2 Testowanie hipotez

2.1 Wprowadzenie

Do rozwiązania wybranych zagadnień analizy statystycznej wystarczą metody weryfikacji hipotez statystycznych. Taki proces można przedstawić w następujących krokach:

- 1. Sformułowanie dwóch wykluczających się hipotez zerowej H_0 oraz alternatywnej H_1
- 2. Wybór odpowiedniego testu statystycznego
- 3. Określenie dopuszczalnego prawdopodobieństwo popełnienia błędu I rodzaju (czyli poziomu istotności α)
- 4. Podjęcie decyzji

Wymienione powyżej nowe pojęcia zostaną wyjaśnione poniżej.

2.2 Hipoteza statystyczna

Przypuszczenie dotyczące własności analizowanej cechy, np. średnia w populacji jest równa 10, rozkład cechy jest normalny.

Formuluje się zawsze dwie hipotezy: hipotezę zerową (H_0) i hipotezę alternatywną (H_1) . Hipoteza zerowa jest hipotezą mówiącą o równości:

$$H_0: \bar{x}=10$$

Z kolei hipoteza alternatywna zakłada coś przeciwnego:

$$H_1: \bar{x} \neq 10$$

Zamiast znaku nierówności (\neq) może się także pojawić znak mniejszości (<) lub większości (>).

2.3 Poziom istotności i wartość p

Hipotezy statystyczne weryfikuje się przy określonym poziomie istotności α , który wskazuje maksymalny poziom akceptowalnego błędu (najczęściej $\alpha=0,05$).

Większość programów statystycznych podaje w wynikach testu wartość p. Jest to najostrzejszy poziom istotności, przy którym możemy odrzucić hipotezę H_0 . Jest to rozwiązanie bardzo popularne, ale nie pozbawione wad. Dokładny opis potencjalnych zagrożeń można znaleźć w artykule.

Generalnie jeśli $p < \alpha$ - odrzucamy hipotezę zerową.

2.4 Testy statystyczne

W zależności od tego co chcemy weryfikować należy wybrać odpowiedni test. Tabela poniżej przedstawia dosyć wyczerpującą klasyfikację testów pobraną ze strony.

Overview of statistical tests

Type of dependent variable	Type of independent variable						
	Ordinal/categorical				Normal/interval (ordinal)	More than 1	None
	Two groups		More groups				
	Paired	Unpaired	Paired	Unpaired			
2 categories	McNemar Test, Sign-Test	Fisher Test, Chi-squared- Test	Cochran's Q- Test	Fisher Test, Chi-squared- test	(Conditional) Logistic Regression	Logistic Regression	Chi-squared- Test
Nominal	Bowker Test	Fisher Test, Chi-squared- Test		Fisher Test, Chi-squared- test	Multinomial logistic regression	Multinomial logistic regression	Binomial Test
Ordinal	Wilcoxon Test, Sign-Test	Wilcoxon- Mann-Whitney Test	Friedman-Test	Kruskal-Wallis Test	Spearman-rank- test	Ordered logit	Median Test
Interval	Wilcoxon Test, Sign-Test	Wilcoxon- Mann-Whitney Test	Friedman-Test	Kruskal-Wallis Test	Spearman-rank test	Multivariate linear model	Median Test
Normal	t-Test (for paired)	t-Test (for unpaired)	Linear Model (ANOVA)	Linear Model (ANOVA)	Pearson- Correlation-test	Multivariate Linear Model	t-Test
Censored Interval	Log-Rank Test		Survival Analysis, Cox proportional hazards regression				
None	Clustering, factor analysis, PCA, canonical correlation						

