## Aprendizado de Máquina 2

Aula 9

Professora: Patrícia Pampanelli

patricia.pampanelli@usp.br



Dúvidas da última aula?

### Aula de Hoje

- Máquina de Boltzmann
- Máquina Restrita de Boltzmann



- Proposto por Geoffrey Hinton (conhecido como o pai do Deep Learning) e Terry Sejnowski
- Tipo de treinamento não supervisionado capaz de aprender os padrões de um determinado conjunto de dados.
- A máquina de Boltzmann é um tipo especial de rede neural



- A máquina de Boltzmann também pode ser vista como um tipo de rede capaz de extrair padrões dos dados de entrada.
- Desta forma, as aplicações destas redes se assemelham aos autoencoders
- Essas redes também podem ser utilizadas para redução de dimensionalidade. Nestes casos, a camada oculta apresenta número menor de neurônios se comparado a camada de entrada



- Composta somente de *hidden nodes* e *input nodes* 





- Neste tipo de rede, todos os nós são conectados entre si. Perceba que mesmo os nós visíveis são conectados entre si.





- Cada conexão entre os nós tem um peso associado à ela.
- Os nós são responsáveis por tomar decisões probabilísticas sobre um determinado evento.





 Os nós visíveis são aqueles com os quais nós conseguimos interagir. Os demais nós não são acessíveis externamente





- Os nós são responsáveis por tomar decisões





- Ineficiência no treinamento:
  - O número de conexões estabelecidas entre os neurônios (todos para todos) faz com que o treinamento de uma máquina de Boltzmann seja um processo bastante ineficiente
  - Durante o período dos anos 1980s e 1990s as máquinas não restritas de Boltzmann tiveram um uso muito limitado devido à esta ineficiência no treinamento
- Os autores decidiram então modificar a arquitetura proposta originalmente para que se tornar-se mais eficiente

## Boltzmann

Máquina Restrita de

# Máquina Restrita de Boltzmann (RBM)

- Modificações propostas por Geoffrey Hinton e os demais autores propostas nos anos de 2000s
- Foram propostas algumas restrições:
  - A principal diferença é que as RBMs tem <u>somente uma</u> <u>camada de entrada e uma camada escondida</u>
  - As conexões também são restritas. <u>Neurônios de uma</u> mesma camada não estão conectados mais
  - Em outras palavras, não existe conexões: *hidden-hidden layers* e *visible-visible layers*.
- A abordagem de treinamento das RBMs é estocástica. Diferente da abordagem do auto-encoder e das redes neurais é determinística.

# Máquina Restrita de Boltzmann (RBM)



### Máquina Restrita de Boltzmann (RBM)

### Nós ocultos



Nós Visíveis

### Máquina Restrita de Boltzmann (RBM)



# Máquina Restrita de Boltzmann (RBM)



- Os nós visíveis são aqueles sobre os quais nós temos conhecimento. Em outras palavras, são estes eventos que temos definidos no dataset.
- Os nós invisíveis são aqueles sobre os quais não temos conhecimento. Esses nós são utilizados para nos ajudar a explicar os eventos conhecidos.

Bias b

### Máquinas de Boltzmann vs Redes Neurais Feedforward

As RBMs são usadas para reconstruir entradas, enquanto redes feedforward são usadas para prever saídas

| Característica | Máquina de<br>Boltzmann             | Rede Neural<br>Feedforward              |
|----------------|-------------------------------------|-----------------------------------------|
| Tipo           | Generativa                          | Discriminativa                          |
| Estrutura      | Estocástica, sem<br>camada de saída | Determinística, com<br>camadas de saída |
| Aplicação      | Modelagem<br>probabilística         | Classificação/Regressão                 |

- Vamos utilizar um exemplo numérico de uma Máquina de Boltzmann Restrita.
- Nós temos as informações sobre a presença de três alunos em uma aula de pós graduação. Estas são as informações que compõem o nosso dataset.
- Estas informações representam os estados da camada visível da RBM.









Bárbara



Priscila

Para nos ajudar a explicar o comparecimento destes alunos, nós temos dois estados invisíveis. Estes estados da camada escondida representam o tipo de aula ministrada (prática ou teórica).













Bárbara



Priscila

Nós Visíveis

- Nós não sabemos à priori qual o tipo de aula que foi ministrada em cada dia.
- Em outras palavras,
   estes dados não se
   encontram em nosso
   dataset.













