PREDICTIVE MODELLING GRADED PROJECT REPORT DSBA

Girish Chadha 29/12/2022

Contents

Problem 1 4
1.1) Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, data types, shape, EDA). Perform Univariate and Bivariate Analysis4
1.2) Impute null values if present? Do you think scaling is necessary in this case?9
1.3) Encode the data (having string values) for Modelling. Data Split: Split the data into test and train (30:70). Apply Linear regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using R-square, RMSE11
1.4) Inference: Based on these predictions, what are the business insights and recommendations19
Problem 220
2.1) Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis20
2.2) Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis)29
2.3) Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Compare both the models and write inferences, which model is best/optimized
2.4) Inference: Based on these predictions, what are the insights and recommendations34

List of Figures

1.	Figure 1	6
2.	Figure 2	7
3.	Figure 3	
4.	Figure 4	
5.	Figure 5	
6.	Figure 6	15
7 .	Figure 7	16
8.	Figure 8	18
9.	Figure 9	20
10.	Figure 10	22
11.	Figure 11	23
12.	Figure 12	25
13.	Figure 13	26
14.	Figure 14	27
15.	Figure 15	27
16.	Figure 16	28
17.	Figure 17	28
18.	Figure 18	28
19.	Figure 19	29
20.	Figure 20	30
21.	Figure 21	31
22.	Figure 22	31
23.	Figure 23	32
24.	Figure 24	32
25.	Figure 25	33

List of Tables 1. Table 1.....

ı.	Table I	····· 4
2.	Table 2	5
	Table 3	
4.	Table 4	15
5.	Table 5	17
6.	Table 6	19
7 .	Table 7	21
8.	Table 8	23
9.	Table 9	24
10.	Table 10	25
11.	Table 11	27
12.	Table 12	29

EXECUTIVE SUMMARY

Problem 1

Problem 1: Linear Regression

You are a part of an investment firm and your work is to do research about these 759 firms. You are provided with the dataset containing the sales and other attributes of these 759 firms. Predict the sales of these firms on the bases of the details given in the dataset so as to help your company in investing consciously. Also, provide them with 5 attributes that are most important.

Questions for Problem 1:

1.1) Read the data and do exploratory data analysis. Describe the data briefly. (Check the null values, data types, shape, EDA). Perform Univariate and Bivariate Analysis. (8 marks)

Solution: Reading the data

	sales	capital	patents	randd	employment	sp500	tobinq	value	institutions
0	826.995050	161.603986	10	382.078247	2.306000	no	11.049511	1625.453755	80.27
1	407.753973	122.101012	2	0.000000	1.860000	no	0.844187	243.117082	59.02
2	8407.845588	6221.144614	138	3296.700439	49.659005	yes	5.205257	25865.233800	47.70
3	451.000010	266.899987	1	83.540161	3.071000	no	0.305221	63.024630	26.88
4	174.927981	140.124004	2	14.233637	1.947000	no	1.063300	67.406408	49.46

	sales	capital	patents	randd	employment	sp500	tobinq	value	institutions
754	1253.900196	708.299935	32	412.936157	22.100002	yes	0.697454	267.119487	33.50
755	171.821025	73.666008	1	0.037735	1.684000	no	NaN	228.475701	46.41
756	202.726967	123.926991	13	74.861099	1.460000	no	5.229723	580.430741	42.25
757	785.687944	138.780992	6	0.621750	2.900000	yes	1.625398	309.938651	61.39
758	22.701999	14.244999	5	18.574360	0.197000	no	2.213070	18.940140	7.50

Table 1

Checking data types

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 759 entries, 0 to 758
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	sales	759 non-null	float64
1	capital	759 non-null	float64
2	patents	759 non-null	int64
3	randd	759 non-null	float64
4	employment	759 non-null	float64
5	sp500	759 non-null	object
6	tobinq	738 non-null	float64
7	value	759 non-null	float64
8	institutions	759 non-null	float64
dturn	os. flos+64/7\	in+64/1\ abia	c+/1\

dtypes: float64(7), int64(1), object(1)
memory usage: 53.5+ KB

Shape - 759 Rows and 9 columns

Describing dataset

	sales	capital	patents	randd	employment	tobinq	value	institutions
count	759.000000	759.000000	759.000000	759.000000	759.000000	738.000000	759.000000	759.000000
mean	2689.705158	1977.747498	25.831357	439.938074	14.164519	2.794910	2732.734750	43.020540
std	8722.060124	6466.704896	97.259577	2007.397588	43.321443	3.366591	7071.072362	21.685586
min	0.138000	0.057000	0.000000	0.000000	0.006000	0.119001	1.971053	0.000000
25%	122.920000	52.650501	1.000000	4.628262	0.927500	1.018783	103.593946	25.395000
50%	448.577082	202.179023	3.000000	36.864136	2.924000	1.680303	410.793529	44.110000
75%	1822.547366	1075.790020	11.500000	143.253403	10.050001	3.139309	2054.160386	60.510000
max	135696.788200	93625.200560	1220.000000	30425.255860	710.799925	20.000000	95191.591160	90.150000

Table 2

Checking Null Values

sales	0	
capital	0	
patents	0	
randd	0	
employment	0	
sp500	0	
tobinq	21	
value	0	
institutions	0	
dtype: int64		

There are 21 entries missing in tobinq coloumn.

