PS: Doplňkové příklady k Úvodu do pravděpodobnosti

1. Představme si, že provádíme test na okultní krvácení ve stolici (TOKS) u 2 030 osob ke zjištění chorobných změn v dolní části zažívacího traktu. Pak můžeme popsat možné stavy pomocí níže uvedené tabulky. Určete

7.	zitivitu a speci	ficitu testu.	[V +	∨ -		
P (T+1N+) P (T-1N-)			má rakovinu tlustého střeva	nemá rakovinu tlustého střeva	celkem	
P C . 1(4.5)	T+	test pozitivní	@	180	200	=> 200 = P(T+)
	τ -	test negativní	10	1 820	1 830	-> ··· 6(1-)
		celkem	<u>30</u>	2 000	2 030	
pentitivi+A: P(T+1N+)=		4)	$\frac{10}{2000} = \frac{30}{2000} = 0$	P(N+N- (N+) ,Şi	(T- 1V	CITA: -) = P(T-NN-) P(N-) 0 (20 > 0 - 1310 - 0,91 0 00/20 > 0 - 2000 - 0,91
_	5012() ک ^ر (3 - 100		= 100) 00/2030 - 2000 - D191

2. Pro screeningové testování jste použili test WANTAI (výrobce uvádí senzitivitu 95,6 % a specificitu 95,2 %) a v náhodně vybraném vzorku bezsymptomatické populace (n = 26 549) jste detekovali 3 070 pozitivních osob. Odhadněte prevalenci sledované infekce.

osob. Odhadněte prevalení sledované infekce.

T + N + N + P(N+) = 0,456

P(T+ | N+) = 0,456

P(T+ | N+) = 0,456

P(T+) =
$$\frac{3070}{26544}$$
 $P(T+) = \frac{3070}{26544}$
 $P(T+ | N+) = \frac{3070}{26544}$
 $P(T+ | N+) = \frac{9(N-)-21-x}{26544}$
 $P(T+ | N+) = 0,045$
 $P(T+ | N+) = 0,045$

 $0.0676 = 0.408 \times 10.408$

 $\underbrace{\chi \stackrel{\circ}{=} 00744}_{} = \underbrace{P(N+)}_{}$

PS: Doplňkové příklady k Úvodu do pravděpodobnosti

V ČR je mezi muži cca 20 % kuřáků. Z literatury je známo, že u kuřáků je 20x vyšší riziko (pravděpodobnost) vzniku rakoviny plic než u nekuřáků. Odhadněte kolik procent mužů s rakovinou plic patří mezi kuřáky.

$$b(k+)=0.9$$

V ČR je mezi muži cca 20 % kuřáků. Z literatury je známo, že mezi muži s rakovinou plic je 90 % kuřáků. Na základě uvedených údajů zjistěte kolikrát kuřáctví zvyšuje riziko vzniku rakoviny plic.

$$O_{1}4 = \frac{O_{1}2 \cdot \chi}{O_{1}2 \cdot \chi} + O_{1}3 \cdot \chi$$
 \(\(\text{O}_{1}2\cdot\chi\)

$$0.18 \times + 0.72 \quad \gamma = 9.12 \times 0.72 \times 0.72 \times 0.02 \times 0$$

$$\frac{0.772}{0.02} = \frac{x}{y} = \frac{36x}{}$$