厦门大学高等代数教案 网站 IP 地址: 59.77.1.116; 域名: gdjpkc.xmu.edu.cn

§4.2 线性映射和运算

- 1. 判断以下哪些映射是线性映射.
- (1) $\varphi: F^3 \to F^3, (a, b, c)^T \mapsto (a b, b 2c, c + 3a)^T;$
- (2) $\varphi: F^3 \to F^3, (a, b, c)^T \mapsto (a^2, b^2, c^2)^T;$
- (3) 设 A 是给定的 $m \times n$ 阶方阵, $\beta \in F^m$, $\varphi : F^n \to F^m$, $X \mapsto AX + \beta$;
- (4) 设 A 是给定的 $m \times n$ 阶方阵, B 是给定的 $n \times m$ 阶方阵, $\varphi: F^{n \times n} \to F^{m \times m}$, $X \mapsto AXB$.
 - 解 (1) 是; (2) 不是; (3) $\beta = 0$ 时, 是; $\beta \neq 0$ 时, 不是; (4) 是.
 - 2. 在 \mathbb{C} 上,定义变换 $\varphi: a+bi \mapsto a-bi, (a,b \in \mathbb{R})$. 证明:
 - (1) \mathbb{C} 作为 \mathbb{R} 上的空间, φ 是 \mathbb{C} 的线性变换;
 - (2) \mathbb{C} 作为 \mathbb{C} 上的空间, φ 不是 \mathbb{C} 的线性变换.

证明 (1) 对任何 $a+bi, c+di \in \mathbb{C}, k \in \mathbb{R}, \varphi(a+bi+c+di) = (a+c)-(b+d)i = (a-bi)+(c-di)=\varphi(a+bi)+\varphi(a+bi), \varphi(k(a+bi))=\varphi(ka+kbi)=ka-kbi=k(a-bi)=k\varphi(a+bi),$ 所以, \mathbb{C} 作为 \mathbb{R} 上的空间 φ 是 \mathbb{C} 的线性变换;

- (2) $\varphi(i(a+bi)) = \varphi(ai-b) = -b-ai \neq i(a-bi) = i\varphi(a+bi)$, 故 $\mathbb C$ 作为 $\mathbb C$ 上的空间, φ 不保持数乘,所以 φ 不是 $\mathbb C$ 的线性变换. \square
- 3. 设 $\varphi:V\to U$ 是线性映射. 若 W 是 U 的子空间,则 $\varphi^{-1}(W)=\{\alpha\in V|\varphi(\alpha)\in W\}$ 是 V 的子空间.

证明 对任何 $\alpha, \beta \in \varphi^{-1}(W)$, 对任意的 $k \in F$, 有 $\varphi(\alpha), \varphi(\beta) \in W$, 因为 W 是子空间, φ 是线性映射,所以 $\varphi(\alpha+\beta) = \varphi(\alpha) + \varphi(\beta) \in W$, $\varphi(k\alpha) = k\varphi(\alpha) \in W$, 即 $\alpha+\beta \in \varphi^{-1}(W)$, $k\alpha \in \varphi^{-1}(W)$, 所以 $\varphi^{-1}(W) = \{\alpha \in V | \varphi(\alpha) \in W\}$ 是 V 的子空间. \square

4. 设 V_1, V_2 是线性空间 V 的子空间且 $V = V_1 \cap V_2$. 对 i = 1, 2, 定义

$$\tau_i: V \to V_i, \quad \alpha_1 + \alpha_2 \mapsto \alpha_i;$$

$$\sigma_1: V_1 \to V, \quad \alpha_1 \mapsto \alpha_1 + 0;$$

$$\sigma_2: V_2 \to V, \quad \alpha_2 \mapsto 0 + \alpha_2.$$

验证 $\tau_i, \sigma_i (i = 1, 2)$ 是线性映射且满足

$$\tau_j \sigma_i = \delta_{ij} \mathrm{id}_{V_i}, (i, j = 1, 2) \ \sigma_1 \tau_1 + \sigma_2 \tau_2 = \mathrm{id}_V.$$