UNIVARIATE ANALYSIS

BoxPlot of sales

Figure 1

There seem to be many outliers in the data. Maximum number of sales are 135696 million dollars but average sales are 2689 million dollars only.

BoxPlot of employment

Figure 2

There seem to be many outliers in the data. Maximum number of Employment is 710 but average employment is 14 only.

Details of sp500

.....

no 542 yes 217

Name: sp500, dtype: int64

217 firms have membership in the S&P 500 index while 542 firms don't have membership in sp500.

Figure 3

BIVARIATE ANALYSIS

Figure 4

Observe that the relationship between 'Sales' and other attributes is not really linear.

However, the plots also indicate that linearity would still capture quite a bit of useful information/pattern.

Several assumptions of classical linear regression seem to be violated

MULTIVARIATE ANALYSIS

There seems to be a very high correlation between sales & capital coloumn, randd & patents coloumn, employment & sales coloumn, tobing seems to have a negative correlation with other attributes.

Figure 5

1.2) Impute null values if present? Do you think scaling is necessary in this case?

sates	ю
capital	0
patents	0
randd	0
employment	0
sp500	0
tobinq	21
value	0
institutions	0
dtype: int64	

There are 21 entries missing in tobing coloumn. These need to be treated. We won't drop the null values instead we will replace them with the median value of the coloumn itself

Median values of all variables

sales	448.577082
capital	202.179023
patents	3.000000
randd	36.864136
employment	2.924000
tobing	1.680303
value	410.793529
institutions	44.110000
dtype: float64	

So we create 2 simple true or false columns with titles equivalent to sp500_yes & sp500_No.

We will also be dropping one of those two columns to ensure there is no linear dependency between the two columns.

Creating dummy variables

	sales	capital	patents	randd	employment	tobinq	value	institutions	sp500_yes
0	826.995050	161.603986	10	382.078247	2.306000	11.049511	1625.453755	80.27	0
1	407.753973	122.101012	2	0.000000	1.860000	0.844187	243.117082	59.02	0
2	8407.845588	6221.144614	138	3296.700439	49.659005	5.205257	25865.233800	47.70	1
3	451.000010	266.899987	1	83.540161	3.071000	0.305221	63.024630	26.88	0
4	174.927981	140.124004	2	14.233637	1.947000	1.063300	67.406408	49.46	0

Table 3

Using median filler null value are imputed

sales	0
capital	0
patents	0
randd	0
employment	0
tobinq	0
value	0
institutions	0
sp500_yes	0
dtype: int64	

Checking boxplot of all numeric variables

Figure 6

Scaling the data

	sales	capital	patents	randd	employment	tobinq	value	institutions	sp500_yes
0	-0.213704	-0.281030	-0.162882	-0.028842	-0.273914	2.493758	-0.158696	1.718839	-0.632747
1	-0.261802	-0.287143	-0.245190	-0.219303	-0.284216	-0.577847	-0.352317	0.738279	-0.632747
2	0.656027	0.656624	1.154052	1.424058	0.819869	0.734749	3.273585	0.215929	1.580410
3	-0.256841	-0.264737	-0.255479	-0.177659	-0.258243	-0.740088	-0.377803	-0.744789	-0.632747
4	-0.288514	-0.284354	-0.245190	-0.212208	-0.282206	-0.511899	-0.377183	0.297142	-0.632747

There are many outliers in the data. Scaling is necessary in this case as sales and randd are in million of dollars and other variables are having smaller units. To ensure that the model is predicting well we need to scale it before proceeding.

Table 4

1.3) Encode the data (having string values) for Modelling. Data Split: Split the data into test and train (30:70). Apply Linear regression. Performance Metrics: Check the performance of Predictions on Train and Test sets using R-square, RMSE.

Taking X as all independent variable and Y as dependent variable(Sales). Splitting the data into test and train sets in 30:70 ratio.

