Improving Motor Efficiency and Motor Miniaturisation The Role of Thermal Simulation

Dr David Staton
Motor Design Ltd
dave.staton@motor-design.com

Todays Topics

- Motor Design Ltd (MDL)
- Need for improved tools for thermal analysis of electric machines
- Important Issues in Thermal Analysis of Electric Motors
- Examples of use of thermal analysis to optimise electric machine designs

Motor Design Ltd

- Based in Ellesmere, Shropshire, UK
 - On England/Wales border
 - South of Chester and Liverpool
- MDL Team:
 - Dave Staton (Software Development & Consultancy)
 - Mircea Popescu (Consultancy)
 - Douglas Hawkins (Software Development & Consultancy)
 - Gyula Vainel (Motor Design Engineer)
 - Lyndon Evans (Software Development)
 - James Goss (EngD Motor-LAB)
 - Lilo Bluhm (Office Manager)
- Many University Links:
 - Sponsor 3 Students in UK at present
 - Many links with universities throughout world
 - Bristol, City, Edinburgh, Mondragon Sheffield, Torino, ...

Dave Staton

- Apprentice/Electrician Coal Mining Industry (1977 1984)
 - BSc in Electrical Engineering at Trent Polytechnic (Nottingham)
- PhD at University of Sheffield (1984 1988)
 - CAD of Permanent Magnet DC Motors (with GEC small machines)
 - 95% electromagnetic aspects and less than 5% on thermal aspects
- Design Engineer Thorn-EMI CRL (1988-1989)
 - design of electric motors for Kenwood range of food processors
- Research Fellow SPEED Laboratories (1989 1995)
 - help develop SPEED electric motor design software
 - predominantly on electromagnetic aspects
- Control Techniques (part of Emerson Electric) (1995 1998)
 - design of servo motors
 - More involved in thermal analysis as we were developing radically new motor constructions (segmented laminations) that we had no previous experience.
- Set up Motor Design Ltd in 1998 to develop heat transfer software for electric machine simulation
 - there was no commercial software for thermal analysis of motors
 - such analysis was becoming more important in the design process (volume/weight minimisation, energy efficiency, etc.)
- Given many courses on motor design and thermal analysis of electric machines worldwide

Motor Design Ltd (MDL)

- set up in 1998 to develop software for design of electric motors and provide motor design consulting and training
- distribute SPEED, Motor-CAD, FLUX and PORTUNUS software
 - complete package for electric motor and drive simulation
 - software package also used in our consulting work which helps with development

Todays Topics

- Motor Design Ltd (MDL)
- Need for improved tools for thermal analysis of electric machines
- Important Issues in Thermal Analysis of Electric Motors
- Examples of use of thermal analysis to optimise electric machine designs

Thermal and Electromagnetic Design

- Traditionally in electric motors design the thermal design has received much less attention than the electromagnetic design
 - electric motor designers tend to have an electrical engineering background rather than mechanical?
 - CAD tools for thermal design have tended to be very specialized and require extensive knowledge of heat transfer
 - MDL have developed Motor-CAD + Portunus thermal/flow library to make it easier to carry out thermal analysis without being a thermal expert
 - FEA and CFD software are starting to have features included to make it easier to set up electric motor thermal models
- There is a similar situation in electronics cooling
 - Electronics designers tend to have an electronics background with little knowledge of heat transfer

Need for thermal analysis of electric motors

- Temperature of motor is ultimate limit on performance and should be given equal importance to the electromagnetic design
 - Life of motor is dependent upon the winding temperature

Need for thermal analysis of electric motors

- There is a requirement for smaller, cheaper and more efficient motors so an optimised design is required
 - Losses depend on temperature and temperature on losses
- Simple sizing method based on such inputs as limiting winding current density are no good for optimisation (see next few slides)
 - depend on users experience for the manufacturing process and material used and so tend to become very inaccurate when trying something new in the design
 - Give the designer no indication of where to concentrate design effort to reduce temperature
- Mix of analytical and numerical methods required
 - Many applications do not have a steady-state operation so in order to obtain a reasonable transient calculation time lumped circuit techniques are required
 - CFD/FEA are useful to help set up accurate models
 - Part models best. e.g. heat transfer through winding, fan model, etc.

Traditional Motor Sizing Methods

- sizing based on single parameter
 - thermal resistance
 - housing heat transfer coefficient
 - winding current density
 - specific electric loading
- thermal data from
 - simple rules of thumb
 - 5 A/mm2, 12 W/m2/C etc.
 - tests on existing motors
 - competitor catalogue data
- can be inaccurate
 - single parameter fails to describe complex nature of motor cooling
- poor insight of where to concentrate design effort
- Alternatives are analytical lumped circuit thermal analysis and numerical thermal analysis

Typical Rules of Thumb

Condition	A//mm ²	a/in²
Totally enclosed	1.5 - 5	1000 – 3000
Air-over; fan-cooled	5 – 10	3000 - 6000
Liquid cooled	10 – 30	6000 - 20000

Air Natural Convection
$- h = 5-10 W/(m^2.C)$

- Air Forced Convectionh = 10-300 W/(m².C)
- Liquid Forced Convection
 - $h = 50-20000 W/(m^2.C)$

Class of machine	TRV [kNm/m³]	σ [lbf/in²]
Small totally-enclosed motors (Ferrite magnets)	7 – 14	0.5 – 1
Totally-enclosed motors (sintered Rare Earth or NdFeB)	14 – 42	1 – 3
Totally-enclosed motors (bonded NdFeB magnets)	20	1.5
Integral-hp industrial motors	7 – 30	0.5 - 2
High-performance servomotors	15 – 50	2 – 4
Aerospace machines	30 – 75	2 – 5
Large liquid-cooled machines (e.g. turbine-generators)	100 – 250	7 – 18

- Wide range of possible values makes past experience very important
 - Otherwise the design will not be correctly sized
 - Values may not be valid if change manufacturing process, material, etc.
 - Tables taken from: "SPEED Electric Motors", TJE Miller

Numerical Thermal Analysis

- Two basic types available that subdivide problem into small element or volumes and temp/flow solved:
 - Finite element analysis (FEA)
 - Useful to accurately calculate conduction heat transfer
 - Computational fluid dynamics (CFD)

Simulation of fluid flow involves the solution of a set of coupled, non-linear, second order, partial differential equations – conservation equations (velocity, pressure & temperature)

 Many of the Fluent CFD slides are from the Example from University of Nottingham

Motor-CAD Integrated Thermal FEA Solver

- Just a few seconds to generate a mesh and calculate
- Help improve accuracy through calibration of analytical model

