Series de Tiempo: Notas modelos ARIMA

Martín Prado

November 27, 2024

1 Repaso de Estimación de modelos ARMA

3.4 Función de Autocorelación Parcial (pacf)

Para una serie de tiempo estacionaria $(X_t)_{t\in\mathbb{Z}}$ de media 0, función de autocovarianza $\gamma(h) = \mathbf{E}[X_{t+h}X_t] = \mathbf{E}[X_hX_0]$ y función de autocorrelación $\rho(h) = \gamma(h)/\gamma(0)$, la función de autocorrelación parcial se define como

$$\alpha(1) = \mathbf{corr}(X_2, X_1) = \rho(1)$$

$$\alpha(k) = \mathbf{corr} \, (X_{k+1} - P_{\mathbf{sp}\{1, X_2, \dots, X_k\}} X_{k+1}, X_{k+1} - P_{\mathbf{sp}\{1, X_2, \dots, X_k\}} X_1)$$

Por otro lado, si definimos $\mathscr{H}_n := \overline{\mathbf{sp}}\{X_1, \dots, X_n\}$ y $\widehat{X}_{n+1} := P_{\mathscr{H}_n}(X_{n+1})$, del sistema de ecuaciones

$$R_k \alpha_k = \rho_k$$

en donde $[R_k]_{ij} = \rho(i-j)$, $\rho_k = (\rho(1), \ldots, \rho(k))'$, se sigue que el vector de soluciones $\alpha_k = (\alpha_{k1}, \ldots, \alpha_{kk})'$ satisface $\alpha(k) = \alpha_{kk}$.

7.2 Estimación de la función de autocorrelación

El estimador de la media es $\overline{X}_n = n^{-1} \sum_{k=1}^n X_k$ y el de la función de autocovarianza es

$$\widehat{\gamma}(h) = \frac{1}{n} \sum_{t=1}^{n-h} (X_t - \overline{X}_n)(X_{t+h} - \overline{X}_n).$$

El estimador de la función de autocorrelación se define como

$$\widehat{\rho}(\mathbf{h}) = \widehat{\mathbf{v}}(\mathbf{h})/\widehat{\mathbf{v}}(0)$$
.

y el de la matriz de covarianza es

$$\widehat{\Gamma}_{n} = \begin{bmatrix} \widehat{\gamma}(0) & \widehat{\gamma}(0) & \cdots & \widehat{\gamma}(n-1) \\ \widehat{\gamma}(1) & \widehat{\gamma}(0) & \cdots & \widehat{\gamma}(n-2) \\ \vdots & & & \\ \widehat{\gamma}(n-1) & \widehat{\gamma}(n-2) & \cdots & \widehat{\gamma}(0) \end{bmatrix}$$

8.1 Ecuaciones Yule-Walker

Para un proceso AR(p) causal de media 0

$$X_t - \phi_1 X_{t-1} - \dots \phi_p X_{t-p} = Z_t, \quad Z_t \sim \mathbf{WN}(0, \sigma^2),$$

y función de autocovarianza $\gamma(h) = \mathbf{E}[X_h X_0]$, tenemos que

$$\Gamma_{\mathfrak{p}} \Phi = \gamma_{\mathfrak{p}},$$

en donde $[\Gamma_p]_{ij} = \gamma_{ij}(i-j)$, $\phi = (\phi_1, \dots, \phi_p)'$ y $\gamma_p = (\gamma(1), \dots, \gamma(p))'$. En particular, si tomamos los estimados de la función de autocovarianza muestral $\widehat{\gamma}$, podemos estimar los coeficientes del proceso $\mathbf{AR}(p)$ como la solución del vector $\widehat{\phi} = (\widehat{\phi}_1, \dots, \widehat{\phi}_p)'$ en la ecuación

$$\widehat{\Gamma}_{p}\widehat{\Phi} = \widehat{\gamma}_{p}, \quad \widehat{\gamma}_{p} = (\widehat{\gamma}(1), \dots, \widehat{\gamma}(p))'.$$

