(i)

Consider the fooling set

$$F = \{0^n \mid n \ge 1\}$$

Without loss of generality, We pick the element 0^n and 0^m where n < m. We set the suffix to be 2^{n-1} . The $0^n 2^{n-1}$ is in the language because in this case i+j=n+0=n and k+1=n-1+1=n. Therefore i+j=k+1. However, $0^m 2^{n-1}$ is not in the language since i+j=m+0=m, and k+1=n-1+1=n, and $m \neq n$ obviously from our assumption. Therefore, this fooling set includes infinite elements that are mutually distinguishable.

(ii)

Consider the fooling set

$$F = \{0^i 1 \mid i \ge 1\}$$

Without loss of generality, we pick the element 0^i1 and 0^j1 from the fooling set where i < j. We set the suffix to be 0^i . The 0^i10^i is thus in the language because there is two empty blocks (namely, 0^i since i>0) that are equal length (length i). However, the 0^i10^j is not in the language because its two non-empty blocks 0^i and 0^j (non-empty since i>0 and j>0) has different length (because $i\neq j$ from our assumption). Therefore, this fooling set includes infinite elements that are mutually distinguishable.

(iii)

Consider the fooling set with recursive definition:

- ullet Base: $F[0]=0^{k\cdot 2^k}$ where $k\geq 2$ (you could choose any $k\geq 2$ as you want)
- ullet Induction: Write the previous element in the form of $F[n-1]=0^{i\cdot 2^i}$, let $m=2^{i+1}$ and

$$F[n] = 0^{m \cdot 2^m}$$

It's obvious that all elements in F is in the language. To show this, we pick an element $0^{i\cdot 2^i}$. We see that

$$0^{i \cdot 2^i} = 0^{\log_2 2^i \cdot 2^i} = 0^{\lceil \log_2 2^i \cdot 2^i
ceil}$$

which match the definition of the language. It's also trivial that if we write the element in the form of $0^{i\cdot 2^i}$, it's always true that $i\geq 2$. It's also trivial to see that if two elements $F[a]=0^{i\cdot 2^i}$ and $F[b]=0^{j\cdot 2^j}$, then if a>b then i>j.

We are gonna prove that for any two elements $F[a]=0^{i\cdot 2^i}$ and $F[b]=0^{j\cdot 2^j}$ in the fooling set where a>b (i< j) (without loss of generality), the suffix s that makes $0^{i\cdot 2^i}s=0^{\lceil (2^i+1)\cdot\log_2(2^i+1)\rceil}$ (this is just the next immediate element of the $0^{i\cdot 2^i}$ in the L) has **smaller** length than the suffix s' that make $0^{j\cdot 2^j}s'=0^{\lceil (2^j+1)\cdot\log_2(2^j+1)\rceil}$ (the next immediate element of $0^{j\cdot 2^j}$ in L). To show this, we use induction on the size of F:

• Base case, there is the case when there is only $F[0] = 0^{k \cdot 2^k}$ and $F[1] = 0^{m \cdot 2^m}$ in F. In this case, we see that the **length** of the suffix s should be (s itself obviously should be a run of 0 s).

$$egin{aligned} |s| &= \lceil (2^k+1) \cdot \log_2(2^k+1)
ceil - k \cdot 2^k \ &\leq \lceil (2^k+1) \cdot \log_2(2^{k+1})
ceil - k \cdot 2^k \ &= (2^k+1) \cdot (k+1) - k \cdot 2^k \ &= 2^k + k + 1 \end{aligned}$$

Notice, we use that fact that $2^{k+1} \geq 2^k + 1$ for $k \geq 2$

we have find a upper bound for the length of the suffix. However, we could also calculate the lower bound of the suffix s' that could make $0^{m \cdot 2^m} s' = 0^{\lceil (2^m+1) \cdot \log_2(2^m+1) \rceil}$:

$$egin{aligned} |s'| &= \lceil (2^m+1) \cdot \log_2(2^m+1)
ceil - m \cdot 2^m \ &\geq \lceil (2^m+1) \cdot \log_2(2^m)
ceil - m \cdot 2^m \ &= (2^m+1) \cdot m - m \cdot 2^m \ &= m = 2^{k+1} \end{aligned}$$

and we see that $|s'|=2^{k+1}=2^k+2^k>2^k+k+1=|s|$ since $k\geq 2$, which proves the hypothesis in base case.

