Конечно-разностные матричные методы. Расчет колебательно-вращательных уровней в двухатомной молекуле. Сравнение классической и квантовой статистических сумм.

Финенко Артем

19 марта 2019 г.

Структура доклада

- Основные подходы к нахождению колебательно-вращательных уровней в двухатомной молекуле
- Метод Нумерова и его матричный аналог
- Метод Нумерова и трехточечная формула. Аналитические результаты
- Обобщенный матричный метод Нумерова
- Экстраполяция Ричардсона для собственных значений
- Альтернативный способ получения матричных задач.
- Расчет колебательно-вращательных уровней в потенциале Морзе.
 Сравнение с BOUND.
- Расчет статистических сумм

Основные подходы к одномерному уравнению Шредингера

Метод Нумерова – численный метод, позволяющий решать дифференциальные уравнения второго порядка a

$$\psi^{(2)}(x) = f(x)\psi(x), \quad f(x) = -\frac{2m}{\hbar^2} [E - V(x)], \quad \psi^{(n)}(x) = \frac{d^n}{dx^n} \psi(x). \quad (1)$$

Используя Тейлоровское разложение для волновой функции

$$\psi(x\pm h)=\psi(x)\pm h\psi^{(1)}(x)+\frac{1}{2!}h^2\psi^{(2)}(x)\pm \frac{1}{3!}h^3\psi^{(3)}(x)+\frac{1}{4!}h^4\psi^{(4)}(x)+O(h^5),$$

получим выражение для второй производной $\psi^{(2)}(x)$ с точностью до $O(h^4)$

$$\psi^{(2)}(x) = \frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{h^2} - \frac{1}{12}h^2\psi^{(4)}(x) + O(h^4). \tag{2}$$

4 D > 4 D > 4 E > 4 E > E 990 4/32

^аМетод Нумерова допускает ненулевой свободный член в ДУ

Используем это выражение для получения четвертой производной $\psi^{(4)}(x)$ с точностью до $O(h^2)$

$$\psi^{(4)}(x) = \frac{d^2}{dx^2} \psi^{(2)}(x) = \frac{d^2}{dx^2} [f(x)\psi(x)] =$$

$$= \frac{f(x+h)\psi(x+h) + f(x-h)\psi(x-h) - 2f(x)\psi(x)}{h^2} + O(h^2).$$
(3)

Подставляем в выражение для второй производной (суммарный порядок остается $O(h^4)$)

$$f(x)\psi(x) = \frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{h^2} - \frac{f(x+h)\psi(x+h) + f(x-h)\psi(x-h) - 2f(x)\psi(x)}{12} + O(h^4).$$
(4)

При пропагировании на сетке используют вспомогательную функцию

$$\omega(x) = \left(1 - \frac{h^2}{12}\right)\psi(x) \tag{5}$$

$$\omega(x+h) = 2\omega(x) - \omega(x-h) + h^2 f(x)\psi(x). \tag{6}$$

Вводя обозначения

$$V_{i-1} \equiv V(x-h), \quad V_i \equiv V(x), \quad V_{i+1} \equiv V(x+h) \tag{7}$$

$$\psi_{i-1} \equiv \psi(x-h), \quad \psi_i \equiv \psi(x), \quad \psi_{i+1} \equiv \psi(x+h),$$
 (8)

получаем следующее выражение, удобное для матричной техники

$$-\frac{\hbar^2}{2m}\frac{\psi_{i+1}+\psi_{i-1}-2\psi_i}{h^2}+\frac{V_{i+1}\psi_{i+1}+V_{i-1}\psi_{i-1}+10V_i\psi_i}{12}=E\frac{\psi_{i-1}+10\psi_i+\psi_{i+1}}{12}$$

19 марта 2019 г. 6/3

Матричная формулировка метода Нумерова

$$-\frac{\hbar^2}{2m}\mathbb{A}\psi + \mathbb{B}\mathbb{V}\psi = E\mathbb{B}\psi, \quad \psi(a) = 0, \psi(b) = 0$$
 (9)

