# CRYPTO-CURRENCY PRICE ANALYSIS

GROUP MEMBERS:

DANIIL VOLOVIK (300313470), DO MAN UYEN NGUYEN (300318626), FABIO TURAZZI (300318010)



# TABLE OF CONTENT

- 1. STATEMENT OF PROBLEM & PROJECT'S GOAL
- 2. PROJECT'S TASKS
- 3. DATASET OVERVIEW AND EDA
- 4. DATA PREPARATION AND MODEL DEFINITION
- 5. MODEL EVALUATION
- 6. PRICE PREDICTION DEMONSTRATION
- 7. SUMMARY





# Statement of problem Project Goal

Cryptocurrency has been growing in popularity and relevance, and Twitter can be accredited as one of the most active mediums for cryptoenthusiasts to communicate.

Our goal for this project is to examine the relationship between tweets', reflecting public opinion, and the daily price of popular e-coins, applying Machine Learning techniques to predict price fluctuations.





# 2. Project tasks

1

### Scrape tweets

- Scrape Twitter searching for relevant keywords and hashtags;
- Tool: Twint library.

2

### Scrape coins' prices

- Scrape coins' daily prices from relevant cryptocurrencies:
- Tool: CoinGecko API.

3

### Perform Sentiment Analysis on Tweets

- Process/clean tweets and perform sentiment analysis
  - Tools: Twitterpreprocessor and VADER libraries

4

### Build predict models

- Train Machine Learning and Deep Learning models to predict prices using tweets
- Establish the best model for prediction.

# 3.1 Datasets Used



**Tweets**: contains tweets searched by keywords using cryptocurrency names or abbreviations and the VADER Sentiment Analysis scores

| date       | time     | replies_count | retweets_count | likes_count | coin_name      | tweet                                               | neg | neu   | pos   | compound |
|------------|----------|---------------|----------------|-------------|----------------|-----------------------------------------------------|-----|-------|-------|----------|
| 2013-03-29 | 13:05:03 | 0             | 12             | 18          | cryptocurrency | Bitcoin: The Cyberpunk Cryptocurrency http://       | 0.0 | 1.000 | 0.000 | 0.0000   |
| 2013-04-15 | 10:37:11 | 3             | 34             | 17          | cryptocurrency | Bitcoin Isn't the Only Cryptocurrency in Town       | 0.0 | 1.000 | 0.000 | 0.0000   |
| 2013-04-14 | 18:34:04 | 15            | 153            | 61          | cryptocurrency | #Bitcoin, a "cryptocurrency", went on a tear I      | 0.0 | 1.000 | 0.000 | 0.0000   |
| 2013-04-18 | 14:04:24 | 2             | 27             | 26          | cryptocurrency | I'm going to make my OWN crypto-currency and e      | 0.0 | 0.885 | 0.115 | 0.3810   |
| 2013-05-09 | 15:14:19 | 4             | 66             | 30          | cryptocurrency | Your momma's cryptocurrency is so virtual, she      | 0.0 | 1.000 | 0.000 | 0.0000   |
|            |          |               |                |             |                |                                                     |     |       |       |          |
| 2019-12-16 | 9:18:10  | 27            | 14             | 21          | ripple         | برق linkup# پیامرسان ها در آمد سرشاری دارند اما     | 0.0 | 0.886 | 0.114 | 0.5972   |
| 2020-10-04 | 18:36:31 | 7             | 3              | 50          | ripple         | Hi 25 cent #xrp 📵                                   | 0.0 | 0.727 | 0.273 | 0.4588   |
| 2020-10-27 | 15:30:23 | 2             | 3              | 47          | ripple         | \$ocean #ALLTHEBANKS \$Ocean \$ewt \$dot \$qnt \$xr | 0.0 | 1.000 | 0.000 | 0.0000   |
| 2020-11-21 | 8:28:39  | 2             | 0              | 75          | ripple         | Hi .42 cent #xrp 💆 🤝 🗹 😡                            |     | C ^   |       |          |
| 2021-01-27 | 14:22:44 | 3             | 0              | 25          | ripple         | @xrp_mami @BloombergAsia An entire continent        |     | 5.A.  | SCO   | res      |





