FY2008 EQIP EXAMPLE

COMPLETED CROPPING SYSTEM SPEC SHEETS and EQIP 328/329/595 WORKSHEETS

DAIRY SCENARIO SHENANDOAH COUNTY

Before: 1 year rotation, corn silage NT/rye silage CT grown continuously for at least the past 5 years.

After: Producer agrees to establish vigorous stand of well-managed alfalfa hay and maintain it for at least three summers before eventually rotating back to corn or another annual crop.

On 9% C Slope Frederick silt loam.

EQIP PAYMENT RATES:

Crop Rotation (328) = \$100/ac/yr

40 acre commitment = \$12,000 over 3 years

EQIP DOCUMENTATION FOR THIS SCENARIO

- 1. Calculation of soil loss and Soil Conditioning Index for "before" and "after" situations is encouraged (see attached examples), but is <u>not</u> required for FY08 EQIP eligibility or EQIP case file.
- 2. Compeletion of Cropping System Spec Sheets for "before" and "after" situations is encouraged (see attached examples), but is <u>not</u> required for FY08 EQIP eligibility or EQIP case file.
- 3. The FY08 EQIP 328/329/595 Annual Cropping Systems Worksheet and Payment Calculator should *not* be completed.
- 4. In Toolkit and Protracts, select Practice 328, Narrative E040 (see next page).

EXHIBIT 4: EQIP-SPECIFIC TOOLKIT NARRATIVES & PROTRACTS COST LIST COMPONENT CODES FOR USE WITH ALL FY08 328, 329 & 595 CROP DIVERSITY PAYMENTS

		SELECT ONLY ONE NARRATIVE PER PRACTICE CODE!	
Practice	Narrative	Narrative Text	Payment Rate
Code	Code		(\$/ac/yr)
328	E001	Adopt a new cropping system that eliminates all fallow periods and qualifies as	\$25
		CONTINUOUS NO-FALLOW. New system must also qualify as Soil Organic Matter	
		(SOM) Building (soil loss to T and SCI +0.25 or greater).	
	E010	Adopt a new cropping system that (1) qualifies as Soil Organic Matter (SOM) Building (T	\$15
		and SCI +0.25 or greater); and (2) results in a ONE-LEVEL improvement in SCI-based	
	T011	SOM performance level compared to the "before" condition.	* 40
	E011	Adopt a new cropping system that (1) eliminates all fallow periods and qualifies as	\$40
		CONTINUOUS NO-FALLOW; and (2) results in a ONE-LEVEL improvement in SCI-	
	E020	based SOM performance level compared to the "before" condition.	\$20
	E020	Adopt a new cropping system that (1) qualifies as Soil Organic Matter (SOM) Building (T and SCI +0.25 or greater); and (2) results in a TWO-LEVEL improvement in SCI-based	\$30
		SOM performance level compared to the "before" condition. The new system SOM	
		performance level may be Intermediate (+0.50 or more) or Optimum (+0.75 or more).	
	E021	Adopt a new cropping system that (1) eliminates all fallow periods and qualifies as	\$55
	1021	CONTINUOUS NO-FALLOW; and (2) results in a TWO-LEVEL improvement in SCI-	Ψ33
		based SOM performance level compared to the "before" condition. The new system SOM	
		performance level may be Intermediate (+0.50 or more) or Optimum (+0.75 or more).	
	E030	Adopt a new cropping system that (1) qualifies as Soil Organic Matter (SOM) Building (T	\$45
		and SCI +0.25 or greater); and (2) results in a THREE-LEVEL improvement in SCI-based	
		SOM performance level compared to the "before" condition. The new system SOM	
		performance level must be Optimum (+0.75 or more).	
	E031	Adopt a new cropping system that (1) eliminates all fallow periods and qualifies as	\$70
		CONTINUOUS NO-FALLOW ; and (2) results in a THREE-LEVEL improvement in SCI-	
		based SOM performance level compared to the "before" condition. The new system SOM	
		performance level must be Optimum (+0.75 or more).	
	E040	Adopt a new crop rotation by establishing a PERENNIAL crop in a field that has been in	\$100
		annual crops for five years or more. Perennial must be maintained for at least three summers	
		and must achieve 90% cover within one year after establishment. Not intended for	
220	E001	permanent cropland conversion.	Φ2.5
329	E001	Adopt a new cropping system that eliminates all full-width tillage and qualifies as	\$25
		CONTINUOUS NO-TILL. New system must also qualify as Soil Organic Matter (SOM)	
505	E001	Building (soil loss to T and SCI +0.25 or greater).	¢1 <i>5</i>
595	E001	Adopt a cropping system with increased crop diversity. The change must result in a ONE-LEVEL improvement in diversity performance level compared to the "before" condition,	\$15
		with levels defined as: Minimum (at least 3 species, at least 1 legume); Intermediate (at least	
		5 species, at least 2 legumes); Optimum (at least 7 species, at least 3 legumes). Practice must	
		complement a cropping system that qualifies as Soil Organic Matter (SOM) Building (soil	
		loss to T and SCI +0.25 or greater).	
	E002	Adopt a cropping system with increased crop diversity. The change must result in a TWO -	\$30
		LEVEL improvement in crop diversity performance level compared to the "before"	755
		condition, with levels defined as: Minimum (at least 3 species, at least 1 legume);	
		Intermediate (at least 5 species, at least 2 legumes); Optimum (at least 7 species, at least 3	
		legumes). The new system diversity level may be Intermediate or Optimum. Practice must	
		complement a cropping system that qualifies as Soil Organic Matter (SOM) Building (soil	
		loss to T and SCI +0.25 or greater).	
	E003	Adopt a cropping system with increased crop diversity to assist in controlling weeds, soil-	\$45
		borne pathogens, and other pests. The change must result in a THREE-LEVEL	
		improvement in crop diversity performance level compared to the "before" condition, with	
		levels defined as: Minimum (at least 3 species, at least 1 legume); Intermediate (at least 5	
		species, at least 2 legumes); Optimum (at least 7 species, at least 3 legumes). The new	
		system diversity level must be Optimum. Practice must complement a cropping system that	
		qualifies as Soil Organic Matter Building (soil loss to T and SCI +0.25 or greater).	

