW-03	06-MW-03-03		
					PARAMETER	

SW8270 - Semivolatile Organics, cont.	(ng/L)									t 1 1 1 1 1 1 1 1 1	 	: ! ! !
Di-n-octylphthalate	ND	_	0.347)	Ξ	ON	0	365)	[1]	NA	S	(0.911)	
Dibenz(a,h)anthracene	QN	_	0.802)	Ξ	ND	0	.844)	[1]	NA	ND	0.47	
Dibenzofuran	Q	_	0.535)	[1]	ND	0	.562)	[1]	NA	ND	0.40	
Diethylphthalate	QN	_	0.515)	[1]	QN	0	.542)	[1]	NA	QN	0.33	
Dimethylphthalate	QN	_	0.337)	Ξ	Q.	0	0.354)	[1]	NA	9	0.280	
Diphenylamine/N-NitrosoDPA	MA				ΝΑ				NA	QN	0.56	
Fluoranthene	ND	_	0.465)	[1]	ON	0	(490)	[1]	NA	QN	0.638	
Fluorene	QN	_	0.376)	[1]	ON	0	396)	[1]	NA	QN	0.336	
Hexachlorobenzene	QN	_	0.307)	[1]	QN	.0	0.323)	[1]	NA	QN	0.234)	
Hexachlorobutadiene	Q	_	0.505)	[1]) ON	0	531)	[1]	NA	QN	0.69	
Hexachlorocyclopentadiene	Q.	_	5.84)	[1]	ON ON	_	.15)	[1]	NA	QN	8.92	
Hexachloroethane	Q.	_	0.624)	[1]	ON ON	0	(959	[1]	NA	QN	0.59	
Indeno(1,2,3-cd)pyrene	S	_	1.29)	[1]	ON ON		35)	[1]	NA	S	0.52	
Isophorone	Q	_	0.614)	[1]) ON	.0	646)	[1]	NA	QN	0.287	
N-Nitroso-di-n-propylamine	S S	_	0.644)	[]) QN	ö	(22)	[1]	NA	QN	0.751	
N-Nitrosodiphenylamine	R	_	0.267)	Ξ) ON	0	281)	[1]	NA	NA		
Naphthalene	Q	_	0.475)	[1]	18.7 (0.500)	[1]	NA	QN (0.729	
Nitrobenzene	Q.	_	0.832)	[1]) QN	<i>.</i>	875)	[1]	NA	ON	0.528	
Pentachlorophenol	S	_	0.881)	Ξ) ON		927)	[1]	NA) ON	0.864	
Phenanthrene	2	_	0.465)	[1]) QN	0	490)	[1]	NA) ON	0.622	
Phenol	Q.	_	0.871)	Ξ	14.5 (0	917)	[1]	NA	ON ON	0.399	
Pyrene	S	_	0.406)	[1]) ON	0	427)	[1]	NA) ON	0.468	
bis(2-Chloroethoxy)methane	S	_	0.604)	[1]) QN	0.	635)	Ξ	NA) ON	0.562	
bis(2-Chloroethyl)ether	QN	_	0.376)	[1]) ON	0.	396)	[1]	NA) ON	0.732	
bis(2-Chloroisopropy])ether	ND	_	0.792)	[1]) ON	0.	833)	[1]	NA) ON	0.726)	(1]

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

R = Invalid Result, Refer to QC Report

	008	70-MM-00	06-MW-07-01		ND (1.83)
	800	06-MW-04	06-MW-04-03A		NA NA
					1
1D N 1D : 1D		14	1-03		0.604) [1]
SITE ID LOCATION ID SAMPLE ID	008	06-MW-04	06-MW-04-03)
					QN
		~	-03		nt. (ug/L) ND (0.574)
	900	06-MW-03	06-MW-03-03		
			0		(ng/L)
				PARAMETER	SW8270 - Semivolatile Organics, cont. (ug/L) bis(2-Ethylhexyl)phthalate

Ξ

	1 1	!	Ξ	[1]		[1]	[1]			ΞΞ	[1]	[1]	[1]	Ξ	[1]	[1]	[1]	[1]	[1]	[1]	[1]	Ξ	[1]
	-02 -03 Dup o	1	200)	100)		0.0220)	0.0920)	0.140)	0.0450)	0.0220)	0.110)	0.110)	0.0950)	0.0820)	0.0230)	0.0880)	0.0910)	0.0400)	0.100)	0.0450)	0.0890)	0.0860)	0.0850)
	3 07-MW-02 07-MW-02-DS-03 Dup of 07-MW-02-03) JB () JB (0			_	_)))	_	_	_	_	_	_	_	_	_	_
	.0	1 1 1	4.00	35.0		QN	ON	S.	QN	ON	ON	QN	ON	QN	QN	ON	ON	ON	QN	QN	QN	ON	Q.
		1	[1]	[1]		[1]	[1]	[1]	[1]	Ξ	Ξ	[1]	Ξ	[1]	[1]	Ξ	[1]	Ξ	Ξ	[1]	[1]	[1]	[1]
	3 07-MW-02 07-MW-02-03		200)	100)		0.0220)	0.0920)	0.140)	0.0450)	0.0220)	0.110)	0.110)	0.0950)	0.0820)	0.0230)	0.0880)	0.0910)	0.0400)	0.100)	0.0450)	0.0680)	0.0860)	0.0850)
	07-N 07-M	1 8 8	JB (JB (_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
		 	4.00	39.0		QN	QN	QN	S	ND	QN	2	Q.	QN	2	QN	S	Q	SN	QN	ON	S	ON
		! ! !	[1]	[1]		Ξ	Ξ	[1]	Ξ	[1]	Ξ	[]	Ξ	[1]	[]	Ξ	Ξ	[1]	[1]	[1]	Ξ	Ξ	[1]
SITE ID LOCATION ID SAMPLE ID	, 1-01 01-03	1	20.0)	10.0)		0.0285)	0.138)	0.0427)	0.0172)	0.0729)	0.0568)	0.0367)	0.0288)	0.0286)	0.0320)	0.0902)	0.0322)	0.0957)	0.0281)	0.0693)	0.0150)	0.161)	0.0444)
SIT LOCAT SAMF	3 07-MW-01 07-MW-01-03	!	JB (9		_	_	_	_	_	_	_		_	<u> </u>	_	_	_	<u> </u>	_	_	_	_
		1	2.00	17.0		ON	ND	S	S	QN N	QN	N	Q	Q.	QN	QN	Q	S	Q	QN	Q	2	QN
	4-		[1]	[1]		[1]	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ		Ξ	[1]	Ξ	[1]	[1]		Ξ	Ξ	Ξ
	008 06-MW-07 06-MW-07-DS-01 Dup of 07-MW-02-03		200)	100)		0.0852)	0.166)	0.129)	0.123)	0.0666)	0.0501)	0.154)	0.0893)	0.0800)	0.0457)	0.0688)	0.0553)	0.154)	0.194)	0.132)	0.0448)	0.252)	0.0693)
	008 06-MW-07 W-07-DS-01 07-MW-02-] 	JB ()B (<u> </u>	_	_	_	_	<u> </u>		<u> </u>		٠ ,					_		_ 、		_
-	W-90		6.00	21.0 JB	nics (ug/L)	Q	QN	ON	QN	Q	2	2	Q :	2 :	Q	<u> </u>	2	2	2	2	오 :	Q :	Q.
	PARAMETER		Diesel Range Organics (ug/L) Diesel Range Organics	Gasoline Range Organics (ug/L) Gasoline Range Organics	SW8010 - Halogenated Volatile Organics	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	I,I-Dichloroethene	I,Z,3-irichioropropane	1,Z-Ulchlorobenzene	1,2-Dichloroethane	I,Z-Ulchloropropane	I,3-Ulchlorobenzene	1,4-Ulchlorobenzene	I-Chlorohexane	Z-Unloroethyl vinyl ether	Bromobenzene	Bromodichloromethane	Bromomethane	Carbon tetrachloride

R = Invalid Result, Refer to QC Report NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

						SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID									
	-MM-90	008 06-MW-07 07-DS-01	008 06-MW-07 06-MW-07-DS-01 Dup of			07 - M 07 - MW	3 07-MW-01 07-MW-01-03		J	3 07-MW-02 37-MW-02-	3 07-MW-02 07-MW-02-03		MM-70	3 07-MW-02 -02-DS-03	3 07-MW-02 07-MW-02-DS-03 Dup of	
PARAMETER	5	0/-MW-02-03	02-03											07-MW-02-03)2-03	
SW8010 - Halogenated Volatile Organics,	s, cont.	(ng/L)	L)	- - - - - - - - - - - - - - - - -	; ; ; ; ; ; ;	! ! !]]]] [] []		; ; ; ; ; ; ; ; ; ;	 	1 1 1 1 1 1	 		i 1 1 1		1
Chlorobenzene	Q.	_	0.0513)	[1]	S	_	0.0301)	Ξ	2	_	0.120)	[1]	S	Ù	0.120)	[1]
Chloroethane	Q	_	0.115)	[1]	2	_	0.0499)	[1]	QN	_	0.0800)	Ξ	N N		0.0800)	Ξ
Chloroform	Q	_	0.0533)	Ξ	2	_	0.0512)	[1]	S	_	0.0260)	[]	Q.	_	0.0260)	Ξ
Chloromethane	Q	_	0.172)	Ξ	QN	_	0.0213)	[1]	QN	_	0.150)	[1]	QN	_	0.150)	Ξ
Dibromochloromethane	Q.	_	0.114)	[1]	QN	_	0.0101)	[1]	QN	_	0.0820)	[1]	QN	_	0.0820)	Ξ
Dibromomethane	Q	_	0.118)	Ξ	0.577 B	_	0.0939)	[1]	ON N	_	0.0740)	Ξ	Q.	<u> </u>	0.0740)	[1]
Methylene chloride	0.344 B	_	0.0562)	Ξ	QN N	_	0.0430)	[]	QN	_	0.220)	Ξ	Q	_	0.220)	Ξ
Tetrachloroethene	9	_	0.0759)	Ξ	QN	_	0.0381)	Ξ	QN ON	_	0.0750)	Ξ	S	_	0.0750)	
Tribromomethane(Bromoform)	Q	_	0.0281)	Ξ	QN	_	0.252)	[1]	ON	_	0.0940)	[1]	Q.	_	0.0940)	[]
Trichloroethene	2	_	0.103)	Ξ	Q	_	0.0387)	Ξ	QN	_	0.0730)	Ξ	S	_	0.110)	[1]
Trichlorofluoromethane	S	_	0.0637)	Ξ	QN	_	0.0603)	Ξ	QN	_	0.0980)	Ξ	S	_	0.0980)	[1]
Vinyl chloride	2	_	0.158)	Ξ	2	_	0.0761)	Ξ	QN	_	0.150)	Ξ	S	_	0.150)	Ξ
cis-1,3-Dichloropropene	2	_	0.0565)	Ξ	N	_	0.0220)	[1]	QN	_	0.0800)	Ξ	S	_	0.0800)	[1]
trans-1,2-Dichloroethene	2	_	0.0448)	Ξ	Q	_	0.160)	[1]	QN	<u> </u>	0.0870)	Ξ	S	_	0.0870)	Ξ
trans-1,3-Dichloropropene	Q.	_	0.117)	Ξ	QN	_	0.0302)	[1]	QN	_	0.0720)	Ξ	Q	_	0.0720)	Ξ]
SW8015 - Nonhalogenated Volatile Organics (mg/L)	nics (mg	(L)														
2-Butanone(MEK)	N V				1.30	_	2.38)	[1]	ND	_	2.40)		QN	_	2.40)	Ξ
4-Methyl-2-pentanone(MIBK)	NA				1.68 B	_	1.46)	[1]	QN	_	1.50)	[1]	Q.		1.50)	Ξ
Ethanol	NA				Q.	_	0.301)	[1]	QN	_	0.300)	[1]	Q.	_	0.300)	Ξ
Ethyl ether	NA				QN	_	1.16)	[1]	ON	J	1.20)	Ξ	QN	_	1.20)	Ξ
SW8020 - Aromatic Volatile Organics	(ng/L)															
1,2-Dichlorobenzene	Q	_	0.0796)	[1]	QN	_	0.0263)	[]	0.157 B	_	0.0710)	[1]	0.247	_	0.0710)	[1]
Compiled: 16 March 1995 () =	() = Detection Limit	n Limi		= Dilution	Factor	N = QN	Not Detected	NA =	Not Applicable	Je	R = Invali	d Result	= Invalid Result, Refer to QC Report	QC Repo	ort A7-55	7.

					SI LOCA SAN	SITE ID LOCATION ID SAMPLE ID									
	008	89				ო				er.			٣		
	. 00-MM-92	1-07			Ŋ-70	07-MW-01			07-	07-MW-02			07-MW-02	2	
	06-MW-07-DS-01 Dup of 07-MW-02-03	i-01 Dup of			07-MW	07-MW-01-03		•	M-70	07-MW-02-03		-MM-70	02-DS-0	07-MW-02-DS-03 Dup of	
PARAMETER		50 50										0	07-MW-02-03	-03	
SW8020 - Aromatic Volatile Organics, cont.	cont. (ug/L)				t 	 	6 1 1 1	7 1 1 1 1 1 1 1		1 1 2 2 3 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		!
1,3-Dichlorobenzene) ON	0.0756)	Ξ	QN	_	0.0218)	[1]	QN	_	0.0880)	[1]	0.0598 JB	_	0.0880)	[1]
lorobenzene) ON	0.0813)		ND	_	0.0131)	[1]	QN	_	0.160)				0.0950)	
	-	0.0519)	Ξ	QN .	_	0.00980)	[1]	0.0913	9	0.0700)				0.0200	ΞΞ
o.		0.0452)	[1]	QN	_	0.0140)	Ξ	QN	_	0.0450)	[1]	ON		0.0450)	ΞΞ
ızene	0.0386 KJB (0.0436)	Ξ	ND	_	0.0199)	[1]	0.0481	JB (0.0680)	[1]	0.0580 JB	_	0.0680)	Ξ
		0.0647)	[1]	Q	_	0.0330)	Ξ	0.0975	В (0.0480)	[1]	0.0927 B	0	0.0480)	Ξ
Xylene (total) 0	0.0431 PJB (0.0528)	[1]	QN	_	0.0528)	Ξ	0.172	8	0.0850)	[]	0.202 B		0.0850)	E
SW8080 - Organochlorine Pesticides and PCBs	1 PCBs (ug/L)														
4,4'-DDD	NA			QN	_	0.0270)	[1]	QN	_	0.00800)	[1]	ON	0	0.00800)	[1]
4,4'-DDE	NA			ON	_	0.00550)	[1]	S.	_	0.00540)	Ξ	QN	.0	0.00540)	ΞΞ
4,4 -DDT	NA			0.00360	KJB (0.00786)	[1]	QN	_	0.0100)	[1]	QN	0	0.0100)	
Aldrin	NA			QN	_	0.00270)	Ξ	ON	_	0.00350)	Ξ	ON	0.0	0.00350)	Ξ
Chlordane	NA :				_	0.0337)	[1]	QN	_	0.0300)	[1]	QN	0	0.0300)	[1]
Uneldrin r	NA			0.0137	_	0.00629)	Ξ	QN	_	0.00800)	[1]	QN	0.0	0.00800)	Ξ
Endosuitan I	NA			2	_	0.00539)	Ξ	QN)	0.00620)	[1]	QN	0.0	0.00620)	[1]
Endosultan II	AN :			2	_	0.0202)	Ξ	QN	_	0.00540)	[1]	QN	(0.0	0.00540)	[1]
Endosultan Sultate	NA			0.00490	KJB (0.0146)	[1]	0.00840	JB (0.0140)	[]	0.00830 B	0	0.0140)	[1]
Endrin	NA			0.00580	Σ	0.0107)	[1]	ND	<u> </u>	0.0120)	[1]	ON	0	0.0120)	Ξ
Endrin Aldehyde	NA			QN	_	0.0124)	Ξ	QN	_	0.00660)	[1]	ON	0.0	0.00660)	[1]
Heptachlor	NA			QN	_	0.00292)	[]	S	_	0.00540)	[1]	0.00750 PJB	_	0.0330)	
Heptachlor,epoxide	NA			Q	_	0.00371)	[1]	0.00470	PJB (0.0250)	[1]	QN		0.250)	[10]
Methoxychlor	NA			QN	_	0.0438)	Ξ	QN	_	0.0490)	[1]	QN		0.0490)	[1]
PC8-1016	NA			Q	_	0.0517)	[1]	QN	_	0.100)	[1]	· QN	_	0.100)	[1]

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report Compiled: 16 March 1995

						SITE ID LOCATION ID SAMPLE ID	0.0									
		008	æ			.				က					က	
	MM−90	06-MW-07 -07-DS-01	06-MW-07 06-MW-07-DS-01 Dup of		0	07-MW-01 07-MW-01-03			J	07-MW-02 07-MW-02-03	-02)2-03		4-70	07-MW-02 IW-02-DS-03	07-MW-02 07-MW-02-DS-03 Dup of	4 _
PARAMETER	·	0/-MW-02-03	02-03											07-MW	07-MW-02-03	
SW8080 - Organochlorine Pesticides and PCBs,	and PCBs,	cont.	(ng/L)						1 1 1			!	; ; ; ;		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1
PCB-1221	NA				Q	(0.0539)	_	Ξ	QN	_	0.190)	[1]	ND	_	0.190)	[1]
PCB-1232	NA				QN	(0.0798)	_	· 🗆	N N		0.0560)	Ξ	QN	_	0.0560)	ΞΞ
PCB-1242	NA				NO	(0.0629)		[1]	Q.	_	0.0580)	[1]	QN N	_	0.0580)	Ξ
PCB-1248	NA				ON	(0.0607	_	1]	N	_	0.150)	[1]	Q	_	0.150)	[1]
PCB-1254	NA				QN	(0.0831)		1]	ON	_	0.0790)	[1]	QN	_	0.0790)	Ξ
PCB-1260	NA				ON N	(0.0573	_		N O	_	0.0450)	Ξ	Q	_	0.0450)	[1]
Toxaphene	NA				ON	(0.1	0.112) [11	S	_	0.0100)	Ξ	Q	_	0.0100)	
alpha-BHC	NA				QN	(0.00225)	_	<u></u>	QN	_	0.00400)	[1]	0.0184	_	0.00400)	[1]
beta-BHC	NA				ON	(0.0528)			QN	J	0.00930)	[1]	QN	_	0.00930)	[1]
delta-BHC	NA				0.0150 B	(0.00202)	_	1]	S	_	0.00220)	Ξ	S	_	0.00220)	
gamma-BHC(Lindane)	NA				N	(0.00427)		[1] 0.	0.00720 B	_	0.00460)	Ξ	0.00650	PJB (0.0130)	[]
SW8270 - Semivolatile Organics (t	(ng/L)															
1,2,4-Trichlorobenzene	QN	_	0.579)	[1]	2).0	0.657)	1]	Q	_	0.590)	[1]	QN .	_	0.611)	[1]
1,2-Dichlorobenzene	ND	_	0.764)	Ξ	N	9.0	0.866)		Q	_	0.640)	[1]	Q.	_	0.663)	[1]
1,3-Dichlorobenzene	QN	_	0.388)	[1]	Q	7.0	0.440)	[]	ND	_	0.720)	Ξ	S	_	0.746)	[1]
1,4-Dichlorobenzene	N	J	0.792)	Ξ	QN	9.0	0.898)	[]	QN	_	0.590)	[1]	QN	_	0.611)	Ξ
2,4,5-Trichlorophenol	ON	_	0.324)	Ξ	QN	0.3			QN	_	0.510)	[1]	QN	_	0.528)	Ξ
2,4,6-Trichlorophenol	ON	_	0.342)	Ξ	ON	0.3			S	_	0.500)	Ξ	QN	_	0.518)	[]
2,4-Dichlorophenol	Q,	_	0.434)	Ξ	Q	(0.4	0.492)	[]	QN	_	0.570)	Ξ	S	<u> </u>	0.591)	Ξ
2,4-Dimethylphenol	ND	_	1.08)	Ξ	2)	1.22) [Ξ	Q	_	1.30)	Ξ	2	_	1.35)	Ξ
2,4-Dinitrophenol	Q	_	(98.9	Ξ	QN	(7.	7.78)	[]	Q	_	4.20)	Ξ	ON	_	4.35)	Ξ
2,4-Dinitrotoluene	QN	_	0.539)	Ξ	QN	0.6	0.611) [[]	Q	_	0.590)	Ξ	QN	_	0.611)	[1]
2,6-Dinitrotoluene	Q	_	0.339)	Ξ	QN	0.3	0.384).		QN	_	0.860)	[1]	R	_	0.891)	Ξ
Compiled: 16 March 1995	() = Detection Limit	on Limi		= Dilution	Factor ND	= Not Detected		NA = Not	= Not Applicable	ŀ	R = Invali	d Result	= Invalid Result, Refer to QC Report	QC Re		A7_E7
															τ	/c-/

					SITE ID LOCATION ID SAMPLE ID	ID ON ID E ID									
		800			က				က				co		
	-90	06-MW-07			07-MW-01	01			07-MW-02	2			07-MW-02	-02	
	-0-MW-00 M-07	06-MW-07-DS-01 Dup of 07-MW-02-03		0	07-MW-01-03	1-03		0	07-MW-02-03	-03		07-MW	-02-DS-03 D	07-MW-02-DS-03 Dup of	
PARAMETER													N. M. C.	50_37	
SW8270 - Semivolatile Organics, cont.	(ng/L)				1 1 1 1 1	 	t 1 1 1 1 1	 	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2-Chloronaphthalene) ON	0.318)	[1]	QN	_	.0.360)	[]	8	_	0.390)	[1]	QN	_	0.404)	[1]
2-Chlorophenol) ON	0.749)	Ξ	Q	_	0.849)	[1]	Q		0.640)		QN		0.663)	
2-Methylnaphthalene) ON	0.647)	Ξ	QN	_	0.733)	[1]	Q	_	0.360)	Ξ	QN		0.373)	ΞΞ
2-Methylphenol (o-cresol)) DN	0.524)	[1]	Q	_	0.593)	[1]	ND	J	0.310)	[1]	QN	_	0.321)	Ξ
2-Nitroaniline) QN	0.394)	[1]	ON	_	0.447)	[1]	ND	_	0.660)	[1]	Q	_	0.684)	Ξ
2-Nitrophenol) ON	0.431)	Ξ	QN	_	0.489)		QN	_	0.520)	Ξ	QN	_	0.539)	[1]
3,3'-Dichlorobenzidine) ON	0.480)	Ξ	Q	_	0.544)	[1]	QN	_	0.330)	[1]	Q	_	0.342)	Ξ
3-Nitroaniline) QN	0.499)	[]	Q	_	0.566)	[1]	ON	_	0.390)	[]	Q.	_	0.404)	[1]
4,6-Dinitro-2-methylphenol) ON	0.776)	[1]	ND	_	0.880)	Ξ	ON	_	0.430)	[1]	2	_	0.446)	[1]
4-Bromophenyl phenyl ether) ON	0.447)		QN	_	0.507)	Ξ	ON	_	0.490)	[1]	R	_	0.508)	[1]
4-Chioro-3-methylphenol) ON	0.709)	[1]	S	_	0.803)	[1]	QN	_	0.520)	[1]	Q.	_	0.539)	[1]
4-Chloroaniline) . Q	0.548)	Ξ	QN	_	0.621)	[1]	QN	_	0.740)	[1]	QN	_	0.767)	[1]
4-Chlorophenyl phenyl ether	Q :	0.518)	Ξ:	Q.		0.587)	Ξ	NO	_	0.420)	[1]	NO NO	_	0.435)	[1]
4-metny pnehol(p-cresol) 4-Nitrosmilina		0.564)	ΞΞ	Q :	_ \	0.639)	<u> </u>	Q :		0.460)	Ξ	QN	<u> </u>	0.477)	Ξ
4-Nitrophenol		0.473)	ΞΞ	S S	_	0.538)	ΞΞ	S 4	_ <	0.610)	ΞΞ	2 :	_ 、	0.632)	Ξ3
Acenaphthene) QN	0.469)	ΞΞ	2 8	<i>-</i> _	0.531)	[1]	<u> </u>		0.340)	E E	S S		0.974)	[1]
Acenaphthylene) ON	0.222)	ΞΞ	QN		0.251)	[1]	Q Q	_	0.420)	ΞΞ	2 2		0.435)	ΞΞ
Anthracene) ON	0.570)	Ξ	QN	_	0.646)	Ξ	QN		0.370)		QN	<i>.</i> _	0.383)	ΞΞ
Benzo(a)anthracene) ON	0.505)	[1]	ON	_	0.572)	[1]	QN	_	0.450)		QN N		0.466)	ΞΞ
Benzo(a)pyrene) ON	0.375)	[1]	QN	_	0.426)	[1]	N N	_	0.520)	Ξ	ND		0.539)	
Benzo(b)fluoranthene) ON	0.558)	[1]	QN	_	0.632)	Ξ	2	_	0.910)	[1]	QN		0.943)	Ξ]
Benzo(g,h,i)perylene) QN	0.477)	Ξ	QN	_	0.541)	Ξ	S	_	1.00)	[1]	N		1.04)	ΞΞ
Benzo(k)fluoranthene) ON	0.949)	[1]	ON	\	1.08)	[1]	QN	_	1.00)	ΞΞ	QN		1.04)	ΞΞ
															1

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

R = Invalid Result, Refer to QC Report

SITE 10

						LOCATION ID SAMPLE ID	ON ID E ID									
		800				က				က				m		
	_	06-MW-07	70			07-MW-01	01		_	07-MW-02	25		_	07-MW-02	75	
	MM90 .0	06-MW-07-DS-01 D 07-MW-02-03	01 Dup of 2-03	u _	J	07-MW-01-03	1-03		0	07-MW-02-03	2-03、)-MM-70 70	-02-DS-03 D	07-MW-02-DS-03 Dup of 07-MW-02-03	
PARAMETER													i			
SW8270 - Semivolatile Organics, cont.	(ng/L)	: 					1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1	! ! ! !	1 1 1 1 1 1 1 1	: : : : : :	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			! ! !
Benzoic acid	Q	_	3.88)	Ξ	QN	_	4.40)	Ξ	QN	_	39.0)	[1]	Q.	_	40.4)	Ξ
Benzyl alcohol	ND	_	1.06)	Ξ	S	_	1.20)	Ξ	QN	_	0.610)	[1]	QN	_	0.632)	Ξ
Butylbenzylphthalate	Q.	_	0.385)	[1]	Q.	_	0.437)	Ξ	QN	_	0.620)	[1]	Q	_	0.642)	Ξ
Chrysene	R	J	0.656)	Ξ	QN N	_	0.743)	Ξ	QN	_	0.540)	[]	QN	_	0.560)	Ξ
Di-n-butylphthalate	R	_	0.483)	[1]	2	_	0.548)	Ξ	Q	_	0.320)	Ξ	R	_	0.332)	Ξ
Di-n-octylphthalate	Q.	_	0.893)	Ξ	ON	_	1.01)	[1]	Q	_	0.350)	[1]	Q.	_	0.363)	Ξ
Dibenz(a,h)anthracene	2	_	0.465)	Ξ	2	Ų	0.527)	Ξ	QN	_	0.810)	[1]	Q	_	0.839)	Ξ
Dibenzofuran	QN Q	_	0.400)	[1]	S	_	0.453)	Ξ	QN	_	0.540)	Ξ	Q	_	0.560)	Ξ
Diethylphthalate	N	_	0.329)	Ξ	S	_	0.373)	Ξ	QN	_	0.520)	Ξ	S	_	0.539)	Ξ
Dimethylphthalate	N Q	_	0.275)	Ξ	S	_	0.311)	Ξ	QN	_	0.340)	[1]	QN Q	_	0.352)	[1]
Diphenylamine/N-NitrosoDPA	S	_	0.555)	Ξ	Q.	_	0.629)	Ξ	NA				Q.	_	0.870)	Ξ
Fluoranthene	Q	_	0.625)	Ξ	S	_	0.709)	[1]	QN	_	0.470)	Ξ	S	_	0.487)	Ξ
Fluorene	QN	_	0.329)	Ξ	QN	_	0.373)	[1]	QN	_	0.380)	Ξ	Q	_	0.394)	Ξ
Hexachlorobenzene	S	_	0.229)	[]	2	_	0.260)	Ξ	QN	_	0.310)	Ξ	Ş	_	0.321)	Ξ
Hexachlorobutadiene	N N	_	0.684)	[]	2	_	0.776)	Ξ	QN	_	0.510)	Ξ	S	_	0.528)	Ξ
Hexachlorocyclopentadiene	S	_	8.75)	Ξ	Q	_	9.91)	Ξ	R	_	5.90)	Ξ	S	_	6.11)	[1]
Hexachloroethane	Q	_	0.582)	Ξ	S	_	0.660)	Ξ	2	_	0.630)	Ξ	QN	_	0.653)	[1]
Indeno(1,2,3-cd)pyrene	N Q	J	0.515)	[]	QN	_	0.583)	Ξ	Q.	_	1.30)	[1]	N S	_	1.35)	Ξ
Isophorone	S	_	0.281)	Ξ	S	_	0.319)	[1]	Q.	_	0.620)	[1]	S	_	0.642)	Ξ
N-Nitroso-di-n-propylamine	Q	Ų	0.736)	Ξ	Q	_	0.834)	Ξ	<u>8</u>	_	0.650)	[1]	QN	_	0.674)	Ξ
N-Nitrosodiphenylamine	NA				NA				S	_	0.270)	Ξ	NA			
Naphthalene	QN	J	0.715)	Ξ	QN	_	0.810)	Ξ	Q	_	0.480)	Ξ	N	_	0.497)	[1]
Nitrobenzene	QN	_	0.518)	Ξ	Q.	J	0.587)	Ξ	Q	_	0.840)	Ξ	S	_	0.870)	[]
Pentachlorophenol	Q	_	0.847)	Ξ	QN Q	_	0.96.0	Ξ	Q.	_	0.890)	[1]	ON	J	0.922)	Ξ

NA = Not Applicable R = Invalid Result, Refer to QC Report

[] = Dilution Factor ND = Not Detected

() = Detection Limit

Compiled: 16 March 1995

		SITE ID		
		LOCATION ID		
		SAMPLE ID		
	;			
	008	က	3	m
	20-MM-90	07-MW-01	07-MW-02	20-MM-70
	06-MW-07-DS-01 Dup of	07-MW-01-03	07-MW-02-03	07-MW-02-DS-03 Dup of
	07-MW-02-03			07-Mil-03-03
PARAMETER				50-20-Mid-70
1 1 1 1 1 1 1				

PARAMETER													6	0/ - FIW - 02 - 03	50-7	
	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1	:]]] []					
SW8270 - Semivolatile Organics, cont. (ug/L)	(ng/L)															
Phenanthrene	QN	_	0.610)	[1]	QN	_	0.691)	[1]	QN	_	0.470)	[1]	QN	_	0.487)	Ξ
Phenol	ON	_	0.391)	[1]	QN	_	0.443)	[1]	QN	_	0.880)		QN		0.912)	ΞΞ
Pyrene	Q.	_	0.459)	[1]	ON	_	0.520)	[1]	ON	_	0.410)	Ξ	ND		0.425)	ΞΞ
bis(2-Chloroethoxy)methane	ON	_	0.551)	Ξ	ND	_	0.624)	[1]	QN	_	0.610)	Ξ	ND		0.632)	ΞΞ
bis(2-Chloroethy1)ether	Q	_	0.718)	[1]	QN	_	0.813)	[1]	Q.	_	0.380)	[1]	ON	_	0.394)	ΞΞ
bis(2-Chloroisopropy1)ether	2	_	0.712)	Ξ	ON	_	0.807)	Ξ	ON	_	0.800)	[1]	ND	_	0.829)	Ξ
bis(2-Ethylhexyl)phthalate	QN	_	1.79)	Ξ	4.62 B	<u> </u>	2.03)	[1]	ND	_	0.580)	[1]	1.48 B	_	0.601)	Ξ

						, 20 <i>y</i> s	SITE ID LOCATION ID SAMPLE ID										
PARAMETER	0 0	3 07-MW-03 17-MW-03-	3 07-MW-03 07-MW-03-03			07- 07-h	3 07-MW-04 07-MW-04-03			07	3 07-SW-03 07-SW-03-01	1			3 07-SW-04 07-SW-04-	3 07-SW-04 07-SW-04-01	
Diesel Range Organics (ug/L)	1400		20.0)	Ξ	5.00	JB ()			00	(2	20.0)		3300		20.	20.0)
Gasoline Range Organics (ug/L) Gasoline Range Organics	45.0 B	_	10.0)	[1]	58.0	JB ((001] 32.0	.0 JB	J	100)	[1]	26.0	JB (10	100)
SW8010 - Halogenated Volatile Organics (ug/L) 1.1.1.2-Tetrachloroethane	ss (ug/L)	_	0.0285)	[]	QN		(0.0285)	[1]		QN	0.0	0.0219)	[1]	Q	_	0.0219)	(6)
1,1,1-Trichloroethane	Q		0.138)	[[]	11.5		(0.138)			Q	0.	0.147)	[1]	2		0.166)	(90
1,1,2,2-Tetrachloroethane	2	_	0.0427)	Ξ	ON N		(0.0427)	_		QN	.0	0.144)	[1]	Q.	_	0.144)	14)
1,1,2-Trichloroethane	Q	J	0.0172)	[1]	9 N		(0.0172)			QN QN	0.0	0.0454)	Ξ	QN	_	0.0454)	54)
1,1-Dichloroethane	Q	_	0.0729)	Ξ	1.75		(0.0729)			ND	0.0	0.0222)	[]	Q.	<u> </u>	0.0222)	22)
1,1-Dichloroethene	R	_	0.0568)	[1]	Q	_	(0.0568)			QN	(0.	0.112)	[1]	QN	<u> </u>	0.112)	(2)
1,2,3-Trichloropropane	2	_	0.0367)	[1]	2		(0.0367)			ND D	(0.	0.109)	[1]	QN	_	0.109)	(60
1,2-Dichlorobenzene	9	_	0.0288)	Ξ	2		(0.0288)			QN QN	0.0	0.0949)	[1]	9	_	0.0949)	19)
1,2-Dichloroethane	R	_	0.0286)	Ξ	9		(0.0286)	[1]		Q.	0.0	0.0823)	[1]	Q	_	0.0823)	23)
1,2-Dichloropropane	Q	_	0.0320)	Ξ	2		(0.0320)			S	0.0	0.0228)	Ξ	2	_	0.0228)	58)
1,3-Dichlorobenzene	Q	_	0.0902)	Ξ	2		(0.0902)			N N	0.0	0.0878)	Ξ	Q	_	0.0878)	(8)
1,4-Dichlorobenzene	Q.	_	0.0322)	[1]	9		(0.0322)			NO NO	0.0	0.0908)	[1]	Q	<u> </u>	0.0908)	(8)
1-Chlorohexane	2	_	0.0957)	Ξ	S S		(0.0957)	_		QN ON	0.0	0.0404)	[1]	2	_	0.0404	(4)
2-Chloroethyl vinyl ether	S	_	0.0281)	[1]	Q.	_	(0.0281)			ND ON	(0.	0.101)	[1]	S	<u> </u>	0.101	11)
Bromobenzene	8	_	0.0693)	Ξ	S		(0.0693)			QN	0.0	0.0451)	[1]	Q.	_	0.0451)	51)
Bromodichloromethane	Q.	_	0.0150)	[Ξ]	Q		(0.0150)			NO NO	0.0	0.0886)	Ξ	9	_	0.0886	36)
Bromomethane	Q	_	0.161)	Ξ	ON.		(0.161)			ND	0.0	0.0858)	Ξ	S	_	0.0858)	28)
Carbon tetrachloride	Q.	_	0.0444)	Ξ	QN		(0.0444)			Q.	0.0	0.0854)	Ξ	2	_	0.0854)	54)
Chlorobenzene	QN	_	0.0301)	[1]	Q.		(0.0301)	Ξ		QN	.0	0.124)	[1]	QN	_	0.124)	24)
Commiled: 16 March 1995 () =	() = Detection limit	i	=	= Dilution Factor	Factor	N	NN = Not Detected		NA = Not Applicable	licable	۵	Invalid	= Invalid Besult Befor to Of Benort	Dofor +	00 00	+ x 0	
	5	_	3	2	200	5	אסר הפניכי		יטוי ו	ו רמט ו	Ľ	וואמן. בי	Kesui L,	בו עבו בו	ر د د	1.00	A7-(

Ξ

Ξ

					SIT LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID									
						٠									
		3			3				က			-	3		
	-70	07-MW-03			07-MW-04	-04			07-SW-03	13			07-SW-04	-04	
PARAMETER	W-/n	U/-MW-U3-U3			0/-MW-04-03	04-03		0	07-SW-03-01	-01			07-SW-04-01	04-01	
SW8010 - Halogenated Volatile Organics, cont.	1	(ng/L)	 	: f ! ! !	1	 					1 1 1		!		
Chloroethane	0.0842 (0.0499)	Ξ	QN	_	0.0499)	[1]	9	_	0.0800)	[1]	Q	_	0.0800)	
Chloroform) QN	0.0512)	[1]	0.520 B	_	0.0512)	[1]	QN		0.0258)		9	<i>-</i> _	0.0258)	
Chloromethane) QN	0.0213)	Ξ	QN	_	0.0213)	[1]	QN	_	0.151)	Ξ	S	<i>.</i> _	0.151)	Ξ
Dibromochloromethane) ON	0.0101)	[1]	Q.	_	0.0101)	Ξ	QN	_	0.0820)	[1]	Q.		0.0820)	Ξ
Dibromomethane	0.564 B (0.0939)	Ξ	QN	_	0.0939)	Ξ	ON	_	0.0742)	[1]	QN	_	0.0742)	ΞΞ
Methylene chloride) ON	0.0430)	Ξ	1.04 B	_	0.0430)	[1]	0.652 TB	_	0.0842)	Ξ	0.205 P	PB (0.0562)	Ξ
Tetrachloroethene) ON	0.0381)	Ξ	N	_	0.0381)	Ξ	QN	_	0.0750)	[1]	R	_	0.0750)	[1]
Tribromomethane(Bromoform)) ON	0.252)	Ξ	9	_	0.252)	Ξ	QN	_	0.0944)	[1]	Q	_	0.0944)	[1]
Trichloroethene) QN	0.0387)	Ξ	Q	_	0.0387)	Ξ	QN	_	0.0732)	[1]	ON	_	0.0732)	
Trichlorofluoromethane) QN	0.0603)	Ξ	QN S	_	0.0603)	[]	QN	_	0.0980)	[1]	S	_	0.0980)	Ξ
Vinyl chloride) ON	0.0761)	Ξ	QN	_	0.0761)	[1]	QN	_	0.151)	[1]	Q	_	0.151)	Ξ
cis-1,3-Dichloropropene) ON	0.0220)	[]	QN)	0.0220)	Ξ	ND	_	0.0804)	[1]	ND	_	0.0804)	
trans-1,2-Dichloroethene) QN	0.160)	Ξ	QN	_	0.160)	Ξ	QN	_	0.0870)	[1]	S	_	0.0870)	Ξ
trans-1,3-Dichloropropene) QN	0.0302)	[1]	QN	_	0.0302)	[1]	QN	_	0.0719)	[1]	QN	<u> </u>	0.0719)	[1]
SW8015 - Nonhalogenated Volatile Organics	organics (mg/L)														
2-Butanone(MEK)	1.33 J (2.38)	[1]	N	_	2.38)	Ξ	AN				AM			
4-Methyl-2-pentanone(MIBK)	1.68 B (1.46)	Ξ		.) ar	1.46)		NA				NA NA			
Ethanol) QN	0.301)	[1]	QN	_	0.301)	Ξ	NA				NA			
Ethyl ether) QN	1.16)	[1]	QN	\smile	1.16)	[1]	NA				NA			
SW8020 - Aromatic Volatile Organics	(7/Bn) s														
1,2-Dichlorobenzene	0.178 PB (0.0796)	[1]	0.177 B	_	0.0705)	[1]	QN	0	0.0784)	[11]	GN	_	0.0784)	[1]
1,3-Dichlorobenzene	0.141 (0.0218)	Ξ	ON	_	0.0995)	[]	QN		0.0780)		2		0.0780)	ΞΞ
1,4-Dichlorobenzene	0.123 (0.0131)	[1]	ND	_	0.0955)	[1]	QN	0	0.0711)	[1]	QN		0.0711)	ΞΞ
			-												

[] = Dilution Factor ND = Not Detected NA = Not Applicable () = Detection Limit

R = Invalid Result, Refer to QC Report

	3 07-SW-04 07-SW-04-01		ND (0.0802) [1]	JB (0.0813)	0.0768 JB (0.0813) [1] 0.112 B (0.0811) [1]		AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	3 07-SW-03 07-SW-03-01	0.0832) [1]	0.0802) [1]		0.0813) [1] 0.0811) [1]																				
	07 – 07 – SI) QN) QN		0.0303 JB (NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	M-1 A-11
		[1]	Ξ	ΞΞ	ΞΞ		Ξ	Ξ	Ξ		[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	
AMPLE ID	3 07-MW-04 07-MW-04-03	0.0697)	(0.0449)	(0.0678)	(0.08480) (0.0848)		(0.00627)	(0.00658)	(0.00705)	(0.00568)	(0.0100)	(0.00683)	(0.00330)	(0.00730)	(0.0143)	(0.0117)	(0.00625)	(0.00291)	(0.00356)	(0.0432)	(0.0591)	(00.000)	(0.137)	(0.0557)	
75 75	07-	QN	ON ON		0.0350 JB (ON	QN	QN	ON	ON ON) QN	QN) QN	ON ON	QN	ON ON	ON ON	ON	QN	QN) QN) QN	QN	7
			Ξ	ΞΞ	ΞΞ		Ξ	Ξ	[1]	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	[]	[1]	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	[1]	
	3 07-MW-03 07-MW-03-03	! 0	0.0140)	0.0199)	0.0528)	~	0.0250)	0.00510)	0.00667)	0.00250)	0.0312)	0.00583)	0.00500)	0.0187)	0.0135)	0.00000	0.0115)	0.00302)	0.00344)	0.0406)	0.0479)	0.0500)	0.0740)	0.0583)	5
SITE ID SAMPLE ID	07-N 07-M) (ng/L)	_	PB (KJB ((ng/L)	-	_	_	_	_	_	_	_	_	KJB (<u> </u>	B (PB (<u> </u>	_	_	_	_	= Datection limit
		ganics, cont.	ON	0.0757	0.272	cides and PCBs	0.0194	ON	ON	QN	QN	0.0109	QN	QN	QN	0.00490	N N	0.00860	0.00610	QN	QN	ND	QN	ND	
	PARAMETER	SW8020 - Aromatic Volatile Organics, cont. Benzene ND	Chlorobenzene	Ethylbenzene	ioluene Xylene (total)	SW8080 - Organochlorine Pesticides and PCBs	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Chlordane	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	1000 H

						SITE LOCAT	SITE ID LOCATION ID SAMPLE ID									
		.,	က			က				က				m		
		07-MW-03	07-MW-03		c	07-MW-04	-04			07-SW-03	-03			07-SW-04	-04	
PARAMETER		Mid-10	-03		0	U/-MW-U4-U3	J4-03			07-SW-03-01	33-01			07-SW-04-01	14-01	
SW8080 - Organochlorine Pesticides and PCBs,	and PCBs,	cont.	(ng/L)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t 			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	!	} 					!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
PCB-1248	QN	_	0.0562)	Ξ	Q	_	0.0297)	[1]	NA				N			
PCB-1254	QN	_	0.0771)	[1]	S	_	0.0427)	Ξ	NA				N			
PCB-1260	ON	_	0.0531)	[1]	Q	_	0.0566)	Ξ	NA				N			
Toxaphene	ON	_	0.104)	[1]	QN	_	0.0363)	[1]	NA				NA			
alpha-BHC	QN	_	0.00146)	[]	Q	_	0.00189)	Ξ	NA				NA			
beta-BHC		· ·	0.0490)	[1]	QN	_	0.00714)	Ξ	NA				NA			
delta-BHC	Q	_	0.00187)	[1]	Q.	_	0.00269)	[<u>:</u>]	NA				NA			
gamma-BHC(Lindane)	0.0200	<u> </u>	0.00240)	[1]	QN	_	0.00214)	Ξ	NA				NA			
SW8270 - Semivolatile Organics (ug/L)	/r)															
1,2,4-Trichlorobenzene	QN	_	0.642)	[1]	QN	_	0.579)	[1]	QN	_	0.588)	Ξ	Q	_	0.591)	[]
1,2-Dichlorobenzene	ND	~	0.847)	Ξ	NO	_	0.626)	[1]	QN	_	0.775)	[1]	QN	_	0.779)	Ξ
1,3-Dichlorobenzene	QN	_	0.430)	[1]	QN	_	0.706)	[1]	QN	_	0.394)	ΞΞ	QN		0.396)	[1]
1,4-Dichlorobenzene	QN N	_	0.878)	[1]	ON	_	0.579)	[1]	ON	_	0.804)	[1]	QN ON	_	0.808)	[1]
2,4,5-Trichlorophenol	Q !		0.359)	[1]	QN	_	0.501)	[1]	Q.	<u> </u>	0.328)	[1]	ON	_	0.330)	[1]
Z,4,b-lrichlorophenol	Q S	_ <	0.379)	<u> </u>	Q :	_ 、	0.499)	ΞΞ	Q.		0.347)	Ξ	QN	_	0.349)	[1]
2,4-Dimethylphenol	Q X		1.20)	ΞΞ	Q		0.561)	ΞΞ	Q Q	_ 、	0.441)	E	2 9		0.443)	Ξ3
2,4-Dinitrophenol	ND	<i>-</i>	7.61)	ΞΞ	S		4.12)	ΞΞ	2 2		(6.97)	ΞΞ	2 2		7 00)	ΞΞ
2,4-Dinitrotoluene	QN	_	0.598)	Ξ	QN		0.582)	Ξ	QN	۔ ۔	0.547)		2	<i>-</i>	0.550)	ΞΞ
2,6-Dinitrotoluene	ON	<u> </u>	0.376)	Ξ	QN	_	0.848)	[1]	ON		0.344)	Ξ	Q.	_	0.346)	ΞΞ
2-Chloronaphthalene	QN	_	0.352)	[1]	QN	_	0.386)	[1]	QN	_	0.322)	[1]	ON		0.324)	ΞΞ
2-Chlorophenol	Q	_	0.830)	[]	QN	_	0.626)	[1]	ON	_	0.760)	[1]	R	_	0.764)	ΞΞ
2-Methylnaphthalene	3.21	_	0.717)	Ξ	Q	_	0.359)	[1]	ND	_	0.657)	[1]	0.590	_	0.660)	[1]
2-Methylphenol (o-cresol)	S	_	0.580)	[1]	ON	_	0.305)	[1]	QN	_	0.531)	[1]	ND	_	0.534)	[1]

[] = Dilution Factor () = Detection Limit

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

						SITE ID	OI NO									
						SAMPLE ID	E 10									
		က				ю				က				က		
	07.	07-MW-03	~			07-MW-04	.04 .04			07-SW-03	3			07-SW-04	-04	
PARAMETER		0 .	, י			- KI				50 k	70			# C / C	101	
SW8270 - Semivolatile Organics, cont.	(ng/L)															
2-Nitroaniline	Q.	.0	0.437)	[1]	QN	J	0.653)	Ξ	ON	_	0.400)	[1]	QN	_	0.402)	[1]
2-Nitrophenol	ON	.0	0.478)	[1]	ON	_	0.514)	[]]	ON	_	0.438)	Ξ	QN	_	0.440)	Ξ
3,3'-Dichlorobenzidine	QN	.0	0.533)	[1]	S	_	0.328)	[1]	ND	_	0.488)	[1]	ON	_	0.490)	[1]
3-Nitroaniline	QN	. 0.	0.553)	[1]	Q	_	0.387)	[1]	QN	_	0.506)	[1]	ON	_	0.509)	[]
4,6-Dinitro-2-methylphenol	Q	. 0	0.861)	Ξ	S	_	0.424)	[1]	QN	_	0.788)	[1]	QN	_	0.792)	Ξ
4-Bromophenyl phenyl ether	Q	.0	0.496)	Ξ	S	_	0.477)	Ξ	ND	_	0.454)	Ξ	QN	_	0.456)	[1]
4-Chloro-3-methylphenol	QN	.0	0.786)	Ξ	S	_	0.507)	Ξ	ON	_	0.719)	Ξ	S	J	0.723)	Ξ
4-Chloroaniline	Q	.0	0.608)	Ξ	S	_	0.734)	[1]	Q	_	0.556)	Ξ	S	_	0.559)	[1]
4-Chlorophenyl phenyl ether	QN	.0	0.574)	Ξ	Q	_	0.415)	Ξ	QN	_	0.525)	Ξ	Q.	_	0.528)	Ξ
4-Methylphenol(p-cresol)	Q	.0	0.625)	Ξ	S	U	0.452)	[1]	QN	_	0.572)	Ξ	S	_	0.575)	[1]
4-Nitroaniline	ON	. 0	0.526)	Ξ	S	_	0.597)	[]	QN	_	0.482)	[1]	N N	_	0.484)	Ξ
4-Nitrophenol	Q	.0	0.751)	[1]	Q	_	0.923)	Ξ	ON	_	0.688)	Ξ	QN	_	0.691)	Ξ
Acenaphthene	ON	.0	0.520)	[1]	S	J	0.268)	[1]	QN	_	0.476)	Ξ	N N	_	0.478)	Ξ
Acenaphthylene	QN	.0	0.246)	[]]	S	_	0.412)	[1]	ON	_	0.225)	[]	Q	_	0.226)	Ξ
Anthracene	ON	.0	0.632)	[1]	S	_	0.363)	[]	QN	_	0.578)	[1]	Q	<u> </u>	0.581)	[1]
Benzo(a)anthracene	QN	.0	0.560)	[1]	Q	_	0.442)	Ξ	N	_	0.512)	[1]	Q	_	0.515)	Ξ
Benzo(a)pyrene	S.	.0	0.416)	[]	Q	_	0.510)	[1]	QN	_	0.381)	[1]	Q.	_	0.383)	[1]
Benzo(b)fluoranthene	ON	. 0	0.618)	[1]	Q.	_	0.895)	[1]	QN	_	0.566)	[1]	QN	_	0.569)	[1]
Benzo(g,h,i)perylene	S	.0	0.529)	[]	S	_	1.00)	[1]	ON	_	0.485)	Ξ	Q	_	0.487)	[1]
Benzo(k)fluoranthene	2	1	1.05)	[1]	S	_	0.984)	[1]	QN	_	0.963)	Ξ	Q	_	0.968)	[1]
Benzoic acid	QN	4	4.30)	Ξ	8	_	38.0)	[1]	ON	_	3.94)	[1]	S	_	3.96)	Ξ
Benzyl alcohol	Q.		1.17)	[1]	2	_	0.601)	Ξ	QN	_	1.07)	Ξ	S	_	1.08)	Ξ
Butylbenzylphthalate	ON	.0	0.427)	[1]	Q	_	0.616)	Ξ	ON	_	0.391)	Ξ	S	_	0.393)	Ξ
Chrysene	Q.	. 0	0.727)	[1]	QN	_	0.529)	Ξ	QN	_	0.666)	Ξ	S	~	0.669)	[1]
Di-n-butylphthalate	QN	.0	0.536)	[1]	Q	_	0.319)	Ξ	QN	_	0.491)	Ξ	0.132 J	_	0.493)	Ξ
Compiled: 16 March 1995 () =	= Detection Limit	Limit	0 = 0	Dilution F	Factor	ND = Not	Not Detected	NA =	Not Applicable	e ~	= Invalid	Result,	Invalid Result, Refer to QC Report	C Rep	ort	

					_	SITE ID	ID									
						SAMPLE ID	OI 3									
		က				က			•		cri			c		
	. 70	07-MW-03			J	07MW-04	14			07-SW-03	M-03			S 07-SW-04	-04	
PARAMETER	07-1	07-MW-03-03			.'0	07-MW-04-03	1-03			MS-70	07-SW-03-01			07-SW-04-01	04-01	
SW8270 - Semivolatile Organics, cont.	(ug/L)	 	1 1 1 1 1	!	: : : : : : : : :					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1		1 1 1 2 2 2
Di-n-octylphthalate	QN ON	(066.0)	(06	[1]	QN	_	0.347)	[1]	QN	_	0.906)	[1]	QN	_	0.911)	Ξ
Dibenz(a,h)anthracene	ON ON	(0.515)	15)	[1]	ON	J	0.799)	Ξ	QN	_	0.472)		QN		0.474)	ΞΞ
Dibenzofuran	ON ON	(0.443)	43)	[1]	Q.	_	0.529)	[1]	QN	_	0.406)	Ξ	ON	_	0.408)	ΞΞ
Diethylphthalate) Q	(0.365)	65)	[1]	2	_	0.507)	[1]	S	_	0.334)	[1]	ON	_	0.336)	ΞΞ
Unmethy!phthalate	2	(0.304)	04)	[1]	QN	_	0.331)	[1]	QN	_	0.279)	Ξ	ND	_	0.280)	Ξ
Uiphenylamine/N-NitrosoDPA	2	(0.615)	15)	[1]	QN	_	0.265)	[1]	QV	_	0.563)	[]	QN	_	0.566)	
Fluoranthene) R	(0.693)	93)	[<u>T</u>]	N N	_	0.464)	[1]	ON	_	0.635)	[1]	QN	_	0.638)	Ξ
Fluorene) ON	(0.365)	55)	[1]	S	_	0.374)	[1]	QN	_	0.334)	[1]	QN	_	0.336)	Ξ
Hexachlorobenzene) QN	(0.254)	54)	[1]	Q.	_	0.309)	Ξ	QN	_	0.233)	[1]	QN	_	0.234)	
Hexachlorobutadiene	ON ON	(0.759)	59)	Ξ	QN	_	0.504)	[1]	QN	_	0.695)	[1]	ND	_	0.698)	
Hexachlorocyclopentadiene) QN	(07.6)	(0,	Ξ	QN	_	5.80)	Ξ	ON	_	8.88)	[1]	QN	_	8.92)	
Hexachloroethane) Q	(0.646)	16)	[1]	S	_	0.626)	[1]	ON	_	0.591)	[1]	ND	_	0.594)	ΞΞ
Indeno(1,2,3-cd)pyrene	Q :	(0.571)			QN	_	1.31)	Ξ	QN	_	0.522)	[1]	QN	_	0.525)	ΞΞ
Isophorone	Q.	0.312)			9	_	0.607)	\Box	S)	0.286)	Ξ	QN	_	0.287)	[1]
N=Nltroso-dl-n-propylamine	ON .	0.816)		[1]	QN :		0.644)	Ξ	QN	_	0.747)	[1]	N	_	0.751)	[1]
	96.4	0.792)			2 :		0.471)	Ξ	Q.	_	0.725)	Ξ	0.649 J	_	0.729)	[1]
Nicrobenzene Dontachlosophosol	ON	0.5/4)		E :	9 :		0.830)	Ξ	QN N	_	0.525)	Ξ	ND	_	0.528)	Ξ
phocochiorophenol) NO	0.939)		[1]	2	_	0.876)	Ξ	QN	_	0.860)	Ξ	QN	_	0.864)	[]
rnenanthrene	ON I	0.676)		Ξ:	2	_	0.461)	[1]	QN	<u> </u>	0.619)	[1]	ON	_	0.622)	[1]
rneno		0.434)			웊	_	0.870)	Ξ	ON	_	0.397)	Ξ	QN	_	0.399)	[1]
ryrene	ON ON	0.509)		[1]	Q Q	_	0.402)	[1]	QN	_	0.466)	Ξ	QN	_	0.468)	Ξ
bis(2-Chloroethoxy)methane	2	0.611)		[]	Q.	_	0.597)	[1]	QN	_	0.559)	Ξ	QN	_	0.562)	Ξ
bis(2-Chloroethyl)ether) R	0.796)		[1]	Q.	_	0.377)	[1]	QN	_	0.728)	[1]	ON	_	0.732)	Ξ
٤		0.789)	_	[1]	N S	_	0.786)	[1]	Q.	<u> </u>	0.722)	[1]	QN	_	0.726)	Ξ
bis(2-Ethylhexyl)phthalate 2	2.65 B (1.99)		[1]	1.07 B	_	0.572)	Ξ	0.477	JB (1.82)	[1]	0.932 JB		1.83)	[1]

() = Detection Limit [] = Dilution Factor

ND = Not Detected

NA = Not Applicable

_
A
ш
$\boldsymbol{\bot}$
В
⋖
\vdash

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT.

	3 07-SW-04 07-SW-04-01
	3 07-SW-03 07-SW-03-01
SITE ID LOCATION ID SAMPLE ID	3 07-MW-04 07-MW-04-03
	3 07-MW-03 07-MW-03-03

PARAMETER

					SITE LOCATI SAMPL	SITE ID LOCATION ID SAMPLE ID								
PARAMETER	70 07-51	3 07-SW-05 07-SW-05-01		_	3 07-SW-06 07-SW-06-01	-06)6-01			3 07-SW-07 07-SW-07-01	3 W-07 -07-01		30	7 08-GP-01 08-GP-01-01	
Diesel Range Organics (ug/L)	44.0	20.0)	[1]	170		20.0)	[1]	8.00 JB	9	20.0)	[1]	4.00 JB)	[1]
Gasoline Range Organics (ug/L) Gasoline Range Organics	31.0 JB (100)	[1]	27.0 JB	9	100)	[1]	30.0 JB	9	100)	[1]	26.0 JB	(100)	(1)
<pre>SW8010 - Halogenated Volatile Organics 1,1,1,2-Tetrachloroethane</pre>	anics (ug/L) ND (0.0219)		Q	Ų	0.0219)	Ξ	S	_	0.0219)	[1]	C	(0.0010)	[5]
1,1,1-Trichloroethane) ON	0.147)	ΞΞ	2		0.147)	ΞΞ	Q Q	_ ر	0.147)	ΞΞ	8 8	(0.0213) (0.147)	
1,1,2,2-Tetrachloroethane) ON	0.144)	[1]	R	_	0.144)	Ξ	ON	_	0.144)	ΞΞ	ON	(0.144)	
1,1,2-Trichloroethane) ON	0.0454)	[1]	QN	_	0.0454)	Ξ	QN	_	0.0454)	[1]	QN	(0.0454)	_
1,1-Dichloroethane) ON	0.0222)	Ξ	QN	_	0.0222)	Ξ	ON	~	0.0222)	Ξ	ON	(0.0222)	
1,1-Dichloroethene 1,2.3-Trichloronronane	ON N	0.112)	ΞΞ	S		0.112)	ΞΞ	2 5	_ 、	0.112)	ΞΞ	8	(0.112)	
1,2-Dichlorobenzene) ON ON	0.0949)	ΞΞ	N Q		0.109) 0.0949)		2 2		0.109)		S S	(0.109) (0.0949)	ΞΞ
1,2-Dichloroethane) QN	0.0823)	ΞΞ	QN		0.0823)	ΞΞ	Q.	<i>-</i> _	0.0823)		2 2	(0.0823)	
1,2-Dichloropropane) ON	0.0228)	[1]	QN	_	0.0228)	Ξ	QN	_	0.0228)	[1]	QN	(0.0228)	
1,3-Dichlorobenzene	ON .	0.0878)	Ξ	QN		0.0878)	[1]	Q.	_	0.0878)	[1]	QN	(0.0878)	
I,4-Ulchiorobenzene	ON I	0.0908)	Ξ	2	_	0.0908)	[]	S	_	0.0908)	Ξ	ON	(0.0908)	
1-Chlorohexane) ON	0.0404)	Ξ	Q.	_	0.0404)	Ξ	2	_	0.0404)	[1]	ND	(0.0404)	
2-Chloroethyl vinyl ether) ON	0.101)	Ξ	Q	_	0.101)	Ξ	2	_	0.101)	[1]	ND	(0.101)	
Bromobenzene) QN	0.0451)		Q.	_	0.0451)	Ξ	QN	_	0.0451)	Ξ	ON	(0.0451)	
Bromodichloromethane) QN	0.0886)	Ξ	QN	_	0.0886)	\Box	QN	_	0.0886)	[]	QN QN	(0.0886)	Ξ
Bromomethane) ON	0.0858)	[1]	QN	َ	0.0858)	[1]	ND N	_	0.0858)	[1]	ND	(0.0858)	_
Carbon tetrachloride) ON	0.0854)	Ξ	QN	َ	0.0854)	[1]	QN	_	0.0854)	Ξ	ND	(0.0854)	
Chlorobenzene) ON	0.124)	[1]	ON	_	0.124)	[1]	QN	_	0.124)	[1]	ND	(0.124)	

() = Detection Limit

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

						S17 LOCAT	SITE ID LOCATION ID SAMPLE ID									
		3 07-SW-05				3 07-SW-06	3 W-06			3 07-SW-07	-07			7 08-GP-01	7 P-01	
PARAMETER	Ô	10-SM-NS-/N	- 1			0/-2M-06-01	-06-01			0/-SW-0/-01	0/-01			08-GP	08-GP-01-01	
SW8010 - Halogenated Volatile Organics,	ics, cont.	(ug/L)	i 	i ! !	; ! ! ! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1]]] ! ! ! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1	 	
Chloroethane		0.0	0.0800)	Ξ	ON	_	0.0800)	[1]	QN	J	0.0800)	Ξ	ON	_	0.0800)	Ξ
Chloroform	QN	0.0	0.0258)	Ξ	Q		0.0258)	Ξ	S	_	0.0258)	Ξ	2	_	0.0258)	[]
Chloromethane	2) 0	0.151)	\Box	S	_	0.151)	[1]	ON	_	0.151)	Ξ	QN	_	0.151)	Ξ
Dibromochloromethane	2	0.0	0.0820)	[]	2		0.0820)	Ξ	Q		0.0820)	Ξ	2	<u> </u>	0.0820)	[1]
Dibromomethane		0.0	0.0742)	Ξ		٠ .	0.0742)	Ξ			0.0742)	Ξ	Q	_	0.0742)	Ξ
Methylene chloride	1.06 TB	0.0	0.0842)	Ξ		 B	0.0842)	Ξ	1.19 TB		0.0842)	[]	2	_	0.0562)	Ξ
Tetrachloroethene	2	0.0	0.0750)	Ξ	2	_	0.0750)	Ξ	ON ON	_	0.0750)	Ξ	2	_	0.0750)	Ξ
Tribromomethane(Bromoform)	QN	0.0	0.0944)	Ξ	S	_	0.0944)	Ξ	Q	_	0.0944)	Ξ	S	_	0.0944)	Ξ
Trichloroethene	QN	0.0	0.0732)	[1]	N	_	0.0732)	[=]	N	_	0.0732)	Ξ	Q	_	0.0732)	[1]
Trichlorofluoromethane	Q	0.0	0.0980)	[1]	0.0208) B	0.0980)	Ξ	QN	_	0.0980)	Ξ	QN	_	0.0380)	[1]
Vinyl chloride	R	.0	0.151)	[1]	R	_	0.151)	[1]	QN	_	0.151)	[]	QN	_	0.151)	[1]
cis-1,3-Dichloropropene	ND	0.0	0.0804)	[1]	N S	_	0.0804)	Ξ	QN	_	0.0804)	Ξ	Q.	_	0.0804)	Ξ
trans-1,2-Dichloroethene	QN	0.0	0.0870)	[1]	Q	_	0.0870)	[]	QN	_	0.0870)	Ξ	S	_	0.0870)	Ξ
trans-1,3-Dichloropropene	QN	0.0	0.0719)	[1]	2	<u> </u>	0.0719)	Ξ	QN	<u> </u>	0.0719)	Ξ	Q.	<u> </u>	0.0719)	Ξ
SW8015 - Nonhalogenated Volatile Organics	ganics (mg/L)	(T)														
2-Butanone(MEK)	NA				NA				NA				QN	_	2.38)	[1]
4-Methyl-2-pentanone(MIBK)	NA				N				NA				S	_	1.46)	Ξ
Ethanol	NA				AN				NA				S	_	0.301)	
Ethyl ether	NA				NA				NA				QN	<u> </u>	1.16)	Ξ
SW8020 - Aromatic Volatile Organics	(ng/L)															
1,2-Dichlorobenzene	QN	0.0	0.0784)	Ξ	N	_	0.0784)	Ξ	ON	_	0.0784)	[]	0.0465	KJB (0.0796)	Ξ
1,3-Dichlorobenzene	0.0541 KJB	_	0.0756)	[1]	R	_	0.0780)	[1]	ON.	_	0.0780)	Ξ	QN N	_	0.0756)	Ξ
1,4-Dichlorobenzene	0.0471 KJB	_	0.0813)	[1]	2	_	0.0711)	Ξ	QN	_	0.0711)	Ξ	Q	_	0.0711)	[1]
Compiled: 16 March 1995 ()	= Detection Limit	Limit	0 = 0	= Dilution Factor		= QN	= Not Detected	NA =	= Not Applicable]e	R = Invalid Result,	4 Result	, Refer to QC Report	QC Re	port	

					SITE ID LOCATION ID SAMPLE ID	ID ON ID E ID									
		က			ო					m			7		
	70	07-SW-05		c	90-MS-20	06			07-SW-07	W-07			08-GP-01	-01	
PARAMETER	(c - 70	IO-CO-#		ر	U>MU/U	6-U1			MS-/0	0/-SW-07-01			08-GP-01-01	01-01	
SW8020 - Aromatic Volatile Organics, cont	nics, cont. (ug/L)			1		! ! ! !	!		 		!		 		! ! ! !
Benzene	0.0511 JB (0.0832)	[1]	0.0724 JB	_	0.0832)	[1]	0.0235	JB (0.0832)	[1]	0.422 B	_	0.0832)	[]
Chlorobenzene	0.0175 KJB (0.0452)	Ξ	ND	_	0.0802)	[1]	QN	_	0.0802)				0.0802)	ΞΞ
Ethylbenzene	0.0799 JB (0.0813)	Ξ	0.0363 JB	_	0.0813)	[1]	0.0313	JB (0.0813)		0.186		0.0813)	ΞΞ
Toluene		0.0813)	Ξ		_	0.0813)	[]	R	<u> </u>	0.0813)	[1]	0.982 B	_	0.0813)	Ξ
Xylene (total)	0.344 B (0.0811)	Ξ	0.162 8	_	0.0811)	[1]	0.0616	JB (0.0811)	Ξ	0.977 B	_	0.0811)	[1]
SW8270 - Semivolatile Organics	(ug/L)														
1,2,4-Trichlorobenzene) QN	0.657)	[1]	ON	_	0.635)	[1]	QN	_	0.646)	[1]	QN	_	0.576)	Ξ
1,2-Dichlorobenzene	ON ON	0.866)	Ξ	ON	_	0.838)	[1]	Q.	_	0.851)	[1]	S	_	0.623)	Ξ
1,3-Dichlorobenzene) ON	0.440)	[1]	ON	_	0.426)	[1]	QN	_	0.433)	[1]	QN	_	0.703)	Ξ
1,4-Dichlorobenzene) ON	0.898)	Ξ	ON	_	0.869)	[1]	ND	_	0.883)	Ξ	ON	_	0.576)	Ξ
2,4,5-Trichlorophenol) ON	0.367)	[1]	ON	_	0.355)	[1]	ON	<u> </u>	0.361)	[1]	Q.	_	0.499)	[1]
2,4,6-Trichlorophenol) QN	0.388)	[1]	QN	_	0.375)	[1]	QN	_	0.381)	[1]	N N	_	0.496)	[1]
2,4-Dichlorophenol	ON The state of th	0.492)	Ξ	QN	J	0.476)	[1]	QN	<u> </u>	0.484)	Ξ	ON	_	0.558)	[1]
2,4-Dimethylphenol	ON C	1.22)	Ξ:	R	<u> </u>	1.18)	Ξ	QN	_	1.20)	[1]	ND	_	1.27)	[1]
2.4-Dimitrophenol	ON S	(8/./	Ξ3	Q :	_ 、	7.53)	Ξ	Q !	<u> </u>	7.65)	[1]	QN	_	4.10)	[1]
2.4-Dinitrotoluene) ON	0.611)	ΞΞ	0 ×	_ <	0.591)	ΞΞ	2 9		0.601)	ΞΞ	운 :		0.579)	Ξ
2-Chloronaphthalepe	ON ON	0.360)	ΞΞ	2 2		0.376)	E E	D S	_ 、	0.3/8)	ΞΞ	ON :	٠ ,	0.844)	
2-Chloronhenol	CN CN	0.330)	3 5	2 9	- <	0.040)	ΞΞ	2 4	- \	0.334)	Ξ.	ON .	_ 、	0.384)	Ξ :
2-Methylnaphthalene	ON ON	0.043)	ΞΞ	Q. Q.	<i>-</i> \	0.066)	ΞΞ	2 2		0.835)	ΞΞ	2 9	_ 、	0.623)	ΞΞ
2-Mathylphonol (o-onocol)		(601.0	3 3	2 4	- \	0.710)	Ξ3	⊋ :	٠ ,	0.721)	Ξ:	S .	-	0.35/)	Ξ
2 Mituurijia	ON CH	0.593)	∃ 3	QN :		0.5/4)	Ξ:	QN N		0.584)	Ξ	1.25	_	0.304)	Ξ
Z-Nitroaniine	ON :	0.447)	[]	QN	_	0.432)	Ξ	S	_	0.439)	Ξ	ND	_	0.650)	[1]
Z-Nitrophenol	ON !	0.489)	Ξ	Q	_	0.473)	Ξ	2	_	0.481)	Ξ	ND	_	0.512)	Ξ
3,3 -Dichlorobenzidine) QN	0.544)	\Box	ND	_	0.527)	Ξ	Q	_	0.536)	[1]	QN	_	0.326)	[1]

() = Detection Limit [] = Dilution Factor

ND = Not Detected

NA = Not Applicable

1							SITE LOCATI SAMPL	SITE ID OCATION ID SAMPLE ID		,							
(ug/L) (ug/L)<			က				က					~			,,		
(ug/L) NO (0.566) [1] NO (0.567) [1] NO (0.567) [1] NO (0.567) [1] NO (0.568) [1] NO (0.472) NO (0.803) [1] NO (0.682) [1] NO (0.472) NO (0.803) [1] NO (0.682) [1] NO (0.472) NO (0.803) [1] NO (0.682) [1] NO (0.472) NO (0.683) [1] NO (0.601) [1] NO (0.472) NO (0.683) [1] NO (0.611) [1] NO (0.475) NO (0.623) [1] NO (0.611) NO (0.693) [1] NO (0.693) NO (0.624) [1] NO (0.		07	-SW-0!	5			WS-70	-06			S-70	4-07			19-80	-01	
(ug/l) (ug/l)<	PARAMETER	0		10			* * C - / C	10-00			* C-/0	10- /0-			00-00	10-10-	
ND (0.566) [1] ND (0.547) [1] ND (0.547) [1] ND (0.546) [1] ND (0.566) [1] ND (0.567) [1] ND (0.547) [1] ND (0.450) [1] ND (0.547) [1] ND (0.450) [1] ND	SW8270 - Semivolatile Organics, cont.	(ng/L)															
ND (0.880) [1] ND (0.822) [1] ND (0.842) [1] ND (0.482) [1] ND	3-Nitroaniline	QN	_	0.566)	[1]	QN	_	0.547)	[1]	N	_	0.556)	Ξ	QN	_	0.385)	Ξ
ND (0.507) [1] ND (0.490) [1] ND (0.490) [1] ND (0.490) [1] ND (0.490) [1] ND (0.777) [1] ND (0.777) [1] ND (0.773) [1] ND (0.730) ND (0.621) [1] ND (0.628) [1] ND (0.577) [1] ND (0.730) ND (0.628) [1] ND (0.628) [1] ND (0.529) [1] ND <	4,6-Dinitro-2-methylphenol	ND	_	0.880)	[1]	QN	_	0.852)	Ξ	ON	_	0.866)	Ξ	QN	_	0.422)	[1]
ND (0.803) [1] ND (0.777) [1] ND (0.777) [1] ND (0.601) [1] ND	4-Bromophenyl phenyl ether	Q.	_	0.507)	Ξ	Q	_	0.490)	[1]	Q	_	0.498)	[1]	QN	<u> </u>	0.475)	Ξ
ND (0.621) [1] ND (0.601) [1] ND (0.601) [1] ND (0.753) [1] ND (0.758) [1] ND (0.758) [1] ND (0.758) [1] ND (0.758) [1] ND (0.759) [1] ND	4-Chloro-3-methylphenol	Q.	J	0.803)	[1]	Q	_	0.777)	Ξ	Q	_	0.790)	[1]	QN	_	0.505)	[1]
ND (0.587) [1] ND (0.568) [1] ND (0.577) [1] ND (0.480) [1] ND (0.480) [1] ND (0.480) [1] ND (0.549) [1] ND (0.540) [1] ND	4-Chloroaniline	ON	_	0.621)	[1]	Q	_	0.601)	Ξ	QN	_	0.611)	[1]	QN	_	0.730)	[1]
ND (0.639) [1] ND (0.618) [1] ND (0.628) [1] ND (0.450) ND (0.538) [1] ND (0.520) [1] ND (0.524) [1] ND (0.527) [1] ND (0.527) [1] ND (0.524) [1] ND	4-Chlorophenyl phenyl ether	Q	_	0.587)	Ξ	Q	_	0.568)	[1]	Q	_	0.577)	Ξ	QN	_	0.413)	[1]
ND (0.538) [1] ND (0.520) [1] ND (0.520) [1] ND (0.521) [1] ND (0.544) [1] ND (0.545) [1] ND (0.549) [1] ND (0.540) [1] ND (0.540) [1] ND (0.541) [1] ND (0.542) [1] ND (0.542) [1] ND (0.540) [1] ND	4-Methylphenol(p-cresol)	Q	_	0.639)	[1]	Q	_	0.618)	Ξ	2	_	0.628)	Ξ	ON	_	0.450)	[1]
ND (0.768) [1] ND (0.743) [1] ND (0.743) [1] ND (0.755) [1] ND (0.914) ND (0.531) [1] ND (0.543) [1] ND (0.547) [1] ND (0.547) ND (0.646) [1] ND (0.645) [1] ND (0.645) [1] ND (0.645) ND (0.646) [1] ND (0.653) [1] ND (0.648) [1] ND (0.648) ND (0.646) [1] ND (0.652) [1] ND (0.648) [1] ND (4-Nitroaniline	Q	_	0.538)	[]	ON	_	0.520)	Ξ	Q	_	0.529)	[1]	Q	_	0.594)	Ξ
ND (0.531) [1] ND (0.544) [1] ND (0.543) [1] ND (0.243) [1] ND (0.247) [1] ND (0.243) [1] ND (0.410) ND (0.646) [1] ND (0.635) [1] ND (0.410) ND (0.646) [1] ND (0.635) [1] ND (0.440) ND (0.642) [1] ND (0.632) [1] ND (0.640) ND (0.642) [1] ND (0.642) [1] ND (0.680) ND (0.642) [1] ND (0.642) [1] ND (0.680) ND (0.642) [1] ND (0.642) [1] ND (0.648) ND (0.642) [1] ND (0.642) [1] ND (0.648) ND (0.642) [1] ND (0.642) [1] ND (0.642)<	4-Nitrophenol	2	_	0.768)	Ξ	QN	_	0.743)	[1]	9	_	0.755)	[1]	QN	_	0.919)	[I]
ND (0.251) [1] ND (0.247) [1] ND (0.440) ND (0.646) [1] ND (0.625) [1] ND (0.635) [1] ND (0.401) ND (0.646) [1] ND (0.625) [1] ND (0.641) [1] ND (0.641) ND (0.642) [1] ND (0.642) [1] ND (0.640) ND (0.642) [1] ND (0.622) [1] ND (0.628) ND (0.642) [1] ND (0.622) [1] ND (0.622) ND (0.642) [1] ND (0.622) [1] ND (0.622) ND (0.642) [1] ND (0.622) [1] ND (0.622) ND (0.642) [1] ND (0.622) [1] ND (0.622) ND (0.642) [1] ND (0.622) <td>Acenaphthene</td> <td>9</td> <td>_</td> <td>0.531)</td> <td>Ξ</td> <td>QN</td> <td>_</td> <td>0.514)</td> <td>Ξ</td> <td>Q</td> <td>_</td> <td>0.522)</td> <td>[1]</td> <td>QN N</td> <td>_</td> <td>0.267)</td> <td>[1]</td>	Acenaphthene	9	_	0.531)	Ξ	QN	_	0.514)	Ξ	Q	_	0.522)	[1]	QN N	_	0.267)	[1]
ND (0.646) [1] ND (0.655) [1] ND (0.554) [1] ND (0.563) [1] ND (0.440) ND (0.572) [1] ND (0.412) [1] ND (0.541) [1] ND (0.563) [1] ND (0.568) ND (0.632) [1] ND (0.612) [1] ND (0.598) [1] ND (0.598) ND (0.541) [1] ND (0.522) [1] ND (0.593) ND (0.541) [1] ND (0.524) [1] ND (0.593) [1] ND (0.598) ND (0.541) [1] ND (0.524) [1] ND (0.523) [1] ND (0.598) ND (0.442) [1] ND (0.423) [1] ND (0.433) [1] ND (0.524) [1] ND (0.529) [1] ND (0.5	Acenaphthylene	S	_	0.251)	Ξ	QN	_	0.243)	[]]	Q	_	0.247)	[1]	QN	_	0.410)	[1]
ND (0.572) [1] ND (0.554) [1] ND (0.563) [1] ND (0.508) [1] ND (0.440) [1] ND (0.440) [1] ND (0.508) [1	Anthracene	S	_	0.646)	[<u>.</u>	QN	_	0.625)	[1]	Q	_	0.635)	Ξ	QN	_	0.361)	Ξ
ND (0.426) [1] ND (0.612) [1] ND (0.622) [1] ND (0.524) [1] ND (0.622) [1] ND (0.624) [1] ND (0.624) [1] ND (0.632) [1] ND (0.743) [1] ND	Benzo(a)anthracene	9	_	0.572)	[1]	Q	_	0.554)	[1]	Q	_	0.563)	[1]	QN	_	0.440)	Ξ
ND (0.632) [1] ND (0.612) [1] ND (0.890) ND (0.541) [1] ND (0.532) [1] ND (0.979) ND (0.541) [1] ND (0.532) [1] ND (0.979) ND (1.08) [1] ND (1.04) [1] ND (0.979) ND (1.20) [1] ND (1.18) [1] ND (0.979) ND (0.437) [1] ND (0.439) [1] ND (0.598) ND (0.743) [1] ND (0.731) [1] ND (0.589) ND (0.548) [1] ND (0.539) [1] ND (0.548) [1] ND (0.548) [1] ND (0.548) [1] ND (0.548) <td>Benzo(a)pyrene</td> <td>9</td> <td>_</td> <td>0.426)</td> <td>[1]</td> <td>Q</td> <td>_</td> <td>0.412)</td> <td>Ξ</td> <td>QN</td> <td>_</td> <td>0.419)</td> <td>[1]</td> <td>QN</td> <td>_</td> <td>0.508)</td> <td>[1]</td>	Benzo(a)pyrene	9	_	0.426)	[1]	Q	_	0.412)	Ξ	QN	_	0.419)	[1]	QN	_	0.508)	[1]
ND (0.541) [1] ND (0.524) [1] ND (1.04) [1] ND (1.06) [1] ND (1.09) ND (1.08) [1] ND (1.04) [1] ND (1.06) [1] ND (0.979) ND (1.20) [1] ND (1.16) [1] ND (1.18) [1] ND (0.598) ND (0.437) [1] ND (0.423) [1] ND (0.430) [1] ND (0.598) ND (0.743) [1] ND (0.719) [1] ND (0.731) [1] ND (0.526) ND (0.548) [1] ND (0.530) [1] ND (0.986) [1] ND (0.986) [1] ND (0.996) [1] ND (0.996) [1] ND (0.996) [1] ND (0.996) [1] ND (0.446) [1] ND (0.446) <td>Benzo(b)fluoranthene</td> <td>N_O</td> <td>_</td> <td>0.632)</td> <td>Ξ</td> <td>Q</td> <td>_</td> <td>0.612)</td> <td>[1]</td> <td>Q</td> <td>_</td> <td>0.622)</td> <td>[1]</td> <td>QN</td> <td><u> </u></td> <td>0.890)</td> <td>Ξ</td>	Benzo(b)fluoranthene	N _O	_	0.632)	Ξ	Q	_	0.612)	[1]	Q	_	0.622)	[1]	QN	<u> </u>	0.890)	Ξ
ND (1.08) [1] ND (1.04) [1] ND (1.06) [1] ND (0.979) ND (4.40) [1] ND (4.26) [1] ND (4.33) [1] ND (37.8) ND (0.437) [1] ND (0.423) [1] ND (0.430) [1] ND (0.589) ND (0.743) [1] ND (0.719) [1] ND (0.731) [1] ND (0.526) ND (0.548) [1] ND (0.580) [1] ND (0.539) [1] ND (0.345) ND (0.527) [1] ND (0.510) [1] ND (0.518) [1] ND (0.595) ND (0.545) [1] ND (0.439) [1] ND (0.518) [1] ND (0.526) ND (0.545) [1] ND (0.540) [1] ND (0.556) ND (0.557) [1] ND (0.540) [1] ND (0.556) ND (0.557) [1] ND (0.543) [1] ND (0.556)	Benzo(g,h,i)perylene	9	_	0.541)	[1]	Q	_	0.524)	Ξ	Q	_	0.532)	Ξ	QN	_	1.00)	[1]
ND (4.40) [1] ND (4.26) [1] ND (4.33) [1] ND (37.8) ND (1.20) [1] ND (1.16) [1] ND (0.598) [1] ND (0.598) ND (0.437) [1] ND (0.423) [1] ND (0.613) ND (0.743) [1] ND (0.719) [1] ND (0.526) ND (0.548) [1] ND (0.530) [1] ND (0.539) [1] ND (0.539) ND (0.557) [1] ND (0.980) [1] ND (0.996) [1] ND (0.996) [1] ND (0.795) ND (0.527) [1] ND (0.449) [1] ND (0.446) [1] ND (0.526)	Benzo(k)fluoranthene	9	_	1.08)	[1]	Q	_	1.04)	Ξ	Q	_	1.06)	[1]	Q	_	0.979)	[1]
ND (1.20) [1] ND (1.16) [1] ND (1.18) [1] ND (0.598) ND (0.437) [1] ND (0.423) [1] ND (0.430) [1] ND (0.613) ND (0.743) [1] ND (0.719) [1] ND (0.731) [1] ND (0.526) ND (0.548) [1] ND (0.530) [1] ND (0.539) [1] ND (0.318) ND (1.01) [1] ND (0.980) [1] ND (0.996) [1] ND (0.345) ND (0.527) [1] ND (0.439) [1] ND (0.446) [1] ND (0.526)	Benzoic acid	9	_	4.40)	Ξ	R	_	4.26)	Ξ	ON	_	4.33)	[1]	Q	_	37.8)	Ξ
ND (0.437) [1] ND (0.423) [1] ND (0.430) [1] ND (0.613) ND (0.743) [1] ND (0.719) [1] ND (0.731) [1] ND (0.526) ND (0.548) [1] ND (0.530) [1] ND (0.539) [1] ND (0.318) ND (1.01) [1] ND (0.980) [1] ND (0.996) [1] ND (0.345) ND (0.527) [1] ND (0.510) [1] ND (0.518) [1] ND (0.795) ND (0.453) [1] ND (0.439) [1] ND (0.446) [1] ND (0.526)	Benzyl alcohol	S	_	1.20)	Ξ	Q	_	1.16)	Ξ	Q	_	1.18)	Ξ	QN	<u> </u>	0.598)	Ξ
ND (0.743) [1] ND (0.719) [1] ND (0.731) [1] ND (0.526) ND (0.548) [1] ND (0.530) [1] ND (0.539) [1] ND (0.318) ND (1.01) [1] ND (0.980) [1] 0.480 J (0.996) [1] ND (0.345) ND (0.527) [1] ND (0.510) [1] ND (0.518) [1] ND (0.795) ND (0.453) [1] ND (0.439) [1] ND (0.446) [1] ND (0.526)	Butylbenzylphthalate	2	_	0.437)	Ξ	용	_	0.423)	Ξ	9	<u> </u>	0.430)	Ξ	SN	_	0.613)	Ξ
ND (0.548) [1] ND (0.530) [1] ND (0.539) [1] ND (0.318) ND (1.01) [1] ND (0.980) [1] 0.480 J (0.996) [1] ND (0.345) ND (0.527) [1] ND (0.510) [1] ND (0.518) [1] ND (0.795) ND (0.453) [1] ND (0.439) [1] ND (0.446) [1] ND (0.526)	Chrysene	N	_	0.743)	Ξ	Q	_	0.719)	Ξ	QN	_	0.731)	[]	QN	_	0.526)	[1]
ND (1.01) [1] ND (0.980) [1] 0.480 J (0.996) [1] ND (0.345) ND (0.527) [1] ND (0.510) [1] ND (0.518) [1] ND (0.795) ND (0.453) [1] ND (0.439) [1] ND (0.446) [1] ND (0.526)	Di-n-butylphthalate	S	_	0.548)	Ξ	R	_	0.530)	Ξ	S	_	0.539)	[]	QN	_	0.318)	Ξ
ND (0.527) [1] ND (0.510) [1] ND (0.518) [1] ND (0.795) ND (0.453) [1] ND (0.526)	Di-n-octylphthalate	N Q	_	1.01)	[1]	Q	_	0.980)	Ξ	480	_	0.996)	[1]	QN	_	0.345)	[1]
ND (0.453) [1] ND (0.439) [1] ND (0.446) [1] ND (0.526) [Dibenz(a,h)anthracene	Q.	_	0.527)	Ξ	S	_	0.510)	Ξ	QN	_	0.518)	Ξ	QN	_	0.795)	Ξ
	Dibenzofuran	N	_	0.453)	Ξ	QN	_	0.439)	Ξ	Q	_	0.446)	Ξ	Q.	_	0.526)	. [1]

				Ξ	ΞΞ	ΞΞ	Ξ	ΞΞ	Ξ	ΞΞ	ΞΞ	Ξ			[]		[1]	[]	[1]	Ξ	[1]	Ξ			ΞΞ	
		01 1-01		0.505)	0.329)	0.264)	0.462)	0.373)	0.308)	0.502)	5.77)	0.623)	1.30)	0.604)	0.641)	0.469)	0.825)	0.872)	0.459)	0.866)	0.400)	0.594)	0.375)	0.782)	0.570)	
	7	08-GP-01		_	ـ ـ		· _		_					_	_	_	_	_	_	_	_	_	_			
				QN	QN	QN	N	ND	Q	Q	Q	9	ON	ND	QN	ND.	QN	QN	N N	N	ON	QN	Q	Q	N	
				[1]	[1]	[E]	Ξ	[1]	[1]			Ξ		[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	
		0.1	:	0.367)	0.306)	0.619)	0.697)	0.367)	0.256)	0.763)	9.75)	0.649)	0.574)	0.314)	0.821)	0.797)	0.577)	0.944)	0.680)	0.436)	0.511)	0.614)	0.800)	0.793)	2.00)	
	က	07-SW-07 07-SW-07-01	1 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	0	0	0	0	0)	0	0	_	0)	0	0	0	0)	0)	0)	0	0	0	0	0	.0		
	•	0 00	 	QN	QN	QN	QN	ON	QN	Q	QN	Q	QN	ON.	ND	Q	ND	QN	QN	Q.	ND	Q.	QN	QN	ND	
				[7]	[1]	[1]		[1]		[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	
ID ON ID E ID	Ç	u6 6-01	! ! ! !	0.361)	0.301)	0.609)	0.686)	0.361)	0.252)	0.751)	9.59)	0.639)	0.565)	0.309)	0.808)	0.784)	0.568)	0.929)	0.669)	0.429)	0.503)	0.604)	0.787)	0.781)	1.97)	
SITE ID LOCATION ID SAMPLE ID	3	U/-SW-U6 07-SW-06-01	! ! ! !	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
			 	Q.	Q	ON	NO	QN	QN	QN	ON	ON	ON	QN	Q	0.352 J	S	QN	S	S	Q.	S	R	QN	QN	
			; 	\Box	[1]	[1]	[1]	[1]	Ξ	Ξ	[1]	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	[1]	Ξ	Ξ	Ξ	[1]	
	ij	-03 05-01	1 1 1 1 1 1 1	0.373)	0.311)	0.629)	0.709)	0.373)	0.260)	0.776)	9.91)	0.660)	0.583)	0.319)	0.834)	0.810)	0.587)	0.960)	0.691)	0.443)	0.520)	0.624)	0.813)	0.807)	2.03)	
	3	07-SW-05-01	(_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_		_	_		_	_	_	_	
			(ng/L)	Q	Q	ND	Q	QN	Q	Q	Q	Q	9	2	S	0.210 J	2	Q :	2	9	QN :	2	2	Q	S	
		PARAMETER 	SW8270 - Semivolatile Organics, cont.	Diethylphthalate	Dimethylphthalate	Diphenylamine/N-NitrosoDPA	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	rnenanthrene	Phenol	Pyrene	bls(2-thloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropy))ether	bis(2-Ethylhexyl)phthalate	

[] = Dilution Factor () = Detection Limit

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

			Ξ	Ξ		[1]	[1]	[1]	[1]	[1]	Ξ	Ξ	Ξ	[1]	[1]		Ξ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	A7-73
	-01 -01 Dup of	01-01	200)	100)		0.0285)	0.138)	0.0427)	0.0172)	0.0729)	0.0568)	0.0367)	0.0288)	0.0286)	0.0320)	0.0902)	0.0322)	0.0957)	0.0201)	0.0095)	0.161)	0.0444)	
	7 08-SW-01 08-SW-01-DS-01 Dup of	08-SW-01-01	0 JB (0 38 () ON	0 JB () ON) ON) ON) ON) ON) ON) ON) ·) . 2) . Qu !!		ON CAN			ON ON	= Invalid Result, Refer to QC Report
	0		16.0	24.0		Z	0.0130	Z	Z	Z	Z	Z	Z	z	Z	2	Z:	2 2	2 2	2 2	: 2	· 2	lt, Refer
			[1]	[1]		Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	id Resu
·	7 08-SW-01 08-SW-01-01		200)	100)		0.0285)	0.138)	0.0427)	0.0172)	0.0729)	0.0568)	0.0367)	0.0288)	0.0286)	0.0320)	0.0902)	0.0322)	0.095/)	0.0201)	0.0033)	0.161)	0.0444)	R = Inval
	7 08-SW-01 08-SW-01-		JB (JB (<u> </u>) B	_		_	_	_	_	_	<u> </u>	_ 、						· _	able
			7.00	22.0				QN	Q	S	R	S N	S	QN	8	2 1	2 9		2 5	2 5	2	QN N	NA = Not Applicable
			[1]	[1]		[1]	Ξ	[1]	[1]	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	ΞΞ	ΞΞ	ΞΞ	3 5	ΞΞ	ΞΞ	Ξ	
SITE ID LOCATION ID SAMPLE ID	7 08-GP-03 08-GP-03-01		200)	100)		0.0219)	0.147)	0.144)	0.0454)	0.0222)	0.112)	0.109)	0.0949)	0.0823)	0.0228)	0.08/8)	0.0908)	0.0404)	0.101)	0.0886)	0.0858)	0.0854)	= Not Detected
SIT LOCAT SAMF	7 08-GP-03 08-GP-03-		JB (JB (_			<u> </u>	_		_			<u> </u>	_			۔ ر		<i>-</i>	_	ND = No
			3.00	20.0		QN	Q.	S	2	Q	R	9	Q.	2	2 :	Q :	2 5	2 2	2 5	2 2	Q	QN	Factor
			[1]	[1]		Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ3	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	[]	= Dilution
	-02 02-01		200)	100)		0.0219)	0.147)	0.144)	0.0454)	0.0222)	0.112)	0.109)	0.0949)	0.0823)	0.0228)	0.08/8)	0.0908)	0.0404)	0 0451)	0.0886)	0.0858)	0.0854)	
	7 08-GP-02 08-GP-02-01			J	_	<u> </u>		٠ .							_ 、	_ <				_ ر		_	on Lim
			57.0 J	760		2	2	€ :	2 :	2	2	2	2	2 :	2 9	2 9	2 5	2 2	2 2	2	N	QN	() = Detection Limit
		PARAMETER	Diesel Range Organics (ug/L) Diesel Range Organics	Gasoline Range Organics (ug/L) Gasoline Range Organics	SW8010 - Halogenated Volatile Organics	1,1,1,2-Tetrachloroethane	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-CHIOCOMEXAME 2-Chloroethyl vinyl ether	Bromobenzene	Bromodichloromethane	Bromomethane	Carbon tetrachloride	Compiled: 16 March 1995 ()

	1 1 1 1 1		\square	Ξ	Ξ	Ξ	ΞΞ	Ξ	Ξ	Ξ	ΞΞ	Ξ	Ξ	ΞΞ		Ξ	[1]		[1]	ΞΞ	ΞΞ	ΞΞ		[1]	
, 1-01	08-SW-01-DS-01 Dup of 08-SW-01-01		0.0301)	0.0499)	0.0512)	0.0213)	0.0101)	0.0939)	0.0430)	0.0381)	0.252)	0.0387)	0.0603)	0.0761)	0.0220)	0.160)	0.0302)		2 38)	1.46)	0 301)	1.16)		0.0263)	ort
7 08-SW-01	/-01-DS-01 D 08-SW-01-01		_	_	_	JB (_	_	TB (_			_	_		_	_		_			_ ر		_	qc Rep
	VS-80		S	N	8	0.0190	N	Q	0.550 T	QN	QN	QN	SN.	QN	QN	9	QN		S	2	2 2	2 8		ON	Invalid Result, Refer to QC Report
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ξ	Ξ	Ξ	[1]	[1]		Ξ	Ξ	[]	Ξ	[1]	Ξ	Ξ	[1]	[1]		Ξ	ΞΞ	ΞΞ	ΞΞ		[1]	d Result,
7 7 4-01	08-SW-01-01		0.0301)	0.0499)	0.0512)	0.0213)	0.0101)	0.0939)	0.0430)	0.0381)	0.252)	0.0387)	0.0603)	0.0761)	0.0220)	0.160)	0.0302)		2.38)	1.46)	0.301)	1.16)		0.0263)	R = Invali
7 08-SW-01	08-SW		_	_	_	JB (_	_) B	_	_	_	_	_	_	_	_		_					_	ble
			QN	QN	QN	0.0159	QN	ON	0.152	ND	QN	ON	QN	ON	QN	ON	ON		Q	Q.	QN.	QN		ND	Not Applicable
			[1]	[1]	[1]	Ξ	[1]	[1]	Ξ	[1]			[1]	[1]	Ξ	[1]	Ξ		[]	ΞΞ	ΞΞ	Ξ		Ξ	NA =
SITE ID LOCATION ID SAMPLE ID 7 7 7 7 88-6P-03	U8-GP-03-01		0.124)	0.0800)	0.0258)	0.151)	0.0820)	0.0742)	0.0842)	0.0750)	0.0944)	0.0732)	0.0980)	0.151)	0.0804)	0.0870)	0.0719)		2.38)	1.46)	0.301)	1.16)		0.0796)	Not Detected
SITE II LOCATION SAMPLE 7 08-GP-03	08-GP	,	_	_	_	_	_	_	JB (_	_	_	_	_	_	_	<u> </u>		_	. <u> </u>	· _			KJB (ND = No
			Q	Q	QN	ON	ON	Q	0.0504	QN	ON	QN	ON	ON	ON	QN	QN		QN	QN	QN	ON		0.0322	Factor
			Ξ		\Box	Ξ	[1]	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	[1]	[1]	[1]		[1]	ΞΞ	[1]	[1]		[1]	Dilution
7 08-6P-02	TD-20-	(ng/L)	0.124)	0.0800)	0.0258)	0.151)	0.0820)	0.0742)	0.0842)	0.0750)	0.0944)	0.0732)	0.0980)	0.151)	0.0804)	0.0870)	0.0719)		2.38)	1.46)	0.301)	1.16)		0.0784)	
08-60	19-00				_	JB (<u> </u>	_	_	_	_	_	_	_	<u> </u>	_	_	ma/L)	. —	_	_	_) L	ion Lir
		ics, cont	Q :	Q.		0.0184	ND	Q	Q	QN	QN	QN	QN	Q	QN	2	QN	anics (I	9	Q.	ND Q	QN	(1/511)	ND ND	= Detection Limit
	PARAMETER	SW8010 - Halogenated Volatile Organics, cont.	Chlorobenzene	Chloroethane			Dibromochloromethane	Dibromomethane	Methylene chloride	Tetrachloroethene	Tribromomethane(Bromoform)	Trichloroethene	Trichlorofluoromethane	Vinyl chloride	cis-1,3-Dichloropropene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	SW8015 - Nonhalogenated Volatile Organics (mg/L)	2-Butanone(MEK)	4-Methyl-2-pentanone(MIBK)	Ethanol	Ethyl ether	SW8020 - Arcmatic Volatile Organice	1,2-Dichlorobenzene	Compiled: 16 March 1995 () =

SITE ID LOCATION ID SAMPLE ID	7 7 7 7 7 7 08-SW-01 01 08-SW-01-01 08-SW-01-01 08-SW-01-01 08-SW-01-01 08-SW-01-01 08-SW-01-01 08-SW-01-01 08-SW-01 08-	TO TO MO DO		ND (0.0780) [1] ND (0.0218) [1] ND (ND (0.0711) [1] ND (0.0131) [1] ND (0.243 B (0.0832) [1] ND (0.00980) [1] ND (C	ND (0.0802) [1] ND (0.0140) [1] ND (0.0940 B (0.0813) $_{\sim}$ [1] ND (0.0199) [1] ND (0.742 B (0.0813) [1] ND (0.0330)	0.420 B (0.0811) [1] ND (0.0528)		ND (0.571) [1] ND (ND (0.611) [1] ND (0.617) [1] ND (ND (0.689) [1] ND (0.696)	ND (0.565) [1] ND (0.571) [1] ND (ND (0.489) [1] ND (0.494) [1] ND (ND (0.487) [1] ND (0.491) [1] ND (ND (0.547) [1] ND (0.552) [1]	ND (1.25) [1] ND (1.26) [1] ND (ND (4.02) [1] ND (4.06) [1]	ND (0.568) [1] ND (0.574)	ND (0.828) [1] ND (0.836)	NO (0.377) [1] ND (0.381) [1] ND (ND (0.611) [1] ND (0.617) [1] ND (ND (0.350) [1] ND (0.353) [1] ND (ND (0.298) [1] ND (0.301)
	, 12-80 -W2-80	5 0 0 0) Q) QN) ON) ON) ON) ON) ON) ON) ON) ON) QN) GN) ON) ON) ON) ON) ON) ON) GN) ON) ON) ON
				[1]	Ξ	[1]	[1]		[1]	Ξ		[1]	[1]	[1]	[1]	[1]	Ξ	[1]	<u> </u>	[1]	[1]	[1]	[1]	[1]	[1]	Ξ
ITE ID ATION ID MPLE ID	7 GP-03 P-03-01			0.0780)	0.0711)	0.0832)	0.0802)		0.0813)	0.0811)		0.565)	0.611)	0.689)	0.565)	0.489)	0.487)	0.547)	1.25)	4.02)	0.568)	0.828)	0.377)	0.611)	0.350)	0.298)
81 1007 8AN	9-80		·	ON !) QN) ON).0940 B (0.742 B (0.420 B () ON	ON ON) ON) ON) ON) QN) ON) QN) ON) ON) ON) ON) ON) ON) QN
				[25]	[1]	[52]	Ξ		[25]	[25]		Ξ	[1]	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ
	7 08-GP-02 08-GP-02-01			1.95)	0.0711)	2.08)	0.0802)	2.03)	2.03)	2.03)		0.582)	0.629)	0.710)	0.582)	0.504)	0.501)	0.563)	1.29)	4.14)	0.585)	0.852)	0.388)	0.629)	0.360)	0.307)
	9-80 9-80		ľ	0.634 KJ () L ON	-	0.0296 TJB (0.926 J (411 (2.89 ((ng/L)) GN) ON) QN) ON) QN) QN) ON	0.845 J () ON) QN) QN) ON) QN) ON	9.01
		PARAMETER	SW8020 - Aromatic Volatile Organics,	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Benzene	Chlorobenzene	Ethylbenzene	Toluene	Xylene (total)	SW8270 - Semivolatile Organics (ug	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol (o-cresol)

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

						SITE ID LOCATION ID SAMPLE ID	ID ON ID E ID			i						
		·				!				•						
		7 / 08-GP-02	-02			7 08-GP-03	03			7 08-SW-01	01			7 08-SW-01	01	
	Ó	08-GP-02-01	02-01		Õ	08-GP-03-01	3-01		0	08-SW-01-01	1-01		-MS-80	.01-DS-	08-SW-01-DS-01 Dup of	
PARAMETER													0	08-SW-01-01	101	
SW8270 - Semivolatile Organics, cont.	(ng/L)	; ; ; [: : : : : : :	: : : : : : : : :	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	! ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
2-Nitroaniline	ON	_	0.656)	Ξ	QN	_	0.637)	[1]	QN	_	0.644)	Ξ	QN	_	0.663)	[]
2-Nitrophenol	QN	_	0.517)	Ξ	Q	_	0.502)	[1]	QN		0.507)	[]	S	<i>-</i>	0.522)	ΞΞ
3,3'-Dichlorobenzidine	QN	_	0.330)		QN	_	0.320)	Ξ	QN	_	0.323)	[1]	N N		0.333)	ΞΞ
3-Nitroaniline	Q.	_	0.389)	[1]	QN	_	0.378)	[1]	ND	_	0.382)	[1]	2		0.393)	<u> </u>
4,6-Dinitro-2-methylphenol	N N	_	0.426)	Ξ	QN	_	0.413)	Ξ	QN	Ų	0.417)	[1]	QN		0.430)	: E
4-Bromophenyl phenyl ether	QN	_	0.479)	Ξ	Q.	_	0.465)	Ξ	ON	_	0.470)	[1]	Q.	_	0.484)	[1]
4-Chloro-3-methylphenol	Q	_	0.510)	Ξ	Q	_	0.495)	[1]	Q	_	0.500)	[1]	S	_	0.515)	Ξ
4-Chloroaniline	QN	_	0.738)	Ξ	NO	_	0.716)	Ξ	Q	_	0.723)	[1]	QN	_	0.745)	[1]
her			0.417)	[1]	QN	_	0.405)	[1]	Q	_	0.409)	Ξ	ON	_	0.421)	[1]
(p-cresol)	50.2 F		0.454)		ON	_	0.441)	[1]	QN	_	0.446)	[1]	NO	_	0.459)	[1]
4-Nitroaniline	2		0.600)	[1]	Q.	_	0.583)	Ξ	R	_	0.588)	[1]	ND	_	0.606)	Ξ
4-Nitrophenol	9		0.928)	Ξ	QV	_	0.901)	[1]	Q	_	0.910)	[]	QN	_	0.937)	[1]
Acenaphthene	2		0.269)	Ξ	ON	_	0.262)	[1]	QN	_	0.264)	[1]	ON	_	0.272)	[1]
Acenaphthylene	2	_ 、	0.414)		Q	_	0.402)	Ξ	Q.	_	0.406)	[]	QN	_	0.418)	[]
Anthracene	0N :	_ 、	0.364)	Ξ	QN	_	0.354)	[1]	S	_	0.357)	[1]	QN	_	0.368)	Ξ
Benzo(a)anthracene	Q :		0.445)	Ξ	Q	_	0.432)	[1]	N Q	_	0.436)	Ξ	ND	_	0.449)	Ξ
benzo(a)pyrene	Q !	_ 、	0.513)	[]	Q N		0.498)	[1]	S	_	0.503)	[1]	QN	_	0.518)	[1]
benzo(b)Tluoranthene	Q.		0.899)	Ξ	QN	_	0.873)	Ξ	Q	_	0.882)	Ξ	QN	_	0.908)	[1]
Benzo(g,h,i)perylene	2	_	1.01)	[1]	QN	_	0.981)	Ξ	QN	_	(066'0	[1]	ON	_	1.02)	[1]
Benzo(k)†Iuoranthene	S	_	0.989)	[1]	QV	_	0.961)	[1]	QN	_	0.970)	[1]	QN	_	0.999)	[1]
Benzoic acid	2	_	38.2)	[1]	Q	_	37.1)	Ξ	Q	_	37.5)	[]	QN	_	38.6)	
Benzył alcohol	Q	~	0.604)		R	_	0.587)	Ξ	QN	_	0.592)	Ξ	QN	_	0.610)	[1]
Butylbenzylphthalate	QN	_	0.619)	[1]	R	_	0.601)	[1]	ON	_	0.607)	[1]	QN	_	0.625)	[1]
Chrysene	Q.	_	0.532)	Ξ	ND	_	0.516)	[1]	ND	_	0.521)	[1]	QN	_	0.537)	[1]

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report Compiled: 16 March 1995

	-					SITE ID LOCATION ID SAMPLE ID	0 10 10									
		7				7				7				7		
	30	08-GP-02	2		õ	08-GP-03			J	08-SW-01	1			08-SW-01	01	
	-80	08-GP-02-01	-01		-80	08-GP-03-01	01			08-SW-01-01	-01		MS-80	-01-DS-01 E	08-SW-01-DS-01 Dup of	
PARAMETER		i I I	1 1 1 1 1 1	 	 	1 1 2 1 1	 	! ! !	 	1 1 1 1	 1 1 1 1 1	! ! ! !	 	D		
SW8270 - Semivolatile Organics, cont.	(ng/L)															
Di-n-butylphthalate	QN	_	0.321)	[]	N Q	0	0.312)	Ξ	Q	_	0.315)	[1]	QN	_	0.324)	[]
Di-n-octylphthalate	ND	_	0.349)	Ξ	Q.	0	0.338)	[1]	QN	_	0.342)	[1]	QN	_	0.352)	[1]
Dibenz(a,h)anthracene	9	_	0.803)	[1]	2	0	0.780)	Ξ	Q	_	0.787)	Ξ	QN	J	0.811)	Ξ
Dibenzofuran	R	_	0.532)	[1]	S	0	0.516)	Ξ	P	_	0.521)	Ξ	QN	J	0.537)	[]
Diethylphthalate	R	_	0.510)	[]	S	°	0.495)	Ξ	R		0.500)	[1]	QN	_	0.515)	Ξ
Dimethylphthalate	S	_	0.333)	Ξ	Q.	0	0.323)	Ξ	S	_	0.326)	[1]	QN	_	0.336)	[1]
Diphenylamine/N-NitrosoDPA	R	_	0.266)	Ξ	Q	0	0.259)	Ξ	R	_	0.261)	Ξ	ON	_	0.269)	Ξ
Fluoranthene	S	_	0.466)	Ξ	S	0	0.453)	Ξ	9	_	0.457)	Ξ	QN	_	0.471)	[1]
Fluorene	S		0.376)	Ξ	2	0	0.365)	Ξ	Q.	_	0.369)	Ξ	Q	_	0.380)	Ξ
Hexachlorobenzene	2	_	0.311)	Ξ	Q	0	0.302)	Ξ	Q	_	0.305)	[1]	Q	_	0.314)	Ξ
Hexachlorobutadiene	2		0.507)	Ξ	Q	0	0.492)	[1]	S	_	0.497)	Ξ	ON	_	0.512)	[1]
Hexachlorocyclopentadiene	2 :		5.83)	Ξ3	Q :		5.66)	<u>[</u>]	2		5.72)	Ξ	Q.		5.89)	[1]
Hexachloroethane	2 9		0.629)	Ξ3	2 2	o _	0.611)	[]	2 9		0.617)	Ξ3	2 9	_ 、	0.635)	ΞΞ
Indeno(1,2,3-ca)pyrene Isophorone	2 S	- پ ر	1.32) 0.610)	ΞΞ	2 2	0 پ ر	1.28) 0.592)	ΞΞ	Q Q		1.29) 0.598)	3 3	2 8		1.33) 0.616	ΞΞ
N-Nitroso-di-n-propylamine	S	_	0.648)	Ξ	QN	0	0.629)	[1]	Q		0.635)	[1]	N N		0.654)	ΞΞ
Naphthalene	R	_	0.473)	Ξ	N	0	0.460)	[1]	QN	_	0.464)	[1]	ON	_	0.478)	Ξ
Nitrobenzene	2	_	0.834)	Ξ	R	0	0.810)	[1]	R	_	0.817)	[1]	Q	_	0.842)	Ξ
Pentachlorophenol	QN	_	0.880)	Ξ	9	0	0.855)	Ξ	2	_	0.863)	Ξ	Q	_	0.889)	[1]
Phenanthrene	Q	_	0.463)	[1]	2	0	0.450)	Ξ	R	_	0.454)	Ξ	Q	_	0.468)	[1]
Phenol	QN		0.874)	Ξ	2	0	0.849)	Ξ	R	_	0.857)	Ξ	R	_	0.883)	Ξ
Pyrene .	QN	_	0.404)	[1]	2	0	0.392)		8	_	0.396)	Ξ	2	_	0.408)	Ξ
bis(2-Chloroethoxy)methane	S	_	0.600)	Ξ	Q.	0	0.583)	[1]	S	_	0.588)	Ξ	Q	_	0.606)	[1]
bis(2-Chloroethyl)ether	Q	_	0.379)	[1]	Q.	0	0.368)	Ξ	QN Q	_	0.372)	Ξ	Q.	_	0.383)	

NA = Not Applicable R = Invalid Result, Refer to QC Report

[] = Dilution Factor ND = Not Detected

() = Detection Limit

Compiled: 16 March 1995

A7-77

SITE 10

	u	
	7 08-SW-01 08-SW-01-DS-01 Dup of 08-SW-01-01	0.798)
	7 08-SW-01 -01-DS-01 08-SW-01-0	
	08-SW	QN QN
		33
	-01 31-01	0.775)
	7 08-SW-01 08-SW-01-01	
		QN QN
		33
.OCATION ID SAMPLE ID	-03 33-01	(0.767)
LOCAT	7 08-GP-03 08-GP-03-01	
		ON ND
	02 2-01	0.790)
	7 08-GP-02 08-GP-02-01	
	S	nt. (ug/L) ND ND
	c.	emivolatile Organics, co proisopropyl)ether //hexyl)phthalate
	олраметер	SW8270 - Sybs (2-Ch)

ΞΞ

					SITI LOCAT SAMPI	SITE ID LOCATION ID SAMPLE ID									
PARAMETER	\$-80	7 08-SW-02 08-SW-02-01			7 08-SW-03 08-SW-03-01	-03 03-01			008 09-MW-01 09-MW-01-03	8 01 01-03			008 09-MW-02 09-MW-03-03	8 -02 02-03	
Diesel Range Organics (ug/L)	3.00 JB (200)	Ξ	9.00	JB (200)	[1]	72.0 J	_	200)	[1]	10.0	JB (200)	[1]
Gasoline Range Organics (ug/L) Gasoline Range Organics	23.0 JB (100)	[1]	25.0	JB (100)	[1]	470	_	100)	Ξ	120	J	100)	[1]
SW8010 - Halogenated Volatile Organics (ug/L)	anics (ug/L)	0 000 0	Ξ	Š	`	(1000	Ξ	<u> </u>	~	200	ŗ	· •	`		3
1,1,1,2-letrachloroethane 1,1,1-Trichloroethane	0.0234 JB (0.138)	ΞΞ	0.0526	-) ЭВ	0.0285)	ΞΞ	Q Q		0.0400)	ΞΞ	2 2		0.0400)	ΞΞ
1,1,2,2-Tetrachloroethane) QN	0.0427)	Ξ	QN	_	0.0427)	Ξ	Q		0.100)	Ξ	QN		0.100)	ΞΞ
1,1,2-Trichloroethane) QN	0.0172)	Ξ	QN	_	0.0172)	Ξ	QN	_	0.100)	Ξ	QN		0.0450)	ΞΞ
1,1-Dichloroethane) QN	0.0729)	Ξ	QN	_	0.0729)	Ξ	0.111 P	<u> </u>	0.0220)	[1]	N	_	0.0480)	Ξ
1,1-Dichloroethene) ON	0.0568)	Ξ	9	_	0.0568)	Ξ	Q.	_	0.100)	[:]	Q	_	0.100)	Ξ
1,2,3-Trichloropropane	ON :	0.0367)	Ξ	QN		0.0367)	Ξ	QN	_	0.120)	[1]	Q	_	0.120)	Ξ
1,2-Dichlorobenzene	ON ON	0.0288)	ΞΞ	S 8		0.0288)	ΞΞ	ND OCCOOL		0.170)	ΞΞ	2 2	_ 、	0.170)	ΞΞ
1,2-Dichloropropane	QN QN	0.0320)	ΞΞ	2 2		0.0320)	ΞΞ		- -	0.0340)	ΞΞ	2 2		0.0540)	ΞΞ
1,3-Dichlorobenzene) QN	0.0902)	Ξ	Q.	_	0.0902)	Ξ	QN	_	0.150)	Ξ	QN	_	0.0880)	Ξ
1,4-Dichlorobenzene) GN	0.0322)	Ξ	QN	_	0.0322)	Ξ	QN	<u> </u>	0.190)	Ξ	QN	ٺ	0.190)	Ξ
1-Chlorohexane) ON	0.0957)	Ξ	QN	_	0.0957)	Ξ	N	_	0.120)	Ξ	Q.	_	0.0400)	[1]
2-Chloroethyl vinyl ether) ON	0.0281)	Ξ	8	J	0.0281)	Ξ	Q	_	0.170)	Ξ	QN	_	0.170)	[1]
Bromobenzene) QN	0.0693)	Ξ	2	_	0.0693)	Ξ	Q	_	0.530)	Ξ	R	_	0.530)	Ξ
Bromodichloromethane) QN	0.0150)	Ξ	9	J	0.0150)	Ξ	Q	_	0.0680)	Ξ	R	_	0.0680)	[1]
Bromomethane) ON	0.161)	Ξ	Q.	_	0.161)	Ξ	Q	_	0.0560)	Ξ	S	_	0.0560)	Ξ
Carbon tetrachloride) ON	0.0444)	Ξ	S	J	0.0444)	Ξ	QN	_	0.110)	Ξ	Ş	_	0.110)	Ξ
Chlorobenzene) ON	0.0301)	Ξ	QN	_	0.0301)	Ξ	QN	_	0.140)	[1]	ON	_	0.140)	Ξ
Compiled: 16 March 1995	() = Detection Limit	mit [] =	Dilution	Factor	ND = Not	Not Detected	NA =	Not Applicable	ole	R = Invali	= Invalid Result, Refer to QC Report	Refer to	QC Rep	ort	

				2 800	09-MW-02	09-MM-03		
				008	09-MW-01	. 09-MW-01-03		
SITE 10	LOCATION ID	SAMPLE ID		7	08-SW-03	08-SW-03-01		
		,		7	08-SW-02	08-SW-02-01		
							PARAMETER	1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1	!		1		1
SW8010 - Halogenated Volatile Organics, cont. (ug/L)	ics, cont. ((7/Br													
Chloroethane	QN	(0.0499)	[1]	QN	_	0.0499)	[1]	QN	_	0.110)	[1]	NO	(0.	110)	
Chloroform	QN	(0.0512)	Ξ	QN	_	0.0512)	[1]	Q.	_	0.0850)	[1]	QN	(0.0	850)	[]
Chloromethane	0.0163 JB	(0.0213)	[1]	0.0230 B	_	0.0213)	[1]	S	_	0.150)	Ξ	QN	(150)	: =
Dibromochloromethane	ON	(0.0101)	[1]	QN	_	0.0101)	[1]	QN	_	0.170)	Ξ	ON	(0.	170)	ΞΞ
Dibromomethane	ND	(0.0939)	Ξ	ND	_	0.0939)	[1]	QN	_	0.140)	Ξ	ND	.0	140)	
Methylene chloride	0.142 B	(0.0430)	Ξ	0.177 B	_	0.0430)	[1]	QN	_	0.220)	Ξ	0.000600 PJB	(220)	Ξ
Tetrachloroethene	ND	(0.0381)	Ξ	QN	_	0.0381)	[1]	QN	_	0.0750)	[1]		.0	100)	ΞΞ
Tribromomethane(Bromoform)	ND	(0.252)	[1]	QN	_	0.252)	Ξ	QN	_	0.140)	[1]	ON	(0.	0.140)	Ξ
Trichloroethene	Q	(0.0387)	Ξ	QN	_	0.0387)	[1]	0.313	_	0.110)	[1]	0.0300 PJ	(0.	110)	[1]
Trichlorofluoromethane	QN	(0.0603)	Ξ	QN	_	0.0603)	[1]	ON	_	0.0750)	Ξ	ON	0.0	750)	ΞΞ
Vinyl chloride	QN	(0.0761)	[1]	QN	_	0.0761)	[1]	ON	_	0.200)	[1]	ON	0.	200)	[1]
cis-1,3-Dichloropropene	QN	(0.0220)	[1]	ON	_	0.0220)	[1]	QN	_	0.0740)	[1]	QN	0.0	800)	
trans-1,2-Dichloroethene	ND	0.160)	Ξ	QN	_	0.160)	[1]	3.46	_	0.100)	[1]	QN	0.	100)	[1]
trans-1,3-Dichloropropene	Q.	0.0302)	[1]	ON	_	0.0302)	[1]	ND	_	0.0570)	[1]	ND	0.0)	0.0570)	Ξ
SW8015 - Nonhalogenated Volatile Organics (mg/L)	Janics (mg/L)														
2-Butanone(MEK)	ON	2.38)	[1]	QN	_	2.38)	Ξ	Q	_	2.40)	[1]	QN	(2	.40)	
4-Methyl-2-pentanone(MIBK)) ON	1.46)	[1]	ON	_	1.46)	[1]	2	_	1.50)	Ξ	Q	,	.50)	ΞΞ
Ethanol	ON ON	0.301)	Ξ	QN	_	0.301)	[1]	NO	_	0.300)	Ξ	N		300)	
Ethyl ether	ON ON	1.16)	Ξ	QN	J	1.16)	[1]	ON	_	1.20)	Ξ	QN	. 1	1.20)	
SW8020 - Aromatic Volatile Organics	(ng/L)														
1,2-Dichlorobenzene) QN	0.0263)	[1]	QN	_	0.0263)	Ξ	1.15 P	_	0.0710)	Ξ		0.0	710)	Ξ
1,3-Dichlorobenzene	ON ON	0.0218)	Ξ	QN	_	0.0218)	[1]	0.428	_	0.0990)	ΞΞ	0.108 P	0.0	(066	3 =
1,4-Dichlorobenzene) ON	0.0131)	[1]	ND	_	0.0131)	[1]	QN)	0.0950)	ΞΞ		0.0	0.0950)	

R = Invalid Result, Refer to QC Report 0.108 P ND ΞΞ 0.0990) NA = Not Applicable 0.428 ND ΞΞ ND = Not Detected 0.0218) 0.0131) 2 2 () = Detection Limit [] = Dilution Factor ΞΞ 0.0218) Compiled: 16 March 1995

		7	ç				7			ć	9008				9	800		
		08-SW-02 08-SW-02-01	-02 02-01			08-5 4S-80	08-SW-03 08-SW-03-01			60	09-MW-01 09-MW-01-03	03			W-60 -60 .	. 09-MW-02 09-MW-02-03		
PARAMETER	-																	
SW8020 - Aromatic Volatile Organics, cont.		(ng/L)																1 1
Benzene	QN	_	0.00980)	[1]	Q.	_	0.00980)	Ξ	95.6		0	0.700)	[10]	40.0	_	0.350)		[2]
Chlorobenzene	QN	_	0.0140)	Ξ	Q	_	0.0140)	[1]	0.0832	۵	.0	0.0450)	[1]	0.0669	_	0.0450)		1]
Ethylbenzene	QN	_	0.0199)	Ξ	Q	_	0.0199)	[1]	1.95		. 0	0.0680)	[1]	0.129) в	0.0680)		Ξ
Toluene	QN	J	0.0330)	Ξ	QN	_	0.0330)	Ξ	0.271	89	. 0	0.0480)	[1]	0.200	9	0.0480)		1
Xylene (total)	QN	<u> </u>	0.0528)	[1]	ON)	0.0528)	Ξ	0.624	PB	.0	0.0850)	[]	0.378	В (0.0850)		1]
SW8080 - Organochlorine Pesticides and PCBs		(nd/r)																
4,4'-DDD					NA				ON		0.0	0.00598)		QN	_	0.00598)		Ξ
4,4'-DDE	NA				NA				0.000600	P.38	(0.0	0.00629)	ΞΞ	Q		0.00629)	_	,
4,4'-DDT	NA				AN				ON	_	0.0	0.00680)	Ξ	ON	_	0.00680)		Ξ
Aldrin	NA				NA				0.00220	JB	0.0)	0.00546)	Ξ	ON	_	0.00897)	_	1]
Chlordane	NA				NA				QN.		0.0	0.00959)	Ξ	QN	_	0.00959	_	Π
Dieldrin	NA				NA				S	-	0.0	0.00660)	Ξ	0.0127	_	0.00660)	_	7
Endosulfan I	NA				NA				QN		0.0)	0.00969)	Ξ	QN	_	0.00320)	_	1]
Endosulfan II	NA				NA				ON	_	0.0)	0.00701)	[1]	N	_	0.00701)		1]
Endosulfan Sulfate	NA				NA				ON	_	. 0	0.0134)	Ξ	ON	_	0.0134)		1]
Endrin	NA				NA				ON.	_	. 0	0.0113)	Ξ	S	_	0.0113)	_	Ξ
Endrin Aldehyde	NA				NA				ON	_	0.0)	0.00598)	Ξ	QN	_	0.00598)		Ξ
Heptachlor	NA				۸A				2	_	0.0)	0.00278)	Ξ	QN	_	0.00227)		
Heptachlor epoxide	NA				NA				SN	_	0.0	0.00340)	Ξ	ND N	_	0.00340)		1
Methoxychlor	NA				NA				QN N	_	. 0	0.0412)	Ξ	QN	_	0.0412)	_	1]
PCB-1016	NA				NA				S	_	(0.	0.0567)	Ξ	S	_	0.0567)		\Box
PCB-1221	NA				NA				QN	_	. 0	0.0763)	[1]	QN	_	0.0763)		Ξ
PCB-1232	NA				NA				QN	_	0)	0.134)	Ξ	ON	_	0.134)		Ξ
PCB-1242	NA				NA				QN	_	(0.	0.0536)	Ξ	ON	_	0.0536)		Ξ

						-	SITE ID	01									
						i "	LOCATION ID SAMPLE ID	OI D									
			7				7				800	α			č	auu	
		08-SW-02	W-02			80	08-SW-03	8			09-MW-01	-01			09-MW-02	/-02	
PARAMETER		MS-80	08-SW-02-01			-80	08-SW-03-01	-01			09-MW-01-03	01-03			-MM-60	09-MW-02-03	
	1 1 1 1 1 1 1	1	1 1 1 1	1 1	1	1 1 1		1		1		 	! ! !) ; ; ; ; ; ;			
SW8080 - Organochlorine Pesticides and PCBs,		cont.	(ng/L)														
PCB-1248	NA					NA				QN	_	0.0289)	[1]	SN	_	0.0289)	[]
PCB-1254	NA					NA				S		0.0412)	ΞΞ	<u>8</u>	-	0.0412)	ΞΞ
PCB-1260	٧N					NA				ON		0.0546)	ΞΞ	QN	<i>-</i> _	0.0546)	ΞΞ
Toxaphene	NA					NA				Q.	_	0.0351)		QN N		0.0351)	ΞΞ
alpha-BHC	NA					NA				QN	_	0.00186)	Ξ	QN	· _	0.00206)	ΞΞ
beta-BHC	NA					NA				S	_	0.00680)		QN	<i>-</i> _	0.00680)	ΞΞ
delta-BHC	NA					NA				QN		0.00258)		QN	<i>-</i> _	0,00258)	ΞΞ
gamma-BHC(Lindane)	NA					NA				0.0122	_	0.00330)	ΞΞ		(, B	0.00330)	ΞΞ
SW8270 - Semivolatile Organics ((ng/L)																
1,2,4-Trichlorobenzene	ON	<u> </u>	0.571)			ND	_	0.594)	[1]	QN	_	0.587)	[1]	ON	_	0,590)	[1]
1,2-Dichlorobenzene	ND	_	0.617)			Q.	_	0.641)	[1]	QN	_	0.637)	ΞΞ	ON	<i>-</i>	0.640)	ΞΞ
1,3-Dichlorobenzene	ON	_	0.696)	[1]		ND	0	0.724)	[1]	QN	_	0.716)	Ξ	QN	_	0.720)	ΞΞ
1,4-Dichlorobenzene	QN	_	0.571)		_	ON	0	0.594)	[1]	QN	J	0.587)	[1]	Q		0.590)	
2,4,5-Trichlorophenol	QN	_	0.494)		_	QN	0	0.514)	Ξ	ON	_	0.507)	[1]	QN	_	0.510)	Ξ
Z,4,6-Irichlorophenoi	Q	_	0.491)	ij		N Q	_	0.511)	[1]	NO	_	0.498)	[1]	2	_	0.500)	[1]
Z,4-Dichloropheno	ON :		0.552)	Ħ		Q.	0	0.575)	[1]	QN	_	0.567)	[1]	2	_	0.570)	[1]
2,4-Uimethy!phenol	QN		1.26)	Ξ		Q	_	1.31)	[]	Q.	<u> </u>	1.29)	Ξ	9	_	1.30)	[1]
2,4-Dinitrophenol	ON	_	4.06)	Ħ		ND	_	4.22)	[1]	QN	_	4.18)	[1]	QN	_	4.20)	Ξ
2,4-Dinitrotoluene	QN	_	0.574)	Ξ		QN	0	0.597)	[1]	9	J	0.587)	[1]	QN	_	0.590)	Ξ
2,6-Dinitrotoluene	QN	_	0.836)	Π.		ND	0	0.870)	[1]	N	_	0.856)	[1]	ND	_	0.860)	Ξ
2-Chloronaphthalene	Q	_	0.381)	Ξ		QN	0	0.396)	[1]	2	_	0.388)	[1]	S	_	0.390)	[1]
2-Chlorophenol	QN	_	0.617)	Ξ		ND	0	0.641)	[1]	NO	Ų	0.637)	[1]	Q	_	0.640)	Ξ
2-Methylnaphthalene	ON	_	0.353)	Ξ		ON	0	0.368)	[1]	S	_	0.358)	[1]	ON	-	0.360)	Ξ
2-Methylphenol (o-cresol)	Q.	_	0.301)	[]		QN Q	0	0.313)	Ξ	N	\	0.308)	[1]	QN		0.310)	ΞΞ

