Transformation #10: Data Reduction (Feature Extraction)

XI(*) – X's are not independent (are correlated)

Data Reduction: Intuition

- Too many predictors in a model usually suffer from over-identification and multicollinearity, particularly if some variables are correlated
- But some times business knowledge suggests that all or many of these predictors do belong in the model
- Business models generally don't include too many variables, but models in biology and other fields can have thousands of variables
- One way to resolve this issue is to develop a "structural model" (multiple models estimated together -- will cover later in the semester)
- Another way is with data reduction or feature extraction methods
- This involves combining groups of (usually correlated) variables into factors or latent variables, either through aggregation or linear combination of variables into larger variables
- Popular data reduction methods include: factor analysis (FA often used with survey data), principal components analysis (PCA) and partial least squares (PLS)

See lecture on Principal Components Regression (PCR) and Partial Least Squares (PLS) Regression

Other Transformations

- There are endless options for data transformations in preprocessing. We have covered the most popular ones.
- Examples of other transformations:
 - ➤ Re-scaling: e.g., from ⁰F to ⁰C, mpg to kpg
 - Reverse scaling: often used to facilitate interpretation e.g., a 1-7 satisfaction scale can be converted into a dissatisfaction scale by subtracting the value from 8, so that a 1 becomes 7 and a 7 becomes 1
 - > Inverse: $x^* = \frac{1}{x}$ similar purpose than revers scaling, but this is a non-linear transformation, harder to interpret, and x cannot be 0
 - ➤ Logit: we will discuss this in depth later for classification models, but the Logistical regression is simply a transformation of the dependent variable using the logistic function.

KOGOD SCHOOL of BUSINESS

