ITA-2025 Math Essay*

o1-preview (OpenAI)

November 10, 2024

Questão 1

Encontre os valores reais a e b tais que o polinômio $p(x) = x^{57} + ax^{14} + bx^7 + 1$, ao ser dividido por $x^2 - x + 1$, deixe resto 2x + 1.

Solução

Queremos encontrar os valores reais a e b tais que, ao dividir o polinômio $p(x) = x^{57} + ax^{14} + bx^7 + 1$ por $x^2 - x + 1$, obtenhamos o resto 2x + 1.

Para resolver o problema, utilizaremos o conceito de congruência polinomial módulo x^2-x+1 . Isto é, encontraremos a expressão de p(x) reduzida módulo x^2-x+1 , que será de grau menor que 2, ou seja, um polinômio de grau no máximo 1.

Primeiramente, observamos que, módulo $x^2 - x + 1$, temos:

$$x^2 \equiv x - 1$$

Podemos usar esta relação para expressar potências superiores de x em termos de x de grau menor que 2. Notemos que as potências de x se repetirão a cada 6 termos devido ao ciclo que surge ao aplicar repetidamente a relação acima. Vamos determinar o padrão:

^{*}This exam was solved and automatically generated with gpt-resolve: $\verb|https://github.com/lgabs/gpt-resolve||$

$$x^{0} \equiv 1$$

$$x^{1} \equiv x$$

$$x^{2} \equiv x - 1$$

$$x^{3} \equiv x \cdot (x - 1) \equiv x^{2} - x \equiv (x - 1) - x \equiv -1$$

$$x^{4} \equiv x \cdot (-1) \equiv -x$$

$$x^{5} \equiv x \cdot (-x) \equiv -x^{2} \equiv -(x - 1) \equiv -x + 1$$

$$x^{6} \equiv x \cdot (-x + 1) \equiv -x^{2} + x \equiv -(x - 1) + x \equiv -x + 1 + x \equiv 1$$

Observamos que:

$$x^6 \equiv 1$$
, $x^7 \equiv x$, $x^8 \equiv x - 1$, e assim por diante.

Portanto, para qualquer potência de x, podemos escrever:

$$x^n \equiv x^{n \bmod 6}$$

Agora, calculamos:

1. x^{57} :

57 mod 6 = 3, pois
$$6 \times 9 = 54$$
 e $57 - 54 = 3$.

$$\therefore x^{57} \equiv x^3 \equiv -1$$

2. x^{14} :

14 mod 6 = 2, pois
$$6 \times 2 = 12$$
 e $14 - 12 = 2$.

$$\therefore x^{14} \equiv x^2 \equiv x - 1$$

3. x^7 :

7 mod 6 = 1, pois
$$6 \times 1 = 6$$
 e $7 - 6 = 1$.

$$\therefore x^7 \equiv x^1 \equiv x$$

Substituindo essas equivalências em p(x), obtemos:

$$p(x) \equiv x^{57} + ax^{14} + bx^{7} + 1$$

$$\equiv (-1) + a(x - 1) + bx + 1$$

$$= -1 + ax - a + bx + 1$$

$$= (ax + bx) + (-1 + 1 - a)$$

$$= (a + b)x - a$$

Sabemos que o resto da divisão de p(x) por x^2-x+1 é 2x+1. Portanto, devemos ter:

$$(a+b)x - a = 2x + 1$$

Igualando os coeficientes dos polinômios:

1. Coeficientes de x:

$$a+b=2$$

2. Termos constantes:

$$-a = 1$$

Resolvendo o sistema de equações:

Da segunda equação, temos:

$$-a = 1 \implies a = -1$$

Substituindo a=-1 na primeira equação:

$$-1+b=2 \implies b=2+1 \implies b=3$$

ANSWER: a = -1 e b = 3.

Seja E uma elipse com eixo focal no eixo O_x do sistema de coordenadas cartesianas. O centro de E é o ponto (r,0), com r>0, sua excentricidade é $\frac{\sqrt{2}}{2}$, e seu semieixo maior mede $\sqrt{2}$. Considerando os pontos $(x,y) \in E$, determine o valor de r para que $\frac{y}{x}$ tenha valor máximo igual a 1.

Solução

Dada a elipse E com centro em (r,0) e eixo focal ao longo do eixo O_x , com excentricidade $e = \frac{\sqrt{2}}{2}$ e semieixo maior $a = \sqrt{2}$.