Computational Fluid Dynamics (CFD)

- The expected accuracy is not as great as with electromagnetic FEA
 - Due to complexities of geometry and turbulent fluid flow
- Impossible to model actual geometry perfectly
 - But trend predictions and visualisation of flow are useful
- Can be very time consuming to construct a model and then calculate
 - Can be several weeks/months
- Best use of results to calibrate analytical formulations

Motor-CAD Software

 Analytical network analysis package dedicated to thermal analysis of electric motors and generators

- input geometry using dedicated editors

 select cooling type, materials, etc and calculate steady state or transient temperatures

- all difficult heat transfer data calculated automatically
 - easy to use by non heat transfer specialists
- provides a detailed understanding of cooling and facilitates optimisation
 - what-if & sensitivity analysis

Motor-CAD Motor Types

- Brushless Permanent Magnet
 - > Inner and outer rotor
- Induction/Asynchronous
 - ➤ 1 and 3 phase
- Switched reluctance
- Permanent magnet DC
- Wound Field Synchronous
- Claw pole

Cooling Types

Motor-CAD includes proven models for an extensive range of cooling types

- Natural Convection (TENV)
 - many housing design types
- Forced Convection (TEFC)
 - many fin channel design types
- Through Ventilation
 - rotor and stator cooling ducts
- Open end-shield cooling
- Water Jackets
 - many design types (axial and circumferential ducts)
 - stator and rotor water jackets
- Submersible cooling
- Wet Rotor & Wet Stator cooling
- Spray Cooling
- Direct conductor cooling
 - Slot water jacket
- Conduction
 - Internal conduction and the effects of mounting
- Radiation
 - Internal and external

Housing Types

- Many housing designs can be modeled and optimized
 - the designer selected a housing type that is appropriate for the cooling type to be used and then optimizes the dimensions, e.g. axial fin dimensions and spacing for a TEFC machine

Steady-State & Transient Analysis

 Some application are steady state and some operate with complex transient duty cycle loads

Thermal Lumped Circuit Models

- similar to electrical network so easy to understand by electrical engineers
 - thermal resistances rather than electrical resistances
 - power sources rather than current sources
 - thermal capacitances rather than electrical capacitors (not shown here)
 - nodal temperatures rather than voltages
 - power flow through resistances rather than current
 - Place nodes at important places in motor cross-section

International Conference on Electrical Machine

Thermal Lumped Circuit Models

- thermal resistances placed in the circuit to model heat transfer paths in the machine
 - conduction (R = L/kA)
 - path area (A) and length (L) from geometry
 - thermal conductivity (k) of material
 - convection (R = 1/hA)
 - heat transfer coefficient (h W/m².C) from empirical dimensionless analysis formulations (correlations)
 - many well proven correlations for all kinds of geometry in heat transfer technical literature
 - radiation (R = 1/hA)
 - $h = \sigma \epsilon_1 F_{1-2} (T_1^4 T_2^4) / (T_1 T_2)$
 - emissivity (ε_1) & view factor (F_{1-2}) from surface finish & geometry
- power input at nodes where losses occur
- thermal capacitances for transient analysis
 - Capacitance = Weight × Specific Heat Capacity

Heat Transfer Ohms Law:

In a thermal network the heat flow is given by:

$$P = \frac{\Delta T}{R}$$
 electrical circuit $I = \frac{V}{R}$
$$P = power [Watts]$$

$$\Delta T = temperature difference [C]$$

$$R = thermal resistance [C/W]$$

Fluid Temperature Rise:

$$\Delta T = \frac{\text{Power Dissipated}}{\text{Volume Flow Rate x Density x C}_p}$$

$$\Delta T = \text{temperature difference [C]}$$

$$C_p = \text{Specific Heat Capacity [J/kg C]}$$

Todays Topics

- Motor Design Ltd (MDL)
- Need for improved tools for thermal analysis of electric machines
- Important Issues in Thermal Analysis of Electric Motors
- Examples of use of thermal analysis to optimise electric machine designs

Important Issues in Thermal Analysis of Electric Motors

- Conduction, Convection and Radiation
- Losses
- Winding Heat Transfer
- Interface Thermal Resistance
- Accuracy and Calibration

Conduction Heat Transfer

- Heat transfer mode in a solid due to molecule vibration
- Good electrical conductors are also good thermal conductors
 - Would like good electrical insulators that are good thermal conductors
 - material research to try to achieve this
 - Metals have large thermal conductivities due to their well ordered crystalline structure
 - k is usually in the range of 15 400 W/m/C
 - Solid insulators not well ordered crystalline structure and are often porous
 - k is typically in the range of 0.1 1W/m/C (better than air with k ≈ 0.026W/m/C)
- Conduction thermal resistance calculated using R = L/kA
 - Path length (L) and area (A) from geometry, e.g. tooth width and area
 - Thermal conductivity (k) of material, e.g. that of electrical steel for tooth
- Only complexity is in the calculation of effective L, A and k for composite components such as winding, bearings, etc.
 - Motor-CAD benefits from research using numerical analysis and testing to develop reliable models for such complicated components

Convection Heat Transfer

- Heat transfer mode between a surface and a fluid due to intermingling of the fluid immediately adjacent to the surface (conduction here) with the remainder of the fluid due to fluid motion
 - Natural Convection fluid motion due to buoyancy forces arising from change in density of fluid in vicinity of the surface
 - Forced Convection fluid motion due to external force (fan and pump)
- Two types of flow
 - Laminar Flow, streamlined flow at lower velocities
 - Turbulent Flow, eddies at higher velocities
 - Enhanced heat transfer compared to laminar flow but a larger pressure drop
- Convection thermal resistance is calculated using:

$$R_{C} = 1/ (A h) [C/W]$$

A = surface area $[m^2]$ h = convection heat transfer coefficient $[W/m^2/C]$

Need to predict h – rule thumb, dimensionless analysis, CFD?

