Correction du TD3 Mécanique des solides

Exercice 1:

Un cône homogène de hauteur h, de rayon de base R est en mouvement de rotation autour de l'axe vertical $\vec{z_0}$ d'un repère orthonormé fixe, avec une vitesse angulaire $\psi = Cte$. L'axe principal du cône est incliné d'un angle β constant par rapport à cet axe. Le cône tourne aussi autour de son axe principal avec une vitesse angulaire $\dot{\theta} = Cte$ comme représenté sur la figure ci-dessous. Le repère R_2 est le repère relatif.

On prendra aussi le repère R_2 comme repère de projection.

Déterminer :

- 1. Les matrices de passage de R_1 vers R_2 et de R_3 vers R_2 ;
- 2. La vitesse et l'accélération du point C par dérivation ;
- 3. La vitesse et l'accélération du point M par composition de mouvement ;

Solution:

1. Les matrices de passage de R_1 vers R_2 et de R_3 vers R_2 ;

Nous avons : OC = h et $R_0(\vec{x_0}, \vec{y_0}, \vec{z_0})$ un repère fixe et R_2 : le repère de projection. $R_1(\overrightarrow{x_1},\overrightarrow{y_1},\overrightarrow{z_1}) : \text{tel que} : \overrightarrow{z_0} \equiv \overrightarrow{z_1} \text{ et } (\overrightarrow{x_0},\overrightarrow{x_1}) = (\overrightarrow{y_0},\overrightarrow{y_1}) = \psi \text{ avec } \overrightarrow{\Omega_1^0} = \psi \overrightarrow{z_0} = \psi \overrightarrow{z_1} , \psi = Cte$

 $R_1(x_1, y_1, z_2)$: tel que : $x_1 \equiv x_1$ et $(y_1, y_2) = (z_1, z_2) = \beta = Cte$ avec $\Omega_1^1 = 0$, $\beta = 0$

 $R_3(\vec{x_3}, \vec{y_3}, \vec{z_3})$: tel que : $\vec{z_2} \equiv \vec{z_3}$ et $(\vec{x_2}, \vec{x_3}) = (\vec{y_2}, \vec{y_3}) = \theta$ avec $\vec{\Omega_3}^2 = \overset{\bullet}{\theta} \vec{z_2} = \overset{\bullet}{\theta} \vec{z_3}$, $\overset{\bullet}{\theta} = Cte$

Matrice de passage de R₁ vers R₂

$$\begin{pmatrix} \overrightarrow{x_1} \\ \overrightarrow{y_1} \\ \overrightarrow{z_1} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \beta & \sin \beta \\ 0 & -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \overrightarrow{x_2} \\ \overrightarrow{y_2} \\ \overrightarrow{z_2} \end{pmatrix}$$

$$P_{R_1 \to R_2}$$

Matrice de passage de R₃ vers R₂

$$\begin{pmatrix} \overrightarrow{x}_3 \\ \overrightarrow{y}_3 \\ \overrightarrow{z}_3 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \overrightarrow{x}_2 \\ \overrightarrow{y}_2 \\ \overrightarrow{z}_2 \end{pmatrix}$$

$$P_{B} \rightarrow B$$

2. Vitesse et accélération du point C par dérivation ;

2.1. Vitesse

Nous avons:
$$\overrightarrow{OC} = \begin{cases} 0 \\ 0 \\ R_2 \end{cases}$$
, $\overrightarrow{OM} = \overrightarrow{OC} + \overrightarrow{CM} = \begin{cases} 0 \\ 0 \\ R_2 \end{cases}$ and $\begin{cases} R\cos\theta \\ R\sin\theta \\ R_2 \end{cases}$ and $\begin{cases} R\cos\theta \\ R\cos\theta \\ R\cos\theta \\ R_2 \end{cases}$ and $\begin{cases} R\cos\theta \\ R\cos\theta \\ R\cos\theta \\ R_2 \end{cases}$ and $\begin{cases} R\cos\theta \\ R\cos\theta \\ R\cos\theta \\ R\cos\theta$

$$\vec{V}^0(C) = \frac{d^0 \overrightarrow{OC}}{dt} = \frac{d^2 \overrightarrow{OC}}{dt} + \vec{\Omega}_2^0 \wedge \overrightarrow{OC} \quad \text{, avec} : \quad \vec{\Omega}_2^0 = \vec{\Omega}_2^1 + \vec{\Omega}_1^0 = \psi \vec{z}_1$$

or:
$$\vec{z_1} = -\sin\beta \vec{y_2} + \cos\beta \vec{z_2}$$
 d'où: $\vec{\Omega}_2^0 = \begin{cases} 0 \\ -\psi \sin\beta \\ \psi \cos\beta \end{cases}$

$$\vec{V}^{0}(C) = \begin{cases} 0 & \begin{cases} 0 & \begin{cases} 0 & -\psi \sin \beta \\ -\psi \sin \beta & A \end{cases} \\ \psi \cos \beta & R_{2} \end{cases} \begin{cases} 0 & = \begin{cases} -\psi h \sin \beta \\ 0 & 0 \end{cases} \end{cases}$$