Primeiramente, calculamos o semieixo menor b:

$$b = a\sqrt{1 - e^2} = \sqrt{2}\sqrt{1 - \left(\frac{\sqrt{2}}{2}\right)^2} = \sqrt{2}\sqrt{1 - \frac{2}{4}} = \sqrt{2}\sqrt{\frac{2}{4}} = \sqrt{2} \cdot \frac{\sqrt{2}}{2} = 1.$$

A distância focal é:

$$c = ae = \sqrt{2} \cdot \frac{\sqrt{2}}{2} = 1.$$

A equação da elipse é:

$$\frac{(x-r)^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{(x-r)^2}{2} + y^2 = 1.$$

Queremos encontrar r tal que o valor máximo de $\frac{y}{x}$ seja igual a 1. Para isso, parametrize a elipse:

$$\begin{cases} x = r + a\cos\theta = r + \sqrt{2}\cos\theta, \\ y = b\sin\theta = \sin\theta. \end{cases}$$

Assim, temos:

$$\frac{y}{x} = \frac{\sin \theta}{r + \sqrt{2}\cos \theta}.$$

Para encontrar o valor máximo de $\frac{y}{x}$, consideramos a função:

$$\lambda(\theta) = \frac{\sin \theta}{r + \sqrt{2}\cos \theta}.$$

Calculamos a derivada em relação a θ :

$$\lambda'(\theta) = \frac{\cos \theta (r + \sqrt{2}\cos \theta) - \sin \theta (-\sqrt{2}\sin \theta)}{(r + \sqrt{2}\cos \theta)^2} = \frac{r\cos \theta + \sqrt{2}}{(r + \sqrt{2}\cos \theta)^2}$$

Para os pontos críticos, igualamos a derivada a zero:

$$r\cos\theta + \sqrt{2} = 0 \Rightarrow \cos\theta = -\frac{\sqrt{2}}{r}.$$

Para que $\cos \theta$ seja válido, é necessário que $|\cos \theta| \le 1$:

$$\left| -\frac{\sqrt{2}}{r} \right| \le 1 \Rightarrow r \ge \sqrt{2}.$$

Calculamos $\sin \theta$:

$$\sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{\sqrt{2}}{r}\right)^2 = 1 - \frac{2}{r^2} = \frac{r^2 - 2}{r^2}.$$

Como $\sin \theta \ge 0$ no quadrante correspondente, temos:

$$\sin \theta = \frac{\sqrt{r^2 - 2}}{r}.$$

Substituindo na expressão de $\lambda(\theta)$:

$$\lambda_{\text{máx}} = \frac{\sin \theta}{r + \sqrt{2} \cos \theta} = \frac{\frac{\sqrt{r^2 - 2}}{r}}{r - \frac{2}{r}} = \frac{\sqrt{r^2 - 2}}{r^2 - 2}.$$

Igualamos $\lambda_{\text{máx}}$ a 1:

$$\frac{\sqrt{r^2 - 2}}{r^2 - 2} = 1 \Rightarrow \sqrt{r^2 - 2} = r^2 - 2.$$

Elevando ambos os lados ao quadrado:

$$r^{2} - 2 = (r^{2} - 2)^{2} \Rightarrow (r^{2} - 2)^{2} - (r^{2} - 2) = 0 \Rightarrow (r^{2} - 2)(r^{2} - 3) = 0.$$

Portanto, as soluções são:

$$r^2 - 2 = 0 \Rightarrow r = \sqrt{2}, \quad r^2 - 3 = 0 \Rightarrow r = \sqrt{3}.$$

Como r > 0 e $r \ge \sqrt{2}$, analisamos as soluções:

- Para $r = \sqrt{2}$:

$$\lambda_{\text{máx}} = \frac{\sqrt{(\sqrt{2})^2 - 2}}{(\sqrt{2})^2 - 2} = \frac{0}{0}, \text{ indeterminado.}$$

Nesse caso, analisando a função, concluímos que $\lambda_{m\acute{a}x}=0,$ o que não satisfaz a condição requerida.

- Para $r = \sqrt{3}$:

$$\lambda_{\text{máx}} = \frac{\sqrt{(\sqrt{3})^2 - 2}}{(\sqrt{3})^2 - 2} = \frac{\sqrt{3 - 2}}{3 - 2} = \frac{1}{1} = 1.$$

Assim, o valor de r que satisfaz a condição é $r=\sqrt{3}.$ ANSWER: $r=\sqrt{3}$

Sejam $\alpha, \beta \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$ tais que

$$\sin(\alpha) - \sin(\beta) = \frac{1}{4}$$
 e $\sin(\alpha) - 2\sin(\beta) + \cos(\beta) = \frac{3}{4}$.

Calcule o valor de $\sin(\alpha + \beta)$.

