Schedules that behaves nearly serial

Overview of this video

This video is about how much concurrency can be allowed while still being close enough to a serial schedule

Schedules – Two Extremes

Serial Schedules

- execute correctly
- maintain consistency of the database
- inefficient in multi-user environments (because transactions have to wait until others are finished)

Concurrent Schedules ('non-serial')

Havn't actually shown this yet directly!

... or this

- may not execute correctly.
- may not guarantee consistency of the database or isolation
- efficient in multi-user environments (if you get asked to do something, just do it!)

... or this

A Serial Schedule

$r_1(x); w_1(x); r_1(y); w_1(y); c_1; r_2(x); w_2(x); c_2$

Time	Schedule	
t0		
t1	read(X)	
t2	X := X + N	
t3	write(X)	
t4	read(Y)	
t5	Y := Y + N	
t6	write(Y)	
t7	commit	
t8		read(X)
t9		X := X + M
t10		write(X)
t11		commit

 $r_1(x); r_2(x); w_1(x); r_1(y); w_2(x); c_2; w_1(y); c_1$

Time	Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

Efficiency: Say that this table denotes arrival time of the commands (and that each commands takes 1 time unit)

If you execute a command when you got it (giving you this concurrent schedule), then you finish at time 11

On the other hand, if you did it serially and did the first operation when you received it, the second transaction would have to wait until time 12 to start (i.e. it can first start after we committed the other) and thus finish at time 15...

 Doing the second and then the first transaction would let you finish at time 15 also

 $r_1(x); r_2(x); w_1(x); r_1(y); w_2(x); c_2; w_1(y); c_1$

Time	Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

 $r_1(x); r_2(x); w_1(x); r_1(y); w_2(x); c_2; w_1(y); c_1$

Is this schedule always equivalent to a serial one?

Time	Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

 $r_1(x); r_2(x); w_1(x); r_1(y); w_2(x); c_2; w_1(y); c_1$

Is this schedule always equivalent to a serial one?

Time	Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

Basic Operations of Transactions

(slide from video on schedules)

read(X): Reads a database item X into a program variable (also named X, for simplicity)

- Find the address of the disk block (page) that contains item X
- Copy that disk block into a buffer in main memory
 - if that disk block is not already in some main memory buffer
- Copy item X from the buffer to the program variable X

write(X): Writes the value of program variable X into the database item named X

- Find the address of the disk block (page) that contains item X.
- Copy that disk block into a buffer in main memory
 - if that disk block is not already in some main memory buffer.
 - Copy item X from the program variable X into its correct location in the buffer
 - Store the updated block from the buffer back to disk either immediately or at some later point in time.

Time	Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

ne	Schedule		Transaction 1 T	ransaction 2
t0				V
t1	read(X)		X	X
t2		read(X)		
t3		X := X + M		
t4	X := X + N			
t5	write(X)		Buffers	
t6	read(Y)		<u> </u>	
t7		write(X)		
t8		commit		
t9	Y := Y + N		X 1 Datab	oase
t10	write(Y)		Y 2	
t11	commit			

Tin	ne Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X +1	N
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + 1	V
t1C	write(Y)	
t11	commit	

	Schedule		Transaction 1 Transaction 2
			V 1
_	read(X)		X 1
2		read(X)	
t3		X := X + M	
t4	X := X + N		X 1
t5	write(X)		Buffers
t6	read(Y)		<u> </u>
t7		write(X)	
t8		commit	
t9	Y := Y + N		X 1 Database
t10	write(Y)		Y 2
t11	commit		

e	Schedule	
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
:6	read(Y)	
7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

Time	Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

Time	Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

 Time	Schedule	_
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

	Schedule		Transaction 1 Transaction 2
			X 1+N X 1+M
1	read(X)		X 1+N Y 2
2		read(X)	
3		X := X + M	
4	X := X + N		X 1+M
:5	write(X)		Buffers 2
t6	read(Y)		
:7		write(X)	
t8		commit	
t9	Y := Y + N		X 1 Database
:10	write(Y)		Y 2
t11	commit		

	Time	Schedule	
	t0		
	t1	read(X)	
	t2		read(X)
	t3		X := X + M
	t4	X := X + N	
	t5	write(X)	
	t6	read(Y)	
_	t7		write(X)
	t8		commit
	t9	Y := Y + N	
	t10	write(Y)	
	t11	commit	

Time	Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

Time	Schedule		
t0			
t1	read(X)		
t2		read(X)	
t3		X := X + M	
t4	X := X + N		
t5	write(X)		
t6	read(Y)		
t7		write(X)	
t8		commit	
t9	Y := Y + N		
t10	write(Y)		
t11	commit		

Time	Schedule	_
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

Time	Schedule	
t0		
t1	read(X)	
t2		read(X)
t3		X := X + M
t4	X := X + N	
t5	write(X)	
t6	read(Y)	
t7		write(X)
t8		commit
t9	Y := Y + N	
t10	write(Y)	
t11	commit	

How much concurrency can we allow while satisfying Isolation and Consistency?

Serializable Schedules

A schedule S is **serializable** if there is a serial schedule S' that has the same

effect as S on every initial database state.

Schedule S		
read(X)		
X := X + N		
write(X)		
	read(X)	
	X := X + M	
	write(X)	
	commit	
read(Y)		
Y := Y + N		
write(Y)		
commit		

Equivalent seria	l schedule S'
read(X)	
X := X + N	
write(X)	
read(Y)	
Y := Y + N	
write(Y)	
commit	
	read(X)
	X := X + M
	write(X)
	commit

So, S is serializable

Serializable Schedules

A schedule S is **serializable** if there is a serial schedule S' that has the same effect as S on every initial database state.

Schedule S	
read(X)	
	read(X)
	X := X + M
X := X + N	
write(X)	
read(Y)	
	write(X)
	commit
Y := Y + N	
write(Y)	
commit	

In general not serializable

Serializable Schedules

Serializable schedules are essentially those schedules that we are looking for!

Guarantee:

- Correctness and consistency (because serial schedules do) √
- Does not satisfy isolation, but we could fix that

Problem: serializability is difficult to test

- Does not only depend on reads, writes, and commits, but also on the non-database operations
- Non-database operations can be complex

Assumption from now on: serializability only depends on read and write operations (still difficult to test)

Summary

Serializable schedules are exactly as much concurrency we can allow in a serial schedule while still having Consistency (and we could fix Isolation)

...but they can't be recognized! _____ Didn't show this (will come in a later course)...

A schedule S is serializable if there is a serial schedule S' that has the same effect as S on every initial database state

NEXT VIDEO: What kind of schedules are used in DBMS