2006 CSP Soil Conditioning Index Examples, North Fork of Shenandoah Prepared 12/08/05 by Chris Lawrence, NRCS Agronomist

	A. CONTINUOUS CORN SILAGE – RYE SILAGE ROTATIONS											
				I	Frederick	k silt loan	1					
	Description of Rotation	STIR	B slop	e (5%)	C slope (9%)		D slope	e (16%)				
			Soil Loss	SCI	Soil Loss	SCI	Soil Loss	SCI				
1	Corn silage CT, Rye silage CT (chisel & disk for both crops)	85	11	-0.88	17	-1.4	35	-2.8				
2	Corn silage CT, Rye silage CT (rip & disk for both crops)	57	10	-0.73	17	-1.2	33	-2.5				
3	Corn silage CT, Rye silage CT (chisel & disk)	90	5	-0.31	8	-0.53	15	-1.1				
4	Corn silage NT, Rye silage CT (rip & disk)	62	4	-0.16	<mark>7</mark>	-0.36	14	-0.93				
5	Corn silage NT, Rye silage CT (bcast seed & light disk)	23	4	0.04	6	-0.13	12	-0.62				
6	Corn silage NT, Rye silage NT (drill w fluted coulters)	11	3	0.18	4	0.06	9	-0.29				
7	Corn silage NT, Rye silage NT (single disk drill w no coulters)	6	2	0.30	2	0.22	5	0.03				

_	B. CORN SILAGE – RYE SI All tillage in these rotations is							
				1	Frederick	k silt loan	n -	
	Description of Rotation	STIR	B slop	e (5%)	C slop	e (9%)	D slope (16%)	
			Soil Loss	SCI	Soil Loss	SCI	Soil Loss	SCI
1	4 years Corn silage CT, Rye silage CT + 4 years Alfalfa Hay CT (fall seed w tillage)	87	3	-0.02	6	-0.18	11	-0.63
2	4 years Corn silage NT, Rye silage CT + 4 years Alfalfa Hay CT (fall seed w tillage)	48	3	0.22	4	0.10	8	-0.23
3	4 years Corn silage NT, Rye silage NT + 4 years Alfalfa Hay NT (drill w fluted coulters)	6	1	0.49	2	0.42	4	0.26
4	2 years Corn silage CT, Rye silage CT + 4 years Alfalfa Hay CT (fall seed w tillage)	60	2	0.23	4	0.11	8	-0.20
5	2 years Corn silage NT, Rye silage CT + 4 years Alfalfa Hay CT (fall seed w tillage)	33	2	0.39	3	0.31	6	0.08
6	2 years Corn silage NT, Rye silage NT + 4 years Alfalfa Hay NT (drill w fluted coulters)	4	1	0.58	1	0.54	3	0.42