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b, \quad h = \frac{b-a}{n}$$
 (10)

$$\psi = [\psi_i, i = 1 \dots n - 1]^\top, \quad \mathbb{V} = \text{diag}\{V_i, i = 1 \dots n - 1\}$$
 (11)

$$\mathbb{A} = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots \\ 1 & -2 & 1 & 0 & \dots \\ 0 & 1 & -2 & 1 & \dots \\ 0 & 0 & 1 & -2 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \quad \mathbb{B} = \frac{1}{12} \begin{bmatrix} 10 & 1 & 0 & 0 & \dots \\ 1 & 10 & 1 & 0 & \dots \\ 0 & 1 & 10 & 1 & \dots \\ 0 & 0 & 1 & 10 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
 (12)

$$\mathbb{H}\psi = E\psi, \quad \mathbb{H} = -\frac{\hbar^2}{2m}\mathbb{B}^{-1}\mathbb{A} + \mathbb{V}$$
 (13)

4 D > 4 D > 4 E > 4 E > E 9 Q C 7/32

Трехточечная оценка второй производной

Использование трехточечной формулы для оценки второй производной $\psi^{(2)}(x)$ приводит к матричной задаче, похожей на Нумеровскую

$$-\frac{\hbar^2}{2m}\psi^{(2)}(x) + V(x)\psi(x) = E\psi(x), \tag{14}$$

$$\psi^{(2)}(x) = \frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{h^2} + O(h^2)$$
 (15)

$$\mathbb{H} = -\frac{\hbar^2}{2m} \mathbb{A} + \mathbb{V} \tag{16}$$

$$\mathbb{A} = \frac{1}{h^2} \begin{bmatrix} -2 & 1 & 0 & 0 & \dots \\ 1 & -2 & 1 & 0 & \dots \\ 0 & 1 & -2 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
 (17)

^aD Goorvitch и DC Galant. «Schrödinger's radial equation: solution by extrapolation». В: *Journal of Quantitative Spectroscopy and Radiative Transfer* 47.5 (1992), c. 391—399.

Трехточечная оценка и метод Нумерова

Набор собственных значений $\left\{\lambda_k\right\}_{k=1}^n$ мы приближаем набором собственных значений $\left\{\lambda_k^{(N)}\right\}_{k=1}^n$ матрицы $\mathbb H$ размерности N.

Если потенциальная энергия $V \in C^{(2)}[a,b]$, то разница между приближенным k-ым собственным значением по матричной трехточечной формуле и его точным значением ведет себя как $|\lambda_k - \lambda_k^{(N)}| = O(k^4h^2)^a$. При $V \equiv 0$:

$$|\lambda_k - \lambda_k^{(N)}| = k^2 - \frac{4}{h^2} \sin^2\left(\frac{kh}{2}\right) = -\frac{1}{12}h^2k^4 + \frac{1}{360}h^4k^6 + O(h^6k^8)$$
 (18)

Если потенциальная энергия $V\in C^{(4)}[a,b]$, то та же разница для матричного метода Нумерова ведет себя как $|\lambda_k-\lambda_k^{(N)}|=O(h^4)^b$.

^aJohn W Paine, Frank R de Hoog и Robert S Anderssen. «On the correction of finite difference eigenvalue approximations for Sturm-Liouville problems». В: *Computing* 26.2 (1981), с. 123—139.

^bAL Andrew. «The accuracy of Numerov's method for eigenvalues». B: *BIT Numerical Mathematics* 26.2 (1986), c. 251—253.