Test set -

```
capital patents
                                randd employment
                                                    tobing
                                                               value \
      1.0 -0.102446 -0.111439 -0.182776
                                       0.053299 -0.333052 -0.070880
      1.0 -0.303676 -0.245190 -0.214691
                                        -0.314105 -0.717031 -0.385324
      1.0 -0.222758 -0.059996 -0.175741
                                       -0.174105 -0.191825 -0.242456
      1.0 -0.181128 -0.265767 -0.184957
                                       -0.151469 0.116599 -0.072309
173
     1.0 -0.243753 -0.245190 -0.219303 -0.291376 -0.183503 -0.336054
     institutions sp500_yes
      -0.532988 -0.632747
       -0.984276 -0.632747
257
       1.228328 -0.632747
173
       1.230635 1.580410
242
       1.956480 -0.632747
Train set -
                               randd employment tobing
     const capital patents
     1.0 -0.298194 -0.255479 -0.195788 -0.300685 -0.529094 -0.381837
622 1.0 -0.293509 -0.234901 -0.194253 -0.248644 -0.452728 -0.363394
638 1.0 -0.132883 -0.070285 -0.180110 0.111415 -0.259944 -0.087443
389 1.0 -0.295400 -0.234901 -0.196957 -0.299368 -0.150969 -0.375077
     1.0 -0.258258 -0.245190 -0.179909 -0.251785 -0.307684 -0.311286
    institutions sp500_yes
480
     -0.373791 -0.632747
622
       -1.113941 -0.632747
        0.227003 1.580410
       -0.847690 -0.632747
389
       -1.244528 -0.632747
```

Applying linear regression to train sets fitting OLS model and printing the OLS regression summary

Dep. Variable:		sales				0.936		
Model:		OLS	Adj. R-9	squared:		0.935		
Method:	Le	east Squares	F-statis	stic:		960.3		
Date:	Sat,	24 Dec 2022	Prob (F	-statistic):		1.37e-306		
Time:		02:05:36	Log-Like	elihood:		-13.768		
No. Observation	ns:	531	AIC:			45.54		
Df Residuals:		522	BIC:			84.01		
Df Model:		8						
Covariance Type	e:	nonrobust						
			=======					
	coef	std err	t	P> t	[0.025	0.975]		
const	0.0036	0.011	0.330	0.742	0.005	0.010		
		0.011	-0.329 15.565					
capital				0.000				
F		0.027		0.037		-0.004		
					0.179			
		0.018	23.136		0.382	0.452		
				0.299		0.011		
value			5.886	0.000	0.068	0.137		
institutions			0.213	0.832	-0.022	0.027		
sp500_yes	-0.0052	0.014	-0.375	0.708	-0.032	0.022		
Omnibus:		231.591	Durbin-V	latson:	=======	1.932		
Prob(Omnibus):		0.000		Bera (JB):		31508.283		
Skew:		0.809				0.00		
Kurtosis:		40.703	Cond. No			7.58		
============			========	 :========		=======		

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table 5

How to check for Multicollinearity

There are different ways of detecting (or testing) multicollinearity. One such way is Variation Inflation Factor.

Variance Inflation factor: Variance inflation factors measure the inflation in the variances of the regression coefficients estimates due to collinearities that exist among the predictors. It is a measure of how much the variance of the estimated regression coefficient βk is "inflated" by the existence of correlation among the predictor variables in the model.

General Rule of Thumb:

If VIF is 1, then there is no correlation among the k th predictor and the remaining predictor variables, and hence, the variance of βk is not inflated at all.

If VIF exceeds 5, we say there is moderate VIF, and if it is 10 or exceeding 10, it shows signs of high multi-collinearity.

The purpose of the analysis should dictate which threshold to use.

VIF values:

const 1.003437 capital 3.454206 patents 5.453357 randd 7 employment 3.171786 tobing 1.041429 value 2.972769 institutions 1.295102 sp500_yes 1.646031 dtype: float64

The VIF values indicate that the features

Multicollinearity affects only the specific independent variables that are correlated. Therefore, in this case, we can trust the p-values of patents and randd variables.

To treat multicollinearity, we will have to drop one or more of the correlated features (patents,randd).

We will drop the variable that has the least impact on the adjusted R-squared of the model.

R-squared: 0.936

Adjusted R-squared: 0.935

On dropping 'patents', there is no change in adj. R-squared.

R-squared: 0.928

Adjusted R-squared: 0.928

On dropping 'randd', adj R square dropped by 0.007

R-squared: 0.907

Adjusted R-squared: 0.906

On dropping 'capital', adjusted Rsquare dropped by 0.029

R-squared: 0.871

Adjusted R-squared: 0.869

On dropping 'employment', adjusted Rsquare dropped by 0.066, employment seem to be a significant variable hence can't be dropped.

R-squared: 0.936

Adjusted R-squared: 0.935

On dropping 'tobinq', adjusted Rsquare didn't drop.