|       | coin_name     | price       | market_cap   | total_vol    | date       |
|-------|---------------|-------------|--------------|--------------|------------|
| 0     | cardano       | 0.659472    | 2.091005e+10 | 8.483795e+09 | 08-02-202  |
| 1     | cardano       | 0.626357    | 1.985498e+10 | 6.225004e+09 | 07-02-2021 |
| 2     | cardano       | 0.538552    | 1.720209e+10 | 5.138348e+09 | 06-02-2021 |
| 3     | cardano       | 0.441599    | 1.412487e+10 | 2.526990e+09 | 05-02-2021 |
| 4     | cardano       | 0.441216    | 1.404678e+10 | 2.963647e+09 | 04-02-2021 |
|       |               |             |              |              |            |
| 12812 | yearn-finance | 3793.033675 | 1.144837e+08 | 8.185937e+06 | 04-08-2020 |
| 12813 | yearn-finance | 4063.531281 | 1.212525e+08 | 9.198283e+06 | 03-08-2020 |
| 12814 | yearn-finance | 3863.416015 | 1.156429e+08 | 9.230661e+06 | 02-08-2020 |
| 12815 | yearn-finance | 4128.207821 | 1.235146e+08 | 1.945850e+07 | 01-08-2020 |
| 12816 | yearn-finance | 4367.882143 | 1.307421e+08 | 1.688721e+07 | 31-07-2020 |

Cryptocurrency prices: contains daily prices, market cap, and total volume from coins, scraped using CoinGecko API.

- Only daily data found for public access, so we combined different coins for enough data to train more robust models.
- Using hourly data to train individual models for each currency would ideal for practical use in price prediction.



# 3.2 Combining the Datasets



- Tweets cleaned (ftfy and preprocessor libraries) and used for Sentiment Analysis (VADER library).
  - Assigned a 'positive', a 'negative', and a 'neutral' score ranging from 0 to 1.
  - Scores were aggregated daily, considering weights for number of likes (0.2), retweets (0.7), and replies (0.1).
- Aggregated tweets were joined with next day cryptocurrency prices to create the project's dataset.



### 3.3 Dataset Features

- The combined dataset displayed below contains the following features:
  - **total\_vol**: total volume of coin in the market
  - date: date of the information
  - **price**: price observed on the day following the listed date
  - **negative**, **neutral**, **positive**: Sentiment Analysis scores
  - total\_tweets: number of tweets collected for the coin is a given date
  - coin\_name: corresponding cryptocurrency (encoded)

|   | total_vol    | date   | price       | positive | negative | neutral  | total_tweets | bitcoin | litecoin | yearn-finance |
|---|--------------|--------|-------------|----------|----------|----------|--------------|---------|----------|---------------|
| 0 | 4.744626e+10 | 737827 | 39279.41287 | 0.084205 | 0.066617 | 0.849145 | 87.0         | 1       | 0        | 0             |
| 1 | 5.449481e+10 | 737826 | 38007.83223 | 0.081577 | 0.075804 | 0.842591 | 139.0        | 1       | 0        | 0             |
| 2 | 4.976214e+10 | 737825 | 36816.50808 | 0.065362 | 0.010455 | 0.924175 | 60.0         | 1       | 0        | 0             |
| 3 | 5.073070e+10 | 737824 | 37494.71762 | 0.102012 | 0.023837 | 0.874128 | 80.0         | 1       | 0        | 0             |
| 4 | 4.926886e+10 | 737823 | 35485.98593 | 0.185786 | 0.009167 | 0.805051 | 77.0         | 1       | 0        | 0             |



# 3.4 Coins' Prices Overview



- The line graph: prices over time for the four coins.
- All coin prices seem to have a positive growth trend over time;
- BTC and YFI prices are significantly higher than others, with the latter presenting a very steep increase in recent years.
- We understand that this discrepancy in behavior may impact our models' predictive capability, but this issue could only be fully solved by gaining access to more granular data to run individual models for each coin.