2.2. Accélération :

$$\vec{\gamma}^{0}(C) = \frac{d^{0} \vec{V}^{0}(C)}{dt} = \frac{d^{2} \vec{V}^{0}(C)}{dt} + \vec{\Omega}_{2}^{0} \wedge \vec{V}^{0}(C)$$

$$\vec{\gamma}^{0}(C) = \begin{cases} 0 \\ -\psi \sin \beta \\ \psi \cos \beta \end{cases} \wedge \begin{cases} -\psi h \sin \beta \\ 0 \\ 0 \end{cases} = \begin{cases} 0 \\ -\psi^{2} h \sin \beta \cos \beta \\ -\psi^{2} h \sin \beta \sin \beta \end{cases}$$

3. Vitesse et accélération du point M par composition de mouvement;

3.1 Vitesse:

Nous avons: $\vec{V}^0(M) = \vec{V}^2(M) + \vec{V}_2^0(M)$,

avec:
$$\overrightarrow{OM} = \begin{cases} R\cos\theta \\ R\sin\theta \\ h \end{cases} \Rightarrow \overrightarrow{V}^{2}(M) = \frac{\overrightarrow{d^{2}OM}}{dt} = \begin{cases} -R\dot{\theta}\sin\theta \\ R\dot{\theta}\cos\theta \\ 0 \end{cases}$$

$$\vec{V}_{2}^{0}(M) = \vec{V}^{0}(O) + \vec{\Omega}_{2}^{0} \wedge \vec{OM} = \begin{cases} 0 \\ -\dot{\psi}\sin\beta & \wedge \\ \dot{\psi}\cos\beta & R_{2} \end{cases} \begin{cases} R\cos\theta \\ R\sin\theta = \\ h \end{cases} \begin{cases} -\dot{\psi}h\sin\beta - R\dot{\psi}\cos\beta\sin\theta \\ R\dot{\psi}\cos\beta\cos\theta \\ R\dot{\psi}\sin\beta\cos\theta \end{cases}$$

ce qui donne :
$$\vec{V}^{0}(M) = \begin{cases} -\dot{\psi}h\sin\beta - R\dot{\psi}\cos\beta\sin\theta - R\dot{\theta}\sin\theta \\ R\dot{\psi}\cos\beta\cos\theta + R\dot{\theta}\cos\theta \\ R\dot{\psi}\sin\beta\cos\theta \end{cases}$$

3.2 Accélération :

Nous avons: $\overrightarrow{\gamma}^0(M) = \overrightarrow{\gamma}^2(M) + \overrightarrow{\gamma}_2^0(M) + \overrightarrow{\gamma}_c(M)$,

$$\vec{\gamma}^{2}(M) = \frac{d^{2}\vec{V}^{2}(M)}{dt} = \begin{cases} -R\vec{\theta}^{2}\cos\theta \\ -R\vec{\theta}^{2}\sin\theta \\ 0 \end{cases}$$

$$\overrightarrow{\gamma_2^0}(M) = \overrightarrow{\gamma^0}(O) + \frac{d^0 \overrightarrow{\Omega_2^0}}{dt} \wedge \overrightarrow{OM} + \overrightarrow{\Omega_2^0} \wedge \left(\overrightarrow{\Omega_2^0} \wedge \overrightarrow{OM}\right); \quad \text{avec} : \overrightarrow{\gamma^0}(O) = \overrightarrow{0}$$

$$\frac{d^0 \stackrel{\rightarrow}{\Omega_2^0}}{dt} = \frac{d^2 \stackrel{\rightarrow}{\Omega_2^0}}{dt} + \stackrel{\rightarrow}{\Omega_2^0} \wedge \stackrel{\rightarrow}{\Omega_2^0} = \stackrel{\rightarrow}{0}$$

$$\vec{\Omega}_{2}^{0} \wedge \left(\vec{\Omega}_{2}^{0} \wedge \overrightarrow{OM}\right) = \begin{cases} 0 \\ -\psi \sin \beta \\ \psi \cos \beta \end{cases} \wedge \begin{cases} 0 \\ -\psi \sin \beta \\ \psi \cos \beta \end{cases} \wedge \begin{cases} R \cos \theta \\ R \sin \theta \\ R \end{bmatrix}$$

$$\vec{\Omega}_{2}^{0} \wedge \left(\vec{\Omega}_{2}^{0} \wedge \vec{OM}\right) = \begin{cases} 0 \\ -\dot{\psi}\sin\beta \\ \dot{\psi}\cos\beta \end{cases} \begin{pmatrix} -\dot{\psi}h\sin\beta - R\dot{\psi}\cos\beta\sin\theta \\ R\dot{\psi}\cos\beta\cos\theta \\ R\dot{\psi}\sin\beta\cos\theta \end{pmatrix}$$

$$\vec{\Omega}_{2}^{0} \wedge \left(\vec{\Omega}_{2}^{0} \wedge \vec{OM}\right) = \begin{cases} -R \dot{\psi}^{2} \cos \theta \\ -\psi^{2} \cos \beta (h \sin \beta + R \cos \beta \sin \theta) \\ -\psi^{2} \sin \beta (h \sin \beta + R \cos \beta \sin \theta) \end{cases}$$

$$R_{2}$$

$$\vec{\gamma}_{c}(M) = 2 \left(\vec{\Omega}_{2}^{0} \wedge \vec{V}^{2}(M) \right) = \begin{cases} 0 \\ -\psi \sin \beta \\ \psi \cos \beta \end{cases} \wedge \begin{cases} -R \dot{\theta} \sin \theta \\ R \dot{\theta} \cos \theta \\ 0 \end{cases} = \begin{cases} -2R \dot{\theta} \psi \cos \theta \cos \beta \\ -2R \dot{\theta} \psi \sin \theta \cos \beta \\ -2R \dot{\theta} \psi \sin \theta \sin \beta \end{cases}$$