Трехточечная оценка и метод Нумерова

Гармонический осциллятор, нулевой уровень, аппроксимация порядка по шагу $h,\ N=40-400$

Обобщенный метод Нумерова¹

Для получения метода порядка N=2r+2, выразим вторую производную $\psi^{(2)}(x)$ с точностью до порядка N+2

$$\psi(x+h) + \psi(x-h) = 2\psi(x) + \sum_{k=1}^{r+1} \frac{2h^{2k}}{(2k)!} \psi^{(2k)}(x) + O(h^{2r+4}), \quad (19)$$

$$\psi^{(2)}(x) = \frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{h^2} - \sum_{k=0}^{r-1} \frac{2h^{2k+2}}{(2k+4)!} \psi^{(2k+4)}(x) + O(h^{2r+2}).$$

Неизвестными являются производные $\{\psi^{(2k+4)}(x), k=0\dots r-1\}$, которые мы найдем из системы линейных уравнений

$$\begin{cases}
\frac{\psi(x+h) + \psi(x-h) - 2\psi(x)}{2} = \sum_{k=1}^{r} \frac{h^{2k}}{(2k)!} \psi^{(2k)}(x) + O(h^{2r+2}) \\
\dots \\
\frac{\psi(x+r \cdot h) + \psi(x-r \cdot h) - 2\psi(x)}{2} = \sum_{k=1}^{r} \frac{(r \cdot h)^{2k}}{(2k)!} \psi^{(2k)}(x) + O(h^{2r+2})
\end{cases}$$
(20)

¹Dongjiao Tang ,et al. B: Master's thesis, National University of Singapore (2014) ፕሮ

Обобщенный метод Нумерова

В результате решения линейной системы получаем наборы коэффициентов $\left\{c_i\right\}_{i=1}^r$, $\left\{k_i\right\}_{i=1}^r$, позволяющие получить выражения

$$\psi^{(2)}(x) = \frac{1}{h^2} \sum_{i=-r}^{r} c_i \psi_i - \frac{2h^{2r}}{(2r+2)!} \psi^{(2r+2)}(x) + O(h^{2r+2})$$
 (21)

$$\psi^{(2r)}(x) = \frac{1}{h^{2r}} \sum_{i=-r}^{r} k_i \psi_i \tag{22}$$

Воспользуемся приемом из стандратного метода Нумерова для нахождения $\psi^{(2r+2)}(x)$

$$\psi^{(2r+2)}(x) = \frac{d^r}{dx^r} \left(f(x)\psi(x) \right) = \frac{1}{h^{2r}} \sum_{i=-r}^r k_i f_i \psi_i. \tag{23}$$

Собирая полученные выражения, получаем уравнения обобщенного метода $\frac{1}{r}$ $\frac{r}{r}$ $\frac{r}{r}$ $\frac{r}{r}$

$$\frac{1}{h^2} \sum_{i=-r}^{r} c_i \psi_i = f_i \psi_i + \sum_{i=-r}^{r} \frac{2}{(2r+2)!} k_i f_i \psi_i. \tag{24}$$

Обобщенный метод Нумерова

Пример. Порядок
$$N=8, (r=3)$$
.

$$\mathbb{H}\psi=E\psi, \quad \mathbb{H}=-\frac{\hbar^2}{2m}\mathbb{B}^{-1}\mathbb{A}+\mathbb{V} \tag{25}$$

$$\mathbb{A}=\frac{1}{180\hbar^2}\begin{bmatrix} 490 & 270 & -27 & 2 & 0 & \dots \\ 270 & 490 & 270 & -27 & 2 & \dots \\ -27 & 270 & 490 & 270 & -27 & \dots \\ 2 & -27 & 270 & 490 & 270 & \dots \\ 0 & 2 & -27 & 270 & 490 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}, \tag{26}$$

$$\mathbb{B} = \frac{1}{20160} \begin{bmatrix} 20140 & 15 & -6 & 1 & 0 & \dots \\ 15 & 20140 & 15 & -6 & 1 & \dots \\ -6 & 15 & 20140 & 15 & -6 & \dots \\ 1 & -6 & 15 & 20140 & 15 & \dots \\ 0 & 1 & -6 & 15 & 20140 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

$$(27)$$

Асимптотика по размеру шага

Гармонический осциллятор, нулевое состояние, N = 40 - 400

Асимптотика по номеру состояния

Гармонический осциллятор, n = 400

Асимптотика по номеру состояния

Гармонический осциллятор, n = 400

Экстраполяция по Ричардсону

«Базельская задача»

$$\frac{\pi^2}{6} = \sum_{k=1}^{\infty} \frac{1}{k^2}, \quad S_N = \sum_{k=1}^N \frac{1}{k^2}$$
 (28)

