ELEMENTARY COMBINATORICS & PROBABILITY

Lecture 11

Random variables

LAST TIME

- Random variables
- Probability mass function
- Cumulative distribution function

TODAY

- Review PMFs and CDFs
- Special distributions

PMF AND CDF

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

PMF AND CDF

• For a discrete random variable X with range $R_X = \{x_1, x_2, ...\}$ probability mass function (PMF) is defined as

$$P_X(x) = \begin{cases} P(X = x), & x \in R_X \\ 0, & x \notin R_X \end{cases}$$

• Cumulative distribution function (CDF) of a random variable X is defined as follows:

$$F_X(x) = P(X \le x) \quad \forall x \in \mathbb{R}$$

$$P_X(x) = P(X = x) = \begin{cases} \\ \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} x = 0\\ x = 1\\ x = 3\\ otherwise \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0\\ & x = 1\\ & x = 3\\ & otherwise \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ & x = 3 \end{cases}$$

$$otherwise$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ & otherwise \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ 0, & otherwise \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} \\ \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} x < 0 \\ 0 \le x < 1 \\ 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0 \le x < 1 \\ 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.25, & 0 \le x < 1 \\ 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.25, & 0 \le x < 1 \\ 0.75, & 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.25, & x = 0 \\ 0.5, & x = 1 \\ 0.25, & x = 3 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.25, & 0 \le x < 1 \\ 0.75, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

$$R_X = \{ \}$$

$$R_X = \{0, 1, 2\}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} F_X(x) = P(X \le x) = \begin{cases} F_X(x) = P(X \le x) \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} x = 0 \\ x = 1 \\ x = 2 \end{cases}$$

$$Otherwise$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ x = 1 & F_X(x) = P(X \le x) = \begin{cases} x = 2 \\ otherwise \end{cases} \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ x = 2 \\ otherwise \end{cases} F_X(x) = P(X \le x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ otherwise \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ otherwise \end{cases} F_X(x) = P(X \le x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$
 $F_X(x) = P(X \le x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} x < 0 \\ 0 \le x < 1 \\ 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0 \le x < 1 \\ 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.1 & 0 \le x < 1 \\ 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.1 & 0 \le x < 1 \\ 0.7, & 1 \le x < 2 \\ x \ge 2 \end{cases}$$

$$R_X = \{0, 1, 2\}$$

$$P_X(x) = P(X = x) = \begin{cases} 0.1, & x = 0 \\ 0.6, & x = 1 \\ 0.3, & x = 2 \\ 0, & otherwise \end{cases}$$

$$F_X(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 0.1 & 0 \le x < 1 \\ 0.7, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{$$

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

• Distribution of *X*:

\boldsymbol{x}			
P(X=x)			

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

• Distribution of *X*:

\boldsymbol{x}	1	2	3	4	5	6
P(X=x)						

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

\boldsymbol{x}	1	2	3	4	5	6
P(X=x)				$1+2\cdot 3$		
$\prod_{i=1}^{n} (X_i = X_i)$				36		

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

χ	1	2	3	4	5	6
P(X = x)	1			$1+2\cdot 3$		
I(X-X)	3 6			36		

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

χ	1	2	3	4	5	6
P(X=x)	1	1 + 2		$1+2\cdot 3$		
$\prod_{i=1}^{n} (X_i - X_i)$	36	36		36		

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

χ	1	2	3	4	5	6
P(X = x)	1	1 + 2	$1+2\cdot 2$	$1+2\cdot 3$		
$\prod_{i=1}^{n} (X_i - X_i)$	$\overline{36}$	36	36	36		

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

χ	1	2	3	4	5	6
P(X = x)	1	1 + 2	$1+2\cdot 2$	$1+2\cdot 3$	$1+2\cdot 4$	
I(X - X)	36	36	36	36	36	

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

χ	1	2	3	4	5	6
P(X=x)	1	1 + 2	$1+2\cdot 2$	$1+2\cdot 3$	$1+2\cdot 4$	$1+2\cdot 5$
I(X-X)	3 6	36	36	36	36	36

• You are rolling a pair of dice. Let random variable *X* denote the maximum of the two numbers you got.