8.3 Estimados de coeficientes de Innovación

Para una muestra X_t del modelo MA(q)

$$X_{t} = Z'_{t} + \theta_{1} Z'_{t-1} + \dots + \theta_{q} Z'_{t-q}, \quad Z'_{t} \sim \mathbf{WN}(0, \sigma^{2}),$$

se puede realizar un ajuste de los coeficientes con el algoritmo de innovaciones para obtener

$$X_{t} = Z_{t} + \widehat{\theta}_{m1}Z_{t-1} + \cdots + \widehat{\theta}_{mm}Z_{t-m}, \quad Z_{t} \sim \mathbf{WN}(0, \widehat{\nu}_{m})$$

con $\widehat{\theta}_{ij}$ y $\widehat{\nu}_m$ definidos a partir de la relación recursiva

$$\widehat{\theta}_{\mathfrak{m},\mathfrak{m}-k} = \widehat{\nu}_k^{-1} \left[\widehat{\gamma}(\mathfrak{m}-k) - \sum_{j=0}^{k-1} \widehat{\theta}_{\mathfrak{m},\mathfrak{m}-j} \widehat{\theta}_{k,k-j} \widehat{\nu}_j \right], \quad k = 0, \dots, \mathfrak{m}-1,$$

у

$$\widehat{\nu}_{\mathfrak{m}} = \widehat{\gamma}(0) - \sum_{j=0}^{\mathfrak{m}-1} \widehat{\theta}_{\mathfrak{m},\mathfrak{m},j}^2 \widehat{\nu_j}.$$

8.4 Estimación de Modelos ARMA

En particular, para procesos ARMA(p,q) de media cero y causales

$$\phi(B)X_t = X_t - \phi_1X_{t-1} - \dots - \phi_pX_{t-p} = Z_t + \theta_1Z_{t-1} + \dots + \theta_qZ_{t-q} = \theta(B)Z_t,$$

podemos encontrar una función ψ que satisface

$$X_t = \psi(B)Z_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}.$$

Los coeficientes ψ_j satisfacen

$$\psi_0 = 1, \qquad \psi_j = \theta_j + \sum_{i=1}^{\min(j,p)} \varphi_i \psi_{j-i},$$

y por ende, con la fórmula del capítulo 8.3 podemos estimar $\psi_1, \ldots, \psi_{p+q}$ con $\widehat{\theta}_{m1}, \ldots, \widehat{\theta}_{m,p+q}$, para luego obtener estimadores $\widehat{\phi}$ y $\widehat{\theta}$ con la fórmula

$$\widehat{\theta}_{\mathfrak{m}\mathfrak{j}} = \widehat{\theta}_{\mathfrak{j}} + \sum_{i=1}^{\min(\mathfrak{j},\mathfrak{p})} \widehat{\varphi}_{i}\widehat{\theta}_{\mathfrak{m},\mathfrak{j}-i},$$

y también el estimador de la varianza del proceso $\mathbf{W}\mathbf{N}$ con

$$\widehat{\sigma}^2 = \widehat{\nu}_m$$
.

8.7 Estimadores de Máxima Verosimilitud y Mínimos Cuadrados

Para una realización X_1, \ldots, X_n del proceso $\mathbf{ARMA}(p,q)$ definido en la sección anterior (con Z_t Gaussianas), definimos $\boldsymbol{\varphi} = (\varphi_1, \ldots, \varphi_p)', \ \boldsymbol{\theta} = (\theta_1, \ldots, \theta_q)'$. Para los coeficientes del algoritmo de Innovación θ_{ij} que se obtienen con el proceso \mathbf{ARMA} de parámetros $\boldsymbol{\varphi}$ y $\boldsymbol{\theta}$, definimos:

$$\begin{cases} \widehat{X}_{\mathfrak{i}+1} = \sum_{j=1}^{\mathfrak{i}} \theta_{\mathfrak{i}\mathfrak{j}} (X_{\mathfrak{i}+1-\mathfrak{j}} - \widehat{X}_{\mathfrak{i}+1-\mathfrak{j}}), & 1 \leqslant \mathfrak{i} < \mathfrak{m} = \max(\mathfrak{p},\mathfrak{q}) \\ \\ \widehat{X}_{\mathfrak{i}+1} = \sum_{j=1}^{\mathfrak{p}} \varphi_{\mathfrak{j}} X_{\mathfrak{i}+1-\mathfrak{j}} + \sum_{j=1}^{\mathfrak{i}} \theta_{\mathfrak{i}\mathfrak{j}} (X_{\mathfrak{i}+1-\mathfrak{j}} - \widehat{X}_{\mathfrak{i}+1-\mathfrak{j}}), & \mathfrak{i} \geqslant \mathfrak{m} \end{cases}$$

y también,

$$r_{\mathbf{i}} := \mathbf{E}\left[(X_{\mathbf{i}+1} - \widehat{X}_{\mathbf{i}+1})^2 \right] / \sigma^2.$$

La función de verosimilitud de los parámetros del proceso ARMA es

$$L(\boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^2) = (2\pi\sigma^2)^{-n/2} (r_0 \cdots r_{n-1})^{-1/2} \exp \left[-\frac{1}{2} \sigma^{-2} \sum_{j=1}^n (X_j - \widehat{X}_j)^2 / r_{j-1} \right].$$

