Project 1 Phase 1

1. Figure

Hover Trajectory:

Circle Trajectory:

Square Trajectory:

Inf (8) Trajectory:

Controller Statistics

	Pos_RMS	Vel_RMS
Hover	0.02353	0.074797
Circle	0.023703	0.075564
Square	0.026799	0.084381
Inf	0.05509	0.18465

PID gains

	Kp	Kd
Pos_x	8.5	5.2
Pos_y	8.5	5.2
Pos_z	36	16
Att_pitch	800	60
Att_roll	800	60
Att_yaw	100	30

Analysis

Design such a PD controller is not hard, but tune the hyperparameters of the controller is time consuming and annoying. I found several things that may effect the controller performance. First, the calculated Force "F" is assumed to be the Z axis force on equilibrium points. However, if we consider project the force to current body frame, the controller become non-linear. At first, I use Ziegler-Nichols method to tune Kp and Kd. It can only provide a rough idea of how large Kp and Kd are. It still need manual tuning to make the system a better performance.

Some thoughts:

I found that it is really hard to make the system perform well in every cases. So I need to tune the K gains for different trajectories and balance the result. I think we still need introduce nonlinear to system controller for better performance. I think we can keep outer loop position control as PID while change inner loop attitude control to another controller like LQR or MPC.