1. The three inequalities $-x + 2y \le -2$, $2x + y \ge 1$, $-3x + y \ge -4$ have no solution x, y with $x, y \ge 0$:

We first transform the inequalities to standard form $-x+2y \le -2$, $-2x-y \le -1$, $+3x-y \le 4$. Then apply Phase One:

$$x_1 = -2 + x -2y +x_0$$

 $x_2 = -1 +2x +y +x_0$
 $x_3 = 4 -3x +y +x_0$
 $w = -x_0$

Fake pivot to feasibility, x_0 enters and x_1 leaves.

$$\begin{array}{rclrcrcr}
x_0 & = & 2 & -x & +2y & +x_1 \\
x_2 & = & 1 & +x & +3y & +x_1 \\
x_3 & = & 6 & -4x & +3y & +x_1 \\
w & = & -2 & +x & +y & -x_1
\end{array}$$

(I used Anstee's rule with x before y) x enters and x_3 leaves.

$$\begin{array}{rclrcrcr} x_0 & = & 1/2 & +(1/4)x_3 & +(5/4)y & +(3/4)x_1 \\ x_2 & = & 5/2 & -(1/4)x_3 & +(15/4)y & +(5/4)x_1 \\ x & = & 3/2 & -(1/4)x_3 & +(3/4)y & +(1/4)x_1 \\ w & = & -1/2 & -(1/4)x_3 & -(5/4)y & -(3/4)x_1 \end{array}$$

We are at optimality with w = -1/2. Thus we cannot drive x_0 to 0. Using the magic coefficients, the negatives of the coefficients of the slack variables x_1, x_2, x_3 , namely $\frac{3}{4}, 0, \frac{1}{4}$ we apply these to the three inequalities:

$$\frac{3}{4}(-x+2y \le -2) + 0(-2x-y \le -1) + \frac{1}{4}(+3x-y \le 4)$$

to get the contradiction to $y \ge 0$:

$$(5/4)y \le \frac{-1}{2}.$$

Thus the three inequalities only yield solutions with y < 0.

We have discovered that we need only two inequalities, the first and third, to get a contradiction.

2.

a) First we transform LP3 into standard inequality form and call it LP7. We must replace the equality by two inequalities and substitute $x_2 = x_2' - x_2''$ where $x_2', x_2'' \ge 0$.

The dual of an LP7 is:

Now we can see that LP8 equivalent to LP4 by combining the last two inequalities into the equivalent equality $-7z_1 + 7z_2 + 2z_3 = 4$ and using the variable substitutions $z_1 - z_2 = y_1$ and $z_3 = y_2$ so that y_1 is unconstrained and $y_2 \ge 0$.

In general our transformations may have affected the value of the objective function when we replace z by -z (going from a min to a max) or when we delete a constant. But this does not occur in this problem.

b) We proceed as above transforming LP5 into LP9

$$LP9 \max_{\mathbf{A} \mathbf{x}} \mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{y}' - \mathbf{b} \cdot \mathbf{y}''$$

$$A\mathbf{x} + B\mathbf{y}' - B\mathbf{y}'' \leq \mathbf{c}$$

$$-A\mathbf{x} - B\mathbf{y}' + B\mathbf{y}'' \leq -\mathbf{c}$$

$$C\mathbf{x} + D\mathbf{y}' - D\mathbf{y}'' \leq \mathbf{d}$$

$$\mathbf{x}, \mathbf{y}', \mathbf{y}'' \geq \mathbf{0}$$

The dual LP10 is

We can see that LP10 can be obtained from LP6 by realizing that the inequalities $B^T \mathbf{z}' - B^T \mathbf{z}'' + D^T \mathbf{t} \ge \mathbf{b}$ and $-B^T \mathbf{z}' + B^T \mathbf{z}'' - D^T \mathbf{t} \ge -\mathbf{b}$ yields the equalities $B^T \mathbf{z}' - B^T \mathbf{z}'' + D^T \mathbf{t} = \mathbf{b}$ and then we replace $\mathbf{z}' - \mathbf{z}'' = \mathbf{z}$ and have that each variable in \mathbf{z} is free.