Después de derivar con respecto a σ^2 , tenemos que el estimador de máxima verosimilitud de la varianza es

$$\tilde{\sigma}^2 := \tilde{\sigma}^2(\tilde{\boldsymbol{\varphi}}, \tilde{\boldsymbol{\theta}}) = \mathfrak{n}^{-1} S(\tilde{\boldsymbol{\varphi}}, \tilde{\boldsymbol{\theta}}),$$

en donde

$$S(\tilde{\phi}, \tilde{\theta}) = \sum_{j=1}^{n} (X_j - \hat{X}_j)^2 / r_{j-1}$$

y $\tilde{\pmb{\varphi}}, \tilde{\pmb{\theta}}$ son los valores de los parámetros $\pmb{\varphi}, \pmb{\theta}$ que minimizan la función

$$l(\boldsymbol{\varphi}, \boldsymbol{\theta}) = \ln(n^{-1}S(\boldsymbol{\varphi}, \boldsymbol{\theta})) + n^{-1} \sum_{j=1}^{n} \ln r_{j-1}.$$

2 Modelos ARIMA y SARIMA

Recuerde la definición de los operadores $\nabla^d = (I-B)^d$ y $\nabla^D_s = (I-B^s)^D$.

9.1 Definición Modelos ARIMA

Para un número natural $d \ge 0$, se dice que $\{X_t\}$ es un proceso $\mathbf{ARIMA}(p,d,q)$ (Autoregressive integrated moving average) si al definir $Y_t := \nabla^d X_t$ obtenemos un proceso $\mathbf{ARMA}(p,q)$

$$\varphi(B)Y_t = \varphi(B)(1-B)^dX_t = \theta(B)Z_t, \quad Z_t \sim \mathbf{WN}\,(0,\sigma^2),$$

con ϕ y θ polinomios de grado p y q respectivamente.

9.6 Definición Modelos SARIMA

Note que si hay un componente estacional en el proceso estocástico, donde cada ciclo o temporada dura s unidades. Entonces aplicar el operador ∇_s debería remover en alguna medida el efecto de este componente como si discutió en el capítulo 1. Sin embargo, el patrón que sigue de un ciclo a otro podría ser aleatorio.

Year	1	Month 2		12
1	X_1	X_2		X_{12}
2	X_{13}	X_{14}		X_{24}
3 :	X ₂₅	X_{26}		X ₃₆
r	$X_{1+12(r-1)}$	$X_{2+12(r-1)}$	•••	$X_{12+12(r-1)}$

Por ejemplo, la forma en la que se puede comportar una variable aleatoria de un año $y \in \mathbb{Z}$ hacia atrás podría representar otro proceso $\mathbf{ARMA}(P,Q)$ en donde si $X_y^{(m)} = X_{m+12y}$, entonces para cada mes $m=1,\dots 12$

$$X_y^{(\mathfrak{m})} - \Phi_1 X_{y-1}^{(\mathfrak{m})} - \dots - \Phi_P X_{y-P}^{(\mathfrak{m})} = U_y^{(\mathfrak{m})} + \Theta_1 U_{y-1}^{(\mathfrak{m})} + \dots + \Theta_1 U_{y-Q}^{(\mathfrak{m})},$$

 $\mathrm{para}\ U_y^{\left(\mathfrak{m}\right)} \sim \mathbf{WN}\,(0,\sigma_U^2).$

Si en particular, después de aplicar $\nabla^d \nabla^D_s$ para $d,D \in \mathbb{N}$ obtenemos un proceso $\mathbf{ARMA}\,(p,q)$ causal $Y_t := (I-B)^d (I-B^s)^D$, entonces podemos escribir

$$\phi(B)\Phi(B^s)Y_t = \theta(B)\Theta(B^s)Z_t, \quad Z_t \sim \mathbf{WN}\ (0,\sigma^2).$$

Si el proceso cumple las condiciones mencionadas anteriormente, entonces decimos que es un proceso **SARIMA** $(p, d, q) \times (P, D, Q)_s$.

9.2 Técnicas de Identificación

Los desafíos de este capítulo son:

(a) Hallar una forma de transformar un proceso estocástico X_t para obtener una serie de tiempo estacionaria y consecuentemente un proceso \mathbf{ARMA} .