R-squared: 0.932

Adjusted R-squared: 0.931

On dropping 'value' adj R square dropped by 0.004

R-squared: 0.932

Adjusted R-squared: 0.931

On dropping 'institutions' adj R square dropped by 0.004

R-squared: 0.936

Adjusted R-squared: 0.936

On dropping 'sp500_yes' adj R square increased by 0.001

Since there is no effect on adj. R-squared after dropping the 'patents', 'tobinq' column, we can remove it from the training set.

OLS Regression Results

		OLS REGIES	SION KESU.				
Dep. Variable:			R-square			0.936	
Model:			Adj. R-		0.935		
Method:		east Squares	_			1272.	
Date:							
Time:	Sat,	24 Dec 2022	•			47e-308	
			Log-Like	elinood:		-16.429	
No. Observation	s:		AIC:			46.86	
Df Residuals:			BIC:			76.78	
Df Model:		6					
Covariance Type	:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
const	-0.0027	0.011	-0.244	0.807	-0.024	0.019	
capital	0.3150	0.019	16.193	0.000	0.277	0.353	
randd	0.1870	0.018	10.172	0.000	0.151	0.223	
employment	0.4291	0.017	24.881	0.000	0.395	0.463	
value	0.0834	0.015	5.476	0.000	0.053	0.113	
institutions	-0.0014	0.012	-0.113	0.910	-0.025	0.023	
sp500_yes	-0.0043	0.014	-0.306	0.760	-0.032	0.023	
Omnibus:		225.738	Durbin-l	Watson:		1.922	
Prob(Omnibus):		0.000	Jarque-B	Bera (JB):	31	707.449	
Skew:		0.744	Prob(JB)):		0.00	
Kurtosis:		40.827	Cond. No	o.		4.08	

Table 6

VIF values:

const 1.002020
capital 3.335841
randd 2.854966
employment 2.886611
value 2.249028
institutions 1.266903
sp500_yes 1.640098

dtype: float64

Since there is a very small effect (0.001) on adj. R-squared after dropping the 'sp500_yes' column, we can remove it from the training set.

						======	
Dep. Variable:		sales	R-square	d:		0.936	
Model:		OLS	Adj. R-s	quared:	0.935		
Method:	Le	east Squares	F-statis	tic:		1529.	
Date:	Sat,	24 Dec 2022	Prob (F-	statistic):	3.	75e-310	
Time:		02:06:15	Log-Like	lihood:		-16.477	
No. Observation	ns:	531	AIC:			44.95	
Df Residuals:		525	BIC:			70.60	
Df Model:		5					
Covariance Type	e:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975]	
		0.011					
		0.019		0.000			
randd		0.018		0.000	0.151	0.223	
employment		0.017	24.950			0.463	
value	0.0820	0.015	5.645	0.000	0.053	0.111	
institutions	-0.0030	0.011	-0.272	0.786	-0.025	0.019	
		225 662					
Omnibus:		225.660				1.922	
Prob(Omnibus):			Jarque-E		31	318.780	
Skew:			Prob(JB)			0.00	
Kurtosis:		40.594	Cond. No			3.92	

Table 7

VIF values:

const 1.001747
capital 3.319886
randd 2.845405
employment 2.870100
value 2.050564
institutions dtype: float64

VIF for all the features is <3.5

Now that we do not have multicollinearity in our data, the p-values of the coefficients have become reliable and we can remove the non-significant predictor variables

==========							
Dep. Variable: Model: Method: Date: Time: No. Observatio	Sat,	sales OLS east Squares 24 Dec 2022 02:06:17 531	Adj. R-s F-statis Prob (F- Log-Like	squared: stic: -statistic):	-16.477 44.95		
Df Residuals: Df Model: Covariance Typ	e:	525 5 nonrobust	BIC:			70.60	
		std err		P> t	-	0.975]	
employment value institutions	-0.0026 0.3146 0.1873 0.4287 0.0820 -0.0030	0.011 0.019 0.018 0.017 0.015 0.011	-0.239 16.225 10.216 24.950 5.645 -0.272	0.811 0.000 0.000 0.000 0.000 0.786	-0.024 0.276 0.151 0.395 0.053 -0.025	0.019 0.353 0.223 0.463 0.111 0.019	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		225.660 0.000 0.747 40.594	Durbin-No Jarque-E Prob(JB) Cond. No	Bera (JB):):).		1.922 31318.780 0.00 3.92	

Notes:

Table 8

As observed in the above model (olsres_11), 'institutions' has a p-value greater than 0.05. So, we can drop it because it is not significant in predicting 'sales'.