• Induction, suppose the above hypothesis works for $F=\{F[0],F[1],\cdots,F[n]\}$. We add a new element F[n+1] according to its definition, and we want to prove the hypothesis still holds. Consider any two elements, F[l] ($0 \le l \le n$) and F[n+1]. We write them in the form: $F[l]=0^{i\cdot 2^i}$ and $F[n]=0^{j\cdot 2^j}$, and $F[n+1]=0^{p\cdot 2^p}$. From the inductive hypothesis, we know that the suffix s that make $F[l]s=0^{\lceil (2^i+1)\cdot \log_2(2^i+1)\rceil}$ and the suffix s' that makes $F[n]s=0^{\lceil (2^j+1)\cdot \log_2(2^j+1)\rceil}$ satisfy the relation that $|s|\le |s'|$ (notice the condition when they are equal is when l=n). We know that

$$|s'| = \lceil (2^j + 1) \cdot \log_2(2^j + 1) \rceil - j \cdot 2^j$$

 $\leq \lceil (2^j + 1) \cdot \log_2(2^{j+1}) \rceil - j \cdot 2^j$
 $= (2^j + 1) \cdot (j + 1) - j \cdot 2^j$
 $= 2^j + j + 1$

and suppose that the suffix s'' make $F[n+1]s''=0^{\lceil (2^p+1)\cdot \log_2(2^p+1) \rceil}.$ Then

$$egin{aligned} |s''| &= \lceil (2^p+1) \cdot \log_2(2^p+1)
ceil - p \cdot 2^p \ &\geq \lceil (2^p+1) \cdot \log_2(2^p)
ceil - p \cdot 2^p \ &= (2^p+1) \cdot p - p \cdot 2^p \ &= p = 2^{j+1} \end{aligned}$$

using the same trick in base case, we see that $|s''|=2^{j+1}=2^j+2^j>2^j+j+1=|s'|$, since $j\geq 2$. From this, we get |s''|>|s|, and we prove the hypothesis.

Once this hypothesis proved, for any two different elements in our set F[a] and F[b] with a>b, we could find one suffix s that F[a]s is next immediate element of F[a] in language L. However, since hypothesis said the suffix s' that makes F[b]s' the next immediate element of F[b] in language L is longer than s, that means F[b]s is not in the language. Therefore, this infinite fooling set is valid with its elements mutually distinguishable.

For L_k , consider the fooling set F

$$F = \{\{0, 1\}^k\}$$

this set has size of 2^k . To prove it's working, we first define a size k tuple t associate with each string s in F:

- t[0] = s[0]
- t[i] = t[i-1] + s[i], k > i > 0

(Note the implicit conversion from string $\, 0 \,$ and $\, 1 \,$ to number). Informally, each entry t[k] counts the number of $\, 1 \,$ in $\, s \,$ from $\, s[0] \,$ to $\, s[i] \,$. Note, two different string $\, u \,$ and $\, v \,$ in $\, F \,$ will have different $\, t_u \,$ and $\, t_v \,$. Prove this by contradiction: suppose $\, t_u = t_v \,$. Then

- $u[0] = t_u[0] = t_v[0] = v[0]$
- $ullet u[i]=t_u[i]-t_u[i-1]=t_v[i]-t_v[i-1]=v[i]$, for k>i>0 .

This means u=v, which violates our assumption that u are v are different. So, two different strings u and v in F must have different t_u and t_v .

Therefore, to prove that this fooling set is valid, we pick two different string u and v. Since they are different, we have a different t_u and t_v . Since the tuple are different, they need to have at least one entry such that $t_u[i] \neq t_v[i]$. Use a suffix s that is 2k - (i+1) long and contains $k - t_u[i]$ 1 s. Such suffix exists because $2k - (i+1) \geq k$ since i < k, and $k - t_u[i] \leq k$ since $t_u[i] \geq 0$. With the suffix s, both s and s has length s and s will be s and s will be s and s will be s and s with s and s and s and s and s so and s are a suffixed as s and s and s so an analysis s so and s so an analysis s so a

(c)

First notice that

$$(L\backslash L')\cup (L\cap L')=L$$

We use proof by contradiction. Suppose $L \setminus L'$ is regular, then since L' is finite, the intersection $L \cap L'$ is finite too. This means $L \cap L'$ is also regular. (We could just loop through every string s in $L \cap L'$ and construct a regular expression r that is union of all the strings, this will make $L(r) = L \cap L'$). Now we know that both $L \setminus L'$ and $L \cap L'$, there union is also regular since regular language is closed under union. However, that means L is regular, which contradicts with the assumption. Therefore, $L \setminus L'$ is not regular.

For the example, consider the $L=\{1^n0^n\mid n\geq 0\}$, and L' represented by 1^*0^* . Obviously, this means that $L\setminus L'=\emptyset$, and it's obviously regular.