2.5 Zbiór danych

Będziemy działać na zbiorze danych dotyczącym pracowników przedsiębiorstwa. Poniżej znajduje się opis cech znajdujących się w tym zbiorze,

id - kod pracownika

- plec płeć pracownika (0 mężczyzna, 1 kobieta)
- data_urodz data urodzenia
- edukacja wykształcenie (w latach nauki)
- kat pracownika grupa pracownicza (1 specjalista, 2 menedżer, 3 konsultant)
- bwynagrodzenie bieżące wynagrodzenie
- pwynagrodzenie początkowe wynagrodzenie
- staz staż pracy (w miesiącach)
- doswiadczenie poprzednie zatrudnienie (w miesiącach)
- zwiazki przynależność do związków zawodowych (0 nie, 1 tak)
- wiek wiek (w latach)

```
library(tidyverse)
library(readxl)

pracownicy <- read_excel("data/pracownicy.xlsx")</pre>
```

2.6 Test niezależności

Za pomocą testu niezależności χ^2 (chi-kwadrat) można sprawdzić czy pomiędzy dwiema cechami jakościowymi występuje zależność. Układ hipotez jest następujący:

- H_0 : zmienne są niezależne,
- H_1 : zmienne nie są niezależne.

W programie R test niezależności można wywołać za pomocą funkcji chisq.test() z pakietu stats. Jako argument tej funkcji należy podać tablicę kontyngencji. W przypadku operowania na danych jednostkowych można ją utworzyć poprzez funkcję table(). Jeżeli wprowadzamy liczebności ręcznie to należy zadbać o to, żeby wprowadzony obiekt był typu matrix.

Przykład

Czy pomiędzy zmienną płeć, a zmienną przynależność do związków zawodowych istnieje zależność?

W pierwszym kroku określamy hipotezy badawcze:

 H_0 : pomiędzy płcią a przynależnością do związków nie ma zależności

 H_1 : pomiędzy płcią a przynależnością do związków jest zależność

oraz przyjmujemy poziom istotności - weźmy standardową wartość lpha=0,05.

W pierwszej kolejności popatrzmy na tabelę krzyżową (kontyngencji) zawierającą liczebności poszczególnych kombinacji wariantów.

```
table(pracownicy$plec, pracownicy$zwiazki)
```

```
##
## 0 1
## 0 194 64
## 1 176 40
```

Wartości w tej tabeli nie wskazują na liczniejszą reprezentację jednej z płci w związkach zawodowych. Zweryfikujemy zatem wskazaną hipotezę zerową z wykorzystaniem testu χ^2 .

```
chisq.test(table(pracownicy$plec, pracownicy$zwiazki))
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(pracownicy$plec, pracownicy$zwiazki)
## X-squared = 2.3592, df = 1, p-value = 0.1245
```

Przy poziomie istotności $\alpha=0,05$, wartości p (0.1245) jest większa od wartości α , zatem nie ma podstaw do odrzucenia hipotezy zerowej. Można stwierdzić, że nie ma zależności pomiędzy zmiennymi płeć i przynależność do związków zawodowych.

Przykład

Czy pomiędzy płcią, a grupami bieżącego wynagrodzenia zdefiniowanymi przez medianę istnieje zależność?

 H_0 : pomiędzy płcią a grupami wynagrodzenia nie ma zależności

 H_1 : pomiędzy płcią a grupami wynagrodzenia jest zależność

W pierwszej kolejności tworzymy nową cechą zamieniając cechę bwynagrodzenie na zmienną jakościową posiadającą dwa warianty: poniżej mediany i powyżej mediany.

```
##
## [1.58e+04,2.89e+04] (2.89e+04,1.35e+05]
## 0 73 185
## 1 164 52
```

W tym przypadku wygląd tablicy krzyżowej może sugerować występowanie zależności.

```
chisq.test(table(pracownicy$plec, pracownicy$bwyn_mediana))
```

```
##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: table(pracownicy$plec, pracownicy$bwyn_mediana)
## X-squared = 104.8, df = 1, p-value < 2.2e-16</pre>
```

Test χ^2 to potwierdza - mamy podstawy do odrzucenia hipotezy zerowej na korzyść hipotezy alternatywnej - istnieje zależność pomiędzy płcią, a grupami wynagrodzenia.