La somme de toutes ces expressions donne :

$$\vec{\gamma}^{0}(M) = \begin{cases}
-R\cos\theta \left(\dot{\theta}^{2} + \dot{\psi}^{2} + 2R\dot{\theta}\dot{\psi}\cos\beta \right) \\
-\dot{\psi}^{2}\cos\beta (h\sin\beta + R\cos\beta\sin\theta) - R\sin\theta \left(\dot{\theta}^{2} + 2R\dot{\theta}\dot{\psi}\cos\beta \right) \\
-\dot{\psi}^{2}\sin\beta (h\sin\beta + R\cos\beta\sin\theta) - 2R\dot{\theta}\dot{\psi}\sin\theta\sin\beta
\end{cases}$$

Exercice 2:

Une tige homogène de longueur AB = L et de centre G est en mouvement tel que, son extrémité A soit assujetti à se déplacer suivant l'axe vertical (O, z_0) d'un repère orthonormé fixe $R(O, x_0, y_0, z_0)$. L'autre extrémité B est en mouvement quelconque dans le plan (x_0, y_0) .

- Déterminer le nombre de paramètres nécessaires pour décrire totalement le mouvement de la tige et construire les différents repères permettant de faire l'étude cinématique de la tige;
- 2. Déterminer la vitesse instantanée de rotation de la barre par rapport à R_0
- 3. Déterminer les différentes figures planes et les matrices de passage;
- Déterminer la vitesse et l'accélération absolue des points A, B et G exprimé dans le repère R₁.

Solution:

1. Repères et paramètres permettant l'étude du mouvement de la tige

AB = L; $A \in (O, z_0)$ tous le temps, $B \in (x_0 O y_0)$

 $R_0(x_0, y_0, z_0)$: repère fixe;

 $R_1(\overrightarrow{x_1},\overrightarrow{y_1},\overrightarrow{z_1}) \quad \text{un repère tel que}: \ \overrightarrow{z_0} \equiv \overrightarrow{z_1}, (\overrightarrow{x_0},\overrightarrow{x_1}) = (\overrightarrow{y_0},\overrightarrow{y_1}) = \psi \quad \text{et} \quad \overset{\rightarrow}{\Omega_1^0} \equiv \overset{\bullet}{\psi} \overrightarrow{z_0} = \overset{\bullet}{\psi} \overrightarrow{z_1}$

 $R_2(\vec{x_2}, \vec{y_2}, \vec{z_2})$ un repère tel que : $\vec{y_1} \equiv \vec{y_2}$, $(\vec{x_1}, \vec{x_2}) = (\vec{z_1}, \vec{z_2}) = \psi$ et $\vec{\Omega}_2^1 \equiv -\vec{\theta} \vec{y_1} = -\vec{\theta} \vec{y_2}$

on a ainsi : $AB \in R_2$ tel que : $\overrightarrow{BA} = L\overrightarrow{z_2}$

Les deux angles ψ et θ sont suffisant pour décrire entièrement le mouvement de la barre par rapport au repère R_0 .

2. Vitesse instantanée de rotation de la barre par rapport à R_0

Nous avons: $\overrightarrow{\Omega}_{2}^{0} \equiv \overrightarrow{\Omega}_{2}^{1} + \overrightarrow{\Omega}_{1}^{0} \equiv -\overrightarrow{\theta} y_{1} + \psi z_{1} = \begin{cases} 0 \\ -\overrightarrow{\theta} \\ \psi \end{cases}$

3. Figure plane de chaque repère ;

3.1. Matrice de passage du repère R₀ vers R₁

Matrice de passage de R₀ vers R₁

$$\begin{pmatrix} \overrightarrow{x}_0 \\ \overrightarrow{y}_0 \\ \overrightarrow{z}_0 \end{pmatrix} = \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \overrightarrow{x}_1 \\ \overrightarrow{y}_1 \\ \overrightarrow{z}_1 \end{pmatrix} P_{R_0 \to R_1}$$

3.1. Matrice de passage du repère R, vers R₁

$$\begin{pmatrix} \overrightarrow{x}_2 \\ \overrightarrow{y}_2 \\ \overrightarrow{z}_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} \overrightarrow{x}_1 \\ \overrightarrow{y}_1 \\ \overrightarrow{z}_1 \end{pmatrix}$$

$$P_{R_2 \to R_1}$$

On prendra R₁ comme repère de projection car les expressions cinématiques sont plus simples dans ce repère.