Bárbara



Priscila

Augusto Bár

- Nós temos em nosso dataset as informações de comparecimento dos alunos
- Além disso, nós temos pesos associados aos estados e também as interações entre a camada visível e a camada oculta













Augusto

Bárbara

Priscila

- Nós temos em nosso dataset as informações de comparecimento dos alunos
- Além disso, nós temos pesos associados aos estados e também as interações entre a camada visível e a camada oculta

















Augusto

Bárbara

Priscila

- Nós temos em nosso dataset as informações de comparecimento dos alunos
- Além disso, nós temos pesos associados aos estados e também as interações entre a camada visível e a camada oculta



Nós Visíveis

Augusto

Bárbara

Priscila

- Nós temos em nosso dataset as informações de comparecimento dos alunos
- Além disso, nós temos pesos associados aos estados e também as interações entre a camada visível e a camada oculta





Bárbara

Priscila

Augusto

- Nós temos em nosso dataset as informações de comparecimento dos alunos
- Além disso, nós temos pesos associados aos estados e também as interações entre a camada visível e a camada oculta



Bárbara

Priscila



Augusto

## Exemplo numé co sarbara

O dataset é
 composto pelos
 estados de cada
 neurônio visível no
 dataset:







Pris cila





## Exemplo numé co serbar









Pris cila

O dataset é composto pelos estados de cada neurônio visível no dataset:

















Nós Visíveis

Bárbara Augusto

Priscila

# Exemplo numé to par la serbara

O dataset é composto pelos estados de cada neurônio visível no dataset:







Pris cila



































- Podemos avaliar o score de cada cenário considerando os nós invisíveis e os nós visíveis da RBM.
- O cálculo do Score é feito fazendo simplesmente a soma dos pesos e dos estados verdadeiros.

Score





Vamos verificar este estado onde
 Augusto, Bárbara e Priscila
 compareceram a uma aula que teve teoria e prática:

2 + 1

Score



Vamos verificar este estado onde
 Augusto, Bárbara e Priscila compareceram a uma aula que teve teoria e prática:

2 + 1

$$2 + (-2) + (-4) + 4 + 2 + (-2)$$

Score





Vamos verificar este estado onde
 Augusto, Bárbara e Priscila
 compareceram a uma aula que teve teoria e prática:

$$2 + (-2) + (-4) + 4 + 2 + (-2)$$

1 + 1 + 1

Score



Vamos verificar este estado onde
 Augusto, Bárbara e Priscila
 compareceram a uma aula que teve teoria e prática:

2 + 1

2 + (-2) + (-4) + 4 + 2 + (-2)

1 + 1 + 1

Score

6





 Agora vamos avaliar um cenário onde somente Augusto e Priscila comparecem à uma aula prática:

Score

???





 Agora vamos avaliar um cenário onde somente Augusto e Priscila comparecem à uma aula prática:

Score

???





Agora vamos avaliar um cenário onde somente Augusto e **Priscila** comparecem à uma aula prática:

Score

???







2 + 2

Augusto

Priscila

- Este é um cenário mais provável de acontecer, como vimos no dataset.
- Por conta disso, temos um score mais alto para este cenário.

Score 8





- Vamos verificar um cenário bastante improvável:
  - A Bárbara comparece em uma aula prática!

Score

???





- Vamos verificar um cenário bastante improvável:
  - A Bárbara comparece em uma aula prática!

Score

???





- Vamos verificar um cenário bastante improvável:
  - A Bárbara comparece em uma aula prática!

Score

-1





## Exemplo nume

 Se fizermos isso para todos os 32 cenários possíveis, temos uma tabela:

- A Augusto
- B Bárbara
- P Priscila
- p Prática
- t Teórica

| <b>Spijario</b> | Score |
|-----------------|-------|
| ABP pt          | 6     |
| AP p            | 8     |
| Вр              | -1    |
| А               | 1     |
| A t             | 0     |
| АВ р            | 3     |
| Ар              | 5     |
| ВР р            | 2     |
|                 |       |



A - Augusto

B - Bárbara

P - Priscila

## Exemplo nume

 Se fizermos isso para todos os 32 cenários possíveis, temos uma tabela:

- A Augusto
- B Bárbara
- P Priscila
- p Prática
- t Teórica

| သိုင်မျိုခိုင်းမှ | Score |
|-------------------|-------|
| ABP pt            | 6     |
| AP p              | 8     |
| Вр                | -1    |
| А                 | 1     |
| A t               | 0     |
| АВ р              | 3     |
| Ар                | 5     |
| ВР р              | 2     |
|                   |       |