- Aplicar (si es posible) alguna función f que convierta una serie de tiempo en un proceso SARIMA
- Hallar el periodo s de componentes estacionales.
- Hallar D que al diferenciar con $\nabla^{\rm D}_{\rm s}$ elimine tendencias en el componente estacional.
- Hallar d que al diferenciar con $\nabla_{\mathbf{d}}$ elimine tendencias globales. (9.1)
- (b) Para una serie de tiempo a la cual se le quiere ajustar un proceso $\mathbf{ARMA}(p,q)$, la escogencia de p, q son fundamentales para la precisión de futuras predicciones
 - Escoger p, q muy grandes puede llevar a sobreajustes, así que se requieren criterios de selección óptimos y eficientes de calcular. (9.3)
- (c) Estimar un modelo ARMA (8.4 y 8.7) y arreglar este ajuste con residuales (9.4)
 - Lo preferible es obtener para $Z_t \sim \mathbf{WN}(0, \hat{\sigma}^2)$ un ajuste $\phi(B)X_t = \theta(B)Z_t$. Queremos ver si este es el caso con los residuales
 - Si obtenemos $\phi(B)X_t=\theta(B)Z_t$, y los residuales nos indican que Z_t no es de ruido blanco, pero en cambio existe ϕ_Z y θ_Z tal que

$$\phi_{\mathsf{Z}}(\mathsf{B})\mathsf{Z}_{\mathsf{t}} = \theta_{\mathsf{Z}}(\mathsf{B})\mathsf{Z}'_{\mathsf{t}}, \quad \mathsf{Z}'_{\mathsf{t}} \sim \mathbf{WN}(0, \sigma'^2),$$

entonces reajustamos el proceso para obtener los coeficientes correctos del modelos \mathbf{ARMA} para X_t

$$\phi_{Z}(B)\phi(B)X_{t} = \phi_{Z}(B)\theta(B)Z_{t} = \theta_{Z}(B)\theta(B)Z'_{t}.$$

Figure 9.7. International airline passengers; monthly totals in thousands of passengers $\{U_nt=1,\ldots,144\}$ from January 1949 to December 1960 (Box and Jenkins (1970)).

Figure 9.8. Natural logarithms, $V_t = \ln U_t$, t = 1, ..., 144, of the data in Figure 9.7.

Figure 9.10. The differenced series $\{\nabla \nabla_{12} V_{t+13}\}$ where $\{V_t\}$ is the data shown in

La última gráfica corresponde a la función de autocorrelación de la serie $\nabla \nabla_{12} V_{t+13}$.

Si se observa un crecimiento de la varianza a lo largo del tiempo de forma lineal, se puede remover este crecimiento aplicando un logaritmo al proceso.

A partir de la diferenciación con el operador ∇ se puede eliminar tendencias lineales y con el operador ∇_s se puede eliminar estacionalidad ("seasonality") de periodo s de un proceso estocástico X_t .

9.5 Predicciones de Modelos ARIMA

Sea X_t un proceso $\mathbf{ARIMA}(p,d,q)$, queremos predecir futuros valores de X_t . Sin embargo, las herramientas que hemos desarrollado solo sirven para procesos \mathbf{ARMA} , así que se requieren algunas modificaciones.

Si $(1-B)^d X_t =: Y_t$ en donde Y_t es un modelos $\mathbf{ARMA}(\mathfrak{p},\mathfrak{q})$, entonces podemos reescribir la ecuación de la siguiente forma

$$X_{t} = Y_{t} - \sum_{j=1}^{d} {d \choose j} (-1)^{j} X_{t-j}.$$
 (9.5.1)

Si $X_{1-d}, X_{2-d}, \ldots, X_n$ es una realización de X_t , entonces los valores observados de Y_t son Y_1, \ldots, Y_n . Defina

$$S_n = \overline{\mathbf{sp}}\{X_{1-\mathbf{d}}, X_{2-\mathbf{d}}, \dots, X_n\},\$$

y note que el mejor predictor lineal de X_{n+h} basado en las n+d observaciones de X_t es $P_nX_{n+h}:=P_{S_n}X_{n+h}$. Luego, definimos

$$P_n Y_{n+h} := P_{\overline{\mathbf{sp}}\{Y_1, \dots, Y_n\}} Y_{n+h}$$

$$\widehat{Y}_{n+1} := P_{\overline{\mathbf{sp}}\{Y_1, \dots, Y_n\}} Y_{n+1} = P_n Y_{n+1}$$

y para continuar, debemos asumir que no hay correlación entre X_{1-d},\ldots,X_0 y Y_t para t>0, de esta forma

$$\overline{\mathbf{sp}}\{X_{1-d}, X_{2-d}, \dots, X_0\} \perp \overline{\mathbf{sp}}\{Y_1, Y_2, \dots, Y_n\},\$$

y por ende, obtenemos con (9.5.1) que

$$S_n = \overline{sp}\{X_{1-d}, \dots, X_0, Y_1, \dots, Y_n\}.$$

Por lo tanto,

$$P_{S_n}Y_{n+h} = P_{S_0}Y_{n+h} + P_nY_{n+h} = P_nY_{n+h}.$$
(9.5.2)