4. Vitesse et Accélération absolue des points A, B et G exprimé R_1 .

Nous avons:
$$\overrightarrow{OA} = \begin{cases} 0 \\ 0 \\ L\cos\theta \end{cases}$$
, $\overrightarrow{OB} = \begin{cases} L\sin\theta \\ 0 \\ 0 \end{cases}$, $\overrightarrow{OG} = \frac{\overrightarrow{OA} + \overrightarrow{OB}}{2} = \begin{cases} \frac{L}{2}\sin\theta \\ 0 \\ \frac{L}{2}\cos\theta \end{cases}$

4.1. calcul de
$$\overrightarrow{V^0}(A)$$
: $\overrightarrow{V^0}(A) = \frac{d^0 \overrightarrow{OA}}{dt} = \frac{d^1 \overrightarrow{OA}}{dt} + \overrightarrow{\Omega_1^0} \wedge \overrightarrow{OA}$

$$\overrightarrow{V^0}(A) = \begin{cases} 0 & 0 \\ 0 & + \\ -L\dot{\theta}\sin\theta & R_1 \end{cases} \begin{cases} 0 & 0 \\ 0 \wedge \\ \psi & R_1 \end{cases} \begin{cases} 0 & 0 \\ 0 & -L\dot{\theta}\sin\theta \end{cases}$$

4.2. calcul de $\overrightarrow{V}^0(B)$

$$\overrightarrow{V^0}(B) = \frac{\overrightarrow{d^0 OB}}{\overrightarrow{dt}} = \frac{\overrightarrow{d^1 OB}}{\overrightarrow{dt}} + \overrightarrow{\Omega_1^0} \wedge \overrightarrow{OB}$$

$$\overrightarrow{V^{0}}(B) = \begin{cases} L \overset{\bullet}{\theta} \cos \theta \\ 0 \\ 0 \end{cases} + \begin{cases} 0 \\ 0 \wedge \\ \overset{\bullet}{\psi} \end{cases} \begin{cases} L \sin \theta \\ 0 \\ 0 \end{cases} = \begin{cases} L \overset{\bullet}{\theta} \cos \theta \\ L \overset{\bullet}{\psi} \sin \theta \\ 0 \end{cases}$$

La vitesse du point B peut aussi s'obtenir à partir de celle de A par la cinématique du solide :

$$\overrightarrow{V}^{0}(B) = \overrightarrow{V}^{0}(A) + \overrightarrow{\Omega}_{2}^{0} \wedge \overrightarrow{AB}$$

$$\vec{V}^{0}(B) = \begin{cases} 0 & \begin{cases} 0 & L\sin\theta \\ 0 & + \begin{cases} -\dot{\theta}\cos\theta \\ -\dot{\theta}\cos\theta \end{cases} \end{cases} \begin{pmatrix} L\sin\theta \\ 0 & = \begin{cases} L\dot{\theta}\cos\theta \\ L\psi\sin\theta \\ -L\cos\theta \end{cases} \begin{pmatrix} L\dot{\theta}\sin\theta \\ -\dot{\theta}\sin\theta + L\dot{\theta}\sin\theta \end{cases} = \begin{cases} L\dot{\theta}\cos\theta \\ L\dot{\psi}\sin\theta \\ 0 \end{cases}$$

4.3. calcul de
$$\overrightarrow{V^0}(G)$$
: $\overrightarrow{V^0}(G) = \frac{\overrightarrow{d^0 OG}}{dt} = \frac{\overrightarrow{d^1 OG}}{dt} + \overrightarrow{\Omega_1^0} \wedge \overrightarrow{OG}$

$$\vec{V}^{0}(G) = \begin{cases} \frac{L}{2} \dot{\theta} \cos \theta \\ 0 \\ -\frac{L}{2} \dot{\theta} \sin \theta \end{cases} R_{1} \begin{cases} 0 \\ 0 \\ \psi \end{cases} \begin{cases} \frac{L}{2} \sin \theta \\ 0 \\ R_{1} \end{cases} \begin{cases} \frac{L}{2} \sin \theta \\ 0 \\ R_{1} \end{cases} \begin{cases} \frac{L}{2} \dot{\theta} \cos \theta \\ \frac{L}{2} \dot{\psi} \sin \theta \\ R_{1} \end{cases}$$

La vitesse du point G peut aussi s'obtenir à partir de celle de A où de B par la cinématique du solide, en effet nous avons :

$$\overrightarrow{V}^{0}(G) = \overrightarrow{V}^{0}(A) + \overrightarrow{\Omega}_{2}^{0} \wedge \overrightarrow{AG}$$

$$\vec{V}^{0}(G) = \begin{cases} 0 \\ 0 \\ -L\dot{\theta}\sin\theta \end{cases} R_{1} \begin{cases} 0 \\ -\dot{\theta}\wedge \\ \dot{\psi} \end{cases} \begin{cases} \frac{L}{2}\sin\theta \\ 0 \\ -\frac{L}{2}\cos\theta \end{cases} \begin{cases} \frac{L\dot{\theta}\cos\theta}{2} \\ \frac{L\dot{\psi}\sin\theta}{2} \\ -L\dot{\theta}\sin\theta + \frac{L\dot{\theta}\sin\theta}{2} \end{cases} = \begin{cases} \frac{L\dot{\theta}\cos\theta}{2} \\ \frac{L\dot{\psi}\sin\theta}{2} \\ -L\dot{\theta}\sin\theta + \frac{L\dot{\theta}\sin\theta}{2} \end{cases} R_{1} \begin{cases} \frac{L\dot{\theta}\cos\theta}{2} \\ \frac{L\dot{\phi}\sin\theta}{2} \\ -\frac{L\dot{\theta}\sin\theta}{2} \end{cases}$$