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

	[1]																				(1)			
008 09-МW-02 09-МW-02-03	0.660)	0.520)	0.330	0.390)	0.490)	0.520)	0.740)	0.420)	0.460)	0.610)	0.940)	0.270)	0.420)	0.370)	0.450)	0.520)	0.910)	1.00)	1.00)	39.0)	0.610)	0.620)	0.540)	0.320)
-60 ₩-60) 0) 0) 0	0 0)) 0	0))) 0)	<u> </u>	<u> </u>) ON)) 0) QN) 0)) ON)) 0
	GN GN	N	QN	S S	2 2	ON	QN	ON	QN	QN	ON	QN	QN	QN	QN	Z	QV	S.	Z	QN	ON.	Z	S	QN
	Ξ	[1]			ΞΞ	ΞΞ	[]	[1]	[1]	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[1]	Ξ		[1]
01 1-03	0.657)	0.517)	0.328)	0.388)	0.488)	0.517)	0.736)	0.418)	0.458)	0.607)	0.935)	0.269)	0.418)	0.368)	0.448)	0.517)	0.905)	0.995)	0.995)	38.8)	0.607)	0.617)	0.537)	0.318)
008 09-MW-01 09-MW-01-03	_	_	_				_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Q.	Q.	Q.	2 5	2	ON	Q	9	2	Q	QN	Q	2	2	Q	9	R	Q	Q	Q	Q	S	Q	QN
	Ξ	[1]	Ξ	ΞΞ	ΞΞ	Ξ	[1]	[1]	Ξ	Ξ	Ξ	Ξ	[1]	[1]	Ξ	Ξ	[1]	Ξ	[1]	[1]	Ξ	Ξ	[1]	Ξ
ID N ID E ID S-01	0.670)	0.527)	0.336)	0.397)	0.489)	0.520)	0.753)	0.425)	0.464)	0.612)	0.946)	0.275)	0.422)	0.372)	0.454)	0.523)	0.917)	1.03)	1.01)	39.0)	0.616)	0.631)	0.542)	0.327)
SITE ID LOCATION ID SAMPLE ID 7 08-SW-03		_					_	_	_	_	_	_	U	_	_	_	_	_	_	_	_	_	<u> </u>	_
	QN	ON	QN	2 2	9	ON	Q	QN	QN	2	Q	QN	QN	9	S	S	2	QV	QN	Q	Q	Q	Q	S
	Ξ	Ξ	[1]	ΞΞ	ΞΞ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]
02 2-01	0.644)	0.507)	0.323)	0.382)	0.470)	0.500)	0.723)	0.409)	0.446)	0.588)	0.910)	0.264)	0.406)	0.357)	0.436)	0.503)	0.882)	0.66.0	0.970)	37.5)	0.592)	0.607)	0.521)	0.315)
7 08-SW-02 08-SW-02-01	_	_			۔ ۔		_	_	_	_	_	_	_	_	_	_	_	_	_	J	_	J	_	_
0	(ng/L)	QN	QN	2 2	Q.	QN	QN	QN	QN	Q	Q	P	Q	S	S	Q	Q	S	Q	Q	2	Q	Q	QN
PARAMETER	SW8270 - Semivolatile Organics, cont. 2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline 4 6-Ninitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol(p-cresol)	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Butylbenzylphthalate	Chrysene	Di-n-butylphthalate

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report [] = Dilution Factor () = Detection Limit

						SITE ID LOCATION ID SAMPLE ID	. ID ON ID .E ID									
		7				7				800	œ			Č	800	
	-80	08-SW-02			-	08-SW-03	03			09-MW-01	-01			09-MW-02	-02	
PARAMETER	08-80	08-SW-02-01				08-SW-03-01	3-01			09-MW-01-03	01-03			09-MW-02-03	02-03	
SW8270 - Semivolatile Organics, cont.	(ng/L)	 			; 1 1 1 1 1 1 1	!	1			1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
Di-n-octylphthalate) QN	0.342)		[1]	NO	_	0.356)	[]	QN	_	0.348)		QN N	_	0.350)	[1]
Dibenz(a,h)anthracene) ON	0.787)		Ξ	ON	_	0.819)	Ξ	QN	_	0.806)	Ξ	S	· _	0.810)	ΞΞ
Dibenzofuran) QN	0.521)		[1]	N _O	_	0.542)	[1]	QN	J	0.537)	Ξ	ND		0.540)	[1]
Diethylphthalate) QN	0.500)		[1]	Q	_	0.520)	Ξ	QN	_	0.517)	Ξ	Q.	_	0.520)	Ξ
Oimethylphthalate) ON	0.326)		[1]	ON	J	0.339)	Ξ	N Q	_	0.338)	Ξ	QN N	_	0.340)	[]
Diphenylamine/N-NitrosoDPA) ON	0.261)		[1]	ND	_	0.272)	Ξ	NA				NA		•	1
Fluoranthene) QN	0.457)		[1]	QN	_	0.476)	Ξ	N N	_	0.468)	[1]	ON N	_	0.470)	[1]
Fluorene) Q	0.369)		[1]	QN	_	0.384)	Ξ	ON	_	0.378)	[1]	QN	_	0.380)	Ξ
Hexachlorobenzene) R	0.305)		Ξ	QN	_	0.317)	[1]	QN	_	0.308)	[1]	QN	_	0.310)	[1]
Hexachlorobutadiene) Q	0.497)	_	[1]	QN	_	0.517)	[1]	QN	_	0.507)	[1]	QN	_	0.510)	$[\Pi]$
Hexachlorocyclopentadiene) 2	5.72)		[1]	QN	_	5.95)	Ξ	ON	_	5.87)	[1]	ON	_	5.90)	[1]
Hexachloroethane) Q	0.617)		[1]	ND	_	0.641)	Ξ	QN	_	0.627)	[1]	ND	<u> </u>	0.630)	[1]
Indeno(1,2,3-cd)pyrene) Q	1.29)		[1]	ND	_	1.34)	[]	QN	_	1.29)	[1]	QN	_	1.30)	[1]
Isophorone	2	0.598)		Ξ	Q	_	0.622)	[1]	ND	_	0.617)	[1]	QN	_	0.620)	[1]
N-Nitroso-di-n-propylamine	ON S	0.635)		[1]	Q :	_	0.661)	[1]	QN	_	0.647)	[1]	QN	_	0.650)	[1]
North to obout prierry Laminge	¥ :	•		,	A :			1	Q N	_	0.269)	Ξ	Q	_	0.270)	Ξ
Naphthalene	2 :	0.464)			2	٠ .	0.483)	Ξ	S	_	0.478)	Ξ	Q	_	0.480)	[1]
Nicrobenzene) R	0.81/)		[]	2	_	0.851)	Ξ	2	_	0.836)	Ξ	ON	_	0.840)	Ξ
rentachlorophenol	Q .	0.863)		[1]	2	_	0.898)	Ξ	2	_	0.886)	Ξ	QN	_	0.890)	Ξ
Phenanthrene) QN	0.454)		[1]	Q	_	0.473)	Ξ	Q	_	0.468)	[]	QN	_	0.470)	[1]
Phenol) ON	0.857)		Ξ	N N	_	0.892)	Ξ	Q.	_	0.876)	Ξ	Q	_	0.880)	[1]
Pyrene) QN	0.396)		[1]	N Q	_	0.412)	Ξ	Q.	_	0.408)	[1]	QN	_	0.410)	[1]
bis(2-Chloroethoxy)methane) QN	0.588)		[1]	QN	_	0.612)	[1]	S	_	0.607)	[1]	QN	_	0.610)	Ξ
bis(2-Chloroethyl)ether) R	0.372)		Ξ	S	_	0.387)	\Box	QN	_	0.378)	Ξ	N ON	_	0.380)	[1]
bis(2-Chloroisopropyl)ether) QN	0.775)		Ξ	Q.	<u> </u>	0.806)	[1]	QN	Ų	0.796)	[1]	ND	_	0.800)	Ξ

NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

	008 09-MW-02 09-MW-02-03	ND (0.580)
	008 09-МW-01 09-МW-01-03	ND (0.577) [1]
SITE ID LOCATION ID SAMPLE ID	0	ND (0.587) [1]
	7 08-SW-02 08-SW-02-01	(0.564) [1]
		SW8270 - Semivolatile Organics, cont. (ug/L) bis(2-Ethylhexyl)phthalate

 Ξ

 Ξ Ξ 2222222222222222 200) 100) 0.0480) 0.120) 0.170) 0.100)0.0540) 0.0750) 0.150)0.190)09-MW-06-03 90-MM-60 В 38 1.00 38.0 Ξ Ξ 0.100) 200) 100) 0.0480) 0.100) 0.120) 0.170) 0.0540) 0.07500.150)0.190)0.120) 09-MW-05-03 09-MW-05 В JB 37.0 1.00 Ξ 55555555555555 \Box 0.0540) 200) 100) 0.0400)0.0480) 0.100) 0.120) 0.0950) 0.150)0.190) 0.120) LOCATION ID SAMPLE ID 09-MW-04-03 SITE 1D 09-MW-04 800 JB ЭВ 7.00 44.0 0.123 222222222222 Ξ Ξ 100) 0.150) 0.190) 0.120) 0.170) 200) 0480) 0.100) 0.120) 0.170) 0.0540) 0.0750) 09-MW-03-03 09-MW-03 98 JВ (ng/L) 37.0 10.0 2 2 읒 SW8010 - Halogenated Volatile Organics Sasoline Range Organics (ug/L) Diesel Range Organics (ug/L) 1,1,2,2-Tetrachloroethane 1,1,1,2-Tetrachloroethane Gasoline Range Organics 1,2,3-Trichloropropane 1,1,1-Trichloroethane Diesel Range Organics 1,1,2-Trichloroethane l,2-Dichlorobenzene 1,2-Dichloropropane l,4-Dichlorobenzene .,3-Dichlorobenzene .,1-Dichloroethane 1,1-Dichloroethene l,2-Dichloroethane 1-Chlorohexane PARAMETER

R = Invalid Result, Refer to QC Report NA = Not Applicable Detected = Not 운 Dilution Factor = () = Detection Limit Compiled: 16 March 1995

0.120)

0.530) 0890) 0950)

0.0680)

0.0560)

0.170) 0.530)

0.170) 0.530) 0.0680) 0.0560) 0.110)0.140)

운 운

[1]

 \mathbb{Z}

0.0120 ND

0.530) 0.0680) 0.0560)0.110) 0.140)

2-Chloroethyl vinyl ether

Bromodichloromethane

Bromomethane

Bromobenzene

Carbon tetrachloride

Chlorobenzene

					SITE ID LOCATION ID SAMPLE ID	IO ON ID E ID									
	-60	008 09-MM-03			008 09-MW-04	04			008 09-MM-05	8 -05			90-MW-60	90	
PARAMETER	M-60	09-MW-03-03			09-MW-04-03	14-03			09~MW-05-03	05-03			09-MM-06-03	6-03	
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	1 +	(1)	 								:	. 		1 1	
SW8010 - halogenated Volatile Organics,	CONT.	(ug/L) (0 110)	[1]	CN	,	(0110)	[1]	2	_	(0110)	[1]	2	_	(0110)	[]
Chloroform) Q	0.0850)	ΞΞ	2 2		0.0850)	ΞΞ	2 2	۔ ۔	0.0850)	ΞΞ	S S	_ ر	0.0850)	ΞΞ
Chloromethane	ON ON	0.150)	Ξ	QN		0.150)	ΞΞ	QN		0.150)	ΞΞ	QN N		0.150)	ΞΞ
Dibromochloromethane) ON	0.170)	Ξ	QN	_	0.170)	[1]	S	_	0.170)	[1]	QN	_	0.170)	Ξ
Dibromomethane) QN	0.140)	Ξ	QN	_	0.140)	Ξ	ON	_	0.140)	Ξ	QN	_	0.140)	[1]
Methylene chloride) ON	0.220)	Ξ	Q	_	0.220)	[1]	ON	_	0.220)	Ξ	QN	_	0.220)	Ξ
Tetrachloroethene) ON	0.0750)	Ξ	S	_	0.100)	[1]	Q	<u> </u>	0.0750)	[1]	Q	_	0.100)	Ξ
Tribromomethane(Bromoform)) QN	0.140)	Ξ	S	_	0.140)	[1]	Q	_	0.140)	Ξ	Q	_	0.140)	Ξ
Trichloroethene) ON	0.110)	Ξ	Q	_	0.110)	Ξ	QN	_	0.110)	Ξ	ND.	_	0.110)	[1]
Trichlorofluoromethane) QN	0.0750)	Ξ	9	_	0.0750)	[]	S	_	0.0750)	Ξ	2	_	0.0750)	Ξ
Vinyl chloride) QN	0.200)	Ξ	S	_	0.150)	Ξ	S	_	0.200)	[1]	S	_	0.200)	Ξ
cis-1,3-Dichloropropene) QN	0.0740)	Ξ	S	_	0.0740)	Ξ	용	_	0.0740)	Ξ	R	J	0.0740)	Ξ
trans-1,2-Dichloroethene) ON	0.100)	Ξ	2	_	0.100)	Ξ	2	_	0.100)	Ξ	Q	_	0.100)	Ξ
trans-1,3-Dichloropropene) QN	0.0570)	Ξ	Q	_	0.0570)	[1]	QN	_	0.0570)	[1]	ND	J	0.0570)	Ξ
SW8015 - Nonhalogenated Volatile Organics (mg/L)	ics (mg/L)														
2-Butanone(MEK)) ON	2.40)	Ξ	9	_	2.40)	Ξ	S	_	2.40)	Ξ	9	_	2.40)	[1]
4-Methyl-2-pentanone(MIBK)) QN	1.50)	[1]	R	_	1.50)	Ξ	S	_	1.50)	Ξ	S	_	1.50)	
Ethanol) ON	0.300)	Ξ	S	_	0.300)	Ξ	R	_	0.300)	Ξ	2	_	0.300)	[1]
Ethyl ether) QN	1.20)	Ξ	Q	<u> </u>	1.20)	Ξ	Q	_	1.20)	[1]	QN	_	1.20)	Ξ
SW8020 - Aromatic Volatile Organics ((ug/L)														
1,2-Dichlorobenzene) ON	0.0710)	Ξ	0.0515	PJB (0.0710)	[1]	0.0838	PJB (0.120)	Ξ	Q	•	0.0710)	Ξ
1,3-Dichlorobenzene) ON	0.0990)	Ξ	0.124	_	0.0800	Ξ	Q.	_	0.130)	Ξ	S	_	0.0800	Ξ
1,4-Dichlorobenzene) QN	0.0950)	Ξ	0.190	<u> </u>	0.0950)	Ξ	0.0645) BC	0.0950)	[1]	ND	_	0.0950)	Ξ
Compiled: 16 March 1995 () =	() = Detection Limit		= Dilution	Factor	ND = Not	= Not Detected	NA =	Not Applicable	able	R = Invali	d Result,	= Invalid Result, Refer to QC Report	QC Repo		A7-87

PARAMETER				8 8 8	SAMPLE 1D SAMPLE 1D SAMPLE 1D 008 09-MW-04 09-MW-04-03 09-MW-04-03 (0.0768 (0.008518 (TE 1D TION 1D PLE 1D 38 4-04 -04-03 0.0450) 0.0480) 0.0480) 0.0059)		ND 0.0698 0.0698 0.0698 0.00910 ND	9-60 8 B B B B B B B B B B B B B B B B B B B	008 09-MW-05 09-MW-05-03 (0.100) (0.0450) 3 (0.0480) (0.00519) (0.00519) (0.00841) (0.00841) (0.00841) (0.00894) (0.00894) (0.00894) (0.00894) (0.00894) (0.00896) (0.00896) (0.00897) (0.00615) (0.00615) (0.00616) (0.00617) (0.00617) (0.00617) (0.00617) (0.00617) (0.00617) (0.00617) (0.00617)			B B B B B	008 09-MW-06 09-MW-06 09-MW-06 00.01 (0.04 (0.005 (0.00596) 0.00596) 0.00336) 0.00596) 0.00599) 0.00598) 0.00598) 0.00769) 0.00769) 0.00769) 0.00769) 0.00769) 0.00769) 0.00769) 0.00769) 0.00769) 0.00769) 0.00769)	
PCB-1242) ON	0.0558)	ΞΞ	Q Q	0.0	0.0558)	ΞΞ	Q Q		0.0558			9 Q	5 6 -	0.0538) 0.0558)	ΞΞ
PCB-1242) ON	0.0558)	[1]	QN	0.0	558)	35	: Q	<i>-</i>	0.055			5 E	ه د د	00000	ΞΞ
PCB-1232) ON	0.0538)	Ξ	QN	0.0	0.0538)	Ξ	ON	_	0.0538)	3) [1]		ND	0	0.0538)	[1]
PCB-1221) ON	0.183)	[]	QN)	183)	[1]	Q	_	0.18			ON	_	.183)	[]
PCB-1016	ON :	0.0962)	Ξ	QN).(1962)	[1]	QN	_	0.096	_		ND	0	0962}	[]]
Methoxych]or) QN	0.0471)	[1]	Q.	0.0	0471)	[1]	QN	_	0.047	_	_	ND	0	0471)	Ξ
		0.00327)	[1]	QN	0.0	1240)		0.00870	В (0.0032	_			0.0	10327)	[1]
		0.00519)	Ξ	Q	0.0)519)		QN	_	0.0051	_		61	0.	0519)	[1]
Endrin Aldehyde) ON	0.00635)	[1]	ND	0.0()635)	[1]	ND	_	0.0063	_		ND	0.	10635)	[1]
Endrin	ON .	0.0115)	Ξ;	QN	0.0	1115)	[1]	QN N	_	0.011	_		ND	0)	0115)	[1]
ltan Sultate		0.0135)	Ξ	.00880	0.0	135)	[1]	0.00910	JB (0.013	_			0)	0135)	[1]
		0.00481)	[1]	S	0.0)481)	[1]	N N	_	0.0048	_	_	ON	·. •	0481)	[1]
Endosultan I	ON !	0.00596)	Ξ	QN	0.0	1596)	\Box	N N	_	0.0059	_		N Q	(0)	(9650)	[1]
Dieldrin) QN	0.00769)	Ξ	Q	0.0	0769)	[1]	QN	_	0.0076	_		QN	0	(6970)	[1]
Chlordane) QN	0.0288)	[]	ON	(0.0	0288)	[1]	QN	_	0.028	_		QN	0	0288)	Ξ
Aldrin) ON	0.00894)	[]	ND	0.0	0894)	[]	Q	_	0.0089	_		QN	0.	0336)	Ξ
4,4'-DDT) ON	0.00962)	Ξ	ON	0.0	0962)	Ξ	QN	_	0.0096	_	F1	QN	0.	10962)	Ξ
4,4'-DDE) ON	0.00519)	[1]	ND	0.0)	0519)	[1]	QN	_	0.0051	_				0519)	Ξ
4,4'-000) ON	0.00769)	Ξ	ON	0.0	0769)	[1]	QN		0.0076	_	_	QN QN	0.	(69/00	[]
SW8080 - Organochlorine Pesticides an		_														
		0.0850)	[1]		.0	0850)	[1]	0.0779	JB (0.085				0	(0580)	ΞΞ
		0.0480)	Ξ		0.	0480)	[]	0.0698	8	0.048	_			· 0	0480)	ΞΞ
Ethylbenzene) ON	0.0680)	[]	ND	0	(0890	Ξ	0.0490	JB (0.068			QN		(0890)	Ξ
Chlorobenzene) ON	0.0450)	[1]	QN	(0.	0450)	[1]	ON	_	0.045		. —	QN).130)	ΞΞ
		0.0700)	[1]	8.46	.0	00/00)	[1]	QN	_	0.10		,,,,	QN	_	0.100)	[1]
SW8020 - Aromatic Volatile Organics,					 	1 	1 1 1 1	! ! ! ! !			! ! !	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1		[[]
PARAMETER) ((() () ()								}				3	E	3	
	MM-00	-03-03		C	70	60							•		, ;	
	W-60	W-03		60	9-MW-04				-60	MW-05			0	0-MM-6	ć	
	0	80			800					800				008		
				S	SAMPLE	01										
				П	STIL I	10										

[] = Dilution Factor ND = Not Detected () = Detection Limit

NA = Not Applicable

						SITE ID LOCATION ID SAMPLE ID	ID ON ID E ID								
		900				008				800				900	
		09-MW-03	03			09-MW-04	04		60	09-MW-05			-60	09-MW-06	
PARAMETER	ŝ	09-MM-03-03	3-03			U9-MW-U4-U3	4-03		-60	U9-MW-U5-U3			8- 50	US-MW-US-U3	
SW8080 - Organochlorine Pesticides and PCBs.		cont.	(na/l)	1 1 1 1 1 1	1 1 1 1 1 1	; ; ; ;	; ; ; ; ; ;								
PCB-1248			0.144)	[1]	ON	J	0.144)	Ξ	N	(0.144)		[1]) QN	0.144)	[1]
PCB-1254	Q	_	0.0760)	Ξ	QN		0.0760)	Ξ	ND	(0.0760)		ΞΞ	N QN	0.0760)	Ξ
PCB-1260	QN	J	0.0433)	Ξ	S	_	0.0433)	Ξ	ON	(0.0433	_) QN	0.0433)	Ξ
Toxaphene	9	0	0.00962)	Ξ	QN	0	0.00962)	Ξ	ND	(0.00962	_	[1]) QN	0.00962)	[1]
alpha-BHC	ON	0	0.00385)	Ξ	QN	0	0.00385)	Ξ	QN	(0.00385)	_		0.00800 B	0.00385)	Ξ
beta-BHC	QN	0	0.00615)	Ξ	N	0	0.00615)	Ξ	QN	(0.00615)	_	_	ON ON	0.00894)	Ξ
delta-BHC	QN	0	0.00212)	Ξ	Q	° -	0.00212)	[]	QN	(0.00212)	_		0.0138 B (0.00212)	Ξ
gamma-BHC(Lindane)	2	0	0.00442)	[1]	Q	_	0.0125)	Ξ	S	(0.0125)		[1]) ON	0.0125)	Ξ
SW8270 - Semivolatile Organics (ug/L)	1/r)														
	Q	_	0.590)	Ξ	QN	J	0.593)	Ξ	ON	(0.621)		[1]) QN	0.621)	[1]
1,2-Dichlorobenzene	QN	_	0.640)	Ξ	S	J	0.643)	Ξ	ON	(0.674)		[1]) ON	0.674)	[1]
1,3-Dichlorobenzene	ON	_	0.720)	[]	S	_	0.724)	[1]	ON	(0.758)		[1]) ON	0.758)	Ξ
1,4-Dichlorobenzene	ON	_	0.590)	Ξ	Q	_	0.593)	[1]	QN	(0.621)		Ξ) QN	0.621)	Ξ
2,4,5-Trichlorophenol	N	_	0.510)	[1]	Q	_	0.513)	Ξ	ON	(0.537)		Ξ) QN	0.537)	Ξ
2,4,6-Trichlorophenol	QN	_	0.500)	Ξ	2	_	0.503)	Ξ	NO	(0.526)		Ξ) QN	0.526)	Ξ
2,4-Dichlorophenol	NO	_	0.570)	Ξ	S	_	0.573)	Ξ	ON	(009'0)		[1]	NO ON	0.600)	Ξ
2,4-Dimethylphenol	Q		1.30)	Ξ	2		1.31)	Ξ	Q	1.		Ξ	ON ON	1.37)	Ξ
2,4-Dinitrophenol	QN	_	4.20)	Ξ	2	_	4.22)	Ξ	2	(4.		[1]) QN	4.42)	[]
2,4-Dinitrotoluene	QN	_	0.590)		2	_	0.593)	Ξ	ON O	(0.621)		[1]) ON	0.621)	Ξ
2,6-Dinitrotoluene	QN	_	0.860)	Ξ	2	_	0.864)	Ξ	QN	(0.905)		Ξ) QN	0.905)	[1]
2-Chloronaphthalene	Q.	_	0.390)	Ξ	S	_	0.392)	Ξ	Q	(0.411)		Ξ	ON ON	0.411)	Ξ
2-Chlorophenol	Q	_	0.640)	Ξ	2	_	0.643)	Ξ	QN	(0.674)		[1]) QN	0.674)	Ξ
2-Methylnaphthalene	QN	_	0.360)	Ξ	Q.	_	0.362)	Ξ	QN	(0.379)		[1]) ON	0.379)	Ξ
2-Methylphenol (o-cresol)	QN	_	0.310)	Ξ	QN	_	0.312)	[]	QN	(0.326)	_	[1]) QN	0.326)	[1]
Compiled: 16 March 1995 ()	= Detection Limit	Limi	= 0	Dilution Factor		ND = Not	Not Detected	NA =	Not Applicable	~	nvalid R	esult, Ro	Invalid Result, Refer to QC Report	eport	

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT.

					SIT	SITE ID									
S.					LOCAT	LOCATION ID SAMPLE ID									
		800			008	œ			008	œ			008	ď	
	60	09-MW-03			09-MW-04	-04			09-MM-05	-05			90-MM-60	90-	
PARAMETER	- 60 - 60	MW-03-03			09-MW-04-03	04-03			09-MW-05~03	05-03			09-MM-06-03	06-03	
SW8270 - Semivolatile Ordanics cont	(1/0//1)		 		1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				; ; ;		1 1 1 1
2-Nitroaniline	ND (1)	(099.00)	. [1]	QN	_	0.663)	Ξ	QN N	_	0.695)	[1]	S	_	0.695)	[1]
2-Nitrophenol	N Q	(0.520)		8		0.523)	Ξ	2		0.547)	ΞΞ	2		0.533)	ΞΞ
3,3'-Dichlorobenzidine	ON	(0.330)	[1]	QN	_	0.332)	Ξ	Q.		0.347)	Ξ	9		0.347)	ΞΞ
3-Nitroaniline	ND	(068.0)	Ξ	N N	_	0.392)	[1]	QN	_	0.411)	ΞΞ	2		0.411)	ΞΞ
4,6-Dinitro-2-methylphenol	Q	(0.430)	Ξ	N	_	0.432)	[1]	QN	_	0.453)		9		0.453)	Ξ
4-Bromophenyl phenyl ether	QN	(00.490)	[1]	ND	_	0.492)	Ξ	ON	_	0.516)	Ξ	QN N		0.516)	ΞΞ
4-Chloro-3-methylphenol	QN	(0.520)	[1]	QN	·	0.523)	[1]	QN	_	0.547)	Ξ	S	· _	0.547)	Ξ
4-Chloroaniline	QN	(0.740)	[]	ON	_	0.744)	[1]	Q	_	0.779)	Ξ	S	· _	0.779)	ΞΞ
4-Chlorophenyl phenyl ether	N N	(0.420)	Ξ	ON	_	0.422)	[1]	2	_	0.442)	Ξ	Q		0.442)	
4-Methylphenol(p-cresol)	QN	(0.460)	Ξ	QN	_	0.462)	[1]	ND	_	0.484)	[]	QN	_	0.484)	Ξ
4-Nitroaniline	QN	(0.610)	[1]	Q	_	0.613)	Ξ	S	_	0.642)	Ξ	S	_	0.642)	
4-Nitrophenol	Q.	(0.940)	[1]	QN	<u> </u>	0.945)	[1]	QN	_	0.989)	[1]	QN	_	0.989)	Ξ
Acenaphthene	Q	(0.270)	Ξ	QN	<u> </u>	0.271)	[1]	N	J	0.284)	[1]	ND	_	0.284)	Ξ
Acenaphthylene	Q.	0.420)	Ξ	ON	_	0.422)	[]	ND	_	0.442)	[1]	ON	_	0.442)	[]
Anthracene	2	(0.370)	Ξ	QN	<u> </u>	0.372)	[1]	Q.	Ų	0.389)	Ξ	ND	_	0.389)	[1]
Benzo(a)anthracene	2	0.450)	Ξ	QN	_	0.452)	[1]	ON N	_	0.474)	Ξ	QN	_	0.474)	[]
benzo(a)pyrene	2 :	0.520)	Ξ	Q	_	0.523)	Ξ	QN	_	0.547)	Ξ	QN	_	0.547)	[1]
<pre>Benzo(b)filoranthene</pre>	Q !	0.910)	Ξ	Q	_	0.915)	Ξ	S	_	0.958)	Ξ	QN	_	0.958)	Ξ
Benzo(g,h,1)perylene	€	1.00)	Ξ	QN	_	1.01)	Ξ	S	_	1.05)	Ξ	QN	_	1.05)	Ξ
Benzo(k)fluoranthene	Q Q	1.00)	Ξ	QN	_	1.01)	[]	QN	_	1.05)	[1]	QN	_	1.05)	[1]
Benzoic acíd	ON ON	39.0)	[1]	Q	_	39.2)	Ξ	ON	_	41.1)	[1]	QN	_	41.1)	Ξ
Benzyl alcohol	ON ON	0.610)	[1]	ND	_	0.613)	[]	QN	_	0.642)	[1]	QN	_	0.642)	Ξ
Butylbenzylphthalate	ON ON	0.620)	[1]	QN	<u> </u>	0.623)	Ξ	ON	_	0.653)	[1]	QN	_	0.653)	[1]
Chrysene	Q	0.540)	Ξ	S	_	0.543)	Ξ	QN	_	0.568)	[1]	S	_	0.568)	[1]
Di-n-butylphthalate) ON	0.320)	[1]	ON	_	0.322)	[1]	QN	_	0.337)	[1]	Q	_	0.337)	ΞΞ

() = Detection Limit

				51 67	SITE ID LOCATION ID SAMPLE ID	0					÷				
	0	800			800				008				008		
	M-60	09-MW-03		30	09-MW-04			0 0	09-MW-05	5-03		c	09-MM-06	36	
PARAMETER						1	1				: : : : :		0 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000	
SW8270 - Semivolatile Organics, cont.	(1/gn)														
Di-n-octylphthalate) ON	0.350)	Ξ	QN	(0.	0.352)	[1]	ON	_	0.368)	Ξ	Q	_	0.368)	[]
Dibenz(a,h)anthracene) ON	0.810)	Ξ	ND	0.8	0.814)	[1]	ON	_	0.853)	[]	QN	_	0.853)	Ξ
Dibenzofuran) ON	0.540)	Ξ	ND)	0.543)	Ξ	Q	_	0.568)	[]	Q	_	0.568)	Ξ
Diethylphthalate) ON	0.520)	Ξ	ND)	0.523)	[1]	Q.	_	0.547)	Ξ	QN	_	0.547)	[1]
Dimethylphthalate) ON	0.340)	Ξ	2	(0.:	0.342)	Ξ	Q	_	0.358)	[1]	Q	_	0.358)	[1]
Fluoranthene) ON	0.470)	[1]	2	·· 0	0.472)	[1]	R	_	0.495)	[1]	Q	_	0.495)	Ξ
Fluorene) QN	0.380)	Ξ	ND	0	0.382)	[1]	Q	_	0.400)	[1]	R	_	0.400)	Ξ
Hexachlorobenzene) ON	0.310)	Ξ	ON)	0.312)	[1]	Q	_	0.326)	[1]	QN	_	0.326)	[]
Hexachlorobutadiene) QN	0.510)	Ξ	ND) ()	0:513)	Ξ	QN	_	0.537)	[1]	QN	_	0.537)	Ξ
Hexachlorocyclopentadiene) QN	5.90)	Ξ	ND	(2	5.93)	Ξ	Q.	_	6.21)	[1]	Q	_	6.21)	Ξ
Hexachloroethane) QN	0.630)	Ξ	QN	0.0	0.633)	Ξ	S	_	0.663)	Ξ	Q	_	0.663)	Ξ
Indeno(1,2,3-cd)pyrene) QN	1.30)	Ξ	Q.	(1.31)	[]	S	_	1.37)	[1]	9	_	1.37)	[1]
Isophorone) ON	0.620)	Ξ	QN	0.0	0.623)	[1]	S	_	0.653)	[1]	QN	_	0.653)	Ξ
N-Nitroso-di-n-propylamine) ON	0.650)	Ξ	ND). 0	0.653)	Ξ	QN	_	0.684)	[1]	Q	_	0.684)	[1]
N-Nitrosodiphenylamine) QN	0.270)	Ξ	QN)	0.271)	Ξ	9	_	0.284)	Ξ	Q	_	0.284)	Ξ
Naphthalene) ON	0.480)	Ξ	QN))	0.482)	Ξ	2	_	0.505)	Ξ	R	_	0.505)	Ξ
Nitrobenzene	ON !	0.840)	Ξ	QN	?; 	0.844)	Ξ	2	_	0.884)	Ξ	9	_	0.884)	Ξ
Pentachlorophenol	ON ON	0.890)	Ξ	QN	?.o)	0.894)	Ξ	2	_	0.937)	Ξ	9	_	0.937)	Ξ
Phenanthrene) QN	0.470)	Ξ	Q N). (0.472)	Ξ	2	_	0.495)	Ξ	2	_	0.495)	Ξ
Phenol) QN	0.880)	Ξ	QN)	0.884)	Ξ	2	_	0.926)	Ξ	Q	_	0.926)	Ξ
Pyrene) QN	0.410)	Ξ	ND	`.)	0.412)	Ξ	Q.	_	0.432)	Ξ	Q	_	0.432)	[1]
bis(2-Chloroethoxy)methane) QN	0.610)	Ξ	QN Q	0.0	0.613)	Ξ	9	_	0.642)	Ξ	S	_	0.642)	Ξ
bis(2-Chloroethyl)ether) ON	0.380)	Ξ	ND	0	0.382)	Ξ	2	_	0.400)	[1]	Q.	_	0.400)	[1]
bis(2-Chloroisopropyl)ether) ON	0.800)	Ξ)	0.804)	Ξ	2	_	0.842)	Ξ	2	_	0.842)	Ξ
bis(2-Ethylhexyl)phthalate	1.11 8 (0.580)	[1]	0.257 JB))	0.583)	[1]	2	_	0.611)	[1]	Q.	_	0.611)	Ξ

	00-MM-06 09-MM-06
	09-MM-05 09-MM-05 09-MM-05-03
SITE ID LOCATION ID SAMPLE ID	008 09-MW-04 09-MW-04-03
	008 09-MW-03 09-MW-03-03
	PARAMETER

						SIT LOCAT SAME	SITE ID LOCATION ID SAMPLE ID									
PARAMETER	~ 6	008 09-MW-15 9-MW-15-(008 09-MW-15 09-MW-15-01			008 10-GP-01 10-GP-01-	008 10-GP-01 10-GP-01-01			0 10-G 10-GP	008 10-GP-02 10-GP-02-01			008 10-MW-01 10-MW-01-	008 10-MW-01 10-MW-01-03	
Diesel Range Organics (ug/L)	3.00 JB	_	200)		6.00) gr	200)	Ξ	3.00	JB (200)	[1]	13.0	JB (200)	Ξ
Gasoline Range Organics (ug/L) Gasoline Range Organics	25.0 JB	_	100)	[1]	23.0 B		10.0)	[1]	21.0	B (10.0)	Ξ	51.0	JB (100)	Ξ
SW8010 - Halogenated Volatile Organics	unics (ug/L)	-	(0100	Ξ	X				ž				Š	`		Ī
i,i,i,z-retrachioroethane 1,i,i-Trichloroethane	2 2		0.147)	ΞΞ	A A				A A				2 2		0.0285)	ΞΞ
1,1,2,2-Tetrachloroethane	QN	_	0.144)	Ξ	N				NA				QN	<i>.</i> _	0.0427)	ΞΞ
1,1,2-Trichloroethane	ND	_	0.0454)	Ξ	NA				NA				ON		0.0172)	Ξ
1,1-Dichloroethane	S	_	0.0222)	[1]	NA				NA				QN	_	0.0729)	Ξ
1,1-Dichloroethene	운 :		0.112)	Ξ:	NA :				NA				QN	_	0.0568)	Ξ
1,2,3-Trichloropropane 1,2-Dichloropenzene	2 9		0.109)	3 3	V Αν				A V				2 2		0.0367)	ΞΞ
1,2-Dichloroethane	2 2	۔ ۔	0.0823)	ΞΞ	Y A				N A				2 8	۔ ۔	0.0286)	ΞΞ
1,2-Dichloropropane	N	_	0.0228)	[1]	NA				NA				QN	_	0.0320)	Ξ
1,3-Dichlorobenzene	QN		0.0878)	Ξ	NA				NA				QN	_	0.0902)	Ξ
1,4-Dichlorobenzene	2 9	_ 、	0.0908)	ΞΞ	¥ :				NA :				Q !	<u> </u>	0.0322)	Ξ
1-cnloronexane 2-chlomosthyl vinyl other	O CN		0.0404)	ΞΞ	Y Y				Y Y				2 9	_ <	0.095/)	ΞΞ
Bromohenzene	e S		0.0451)	ΞΞ	K K				Y Z				2 5		0.170)	ΞΞ
Bromodichloromethane	Q	۔ ۔	0.0886)	ΞΞ	NA				NA.				2 2		0.0150)	ΞΞ
Bromomethane	QN	_	0.0858)	Ξ	NA				NA				2	۔ ۔	0.161)	ΞΞ
Carbon tetrachloride	ON	_	0.0854)	Ξ	NA				NA				QN	_	0.0444)	Ξ
Chl orobenzene	QN	_	0.124)	Ξ	NA		٠		NA				N	_	0.0301)	Ξ
Compiled: 16 March 1995	() = Detection limit	i		= Dilution	on Factor A	N = UN	Not Detected	AN MA	Not Annlicable	ahle	R = Inval	Invalid Recult	Defer to Of Benert	OC DO	+400	
		<u>.</u>	3			ı	מביפיים זו	! <u>{</u>	ייושקה זו	ם ביו	ı	וח המסמורי	י עבובו רח	ر ا		1

					SITE ID LOCATION ID SAMPLE IO					
		008			800	800		008		
	8	09-MW-15			10-GP-01	10-6P-02		10-MW-01		
PARAMETER	-60	09-MW-15-01			10-GP-01-01	10-GP-02-01	1	10-MW-01-03	-03	
SW8010 - Halogenated Volatile Organics, cont.	!	(ng/L)		!						!
Chloroethane		(0.080		[1]	NA	AN	QN	0	0.0499)	Ξ
Chloroform	ON	(0.0258)			NA	NA	QN N	· ·	0.0512)	ΞΞ
Chloromethane	ON	(0.151)		[1]	NA	NA	QN N	· ·	0.0213)	35
Dibromochloromethane	ON	(0.082			NA	NA	Q.	· ·	0.0101)	
Dibromomethane	Q	(0.074		[1]	NA	NA	QN	0	0.0939)	ΞΞ
Methylene chloride	0.445 TB	(0.084		_	NA	NA	QN	0	0.0430)	
Tetrachloroethene	ND	(0.075		نت	NA	NA	QN	0	0.0381)	ΞΞ
Tribromomethane(Bromoform)	S	(0.0944)	4) [1]	_	NA	NA	QN		0.252)	
Trichloroethene	R	(0.073		<u></u>	NA	NA	0.256		0.0387)	ΞΞ
Trichlorofluoromethane	QN	(0.098		_	NA	NA	QN	.)	0,0603)] [
Vinyl chloride	ND	(0.151)		ښـــ	NA	NA	ON	0	0.0761)	ΞΞ
cis-1,3-Dichloropropene	ON	(0.0804)		_	NA	NA	ND		0.0220)	ΞΞ
trans-1,2-Dichloroethene	ND	(0.0870)]	NA	NA	QN	_	0.160)	ΞΞ
trans-1,3-Dichloropropene	QN	(0.071		_	NA	NA	ND	· 0	0.0302)	ΞΞ
SW8015 - Nonhalogenated Volatile Organics (mg/L)	anics (mg/L	_								
2-Butanone(MEK)	QN	(2.38)		_	AN	¥ Z	C	_	2 401	[1]
4-Methyl-2-pentanone(MIBK)	ON	1.4		_	AA	AN	2 2	<i>-</i> _	1 50)	3 5
Ethanol	QN	(0.301)	1) [1]]	NA	AN	QN N		0.300)	[1]
Ethyl ether	QN	(1.16)		_	NA	NA	ON	· -	1.20)	[]
SW8020 - Aromatic Volatile Organics	(na/F)									
	R	(0.0784)	1) [1]		ď Z	Q Z	C N		, , ,	[1]
1,3-Dichlorobenzene	QN	0.0780		, –	NA	VN VN	€ €	- ·	(021)	E E
1.4-Dichlorobenzene	CN	(0 0711)		,	· · · · · · · · · · · · · · · · · · ·	V W	Q. ;	· ·	0.0/80)	Ξ:
				_		AN.	O.N.	_	0.160)	

NA = Not Applicable

ND = Not Detected

[] = Dilution Factor

() = Detection Limit

	008 10-MW-01	10-MM-01		0.476 B (0.0830) [1]	ND (0.130) [1]			0.167 B (0.0810) [1]		[1] (0.00922) (N)	(0.00647)	. <u> </u>	ND (0.00912) [1]	(0.0294)	(0.00784)	ND (0.00608) [1]	ND (0.00529) [1]	0.00990 JB (0.0137) [1]	ND (0.0118) [1]	ND (0.00647) [1]	ND (0.0324) [1]	ND (0.0245) [1]	ND (0.0480) [1]	ND (0.0980) [1]	ND (0.186) [1]	ND (0.0549) [1]	ND (0.0569) [1]
	008 10-6P-02	10-20-45-01		NA	NA	NA	NA	NA		AN	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SITE ID LOCATION ID SAMPLE ID	008 10-GP-01	10-10-15-01		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	008 09-MW-15	TO-07-81-00	ganics, cont. (ug/L)	5.49 (0.0832) [1]	ND (0.0802) [1]	0.0166 KJB (0.0436) [1]	0.0907 B (0.0813) [1]	0.0344 JB (0.0811) [1]	cides and PCBs (ug/L)		NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA
		PARAMETER	SW8020 - Aromatic Volatile Organics, cont.	Benzene	Chlorobenzene	Ethylbenzene	Toluene	Xylene (total)	SW8080 - Organochlorine Pesticides and PCBs	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Chlordane	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242

	800	10-MW-01	10-MW-01-03		ND (0.147) [1]	(0.0774)	(0.0441)	(0.00980)	_	(0.00627)	(0.00216)	ND (0.00451) [1]			(0.646)	ND (0.727) [1]	(0.596)	(0.515)	(0.505)	(0.576)	(1.31)	(4.24)	(0.596)	(0.869)	(0.394)			_
	008	10-GP-02	10-GP-02-01		NA	NA	NA	NA	NA	NA	NA	٨٨		NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA .
SITE ID LOCATION ID SAMPLE ID	800	10-GP-01	10-GP-01-01		NA	NA	NA	NA	NA	NA	NA	NA		NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	800	09-MW-15	US-MW-15-U1	cides and PCBs, cont. (ug/L)	NA .	NA	NA	NA	۸A	NA	NA	NA	s (ug/L)	(0.622)	(0.820)	(0.417)	(0.851)	(0.347)	(0.367)	(0.466)	(1.16)	(7.37)	(0.579)	(0.364)	ND (0.341) [1]	(0.804)	(0.695)	
			PARAMETER	SW8080 - Organochlorine Pesticides and PCBs,	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC(Lindane)	SW8270 - Semivolatile Organics	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol (o-cresol)

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

						SITE ID						
						LOCATION ID SAMPLE ID						
		008	~			008		800		008	~	
		09-MW-15	-15		•	10-GP-01	10-	10-GP-02		10-MW-01	-01	
PARAMETER	.	TO-ST-MW-60	70-51		<u> </u>	10-67-01-01	10-6	10-GP-02-01	.⊸	10-MW-01-03	01-03	
SW8270 - Semivolatile Organics, cont.	(1/gn)		 	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!								
2-Nitroaniline	QN	_	0.423)	Ξ	NA		NA		S	_	0.667)	Ξ
2-Nitrophenol	ON	_	0.463)	Ξ	NA		NA		QN		0.525)	ΞΞ
3,3'-Dichlorobenzidine	S	_	0.516)	Ξ	NA		NA		S		0.333)	Ξ
3-Nitroaniline	ON	_	0.536)	Ξ	NA		NA		S	_	0.394)	Ξ
4,6-Dinitro-2-methylphenol	QN	_	0.834)	[1]	NA		NA		Q	_	0.434)	Ξ
4-Bromophenyl phenyl ether	QN	_	0.480)	[1]	NA		NA		S	_	0.495)	Ξ
4-Chloro-3-methylphenol	Q	_	0.761)	[1]	NA		NA		QN	_	0.525)	Ξ
4-Chloroaniline	Q	_	0.588)	Ξ	NA		NA		Q	_	0.747)	Ξ
4-Chlorophenyl phenyl ether	QN	_	0.556)	[1]	NA		NA		QN	_	0.424)	Ξ
4-Methylphenol(p-cresol)	QN	_	0.605)	Ξ	NA		NA		Q.	_	0.465)	[1]
4-Nitroaniline	QN	_	0.509)	Ξ	NA		NA		S	_	0.616)	Ξ
4-Nitrophenol	Q	_	0.727)	Ξ	NA		NA		ON	_	0.949)	Ξ
Acenaphthene	Q	_	0.503)	Ξ	NA		NA		QN	_	0.273)	Ξ
Acenaphthylene	2	_	0.238)	Ξ	NA		NA		Q	_	0.424)	[1]
Anthracene	Q.	_	0.612)	Ξ	NA		NA		Q.	_	0.374)	Ξ
Benzo(a)anthracene	QN	_	0.542)	Ξ	AN		NA		Q	_	0.455)	Ξ
Benzo(a)pyrene	2	_	0.403)	Ξ	NA		NA		Q	_	0.525)	[1]
Benzo(b)fluoranthene	Q		0.599)	Ξ	NA		NA		Q	_	0.919)	[1]
Benzo(g,h,i)perylene	2	_	0.513)	Ξ	NA		NA		S	_	1.01)	Ξ
Benzo(k)fluoranthene	Q	_	1.02)	[]	NA		NA		S	_	1.01)	Ξ
Benzoic acid	8	_	4.17)	Ξ	NA		NA		S	_	39.4)	Ξ
Benzyl alcohol	S S	_	1.14)	Ξ	ΑN		NA		2	_	0.616)	[1]
Butylbenzylphthalate	Q	_	0.414)	Ξ	ΑN		NA		QN	_	0.626)	[1]
Chrysene	2	_	0.704)	Ξ	NA		NA		QN	_	0.545)	Ξ
Di-n-butylphthalate	Q	_	0.519)	[1]	N		NA		ND	_	0.323)	Ξ
Compiled: 16 March 1995 () =	= Detection Limit	Limi	=	Dilution	Factor ND	= Not Detected NA = Not /	Not Applicable	R = Invalid Result Refer to OC	Refer to O	C Benort	+	
			3)		יפופו ני	ניייי	· -	į

	008 10-MW-01 10-MW-01-03
	008 10-GP-02 10-GP-02-01
SITE ID LOCATION ID SAMPLE ID	008 10-GP-01 10-GP-01-01
	008 09-MW-15 09-MW-15-01
	PARAMETER

Diebcz/chylptkialate NO (0.459) [1] NA NA NA NA NA NA NA NA	SW8270 - Semivolatile Organics, cont.	t. (ug/L)								
NO (0.499) [1] NA	Di-n-octylphthalate		(0.929)		NA	NA	QN	0	354)	Ξ
NA (0.429) [1] NA NA NA NA NA NA NA NA	Dibenz(a,h)anthracene) ON	(0.499)		NA	ĄN	ON N	· ·	818)	ΞΞ
ND (0.354) [1] NA NA NA ND (0.525) ND (0.285) [1] NA NA NA ND (0.425) ND (0.525) [1] NA NA NA ND (0.455) ND (0.524) [1] NA NA NA ND (0.384) ND (0.735) [1] NA NA NA ND (0.384) ND (0.735) [1] NA NA NA ND (0.313) ND (0.735) [1] NA NA NA ND (0.515) ND (0.735) [1] NA NA NA ND (0.525) ND (0.523) [1] NA NA NA ND (0.525) ND (0.521) [1] NA NA NA ND (0.523) ND (0.725) [1] NA NA	Dibenzofuran) ON	(0.429)	Ξ	NA	NA	ND		.545)	ΞΞ
ND (0.286) [1]	Diethylphthalate	ON ON	(0.354)	[1]	NA	NA	ON		.525)	ΞΞ
ND (0.596) [1] NA	Dimethylphthalate) QN	(0.295)	[1]	NA	NA	GN		343)	ΞΞ
ND (0.672) [1] NA NA NA ND (0.354) [1] NA NA ND (0.354) [1] NA NA ND (0.354) [1] NA NA ND (0.313) ND (0.246) [1] NA NA NA ND (0.313) ND (0.265) [1] NA NA ND (0.356) ND (0.553) [1] NA NA ND (0.565) ND (0.791) [1] NA NA ND (0.657) ND (0.791) [1] NA NA ND (0.657) ND (0.791) [1] NA NA ND (0.657) ND (0.791) [1] NA NA ND (0.657) ND (0.762) [1] NA NA ND (0.657) ND (0.762) [1] NA NA ND	Diphenylamine/N-NitrosoDPA) ON	(0.596)	[1]	NA	NA	a N	,		7
ND (0.354) [1] NA NA NA ND (0.344) ND (0.246) [1] NA NA NA ND (0.313) ND (0.254) [1] NA NA NA ND (0.515) ND (0.625) [1] NA NA NA ND (0.556) ND (0.752) [1] NA NA ND (0.557) ND (0.757) [1] NA NA ND (0.655) ND (0.756) [1] NA NA ND (0.655) ND (0.756) [1] NA NA ND (0.655) ND (0.757) [1] NA NA ND (0.889) ND (0.655) [1] NA NA ND (0.889) ND (0.655) [1] NA NA ND (0.751) ND (0.655) [1] </td <td>Fluoranthene</td> <td>) QN</td> <td>(0.672)</td> <td>Ξ</td> <td>NA</td> <td>NA</td> <td>ON</td> <td>0</td> <td>(475)</td> <td>[</td>	Fluoranthene) QN	(0.672)	Ξ	NA	NA	ON	0	(475)	[
ND (0.246) [1] NA NA NA ND (0.313) ND (0.735) [1] NA NA NA ND (0.515) ND (0.532) [1] NA NA ND (0.536) ND (0.553) [1] NA NA ND (0.536) ND (0.7302) [1] NA NA ND (0.565) ND (0.791) [1] NA NA ND (0.657) ND (0.767) [1] NA NA ND (0.657) ND (0.767) [1] NA NA ND (0.657) ND (0.767) [1] NA NA ND (0.657) ND (0.767) [1] NA NA ND (0.685) ND (0.658) [1] NA NA ND (0.689) ND (0.699) [1] NA NA<	Fluorene) ON	(0.354)	Ξ	NA	NA	QN	0	384)	ΞΞ
ND (0.735) [1] NA NA NA NA ND (5.96) ND (0.825) [1] NA NA ND (5.96) ND (0.825) [1] NA NA ND (0.836) ND (0.825) [1] NA NA ND (0.826) ND (0.791) [1] NA NA ND (0.625) ND (0.791) [1] NA NA ND (0.625) ND (0.791) [1] NA NA ND (0.625) ND (0.791) [1] NA NA ND (0.625) ND (0.792) [1] NA NA ND (0.893) ND (0.993) [1] NA NA ND (0.893) ND (0.493) [1] NA NA ND (0.614) ND (0.791) [1] NA NA <td>Hexachlorobenzene</td> <td>) ON</td> <td>0.246</td> <td>[1]</td> <td>NA</td> <td>NA</td> <td>QN</td> <td>0</td> <td>313)</td> <td>ΞΞ</td>	Hexachlorobenzene) ON	0.246	[1]	NA	NA	QN	0	313)	ΞΞ
ND (9.39) [1] NA NA NA ND (5.96) ND (0.655) [1] NA NA ND (0.636) ND (0.791) [1] NA NA ND (0.625) ND (0.791) [1] NA NA ND (0.626) ND (0.767) [1] NA NA ND (0.6273) ND (0.767) [1] NA NA ND (0.6273) ND (0.767) [1] NA NA ND (0.6273) ND (0.767) [1] NA NA ND (0.628) ND (0.767) [1] NA NA ND (0.689) ND (0.909) [1] NA NA ND (0.889) ND (0.655) [1] NA NA ND (0.689) ND (0.420) [1] NA NA ND<	Hexachlorobutadiene) ON	0.735)	[1]	NA	NA	QN	0	515)	ΞΞ
ND (0.625) [1] NA NA NA 0.636) ND (0.53) [1] NA NA ND (0.626) ND (0.302) [1] NA NA ND (0.626) ND (0.791) [1] NA NA ND (0.627) ND (0.767) [1] NA NA ND (0.627) ND (0.767) [1] NA NA ND (0.733) ND (0.565) [1] NA NA ND (0.893) ND (0.420) [1] NA NA ND (0.475) ND (0.420) [1] NA NA ND (0.414) ND (0.420) [1] NA NA ND (0.414) ND (0.420) [1] NA NA ND (0.414) ND (0.420) [1] NA NA ND (0.414	Hexachlorocyclopentadiene) QN	9.39)	[1]	NA	NA	ON		(96)	ΞΞ
ND (0.553) [1] NA NA NA ND (1.31) ND (0.302) [1] NA NA ND (0.655) ND (0.791) [1] NA NA ND (0.657) ND (0.756) [1] NA NA ND (0.485) ND (0.556) [1] NA NA ND (0.889) ND (0.400) [1] NA NA ND (0.889) ND (0.420) [1] NA NA ND (0.414) ND (0.493) [1] NA NA ND (0.414) ND (0.592) [1] NA NA NA ND (0.616) ND (0.771) [1] NA NA NA ND (0.616) ND (0.764) [1] NA NA NA ND (0.889)	lexach loroethane) ON	0.625)	Ξ	NA	NA	ND	0	(989	Ξ
ND (0.302) [1] NA NA NA ND (0.657) ND (0.791) [1] NA ND (0.657) ND (0.767) [1] NA ND (0.485) ND (0.556) [1] NA NA ND (0.485) ND (0.909) [1] NA NA ND (0.889) ND (0.420) [1] NA NA ND (0.475) ND (0.433) [1] NA NA ND (0.414) ND (0.592) [1] NA NA ND (0.616) ND (0.771) [1] NA NA ND (0.616) ND (0.771) [1] NA NA ND (0.808)	indeno(1,2,3-cd)pyrene) ON	0.553)	Ξ	NA	NA	ON		.31)	Ξ
ND (0.791) [1] NA NA NA ND (0.657) NA (0.767) [1] NA NA ND (0.273) ND (0.556) [1] NA NA ND (0.485) ND (0.509) [1] NA NA ND (0.899) ND (0.420) [1] NA NA ND (0.889) ND (0.493) [1] NA NA ND (0.414) ND (0.592) [1] NA NA ND (0.414) ND (0.771) [1] NA NA ND (0.592) ND (0.764) [1] NA NA ND (0.892)	lsophorone) ON	0.302)	Ξ	NA	NA	QN	0	626)	Ξ
NA NA NA NA NA NA NA (0.273) ND (0.556) [1] NA NA ND (0.485) ND (0.556) [1] NA NA ND (0.889) ND (0.655) [1] NA NA ND (0.889) ND (0.420) [1] NA NA ND (0.889) ND (0.493) [1] NA NA ND (0.616) ND (0.592) [1] NA NA ND (0.616) ND (0.771) [1] NA NA ND (0.808)	√-Nitroso-di-n-propylamine) QN	0.791)	Ξ	NA	NA	ON	0	(22)	Ξ
ND (0.767) [1] NA NA NA ND (0.485) ND (0.566) [1] NA NA ND (0.899) ND (0.909) [1] NA NA ND (0.899) ND (0.420) [1] NA NA ND (0.889) ND (0.420) [1] NA NA ND (0.414) ND (0.592) [1] NA NA ND (0.889) ND (0.771) [1] NA NA ND (0.808)	I-Nitrosodiphenylamine	NA			NA	NA	QN	0	273)	
ND (0.556) [1] NA NA ND (0.848) ND (0.909) [1] NA NA ND (0.475) ND (0.420) [1] NA NA ND (0.489) ND (0.493) [1] NA NA ND (0.414) ND (0.592) [1] NA NA ND (0.514) ND (0.771) [1] NA NA ND (0.808)	laphthalene) ON	0.767)	[1]	NA	NA	QN		485)	Ξ
ND (0.909) [1] NA NA ND (0.475) ND (0.420) [1] NA NA ND (0.493) [1] NA ND (0.414) ND (0.493) [1] NA NA ND (0.616) ND (0.592) [1] NA NA ND (0.616) ND (0.771) [1] NA NA ND (0.808)	Nitrobenzene) ON	0.556)		NA	NA	QN	0	848)	Ξ
ND (0.655) [1] NA ND (0.475) ND (0.420) [1] NA ND (0.889) ND (0.493) [1] NA ND (0.414) ND (0.592) [1] NA ND (0.616) ND (0.771) [1] NA ND (0.808)	entachlorophenol) ON	0.909)	[1]	NA	NA	ON		(888	Ξ
ND (0.420) [1] NA NA ND (0.889) ND (0.493) [1] NA ND (0.414) ND (0.592) [1] NA ND (0.616) ND (0.771) [1] NA ND (0.884) ND (0.764) [1] NA ND (0.808)	henanthrene) QN	0.655)	Ξ	NA	NA	QN	0	475)	Ξ
ND (0.493) [1] NA NA ND (0.414) ND (0.592) [1] NA NA ND (0.616) ND (0.771) [1] NA ND (0.884) ND (0.764) [1] NA ND (0.808)	henol) QN	0.420)	[]	NA	NA	ON.		889)	Ξ
ND (0.592) [1] NA NA ND (0.616) ND (0.771) [1] NA NA ND (0.384) ND (0.764) [1] NA NA ND (0.808)	yrene) QN	0.493)	Ξ	NA	NA	QN		414)	ΞΞ
ND (0.771) [1] NA NA ND (0.384) ND (0.764) [1] NA NA ND (0.808)	ois(2-Chloroethoxy)methane) ON	0.592)	[1]	NA	NA	QN		616)	ΞΞ
. ND (0.764) [1] NA ND (0.808)	ois(2-Chloroethyl)ether) ON	0.771)	Ξ	NA	NA	QN		384)	ΞΞ
	is(2-Chloroisopropyl)ether) ON	0.764)	Ξ	NA	NA	QN	.0	808)	ΞΞ

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

	008	10-MW-01	10-MW-01-03		184 (2.93)
	800	10-GP-02	10-GP-02-01		NA
SITE ID LOCATION ID SAMPLE ID	. 800	10-GP-01	10-GP-01-01		NA
	800	09-MW-15	09~MW~15~01		(1.93) [1]
				PARAMETER	SW8270 - Semivolatile Organics, cont. (ug/L) bis(2-Ethylhexyl)phthalate

[2]

						SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID							į.		
PARAMETER		(10-№ 10-MW	008 10-MW-02 10-MW-02-03			0 10-M	008 10-MW-03 10-MW-03-03			008 10-MW-04 10-MW-04-	008 10-MW-04 10-MW-04-01			005 12-MW-01 12-MW-01-	005 12-MW-01 12-MW-01-03	
Diesel Range Organics (ug/L)	650		200)	[1]	8.00	JB (200)	[1]	10.0 JB	9 (200)	[1]	11.0	JB (200)	[1]
Gasoline Range Organics (ug/L) Gasoline Range Organics	3500	_	100)	[1]	210	<u> </u>	100)	[1]	180	_	100)	[1]	49.0	JB (100)	[1]
SW8010 - Halogenated Volatile Organics	anics (uq/L)	<u></u>														
1,1,1,2~Tetrachloroethane		<u> </u>	0.0285)	[1]	Q.	_	0.0400)	[]	Q	_	0.08521	Ξ	S	~	0.0400)	Ξ
1,1,1-Trichloroethane	QN	_	0.138)	[1]	0.0299	PJB (0.0920)		2 2	_	0.166)			 B	0.0950)	ΞΞ
1,1,2,2-Tetrachloroethane	N	_	0.0427)	[1]	QN	_	0.100)	Ξ	QN		0.129)	Ξ		- <u> </u>	0.100)	3
1,1,2-Trichloroethane	QN N	_	0.0172)	[1]	QN	_	0.100)	[1]	ON		0.123)	Ξ	QN		0.100)	Ξ
1,1-Dichloroethane	Q.	_	0.0729)	[1]	0.0667	PB (0.0480)	Ξ	0.184		0.0666)	ΞΞ	QN	<i>-</i>	0.0480)	ΞΞ
1,1-Dichloroethene	S	_	0.0568)	[1]	ND	~	0.100)	[1]	ON	_	0.0501)	Ξ	R	<i>-</i>	0.100)	ΞΞ
1,2,3-Trichloropropane	S	_	0.0367)	[1]	ON	_	0.120)	[1]	QN	_	0.154)	Ξ	ON		0.120)	ΞΞ
1,2-Dichlorobenzene	QN	_	0.0288)	[1]	0.00650	KJB (0.170)	[1]	QN	_	0.0893)	Ξ	QN	. <u> </u>	0.170)	ΞΞ
1,2-Dichloroethane	Q	_	0.0286)	[1]	QN	_	0.0540)	[1]	ND	_	0.0800)	ΞΞ	QN		0.0540)	ΞΞ
1,2-Dichloropropane	Q	_	0.0320)	[1]	S	_	0.0750)	[1]	QN	_	0.0457)	[1]	Q.	_	0.0750)	[]
1,3-Dichlorobenzene	2	_	0.0902)		Q	_	0.150)	[1]	ND	_	0.0688)	[1]	9	_	0.150)	Ξ
1,4-Dichlorobenzene	QN	_	0.0322)	[1]	0.00450	KJB (0.190)	[1]	ND	_	0.0553)	Ξ	2	_	0.190)	Ξ
1-Chlorohexane	2	<u> </u>	0.0957)	Ξ	0.0162	KJB (0.120)	[1]	0.0309	_	0.154)	[1]	QN	_	0.120)	[1]
2-Chloroethyl vinyl ether	ON	_	0.0281)	[1]	QN	_	0.170)	\Box	ND	_	0.194)	[1]	Q	_	0.170)	Ξ
Bromobenzene	QN	_	0.0693)	[1]	ND	_	0.530)	Ξ	QN	_	0.132)	[1]	0.645	_	0.530)	
Bromodichloromethane	ON	_	0.0150)	Ξ	ON	<u> </u>	0.0680)	[1]	ND	_	0.0448)	[1]	QN	_	0.0680)	Ξ
Bromomethane	QN	_	0.161)	Ξ	ON	<u> </u>	0.0860)	[1]	ND	<u> </u>	0.252)	Ξ	ND	_	0.0560)	Ξ
Carbon tetrachloride	QN	_	0.0444)	Ξ	QN	_	0.110)	[1]	ON	_	0.0693)	[1]	ON N	_	0.110)	[1]
Chlorobenzene	QN	_	0.0301)	Ξ	QN	_	0.140)	[1]	ND	_	0.0513)	[1]	QN	_	0.140)	ΞΞ
Compiled: 16 March 1995	() = Detection mit		= = = = = = = = = = = = = = = = = = = =	D: 1.1+; C	3											

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report Compiled: 16 March 1995

A7-101

	900	10-MW-04 12-MW-01	1			
SITE ID LOCATION ID SAMPLE IO	800	10-MW-03	10-MW-03-03			
	800	10-MW-02	10-MW-02-03			
				PARAMETER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1		1 1 1 1 1 1		1 1 1 1 1 1 1		11111	11111111111	1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	111111111111111111111111111111111111111	1 1 1
SW8020 - Aromatic Volatile Organics, cont.	cs, cont.	(ng/L)														
Benzene	153	_	1.75)	[22]	88.1	_	0.395)	[2]	35.8	_	0.0519)	[1]		JB (0.0790)	[1]
Chlorobenzene	QN	_	1.12)	[52]	0.489	PJ (0.600)	[2]	0.0252 PB	_	0.0140)	Ξ		· _	0.120)	ΞΞ
Ethylbenzene	74.6	_	1.70)	[22]	0.146) (0.600)	[2]	0.0618 B	_	0.0436)	[]		.) gr	0.120)	Ξ
Toluene	55.8	_	1.20)	[22]	0.156	PJB (0.550)	[2]	0.144 B	_	0.0647)			.) B	0.110)	<u> </u>
Xylene (total)	403	_	2.12)	[52]	15.0	<u> </u>	0.650)	[2]	1.37 8	_	0.127)	[1]	0.131 B	.)	0.130)	[1]
SW8080 - Organochlorine Pesticides and PCBs	s and PCBs	(ng/L)	<u></u>													
4,4'-000	ON	_	0.00800)	[1]	QN	_	0.00808)	Ξ	NA				QN	_	0.00808)	Ξ
4,4'-DDE	ON	<u> </u>	0.00540)	[1]	QN	_	0.00545)	[1]	NA				Q		0.00545)	
4,4'-00T	2	_	0.0100)	[1]	N N	_	0.0101)	[1]	NA				QN		0.0101)	[]
Aldrin	QN	_	0.00350)	[1]	0.0173	_	0.00354)	[1]	NA				8	_	0.00354)	[1]
Chlordane	QN	_	0.0300)	[1]	QN	_	0.0303)	Ξ	NA				9	_	0.0303)	
Dieldrin	QN	<u> </u>	0.00800)	Ξ	QN	_	0.00808)	[1]	NA				QN	_	0.00808)	
Endosulfan I	QN	_	0.00620)	Ξ	Q.	_	0.00626)	[1]	NA				9	_	0.00626)	Ξ
Endosulfan II	ON	<u> </u>	0.00540)	[1]	QN	_	0.00545)	[1]	NA				ON.	_	0.00505)	Ξ
Endosulfan Sulfate	0.00740	JB (0.0140)	Ξ	0.00000	JB (0.0141)	[]	NA				0.0120 B	_	0.0141)	[1]
Endrin	QN N	_	0.0120)	Ξ	QN	_	0.0121)	[1]	NA				S	_	0.0121)	
Endrin Aldehyde	2	<u> </u>	0.00660)	[1]	QN	_	0.00667)	Ξ	NA				S	_	0.00667)	Ξ
Heptachlor	2	_	0.00540)	[1]	0.00820) 8	0.00545)	[1]	NA				Q.	_	0.0333)	Ξ
Heptachlor epoxide	0.00510	PJB (0.0250)	[1]	ON	_	0.0253)	[1]	NA				N N	_	0.0253)	[1]
Methoxychlor	Q	_	0.0490)	[]	S	_	0.0495)	Ξ	AN				S	_	0.0495)	Ξ
PCB-1016	N	_	0.100)	[1]	Q	_	0.101)	[1]	NA				QN	_	0.101)	Ξ
PCB-1221	Q	_	0.190)	[1]	R	_	0.192)	Ξ	NA				S	_	0.192)	[]
PCB-1232	S	_	0.0560)	[1]	R	_	0.0566)	[1]	NA				ջ	_	0.0566)	[1]
PCB-1242	9	_	0.0580)	[1]	QN	_	0.0586)	Ξ	NA				QN	_	0.0586)	[1]

Compiled: 16 March 1995

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

						SITE	SITE ID								
						SAMPL	SAMPLE ID								
		800				800	~			800			002	ž.	
	10	10-MW-02				10-MW-03	-03		10-	10-MW-04			12-MW-01	-01	
OADAMETED	10	10-MW-02-03	03			10-MW-03-03	3-03		. 10-M	10-MW-04-01			12-MW-01-03	01-03	
FAKAME 1 ER		1	: : : : : :	1	; ; ;	1		 		 	 			 1 3 8 6	1 1 1 1
SW8080 - Organochlorine Pesticides and PCBs,	ides and PCBs, cont.		(ng/L)												
PCB-1248	ON	0	0.150)	Ξ	Q	_	0.152)	Ξ	NA			QN	_	0.152)	[1]
PCB-1254	ON	0.	0.0790)	Ξ	R	_	0.0798)	Ξ	NA			8		0.0798)	
PCB-1260	ON	.0	0.0450)	Ξ	2	J	0.0455)	Ξ	NA			QN		0.0455)	ΞΞ
Toxaphene	ON	.0	0.0100)	Ξ	QN	_	0.0101)	Ξ	NA			QN		0.0101)	Ξ
a]pha-BHC	QN	0.0	0.00350)	[1]	SN SN	_	0.00404)	Ξ	NA			Q	_	0.00404)	Ξ
beta-BHC	QN	0.0	0.00640)	Ξ	0.0230	_	0.00646)	Ξ	NA			N N	_	0.00646)	Ξ
delta-BHC	QN	0.0)	0.00260)	Ξ	S	_	0.00263)	Ξ	NA			9	_	0.00222)	Ξ
gamma-BHC(Lindane)	0.0191 P	0.	0.0130)	[1]	QN	_	0.00465)	[1]	ŃÀ			N N	_	0.00465)	[1]
SW8270 - Semivolatile Organics	(ng/L)														
1,2,4-Trichlorobenzene		0	0.596)	[1]	Q.	Ų	0.584)	[1]) QN	0.603)		QN	_	0.590)	[1]
1,2-Dichlorobenzene	QN	0	0.646)	[1]	QN	_	0.634)	Ξ) ON	0.795)	ΞΞ	QN	<i>-</i>	0.640)	ΞΞ
1,3-Dichlorobenzene	QN	0)	0.727)	[1]	QN	_	0.713)	Ξ) ON	0.404)		Q.	_	0.720)	Ξ
1,4-Dichlorobenzene	ON	0	0.596)	[1]	Q.	_	0.584)	Ξ) ON	0.824)		Q	_	0.590)	Ξ
2,4,5-Trichlorophenol	QN	0	0.515)	Ξ	N N	_	0.505)	Ξ) QN	0.337)		QN	J	0.510)	Ξ
2,4,6-Trichlorophenol	QN	0	0.505)	Ξ	ON.	_	0.495)	Ξ) QN	0.356)		Q.	_	0.500)	Ξ
2,4-Dichlorophenol	QN	° _	0.576)	Ξ	Q.	_	0.564)	Ξ) ON	0.452)		QN	_	0.570)	Ξ
2,4-Dimethylphenol	8.07	_	1.31)	Ξ	Q	_	1.29)	Ξ) QN	1.12)		QN	_	1.30)	Ξ
2,4-Dinitrophenol	ON	_	4.24)	Ξ	9	_	4.16)	Ξ) QN	7.14)		QN	_	4.20)	Ξ
2,4-Dinitrotoluene	ON	0	0.596)	Ξ	2	_	0.584)	Ξ) QN	0.561)		QN	_	0.590)	Ξ
2,6-Dinitrotoluene	QN	° -	0.869)	Ξ	위	_	0.851)) QN	0.353)		ON	_	0.860)	Ξ
2-Chloronaphthalene	QN	° _	0.394)	Ξ	Q	_	0.386)	[1]) QN	0.331)		ON	_	0.390)	[1]
2-Chlorophenol	QN	0	0.646)	[1]	S	_	0.634)	Ξ) QN	0.780)		Q	_	0.640)	[]
2-Methylnaphthalene	6.81	°	0.364)	[1]	2	_	0.356)	Ξ) QN	0.673)		S	_	0.360)	[1]
2-Methylphenol (o-cresol)	1.39	0	0.313)	Ξ	S	_	0.307)	Ξ) ON	0.545)	Ξ	QN	_	0.310)	[1]
Compiled: 16 March 1995	() = Detection Limit	Limit] = []	Dilution	Factor	ND = Not	Detected	NA	= Not Applicable	R = Inv	alid Resu	Invalid Result, Refer to	QC Report	ort	

A7-103

					SIT LOCAT SAMF	SITE ID LOCATION ID SAMPLE ID									
	10	008 10-MW-02			008 10-MW-03	18 1-03			008 10-MW-04	4			005 12-MV-01	=	
PARAMETER	10-1	10-MW-02-03			10-MW-03-03	03-03	٠.	П	10-MW-04-01	-01		7	12-MW-01	03	
SW8270 - Semivolatile Organics, cont.	(ug/L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1	 	; ;	 				1 1 1 1 1 1	; ; ;	1	
2-Nitroaniline	ND N	(0.667)	[]	QN	_	0.653)	[1]	N	_	0.410)	[1]	Q.	_	0.660)	
2-Nitrophenol	QN	(0.525)		S	_	0.515)	Ξ	ON	_	0.449)	Ξ	9		0.520)	ΞΞ
3,3'-Dichlorobenzidine	ON	0.333)		QN	_	0.327)	[1]	N	_	0.500)	[1]	QN		0.330)	[]
3-Nitroaniline	Q.	0.394)		ON	_	0.386)	[1]	N	_	0.519)	[1]	ND	_	0.390)	
4,6-Dinitro-2-methylphenol	QN	0.434)		QN	_	0.426)	[1]	N	_	0.808)	[1]	NO	_	0.430)	ΞΞ
4-Bromophenyl phenyl ether	QN QN	0.495)	Ξ	QN	_	0.485)	[1]	R	_	0.465)	[1]	N S	_	0.490)	Ξ
4-Chloro-3-methylphenol	QN QN	0.525)	Ξ	NO	_	0.515)	[]	QN	_	0.738)	[1]	N	_	0.520)	
4-Chloroaniline	ON ON	0.747)	[1]	QN	_	0.733)	Ξ	Q.	_	0.570)	[1]	N N		0.740)	ΞΞ
4-Chlorophenyl phenyl ether	ON ON	0.424)	[1]	QN	_	0.416)	[1]	NO	_	0.539)	[1]	ON		0.420)	ΞΞ
4-Methylphenol(p-cresol)	1.71 (0.465)	[1]	QN	_	0.455)	[1]	QN	_	0.587)	[1]	QN	_	0.460)	
4-Nitroaniline	2	0.616)	Ξ	QN	_	0.604)	Ξ	ON	_	0.494)	Ξ	ND	_	0.610)	[1]
4-Nitrophenol	Q.	0.949)	[]	QN	_	0.931)	[1]	QN	_	0.705)	[1]	QN	_	0.940)	
Acenaphthene	2	0.273)	Ξ	QN	_	0.267)	[]	ON) _	0.488)	[1]	ON	_	0.270)	[1]
Acenaphthylene	Q	0.424)	[1]	ND	_	0.416)	[1]	ND	_	0.231)	[1]	QN	_	0.420)	[1]
Anthracene	Q :	0.374)	[1]	Q	_	0.366)	Ξ	QN	_	0.593)	[1]	QN	_	0.370)	[1]
benzo(a)anthracene	ON :	0.455)	Ξ	QN	_	0.446)	Ξ	QN	_	0.526)	[1]	QN Q	_	0.450)	[1]
benzo(a)pyrene	Q :	0.525)	Ξ	QN		0.515)	Ξ	Q	_	0.391)	[]	QN	_	0.520)	Ξ
benzo(b)riuorantnene		0.919)	Ξ	9	_	0.901)	[1]	Q.	·	0.581)	Ξ	ON ON	_	0.910)	[1]
benzo(g,h,l)pery!ene	Q :	1.01)	Ξ	QN	_	0.890)	Ξ	R	0	0.497)	[1]	ND	_	1.00)	[1]
ranthene		1.01)	Ξ	ON	_	0.990)	[1]	QN	0	0.988)	[1]	Q.	_	1.00)	Ξ
	3.27 J	39.4)	Ξ	QN	_	38.6)	Ξ	R	_	4.04)	[1]	ND	_	39.0)	[1]
Benzyl alcoho!) Qu	0.616)		ND	_	0.604)	[1]	ON	_	1.10)	[1]	S	_	0.610)	Ξ
Butylbenzylphthalate) QN	0.626)	Ξ	QN	_	0.614)	[1]	Q.	0	0.401)	[1]	QN Q	J	0.620)	[1]
Chrysene) Q	0.545)	Ξ	QN	<u> </u>	0.535)	Ξ	S	0	0.683)		Q.	_	0.540)	Ξ
Di-n-butylphthalate) ON	0.323)	[1]	ND	_	0.317)	[1]	QN	0)	0.503)	[1]	QN		0.320)	ΞΞ

NA = Not Applicable R = Invalid Result, Refer to QC Report ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

					SITE ID LOCATION ID SAMPLE ID	ON ID									
	10- 10-M	008 10-MW-02 10-MW-02-03			008 10-MW-03 10-MW-03-03	, 03 33-03		1	008 10-MW-04 10-MW-04-01	04 4-01			005 12-MW-01 12-MW-01-03	5 -01 01-03	
PARAMETER														}	
SW8270 - Semivolatile Organics, cont.	(ng/L)		ŗ	! ! ! !				:	 			1 1 1 1 1 1	i 1 1 1 1		1 1
Di-n-octylphthalate	ON ON	0.354)		QN		0.347)		9	_	0.930)		2	_	0.350)	Ξ
Dibenz(a,h)anthracene) Q	0.818)		S	_	0.802)	Ξ	2	_	0.484)	Ξ	2	_	0.810)	[1]
Dibenzofuran) QN	0.545)		Q	_	0.535)	Ξ	2	_	0.416)	Ξ	S	_	0.540)	Ξ
Diethylphthalate) Q	0.525)		Q	_	0.515)	Ξ	ON	_	0.343)	Ξ	S	_	0.520)	Ξ
Dimethylphthalate) ON	0.343)	Ξ	QN	_	0.337)	Ξ	QN	_	0.286)	Ξ	N	_	0.340)	[]
Diphenylamine/N-NitrosoDPA	NA			NA				Q	_	0.578)	[]	Q	_	0.270)	Ξ
Fluoranthene) QN	0.475)	Ξ	S	_	0.465)	Ξ	Q	_	0.651)	[1]	Q	_	0.470)	Ξ
Fluorene) ON	0.384)	Ξ	Q.	_	0.376)	Ξ	Q.	_	0.343)	Ξ	N.	_	0.380)	[1]
Hexachlorobenzene) QN	0.313)	Ξ	QN	_	0.307)	Ξ	N	_	0.239)	Ξ	ND	J	0.310)	Ξ
Hexachlorobutadiene) QN	0.515)	[1]	S	_	0.505)	Ξ	Q	_	0.712)	Ξ	ND ND	_	0.510)	[1]
Hexachlorocyclopentadiene) Q	5.96)	Ξ	S	_	5.84)	[1]	9	_	9.10)	Ξ	2	J	5.90)	Ξ
Hexachloroethane) Q	0.636)	[1]	QN	_	0.624)	Ξ	Q	_	0.606)	Ξ	ON	_	0.630)	Ξ
Indeno(1,2,3-cd)pyrene) Q	1.31)	Ξ	QN	_	1.29)	Ξ	Q	_	0.536)	Ξ	QN	_	1.30)	Ξ
Isophorone) Q	0.626)	Ξ	Q	_	0.614)	Ξ	Q	_	0.293)	Ξ	S	_	0.620)	Ξ
N-Nitroso-di-n-propylamine) QN	0.657)	Ξ	QN	_	0.644)	Ξ	Q	_	0.766)	Ξ	S	J	0.650)	[]
N-Nitrosodiphenylamine) QN	0.273)	Ξ	S	_	0.267)	Ξ	NA				NA			
Naphthalene	14.5 (0.485)	Ξ	0.751	_	0.475)	Ξ	2	_	0.744)	[1]	Q	_	0.480)	[1]
Nitrobenzene	ON ON	0.848)	Ξ	QN	_	0.832)	Ξ	R	J	0.539)	Ξ	Q.	_	0.840)	[1]
Pentachlorophenol) QN	0.899)	Ξ	Q	_	0.881)	Ξ	Q	_	0.882)	Ξ	Q	_	0.890)	[1]
Phenanthrene) QN	0.475)	\Box	QN	_	0.465)	Ξ	Q	J	0.635)	Ξ	S	_	0.470)	Ξ
Phenol	99.5	0.889)	Ξ	Q.	_	0.871)	[1]	R	_	0.407)	Ξ	Q	_	0.880)	Ξ
Pyrene) Q	0.414)	Ξ	S	_	0.406)	Ξ	2	_	0.478)	Ξ	R	_	0.410)	Ξ
bis(2-Chloroethoxy)methane) Qu	0.616)	Ξ	S	_	0.604)	Ξ	Q	_	0.573)	Ξ	N N	_	0.610)	Ξ
bis(2-Chloroethyl)ether) QN	0.384)	Ξ	Q	_	0.376)	Ξ	Q	_	0.747)	Ξ	Q.	_	0.380)	Ξ
bis(2-Chloroisopropyl)ether) QN	0.808)	[1]	ON	_	0.792)	Ξ	N	_	0.741)	Ξ	N	_	0.800)	[1]

	002	12-MW-01	12-MW-01-03		ND (0.580) [1]			(0.812)	(0.139)	(0.00277)	JB (0.00356)	JB (0.0109)	(0.0277)	B (0.00158)	(0.0485)	JB (0.00842)	(0.0495)	(0.0792)	JB (0.00366)	JB (0.545)	(0.158)	ND (0.0525) [1]
		10-MW-04	10-MW-04-01		(1.87) [1]						0	.0		.0		0			0	0		
SITE ID LOCATION ID SAMPLE ID	800	10-MW-03	10-MW-03-03		ND (0.574) [1] ND		NA						NA									NA NA
	800	10-MW-02	10-MW-02-03	cont. (ug/L)	ND (0.586) [1]	drocarbons (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			PARAMETER	SW8270 - Semivolatile Organics, cont. (ug/L)	bis(2-Ethylhexyl)phthalate	SW8310 - Polynuclear Aromatic Hydrocarbons (ug/L)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene

() = Detection Limit

SITE 1D

		(00:	(00)	į	(85)	27)	72)	(52)	(89)	(29)	(88)	(98	120)	102)	122)	(25)	(181	193)	50)	61)	(44)	
02 -02-01		2	~	;	0.02	0.04	0.01	0.07	0.05	0.03	0.02	0.05	0.03	0.0	0.03	0.09	0.02	0.06	0.01	0.1	0.04	ort
22-GP		_	_				۔ ۔	J	J	_	_	J	J	_	_	Ų	_	_	_	_	_	Rep
., 8		ļ	JB																			to 0
		3.00	26.0	:	ON O	20 / 0 · 0	Q.	N	QN	ND	S	QN	QN	QN	S	QN N	ON	QN.	QN	QN	N	, Refer t
			[1]	ŗ	ΞΞ	ΞΞ	ΞΞ	[1]	Ξ	Ξ	Ξ	Ξ	[1]	[1]	Ξ	[]	[1]	Ξ	[]	Ξ	Ξ	d Result
.01 11-01		200)	100)		0.0285)	0.0427)	0.0172)	0.0729)	0.0568)	0.0367)	0.0288)	0.0286)	0.0320)	0.0902)	0.0322)	0.0957)	0.0281)	0.0693)	0.0150)	0.161)	0.0444)	= Invalid Result, Refer to QC Report
5 2-GP-		_	_					Ų	Ų	_	J	_	J	_	_	J	_	_	_	_	_	~
22		; ! !	ŋ		۵	a									JB							cable
		1300	80.0	•	ND VD	417.0 QN	2	2	S	QN	QN	9	QN	QN	0.0149	NO	QN	ON	QN	QN	QN	Not Applicable
			[1]	S	ΞΞ	ΞΞ	Ξ	[1]	Ξ	Ξ	[1]	[1]	Ξ	Ξ	[1]	[1]	Ξ	[]	[1]	Ξ	Ξ	NA =
5 -02 -03 Dup of	02-03	200)	100)	6	0.0400)	0.100)	0.100)	0.0480)	0.100)	0.120)	0.170)	0.0540)	0.0750)	0.150)	0.190)	0.120)	0.170)	0.530)	0.0680)	0.0560)	0.110)	= Not Detected
2-MW-2) - MW -	_	_					_	_	_	_	_	_	_	_	_	_	_	_	_	_	= Not
1 -MW-0	77	JB	JB									3						KJB				용
12-	-	11.0	25.0	Í	2 5	2 2	N _O	QN	ON	QN	QN	0.0359	Q	Q	S	QN	QN	0.0200	QN	N _O	Q	ution Factor
		[1]	Ξ	į	ΞΞ	ΞΞ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Dilution
2 -03	á	200)	100)	6	.0400)	0.100	0.100)	.0480)	0.100)	0.120)	0.170)	.0540)	.0750)	0.150)	0.190)	0.120)	0.170)	0.530)	.0680)	.0560)	0.110)	= 0
005 -MW-0 IW-02													0						0	0		imit
12- 12-N)B)B (;	e -	_		_	_	_	_	_		_	_	_	_	_	Ÿ		_	lo l
		13.0	27.0	nics (ug/		2 8	QN .	QN.	Q.	QN	QN	9	QN	ON	QN	QN	QN	QN	ON	N	QN) = Detection Limit
	PARAMETER	niesel Range Organics (ug/L) Diesel Range Organics	asoline Range Organics (ug/L) Gasoline Range Organics	W8010 - Halogenated Volatile Organ		1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2,3-Trichloropropane	1,2-Dichlorobenzene	1,2-Dichloroethane	1,2-Dichloropropane	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1-Chlorohexane	2-Chloroethyl vinyl ether	Bromobenzene	Bromodichloromethane	Bromomethane	Carbon tetrachloride	Compiled: 16 March 1995 ()
	005 12-MW-02 :-03 12-MW-02-DS-03 Dup of 22-GF	005 5 12-MW-02 12-MW-02 22-GP-01 12-MW-02-03 12-MW-02-03 Dup of 22-GP-01-01 12-MW-02-03	12-MW-02 12-MW-02 22-GP-01 12-MW-02 22-GP-01 12-MW-02-03 12-MW-02-03 12-MW-02-03 12-MW-02-03 12-MW-02-03 12-MW-02-03 12-MW-02-03 13.00 JB (200) [1] 13.0 JB (200) [1] 13.0 JB (200) [1] 13.00 J	12-MM-02 12-MM-02 22-GP-01 22-GP-02 22-GP-02	12-MW-02	12-MW-02 12-	12-MM-02 12-	12-MM-02 12-MM-02	12-MM-02 12-MM-02 12-MM-02-03 13-MM-02-03	12-MM-02 12-MM-02 12-MM-02 12-MM-02 12-MM-02 12-MM-02-03 12-	12-MM-02 12-MM-02	12-M4-02 12-M4-02 12-M4-02 22-6p-01 22-6p-02 22-6p-02 12-M4-02 13-M4-02 13-M4-02	12-MV-02 112-MV-02 113-MV-02 113-MV-03 113-MV-	12-MM-02 12-MM-02 12-MM-02 22-GP-01 22-GP-02-03 12-MM-02-03 12-MM-02-03	12-MM-02 12-MM-02 12-MM-02 12-MM-02 12-MM-02 12-MM-02 12-MM-02 12-MM-02 12-MM-02-03 12-MM-02-0	12-MM-02	12-MM-02 12-MM-02 12-MM-02-03 12-Mm-	12-M4-02 12-M4-02-03 12	12-M4-02 12-M4-02	12-M4-02 12-M4-02 12-M4-02 22-GP-01 22-GP-02-03 12-M4-02-03 12-M4-02-03	12-MM-02 12-MM-02 12-MM-02 12-MM-02-03 bup of 12-MM-02 12-MM-02 12-MM-02-03 but of 12-MM-02-03 12-MM-02-03 but of 12-MM-02-03 12-MM-02-03 but of 1	12-M4-02

[1]

Ξ

22222222222222222

_	
DALENA	
SAMPLES,	
WAIEK	
YOK.	
ANALISES	
URGAINTC	
5	
2 7	

LOCATION ID SAMPLE ID

SITE ID

		ΞΞ		ΞΞ	ΞΞ	Ξ		Ξ	Ξ	[1]	Ξ	[1]	[1]		[1]	Ξ	Ξ	ΞΞ
5 22-GP-02 22-GP-02-01	0.0301)	0.0512)	0.0213)	0.0101)	0.0430)	0.0381)	0.252)	0.0387)	0.0603)	0.0761)	0.0220)	0.160)	0.0302)		2.38)	1.46)	0.301)	1.16)
22-6 22-6P		۔ ۔	JB (. <u> </u>	. <u> </u>		_	_	_	_	_)		_	_		<i>-</i>
	Q N	<u>8</u>		2 2	0.148 B	QN	QN	ON	QN	QN	QN	QN	ON		QN	ND	QN	QN
	ΞΞ	ΞΞ	Ξ	ΞΞ	ΞΞ		Ξ	[1]	[1]	[1]	[1]	[1]	[1]		[1]	[1]	Ξ	[1]
-01 -01-01	0.0301)	0.0512)	0.0213)	0.0939)	0.0430)	0.0381)	0.252)	0.0387)	0.0603)	0.0761)	0.0220)	0.160)	0.0302)		2.38)	1.46)	0.301)	1.16)
5 22-GP-01 22-GP-01-01		_	_ 、			JB (_	_	_	_	_	_	_		_	_	_	
	QN QN	2 2 2	S S	2 2	0.149 B	-	ND	0.00820	ND	QN	ON	QN	Q.		S	QN	ND	QN
	ΞΞ	ΞΞ	[]	ΞΞ	[]	[1]	Ξ	Ξ	[1]	[1]	Ξ	[1]	Ξ		[1]	[1]	[1]	[1]
005 12-MW-02 12-MW-02-03 Dup of 12-MW-02-03	0.140)	0.0850)	0.150)	0.140)	0.220)	0.100)	0.140)	0.110)	0.0750)	0.200)	0.0740)	0.100)	0.0570)		2.40)	1.50)	0.300)	1.20)
005 12-MW-02 1-02-DS-03 12-MW-02-0		<i>.</i> _	_ 、		_	_	_	_	_	_	_	_	_		_	_	_	_
12-M	ON ON	ON	Q 9	2 2	QN	QN	R	Q	R	QN	QN	S	QN		Q.	Q	S	QN
; ; ;	[1]	ΞΞ	ΞΞ	ΞΞ	Ξ	[1]	Ξ	Ξ	Ξ	[1]	Ξ	[1]	[1]		Ξ	Ξ	[1]	[1]
5-02 32-03	.) 0.140) 0.110)	0.0850)	0.150)	0.140)	0.220)	0.100)	0.140)	0.110)	0.0750)	0.200)	0.0740)	0.100)	0.0570)		2.40)	1.50)	0.300)	1.20)
005 12-MW-02 12-MW-02-03	(ng/L) (_	_	_	_	_	_	_	_	_	(٦/	_	_	_	_
	anics, cont. ND ND	QN	0.0301 JB	9 S	QN	QN	QN	ND	ON.	0.0565 J	QN	ND	QN	Organics (mg	QN	ND	ON	N
PARAMETER 	SW8010 - Halogenated Volatile Organics, cont. Chlorobenzene ND Chloroethane ND	Chloroform	Chloromethane Nibromochloromethane	Dibromomethane	Methylene chloride	Tetrachloroethene	Tribromomethane(Bromoform)	Trichloroethene	Trichlorofluoromethane	Vinyl chloride	cis-1,3-Dichloropropene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	SW8015 - Nonhalogenated Volatile Organics (mg/L)	2-Butanone(MEK)	4-Methyl-2-pentanone(MIBK)	Ethanol	Ethyl ether

ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

NA'= Not Applicable

R = Invalid Result, Refer to QC Report

Ξ

0.0796)

0.0481 PJB (

0.0263)

0.174 PB (

Ξ

0.140)

S

[1]

0.140)

S

SW8020 - Aromatic Volatile Organics (ug/L)

1,2-Dichlorobenzene

SITE ID LOCATION ID SAMPLE ID

		900			9	900			5			5	
	12	12-MW-02			12-MW-02	4-02		-22-	22-GP-01			22-GP-02	
	12-	12-MW-02-03		12-M	W-02-DS	12-MW-02-DS-03 Dup of		55-6	22-GP-01-01		2.	22-GP-02-01	
PARAMETER					- MIJI - 7 T	50-70-							
SW8020 - Aromatic Volatile Organics, cont.	ics. cont. (ua/L)	L)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										! ! ! !
1,3-Dichlorobenzene		(0.130)	[1]	Q.	_	0.130)	[1]	0.0292 PJB (0.0756)	Ξ	QN	(0.0218)	[1]
1,4-Dichlorobenzene	QN	(0.130)	Ξ	R	_	0.130)	Ξ		0.0813)	Ξ	ND	(0.0131)	ΞΞ
Benzene	ON	(00.000)	Ξ	0.0252	JB (0.020	Ξ	0.165 B ((08600.0	Ξ	0.122 B	(0.00980)	Ξ
Chlorobenzene	QN	(0.120)	Ξ	2	_	0.120)	Ξ	0.0303 KJB ((0.0452)	Ξ	QN	(0.0140)	Ξ
Ethylbenzene	QN	(0.120)	Ξ	2	_	0.120)	Ξ	0.111 B ((0.0199)	Ξ	0.192	(0.0199)	[1]
Toluene	0.0209 JB	(0.110)		0.0204	JB (0.110)	Ξ	4.15 (0.0330)	[]]	0.509 8	(0.0330)	[1]
Xylene (total)	0.0318 JB	(0.130)	Ξ	QN	_	0.130)	[1]	0.530 B (0.0528)	Ξ	0.340 B	(0.0528)	Ξ
SW8080 - Organochlorine Pesticides and PCBs	es and PCBs (ug/L)	/r)											
4,4'-000	QN	(0.00808)	[1]	2	_	0.00851)	Ξ	NA			AN		
4,4'-DDE	QN	(0.00545)	Ξ	9	_	0.00574)	[]	NA			NA	-	
4,4'-DDT	ON	(0.0101)	Ξ	2	_	0.0106)	Ξ	NA			NA		
Aldrin	N ON	(0.00354)	Ξ	2	_	0.00372)	[]	NA			NA		
Chlordane	QN	(0.0303)	Ξ	2	_	0.0319)	Ξ	NA			NA		
Dieldrin	QN	(0.00808)	Ξ	2	_	0.00851)	Ξ	NA			NA		
Endosulfan I	QN	(0.00626)	Ξ	8	_	0.00660)	Ξ	NA			NA		
Endosulfan II	QN	(0.00505)	Ξ	S	_	0.00532)	Ξ	NA			NA		
Endosulfan Sulfate	0.0128 B	(0.0141)	Ξ	0.00810	PJB (0.0149)	Ξ	NA			NA		
Endrin	QN	(0.0121)	Ξ	QN	_	0.0128)	Ξ	NA			NA		
Endrin Aldehyde	QN	(0.00616)	Ξ	S	_	0.00702)	Ξ	NA			NA		
Heptachlor	QN	(0.00545)	Ξ	2	_	0.00574)	Ξ	NA			NA		
Heptachlor epoxide	QN	(0.0253)	[1]	S	_	0.0266)	Ξ	NA			NA		
Methoxychlor	ON	(0.0495)	Ξ	QN ON	_	0.0521)		NA			NA		
PCB-1016	ND	(0.101)	Ξ	S	_	0.106)	Ξ	NA			NA		
Compiled: 16 March 1995	() = Detection Limit		= Dilution	n Factor	ND = No	Not Detected	NA .	= Not Applicable	R = Invali	d Result	= Invalid Result, Refer to QC Report	Report	

						SITE ID LOCATION ID SAMPLE ID	ID NN ID E ID									
		005 12-MW-02	0.5			005 12-MW-02	25		2	5 22-6P-01	11			5 22-6P-02	N	
PARAMETER	17	12-MW-02-03)2~03		12-MW-1	12-MW-02-DS-03 Dup 12-MW-02-03	33 Dup of 2-03		22	22-GP-01-01	1-01		2	22-GP-02-01	-01	
SW8080 - Organochlorine Pesticides and PCBs,		cont.	(nd/F)	: : : : : :	; 	1				 		1			1 1 1 1 1 1	! ! !
PCB-1221			0.192)	[1]	ND	_	0.202)	[1]	AN				NA			
PCB-1232	QN	_	0.0566)	[1]	ND	_	0.0596)	Ξ	NA				NA			
PCB-1242	ON	_	0.0586)		ON	_	0.0617)	[1]	NA				NA			
PCB-1248	ON	_	0.152)	Ξ	QN	_	0.160)	[1]	NA				NA			
PCB-1254	QN	_	0.0798)	Ξ	ND	_	0.0840)	[1]	NA				NA			
PCB-1260	9	_	0.0455)	[1]	ON	_	0.0479)	Ξ	NA				NA			
Toxaphene	9	_	0.0101)	[1]	QN	_	0.0106)	[]	NA				AA			
alpha-BHC	S	0	0.00404)	Ξ	QN	.0	0.00426)	[1]	NA				NA			
beta-BHC	S S	0	0.00646)	Ξ	QN	.0	0.00681)	[1]	NA				NA			
delta-BHC	QN Q	0	0.00222)	[1]	ON	(0.	0.00234)	Ξ	NA				NA			
gamma-BHC(Lindane)	ND	0	0.00465)	[1]	ND	(0.	0.00489)	[1]	NA				NA			
SW8270 - Semivolatile Organics (ug/L)																
1,2,4-Trichlorobenzene	ND	_	0.584)	[1]	QN	_	0.590)	[1]	Q.	_	0.619)	[1]	Q.	~	0.600)	[]
1,2-Dichlorobenzene	ND	_	0.634)	Ξ	QN O	_	0.640)	[1]	QN	_	0.668)	Ξ	R		0.648)	
1,3-Dichlorobenzene	Q	_	0.713)	Ξ	Q.	_	0.720)	[]	QN	_	0.755)	[1]	2		0.732)	ΞΞ
1,4-Dichlorobenzene	QN	_	0.584)	[1]	Q.	_	0.590)	Ξ	2	_	0.619)	[1]	QN Q	_	0.600)	
2,4,5-Trichlorophenol	Q.	_	0.505)	Ξ	2	_	0.510)	[1]	ND	_	0.536)	[1]	QN Q	_	0.519)	[1]
2,4,6-Trichlorophenol	S	_	0.495)	[1]	2	_	0.500)	[1]	N N	_	0.533)	[1]	N O	_	0.516)	Ξ
2,4-Dichlorophenol	QN QN	_	0.564)	[1]	QN ON	_	0.570)	Ξ	QN	_	0.599)	[1]	QN Q	_	0.581)	
2,4-Dimethylphenol	QN	_	1.29)	[1]	QN Q	_	1.30)	Ξ	ND	_	1.37)	[1]	Q.	_	1.33)	Ξ
2,4-Dinitrophenol	Q	_	4.16)	[1]	N Q	_	4.20}	[1]	QN	_	4.40)	[1]	QN	_	4.27)	[1]
2,4-Dinitrotoluene	ON	_	0.584)	[1]	QN	_	0.590)	[1]	ND	_	0.622)	[1]	QN		0.603)	ΞΞ
2,6-Dinitrotoluene	9	_	0.851)	[]	Q	_	0.860)	Ξ	QN	_	0.906)	[1]	SN.	_	0.879)	Ξ

ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

R = Invalid Result, Refer to QC Report NA = Not Applicable

						SITE ID LOCATION ID SAMPLE ID	SITE ID OCATION ID SAMPLE ID									1
	1	005 12-MW-02	01			005 12-MW-02	.02			5 22-6P-01	01			5 22-GP-02	-02	
	12	12-MW-02-03	-03		12-MW	1-02-DS-03 D	12-MW-02-DS-03 Dup of 12-MW-02-03			22-GP-01-01	1-01			22-GP-02-01	12-01	
PARAMETER	# # # # # # # # # # # # # # # # # # #		i 1 1 1 1		1	1	1	1						٠		
SW8270 - Semivolatile Organics, cont.	. (ug/L)															i
2-Chloronaphthalene	QN	_	0.386)	Ξ	Q.	_	0.390)	[1]	QN	_	0.413)	[1]	QN	_	0.400)	
2-Chlorophenol	ON	_	0.634)	Ξ	ON	_	0.640)	[1]	QN	_	0.668)	Ξ	ON N	_	0.648)	
2-Methylnaphthalene	QN	_	0.356)	Ξ	QN	_	0.360)	[1]	1.45	_	0.383)	Ξ	S	_	0.371)	
2-Methylphenol (o-cresol)	R	_	0.307)	Ξ	Q	J	0.310)	[]	1.97	_	0.326)	[1]	QN N	_	0.316)	
2-Nitroaniline	Q	_	0.653)	Ξ	ON	_	0.660)	Ξ	QN	_	0.698)	Ξ	S	_	0.677)	
2-Nitrophenol	Q.	_	0.515)	Ξ	Q	_	0.520)	Ξ	ON	J	0.549)	Ξ	2	_	0.533)	
3,3'-Dichlorobenzidine	R	_	0.327)	[1]	ON	_	0.330)	Ξ	ON	_	0.351)	Ξ	9	_	0.340)	
3-Nitroaniline	Q.	_	0.386)	Ξ	ON	_	0.390)	Ξ	QN	_	0.414)	Ξ	S	_	0.401)	
4,6-Dinitro-2-methylphenol	Q	_	0.426)	Ξ	Q	_	0.430)	Ξ	QN	_	0.453)	Ξ	Q.	_	0.439)	
4-Bromophenyl phenyl ether	S	_	0.485)	[1]	Q	_	0.490)	[1]	QN	_	0.509)	Ξ	S	_	0.494)	
4-Chloro-3-methylphenol	Q.	_	0.515)	Ξ	QN	_	0.520)	[1]	ND	_	0.542)	Ξ	S	_	0.526)	
4-Chloroaniline	R	_	0.733)	Ξ	N	_	0.740)	[1]	QN	_	0.784)	Ξ	S	J	0.760)	
4-Chlorophenyl phenyl ether	Q	_	0.416)	Ξ	ON	_	0.420)	[1]	ND	_	0.443)	Ξ	Q.	Ų	0.430)	
4-Methylphenol(p-cresol)	Q	_	0.455)	[1]	Q	_	0.460)	[]	53.9 F	_	0.483)	Ξ	Q	_	0.468)	
4-Nitroaniline	2	_	0.604)	Ξ	Q	_	0.610)	Ξ	QN	J	0.638)	[1]	Q	_	0.618)	
4-Nitrophenol	2	_	0.931)	Ξ	P	_	0.940)	[1]	QN	_	0.986)	Ξ	S	_	0.956)	
Acenaphthene	9	_	0.267)	[Ξ]	Q	_	0.270)	[1]	2.51	J	0.286)	[1]	QN	_	0.278)	
Acenaphthylene	Q	_	0.416)	Ξ	2	_	0.420)	Ξ	QN	_	0.440)	[]	QN	_	0.427)	
Anthracene	2	_	0.366)	Ξ	2	_	0.370)	Ξ	0.263 J	_	0.387)	Ξ	S.	_	0.376)	
Benzo(a)anthracene	2	_	0.446)	[1]	Q	_	0.450)	[1]	QN	_	0.473)	Ξ	S	_	0.458)	
Benzo(a)pyrene	2	_	0.515)	[1]	Q	_	0.520)	Ξ	QN	_	0.545)	Ξ	ON.	_	0.529)	
Benzo(b)fluoranthene	2	_	0.901)	[1]	Q.	_	0.910)	Ξ	QN	_	0.956)	Ξ	9	_	0.927)	
Benzo(g,h,i)perylene	9	_	0.990)	[1]	NO	_	1.00)	[1]	ON .	_	1.07)	[1]	QN	<u> </u>	1.04)	
Benzo(k)fluoranthene	QN	_	0.990)	[1]	2	_	1.00)	Ξ	QN	_	1.05)	[1]	Q.	_	1.02)	
Compiled: 16 March 1995 ()	= Detection Limit	Limit	-	Dilution Factor		ND = Not	Not Detected	NA	= Not Applicable	ole R		d Result	= Invalid Result, Refer to QC Report	QC Repo	ort	ı
																٠,

222222222222222222222

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT.

						SIT LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID									
		005 12-MW-02	005 MW-02			005 12-MW-02	15 '-02			5 22-GP-01	01			5 22-GP-02	-02	
PARAMETER		12-MW-	12-MW-02-03		12-M	л-02-DS-03 D 12-МW-02-03	12-MW-02-DS-03 Dup of 12-MW-02-03		2	22-GP-01-01	1-01		2	22-GP-02-01	02-01	
	1		1	1						1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i 	1	1	!
Swoz/u - Semivolatile Organics, cont. Benzoic acid	nt. (ug/L) ND	_	38.6)	[1]	QN	_	39.0)	Ξ	418	•	203)	[7]	S	_	30 4)	[1]
Benzyl alcohol	N		0.604)	ΞΞ	ON N	_	0.610)	ΞΞ	QN.		0.642)	ΞΞ	2 2		0.622)	ΞΞ
Butylbenzylphthalate	ON	_	0.614)	[1]	Q.	_	0.620)		ND		0.658)	ΞΞ	2	۔ ۔	0.638)	
Chrysene	QN	_	0.535)	[1]	QN	_	0.540)	[1]	ND		0.565)	ΞΞ	QN		0.548)	ΞΞ
Di-n-butylphthalate	ON	_	0.317)	[1]	QN	_	0.320)	[1]	ON	_	0.341)	[1]	QN		0.331)	[1]
Di-n-octylphthalate	QN	_	0.347)	Ξ	QN	_	0.350)	[1]	ND	_	0.371)	Ξ	QN	_	0.359)	ΞΞ
Dibenz(a,h)anthracene	ND	_	0.802)	[1]	QN	_	0.810)	Ξ	ON	_	0.854)	Ξ	QN	_	0.828)	[1]
Dibenzofuran	ND	_	0.535)	[1]	N N	_	0.540)	[]	0.687	_	0.565)	[1]	QN	_	0.548)	ΞΞ
Diethylphthalate	ON	_	0.515)	[1]	ON	J	0.520)	[1]	QN	_	0.542)	Ξ	QN	_	0.526)	Ξ
Dimethylphthalate	NO	_	0.337)	Ξ	QN	_	0.340)	[1]	ND	_	0.354)	[1]	ON	_	0.343)	[1]
Diphenylamine/N-NitrosoDPA	QN	_	0.267)	[1]	QN	_	0.270)	[1]	ON	_	0.283)	[1]	ND	_	0.274)	[1]
Fluoranthene	QN	_	0.465)	Ξ	QN	_	0.470)	[1]	ON	_	0.496)	[]	QN	_	0.481)	[1]
Fluorene	ND	_	0.376)	Ξ	QN	_	0.380)	[1]	0.841	_	0.400)	[1]	QN	_	0.388)	[1]
Hexachlorobenzene	QN	_	0.307)	[1]	QN N	_	0.310)	[1]	ND	_	0.331)	\Box	QN	_	0.320)	[1]
Hexachlorobutadiene	R		0.505)	[1]	Q	_	0.510)	[1]	QN	_	0.539)	[1]	N	_	0.522)	[1]
Hexachlorocyclopentadiene	2		5.84)	[1]	Q	_	5.90)	[1]	QN	_	6.20)	[1]	2	_	6.01)	[1]
Hexachloroethane	Q 9	_ 、	0.624)	ΞΞ	8 :		0.630)	Ξ	QN	_	0.668)	[1]	2	_	0.648)	[1]
Indeno(1,2,3-ca)pyrene	Q :	_ 、	1.29)	Ξ	Q		1.30)	Ξ	QN	_	1.40)		MD	_	1.36)	Ξ
Isophorone	QN :	<u> </u>	0.614)	Ξ	2	_	0.620)	[1]	ON	_	0.648)	Ξ	QN	_	0.629)	[1]
N-Nitroso-di-n-propylamine	QN		0.644)	Ξ	Q	_	0.650)		QN	_	0.688)	[1]	ON	_	0.667)	Ξ
Naphthalene	ON	_	0.475)	Ξ	Q	_	0.480)	Ξ	9.18	_	0.503)		ND	_	0.488)	Ξ
Nitrobenzene	Q	_	0.832)	Ξ	S	_	0.840)	Ξ	ON	_	0.886)	[1]	QN	_	0.859)	[1]
Pentachlorophenol	8	_	0.881)	Ξ	9	_	0.890)	[1]	1.91	_	0.936)	[1]	QN	_	0.907)	
Phenanthrene	QN	_	0.465)	[1]	ND	_	0.470)	Ξ	0.818	Ų	0.493)	[]	QN	_	0.478)	Ξ
Compiled: 16 March 1995 ()	= Detection Limit	n Lim		= Dilution Factor		ND = Not	Not Detected	NA =	Not Annlicable	ه ا	= Invalid	Invalid Result	Refer to Of Benort	Beng	+	
			3					•				ונים מ - ני ו		מלטגי	- د 1	

					SITE ID LOCATION I SAMPLE ID	SITE ID LOCATION ID SAMPLE ID								
	12- 12-h	005 12-MW-02 12-MW-02-03		12-MW	005 12-MW-02 1-02-DS-03	005 12-MW-02 12-MW-02-DS-03 Dup of		22 22-6	5 22-6P-01 22-GP-01-01			5 22-GP-02 22-GP-02-01	32 2-01	
PARAMETER					12-MW-02-03	12-03								
SW8270 - Semivolatile Organics, cont.	(ng/L)				1		!			1	1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Phenol	Q.	0.871)	[1]	ON	_	0.880)	Ξ	132 (0.929)	[]	ON	_	0.901)	Ξ
Pyrene	ON ON	0.406)	Ξ	QN	_	0.410)	Ξ) ON	0.429)	[1]	QN	_	0.416)	[1]
bis(2-Chloroethoxy)methane	QN.	0.604)	Ξ	S	_	0.610)	Ξ) ON	0.638)	[1]	Q	_	0.618)	[1]
bis(2-Chloroethyl)ether	Q.	0.376)	Ξ	QN	_	0.380)	Ξ) ON	0.403)	Ξ	S	J	0.391)	[1]
bis(2-Chloroisopropyl)ether	QN QN	0.792)	[1]	QN	_	0.800)	Ξ) ON	0.840)	[1]	QN	_	0.814)	[1]
bis(2-Ethylhexyl)phthalate	ON ON	0.574)	[1]	QN	_	0.580)	[I]	0.961 B (0.612)	Ξ	QN	_	0.593)	Ξ
SW8310 - Polynuclear Aromatic Hydrocarbons	rbons (ug/L)													
Acenaphthene	Q.	0.632)	[1]	ON	_	0.600)	Ξ	NA			NA			
Acenaphthylene	QN QN	0.863)	Ξ	QN	J	0.820)	Ξ	NA			NA			
Anthracene	N QN	0.147)	Ξ	Q	_	0.140)	Ξ	NA			NA			
Benzo(a)anthracene	Q.	0.00295)	Ξ	ON	_	0.00280)	Ξ	NA			NA			
Benzo(a)pyrene	ON ON	0.00379)	Ξ	0.00840 B	_	0.00360)	[1]	NA			NA			
Benzo(b)fluoranthene	ON QN	0.0116)	Ξ	QN	_	0.0110)	Ξ	NA			NA			
Benzo(g,h,i)perylene	N ON	0.0295)	Ξ	NO	_	0.0280)	Ξ	NA			NA			
Benzo(k)fluoranthene	ON QN	0.00168)	[1]	QN	_	0.00160)	Ξ	NA			NA			
Chrysene	ON ON	0.0516)	Ξ	ON	_	0.0490)	[1]	NA			NA			
Dibenz(a,h)anthracene	ON ON	0.00895)	Ξ	0.00330	JB (0.00850)	[1]	NA			NA			
nene	ON ON	0.0526)	Ξ	Q	_	0.0500)	Ξ	NA			NA			
Fluorene 0.	0.0281 JB (0.0842)	[1]	ON	_	0.0800)	Ξ	NA			NA			
Indeno(1,2,3-cd)pyrene	ON QN	0.00389)	Ξ	0.0191 B	_	0.00370)		NA			NA			
Naphthalene	ON ON	0.579)	Ξ	0.0230) BC	0.550)	Ξ	NA			NA			•
Phenanthrene) ON	0.168)	Ξ	Q	_	0.160)	Ξ	NA			NA			
Pyrene) ON	0.0558)	[1]	Q	_	0.0530)	Ξ	NA			NA			
Compiled: 16 March 1995 () =	= Detection Limit		= Dilution	Factor	ND = Not	= Not Detected	NA =	Not Applicable	R = Invali	d Result,	= Invalid Result, Refer to QC Report	C Repor	٠	

12-MW-02 12-MW-02-DS-03 Dup of 12-MW-02-03 900 12-MW-02-03 12-MW-02 900

22-GP-01-01 22-GP-01

22-GP-02 22-GP-02-01

PARAMETER

SITE ID LOCATION ID SAMPLE ID

PARAMETER

22-GP-03 22-GP-03-01 Diesel Range Organics (ug/L)

Diesel Range Organics (ug/L)

Gasoline Range Organics (ug/L)

Gasoline Range Organics (ug/L)

SW8010 - Halogenated Volatile Organics (ug/L)

1,1,1,2-Tetrachloroethane

1,1,1,2-Tetrachloroethane

1,1,1,2-Tetrachloroethane

Ξ

Ξ

0.0322) 0.0427) 0.0172) 0.0729) 0.0568) 0.0367) 0.0288) 0.0286) 0.0320) 0.0902) 0.0551 JB 9 2 2 2 2 S 웆 1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane 1,1,1-Trichloroethane 1,1,2-Trichloroethane l,2-Dichlorobenzene .,2-Dichloropropane l,3-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane I,1-Dichloroethene .,2-Dichloroethane

0.0957) 0.0281) 0.0301) 0.0693) 0.0150)0.161)0.0444) 9 2 9 2 2-Chloroethyl vinyl ether Bromodichloromethane Carbon tetrachloride I-Chlorohexane Chlorobenzene Bromobenzene Bromomethane

NA = Not Applicable R = Invalid Result, Refer to QC Report ND = Not Detected [] = Dilution Factor

() = Detection Limit

Compiled: 16 March 1995

A7-115

LOCATION ID SAMPLE ID SITE ID

> 22-GP-03-01 22-GP-03

> > PARAMETER

0.0213) 0.0512) 0.0939) 0.0101) 0.0430) 0.0381) 0.252)0.0387) 0.0603) 0.0761) 0.0302) 0.0499) (ng/L) SW8010 - Halogenated Volatile Organics, cont. 0.0191 0.171 2 운 S 욷 Tribromomethane(Bromoform) trans-1,3-Dichloropropene trans-1,2-Dichloroethene cis-1,3-Dichloropropene Trichlorofluoromethane Dibromochloromethane Methylene chloride **Tetrachloroethene Trichloroethene** Dibromomethane Vinyl chloride Chloromethane Chloroethane Chloroform

5555 2.38) 0.301) 1.16) SW8015 - Nonhalogenated Volatile Organics (mg/L) 2 2 2 4-Methyl-2-pentanone(MIBK) 2-Butanone(MEK) Ethyl ether Ethanol

0.0756) 0.0131) 0.0149 KJB (0.0512 KJB SW8020 - Aromatic Volatile Organics (ug/L) 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,3-Dichlorobenzene

ΞΞΞ

Compiled: 16 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

LOCATION ID SAMPLE ID SITE 10

> 22-GP-03-01 22-GP-03

0.00980) (ng/L) В 0.172 SW8020 - Aromatic Volatile Organics, cont. Benzene

PARAMETER

0.0452) 0.0199) 0.0330) 0.0528) 0.0363 0.0871 0.586 0.350 Xylene (total) Chlorobenzene Ethylbenzene Toluene

SW8270 - Semivolatile Organics (ug/L)

0.732) 1,2,4-Trichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene

0.516)0.600) 0.519) 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,4-Dichlorobenzene

 \Box Ξ

> 0.581) 1.33) 2,4-Dichlorophenol 2,4-Dimethylphenol

4.27) 0.603) 0.879) 2,4-Dinitrotoluene 2,4-Dinitrophenol

0.400) 0.648) 2-Chloronaphthalene 2,6-Dinitrotoluene 2-Chlorophenol

0.371) 0.316) 0.677)2-Methylphenol (o-cresol) 2-Methylnaphthalene

3,3'-Dichlorobenzidine 2-Nitroaniline 2-Nitrophenol

Compiled: 16 March 1995

0.533) 0.340) [] = Dilution Factor () = Detection Limit

NA = Not ApplicableND = Not Detected

SITE ID LOCATION ID SAMPLE ID

> 5 22-GP-03 22-GP-03-01

PARAMETER

EEEEEEEEE Ξ 0.494)0.526) 0.430) 0.468) 0.618) 0.956)0.278) 0.427) 0.376) 0.458) 0.529) 0.927) 1.04) 1.02) 39.4) 0.622) 0.638) 0.548) 0.331) 0.359)0.828) SW8270 - Semivolatile Organics, cont. (ug/L) 2 S 9 9 4-Chlorophenyl phenyl ether 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 4-Methylphenol(p-cresol) 4-Chloro-3-methylphenol Oibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Butylbenzylphthalate Di-n-butylphthalate Di-n-octylphthalate Benzo(a)anthracene 4-Chloroaniline 3-Nitroaniline 4-Nitroaniline **Acenaphthy**lene Benzo(a)pyrene Benzyl alcohol 4-Nitrophenol Benzoic acid Acenaphthene Dibenzofuran Anthracene Chrysene

() = Detection Limit [] = Dilution Factor ND = No:

Compiled: 16 March 1995

= Dilution Factor ND = Not Detected NA = Not Applicable

A7-118

SITE ID LOCATION ID SAMPLE ID

> 22-GP-03 22-GP-03-01

> > PARAMETER

0.320)0.274) 0.388) 0.522)0.648) 0.343)0.481) 6.01) 1.36) 0.629) 0.667) 0.488) 0.859) 0.907) 0.478) 0.618) 0.814) 0.901) 0.416) 0.391) 2 2 SW8270 - Semivolatile Organics, cont. bis(2-Chloroisopropyl)ether Diphenylamine/N-NitrosoDPA N-Nitroso-di-n-propylamine bis(2-Ethylhexyl)phthalate bis(2-Chloroethoxy)methane **Hexachlorocyclopentadiene** bis(2-Chloroethyl)ether Indeno(1,2,3-cd)pyrene Hexachlorobutadiene Dimethylphthalate Hexachlorobenzene Hexachloroethane Diethylphthalate Pentachlorophenol Fluoranthene Nitrobenzene Phenanthrene Naphthalene Isophorone -----Fluorene Phenol Pyrene

 $\Xi\Xi\Xi$

2222222

						S S	SITE ID LOCATION ID SAMPLE ID	9.0											
PARAMETER		0	001 01-MW-01 01-MW-01-03			01	001 01-MW-02 01-MW-02-03	m			01-01-1	001 01-MW-07 01-MW-07-01	01			01	001 01-MW-08 01-MW-08-01	3-01	
E160.1 - Residue, Filterable (TDS) Total dissolved solids	(S) (mg/L) (S		(10.0)	[1]	720) 16	10.0)	[1]	746	1		8.67)		768	; ; ; ;		8.67)	[1]
E160.2 - Residue, Non-Filterable Total suspended solids	(mg/L) NA				NA					8.00		_	7.90)	[1]	5.00	ŋ	J	7.90)	[1]
E300 - Anions (mg/L) Chloride Sulfate	N NA				NA NA					1.48		0 0	0.0400)	[2]	3.46			0.0200)	[1]
E353.1 - Nitrate-Nitrite (mg/L) Nitrate-Nitrite as N	N A				NA					0.177		.0	0.0100)	Ξ	N		J	0.0100)	[11]
SW6010 - Metals (mg/L)		:	1	į		:	•			;	:	,	;	; i	,	1	•		,
Aluminum Antimony	0.0249	e e	(0.0280) (0.0240)	ΞΞ	0.0188	8 8	(0.0280) (0.0240)		ı	0.00528	9 9 9		0.0284) 0.0241)	ΞΞ	0.0189	дв В		0.0284) 0.0241)	ΞΞ
Arsenic	0.0196	J	(0.0230)	Ξ	-0.0251	J	(0.0230)	_		0.00739	J	0.	0.0225)	ΞΞ	0.0128	J		0.0225)	Ξ
Barium Bervllium	0.502 -0.000120	JB	(0.000530)	ΞΞ	0.370	85	(0.000530) (0.000550)			0.183	£	00.00	0.000530) 0.000554)	۹ 3 3	0.303	E.	0 0	0.000530)	ΞΞ
Cadmium	0.00214	B	(0.00170)	Ξ	0.00181	a	(0.00170)			0.00389	;	0.0	0.00172)		0.00147	8	0	0.00172)	ΞΞ
Calcium	180		(0.150)	Ξ	195		(0.1			184		0)	0.148)	Ξ	210		_	0.148)	Ξ
Chromium Cobalt	0.00466	=	(0.00250)	ΞΞ	0.000910	8 a	(0.00250) (0.00340)			0.000600	8 4.	ō. c	0.00249)	ΞΞ	0.00195	ЭВ	0 0	0.00249)	ΞΞ
Copper	0.00154	号	(0.00380)	ΞΞ	0.00128	JB	(0.00380)			0.00280	3 9	0.0	0.00381)	ΞΞ	0.00139	ЗВ		0.00381)	ΞΞ
Iron	38.7		(00900'0)	Ξ	13.3		(00900'0)			0.0605	8	0.0	0.00596)	Ξ	6.58		0	0.00596)	Ξ
Lead	0.0414		(0.0270)	[1]	-0.00203	J	(0.0270)		[1]	0.0412		0	0.0270)	Ξ	0.0238	ŋ	_	0.0270)	[1]
Compiled: 16 March 1995	() = Detection Limit	tion		Diluti	[] = Dilution Factor	Q.	ND = Not Detected	tected	NA = No	NA = Not Applicable	able		Invalid	Result	R = Invalid Result, Refer to QC Report))	Repor	rt A8-1	-

	 1 1 1 1 1	[1]	Ξ] <u>[</u>	Ξ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ		Ξ			[1]	
001 01-MW-08 01-MW-08-01		(0.0228)	(0.000395)	(0.00463)	(0.00986)	(0.370)	(0.0417)	(0.00492)	(20:0:0)	(0 0172)	(0.00236)	(0.00153)		(0.000657)		(0.000800)	(0.0000480)	
01		44.2	15.1	0.00415 JB	0.0326	4.60	0.0182			0.0148 .18		0.0164		0.00100		0.00480 58	[1] -0.0000300 B	
		[1]	Ξ	Ξ			[]	Ξ	Ī	ΞΞ	ΞΞ	ΞΞ		[1]	Ξ	7.	Ξ	
001 01-MW-07 01-MW-07-01	! ! ! ! ! ! !	(0.0228)	(0.000395)	(0.00463)	(0.00986)	(0.370)	(0.0417)	(0.00492)	(0.0397)	(0.0172)	(0.00236)	(0.00153)		(0.000657)	(000000 0)	(0.00000)	(0.0000480)	
010		2	2	0 JB	4	က္	ε	0. JB		8 8		—		0 JB	٥		8 0	
	; ; ; !	52.2	2.32	0.000710	0.0184	5.43	-0.00153	0.0000200	11.7	0.0228	0.00242	0.00971		-0.00330	0.00	0.014	0.000160	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ξ	[1]	[1]	[1]	[1]	[]	[]		Ξ	Ξ	Ξ		Ξ	Ξ	[1]	[1]	
SITE ID LOCAŤION ID SAMPLE ID 001 01-MW-02		(0.0230)	(0.000390)	(0.00460)	(06600.0)	(0.370)	(0.0420)	(0.00490)	(0.0400)	(0.0170)	(0.00240)	(0.00150)		(0.000650)	(01100 0	(0.100.0)	(0.0000480)	
0 01	! ! !			3 JB	~	_	ט	3 JB	_	3 JB) JB			. JB	α		_	
		44.5	4.73	-0.00356	0.0253	4.24	-0.0142	-0.00118	7.80	-0.0163	-0.00300	0.0115		-0.000200	0 00180	0.00	0.000220	
	1	Ξ	Ξ	Ξ	[1]	Ξ	[1]	[1]	[1]	[1]	Ξ	[1]	1	Ξ	Ξ	Ξ	[1]	
001 01-MW-01 01-MW-01-03	1 1 1 1 1 1 1 1	0.0230)	0.000390)	0.00460)	0.00990)	0.370)	0.0420)	0.00490)	0.0400)	0.0170)	0.00240)	0.00150)	•	0.000650)	0 00110)	(2110)	(0.0000480)	
01- 01-M	! ! !	_	_	JB () BC)	ر (JB (_) Be	JB ()	•	_	В	<u>-</u>	Ξ	
	 	35.1	10.5	-0.00194	0.00575	4.71	0.0190	-0.000310	6.16	-0.0279	-0.000120	0.00937	,	0.0104	0.00110		0.000200	
PARAMETER	SW6010 - Metals, cont. (mg/L)	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	SW7060 - Arsenic (mg/L)	Arsenic	SW7421 - Lead (mg/L) Lead		SW7470 - Mercury (mg/L) Mercury	

R = Invalid Result, Refer to QC Report NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit

Ξ

-0.00626 JB (0.000843)

[]

-0.00529 JB (0.000843)

Ξ

(0.00144)

0.00738 S

[2]

(0.00288)

0.00350 S

SW7740 - Selenium (mg/L)

