- 1. If you are on the waiting list, and still want to be added to the course, email me mengqian.lu@columbia.edu with subject [W4415 MSI] Waiting list
- 2. Syllabus available on CourseWorks, after each topic we will have a practical section, bring your laptop, I will send email reminder.
- 3. First assignment release today.
- 4. Data Visualization Weekend April 5 7th
 - 5th Keynote speaker
 - 6th students demo day (poster section) with keynote speakers (Visualization tool, software, research), Presentation
 - 7th Hands on workshops in 3 libraries
 - Proposal in Feb, final list in March
- 5. R open lab @ Columbia

COLUMBIA UNIVERSITY EVENTS

R Open Lab

Wednesday, January 27, 2016 10:00 AM - 12:00 PM

International Affairs Building 215 9

Drop by the Digital Social Science Center to build your skills in R, a free and open source language for statistical computing. Each week we'll have a 10 min tutorial on a dataset or package along with a couple hours of self-guided learning. Email dssc@library.columbia.edu to suggest a topic!

Contact: Julia Marden 212 854 5272

LOCATION:

MORNINGSIDE

TYPE:

OTHER WORKSHOP

CATEGORY:

SOCIAL SCIENCES LIBRARIES

EVENTS OPEN TO:

STUDENT STAFF FACULTY

R Open Labs

Jan 27 - Apr 20

Wednesdays, 10am to 12pm. 215 Lehman (Bringing personal laptops is highly recommended!)

6. TA Office Hours -- Haolei WENG (wenghlo7017@gmail.com)

where: Lounge room, 10th, SSW

when: 3:00-4:00pm, Monday & Wednesday.

7. A Question regarding Estimate of Quantiles from a student

Exploratory Data Analysis and Visualization for Multivariate Data Analysis II

Menggian LU

Visualizing categorical data: mosaicplot()

> table(video\$grade, video\$sex)

Female Male
F 0 0
D 0 0
C 8 0
B 21 31
A 9 22

Area is proportional to table entry

College students' Video Game

Chi-Square Test of Independence

	A=1	A=2	Total		
B=1	n ₁₁	n ₁₂	n_{1*}		
B=2	n_{21}	n_{22}	n_{2^*}		
	n_{*_1}	n_{*_2}	n		

H_o: A and B are independent; therefore

$$P(A = i \cap B = j) = P(A = i) \cdot P(B = j)$$

$$\approx \hat{P}(A=i) \cdot \hat{P}(B=j) = \frac{n_{*i}}{n} \cdot \frac{n_{j*}}{n} = \hat{\pi}_{ij}$$

Expected values in entries if H_0 is true: $E_{ij} = n \cdot \hat{\pi}_{ij}$

H_a: A and B are not independent.

How different are observed and expected values?

Pearson Chi-Square Statistics:

$$X^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
 Contribution of each cell to misfit

If H_0 is true, X^2 follows a Chi-Square distribution with degrees of if n is large and no empty cells DF = (I-1)(J-1)freedom:

Compute p-value & comparing to the significant level

Example: Haircolor and Eyecolor

Hair Color	Eye Color					
	Brown	Blue	Hazel	Green		
Black	68	20	15	5		
Brown	119	84	54	29		
Red	26	17	14	14		
Blond	7	94	10	16		

Library(vcd) #visualizing categorical data df = as.data.frame(HairEyeColor) tab = xtabs(Freq ~ ., data = df) structable(~ Hair + Eye, data = df) ## Mosaic plot with independence test mosaic(~ Hair + Eye, data = df, shade = TRUE)

Mosaic plot with independence test, color shading shows Pearson residuals

 $\frac{O_{ij} - E_{ij}}{\sqrt{E_{ij}}}$

Surprisingly small observed cell count

P-value of the test

Conditional Mosaic Plot with Shading

Any outlier?

No outlier in x or y

Theory of Mahalanobis Distance

$$f(x;\mu,\Sigma) = \frac{1}{\sqrt{2\pi|\Sigma|}} \exp\left(-\frac{1}{2} \cdot (x-\mu)^T \Sigma^{-1} (x-\mu)\right)$$
$$(x-\mu)^T \Sigma^{-1} (x-\mu) \sim \chi_p^2$$

Definition: chi-square distribution with *p* degrees of freedom is the distribution of a sum of the squares of *p* independent standard normal random variables

QQ-plot

Normal Q-Q Plot

qqplot(qchisq(ppoints(500), df = 3), rchisq(500, df = 3))
qqline(y, distribution = function(p) qchisq(p, df = 3), col=2)

Robust Estimates (Suggested Reading 1)

Robust Estimates

ETH Zürich

Robust Estimates

Robust Estimates

- Suggested reading 1 by Peter Filzmoser & Karel Hron
- R package: *mvoutlier* an interactive play for your to identify outliers

Outlier

Outliers > 2d?

I: Quantile of χ^2

- 1. Compute robustly estimated MD for each point;
- 2. Compute the 97.5% Quantile, Q, of the χ^2_p distribution
- 3. Samples with MD > Q are declared outliers

II: Adjusted Quantile for Outliers

- 1. Compare cdf of χ^2_p with the ecdf of samples at tails
- 2. Outliers have "abnormally large" deviations at tails
- 3. aq.plot() in R package mvoutlier

III: pcout() - trailer for PCA

- Robust principal components
- Complex, very much involved, very fast, especially good for high dimensions
- Yet, it is ready for you in R: *pcout()* in *mvoutlier*

Outlier detection based on pcout

Example: data(bsstop)_{768X46}

A Quick Summary

- Detecting multivariate outliers with
 - estimated Mahalanobis distance
 - QQ-plot
 - Chisq.plot, pcout (package('mvoutlier'))
- Technical details:
 - Estimated Mahalanobis Distance from sample
 - Use robust estimates for μ , Σ

More Examples of EDA-V

The Key to EDA is VISUALIZATION

SOME EXAMPLES

Package('plot3D')

Gridded data

4	0/2	A.										
~	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	V12
1	100	101	101	100	102	102	103	101	104	107	108	110
2	103	104	104	103	104	105	106	107	111	118	120	124
3	105	107	107	105	106	109	114	120	123	129	140	142
4	108	110	110	108	113	120	127	136	141	150	158	157
5	110	115	114	117	124	133	150	155	161	165	169	174
6	116	118	121	123	130	147	160	170	179	181	183	187
7	120	126	128	130	136	152	167	178	186	191	193	191
8	122	130	135	139	147	161	172	182	190	189	184	182
9	123	133	140	146	154	164	175	183	185	177	167	164
10	118	129	137	145	151	163	173	180	180	169	158	153
11	114	120	131	138	146	154	164	174	179	169	157	149
12	111	114	120	130	139	147	155	168	177	174	166	161
13	108	112	117	121	132	144	153	164	178	179	176	170
14	107	112	115	120	128	140	150	164	174	179	176	166
15	109	113	117	121	129	141	148	159	166	168	164	159
16	111	115	118	124	131	142	148	160	168	168	160	153
17	113	117	120	125	132	142	150	166	170	170	163	155
18	115	118	121	125	134	142	152	159	162	160	157	150
19	112	115	119	126	136	143	150	155	155	152	148	145
20	112	114	117	127	139	145	150	150	150	149	142	140
21	113	116	112	129	140	146	150	150	150	147	139	136

Numerous ways...

Location, date and time

Example: Traffic fatalities in Honolulu 2001 – 2009

Locations (start, finish), date and time

Example: Flights information from Munich Airport