4.4. calcul de
$$\vec{\gamma}^{0}(A)$$
 : $\vec{\gamma}^{0}(A) = \frac{d^{\theta} \vec{V}^{0}(A)}{dt} = \frac{d^{1} \vec{V}^{0}(A)}{dt} + \vec{\Omega}_{1}^{0} \wedge \vec{V}^{0}(A)$

$$\vec{V}^{0}(A) = \begin{cases} 0 & + \begin{cases} 0 & 0 \\ 0 \wedge & 0 \\ -L\theta \sin\theta - L\theta^{2} \cos\theta \end{cases} & R \end{cases} + \begin{cases} 0 & 0 \\ 0 \wedge & 0 \\ \psi & R \end{cases} = \begin{cases} 0 & 0 \\ -L\theta \sin\theta - L\theta^{2} \cos\theta \end{cases}$$

4.5. calcul de
$$\vec{\gamma}^0(B)$$
 : $\vec{\gamma}^0(B) = \frac{d^0 \vec{V}^0(B)}{dt} = \frac{d^1 \vec{V}^0(B)}{dt} + \vec{\Omega}_1^0 \wedge \vec{V}^0(B)$

$$\vec{V}^{0}(B) = \begin{cases} \vec{L} \frac{\dot{\theta} \cos \theta - L \dot{\theta}^{2} \sin \theta}{L \psi \sin \theta + L \psi \dot{\theta} \cos \theta} & + \begin{cases} 0 & \begin{cases} L \dot{\theta} \cos \theta \\ 0 & \wedge \end{cases} \\ \vec{L} \psi \sin \theta \end{cases} \\ 0 & R_{1} \end{cases} \begin{pmatrix} \vec{L} \frac{\dot{\theta} \cos \theta}{L \psi \sin \theta} \\ \vec{L} \psi \sin \theta \end{cases}$$

$$\vec{V}^{0}(B) = \begin{cases} \vec{L} \theta \cos \theta - L(\theta^{2} + L \psi^{2}) \sin \theta \\ \vec{L} \psi \sin \theta + 2L \psi \theta \cos \theta \\ 0 \end{cases}$$

4.6. calcul de
$$\vec{\gamma}^0(G)$$
: $\vec{\gamma}^0(G) = \frac{d^0 \vec{V}^0(G)}{dt} = \frac{d^1 \vec{V}^0(G)}{dt} + \vec{\Omega}_1^0 \wedge \vec{V}^0(G)$

$$\vec{\gamma^0}(B) = \begin{cases} \frac{L}{2} \vec{\theta} \cos \theta - \frac{L}{2} \vec{\theta^2} \sin \theta \\ \frac{L}{2} \vec{\psi} \sin \theta + \frac{L}{2} \vec{\psi} \vec{\theta} \cos \theta \\ -\frac{L}{2} \vec{\theta} \sin \theta - \frac{L}{2} \vec{\theta^2} \cos \theta \end{cases} + \begin{cases} 0 \\ 0 \\ \vec{\psi} \end{cases} \wedge \begin{cases} \frac{L}{2} \vec{\theta} \cos \theta \\ \frac{L}{2} \vec{\psi} \sin \theta \\ -\frac{L}{2} \vec{\theta} \sin \theta \end{cases}$$

$$\vec{\gamma^{0}}(B) = \begin{cases} \frac{L}{2} \vec{\theta} \cos \theta - \frac{L}{2} \vec{\theta^{2}} \sin \theta - \frac{L}{2} \vec{\psi^{2}} \sin \theta \\ \frac{L}{2} \vec{\psi} \sin \theta + L \vec{\psi} \vec{\theta} \cos \theta \\ -\frac{L}{2} \vec{\theta} \sin \theta - \frac{L}{2} \vec{\theta^{2}} \cos \theta \end{cases}$$

Exercice 3:

Pour simuler les conditions de vol des avions, les ingénieurs ont conçu un appareil spécial pour l'entraînement des pilotes qui consiste en **un bras** (1) en rotation dans le plan horizontal tel que : $R_0(O, \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$: repère fixe ;

 $R_1(O, \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$: repère mobile lié au bras, avec $\overrightarrow{z_0} \equiv \overrightarrow{z_1}$ et $(\overrightarrow{x_0}, \overrightarrow{x_1}) = (\overrightarrow{y_0}, \overrightarrow{y_1}) = \psi$ sens positif;

Un cockpit (2) en rotation autour de l'axe $\vec{x_1}$ tel que $\vec{x_1} \equiv \vec{x_2}$ et $(\vec{y_1}, \vec{y_2}) = (\vec{z_1}, \vec{z_2}) = \theta$ sens positif; $R_2(B, \vec{x_2}, \vec{y_2}, \vec{z_2})$: repère lié au cockpit avec OB = R.

Un siège-pilote (3) en rotation autour de l'axe $\overrightarrow{y_2}$ tel que : $\overrightarrow{y_2} \equiv \overrightarrow{y_3}$ et $(\overrightarrow{x_2}, \overrightarrow{x_3}) = (\overrightarrow{z_2}, \overrightarrow{z_3}) = \varphi$ sens positif. $R_3(B, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$: repère lié au siège-pilote. Le pilote est lié au siège, sa tête est repéré par le vecteur position $\overrightarrow{BT} = L \overrightarrow{z_3}$.

