DBMS Praktikum Al Tools Lab SS 2020

Lime Team

Takak & parnet

Version: 16.06.2020

Contents

- LIME
- Datasets
- MS IML Implementation
- IBM AIX360 Implementation
- Evaluate and Compare
- Source

LIME (short version)

Some Important Properties

LIME can be applied to any machine learning model

https://towardsdatascience.com/understanding-model-predictions-with-lime-a582fdff3a3b

LIME try to understand the model by perturbing the input of data samples and understanding how the predictions change.

LIME provides local model interpretability.

Local

Interpretable

Model-Agnostic

Explanation

Dataset (1)

Mobile Price Classification

classify mobile price range

Goal predict price range of an mobile phone

price range indicating how high the price is depending on individual parts such as battery power and memory

Price Range	
0	very cheap
1	cheap
2	expensive
3	very expensive

Source: https://www.kaggle.com/iabhishekofficial/mobile-price-classification

MS IML Explanation Mobile Price

- Trainings data 67%
- Test data 33%
- Linear Regression

$$R^2 \approx 0.91$$

Random Forest Classifier

$$R^2 \approx 0.95$$

 $(R^2 \text{ coefficient of determination})$

Ram is dominant

MS IML Explanation Mobile Price

Predicted 0.28 | Actual 1.00

Predicted 0.69 | Actual 1.00

Predicted 0.13 | Actual 2.00

Predicted 0.59 | Actual 1.00

Predicted 0.58 | Actual 1.00

Predicted 0.50 | Actual 1.00

Data relate to class 1 (cheap)

Ram is dominant

MS IML Explanation Mobile Price

Explainable Boosting Machine

How probably is the assignment to a class depending on RAM

ram

Partial Dependence

Average response of each attribute depending on RAM

ram

IBM AIX360 Explanation Mobile Price

Dataset (2)

NASA: Asteroids Classification

classify dangerousness of an Asteroid

Goal predict whether an Asteroid is dangerous or not

finding potential hazardous and non-hazardous asteroids depending on individual parts such as asteroid size, speed and orbit

Hazardous	
True	dangerous
False	safe

Source: https://www.kaggle.com/shrutimehta/nasa-asteroids-classification

MS IML Explanation Asteroids

- Trainings data 67%
- Test data 33%
- Standardized
- Linear Regression

$$R^2 \approx 0.40$$

Random Forest Classifier

$$R^2 \approx 0.89$$

 $(R^2 \text{ coefficient of determination})$

No linear relationships basing on single attribute

MS IML Explanation Asteroids

Predicted 0.23 | Actual 0.00

Predicted 0.01 | Actual 0.00

Predicted 0.64 | Actual 1.00

Predicted 0.65 | Actual 1.00

Predicted 0.27 | Actual 0.00

Predicted 0.41 | Actual 0.00

Data relate to class 1 (safe)

MS IML Explanation Asteroids

Review the performance of a classification model

IBM AIX360 Explanation Asteroids

Prediction probabilities

hazardous

harmless

Orbit Determination ...

Orbit Uncertainity > 0.81

Perihelion Time <= 0.09
0.03
Inclination > 0.57
0.03
Eccentricity > 0.71
0.03
-0.75 < Absolute Mag...
0.02
0.00 < Jupiter Tisseran...
0.02
-0.39 < Minimum Orbit...
0.01
-0.25 < Est Dia in Mil...

0.01

varue
1.46
-4.65
1.07
1.50
-0.27
0.04
-0.13
-0.19
-0.16

Feature Value

Prediction probabilities

hazardous

harmless

	Absolute Magnitude <
	-0.75 < Minimum Orbi
	0.06 Orbit ID > 0.07
	0.02
	Mean Anomaly > 0.90
	0.01
	Orbit Uncertainity <=
	0.01
0.26 < Perihelion Time	
0.01	
-0.79 < Eccentricity <	
0.01	
-0.08 < Mean Motion	
0.01	
Orbit Determination	

0.01

Feature	Value
Absolute Magnitude	-0.75
Minimum Orbit Intersection	-0.41
Orbit ID	1.27
Mean Anomaly	1.20
Orbit Uncertainity	-1.14
Perihelion Time	0.35
Eccentricity	-0.09
Mean Motion	0.24
Orbit Determination Date	-0.16

Evaluate and Compare

Interpret ML

- Better visualization and user interaction
- more easy global explanation features
- restrictet to tabular data
- Summarization of different explainability methods

AIX360

- Many example notebooks
- comparison between multiple classes
- processing with images, texts, tabular, voices etc. is available

Source

- https://www.oreilly.com/content/introduction-to-local-interpretable-model-agnostic-explanations-lime/
- https://towardsdatascience.com/understanding-model-predictions-with-lime-a582fdff3a3b
- https://www.youtube.com/watch?v=hUnRCxnydCc&feature=emb_logo_
- https://www.statistik-nachhilfe.de/ratgeber/statistik/deskriptive-statistik/visualisierung-von-daten/roc-kurve
- https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
- Datasets
 - https://www.kaggle.com/iabhishekofficial/mobile-price-classification
 - https://www.kaggle.com/shrutimehta/nasa-asteroids-classification
- Project Files
 - https://github.com/parnet/Data-Science-Praktikum/