Convection Heat Transfer Coefficient

- h_c can be calculated using empirical correlations based on dimensionless numbers (Re, Gr, Pr, Nu)
 - Just find a correlation with a similar geometry and cooling type to that being studied
 - Cylinder, flat plate, open/enclosed channel, etc.
 - Dimensionless numbers allow the same formulation to be used with different fluids and dimensions to those used in the original experiments
 - Hundreds of correlations available in the technical literature allowing engineers to carry out the thermal analysis of almost any shape of apparatus
 - Motor-CAD automatically selects the most appropriate correlation that matches the cooling type and surface shape

Convection Analysis Dimensionless Numbers

- Reynolds number (R_e)
- Grashof number (G_r)

$$R_{e} = \rho V L / \mu$$

$$P_{r} = C_{p} \mu / k$$

h = heat transfer coefficient [W/m²C]

 μ = fluid dynamic viscosity [kg/s m]

 ρ = fluid density [kg/m³]

k = thermal conductivity of the fluid [W/mC]

 c_p = specific heat capacity of the fluid [kJ/kg.C]

- Prandtl number (P_r)
- Nusselt number (N_u)

$$G_r = \beta g \theta \rho^2 L^3 / \mu^2$$

 $N_u = h L / k$

v = fluid velocity [m/s]

 θ = surface to fluid temperature [C]

L = characteristic length of the surface [m]

 β = coefficient of cubical expansion of fluid [1/C]

g = acceleration due to gravity [m/s2]

The dimensionless numbers are functions of fluid properties, size (characteristic length), fluid velocity (forced convection), temperature (natural convection) and gravity (natural convection)

Natural and Forced Convection Correlations

- Natural convection is present over most surfaces
 - Present even over surfaces that are designed for forced convection
 - e.g. TEFC machine with axial fins (at low speed the fan will not provide much forced air and natural convection will dominate)
 - Large set of correlations typically required for complex shapes
 - For very complex shapes area averaged composite correlations are used where the complex geometry (e.g. finned housing) is divided into a set of simpler shapes for which convection correlations are known
 - For instance a cylinder with axial fins is divided to various cylindrical and open fin channel sections of different orientation
 - A positive aspect is that if extremely small fins are attached to the cylinder the same results are given as for a cylindrical correlation
- Forced convection is present over surfaces with fluid movement due to a fan or pump (or movement of the device or wind)
 - A more limited set of correlations are required to calculate forced convection in electrical machines (Flat Plate, Open Fin Channel, Enclosed Channel, Rotating Airgap, End Space Cooling)

General Form for Convection Correlations

Natural Convection

General form of natural convection correlation:

$$N_u = a (G_r P_r)^b$$

- a & b are curve fitting constants
- Transition from laminar to turbulent flow:

$$107 < GrPr < 109$$
 (GrPr = Ra – Rayleigh number)

Forced Convection

General form of convection correlation for forced convection:

$$Nu = a (Re)^b (Pr)^c$$

- a, b & c are curve fitting constants
- Internal flow laminar/turbulent transition $R_{\rm e} \approx 2300$ (fully turbulent $R_{\rm e} > 5 \times 10^4$)
- External flow laminar/turbulent transition $R_e \approx 5 \times 10^5$

Horizontal Cylinder (Natural Convection)

A formulation for average Nusselt number of a horizontal cylinder of diameter d:

$$N_u = 0.525 (G_r P_r)^{0.25}$$
 (10⁴ < $G_r P_r < 10^9$) Laminar $N_u = 0.129 (G_r P_r)^{0.33}$ (10⁹ < $G_r P_r < 10^{12}$) Turbulent $h = N_u \times k / d$

Fluid properties at mean film temperature (average of surface and bulk fluid temperatures)

Vertical Cylinder (Natural Convection)

A formulation for average Nusselt number of a vertical cylinder of height L:

$$N_u = 0.59 (G_r P_r)^{0.25}$$

 $(10^4 < G_r P_r < 10^9)$ Laminar

$$N_u = 0.129 \ (G_r \ P_r)^{0.33}$$

$$(10^9 < G_r P_r < 10^{12}) \ Turbulent$$

$$h = N_u \times k / L$$

Fluid properties at mean film temperature (average of surface and bulk fluid temperatures)

Vertical Flat Plate (Nat Convection)

A formulation for average Nusselt number of a vertical flat plate of height L:

$$N_u = 0.59 (G_r P_r)^{0.25}$$

(10⁴ < $G_r P_r < 10^9$) Laminar

$$N_u = 0.129 (G_r P_r)^{0.33}$$

(10° < $G_r P_r < 10^{12}$) Turbulent

$$h = N_u \times k / L$$

fluid properties at mean film temperature (average of surface and bulk fluid temperatures)

Horizontal Flat Plate (Nat Conv)

Upper Face:

$$N_u = 0.54 (G_r P_r)^{0.25}$$

$$(10^5 < G_r P_r < 10^8) \text{ Laminar}$$

$$N_u = 0.14 (G_r P_r)^{0.33}$$

$$(10^8 < G_r P_r) \text{ Turbulent}$$

Lower Face:

$$N_u = 0.25 (G_r P_r)^{0.25}$$

$$(10^5 < G_r P_r < 10^8) Laminar$$

$$h = N_u \times k / L$$

Fluid properties at mean film temperature (average of surface and bulk fluid temperatures)

Horizontal Servo Housing (Nat Conv)

- Average of the following:
 - Horizontal Cylinder × Corner Cutout [%]/100
 - Horizontal Square Tube × {1 Corner Cutout [%]/100}
- As corner cut-out approaches 100% then the cylinder correlation predominates and as it approaches 0% the tube correlation predominates

Vertical Fin Channel (N Conv)

Ref [1] gives a formulation for Nusselt number of u-shaped vertical channels (laminar flow):

$$N_{u} = \frac{r/L \times G_{r} P_{r}}{Z} \times \left(1 - \exp\left[-Z\left(\frac{L \times 0.5}{r \times G_{r} P_{r}}\right)^{0.75}\right]\right)$$

$$Z = 24 \times \frac{\left[1 - 0.483 \times \exp(-0.17/a)\right]}{\left\{\left[1 + \frac{a}{2}\right]^{3} \times \left[1 + \left(1 - \exp(-0.83a)\right) \times 9.14\sqrt[3]{a}\right]^{3} \times \exp(-465 \times \text{fin_spacin}g) - 0.61\right]^{3}}$$

$$h = N_u \times k / r$$

a = channel aspect ratio fin_spacing/fin_depth

r = Characteristic Length (fin hydraulic radius)

= 2 × fin_depth × fin_spacing /(2 × fin_depth + fin_spacing)

L = fin height

The fluid properties are evaluated at the wall temperature (except volumetric coefficient of expansion which is evaluated at the mean fluid temperature).

Horizontal Fin Channel (Nat Conv)

Ref [1] gives a formulation for Nusselt number of u-shaped horizontal channels (laminar flow):

$$N_u(s) = 0.00067 \times G_r(s) P_r(s) \times \left[1 - \exp\left\{ \left(\frac{-7640}{G_r(s)} P_r \right)^{0.44} \right\}^{1.7} \right]$$

$$h = N_{ij}(s) \times k / s$$

s = fin spacing used as characteristic dimension

[1] Jones, C.D., Smith, L.F.: Optimum Arrangement of Rectangular Fins on Horizontal Surfaces for Free-Convection Heat Transfer, Trans. ASME, Feb 1970.

