Machine Learning HW1

林子雋 b04705003 資工三

Problem 1. 記錄誤差值 (RMSE)(根據kaggle public+private分數),討論兩種feature的影響.

如下表所示,只單單取PM2.5的數據明顯比多取其他汙染物好,推測是因為PM2.5本身自己跟自己就是相關係數非常高,而其他汙染物雖然在一些論文中説明某些污染物跟PM2.5也有關,但可能因為其他污染物的變異數太大,造成實際預測時受到干擾比較多。

RMSE 表格				
λ	前九小時所	前五小時所有汙	PM2.5前九小時	PM2.5前五小時
	有汙染物	染物		
0.1	8.7398	8.0804	8.6515	8.1287
0.01	8.0763	7.3019	7.1336	6.9167
0.001	7.0857	6.9331	6.7284	6.6596
0.0001	7.0296	7.4446	6.5955	6.7935

Problem 2. 將feature從抽前9小時改成抽前5小時,討論其變化.

沿用上表,會發現抽前五小時來loss會變得比較小,推測是因為時間距離接近真正要被預測的那天,所以預測上就會比較準。

Problem 3. Regularization on all the weight with $\lambda = 0.1 \cdot 0.01 \cdot 0.001 \cdot 0.0001$, 並作圖.

使用最上面的表格來作圖

Problem 4. 線性回歸問題,請寫下算式並選出正確答案.

(1) 方法一

這個問題可以被公式化成

$$Xw = y$$
, where $w = [w_1, w_2, ..., w_n]^T$

令最佳解為 \hat{w} 目標要最小化 $\|y-X\hat{w}\|^2$,已知若要最小化此方程式, $X\hat{w}$ 必須等於y在X的column space 上投影, 因此問題可以被formula成

$$X\hat{w} = \text{proj}_{column \ space \ of } Xy$$

又知 $x\hat{w} - y$ 的row向量與X中column向量正交,因此

$$X^T(X\hat{w} - y) = 0$$

得知

$$\hat{w} = (X^T X)^{-1} X^T y$$

答案為(c)

(2) 方法二 令想要最小化的函數為

$$J(w') = \|Xw' - y\|^2 = (Xw' - y)^T (Xw' - y)$$

取业学】的偏微分

$$\frac{\partial J}{\partial w'} = \frac{\partial J}{(\partial Xw' - y)} \frac{(\partial Xw' - y)}{\partial w'} = 2X^{T}(Xw' - y)$$

已知最佳解落在偏微分值為零的地方

$$\frac{\partial J}{\partial w'} = 2X^T (Xw' - y)$$

令最佳解為ŵ則

$$\hat{w} = (X^T X)^{-1} X^T y$$