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

χ	1	2	3	4	5	6
P(X=x)	1	3	5	7	9	11
$\begin{bmatrix} 1 & (I1 - X) \end{bmatrix}$	36	36	36	36	36	36

R	JL	LIIN	U	U	CE

x	1	2	3	4	5	6
P(X = x)	1_	3	5_	7	9	<u>11</u>
1 (11 %)	36	36	36	36	36	36

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \left\{ \right.$$

KU	NG	

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} x < 1 \\ 1 \le x < 2 \\ 2 \le x < 3 \\ 3 \le x < 4 \\ 4 \le x < 5 \\ 5 \le x < 6 \\ x \ge 6 \end{cases}$$

KU	NG	

x	1	2	3	4	5	6
P(X = x)	1	3	5	7	9	11
$\Gamma(\Lambda-\lambda)$	36	36	36	36	36	36

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1 \\ 1 \le x < 2 \\ 2 \le x < 3 \\ 3 \le x < 4 \\ 4 \le x < 5 \\ 5 \le x < 6 \\ x \ge 6 \end{cases}$$

KO	NG	

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1 \\ 1/36, & 1 \le x < 2 \\ 2 \le x < 3 \\ 3 \le x < 4 \\ 4 \le x < 5 \\ 5 \le x < 6 \\ x \ge 6 \end{cases}$$

KO	NG	

x	1	2	3	4	5	6
P(X = x)	1	3	5	7	9	11
$\Gamma(\Lambda-\lambda)$	36	36	36	36	36	36

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1/36, & 1 \le x < 2\\ 4/36, & 2 \le x < 3\\ 3 \le x < 4\\ 4 \le x < 5\\ 5 \le x < 6\\ x \ge 6 \end{cases}$$

KO	NG	

x	1	2	3	4	5	6
P(X = x)	1	3	5	7	9	11
$\Gamma(\Lambda-\lambda)$	36	36	36	36	36	36

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1/36, & 1 \le x < 2\\ 4/36, & 2 \le x < 3\\ 9/36, & 3 \le x < 4\\ & 4 \le x < 5\\ & 5 \le x < 6\\ & x \ge 6 \end{cases}$$

RO	NG	

х	1	2	3	4	5	6
P(X=x)	$\frac{1}{36}$	$\frac{3}{36}$	$\frac{5}{36}$	$\frac{7}{36}$	$\frac{9}{36}$	$\frac{11}{36}$

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1/36, & 1 \le x < 2\\ 4/36, & 2 \le x < 3\\ 9/36, & 3 \le x < 4\\ 16/36, & 4 \le x < 5\\ 5 \le x < 6\\ x \ge 6 \end{cases}$$

KO	NG	

x	1	2	3	4	5	6
P(X=x)	1_	3	5	7	9	11
P(X - X)	36	36	36	36	36	36

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1 \\ 1/36, & 1 \le x < 2 \\ 4/36, & 2 \le x < 3 \\ 9/36, & 3 \le x < 4 \\ 16/36, & 4 \le x < 5 \\ 25/36, & 5 \le x < 6 \\ x \ge 6 \end{cases}$$

KO	NG	

x	1	2	3	4	5	6
$D(V - \alpha)$	1	3	5	7	9	11
P(X=x)	36	36	36	36	36	36

$$R_X = \{1, 2, 3, 4, 5, 6\}$$

$$F_X(x) = \begin{cases} 0, & x < 1\\ 1/36, & 1 \le x < 2\\ 4/36, & 2 \le x < 3\\ 9/36, & 3 \le x < 4\\ 16/36, & 4 \le x < 5\\ 25/36, & 5 \le x < 6\\ 1, & x \ge 6 \end{cases}$$

CDF OF A DISCRETE RANDOM VARIABLE

PMF AND CDF: BASIC PROPERTIES

- Which basic properties does a PMF function have?
 - $0 \le P(x) \le 1$
 - All non-zero values sum up to one

PMF AND CDF: BASIC PROPERTIES

- Which basic properties does a PMF function have?
 - $0 \le P(x) \le 1$
 - All non-zero values sum up to one
- Which basic properties does a CDF function have?
 - $0 \le F(x) \le 1$
 - F(x) is non-decreasing

ROLLING DICE: PMF AND CDF

Google Classroom -> Programming exercise

SPECIAL DISTRIBUTIONS

- Consider a random experiment with two possible outcomes: "success" (with probability p) or "failure" (with probability 1-p)
 - tossing a coin: H or T;
 - a new child: a boy r a girl;
 - you take an exam: pass or fail.