	C. CONTINUOUS CORN AND SOYBEAN GRAIN ROTATIONS											
				I	Frederick	silt loan	1					
	Description of Rotation	STIR	B slop	e (5%)	C slop	e (9%)	D slope (16%)					
			Soil Loss, t/ac/yr	SCI	Soil Loss, t/ac/yr	SCI	Soil Loss, t/ac/yr	SCI				
1	Corn grain CT (spring chisel & cultipack), Soybean grain CT (fall chisel & spring disk & cultipack)	72	4	-0.02	6	-0.18	12	-0.64				
2	Corn grain NT, Soybean grain CT (fall chisel & spring disk & cultipack)	48	3	0.15	4	0.02	9	-0.33				
3	Corn grain CT (fall chisel & spring disk & cultipack)	89	3	0.18	5	0.04	9	-0.32				
4	Corn grain NT, Soybean grain NT (drill w fluted coulters)	5	1	0.44	2	0.37	5	0.19				
5	Corn grain NT	3	0	0.81	0	0.80	1	0.77				

	D. CORN GRAIN – SOYBEANS – GRASS HAY All tillage in these rotations is heavy chisel & disk! All grass in these rotations is <u>spring</u> seeded with heavy chisel & disk tillage!											
					Frederick		n					
	Description of Rotation	STIR	B slop	e (5%)	C slop	e (9%)	D slope (16%)					
			Soil Loss, t/ac/yr	SCI	Soil Loss, t/ac/yr	SCI	Soil Loss, t/ac/yr	SCI				
1	Corn grain CT, Soybeans CT + 4 years grass hay CT	48	1	0.66	2	0.60	13	0.47				
2	Corn grain CT, Corn grain CT + 4 years grass hay CT	48	1	0.74	2	0.69	11	0.56				
3	Corn grain NT, Corn grain CT + 4 years grass hay CT	33	1	0.83	1	0.77	10	0.69				
4	Corn grain CT + 4 years grass hay CT	40	1	0.81	1	0.80	5	0.71				

 E. PERMANENT PERENNIAL FORAGE ROTATIONS									
Description of Rotation	STIR	Frederick silt loam							

			B slop	e (5%)	C slop	e (9%)	D slope	(16%)
			Soil Loss	SCI	Soil Loss	SCI	Soil Loss	SCI
1	Continuous Grass Hay, Established	0	0	1.2	0	1.2	0	1.2

	F. CONTINUOUS CORN SILAGE – SMALL GRAIN COVER CROP (KILLED) ROTATIONS											
			Frederick silt loam									
	Description of Rotation	STIR	B slop	e (5%)	C slope (9%)		D slope (16%)					
			Soil Loss, t/ac/yr	SCI	Soil Loss, t/ac/yr	SCI	Soil Loss, t/ac/yr	SCI				
1	Corn silage NT, Rye cover CT (rip & disk)	62	2	0.15	3	0.05	7	-0.21				
2	Corn silage NT, Rye cover CT (bcast seed & light disk)	23	2	0.33	3	0.25	6	0.02				
3	Corn silage NT, Rye cover NT (drill w fluted coulters)	10	1	0.43	2	0.37	4	0.22				
4	Corn silage NT, Rye cover CT (bcast seed & light disk) w/ INTENSIVE / HIGH YIELD COVER CROP MGMT	23	1	0.55	2	0.50	3	0.38				
5	Corn silage NT, Rye cover NT (drill w fluted coulters) w/ INTENSIVE / HIGH YIELD COVER CROP MGMT	10	1	0.64	1	0.61	2	0.53				

SCI values calculated by RUSLE2 are influenced by all factors that influence soil loss, soil disturbance, and residue levels, including topography, tillage, residue removal, yield, contouring and other support practices, etc. The following assumptions were made:

- Location for climate: Shenandoah County
- Slope length: 150 for B slope, 100 feet for C slope, 80 feet for D slope
- **Row grade** = 50% of slope grade
- Manure application assumptions:
 - o Ahead of both corn and rye silage: 6500 gal/ac dairy slurry
 - o No other manure applied
- Long-term average yields:
 - o Corn: Silage 21 tons/ac; Grain 140 bu/ac; Rye silage: 10 tons/ac;
 - o Alfalfa Hay: 6 tons/ac; Grass Hay: 4 tons/ac; Soybeans: 40 bu/ac
 - o Rye cover crop: timely seeded at full rate, killed 3 weeks before seeding corn
 - o Rye cover crop w intensive mgmt: seeded, fertilized, and managed in manner similar to crop produced for yield, killed less than 1 week before seeding corn to maximize biomass accumulation.