Selenium

Compiled: 16 March 1995

	C	008 02-GW-01 02-GW-01-03	78 1-01 01-03)- 20)- 20-(008 02-GW-03 02-GW-03-03			04 04-MW-02 04-MW-02-03			04 04-MW-03 04-MW-03-03	
PARAMETER	•	ļ	:			; !	}							
E160.1 - Residue, Filterable (TDS) (mg/L) Total dissolved solids	(mg/L) 278	_	10.0)	[1]	283		10.0)	[1]	NA		 	N N		
E300 - Anions (mg/L) Chloride Sulfate	1.05 0.00 JB	<u> </u>	0.0200)	<u> </u>	1.13) JB (0.0200)	33	NA NA			N N		
E353.1 - Nitrate-Nitrite (mg/L) Nitrate-Nitrite as N	NON	_	0.0100)	[1]	ND	_	0.0100)	[1]	NA			NA		
SW6010 - Metals (mg/L)														
Aluminum	NA				NA				-0.000420	JB (0.0280)	[1]	0.0242	JB (0.0280)	Ξ
Antimony	NA				NA				0.0201	JB (0.0240)	[1]	0.00318	JB (0.0240)	Ξ
Arsenic	NA				NA				-0.000470	J (0.0230)		-0.00333	J (0.0230)	Ξ
Barium	NA				NA		٠		0.212	(0.000530)	_	0.360	(0.000530)	
Beryllium	NA				N				0.000140	JB (0.000550)	Ξ (-0.000120	JB (0.000550)	Ξ
Cadmium	NA				NA				-0.000320	JB (0.00170)	_	0.000440	JB (0.00170)	[1]
Calcium	NA				AN				204	(0.150)	_	189	(0.150)	[1]
Chromium	NA				NA				0.00298	B (0.00250)	[1]	0.00185	JB (0.00250)	Ξ
Cobalt	NA				NA				-0.00351	JB (0.00340)	[1]	0.0185	(0.00340)	[1]
Copper	NA				NA				0.00290	JB (0.00380)	[1]	0.00250	JB (0.00380)	[1]
Iron	٧N				NA				-0.00335	JB (0.00600)	[1]	1.85	(000000)	[1]
Lead	NA				N				-0.00933	J (0.0270)		-0.00927	J (0.0270)	Ξ
Magnesium	۸				N A				29.1	(0.0230)		45.0	(0.0230)	Ξ
Manganese	NA		٠		۸A				0.0767	(0.000390)	[1]	10.8	(0.000390)	Ξ
Molybdenum	N				N				-0.00207	JB (0.00460)	[11]	0.000100	JB (0.00460)	Ξ

ND = Not Detected () = Detection Limit [] = Dilution Factor

Compiled: 16 March 1995

NA = Not Applicable R = Invalid Result, Refer to QC Report

				SITE ID LOCATION ID SAMPLE ID							
	005 05-MW-01 05-MW-01-03			005 05-MW-02 05-MW-02-03		-MW-50	005 05-MW-02 05-MW-02-DS-03 Dup of 05-MW-02-03	p of		005 05-MW-03 05-MW-03-03	
PARAMETER						•					
E160.1 - Residue, Filterable (TDS) Total dissolved solids	;) (mg/L) NA		362	(10.0)	i t t	[1] 368	(10.0)	0) [1]	N N		
E300 - Anions (mg/L) Chloride Sulfate	NA NA		1.40 3.12	(0.0200)		[1] 1.44 [1] 3.13	(0.0200) (0.0600)	9) [1] 9) [1]	N N A		
E353.1 - Nitrate-Nitrite (mg/L) Nitrate-Nitrite as N	NA		Q.	(0.0100)		[1] ND	(0.0100)	9) [1]	NA		
SW6010 - Metals (mg/L)											
Aluminum	0.0268 JB (0.0284)	[1] -0.0	-0.00102 JB	(0.0284)		.] NA			0.0210	JB (0.0284)	[1]
Antimony	-0.00790 JB (0.0241)		-0.0157 JB	(0.0241)		[1] NA			-0.0374	JB (0.0241)	Ξ
Arsenic) C	1	-0.0162 J	(0.0225)		[1] NA			-0.0221	J (0.0225)	[1]
Barium	_			_		[1] NA			0.597	(0.000530)	Ξ
Beryllium	0 er			<u> </u>					0.000190	0	Ξ
Cadmium Calcium	0.00206 B (0.00172) 190 (0.148)	[1] [1]	-0.00126 JB 110	(0.00172) (0.148)		[1] NA [1]			0.000520	JB (0.00172) (0.148)	ΞΞ
Chromium	JB (0		-0.00149 JB						-0.000270	JB (0.00249)	ΞΞ
Cobalt	0.00202 JB (0.00340)		0.00219 JB	(0.00340)					0.00751		Ξ
Copper	0.000380 JB (0.00381)	[1] -0.000610	0610 JB	(0.00381)		[1] NA			-0.000300	JB (0.00381)	Ξ
Iron	30.8 (0.00596)	[1]	22.6	(0.00596)	_	[1] NA			57.2	(0.00296)	Ξ
Lead .	0.00117 J (0.0270)		0.00121 J	(0.0270)		.] NA			0.0136	J (0.0270)	Ξ
Magnesium	40.0 (0.0228)	[1]	20.4	(0.0228)					30.3	(0.0228)	[1]
Manganese	16.2 (0.000395)	[1]	2.07	(0.000395)		[1] NA			11.2	(0.000395)	Ξ
Compiled: 16 March 1995	() = Detection Limit [] =	= Dilution Factor	tor ND	= Not Detected	1	NA = Not Applicable	~	valid Rest	= Invalid Result, Refer to QC Report	QC Report	

	005 05-MW-03 05-MW-03		0.0000600 JB (0.00463) [1]	JB ((0.00287)	J (0.0417)	JB (0.00492)	(0.0397)	JB (0.0172)	0.00112 JB (0.00236) [1]	0.00585 B (0.00153) [1]	0.00370 (0.000657) [1]	0.00230 B (0.00110) [1]	-0.0000700 JB (0.0000480) [1]	-0.00300 JB (0.00144) [1]
	005 05-MW-02 05-MW-02-DS-03 Dup of	05-MW-02-03		NA	NA	AN ::	NA ::	NA	NA	AN	NA	NA	NA	NA -0	NA
		.	[1]	Ξ	Ξ:	ΞΞ	Ξ	Ξ	Ξ	Ξ	[1]	[]	[1]	[1]	[1]
SITE ID LOCATION ID SAMPLE ID	005 05-MW-02 05-MW-02-03		JB () Br	_ 	_ ·) - - - -	<u> </u>) BC) B	0.00875 (0.00153)	0.0108 (0.000657)	0.00120 B (0.00110)	-0.0000600 JB (0.0000480)	-0.00250 JB (0.00144)
		1 1 1 1		ΞΞ	ΞΞ			ΞΞ			[1]	[1]	[1]	[1] -0	[1]
	005 05-MW-01 05-MW-01-03		JB () ar		- ·	- - - -	_ \ ;) BD) BC	0.00727 B (0.00153)	0.0255 (0.000657)	0.00160 B (0.00110)	-0.0000300 JB (0.0000480)	-0.00100 JB (0.00144)
		PARAMETER	SW6010 - Metals, cont. (mg/L) Molybdenum	Nickel	Potassium	Selenium	STIVET.	50d1um 50d1um	Inalitum	Vanadium	Zinc	SW7060 - Arsenic (mg/L) Arsenic	SW7421 - Lead (mg/L) Lead	SW7470 - Mercury (mg/L) Mercury	SW7740 - Selenium (mg/L) Selenium

SITE ID

	005 05-MW-06 05-MW-06-03		489 (10.0)	2.28 (0.0200) 19.1 (0.0600)	ND (0.0100)		[1] 0.0113 JB (41)	[1] 0.328 (0.	_	_		_	_	81) [1] -0.000210 JB (0.00381)	96) [1] 27.4 (0.00596)	70) [1] -0.00430 J (0.0270)	28) [1] 27.3 (0.0228)	95) [1] 2.81 (0.000395)	
	005 05-MW-05 05-MW-05-03		NA NA	NA NA	NA	;	0.0133 JB ([1] -0.0236 JB (0.0241) [1] -0.0236 J (0.0225)	0.888 (0.	[1] -0.0000900 JB (0.000554)	[1] 0.00179 B (0.00172		-0.000150 JB ([1] -0.000510 JB (0.00381)	[1] 84.7 (0.00596)	[1] 0.0166 J (0.0270)	[1] 33.9 (0.0228)	[1] 14.5 (0.000395)	
LOCATION ID SAMPLE ID	005 05-MW-04 05-MW-04-03		NA	N A A N	۸A	;	0.0253 JB (-0.00134 JB (0.0241) -0.0109 J (0.0225)	0.942 (0.	-0.0000100 JB (0.000554)	0.00201 B (0.		0.00147 JB (0.00471 B (0.000970 JB (74.2 (0.00596)	0.0137 J (0.0270)	44.2 (0.0228)	8.02 (0.000395)	
	005 05-MW-03 05-MW-03-DS-03 Dup of 05-MW-03-03		S) (mg/L) NA	NA NA	NA NA		JB (0.0284)	-0.0223 JB (0.0241) [1] -0.0149 J (0.0225) [1]	(0.000530)	0.0000500 JB (0.000554) [1]	JB (0.00172)	(0.148)	JB (0.00249)	(0.00340)	JB (0.00381)	(0.00596)	-0.00304 J (0.0270) [1]	30.0 (0.0228) [1]	11.0 (0.000395) [1]	
		PARAMETER	E160.1 - Residue, Filterable (TDS) (mg/L) Total dissolved solids	E300 - Anions (mg/L) Chloride Sulfate	E353.1 - Nitrate-Nitrite (mg/L) Nitrate-Nitrite as N	SW6010 - Metals (mg/L)	Aluminum	Antimony Arsenic	Barium	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	

		=======================================	[1]	[1]	[1]	Ξ
	005 05-MW-06 05-MW-06-03	JB (0.00463) (0.00287) J (0.0417) JB (0.00492) (0.0397) B (0.0172) JB (0.00236) (0.00153)	(0.000657)	(0.00110)	B (0.0000480)	B (0.00144)
		-0.00136 Jl 0.0127 2.32 0.0135 Jl -0.00151 Jl 5.33 0.0191 B	0.0137	0.00160 8	-0.0000700 JB	-0.00300 JB
		2222222	[1]	[1]	[1]	
	005 05-MW-05 05-MW-05-03	(0.00463) (0.00986) (0.00287) (0.00417) (0.00492) (0.0172) (0.00236) (0.00153)	(0.000657)	(0.00110)	(0.0000480)	(0.00144)
		0.00110 JB 0.00225 JB 3.24 0.00590 J -0.00228 JB 5.80 0.0189 B	0.0335	0.0135	-0.000120 JB	-0.00270 JB
		22222222	[1]	[1]	[1]	[1]
SITE ID LOCATION ID SAMPLE ID	005 05-MW-04 05-MW-04-03	(0.00463) (0.00986) (0.00287) (0.00417) (0.00492) (0.0397) (0.0172) (0.00236)	(0.000657)	(0.00110)	(0.0000480)	(0.00144)
_)	0.00159 JB -0.00175 JB 2.84 0.00142 JB 5.24 0.00748 JB 0.00341 B	0.0294	0.00250 B	0.0000900 JB	-0.00150 JB
	4_	22222223	Ξ	Ξ	[1] -0.	[1]
	005 05-MW-03 05-MW-03-DS-03 Dup of 05-MW-03-03	(0.00463) (0.00986) (0.00287) (0.00417) (0.00492) (0.0397) (0.0172) (0.00236)	(0.000657)	(0.00110)	(0.0000480)	(0.00144)
	05-MM-0	0.00139 JB 0.00350 JB 5.49 0.0194 J -0.000120 JB 4.37 0.00862 JB 0.00246 B	0.0106	0.00250 8	-0.000100 JB (0.0000480)	-0.00250 JB
		SW6010 - Metals, cont. (mg/L) Molybdenum Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	inic (mg/L)	(mg/L)	ury (mg/L)	nium (mg/L)
	PARAMETER	SW6010 - Meta Molybdenum Nickel Potassium Selenium Silver Sodium Thallium Vanadium	SW7060 - Arsenic (mg/L) Arsenic	SW7421 - Lead (mg/L) Lead	SW7470 - Mercury (mg/L) Mercury	SW7740 - Selenium (mg/L) Selenium

Compiled: 16 March 1995

() = Detection Limit [] = Dilution Factor

ND = Not Detected

NA = Not Applicable

						i			
			SITE ID LOCATION ID SAMPLE ID						
PARAMETER	005 05-MW-13 05-MW-13-01		005 05-MW-14 05-MW-14-01		005 05-MW-14 05-MW-14-DS-01 Dup of 05-MW-14-01		3	005 05-MW-15 05-MW-15-01	
 SW6010 - Metals, cont. (mg/L)	7			! ! !		!			i
Lead	-0.0238 J	[1] -0.000810 J	(0.0270)	[1]	(0280 0) [80800 0	Ξ	,	(0100	
Magnesium	44.7 (0.0228)		<i>-</i>	ΞΞ	- <u>-</u>	E E	0.130	(0.02/0)	
Manganese			(0 000395)	ΞΞ	<i>-</i> ~	Ē E	31.5	(0.0228)	
Molybdenum	JB (-0.00244	JB (0.00463)	E	JB ([1]	3.I4 -0.00160 10	- -	
Nickel	_			<u> </u>				(0.00463)	
Potassium	4.64 (0.370)		(0.370)	ΞΞ	· _	ΞΞ			
Selenium	, ,	[1] -0.0230	J (0.0417)	,	- - -	·	-0.00296	(0 0417)	
Silver	0.000610 JB (0.00492)	-0.000830	JB (0.00492)		JB (0	 E E	-0.00162 JB		
Sodium	_	[1] 9.44	(0.0397)			ΞΞ			
Thallium	0.00717 JB (0.0172)	-0.000220	JB (0.0172)	Ξ	.)8	[1]	ar 0.8300 0-		
Vanadium	IR (010000			2 4	,		(7/10:0)	

SW6010 - Metals, cont. (mg/L)				 	1 1 1 1		 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1			[
Lead	-0.0238	J (0.0270)	[1]	-0.000810	- -	(0720)	[1]	00000	_	(0200	Ξ	•		ŗ
Magnesium	44.7	(0 0228)	33	5		0.0500)] [0.00232	- ·	0.02/0)		0.193	(0.0270)	Ξ
20 00 00 00 00 00 00 00 00 00 00 00 00 0	(1)	(0.0220)	3 :	36.0		(0.0228)		31.9	_	0.0228)	Ξ	31.5	(0.0228)	Ξ
Hanganeve		_	Ξ	0.380		(0.000395)	[1]	0.391	_	0.000395)	[]	3.14	(0.000395)	Ξ
Molybdenum		JB (0.00463)	Ξ	-0.00244	ЭВ	(0.00463)	Ξ	-0.00304	JB (0.00463)	[1]	-0.00168 JB	(0.00463)	Ξ
Nickel	0.0214	(0.00986)	Ξ	0.0136		(0.00986)	[1]	0.00911	_	0.00986)	Ξ	0.00290 JB	(0.00986)	ΞΞ
Potassium	4.64	(0.370)	Ξ	4.35		(0.370)	[]	4.02	_	0.370)	Ξ		(0.320)	ΞΞ
Selenium	0.0180	J (0.0417)	[1]	-0.0230	ר	(0.0417)		-0.00225		0.0417)	ΞΞ	L. A9200 0-	(2,50,0)	ΞΞ
Silver	0.000610	JB (0.00492)	[1]	-0.000830	JB	(0.00492)	Ξ) B	0.00492)	ΞΞ	-0 00162 JB	(0 00492)	E E
Sodium	13.0	(0.0397)	Ξ	9.44		(0.0397)			· _	0.0397)	ΞΞ		(0.0397)	3 5
Thallium	0.00717	JB (0.0172)	Ξ	-0.000220	ЭВ	(0.0172)	Ξ	0.00933	JB (0.0172)	ΞΞ	-0.00630 JR	(0.0172)	ΞΞ
Vanadium	0.00140	JB (0.00236)	[1]	0.000210	JB	(0.00236)		. 072000.0	JB (0.00236)	ΞΞ		(0 0023E)	3 3
Zinc	0.00594	8 (0.00153)	[1]	0.00232	80	(0.00153)	Ξ		· ·	0.00153)	ΞΞ		(0.00153)	ΞΞ
											1		(2)	5
SW7060 - Arsenic (mg/L)														
Arsenic	0.000800	(0.000657)	Ξ	-0.00266	JB	(0.000984)	[1]	-0.0940	JB (0.0492)	[1]	-0.00290 JB	(0.000657)	[1]
SW7421 - Lead (mg/L)														
Lead	0.0100	(0.000800)	[1]	0.000700	38	(0.000800)	[1]	0.00260 B	_	0.000800)	[1]	0.00720 s	(008000)	[1]
SW7470 - Mercury (mg/L)														
Mercury	-0.0000200	-0.0000200 JB (0.0000480)	[1]	-0.0000100	JB	(0.0000480)	[1] -0	[1] -0.0000300 J	JB (0	(0.0000480)		0.0000200 JB	(0.0000480)	[1]
SW7740 - Selenium (mg/L)														
Selenium	-0.00444	-0.00444 JB (0.000843)	[1]	-0.00583	JB	JB (0.000843)	[]	-0.00571 J	JB (0.000843)	[1]	-0.00455 JB	(0.000843)	[1]
Compiled: 16 March 1995	() = Detection Limit		= Diluti	= Dilution Factor	= 0	Not Detected	NA ==	NA = Not Applicable	ble	R = Invalid	Result	= Invalid Result. Refer to OC Report	Renort	

A8-10

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

SITE 1D	LOCATION ID	SAMPIF ID
---------	-------------	-----------

05-MW-13-01 05-MW-13

05-MW-14 05-MW-14-01

05-MW-14 05-MW-14-DS-01 Dup of

05-MW-14-01

05-MW-15 05-MW-15-01

PARAMETER

Compiled: 16 March 1995

() = Detection Limit [] = Dilution Factor ND = Not Detected

NA = Not Applicable R = Invalid Result, Refer to QC Report

		! ! !	Ξ	[1]	Ξ		Ξ	Ξ	Ξ	[1]		Ξ	Ξ	3	[1]	1	[1]	
	008 06-MW-04 06-MW-04-03		JB (0.00990)	(0.370)	_	JB (0.00490)	(0.0400)	JB (0.0170)	JB (0.00240)	(0.00150)		(0.000657)	(0.100)	-	(0.0000480)		JB (0.00144)	
		; ; ; ; ; ;	-0.0126	4.48			47.3		-0.00300	0.0111		0.0284	008000 0-		0.000220		-0.00240	
		1	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]		Ξ	Ξ	Ξ	Ξ		Ξ	
	008 06-MW-03 06-MW-03-03	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0.00300)	(0.370)	(0.0420)	(0.00490)	(0.0400)	(0.0170)	(0.00240)	(0.00150)		(0.000650)	(0.110)	(01100:0	(0.0000480)		(0.00144)	
	90	! ! !	7 JB	0		4 JB			1 JB	7		0	<u> </u>		0 JB		0 38	
		! ! !	0.00367	3.60	0.0280	-0.00154	15.8	-0.0174	-0.00341	0.0182		0.00210	-0 00160		-0.0000700		-0.00380	
			Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ		Ξ	Ξ	3	Ξ		[1]	
SITE ID LOCATION ID SAMPLE ID	008 06-MW-02 06-MW-02-03		(0.00990)	(0.370)			_	_	3 (0.00240)	(0.00150)		(0.000657)	(0 00110)		(0.0000480)		3 (0.00144)	
	J		-0.000230 JB	5.27		-0.000470 JB			-0.00288 JB	0.00775 8		0.00800	0 00860		0.000200		-0.00270 JB	
			Ξ	Ξ	Ξ	Ξ:		Ξ		Ξ		Ξ	Ξ	3	[1]		[1]	
	008 06-MW-01 06-MW-01-03		(0.00300)	(0.370)	(0.0420)	(0.00490)	(00.0400)	(0.0170)	(0.00240)	(0.00150)		(0.000657)	(0 00110)	(244,22)	(0.0000480)		(0.00144)	
	90		JB			8			ЭВ	ω					6		JB	
			-0.00322	5.33	-0.0220	-0.00235	36.8	-0.00262	-0.00413	0.00604		0.0101	0 00950		0.000140 B		-0.00240 JB	
		(1))	:onc. (mg/ L)								(mg/L)		1/۲)		(mg/L)	:	(mg/L)	
		PAKAMETEK 	Swould = Metals, cont. (mg/L) Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc	SW7060 - Arsenic (mg/L)	Arsenic	SW7421 - Lead (mg/L)		SW7470 - Mercury (mg/L) Mercury		SW7740 - Selenium (mg/L) Selenium	

		[1]				222222222
	32 :-03	10.0)				0.0280) 0.0240) 0.0230) 0.000530) 0.000550) 0.00170) 0.150) 0.00250) 0.00250)
	3 07-MW-02 07-MW-02-03					
		882	NA	N N N	NA	0.0204 JB -0.00491 JB 0.0113 J 0.908 -0.0000100 JB 0.00135 JB 105 0.00361 B -0.000550 JB
		[1]				2222222 • · · ·
	-01 01-03	8.67)				0.0284) 0.0241) 0.0225) 0.000530) 0.00172) 0.0172) 0.00249) 0.00249)
	3 07-MW-01 07-MW-01-03					
		630	NA	NA NA	NA	0.0148 J 0.0181 J 0.00150 J 0.561 0.00 J 0.00103 J 96.4 0.00276 B 0.00838
		[1]	[1]	[5]	[1]	5555555555
SITE ID LOCATION ID SAMPLE ID	008 06-MW-07 06-MW-07-DS-01 Dup of 06-MW-07-01	8.67)	7.90)	0.100)	0.0100)	0.0284) 0.0241) 0.0225) 0.000530) 0.000554) 0.00172) 0.148) 0.00249) 0.00340)
SIT LOCAT	008 06-MW-07 W-07-DS-01 D 06-MW-07-01) ,	~ ~	<u> </u>	JB ()) () () () () () () () ()
	₩-90	904	5.30	17.2	ND	-0.00404 (0.000330 (0.0132 (0.343 (0.00300 (0.00300 (0.00181 E))))
		[1]	[1]	[5]	[1]	222222222
	008 06-MW-07 06-MW-07-01	8.67)	7.90)	0.100)	0.0100)	0.0284) 0.0241) 0.0225) 0.000530) 0.000554) 0.00172) 0.148) 0.00249) 0.00381)
	MM-90 0		<u> </u>	<u> </u>	_) B() () () () () () () () () () () () ()
		606 (T/GW) (70 > (mg/L)	16.3 59.9	ND	-0.00482 -0.0111 0.00232 0.355 -0.000370 0.00286 233 -0.00197 0.00766
	PARAMETER	E160.1 - Residue, Filterable (TDS) (mg/L) Total dissolved solids 909	E160.2 - Residue, Non-Filterable Total suspended solids	E300 - Anions (mg/L) Chloride Sulfate	E353.1 - Nitrate-Nitrite (mg/L) Nitrate-Nitrite as N	SW6010 - Metals (mg/L) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron

Compiled: 16 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable R = Invalid Result, Refer to QC Report

					SI LOCA SAN	SITE ID LOCATION ID SAMPLE ID									
	90	008 06-MW-07 06-MW-07-01		₩-90	0 -90 07	008 06-MW-07 06-MW-07-0S-01 Dup of			07- 07-h	3 07-MW-01 07-MW-01-03			3 07-MW-02 07-MW-02-03	ಣ	
PARAMETER					₩-90	06-MW-07-01									
 SW6010 - Metals, cont. (mg/L)				; ; ; ; ; ; ; ;			!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!							! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	!
	-0.0122 J	(0.0270)	Ξ	-0.00530	ر	0.0270)	Ξ	0.00910	, ,	0.0270)	Ξ	0.0142	0.0	0.0270)	Ξ
Magnesium	62.6	(0.0228)	Ξ	61.5	_	0.0228)	Ξ	65.6	_	0.0228)	[1]	9.66	0.0		ΞΞ
Manganese	1.75	(0.000395)	Ξ	1.95	_	0.000395)	Ξ	0.783		0.000395)	Ξ	0.155	(0.000390)	_	Ξ
Molybdenum	0.00126 JB	(0.00463)	[1]	-0.000760	JB (0.00463)	Ξ	-0.00223	JB	0.00463)	[1]	-0.00110 JB	3 (0.00460)	_	Ξ
Nickel	0.0164	(0.00986)	[1]	0.0229	_	0.00986)	Ξ	0.00627	JB O	0.00986)	[I]	-0.0106 JB	_	0.00900)	[1]
Potassium	5.84	(0.370)	Ξ	5.94	_	0.370)	Ξ	4.11		0.00287)	Ξ	5.12	0	0.370)	Ξ
Selenium		(0.0417)	Ξ	-0.00625) `	0.0417)	Ξ	-0.0178	, ,	0.0417)	[1]	-0.0188 J	_	0.0420)	Ξ
Silver	-0.00204 JB	(0.00492)	[1]	0.000240) BC	0.00492)	Ξ	-0.00139	JB (0.00492)	Ξ	-0.000550 JB	_	0.00490)	[]
Sodium	14.0	(0.0397)	Ξ	13.8	_	0.0397)	Ξ	25.2	Ū	0.0397)	Ξ	61.0	0.0	0.0400)	[1]
Thallium		(0.0172)	Ξ	0.00105) BS	0.0172)	Ξ	0.00920	JB (0.0172)	[1]	0.0112 JB	_	0.0170)	Ξ
Vanadium	0.000880 JB	(0.00236)	Ξ	0.00215) Br	0.00236)	Ξ	0.000570	JB (0.00236)	[1]	0.00247 B	_	0.00240)	Ξ
Zinc	0.00739 8	(0.00153)	Ξ	0.00596	9	0.00153)	Ξ	0.00506	<u>в</u>	0.00153)		0.00385 B	_	0.00150)	Ξ
SW7060 - Arsenic (mg/L) Arsenic	0.0132	(0.000657)	[1]	0.000700	_	0.000657)	Ξ	0.0110		(0.000657)	Ξ	0.00780	(0.000650)		Ξ
					•		,]				3
SW7421 - Lead (mg/L) Lead	0.00300 B	(0.000800)	[1]	0.00200	9	0.000800)		0.00140	9	0.000800)		0.0108	(0.00110)		Ξ
SW7470 - Mercury (mg/L) Mercury	0.0000500 B	(0.0000480)	Ξ	-0.0000500	JB (C	(0.0000480)	[1]	-0.000120	JB	(0.0000480)	Ξ]	-0.0000600 JB	3 (0.0000480)		Ξ
SW7740 - Selenium (ma/I)															
Selenium	-0.00480 JB	(0.00169)	[2]	-0.00515	JB ((0.000843)	[1]	-0.00440	98	0.00144)	[1]	0.00712 SF	(0.00288)		[2]
Compiled: 16 March 1995	() = Detection Limit		Dilutio	= Dilution Factor	N = ON	Not Detected	NA =	Not Applicable	cable	R = Invalic	Resul	Invalid Result, Refer to QC	C Report	48-15	

TABLE A8

SITE ID LOCATION ID SAMPLE ID

07-MW-02-03 07-MW-02

07-MW-01-03 07-MW-01

06-MW-07-DS-01 Dup of

06-MM-07 800

06-MW-07 06-MW-07-01 800

06-MW-07-01

ivalic
>
ے
Inval
11
\simeq
a)
_
ap
Ö
Ξ
5
Α
ىد
Not
11
Α
z
$\overline{\mathbf{o}}$
ţ.
Ö
te
Detected
_
Ċ
ž
п
Q
₹
acto
당
ō
_
'n
. <u>~</u>
Lt.
-
<u>–</u>
11
ï.
imi

Compiled: 16 March 1995

				SITE ID LOCATION ID SAMPLE ID								
	3 07-MW-02 07-MW-02-DS-03 Dup of 07-MM-02-03	-	070	3 07-MW-03 07-MW-03-03		·	3 07-MW-04 07-MW-04-03	-04 04-03		0 07	3 07-SW-03 07-SW-03-01	
PARAMETER												
E160.1 - Residue, Filterable (TDS) Total dissolved solids	(mg/L) (10.0)	[1]	825	(8.67)		794		8.67)	[1]	NA NA		
SW6010 - Metals (mg/L)												
Aluminum	JB (Ξ	0.00110 JB	(0.0284)	Ξ	0.0231) BC	0.0284)	Ξ	0.0497 B	(0.0284)	[1]
Antimony	0.0378 (0.0240)	Ξ	0.0311 B	(0.0241)	Ξ	0.0326 B	_	0.0241)	[1]	-0.0126 JB	(0.0241)	Ξ
Arsenic) ر	Ξ	-0.0450 J	(0.0225)	Ξ	-0.0140 J	_	0.0225)	[1]	-0.0235	(0.0225)	Ξ
Barium	_	[1]	0.124	(0.000530)	Ξ	0.169	<u> </u>	0.000530)	[1]	0.179	(0.000530)	[1]
Beryllium	-0.000390 JB (0.000550)	[1]	-0.000970 JB	(0.000554)	Ξ	0.000300	JB (0	0.000554)	[1]	0.000210 JB	(0.000554)	Ξ
Cadmium	0.000120 JB (0.00170)	[1]	0.00145 JB	(0.00172)	[1]	0.000740) BC	0.00172)	Ξ	0.00288 B	(0.00172)	Ξ
Calcium	_	Ξ	116	(0.148)	Ξ.	142	_	0.148)	Ξ	79.5	(0.148)	Ξ
Chromium	0.00817. (0.00250)	Ξ	0.00543	(0.00249)	Ξ	0.00440 B	_	0.00249)	[1]	0.00206 JB	(0.00249)	Ξ
Cobalt	-0.000180 JB (0.00340)	[1]	0.00711	(0.00340)	Ξ	0.0100	_	0.00340)	Ξ	0.00126 JB	(0.00340)	Ξ
Copper	0.00191 JB (0.00380)	Ξ	0.00677 B	(0.00381)	[1]	0.00337 J	JB (0.00381)	[1]	0.00745 B	(0.00381)	Ξ
Iron	_	Ξ	2.89	(0.00596)	[1]	0.513	_	0.00596)	[1]	2.81	(0.00596)	Ξ
Lead	ر ر	Ξ	-0.0146 J	(0.0270)	[]	-0.0138 J	_	0.0270)	[1]	0.00858 J	(0.0270)	Ξ
Magnesium	<u> </u>	Ξ	110	(0.0228)	[1]	78.5	_	0.0228)	[1]	42.2	(0.0228)	Ξ
Manganese	<u> </u>	Ξ		(0.000395)	[1]	1.73	0	0.000395)	Ξ	0.0999	(0.000395)	Ξ
Molybdenum) B	[1]	-0.00370 JB	(0.00463)	Ξ	0.000110 J) Br	0.00463)	[1]	0.00488	(0.00463)	[1]
Nickel	JB (0.	Ξ	0.00859 J	(0.00986)	[]		ЭВ (0.00986)	[1]	0.0150	(0.00986)	Ξ
Potassium	_	Ξ	4.43	(0.00287)	[1]	4.75	_	0.00287)	[1]	0.421 B	(0.00287)	Ξ
Selenium	· ·	Ξ	-0.0418 J	(0.0417)	[]	-0.00660 J	_	0.0417)	Ξ	0.0102 J	(0.0417)	Ξ
Silver ,	JB (0	Ξ	0.00133 JB	(0.00492)	[1]		JB (0.00492)	[1]	0.00373 JB	(0.00492)	Ξ
Sodium	60.9 (0.0400)	Ξ	33.9	(0.0397)	[1]	25.1	_	0.0397)	Ξ	215	(0.0397)	Ξ
Thallium	0.0243 B (0.0170)	Ξ	0.0144 JB	(0.0172)	[]	0.00810	JB (0.0172)	[1]	-0.00616 JB	(0.0172)	Ξ
Compiled: 16 March 1995	() = Detection Limit . [] =	= Dilutior	on Factor ND	= Not Detected	NA =	Not Applicable	ble	R = Invalid	Result	Invalid Result, Refer to QC Report	Report	

		[1]	[1]	[1]	[1]	[1]
	3 07-SW-03 07-SW-03-01	(0.00236) (0.00153)	(0.000657)	(0.00105)	(0.0000480)	-0.00300 JB (0.000843)
	0	0.00558	0.00240	0.00160 B	-0.000100 JB	-0.00300 JB
			[1]	[1]	[1]	[]
	3 07-MW-04 07-MW-04-03	(0.00236) B (0.00153)	(0.000657)	(0.000800)	JB (0.0000480)	-0.00270 JB (0.00144)
		0.00270 B -0.000430 JB	0.00170	0.00420 B	0.0000400	-0.00270
		[1]	[1]	. [1]	[1]	[1]
SITE ID LOCATION ID SAMPLE ID	3 07-MW-03 07-MW-03-03	(0.00236) (0.00153)	(0.000657)	(0.000800)	(0.0000480)	(0.00144)
	0	0.00246 B	0.00610	0.00410 B	0.00 38	-0.00230 JB
		ΞΞ	[1]	[1]	[1]	[1]
	3 07-MW-02 07-MW-02-DS-03 Dup of 07-MW-02-03	B (0.00240) (0.00150)	(0.000650)	(0.00110)	-0.0000800 JB (0.0000480)	0.00120 SJ (0.00144)
	M-70	0.00254	0.00840	0.0107	-0.0000800	0.00120
	PARAMETER	SW6010 - Metals, cont. (mg/L) Vanadium Zinc	SW7060 - Arsenic (mg/L) Arsenic	SW7421 - Lead (mg/L) Lead	SW7470 - Mercury (mg/L) Mercury	SW7740 - Selenium (mg/L) Selenium

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

Compiled: 16 March 1995

A8-19

ALL RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, GALENA 1993 EVENT.

TABLE A8

						SITE ID LOCATION SAMPLE II	SITE ID LOCATION ID SAMPLE ID									
		3 07-SW-04 07-5W-04-01	5			3 07-SW-05 07-SW-06-01	-05			07-70	3 07-SW-06		c	3 07-SW-07		
PARAMETER		# C C C C C C C C C C C C C C C C C C C	5			7-80-70	10-67			, ,	TO-00-		•	IN-/N-MS-/N	-	
SW6010 - Metals (mg/L)		1 1 1 1 1 1 1 1 1 1	 	1 5 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		! ! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Aluminum		_	0.0284)		000100	9	0.0284)	Ξ	0.0000300	JB (0.0284)	[1]	-0.0204 JB	_	0.0284)	[1]
Antimony		JB (0.	0.0241)	[1] -0	.00239	9	0.0241)	[1]	-0.0104	JB (0.0241)	Ξ	-0.00954 JB	_	0.0241)	[1]
Arsenic		J (0.	0.0225)	[1] -0		_	0.0225)	Ξ	0.0115	ر (0.0225)	[1]	-0.0142 J	0.0	0.0225)	[]
Barium	0.196	00.00	0.000530)		0.230	0	.000530)	[1]	0.269	_	0.000530)	[1]	0.292	(0.000530)	530)	[1]
Beryllium		JB (0.00	0.000554)		-0.000420 JB	_	0.000554)	Ξ	-0.000270	JB S	0.000554)	Ξ	-0.000430 JB	(0.000554	554)	[1]
Cadmium	-0.00156	JB (0.0	0.00172)		-0.000870 JB	_	0.00172)	Ξ	-0.000970	JB (0.00172)	Ξ	0.000450 JB	(0.00172	172)	[1]
Calcium	82.6	0	0.148)	Ξ	94.5	_	0.148)	[1]	113	_	0.148)	Ξ	114	.0	0.148)	[1]
Chromium	0.00202	JB (0.0	0.00249)	[1] -0	0.00184 JB	_	0.00249)	Ξ	0.00387	В (0.00249)	Ξ	0.000810 JB	(0.00249)	249)	[1]
Cobalt		JB (0.0	0.00340)		-0.000580 JB	_	0.00340)	Ξ	0.00506) B	0.00340)	Ξ	0.00204 JB	(0.00340)	340)	[1]
Copper		JB (0.0	0.00381)	[1] -0	٠.	_	0.00381)	[1]	0.00129	JB (0.00381)	Ξ	0.00164 JB	(0.00381	381)	[1]
Iron	3.86	0.0	0.00596)	[1]	2.61	_	0.00596)	[1]	0.561	_	0.00596)	Ξ	0.470	(0.00596)	296)	Ξ
Lead	0.0180	0 0	0.0270)	[1]	-0.0206 J	_	0.0270)	Ξ	0.0349	_	0.0270)	[1]	0.0284	0.0	0.0270)	Ξ
Magnesium	45.2	0.	0.0228)	Ξ	44.1	_	0.0228)	[1]	49.1	_	0.0228)	[1]	47.5	0.0	0.0228)	Ξ
Manganese		_	0.000395)		0.560	0.	0.000395)	Ξ	0.632	_	0.000395)	[1]	0.467	(0.000395	395)	[1]
Molybdenum		JB (0.0	0.00463)		-0.0000000.0-	_	0.00463)	Ξ	0.000200	JB (0.00463)	[1]	-0.00238 JB	(0.00463	463)	Ξ
Nickel	0.0124	0.0	0.00986)		0.00467 JB	_	0.00986)	Ξ	0.00608) BC	0.00986)	[1]	0.0167	0.00986	986)	[1]
Potassium	0.470 B	_	0.00287)	[1]	0.402 B	_	0.00287)	[1]	1.49	_	0.00287)	[1]	1.20	(0.00287	287)	Ξ
Selenium		_	0.0417)			_	0.0417)	Ξ	0.0129	ر (0.0417)	[1]	-0.0250 J	0.0	0.0417)	Ξ
Silver		JB (0.0	0.00492)		-0.00457 JB	_	0.00492)	[1]	-0.00156) Br	0.00492)	[1]	-0.00519 JB	(0.00492	492)	[1]
Sodium	230)	0.0397)	Ξ	188	_	0.0397)	[1]	179	_	0.0397,	Ξ	178	0.0	0.0397)	[1]
Thallium		JB (0.	0.0172)	[1]	0.0226 B	_	0.0172)	[1]	0.0155) BC	0.0172)	Ξ	0.0189 B	0.0	0.0172)	[1]
Vanadium	0.0000300	JB (0.0	0.00236)	[1] -0	0.00200.0B	_	0.00236)	[1]	0.00246) в	0.00236)	[1]	-0.00127 JB	(0.00236	236)	[1]
Zinc	0.00921	0.0	0.00153)	Ξ	0.00663 B	_	0.00153)	Ξ	0.00517	В (0.00153)	Ξ	0.00485 B	(0.00153	153)	[1]
SW7060 - Arsenic (mg/L)																

SITE IO	LOCATION ID	SAMPLE ID	

3 07-SW-07	07-SW-07-01			[1] -0.00180 JB (0.000657)
3 07-5W-06	07-SW-06-01			0.00 J (0.000657) [1]
3 07-SW-05	07-SW-05-01			.00250 (0.000657) [1]
3 07-SW-04	07-SW-04-01			0.00210 (0.000657) [1] 0.
	0 4 0		SW7060 - Arsenic, cont. (mg/L)	Arsenic

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1			1 1 1						
SW7060 - Arsenic, cont. (mg/L)											 	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Arsenic	0.00210	(0.000657)	[1]	0.00250	(0.000657) [1]	[1]	0.00	0.00 J (0.000657) [1] -0.00180 JB (0.000657)	[1]	-0.00180 JB	(0.000657)	=
SW7421 - Lead (mg/L)												
Lead	0.00341 B	B (0.00105)	[1]	0.00637 B	(0.00105) [1]	Ξ	0.00652 8	(0.00105) [1]	[1]	0.00677 B	(0.00105)	

Ξ

[1]	[1]
(0.00105)	(0.0000480)
0.00677 B	[1] -0.000110 JB (0.0000480)
[1]	[1]
(0.00105)	[1] -0.000140 JB (0.0000480)
0.00652 8	-0.00014
[1] 0.0	[1]
(0.00105)	0000900 JB (0.0000480)
0.00637 B	[1] -0.0000900 JI
Ξ	[1]
(0.00105)	-0.000160 JB (0.0000480)
0.00341 B (0	-0.000160 JE
	ercury (mg/L)
Lead	SW7470 - Mercury Mercury

Mercury -0.000160 JB (0.0000480) [1] -0.0000900 JB (0.0000480) [1] -0.000140 JB (0.0000480) [1] -0.000140 JB (0.0000480) [1] -0.000140 JB (0.0000480) [1] -0.000843) [1] -0.000843) [1] -0.000843) [1] -0.000843)	[1]	Ξ
-0.000160 JB (0.0000480) [1] -0.0000900 JB (0.0000480) [1] -0.000140 JB (0.0000480) -0.00354 JB (0.000843) [1] -0.000843) [1] -0.00364 JB (0.000843)	(0.0000480)	(0.000843)
-0.000160 JB (0.0000480) [1] -0.0000900 JB (0.0000480) [1] -0.000140 JB (0.0000480) -0.00354 JB (0.000843) [1] -0.000843) [1] -0.00364 JB (0.000843)	0 JB	0 JB
-0.000160 JB (0.0000480) [1] -0.0000900 JB (0.0000480) [1] -0.000140 JB (0.0000480) -0.00354 JB (0.000843) [1] -0.000843) [1] -0.00364 JB (0.000843)	-0.00011	-0.0038
-0.000160 JB (0.0000480) [1] -0.0000900 JB (0.0000480) [1] -0.000140 JB (0.0000480) -0.00354 JB (0.000843) [1] -0.000843) [1] -0.00364 JB (0.000843)	[1]	[1]
-0.000160 JB (0.0000480) [1] -0.0000900 JB (0.0000480) -0.00354 JB (0.000843) [1] -0.00298 JB (0.000843)	10 JB (0.0000480)	4 JB (0.000843)
-0.000160 JB (0.0000480) [1] -0.0000900 JB (0.0000480) -0.00354 JB (0.000843) [1] -0.00298 JB (0.000843)	-0.00014	-0.0036
-0.000160 JB (0.0000480) [1] -0	Ξ	[1]
-0.000160 JB (0.0000480) [1]	٠.	-0.00298 JB (0.000843)
	[1]	[1]
	00160 JB (0.0000480)	00354 JB (0.000843)
Mercury W7740 - Selenium (mg/L) Selenium	-0.0	-0-
U 3	Mercury	SW7740 - Selenium (mg/L) Selenium

	008 09-MN-04 09-MW-04-03	672 (10.0)	33.2 (0.100) 2.97 (0.0600)	ND (0.0100)	0.0280) [1] 0.00977 JB (0.0280) 0.0240) [1] 0.0119 JB (0.0240) 0.0230) [1] 0.00734 J (0.0230) 0.0550) [1] 0.0676 (0.000550) 0.0150) [1] -0.000500 JB (0.000550) 0.0150) [1] -0.000360 JB (0.00170) 0.0250) [1] 0.00394 B (0.00250) 0.0380) [1] 0.00264 JB (0.00340) 0.0600) [1] 34.4 (0.0600) 0.0230) [1] 27.9 (0.0270) 0.0230) [1] 27.9 (0.0030) 0.0460) [1] -0.000520 JB (0.00390)
	008 09-MM-03 09-MM-03	NA A	N A N	N	0.00232 JB (0.0280) 0.0181 JB (0.0240) 0.0142 J (0.0230) 0.643 (0.000530) -0.000230 JB (0.000550) -0.000470 JB (0.00250) 0.00265 JB (0.00250) 0.00265 JB (0.00280) 24.3 (0.00600) 24.3 (0.00600) 2.70 (0.00330) 2.70 (0.00330) 2.70 (0.00330) -0.00811 JB (0.00460)
		[1]) [5]) [1]	[1]	=====================================
SITE ID LOCATION ID SAMPLE ID	008 09-MW-02 09-MW-02-03	(10.0)	(0.100) (0.0600)	(0.0100)	JB (0.0280) JB (0.0240) J (0.0230) (0.000530) JB (0.000550) (0.00150) (0.00250) JB (0.00380) (0.00600) (0.00600) (0.00230) (0.000330) JB (0.00600) (0.00600) (0.00600) (0.00600) (0.00600) (0.00600) (0.00600)
		615	27.8	N N	[1] 0.00183 [1] 0.0220 [1] 0.0352 [1] 0.00352 [1] 0.00440 [1] 0.00490 [1] 0.00550 [1] 0.00550 [1] 26.3 [1] 25.7 [1] 5.92 [1] -0.00160
	008 09-MW-01 09-MW-01-03				. 0280) . 0240) . 0230) 00530) 00170) 0. 150) 00340) 00380) 00600) . 0270)
	30	(mg/L)	NA NA	NA	0.00936 JB (0 0.00350 JB (0 0.0255 (0 0.894 (0.00 0.00 JB (0.00 174 (0 0.00110 JB (0.00 0.00247 JB (0.00 63.9 (0.00 63.9 (0.00 7.46 (0.00 7.46 (0.00
	PARAMETER	E160.1 - Residue, Filterable (TDS) (mg/L) Total dissolved solids	E300 - Anions (mg/L) Chloride Sulfate	E353.1 - Nitrate-Nitrite (mg/L) Nitrate-Nitrite as N	SW6010 - Metals (mg/L) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Malybdenum Compiled: 16 March 1995

	2232323	[1]		[1]
008 09-MW-04	JB (0.00990) (0.370) J (0.0420) JB (0.00490) (0.0400) JB (0.0170) JB (0.00240)	(0.000657)	B (0.00110) B (0.0000480)	JB (0.00144)
	-0.00483 4.40 -0.00313 -0.000140 30.8 -0.00493 -0.000450	0.0118	0.00260	
	2222222	[1]		[1]
008 09-MW-03 09-MW-03-03	(0.00990) (0.370) (0.0420) (0.00490) (0.0400) (0.00240) (0.00150)	(0.000657)	(0.00110)	(0.00144)
0	0.000910 JB 4.24 -0.00899 J -0.000590 JB 69.4 -0.0159 JB -0.00346 JB	0.0101	0.00340 B	-0.00250 JB
		Ξ	[1]	[2]
SITE ID LOCATION ID SAMPLE ID 008 09-MW-02	JB (0.00990) (0.370) J (0.0420) JB (0.00490) (0.0400) JB (0.00240) (0.00150)	(0.000650)	B (0.00110)	(0.00288)
	-0.00414 3.90 -0.00920 -0.00930 13.5 -0.0227 -0.00127	0.0110	0.00650	0.00448 S
	3223232	[1]	[1]	[1]
008 09-MW-01 09-MW-01-03	JB (0.00990) (0.370) J (0.0420) JB (0.00490) (0.0400) JB (0.0170) (0.00150)	(0.000650)	(0.00110)	(0.00144)
	0.00436 3.86 -0.000200 18.0 0.0149 J	0.0143	0.00460 B	0.00625 \$
PARAMETER	SW6010 - Metals, cont. (mg/L) Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	SW7060 - Arsenic (mg/L) Arsenic SW7421 - Lead (mg/L)	SW7470 - Mercury (mg/L)	SW7740 - Selenium (mg/L) Selenium

Compiled: 16 March 1995

() = Detection Limit [] = Dilution Factor

ND = Not Detected

NA = Not Applicable

R = Invalid Result, Refer to QC Report

						SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID										
PARAMETER		60	008 09-MW-05 09-MW-05-03			0 W-60 MW-60	008 - 008 - 009 -			-60	008 09-MW-15 09-MW-15-01	-01			0 10-M 10-MW	008 10-MW-01 10-MW-01-03	
E160.1 - Residue, Filterable (TDS) (mg/L) Total dissolved solids 562	(mg/L)	 	(10.0)	Ξ	NA	 			581			8.67)	[3]	654		10.0)	[1]
E160.2 - Residue, Non-Filterable Total suspended solids	(mg/L) NA				NA				17.3		_	7.90)	[1]	NA			
E300 - Anions (mg/L) Chloride Sulfate	43.4		(0.200) (0.0600)	[10]	N NA				19.9 7.66		0	0.0400)	[2]	14.2		0.0400)	[2] [1]
E353.1 - Nitrate-Nitrite (mg/L) Nitrate-Nitrite as N	ON		(0.0100)	[1]	NA				ON		0	0.0100)	Ξ	ND	J	0.0100)	[1]
SW6010 - Metals (mg/L) Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead	0.0107 0.0102 0.00872 0.462 -0.000620 0.000820 0.000850 0.00169 0.00169 0.00169	36 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	(0.0280) (0.0240) (0.00230) (0.000530) (0.00170) (0.00170) (0.00250) (0.00380) (0.00600) (0.00600)	2222222222	0.0315 -0.0190 0.00628 0.0929 0.000510 0.00113 46.2 -0.00139 -0.00369 0.0359 -0.0175		0.0280) 0.0240) 0.0230) 0.000530) 0.000550) 0.00170) 0.00250) 0.00250) 0.00380) 0.00380)	======================================	-0.0109 -0.0240 0.0172 0.437 -0.000820 0.00235 0.000700 0.00522 -0.000360			0.0284) 0.0241) 0.0225) 0.000530) 0.00054) 0.00172) 0.148) 0.00249) 0.00381) 0.00596)	2222222222	0.0108 -0.00589 -0.0104 0.605 0.0000100 0.000750 165 0.000780 0.000780	3 80 C C C C C C C C C C C C C C C C C C	0.0280) 0.0240) 0.0230) 0.000530) 0.00170) 0.150) 0.00250) 0.00380) 0.00600)	2222222222
ed: 16 March 1995	() = Detection Limit	tion		= Dilution	on Factor	N = ON	Not Detected		= Not Applicable	cable	∝	= Invalid	Result	= Invalid Result, Refer to QC Report	OC Re		A8-23

Compiled: 16 March 1995

() = Detection Limit. [] = Dilution Factor

ND = Not Detected

R = Invalid Result, Refer to QC Report NA = Not Applicable

						S.	SITE 10 LOCATION ID SAMPLE 10										
PARAMETER		008 10-MW-02 10-MW-02-03	18 1-02 02-03			10-1	008 10-MW-03 10-MW-03-03			10-1	008 10-MW-04 10-MW-04-01			12- 12-M	005 12-MW-01 12-MW-01-03	m	
E160.1 - Residue, Filterable (TDS) Total dissolved solids	s) (mg/L) NA				NA				624		8.67)	[1]	NA	!	; ; ; ; ; ;	1 1 1 1 1 1 1	!
E160.2 - Residue, Non-Filterable Total suspended solids	(mg/L) NA				NA				49.2		(06.2	[1]	NA				
E300 - Anions (mg/L) Chloride Sulfate	N A				N N N				18.4		(0.100) (0.0600)	[5]	NA				
E353.1 - Nitrate-Nitrite (mg/L) Nitrate-Nitrite as N	N				NA				ON		(0.0100)	[1]	NA				
SW6010 - Metals (mg/!)																	
	0.00938 0.0165	JB (JB (0.0280)	ΞΞ	0.0152	38 38	(0.0280) (0.0240)	ΞΞ	0.0303	8 9 8	(0.0284)	[1]	0.00715	JB (0.0	0.0280)	ΞΞ
Arsenic Barium	0.0504		0.0230)	ΞΞ	-0.00344	ſ	(0.0230)	ΞΞ	0.0177	J.	(0.0225)	[]	-0.00369	, c	0.0230)		ΞΞ
Beryllium	-0.000370	JB (0	0.000550)	ΞΞ	0.000250	ЭВ В	(0.000550)		0.00000000	38	(0.000554)	ΞΞ	-0.000110) JB	0.000550)		ΞΞ
Cadmium	0.00182	 	0.00170)	ΞΞ	0.00143	JB	(0.00170)	ΞΞ	-0.00179	98	(0.00172)	ΞΞ	0.000890	JB (0.00170)		Ξ
Chromium	0.00284	 B	0.00250)	ΞΞ	0.00168	JB	(0.00250)	ΞΞ	0.000960	粤	(0.00249)	ΞΞ	0.00156	(B	0.130)		ΞΞ
Cobalt	0.00347) 8	0.00340)	Ξ	0.00608		(0.00340)		0.00462	80	0.00340)	Ξ	-0.000490	JB (0.00340)		Ξ
Copper	0.00372	JB (0.00380)	Ξ	0.00225	SB B	(0.00380)		-0.000880	野	(0.00381)	Ξ	0.00268) BC	0.00380)		[1]
Iron	107	_ 、	0.00600)	Ξ3	42.5		(009000)	Ξ3	46.4		0.00596)	Ξ	0.0914) . В	0.00600)		Ξ
Lead	0.0420	_	0.0270)	Ξ	0.0151	J.	(0.0270)		0.0175	ر 	0.0270)	Ξ	0.0129	<u> </u>	0.0	0.0270)	Ξ
Compiled: 16 March 1995	() = Detection Limit	ion Lim		Dilution	n Factor	= QN	Not Detected	NA =	≈ Not Applicable	cable	R = Inval	id Resu	= Invalid Result, Refer to QC Report	9 QC R	eport	48-25	۲.

	222222222	[1]	[1]
005 12-MW-01 12-MW-01-03	(0.0230) (0.000390) JB (0.00460) JB (0.00990) (0.370) JB (0.00420) (0.0420) JB (0.00490) (0.0400) JB (0.00240) B (0.00150)	JB (0.000650)	JB (0.0000480)
	30.1 0.105 -0.00252 -0.0145 2.79 -0.0121 5.97 -0.0129 -0.00245	-0.000500	0.00
	222222222	[1]	[1]
008 10-MW-04 10-MW-04-01	(0.0228) (0.00395) JB (0.00463) JB (0.00287) J (0.0417) JB (0.00492) (0.0397) JB (0.00236) B (0.00153)	(0.000657)	JB (0.0000480) (0.000843)
	30.1 7.96 -0.00313 -0.00249 3.78 0.0304 -0.00723 20.7 0.000610 0.00359	0.0181	-0.0000500
	222222222	3 3	[1]
SITE ID LOCATION ID SAMPLE ID 008 10-MW-03	(0.0030) (0.000390) 3 (0.00460) 3 (0.00990) (0.370) (0.0420) 3 (0.00490) 3 (0.00490) 6 (0.00490) 7 (0.00190) 8 (0.00240) 9 (0.00150)	(0.000650)	(0.0000480)
	26.3 6.83 0.00224 JB 0.00 JB 3.76 -0.00857 J -0.000320 JB 19.6 -0.0125 JB	0.0147 0.00 JB	0.0000400 JB
	222222222	E	[1]
008 10-МW-02 10-МW-02-03	(0.0230) (0.000390) (0.00460) (0.00990) (0.0420) (0.00400) (0.00400) (0.00240) (0.00240) (0.00240)	(0.000650)	(0.0000480)
10	28.2 8.00 10860 JB 10206 JB 4.63 0251 J 10185 JB 24.0 10524 JB 10780 JB	22 40 B	30 JB
	0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	0.0422	-0.0000700 JB
PARAMETER	SW6010 - Metals, cont. (mg/L) Magnesium Manganese Molybdenum Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc	SW7060 - Arsenic (mg/L) Arsenic SW7421 - Lead (mg/L) Lead	SW7470 - Mercury (mg/L) Mercury SW7740 - Selenium (mg/L) Selenium
PAR	SW6010 Magnes Mangan Molybd Nickel Potass' Seleni Silver Sodium Thalliu	SW7060 - Arsenic SW7421 - Lead	SW7470 - Mercury SW7740 - Selenium

Compiled: 16 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable R = Invalid Result, Refer to QC Report

LOCATION ID SAMPLE ID SITE 1D

12-MW-02-DS-03 Dup of 12-MW-02-03 12-MW-02 005 12-MW-02-03 12-MW-02 002

SW6010 - Metals (mg/L)

PARAMETER

2222222 Ξ Ξ ΞΞ **EEEE** 0.150)0.370)0.0240) 0.002500.003400.00380) 0.00600) 0.0270) 0.0230) 0.0003900.004600.009900.0420) 0.004900.0400) 0.0170) 0.002400.02300.001700.001500.000530) 0.000550 В 蚂 贸 8 ЭВ 99 8 8 号 8 ЭB В 0.0110-0.000240 -0.0009300.0241 0.255 0.000150 0.00203 26.9 0.0555 -0.000230 2.50 -0.0238 -0.0005300.00269 4.53 0.00110 0.0377 0.00761 -0.00268-0.0133-0.001230.370)0.0230) 0.00340) 0.0270) 0.00000 0.0420) 0.0280) 0.0240)0.000530) 0.000550) 0.00170)0.1500.002500.00380) 0.00600) 0.0230) 0.000390) 0.00460) 0.00490) 0.0400)0.0170)0.00240) 0.00150ЭВ ЭВ ЗВ 3B 哥 JB 0.0908 0.00314 -0.0005300.000530 0.0199-0.0661-0.0224-0.000100-0.000620 146 0.000620 26.8 -0.00242 4.52 -0.003890.00933 0.0749 -0.00736-0.002440.00222 0.259 Molybdenum Manganese Beryllium Magnesium Potassium Aluminum Aluminum Antimony Chromium Selenium [hallium /anadium Cachmium Calcium Cobalt Silver Barium Sodium Copper Nickel Lead Iron

R = Invalid Result, Refer to QC Report NA = Not Applicable = Not Detected 9 [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

SITE ID	CATION ID	AMPLE ID
SIT	LOCAT	SAMP

005	12-MW-02	12-MW-02-DS-03 Dup of	12-MW-02-03
005	12-MW-02	12-MW-02-03	

PARAMETER

		-		1	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1
SW7060 - Arsenic (mg/L) Arsenic	-0.00130	38	-0.00130 JB (0.000650) [1] -0.00110 JB (0.000650)	Ξ	-0.00110	JB	(0.000650)	[1]
SW7421 - Lead (mg/L) Lead	0.0511		(0.00110) [1] 0.00850	[1]	0.00850		(0.00110)	[1]
SW7470 - Mercury (mg/L) Mercury	0.0000200	JB	0.0000200 JB (0.0000480)	[1]	0.0000300	. ab	[1] 0.0000300 JB (0.0000480)	[1]
SW7740 - Selenium (mg/L) Selenium	0.00570	SF	0.00570 SF (0.00288) [2] 0.00426 SF (0.00288) [2]	[2]	0.00426	SF	(0.00288)	[2]

					BEG.	SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)							
		001 01-SB-03)1 3-03			0 01-S	001 01-SB-03		01-3	001 01-SB-03			001 01-SB-03	က	
		01-58-03-01	-03-01		01-	3B-03-D 01-SB	01-SB-03-DS-01 Dup of 01-SB-03-01	L	· 01-Sf	01-SB-03-02		0	01-SB-03-03	-03	
PARAMETER		- 0	- 2			2.5	- 4.5		2.5	- 4.5		:	5 - 7		:
Diesel Range Organics (mg/kg)	0.00	JB (20.0)	[1]	00.0	JB (20.0)	Ξ	1.00 JB (20.0)	[1]	0.00 JB	_ 	20.0)	Ξ
Gasoline Range Organics (mg/kg) Gasoline Range Organics	00.00	JB (10.0)	[1]	0.00	JB (10.0)	[1]	0.00	10.0)	[1]	0.00 JB	<u> </u>	10.0)	Ξ
Percent Solid (percent) Percent moisture	99.66	_	0.00)	Ξ	14.3	J	0.00)	Ξ	13.9	0.00)	[1]	13.5	_	0.00)	Ξ
SW8240 - Volatile Organics (ug/kg)															
1,1,1-Trichloroethane	1.50		7.00)	Ξ	8.20	<u> </u>	7.00)	三	0.600 J	6.00)		4.10 J		6.00)	Ξ
1,1,2,2-Tetrachloroethane	2		7.00)	Ξ:	2		7.00)	Ξ	ON !	6.00)	Ξ	2		6.00)	Ξ
1,1,2-Trichloroethane	Q :	<u> </u>	7.00)	Ξ	2	٠ ،	7.00)	Ξ) N	6.00)	Ξ			6.00)	Ξ3
1,1-Dichloroethane	S S		7.00)	ΞΞ	1.90	_ `	7.00)	ΞΞ	Q G	6.00)	ΞΞ	1.50 J		6.00)	<u> </u>
1,1-Dichloroethene 1,2-Dichloroethane	S 8		7.00)	ΞΞ	Q Q	- -	7.00)	ΞΞ	ON ON	6.00)	ΞΞ	2 S		6.00)	ΞΞ
1,2-Dichloropropane	Q	_	7.00)	Ξ	QN	<u> </u>	7.00)	Ξ) ON	6.00)	[1]	QN	_	6.00)	[1]
2-Butanone(MEK)	N	_	40.0)	Ξ	QN .	_	40.0)	Ξ) GN	30.0)	[1]	ON	_	30.0)	[1]
2-Chloroethyl vinyl ether	Q	_	7.00)	Ξ	QN	\	7.00)	Ξ) ON	6.00)	[1]	Q.	J	6.00)	Ξ
2-Hexanone	QN	_	40.0)	Ξ	QN	_	40.0)	Ξ) QN	30.0)	Ξ	Q	_	30.0)	Ξ
4-Methyl-2-pentanone(MIBK)	2	_	40.0)	Ξ	QN	_	40.0)	Ξ) QN	30.0)	Ξ	3.70 J	_	30.0)	Ξ
Acetone	Q	_	100)	Ξ	QN	_	100)	Ξ) QN	100)	Ξ	5.50 JB	_	100)	Ξ
Benzene ,	N N	_	7.00)	Ξ	0.900	J (7.00)	Ξ) QN	(00'9	Ξ	0.900	_	(00'9	[1]
Bromodichloromethane	Q	_	7.00)	Ξ	QN	_	7.00)	Ξ	ON ON	(00'9	Ξ	Q.	_	(00'9	Ξ
Bromomethane	Q	_	7.00)	[1]	QN	_	7.00)	Ξ) ON	6.00)	[]	Q	_	(00.9	Ξ
Compiled: 17 March 1995 ()	= Detection Limit	ion Lim		= Dilution Factor	Factor	N = ON	= Not Detected	d NA	= Not Applicable	R = Inval	id Result,	= Invalid Result, Refer to QC Report	C Repor	نبا	

					BEG. DEP	SITE ID LOCATION ID SAMPLE ID TH - END DE	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)								
		001	11			001				001				001		
		01-58-03	1-03			01-58-03	03			01-SB-03	.03			01-SB-03	03	
		01-SB-03-01	03-01		01-SB-	03-DS-	01-SB-03-DS-01 Dup of			01-58-03-02	3-05			01-SB-03-03	3~03	
PARAMETER 		- 0	2			01-SB-03-01 2.5 - 4.5	3-01 4.5			2.5 -	4.5			5	7	
SW8240 - Volatile Organics, cont.	(ug/kg)			1] 	 		 	; ; ; ;	 	!			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Carbon disulfide	QN	_	10.0)	[1]	9	_	10.0)	Ξ	QN	_	10.0)	[1]	Q	_	10.0)	Ξ
Carbon tetrachloride	Q	_	7.00)	[1]	QN	_	7.00)	[1]	QN		(00.9] [S	<i>-</i> _	(00.9	ΞΞ
Chlorobenzene	S	_	7.00)	Ξ	QN	_	7.00)	[1]	QN	_	(00.9	Ξ	QN		(00.9	ΞΞ
Chloroethane	QN	_	7.00)	[]	S	_	7.00)	Ξ	R		(00.9		Q	<i>-</i>	(00.9	ΞΞ
Chloroform	ON	_	7.00)	[1]	N S	_	7.00)	[1]	Q	_	(00.9	[1]	QN	ـ ـ	6.00)	ΞΞ
Chloromethane	ON	_	7.00)	Ξ	N	_	7.00)	[1]	QN	_	(00.9		QN	<i>.</i> _	(00.9	ΞΞ
Dibromochloromethane	ON.	_	7.00)	[1]	N	_	7.00)	[1]	QN	_	(00.9	[]	QN	. <u> </u>	6.00)	ΞΞ
Ethylbenzene	Q	J	7.00)	[1]	QN	_	7.00)	[1]	ON	_	(00.9	Ξ	QN		(00.9	[]
Methylene chloride	ON	_	7.00)	Ξ	QN	_	7.00)	· <u>=</u>	9	J	6.00)	[1]	QN	_	(00.9	
Styrene	QN	_	7.00)	Ξ	QN	_	7.00)	[1]	QN	_	6.00)	[1]	N	_	(00.9	Ξ
Tetrachloroethene	QN		7.00)	Ξ	Q	_	7.00)	[1]	ND	_	6.00)	[1]	QN	<u> </u>	6.00)	[1]
Toluene	QN	_	7.00)	[]	QN	_	7.00)	Ξ	Q.	_	6.00)	[1]	Q.	_	(00.9	[1]
Tribromomethane(Bromoform)	8	_	7.00)	Ξ	QN	_	7.00)		N	_	6.00)	[1]	QN	_	6.00)	Ξ
rich oroethene	2	_	7.00)	[1]	QN	_	7.00)	Ξ	2	_	6.00)	[1]	2	_	6.00)	Ξ
Vinyl acetate	2	_	70.0)	[1]	ON	_	70.0)	Ξ	Q	_	(0.09	[1]	9	_	(0.09	Ξ
Vinyl chloride	2	_	7.00)	Ξ	9	_	7.00)	Ξ	R	_	(00.9	Ξ	QN	_	6.00)	Ξ
cis-1,2-Dichloroethene	S		7.00)	Ξ	QN	_	7.00)	Ξ	ON	_	6.00)	[1]	QN	_	(00.9	Ξ
cis-1,3-Dichloropropene	9	_	7.00)	Ξ	Q.	_	7.00)		N S	_	(00.9	[1]	S	_	(00.9	[1]
m & p-Xylene	Q	_	30.0)	Ξ	2	_	30.0)	Ξ	QN	_	20.0)	[1]	8	_	20.0)	Ξ
o-Xylene	S	_	10.0)	Ξ	2	_	10.0)	[1]	ON	J	10.0)	[1]	QN Q	_	10.0)	[1]
trans-1,2-Dichloroethene	Q	_	7.00)	Ξ	N N	_	7.00)	[1]	QN	Ų	6.00)	[1]	QN	_	(00.9	
trans-1,3-Dichloropropene	QN	_	7.00)	[1]	S	_	7.00)	Ξ	ND	_	6.00)	[1]	ND	_	6.00)	ΞΞ
SW8310 - Polynuclear Aromatic Hydrocarbons	ocarbons ((ug/kg)														

() = Detection Limit

Compiled: 17 March 1995

[] = Dilution Factor

ND = Not Detected

R = Invalid Result, Refer to QC Report NA = Not Applicable

		01-01-3	001 01-58-03 01-58-03-01		BEG. DEPT 01-SB-0	SITE ID LOCATION ID SAMPLE ID PTH - END DE 001 01-SB-03 01-SB-03	SITE ID LOCATION ID SAMPLE ID SEG. DEPTH - END DEPTH (FT.) 001 01-SB-03 01-SB-03-01 01-SB-03-01	(H.)		01-01-	001 · 01-58-03 01-58-03-02	02			010	001 01-SB-03 01-SB-03-03	03	
PARAMETER		-	0 - 2		, OJ	2.5 - 4.5				2.	2.5 - 4.5	z,				5 - 7		
SW8310 - Polynuclear Aromatic Hydrocarbons, cont.	rocarbons,	cont	. (ug/kg)	i ! !	 		(6 00	[2]		! ! ! !	,	7 00	[6]	100	1 1 1			[
Acenaphthylene	118	ت	(164)	[2]	<u> </u>	_ ر	173)	[2]	2 2			30.7) 174)	[2]	QN ND			30.2) 173)	<u> </u>
Anthracene	QN	-	(50.2)		ND	_	53.2)	[2]	S		_	53.5)	[2]	ON O		_	53.2)	[2]
Benzo(a)anthracene	QN		(1.50)		0.257 J	_	1.60)	[5]	0.563	٦	_	1.60)	[5]	0.470	ŗ	_	1.60)	[2]
Benzo(a)pyrene	0.674	JB	(4.58)		1.01 JB	_	4.86)	[2]	0.191	JB	J	4.88)	[5]	3.46	ЭВ	_	4.86)	[2]
Benzo(b)fluoranthene	0.739	7	(7.20)		2.22	_	7.63)	[2]	4.54	ŋ	_	7.67)	[2]	4.70	7	_	7.63)	[2]
Benzo(g,h,i)perylene	1.15	ŋ	(13.1)	[2]	3.57 J	J	13.9)	[2]	9.31	C	J	14.0)	[2]	9.10	ŗ	_	13.9)	[2]
Benzo(k)fluoranthene	0.575	JB	(1.44)		0.937 JB	J	1.53)	[2]	0.751	JB	_	1.53)	[2]	0.858	3B	_	1.53)	[2]
Chrysene	S.	-	(26.2)		ND	_	27.7)	[5]	Q		_	27.9)	[2]	NO.		_	27.7)	[2]
Dibenz(a,h)anthracene	QN		(3.49)		0.635 JB	_	3.70)	[2]	0.649	JB	_	3.72)	[5]	2.42	JB	_	3.70)	[2]
Fluoranthene	ON	-	(45.8)		QN	J	48.6)	[5]	Q		_	48.8)	[5]	S		_	48.6)	[2]
Fluorene	ON	-	(12.4)		ND	_	13.2)	[2]	2		J	13.3)	[5]	S		_	13.2)	[2]
Indeno(1,2,3-cd)pyrene	16.1	8	(4.80)		24.9 B	J	5.09)	[5]	26.5	82	_	5.12)	[5]	28.3	8	J	5.09)	[2]
Naphthalene	S	-	(393)	[2]	QN	J	416)	[5]	Q		J	419)	[2]	QN		_	416)	[2]
Phenanthrene	132	8	(91.6)		313 B	_	97.1)	[2]	211	В	J	97.7)	[2]	211	80	_	97.1)	[2]
Pyrene	N	•	(54.5)		ND	_	57.8)	[2]	QN		_	58.1)	[2]	N		_	57.8)	[2]

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

				BEG. [SITI LOCAT SAMPI	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)								4
PARAMETER 	001 01-SB-03 01-SB-03- 7.5 - 9.	001 01-SB-03 01-SB-03-04 7.5 - 9.5			001 01-58-04 01-58-04-01 0 - 2	1 -04 34-01 2			001 01-SB-04 01-SB-04-02 2.5 - 4.5	1 -04 04-02 4.5		Ü	001 01-SB-04 01-SB-04-03 5 - 7	4 -03	
Diesel Range Organics (mg/kg) Diesel Range Organics	0.00 JB (20.0)	[1]	1.00	JB (20.0)	[1]	1.00	JB (20.0)	[1]	1.00 JB) (20.0)	[1]
Gasoline Range Organics (mg/kg) Gasoline Range Organics	0.00	10.0)	[1]	0.00	JB (10.0)	[1]	0.00) BC	10.0)	[1]	0.00	_	10.0)	[:]
Percent Solid (percent) Percent moisture	24.2 (0.00)	[1]	14.3	J	0.00)	[1]	20.9	<u> </u>	0.00)	[1]	17.0	J	0.00)	[1]
SW8240 - Volatile Organics (ug/kg)	(4)														
1,1,1-Trichloroethane) QN	6.00)	[1]	1.10		5.00)	[1]	4.70	,	7 00 3	[1]	1 07 6	_	(00)	Ξ
1,1,2,2-Tetrachloroethane) ON	6.00)	[1]	N		5.00)	Ξ	QN		7.00)	ΞΞ			6.00)	E E
1,1,2-Trichloroethane) ON	6.00)	[1]	QN	_	5.00)		QN	. <u> </u>	7.00)	ΞΞ	2	<i>-</i> _	(00.0	ΞΞ
1,1-Dichloroethane) QN	6.00)	[1]	Q	_	5.00)	[1]	1.60	· _	7.00)	ΞΞ	0.900 J	<i>-</i> _	6.00)	ΞΞ
1,1-Dichloroethene) QN	6.00)	[1]	QN	_	5.00)	[1]	QN	_	7.00)			· _	6.00)	ΞΞ
1,2-Dichloroethane) ON	6.00)	[1]	QN	_	5.00)	[1]	QN	_	7.00)	ΞΞ	Q.	. <u> </u>	6.00)	[]
1,2-Dichloropropane	ON :	6.00)	[1]	QN	_	5.00)	[1]	QN	_	7.00)		QN		(00.9	ΞΞ
2-butanone(MEK) 2-Chlonoothul vinul othou	ON S	40.0)	ΞΞ	2		30.0)	[1]		В (40.0)	Ξ	9.70 JB	J	30.0)	[1]
2-Heyanone	QV \$	6.00)	ΞΞ	2 9	<u> </u>	5.00)	ΞΞ	QN :	<u> </u>	7.00)	Ξ	ON	_	6.00)	Ξ
4-Methyl-2-pentanone(MIRK)) ON	40.07	ΞΞ	2 5	_ <	30.0)	ΞΞ	Q :	_ 、	40.0)	Ξ:	QN	_	30.0)	[1]
Acetone	4.70 JB (1001] [. H	30.0)	ΞΞ	030	_ <	40.0)	ΞΞ		<u> </u>	30.0)	Ξ3
Benzene		(00.9	E E) H	5 00)	ΞΞ		- -	100)	ΞΞ	39.0 JB	_ 、	100)	ΞΞ
Bromodichloromethane) QN	(00'9	ΞΞ			5.00)	ΞΞ		- -	(00.7	ΞΞ	0.000	_ <	00.00	[1]
Bromomethane) ON	(00.9	[[S		5.00)	ΞΞ	2 S		7 00)	35	2 8		6.00)	ΞΞ
Carbon disulfide) ON	10.0)	[1]	Q	, <u> </u>	10.0)	ΞΞ	Q.	, _	10.0)	ΞΞ	Q Q	<i>-</i> _	6.00) 10.0)	ΞΞ
Compiled: 17 March 1995	() = ()= ()= (;m;+		0.1			-		,							
	() – תפופכוומו רו	=	= Ullution Factor		NU = Not	= Not Detected	N = N	Not Applicable	able R	11	d Result,	Invalid Result, Refer to QC Report	3 Report		

						SITE ID	ID									
						SAMPLE ID	E ID									
					BEG. D	EPTH - E	BEG. DEPTH - END DEPTH (FT.)	FT.)								
		001				001				001				001		
		01-58-03				01-SB-04	04		·	01-SB-04	04			01-SB-04	04	
PARAMETER		01-58-03-04 7.5 - 9.5	5. 24			01-58-04-01 0 - 2	4-01 2			01-SB-04-02 2.5 - 4.5	14-02 4.5			01-SB-04-03 5 - 7	14-03 7	
	1 1 1 1 1 1		1	1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
SW8240 - Volatile Organics, cont.	(ug/k				ė											
Carbon tetrachloride	Q	_	(00.9	Ξ	S	_	5.00)	[1]	Q	_	7.00)	[]	2	_	6.00)	Ξ
Chlorobenzene	QN N	_	6.00)	Ξ	9	_	5.00)	Ξ	QN	_	7.00)	Ξ	Q	_	6.00)	Ξ
Chloroethane .	ON	_	6.00)	Ξ	S	_	5.00)	Ξ	ND	_	7.00)	Ξ	R	J	6.00)	[]
Chloroform	QN	_	(00'9	[1]	QN	<u> </u>	5.00)	[]	ON	_	7.00)	[1]	2	J	(00'9	[1]
Chloromethane	QN	_	6.00)	Ξ	S	<u> </u>	5.00)	Ξ	QN	_	7.00)	Ξ	9	J	(00.9	Ξ
Dibromochloromethane	QN	_	(00.9	Ξ	S	_	5.00)	Ξ	ON	_	7.00)	Ξ	2	J	(00'9	Ξ
Ethylbenzene	ON	_	(00'9	Ξ	ON.	_	5.00)	Ξ	QN	_	7.00)	[1]	Q	J	6.00)	Ξ
Methylene chloride	QN	_	6.00)	Ξ	S	_	5.00)	[1]	QN	_	7.00)	Ξ	9	J	6.00)	Ξ
Styrene	ON.	_	6.00)	[1]	Q	_	5.00)	[1]	QN	_	7.00)	Ξ	용	_	(00'9	Ξ
Tetrachloroethene	QN	_	6.00)	[1]	Q	_	5.00)	[1]	QN	_	7.00)	[1]	9	J	6.00)	Ξ
Toluene	ON	_	(00'9	[1]	S	_	5.00)	[1]	ON	_	7.00)	[1]	Q	_	6.00)	Ξ
Tribromomethane(Bromoform)	ON	_	6.00)	[1]	ON	_	5.00)	Ξ	ON	_	7.00)	Ξ	S	_	6.00)	Ξ
Trichloroethene	QN	<u> </u>	6.00)	Ξ	SN	_	5.00)	[1]	QN	_	7.00)	[1]	2	_	(00'9	Ξ
Vinyl acetate	QN	_	(0.09	[1]	QN	_	50.0)	[1]	ON	_	70.0)	[1]	2	_	(0.09	Ξ
Vinyl chloride	ON	_	(00.9	[1]	ON	J	5.00)	[]	QN	_	7.00)	Ξ	9	_	6.00)	[1]
Xylene (total)	NA				QN	Ų	20.0)	[1]	QN	_	30.0)	[1]	Q	_	20.0)	Ξ
cis-1,2-Dichloroethene	ON	_	(00.9	Ξ	S	_	5.00)	Ξ	QN	_	7.00)	Ξ	2	_	6.00)	Ξ
cis-1,3-Dichloropropene	QN	_	(00'9	Ξ	S	_	5.00)	Ξ	QN	_	7.00)	Ξ	2	_	6.00)	Ξ
m & p-Xylene	QN	_	20.0)	[1]	S	<u> </u>	20.0)	Ξ	ON	_	30.0)	Ξ	Q	_	20.0)	Ξ
o-Xylene	ON	_	10.0)	[1]	QN	_	10.0)		QN	_	10.0)	[1]	2	J	10.0)	Ξ
trans-1,2-Dichloroethene	ON	<u> </u>	6.00)	Ξ	8	_	5.00)	[1]	ON	_	7.00)	[1]	S	_	(00.9	Ξ
trans-1,3-Dichloropropene	QN	_	(00.9	Ξ	N	_	5.00)	Ξ	QN	_	7.00)	Ξ	Q	_	6.00)	[1]
SW8310 - Polynuclear Aromatic Hydrocarbons		(ug/kg)														
Acenaphthene	173	J	101)	[2]	8	_	88.2)	[2]	130	J	98.7)	[2]	119		94.0)	[2]
Compiled: 17 March 1995	() = Detect	= Detection Limit	= 0	Dilution	Factor	ND = Not	Not Detected	NA =	Not Applicable		R = Invali	Invalid Result,	Refer to QC Report	QC Repo	rt	

BEG			01-58-03-04	7.5 - 9.5 0 - 2	SW8310 - Polynuclear Aromatic Hydrocarbons, cont. (ug/kg)	(195) [2] ND (J (59.8) [2] ND (J (1.79) [2] 1.43 J (JB (5.46) [2] 2.73 JB (J (8.58) [2] 3.62 J (J (15.6) [2] 0.313 JB (JB ((31.2) [2] 3.98 J (JB (4.16) [2] 3.03 JB ((54.6) [2] ND ((14.8) [2] ND (B (5.72) [2] 14.8 B ((468) [2] ND (В (109) [2] 306 В () ON
PTH (FT.)					1 1 2 3 1 1 1 1 1							(5]								
	001	01-SB-04	01-SB-04-02	2.5 - 4.5		_	_	·)	JB () C) (1.17 JB (1.67)	J	5.28 B (4.05	ND (53.2	ND (14.4	15.6 B (5.57	ND (456	265 B (106)	ND (63.3)
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							(2]								_
	001	01-58-04	01-88-04-03	5 - 7		ND (18	ND (55.		JB (·)	.)	1.00 JB (1.59)	Ų	JB (_	ND (13.7	9	_	173 B (101	
			٠		 	[2]	[2]	[2]	<u> </u>	[2]		[2]	[2]	[2]	[2]	[2]	[2]	[2]	[2]	<u>.</u> 2

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report Compiled: 17 March 1995

				BEG. DEP	SITE ID LOCATION ID SAMPLE ID 1TH - END DE	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH (FT.)	т.)								
	001 01-SB-04 01-SB-04-04	l -04 34-04			005 05-SB-04 05-SB-04-01	4 -01			005 05-SB-04 05-SB-04-02	04 4-02		0	005 05-SB-04 05-SB-04-03)4 1-03	
PARAMETER	7.5 -	9.5			0 - 2				2.5 -	4.5	1		5 - 7		
Diesel Range Organics (mg/kg) Diesel Range Organics	1.00 JB (20.0)	Ξ	5.00 JB	<u> </u>	20.0)	Ξ	46.0 B	_	20.0)	Ξ	1300	_	20.0)	Ξ
Gasoline Range Organics (mg/kg) Gasoline Range Organics	0.00 JB (10.0)	[1]	0.00 JB		10.0)	[1]	0.00	JB (10.0)	Ξ	420	J	10.0)	[20]
Percent Solid (percent) Percent moisture	14.5	0.00)	[:]	2.54	J	0.00)	Ξ	3.52	_	0.00)	Ξ	11.2	J	0.00)	[1]
SW8240 - Volatile Organics (ug/kg)															
1,1,1-Trichloroethane	3.60 J (6.00)	Ξ	Q	_	5.00)	[1]	1.40 J	_	5.00)	Ξ	Q	_	1000)	[10]
1,1,2,2-Tetrachloroethane) QN	6.00)	Ξ	Q	_	5.00)	[1]	QN	_	5.00)	Ξ	Q	_	1000)	[10]
1,1,2-Trichloroethane) QN	(00'9	Ξ	S	_	5.00)	Ξ	QN	_	5.00)	Ξ	QN	_	1000)	[10]
1,1-Dichloroethane	1.20 J ((00'9	[1]	Q	J	5.00)	[1]	QN	_	5.00)	Ξ	ON	_	1000)	[10]
1,1-Dichloroethene) ON	(00.9	Ξ	2	_	5.00)	Ξ	QN	J	5.00)	Ξ	Q.	_	1000)	[10]
1,2-Dichloroethane) ON	(00.9	Ξ	N		2.00)	[1]	Q	_	5.00)	Ξ	Q	_	1000)	[10]
1,2-Dichloropropane		6.00)	Ξ:	2 9	_ 、	5.00)	ΞΞ	2 :	_ 、	5.00)	Ξ3	2 :	_ 、	1000)	[10]
2-Butanone(MEK) 2-Chloroethvl vinvl ether	5.40 JB (ND (30.0)	ΞΞ	2 2		30.0) 5.00)	ΞΞ	2 2		30.0) 5.00)		2 2		6000) 1000)	[10]
2-Hexanone) ON	30.0)	[1]	S		30.0)	ΞΞ	Q		30.0)	ΞΞ	QN		(0009	[10]
4-Methyl-2-pentanone(MIBK)) ON	30.0)	Ξ	Q.	J	30.0)	[1]	R	Ų	30.0)	[1]	Q	_	(0009	[10]
Acetone	23.0 JB (100)	Ξ	4.30 JB	_	100)	Ξ	QN	_	100)	[]	QN	_	22000)	[10]
Benzene) ON	(00'9	Ξ	Q	_	5.00)	Ξ	0.700	_	5.00)	Ξ	1100	_	1000)	[10]
Bromodichloromethane) ON	(00.9	Ξ	Q	_	5.00)	Ξ	Q	_	5.00)	Ξ	QN	J	1000)	[10]
Bromomethane) ON	(00'9	Ξ	ᄝ	_	5.00)	[1]	S	J	5.00)	Ξ	Q	_	1000)	[10]
Carbon disulfide) QN	10.0)	[1]	Q.	_	10.0)	Ξ	Q	_	10.0)	[1]	QN	_	2000)	[10]
Compiled: 17 March 1995	= Detection limit	= =	Dilution	Factor ND		= Not Detected	N N	Not Annlicable	hle R		4 Result	= Invalid Result Refer to OC Renort	C Reno	+	
		3					l)			-	7	24-11	ء - -	

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

						SI.	SITE ID LOCATION ID									
					BEG. D	SAMI EPTH -	SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)								
		ŏ	001			6	005			002	10			005		
		01-58-04	3-04			05-SB-04	3-04		0	05-SB-04	-04			05-SB-04	-04	
DADAMETED		01-SB	4.				-04-01		90	05-SB-04-02)4-02		0	05-58-04-03	14-03	
TANAHIT I EN	1	. 6./	- 9.5	! ! !		0	- 2		2	2.5 -	4.5			5 - 7	7	
SW8240 - Volatile Organics, cont.	:. (ug/kg)						1 1 1 1 1 1 1	! ! ! !	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							1 1 1 1
Carbon tetrachloride	QN	_	(00)	[1]	QN	_	5.00)	Ξ	S	_	5 00)	[1]	CIA	_	(000)	[0.1
Chlorobenzene	QN	_	6.00)	Ξ	QN	۔ ۔	5.00)	ΞΞ	2 8		5 00)	ΞΞ	Z V		1000)	[10]
Chloroethane	QN	_	(00.9	Ξ	QN		5.00)	ΞΞ	ON.	۔ ۔	5.00)	ΞΞ	G K		1000)	[10]
Chloroform	QN	_	6.00)	Ξ	ON	_	5.00)		N		5.00)	ΞΞ	2 2		1000)	[10]
Chloromethane	ND	_	(00.9	[1]	Q	_	5.00)	[1]	ON	_	5.00)	[1]	Q.	<i>-</i>	1000)	[10]
Ulbromochloromethane	QN	_	6.00)	Ξ	Q	_	5.00)	Ξ	, ON	_	5.00)	[1]	QN ON		1000)	[10]
Ethylbenzene	QN :		6.00)	[]	0.700	_	5.00)	[1]	QN	_	5.00)	Ξ	10000		1000)	[10]
Methylene chloride	QN :		6.00)	[1]	QN	_	5.00)	Ξ	QN	_	5.00)	[1]	R		1000)	[10]
ofyrene	QN	_	6.00)	[1]	N	_	5.00)	[1]	QN	_	5.00)	[1]	S		1000)	[10]
etrach oroethene al.oro	9 :	_ 、	6.00)	Ξ	N N	_	5.00)	[1]	QN	_	5.00)	[1]	QN	_	1000)	[10]
Tribromomethero(Bromeform)	ON S	_ 、	6.00)	[]	Q		5.00)	Ξ	0.600 J	_	5.00)	[1]	33000	_	1000)	[10]
Trichloroathono	2 4	_ 、	6.00)	ΞΞ	9 :		5.00)	[1]	ND	_	5.00)	[1]	Q.	_	1000)	[10]
Vincl scatsta	Q 9	_ 、	6.00)	Ξ3	Q		5.00)	Ξ	QN	_	5.00)	[1]	Q	_	1000)	[10]
Vinyl acetate	QN N	_ 、	60.0)	[]	Q		50.0)	Ξ	ND	_	50.0)	[1]	QN	_	11000)	[10]
	מא :		6.00)		9	_	5.00)	Ξ	QN	_	5.00)	[1]	ND	_	1000)	[10]
Aylene (total)	Q :	_ 、	20.0)	Ξ	NA				NA				NA			1
cis-1,2-Dichloroethene	ON S	٠ ,	6.00)	Ξ	2	_	5.00)	[1]	ON	_	5.00)	[1]	QN	_	1000)	[10]
cis-1,3-biciloropropere	ON S		6.00)	ΞΞ	2	_	5.00)	[1]	QN	_	5.00)	[1]	ON	_	1000)	[10]
m a p-yy lene	ON !	_ 、	20.0)	Ξ:	1.60 J	_	20.0)	[1]	QN	_	20.0)	Ξ	110000	_	3000)	[10]
thing 1 2 Distinguished	Q :	_ 、	10.0)	Ξ	0.900	_	10.0)	[1]	ND	_	10.0)	Ξ	57000	_	2000)	[10]
Lrans-1,2-Ulchloroethene	ON	_	(00.9		2	_	5.00)	Ξ	ON	_	5.00)	[1]	QN	_	1000)	[10]
trans-1,3-Dichloropropene	Q	_	6.00)	[1]	QN	_	5.00)	[]	NO	_	5.00)		ND		1000)	[10]
rganics	(mg/kg)															
1,2,4-Trichlorobenzene	NA				N	_	0.0202)	[1]	ND	_	0.0204)	[1]	QN	Ū	0.0656)	[1]
Compiled: 17 March 1995	() = Detection Limit	on Lim		= Dilution Fa	actor ND	н	Not Detected	N = N	= Not Applicable	2	= Invalid	Result.	= Invalid Result. Refer to OC Renort	Reno	+	
							1		.				,	1	2	

A9-8

Compiled: 17 March 1995

			SITE ID LOCATION ID SAMPLE ID	0.0								
		BEG	BEG. DEPTH - END DEPTH (FT.)	ЕРТН (F	Ţ.							
	001		002				005			005	LC)	
	01-SB-04		05-58-04			05-	05-SB-04			05-SR-04	-04	
	01-SB-04-04	.04	05-58-04-01			05-8	05-SB-04-02		0	05-SB-04-03	04-03	
PARAMETER 	7.5 - 9.5	5	0 - 2			2.5	2.5 - 4.5		•	ָ ֓ ֡ ֡ ֡	7	
SW8270 - Semivolatile Organics, cont.	cont. (mg/kg)		1		!			[]] 1		1 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4-Nitrophenol		CN	(0 0 036)	36)	[1]	UN	100000	ניי	4	,	(1010	:
Acenaphthene	NA	QN ON			35		0.0238)		Q. V		0.0/6/)	Ī
Acenaphthylene	NA	ON	· _		[1]		0.0103)	ΞΞ	S S		0.0531)	[]
Anthracene	NA	QN				0.0290	0.0201)	ΞΞ	2 5		0.0631)	ΞΞ
Benzo(a)anthracene	NA	0.0297			Ī	0.0362	0.0178)	ΞΞ	0 0391		0.0043)	[2]
Benzo(a)pyrene	NA	0.0362	_			0.0380	0.0132)	Ξ			0.0372)	ΞΞ
Benzo(b)fluoranthene	NA	0.0601	·) ч		Ξ	0.0362 F (0.0196)	[]	0.0253 FJ		0.0632)	ΞΞ
Benzo(g,h,i)perylene	NA	0.0275	(0.0166)		Ξ	0.0352 (0.0168)	ΞΞ			0.0541)	ΞΞ
Benzo(k)fluoranthene	NA	0.0601	F (0.0331	_	[1]	0.0362 F (0.0334)	ΞΞ	0.0253 FJ	<i>-</i> _	0.108)	ΞΞ
Benzoic acid	NA	ON	(0.135)		[1]	0.179 (0.137)	[1]		<i>-</i>	0.440)	ΞΞ
Benzyl alcohol	NA	ON	(0.0369)	_	[1]) ON	0.0373)		Q	<i>-</i>	0.120)	ΞΞ
Butylbenzylphthalate	NA	ON	(0.0134)	_	[2]	0.0119 J	0.0136)	ΞΞ	QN N	<i>-</i>	0.0436)	35
Chrysene	NA	0.0362	(0.0228)	_	[1]	0.0459 (0.0231)	Ξ	0.0498		0.0743)	3
Di-n-butylphthalate	NA	ON	(0.0168	_		0.00804 J (0.0170)	ΞΞ	QN		0.0548)	ΞΞ
Di-n-octylphthalate	NA	0.00519	J (0.0311)	_) ON	0.0314)	[1]	0.0167 J		0.101)	
Dibenz(a,h)anthracene	NA	0.0270	(0.0162)		[1]	0.0217 (0.0164)	[1]	ND	. :_	0.0526)	
Ulbenzoturan	NA	QN	_		[1]) ON	0.0141)	[1]	0.0980	_	0.0453)	ΞΞ
Dietny/phtha/ate	NA	QN	<u> </u>	_	1]) QN	0.0116)	[1]	QN	_	0.0373)	Ξ
Uimethy phthalate	NA	QN	(0.00956)		<u> </u>) ON	0.00966)	[1]	QN		0.0311)	
Oiphenylamine/N-NitrosoDPA	NA	ON	(0.0193)		[1]) QN	0.0195)	[1]	QN		0.0629)	Ξ
Fluoranthene	NA	0.0427	(0.0218)	_	[1]	0.0683 (0.0220)	Ξ	0.165	_	0.0709)	Ξ
Fluorene	NA	ON	(0.0115)		[1]) QN	0.0116)	[1]	QN	· _	0.0373)	ΞΞ
Hexachlorobenzene	NA	ON	(0.00799)		Ξ) ON	0.00808)		QN	. <u> </u>	0.0260)	ΞΞ
Hexachlorobutadiene	NA	ON	(0.0238)	_	[1]) ON	0.0241)	[1]	QN		0.0775)	ΞΞ
Hexachlorocyclopentadiene	NA	ON	(0.305)	_]]) ON	0.308)	[1]	NO		0.991)	ΞΞ
Compiled: 17 March 1995	() = Detection Limit	[] = Dilution Factor	ND = Not Detected		NA = No	Not Applicable	R = Invalie	Result	Invalid Result. Refer to OC Report	Reno	+	
						:		:		12):		•

					S	SITE ID									
					SA	SAMPLE ID									
				BEG.	DEPTH	DEPTH ~ END DEPTH (FT.)	(FT.)								
	001					005			J	005			002		
	01-58-04				-50	05-58-04			05-5	05-SB-04			05-58-04	.04	
	01-SB-04-04	-04			05-S	05-SB-04-01			05-SE	05-SB-04-02		J	05-SB-04-03	14-03	
PARAMETER	7.5 - 9	9.5			0	0 - 2			2.5 -	- 4.5			5	7	
SW8270 - Semivolatile Organics, cont.	. (mg/kg)		! ! !	 		1 1 1 1 1 1 1 1 1 1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Hexachloroethane				QN	_	0.0203)	[1]	QN	_	0.0205)	Ξ	QN	_	0.0660)	Ξ
Indeno(1,2,3-cd)pyrene	NA			0.0251	_	0.0179)	[1]	0.0285	_	0.0181)	Ξ	QN	_	0.0583)	Ξ
Isophorone	NA			QN	_	0.00980)	Ξ	QN	_	0.00000)	Ξ	QN	_	0.0319)	[]
N-Nitroso-di~n-propylamine	NA			ON	_	0.0256)	[1]	QN	_	0.0259)	[1]	QN	_	0.0834)	Ξ
Naphthalene	NA			Q	_	0.0249)	Ξ	0.0119	<u> </u>	0.0252)	Ξ	11.6	_	0.0810)	Ξ
Nitrobenzene	NA			9	_	0.0180)	Ξ	S	_	0.0182)	Ξ	QN	_	0.0586)	Ξ
Pentachlorophenol	NA			9	_	0.0295)	[1]	ON	_	0.0298)	Ξ	QN	_	0.0960)	Ξ
Phenanthrene	NA			0.0184	<u> </u>	0.0212)	Ξ	0.0480	_	0.0215)	Ξ	0.382	_	0.0691)	[1]
Phenol	NA			Q	<u> </u>	0.0136)	[1]	QN	_	0.0138)	Ξ	QN	_	0.0443)	[1]
Pyrene	NA			0.0451	_	0.0160)	Ξ	0.0663	_	0.0162)	Ξ	0.141	_	0.0520)	\Box
bis(2-Chloroethoxy)methane	NA			R	_	0.0192)	[1]	QN	<u> </u>	0.0194)	Ξ	QV	_	0.0624)	[1]
bis(2-Chloroethyl)ether	NA			QN	_	0.0250)	[1]	ON	_	0.0253)	Ξ	QN	_	0.0813)	[1]
bis(2-Chloroisopropyl)ether	NA			P	_	0.0248)	Ξ	QN	_	0.0251)	[1]	Q.	_	0.0806)	Ξ
bis(2-Ethylhexyl)phthalate	NA			8	_	0.0625)	Ξ	0.0711	_	0.0632)	[1]	0.0811 J	_ '	0.203)	Ξ
SW8310 - Polynuclear Aromatic Hydrocarbons	arbons (ug/kg)														
Acenaphthene	144 ((9.68	[2]	NA				NA				NA			
Acenaphthylene) ON	172)	[2]	NA				NA				NA			
Anthracene) ON	52.8)	[2]	NA				NA				NA			
Benzo(a)anthracene) ON	1.58)	[2]	NA				NA				NA			
Benzo(a)pyrene	3.04 JB (4.82)	[2]	NA				NA	,			NA			
Benzo(b)fluoranthene	3.96 J (7.58)	[2]	NA				NA				NA			
Benzo(g,h,i)perylene		13.8)	[2]	NA				NA				NA			
Benzo(k)fluoranthene	1.03 JB (1.52)	[2]	NA				NA				NA			
Chrysene) ON	27.6)	[2]	N				NA				NA			
Compiled: 17 March 1995 () =	= Detection Limit	= 0	= Dilution	on Factor	= Q	Not Detected	NA =	Not Applicable	able	R = Inval	= Invalid Result,	t, Refer to QC Report	C Repo	ort AS	:

	005 05-SB-04 05-SB-04-03 5 - 7	N N N N N N N N N N N N N N N N N N N
	005 05-SB-04 05-SB-04-02 2.5 - 4.5	N N N N N N N N N N N N N N N N N N N
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	005 05-SB-04 05-SB-04-01 0 - 2	N N N N N N N N N N N N N N N N N N N
	001 01-58-04 01-58-04-04 7.5 - 9.5	SWB310 - Polynuclear Aromatic Hydrocarbons, cont. (ug/kg) Dibenz(a,h)anthracene 4.79 8 (3.67) [2] Fluoranthene ND (48.2) [2] Fluorene ND (13.1) [2] Indeno(1,2,3-cd)pyrene ND (413) [2] Naphthalene ND (413) [2] Phenanthrene 247 B (96.4) [2] Pyrene ND (57.4) [2]
	PARAMETER 	SW8310 - Polynuclear Aromatic Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report Compiled: 17 March 1995

					BEG. DI	SIT LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)								
	J	005 05-SB-04 05-SB-04-04	.04 14-04			005 05-SB-05 05-SB-05-01	5 -05 05-01			005 05-SB-05 05-SB-05-02	05 5-02		05-51	005 05-SB-05 3-05-DS-02	005 05-88-05 05-88-05-DS Dup of	
PARAMETER		7.5 -	9.5			0	2			4	ပ			05-SB-05-02 6 - 8	15-02 8	
Diesel Range Organics (mg/kg)	2600		20.0)		1.00	JB (20.0)	[3]	70.0 B		20.0)	[1]	50.0	8	20.0)	[1]
Gasoline Range Organics (mg/kg) Gasoline Range Organics	5800	J	10.0)	[250]	10.0		10.0)	[1]	13.0	J	10.0)	[1]	20.0	_	10.0)	[1]
Percent Solid (percent) Percent moisture	19.1	J	0.00)	[:]	2.96	<u> </u>	0.00)	[1]	25.5	<u> </u>	0.00)	[1]	26.8	J	0.00)	Ξ
SW8240 - Volatile Organics (ug/kg)		,	(000		ğ	`	6	Ξ	9		,	3	Š	~		3
1,1,1-Iricnloroetnane 1,1,2,2-Tetrachloroethane	2 2		(0009	[50]	2 2		5.00)	ΞΞ	2 2		100)	ΞΞ	2 2		6.00)	ΞΞ
1,1,2-Trichloroethane	QN		(0009	[20]	Q		5.00)	ΞΞ	Q		100)	ΞΞ	2		(00.9	ΞΞ
1,1-Dichloroethane	ON	_	(0009	[20]	Q	_	5.00)	Ξ	QN	_	100)	[1]	ON	_	6.00)	[1]
1,1-Dichloroethene	Q	_ 、	(0009)	[50]	QN S		5.00)	ΞΞ	2 9		100)	Ξ3	2 9		6.00)	ΞΞ
1,2-Dichloroethane 1.2-Dichloropropane	2 2		(0009 (0009	[50]	2 2		5.00) 5.00)	ΞΞ	2 Q		100)	ΞΞ	ND 4.30	 	6.00)	ΞΞ
2-Butanone(MEK)	Q.		39000)	[20]	QN		30.0)	Ξ	490 JB	ر ھ	700)	ΞΞ		JB (40.0)	ΞΞ
2-Chloroethyl vinyl ether	QN	_	(0009	[20]	Q	_	5.00)	Ξ	QN	_	100)	[1]	ON	J	(00'9	[:]
2-Hexanone	QN	_	33000)	[20]	9	_	30.0)	Ξ	S	_	700)	Ξ	ON	_	40.0)	[]
4-Methyl-2-pentanone(MIBK)	QN	_	39000)	[20]	8	J	30.0)	[]	QN	_	700)	Ξ	150	_	40.0)	Ξ
Acetone	QN		130000)	[20]	Q		100)	Ξ	550		3000)	Ξ) BC	100)	[:]
Benzene ·	340000	_	(0009	[20]	7.10	_	5.00)	Ξ	160	U	100)	Ξ	42.0	_	(00.9	Ξ
Bromodichloromethane	ON	_	(0009	[20]	Q	_	5.00)	Ξ	Q	_	100)	Ξ	3.20)	6.00)	Ξ
Bromomethane	ND	_	(0009	[20]	S S	_	5.00)	Ξ	ON	_	100)	Ξ	Q	_	(00'9	[1]
Compiled: 17 March 1995 (() = Detection Limit	ın Limi		= Dilution	Factor	ON = ON	= Not Detected	NA =	= Not Applicable	ble R		d Result,	= Invalid Result, Refer to QC Report	QC Repo	rt	

005 05-SB-05 05-SB-05 05-SB-05-02 4 - 6 (100) [1] (10	005 05-S8-05 05-S8-05 05-S8-05-02 4 - 6 (100) [1] (10	005 05-SB-05 05-SB-05-02 05-SB-05-02 4 - 6 (100) [1] ND ((100) [1] ND
(00) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(00) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	(00) (1] (00) (1] (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
33.33	33.33	33.33
	005-88-0 05-88	005 05-SB-05 5-SB-05-02 Dup of 05-SB-05-02 6 - 8 (6.00) (6.00)

SW8270 - Semivolatile Organics (mg/kg)

Compiled: 17 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

R = Invalid Result, Refer to QC Report NA = Not Applicable

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

					SITE ID LOCATION ID SAMPLE ID) ID ID									
				BEG. DEP	DEPTH - END DEPTH (FT.)	ОЕРТН (F	T.)								
	J	900			900				002				002		
	05-5	05-SB-04			05-88-05			0	05-SB-05	2			05-SB-05	35	
	05-SE	05-58-04-04		0	05-SB-05-01	11		05	05-SB-05-02	-02		05-58-	-05-DS-02 D 05-SB-05-02	05-SB-05-DS-02 Dup of 05-SB-05-02	
PARAMETER	7.5	- 9.5			0 - 2				4 - 6			•	3 - 9	80	
SW8270 - Semivolatile Organics, cont.	(mg/kg)			 		! ! ! !	1 1		1		i !			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1,2,4-Trichlorobenzene) ON	0.614)	Ξ	QV	0.0	0.0202)	[1]	QN	0	0.0264)	Ξ	QN	_	0.0267)	Ξ
1,2-Dichlorobenzene) ON	0.809)	Ξ	S	0.0	0.0266)	[1]	S	0	0.0347)	[1]	QN	_	0.0351)	Ξ
1,3-Dichlorobenzene) ON	0.411)	Ξ	Ñ).0	0.0135)	[1]	QN	0	0.0177)	Ξ	QN	_	0.0179)	[1]
1,4-Dichlorobenzene) QN	0.839)	Ξ	2).0	0.0276)	[1]	ND	0	0.0360)	Ξ	QN	_	0.0365)	[1]
2,4,5-Trichlorophenol) QN	0.343)	Ξ	Q	0.0	0.0113)	Ξ	N	0)	0.0147)	Ξ	QN	_	0.0149)	[1]
2,4,6-Trichlorophenol) ON	0.363)	Ξ	ON	0.0	0.0119)	[1]	Q	0	0.0156)	Ξ	QN	_	0.0157)	[1]
2,4-Dichlorophenol) ON	0.460)	Ξ	ON	(0.0	0.0152)	[1]	Q	0	0.0198)	Ξ	ON	_	0.0200)	[1]
2,4-Dimethylphenol) ON	1.14)	Ξ	S	(0.0	0.0376)	[1]	QN	0	0.0491)	Ξ	ON	_	0.0496)	Ξ
2,4-Dinitrophenol) ON	7.27)	Ξ	S	.0	0.239)	[1]	Q	_	0.312)	Ξ	ND	_	0.316)	Ξ
2,4-Dinitrotoluene) ON	0.571)	Ξ	Q	0.0	0.0188)	Ξ	QN	0	0.0245)	Ξ	S	_	0.0248)	[]
2,6-Dinitrotoluene) QN	0.359)	Ξ	Q).0	0.0118)	[]	Q	0	0.0154)	Ξ	QN	_	0.0156)	Ξ
2-Chloronaphthalene) ON	0.337)	Ξ	2	(0.0	0.0111)	[1]	Q.	0	0.0145)	Ξ	ON	_	0.0146)	[1]
2-Chlorophenol) ON	0.794)	\Box	2).0	0.0261)	[1]	ON	0	0.0341)	[1]	QN	_	0.0345)	[1]
2-Methylnaphthalene	20.0	0.686)	Ξ	QN	0.0	0.0226)	[1]	0.0130 J	0	0.0294)	Ξ	0.0124 J	_	0.0298)	[1]
2-Methylphenol (o-cresol)) ON	0.555)	Ξ	2).0	0.0183)	[1]	Q	0	0.0238)	Ξ	Q	_	0.0241)	Ξ
2-Nitroaniline) ON	0.418)	Ξ	2	(0.0	0.0137)	[1]	Q	0	0.0179)	[1]	QN	_	0.0181)	Ξ
2-Nitrophenol) ON	0.457)	Ξ	QN).0	0.0150)	[1]	N	0	0.0196)	[1]	QN	<u> </u>	0.0199)	[1]
3,3'-Dichlorobenzidine) QN	0.509)	Ξ	2).	0.0168)	[1]	QN	0	0.0219)	Ξ	QN	_	0.0221)	ΞÌ
3-Nitroaniline) ON	0.529)	Ξ	QN	0.0	0.0174)	Ξ	QN	0	0.0227)	Ξ	Q	_	0.0230)	Ξ
4,6-Dinitro-2-methylphenol) ON	0.823)	Ξ	S	0.0	0.0271)	[1]	Q	0	0.0353)	Ξ	QN	_	0.0357)	Ξ
4-Bromophenyl phenyl ether) ON	0.474)	[1]	Q	0.0	0.0156)	[1]	Q	0	0.0203)	[]	ON	_	0.0206)	[1]
4-Chloro-3-methylphenol) ON	0.751)	Ξ	S	0.0	0.0247)	[1]	QN	0	0.0323)	Ξ	QN	_	0.0326)	[1]
4-Chloroaniline) ON	0.581)	Ξ	2).0	0.0191)	Ξ	QN	0	0.0249)	Ξ	Q	_	0.0252)	[1]
4-Chlorophenyl phenyl ether) - QN	0.548)	[1]	Q).0	0.0181)	Ξ	QN	0	0.0236)	[1]	Q	_	0.0238)	[]
Compiled: 17 March 1995 () =	= Detection Limit	mit [] =	Dilution F	Factor ND		Not Detected	NA = No	Not Applicable	∞	= Invalid	Invalid Result,	Refer to QC Report	C Repor	٠	

A9-15

PARAMETER SW8270 - Semivolatile Organics, cont. 4-Methylphenol(p-cresol) 4-Nitrophenol Acenaphthene Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	 /kg	005 05-SB-04 05-SB-04-04 7.5 - 9.5 (0.5 (0.7 (0.6 (0.5 (0.5 (0.5 (0.5 (0.5 (0.5	0.4 4-04 9.5 0.597) 0.718) 0.497) 0.235) 0.604) 0.535)	2222222	I	005 05-SB-05 05-SB-05-01 0 - 2 (0.01 (0.02 (0.007 (0.007 (0.007 (0.007 (0.007 (0.007	005 05-S8-05 05-S8-05-01 0 - 2 (0.0165) [1] (0.0163) [1] (0.0163) [1] (0.0073) [1] (0.0073) [1] (0.0199) [1] (0.0199) [1]	2222222	ON O	005 05-SB-05 05-SB-05-02 4 - 6 (0.0256) (0.0213) (0.0213) (0.0101) (0.0230) (0.0230)	56) 116) 08) 113) 01) 159) 17)	1	ND N	005-SB-05-DS	0.05 0.02 Dup of 8 8 0.0259) 0.0218) 0.0216) 0.0216) 0.0102) 0.0262)	2222222
Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzoic acid Benzyl alcohol Butylbenzylphthalate Chrysene Di-n-octylphthalate Dibenz(a,h)anthracene Dibenzofuran Diethylphthalate Dibenzofuran Fluoranthene Fluorene			0.591) 0.506) 1.01) 4.11) 1.12) 0.408) 0.695) 0.946) 0.946) 0.424) 0.349) 0.291) 0.588)	======================================			0.0195) 0.0167) 0.0331) 0.135) 0.0369) 0.0134) 0.0229) 0.0162) 0.0162) 0.0162) 0.0140) 0.0115)	:=====================================	0 . 0923	(0.0254) (0.0217) (0.0432) (0.177) (0.0175) (0.0228) (0.0220) (0.0220) (0.0220) (0.0182) (0.0150) (0.0155)			0.0135 FJ ND		0.0257) 0.0220) 0.0437) 0.179) 0.0487) 0.0177) 0.0302) 0.0221) 0.0214) 0.0214) 0.0152) 0.0152)	

Compiled: 17 March 1995

() = Detection Limit

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

		ΞΞ	ΞΞ	[1]	Ξ	Ξ	Ξ	[1]	[1]	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ
005 05-SB-05 05-SB-05-02 Dup of 05-SB-05-02	80	0.0106)	0.402)	0.0268)	0.0237)	0.0129)	0.0339)	0.0329)	0.0238)	0.0330)	0.0281)	0.0180)	0.0211)	0.0254)	0.0330)	0.0328)	0.0826)
005 05-S8-05 3-05-05-02 0	- 9			_	_	_	Ų) r	_	_	JB (_	ر د	_	_	_	_
05-88		O S	2 2	2	2	2	QN	0.0152	Q	8	0.0155	ON	0.0120	ON	QN	S	NO
	! ! !		ΞΞ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ
)5 }-05 -05-02	9	0.0104)	0.398)	0.0265)	0.0234)	0.0128)	0.0335)	0.0325)	0.0236)	0.0385)	0.0277)	0.0178)	0.0209)	0.0251)	0.0327)	0.0324)	0.0816)
005 05-SB-05 05-SB-05-05	4 -			_	_	_	_	_	_	J	_	J	_	_	_	_	<u> </u>
		O S	8 8	Q.	Q	S	2	9	Q	S	Q	S	QN	QN	R	Q	0.0390
(FT.)	1 1 1	<u> </u>	ΞΞ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT. 005 05-SB-05 05-SB-05	- 2	0.00800)	0.305)	0.0203)	0.0180)	0.00982)	0.0257)	0.0249)	0.0181)	0.0295)	0.0213)	0.0136)	0.0160)	0.0192)	0.0250)	0.0248)	0.0626)
SI LOCA SAM)EPTH - 0 05-S	0			_	_	_	_	<u> </u>	_	_	_	_	_	_	_	_	_
BEG. [1	2 2	2 8	9	9	R	2	S	QN	Q	R	₽.	Q	운	9	Q	ON
		ΞΞ	ΞΞ	[1]	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	[1]
.04 .04	9.5	0.243)	9.27)	0.617)	0.545)	0.298)	0.780)	0.757)	0.548)	0.897)	0.646)	0.414)	0.486)	0.584)	0.760)	0.754)	1.90)
005 05-SB-04 05-SB-04-04	7.5 - 9.5		<i>-</i> –	_	_	_	_	_	_	_	_	_	_	J	J	_	<u> </u>
		. (mg/kg) ND	2 2	ON	2	2	ջ	14.9	Q	Q	0.359 J	Q	Q	S	Q	Q.	0.485 J
·	PARAMETER	SW8270 - Semivolatile Organics, cont. Hexachlorobenzene	nexachlorobutaulene Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	5	Đ	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate
	PARA	SW827 Hexa	Hexa	Hexa	Inde	Isop	N-N	Naph	Nitr	Pent	Phen	Phenol	Pyrene	bis(bis(bis(bis(

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

					BEG. DEP	SITE ID LOCATION ID SAMPLE ID TH - END DE	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)								
PARAMETER	05-0 05-1	005 05-SB-05 05-SB-05-03 10 - 12			0	005 05-SB-05 05-SB-05-04 14 - 16	15 1-04 6			005 05-SB-06 05-SB-06-01 0 - 2	06 6-01 2		C	005 05-SB-06 05-SB-06-02 4 - 6	.6 -02	
Diesel Range Organics (mg/kg) Diesel Range Organics	2.00 JB	(20.0)	0) [1]		8.00 JB)	20.0)	[1]	190		20.0)	[1]	29.0 B		20.0)	[1]
Gasoline Range Organics (mg/kg) Gasoline Range Organics	1.00 J	(0.01)	0) [1]		3.00)	•	10.0)	[1]	0.00	JB (10.0)		3.00 J	<u> </u>	10.0)	[1]
Percent Solid (percent) Percent moisture	21.1	00.00)	0) [1]	_	26.1	<u> </u>	00.00)	[1]	96'6	_	0.00)	[1]	19.1	J	0.00)	[1]
SW8240 - Volatile Organics (ug/kg)																
1,1,1-Trichloroethane) QN	5.00)	0) [1]		ON	_	8.00)	Ξ	QN	J	6.00)		QN	_	100)	[1]
1,1,2,2-Tetrachloroethane) ON	5.00)		_	QN	_	8.00)	Ξ	QN		(00.9	ΞΞ	Q.		100)	ΞΞ
1,1,2-Trichloroethane) ON	5.00)			Q.	_	8.00)	Ξ	QN	_	(00.9	[1]	S	. <u> </u>	100)	ΞΞ
1,1-Dichloroethane) QN	5.00)			QN	_	8.00)	[1]	Q	_	(00.9	Ξ	Q	_	100)	ΞΞ
1,1-Dichloroethene) QN	5.00)			ND	J	8.00)	[1]	NO	_	(00.9	Ξ	Q.	<i>.</i> _	100)	ΞΞ
1,2-Dichloroethane) ON	5.00)			QN	J	8.00)	[1]	QN	_	(00.9	Ξ	QN		100)	
1,2-Dichloropropane		5.00)	0) [1]		Q	_	8.00)	Ξ	ON	_	6.00)	[1]	ON		100)	
2-Butanone(MEK)	2.00 JB (30.			NO	_	50.0)	[1]	QN	_	30.0)	Ξ	290 JB	_	(009	[1]
2-Chloroethyl vinyl ether) ON	5.00)			ON	_	8.00)	[1]	S	Ų	6.00)	[1]	QN QN	_	100)	[1]
2-Hexanone) QN	30.			QN	Ų	50.0)	[1]	2	_	30.0)	Ξ	ON	_	(009	
4-Methyl-2-pentanone(MIBK)		30.0)			Q	J	50.0)	[1]	QN	_	30.0)	[1]	QN	_	(009	
Acetone	9.80 JB (100)			130	_	200)	Ξ	Q.	_	100)	[1]	ON	_	2000)	ΞΞ
Benzene	4.10 J (5.00)			13.0	_	8.00)	Ξ	N	_	6.00)	[1]	QN		100)	Ξ
Bromodichloromethane) QN	5.0			ON	_	8.00)	[1]	NO NO	_	6.00)	[1]	R		100)	ΞΞ
Bromomethane) ON	5.0(QN	J	8.00)	[1]	QN	_	(00.9	[1]	2		100)	ΞΞ
Carbon disulfide) ON	10.0)	0) [1]		QN	_	20.0)	[1]	Q	_	10.0)	[1]	Q		200)	[]

Compiled: 17 March 1995

[] = Dilution Factor ND = Not Detected NA = Not Applicable () = Detection Limit

R = Invalid Result, Refer to QC Report

			!	ΞΞ	[]	ΞΞ	ΞΞ	ΞΞ	Ξ	Ξ	ΞΞ	Ξ	ΞΞ	ΞΞ	ΞΞ			[1]	Ξ	Ξ		Ξ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	[1]
	005 05-SB-06 05-R-06-02	3-35-00-02 4 - 6		(0.0163)	(0.0352)	(0.0143)	(0.0182)	(0.0452)	(0.288)	(0.0226)	(0.0142)	(0.0133)	(0.0314)	(0.0271)	(0.0220)	(0.0165)	(0.0181)	(0.0201)	(0.0209)	(0.0326)	(0.0187)	(0.0297)	(0.0230)	(0.0217)	(0.0236)	(0,0199)	(0.0284)
	c	•		2 9	2 8	QN	QN	QN	QN	QN	QN	QN	QN	0.0444	ND	ND	ON	ON	ND	QN N	QN	ON	ND	QN	QN	QN	ND
			1 7 1 1	ΞΞ	ΞΞ	ΞΞ	[1]	Ξ	Ξ	[]	Ξ	[]	[1]	Ξ	[1]	[1]	[1]	[1]	[1]	[1]	[]	[1]	[1]	Ξ	[1]	Ξ	ΞΞ
	005 05-SB-06 05-SR-06-01	- 2		0.0146)	0.0122)	0.0129)	0.0164)	0.0406)	0.259)	0.0203)	0.0128)	0.0120)	0.0282)	0.0244)	0.0197)	0.0149)	0.0163)	0.0181)	0.0188)	0.0293)	0.0168)	0.0267)	0.0207)	0.0195)	0.0212)	0.0179)	0.0255)
	05-30			ON ON) QN) ON) ON) ON) ON) ON) QN) QN) 0	1 J () 0) 0) 0) 0) 0	_) 0) 0)) ()	0	0
			1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	z 2	z	Z	z	Z	Z	Z	Z	Z	ON	0.0211	ON	QN	QN	QN	QN	SN.	QN	ON	QN	QN	QN	ON	ON
н (FT.)				3 5		[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[]	[1]	[1]	Ξ	Ξ	Ξ	[1]	Ξ	[1]	[1]	Ξ	[1]
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	005 05-SB-05 05-SB-05-04	- 16		0.01/0)	0.0149)	0.0157)	0.0199)	0.0495)	0.315)	0.0248)	0.0156)	0.0146)	0.0344)	0.0297)	0.0240)	0.0181)	0.0198)	0.0221)	0.0229)	0.0357)	0.0205)	0.0326)	0.0252)	0.0238)	0.0259)	0.0218)	0.0311)
	05- 05-S	14) ON) ON) Q) ON) ON) ON) ON) QN) ON	<u> </u>) 0	<u> </u>) 0) 0)	<u> </u>) ()) ()))	0
BEG.				2 2	Z	Z	Z	Z	Z	Z	Z	Z	Z	QN	ON	ON	QN	ON	QN	2	QN	QN	ON .	QN	ON	ON	QN
			[]	ΞĘ		[1]		[1]	Ξ	[1]	[1]	[]	Ξ	[1]	[]	[]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[1]
	005 05-SB-05 05-SB-05-03	- 12	(7910 0	0.0341)	0.0139)	0.0147)	0.0187)	0.0464)	0.295)	0.0232)	0.0146)	0.0137)	0.0322)	0.0278)	0.0225)	0.0169)	0.0186)	0.0207)	0.0215)	0.0334)	0.0192)	0.0305)	0.0236)	0.0223)	0.0242)	0.0204)	0.0291)
	005 05-SB-05 05-SB-05-	10	'kg)			_	_	_	_	_	_	_	_	_	_	_	_	_		_	<u> </u>	_	_	<u> </u>	<u> </u>	_	_
			t. (mg/kg)	2 9	QN	N	QN	QN N	Q.	S	Q	S	Q.	ON	QN	Q	Q.	S	Q :	2	Q	S	Q	QN Q	QN	2	2
		PARAMETER	SW8270 - Semivolatile Organics, cont.	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol (o-cresol)	2-Nitroaniline	2-Nitrophenol	3,3 -Dichlorobenzidine	3-Nitroaniline	4,6-Uinitro-Z-methyiphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol(p-cresol)	4-Nitroaniline	4-Nitrophenol

NA = Not Applicable R = Invalid Result, Refer to QC Report ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 17 March 1995

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

					113	CITE ID								
					LOCAT	SIL ID								
					SAMF	SAMPLE ID								
				BEG. D	ЕРТН -	DEPTH - END DEPTH (FT.)	(FT.)							
		900			00	005				005			005	
)	05-SB-05			05-88-05	3-05			05-	05-88-06			05-SB-06	
	70	05-SB-05-03			05-SB-	05-SB-05-04			05-8	05-SB-06-01		_	05-SB-06-02	
PARAMETER		10 - 12			14 -	14 - 16			0	- 2			4 - 6	
SW8270 - Semivolatile Organics, cont.	(mg/kg)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	• • • • • • • • • • • • • • • • • • •	1 1 1 1 1 1 1 1 1 1	: : : : :	! ! ! ! ! !	!		1 1 1 1 1 1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Acenaphthene	Q.	(0.0202)	[1]	S	J	0.0215)	[1]	S	_	0.0177)	Ξ	ON	(0.0196)	Ξ
Acenaphthylene	Q	(0.00953)	[1]	S.	U	0.0102)	Ξ	QN	_	0.00835)	Ξ	QN	(0.00929)	Ξ
Anthracene	Q.	(0.0245)	[1]	Q	_	0.0262)	Ξ	ON	_	0.0215)	Ξ	QN	(0.0239)	[1]
Benzo(a)anthracene	Q	(0.0217)	Ξ	8	_	0.0232)	[]	Q	_	0.0190)	Ξ	ON	(0.0212)	Ξ
Benzo(a)pyrene	S	(0.0161)	Ξ	QN	_	0.0172)	Ξ	S	_	0.0142)	Ξ	QN	(0.0157)	Ξ
Benzo(b)fluoranthene	Q	(0.0240)	Ξ	9	_	0.0256)	[1]	0.00824	_ 	0.0210)	[1]	QN	(0.0234)	Ξ
Benzo(g,h,i)perylene	S	(0.0205)	Ξ	S	_	0.0219)	Ξ	Q	_	0.0180)	Ξ	ON	(00.0200)	[]
Benzo(k)fluoranthene	Q.	(0.0408)	Ξ	Ş	J	0.0436)	Ξ	0.00824	_ 	0.0358)	Ξ	QN	(0.0398)	[1]
Benzoic acid	Q	(0.167)	Ξ	0.0355) T	0.178)	[1]	QN	_	0.146)	Ξ	ON	(0.163)	[1]
Benzyl alcohol	Q	(0.0455)	Ξ	S	_	0.0486)	Ξ	QN	_	0.0399)	Ξ	ON	(0.0444)	[1]
Butylbenzylphthalate	QN	(0.0166)	Ξ	S	J	0.0177)	Ξ	QN	_	0.0145)	Ξ	QN	(0.0162)	Ξ
Chrysene	Q	(0.0282)	Ξ	S	<u> </u>	0.0301)	Ξ	QN	_	0.0247)	Ξ	QN	(0.0275)	Ξ
Di-n-butylphthalate	Q	(0.0208)	Ξ	S	_	0.0222)	[]	Q	_	0.0182)	Ξ	S	(0.0203)	Ξ
Di-n-octylphthalate	S	(0.0384)	Ξ	Q.	_	0.0410)	Ξ	Q	_	0.0337)	Ξ	QV	(0.0374)	[1]
Oibenz(a,h)anthracene	Q	(00.000)	Ξ	R	_	0.0213)	Ξ	2	_	0.0175)	Ξ	QN	(0.0195)	[1]
Oibenzofuran	2	(0.0172)	[]	Q	_	0.0184)	Ξ	9	_	0.0151)	Ξ	Q.	(0.0168)	Ξ
Diethylphthalate	S	(0.0142)	Ξ	Q	_	0.0151)	Ξ	2	_	0.0124)	Ξ	QN	(0.0138)	Ξ
Dimethylphthalate	2	(0.0118)	Ξ	S	_	0.0126)	Ξ	2)	0.0103)	Ξ	QN	(0.0115)	Ξ
Diphenylamine/N-NitrosoDPA	QN	(0.0239)	Ξ	S	_	0.0255)	[1]	S	_	0.0209)	Ξ	QN	(0.0233)	Ξ
Fluoranthene	R	(0.0269)	Ξ	S	_	0.0287)		Q	_	0.0236)	Ξ	QN	(0.0262)	[1]
Fluorene	QN	(0.0142)	Ξ	Q	_	0.0151)	[1]	N	_	0.0124)	Ξ	Q	(0.0138)	[1]
Hexachlorobenzene	R	(0.00987)	Ξ	R	_	0.0105)	[1]	Q	_	0.00864)	Ξ	ON	(0.00962)	Ξ
Hexachlorobutadiene	Q.	(0.0294)	Ξ	S	_	0.0314)	[1]	9)	0.0258)	Ξ	QN	(0.0287)	Ξ
Hexachlorocyclopentadiene	2	(0.376)	Ξ	S	٠	0.402)	Ξ	9	_	0.330)	Ξ	QN	(0.367)	[1]
Hexachloroethane	N N	(0.0250)	Ξ	S	_	0.0267)	Ξ	9	_	0.0219)	Ξ	QN	(0.0244)	[1]

0.0231)	8) 2)
0.0	0.0298) (0.0752)
S S	QN QN
ΞΞ	
0208)	0.0268) 0.0676)
_	
O S	QN QN
	ΞΞΞ
0.0253)	0.0327)
운 오	ON ON
= =	333
0.0237) 0.0309)	0.0306)
9	N N
bıs(Z-Chloroethoxy)methane bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate
	ND (0.0237) [1] ND (0.0253) [1] ND (0.0208) [1] ND (

() = Detection Limit [] = Dilution Factor

NA = Not Applicable ND = Not Detected

A9-22

				L BEG. DEPT	SITE 10 LOCATION 1D SAMPLE 1D TH - END DE	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	(FT.)								
	005 05-88-06	005 05-SB-06 05-SR-06-03			005 05-88-06 05-88-06-04	90 -04		c	005 05-SS-16 05-SS-16-01	16			005 05-55-17	17	
PARAMETER	8	- 10		Ď	12 - 14	14		•	0 - 0.5	.5			0 - 0	0.5	
Diesel Range Organics (mg/kg)	16.0 JB (20.0)	[1]	8.00 JB	J	20.0)	[1]	NA				NA		,	1 1 1 1 1
Gasoline Range Organics (mg/kg) Gasoline Range Organics	7.00 J	10.0)	[1]	6.00 J	_	10.0)	[1]	N				N			
Percent Solid (percent) Percent moisture	24.0 (0.00)	[1]	23.4	_	0.00)	[1]	13.0	J	0.00)	[1]	22.4	_	0.00)	[1]
SW8240 - Volatile Organics (ug/kg)	S	100)	Ξ	S	_	(00)	. 5	Q				Ø.			
1,1,2,2-Tetrachloroethane) QN	100)	ΞΞ	2 8	ب ر	6.00)	ΞΞ	NA				N.			
1,1,2-Trichloroethane) ON	100)	Ξ	S	_	(00.9	[1]	NA				NA			
1,1-Dichloroethane) QN	100)	Ξ	R	_	(00'9	Ξ	NA				NA			
1,1-Dichloroethene) ON	100)	Ξ	2	_	6.00)	Ξ	NA				NA			
1,2-Dichloroethane	ON S	100)	ΞΞ	2.30 J		6.00)	ΞΞ	A S				¥ :			
1,2-Dichloropropane 2-Butanone(MEK)	500 JB (100)	[1]	16.0 JB		30.0)	E E	A N				N AN			
2-Chloroethyl vinyl ether) ON	100)	[1]	QN		6.00)	Ξ	NA				NA			
2-Hexanone) QN	(009	Ξ	R	_	30.0)	[1]	NA				NA			
4-Methyl-2-pentanone(MIBK)) QV	(009	Ξ	9.40 J	_	30.0)	Ξ	NA				NA			
Acetone	440 J (3000)	Ξ	91.0	_	100)	Ξ	NA				NA			
Benzene	380 (100)	Ξ	26.0	_	(00'9	Ξ	NA				NA			
Bromodichloromethane) QN	100)	Ξ	Q	_	(00.9	Ξ	NA				NA			
Bromomethane) ON	100)	Ξ	Q	_	(00.9	Ξ	NA				NA			
Carbon disulfide) QN	300)	Ξ	Q	_	10.0)	Ξ	NA				N			
Committed: 17 March 1995	= Detection limit		= Dilution	Factor ND	= Not	= Not Detected	AN AN	NA = Not Annlicable	٩	= Invali	4 Recul+	= Invalid Basult Rafar to Of Banort	Or Ben	ţ	
		3	חומרוחו		101	חבוברובח	:	טר אטטיינשטיינישט		= 111VQ1-	J Result,	צפופו. נס	UC Repo		66 1
														ž	A9-23

						S1T LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID					
					BEG. DEF	- HT	DEPTH - END DEPTH (FT.)	(FT.)				
		ō	005			002	2			005	005	
		05-SB-06	B-06			05-58-06	90-			05-58-16	05-88-17	
PARAMFTER		05-SB-06	05-SB-06-03		0	05-SB-06-04	06-04			05-SS-16-01	05-88-17-01	
י אויעור ו		ν .	10	1		12 - 14	14			0 - 0.5	0 - 0.5	
SW8240 - Volatile Organics, cont.	(ug/kg)					 	; ; ; ; ; ;	; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
Carbon tetrachloride	ON	_	100)	Ξ	QN	_	6.00)		NA		97	
Chlorobenzene	N	_	100)	[1]	N _O		(00.9		N.		ζ. V	
Chloroethane	ON	_	100)	[1]	Q.	_	(00.9		AN		C Z	
Chloroform	QN	_	100)	Ξ	QN	_	(00.9	ΞΞ	N A		(
Chloromethane	Q	_	100)	Ξ	Q.	_	6.00)	Ξ	AN		Z N	
Dibromochloromethane	ON	_	100)	[1]	N	_	6.00)	[1]	NA		N. AN	
Ethylbenzene	650	_	100)	[1]	58.0	_	(00.9	Ξ	NA		AN AN	
Methylene chloride	Q	_	100)	Ξ	QN	_	6.00)	[1]	NA		NA N	
Styrene	QN	_	100)	[1]	QN	_	6.00)	Ξ	NA		NA NA	
Tetrachloroethene	QN	_	100)	[1]	QN	_	6.00)	Ξ	NA		AN	
Toluene	QN	_	100)	Ξ	3.40 J	_	(00.9	Ξ	NA			
Tribromomethane(Bromoform)	QN	_	100)	[1]	QN	_	(00.9	ΞΞ	NA		K N	
Trichloroethene	QN	_	100)	Ξ	QN	_	(00.9	Ξ	NA		V	
Vinyl acetate	QN	_	1000)	Ξ	ON	_	(0.09		Ν		: X	
Vinyl chloride	QN	_	100)	Ξ	QN	_	(00.9	Ξ	NA		, V	
cis-1,2-Dichloroethene	QN	_	100)	[1]	N N	_	6.00)	[1]	NA		NA NA	
cis-1,3-Dichloropropene	QN	_	100)	[1]	QN	_	(00'9	[1]	NA		AN	
m & p-Xylene	1000	_	400)	[1]	1.90	_	20.0)	[1]	AN		NA NA	
o-Xylene	ND	_	300)	[1]	QN	_	10.0)	[1]	NA		NA NA	
trans-1,2-Dichloroethene	QN	_	100)	Ξ	N	_	(00.9	[1]	Ν		ΛΛ	
trans-1,3-Dichloropropene	ND	_	100)	[1]	ND	_	6.00)	ΞΞ	NA		Y. V.	
SW8270 - Semivolatile Organics (mg	(ma/ka)											
	QN S	_	0.0259)	[1]	QN	_	0.0257)	[1]	AN		< M	
1,2-Dichlorobenzene	ND	_	0.0341)	[1]	QN		0.0339)	ΞΞ	ΔN		V. N	
				1				۲٠٦			¥.K	

() = Detection Limit [] = Dilution Factor ND = Not Detected Compiled: 17 March 1995

NA = Not Applicable R = Invalid Result, Refer to QC Report

					1 1				
					SIIE 10				
					LOCATION ID				
					SAMPLE ID				
				BEG. DEF	DEPTH - END DEPTH (FT.)	н (ғт.)			
		005			005			005	005
	05-	05-SB-06			05-SB-06		0	05-SS-16	05-55-17
	05-8	05-SB-06-03		J	05-SB-06-04		05	05-SS-16-01	05-88-17-01
PARAMETER 	8	8 - 10			12 - 14			0 - 0.5	0 - 0.5
SW8270 - Semivolatile Organics, cont.	(mg/kg)		t 	1		!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Acenaphthene) QN	0.0209)	[1]	Q.	(0.0208)	[1]	NA		Ą
Acenaphthylene) QN	0.00989)	[1]	QN	(0.00982)	ΞΞ	NA		
Anthracene) ON	0.0254)	[1]	QN	(0.0253)	Ξ	NA		
Benzo(a)anthracene) ON	0.0225)	Ξ	QN	(0.0224)	[1]	NA		NA NA
Benzo(a)pyrene) Qu	0.0168)	Ξ	0.0183	(0.0166)	[1]	NA		NA
Benzo(b)fluoranthene) QN	0.0249)	[1]	QN	(0.0247)	[1]	NA		NA
Benzo(g,h,i)perylene) ON	0.0213)	[]	QN	(0.0212)	Ξ	NA		NA
ranthene) QN	0.0424)	[:]	ND	(0.0421)	[1]	NA		NA
	0.0311 J (0.173)	Ξ	0.0365 J	(0.172)	Ξ	NA		NA
Benzyl alcohol) ON	0.0473)	[1]	QN	(0.0469)	[1]	NA		NA
Butylbenzylphthalate) ON	0.0172)	[]	QN	(0.0171)	Ξ	NA		NA
Chrysene) QN	0.0293)	Ξ	QN	(0.0291)	Ξ	AN		NA
Di-n-butylphthalate) QN	0.0216)	Ξ	QN	(0.0214)	Ξ	NA		NA
Oi-n-octylphthalate) ON	0.0399)	[1]	QN	(0.0396)	Ξ	NA		NA
Dibenz(a,h)anthracene) QN	0.0207)		ON	(00.0206)		NA		NA
Dibenzofuran .) ON	0.0179)	Ξ	ND	(0.0177)	Ξ	NA		NA
Diethylphthalate) ON	0.0147)	[1]	QN	(0.0146)	[1]	NA		A
Dimethylphthalate) ON	0.0123)	[1]	ON	(0.0122)	Ξ	NA		NA
Diphenylamine/N-NitrosoDPA) ON	0.0248)	[1]	ND	(0.0246)	Ξ	NA		 NA
Fluoranthene) ON	0.0279)	[1]	ON	(0.0277)	Ξ	NA		
Fluorene) ON	0.0147)	[1]	ON	(0.0146)	[1]	NA		N. A.
Hexachlorobenzene) ON	0.0102)	[1]	QN	(0.0102)	Ξ	NA		. A
Hexachlorobutadiene) ON	0.0305)	[]	ON	(0.0303)	[1]	NA		. A
Hexachlorocyclopentadiene) QN	0.390)	Ξ	ND	(0.388)	[1]	NA		: V
Hexachloroethane) ON	0.0260)	[1]	ND	(0.0258)	Ξ	NA		V
			i			! !			