3. Consider $F = \{ \mathbf{x} : A\mathbf{x} \leq \mathbf{b} \text{ and } \mathbf{x} \geq \mathbf{0} \}$. Given a vector $\mathbf{z} \in F$, define the set of feasible directions $F_{\mathbf{z}}$ at \mathbf{z} as follows

$$F_{\mathbf{z}} = \{ \mathbf{y} : \text{ there exists some constant } c_{\mathbf{y}} > 0 \text{ with } \mathbf{z} + t\mathbf{y} \in F \text{ for all } t \in [0, c_{\mathbf{y}}] \}$$

These are the directions you can go in at least a small amount and still be feasible.

a) Show that if $\mathbf{u} \in F_{\mathbf{z}}$, then for any c > 0, it is also true that $c\mathbf{u} \in F_{\mathbf{z}}$.

We simple note that if $z + c_u \mathbf{u} \in F$ then that is the same as saying $z + (c_u/c)(c\mathbf{u}) \in F$ from which it follows $c\mathbf{u} \in F_{\mathbf{z}}$.

b) Consider $\mathbf{u}, \mathbf{v} \in F_{\mathbf{z}}$ where we have positive non zero constants $c_{\mathbf{u}}$ and $c_{\mathbf{v}}$ with $\mathbf{z} + c_{\mathbf{u}}\mathbf{u} \in F$ and $\mathbf{z} + c_{\mathbf{v}}\mathbf{v} \in F$ (which show that $\mathbf{u}, \mathbf{v} \in F_{\mathbf{z}}$). Show that $\frac{1}{2}c_{\mathbf{u}}\mathbf{u} + \frac{1}{2}c_{\mathbf{v}}\mathbf{v} \in F_{\mathbf{z}}$.

Because $\mathbf{z} + c_{\mathbf{u}}\mathbf{u} \in F$ and $\mathbf{z} + c_{\mathbf{v}}\mathbf{v} \in F$ we have

$$A(\mathbf{z} + \mathbf{c_u}\mathbf{u}) \le \mathbf{b}, \mathbf{z} + \mathbf{c_u}\mathbf{u} \ge \mathbf{0}, \qquad A(\mathbf{z} + \mathbf{c_v}\mathbf{v}) \le \mathbf{b}, \mathbf{z} + \mathbf{c_v}\mathbf{v} \ge \mathbf{0}$$

We compute using linearity of matrix multiplication

$$A(\mathbf{z} + \frac{1}{2}c_{\mathbf{u}}\mathbf{u} + \frac{1}{2}c_{\mathbf{v}}\mathbf{v}) = A(\frac{1}{2}\mathbf{z} + \frac{1}{2}c_{\mathbf{u}}\mathbf{u} + \frac{1}{2}\mathbf{z} + \frac{1}{2}c_{\mathbf{v}}\mathbf{v})$$

$$\frac{1}{2}A(\mathbf{z} + \mathbf{c_u}\mathbf{u}) + \frac{1}{2}A(\mathbf{z} + \mathbf{c_v}\mathbf{v}) \ge \frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{b} = \mathbf{b}$$

Similarly

$$\begin{split} \mathbf{z} + \frac{1}{2}c_{\mathbf{u}}\mathbf{u} + \frac{1}{2}c_{\mathbf{v}}\mathbf{v} &= \frac{1}{2}\mathbf{z} + \frac{1}{2}c_{\mathbf{u}}\mathbf{u} + \frac{1}{2}\mathbf{z} + \frac{1}{2}c_{\mathbf{v}}\mathbf{v} \\ &= \frac{1}{2}(\mathbf{z} + c_{\mathbf{u}}\mathbf{u}) + \frac{1}{2}(\mathbf{z} + c_{\mathbf{v}}\mathbf{v}) \geq \frac{1}{2}\mathbf{0} + \frac{1}{2}\mathbf{0} = \mathbf{0} \end{split}$$

Thus $\frac{1}{2}c_{\mathbf{u}}\mathbf{u} + \frac{1}{2}c_{\mathbf{v}}\mathbf{v} \in F_{\mathbf{z}}$.