	OLS Regression Results												
=========							=======						
Dep. Variabl	e:		sales	R-sq	uared:		0.936						
Model:			OLS	Adj.	R-squared:		0.935						
Method:		Least Sq	uares	F-st	atistic:		1914.						
Date:		Sat, 24 Dec	2022	Prob	(F-statistic):		8.36e-312						
Time:		02:	06:18	Log-	Likelihood:		-16.514						
No. Observat	ions:		531	AIC:			43.03						
Df Residuals	:		526	BIC:			64.40						
Df Model:			4										
Covariance T	ype:	nonr	obust										
		std err			P> t	[0.025	0.975]						
const					0.804	-0.024	0.019						
capital	0.3145	0.019	16	.237	0.000	0.276	0.353						
randd	0.1877	0.018	10	.284	0.000	0.152	0.224						
employment	0.4282	0.017	25	.124	0.000	0.395	0.462						
value	0.0819	0.015	5	.644		0.053	0.110						
Omnibus:	=======	22	 5.939	Durb	in-Watson:		1.923						
Prob(Omnibus):		0.000	Jaro	ue-Bera (JB):		31049.067						
Skew:			0.753				0.00						
Kurtosis:		4	0.431	Cond	. No.		3.89						

Notes:

After dropping the features causing strong multicollinearity and the statistically insignificant ones, our model performance hasn't dropped. This shows that those variables didn't have predicting power.

Table 9(OLS_RES12)

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Dep. Vari	able:		sales	R-	squared	: (.936
М	odel:		OLS	Adj. R-	: 0	.935	
Met	thod:	Least Sq	uares	F-	: 1	914.	
1	Date: Sa	at, 24 Dec	2022 I	Prob (F-	statistic)	: 8.36e	-312
1	Time:	02:	06:31	Log-Lil	kelihood	: -16	5.514
No. Observat	ions:		531		AIC	: 4	3.03
Df Resid	uals:		526		BIC	: 6	4.40
Df M	odel:		4				
Covariance 1	Туре:	non	robust				
	coef	std err	t	P> t	[0.025	0.975]	
const	-0.0027	0.011	-0.248	0.804	-0.024	0.019	
capital	0.3145	0.019	16.237	0.000	0.276	0.353	
randd	0.1877	0.018	10.284	0.000	0.152	0.224	
employment	0.4282	0.017	25.124	0.000	0.395	0.462	
value	0.0819	0.015	5.644	0.000	0.053	0.110	
Omnib	us: 225.	939 D	urbin-W	latson:	1.93	23	
Prob(Omnibu	ıs): 0.	000 Jar	que-Ber	a (JB):	31049.0	87	
Ske	ew: 0.	753	Pro	b(JB):	0.0	00	
Kurtos	sis: 40.	431	Cor	nd. No.	3.8	89	

Observations

R-squared of the model is 0.936 and adjusted R-squared is 0.935, which shows that the model is able to explain ~93.5% variance in the data. This is extremely good.

A unit increase in the capital will result in a 0.3145 unit increase in the sales, all other variables remaining constant.

A unit increase in the R&D will result in a 0.1877 unit increase in the sales, all other variables remaining constant.

A unit increase in the employment will result in a 0.4282 unit increase in the sales, all other variables remaining constant.(MOST IMPORTANT ATTRIBUTE)

A unit increase in the Stock market value will result in a 0.0819 unit increase in the sales, all other variables remaining constant.

R square of training data

93.5% of the variation in the sales is explained by the predictors in the model for train set **Equation of Linear Regression**

Sales = -0.0026976549480944656 + 0.3144643716579352 * (capital) + 0.1877071035767714 * (randd) + 0.4281775881727028 * (employment) + 0.08186917601013671 * (value)

We can now use the model for making predictions on the test data.

RMSE on train data

0.24961439816650766

Let us plot the fitted values vs residuals

Figure 7

Figure 8

Figure 9(QQ plot)

RMSE on test data -0.3520590072129984

MAE on train data -

0.08419071412781504

MAE on test data -0.07218065761152341

We can see that RMSE on the train and test sets are comparable. So, our model is not suffering from overfitting.

MAE indicates that our current model is able to predict sales within a mean error of 0.07 units on the test data.

Hence, we can conclude the model "ols_res12" is excellent for prediction as well as inference purposes.

1.4) Inference: Based on these predictions, what are the business insights and recommendations.

Conclusion

The final Linear Regression equation is

sales = -0.0026976549480944656 + 0.3144643716579352 * (capital) + 0.1877071035767714 * (randd) + 0.4281775881727028 * (employment) + 0.08186917601013671 * (value)

R-squared of the model is 0.936 and adjusted R-squared is 0.935, which shows that the model is able to explain ~93.5% variance in the data. This is extremely good.

A unit increase in the capital will result in a 0.3145 unit increase in the sales, all other variables remaining constant.

A unit increase in the R&D will result in a 0.1877 unit increase in the sales, all other variables remaining constant.

A unit increase in the employment will result in a 0.4282 unit increase in the sales, all other variables remaining constant.(MOST IMPORTANT ATTRIBUTE)

A unit increase in the Stock market value will result in a 0.0819 unit increase in the sales, all other variables remaining constant.