() = Detection Limit [] = Dilution Factor ND = Not Detected

NA = Not Applicable R = Invalid Result, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

TABLE A9

						SII	SITE ID			
					918	LOCAT SAMF	LOCATION ID SAMPLE ID BEG DEDTH GETY	(E3)		
					סבם. חב	E	באט טברוח	(-1-)		
		002				002	5		900	900
		05-SB-06	90			05-SE	90-1		05-SS-16	05-SS-17
	0	05-SB-06-03	6-03		7	75-SB-	05-SB-06-04		05-55-16-01	05-55-17-01
PARAMETER		8 - 10	0			12 -	. 14		0 - 0.5	0 - 0.5
SW8270 - Semivolatile Organics, cont. (mg/kg)	(mg/kg)			! ! ! !			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Indeno(1,2,3-cd)pyrene	Q	_	0.0230)	[1]	QN	_	0.0228)	[1]	NA	NA
Isophorone	R	_	0.0126)	[1]	ND	_	0.0125)	[1]	NA	NA
N-Nitroso-di-n-propylamine	R	J	0.0329)	Ξ	QN	_	0.0326)	Ξ	NA	NA
Naphthalene	QN	_	0.0319)	Ξ	QN	_	0.0317)	[1]	NA	AN
Nitrobenzene	2	_	0.0231)	Ξ	QN	_	0.0230)	Ξ	NA	AA
Pentachlorophenol	Q.	_	0.0378)	Ξ	QN	_	0.0376)	[1]	NA	NA
Phenanthrene	Q	_	0.0272)	Ξ	0.00852 JI	3	0.0270)	[1]	NA	AN
Phenol	QN	_	0.0175)	Ξ	QN	_	0.0173)	Ξ	NA	NA
Pyrene	ND	J	0.0205)	Ξ	QN	<u> </u>	0.0203)	[]	NA	NA
bis(2-Chloroethoxy)methane	Q	_	0.0246)	[1]	QN	_	0.0244)	[1]	NA	NA
bis(2-Chloroethyl)ether	QN	_	0.0320)	Ξ	QN	_	0.0318)	Ξ	NA	NA
bis(2-Chloroisopropyl)ether	Q	J	0.0318)	Ξ	ON	_	0.0316)	Ξ	NA	NA
bis(2-Ethylhexyl)phthalate	NO	_	0.0801)	[1]	ON N	_	0.0796)	[1]	NA	NA

		SITE ID		
		CUCALIUN ID SAMPLE ID		
	1	BEG. DEPTH - END DEPTH (FT.)		
	900	005	005	900
	05-58-18	05-SS-19	05-88-20	05-88-20
	05-SS-18-01	05-SS-19-01	. 05-88-20-01	05-SS-20-DS-01 Dup of
DADAMETER				05-58-20-01
	0 - 0.5	0 - 0.5	0 - 0.5	0 - 0.5
Percent Solid (percent)		1		#
Percent moisture	13.7 (0.00) [1]	19.6 (0.00) [1]	13.5 (0.00) [1]	13.7 (0.00) [1]

	005 05-SS-21	05-SS-21-01 PARAMETER 0 - 0.5	Diesel Range Organics (mg/kg) NA	Gasoline Range Organics (mg/kg) Gasoline Range Organics NA	Percent Solid (percent) Percent moisture 22.4 (0.00) [1]	SW8240 - Volatile Organics (ug/kg)	1,1,1-Trichloroethane NA	1,1,2,2-Tetrachloroethane NA	1,1,2-Trichloroethane NA		1,1-Dichloroethene NA	1,2-Dichloroethane NA	pane		nyl vinyl ether		4-Methyl-2-pentanone(MIBK) NA	NA	NA	Bromodichloromethane NA	Bromomethane	Carbon disulfide NA	Committed 17 March 1005 () = Detection limit [] = Dilution
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	005 05-SS-22	05-SS-22-01 0 - 0.5	W W W W W W W W W W W W W W W W W W W	Ā] (0.00)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		Factor ND = Not Detected
·	-90	06-SE 0	81.0 B (41.0 ([1] 14.5 () ON) ON) ON) QN) ON) QN) QN) QN) QN) QN	ON ON) QN) 0099) ON) QN) QN	NA = Not Applicable
	008 06-SB-03	06-SB-03-01 0 - 2	20.0) [1]	10.0) [1]	0.00) [1]		2000) [20]	2000) [20]	2000) [20]				_						_	_	_	5000) [20]	R = Invalid Result,
	0	90	12000	4900	13.4		QN	ON	ON	QN	QN	QN	QN	QN	QN	ND	QN	ON	22000	ON	QN	Q.	t, Refer to QC Report
	008 06-SB-03	06-58-03-02 4 - 6	(20.0)	(10.0)	(00.00)		(2000)	(2000)	(2000)	(2000)	(5000)	(2000)	(5000)	(11000)	(5000)	(11000)	(11000)	(42000)	(5000)	(5000)	(2000)	(4000)	Report
			[25]	[100]	[1]		[50]	[50]	[50]	[50]	[50]	[50]	[50]	[20]	[50]	[20]	[50]	[50]	[50]	[50]	[50]	[50]	

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

			SITE 1D							
		1	LOCATION ID SAMPLE ID							
			BEG. DEPTH - END DEPTH (FT.)							
		005	005		008			800	ď	
		05-SS-21	05-55-22		06-SB-03			06-SB-03	-03	
	0	05-SS-21-01	05-SS-22-01	Ü	06-SB-03-01			06-SB-03-02	33-02	
PAKAMELER	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 - 0.5	0 - 0.5		0 - 2			4 -	9	
SW8240 - Volatile Organics, cont.	(ug/kg)				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! !		1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Carbon tetrachloride	NA		NA	ND	(20(2000) [20]	QN	_	2000)	[20]
Chlorobenzene	NA		NA	ND	(20(-	2000)	[20]
Chloroethane	NA		NA	ON	(2000)			. <u> </u>	2000)	[20]
Chloroform	NA		NA	ND	(2000)			. <u> </u>	2000)	[50]
Chloromethane	NA		NA	QN	(2000)				2000)	[20]
Dibromochloromethane	NA		NA	ND	(2000)				2000)	[50]
Ethylbenzene	NA		NA	35000	(2000)		51000		2000)	[20]
Methylene chloride	NA		NA	ON	(2000)			_	2000)	[20]
Styrene	NA		NA	ND	(2000)	_	ON [2000)	[50]
etrach oroethene 	۷A		NA	ON	(2000)		QN I	_	2000)	[20]
loluene	V ∶		NA	71000	(2000)		230000	_	2000)	[20]
ribromomethane(Bromoform)	NA		NA	QN	(2000)		ON _	J	2000)	[20]
rich oroethene	NA :		NA	QN	(2000)		ON	_	2000)	[50]
Vinyl acetate	NA:		NA	QN	(24000)		QN	_	21000)	[50]
Vinyl chloride	AA :		NA .	QN	(2000)		ON	_	2000)	[50]
cis-1,2-bichloroethene	AN :		NA	QN	(2000)		QN	_	2000)	[50]
cis-1,3-Uichioropropene	AN :		NA	QN	(2000)		QN	_	2000)	[50]
	NA:		NA	280000	(2000)		160000	_	(0009	[50]
o-Aylene	NA :		NA	140000	(2000)	_	00009	_	4000)	[50]
trans-1,2-Dichloroethene	ΑN		NA	QN	(2000)	_	QN	_	2000)	[50]
trans-1,3-Dichloropropene	NA		NA .	QN	(5000)	0) [20]	ND	_	2000)	[20]
SW8270 - Semivolatile Organics (mg/	(mg/kg)									
1,2,4-Trichlorobenzene	NA		NA	QN	(0.0229)		S	_	0 623)	Ξ
1,2-Dichlorobenzene	NA		NA	QN	(0.0247)	7) [1]			0.673)	ΞΞ

[] = Dilution Factor () = Detection Limit

ND = Not Detected

R = Invalid Result, Refer to QC Report NA = Not Applicable

			SITE ID						
			LOCATION ID						
			SAMPLE ID	í					
		BEG.	DEPIH - END DEPIH (FI.)	·					
	002		900		800			800	
	05-55-21		05-55-22	:-90	06-58-03		90	06-SB-03	
	05-SS-21-01	-	05-58-22-01	15-90	06-58-03-01		-90	06-SB-03-02	
PARAMETER	0 - 0.5		0 - 0.5	0	- 2	•		4 - 6	
SW8270 - Semivolatile Organics, cont.	nt. (mg/kg)	1 T T T T T T T T T T T T T T T T T T T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		! ! ! ! ! !		1	1	
1,3-Dichlorobenzene	NA	NA) ON	0.0279)	[1]	ND	(09.760)	Ξ
1,4-Dichlorobenzene	NA	NA) ON	0.0229)		ON	(0.623)	[1]
2,4,5-Trichlorophenol	NA	NA) QN	0.0198)	Ξ	QN	(0.539)	[1]
2,4,6-Trichlorophenol	NA	NA) ON	0.0197)	Ξ	ON ,	(0.536)	Ξ
2,4-Dichlorophenol	NA	NA) ON	0.0222)	Ξ	QN	(09.00)	Ξ
2,4-Dimethylphenol	NA	NA) QN .	0.0506)	[1]	QN	(1.38)	Ξ
2,4-Dinitrophenol	NA	NA) QN	0.163)	Ξ	ON	(4.43)	Ξ
2,4-Dinitrotoluene	NA	NA) QN	0.0230)	Ξ	QN	(0.626)	[1]
2,6-Dinitrotoluene	NA	NA) ON	0.0335)	[1]	QN	(0.912)	Ξ
2-Chloronaphthalene	NA	NA) QN	0.0153)	Ξ	ND	(0.415)	[]
2-Chlorophenol	NA	NA) QN	0.0247)	[1]	ND	(0.673)	Ξ
2-Methylnaphthalene	NA	NA		0.0440 (0.0142)	Ξ	33.5	(0.386)	[1]
2-Methylphenol (o-cresol)	NA	NA) QN	0.0121)	Ξ	N	(0.328)	[1]
2-Nitroaniline	NA	NA) QN	0.0258)	[1]	N	(0.702)	Ξ
2-Nitrophenol	NA	NA) QN	0.0203)	Ξ	ND	(0.553)	Ξ
3,3'-Dichlorobenzidine	NA	NA) QN	0.0130)	Ξ	ND	(0.353)	[1]
3-Nitroaniline	NA	NA) QN	0.0153)	[1]	QN	(0.416)	[1]
4,6-Dinitro-2-methy]phenol	NA	NA) QN	0.0167)	Ξ	N	(0.456)	[1]
4-Bromophenyl phenyl ether	NA	NA) QN	0.0188)	Ξ	ON	(0.513)	Ξ
4-Chloro-3-methylphenol	NA	NA) ON	0.0201)	Ξ	ON	(0.546)	[1]
4-Chloroaniline	NA	NA) ON	0.0290)	Ξ	3.23	(00.789)	Ξ
4-Chlorophenyl phenyl ether	NA	NA) ON	0.0164)	Ξ	ON	(0.446)	Ξ
4-Methylphenol(p-cresol)	NA	NA) ON	0.0179)	Ξ	ON.	(0.486)	Ξ
4-Nitroaniline	NA	NA) QN	0.0236)	Ξ	QN	(0.642)	Ξ
4-Nitrophenol	NA	NA) QN	0.0365)	Ξ	ON	(0.993)	Ξ
Compiled: 17 March 1995 ()	() = Detection Limit	= Dilution Factor	ND = Not Detected	NA = Not Applicable	R = Invali	d Result,	Invalid Result, Refer to OC Report	Report	
						1			;

008 06-58-03 06-58-03 06-58-03 0 - 2 0 - 2 0 - 2 0 - 2 0 - 2 0 - 0106) [1] ND (0 0.0137) [1] ND (0 0.0238) [1] ND (0 0.0238) [1] ND (0 0.0238) [1] ND (0 0.0243) [1] ND (0 0.0243) [1] ND (0 0.0209) [1] ND (0 0.0209) [1] ND (0 0.0126) [1] ND (0 0.0127) [1] ND (0 0.0128) [1] ND (0 0.0129)		900	05-53-21	05-SS-21-01	0 - 0.5	SW8270 - Semivolatile Organics, cont. (mg/kg)	Acenaphthene	Acenaphthylene	NA	Benzo(a)anthracene NA			Benzo(g,h,i)perylene NA	ranthene			Butylbenzylphthalate NA				nthracene				e/N-NitrosoDPA	Fluoranthene				entadiene	Hexachloroethane NA
008 06-SB-03 06-SB-03 06-SB-03 0 - 2 0 - 2 ND (0.0106) [1] ND (0.0143) [1] ND (0.0143) [1] ND (0.0202) [1] ND (0.0384) [1] ND (0.0384) [1] ND (0.0389) [1] ND (0.0389) [1] ND (0.0288) [1] ND (0.0289) [1] ND (0.0289) [1] ND (0.0291) [1] ND (0.0209) [1] ND (0.0209) [1] ND (0.0209) [1] ND (0.0126) [1] ND (0.0126) [1] ND (0.0127) [1] ND (0.0128) [1] ND (0.0128) [1] ND (0.0129) [1] ND (0.0105) [1] ND (0.0105) [1] ND (0.0105) [1] ND (0.0109) [1] ND (0.0122) [1] ND	_	005	05-88-22	05-58-22-01	0 - 0.5		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .
008 06-SB-03 06-SB-03 4 - 6		800	06-SB-03	06-SB-03-01	t		(0.0106)	(0.0163)	(0.0143)	(0.0175)	(0.0202)	(0.0354)	(0.0397)	(0.0389)	(1.50)	(0.0238)	(0.0243)	(0.0209)	(0.0126)	(0.0137)	(0.0316)	(0.0209)	(0.0201)	(0.0131)	(0.0105)	(0.0183)	(0.0148)	(0.0122)	(0.0199)	ND (0.229) [1]	ND (0.0247) [1]
88 88 88 88 88 88 88 88 88 88 88 88 88		` 800	06-SB-03	06-SB-03-02	1		(0 288)	(0.293)	(06:0)	(90:00)	(0.549)	(0.962)	(1.08)	(1.06)	(40.9)	(0.646)	(0.662)	(0.569)	(0.343)	(0.373)	(0.859)	(0.569)	(0.546)	(0.356)	(0.285)	(0.499)	(0.403)	(0.333)	(0.542)	(6.24)	(0.673)

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report () = Detection Limit Compiled: 17 March 1995

L. BEG. DEPTI	005	05-SS-21 0	11	0 - 0.5		NA	AN	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	V N
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	005	5-55-22	05-55-22-01	0 - 0.5														
			_			Q	QN	Q	0.0202	QN	ND	N	ON	0.0136 J	ON	ON	QN	0 110
	008	06-SB-03	36-SB-03-01	0 - 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0.0518)	(0.0240)	(0.0255)	(0.0186)	(0.0328)	(0.0346)	(0.0182)	(0.0344)	(0.0159)	(0.0236)	(0.0149)	(0.0311)	(3000)
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					Ξ								
			J			Q	QN	Q	13.5	QN	Q	0.578	QN	R	Q	Q	QN	0 00
	008	06-SB-0	6-SB-03	4 - 6		_	_	_	_	_	_	_	_	_	_	_	_	,
		m	-02			1.41)	0.653)	0.693)	0.506)	0.892)	0.942)	0.496)	0.935)	0.432)	0.642)	0.406)	0.845)	(010)
					1													

	0		PARAMETER	Diesel Range Organics (mg/kg) Diesel Range Organics 11000	Gasoline Range Organics (mg/kg) Gasoline Range Organics 8200	Percent Solid (percent) Percent moisture	SW8240 - Volatile Organics (ug/kg)		hane	ane		1,1-Dlcnloroethene ND ND 1,2-Dichloroethane ND	a)		2-Chloroethyl vinyl ether ND		4-Methyl-2-pentanone(MIBK) ND	ND	089	Bromodichloromethane	Bromomethane ND
	008 06-58-03	06-SB-03-03	8 - 10	(20.0)	(10.0)	(00.00)		(0009)	(0009)	(0009)	(0009)	(0009)	(0009)	(39000)	(0009)	(39000)	(00068)	(130000)	(0009)	(0009)	(0009)
				0) [25]	0) [100]	0) [1]) [50]) [50]								_	[20]
BEG. DEP		-8S-90 0		12000	8600	25.4		QN	ON	QN	QN	S 5	g Q	QN	ON	GN	ND	27000 J	76000	QN	QN
SITE ID LOCATION IO SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	008 06-SB-03	06-SB-03-DS-03 Dup of 06-SB-03-03	8 - 10		_	•		_	_	_	_	<u> </u>			_	,	(4	(14	_	_	_
ID N ID ID) DEPTH	~	3 Dup of -03		20.0)	10.0)	00.00		7000)	7000)	7000)	7000)	7000)	7000)	41000)	7000)	41000)	41000)	140000)	7000)	7000)	7000)
(FT.)				[20]	[100]	[1]		[20]	[20]	[20]	[20]	[50]	[50] [50]	[20]	[50]	[20]	[20]	[20]	[20]	[20]	[20]
				59.0	1.00	10.3		QN	QN	Q	ON	QN :	2 2			S	2.70	92.0	0.800	8	QN
	008 06-SB-03	06-SB-03-04	14 -) 8	, ,	_		<u> </u>	_	_	_	<u> </u>		JB (ـ ـ) () [_	_
	008 -SB-03	.03-04	- 16	.20.0)	10.0)	0.00)		5.00}	5.00)	5.00)	5.00)	5.00)	5.00)	30.0)	5.00)	30.0)	30.0)	100)	5.00)	5.00)	5.00)
					[1]	[1]			[1]	Ξ	[1]	<u> </u>	ΞΞ	ΞΞ	ΞΞ	ΞΞ	[1]	Ξ	Ξ	Ξ	Ξ
				NA NA	NA	12.2		NA	NA	NA	NA	NA	A A	Y X	NA	¥ X	NA	NA	NA	NA	NA
	008 06-SS-07	06-SS-07-01	0 - 0.5	; ; ; ; ;		_															
	7(-01	5	 		0.00)															
				! ! ! !		[1]															

[] = Dilution Factor () = Detection Limit

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

SW8240 - Volatile Organics, cont. (ug/kg) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane ND Chloromethane ND Dibromochloromethane ND	(ug/kg) ND ND ND ND ND ND ND ND	06-58-03 06-58-03-03 8 - 10 (13000) (6000) (6000) (6000) (6000)	[50] [50] [50] [50] [50] [50]	06-52 0	008 06-SB-03 3-03-DS-03 D 06-SB-03-03 B 8 - 10 (140 (70 (70 (70 (70 (70 (70 (70 (7	008 06-SB-03 06-SB-03-03 Dup of 06-SB-03-03 8 - 10 8 - 10 ND (14000) ND (7000)	(50) (50) (50) (50) (50) (50)		008 06-58- 06-58-0 14 - 14 - (((((16 10.0) 5.00) 5.00) 5.00) 5.00) 5.00)	=======================================	06-SS-07 06-SS-07 06-SS-07- 0 - 0.5 NA NA NA NA NA NA NA NA	06-58-07 06-58-07-01 0 - 0.5
Methylene chloride Styrene Tetrachloroethene Tribromomethane(Bromoform) Trichloroethene Vinyl acetate Vinyl chloride cis-1,2-Dichloroethene cis-1,3-Dichloropropene m & p-Xylene o-Xylene trans-1,2-Dichloroethene trans-1,2-Dichloroethene	1100000 1100000 1100000	6000) 6000) 6000) 6000) 6000) 6000) 6000) 6000) 6000) 6000) 6000)	[50] [50] [50] [50] [50] [50] [50] [50]	120000 ND ND ND ND ND ND ND 130000 130000		7000) 7000) 7000) 7000) 7000) 7000) 7000) 7000) 7000) 7000) 7000) 7000)	[50] [50] [50] [50] [50] [50] [50] [50]	1.00 1 1.		5.00) 5.00) 5.00) 5.00) 5.00) 5.00) 5.00) 5.00) 5.00)	222222222222	A A A A A A A A A A A A A A A A A A A	

SW8270 - Semivolatile Organics (mg/kg)

	800	06-55-07	06-55-07-01	0 - 0.5		NA	NA	AM	AA	AN	AN	NA	NA	AA	NA	NA	ĄN	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
						[1]	[1]		[]	[1]	[1]	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[1]	[1]	Ξ	Ξ	[1]	Ξ	[1]	[1]
	800	06-SB-03	06-SB-03-04	4 - 16		(0.0649)	(0.0701)	(0.0791)	(0.0649)	(0.0562)	(0.0559)	(0.0628)	(0.143)	(0.461)	(0.0652)	(0.0950)	0.0433)	0.0701)	0.0402)	0.0342)	0.0732)	0.0576)	0.0368)	0.0434)	0.0475)	0.0534)	0.0568)	0.0822)	0.0465)
		.90	-90	14		QN	ON	QN	ND	ND) ON	QN	ON) QN) ON) ON) QN) ON	1.41 (0.0822) ON) QN) ON) ON) ON) ON) ON	0.128) QN
(FT.)						Ξ	[1]	Ξ	Ξ	[1]	Ξ	[1]	[1]	Ξ	Ξ	[1]		[1]	Ξ	Ξ	[1]	Ξ	Ξ	[1]	[1]	[1]	[1]	[]	[1]
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	~	-03	06-SB-03-DS-03 Dup of 06-SB-03-03	0.		0.685)	0.740)	0.836)	0.685)	0.593)	0.590)	0.663)	1.52)	4.87)	0.689)	1.00)	0.457)	0.740)	0.424)	0.361)	0.773)	0.608)	0.388)	0.458)	0.501)	0.564)	0.600)	0.868)	0.491)
SITE LOCATJ SAMPL	008	06-SB-03	B-03-DS-03 D 06-SB-03-03	8 - 10		_	_	_	_	_	_	_	_	_	_	_	_	Ų	_	_	_	_	_	_	_	_	_	_	<u> </u>
BEG. D			S-90		! ! ! ! !	QN	QN	QN	QN	QN	S	R	QN	Q	N	QN	9	S	54.4	N	QN	N	ND	S	ON	Q.	QN	5.04	ON
						[]	Ξ	Ξ	Ξ	[1]	[1]	[1]	Ξ	Ξ	Ξ	[1]	Ξ	[1]	[1]	[1]	Ξ	[1]	[1]	[1]	Ξ	[1]	Ξ	Ξ	[1]
	~	-03	3-03	10	1	0.769)	0.830)	0.937)	0.769)	0.665)	0.661)	0.744)	1.70)	5.46)	0.773)	1.13)	0.512)	0.830)	0.476)	0.405)	0.867)	0.682)	0.435)	0.514)	0.562)	0.633)	0.673)	0.974)	0.550)
	900	06-SB-03	06-SB-03-03	80	(F	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	<u> </u>	_	_	_)
					(mg/kg)	QN	Q.	QN	Q	QN	ND	QN	QN	QN	QN	ND	QN	ND	26.7	ND	ON	ND	QN	QN	ND	QN	QN	5.06	ND
				PARAMETER	SW8270 - Semivolatile Organics, cont.	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol (o-cresol)	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether

() = Detection Limit Compiled: 17 March 1995

ND = Not Detected[] = Dilution Factor

NA = Not Applicable

R = Invalid Result, Refer to QC Report

A9-36

	008 800 06-88-07	06-58-07-01	0 ~ 0.5	1	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
				1 1 1	[1]	ΞΞ	Ξ	[1]	[1]	[1]	[1]	Ξ	Ξ	[1]	Ξ	[1]	Ξ	[1]	[1]	Ξ	[1]	[1]	Ξ	[1]	[1]	[1]	[1]
	03	3-04	16	; ; ; ; ; ;	0.0507)	0.103)	0.0300)	0.0461)	0.0406)	0.0496)	0.0572)	0.100)	0.113)	0.110)	4.26)	0.0673)	0.0690)	0.0593)	0.0358)	0.0389)	0.0895)	0.0593)	0.0568)	0.0371)	0.0297)	0.0520)	0.0419)
	008 06-SB-03	06-58-03-04	14 -	1 1				_	_	_	_	J	_	_	J	_	J	_	_	J	_	J	J	٥	_	_	_
				1 1 1 1 1 1 1 1 1 1	0.170 F	2	ON.	QN	QN	Q.	ND	QN	QN	QN	ON	ON	ON	QN	QN	QN	QN	0.0482 J	QN	ON	QN	ON	0.0400 J
FT.)					ΞΞ	Ξ	[1]	[1]	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[1]	[1]	[]	Ξ	Ξ	Ξ	Ξ	[1]	Ξ
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	008 SB-03	06-SB-03-DS-03 Dup of 06-SB-03-03	10		0.535)	1.09)	0.317)	0.487)	0.429)	0.523)	0.604)	1.06)	1.19)	1.16)	45.0)	0.711)	0.729)	0.626)	0.378)	0.410)	0.945)	0.626)	0.600)	0.392)	0.314)	0.549)	0.443)
SIT LOCAT SAMF EPTH -	008 06-88-03	B-03-DS 06-SB-	8 - 10	; 1 1 1 1		<i>-</i> –	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_	_	_	_	-
BEG. D		S-90		1 1 1 1 1 1 1	9 9	9	QN	Q	2	S	S	R	QN	Q	P	Q	9	9	9	9	9	1.05	Q	2	QN	Q	1.22
					ΞΞ		[1]	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[]	Ξ	[]	[]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]
	8 -03	03-03	10		0.600)	1.22)	0.356)	0.546)	0.481)	0.587)	0.677)	1.19)	1.33)	1.31)	50.5)	0.797)	0.817)	0.702)	0.424)	0.460)	1.06)	0.702)	0.673)	0.439)	0.352)	0.616)	0.497)
	008 06-SB-03	06-SB-03-03	88	,		· _	_	_	_	_	_	_	_	_	_	_	J	_	_	_	_	_	_	_	_	_	_
				(mg/kg)	2 2	QN	QN	ND	Q	Ş	Q	2	QN	2	9	Q	QN	9	Q	Q	Q	1.41	Q	Q	Q	Q	1.37
			PARAMETER	SW8270 - Semivolatile Organics, cont.	4-Methylphenol(p-cresol) 4-Nitroaniline	4-Nitrophenol	Acenaphthene '	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Butylbenzylphthalate	Chrysene	Di-n-butylphthalate	Di-n-octylphthalate	Dibenz(a,h)anthracene	Dibenzofuran	Diethylphthalate	Dimethylphthalate	Diphenylamine/N-NitrosoDPA	Fluoranthene	Fluorene

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

	008	06-55-07	06-55-07-01	0 - 0.5		₹N		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
					! ! ! !	[1]	ΞΞ	Ξ	Ξ	[1]	[1]	[1]		Ξ	Ξ	[]	Ξ	Ξ	Ξ		ΞΞ	[1]
	008	06-SB-03	06-58-03-04	14 - 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0.0347)	(0.0565)	(0.650)	(0.0701)	(0.147)	(0890)	(0.0722)	(0.0528)	(0.0929)	(0.0981)	(0.0517)	(0.0975)	(0.0450)	(0.0669)	(0.0423)	(0.0881)	(0.0641)
						QN	ON	S	N	QN N	Q.	S	0.538	QN	QN	ND	QN	QN N	Q.	Q	S	0.164
(FT.)			.			[1]	[]	[1]	[1]	Ξ	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	Ξ
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	~	-03	06-SB-03-DS-03 Dup of	J3-U3 .0	1	0.366)	0.597)	6.87)	0.740)	1.55)	0.718)	0.762)	0.557)	0.981)	1.04)	0.546)	1.03)	0.476)	0.706)	0.446)	0.930)	0.677)
SITE ID LOCATION I SAMPLE ID EPTH - END D	008	06-SB-03	3-03-DS-	06-56-03-03 8 - 10	 	_	_	_	_	_	_	_	J	_	_	_	_	_	_	J	_	<u> </u>
BEG. DI			IS-90		; 	9	QN	ND.	S	QN	S	QN	23.1	ON	ON.	0.716	QN	QN	QN	ON	QN	2.58
					1 1 1 1	[1]	[1]	[1]	Ξ	[]	[1]	Ξ	Ξ	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
		03	3-03	0		0.410)	0.669)	7.70)	0.830)	1.74)	0.805)	0.855)	0.625)	1.10)	1.16)	0.612}	1.15)	0.533)	0.792)	0.501)	1.04)	0.759)
	800	06-SB-03	06-SB-03-03	8 - 10		_	J	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
					. (mg/kg)	N _O	ND	ND	Q	Q	Q	QN	22.0	QN	QN	0.736	QN	Q	Q	2	Q	3.62
				PARAMETER	SW8270 - Semivolatile Organics, cont.	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propy]amine	Naphthalene	Nitrobenzene :	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report Compiled: 17 March 1995

A9-38

	800	06-53-08	06-53-08-01	PARAMETER 0 - 0.5	Percent Solid (percent) Percent moisture 7.42 (0.00
		•	—		0.00)
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	. 800	60-88-90	06-55-09-01	0 - 0.5	4.92 (0.00) [1]
	800	06-SS-10	06-55-10-01	0 - 0.5	9.96 (0.00) [1]
	800	06-55-11	06-55-11-01	0 - 0.5	11.9 (0.00) [1]

LOCATION ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID SAMPLE ID 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

										-				
						SITE ID								
						LOCATION ID								
					g G	SAMPLE ID	(1)							
					2		(-1.)							
			3			æ		3				œ		
		-/0	07-HA-01			07-HA-02	07	07-HA-03				07-HA-04	c	
		07-H	07-HA-01-01			07~HA-02-01	- 40	07-HA-03-01			07	07-HA-04-02	-02	
PARAMETER		0	0 - 1			4 - 5		8 - 9				0 - 1		
SW8240 - Volatile Organics, cont.	t. (ua/ka)	1 1 1 1 1		 	! ! ! ! !			1		!	;	1	! !	!
Carbon tetrachloride		_	1.56)	[1]	AN		CN	,) (10 %	5	2	,	į.	3
Chlorobenzene	ON	<i>-</i>	1.26)	ΞΞ	AN		G C	. 7.		[1]	2 5		1.57)	
Chloroethane	QN		2.15)		NA		Q Q			7 [2 5		1.20)	ΞΞ
Chloroform	ON	_	1.79)	[]	NA		Q.	; ~		[1]	2 2		1 80)	35
Chloromethane	ON	_	6.13)	Ξ	NA		ON.)			2 5		6 16)	
Dibromochloromethane	QN		1.44)	Ξ	NA		GN N				2 2		1 44)	[]
Ethylbenzene	QN	<u> </u>	1.10)		AN		e S			ī [2 5		1.44)	ΞΞ
Methylene chloride	ON	_	2.38)	Ξ	NA		10.8 8			7.	4 36 B		1.10)	ΞΞ
Styrene	ON	_	2.05)		NA								(50.7	E E
Tetrachloroethene	QN	_	1.71)	ΞΞ	NA		Q. Q.			35			2.00)	ΞΞ
Toluene	ON	_	2.26)	[]	NA		QN N			7 =	2 5	<i>-</i> _	(7/17)	35
Tribromomethane(Bromoform)	QN	_	1.71)	[1]	NA		QN	2.3		7 =	S S	<i>-</i> _	1 72)	ΞΞ
Trichloroethene	QN	_	3.63)	[1]	NA		QN	4.0		7 =	S S		3.65)	ΞΞ
Vinyl acetate	QN	_	10.8)	[1]	NA		QN	(13.9)		7 =	2 8	<i>-</i> _	10 9)	ΞΞ
Vinyl chloride	QN	_	2.84)	[1]	NA		Q.	(3.65)		[]	£ £		2 85)	ΞΞ
Xylene (total)	QN	_	5.09)	Ξ	NA		1.83	(6.55)		Ξ	1.40	<i>-</i> _	5.12)	ΞΞ
cis-1,3-Dichloropropene	ON	_	1.36)	Ξ	NA		QN	(1.75)] [<i>-</i> _	1.36)	35
trans-1,2-Dichloroethene	QN	~	2.20)	[1]	NA		QN	(2.82)		[1]	QN	· _	2.21)	3
trans-1,3-Dichloropropene	Q.	<u> </u>	1.46)	[1]	NA		ON	(1.88)		[1]	QN		1.47)	ΞΞ
SW8270 - Semivolatile Organics	(mg/kg)													
1,2,4-Trichlorobenzene	QN	_	0.0222)	Ξ	NA		QN	(0.0871)		[1]	Q.	0	0.0224)	נון
1,2-Dichlorobenzene	ON N	_	0.0240)	[1]	NA		QN	(0.0940)			2 2	; c	0.0242)	3 5
1,3-Dichlorobenzene	QN	_	0.0271)	[1]	NA		QN	(0.106)			2 2	; c	0572)	ΞΞ
1,4-Dichlorobenzene	QN	_	0.0222)		NA		ON ON	(0.0871)		ΞΞ	S S	, ₀	0.0224)	[1]
Camilad. 17 Mach 1005		-	Ε									.		
compiled: 1/ March 1995	() = Detection Limit	ion Li	mit [] =		Dilution Factor	ND = Not Detected	NA = Not Applicable	R = In	Invalid Result,		Refer to QC	Report		
(:	

(0.0162) [1] NA ND (0.0637) [1] ND (0.0164) (0.0164) (0.0183) [1] NA ND (0.0717) [1] ND (0.0184) (0.0195) [1] NA ND (0.0763) [1] ND (0.0196) (0.0282) [1] NA ND (0.110) [1] ND (0.0283) (0.0169) [1] NA ND (0.0160)	PARAMETER	(mg/kg ND ND ND ND ND ND ND ND ND ND ND ND ND	3 07-HA-01 07-HA-01-01 0 - 1 		BEG. W N N N N N N N N N N N N N N N N N N N	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.) 3 07-HA-02 07-HA-02-01 4 - 5		3 07-HA-03 07-HA-03-01 8 - 9 (0.0754) (0.0843) (0.0843) (0.0843) (0.0875) (0.0875) (0.0875) (0.0982) (0.0982) (0.0982) (0.0982) (0.0982) (0.0982)	22222222222	3 07-HA-04 07-HA-04-02 0 - 1 (0.01; (0.02 (0.02 (0.03) (0.03) (0.01) (0.01) (0.02) (0.01) (0.02) (0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.03)	04 4-02 1 0.0194) 0.0216) 0.0225) 0.0225) 0.0225) 0.0225) 0.0138) 0.0138) 0.0138) 0.0138)	=======================================
NA	enol ther 1 ether 1)	ND ND ND ND ND ND ND ND ND ND ND ND ND N	(0.0163 (0.0195 (0.0195 (0.0173 (0.0229 (0.0103 (0.0103		7 + C	1	1				0164) 0164) 0196) 0283) 0175) 0231) 013) 0103)	122222222

						SIT LOCAT SAMP BEG. DEPTH -	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)								
			۳ : :			3			က				ო		
		1-70 07-HA	07-HA-01 07-HA-01-01			07-HA-02 07-HA-03-01	1-02		07-HA-03	13		•	07-HA-04)4	
PARAMETER		0	0 - 1			4 - 5	5	_	0/-HA-U3-U1 8 - 9	10-		0	07-HA-04-02 0 - 1	1-02	
SW8270 - Semivolatile Organics, cont. (mg/kg)	cont. (mg/k	g)		[1					1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		!
Anthracene	0.0518	_	0.0139)	Ξ	_	NA		QN	0	0.0545)	[1]	CN	_	0.0140)	Ξ
Benzo(a)anthracene	0.499	_	0.0170)			NA		0.130	· ·	0.0665)	ΞΞ	0.0178		0.0140)	[]
Benzo(a)pyrene	0.519	_	0.0196)			NA		0.103	, .	0.0767)	ΞΞ	0.0178	<i>-</i> -	0.01/1)	ΞΞ
Benzo(b)fluoranthene		<u> </u>	0.0343)		_	NA		0.207 F	, 	0.134)	[]		, c	0.0137)	[7]
Benzo(g,h,i)perylene	0.317	_	0.0385)		_	NA			<i>.</i> _	0.151)	E		, c	0.0343)	ΞΞ
Benzo(k)fluoranthene)	0.0378)	Ξ.	_	NA		0.207 F	. <u> </u>	0.148)	ΞΞ		, c	0.0380)	ΞΞ
Benzoic acid	QN	_	1.46)		_	NA		ND		5.72)	[]		, , _	1 47)	ΞΞ
Benzyl alcohol	ND	_	0.0231)	[1]		NA		QN		0.0903)	ΞΞ	2	· -	(75.7	3 E
Butylbenzylphthalate G'	ON	_	0.0236)		_	NA		ND	0)	0.0925)	Ξ	QN	0	0.0238)	ΞΞ
Chrysene	0.572	_	0.0203)			NA		0.154	0)	0.0795)	[1]	0.0315	0	0.0204)	ΞΞ
Ul-n-buty!phtha ate	QN :		0.0122)			NA		ON .	0	0.0480)	Ξ	ON	0	0.0123)	ΞΞ
U1-n-octylphthalate	QN	<u> </u>	0.0133)			NA		ON	0	0.0521)	[1]	ND		0.0134)	Ξ
Ulbenz(a,n)anthracene Dibenzafinan	0.0896		0.0306)			NA		ND	_	0.120)	[1]	ND	0	0.0309)	[1]
Dibenzoluran Diethvlmbtbələta	2 9	_ 、	0.0203)			VA:		Q	0)	0.0795)	[1]	N	0)	0.0204)	ΞΞ
Dimethylphthalate	Q Z		0.0195)		_	NA:		ON	0	0.0763)	[1]	ON	0	0.0196)	[1]
Diphenylamine/N-NitrosoDPA	S 8		0.0127)	ΞΞ		A N		Q. S	0 (0.0498)	ΞΞ	Q.	0)	0.0128)	[1]
Fluoranthene	0.624		0.0178)		_	AN AN		ND 0) c	0.0398)		Q 2	o ,	0.0102)	Ξ
Fluorene	QN	· _	0.0144)			NA		601.0 UN	- c	0.0037)	[1]	600.0	o (0.01/9)	Ξ3
Hexachlorobenzene	QN	_	0.0119)			NA		Q.		0.0363)	33	2 S	o •	0.0145)	ΞΞ
Hexachlorobutadiene	ON	_	0.0193)	[1]		NA		QN	· ·	0.0758)	ΞΞ	2 2	, c	0.0113)	ΞΞ
Hexachlorocyclopentadiene	QN	_	0.223)	[1]		NA		QN	, _	0.872)	E [2 2	· `	0.0133)	ΞΞ
Hexachloroethane	ON	_	0.0240)	Ξ		NA		ND	.0	0.0940)	[1]	e S	۔	0.242)	ΞΞ
Indeno(1,2,3-cd)pyrene	0.294	_	0.0503)	[1]		NA		ON		0.197)		0.00940	, c	0.0506)	ΞΞ
Isophorone	QN	_	0.0233)			NA		QN	(0.	0.0912)	ΞΞ		, o	0.0234)	[1]
									İ						,

() = Detection Limit [] = Dilution Factor

ND = Not Detected

R = Invalid Result, Refer to QC Report

NA = Not Applicable

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

3HA0	07-00-07-00-07-00-07-07-07-07-07-07-07-0	4.00 0.00 ND ND ND ND ND ND ND ND ND ND ND ND ND	[1] [1] [50] [50] [50] [50] [50] [50] [50] [50	20.0) 20.0) 20.0) 10.0) 174) 101) 56.4) 99.2) 126) 64.7) 36.4) 382) 249) 177)	3 07-HA-06 07-HA-06-02 6 - 7 (20 (10 (11 (12 (56 (99 (99 (13 (14 (14 (14 (14 (14 (14 (14 (14	2600 840 ND ND ND ND ND ND ND ND ND ND ND ND ND		G. DEPTH - END DEPTH (FT.) 3 07-HA-05 07-HA-05-02 4 - 5	3 07-HA-05 14-05-DS-02 D 07-HA-05-02 07-HA			05 5-02 5 20.0) 20.0) 11.8) 25.3) 5.54) 12.9) 12.9) 12.9) 12.9) 12.9) 12.9) 12.9) 12.9) 12.9) 12.9) 12.9)	3 07-HA-05 07-HA-05-02 4 - 5 (20 (11 (11 (12 (5.6 (5.6 (14) (14)	<u> </u>	PARAMETER Diesel Range Organics (mg/kg) Diesel Range Organics (mg/kg) Gasoline Range Organics (mg/kg) Gasoline Range Organics Percent Solid (percent) Percent moisture 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 4-Methyl-2-pentanone(MIBK) Acetone Benzene
	<i>-</i> -	Q. Q.	[20]	43.7)	<i>-</i> _	Q.	[1]	6.58)		N N	[1]	6.49)		ON	Bromodichloromethane
		ON CN	[50] [50]	3820)		9 8	ΞΞ	84.0)		Q Q	ΞΞ	5.65		ON ON	Benzene
	_ 、	ON ON	[50]	177)		2 2	ΞΞ	14.4)		S S		14.2)		Q Q	4-metnyl-z-pentanone(MIBK) Acetone
	_	NO	[20]	249)	_	QN		32.4)		2	ΞΞ	31.9)	_ 、	2 :	Z-Hexanone
	J	2	[20]	465)	_	QN	Ξ	13.1)	_	2	Ξ	12.9)		9	2-Chloroethyl vinyl ether <u> </u>
8.43)	_	ON	[20]	382)	JB ([1]	40.4)	В (Ξ	39.8)) B		2-Butanone(MEK)
1.24)	_	Q	[20]	36.4)	J	N N	[1]	5.96)	_	QN	Ξ	5.87)			1,2-Dichloropropane
1.53))	QN	[20]	64.7)	_	Q.	[1]	7.32)	_	QN	Ξ	7.21)		2	1,2-Uichloroethane
2.84)	_	QN	[20]	126)	_	2	Ξ	13.6)	_	Q.	Ξ	13.4)		2	1,1-Ulchloroethene
2.72)	_	QN	[20]	99.5)	_	N	Ξ	13.1)	_	QN	Ξ	12.9)		2	l,L-Uichloroethane
1.17)	_	QN	[20]	56.4)	_	S	[1]	5.62)	_	S	Ξ	5.54)	_	S	1,1,2-irichioroethane
5.35)	_	QN	[20]	101)	_	N	[1]	25.7)	_	Q	[1]	25.3)	_	S	1,1,2,2-Tetrachloroethane
2.50)	_	QN	[20]	174)	_	Q	[1]	12.0)	J	ON	Ξ	11.8)	_	ON	1,1,1-Trichloroethane
0.00)	<u> </u>	14.5	[1]	0.00)	_	18.8	[1]	0.00)	J	20.0	[1]	0.00)	•	18.8	Percent Solid (percent) Percent moisture
10.0)	JB ([1]	10.0))	940	[1]	10.0)	J	770	[1]	100)	_	610	
20.0)	JB ([20.0)		2600	[1]	20.0))	3600	[1]	20.0)	_	2600	
-	0			7				5	- 4			rc			PARAMETER
1-07 07-0	07-HA-07 07-HA-07-03			-06 36-02	07~HA- 07~HA-(t.	-05 -02 Dup of	07-HA- 1-05-DS- 07-HA-	07-H		-05)5-02	07 - HA· 07 - HA - (
	m				က				3				33		
	, ,			ú	3		(FT.)	END DEPTH	3 - HTA - 1			-05	3 07-HA:		
								2							

					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ΞΞ																					[1]	A9-47
	က	07-HA-07	07-HA-07-03	- 1	1	3.17)	1.63)	1.31)	2.25)	1.87)	6.42)	1.50)	1.15)	2.49)	2.14)	1.79)	2.37)	1.79)	3.80)	11.3)	2.97)	5.33)	1.42)	2.30)	1.53)		0.625)	0.675)	port
		1-Y0	07-HA	0		_	_	_	_	_	_	_	_) 8	_	_	_	_	_	_	_	_	_	_	_		_	· •	QC Re
						2	2	Q	9	R	R	9	9	5.04	2	2	9	ON	QN	Q.	ON	, , 8	2	QN	QN		Q	ND	= Invalid Result, Refer to QC Report
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]		[1]	[1]	d Result,
		9(3-02		1	105)	73.8)	72.6)	85.3)	60.2)	118)	56.5)	54.0)	111)	82.3)	51.0)	59.2)	125)	(9.8/	243)	101)	125)	27.8)	67.7)	81.7)		0.652)	0.705)	= Invalic
	က	07-HA-06	07-HA-06-02	6 - 7		_	J	Ų	_	_	_	_	_	_	J	J	J	J	J	J	_	_	_	_	_		_	~	Je R
			0		 	8	2	R	N N	Q	2	2	340	2	2	2	134	2	2	2	2	13500	2	2	Q		S	QN	= Not Applicable
(H.)					i	[1]	[1]	[1]	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[1]	Ξ	Ξ	Ξ	Ξ	[1]	[1]	Ξ	[1]		[]	[1]	NA = No
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)		05	07-HA-05-DS-02 Dup of 07-HA-05-02	2	: : : : : :	15.2)	7.83)	6.30)	10.8)	8.97)	30.8)	7.21)	5.51)	11.9)	10.3)	8.57)	11.4)	8.57)	18.2)	54.3)	14.2)	25.5)	6.81)	11.0)	7.32)		0.728)	0.786)	ND = Not Detected
SITE ID LOCATION ID SAMPLE ID TH - END DE	က	07-HA-05	-05-DS-02 D 07-HA-05-02	4 -	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	J		_	J	= Not
BEG. DEP			07-HA- 0		1	Q.	9	Q.	ND ND	윤	2	QV	S	S.	QN QN	S	QN	2	Ş	N Q	NO	101 X	QN	NO	X QN		2	QN	
8																						1							Factor
						[1]	[1]	[1]	[1]	Ξ	Ξ	[1]	[1]	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	[1]		Ξ	[1]	= Dilution
		-05)5-0 2	5		15.0)	7.72)	6.21)	10.6)	8.84)	30.3)	7.10)	5.42)	11.7)	10.1)	8.45)	11.2)	8.45)	18.0)	53.5)	14.0)	25.2)	6.71)	10.8)	7.21)		0.683)	0.738)	
	33	07-HA-05	07-HA-05-02	4 -		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	<u> </u>	n Limi
			_		(ug/kg)	Q	QN	S	QN	Q	ON	ON	S.	10.8 JB	Q.	S	<u>R</u>	QN	ON	Q	Q	470 X	ND	QN	X QN	(mg/kg)	Q.	QN	() = Detection Limit
				PARAMETER	SW8240 - Volatile Organics, cont.	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Dibromochloromethane	Ethylbenzene	Methylene chloride	Styrene	Tetrachloroethene	Toluene	Tribromomethane(Bromoform)	Trichloroethene	Vinyl acetate	Vinyl chloride	Xylene (total)	cis-1,3-Dichloropropene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	SW8270 - Semivolatile Organics (mg		1,2-Dichlorobenzene	Compiled: 17 March 1995 ()
																								-					

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

						SITE ID LOCATION ID SAMPLE ID	SITE ID CATION ID AMPLE ID									
					BEG. DEP	H - H	DEPTH - END DEPTH (FT.)	(FT.)								
		က				က				က				(C)		
		07-HA-05	05			07~HA-05	.05			07-HA-06	90			07-HA-07	.07	
		07-HA~05-02	5-02		-07-HA- 0	-05-DS-02 D	07-HA-05-DS-02 Dup of	tı		07-HA-06-02	3-02			07-HA-07-03	17-03	
PARAMETER		4 -	ĽΩ)	4	2 2			9	7			0 - 1	-	
SW8270 - Semivolatile Organics, cont.	(mg/kg)		 	!		1 	! ! ! !		 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				1
1,3-Dichlorobenzene	ND	_	0.833)	[1]	QN	_	0.887)	[1]	QN	_	0.795)	[1]	Q	_	0.762)	Ē
1,4-Dichlorobenzene	QN	_	0.683)	[1]	QN	_	0.728)	ΞΞ	2	-	0.652)	ΞΞ	2		0.625)	3 E
2,4,5-Trichlorophenol	ND	_	0.591)	[1]	ON	_	0.630)	[1]	QN		0.565)	ΞΞ	2		0.541)	ΞΞ
2,4,6-Irichlorophenol	2	_	0.588)	Ξ	QN	_	0.626)	Ξ	9	_	0.561)	[1]	QN		0.538)	Ξ
2,4-Dichlorophenol	QN		0.661)	[1]	QN	_	0.704)	[1]	QN	_	0.631)	Ξ	QN		0.605)	ΞΞ
Z,4-Ulmethylphenol	2		1.51)	[1]	QN	_	1.61)	Ξ	ON	_	1.44)	[1]	QN	J	1.38)	ΞΞ
2,4-Ulnitrophenol	Q.		4.86)	Ξ	Q.	_	5.17)	[]	Q	_	4.64)	[1]	Q	_	4.44)	Ξ
2,4-Ulnitrotoluene 2 6 Niwituataluara	2 5	_ 、	0.687)	Ξ	QN		0.731)	[1]	QN	J	0.656)	[1]	ND	_	0.628)	Ξ
2,0-Dinitrotoluene 2-Chlomonabthalono	2 2	_ 、	1.00)	ΞΞ	S :		1.07)	IJ	Q	_	0.955)	[1]	QN	_	0.915)	[1]
2-Chloronhonol	Q 4		0.455)	Ξ3	8 :		0.485)	Ξ	QN	_	0.435)	[1]	QN	_	0.417)	[1]
2-Mathylmanhthalan	Q o		0./38)	Ξ3	Q :		0.786)		QN	_	0.705)	[1]	ON	_	0.675)	Ξ
2-Methy (naphrhalene 2-Mothylphonol (o-cocol)	39.2	_ 、	0.423)	Ξ3	37.0		0.450)	Ξ	57.9	_	0.404)	[1]	QN	_	0.387)	[]
2-Nethylphemol (U-cresol)	N 2	_ ~	0.350)	ΞΞ	2 9	_ 、	0.384)	ΞΞ	Q :		0.344)	[1]	QN	_	0.330)	[1]
2-Nitrophenol	Q S		0.770)	ΞΞ	S S		0.821)	ΞΞ	2 9	_ <	0.736)	Ξ3	Q :		0.705)	Ξ
3,3'-Dichlorobenzidine	8	<i>-</i>	0.387)	ΞΞ	2 2		0.040)	ΞΞ	2 2		0.5/9)	ΞΞ	O N	_ 、	0.555)	
3-Nitroaniline	ND	_	0.457)	Ξ	QN	. <u> </u>	0.486)	ΞΞ	2	_ ر	0.436)	ΞΞ	2 Z		0.334)	ΞΞ
4,6-Dinitro-2-methylphenol	QN	_	0.500)	[1]	N	_	0.532)	[1]	2		0.477)	ΞΞ	2 2		0.457)	[1]
4-Bromophenyl phenyl ether	Q	_	0.562)	[1]	ND	_	0.599)	[1]	QN	_	0.537)	[1]	N		0.515)	ΞΞ
4-Chloro-3-methylphenol	2	<u> </u>	0.598)	[1]	S	_	0.637)	Ξ	Q.	_	0.571)	[1]	ON	_	0.548)	Ξ
4-chloroaniline	2		0.866)	[1]	Q.	_	0.922)	Ξ	N	_	0.827)	[1]	QN	_	0.792)	Ξ
4-Chlorophenyl phenyl ether	QN :		0.489)	[1]	N N	_	0.521)	[1]	QN	_	0.467)	[1]	ND Q	_	0.448)	[]
4-methylphenol(p-cresol)	8 :		0.533)	Ξ	QN	_	0.568)	[1]	QN	_	0.509)	[1]	N N	_	0.488)	Ξ
4-Nitroaniline	Q	_	0.704)	Ξ	QN	_	0.750)	[1]	QN	_	0.672)	[1]	QN	_	0.644)	ΞΞ

() = Detection Limit Compiled: 17 March 1995

[] = Dilution Factor

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

)07 }	SITE ID LOCATION ID	ID N ID									
					S/ BEG. DEPTH	SAMPLE ID H - END DI	SAMPLE ID DEPTH - END DEPTH (FT.)	T.)								
		က				က				က	,			m		
	0	07-HA-05	05		07	07-HA-05	2			07-HA-06	90-			07-HA-07	07	
	.20	07-HA-05-02	5-02		07-HA-05-DS-02 Dup of 07-HA-05-02	-05-DS-02 D	2 Dup of -02			07-HA-06-02)6-02			07-HA-07-03	7-03	
PARAMETER		4	22		. `	4 - 5	.			9	7			- 0	-	
SW8270 - Semivolatile Organics, cont.	(mg/kg)		1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1	i 1 1	! ! ! !		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! !		1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	 	
4-Nitrophenol	R	_	1.09)	[1]	QN	_	1.16)	Ξ	N	_	1.04)	Ξ	Q	_	0.996)	[1]
Acenaphthene	0.832	_	0.316)	Ξ	Q	_	0.337)	[]	1.59	_	0.302)	Ξ	2	_	0.289)	Ξ
Acenaphthylene	NO	_	0.486)	Ξ	QN		0.517)	Ξ	Q	_	0.464)	[1]	2	_	0.444)	[]
Anthracene	S	_	0.428)	[1]	Q.	_	0.455)	[1]	ON	_	0.408)	Ξ	2	_	0.391)	Ξ
Benzo(a)anthracene	NO	_	0.522)	Ξ	Q.		0.556)	[1]	QN	_	0.498)	Ξ	QN	_	0.477)	[]
Benzo(a)pyrene	QN	_	0.602)	Ξ	QN	_	0.641)	[1]	Q	_	0.575)	Ξ	Q.	_	0.551)	Ξ
Benzo(b)fluoranthene	N S	_	1.05)	Ξ	S		1.12)	Ξ	ON	_	1.01)	Ξ	S	_	0.965)	Ξ
Benzo(g,h,i)perylene	N	_	1.19)	Ξ	Q.		1.26)	Ξ	QN	_	1.13)	Ξ	Q	_	1.08)	[1]
Benzo(k)fluoranthene	Q.	_	1.16)	Ξ	S.		1.24)	Ξ	ON	_	1.11)	[1]	Q	_	1.06)	Ξ
Benzoic acid	Q.	_	44.8)	Ξ	S.		47.8)	Ξ	Q	_	42.8)	E	Q	_	41.0)	[1]
Benzyl alcohol	QN .	_	0.709)	Ξ	S		0.755)	Ξ	QN	_	0.677)	Ξ	Q.	_	0.649)	[1]
Butylbenzylphthalate	N	_	0.726)	Ξ	S	_	0.774)	[1]	ON	_	0.693)	Ξ	R	_	0.665)	[1]
Chrysene	Q.	_	0.624)	Ξ	S		0.665)	[1]	QN	_	0.596)	Ξ	Q	_	0.571)	[]
Di-n-butylphthalate	S	_	0.376)	Ξ	2	_	0.401)	Ξ	QN	_	0.359)	Ξ	Q	_	0.344)	[]
Di-n-octylphthalate	S	_	0.409)	Ξ	Q.	_	0.436)	Ξ	ON	_	0.391)	Ξ	Q	_	0.374)	Ξ
nthracene	Q	_	0.942)	Ξ	QN		1.00)	Ξ	Q	_	0.900)	Ξ	Q	_	0.862)	Ξ
	968.0	_	0.624)	Ξ	QN		0.665)	[]	0.797	_	0.596)	Ξ	N	_	0.571)	Ξ
Diethylphthalate	QN	_	0.598)	Ξ	QN	_	0.637)	[1]	Q	_	0.571)	Ξ	QN	_	0.548)	[1]
Dimethylphthalate	Q	_	0.390)	Ξ	QN	_	0.416)	Ξ	N	_	0.373)	Ξ	ON	_	0.357)	Ξ
Diphenylamine/N-NitrosoDPA	QN	J	0.313)	[1]	ON	_	0.333)	[1]	S	_	0.298)	Ξ	2	_	0.286)	Ξ
Fluoranthene	Q	_	0.547)	Ξ	QN		0.583)	[1]	Q	_	0.523)	Ξ	2	_	0.501)	[1]
Fluorene	1.41	_	0.441)	Ξ	1.40		0.470)	Ξ	1.38	_	0.422)	Ξ	2	_	0.404)	[1]
Hexachlorobenzene	N N	_	0.365)	Ξ	Q.	_	0.389)	[1]	S	_	0.348)	Ξ	S	_	0.334)	[1]
Hexachlorobutadiene	QN	_	0.595)	Ξ	QN		0.634)	[1]	Q	_	0.568)	Ξ	QN	_	0.544)	[1]

NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit

Compiled: 17 March 1995

R = Invalid Result, Refer to QC Report

			BEG. DEF	SITE ID LOCATION ID SAMPLE ID PTH - END DE	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	FT.)								
	က			က				က				3		
	07-HA-08 07-HA-08-03	03	Ü	+ 0-)9 1-03		070	07-HA-10 07-HA-10-01				07-HA-11 07-HA-11-01	.11 .1-01	
PAKAME LEK	4 - 5		; ; ; ; ;	6 - 8		! ! ! !	0	0.5 - 1		;		0.5	- 1	
Diesel Range Organics (mg/kg) Diesel Range Organics	3500	20.0) [1]	13.0 JB	_ «	20.0)	[1]	17000	(3	20.0)		1200	_	20.0)	[]
Gasoline Range Organics (mg/kg) Gasoline Range Organics	NA		5.00 3	_	10.0)	[]	1300	(1	10.0)	Ξ	1500	_	10.0)	[1]
Percent Solid (percent) Percent moisture	NA		20.9	J	0.00)	[1]	29.0	0	0.00)	[1]	37.1	<u> </u>	0.00)	[1]
SW8240 - Volatile Organics (ug/kg)														
1,1,1-Trichloroethane	NA		ON	_	12.2)	[1]	QN	(1	15.2)	[1]	Q	_	16.0)	[1]
1,1,2,2-Tetrachloroethane	NA		R	_	26.2)	Ξ	ON	33	32.5)	[1]	N	_	34.2)	Ξ
1,1,2-Trichloroethane	NA		Q	_	5.74)	[1]	ND	7)	7.11)	Ξ	N X	J	7.49)	[1]
1,1-Dichloroethane	NA		Q	_	13.3)	Ξ	QN	<u> 1</u>	16.5)	Ξ	QN	J	17.4)	Ξ
1,1-Dichloroethene	NA		ND	_	13.9)	Ξ	QN	(17.2)	Ξ	QN	_	18.2)	
1,2-Dichloroethane	NA		QN	_	7.47)	Ξ	ND	6)	9.27)	[1]	QN	J	9.76)	[1]
1,2-Dichloropropane	NA		Q	_	6.08)	[]	ND	7	7.55)	Ξ	QN	J	7.94)	[1]
2-Butanone(MEK)	NA		Q	_	41.3)	[1]	24.7 JB	(2	51.2)	[1]	Q.	J	53.9)	[1]
2-Chloroethyl vinyl ether	NA		R	_	13.3)	Ξ	ON	, ,	16.5)	[1]	QN	_	17.4)	[1]
2-Hexanone	NA		QN	_	33.0)	Ξ	QN	4	41.0)	[1]	X QN	_	43.1)	\Box
4-Methyl-2-pentanone(MIBK)	NA		QN	_	14.7)	Ξ	ND	<u> </u>	18.3)	[1]	Q	_	19.2)	Ξ
Acetone	NA		Q	_	85.7)	[1]	N	_	106)	[1]	28.2 J	JB (112)	Ξ
Benzene	NA		Q	_	5.85)	[1]	364	()	7.26)	Ξ	218	_	7.64)	Ξ
Bromodichloromethane	NA		Q	J	6.72)	Ξ	QN	8	8.34)	[1]	QN	J	8.77)	Ξ
Bromomethane	NA		운	J	13.8)	[]	ON		17.2)	[1]	Q	_	18.1)	Ξ
Carbon disulfide	NA		ON	J	15.5)	[1]	QN	;; 	19.3)	[1]	Q.	J	20.3)	Ξ
Compiled: 17 March 1995 ()) = Detection Limit	[] = Dilution Fac	Factor ND		= Not Detected	NA = N	Not Applicable	~	Invalid	Result,	= Invalid Result, Refer to QC Report	QC Repo	t.	

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

				SITE ID									
		BEG.		SAMPLE ID SEPTH - END DEPTH (FT.)	TH (FT.)					•			
	က			8			က				3		
	07-HA-08 07-HA-08-03	83	07 -07	07-HA-09 07-HA-09-03		20 .	07-HA-10	10			07-HA-11		
PARAMETER	4 - 5		i	6 - 8		<u> </u>	0.5 - 1	5		ò	-nA-11- 0.5 - 1	11	
anics, cont.	(ug/kg)			! ! ! ! !			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! !		; ; ; ;]
Carbon tetrachioride Chlorohenzono	NA NA	•	QN Si	(8.00)		QN		9.92)	[1]	QN	_	10.4)	[1]
Chloroethane	AN N		2 9	6.43		Q :		7.98)		X Q	_	8.40)	[]]
Chloroform	¥ ×		2 9	(11.0)		Q :	_ 、	13.7)	Ξ3	2		14.4)	[1]
Chloromethane	Y N			(9.15		2		11.4)	ΞΞ	오 :		12.0)	[1]
Dibromochloromethane	AN AN		2 2	7 26		2 9		38.9)	Ξ3		_ 、	41.0)	Ξ:
Ethylbenzene	N A			(2,70)	ΞΞ	A520		9.13) 62.6)	[1]	ND X		9.61)	
Methylene chloride	NA	•	. Q	(12.2		ON		15.1)				15 9)	[1]
Styrene	NA	2	NO NO	(10.5)		QN		13.0)	ΞΞ			13.7)	ΞΞ
Tetrachloroethene	NA	~	QN ON	8.75		QN	_	10.9)	[1]	X QN		11.4)	ΞΞ
Toluene	NA	~	ON ON	() 11.6)		580	_	14.4)			<i>.</i> _	15.1)	ΞΞ
Tribromomethane(Bromoform)	NA	2	ON ON	(8.75)		ON	_	10.9)	Ξ	X QN		11.4)	ΞΞ
Trichloroethene	NA	~	ON ON	(18.6)		ND	_	23.1)	Ξ	ND		24.3)	ΞΞ
Vinyl acetate	NA	2	ON ON	(55.4)		ON	_	68.7)	[1]	S		72.3)	
Vinyl chloride	NA	2) QN	(14.5)		ON	_	18.0)	[1]	R		19.0)	
Xylene (total)	, AN	20.5	5 J ((26.1)		26400 E	_	144)	[20]	27300 E	_	161)	[20]
cis-1,3-Dichloropropene	NA	Z) QN	(96.92)		QN	_	8.62)	Ξ	S.	_	9.08)	[1]
trans-1,2-Ulchloroethene	MA	Z) R	(11.2)		QN	_	13.9)	[1]	Q	_	14.7)	
trans-1,3-Dichloropropene	NA	Z) ON	7.47)	[1]	ND X	_	9.27)	Ξ	X QN		9.76)	[1]
SW8270 - Semivolatile Organics (mç	(mg/kg)												
1,2,4-Trichlorobenzene	NA	2) ON	0.609)		ON	0	.828)	Ξ	QN	_	0.916)	[]
1,2-Dichlorobenzene	NA	Z) 0	0.658)	[1]	ND	0	0.894)	[1]	QN		(066.0	ΞΞ
1,3-Dichlorobenzene	NA	Z) QN	0.743)		ON		1.01)		S	<i>,</i> _	1.12)	: E
1,4-Dichlorobenzene	NA	Z)	0.609)		ND	0	0.828)	ΞΞ	2		0.916)	ΞΞ
													:

R = Invalid Result, Refer to QC Report

NA = Not Applicable

() = Detection Limit [] = Dilution Factor ND = Not Detected

			SITE ID LOCATION ID	ID I NC									
		BEG. DEP	SAMPLE ID TH - END D	SAMPLE ID DEPTH - END DEPTH (FT.)	H.)								
	ന		m				n				(*)		
	07-HA-08	c	07-HA-09	39			07-HA-10	1-10			07-HA-11	11 01	
PARAMETER	4 - 5	5	- B - 8	50.00			0.5	10-01			0.5	- 1	
SW8270 - Semivolatile Organics, cont.	(mg/kg)				!	1 1 1 1 1 1 1	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
2,4,5-Trichlorophenol	NA	ND	_	0.527)	[]	QN	_	0.717)	Ξ	QN	_	0.793)	[1]
2,4,6-Trichlorophenol	NA	QN	_	0.524)	Ξ	Q.	_	0.713)	Ξ	N	_	0.789)	Ξ
2,4-Dichlorophenol	NA	Q	_	0.590)	[1]	QN	_	0.801)	[]]	S	_	0.887)	[1]
2,4-Dimethylphenol	NA	ON	_	1.35)	[1]	ON	_	1.83)	Ξ	N _S	_	2.03)	Ξ
2,4-Dinitrophenol	NA	Q	_	4.33)	[1]	S	_	5.89)	Ξ	9	_	6.52)	[1]
2,4-Dinitrotoluene	NA	Q	_	0.612)	Ξ	QN	_	0.832)	[1]	QN	_	0.921)	[1]
2,6-Dinitrotoluene	NA	Q	_	0.892)	[]	Q	_	.1.21)	Ξ	Q.	_	1.34)	Ξ
2-Chloronaphthalene	NA	Q	_	0.406)	[]	Q	_	0.552)	Ξ	QN	_	0.611)	Ξ
2-Chlorophenol	NA	Q	_	0.658)	Ξ	S	_	0.894)	[1]	Q	_	0.990)	[1]
2-Methylnaphthalene	NA	Q	_	0.377)	Ξ		EX (0.513)	Ξ	. 228	_	0.567)	[1]
2-Methylphenol (o-cresol)	NA	Q	_	0.321)	Ξ	S	_	0.437)	[]	S	_	0.483)	[1]
2-Nitroaniline	NA	2	_	0.687)	Ξ	Q	_	0.934)	Ξ	2	_	1.03)	Ξ
2-Nitrophenol	NA	QN	_	0.541)	Ξ	S	_	0.735)	Ξ	Q.	_	0.814)	
3,3'-Dichlorobenzidine	NA	9	_	0.345)	Ξ	Q	_	0.469)	Ξ	QN	_	0.519)	Ξ
3-Nitroaniline	NA	Q	_	0.407)	Ξ	S	_	0.554)	Ξ	2	_	0.613)	[1]
4,6-Dinitro-2-methylphenol	NA	Q	_	0.446)	Ξ	Q.	_	0.606)	Ξ	2	_	0.670)	[1]
4-Bromophenyl phenyl ether	NA	Q	_	0.502)	Ξ	용	_	0.682)	[]]	2	_	0.754)	Ξ
4-Chloro-3-methylphenol	NA	R	_	0.534)	Ξ	2	_	0.725)	Ξ	2	_	0.803)	Ξ
4-Chloroaniline	NA	Q	_	0.772)	Ξ	Q	_	1.05)	[1]	S	_	1.16)	[1]
4-Chlorophenyl phenyl ether	NA	2	J	0.436)	Ξ	S	_	0.593)	[1]	S	_	0.656)	[1]
4-Methylphenol(p-cresol)	NA	Q	_	0.476)	Ξ	S	_	0.646)	Ξ	N	_	0.715)	Ξ
4-Nitroaniline	NA	Q	J	0.628)	Ξ	Q	_	0.854)	[1]	9	_	0.945)	[1]
4-Nitrophenol	NA	Q	J	0.971)	[1]	Q	_	1.32)	[1]	Q	_	1.46)	Ξ
Acenaphthene	NA	2	_	0.282)	[1]	3.76	_	0.383)	[1]	3.29	_	0.424)	Ξ
Acenaphthylene	NA	Q	_	0.433)	Ξ	QN	_	0.589)	Ξ	Q	_	0.652)	[11]
	the state of the s												

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

() = Detection Limit

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

			SITE ID										
		רנ	LOCATION ID	01 N									
		SEG. DEPTH	SAMPLE ID H - END DI	SAMPLE ID DEPTH - END DEPTH (FT.)	$\overline{}$								
	3		က				m				"		
	07~HA~08	07	07-HA-09				07-HA-10	10			07-HA-11	-11	
PARAMETER	07-HA-08-03 4 - 5	- 20	07-HA-09-03 8 - 9	-03		0	07-HA-10-01 0 5 - 1	10-01 - 1			07-HA-11-01	11-01	
			1					-			0.5 - 1	~ .	
SW8270 - Semivolatile Organics, cont.	(mg/kg)									I 	 		1 1 1 1
Anthracene	NA	QN	_	0.381)	1]	QN	_	0.518)	[1]	G.	_	0.574)	[]
Benzo(a)anthracene	NA	ON	_			QN		0.632)	ΞΞ	9		0.700)	ΞΞ
Benzo(a)pyrene	NA	ON	_	0.537)	[1]	QN		0.730)	Ξ	2		0.807)	ΞΞ
Benzo(b)fluoranthene	NA	ON	_	0.941)	[1]	QN	_	1.28)		Q.	-	1.42)	ΞΞ
Benzo(g,h,i)perylene	NA	ON	_	1.06)	1]	ON	_	1.44)	Ξ	QN	<i>-</i>	1.59)	ΞΞ
Benzo(k)fluoranthene	NA	QN	_	1.04)	[1]	S	_	1.41)	Ξ	Q		1.56)	ΞΞ
Benzoic acid	NA	QN	_	40.0) [[1]	Q.		54.4)		Q		60.2)	ΞΞ
Benzyl alcohol	NA	QN	0	0.632)	[1]	QN	_	0.859)	[1]	9	. <u> </u>	0.951)	ΞΞ
Butylbenzylphthalate	NA	QN	0	0.648) []	[1]	9	.~	0.880)	ΞΞ	QN		0.974)	ΞΞ
Chrysene	NA	ON	0	0.556) [1	1]	N O	_	0.756)	[1]	Q.	_	0.837)	Ξ
Di-n-butylphthalate	NA	QN	0		[1]	N	_	0.456)	[1]	Q.	_	0.505)	Ξ
Di-n-octylphthalate	NA	ND	0	0.365) [1	1]	Q.	_	0.496)	[1]	Q.	_	0.549)	Ξ
Dibenz(a,h)anthracene	NA	QN	0		1]	QN	_	1.14)	[1]	QN	_	1.26)	Ξ
Ulbenzofuran	NA	QN	0		[1]	1.51	_	0.756)	Ξ	1.24	_	0.837)	Ξ
Diethylphthalate	NA	QN	0		1]	Q.	_	0.725)	Ξ	QN	_	0.803)	Ξ
Uimethy!phtha!ate	NA	ON	0		1]	QN	_	0.473)	[]	QN	_	0.524)	Ξ
Uiphenylamine/N-NitrosoDPA	NA	QN	0		[1]	QN	_	0.379)	[1]	QN	_	0.419)	Ξ
Fluoranthene	NA	ND	0)	0.488) [1	[]	QN	_	0.663)	Ξ	QN	_	0.734)	[1]
Fluorene	NA	N	0	0.394) [1		3.59	_	0.535)	[1]	2.42	_	0.592)	ΞΞ
Hexachlorobenzene	NA	ND	0	0.325) [1		ND	_	0.442)	Ξ	S	_	0.489)	Ξ
Hexachlorobutadiene	NA	ON	0)	0.531) [1	[1]	QN	_	0.721)		ON	_	0.798)	Ξ
Hexachlorocyclopentadiene	NA	QN	_	6.10) [1	[1]	ON	_	8.30)	[1]	QN		9.18)	ΞΞ
Hexachloroethane	NA	ON	0	0.658) [1	[1]	ON	_	0.894)	[1]	Q.	_	0.890)	Ξ
Indeno(1,2,3-cd)pyrene	NA	ND	_	1.38) [1	_	N N	_	1.87)	Ξ	2	_	2.07)	Ξ
Isophorone	NA	QN	0)	0.638) [1		<u>Q</u>	J	0.868)		Q		0.960)	ΞΞ
									:	!			ר-י

NA = Not Applicable R = Invalid Result, Refer to QC Report

[] = Dilution Factor ND = Not Detected

() = Detection Limit

				PARAMETER	SW8270 - Semivolatile Organics, cont. (mg/kg)	N-Nitroso-di-n-propylamine	Naphthalene -	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate
	£	07-HA-08	07-HA-08-03	4 - 5	(mg/kg)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BEG. DEP			0			R	ON	QN	8	QN	ON	QN	ON	ON	QN	ON
SITE ID LOCATION ID SAMPLE ID . DEPTH - END DEPTH (FT.)	3 07-HA-09 07-HA-09-03 8 - 9 (0.678) [1] (0.873) [1] (0.921) [1] (0.921) [1] (0.921) [1] (0.485) [1] (0.485) [1] (0.485) [1] (0.485) [1] (0.485) [1] (0.485) [1]						0.0)	0.							
10 Depth (Ft	3 14A-09 1A-09-03 3 - 9 1A-09-03 (0.678) [1] (0.495) [1] (0.921) [1] (0.485) [1] (0.485) [1] (0.485) [1] (0.485) [1] (0.485) [1] (0.485) [1] (0.485) [1] (0.485) [1]															
(:					 	[1]	Ξ	[]	Ξ	[1]	[]	Ξ	Ξ	Ξ	Ξ	[1]
			0		1 1 1 1 1 1 1 1	Q	46.7	S	2	1.14	S	₽	9	SN SN	2	QN
	က	07-HA-1	7-HA-10	0.5 - 1	1 1 1 1 1	_	_	_	_	_	_	_	_	_	_	_
		0	-01	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.921)	0.673)	1.19)	1.25)	0.659)	1.24)	0.575)	0.854)	0.539)	1.12)	0.818)
						[1]	[1]	Ξ	Ξ	[]	Ξ	[1]	[1]	[1]	[1]	[1]
					 	QN	89.1	S	QV	0.720	S	S	Q	S	2	ND
	က	07-HA-	07-HA-1	0.5 - 1	i - - - - -	_	_	_	_	_	_	_	_	_	_	_
			1-01	1		1.02)	0.745)	1.31)	1.39)	0.729)	1.38)	0.636)	0.945)	0.597)	1.24)	0.906)
					 	Ξ	[1]	[1]	Ξ	Ξ	Ξ	[1]	Ξ			[1]

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

				BEG. DI	SI LOCA1 SAMF EPTH -	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)								
	3 07-HA-12 07-HA-12-	3 07-HA-12 07-HA-12-01			3 07-SD-03 07-SD-03-01	3 (D-03 1-03-01		07-SD	3 07-SD-03 -03-DS-01	3 07-SD-03 07-SD-03-DD Dup of			3 07-SB-04 07-SD-04-01	04 4-01	
PARAMETER	0.5	-			- 0	0.5			07-SD-03-01 0 - 0.5	.03-01 0.5			0 - 0	0.5	
Diesel Range Organics (mg/kg) Diesel Range Organics	170 (20.0)	[1]	7200)	20.0)	[25]	0089)	20.0)	[25]	75000		20.0)	[25]
Gasoline Range Organics (mg/kg) Gasoline Range Organics	0.00 JB (10.0)	[:]	59.0	<u> </u>	10.0)	[2]	57.0	J	10.0)	[5]	110	<u> </u>	10.0)	[2]
Percent Solid (percent) Percent moisture	50.5	0.00)	[1]	24.5	_	0.00)	[1]	24.5	J	0.00)	Ξ	73.4	_	0.00)	[1]
SW8240 - Volatile Organics (ug/kg)	kg)														
	QN :	4.22)	[1]	QN	<u> </u>	200}	[1]	ND	<u> </u>	100)	[1]	N	_	400)	[1]
1,1,2,2-letrachloroethane 1,1 2-Trichloroethane	× × Q	9.04)	[1]	2 9	_ 、	200)	ΞΞ	Q :		100)	[1]	ND	_	400)	[1]
1,1-Dichloroethane		1.98)	[] []	2 Q		200)	ΞΞ	Q 5		100)	[]	Q 9		400)	
1,1-Dichloroethene) ON	4.80)	ΞΞ	2 2	<i>-</i>	200)	ΞΞ	2 Q		100)	ΞΞ	S &		400)	ΞΞ
1,2-Dichloroethane) ON	2.58)	[1]	ON	_	200)	Ξ	ND		100)	ΞΞ	2 8	۔ ر	400)	ΞΞ
I,Z-Dlchloropropane 2-Butanone(MFK)	ND (2.10)	[1]	ND 720		200)	ΞΞ	9 S	_ 、	100)	[1]	Q		400)	[1]
2-Chloroethyl vinyl ether		4.60)	ΞΞ			200)	ΞΞ	S S		/00) 100)		S 8		2100)	E E
2-Hexanone) X QN	11.4)	Ξ	QN		800)	Ξ	QN	<i>-</i> _	700)	ΞΞ	2 S		400)	
4-Methyl-2-pentanone(MIBK)		5.08)	[1]	QN	_	800)	Ξ	ND		(007	ΞΞ	<u>8</u>		2100)	ΞΞ
Acetone	22.7 JB (29.6)	Ξ	500	<u> </u>	3000)	Ξ	QN		3000)		QN		8000)	
Benzene	ON !	2.02)	Ξ	Q	_	200)	[1]	ON	_	100)	[1]	ON	_	400)	Ξ
Bromodichloromethane) ON	2.32)	[1]	QN	J	200)	Ξ	ON	Ų	100)	[1]	QN	_	400)	[1]
Bromomethane) ON	4.78)	[1]	QN	_	200)	[1]	QN	_	100)	[1]	· QN	<u> </u>	400)	[1]
Compiled: 17 March 1995	() = Detection Limit		= Dilution Fa	ctor	ND = Not	Not Detected	NA =	Not Applicable	٥ ما	= Invalia	1 Dooult	Dofon to	70		
		3	:			ם ביטריכת					πesuιτ,	invalld Kesult, Keter to QC Report	JC Kepor	;	

EE EEEEE
4000) 400) 400) 400) 1200) 800) 400)
32 22222
100) 100) 100) 100) 400) 300) 100)
N N N N N N N N N N N N N N N N N N N
28 282828
200) 200) 200) 200) 200) 200) 200)
EEE E EE
19.1) 5.02) 9.00) 2.40) 2.58)
N N N N N N N N N N N N N N N N N N N
Vinyl acetate Vinyl chloride Xylene (total) cis-1,2-Dichloroethene cis-1,3-Dichloropropene m & p-Xylene o-Xylene trans-1,2-Dichloroethene

						SITE ID										
					L BEG. DEPT	LOCATION ID SAMPLE ID TH - END DE	LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	FT.)								
		က				က				3				က		
	.	07-HA-12	2		0	07-SD-03			.0	07-50-03	~			07-SD-04	4	
	0)	07-HA-12-01	-01		07	07-50-03-01	01		07-SD-03	-03-DS-01 [07-SD-03-01	07-SD-03-DS-01 Dup of 07-SD-03-01		C	07-SD-04-01	-01	
PARAMETER		0.5 -	1			0 - 0.5				0 - 0.5	!			0 - 0.	2	
SW8270 - Semivolatile Organics (mg/	(mg/kg)		 	! ! !	i i i t t t	; ; ;				1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1		1 1 1
1,2,4-Trichlorobenzene	QN	_	1.14)	[]	NO	0	0.675)	[1]	QN	_	0.746)	[1]	Q.	_	1 93)	Ξ
1,2-Dichlorobenzene	QN	J	1.23)	[1]	ND	0	0.889)	[1]	Q.),983)		2	<i>-</i> –	2.55)	35
1,3-Dichlorobenzene	QN	_	1.39)	Ξ	Q.	0	0.452)	[1]	Q.		0.500)	[1]	QN	· _	1.29)	ΞΞ
1,4-Dichlorobenzene	ON	_	1.14)	Ξ	ON)	0.923)	[1]	QN	_	1.02)	ΞΞ	QN		2.64)	ΞΞ
2,4,5-Trichlorophenol	QN	_	0.989)	Ξ	ON	0	0.377)	[1]	QN	_	0.416)	[1]	QN		1.08)	
2,4,6-Trichlorophenol	QN	_	0.983)	Ξ	QN	0	0.398)	[1]	ND		0.440)	Ξ	Q.		1.14)	
2,4-Dichlorophenol	QN	J	1.11)	[1]	QN	0	0.506)	[1]	QN	_	0.559)	[1]	N		1.45)	ΞΞ
2,4-Dimethylphenol	ND	_	2.53)	[]	QN		1.26)	[1]	Q.	_	1.39)	[1]	N N	_	3.60)	Ξ
2,4-Dinitrophenol	ON	_	8.12)	Ξ	QN	.`	7.99)	[1]	QN	_	8.83)	[1]	QN	_	22.9)	Ξ
2,4~Dinitrotoluene	QN	_	1.15)	Ξ	ND	·)	0.628)	[1]	Q.	_	0.694)	[1]	QN Q	_	1.80)	[1]
2,6-Dinitrotoluene	Q :		1.67)	Ξ	8	.0	0.395)	[1]	QN)	0.436)	[1]	ON	Ų	1.13)	[1]
2-Chloronaphthalene	Q :		0.761)	[1]	QN Q	.0	0.370)	[1]	QN		0.409)	[1]	QN	_	1.06)	[1]
Z-Chlorophenol	Q :		1.23)	[1]	Q	.0	0.872)	[1]	Q	0	0.964)	[1]	Q	_	2.50)	Ξ
	Q :		0.707)	ΞΞ	QN		0.754)	Ξ	QN	0	0.833)	[1]	QN	_	2.16)	[1]
2_Mitmosmiling	2 2	_ \	0.602)	Ξ	2 :	· ·	0.610)	Ξ:	2	0	0.674)	[1]	Q	_	1.75)	[1]
2-Nitronbono]	2 2	_ \	1.29)	Ξ:	2 :		0.459)		2	0	0.507)	[1]	N N	_	1.31)	Ξ
3 3'-Dichlorobenzidino	2 2	۔ ۔	1.01)	[]	2 4		0.502)	Ξ3	2 :	0	0.555)	Ξ	QN	_	1.44)	[1]
2 Nithannilling	2 5	- (0.047)	[1]	מא		0.559)	[1]	2	0	0.618)	[]	2	_	1.60)	Ξ
3-Nitroaniline	Q :	د ب	0.763)	Ξ:	2	0	0.581)		QN	0	0.642)	[1]	QN	_	1.66)	[1]
4,b-Ulnitro-Z-methylphenol	QV	_ 	0.835)	Ξ	2	.0	0.904)	Ξ	ջ	0	0.999)	[1]	Q.	_	2.59)	[1]
4-Bromophenyl phenyl ether	QN	_	0.940)	Ξ	Q.	(0.	0.521)	[1]	N	0	0.575)	[1]	QN	_	1.49)	Ξ
4-Chloro-3-methylphenol	QN ND	_	1.00)	[]]	QN	, 0	0.826)	Ξ	N	0	0.912)	[1]	N N	_	2.36)	[1]
4-Chloroaniline	ND	_	1.45)	[1]	ND	(0.	0.638)	[1]	QN	0	0.705)	[1]	QN	_	1.83)	Ξ
4-Chlorophenyl phenyl ether	NO	ى پ	0.818)	[1]	QN	(0.	0.603)	[1]	QN	0	0.666)	[1]	ND	_	1.73)	ΞΞ

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report () = Detection Limit Compiled: 17 March 1995

					SI	SITE ID LOCATION ID									
				BEG. D	SAMF PTH -	SAMPLE ID BEG. DEPTH - END DEPTH (FT.	(FT.)								
		c			,										
		n			(,)				က				3		
	- 70	07-HA-12			07-50-03	-03			07-SD-03	-03			07-SD	-04	
	07-t	07-HA-12-01			07-SD-03-01	.03-01		07-SD	-03-DS	07-SD-03-DS-01 Dup of			07-SD-04-01	14-01	
									02-Z0	03-01					
PAKAME I EK	0 .	0.5 - 1	1 1 1		0 - 0.5	0.5			0 - 0.5	0.5			0 - 0.5	.5	
SW8270 - Semivolatile Organics, cont.	(mg/kg)				! ! !	 	 	! 	; ; ; ;	 	:	 	: : :	1	
Hexachlorobenzene) Q	0.610)	[1]	QN	_	0.267)	[1]	QN	_	0.295)		S	_	0 765)	Ξ
Hexachlorobutadiene) ON	0.995)	[1]	QN	_	0.797)		S		0.880)	ΞΞ	g Q		2.28)	ΞΞ
Hexachlorocyclopentadiene) ON	11.4)		Q	_	10.2)		N S		11.3)	Ξ	- Q		29.2)	ΞΞ
Hexachloroethane) ON	1.23)		ON	_	0.678)	[1]	QN	_	0.749)	ΞΞ	QN		1.94)	ΞΞ
Indeno(1,2,3-cd)pyrene) QN	2.58)	(1)	ND	_	0.599)	Ξ	QN	_	0.662)	Ξ	QN		1.72)	ΞΞ
Isophorone) Q	1.20)	_	Q.	_	0.328)	[]	Q.	_	0.362)	[1]	ON	_	0.938)	
N-Nitroso-di-n-propylamine) ON	1.27)		QN	_	0.858)	Ξ	N	_	0.947)	[1]	QN		2.46)	ΞΞ
Naphthalene) QN	0.929)		ON	_	0.832)	Ξ	0.568 J	_	0.920)	[1]	QN		2.38)	[1]
Nitrobenzene) ON	1.64)		ON	_	0.603)		ON	_	0.666)	Ξ	QN	_	1.73)	Ξ
Pentachlorophenol) ON	1.73)	_	ND	_	0.987)	[1]	N S	_	1.09)	[1]	QN	J	2.82)	[1]
Phenanthrene) ON	0.909)	_	0.208	_	0.710)	[1]	QN	_	0.785)	[1]	QN	_	2.03)	[1]
Phenol) QN	1.72)	Ξ	ND	_	0.456)	\Box	QN	J	0.503)	[1]	QN	_	1.30)	[1]
Pyrene) ON	0.793)		0.140	_	0.534)	[1]	QN	_	0.590)	[1]	ON	_	1.53)	[1]
bis(2-Chloroethoxy)methane) QN	1.18)	[1]	ON	_	0.642)	Ξ	QN	_	0.709)	Ξ	9	_	1.84)	
bis(2-Chloroethyl)ether) R	0.744)		QN	<u> </u>	0.836)	Ξ	QN	_	0.923)	[1]	9	_	2.39)	
bis(2-Chloroisopropyl)ether) QN	1.55)	[1]	QN	_	0.829)	[1]	QN	Ĺ	- 0.916)	ΞΞ	QN Q		2.37)	
bis(2-Ethylhexyl)phthalate) ON	1.13)	[1]	0.466 J	<u> </u>	2.09)	Ξ	QN	_	2.31)	Ξ	1.22 J		5.98)	ΞΞ
															1

() = Detection Limit [] = Dilution Factor

ND = Not Detected

R = Invalid Result, Refer to QC Report NA = Not Applicable

					BEG. C	SITE LOCATI SAMPL EPTH - E	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)								
		3 07-SD-05 07-SD-05-01	05 5-01			3 07-SD-06 07-SD-06-01	-06 -01		c	3 07-SD-07 07-SD-07-01)7 7-01			3 07-55-06 07-88-06-01	10	
PARAMETER		0 - 0.5	.5			0 - 0.5	0.5		,	0 - 0.5	.5		•	0 - 0.5	2	
Diesel Range Organics (mg/kg) Diesel Range Organics	760	_	20.0)	Ξ	9.00	JB (20.0)	[1]	640	-	20.0)	[10]	NA NA] 1 2 2 3 4
Gasoline Range Organics (mg/kg) Gasoline Range Organics	88.0	<u> </u>	10.0)	[10]	0.00	JB (10.0)	[1]	9.00	_	10.0)	Ξ	NA			
Percent Solid (percent) Percent moisture	70.0	<u> </u>	0.00)	Ξ	70.3	_	0.00)	[1]	41.8	_	0.00)	[1]	25.8	_	0.00)	Ξ
SW8240 - Volatile Organics (ug/kg)																
1,1,1-Trichloroethane	S	_	300)	Ξ	Q	J	400)	[1]	S	_	200)	[1]	NA			
1,1,2,2-Tetrachloroethane	ջ	_	300)	Ξ	Q	_	400)	Ξ	ON	J	200)	Ξ	NA			
1,1,2-Trichloroethane	2	_	300)	Ξ	QN	_	400)	Ξ	S	_	200)	[1]	NA			
1,1-Dichloroethane	QN	_	300)	Ξ	ON	_	400)	Ξ	S	_	200)	Ξ	NA			
1,1-Dichloroethene	2	_	300)	[1]	QN	_	400)	[1]	QN	_	200)	[]	NA			
1,2-Dichloroethane	Q	_	300)	Ξ	S	_	400)	[1]	ON	_	200)	[1]	NA			
1,2-Dichloropropane	Q		300)	Ξ	ON	_	400)	[1]	S	_	200)	[1]	NA			
2-Butanone(MEK)	2 9	_ 、	1600)	ΞΞ	2	<u> </u>	2200)	ΞΞ	2		800)	ΞΞ	NA			
2-Chloroethyl vinyl ether	2 9	_ 、	300)	ΞΞ	2 9		400)	Ξ:	2 9	_ 、	200)	ΞΞ	A :			
Z-nexamone A-Mo+hvil-2-non+snono(MIRV)	3 5	<i>-</i> -	1600)	ΞΞ	2 5		2200)	ΞΞ	2 5	_	800)	ΞΞ	¥ ¥			
4-metry/-z-pentanone(misk) Acetone	2 2		1000)	ΞΞ	2 5		(0007	ΞΞ	2 2		3000)	ΞΞ	Y Y			
Benzene	2	<i>-</i> _	300)	ΞΞ	2		400)	ΞΞ	2 2	- -	200)	ΞΞ	C V			
Bromodichloromethane	QN		300)	ΞΞ	Q	۔ ۔	400)	ΞΞ	2		200)	ΞΞ	¥			
Bromomethane	QN	_	300)	Ξ	QN	_	400)	Ξ	ND		200)	Ξ	NA			
Carbon disulfide	ND	<u> </u>	(009	[1]	Q	_	(006	[1]	QN ·	_	300)	Ξ	NA			
Compiled: 17 March 1995 ()	() = Detection Limit	on Limi		= Dilution F	Factor	ND = Not	ND = Not Detected	NA	= Not Applicable	le R	= Invali	d Result,	≈ Invalid Result, Refer to QC Report	C Repor		A961

	-06 06-01 0.5																					
	3 07-SS-06 07-SS-06-01 0 - 0.5	NA NA	N N	N A	NA NA	AN AN	NA	NA	NA	ΑN:	N N	Z N	NA NA	NA	NA	NA	NA	AN	NA		Ϋ́	NA
		[1]	[]	ΞΞ	ΞΞ	[1]	ΞΞ	[1]	[1]	ΞΞ	E E		ΞΞ		ΞΞ	[1]	[1]	Ξ	ΞΞ		[]	[1]
	3 2-07 -07-01 0.5	200)	200)	200)	200)	200)	200)	200)	200)	200)	200)	2000)	200)	200)	200)	200)	300)	200)	200)		0.883)	1.16)
	3 07-SD-07 07-SD-07-01 0 - 0.5)		<i>.</i>			_	_	<u> </u>	_ 、			<i>.</i> _		_	_	_	_			J	
		QN	S 8	Q !	2 2	2 2	220	ND	ON :	Q Q	Q Q	Q	ND	QN	QN	QN	QN	R	ON		QN	QN
(FT.)		[1]	ΞΞ	3 = 3	3 3	ΞΞ	[1]	[1]	Ξ:	ΞΞ	ΞΞ	ΞΞ	Ξ	[1]	[]	Ξ	Ξ	[1]	[1]		[1]	[1]
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	06 16-01 5	400)	400)	400)	400)	400)	400)	400}	400)	400)	400)	4000)	400)	400)	400)	1300)	(006	400)	400)		0.0659)	0.0869)
SITE ID LOCATION ID SAMPLE ID EPTH - END DE	3 07-SD-06 07-SD-06-01 0 - 0.5						<u> </u>	_	<u> </u>		<i>.</i> _		_	_	_	_	_	_	J))
BEG. D		QN	S S	QN QN	Q Q	QN	520	QN	S S	2 8	Q.	QN	QN	QN	QV	Q	S	Q	ND		QN	QN
		[1]	ΞΞ	ΞΞ	[1]	[]	[]	ΞΞ	ΞΞ	ΞΞ	ΞΞ	[1]	[1]	Ξ	[1]	Ξ			[1]		[1]	[1]
	05 5-01 .5	300)	300)	300)	300)	300)	300)	300)	300)	300)	300)	3000)	300)	300)	300)	(006	(009	300)	300)		0.195)	0.258)
	3 07-SD-05 07-SD-05-01 0 - 0.5					<u> </u>		_ 、	<u> </u>			_	_	_	_	_	_	_	_		J	_
		(ug/kg) ND	Q Q	QN ON	S S	ND	440	2 5	2 2	2 2	QN	ND	QN N	QN	QN	2	Q.	Q	ON	′kg)	ON	QN
	PARAMETER	SW8240 - Volatile Organics, cont. Carbon tetrachloride	Chloroethane	Chloroform	Dibromochloromethane	Ethylbenzene	Methylene chloride	Styrene Totwooklowoothers	Toluene	Tribromomethane(Bromoform)	Trichloroethene	Vinyl acetate	Vinyl chloride	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	m & p-Xylene	o-Xylene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	SW8270 - Semivolatile Organićs (mg/kg)	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene

() = Detection Limit Compiled: 17 March 1995

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

						SI	SITE 10							
						LOCA	LOCATION ID SAMPLE ID							
					BEG. D	EPTH -	DEPTH - END DEPTH (FT.)	(FT.)						
		m				,	33				m			r
		07-80-05	-05			07~SD-06	90-(07-80-07	1-07			90-88-20
	J	07-SD-05-01	05-01			07-S0-06-01	-06-01			07-SD-07-01	.07-01			07-58-06-01
PAKAME I EK 	! ! ! ! ! ! ! !	0 - 0.5	0.5		:	- 0	0.5			- 0	0.5			0 - 0.5
SW8270 - Semivolatile Organics, cont.	cont. (mg/kg)	_		 	1 1 1 1 1 1 1	 	 	 			1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Acenaphthene	0.179	_	0.158)	Ξ	ON	_	0.0533)	[1]	ON	_	0.714)	Ξ	AN	
Acenaphthylene	QN	_	0.0747)	Ξ	ND	_	0.0252)	[1]	QN	. <u> </u>	0,338)	ΞΞ	NA	
Anthracene	QN	_	0.192)	[1]	QN	_	0.0648)	[1]	ON	. <u> </u>	0.868)	ΞΞ	NA	
Benzo(a)anthracene	ON	_	0.170)	[1]	QN	_	0.0574)	Ξ	QN	_	0.769)	[1]	NA	
Benzo(a)pyrene	QN	_	0.127)	[1]	QN	<u> </u>	0.0427)	[1]	Q	Ų	0.572)	Ξ	NA	
<pre>Benzo(b)fluoranthene</pre>	ND	_	0.188)	Ξ	ON	_	0.0635)	[]	ND	_	0.850)		NA	
Benzo(g,h,i)perylene	QN	_	0.161)	Ξ	QN	_	0.0543)	[1]	QN	_	0.728)	ΞΞ	Ν	
Benzo(K)fluoranthene	QN	_	0.320)	[1]	QN	_	0.108)	[1]	ON	_	1.45)	[]	NA	
benzolc acid	Q :	_	1.31)	[1]	0.420) (0.442)	[1]	QN	_	5.92)	Ξ	NA	
benzyl alcohol	QN		0.357)	Ξ	QN	Ų	0.120)	Ξ	QN N	_	1.61)	[1]	NA	
Buty!benzy!phtha!ate	0.115 J		0.130)	Ξ	QN	_	0.0438)	Ξ	QN	_	0.587)	Ξ	NA	
Chrysene	QN	_	0.221)	Ξ	ON	<u> </u>	0.0746)	Ξ	ON	_	1.00)	Ξ	NA	
Ui-n-buty!phthalate	0.0585 J	_	0.163)	[1]	ON	_	0.0550)	[1]	ON	_	0.737)	Ξ	NA	
U1-n-octy/phthalate	QN		0.301)	[1]	ND	<u> </u>	0.102)	Ξ	QN	_	1.36)	[1]	NA	
Ulbenz(a,h)anthracene	QN	_	0.157)	Ξ	QN	_	0.0529)	Ξ	QN	_	0.708)	Ξ	AN	
Ulbenzoturan	QN	_	0.135)	Ξ	ND	_	0.0455)	[1]	Q	_	0.610)	[1]	N	
Diethylphthalate	QN QN	_	0.111)	[]	QN	_	0.0375)	[1]	QN	_	0.502)		N	
Uimethylphthalate	QN	_	0.0926)	Ξ	QN	_	0.0312)	Ξ	QN	_	0.418	Ξ	NA	
Diphenylamine/N-NitrosoDPA	ON	_	0.187)	[1]	QN	_	0.0631)	Ξ	2		0.846)	ΞΞ	A N	
Fluoranthene	ON	_	0.211)	Ξ	QN	_	0.0712)		QN		0.953)	ΞΞ	V V	
Fluorene	0.216	_	0.111)	[]]	0.0391	_	0.0375)	Ξ	Q		0.502)	ΞΞ	AN	
Hexachlorobenzene	QN	_	0.0774)	[1]	QN	J	0.0261)	ΞΞ	Q.	. <u> </u>	0.350)	ΞΞ	AN	
Hexachlorobutadiene	QN	_	0.231)	Ξ	QN	_	0.0778)	[1]	QN	· _	1.04)	ΞΞ	ΨV	
Hexachlorocyclopentadiene	ON	_	2.95)	[1]	ND	_	0.995)		QN	۔ ۔	13.3)	ΞΞ	VΝ	
Hexachloroethane	QN	_	0.196)	[1]	QN	_	0.0662)	ΞΞ	9	<i>-</i> _	0.887)	ΞΞ	V V	
								1				7.7	Ě	

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report [] = Dilution Factor () = Detection Limit Compiled: 17 March 1995

N-Nitroso-di-n-propylamine ND (0.248) [1] ND Naphthalene 0.731 (0.241) [1] 0.476 Nitrobenzene ND (0.175) [1] ND Pentachlorophenol ND (0.286) [1] ND Phenanthrene ND (0.206) [1] ND Phenol ND (0.132) [1] ND Pyrene ND (0.155) [1] ND Pyrene ND (0.186) [1] ND	(0.0838) (0.0813) (0.0589) (0.0964) (0.0694) (0.0445) (0.0522)	======= ==============================	ND (0.554 J (ND (ND (ND (ND (ND (ND (ND (ND	0.429) [1] 1.12) [1] 1.09) [1] 0.789) [1] 1.29) [1] 0.929) [1] 0.596) [1] 0.699) [1]
ND (0.242) [1]	(0.0816)	Ξ) ON	
ND (0.242) [1]	(0.0816)	Ξ) QN	
bis(2-Chloroisopropy1)ether ND (0.240) [1] ND	(0.0810)	[1]) QN	
	(2001)			

A9-65

	07A 07A-SB-02 07A-SB-02-02 1.5 - 2	27.7 (0.00) [1]
	07A 07A-SB-02 07A-SB-02-01 0.8 - 1.5	35.0 (0.00) [1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	07A 07A-SB-01 07A-SB-01-02 1.5 - 2.2	29.4 (0.00) [1]
	3 07-SS-07 07-SS-07-01 0 - 0.5	30.0 (0.00) [1]
	PARAMETER	Percent Solid (percent) Percent moisture

-				SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	SITE ID LOCATION ID SAMPLE ID TH - END DEP	D 10 10 0EPTH (F	T.)								
)	07A		c	07A				07A				7		
	07A- 07A-SB-02-[07A-SE	07A-SB-02 07A-SB-02-DS-02 Dup of 07A-SB-02-02		0 A 7 0	07A-SS-01	01		07. -07.	0/A-SS-02 0/A-SS-02-01				08-58-01 08-58-01-01	1 -01	
PARAMETER	1.5	1.5 - 2			0 - 0.5			0	0 - 0.5				8 - 8.5	2	
Diesel Range Organics (mg/kg) Diesel Range Organics	NA			NA		 	 	NA NA]] 	† 1 	! ! !	11.0	11.0 JB (20.0)	[]
Gasoline Range Organics (mg/kg) Gasoline Range Organics	N			NA				NA				0.00 JB ()B (10.0)	Ξ
Percent Solid (percent) Percent moisture	27.3 (0.00)	[1]	30.9	_	0.00)	[1]	87.8	0.0	0.00) [1]	1]	NA			

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

			SI LOCA SAMI BEG, DEPTH -	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)								
PARAMETER	7 08-SB-02 08-SB-02-01 10 - 10.5	T 10	7 08-58-03 08-58-03-1 10 - 10.	7 08-SB-03 08-SB-03-01 10 - 10.5		. 0	09-SB-01 09-SB-01-01 0 - 2	1 -01		-	008 09-SB-01 09-SB-01-02 2.5 - 4.5	.01 11-02 4.5	
Diesel Range Organics (mg/kg)	0.00 38 (20.0) [1]	0.00 JB (20.0)	[1]	120 B		20.0)		29.0 B)	20.0)	[1]
Gasoline Range Organics (mg/kg) Gasoline Range Organics	0.00 JB (10.0) [1]	0.00 08 (10.0)	[1]	87.0	_	10.0)	[1]	61.0	_	10.0)	[1]
Percent Solid (percent) Percent moisture	NA		N A			8.41	J	0.00)	[1]	16.8	J	0.00)	Ξ
SW8240 - Volatile Orenics (1/2)	-												
3woz40 - volatile Urganics (ug/kg 1,1,1-Trichloroethane	g) NA		N			CN	_	5 00)	[]	S	_	(00)	[1]
1,1,2,2-Tetrachloroethane	NA		NA			2	<i>-</i> _	5.00)	ΞΞ	e S		6 00)	3 5
1,1,2-Trichloroethane	NA		NA			QN		5.00)	ΞΞ	2		6 00 9	E E
1,1-Dichloroethane	NA		NA			9	<i>-</i>	5.00)	ΞΞ	2 2		6.00)	ΞΞ
1,1-Dichloroethene	NA		NA			QN		5.00)	ΞΞ	9 8		(00.9	ΞΞ
1,2-Dichloroethane	NA		NA			QN		5.00)	ΞΞ	2		(00.9	Ξ
1,2-Dichloropropane	NA		NA			QN	_	5.00)	ΞΞ	Q		(00.9	ΞΞ
2-Butanone(MEK)	NA		NA .			QN	_	30.0)	[1]	12.0 JB		40.0)	
2-Chloroethyl vinyl ether	NA		NA			Q	_	5.00)	[1]	ON	_	(00.9	
2-Hexanone	NA		NA			QN	_	30.0)	[1]	ND	_	40.0)	Ξ
4-Methyl-2-pentanone(MIBK)	NA		NA			1.70 J	_	30.0)	Ξ	S		40.0)	
Acetone	NA		NA			6.10 JB	_	100)	[1]	40.0 JB	_	100)	
Benzene	NA		NA			QN	_	5.00)		13.0	_	(00.9	Ξ
Bromodichloromethane	NA		NA			S	<u> </u>	5.00)	Ξ	N		(00.9	Ξ
Bromomethane	NA		NA			QN	_	5.00)		QN		(00.9	Ξ
Carbon disulfide	NA		NA			NO	_	10.0)	[1]	QN	_	10.0)	[1]
Compiled: 17 March 1995	() = Detection Limit	[] = Dilution Factor	QN QN	Not Detected	I ON II ON	Action to Act	۵		+[00	0.600			
			2	ר מטוני ינים	ş	r Appricani	¥	= Invaild	Kesuıı,	Invalld Kesult, Keter to QC Keport	с керот	Ļ	

PARAMETER SW8240 - Volatile Organics, cont. (ug/kg) Carbon tetrachloride Chlorobenzene Chloroethane Chloromethane Dibromochloromethane Ethylbenzene Methylene chloride Styrene Tetrachloroethene Toluene Tribromomethane(Bromoform) NA Trichloroethene	7 08-58-02 08-58-02-01 10 - 10.5 10 - 10.5 NA NA NA NA NA NA NA NA NA NA NA NA	7 08-58-03 08-58-03 08-58-03 10 - 10.5 10 - 10	08-SB-03 08-SB-03-01 10 - 10.5 11	008 09-SB-01 09-SB-01-01 0 - 2 (5.00) (5.00)	600000000000000000000000000000000000000	N N N N N N N N N N N N N N N N N N N	008 09-58-01 09-58-01-02 2.5 - 4.5 2.5 - 4.5 6.6.6 6.6.6 6.6.6 6.6 6.6 6.6 6.6 6.6	6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00)	25555555555
Vinyl chloride cis-1,2-Dichloroethene cis-1,3-Dichloropropene m & p-Xylene o-Xylene	A A A A A A A A	N N N N N N N N N N N N N N N N N N N	N N ON	(5.00) (5.00) (5.00) (20.0)		ND ND ND 26.0	,	6.00) 6.00) 6.00) 30.0)	:====
2-Dichloroethene 3-Dichloropropene Semivolatile Organics ichlorobenzene	NA NA (mg/kg) NA NA	A A A A A A		5.00)				6.00) 6.00) 0.0235)	EE E

NA = Not Applicable R = Invalid Result, Refer to QC Report ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 17 March 1995

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	7 008 008	08-SB-02 08-SB-03 09-SB-01 09-SB-01 09-SB-01	1	10 - 10.5 $10 - 10.5$ $0 - 2$ $2.5 - 4.5$	ont. (mg/kg)	NA 0.0187 (0.00985) [1] ND (0.0109) [1]		NA 0.0609 (0.0133) [1] 0.0104 J (0.0147)	NA 0.213 (0.0163) [1] 0.0341 (0.0179)	NA 0.321 (0.0188) [1] 0.0397 (0.0207)	NA 0.717 F (0.0329) [1] 0.0875 F (0.0363)	ND (0.0408)	0.0875 F (0.0399)	NA ND (1.40) [1] ND (1.54)	NA NA NA NO (0.0221) [1] ND (0.0244) [1]		NA 0.396 (0.0195) [1] 0.0520 (0.0215)	NA 0.0266 (0.0117) [1] ND (0.0130)	NA ND (0.0128) [1] ND (0.0141)	NA ND (0.0294) [1] ND (0.0324)	NA 0.0146 J (0.0195) [1] ND (0.0215)	NA ND (0.0187) [1] ND (0.0206)	ND (0.0122) [1] ND (0.0134)	NA ND (0.00974) [1] ND (0.0108)	NA 0.403 (0.0171) [1] 0.0528 (0.0188)	NA 0.0156 (0.0138) [1] ND (0.0152) [1]	NA ND (0.0114) [1] ND (NA NA ND (0.0185) [1] ND (0.0205) [1]	ND (0.235)	
BEG.	7	08-SB-02	08-SB-02-01	10 - 10.5	!	NA NA																								477
				PARAMETER	SW8270 - Semivolatile Organics, cont.	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Butylbenzylphthalate	Chrysene	Di-n-butylphthalate	Di-n-octylphthalate	Dibenz(a,h)anthracene	Dibenzofuran	Diethylphthalate	Dimethylphthalate	Diphenylamine/N-NitrosoDPA	Fluoranthene	Fluorene	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

				BEG. DEP	SITE ID LOCATION ID SAMPLE ID TH - END DE	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	H.)								
	008 09-58-01 09-58-01-03	01 1-03		ے	008 09-58-01 09-58-01-04	11 - 04		1 0	008 10-SB-04 10-SB-04-01	4-01		<u> </u>	008 10-SB-04	٤ 5	
PARAMETER	25 - 25 - 27 - 27 - 27 - 27 - 27 - 27 -	20 7			7.5 - 9	9.5		2	0 - 2	10			3 - 5	70	
Diesel Range Organics (mg/kg)	10.0 JB (20.0)	[1]	1.00 JB)	20.0)	Ξ	57.0 B		20.0)	[1]	1.00 JB		20.0)	Ξ
Gasoline Range Organics (mg/kg) Gasoline Range Organics) 0.09	10.0)	[1]	6.00 J	_	10.0)	Ξ	0.00	J	10.0)	[1]	1.00 J	_	10.0)	[1]
Percent Solid (percent) Percent moisture	21.4 (0.00)	. [1]	14.7	J	00.00	Ξ	3.72	J	0.00)	[1]	23.8	J	0.00)	[1]
SW8240 - Volatile Organics (ug/kg)															
1,1,1-Trichloroethane) QN	7.00)	[1]	QN	J	7.00)	[1]	QN	_	6.00)	Ξ	. 2	_	7.00)	Ξ
1,1,2,2-Tetrachloroethane) ON	7.00)	Ξ	<u>P</u>	_	7.00)	[1]	ND	_	(00.9	Ξ	2	<u>, </u>	7.00)	[1]
1,1,2-Trichloroethane) ON	. 7.00)	Ξ	ON	J	7.00)	[1]	ON	J	(00.9	Ξ	9	J	7.00)	[1]
1,1-Dichloroethane) QN	7.00)	[1]	Q	_	7.00)	[1]	QN	J	(00.9	Ξ	Q	_	7.00)	[1]
1,1-Dichloroethene) ON	7.00)	[1]	ON	_	7.00)	[1]	QN	_	(00.9	Ξ	Q	J	7.00)	[1]
1,2-Dichloroethane) ON	7.00)	Ξ	QN	J	7.00)	Ξ	QN	_	(00.9	Ξ	QN	_	7.00)	Ξ
1,2-Dichloropropane) QN	7.00)	Ξ	S	_	7.00)	Ξ	QN	_	(00.9	Ξ	2	J	7.00)	[]
2-Butanone(MEK)	ON :	40.0)	Ξ	QN		40.0)	Ξ	QN	_	30.0)	Ξ	Q	_	40.0)	Ξ
2-Chloroethyl vinyl ether) QN	7.00)	Ξ	2		7.00)	Ξ	Q	_	(00.9	Ξ	2	_	7.00)	[1]
2-Hexanone) ON	40.0)	Ξ	Q	_	40.0)	Ξ	N N	_	30.0)	Ξ	QN	_	40.0)	[1]
4-Methyl-2-pentanone(MIBK)		40.0)	Ξ	Q	_	40.0)	Ξ	QN	Ų	30.0)	[1]	QN	_	40.0)	Ξ
Acetone	8.90 JB (100)	Ξ	8.00 JB	<u> </u>	100)	Ξ	7.00 JB	_	100)	Ξ	13.0 JB	_	100)	Ξ
Benzene) ON	7.00)	Ξ	1.60 J	_	7.00)	[1]	1.00 J	_	6.00)	Ξ	16.0	_	7.00)	[1]
Bromodichloromethane) ON	7.00)	Ξ	Q	J	7.00)	[1]	QN	_	6.00)	Ξ	S	_	7.00)	[1]
Bromomethane) ON	7.00)	Ξ	Q	J	7.00)	Ξ	QN	_	(00.9	Ξ	QN	_	7.00)	[1]
Carbon disulfide) QN	10.0)	[]	QN	J	10.0)	Ξ	QN	_	10.0)	[1]	QN	_	10.0)	Ξ
Compiled: 17 March 1995 ()) = Detection Limit		= Dilution Fa	Factor ND		= Not Detected	NA =	= Not Applicable	~	- Invalid	Pecul+	= Invalid Result Refer to Of Benort	Penort		
		3				,		ישהיו ולאט זמו	€	5 2 3	NC301 F	עפופו הם לה	י בטקטע	•	,

PARAMETER	(ug/kg) ND ND 008 09-SB-01 09-SB-01-	008 09-\$8-01 09-\$8-01 5 - 7 7 .00) (SITE I LOCATION SAMPLE 008 09-SB-01- 7.5 - 9.	SITE 1D LOCATION 1D SAMPLE 1D 008 09-SB-01 09-SB-01-04 7.5 - 9.5 7.00) [1] (7.00) [1]	£ 22222222222222223	ON ON ON ON ON ON ON ON ON ON ON ON ON O	008 10-SB-04 10-SB-04-01 10-SB-04-01 (6.6. (6.6.	88-04 8-04-01 - 2 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00) 6.00)	222222222222222		008 10-58-04 10-58-04-02 3 - 5 3 - 5 7 . (7	8 04-02 5 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00) 7.00)		
tnene ropene e Organics ene	ND ND (mg/kg)		7.00) 7.00) 0.0249)	E E	ON ON ON		7.00) 7.00) 0.0229)	25 3	ON ON		6.00)	E E	O O O		7.00) 7.00)	22 E
1,2-Dichlorobenzene	QN	<u> </u>	0.0269)	[1]	Q	_	0.0248)	[1]	ON	_	0.0269)	[1]	QN		0.0340)	

ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 17 March 1995

NA = Not Applicable

R = Invalid Result, Refer to QC Report

						SITE ID	10									
						LOCATI	LOCATION ID									
						SAMPLE ID	E 10									
					BEG. D	EPTH - E	DEPTH - END DEPTH (FT.)	FT.)								
		0	800			008				0	800			008	80	
		09-SB-01	B-01			09-58-01	01			10-S	10-SB-04			10-SB-04	-04	
		09-SB				09-SB-01-04	1-04			10-SB				10-SB-04-02	04-02	
PARAMETER		٠,	- /	! ! !	1 1 1	7.5 -	9.5	1		. 0	- 2			m 1	ഹ	
SW8270 - Semivolatile Organics, o	cont. (mg/kg)	(g)] [[[] [
1,3-Dichlorobenzene	ON	_	0.0304)	Ξ	Q	_	0.0280)	Ξ	QN	_	0.0136)	Ξ	S	_	0.0173)	Ξ
1,4-Dichlorobenzene	Q	_	0.0249)	Ξ	Q	_	0.0229)	Ξ	QN	_	0.0279)	Ξ	Q	_	0.0353)	Ξ
2,4,5-Trichlorophenol	ON		0.0216)	[1]	ON	_	0.0198)	Ξ	QN	<u> </u>	0.0114)	Ξ	S	_	0.0144)	[1]
2,4,6-Trichlorophenol	ON	_	0.0215)	[1]	9	_	0.0197)	Ξ	QV	_	0.0120)	Ξ	S	_	0.0153)	[1]
2,4-Dichlorophenol	QN	_	0.0241)	Ξ	2	_	0.0222)	Ξ	QN	_	0.0153)	Ξ	ON	_	0.0194)	[]
2,4-Dimethylphenol	QN	_	0.0551)	Ξ	Q.	_	0.0507)	Ξ	QN	_	0.0379)	Ξ	QN	_	0.0481)	[1]
2,4-Dinitrophenol	QN	_	0.177)	Ξ	2	_	0.163)	Ξ	ON	_	0.241)	Ξ	ON	_	0.306)	Ξ
2,4-Dinitrotoluene	QN	_	0.0251)	[1]	2	_	0.0230)	Ξ	QN	_	0.0190)	Ξ	QN	_	0.0240)	Ξ
2,6-Dinitrotoluene	QN	<u> </u>	0.0365)	Ξ	Q	_	0.0336)	Ξ	Q.	_	0.0119)	Ξ	Q	_	0.0151)	Ξ
2-Chloronaphthalene	QN	_	0.0166)	Ξ	9	_	0.0153)	Ξ	QN	_	0.0112)	Ξ	ND	_	0.0142)	[1]
2-Chlorophenol	QN	_	0.0269)	Ξ	2	_	0.0248)	Ξ	QN	_	0.0263)	Ξ	QN	_	0.0334)	Ξ
2-Methylnaphthalene	0.0903	<u> </u>	0.0154)	Ξ	Q	_	0.0142)	Ξ	Q	_	0.0228)	Ξ	ON	_	0.0288)	Ξ
2-Methylphenol (o-cresol)	QN	_	0.0131)	Ξ	Q	_	0.0121)	Ξ	QN	_	0.0184)	Ξ	QN	_	0.0233)	Ξ
2-Nitroaniline	QN	_	0.0281)	[1]	Q	_	0.0259)	Ξ	Q	_	0.0139)	Ξ	QN	_	0.0176)	[1]
2-Nitrophenol	QN	_	0.0221)	[1]	9	_	0.0204)	Ξ	Q	_	0.0152)	Ξ	QN	_	0.0192)	Ξ
3,3'-Dichlorobenzidine	QN	_	0.0141)	[1]	2	_	0.0130)	Ξ	S	_	0.0169)	Ξ	QN	_	0.0214)	[1]
3-Nitroaniline	Q	_	0.0167)	[1]	2	_	0.0153)	Ξ	S	_	0.0175)	Ξ	ND	_	0.0222)	[1]
4,6-Dinitro-2-methylphenol	QN	_	0.0182)	Ξ	9	_	0.0168)	Ξ	Q	_	0.0273)	Ξ	QN	_	0.0346)	Ξ
4-Bromophenyl phenyl ether	Q	_	0.0205)	Ξ	2	_	0.0189)	Ξ	S	_	0.0157)	[1]	QN	_	0.0199)	Ξ
4-Chloro-3-methylphenol	QV	<u> </u>	0.0218)	Ξ	2	_	0.0201)	[1]	S	_	0.0249)	[1]	QN	_	0.0316)	[]
4-Chloroaniline	QN	_	0.0316)	Ξ	2	_	0.0291)	Ξ	S	_	0.0193)	Ξ	N	_	0.0244)	Ξ
4-Chlorophenyl phenyl ether	QN	_	0.0179)	Ξ	Q	_	0.0164)	Ξ	QN	_	0.0182)	Ξ	Q ,	_	0.0231)	[1]
4-Methylphenol(p-cresol)	QN	_	0.0195)	[1]	2	<u> </u>	0.0179)	Ξ	QN	_	0.0198)	Ξ	QN	_	0.0251)	Ξ
4-Nitroaniline	ND	_	0.0257)	Ξ	2	_	0.0236)	Ξ	QN	_	0.0167)	Ξ	QN	_	0.0212)	Ξ
4-Nitrophenol	Q	_	0.0397)	Ξ	S	_	0.0365)	[1]	QN	_	0.0238)	[1]	Q.	_	0.0302)	[1]
Compiled: 17 March 1995	() = Detection Limit	ion Lir	nit [] =	Dilution	Factor	ND = Not	Not Detected	NA =	Not Applicable	able	R = Invali	Invalid Result,	Refer to QC Report	QC Rep	ort	

