

THE TRANSIT TECHNIQUE

HIGHLIGHTS OF TRANSITING PLANETS

Credit: http://www.cfa.harvard.edu/pao/wallpaper.htr

KOI-500 - the most packed multi-systems Credit: Ian Steadman

Kepler-16b circumbinary planet Credit: NASA/JPL-Caltech/T.Pyle

BASIC TRANSIT GEOMETRY

Transit Surveys

- Survey tens of thousands of stars.
- Obtain photometry precision of at least 1%.

TESS AND JWST

TESS:

Transit exoplanet survey satellite aiming for discovery of super earth around bright stars.

JWST:

8 billion Infrared Satellite, measuring the atmosphere properties of exoplanets.

JWST Science Planning Timeline

(draft schedule as of January 2015)

WHY TESS DATA?

- Data quality in between HATNet and Kepler.
- Needed rapid/accurate selection of candidates for JWST observations.
- Much more data to deal with than Kepler.

WHAT'S THE AIM OF THE PROJECT

- Step 1: Build up a frame work for transiting planetary candidate selection.
- Step 2: Improve on the previous result making use of what we learnt.
- Main Question: what to optimize?

WHAT IS THE TRAINING SET

- Kepler data
- Kepler data + TESS Noise
- Simulated TESS data
- What fraction of Planet + False positives + False Alarms to input?

WHAT ALGORITHMS TO USE

- Classification problem
- > SVM, random forest, KNN, logistic regression, ...

WHAT FEATURES TO USE

- Observable of individual light curves.
 - > shape of the signal compare to a transit
 - significance of the signal
 - noise properties of the light curve
 - other features in the light curve
- Other observables (centroid time series of the star).
- Stellar Properties.
- Signal correlation with other detected signals.

READING MATERIALS

- http://arxiv.org/pdf/1408.1496v2.pdf
- http://arxiv.org/pdf/1512.06149v1.pdf
- Exoplanet handbook by Michael Perryman, Section 6, 6.1,
 6.2.1, 6.2.5, 6.2.7, 6.4.1
- http://www.planethunters.org

CURRENT PRACTICE

- Kepler TCERT random forest
- HATNet SVM

POSSIBLE APPLICATIONS

- Kepler
- HATNet
- K2
- TESS

The Kepler Mission

Image by Carter Roberts / Eastbay Astronomical Society

WHAT WE ARE LOOKING FOR

WHAT ARE WE LOOKING FOR

- Strictly Periodic dimming signals, box-like
- Radius derived from transit geometry similar to what is a planet
- Astrophysical origin

FALSE POSITIVE (AFP) AND FALSE ALARMS (NTP)

False Positives:

- Often high signal to noise;
- Have Astrophysical origin;

False Alarms:

- Often low signal to noise;
- Due to defect in data;

KEPLER AUTO CANDIDATE SELECTION PIPELINE

Prediction on training set Prediction on a later sample

Training set	PC	AFP	NTP
PC	2843	8	28
AFP	98	271	24
NTP	25	12	11267

TCE Class	PC	AFP	NTP
PC	314	32	43
AFP	95	553	450

HATNet (2003-present)

HAT - Hungarian-made Automated Telescopes

- The Network (six 11 cm diameter, wide field telescopes)
- Highlights and Discoveries (~56 published planets)

Examples of HATNet discoveries

Calibrate HAT with Kepler - What can we learn from simultaneous high precision space based data?

Huang et al , in preparation

Machine Learning 101

Kepler

Potential planetary candidates subjected to follow

Center field (red) confusion matrix:

- 13.3% False Alarm rate
- 93.4% completeness rate (in selection process)

Follow up Selected HAT candidate with K2

Deep primary eclipse- Rejected based on K2 light curves