Tous ces éléments sont en rotation contrôlée par l'ordinateur pour simuler les différentes manœuvres. Il a fallu faire des calculs pour déterminer les paramètres cinématiques afin de les varier de façon sensée pour savoir à quelles accélérations seront soumis les pilotes.

- Etablir les figures planes représentatives des trois rotations et les matrices de passages correspondantes;
- 2) Trouver le vecteur position du point T, ainsi que le vecteur rotation du siège pilote par rapport à R_{θ} ;
- 3) Déterminer le vecteur vitesse absolue du point T par composition de mouvement et par la cinématique du solide.
- 4) Déterminer l'accélération absolue du point T par composition de mouvement.

On prendra R2 comme repère de projection

Solution:

1. Figures planes des trois rotations et les matrices de passages correspondantes ;

a) Rotation du bras

Nous avons : OB = R et $R_0(x_0, y_0, z_0)$ un repère fixe. R_2 : étant le repère de projection on exprimera toute les données dans ce repère.

 $R_1(\vec{x_1}, \vec{y_1}, \vec{z_1})$: en rotation / à R_0 tel que: $\vec{z_0} \equiv \vec{z_1}$ et $(\vec{x_0}, \vec{x_1}) = (\vec{y_0}, \vec{y_1}) = \psi$ sens positif

Matrice de passage de R₀ vers R₁

$$\begin{pmatrix} \overrightarrow{x}_0 \\ \overrightarrow{y}_0 \\ \overrightarrow{z}_0 \end{pmatrix} = \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \overrightarrow{x}_1 \\ \overrightarrow{y}_1 \\ \overrightarrow{z}_1 \end{pmatrix}$$

$$P_{R_0 \to R_1}$$

a) Rotation du cockpit

 $R_2(B, \overrightarrow{x_2}, \overrightarrow{y_2}, \overrightarrow{z_2})$: en rotation / R_1 tel que $\overrightarrow{x_1} \equiv \overrightarrow{x_2}$ et $(\overrightarrow{y_1}, \overrightarrow{y_2}) = (\overrightarrow{z_1}, \overrightarrow{z_2}) = \theta$ sens positif;

$$\begin{pmatrix} \overrightarrow{x}_1 \\ \overrightarrow{y}_1 \\ \overrightarrow{z}_1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \overrightarrow{x}_2 \\ \overrightarrow{y}_2 \\ \overrightarrow{z}_2 \end{pmatrix}$$

$$P_{R_1 \to R_2}$$

a) Rotation du siège pilote

 $R_3(B, \overrightarrow{x_3}, \overrightarrow{y_3}, \overrightarrow{z_3})$ en rotation / tel que : $\overrightarrow{y_2} \equiv \overrightarrow{y_3}$ et $(\overrightarrow{x_2}, \overrightarrow{x_3}) = (\overrightarrow{z_2}, \overrightarrow{z_3}) = \varphi$ sens positif.

$$\begin{pmatrix} \overrightarrow{x}_{3} \\ \overrightarrow{y}_{3} \\ \overrightarrow{z}_{3} \end{pmatrix} = \begin{pmatrix} \cos \varphi & 0 & -\sin \varphi \\ 0 & 1 & 0 \\ \sin \varphi & 0 & \cos \varphi \end{pmatrix} \begin{pmatrix} \overrightarrow{x}_{2} \\ \overrightarrow{y}_{2} \\ \overrightarrow{z}_{2} \end{pmatrix}$$

$$P_{R, \to R}$$

2. Vecteur position du point T par rapport à R_0 exprimé dans R_2

Nous avons : $\overrightarrow{OT} = \overrightarrow{OB} + \overrightarrow{BT}$, sachant que $\overrightarrow{BT} = L\overrightarrow{z_3}$

$$\overrightarrow{OB} = \begin{cases} R & \rightarrow \\ 0 & ; \quad \overrightarrow{BT} = \\ 0 & R_3 \end{cases} \begin{cases} 0 & = \begin{cases} L\sin\varphi \\ 0 & \text{d'où} : \quad \overrightarrow{OT} = \\ L\cos\varphi & R_2 \end{cases} \begin{cases} R + L\sin\varphi \\ 0 \\ L\cos\varphi & R_2 \end{cases}$$

Vecteur rotation du siège pilote :

$$\stackrel{\rightarrow}{\Omega_3^0} = \stackrel{\rightarrow}{\Omega_3^2} + \stackrel{\rightarrow}{\Omega_2^1} + \stackrel{\rightarrow}{\Omega_1^0} = \stackrel{\bullet}{\varphi} \stackrel{\rightarrow}{y_2} + \stackrel{\rightarrow}{\theta} \stackrel{\rightarrow}{x_2} + \stackrel{\bullet}{\psi} \stackrel{\rightarrow}{z_1} \quad ;$$