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

					BEG. DI	SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	н (FT.)						
		-60	008 09-SB-01			09-S	008 09-SB-01		10.	008 10-58-04		1	008 10-SB-04	
PARAMETER		3-60	09-SB-01-03 5 - 7			09~SB-0 7.5 - 3	09~SB-01-04 7.5 - 9.5		10-	10-SB-04-01 0 - 2		10	10-SB-04-02 3 - 5	
SW8270 - Semivolatile Organics, cont.	cont. (mg/kg)	g)	; ; ; ; ; ; ; ; ; ; ;	! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t t 1	! ! ! ! !				 			
Acenaphthene	QN	_	(0.0115)	[1]	QN	_	0.0106)	[1]	QN	(0.0165)	(11)	ON	(0.0209)	[1]
Acenaphthylene	ON	_	(0.0177)	[1]	ON	<u> </u>	0.0163)	[1]	QN	(0.00779)	(1]	ND	(0.00988)	[1]
Anthracene	ON	_	(0.0156)	Ξ	Q	<u> </u>	0.0144)	[1]	QN	(00200)		QN	(0.0254)	Ξ
Benzo(a)anthracene	0.0136		(00:0100)	[1]	Q	_	0.0175)	[1]	ON ON	(0.0178)	(11)	ON	(0.0225)	Ξ
Benzo(a)pyrene		ر ر	(0.0220)	Ξ	S	<u> </u>	0.0202)		0.0105 J	(0.0132	[1]	0.00940	(0.0167)	Ξ
Benzo(b)fluoranthene			(0.0385)	[1]	2	_	0.0354)	Ξ	0.0131 FJ (0.0196	_	QN	(0.0249)	Ξ
Benzo(g,h,i)perylene		_	(0.0433)	Ξ	2	_	0.0398)	[]	0.0208	(0.0168)	_	QN	(0.0213)	Ξ
Benzo(k)fluoranthene	0.0203) E	(0.0424)	[1]	S	_	0.0390)	[1]	0.0131 FJ (0.0334	_	QN	(0.0423)	Ξ
Benzoic acid	NO	_	(1.64)	Ξ	QN	<u> </u>	1.51)	Ξ	ON ON	(0.137)		ON	(0.173)	Ξ
Benzyl alcohol	QN	_	(0.0259)	[1]	QN	_	0.0238)	[1]	ON ON	(0.0372)	_	ON	(0.0472)	Ξ
Butylbenzylphthalate 	QN	_	(0.0265)	Ξ	ON	_	0.0244)	Ξ) ON	(0.0135)	_	QN	(0.0172)	Ξ
Chrysene	0.0254	_	(0.0228)	[1]	NO	_	0.0209)	[1]	0.0144 J (0.0231	_	ON	(0.0292)	[1]
Di-n-butylphthalate	QN	_	(0.0137)	Ξ	2	_	0.0126)	[1]) QN	0.0170	_	QN	(0.0215)	Ξ
Di-n-octylphthalate	QN	_	(0.0149)	[]]	Q.	_	0.0137)	[]) ON	0.0314	[1]	QN	(0.0398)	Ξ
Ulbenz(a,h)anthracene	Q :	<u> </u>	0.0344)	Ξ	QN	_	0.0316)	Ξ	ON ON	0.0163	_	ON	(0.0207)	[]
Ulbenzoturan	Q :		0.0228)	Ξ	QN	_	0.0209)	Ξ) QN	0.0141		QN	(0.0178)	[1]
Ulethyiphthalate	Q.	<u> </u>	0.0218)	Ξ	QN		0.0201)	Ξ) ON	0.0116)		ON	(0.0147)	[1]
Ulmethy/phthalate	QN		0.0142)	Ξ	Q	_	0.0131)	[1]) ON	0.00965)	_	ON	(0.0122)	Ξ
Ulphenylamine/N-NitrosoDPA	Q	_	0.0114)	Ξ	S	_	0.0105)	Ξ) QN	0.0195)		QN	(0.0247)	[1]
Fluoranthene	0.0185)	0.0200)	Ξ	QN	_	0.0184)	[1]	0.0200 J (0.0220)	_	QN	(0.0279)	[1]
Fluorene	ON	_	0.0161)	Ξ	QN	_	0.0148)	Ξ) ON	0.0116	_	ND	(0.0147)	[1]
Hexachlorobenzene	QN	_	0.0133)		N	_	0.0122)	Ξ) QN	0.00807)	_	QN	(0.0102)	[1]
Hexachlorobutadiene	ON.	_	0.0217)	Ξ	9	_	0.0200)	[1]) ON	0.0241	_	ON	(0.0305)	[1]
Hexachlorocyclopentadiene	QN	<u> </u>	0.250)	Ξ	R	_	0.230)	[1]) QN	0.307)	[]	QN	(0.390)	[1]
Hexachloroethane	ND	_	0.0269)	[1]	Q	_	0.0248)	[1]) QN	0.0205)	[1]	QN	(0.0260)	[1]

() = Detection Limit

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

	800	09-58-01	09-58-01-03	PARAMETER 5 - 7		Indeno(1,2,3-cd)pyrene ND (0.0564)	Isophorone (0.0261)	N-Nitroso-di-n-propylamine ND (0.0277)	Naphthalene 0.115 (0.0203)	Nitrobenzene ND (0.0357)	Pentachlorophenol 0.0377)	Phenanthrene 0.0188 J (0.0198)	ND (0.0374)	0.0241 (0.0173)	bis(2-Chloroethoxy)methane ND (0.0257)	bis(2-Chloroethyl)ether ND (0.0162)	bis(2-Chloroisopropyl)ether ND (0.0338)	bis(2-Ethylhexyl)phthalate ND (0.0246)
BEG.						[1] ND	[1] ND	[1] ND	[1] ND	[1] ND					[1] ND		[1] ND	
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	800	09-SB-01	09-SB-01-04	7.5 - 9.5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
) ID О ОЕРТН (FT.)			14			0.0519) [1]									0.0236) [1]			0.0227) [1]
			• • • • • • • • • • • • • • • • • • • •		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QN	ON	QN		QV		0.00955 JB	ON	0.0182	ON	ND		0.0679
	800	10-SB-04	10-58-04-01	0 - 2	1 t 1 1 1 t t 1 1 1 1 1 1 1 1 1 1 1 1 1	(0.0181)	(0.00989)	(0.0259)	(0.0251)	(0.0182)	(0.0298)	_	(0.0138)	(0.0161)	(0.0194)	(0.0252)	(0.0250)	(0.0631)
						Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]
		1	10		 	QN	Q	N	QN	ND	QN	Q.	N	QN	QN	QN QN	S	Q.
	800	0-SB-04	-SB-04-02	3 - 5	! ! ! ! ! ! !	(0.0229)	(0.0125)	(0.0328)	(0.0319)	(0.0231)	(0.0378)	(0.0272)	(0.0174)	(0.0205)	(0.0246)	(0.0320)	(0.0317)	(00800)
						Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[]	[1]			

					BEG. DI	SITI LOCAT SAMPI EPTH - I	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	(FT.)									1
PARAMETER	10.	008 10-SB-04 10-SB-04-03 7 - 9	13			008 10-SB-04 10-SB-04-04 10 - 12	3 -04 14-04			008 10-SB-05 10-SB-05-01 0 - 2	5-01 2			008 10-SB-05 10-SB-05-02 3 - 5	3 .05 15-02 5		
Diesel Range Organics (mg/kg)	0.00	2	20.0)		1.00	JB (20.0)	[1]	1000		20.0)		720	_	20.0)	[10]	
Gasoline Range Organics (mg/kg) Gasoline Range Organics	0.00	,	10.0)	[1]	0.00	JB (10.0)	[1]	2.00 J	_	10.0)	[1]	2500	J	10.0)	[100]	
Percent Solid (percent) Percent moisture	5.46	0)	0.00)	[1]	4.95	<u> </u>	0.00)	[1]	69.9	J	0.00)	[1]	24.8	_	0.00)	[1]	
SW8240 - Volatile Organics (ug/kg)																	
1,1,1-Trichloroethane	QN	. 2	5.00)	[1]	QN	_	6.00)	[1]	QN	_	400)	[4]	ND	_	300)	[2]	
I,I,Z,Z-letrachloroethane	QN :	. 2	5.00)	Ξ	Q.	_	(00'9	Ξ	QN	~	400)	[4]	N N	_	300)	[2]	
I,I,Z-Irichloroethane	QN :	. 2	5.00)	Ξ	S	_	(00.9	[1]	QN	_	400)	[4]	QN	_	300)	[5]	
1,1-Dichloroethane	QN	(2	5.00)	\Box	ON	_	(00'9	Ξ	ON	Ų	400)	[4]	QN	_	300)	[2]	
1,1-Dichloroethene	QN	(2	5.00)	Ξ	QN	_	6.00)	[1]	N	_	400)	[4]	QN		300)	[2]	
1,2-Dichloroethane	ON :	22	5.00)	[1]	ON	_	6.00)	[1]	QN	_	400)	[4]	QN		300)	[2]	
1,2-Ulchloropane	QN :	2	(00)	[1]	QN	_	(00'9	[1]	ON	_	400)	[4]	QN	_	300)	[2]	
Z-Butanone(MEK)	Q :	3	30.0)	Ξ:	QN	_	30.0)	[1]	N Q	_	2000)	[4]	QN	_	1000)	[2]	·
<pre>2-Unloroethyl vinyl ether 2</pre>	QN	2	5.00)	Ξ	2	_	(00.9	Ξ	S	_	400)	[4]	QN	_	300)	[5]	
Z-Hexanone	QN	3(30.0)	Ξ	Q	_	30.0)	[1]	S	_	2000)	[4]	QN	_	1000)	[2]	
4-Methyl-2-pentanone(MIBK)		3(30.0)	Ξ	2	_	30.0)	Ξ	N N	_	2000)	[4]	8		1000)	[2]	
Acetone	6.20 JB	_	100)	Ξ	3.90 3	JB (100)	Ξ	QN	_	8000)	[4]	Q.	_	2000)	[2]	
Benzene	QN	. 5	5.00)	[1]	N	_	(00.9	Ξ	N	_	400)	[4]	6200		300)	[2]	
Bromodichloromethane	QN	, 2,	5.00)	[]	ND	_	6.00)	[1]	S	_	400)	[4]	QN		300)	[2]	
Bromomethane	QN	, 5,	5.00)	[1]	N _O	_	(00'9	[1]	Q	_	400)	[4]	Q		300)	[2]	
Carbon disulfide	QN	(10	10.0)	[1]	ND	_	10.0)	[1]	QN	_	800)	[4]	ND		500)	[2]	
																1	

[] = Dilution Factor () = Detection Limit

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

)07 	SITE ID LOCATION ID SAMPLE ID						i			
					BEG.	DEPTH	DEPTH - END DEPTH (FT.)	IH (FT.)								
		J	800				800			J	800			008	œ	
		10-SE	10-SB-04 10-SB-04-03			10-9-	10-SB-04 10-SB-04-04			10-SF	10-SB-05 10-SB-05-01			10-SB-05 10-SB-05-02	-05 05-02	
PARAMETER		7	6			Ä	10 - 12			0	- 2			ر ا	2	
SW8240 - Volatile Organics, cont.	. (ug/kg)	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			 	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !		1	 	
Carbon tetrachloride		<u> </u>	5.00)	Ξ	QN		(00.9)	[1]	QN	_	400)	[4]	QN	_	300)	[5]
Chlorobenzene	QN	<u> </u>	5.00)	Ξ	SN.		(00.9)	[1]	ON)	400)	[4]	2	_	300)	[2]
Chloroethane	ON	_	5.00)	Ξ	ON		(00.9)		ON)	400)	[4]	N N	<u> </u>	300)	[2]
Chloroform	Q	_	5.00)	Ξ	ON		(00.9)		QN)	400)	[4]	R	_	300)	[2]
Chloromethane	Q	_	5.00)	[]	S		(00.9)		QN	_	400)	[4]	QN	_	300)	[2]
Dibromochloromethane	ON	_	5.00)	Ξ	QN		(00.9)		QN	_	400)	[4]	QN	_	300)	[2]
Ethylbenzene	QN	_	5.00)		QN		(00.9)		4900)	400)	[4]	8200	<u> </u>	300)	[2]
Methylene chloride	N.	_	5.00)		QN		(00.9)		S)	400)	[4]	QN	_	300)	[5]
Styrene	QN.	_	5.00)		QN.		(00.9)		S	<u> </u>	400)	[4]	QN	<u> </u>	300)	[2]
Tetrachloroethene	R	_	5.00)		ON		(00.9)	E] (S	_	400)	[4]	QN	_	300)	[2]
Toluene	S	_	5.00)	Ξ	QN		(00.9)		QN N	_	400)	[4]	36000	_	300)	[2]
Tribromomethane(Bromoform)	9	_	5.00)	[1]	QN		(00.9)		S)	400)	[4]	ON	<u> </u>	300)	[2]
Trichloroethene	8	_	5.00)	[]	QN		(00.9)	(E)	S	<u> </u>	400)	[4]	ND	_	300)	[2]
Vinyl acetate	S	_	50.0)	[1]	S		(0.09)		QN	_	4000)	[4]	QN	<u> </u>	3000)	[2]
Vinyl chloride	N		5.00)	Ξ	ON		(00.9)	(E)	N	_	400)	[4]	QN	_	300)	[2]
cis-1,2-Dichloroethene	S	_	5.00)	Ξ	QN		(00.9)		S	_	400)	[4]	QN	_	300)	[2]
cis-1,3-Dichloropropene	Q.	_	5.00)		QN		(00'9)		QN	_	400)	[4]	QN	<u> </u>	300)	[2]
m & p-Ху]ene	S	_	20.0)	_	QN N		(20.0)		3800	<u> </u>	1000)	4	28000	_	800)	[2]
o-Xylene	S	_	10.0)		S		(10.0)		8800	_	800)	[4]	8100	_	200)	[2]
trans-1,2-Dichloroethene	ON	_	5.00)	_	ON		(00.9)	(1)	ON	_	400)	[4]	QN	_	300)	[2]
trans-1,3-Dichloropropene	ON	_	5.00)	[1]	QN		(00'9)		QN	_	400)	[4]	ON	_	300)	[2]
SW8270 - Semivolatile Organics ((mg/kg)															
1,2,4-Trichlorobenzene	QN	_	0.0208)	Ξ	ON		(0.0207)	(13)	ON.	_	0.0620)		ON N	_	0.745)	
1,2-Dichlorobenzene	ON	_	0.0274)	[1]	ON		(0.0272).		QN	_	0.0669)	Ξ	QN	-	0.804)	Ξ
Compiled: 17 March 1995	() = Deter	= Detection Limit		= Dilution	on Factor	S	Not Detected	ted NA	= Not Applicable	icable	R = Inva	lid Resu	= Invalid Result, Refer to QC Report	o QC Rep	ort	A9-79

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

					BEG. DE	SITI LOCAT SAMPU	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	(FT.)								
PARAMETER		008 10-SB-04 10-SB-04-03 7 - 9	-03			008 10-58-04 10-58-04-04 10 - 12	8 -04 34-04 12			008 10-SB-05 10-SB-05-01 0 - 2	05 5-01 2		1	008 10-SB-05 10-SB-05-02 3 - 5	; •05 •5-02 5	
SW8270 - Semivolatile Organics, cont.	(mg/kg)	1 1 1	1	!						 			1 	1		
1,3-Dichlorobenzene	Q	0	0.0139)	[1]	QN	_	0.0138)	[1]	ON	_	0.0756)	[1]	QN	_	0.908)	[1]
I,4-Dichlorobenzene	Q	0	0.0284)	[1]	N N	_	0.0283)	[1]	ON	_	0.0620)	[1]	QN		0.745)	ΞΞ
2,4,5-Irichlorophenol	9 :	o .	0.0116)	Ξ	QN	_	0.0115)	[1]	QN	_	0.0536)	[1]	ON		0.645)	ΞΞ
2,4,0-Irichiorophenol	2 9	o ,	0.0123)	Ξ	Q.		0.0122)	[1]	ND	_	0.0533)	[1]	QN	_	0.641)	[1]
2,4-Dichiorophenol	2 :	0 0	0.0156)	Ξ	Q.		0.0155)	[1]	QN	_	0.0600)	[1]	QN	_	0.721)	[1]
2,4-Dimetry/phenol 2 4-Dimitronhenol	2 0	o``	0387)	Ξ.	2	_ 、	0.0385)	Ξ	QN		0.137)	[1]	ND	_	1.65)	[1]
2.4-Dinitrotoluene	2 5		0.246)	ΞΞ	2 9	_ 、	0.245)	ΞΞ	2		0.440)	[1]	QN	_	5.29)	[1]
2 6-Dinitrotolugue	2 5		0194)	ΞΞ	2 9	_ 、	0.0192)		S		0.0623)	[1]	9	_	0.748)	[1]
2-Chloropanhthalono	2 5		0.0122)	ΞΞ	운 :	_ 、	0.0121)	Ξ	2	_	0.0907)	Ξ	2	_	1.09)	[1]
2-Chlorophanal	2 5		0.0114)	Ξ:	2 :	_ 、	0.0113)	Ξ	2	_	0.0413)	Ξ	2	_	0.496)	[1]
2-Mathylmanhthalono	2 5		0.0269)	ΞΞ	2 :	_ 、	0.0267)	Ξ	2	_	0.0669)	Ξ	QN	_	0.804)	[1]
2-Methylphenol (o-cresol)	S S		0.0232)	ΞΞ	2 9	_ 、	0.0231)	Ξ3	0.750		0.0384)	Ξ	36.6	_	0.461)	[1]
2-Nitroaniline	2 5		0.0100)	ΞΞ	2 9	_ <	0.018/)	ΞΞ	2 :		0.0327)	Ξ:	Q.	_	0.393)	[1]
2-Nitrophenol	2 2	. 0	0.0155)	3 =	g Q		0.0141)	ΞΞ	2 2		0.0699)	<u> </u>	Q 9	_ 、	0.840)	ΞΞ
3,3'-Dichlorobenzidine	2	. 0	0.0172)]]	2 S	ـ ـ	0.0171)	[1]	Q Q		0.0550) 0.0351)	E E	2 2		0.661)	33
3-Nitroaniline	N N	(0.	0.0179)	Ξ	QN	_	0.0178)	Ξ	Q.		0.0414)	ΞΞ	2		0.498)	[1]
4,6-Dinitro-2-methylphenol	ND	(0.	0.0279)	[1]	ND	_	0.0277)	[1]	S		0.0453)	Ξ.	Q		0.545)	E E
4-Bromophenyl phenyl ether	S	(0.	0.0160)	[1]	QN	_	0.0159)	[1]	ON	_	0.0510)		QN	<i>-</i> _	0.613)	ΞΞ
4-Chloro-3-methylphenol	QN	0 .	0.0254)	Ξ	ON	Ū	0.0253)	[1]	QN	_	0.0543)	ΞΞ	QN		0.652)	ΞΞ
4-Chloroaniline	2	· •	0.0197)	Ξ	N Q	_	0.0196)	[1]	909.0	_	0.0785)	[1]	2.38		0.944)	
4-Chlorophenyl phenyl ether	2	.0	0.0186)	Ξ	QN	_	0.0185)	Ξ	ON	_	0.0444)	[1]	QN		0.533)	ΞΞ
4-Methylphenol(p-cresol)	QN	· 0	0.0202)		ON	_	0.0201)		ND	_	0.0484)	[1]	S		0.581)	
4-Nitroaniline	2		0.0170)	[1]	S	_	0.0169)	[1]	S	_	0.0639)	[1]	S	_	0.767)	: =
4-Nitrophenol	Q)	0.0243)	[1]	QN	_	0.0242)	[1]	NO	_	0.0987)	[1]	QN		1.19)	

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

R = Invalid Result, Refer to QC Report

A9-80

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

		:				SITH LOCATH SAMPL	SITE ID LOCATION ID SAMPLE ID									
					BEG. DEP	1 - HT	DEPTH - END DEPTH (FT.)	(FT.)								
		900				008	8			008	æ			008		
	,	10-SB-04)4		•	10-SB-04	-04			10-SB-05	-05			10-SB-05	35	
PARAMETER	-	10-SB-04-03 7 - 9	4-03 9		-	10-SB-04-04 10 - 12	04-04 12		. •	10-SB-05-01 0 - 2	05-01 2		.	10-SB-05-02 3 - 5	5-02 5	
	1			:	1		!		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	‡ ! !
SW8270 - Semivolatile Organics, cont.	(mg/kg)															
Acenaphthene	2	_	0.0168)	Ξ	욷	_	0.0167)	Ξ	Q	_	0.0287)	Ξ	2	_	0.344)	Ξ
Acenaphthylene	QN	· •	0.00795)	Ξ	2	_	0.00790)	Ξ	QN	_	0.0440)	Ξ	QN	J	0.529)	Ξ
Anthracene	Q	_	0.0204)	[1]	문	_	0.0203)	[1]	S	_	0.0388)	[1]	ON	_	0.466)	[1]
Benzo(a)anthracene	Q.	_	0.0181)	Ξ	2	_	0.0180)	Ξ	ND	_	0.0473)	[1]	ON	_	0.569)	[1]
Benzo(a)pyrene	QN	_	0.0135)	[1]	9	_	0.0134)	[1]	ON	_	0.0546)	[1]	Q.	_	0.656)	[1]
Benzo(b)fluoranthene	ON	_	0.0200)	[1]	2	_	0.0199)	[1]	ON	_	0.0957)	Ξ	QN	_	1.15)	Ξ
Benzo(g,h,i)perylene	Q	_	0.0171)	Ξ	Q.	_	0.0170)	Ξ	ON	_	0.107)	Ξ	9	_	1.29)	Ξ
Benzo(k)fluoranthene	Q	_	0.0341)	[]	9	_	0.0339)	[1]	2	_	0.105)	[1]	Q	_	1.27)	[1]
Benzoic acid	S	J	0.139)	Ξ	S	_	0.139)	[]	9	_	4.07)	[1]	QN	_	48.9)	[1]
Benzyl alcohol	Q.	_	0.0380)	Ξ	S	_	0.0378)	Ξ	ND	_	0.0643)	[1]	Q	_	0.773)	[1]
Butylbenzylphthalate	N Q	_	0.0138)	Ξ	2	_	0.0137)	Ξ	Q.	_	0.0659)	Ξ	QN	_	0.792)	[1]
Chrysene	S S	_	0.0235)	Ξ	2	_	0.0234)	Ξ	Q	_	0.0566)	Ξ	Q	_	0.680)	Ξ
Di-n-butylphthalate	Q.	_ _	0.0173)	Ξ	S	_	0.0172)	Ξ	QN	_	0.0341)	Ξ	S	_	0.410)	Ξ
Di-n-octylphthalate	S	_	0.0321)	Ξ	Q	_	0.0319)		S	_	0.0371)	Ξ	S	_	0.446)	Ξ
Dibenz(a,h)anthracene	Ş	_	0.0167)	Ξ	2		0.0166)	Ξ	2	_	0.0855)	Ξ	Q	_	1.03)	[1]
Dibenzofuran	2	_	0.0144)	Ξ	2		0.0143)	Ξ	S	_	0.0566)	Ξ	1.29	_	0.680)	Ξ
Diethylphthalate	2	_ 	0.0118)	Ξ	2	_	0.0118)	Ξ	2		0.0543)	Ξ	Q	_	0.652)	[1]
Dimethylphthalate	2	· ·	0.00985)	Ξ	2	_	0.00979)	Ξ	S	_	0.0354)	Ξ	S	_	0.426)	\Box
Diphenylamine/N-NitrosoDPA	Q	_	0.0199)	Ξ	2	_	0.0198)	Ξ	ND	_	0.0283)	[]	Q	_	0.341)	Ξ
Fluoranthene	8	_	0.0224)	Ξ	2	_	0.0223)	Ξ	0.0183 J	_	0.0496)	Ξ	Q	_	0.597)	Ξ
Fluorene	S	_	0.0118)	Ξ	2	_	0.0118)	Ξ	0.111	_	0.0400)	[1]	1.11	_	0.481)	[1]
Hexachlorobenzene	Q.	·0 •	0.00823)	Ξ	R	_	0.00818)	Ξ	Q.	_	0.0331)	[1]	Q.	_	0.398)	Ξ
Hexachlorobutadiene	S	_	0.0246)	Ξ	9	_	0.0244)	Ξ	S S	_	0.0540)	Ξ	S	J	0.648)	Ξ
Hexachlorocyclopentadiene	2	_	0.314)	Ξ	2	_	0.312)	Ξ	Q.	_	0.621)	Ξ	Q.	J	7.46)	Ξ
Hexachloroethane	Q	_	0.0209)	Ξ	2	_	0.0208)	Ξ	Q.	_	0.0669)	Ξ	2	_	0.804)	[1]

[] = Dilution Factor ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report () = Detection Limit Compiled: 17 March 1995

				 	[1]		ΞΞ	ΞΞ	[]	ΞΞ	Ξ	ΞΞ	Ξ	Ξ		[1]	ΞΞ
		.05 5-02	2 2		1.68)	0.780	0.828)	0.605)	1.07)	1.13)	0.593)	1.12)	0.517)	0.767)	0.485)	1.01)	0.736)
	008	10-SB-05-02		1 1 1	_	<i>-</i>		·	· _		_	_	_	_	_	_	_
					QN	S	Q.	23.8	QN	QN	ON	QN	QN	ON.	QN	ON	QN
					[1]		Ξ		Ξ	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
	20	5-01	2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.140)	0.0649)	0.0689)	0.0504)	0.0887)	0.0937)	0.0493)	0.0930)	0.0430)	0.0639)	0.0404)	0.0841)	0.0612)
	008 10-58-	.0-SB-0	0 - 2	1	_	_	_	_	_		_	_	_	_	_	_	_
					ND	ON	ON	0.228	QN	ON	0.0239 J	ON	0.0190 J	ND	ON	QN	QN
(FT.)				!	[1]	[1]	[1]	[]	[1]	[1]	[1]	[1]	[1]		Ξ	[1]	[1]
SITE ID LOCATION ID SAMPLE IO DEPTH - END DEPTH (FT.)	3-04	.04-04	10 - 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0184)	0.0100)	0.0263)	0.0255)	0.0185)	0.0302)	0.0218)	0.0140)	0.0164)	0.0197)	0.0256)	0.0254)	0.0640)
SIT LOCAT SAMF	10-SE	10-SB-	10 -	1 1 1 1	_	_	_	_	_	_	_	_	_	_	_	_	_
BEG. I					QN	QN	ON	QN	Q.	ND	QN	QN	Q.	Q.	R	QN	QN
					[1]	[1]	Ξ	Ξ	Ξ	[1]		Ξ	\Box		Ξ		[1]
ď	-04	04-03	6		0.0185)	0.0101)	0.0264)	0.0257)	0.0186)	0.0304)	0.0219)	0.0140)	0.0165)	0.0198)	0.0258)	0.0255)	0.0644)
α C	10-SB-04	10-88-04-03	7 - 9	~	_	_	_	_	_	_	_		_	_			_
				(mg/kg)	QN	QN	2	2	9	Q.	2	2	S	QN	Q.	2	2
			PARAMETER	SW8270 - Semivolatile Organics, cont.	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	rnenanthrene 	101	ene	bis(2-Chloroethoxy)methane	DIS(Z-Unioroethyl)ether	bls(z-chloro)sopropyl)ether	Dis(2-Ethylhexyl)phthalate
			PARAM	SW8270	Inden	Isoph	N-Nit	Napht	Nitro	Penta	Phena	Phenol	Pyrene	5) stq	7)sta	2)sta	2)sta

NA = Not Applicable R = Invalid Result, Refer to QC Report () = Detection Limit [] = Dilution Factor ND = Not Detected Compiled: 17 March 1995

SITE ID SAMPLE ID BEG. DEPTH (FT.)	008 008 10-58-05 10-58-05	10-SB-05-02 Dup of 10-SB-05-03 10-SB-05-04 10-SS-07-01 10-SB-05-02	3-5 $8-10$ $11-13$ $0-0.5$	cs (mg/kg) nics 490 (20.0) [10] 1800 (20.0) [10] 4400 (20.0) [10] NA	nnics (mg/kg). Janics 7300 (10.0) [100] 2200 (10.0) [100] 4600 (10.0) [50] NA	cent) 25.2 (0.00) [1] 13.1 (0.00) [1] 7.84 (0.00) [1] 16.6 (0.00) [1]	Irganics (ug/kg)	lane ND (1000) [10] ND (1000) [10] ND (2000) [20] NA	ND (1000) [10] ND (1000) [10] ND (2000)	ND (1000) [10] ND (1000) [10] ND (2000)	ND (1000) [10] ND (1000) [10] ND (2000)	ND (1000) [10] ND (1000) [10] ND (2000) [20]	ND (1000) [10] ND (1000) [10] ND (2000) [20]	ND (1000) [10] ND (1000) [10] ND (2000) [20]	(7000) [10] ND (6000) [10] ND (12000) [20]	ND (1000) [10] ND (1000) [10] ND (2000) [20]	ND (7000) [10] ND (6000) [10] ND (12000) [20] NA	ne(MIBK) ND (7000) [10] ND (6000) [10] ND (12000) [20] NA	ND (27000) [10] ND (22000) [10] ND (47000) [20] NA	15000 (1000) [10] 14000 (1000) [10] 66000 (2000) [20] NA	ne ND (1000) [10] ND (1000) [10] ND (2000) [20] NA	NO (1000) [10] NA (1000) [10] NA
			PARAMETER	Diesel Range Organics (mg/kg)	Gasoline Range Organics (mg/kg) . Gasoline Range Organics	Percent Solid (percent) Percent moisture	SW8240 - Volatile Organics (ug/kg)	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	2-Butanone(MEK)	2-Chloroethyl vinyl ether	2-Hexanone	4-Methyl-2-pentanone(MIBK)	Acetone	Benzene	Bromodichloromethane	Bromomethane

	800	10-SS-07 10-SS-07-01	0 - 0.5																							
				1	NA	ΔN	X X	N A	NA	NA A	NA	AN	AN	NA	AN	AN	۸N	NA	NA	NA	NA	NA	NA	NA N	NA	NA
				; ; ; ; ;	[20]	[20]	[20]	[50]	[20]	[20]	[20]	[50]	[20]	[20]	[50]	[50]	[50]	[50]	[50]	[50]	[20]	[20]	[20]	[20]	[20]	[20]
	m .	-05)5-04	13		5000)	2000)	2000)	2000)	2000)	2000)	2000)	2000)	2000)	2000)	2000)	2000)	2000)	2000)	23000)	2000)	2000)	2000)	7000)	2000)	2000)	2000)
	800	10-SB-05 10-SB-05-04	11 -		_	<i>-</i>	. <u> </u>	_	_	_	_	_			_	_	_	_	_	_	_	_	_			
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QN	Q	ND	ON	QN	ON	QN	92000	N	Q.	ON	370000	QN	QN	QN	QN	ON	ON	350000	100000	QN	QN
H (FT.)				1	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]
SITE ID LOCATION ID SAMPLE ID TH - END DEPTH	~ or	-us 15-03	0	I I I I I	2000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	11000)	1000)	1000)	1000)	3000)	2000)	1000)	1000)
SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	008	10-58-05 10-88-05-03	8 - 10		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
BEG. [[Q	QN	QN	N	Q.	9 R	QN	29000	QN N	ON	ON	100000	QN	Q	ON	QN	QN	ND	120000	35000	ON	QN
		4_		[]] [] []	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]
	, 50.	02 02 Dup o 15-02	5	1 1 1 1 1 1	3000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	1000)	14000)	1000)	1000)	1000)	4000)	3000)	1000)	1000)
	008 10-58-05	10-SB-05-DS-02 Dup of 10-SB-05-02	· ~		_	_	_	_	_	_	· •	_	_	_	_	_	_		_	_	_	_	_	_	_	_
		10-8		(ug/kg)	ON	QN	QN	ON	QN	N	QN	24000	S	QN	QN	97000	S	Q	2	S	QN	QN	84000	23000	QN	QN
			PARAMETER	SW8240 - Volatile Organics, cont.	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chlorotorm	Chloromethane	Uibromochloromethane	thy!benzene	Methylene chloride	Styrene	etrach oroethene	loluene	ribromomethane(Bromoform)	rich oroethene	Vinyl acetate	Vinyl chloride	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	m & p-Xylene	o-Xylene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene

SW8270 - Semivolatile Organics (mg/kg)

Compiled: 17 March 1995

() = Detection Limit [] = Dilution Factor

ND = Not Detected NA = Not Applicable R = Invalid Result, Refer to QC Report

					:	SITE ID LOCATION ID	ID ON ID							
					BEG. DE	SAMPLE ID PTH - END DI	SAMPLE ID DEPTH - END DEPTH (FT.)	FT.)						
		800				900				800			008	
	1	10-SB-05	5			10-SB-05	05		10	10-SB-05			10-55-07	
	10-SB-C	-05-DS-02 D	10-SB-05-DS-02 Dup of 10-SB-05-02			10-SB-05-03	5-03		10-	10-SB-05-04			10-55-07-01	
PARAMETER		3 - 5				8 - 1	10		1	11 - 13			0 - 0.5	
SW8270 - Semivolatile Organics, cont.	. (mg/kg)													! ! ! ! ! !
1,2,4-Trichlorobenzene		_	0.763)	Ξ	QN	Ų	0.550)	[1]	QN	(0.560)	50) [1	_	NA	
1,2-Dichlorobenzene	ON	_	0.824)	Ξ	QN	J	0.594)	[]	QN	(0.604)	1) [1]		NA	
1,3-Dichlorobenzene	NO	_	0.931)	Ξ	QN	J	0.671)	Ξ	ND	(0.682)		_	NA	
1,4-Dichlorobenzene	NO	_	0.763)	Ξ	Q	_	0.550)	Ξ	ON	(0.560)		_	NA	
2,4,5-Trichlorophenol	Q.	_	0.661)	Ξ	Q	_	0.476)	[1]	QN	(0.484)		_	NA	
2,4,6-Trichlorophenol	S	_	0.657)	Ξ	QN	_	0.473)	Ξ	QN	(0.482)			NA	
2,4-Dichlorophenol	Q	_	0.739)	Ξ	Q	_	0.532)	Ξ	QN	(0.542)			NA	
2,4-Dimethylphenol	8	_	1.69)	Ξ	QN	<u> </u>	1.22)	[1]	QN	(1.	1.24) [1]		NA	
2,4-Dinitrophenol	S	_	5.43)	Ξ	QN	_	3.91)	Ξ	QN	3.9	3.98) [1]	-	NA	
2,4-Dinitrotoluene	N N	_	0.767)	Ξ	Q	J	0.553)	Ξ	ON	(0.563)			NA	
2,6-Dinitrotoluene	R	_	1.12)	Ξ	Q	_	0.806)	Ξ	QN	(0.820)			NA	
2-Chloronaphthalene	S	_	0.509)	Ξ	Q	_	0.367)	Ξ	QN	(0.373)		 ,	NA	
2-Chlorophenol	N S	_	0.824)	Ξ	Q	_	0.594)	Ξ	QN	(0.604)	٠		NA	
2-Methylnaphthalene	29.3	_	0.472)	Ξ	9.59	_	0.341)	Ξ	QN	(0.346)			NA	,
2-Methylphenol (o-cresol)	S	_	0.402)	Ξ	QN	<u> </u>	0.290)	[1]	ND	(0.295)			NA	
2-Nitroaniline	S	_	0.861)	Ξ	Q	_	0.620)	[1]	QN	(0.631)			NA	
2-Nitrophenol	S	_	0.678)	Ξ	Q	_	0.488)	Ξ	QN	(0.497)		_	NA	
3,3'-Dichlorobenzidine	ND	_	0.432)	[1]	QN	_	0.312)	Ξ	QN	(0.317)			NA	
3-Nitroaniline	S	_	0.510)	Ξ	QN	_	0.368)	[1]	QN	(0.374)			NA	
4,6-Dinitro-2-methylphenol	S	_	0.558)	[]	QN	_	0.402)	Ξ	QN	(0.409)			NA	
4-Bromophenyl phenyl ether	Q	_	0.628)	[1]	QN)	0.453)	[]	QN	(0.461)			NA	
4-Chloro-3-methylphenol	QN	_	0.668)	[1]	QN	_	0.482)	Ξ	Q	(0.490)			NA	
4-Chloroaniline	1.88	J	0.967)	Ξ	ON	_	0.697)	Ξ	ON	(00.709)	13) [1]	_	NA	
4-Chlorophenyl phenyl ether	QN	_	0.546)	[1]	Q.	_	0.394)	Ξ	ON O	(0.401)	01) [1]		NA	
Compiled: 17 March 1995 ()	= Detection Limit	Limit	= 0	Dilution F	Factor N	ND = Not	Not Detected	NA =	Not Applicable	# ~	nvalid Re	sult, Ref	Invalid Result, Refer to QC Report	

A9-85

BEG. D	800	10-88-05	10-SB-05-DS-02 Dup of 10-SB-05-02	3 : 5	SW8270 - Semivolatile Organics, cont. (mg/kg)	ND (0.596) [1] ND	ND (0.787) [1] ND	(1.22)	(0.353)	(0.543)	(0.478)	(0.583)	(0.672) [1]	(1.18) [1]	(1.32)	(1.30)	(50.1) [1]	(0.792)		(0.697)	(0.421)	(0.457) [1]	(1.05)	(0.697) [1] 0.314	(0.668)	(0.436)	(0.349) [1]	(0.611)	0.328
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	800	10-SB-05	10-SB-05-03	8 - 10		ND (0.429) [1]	ND (0.567) [1]	(0.877)	(0.254)	(0.391)	(0.344)	(0.420)	(0.485)	(0.849)	(0.954)	(0.935)	_	(0.571)	(0.585)	(0.502)	(0.303)	(0.329)	(0.759)	J (0.502)	ND (0.482) [1]	(0.314)	(0.252)	(0.441)	J (0.356)
	008	10-58-05	10-SB-05-04	11 - 13		ND (0.437) [1]	. <u> </u>			ND (0.398) [1]	ND (0.350) [1]							ND (0.581) [1]	ND (0.595) [1]	ND (0.511) [1]	ND (0.308) [1]	ND (0.335) [1]	ND (0.772) [1]	0.306 J (0.511) [1]	ND (0.490) [1]	ND (0.320) [1]			0.305 J (0.362) [1]
	800	10-55-07	10-55-07-01	0 - 0.5		4 N	NA	NA	AN	AN	NA	NA	NA	NA	N	NA	NA	NA	AN	NA	AN	AN	NA	NA	AN	NA	NA	NA	NA

R = Invalid Result, Refer to QC Report NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 17 March 1995

A9-86

	008	10-55-07 10-55-07-01	0 - 0.5																													
				! ! ! ! !	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA											
					Ξ	Ξ	Ξ	Ξ	[]	[1]	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	[]	Ξ	Ξ											
		5-04	13	1 1 1 1	0.299)	0.487)	5.61)	0.604)	1.27)	0.586)	0.622)	0.455)	0.801)	0,846)	0.445)	0.840)	0.388)	0.577)	0.365)	0.760)	0.553)											
	008	10-SB-05-04	11 - 13	: : : : :	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_											
					ND	QN	Q	QN	QN	S	S	1.68	QN	Q.	Q	R	QN	QN	S	QN	S											
(FT.)				: : : : :	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ											
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	ų	5-03		 	0.294)	0.479)	5.51)	0.594)	1.24)	0.576)	0.612)	0.447)	0.788)	0.832)	0.438)	0.826)	0.382)	0.567)	0.358)	0.747)	0.544)											
SITE ID LOCATION ID SAMPLE ID EPTH - END DE	008	10-38-03	8 - 10	: : : : : :	J	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_											
BEG. DE				 	N	N	2	S	S	QN	S	3.18	2	QN	0.261	Q	QN	Q	ON	ND	8											
					Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ			Ξ	[1]											
	ř	10-SB-05-DS-02 10-SB-05-DS-02 10-SB-05-02	. 10		0.408)	0.665)	7.64)	0.824)	1.73)	0.800)	0.849)	0.620)	1.09)	1.15)	0.607)	1.15)	0.530)	0.787)	0.497)	1.04)	0.754)											
	008 10-88-05	10-38-03 3-05-DS-02 10-88-05-02	3 - 6	d)	(b)	g)	g)		3 - 5		! _	! _	! _	(1)	(1)	Ų	_	_	_	_	_	_	J	_	_	_	_	_	_	_	_	_
		10-SE		. (mg/kg)	QN	QN	QN	QN	QN	QN	R	18.1	Q	QN	Q	S	QN	Q	Q	8	QN											
		·	PARAMETER	SW8270 - Semivolatile Organics, cont.	Hexachlorobenzene	Hexachlorobutadiene	Hexachlorocyclopentadiene	Hexachloroethane	Indeno(1,2,3-cd)pyrene	Isophorone	N-Nitroso-di-n-propylamine	Naphthalene	Nitrobenzene	Pentachlorophenol	Phenanthrene	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate											

	008 10-SS-10 10-SS-10-01	(0.00)
	008 10-SS-09 .0-SS-09-DS-01 Dup of 10-SS-09-01	
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	008 10-5S-09 10-SS-09-01	8.91 (0.00) [1] 9.16
	008 10-55-08 10-55-08-01 0 - 0.5	11.2 (0.00) [1]
	PARAMETER	Percent Solid (percent) Percent moisture

		Percent Solid (percent) Percent moisture
		19.8 (0.00) [1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH – END DEPTH (FT.)	10- 10-S	7.21 (
Э 10 10 ОЕРТН (FT.)		0.00) [1]
	008 11-SS-02 11-SS-02-01 0 - 0.5	11.4 (0.00) [1]
	008 11-5S-03 11-5S-03-01 0 - 0.5	9.86 (0.00) [1]

	11-5S-07 11-5S-07 11-5S-07-01 0 - 0.5 17.1 (0.00) [1]	
	008 11-5S-06 11-5S-06-01 0 - 0.5 15.5 (0.00) [1]	
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	008 11-SS-05 11-SS-05-01 0 - 0.5 10.7 (0.00) [1]	
	008 11-5S-04 11-5S-04-01 0 - 0.5 	
	PARAMETER 	

					BEG. DE	SITE ID LOCATION I SAMPLE ID EPTH - END D	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	(FT.)				
		008				800				008		
		11-55-08	88			11-55-09	60			11-55-	10	
	1	11-55-08-01	1-01			11-55-09-01	9-01			11-55-10-01	0-01	
PARAMETER		0 - 0.	5			0 - 0.5	.5			0 - 0	.5	
Percent Solid (percent) Percent moisture	6.82	.82 (0	0.00 [1]	1	4.53		(0.00)	1	8.37		0.00)	Ξ

PARAMETER		005 05-SB-04 05-SB-04-01 0 - 2	14		BEG. DE	SITE ID LOCATION ID SAMPLE ID EPTH - END DEF 05-SB-04 05-SB-04 2.5 - 4.5	SITE ID LOCATION ID SAMPLE ID SAMPLE ID 005 005 05-SB-04 05-SB-04-02 2.5 - 4.5	(FT.)		005 05-SB-04 05-SB-04-03 5 - 7	5 -04 04-03			005 05-SB-04 05-SB-04-04 7.5 - 9.5	04 04 04-04 9.5	
SW/UbU - Arsenic (mg/kg) Arsenic	4.02	0	0.0780) [1]	[1]	4.16	<u> </u>	0.0812) [1]	[1]	6.95	J	0.175) [2]	[2]	9.81	_	0.163)	[2]
SW7421 - Lead (mg/kg) Lead	3.58)	0.0919)	[1]	7.04	J	0.192) [2]	[2]	10.9	_	0.206) [2]	[2]	9.09	_	0.193)	[2]

		[2]	[1]
	005 05-SB-05 05-SB-05-03	0.159)	0.0934)
	005 05-SB-05 05-SB-05-0)	_
		8.29	5.00
		[1]	[2]
	005 05-SB-05 05-SB-05-02 Dup of 05-SB-05-02 6 - 8	0.103)	0.243)
	005 05-SB-05 3-05-DS-02 Du 05-SB-05-02 6 - 8		_
	05-SB-	6.34	6.25
(FT.)		[2]	[2]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	5 -05 05-02 6	0.203) [2]	0.240) [2]
SIT LOCAT SAMP EPTH -	005 05-SB-05 05-SB-05-02 4 - 6		<u> </u>
BEG. D		7.11	6.67
			[1]
)5 5-01	(0.0682) [1]	0.0804)
	005 05-SB-05 05-SB-05-01 0 - 2	0	0
	J	4.02	3.01
	PARAMETER	SW7060 - Arsenic (mg/kg) Arsenic	SW7421 - Lead (mg/kg) Lead

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable

Compiled: 16 March 1995

Applicable R = Invalid Result, Refer to QC Report

	,				BEG. DE	SITE ID LOCATION I SAMPLE ID	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	(FT.)								
		900	2			002				002				002		
		05-88-05	-05			05-SB-06	90.			05-SB-06				05-88-06	90	
•		05-SB-05-04	05-04			05-SB-06-01	6-01			05-SB-06-02	02			05-58-0	6-03	
PARAMETER		14 - 16	16			- 0	2			4 - 6				8 - 10	0	
SW7060 - Arsenic (mg/kg) Arsenic	7.09	_	0.103)	[1]	33.7	_	0.879) [10]	[10]	5.41	(0.	(0.0929)	[1]	11.2	_	0.187)	[2]
SW7421 - Lead (mg/kg) Lead	5.46	_	0.122)	Ξ	45.2	_	1.04) [10]	[10]	11.8	0	0.219) [2]	[2]	9.00	J	0.221)	[2]

		[2]	[40]
α	8-01 .5	0.124) [2]	2.88) [40]
005	05-88-18-01 0 - 0.5		_
		7.35	105
		[2]	[100]
~	-01	(0.152) [2]	7.65) [100]
005	05-SS-17-01 0 - 0.5	0)	_
	0	10.5	287
(FT.)		[2]	[2]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) 005 05-SS-16	5-01 5	0.117) [2]	0.147) [2]
SITE ID LOCATION ID SAMPLE ID PTH - END DEF 005	05-SS-16-01 0 - 0.5)	_
BEG. DE		6.76	4.60
		[2]	[2]
9	4	0.199) [2]	0.234) [2]
005 05-SB-06	05-SB-06-04 12 - 14	_	_
	 1 1 1 1 1	10.7	7.62
	PARAMETER 	SW7060 - Arsenic (mg/kg) Arsenic	SW7421 - Lead (mg/kg) Lead

9.74 (0.132) [10] 7.37 (005 05-SS-19 05-SS-19-01 0 - 0.5 (0.132) [2]					PARAMETER	SW7060 - Arsenic (mg/kg) Arsenic	SW7421 - Lead (mg/kg) Lead
32) [2]	32) [2]			_	30		9.74	26.6
32) [2]	32) [2]		002	15-55-1	5-55-19	0 - 0.	J	
				19	9-01	.5	0.132)	0.820)
SITI LOCAT SAMPI BEG. DEPTH - B 005-SS-2 05-SS-2 05-SS-2 05-SS-2 (7.37 (SITE ID						[2]	[10]
SITI LOCAT: SAMPI PTH - E 005-SS-2 05-SS-2 (SITE ID LOCATION ID SAMPLE ID PTH - END DEPTH 005 05-SS-20 05-SS-20-01 (0.126) (0.227)	BEG. DEI			-		5.75	7.37
	E ID ION ID EE ID S 20-01 0.126)	SITE ID LOCATION II SAMPLE ID PTH - END DI	900	05-88-	05-55-2) - 0	-	_
(FT.)					05-5		5.40	6.64
	5.40		00	05-55	3-20-DS	- 0	_	_
	00 05-SS 05-SS-20-DS 05-SS- 0 - 0 - 5.40 (ž.	-20	-01 Dup of	20-01 0.5	0.138)	0.295)
005 05-SS-20 05-SS-20 05-SS-20 0 - 0 5.40 (005 05-SS-: 05-SS-20 05-SS-21 0 - 0						[2]	[4]
005 05-SS-20 05-SS-20-01 Dup of 05-SS-20-01 0 - 0.5 5.40 (0.138)	005 05-55-20 SS-20-05-01 Dup of 05-55-20-01 0 - 0.5 (0.138)						9,59	16.4
005 05-SS-20 05-SS-20-DS-01 Dup of 05-SS-20-01 0 - 0.5 5.40 (0.138) [2] 9.59	005 05-SS-20 SS-20-DS-01 Dup of 05-SS-20-01 0 - 0.5 (0.138) [2] 9.59		900	05-SS-	05-55-2) - 0	_	_
005 05-SS-20 05-SS-20-DS-01 Dup of 05-SS-20-01 0 - 0.5 5.40 (0.138) [2] 9.59	005 05-SS-20 SS-20-DS-01 Dup of 05-SS-20-01 0 - 0.5 (0.138) [2] 9.59			.21	11-01	.5	0.153)	0.771)
005 05-SS-20 05-SS-20-DS-01 Dup of 05-SS-20-01 0 - 0.5 5.40 (0.138) [2]	005 05-SS-20 SS-20-DS-01 Dup of 05-SS-21 05-SS-20-01 0 - 0.5 (0.138) [2] 9.59 ([2]	[10]

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	2 06-58-03 -01 06-58-03-01 5 0 - 2	0.144) [2] 7.51 (0.126) [2] 6.52 2.65) [40] 76.8 (1.76) [20] 16.2	
	005 05-SS-22 05-SS-22-01 0 - 0.5	SW7060 - Arsenic (mg/kg) Arsenic SW7421 - Lead (mg/kg) Lead 69.7 (

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	008 008 06-SB-03 06-SB-03 06-SB-03-DS-03 Dup of 06-SB-03-04 06-SB-03-04 06-SB-03-03-03 14 - 16	119) [2] 5.93 165) [2] 469
	06-SE PARAMETER	SW7060 - Arsenic (mg/kg) Arsenic SW7421 - Lead (mg/kg) 17.6

	008 06-SS-09 06-SS-09-01	0 - 0.5	SW7060 - Arsenic (mg/kg) Arsenic 9.68 (0.130) [2]	35.6 (0.904) [10]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	008 06-SS-10 06-SS-10-01	0 - 0.5	4.83 (0.129) [2]	30.6 (0.899) [10]
	008 06-5S-11 06-SS-11-01	. 6.5	5.70 (0.153) [2]	28.7 (1.07) [10]
	008 06-SS-11 06-SS-11-DS-01 Dup of	06-SS-11-01 0 - 0.5	5.54 (0.125) [2]	49.1 S (1.74) [20]

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	008 008 06-SS-12 06-SS-13 06-SS-14 07-SD-03 06-SS-12-01 06-SS-13-01 06-SS-14-01 07-SD-03-01 0 - 0.5 0 - 0.5 0 - 0.5 0 - 0.5		ng/kg) 16.0 S (0.999) [10] 32.9 S (1.07) [10] 11.3 S (0.393) [4] 8.90 (0.239) [2]	(mg/kg) NA NA NA NA NA NA NA NA NA NA NA NA NA	n (mg/kg) NA NA NA NA
	PARAMETER	SW7060 - Arsenic, cont. (mg/kg) Arsenic	SW7421 - Lead (mg/kg) Lead	SW7471 - Mercury (mg/kg) Mercury	SW7740 - Selenium (mg/kg) Selenium

					SITE ID	11								
					LOCATION ID	OI NO								
				BEG. DEP	SAMPLE ID TH - END D	SAMPLE ID . DEPTH - END DEPTH (FT.)	(H.)							
		က			က				3			3		
	(0	07-SD-03			07-SD-04	.04		07-S	07-SD-05		0	07-SD-06		
	07-SD-03 -70	07-SD-03-DS-01 Dup of 07-SD-03-01	of	0	07-SD-04-01	14-01		02-2D	07-SD-05-01		07	07-50-06-01	_	
PARAMETER	•	0 - 0.5			0 - 0.5	5.		- 0	- 0.5			0 - 0.5		
SW6010 - Metals (mg/kg)			! ! ! !	1 1 1 1 1 1 1 1 1 1 1] { { ! [1 1 1 1 1 1 1 1 1	t t t	7 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 2 1 1 1	! ! ! ! ! ! !	i I I I I I I		:
Aluminum	5700	(7.46)	[1]	9580	_	20.1)	[1]	7190 (17.6)	[1]	7190	(17.2)	[1]
Antimony	-3.08 JB	(1.96)	Ξ	-5.62 JB	_	5.29)	Ξ	-7.74 JB (4.63)	ΞΞ	-2.79 JB	(.53)	ΞΞ
Arsenic	-2.61 J	(1.61)	Ξ	-7.33 J	_	4.33)	Ξ	-1.75 J (3.79)	[]	-3.12 J	(3	3.71)	[1]
Barium	164	(0.0589)	Ξ	306	_	0.159)	Ξ	391 (0.139)	Ξ	290	0.0	0.136)	[1]
Beryllium	0.211	(0.0599)	Ξ	0.252	_	0.162)	Ξ	0.161 (0.141)	Ξ	0.143	0.0	0.138)	[1]
Cadmium	0.517 B	(0.292)	Ξ	0.546 JB	_	0.787)	[1]	0.295 JB (0.688)	Ξ	0.610 JB	0.0	574)	[1]
Calcium	7550	(24.2)	Ξ	8470	_	65.3)	[1]	12700 (57.1)	Ξ	12000	. 51	55.9)	[1]
Chromium	13.4	(0.278)	Ξ	20.7	_	0.749)	[1]	14.8 (0.655)	Ξ	14.1	0.0	0.641)	[]
Cobalt	4.59	(0.531)	Ξ	8.53	_	1.43)	Ξ	4.21 (1.25)	[1]	7.02)	.23)	Ξ
Copper	21.1	(0.251)	Ξ	24.4	_	0.678)	Ξ	17.0 (0.592)	[]	15.5) (0.580)	[1]
Iron	13200	(31.7)	Ξ	20400	_	85.3)	[1]	35100 (74.6)	Ξ	24600)	73.0)	[1]
Lead	12.7	(2.51)	Ξ	16.5	_	6.78)	Ξ	4.81 J (5.92)	Ξ	6.47	(5.80)	[1]
Magnesium	4000	(2.78)	Ξ	5080	_	7.49)	Ξ	3270 (6.55)	[]	3420	9)	.41)	[1]
Manganese	145	(0.0120)	Ξ	137	_	0.0324)	Ξ	248 (0.0283)	[]	257	(0.0277)	277)	Ξ
Molybdenum	0.637	(0.267)	Ξ	1.47	_	0.719)	Ξ	1.14 (0.628)	Ξ	1.19	0.6	0.615)	[1]
Nickel	15.9	(1.11)	Ξ	22.7	_	2.99)	Ξ	13.4 (2.61)	Ξ	16.4	(5	2.56)	[1]
Potassium	525	(35.2)	Ξ	177	_	94.9)	Ξ	402 (83.0)	Ξ	470	.8	81.2)	Ξ
Selenium	4.30 J	(4.50)	Ξ	7.94	_	12.1)	Ξ	7.71 J (10.6)	Ξ	8.73 J	<u> </u>	10.4)	[1]
Silver	-0.551 JB	(0.186)	Ξ	-1.17 JB	_	0.502)	Ξ	-0.899 JB (0.439)	Ξ	-0.735 JB). (0.430)	[1]
Sodium	334	(2.64)	Ξ	1080	_	7.11)	Ξ	838 (6.21)	Ξ	807	9)	6.08)	[1]
Thallium	1.16 JB	(90.7)	Ξ	-3.60 JB	_	19.0)	Ξ	1.45 JB (16.6)	Ξ	1.36 JB)	16.3)	[1]
Vanadium	23.0	(0.438)	Ξ	31.9	_	1.18)	Ξ	27.5 (1.03)	Ξ	25.4	1	1.01)	[1]
Zinc	73.2	(0.296)	Ξ	132	_	0.798)	Ξ	45.2 (0.698)	[1]	45.0	0.0	0.683)	Ξ
								-						

				L0 S .	SITE ID LOCATION ID SAMPLE ID DEPTH - FND DEPTH (FT)	(51)								
) :: ::								
		က			က							07A	A	
	07	07-SD-07		070	07-55-06			70-88-07	07-55-07			07A-SB-01	B-01	
PARAMETER	0	-35-0/-01 0 - 0.5			0 - 0.5			- 0	-33-0/-01 0 - 0.5			0/A-3B-01-0 0 - 1.5	1.5	
 SW6010 - Metals (mg/kg)		; ; ; ; ; ; ; ; ; ;	1 1 1 1 1 1			! ! !			 				1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	6190	(06.8)	Ξ	8110	(7.62)	Ξ	10600	_	7.12)	Ξ	10900	_	18.7)	Ξ
Antimony	-2.63 JB	(2.34)		-7.39 JB	(2.01)	Ξ	-3.56	JB (1.88)	Ξ	-5.56	JB (4.92)	Ξ
Arsenic	0.741 J	(1.92)	Ξ	-2.14 J	(1.64)	Ξ	0.965) T	1.54)	Ξ	-11.9	٦ (4.03)	Ξ
Barium	256	(0.0703)		204	(0.0602)	[]	277	_	0.0563)	Ξ	351	_	0.148)	Ξ
Beryllium	0.282	(0.0715)		0.273	(0.0612)	Ξ	0.279	<u> </u>	0.0572)	Ξ	0.349	_	0.150)	Ξ
Cadmium	0.409 B	(0.348)		0.180 JB	(0.298)	[1]	0.361	9	0.279)	[1]	0.260	JB (0.732)	[1]
Calcium	8320	(82.8)		12200	(24.7)	Ξ	7180	<u> </u>	23.1)	[1]	19400	_	60.7)	Ξ
Chromium	14.2	(0.331)		16.6	(0.284)	Ξ	20.7	_	0.265)	Ξ	20.9	_	0.696)	Ξ
Cobalt	5.47	(0.634)		7.80	(0.543)	Ξ	8.71	<u> </u>	0.507)	Ξ	11.2	<u> </u>	1.33)	Ξ
Copper	24.3	(008.0)		19.5	(0.257)	Ξ	22.5	<u> </u>	0.240)	Ξ	25.7	_	0.630)	Ξ
Iron	14900	(8.78)		17300	(32.3)	Ξ	21300	_	30.2)	Ξ	30700	_	79.3)	[1]
Lead	8.74	(3.00)		8.19	(2.57)	Ξ	12.1	_	2.40)	Ξ	7.66	<u> </u>	6.30)	Ξ
Magnesium	2610	(3.31)		5550	(2.84)	Ξ	5410	_	2.65)	Ξ	3960	_	6.96)	Ξ
Manganese	170	(0.0143)		545	(0.0123)	[1]	257	_	0.0115)	Ξ	521	J	0.0301)	Ξ
Molybdenum	1.02	(0.318)		0.723	(0.272)	Ξ	1.13	_	0.255)	Ξ	1.22	_	0.668)	Ξ
Nickel	14.1	(1.32)		21.9	(1.13)	Ξ	25.3	_	1.06)	[]]	27.5	_	2.78)	Ξ
Potassium	417	(42.0)		809	(0.36.0)	Ξ	745	_	33.6)	Ξ	396	_	88.3)	Ξ
Selenium	5.79	(5.37)		6.74	(4.59)	Ξ	9.38	_	4.30)	Ξ	17.4	_	11.3)	$[\Pi]$
Silver	~0.395 JB	(0.222)		-0.679 JB	(00.190)	Ξ	-0.587	JB (0.178)	Ξ	-1.05	JB (0.467)	[1]
Sodium	387	(3.14)		164	(2.69)	Ξ	553	_	2.52)	[1]	264	_	6.61)	[1]
Thallium	0.833 JB	(8.43)		-2.99 JB	(7.21)	[1]	0.813	JB (6.74)	[1]	-0.411	JB (17.7)	[1]
Vanadium	42.7	(0.522)	[]	30.0	(0.447)	[1]	37.2	_	0.418)	[1]	38.2	_	1.10)	Ξ
Zinc	46.2	(0.353)		52.6	(0.302)	Ξ	68.4	<u> </u>	0.283)	[1]	39.4	J	0.742)	Ξ

		[2]	[2]	[1]	[1]
	1-01 1-01 .5	(0.460)	0.531)	0.0429)	0.286)
	07A 07A-SB-01 07A-SB-01-01 0 - 1.5		_		J
	0	10.3	9.65	-0.0268 JB	2.29
		[2]	[1]	[1]	[1]
	-07 07-01 0.5	0.188)	0.131)	0.0171)	0.138)
	3 07-SS-07 07-SS-07-01 0 - 0.5		_	_	_
		8.04	6.46	0.0143 J (0.0171)	1.29
(FT.)		[2]	[1]	[1]	[1]
SITE ID LOCATION ID SAMPLE ID . DEPTH - END DEPTH (FT.)	-06 06-01 0.5	0.161)	0.112)	0.0162)	-3.01 JB (0.118)
SIT LOCAT SAMP EPTH -	3 07-SS-06 07-SS-06-01 0 - 0.5		_	<u> </u>)B (
BEG. D		10.4	6.13	0.0203	-3.01
		[2]	[1]	[1]	[1]
	3 07-SD-07 07-SD-07-01 0 - 0.5	0.221)	0.154)	0.0207)	0.163)
	3 07-SD-07 07-SD-07-(0 - 0.5	_	<u> </u>)
	 	8.71	7.58	-0.00431 JB (0.350
		(mg/kg)			
	PARAMETER	SW7060 - Arsenic, cont. (mg/kg) Arsenic	SW7421 - Lead (mg/kg) Lead	SW7471 - Mercury (mg/kg) Mercury	SW7740 - Selenium (mg/kg) Selenium

		0,0	07A		BEG.	S1 LOCA SAM DEPTH -	SITE ID LOCATION ID SAMPLE ID SEG. DEPTH - END DEPTH (FT.)	(FT.)			07A			0	07A	
		07A-SB-01	-01-02			0/A- 07A-SB	0/A-SB-02 07A-SB-02-01			07A· 07A-SE	07A-SB-02 07A-SB-02-02		07A-5	07A- SB-02-D	07A-SB-02 07A-SB-02-DS-02 Dup of	of
PARAMETER 		1.5	1.5 - 2.2			0.8	0.8 - 1.5			1:	1.5 - 2			07A-SB-02-02 1.5 - 2	SB-02-02 1.5 - 2	
SW7060 - Arsenic (mg/kg) Arsenic	4.46	_	0.176)	[2]	3.68	<u> </u>	0.224)	[2]	2.64)	0.0989)	[1]	5.90)	0.187)	1
SW7421 - Lead (mg/kg) Lead	7.88	<u> </u>	0.433)	[4]	5.05	<u> </u>	0.253)	[2]	6.63)	0.228)	[2]	6.13	_	0.450)	
SW7471 - Mercury (mg/kg) Mercury	-0.0176 JB () 8(0.0169)	[1]	-0.0154 JB (JB (0.0185)	[1]	-0.0556 JB (JB (0.0167)	[:]	0.00342 JB (JB (0.0164)	
SW7740 - Selenium (mg/kg) Selenium	3.26	<u> </u>	0.110)	[1]	0.865	•	0.139)	[1]	2.29)	0.123)	[1]	2.34	J	0.116)	

[] = Dilution Factor

() = Detection Limit

SITE 1D LOCATION 1D SAMPLE
07A 07A-SS-01 0 - 0.5 (7.75) [1] JB (2.04) [1] J (1.67) [1] (0.0612) [1] (0.0623) [1] (0.0623) [1] (0.289) [1] (0.281) [1] (0.281) [1] (0.281) [1] (0.281) [1] (0.281) [1]

	07A 07A-SS-01 07A-SS-01-01 0 - 0.5	SW7060 - Arsenic, cont. (mg/kg) Arsenic 7.38 (0.189) [2]	5.97 (0.234) [2]	SW7471 - Mercury (mg/kg) Mercury -0.0254 JB (0.0174) [1]	SW7740 - Selenium (mg/kg) Selenium 2.34 (0.118) [1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	07A 07A-SS-02 07A-SS-02-01 0 - 0.5	14.9 (0.580)	1.17 B (0.257)	0.0417 J (0.10	2.11 (0.72
О ЕРТН (FT.)		80) [1]	57) [1]	0.100) [1]	0.721) [1]
	008 09-SB-01 09-SB-01-01 0 - 2	3.99 (0.139	2080 (38.7	N A	NA
		0.139) [2]	38.7) [400]		
		7.51	10.5	N	NA
	008 09-SB-01 09-SB-01-02 2.5 - 4.5	(0.135)	(0.373)		
		[2]	[4]		

1D ON ID E TO ND DEPTH (FT.) 008 01 10-SB-04 10-SB-04 10-SB-04-02 9.5 0 - 2 3 - 5 0 - 12 0.142) [2] 4.63 (0.0807) [1] 10.9 (0.193) [2]	SITE ID LOCATION ID SAMPLE ID SAMPLE ID 008 09-SB-01 09-SB-01 09-SB-01-04 7.5 - 9.5 5.71 (0.142) [2]	008 09-SB-01 09-SB-01-03 5 - 7 5 - 7 9.11 (0.134) [2]	PARAMETER SW7060 - Arsenic (mg/kg) Arsenic SW7421 - Lead (mg/kg)
---	---	---	--

	008 10-SB-04 10-SB-04-03 7 - 9	SW7060 - Arsenic (mg/kg) Arsenic 3.91 (0.0803)	SW7421 - Lead (mg/kg) Lead 3.15 (0.0946)
BEG.		[1] 3.80	[1] 3.56
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	008 10-SB-04 10-SB-04-04 10 - 12	(0.0721) [1]	(0.0850) [1]
	008 10-SB-05 10-SB-05-01 0 - 2	12.0 (0.242) [4]	12.5 (0.264) [4]
	008 10-SB-05 10-SB-05-02 3 - 5	10.1 (0.146) [2]	12.2 (0.305) [4]

TABLE A10

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	008 008 10-SS-08 10-SS-09 10-SS-08-01 10-SS-09-01	0 - 0.5 0 - 0.5 0 - 0.5	(0.128) [2] 7.74 (0.116) [2] 5.08 (0.134) [2]	(0.549) [8] 27.4 (0.498) [8] 31.1 (0.592) [8]
		PARAMETER	SW7060 - Arsenic (mg/kg) Arsenic 5.42	SW7421 - Lead (mg/kg) Lead 29.5

[] = Dilution Factor

() = Detection Limit

ABLE A		
ABLE A1	0	
ABLE	-	
TABL	u	
≤	띪	
_	≚	

ALL RESULTS OF INORGANIC ANALYSES FOR SOIL SAMPLES, GALENA 1993 EVENT.

	008 11-SS-04 11-SS-04-01 0 - 0.5	SW7060 - Arsenic (mg/kg) Arsenic 8.09 (0.147) [2]	SW7421 - Lead (mg/kg) Lead 18.2 (0.445) [4]
SITE ID LOCATION ID SAMPLE IO BEG. OEPTH - END DEPTH (FT.)	008 11-SS-05 11-SS-05-01 0 - 0.5	7.41 (0.146) [2]	20.6 (0.383) [4]
	008 11-SS-06 11-SS-06-01 0 - 0.5	249 (6.78) [80]	361 (9.24) [80]
	008 11-SS-07 11-SS-07-01 0 - 0.5	10.3 (0.168) [2]	12.9 (0.396) [4]

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL (DRM, BLM) SAMPLES, GALENA 1993 EVENT.

BEG. DEPTH - END DEPTH (FT.)

SITE ID LOCATION ID SAMPLE ID

		UUS BLM BLM-01			BLM BLM-02			008 BLM-03			008 BLM B! M-04	
PARAMETER		0 - 0.3			0 - 0.3		0	- 0.3			0 - 0.3	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1		! ! ! ! ! !	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Percent Solid (percent)												
Percent moisture	17.4	(0)	[1]	15.1	(0)	Ξ	19.6	(0)	Ξ	18.4	(0)	[1]
SW8080 - Organochlorine Pesticides and PCBs		(ug/kg)										
4,4'-DDD	355	(23.5)	[100]	9.07 P	(2.29)	[10]	ND	(24.1)	[100]	122 PJ	(238)	[1000]
4,4'-DDE	55.4	(24.7)	[100]	17.8	(2.4)	[10]	655	(25.3)	[100]	1760	(249)	[1000]
4,4'-DDT	1260	(56.5)	[100]	155	(2.57)	[10]	896	(27.1)	[100]	21400	(267)	[1000]
Aldrin	Q	(21.3)	[100]	0.812 KJ	(3.4)	[10]	ND	(21.8)	[100]	QN	(215)	[1000]
Chlordane Chlordane	QN	(37.6)	[100]	S	(3.65)	[10]	ND	(38.5)	[100]	ON	(380)	[1000]
Dieldrin	ND	(52.6)	[100]	1.64 KJ	(1.68)	[10]	QN	(26.2)	[100]	QN	(259)	[1000]
Endosulfan I	ON	(12.4)	[100]	Q.	(1.2)	[10]	QN	(12.7)	[100]	QN	(125)	[1000]
Endosulfan II	QN	(27.4)	[100]	Q.	(5.66)	[10]	ND	(28)	[100]	QN	(277)	[1000]
Endosulfan Sulfate	QN	(53.7)	[100]	QN	(5.22)	[10]	QN	(54.9)	[100]	QN	(542)	[1000]
Endrin	QN	(44)	[100]	2	(4.28)	[10]	31.6 KJ	(43)	[100]	QN	(444)	[1000]
Endrin Aldehyde	ND	(23.4)	[100]	Q	(2.28)	[10]	ON	(24)	[100]	Q	(237)	[1000]
Heptachlor	QN	(10.9)	[100]	S	(1.06)	[10]	QN	(11.2)	[100]	N	(110)	[1000]
Heptachlor epoxide	QN	(13.4)	[100]	S	(1.3)	[10]	ON	(13.7)	[100]	QN	(135)	[1000]
Methoxychlor	QN	(162)	[100]	<u>9</u>	(15.8)	[10]	QN	(166)	[100]	ON	(1640)	[1000]
PCB-1016	QN	(222)	[100]	QN	(21.6)	[10]	ND	(227)	[100]	QN	(2240)	[1000]
PCB-1221	Q	(562)	[100]	Q	(28.8)	[10]	ND	(304)	[100]	QN	(3000)	[1000]
PCB-1232	QN	(512)	[100]	Q	(49.8)	[10]	QN	(525)	[100]	QN	(5180)	[1000]
PCB-1242	ON	(508)	[100]	Q	(20.3)	[10]	ON	(214)	[100]	QN	(2110)	[1000]
PCB-1248	QN	(111)	[100]	Q	(10.8)	[10]	ON	(114)	[100]	ND ND	(1130)	[1000]
PCB-1254	QN	(160)	[100]	Q	(15.6)	[10]	ON	(164)	[100]	ND	(1620)	[1000]
PCB-1260	QN	(212)	[100]	QN	(50.6)	[10]	QN ON	(217)	[100]	NO	(2140)	[1000]
Toxaphene	QN	(136)	[100]	Q	(13.3)	[10]	ON	(140)	[100]	QN	(1380)	[1000]
alpha-BHC	ON	(8.19)	[100]	S	(0.796)	[10]	ON	(8.38)	[100]	ND	(82.8)	[1000]
beta-BHC	QN	(56.8)	[100]	Q	(5.6)	[10]	QN	(27.4)	[100]	QN	(271)	[1000]
delta-BHC	Q	(14.6)	[100]	QN	(1.42)	[10]	S	(15)	[100]	ND	(148)	[1000]

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report Compiled: 16 March 1995

				L BEG, DEPT	SITE ID LOCATION ID SAMPLE ID BEG. DEPTH (FT.)	H (FT.)						
	008 BLM BLM-01	008 BLM M-01) E 81			008 BLM BLM-03			008 BLM BLM-04	
PARAMETER	0 - 0.3	0.3			0 - 0.3			0 - 0.3			0 - 0.3	
SW8080 - Organochlorine Pesticides and gamma-BHC(Lindane)	d PCBs, cont.	(ug/kg) (13)	[100]	0.552 PJB	(1.26)	[10]	QN ON	(13.3)	[100]	ON	(131)	[1000]
SW8240 - Volatile Organics (ug/kg)	Ç.	(7)	Ē	2	(0)	į	;		1 1			
1,1,2,2-Tetrachloroethane	2 5		ΞΞ	<u> </u>	(e)	[]	2 9	(9)	Ξ:	2 9	(100)	[]
1,1,2-Trichloroethane	ND	(£	ΞΞ	2 2	(9)	ΞΞ	O Z	(a)	ΞΞ	O S	(100)	ΞΞ
1,1-Dichloroethane	ND	(7)	Ξ	ON	(9)	ΞΞ	QN QN	(9)	ΞΞ	2 2	(100)	ΞΞ
1,1-Dichloroethene	ND	(7)	[1]	ND	(9)	Ξ	QN	(9)	[1]	e Q	(100)	ΞΞ
1,2-Dichloroethane	NO	(7)	[1]	QN	(9)	[1]	ND	(9)	ΞΞ	QN	(100)	ΞΞ
1,2-Dichloropropane	QN	(7)	[1]	QN	(9)	[1]	N	(9)	Ξ	QN	(100)	ΞΞ
2-Butanone(MEK)	QN	(40)	Ξ	Q	(30)	Ξ	8	(30)	[1]	ON	(009)	
2-Chloroethyl vinyl ether	ON	(7)	Ξ	Q	(9)	Ξ	QN	(9)	[1]	QN	(100)	Ξ
Z-Hexanone	QN	(40)	Ξ	Q	(30)	[11]	N	(30)	[1]	ON	(009)	ΞΞ
4-Methyl-2-pentanone(MIBK)	ND	(40)	Ξ	Q.	(30)	Ξ	ON	(30)	[1]	QN	(009)	Ξ
Acetone	Q :	(100)	Ξ	1 JB	(100)	[1]		JB (100)	[1]	ON	(3000)	[1]
Benzene Rvomodiohlovomothoso	Q 4	(2)	ΞΞ	Q :	(9)	Ξ	N	(9)	[1]	ON	(100)	Ξ
Bromomethane	Q Q	(7)	ΞΞ	2 2	(9) (9)	ΞΞ	2 2	(e)		2 3	(100)	[]
Carbon disulfide	ND	(10)	ΞΞ	Q.	(10)	ΞΞ	Q Q	(10)		g K	(300)	ΞΞ
Carbon tetrachloride	ND	(7)	[1]	QN	(9)	Ξ	S	(9)		2	(100)	ΞΞ
Chlorobenzene	QN	(7)	Ξ	ND	(9)	[1]	QN	(9)	ΞΞ	2	(100)	ΞΞ
Chloroethane	QN	(7)	[1]	QN	(9)	Ξ	QN	(9)	Ξ	N	(100)	ΞΞ
Chloroform	QN	(7)	[1]	MD	(9)	[]	ON	(9)	[1]	R	(100)	Ξ
Chloromethane	ND	(7)	[1]	QN	(9)	Ξ	ON	(9)	Ξ	8	(100)	ΞΞ
Dibromochloromethane	ND	(7)	[1]	QN	(9)	[1]	QN	(9)	[1]	QN	(100)	Ξ
Ethylbenzene	QN	(7)	Ξ	QN	(9)	[1]	S	(9)	[1]	N N	(100)	[1]
Methylene chloride	ON	(7)	[1]	NO	(9)	[1]	R	(9)	[1]	QN	(100)	
Styrene	QN	(7)	[1]	QN	(9)	[1]	QN	(9)	[1]	Q	(100)	[1]

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

A11-2 * - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL (DRM, BLM) SAMPLES, GALENA 1993 EVENT.

			BEG. DEP	SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	(FT.)						
	008 BLM BLM-01						008 BLM BLM-03			008 BLM BLM-04	
PARAMETER	0 - 0.3			0 - 0.3			0 - 0.3	,		0 - 0.3	
SW8240 - Volatile Organics, cont. (ug/kg)]]] ! ! ! !			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Tetrachloroethene ND	(7)	ΞΞ	ON CN	(9)	ΞΞ	QN Q	(9)	ΞΞ	S 5	(100)	ΞΞ
omethane(Bromoform)	(2)	ΞΞ	2 S	(6)	ΞΞ	2 2	(9)	ΞΞ	2 2	(100)	ΞΞ
Trichloroethene . ND	(7)	Ξ	QN	(9)	Ξ	QN	(9)	Ξ	Q.	(100)	Ξ
	(20)	Ξ	ON	(09)	[1]	N	(09)	[1]	QN	(1000)	Ξ
	(7)	[1]	QV	(9)	Ξ	Q	(9)	Ξ	Q	(100)	Ξ
	(7)	[]	QN	(9)	[]	9	(9)	Ξ	QN	(100)	Ξ
loropropene	(7)	Ξ	QN	(9)	Ξ	S	(9)	Ξ	Q.	(100)	[1]
lene	(30)	[1]	QN	(20)	Ξ	2	(20)	Ξ	Q	(400)	Ξ
	(10)	[1]	Q.	(10)	Ξ	2	(10)	Ξ	S	(300)	Ξ
	(7)	[1]	QN	(9)	Ξ	QN	(9)	Ξ	S	(100)	Ξ
	(7)	[]	QN	(9)	[1]	N	(9)	Ξ	S	(100)	[1]
SW8270 - Semivolatile Organics (mg/kg)											
1,2,4-Trichlorobenzene ND	(0.119)	[2]	QN	(0.0231)	[1]	ON	(0.0244)	[]	QN	(0.0241)	Ξ
	(0.157)	[2]	QN	(0.0304)	Ξ	Q.	(0.0322)	Ξ	Q.	(0.0318)	Ξ
	(0.0796)	[2]	Q	(0.0155)	Ξ	QN	(0.0164)	Ξ	S	(0.0161)	[1]
	(0.162)	[2]	QN	(0.0315)	Ξ	Q.	(0.0334)	Ξ	Q.	(0.033)	[]
	(0.0663)	[2]	Q	(0.0129)	Ξ	N	(0.0136)	Ξ	Q	(0.0135)	Ξ
nol	(0.0702)	[2]	S	(0.0136)	Ξ	S	(0.0144)	Ξ	Q	(0.0142)	Ξ
	(0.0891)	[2]	S	(0.0173)	Ξ	Q	(0.0183)	[1]	QN	(0.0181)	Ξ
2,4-Dimethylphenol	(0.221)	[2]	2	(0.0429)	[1]	2	(0.0455)	[1]	QN	(0.0449)	Ξ
2,4-Dinitrophenol	(1.41)	[2]	Q	(0.273)	Ξ	QN	(0.289)	Ξ	QN	(0.285)	[1]
2,4-Dinitrotoluene ND	(0.111)	[2]	QN	(0.0215)	Ξ	S	(0.0227)	Ξ	QN	(0.0224)	Ξ
	(0.0696)	3	Q	(0.0135)	Ξ	Q	(0.0143)	Ξ	QN	(0.0141)	Ξ
2-Chloronaphthalene	(0.0651)	[2]	Q	(0.0126)	Ξ	ON.	(0.0134)	Ξ	QN	(0.0132)	Ξ
2-Chlorophenol	(0.154)	[2]	QN	(0.0298)	Ξ	QN	(0.0316)	Ξ	Q	(0.0312)	Ξ
2-Methylnaphthalene	(0.133)	[2]	QN	(0.0258)	Ξ	ND	(0.0273)	[1]	ON	(0.0269)	Ξ

					SITE ID							
					SAMPLE ID							
				8EG. DE	BEG. DEPTH - END DEPTH (FT.)	Н (FT.)						
		800			800			008			800	
		BLM			BLM			BLM			000 M	
		BLM-01			BLM-02			BLM-03			BIM-04	
PARAMETER		0 - 0.3			0 - 0.3			0 - 0.3			0 - 0.3	
SW8270 - Semivolatile Organics	(2// 5m)		1 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2-Methylphenol (o-cresol)		(0.102)	[5]	Q	(0.000)	[1]	2	, 1000	3	<u>.</u>		1
2-Nitroaniline	QN	(0.0808)	[2]	2 Q	(0.0157)	ΞΞ	2 2	(0.0221)	ΞΞ	2 4	(0.0218)	ΞΞ
2-Nitrophenol	QN	(0.0885)	[2]	QN	(0.0172)	[1]	2 2	(0.0182)	[1]	2 9	(0.0164)	ΞΞ
3,3'-Dichlorobenzidine	ON	(0.0985)	[2]	QN	(0.0191)	ΞΞ	Q.	(0.0203)		2 2	(0.01/9)	ΞΞ
3-Nitroaniline	QN	(0.102)	[2]	QN	(0.0199)	[1]	QN	(0.021)	[1]	2 2	(0.02)	ΞΞ
4,6-Dinitro-2-methylphenol	QN N	(0.159)	[2]	ON.	(0.0309)	[]	2	(0.0327)	ΞΞ	2 S	(0.0203)	ΞΞ
4-Bromophenyl phenyl ether	2	(0.0917)	[2]	QN	(0.0178)	Ξ	8	(0.0189)	[E	2 2	(0.0253)	ΞΞ
4-Chloro-3-methylphenol	Q	(0.145)	[2]	Q	(0.0282)	Ξ	9	(0.0299)	ΞΞ	S S	(0:0188) (0 0295)	ΞΞ
4-Chloroaniline	Q	(0.112)	[2]	N N	(0.0218)	Ξ	ND	(0.0231)	[]	2 2	(0.0233)	ΞΞ
4-Chlorophenyl phenyl ether	9	(0.106)	[2]	ON	(0.0206)	[1]	QN	(0.0218)		Q.	(0.0215)	ΞΞ
4-Methylphenol(p-cresol)	S	(0.116)	[2]	N	(0.0224)	[1]	ND	(0.0238)	Ξ	QN	(0.0234)	ΞΞ
4-Nitroaniline	운 :	(0.0973)	[2]	S	(0.0189)	[1]	ON	(0.05)		NO	(0.0197)	ΞΞ
4-NICTOPHENOI	2 9	(0.139)	[2	ON	(0.027)	Ξ	QN	(0.0286)		ND	(0.0282)	ΞΞ
Acertaphicitetie	2 9	(0.0961)	[2]	Q.	(0.0187)		QN	(0.0198)	[]	QN	(0.0195)	ΞΞ
Anthracene	ND 140	(0.0454)	[2	Q.	(0.00882)	[1]	QN	(0.00934)	Ξ	QN	(0.00922)	ΞΞ
Benzo(a)anthracene	0.146	(0.117)	<u>.</u>	Q :	(0.0227)	Ξ	Q.	(0.024)	[1]	QN	(0.0237)	ΞΞ
Benzo(a) nvrene	U.422	(0.104)	2 5		(0.0201)	Ξ	0.0206	(0.0213)	[1]	QN	(0.021)	[1]
Benzo(b)fluoranthene	0.432	(0.0//)	<u>.</u>	0.013 J	_ `	ΞΞ		(0.0158)	[1]			[1]
Benzo(α, h.i)nervlene		(0.0000)	<u>.</u> [_	[T]		(0.0235)	[1]	0.0147 FJ	(0.0232)	Ξ
Benzo(k)fluoranthene	0.340	(0.03/3)	<u></u>			Ξ		೦	[1]	0.0101	(0.0199)	[1]
Renzoir arid		(0.195)	<u>.</u> [0.0183 FJ	_	Ξ	0.0327 FJ	(0.04)	[1]	0.0147 FJ	(0.0395)	
Renay 1 alookal	2 5	(0.796)	[2]	Q	(0.155)	Ξ	0.339	(0.164)	[1]	0.122 J	(0.161)	[1]
Butvlbonavlahthalata		(0.217)	[2]	Q	(0.0421)	Ξ	0.33	(0.0447)	[1]	0.246	(0.044)	Ξ
Changers	ND 110	(0.079)	[2]		(0.0153)	Ξ	QN N	(0.0162)	[1]	ON	(0.016)	Ξ
Of a but all the last	0.4/8	(0.134)	[2]	0.0109 J	(0.0261)	Ξ	0.0193	(0.0277)	[1]	ND	(0.0273)	Ξ
Ul-n-butylphthalate	0	(0.0991)	[2]	ND	(0.0192)	[1]	QN	(0.0204)	[1]	QN	(0.0201)	ΞΞ
ul-n-octylphthalate	<u>Q</u>	(0.183)	[2]	QN	(0.0356)	[1]	N	(0.0377)	[1]	QN	(0.0372)	[1]

* - Value considered suspect, Refer to QC Report NA = Not Applicable ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL (DRM, BLM) SAMPLES, GALENA 1993 EVENT.

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)

		BLM BLM-01			BLM BLM-02	BLM M-02			BLM BLM-03			, BLN	BLM-04	
		0 - 0.3			- 0	- 0.3			0 - 0.3			0	- 0.3	
PARAMETER	1 1 1 1) 1 1 1 1	1 1	; ; ; ; ;		! ! ! !
SW8270 - Semivolatile Organics, cont. (mg/kg)	cont. (mg/kg)													
Dibenz(a,h)anthracene	0.0945 J	(0.0953)	[2]	QN	೨	0.0185)	Ξ	QN	(0.0196)	Ξ	S		(0.0193)	Ξ
Dibenzofuran	ON	(0.082)	[2]	QN	٥	0.0159)	Ξ	QN	(0.0169)	Ξ	8		(0.0166)	Ξ
Diethylphthalate	ON	(0.0675)	[2]	QN	೨	(0.0131)	Ξ	ND	(0.0139)	[1]	S		(0.0137)	[1]
Dimethylphthalate	ON	(0.0563)	[2]	QN	٥	0.0109)	[1]	QN	(0.0116)	[1]	S		(0.0114)	[1]
Diphenylamine/N-NitrosoDPA	QN	(0.114)	[5]	QN	٥	0.0221)	[1]	ND	(0.0234)	[1]	QN		(0.0231)	[1]
Fluoranthene	0.746	(0.128)	[2]	0.0118) (C	0.0249)	Ξ	0.0262 J	(0.0264)	[1]	0.0104	ĵ	(0.026)	[1]
Fluorene	QN	(0.0675)	[2]	ON	٣	0.0131)	Ξ	QN ON	(0.0139)	Ξ	ON		(0.0137)	Ξ
Hexachlorobenzene	ND	(0.047)	[2]	QN	<u>.</u>	0.00913)	Ξ	QN	(0.00968)	Ξ	S	_	0.00954)	Ξ
Hexachlorobutadiene	ON	(0.14)	[2]	QN	٥	(0.0272)	Ξ	QN	(0.0289)	Ξ	S		(0.0285)	Ξ
Hexachlorocyclopentadiene	QN	(1.79)	[2]	QN	_	(0.348)	Ξ	QN	(0.369)	Ξ	QN		(0.364)	Ξ
Hexachloroethane	QN	(0.119)	[2]	QN	٥	0.0232)	[1]	QN	(0.0246)	Ξ	QN		(0.0242)	[1]
Indeno(1,2,3-cd)pyrene	0.318	(0.106)	[2]	QN	೨	0.0205)	Ξ	0.0143 J	(0.0217)	[1]	9		(0.0214)	Ξ
Isophorone	QN	(0.0577)	[2]	QN	೭	0.0112)	Ξ	ON	(0.0119)	Ξ	QN		(0.0117)	Ξ
N-Nitroso-di-n-propylamine	QN	(0.151)	[2]	QN	٣	0.0293)	Ξ	QN	(0.0311)	Ξ	QN		(0.0306)	Ξ
Naphthalene	Q.	(0.147)	[3]	Q	೭	0.0284)	Ξ	QN	(0.0301)	Ξ	Q.		(0.0297)	Ξ
Nitrobenzene	QN	(0.106)	[2]	Q	٣	0.0206)	Ξ	ON	(0.0218)	Ξ	QN		(0.0215)	Ξ
Pentachlorophenol	ON	(0.174)	[2]	QN	٣	0.0337)	Ξ	ND	(0.0357)	[1]	QN		(0.0352)	[]
Phenanthrene	0.408	(0.125)	[2]	QN	೭	0.0243)	Ξ	0.00997 JB	(0.0257)		N N		(0.0254)	Ξ
Phenol	ON	(0.0802)	[2]	QN	٣	0.0156)	Ξ	ND	(0.0165)	[1]	Q		(0.0163)	[1]
Pyrene	0.708	(0.0941)	[2]	0.0118) (0.0183)	Ξ	0.0292	(0.0194)	Ξ	0.00852	ر _	(0.0191)	[1]
bis(2-Chloroethoxy)methane	ON	(0.113)	[5]	QN	೭	0.0219)	[1]	ON	(0.0232)	Ξ	S		(0.0229)	Ξ
bis(2-Chloroethyl)ether	ON	(0.147)	[2]	QN	٣	0.0286)	[1]	Q	(0.0303)	Ξ	S		(0.0299)	Ξ
bis(2-Chloroisopropyl)ether	QN	(0.146)	[2]	QN	೭	0.0283)	Ξ	N	(0.03)	Ξ	QN		(0.0296)	Ξ
bis(2-Ethylhexyl)phthalate	QN	(0.368)	[2]	0.0527))	0.0714)	Ξ	0.0451 J	(0.0757)	[1]	QN		(0.0746)	Ξ
SW8310 - Polynuclear Aromatic Hydrocarbons		(ug/kg)												
Acenaphthene	720	(472)	[10]	QN		(459)	[10]	QN	(485)	[10]	S		(478)	[10]
Acenaphthylene	505	(808)	[10]	Q		(883)	[10]	QN	(833)	[10]	S		(919)	[10]

				307	SITE ID							
				<i>t</i> s	AMPLE ID							
				BEG. DEPTH	- END DEPTH	(FT.)						
	9	800			800			800			800	
	EL)	ВІМ			ВГМ			BLM			81.M	
	BLK	BLM-01		18	_M-02		8	BLM-03		8	BLM-04	
	- 0	0 - 0.3		0	- 0.3		0	- 0.3		0	- 0.3	
PARAMETER 												
SW8310 - Polynuclear Aromatic Hydrocarbons, cont.	ocarbons, cont.	(ug/kg)		; ; ; ; ; ; ; ; ;		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	f		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		t t t t t	
Anthracene	QN	(278)	[10]	ND	(271)	[10]	ND	(586)	[10]	QN	(282)	[10]
Benzo(a)anthracene	106	(8.35)	[10]	ON	(8.13)	[10]	QN	(8.58)	[10]	9.79	(8.46)	[10]
Benzo(a)pyrene	106	(25.4)	[10]	2.33 JB	(24.7)	[10]	4.12 JB	(26.1)	[10]	16.5 J	(25.7)	[10]
Benzo(b)fluoranthene	74.8	(40)	[10]	ON	(38.9)	[10]	ND	(41)	[10]	13.4 J	(40.4)	[10]
Benzo(g,h,i)perylene	894	(72.6)	[10]	0.171 JB	(70.7)	[10]	ON	(74.6)	[10]	7.61 J	(73.5)	[10]
Benzo(k)fluoranthene	16.1 B	(7.99)	[10]	ND	(7.77)	[10]	3.89 JB	(8.21)	[10]	8.88 B	(8.09)	[10]
Chrysene	549	(145)	[10]	ND	(141)	[10]	QN	(149)	[10]	11.6 J	(147)	[10]
Dibenz(a,h)anthracene	377	(19.4)	[10]	ON	(18.8)	[10]	QN	(19.9)	[10]	0.437 JB	(19.6)	[10]
Fluoranthene	53.8 J	(254)	[10]	QN	(247)	[10]	ND	(261)	[10]	QN	(257)	[10]
Fluorene	QN	(69)	[10]	ON	(67.1)	[10]	QN	(70.9)	[10]	QN	(6'69)	[10]
Indeno(1,2,3-cd)pyrene	181 B	(56.6)	[10]	QN	(25.9)	[10]	QN	(27.4)	[10]	ON	(27)	[10]
Naphthalene	QN	(2180)	[10]	QN	(2120)	[10]	ND	(2240)	[10]	ON	(2210)	[10]
Phenanthrene	QN	(208)	[10]	QN	(495)	[10]	ND	(522)	[10]	QN	(515)	[10]
Pyrene	95.1 J	(303)	[10]	ON	(294)	[10]	QN	(311)	[10]	QN	(306)	[10]

ND = Not Detected [] = Dilution Factor

NA = Not Applicable

	1 1 1 1 1		[1]		[1]	[1]	Ξ	Ξ	[1]	[1]	[1]	[1]	[1]	Ξ	Ξ	[1]		[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
005 DRM DRM-02 0 - 0.3	! ! ! ! ! ! ! ! !		(0)		(0.207)	(0.217)	(0.232)	(0.307)	(0.33)	(0.225)	(0.109)	(0.241)	(1.13)	(0.386)	(0.206)	(0.036)	(0.118)	(1.42)	(1.95)	(5.6)	(4.5)	(1.83)	(0.978)	(1.41)	(1.86)	(1.2)	(0.0719)	(0.235)	(0.128)
0 0	I I I I				۵			3		J			3																3
	 		6.04		0.594	1.96	17.7	0.0774	S	0.198	S	2	0.363	S	S	2	S	S	QN	N N	Q.	S	N N	QN	S	S	QN	N	0.013
	1		[1]		Ξ	Ξ	Ξ	Ξ	Ξ	[]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ
005 DRM DRM-01 0 - 0.3			(0)	(ug/kg)	(0.202)	(0.212)	(0.227)	(0.183)	(0.322)	(0.219)	(0.106)	(0.235)	(1.11)	(0.359)	(0.201)	(0.0937)	(0.115)	(1.39)	(1.9)	(2.54)	(4.39)	(1.79)	(0.954)	(1.37)	(1.82)	(1.17)	(0.0702)	(0.23)	(0.0864)
			3.56	PCBs	QN	QN	QN	0.105 J	ON	0.104 JB	ON	ON	0.304 KJ	0.0406 KJ	ON	QN	QN	ON	QN	QN	QN	ON	QV	QN	QN	QN	0.0929 P	QN	ND
	PARAMETER	Percent Solid (percent)	Percent moisture	SW8080 - Organochlorine Pesticides and	4,4'-DDD	4,4'-DDE	4,4'-DDT	Aldrin	Chlordane	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Heptachlor	Heptachlor epoxide	Methoxychlor	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene	alpha-BHC	beta-BHC	delta-BHC

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report A11-7 Compiled: 16 March 1995

SITE ID	LOCATION ID	SAMPLE ID	BEG. DEPTH - END DEPTH (FT.)
SITE 1D	LOCATION ID	SAMPLE ID	. DEPTH - END DEPTH

					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		[1]	:	[1]	Ξ	[1]	[1]	[1]	[1]	[1]	[1]	[1]	Ξ	[1]	[1]	[1]	[1]		Ξ	Ξ	[1]	Ξ	Ξ	[1]	[1]	[1]	[1]	[1]
005	UKM	DRM-02) - 0.3				(0.114)		(9)	(9)	(9)	(9)	(9)	(9)	(9)	(30)	(9)	(30)	(30)	(100)	(9)	(9)	(9)	(10)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)	(9)
	,	_	0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.246 B		QN	ON	ND	QN	QN	ND	QN	ON	ON	ND	ON	ON	ON	ND	QN	QN	QN	ND	ND	ND	ND	ND	QN	ON	ND
							Ξ		Ξ	Ξ	[]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	[1]	[Ξ]	[1]	[1]	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	[1]
005 PAN	UKB	DRM-01	0 - 0.3		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	nt. (ug/kg)	(0.111)		(5)	(5)	(5)	(2)	(5)	(2)	(5)	(30)	(2)	(30)	(30)	(100)	(2)	(2)	(2)	(10)	(2)	(2)	(2)	(2)	(5)	(2)	(5)	(5)	(5)
		_	_			and PCBs, cor	0.291 B		ON	ON	QN	QN	ON	QN	QN	QN	QN	ON	ND	QN	QN	ND	QN	ND	ON	QN	ND	ON	ND ND	QN	QN	QN	QN
				PARAMETER		SW8080 - Organochlorine Pesticides and PCBs, cont. (ug/kg)	gamma-BHC(Lindane)	SW8240 - Volatile Organics (ug/kg)	1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	2-Butanone(MEK)	2-Chloroethyl vinyl ether	2-Hexanone	4-Methyl-2-pentanone(MIBK)	Acetone	Benzene	Bromodichloromethane	Bromomethane	Carbon disulfide	Carbon tetrachloride	Chlorobenzene	Chloroethane	Chloroform	Chloromethane	Dibromochloromethane	Ethylbenzene	Methylene chloride	Styrene

() = Detection Limit [] = Dilution Factor ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL (DRM, BLM) SAMPLES, GALENA 1993 EVENT.

,																														
(FT.)		t : : :		[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]		[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]	[1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	005 DRM DRM-02 0 - 0.3			(9)	(9)	(9)	(9)	(09)	(9)	(9)	(9)	(20)	(10)	(9)	(9)		(0.0208)	(0.0275)	(0.014)	(0.0285)	(0.0116)	(0.0123)	(0.0156)	(0.0388)	(0.247)	(0.0194)	(0.0122)	(0.0114)	(0.027)	(0.0233)
BEG. DEF		 		2	R	S	Q	2	2	9	9	S	2	9	2		Ş	S	Q	2	S	QN	S	S	9	2	Q	9	2	QN
		 	1	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ		Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	[1]
	005 DRM DRM-01 0 - 0.3			(2)	(2)	(2)	(2)	(20)	(2)	(2)	(2)	(20)	(10)	(2)	(2)		(0.0204)	(0.0269)	(0.0137)	(0.0279)	(0.0114)	(0.012)	(0.0153)	(0.038)	(0.242)	(0.019)	(0.0119)	(0.0112)	(0.0264)	(0.0228)
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ug/kg)	2	2	Q.	Q.	2	2	2	Q	N	S	Q	QN	(mg/kg)	N	Q	2	2	QN	9	QN	QN	2	QN	Q	N Q	9	ON
		PARAMETER	SW8240 - Volatile Organics, cont. (ug/kg)	Tetrachloroethene	Toluene	Tribromomethane(Bromoform)	Trichloroethene	Vinyl acetate	Vinyl chloride	cis-1,2-Dichloroethene	cis-1,3-Dichloropropene	m & p-Xylene	o-Xylene	trans-1,2-Dichloroethene	trans-1,3-Dichloropropene	SW8270 - Semivolatile Organics (mg,	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene

SITE ID LOCATION ID SAMPLE ID BEG. DEPTH – END DEPTH (FT.)		0 - 0.3		ND (0.0188) ND (0.0142)	QN ON	ND (0.0173)	ND (0.018)	UD (0.0279) [1] ND (0.0161) (13]	ND (0.0255)	ND (0.0197)	ND (0.0186)	ND (0.0203)	ND (0.0171)	ND (0.0244)	ND (0.0169)	ND (0.00797)	Q S	ND (0.0135)	ND (0.0201)	ND (0.0172)	ND (0.0341)	ON	ND (0.0381)	ND (0.0139)	ND (0.0236)	(71:00)
	005 DRM DRM-01	0 - 0.3	 	(0.0184) [1] (0.0139) [1]			(0.0176)	(0.02/3) [1] (0.0157) [1]		(0.0193) [1]				(0.0238) [1]			[1] (0.02)			(0.0168) [1]	(0.0334) [1]	(0.137) [1]				[1]
				Q Q	QN	QN	Q S	ON ON	ON	ON	QN	QN	QN	QN :	Q :	Q.		QN ND	QN	ND	ON	QN	ON	ND	QN	S
		PARAMETER	SW8270 - Semivolatile Organics, cont.	<pre>2-Metnylphenol (o-cresol) 2-Nitroaniline</pre>	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline 4 6-Dinitro_2_mothylphonol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chloroaniline	4-Chlorophenyl phenyl ether	4-Methylphenol(p-cresol)	4-Nitroaniline	4-Nitrophenol	Acenaphthene	Acenaphthylene	Antintacene Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Benzoic acid	Benzyl alcohol	Butylbenzylphthalate	Chrysene	Oi-n-butylphthalate

[] = Dilution Factor () = Detection Limit Compiled: 16 March 1995

ND = Not Detected

NA = Not Applicable * - Value considered suspect, Refer to QC Report

				BEG. DE	DEPTH - END DEPTH (FT.)	(FT.)	
		900			005		
		DRM			DRM		
		DRM-01			DRM-02		
PARAMETER		0 - 0.3			0 - 0.3		
	1 1 1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
SW8270 - Semivolatile Organics, cont.	ont. (mg/kg)						
Dibenz(a,h)anthracene	QN	(0.0164)	[]	Q	(0.0167)	[1]	
Dibenzofuran	QN	(0.0141)	[1]	QN	(0.0144)	[1]	
Diethylphthalate	GN	(0.0116)	Ξ	Q	(0.0119)	[1]	
Dimethylphthalate	QN	(0.00966)	[1]	Q	(0.00988)	[1]	
Diphenylamine/N-NitrosoDPA	QN	(0.0195)	Ξ	QN	(0.05)	[1]	
Fluoranthene	N	(0.022)	Ξ	Q	(0.0225)	[1]	
Fluorene	Q	(0.0116)	[1]	Q	(0.0119)	[1]	
Hexachlorobenzene	QN	(0.00807)	[]	Q	(0.00825)	[1]	
Hexachlorobutadiene	QN	(0.0241)	[1]	Q	(0.0246)	[1]	
Hexachlorocyclopentadiene	QN.	(0.308)	[1]	Q	(0.315)	[1]	
Hexachloroethane	QN	(0.0205)	[1]	Q	(0.021)	[1]	
Indeno(1,2,3-cd)pyrene	QN	(0.0181)	[]	Q	(0.0185)	[1]	
Isophorone	QN	(0.0039)	[]	QN	(0.0101)	[1]	
N-Nitroso-di-n-propylamine	Q	(0.0259)	Ξ	QN	(0.0265)	[1]	
Naphthalene	Q	(0.0252)	[1]	Q	(0.0257)	[1]	
Nitrobenzene	QN	(0.0182)	[1]	Q	(0.0186)	[1]	
Pentachlorophenol	ND.	(0.0298)	Ξ	QN	(0.0305)	[1]	
Phenanthrene	Q	(0.0215)	Ξ	Q Q	(0.0219)	[1]	
Phenol	QN	(0.0138)	Ξ	Q	(0.0141)	Ξ	
Pyrene	QN	(0.0161)	Ξ	Q.	(0.0165)	[Ξ]	
bis(2-Chloroethoxy)methane	ON	(0.0194)	[1]	9	(0.0198)	[1]	
bis(2-Chloroethyl)ether	QN N	(0.0253)	[1]	Q.	(0.0258)	[1]	
bis(2-Chloroisopropyl)ether	QN	(0.0251)	Ξ	Q	(0.0256)	[1]	
bis(2-Ethylhexyl)phthalate	QN N	(0.0631)	Ξ	Q	(0.0646)	[1]	
SW8310 - Polynuclear Aromatic Hydrocarbons		(ug/kg)					
Acenaphthene	907	(404)	[10]	Q.	(415)	[10]	
Acenaphthylene	QN	(778)	[10]	QN	(798)	[10]	

			_		. —	. —	. –								
		[10	[10	[10	. 6]	[10	[10	[10	[]	[10	[10	[10	[10	[10	[10]
005 DRM DRM-02 0 - 0.3		(245)	(7.34)	(22.3)	(35.1)	(63.9)	(7.02)	(128)	(17)	(223)	(60.7)	(23.4)	(1920)	(447)	(566)
		Q.	ND	ND	ND	70.3	QN	4.14 J	ND	ON	QN	25.8 B	ND	ON	Q.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]
005 DRM DRM-01 0 - 0.3	(ug/kg)	(238)	(7.15)	(21.8)	(34.2)	(62.2)	(6.84)	(124)	(16.6)	(218)	(59.1)	(22.8)	(1870)	(436)	(528)
0	cont.					٦									
	lydrocarbons,	ON	QN	ON	QN	55.6	ND	ND	QN	QN	QN	ON	ON	QN	ON
PARAMETER	SW8310 - Polynuclear Aromatic Hydrocarbons, cont.	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene

[] = Dilution Factor

ND = Not Detected

NA = Not Applicable * - Value considered suspect, Refer to QC Report Al-12

ALL RESULTS OF INORGANIC ANALYSES FOR SOIL (DRM, BLM) SAMPLES, GALENA 1993 EVENT.

Problem Prob					BEG. DE	SITE ID LOCATION ID SAMPLE ID PTH - END DE	SITE ID LOCATION ID SAMPLE ID DEPTH - END DEPTH (FT.)	•							•
BIM			800			008				800			300		
8700 (6.62) [1] 7880 (5.68) [1] 4660 (6.65) [1] 5890 (6.73) -0.694 (1.74) [1] -0.837 [1.5] [1.3] (6.73) [1] -1.11 38 (6.73) -0.694 (1.74) [1] -0.837 [1.5] [1] 4.68 (6.73) [1] 4.68 (6.73) [1] 4.12 (1.41) [1] 4.58 (1.74) [1] 4.69 (6.73) [1] 4.69 (6.73) [1] 4.69 (6.73) [1] 4.69 (6.73) [1] 4.79 [1.73]			BLM BLM-01			BLM BLM-0	5			BLM BLM-03			BLM-C	† 40	
9700 (6.52) [1] 7680 (1.5) [1] 4680 (6.65) [1] 5890 (6.71) -0.0934 B (1.74) [1] -6.37 [1] -1.4 18 (1.73) [1] 4.63 [1] 4.63 [1,77) 8.96 (1.74) [1] -6.38 (1.22) [1] 4.63 [1] 4.63 (1.74) 1.46 (0.0523) [1] 1.28 (0.0448) [1] 6.78 [1] 4.63 (1.44) 0.243 (0.0522) [1] 0.0468 [1] 0.039 [1] 0.439 (0.0525) [1] 4.63 (1.44)	PARAMETER		0 - 0.3			0 - 0	ω.			1			1	3.3	
8700 (6.62) [1] 7660 (5.68) [1] 4660 (6.65) [1] 5890 (6.77) -0.0994 (1.43) [1] -0.0894 (1.43) [1] -1.43 [1] -1.13 (1.77) 1.46 (0.0523) [1] -1.28 (1.43) [1] -1.43 (1.43) [1] 4.63 (1.77) 0.243 [1] -1.28 (0.0480) [1] 6.062 [1] 9.73 (0.0529) [1] 0.0480 [1] 9.73 (1.43) (1.77) 0.524 [0.0529] [1] 0.0490 [1] 0.030 [1] 9.73 (0.0529) [1] 0.0490 [1] 0.030 (0.0529) [1] 0.0490 [1] 0.030 (0.0529) [1] 0.0490 [1] 0.053 [1] 0.0490 [1] 0.0490 [1] 0.0490 [1] 0.0490 [1] 0.0490 [1] 0.0490 [1] 0.0490 [1] 0.0490					;		 	<u> </u>		:					!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4.06 (1.43) (1.43) (1.43) (1.43) (1.43) (1.43) (1.43) (1.44) <th>Aluminum Antimony</th> <th></th> <th>(6.62)</th> <th>ΞΞ</th> <th>7680</th> <th>_</th> <th>5.68)</th> <th>ΞΞ</th> <th></th> <th>(6.65)</th> <th>ΞΞ</th> <th></th> <th></th> <th>(6.7)</th> <th>ΞΞ</th>	Aluminum Antimony		(6.62)	ΞΞ	7680	_	5.68)	ΞΞ		(6.65)	ΞΞ			(6.7)	ΞΞ
146 (0.0523) [1] 128 (0.0454) [1] 85.4 (0.0558) [1] 87.3 (0.0523) 0.243 (0.0523) [1] 0.187 (0.0456) [1] 0.103 (0.0535) [1] 0.142 (0.0539) 0.243 (0.0532) [1] 0.38 (0.222) [1] 0.308 (0.261) [1] 0.435 (0.0539) 4690 (2.1.5) [1] 1030 (0.244) [1] 4350 (0.263) 21.1 (0.247) [1] 15.9 (0.212) [1] 10.1 (0.240) [1] 4350 (2.128) 21.1 (0.247) [1] 15.9 (0.241) [1] 10.1 (0.244) [1] 4350 (2.18) 22.5 (0.242) [1] 10.1 (0.441) [1] 10.1 (0.241) [1] 11.1 (0.241) [1] 11.1 (0.241) [1] 11.1 (0.244) [1] 11.4 (0.241) [1	Ancimony		(1.74)	ΞΞ	9.87		(1.3)	ΞΞ		(1.73)	ΞΞ			1.77)	ΞΞ
0.243 (0.0532) [1] 0.167 (0.0456) [1] 0.167 (0.0536) [1] 0.147 (0.0536)	Barium	146	(0.0523)	Ξ	128	0)	0449)	<u> </u>	85.4	(0.0526)	[]	87.3	٥	.053)	ΞΞ
0.55 B (0.259) [1] 0.38 B (0.221) [1] 0.308 B (0.261) [1] 0.332 B (0.262) 21.1 (0.244) [1] 1030 (18.4) [1] 3890 (21.6) [1] 11.6 21.1 (0.247) [1] 15.3 (0.212) [1] 10.1 (0.244) [1] 6.1 (0.253) 22.5 (0.223) [1] 1.8 (0.014) [1] 10.9 (0.224) [1] 11.7 (0.224) [1] 11.7 (0.224) [1] 11.9 (0.191) [1] 10.9 (0.224) [1] 11.0 (0.224) [1] 11.1 10.9 (0.224) [1] 11.1 11.1 11.1 11.1 11.1 11.1 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11.2 11	Beryllium	0.243	(0.0532)	Ξ	0.167	0.	0456)	Ξ	0.103	(0.0535)	[1]	0.142	0	0539)	ΞΞ
4590 (21.5) [1] 19300 (18.4) [1] 3890 (21.6) [1] 4350 (21.8) 21.1 (0.247) [1] 15.9 (0.212) [1] 10.1 10.1 10.1 10.1 10.1 10.248) [1] 11.6 10.249) [1] 11.1 11.6 10.244) [1] 11.1 11.1 10.249) [1] 10.1 10.244) [1] 11.1 10.250 (0.244) [1] 11.1 10.250 (0.244) [1] 11.1 10.250 (24.1) [1] 10.9 (0.244) [1] 12.1 (0.224) [1] 12.1 (0.224) [1] 12.1 (0.224) (2.24) [1] 12.1 (0.224) [1] 12.1 (0.224) [1] 12.1 (0.224) [1] 12.1 (0.224) [1] 12.1 (0.224) [1] 12.1 (0.224) [1] 12.1 (0.224) [1] 12.1 (0.224) [1] 12.1 (0.224) <th>Cadmium</th> <th></th> <th>(0.259)</th> <th>Ξ</th> <th></th> <th>_</th> <th>. 222)</th> <th>[1]</th> <th></th> <th>(0.261)</th> <th>Ξ</th> <th></th> <th></th> <th>.262)</th> <th>Ξ</th>	Cadmium		(0.259)	Ξ		_	. 222)	[1]		(0.261)	Ξ			.262)	Ξ
21.1 (0.247) [1] 15.9 (0.212) [1] 10.1 (0.249) [1] 11.6 (0.25) 9.27 (0.472) [1] 7.4 (0.404) [1] 5.11 (0.474) [1] 6.7 (0.275) 22.5 (0.223) [1] 1.8 (0.191) [1] 10.9 (0.224) [1] 12.1 (0.226) 54.8 (2.23) [1] 10.9 (2.11) [1] 200 (2.24) [1] 13.7 (0.226) 4880 (2.23) [1] 10.9 (2.12) [1] 200 (2.48) [1] 14.7 (2.26) 4880 (2.47) [1] 10.9 (2.12) [1] 200 (2.48) [1] 14.7 (2.26) 4880 (2.47) [1] 2.1 (0.00914) [1] 2.24 (1) 1.1 1.1 1.2 1.1 1.1 1.1 1.1 2.2.1 [1] 1.1 1.1 1.1	Calcium	4690	(21.5)	Ξ	10300)	18.4)	Ξ	3890	(21.6)	Ξ	4350	Ū	21.8)	[]
9.27 (0.472) [1] 7.4 (0.444) [1] 5.11 (0.474) [1] 6.1 (0.477) 22.5 (0.223) [1] 18 (0.191) [1] 10.99 (0.224) [1] 12.1 (0.226) 54.8 (2.23) [1] 16.70 (1.91) [1] 10.00 (28.2) [1] 14.7 (2.26) 4880 (2.21) [1] 10.9 (1.91) [1] 20.0 [2.48) [1] 14.7 (2.26) 4880 (2.21) [1] 10.9 (1.224) [1] 14.7 (2.26) 4880 (2.21) [1] 20.00 [2.24) [1] 14.7 (2.26) 384 (0.0107) [1] 31.3 (0.00914) [1] 24.1 (0.0107) [1] 42.0 (2.24) [1] 42.0 (2.24) [1] 42.0 (2.24) [1] 42.0 (2.24) [1] 42.0 (2.26) (2.26) (2.26)<	Chromium	21.1	(0.247)	Ξ	15.9	0	.212)	Ξ	10.1	(0.248)	[1]	11.6	Ŭ	0.25)	[1]
22.5 (0.223) [1] 18 (0.191) [1] 10.9 (0.224) [1] 12.1 (0.226) 18400 (28.1) [1] 16700 (24.1) [1] 10.00 (28.2) [1] 13200 (28.4) 54.8 (2.23) [1] 1670 (2.11) [1] 244 (2.24) [1] 3450 (2.26) 4880 (2.47) [1] 313 (0.00914) [1] 244 (0.0107) [1] 3450 (2.26) 1.47 (0.237) [1] 1.09 (0.0394) [1] 244 (0.0107) [1] 3450 (2.26) 25.5 (0.0865) [1] 21.7 (0.845) [1] 4.24 (0.0107) [1] 16.1 (0.244) (0.1007) [1] 11.1 4.24 (0.0107) [1] 4.24 (0.0107) [1] 4.24 (0.0107) [1] 4.24 (0.0107) [1] 4.24 (0.0106) [1] 4.24	Cobalt	9.27	(0.472)	Ξ	7.4	0)	.404)	[1]	5.11	(0.474)	[1]	6.1	٣	.477)	Ξ
18400 (28.1) [1] 16700 (24.1) [1] 10000 (28.2) [1] 13200 (28.4) 54.8 (2.23) [1] 10.9 (1.91) [1] 7.34 (2.24) [1] 14.7 (2.26) 4880 (2.23) [1] 10.9 (1.91) [1] 241 (0.0107) [1] 313 (0.00914) [1] 241 (0.0107) [1] 315 (0.00914) [1] 241 (0.0107) [1] 315 (0.0109) [1] 316 (0.0109) [1] 316 (0.0109) [1] 326 (0.0109) [1] 316 (0.0109) [1] 328 (0.0109) [1] 316 (0.0109) [1] 318 (0.0109) [1] 318 (0.0109) [1] 4.24 (4.01) [1] 4.26 (4.04) (0.24) (1.04) (0.24) (1.04) (0.0109) [1] 4.26 (4.04) (0.0109) [1] 4.26 (4.04) (0.0	Copper	22.5	(0.223)	[1]	18	0	.191)	Ξ	10.9	(0.224)	Ξ	12.1	٥	.226)	Ξ
54.8 (2.23) [1] 10.9 (1.91) [1] 7.34 (2.24) [1] 14.7 (2.26) 4880 (2.47) [1] 5510 (2.12) [1] 2960 (2.49) [1] 3450 (2.5) 384 (0.0107) [1] 241 (0.0107) [1] 245 (0.107) [1] 245 (0.0107) [1] 245 (0.0107) [1] 245 (0.0108) [1] 0.023 [1] 0.023 [1] 0.023 [1] 0.023 [1] 0.023 [1] 0.023 [1] 0.023 [1] 0.023 [1] 0.023 [1] 0.023 [1] 0.023 [1] 0.024 (0.030) [1] 0.024 (0.030) [1] 0.024 (0.030) [1] 0.024 (0.030) [1] 0.024 (0.030) [1] 0.024 (0.030) [1] 0.024 (0.030) [1] 0.024 (0.030) [1] 0.024 (0.030) [Iron	18400	(28.1)	Ξ	16700	ت	24.1)	[1]	10000	(28.2)	[1]	13200	_	28.4)	[1]
4880 (2.47) [1] 5510 (2.12) [1] 2960 (2.48) [1] 3450 (2.5) 384 (0.0107) [1] 313 (0.09914) [1] 241 (0.0107) [1] 215 (0.0108) 1.47 (0.237) [1] 1.09 (0.2034) [1] 0.588 (0.238) [1] 0.846 (0.240) 25.5 (0.985) [1] 21.7 (0.845) [1] 1.38 (0.99) [1] 0.846 (0.240) 959 (31.3) [1] 6.8 (26.8) [1] 4.24 (4.01) [1] 7.84 (0.99) 6.41 (3.99) [1] 6.55 (3.43) [1] 4.24 (4.01) [1] 4.24 (4.01) [1] 4.24 (4.01) [1] 4.24 (4.01) [1] 4.24 (4.01) [1] 4.04 (0.166) [1] 4.04 (0.166) [1] 4.04 (0.166) [1] 4.04 <th>Lead</th> <th>54.8</th> <th>(2.23)</th> <th>Ξ</th> <th>10.9</th> <th>_</th> <th>1.91)</th> <th>Ξ</th> <th>7.34</th> <th>(2.24)</th> <th>[1]</th> <th>14.7</th> <th>_</th> <th>2.26)</th> <th>Ξ</th>	Lead	54.8	(2.23)	Ξ	10.9	_	1.91)	Ξ	7.34	(2.24)	[1]	14.7	_	2.26)	Ξ
384 (0.0107) [1] 313 (0.00944) [1] 241 (0.0107) [1] 215 (0.0108) 1.47 (0.237) [1] 1.09 (0.203) [1] 0.588 (0.238) [1] 0.846 (0.24) 25.5 (0.985) [1] 21.7 (0.845) [1] 13.8 (0.99) [1] 16.1 (0.249) 959 (31.3) [1] 66.8 (26.8) [1] 4.24 (4.01) [1] 784 (31.6) 6.41 (3.99) [1] 6.55 (3.43) [1] 4.24 (4.01) [1] 7.26 (4.04) 70.318 JB (0.165) [1] -0.351 JB (0.142) [1] 4.24 (4.01) [1] 7.25 JB (0.164) [1] 4.26 (4.04) [1] 4.26 (3.04) [1] 4.04 (0.161) [1] -0.353 JB (1.14) (2.35) [1] -0.353 JB	Magnesium	4880	(2.47)	Ξ	5510	٣	2.12)	Ξ	2960	(2.48)	Ξ	3450		(2.5)	[1]
1.47 (0.237) [1] 1.09 (0.203) [1] 0.588 (0.238) [1] 0.846 (0.24) 25.5 (0.985) [1] 21.7 (0.845) [1] 13.8 (0.99) [1] 16.1 (0.997) 959 (31.3) [1] 66.4 (26.8) [1] 66.4 (0.997) [1] 784 (0.997) 6.41 (3.39) [1] 6.55 (3.43) [1] 4.24 (4.01) [1] 784 (31.6) 6.41 (3.39) [1] 6.55 (3.43) [1] 4.24 (4.01) [1] 4.26 (4.04) -0.318 JB (0.165) [1] -0.31 JB (0.166) [1] 4.26 (4.04) 203 (2.34) [1] -0.31 JB (0.166) [1] 4.26 (4.04) 2.21 JB (6.27) [1] -0.32 JB (6.35) JB (6.35) JB (6.37) JB (6.37) JB (6.37) JB (6.36) JB JB </th <th>Manganese</th> <th>384</th> <th>(0.0107)</th> <th></th> <th>313</th> <th>0.0)</th> <th>0914)</th> <th>Ξ</th> <th>241</th> <th>(0.0107)</th> <th>Ξ</th> <th>215</th> <th>(0</th> <th>0108)</th> <th>[1]</th>	Manganese	384	(0.0107)		313	0.0)	0914)	Ξ	241	(0.0107)	Ξ	215	(0	0108)	[1]
25.5 (0.385) [1] 21.7 (0.845) [1] 13.8 (0.99) [1] 16.1 (0.997) 959 (31.3) [1] 668 (26.8) [1] 626 (31.4) [1] 784 (31.6) 6.41 (3.99) [1] 6.55 (3.43) [1] 4.24 (4.01) [1] 78.6 (4.04) -0.318 JB (0.165) [1] -0.351 JB (0.142) [1] -0.31 JB (0.166) [1] -0.353 JB (0.167) 2.03 (2.34) [1] 218 (2.01) [1] 104 (2.35) [1] 134 (2.37) 2.21 JB (6.27) [1] -0.0256 JB (5.38) [1] 11.5 JB (6.3) [1] 0.379 JB (6.35) 32.4 (0.288) [1] 27.8 (0.333) [1] 16.7 (0.39) [1] 46 (0.264) 98.8 (0.081) [2] 9.11 (0.143) [2] 5.58 (0.0948)	Molybdenum	1.47	(0.237)	Ξ	1.09	<u>.</u>	.203)	Ξ	0.588	(0.238)	Ξ	0.846	_	0.24)	Ξ
959 (31.3) [1] 668 (26.8) [1] 626 (31.4) [1] 784 (31.6) 6.41 (3.99) [1] 6.55 (3.43) [1] 4.24 (4.01) [1] 4.26 (4.04) -0.318 JB (0.165) [1] -0.351 JB (0.142) [1] -0.31 JB (0.166) [1] -0.353 JB (0.167) 2.21 JB (6.27) [1] -0.0256 JB (5.38) [1] 1.15 JB (6.35) [1] 0.379 JB (6.35) 32.4 (0.388) [1] 27.8 (0.333) [1] 16.7 (0.39) [1] 21.6 (0.393) 98.8 (0.263) [1] 58.8 (0.225) [1] 35.8 (0.264) [1] 46 (0.266) 12 9.11 (0.143) [2] 5.58 (0.0948) [1] 5.77 (0.166)	Nickel	25.5	(0.985)	Ξ	21.7	<u> </u>	.845)	Ξ	13.8	(0.99)	[1]	16.1	٥	.997)	Ξ
6.41 (3.39) [1] 6.55 (3.43) [1] 4.24 (4.01) [1] 4.26 (4.04) -0.318 JB (0.165) [1] -0.351 JB (0.142) [1] -0.31 JB (0.167) 203 (2.34) [1] 218 (2.01) [1] 104 (2.35) [1] 134 (2.37) 2.21 JB (6.27) [1] -0.0256 JB (5.38) [1] 11.15 JB (6.3) [1] 0.379 JB (6.35) 32.4 (0.388) [1] 27.8 (0.225) [1] 16.7 (0.39) [1] 46 (0.266) 98.8 (0.263) [1] 58.8 (0.225) [1] 35.8 (0.264) [1] 46 (0.266) 12 (0.181) [2] 9.11 (0.143) [2] 5.58 (0.0948) [1] 5.77 (0.166)	Potassium	959	(31.3)	Ξ3	868	٠,	26.8)		626	(31.4)	Ξ	784		31.6)	Ξ
203 (2.34) [1] -0.51 JB (0.167) [1] -0.531 JB (0.167) 2.21 JB (6.27) [1] 218 (5.38) [1] 1.15 JB (6.3) [1] 134 (2.37) 2.21 JB (6.27) [1] -0.0256 JB (5.38) [1] 1.15 JB (6.3) [1] 0.379 JB (6.35) 32.4 (0.288) [1] 27.8 (0.233) [1] 16.7 (0.39) [1] 46 (0.266) 98.8 (0.263) [1] 58.8 (0.225) [1] 35.8 (0.264) [1] 46 (0.266) 12 (0.181) [2] 9.11 (0.143) [2] 5.58 (0.0948) [1] 5.77 (0.166) 48.6 8 (2.14) [20] 10.4 8 (0.447) [4] 15.3 8 (0.392)	Selenium		(3.99)	E E		`	3.43)	ΞΞ		(4.01)	ΞΞ		,	4.04)	ΞΞ
2.21 JB (6.27) [1] -0.0256 JB (5.38) [1] 1.15 JB (6.3) [1] 0.379 JB (6.35) [2.27) [2.27] [2.21 JB (6.25)] [1] 27.8 (0.333) [1] 16.7 (0.39) [1] 21.6 (0.383) [2.25]	Sodium		(0.103)	ΞΞ		-	.142)	ΞΞ		(0.166)	ΞΞ		_	7.167)	ΞΞ
32.4 (0.388) [1] 27.8 (0.333) [1] 16.7 (0.39) [1] 21.6 (0.393) [1] 88.8 (0.264) [1] 46 (0.266) [1] 21.6 (0.393) [1] 21.6 (0.3	Thallium		(6.27)	ΞΞ	.0256		5.38)	E E		(6.3)	3 5			6.35)	ΞΞ
98.8 (0.263) [1] 58.8 (0.225) [1] 35.8 (0.264) [1] 46 (0.266) 12 (0.181) [2] 9.11 (0.143) [2] 5.58 (0.0948) [1] 5.77 (0.166) 48.6 8 (2.14) [20] 10.4 8 (0.336) [4] 8.94 8 (0.447) [4] 15.3 8 (0.392)	Vanadium	32.4	(0.388)	Ξ			.333)	ΞΞ		(0.39)	ΞΞ			.393)	ΞΞ
12 (0.181) [2] 9.11 (0.143) [2] 5.58 (0.0948) [1] 5.77 (0.166) 48.6 S (2.14) [20] 10.4 S (0.336) [4] 8.94 S (0.447) [4] 15.3 S (0.392)	Zinc	98.8	(0.263)	Ξ	58.8	0)	.225)	Ξ	35.8	(0.264)	Ξ	46	. S	, 266)	Ξ
12 (0.181) [2] 9.11 (0.143) [2] 5.58 (0.0948) [1] 5.77 (0.166) (mg/kg) 48.6 S (2.14) [20] 10.4 S (0.336) [4] 8.94 S (0.447) [4] 15.3 S (0.392)	SW7060 - Arsenic (mg/kg)														1
(mg/kg) 48.6 S (2.14) [20] 10.4 S (0.336) [4] 8.94 S (0.447) [4] 15.3 S (0.392)	Arsenic .	12	(0.181)	[2]	9.11	<u>၀</u>)	.143)	[2]	5.58	(0.0948)	Ξ	5.77	٥	.166)	[2]
48.6 S (2.14) [20] 10.4 S (0.336) [4] 8.94 S (0.447) [4] 15.3 S (0.392)	SW7421 - Lead (mg/kg)														
	Lead		(2.14)	[20]			.336)	[4]		(0.447)	[4]			.392)	[4]
														! ! !	-