证明 对任何 $\alpha_1 + \alpha_2, \beta_1 + \beta_2 \in V_1 \bigoplus V_2, k \in F$, 其中 $\alpha_1, \beta_1 \in V_1, \alpha_2, \beta_2 \in V_2$, 有 $\tau_i(\alpha_1 + \alpha_2 + \beta_1 + \beta_2) = \alpha_i + \beta_i = \tau_i(\alpha_1 + \alpha_2) + \tau_i(\beta_1 + \beta_2), \tau_i(k(\alpha_1 + \alpha_2)) = k(\alpha_i) = k\tau_i(\alpha_1 + \alpha_2)$; 所以 $\tau_i(i = 1, 2)$ 是线性映射;

对任何 α_1 , $\beta_1 \in V_1$, $k \in F$, 有 $\sigma_1(\alpha_1 + \beta_1) = \alpha_1 + \beta_1 + 0 = \alpha_1 + 0 + \beta_1 + 0 = \sigma_1(\alpha_1) + \sigma_1(\alpha_2)$, $\sigma_1(k\alpha_1) = k\alpha_1 + 0 = k(\alpha_1 + 0) = k\sigma_1(\alpha_1)$; 所以 σ_1 是线性映射,同理可证 σ_2 是线性映射.

而对任何 $\alpha_1 \in V_1$, $\alpha_2 \in V_2$, 有 $\tau_1 \sigma_1(\alpha_1) = \tau_1(\alpha_1 + 0) = \alpha_1$, $\tau_1 \sigma_2(\alpha_2) = \tau_1(0 + \alpha_2) = 0$, $\tau_2 \sigma_1(\alpha_1) = \tau_2(\alpha_1 + 0) = 0$, $\tau_2 \sigma_2(\alpha_2) = \tau_2(0 + \alpha_2) = \alpha_2$; 所以有 $\tau_j \sigma_i = \delta_{ij} \mathrm{id}_{V_i}$, (i, j = 1, 2).

因 $V = V_1 \oplus V_2$, 所以对任何 $\alpha \in V$, α 可唯一分解为 $\alpha_1 + \alpha_2$, 其中 $\alpha_1 \in V_1$, $\alpha_2 \in V_2$, 则 $(\sigma_1 \tau_1 + \sigma_2 \tau_2)(\alpha) = \sigma_1 \tau_1(\alpha_1 + \alpha_2) + \sigma_2 \tau_2(\alpha_1 + \alpha_2) = \sigma_1(\alpha_1) + \sigma_2(\alpha_2) = \alpha_1 + 0 + 0 + \alpha_2 = \alpha_1 + \alpha_2 = \alpha$; 故 $\sigma_1 \tau_1 + \sigma_2 \tau_2 = \mathrm{id}_V$. \square

5. 设 V 是数域 F 上 n 维线性空间, U 是数域 F 上 m 维线性空间, $\varphi \in \mathfrak{L}(V,U)$. 证明存在 V 的一个基 ξ_1,ξ_2,\cdots,ξ_n 和 U 的一个基 $\eta_1,\eta_2,\cdots,\eta_m$, 使得

$$\varphi(\xi_1, \xi_2, \dots, \xi_n) = (\eta_1, \eta_2, \dots, \eta_m) \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}.$$

证明 因 $\varphi \in \mathfrak{L}(V,U)$, 所以可设 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是 V 的一个基, $\beta_1,\beta_2,\cdots,\beta_m$ 是 U 的一个基,且 $\varphi(\alpha_1,\alpha_2,\cdots,\alpha_n)=(\beta_1,\beta_2,\cdots,\beta_m)A$, 其中 $A \in F^{m \times n}$.

对 A, 存在可逆阵 P,Q, 使得

$$PAQ = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}.$$

令 $(\xi_1, \xi_2, \dots, \xi_n) = (\alpha_1, \alpha_2, \dots, \alpha_n)Q, (\eta_1, \eta_2, \dots, \eta_m) = (\beta_1, \beta_2, \dots, \beta_m)P^{-1}, 则$ $\xi_1, \xi_2, \dots, \xi_n$ 是 V 的一个基, $\eta_1, \eta_2, \dots, \eta_m$ 是 U 的一个基, 且

$$\varphi(\xi_1, \xi_2, \dots, \xi_n) = (\eta_1, \eta_2, \dots, \eta_m) \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}.$$

(万琴解答)