Axial Finned Housing with Natural Convection

- The axial finned motors above are designed for a shaft mounted fan (TEFC)
- When used as a variable speed drive at low speed there is little forced convection as natural convection dominates
 - Therefore we must be able to calculate such surfaces with natural convection
- Use of composite calculations based on averages of all the different simple shapes found in the more complex shape can give accurate results
 - Good agreement between Motor-CAD with default data and measured data for a range of TEFC motors operating at zero speed (work carried out by Boglietti at Politecnico di Torino) – see graph above

Flat Plate Forced Conv (External Flow)

Ref [1] gives a formulation for average Nusselt number of flat plate (or horizontal cylinder) length L:

$$N_u = 0.664 (R_e)^{0.5} (P_r)^{0.33}$$
 $(R_e < 5 \times 10^5)$
 $N_u = [0.037 (R_e)^{0.8} - 871] (P_r)^{0.33}$ $(R_e > 5 \times 10^5)$
 $h = N_u \times k / L$

Fluid properties at mean film temperature (average of surface and bulk fluid temperatures)

[1] Incropera, F.P & DeWitt, D.P.: Introduction to Heat Transfer, Wiley, 1990.

Enclosed Channel Forced Convection

The following formulations are used to calculate h from enclosed channels

Re = Dh x Fluid Velocity / Kinematic Viscosity

Dh = Channel Hydraulic Diameter

■ Dh = 2 × Gap [Concentric Cylinders]

• Dh = 4 × Channel Cross Sectional Area / Channel Perimeter [Round/Rectangular Channels]

 $h = Nu \times (Fluid Thermal Conductivity) / (Dh)$

- The flow is assumed to be fully laminar when Re < 2300 in Round/Rectangular Channels and when Re < 2800 in Concentric Cylinders
- The flow is assumed to be fully turbulent when Re > 3000 (in practice the flow may not be fully turbulent until Re > 10000)
- A transition between laminar and turbulent flow is assumed for Re values between those given above

Enclosed Channel (Forced Conv)

Laminar Flow

Concentric Cylinders (adaptation of formulation for parallel plates which includes entrance length effects):

$$N_{u} = 7.54 + \left[0.03 \times \frac{D_{h}}{L} \times R_{e} \times P_{r}\right] \div \left[1 + 0.016 \times \left(\frac{D_{h}}{L} \times R_{e} \times P_{r}\right)^{\frac{2}{3}}\right]$$

- The 2nd term in the above equation is the entrance length correction which accounts for entrance lengths where the velocity and temperature profiles are not fully developed.
- Round Channels (which includes entrance length effects):

$$N_u = 3.66 + \left[0.065 \times \frac{D_h}{L} \times R_e \times P_r\right] \div \left[1 + 0.04 \times \left(\frac{D_h}{L} \times R_e \times P_r\right)^{\frac{2}{3}}\right]$$

Rectangular Channels (adaptation of formulation for round channels):

$$N_u = 7.49 - 17.02 \times \frac{H}{W} + 22.43 \times \left(\frac{H}{W}\right)^2 - 9.94 \times \left(\frac{H}{W}\right)^3$$

$$+ \left[0.065 \times \frac{D_h}{L} \times R_e \times P_r\right] \div \left[1 + 0.04 \times \left(\frac{D_h}{L} \times R_e \times P_r\right)^{\frac{2}{3}}\right]$$

where H/W = Channel Height/Width Ratio

Enclosed Channel (Forced Conv)

Turbulent Flow

 Calculated using Gnielinski's formula for fully developed turbulent flow,

i.e.,
$$3000 < R_e < 1 \times 10^6$$
:

$$N_u = \left[(f/8) \times (R_e - 1000) \times P_r \right] \div \left[1 + 12.7 \times (f/8)^{0.5} \times (P_r^{2/3} - 1) \right]$$

Friction Factor and for a smooth wall is:

$$f = [0.790 \times Ln(R_e) - 1.64]^{-2}$$

<u>Transition from Laminar to Turbulent Flow</u>

- N_u is calculated for both laminar and turbulent flow using the above formulations. A weighted average (based on R_e) is then used to calculate N_u .
- It is noted that h increases dramatically as the flow regime changes from being laminar to turbulent flow.

Fin Channel (Open) - Forced Conv

Heiles [1] calculates h for a forced cooled open fin channel:

```
h = \sigma_{Air} × Cp<sub>Air</sub> × D × Air Velocity / (4 × L) x [1-exp(-m)]
m = 0.1448 × L<sup>0.946</sup> / D<sup>1.16</sup> × {k<sub>Air</sub> / (\sigma_{Air} × Cp<sub>Air</sub> × Air Velocity])}<sup>0.214</sup>
```

D = Hydraulic Diameter = 4 x channel area / channel perimeter (including open side)<math>L = Axial length of cooling fin

- This assumes isothermal wall, laminar air flow with air properties calculated at the film temperature = $(T_{free-stream} + T_{wall})/2$.
- Heiles recommends the use of a Turbulence Factor to directly multiply h by – his tests indicate typical turbulence factors in the range 1.7 -1.9 which seem independent of the flow velocity

[1] Heiles, F.: Design and Arrangement of Cooling Fins, Elecktrotecknik und Maschinenbay, Vol. 69, No. 14, July 1952.

Axial Fin Channel Air Leakage

- Typical form of open axial channel air leakage shown
- Complex function of
 - Cowling design
 - Gap
 - Fin overhang
 - Fan design
 - Speed
 - Motor size
 - Fin design
 - Fin roughness
 - Restrictions
 - etc.