📗 = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

A12-2

SITE 10

[1] [2]	(0.248) (0.139) (0.327)	43.4 6.19 6.55 S		[1]	(0.0696)	3.54 2.39 S	SW7060 - Arsenic (mg/kg) Arsenic SW7421 - Lead (mg/kg) Lead
[1] [2]	(0.139)				(0.0696)		enic (mg/kg) id (mg/kg)
[1]	(0.248) (0.139)	3.4		. .	(0.0696)	3.54	enic (mg/kg)
Ξ :	(0.248)	4.7			•		enic (mg/kg)
[1]	(0.248)	4.5					•
				Ξ	(0.245)	25.7	
[]	(0.366)	20.5		Ξ	(0.362)	20.3	
[1]	(5.91)	1605 JB	-0.		(5.85)	0.655 JB	
[1]	(2.21)			Ξ	(2.18)		
[1]	(0.156)	297 JB	0	[1]	(0.154)	-0.0185 JB	•
[1]	(3.76)			[1]	(3.73)		
[1]	(58.5)	542		Ξ	(29.5)	404	
[1]	(0.928)	17.1		Ξ	(0.919)	15	
Ξ	(0.223)	0.65		Ξ	(0.221)	0.47 B	
[1]	(0.01)	219		二	(0.00995)	204	
[1]	(2.32)	3280		Ξ	(2.3)		
Ξ	(2.1)	6.48		二	(5.08)	5.04	
[1]	(26.5)	11500			(26.2)	9910	
[1]	(0.21)	9.74		Ξ	(0.208)	9.53	
[1]	(0.444)	5.85		1	(0.44)	5.69	
[]	(0.232)	11.3		П	(0.23)	9.77	
[1]	(20.3)	4120		Ξ	(20.1)	2480	
[1]	(0.244)	0.934		[]	(0.242)	0.231 JB	
[1]	(0.0501)	0.124		[1]	(0.0497)	0.11	
[1]	(0.0493)	74.8		[]	(0.0488)	64.5	
Ξ	(1.35)	3.43		[1]	(1.33)	5.22	
[1]	(1.64)	-2.18 JB			(1.63)	0.643 JB	
[1]	(6.24)	5230		[1]	(6.18)	4800	
							SW6010 - Metals (mg/kg)
				 			1
	0 - 0.3	0			0 - 0.3	0	
	DRM-02	R			DRM-01	6	
	DRM				DRM		
	005				900		
·:	- באט טברוח (נט. טנרוח	ā				
FT.)	DEPTH - END DEPTH (FT.)	эн ВЕG. DEPTH	98				
	COCATION ID	007					

	1 01-MW-05 G94-01-MW-05	
SITE ID LOCATION ID SAMPLE ID	1 01-MW-01 G94-01-MW-01-FD Dup of G94-01-MW-01	
	1 01-MW-01 694-01-MW-01	
	PARAMETER	

AK101 - Gasoline Range Organics (ug/L) Gasoline Range Organics	L) 380	J	50.0)	[1]	370	_	50.0)	[1]	00.00	JB	(0.09)	[1]	15.0 J	_	50.0)	[1]
AK102 - Diesel Range Organics (ug/L) Diesel Range Organics	170	J	100)	[1]	85.0		100)	[1]	00.00	JB (100)	Ξ	0.00 JB		100)	[1]
SW8080 - Organochlorine Pesticides and PCBs		(ng/L)														
4,4'-000	2	°	0.00225)	Ξ	2	_	0.00217)	Ξ	2		(0.00220)	[1]	Q	_	0.00220)	Ξ
4,4'-DDE	Q	0	0.00464)	Ξ	9	_	0.00448)	Ξ	S		(0.00453)	Ξ	ON N	_	0.00455)	[1]
4,4'-DDT 0.0	0.00800 KJ	_	0.00878)	Ξ	S	_	0.00721)	Ξ	0.00690	3	(0.00856)	Ξ	ON	_	0.00731)	Ξ
Aldrin	Q	°	0.00292)	Ξ	S.	_	0.00282)	[]	N S		0.00285)	Ξ	QN	_	0.00286)	[1]
Chlordane	Q	_	0.0240)	Ξ	S	_	0.0232)	Ξ	ON	_	0.0234)	Ξ	ND	_	0.0235)	[1]
Dieldrin 0.0	0.00250 K	KJB (0	0.00403)	[]	0.00250	KJB (0.00389)	Ξ	8	_	(0.00242)	Ξ	Q	_	0.00395)	[1]
Endosulfan I	Ş	°	0.00910)	Ξ	S	_	0.00879)	Ξ	N	_	(0.00888)	Ξ	Q	_	0.00892)	Ξ]
Endosulfan II	Q	0	0.00380)	Ξ	S	_	0.00367)	Ξ	NO	_	0.00371)	Ξ	QN	Ų	0.00372)	[1]
Endosulfan Sulfate	<u>Q</u>	0	0.00544)	[]	Q	_	0.00526)	Ξ	S	_	(0.00531)	Ξ	QN	_	0.00533)	Ξ
Endrin	₽.	0	0.00726)	[1]	Q	_	0.00701)	Ξ	ON.		(0.00708)	Ξ	ON	_	0.00712)	Ξ
Endrin Aldehyde	Q	0	0.00400)	Ξ	Q	_	0.00386)	Ξ	S	_	(0.00390)	Ξ	QN	_	0.00392)	Ξ
Heptachlor	Q	0	0.00236)	[1]	Q	_	0.00228)	Ξ	N		(0.00230)	Ξ	ON	_	0.00231)	Ξ
Heptachlor epoxide	Q	0	0.00227)	Ξ	9	_	0.00219)	[1]	ON	_	(0.00221)	Ξ	QN	_	0.00222)	[1]
Methoxychlor	2	J	0.0547)	Ξ	9	_	0.0528)	[1]	9	_	(0.0534)	Ξ	0.0525 KJ	_	0.0945)	[1]
PCB-1016	R	_	0.0244)	[1]	8	_	0.0236)	Ξ	S		0.0238)	Ξ	QN	_	0.0239)	Ξ
PCB-1221	Q	_	0.0232)	Ξ	S	_	0.0224)	Ξ	S	_	(0.0226)	Ξ	QN	_	0.0227)	Ξ
PCB-1232	Q	Ū	0.0175)	[1]	9	_	0.0169)	Ξ	S	_	(0.0171)	Ξ	QN	_	0.0172)	[1]
PCB-1242	9	_	0.120)	Ξ	S	_	0.116)	Ξ	N N		0.117)	Ξ	QV	_	0.118)	Ξ
PCB-1248	2	_	0.0417)	Ξ	S	_	0.0403)	Ξ	N	_	(0.0407)	Ξ	QN	_	0.0409)	[1]
PCB-1254	Q	J	0.0308)	[]	Q	_	0.0298)	Ξ	N	_	0.0300)	Ξ	QN	_	0.0302)	Ξ
PCB-1260	2	_	0.0349)	Ξ	Q.	_	0.0337)	[1]	ON		0.0340)	[1]	QN	_	0.0342)	[1]

NA = Not Applicable * - Value considered suspect, Refer to QC Report A13-1

() = Detection Limit [] = Dilution Factor ND = Not Detected

Compiled: 15 March 1995

					SITE ID LOCATION ID SAMPLE ID	1D N 1D 1D								
	0	1 01-MW-01			1 01-MW-01	_		c	1 01-MW-02			č	1	
	694	G94-01-MW-01		G94-01	G94-01-MW-01-FD Dup of G94-01-MW-01	Dup of 0 Dup of 01		694	G94-01-MW-02	8		0. -694-	01-MW-05 694-01-MW-05	
PARAMETER	1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			,		5								
SW8080 - Organochlorine Pesticides and PCBs,	es and PCBs, cont.	nt. (ug/L)	 		; ; ; ; ;	! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !	!	 	1	 	1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Toxaphene			Ξ	ON)	0.0413)	Ξ	QN	0.0	0.0417)	11	QN	(0.0419)	[1]
alpha-BHC	QN	(0.00429)	Ξ	N	0.0	0.00414)	Ξ	QN N	(0.00418)			2	(0,00289)	ΞΞ
beta-BHC	0.0144 P	(0.00339)	[1]	0.0189	0.0	0.00328)	Ξ	QN	(0.00331)		1]	S	(0.00332)	ΞΞ
delta-BHC	QN	(0.00178)	[1]	ON	0.0	0.00211)	[1]	S	(0.00213)		1]	Q	(0.00214)	ΞΞ
gamma-BHC	QN	(0.00135)	[1]	Q	0.0	0.00130)	[1]	QN	(0.00381)		1]	ND	(0.00383)	Ξ
SW8260 - Volatile Organic Compounds	nds (ug/L)													
1,1,1,2-Tetrachloroethane	QN	(0.0851)	[1]	NO.	.0	0.0851)	[]	CN	30 0	7 (1280 0	[11]	S	(1000)	5
1,1,1-Trichloroethane	QN	(0.0992)	Ξ	9	.0	0.0992)	ΞΞ	2	(7660.0)		7 =	2 5	(0.0001)	ΞΞ
1,1,2,2-Tetrachloroethane	ON	(0.170)	ΞΞ	S		0.170)	ΞΞ	2	0.1			2 5	(0.0332)	ΞΞ
1,1,2-Trichloroethane	QN	(0.0920)	[1]	ND	, 0	0.0920)	[1]	QN	0.0920	_	· 🗆	. Q	(0.0920)	ΞΞ
1,1-Dichloroethane	QN	(0.0886)	[1]	ON	(0.	0.0886)	[1]	ND	(0.0886)	_	· =	ON	(0.0886)	ΞΞ
1,1-Dichloroethene	Q :	(0.0806)	Ξ,	Q.	.0	0.0806)	[1]	QN	(9080.0)	_	· []	QN	(00800)	Ξ
1,2,3-Irichloropropane	Q S	(0.233)		2		0.233)	Ξ	용	(0.2		[1]	NO	(0.233)	Ξ
1,2-Dichloroethane	3 VD	(0.354)	ΞΞ	S 5	° ,	0.354)	ΞΞ	Q ;	0.3			ND	(0.354)	Ξ
1,2-Dichloropropane	QN .	(0.0742)	ΞΞ	79.T ND	. 0	0.0/91)	ΞΞ	1.09 CN	(0.0791) (0.0742)			0.770 MD	(0.0791)	ΞΞ
1,3-Dichlorobenzene	ON	(0.391)	Ξ	ND		0.391)	ΞΞ	2 Q	(0.3		7 =	2 2	(0.391)	ΞΞ
1,4-Dichlorobenzene	QN	(0.423)	Ξ	ON	0	0.423)	[1]	QN	(0.4		· _	ON	(0.423)	ΞΞ
1-Chlorohexane	QN	(0.154)	Ξ	QN	0	0.154)	[1]	Q	(0.1		نــ	N ON	(0.154)	
Z-Butanone(MEK)	QN .	(068.0)	Ξ	Q.	0	0.890)	[1]	QN	(0.890)		[1]	QN	(0.830)	
2-Chloroethyl vinyl ether	Q :	(0.124)	Ξ	ON	0	0.124)	[1]	Q	(0.1	0.124) [1	<u> </u>	QN	(0.124)	[1]
Z-Hexanone	9	(0.766)	Ξ	QN	0	0.766)	[]	ND	(0.766)			QN	(00.766)	Ξ
4-metnyl-z-Pentanone(MIBK)	Q :	(0.501)	Ξ;	R	0	0.501)	[1]	QN	(0.501)		نت	QN	(0.501)	Ξ
Acetone	5.87	(2.09)	Ξ:	6.27		2.09)	Ξ	4.62 B	(2.			4.93 B	(2.09)	Ξ
benzene Bromobenzene	152 N	(0.154)	[2]	152 NA	o (0.154)	<u> </u>	오 :	(0.0307)	07) [1]		0.0400 B	(0.0307)	[1]
	5	(0.103 <i>)</i>	[1]	Q.) -	0.165).	Ξ	S	(0.165)		_	Q	(0.165)	[1]

ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report A13-2 [] = Dilution Factor () = Detection Limit

Compiled: 15 March 1995

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

LOCATION ID SAMPLE ID SITE 1D

	01-	1 01-MW-01 G94-01-MW-01		1 01-MW-01 694-01-MW-01-FD Dup of	1 01-MW-01 1-MW-01-FD D	1 D Dup of		5	1 01-MW-02 94-01-MW-(1 01-MW-02 G94-01-MW-02		G	1 01-MW-05 94-01-MW-i	1 01-MW-05 G94-01-MW-05	
PARAMETER					# TO	10 1									
SW8260 - Volatile Organic Compounds, cont.	s, cont. (ug/L)	(! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	 	i ! !		! ! ! !				!
Bromodichloromethane	ON ON	0.0536)	Ξ	QN	0	.0536)	[1]	Q	_	0.0536)	[1]	S	_	0.0536)	[1]
Bromaform	QN	0.108)	Ξ	ON	_	0.108)	Ξ	S	_	0.108)	Ξ	S	_	0.108)	[1]
Bromomethane	QN	0.0968)	Ξ	QN	° _	0.0968)	Ξ	S	_	0.0968)	Ξ	S.	_	0.0968)	Ξ
Carbon disulfide	ON ON	0.161)	Ξ	ON	_	0.161)	Ξ	S	_	0.161)	Ξ	QN	_	0.161)	Ξ
Carbon tetrachloride	ON ON	0.117)	Ξ	QN	_	0.117)	Ξ	8	_	0.117)	Ξ	S	_	0.117)	Ξ
Chlorobenzene	ON ON	0.112)	Ξ	QN	_	0.112)	Ξ	8	_	0.112)	Ξ	2	_	0.112)	[1]
Chloroethane	ON ON	0.0972)	Ξ	0.100	0	(2/60/	Ξ	2	_	0.0972)	Ξ	9	_	0.0972)	[1]
Chloroform	ON ON	0.0363)	Ξ	QN	0	0.0363)	Ξ	2	_	0.0363)	Ξ	2	_	0,0363)	[1]
Chloromethane	0.570	0.155)	Ξ	0.650	_	0.155)	Ξ	0.610	_	0.155)	[1]	0.280 B	_	0.155)	[1]
Dibromochloromethane	QN	0.0283)	Ξ	ON	0	0.0283)	Ξ	9	_	0.0283)	Ξ	2	_	0.0283)	Ξ
Dibromomethane	0.220	0.0598)	Ξ	QN	0	0.0598)	Ξ	S	_	0.0598)	Ξ	N	_	0.0598)	Ξ
Ethyl benzene	0.100 J (0.110)	Ξ	0.0900	_	0.110)	Ξ	9	_	0.110)	Ξ	S	_	0.110)	Ξ
Meta-&Para-Xylene	0.100 J	0.365)	Ξ	0.100 J	_	0.365)	Ξ	S	_	0.365)	[1]	R	_	0.365)	Ξ
Methylene Chloride	0.220 B (0.151)	[]	0.190 8	_	0.151)	Ξ	0.260 B	_	0.151)	Ξ	0.230 B	_	0.151)	Ξ
Ortho-Xylene	0.0500 J	0.124)	Ξ	ON	_	0.124)	Ξ	9	_	0.124)	[]	2	~	0.124)	Ξ
Styrene	QN	0.113)	Ξ	ON	_	0.113)	Ξ	S	_	0.113)	Ξ	Q	_	0.113)	Ξ
Tetrachloroethene	ON ON	0.209)	Ξ	ON	_	0.209)	Ξ	Q	<u> </u>	0.209)		2	_	0.209)	Ξ
Toluene	0.240 (0.0336)	Ξ	0.280	° _	0.0336)	Ξ	2	_	0.0336)	Ξ	2	_	0.0336)	Ξ
Trichloroethene	QN	0.0439)	Ξ	QN	о _	0.0439)	[1]	2	_	0.0439)	Ξ	S	_	0.0439)	Ξ
Trichlorofluoromethane	QN	0.0943)	Ξ	QN	0	0.0943)	Ξ	9	_	0.0943)	Ξ	S	_	0.0943)	Ξ
Vinyl Chloride	ON ON	0.0992)	Ξ	QN	° -	0.0992)	Ξ	2	_	0.0992)	Ξ	8	~	0.0992)	Ξ
Vinyl acetate	QN	0.127)	Ξ	QN	_	0.127)	Ξ	2	_	0.127)	Ξ	2	_	0.127)	Ξ
cis-1,2-Dichloroethene	ON	0.0785)	Ξ	QN	_	0.0785)	Ξ	S	_	0.0785)	Ξ	S	_	0.0785)	Ξ
cis-1,3-Dichloropropene	QN QN	0.0758)	Ξ	ND	°	0.0758)	Ξ	2	_	0.0758)	Ξ	2	~	0.0758)	Ξ
trans-1,2-Dichloroethene	ON ON	0.131)	Ξ	ON	_	0.131)	Ξ	2	_	0.131)	Ξ	2	_	0.131)	Ξ
trans-1,3-Dichloropropene	ON	0.0829)	Ξ	QV	°	0.0829)	Ξ	QN	_	0.0829)	Ξ	ON	<u> </u>	0.0829)	[1]

SITE ID	LOCATION ID	SAMPLE ID
---------	-------------	-----------

G94-01-MW-01-FD Dup of G94-01-MW-01 01-MW-01

G94-01-MW-01. 01-MW-01

G94-01-MW-02 01-MW-02

01-MW-05 G94-01-MW-05

PARAMETER

[] = Dilution Factor

() = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

		1 01-MW-06 694-01-MW-06	90-MW-06			01-h	1 01-MW-07 694-01-MW-07			01-1	1 01-MW-08 694-01-MW-08			02	8 02-GW-01 694-02-GW-01	.1 1-01	
PARAMETER		- -	3		-	-					}			5		;	
AKI01 - Gasoline Range Organics Gasoline Range Organics	(ng/L) 580	_	50.0)	Ξ	3.00) 85	50.0)	Ξ	79.0	_	50.0)	[]	2.00	98	_	50.0)	Ξ
AK102 - Diesel Range Organics (u Diesel Range Organics	(ug/L) 350	J	100)	[1]	00.00) BC	100)	[1]	380)	100)	[1]	0.00	JB	_	100)	[1]
SW8080 - Organochlorine Pesticides and 4,4'-DDD	es and PCBs ND) (1/6n)	0.00212)	[1]	QN	_	0.00210)	Ξ	QN	_	0.00218)	[1]	QN		_	0.0153)	Ξ
4,4'-DDE	S		0.00540)	Ξ	ON	. <u> </u>	0.00536)	Ξ	Q.		0.00556)	Ξ	S		· · ·	0.00337)	Ξ
4,4'-DDT	Q.	_	0.00704)	Ξ	0.00720		0.00820)	Ξ	N N	_	0.00724)	Ξ	0.00620			0.00360)	Ξ
Aldrin	8	_	0.00275)	Ξ	Q	_	0.00273)	Ξ	Q	_	0.00283)	Ξ	QN		0	0.00403)	Ξ
Chlordane		J	0.0226)	Ξ	2	_	0.0224)	Ξ	Q	_	0.0233)	[1]	QN		_	0.0195)	Ξ
Dieldrin	0.00230	KJB (0.00380)	Ξ	0.00230	KJB (0.00377)	Ξ	0.00230	KJB (0.00391)	Ξ	Q			0.00399)	Ξ
Endosulfan I	2	_	0.00858)	Ξ	2	_	0.00850)	Ξ	Q.	_	0.00883)	Ξ	S	_		0.00210)	Ξ
Endosulfan II	QN	_	0.00358)	Ξ	2	_	0.00355)	Ξ	S	_	0.00369)	Ξ	ON			0.00369)	Ξ
Endosulfan Sulfate	ND	_	0.00513)	Ξ	2	_	0.00508)	[1]	QN	_	0.00528)	[1]	0.000400	3		0.00981)	Ξ
Endrin	QN	_	0.00685)	Ξ	2	_	0.00678)	[]	S	_	0.00705)	Ξ	S	_	, 0	0.00743)	Ξ
Endrin Aldehyde	S	_	0.00377)	Ξ	2	<u> </u>	0.00374)	Ξ	Q	_	0.00388)	Ξ	QN	_		0.00613)	
Heptachlor	S	_	0.00223)	Ξ	0.000600	<u> </u>	0.00119)	Ξ	Q.	_	0.00229)	Ξ	ON.		0	0.00532)	Ξ
Heptachlor epoxide	0.00330	ب ه	0.00236)	[1]	2	_	0.00212)	Ξ	0.00000.0	∑	0.00220)	Ξ	0.000400	3		0.00917)	Ξ
Methoxychlor	QN	_	0.0516)	Ξ	2	_	0.0511)	Ξ	S	_	0.0531)	Ξ	S	_	_	0.0387)	Ξ
PCB-1016	QN	_	0.0230)	Ξ	2	_	0.0228)	Ξ	S	_	0.0237)	Ξ	S		_	0.0314)	Ξ
PCB-1221	ON	_	0.0219)	Ξ	S	_	0.0217)	[1]	S	_	0.0225)	Ξ	QN	_	_	0.0283)	Ξ
PCB-1232	ON	_	0.0165)	Ξ	2	_	0.0164)	Ξ	QN	_	0.0170)	Ξ	S		_	0.0714)	Ξ
PCB-1242	QN	_	0.113)	Ξ	SN	_	0.112)	[1]	QN	_	0.117)	Ξ	S	_	_	0.0262)	Ξ
PCB-1248	ON	_	0.0393)	[1]	2	_	0.0390)	[1]	Q	_	0.0405)	Ξ	S		_	0.0310)	
PCB-1254	QN	_	0.0291)	[]	2	_	0.0288)	Ξ	Q	_	0.0299)		S	_	_	0.0124)	Ξ
PCB-1260	QN	_	0.0329)	Ξ	Q	_	0.0326)	Ξ	ON	_	0.0339)	Ξ	S		_	0.0344)	Ξ
Toxaphene	QN	_	0.0403)	Ξ	QN	_	0.0399)	Ξ	NO	_	0.0415)	Ξ	QN		_	0.0553)	Ξ
Compiled: 15 March 1995	() = Detection Limit	ion Lin	=	Dilution	ı Factor	= Q	Not Detected	NA =	Not Applicable	cable	* - Valu	e consi	Value considered suspect, Refer to	ct, Re	efer t	to QC Report A13-5	nt 5

PARAMETER

G94-02-GW-01 02-GW-01 ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994. G94-01-MW-08 01-MW-08 SITE ID LOCATION ID SAMPLE ID G94-01-MW-07 01-MW-07 01-MW-06 G94-01-MW-06

			1 1 1 1 1 1 1 1 1 1		1				į	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SW8080 - Organochlorine Pesticides and PCBs, cont. (ug/L)	and PCBs, co	nt. (ug/L)													
alpha-BHC	0.00810	(0.00405)	Ξ	QN	_	0.00401)	Ξ	ND			[1]) QN	0.0	0281)	Ξ
beta-BHC	ON	(0.00320)	[1]	ON	_	.00317)	Ξ	ON	· ·		[1]	QN	0.0	10397)	Ξ
delta-BHC	QN	(0.00168)	[]	0.00790 B	°	.00204)	Ξ	ON			[1]) ON	0.0	0229)	Ξ
gamma-BHC	QN	(0.00369)	[]	QN	_	.00365)	[1]	ND	· 0	0.00380)	[1]	ON ON	0.0	0.00175)	Ξ
SW8260 - Volatile Organic Compounds	(1/gn) s														
1,1,1,2-Tetrachloroethane	ND	(0.0851)	Ξ	QN	_	0.0851)	Ξ	QN	_		[1]	ON.		0851)	[1]
1,1,1-Trichloroethane	ND	(0.0992)	Ξ	N	_	0.0992)	Ξ	ON			[1]	ON ON	0	0992)	Ξ
1,1,2,2-Tetrachloroethane	ON	(0.170)	Ξ	QN	_	0.170)	Ξ	ON	_		Ξ	ON ON		.170)	Ξ
1,1,2-Trichloroethane	ND	(0.0920)	Ξ	QN	_	0.0920)	[1]	ND			[1]	ON ON	0	0350)	Ξ
1,1-Dichloroethane	QN	(0.0886)	[]	ND	Ų	0.0886)	Ξ	QN	<u> </u>	0.0886)	[1]	ON ON	0	0.0886)	[1]
1,1-Dichloroethene	Q	(0.0806)	Ξ	ND	_	0.0806)	Ξ	QN			[1]	ON ON	0	(9080	Ξ
1,2,3-Trichloropropane	QN	(0.233)	Ξ	QN	_	0.233)	[1]	QN			Ξ	ON ON		.233)	Ξ
1,2-Dichlorobenzene	QN	(0.354)		ON	_	0.354)	Ξ	QN			Ξ) ON		.354)	Ξ
1,2-Dichloroethane	1.23	(0.0791)	[1]	0.480	_	0.0791)	Ξ	1.07			<u></u>) ON	0	0791)	[1]
1,2-Dichloropropane	Q.	(0.0742)	Ξ	QN	_	0.0742)	[1]	ON ON			33) ON	0	0742)	[1]
1,3-Dichlorobenzene	Q	(0.391)	Ξ	Q.	_	0.391)	[1]	ON ON			Ξ) ON	0	.391)	[1]
1,4-Dichlorobenzene	Q.	(0.423)	Ξ	ON	_	0.423)	[]]	ON ON			Ξ) ON	0	.423)	[1]
1-Chlorohexane	ND	(0.154)	Ξ	QN	_	0.154)	[1]	ON QN			Ξ) ON		.154)	[1]
2-Butanone(MEK)	QN	(068.0)	[1]	Q	_	0.890)	[1]	ON ON			[1]) QN	0	(068.	Ξ
2-Chloroethyl vinyl ether	Q	(0.124)	Ξ	Q.	_	0.124)	[1]	ON ON			[1]) QN	0	.124)	[1]
2-Hexanone	QN	(00.766)	Ξ	ON	_	0.766)	Ξ	ON ON			Ξ) ON	0	.766)	
4-Methyl-2-Pentanone(MIBK)	ND	(0.501)	[1]	ND	_	0.501)	[1]) QN			Ξ.) ON	0	.501)	Ξ
Acetone	4.78 B	(2.09)	Ξ	5.32	_	2.09)	Ξ	5.01 B ([]	2.64 B (2.09)	Ξ
Benzene	224	(0.154)	[2]	0.0400 B	_	0.0307)	[1]	22.0	0			0.0300 JB (0.	0307)	Ξ
Bromobenzene	QN	(0.165)	Ξ	ON	_	0.165)	[1]) ON			<u></u>) QN	0	.165)	[1]
Bromodichloromethane	ND	(0.0536)	[1]	ND	_	0.0536)	Ξ) QN	0		11]) ON	0	0536)	ΞΞ
Bromoform	QN	(0.108)	[1]	ND	J	0.108)	Ξ) ON			[1]) QN	0	.108)	Ξ

Compiled: 15 March 1995

[] = Dilution Factor ND = Not Detected () = Detection Limit

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

	Ğ	01-M 94-01	1 01-MW-06 G94-01-MW-06		769	1 01-MW-07 G94-01-MW-07	-07 NV-07		01 G94-	1 01-MW-08 694-01-MW-08	. 80		39	8 02-GW-01 G94-02-GW-01	-01 5W-01	
PARAMETER				; 		: !	1	 			 	i	; ; ; ; ; ;			! ! !
SW8260 - Volatile Organic Compounds, cont.		(ug/L)														
Bromomethane	S	_	0.0968)	Ξ	2	_	0.0968)	Ξ	QN	.0	(8960	Ξ	N	_	0.0968)	Ξ
Carbon disulfide	Q	_	0.161)	Ξ	S	_	0.161)	Ξ	QN	_	0.161)	Ξ	Q	_	0.161)	Ξ
Carbon tetrachloride	S	_	0.117)	Ξ	S	_	0.117)	[1]	Q.	_	.117)	Ξ	QN	_	0.117)	Ξ
Chlorobenzene	Q	_	0.112)	Ξ	Q	_	0.112)	Ξ	ON	_).112)	Ξ	S	_	0.112)	Ξ
Chloroethane	2	_	0.0972)	Ξ	Q	_	0.0972)	Ξ	QN		0972)	Ξ	Q.	_	0.0972)	Ξ
Chloroform	2	_	0.0363)	Ξ	S	_	0.0363)	Ξ	ON	0	0363)	Ξ	R	_	0.0363)	Ξ
Chloromethane	0.290 B	_	0.155)	Ξ	2	_	0.155)	Ξ	QN	_	155)	Ξ	QN	_	0.155)	Ξ
Dibromochloromethane	Q	_	0.0283)	Ξ	S	_	0.0283)	Ξ	ON	0	0283)	Ξ	R	_	0.0283)	Ξ
Dibromomethane	Q	_	0.0598)	Ξ	ON	_	0.0598)	Ξ	ON		0598)	Ξ	Q	_	0.0598)	Ξ
Ethyl benzene 0	0.0200	J	0.110)	Ξ	S	_	0.110)	Ξ	ON	_).110)	Ξ	QN	_	0.110)	Ξ
Meta-&Para-Xylene	Q	_	0.365)	Ξ	2	_	0.365)	Ξ	QN	_	365)	Ξ	S	_	0.365)	Ξ
Methylene Chloride	0.350 B	_	0.151)	Ξ	0.230 B	_	0.151)	Ξ	0.260 B	_).151)	Ξ	0.400 B	÷	0.151)	Ξ
Ortho-Xylene 0	0.0600	_	0.124)	Ξ	Q	_	0.124)	Ξ	ON	_).124)	[1]	운	_	0.124)	[1]
Styrene	Q	_	0.113)	[1]	QN	_	0.113)	Ξ	QN	_).113)	Ξ	Q	_	0.113)	Ξ
Tetrachloroethene	Q	_	0.209)	[1]	Q	_	0.209)	Ξ	ND	_	.209)	[1]	Q	_	0.209)	[]
Toluene	0.330	_	0.0336)	Ξ	QN	_	0.0336)	Ξ	0.0300 JB		0336)	Ξ	0.0500	_	0.0336)	Ξ
Trichloroethene	Q	<u> </u>	0.0439)	Ξ	Q	_	0.0439)	[1]	ON		.0439)	Ξ	Q	_	0.0439)	Ξ
Trichlorofluoromethane	R	_	0.0943)	Ξ	ND	_	0.0943)	[1]	QN		0943)	[]	ջ	_	0.0943)	[1]
Vinyl Chloride	Q	_	0.0992)	Ξ	Q	_	0.0992)	Ξ	QN		(2660	Ξ	S	_	0.0992)	Ξ
Vinyl acetate	Q	_	0.127)	Ξ	QV	Ų	0.127)	Ξ	ON .	_).127)	[1]	S	_	0.127)	Ξ
cis-1,2-Dichloroethene	S	_	0.0785)	Ξ	Q.	_	0.0785)	Ξ	ND	· •	0785)	Ξ	S	_	0.0785)	Ξ
cis-1,3-Dichloropropene	Q	_	0.0758)	[1]	Q	_	0.0758)	[1]	QN		.0758)	[1]	S	_	0.0758)	Ξ
trans-1,2-Dichloroethene	S	_	0.131)	Ξ	QN	_	0.131)	Ξ	QN	_).131)	Ξ	Q.	_	0.131)	Ξ
trans-1,3-Dichloropropene	ND	_	0.0829)	Ξ	ND	_	0.0829)	Ξ	QN	· ·	.0829)	[1]	2	J	0.0829)	Ξ

Compiled: 15 March 1995

SW8270 - Semivolatile Organics (ug/L)

ΞΞ

0.623)

9 9

¥ ¥

¥ ¥

¥ ¥

LOCATION ID SAMPLE ID SITE 1D

	Ţ.		_		o		
	01-MW-06	01-MW-07	01-MW-08		02-GW-01	•	
PARAMETER	G94-01-MW-06	G94-01-MW-07	G94-01-MW-08		G94-02-GW-01	-01	
SW8270 - Semivolatile Organics cont						1	
1.3-Dichlorobenzene	() () () () () () () () () ()	2	:				
1,4-Dichlorobenzene	V N	A.V	NA	Q :		0.734)	Ξ
2.4.5-Trichlorophenol	Z. V	¥2.	¥Z:	Q.	_	1.35)	Ξ
2.4.6-Trichlorophenol	(NA	NA ::	QN	_	0.460)	[1]
2.4-Dichlorophenol	(<	NA	A.	Q	_	0.435)	Ξ
2 A-Dimothylahonal	4× •	Y.	NA	QN	_	0.677)	Ξ
2.4 Dimethylphenol	NA	NA	NA	QN	_	0.628)	
z,4-umitrophenoi	NA ::	NA	NA	QN	_	1.85)	
2,4-Ulnitrotoluene	NA	NA	NA	ON	_	0.751)	Ξ
<pre>2,b-Ulnitrotoluene</pre>	NA	NA	NA	QN	_	0.727)	Ξ
2-Chloronaphthalene	NA	NA	NA	CN		(626)	ΞΞ
2-Chlorophenol	NA	NA	NA	2	_	0.553)	
2-Methylnaphthalene	NA	NA	AM	2		1 13)	3 5
2-Methylphenol	NA	NA	AN	2 2		0 556)	3 5
2-Nitroaniline	NA	NA	AM	2	- 	0.550)	ΞΞ
2-Nitrophenol	NA	A	: V	2 5		1 04)	ΞΞ
3,3'-Dichlorobenzidine	NA	NA	V	2 2		1.04)	ΞΞ
3-Nitroaniline	NA	NA	AN	2 8		0 864)	ΞΞ
4,6-Dinitro-2-methylphenol	NA	NA	¥.	2	<i>-</i>	0.034)	3 5
4-Bromophenyl phenyl ether	NA	NA	AN	2 Q	, <u> </u>	0.727)	3
4-Chloro-3-methylphenol	NA	NA	AN	S		0.604)	ΞΞ
4-Chlorophenyl phenyl ether	NA	NA	WA	2		0.868)	ΞΞ
4-Methylphenol/3-Methylphenol	NA	NA	AN	2		0.830)	35
4-Nitroaniline	NA	NA	AN	E		0 556)	3 5
4-Nitrophenol	NA	NA	÷. V	Ş 8	, ,	1.330)	ΞΞ
Acenaphthene	NA	NA	N	2 5		0.646)	
Acenaphthylene	NA	NA	AN	2 <u>S</u>	, c	(010)	ΞΞ
Anthracene	NA	NA	 VA	Q Q	, c	0.441)	ΞΞ
Benzo(a)anthracene	NA	NA		QN ON	, <u>.</u>	0.494)	ΞΞ
							7

Compiled: 15 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

SITE ID LOCATION ID SAMPLE ID

	1 01-MW-06 604-01-MW-06	1 01-MW-07 694-01-MW-07	1 01-MW-08 694-01-MM-08	8 02-GW-01 694-02-GM-01	8 W-01 -6M-01	
PARAMETER	00 25 10 10	(O EE TO +00	00 #1 10 +00	70		1
SW8270 - Semivolatile Organics, cont.	(ng/L)					
Benzo(a)pyrene	NA	NA	NA) ON	0.659)	Ξ
Benzo(b)fluoranthene	NA	NA	NA) ON	0.742)	Ξ
Benzo(g,h,i)perylene	NA	NA	NA) ON	0.661)	Ξ
Benzo(k)fluoranthene	NA	NA	NA) ON	1.07)	Ξ
Benzoic acid	NA	NA	NA) QN	3.00)	Ξ
Benzyl alcohol	NA	NA	NA) ON	0.674)	Ξ
Butylbenzylphthalate	NA	NA	NA) ON	0.866)	Ξ
Chrysene	NA	NA	NA) ON	0.597)	Ξ
Di-n-octylphthalate	NA	NA	NA) ON	0.650)	Ξ
Dibenz(a,h)anthracene	NA	NA	NA) ON	0.704)	Ξ
Dibenzofuran	NA	NA	NA) ON	0.517)	Ξ
Dibutylphthalate	NA	NA	NA) ON	0.331)	Ξ
Diethylphthalate	NA	NA	NA) ON	0.287)	Ξ
Dimethylphthalate	NA	NA	NA) ON	0.429)	Ξ
Diphenylamine	NA	NA	NA) ON	0.636)	[1]
Fluoranthene	NA	NA	NA) ON	0.663)	Ξ
Fluorene	. AN	NA	NA) ON	0.614)	Ξ
Hexachlorobenzene	NA	NA	NA) ON	1.46)	Ξ
Hexachlorobutadiene	NA	NA	NA) ON	0.950)	Ξ
Hexachlorocyclopentadiene	NA	NA	NA) ON	0.821)	Ξ
Hexachloroethane	NA	NA	NA) ON	5.37)	Ξ
Indeno(1,2,3-cd)pyrene	NA	NA	NA) ON	0.516)	Ξ
Isophorone	NA	NA	NA) ON	0.529)	Ξ
N-Nitroso-di-n-propylamine	NA	NA	NA) ON	0.777)	Ξ
Naphthalene	NA	NA	NA) ON	0.800)	Ξ
Nitrobenzene	NA	NA	٧٧) ON	0.813)	
Pentachlorophenol	. AN	NA	NA) ON	0.626)	Ξ
Phenanthrene	NA	NA	NA) ON	0.613)	Ξ

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report A13-9 Compiled: 15 March 1995

	8 02-GW-01 G94-02-GW-01	
SITE ID LOCATION ID SAMPLE ID		
	1 01-MW-06 G94-01-MW-06	
	PARAMETER 	

		; ! !	[1]	3 5	ΞΞ	ΞΞ	ΞΞ	ΞΞ	[1]
01	101	1 2 1 1 1 1 1	0.6831	0.786)	0.650)	0.647)	1.07)	0.812)	0.976)
8 02-GW-01	D-70-461	 	_			<i>-</i>			. <u> </u>
			QN	2	2	2	QN	QN	QN
1 01-MW-08 694-01-MW-08	000		NA	NA	NA	NA	NA	NA	NA
1 01-MW-07 G94-01-MW-07	: : : : : : : : : : : : : : : : : : :		NA	NA	NA	NA	NA	NA	NA
1 01-MW-06 G94-01-MW-06		(ng/L)	NA	NA	NA	NA	NA	NA	NA
	PARAMETER	SW8270 - Semivolatile Organics, cont. (ug/L)	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2~Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	p-Chloroaniline

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

DADAMETED	٣	02-(394-02	02-6W-03 694-02-6W-03			02-(594-02	02-GW-04 G94-02-GW-04		9	02-(94-02	02-GW-04 694-02-GW-04R			05- 694-C	05-MW-02 694-05-MW-02	
soline Range Organics Range Organics	(ug/L)) Br	50.0)	ΞΞ	4.00) &C	50.0)	[1]	- VA	į			00.00	. 8b	50.0)	[1]
AK102 - Diesel Range Organics (ug/L) Diesel Range Organics	00.00) gr	100)	[1]	0.00	JB (100)	Ξ	NA				40.0		100)	Ξ
SW8080 - Organochlorine Pesticides and PCBs	es and PCBs	(ng/L)	[]													
4,4'-DDD	QN	, <u> </u>	0.0149)	[1]	N				ON	<u> </u>	0.00214)	Ξ	S		0.0162)	Ξ
4,4'-DDE	ON		0.00328)	Ξ	N				ON	_	0.00442)	Ξ	QV.		0.00358)	
4,4'-DDT	QN	_	0.0124)	Ξ	N				0.00770 K	∵ ∵	0.00836)	[1]	QN		0.00382)	Ξ
Aldrin	0.00680	_	0.00392)	Ξ	NA				QN	_	0.00278)	Ξ	2		0.00428)	Ξ
Chlordane	Q.	<u> </u>	0.0190)	Ξ	NA				QN	_	0.0229)	Ξ	2		0.0207)	Ξ
Dieldrin	0.00840	_	0.00267)	Ξ	N				QN	_	0.00384)	Ξ	9		0.00292)	Ξ
Endosulfan I	QN	_	0.00427)	Ξ	۸A				QN	_	0.00867)	Ξ	2		0.00223)	Ξ
Endosulfan II	QN	_	0.00359)	Ξ	N				QN	_	0.00362)	Ξ	9		0.00392)	Ξ
Endosulfan Sulfate	QN	_	0.00474)	Ξ	N				QN	_	0.00518)	Ξ	0.00190	3	0.0104)	Ξ
Endrin	QN	_	0.00722)	Ξ	N				QN	_	0.00691)	Ξ	R		0.00789)	Ξ
Endrin Aldehyde	QN	_	0.00566)	Ξ	NA				ON	_	0.00381)	Ξ	Q		0.00651)	Ξ
Heptachlor	QN	_	0.00517)	Ξ	N				ON	_	0.00225)	Ξ	0.000400	3	0.00671)	Ξ
Heptachlor epoxide	0.00490) д	0.00179)	Ξ	AN				0.00140 K	Z _	0.00238)	Ξ	2		0.00973)	三
Methoxychlor	ON	_	0.0377)	Ξ	AN				ON	_	0.0521)	Ξ	S		0.0411)	Ξ
PCB-1016	QN	_	0.0306)	Ξ	NA				ON	_	0.0232)	Ξ	8		0.0334)	Ξ
PCB-1221	QN	_	0.0275)	Ξ	NA				QN	_	0.0221)	Ξ	S		0.0300)	三
PCB-1232	Q.	_	0.0694)	Ξ	A				QN	_	0.0167)	Ξ	2		0.0758)	Ξ
PCB-1242	QN	_	0.0254)	[1]	A				ON	_	0.114)	Ξ	SN N		0.0278)	二
PCB-1248	ON	_	0.0301)	Ξ	ΑĀ				QN	_	0.0397)	Ξ	운		0.0329)	Ξ
PCB-1254	QN	_	0.0121)	Ξ	AA				QN	_	0.0293)	Ξ	2		0.0132)	Ξ
PCB-1260	QN	_	0.0335)	Ξ	AN				QN	_	0.0332)	[1]	QN N		0.0365)	Ξ
Toxaphene	QN	_	0.0537)	Ξ	NA				QN	_	0.0407)	Ξ	QN	_	0.0587)	Ξ

			PARAMETER	SW8080 - Organochlorine Pesticides and PCBs,	alpha-BHC ND	beta-BHC ND	delta-BHC ND	gamma-BHC ND	SW8260 - Volatile Organic Compounds (ug/L)		1,1,1-Trichloroethane	1,1,2,2-Tetrachloroethane ND	1,1,2-Trichloroethane ND	1,1-Dichloroethane ND		ane	a				nzene			hyl vinyl ether		l-2-Pentanone(MIBK)		0.03		loromethane	Bromoform ND
	80	02-GW-03	a94-02-GW-03	s, cont.	J	J	J	~		_	_	_	_	_	_	_	_	J	_	_	_	_	_	_	_	_) B) Br	_	_	
		-03	iw - 03	(ng/L)	0.00273)	0.00386)	0.00222)	0.00160)		0.0851)	0.0992)	0.170)	0.0920)	0.0886)	0.0806)	0.233)	0.354)	0.0791)	0.0742)	0.391)	0.423)	0.154)	0.890)	0.124)	0.766)	0.501)	2.09)	0.0307)	0.165)	0.0536)	0.108)
					Ξ	[1]	[1]	Ξ		Ξ	Ξ	Ξ	Ξ	[1]	[]	[1]	[]	[1]	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ
			35	 	NA	NA	NA	NA		QN	Q.	QN	ND	ND	QN	QN	Q.	, QN	Q	ON	QN	QN	QN	N	QN	Q	2.79 B	0.100 B	9	Q	NO
SITE ID LOCATION ID SAMPLE ID	80	02-GW-04	694-02-GW-04							_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ID ON ID E ID		04	₩-04	! ! ! ! !						0.0851)	0.0992)	0.170)	0.0920)	0.0886)	0.0806)	0.233)	0.354)	0.0791)	0.0742)	0.391)	0.423)	0.154)	0.830)	0.124)	0.766)	0.501)	2.09)	0.0307)	0.165)	0.0536)	0.108)
					•					Ξ	[1]	[]	Ξ	Ξ	Ξ	[1]	[1]	Ξ	[1]	[]	Ξ	Ξ	[]	[1]	Ξ	Ξ	[1]	Ξ	Ξ	[1]	[1]
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9	QN	S	N N		A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	æ	02-GW-04	G94-02-GW-04R	1 1 1 1 1 1 1 1 1 2 2 2	(0.00408)	(0.00323)	(0.00208)	(0.00372)																							
				!		ΞΞ	Ξ	Ξ																							
			69	t t l l l	QN	QN	NO	ND		S	2	QN	ND	ND	ND	ND	ON	0.710	ND	ON	QN	QN	ND	QN	QN	QN	5.01 B	0.0300 JB	ON	QN	QN
	52	05-MW-02	G94-05-MW-02	1 E F L L L L L L L L L L L L L L L L L L	(0.00298)	(0.00421)	(0.00243)	(0.00186)		(0.0851)	(0.0992)	(0.170)	(0.0920)	(0.0886)	(0.0806)	(0.233)	(0.354)	(0.0791)	(0.0742)	(0.391)	(0.423)	(0.154)	(068.0)	(0.124)	(0.766)	(0.501)	(2.09)	(0.0307)	(0.165)	(0.0536)	(0.108)
				!	[1]	ΞΞ	ΞΞ	[1]		Ξ	ΞΞ	ΞΞ	ΞΞ	ΞΞ		Ξ	Ξ	Ξ	Ξ	[1]	[1]	[1]	[1]	Ξ	[1]	Ξ		Ξ	Ξ	Ξ	Ξ

ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report [] = Dilution Factor () = Detection Limit Compiled: 15 March 1995

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

		80				80				80		S		
	69	02-GW-03 694-02-GW-03	-03 GW-03		69	02-GW-04 694-02-GW-04	-04 5W-04		02-6	02-GW-04 694-02-GW-04R	- 69	05-MW-02 694-05-MW-02	05 7-02	
PARAMETER	3	}				}	;				3		i 5	
SW8260 - Volatile Organic Compounds, cont.	!	(ng/L)			: : : : : : :	i 	T	 		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[] [[]	1 1 1 1 1 1 1 1 1 1	! ! !
Bromomethane	Q	_	0.0968)	Ξ	R	_	0.0968)	Ξ	NA		QN	_	0.0968)	Ξ
Carbon disulfide	QN	_	0.161)	Ξ	R	_	0.161)	Ξ	NA		2	_	0.161)	[1]
Carbon tetrachloride	QN	_	0.117)	Ξ	2	_	0.117)	Ξ	NA		2	_	0.117)	Ξ
Chlorobenzene	QN		0.112)	Ξ	S	_	0.112)	Ξ	NA		2	_	0.112)	Ξ
Chloroethane	QN	_	0.0972)	Ξ	ON N	_	0.0972)	Ξ	NA		Q	_	0.0972)	Ξ
Chloraform	QN	_	0.0363)	Ξ	S	_	0.0363)	Ξ	NA		2	_	0.0363)	[1]
Chloromethane	QN	_	0.155)	Ξ	S	_	0.155)	Ξ	NA		0.240 B	_	0.155)	[1]
Dibromochloromethane	QN	_	0.0283)	Ξ	S	_	0.0283)	Ξ	NA		2	_	0.0283)	Ξ
Dibromomethane	0.220	_	0.0598)	Ξ	S	_	0.0598)	Ξ	NA		2	_	0.0598)	Ξ
Ethyl benzene	0.0400	_	0.110)	Ξ	8	_	0.110)	Ξ	NA		2	_	0.110)	[1]
Meta-&Para-Xylene	0.170	_	0.365)	Ξ	0.0600	_	0.365)	Ξ	NA		2	_	0.365)	[1]
Methylene Chloride	0.400 B	_	0.151)	Ξ	0.440 B	_	0.151)	Ξ	NA		0.210 B	_	0.151)	[1]
Ortho-Xylene	0.0800	_	0.124)	Ξ	Q	_	0.124)	Ξ	NA		2	_	0.124)	[1]
Styrene	QN	_	0.113)	Ξ	Q	_	0.113)	Ξ	NA		윤	_	0.113)	Ξ
Tetrachloroethene	QN	_	0.209)	Ξ	Q	_	0.209)	Ξ	NA		욷	_	0.209)	Ξ
Toluene	0.0900	_	0.0336)	Ξ	0.230	_	0.0336)	Ξ	NA		8	_	0.0336)	Ξ
Trichloroethene	QN	_	0.0439)	Ξ	R	_	0.0439)	Ξ	NA		S	_	0.0439)	[1]
Trichlorofluoromethane	QN	_	0.0943)	Ξ	QN	_	0.0943)	Ξ	NA		0.190	_	0.0943)	Ξ
Vinyl Chloride	QN	_	0.0992)	Ξ	Q	_	0.0992)	Ξ	NA		2	_	0.0992)	Ξ
Vinyl acetate	QN	_	0.127)	[1]	Q	_	0.127)	Ξ	NA		운	_	0.127)	Ξ
cis-1,2-Dichloroethene	QN	_	0.0785)	Ξ	QN	_	0.0785)	Ξ	NA		ON	_	0.0785)	Ξ
cis-1,3-Dichloropropene	QN	_	0.0758)	Ξ	S	_	0.0758)	Ξ	NA		2	_	0.0758)	[1]
trans-1,2-Dichloroethene	QN	_	0.131)	Ξ	ᄝ	_	0.131)	Ξ	NA		8	_	0.131)	Ξ
trans-1,3-Dichloropropene	QN	<u> </u>	0.0829)	[1]	QN	Ų	0.0829)	Ξ	NA		QN	J	0.0829)	Ξ
CUBOTO - Comincolatile Amenice	(1/20)													
1,2,4-Trichlorobenzene	(ag) c)	_	0.620)	[1]	QV	_	0.658)	[1]	NA		8	_	0.435)	[1]
1,2-Dichlorobenzene	QN	_	0.677)	Ξ	QN	_	0.718)	Ξ	, NA		ON	_	0.608)	Ξ
Compiled: 15 March 1995	() = Detection Limit	n Lim	= 0	Dilution F	Factor ND	II	Not Detected	NA =	Not Applicable	* - Value considered suspect,		Refer	to QC Report	ırt

	Ω	05-MW-02	G94-05-MW-02		LIJ (0.553) (1)	(0.724)					ND (1.11) [1]	(0.676)	(0.737)				(0.311)	(0.730)	(0.733)		(0.771)	(0.972)	_	(0.396)	ND (0.463) [1]	ND (0.361) [1]	ND (1.08) [1]	ND (1.15) [1]	ND (0.632) [1]	(0.626)	(0.755)	ND (0.588) [1]
	∞	02-GW-04	G94-02-GW-04R		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	, ,	NA	NA	NA	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	NA	NA
				! ! !	Ξ	Ξ	[]	[1]	Ξ	[1]	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[]	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	[1]	Ξ	[1]
SITE ID LOCATION ID SAMPLE ID		1-04	·GW-04	1 1 1 1 1 1	0.776)	1.43)	0.486)	0.459)	0.715)	0.663)	1.95)	0.793)	0.767)	0.982)	0.650)	1.19)	0.587)	0.763)	1.10)	0.731)	0.912)	0.466)	0.767)	0.638)	0.916)	0.877)	0.587)	1.17)	0.683)	0.465)	0.469)	0.521).
SIT LOCAT SAMP	8	02-GW-04	G94-02-GW-04	i i i i i	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_ 、	٠ .			_	_	_ '		_	_
				: : : : : : :	2	QN	QN	QN	R	S	ON.	Q.	QN N	S	S	NO	R	Q	Q	2	2	2	2 9	ב צ	2	2	2	QN	S	Q	2	Q.
				! ! ! !	[]	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ:		ΞΞ	Ξ:	ΞΞ	Ξ;	Ξ	Ξ:	Ξ	Ξ:	Ξ	[1]
		-03	6W-03		0.731)	1.35)	0.458)	0.433)	0.674)	0.625)	1.84)	0.747)	0.723)	0.925)	0.612)	1.12)	0.553)	0.719)	1.04)	0.688)	0.860)	0.439)	0.723)	0.001)	0.863)	0.826)	0.553)	1.11)	0.643)	0.438)	0.442)	0.491)
	80	02-GW-03	G94-02-GW-03		_	_	_	_	_	_		_			_	_	_	_	_			_ 、	_ 、	٠,	_ 、	٠ ,		_ 、	<u> </u>	_ 、		_
				(ug/L)	Q	9	S	2	2	2	2	2	2	2	2	Q	S	QN	Q	Q :	2 :	2 :	2 9	2 9	2 :	2 :	2	2 :	2 :	2 :	2	ON ON
			PARAMETER	SW8270 - Semivolatile Organics, cont.	1,3-Dichlorobenzene	1,4-Dichlorobenzene	2,4,5-Trichlorophenol	2,4,6-Trichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Uinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	2-Nitroaniline	2-Nitrophenol	3,3'-Dichlorobenzidine	3-Nitroaniline	4,6-Ulnitro-z-methylphenol	4-bromophenyl pnenyl etner 4-Chlanc-3-mathwlahanal	A-Chlomophomy about atten	4-Unioraphenyi phenyi etner	4-Metnylphenol/3-Metnylphenol	4~Nitroaniline	4-Nitropheno!	Acenaphthene	Acenaphtnylene	Anthracene	benzo(a/anthracene

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable * - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

		∞				œ				œ		£.		
	69	02-GW-03 G94-02-GW-03	33 4-03		9	02-GW-04 G94-02-GW-04	4 -04		02-694-03	02-GW-04 694-02-GW-04R	05 - 494	05-MW-02	60	
PARAMETER	3	; ; ;	}		5	1					3	<u> </u>	1	
SW8270 - Semivolatile Organics, cont.	nt. (ug/L)	! ! !			! ! ! ! ! !	i 		! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		: : : : : : : : :	! ! ! ! !	 	
Benzo(a)pyrene	QN	_	0.656)	Ξ	Q	_	0.696)	Ξ	NA		ND	_	0.786)	[1]
Benzo(b)fluoranthene	QN	_	0.738)	Ξ	Q	J	0.784)	[1]	NA		ON ON	_	1.04)	[1]
Benzo(g,h,i)perylene	QN	_	0.658)	Ξ	R	_	0.698)	Ξ	NA		ON	J	1.12)	[1]
Benzo(k)fluoranthene	QN	_	1.07)	Ξ	Q	_	1.13)	Ξ	NA		NO	_	1.09)	[1]
Benzoic acid	QN	_	2.99)	Ξ	Q	J	3.17)	Ξ	NA		1.14	_	25.8)	Ξ
Benzyl alcohol	QN	_	0.671)	Ξ	QN	_	0.712)	Ξ	NA		QN	_	0.532)	Ξ
Butylbenzylphthalate	QN	_	0.862)	Ξ	Q	_	0.914)	Ξ	NA		NO	_	1.80)	[1]
Chrysene	ON	_	0.594)	Ξ	P	_	0.631)	Ξ	NA		QN ON	_	0.980)	[1]
Di-n-octylphthalate	QN	_	0.647)	[1]	Q	J	0.687)	Ξ	NA		QN	·	0.510)	Ξ
Dibenz(a,h)anthracene	QN	_	0.701)	Ξ	S	J	0.744)	Ξ	NA		QN	_	0.990)	Ξ
Dibenzofuran	QN	_	0.514)	[1]	QN	J	0.546)	Ξ	NA		QN	_	0.548)	Ξ
Dibutylphthalate	QN	_	0.330)	Ξ	S	_	0.350)	Ξ	NA		Q	_	0.489)	[1]
Diethylphthalate	QN	_	0.286)	[1]	Q	_	0.303)	Ξ	NA		Q	_	0.251)	Ξ
Dimethylphthalate	QN	_	0.427)	[1]	Q	J	0.453)	Ξ	NA		QN	_	0.443)	[1]
Diphenylamine	ON	_	0.633)	Ξ	Q	_	0.671)	Ξ	NA		Q	_	0.830)	Ξ
Fluoranthene	ON	_	0.660)	Ξ	S	_	0.700)	Ξ	NA		Q	٥ پ	0.583)	Ξ
Fluorene	QN	_	0.611)	Ξ	Q	_	0.648)	Ξ	NA		Q	_	0.454)	Ξ
Hexachlorobenzene	QN	_	1.45)	Ξ	Q	J	1.54)	Ξ	NA		N	_	0.545)	Ξ
Hexachlorobutadiene	ON	_	0.945)	Ξ	QN	_	1.00)	Ξ	NA		QN	_	1.02)	Ξ
Hexachlorocyclopentadiene	QV	_	0.817)	[1]	S	_	0.867)	Ξ	NA		Q	_	1.18)	Ξ
Hexachloroethane	Q	_	5.35)	Ξ	Q	_	5.67)	Ξ	NA		Q.	_	0.546)	Ξ
Indeno(1,2,3-cd)pyrene	Q.	_	0.513)	[1]	Q	_	0.545)	Ξ	NA		QN	_	0.874)	Ξ
Isophorone	Q	_	0.527)	[]	Q	_	0.559)	Ξ	NA		QN	_	0.320)	Ξ
N-Nitroso-di-n-propylamine	QV	_	0.773)	Ξ	Q	_	0.820)	Ξ	NA		S	٠	0.610)	Ξ
Naphthalene	QN	_	0.796)	[1]	S	_	0.845)	Ξ	NA		N	_	0.764)	Ξ
Nitrobenzene	QN	_	0.809)	[1]	Q	_	0.858)	Ξ	NA		QN	_	0.434)	Ξ
Pentachlorophenol	QN	_	0.623)	Ξ	R	_	0.661)	Ξ	NA		QN	_	0.942)	Ξ
Phenanthrene	Q	J	0.610)	Ξ	Q	_	0.647)	Ξ	NA		Q	_	0.653)	Ξ
Compiled: 15 March 1995 ()) = Detection Limit	n Limi	=	Dilution Fac	ctor ND	= Not	Detected	NA =	Not Applicable	* - Value considered suspect,	1	Refer to	QC Report	12

	5 05-MM-02	G94-05-MW-02				(0.625)	(0.482)	(0.438)		ND (0.929) [1]
	8 02-6W-04	GS4-UZ-GW-U4K		AN	NA	NA	NA	NA	NA	NA
		:		Ξ	Ξ	[1]	[1]	[1]	[1]	[1]
ID ON ID E ID	04	104		0.721)	0.831)	0.687)	0.684)	1.13)	0.857)	1.03)
SITE ID LOCATION ID SAMPLE ID	8 02-6W-04			J	_	_	_	_	_	_
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		QN	Q	Q.	Q.	S	QN	QN
		1 1 1 1		[1]	[1]	Ξ	Ξ	[1]	Ξ	[1]
	03 W-03			0.680)	0.783)	0.647)	0.644)	1.07)	0.808)	0.971)
	8 02-GW-03 694-02-6W-03	70. +6		_	_	_	_	_	_	_
	č		(ng/L)	N N	QN	R	QN	Q	Q	S
		PARAMETER	SW8270 - Semivolatile Organics, cont. (ug/L)	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	p-Chloroaniline

						SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID				:						
PARAMETER	G94-05	05. 5-MW-3	5 05-MW-02 G94-05-MW-02-FD Dup of G94-05-MW-02			05-M G94-05	5 05-MW-03 694-05-MW-03			05 694-	5 05-MW-04 G94-05-MW-04	1 -04		5	05-M 94-05	5 05-MW-05 G94-05-MW-05	
	(ug/L)	85	(50.0)	Ξ	17000		50.0)	Ξ	110000			50.0)		130000		50.0)	[1]
AK102 - Diesel Range Organics (ug/L) Diesel Range Organics	25.0		(100)	Ξ	2100	•	100)	[1]	13000		_	100)	[1]	0069	_	100)	Ξ
SW8080 - Organochlorine Pesticides and PCBs		(ug/L)	/r)														
4,4'-DDD	Q :		(0.00305)	ΞΞ	2		0.00302)	Ξ	8		0	0.0147)	[2]	Q.		0.00293)	Ξ
4,4'-DDE 4.4'-DDT	0.0110 K	- Z	(0.00351) (0.0133)	ΞΞ	ND 0.0106	ے ہے۔ تک	0.00376)	ΞΞ	S 5		o c	0.0169)	<u> </u>	ND 00020 K:1		0.00337)	ΞΞ
Aldrin		!	(0.00419)	ΞΞ	2	- - !	0.00415)	ΞΞ	0.0407			0.0201)	<u> </u>		- 1	0.00403)	ΞΞ
Chlordane	QN	•	(0.0203)	Ξ	Q	_	0.0201)	Ξ	Q			0.0976)	<u> </u>	2		0.0195)	Ξ
Dieldrin	S	-	(0.00286)	Ξ	0.00620	_	0.00283)	Ξ	S		0	0.0137)	[2]	0.00750	_	0.00275)	Ξ
Endosulfan I	Q		(0.00219)	Ξ	Q	_	0.00217)	Ξ	Q		° _	0.0105)	[2]	QN	_	0.00210)	Ξ
			(0.00384)	Ξ	Q	~	0.00380)	Ξ	S		0	0.0185)	[2]	Q	_	0.00369)	[3]
ifan Sulfate		3	(0.0102)	Ξ	0.00280	<u> </u>	0.0101)	Ξ	0.0274	3	0	0.0490)	[2])	0.00487)	Ξ
Endrin	Q :		(0.00773)	Ξ	2 9		0.00765)	Ξ	2 9		o ,	0.0372)	<u> </u>			0.00743)	Ξ
Endrin Aldehyde	ON OCCUPIED IN		(0.00638)	ΞΞ	ON O	۔ ء	0.00632)	ΞΞ	ND 70	-	o	0.0307)	<u> </u>	0.000200 PJ		0.00583)	ΞΞ
epoxi de		?	(0.00192)	ΞΞ	0.0155	 -	0.00944)	ΞΞ	0.124	>	, o	0.0459)	<u> </u>	0.0320 P		0.00185)	ΞΞ
Methoxychlor	QN	_	(0.0403)	Ξ	Q.	_	0.0399)	Ξ	S			0.194)	[2]	QN		0.0387)	Ξ
PCB-1016	S	_	(0.0327)	Ξ	QN	~	0.0324)	Ξ	S		J	0.157)	[2]	QN	_	0.0314)	Ξ
PCB-1221	QN	-	(0.0294)	Ξ	9	_	0.0291)	Ξ	S		_	0.141)	[2]	R	_	0.0283)	[1]
PCB-1232	S	_	(0.0743)	[1]	Q	_	0.0736)	Ξ	S		J	0.357)	[2]	ON	_	0.0714)	[1]
PCB-1242	2		(0.0272)	Ξ	8	_	0.0269)	Ξ	2		_	0.131)	[2]	Q	_	0.0262)	[1]
PCB-1248	S		(0.0322)	Ξ	R	_	0.0319)	Ξ	2		_	0.155)	[2]	Q	_	0.0310)	Ξ
PCB-1254	S		(0.0129)	Ξ	2	_	0.0128)	Ξ	2		° _	0.0620)	[2]	S	_	0.0124)	[1]
PCB-1260	Q.		(0.0358)	Ξ	Q	_	0.0354)	Ξ	Q		_	0.172)	[2]	S	_	0.0344)	[1]
Compiled: 15 March 1995 ()	= Detection Limit	lou		Dilution	Factor	N = ON	Not Detected	NA	= Not Applicable	cable	*	Value c	onsider	- Value considered suspect, Refer to QC Report A13-1	Refe	r to QC Re	teport A13-17

						SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID									
	694-0	5 05-MW-02 5-MW-02-FD D 694-05-MW-02	5 05-MW-02 G94-05-MW-02-FD Dup of G94-05-MW-02		.	5 05-MW-03 194-05-MW-1	5 05-MW-03 G94-05-MW-03		9	5 05-MW-04 G94-05-MW-04	04 MW04		3 9	5 05-MW-05 G94-05-MW-05	-05	
PAKAME I EK 																
SW8080 - Organochlorine Pesticides and PCBs.	and PCBs.	cont	(1/01/)	!		1	1			1			1	1		; ; ;
Toxaphene	QN	_	0.0575)	Ξ	QN	_	0.0569)		S	_	0 276)	[5]	S	_	0.0862)	נין
a1pha-BHC	9	_	0.00292)	Ξ	QN	<i>-</i>	0.00289)	ΞΞ	0.132		0.0140)	<u> </u>	2 2	· -	0.0333)	ΞΞ
beta-BHC	ND	_	0.00413)	[1]		2	0.00409)	ΞΞ	Q	_	0.0199)	<u> </u>	2 2		0.00240)	ΞΞ
delta-BHC	QN	_	0.00238)	\Box	QN	_	0.00236)	Ξ	S		0.0114)	[2]	QN	0	0.00229)	ΞΞ
gamma-BHC	QN	_	0.00182)	Ξ	0.0363	J	0.00180)	Ξ	0.0924	_	0.00875)	[2]	0.0168	0.0	0.00175)	ΞΞ
SW8260 - Volatile Organic Compounds	(1/bn) sp															
1,1,1,2-Tetrachloroethane		_	0.0851)	[1]	Q	_	0.0851)	[1]	Q	_	21.3)	[250]	2	,	1 28)	[3
1,1,1~Trichloroethane	ON	_	0.0992)	[1]	9		0.0992)	ΞΞ	S	<i>-</i> _	24.8)	[250]	2 2	<i>-</i> _	1.20)	[15]
1,1,2,2-Tetrachloroethane	QN	_	0.170)	Ξ	Q.	_	0.170)	Ξ	QN		42.5)	[250]	2		2.55)	[15]
1,1,2-Trichloroethane	QN	_	0.0920)	[1]	Q	_	0.0920)	[1]	QN	_	23.0)	[250]	R		1.38)	[15]
I,I~Dichloroethane	Q.		0.0886)	Ξ	QN	_	0.0886)	Ξ	S	_	22.2)	[520]	QN	_	1.33)	[15]
1,1-Dichloroethene	2 :		0.0806)	[]	Q	_	0.0806)	[1]	17.5	_	20.2)	[250]	2		1.21)	[15]
1,2,3- r ch oropropane	2 9	٠ ,	0.233)	ΞΞ	2		0.233)	[1]	QN	_	58.2)	[520]	QN	_	3.50)	[15]
1,2~UlCHlOrobehZene 1 2~Nichlorobehane	ND 0	_ 、	0.354)	3	Q 9	_ 、	0.354)	Ξ3	QN :		88.5)	[250]	ON	_	5.31)	[15]
1,2-Dichloropropane	O. O.O		0.0742)	ΞΞ	U. 840 ND		0.0791)	ΞΞ	2 5		19.8)	[250]	35.1		1.19)	[15]
1,3-Dichlorobenzene	ND	_	0.391)	Ξ	N		0.391)	ΞΞ	2	_ ر	97.8)	[250]	2 2		1.11)	[15]
1,4-Dichlorobenzene	Q	J	0.423)	Ξ	N _O	_	0.423)	Ξ	Q	_	106)	[250]	QN	<i>-</i> _	6.34)	[15]
1-Chlorohexane	S		0.154)	Ξ	Q.	_	0.154)	Ξ	Q.	_	38.5)	[250]	Q.		2.31)	[15]
Z-Butanone(MEK)	오 :		0.890)		1.78	_	0.890)	Ξ	400	_	222)	[250]	25.2	_	13.4)	[15]
<pre>2-Lnioroethy! viny! ether</pre>	2		0.124)	Ξ	QN	_	0.124)	Ξ	9	_	31.0)	[520]	QN	_	1.86)	[15]
Z-Hexanone	2 9	_ 、	0.766)	Ξ	QN		0.766)	Ξ	QN	_	192)	[250]	ON	_	11.5)	[15]
4-Metnyl-Z-Pentanone(MIBK)		_ 、	0.501)	Ξ	2.81	_	0.501)	Ξ	S	_	125)	[250]	46.2	_	7.52)	[15]
Acetone		_ 、	2.09)	Ξ	14.4	_	2.09)	Ξ	745	_	522)	[250]	54.2	_		[15]
Bromotonation	0.050.0 N	٠,	0.0307)		4530	<u> </u>	3.07)	[100]	27200	_		[1000]	41000	_		[1000]
oromobenzene	Q N	_	0.165)		9	_	0.165)	Ξ	Q	_	41.2)	[250]	QN	<u>_</u>	2.48)	[15]

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

LOCATION ID SAMPLE ID SITE 1D

Dup of G94-05-M4-03 (G94-05-M4-04) 102 1036) [1] ND (0.1069) [1] ND (27.0) [250] ND (10.0972) [1] ND (0.1072) [1] ND (27.0) [250] ND (10.0972) [1] ND (0.1072) [1] ND (27.0) [250] ND (10.0972) [1] ND (0.1072) [1] ND (27.0) [250] ND (10.0972) [1] ND (0.1072) [1] ND (27.0) [250] ND (10.0972) [1] ND (0.1072) [1] ND (10.0972) [1] ND (10			5 05-M4-02	-0-7			5 05-MJ/-03	733			5	2			5	ų.	
(ug/L) (ug/L)		694-05	-MW-02	-FD Dup of		69	02-	MW-03		J	194-05-	∪4 MW~04		69	4-05-M	W-05	
(ug/L) (0.0536) [1] ND (0.0536) [1] ND (13.4) [250] ND (10.0568) [1] ND (0.108) [1] ND (2.7.0) [250] ND (10.0568) [1] ND (0.108) [1] ND (2.7.0) [250] ND (10.0568) [1] ND (0.117) [1] ND (2.0569) [1]		ÿ	94-05-	-MW-02													
(ug/L) (0.0556) [1] ND (0.0536) [1] ND (13.4) [250] ND ((PARAMETER																
(ug/L) (ug/L) (uo.0563) [1] NO (0.0536) [1] NO (27.0) [250] NO (1.00) (uo.0964) [1] NO (0.0968) [1] NO (27.0) [250] NO (1.00) (uo.0968) [1] NO (0.0968) [1] NO (24.2) [250] NO (1.00) (uo.0972) [1] NO (0.0117) [1] NO (29.2) [250] NO (1.00) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (1.00) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (1.00) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250] NO (29.2) [250] NO (29.2) (uo.0972) [1] NO (0.0972) [1] NO (29.2) [250]		1 1 1 1 1 1 1 1 1	1		!		!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
NO (0.0356) [1] NO (0.0556) [1] NO (13.4) [250] NO (1.00000000000000000000000000000000000	SW8260 - Volatile Organic Compound		(٦/gr														
First No	Bromodichloromethane	QN	_	0.0536)	Ξ	Q.	_	0.0536)	Ξ	QN	_	13.4)	[520]	QN	_	0.804)	[15]
tide ND (0.0969) [1] ND (0.0968) [1] ND (2.026) [1] ND (2.02) [250] ND (1.01) [1] ND (0.011) [1] ND (0.011) [1] ND (2.02) [250] ND (1.01) [1] ND (0.011) [1] ND (0.	Bromoform	Q	_	0.108)	Ξ	QN	_	0.108)	Ξ	Q	_	27.0)	[520]	QN	J	1.62)	[15]
fide ND (0.161) [1] ND (0.161) [1] ND (0.161) [1] ND (0.117) [1] ND (0.0122) [1] ND (0.0283)	Bromomethane	Q	_	0.0968)	Ξ	QN	_	0.0968)	Ξ	S	_	24.2)	[520]	QV	J	1.45)	[15]
chloride ND (0.117) [1] ND (0.117) [1] ND (0.217) [1] ND (0.217) [1] ND (0.118) [1] ND (0.218) [1] ND (Carbon disulfide	QN	_	0.161)	Ξ	ON	_	0.161)	Ξ	S	_	40.2)	[520]	QN	J	2.42)	[15]
e ND (0.112) [1] ND (0.112) [1] ND (0.0372) [1] ND (0.0272)	Carbon tetrachloride	QN	_	0.117)	Ξ	ON	_	0.117)	Ξ	S	_	29.2)	[520]	QN	_	1.76)	[15]
No	Chlorobenzene	QN	_	0.112)	Ξ	Q	_	0.112)	Ξ		_	28.0)	[520]	QN	_	1.68)	[15]
ND (0.0363) [1] ND (0.0363) [1] ND (0.0155) [1] ND (0.0155) [1] ND (0.0156) [1] ND (Chloroethane	Q.	_	0.0972)	Ξ	Q	_	0.0972)	Ξ	S	_	24.3)	[520]	1.20	_	1.46)	[15]
e 0.510 (0.155) [1] ND (0.155) [1] ND (0.158) [1] ND (0.283) [1]	Chloroform	Q	_	0.0363)	Ξ	ND	_	0.0363)	Ξ	QN	_	9.08)	[250]	ND	_	0.544)	[15]
omethane ND (0.0283) [1] ND (0.0283) [1] ND (0.0283) [1] ND (0.0283) [1] ND (0.0289) [1] ND (0.0280) [1] ND (0.0280) [20] ND (0.0280)	Chloromethane	0.510	_	0.155)	Ξ	QN	_	0.155)	Ξ	222	_	38.8)	[520]	2.85	_	2.32)	[15]
ne ND (0.0598) [1] ND (0.0598) [1] ND (15.0) [250] ND (15.0) ND (15.0) [250] ND (15.0) ND ND <td>Dibromochloromethane</td> <td>Q</td> <td>_</td> <td>0.0283)</td> <td>Ξ</td> <td>N Q</td> <td>_</td> <td>0.0283)</td> <td>Ξ</td> <td>Q</td> <td>_</td> <td>7.08)</td> <td>[520]</td> <td>QN</td> <td>J</td> <td>0.424)</td> <td>[15]</td>	Dibromochloromethane	Q	_	0.0283)	Ξ	N Q	_	0.0283)	Ξ	Q	_	7.08)	[520]	QN	J	0.424)	[15]
e ND (0.110) [1] 330 (3.30) [30] 810 (27.5) [250] 741 (1) ylene 0.0400 J (0.365) [1] 841 (11.0) [30] 1840 (91.2) [250] 2020 (2020) loride 0.950 B (0.151) [1] 0.930 B (0.151) [1] 398 (37.8) [250] 2020 (2020) (2	Dibromomethane	QN	_	0.0598)	[1]	ND	_	0.0598)	Ξ	Q	_	15.0)	[220]	ND	_	0.897)	[15]
ylene 0.0400 J (0.365) [1] 841 (11.0) [30] 1840 (91.2) [250] 2020 (10.0) loride 0.950 B (0.151) [1] 398 (37.8) [250] 20.2 () loride 0.950 B (0.151) [1] 263 (3.72) [30] 408 (31.0) [250] 20.2 () ND (0.124) [1] ND (0.113) [1] ND (28.2) [250]	Ethyl benzene	Q	_	0.110)	[1]	330	_	3.30)	[30]	810	_	27.5)	[520]	741	_	1.65)	[15]
Originary Orig	Meta-&Para-Xylene	0.0400	_	0.365)	Ξ	841	_	11.0)	[30]	1840	<u> </u>	91.2)	[520]	2020	_	91.2)	[250]
thene ND (0.124) [1] 263 (3.72) [30] 408 (31.0) [250] 539 (14) thene ND (0.113) [1] ND (28.2) [250] ND (0.209) [1] ND (0.209) [1] ND (0.209) [1] ND (0.0439) [1] ND <t< td=""><td>Methylene Chloride</td><td></td><td>_</td><td>0.151)</td><td>Ξ</td><td></td><td>_</td><td>0.151)</td><td>Ξ</td><td>398</td><td>_</td><td>37.8)</td><td>[520]</td><td>20.2</td><td>_</td><td>2.26)</td><td>[15]</td></t<>	Methylene Chloride		_	0.151)	Ξ		_	0.151)	Ξ	398	_	37.8)	[520]	20.2	_	2.26)	[15]
ND (0.113) [1] ND (0.113) [1] ND (28.2) [250] ND ((2009) [1] ND (0.209) [1] ND (52.2) [250] ND ((2009) [1] ND (0.209) [1] ND (0.209) [1] ND (0.0439) [1] ND (0.0439) [1] ND (0.0439) [1] ND (0.0943) [1] ND (23.6) [250] ND (24.8) [250] ND ((2009) [1] ND (0.0992) [1] ND (24.8) [250] ND ((24.8) [250] ND	Ortho-Xylene	QN	<u> </u>	0.124)	Ξ	263	_	3.72)	[30]	408	_	31.0)	[520]	539	_	1.86)	[15]
ND (0.209) [1] ND (0.209) [1] ND (52.2) [250] ND (5.20) [1.00] 13400 (52.2) [250] ND (5.20) [1.00] 13400 (5.20) [1.00] 13400 (5.20) [1.00] 19100 (5.20) [1.00] 13400 (5.20) [1.00] 19100 (5.20) [1.00] 13400 (5.20) [1.00] 13400 (5.20) [1.00] 13400 (5.20) [1.00] 13400 (5.20) [1.00] 13400 (5.20) [1.00] 13400 (5.20) [1.00] 13400 (5.20) [1.00] [1	Styrene	S	_	0.113)	Ξ	QN ·	_	0.113)	Ξ	Q	<u> </u>	28.2)	[520]	ON	_	1.70)	[15]
ND (0.0336) [1] 2200 (3.36) [100] 13400 (33.6) [1000] 19100 (0.300 (0.0439) [1] ND (0.0439) [1] ND (11.0) [250] 4.50 ((0.340) [1] ND (0.0943) [1] ND (23.6) [250] ND ((0.0992) [1] ND (24.8) [250] ND ((0.127) [1] ND (0.127) [1] ND (31.8) [250] ND ((19.0) [250]	Tetrachloroethene	Q	_	0.209)	Ξ	Q	_	0.209)	Ξ	QN	_	52.2)	[520]	QN	_	3.14)	[15]
0,300 (0.0439) [1] ND (0.0439) [1] ND (11.0) [250] 4.50 (Toluene	Q	_	0.0336)	Ξ	2200	_	3.36)	[100]	13400	_	33.6)	[1000]	19100	J	33.6)	[1000]
0.140 (0.0943) [1] ND (0.0943) [1] ND (23.6) [250] ND (ND (0.0922) [1] ND (24.8) [250] ND (ND (0.0922) [1] ND (0.0922) [1] ND (31.8) [250] ND (ND (0.0785) [1] ND (0.0785) [1] ND (0.0788) [1] ND (0.0758) [1] ND (0.0758) [1] ND (0.0758) [1] ND (0.011) [1] ND (0.011) [1] ND (0.0829) [1] ND (20.7) [250] ND (ND (10.0829) [1] ND (20.7) [250] ND (10.0829) [1] ND (10.08	Trichloroethene	00:300	_	0.0439)	[1]	QN	_	0.0439)	Ξ	ON	<u> </u>	11.0)	[520]	4.50	_	0.658)	[15]
ND (0.0992) [1] ND (0.0992) [1] ND (24.8) [250] ND (ND (0.127) [1] ND (31.8) [250] ND (ND (0.0785) [1] ND (0.0785) [1] ND (0.0785) [1] ND (0.0758) [1] ND (0.0758) [1] ND (0.0758) [1] ND (0.131) [1] ND (0.131) [1] ND (20.7) [250] ND (ND (19.0) [250] ND (19.0)	Trichlorofluoromethane	0.140	_	0.0943)	Ξ	QN	_	0.0943)	Ξ	Q	_	23.6)	[520]	ON	_	1.41)	[15]
ND (0.127) [1] ND (0.127) [1] ND (31.8) [250] ND (ND (0.0785) [1] ND (19.6) [250] ND (ND (0.0758) [1] ND (19.0) [250] ND (ND (0.0758) [1] ND (0.131) [1] ND (0.131) [1] ND (0.131) [1] ND (0.0829) [1] ND (20.7) [250] ND (ND (0.0829) [1] ND (20.7) [250] ND (ND (0.0829) [1] ND	Viny} Chloride	QN	_	0.0992)	Ξ	QN	_	0.0992)	Ξ	S	_	24.8)	[520]	ON	_	1.49)	[15]
ND (0.0785) [1] ND (0.0785) [1] ND (19.6) [250] ND (10.0758) [1] ND (19.0) [250] ND (10.0758) [1] ND (10.0758) [1] ND (10.0758) [1] ND (10.0829) [1	Vinyl acetate	QN	_	0.127)	Ξ	QN	_	0.127)	Ξ	Q	_	31.8)	[520]	Q	_	1.90)	[15]
ND (0.0758) [1] ND (0.0758) [1] ND (19.0) [250] ND (ND (0.131) [1] ND (32.8) [250] ND (ND (0.0829) [1] ND (20.7) [250] ND (cis-1,2-Dichloroethene	Q	_	0.0785)	Ξ	QN	_	0.0785)	Ξ	S	_	19.6)	[520]	QN	J	1.18)	[15]
ND (0.131) [1] ND (0.131) [1] ND (32.8) [250] ND (ND (0.0829) [1] ND (20.7) [250] ND (cis-1,3-Dichloropropene	QN	_	0.0758)	Ξ	QN	_	0.0758)	Ξ	S	_	19.0)	[520]	QN	_	1.14)	[15]
ND (0.0829) [1] ND (0.0829) [1] ND (20.7) [250] ND (trans-1,2-Dichloroethene	QN	_	0.131)	Ξ	QN	_	0.131)	[1]	Q	_	32.8)	[520]	QN	_	1.96)	[15]
	trans-1,3-Dichloropropene	QN	_	0.0829)	[1]	QN	_	0.0829)	Ξ	S	_	20.7)	[520]	Q	_	1.24)	[15]

			22			→,	5				5			75		
	694-0	05-M 5-MW-0 394-05	05-MW-02 G94-05-MW-02-FD Dup of G94-05-MW-02	4-	Ø	05-MW-03 94-05-MW-	05-MW-03 G94-05-MW-03		9	05-MW-04	05-MW-04 594-05-MW-04		ĕ	05-MW-05 G94-05-MW-05	05 W-05	
PARAMETER			;													
SW8270 - Semivolatile Organics (uc	(ng/L)	! ; 1 ;	! ! ! ! ! ! !	; ; ;		;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1					1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1,2,4-Trichlorobenzene	N	_	0.893)	[1]	QN	_	0.875)	Ξ	ON	_	0.431)	[1]	QN	_	0.440)	Ξ
1,2-Dichlorobenzene	ON	_	0.755)	[1]	QN	_	0.740)	[1]	QN		0.602)	ΞΞ	9	-	0.614)	ΞΞ
1,3-Dichlorobenzene	9	_	0.459)	[1]	N	_	0.450)	Ξ	Q	. <u> </u>	0.548)	ΞΞ	2		0.558)	ΞΞ
1,4-Dichlorobenzene	QN	_	0.719)	Ξ	Q	_	0.705)	Ξ	QN	_	0.717)	Ξ	Q	. <u> </u>	0.731)	ΞΞ
2,4,5-Trichlorophenol	2	_	0.716)	[1]	QN	_	0.702)	[1]	QN	_	0.539)	Ξ	R		0.550)	Ξ
2,4,6-Trichlorophenol	2	_	0.515)	Ξ	Q	_	0.505)	[]	N	_	0.642)	Ξ	R		0.654)	
2,4-Dichlorophenol	S	_	0.231)	[]	R	_	0.226)	Ξ	R	_	0.852)	[1]	N	_	0.869)	Ξ
2,4~Dimethy!phenol	2	_	0.900)	Ξ	7.73	_	0.882)	Ξ	150	_	0.790)	[1]	35.0	_	0.806)	
2,4-Ulnitrophenol	2	_	2.86)	Ξ	N S	_	2.80)	Ξ	Q.	_	1.10)	[1]	S	_	1.12)	Ξ
Z,4-Dinitrotoluene	2	_	0.512)	Ξ	S	_	0.502)	Ξ	Q.	_	0.670)	[1]	N	_	0.683)	Ξ
Z,6-Dinitrotoluene	2		0.807)	Ξ	QN	_	0.791)	[1]	Q	_	0.730)	Ξ	Q	_	0.745)	Ξ
Z-Chloronaphthalene	2		1.17)	Ξ	<u>8</u>	_	1.15)	[1]	Q	_	0.644)	[]	S	_	0.656)	Ξ
Z-Chlorophenol	운 :		0.691)	[1]	Q.	_	0.677)	[]	Q.	_	0.554)	[1]	S	_	0.565)	Ξ
Z-Methylnaphthalene	2 :		0.744)	Ξ:	16.2	_	0.729)	[1]	23.9	_	0.569)	Ξ	97.4	_	0.580)	Ξ
Z-Metnylpheno!	2 :		0.649)	Ξ	35.9	_	0.636)	Ξ	302	_	1.54)	[2]	219	_	1.57)	[2]
2-Nitroaniline	2		1.17)	Ξ	Q.	_	1.15)	Ξ	Q	_	0.723)	Ξ	Q.	_	0.738)	[1]
Z-Nitrophenol	Q :	٠ ,	0.705)	Ξ	S		0.691)	Ξ	Q	_	0.726)	[1]	QN	_	0.741)	[1]
3,3 -Dichlorobenzidine	2 :	_ 、	0.550)	Ξ:	2		0.539)	Ξ	S	_	0.877)	[1]	QN	_	0.894)	
7-Nitroam: 11me	2 9	_ 、	0.8/8)	Ξ:	8		0.860)	Ξ	Q	_	0.763)	Ξ	QN	_	0.778)	Ξ
4,0-0;111 c1 0-2 - inecrity prienci	O.	٠ ,	0.996)	Ξ:	ON		0.976)	Ξ	ND	_	0.962)	Ξ	QN	_	0.981)	Ξ
4-bromophenyl phenyl ether	2 9	٠ ,	0.899)	Ξ	2	_	0.881)	Ξ	Q	_	0.411)	Ξ	2	_	0.419)	[1]
4-cnioro-3-methylphenol	QN		0.679)	Ξ	R	_	0.665)	Ξ	ON	_	0.392)	Ξ	ON	Ų	0.400)	Ξ
4-Chlorophenyl phenyl ether	2	_	0.586)	\Box	ND	_	0.574)	[1]	QN	_	0.458)	[1]	R	J	0.467)	Ξ
4-Methylphenol/3-Methylphenol	Q	_	0.447)		16.0 F	_	0.438)	Ξ	252 F	_	1.79)	[2]	128 F	٠.	0.364)	ΞΞ
4-Nitroaniline	Q.	_	1.11)	Ξ	QN	_	1.09)	Ξ	QN	_	1.07)		QN	_	1.09)	[]
4-Nitrophenol	2	_	2.85)	Ξ	QN	_	2.79)	Ξ	2	_	1.14)	Ξ	9		1.16)	ΞΞ
Acenaphthene	윤	_	0.742)	Ξ	S	_	0.727)	[1]	QN	_	0.626)	Ξ	QN	_	0.639)	Ξ

Compiled: 15 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

	,	ro.			2				2				5		
	05-MW-02 G94-05-MW-02-FD Dup of	05-MW-02 5-MW-02-FD Dup 604-05-MW-02	of	05- G94-C	05-MW-03 G94-05-MW-03	က		39	05-MW-04 G94-05-MW-04	.04 IW-04		5 <u>9</u>	05-MW-05 G94-05-MW-05	05 W-05	
PARAMETER	5	70													
SW8270 - Semivolatile Organics, cont.	(ng/L)								! ! !	t 	: : : : :	; ; ; ; ; ; ;	! ! !	: : : : : : : :	
Acenaphthylene) Q	0.647)) Q		0.634)	Ξ	2	_	0.620)	Ξ	2	_	0.633)	[]
Anthracene) QN	0.600)	Ξ Ξ	Q.	.0	0.588)	Ξ	2	_	0.748)	Ξ	9	_	0.762)	Ξ
Benzo(a)anthracene) QN	0.562)) Q	.0	0.551)	Ξ	2	_	0.583)	Ξ	2	_	0.594)	Ξ
Benzo(a)pyrene	ON ON	0.710)) Q	. 0	0.696)	[1]	Q.	_	0.779)	Ξ	2	J	0.794)	Ξ
Benzo(b)fluoranthene	ON ON	0.717)		ON ON		0.703)	[1]	Q	_	1.03)	Ξ	2	J	1.05)	Ξ
Benzo(g,h,i)perylene	ON ON	0.691)) Q		0.677)	Ξ	R	_	1.11)	Ξ	2	J	1.13)	Ξ
Benzo(k)fluoranthene) QN	0.902)) Q	0	0.884)	Ξ	S	_	1.08)	Ξ	2	J	1.10)	Ξ
Benzoic acid) ON	6.15)		168 E (9	6.03)	Ξ	10700	_	2550)	[100]	127	_	26.0)	Ξ
Benzyl alcohol) Q	0.620)		4.65 (.0	0.608)	[1]	R	_	0.527)	Ξ	S	Ų	0.538)	Ξ
Butylbenzylphthalate) QN	1.81)) 2	((77.	Ξ	Q.	_	1.79)	Ξ	N N	_	1.82)	Ξ
Chrysene	ON ON	0.744)) ₽	. 0	729)	Ξ	2	_	0.971)	Ξ	Q	J	0.990)	Ξ
Di-n-octylphthalate) QN	0.814)		. ₽	.0	0.798)	Ξ	Q	_	0.505)	Ξ	Q.	J	0.515)	Ξ
Dibenz(a,h)anthracene) Q	0.747)) ₽	.0	732)	Ξ	S	_	0.981)	Ξ	2	J	1.00)	Ξ
Dibenzofuran) Q	0.567)) R	.0	556)	Ξ	2	_	0.543)	Ξ	1.95	J	0.553)	Ξ
Dibutylphthalate) Q	0.594)		2	.0	582)	[1]	Q	_	0.484)	Ξ	S	J	0.494)	[1]
Diethylphthalate) Q	0.389)		Q Q	0	0.381)	Ξ	2	_	0.249)	Ξ	9	<u> </u>	0.253)	Ξ
Dimethylphthalate	ON ON	0.406)		Q Q	0	398)	Ξ	9	_	0.439)	Ξ	2	_	0.448)	Ξ
Diphenylamine) Q	0.945)		Q Q		926)	Ξ	2	_	0.882)	Ξ	S	_	0.839)	Ξ
Fluoranthene) 2	0.640)) 8		627)	Ξ	2	_	0.578)	Ξ	2	_	0.589)	Ξ
Fluorene) QN	0.531)		Q Q	. 0	0.520)	Ξ	2	_	0.450)	Ξ	S	_	0.458)	Ξ
Hexachlorobenzene) Q	0.719)) Q	.0	0.705)	Ξ	2	_	0.540)	Ξ	R	J	0.550)	Ξ
Hexachlorobutadiene) QN	0.752)) 2	0	0.737)	Ξ	2	_	1.01)	Ξ	8	J	1.03)	Ξ
Hexachlorocyclopentadiene) QN	2.17)) 2	7	.13)	Ξ	S	Ų	1.17)	[]	9	_	1.19)	Ξ
Hexachloroethane) QN	0.860)		ON ON	0	843)	Ξ	2	_	0.541)	[1]	Q.	_	0.551)	Ξ
Indeno(1,2,3-cd)pyrene) 8	0.542)		Q Q		0.531)	Ξ	2	_	0.865)	Ξ	SN SN	J	0.882)	Ξ
Isophorone) QN	0.781)) Q	.0	765)	Ξ	2	_	0.317)	Ξ	Q.	_	0.323)	Ξ
N-Nitroso-di-n-propylamine) QN	0.440)	Ξ) QN	.0	431)	[]	QN	J	0.604)	Ξ	ND	J	0.616)	[1]

A13-21

ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report

[] = Dilution Factor

() = Detection Limit

Compiled: 15 March 1995

					S) LOC/ SAM	SITE ID LOCATION ID SAMPLE ID									
		2				5			S.				Ŋ		
	90	05-MW-02			05-A	NV-03			05-MW-	04			05-MW	-05	
	G94-05-MW-02-FD Dup of	-02-FD Du	p of		694-0	G94-05-MW-03		Э	G94-05-MW-04	W-04		9	G94-05-MW-05	IW-05	
PARAMETER	1= 48b	a94-U5-MM-UZ													
SW8270 - Semivolatile Organics, cont. (ug/L)	(ng/L)				1			; 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1		1
Naphthalene	QN	(0.647)		32.5	_	0.634)	[1]	64.4		0.756)	[1]	143	_	0.771)	Ξ
Nitrobenzene	QN	(1.16)		QN	_	1.14)	Ξ	QN		0.430)	Ξ	S		0.439)	ΞΞ
Pentachlorophenol	ND	(1.08)		ON	_	1.06)	Ξ	QN		0.933)	Ξ	2	<i>-</i>	0.951)	ΞΞ
Phenanthrene	QN	(0.831)		QN	_	0.814)	Ξ	8		0.647)	ΞΞ	0.782		0.659)	ΞΞ
Pheno1	QN	(0.340)		39.5	_	0.333)	[1]	159	_	1.83)	[2]	185	<i>.</i> _	1.86)	[2]
Pyrene	QN	(0.455)		QN N	_	0.446)	[1]	QN	_	0.693)	Ξ	Q		0.707)	ΞΞ
bis(2-Chloroethoxy)methane	Q.	(0.855)		ON	_	0.838)	Ξ	2		0.619)	ΞΞ	2	<i>-</i>	0.632)	ΞΞ
bis(2-Chloroethyl)ether	Q.	(0.943)	3) [1]	QN	_	0.924)	[1]	8		0.478)	Ξ	S	<i>-</i>	0.487)	ΞΞ
bis(2-Chloroisopropyl)ether	ON ON	(1.16)		ON	_	1.14)	[1]	QN	_	0.434)	Ξ	8		0.443)	Ξ
bis(2-Ethylhexyl)phthalate	ON ON	(1.52)		N	<u> </u>	1.49)	[1]	3.51	_	2.60)		14.1		2.65)	Ξ
p-Chloroaniline	ON ON	(206.0)	7) [1]	ON)	0.889)	[1]	ND	_	0.920)	[1]	QN		0.939)	ΞΞ

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

	694	05-MW-06 694-05-MW-06			US-MW-U/ 694-05-MW-07	05-MW-07 4-05-MW-07		0	05-MW-11 694-05-MW-11	.1 1-11		9	05-MW-13 694-05-MW-13	-13 MV-13	
PARAMETER								,		:		i	3	:	
AK101 - Gasoline Range Organics Gasoline Range Organics	(ug/L) 0.00 JB	(50.0)	0) [1]	97000)	50.0)	[1]	1200)	50.0)		13.0 J		50.0)	Ξ
AK102 - Diesel Range Organics Diesel Range Organics	(ug/L) 53.0 J	(100)	0) [1]	8700	J	100)	[1]	1200	J	100)	[1]	140	_	100)	[]
SW8080 - Organochlorine Pesticides and PCBs		(ng/L)					1								
4,4'-000	QN :	(0.00288)		2 :	<u> </u>	0.0150)	[2]	QN .		0.00299)	Ξ	QN	_	0.0110)	[2]
4,4'-DDE	Q :	(0.00331)			ا	0.0172)	[2]	S		0.00344)	Ξ	2	_	0.0227)	[2]
4,4'-DDT	ND 0	(0.00353)		0.0506	 Z	0.0652)	<u> </u>	0.00640		0.00367)	ΞΞ	2 9		0.0366)	<u> </u>
Alumini Chlordana	P. C.	(0.0033)		S S		0.0120)	<u> </u>	0.00340 N	; c	0 0199)	3 E	5 5		0.0143)	2 2
Dieldrin	0.0169	(0.00270)	(i)	2 8		0.0140)	<u> </u>	0.0102	,	0.00280)	ΞΞ	2 2		0.0198)	5
Endosulfan I	0.00200 PJ	(0.00431)		8	. پ	0.0107)	[2]	0.00360 KJ		0.00448)	Ξ	2		0.0446)	3.5
Endosulfan II	ON	(0.00362)	2) [1]	ON	_	0.0188)	[2]	ON) 0	0.00376)	Ξ	Q	_	0.0186)	5
Endosulfan Sulfate	ON	(0.00478)	_	0.00430	_ ⊋	0.0500)	[2]	0.00410 J	, 0	0.00497)	Ξ	S	_	0.0267)	[2]
Endrin	ON	(0.00729)		QN	_	0.0379)	[2]	ON	0.	0.00758)	Ξ	S	_	0.0356)	5
Endrin Aldehyde	0.00140 PJ	(0.00602)		ON	<u> </u>	0.0313)	[2]	QN	, 0.	0.00625)	Ξ	S	_	0.0196)	[5]
Heptachlor	0.00280	(0.00522)		0.00290	P. (0.0271)	[3]	QN	0	0.00542)	Ξ	Q.	_	0.0116)	[5]
Heptachlor epoxide	0.00850 P	(0.00181)		0.0270	<u>_</u> م	0.00941)	[2]	0.00510 P	0	0.00188)	Ξ	N	_	0.0111)	[5]
Methoxychlor	ON	(00:0380)	0) [1]	QN	_	0.198)	[2]	QN	ت ب	0.0395)	Ξ	S	_	0.268)	[5]
PCB-1016	ON	(0.0308)		ON	_	0.160)	[2]	QN	0	0.0321)	Ξ	S	_	0.120)	2
PCB-1221	ON	(0.0277)	_	ON	_	0.144)	[2]	ON	ن ب	0.0288)	Ξ	S	_	0.114)	5
PCB-1232	ON	(0.0701)	1) [1]	ON	_	0.364)	[2]	Q	ن ۔	0.0728)	Ξ	S	_	0.0858)	[5]
PCB-1242	ON	(0.0257)		QN	_	0.133)	[2]	Q.	0	0.0267)	Ξ	Q	_	0.588)	3
PCB-1248	QN	(0.0304)		QN	_	0.158)	[2]	ON	0	0.0316)	Ξ	QN	_	0.204)	[5]
PCB-1254	ON	(0.0122)	_	QN	_	0.0632)	5	ON	ن ب	0.0126)	Ξ	S	_	0.151)	3
PCB-1260	QN	(0.0338)		QN	_	0.175)	5	QN	0	0.0351)	Ξ	QN	_	0.171)	[5]
Toxaphene	QN	(0.0542)	2) [1]	Q	<u> </u>	0.282)	[2]	QN	0	0.0564)	Ξ	NO.	_	0.209)	[5]

						SITE ID LOCATION ID SAMPLE ID	ID ON ID E ID									
	0 694	5 05-MW-06 694-05-MW-06	90- <i>M</i> W-06		Ö	5 05-MW-07 694-05-MW-07	57 4-07			05-1	5 05-MW-11 694-05-MW-11			5 05-MW-13	-13 ML-12	
PARAMETER									,	-	: :			- to	01.	
SW8080 - Organochlorine Pesticides and	and PCBs, cont	nt.	(ng/L)	! ! ! ! !		1	1	!				1 6 1 1				; ; ;
alpha-BHC	QN	·	0,00236)	Ξ	0.161	_	0.0143)	[2]	2	_	0.00245)	Ξ	0 0662	•	0.0010)	[2
beta-BHC	QN	0	0.00390)	[1]	QV		0.0166)	[2]		E)	0.00332)	ΞΞ	ND ND		0.0210)	<u> </u>
delta-BHC	QN	_	0.00224)	Ξ	Q.	_	0.0117)	[2]	Q	. <u> </u>	0.00233)	ΞΞ	2		0.0107)	<u>.</u>
gamma-BHC	0.00860	0 _	0.00172)	Ξ	0.156	0	0.00892)	[2]	0.00850	_	0.00178)	[1]	Q		0.00662)	<u> </u>
SW8260 - Volatile Organic Compounds	ls (ug/L)															
1,1,1,2-Tetrachloroethane	QN	_	0.0851)	[1]	N	_	1.28)	[15]	S	_	0 0851)	Ξ	CN	,	0 0051)	Ξ
1,1,1-Trichloroethane	ND	_	0.0992)	Ξ	QN		1.49)	[15]	2		0.0992)		2 S		0.0001)	ΞΞ
1,1,2,2-Tetrachloroethane	ND	_	0.170)	[1]	Q	_	2.55)	[15]	N N	<i>-</i>	0.170)	ΞΞ	2 2		0.170)	ΞΞ
1,1,2-Trichloroethane	QN Q	_	0.0920)	Ξ	QN	_	1.38)	[15]	ON	_	0.0920)	ΞΞ	QN		0.0920)	ΞΞ
1,1-Dichloroethane	NO	_	0.0886)	[1]	2	_	1.33)	[15]	QN N	_	0.0886)	Ξ	Q		0.0886)	ΞΞ
1,1-Dichloroethene	QN		0.0806)	Ξ	Q	Ų	1.21)	[15]	ON	_	0.0806)	[1]	QN	_	0.0806)	ΞΞ
1,2,3- rlchloropropane	2 :		0.233)	Ξ	2		3.50)	[15]	QN	_	0.233)	Ξ	ON	_	0.233)	Ξ
1,Z-Dichlorobenzene 1 2-Dichlomos+homo	9 9	_ 、	0.354)	ΞΞ	SN I		5.31)	[15]	QN	_	0.354)	[1]	QN	_	0.354)	[1]
1,2-Dichlororomane	O K		0.0/91)	ΞΞ	59.2	_ 、	1.19)	[15]	0.450	<u> </u>	0.0791)	Ξ	1.17	_	0.0791)	Ξ
1,3-Dichlorobenzene	2 2		0.391)	ΞΞ	2 2		1.11)	[15]	2 2		0.0742)	ΞΞ	Q 9		0.0742)	ΞΞ
1,4-Dichlorobenzene	Q		0.423)	ΞΞ	Q.		6.34)	[15]	2 8		0.423)	ΞΞ	2 2		0.391)	ΞΞ
1-Chlorohexane	ND	_	0.154)	[1]	QN	_	2.31)	[15]	Q.	_	0.154)	ΞΞ	QN	. <u> </u>	0.154)	ΞΞ
2-Butanone(MEK)	Q :		0.890)	Ξ	Q	_	13.4)	[15]	Q	_	0.890)	Ξ	S	_	0.890)	Ξ
2-Unioroethyl vinyl ether	Q :		0.124)	[1]	ON	_	1.86)	[15]	Q.	_	0.124)	Ξ	ON	_	0.124)	ΞΞ
Z-Hexanone	Q.		0.766)	Ξ	QN	_	11.5)	[15]	2	_	0.766)	Ξ	S	_	0.766)	Ξ
4-Methyl-2-Pentanone(MIBK)			0.501)	Ξ	S	<u> </u>	7.52)	[15]	2.21)	0.501)	[1]	QN	_	0.501)	Ξ
Acetone			2.09)	Ξ	56.4	_	31.4)	[15]	7.94	_	2.09)	Ξ	5.23	_	2.09)	Ξ
benzene Byomologia	0.0/00 B		0.0307)	ΞΞ	24400		15.4)	[200]	10.4	_	0.0307)	[1]	0.100 B	_	0.0307)	[1]
Bromodich]	O S	_	0.165)	Ξ:	2		2.48)	[15]	S	_	0.165)	Ξ	QN	_	0.165)	Ξ
brometnane	2 :		0.0536)	Ξ	Q	_	0.804)	[15]	QN	_	0.0536)	[1]	ND	_	0.0536)	[1]
51.0110	O.N.	_	0.108)	[1]	Q	_	1.62)	[15]	QN	_	0.108)	[1]	QN	J	0.108)	[1]

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

A13-24 * - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

 tile Organic Compounds, con	05-r G94-05	05-MW-06 G94-05-MW-06		35	05-MW-07 G94-05-MW-07	07 W-07		g	05-MW-11 G94-05-MW-11	-11 MW-11		69	05-MW-13 G94-05-MW-13	-13 W-13	
SW8260 - Volatile Organic Compounds, con									-						
	t. (ug/L)			 	! ! ! !					 	! ! ! !	t t t f f f t t t t	i ! !	1 	
bromomethane) QN	0.0968)	[1]	S	_	1.45)	[15]	S	_	0.0968)	[1]	ON	_	0.0968)	Ξ
Carbon disulfide) . QN	0.161)	Ξ	S	_	2.42)	[15]	2	_	0.161)	Ξ	QV	_	0.161)	Ξ
Carbon tetrachloride) Q	0.117)	Ξ	Q	_	1.76)	[15]	2	_	0.117)	[1]	QN	_	0.117)	Ξ
Chlorobenzene) 01	0.112)	Ξ	2	_	1.68)	[15]	QN	_	0.112)	[1]	QN QN	_	0.112)	Ξ
Chloroethane) ON	0.0972)	Ξ	R	_	1.46)	[15]	QN	_	0.0972)	Ξ	0.0800	_	0.0972)	Ξ
Chloroform	ON ON	0.0363)	[1]	Q.	J	0.544)	[15]	9	_	0.0363)	Ξ	ON	_	0.0363)	Ξ
Chloromethane) Q	0.155)	Ξ	2	_	2.32)	[15]	Q	_	0.155)	[1]	1.22	_	0.155)	Ξ
Dibromochloromethane) QN	0.0283)	Ξ	QN	_	0.424)	[15]	QN	_	0.0283)	[1]	QV	_	0.0283)	Ξ
Dibromomethane 0.220	50 (0.0598)	Ξ	8	_	0.897)	[15]	2	_	0.0598)	Ξ	QN	_	0.0598)	Ξ
Ethyl benzene) ON	0.110)	Ξ	649	_	1.65)	[15]	0.090.0	_	0.110)	Ξ	0.0100	_	0.110)	Ξ
Meta-&Para-Xylene) ON	0.365)	Ξ	2320	_	91.2)	[250]	0.310		0.365)	Ξ	QN	_	0.365)	Ξ
Methylene Chloride 0.160	90 B (0.151)	Ξ	3.60	J	2.26)	[15]	0.130	JB (0.151)	Ξ	0.230 B	_	0.151)	Ξ
Ortho-Xylene) ON	0.124)	Ξ	768	_	1.86)	[15]	0.300	J	0.124)	[1]	Q.	_	0.124)	Ξ
Styrene) ON	0.113)	Ξ	S	_	1.70)	[15]	Ş	_	0.113)	Ξ	QN	_	0.113)	Ξ
Tetrachloroethene) ON	0.209)	Ξ	Q	_	3.14)	[15]	9	_	0.209)	Ξ	QV	_	0.209)	Ξ
Toluene 0.0500) 00	0.0336)	Ξ	20200	_	16.8)	[200]	2.64	_	0.0336)	Ξ	0.0400	_	0.0336)	Ξ
Trichloroethene) QN	0.0439)	Ξ	QN	_	0.658)	[15]	S	_	0.0439)	Ξ	ND	_	0.0439)	Ξ
Trichlorofluoromethane) QN	0.0943)	Ξ	Q	_	1.41)	[15]	9	_	0.0943)		QN	_	0.0943)	Ξ
Vinyl Chloride) N	0.0992)	Ξ	QN	_	1.49)	[15]	2	_	0.0992)	Ξ	QN	_	0.0992)	[1]
Vinyl acetate) ev	0.127)	Ξ	S	_	1.90)	[15]	2	_	0.127)	Ξ	QN N	_	0.127)	Ξ
cis-1,2-Dichloroethene) QN	0.0785)	[1]	Q	_	1.18)	[15]	R	_	0.0785)	Ξ	QN	_	0.0785)	Ξ
) Q	0.0758)	Ξ	QN	_	1.14)	[15]	2	_	0.0758)	Ξ	N	_	0.0758)	Ξ
trans-1,2-Dichloroethene) Q	0.131)	Ξ	2	_	1.96)	[15]	QN	_	0.131)	Ξ	QN	_	0.131)	Ξ
trans-1,3-Dichloropropene) ON	0.0829)	Ξ	QN	_	1.24)	[15]	Q	<u> </u>	0.0829)	[1]	QN	~	0.0829)	Ξ
SW8270 - Semivolatile Organics (ug/L)															
) QN	0.470)	Ξ	2	Ļ	0.427)	Ξ	2	_	0.435)	Ξ	ON	_	0.866)	[1]
1,2-Dichlorobenzene) ON	0.570)	Ξ	ON	_	0.596)	Ξ	QN	_	0.608)	[1]	ON	<u> </u>	0.733)	Ξ

						SIT LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID									
		r.				Ľ				יר				u		
	0	05-MW-06	90			05-MW-07	-07			05-MW-11	-11			05-MW-13	-13	
PARAMETER	694	G94-05-MW-06	90-M		69	G94-05-MW-07	MW-07		9	G94-05-MW-11	MW-11		9	G94-05-MW-13	MW-13	
SW8270 - Semivolatile Organics, cont.	(na/L)					; ; ;			! ! ! ! !	 		1		1 1 1	 	1
1,3-Dichlorobenzene	ND.	_	0.382)	Ξ	N	_	0.542)	[1]	QV	_	0.553)	[]	C	_	0 446)	[1]
1,4-Dichlorobenzene	ON	_	1.50)	ΞΞ	QN		0.710)	ΞΞ	QN		0.724)	ΞΞ	2 2		0.440)	ΞΞ
2,4,5-Trichlorophenol	QN	_	0.305)	Ξ	QN	_	0.534)	Ξ	QN	. <u> </u>	0.544)	ΞΞ	2	<i>-</i>	0.695)	ΞΞ
2,4,6-Trichlorophenol	2	_	0.363)	Ξ	Q.	_	0.636)	[1]	ND		0.648)	ΞΞ	2	<i>-</i>	0.500)	ΞΞ
2,4-Dichlorophenol	2	_	0.381)	Ξ	Q	_	0.844)	Ξ	QN	_	0.861)	Ξ	9		0.224)	ΞΞ
2,4-Dimethylphenol	Q.	_	0.621)	[1]	48.2	_	0.783)	Ξ	QN	_	0.798)	Ξ	8		0.873)	Ξ
2,4-Dinitrophenol	S	_	1.14)	[1]	Q.	_	1.09)	Ξ	QN	_	1.11)	Ξ	2		2.77)	ΞΞ
2,4-Dinitrotoluene	Q.	_	0.299)	[1]	R	_	0.663)	[1]	QN	_	0.676)	Ξ	N Q	<i>-</i>	0.497)	ΞΞ
2,6-Dinitrotoluene	QN	_	0.583)	[<u>-</u>]	N	_	0.723)	[1]	QN	_	0.737)	ΞΞ	9		0.783)	ΞΞ
2-Chloronaphthalene	Q	_	0.752)	Ξ	Q	_	0.637)	Ξ	Q	_	0.650)	Ξ	ND		1.14)	
2-Chlorophenol	Q	_	0.507)	Ξ	QN	_	0.549)	[1]	2	_	0.560)	Ξ	Q.	_	0.670)	[]
2-Methylnaphthalene	Q	_	0.765)	[1]	118	_	0.563)	[1]	N	_	0.575)	[1]	QN	_	0.722)	[1]
2-Methylphenol	Q i		0.450)	Ξ	415	_	3.05)	[10]	ON	_	0.311)	[1]	QN	_	0.630)	Ξ
Z-Nitroaniline	Q :		0.486)	Ξ	QN	_	0.716)	[1]	ND	_	0.730)	[]	QN	_	1.14)	[]
Z-Nitrophenol	Q :		0.729)	Ξ	QN	_	0.719)	Ξ	2	_	0.733)	[]	QN	_	0.684)	[1]
3,3 -Wichlorobenzidine	2 9		3.49)	ΞΞ	Q		0.868)	[1]	QN	_	0.885)	[1]	QN	_	0.534)	[1]
3-Willouniline 4.6-Dinitro-2-methylphenol	⊋ ⊊		0.482)	ΞΞ	2 2		0.756)	ΞΞ	2 9	_ 、	0.771)	ΞΞ	QN		0.851)	[1]
4-Bromophenyl phenyl ether	2		0.272)	ΞΞ	2 5		0.333)	[1]	2 5		0.972)	ΞΞ	2 4	_ 、	0.966)	Ξ:
4-Chloro-3-methylphenol	9	_ ر	0.358)	ΞΞ	2		0.388)	ΞΞ	2 Q		0.413)	ΞΞ	2 2	_ <	0.872)	ΞΞ
4-Chlorophenyl phenyl ether	Q.	_	0.425)	ΞΞ	QN	<i>.</i> _	0.454)	ΞΞ	G X		0.463)	ΞΞ	2 2		0.000)	ΞΞ
4-Methylphenol/3-Methylphenol	8	_	0.417)	Ξ	201 F		3.54)	[10]	9		0.361)	Ξ	2 2		0.300)	ΞΞ
4-Nitroaniline	QN QN	_	0.586)	Ξ	2	_	1.06)	[1]	ND		1.08)	ΞΞ	2		1.08)	ΞΞ
4-Nitrophenol	ND ND	_	0.718)	[1]	N N	_	1.12)	[<u>1</u>]	QN	_	1.15)	ΞΞ	9		2.76)	ΞΞ
Acenaphthene	Q.	_	0.570)	Ξ	Q	_	0.620)	Ξ	Q	_	0.632)	[]	R	, <u> </u>	0.720)	Ξ
Acenaphthylene	QN .	_	0.581)	[1]	ND	_	0.614)	Ξ	ON.	_	0.626)	Ξ	Q		0.628)	ΞΞ
Anthracene	Q.		0.626)	Ξ	N	_	0.740)	Ξ	N	_	0.755)	[1]	QN		0.582)	Ξ:
Benzo(a)anthracene	Q.	_	0.687)	Ξ	Q	_	0.577)	[1]	Q	_	0.588)	Ξ	QN	_	0.546)	ΞΞ

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

		72			LC.				Ľ				īt		
	05-	05-MW-06			05-MW-07	-07			05-MW-11	11 W-11		ŭ	05-MW-13	13 M-13	
PARAMETER) <u></u>		G.		1		ä	1-00-46	OT~M	
SW8270 - Semivolatile Organics, cont.	(ng/L)	ā			i i i i		1 1 1 1 1	 	 	 			!		
Benzo(a)pyrene	2	0.624)	Ξ	2	_	0.771)	[1]	ON	_	0.786)	Ξ	9	_	0.689)	[1]
Benzo(b)fluoranthene	2	0.612)	Ξ	2	_	1.02)	[1]	ON	_	1.04)	Ξ	2		0.696)	Ξ
Benzo(g,h,i)perylene	S.	0.662)	Ξ	2	_	1.10)	[1]	ON	_	1.12)	Ξ	9	_	0.670)	Ξ
Benzo(k)fluoranthene	2	0.892)	Ξ	2	_	1.07)	Ξ	ON	_	1.09)	Ξ	9		0.875)	Ξ
Benzoic acid	Q.	5.69)	Ξ	1150	_	253)	[10]	1.45 J	_	25.8)	Ξ	9		5.97)	ΞΞ
Benzyl alcohol	Q.	0.404)	Ξ	2	_	0.522)	Ξ	ON	_	0.532)	Ξ	S		0.602)	ΞΞ
Butylbenzylphthalate	N S	0.447)	Ξ	2	J	1.77)	[1]	QN	_	1.80)	Ξ	9		1.75)	Ξ
Chrysene	Q.	0.695)	Ξ	9	_	0.962)	Ξ	ND	_	0.980)	Ξ	QN	_	0.722)	Ξ
Di-n-octylphthalate	2	0.609)	Ξ	S	_	0.500)	Ξ	QN	_	0.510)	Ξ	N N	_	0.790)	Ξ
Dibenz(a,h)anthracene	2	0.764)	Ξ	N	_	0.971)	Ξ	QN	_	0.990)	[1]	Q.	_	0.725)	Ξ
Dibenzofuran	Q.	0.574)	Ξ	5.93	_	0.537)	Ξ	QN	_	0.548)	Ξ	Q.	_	0.550)	Ξ
Dibutylphthalate	2	0.448)	Ξ	2	_	0.480)	Ξ	N ON	_	0.489)	[]	Q	_	0.576)	Ξ
Diethylphthalate	2	0.612)	[1]	Q	_	0.246)	Ξ	ND	_	0.251)	Ξ	2	_	0.377)	Ξ
Dimethylphthalate	2	0.382)	[1]	Q.	_	0.435)	Ξ	ND	_	0.443)	[1]	QV	_	0.394)	Ξ
Diphenylamine	ON ON	0.612)	Ξ	2	_	0.873)	[1]	QN	_	0.890)	Ξ	2	_	0.917)	Ξ
Fluoranthene	2	0.634)	Ξ	2	_	0.572)	Ξ	QN	_	0.583)	Ξ	2	_	0.621)	Ξ
Fluorene	2	0.670)	Ξ	5.89	_	0.445)	[1]	ON	_	0.454)	Ξ	2	_	0.515)	Ξ
Hexachlorobenzene	Q.	0.507)	Ξ	S	_	0.535)	Ξ	QN	_	0.545)	Ξ	S	_	0.698)	Ξ
Hexachlorobutadiene	Q.	0.674)	Ξ	2	_	1.00)	Ξ	QN	_	1.02)	Ξ	S	_	0.730)	Ξ
Hexachlorocyclopentadiene	2	1.87)	Ξ	2	_	1.15)	[1]	ON	_	1.18)	[1]	2	_	2.11)	Ξ
Hexachloroethane	S S	1.69)	Ξ	2	_	0.536)	Ξ	ND	_	0.546)	Ξ	2	J	0.835)	
Indeno(1,2,3-cd)pyrene	2	0.720)	Ξ	2	_	0.857)	Ξ	QN	_	0.874)	Ξ	S.	_	0.526)	Ξ
Isophorone	2	0.321)	Ξ	2	_	0.313)	Ξ	ON	_	0.320)	Ξ	2	_	0.757)	Ξ
N-Nitroso-di-n-propylamine	Q.	0.535)	Ξ	Q	J	0.598)	Ξ	ON	_	0.610)	Ξ	Q.	_	0.427)	Ξ
Naphthalene	Q.	0.678)	Ξ	126	_	0.749)	Ξ	QN	_	0.764)	Ξ	2	_	0.628)	Ξ
Nitrobenzene	S S	0.513)	Ξ	2	_	0.426)	[1]	QN	_	0.434)	Ξ	2	_	1.13)	Ξ
Pentachlorophenol	Q.	0.458)	Ξ	2	_	0.924)	Ξ	QN	_	0.942)	Ξ	g	_	1.05)	Ξ
Phenanthrene	Q.	0.582)	[1]	0.787	_	0.640)	Ξ	QV	_	0.653)	[1]	QN	_	0.806)	Ξ
Compiled: 15 March 1995 () =	= Detection Limit		= Dilution	Factor	ND = No	Not Detected	NA =	Not Applicable]e	1	Value considered suspect,	suspect,		Refer to QC Report	eport

	5 05-MW-11 G94-05-MW-11							(0.438) [1] ND		[1]
	9			QN	QN	QN	S	QN	S	ND
		i : : : :		[10]	Ξ	Ξ	Ξ	Ξ	[]	[1]
SITE ID LOCATION ID SAMPLE ID	5 05-MW-07 694-05-MW-07	; ; ; ; ;		3.62)	0.687)	0.613)	0.473)	0.430)	2.58)	0.912)
SIT LOCAT SAMF	5 05-MW 694-05-	1		_	_	_	_	_	_	_
		1		302	QN	Q	2	QN	2.97	Q.
		 		Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ
	90-Mh	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.405)	0.753)	0.515)	0.561)	0.524)	0.908)	0.847)
	5 05-MW-06 G94-05-MW-06	i : : :		_	_	_	_	_	_	_
	9	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(ng/L)	Q	QN	QN	N	8	2	N
	DADAMETER		SW8270 - Semivolatile Organics, cont. (ug/L)	Phenol	Pyrene	bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropyl)ether	bis(2-Ethylhexyl)phthalate	p-Chloroaniline

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

PARAMETER	288 Z89 01	.0) 00) 11) 88) 88) 07)	38 38 0.004 0.008	<u> </u>	(50.0) (0.00223) (0.00459) (0.00869)	E E E	38.0 J 0.00 JB	J (50.0)	= =
	10.0 28.0 ND ND ND ND ND ND		0.0	! !	50.0) 100) 0.00223 0.00869 0.00289)	E E E	;	(50.0)	
ides and PCBs (ug/L) ides and PCBs (ug/L) ND (0.00369) [1] ND (0.00369) [1] 0.00510 (0.00403) [1] ND (0.00403) [1] ND (0.00403) [1] ND (0.00403) [1] ND (0.00403) [1] ND (0.00403) [1] ND (0.00403) [1] ND (0.00403) [1] ND (0.00403) [1] ND (0.00403) [1] ND (0.00569) [1] ND (0.00613) [1] ND (0.00613) [1] ND (0.00632) [1]	28.0 ND ND ND ND ND ND		0.0		0.00223) 0.00459) 0.00869)	3 3		(100)	[1]
(ug/L) (0.00293) [1] (0.00365) [1] (0.00360) [1] 0.01 (0.00403) [1] (0.00399) [1] (0.00210) [1] 0.001 (0.00289) [1] (0.00289) [1] (0.00289) [1] (0.00289) [1] (0.00289) [1] (0.00289) [1] (0.00289) [1] (0.00289) [1] (0.00289) [1] (0.00289) [1] (0.00289) [1] (0.00289) [1]	ND ND ND ND ND ND ND		0.004		0.00223) 0.00459) 0.00869)	Ξ	0.0910	(0.00296)	
ND (0.0365) [1] ND (0.00365) [1] ND (0.00403) [1] ND (0.00403) [1] ND (0.00399) [1] ND (0.00210) [1] ND (0.00210) [1] ND (0.00210) [1] ND (0.00210) [1] ND (0.00369) [1] ND (0.00369) [1] ND (0.00743) [1] ND (0.00743) [1] ND (0.00612) [1]	ND ND ND ND ND ND		0.004		0.00459) 0.00869) 0.00289)	7 :			Ξ
ND (0.00360) [1] 0.01 0.00510 (0.00403) [1] ND (0.0195) [1] ND (0.00399) [1] In II ND (0.00210) [1] 0.001 In Sulfate 0.00650 KJ (0.00981) [1] ND (0.00743) [1] Achyde ND (0.00613) [1] In Proposide 0.0132 (0.00917) [1] 0.0008	. 0121 ND ND ND ND 00120		0.008		0.00869)		0.00760	(0.00341)	ΞΞ
0.00510 (0.00403) [1] ND (0.0195) [1] ND (0.00399) [1] ND (0.00369) [1] ND (0.0051) [1] Outhorder ND (0.00532) [1] ND (0.00532) [1] ND (0.00532) [1]	ND ND ND 00120			9	0.00289)	Ξ	0.0108	(0.00363)	Ξ
ND (0.0195) [1] ND (0.00399) [1] ND (0.00210) [1] 0.001 ND (0.00369) [1] 0.00650 KJ (0.00981) [1] 0.002 ND (0.00743) [1] ND (0.00613) [1] ND (0.00632) [1]	ND ND 00120				10000	Ξ	0.00630	(0.00407)	Ξ
ND (0.00399) [1] ND (0.00210) [1] 0.001 ND (0.00369) [1] 0.002 ND (0.00361) [1] 0.002 ND (0.00743) [1] ND (0.00613) [1] ND (0.00632) [1] 0.0132 (0.00917) [1] 0.0008	ND 00120) ON	0.0238)	Ξ	ON	(0.0197)	Ξ
ND (0.00210) [1] 0.001 ND (0.00369) [1] 0.00650 KJ (0.00981) [1] 0.002 ND (0.00743) [1] ND (0.00613) [1] ND (0.00632) [1] 0.0132 (0.00917) [1] 0.0008	00120) ON	0.00399)	Ξ	0.0204	(0.00278)	Ξ
ND (0.00369) [1] 0.00650 KJ (0.00981) [1] 0.002 ND (0.00743) [1] ND (0.00613) [1] ND (0.00532) [1] 0.0132 (0.00917) [1] 0.0008		0.00466) [1) ON	0.00901)	Ξ	QN	(0.00213)	Ξ
0.00650 KJ (0.00981) [1] 0.002 ND (0.00743) [1] ND (0.00613) [1] ND (0.00532) [1] 0.0132 (0.00917) [1] 0.0008) ON	0.00392) [1) Q	0.00376)	[]	QN	(0.00373)	Ξ
ND (0.00743) [1] ND (0.00613) [1] ND (0.00532) [1] 0.0132 (0.00917) [1] 0.0008	0.00280 KJ (0.0104) [1]) Qu	0.00539)	Ξ	0.00140 KJ	(000000)	Ξ
ND (0.00613) [1] ND (0.00532) [1] 0.0132 (0.00917) [1] 0.0008) QN	0.00789) [1]) Q	0.00719)	Ξ	ND	(0.00750)	Ξ
ND (0.00532) [1] 0.0132 (0.00917) [1] 0.0008) ON	0.00651) [1]) ON	0.00396)	Ξ	ON	(0.00619)	Ξ
0.0132 (0.00917) [1]) QN		0.000300)0 KJ (0.00126)	[1]	ON	(0.00537)	Ξ
[-3 (::::::)	0.000800 J	0.00973) [1]) Q	0.00225)	Ξ	0.00820 KJ	(0.00926)	Ξ
(0.0387) [1]) ON	0.0411) [1]) QN	0.0542)	Ξ	QN	(0.0391)	Ξ
	ON .	0.0334) [1]) QN	0.0242)	Ξ	QN	(0.0317)	Ξ
) QN	0.0300) [1]) QN	0.0230)	Ξ	N S	(0.0285)	Ξ
) ON	0.0758) [1]) QN	0.0173)	Ξ	QN	(0.0721)	Ξ
) QN	0.0278) [1	[1] N) QN	0.119)	Ξ	QV	(0.0264)	Ξ
) ON	0.0329) [1]) QN	0.0413)	[1]	QN	(0.0313)	Ξ
) QN	0.0132) [1]) QN	0.0305)	Ξ	ND	(0.0125)	Ξ
PCB-1260 ND (0.0344) [1]) ON	0.0365) [1]) QN	0.0346)	[1]	QN	(0.0348)	Ξ
Toxaphene (0.0553) [1]) ON	0.0587) [1]) QN	0.0423)	[1]	ND	(0.0558)	[1]

SITE 10

					LOCA	LOCATION ID SAMPLE ID									
		Ω.				ĸ			υ.	α			α		
	05	05-MW-14			05-MW-15	W-15			06-MW-01	1-01			06-MW-02		
PARAMETER 	G94 -	G94-05-MW-14			394-05.	G94-05-MW-15		Ö	G94-06-MW-01	-MW-01		69	G94-06-MW-02		
SW8080 - Organochlorine Pesticides and PCBs,	s and PCBs, cont.	t. (ug/L)	1 1 1 1 1 1 1 1 1		1		! ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1	
alpha-BHC hotpur	QN S	(0.00240)	_	Q.		0.00255)	[1]	ON	_	0.00425)	Ξ	Q.	(0.00283)	83)	Ξ
delta-BHC	2 8	(0.00397)	ΞΞ	2 2	_	0.00421)	ΞΞ	2 9	_ 、	0.00336)	Ξ3	₽ :	(0.00401)	01)	[1]
gamma-BHC	Q.	(0.00175		Q. Q.		0.00186)	ΞΞ	Q Q		0.00387)	ΞΞ	2 2	(0.00231) (0.00177)	31) 77)	ΞΞ
SW8260 - Volatile Organic Compounds	ds (ug/L)														
1,1,1,2-Tetrachloroethane		(0.0851)	[1]	N	_	0.0851)	Ξ	S	_	0.0851)	[1]	S	(0.0851)		[]
1,1,1-Trichloroethane	ND	(0.0992)		QN	_	0.0992)	Ξ	N		0.0992)	Ξ	QN	(0.0992)		3 =
1,1,2,2-Tetrachloroethane	QN	(0.170)		ON	_	0.170)	Ξ	ND	_	0.170)	Ξ	ND	(0.170)		ΞΞ
1,1,2-Trichloroethane	Q	(0.0920)		ON	_	0.0920)	Ξ	1.26	_	0.0920)	Ξ	QN	0.0920		ΞΞ
1,1-Dichloroethane	QN :	(0.0886)		S	_	0.0886)	[1]	0.710	_	0.0886)	[1]	0.0900	0.0886	_	
1,1-Dichloroethene	2	(0.0806)		QN	_	0.0806)	[1]	5.65	_	0.0806)	Ξ	0.160	0.0806	_	[1]
1,2,3-irichloropropane	Q :	(0.233)		QN :	<u> </u>	0.233)	[]	ND	_	0.233)	[1]	ON	(0.233)		[1]
1,2-Dichlorobenzene	2 9	(0.354)		QN :		0.354)	Ξ	Q	_	0.354)	[1]	QN	(0.354)		Ξ
1,2-Ulchloropropane	2 2	0.0791)	ΞΞ	0.560		0.0791)	ΞΞ	0.740	<u> </u>	0.0791)	Ξ	1.07	(0.0791)		Ξ
1,3-Dichlorobenzene	S N	0.391)		2 2		0.0742)	3.5	2		0.0742)	ΞΞ	2 2	(0.0742)		ΞΞ
1,4-Dichlorobenzene	ND	0.423)		QN	<i>-</i> –	0.423)	ΞΞ	S S		0.423)	ΞΞ	2 2	(0.391)		3 E
1-Chlorohexane	QN	(0.154)		ON	_	0.154)	Ξ	QN	_	0.154)	ΞΞ	2	(0.154)		7 🗔
Z-Butanone(MEK)	Q :	0.890)		QN	_	0.890)	Ξ	Q.	_	0.890)	[1]	QN	(0.890)		Ξ
2-Uniordetnyi vinyi ether 2-Hevanana	O. W	0.124)	Ξ3	2 :	_ ,	0.124)	Ξ	Q.		0.124)	Ξ	Q	(0.124)		Ξ
Z-Hexanone	Q. S	0.766)		QN	_	0.766)	[1]	QN	_	0.766)	[1]	QN	(00.766)		Ξ
4-metnyl-z-Pentanone(MIBK)		0.501)		2		0.501)	Ξ		_	0.501)	[1]	2	(0.501)		Ξ
Acecone		2.09)			٠ .	2.09)	Ξ	4.92 B	_	2.09)	Ξ	6.08	(2.09)		Ξ
Bromotoniono	0.0400 B	0.030/)		0.0400 B	_ 、	0.0307)	Ξ	0.640	_	0.0307)	\Box	0.050.0	(0.0307)		Ξ
Bromodichloromethane	Q Q	0.165)		2 9	_ 、	0.165)	ΞΞ	2		0.165)	Ξ	9	(0.165)		7
Brown form	2 4	0.0350)	ΞΞ	Q :	_	0.0536)	Ξ	Q	_	0.0536)	[1]	ND	(0.0536)		三
	Q.	0.108)	[1]	ON	_	0.108)		Q	_	0.108)	[1]	QN	(0.108)		Ξ.