Предположим следующее асимптотическое для частичных сумм ряда

$$S_N \sim S + \frac{a}{N} + \frac{b}{N^2} + \frac{c}{N^3} + O(N^{-4})$$
 (29)

Рассмотрим асимптотическое разложение для двух последовательных частичных сумм

$$S_N \sim S + \frac{a}{N} + \frac{b}{N^2} + O(N^{-3})$$
 (30)

$$S_{N+1} \sim S + \frac{a}{N+1} + \frac{b}{(N+1)^2} + O(N^{-3})$$
 (31)

Скомбинируем выражения, чтобы избавить от линейного члена по $1/\emph{N}$

$$R_1 \equiv (N+1)S_{N+1} - NS_N \sim S - \frac{b}{N(N+1)} + O(N^{-2}) \sim S + O(N^{-2})$$
 (32)

Экстраполяция по Ричардсону

«Базельская задача»

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} \approx 1.644934066848$$

$\frac{1}{S_N}$	10 ³	10 ⁴	10 ⁵	10 ⁶
	1.643934566682	1.644834071848	1.644924066898	1.644933066849
$R_1 \equiv$	$=(N+1)S_{N+1}-NS_{N+1}$	$S_N, R_2 \equiv \frac{1}{2} \left[(N + \frac{1}{2})^2 \right]$	$(-2)^2 S_{N+2} - 2(N +$	$1)^2 S_{N+1} + N^2 S_N \big]$

N	S_N	R_2	R_4	R_6
1	1.000000000000	1.625000000000	1.644965277778	1.644935185185
5	1.463611111111	1.644166666667	1.644935811130	1.644934060147
10	1.549767731167	1.644809053481	1.644934195433	1.644934066526
15	1.580440283445	1.644893408445	1.644934089858	1.644934066812
20	1.596163243913	1.644916078380	1.644934073240	1.644934066841
25	1.605723403591	1.644924587023	1.644934069153	1.644934066845

1) (D)) (E) (E) (E) (O) (O) (T(

Экстраполяция собственных значений

Рассмотрим асимптотическое разложение j-ого собственного значения по длине шага h

$$E_j(h) \sim E_j + k_0 h^N + k_1 h^{N+2} + O(h^{N+4})$$
 (33)

Используем последовательное уменьшение шага, чтобы избавиться от ведущих членов в этом разложении

$$\bar{E}_{i}^{1}(h) \sim E_{j} + \tilde{k}_{1}h^{N+2} + O(h^{N+4}),$$
 (34)

$$\bar{E}_i^2(h) \sim E_i + O(h^{N+4}),$$
 (35)

где

$$\bar{E}_{j}^{1} = \frac{2^{N}E_{j}(\frac{h}{2}) - E_{j}(h)}{2^{N} - 1}, \quad \bar{E}_{j}^{2} = E_{j}(\frac{h}{4}) + \frac{(5 \cdot 2^{N} - 1)E_{j}(\frac{h}{4}) - 5 \cdot 2^{N}E_{j}(\frac{h}{2}) + E_{j}(h)}{(2^{N+2} - 1) \cdot (2^{N} - 1)}$$

Экстраполяция по Ричардсону

Частица в потенциальном ящике

$$-\psi^{(2)} + Ey = 0, \quad y(0) = 0, \quad y(\pi) = 0.$$
 (36)