Mixed Convection

- The total heat transfer coefficient due to convection (h_{MIXED}) is the combined free and forced convection heat transfer coefficients.
- h_{MIXED} is calculated using:

$$h_{MIXED}^3 = h_{FORCED}^3 + h_{NATURAL}^3$$

- The Motor Orientation determines the sign (±):
 - + in assisting and transverse flows
 - in opposing flows

End Space Cooling

- Complex area of machine cooling due to flow around end-windings
- Turbulent flow which depends upon:
 - Shape & length of end-windings
 - Fanning effects of internal fans, end-rings, wafters/rotor wings, etc.
 - Surface finish of the end sections of the rotor
- Several authors have studied such cooling and most propose the use of the following formulation:

$$h = k1 \times [1 + k2 \times velocity^{k3}]$$

Airgap Heat Transfer

- Airgap heat transfer is often calculated using a formulation developed from Taylor's work on concentric cylinders rotating relative to each other
 - Heat transfer by conduction when flow is laminar
 - Increase in heat transfer when the airgap R_e number increases above a certain critical value at which point the flow takes on a regular vortex pattern (vortex circular rotational eddy pattern)
 - Above a higher critical R_e value the flow becomes turbulent and the heat transfer increases further (turbulent is more of a micro eddy flow)

Taylor, G.I.: 'Distribution of Velocity and Temperature between Concentric Cylinders', Proc Roy Soc, 1935, 159, PtA, pp 546-578

Typical Air/Fluid Cooling Types

Blown Over

Wet Rotor

Through Ventilation

Flow Network Analysis

- Separate topic not covered in this tutorial where a set of analytically based flow resistances are put together in a circuit to predict the pressure drops and flow
- Pressure drops due to duct wall friction and restrictions to flow (bend, expansion, contraction, etc.).

G - GRILL/GUARD E - EXPANSION

C - CONTRACTION

B - BEND

C/E - CONTRACTION OR EXPANSION

B-C - MAX(BEND AND CONTRACTION)

Radiation Heat Transfer

- The heat transfer mode from a surface due to energy transfer by electromagnetic waves
- Convection thermal resistance is calculated using:

$$R_R = 1/ (A h_R) [C/W]$$

h_R can be calculated using the formula:

$$h_{R} = \frac{\sigma \, \epsilon \, F_{1-2} \, (T_{1}^{4} - T_{2}^{4})}{T_{1} - T_{2}} \quad [W/m^{2} \, .C]$$

h_R = radiation heat transfer coefficient [W/m².C]

A = area of radiating surface $[m^2]$

 σ = Stefan-Boltzmann constant (5.669x10⁻⁸ W/m²/K⁴)

 T_1 = absolute temperature of radiating surface [K]

 T_2 = absolute temperature of surface radiated to (ambient) [K]

 ε = emissivity of radiating surface ($\varepsilon \le 1$)

 F_{1-2} = view factor ($F_{1-2} \le 1$) – calculated from geometry

Typical Emissivity (ε) Data

Material	Emissivity	Material	Emissivity	
Aluminium		Iron		
 black anodised 	0.86	• polished	0.07 - 0.38	
• polished	0.03 - 0.1	• oxidised	0.31 – 0.61	
heavily oxidized	0.20 - 0.30	Nickel	0.21	
• sandblasted	0.41	Paints		
Alumina	0.20 - 0.50	• white	0.80 - 0.95	
Asbestos	oestos 0.96 • grey		0.84 – 0.91	
Carbon	0.77 - 0.84	• black lacquer	0.96 – 0.98	
Ceramic	0.58	Quartz, fused	0.93	
Copper		Rubber	0.94	
• polished	0.02	Silver, polished	0.02 - 0.03	
 heavily oxidized 	0.78	Stainless Steel	0.07	
Glass	0.95	Tin, bright	0.04	

Convection/Radiation Example Calculations

- For the following conditions, calculate h for the above horizontal cylinder
 - Natural convection with air as the fluid
 - Forced convection with 5m/s of air flowing axially over the cylinder
 - Forced convection with 5m/s of water flowing axially over the cylinder
 - Radiation from cylindrical surface with emissivity of 0.9
- Not realistic problem as we already know the temperature
 - Usually calculate h to calculate temperature (non-linear system)

Natural Convection (fluid = air)

■ Laminar or turbulent flow? (Gr Pr), L= 0.1m

$$Gr \ = \beta \ g \ \theta \ \rho^2 \ L^3 \ / \ \mu^2 \qquad \qquad Pr \ = \ c_p \ \mu \ / \ k$$

■ Air properties at mean film temperature = (20 + 100)/2 = 60C

```
\begin{array}{lll} k & = 0.0287 \; \text{W/m K} \\ \rho & = 1.06 \; kg/m^3 \\ \mu & = 1.996 \times 10^{-5} \; kg/m \; s \\ c_p & = 1008 \; \text{J/kg K} \\ Gr & = 1/(273 + 60) \times 9.81 \times (100 - 20) \times 1.06^2 \times 0.1^3 \, / \; (1.996 \times 10^{-5})^2 = \\ & \quad 6.65 \times 10^6 \end{array} Pr & = 1008 \times 1.996 \times 10^{-5} \, / \; 0.0287 \; = \; 0.701 \\ GrPr & = 6.65 \times 10^6 \times 0.701 \; = \; 4.66 \times 10^6 \end{array}
```

- Horizontal Cylinder correlation with Laminar Flow from $10^4 < GrPr < 10^9$ $N_u = 0.525$ (Gr Pr) $^{0.25}$ (laminar flow) $N_u = 0.525$ (4.66 × 10⁶) $^{0.25} = 24.39$
- Heat Transfer Coefficient

h =
$$N_u \times k / L$$
 = 24.39 × 0.0287 / 0.1
h = 7.0 W/m²/C

Forced Convection (fluid = air)

■ Laminar or turbulent flow? (R_e at 5m/s, L = 0.1)

$$R_e = \rho V L / \mu$$

■ Air properties at mean film temperature = (20 + 100)/2 = 60C

```
\begin{array}{lll} k &= 0.0287 \text{ W/m C} \\ \rho &= 1.06 \text{ kg/m}^3 \\ \mu &= 1.996 \times 10^{-5} \text{ kg/m s} \\ c_p &= 1008 \text{ J/kg C} \\ P_r &= c_p \, \mu \, / \, k \, = \, 1008 \times 1.996 \times 10^{-5} \, / \, 0.0287 \, = \, 0.701 \\ R_e &= 1.06 \times 5 \times 0.1 \, / \, 1.996 \times 10^{-5} \, = \, 2.66 \times 10^4 \end{array}
```

■ Flat Plate correlation (external flow) with Laminar Flow as Re $< 5 \times 10^5$

```
N_u = 0.664 (R_e)^{0.5} (P_r)^{0.33}

N_u = 0.664 (2.66 \times 10^4)^{0.5} (0.701)^{0.33} = 96.32
```

Heat Transfer Coefficient

h =
$$N_u \times k / L$$
 = 96.32 × 0.0287 / 0.1
h = 27.64 W/m²/C

Forced Convection (fluid = water)