Solução

Primeiramente, vamos considerar as equações dadas:

$$\sin(\alpha) - \sin(\beta) = \frac{1}{4} \quad (1)$$

$$\sin(\alpha) - 2\sin(\beta) + \cos(\beta) = \frac{3}{4} \quad (2)$$

Vamos manipular essas equações para encontrar um valor exato para $\sin(\alpha + \beta)$.

Passo 1: Subtraindo a equação (1) da equação (2):

$$[\sin(\alpha) - 2\sin(\beta) + \cos(\beta)] - [\sin(\alpha) - \sin(\beta)] = \frac{3}{4} - \frac{1}{4}$$
$$(-\sin(\beta) + \cos(\beta)) = \frac{1}{2} \quad (3)$$

Passo 2: Reescrevendo a equação (3):

$$\cos(\beta) - \sin(\beta) = \frac{1}{2}$$

Passo 3: Elevando ambos os lados ao quadrado:

$$[\cos(\beta) - \sin(\beta)]^2 = \left(\frac{1}{2}\right)^2$$
$$\cos^2(\beta) - 2\sin(\beta)\cos(\beta) + \sin^2(\beta) = \frac{1}{4}$$

Passo 4: Sabemos que $\sin^2(\beta) + \cos^2(\beta) = 1$, portanto:

$$1 - 2\sin(\beta)\cos(\beta) = \frac{1}{4}$$
$$-2\sin(\beta)\cos(\beta) = -\frac{3}{4}$$
$$\sin(\beta)\cos(\beta) = \frac{3}{8} \quad (4)$$

Passo 5: Da equação (1), isolamos $\sin(\alpha)$:

$$\sin(\alpha) = \sin(\beta) + \frac{1}{4} \quad (5)$$

Passo 6: Substituindo $\sin(\alpha)$ da equação (5) na equação (2):

$$\left(\sin(\beta) + \frac{1}{4}\right) - 2\sin(\beta) + \cos(\beta) = \frac{3}{4}$$
$$-\sin(\beta) + \cos(\beta) + \frac{1}{4} = \frac{3}{4}$$
$$-\sin(\beta) + \cos(\beta) = \frac{1}{2}$$

Note que chegamos novamente à equação (3), confirmando nossa manipulação.

Passo 7: Usando as identidades trigonométricas, sabemos que:

$$\cos(\beta) = -\sqrt{1-\sin^2(\beta)} \quad (\text{porque } \beta \in \left\lceil \frac{\pi}{2}, \frac{3\pi}{2} \right\rceil \ \text{e} \ \cos(\beta) < 0)$$

Passo 8: Agora, da equação (3):

$$\cos(\beta) = \frac{1}{2} + \sin(\beta)$$
$$-\sqrt{1 - \sin^2(\beta)} = \frac{1}{2} + \sin(\beta)$$

Multiplicando ambos os lados por -1:

$$\sqrt{1-\sin^2(\beta)} = -\frac{1}{2} - \sin(\beta)$$

Como o lado esquerdo é positivo, o lado direito também deve ser positivo, logo:

$$-\frac{1}{2} - \sin(\beta) \ge 0$$
$$\sin(\beta) \le -\frac{1}{2}$$

Passo 9: Elevando ambos os lados da equação ao quadrado:

$$[1 - \sin^2(\beta)] = \left(-\frac{1}{2} - \sin(\beta)\right)^2$$
$$1 - \sin^2(\beta) = \frac{1}{4} + \sin^2(\beta) + \sin(\beta)$$

Simplificando:

$$1 - \sin^{2}(\beta) = \frac{1}{4} + \sin^{2}(\beta) + \sin(\beta)$$
$$1 - \frac{1}{4} = 2\sin^{2}(\beta) + \sin(\beta)$$
$$\frac{3}{4} = 2\sin^{2}(\beta) + \sin(\beta)$$

Passo 10: Rearranjando a equação:

$$2\sin^2(\beta) + \sin(\beta) - \frac{3}{4} = 0$$

Multiplicando ambos os lados por 4 para eliminar denominadores:

$$8\sin^2(\beta) + 4\sin(\beta) - 3 = 0$$

Passo 11: Resolvendo a equação quadrática:

Seja
$$x = \sin(\beta)$$

$$8x^2 + 4x - 3 = 0$$

Calculando o discriminante:

$$\Delta = b^2 - 4ac = (4)^2 - 4 \cdot 8 \cdot (-3) = 16 + 96 = 112$$

As raízes são:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-4 \pm \sqrt{112}}{16} = \frac{-4 \pm 4\sqrt{7}}{16} = \frac{-1 \pm \sqrt{7}}{4}$$

