LJETNI ISPITNI ROK

DUBOKO UČENJE 1

04.07.2024.

TEORIJA

- 1. Prednost AdaGrad nad osnovnim SGD:
 - a. skaliranje komponenata gradijenata s akumulacijskom normom
 - b. skaliranje gradijenata eksponencijalno pomičnim prosjekom norme
 - c. dodavanje zaleta u procjenu trenutnog gradijenta
 - d. linearno skaliranje stope učenja
- 2. Korištenje mini grupe umjesto čitavog skupa uzoraka opravdano je jer:
 - a. s povećanjem uzoraka preciznost gradijenata raste ispodlinearno
 - b. preciznost ne ovisi o broju uzoraka mini grupe
 - c. preciznost određivanje gradijenata nema utjecaj na algoritam
 - d. preciznost raste kvadratno s brojem uzoraka
- 3. Koji je gradijent gubitka po ulazu u softmax:

Softmax([ln(2) 0 - ln(2) - ln(4) - ln(4)])

Podatak pripada razredu s indeksom 0.

- a. [-0.25, 0, 0.25, 0.5, 0.5]
- b. -0.55
- c. Undefined
- d. [-0.5, 0.25, 0.125, 0.0625, 0.0625]
- 4. Učenje modula na skupu uzoraka umjesto nad distribucijom koja generira podatke za posljedicu ima:
 - a. nema lokalnog optimuma kod učenja
 - b. brzo učenje, dobra generalizacija
 - c. ne trebamo Hessovu matricu
 - d. sklonost prenaučenosti
- 5. 2 ista konvolucijska sloja bez pomaka K1 i K2. K1 se primjenjuje na grayscale slike, a K2 na RGB slike. Koji je odnost parametara između slojeva K1 i K2.
 - a. K2 ima 3x više parametara
 - b. K2 ima 3x manje parametara
 - c. isti broj parametara

	6. Form	nula za odziv:
	a.	R=TP/(TP+FP)
	b.	R=TP/(TP+FN)
	C.	R=FP/(TP+FP)
	d.	R=FP/(TP+FN)
7. Ako RNN ima n parametara, koliko parametara ima LSTM?		RNN ima n parametara, koliko parametara ima LSTM?
	a.	2n
	b.	4n
	c.	n
	d.	3n
	8.	
	9	
	10	
	11	
	12	

d. ista računska složenost pod uvjetom da su slike istih dimenzija

ZADACI

1. .

- 2. Napišite jednadžbe za SGD, SGD s momentom, RMS prop, ADAM. Za svaki od njih memorijske zahtjeve u ovisnosti o broju parametara n. Raspišite prve dvije iteracije minimizacije $f(x)=x^2-4x+2$ algoritmom ADAM počevši od x=0. Hiperparametri su $\rho_1=\rho_2=0.9$, $\delta=0$ s korakom $\epsilon=0.1$.
- 3. Imamo model sa jednim potpuno povezanim slojem kojem formula glasi h = Wx + b, gradijent $\frac{\partial L}{\partial h}$ je poznat.
 - a) izraz za gradijent gubitka po ulazima sloja
 - b) kako bi izgledali gradijenti gubitka po vektorizirani matrici $\frac{\partial L}{\partial vec(W)}$
 - c) izraz za gradijent gubitka po j-tom retku matrice $\frac{\partial L}{\partial W_j}$. Pokažite kako računski i memorijski efikasno možemo izračunati gradijent gubitka po svim retcima W

d)
$$x = [2,4]^{T}$$

$$\frac{\partial L}{\partial h} = [a, b, a + 2b]$$

$$\frac{\partial L}{\partial W} = \begin{bmatrix} 4 & ? \\ ? & 2 \\ ? & ? \end{bmatrix}$$

Odredite a i b te sve nepoznate vrijednosti u $\frac{\partial L}{\partial h}$

- 4. Metrička ugrađivanja s dvodimenzionalnim podacima. Ugrađivanje izvodimo jednim potpuno povezanim slojem sa parametrima $W=\begin{bmatrix}1&1\\1&1\end{bmatrix},\ b=\begin{bmatrix}0\\0\end{bmatrix}$. Na ulazu modela imamo sidro (0,0), pozitivni primjer (1,1) i negativni primjer (0,1). Model koristi trojni gubitak.
 - a) Odredite iznos trojnog gubitka za dani primjer i parametre.
 - b) Odredite gradijent gubitka po parametrima modela.
- 5. Jednostavna povratna arhitektura za strojno prevođenje.
 - a) Ilustrirajte razmotani dijagram unaprijednog prolaza jednostavne povratne arhitekture za strojno prevođenje ako je na ulazu niz od 4 riječi.

- b) Odredite ukupan broj parametara takve arhitekture ako je veličina ulaznog vokabulara 5, veličina izlaznog vokabulara 10, dimenzija skrivenog stanja povratnih modela 4 i ako ulazne riječi reprezentiramo gustim vektorima dimenzija 10.
- c) Proširite prikazanu arhitekturu modulom pažnje pod pretpostavkom da pažnja razlikuje reprezentacije ključeva i vrijednosti te da sličnost modelira skalarnim produktom.
 - Napišite jednadžbe pažnje za neki izlazni trenutak (t_{dec}) i odredite općeniti broj parametara takvog modula.