A - Augusto

B - Bárbara

P - Priscila

## Exemplo num

 Se fizermos isso para todos os 32 cenários possíveis, temos uma tabela:

- A Augusto
- B Bárbara
- P Priscila
- p Prática
- t Teórica

|        | Score |
|--------|-------|
| ABP pt | 6     |
| AP p   | 8     |
| Вр     | -1    |
| А      | 1     |
| A t    | 0     |
| АВр    | 3     |
| Ар     | 5     |
| ВРр    | 2     |
|        |       |



A - Augusto

B - Bárbara

P - Priscila

 Para uma RBM nós calculamos uma medida de **energia** através da seguinte fórmula:

$$E(V,H) = -\sum_{i} aV_{i} - \sum_{j} bH_{j} - \sum_{i,j} V_{i}H_{j}w_{ij}$$

#### Nós ocultos



 Multiplicamos os pesos associados a camada visível:

$$E\left(V,H\right) = \boxed{-\sum_{i}aV_{i} - \sum_{j}bH_{j} - \sum_{i,j}V_{i}H_{j}w_{ij}}$$

#### Nós ocultos



 Multiplicamos os pesos associados a camada oculta:

$$E(V, H) = -\sum_{i} aV_{i} \left(-\sum_{j} bH_{j} - \sum_{i,j} V_{i}H_{j}w_{ij}\right)$$



 Multiplicamos os pesos associados a camada visível e oculta com relação às conexões:

$$E(V, H) = -\sum_{i} aV_{i} - \sum_{j} bH_{j} - \sum_{i,j} V_{i}H_{j}w_{ij}$$

#### Nós ocultos



## **Exemplo numérico** $E(V, H) = -\sum_{i} aV_{i} - \sum_{i} bH_{j} - \sum_{i,j} V_{i}H_{j}w_{ij}$

$$E(V,H) = -\sum_{i} aV_{i} - \sum_{j} bH_{j} - \sum_{i,j} V_{i}H_{j}w_{ij}$$

- Podemos fazer paralelo da **energia (score)** com relação às probabilidades de cada cenário.
- Vamos transformar este valor de energia em probabilidades:

$$p\left(V,H\right) = \frac{1}{Z}e^{-E\left(V,H\right)}$$

$$Z = \sum_{V,H} e^{-E(V,H)}$$

#### Nós ocultos



- Podemos fazer paralelo da energia (score) com relação às probabilidades de cada cenário.
- Vamos transformar este valor de energia em probabilidades:

$$p(V, H) = \frac{1}{Z}e^{-E(V, H)}$$

$$Z = \sum_{V,H} e^{-E(V,H)}$$

| Cenário | Score | e <sup>score</sup> |  |
|---------|-------|--------------------|--|
| ABP pt  | 6     |                    |  |
| AP p    | 8     |                    |  |
| Вр      | -1    |                    |  |
| A       | 1     |                    |  |
| A t     | 0     |                    |  |
| AB p    | 3     |                    |  |
| Ap      | 5     |                    |  |
| BP p    | 2     |                    |  |

#### Nós ocultos



- Podemos fazer paralelo da energia (score) com relação às probabilidades de cada cenário.
- Vamos transformar este valor de energia em probabilidades:

$$p(V, H) = \frac{1}{Z}e^{-E(V, H)}$$

$$Z = \sum_{V,H} e^{-E(V,H)}$$

| Cenário | Score | escore |  |
|---------|-------|--------|--|
| ABP pt  | 6     | 403    |  |
| AP p    | 8     | 2980   |  |
| Вр      | -1    | 0.36   |  |
| А       | 1     | 2.71   |  |
| A t     | 0     | 1      |  |
| АВ р    | 3     | 20     |  |
| Аp      | 5     | 148    |  |
| BP p    | 2     | 7.38   |  |

#### Nós ocultos



Nós Visíveis

- Podemos fazer paralelo da energia (score) com relação às probabilidades de cada cenário.
- Vamos transformar este valor de energia em probabilidades:

$$p(V, H) = \frac{1}{Z}e^{-E(V, H)}$$

$$Z = \sum_{V,H} e^{-E(V,H)}$$

| Cenário | Score | escore | p(V, H) |
|---------|-------|--------|---------|
| ABP pt  | 6     | 403    | 0.11    |
| AP p    | 8     | 2980   | 0.84    |
| Вр      | -1    | 0.36   | 0.00    |
| А       | 1     | 2.71   | 0.00    |
| A t     | 0     | 1      | 0.00    |
| АВ р    | 3     | 20     | 0.01    |
| Ар      | 5     | 148    | 0.04    |
| BP p    | 2     | 7.38   | 0.00    |