Par la matrice de passage de R_1 vers R_2 le vecteur $\vec{z_1}$ 'écrit : $\vec{z_1} = \sin\theta \vec{y_2} + \cos\theta \vec{z_2}$

$$\overrightarrow{\Omega_3^0} = \overset{\bullet}{\varphi} \overset{\rightarrow}{y_2} + \overset{\bullet}{\theta} \overset{\rightarrow}{x_2} + \overset{\bullet}{\psi} \left(\sin \theta \overset{\rightarrow}{y_2} + \cos \theta \overset{\rightarrow}{z_2} \right) = \overset{\bullet}{\theta} \overset{\rightarrow}{x_2} + \left(\overset{\bullet}{\varphi} + \overset{\bullet}{\psi} \sin \theta \right) \overset{\rightarrow}{y_2} + \overset{\bullet}{\psi} \cos \theta \overset{\rightarrow}{z_2}$$

$$\vec{\Omega}_{3}^{0} = \begin{cases} \dot{\theta} \\ \dot{\varphi} + \dot{\psi} \sin \theta \\ \dot{\psi} \cos \theta \end{cases}$$

3. Vecteur vitesse du point T

3.1. Par composition de mouvement

$$\overrightarrow{V}_{abs} = \overrightarrow{V}_{rel} + \overrightarrow{V}_{ent} \Leftrightarrow \overrightarrow{V}^{0}(T) = \overrightarrow{V}^{2}(T) + \overrightarrow{V}_{2}^{0}(T)$$

La vitesse relative est donnée par : $\vec{V}^2(T) = \frac{d^2 \vec{BT}}{dt} \begin{cases} L \dot{\varphi} \cos \varphi \\ 0 \\ -L \dot{\varphi} \sin \varphi \end{cases}$

La vitesse relative s'écrit : $\overrightarrow{V_2}^0(T) = \overrightarrow{V}^0(O) + \overrightarrow{\Omega_2}^0 \wedge \overrightarrow{OT}$

$$\vec{V}_{2}^{0}(T) = \begin{cases} \dot{\theta} \\ \dot{\psi} \sin \theta \\ \dot{\psi} \cos \theta \end{cases} R_{2} \begin{cases} R + L \sin \varphi \\ 0 \\ L \cos \varphi \end{cases} = \begin{cases} \dot{L} \dot{\psi} \sin \theta \cos \varphi \\ - \dot{L} \dot{\theta} \cos \varphi + \dot{\psi} \cos \theta (R + L \sin \varphi) \\ - \dot{\psi} \sin \theta (R + L \sin \varphi) \end{cases}$$

En faisant la somme on obtient :

$$\vec{V}^{0}(T) = \begin{cases} \vec{L} \varphi \cos \varphi + \vec{L} \psi \sin \theta \cos \varphi \\ -\vec{L} \theta \cos \varphi + \psi \cos \theta (R + L \sin \varphi) \\ -\vec{L} \varphi \sin \varphi - \psi \sin \theta (R + L \sin \varphi) \end{cases}$$

3.2. Par la cinématique du solide

La vitesse relative s'écrit : $\overrightarrow{V}^0(T) = \overrightarrow{V}^0(B) + \overrightarrow{\Omega}_3^0 \wedge \overrightarrow{BT}$

Nous avons:
$$\overrightarrow{V}^{0}(B) = \overrightarrow{V}^{0}(O) + \overrightarrow{\Omega}_{2}^{0} \wedge \overrightarrow{OB} = \begin{cases} \dot{\theta} \\ \dot{\psi} \sin \theta \\ \dot{\psi} \cos \theta \end{cases} = \begin{cases} R \\ 0 \\ R \\ \psi \cos \theta \end{cases} = \begin{cases} 0 \\ R \psi \cos \theta \\ - R \psi \sin \theta \end{cases}$$

$$\vec{\Omega}_{3}^{0} \wedge \vec{BT} = \begin{cases} \dot{\theta} \\ \dot{\varphi} + \dot{\psi} \sin \theta \\ \dot{\psi} \cos \theta \end{cases} R_{2} \begin{cases} L \sin \varphi \\ 0 \\ L \cos \varphi \end{cases} = \begin{cases} L \dot{\varphi} \cos \varphi + L \dot{\psi} \sin \theta \cos \varphi \\ -L \dot{\theta} \cos \varphi + L \dot{\psi} \cos \theta \sin \varphi \\ -L \dot{\varphi} \sin \varphi - \dot{\psi} \sin \theta \sin \varphi \end{cases}$$

La somme des deux expressions donne :

$$\vec{V}^{0}(T) = \begin{cases} L \dot{\varphi} \cos \varphi + L \dot{\psi} \sin \theta \cos \varphi \\ -L \dot{\theta} \cos \varphi + \dot{\psi} \cos \theta (R + L \sin \varphi) \\ -L \dot{\varphi} \sin \varphi - \dot{\psi} \sin \theta (R + L \sin \varphi) \end{cases}$$

4. Accélération absolue du point T par composition de mouvement

Son expression est donnée par la relation suivante : $\overrightarrow{\gamma}_{abs}(T) = \overrightarrow{\gamma}_{rel}(T) + \overrightarrow{\gamma}_{ent}(T) + \overrightarrow{\gamma}_{coriolis}(T)$

$$\overrightarrow{\gamma}^{0}\left(T\right) = \overrightarrow{\gamma}^{2}\left(T\right) + \overrightarrow{\gamma}_{2}^{0}\left(T\right) + \overrightarrow{\gamma}_{c}\left(T\right)$$

Explicitons chacun des termes de cette relation :

