Моделирование облаков

Студент: Булдаков М. Ю. ИУ7-54Б

Руководитель: Кузнецова О. В.

Цели и задачи

Цель: реализация ПО, которое предоставляет возможность визуализировать облачное небо.

Задачи:

- описать предметную область визуализации облаков и существующие методы их представления;
- спроектировать ПО, позволяющее визуализировать облака;
- выбрать инструменты для реализации ПО;
- реализовать спроектированное ПО;
- исследовать временные характеристики реализованного ПО.

Модель облаков

$$L(x,\vec{\omega}) = \rho(x_0,x)L(x_0,\vec{\omega}) + L_m(x,\vec{\omega})$$

Закон Бугера --- Ламберта --- Бера

$$I = I_0 \cdot e^{-\int_{x_0}^x k(u) \, du}$$

Явления:

- Поглощение
- Рассеивание

Сравнение методов

Таблица 1.1 – Сравнение методов представления облаков

Характеристика	СЧ	ООП	П
Учет неоднородности	Да	Нет	Да
Трудоемкость вычисления плотности в точке	$O(n^3)$	O(Q)	O(Q)
Требования по памяти	$O(n^3)$	O(Q)	$O(Q+n^3)$

Примечание: СЧ — система частиц; ООП — объемы, ограниченные поверхностью; П — процедурное представление, с предварительно вычисленными значениями функций шума; n — размер облака; Q — количество ограничивающих поверхностей.

Таблица 1.2 – Сравнение алгоритмов визуализации облаков

Характеристика	СД	PT	RM
Трудоемкость построения изображения	$O(n^3)$	O(NMn)	O(NM)
Требования по памяти	$O(n^3)$	O(n)	O(1)

Примечание: СД — алгоритм сдвиг—деформации; РТ — алгоритм разбрызгивания текстур; RM — алгоритм Ray Marching; n — размер облака; $N \times M$ — размер изображения.

Выбранные методы:

- Процедурное представление
- Ray Marching

Постановка задачи

Процедурное представление

Ключевые моменты:

- Ограничивающие оболочки 2 сферы
- Два вида шума: Перлина и Ворлея
- Значения шума хранятся в памяти

Ray Marching

Алгоритм Ray Marching состоит из следующих шагов:

- 1. выпустить от наблюдателя луч для каждого пикселя буфера кадра;
- 2. разбить луч на равные интервалы;
- 3. выполнить итеративное смешение цветов на этих интервалах.

Модель освещения

$$L = 2 \cdot e^{-d} \cdot (1 - 2e^{-2d}) \cdot \frac{1}{4\pi} \frac{1 - g^2}{(1 + g^2 - 2g\cos\theta)^{3/2}}$$

g — некоторая константа в функции Хеньи—Гринштейна, а θ — угол между лучами света и направления взгляда.

Разработанные схемы алгоритмов

Разработанные схемы алгоритмов

Диаграмма классов

Интерфейс ПО

Пример работы

Исследование характеристик

Уровень покрытия	Количество кадров в секунду
1.0	34
1.2	33
1.4	32
1.6	32
1.8	32
2.0	32

Плотность	Количество кадров в секунду
0	33
20	33
40	33
60	32
80	33
100	33
120	33
140	33

Заключение

- Кадровая частота 32-34 кадра в секунду при разрешении 900 на 600.
- На кадровую частоту не влияют плотность и уровень покрытия.
- При увеличении размеров изображения кадровая частота снижается.

В результате были выполнени поставленные задачи и цель курсовой работы была достигнута.