Таблица: Матричный метод Нумерова 4-го порядка, $h \approx 0.0785, n = 40$

Ej	$\Delta E_j(h)$	$\Delta E_j(h/2)$	$\Delta E_j(h/4)$	$\Delta ar{E}^1_j$	$\Delta \bar{E}_j^2$
1	$1.586\mathrm{e}{-7}$	$9.910e{-9}$	$6.187e{-10}$	6.837e - 13	$6.632e{-13}$
4	$1.016\mathrm{e}{-5}$	$6.343e{-7}$	$3.964e{-8}$	$7.529e{-12}$	$2.163e{-13}$
9	$1.158\mathrm{e}{-4}$	$7.228e{-6}$	$4.515e{-7}$	$1.988e{-10}$	$8.669 \mathrm{e}{-13}$
16	$6.519\mathrm{e}{-4}$	$4.063e{-5}$	2.537e - 6	1.983e - 9	$1.380\mathrm{e}{-11}$
25	$2.492e{-3}$	$1.551\mathrm{e}{-4}$	$9.680\mathrm{e}{-6}$	$1.180\mathrm{e}{-8}$	$1.244\mathrm{e}{-10}$

Подход с центральным разностным оператором 2

$$f(x_0 + (n+1)h) = \left(1 + h\frac{d}{dx} + \frac{h^2}{2!}\frac{d^2}{dx^2} + \ldots\right)f(x_0 + nh), \tag{37}$$

$$f_{n+1} = \hat{T}f_n, \quad \hat{T} = \exp\left(h\hat{D}\right),$$
 (38)

где $\hat{D}=rac{d}{dx}$. Рассмотрим центральный разностный оператор и выразим его через оператор дифференцирования

$$\hat{\delta}f_n = f(x_0 + nh + h/2) - f(x_0 + nh - h/2), \tag{39}$$

$$\hat{\delta} = \exp\left(\frac{1}{2}h\hat{D}\right) - \exp\left(-\frac{1}{2}h\hat{D}\right) = 2\sinh\left(\frac{1}{2}h\hat{D}\right). \tag{40}$$

Обращая уравнение, получаем выражение для оператора \hat{D}

$$\hat{D} = \frac{2}{h} \sinh^{-1} \left(\frac{\hat{\delta}}{2} \right) \tag{41}$$

²R Guardiola и J Ros. «On the numerical integration of the Schrödinger equation in the finite-difference schemes». В: *Journal of Computational Physics* 45:3 (1982), c. 3742-389. 21/32

Подход с центральным разностным оператором

Разложение в ряд этого операторного соотношения содержит только четные степени $\hat{\delta}$

$$h^2 \hat{D}^2 = \hat{\delta}^2 \left(1 - \frac{1}{12} \hat{\delta}^2 + \frac{1}{90} \hat{\delta}^4 - \frac{1}{560} \hat{\delta}^6 + \frac{1}{3150} \hat{\delta}^8 + O(\hat{\delta}^{10}) \right)$$
(42)

Это разложение может быть использовано в качестве генератора конечно-разностных схем.

Паде аппроксиманты

$$h^2 \hat{D}^2[1/0] = \hat{\delta}^2 + O(h^4) \tag{43}$$

$$h^2 \hat{D}^2[2/0] = \hat{\delta}^2 \left(1 - \frac{1}{12} \hat{\delta}^2 \right) + O(h^6)$$
 (44)

$$h^2 \hat{D}^2[1/1] = \frac{\hat{\delta}^2}{1 + \frac{1}{12}\hat{\delta}^2} + O(h^6)$$
 (45)

$$h^2 \hat{D}^2[3/0] = \hat{\delta}^2 \left(1 - \frac{1}{12} \hat{\delta}^2 + \frac{1}{90} \hat{\delta}^4 \right) + O(h^8)$$
 (46)