Luego podemos recursivamente computar $P_{S_n}X_{n+h}$ con la siguiente fórmula

$$P_{S_n} X_{n+h} = P_n Y_{n+h} - \sum_{i=1}^{d} {d \choose j} (-1)^j P_{S_n} X_{n+h-j}.$$
 (9.5.3)

Para el MSE "Mean squared error" defina

$$X_{n+1}^* = P_{S_n} X_{n+1},$$

y note que

$$X_{n+1} - X_{n+1}^* = Y_{n+1} - \widehat{Y}_{n+1}$$

Luego, al aplicar innovaciones en Y_t (ver 5.3.9) obtenemos para $n > m = \max(p, q)$ y $h \geqslant 1$ lo siguiente:

$$P_{n}Y_{n+h} = \sum_{i=1}^{p} \phi_{i}P_{n}Y_{n+h-i} + \sum_{j=h}^{1} \theta_{n+h-1,j}(Y_{n+h-j} - \widehat{Y}_{n+h-j})$$

$$= \sum_{i=1}^{p} \phi_{i}P_{n}Y_{n+h-i} + \sum_{j=h}^{1} \theta_{n+h-1,j}(X_{n+h-j} - X_{n+h-j}^{*})$$
(9.5.4)

Por lo tanto, mezclando (9.5.2), (9.5.3) y (9.5.4) obtenemos

$$P_{S_n}X_{n+h} = \sum_{j=1}^{p+d} \psi_j^* P_{S_n}X_{n+h-j} + \sum_{j=h}^q \theta_{n+h-1,j}(X_{n+h-j} - X_{n+h-j}^*).$$

Luego, (Problema 9.9) se sigue que

$$\sigma_n^2(h) = \mathbf{E}\left[(X_{n+h} - P_{S_n} X_{n+h})^2 \right] = \sum_{j=0}^{h-1} \left(\sum_{r=0}^j \chi_r \theta_{n+h-r-1,j-r} \right)^2 \nu_{n+h-j-1}.$$

En donde
$$\theta_{n0} = 1$$
, $\chi(z) = \chi_0 + \chi_1 z + \dots = ((1-z)^d \varphi(z))^{-1}$ para $|z| < 1$, y
$$\nu_{n+h-j-1} = \mathbf{E} \left[(X_{n+h-j} - X_{n+h-j}^*)^2 \right] = \mathbf{E} \left[(Y_{n+h-j} - \widehat{Y}_{n+h-j})^2 \right]$$

3 Ajustes y Pruebas de Ajuste para modelos ARMA

9.3 Escogencia de Orden

Las 3 funciones que califican la verosimilitud de un modelo \mathbf{ARMA} con parámetros $(\boldsymbol{\beta}, \sigma^2) = (\boldsymbol{\phi}, \boldsymbol{\theta}, \sigma^2)$ son

$$\begin{split} \mathrm{AIC}(\beta) &:= -2\ln \mathsf{L}(\beta, S(\beta)/\mathfrak{n}) + 2(\mathfrak{p} + \mathfrak{q} + 1) \\ \mathrm{AICC}(\beta) &:= -2\ln \mathsf{L}(\beta, S(\beta)/\mathfrak{n}) + \frac{2(\mathfrak{p} + \mathfrak{q} + 1)\mathfrak{n}}{(\mathfrak{n} - \mathfrak{p} - \mathfrak{q} - 2)} \\ \mathrm{BIC}(\beta) &:= (\mathfrak{n} - \mathfrak{p} - \mathfrak{q}) \ln \left[\frac{S(\beta)}{\mathfrak{n} - \mathfrak{p} - \mathfrak{q}} \right] + \mathfrak{n}(1 + \ln(\sqrt{2\pi})) \\ &+ (\mathfrak{p} + \mathfrak{q}) \ln \left[\frac{\sum_{t=1}^{\mathfrak{n}} X_t^2 - S(\beta)}{\mathfrak{p} + \mathfrak{q}} \right], \end{split}$$

Para estimar \hat{p} , \hat{q} óptimos, calculamos el modelo de máxima verosimilitud $\tilde{\beta}$ como en (8.7) para diferentes valores de p, q y evaluamos en alguna de estas 3 funciones hasta encontrar el que la minimiza. De acuerdo a la discusión de 9.3 las funciones tienen pros y contras al ser usadas como criterios:

- (1) AIC y AICC son estimadores de un estadístico llamado "Kullback-Leibler index" al cual al ser minimizado se maximiza la función de verosimilitud.
- (2) AIC y AICC son equivalentemente asintóticos. AIC tiende a sobreestimar p, pero, para modelos de gran orden es mejor que AICC.
- (3) Entre los 3, el único que produce estadísticos consistentes $\hat{p} \to p$, $\hat{q} \to q$ es BIC. Sin embargo, a diferencia de AIC y AICC, el cálculo de BIC no es asintóticamente eficiente para modelos autorregresivos.

