

# Отчёт по первому заданию по курсу Алгоритмика «Поиск пары ближайших точек»

# $Asm\ Ocnahos$ 617 гр., ММП, ВМК МГУ, Москва 23 октября 2017 г.

# Содержание

| 1 | Пос  | становка задачи                 | 1 |
|---|------|---------------------------------|---|
| 2 | Опи  | исание метода решения           | 1 |
|   | 2.1  | Этап разделения                 | 2 |
|   | 2.2  | Этап властвования               | 2 |
|   | 2.3  | Этап объединения                | 2 |
| 9 | ТЛтт | струкцию по работе с программой | 6 |
| J | NTH( | трукцию по работе с программои  |   |

# 1 Постановка задачи

Разработать и реализовать программу для нахождения в множестве Q, состоящем из  $n \geq 2$  точек, пары точек, расстояние между которыми минимально среди всех пар из Q. Расстояние измеряется в манхэттенской метрике. Две точки могут совпадать, в этом случае расстояние равно нулю. Программа должна реализовывать алгоритм «разделяй-и-властвуй» и иметь время работы  $O(n \log n)$ . Исходные данные задаются в текстовом файле. Первая запись – число точек, далее координаты точек. Координаты точек заданы действительными числами в диапазоне  $[0, 10^{17}]$ . Максимальное число точек  $n = 10^6$ .

## 2 Описание метода решения

Был реализован метод, описанный в [1]. с некоторой модификацией. Если по книге хранился массив Y точек, отсортированных по координате y, и в рекурсиях подмассивы еще и сортировались, то в модификации используется массив X, который сортируется на этапе "властвования" по y, а на этапе "комбинирования" сливается. В итоге получается представленный далее алгоритм.

#### 2.1 Этап разделения

Массив точек разбивается на два по их x-координатам. Для этого в отсортированном заранее массиве берется средняя точка как разделяющая.

#### 2.2 Этап властвования

Для каждого подмассива находятся ответы  $\delta_L$  и  $\delta_R$ . Обозначим через  $\delta = \min(\delta_L, \delta_R)$ . Также подмассивый сортируются по координате y для этапа "объединения"

#### 2.3 Этап объединения

Теперь попытаемся обнаружить такие пары точек, расстояние между которыми меньше  $\delta$ , причём одна точка лежит в левом подмассиве, а другая — в правом. Очевидно, что нужно рассматривать только те точки, которые отстоят от разделяющей точки меньше, чем на  $\delta$ . Объединим их во множество ближайших точек. И для каждой такой точки попытаемся найти точки, которые к ней ближе чем на  $\delta$ . Для этого достаточно рассмотреть точки, которые по координате y ближе чем на  $\delta$ . Это можно сделать быстрее, если массив отсортирован по y. Тогда мы рассмотрим только те точки, которые в массиве ближайших точек лежат до данной рассматриваемой точки. Их, по доказательству из [1], максимум 7.

# 3 Инструкцию по работе с программой

Компиляция: g++ -std=c++11 main.cpp closest\_points.cpp -o 2closest\_pts Запуск: ./2closest\_pts <путь до файла с данными>.

Например ./2closest\_pts data/4node.txt

### Список литературы

[1] Кормен Т.Х. и др. Алгоритмы: построение и анализ, 3-е изд., Москва, «И. Д. Вильямс», 2016. - раздел 33.4. стр.1086-1090 — 1328 с.