THESE CALCULATIONS ASSUME A HIGH LEVEL OF MANAGEMENT AND YIELD!!!! LOWER MANAGEMENT AND YIELD WILL REDUCE SCI OUTCOMES!!!!

Tillage System Abbreviations and Explanations

- CT = conventional or clean till (high intensity full width tillage)
- NT = no tillage other than that associated with planter/drill
- Chisel = twisted shovel

<u>Soil Loss, t/ac/yr</u> = Soil loss for conservation planning in tons/acre/year.

Estimate of average soil loss over the length of the modeled slope. Key estimate of degradation of upslope areas by erosion. This is the number to use for conservation planning and to compare with "T" soil loss. Little credit is given for deposition that occurs towards the bottom of the slope (for example, due to a filter strip at bottom of slope), because upslope areas are still being degraded.

SCI = Soil conditioning index.

Soil organic matter trend score. Takes into account amount of biomass returned to the soil, tillage intensity, and predicted erosion over the rotation. If SCI is negative (less than zero), soil organic matter levels and overall soil quality are predicted to decline over time on this field under this management system. If SCI is positive, soil organic matter levels and overall soil quality are predicted to increase over time. SCI scores usually range from -1 to +1.

STIR = Soil Tillage Intensity Rating.

Score reflecting average annual intensity of tillage operations over the entire rotation. Typical values range from 0 to 200+.

Cropping System Description & Evaluation (D&E) Spec Sheet

A. Genera	11	info
-----------	----	------

	Croppin	g system / ro	tation nam	e or ID: BE	FORE: C	OKN SII	LAGE NI/RYE SII	LAGE CT			
	Client:	Hurtin Da	iryman			Conservati	on Planner & contact info:	I.B. Crazy, Woodstock		Date:1	0/27/06
B	Field /	CMU Des	<u>scription</u>								
	Tract(s)	/field(s)/ac	eres:	Typical C slop	e CMU – Sec	e Implement	ation Schedule!				
	RUSLE2	? Inputs:	County:	Shenandoah		Soil type:	Frederick silt loam	Slope %	5: <u>9%</u>	Slope length (ft):	100 ft
C	Manag	gement Des	scription								
	Erosion	control supp	ort practic	es (contouring, c	etc.): Row	grade 4.5%					
	Duration	n of planned	rotation(ye	ears):1	[

Year	Season	Plantin	Сгор	Tillage	Minimum % cover	Manure or	Notes	# of fallow		species ount
1 eui	Season	g date	Сгор	Tuuge	after planting	applied residue		periods >60 days	all	leg
1	summer		Corn silage	NT	30%	Dairy slurry			1	
1	winter		Rye silage	CT (rip & disk)	0%	Dairy slurry			1	

Key: NT = No-till; ST = Strip-till; MT = Mulch-till; CT = Clean-till

D. Cropping System Evaluation

The levels of conservation performance described below will be achieved if the planned crop rotation and other management practices described in Section C are applied on the fields described in Section B. It may be possible to achieve the same level of conservation performance with a different combination of management practices.

Part 1: Evaluation Based on Soil Erosion & Soil Quality Factors

Factor		L)ata		Interpretation
Soil erosion (sheet & rill)	Predicted soil loss (t/ac/yr):	7	T value (t/ac/yr):	4	SOIL LOSS ABOVE T – NOT SUSTAINABLE
Soil organic matter (SOM) trend	Soil loss to T?	No	SCI Score:	-0.36	SOM DEPLETING – SEVERE
Crop continuity	Rotation duration (yrs):	1	# of fallow periods >60 days:	0	CONTINUOUS NO-FALLOW – OPTIMUM
Crop diversity	# total species:	2	# legume species:	0	NOT HIGH DIVERSITY
Soil disturbance	Tillage system:	Rotational Till (NT & CT)	Overall average annual STIR:	62	TILLAGE: NOT OPTIMUM; STIR: NOT OPTIMUM

Source of RUSLE2 Data:

