power

File: power.kicad_sch

Connectors

File: connector.kicad_sch

Ethernet

File: ethernet.kicad_sch

wiredmbus

File: mbus.kicad_sch

SDCard

File: sdcard.kicad_sch

Approved By: Rodney Osodo Deigned By: Jones Kisaka

Abstract Machines

Sheet: /

File: s0-base-board.kicad sch

Title: SO Base Board

 Size: A4
 Date: 2025-02-26
 Rev: v0.1.0

 KiCad E.D.A. 9.0.2
 Id: 1/6

Reverse Polarity Protection

BAT

VIN - 5V CONV

BATTERY CHARGER

CURRENT REGULATION SET Fast charge current regulation can be scaled by placing a programming resistor (RPROG) from the PROG input to VSS. The program resistor and the charge current are calculated using the following equation:

Ireg = 1000V/Rprog

where: Rprog is in kOhms Ireg is charging current in milliamps.

lreg = 1000V/2= 500mA

5V - 3.3V CONV

Approved By: Rodney Osodo Deigned By: Jones Kisaka

Abstract Machines

Sheet: /power/ File: power.kicad_sch

Title: SO Base Board

 Size: A4
 Date: 2025-02-26
 Rev: v0.1.0

 KiCad E.D.A. 9.0.2
 Id: 2/6

W5500 ETHERNET PHY/MAC

AUTO-NEGOTIATING MODES

Approved By: Rodney Osodo
Deigned By: Jones Kisaka
Abstract Machines
Sheet: /Ethernet/
File: ethernet.kicad_sch

Title: SO Base Board

ize: A3 | Date: 2025-02-26 | **Rev: v0.1.0** | Id: 3/6