9.4 Test de Residuales

Para un modelo **ARMA** X_t con parámetro $\beta = (\phi, \theta)$ se observan datos X_1, \dots, X_n . A partir de estas observaciones se calculan predicciones en base a un parámetro $\widehat{\beta} = (\widehat{\phi}, \widehat{\theta})$. Para las predicciones en base a los parámetros reales $\widehat{X}_{n+1} = \widehat{X}_{n+1}(\phi, \theta) = P_n X_{n+1}$, los residuos "reales":

$$W_{n}(\mathbf{\phi}, \mathbf{\theta}) = (X_{n} - \widehat{X}_{n}) / \sqrt{r_{n-1}(\mathbf{\phi}, \mathbf{\theta})}$$

debería comportarse, de acuerdo con la discusión del capitulo 8, como ruido blanco. De la misma forma, para los residuos de los parámetros estimados

$$\widehat{W}_{n}(\widehat{\boldsymbol{\varphi}},\widehat{\boldsymbol{\theta}}) = (X_{n} - \widehat{X}_{n}(\widehat{\boldsymbol{\varphi}},\widehat{\boldsymbol{\theta}})) / \sqrt{r_{n-1}(\widehat{\boldsymbol{\varphi}},\widehat{\boldsymbol{\theta}})},$$

debería suceder lo mismo. En particular, $\mathbf{E}\left[(W_n(\boldsymbol{\varphi},\boldsymbol{\theta})-Z_n)^2\right]\to 0$ cuando $n\to\infty$ y por lo tanto,

- (1) Si $Z_t \sim WN(0, \sigma^2)$, entonces el proceso \widehat{W}_n debería tener covarianzas pequeñas.
- (2) Si $Z_t \sim IID(0, \sigma^2)$, entonces el proceso \widehat{W}_n es independiente.
- (3) Si $Z_t \sim \mathcal{N}(0, \sigma^2)$, entonces la distribución del proceso \widehat{W}_n debería parecerse a una gaussiana.

La función de autocovarianzas muestrales de \widehat{W}_t se define de la siguiente forma

$$\widehat{\rho}_W(h) = \frac{\sum_{t=1}^{n-h} (\widehat{W}_t - \overline{W}) (\widehat{W}_{t+h} - \overline{W})}{\sum_{t=1}^{n} (\widehat{W}_t - \overline{W})^2},$$

en donde $\overline{W} = \mathfrak{n}^{-1} \sum_{t=1}^{\mathfrak{n}} \widehat{W}_t$.

Let $\hat{\rho}_W = (\hat{\rho}_W(1), \dots, \hat{\rho}_W(h))'$ where h is a fixed positive integer. If $\{X_t\}$ is the causal invertible ARMA process $\phi(B)X_t = \theta(B)Z_t$, define

$$\tilde{\phi}(z) = \phi(z)\theta(z) = 1 - \tilde{\phi}_1 z - \dots - \tilde{\phi}_{p+q} z^{p+q},$$
 (9.4.2)

and

$$a(z) = (\tilde{\phi}(z))^{-1} = \sum_{j=0}^{\infty} a_j z^j.$$
 (9.4.3)

It will be convenient also to define $a_i = 0$ for j < 0. Assuming $h \ge p + q$, set

$$T_{h} = [a_{i-j}]_{1 \le i \le h, 1 \le j \le p+q},$$

$$\tilde{\Gamma}_{p+q} = \left[\sum_{k=0}^{\infty} a_{k} a_{k+|i-j|}\right]_{i,j=1}^{p+q},$$
(9.4.4)

and

$$Q = T_h \tilde{\Gamma}_{p+q}^{-1} T_h' = [q_{ij}]_{i,j=1}^h. \tag{9.4.5}$$

Note that $\tilde{\Gamma}_{p+q}$ is the covariance matrix of (Y_1, \ldots, Y_{p+q}) where $\{Y_t\}$ is an AR(p+q) process with autoregressive polynomial given by $\tilde{\phi}(z)$ in (9.4.2) and with $\sigma^2 = 1$. Then using the argument given in Box and Pierce (1970), it can be shown that

$$\hat{\mathbf{\rho}}_{W}$$
 is AN(0, $n^{-1}(I_{h}-Q)$), (9.4.6)

where I_h is the $h \times h$ identity matrix. The asymptotic variance of $\hat{\rho}_{\mathbf{W}}(i)$ is thus $n^{-1}(1-q_{ii}).$

