Projekt: Sorting Industrial Robot

Dato: 02-03-2012

Titel:

Systemarkitektur for Sorting Industrial Robot

RoboGO

Systemarkitektur – Gruppe 1

Versionshistorik

Ver.	Dato	Initialer	Beskrivelse
0.1	02-03-12	RHT	Første udkast lavet fra sidste projekt.

Indholdsfortegnelse

Introduktion	5
Formål	5
Referencer	5
Definitioner	5
Dokumentstruktur og læsevejledning	5
Dokumentets rolle i en iterativ udvikling	
System oversigt	
System kontekst	
System introduktion	
Systemets grænseflader	
Grænseflader til person aktører	
Fører	
Tekniker	
Grænseflader til eksterne system aktører	
Grænseflader til hardware aktører	7
Grænseflader til software aktører	
Use case view	
Oversigt	
Logisk view	
Oversigt	
Use case realiseringer	
Use-case X: XXX	
Beskrivelse	
Proces view	
Oversigt over processer	
Implementering	
Kommunikation og synkronisering	
Procesbeskrivelser	
Deployment view	
Oversigt over systemkonfigureringer	
Systemkonfigureringer	
Node beskrivelser	
Development view	c
Oversigt	c
Komponentbeskrivelser	
Generelle designbeslutninger	
Arkitektur mål og begrænsninger	
Arkitektur mønstre	
Generelle brugergrænsefladeregler	
Fejlhåndtering	
Implementeringssprog og værktøjer	
Implementeringsbiblioteker	
Størrelse og ydelse	
Kvalitet	
Oversættelse	
Oversættelse-hardware	
Oversættelse-software	
Oversættelse og linkning	
Installation	

Systemarkitektur – Gruppe 1

Kørsel	10
Kørsels-hardware	10
Kørsels-software	
Start og stop	10
Informationsdisplay	10
Bilag	

Introduktion

Formål

Formålet med dette systemarkitektur-dokument er at dokumentere designet af SIR.

De væsentlige aspekter af designet er specificeret heri, og man kan ved at læse dette dokument opnå et overblik over designet.

Referencer

- [1] Kravspecifikation
- [2] Doxygen generet kode dokumentation.

Definitioner

Tekst.

Dokumentstruktur og læsevejledning

Vi har taget udgangspunkt i 4+1 modellen, som illustrerer forskellige måder at vise softwarearkitekturen på.

Illustration 1: 4+1 modellen

Dokumentets rolle i en iterativ udvikling

Selve dokumentet består af dokumentationen fra de fire iterationer.

I iterationerne er der arbejdet med:

- Udarbejdelse af use-cases i kravspecifikation.
- Design af use-cases.
 - 1. Sekvensdiagrammer.
 - 2. Klassebeskrivelser (Doxygen).
 - 3. Klassediagrammer.
- Implementering af use-cases.
- Unit test og integreringstest.
- · Accepttest udarbejdet ud fra kravspecifikationen.
- Udarbejdelse af projektrapport.

System kontekst

Tekst.

System oversigt

System introduktion
Tekst.
Systemets grænseflader
Grænseflader til person aktører Tekst.
Fører Tekst.
Tekniker Tekst.
Grænseflader til eksterne system aktører Tekst.
Grænseflader til hardware aktører Tekst.
Grænseflader til software aktører Tekst.
Use case view
Oversigt Se use cases under Kravspecifikationen.
Logisk view
Oversigt Tekst.
Drivere: Ingeniørhøjskolen i Århus Side 7 af 12

Systemarkitektur – Gruppe 1

Tekst.

Use case realiseringer

Tekst.

Use-case X: XXX

Noget der forklarer hvad der sker i use casen for eksempel med hjælp af et sekvensdiagram.

Use-case 4: Manuelt Styre

Beskrivelse:

Denne er lavet i tre dele:

- View(GUIManualSteering)
- ViewModel(ViewModelManualSteering)
- Model(ManualController med forbindelse videre til IRobot)

I View-delen er der designet, så man har adgang til knapper for de forskellige funktionaliteter for at bevæge robotten. Det er er enten ved at dreje en akse til den ene eller anden side eller ved at ændre på en af robotternes koordinater. Den kan også åbne og lukke for kloen.

Systemarkitektur – Gruppe 1

GUIManualSteering er forbundet med ViewModelManualSteering ved hjælp af normal databinding for hastigheden af bevægelserne, og bevægelsesfunktionerne er blevet implementeret ved hjælp af Commands, der er i ViewModelManualSteering. Der er på denne måde undgået code-behind i View-delen af designet.

ViewModelManualSteering har så simple funktioner som muligt, så der kunne forbindes direkte fra View til ViewModel uden ekstra argumenter. Dette betyder, at der for eksempel er en funktion til at bevæge basen mod højre og en for at bevæge den til venstre.

ManualController har så mere generelle funktioner for bevægelse af robotten, som er forbundet videre til Factory's "currentlRobotInstance". Dette betyder, at manuel styring kan ved kodeeksekvering skifte mellem at blive kørt på Robotten og Simulatoren ude fra styresystemet.

Rae	krive	معاد
	NIIVE	, 13C

Tekst.

Proces view

Oversigt over processer

Tekst.

Implementering

Tekst.

Kommunikation og synkronisering

Tekst.

Procesbeskrivelser

Tekst.

Deployment view

Oversigt over systemkonfigureringer

Tekst.

Systemkonfigureringer

Tekst.

Node beskrivelser

Tekst.

Development view

Oversigt

Tekst.

Komponentbeskrivelser

<u>Se dokumentation på CD´en for kode dokumentation("kode autogen</u> dokumentation.pdf").

Generelle designbeslutninger

Dette afsnit beskriver de beslutninger vi har taget om arkitekturdesign.

Arkitektur mål og begrænsninger

Tekst.

Arkitektur mønstre

Vi har valgt at bruge MVVM pattern til at implementere programmet.

Dette er blevet valgt da C# med WPF giver relativ nem mulighed for at implementere med MVVM pattern. Ting som DataBinding og Commands.

Andre patterns der er blevet brugt er Singleton og Factory sammen med Indirection for at fjerne afhængighed fra forskellige komponenter i systemet samt at flere klasser havde brug for at deles om de samme klasse instanser.

Systemarkitektur – Gruppe 1					
Generelle brugergrænsefladeregler Tekst.					
Fejlhåndtering Tekst.					
Implementeringssprog og værktøjer Tekst.					
Implementeringsbiblioteker Tekst.					
Størrelse og ydelse					
Tekst.					
Kvalitet Tekst.					
Oversættelse					
Oversættelse-hardware					
Tekst.					
Oversættelse-software					
Tekst.					
Oversættelse og linkning					
Tekst.					
Installation					
Tekst.					

Systemarkitektur	_
Gruppe 1	

Kørsel

Kørsels-hardware

Tekst.

Kørsels-software

Tekst.

Start og stop

Tekst.

Informationsdisplay

Bilag

Tjek medhørende CD for at se bilagene.