Como $\sin(\beta) \le -\frac{1}{2}$, escolhemos:

$$\sin(\beta) = \frac{-1 - \sqrt{7}}{4}$$

Passo 12: Calculando $\sin(\alpha)$ a partir da equação (5):

$$\sin(\alpha) = \sin(\beta) + \frac{1}{4} = \frac{-1 - \sqrt{7}}{4} + \frac{1}{4} = \frac{-\sqrt{7}}{4}$$

Passo 13: Calculando $\cos(\alpha)$:

$$\cos(\alpha) = -\sqrt{1 - \sin^2(\alpha)} = -\sqrt{1 - \left(\frac{-\sqrt{7}}{4}\right)^2} = -\sqrt{1 - \frac{7}{16}} = -\sqrt{\frac{9}{16}} = -\frac{3}{4}$$

Passo 14: Calculando $\cos(\beta)$: Usando a equação:

$$\cos(\beta) = \sin(\beta) + \frac{1}{2} = \frac{-1 - \sqrt{7}}{4} + \frac{1}{2} = \frac{-1 - \sqrt{7} + 2}{4} = \frac{1 - \sqrt{7}}{4}$$

Passo 15: Finalmente, calculando $\sin(\alpha + \beta)$:

$$\begin{split} \sin(\alpha+\beta) &= \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \\ &= \left(-\frac{\sqrt{7}}{4}\right) \left(\frac{1-\sqrt{7}}{4}\right) + \left(-\frac{3}{4}\right) \left(\frac{-1-\sqrt{7}}{4}\right) \\ &= \frac{-\sqrt{7}(1-\sqrt{7})}{16} + \frac{3(1+\sqrt{7})}{16} \\ &= \frac{-\sqrt{7}+7}{16} + \frac{3+3\sqrt{7}}{16} \\ &= \frac{(-\sqrt{7}+7)+(3+3\sqrt{7})}{16} \\ &= \frac{(7+3)+(-\sqrt{7}+3\sqrt{7})}{16} \\ &= \frac{10+2\sqrt{7}}{16} \\ &= \frac{5+\sqrt{7}}{8} \end{split}$$

ANSWER:
$$\frac{5+\sqrt{7}}{8}$$

Seja ABC um triângulo de lados $m(\overline{AB})=6,\ m(\overline{AC})=10$ e $m(\overline{BC})=14$. Calcule o raio da circunferência externa ao triângulo ABC que tangencia simultaneamente o segmento \overline{BC} e as retas suportes AB e AC.

Solução

Primeiramente, vamos identificar os lados do triângulo ABC:

$$AB = 6$$
$$AC = 10$$
$$BC = 14$$

Calculamos o semiperímetro do triângulo:

$$s = \frac{AB + AC + BC}{2} = \frac{6 + 10 + 14}{2} = \frac{30}{2} = 15$$

Em seguida, aplicamos a fórmula de Heron para calcular a área S do triângulo:

$$S = \sqrt{s(s - AB)(s - AC)(s - BC)}$$

$$= \sqrt{15 \times (15 - 6) \times (15 - 10) \times (15 - 14)}$$

$$= \sqrt{15 \times 9 \times 5 \times 1}$$

$$= \sqrt{675}$$

$$= 15\sqrt{3}$$

O raio da excircunferência oposta ao vértice A (que tangencia o lado BC e as retas suporte de AB e AC) é dado por:

$$r_a = \frac{S}{s - a}$$

onde a = BC = 14 e s - a = 15 - 14 = 1.

Substituindo os valores:

$$r_a = \frac{15\sqrt{3}}{1} = 15\sqrt{3}$$

Resposta: $15\sqrt{3}$

Usando as aproximações $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ e $\log_{10} 7 = 0.8450$, determine o primeiro algarismo (da esquerda para a direita) do resultado de 3^{100} .

Solução

Para determinar o primeiro algarismo de 3^{100} , vamos usar logaritmos para encontrar a parte decimal de $\log_{10}3^{100}$ e então calcular 10 elevado a essa parte decimal para encontrar o valor inicial de 3^{100} .

Primeiramente, calculamos $\log_{10} 3^{100}$:

$$\begin{aligned} \log_{10} 3^{100} &= 100 \times \log_{10} 3 \\ &= 100 \times 0,4771 \\ &= 47,71 \end{aligned}$$

Então, temos:

$$\log_{10} 3^{100} = 47,71$$

A parte inteira é 47 e a parte decimal é 0,71. Isso significa que:

$$3^{100} = 10^{47,71} = 10^{47} \times 10^{0,71}$$

Nosso objetivo é calcular $N = 10^{0.71}$.

