Recommended completion: April 10, 2018

Exercise 9 TTK4130 Modeling and Simulation

Problem 1 (Sliding stick (Exam 2010))

Consider a stick of length ℓ with uniformly distributed mass m. It has center of mass/gravity C, about which it has a moment of inertia I_z . The stick is in contact with a frictionless horizontal surface, and moves due to the influence of gravity. See Figure 1.

Figure 1: Stick sliding on frictionless surface

- (a) Choose appropriate generalized coordinates (the figure should give you some hints). What are the corresponding generalized (actuator) forces?
- (b) What are the position, velocity, and angular velocity of the center of mass, as function of your chosen generalized coordinates (and/or their derivatives)?
- (c) Write up the kinetic and potential energy of the stick, as function of your chosen generalized coordinates (and/or their derivatives).
- (d) Derive the equations of motion for the stick.

Problem 2 (Double inverted pendulum)

The double inverted pendulum on a cart (DIPC) poses a The double inverted pendulum on a cart (DIPC) poses a challenging control problem. In a DIPC system, two rods are connected together on a moving cart as shown in Figure 2. The rod is located above the centre of mass of the cart. The length of the first rod is denoted by l_1 and the length of the second rod by l_2 . The mass of the cart is denoted by m_0 , its length by m_0 and its width by m_0 . The height of the cart is denoted by m_0 . Both rods have a mass, which are denoted by m_1 and m_2 . All masses are assumed to be concentrated into the centre of mass. The moments of inertia are denoted by m_1 . Furthermore, the force τ is acting on the cart.

- (a) Find the position of cart and the two rods.
- (b) Find the kinetic energy of the system. $\left(Hint: \cos(x-y) = \cos x \cos y + \sin x \sin y\right)$
- (c) Find the potential energy of the system.
- (d) Find the equation of motion of the system.
- (e) The moment of inertia is defined as

$$I = \int_{\mathcal{O}} r^2 dm \tag{18}$$

Figure 2: Double inverted pendulum on a cart

where r is the distance from each point to the axis of rotation and Q is the entire mass. Derive the moment of inertia for the rectangular plate with the length l and height h for the centre of mass of the plate (Fig. 3). The axis of rotation is the z-axis (perpendicular to the plate). Assume that the plate has a constant width b and a homogeneous density ρ .

Figure 3: Rectangular plate

(f) Use the parallel axes theorem to change the point of rotation from the centre of mass to point **A** given in Fig. 5.

(Help: If you were not able to solve the previous task, use as moment of inertia $I = \frac{1}{4}m(l^2 + h^2)$ Please state explicitly, if you use this for further calculations.)

Figure 5: Rectangular plate with attachment on one corner

(g) Make an appropriate simplification for the moment of inertia of the rods used in the DIPC system. Justify your decision!