Measure Theory

Definition 0.1 (half open rectangle):

Let $a_0, b_0, ..., a_n, b_n \in \mathbb{R}$. The set $\times_{i=0}^n [a_i, b_i)$ is called an n-dimensional **half open rectangle**. The collection of all n-dimensional **half-open-rectangles** is denoted with \mathcal{I}_h^n .

Definition 1: half open rectangle

Definition 0.2 (restriction):

Let $f: X \longrightarrow Y$. Let $X' \subseteq X$. Let Y' such that $f(X') \subseteq Y' \subseteq Y$. A **restriction of f over** $X' \times Y'$, denoted $f|_{X' \times Y'}$ is a function $X' \longrightarrow Y'$ such that $f|_{X \times Y} = \{(x, f(x)) \mid x \in X, f(x) \in Y\}$

Definition 2: restriction

Example 0.1 (restriction):

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(x) = x^2$ power operator over the real numbers. Now, consider $g: \mathbb{N} \longrightarrow \mathbb{N}$ such that $g(x) = x^2$ power operator over the natural number only. Then g is a restriction

- 1. $\mathbb{N} \subseteq \mathbb{R}$.
- $f(\mathbb{N}) \subseteq \mathbb{N} \subseteq \mathbb{R}.$
- 3. $\{(x, g(x)) | x \in \mathbb{N}, y \in \mathbb{N}\} \subseteq \{(x, f(x) | x \in \mathbb{R}, y \in \mathbb{R})\}\$

Example 3: restriction

Definition 0.3 (inverse function):

Let $f: X \longrightarrow Y$ be a function. The **inverse function** $f^{-1}: Y \longrightarrow X$ is a function such that $f^{-1}(y \in Y) = x \in X$ if f(x) = y.

Definition 4: inverse function

Definition 0.4 (preimage):

Let $f: X \longrightarrow Y$ be a function. Let $E \subseteq Y$. The **preimage** is the set $f^{-1}(E) = \{x \in X \mid f(x) \in E\}$.

Definition 5: preimage

Definition 0.5 (σ -algebra):

Let X be a set. $\Sigma \subseteq 2^X$ is said a **sigma algebra of X** iff.:

- 1. $X \in \Sigma$
- 2. $E \in \Sigma \Longrightarrow X \setminus E \in \Sigma$. close under complement.
- 3. $\{A_n \in \Sigma\}_{n=1}^{\infty} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \Sigma$. close under infinite unions.

Definition 6: σ -algebra

Definition 0.6 (generate σ -algebra):

Let X be a set and $G \subseteq 2^X$. The σ -algebra generated by G, denoted $\sigma_X(G)$, is the smallest σ -algebra such that:

1. $G \subseteq \sigma_X(G)$.

2. $\forall \Sigma$ σ -algebra : $G \subseteq \Sigma \Longrightarrow \sigma_X(G) \subseteq \Sigma$. Every other σ -algebra that contains G contains also the generated one, $\sigma_X(G)$.

Definition 7: generate σ -algebra

Definition 0.7 (borel σ -algebra):

Let (X,G) be a topological space. We refer to $\sigma_X(G)=\mathcal{B}(X,G)$ as a **Borel** σ -algebra.

Definition 8: borel σ -algebra

Definition 0.8 (σ -algebra product):

Let Σ_1 and Σ_2 be σ -algebras on X_1 and X_2 respectively. The **product** σ -algebra denoted $\Sigma_1 \otimes \Sigma_2$ is defined as $\sigma_{X_1 \times X_2}(\{S_1 \times S_2 \mid S_1 \in \Sigma_1, S_2 \in \Sigma_2\})$

Definition 9: σ -algebra product

Definition 0.9 (measurable space):

 (X, Σ) is said **measurable** iff. Σ is a sigma-algebra of X.

Definition 10: measurable space

Definition 0.10 (measure):

Given (X, Σ) measurable space. $\mu : \Sigma \longrightarrow \mathbb{R} \cup \{+\infty, -\infty\}$ is said a **measure** iff.

