

Architecture Design

Written By	Ayesha Anam
Document Version	1.0
Last Revised Date	24 jan 2023

DOCUMENT CONTROL

Change Record

VERSION	DATE	AUTHOR	COMMENTS
1.0	11 no 2022	Ayesha Siddiqui	

Contents

1.	Introduction	04
	1.1.What is Low-Level Design Document?	04
	1.2.Scope	04
2.	Architecture	05
3.	Architecture Description	08
	3.1 Data Description	08
	3.2 Web Scrapping	08
	3.3 Data Transformation	08
	3.4 Data insertion into database	08
	3.5 Connection with SQL server	08
	3.5 Export Data from database	12
	3.6 Deployment	12
4. Unit	test cases	15

1. Introduction

1.1 What is Low-Level design document? The goal of the LDD or Low-level design document (LLDD) is to give the internal logic design of the actual program code for the House Price Prediction dashboard. LDD describes the class diagrams with the methods and relations between classes and programs specs. It describes the modules so that the programmer can directly code the program from the document. 1.2 Scope Low-level design (LLD) is a component-level design process that follows a step-by-step refinement process. The process can be used for designing data structures, required software architecture, source code and ultimately, performance algorithms. Overall, the data organization may be defined during requirement analysis and then refined during data design work.

2. Architecture

Tableau Server Architecture

Tableau has a highly scalable, n-tier client-server architecture that serves mobile clients, web clients and desktop-installed software. Tableau Server architecture supports fast and flexible deployments. The following diagram shows Tableau Server's architecture

Tableau Communication Flow

Tableau Server is internally managed by the multiple server processes.

- 1. Gateway/Load Balancer It acts as an Entry gate to the Tableu Server and also balances the load to the Server if multiple Processes are configured.
- 2) Application Server:- Application Server processes (wgserver.exe) handle browsing and permissions for the Tableau Server web and mobile interfaces. When a user opens a view in a client device, that user starts a session on Tableau Server. This means that an Application Server thread starts and checks the permissions for that user and that view.
- 3) Repository:- Tableau Server Repository is a PostgreSQL database that stores server data. This data includes information about Tableau Server users, groups and group assignments, permissions, projects, data sources, and extract metadata and refresh information.
- 4) VIZQL Server:-

iNeur**@**n

Once a view is opened, the client sends a request to the VizQL process (vizglserver.exe).

The VizQL process then sends queries directly to the data source, returning a result set that is rendered as images and presented to the user. Each VizQL Server has its own cache that can be shared across multiple users 5) Data Engine:- It Stores data extracts and answers queries.

- 6) Backgrounder:- The backgrounder Executes server tasks which includes refreshes scheduled extracts, tasks initiated from tabcmd and manages other background tasks.
- 7) Data Server: Data Server Manages connections to Tableau Server data sources It also maintains metadata from Tableau Desktop, such as calculations, definitions, and groups.
- 3. Architecture Description

3.1. Data Description

The Dataset contains the details of airport data, date, name and number of flights, geometry details, air route etc.

- 1. flight numbers: Each flight number is unique (in number).
- 2. travel count: Total travellers' numbers (in no).
- 3. route: name of the route (in string).
- 4. date: date (in square ft.)
- 5. Geometry type: longitude and latitude details (in coordinates.)

Route - Split 1

Role: Discrete Dimension

Type: Calculated Field

Contains NULL: Unknown

Locale: India(English)

Sort flags: Case-insensitive

Column width: Unknown

Status: Valid

Formula

TRIM(SPLIT([Route], "-", 1))

Domain (20 of 137 members)

ABQ

ACV

AKL

AMS

ASE

ATL

AUS

BCN

BFL

BLR

BNA

BNE

BOI

BOS

BUR

BWI

BZN

CAN

CDG

CLE

Show Me ρ ∇ Ⅲ ▼ Filters Number of Flights by day Describe Field Tables

**Geometry Type

**Properties Edit Cessation

**AP Properties Edit Cessation

**AP Properties Flysfo Airline

**AP Properties Flysfo Base A.

**Properties Flysfo Flight

**Properties Flysfo Flight

**AP Properties Flysfo Gate

**AP Properti Route - Split 2 Role: Discrete Dimension
Type: Calculated Field
Contains NULL: Unknown
Locale: India(English)
Sort flags: Case-insensitive
Column width: Unknown
Status: Valid As Route Spit 1

Soute Spit 2

Massure Names

destination

Geometry Coordinates 10

Geometry Coordinates 10

Geometry Coordinates 11

Geometry Coordinates 11

ine

Number of flights

origin TRIM(SPLIT([Route], "-", 2)) Domain (20 of 135 members) origin
 Properties Flysfo Actual ... Properties Flysfo Base F...
Properties Flysfo Estima.
Air travel data (Count)
Latitude (generated) Longitude (generated)
 Measure Values D Data Source no of flights by day Sheet 2 Routes Distance Sheet 5 图 Dashboard 1 以 및 以 Ilmarks I row by Lookumn SUMCNumber of flights) 88 532 (1) 20°C Partly cloudy ^ (2) (3) ENG 21:14:14 (24:01-2023

Route - Split 2

iNeur**®**n

Role: Discrete Dimension

Type: Calculated Field

Contains NULL: Unknown

Locale: India(English)

Sort flags: Case-insensitive

Column width: Unknown

Status: Valid

Formula

TRIM(SPLIT([Route], "-", 2))

Domain (20 of 135 members)

ABQ

ACV

AKL

AMS

ASE

ATL

AUS

BCN

BFL

BNA

BNE

BOI

BOS

BUR

BWI

BZN

CAN

CDG

CLE

CLT

iNeur**@**n

...

line

Role: Discrete Measure

Type: Calculated Field

Default aggregation: Collect

Status: Valid

Formula

MAKELINE([origin],[destination])

