Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Outline

- Modes in distributions
- Mode collapse in GANs
- Intuition behind it during training

Fakes that fooled the discriminator

Fakes

Fakes that fooled the discriminator

Summary

- Modes are peaks in the distribution of features
- Typical with real-world datasets
- Mode collapse happens when the generator gets stuck in one mode

Problem with BCE Loss

Outline

- BCE Loss and the end objective in GANs
- Problem with BCE Loss

BCE Loss in GANs

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$
Prediction

Parameters

Maximize cost

Discriminator Cost

Objective in GANs

Objective in GANs

Make the generated and real distributions look similar

BCE Loss in GANs

Criticizing is more straightforward

Single output

Easier to train than the generator

Complex output

Difficult to train

Often, the discriminator gets better than the generator

Problems with BCE Loss

Problems with BCE Loss

Problems with BCE Loss

Summary

- GANs try to make the real and generated distributions look similar
- When the discriminator improves too much, the function approximated by BCE Loss will contain flat regions
- Flat regions on the cost function = vanishing gradients

Outline

- Earth Mover's Distance (EMD)
- Why it solves the vanishing gradient problem of BCE Loss

Effort to make the generated distribution equal to the real distribution

Depends on the distance and amount moved

Summary

- Earth mover's distance (EMD) is a function of amount and distance
- Doesn't have flat regions when the distributions are very different
- Approximating EMD solves the problems associated with BCE

Wasserstein Loss

Outline

- BCE Loss Simplified
- W-Loss and its comparison with BCE Loss

BCE Loss Simplified

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

Minimize cost

Maximize cost

$$J(\theta) = \begin{bmatrix} \frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \end{bmatrix}$$

$$\min_{d} \max_{q} - \left[\mathbb{E}(\log (d(x))) + \mathbb{E}(y^{(i)} + \mathbb{E}(y^{(i)}) \right]$$

Minimize cost

Maximize cost

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta))$$

$$\min_{d} \max_{g} - \left[\mathbb{E}(\log (d(x))) + \mathbb{E}(1 - \log (d(g(z)))) \right]$$

Minimize cost

Maximize cost

W-Loss approximates the Earth Mover's Distance

W-Loss approximates the Earth Mover's Distance

$$\min_{g} \max_{c} \ \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

W-Loss approximates the Earth Mover's Distance

$$\min_{q} \max_{c} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

Maximize the distance

W-Loss approximates the Earth Mover's Distance

Discriminator Output

Discriminator output

 $z^{[l]} \ge 0$ 0.5 $z^{[l]} < 0$ Values
between 0
and 1

Discriminator output

Discriminator Output

Discriminator output

Discriminator output Critic

W-Loss vs BCE Loss

BCE Loss

W-Loss

Discriminator outputs between 0 and 1

$$-\left[\mathbb{E}(\log (d(x))) + \mathbb{E}(1 - \log (d(g(z))))\right]$$

Critic outputs any number

$$\mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

W-Loss helps with mode collapse and vanishing gradient problems

Summary

- W-Loss looks very similar to BCE Loss
- W-Loss prevents mode collapse and vanishing gradient problems

Condition on Wasserstein Critic

Outline

- Continuity condition on the critic's neural network
- Why this condition matters

$$\min_{g} \max_{c} \ \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

$$\min_{q} \max_{c} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

$$\min_{q} \max_{c} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z)))$$

Needs to be 1-Lipschitz Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

Critic needs to be 1-L Continuous

The norm of the gradient should be at most **1** for every point

1-L Continuous

W-Loss is valid

Needed for training stable neural networks with W-Loss

Summary

- Critic's neural network needs to be 1-L Continuous when using W-Loss
- This condition ensures that W-Loss is validly approximating Earth
 Mover's Distance

1-Lipschitz Continuity Enforcement

Outline

- Weight clipping and gradient penalty
- Advantages of gradient penalty

1-L Enforcement

Critic needs to be 1-L Continuous

Norm of the gradient at most 1

$$||\nabla f(x)||_2 \le 1$$

Slope of the function at most 1

1-L Enforcement: Weight Clipping

Weight clipping forces the weights of the critic to a fixed interval

Gradient descent to update weights

Clip the critic's weights

Limits the learning ability of the critic

$$\min_{g} \max_{c} \ \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \operatorname{reg}$$

Regularization of the critic's gradient

Real Random interpolation

$$\mathbb{E}(||\nabla c(\hat{x})||_2-1)^2$$
 Regularization term

$$\mathbb{E}(||\nabla c(\hat{x})||_2-1)^2$$
 Regularization term

$$\mathbb{E}(||\nabla c(\hat{x})||_2-1)^2$$
 Regularization term $\epsilon x + (1-\epsilon)g(z)$ Interpolation

$$\mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2 \quad \text{Regularization term}$$

$$\epsilon x + (1 - \epsilon)g(z) \quad \text{Interpolation}$$

Real

$$\mathbb{E}(||\nabla c(\hat{x})||_2-1)^2$$
 Reg $\epsilon x + (1-\epsilon)g(z)$

Generated

Regularization term

Interpolation

Real

Putting It All Together

$$\min_{\boldsymbol{q}} \max_{\boldsymbol{c}} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2$$

Putting It All Together

$$\min_{\boldsymbol{g}} \max_{\boldsymbol{c}} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2$$

Makes the GAN less prone to mode collapse and vanishing gradient

Putting It All Together

$$\min_{\boldsymbol{g}} \max_{\boldsymbol{c}} \mathbb{E}(c(x)) - \mathbb{E}(c(g(z))) + \lambda \mathbb{E}(||\nabla c(\hat{x})||_2 - 1)^2$$

Makes the GAN less prone to mode collapse and vanishing gradient

Tries to make the critic be 1-L Continuous, for the loss function to be continuous and differentiable

Summary

- Weight clipping and gradient penalty are ways to enforce 1-L continuity
- Gradient penalty tends to work better