Laminar or turbulent flow? (R_e at 5m/s, L = 0.1)

$$R_e = \rho V L / \mu$$

■ Water properties at mean film temp. = (20 + 100)/2 = 60C

■ Flat Plate correlation (external flow) with Turbulent Flow as $R_e > 5 \times 10^5$

$$N_u = [0.037 (R_e)^{0.8} - 871] \times (P_r)^{0.33} (R_e > 5x10^5)$$

 $N_u = [0.037 (1.05 \times 10^6)^{0.8} - 871] \times (3.02)^{0.33} = 2242$

Heat Transfer Coefficient

$$h = N_u \times k / L = 2242 \times 0.651 / 0.1$$

 $h = 14595 \text{ W/m}^2 \text{ C}$

Radiation

- Painted surface with emissivity = 0.9
- View factor = 1 as unblocked view of outside world by surface
- $h_R = \sigma \epsilon_1 F_{1-2} (T_1^4 T_2^4) / (T_1 T_2)$ $h_R = 5.669 \times 10^{-8} \times 0.9 \times 1 \times [(100 + 273)^4 - (20 + 273)^4] / (100 - 20)$ $h_R = 7.6 \text{ W/m}^2 \text{ C}$
 - In this case the radiation is larger than that for natural convection (it was 7.0 W/m² C)

Electrical Losses

- Most important that the losses and their distribution be known in order to obtain a good prediction of the temperatures throughout the machine
 - Some losses are associated with the electromagnetic design
 - Copper (can have high frequency proximity loss)
 - Iron (difficult to calculate accurately due to limitations of steel manufacturers data)
 - Loss data from material manufacturer may not have the same situation as real machine
 - Different waveforms
 - Stress of manufacture on laminations
 - Damage to interlamination insulation due to burs
 - Work underway to try and produce better loss data
 - Calibration using tests on actual machine best if available
 - Magnet (circumferential and axial segmentation to minimize)
 - Sm-Co 1-5 (5 x 10⁻⁸ ohm-m), Sm-Co 2-17 (90 x 10⁻⁸ ohm-m), Sintered Nd-Fe-B (160 x 10⁻⁸ ohm-m), Bonded Nd-Fe-B (14000 x 10⁻⁸ ohm-m)

Mechanical Losses

- Some losses are associated with the mechanical design
 - friction (bearings)
 - windage (air/liquid friction in gap/fan)
- Losses used in thermal model may be calculated and/or measured
- Losses are inputs in a thermal model and are not discussed in much detail in this tutorial

Loss Variation with Temperature

We can model the variation in copper loss with temperature directly in the thermal model by knowing the electrical resistance variation with temperature

$$\rho = \rho_{20}[1 + \alpha(T - 20)] \Omega m$$
 $\rho_{20} = 1.724 \times 10^{-8} \Omega m$
 $\alpha = 0.00393 / C for copper$

50° C rise gives 20% increase in resistance

where

- 140° C rise gives 55% increase in resistance
- We can also account for the loss in flux due to magnet temperature rise directly in the thermal model
 - typical temperature coefficients of Br

```
    Ferrite = -0.2 %/C (-20% flux for 100C rise, 1.56 x I²R)
    Sm-Co = -0.03 %/C (-3% flux for 100C rise, 1.06 x I²R)
    Nd-Fe-B = -0.11 %/C (-11% flux for 100C rise, 1.26 x I²R)
```

We can also account for the variation in windage loss using analytical windage formulations and the variation of viscosity with temperature

Complex loss types and FEA

- More complex loss mechanisms benefit from FEA analysis
 - Automated links from lumped circuit thermal solver to the FEA code can speed up with this analysis
 - Often if a loss is going to take days/weeks to set up and calculate then it may be tempting to make estimates based on previous experience rather than by calculation (less accurate)

Winding Heat Transfer

- The aim is to form a set of thermal resistances, power sources and thermal capacitances that model the thermal behavior of the winding
- Need to set area (A), length (L) and thermal conductivity (k) in R = L/kA for a complex slot shape holding a variety of components
- Various other modelling strategies have been developed to model the heat transfer within a winding but they usually are limited to one or more of the following:
 - A particular placement of conductors
 - A simple slot shape
 - A particular slot fill
- Such methods typically require test or FEA solutions to calibrate
- The layered winding model used by MDL has the advantage that:
 - It has some physical meaning and can be fully set up from slot geometry and known wire number and size

Layered Winding Model

- Winding modelled using copper/insulation (liner, enamel and impregnation) layers
- To calculate a thermal resistance require layer thickness (L), layer area (A) and layer thermal conductivity (k) - R = L/kA, A is layer periphery x stack length
- Model has same quantity of components as in the actual machine
- The model gives details of temperature build up from slot wall to the hotspot at the centre
- The copper loss is distributed between the layers according to their volume

Calibration of stranded winding models

If we can make an estimate of the placement of the conductors in a slot we can create a finite element thermal model and check the conduction heat transfer in the slot matches with the layered winding model

Motor-CAD FLUX (Thermal)

Calibration of form wound winding

- The form wound winding has rectangular wire with its associated layers of insulation
- Automated links to FEA for winding thermal resistance calibration are useful in this case

Motor-CAD Integrated Thermal FEA Solver

- Just a few seconds to generate a mesh and calculate
- Help improve accuracy through calibration of analytical model

Interface Thermal Resistance

- Touching surfaces have an effective thermal resistance:
 - Contact resistance due to imperfections in touching surfaces (uneven surfaces lead to voids) – contact area is typically small
- Two parallel resistances, conduction for touching spots & conduction/radiation for voids
- Can be crucial, especially in heavily loaded machines
- MDL model them using an effective airgap (R = Gap/kA)
 - -Gap dependent upon materials and manufacturing processes used
 - Air assumed as interface fluid (can scale gap if other material)
 - -Easy for non thermal expert to input as they soon get a feel for what is a good and what is a bad gap (physical dimension)
 - Alternative used by thermal experts is to input a value of Contact Resistance [m2.C/W] or Interfacial Conductance [W/C.m2]
 - More difficult for the non thermal expert to gain a feel for what is a good and what is a bad value
 - Values are displayed in Motor-CAD as useful for thermal experts

Interface Thermal Resistance

- How rough is a surface? published work gives a Mirror Finish = 0.0001mm and Rough Finish = 0.025mm (root-meansquare of deviations of a surface from a reference plane)
 - Average interface gap is not just a function of roughness
 - Softer materials have smaller average interface gaps as peaks are squashed and will fit together better
 - Complex function of material hardness, interface pressure, smoothness of the surfaces, air pressure, thermal expansion, etc.

