Lecture 9: Double Patterning

@luk036

2022-11-23] .pull-right[

Figure 1: image

Background

. pull-left[

- In the past, chips have continued to get smaller and smaller, and therefore consume less and less power.
- However, we are rapidly approaching the end of the road and optical lithography cannot take us to the next place we need to go.

```
] .pull-right[
]
```

Process of Lithography

```
.pull-left[
   1. Photo-resist coating ( )
   2. Illumination ( )
   3. Exposure ( )
   4. Etching ( )
   5. Impurities doping ( )
   6. Metal connection
] .pull-right[
]
```

Sub-wavelength Lithography

```
.pull-left[
```

- $\bullet~$ Feature size \ll lithography wavelength
 - 45 nm vs. 193 nm

] .pull-right[

- What you see in the mask/layout is **not** what you get on the chip:
 - Features are distorted
 - Yields are declined

]

Figure 2: image

Figure 3: image

Figure 1: Shift to subwavelength optical lithography since the 0.35-micron process generation.

Figure 4: image

Figure 5: image

Figure 6: image

Figure 7: image

What is Double Patterning?

```
.pull-left[
] .pull-right[
```

Unlike conventional optical lithography, which exposes the photoresist once under one mask, masks is exposed twice by splitting them into two, each with half its feature density.

Key technologies

- Layout fracturing algorithm to reduce the number of rectangles and the total cut length.
- Dynamic priority search tree for plane sweeping.
- Graph-theoretic approach:
 - Convert the coloring problem to a T-join problem and then solve it with Hadlock's algorithm.
- Decompose the underlying conflict graph into its tri-connected components using a data structure named SPQR-tree.

Polygon Fracturing Algorithm

• Allow minimal overlap to reduce the number of rectangles, and thus the number of conflicts.

Conflict Detection

.pull-left70[

- Rule 1: If the distance between two rectangles is $\geq b$, then the two rectangles are *not* in conflict.
- Rule 2: Two overlapping/contacting rectangles are **NOT** conflict.
- Rule 3:
 - Definition: A polygon is said to be rectilinearly convex if it is both *x-monotone* and *y-monotone*.
 - Two rectangles X and Y are in conflict if they are $\leq b$ apart and there is a path from X to Y that reconstructs a "concave" polygon.

Figure 8: image

```
– Conflicting: (A,C),\,(B,D), but not (A,B),\,(A,D) and (B,C). ] .pull-right30[
```

Conflict Graph

- Blue edge: positive weight (opposite color preferred)
- Green edge: negative weight (same color preferred)

Formulation of the Layout Decomposition Problem

- INSTANCE: Graph G=(V,E) and weight function $w:E\to Z$
- SOLUTION: Disjoint subsets of vertices V_0 and V_1 so that $V_0 \cup V_1 = V$ and $V_0 \cap V_1 = \emptyset$.
- MINIMIZE: total cost $\sum_{e \in E_c} w(e)$ where $E_c = \{(u,v): u,v \in V_0 \text{ or } u,v \in V_1, (u,v) \in E\}$

Note: the problem is - Linear time solvable for bipartite graphs. - Polynomial time solvable for planar graphs. - But in general, NP-hard (even for tripartite graphs)

Graph-Theoretic Approach

- Q: How can we produce a high-quality result when the problem is NP-hard?
- A: Observe that G is a nearly planar graph: we can use Hadlock's algorithm.
- However, the time complexity of this method is still very high.
- Solution: Graph division methods.

class: middle, center

SPQR-Tree

Figure 9: image 12

Figure 10: image

Connected Graph

- Recall that a graph G=(V,E) is a connected if every pair of vertices u,v in G is connected by a path.
- A graph can be divided into its connected components in linear time.
- Clearly, the color assignment problem can be solved independently for each connected component without affecting any QoR.

Bi-connected Graph

- A vertex is called a cut-vertex of a connected graph G if removing it disconnects G.
- If no cut-vertex is found in G, then the graph is called a bi-connected graph.
- In the following example, a, b and c are cut-vertices.

Figure 11: An example of a conflict graph with its bi-connected components. Vertices $a,\,b,\,$ and c are cut-vertices.

Bi-connected Components G'

- A division of G into its bi-connected components can be performed in linear time by using a simple depth-first search to identify cut-vertices.
- It can be easily shown that the color assignment problem can be solved for each bi-connected component separately without affecting any QoR [@chiang_fast_2005]
- Question: Is it possible to further decompose the graph?

Tri-connected Graph

- If removing a pair of vertices will disconnect G', the pair is called a *separation pair* of G'.
- If no separation pair can be found in G', then it is called a tri-connected graph.
- In the following example, (a, b), (g, h), (c, d), (c, e) and (c, f) are separation pairs.

Figure 12: An example of a conflict graph and its tri-connected components. $\{a,b\}, \{c,d\}, \{c,e\}, \{c,f\}$ and $\{g,h\}$ are separation pairs.

Tri-connected Graph Division

SPQR-tree

• A division of G' into its tri-connected components can be performed by identifying the separation pairs in linear time with the help of SPQR-

Figure 13: image

Figure 14: image

tree [@gutwenger_linear_2001].					
Skeleton					
Each tree node of SPQR-tree is associated with a tri-connected component of G^\prime called $skeleton$					
• A skeleton represents a contraction of G' based on a set of $virtual\ edges$.					
• A skeleton was classified into four types:					
- Series (S): the skeleton is a cycle graph.					
– Parallel (P): the skeleton contains only two vertices s and t , and k parallel edges between s and t where $k \geq 3$.					
– Trivial (Q): the skeleton contains only two vertices s and t , and two parallel edges between s and t , one of which is virtual and the other is real.					
 Rigid (R): the skeleton is a tri-connected graph of a type other than the above. 					
class: middle, center					
Divide-and-Conquer Method					
Divide-and-conquer method					
Consists of three basic steps:					
1. Divide a conflict graph into its tri-connected components.					
2. Conquer each tri-connected component in a bottom-up manner.					
3. Combine the solutions into a complete solution in a top-down manner.					

We calculate two possible solutions for each component, namely (s,t) of the

same color and (s,t) of the opposite color.

Bottom-up Conquering: S Type

Figure 15: image

Figure 16: image

P Type

Figure 17: image

Top-down Merging

Node Splitting

- Node splitting (additional rectangle splitting) for resolving conflicts.
- To reduce the number of "cuts", we apply node splitting after one color assignment and then recolor.

.pull-left[

R Type

Before:

Figure 18: image

Figure 19: image

Figure 20: image

] .pull-right[

After:

Figure 21: image

]

class: middle, center

Experimental Results

 $45~\mathrm{nm}$ SDFFRS_X2 Layer 11, 9

Figure 22: image

45 nm Example

Figure 23: image

Figure 24: image

Random, 4K rectangles

Figure 25: image

fft_all, 320K polygons

Experimental Results

Table 1: Experimental results of the runtime and cost reduction (with minimizing the number of stitches)

#poly	# nodes / # edges	w/ spqr	$w/o \ spqr$	$_{ m time}$	$\cos t$
3631	31371/52060	13.29	38.25	65.3%	4.58%
9628	83733/138738	199.94	2706.12	92.6%	2.19%
18360	159691/265370	400.43	4635.14	91.4%	1.18%
31261	284957/477273	1914.54	9964.18	80.7%	1.61%
49833	438868/738759	3397.26	15300.9	77.8%	1.76%
75620	627423/1057794	3686.07	17643.9	79.1%	2.50%