#### Nós ocultos



Nós Visíveis

- Podemos fazer paralelo da energia (score) com relação às probabilidades de cada cenário.
- Vamos transformar este valor de energia em probabilidades:

$$p(V, H) = \frac{1}{Z}e^{-E(V, H)}$$

$$Z = \sum_{V,H} e^{-E(V,H)}$$

| Cenário | Score | e <sup>score</sup> | p(V, H) |
|---------|-------|--------------------|---------|
| ABP pt  | 6     | 403                | 0.11    |
| АР р    | 8     | 2980               | 0.84    |
| Вр      | -1    | 0.36               | 0.00    |
| А       | 1     | 2.71               | 0.00    |
| A t     | 0     | 1                  | 0.00    |
| АВр     | 3     | 20                 | 0.01    |
| Ap      | 5     | 148                | 0.04    |
| BP p    | 2     | 7.38               | 0.00    |

#### Nós ocultos



- Podemos fazer paralelo da energia (score) com relação às probabilidades de cada cenário.
- Vamos transformar este valor de energia em probabilidades:

$$p(V, H) = \frac{1}{Z}e^{-E(V, H)}$$

$$Z = \sum_{V,H} e^{-E(V,H)}$$

| Cenário | Score | escore | p(V, H) |
|---------|-------|--------|---------|
| ABP pt  | 6     | 403    | 0.11    |
| AP p    | 8     | 2980   | 0.84    |
| Вр      | -1    | 0.36   | 0.00    |
| А       | 1     | 2.71   | 0.00    |
| A t     | 0     | 1      | 0.00    |
| АВ р    | 3     | 20     | 0.01    |
| Ар      | 5     | 148    | 0.04    |
| BP p    | 2     | 7.38   | 0.00    |

#### Nós ocultos



de Boltzmann?

Como treinar uma Máquina Restrita

 No treinamento nos queremos encontrar os pesos associados aos neurônios na camada de entrada (visível), na camada oculta e nas conexões entre os neurônios



- Qual o número de possibilidades de estados que temos nesta rede com 5 neurônios na camada visível e 2 neurônios na camada oculta?
  - 2<sup>5</sup> possíveis cenários = 32



Vamos avaliar as probabilidades de cada cenário quando a rede está inicializada com pesos iguais a 0:

| • | Cenário | Score | e <sup>score</sup> | p(V, H) |
|---|---------|-------|--------------------|---------|
|   | ABP pt  | 0     | 1                  | 0.03    |
|   | AP p    | 0     | 1                  | 0.03    |
|   | Вр      | 0     | 1                  | 0.03    |
|   | А       | 0     | 1                  | 0.03    |
|   | A t     | 0     | 1                  | 0.03    |
|   | АВр     | 0     | 1                  | 0.03    |
|   | Ар      | 0     | 1                  | 0.03    |
|   | BP p    | 0     | 1                  | 0.03    |
|   |         |       |                    |         |



No entanto, o que nós gostaríamos é que os pesos refletissem as probabilidades presentes no nosso dataset:

| ( | Cenário | Score | e <sup>score</sup> | p(V, H) |
|---|---------|-------|--------------------|---------|
|   | ABP pt  | 0     | 1                  | 0.03    |
|   | AP p    | 0     | 1                  | 0.03    |
|   | Вр      | 0     | 1                  | 0.03    |
|   | А       | 0     | 1                  | 0.03    |
|   | A t     | 0     | 1                  | 0.03    |
|   | АВр     | 0     | 1                  | 0.03    |
|   | Ар      | 0     | 1                  | 0.03    |
|   | BP p    | 0     | 1                  | 0.03    |
|   |         |       |                    |         |



Gostaríamos que as situações onde só a Bárbara aparecem tivessem maior probabilidade:

| ( | JNN:<br>Cenário | Score | escore | p(V, H) |
|---|-----------------|-------|--------|---------|
|   | ABP pt          | 0     | 1      | 0.03    |
|   | AP p            | 0     | 1      | 0.03    |
|   | Вр              | 0     | 1      | 0.03    |
|   | А               | 0     | 1      | 0.03    |
|   | A t             | 0     | 1      | 0.03    |
|   | АВр             | 0     | 1      | 0.03    |
|   | Ар              | 0     | 1      | 0.03    |
|   | BP p            | 0     | 1      | 0.03    |
|   |                 |       |        |         |