Interface Gaps – published data

A book by Holman gives the following values for roughness and contact resistance with air as fluid medium

materials	pressure	original roughness	resistance x m ²
416 ground Stainless	3-25 atm	0.0025 mm	2.64 m ² .C/W×10 ⁴
304 ground Stainless	40-70 atm	0.0011 mm	5.28 m ² .C/W×10 ⁴
ground Aluminum	12-25 atm	0.0025 mm	$0.88 \text{ m}^2.\text{C/W}\times 10^4$
ground Aluminum	12-25 atm	0.00025 mm	$0.18 \text{ m}^2.\text{C/W}\times 10^4$

- Lower value of contact resistance is better
- Conversion of Holman data to equivalent airgaps
 - $m^2.C/W \times W/m.C \times 1000 = mm$
 - k for air = 0.026 W/m/C

materials	pressure	original roughness	effective gap
416 ground Stainless	3-25atm	0.0025mm	0.0069mm
304 ground Stainless	40-70atm	0.0011mm	0.0137mm
ground Aluminum	12-25atm	0.0025mm	0.0023mm
ground Aluminum	12-25atm	0.00025mm	0.0005mm

- Materials used in electric machines have effective gap of between 0.0005mm and 0.014mm (average of around 0.007mm)
- softer material have smaller effective gap

Interface Gaps – published data

A book by Mills gives values of interfacial conductances (at moderate pressure and usual finishes)

 Stainless Steel – Stainless Steel 	1700-3700 W/m²/C
 Aluminum – Aluminum 	2200-12,000 W/m ² /C
 Stainless Steel – Aluminum 	3000-4500 W/m ² /C
Iron – Aluminum	4000-40,000 W/m ² /C

- Higher value of interfacial conductance is better
- Conversion of Mills data to equivalent airgaps
 - $1/(m2.C/W) \times W/m/C \times 1000 = mm$
 - k for air = 0.026 W/m/C

Stainless Steel – Stainless Steel	0.0070-0.0153 mm
Aluminum – Aluminum	0.0022-0.0118 mm
Stainless Steel – Aluminum	0.0058-0.0087 mm
Iron – Aluminum	0.0006-0.0065 mm

- Materials used in electric machines have effective gap of between 0.0006mm and 0.015mm (average of around 0.0075mm)
- softer material have smaller effective gap
- Similar gaps to Holman data

Stator Lamination – Housing

- A problem in gaining reliable results is that the laminated surface roughness is dependent upon the manufacturing processes used
- Larger interface gaps than usual are typical due to laminated surface
- Best to calibrate to suit motors, materials and manufacturing practices used

Motor rated power[kW]	Interface Gap [mm]	
4.0 (MA112M4)	0.042	
7.5 (MA132M4)	0.076	
15.0 (MA160L4)	0.077	
30.0 (MA200L4)	0.016	
55.0 (MA250M4)	0.037	

Data from Boglietti -Politecnico di Torino, Italy

Other Practical Results

- 142mm diameter BPM servo motor 0.01mm (cast aluminium housing)
- 335mm & 500mm diameter IM's around 0.015mm (cast iron frames)
- 128mm diameter IM around 0.02mm (aluminium housing)

Bearings

- Bearings are a complex composite structure
 - Inner and outer race, balls, grease
 - Can be modeled by an effective interface gap
 - Problem is to know what this gap should be
 - Calibration testing has been done Boglietti showing a typical effective interface gap between 0.2mm and 0.4mm

Motor	Inner diamete r [mm]	Outer diameter [mm]	Equivalent interface gap [mm]	
4 kW	30	19	0.35	Two holes for
7.5 kW	40	18	0.23	the
15 kW	45	25	0.40	probe
			5	7777// 2 '

Dealing with difficult areas of thermal analysis

- Many manufacturing uncertainties such as:
 - Goodness of effective interface between stator and housing
 - How well the winding is impregnate or potted
 - Leakage of air from open fin channel
 blown over machines
 - Cooling of the internal parts in a TENV and TEFC machine
 - Heat transfer through the bearings
 - etc.
- Test program with leading universities over the past 15 years to help develop data to help with such problems
 - Set default parameters in Motor-CAD giving good level of accuracy without the user having done extensive calibration using testing of their own machines

Improved Accuracy Using Calibration

- It has been seen that there are many complex issues (some manufacturing issues) when setting up an accurate thermal model for a motor
- Calibration of models helps to increase accuracy
 - Also useful to gain an insight of how your machine compares to other machines in terms of manufacturing goodness and quality of design
 - Often the thermal model identifies a problem with the electromagnetic calculation, i.e. hot rotor temperature showing higher than expected magnet loss, etc.
- Various specialist tests can be made on a machine to help with model calibration
 - Fixed DC Current (known loss) into stator winding (all phases in series) with various temperatures measured
 - Help calibrate interface gaps and winding impregnation, etc.
- Sensitivity analysis is also a good way to identify the main design issues so concentration can be given to those

Todays Topics

- Motor Design Ltd (MDL)
- Need for improved tools for thermal analysis of electric machines
- Important Issues in Thermal Analysis of Electric Motors
- Examples of use of thermal analysis to optimise electric machine designs

Previous Thermal Project Examples

- Most projects details are provided by MDL customers
- Only examples are shown that have permission to publish from the user
 - Most have technical papers associated with them that can be examined for more details

Segmented Motor Miniaturization

Papers published in 2001 Existing Motor:

- 50mm active length
- 130mm long housing
- traditional lamination
- overlapping winding

New Motor:

- 50mm active length
- 100mm long housing
- 34% more torque for same temperature rise
- segmented lamination
- non-overlapping winding
- In order to optimize the new design an iterative mix of electromagnetic and thermal analysis was performed

Segmented Motor Miniaturization

Old motor

- inserted mush winding
- 54% slot-fill
- 80mm diameter
- 18-slots, 6-poles
- large end windings which overlap each other

New Motor

- precision bobbin wound
- 82% slot-fill
- 80mm diameter
- 12-slots, 8-poles
- short end windings that are non-overlapping

Segmented Motor Miniaturization

Traditional Winding

- inserted mush winding
- 54% slot-fill

Concentrated Winding

- precision bobbin wound
- 82% slot-fill

Mixed EM/Thermal design:

- Iron losses have an easier path to the housing
- Optimum thermal design requires correct balance between copper & iron losses
 - complex function of size, speed, materials, etc.