1. $E \in \Sigma \Longrightarrow \mu(E) \ge 0$. positive.

2. $\{E_n \in \Sigma\}_{n=1}^{\infty}$ such that $E_i \cap E_j$ for $i \neq j \Longrightarrow \mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$. The measure of disjoint sets is is the sum of the measures of each set.

3. $\mu(\emptyset) = 0.$

Definition 11: measure

Definition 0.11 (measure space):

 (X, Σ, μ) is said a **measure space** iff. (X, Σ) is a sigma algebra and μ is a measure of (X, Σ) .

Definition 12: measure space

Definition 0.12 (measurable function):

Let (X_1, Σ_1) and (X_2, Σ_2) be a measurable spaces. $f: X_1 \longrightarrow X_2$ is said a **measurable function** iff. $\forall E \in \Sigma_2: f^{-1}(E) \in \Sigma_1$. The preimage of each measurable set is again measurable.

Definition 13: measurable function

Definition 0.13 (pushforward):

Let (X_1, Σ_1, μ) be a measure space. Let (X_2, Σ_2) be a measurable space. Let $f: X_1 \longrightarrow X_2$ be a measurable function. The **pushforwad of \mu under** f is the mapping $f_{\#}\mu: \Sigma_2 \longrightarrow \mathbb{R}_{\geq 0}$ defined as:

$$\forall E \in \Sigma_2: f_\#\mu(E) = \mu(f^{-1}(E))$$

Definition 14: pushforward

The pushforward is simply a function that generates a measure for a measurable space starting from a different measure space and a measurable function acting as bridge between the two spaces.

Proposition 0.1 (pushforward of a measure is a measure):

Let (X_1, Σ_1, μ) be a measure space. Let (X_2, Σ_2) be a measurable space. Let $f: X_1 \longrightarrow X_2$ be a measurable function. Then $(X_2, \Sigma_2, f_\# \mu)$ is a measure space.

Proposition 15: pushforward of a measure is a measure

Proof 0.1 (of Proposition 15):

To prove that statement, we need to prove only the axioms of a measure.

- 1. Let $E \in \Sigma_2$, we need to show that $f_{\#}\mu(E) \geq 0$. This is trivial by definition of pushforward and measure.
- 2. Let $[E_n \in \Sigma_2]_{n=1}^\infty$ be a sequence of pairwise disjoint sets. We need to show that: $f_\#\mu\Bigl(\bigcup_{n=1}^\infty E_n\Bigr) = \sum_{n=1}^\infty f_\#\mu(E_n).$

$$\begin{split} f_{\#}\mu\bigg(\bigcup_{n=1}^{\infty}E_n\bigg) &= \mu\bigg(f^{-1}\bigg(\bigcup_{n=1}^{\infty}E_n\bigg)\bigg) \text{ definition of pushforward} \\ &= \mu\bigg(\bigcup_{n=1}^{\infty}f^{-1}(E_n)\bigg) \\ &= \sum_{n=1}^{\infty}\mu(f^{-1}(E_n)) \text{ definition of measure} \\ &= \sum_{n=1}^{\infty}f_{\#}\mu(E_n) \text{ definition of pushforward} \end{split}$$

3. We need to show that $\exists E \in \Sigma_1$ such that $f_\#(E) \geq 0$. Let $E' \in \Sigma_1$ such that $\mu(E') \geq 0$ (such E' exists by defintion of measure). Then, f(E') is a set that meets the requirements, that is

$$f_{\#}(f(E')) = \mu\big(f^{-1}(f(E'))\big) = \mu(E') \geq 0$$

Proof 16: of Proposition 15

Example 0.2 (pushforward example):

Consider the measure space $(\mathbb{N}, 2^{\mathbb{N}}, \mu(E) = |E|)$. Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Consider the measurable function $f: \mathbb{N} \longrightarrow \mathbb{R}$ such that f(x) = x. Consider pushforward $f_{\#}\mu$:

 $\mathbb{R} \longrightarrow \mathbb{R}_{>0}$. Then $f_{\#}\mu$ is a measure for the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ since:

1.
$$f_{\#}\mu(E \in \mathcal{B}(\mathbb{R})) = |\{n \in \mathbb{N} \mid n \in E\}| \ge 0.$$

1.
$$f_{\#}\mu(E \in \mathcal{B}(\mathbb{R})) = |\{n \in \mathbb{N} \mid n \in E\}| \geq 0.$$
2. Let $\{E_n\}_{n=1}^{\infty}$ pairwise disjoint, then $f_{\#}\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(f^{-1}\left(\bigcup_{n=1}^{\infty} E_n\right)\right) = \mu\left(\bigcup_{n=1}^{\infty} f^{-1}(E_n)\right) = \sum_{n=1}^{\infty} \mu(f^{-1}(E_n)) = \sum_{n=1}^{\infty} f_{\#}\mu(E_n).$
3.
$$f_{\#}\mu(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0$$

Example 17: pushforward example

Lebesgue Measure

Definition 0.14 (pre-measure):

Let (X, Σ) such that $\emptyset \in S$. Let $\mu : S \longrightarrow R_{>0} + \{+\infty\}$. μ is said a **pre-measure** iff.

1.

2. Given a collection of pairwise disjoint sets $\left\{A_n \in S\right\}_{n \in \mathbb{N}}$ such that $\bigcup_{n \in \mathbb{N}} A_n \in S \Longrightarrow \mu\left(\bigcup_{n \in \mathbb{N}} A_n\right) = \sum_{n \in \mathbb{N}} \mu(A_n).$ 3. $\forall A \in S: \mu(A) \geq 0.$

$$\mu\left(\bigcup_{n\in\mathbb{N}} A_n\right) = \sum_{n\in\mathbb{N}} \mu(A_n)$$
$$\forall A \in S : \mu(A) > 0.$$

Definition 18: pre-measure

A pre-measure is a precursor of a full-fledge measure. The main difference is that a measure is defined on sigma algebras, meanwhile the pre-measure is defined on a simple collection of subsets. Further, given that this collection is not necessarily closed under unions as a sigma algebra does, we also need to check that, in the second requirement, the union of A_n is indeed contained in the collection.

Definition 0.15 (Lebesgue pre-measure):

The **Lebesgue pre-measure** is a mapping $\lambda^n: \mathcal{I}_h^n \longrightarrow \mathbb{R}_{>0} \cup \{+\infty\}$ (\mathcal{I}_h^n denotes the set half open rectangle) such that $\lambda^n \left(\times_{i=1}^n [a_i, b_i) \right) = \prod_{i=1}^n (b_i - a_i)$ for $a_i, b_i \in \mathbb{R}$ and $a_i \leq b_i$.

Definition 19: Lebesgue pre-measure

Proposition 0.2:

The Lebesgue pre-measure is a pre-measure.

1.
$$\lambda^n(\emptyset) = \lambda^n \left(\times_{i=1}^n [a_i, a_i] \right) = \prod_{i=1}^n (a_i - a_i) = 0$$

Proof 0.2 (of Proposition Proposition 20):

1. $\lambda^n(\emptyset) = \lambda^n \Bigl(\textstyle \textstyle \bigvee_{i=1}^n [a_i,a_i) \Bigr) = \prod_{i=1}^n (a_i-a_i) = 0$ 2. Let $I = \textstyle \textstyle \bigvee_{i=1}^n [a_i,b_i)$ and $I' = \textstyle \textstyle \bigvee_{i=1}^n [a_i',b_i')$ be disjoint half open rectangles.

The $I \cup I'$ belongs to \mathcal{I}_h^n if we can stitch one to the other (see Fig.)

Figure 1: aaa

Proof 21: of Proposition Proposition 20