A Bertini Density Theorem on Elliptic Surfaces

Ziquan Yang

August 14, 2015

1 Introduction

$$R_{3,d} = H^0(\mathbb{P}^2 \times \mathbb{P}^1, \mathcal{O}(3,d))$$

Theorem 1.1. When κ is algebraically closed, for almost all $f \in R_{3,d}$, H_f does not contain singular fibers other than nodal curves.

Notations

2 Dimension Counting

In this section, we prove Theorem 1.1. To simplify notation, we will write $V = R_{3,d}$ since d is fixed. Let $\tau_{\mathbb{P}^2}$ denote the tangent bundle of \mathbb{P}^2 . A point in $\mathbb{P}(\tau_{\mathbb{P}^2})$ can be denoted by (ℓ, Q) , where Q is point in \mathbb{P}^2 and ℓ is a line in the tangent plane of \mathbb{P}^2 at Q. Define subsets $\widetilde{\mathscr{R}}$ and $\widetilde{\mathscr{E}}$ of $\mathbb{P}(\tau_{\mathbb{P}^2}) \times \mathbb{P}^1 \times \mathbb{P}V$ by

$$\widetilde{\mathscr{R}} = \{()$$

References

- [1] B. Poonen, An explicit algebraic family of genus-one curves violating the Hasse principle, available at http://www-math.mit.edu/poonen/
- [2] D. Erman and M.M. Wood, Semiample Bertini theorems over finite fields, Duke Mathematical Journal 164(2015), no. 1, 1-38
- [3] B. Poonen, Bertini theorems over finite fields, Ann. of Math. (2) 160 (2004), no. 3, 1099-1127.