Interrogation écrite n°03

NOM: Prénom: Note:

1. On pose $I_n = \int_0^{+\infty} t^n e^{-t} dt$. Calculer I_n pour tout $n \in \mathbb{N}$.

Soit $n \in \mathbb{N}^*$. Sous réserve de convergence, on obtient par intégration par parties,

$$I_n = -\left[t^n e^{-t}\right]_0^{+\infty} + n \int_0^{+\infty} t^{n-1} e^{-t} dt = n I_{n-1}$$

car $\lim_{t\to +\infty} t^n e^{-t} = 0$ par croissances comparées. Comme I_0 converge et $I_0 = 1$, on montre aisément par récurrence que, pour tout $n \in \mathbb{N}$, I_n converge et $I_n = n!$.

2. Soit $q \in \mathbb{C}$ tel que |q| < 1. Calculer $R_n = \sum_{k=n+1}^{+\infty} q^k$ pour $n \in \mathbb{N}$. Justifier que $\sum R_n$ converge et calculer $\sum_{n=0}^{+\infty} R_n$.

Soit $n \in \mathbb{N}$. Par changement d'indice

$$R_n = \sum_{k=0}^{+\infty} q^{n+1+k} = q^{n+1} \sum_{k=0}^{+\infty} q^k = \frac{q^{n+1}}{1-q}$$

La série $\sum R_n$ est alors une série géométrique de raison q. Comme |q| < 1, cette série converge. De plus,

$$\sum_{n=0}^{+\infty} R_n = \frac{q}{1-q} \sum_{n=0}^{+\infty} q^n = \frac{q}{(1-q)^2}$$

3. Soit $E = \mathcal{C}^1([0,1],\mathbb{R})$. On pose $N(f) = |f(0)| + ||f + f'||_{\infty}$ pour $f \in E$. Montrer que f est une norme sur E.

L'homogénéité et l'inégalité triangulaire sont trivialement vérifiées (à faire néanmoins). Seule la séparation peut éventuellement poser problème. Soit donc $f \in E$ telle que N(f) = 0. Comme N(f) est la somme de deux termes positifs, ces deux termes son nuls i.e. $|f(0)| = ||f + f'||_{\infty} = 0$. Comme $||\cdot||_{\infty}$ est une norme, on a donc f(0) = 0 et f + f' = 0. Ainsi f est solution sur [0,1] du problème de Cauchy $\begin{cases} y' + y = 0 \\ y(0) = 0 \end{cases}$. La fonction nulle est clairement solution de ce problème de Cauchy donc, par unicité de la solution d'un problème de Cauchy, f est nulle.

Remarque. On aurait pu également résoudre explicitement ce problème de Cauchy.

4. On pose $E = \mathcal{C}^1([0,1],\mathbb{R})$. Pour $f \in E$, on pose $N_1(f) = |f(0)| + ||f'||_{\infty}$ et $N_2(f) = ||f||_{\infty} + ||f'||_{\infty}$. On admet que N_1 et N_2 sont des normes sur E. Montrer que N_1 et N_2 sont des normes équivalentes.

Soit $f \in E$. Alors $|f(0)| \le ||f||_{\infty}$ de sorte que $N_1(f) \le N_2(f)$. Soit $x \in [0, 1]$. Alors

$$f(x) = f(0) + \int_0^x f'(t) dt$$

Par inégalités triangulaires,

$$|f(x)| \le |f(0)| + \left| \int_0^x f'(t) \, dt \right| \le |f(0)| + \int_0^x |f'(t)| \, dt \le |f(0)| + \int_0^x ||f'||_{\infty} \, dt \le |f(0)| + \int_0^1 ||f'||_{\infty} \, dt = N(f)$$

Ceci étant vrai pour tout $x \in [0,1]$, $\|f\|_{\infty} \le N_1(f)$. On en déduit que

$$N_2(f) \le N_1(f) + ||f'||_{\infty} = |f(0)| + 2||f'||_{\infty} \le 2|f(0)| + 2||f'||_{\infty} = 2N_1(f)$$

Ainsi N₁ et N₂ sont bien équivalentes.