Improved winding insulation system

- Developed improved winding insulation in new designs
 - New potting/impregnation materials with k = 1W/m/C
 - previous materials have k = 0.2W/m/C
 - above designs show 6%-8% reduction in temperature
 - Above potted end-winding design shows a 15% reduced temperature compared to non-potted design
 - Vacuum impregnation can eliminate air pockets
 - above design shows 9% decrease in temperature in perfectly impregnated motor compared to old impregnation system

Improved housing for TENV motor

- Motor-CAD analytical formulations for convection used to optimise the fin spacing
 - small fin spacing has large surface area but reduced air flow
 - large fin spacing has maximum air flow but reduced surface area
- Accuracy validated using tests on series of rectangular and circular discs and internal heater
- Also did CFD which gave same optimum but took a lot longer to set up the model and calculate

Axial Cooling Fin Optimization

- motors with shaft mounted fan or blower unit
 - large thermal benefits possible with correct fin design
 - large selection of fin types available in Motor-CAD

Selection of TEFC machines where axial fins optimized using thermal analysis

315mm Shaft Height, Cast Housing

200mm Shaft Height, Cast Housing

80mm Shaft Height, Aluminium Housing

Through Ventilation Motor

 Through ventilated motor optimised using a mix of heat transfer and flow network analysis

More details in paper from ICEM 2002

1150hp IM

 $Tw(test) = 157^{\circ}C$

Tw(calc) = 159°C

Through Ventilation

Few of the many ducting systems available for use in through ventilation thermal analysis

- flow circuit automatically calculated
- User can input the fan characteristic and the system flow resistance is calculated

Underwater Camera Motor

- Analysis carried out on motors driving propellers on a small submersible craft fitted with a camera
- Analysis to make sure that the housing temperature did not get too hot when the motor turned off and removed from the water
 - Losses now zero and winding cools down but this heats up the housing which is now not liquid cooled

Minimization of Motor Size/Weight **Aerospace Duty Cycle Analysis**

the motor needed to operate on the duty cycles and just get to 180C

mm 03 December 2001 w

Check Data

9000

0

0

Remove Period

1

2

3

4

70

400

70

Add Period

Input data for Transient Duty-Cycle Period 3

10

10

15

10

1

0.2

q

1

Validation of Duty Cycle Thermal Transient Analysis (Aerospace)

 the complex load modelled in Motor-CAD is shown below:

 excellent agreement between the calculated thermal response and measured temperatures

Thermal Modeling of a Short-Duty Motor

- Motor designed to have minimum size and weight for a high performance short-duty cycle application.
- Optimization of thermal performance is critical for minimized weight and size
- Motor-CAD used for transient analysis and size optimisation
- Excellent agreement with test data when prototype built

IPM Traction Motor

- Optimisation of water jacket for a traction motor
- Excellent agreement with test data when prototype built showing level of confidence in default values for manufacturing issues like the stator-lamination interface gap

	Casing	Stator tooth		Winding		Rotor
		Mid	Tip	Max.	Av.	magnets
Thermal Model [°C]	50	77	78	104	99	95
Measurement [°C]	50	78	82	101	96	100

BPM Traction Motor

- Motor-CAD used to optimise cooling of traction motor
- Motor had open endcap with local convection cooling of end-windings
- Excellent accuracy shown with fast calculation times

Automotive PMDC - Improved Winding

Insulation System

- ICEM 2008 electro-hydraulic brake
- Optimisated impregnation process and slot liner to allow a longer operation time
- Two transients shown
 - Same load of 20A locked rotor
 - One has Nomex liner and the other a powder liner
 - Powder liner allows 4 minute load rather than 1.8 minutes
- Measured and simulated results shown

Automotive PMDC Brush Model

Servo Motor Duty Cycle Analysis

- Prediction of a motor thermal performance on a duty cycle load is important to match the motor to the load
 - excellent agreement between the prediction and test data shown

Servo Motor Duty Cycle Analysis

Range of tests with different duty cycles used to proved model

- symbols = Motor-CAD model

– lines = test data

International Conference on Electrical

Servo Motor Duty Cycle Analysis

Again for another servo motor design excellent agreement between test and calculation

PEMD 2006

Temp location	Measured (deg C)	Simulated (deg C)	Error (%)
Winding Hotspot	144.3	148.1	2.6
Housing	117	117	0.0
Tooth	127.9	129.4	1.0
End Winding	134.1	126.8	-5.5
End Cap	107.4	107.9	0.5

Comparison between measured and simulated steady-state temperatures

Induction Motor Locked Rotor Analysis

- excellent agreement between test and calculation of induction machine transient on locked rotor
- Iterative calculation between SPEED and Motor-CAD
- Work done by Dave Dorrell at Glasgow University

Outer Rotor Brushless Motor

- Project with University of Bristol to optimise the cooling of this outer rotor BPM machine
- More complex cooling than traditional inner rotor machine

TEFC & TENV Synchronous Gens.

Range of machines tested and modelled with good

A∨erage % Erroi

level of agreement

Mostly < 5% error

Cummins Generator Technologies and Edinburgh University

TENV Cooling:

4.38 kVA

O/p Parameter	Exp. o/p (°C)	Motor-CAD o/p (°C)	ΔT (°C) [Exp Mot.]	% Error
Housing - Front	68.1	67.51	0.59	0.87
Housing - Active	68	66.05	1.95	2.87
Housing - Rear	64.8	63.94	0.86	1.33
Bearing - Front	68.3	68.75	-0.45	-0.66
Bearing - Rear	61.5	64.47	-2.97	-4.83
Stator	74.1	74.86	-0.76	-1.03
Rotor	83.7	82.05	1.65	1.97
Winding Average	76.15	73.93	2.22	2.92
EndWinding (F)	76.7	69.9	6.8	8.87
EndWinding (R)	75.5	68.85	6.65	8.81

TEFC Cooling:

	ŧ
10111	١

0/p Parameter	Exp. o/p (°C)	Motor-CAD o/p (°C)	ΔT (°C) [Exp Mot.]	% Error
Housing - Front	55.9	57.74	-1.84	-3.29
Housing - Active	51.5	52.49	-0.99	-1.92
Housing - Rear	48.1	48.14	-0.04	-0.08
Bearing - Front	56.5	61.64	-5.14	-9.10
Bearing - Rear	51.4	52.25	-0.85	-1.65
Stator	69.2	74.68	-5.48	-7.92
Rotor	98.4	101.2	-2.8	-2.85
Winding Av.	81.8	82.45	-0.65	-0.79
EndWinding (F)	90	94.07	-4.07	-4.52
EndWinding (R)	88.3	92.21	-3.91	-4.43
			Average % Error	3.66

Wind Generator Thermal Analysis

- Wind generator (University of Cantabria)
 - > FLUX Users meeting 2010
 - Excellent results with Motor-CAD v Test
 - Fault Analysis also performed

Motor size and weight reduction

 Motor-CAD enabled a sizable reduction in size and weight compared to if no thermal analysis was done at the design stage

UK Magnetics Society Meeting 2008

Thank you for your attention!

Are there any questions?

