OSSA - Lec 4 - Threads.

Learning Topics

- 1. Threads Concept
- 2. Thread Models

1. Threads Concept

Threads

- Threads are running within application.
- Threads are running parellaly and they are performing various activities to support the user. Ex: MS Word
- Most of modern applications are **multithreaded**. Ex: Operating Systems
- A Thread is a basic unit of CPU Utilization.
- Every Thread execution control by its own **Program Counter**.
- Thread can create Child Threads.
- Threads are **not independent** of one another.

Benfits of Threads

- Responsiveness
- Resource Sharing
- Economy
- Scalability (We can easily scale activities of threads to different CPUs.)

2 Types of Threads

User Threads	Kernel Threads
 Managing by User-Level Thread Library. POSIX Pthreads Windows threads Java threads 	Supported by the <i>Kernel / OS</i> . • Windows • Linux • Mac OS X
Created by <i>users in their applications</i> .	Kernel Threads are using by executing User-Level Threads.

2. Thread Models

Multithreading Models

Many-to-One	One-to-One	Many-to-Many
Many user-thread mapping to 1 kernel-thread	1 user-thread mapping to 1 kernel-thread	Many user-thread mapping to Many kernel-thread
1 user-thread run with only 1 kernel-thread at a time.	Each user-thread run with each kernel-thread.	user-threads can run with different kernel-threads.
ISSUE 1 - if a user-thread is block also kernel-thread is block. ISSUE 2 - threads can't execute parellaly.	Solve ISSUE 1 - if a user- thread is block that particular kernel-thread is block but other threads are working properly. Solve ISSUE 2 - Parellel execution is possible. ISSUE 3 - No. user-threads determines No. kernel- threads (there ll'be a issue when user-t count getting higher.)	Solve ISSUE 3 - No. kerenl- threads decide using the previous usage.
Ex:	Ex: Using by • Windows • Linux • Sloaris	Ex: Solaris Prior to Ver. 9 Windows with ThreadFiber Package

Thread Libraries

- Thread Library provides API (Application Programming Interface) to programmer for Create and Manage Threads. - Use of Thread Library
- Creating user-threads we need **Pthread Library** and use the library functions in Pthread library.
- Pthread library provided by UNIX threads.

Thread Pools

- Pool of Threads or Collection Threads.
- Latest OS are using this concept.

Signal Handling

- Use to notify a process.
- Signals
 - 1. Generate
 - 2. Delivered
 - 3. Handled
- 2 Types of Signal handlers
 - 1. default handler
 - 2. user-defined signal handler can override default
- 4 ways of signal delivering for Multithreaded
 - 1. Signal delivers to only thread that applies.
 - 2. Singal delivers to every thread.
 - 3. Signal delivers to selected threads.
 - 4. Signal delivers to assigned specific thread.

Thread Cancellation

- Terminating thread before it has finished. called Cancel
- That canceled thread called target thread.
- 2 cancelation approaches,
 - 1. Asynchronous Cancellation Terminate target thread immediately.
 - 2. Deferred Cancelation Check the thread suitable to cancel.