Situações onde a Priscila e o Augusto aparecem juntos:





Para treinar esta rede utilizamos o método chamado *Contrastive Divergence*.

| CallIII:<br>Cenário | Score | e <sup>score</sup> | p(V, H) |
|---------------------|-------|--------------------|---------|
| ABP pt              | 0     | 1                  | 0.03    |
| AP p                | 0     | 1                  | 0.03    |
| Вр                  | 0     | 1                  | 0.03    |
| А                   | 0     | 1                  | 0.03    |
| A t                 | 0     | 1                  | 0.03    |
| АВр                 | 0     | 1                  | 0.03    |
| Αp                  | 0     | 1                  | 0.03    |
| ВРр                 | 0     | 1                  | 0.03    |
|                     |       |                    |         |

Augusto Bárbara Priscila







- Neste método, selecionamos uma amostra do dataset. Por exemplo, selecionamos uma amostra onde Antônio e Priscila comparecem a aula.
- Então aumentamos a probabilidade deste evento.
- Diminuímos de todos os demais

| Cenário | Score | escore | p(V, H) |
|---------|-------|--------|---------|
| ABP pt  | -0.1  | 0.90   | 0.03    |
| AP p    | 0.1   | 1.11   | 0.04    |
| Вр      | -0.1  | 0.90   | 0.03    |
| A       | -0.1  | 0.90   | 0.03    |
| A t     | -0.1  | 0.90   | 0.03    |
| AB p    | -0.1  | 0.90   | 0.03    |
| Ap      | -0.1  | 0.90   | 0.03    |
| ВР р    | -0.1  | 0.90   | 0.03    |
|         |       |        |         |

Augusto



Bárbara



Priscila







 Selecionamos o próximo evento e repetimos a operação:

| Cenário | Score | e <sup>score</sup> | p(V, H) |
|---------|-------|--------------------|---------|
| ABP pt  | -0.2  | 0.90               | 0.03    |
| AP p    | 0     | 1.11               | 0.04    |
| Вр      | 0     | 1                  | 0.04    |
| А       | -0.2  | 0.90               | 0.03    |
| A t     | -0.2  | 0.90               | 0.03    |
| АВр     | -0.2  | 0.90               | 0.03    |
| A p     | -0.2  | 0.90               | 0.03    |
| BP p    | -0.2  | 0.90               | 0.03    |
|         |       |                    |         |

Augusto Bárbara Prís da

Diagram de la composición del composición de la composición de la composición de la composición de la composición del composición del composición del composición del composi

À medida que fazemos isso para todo o dataset, a tendência é que as probabilidades reflitam os cenários do dataset de treinamento.

| Cenário | Score | e <sup>score</sup> | p(V, H) |  |
|---------|-------|--------------------|---------|--|
| ABP pt  | -0.2  | 0.90               | 0.03    |  |
| AP p    | 0     | 1.11               | 0.04    |  |
| Вр      | 0     | 1                  | 0.04    |  |
| А       | -0.2  | 0.90               | 0.03    |  |
| A t     | -0.2  | 0.90               | 0.03    |  |
| АВр     | -0.2  | 0.90               | 0.03    |  |
| Ap      | -0.2  | 0.90               | 0.03    |  |
| ВРр     | -0.2  | 0.90               | 0.03    |  |
|         |       |                    |         |  |

Augusto Bárbara Priscila

Diagram Control of Control of

 Existe um problema de lidarmos com o ajuste das probabilidades desta forma. O problema está no número de eventos possíveis:

$$-2^5 = 32$$

 O número de possibilidades facilmente se torna proibitivo. Se tivermos 25 neurônios:

$$-2^{25} = 33.554.432$$

| Cenário | Score | escore | p(V, H) |  |
|---------|-------|--------|---------|--|
| ABP pt  | -0.2  | 0.90   | 0.03    |  |
| AP p    | 0     | 1.11   | 0.04    |  |
| Вр      | 0     | 1      | 0.04    |  |
| А       | -0.2  | 0.90   | 0.03    |  |
| A t     | -0.2  | 0.90   | 0.03    |  |
| АВр     | -0.2  | 0.90   | 0.03    |  |
| Аp      | -0.2  | 0.90   | 0.03    |  |
| BP p    | -0.2  | 0.90   | 0.03    |  |
|         |       |        |         |  |

