Distributed Fringe Search with MPI

Lukas Mosimann & Christian Zeman

FTH Zürich

Design of Parallel and High-Performance Computing

November 3, 2013

Overview

- Algorithm
 - About Fringe Search
 - Example
 - Advantages / Disadvantages
- 2 Implementation and Evaluation
- References

About Fringe Search

- Find a short path between two points
- Not optimal
- Similar to A*
- Uses threshold to determine the best nodes
- "Best-first" search with heuristic cost function
- Heuristic cost function *h*:
 - $h(x) \le d(x, y) + h(y)$
 - e.g. Manhattan or Euclidean distance

Example 1/7

Example 2/7

Example 3/7


```
f(A) = 0 + 9 = 9
f(B) = 4 + 7 = 11
f(E) = 3 + 10 = 13
f(F) = 5 + 6 = 11
   f(C) = 5 + 7 = 12
f(G) = 7 + 5 = 12
f(I) = 7 + 6 = 13
```

Example 4/7

Example 5/7

Example 6/7

Example 7/7

Advantages / Disadvantages

- Advantages:
 - "Best-first" search with no sorting
 - Fast
 - Configurable (relaxation function for threshold)
- Disadvantages:
 - Not optimal
 - Bad configuration may leed to bad path

Implementation and Evaluation

- Implementation will be done with MPI
- Evaluation in terms of
 - runtime
 - length of path compared to optimal path
- Different configurations for threshold relaxation

References

Sandy Brand and Rafael Bidarra (2012)

Multi-core scalable and efficient pathfinding with Parallel Ripple Search

Computer Animation and Virtual Worlds, Volume 23, Issue 2 2012, pp 73 – 85.

Sandy Brand (2009)

Efficient obstacle avoidance using autonomously generated navigation meshes Master Thesis (Delft University of Technology)

The End