0				
	1	1	-	-
-	_	1	1	
-		JX	-	

P: puissance en walt	(vv)
U tension en volt ()	v.)	
1: comant en comper (A.))

1 /		
W.=	FX	t

w: energie en wathheuse

t: temps en heure

W=P*T(en h)=wattheur W=P*T(en s)= joule

Autres écritures possibles :

Relation sur les énergies :

Wa = Wu + Wp

Wa: énergie absorbée Wu: energie utili

Wp: energie perdire

Relation sur les puissancés :

Pa=Pu+Pp

Pa: puissance absorbée Pu: puissance utile Pp: puissance perdue

7=	Wu	
/	Wa	

Wu: energia utili Wa: esvergii akierbei η: sendement

n = Pu Pa Pu puissance absorber

Le rendement est en % (1 max)

U tension en volt (V)
I comant en ampois (A)
R résistance (A)

Autres écritures possibles :

$$R = \frac{U}{I}$$

I est = intensité

A partir de la relation P=UxI et de la loi d'ohm U=RxI on obtient :

LA LOI DE JOULE

P: Peissance en wat (w)
R: Révistance en ohm (2)

1: comant en ampir (A)

Autres écritures possibles :

Autre relation possible :

$$R = \frac{U^2}{P}$$

1A=1000ma 60ma=0,006A