c) Now show that $\frac{1}{2}e\mathbf{u} + \frac{1}{2}e\mathbf{v} \in F_{\mathbf{z}}$ by replacing our choices of $c_{\mathbf{u}}$ and $c_{\mathbf{v}}$ by $e = \min\{c_{\mathbf{u}}, c_{\mathbf{v}}\}$. The idea is we can replace our choices of $c_{\mathbf{u}}$ and $c_{\mathbf{v}}$ by any values smaller (or the same) and so with $e = \min\{c_{\mathbf{u}}, c_{\mathbf{v}}\}$ where we have e > 0 and $\mathbf{z} + e\mathbf{u} \in F$ and $\mathbf{z} + e\mathbf{v} \in F$.

d) Then show that $\mathbf{u} + \mathbf{v} \in F_{\mathbf{z}}$. Result a) should help.

Our result in a) shows that since $\frac{1}{2}e\mathbf{u} + \frac{1}{2}e\mathbf{v} \in F_{\mathbf{z}}$ we must have $(2/e)\frac{1}{2}e\mathbf{u} + \frac{1}{2}e\mathbf{v} = \mathbf{u} + \mathbf{v} \in F_{\mathbf{z}}$. Note that we need e > 0.

e) Finally show that for any positive constants $a, b, a\mathbf{u} + b\mathbf{v} \in F_{\mathbf{z}}$.

With $\mathbf{u} \in F_{\mathbf{z}}$, we use a) with c = a, to obtain $a\mathbf{u} \in F_{\mathbf{z}}$ for any a > 0. Similarly $b\mathbf{v} \in F_{\mathbf{z}}$. Now we appeal to our result of d), with \mathbf{u} replaced by $a\mathbf{u}$ and \mathbf{v} replaced by $b\mathbf{v}$.

4. Consider an LP: max $\mathbf{c} \cdot \mathbf{x}$ such that $A\mathbf{x} \leq \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$. Assume that the LP has a feasible solution \mathbf{u} and there exists a vector \mathbf{v} with $\mathbf{v} \geq 0$, $A\mathbf{v} \leq \mathbf{0}$ and $\mathbf{c} \cdot \mathbf{v} > 0$. Show that the LP is unbounded. Hint: Consider $\mathbf{u} + t\mathbf{v}$ as $t \to \infty$.

We compute $A(\mathbf{u} + t\mathbf{v}) = A\mathbf{u} + tA\mathbf{v}$. Now $A\mathbf{v} \leq \mathbf{0}$ and so $tA\mathbf{v} \leq \mathbf{0}$ for t > 0. Also $A\mathbf{u} \leq \mathbf{b}$ and so $A(\mathbf{u} + t\mathbf{v}) = A\mathbf{u} + tA\mathbf{v} \leq \mathbf{b} + \mathbf{0} = \mathbf{b}$. Also $\mathbf{u} \geq \mathbf{0}$ and $\mathbf{v} \geq \mathbf{0}$ so that $t\mathbf{v} \geq \mathbf{0}$ for t > 0. Then $\mathbf{u} + t\mathbf{v} \geq \mathbf{0} + \mathbf{0} = \mathbf{0}$. Thus $\mathbf{u} + t\mathbf{v}$ is a feasible solution to the LP for any t > 0.

The objective function is $\mathbf{c} \cdot (\mathbf{u} + t\mathbf{v}) = \mathbf{c} \cdot \mathbf{u} + t\mathbf{c} \cdot \mathbf{v}$ (linearity again!) . Let $e = \mathbf{c} \cdot \mathbf{u}$ and $f = \mathbf{c} \cdot \mathbf{v}$. One of our hypotheses is f > 0. We have f > 0 and so $\lim_{t \to \infty} \mathbf{c} \cdot (\mathbf{u} + t\mathbf{v}) = \lim_{t \to \infty} (e + tf) = \infty$ since f > 0.

5. Our simplex algorithm pivots from basic feasible solution to basic feasible solution, namely solutions depending on a basis so that the variables with non zero values index a linearly independent set of columns. We consider the following

LP: $\max \mathbf{c} \cdot \mathbf{x}$ such that $A\mathbf{x} = \mathbf{b}$ and $\mathbf{x} \geq \mathbf{0}$

that has a feasible solution $\mathbf{u} = (u_1, u_2, \dots, u_{n+m})^T$ (i.e. $A\mathbf{u} = \mathbf{b}$ and $u \geq \mathbf{0}$). We wish have you give a step in the proof to show the LP has a basic feasible solution without using the simplex algorithm. You may imagine we have included the slack variables as well as the original variables in the evector \mathbf{u} .