2.7 Test proporcji

Test proporcji pozwala odpowiedzieć na pytanie czy odsetki w jednej, dwóch lub więcej grupach różnią się od siebie istotnie. Dla jednej próby układ hipotez został przedstawiony poniżej:

```
• H_0: p = p_0
```

• $H_1: p
eq p_0$ lub $H_1: p > p_0$ lub $H_1: p < p_0$

Układ hipotez w przypadku dwóch prób jest następujący:

- $H_0: p_1 = p_2$
- $H_1: p_1 \neq p_2$ lub $H_1: p_1 > p_2$ lub $H_1: p_1 < p_2$

Dla k badanych prób hipotezę zerową i alternatywną można zapisać w następująco:

- $H_0: p_1 = p_2 = p_3 = \ldots = p_k$
- $H_1:\exists\ p_i
 eq p_i$

W takim przypadku hipoteza alternatywna oznacza, że co najmniej jeden odsetek różni się istotnie od pozostałych.

Funkcja prop.test z pakietu *stats* umożliwia przeprowadzanie testu proporcji w programie R. Jako argumenty należy podać wektor, który zawiera licznik badanych odsetków - x , oraz wektor zawierający wartości mianownika - n . W przypadku jednej próby należy jeszcze dodać argument p , którego wartość oznacza weryfikowany odsetek.

Przykład

Wysunięto przypuszczenie, że palacze papierosów stanowią jednakowy odsetek wśród mężczyzn i kobiet. W celu sprawdzenia tej hipotezy wylosowano 500 mężczyzn i 600 kobiet. Okazało się, że wśród mężczyzn było 200 palaczy, a wśród kobiet 250.

 H_0 : odsetek palaczy wg płci jest taki sam

 H_1 : odsetek palaczy różni się wg płci

```
prop.test(x = c(200,250), n = c(500,600))
```

```
##
## 2-sample test for equality of proportions with continuity correction
##
## data: c(200, 250) out of c(500, 600)
## X-squared = 0.24824, df = 1, p-value = 0.6183
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## -0.07680992 0.04347659
## sample estimates:
## prop 1 prop 2
## 0.4000000 0.4166667
```

Przy poziomie istotności 0,05 nie ma podstaw do odrzucenia H0 - odsetek palaczy jest taki sam w grupach płci.

2.8 Testowanie normalności - test Shapiro-Wilka

Testy parametryczne z reguły wymagają spełnienia założenia o normalności rozkładu. W celu weryfikacji tego założenia należy wykorzystać jeden z testów normalności.

W celu formalnego zweryfikowania rozkładu cechy można wykorzystać test Shapiro-Wilka. Układ hipotez z tym teście jest następujący:

- $H_0: F(x) = F_0(x)$ rozkład cechy ma rozkład normalny
- $H_1:F(x)
 eq F_0(x)$ rozkład cechy nie ma rozkładu normalnego

W przeprowadzonych dotychczas symulacjach wykazano, że test Shapiro-Wilka ma największą moc spośród testów normalności, niemniej jego ograniczeniem jest maksymalna liczba obserwacji, która wynosi 5000¹.

W programie R test Shapiro-Wilka można uruchomić za pomocą funkcji shapiro.test() jako argument podając wektor wartości liczbowych, który chcemy zweryfikować.

2.9 Testowanie normalności - wykres kwantylkwantyl

Normalność rozkładu może także zostać zweryfikowana poprzez utworzenie wykresu przedstawiającego porównanie wartości oryginalnych oraz odpowiadającym im wartości pochodzących z rozkładu normalnego. Dodatkowo prowadzona jest linia regresji pomiędzy otrzymanymi wartościami. Punkty przebiegające w pobliżu tej linii oznaczają, że rozkład tej cechy jest normalny.

Na wykresie przedstawiony jest wykres kwantyl-kwantyl dla 50 wartości wylosowanych z rozkładu normalnego i z rozkładu jednostajnego.

Jak można zauważyć punkty na wykresie po lewej stronie nie odbiegają znacząco od linii prostej, zatem można przypuszczać, że rozkład tej cechy jest normalny. Z kolei na wykresie po prawej stronie obserwuje się odstępstwo od rozkładu normalnego - wartości na krańcach linii są od niej oddalone.

