§8.4 正交变换,正交矩阵 习题参考答案

- 1. (1) 设 Q 是奇数阶正交矩阵, 且 $\det Q = 1$, 则 1 是 Q 的一个特征值;
- (2) 设 Q 是 n 阶正交矩阵,且 $\det Q = -1$,则 -1 是 Q 的一个特征值. 证明:由定理 8.4.3,Q 正交相似于矩阵

$$P = \operatorname{diag}(E_r, -E_s, \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 \\ \sin \theta_1 & \cos \theta_1 \end{pmatrix}, \cdots, \begin{pmatrix} \cos \theta_l & -\sin \theta_l \\ \sin \theta_l & \cos \theta_l \end{pmatrix}),$$

其中 r+s+2l=n. 因为 n 为奇数, 故 r+s 为奇数, 表明 Q 必有实特征值 1 或 -1. 注意到

$$\det Q = \det P = \det E_r \det(-E_s) \prod_{i=1}^l \det \begin{pmatrix} \cos \theta_i & -\sin \theta_i \\ \sin \theta_i & \cos \theta_i \end{pmatrix} = (-1)^s = 1.$$

故 s 为偶数, 从而 1 必是 Q 的一个特征值.

- (2) 同 (1), $\det Q = (-1)^s = -1$, 故 s 为奇数, 知 -1 必是 Q 的一个特征值. \square
- 2. 设 η 是欧氏空间中单位向量, 定义

$$\varphi(\alpha) = \alpha - 2(\eta, \alpha)\eta.$$

证明:

- (1) φ 是正交变换 (称为镜面反射);
- (2) $\varphi^2 = \mathrm{id}_V$;
- (3) 存在 V 的一个标准正交基,使得 φ 在这个标准正交基下的矩阵为 $\begin{pmatrix} -1 & 0 \\ 0 & E_{n-1} \end{pmatrix}$.

证明: (1) 取单位向量 $\varepsilon_1=e$, 将它扩为 V 的一个标准正交基 $\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n$. 直接计算得 $\varphi(\varepsilon_1)=-\varepsilon_1$, $\varphi(\varepsilon_i)=\varepsilon_i$, $(1< i\leq n)$. 从而 φ 在这个标准正交基下的矩阵为 $P=\begin{pmatrix} -1 & 0 \\ 0 & E_{n-1} \end{pmatrix}$. 该矩阵为正交阵, 所以 φ 是正交变换.

- (2) 由 (1) 知道 φ 在上述标准正交基下的矩阵为 P, 直接计算知 $P^2 = E$, 由同构对应得 $\varphi^2 = \mathrm{id}_V$.
- (3) 见 (1). □
- 3. 如果 n 维欧氏空间 V 上的正交变换 φ 以 1 作为一个特征值,且属于特征值 1 特征子空间 V_1 的维数 为 n-1, 那么 φ 是镜面反射.

证明: 设 φ 的特征值为 $\lambda_1,\lambda_2,\cdots,\lambda_n$. 因 φ 是正交变换,则 φ 特征值的模长为 1, 并且 φ 的复特征值必成对出现。由已知条件, φ 的属于特征值 1 特征子空间 V_1 的维数为 n-1,故 1 至少是 φ 的 n-1 重特征值,不妨设 $\lambda_2=\cdots=\lambda_n=1$,从而 λ_n 只能是 1 或 -1. 现证 $\lambda_1=-1$. 若不然 $\lambda_1=1$,则由正交变换的标准形理论知 φ 在某个标准正交基下的矩阵为单位阵,从而 $\varphi=\mathrm{id}_V$,与设属于特征值 1 特征子空间 V_1 的维数为 n-1 矛盾。因此 -1 为 φ 的一个特征值, ξ_1 为其相应的一个单位特征向量。再设 V_1 的一个标准正交基是 ξ_2,\cdots,ξ_n ,则 ξ_1,ξ_2,\cdots,ξ_n 是 V 的一个标准正交基,且 $\varphi(\xi_1,\xi_2,\cdots,\xi_n)=(\xi_1,\xi_2,\cdots,\xi_n)\begin{pmatrix} -1&0\\0&I_{n-1}\end{pmatrix}$. 即 $\varphi(\xi_1)=-\xi_1,\,\varphi(\xi_i)=\xi_i\;(1< i\leq n)$.

从而对任意 $\alpha \in V$, $\alpha = \sum_{i=1}^n k_i \xi_i$. $\varphi(\alpha) = \varphi(\sum_{i=1}^n k_i \xi_i) = \sum_{i=1}^n k_i \varphi(\xi_i) = -k_1 \xi_1 + \sum_{i=2}^n k_i \xi_i = k_i \xi_i$ $-2k_1\xi_1+\sum_{i=1}^nk_i\xi_i=-2(\xi_1,\alpha)\xi_1+\alpha=\alpha-2(\xi_1,\alpha)\xi_1.$ 由题 2 知 φ 是镜面反射. \qed

4. 设 φ 是 n 维欧式空间 V 上的变换, 对于任意的 $\alpha, \beta \in V$ 都有

$$(\varphi(\alpha), \varphi(\beta)) = (\alpha, \beta),$$

求证: φ 是线性映射,从而必是正交变换.