Insights & Recommendations

- 1)5 most important attributes are "capital", "randd", "employment", "value" & "sp500". Sales can now be predicted using our final linear regression model equation and we can see how each attribute affects the sales.
- 2) Among all attributes employment seems to be greatly affecting sales.
- 3) More Capital, More R&D, More Employment & More stock value will greatly affect sales of firms and we can use our linear regression model to predict sales.

Problem 2

Problem 2: Logistic Regression, LDA

You are hired by the Government to do an analysis of car crashes. You are provided details of car crashes, among which some people survived and some didn't. You have to help the government in predicting whether a person will survive or not on the basis of the information given in the data set so as to provide insights that will help the government to make stronger laws for car manufacturers to ensure safety measures. Also, find out the important factors on the basis of which you made your predictions.

Questions for Problem 2:

2.1) Data Ingestion: Read the dataset. Do the descriptive statistics and do null value condition check, write an inference on it. Perform Univariate and Bivariate Analysis. Do exploratory data analysis.

Reading the dataset

	dvcat	weight	Survived	airbag	seatbelt	frontal	sex	ageOFocc	yearacc	yearVeh	abcat	occRole	deploy	inj Severity	caseid
0	55+	27.078	Not_Survived	none	none	1	m	32	1997	1987	unavail	driver	0	4.0	2:13:02
1	25-39	89.627	Not_Survived	airbag	belted	0	f	54	1997	1994	nodeploy	driver	0	4.0	2:17:01
2	55+	27.078	Not_Survived	none	belted	1	m	67	1997	1992	unavail	driver	0	4.0	0.138206019
3	55+	27.078	Not_Survived	none	belted	1	f	64	1997	1992	unavail	pass	0	4.0	0.138206019
4	55+	13.374	Not_Survived	none	none	1	m	23	1997	1986	unavail	driver	0	4.0	4:58:01

Table 10

Data Types

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11217 entries, 0 to 11216
Data columns (total 15 columns):
# Column Non-Null Count Dtype
               -----
              11217 non-null object
0 dvcat
1 weight
              11217 non-null float64
2 Survived 11217 non-null object
3 airbag
              11217 non-null object
4 seatbelt 11217 non-null object
5 frontal 11217 non-null int64
              11217 non-null object
7 ageOFocc 11217 non-null int64
8 yearacc 11217 non-null int64
9 yearVeh
              11217 non-null int64
              11217 non-null object
10 abcat
11 occRole 11217 non-null object
12 deploy 11217 non-null int64
13 injSeverity 11140 non-null float64
               11217 non-null object
14 caseid
dtypes: float64(2), int64(5), object(8)
memory usage: 1.3+ MB
```

Describing the data

	weight	frontal	ageOFocc	yearacc	yearVeh	deploy	inj Severity
count	11217.000000	11217.000000	11217.000000	11217.000000	11217.000000	11217.000000	11217.000000
mean	431.405309	0.644022	37.427654	2001.103236	1994.177944	0.389141	1.826781
std	1406.202941	0.478830	18.192429	1.056805	5.658704	0.487577	1.373871
min	0.000000	0.000000	16.000000	1997.000000	1953.000000	0.000000	0.000000
25%	28.292000	0.000000	22.000000	2001.000000	1991.000000	0.000000	1.000000
50%	82.195000	1.000000	33.000000	2001.000000	1995.000000	0.000000	2.000000
75%	324.056000	1.000000	48.000000	2002.000000	1999.000000	1.000000	3.000000
max	31694.040000	1.000000	97.000000	2002.000000	2003.000000	1.000000	5.000000

Table 11

Imputing the null values

dvcat	0
weight	0
Survived	0
airbag	0
seatbelt	0
frontal	0
sex	0
age0Focc	0
yearacc	0
yearVeh	0
abcat	0
occRole	0
deploy	0
injSeverity	77
caseid	0
dtype: int64	

There are 77 null values in 'injSeverity' Column

11217 Rows & 15 columns

Filling the null values by median of respective column

dvcat	0
weight	0
Survived	0
airbag	0
seatbelt	0
frontal	0
sex	0
ageOFocc	0
yearacc	0
yearVeh	0
abcat	0
occRole	0
deploy	0
injSeverity	0
caseid	0
dtype: int64	

Null values are replaced by median values of the coloumn. 'caseid' coloumn is dropped.

UNIVARIATE ANALYSIS