Przykład

Czy cecha *doświadczenie* ma rozkład normalny? Sprawdź za pomocą odpowiedniego testu oraz wykresu kwantyl-kwantyl.

 H_0 : doświadczenie ma rozkład normalny

 H_1 : doświadczenie nie ma rozkładu normalnego

shapiro.test(pracownicy\$doswiadczenie)

```
##
## Shapiro-Wilk normality test
##
## data: pracownicy$doswiadczenie
## W = 0.8136, p-value < 2.2e-16</pre>
```

Na poziomie $\alpha=0,05$ Odrzucamy H_0 (p < α) - doświadczenie nie ma rozkładu normalnego. Sprawdźmy jeszcze jak te wartości wyglądają na wykresie kwantyl-kwantyl.

```
ggplot(pracownicy, aes(sample = doswiadczenie)) +
  stat_qq() +
  stat_qq_line()
```


2.10 Testowanie wariancji - test Bartletta

Oprócz założenia o normalności, niektóre metody statystyczne wymagają także równości wariancji.

Jeśli chcemy sprawdzić homogeniczność wariancji w dwóch lub więcej grupach to należy skorzystać z testu Bartletta:

•
$$H_0: s_1^2 = s_2^2 = s_3^2 = \ldots = s_k^2$$

$$ullet$$
 $H_1:\exists_{i,j\in\{1,..,k\}}\ s_i^2
eq s_j^2$

Funkcja bartlett.test() w programie R umożliwia zastosowanie tego testu. Argumenty do tej funkcji można przekazać na dwa sposoby. Pierwszy polega na przypisaniu do argumentu x wektora zawierającego wartości cechy, a do argumentu g wektora zawierającego identyfikatory poszczególnych grup. Drugi sposób to zadeklarowanie formuły w postaci zmienna_analizowa ~ zmienna_grupująca oraz podanie zbioru danych przypisanego do argumentu data .

Przykład

Sprawdźmy czy wariancje zmiennej doświadczenie w grupach płci są takie same.

 H_0 : wariancje doświadczenia są takie same w grupach płci

 H_1 : wariancje doświadczenia nie są takie same w grupach płci

Funkcję weryfikującą H_0 można zapisać na dwa sposoby - wynik zawsze będzie taki sam.

```
bartlett.test(x = pracownicy$doswiadczenie, g = pracownicy$plec)
```

```
##
##
## Bartlett test of homogeneity of variances
##
## data: pracownicy$doswiadczenie and pracownicy$plec
## Bartlett's K-squared = 4.7659, df = 1, p-value = 0.02903
```

```
bartlett.test(pracownicy$doswiadczenie ~ pracownicy$plec)
```

```
##
## Bartlett test of homogeneity of variances
##
## data: pracownicy$doswiadczenie by pracownicy$plec
## Bartlett's K-squared = 4.7659, df = 1, p-value = 0.02903
```

Przyjmując poziom istotności $\alpha=0,05$ odrzucamy hipotezę zerową stwierdzając, że wariancje różnią się w grupach płci. Z kolei dopuszczając niższy poziom istotności $\alpha=0,01$ podjęlibyśmy decyzję o braku podstaw do odrzucenia H_0 i nieistotnej różnicy pomiędzy grupami.

2.11 Testowanie średnich

W przypadku testowania wartości przeciętnych należy wprowadzić pojęcie prób zależnych i niezależnych:

- próby zależne (paired) analizowane są te same jednostki, ale różne cechy.
- próby niezależne (unpaired) analizowane są różne jednostki, ale ta sama cecha.

W zależności od tego czy spełnione są odpowiednie założenia dotyczące normalności cechy oraz równości wariancji należy wybrać odpowiedni test według poniższego diagramu.

