Seminar#4 16/01/2017

By M5941643 Ada Kaminkure

__

Image registration by maximization of combined mutual information and gradient information

IEEE TRANSACTIONS ON MEDICAL IMAGING, 19(8) 2000

Introduction

- Mutual Information is currently one of the most intensively researched measures. (intensity based measure)
- Retrospective Registration Evaluation Project (RREP), an international study comparing the accuracy of sixteen registration methods against a screw marker gold standard
- Mutual information registration function can be ill-defined, con-taining local maxima.

Introduction (2)

- Improvements of different aspects of the method have been suggested, such as multiresolution methods, a different entropy measure, invariance with respect to overlap, and 'higher-order' mutual information, using co-occurrence matrices of neighbouring voxels' intensities
- Combine mutual information with a gradient measure to provide spatial information. Image gradients by themselves have been shown to be useful registration criteria

Mutual Information

$$I(A,B) = H(A) + H(B) - H(A,B).$$
 $\operatorname{H}(X) = \sum_{i=1}^n \operatorname{P}(x_i) \operatorname{I}(x_i) = -\sum_{i=1}^n \operatorname{P}(x_i) \log_b \operatorname{P}(x_i)$
 $\operatorname{H}(X|Y) = \sum_{i,j} p(x_i,y_j) \log \frac{p(y_j)}{p(x_i,y_j)}$

Method (2)

Normalized Mutual Information - sensitive to the amount of overlap

between the images

Introduced by Studholme et al.

$$Y(A,B) = \frac{H(A) + H(B)}{H(A,B)}$$

Method (3)

The proposed registration measure

$$I_{new}(A, B) = G(A, B) I(A, B)$$

with

$$G(A,B) = \sum_{(\mathbf{x},\mathbf{x}')\in (A\cap B)} w(\alpha_{\mathbf{x},\mathbf{x}'}(\sigma)) \min(|\nabla \mathbf{x}(\sigma)|, |\nabla \mathbf{x}'(\sigma)|).$$

$$lpha_{\mathbf{x},\mathbf{x}'}(\sigma) = \arccos rac{
abla \mathbf{x}(\sigma) \cdot
abla \mathbf{x}'(\sigma)}{|
abla \mathbf{x}(\sigma)| |
abla \mathbf{x}'(\sigma)|}$$

RESULT

TABLE I
REGISTRATION RESULTS FOR MRI AND CT IMAGE PAIRS (IN MM)

		1	median		maximum				
	I	Y	I_{new}	Y_{new}	I	Y	I_{new}	Y_{new}	n
T1	1.07	0.84	1.21	1.37	2.23	2.08	2.23	2.91	7
PD	1.42	1.43	1.53	1.73	3.20	3.95	2.90	3.08	7
T2	1.48	1.51	1.29	1.63	8.79	3.02	3.16	3.01	7
T1rect	0.71	0.61	0.78	0.80	1.69	1.00	1.62	2.15	6
PDrect	0.68	0.71	0.69	0.87	1.49	1.19	1.67	2.40	7
T2rect	0.72	0.63	0.89	1.04	3.54	2.20	1.83	2.99	7

RESULT(2)

 $\begin{array}{c} \text{TABLE II} \\ \text{Registration results for MRI and PET image pairs (in mm)} \end{array}$

		1	median		maximum				
	I	Y	I_{new}	Y_{new}	I	Y	I_{new}	Y_{new}	n
T1	2.37	1.90	2.46	2.43	38.91	74.74	6.65	8.78	7
PD	2.33	2.24	3.04	2.67	5.13	6.55	7.55	6.82	7
T2	2.51	2.40	3.13	2.27	7.24	5.38	6.05	7.91	7
T1rect	1.82	1.34	2.12	1.29	3.51	3.56	3.62	4.29	4
PDrect	2.72	2.88	2.07	2.97	6.00	3.78	6.29	6.44	5
T2rect	2.74	2.67	2.24	1.62	6.95	5.25	3.27	5.42	5

__

Multimodality Image Registration by Maximization of Mutual Information

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 16, NO. 2, APRIL 1997

Introduction

- A new approach to the problem of multi- modality medical image registration is proposed.
- Mutual Information or relative entropy, as a new matching criterion
- To measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images

Introduction (2)

- This paper expands on the ideas first presented by Collignon et al.
- In radiotherapy planning, dose calculation is based on the CT data
- While tumor outlining is often better performed in the corresponding MR scan
- Functional information may be obtained from **PET** images

Mutual Information

$$I(A,B) = H(A) + H(B) - H(A,B).$$
 $\operatorname{H}(X) = \sum_{i=1}^n \operatorname{P}(x_i) \operatorname{I}(x_i) = -\sum_{i=1}^n \operatorname{P}(x_i) \log_b \operatorname{P}(x_i)$
 $\operatorname{H}(X|Y) = \sum_{i,j} p(x_i,y_j) \log \frac{p(y_j)}{p(x_i,y_j)}$

Mutual Information

Fig. 1. Joint histogram of the overlapping volume of the CT and MR brain images of dataset A in tables II and III: a) initial position: I(CT, MR) = 0.46; b) registered position: I(CT, MR) = 0.89. Misregistration was about 20 mm and 10 degrees (see the parameters in table III).