2006 CSP SCI Matrix, see attached

Part 2: Evaluation Based on Other Factors

E. Additional Comments & Recommendations

The USDA is an equal opportunity provider and employer

Cropping System Description & Evaluation (D&E) Spec Sheet

A. General Info

	Cropping system / rotation name or ID: AFTER: 2+4	ROTATION, ALL NT	
	Client: Hurtin Dairyman	Conservation Planner & contact info: I.B. Crazy, Woodstock	Date: 10/27/06
3.	. Field / CMU Description		
	Tract(s) / field(s) / acres: Typical C slope CMU – Se	e Implementation Schedule!	
	RUSLE2 Inputs: County: Shenandoah	Soil type: Frederick silt loam Slope %: 9%	Slope length (ft): 100 ft
<u> </u>	. Management Description		
	Erosion control support practices (contouring, etc.): Row	grade 4.5%	
	Duration of planned rotation(years): 6		

Year	Season	Planting date	Сгор	Tillage	Minimum % cover after	Manure or applied residue	Notes	# of fallow periods	со	species unt
		uate			planting	applica restauc		>60 days	all	leg
1	summer		Corn silage	NT	30%	Dairy slurry			1	
1	winter		Rye silage	NT	30%	Dairy slurry			1	
2	summer		Corn silage	NT	30%	Dairy slurry				
2	winter		Rye silage	NT	30%	Dairy slurry				
3	summer		Corn silage	NT	30%	Dairy slurry				
3	winter		Alfalfa hay	NT	30%				1	1
4	summer		Alfalfa hay							
4	winter		Alfalfa hay							
5	summer		Alfalfa hay							
5	winter		Alfalfa hay							
6	summer		Alfalfa hay							
6	winter		Alfalfa hay							

Key: NT = No-till; ST = Strip-till; MT = Mulch-till; CT = Clean-till

D. Cropping System Evaluation

The levels of conservation performance described below will be achieved if the planned crop rotation and other management practices described in Section C are applied on the fields described in Section B. It may be possible to achieve the same level of conservation performance with a different combination of management practices.

Part 1: Evaluation Based on Soil Erosion & Soil Quality Factors

Factor		L)ata		Interpretation					
Soil erosion (sheet & rill)	Predicted soil loss (t/ac/yr): 1 T value (t/a		T value (t/ac/yr):	4	SOIL LOSS TO T: SUSTAINABLE					
Soil organic matter (SOM) trend	Soil loss to T? Yes SCI Score:			+0.54	SOM BUILDING – INTERMEDIATE					
Crop continuity	Rotation duration (yrs):	1	# of fallow periods >60 days:	0	CONTINUOUS NO-FALLOW – OPTIMUM					
Crop diversity	# total species:	3	# legume species:	1	HIGH DIVERSITY – MINIMUM					
Soil disturbance	Tillage system:	Continuous No-till	Overall average annual STIR:	4	TILLAGE SYSTEM: OPTIMUM; STIR VALUE: OPTIMUM					

Source of RUSLE2 Data:

2006 CSP SCI Matrix, see attached

Part 2: Evaluation Based on Other Factors

Rotation should reduce need for rootworm insecticides and N fertilizer, especially on first-year corn behind alfalfa.

E. Additional Comments & Recommendations

The USDA is an equal opportunity provider and employer

Cropping System Implementation Schedule Spec Sheet

Conservation Planner & contact

Client: Hurtin Dairyman info: I.B. Crazy, Woodstock Date: 10/01/06

	Field(s) & acres	Cropping System / Rotation ID (see D&E Sheets)	Planned Rotations, Tillage, and Implementation Dates															
Tract(s)			2008		2009		2010		2011		2012		2013		2014		2015	
			Sum- mer	Win- ter	Sum- mer	Win- ter	Sum- mer	Win- ter	Sum- mer	Win- ter	Sum- mer	Win- ter	Sum- mer	Win- ter	Sum- mer	Win- ter	Sum- mer	Win- ter
1	2 (10 ac.)	2+4, All NT	Corn NT	Alf NT	Alf	CS NT	Rye NT	CS NT	Alf NT	Alf	Alf							
1	3 (10 ac.)	2+4, All NT	Corn NT	Alf NT	Alf	CS NT	Rye NT	CS NT	Alf NT	Alf	Alf							
2	5 (20 ac.)	2+4, All NT	Corn NT	Rye CT	Corn NT	Alf NT	Alf	CS NT	Rye NT	CS NT	Alf NT							

Key: NT = No-till; CT = Clean-till; Corn = corn silage; Rye = rye silage (or cover), Alf = Alfalfa hay

Comments & Recommendations:

Gray boxes represent FY08 EQIP contract obligations

The USDA is an equal opportunity provider and employer