Para aproximar N, usaremos interpolação linear entre valores conhecidos de logaritmos.

Sabemos que:

$$\log_{10} 5 = 0,6990$$
$$\log_{10} 6 = 0,7781$$

Entre 5 e 6, o aumento da função logarítmica é:

$$\Delta \log_{10} N = 0.7781 - 0.6990 = 0.0791$$

A diferença entre 0,71 e 0,6990 é:

$$\delta = 0.71 - 0.6990 = 0.0110$$

Usando interpolação linear:

$$N = 5 + (6 - 5) \times \frac{0,0110}{0,0791} = 5 + \frac{0,0110}{0,0791} = 5 + 0,1391 = 5,1391$$

Portanto:

$$10^{0,71} \approx 5{,}1391$$

Assim, temos:

$$3^{100}\approx 10^{47}\times 5{,}1391=5{,}1391\times 10^{47}$$

O primeiro algarismo de 3^{100} é, portanto, 5. **RESPOSTA:** 5

Uma moeda não viciada é lançada n vezes. Encontre os valores de n que maximizam a probabilidade de sair cara pela quarta vez exatamente no enésimo lançamento.

Solução

Para encontrar os valores de n que maximizam a probabilidade de obter a quarta cara exatamente no enésimo lançamento de uma moeda não viciada, vamos modelar o problema usando a distribuição binomial negativa.

A probabilidade de obter a k-ésima cara no n-ésimo lançamento é dada por:

$$P(N = n) = \binom{n-1}{k-1} p^k (1-p)^{n-k}$$

Onde: - p=0,5 é a probabilidade de obter cara em um lançamento. - k=4 é o número de caras que desejamos. - $n\geq k$ é o número total de lançamentos. Substituindo os valores:

$$P(N=n) = \binom{n-1}{3} (0.5)^4 (0.5)^{n-4} = \binom{n-1}{3} (0.5)^n$$

Simplificando a expressão:

$$P(N = n) = \frac{(n-1)(n-2)(n-3)}{6} \left(\frac{1}{2}\right)^n$$

Nosso objetivo é encontrar os valores de n que maximizam P(N=n). Vamos analisar a função:

$$f(n) = \frac{(n-1)(n-2)(n-3)}{6} \left(\frac{1}{2}\right)^n$$

Para facilitar, calcularemos o logaritmo natural da função:

$$L(n) = \ln f(n) = \ln ((n-1)(n-2)(n-3)) - n \ln 2 - \ln 6$$

Derivando L(n) em relação a n:

$$L'(n) = \frac{1}{n-1} + \frac{1}{n-2} + \frac{1}{n-3} - \ln 2$$

Para encontrar os valores críticos, igualamos a derivada a zero:

$$\frac{1}{n-1} + \frac{1}{n-2} + \frac{1}{n-3} = \ln 2$$

Como a equação acima não possui solução exata em n, vamos calcular os valores de P(N=n) para n inteiros a partir de 4:

$$P(4) = {3 \choose 3} \left(\frac{1}{2}\right)^4 = 1 \times \frac{1}{16} = 0,0625$$

$$P(5) = {4 \choose 3} \left(\frac{1}{2}\right)^5 = 4 \times \frac{1}{32} = 0,125$$

$$P(6) = {5 \choose 3} \left(\frac{1}{2}\right)^6 = 10 \times \frac{1}{64} = 0,15625$$

$$P(7) = {6 \choose 3} \left(\frac{1}{2}\right)^7 = 20 \times \frac{1}{128} = 0,15625$$

$$P(8) = {7 \choose 3} \left(\frac{1}{2}\right)^8 = 35 \times \frac{1}{256} \approx 0,1367$$

$$P(9) = {8 \choose 3} \left(\frac{1}{2}\right)^9 = 56 \times \frac{1}{512} \approx 0,1094$$

$$P(10) = {9 \choose 3} \left(\frac{1}{2}\right)^{10} = 84 \times \frac{1}{1024} \approx 0,0820$$

Observamos que P(N=n) aumenta de n=4 até n=6, atinge seu valor máximo em n=6 e n=7, e depois diminui para n>7.

Portanto, os valores de n que maximizam a probabilidade são n=6 e n=7. **ANSWER:** n=6 e n=7.

Considere o polinômio $p(x) = x^3 + ax^2 + b$. Determine os valores reais a e b, sabendo que:

I. p(x) tem uma raiz real dupla;

II. Os pontos $(x_1,0)$, $(x_2,0)$ e (0,b) são vértices de um triângulo retângulo, em que x_1 e x_2 são raízes distintas de p(x).

