Review

STAT-UB.0001 Statistics for Business Control

Ningshan Zhang

IOMS Department nzhang@stern.nyu.edu

Aug 7, 2018

Final Exam

- ► Aug 9, 10:00 12:00 AM, Tisch UC19.
- Open book and notes. No cellphone or laptop.
- Bring a calculator (make sure it cake take square root).
- Covers all the topics; focuses on the second half.

Populations vs Samples

"Statistics is using a *sample* to make a statement about a *population*."

- Population: The set of items or individuals that we are interested in studying and drawing conclusions about.
- ► Sample: A subset of items or individuals from the population.
 - Unbiased sample: every member of the population has an equal chance of being included in the sample.

Descriptive Statistics

Descriptive Statistics: types of statements.

- Center of the distribution: mean, median.
- Spread of the distribution: range, standard deviation.
- Shape of the distribution: histogram, boxplot.

Center of the Distribution: Mean vs Median

Mean: the average of the observations:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \dots + x_n).$$

- ▶ Median: the middle value in a *sorted* dataset.
 - ▶ When n is odd, take "true" middle value.
 - When n is even, take the average of the two middle values.
- Skewness
 - Positive/right skew: mean median > 0 , mean is to the right of the median.
 - Negative/left skew: mean median < 0, mean is to the left of the median.

Spread of the Distribution

► Range:

$$\max(\{x_1,\cdots,x_n\})-\min(\{x_1,\cdots,x_n\})$$

▶ Variance (s^2) and standard deviation (s):

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
$$s = \sqrt{s^{2}}$$

Probability: Terminology

- ► Random experiment: the process of observation leading to an outcome that cannot be predicted with certainty.
- ▶ Sample point: a possible outcome of an experiment.
- Sample space of experiments: the set of all sample points, denoted by Ω , or S.
- Event: a set of sample points.

Example: flip a coin; roll a 6-sided dice.

Probability

▶ Given a sample space, $\Omega = \{e_1, e_2, \dots, e_n\}$. A probability \mathbb{P} is a function with two properties:

$$\mathbb{P}(e_i) \geq 0, \quad \mathbb{P}(e_1) + ... + \mathbb{P}(e_n) = 1.$$

▶ Probability of an event: If $A = \{e_1, ..., e_m\}$, then

$$\mathbb{P}(A) = \mathbb{P}(e_1) + \cdots + \mathbb{P}(e_m).$$

▶ Interpretations of probability: long-run relative frequency; when an experiment is repeated *n* times (*n* is large),

$$\mathbb{P}(A) \approx (\text{no. of times } A \text{ occured})/n.$$

Compound Events: Union and Intersections

A and B are two events.

- ▶ Union $(A \cup B, "A \text{ or } B")$: event A or event B occurs, or both occur.
- ▶ Intersection ($A \cap B$, "A and B"): event A and event B both occur.

Figure: Left: $A \cap B$. Right: $A \cup B$

▶ Mutually exclusive events: A and B cannot occur together, $\mathbb{P}(A \cap B) = 0$.

Conditional Probability and Independence

Conditional probability $\mathbb{P}(A \mid B)$: the probability of event A, given that event B occurred. It is formally defined as

$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Statistical independence: A and B are independent events if the occurrence of A does not affect the probability that B occurs:

$$\mathbb{P}(A \mid B) = \mathbb{P}(A) \iff \mathbb{P}(B \mid A) = \mathbb{P}(B)$$

Rules for Computing with Probability

Additive rule:

$$\begin{split} \mathbb{P}(A \cup B) &= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B). \\ \mathbb{P}(A \cup B) &= \mathbb{P}(A) + \mathbb{P}(B). \end{split} \qquad \text{(only when A and B are ME)}$$

Complement rule:

$$\mathbb{P}(A^c)=1-\mathbb{P}(A).$$

Multiplicative rule:

$$\mathbb{P}(A \cap B) = \mathbb{P}(B)\mathbb{P}(A \mid B) = \mathbb{P}(A)\mathbb{P}(B \mid A).$$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \quad \text{(only when A and B are independent)}$$

Bayes' Rule: relates $\mathbb{P}(A \mid B)$ to $\mathbb{P}(B|A)$

Given k mutually exclusive events B_1, B_2, \ldots, B_k such that $\mathbb{P}(B_1) + \mathbb{P}(B_2) + \cdots + \mathbb{P}(B_k) = 1$, then

$$\mathbb{P}(B_i \mid A) = \frac{\mathbb{P}(A \cap B_i)}{\mathbb{P}(A)}$$

$$= \frac{\mathbb{P}(A \mid B_i)\mathbb{P}(B_i)}{\mathbb{P}(A \mid B_1)\mathbb{P}(B_1) + \dots + \mathbb{P}(A \mid B_k)\mathbb{P}(B_k)}$$

Bayes' rule can be derived from additive rule and multiplicative rule.