Compiled: 15 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

	G	5 05-MW-14 34-05-MW-	5 05-MW-14 694-05-MW-14		g	5 05-MW-15 694-05-MW-15	-15 MW-15		_	8 06-MW-01 394-06-MW-	8 06-MW-01 694-06-MW-01		Ğ	8 06-MW-02 34-06-MW-	8 06-MW-02 694-06-MW-02	
PARAMETER								!					-	}		
SW8260 - Volatile Organic Compounds, cont.	l I	(ng/L)														
Bromomethane	QN	_	0.0968)	[1]	QN	_	0.0968)	[1]	2	_	0.0968)	[1]	QN	_	0.0968)	Ξ
Carbon disulfide	ON	_	0.161)	Ξ	S	_	0.161)	Ξ	2	_	0.161)	[1]	S	_	0.161)	Ξ
Carbon tetrachloride	QN	_	0.117)	Ξ	8	_	0.117)	Ξ	2	_	0.117)	Ξ	8	_	0.117)	Ξ
Chlorobenzene	QN	_	0.112)	Ξ	QN	_	0.112)	Ξ	QN	_	0.112)	Ξ	2	_	0.112)	[1]
Chloroethane	QN	_	0.0972)	Ξ	QN	_	0.0972)	Ξ	N N	_	0.0972)	Ξ	8	_	0.0972)	[1]
Chloroform	QN	_	0.0363)	Ξ	QN	_	0.0363)	Ξ	1.96	_	0.0363)	Ξ	0.200	_	0.0363)	Ξ
Chloromethane	0.170 B	_	0.155)	Ξ	8	_	0.155)	Ξ	Q	_	0.155)	Ξ	9	_	0.155)	Ξ
Dibromochloromethane	QN	_	0.0283)	Ξ	QN	_	0.0283)	Ξ	Q	_	0.0283)	Ξ	2	_	0.0283)	Ξ
Dibromomethane	ND	_	0.0598)	Ξ	S	_	0.0598)	Ξ	Q	_	0.0598)	Ξ	2	_	0.0598)	Ξ
Ethyl benzene	QN	_	0.110)	Ξ	Q	_	0.110)	Ξ	Q	_	0.110)	Ξ	R	_	0.110)	Ξ
Meta-&Para-Xylene	N	_	0.365)	[1]	Q	_	0.365)	Ξ	Q.	_	0.365)	Ξ	S	_	0.365)	[1]
Methylene Chloride	0.230 B	_	0.151)	Ξ	0.190 B	_	0.151)	Ξ	1.26) B	0.151)	Ξ	0.340 B	_	0.151)	[1]
Ortho-Xylene	QN	_	0.124)	Ξ	Q	_	0.124)	Ξ	2	_	0.124)	Ξ	9	_	0.124)	Ξ
Styrene	QN	_	0.113)	[1]	Q	_	0.113)	Ξ	ON .	_	0.113)	Ξ	2	_	0.113)	Ξ
Tetrachloroethene	QN	_	0.209)	Ξ	QN	_	0.209)	Ξ	ON	_	0.209)	Ξ	2	_	0.209)	Ξ
Toluene	0.0300 JB	_ E	0.0336)	Ξ	0.0700	_	0.0336)	Ξ	0.200	_	0.0336)	Ξ	Q	_	0.0336)	Ξ
Trichloroethene	QN	_	0.0439)	[]	Q	_	0.0439)	Ξ	7550	_	11.0)	[520]	17.77	_	0.132)	[3]
Trichlorofluoromethane	QN	_	0.0943)	Ξ	S	_	0.0943)	Ξ	0.110	_	0.0943)	Ξ	8	_	0.0943)	Ξ
Vinyl Chloride	QN	_	0.0992)	Ξ	ON	_	0.0992)	Ξ	0.760	_	0.0992)	[1]	S	_	0.0992)	Ξ
Vinyl acetate	QN	_	0.127)	Ξ	QN	_	0.127)	Ξ	Q	_	0.127)	Ξ	2	_	0.127)	Ξ
cis-1,2-Dichloroethene	ND	_	0.0785)	Ξ	ON	_	0.0785)	Ξ	2660	ت	4.71)	[09]	0.520	_	0.0785)	Ξ
cis-1,3-Dichloropropene	Q.	_	0.0758)	Ξ	QN	_	0.0758)	Ξ	Q	_	0.0758)	Ξ	QN	_	0.0758)	Ξ
trans-1,2-Dichloroethene	QN	_	0.131)	Ξ	QN	_	0.131)	Ξ	185	_	7.86)	[09]	QN	_	0.131)	Ξ
trans-1,3-Dichloropropene	Q	_	0.0829)	Ξ	Q.	<u> </u>	0.0829)	[1]	Q	_	0.0829)	Ξ	QN	<u> </u>	0.0829)	Ξ
SW8270 - Semivolatile Organics ((ng/L)															
1,2,4-Trichlorobenzene	QN	_	0.431)	Ξ	QN	_	0.440)	Ξ	Q	_	0.617)	Ξ	QN	_	0.486)	[1]
1,2-Dichlorobenzene	N	_	0.602)	Ξ	QN	_	0.614)	Ξ	N	_	0.674)	Ξ	QN	_	0.589)	[]
Compiled: 15 March 1995	() = Detection Limit	on Lim	" 	Dilution	Factor	ND = No	Not Detected	NA = A	Not Applicable	able	* - Value	consider	Value considered suspect,	Refer	to QC R	Report A13-31

						SITE ID LOCATION ID SAMPLE ID	ID ON ID E ID									
	5	5 50 14			·	5.	į		,	∞ ,				∞		
PARAMETER	G94-	03-MW-14 G94-05-MW-14	14		769 1	US-MW-IS G94-05-MW-15	IS W-15		0 694	06-MW-01 G94-06-MW-01	1 -01		95	06-MW-02 G94-06-MW-02	.02 W-02	
SW8270 - Semivolatile Organics, cont.	(ug/L)			; ; ;			 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	 		 		; ; ;	1
1,3-Dichlorobenzene	QN	0	0.548)	[1]	QN	_	0.558)	[1]	QN	_	0.727)	[1]	QN N	_	0.395)	[1]
1,4-Dichlorobenzene	Q	o 	0.717)	Ξ	ON	_	0.731)	[1]	ON	_	1.34)	[1]	QN		1.55)	ΞΞ
Z,4,5-irichlorophenol	2 :	0 ,	0.539)	[1]	QN	_	0.550)	Ξ	Q.	_	0.456)	Ξ	QN	_	0.315)	Ξ
2,4,0- richloropheno 2 d-Dichlorophenol	2 2	o ,	0.642)	ΞΞ	Q :		0.654)	[1]	ND	_	0.431)	[1]	QN	_	0.376)	ΞΞ
2,4-01cmotopmenol	2 5) ·	0.852)	ΞΞ	2 9		0.869)	ΞΞ	9		0.671)	Ξ	QN	_	0.394)	[1]
2.4-Dinitrophenol	2 2	> `	1 10)	ΞΞ	2 9	_	0.806)	ΞΞ	2 :		0.622)	Ξ	Q	_	0.642)	Ξ
2,4-Dinitrotoluene	2 Q	· 0	0.670)		2 2		1.12)	ΞΞ	Q Q		1.83)	ΞΞ	2 9	_ 、	1.18)	Ξ
2,6-Dinitrotoluene	Q	0	0.730)	[1]	2	_ ر	0.745)	ΞΞ	<u> </u>		0.720)		2 8		0.309)	35
2-Chloronaphthalene	Q	0	0.644)	[1]	ND	_	0.656)	Ξ	QN		0.921)	ΞΞ	2		0.778)	ΞΞ
2-Chlorophenol	2	0	0.554)	Ξ	QN	_	0.565)	Ξ	Q	_	0.610)	ΞΞ	ND		0.524)	ΞΞ
Z-Methylnaphthalene	Q :	o .	0.569)	Ξ	ND ND	_	0.580)	[1]	Q	_	1.12)	[1]	QN		0.791)	ΞΞ
Z-Metnylphenol 2-Nithoganilino	2 9	o ,	0.308)	ΞΞ	QN	<u> </u>	0.314)	[]	QN	_	0.550)	[1]	QN	_	0.465)	Ξ
2-Nitronhenol	2 5	o	0.723)	ΞΞ	2 :		0.738)	Ξ	QN	_	0.716)	[1]	QN	_	0.502)	Ξ
3.3'-Dichlorobenzidine	<u> </u>		0.726)	ΞΞ	Q 4	_ 、	0.741)	Ξ3	2 :		1.03)	Ξ	ND	_	0.754)	[1]
3-Nitroaniline	9		0.763)	I I	2 S		0.894)	ΞΞ	S S		0.685) n.856)	ΞΞ	8 9	_ 、	3.61)	日日
4,6-Dinitro-2-methylphenol	QN	0.	0.962)	[1]	QN		0.981)	ΞΞ	9		0.437)	ΞΞ	2 S		0.499)	ΞΞ
4-Bromophenyl phenyl ether	QN N	.0	0.411)	[1]	ON	_	0.419)	[1]	N Q		0.720)	[1]	Q.		0.281)	ΞΞ
4-Chloro-3-methylphenol	2		0.392)	[1]	Ş	_	0.400)	Ξ	QN	_	0.598)	[1]	N N	_	0.371)	Ξ
4-Chiorophenyl phenyl ether	2 :		0.458)		Q.	_	0.467)	Ξ	QN	_	0.859)	Ξ	QN	_	0.440)	ΞΞ
4-metny pneno /3-metny pneno	운 :	· ·	0.357)	Ξ	S	_	0.364)	Ξ	QN	_	0.822)	[1]	R	_	0.431)	Ξ
4-NILTOANIIINE	<u> </u>	- ·	1.07)		9	_	1.09)	Ξ	ND	_	0.550)	Ξ	2	_	0.606)	Ξ
4-Witrophenol	2 9	,	1.14)	ΞΞ	2		1.16)	Ξ	QN	_	1.10)	Ξ	S	_	0.742)	Ξ
Acenaphichene Acenaph+hvlono	2 9		0.626)		2 :	<u> </u>	0.639)	Ξ	N	_	0.640)	[]	QN	_	0.589)	[1]
Acenaphinglene Anthracone	2 5		0.620)	Ξ:	2 :		0.633)	Ξ:	ND	_	0.436)	[1]	Q	_	0.601)	[1]
Airtii aceire Renzo(a lanthracene	⊋ ⊊		0./48)	Ξ3	2 9		0.762)	ΞΞ	2		0.440)	Ξ	QN	_	0.648)	[1]
)	Ž.	i J	0.383)	Ξ	N D	_	0.594)	[]	S	D _	0.489)	[1]	QN	_	0.710)	[1]

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report A13-32

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

		2				Ŋ				∞				8		
	69	05-MW-14 4-05-MW-	05-MW-14 694-05-MW-14		0	05-MW-15 694-05-MW-15	15 V-15		0	06-MW-01	10		9	06-MW-02	02 W=02	
PARAMETER					•	:)			2	5		3	3		
SW8270 - Semivolatile Organics, cont.	(ug/L)				f i i i i i i i i i i i i i i i i i i i		1 , 1 1 1 1 1 1 1 1 1 1	! ! ! !	; ; ! ! ! ! ! !	! ! ! !	! ! ! ! !	i 		! ! !	F I I I I I	
Benzo(a)pyrene	9	_	0.779)	Ξ	Q	_	0.794)	Ξ	9	_	.653)	Ξ	QN	_	0.645)	[1]
Benzo(b)fluoranthene	S	_	1.03)	Ξ	Q.	_	1.05)	[1]	S	_	0.735)	Ξ	QN	_	0.633)	Ξ
Benzo(g,h,i)perylene	2	_	1.11)	Ξ	Q.	_	1.13)	Ξ	Ş	_	0.655)	[1]	QN	_	0.685)	Ξ
Benzo(k)fluoranthene	S	_	1.08)	Ξ	ON ON	_	1.10)	Ξ	9	_	1.06)	[1]	QN	_	0.922)	Ξ
Benzoic acid	S	_	25.5)	Ξ	QN	_	26.0)	Ξ	S	J	2.98)	Ξ	QN	_	5.88)	Ξ
Benzyl alcohol	ջ	_	0.527)	Ξ	Q.	_	0.538)	Ξ	QN	_	0.668)	Ξ	Q	_	0.418)	Ξ
Butylbenzylphthalate	S	_	1.79)	Ξ	QN	_	1.82)	Ξ	S	_	0.857)	Ξ	Q.	_	0.462)	Ξ
Chrysene	Q	_	0.971)	Ξ	S	_	0.890)	Ξ	S	_	0.591)	[1]	Q	_	0.719)	Ξ
Di-n-octylphthalate	Q	_	0.505)	Ξ	QN	_	0.515)	Ξ	S	_	0.644)	[]	S	J	0.630)	Ξ
Dibenz(a,h)anthracene	S	_	0.981)	Ξ	Q.	_	1.00)	Ξ	Ş	٥	0.698)		Q	_	0.790)	Ξ
Dibenzofuran	S	_	0.543)	Ξ	9	_	0.553)	Ξ	Q.	_	.512)	Ξ	S	_	0.593)	Ξ
Dibutylphthalate	2	_	0.484)	Ξ	S	ٺ	0.494)	Ξ	Q	_	.328)	Ξ	QN	_	0.463)	Ξ
Diethylphthalate	S	_	0.249)	Ξ	S	ٺ	0.253)	[1]	Q	_	.284)	Ξ	Q	_	0.633)	Ξ
Dimethylphthalate	2	_	0.439)	Ξ	Q.	_	0.448)	Ξ	2	_	.425)	[1]	QN	_	0.395)	Ξ
Diphenylamine	8	_	0.882)	Ξ	용	_	0.899)	Ξ	Q	_	0.630)	[1]	S	_	0.633)	Ξ
Fluoranthene	R	_	0.578)	Ξ	S	_	0.589)	[]	S	_	0.656)	Ξ	NO NO	_	0.656)	Ξ
Fluorene	2	_	0.450)	Ξ	2	_	0.458)	Ξ	9	_	0.608)	Ξ	QN	_	0.693)	Ξ
Hexachlorobenzene	S	_	0.540)	Ξ	S	_	0.550)	Ξ	2	J	1.44)	[1]	Q	_	0.524)	Ξ
Hexachlorobutadiene	2	_	1.01)	Ξ	S	_	1.03)	Ξ	2	_	0.941)	[1]	QN	_	0.697)	Ξ
Hexachlorocyclopentadiene	QN	_	1.17)	Ξ	2	_	1.19)	Ξ	2	_	0.813)	[1]	S	_	1.93)	Ξ
Hexachloroethane	Q	_	0.541)	Ξ	2	_	0.551)	Ξ	2	J	5.32)	[1]	S	_	1.75)	Ξ
Indeno(1,2,3-cd)pyrene	Q	_	0.865)	Ξ	2	_	0.882)	Ξ	ON.	_	0.511)	[1]	Q	_	0.744)	Ξ
Isophorone	Q	_	0.317)	Ξ	2	_	0.323)	Ξ	2	_	0.524)	Ξ	Q.	Ų	0.332)	Ξ
N-Nitroso-di-n-propylamine	Q	_	0.604)	Ξ	오	_	0.616)	Ξ	S	_	0.769)	Ξ	QN	_	0.553)	Ξ
Naphthalene	QN Q	_	0.756)	Ξ	S	_	0.771)	Ξ	2	_	0.792)	[1]	QN	_	0.701)	Ξ
Nitrobenzeme	Q	_	0.430)	Ξ	웆	_	0.439)	Ξ	2	_	0.805)	[1]	S	_	0.531)	Ξ
Pentachlorophenol	Ş	_	0.933)	[1]	S	_	0.951)	Ξ	2	_	0.620)	Ξ	N N	_	0.474)	[]
Phenanthrene	S	_	0.647)	Ξ	S	_	0.659)	Ξ	2	_	0.607)	Ξ	S	_	0.602)	Ξ

A13-33

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report

Compiled: 15 March 1995

			 	[1]	I.	ΞΞ	Ξ	[1]	[1]	Ξ
	02	₩-02	 	0.419)	0.779)	0.533)	0.580)	0.541)	0.940)	0.876)
	8 06-MW-02	94-06-M	 	Ų			_	_	_	_
-		9	 	QN	SN	ND	QN	ON	2.24	QN
				[1]	Ξ	Ξ		[1]	Ξ	[1]
	-01	MW-01		0.677)	0.779)	0.644)	0.641)	1.06)	0.804)	0.967)
	8 06-MW-01	94~06-1		_	_	_	_	J	_	_
		9		Q.	Q	8	R	ND	N S	ND
		;		Ξ	Ξ	Ξ	Ξ	Ξ	[1]	[]
ID ON ID E ID	15	V-15		0.372)	0.707)	0.632)	0.487)	0.443)	2.65)	0.939)
SITE ID LOCATION ID SAMPLE ID	5 05-MW-15	94-05-M		_	_	_	_	_	_	_
	•			SN	S	S	N N	Q.	2	<u>8</u>
		; ; ;		[1]	Ξ	Ξ	Ξ	Ξ	Ξ	[1]
	4	-14		0.365)	0.693)	0.619)	0.478)	0.434)	2.60)	0.920)
	5 05-MW-14	a94-05-MW-14		_	_	_	_	_	_	_
	Č	465 465	(ng/L)	Q	QV	Q	QN Q	Q.	S	2
			SW8270 - Semivolatile Organics, cont. (ug/L)			bis(2-Chloroethoxy)methane	bis(2-Chloroethyl)ether	bis(2-Chloroisopropy])ether	DIS(Z-thylhexyl)phthalate	niline
		PARAMETER	SW8270 - 5	Phenol	Pyrene	bis(2-Ch1	bis(2-Chl	bis(2-Ch]	DIS(Z-Eth	p-Chloroaniline

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA ≍ Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

		06- 694-0	06-MW-03 G94-06-MW-03		G94-	W-90	06-MW-03 G94-06-MW-03-FD Dup of	tp of		9	06-MW-04 G94-06-MW-04	√-04 :MW-04			06- 694-0	06-MW-05 G94-06-MW-05	
PARAMETER						694	G94-06-MW-03										
AK101 - Gasoline Range Organics Gasoline Range Organics) (50.0)	Ξ	4.00	JB	(50.	50.0)		5400		50.0)	[1]	1000		50.0)	[1]
AK102 - Diesel Range Organics Diesel Range Organics	(ug/L) 58.0) (100)	Ξ	0.00	JB) 16	100)	Ξ	3200	<u> </u>	100)	[1]	49.0) (100)	[1]
SW8080 - Organochlorine Pesticides and PCBs	ides and PCBs	(ng/L)	۲)														
4,4'-000	ND		0.00285)	Ξ	QN.		(0.00296)	_	[1]	Q	_	0.0110)	[2]	ON	_	0.00308)	[1]
4,4'-DDE	QN	_	0.00328)	Ξ	2		(0.00341)	_	Ξ	N	_	0.0227)	[2]	Q	_	0.00354)	Ξ
4,4'-DDT	QN	_	0.00350)	Ξ	2		(0.00363)	_	Ξ	QN	_	0.0366)	[2]	Q	_	0.00378)	Ξ
Aldrin	QN	_	0.00392)	Ξ	2		(0.00407)	_	Ξ	S	_	0.0143)	[2]	S	_	0.00423)	Ξ
Chlordane	QN	_	0.0190)	Ξ	2		(0.0197	_	[1]	ON	_	0.118)	[2]	Q.	_	0.0205)	Ξ
Dieldrin	QN	_	0.00267)	Ξ	9		(0.00403)	_	Ξ	Q	_	0.0198)	[2]	0.00910	_	0.00289)	Ξ
Endosulfan I	QN	_	0.00205)	Ξ	2		(0.00213)	_	Ξ	QN	_	0.0446)	[2]	2	_	0.00221)	Ξ
Endosulfan II	Q		0.00359)	Ξ	9		(0.00373)	_	Ξ	S	_	0.0186)	[2]	Q	_	0.00388)	Ξ
Endosulfan Sulfate	0.000200	⊋ ∵	0.00953)	Ξ	0.00290	3	(0.0030)		Ξ	QN	_	0.0267)	[2]	SN SN	_	0.00512)	Ξ
Endrin	ON	_	0.00722)	Ξ	2		(0.00750)	_	Ξ	Q	_	0.0356)	[2]	2	_	0.00781)	Ξ
Endrin Aldehyde	QN	_	0.00596)	Ξ	0.00120	3	(0.00619)	_	Ξ	Q	_	0.0196)	[2]	0.00110	P.J. (0.00612)	Ξ
Heptachlor	QN	_	0.00517)	[1]	0.000100	3	(0.00639)		[]	Q	_	0.0116)	<u> </u>	0.00250	∵	0.00558)	Ξ
Heptachlor epoxide	QN N	_	0.00892)	Ξ	9		(0.00926)	_	[1]	ND	_	0.0123)	<u> </u>	S	_	0.00194)	
Methoxychlor	QN	_	0.0377)	Ξ	S		(0.0391)	_	[1]	Q	J	0.268)	[2]	0.0358	⊋ ∵	0.0632)	Ξ
PCB-1016	Q	_	0.0306)	Ξ	S		(0.0317)		Ξ	문	_	0.120)	[2]	S	_	0.0330)	[1]
PCB-1221	Q	_	0.0275)	Ξ	QN		(0.0285)		[1]	S	Ļ	0.114)	2	Q.	_	0.0297)	[1]
PCB-1232	QN	_	0.0694)	Ξ	Q		(0.0721)		Ξ	ON	_	0.0858)	[2]	QN	_	0.0750)	[1]
PCB-1242	QN	_	0.0254)	Ξ	8		(0.0264)		[]]	S	_	0.588)	[2]	S	_	0.0275)	
PCB-1248	Q	_	0.0301)	Ξ	S		(0.0313)		[1]	QN	_	0.204)	[2]	S	_	0.0325)	[1]
PCB-1254	Q	_	0.0121)	Ξ	N		(0.0125)	_	[1]	2	_	0.151)	[2]	Q.	_	0.0130)	[]
PCB-1260	QN	_	0.0335)	Ξ	S		(0.0348)	_	[1]	Q	_	0.171)	[2]	ON.	_	0.0362)	

				-		S S S	SITE ID LOCATION ID										
						5											
		80	_				8				80				80		
	•	06-MW-03	1-03			-90	06-MW-03			õ	06-MW-04	4			06-MW-05	-05	
	Ŭ	G94-06-MW-03	-MW-03		694-	-WM-90	G94-06-MW-03-FD Dup of	<u>_</u>		694	G94-06-MW-04	-04		Ü	G94-06-MW-05	MW-05	
PARAMETER						460	CO-Mileo										
SW8080 - Organochlorine Pesticides and PCBs,		cont.	(ng/L)	; { { { { { { { { { { { { { { { { { { {	1 1 1 1 1	! ! !	1 1 1 1 1 1 1 1 1 1 1			 	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1
Toxaphene	QN	~	0.0537)	[]	SN SN	_	0.0558)	[1]	QN		_	0.209)	[2]	Q	~	0.0581)	Ξ
alpha-BHC	Q.	_	0.00273)	[1]	Q.	_	0.00283)	Ξ	SN.			0.0210)	[2]	2		0.00252)	ΞΞ
beta-BHC	ON	_	0.00386)	Ξ	8	_	0.00401)	Ξ	N			0.0166)	[2]	2	۔ ۔	0.00417)	ΞΞ
delta-BHC	Q	_	0.00222)	[1]	QN N	_	0.00231)	Ξ	ON		0.0	0.00872)	[2]	QN QN		0.00240)	ΞΞ
gamma-BHC	QN	_	0.00170)	Ξ	QN	_	0.00177)	Ξ	0.0511	۵	0.0	0.00662)	[2]	QN		0.00184)	ΞΞ
SW8260 - Volatile Organic Compounds	(ng/L)																
1,1,1,2-Tetrachloroethane	R	_	0.0851)	[1]	QN	_	0.0851)	[1]	Q _N		U	0.0851)	Ξ	UN	_	0 0851)	[1]
1,1,1-Trichloroethane	9	_	0.0992)	Ξ	QN	<i>-</i>	(2660.0	ΞΞ	2 2		· ·	(2001)	3 5	2 5		0.0001)	E E
1,1,2,2-Tetrachloroethane	S		0.170)	ΞΞ	Q.	<i>-</i> _	0.170)	ΞΞ	2 8		,	0.170)	ΞΞ	S S		0.0332)	ΞΞ
1,1,2-Trichloroethane	N N	_	0.0920)	[1]	QN	_	0.0920)	Ξ	QN			0.0920)		Q		0,0920)	ΞΞ
1,1-Dichloroethane	R	_	0.0886)	[1]	QN)	0.0886)	[]	S			0.0886)		N	<i>-</i>	0.0886)	ΞΞ
1,1-Dichloroethene	QN	_	0.0806)	[1]	ON	_	0.0806)	[1]	ON			0.0806)	Ξ	QN		0.0806)	Ξ
1,2,3-Trichloropropane	QN		0.233)	Ξ	QN)	0.233)	[1]	QN			0.233)	[1]	ND	_	0.233)	Ξ
1,2-Dichlorobenzene	운 :		0.354)		N	_	0.354)	[1]	QN		_	0.354)	[1]	S	_	0.354)	Ξ
1,2-Dichloroethane	2 9		0.0791)	Ξ3	S	<u> </u>	0.0791)	Ξ	0.700		0	0.0791)	[1]	1.18	_	0.0791)	Ξ
1,2-Dichlorobenzene	<u> </u>		0.0/42)	33	2 9	_ \	0.0742)	ΞΞ	2 :			0.0742)	Ξ	Q		0.0742)	Ξ
1,4-Dichlorobenzene	S S		0.391)	ΞΞ	2 4		0.391)	ΞΞ	ON A			0.391)	[]	2 9	<u> </u>	0.391)	ΞΞ
1-Chlorohexane	QN		0 154)	ΞΞ	2		0.154)	35	2 5		<i>.</i> .	0.450)	3 2	2 5		0.423)	Ξ3
2-Butanone(MEK)	2		0.890)	ΞΞ	2 8		0.134)	ΞΞ	R 23			0.134)	3 5	2 5	_ ~	0.154)	ΞΞ
2-Chloroethyl vinyl ether	S		0.124)	ΞΞ	QN QN		0.230)	ΞΞ	2.5 Z		, c	0.030)	ΞΞ	2 2	- \	0.890)	ΞΞ
2-Hexanone	QN	_	0.766)	Ξ	S	<i>-</i> _	0.766)	ΞΞ	2		, 0	0.766)	ΞΞ	2 2		0.164)	ΞΞ
4-Methyl-2-Pentanone(MIBK)	Q	_	0.501)	[1]	Q	_	0.501)		QN			0.501)	ΞΞ	2		0.501)	ΞΞ
Acetone ,	6.59	_	2.09)	[1]	5.87	_	2.09)	Ξ	5.06	FB		2.09)	Ξ	4.80 B		2.09)	ΞΞ
Benzene	0.330	_	0.0307)	[]	0.330	_	0.0307)	Ξ	302		0	0.154)	[2]	0.390		0.0307)	ΞΞ
Bromobenzene	Q	_	0.165)	[1]	QN	_	0.165)	Ξ	QN QN		J _	0.165)	[1]	ND		0.165)	

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable * - Value considered suspect, Refer to QC Report

)	8 06-MW-03 G94-06-MW-03	03 W-03		0 G94-06-M G94	8 06-MW-03 6-MW-03-FD D	8 06-MW-03 G94-06-MW-03-FD Dup of G94-06-MW-03		. 06 694-	8 06-MW-04 G94-06-MW-04	4		06 G94-	8 06-MW-05 G94-06-MW-05	90-	
PARAMETER																
SW8260 - Volatile Organic Compounds, cont.		(ug/L)								1 1 1 1 1 1	 - - 		; 1 1 1 1 1 1 1 1 1	: 	i I I I I I	1 1 1 1
Bromodichloromethane	QN	J	0.0536)	Ξ	QN	_	0.0536)	[1]	ON	0.0	.0536)	[1]	S	0	0536)	Ξ
Bromoform	QN	_	0.108)	Ξ	Q	_	0.108)	Ξ	QN	.0	0.108)	Ξ	ON	_	0.108)	Ξ
Bromomethane	QN	_	0.0968)	Ξ	ON	_	0.0968)	[1]	QN	0.0	(8960)	Ξ	QN	0	0.0968)	Ξ
Carbon disulfide	QN	_	0.161)	Ξ	ON	_	0.161)	Ξ	ND	.0	0.161)	Ξ	QN	_	0.161)	Ξ
Carbon tetrachloride	ON	_	0.117)	Ξ	ON	_	0.117)	Ξ	ND	.0	0.117)	Ξ	QN	_	0.117)	Ξ
Chlorobenzene	QN	_	0.112)	Ξ	ON	_	0.112)	Ξ	ND	.0	0.112)	Ξ	Q	_	0.112)	Ξ
Chloroethane	QN	_	0.0972)	Ξ	ON	_	0.0972)	Ξ	0.250	0.0	0.0972)	Ξ	N	0	0.0972)	Ξ
Chloroform	QN	_	0.0363)	Ξ	ON	_	0.0363)	Ξ	QN	0.0	0.0363)	Ξ	QN	0	0.0363)	Ξ
Chloromethane	0.0900 JB	_	0.155)	Ξ	ON	· _	0.155)	Ξ	0.190 B	.0	0.155)	Ξ	0.680	_	0.155)	Ξ
Dibromochloromethane	QN		0.0283)	Ξ	ND	_	0.0283)	Ξ	ON	0.0	0.0283)	[1]	QN	0	0.0283)	Ξ
Dibromomethane	QN	_	0.0598)	Ξ	0.220	_	0.0598)	Ξ	QN	0.0	0.0598)	Ξ	0.220	0	0.0598)	Ξ
Ethyl benzene	QN	_	0.110)	Ξ	ON	_	0.110)	Ξ	86.0	.0	0.110)	Ξ	0.0200	_	0.110)	Ξ
Meta-&Para-Xylene	QN	_	0.365)	Ξ	QN	J	0.365)	Ξ	309	(1	1.10)	[3]	0.120	_	0.365)	Ξ
Methylene Chloride	0.290 B	_	0.151)	Ξ	0.430 B	_	0.151)	Ξ	0.880	. 0.	0.151)	[1]	0.230 B	_	0.151)	Ξ
Ortho-Xylene	QN	_	0.124)	Ξ	ON	_	0.124)	Ξ	113	(0.	0.372)	[3]	0.0700		0.124)	[1]
Styrene	QN	_	0.113)	Ξ	QN	_	0.113)	Ξ	N	. 0.	0.113)	[1]	ON	_	0.113)	Ξ
Tetrachloroethene	QN	_	0.209)	Ξ	QN N	_	0.209)	Ξ	QN	0.	0.209)	[1]	Q	_	0.209)	Ξ
Toluene	QN	_	0.0336)	Ξ	0.0800	_	0.0336)	[1]	27.3	0.0	0.0336)	[1]	0.0400	°	0.0336)	[1]
Trichloroethene	ON	_	0.0439)	Ξ	ON	_	0.0439)	Ξ	12.3	0.0	0.0439)	[1]	QN	°	0.0439)	Ξ
Trichlorofluoromethane	QN	_	0.0943)	Ξ	ON	_	0.0943)	Ξ	QN	0.0	0.0943)	Ξ	ON	0	0.0943)	Ξ
Vinyl Chloride	0.0200	_	0.0992)	Ξ	QN	_	0.0992)	Ξ	QN	0.0	0.0992)	Ξ	QN	0	0.0992)	Ξ
Vinyl acetate	QN	_	0.127)	Ξ	ON	_	0.127)	Ξ	ON	. 0	0.127)	Ξ	ON	_	0.127)	Ξ
cis-1,2-Dichloroethene	1.13	_	0.0785)	Ξ	1.03	_	0.0785)	Ξ	2.69	0.0	0.0785)	Ξ	0.140	0	0.0785)	Ξ
cis-1,3-Dichloropropene	ON	_	0.0758)	Ξ	QN	_	0.0758)	Ξ	QN	0.0	0.0758)	Ξ	ND	0	0.0758)	Ξ
trans-1,2-Dichloroethene	QN	_	0.131)	Ξ	QN	_	0.131)	Ξ	QN	(0.	0.131)	[1]	ON	_	0.131)	Ξ
trans-1,3-Dichloropropene	QN	_	0.0829)	Ξ	ON	_	0.0829)	Ξ	QN	0.0	0.0829)	Ξ	ON	0	0.0829)	Ξ

() = Detection Limit

						SI LOCA SAM	SITE ID OCATION ID SAMPLE ID										
		8 06-MM-03	8 W-03			₩-90	8 06-MW-03			Ċ	8 8-MM-04				8 8	u c	
PARAMETER		394-06	G94-06-MW-03		694-0	16-MW-0 G94-06	G94-06-MW-03-FD Dup of G94-06-MW-03	4 _		G94~(G94-06-MW-04			69	694-06-MW-05	00 4-05	
Ch/8270 - Comive 10-11		1	! ! ! ! !	1		1		 	8 8 1 1 1 1		; ; ;		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	1 1 1
	(ng/r)	_	0.620)	Ξ	QN	_	0.626)	Ξ	QN		0.626)	=======================================	۲	S	-	(88)	Ξ
1,2-Dichlorobenzene	QN	_	0.677)	[1]	ON		0.683)	ΞΞ	9		0.683)		نت ز	9 S	_ ر	0.592)	ΞΞ
1,3-Dichlorobenzene	QN	_	0.731)	[1]	NO.	_	0.738)	[1]	ND		0.738)			9	<i>-</i>	0.397)	ΞΞ
1,4-Dichlorobenzene	QN	_	1.35)	[]	QN	_	1.36)	Ξ	QN		1.36)			Q		1.56)	Ξ
2,4,5-Trichlorophenol	오 :	<u> </u>	0.458)	Ξ	N	_	0.462)	[1]	ON		0.462)			9		0.317)	Ξ
2,4,6-Irichlorophehol	2 9		0.433)	ΞΞ	2 :	<u> </u>	0.437)	Ξ	ON		0.437)	[1]		Q	_	0.377)	[1]
2 4-Dimethylphenol	ON ON	_ ~	0.6/4)	ΞΞ	2 9	_ \	0.681)	ΞΞ	Q !		0.681)			N N	_	0.396)	[1]
2.4-Dinitrophenol	<u> </u>		0.625)	ΞΞ	2 9	_ 、	0.631)	Ξ	QV :	_ `	0.631)		ا ئست	R	_	0.645)	Ξ
2.4-Dinitrotoluene	2 S		1.04)] [2 9	<u> </u>	1.85)	ΞΞ	Q 9	_ `	1.85)	ΞΞ		운 :		1.19)	Ξ
2,6-Dinitrotoluene	2 2		0.723)	ΞΞ	2 8		0.734)	ΞΞ		_ `	0.754)			2 9	_ 、	0.311)	Ξ
2-Chloronaphthalene	Q	<i>-</i>	0.925)	ΞΞ	<u>8</u>	<i>-</i> –	0.934)	ΞΞ	2 2		0.730)		-, -	2 2		0.505)	ΞΞ
2-Chlorophenol	N.	_	0.612)	Ξ	QN		0.618)	ΞΞ	Q.	<i>,</i> _	0.618)		, ,	2 2		0.526)	ΞΞ
2-Methylnaphthalene	QN	_	1.12)	Ξ	QN	_	1.14)	[1]	40.0		1.14)			. Q	<i>-</i> _	0.795)	ΞΞ
2-Methylphenol	Q.		0.553)	Ξ	QN	_	0.558)	[1]	1.79	_	0.558)		_	QN		0.468)	
Z-Nitroaniline	2 :		0.719)	Ξ	QN	_	0.726)	[1]	ND	_	0.726)			ON	_	0.505)	Ξ
Z-Nitrophenol 3 3'-Nichlamahamaidima	2 9	_ 、	1.04)	ΞΞ	2 :	<u> </u>	1.05)	Ξ	N N	_	1.05)		_	ND	_	0.758)	Ξ
3-Nitroaniline	2 5		0.066)	ΞΞ	S &		0.695)	33	2 9	_ \	0.695)	Ξ		Q !		3.63)	Ξ
4,6-Dinitro-2-methylphenol	Q		0.439)	ΞΞ	2 2		0.000)	ΞΞ	2 5		0.000)			2 9	_ 、	0.501)	Ξ3
4-Bromophenyl phenyl ether	Q		0.723)	ΞΞ	Q.	<i>-</i> _	0.730)	[]	2 8	<i>-</i>	0 730)		- r	2 S		(58.7	ΞΞ
4-Chloro-3-methylphenol	ON	_	0.601)	Ξ	CN		0 607)	ΞΞ	9		0 607)		, -	2 5	- -	0.505)	3 5
4-Chlorophenyl phenyl ether	QN		0.863)	ΞΞ	Q.	_ ر	0.872)	ΞΞ	2 2	-	0.007)		-	2 5		0.3/3)	ΞΞ
4-Methylphenol/3-Methylphenol	QN	_	0.826)	[1]	Q	_	0.834)	ΞΞ	3.62	<u>۔</u> بنا	0.834)			2 2		0.442)	E E
4-Nitroaniline	Q	_	0.553)	[1]	9	_	0.558)	[1]	QN		0.558)		,	2		0.609)	ΞΞ
4-Nitrophenol	ND	<u> </u>	1.11)	Ξ	Q.	_	1.12)	Ξ	ON	_	1.12)	Ξ	. —	2	<i>-</i> _	0.746)	Œ
Acenaphthene	9	_	0.643)	[]	N	_	0.650).	[1]	0.413	ر (0.650)			S		0.592)	ΞΞ
												į					

Compiled: 15 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

SITE ID

0.636) 0.688) 0.926)5.91) 0.420) 0.465)0.7230.633) 0.794)0.596) 0.466) 0.636) 0.397) 0.636) 0.659) 0.6960.526) 0.700) 1.94)0.748) 0.333) 0.556G94-06-MW-05 06-MW-05 99999999999999999999999 2222222222222222222 Ξ Ξ Ξ Ξ Ξ 0.447) 0.662) 0.746) 0.664) 1.08) 3.02) 0.678) 0.870)0.600) 0.653)0.708) 0.5190.333) 0.288) 0.431)0.639) 0.666) 0.617) 1.47) 0.9540.8255.40) 0.5180.781) G94-06-MW-04 06-MW-04 2 2 2 2 2 2 2 2 Ξ 2222 G94-06-MW-03-FD Dup of 0.6780.600) 0.653)0.708) 0.519) 0.333)0.288) 0.431)0.639) 0.666) 0.954)0.662) 0.746) 0.664) 1.08) 0.870)0.617)1.47) 0.825)LOCATION ID SAMPLE ID G94-06-MW-03 06-MW-03 22222222222222222 0.701) 0.514)0.330) 0.633) 1.45) 0.513)0.491)1.07) 0.671) 0.862) 0.594)0.647) 0.286) 0.427)0.660) 0.611)0.945)0.656)0.658)0.817)G94-06-MW-03 06-MW-03 W8270 - Semivolatile Organics, cont. N-Nitroso-di-n-propylamine Hexachlorocyclopentadiene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Butylbenzylphthalate Di-n-octylphthalate Hexachlorobutadiene Benzo(a)anthracene Dimethy|phthalate **Hexachlorobenzene** Dibuty]phthalate **Diethylphthalate dexachloroethane** Benzo(a)pyrene **Acenaphthylene** Benzyl alcohol Diphenylamine Dibenzofuran Fluoranthene Benzoic acid Anthracene sophorone Fluorene Chrysene

A13-39

* - Value considered suspect, Refer to QC Report

NA = Not Applicable

ND = Not Detected

[] = Dilution Factor

() = Detection Limit

Compiled: 15 March 1995

						SITI LOCAT SAMP	SITE ID LOCATION ID SAMPLE ID									
PARAMETER	6 8	8 06-MW-03 14-06-MW-(8 06-MW-03 G94-06-MW-03			8 06-MW- 5-MW-03-	8 06-MW-03 G94-06-MW-03-FD Dup of G94-06-MW-03	4-	C	8 06-MW-04 G94-06-MW-04	04 W-04		39	8 06-MW-05 G94-06-MW-05	05 N-05	
SW8270 - Semivolatile Organics, cont. (ug/L)	(ng/L)				1 1 1 1 1 1 1 1 1	1	5 	 			 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		!
Naphthalene	Q	J	0.796)	[1]	QN	_	0.804)	[1]	72.8	J	0.804)	[1]	Q.	_	0.705)	Ξ
Nitrobenzene	S	_	0.809)	[1]	QN	_	0.817)	[1]	9	_	0.817)	Ξ	8	. <u> </u>	0.533)	ΞΞ
Pentachlorophenol	S	~	0.623)	Ξ	Q	J	0.629)	Ξ	Q.		0.629)	ΞΞ	2	<i>-</i> _	0.476)	ΞΞ
Phenanthrene	Q.	_	0.610)	Ξ	Q	J	0.616)	[1]	QN	_	0.616)	[1]	2	۔ ۔	0.605)	ΞΞ
Phenol	ND	_	0.680)	[]	QN	J	0.686)	[]	32.0	_	0.686)	Ξ	2	. <u> </u>	0.421)	ΞΞ
Pyrene	S	_	0.783)	[1]	Q	_	0.790)	Ξ	QN	_	0.790)	Ξ	2		0.782)	ΞΞ
bis(2-Chloroethoxy)methane	S	_ ·	0.647)	Ξ	ON	_	0.653)	Ξ	QN	_	0.653)	[1]	QN	· _	0,535)	ΞΞ
bis(2-Chloroethyl)ether	Q.	_	0.644)	[1]	Q	_	0.650)	Ξ	QN	_	0.650)		R		0.583)	ΞΞ
bis(2-Chloroisopropyl)ether	QN	_	1.07)	[1]	QN	_	1.08)	Ξ	S	_	1.08)	Ξ	QN N		0.544)	ΞΞ
bis(2-Ethylhexyl)phthalate	N Q	_	0.808)	Ξ	Q.	_	0.816)	[1]	Q	_	0.816)	Ξ	1.51		0.944)	ΞΞ
p-Chloroaniline	QN	_	0.971)	[1]	QN	_	0.981)	[1]	R	_	0.981)		QN		0.880)	ΞΞ

() = Detection Limit

[] = Dilution Factor

ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

		8 06-MW-06 694-06-MW-06	8 W-06 -Mu-06	•		-90	8 06-MW-07 694-06-MV-07		-60	8 09-MW-01		Ċ	8 09-MW-02	-02	
PARAMETER		3	8						1 1 1 1	TOLALILE		5	- 1	70-MW	
AK101 - Gasoline Range Organics (ug/L) Gasoline Range Organics	(ug/L) 13.0	J (50.0)	Ξ	1.00) BL	50.0)	[1]		50.0)	[1]	84.0		50.0)	[1]
AK102 - Diesel Range Organics (ug/L) Diesel Range Organics	ug/L) 500	J	100)	[]	25.0		100)	[1]	290	100)	[<u>1</u>]	0.00	JB (100)	[1]
SW8080 - Organochlorine Pesticides and PCBs	les and PCBs	(ng/L)	(00000	Ξ	ģ	·	,	Ş	í		į	!	,		;
4,4 -UUU	2 2		0.00238)	ΞΞ	2 5	_ `	0.00218)	ΞΞ		0.00290)	Ξ3	Q :	٠ ,	0.00302)	Ξ
4,4'-DDT	0.0170		0.00365)	ΞΞ	0.00850	2	0.00852)	ΞΞ	ND (0.0123 KJ (0.00334)	ΞΞ	2 2		0.00348)	ΞΞ
Aldrin	0.0613	<u> </u>	0.00409)	Ξ	QV	_	0.00283)	Ξ		0.00232)	Ξ	Q	<i>-</i>	0.00415)	ΞΞ
Chlordane	Q	_	0.0198)	Ξ	Q		0.0233)	Ξ) QN	0.0193)	Ξ	QN	_	0.0201)	Ξ
Dieldrin	0.0344	J	0.00279)	Ξ	0.00250	K.JB (0.00391)	Ξ	0.00720	0.00272)	[]	QN	_	0.00283)	Ξ
Endosulfan I	ON	_	0.00446)	Ξ	ON	_	0.00883)	Ξ) QN	0.00208)	Ξ	QN	_	0.00217)	Ξ
Endosulfan II	S	_	0.00208)	Ξ	Q		(69800.0	Ξ) ON	0.00366)	Ξ	QN	_	0.00380)	[1]
Endosulfan Sulfate	QN	<u> </u>	0.00495)	[]	Q	_	0.00528)	Ξ	0.00450 KJ (0.00971)	Ξ	0.00710 K	<u>∵</u>	0.0101)	[1]
Endrin	S	_	0.00754)	Ξ	ON		0.00705)	Ξ) ON	0.00736)	Ξ	QN	_	0.00765)	Ξ
Endrin Aldehyde	0.0458	_	0.00622)	Ξ	R	_	0.00388)	Ξ	0.00140 PJ (0.00608)	Ξ	0.00220 K	_ ⊋	0.00632)	[1]
Heptachlor	0.0467	_	0.00540)	Ξ	S	_	0.00229)	Ξ) QN	0.00527)	Ξ	QN	_	0.00548)	Ξ
Heptachlor epoxide	0.0257	_	0.00187)	Ξ	운	_	0.00220)	Ξ	0.00270 P	0.00183)	Ξ	0.00550 K	⊋ ∵	0.00944)	[1]
Methoxychlor	QN		0.0393)	Ξ	2	_	0.0531)	Ξ) QN	0.0384)	Ξ	QN	_	0.0399)	[1]
PCB-1016	ON	_	0.0319)	Ξ	2	_	0.0237)	Ξ	ON ON	0.0311)	Ξ	ON	_	0.0324)	Ξ
PCB-1221	ON	_	0.0287)	Ξ	2	_	0.0225)	Ξ	ON ON	0.0280)	Ξ	ND	_	0.0291)	Ξ
PCB-1232	ON	_	0.0725)	Ξ	2	_	0.0170)	Ξ) QN	0.0708)	Ξ	ON	_	0.0736)	Ξ
PCB-1242	QN	_	0.0265)	Ξ	9	_	0.117)	Ξ) QN	0.0259)	Ξ	Q	_	0.0269)	Ξ
PCB-1248	QN	_	0.0314)	Ξ	2	_	0.0405)	Ξ) QN	0.0307)	Ξ	QN	_	0.0319)	Ξ
PCB-1254	Q	_	0.0126)	Ξ	2	_	0.0299)	Ξ) QN	0.0123)	Ξ	QN	_	0.0128)	[]
PCB-1260	ON	_	0.0349)	Ξ	2	_	0.0339)	Ξ) QN	0.0341)	Ξ	QN	_	0.0354)	Ξ
Toxaphene	Q	_	0.0561)	Ξ	2	_	0.0415)	Ξ) QN	0.0548)	Ξ	NO	_	0.0569)	Ξ
Compiled: 15 March 1995	() = Detect	Detection Limit	nit [] =	Dilution Factor	Factor	= QN	Not Detected	NA	= Not Applicable	* ~ Valu	e conside	Value considered suspect,	Refer	Refer to QC Report	ırt

SITE ID LOCATION ID

						SAMP	SAMPLE ID									
		æ				΄ ∞				∞				œ		
		90-MM-90				06-MW-07	-07		0	09-MW-01	1			09-MW-02	02	
PARAMETER		G94-06-MW-06	90		69	G94-06-MW-07	MW-07		694	G94-09-MW-01	-01		39	G94-09-MW-02	₩-02	
SW8080 - Organochlorine Pesticides and PCBs,	s and PCBs,	cont.	(ug/L)	!		1	}		; ! ! ! ! ! ! ! ! !	! ! !		· 		 		!
alpha-BHC	0.0441	0.0	0.00285)	[1]	Q	Ū	0.00416)	Ξ	QN QN	.0	0.00278)	[1]	N	0	0.00289)	
beta-BHC	0.284	0.0	0.00403)	[1]	ON	Ū	0.00329)	Ξ	ON	.0	0.00393)	Ξ	QN		0.00409)	ΞΞ
delta-BHC	2	0.0	0.00232)	[1]	Q	Ū	0.00212)	Ξ	QN	0.	0.00227)	Ξ	QN		0.00236)	ΞΞ
gamma-BHC	0.111	0.0(0.00178)	Ξ	NO	Ū	0.00380)	Ξ	0.0102	.0	0.00173)	[1]	0.00700	0	0.00180)	Ξ
SW8260 - Volatile Organic Compounds	rds (ug/L)															
1,1,1,2-Tetrachloroethane	QN	0.0	0.0851)	[1]	QN	_	0.0851)	Ξ	ND	0	.0851)	[1]	2	_	0.0851)	Ξ
1,1,1-Trichloroethane	QN	0.0	0.0992)	[1]	QN	_	0.0992)		QN		0.0992)	ΞΞ	Ž	_	(2000:0	3 5
1,1,2,2-Tetrachloroethane	QN	0	0.170)	[1]	Q	_	0.170)	ΞΞ	QN		0.170)	ΞΞ	9		0 170)	ΞΞ
1,1,2-Trichloroethane	ON).0	0.0920)	[1]	S	_	0.0920)	Ξ	ND		0.0920)		2	-	0.0920)	ΞΞ
1,1-Dichloroethane	Q	(0.0	0.0886)	[1]	Q.	_	0.0886)	[1]	ND		0.0886)	ΞΞ	0.210		0.0886)	ΞΞ
1,1-Dichloroethene	QN	0.0	0.0806)	[]	QN	_	0.0806)	[1]	0.0700	0	0.0806)	ΞΞ	Q.		0.0806)	ΞΞ
1,2,3-Trichloropropane	QN		0.233)	Ξ	QN	_	0.233)	Ξ	QN	_	0.233)	[1]	ND		0.233)	ΞΞ
1,2-Dichlorobenzene	Q	0	0.354)	Ξ	Q	_	0.354)	[1]	QN	_	0.354)	[1]	S		0.354)	ΞΞ
1,2-Dichloroethane	0.990).0	0.0791)	[1]	1.18	_	0.0791)	Ξ	QN	0	0.0791)	Ξ	Q	_	0.0791)	ΞΞ
1,2-Dichloropropane	R :). 	0.0742)	Ξ	QN	_	0.0742)	Ξ	ND	0	0.0742)	[1]	Q	_	0.0742)	Ξ
I,3-Dichlorobenzene	2 :		0.391)	Ξ	Q	_	0.391)	Ξ	QN	_	0.391)	[1]	Q.	_	0.391)	Ξ
1,4-Ulchlorobenzene	운 :	· ·	0.423)	Ξ	Q.	_	0.423)	Ξ	ND	_	0.423)	[1]	R	_	0.423)	Ξ
1-cnloronexane 3-putanca (MFV)			0.154)	ΞΞ	윤 :		0.154)		QN	_	0.154)	[1]	QN	_	0.154)	[1]
2 Chlosethia wind the			0.890)		QN		0.890)	Ξ	QN	_	0.890)	Ξ	QN	_	0.890)	[]
2-callordetnyl vinyl etner	O :		0.124)		Q.		0.124)	[1]	QN	_	0.124)	Ξ	QN	_	0.124)	Ξ
z-nexanone	N :	.0	0.766)	Ξ	Q	_	0.766)	Ξ	Q	_	0.766)	Ξ	ON	_	0.766)	
4-Methyl-Z-Pentanone(MIBK)			0.501)	Ξ	Q	_	0.501)	Ξ	QN	_	0.501)	Ξ	QN N	_	0.501)	Ξ
Acetone			2.09)	Ξ		_	2.09)	Ξ	3.57 B	_	2.09)	Ξ	2.54 B	J	2.09)	Ξ
Benzene	Q !	0.0	0.0307)	[1]	0.0900 B	_	0.0307)	[1]	114	0	0.0614)	[2]	24.2	_	0.0307)	[1]
Bromobenzene	₽ :		0.165)	[1]	Q	_	0.165)	[1]	ND	_	0.165)	[1]	ND	_	0.165)	ΞΞ
Bromodich!oromethane	Q :	0.0	0.0536)	[1]	8	_	0.0536)	Ξ	QN		0.0536)	[1]	Q	_	0.0536)	[1]
Bromotorm	QN	(0.	0.108)	Ξ	2	_	0.108)	Ξ	ND	_	0.108)	[1]	ON	_	0.108)	[1]

NA = Not Applicable * - Value considered suspect, Refer to QC Report ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 15 March 1995

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

	9	G94-06-MW-06	90-MM		9	G94-06-MW-07	MW-07		Ğ	09-MW-01 34-09-MW-	09-MW-01 G94-09-MW-01		ij	09-MW-02 G94-09-MW-02	-02 1W-02	
PARAMETER																
SW8260 - Volatile Organic Compounds, cont.	!	(ng/L)				1 1 1 1 1	! ! ! ! !	! ! !	0 6 7 1 1		! ! ! ! ! !	 	1 1 1 1 1 1 1 1 1	! ! !	 	i ! !
Bromomethane	S	_	0.0968)	Ξ	Q.	_	0.0968)	[1]	S	Ų	0.0968)	Ξ	2	_	0.0968)	Ξ
Carbon disulfide	Q	_	0.161)	Ξ	S	_	0.161)	[1]	2	_	0.161)	Ξ	QN	_	0.161)	[1]
Carbon tetrachloride	ON.	J	0.117)	Ξ	S	J	0.117)	Ξ	8	_	0.117)	Ξ	QN	_	0.117)	Ξ
Chlorobenzene	Q	_	0.112)	Ξ	S	_	0.112)	[1]	2	_	0.112)	Ξ	ON	_	0.112)	Ξ
Chloroethane	2	_	0.0972)	Ξ	Q.	_	0.0972)	[1]	S	_	0.0972)	Ξ	QN	_	0.0972)	Ξ
Chloroform	2	_	0.0363)	Ξ	S	_	0.0363)	Ξ	Q	_	0.0363)	Ξ	ON	_	0.0363)	Ξ
Chloromethane	0.330 F	_	0.155)	Ξ	0.530	_	0.155)	[1]	S	_	0.155)	Ξ	N	_	0.155)	Ξ
Dibromochloromethane	8	٥	0.0283)	Ξ	R	J	0.0283)	Ξ	Ş	_	0.0283)	Ξ	QN	_	0.0283)	Ξ
Dibromomethane	S	_	0.0598)	Ξ	0.190	_	0.0598)	Ξ	9	_	0.0598)	[1]	ON	_	0.0598)	Ξ
Ethyl benzene	0.0600	_	0.110)	Ξ	S	_	0.110)	Ξ	13.1	_	0.110)	Ξ	0.0500	_	0.110)	Ξ
Meta-&Para-Xylene	0.220	_	0.365)	Ξ	QN	_	0.365)	Ξ	3.46	_	0.365)	Ξ	ON	_	0.365)	[1]
Methylene Chloride	0.220 E	_	0.151)	Ξ	0.250 B	_	0.151)	Ξ	0.160 B	_	0.151)	Ξ	0.170 B	_	0.151)	Ξ
Ortho-Xylene	0.080.0	_	0.124)	Ξ	QN	_	0.124)	Ξ	0.620	_	0.124)	Ξ	QN	_	0.124)	[1]
Styrene	S	_	0.113)	Ξ	Q.	_	0.113)	Ξ	S	_	0.113)	[1]	QN	_	0.113)	Ξ
Tetrachloroethene	0.330	_	0.209)	[1]	Q	_	0.209)	Ξ	S	_	0.209)	Ξ	ON	_	0.209)	Ξ
Toluene	0.260	_	0.0336)	Ξ	0.0400	_	0.0336)	Ξ	0.240	_	0.0336)	Ξ	0.0600	_	0.0336)	Ξ
Trichloroethene	0.650	_	0.0439)	[1]	QN	_	0.0439)	Ξ	0.540	_	0.0439)	Ξ	0.180	_	0.0439)	Ξ
Trichlorofluoromethane	0.100	J	0.0943)	Ξ	Q	_	0.0943)	Ξ	S	_	0.0943)	Ξ	ON	_	0.0943)	Ξ
Vinyl Chloride	Q	J	0.0992)	Ξ	QN	_	0.0992)	Ξ	0.130	_	0.0992)	Ξ	ND	_	0.0992)	Ξ
Vinyl acetate	2	J	0.127)	Ξ	QN	_	0.127)	Ξ	S	_	0.127)	Ξ	ON	_	0.127)	Ξ
cis-1,2-Dichloroethene	2	J	0.0785)	Ξ	ON	_	0.0785)	Ξ	28.0	_	0.0785)	Ξ	7.08	_	0.0785)	Ξ
cis-1,3-Dichloropropene	QN .	_	0.0758)	Ξ	9	_	0.0758)	Ξ	Q.	_	0.0758)	Ξ	QN	_	0.0758)	Ξ
trans-1,2-Dichloroethene	S	_	0.131)	Ξ	S	_	0.131)	Ξ	3.32	_	0.131)	Ξ	0.230	_	0.131)	Ξ
trans-1,3-Dichloropropene	S	_	0.0829)	Ξ	Q.	<u> </u>	0.0829)	Ξ	QN	_	0.0829)	Ξ	ON	J	0.0829)	[]
SW8270 - Semivolatile Organics (ug	(ng/L)															
1,2,4-Trichlorobenzene	Q	_	0.488)	Ξ	ND	_	0.608)	Ξ	Q	_	0.493)	Ξ	9	_	0.488)	Ξ
1,2-Dichlorobenzene	Q	_	0.592)	[]	S	_	0.664)	Ξ	Q	_	0.598)	Ξ	QN	_	0.592)	Ξ

		∞				u.	œ			α						
PARAMETER	0 G94	06-MW-06 G94-06-MW-06	06 W-06		g	06-MW-07 G94-06-MW-07	л-07 -МW-07		Θ	09-MW-01 694-09-MW-01	1-01 MW-01		-	8 09-MW-02 694-09-MW-02	-02 MW-02	
SW8270 - Semivolatile Organics, cont.	(ng/L)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	; ; ; ;	; ; ; ; ; ; ;				; ; ; ; ;	t t l l			1	
1,3-Dichlorobenzene	Q	_	0.397)	Ξ	S	_	0.717)	Ξ	S	_	0.401)	Ξ	S	_	0 397)	Ξ
1,4-Dichlorobenzene	S.	_	1.56)	Ξ	Q.		1.32)	Ξ	2		1 57)	ΞΞ	2 2		1 56)	ΞΞ
2,4,5-Trichlorophenol	Q.	_	0.317)	Ξ	ON		0.449)	ΞΞ	9		0.320)	ΞΞ	2 2		0.317)	ΞΞ
2,4,6-Trichlorophenol	S	_	0.377)	[]	QN	_	0.425)	Ξ	QN		0.381)	ΞΞ	9		0.377)	ΞΞ
2,4-Dichlorophenol	2		0.396)	Ξ	ND	_	0.661)	Ξ	QN	_	0.400)	Ξ	ON		0.396)	Ξ
Z,4-Ulmethylphenol	2 :		0.645)		QN	_	0.613)	Ξ	ON	_	0.651)	[1]	ON	_	0.645)	Ξ
2,4-Dinitrophenol	2 :		1.19)	Ξ	S	_	1.80)	Ξ	Q	_	1.20)	Ξ	S	_	1.19)	Ξ
z,4-Ulnitrotoluene	QN :		0.311)	Ξ,	2	_	0.733)	Ξ	N	_	0.314)	Ξ	QN	J	0.311)	
2,b-binitrotoluene	Q :		0.606)	Ξ	Q	_	0.709)	[1]	QN	_	0.612)	Ξ	ON	_	0.606)	Ξ
Z-Chloronaphthalene	2		0.781)	Ξ	R	_	0.908)	[]	Q	_	0.789)	[1]	N	_	0.781)	[1]
Z-Chlorophenol	2	_	0.526)	\Box	8	_	0.601)	Ξ	R	_	0.532)	[1]	N		0.526)	ΞΞ
Z-Methylnaphthalene	Q.		0.795)	Ξ	Q.	_	1.10)	[1]	ND	_	0.803)	[1]	QN		0.795)	Ξ
z-metnylpnenol	Q :		0.468)	Ξ	2	_	0.542)	[1]	2	_	0.472)	Ξ	QN	_	0.468)	[1]
2-Nitroaniine 2 Mit	Q :		0.505)	Ξ	2	_	0.706)	[1]	2	_	0.510)	Ξ	Q	_	0.505)	Ξ
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2		0.758)	[1]	2	_	1.02)	[]	S	_	0.765)	Ξ	2	_	0.758)	
3,3 -Dichlorobenzidine	£ :		3.63)	Ξ	Q.	_	0.675)	Ξ	QN	_	3.66)	[]	2	_	3.63)	Ξ
J-Witroaniline	QV :		0.501)	Ξ :	Q	_	0.843)	Ξ	NO	_	0.506)	Ξ	Q	_	0.501)	[1]
4,0-U1N1tro-2-methy!phenol	Q :		2.83)	Ξ	오.	_	0.431)	Ξ	WD	_	2.86)	Ξ	2	_	2.83)	Ξ
4-bromophenyl phenyl ether	2		0.282)	Ξ	Q	_	0.709)	[1]	S	_	0.285)	Ξ	QN	_	0.282)	
4-cnloro-3-methylphenol	2	<u> </u>	0.373)	Ξ,	ND	_	0.590)	[]	Q	_	0.376)	Ξ	QN N	_	0.373)	Ξ
4-chlorophenyl phenyl ether	QN	_	0.442)	Ξ	Q.	_	0.847)	[]	R	_	0.447)	[1]	QN	_	0.442)	
4-metnylphenol/3-methylphenol	Q	_	0.433)	Ξ	2	_	0.810)	Ξ	QN	_	0.438)	[1]	QN	_	0.433)	
4-Nitroaniline	2	_	0.609)	Ξ	R	_	0.542)	Ξ	R	_	0.615)	Ξ	QN	_	0.609)	Ξ
4-Nitrophenol	2	_	0.746)	Ξ	2	_	1.08)	[1]	QN	_	0.753)	Ξ	QN	_	0.746)	ΞΞ
Acenaphthene	2	_	0.592)	Ξ	2	_	0.631)	Ξ	Q	_	0.598)	Ξ	ND	_	0.592)	
Acenaphthylene	2	_	0.604)	Ξ	9	_	0.430)	Ξ	S	_	0.610)		QN		0.604)	
Anthracene	QN		0.651)	[1]	Q	_	0.434)	[1]	QN	_	0.657)	Ξ	ND		0.651)	ΞΞ
benzo(a)anthracene	2	_	0.714)	\Box	9	_	0.482)	[1]	QN	_	0.721)	[1]	ON	_	0.714)	ΞΞ

Compiled: 15 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

	06 694-	06-MW-06 694-06-MW-06	90- ₁ -		9	06-MW-07 G94-06-MW-07	07 W-07		J	09-MW-01 694-09-MW-01	W-01 -MW-01		5	09-MW-02 694-09-MW-02	-02 1W-02	
PARAMETER	1 1 1 1 1 1		1 1 1 1 1	1	1 1 1 1 1 1	1 1 1 1	1					!				
SW8270 - Semivolatile Organics, cont.	(ng/L)															
Benzo(a)pyrene	Q	_	0.648)	Ξ	2	_	0.643)	Ξ	2	_	0.654)	Ξ	QN	_	0.648)	Ξ
Benzo(b)fluoranthene	9	J	0.636)	Ξ	2	J	0.725)	Ξ	2	_	0.643)	Ξ	ON	_	0.636)	Ξ
Benzo(g,h,i)perylene	윤	_	0.688)	Ξ	2	_	0.645)	[1]	8	_	0.695)	[1]	Q	_	0.688)	[1]
Benzo(k)fluoranthene	Q.	_	0.926)	Ξ	S	_	1.05)	[1]	2	_	0.936)	Ξ	N	_	0.926)	Ξ
Benzoic acid	Q.	_	5.91)	[]]	2	J	2.93)	Ξ	2	_	5.97)	Ξ	Q	_	5.91)	Ξ
Benzyl alcohol	Q.	_	0.420)	Ξ	2	_	0.658)	Ξ	2	_	0.424)	[]	9	_	0.420)	Ξ
Butylbenzylphthalate	Q	_	0.465)	Ξ	2	_	0.845)	Ξ	2	_	0.469)	Ξ	S	_	0.465)	Ξ
Chrysene	S	_	0.723)	Ξ	9	_	0.583)	Ξ	QN	_	0.730)	Ξ	8	_	0.723)	Ξ
Di-n-octylphthalate	Q.	٠	0.633)	Ξ	8	_	0.635)	Ξ	Q	_	0.640)	Ξ	Q	_	0.633)	Ξ
Dibenz(a,h)anthracene	S	_	0.794)	Ξ	S	_	0.688)	Ξ	QN	_	0.802)	Ξ	8	_	0.794)	Ξ
Dibenzofuran	QN	_	0.596)	Ξ	9	J	0.505)	Ξ	S	_	0.602)	Ξ	S	_	0.596)	Ξ
Dibutylphthalate	Q	_	0.466)	Ξ	2	_	0.324)	Ξ	ON.	_	0.470)	Ξ	S	_	0.466)	Ξ
Diethylphthalate	Q	_	0.636)	Ξ	2	_	0.280)	Ξ	QN	<u> </u>	0.643)	Ξ	S	_	0.636)	Ξ
Dimethylphthalate	Q	_	0.397)	Ξ	9	_	0.419)	Ξ	Q	_	0.401)	Ξ	S	_	0.397)	Ξ
Diphenylamine	Q	_	0.636)	Ξ	2	_	0.621)	Ξ	Q	_	0.643)	Ξ	S	_	0.636)	Ξ
Fluoranthene	Q.	_	0.659)	Ξ	2	<u> </u>	0.647)	Ξ	QN	_	0.665)	Ξ	S	_	0.659)	Ξ
Fluorene	2	_	0.696)	Ξ	S	_	0.599)	Ξ	2	_	0.703)	Ξ	N	_	0.696)	Ξ
Hexachlorobenzene	Q	_	0.526)	[1]	9	_	1.42)	Ξ	Q	_	0.532)	Ξ	N	_	0.526)	Ξ
Hexachlorobutadiene	Q	_	0.700)	Ξ	2	_	0.927)	Ξ	2	_	0.707)	Ξ	QN	_	0.700)	Ξ
Hexachlorocyclopentadiene	S	_	1.94)	Ξ	2	J	0.802)	Ξ	9	_	1.96)	Ξ	S	_	1.94)	Ξ
Hexachloroethane	Q	_	1.75)	Ξ	S	_	5.25)	Ξ	8	<u> </u>	1.77)	Ξ	S	_	1.75)	Ξ
Indeno(1,2,3-cd)pyrene	9	_	0.748)	[1]	2	_	0.504)	Ξ	8	_	0.755)	Ξ	S	_	0.748)	Ξ
Isophorone	9	_	0.333)	[1]	2	_	0.517)	Ξ	2	_	0.337)	Ξ	S	J	0.333)	[1]
N-Nitroso-di-n-propylamine	QN	_	0.556)	Ξ	2	_	0.758)	Ξ	Q	_	0.561)	Ξ	S	_	0.556)	Ξ
Naphthalene	Q	_	0.705)	Ξ	S	_	0.781)	Ξ	0.512)	0.712)	Ξ	N N	_	0.705)	Ξ
Nitrobenzeņe	S	_	0.533)	Ξ	9	Ų	0.793)	Ξ	2	_	0.539)	Ξ	Q	_	0.533)	Ξ
Pentachlorophenol	Q	_	0.476)	[1]	2	_	0.611)	Ξ	Q	<u> </u>	0.481)	Ξ	N	_	0.476)	Ξ
Phenanthrene	Q	_	0.605)	[1]	8	<u> </u>	0.598)	Ξ	9	<u> </u>	0.611)	Ξ	Q	_	0.605)	Ξ

		<u> </u>
	05	0.421) 0.782) 0.535) 0.583) 0.544) 0.944)
	8 09-MW-02 G94-09-MW-02	
	769	ND ND ND ND ND ND ND ND
		1
		222222
	8 09-MW-01 G94-09-MW-01	0.425) 0.790) 0.541) 0.589) 0.550) 0.953)
	8 09-MW-	
	9	
		=======
10 10	.07	0.667) 0.768) 0.635) 0.632) 1.05) 0.792)
SITE ID LOCATION ID SAMPLE ID	8 06-MW-07 G94-06-MW-07	
_	769	0 N N O N N O N O N O O N O O O O O O
	;	=======
] } 	_
	1-06 MW-06	0.421) 0.782) 0.535) 0.583) 0.544) 0.944)
	8 06-MW-06 G94-06-MW-06	
	06- 694-0	(ug/L ND ND ND ND ND ND
		SW8270 - Semivolatile Organics, cont. (ug/L) Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether ND bis(2-Chloroisopropyl)ether ND bis(2-Cthylhexyl)phthalate ND bis(2-Cthylhexyl)phthalate ND
	PARAMETER 	SW8270 - Semivolatile Organi Phenol Pyrene bis(2-Chloroethoxy)methane bis(2-Chloroisopropyl)ether bis(2-Chloroisopropyl)ether bis(2-Ethylhexyl)phthalate p-Chloroaniline

Compiled: 15 March 1995

() = Detection Limit

[] = Dilution Factor ND = Not Detected NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

PARAMETER		0 694	09-MW-03 4-09-MW-	09-MW-03 G94-09-MW-03			694	09-MW-04 4-09-MW-	09-MW-04 G94-09-MW-04			0 694	09-MW-05 G94-09-MW-05	-05 /W-05		694-	0 .09-M	09-MW-05 9-MW-05-FD Di 694-09-MW-05	09-MW-05 G94-09-MW-05-FD Dup of G94-09-MW-05	
AK101 - Gasoline Range Organics Gasoline Range Organics	(ug/L)	JB	_	50.0)	[1]	41.0	ď	_	50.0)	Ξ	13.0		_	50.0)	[1]	10.0	٦	_	50.0)	Ξ
AK102 - Diesel Range Organics (Diesel Range Organics	(ug/L) 0.00	JB	_	100)	[1]	0.00	98	_	100)	Ξ	12.0	JB	_	100)	[1]	10.0	JB	_	100)	Ξ
SW8080 - Organochlorine Pesticides and PCBs	es and PCBs		(na/f)																	
4,4'-DDD	9 N		<u>,</u>	0.00308)	Ξ	ON		_	0.00295)	[1]	N		_	0.00299)		QN		Ų.	0.0157)	Ξ
4,4'-DDE	S		_	0.00354)	Ξ	2		_	0.00339)	Ξ	QN		ں ب	0.00344)	Ξ	Q			0.00348)	ΞΞ
4,4'-DDT	Q		_	0.00378)	Ξ	8		_	0.00361)	Ξ	0.00620		_	0.00367)	Ξ	Q.		_	0.00370)	Ξ
Aldrin	ON		Ų.	0.00246)	[]	SN.		- -	0.00405)	Ξ	2		_	0.00411)	Ξ	0.00790		_	0.00415)	Ξ
Chlordane	Q		_	0.0205)	Ξ	2		_	0.0196)	Ξ	QN		_	0.0199)	Ξ	SN.		_	0.0201)	Ξ
Dieldrin	QN		_	0.00289)	Ξ	ON.		۔	0.00276)	Ξ	QN		_	0.00280)	Ξ	NO.		_	0.00411)	Ξ
Endosulfan I	QN		_	0.00221)	Ξ	2		_	0.00212)	Ξ	9		_	0.00215)	Ξ	8		_	0.00217)	Ξ
Endosulfan II	QN		_	0.00388)	Ξ	2		_ ت	0.00371)	Ξ	N		_	0.00376)	Ξ	2		_	0.00380)	Ξ
Endosulfan Sulfate	0.00350	3	_	0.0103)	Ξ	9		_ _	0.00490)	Ξ	0.00160	3	_	0.0100)	[1]	8		°	0.00502)	Ξ
Endrin	Q		_	0.00781)	Ξ	2		J	0.00747)	Ξ	S		_	0.00758)	[1]	S		°	0.00765)	Ξ
Endrin Aldehyde	QN		_	0.00644)	Ξ	0.00150	3	J	0.00616)	Ξ	N N		_	0.00625)	Ξ	0.00230	ŋ	_	0.00632)	Ξ
Heptachlor	S		_	0.00558)	Ξ	2		J	0.00534)	Ξ	S		_	0.00542)	Ξ	0.00100	3	_	0.00651)	Ξ
Heptachlor epoxide	0.00710	3	Ų	0.00964)	Ξ	0.00560	3	_	0.00922)	Ξ	S		_	0.00188)	Ξ	8		· _	0.00190)	Ξ
Methoxychlor	S		_	0.0407)	Ξ	2		_	0.0389)	Ξ	S		_	0.0395)	Ξ	2		_	0.0399)	Ξ
PCB-1016	S		_	0.0330)	Ξ	QN		_	0.0316)	[1]	S		_	0.0321)	Ξ	8		_	0.0324)	Ξ
PCB-1221	Q		_	0.0297)	Ξ	S		_	0.0284)	Ξ	QN		Ų	0.0288)	Ξ	8		_	0.0291)	Ξ
PCB-1232	N N		_	0.0750)	Ξ	SN SN		_	0.0718)	Ξ	S		_	0.0728)	Ξ	ON N		_	0.0736)	Ξ
PCB-1242	ON.		_	0.0275)	Ξ	S		_	0.0263)	[1]	S		_	0.0267)	Ξ	S		_	0.0269)	Ξ
PCB-1248	QN		_	0.0325)	Ξ	2		_	0.0311)	Ξ	S		_	0.0316)	Ξ	SN N		_	0.0319)	Ξ
PCB-1254	ON		_	0.0130)	Ξ	S		_	0.0125)	Ξ	2			0.0126)	Ξ	S		_	0.0128)	Ξ
PCB-1260	QN		_	0.0362)	Ξ	S		_	0.0346)	Ξ	QN		_	0.0351)	Ξ	2		_	0.0354)	Ξ

					SITE LOCATI SAMPL	SITE ID LOCATION ID SAMPLE ID								
	69	8 09-MW-03 G94-09-MW-03		9	8 09-MW-04 G94-09-MW-04	-04 W-04	·	0 694	8 09-MW-05 G94-09-MW-05		G94-C	8 09-MW-05 09-MW-05-FD	8 09-MW-05 694-09-MW-05-FD Dup of	
PARAMETER												G94-09-MW-05	-MW-05	
SW8080 - Organochlorine Pesticides and	PCBs,	cont. (ug/L)	1 1 1 1 1 1	! ! ! ! ! ! !			!			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1	1		1
Toxaphene	NO	(0.0581)	[1]	QN	_	0.0556)	Ξ	ND	(0.0564)	4) [1]	QN	_	0.0569)	[1]
alpha-BHC	QN	(0.00295)	[1]	ON.	_	0.00282)	Ξ	QN	(0.00286)		QN	۔ ۔	0.00289)	ΞΞ
beta-BHC	Q.	(0.00417)	[1]	Q	·	0.00399)	Ξ	N N	(0.00405)		QN	· _	0.00409)	ΞΞ
delta-BHC	ND	(0.00240)	[1]	S	0	0.00230)	Ξ	ON	(0.00233)		QN	. <u> </u>	0.00236)	SE
gamma-BHC	Q	(0.00173)	[1]	QN	0	0.00176)	Ξ	0.00670	(0.00178)	3) [1]	0.0127	_	0.00180)	ΞΞ
SW8260 - Volatile Organic Compounds	(1/gn)													
1,1,1,2-Tetrachloroethane		(0.0851)	Ξ	Q	_	0.0851)	[]	Ş	(0 0851)		Ž	,	00.71	Ξ
1,1,1-Trichloroethane	QN	(0.0992)	Ξ	QN		0.0992)	ΞΞ	S S	2660.0)		2 5		0.0001)	ΞΞ
1,1,2,2-Tetrachloroethane	QN	(0.170)	Ξ	8		0.170)	ΞΞ	2 2	(0.170)	_	2 2		0.0332)	ΞΞ
1,1,2-Trichloroethane	ND	(0.0920)	Ξ	Q	_	0.0920)	Ξ	QN	(0.0920)	_	2	_	0.0920)	ΞΞ
1,1-Dichloroethane	Q	(0.0886)	Ξ	8	_	0.0886)	[1]	QN	(0.0886)		2		0.0886)	ΞΞ
1,1-Dichloroethene	8	(0.0806)	Ξ	QN	_	0.0806)	[1]	ON	(0.0806)		ON	_	0.0806)	ΞΞ
1,2,3-Trichloropropane	S	(0.233)	Ξ	N N	_	0.233)	Ξ	QN	(0.233)		QN	_	0.233)	ΞΞ
1,2-Dichlorobenzene	2	(0.354)	Ξ	R	_	0.354)	[1]	QN	(0.354)		ON		0.354)	ΞΞ
1,2-Dichloroethane	2 9	(0.0791)	ΞΞ	0.110		0.0791)	[1]	QN	(0.0791)		QN	<u> </u>	0.0791)	
1.2-Dichlorohenzene	2 5	(0.0/42)	ΞΞ	2 5	_	0.0742)	Ξ3	Q G	0.0742		Q :		0.0742)	[1]
1,4-Dichlorobenzene	2 2	(0.423)		g g		0.391)	ΞΞ	2 2	(0.391)	ΞΞ	2 9		0.391)	Ξ:
1-Chlorohexane	S	(0.154)	ΞΞ	Q	_	0.154)	ΞΞ	Q Q	(71.0)		2 2	- -	0.463)	ΞΞ
2-Butanone(MEK)	QN	(0.890)	[1]	QN		0.890)	Ξ	QN	(0.890)		G N	- ~	0 800)	ΞΞ
2-Chloroethyl vinyl ether	ND	(0.124)	[1]	QN	_	0.124)		QN	(0.124)		2		0.124)	ΞΞ
2-Hexanone	QN	(0.766)	Ξ	Q.	_	0.766)	Ξ	ON	(00.766)		ON	· _	0.766)	ΞΞ
4-Methyl-2-Pentanone(MIBK)	QN	(0.501)	Ξ	Q	_	0.501)	Ξ	ND	(0.501)		QN	. <u> </u>	0.501)	ΞΞ
-		(2.09)	Ξ	6.14	_	2.09)	Ξ	2.60 B	(2.09)		3.10	 B	2.09)	ΞΞ
	0.0700 8	(0.0307)	Ξ	16.6	_	0.0307)	Ξ	0.630	(0.0307)		0.660		0.0307)	ΞΞ
Bromobenzene	Q	(0.165)	Ξ	QN	_	0.165)	[1]	QN	(0.165)		QN	_	0.165)	

Compiled: 15 March 1995

() = Detection Limit

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

LOCATION ID SAMPLE ID SITE 10

	0 694	8 09-MW-03 G94-09-MW-03	3 -03		99	8 09-MW-04 G94-09-MW-04	-04 MW-04		35	8 09-MW-05 14-09-MW-	8 09-MW-05 G94-09-MW-05		G94-09-	8 09-MW-05 MW-05-FD	8 09-MW-05 694-09-MW-05-FD Dup of	
PARAMETER													69	G94-09-MW-05	4 √ −05	
SW8260 - Volatile Organic Compounds, cont.	ont. (ug/L)	(T)		r 1 1 1 1 1		i 2 1 1	1 1 1 1 1 1	! ! ! !	! ! ! ! ! !	! ! !	 		1 1 1 1 1 1 1 1 1		 	1 1 1
Bromodichloromethane	Q.	0)	0.0536)	Ξ	Q.	_	0.0536)	Ξ	QN	_	0.0536)	[1]	N	_	0.0536)	Ξ
Bromoform	9	_	0.108)	Ξ	2	_	0.108)	Ξ	S	_	0.108)	Ξ	Q	_	0.108)	Ξ
Bromomethane	2	0	0.0968)	Ξ	2	_	0.0968)	Ξ	2	_	0.0968)	Ξ	Q	J	0.0968)	Ξ
Carbon disulfide	2	_	0.161)	Ξ	Q	_	0.161)	Ξ	2	_	0.161)	Ξ	S	_	0.161)	Ξ
Carbon tetrachloride	<u>S</u>	_	0.117)	Ξ	S	_	0.117)	[]	QN	_	0.117)	Ξ	QN	_	0.117)	Ξ
Chlorobenzene	Q.	_	0.112)	Ξ	Q	_	0.112)	Ξ	QN	_	0.112)	Ξ	QN	_	0.112)	Ξ
Chloroethane	S	0	0.0972)	[1]	S	_	0.0972)	Ξ	QV	_	0.0972)	Ξ	ON	_	0.0972)	Ξ
Chloroform	S	0	0.0363)	Ξ	ON	_	0.0363)	Ξ	Ş	_	0.0363)	[]	QN	_	0.0363)	Ξ
Chloromethane	9	_	0.155)	Ξ	QN	_	0.155)	Ξ	NO	_	0.155)	Ξ	QN	_	0.155)	Ξ
Dibromochloromethane	Q.	_	0.0283)	Ξ	QN	_	0.0283)	Ξ	Q	_	0.0283)	Ξ	QN	_	0.0283)	Ξ
Dibromomethane	Q	0	0.0598)	[1]	QN	_	0.0598)	Ξ	0.220	_	0.0598)	Ξ	0.200	_	0.0598)	[]
Ethyl benzene	S S	_	0.110)	[1]	Q.	_	0.110)	Ξ	0.0800	~	0.110)	Ξ	0.0600	_	0.110)	Ξ
Meta-&Para-Xylene	S	_	0.365)		0.120	_	0.365)	Ξ	0.0700	_	0,365)	Ξ	0.0600	_	0.365)	Ξ
Methylene Chloride 0	0.370 B	_	0.151)	Ξ	0.400 B	_	0.151)	Ξ	0.360 B	_	0.151)	Ξ	0.330 B	_	0.151)	Ξ
Ortho-Xylene	Q	_	0.124)	[1]	QN	_	0.124)	[1]	QN	_	0.124)	Ξ	QN	_	0.124)	Ξ
Styrene	Q	_	0.113)	[1]	QN	_	0.113)	Ξ	Ş	_	0.113)	Ξ	ON	_	0.113)	Ξ
Tetrachloroethene	Q.	_	0.209)	[1]	Q	_	0.209)	Ξ	2	_	0.209)	[1]	QN	_	0.209)	Ξ
Toluene 0.0	0.0400	0	0.0336)	[1]	0.0300 JB	_	0.0336)	Ξ	0.0400	_	0.0336)	[1]	QN	_	0.0336)	Ξ
Trichloroethene	Q	0	0.0439)	[1]	QN	_	0.0439)	[]	QN	_	0.0439)	Ξ	QN	_	0.0439)	Ξ
Trichlorofluoromethane	S	0	0.0943)	Ξ	Q	_	0.0943)	[1]	QN	_	0.0943)	Ξ	ON	_	0.0943)	Ξ
Vinyl Chloride	S	0	0.0992)	[1]	Q	_	0.0992)	Ξ	QN	_	0.0992)	[1]	QN	_	0.0992)	Ξ
Vinyl acetate	2	_	0.127)	Ξ	S	_	0.127)	Ξ	ON	_	0.127)	Ξ	ND	_	0.127)	Ξ
cis-1,2-Dichloroethene 0.0	0.080.0	0	0.0785)	Ξ	S	_	0.0785)	Ξ	QN	_	0.0785)	[1]	QN	_	0.0785)	Ξ
cis-1,3-Dichloropropene	Q	° _	0.0758)	Ξ	Q		0.0758)	Ξ	Q.	_	0.0758)	[1]	ON	_	0.0758)	Ξ
trans-1,2-Dichloroethene	2	_	0.131)	[1]	Q	_	0.131)	Ξ	S	_	0.131)	[1]	QN	_	0.131)	Ξ
trans-1,3-Dichloropropene	Q	·	0.0829)	Ξ	Q	_	0.0829)	Ξ	Q	J	0.0829)	Ξ	Q	_	0.0829)	Ξ

						SI LOCA SAM	SITE ID LOCATION ID SAMPLE ID									
		09-M 694-09	8 09-MW-03 G94-09-MW-03			8 09-MW-04 G94-09-MW-04	8 IV-04 -MW-04		69	8 09-MW-05 694-09-MW-05	.05 1W-05		694-09	8 09-MW-05 -MW-05-FD	8 09-MW-05 694-09-MW-05-FD Dup of	
PARAMETER													99	G94-09-MW-05	MW-05	
SW8270 - Semivolatile Organics ((ng/L)	1	: 	!		1				;	 	! ! !		! ! !		#
	Q.	_	0.498)	[1]	QN	_	0.632)	[1]	QN	_	0.498)	[1]	Q	_	0.488)	Ξ
1,2-Dichlorobenzene	QN	_	0.604)	[1]	S	_	0.690)	Ξ	QN		0.604)	ΞΞ	2		0.592)	ΞΞ
1,3-Dichlorobenzene	Q	_	0.405)	Ξ	QN	<u> </u>	0.745)	Ξ	QN QN	_	0.405)	Ξ	ON		0.397)	
1,4-Dichlorobenzene	S	_	1.59)	Ξ	S	_	1.37)	Ξ	Q.	_	1.59)	[1]	Q	_	1.56)	ΞΞ
2,4,5-Trichlorophenol	Q.	_	0.323)	Ξ	Q.	_	0.467)	Ξ	QN	_	0.323)	[1]	ON	_	0.317)	
2,4,6-Trichlorophenol	Q.	<u> </u>	0.385)	Ξ	QN	_	0.441)	Ξ	ON	_	0.385)	Ξ	ND	_	0.377)	Ξ
Z,4~Dichlorophenol	9	_	0.404)	Ξ	QN	_	0.687)	Ξ	ND	_	0.404)	[1]	S	_	0.396)	[1]
2,4-Dimethylphenol	Q	<u> </u>	0.658)	Ξ	ON	_	0.637)	[]	ND	_	0.658)	[1]	N	_	0.645)	[1]
Z,4-Ulnitrophenol	9		1.21)	Ξ	QN	_	1.87)	Ξ	ON	_	1.21)	Ξ	Q	_	1.19)	Ξ
Z,4-Dinitrotoluene	Q		0.317)	Ξ	₽.	_	0.762)	[]]	ON	_	0.317)	Ξ	QN	_	0.311)	[1]
Z,b-Ulnitrotoluene	2		0.618)	Ξ	QN	_	0.737)	[1]	QN	_	0.618)	Ξ	Q	_	0.606)	Ξ
Z-Chloronaphthalene	Q		0.797)	Ξ	Q	_	0.943)	Ξ	QV	_	0.797)	[1]	R	_	0.781)	Ξ
Z-Chloropheno!	Q :		0.537)	Ξ	QN		0.625)	[]	QN	_	0.537)	Ξ	ND	_	0.526)	[1]
Z-Methylnaphthalene 2:Mothylnbangl	Q 9		0.811)	Ξ	2		1.15)	Ξ	N	_	0.811)	[1]	0.348 J	_	0.795)	Ξ
2-Metry premoi	2 8		0.4//)	ΞΞ	9 9	_ 、	0.564)	ΞΞ	2 :		0.477)	Ξ	QN		0.468)	Ξ
2-Nitrophenol	2 Q		0.773)	ΞΞ	2 8		1.06)	ΞΞ	2 2		0.515)	ΞΞ	9 9		0.505)	ΞΞ
3,3'-Dichlorobenzidine	ON		3.70)	ΞΞ	2		0.702)	ΞΞ	2 8		3.70)	ΞΞ	2 S		3 63)	ΞΞ
3-Nitroaniline	N	_	0.511)	[]	QN	_	0.876)	[1]	QN	_	0.511)	ΞΞ	QN		0.501)	ΞΞ
4,6-Ulnitro-2-methy!phenol	S :		2.89)	[1]	QN	_	0.448)	[1]	Q	_	2.89)	[1]	9	_	2.83)	Ξ
4-bromophenyl phenyl ether	2		0.288)	Ξ	Q	_	0.737)	Ξ	2	_	0.288)	[1]	N N	_	0.282)	[1]
4-Chloro-3-methylphenol	2		0.380)	Ξ	S	_	0.613)	Ξ	Q	_	0.380)	[1]	QN	_	0.373)	Ξ
4-Uniorophenyi phenyi ether	2		0.451)	Ξ	Q	_	0.880)	Ξ	QN	_	0.451)	Ξ	QN	_	0.442)	[1]
4-Metnylphenol/3-Metnylphenol	⊋ :	_ 、	0.442)	Ξ	2		0.842)	Ξ	Q.	_	0.442)	[1]	QN N	_	0.433)	[1]
4-Nitroaniline	2 9	_ 、	0.621)	Ξ	Q :		0.564)	Ξ	N N	_	0.621)	Ξ	QN	_	0.609)	Ξ
4-Nitrophenol	2 :	_ 、	0.761)	Ξ 3	2	<u> </u>	1.13)	Ξ	ON	_	0.761)	[1]	ON	_	0.746)	[1]
Acenaphrinene	ON .	_	0.604)		QN	_	0.656)	Ξ	2	_	0.604)	[1]	QN	_	0.592)	Ξ

Compiled: 15 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable * - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

		∞				æ					80			α		
	0; 694	09-MW-03 G94-09-MW-03	03 W-03		55	09-MW-04 G94-09-MW-04	-04 MW-04			09-MW-05 694-09-MW-05	4-05 -MW-05		694-0	09-MW-05	09-MW-05 G94-09-MW-05-FD Dup of	
PARAMETER	! ! ! !	! ! !												694-09-MW-05	-MW-05	
SW8270 - Semivolatile Organics, cont.	(ng/L)									 		! ! ! !	 	: : : :	: : : : :	
Acenaphthylene	Q	J	0.616)	[]	QN	_	0.447)	[1]	QN	_	0.616)	Ξ	Q.	_	0.604)	Ξ
Anthracene	Q.	_	0.664)	Ξ	Q.	_	0.451)	Ξ	Q	_	0.664)	Ξ	QN		0.651)	Ξ
Benzo(a)anthracene	Q	_	0.728)	[1]	2	_	0.501)	Ξ	Q.	_	0.728)	[1]	QN	_	0.714)	Ξ
Benzo(a)pyrene	Q	_	0.661)	[1]	S	<u> </u>	0.669)	Ξ	S	_	0.661)	[]	QN	_	0.648)	Ξ
Benzo(b)fluoranthene	Q	_	0.649)	[]	S	<u> </u>	0.753)	Ξ	S	_	0.649)	Ξ	ON	_	0.636)	Ξ
Benzo(g,h,i)perylene	Q	J	0.702)	Ξ	Q	_	0.671)	Ξ	QN	_	0.702)	Ξ	ON	_	0.688)	Ξ
Benzo(k)fluoranthene	2	_	0.945)	[]	Q	_	1.09)	Ξ	QN	_	0.945)	Ξ	QN	Ų	0.926)	[1]
Benzoic acid	Q	_	6.03)	[1]	S	_	3.05)	Ξ	Q	_	6.03)	Ξ	QN	J	5.91)	Ξ
Benzyl alcohol	Q	_	0.428)	Ξ	QN	_	0.684)	Ξ	QN	_	0.428)	Ξ	QN	_	0.420)	Ξ
Butylbenzylphthalate	S	_	0.474)	Ξ	9	_	0.878)	Ξ	Q	_	0.474)	Ξ	QN	J	0.465)	Ξ
Chrysene	Q.	_	0.737)	Ξ	S	_	0.606)	Ξ	QN	_	0.737)	Ξ	QN	J	0.723)	Ξ
Di-n-octylphthalate	Q	_	0.646)	Ξ	QN	_	0.660)	Ξ	QN	_	0.646)	Ξ	QN	_	0.633)	[1]
Dibenz(a,h)anthracene	QN QN	_	0.810)	Ξ	QN	_	0.715)	Ξ	ON	_	0.810)	Ξ	QN	_	0.794)	Ξ
Dibenzofuran	9	_	0.608)	Ξ	Q	_	0.525)	Ξ	QN	_	0.608)	Ξ	QN	_	0.596)	[]
Dibutylphthalate	S	<u>_</u>	0.475)	Ξ	Q	_	0.336)	Ξ	QN	_	0.475)	Ξ	ND	_	0.466)	Ξ
Diethylphthalate	9	_	0.649)	Ξ	Q	_	0.291)	Ξ	Q	_	0.649)	Ξ	QN	_	0.636)	Ξ
Dimethylphthalate	2	_	0.405)	Ξ	QN	_	0.435)	Ξ	QN	_	0.405)	Ξ	QN	_	0.397)	Ξ
Diphenylamine	2	_	0.649)	Ξ	2	_	0.645)	Ξ	ON	_	0.649)	Ξ	QN	_	0.636)	Ξ
Fluoranthene	2	_	0.672)	Ξ	Ŝ	_	0.673)	Ξ	2	_	0.672)	Ξ	QN	_	0.659)	Ξ
Fluorene	2	_	0.710)	Ξ	S	_	0.623)	Ξ	R	_	0.710)	Ξ	ON	_	0.696)	Ξ
Hexach1orobenzene	S	_	0.537)	Ξ	S	_	1.48)	Ξ	QN	_	0.537)	Ξ	QN	J	0.526)	Ξ
Hexachlorobutadiene	2	_	0.714)	Ξ	Q	_	0.964)	Ξ	ON	_	0.714)	Ξ	QN	_	0.700)	Ξ
Hexachlorocyclopentadiene	2	_	1.98)	Ξ	S	_	0.833)	Ξ	S.	_	1.98)	Ξ	ON	_	1.94)	Ξ
Hexachloroethane	S	_	1.79)	Ξ	R	_	5.45)	Ξ	S	_	1.79)	Ξ	ND	_	1.75)	Ξ
Indeno(1,2,3-cd)pyrene	2	_	0.763)	Ξ	2	_	0.524)	Ξ	S	_	0.763)	Ξ	ON	_	0.748)	Ξ
Isophorone	2	_	0.340)	Ξ	Q	_	0.537)	Ξ	2	_	0.340)	Ξ	ON	_	0.333)	Ξ
N-Nitroso-di-n-propylamine	2	_	0.567)	Ξ	Q	_	0.788)	[1]	2	_	0.567)	[1]	Q	_	0.556)	Ξ

A13-51

NA = Not Applicable * - Value considered suspect, Refer to QC Report

[] = Dilution Factor ND = Not Detected

() = Detection Limit

Compiled: 15 March 1995

						SITE LOCATI SAMPL	SITE ID LOCATION ID SAMPLE ID									
	0	8 09-MW-03 G94-09-MW-03)3 1-03		69	8 09-MW-04 G94-09-MW-04	-04 1W-04			9 09-M 394-09-	8 09-MW-05 G94-09-MW-05		G94-09	8 09-MW-	8 09-MW-05 G94-09-MW-05-FD Dup of	
PARAMETER	 1 1 1 1	! ! ! !											.	94-09-	W-05	
volatile Organics, co	(ng/L)						 	i t t i	 	; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	: ! ! ! !		; ; ;	1 1 1 1	!
Naphthalene	ND	_	0.719)	[1]	ON	_	0.812)	[1]	9	_	0.719)	Ξ	QN	_	0.705)	[1]
Nitrobenzene	QN N	_	0.544)	Ξ	Q.	_	0.825)	Ξ	2	_	0.544)	Ξ	Q.		0.533)	Ξ
Pentachlorophenol	Q.	_	0.486)	[1]	Q	_	0.635)	Ξ	Q.	_	0.486)	Ξ	QN		0.476)	
Phenanthrene	Q.	_	0.617)	Ξ	QN	_	0.622)	Ξ	9	_	0.617)	[1]	ON.	_	0.605)	
Phenol	QN	_	0.429)	[]	QN	_	0.693)	Ξ	R	_	0.429)	[1]	Q.	J	0.421)	[1]
Pyrene	2	_	0.798)	Ξ	QN	_	0.798)	Ξ	2	_	0.798)	Ξ	QN	_	0.782)	Ξ
bis(2-Chloroethoxy)methane	Q.	_	0.546)	[1]	QN	_	0.660)	Ξ	SN SN	J	0.546)	[1]	S		0.535)	
bis(2-Chloroethyl)ether	Q.	_	0.595)	[1]	ON	_	0.657)	Ξ	8	_	0.595)	[1]	S	_	0.583)	Ξ
bis(2-Chloroisopropyl)ether	ON	_	0.555)		QN	_	1.09)	Ξ	2	_	0.555)	Ξ	S		0.544)	Ξ
l)phthalate	2.44	_	0.963)	Ξ	QN	_	0.824)	Ξ	4.18	_	0.963)	[1]	3.70	_	0.944)	ΞΞ
p-Chloroaniline	QN Q	_	0.898)	[1]	QN	_	0.990)	[1]	QN	<u> </u>	0.898)	[1]	QN	_	0.880)	[1]

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

	Ç	8 90-MM-60	90		C	8 09-WM-08	-08		8	8 09-MW-12	21		·	8 09-MW-15	-15	
PARAMETER	5	90 - 46 M-	000			G94-U9-MW-U8	MM~08		69	G94-09-MW-12	4-1 2		U	G94-09-MW-15	MW-15	
AK101 - Gasoline Range Organics Gasoline Range Organics	(ug/L)	-	50.0)	Ξ	30000	_	50.0)	Ξ	180000		50.0)		27.0 J		50.0)	[1]
AK102 - Diesel Range Organics (ug/L) Diesel Range Organics	0.00	JB (100)	[1]	150000	<u> </u>	200)	[2]	910000	_	5000)	[20]	0.00	JB (100)	Ξ
SW8080 - Organochlorine Pesticides and PCBs		(ng/L)														
4,4'-DDD	QN N	_	0.00296)	Ξ	0.0510	_	0.0212)	[10]	0.552	_	0.0225)	[10]	ON	_	0.00300)	Ξ
4,4'-DDE	Q	_	0.00341)	Ξ	0.0577	_	0.0438)	[10]	0.0791	_	0.0464)	[10]	N	_	0.00346)	Ξ
4,4'-DDT	0.0260	o .	0.00363)	Ξ	Q.		0.0704)	[10]		_	0.0746)	[10]	QN	_	0.00368)	[1]
Aldrin	8 8	o `	0.00237)	ΞΞ	2 2		0.0275)	<u> </u>	0.00810 PJ	_ 、	0.0292)	[10]	0.00590	<u> </u>	0.00413)	Ξ
Cnlordane Dieldrin	0.0137		0.00278)	ΞΞ	2 2		0.226)	<u> </u>	O S		0.240)	[] []	2 2	_ <	0.0200)	ΞΞ
Endosulfan I	QN	0	0.00213)	ΞΞ	2	۔ ۔	0.0858)	[10]	2 8	۔ ۔	0.0910)	[10]		 	0.00262)	ΞΞ
Endosulfan II	ND	0)	0.00373)	Ξ	Q.		0.0358)	[10]	2		0.0380)	[10]		 !	0.00378)	ΞΞ
Endosulfan Sulfate	0.00240 KJ	_	0.00990)	Ξ	QN	_	0.0513)	[10]	N	_	0.0544)	[10]	0.00790 K	_ ∑	0.0100)	Ξ
Endrin	ND	0	0.00750)	Ξ	S	_	0.0685)	[10]	ND	_	0.0726)	[10]	QN	_	0.00762)	Ξ
Endrin Aldehyde		_	0.00619)	Ξ	2	_	0.0377)	[10]	QN	_	0.0400)	[10]	0.00200 K	_ ∑	0.00597)	Ξ
Heptachlor	0.000500 PJ	_	0.00639)	[1]	Q	_	0.0223)	[10]	QN	_	0.0236)	[10]	Q.	_	0.00545)	Ξ
Heptachlor epoxide	0.0161	o _	0.00926)	Ξ	S	_	0.0236)	[10]	N	_	0.0227)	[10]	0.00550 K	⊋ ∵	0.00940)	Ξ
Methoxychlor	QN	_	0.0391)	Ξ	ş	_	0.516)	[10]	Q.	_	0.547)	[10]	S	_	0.0397)	Ξ
PCB-1016	ON .	_	0.0317)	Ξ	9	_	0.230)	[10]	ON	_	0.244)	[10]	Q	_	0.0322)	Ξ
PCB-1221	Q	_	0.0285)	Ξ	2	_	0.219)	[10]	Q.	_	0.232)	[10]	S	_	0.0290)	Ξ
PCB-1232	2	_	0.0721)	Ξ	2	_	0.165)	[10]	QN	_	0.175)	[10]	S	_	0.0732)	[1]
PCB-1242	QN	_	0.0264)	Ξ	Q	_	1.13)	[10]	QN	_	1.20)	[10]	ON	_	0.0268)	[1]
PCB-1248	Q	_	0.0313)	Ξ	Q.	_	0.393)	[10]	QN	_	0.417)	[10]	QN	_	0.0317)	Ξ
PCB-1254	Q	_	0.0125)	Ξ	S	_	0.291)	[10]	ON	_	0.308)	[10]	S	_	0.0127)	Ξ
PCB-1260	QN N	_	0.0348)	Ξ	Q	_	0.329)	[10]	QN	_	0.349)	[10]	S	_	0.0353)	Ξ
Toxaphene	QN	_	0.0558)	Ξ	Q	<u> </u>	0.403)	[10]	QV	_	0.427)	[10]	QN	<u> </u>	0.0566)	[1]
Compiled: 15 March 1995	() = Detection Limit	on Limit		= Dilution Factor		ND = Not	Not Detected	NA =	Not Applicable	*	- Value	considere	ed suspect,	Refer	Value considered suspect, Refer to QC Report	rt

			89				∞					80				∞		
PERS, CONT. (197/L) ND (0.00283) [1] 0.105 (0.0405) [10] ND (0.0285) [10] ND (0.00286) ND (0.00283) [1] 0.105 (0.0405) [10] ND (0.0289) [10] ND (0.00407) ND (0.00231) [1] ND (0.0127) [10] ND (0.0391) [10] ND (0.00407) ND (0.0925) [1] ND Z (25.5) [300] ND Z (8.51) [100] ND (0.00407) ND (0.0920) [1] ND Z (25.6) [300] ND Z (8.20) [100] ND (0.00407) ND (0.0920) [1] ND Z (25.6) [300] ND Z (8.20) [100] ND (0.00207) ND (0.0920) [1] ND Z (25.6) [300] ND Z (8.20) [100] ND (0.0280) ND (0.0920) [1] ND Z (25.6) [300] ND Z (8.20) [100] ND (0.0280) ND (0.0920) [1] ND Z (25.6) [300] ND Z (8.20) [100] ND (0.0280) ND (0.0280) [1] ND Z (25.6) [300] ND Z (8.20) [100] ND (0.0280) ND (0.0280) [1] ND Z (25.6) [300] ND Z (8.20) [100] ND (0.0280) ND (0.0280) [1] ND Z (25.6) [300] ND Z (8.20) [100] ND (0.0280) ND (0.0280) [1] ND Z (25.6) [300] ND Z (8.20) [100] ND (0.0280) ND (0.0280) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0280) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0281) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0281) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0280) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0280) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0281) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0280) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0591) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0592) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0592) [1] ND Z (25.7) [300] ND Z (25.7) [100] ND (0.0280) ND (0.0592) [1] ND Z (25.7) [300] ND Z (25.9) [100] ND (0.0280) ND (0.0592) [1] ND Z (25.7) [300] ND Z (25.8) [100] ND (0.0280) ND (0.0592) [1] ND Z (25.7) [300] ND Z (25.8) [100] ND (0.0280) ND (0.0592) [1] ND Z (25.7) [300] ND Z (25.8) [100] ND (0.0280) ND (0.0592) [1] ND Z (25.7) [300] ND Z (25.8) [100] ND (0.0280) ND (0.0592) [1)	-MM-60-	.06 1/_06		č	WM-60	1-08			-60	4W-12			;	-MW-60	15	
PCBS, cont. (1947.) ND (0.0295) [10] ND (0.0295) [10] ND (0.0295) [10] ND (0.02028) [10] ND (0.02028) [10] ND (0.0027) [10] ND (0.0027) [10] ND (0.0027) [10] ND (0.0028) ND (0.0028) [10] ND (0.0028) ND (0.0028) ND (0.0028) ND (0.0028) ND (0.	PARAMETER	D 10 10	1 0 0 1	90-		Ď	-4-0 9 -	80-MW-			G94-0	9-MW-12			69 9	4-09-M	4-15	
ND (0.00233)	SW8080 - Organochlorine Pesticide	PCBs,		(ug/L)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				 	! ! !	; ; ! !		1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		1
ND (0.00401) [1] ND (0.01220) [10] ND (0.0239) [10] ND (0.00407) ND (0.00231) [1] ND (0.0128) [10] ND (0.0128) [10] ND (0.00179) ND (0.00231) [1] ND (0.0128) [10] ND (0.00231) [10] ND (0.00179) ND (0.00231) [10] ND (0.00179) ND (0.00231) [10] ND (0.00179) ND (0.00231) ND (0.00221)	alpha-BHC		0	.00283)	Ξ	0.105	_	0.0405)	[10]	Q	_	0.0295		[[ON	0	.00288)	Ξ
Mag (0.00231)	beta-BHC	Q	0	.00401)	Ξ	2	_	0.0320)	[10]	2	_	0.0339		. [S		.00407)	ΞΞ
(ug/L) (ug/L)<	delta-BHC	ND	0	.00231)	Ξ	Q.	_	0.0168)	[10]	8		0.0218		. .	9	0	000857)	ΞΞ
(10) (10) <th< td=""><td>gamma-BHC</td><td>0.00870</td><td>0</td><td>.00177)</td><td>[1]</td><td>QN</td><td>_</td><td>0.0127)</td><td>[10]</td><td>2</td><td></td><td>0.0391</td><td></td><td></td><td>2</td><td>0</td><td>.00179)</td><td>ΞΞ</td></th<>	gamma-BHC	0.00870	0	.00177)	[1]	QN	_	0.0127)	[10]	2		0.0391			2	0	.00179)	ΞΞ
ND (0.0951) [1] ND Z (29.5) [300] ND Z (9.92) [100] ND C 0.0952) ND (0.0992) [1] ND Z (29.6) [300] ND Z (9.22) [100] ND C 0.0992) ND (0.0982) [1] ND Z (29.6) [300] ND Z (9.20) [100] ND C 0.0992) ND (0.0982) [1] ND Z (27.6) [300] ND Z (9.20) [100] ND C 0.0982) ND (0.0986) [1] ND Z (27.2) [300] ND Z (8.96) [100] ND Z (0.0986) ND (0.0986) [1] ND Z (27.2) [300] ND Z (8.96) [100] ND Z (0.0986) ND (0.0986) [1] ND Z (27.2) [300] ND Z (3.96) [100] ND Z (3.96) [100] ND (0.0980) [1] ND	SW8260 - Volatile Organic Compoun	(T/gn) spi																
trhane ND (0.0992) [1] ND Z (29.8) [300] ND Z (9.92) [100] ND (0.0992) ND Z (1.70) [100] ND Z (1.70) [100] ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND (0.0992) ND Z (1.70) [100] ND (0.0992) ND (0.0992) ND Z (1.70) [100] ND (1.70) [100] ND (1.70) [100] ND Z (1.70) [100] ND (1.70) [100] ND (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1.70) [100] ND Z (1,1,1,2-Tetrachloroethane	ND	_	0.0851)	Ξ	Z QN	_	25.5)	[300]	QN) 7	8.51		_	QN	_	0.0851)	Ξ
thane ND (0.170) [1] ND Z (51.0) [300] ND Z (17.0) [100] ND (0.170) ND (0.0806) ND Z (27.6) [300] ND Z (9.20) [100] ND Z	1,1,1-Trichloroethane	QN	_	0.0992)	[1]	Z QN	_	29.8)	[300]	S) 7	9.95	_	·	QN		0.0992)	ΞΞ
No	1,1,2,2-Tetrachloroethane	QN	_	0.170)	[1]	Z QN	_	51.0)	[300]	QN) 2	17.0			QN		0.170)	ΞΞ
ND (0.0986) [1] ND Z (26.6) [300] ND Z (8.86) [100] 0.0800 J (0.0806) [1] ND Z (24.2) [300] ND Z (8.06) [100] ND C 0.0806) [1] ND Z (24.2) [300] ND Z (23.3) [100] ND C 0.0334 ND C 0.0334 ND C 0.0354 ND C 0.0355 ND C 0.0356 ND C 0.0355	1,1,2-Trichloroethane	QN	_	0.0920)	[1]	Z QN	_	27.6)	[300]	QN) 2	9.20			Q.		0350)	ΞΞ
ND (0.0866) [1] ND Z (24.2) [300] ND Z (8.06) [100] ND (0.0866) ND Z (8.06) [100] ND (0.0233) ND Z (8.9.9) [300] ND Z (23.3) [100] ND (0.0234) ND (0.0742) ND Z (23.3) [300] ND Z (3.9.4) [100] ND (0.0742) ND Z (23.3) [300] ND Z (3.9.4) [100] ND (0.0742) ND Z (3.9.4) [100] ND Z (3.9.4) [100] ND (0.0742) ND Z (3.9.4) [100] ND Z (3.9.4) [100] ND (0.0742) ND Z (3.9.4) [100] ND Z (3.9.4) [100] ND (0.0742) ND Z (3.9.4) [100] ND Z (3.9.4) [100] ND (0.0742) ND Z (3.9.4) [100] ND Z (3.9.4) [100] ND (0.0742) ND Z (3.9.4) [100] ND Z (3.9.4) [100	1,1-Dichloroethane	QN	۔	0.0886)	Ξ	Z QN	_	26.6)	[300]	QN) Z	8.86				_	0.0886)	Ξ
NB (0.233) [1]	1,1-Dichloroethene	QV :		0.0806)	Ξ	Z QN	_	24.2)	[300]	QN) Z	8.06]	QN	_	(9080)	Ξ
NB (0.354) [1] ND Z (106) [300] ND Z (35.4) [100] ND (0.354)	1,2,3-Irichloropropane	Q :		0.233)	Ξ	Z QN	_	(6.69	[300]	Q) Z	23.3		_	QN	_	0.233)	[1]
MD (0.0791) [1] ND Z (22.3) [300] ND Z (7.91) [100] ND (0.0742) [1) ND Z (22.3) [300] ND Z (7.42) [100] ND (0.0742) [1] ND Z (117) [300] ND Z (7.42) [100] ND (0.0742) [1] ND Z (117) [300] ND Z (39.1) [100] ND (0.391) ND (0.154) [1] ND Z (127) [300] ND Z (42.3) [100] ND (0.154) ND (0.154) [1] ND Z (127) [300] ND Z (15.4) [100] ND (0.154) ND (0.124) [1] ND Z (257) [300] ND Z (12.4) [100] ND (0.124) ND (0.501) [1] ND Z (150) [300] ND Z (12.4) [100] ND (0.501) ND (0.501) [1] ND Z (150) [300] ND Z (16.5) [100] ND (0.501) ND (0.501) [1] ND Z (627) [300] ND Z (50.1) [100] ND (0.0307) [1] Z73 Z (9.21) [300] ND Z (16.5) [100] ND (0.165) ND (0.0536) [1] ND Z (16.1) [300] ND Z (16.5) [100] ND (0.165) ND (0.0536) [1] ND Z (16.1) [300] ND Z (16.5) [100] ND (0.165) ND (0.165) [1] ND Z (16.1) [300] ND Z (16.5) [100] ND (0.165) ND (0.165) ND (16.108) ND Z (16.1) [300] ND Z (16.5) [100] ND (0.165) ND (0.108) ND Z (16.1) [300] ND Z (10.8) [100] ND (0.108) ND Z (10.108) 1,2-Dichlorobenzene	QN	_	0.354)	Ξ	Z QN	_	106)	[300]	QN) 7	35.4		_	QN	_	0.354)	Ξ	
MD (0.0742) [1] ND Z (22.3) [300] ND Z (7.42) [100] ND (0.0742) [100] ND (0.0742) [11] ND Z (117) [300] ND Z (39.1) [100] ND (0.391) ND Z (117) [300] ND Z (42.3) [100] ND (0.423) ND Z (117) [300] ND Z (42.3) [100] ND (0.154) ND Z (117) [300] ND Z (15.4) [100] ND (0.154) ND Z (117) [300] ND Z (117.4) [100] ND (0.154) ND Z (117.4) [11] ND Z (117.4) [11] ND Z (117.4) [11] ND Z (117.4) [11] ND Z (117.4) [11] ND Z (117.4) [110] ND Z (117.4)	1,2-Dichloroethane	QN :		0.0791)	Ξ	Z QN	_	23.7)	[300]	QN) 7	7.91			QN	_	(1620)	Ξ
ND	I,Z-Dichloropropane	QN		0.0742)	Ξ	Z QN	_	22.3)	[300]	Q) Z	7.42			ND	_	.0742)	
MD (0.423) [1] ND Z (127) [300] ND Z (42.3) [100] ND D D D D D D D D D D D D D D D D D D	1,3-Ulchlorobenzene	Q :		0.391)	Ξ	Z QN	_	117)	[300]	9) 7	39.1	_	_	QN	_	0.391)	[1]
HOND (0.154) [1] ND Z (46.2) [300] ND Z (15.4) [100] ND (0.154) ND (0.890) [1] 336 Z (267) [300] ND Z (89.0) [100] ND (0.890) ether ND (0.124) [1] ND Z (230) [300] ND Z (12.4) [100] ND (0.766) ND (0.501) [1] ND Z (230) [300] ND Z (50.1) [100] ND (0.501) 4.74 B (2.09) [1] 756 Z (627) [300] 283 Z (209) [100] 2.31 B (2.09) 0.180 (0.0307) [1] ND Z (9.21) [300] ND Z (16.5) [100] ND (0.165) ND (0.0536) [1] ND Z (49.5) [300] ND Z (16.5) [100] ND (0.0536) ND (0.0536) [1] ND Z (16.1) [300] ND Z (10.8) [100] ND (0.165) ND (0.108) [1] ND Z (32.4) [300] ND Z (10.8) [100] ND (0.165) ND (0.108) ND Z (16.1) [300] ND Z (10.8) [100] ND (0.108)	1,4-Ulchlorobenzene	Q :		0.423)	Ξ	Z QN	_	127)	[300]	2) Z	42.3	_		N Q	_	0.423)	[1]
ther ND (0.890) [1] 336 Z (267) [300] ND Z (89.0) [100] ND (0.890) (100) C (89.0) [100] ND (0.124) [1] ND Z (37.2) [300] ND Z (12.4) [100] ND (0.124) [1] ND Z (230) [300] ND Z (76.6) [100] ND (0.766) ND (0.501) [1] ND Z (150) [300] ND Z (50.1) [100] ND (0.501) ND (0.501) ND (0.0307) [1] Z73 Z (9.21) [300] Z83 Z (209) [100] Z.31 B (2.09) (0.0307) ND Z (9.21) [300] ND Z (16.5) [100] ND (0.165) [1] ND Z (16.1) [300] ND Z (16.5) [100] ND Z (16.1) [300] ND Z (10.8) [100] ND Z (I-Chloronexane	Q.		0.154)	Ξ	Z QN	_	46.2)	[300]	2) Z	15.4			QN Q	_	0.154)	
ether ND (0.124) [1] ND Z (37.2) [300] ND Z (12.4) [100] ND (0.124) (1.24) [1.066) [1] ND Z (230) [300] ND Z (76.6) [1.00] ND (0.766) [1.00] ND (0.766) [1.00] ND Z (50.1) [1.00] ND (0.766) [1.00] ND Z (50.1) [1.00] ND (0.501) ND (0.501) [1.00] ND Z (50.1) [1.00] ND (0.0307) [1.00] ND Z (16.5) [1.00] ND Z (16.5) [1.00] ND (0.165) [1.00] ND Z (16.1) [300] ND Z (5.36) [1.00] ND (0.0536) ND Z (16.1) [300] ND Z (10.8) [1.00] ND Z (10.108) ND Z (1	Z-Butanone(MEK)	Q.		0.890)	Ξ	336 Z	_	267)	[300]	9) Z	89.0			QN	_	0.890)	[1]
MBK) ND (0.766) [1] ND Z (230) [300] ND Z (76.6) [100] ND (0.766) ND (0.501) ND Z (3.07) [100] ND (0.0307) ND Z (49.5) [300] ND Z (3.07) [100] ND (0.0536) ND (0.0536) ND Z (32.4) [300] ND Z (32.4) [100] ND Z (<pre>2-Unloroethyl vinyl ether 2</pre>	Q.		0.124)	Ξ	Z QN	_	37.2)	[300]	8) Z	12.4	_		Q.	_	0.124)	Ξ
(MIBK) ND (0.501) [1] ND Z (150) [300] ND Z (50.1) [100] ND (0.501) ND (0.501) ND (0.501) ND (0.501) ND (0.501) ND (0.501) ND (0.0307) [1] 756 Z (627) [300] 283 Z (209) [100] 2.31 B (2.09) ND (0.0307) ND (0.165) [1] ND Z (9.21) [300] ND Z (16.5) [100] ND (0.165) ND (0.165) ND Z (16.1) [300] ND Z (16.5) [100] ND (0.0536) ND (0.108) ND Z (32.4) [300] ND Z (10.8) [100] ND (0.108) ND Z (10.108) ND Z	Z-Hexanone	QN	_	0.766)	Ξ	Z QN	_	230)	[300]	9) z	76.6	_		QN	_	0.766)	Ξ
4.74 B (2.09) [1] 756 Z (627) [300] 283 Z (209) [100] 2.31 B (2.09) (0.0307) [1] 273 Z (9.21) [300] 3380 Z (3.07) [100] 0.680 (0.0307) [1] ND Z (49.5) [300] ND Z (16.5) [100] ND (0.165) [1] ND Z (16.1) [300] ND Z (5.36) [100] ND (0.0536) [1] ND Z (32.4) [300] ND Z (10.8) [100] ND (0.108)	4-Methyl-2-Pentanone(MIBK)	Q	_	0.501)	Ξ	Z QN	_	150)	[300]	S) z	50.1			QN ON	J	0.501)	
0.180 (0.0307) [1] 273 Z (9.21) [300] 3380 Z (3.07) [100] 0.680 (0.0307) ND (0.165) [1] ND Z (49.5) [300] ND Z (16.5) [100] ND (0.165) ND (0.0536) ND Z (16.1) [300] ND Z (5.36) [100] ND (0.0536) ND (0.108) [1] ND Z (32.4) [300] ND Z (10.8) [100] ND (0.108)	Acetone		_	2.09)	Ξ	Z 95/	_	627)	[300]	283) Z	209	_			_	2.09)	ΞΞ
ND (0.165) [1] ND Z (49.5) [300] ND Z (16.5) [100] ND (0.165) ND (0.0536) [1] ND Z (16.1) [300] ND Z (5.36) [100] ND (0.0536) ND (0.108) [1] ND Z (32.4) [300] ND Z (10.8) [100] ND (0.108)	Benzene	0.180	_	0.0307)	Ξ		_	9.21)	[300]	3380) Z	3.07			980	_	.0307)	
ND (0.0536) [1] ND Z (16.1) [300] ND Z (5.36) [100] ND (0.0536) ND Z (0.108) [1] ND Z (32.4) [300] ND Z (10.8) [100] ND (0.108)	Bromobenzene	Q.	_	0.165)	Ξ		_	49.5)	[300]	Q) Z	16.5			QN	_	0.165)	[1]
ND (0.108) [1] ND Z (32.4) [300] ND Z (10.8) [100] ND (0.108)	Bromodichloromethane	QN		0.0536)	[1]		_	16.1)	[300]	Q.) Z	5.36	_		QN	_	.0536)	[1]
	Bromoform	QN	_	0.108)	Ξ	Z QN	_	32.4)	[300]	QN) Z	10.8	_		QN		0.108)	Ξ

