LAB-4 REPORT

SRN:PES2UG23CS384| NAME: NIDHI N

1. Introduction:

The objective of this laboratory exercise is to explore hyperparameter optimization for various classification algorithms utilizing the Grid Search CV methodology. In this study, a comparative analysis is conducted on three supervised learning algorithms a Decision Tree, k-Nearest Neighbours (KNN), and Logistic Regression to assess their respective classification capabilities on the provided dataset.

2. Dataset Overview

The dataset employed for this analysis consists of a collection of features (independent variables) and a corresponding target class (labels).

- Predictor Variables: The features used for model training include a combination of numerical and categorical attributes.
- Target Variable: The goal is to predict a binary or multi-class categorical label.
- Data Partitioning: For evaluation purposes, the dataset was partitioned into distinct training and testing subsets.
- Data Preprocessing: The following preparation steps were executed:
 - Feature Scaling: Applied to the data for the k-Nearest Neighbours and Logistic Regression models.
 - Pipeline Implementation: A pipeline was constructed to integrate the preprocessing and model training workflows.

3. Methodology

We implemented a machine learning pipeline:

StandardScaler: Standardizes features for kNN and Logistic Regression.

SelectKBest: Selects top k features based on ANOVA F-test.

Classifier: Decision Tree, kNN, or Logistic Regression.

Two approaches were used:

Manual Grid Search

Implemented using nested loops and 5-fold Stratified CV.

Calculated average ROC AUC for each parameter set.

Selected the best parameter set and retrained on full training data.

Built-in GridSearchCV

Used GridSearchCV with pipelines.

scoring='roc_auc', 5-fold Stratified CV.

Extracted best parameters and compared results with manual implementation.

Evaluation Metrics: Accuracy, Precision, Recall, F1-Score, ROC AUC.

4. Results and Analysis

The models were trained on the given dataset and tested using the chosen parameters. Their performance was then compared using standard evaluation metrics.

Wine Quality – Model Performance (Manual and Built-in)

Model	Acuuracy	Precision	Recall	F1	ROC AUC
Decision tree	0.7271	0.7716	0.6965	0.7321	0.8025
kNN	0.7750	0.7854	0.7977	0.7915	0.8679
Logistic	0.7396	0.7619	0.7471	0.7544	0.8246
regression					
Voting	0.7417	0.7692	0.7393	0.7540	0.8611
classifier					

QSAR Biodegradation – Model Performance (Manual and Built-in)

Model	Acuuracy	Precision	Recall	F1	ROC AUC
Decision tree	0.7603	0.6914	0.5234	0.5957	0.8150
kNN	0.8076	0.7396	0.6636	0.6995	0.8726
Logistic	0.8139	0.7667	0.6449	0.7005	0.8868
regression					
Voting	0.8044	0.7528	0.6262	0.6837	0.8877
classifier					

Built-in GridSearchCV - Results

- Parameters and metrics were consistent with manual search.
- Confirms that the manual grid search loop was implemented correctly.

Analysis:

- kNN again achieved the best overall performance with the highest ROC AUC (0.872).
- Logistic Regression had slightly higher recall but overall lower AUC compared to kNN.
- The Voting Classifier was strong but still did not surpass standalone kNN

Wine Quality Dataset

- Results are consistent with earlier analysis
- kNN was again the top performer with ROC AUC = 0.8679, better than Decision Tree, Logistic Regression, and Voting.

Banknote Authentication Dataset

- training(960,4), testing(412,4)
- Manual Grid Search failed because SelectKBest(k) exceeded available features
- Built-in GridSearchCV did not run due to error carry-over.

Analysis:

- The dataset could not be fully evaluated.
- Fix: ensure k in SelectKBest never exceeds the number of features.

Screenshots:

```
PROCESSING DATASET: NINE QUALITY

PROCES
```



```
RINNING MANNAL GRID SEARCH FOR QSAR BIODEGRADATION

The season of the se
```



```
--- GridsearchCV for kNN ---

Best params for NMH: ("classifier_n_neighbors': 9, 'classifier_weights': 'distance', 'select_k': 15)

Best Covere -0.8856

--- GridsearchCV for Logistic Regression ---
Best params for Logistic Regression: ("classifier_c': 10, 'classifier_penalty': '12', 'classifier_solver': 'lbfgs', 'select_k': 15)

Best Covere -0.8816

EVALUATING BUILT-IN MODELS FOR QSAR BIODEGROUNTION

--- Individual Model Performance ---

Decision Tree:
Accuracy: 0.7089
Precision: 0.7936

Rocall: 0.5214
Fil-Score: 0.5957
ROC AUC: 0.8159

ISBN:
Covere -0.8816

Elsion: 0.7936
Recall: 0.6306
Fil-Score: 0.6995
ROC AUC: 0.8726

Logistic Regression:
Accuracy: 0.8139
Precision: 0.7095
ROC AUC: 0.8766
Recall: 0.6449
Fil-Score: 0.7695
ROC AUC: 0.8888

--- Built-in Voting Classifier ---
Error processing QSAR Biodegradation: name 'X_train' is not defined
```