Criterion - Interpolation

$$rg \min_{n_i} d(T_{\alpha}s, n_i) = n_3$$
 $r(T_{\alpha}s) = r(n_3)$
 $h_{\alpha}(f(s), r(T_{\alpha}s)) += 1$

Criterion - Interpolation(2)

$$\begin{split} &\sum_i w_i(T_\alpha s) = 1 \\ &r(T_\alpha s) = \sum_i w_i \cdot r(n_i) \\ &h_\alpha(f(s), r(T_\alpha s)) \ += 1 \end{split}$$

Criterion - Interpolation(3)

$$\sum_{i} w_i(T_{\alpha}s) = 1$$

$$\forall i : h_{\alpha}(f(s), r(n_i)) += w_i$$

Experiments DataSet

Set	Image	Size	Voxels (mm)	Range
A	MR	$256^2 \times 180$	$0.98^2 \times 1.00$	0×4094
	CT	$256^2 \times 100$	$0.94^2 \times 1.55$	0×4093
В	MR	$200^2 \times 45$	$1.25^2 \times 4.00$	38×2940
	CT	$192^2 \times 39$	$1.25^2 \times 4.00$	0×2713
C	MR	$256^2 \times 24$	$1.25^2 \times 4.00$	2×2087
	CT	$512^2 \times 29$	$0.65^2 \times 4.00$	0×2960
	PET	$128^2 \times 15$	$2.59^2 \times 8.00$	0×683
D	MR	$256^2 \times 30$	$1.33^2 \times 4.00$	2×3359

Experiments

MI Registration Parameters

Set	F/R		Rotat	ion (deg	rees)	Tran	nslation ((mm)	I	Difference (mn	ı)
			x	у	Z	x	У	z	x	У	z
A	Reference	e [25]	9.62	-3.13	2.01	7.00	1.14	18.15		27 2.70 2.10 2.10 2.10 2.10 P.C.	
1000	CT/MR	NN	10.23	-3.23	2.10	6.98	1.00	18.24	0.09 (0.18)	0.40(0.79)	0.63 (0.84)
		TRI	10.24	-3.21	2.08	6.97	1.05	18.22	0.08 (0.16)	0.40(0.72)	0.63(0.80)
		PV	10.36	-3.17	2.09	6.94	1.15	18.20	0.08 (0.17)	0.48(0.76)	0.76(0.89)
	MR/CT	NN	10.24	-3.17	2.09	6.95	1.04	18.18	0.08 (0.16)	0.41 (0.74)	0.64 (0.74)
	837	TRI	10.24	-3.15	2.07	6.92	1.00	18.23	0.08 (0.15)	0.41(0.76)	0.64(0.80)
		PV	10.39	-3.14	2.09	6.90	1.15	18.18	0.10 (0.18)	0.51 (0.77)	0.79 (0.94)
В	Reference	e [25]	9.62	-3.13	2.01	7.00	1.14	18.15			
	CT/MR	NN	10.02	-3.42	2.25	6.63	0.34	18.28	0.40 (0.83)	0.80 (1.45)	0.43 (0.84)
		TRI	10.27	-3.11	2.05	6.53	0.54	18.34	0.48 (0.54)	0.61(1.22)	0.67 (0.99)
		PV	10.57	-3.17	2.11	6.60	0.62	18.36	0.40 (0.53)	0.68(1.47)	0.97 (1.32)
	MR/CT	NN	10.17	-3.06	2.25	6.47	0.30	17.90	0.54 (0.84)	0.84 (1.57)	0.57 (1.03)
	5.54.54.54.54.54.54.54.54.54.54.54.54.54	TRI	10.03	-3.05	2.22	6.44	0.37	18.19	0.56 (0.84)	0.77(1.34)	0.42(0.64)
		PV	10.29	-3.16	2.08	6.48	0.33	17.95	0.52 (0.61)	0.81 (1.48)	0.69 (0.98)

Experiments

MI Registration Parameters(2)

C	Reference	[10]	-0.63	0.05	4.74	26.15	-41.08	-12.35			
	CT/MR	NN	0.87	0.05	4.84	26.70	-40.67	-9.92	0.54 (0.70)	0.74 (1.33)	2.43 (4.80)
		TRI	1.21	-1.94	3.67	29.51	-39.78	43.61	-	-	_
		PV	-0.00	0.00	4.95	26.57	-40.72	-10.00	0.41 (0.77)	0.49(1.00)	2.35(3.28)
	MR/CT	NN	-0.21	0.00	4.95	26.56	-41.27	-12.01	0.41 (0.76)	0.35 (0.71)	0.62 (0.98)
	100000000000000000000000000000000000000	TRI	-0.51	0.25	5.03	26.35	-40.80	-11.84	0.42 (0.75)	0.43(0.79)	0.51(0.95)
		PV	-1.58	0.13	4.97	26.48	-41.39	-12.18	0.35 (0.73)	0.56(1.18)	1.38 (1.57)
C	Reference	[10]	1.52	-1.17	4.22	27.62	-2.60	-4.46			
	PET/MR	NN	0.70	0.26	5.20	27.57	-0.74	-5.08	1.40 (2.28)	1.82 (3.66)	1.97 (3.91)
'	Series Control Scale State	TRI	0.38	0.01	5.25	27.50	-1.29	-1.37	1.47 (2.31)	1.62 (3.34)	3.22(6.46)
		PV	1.63	0.18	4.98	27.65	-0.46	-4.94	1.09 (1.83)	2.14 (3.32)	1.97 (2.46)
	MR/PET	NN	0.42	0.14	5.04	27.93	-1.28	-5.03	1.17 (2.16)	1.47 (3.00)	2.00 (4.03)
		TRI	0.16	-0.11	4.90	27.99	-1.60	-4.27	0.98 (1.90)	1.27 (2.59)	2.05 (3.66)
		PV	1.46	-0.34	4.71	27.94	-0.85	-4.49	0.72 (1.44)	1.74 (2.49)	1.19 (1.37)

_

Conclusion

- Estimations of the image intensity distributions were obtained by simple normalization of the joint histogram.
- fixed number of bins of 256 × 256
- Finally, other registration criteria can be derived from the one presented here, using alternative information measures applied on different features.