江苏大学 硕士研究生入学考试样题

科目代码:

854

科目名称: 概率论与数理统计

满分: 150 分

- 一、填空题(每空5分,共计40分)
- 1. 设事件 A, B 的概率分别为 $\frac{1}{4}$ 与 $\frac{1}{3}$,若 A 与 B 互斥,则 $P(B\overline{A}) = _____;$ 若 $A \subset B$, 则 $P(B\overline{A})=$
- 2. 某人忘记了电话号码,因而他随意地拨号,则他拨号不超过三次而接通所需要的电话的概率为
- 3. 设X 服从正态分布 N(2,4), Y 服从参数为 3 的泊松分布, Z 服从[1,5]上的均匀分布。

令V = 4X + 3Y - Z,则期望E(2V - 3) = ,方差D(3V - 5) =

- 4. 设总体 X 服从正态分布, 均方差(标准差) 为 0.9. 从中抽取容量为9的简单随机样本, 算得样本 均值 $\overline{X}=25$,试求总体X的均值 μ 的置信度为 0.95的置信区间
- 5. 设总体X 服从正态分布 $N(0,2^2)$,而 X_1,X_2,\cdots,X_{15} 是来自总体X的简单随机样本,则随机变量

- 6. 设随机变量 X 的期望和方差都存在,且 DX = 1 ,则根据切比雪夫不等式估计 P(|X-EX|<4)
- 二、(12分)在电报通讯中不断发出信号'0'和'1',统计资料表明,发出'0'和'1'的概率分 别为 0.6 和 0.4,由于存在干扰,发出'0'时,分别以概率 0.7 和 0.1 接收到'0'和'1',以 0.2 的概率收为模糊信号 'x'; 发出'1'时,分别以概率 0.85 和 0.05 收到'1'和'0',以概率 0.1 收到模糊信号'x'。
- (1) 求收到模糊信号'x'的概率;
- (2) 当收到模糊信号 'x'时,译成哪个信号为好?为什么?
- 三、(12 分) 设随机变量 $X \sim N(3,4)$,求(1) P(2 < X < 5); (2) P(X > 0); (3) P(|X 3| > 4);
- (4) 求c的值,使得 $P(X > c) = P(X \le c)$
- 四、(16分)设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} Ae^{-(2x+3y)}, & x > 0, y > 0 \\ 0, &$$
其它

- (1) 求常数 A; (2) 联合分布函数 F(x,y)
- (2) 求边缘密度函数 $f_{Y}(x)$, $f_{Y}(y)$; (4) 求 $P(X+2Y \le 1)$ 。

五、(15 分) 对某一目标连续射击,直至命中 n 次为止. 设每次射击的命中率为 p,求消耗的子弹数 X 的数学期望.

六、(16 分)系统 L 由子系统 L_1 和 L_2 组合而成,其中 L_2 是备用的(当 L_1 损坏时, L_2 立即启动).设子系统 L_1 和 L_2 的使用寿命 L_2 的使用寿命 L_3 的指数分布. 求系统 L_4 的使用寿命 L_4 的密度函数.

七、(15 分) 设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{\theta}{2\sqrt{x}} e^{-\theta\sqrt{x}}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

其中 $\theta>0$ 为未知参数。 X_1,X_2,\cdots,X_n 是X的样本,求参数 θ 的矩估计量和极大似然估计量。 八、(12 分)为改建城市中央绿地,建工学院有 5 位学生彼此独立地测量了中央绿地的面积,得如下数据(单位: km^2) 1.23 1.22 1.20 1.26 1.23,设测量误差服从正态分布。以前认为这块绿地的面积是 $\mu=1.23$ km^2 ,是否有必要修改以前的结果? ($\alpha=0.05$)

九、(12分)设 $X_1, \dots X_5$ 为取自正态总体 $N(0,2^2)$ 的样本,记

$$z=a(X_1-2X_2)^2+b(3X_3-4X_4)^2+cX_5^2$$

试确定 a, b, c 使得 Z 服从 χ^2 分布.

附 标准正态分布数值表

x	0.5	1	1.5	1.96	2
$\Phi(x)$	0.6915	0.8413	0.9332	0.975	0.9772

t 分布表

n	3	4	5
$\alpha = 0.05$	2.3534	2.1318	2.0150
$\alpha = 0.025$	3.1824	2.7764	2.5706