Solução

O polinômio dado é $p(x) = x^3 + ax^2 + b$. Sabemos que:

I. p(x) tem uma raiz real dupla.

II. Os pontos $(x_1,0)$, $(x_2,0)$ e (0,b) são vértices de um triângulo retângulo, com x_1 e x_2 sendo raízes distintas de p(x).

Passo 1: Encontrar a forma fatorada de p(x) Como p(x) possui uma raiz dupla real, podemos escrever:

$$p(x) = (x - \alpha)^2 (x - \beta)$$

onde α é a raiz dupla e β é a raiz simples, com $\alpha \neq \beta$.

Passo 2: Expandir p(x) e igualar os coeficientes Expandindo, temos:

$$p(x) = (x - \alpha)^2 (x - \beta)$$

$$= (x^2 - 2\alpha x + \alpha^2)(x - \beta)$$

$$= x^3 - (\beta + 2\alpha)x^2 + (2\alpha\beta + \alpha^2)x - \alpha^2\beta$$

Comparando com $p(x) = x^3 + ax^2 + 0x + b$, obtemos:

$$-(\beta + 2\alpha) = a \quad (1)$$
$$2\alpha\beta + \alpha^2 = 0 \quad (2)$$

$$-\alpha^2 \beta = b \quad (3)$$

Passo 3: Resolver o sistema de equações Da equação (2):

$$\alpha^2 + 2\alpha\beta = 0 \implies \alpha(\alpha + 2\beta) = 0$$

Como $\alpha \neq 0$, então:

$$\alpha + 2\beta = 0 \implies \alpha = -2\beta$$

Substituindo $\alpha = -2\beta$ na equação (1):

$$-(\beta + 2(-2\beta)) = a$$
$$-(\beta - 4\beta) = a$$
$$-(-3\beta) = a$$
$$3\beta = a \quad (4)$$

Da equação (3), substituindo $\alpha = -2\beta$:

$$b = -(-2\beta)^2 \beta$$
$$= -(4\beta^2)\beta$$
$$= -4\beta^3 \quad (5)$$

Passo 4: Caracterizar os pontos do triângulo Os pontos são:

$$A(x_1, 0) = (\beta, 0), \quad B(x_2, 0) = (\alpha, 0) = (-2\beta, 0), \quad C(0, b)$$

Passo 5: Verificar a condição do triângulo retângulo Calculamos os vetores:

$$\vec{AB} = B - A = (-2\beta - \beta, 0 - 0) = (-3\beta, 0)$$

 $\vec{AC} = C - A = (0 - \beta, b - 0) = (-\beta, b)$
 $\vec{BC} = C - B = (0 - (-2\beta), b - 0) = (2\beta, b)$

Calculamos o produto escalar entre \vec{AC} e \vec{BC} :

$$\vec{AC} \cdot \vec{BC} = (-\beta)(2\beta) + b \cdot b = -2\beta^2 + b^2$$

Para que o triângulo seja retângulo, algum produto escalar entre os vetores dos lados deve ser zero. Assim:

$$-2\beta^2 + b^2 = 0 \implies b^2 = 2\beta^2 \implies b^2 = 2\beta^2$$

Passo 6: Encontrar os valores de β , a e b Substituindo b da equação (5):

$$b^2 = (-4\beta^3)^2 = 16\beta^6$$

Igualando com o resultado anterior:

$$16\beta^6 = 2\beta^2 \implies 16\beta^4 = 2 \implies \beta^4 = \frac{1}{8}$$

Então:

$$\beta^4 = \frac{1}{8} \implies \beta = \pm \left(\frac{1}{8}\right)^{1/4} = \pm 2^{-3/4}$$

Calculando a e b usando $\beta = 2^{-3/4}$:
Caso 1 ($\beta = 2^{-3/4}$):

$$a = 3\beta = 3 \cdot 2^{-3/4}$$

$$b = -4\beta^3 = -4(2^{-3/4})^3 = -4 \cdot 2^{-9/4} = -2^{-1/4}$$

Caso 2 $(\beta = -2^{-3/4})$:

$$a = 3\beta = 3(-2^{-3/4}) = -3 \cdot 2^{-3/4}$$

$$b = -4\beta^3 = -4(-2^{-3/4})^3 = -4(-1)(2^{-9/4}) = 2^{-1/4}$$

Resposta Final:

Para
$$\beta = +2^{-3/4}$$
:
$$\begin{cases} a = 3 \cdot 2^{-3/4} \\ b = -2^{-1/4} \end{cases}$$

Para
$$\beta = -2^{-3/4}$$
:
$$\begin{cases} a = -3 \cdot 2^{-3/4} \\ b = +2^{-1/4} \end{cases}$$

 ${\bf ANSWER:}$ Os valores de a e b são:

$$a = \pm 3 \cdot 2^{-3/4}, \quad b = \mp 2^{-1/4}$$

Seja $A_k = (a_{ij})$ uma matriz quadrada de ordem k, em que $a_{ij} = \max\{i, j\}$ para todo i, j em $\{1, 2, \dots, k\}$. Determine $\sum_{k=1}^{2025} \det(A_k)$.