```
dvcat
24-0ct
        5414
25-39
          3368
40-54
          1344
55+
           809
1-9km/h
         282
Name: dvcat, dtype: int64
Survived
survived
              10037
Not_Survived 1180
Name: Survived, dtype: int64
airbag
airbag
         7064
none
         4153
Name: airbag, dtype: int64
seatbelt
belted
         7849
none
         3368
Name: seatbelt, dtype: int64
sex
    6048
m
    5169
Name: sex, dtype: int64
```

'dvcat' has many entries as 24-Oct. As 10-24 group is missing we will have to change them to 10-24.

Figure 11

BoxPlot of ageOFocc

Figure 12

Figure 13

BoxPlot of yearVeh

.

Figure 14

There are many outliers in the data.

Frontal impacts are more as compared to non frontal impacts.

The average age of occupants of car is 37 years, minimum age is 16 years and maximum 97 years.

Count of accidents has increased drastically from around 200 (year 1997) to around 4800 (year 2002).

The model year of vehicles are maximum from the year 1998-2000.

Details of dvcat 10-24 5414 25-39 3368 40-54 1344 55+ 809 1-9km/h 282

Name: dvcat, dtype: int64

Figure 15

Details of Survived

survived 10037 Not_Survived 1180

Name: Survived, dtype: int64

Figure 16

Details of airbag

airbag 7064 none 4153

Name: airbag, dtype: int64

Figure 17

Details of seatbelt

. . . .

belted 7849 none 3368

Name: seatbelt, dtype: int64

Figure 18

Highest number of count of impact speed was of range 10-24 km per hour.

Only 10037 survived and 1180 didn't survive.

7064 cars did have airbags and 4153 cars didn't have it.

7849 were seatbelted and 3368 weren't seatbelted.

There seems to be non linear relationship between weight and ageoFocc.

ageOFocc shows some skewness in the distribution between survived and not survived. Distribution is much wider for not survived. Median of Not survived is higher than Survived.

The distribution is almost similar.

Figure 20

MULTIVARIATE ANALYSIS

There seems to be a correlation between frontal & deploy, deploy & yearVeh.

Figure 21

2.2) Encode the data (having string values) for Modelling. Data Split: Split the data into train and test (70:30). Apply Logistic Regression and LDA (linear discriminant analysis).

Converting all objects to categorical codes

Converting the 'Survived' Variable into numeric by using the LabelEncoder functionality inside sklearn.

	dvcat	weight	Survived	airbag	seatbelt	frontal	sex	ageOFocc	yearacc	yearVeh	abcat	occRole	deploy	inj Severity
0	55+	27.078	0	none	none	1	m	32	1997	1987	unavail	driver	0	4.0
1	25-39	89.627	0	airbag	belted	0	f	54	1997	1994	nodeploy	driver	0	4.0
2	55+	27.078	0	none	belted	1	m	67	1997	1992	unavail	driver	0	4.0
3	55+	27.078	0	none	belted	1	f	64	1997	1992	unavail	pass	0	4.0
4	55+	13.374	0	none	none	1	m	23	1997	1986	unavail	driver	0	4.0

0 means not survived and 1 means survived

Converting the other 'object' type variables as dummy variables

	weight	Survived	frontal	ageOFocc	yearacc	yearVeh	deploy	inj Severity	dvcat_10- 24	dvcat_25- 39	dvcat_40- 54	dvcat_55+	airbag_none	seatbelt_none	sex_m
0	27.078	0	1	32	1997	1987	0	4.0	0	0	0	1	1	1	1
- 1	89.627	0	0	54	1997	1994	0	4.0	0	1	0	0	0	0	0
2	27.078	0	1	67	1997	1992	0	4.0	0	0	0	1	1	0	1
3	27.078	0	1	64	1997	1992	0	4.0	0	0	0	1	1	0	0
4	13.374	0	1	23	1997	1986	0	4.0	0	0	0	1	1	1	1

Table 12

Train Test Split

Split X and y into training and test set in 70:30 ratio

Build Logistic Regression model

Fit the Logistic Regression model using newton cg as it's a multiclass problem Model Score of train data(Accuracy) - **0.980639408992485(98%)**

Build LDA(Linear discriminant analysis) Model

Model score of train data(Accuracy) - 0.9575850210164311(96%)

2.3) Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Compare both the models and write inferences, which model is best/optimized.

PERFORMANCE OF LOGISTIC REGRESSION MODEL

Model Score(Accuracy of train data) - 0.980639408992485(98%)

ROC Curve & AUC Score(0.991) of train data

Model Score(Accuracy of test data) - 0.9833630421865716(98%)

ROC Curve & AUC Score(0.991) of test data

Train & test data confusion matrix

Train data Test data Figure 23

Figure 22

Train data & test data classification report

Train data

	precision	recall	f1-score	support
0	0.93	0.88	0.91	826
1	0.99	0.99	0.99	7025
accuracy			0.98	7851
macro avg	0.96	0.94	0.95	7851
weighted avg	0.98	0.98	0.98	7851
Test data				
	precision	recall	f1-score	support
0	0.94	0.90	0.92	354
1	0.99	0.99	0.99	3012
accuracy			0.98	3366
macro avg	0.96	0.95	0.95	3366
weighted avg	0.98	0.98	0.98	3366

Model Coefficients

