1 Lecture 1 - The Reals

- 1. Definition: a field is the 5-tuple $\langle \mathbb{F}, +, \cdot, e, u \rangle$, where \mathbb{F} is a set containing at least the elements e and u, where $e \neq u$, and satisfies: For any $a, b, c \in \mathbb{F}$,
 - (a) (commutative add) a + b = b + a
 - (b) (associative add) (a + b) + c = a + (b + c)
 - (c) (additive identity) a + e = a
 - (d) (additive inverse) $\forall a, \exists b \in \mathbb{F}$ such that a + b = e.
 - (e) (commutative multiply) $a \cdot b = b \cdot a$
 - (f) (associative multiply) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
 - (g) (multiplicative identity) $a \cdot u = a$
 - (h) (multiplicative inverse) $\forall a, \exists b \in \mathbb{F} \text{ such that } a \cdot b = u.$
 - (i) (distributive) $\forall a, b, c \in \mathbb{F}, a \cdot (b+c) = a \cdot b + a \cdot c$
- 2. Example: $\mathbb{Q}, \mathbb{N}, \mathbb{Z}, \mathbb{R}, \mathbb{C}, \mathbb{R} \mathbb{Q}$ are fields.
- 3. Definition: A field \mathbb{F} is **ordered** if $\exists P \subseteq \mathbb{F}$ such that $\forall a, b \in P$,
 - (a) $a+b \in P$
 - (b) $a \cdot b \in P$
 - (c) (trichotomy) either
 - i. $a \in P$
 - ii. a = e, or
 - iii. $-a \in P$
 - (d) $e \notin P$.
- 4. Theorem: $a \in P \implies -a \notin P$.
- 5. Definiton: if a subset of an ordered field, $A \subseteq \mathbb{F}$ contains an element a such that $\forall x \in \mathbb{F}, a \leq (\geq)x$, then \mathbb{F} is **bounded below (above)**. Such a is called an **lower (upper) bound** of A.
- 6. Definition: if $\emptyset \neq A \subseteq \mathbb{F}$ is bounded above (below), an element b is the least upper (greatest lower) bound if
 - (a) b is an upper(lower) bound of A and
 - (b) $\forall c \in \mathbb{F}$ where c is an upper(lower) bound of $A, b \geq c(b \leq c)$.
 - , denoted by $\sup A(\inf A)$ respectively.
- 7. Definition: An ordered field \mathbb{F} is (order) complete if it has the least upper bound property: $\forall \emptyset \neq A \subseteq \mathbb{F}$, if A is bounded above, A has a least upper bound.
- 8. Example: \mathbb{R} is order complete, but \mathbb{Q} is not.