2.11.1 Test t-średnich

Weryfikacja równości średnich może odbywać się na zasadzie porównania wartości średniej w jednej grupie z arbitralnie przyjętym poziomem lub w dwóch różnych grupach. W pierwszym przypadku rozważamy układ hipotez:

- $H_0: m = m_0$
- $H_1: m
 eq m_0$ lub $H_1: m < m_0$ lub $H_1: m > m_0$

natomiast w drugim przypadku hipotezy będą wyglądać następująco:

- $H_0: m_1 = m_2$
- $H_1: m_1
 eq m_2$ lub $H_1: m_1 < m_2$ lub $H_1: m_1 > m_2$

Alternatywnie hipotezę zerową można zapisać jako $m_1-m_2=0$ czyli sprawdzamy czy różnica pomiędzy grupami istotnie różni się od zera.

W funkcji t.test() z pakietu *stats* w przypadku jednej próby należy podać argument x czyli wektor z wartościami, które są analizowane oraz wartość, z którą tą średnią porównujemy (argument mu , który domyślnie jest równy 0). Dodatkowo w argumencie alternative wskazujemy jaką hipotezę alternatywną bierzemy pod uwagę.

Dla weryfikacji równości średniej w dwóch próbach należy dodać argument y z wartościami w drugiej próbie. W tym przypadku mamy także możliwość określenia czy próby są zależne (argument paired) lub czy wariancja w obu próbach jest taka sama (var.equal). Jeżeli wariancje są różne to program R przeprowadzi test t Welcha i liczba stopni swobody nie będzie liczbą całkowitą.

2.11.2 ANOVA

W przypadku większej liczby grup stosuje się jednoczynnikową analizę wariancji (ANOVA). Ta analiza wymaga spełnienia założenia o normalności rozkładu i równości wariancji w badanych grupach. Układ hipotez jest następujący:

- $H_0: m_1 = m_2 = m_3 = \ldots = m_k$
- $H_1: \exists_{i,j \in \{1,...,k\}} \ m_i \neq m_j$

Za pomocą funkcji aov() można w R przeprowadzić jednoczynnikową analizę wariancji. Jako argument funkcji należy podać formułę przedstawiającą zależność zmiennej badanej do zmiennej grupującej wykorzystując w tym celu symbol tyldy (~) w następującym kontekście: zmienna_analizowana ~ zmienna_grupująca . Przy takim zapisie należy także w argumencie data podać nazwę zbioru danych.

W porównaniu do wcześniej opisanych funkcji, aov() nie zwraca w bezpośrednim wyniku wartości p. Aby uzyskać tę wartość należy wynik działania tej funkcji przypisać do obiektu, a następnie na nim wywołać funkcję summary().

W przypadku odrzucenia hipotezy zerowej można przeprowadzić test Tukeya w celu identyfikacji różniących się par wykorzystując funkcję TukeyHSD() i jako argument podając obiekt zawierający wynik ANOVA.

W sytuacji, w której założenia użycia testu parametrycznego nie są spełnione, należy skorzystać z testów nieparametrycznych. W przypadku testowania miar tendencji centralnej różnica pomiędzy testami parametrycznymi a nieparametrycznymi polega na zastąpieniu wartości średniej medianą. Z punktu widzenia obliczeń w miejsce oryginalnych wartości cechy wprowadza się rangi czyli następuje osłabienie skali pomiarowej - z ilorazowej na porządkową.

2.11.3 Test Wilcoxona

Test Wilcoxona jest nieparametryczną wersją testu t. Hipotezy w tym teście dotyczą równości rozkładów:

- $H_0: F_1 = F_2$
- $H_1: F_1 \neq F_2$

Wartość statystyki testowej będzie zależna od typu testu, natomiast w R funkcja, której należy użyć to wilcox.test(). Argumenty tej funkcji są takie same jak w przypadku testu t.