The Portmanteau Test. Instead of checking to see if each $\hat{\rho}_{w}(i)$ falls within the confidence bounds $\pm 1.96(1 - q_{ii})^{1/2} n^{-1/2}$, it is possible to consider instead a single statistic which depends on $\hat{\rho}_{w}(i)$, $1 \le i \le h$. Throughout this discussion h is assumed to depend on the sample size n in such a way that (i) $h_n \to \infty$ as $n \to \infty$, and (ii) the conditions of Box and Pierce (1970) are satisfied, namely

- (a) $\psi_j = O(n^{-1/2})$ for $j \ge h_n$ where ψ_j , $j = 0, 1, \dots$ are the coefficients in the expansion $X_t = \sum_{j=0}^{\infty} \psi_j Z_{t-j}$, and (b) $h_n = O(n^{1/2})$.

Then since $h_n \to \infty$, the matrix $\tilde{\Gamma}_{p+q}$ may be approximated by $T'_h T_h$ and so the matrix Q in (9.4.5) and (9.4.6) may be approximated by the projection matrix (see Remark 2 of Section 2.5),

$$T_h(T_h'T_h)^{-1}T_h',$$

which has rank p+q. Thus if the model is appropriate, the distribution of $\hat{\rho}_W = (\hat{\rho}_W(1), \dots, \hat{\rho}_W(h))'$ is approximately $N(\mathbf{0}, n^{-1}(I_k - T_h(T_h'T_h)^{-1}T_h'))$. It then follows from Problem 2.19 that the distribution of

$$Q_{W} = n\hat{\mathbf{p}}'_{W}\hat{\mathbf{p}}_{W} = n\sum_{j=1}^{h} \hat{\rho}_{W}^{2}(j)$$

is approximately chi-squared with h - (p + q) degrees of freedom. The adequacy of the model is therefore rejected at level α if

$$Q_W > \chi_{1-\alpha}^2(h-p-q).$$

Kullback-Leibler Index

If **X** is an *n*-dimensional random vector whose probability density belongs to the family $\{f(\cdot; \psi), \psi \in \Psi\}$, the Kullback-Leibler discrepancy between $f(\cdot; \psi)$ and $f(\cdot; \theta)$ is defined as

$$d(\psi | \theta) = \Delta(\psi | \theta) - \Delta(\theta | \theta),$$

where

$$\Delta(\psi | \theta) = E_{\theta}(-2 \ln f(\mathbf{X}; \psi))$$
$$= \int_{\mathbb{R}^n} -2 \ln(f(\mathbf{x}; \psi)) f(\mathbf{x}; \theta) d\mathbf{x},$$

is the Kullback-Leibler index of $f(\cdot; \psi)$ relative to $f(\cdot; \theta)$. (In general $\Delta(\psi | \theta) \neq \Delta(\theta | \psi)$.) Applying Jensen's inequality, we see that

$$d(\psi \mid \theta) = \int_{\mathbb{R}^n} -2 \ln \left(\frac{f(\mathbf{x}; \psi)}{f(\mathbf{x}; \theta)} \right) f(\mathbf{x}; \theta) d\mathbf{x}$$

$$\geq -2 \ln \left(\int_{\mathbb{R}^n} \frac{f(\mathbf{x}, \psi)}{f(\mathbf{x}; \theta)} f(\mathbf{x}; \theta) d\mathbf{x} \right)$$

$$= -2 \ln \left(\int_{\mathbb{R}^n} f(\mathbf{x}; \psi) d\mathbf{x} \right)$$

$$= 0$$

with equality holding if and only if $f(\mathbf{x}; \psi) = f(\mathbf{x}; \theta)$ a.e. $[f(\cdot, \theta)]$.