Let A_i denote the *i*th column of A. Let $P = \{i : u_i > 0\}$, namely the indices for which \mathbf{u} is non zero (strictly positive). Assume $\{A_i : i \in P\}$ is a linearly dependent set of columns such that $\sum_{i \in I} a_i A_i = \mathbf{0}$. Thus we can find $\mathbf{a} = (a_1, a_2, \dots, a_{n+m})^T$ so that $A\mathbf{a} = \mathbf{0}$ and $\mathbf{a} \neq \mathbf{0}$ where $a_i = 0$ for $i \notin P$.

We note that $\mathbf{u} + e\mathbf{a}$ satisfies $A(\mathbf{u} + e\mathbf{a}) = A\mathbf{u} = \mathbf{b}$. For your assignment, indicate how to choose e so that $\mathbf{u} + e\mathbf{a} \ge 0$ such that there are fewer non zero entries in $\mathbf{u} + e\mathbf{a}$ than in \mathbf{u} and at the same time $\mathbf{u} + e\mathbf{a}$ is a feasible solution to the LP. We already have $A(\mathbf{u} + e\mathbf{a}) = \mathbf{b}$.

Solution: The idea is that if we choose e too large (in absolute value) we risk getting an infeasible solution $\mathbf{u} + e\mathbf{a}$ which has negative entries (we expect \mathbf{a} to have both positive and negative entries). But we wish to take e large enough (in absolute value) to create some new 0's. We have $\mathbf{u} + e\mathbf{a} = (u_1 + ea_1, u_2 + ea_2, \dots, u_{n+m} + ea_{n+m})^T$. SInce $\mathbf{a} \neq \mathbf{0}$, we can split or analysis into two cases. First \mathbf{a} has a strictly positive entry $a_k > 0$. Secondly $\mathbf{a} \leq \mathbf{0}$ with a strictly negative entry $a_{\ell} < 0$.

Case 1. **a** has an entry $a_k > 0$.

In this case we take e to be negative driving some entry to 0. We must have $u_i + ea_i \ge 0$ for i = 1, 2, ..., n + m. With e < 0 and $a_i \le 0$, we have $ea_i \ge 0$ and so $u_i + ea_i \ge 0$. For $a_i > 0$, we have that $u_i + ea_i \ge 0$ yields $u_i/a_i \ge -e$ or $e \ge -u_i/a_i$. So let $e = \max\{-u_i/a_i : a_i > 0\}$. This is the maximum of a set of negative numbers. With this value of e, there will be some entry driven to 0, namely the pth entry if $e = -u_p/a_p$ (with $a_p > 0$).

Case 2. $\mathbf{a} \leq \mathbf{0}$ has an entry $a_{\ell} < 0$.

We must have $u_i + ea_i \ge 0$ for i = 1, 2, ..., n + m for those i with $a_i < 0$. Thus $u_i/a_i + e \le 0$ and so $e \le -u_i/a_i$. Let $e = \min\{-u_i/a_i : a_i < 0\}$. This is the minimum of a set of negative numbers. Then $u_i + ea_i \ge 0$ for i = 1, 2, ..., n + m for those i with $a_i < 0$ and moreover there will be some entry driven to 0 namely the qth entry when $e = -u_q/a_q$ (with $a_q < 0$).

It is indeed easier to use some illustrative examples to see what is happening. The writeup can be annoying.

e.g for
$$\mathbf{u} = (0, 1, 2, 3, 4)^T$$
, $a = (0, 0, 3, 3, -3)^T$, take $e = -2/3$.
e.g. for $\mathbf{u} = (0, 1, 2, 3, 4)^T$, $a = (0, 0, -3, -3, -3)^T$, take $e = 2/3$.

We would repeat this procedure until there are fewer and fewer 0's in \mathbf{u} so that the columns of A indexed by the non zero entries of \mathbf{u} are linearly independent.