Solução

Temos a matriz $A_k = (a_{ij})$ de ordem k definida por $a_{ij} = \max\{i, j\}$ para todos i, j.

Vamos calcular $\det(A_k)$ para alguns valores de k e encontrar um padrão. Para k=1:

$$A_1 = [1], \quad \det(A_1) = 1$$

Para k = 2:

$$A_2 = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix}, \quad \det(A_2) = (1)(2) - (2)(2) = -2$$

Para k = 3:

$$A_3 = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3 \end{bmatrix}$$

Calculando o determinante:

$$\det(A_3) = 1 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} + 3 \cdot \begin{vmatrix} 2 & 2 \\ 3 & 3 \end{vmatrix}$$

$$= 1 \cdot (2 \cdot 3 - 3 \cdot 3) - 2 \cdot (2 \cdot 3 - 3 \cdot 3) + 3 \cdot (2 \cdot 3 - 2 \cdot 3)$$

$$= 1(-3) - 2(-3) + 3(0)$$

$$= -3 + 6 + 0$$

$$= 3$$

Observamos que:

$$\det(A_1) = 1$$
, $\det(A_2) = -2$, $\det(A_3) = 3$

Percebemos que o determinante alterna de sinal e \acute{e} igual em magnitude a k:

$$\det(A_k) = (-1)^{k+1} \cdot k$$

Assim, a soma requerida é:

$$\sum_{k=1}^{2025} \det(A_k) = \sum_{k=1}^{2025} (-1)^{k+1} \cdot k$$

Separando a soma em termos ímpares e pares:

$$\sum_{k=1}^{2025} \det(A_k) = \sum_{\substack{k=1\\k \text{ impar}}}^{2025} k - \sum_{\substack{k=2\\k \text{ par}}}^{2024} k$$

O número de termos ímpares é:

$$n_{\text{impar}} = \frac{2025 + 1}{2} = 1013$$

O número de termos pares é:

$$n_{\rm par} = \frac{2025 - 1}{2} = 1012$$

A soma dos números ímpares de 1 a 2025 é:

$$S_{\text{impar}} = n_{\text{impar}}^2 = (1013)^2 = 1026169$$

A soma dos números pares de 2 a 2024 é:

$$S_{\text{par}} = n_{\text{par}} \cdot (n_{\text{par}} + 1) = 1012 \times 1013 = 1025156$$

Portanto, a soma total é:

$$\sum_{k=1}^{2025} \det(A_k) = S_{\text{impar}} - S_{\text{par}} = 1026169 - 1025156 = 1013$$

ANSWER:
$$\sum_{k=1}^{2025} \det(A_k) = 1013$$

Determine a quantidade de matrizes 5×5 invertíveis e com entradas inteiras que satisfazem a propriedade $A^{-1} = A^{T}$.

Solução

Para determinar a quantidade de matrizes 5×5 invertíveis com entradas inteiras que satisfazem a propriedade $A^{-1} = A^T$, devemos identificar todas as matrizes inteiras para as quais $A^T = A^{-1}$. Isso implica que A é uma matriz ortogonal com entradas inteiras.

Matrizes ortogonais inteiras: As únicas matrizes ortogonais com entradas inteiras são as chamadas *matrizes de permutação assinadas*. Essas matrizes possuem as seguintes características:

- Cada linha e cada coluna contém exatamente um elemento não nulo. - Os elementos não nulos são +1 ou -1. - Todos os demais elementos são zero.

Passo 1: Contar as permutações

O número de maneiras de permutar as linhas (ou colunas) é dado pelo número de permutações dos 5 elementos:

Número de permutações = 5! = 120.

Passo 2: Atribuição de sinais

Para cada permutação, cada elemento não nulo pode ser +1 ou -1. Como há 5 elementos não nulos, o número de maneiras de atribuir os sinais é:

Número de atribuições de sinais $= 2^5 = 32$.

Passo 3: Total de matrizes

Multiplicando o número de permutações pelo número de atribuições de sinais, obtemos o total de matrizes que satisfazem a propriedade:

Total de matrizes = $5! \times 2^5 = 120 \times 32 = 3840$.