证明: 因为

$$(\varphi(\alpha+\beta)-\varphi(\alpha)-\varphi(\beta),\varphi(\alpha+\beta)-\varphi(\alpha)-\varphi(\beta))$$

$$=(\varphi(\alpha+\beta),\varphi(\alpha+\beta))-(\varphi(\alpha+\beta),\varphi(\alpha))-(\varphi(\alpha+\beta),\varphi(\beta))-(\varphi(\alpha),\varphi(\alpha+\beta))$$

$$+(\varphi(\alpha),\varphi(\alpha))+(\varphi(\alpha),\varphi(\beta))-(\varphi(\beta),\varphi(\alpha+\beta))+(\varphi(\beta),\varphi(\alpha))+(\varphi(\beta),\varphi(\beta))$$

$$=(\alpha+\beta,\alpha+\beta)-(\alpha+\beta,\alpha)-(\alpha+\beta,\beta)-(\alpha,\alpha+\beta)$$

$$-(\beta,\alpha+\beta)+(\alpha,\alpha)+(\alpha,\beta)+(\beta,\alpha)+(\beta,\beta)$$

$$=0$$

所以 $\varphi(\alpha+\beta)-\varphi(\alpha)-\varphi(\beta)=0$, 从而 $\varphi(\alpha+\beta)=\varphi(\alpha)+\varphi(\beta)$. 同理可证 $\varphi(k\alpha)=k\varphi(\alpha)$. 所以 φ 是线性映射, 故 φ 必是正交变换. \square

5. 设 φ 是欧式空间 V 的正交变换, U 是 φ - 不变子空间,则 U^{\perp} 也是 φ - 不变子空间.

证明: (法一) 设 $\xi_1, \xi_2, \dots, \xi_m$ 为 U 的一个标准正交基,将其扩为 V 的一个标准正交基 $\xi_1, \xi_2, \dots, \xi_n$ 则 $U^{\perp} = \langle \xi_{m+1}, \cdots, \xi_n \rangle$, $V = U \bigoplus U^{\perp}$. 由假设 U 是 φ — 不变子空间,从而 $\varphi(\xi_1, \xi_2, \cdots, \xi_n) = (\xi_1, \xi_2, \cdots, \xi_n) \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$. 又因为 φ 是正交变换,则 $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$ 为正交阵,即 $\begin{pmatrix} A & B \\ 0 & C \end{pmatrix}^{-1} = C$ $\left(egin{array}{cc} A & B \\ 0 & C \end{array}
ight)^T$,直接计算即得 C=0,因此 U^\perp 也是 $\varphi-$ 不变子空间.

(法二) 设 ξ_1,ξ_2,\cdots,ξ_m 为 U 的一个标准正交基,将其扩为 V 的一个标准正交基 ξ_1,ξ_2,\cdots,ξ_n ,则 $U = \langle \xi_1, \xi_2, \dots, \xi_m \rangle, U^{\perp} = \langle \xi_{m+1}, \dots, \xi_n \rangle.$ 因为 φ 正交,从而 $\varphi(\xi_1), \varphi(\xi_2), \dots, \varphi(\xi_n)$ 是 V 的一个标 准正交基. 又因为 U 是 φ — 不变子空间,所以 $\varphi(\xi_1), \varphi(\xi_2), \cdots, \varphi(\xi_m) \in U$,且由正交知它们线性无关, 个数为 U 的维数, 因此是 U 的一个基. 此外, $\varphi(\xi_{m+1}), \varphi(\xi_{m+2}), \cdots, \varphi(\xi_n)$ 与 $\varphi(\xi_1), \varphi(\xi_2), \cdots, \varphi(\xi_m)$ 均正交,故 $\varphi(\xi_{m+1}), \varphi(\xi_{m+2}), \cdots, \varphi(\xi_n) \in U^{\perp}$, 从而 U^{\perp} 也是 φ - 不变子空间.

(法三) 设 $\xi_1, \xi_2, \dots, \xi_m$ 为 U 的一个标准正交基,将其扩为 V 的一个标准正交基 $\xi_1, \xi_2, \dots, \xi_n$. 因 φ 是正交变换, 因此 $\varphi(\xi_1), \varphi(\xi_2), \dots, \varphi(\xi_n)$ 也是 V 的一个标准正交基. 又 U 是 φ — 子空间, 因此 $\varphi(\xi_1), \varphi(\xi_2), \dots, \varphi(\xi_m) \in U$, 注意到它们正交,因此线性无关且个数为 U 的维数,故 $\varphi(\xi_1), \varphi(\xi_2), \dots, \varphi(\xi_m)$ 构成 U 的一个基.

对任意 $\alpha \in U^{\perp}$, $\beta \in U$, $\beta = \sum_{i=1}^{m} a_i \varphi(\xi_i)$, 注意到 φ 是正交变换, 因此

$$(\varphi(\alpha), \beta) = (\varphi(\alpha), \sum_{i=1}^{m} a_i \varphi(\xi_i)) = \sum_{i=1}^{m} a_i (\varphi(\alpha), \varphi(\xi_i)) = \sum_{i=1}^{m} a_i (\alpha, \xi_i) = 0,$$

故 $\varphi(\alpha) \in U^{\perp}$, 这就证明了 U^{\perp} 也是 φ - 不变子空间.

注: 该部分证明也可改为证明对 $i=1,2,\cdots,m, (\varphi(\alpha),\varphi(\xi_i))=(\alpha,\xi_i)=0.$ □

(黄雪娥解答)