Диагональные элементы Паде таблицы³

$$h^2 \hat{D}^2[1/1] = \frac{\hat{\delta}^2}{1 + \frac{1}{12}\hat{\delta}^2} + O(h^6)$$
 (47)

$$h^2 \hat{D}^2[2/2] = \frac{\frac{31}{252} \hat{\delta}^4 + \hat{\delta}^2}{1 + \frac{1}{63} \hat{\delta}^2 + \frac{23}{3780} \hat{\delta}^4} + O(h^{10})$$
(48)

$$h^2 \hat{D}^2[3/3] = \frac{\frac{7069}{625680} \hat{\delta}^6 + \frac{1289}{5214} \hat{\delta}^4 + \hat{\delta}^2}{1 + \frac{1149}{2476} \hat{\delta}^2 + \frac{619}{1450020} \hat{\delta}^6} + O(h^{14})$$
(49)

$$h^2 \hat{D}^2[N/M] \sim O(h^{2(N+M+1)})$$
 (50)

³Edward A Burke. «Extended Numerov method for the numerical solution of the Hartree–Fock equations». B: Journal of Mathematical Physics 21:6 (1980), c. 1366-1369.23/32

Матричная задача и граничные условия

$$\hat{\delta}^2 = \begin{bmatrix} -2 & 1 & & & & & \\ 1 & -2 & 1 & & & & \\ & 1 & -2 & 1 & & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & -2 & 1 \\ & & & & 1 & -2 \end{bmatrix}, \quad \hat{\delta}^4 = \begin{bmatrix} 5 & -4 & 1 & & & \\ -4 & 6 & -4 & 1 & & \\ 1 & -4 & 6 & -4 & 1 & \\ & & 1 & -4 & 6 & -4 & 1 \\ & & & \ddots & \ddots & \ddots & \ddots \end{bmatrix}$$

Рассмотрим центральную разностную оценку четвертого порядка в точке $x=h\ (f_0=0)$

$$\delta^4 f_1 = f_{-1} - 4f_0 + 6f_1 - 4f_2 + f_3, \tag{51}$$

Сравнивая с коэффициентами в матрице, получаем

$$f_{-1} = -f_1. (52)$$

Обобщая, получаем антисимметричные соотношения вокруг граничных точек

$$f_{-p} = -f_p, \quad f_{N+p} = -f_{N-p}.$$
 (53)

Многоточечные оценки и обобщенный метод Нумерова

Матрицы 7-точечной оценки (аппроксиманты Паде [3/0])

$$\mathbb{A}[3/0] = \frac{1}{180h^2} \begin{bmatrix} -463 & 268 & -27 & 2\\ 268 & -490 & 270 & -27 & 2\\ -27 & 270 & -490 & 270 & -27 & 2\\ 2 & -27 & 270 & -490 & 270 & -27 & 2\\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & \mathbb{B}[3/0] = E^{N \times N} & (55) \end{bmatrix}$$

Матрица обобщенного метода Нумерова порядка N=8

$$\mathbb{A}^{GMN} = \frac{1}{180h^2} \begin{bmatrix} -490 & 270 & -27 & 2\\ 270 & -490 & 270 & -27 & 2\\ -27 & 270 & -490 & 270 & -27 & 2\\ 2 & -27 & 270 & -490 & 270 & -27 & 2\\ & \ddots \end{bmatrix}$$
(56)

19 марта 2019 г. 25 / 32

Паде аппроксиманты и многоточечные оценки

Гармонический осциллятор, нулевое состояние, ${\it N}=40-400$

Паде аппроксиманты и многоточечные оценки

Гармонический осциллятор, N = 400

Колебательно-вращательная задача

$$\[-\frac{\hbar^2}{2\mu} \frac{d^2}{dR^2} + \frac{J(J+1)}{2\mu R^2} + V(R) \] \psi_{\text{vib}} = E_{\text{vib}} \psi_{\text{vib}}, \tag{57}$$

$$V(R) = D_e (1 - \exp(-a(R - R_e))^2$$
(58)

