3.1 SECTION EXERCISES

VERBAL

- 1. What is the difference between a relation and a function?
- **3.** Why does the vertical line test tell us whether the graph of a relation represents a function?
- **5.** Why does the horizontal line test tell us whether the graph of a function is one-to-one?
- **2.** What is the difference between the input and the output of a function?
- **4.** How can you determine if a relation is a one-to-one function?

ALGEBRAIC

For the following exercises, determine whether the relation represents a function.

6.
$$\{(a, b), (c, d), (a, c)\}$$

7.
$$\{(a, b), (b, c), (c, c)\}$$

For the following exercises, determine whether the relation represents y as a function of x.

8.
$$5x + 2y = 10$$

9.
$$y = x^2$$

10.
$$x = y^2$$

11.
$$3x^2 + y = 14$$

12.
$$2x + y^2 = 6$$

13.
$$y = -2x^2 + 40x$$

14.
$$y = \frac{1}{x}$$

15.
$$x = \frac{3y+5}{7y-1}$$

16.
$$x = \sqrt{1 - y^2}$$

17.
$$y = \frac{3x+5}{7x-1}$$

18.
$$x^2 + y^2 = 9$$

19.
$$2xy = 1$$

20.
$$x = y^3$$

21.
$$y = x^3$$

22.
$$y = \sqrt{1 - x^2}$$

23.
$$x = \pm \sqrt{1 - y}$$

24.
$$v = \pm \sqrt{1-x}$$

25.
$$y^2 = x^2$$

26.
$$y^3 = x^2$$

For the following exercises, evaluate the function f at the indicated values f(-3), f(2), f(-a), -f(a), f(a+h).

27.
$$f(x) = 2x - 5$$

28.
$$f(x) = -5x^2 + 2x - 1$$

29.
$$f(x) = \sqrt{2-x} + 5$$

30.
$$f(x) = \frac{6x-1}{5x+2}$$

31.
$$f(x) = |x - 1| - |x + 1|$$

32. Given the function
$$g(x) = 5 - x^2$$
, simplify $\frac{g(x+h) - g(x)}{h}$, $h \neq 0$

33. Given the function
$$g(x) = x^2 + 2x$$
, simplify $\frac{g(x) - g(a)}{x - a}$, $x \neq a$

- **34.** Given the function k(t) = 2t 1:
 - **a.** Evaluate k(2).
 - **b.** Solve k(t) = 7.
- **36.** Given the function $p(c) = c^2 + c$:
 - **a.** Evaluate p(-3).
 - **b.** Solve p(c) = 2.
- **38.** Given the function $f(x) = \sqrt{x+2}$:
 - **a.** Evaluate f(7).
 - **b.** Solve f(x) = 4

- **35.** Given the function f(x) = 8 3x:
 - **a.** Evaluate f(-2).
 - **b.** Solve f(x) = -1.
- **37.** Given the function $f(x) = x^2 3x$
 - **a.** Evaluate f(5).
 - **b.** Solve f(x) = 4
- **39.** Consider the relationship 3r + 2t = 18.
 - **a.** Write the relationship as a function r = f(t).
 - **b.** Evaluate f(-3).
 - **c.** Solve f(t) = 2.

GRAPHICAL

For the following exercises, use the vertical line test to determine which graphs show relations that are functions.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

- 52. Given the following graph
 - **a.** Evaluate f(-1).
 - **b.** Solve for f(x) = 3.
- 53. Given the following graph
 - **a.** Evaluate f(0).
 - **b.** Solve for f(x) = -3.

- 54. Given the following graph
 - **a.** Evaluate f(4).
 - **b.** Solve for f(x) = 1.

For the following exercises, determine if the given graph is a one-to-one function.

57.

58.

59.

NUMERIC

For the following exercises, determine whether the relation represents a function.

60.
$$\{(-1, -1), (-2, -2), (-3, -3)\}$$

For the following exercises, determine if the relation represented in table form represents y as a function of x.

63.

x	5	10	15	
y	3	8	14	

4.	x	5	10	15	
	v	3	8	8	

65

j.	x	5	10	10	
	y	3	8	14	

For the following exercises, use the function f represented in **Table 14** below.

x	0	1	2	3	4	5	6	7	8	9
f(x)	74	28	1	53	56	3	36	45	14	47

Table 14

66. Evaluate f(3).

67. Solve f(x) = 1