```
array([[ 0.0000e+00, 1.3200e+00, -4.0000e-02, 1.0600e+00, -0.00000e+00, -5.9648e+02, -4.0200e+00, -2.1100e+00, -3.3900e+00, -4.2000e+00, -5.1600e+00, -2.9830e+02, -7.4000e-01, -4.3000e-01, -5.9602e+02, -2.9830e+02, -5.5000e-01]])
```

Model Variables

CONCLUSION

Note:

Precision: tells us how many predictions are actually positive

out of all the total positives predicted.

Recall: how many observations of positive class are actually

predicted as positive.

Inferences:

For predicting Not survived (Label 0):

Precision (94%) – 94% of people predicted actually not to survive out of all people predicted to not survive.

Recall (90%) – Out of all the people actually not surviving, 90% of people have been predicted correctly.

For predicting Survived (Label 1):

Precision (99%) – 99% of employees predicted actually survive out of all people predicted to survive.

Recall (99%) – Out of all the people who actually survived, 99% of employees have been predicted correctly.

Overall accuracy of the model – 98 % of total predictions are correct Accuracy, AUC, Precision and Recall for test data is almost inline with training data. This proves no overfitting or underfitting has happened, and **overall the model is a good model for classification.**

PERFORMANCE OF LDA MODEL

Linear Discriminant Function

= -4773.68800372 + (-1.20355227e-04xweight)+ (9.10496861e-01xfrontal)+ (-2.87947123e-02xageOFocc)+....+(-4.30119992e-01xoccRole_pass)

Coefficients -

```
array([[-0. , 0.91, -0.03, 2.41, -0.02, 0.09, -1.4 , 0.23, 0.17, -1.47, -4.94, -0.07, -0.48, -0.46, -0.03, -0.07, -0.43]])
```

By the above equation and the coefficients it is clear that

- · predictor 'yearacc' has the largest magnitude thus this helps in classifying the best
- . predictor 'dvcat_55+' has the smallest magnitude thus this helps in classifying the least

Training Data and Test Data Confusion Matrix Comparison

Figure 24
Training Data and Test Data Classification Report Comparison

Classification Report of the training data:

	precision	recall	f1-score	support
0	0.86	0.72	0.78	826
1	0.97	0.99	0.98	7025
accuracy			0.96	7851
macro avg	0.91	0.85	0.88	7851
weighted avg	0.96	0.96	0.96	7851

Classification Report of the test data:

	precision	recall	f1-score	support
0	0.85	0.71	0.78	354
1	0.97	0.99	0.98	3012
accuracy			0.96	3366
macro avg	0.91	0.85	0.88	3366
weighted avg	0.95	0.96	0.96	3366

AUC & ROC FOR TRAINING AND TEST DATA

AUC for the Training Data: 0.968 AUC for the Test Data: 0.967

Figure 25

CONCLUSION

Note:

Precision: tells us how many predictions are actually positive

out of all the total positives predicted.

Recall : how many observations of positive class are actually

predicted as positive.

Inferences:

For predicting Not survived (Label 0):

Precision (85%) – 85% of people predicted actually not to survive out of all people predicted to not survive.

Recall (71%) – Out of all the people actually not surviving, 71% of people have been predicted correctly .

For predicting Survived (Label 1):

Precision (97%) – 97% of employees predicted actually survive out of all people predicted to survive.

Recall (99%) – Out of all the people who actually survived, 99% of employees have been predicted correctly.

Overall accuracy of the model – 96 % of total predictions are correct

Accuracy, AUC, Precision and Recall for test data is almost inline with training data. This proves no overfitting or underfitting has happened, and overall the model is a good model for classification.

LOGISTIC REGRESSION MODEL IS BEST/OPTIMISED as the accuracy,AUC,Precision and Recall are greater as compared to the LDA model.

- 2.4) Inference: Based on these predictions, what are the insights and recommendations? INSIGHTS AND RECOMMENDATIONS
- 1. Based on the logistic regression model with 98% accuracy, frontal impact seems to be the most important attribute in determining whether a person has survived or not.
- 2. To decrease the frontal impact, the government should make strict laws for manufacturers of cars to include good airbags in all cars for the safety of all passengers.
- 3. Strict laws should be made to ensure passengers always put their seatbelts to lesser the impact of car crash.
- 4. Good quality airbags with a very fast deploy rate should be installed in all cars to ensure safety of all passengers.
- 5. Regular airbag testing should be made mandatory by the government to ensure that airbags do deploy in all cars when there is an impact of a car crash.
- 6. Estimated impact speeds were of range 10-24 km/hr, design should be built to reduce impact speed to decrease damage to passengers.

