

Vakáció

Anton és barátai közös nyaralást terveznek. A helyszínt már kiválasztották, az időpontban azonban már nehezebben tudnak megegyezni.

Az N barát mindegyike előre leadta a szabadságára tervezett napjait. Az i. barát eredetileg az L_i . naptól az R_i . napig (a határokat is beleértve) tervezte a szabadságát. Az együtt töltött idő maximalizálása érdekében minden barát módosíthatja a szabadságát úgy, hogy azt korábbra vagy későbbre tolja. Pontosabban, az i. barát választhat egy d_i egész számot és eltolhatja a szabadságát az $[L_i + d_i, R_i + d_i]$ intervallumra. A pozitív d_i azt jelenti, hogy az eredetileg tervezettnél későbbre teszi a szabadságot, a negatív d_i azt jelenti, hogy korábbra, míg a $d_i=0$ azt jelenti, hogy a szabadsága az eredeti ütemterv szerinti marad.

A barátok tisztában vannak azzal, hogy a főnökeiknek nem fog tetszeni a változtatásaik okozta keveredés. Ezért a szabadságaikat úgy szeretnék eltolni, hogy az intervallumok eltolásainak összege ne haladja meg a K egész számot. Formálisan a $|d_0| + |d_1| + \cdots +$ $|d_{N-1}| \leq K$ feltételnek kell megfelelniük.

Segíts a barátoknak meghatározni, hogy hány napot tölthetnek mindannyian együtt, ha optimálisan választják meg a szabadságaik eltolását.

🕙 Megvalósítás

A plan vacation függvényt kell megvalósítanod:

int plan_vacation(int N, std::vector<int> L, std::vector<int> R, long long K)

- N: a barátok száma
- L: egy N pozitív egész számból álló vektor, amelyek mindegyike az adott barát tervezett szabadságának első napját jelöli;
- R: egy N pozitív egész számból álló vektor, amelyek mindegyike az adott barát tervezett szabadságának utolsó napját jelöli;
- K: a $|d_0| + |d_1| + \cdots + |d_{N-1}|$ összeg maximálisan megengedett értéke.

Ezt a függvényt minden tesztnél egyszer hívjuk meg. A barátok együtt tölthető napjainak maximális számát kell megadnia vagy 0-t, ha nincs együtt tölthető szabadnapjuk.

W Korlátok

- $1 \le N \le 500~000$
- $1 \le L_i \le R_i \le 10^9$
- $0 \le K \le 10^{18}$

Részfeladatok

Részfeladat	Pontszám	Szükséges részfeladatok	További korlátok
0	0	_	A példa.
1	7	_	K = 0
2	11	1	$K \leq 1$
3	6	_	$K = 10^{18}$
4	13	0	$N \leq 10^4$, $L_i \leq 10$, $R_i \leq 10$
5	18	0	$N \le 10^3$
6	29	0, 4, 5	$N \le 10^5$
7	16	0 - 6	_

Példa

Tekintsük a következő példát:

A barátok a következő intervallumokra tervezték a szabadságukat: [1,3], [5,9], [2,5]. Így ha a 0. barát 2 nappal későbbre, az 1. barát pedig 1 nappal korábbra helyezi át a szabadságát, akkor a [3,5], [4,8], [2,5] intervallumokat kapják. Ezáltal mindannyian elérhetők lesznek a 4. és az 5. napon, ami 2 közös napot jelent. Igazolható, hogy K=3 esetén sem járnak jobban. Ezért a függvénynek 2-t kell visszaadnia eredményként.

Mintaértékelő

A bemenet formátuma a következő:

- 1. sor: két egész szám az N és K értékei.
- 2 (N+1). sorok: két egész szám L_i és R_i .

A kimenet formátuma a következő:

• 1. sor: egy egész szám - a függvényhívás visszatérési értéke