Колебательные уровни в потенциале Морзе

Таблица: Метод Паде [3/3], J=0, h=0.25, $x_0=4.0a_0$, $x_N=40.0a_0$

Exact	$\bar{E}_n^{(2)}$	BOUND	ΔE_n	$\Delta \bar{E}_n^{(2)}$
-188.05704228	-188.05704228	-188.057042	1.847e - 12	1.847e-12
-165.27406801	-165.27406801	-165.274068	$2.245e{-12}$	$2.018e{-12}$
-143.96168198	-143.96168198	-143.961682	$2.672e{-12}$	$3.780e{-12}$
-124.11988418	-124.11988418	-124.119884	$4.533e{-12}$	$9.948e{-14}$
-105.74867462	-105.74867462	-105.748674	$1.228e{-11}$	$7.816e{-13}$
-88.84805329	-88.84805329	-88.8480533	$2.612e{-11}$	$7.816e{-13}$
-73.41802020	-73.41802020	-73.4180202	$4.893e{-11}$	$3.268e{-13}$
-59.45857534	-59.45857534	-59.4585753	$8.286 \mathrm{e}{-11}$	$1.471e{-12}$
-46.96971872	-46.96971872	-46.9697187	$1.231e{-10}$	$1.727e{-12}$
-35.95145033	-35.95145033	-35.9514503	$1.632e{-10}$	$6.395e{-14}$
-26.40377018	-26.40377018	-26.4037702	$1.984 \mathrm{e}{-10}$	$8.775e{-13}$
-18.32667827	-18.32667827	-18.3266782	$2.171e{-10}$	$4.338e{-12}$
-11.72017459	-11.72017459	-11.7201746	$2.152e{-10}$	$7.148e{-12}$
-6.58425914	-6.58425914	-6.58425915	$1.901\mathrm{e}{-10}$	$8.080e{-12}$
-2.91893193	-2.91893193	-2.91893193	$1.416 \mathrm{e}{-10}$	$7.269 \mathrm{e}{-12}$
-0.72419296	-0.72419296	-0.72419296	$6.535\mathrm{e}{-10}$	$7.332e{-10}$

Колебательно-вращательные уровни в потенциале Морзе

Таблица: Метод Паде [3/3], J=5, h=0.25, $x_0=4.0a_0$, $x_N=40.0a_0$

$\bar{E}_n^{(2)}$	BOUND	$ E_n-\bar{E}_n^{(2)} $
-186.01139971	-186.0113997	$2.842e{-14}$
-163.31089584	-163.3108959	$1.990 \mathrm{e}{-13}$
-142.08261657	-142.0826166	$1.080 \mathrm{e}{-12}$
-122.32674155	-122.3267416	$3.922e{-12}$
-104.04348535	-104.0434854	$1.089\mathrm{e}{-11}$
-87.23310751	-87.23310753	$2.458e{-11}$
-71.89592673	-71.89592674	$4.704e{-11}$
-58.03234134	-58.03234136	$7.856e{-11}$
-45.64286031	-45.64286033	$1.168\mathrm{e}{-10}$
-34.72815189	-34.72815190	$1.565\mathrm{e}{-10}$
-25.28912465	-25.28912467	$1.902e{-10}$
-17.32707277	-17.32707278	$2.100 \mathrm{e}{-10}$
-10.84396298	-10.84396300	$2.091e{-10}$
-5.84308905	-5.843089058	$1.836\mathrm{e}{-10}$
-2.33094799	-2.330948001	$1.339 \mathrm{e}{-10}$
-0.32590561	-0.3259056933	$6.383 \mathrm{e}{-11}$

Расчет статистических сумм

Классическая статсумма

$$Q_{\text{rovib}}^{\text{class}}(T) = 4\pi \left(\frac{2\pi\mu kT}{h^2}\right)^{3/2} \int_{\sigma}^{\infty} \frac{\gamma\left(\frac{3}{2}, -\frac{U}{kT}\right)}{\Gamma\left(\frac{3}{2}\right)} \exp\left(-\frac{U}{kT}\right) R^2 dR \qquad (59)$$

Квантовая статсумм

$$Q_{\text{rovib}}^{q}(T) = \sum_{i} (2J+1) \exp\left(-\frac{chE_{j}}{kT}\right)$$
 (60)

Отношение статистических сумм