ANSWER: 3840.

Calcule a área da projeção ortogonal de um cubo de aresta 2 sobre um plano perpendicular a uma das diagonais do cubo.

Solução

Para calcular a área da projeção ortogonal de um cubo de aresta 2 sobre um plano perpendicular a uma de suas diagonais, vamos seguir os seguintes passos:

1. Considerações iniciais:

A diagonal do cubo em questão é a diagonal espacial, que une dois vértices opostos do cubo. Para facilitar os cálculos, posicionaremos o cubo no sistema de coordenadas de forma que seu centro coincida com a origem e suas arestas estejam alinhadas com os eixos coordenados.

Assim, os vértices do cubo terão coordenadas $(\pm 1, \pm 1, \pm 1)$, já que a aresta do cubo é 2 (então metade da aresta é 1).

2. Equação do plano perpendicular à diagonal:

A diagonal espacial do cubo pode ser representada pelo vetor $\vec{d} = (1, 1, 1)$. O plano perpendicular a essa diagonal e que passa pela origem tem como vetor normal $\vec{n} = (1, 1, 1)$ e sua equação é dada por:

$$x + y + z = 0.$$

3. Determinação dos pontos de interseção:

Vamos encontrar os pontos onde as arestas do cubo interceptam o plano x + y + z = 0. Consideramos as arestas que conectam os vértices cujas somas de coordenadas têm sinais opostos, pois essas são as que interceptam o plano.

Calculamos a soma das coordenadas de cada vértice:

$$V1: (1,1,1) \Rightarrow x+y+z=3$$

$$V2: (1,1,-1) \Rightarrow x+y+z=1$$

$$V3: (1,-1,1) \Rightarrow x+y+z=1$$

$$V4: (1,-1,-1) \Rightarrow x+y+z=-1$$

$$V5: (-1,1,1) \Rightarrow x+y+z=1$$

$$V6: (-1,1,-1) \Rightarrow x+y+z=-1$$

$$V7: (-1,-1,1) \Rightarrow x+y+z=-1$$

$$V8: (-1,-1,-1) \Rightarrow x+y+z=-3$$

As arestas que interceptam o plano são aquelas entre os vértices cujas somas de coordenadas são 1 e -1.

4. Cálculo dos pontos de interseção nas arestas:

Vamos encontrar os pontos de interseção em cada aresta relevante: $Exemplo\ para\ a\ aresta\ entre\ V2\ e\ V4:$ Parâmetro $t \in [0, 1]$:

$$\vec{r}(t) = \vec{V2} + t(\vec{V4} - \vec{V2}) = (1, 1, -1) + t(0, -2, 0).$$

As equações paramétricas são:

$$\begin{cases} x(t) = 1\\ y(t) = 1 - 2t\\ z(t) = -1. \end{cases}$$

Encontramos t tal que x(t) + y(t) + z(t) = 0:

$$1 + (1 - 2t) + (-1) = 0 \Rightarrow 1 + 1 - 2t - 1 = 0 \Rightarrow 2 - 2t = 0 \Rightarrow t = 1.$$

Portanto, o ponto de interseção é:

$$(1, y(1), -1) = (1, -1, -1).$$

Procedendo de forma similar para as outras arestas, encontramos os seis pontos de interseção:

$$\begin{cases} P1: (1,0,-1) \\ P2: (0,1,-1) \\ P3: (-1,1,0) \\ P4: (-1,0,1) \\ P5: (0,-1,1) \\ P6: (1,-1,0). \end{cases}$$

5. Formação do hexágono regular:

Os pontos P1 a P6 formam um hexágono regular no plano x+y+z=0. Para calcular a área desse hexágono, precisamos determinar o comprimento de seus lados.

6. Cálculo do lado do hexágono:

Calculamos a distância entre dois pontos adjacentes:

Entre P1 e P2:

Distância
$$d = \sqrt{(1-0)^2 + (0-1)^2 + (-1-(-1))^2} = \sqrt{1^2 + (-1)^2 + 0^2} = \sqrt{1+1} = \sqrt{2}$$
.

Os demais lados também têm comprimento $\sqrt{2}$, confirmando que o hexágono é regular com lado $s=\sqrt{2}$.

7. Cálculo da área do hexágono:

A área de um hexágono regular é dada por:

$$A = \frac{3\sqrt{3}}{2}s^2.$$

Substituindo $s = \sqrt{2}$:

$$A = \frac{3\sqrt{3}}{2}(\sqrt{2})^2 = \frac{3\sqrt{3}}{2} \times 2 = 3\sqrt{3}.$$

Resposta final: ANSWER: $3\sqrt{3}$