Suppose therefore that our observations X_1, \ldots, X_n are from a Gaussian ARMA process with parameter vector $\theta = (\beta, \sigma^2)$ and assume for the moment that the true order is (p, q). Let $\hat{\theta} = (\hat{\beta}, \hat{\sigma}^2)$ be the maximum likelihood estimator of θ based on X_1, \ldots, X_n and let Y_1, \ldots, Y_n be an independent realization of the true process (with parameter θ). Then

$$-2 \ln L_{Y}(\hat{\beta}, \hat{\sigma}^{2}) = -2 \ln L_{X}(\hat{\beta}, \hat{\sigma}^{2}) + \hat{\sigma}^{-2} S_{Y}(\hat{\beta}) - n,$$

so that

$$E_{\theta}(\Delta(\hat{\theta}|\theta)) = E_{\beta,\sigma^2}(-2 \ln L_{\Upsilon}(\hat{\beta}, \hat{\sigma}^2))$$

$$= E_{\beta,\sigma^2}(-2 \ln L_{\chi}(\hat{\beta}, \hat{\sigma}^2)) + E_{\beta,\sigma^2}\left(\frac{S_{\Upsilon}(\hat{\beta})}{\hat{\sigma}^2}\right) - n. \tag{9.3.3}$$

Making the local linearity approximation used in Section 8.11, we can write, for large n,

$$S_{Y}(\hat{\beta}) \simeq S_{Y}(\beta) + (\hat{\beta} - \beta) \frac{\partial S_{Y}}{\partial \beta} (\beta) + \frac{1}{2} (\hat{\beta} - \beta)' \left[\frac{\partial^{2} S_{Y}(\beta)}{\partial \beta_{i} \partial \beta_{j}} \right]_{i, j = 1}^{n} (\hat{\beta} - \beta)$$
$$\simeq S_{Y}(\beta) + (\hat{\beta} - \beta) 2 \sum_{t=1}^{n} \frac{\partial Z_{t}}{\partial \beta} (\beta) Z_{t}(\beta) + (\hat{\beta} - \beta)' D' D(\hat{\beta} - \beta).$$

From Section 8.11, we know that $n^{-1}D'D \xrightarrow{P} \sigma^2 V^{-1}(\beta)$, $\hat{\beta}$ is $AN(\beta, n^{-1}V(\beta))$, and that $(\partial Z_t/\partial \beta)(\beta)Z_t(\beta)$ has mean 0. Replacing D'D by $n\sigma^2 V^{-1}(\beta)$ and assuming that $n^{1/2}(\hat{\beta} - \beta)$ has covariance matrix $V(\beta)$, we obtain

$$E_{\boldsymbol{\beta},\sigma^2}[S_{\boldsymbol{\gamma}}(\hat{\boldsymbol{\beta}})] \simeq E_{\boldsymbol{\beta},\sigma^2}[S_{\boldsymbol{\gamma}}(\boldsymbol{\beta})] + \sigma^2 E_{\boldsymbol{\beta},\sigma^2}[(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})'V^{-1}(\boldsymbol{\beta})(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta})]$$

$$\simeq \sigma^2 n + \sigma^2(p+q),$$

since $(\partial Z_t/\partial \beta)(\beta)Z_t(\beta)$ is independent of $\hat{\beta} - \beta$ and $E(U'\Sigma^{-1}U) = \text{trace}(\Sigma\Sigma^{-1}) = k$ for any zero-mean random k-vector U with nonsingular covariance matrix Σ . From the argument given in Section 8.9, $n\hat{\sigma}^2 = S_X(\hat{\beta})$ is distributed approximately as $\sigma^2\chi^2(n-p-q)$ for large n and is asymptotically independent of $\hat{\beta}$. With the independence of $\{X_1, \ldots, X_n\}$ and $\{Y_1, \ldots, Y_n\}$, this implies that $\hat{\sigma}^2$ is asymptotically independent of $S_Y(\hat{\beta})$.

Consequently,

$$E_{\beta,\sigma^2}\left(\frac{S_{\gamma}(\hat{\beta})}{\hat{\sigma}^2}\right) - n \simeq \sigma^2(n+p+q)(E_{\beta,\sigma^2}\hat{\sigma}^{-2}) - n$$

$$\simeq \sigma^2(n+p+q)\left(\sigma^2\frac{n-p-q-2}{n}\right)^{-1} - n$$

$$= \frac{2(p+q+1)n}{n-p-q-2}.$$

Thus the quantity, $-2 \ln L_X(\hat{\beta}, \hat{\sigma}^2) + 2(p+q+1)n/(n-p-q-2)$, is an approximately unbiased estimate of the expected Kullback-Leibler index $E_{\theta}(\Delta(\hat{\theta}|\theta))$ in (9.3.3). Since the preceding calculations (and the maximum likelihood estimators $\hat{\beta}$ and $\hat{\sigma}^2$) are based on the assumption that the true order is (p,q), we therefore select the values of p and q for our fitted model to be those which minimize $AICC(\hat{\beta})$, where

$$AICC(\beta) := -2 \ln L_X(\beta, S_X(\beta)/n) + 2(p+q+1)n/(n-p-q-2). \quad (9.3.4)$$