Counting Rules

When all sample points are equally likely,

$$\mathbb{P}(A) = \frac{\text{no. of sample points in } A}{\text{no. of sample points in } \Omega}.$$

▶ Permutations rule: The number of ways to arrange k out of n objects is

$$P(n,k) = n(n-1)\cdots(n-k+1) = \frac{n!}{(n-k)!}.$$

Combinations rule: Number of ways to pick unordered k out of n objects is

$$C(n,k) = \frac{\text{no. of ways to pick ordered } k \text{ objects out of } n}{\text{no. of ways to order } k \text{ objects}}$$
$$= \frac{P(n,k)}{k!} = \frac{n!}{k!(n-k)!}$$

Random Variable

- Random Variable: A variable whose value depends uniquely on the outcome of a random experiment.
- Properties of a discrete random variable X:
 - Probability Distribution Function (PDF):

$$p(x) = \mathbb{P}(X = x).$$

Expected value/mean/expectation (μ, μ_X) :

$$\mathbb{E}(X) = \sum_{x} x \cdot p(x)$$

▶ Variance (σ^2, σ_X^2) and standard deviation (σ, σ_X) :

$$\operatorname{var}(X) = \sum_{x} (x - \mu)^2 p(x), \quad \operatorname{sd}(X) = \sqrt{\operatorname{var}(X)}$$

Continuous Random Variables

X is a continuous random variable.

▶ The probability of *X* taking any *individual value* is 0.

$$\mathbb{P}(X = x) = 0$$
, for any value of x .

► The probability of *X* within a range of values is defined by probability density function (pdf):

Figure: The pdf and the area under the curve.

Properties of Expected Value

1. (Aaffine transformation) Let a, b be two constants, and let X be a random variable. Then,

$$\mathbb{E}(aX+b)=a\mathbb{E}(X)+b$$

2. (Sum) Let X and Y be two random variables. Then,

$$\mathbb{E}(X+Y)=\mathbb{E}(X)+\mathbb{E}(Y)$$

Applications:

$$\mathbb{E}(-X) = -\mathbb{E}(X), \quad \text{var}(aX) = a^2 \text{var}(X)$$

The Binomial Distribution

Binomial experiment:

- It consists of a fixed number n of statistically independent trials;
- each trial has the same probability of success p;
- we want to count the number of successes.

Let X = the number of successes. Then X is a *binomial random variable* that has *binomial distribution*, written as $X \sim B(n, p)$. The PDF, mean and standard deviation are:

$$\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n - k},$$

$$\mathbb{E}(X) = np, \quad \text{var}(X) = np(1 - p).$$

The Poisson Distribution

Let X = the number of events that occur in a fixed interval of time, space, etc. Assume that

- Events occur with a known constant rate.
- ► The events occur independently of the time since the last event.

Then *X* follows a *Poisson distribution*. The PDF, mean and standard deviation are:

$$\mathbb{P}(X = k) = \frac{\lambda^k e^{-\lambda}}{k!},$$

$$\mathbb{E}(X) = \text{var}(X) = \lambda.$$

The Normal Distribution

Figure: The pdf of a normal distribution with mean μ and variance σ^2 .

The Normal Distribution

- Standard normal distribution Z: a normal distribution with $\mu=0$ and $\sigma=1$.
- ▶ We use z-tables to find the areas under the curve for Z.
 - ▶ Given z_0 , look for $\mathbb{P}(Z \leq z_0)$.
 - Given p_0 , look for z_0 such that $\mathbb{P}(Z \leq z_0) = p_0$.
- ▶ If X is a normal with mean μ and standard deviation σ , then

$$\frac{X-\mu}{\sigma}\sim \mathcal{N}(0,1).$$

The Central Limit Theorem (CLT)

Suppose X_1, X_2, \ldots, X_n are sampled independently from a population with mean μ and standard deviation σ . Let \bar{X} be the sample mean,

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Then,

- $\blacktriangleright \ \mu_{\bar{X}} = \mathbb{E}(\bar{X}) = \mu,$
- ▶ If *n* is sufficiently large $(n \ge 30)$, then \bar{X} is approximately normal.
- Not by CLT) If population is normal, then \bar{X} is normal for any $n \geq 0$.