2.11.4 Test Kruskala-Wallisa

Z kolei test Kruskala-Wallisa jest nieparametrycznym odpowiednikiem ANOVA. Hipotezy są następujące:

- $H_0: F_1 = F_2 = F_3 = \ldots = F_k$
- $H_1: \exists_{i,j \in \{1,...,k\}} \ F_i \neq F_j$

W programie R korzysta się z funkcji kruskal.test(), która przyjmuje takie same argumenty jak funkcja do metody ANOVA aov(). Główną różnicą jest sposób podawania wyniku testu, ponieważ w tym przypadku od razu otrzymujemy wartość p. W przypadku odrzucenia hipotezy zerowej należy sprawdzić, które grupy różnią się między sobą. Można to zrobić za pomocą funkcji pairwise.wilcox.test().

Przykład

Sprawdzimy czy średnie doświadczenie w grupach płci jest takie same.

 H_0 : średnie doświadczenie w grupach płci jest takie samo

 H_1 : średnie doświadczenie w grupach płci nie jest takie samo

W związku z tym, że badana cecha nie ma rozkładu normalnego zostanie przeprowadzony test Wilcoxona. Mamy tutaj do czynienia z testem dla prób niezależnych - badana jest jedna cecha (doświadczenie) w ramach rozłącznych grup płci.

```
wilcox.test(pracownicy$doswiadczenie ~ pracownicy$plec)
```

```
##
## Wilcoxon rank sum test with continuity correction
##
## data: pracownicy$doswiadczenie by pracownicy$plec
## W = 36295, p-value = 1.372e-08
## alternative hypothesis: true location shift is not equal to 0
```

Przyjmując poziom istotności lpha=0,05 odrzucamy H_0 - średnie doświadczenie nie jest takie samo.

Przykład

Czy początkowe i bieżące wynagrodzenie różni się od siebie w sposób istotny?

 H_0 : średnie początkowe i bieżące wynagrodzenie jest takie samo

 H_1 : średnie początkowe i bieżące wynagrodzenie nie jest takie samo

W pierwszej kolejności weryfikujemy normalność rozkładu analizowanych cech.

```
shapiro.test(pracownicy$pwynagrodzenie)
```

```
##
## Shapiro-Wilk normality test
##
## data: pracownicy$pwynagrodzenie
## W = 0.71535, p-value < 2.2e-16</pre>
```

```
shapiro.test(pracownicy$bwynagrodzenie)
```

```
##
## Shapiro-Wilk normality test
##
## data: pracownicy$bwynagrodzenie
## W = 0.77061, p-value < 2.2e-16</pre>
```

Wynagrodzenie w tym zbiorze danych zdecydowanie nie przypomina rozkładu normalnego. W tym przypadku analizujemy próby zależne - badamy dwie różne cechy dla tych samych jednostek (obserwacji).

```
##
## Wilcoxon signed rank test with continuity correction
##
## data: pracownicy$pwynagrodzenie and pracownicy$bwynagrodzenie
## V = 0, p-value < 2.2e-16
## alternative hypothesis: true location shift is not equal to 0</pre>
```

Na podstawie podanej wartości p odrzucamy H_0 - średnie początkowe i bieżące wynagrodzenie różni się od siebie istotnie statystycznie.

Przykład

Analogicznie można także sprawdzić czy np. doświadczenie różni się w ramach więcej niż dwóch grup - w takim przypadku rozpatrujemy głównie próby niezależne.

 H_0 : średnie doświadczenie w grupach kategorii pracownika jest takie same

 H_1 : średnie doświadczenie w grupach kategorii pracownika nie jest takie same - co najmniej jedna para jest różna

```
kruskal.test(pracownicy$doswiadczenie ~ pracownicy$kat_pracownika)
```

```
##
##
Kruskal-Wallis rank sum test
##
## data: pracownicy$doswiadczenie by pracownicy$kat_pracownika
## Kruskal-Wallis chi-squared = 57.466, df = 2, p-value = 3.322e-13
```

Przyjmując poziom istotności $\alpha=0,05$ odrzucamy hipotezę zerową - co najmniej jedna para kategorii pracownika różni się pod względem średniego wynagrodzenia.

1. W przypadku liczniejszych prób można wykorzystać test Kołmogorowa-Smirnova.↩