# 3.5 Coins' Number of Total Tweets



- Line graph: number of tweets over time for the four coins.
- Cryptocurrency number of tweets also present a positive trend, with Bitcoin's popularity again being predominant among other coins.
- For the analysis, we experimented with using a minimum threshold of tweet's likes filter out noise, selecting a value that optimized our model results.
  - Threshold: minimum of 200 likes



# 3.6 Coins' Sentiment Score Distribution

- Graphs: Distribution of coins' sentiment scores.
- Tweets generally received higher **Neutral** scores, with most of the sample presenting a score above 0.7.
- Positive scores presented were generally higher than Negative ones, indicating that positive tweets were
  more frequent.





# 4.1 Data Preparation

 In addition to the initial dataset preparation, the following actions were performed to prepare for modelling:



Separate categorical variable coin\_name into corresponding Dummies for each coin.

Ethereum Dummy was dropped to avoid redundancy.



Scale the data using MinMax Scaler and Standard Scaler.

Performance on the models was later compared for both scaled and unscaled versions of the dataset.



Split data into training and testing sets with a 75:25 ratio.



# 4.2 Model Definition

- The following Machine Learning models were experimented with to find the best prediction performance:
  - **Linear Regression** (with and without **Lasso** regularization)
  - Polynomial Regression (with and without Lasso regularization)
  - Neural Network (Keras Sequential model)
  - Decision Tree and Random Forest Regressors
- All models had hyperparameters tuned using 5-fold cross-validation before applied on the testing set to validate the performance.

### **Features:**

Unscaled, MinMax Scaled, Standard Scaled

> 5-fold CV (tuning)

### **Tuned Models:**

Linear & Polynomial Regression (w/ Lasso)
Neural Network – Keras Sequential model
Decision Tree and Random Forest
Regressors



# 5. Model Performance Table

### **Model Performance**

|    | Model                          | R2_Test  | R2_Train | RMSE        | Scaling         | Params                  |
|----|--------------------------------|----------|----------|-------------|-----------------|-------------------------|
| 0  | RandomForest Regressor         | 0.988675 | 0.994798 | 708.980808  | standard_scaler | max_depth = 9           |
| 1  | RandomForest Regressor         | 0.987454 | 0.994859 | 746.232236  | no_scaling      | max_depth = 9           |
| 2  | RandomForest Regressor         | 0.985835 | 0.994147 | 792.912607  | min_max_scaler  | max_depth = 9           |
| 3  | Decision Tree Regressor        | 0.985795 | 0.995127 | 794.034003  | no_scaling      | max_depth = 9           |
| 4  | Decision Tree Regressor        | 0.985509 | 0.995127 | 801.978243  | standard_scaler | max_depth = 9           |
| 5  | Decision Tree Regressor        | 0.984582 | 0.991914 | 827.226309  | min_max_scaler  | max_depth = 8           |
| 6  | Polynomial Regression (Lasso)  | 0.879234 | 0.884052 | 2315.189461 | no_scaling      | Alpha = 0.1; Degree = 2 |
| 7  | Polynomial Regression (Lasso)  | 0.878033 | 0.889425 | 2326.670995 | min_max_scaler  | Alpha = 0.1; Degree = 2 |
| 8  | Polynomial Regression (Lasso)  | 0.878033 | 0.889425 | 2326.670995 | min_max_scaler  | Alpha = 0.1; Degree = 2 |
| 9  | Polynomial Regression (Linear) | 0.872786 | 0.894575 | 2376.189204 | standard_scaler | Degree = 2              |
| 10 | Polynomial Regression (Linear) | 0.872786 | 0.894575 | 2376.191137 | min_max_scaler  | Degree = 2              |
| 11 | Polynomial Regression (Lasso)  | 0.868759 | 0.893497 | 2413.511008 | standard_scaler | Alpha = 0.1; Degree = 2 |
| 12 | Polynomial Regression (Lasso)  | 0.868759 | 0.893497 | 2413.511008 | standard_scaler | Alpha = 0.1; Degree = 2 |
| 13 | Polynomial Regression (Linear) | 0.851140 | 0.811729 | 2570.417580 | no_scaling      | Degree = 2              |
| 20 | Neural Network                 | 0.840174 | 0.814507 | 2663.408036 | standard_scaler | See NN topology         |
| 14 | Lasso Regression               | 0.829831 | 0.814503 | 2748.241563 | standard_scaler | Alpha = 10.0            |
| 15 | Lasso Regression               | 0.829817 | 0.814526 | 2748.353635 | no_scaling      | Alpha = 0.0             |
| 16 | Linear Regression              | 0.829807 | 0.814555 | 2748.432678 | min_max_scaler  | NaN                     |
| 17 | Linear Regression              | 0.829807 | 0.814555 | 2748.432678 | standard_scaler | NaN                     |
| 18 | Linear Regression              | 0.829807 | 0.814555 | 2748.432678 | no_scaling      | NaN                     |
| 19 | Lasso Regression               | 0.824452 | 0.812382 | 2791.336831 | min_max_scaler  | Alpha = 10.0            |
| 21 | Neural Network                 | 0.823079 | 0.824801 | 2802.228394 | min_max_scaler  | See NN topology         |