Augusto Bárbara Priscla

Diagram Control of the Con

## Amostragem de Gibbs

# Gibbs

- A amostragem de Gibbs constrói uma cadeia de Markov para a qual os valores convergem para uma determinada distribuição.
- Nós precisamos desta
   abordagem por que queremos
   que a seleção dos cenários
   possíveis seja feita respeitando a
   probabilidade dos eventos



### Como funciona?

 Vamos imaginar que nós temos uma caixa onde a maioria das amostras são verde escuro e algumas verde claro;





### Como funciona?

 Agora nós gostaríamos de remover todas as esferas verde escuro e substituir pelas verde claro:





 Nós poderíamos simplesmente remover todas as esferas verde escuro e substituir pelas verde claro. Nosso estoque de bolinhas verde claro é tão grande quanto necessário.





 Um ponto importante é que não conseguimos ver dentro da caixa.
 Portanto, não conseguimos remover todas as verve escuro.





- Por outro lado, podemos remover seguidamente uma bolinha da caixa e substituir por uma verde claro.
- Nós temos que manter sempre o mesmo número de amostras dentro da caixa. Para cada bolinha que removemos, colocamos uma amostra verde claro no lugar.







- Por outro lado, podemos remover seguidamente uma bolinha da caixa e substituir por uma verde claro.
- Nós temos que manter sempre o mesmo número de amostras dentro da caixa. Para cada bolinha que removemos, colocamos uma amostra verde claro no lugar.







- Por outro lado, podemos remover seguidamente uma bolinha da caixa e substituir por uma verde claro.
- Nós temos que manter sempre o mesmo número de amostras dentro da caixa. Para cada bolinha que removemos, colocamos uma amostra verde claro no lugar.







- Por outro lado, podemos remover seguidamente uma bolinha da caixa e substituir por uma verde claro.
- Nós temos que manter sempre o mesmo número de amostras dentro da caixa. Para cada bolinha que removemos, colocamos uma amostra verde clara no lugar.







 A cada passo que removemos uma amostra da caixa e colocamos outra verde claro no lugar estamos mais próximos do objetivo ou, pelo menos, no mesmo estado anterior.







- Ao final de muitas repetições estaremos com quase todas as esferas verdes claro na caixa.







 Este é o processo que iremos utilizar para selecionar uma amostra dentre todo universo de cenários possíveis

























 O que esperamos obter no final do treinamento é que a probabilidade dos cenários encontrados no dataset seja alta





- Para a amostra ao lado, selecionamos o cenário possível:

AP p (Augusto e Priscila compareceram a uma aula prática)





 Para atualização dos pesos, vamos considerar somente os nós e conexões que atendem à este cenário:





 Fazemos o mesmo decrementando o valor de um cenário aleatório (B t):





- Para a seleção das amostras, verificamos os pesos atuais para que a seleção do cenário respeite a probabilidade atual:
  - B p = 0.5 B t = 0.42





Augusto



Bárbara



Priscila









 Embora o uso das RBMs tenha diminuído com o advento de arquiteturas como Redes Neurais Convolucionais (CNNs) e Redes Neurais Recorrentes (RNNs), elas ainda são relevantes em alguns contextos



 Cenários com escassez de dados rotulados: Sua capacidade de aprender distribuições complexas sem supervisão ainda é um diferencial importante



- Sistemas de Recomendação (filtragem colaborativa):
  - RBMs são usadas para prever as preferências dos usuários com base em seus comportamentos passados ou no comportamento de usuários semelhantes. Isso é feito modelando a matriz de interações usuário-item, onde cada linha representa um usuário e cada coluna representa um item. As RBMs aprendem a capturar características ocultas que refletem as preferências dos usuários e os atributos dos itens



- Existem algumas outras aplicações que podem ser desenvolvidas com RBM:
  - Detecção de anomalias: A

     habilidade das RBMs em modelar
     dados complexos as torna
     adequadas para identificar padrões
     anômalos
  - Redução de dimensionalidade
  - etc



Eficiência de Treinamento: A inicialização com RBMs pode levar a uma convergência mais rápida e estável durante o treinamento da rede neural completa. Isso ocorre porque os pesos iniciais estão mais próximos de uma solução útil, reduzindo a quantidade de ajuste fino necessário.



### Resumo da Aula de Hoj

- Máquina Boltzmann
- Maquina Restrita de Boltzmann
- Treinamento destas redes



#### Dúvidas?



## Obrigada!