Probability and Statistics

- ▶ Probability: CLT, how does \bar{X} relate to the population.
- Statistics: estimation with confidence intervals, hypothesis testing.

Overview of Estimation and Hypothesis Testing

Parameter	Estimate	$\mathbb{E}(Estimate)$	sd(Estimate)
μ	\bar{X}	$\mid \qquad \mu$	σ/\sqrt{n}
р	p	р	$\sqrt{p(1-p)/n}$
	$ig ar{X}_1 - ar{X}_2$		$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

- ▶ A 1α CI for Parameter: Estimate $\pm (z_{\alpha/2})$ sd(Estimate).
- ▶ Hypothesis test H_0 : Parameter= μ_0 v.s. H_A : Parameter $\neq \mu_0$,

$$T = \frac{\mathsf{Estimate} - \mu_0}{\mathsf{sd}(\mathsf{Estimate})},$$

and compute p-value from there on.

^{*} Note: use $t_{\alpha/2,n-1}$ instead of $z_{\alpha/2}$ when necessary.

CI for the Mean

	σ known	σ unknown
n ≥ 30	$ar{X}\pm z_{lpha/2}rac{\sigma}{\sqrt{n}}$	$ar{X}\pm z_{lpha/2}rac{S}{\sqrt{n}}$
n < 30, pop. is normal	$ar{X}\pm z_{lpha/2}rac{\sigma}{\sqrt{n}}$	$ar{X} \pm t_{\alpha/2,n-1} rac{S}{\sqrt{n}}$
n < 30, pop. isn't normal	N.A.	N.A.

Hypothesis Test for the Mean

- $H_0: \mu = \mu_0, \quad H_A: \mu \neq \mu_0.$
- ► Test statistic:

$$T=\frac{\bar{X}-\mu_0}{S/\sqrt{n}}.$$

p-value: given the observed test staistic t,

$$p
-value = \mathbb{P}(|t_{n-1}| \ge |t|),$$

where t_{n-1} is a t-distribution with df= n-1.

- ightharpoonup Given significance level α ,
 - ▶ Reject H_0 if p-value $\leq \alpha$.
 - ightharpoonup Equivalently, reject H_0 if observe test statistic t such that

$$t \notin (-t_{\alpha/2,n-1},t_{\alpha/2,n-1}).$$

CI for the Proportion

- Use $\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}$ as an approximation of $\sigma_{\widehat{p}}=\sqrt{\frac{p(1-p)}{n}}$.
- lacktriangle A 1-lpha confidence interval for population proportion p is

$$\widehat{p}\pm z_{\alpha/2}\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}.$$

CI for the Difference of Means

- ▶ Use $\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$ as an approximation of $\sigma_{\bar{X}_1 \bar{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$.
- ► The $1-\alpha$ confidence interval for difference of population means $\mu_1-\mu_2$ is

$$(\bar{X}_1 - \bar{X}_2) \pm z_{\alpha/2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}.$$

Hypothesis Test for the Difference of Means

- $ightharpoonup H_0: \mu_1 = \mu_2, \quad H_A: \mu_1 \neq \mu_2.$
- ► Test statistic:

$$T = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}.$$

p-value: given the observed test staistic t,

$$p$$
-value = $\mathbb{P}(|Z| \ge |t|)$,

where Z is the standard normal random variable.

- \triangleright Given significance level α ,
 - ▶ Reject H_0 if p-value $\leq \alpha$.
 - \triangleright Equivalently, reject H_0 if observe test statistic t such that

$$t \notin (-z_{\alpha/2}, z_{\alpha/2}).$$

When are CI and Htest valid?

The sample must satisfy

- 1. Observations X_1, \dots, X_n are drawn randomly and independently from the population.
- 2. We can reason about the distribution of the estimate:
 - $ightharpoonup ar{X}$: population is normal, or $n \geq 30$.
 - \hat{p} : $np \ge 15$ and $n(1-p) \ge 15$.
 - ▶ $\bar{X}_1 \bar{X}_2$: $n_1 \ge 30$ and $n_2 \ge 30$.

Interpretations of CI and Htest

- ▶ Confidence interval: $1-\alpha$ is the probability, or proportion of the time, that a interval constructed by this procedure would cover true parameter.
- ▶ Hypothesis test: α is the probability, or proportion of the time, that a test of this kind would reject H_0 when H_0 is true.
- Caution: there is nothing random about the true parameter or null hypothesis!