Part I A First Course in General Relativity 1

Chapter 1

Special Relativity

On "Principle of relativity (Galileo)"

Galilean invariance

Newton's laws of motion hold in all frames related to one another by a Galilean transformation. In other words, all frames related to one another by such a transformation are inertial (meaning, Newton's equation of motion is valid in these frames).² The proof has been given by the book on page 2.

1.5 - Construction of the coordinates used by another observer

Why would the tangent of the angle is the speed in Fig. 1.2?

Suppose O and \overline{O} both start out at the same position where \overline{O} moves along the x at some speed. After t_1 , observer O sees \overline{O} at position x_1 :

$$\bar{\mathcal{O}}_1 = (x_1, t_1)$$

Observer $\bar{\mathbb{O}}$, however, still sees themself at x = 0:

$$\bar{\mathfrak{O}}_1 = (\mathfrak{0}, \mathfrak{t}_1)$$

By definition where " \bar{t} is the locus of events at constant $\bar{x}=0$ ", \bar{t} is the straight line that passes the origin and the (x_1,t_1) :

1.6 - Why
$$(\delta x)^2 + (\delta y)^2 + (\delta z)^2 - (\delta t)^2 = 0$$
?

Bibliography

 $^{^{\}rm 1}$ Bernard Schutz. A First Course on General Relativity. 2009.

 $^{^2\,\}mathrm{Wikipedia.}$ Galilean invariance.