(1):
$$\vec{\gamma}^{2}(T) = \frac{d^{2}\vec{V}^{2}(T)}{dt} \begin{cases} L\varphi \cos \varphi - L\varphi^{2} \sin \varphi \\ 0 \\ -L\varphi \sin \varphi - L\varphi^{2} \cos \varphi \end{cases}$$

$$\overrightarrow{\gamma_{2}^{0}}\left(T\right) = \overrightarrow{\gamma^{0}}\left(O\right) + \frac{d^{0}\overrightarrow{\Omega_{2}^{0}}}{dt} \wedge \overrightarrow{OT} + \overrightarrow{\Omega_{2}^{0}} \wedge \left(\overrightarrow{\Omega_{2}^{0}} \wedge \overrightarrow{OT}\right)$$

$$\stackrel{\rightarrow}{\gamma}^{0}(O) = \stackrel{\rightarrow}{0}$$

$$\frac{d^{0} \overrightarrow{\Omega_{2}^{0}}}{dt} \wedge \overrightarrow{OT} = \frac{d^{2} \overrightarrow{\Omega_{2}^{0}}}{dt} \wedge \overrightarrow{OT} = \begin{cases} \overrightarrow{\theta} & \vdots \\ \overrightarrow{\psi} \sin \theta + \psi \theta \cos \theta \\ \vdots \\ \psi \cos \theta - \psi \theta \sin \theta \end{cases} \wedge \begin{cases} R + L \sin \varphi \\ 0 \\ L \cos \varphi \end{cases}$$

(2):
$$\frac{d^{0} \overrightarrow{\Omega_{2}^{0}}}{dt} \wedge \overrightarrow{OT} = \begin{cases} L\cos\varphi\left(\overrightarrow{\psi}\sin\theta + \overrightarrow{\psi}\overrightarrow{\theta}\cos\theta\right) \\ L\overrightarrow{\theta}\cos\varphi + \left(R + L\sin\varphi\right)\left(\overrightarrow{\psi}\cos\theta - \overrightarrow{\psi}\overrightarrow{\theta}\sin\theta\right) \\ -\left(R + L\sin\varphi\right)\left(\overrightarrow{\psi}\sin\theta + \overrightarrow{\psi}\overrightarrow{\theta}\cos\theta\right) \end{cases}$$

$$\vec{\Omega}_{2}^{0} \wedge \left(\vec{\Omega}_{2}^{0} \wedge \vec{OT}\right) = \begin{cases} \dot{\theta} \\ \dot{\psi} \sin \theta \\ \dot{\psi} \cos \theta \end{cases} R_{2} \begin{cases} \dot{\theta} \\ \dot{\psi} \sin \theta \\ \dot{\psi} \cos \theta \end{cases} R_{2} \begin{cases} R + L \sin \varphi \\ 0 \\ L \cos \varphi \end{cases}$$

$$\vec{\Omega}_{2}^{0} \wedge \left(\vec{\Omega}_{2}^{0} \wedge \vec{OT}\right) = \begin{cases} \dot{\theta} \\ \dot{\psi} \sin \theta \\ \dot{\psi} \cos \theta \end{cases} \times \begin{cases} \dot{L} \dot{\psi} \cos \varphi \sin \theta \\ - \dot{L} \dot{\theta} \cos \varphi + \dot{\psi} \cos \theta (R + L \sin \varphi) \\ - \dot{\psi} \sin \theta (R + L \sin \varphi) \end{cases}$$

(3):
$$\vec{\Omega}_{2}^{0} \wedge \left(\vec{\Omega}_{2}^{0} \wedge \vec{OT}\right) = \begin{cases} -\dot{\psi}^{2}(R + L\sin\varphi) + L\dot{\psi}\dot{\theta}\cos\varphi\cos\theta \\ \dot{\psi}\dot{\theta}\sin\theta(R + L\sin\varphi) + L\dot{\psi}^{2}\cos\varphi\cos\theta\sin\theta \\ -L\dot{\theta}^{2}\cos\varphi + \dot{\psi}\dot{\theta}\cos\theta(R + L\sin\varphi) - L\dot{\psi}^{2}\cos\varphi\sin^{2}\theta \end{cases}$$

$$\vec{\gamma}_c(T) = 2 \left(\vec{\Omega}_2^0 \wedge \vec{V}^2(T) \right)$$

$$(4): \quad \stackrel{\rightarrow}{\gamma}_{c}(T) = 2 \quad \begin{cases} \stackrel{\bullet}{\theta} \\ \stackrel{\bullet}{\psi} \sin \theta \\ \stackrel{\bullet}{\psi} \cos \theta \end{cases} \quad R_{2} \begin{cases} \stackrel{\bullet}{L} \stackrel{\bullet}{\varphi} \cos \varphi \\ 0 \\ -\stackrel{\bullet}{L} \stackrel{\bullet}{\varphi} \sin \varphi \end{cases} = \begin{cases} -2L \stackrel{\bullet}{\psi} \stackrel{\bullet}{\varphi} \sin \theta \sin \varphi \\ 2 \stackrel{\bullet}{\varphi} \stackrel{\bullet}{\theta} \sin \varphi + 2L \stackrel{\bullet}{\psi} \stackrel{\bullet}{\varphi} \cos \theta \cos \varphi \\ -2L \stackrel{\bullet}{\psi} \stackrel{\bullet}{\varphi} \sin \theta \cos \varphi \end{cases}$$

La somme de ces expressions donne l'accélération absolue du point T

$$\gamma^0(T) = (1) + (2) + (3) + (4)$$