Algebra Introduction

Groups

Definition: A group (G, *) is a set G and a binary operation $*: G \times G \to G$ that satisfies the following properties:

- a.) For all $a, b, c \in G$, we have a * (b * c) = (a * b) * c.

 Associativity
- b.) There exists $e \in G$ where for all $a \in G$ we have a * e = a.
- c.) For all $a \in G$, there exists $a^{-1} \in G$ where $a * a^{-1} = e$.
- d.) For all $a, b \in G$, we have $a * b \in G$.

Definition: Let $(G, *_G)$ and $(H, *_H)$ be groups, then $(G \times H, *)$ is a group where * is defined as

$$(g,h)*(g',h')=(g*_{G}g',h*_{H}h')$$

where $(g', h'), (g', h') \in G \times H$.

Proposition: Let (G, *) be a group. Then the following are true:

- a.) The identity $e \in G$ is unique.
- b.) For all $a \in G$, a^{-1} is unique.
- c.) For all $a \in G$, $(a^{-1})^{-1} = a$.
- d.) For all $a, b \in G$, we have $(ab)^{-1} = b^{-1}a^{-1}$.

Proof of (a): Suppose $e, f \in G$ are both identities in G, then for $a \in G$ we have

$$ae = a = af \implies a^{-1}ae = a^{-1}af \implies e = f,$$

thus the identity is unique.

Proof of (b): Suppose $b, b' \in G$ are both inverses of $a \in G$, then

$$ab = e = ab' \implies a^{-1}ab = a^{-1}ab' \implies b = b',$$

thus inverses are unique.

Definition: Suppose G is a group and let $x \in G$, then the **order** of x (written |x|), is the smallest positive integer n where $x^n = e$, where x^n denotes

$$\underbrace{x * x * \cdots * x}_{n \text{ times}}$$
.

If no such n exists, we say x has infinite order and write $|x| = \infty$.

Algebra Introduction

Dihedral Groups and Symmetries of Geometric Objects

Definition: For $n \in \mathbb{Z}_{\geq 3}$, we define D_{2n} as the **dihedral group** of order 2n, i.e. the symmetries of an n-gon. These symmetries are described by certain permutations of $\{1, 2, \ldots, n\}$. The group D_{2n} is generated by r, a rotation by $2\pi/n$, and s, a reflection across the vertical axis.

We can present D_{2n} using the elements r and s:

$$D_{2n} = \langle r, s : rs = sr^{-1} \rangle,$$

where $r^{-1} = r^{n-1}$. This is in terms of "generators and relations".