- Consider a random experiment with two possible outcomes: "success" (with probability p) or "failure" (with probability 1-p)
 - tossing a coin: H or T;
 - a new child: a boy r a girl;
 - you take an exam: pass or fail.
- Consider a random variable X

χ	0	1
P(X=x)		

- Consider a random experiment with two possible outcomes: "success" (with probability p) or "failure" (with probability 1-p)
 - tossing a coin: H or T;
 - a new child: a boy r a girl;
 - you take an exam: pass or fail.
- Consider a random variable X

\boldsymbol{x}	0	1
P(X=x)	1-p	p

- Consider a random experiment with two possible outcomes: "success" (with probability p) or "failure" (with probability 1-p)
 - tossing a coin: H or T;
 - a new child: a boy r a girl;
 - you take an exam: pass or fail.
- Consider a random variable $X \sim Bernoulli(p)$

\boldsymbol{x}	0	1
P(X=x)	1-p	p

• A random variable X is said to be a Bernoulli random variable with parameter p if its PMF is given by

$$P_X(x) = P(X = x) = \begin{cases} p, & x = 1\\ 1 - p, & x = 0\\ 0, & \text{otherwise} \end{cases}$$

- You need to answer a multiple-choice question (4 options, only 1 is correct).
- You don't know the answer, so you are randomly guessing.

- You need to answer a multiple-choice question (4 options, only 1 is correct).
- You don't know the answer, so you are randomly guessing.
- X- a random variable: X=1 if guessed correctly and X=0 otherwise.

- You need to answer a multiple-choice question (4 options, only 1 is correct).
- You don't know the answer, so you are randomly guessing.
- X- a random variable: X=1 if guessed correctly and X=0 otherwise.

 $X \sim Bernoulli($)

- You need to answer a multiple-choice question (4 options, only 1 is correct).
- You don't know the answer, so you are randomly guessing.
- X- a random variable: X=1 if guessed correctly and X=0 otherwise.

 $X \sim Bernoulli(0.25)$

- You need to answer a multiple-choice question (4 options, only 1 is correct).
- You don't know the answer, so you are randomly guessing.
- X- a random variable: X=1 if guessed correctly and X=0 otherwise.

 $X \sim Bernoulli(0.25)$

$$P_X(x) = P(X = x) =$$

- You need to answer a multiple-choice question (4 options, only 1 is correct).
- You don't know the answer, so you are randomly guessing.
- X- a random variable: X=1 if guessed correctly and X=0 otherwise.

$$X \sim Bernoulli(0.25)$$

$$P_X(x) = P(X = x) = \begin{cases} 0.75, & x = 0 \\ 0.25, & x = 1 \\ 0, & \text{otherwise} \end{cases}$$

 You toss a coin once. Random variable X get heads:

denotes if you

$$R_X = \{0,1\},$$

$$R_X = \{0,1\}, \qquad P(X = 0) = P(T) = 1 - p, \qquad P(X = 1) = P(H) = p$$

$$P(X = 1) = P(H) = p$$

• You toss a coin once. Random variable $X \sim Bernoulli(p)$ denotes if you get heads:

$$R_X = \{0,1\}, \qquad P(X = 0) = P(T) = 1 - p, \qquad P(X = 1) = P(H) = p$$

• You toss a coin once. Random variable $X \sim Bernoulli(p)$ denotes if you get heads:

$$R_X = \{0,1\}, \qquad P(X = 0) = P(T) = 1 - p, \qquad P(X = 1) = P(H) = p$$

$$R_Y = \{$$

• You toss a coin once. Random variable $X \sim Bernoulli(p)$ denotes if you get heads:

$$R_X = \{0,1\}, \qquad P(X = 0) = P(T) = 1 - p, \qquad P(X = 1) = P(H) = p$$

$$R_Y = \{0, 1, 2, ..., n\}$$

• You toss a coin once. Random variable $X \sim Bernoulli(p)$ denotes if you get heads:

$$R_X = \{0,1\}, \qquad P(X = 0) = P(T) = 1 - p, \qquad P(X = 1) = P(H) = p$$

$$R_Y = \{0, 1, 2, ..., n\}$$

$$P(Y = k) =$$

• You toss a coin once. Random variable $X \sim Bernoulli(p)$ denotes if you get heads:

$$R_X = \{0,1\}, \qquad P(X = 0) = P(T) = 1 - p, \qquad P(X = 1) = P(H) = p$$

$$R_Y = \{0, 1, 2, ..., n\}$$

$$P(Y = k) = P(kH, (n - k)T) =$$

• You toss a coin once. Random variable $X \sim Bernoulli(p)$ denotes if you get heads:

$$R_X = \{0,1\}, \qquad P(X = 0) = P(T) = 1 - p, \qquad P(X = 1) = P(H) = p$$

$$R_Y = \{0, 1, 2, ..., n\}$$

$$P(Y = k) = P(kH, (n - k)T) = C(n, k) \cdot p^k (1 - p)^{n - k}$$

• You toss a coin once. Random variable $X \sim Bernoulli(p)$ denotes if you get heads:

$$R_X = \{0,1\}, \qquad P(X = 0) = P(T) = 1 - p, \qquad P(X = 1) = P(H) = p$$

$$R_Y = \{0, 1, 2, ..., n\}$$

$$P(Y = k) = P(kH, (n - k)T) = C(n, k) \cdot p^k (1 - p)^{n-k}$$

$$Y \sim Binomial(n, p)$$

• A random variable Y is said to follow Binomial distribution with parameters n and p if its PMF is given by

$$P_Y(k) = P(Y = k) = \begin{cases} C(n,k) \cdot p^k (1-p)^{n-k}, & k = 0, 1, ..., n \\ 0, & \text{otherwise} \end{cases}$$

• A random variable Y is said to follow Binomial distribution with parameters n and p if its PMF is given by

$$P_Y(k) = P(Y = k) = \begin{cases} C(n,k) \cdot p^k (1-p)^{n-k}, & k = 0,1,...,n \\ 0, & \text{otherwise} \end{cases}$$

• Represents the number of successes in a series of n independent Bernoulli trials, each of which results in success with probability p.

- You are randomly guessing the answers to 5 multiple choice questions (4 options, 1 correct in each).
- $Y \sim Binomial(5, 0.25)$ number of correctly guessed answers.

$$P_Y(k) = C(n, k)p^k(1-p)^{n-k} = \frac{1}{2}$$

- You are randomly guessing the answers to 5 multiple choice questions (4 options, 1 correct in each).
- $Y \sim Binomial(5, 0.25)$ number of correctly guessed answers.

$$P_{Y}(k) = C(n,k)p^{k}(1-p)^{n-k} = \begin{cases} 0.75^{5}, & k = 0 \\ 5 \cdot 0.25 \cdot 0.75^{5}, & k = 1 \\ 10 \cdot 0.25^{2} \cdot 0.75^{3}, & k = 2 \\ 10 \cdot 0.25^{3} \cdot 0.75^{2}, & k = 3 \\ 5 \cdot 0.25^{4} \cdot 0.75, & k = 4 \\ 0.25^{5}, & k = 5 \\ 0, & otherwise \end{cases}$$

• $Y \sim Binomial(5, 0.25)$ – number of correctly guessed answers.

$$P_{Y}(k) = C(n,k)p^{k}(1-p)^{n-k} = \begin{cases} 0.75^{5}, & k = 0 \\ 5 \cdot 0.25 \cdot 0.75^{5}, & k = 1 \\ 10 \cdot 0.25^{2} \cdot 0.75^{3}, & k = 2 \\ 10 \cdot 0.25^{3} \cdot 0.75^{2}, & k = 3 \\ 5 \cdot 0.25^{4} \cdot 0.75, & k = 4 \\ 0.25^{5}, & k = 5 \\ 0, & otherwise \end{cases}$$

What are the chances of passing the test (= guessing 3 or more)?

$$P(Y \ge 3) =$$

• $Y \sim Binomial(5, 0.25)$ – number of correctly guessed answers.

$$P_{Y}(k) = C(n,k)p^{k}(1-p)^{n-k} = \begin{cases} 0.75^{5}, & k = 0 \\ 5 \cdot 0.25 \cdot 0.75^{5}, & k = 1 \\ 10 \cdot 0.25^{2} \cdot 0.75^{3}, & k = 2 \\ 10 \cdot 0.25^{3} \cdot 0.75^{2}, & k = 3 \\ 5 \cdot 0.25^{4} \cdot 0.75, & k = 4 \\ 0.25^{5}, & k = 5 \\ 0, & otherwise \end{cases}$$

What are the chances of passing the test (= guessing 3 or more)?

$$P(Y \ge 3) = P_Y(3) + P_Y(4) + P_Y(5) \sim 0.1035$$