Compiled: 15 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

		09-h G94-09	09-MW-06 G94-09-MW-06		¹ 65	09-MW-08 G94-09-MW-08	-08 1W-08			09-l 694-0{	09-MW-12 G94-09-MW-12		9	09-MW-15 G94-09-MW-15	-15 MW-15	
PARAMETER				1								! ! !		1		
SW8260 - Volatile Organic Compounds, cont.	unds, cont.	(ng/L)														
Bromomethane	2	_	0.0968)	Ξ	Z QN	_	29.0)	[300]	S) Z	9.68)	[100]	QN	_	0.0968)	Ξ
Carbon disulfide	8	_	0.161)	Ξ	Z QN	_	48.3)	[300]	S) Z	16.1)	[100]	ON	_	0.161)	Ξ
Carbon tetrachloride	QN	_	0.117)	Ξ	Z QN	_	35.1)	[300]	S.) Z	11.7]	[100]	QN	_	0.117)	Ξ
Chlorobenzene	S		0.112)	Ξ	Z QN	_	33.6)	[300]	2) Z	11.2)	[100]	QN	_	0.112)	Ξ
Chloroethane	S		0.0972)	Ξ	Z QN	_	29.2)	[300]	8) 7	9.72	[100]	QN	_	0.0972)	Ξ
Chloroform	QN	_	0.0363)	Ξ	Z ON	_	10.9)	[300]	Q.) Z	3.63)	[100]	QN	_	0.0363)	[]
Chloromethane	S	_	0.155)	Ξ	48.0 Z	_	46.5)	[300]	14.0	Z3 (15.5)	[100]	ND	_	0.155)	Ξ
Dibromochloromethane	S	_	0.0283)	Ξ	Z QN	_	8.49)	[300]	S) Z	2.83)	[100]	QN	_	0.0283)	Ξ
Dibromomethane	QN	_	0.0598)	Ξ	60.0 Z	_	17.9)	[300]	20.0) 7	5.98)	[100]	QN	_	0.0598)	Ξ
Ethyl benzene	QN	_	0.110)	Ξ	Z 0.69	_	33.0)	[300]	361) 7	11.0)	[100]	QN	_	0.110)	Ξ
Meta-&Para-Xylene	S	_	0.365)	Ξ	138 Z	_	110)	[300]	1320) Z	36.5)	[100]	Q	_	0.365)	Ξ
Methylene Chloride	0.310) B	0.151)	Ξ	60.0 Z	_	45.3)	[300]	22.0) Z	15.1]	[100]	0.360 E	_ B	0.151)	Ξ
Ortho-Xylene	QN	_	0.124)	Ξ	48.0 Z	_	37.2)	[300]	631) Z	12.4)	[100]	QN	_	0.124)	Ξ
Styrene	QN	_	0.113)	Ξ	Z QN	_	33.9)	[300]	QN) 7	11.3	[100]	ON	_	0.113)	Ξ
Tetrachloroethene	ON	_	0.209)	Ξ	Z ON	_	62.7)	[300]	S) 7	20.9	[100]	QN	_	0.209)	Ξ
Toluene	0.0400	_	0.0336)	Ξ	15.0 Z	_	10.1)	[300]	1290) 7	3.36)	(100]	0.0400	_	0.0336)	Ξ
Trichloroethene	QN	_	0.0439)	Ξ	Z QN	_	13.2)	[300]	S) 7	4.39)	(100]	QN	<u> </u>	0.0439)	Ξ
Trichlorofluoromethane	QN	_	0.0943)	Ξ	Z QN	_	28.3)	[300]	8) 7	9.43	(100]	QN	_	0.0943)	Ξ
Vinyl Chloride	QN	_	0.0992)	Ξ	Z QN	_	29.8)	[300]	2) 7	9.92)	(100)	QN	_	0.0992)	Ξ
Vinyl acetate	ON	_	0.127)	Ξ	Z QN	_	38.1)	[300]	S) 7	12.7)	() [100]	QN	_	0.127)	Ξ
cis-1,2-Dichloroethene	S	_	0.0785)	Ξ	Z QN	_	23.6)	[300]	2) 7	7.85)	_	1.41	_	0.0785)	Ξ
cis-1,3-Dichloropropene	ON	_	0.0758)	Ξ	Z QN	_	22.7)	[300]	2) Z	7.58)	(100]	QN	_	0.0758)	Ξ
trans-1,2-Dichloroethene	S	_	0.131)	Ξ	Z QN	_	39.3)	[300]	8) Z	13.1)	.) [100]	QN	J	0.131)	[1]
trans-1,3-Dichloropropene	ON.	_	0.0829)	Ξ	Z QN	_	24.9)	[300]	Q) z	8.29)	[100]	QN	~	0.0829)	Ξ
SW8270 - Semivolatile Organics	(ng/L)															
1,2,4-Trichlorobenzene	ON	_	0.498)	Ξ	Q	_	0.614)	Ξ	9	_	12.6)	_	QN	_	0.483)	[1]
1.2-Dichlorobenzene	9	_	0.604)	Ξ	Q	J	0.670)	Ξ	2	_	13.7		QN	_	0.586)	[1]

					SI. LOCA	SITE ID LOCATION ID SAMPLE ID									
	S	ω]			~	∞ :			∞					æ	
PARAMETER	.69- .694-(озмм06 G9409ММ06			09-MW-08 G94-09-MW-08	4-08 -MW-08		9	09-MW-12 G94-09-MW-12	-12 MW-12			09-MW-15 G94-09-MW-	09-MW-15 G94-09-MW-15	
SW8270 - Semivolatile Organics, cont.	(ng/L)						1			: : : :			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1
1,3-Dichlorobenzene	. ON	0.405)	Ξ	QN	_	0.724)	[1]	Q.	_	14.8)	[10]	S	_	0 393)	Ξ
1,4-Dichlorobenzene) QN	1.59)		QN	_	1.33)	Ξ	ON	. <u> </u>	27.3)	[10]	2 2		1.54)	ΞΞ
2,4,5-Trichlorophenol) QN	0.323)	[1]	QN	_	0.453)	Ξ	ON		9.29)	[10]	Q.		0.314)	ΞΞ
Z,4,6-Irichlorophenol) Q	0.385)	Ξ	8	_	0.429)	[i]	ND	_	8.78)	[10]	ON		0.374)	Ξ
2,4-Dimothwl home)	2 9	0.404)	Ξ3	2		0.668)	Ξ	QN	_	13.7)	[10]	QN	_	0.392)	[1]
2,4-Dimetry pileno 2 4-Ninitronheno	2 5	0.658)	Ξ :	2 9	<u> </u>	0.619)	Ξ	2	_	12.7)	[10]	2	_	0.639)	Ξ
2.4-Dinitrotoluene) ON	1.21)	ΞΞ	2 9	_ 、	1.82)	Ξ3	2	<u> </u>	37.3)	[10]	ND	_	1.17)	Ξ
2,6-Dinitrotoluene		0.517)	[]	O S		0./40)	ΞΞ	2 9	_ 、	15.2)	[10]	Q :	<u> </u>	0.308)	Ξ
2-Chloronaphthalene	Q.	0.797)	ΞΞ	2 8		0.710)	E 5	2 9		14.7)	[10]	Q :	_ 、	0.600)	Ξ;
2-Chlorophenol	ON ON	0.537)	Ξ	Q.		0.607)	ΞΞ	2 8		10.0)				0.774)	ΞΞ
2-Methylnaphthalene) ON	0.811)	[1]	QN		1.11)	ΞΞ	4740		31.6)	[20]	2 2		0.361)	ΞΞ
2-Methylphenol) QN	0.477)	[1]	ON	_	0.548)	Ξ	N		11.2)	[10]	2 8		0.463)	ΞΞ
2-Nitroaniline) ON	0.515)	[1]	QN	_	0.712)	Ξ	ND		14.6)	[10]	2		0.500)	ΞΞ
Z-Nitrophenol) R	0.773)	Ξ	ON	_	1.03)	[1]	QN	_	21.1)	[10]	QN		0.750)	ΞΞ
3,3 -Dichlorobenziaine 3-Nitrosniline		3.70)	Ξ3	Q :	_ 、	0.682)	Ξ	QN	_	14.0)	[10]	S	_	3.59)	
4,6-Dinitro-2-methylphenol		0.511)	ΞΞ	2 8		0.851)	ΞΞ	2 3		17.4)	[10]	₽ :	<u> </u>	0.496)	Ξ
4-Bromophenyl phenyl ether) ON	0.288)	ΞΞ	S		0.716)	ΞΞ	2 S		0.32)	[10]	§ §	_ ~	2.81)	ΞΞ
4-Chloro-3-methylphenol) ON	0.380)	Ξ	Q		0.595)	ΞΞ	Q.	<i>-</i> _	12.2)	[10]	G W		0.200)	ΞΞ
4-Chlorophenyl phenyl ether) GN	0.451)	Ξ	N N	_	0.855)	Ξ	Q.		17.5)	[10]	2		0.438)	ΞΞ
4~Methylphenol/3-Methylphenol) Q	0.442)	Ξ	QN	_	0.818)	Ξ	Q	_	16.8)	[10]	2		0.429)	ΞΞ
4-Nitroaniline) Q	0.621)	Ξ	S	_	0.548)	Ξ	2	_	11.2)	[10]	S	· _	0.603)	Ξ
4-Nitrophenol) ON	0.761)	Ξ	ND ND	Ų	1.10)	[1]	N	_	22.4)	[10]	SN		0.739)	ΞΞ
Acenaphthene	Q :	0.604)	Ξ	4.92	_	0.637)	Ξ	39.6	_	13.1)	[10]	SN SN	_	0.586)	Ξ
Acenaphthylene	ON !	0.616)	Ξ	2	_	0.434)	[1]	2	_	8.90)	[10]	QN	_	0.598)	Ξ
Anthracene	Q :	0.664)	Ξ	0.508	_	0.438)	[]	Q	_	8.98)	[10]	Q	J	0.645)	
benzo(a)anthracene) Q	0.728)	Ξ	ND	_	0.487)	[:]	N	<u> </u>	9.97)	[10]	QN	_	0.707)	Ξ

* - Value considered suspect, Refer to QC Report A13-56

NA = Not Applicable

ND = Not Detected

[] = Dilution Factor

() = Detection Limit

Compiled: 15 March 1995

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

		80 3	~ -		•	ω ;	;			80				∞		
	Ġ9	US-MW-U0 4-09-MW-	US-MW-U6 G94-09-MW-06) 694	09-MW-08 G94-09-MW-08	-08 1W-08		Ö	09-MW-12 694-09-MW-12	-12 ∜W-12		69	09-MW-15 694-09-MW-15	.5 1-1-5	
PARAMETER	i i i i i	1 1 1	1 1 1 1 1	1							<u> </u>		3		2	
SW8270 - Semivolatile Organics, cont.	(ng/L)								f	[[]]]	: ! ! ! ! ! !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	! ! ! ! !	1		!
Benzo(a)pyrene	N Q	_	0.661)	Ξ	ND	_	0.650)	Ξ	S		13.3)	[10]	S	_	0.642)	[1]
Benzo(b)fluoranthene	9	_	0.649)	[]	QN	_	0.731)	Ξ	S	_	15.0)	[10]	QN	_	0.630)	Ξ
Benzo(g,h,i)perylene	S	_	0.702)	[1]	QN	_	0.651)	Ξ	Q	_	13.3)	[10]	Q	_	0.682)	Ξ
Benzo(k)fluoranthene	Q	_	0.945)	Ξ	ON	_	1.06)	Ξ	N	_	21.7)	[10]	Ş	_	0.917)	ΞΞ
Benzoic acid	N	_	6.03)	Ξ	ND	_	2.96)	[1]	QN	_	(2.09	[10]	2	_	5.85)	Ξ
Benzyl alcohol	N O	<u> </u>	0.428)	Ξ	QN	Ų	0.665)	Ξ	S	_	13.6)	[10]	N N	_	0.416)	Ξ
Butylbenzylphthalate	S	_	0.474)	Ξ	QN	J	0.853)	Ξ	ON ON	_	17.5)	[10]	9	J	0.460)	Ξ
Chrysene	S	_	0.737)	Ξ	QN	_	0.589)	Ξ	S	J	12.1)	[10]	2	_	0.716)	[1]
Di-n-octylphthalate	S	_	0.646)	Ξ	QN	_	0.641)	[1]	2	_	13.1)	[10]	2	J	0.627)	Ξ
Dibenz(a,h)anthracene	2	_	0.810)	Ξ	QN	_	0.694)	Ξ	9	_	14.2)	[10]	S	J	0.786)	Ξ
Dibenzofuran	Q	_	0.608)	Ξ	QN	_	0.510)	Ξ	27.7	_	10.4)	[10]	9	_	0.590)	[1]
Dibutylphthalate	2	_	0.475)	Ξ	Q	_	0.327)	Ξ	9	_	6.69)	[10]	2	_	0.461)	Ξ
Diethylphthalate	Q	_	0.649)	Ξ	Q	_	0.283)	Ξ	9	_	5.80)	[10]	S	_	0.630)	Ξ
Dimethylphthalate	2	_	0.405)	Ξ	2	_	0.423)	Ξ	2	_	8.66)	[10]	QV	_	0.393)	Ξ
Diphenylamine	윤	_	0.649)	Ξ	ON	J	0.627)	Ξ	ON	_	12.8)	[10]	Q	_	0.630)	Ξ
Fluoranthene	2	_	0.672)	Ξ	0.424 J	_	0.653)	Ξ	Q	_	13.4)	[10]	S.	_	0.652)	Ξ
Fluorene	ş	_	0.710)	Ξ	9.47	_	0.605)	Ξ	91.9	<u> </u>	12.4)	[10]	S	_	0.689)	Ξ
Hexachlorobenzene	2	_	0.537)	Ξ	Q	_	1.44)	Ξ	Q	_	29.5)	[10]	Q	Ų	0.521)	Ξ
Hexachlorobutadiene	2		0.714)	Ξ	Q	_	0.936)	Ξ	S	_	19.2)	[10]	S	_	0.693)	Ξ
Hexachlorocyclopentadiene	2	_	1.98)	Ξ	2	_	0.810)	Ξ	ND	_	16.6)	[10]	Q.	_	1.92)	Ξ
Hexachloroethane	9	_	1.79)	Ξ	Q	_	5.30)	Ξ	Q	J	108)	[10]	Q	_	1.74)	[1]
Indeno(1,2,3-cd)pyrene	Q	_	0.763)	Ξ	QN	_	0.509)	Ξ	S	ٺ	10.4)	[10]	S	_	0.741)	Ξ
Isophorone	2	_	0.340)	Ξ	Q	_	0.522)	Ξ	QN	_	10.7)	[10]	N	_	0.330)	Ξ
N-Nitroso-di-n-propylamine	9	_	0.567)	Ξ	QN	_	0.766)	Ξ	Q	J	15.7)	[10]	9	_	0.550)	Ξ
Naphthalene	Q.	_	0.719)	Ξ	QN	_	0.789)	Ξ	2570	_	16.2)	[10]	Q.	J	0.698)	Ξ
Nitrobenzene	Q	_	0.544)	Ξ	Q	_	0.801)	Ξ	ND	_	16.4)	[10]	Q	_	0.528)	[1]
Pentachlorophenol	Q.	_	0.486)	Ξ	QN	_	0.617)	Ξ	ON.	_	12.6)	[10]	S	_	0.472)	Ξ
Phenanthrene	Q	_	0.617)	Ξ	90.9	_	0.604)	Ξ	38.4	_	12.4)	[10]	Q.	_	0.599)	Ξ

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report A13-57

Compiled: 15 March 1995

SITE LOCATIO SAMPLE SAM	3 3 4-08 -MW-08 0.673) 0.775) 0.641) 0.638) 1.06) 0.800) 0.962)	8 09-MM-12 694-09-MW-12 [1] 136 (13.8 [1] ND (15.9 [1] ND (15.9 [1] ND (13.1 [1] N	1
8 09-MW-06 G94-09-MW-06 SW8270 - Semivolatile Organics, cont. (ug/L) Phenol Pyrene ND (0.73	29) [1] 45.7 98) [1] 0.464 46) [1] 0.464 55) [1] ND 55) [1] ND 53) [1] ND	STTE ID LOCATION ID SAMPLE ID 8 09-MW-08 694-09-MW-08 694-09-MY-08 1] 45.7 (0.673) [1] 136 89) [1] ND (0.641) [1] ND 46) [1] ND (0.638) [1] ND 55) [1] ND (0.638) [1] ND 55) [1] ND (0.638) [1] ND 55) [1] ND (0.638) [1] ND 58) [1] ND (0.962) [1] ND 88) [1] ND (0.962) [1] ND	8 8 99-MW-12 694-09-MW-12 694-09-MW-13 694-0

SITE 10	LOCATION ID	SAMPLE ID

		10 G94-	8 10-MW-01 G94-10-MW-01		J	10- 394-1	8 10-MW-03 G94-10-MW-03		59	13 13-MW-37 14-13-MW-	13 13-MW-37 G94-13-MW-37		694-1	13-N 3-MW-3	13 13-MW-37 694-13-MW-37-FD Dup of	
PARAMETER														1400	464-15-MM-57	
AKIO1 - Gasoline Range Organics Gasoline Range Organics	(ug/L) 9.00	-	(20.0)	Ξ	290)	50.0)	[1]	9.00	_	50.0)		5.00	JB (50.0)	Ξ
AK102 - Diesel Range Organics (u Diesel Range Organics	(ug/L) 38.0	ט	(100)	[1]	42.0	, ,	100)	[1]	34.0 J	_	100)	[1]	15.0	JB (100)	[1]
SW8080 - Organochlorine Pesticides and PCBs	s and PCBs	(1/gn)	(1)													
4,4'-DDD	0.0122	3	(0.0276)	Ξ	Q	_	0.00288)	Ξ	QN	J	0.00299)	Ξ	9	<u> </u>	0.00302)	Ξ
4,4'-DDE	Q		(0.00453)	Ξ	QN	_	0.00358)	Ξ	ND	_	0.00344)	Ξ	9	_	0.00348)	Ξ
4,4'-DDT	S		(0.00728)	Ξ	0.00970	Z	0.0125)	Ξ	QN	_	0.00367)	Ξ	0.0127	<u> </u>	0.0132)	Ξ
Aldrin	QN		(0.00285)	Ξ	S	_	0.00230)	Ξ	QN	_	0.00411)	Ξ	0.00520	_	0.00415)	Ξ
Chlordane	QN		(0.0234)	[1]	QN	_	0.0192)	Ξ	QN	_	0.0199)	Ξ	QN	_	0.0201)	Ξ
Dieldrin	0.00240	KJB	(0.00393)	Ξ	QN	_	0.00270)	Ξ	QN	_	0.00280)	Ξ	QN	_	0.00283)	Ξ
Endosulfan I	0.00180	3	(0.0141)	Ξ	0.000500	_ ⊒	0.00207)	Ξ	ND	_	0.00215)	Ξ	0.00100	<u>∵</u>	0.00452)	Ξ
Endosulfan II	S		(0.00371)	Ξ	QN	_	0.00201)	Ξ	QN	_	0.00376)	Ξ	S	_	0.00380)	Ξ
Endosulfan Sulfate	Q		(0.00531)	Ξ	QN	_	0.00478)	Ξ	0.00300 KJ	_	0.0100)	Ξ	0.00910	<u> </u>	0.0101)	Ξ
Endrin	S		(0.00708)	Ξ	QN	_	0.00729)	Ξ	QN	_	0.00758)	Ξ	S	_	0.00765)	Ξ
Endrin Aldehyde	Q		(00300)	[1]	0.00390	⊋ ∵	0.00602)	Ξ	QN	_	0.00625)	Ξ	S	_	0.00632)	Ξ
Heptachlor	0.000300	3	(0.00124)	[1]	0.000200	Z	0.00621)	Ξ	0.000400 KJ	_	0.00645)	Ξ	0.00300	_ ⊋	0.00651)	[1]
Heptachlor epoxide	Q		(0.00244)	[<u>:</u>]	0.00450	<u>а</u>	0.00181)	[1]	0.000100 KJ	_	0.00935)	Ξ	0.00160	P. (0.00190)	[1]
Methoxychlor	Q		(0.0534)	Ξ	QN	_	0.0380)	Ξ	QN	_	0.0395)	Ξ	2	_	0.0399)	Ξ
PCB-1016	QN		(0.0238)	[1]	QN	_	0.0308)	Ξ	QN	<u> </u>	0.0321)	Ξ	S	_	0.0324)	Ξ
PCB-1221	QN		(0.0226)	Ξ	QN	_	0.0277)	Ξ	QN	_	0.0288)	Ξ	QN	_	0.0291)	Ξ
PCB-1232	Q		(0.0171)	Ξ	QN	_	0.0701)	Ξ	QN	_	0.0728)	Ξ	S	_	0.0736)	[1]
PCB-1242	Q		(0.117)	[1]	QN.	_	0.0257)	Ξ	QN	_	0.0267)	Ξ	2	_	0.0269)	[1]
PCB-1248	S		(0.0407)	[1]	QN	_	0.0304)	Ξ	ND	_	0.0316)	Ξ	S	_	0.0319)	[1]
PCB-1254	ON		(00:00:0)	Ξ	QN	_	0.0122)	[1]	QN	_	0.0126)	[1]	QN	_	0.0128)	Ξ
PCB-1260	QN		(0.0340)	Ξ	QN	_	0.0338)	Ξ	ON	_	0.0351)	Ξ	QN	_	0.0354)	[1]
Compiled: 15 March 1995	() = Detection Limit	ion	=	Dilution	Factor	# Q	Not Detected	NA =	Not Applicable	<u>] e</u>	* - Value	conside	Value considered suspect,	, Refer	to QC R	Report A13-59

Compiled: 15 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

	59	8 10-MW-01 94-10-MW~	8 10-MW-01 G94-10-MW-01		69	8 10-MW-03 694-10-MW-03	-03 MW-03		1 694	13 13-MW-37 694-13-MW-37	7		G94-13-	13 13-MW-37 -MW-37-FD	13 13-MW-37 G94-13-MW-37-FD Dup of	
PARAMETER													Ď.	G94-13-MW-3/	/8-M	
SW8260 - Volatile Organic Compounds, cont.	!	(ng/L)	; 1 5 1 1 1 1 1 1	1 1 1 1 1	1 1 7 1 1 1 1 1 1 1	; ; ; ;			: : : : : : : : : :	 	 	! !	i 1 1 1 1 1 1 1 1 1	! ! !	 	
Bromodichloromethane	S	_	0.0536)	[]	QN	_	0.0536)	Ξ	2	0.0	0.0536)	[1]	2	_	0.0536)	Ξ
Bromoform	8	_	0.108)	Ξ	ON	_	0.108)	Ξ	QN	.0	0.108)	[1]	2	_	0.108)	Ξ
Bromomethane	S	_	0.0968)	[]	ON	_	0.0968)	Ξ	QN	0.0	0.0968)	Ξ	2	_	0.0968)	[1]
Carbon disulfide	Q	_	0.161)	Ξ	ON	_	0.161)	Ξ	Q	0	0.161)	Ξ	S	_	0.161)	[1]
Carbon tetrachloride	S	_	0.117)	[1]	QN	_	0.117)	Ξ	QN	.0	0.117)	[1]	2	_	0.117)	Ξ
Chlorobenzene	QN	_	0.112)	Ξ	ND	_	0.112)	Ξ	S	.0	0.112)	Ξ	2	_	0.112)	Ξ
Chloroethane	2	_	0.0972)	Ξ	QN	_	0.0972)	Ξ	S	0.0	0.0972)	Ξ	S	_	0.0972)	Ξ
Chloroform	Q	_	0.0363)	Ξ	QN	_	0.0363)	Ξ	Q	0.0	0.0363)	Ξ	운	_	0.0363)	Ξ
Chloromethane	QN	_	0.155)	Ξ	ON	_	0.155)	Ξ	0.310	.0	0.155)	Ξ	Q	_	0.155)	Ξ
Dibromochloromethane	QN	_	0.0283)	Ξ	ON	_	0.0283)	[1]	QN	0.0	0.0283)	Ξ	S	_	0.0283)	Ξ
Dibromomethane	QN	_	0.0598)	Ξ	ON	_	0.0598)	Ξ	0.210	0.0	598)	[1]	8	_	0.0598)	Ξ
Ethyl benzene	Q	_	0.110)	Ē	0.500	_	0.110)	[1]	9	. 0	0.110)	[1]	2	_	0.110)	Ξ
Meta-&Para-Xylene	S	_	0.365)	Ξ	33.9	_	0.365)	Ξ	0.0700	(0.	0.365)	[1]	0.0700 J	_	0.365)	Ξ
Methylene Chloride	0.300 B	_	0.151)	Ξ	0.180 B	_	0.151)	Ξ	0.180 B	(0.	0.151)	[1]	0.150 JB	_	0.151)	Ξ
Ortho-Xylene	8	_	0.124)	Ξ	2.16	_	0.124)	[1]	Q	.0	0.124)	[1]	Q	_	0.124)	Ξ
Styrene	QN	_	0.113)	Ξ	QN	_	0.113)	Ξ	Q	.0	0.113)	Ξ	R	_	0.113)	Ξ
Tetrachloroethene	QN	_	0.209)	Ξ	QN	_	0.209)	Ξ	Q	. 0	0.209)	[1]	ND	_	0.209)	Ξ
Toluene	0.0500	_	0.0336)	Ξ	0.0400	_	0.0336)	Ξ	0.130	0.0	0.0336)	[1]	0.130	_	0.0336)	Ξ
Trichloroethene	1.51	_	0.0439)	Ξ	QN	_	0.0439)	Ξ	0.330	0.0	0.0439)	[1]	0.360	_	0.0439)	Ξ
Trichlorofluoromethane	Q	_	0.0943)	Ξ	QN	_	0.0943)	[1]	ON	0.0	0.0943)	[1]	QN	_	0.0943)	Ξ
Vinyl Chloride	Q	_	0.0992)	Ξ	QN	_	0.0992)	Ξ	ON.	0.0	0.0992)	Ξ	QN	_	0.0992)	Ξ
Vinyl acetate	QN	_	0.127)	[1]	QN	_	0.127)	[]	QN	0	0.127)	[1]	R	_	0.127)	Ξ
cis-1,2-Dichloroethene	1.22	_	0.0785)	Ξ	0.170	_	0.0785)	[]	ON	0.0	0.0785)	Ξ	Q.	_	0.0785)	Ξ
cis-1,3-Dichloropropene	2	_	0.0758)	Ξ	QN	_	0.0758)	Ξ	ON	0.0	0.0758)	[]	QN	_	0.0758)	Ξ
trans-1,2-Dichloroethene	Q	_	0.131)	Ξ	ND	_	0.131)	Ξ	ON	0	0.131)	Ξ	QN	_	0.131)	Ξ
trans-1,3-Dichloropropene	QN	_	0.0829)	Ξ	QN	_	0.0829)	[1]	ON	0.0	0.0829)	Ξ	QN	_	0.0829)	Ξ

() = Detection Limit

		t.			[]	ΞΞ	ΞΞ	Ξ		ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	ΞΞ	Ξ	Ξ	ΞΞ	[]	ΞΞ	35	3 5	ΞΞ	ΞΞ	ΞΞ	ΞΞ
		13-MW-37 G94-13-MW-37-FD Dup of	IW-37		0.431)	0.602)	0.548)	0.717)	0.539)	0.642)	0.852)	0.790)	1,10)	0.670)	0.730)	0.644)	0.554)	0.569)	0.308)	0.723)	0.726)	0.877)	0.763)	0.962)	0.411)	0.392)	0.458)	0.357)	1.07)	1,14)	0.626)
	13	13-MW-37	G94-13-MW-37		_	<i>.</i> _		_			. <u> </u>		_		. <u> </u>			_	_		_	_	_		· _	<i>-</i>		_	<i>-</i> _		<i>-</i> _
		694-13	9	; []] ! !	Q.	Q	QN	Q	2	2	8	2	S.	2	S	QN	Q	QN	QN	Q	QN	Q.	ON	Q	QN	9	S	2	2	Q	Q
				; ; ; ;		ΞΞ	Ξ	Ξ	[]	Ξ	Ξ	ΞΞ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	[]	Ξ	Ξ	[1]	[1]		[]	Ξ	ΞΞ	ΞΞ	ΞΞ	Ξ	ΞΞ
	ļ	37 W-37		1	0.435)	0.608)	0.553)	0.724)	0.544)	0.648)	0.861)	0.798)	1.11)	0.676)	0.737)	0.650)	0.560)	0.575)	0.311)	0.730)	0.733)	0.885)	0.771)	0.972)	0.415)	0.396)	0.463)	0.361)	1.08)	1.15)	0.632)
	. 13	13-MW-37 G94-13-MW-37] 	J	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_		_	_	
		Ð			S.	ND	ON	QN	QN	ND	Q	QN	Q.	Q.	9	8	QN	S.	S	SN	S	Q.	QN	QN	Q	Q	QN	Q.	9	8	QN
				!	[1]	[1]	[1]	Ξ	Ξ	Ξ	[1]	[1]	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	[]	[1]	[1]	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	[1]	[1]	[1]
SITE ID LOCATION ID SAMPLE ID	ć	-03 1W-03		: ! ! ! ! ! !	0.474)	0.575)	0.386)	1.51)	0.308)	0.367)	0.385)	0.627)	1.15)	0.302)	0.589)	0.759)	0.511)	0.772)	0.454)	0.490)	0.736)	3.52)	0.487)	2.75)	0.274)	0.362)	0.430)	0.421)	0.591)	0.725)	0.575)
SITE LOCATI	∞ Ξ	10-MW-U3 G94-10-MW-03			J	_	J	_	_	_	_	_	_	_	_	_	_	_	Ų	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
		Ŭ			S	2	Q.	S	S S	Q.	SN	ND	Q	QN	ND	QN	QN	S	2	2	N N	2	2	QN	Q.	Q.	N N	QN	NO	QN	QN
					Ξ	Ξ	Ξ	Ξ	[]	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	\Box	Ξ	[]	Ξ	[]	Ξ	[1]	Ξ	[1]	Ξ	[]	[1]	[1]	[1]
	5	W-01		! ! ! !	0.620)	0.677)	0.731)	1.35)	0.458)	0.433)	0.674)	0.625)	1.84)	0.747)	0.723)	0.925)	0.612)	1.12)	0.553)	0.719)	1.04)	0.688)	0.860)	0.439)	0.723)	0.601)	0.863)	0.826)	0.553)	1.11)	0.643)
	8 10-MM-01	G94~10-MW-01			_	_		_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	_	_
				(ng/L)	ON	ON	S	QN	Q	ND	ON	QN	QN	QN	ON	2	Q	S	QN N	2	2	QN	QN	ON	ND	Q	QN	Q	QN	QN	QN
			PARAMETER 	rganics	1,2,4-Trichlorobenzene	1,2-Dichlorobenzene	1,3-Ulchlorobenzene	1,4-Ulchlorobenzene	2,4,5-Trichlorophenol	Z,4,6-irichlorophenol	2,4-Dichlorophenol	2,4-Dimethylphenol	2,4-Dinitrophenol	2,4-Dinitrotoluene	2,6-Dinitrotoluene	2-Chloronaphthalene	2-Chlorophenol	2-Methylnaphthalene	2-Methylphenol	Z-Nitroaniline	Z-Nıtrophenol	3,3 -Uichlorobenzidine	3-Nitroaniline	4,6-Dinitro-2-methylphenol	4-Bromophenyl phenyl ether	4-Chloro-3-methylphenol	4-Chlorophenyl phenyl ether	4-Methylphenol/3-Methylphenol	4-Nitroaniline	4-Nitrophenol	Acenaphthene

Compiled: 15 March 1995

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

	10 G94-	8 10-MW-01 G94-10-MW-01	01 √-01		1 694	8 10-MW-03 G94-10-MW-03	03		69	13 13-MW-37 694-13-MW-37	-37 MW-37		694-13	13 13-MW-37 -MW-37-FD	13 13-MW-37 694-13-MW-37-FD Dup of	
PARAMETER													Ō	G94-13-MW-3/	MW-3/	
SW8270 - Semivolatile Organics, cont.	(ng/L)					 	1 ! ! ! ! !	[1 1 1 1 1	 		 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1] 	! ! !
Acenaphthylene	QN	J	0.438)	Ξ	QN	0	0.587)	Ξ	2	_	0.626)	Ξ	Q	_	0.620)	[]]
Anthracene	Q	_	0.442)	Ξ	Q.	° _	0.632)	Ξ	2	_	0.755)	Ξ	Q.	_	0.748)	Ξ
Benzo(a)anthracene	QN	_	0.491)	Ξ	S	°	0.693)	Ξ	2	_	0.588)	Ξ	QN	_	0.583)	Ξ
Benzo(a)pyrene	S	J	0.656)	Ξ	Q.	°	0.630)	Ξ	2	_	0.786)	Ξ	Q	_	0.779)	Ξ
Benzo(b)fluoranthene	ND	J	0.738)	Ξ	Q	° _	0.618)	Ξ	R	_	1.04)	Ξ	QN	_	1.03)	Ξ
Benzo(g,h,i)perylene	QN	_	0.658)	Ξ	Q	° _	0.669)	Ξ	2	_	1.12)	Ξ	Q	_	1.11)	Ξ
Benzo(k)fluoranthene	Q	_	1.07)	Ξ	2	° _	0.900)	[1]	9	_	1.09)	Ξ	2	_	1.08)	Ξ
Benzoic acid	ON	_	2.99)	Ξ	9	_	5.74)	Ξ	2	_	25.8)	Ξ	QN	_	25.5)	[1]
Benzyl alcohol	Q	_	0.671)	Ξ	9	°	0.408)	[1]	Q	_	0.532)	Ξ	QN	_	0.527)	Ξ
Butylbenzylphthalate	QN	_	0.862)	Ξ	S	°	0.451)	Ξ	Q	_	1.80)	Ξ	QN	_	1.79)	Ξ
Chrysene	Q	_	0.594)	Ξ	2	° _	0.702)	Ξ	2	_	0.980)	Ξ	S	_	0.971)	
Di-n-octylphthalate	Q	_	0.647)	Ξ	Q.	°	0.615)	Ξ	Q.	_	0.510)	Ξ	Q	_	0.505)	Ξ
Dibenz(a,h)anthracene	2	_	0.701)	Ξ	2	°	0.771)	[1]	Q	_	0.990)	Ξ	R	_	0.981)	[1]
Dibenzofuran	Q	_	0.514)	Ξ	2	°	0.579)	Ξ	Q	_	0.548)	[1]	용	_	0.543)	Ξ
Dibutylphthalate	Q	_	0.330)	Ξ	9	°	0.452)	Ξ	2	_	0.489)	[1]	8	_	0.484)	Ξ
Diethylphthalate	8	_	0.286)	Ξ	2	°	0.618)	Ξ	2	_	0.251)	Ξ	Q	_	0.249)	Ξ
Dimethylphthalate	Q	_	0.427)	Ξ	2	° _	0.386)	[1]	S	_	0.443)	Ξ	Q	_	0.439)	Ξ
Diphenylamine	2		0.633)	Ξ	2	° _	0.618)	Ξ	문	_	0.890)	Ξ	Q.	_	0.882)	Ξ
Fluoranthene	2	_	0.660)	Ξ	2	° _	0.640)	Ξ	9	_	0.583)	Ξ	S	_	0.578)	Ξ
Fluorene	2	_	0.611)	Ξ	9	0	0.676)	Ξ	2	_	0.454)	Ξ	Q	_	0.450)	Ξ
Hexachlorobenzene	2	_	1.45)	Ξ	Q.	° _	0.511)	Ξ	2	_	0.545)	[1]	QN	_	0.540)	Ξ
Hexachlorobutadiene	2	_	0.945)	Ξ	2	0	0.680)	[1]	Q	_	1.02)	Ξ	S	_	1.01)	[1]
Hexachlorocyclopentadiene	2	_	0.817)	Ξ	S	_	1.89)	[1]	S	_	1.18)	Ξ	Q	_	1.17)	Ξ
Hexachloroethane	2	_	5.35)	Ξ	S	_	1.70)	Ξ	S	_	0.546)	Ξ	Q	_	0.541)	Ξ
Indeno(1,2,3-cd)pyrene	2	_	0.513)	Ξ	2	0	0.727)	Ξ	9	_	0.874)	Ξ	S	_	0.865)	Ξ
Isophorone	2	_	0.527)	Ξ	S	0	0.324)	Ξ	2	_	0.320)	Ξ	S	_	0.317)	Ξ
N-Nitroso-di-n-propylamine	QN	_	0.773)	Ξ	Q	0	0.540)	[1]	Q	_	0.610)	[1]	QN	J	0.604)	Ξ

A13-63

* - Value considered suspect, Refer to QC Report

NA = Not Applicable

ND = Not Detected

[] = Dilution Factor

() = Detection Limit

Compiled: 15 March 1995

					SITE ID LOCATION ID SAMPLE ID	ID NN ID I ID									
	10- 694-1	8 10-MW-01 G94-10-MW-01		69	8 10-MW-03 G94-10-MW-03	13 1-03		69	13 13-MW-37 G94-13-MW-37	37 M-37		694-13	13 13-MW- -MW-37	13 13-MW-37 694-13-MW-37-FD Dup of	
PARAMETER		; ; ; ; ; ;	 ; f t	 3 5 6 1 1 2 3 3	 							Ö	94-13-1	IW-37	
SW8270 - Semivolatile Organics, cont. (ug/L)	(ng/L)]] { { { { { { { { { { { { { { { { { { {	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 			
Naphthalene) QN	0.796)		0.679 J	_	0.685)	[1]	S	_	0.764)	[1]	Q	_	0.756)	Ξ
Nitrobenzene) Q	0.809)		QN	_	0.518)	[1]	N N		0.434)	ΞΞ	2	<i>-</i>	0.430)	ΞΞ
Pentachlorophenol) QN	0.623)		QN	Ų	0.463)	Ξ	QN	_	0.942)	[1]	S	<i>-</i>	0.933)	ΞΞ
Phenanthrene) QN	0.610)		QN	_	0.588)	Ξ	ND O	_	0.653)	[1]	QN		0.647)	ΞΞ
Phenol) QN	0.680)	Ξ	ON	_	0.409)	Ξ	ND	_	0.369)	[1]	QN		0.365)	[1]
Pyrene) QN	0.783)		Q.	_	0.760)	[1]	QN	_	0.700)	[1]	QN	_	0.693)	Ξ
bis(2-Chloroethoxy)methane) QN	0.647)		QN	U	0.520)		ON	_	0.625)	[1]	QN	_	0.619)	Ξ
bis(2-Chloroethyl)ether) QN	0.644)	Ξ	QN	_	0.567)	[1]	QN	_	0.482)	[1]	문	_	0.478)	Ξ
bis(2-Chloroisopropyl)ether) QN	1.07)	Ξ	ON	_	0.529)	Ξ	QN	_	0.438)	[1]	9	_	0.434)	Ξ
bis(2-Ethylhexyl)phthalate) QN	0.808)	Ξ	1.80	_	0.917)	[]	ON	_	2.63)	Ξ	9		2.60)	Ξ
p-Chloroaniline) QN	0.971)	Ξ	QN	_	0.855)	Ξ	QN	_	0.929)	Ξ	Q.		0.920)	ΞΞ

> 13 13-MW-38 G94-13-MW-38

> > PARAMETER

Ξ Ξ 50.0) 100) 0.0133) 0.0626) 0.0129) 0.0203) 0.0327) 0.0294)0.0743) 0.0272) 0.00638) 0.00954) 0.0575) 0.00351) 0.00419) 0.00219) 0.00384)0.00507) 0.00773) 0.00658) 0.0322) 0.0358) 0.00286) SW8080 - Organochlorine Pesticides and PCBs (ug/L) ЭВ 3 $\overline{2}$ 2 3 7 0.00 10.0 0.0126 0.00360 욷 0.00500 2 0.00330 0.0555 0.00580 0.0177 0.00790 2 9 9 9 9 9 0.00940 9 2 \geq AK101 - Gasoline Range Organics (ug/L) AK102 - Diesel Range Organics (ug/L) Gasoline Range Organics Diesel Range Organics Endosulfan Sulfate Heptachlor epoxide Endrin Aldehyde Endosulfan II Endosulfan I Methoxychlor Heptachlor Chlordane 4,4'-000 4,4'-DDT **Foxaphene** 4,4'-DDE Dieldrin PCB-1016 PCB-1254 PCB-1260 PCB-1221 PCB-1232 PCB-1242 PCB-1248 Aldrin Endrin

NA = Not Applicable * - Value considered suspect, Refer to QC Report ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 15 March 1995

LOCATION ID SAMPLE ID SITE 1D

> G94-13-MW-38 13-MW-38

(ng/L) SW8080 - Organochlorine Pesticides and PCBs, cont.

PARAMETER

0.00292) 2 alpha-BHC beta-BHC

3333 0.00413) 0.00710

> delta-BHC gamma-BHC

0.00238) 0.00182) 0.0133

SW8260 ~ Volatile Organic Compounds (ug/L)

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane 1,1,1-Trichloroethane

0.170) 1,1,2-Trichloroethane

 Ξ Ξ 0.0920) 0.0886) 0.0806) 2 2 l,1-Dichloroethane l,1-Dichloroethene

0.233) 0.354) 0.0791) 0.640 1,2,3-Trichloropropane .,2-Dichlorobenzene .,2-Dichloroethane

EEE

0.0742) 0.391) .,2-Dichloropropane l,3-Dichlorobenzene

0.154) 0.423) 2 2 2 2 .,4-Dichlorobenzene 2-Butanone(MEK) 1-Chlorohexane

EEEE

0.124)0.766) 0.501) 4-Methyl-2-Pentanone(MIBK) 2-Chloroethyl vinyl ether 2-Hexanone

0.0307) 2.09) 0.165)0.0536) 5.94 8 Bromodichloromethane Bromobenzene Acetone Benzene

[] = Dilution Factor () = Detection Limit

Compiled: 15 March 1995

Bromoform

0.108)

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

> 13-MW-38 694-13-MW-38

> > PARAMETER

0.151) 0.161) 0.117) 0.112) 0.0972) 0.0363) 0.155) 0.0283) 0.0598) 0.110)0.365)0.124) 0.113)0.209) 0.0336) 0.0439) 0.0943)0.0992) 0.127) 0.0785) 0.0758) 0.131)(ng/L) 0.0300 0.190 9.28 1.33 Ş 9 SW8260 - Volatile Organic Compounds, cont. 운 2 2 2 운 2 2 운 욷 2 웆 2 2 trans-1,3-Dichloropropene trans-1,2-Dichloroethene cis-1,3-Dichloropropene cis-1,2-Dichloroethene richlorofluoromethane Carbon tetrachloride Dibromochloromethane Methylene Chloride Meta-&Para-Xylene [etrach]oroethene Carbon disulfide richloroethene Vinyl Chloride Dibromomethane Vinyl acetate Chloromethane Ethyl benzene Chlorobenzene Ortho-Xylene Bromomethane Chloroethane Chloroform Styrene [o] uene

SW8270 - Semivolatile Organics (ug/L)
1,2,4-Trichlorobenzene ND (0.440)
1,2-Dichlorobenzene ND (0.614)

() = Detection Limit

Compiled: 15 March 1995

ΞΞ

* - Value considered suspect, Refer to QC Report NA = Not Applicable ND = Not Detected [] = Dilution Factor

LOCATION ID SAMPLE ID SITE 10

G94-13-MW-38 13-MW-38

PARAMETER

0.731) SW8270 - Semivolatile Organics, cont. 1,3-Dichlorobenzene 1,4-Dichlorobenzene

3333333333 0.550) 0.654)0.869) 1.12) 0.683) 0.745)0.656)0.565)0.806) 문 모 모 2 2 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2-Methylnaphthalene 2-Chloronaphthalene 2,4-Dinitrotoluene 2,6-Dinitrotoluene 2,4-Dimethylphenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2-Chlorophenol

0.580) 0.314) 0.738) 운 운 운 운 2-Methylphenol 2-Nitroaniline

 \Box

0.741) 0.894)0.778) 3,3'-Dichlorobenzidine 2-Nitrophenol

0.981) 0.419) 4,6-Dinitro-2-methylphenol 4-Bromophenyl phenyl ether 3-Nitroaniline

0.400) 0.467) 0.364)4-Chlorophenyl phenyl ether 4-Chloro-3-methylphenol

4-Methylphenol/3-Methylphenol 4-Nitroaniline 4-Nitrophenol

1.09) 1.16) 0.639) 0.633) 0.762) 0.594)

2222 3enzo(a)anthracene Acenaphthylene Acenaphthene Anthracene

= Dilution Factor

() = Detection Limit

Compiled: 15 March 1995

 Ξ

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

LOCATION ID SAMPLE ID SITE 1D

> G94-13-MW-38 13-MW-38 13

PARAMETER

			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SW8270 - Semivolatile Organics, cont.	(ng/L)			
Benzo(a)pyrene	R	_	0.794)	Ξ
Benzo(b)fluoranthene	QN	_	1.05)	Ξ
Benzo(g,h,i)perylene	Q	_	1.13)	Ξ
Benzo(k)fluoranthene	QN	_	1.10)	Ξ
Benzoic acid	Q	_	26.0)	Ξ
Benzyl alcohol	S	_	0.538)	Ξ
Butylbenzylphthalate	Ş	_	1.82)	Ξ
Chrysene	Ş	_	0.990)	Ξ
Di-n-octylphthalate	S	_	0.515)	Ξ
Dibenz(a,h)anthracene	Q	_	1.00)	Ξ
Dibenzofuran	· QN	_	0.553)	Ξ
Dibutylphthalate	Q	_	0.494)	Ξ
Diethylphthalate	Q.	_	0.253)	Ξ
Dimethylphthalate	N _s	_	0.448)	Ξ
Diphenylamine	QN	_	0.899)	Ξ
Fluoranthene	Q.	_	0.589)	Ξ
 Fluorene	2	_	0.458)	Ξ
Hexachlorobenzene	Q	_	0.550)	Ξ
 Hexachlorobutadiene	Q.	_	1.03)	Ξ
Hexachlorocyclopentadiene	9	_	1.19)	Ξ
 Hexachloroethane	Q	_	0.551)	Ξ
 Indeno(1,2,3-cd)pyrene	2	_	0.882)	Ξ
 Isophorone	2	_	0.323)	Ξ
N-Nitroso-di-n-propylamine	2	_	0.616)	Ξ
Naphthalene	9	_	0.771)	Ξ
 Nitrobenzene	2	_	0.439)	Ξ
 Pentachlorophenol	2	_	0.951)	Ξ
 Phenanthrene	2	_	0.659)	Ξ

() = Detection Limit Compiled: 15 March 1995

[] = Dilution Factor ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report

13-MW-38 G94-13-MW-38

PARAMETER

	1	1 1 1 1 1 1 1 1	1		1
SW8270 - Semivolatile Organics, cont. (ug/L)	nt.	(ng/L)			
Phenol		N ON	_	0.372)	[1]
Pyrene		Q.	_	0.707)	Ξ
bis(2-Chloroethoxy)methane		Q.	_	0.632)	Ξ
bis(2-Chloroethyl)ether		S.	_	0.487)	[1]
bis(2-Chloroisopropyl)ether		Q.	_	0.443)	Ξ
bis(2-Ethylhexyl)phthalate		Q	_	2.65)	[1]
p-Chloroaniline		QN	_	0.939)	[1]

			1	01-MW-02	G94-01-MW-02	
SITE 1D	LOCATION ID	SAMPLE ID	1	01-MW-01	G94-01-MW-01-FD Dup of	G94-01-MW-01
				01-MW-01	G94-01-MW-01	

PARAMETER

01-MW-05 G94-01-MW-05

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			- 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1
A403 - Alkalinity (mg/L) Alkalinity	611	С	[1]	611	С	Ξ	702	С	Ξ	531	С	[1]
E170.1 - Temperature (degC) Temperature	4.00	С	[1]	4.00	0	Ξ	3.50	С	[1]	4.00	C	Ξ
SW9040 - pH Electrometric Measurement (pH UNITS) pH 6.63	ment (pH UNITS) 6.63	С	Ξ	6.63	С	[1]	6.45	С	[1]	6.60	, 0	Ξ
SW9050 - Specific Conductance (umhos/cm) Conductivity	umhos/cm) 1170	С	[1]	1170	С	[1]	1270	0	[1]	930	С	Ξ

					SITE ID LOCATION ID SAMPLE ID							
PARAMETER	1 01-MW-06 G94-01-MW-06	90-WV		0 G94	1 01-MW-07 G94-01-MW-07		01-694-0	1 01-MW-08 G94-01-MW-08		8 02-GW-01 G94-02-GW-01	8 4-01 -GW-01	
A403 - Alkalinity (mg/L) Alkalinity	739	()	[1]	643	0	[1]	720	()		250	0	Ξ
E170.1 - Temperature (degC) Temperature	3.00	С	[1]	3.00	0	[1]	3.00	С	[1]	3.00	0	[]
SW9040 - pH Electrometric Measurement (pH UNITS) pH	ment (pH UNITS) 6.64	С	[1]	6.57	0	[1]	69.9	0	[1]	6.99	0	[1]
SW9050 - Specific Conductance (umhos/cm) Conductivity 1300	nhos/cm) 1300	С	[1]	1140	С	[1]	1220	С	[1]	440	С	[1]

Compiled: 15 March 1995

ND = Not Detected [] = Dilution Factor () = Detection Limit

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

				O,	SAMPLE ID								
	02: 694 –	8 02-GW-03 694-02-GW-03		02 G94-	8 02-GW-04 G94-02-GW-04			04-M G94-04	4 04-MW-03 G94-04-MW-03		(694-	4 04-MW-03 G94-04-MW-03-02	
PARAMETER													
	248	0	[3]	398	0	[1]	1172	; ; ; ; ;	0	[1]	VN V	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
E170.1 - Temperature (degC) Temperature	3.00	C	[1]	9.00	С	[1]	3.00		0	[1]	NA		
SW6010 - Metals (mg/L)													
Aluminum	N			NA			0.0570	9	0.0523)	Ξ	-0.0315 JB	(0.0523)	Ξ
Antimony	NA			NA			0.0402	JB (0.0760)	Ξ	0.0257 JB	(00.0100)	
Arsenic	NA			NA			-0.00469	JB (0.0468)	Ξ	0.00809 JB	(0.0468)	
Barium	NA			NA			0.537	<u> </u>	0.000860)	[]	0.496	(0.000860)	(E)
Beryllium	NA			. AN			0.000520) B	0.000510)	Ξ	-0.00247 JB	(0.000510)	
Cadmium	NA			NA			-0.000290	JB (0.00386)	[1]	0.000900.JB	(0.00386)	
Calcium	NA			NA			326	_	0.0175)	[1]	319	(0.0175)	Ξ
Chromium	NA			NA			0.00357	JB (0.00524)	Ξ	-0.000520 JB	(0.00524)	
Cobalt	NA			NA			0.0359	<u> </u>	0.00407)	Ξ	0.0375	(0.00407)	
Copper	AN			NA			0.00824) ac	0.00916)	Ξ	0.00389 JB	(0.00916)	Ξ
Iron	NA			NA			7.38	_	0.00452)	Ξ	2.63	(0.00452)	_
Lead	NA			NA			-0.0473) BC	0.0216)	Ξ	0.0156 JB	(0.0216)	
Magnesium	NA			NA			73.6	_	0.0479)	Ξ	73.0	(0.0479)	
Manganese	NA			NA			23.1	_	0.00155)	Ξ	18.7	(0.00155)	
Molybdenum	NA			NA			0.00356	JB (0.00739)	Ξ	-0.00359 JB	(0.00739)	_
Nickel	NA			NA			0.102	<u> </u>	0.0141)	Ξ	0.0593	(0.0141)	_
Potassium	NA			NA			6.88	<u> </u>	0.822)	Ξ	97.9	(0.822)	
Selenium	NA			NA			-0.00316	JB (0.0891)	Ξ	0.0271 JB	(0.0891)	
Silver	NA			NA			-0.00196	JB (0.00519)	Ξ	0.00499 JB	(0.00519)	Ξ
Sodium	NA			NA			9.61	<u> </u>	0.0401)	Ξ	11.3	(0.0401)	
Thallium	NA			NA	,		-0.101	JB (0.0833)	Ξ	-0.0312 JB	(0.0833)	Ξ
Vanadium	NA			NA			0.00341	JB (0.00454)	Ξ	-0.0000300 JB	(0.00454)	

SITE ID LOCATION ID SAMPLE ID

4 04-MW-03 G94-04-MW-03-02	0.00402) [1]	0.00214) [1]	0.00220) [1]		
04-1 694-04	0.000590 JB (0.00402)	0.00246	[1] -0.000990 JB (0.00220)	N A	NA
	[1]	[1]	[1]	[1]	[1]
4 04-MW-03 G94-04-MW-03	0.0147 B (0.00402)	(0.00214)	0.000630 JB (0.00220)	С	С
9	0.0147 B	0.00515	0.000630	6.55	1870
				Ξ	[1]
8 02-GW-04 G94-02-GW-04	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			0	С
9	NA	N	NA	7.22	200
	! 1 1 1 1 1			[1]	[1]
3 4-03 -GW-03	1 1 1 1 1 1			С	С
8 02-GW-03 G94-02-GW-03	N A	NA	N A	(pH UNITS) 7.06	cm) 570
PARAMETER	SW6010 - Metals, cont. (mg/L) Zinc	SW7060 - Arsenic (mg/L) Arsenic	SW7421 - Lead (mg/L) Lead	SW9040 - pH Electrometric Measurement (pH UNITS) pH	SW9050 - Specific Conductance (umhos/cm) Conductivity 570

Compiled: 15 March 1995

() = Detection Limit

[] = Dilution Factor ND = Not Detected NA = Not Applicable

* - Value considered suspect, Refer to QC Report
A14-4

ALL RESULTS OF INORGANIC ANALYSES FOR WATER SAMPLES, Galena Airport 1994.

SITE ID LOCATION ID

-		4			52			2			2	
	0 694	04-MW-03 G94-04-MW-03D		0 694	05-MW-02 G94-05-MW-02		05-MW-02 G94-05-MW-02-FD Dup of	4-02 2-FD Dup of	u _	C G94	05-MW-03 G94-05MW-03	
PARAMETER							694-00.	70 - M E-				
A403 - Alkalinity (mg/L) Alkalinity	NA	1 1 1 4 1 1 1 1 1 1 1 1		402	()	Ξ	402	0	Ξ	536	0	Ξ
E170.1 - Temperature (degC) Temperature	NA			2.00	С	Ξ	2.00	С	[1]	3.00	С	Ξ
SWE010 - Motals (mg/1)												
	-0.0410 JB	(0.0523)	Ξ	N			N			W		
Antimony	0.0844 B	(0.0760)	Ξ	NA			NA			NA		
Arsenic	-0.0110 JB	(0.0468)	Ξ	NA			NA			NA	ē	
Barium	0.575	(0.000860)	Ξ	NA	•		NA			NA		
Beryllium	0.00108 B	(0.000510)	Ξ	NA			NA			· NA		
Cadmium	-0.00144 JB	(0.00386)	Ξ	NA			NA			NA		
Calcium	355	(0.0175)	Ξ	NA			NA			NA		
Chromium	0.00350 JB	(0.00524)	Ξ	NA			NA			NA		
Cobalt	0.0394	(0.00407)	Ξ	NA			NA			NA		
Copper	0.0353	(0.00916)	Ξ	NA			NA			NA		
Iron	8.75	(0.00452)	Ξ	NA			NA			NA		
Lead	-0.101 JB	(0.0216)	Ξ	NA			NA			N		
Magnesium	78.0	(0.0479)	Ξ	NA			NA			NA		
Manganese	26.1	(0.00155)	Ξ	NA			NA			NA		
Molybdenum	0.0102 B	(0.00739)	Ξ	NA			NA			NA		
Nickel	0.0498	(0.0141)	Ξ	NA			NA			NA		
Potassium	7.51	(0.822)	Ξ	NA			NA			NA		
Selenium	-0.0221 JB	(0.0891)	Ξ	NA			NA			NA		
Silver	0.000230 JB	(0.00519)	[1]	NA			NA			NA		
Sodium	9.95	(0.0401)	Ξ	NA			NA			NA		
Thallium	-0.183 JB	(0.0833)	Ξ	NA			NA			NA		

				SI LOCA SAN	SITE ID LOCATION ID SAMPLE ID						
PARAMETER	04 694-	4 04-MW-03 G94-04-MW-03D		05-W G94-05	5 05-MW-02 G94-05-MW-02		5 05-MW-02 G94-05-MW-02-FD Dup of G94-05-MW-02	Dup of .	8	5 05-MW-03 G94-05-MW-03	
SW6010 - Metals, cont. (mg/L) Vanadium Zinc	0.00288 JB (0.00454)	(0.00454)	E E	N N A			N A A N		NA NA		
SW7060 - Arsenic (mg/L) Arsenic	0.00757	(0.00214)	[1]	NA			NA		N		
SW7421 - Lead (mg/L) Lead	-0.000180 JB (0.00220)	(0.00220)	[1]	NA			NA		٧ V		
SW9040 - pH Electrometric Measurement (pH UNITS) pH	ement (pH UNITS NA	(3		6.70	С	[1]	6.70	() [1]	6.75	C	Ξ
SW9050 - Specific Conductance (umhos/cm) Conductivity NA	mhos/cm) NA			750	С	[1]	750	() [1]	1110	0	[1]

() = Detection Limit [] = Dilution Factor ND = Not Detected NA = Not Applicable * - Value considered suspect, Refer to QC Report A14-6

	5 05-MW-07 G94-05-MW-07	NA	3.00 ()	6.57	1170 ()
		Ξ	Ξ	Ξ	[1]
	5 05-MW-06 694-05-MW-06	0	0	С	С
	00 469	569	4.00	6.71	1050
		Ξ	[1]	Ξ	[1]
SITE ID LOCATION ID SAMPLE ID	5 05-MW-05 G94-05-MW-05	0	0	С	0
	0 G94	770	2.00	99.9	1610
		[]	[1]	[1]	[1]
	5 IW-04 I-MW-04	. ()	С	· C	С
	05	970	5.00	rement (pH UNITS) 6.78	(umhos/cm) 1790
	PARAMETER	A403 - Alkalinity (mg/L) Alkalinity	E170.1 - Temperature (degC) Temperature	SW9040 - pH Electrometric Measurement (pH UNITS) pH 6.78	SW9050 - Specific Conductance (umhos/cm) Conductivity 1799

Ξ

Ξ

Ξ

PARAMETER 	5 05-WW-11 G94-05-WW-11	-11 MW-11		00 G94	SITE 1D LOCATION 1D SAMPLE 1D 5 05-MW-13 G94-05-MW-13		05-694-(5 05-MW-14 G94-05-MW-14		5 05-MW-15 G94-05-MW-15	5 1-15 MW-15	
A403 - Alkalinity (mg/L) Alkalinity	696	С	[1]	809	С	[1]	524	С	[1]	200	0	[1]
E170.1 - Temperature (degC) Temperature	2.50	С	[1]	4.00	0	[1]	3.00	С	[1]	1.00	С	[1]
SW9040 - pH Electrometric Measurement (pH UNITS) pH 6.57	ment (pH UNITS) 6.57	С	[1]	6.36	С	[1]	6.55	С	[1]	99.9	С	[1]
SW9050 - Specific Conductance (umhos/cm) Conductivity 1810	mhos/cm) 1810	С	[1]	1160	С	[1]	800	С	[1]	850	С	[1]

	8 06-MW-01 G94-06-MW-01	A403 - Alkalinity (mg/L) 792 () [1]	E170.1 - Temperature (degC) Temperature 6.50 () [1]	SW9040 - pH Electrometric Measurement (pH UNITS) pH 6.62 () [1]	SW9050 - Specific Conductance (umhos/cm) Conductivity () [1]
SITE ID LOCATION ID SAMPLE ID	8 06-MW-02 G94-06-MW-02	()	4.00 ()	6.50 ()	1910 ()
		[3]	[1]	[1]	<u> </u>
	8 06-MW-03 G94-06-MW-03	646	4.00	6.80	840
	.3 1-03	0	C	C	С
		[1]	Ξ	[1]	Ξ
	8 06-MW-03 G94-06-MW-03-FD Dup of G94-06-MW-03	646	4.00	6.80	840
	Dup of 03		С	0	С

Ξ

Ξ

Ξ

[1]

	8 06-MW-06 G94-06-MW-06
	8 06-MW-05 G94-06-MW-05D
SITE ID LOCATION ID SAMPLE ID	8 06-MW-05 G94-06-MW-05
	8 06-MW-04 G94-06-MW-04
	PARAMETER

A403 - Alkalinity (mg/L) Alkalinity	643	С	[]	483		[1]		 		i !	784		[1]
E170.1 - Temperature (degC) Temperature	5.50	С	[1]	4.00	С	Ξ	NA				5.00	С	[1]
SW6010 - Metals (mg/L)													
Aluminum	NA			4.62	(0.0523)	Ξ	-0.0125	JB (0.0523)	Ξ	AN		
Antimony	NA			-0.00655 JB	(0.0760)	ΞΞ) 18	0.0760)		. AN		
Arsenic	NA			0.0238 JB	(0.0468)	[1]	-0.0654 J	JB (0.0468)	Ξ	NA		
Barium	NA			0.333	(0.000860)		0.188	(0	0.000860)	Ξ	NA		
Beryllium	NA			-0.00113 JB	(0.000510)	[1]	-0.00109	JB (0.	0.000510)	Ξ	NA		
Cadmium	NA			0.000240 JB	(0.00386)	Ξ	-0.000470 J	JB (0	0.00386)	Ξ	NA		
Calcium	NA			149	(0.0175)	Ξ	138	_	0.0175)	[1]	NA		
Chromium	N			0.00245 JB	(0.00524)	[1]	0.000660	JB (0	0.00524)	Ξ	NA		
Cobalt	NA			0.0126 B	(0.00407)	Ξ	0.00	JB (0	0.00407)	Ξ	NA		
Copper	NA			0.0560	(0.00916)	Ξ	0.00648 J	JB (0	0.00916)	[1]	NA		
Iron	NA			8.09	(0.00452)	Ξ	0.0223 B	_	0.00452)	[1]	NA		
Lead	NA			-0.0288 JB	(0.0216)	Ξ	-0.0470	JB (0.0216)	Ξ	NA		
Magnesium	۸			16.2	(0.0479)	Ξ	14.0	_	0.0479)	[1]	NA		
Manganese	A			1.79	(0.00155)	Ξ	1.20	°	0.00155)	[1]	NA		
Molybdenum	NA			0.00291 JB	(0.00739)	Ξ	0.00394 JB	_	0.00739)	[1]	NA		
Nickel	NA			0.0356 B	(0.0141)	[1]	0.0130 JB	_	0.0141)	[1]	NA		
Potassium	NA			6.36	(0.822)	[1]	5.86	_	0.822)		AN		
Selenium	NA			-0.0101 JB	(0.0891)	[1]	-0.0251 JB	_	0.0891)	Ξ	NA		
Silver	NA			-0.00598 JB	(0.00519)	[1]	-0.00613 JB	_	0.00519)	Ξ	NA		
Sodium	NA			42.1	(0.0401)	[1]	41.3	_	0.0401)	Ξ	NA		
Thallium	NA			-0.0254 JB	(0.0833)	[1]	-0.0490 JB		0.0833)	ΞΞ	NA		
Vanadium	NA			0.00704 B	(0.00454)	Ξ	-0.000440 JB	_	0.00454)	ΞΞ	NA		

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

A14-10

LOCATION ID SAMPLE ID SITE 1D

8 06-MW-06 G94-06-MW-06) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			. [1] ()	() [1]
06- G94-C	NA NA	NA	N	6.49	2050
	Ξ	Ξ	Ξ		
8 06-MW-05 G94-06-MW-05D	0.0136 B (0.00402)	-0.00135 JB (0.000647)	[1] -0.0000600 JB (0.00205)		
.	0.0136 B	-0.00135 J	.0.0000600 J	N	NA
	[1]	[1]		[1]	[1]
8 06-MW-05 G94-06-MW-05	(0.00402)	(0.000647)	(0.00205)	С	С
J	0.0483	0.00716	0.00994	6.73	710
	1 1 1 1 1			[1]	Ξ
)4 4-04	; 1 1 1 1 1 1 1			С	С
8 06-MW-04 G94-06-MW-04	¥.	NA	NA	ement (pH UNITS) 6.62	umhos/cm) 1140
	(mg/L)	_		ic Measur	ctance (
PARAMETER	SW6010 - Metals, cont. (mg/L) Zinc	SW7060 - Arsenic (mg/L) Arsenic	SW7421 - Lead (mg/L) Lead	SW9040 - pH Electrometric Measurement (pH UNITS) pH	SW9050 - Specific Conductance (umhos/cm) Conductivity 1140

8 09-MW-02 694-09-MW-02 (94-09-MW-03 (1] (1] 438 (1) (1) (1] (1) (1) (1) (1) (1) (1)
!
03 W-03 ()

() = Detection Limit Compiled: 15 March 1995

[] = Dilution Factor ND = Not Detected NA = Not Applicable

A14-12 * - Value considered suspect, Refer to QC Report

	æ	90-MM-60	G94-09-MW-06	
	∞	09-MM-05	G94-09-MW-05-FD Dup of G94-09-MW-05	
SITE ID LOCATION ID SAMPLE ID	80	09-MM-05	G94-09-MW-05	
	80	09-MW-04	G94-09-MW-04	
				PARAMETER

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						1 1 1		1 1 1			1	1
A403 - Alkalinity (mg/L) Alkalinity	623	С	[1]	443	С	[3]	443	С	[]	189	C	[1]
E170.1 - Temperature (degC) Temperature	4.00	С	[1]	3.00	С	[1]	3.00	С	[1]	3.00	С	[1]
SW9040 - pH Electrometric Measurement (pH UNITS) pH	ment (pH UNITS) 7.86	O,	[1]	6.84	С	[1]	6.84	С	Ξ	6.79	С	[1]
<pre>SW9050 - Specific Conductance (umhos/cm) Conductivity 840</pre>	mhos/cm) 840	0	[1]	069	С	[1]	069	С	Ξ	350	0	[1]

					SITE ID LOCATION ID SAMPLE ID							
PARAMETER	8 09-MW-08 694-09-MW-08	08 W-08		69	8 09-MW-12 G94-09-MW-12		09-1 694-01	8 09-MW-15 G94-09-MW-15		10 G94-	8 10-MW-01 G94-10-MW-01	
alinity (mg/L) y	739	С	[1]	850		[1]	401		[1]	632	()	Ξ
E170.1 - Temperature (degC) Temperature	5.50	С	[1]	5.50	С	[1]	4.00	С	[1]	5.50	С	Ξ
SW9040 - pH Electrometric Measurement (pH UNITS) pH	nt (pH UNITS) 6.46	С	[1]	6.44	C	[1]	6.80	С	[1]	6.52	0	Ξ
SW9050 - Specific Conductance (umhos/cm) Conductivity 1280	os/cm) 1280	0	[1]	1460	С	[1]	720	С	[1]	1220	0	[1]

SITE ID LOCATION ID

		80				13				13			13		
	10-№ G94-1C	10-MW-03 G94-10-MW-03			13- G94-1	13-MW-37 G94-13-MW-37		-969	13-MW-	13-MW-37 G94-13-MW-37-FD Dup of			13-MW-38 G94-13-MW-38	8 -38	
PARAMETER									1	/ n - Mil- n 1					
A403 - Alkalinity (mg/L) Alkalinity	809	С	[1]	508		С	Ξ	508		0	[1]	575	 	0	Ξ
E170.1 - Temperature (degC) Temperature	4.00	C	[1]	3.00		С	[1]	3.00		С	[1]	3.50		С	Ξ
SW6010 - Metals (mg/L)															
Aluminum	NA			-0.0427	JB (0.0523)	Ξ	-0.0116	ЭВ Э	(0.0523)	[1]	-0.0282	JB (0	0.0523)	Ξ
Antimony	NA			0.0300	JB (0.0760)	Ξ	-0.0446	9 87	(00.000)	[]	0.0450	JB (0	0.0760)	Ξ
Arsenic	NA			-0.0349	JB (0.0468)	Ξ	0.0198	9P	(0.0468)	Ξ	-0.0344	JB (0	0.0468)	Ξ
Barium	NA			0.165	_	0.000860)	Ξ	0.169	_	(0.000860)	Ξ	0.131	0.0	0.000860)	Ξ
Beryllium	NA) BC	0.000510)	Ξ	0.000500) 왕	(0.000510)	Ξ	-0.000530	_	0.000510)	Ξ
Cadmium	NA			-0.000820	JB	0.00386)	Ξ	-0.00258	<u> </u>	(0.00386)	Ξ	0.000390	JB (0.	0.00386)	
Calcium	NA			164	_	0.0175)	Ξ	169	_	(0.0175)	[1]	190	0	0.0175)	[1]
Chromium	NA			-0.00207	JB (0.00524)	Ξ	-0.00192	<u>۾</u>	(0.00524)	Ξ	0.00415	JB (0.	0.00524)	Ξ
Cobalt	NA			-0.00182) BC	0.00407)	Ξ	0.00	85	(0.00407)	Ξ	-0.00365	JB (0.	0.00407)	Ξ
Copper	NA			0.00529	JB (0.00916)	Ξ	0.00647	8	(0.00916)	Ξ	0.0230	0.	0.00916)	Ξ
Iron	NA			0.00124	JB (0.00452)	Ξ	0.00181	98	(0.00452)	Ξ	0.00266	JB (0.	0.00452)	Ξ
Lead	NA			-0.0433	JB (0.0216)	[]	-0.0287	ЭВ Э	(0.0216)	Ξ	-0.0362	JB (0.0216)	Ξ
Magnesium	NA			31.9	_	0.0479)	Ξ	32.5	_	(0.0479)	Ξ	36.9	0	0.0479)	Ξ
Manganese	NA			-0.000600	JB (0.00155)	Ξ	0.000770	ЭВ. ((0.00155)	Ξ	0.00766	В (0.	0.00155)	[1]
Molybdenum	NA			-0.000410	JB (0.00739)	Ξ	-0.00240	ъ В	(0.00739)	Ξ	0.00581	JB (0.	0.00739)	Ξ
Nickel	NA			0.00103	JB (0.0141)	Ξ	0.0176	8	(0.0141)	Ξ	0.00311	JB (0	0.0141)	Ξ
Potassium	NA			5.16	_	0.822)	Ξ	5.54	_	(0.822)	Ξ	3,56	_	0.822)	[1]
Selenium	NA			-0.00931	JB (0.0891)	Ξ	0.0342	8 -	(0.0891)	Ξ	0.0590	JB (0.0891)	Ξ
Silver	NA			-0.00201	JB (0.00519)	Ξ	0.0000200	ЭВ О	(0.00519)	Ξ	-0.00404	JB (0.	0.00519)	Ξ
Sodium	NA			5.40	_	0.0401)	Ξ	5.48	_	(0.0401)	Ξ	6.29	0	0.0401)	Ξ
Thallium	NA			-0.0499) BC	0.0833)	Ξ	-0.0504	ъ В	(0.0833)	Ξ	-0.0188	JB (0.0833)	Ξ

				SITE ID LOCATION ID SAMPLE ID							
PARAMETER	8 10-MW-03 G94-10-MW-03	33		13 13-MW-37 G94-13-MW-37		G94-13 G	13 13-MW-37 G94-13-MW-37-FD Dup of G94-13-MW-37		13 13-MW-38 G94-13-MW-38	æ	
SW6010 - Metals, cont. (mg/L) Vanadium Zinc	NA NA	1 1 1 1 1 1 1 1 1 1 1	0.000290	JB (0.00454) B (0.00402)	[3]	0.00507 B	(0.00454)	=======================================	-0.00241 JB (0.00454) 0.0116 B (0.00402)	454) 402)	
SW7060 - Arsenic (mg/L) Arsenic	NA		-0.00145	-0.00145 JB (0.000647)	[1]	-0.00100 J	-0.00100 JB (0.000647)	[1] -0	[1] -0.0000700 JB (0.000647)	547)	[1]
SW7421 - Lead (mg/L) Lead	NA		0.000560	0.000560 JB (0.00220)	[1]	-0.000540 JI	-0.000540 JB (0.00220)	[1]	[1] -0.000660 JB (0.00220)	220)	[1]
SW9040 - pH Electrometric Measurement (pH UNITS) pH	(pH UNITS) 6.78	() [1]	6.59	0	[1]	6.59	0	Ξ	6.46		[1]
SW9050 - Specific Conductance (umhos/cm) Conductivity 1140	cm) 1140	() [1]	940	0	[1]	940	O ,	[1]	1040		[1]

O. 359 J O. O. O. O. O. O. O. O. O. O. O. O. O.
2222222
0.170) 0.102) 0.574) 0.296) 0.144) 0.0956) 0.136)
222222
0.0911) 0.0600) 0.228) 0.138) 0.0922) 0.0736) 0.100)
×××××××
0.399 ND ND ND ND ND
2222222
0.165) 0.108) 0.494) 0.302) 0.140) 0.0981) 0.120)

		SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)							
	1 01-HA-13 G94-01-HA-13-01	1 01-HA-13 694-01-HA-13	DD DD-SS-01) 5-01		_ (DD DD-SS-02		
PARAMETER	3.0 - 0	4.5 - 5	· 0	10-22-00		A B B	694-00-55-02 0 - 0	-05	
AK101 – Gasoline Range Organics (mg Gasoline Range Organics	(mg/kg) NA	۸A	72.0 F (5.00)	[5]	11.0 F	_	5.00)	[5]
AK102 - Diesel Range Organics (mg/kg)	/kg)								ı I
Diesel Range Organics	NA	NA	110 (4.00)	[1]	250	_	8.00)	[2]
SW8080 - Organochlorine Pesticides and PCBs	and PCBs (ug/kg)								
4,4'-DDD	NA	NA	23900 (65.7) [3	[200]	2980	_	6.64)	[50]
4,4'-DDE	NA	NA	187 (7.56)	[50]	61.6		7.64)	[20]
4,4'-DDT	NA	NA) 988		[20]	736		8.14)	[20]
Aldrin	NA	NA	11.9 (9.03)	[20]	2	_	9.12)	[50]
Chlordane	NA	NA) ON	43.7)	[20]	R	_	44.2)	[50]
Dieldrin 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	NA	NA	110 P (8.94)	[20]	38.7 P	_	9.03)	[50]
Endosulfan I	N :	NA) ON	4.72)	[20]	4.93 KJ	_	9.95)	[20]
Endosulfan II	NA	NA) ON	8.28)	[20]	QN	_	8.36)	[50]
Endosultan Sultate	Υ <u>ν</u> :	NA) ON		[50]	QN	J	11.0)	[20]
Endrin Falls Alteria	NA	NA) QN		[20]	Q	_	12.3)	[20]
Enarin Aldenyde Unrtichlor	¥ :	NA ::		13.7)	[20]	R	J	13.9)	[50]
Hentachlor sposido	A. V	NA	0.243 KJ ([20]		_	12.0)	[20]
Mothocochios epoxide	AN AN	NA 	Q :		[50]	11.8 KJ	_	20.8)	[50]
pre 1016	NA NA	₹:) QN		[50]	S	_	87.7)	[50]
PCD=1010	AX :	NA) ON		[50]	QN	_	71.2)	[20]
PUB-1221	NA :	NA) QN	63.4) [[20]	Q.	_	64.0)	[50]
PUB-1232	NA	NA) ON	160) [[20]	Q	_	162)	[20]
PCB-1242	NA	NA) ON	58.6) [[50]	QN	_	59.2)	[50]
PCB-1248	NA	NA) ON		[50]	Q.	_	70.1)	[50]
PCB-1254	NA	NA) ON		[20]	Q	_	28.1)	[20]
PCB-1260	NA	NA) ON		[50]	Q.	_	77.9)	[20]
Toxaphene	NA	NA) QN		[20]	QN		125)	[20]

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

|--|

	MB-SS-01 G94-MB-SS-01 0 - 0.5	NA NA	NA		23.2 (1.66) [5]	(1.92)		(1.33)	(11.1)	(1.56)	KJ (2.49)	ND (2.10) [5] ND (2.72) [5]	KJB (4.22)	KJ (3.31)	KJ (3.59)	KJ (5.21)					(14.8)		(7.04)	. <u> </u>	(31.4)
		[5]	[1]		[100]	[20]	[20]	[50]	[20]	[20]	[20]	[02]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]	[20]
	-05 S-05 0	5.00)	4.00)		33.0)	7.61)	8.10)	5.29)	44.0)	8.99)	4.75)	0.32)	12.2)	13.8)	12.0)	20.7)	87.3)	70.9)	63.7)	161)	58.9)	(8.8)	28.0)	77.6)	125)
	DD DD-SS-05 G94-DD-SS-05 0 - 0) 6)		_	_		<u> </u>	<u> </u>	_ 、 -			. <u> </u>	_	_) Z	_	_	_	_	_	_	_	<u> </u>	\
	Ü	4.00	94.0		9450	134	1240	2 :		60.09	2 S	2 2	QN	QN	Q.	2.58 K	QN	QN	QN	QN	ND	ND	QN	QN	QN
(FT.)		[5]	[1]		[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]	[10]
SITE ID LOCATION ID SAMPLE ID DEPTH END DEPTH (FT.)	04 S-04 0	5.00)	4.00)		3.18)	3.66)	3.90)	4.37)	21.2)	4.33)	2.29) 4 01)	5.29)	5.90)	6.66)	5.77)	9.96)	42.1)	34.1)	30.7)	77.6)	28.4)	33.6)	13.5)	37.4)	(0.09
SITE ID LOCATION ID SAMPLE ID PTH - END DE	DD-SS-04 G94-DD-SS-04 0 - 0)	_		_	_ 、	_ 、	_ <	_ 、	_ 、			_)	_	_	_	_	_	_	_	_	_	_	_
BEG. DE	9	2.00 J	22.0		917	44.7	368	2 9		14.2 P	2 2	Q. Q.	ON	QN	QN	QN	QN	Q.	R	2	Q	8	S	QN	QN
		[2]	[2]		[100]	[20]	[20]	[02]	[07]	[02]	[20]	[20]	[50]	[50]	[50]	[20]	[50]	[20]	[20]	[50]	[50]	[50]	[50]	[50]	[20]
	.03 5S-03 0	5.00)	8.00)		34.3)	7.91)	8.42)	5.50)	43.7)	(00.8	8.65)	11.4)	12.7)	14.4)	12.5)	21.5)	90.8)	73.6)	66.2)	167)	61.3)	72.5)	29.1)	80.6)	130)
	DD DD-SS-03 G94-DD-SS-03) 	_	(ug/kg)		_ 、	_ <		٠ -			_	J	J	_	 _		_	_	_	_	_	_	_	_
	_	(mg/kg) 18.0	(mg/kg) 410	s and PCBs	12700	168	1280	Q. R			2 2	2	Q	ND			2	Q.	QN	QN	Q.	N	QN	S	QN V
	PARAMETER	AK101 - Gasoline Range Organics Gasoline Range Organics	AK102 - Diesel Range Organics (π Diesel Range Organics	SW8080 - Organochlorine Pesticides and PCBs	4,4'-DDD	4,4 -UUE 4 4'-NOT	Aldrin	Chlordane	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan Sulfate	Endrin	Endrin Aldehyde	Heptachlor	Heptachlor epoxide	Metrioxychior	PUB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260	Toxaphene

ND = Not Detected [] = Dilution Factor () = Detection Limit Compiled: 15 March 1995

NA = Not Applicable * - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, Galena Airport 1994.

							PARAMETER		SW8080 - Organochlorine Pesticides and PCBs, cont. (ug/kg)	alpha-BHC	beta-BHC	delta-BHC	gamma-BHC
						J		1 1 1 1 1 1 1 1	s and PCBs,	ON	QN	Q	QN
				00	DD-SS-03	G94-DD-SS-03	0 - 0		cont.	_	_	_	_
					-03	SS-03	0		(ug/kg)	6.58)	9.30)	5.36)	4.10)
										[50]	[50]	[50]	[50]
			BEG. DEF			99				Q	Q	Q.	QN
SITE	LOCATI	SAMPL	PTH - EI	00	-SS-QQ	94-DD-S	0 - 0			J	_	_	_
10	OI NO	E 10	ND DEPTH		04	S-04	0			3.05)	4.31)	2.48)	1.90)
			G. DEPTH - END DEPTH (FT.)					!!!!!!!!!		[10]	[10]	[10]	[10]
						39				2	Q	2	18.7
				60	DD-SS-QQ	G94-DD-SS-05	0 - 0			_	_	_	_
					75	3-05				6.33)	8.95)	5.16)	3.94)
								1 1 1 1 1 1 1		[50]	[50]	[50]	[20]
						G		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Q	QN	Q.	ON
				₩	MB-SS-	G94-MB-SS-01	0 - 0	! ! ! ! ! ! !		_	_	J	_
					10	3-01	.5	111111111		1.59)	2.25)	1.30)	0.993)
								I I I I		[2]	[2]	[2]	[2]

[20] [20] [20] [20] [20] 5.87) 9.68) 7.88) 10.4) 15.9) 13.1) 11.3) 19.6) 60.3) 152) 55.8) 66.1) 73.4) 82.7) 67.1) 26.5) 118) 5.99) 8.47) 4.88) G94-MB-SS-05 0 - 0.5 MB-SS-05 3 27.0 3.98 547 운 문 2 999999 2 2 2 S S 2 2222 [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] [20] 20] 20] [20] [20] [20] [20] [20] 45.3) 9.26) 4.89) 8.57) 11.3) 17.3) 13.5) 12.3) 21.3) 90.0) 73.0) 65.6) 166) 60.7) 71.9) 28.8) 79.9) 128) 6.52) 9.22) G94-MB-SS-04 MB-SS-04 0 - 0.53 3 29.7 949 2 2 8 8 8 DEPTH - END DEPTH (FT.) [100] [100] 100] [100] [100][100][100] [100][100] [100] [100] [100][100][100]100] [100] [100] [100] [100] [100] [100][100] [100] 100] 100] 38.5) 41.0) 45.9) 223) 24.0) 42.1) 55.6) 84.8) 70.0) 105) 442) 359) 322) 815) 298) 353) 141) 393) 630) 32.0) LOCATION ID SAMPLE ID G94-MB-SS-03 SITE 10 MB-SS-03 0 - 0.5쁖 542 22222 22222 [20] [20] [20] [20] [20] 20] [20] [20] [20] [20] [20] [20] 20] 20] 20] [20] [20] [20] [20] 20] 6.22) 4.76) 8.35) 11.0) 16.8) 13.2) 14.3) 4.17) 87.6) 71.1) 63.9) 59.1) 162) 70.0) 28.0) 77.8) 125) 8.98) G94-MB-SS-02 0 - 0.5MB-SS-02 (ug/kg) Х. В 333 W8080 - Organochlorine Pesticides and PCBs 2.21 4.29 S 0,153 2 욷 S 2 윤 S 2 Endosulfan Sulfate Heptachlor epoxide Endrin Aldehyde Endosulfan II Endosulfan I Methoxychlor leptachlor Chlordane PARAMETER 4,4'-DDT 4,4'-000 Dieldrin **Foxaphene** 4,4'-DDE PCB-1016 CB-1232 PCB-1242 PCB-1248 PCB-1260 alpha-BHC PCB-1254 ²CB-1221 beta-BHC Aldrin Endrin

= Dilution Factor () = Detection Limit

S

= Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, Galena Airport 1994.

BEG. DEPTH - END DEPTH (FT.) LOCATION ID SAMPLE ID SITE 10

	WB	~			₩				æ	_			8		
	MB-SS-06	90-9			MB-SS-07	70			MB-SS-08	-08			MB-SS-09	60	
	G94-MB-SS-06	90-SS-		69	4-MB-S	3-07			G94-MB-SS-08	·SS-08		Ö	G94-MB-SS-09	60-9	
PARAMETER	0	0 - 0.5			0 - 0.5	rδ			0	0 - 0.5			0 - 0.5	rč.	
SW8080 - Organochlorine Pesticides and PCBs	s and PCBs (ug/kg)	(F			 	[]]]]		! ! ! ! ! !		t 1 1 1 1 1 1 1 1	! ! ! !	; 	1 1 1 1	 	
4,4'-DDD	2930 (43.3)	[100]	275	_	7.61)	[50]	170	_	1.66)	[2]	431	_	3.24)	[10]
4,4'-DDE	597 (49.8]	[100]	28.0	_	8.75)	[50]	39.4	_	1.91)	[2]	120	_	3.73)	[10]
4,4'-0DT	13400 (53.0)	[100]	363	J	9.33)	[50]	112	_	2.04)	[2]	1180	_	3.97)	[10]
Aldrin) QN	34.6)	[100]	N S	_	10.4)	[50]	Q	_	2.28)	[2]	문	_	4.45)	[10]
Chlordane) ON	288)	[100]	S	Ų	50.6)	[50]	9	_	11.1)	[2]	S	_	21.6)	[10]
Dieldrin	484 (40.6)	[100]	2	_	10.3)	[50]	24.0	-	1.56)	[2]	9.15	J	3.04)	[10]
Endosulfan I	35.5 KJ (64.8)	[100]	2	_	5.46)	[20]	S	_	1.19)	[2]	4.45 KJ	_	4.86)	[10]
Endosulfan II) QN	54.5)	[100]	S	J	9.58)	[50]	Ş	_	2.09)	[2]	Q.	_	4.08)	[10]
Endosulfan Sulfate) ON	71.9)	[100]	S	J	12.6)	[50]	9	_	2.76)	[2]	5.46 K	_ _	10.8)	[10]
Endrin) QN	110)	[100]	2	J	19.3)	[50]	1.38	KJB (4.21)	[2]			8.21)	[10]
Endrin Aldehyde	QN .	90.5)	_	8	_	15.9)	[50]	R	_	3.48)	2	0.611 KJ	_ _	6.44)	[10]
Heptachlor) QN	78.4)	_	2	_	13.8)	[50]	Q	_	3.02)	[2]	2	_	5.88)	[10]
Heptachlor epoxide	10.5 KJ (135)		2	_	23.8)	[50]	Q	_	5.20)	[2]	2	_	10.1)	[10]
Methoxychlor) ON	572)		2	_	100)	[50]	QN	<u> </u>	22.0)	[2]	2	_	42.8)	[10]
PCB-1016) ON	464)	_	2	_	81.5)	[50]	Q	_	17.8)	[5]	S		34.8)	[10]
PCB-1221) ON	417	_	2	_	73.3)	[50]	9	_	16.0)	[2]	2	_	31.2)	[10]
PCB-1232) QN	1050)	_	2	_	185)	[50]	Q	<u> </u>	40.5)	[2]	2	J	79.0)	[10]
PCB-1242) ON	386)		2	_	67.8)	[50]	Q	_	14.8)	[2]	2	J	28.9)	[10]
PCB-1248) QN	457	[100]	2	_	80.3)	[50]	Q	_	17.6)	[2]	N	_	34.2)	[10]
PCB-1254) ON	183)	_	2	_	32.2)	[50]	Q	_	7.03)	[2]	S	_	13.7)	[10]
PCB-1260) ON	508)		2	_	89.3)	[50]	Q	_	19.5)	[2]	S	_	38.0)	[10]
Toxaphene) QN	816)	[100]	2	_	143)	[50]	QN	_	31.4)	[2]	S	_	61.1)	[10]
alpha-BHC) ON	41.4)	_	2	_	7.28)	[50]	Ş	_	1.59)	[2]	S	_	3.10)	[10]
beta-BHC) QN	58.6)	_	2	Ų	10.3)	[50]	S	_	2.25)	[2]	QN	_	4.39)	[10]
delta-BHC) QN	33.8)	[100]	2	_	5.94)	[50]	S	_	1.30)	[2]	QN	_	2.53)	[10]
gamma-BHC) ON	25.8)	[100]	Q	_	4.54)	[50]	S	_	0.992)	[2]	ON	_	1.93)	[10]

1.63) 1.25) 2.19) 5.82) 3.22) 3.64) 3.75) 1.09) 23.0) 18.6) 16.8) 42.4) 15.5) 18.4) 32.8) 7.35) 20.4) G94-MB-SS-13 MB-SS-13 \Im ⊋ ⊾ 3.19 3.51 1.26 2 8 운 문 운 운 [10] [10] [10] [10] [10][10][10] [10][10][10] [10] [10] [10] [10] [10][10] [10] [10][10] [10][10][10]4.25) 33.4) 3.25) 2.49) 11.6) 8.79) 7.26) 6.29) 10.9) 45.8) 37.2) 84.5) 30.9) 36.6) 14.7) 40.7) 65.4) 3.32) G94-MB-SS-12 MB-SS-12 3 1180 56.9 2.98 8.89 4.23 376 S S 2 2 2 DEPTH - END DEPTH (FT.) [10] 10] 10] 10] 10] 10] [10] [10] [10] [10] [10] [10] [10] [0] [10] [10] 10] 10] 10] 3.26) 5.21) 5.78) 8.81) 6.91) 7.50) 10.9) 46.0) 37.3) 33.5) 84.7) 31.0) 36.7) 14.7) 40.8) LOCATION ID SAMPLE ID G94-MB-SS-11 SITE ID 0 - 0.5MB-SS-11 \Im 3 \Im 1.42 0.648 \mathbf{g} 2 2 9 운 S 2 ₽ [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] [400] 400] [400] 400] [400] [400] 400 400] 400] 275) 94.3) 218) 333) 238) 411) 1740) 1410) 1270) 3200) 1170) 1390) 555) 540) 2480) 126) G94-MB-SS-10 0 - 0.5MB-SS-10 (ug/kg) W8080 - Organochlorine Pesticides and PCBs 061 199 81900 S 9 2 Ş 2 2 Endosulfan Sulfate Heptachlor epoxide Endrin Aldehyde Endosulfan II Endosulfan I Methoxychlor leptach]or Chlordane Dieldrin Foxaphene 4,4'-000 4,4'-DDE alpha-BHC gamma-BHC 4,4'-DDT PCB-1016 PCB-1232 PCB-1242 ²CB-1248 CB-1260 beta-BHC PCB-1221 PCB-1254 Aldrin Endrin

[] = Dilution Factor () = Detection Limit

ND = Not Detected

* - Value considered suspect, Refer to QC Report NA = Not Applicable

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, Galena Airport 1994.

SITE ID LOCATION ID SAMPLE ID

	WB~	MB-SS-14			MB-SS-15	-15			MB-SS-16	16			MB-SS-17	.17	
	G94-M	G94-MB-SS-14			G94-MB-SS-15	SS-15		В	394-MB-SS-16	S-16			G94-MB-SS-17	.S-17	
1 1 1	0	0 - 0.5		1	- 0	0.5	1 1 1 1 1 1	# # # ! !	0 - 0	0.5	! ! ! ! ! !	; ; ; ; ;	0 - 0.5	.5	
SW8080 - Organochlorine Pesticides and PCBs	s (ug/kg)	(g)													
245	.5	1.89)	[2]	79.1	_	10.8)	[50]	1510	J	31.1)	[100]	179	_	12.9)	[40]
49.6	<u> </u>	2.18)	[2]	40.0	_	12.5)	[50]	207	_	35.8)	[100]	32.2	_	14.8)	[40]
80.9	_	2.32)	[2]	127	_	13.3)	[50]	3510	_	38.2)	[100]	325	_	15.8)	[40]
ON	_	1.51)	[2]	2	_	8.67)	[50]	N N	_	24.9)	[100]	21.2	_	17.7)	[40]
ON	_	12.6)	[2]	2	_	72.1)	[20]	S	_	207)	[100]	S	_	85.7)	[40]
10.9) d (2.57)	[2]	2	_	10.2)	[50]	338	J	29.5)	[100]	63.9	_	12.1)	[40]
N.	_	1.36)	5	9	_	7.78)	[50]	S	_	22.3)	[100]	S	_	9.24)	[40]
ON	_	2.38)	[2]	2	_	13.6)	[20]	8	_	39.5)	[100]	Q	_	16.2)	[40]
ON	_	3.15)	[2]	17.6	_ ⊋	36.2)	[20]	9	_	51.7)	[100]	S	_	21.4)	[40]
2.72	KJB (4.80)	[2]	8	_	27.5)	[50]	Q.	_	78.9)	[100]	S	_	32.6)	[40]
ON N	_	3.96)	[2]	Q	<u> </u>	22.7)	[20]	2	_	61.8)	[100]	S	_	(6.92	[40]
ON	_	3.43)	[2]	2	_	19.6)	[50]	S	_	56.4)	[100]	Q.	_	23.3)	[40]
ON .	_	5.92)	[2]	2.90	PJ (33.9)	[50]	2	_	97.3)	[100]	9	_	40.3)	[40]
ON .	_	38.8)	[2]	Q	_	143)	[50]	2	_	411)	[100]	Q	_	170)	[40]
ON	_	20.3)	[2]	Q	_	116)	[50]	QN	_	334)	[100]	S	_	138)	[40]
ON	_	18.2)	[2]	Q	_	104)	[20]	Q	_	300)	[100]	2	_	124)	[40]
2	_	46.1)	[2]	R	_	264)	[50]	2	_	758)	[100]	S	_	314)	[40]
ON .	_	16.9)	[2]	Q	_	96.6)	[50]	2	_	278)	[100]	2	_	115)	[40]
QN	_	20.0)	[2]	9	_	114)	[50]	2	_	329)	[100]	2	_	136)	[40]
QN	_	8.00)	[2]	9	_	45.8)	[50]	QN	_	132)	[100]	S	_	54.4)	[40]
Q	_	22.2)	[2]	Q	_	127)	[50]	8	_	365)	[100]	2	_	151)	[40]
QN	_	35.7)	[2]	S	_	204)	[50]	2	_	587)	[100]	8	_	243)	[40]
QN	_	1.81)	[2]	Q	_	10.4)	[50]	S	_	29.8)	[100]	S	_	12.3)	[40]
QN	_	2.56)	[2]	S	_	14.7)	[50]	S	_	42.1)	[100]	8	_	17.4)	[40]
QN	_	1.48)	[3]	9	_	8.45)	[50]	9	_	24.3)	[100]	S	_	10.0)	[40]
8	_	1.13)	[2]	Q	_	6 47)	[20]	S	_	18.6)	[100]	S	_	7 68)	[40]

						8	SITE ID									
						100	LOCATION ID									
					BEG.	SA DEPTH	SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	7TH (FT.)								
		WB					MB			Σ	WB WB			Σ		
		MB-SS-18	-18			MB-	MB-SS-19			MB-S	MB-SS-20			MB-SS-21	1	
	39	G94-MB-SS-18	38-18			694-M	G94-MB-SS-19			G94~MB	G94~MB-SS-20		Ü	694-MB-SS-21	5-21	
PARAMETER		0 - 0.5	.5			0	0 - 0.5			- 0	0 - 0.5			0 - 0.5	5	
SW8080 - Organochlorine Pesticides and PCBs		(ug/kg)		1 1 1 1 1			; ; ; ; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			; ; ; ; ;	 	 		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
4,4'-DDD	158	_	12.9)	[40]	2920	_	35.4)	(100]	5810	_	31.9)	[100]	105	Ų	6.97)	[20]
4,4'-DDE	33.1	Ų	14.8)	[40]	1950)	40.7)	(100]	249	_	36.7)	_	94.6		8.02)	[20]
4,4'-DDT	272	_	15.8)	[40]	8450	<u> </u>	43.4)		8540	_	39.1)		861	_	8.55)	[50]
Aldrin	QN	_	17.7)	[40]	S.	<u> </u>	48.6)	(100]	QN	_	43.8)	[100]	ON	_	5.58)	[50]
Chlordane	QN	_	85.8)	[40]	N	_	235)	(100]	ND	_	212)	[100]	N	_	46.4)	[20]
Dieldrin	QN	_	17.5)	[40]	409	_	33.2)	(100]	109)	43.4)	[100]	26.5	_	6.54)	[50]
Endosulfan I	QN	_	9.26)	[40]	22.1	<u> </u>	53.0)	(100]	N	_	22.9)	[100]	ON	_	5.01)	[20]
Endosulfan II	QN	_	16.2)	[40]	8	<u> </u>	44.5)		QN	_	40.2)	[100]	ON	_	8.78)	[20]
Endosulfan Sulfate	Q		21.4)	[40]	Q.	<u> </u>	58.8)		QN	_	53.0)	[100]	QN	_	11.6)	[20]
Endrin	Q	_	32.7)	[40]	23.4	_ ∑	89.7)		32.5	_ ⊋	80.9)	[100]	QN	_	17.7)	[20]
Endrin Aldehyde	QN		27.0)	[40]	N N	_	74.0)		QN	_	(2.99	[100]	QN	_	14.6)	[20]
Heptachlor	QN	_	23.4)	[40]	N N	<u> </u>	64.2)		Q	<u> </u>	57.8)	[100]	QN	_	12.6)	[20]
Heptachlor epoxide	QN		40.3)	[40]	N N	<u> </u>	111)		Q	_	99.8)		3.27 KJ		4.39)	[20]
Methoxychlor	QN	_	170)	[40]	N N	_	468)		QN	<u> </u>	422)		QN	_	92.1)	[20]
PCB-1016	QN		138)	[40]	QN	<u> </u>	379)		QN	_	342)	[100]	N	_	74.7)	[20]
PCB-1221	Q.		124)	[40]	QN	_	341)		QN	_	308)		ND	J	67.2)	[50]
Ptb-1232	Q :	<u> </u>	314)	[40]	2	_	862)		Q	_	777)		QN	_	170)	[50]
PCB-1242	Q :		115)	[40]	Q.	<u> </u>	316)		QN	_	285)		ON	_	62.2)	[20]
PUB-1248	Q :		136)	[40]	Q.	~	374)		QN	_	337)	[100]	ND	_	73.6)	[20]
PCB-1254	QN	_	54.5)	[40]	QN	<u> </u>	150)	(100]	QN	_	135)	[100]	QN	_	29.5)	[20]
PCB-1260	QN	_	151)	[40]	QN	<u> </u>	415)	[100]	QN	_	374)	[100]	QN	_	81.8)	[20]
Toxaphene	QN	_	243)	[40]	QN	_	(299	[100]	QN	_	601)	[100]	ND	_	131)	[20]
a I pha-BHC	QN	_	12.3)	[40]	QN	_	33.9)	[100]	Q	_	30.5)	[100]	ON	_	6.67)	[50]
beta-BHC	QN	_	17.5)	[40]	Q	<u> </u>	47.9)	[100]	QN	_	43.2)	[100]	QN	_	9.44)	[20]
delta-BHC	ON	_	10.1)	[40]	N	_	27.6)	[100]	QN	_	24.9)	[100]	N		5.44)	[50]
gamma-BHC	ON	_	7.70)	[40]	Q	_	21.1)	[100]	QN	J	19.0)	[100]	ON		4.16)	[50]

() = Detection Limit

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, Galena Airport 1994.

SITE ID LOCATION ID SAMPLE ID

	MB - 85 - 22 - 604 - MB - 604 - 805	22		_	MB-SS-23	23		g 09	P0 P0-SS-01	11		4 709	P0 P0-SS-02	2	
PARAMETER	0 - 0.5	.5		-	0 - 0	0.5		r D	0 - 0	0.5		D	0 - 0.5	20.5	
	(mg/kg)	1 1 ! 1 1 1 1	; ; ; ; ; ;	 	 	 	! ! !	0.00	-	5.00)	[5]	0.00	· · · · · ·	5.00)	[5]
AK102 - Diesel Range Organics (mg/kg) Diesel Range Organics	/kg) NA			N				21.0	_	4.00)	[1]	8.00	J	4.00)	[1]
SW8080 - Organochlorine Pesticides and PCBs	and PCBs (ug/kg)														
4,4'-000		3.63)	[10]	146	_	4.34)	[10]	3.87 P	_	0.368)	[1]	9.80 P	_	0.352)	Ξ
4,4'-DDE	22.6	4.18)	[10]	19.4	_	5.00)	[10]	0.911	_	0.424)	Ξ	1.75	_	0.405)	Ξ
4,4'-DDT	72.2 (4.45)	[10]	116	_	5.33)	[10]	18.3	_	0.452)	Ξ	75.7	_	0.432)	Ξ
Aldrin) QN	2.90)	[10]	24.4	_	5.97)	[10]	QN	Ų	0.295)	Ξ	QN	_	0.282)	Ξ
Chlordane) Q	24.2)	[10]	8	_	28.9)	[10]	Q	_	2.45)	=	2	_	2.34)	Ξ
Dieldrin) ON	4.94)	[10]	13.2	_	4.07)	[10]	ON	_	0.501)	Ξ	2.87	J	0.330)	Ξ
Endosulfan I	4.54 KJ (5.44)	[10]	QN	_	3.12)	[10]	ON	_	0.264)	Ξ	Q	_	0.253)	[1]
Endosulfan II) ON	4.57)	[10]	Q	_	5.47)	[10]	ON	_	0.464)	Ξ	Q	_	0.443)	[1]
Endosulfan Sulfate) ON	6.04)	[10]	QN	_	7.22)	[10]	QN	_	0.612)	Ξ	Q	_	0.585)	Ξ
Endrin	2.14 KJB (9.20)	[10]	1.28	PJB (11.0)	[10]	QN	_	0.934)	Ξ	S	Ų	0.893)	Ξ
Endrin Aldehyde) ON	7.60)	[10]	QN	_	8.63)	[10]	QN	Ų	0.771)	[1]	S	Ų	0.737)	Ξ
Heptachlor) QN	6.58)	[10]	0.804	_ ⊋	9.37)	[10]	0.297 KJ	_	0.795)	Ξ	0.354 KJ	_	0.760)	Ξ
Heptachlor epoxide) QN	11.4)	[10]	R	_	13.6)	[10]	ON	_	0.232)	Ξ	QN	J	0.222)	Ξ
Methoxychlor) ON	48.0)	[10]	2	_	57.4)	[10]	ON	_	4.87)	Ξ	Q	_	4.65)	Ξ
PCB-1016) QN	38.9)	[10]	9	_	46.6)	[10]	ON	_	3.95)	Ξ	Q	_	3.78)	Ξ
PCB-1221) ON	35.0)	[10]	2	_	41.9)	[10]	QN	_	3.55)	Ξ	QN	_	3.39)	Ξ
PCB-1232) ON	88.5)	[10]	S	_	106)	[10]	ON	_	8.97)	Ξ	Q.	J	8.58)	Ξ
PCB-1242) ON	32.4)	[10]	Q	_	38.7)	[10]	ON	_	3.29)	Ξ	QN	_	3.14)	Ξ
PCB-1248) ON	38.3)	[10]	S	_	45.9)	[10]	QN	_	3.89)	Ξ	Q.	_	3.72)	Ξ
PCB-1254) ON	15.4)	[10]	Q.	_	18.4)	[10]	ON	_	1.56)	Ξ	Q	_	1.49)	Ξ
PCB-1260) ON	42.6)	[10]	S	_	51.0)	[10]	QN	_	4.32)	Ξ	ᄝ	_	4.13)	Ξ
Toxaphene) QN	68.5)	[10]	QN	<u> </u>	81.9)	[10]	QN	_	6.94)	[1]	Q	_	6.64)	Ξ
Compiled: 15 March 1995 ()) = Detection Limit		= Dilution Factor		ND = Not	Not Detected	NA	= Not Applicable	*	- Value	considered	Value considered suspect, Refer to QC Report	Refer t	o QC Repo	ort

						SIT LOCAT	SITE ID LOCATION ID SAMPLE IN									
					BEG. C	EPTH -	DEPTH - END DEPTH (FT.)	l (FT.)								
		₩				WB WB				9				D0		
	39	MB-SS-22 G94-MB-SS-22	-22 SS-22			MB-SS-23 G94-MB-SS-23	-23 SS-23			P0-SS-01 G94-P0-SS-01	-01 SS-01			P0-SS-02	-02	
PARAMETER		0 - 0.5	0.5			1 0	~ 0.5			- 0	- 0.5			0 - 0.5	0.5	
SW8080 - Organochlorine Pesticides and PCBs,		cont.	(ug/kg)	!!!!!!!!	! ! ! ! !	1	1 1 1	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; ; ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	!	
alpha-BHC	QN	_	3.48)	[10]	9	_	4.16)	[10]	QN	J	0.353)	[1]	Š	_	(725 0	Ξ
beta-BHC	QN	_	4.92)	[10]	S	_	5.88)	[10]	QN		0.499)	ΞΞ	2		0.477)	ΞΞ
delta-BHC	QN	_	2.83)	[10]	Q	_	3.39)	[10]	QN	. <u> </u>	0.287)	ΞΞ	2		0.275)	ΞΞ
ganma-BHC	ND	_	2.17)	[10]	71.4	_	2.59)	[10]	QN		0.220)	ΞΞ	1.16		0.210)	ΞΞ
SW8240 - Volatile Organics (ug/kg)																
	NA				ĄN				C N	_	1 91)	[1]	S	,	,	
1,1,2,2-Tetrachloroethane	AN				Y W				2 5		1.31)	3 5	⊋ ⊊	٠,	1.80)	ΞΞ
1,1,2-Trichloroethane	NA				AN				2 €		1.56)		O E	_ <	4.90)	ΞΞ
1,1-Dichloroethane	NA				NA				2	<i>-</i> _	1.75)	ΞΞ	2 2		1.47)	ΞΞ
1,1-Dichloroethene	NA				NA				2	۔ ۔	2.62)	ΞΞ	2 2		2.48)	ΞΞ
1,2-Dichloroethane	NA				NA				QN		1.78)	ΞΞ	Q.		1.68)	ΞΞ
1,2-Dichloropropane	NA				NA				N N		2.68)	Ξ	QN	<i>-</i> _	2.53)	ΞΞ
2-Chloroethyl vinyl ether	NA				NA				9	_	2.93)	Ξ	QN		2.76)	ΞΞ
2-Hexanone	NA				NA				N	J	0.981)	[1]	QN		0.926)	
4-Methyl-Z-Pentanone(MIBK)	AN .				NA				QN	_	0.936)	[1]	Q	_	0.884)	ΞΞ
Benzene	4 × ×				A S				9.28		1.54)	Ξ	8.19	_	1.45)	[1]
Bromodichloromethane	NA				X X				<u> </u>		1.//)	ΞΞ	2 9	_ <	1.67)	ΞΞ
Bromomethane	AM				NA				2		2.06)	ΞΞ	2 5		1.36)	ΞΞ
Carbon disulfide	NA				NA			•	QN		2.65)		9 9		2 50)	ΞΞ
Carbon tetrachloride	AN				NA				S		2.04)	ΞΞ	2	_	1.93)	ΞΞ
Chlorobenzene	NA				NA				9	_	4.75)	Ξ	2	_	4.49)	ΞΞ
Chloroethane	NA				NA				N	_	2.09)	Ξ	2		1.98)	ΞΞ
Chloroform	N A				A				QN	_	2.14)	Ξ	2		2.02)	ΞΞ
Chloromethane	NA				NA				QN N	_	2.49)	Ξ	9		2.35)	ΞΞ
Dibromochloromethane	NA				NA				2	_	1.87)	Ξ	QN		1.77)	ΞΞ
Ethyl benzene	NA				A				ND	_	1.69)		Q		1.60)	[1]

[] = Dilution Factor () = Detection Limit

ND = Not Detected

NA = Not Applicable * - Value considered suspect, Refer to ቢር Report

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, Galena Airport 1994.

SITE ID LOCATION ID SAMPLE ID

	MB MB-SS-22 G94-MB-SS-22	22	æ.ss-⊕	P0- 694-P			.	5 85 6	02 S-02	
PAKAMETEK	C.U = U		0 - 0.5	O	- 0.5) 	0.5	
SW8240 - Volatile Organics, cont.	t. (ug/kg)]] 	t t t t t t t	! ! !
Methyl ethyl ketone	NA	NA) QN	1.56)	Ξ	N _O	J	1.47)	Ξ
Methylene Chloride	NA	NA		1.89 J	2.67)		3.89		2.52)	Ξ
Styrene	NA	NA		ON ON	1.66)	Ξ	8		1.56)	Ξ
Tetrachloroethene	NA	NA		ON ON	4.86)	Ξ	8		4.59)	Ξ
Toluene	NA	NA		ON ON	1.74)	Ξ	S	_	1.64)	Ξ
Tribromomethane(Bromoform)	NA	NA		ON ON	1.55)	Ξ	S		1.46)	Ξ
Trichloroethene	NA	NA		ON ON	4.97)	Ξ	Q	_	4.69)	Ξ
Vinyl Chloride	NA	NA .		ON ON	2.12)	[1]	Q.	_	2.00)	Ξ
Vinyl acetate	NA	NA) QN	11.2)	[1]	9	_	10.6)	[1]
Xylene (total)	NA	NA) QN	3.72)	Ξ	Q.	_	3.52)	Ξ
cis-1,2-Dichloroethene	NA	NA		ON ON	1.93)	Ξ	S	J	1.83)	Ξ
cis-1,3-Dichloropropene	NA	NA) ON	1.64)	Ξ	QN	J	1.55)	Ξ
trans-1,2-Dichloroethene	NA	NA) QN	2.38)	Ξ	9	J	2.25)	[]
trans-1,3-Dichloropropene	NA	NA) ON	1.78)	[1]	N	_	1.68)	[1]
			~							
rganıcs	(6/6n)									
1,2,4-Trichlorobenzene	NA	NA) QN	0.00775)	Ξ	9	_	0.00738)	Ξ
1,2-Dichlorobenzene	NA	NA) QV	0.0259)	Ξ	2	_	0.0247)	Ξ
1,3-Dichlorobenzene	NA	NA) QN	0.0288)	Ξ	2	J	0.0274)	[1]
1,4-Dichlorobenzene	NA	NA) ON	0.0286)	Ξ	9	J	0.0272)	Ξ
2,4,5-Trichlorophenol	NA	NA) QN	0.0237)	Ξ	9	J	0.0225)	Ξ
2,4,6-Trichlorophenol	NA	NA) QN	0.0196)	Ξ	9	_	0.0187)	[1]
2,4-Dichlorophenol	NA	NA) ON	0.0235)	Ξ	2	J	0.0223)	Ξ
2,4-Dimethylphenol	NA	NA) QN	0.0513)	[]	8	J	0.0488)	Ξ
2,4-Dinitrophenol	NA	NA) QN	0.105)	[1]	N N	_	0.0996)	Ξ
2,4-Dinitrotoluene	NA	NA) QN	0.0311)	Ξ	9	_	0.0296)	Ξ
2,6-Dinitrotoluene	NA	NA		ON ON	0.0424)	Ξ	2	_	0.0404)	Ξ
2-Chloronaphthalene	NA	NA) ON	0.0363)	[1]	ND	_	0.0346)	Ξ
Compiled: 15 March 1995	() = Detection Limit	[] = Dilution Factor	ND = Not Detected	NA = Not Applicable	* - Value	considered	Value considered suspect,		Refer to QC Report	ort
									A1	A15-13

SITE ID LOCATION ID SAMPLE ID

	MB MB-SS-22	MB MB-55-23	6	P0 P0-55-01			0d	2	
	G94-MB-SS-22	G94-MB-SS-23	- 694 -	G94-P0-SS-01		Č	PU-SS-02 694-PO-SS-02	-02 -03	
PARAMETER 	0 - 0.5	0 - 0.5	Ü	0 - 0.5		i	0 - 0.5	ı.c	
SW8270 - Semivolatile Organics, cont.	(6/gn)				! !	1			
2-Chlorophenol	NA	NA	ON.	(0.0132)	[1]	S	_	0.01261	Ξ
2-Methylnaphthalene	NA	A	QN	(0.0244)		2 8		0.0123)	ΞΞ
2-Methylphenol	NA	NA	QN	(0.0319)	ΞΞ	2 2	· ·	0.0304)	ΞΞ
2-Nitroaniline	NA	NA	ON	(0.0323)	Ξ	2	0	0.0307)	3 =
2-Nitrophenol	NA	NA	ND	(0.0172)	Ξ	9	· ·	0.0163)	ΞΞ
3,3'-Dichlorobenzidine	NA	NA	ND	(0.0440)	[1]	S		0.0419)	ΞΞ
3-Nitroaniline	NA	NA	QN	(0.0130)	[1]	QN	0	0.0124)	Ξ
4,6-Dinitro-2-methylphenol	NA	NA	ON	(0.0295)	Ξ	Q	0	0.0281)	Ξ
4-Bromophenyl phenyl ether	NA	NA	ND	(0.0246)	[1]	QN	°	0.0235)	Ξ
4-Chloro-3-methylphenol	NA	NA	QN	(0.0185)	[1]	ND	0	0.0176)	Ξ
4-Chlorophenyl phenyl ether	NA	NA	ON	(0.0296)	[1]	QN	0	0.0282)	Ξ
4-Methylphenol/3-Methylphenol	NA	NA	QN	(0.0501)	[1]	QN	0	0.0477)	Ξ
4-Nitroaniline	NA	NA	QN	(0.0242)	[1]	NO	0	0.0230)	Ξ
4-Nitrophenoi	NA	NA	QN	(0.0255)	Ξ	QN	0	0.0243)	Ξ
Acenaphthene	NA	NA	QN	(0.0195)	[1]	QN	0	0.0185)	Ξ
Acenaphthylene	NA	NA	QN	(0.0266)	Ξ	S	0)	0.0253)	
Anthracene	NA:	NA	QN	(0.0218)	Ξ	2	0	0.0207)	Ξ
benzo(a)anthracene	NA::	NA	QN	(0.0141)	Ξ	Q	0	0.0134)	Ξ
benzo(a)pyrene	NA	NA	QN	(0.0218)	[1]	S	0	0.0208)	Ξ
Denizo(D): Luoranthene	AN .	YN:	QN	(0.0387)	Ξ	2	0	0.0369)	[1]
penzo(g,n,l)perylene	YN YN	V.	QN	(0.0224)	Ξ	R	0	0.0213)	Ξ
benzo(K)Iluorantnene	NA	NA	QN	(0.0331)	[1]	S	0	0.0315)	Ξ
benzolc acid	NA:	NA	QN	(0.121)	Ξ	N ON	_	0.115)	[1]
Benzyi alcohol	AM	NA	QN	(0.0582)	Ξ	N Q	0	0.0554)	Ξ
Butyibenzyiphthalate ol	NA	NA	ON	(0.0303)	Ξ	S	0	0.0289)	Ξ
Chrysene	NA	NA	QN	(0.0236)	[1]	N N	0	0.0225)	Ξ
Ui-n-octy phthalate	NA	NA	ND	(0.0235)	[1]	Q.)	0.0224)	Ξ
Dibenz(a,h)anthracene	NA	NA	QN	(0.0276)	[1]	ND	0	0.0263)	

* - Value considered suspect, Refer to QC Report [] = Dilution Factor ND = Not Detected NA = Not Applicable () = Detection Limit Compiled: 15 March 1995

ALL RESULTS OF ORGANIC ANALYSES FOR SOIL SAMPLES, Galena Airport 1994.

SITE ID LOCATION ID SAMPLE ID

	WB WB	WB WB	PO		PO	
	MB-SS-22	MB-SS-23	PO-SS-01		P0-SS-02	
	G94-MB-SS-22	G94-MB-SS-23	G94-P0-SS-01	69	G94-P0-SS-02	
PARAMETER	0 - 0.5	0 - 0.5	0 - 0.5		0 - 0.5	
SW8270 - Semivolatile Organics, cont.	(ng/g)					
Dibenzofuran	NA	NA	ND (0.0158) [1]	QN	(0.0150)	[]
Dibutylphthalate	NA	NA	ND (0.0125) [1]		(0.0119)	Ξ
Diethylphthalate	NA	NA	(0.0149)		(0.0142)	Ξ
Dimethylphthalate	NA	NA	ND (0.0190) [1]		(0.0181)	Ξ
Diphenylamine	NA	NA	(0.0309)	QN	(0.0294)	Ξ
Fluoranthene	. AN	NA	(0.0172)		(0.0163)	Ξ
Fluorene	NA	NA	(0.0139)		(0.0133)	Ξ
Hexachlorobenzene	NA	NA	(0.0213)	QN	(0.0203)	Ξ
Hexachlorobutadiene	NA	NA	(0.0265)		(0.0253)	Ξ
Hexachlorocyclopentadiene	NA	NA	(0.0662)	ON N	(0.0631)	Ξ
Hexachloroethane	NA	NA	(0.0404)		(0.0385)	Ξ
Indeno(1,2,3-cd)pyrene	NA	NA	ND (0.0194) [1]		(0.0185)	Ξ
Isophorone	NA	NA	(0.0122)	QN	(0.0116)	Ξ
N-Nitroso-di-n-propylamine	NA	NA	(0.0317)	QN	(0.0302)	Ξ
Naphthalene	NA	NA	(0.0270)		(0.0257)	Ξ
Nitrobenzene	NA	NA	(0.0157)		(0.0150)	Ξ
Pentachlorophenol	NA	NA	(0.00775)		(0.00738)	[1]
Phenanthrene	NA	NA	(0.0224)		(0.0213)	[1]
Phenol	NA	NA	(0.0408)	ON .	(0.0388)	Ξ
Pyrene	NA	NA	ND (0.0187) [1]	QN	(0.0178)	Ξ
bis(2-Chloroethoxy)methane	NA	NA	(0.0135)	QN	(0.0128)	Ξ
bis(2-Chloroethyl)ether	NA	NA	ND (0.0188) [1]	QN	(0.0179)	Ξ
bis(2-Chloroisopropyl)ether	NA	NA	(0.0231)	ON	(0.0220)	[1]
bis(2-Ethylhexyl)phthalate	NA .	NA	(0.0662)	0.103	(0.0631)	Ξ
p-Chloroaniline	AN	NA	ND (0.0396) [1]	QN —	(0.0377)	Ξ

	PARAMETER	ASTMD2216 - Modified (percent) Percent moisture
	1 01-HA-11 G94-01-HA-11-01 0 - 0.5	7.72 (0.00) [1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	1 01-HA-11 694-01-HA-11-02 4.5 - 5	26.7 (0.00) [1]
	1 01-HA-12 G94-01-HA-12-01 0 - 0.5	7.69 (0.00) [1]
	1 01-HA-12 G94-01-HA-12-02 4.5 - 5	26.3 (0.00)

Ξ

	DD DD-SS-02 G94-DD-SS-02 0 - 0	8.71 (0.00) [1]
	DD DD-SS-01 G94-DD-SS-01 0 - 0	89
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	1 01-HA-13 G94-01-HA-13-02 4.5 - 5	[1]
	1 01-HA-13 G94-01-HA-13-01 0 - 0.5	11.4 (0.00) [1]
	PARAMETER	ASTMD2216 - Modified (percent) Percent moisture

() = Detection Limit [] = Dilution Factor ND = Not Detected

NA = Not Applicable

* - Value considered suspect, Refer to QC Report A16-2

DD DD DD MB-SS-03					PARAMETER	ASTMD2216 - Modified (percent) Percent moisture
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) DD DD-SS-04 G94-DD-SS-05 0 - 0			-00	G94-D	0	11.3 (
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.) DD DD-SS-04 G94-DD-SS-05 0 - 0		00	SS-03	0-88-03	0 -	0.00)
SITE ID LOCATION ID SAMPLE ID EG. DEPTH - END DEPTH (FT.) DD DD-SS-04 G94-DD-SS-05 0 - 0 0 - 0 0 - 0 0 - 1 13 (0.00) [1] 7.89 (0.00) [1] 8.95						Ξ
SITE ID SAMPLE ID H - END DEPTH (FT.) DD D-SS-04 D0-SS-04 C0 - 0 C0 - 0 (0.00) [1] 7.89 (0.00) [1] 8.95	BEG. DEP			69		1 7
DD DD-SS-05 G94-DD-SS-05 0 - 0 7.89 (0.00) [1] 8.95	SITE IC LOCATION SAMPLE I	8	00-55-04	DD-SS-04 4-DD-SS-04 0 - 0	-	
DD DD-SS-05 G94-DD-SS-05 0 - 0 7.89 (0.00) [1] 8.95	ı)4		(00)
DD DD-SS-05 MB G94-DD-SS-05 G94-DD-SS-05 G94-D-SS-05 G						
MB G94-0			00	694-		! ი
MB G94-0		00	0-SS-05		0 - 0	(00.00)
MB MB-SS-01 G94-MB-SS-01 0 - 0.5						[1]
MB MB-SS-01 4-MB-SS-01 0 - 0.5 (0.00)				69		8.95
11		叟	MB-SS-01	4-MB-SS-0	0 - 0.5	
				11		.00)

	MB MB-SS-05 G94-MB-SS-05 0 - 0.5	3.17 (0.00) [1]
	MB-SS-04 G94-MB-SS-04 0 - 0.5	11.6 (0.00) [1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	MB-SS-03 G94-MB-SS-03 0 - 0.5	9.60 (0.00) [1]
	MB-SS-02 G94-MB-SS-02 0 - 0.5	9.34 (0.00) [1]
	PARAMETER	ASTMD2216 - Modified (percent) Percent moisture

	MB MB-SS-08 G94-MB-SS-09 0 - 0.5	
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH (FT.)	MB MB-SS-07 G94-MB-SS-07 0 - 0.5	20.8
	MB MB-SS-06 G94-MB-SS-06 0 - 0.5	30.3 (0.00) [1]
	PARAMETER	ASTMD2216 - Modified (percent) Percent moisture

	MB-SS-13 G94-MB-SS-13 0 - 0.5	13.8 (0.00) [1]
	MB-SS-12 G94-MB-SS-12 0 - 0.5	13.1 (0.00) [1]
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	MB-SS-11 G94-MB-SS-11 0 - 0.5	13.1 (0.00) [1]
	MB-SS-10 G94-MB-SS-10 0 - 0.5	7.89 (0.00) [1]
	PARAMETER ASTMD216 - Modified (nercent)	Percent moisture

ND = Not Detected [] = Dilution Factor () = Detection Limit

NA = Not Applicable

* - Value considered suspect, Refer to QC Report

	MB MB-SS-17 G94-MB-SS-17 0 - 0.5	6.34 (0.00) [1]
•	MB-SS-16 G94-MB-SS-16 0 - 0.5	
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	MB-SS-15 G94-MB-SS-15 0 - 0.5	
	MB-SS-14 G94-MB-SS-14 0 - 0.5	20.0 (0.00) [1]
	PARAMETER	- Modified (percent) oisture

	Ξ	
	21 5-21 5 0.00)	
	MB-SS-21 G94-MB-SS-21 0 - 0.5	
	MB-SS-21 G94-MB-SS-2 0 - 0.5	
	MB SS-20 MB-SS-20 0.5 	
	MB-SS-20 G94-MB-SS-20 0 - 0.5	
	MB 694- 0 0 5.72	
(FT.)	,	
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	(00)	
SITE ID LOCATION ID SAMPLE ID PTH - END DEP	MB-SS-19 G94-MB-SS-19 0 - 0.5	
BEG. DE	69	
	3 -18 5 0.00) [1]	
	MB-SS-18 G94-MB-SS-18 0 - 0.5	
	MB MB-SS-18 G94-MB-SS-18 0 - 0.5 7.51 (0.00) [1]	
	PARAMETER ASTMD2216 - Modified (percent) Percent moisture	
	PA AST Pe	

() = Detection Limit [] = Dilution Factor \cdot ND = Not Detected NA = Not Applicable

* - Value considered suspect, Refer to QC Report

A16-8

	PARAMETER	ASTMD2216 - Modified (percent) Percent moisture	SW6010 - Metals (mg/kg)	Aluminum	Antimony	Arsenic	Beryllium	Cadmium	Calcium	Chromium	Cobalt	Copper	Iron	Lead	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Selenium	Silver	Sodium	Thallium	Vanadium	Zinc
	ME 694-	16.4		NA :	K K	Y V	¥	AN	NA	NA	NA	NA	NA	NA	NA	ΝΑ	NA	NA	۸A	NA	NA	NA	NA	NA	NA
SITE ID LOCATION ID SAMPLE ID BEG. DEPTH - END DEPTH (FT.)	MB-SS-22 G94-MB-SS-22 0 - 0.5	_																							
	-22	0.00)																							
		Ξ																							
	Ü	31.3		AN :	4 2	Z Z	N A	NA	AN	NA	NA	N A	NA	AA	ΑN	¥	NA	AN	AN	NA	AN	NA	NA	NA	NA
	MB-SS-23 G94-MB-SS-23 0 - 0.5	_																							
	:3 23 5	0.00)																							
		[1]																							
	ĕ	17.8			-4.40	147	0.310	-0.00278 J	15200	20.3	9.04	17.1	18500	3.74	7040	317	-0.117 J	24.3	1060	-8.50 J	-0.599 J	376	-7.61 JB	36.6	53.2
	P0 P0-SS-01 G94-P0-SS-01 0 - 0.5	_		<u> </u>				. <u> </u>	_	_	J	_	_	_	_	_	_	_	_	_	J	J) 8	_	_
	-01 SS-01	0.00)		2.56)	5.44)	3.66)	0.0306)	0.346)	1.27)	0.183)	0.500)	0.466)	0.473)	1.97)	8.94)	0.457)	0.356)	1.06)	40.9)	5.42)	0.411)	2.83)	5.72)	0.272)	0.322)
		[3]		ΞΞ	ΞΞ	ΞΞ	ΞΞ	Ξ	Ξ	[]	Ξ	Ξ	Ξ	[]	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ
	IJ	13.8			1.22 J	0.00	0.322	0.507	14500	19.8	9.17	17.3	18900	4.20	0069	342	0.559	24.1	1040	-8.95 J	-0.311	366	-4.03	36.2	53.1
	P0 P0-SS-02 G94-P0-SS-02 0 - 0.5	_		<u> </u>					_	J	J	_	_	J	_	_	_	_	_	_	_	_	JB (_	_
	02 S-02 .5	0.00)		2.60)	5.53)	3.67)	0.0310)	0.351)	1.29)	0.186)	0.508)	0.474)	0.480)	2.00)	9.08)	0.465)	0.362)	1.08)	41.6)	5.51)	0.418)	2.88)	5.80)	0.276)	0.327)
		Ξ		Ξ3	Ξ3	ΞΞ	ΞΞ	ΞΞ	Ξ	Ξ	[1]	Ξ	Ξ	Ξ	Ξ	Ξ	[1]	Ξ	[1]	Ξ	Ξ	[1]	[1]	Ξ	Ξ

END

OF DOCUMENT AS RECEIVED BY DTIC