

Taller Prolog 5 Aritmética, I/O, Recursividad

Operaciones Artiméticas

El operador '=' se utiliza en Prolog para unificar expresiones, pero no evalúa expresiones aritméticas.

Para *evaluar* el valor de una expresión aritmética se utiliza el operador 'is'. Así por ejemplo:

```
imlon@MS-7850: ~
jmlon@MS-7850:~$ swipl
Welcome to SWI-Prolog (Multi-threaded, 64 bits, Version 6.6.6)
Copyright (c) 1990-2013 University of Amsterdam, VU Amsterdam
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.
For help, use ?- help(Topic). or ?- apropos(Word).
?- X is 5+2^3, Y is 7-4/2, Z is 3*5.
X = 13,
Y = 5,
Z = 15.
?- X is abs(-1), Y is pi/2, Z is sin(Y).
Y = 1.5707963267948966,
Z = 1.0.
? -
```

Se pueden incorporar expresiones dentro de reglas, por ejemplo para calcular la distancia X de un móvil que se desplaza a velocidad constante V por un tiempo T, se utiliza la expresión

```
X = V*T
```

En Prolog la podemos definir como la regla:

```
% distancia/2 : Calcula la distancia recorrida por un móvil a velocidad V durante un tiempo T distancia(V,T,X) :- X is V*T.
```

Entradas y salidas (Input/Output)

Prolog define los predicados write/1 y read/1 que leen y escriben respectivamente <u>un átomo</u> desde la consola de consultas. Adicionalmente, existen algunos predicados que facilitan dar formato a la salida, especificamente:

tab/1: Hace una tabulación del número de espacios indicados.

n1/0: Hace que el cursor pase a la siguiente línea (new line).

Por ejemplo el siguiente prodecimiento permite calcular de forma interactiva la distancia recorrida por un móvil:

% distancia/0: Calcular la distancia recorrida por un móvil de forma interactiva

Ejercicio 1

1. En trigonometría la <u>ley de cosenos</u> relaciona un lado de un triángulo con los lados adyacentes y el ángulo opuesto.

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(\gamma)$$

Definir un procedimiento lado0puesto/4 que tome como entradas las longitudes de de los lados a,b, el ángulo opuesto γ , y que devuelva la longitud del lado c. Hacer un par de consultas ilustrando el uso del procedimiento lado0puesto.

2. Hacer una versión interactiva de lado0puesto/0 que pregunte al usuario los valores a,b, γ e imprima en pantalla el lado c.

Ilustrar la correcta operación del procedimiento con los mismos casos considerados en el punto 3.

Procedimientos recursivos

Se pueden definir procedimientos recursivos por medio de reglas que definan uno o varios casos base (e.g. para n=0) y reglas recursivas que manejen los demás casos.

Por ejemplo, la función factorial se define recursivamente así:

$$factorial(n) = \begin{bmatrix} 1 & n=0 \\ n*factorial(n-1) & n>0 \end{bmatrix}$$

Se puede implementar mediante el siguiente procedimiento recursivo:

% factorial/2 : Calcula factorial de n recursivamente

% arg1 = valor n

% arg2 = Resultado n!

factorial(0.1) :- !.

factorial(N, X) :- M is N-1, factorial(M, Y), X is N*Y.

El símbolo ! se utiliza en Prolog para indicar un corte. Cuando la evaluación de una regla llega a un corte, el Prolog no evaluará otras reglas o hará retrocesos a metas anteriores al corte.

Ejercicio 2

Leonardo de Pisa (más conocido como Fibonacci) descubrió <u>la secuencia de Fibonacci</u>:

la cual tiene innumerables aplicaciones para describir todo tipo de fenómenos naturales.

La secuencia se puede definir recursivamente observando que siempre empieza en 0,1 y que de ahí en adelante todo término es la suma de los dos que le preceden. En forma de recurrencia, la sucesión se define así:

$$fib(n) = \begin{cases} n & n = 0,1 \\ fib(n-1) + fib(n-2) & n \ge 2 \end{cases}$$

- a) Definir un procedimiento recursivo fib/2 que dado un valor n calcule el correspondiente número de fibonacci.
- b) Ilustrar el correcto funcionamiento calculando fib(N,F) para n=1,3,8,15,50. Comprobar que la respuesta obtenida sea correcta.
- c) Hacer un procedimiento interactivo fib/0 que le pregunte al usuario el término N que desea obtener y le muestre en pantalla el número de fibonacci correspondiente.
- d) Ilustrar el correcto funcionamiento de fib/0 con N=15, 0, -1, 3.5, hola.
- e) Si se presentan errores en (d), proponer una solución e implementarla en el procedimiento. Repetir las consultas y validar que el resultado es correcto.

Informe:

Enviar la base de datos (<NombreApellido>-<ID>-bd5.pl) y el informe incluyendo todas las consultas solicitadas (<NombreApellido>-<ID>-consultas5.txt).

No olvidar documentar apropiadamente los hechos y reglas en la base de datos.