- Model Performance table containing the following information:
  - Model & Scaling method used;
  - Tuned hyperparameters;
  - R2 performance on Testing/Training sets;
  - RMSE obtained.
- Best model: Random Forest Regressor using Standard Scaler and setting tree max depth to 9.
  - Approximate accuracy of 98.9% on the testing set, with an RMSE of 708.98.



### 6. Price Prediction Demonstration

- Random Forest Regressor does not output meaningful regression coefficients for us to break down price, but the model can be demonstrated by making predictions.
- We evaluated two instances of contrasting scenarios, using Bitcoin with fixed volumes and dates:

```
# Creating a dataframe for new predictions

data_new = [
    # Positive tweets scenario
    [150000000000, '08-02-2021', 0.9, 0, 0.1, 100, 1, 0, 0],
    # Neutral tweets scenario
    [150000000000, '08-02-2021', 0, 0, 1, 100, 1, 0, 0],
    # Negative tweets scenario
    [150000000000, '08-02-2021', 0, 0.9, 0.1, 100, 1, 0, 0],
    # Large number of tweets
    [150000000000, '08-02-2021', 0, 0, 1, 500, 1, 0, 0],
    # Small number of tweets
    [150000000000, '08-02-2021', 0, 0, 1, 10, 1, 0, 0]
    ]
```

Predictions

### Tweets sentiment

- Positive Scenario 0.9 pos, 0.1 neu, 0.0 neg
- Neutral Scenario 0.0 pos, 1.0 neu, 0.0 neg
- Negative Scenario 0.0 pos, 0.1 neu, 0.9 neg

### Tweets quantity

- Large number 500 daily tweets
- Small number 100 daily tweets

### Positive Tweets Neutral Tweets Negative Tweets Many Tweets Few Tweets 36745.2 36410.6 36343.9 36726 35827.2

### Predictions

- All else equal, a day with larger positive tweet score rendered higher price predictions than a negative one.
- Large volume of daily tweets also affected price positively

# 6.1 Decision Tree Example



# 7. Summary & Final Remarks

### **Project Summary:**

- In this project, we successfully implemented Sentiment Analysis to extract public opinions regarding cryptocurrency and used Machine Learning to determine how they impact cryptocurrency price fluctuations.
  - The best model predicted prices with a 98.9% accuracy in our testing dataset.
- We made hypothetical predictions showing that our model correlates positive tweets and high number of mentions with positive price fluctuations.

### **Additional Considerations:**

- Although our model has performed well overall, the predicted prices are still slightly offset from Bitcoin's current price level.
  - We believe that this limitation for the models is being caused by our necessity to combine different currencies to generate sufficient data for the ML models;
  - To further improve predictions for practical use, we believe that access to more granular price data would be beneficial, rendering enough datapoints to run separate models for each coin.

