Uso de la herramienta Electric VLSI

Nicolás David Arias Sosa **Código:** 261692 ndariass@unal.edu.co David Ricardo Martínez Hernández **Código:** 261931 drmartinezhe@unal.edu.co Oscar Alejandro Rojas Gallego **Código:** xxxxxx oarojasg@unal.edu.co Universidad Nacional de Colombia

Resumen—En la práctica de laboratorio que se describe a continuación se realizaron los layouts de transistores MOSFET, de un inversor CMOS y de una compuerta de transmisión usando la herramienta *Electric*. A partir de esto fue posible simular los modelos realizados en *Spice*.

Índice de términos—CMOS, Compuerta de transmisión, Compuerta Inversora, Tipo N y P, Transistor.

I. Introducción

A. Reglas de diseño por capas sCMOS abstractas.

En la tabla I y en la fig. 1 se muestran las reglas a considerar en el diseño por capas sCMOS. Los valores presentados son dados en términos del parámetro λ , que para los diseños presentados es **300 nm**.

TABLA I: Reglas de diseño por capas sCMOS abstractas.

Regla	Descripción	Valor (λ)
3.1	Ancho mínimo	2
3.2	Espacio mínimo	2
3.2.a	Espacio mínimo sobre capa activa	2
3.3	Extensión mínima de compuerta	2
	sobre capa activa	2
3.4	Extensión mínima de capa activa	3
	sobre capa de polisilicio	3
3.5	Extensión mínima entre capas de	1
	polisilicio y activa	

Fig. 1: Reglas de diseño en el diseño por capas sCMOS acorde a los valores de la tabla I.

B. Relaciones de corriente en los transistores MOSFET.

En las ecuaciones 1 y 2 se muestran las relaciones de corriente para los transistores MOSFET N y P en modo de corte $(V_{gs} < |V_{th}|)$, triodo $(|V_{ds}| < |V_{gs}| - |V_{th}|)$ y saturación (caso contrario)

$$I_{dn} = \begin{cases} 0 & : \text{corte} \\ k'_n \frac{W}{L} \left((V_{gs} - |V_{th}|) V_{ds} - \frac{V_{ds}^2}{2} \right) & : \text{triodo} \\ \frac{k'_n}{2} \frac{W}{L} \left(V_{gs} - |V_{th}| \right)^2 & : \text{saturación} \end{cases}$$
(1)

$$I_{dp} = \begin{cases} 0 & : \text{corte} \\ k'_n \frac{W}{L} \left((V_{sg} - |V_{th}|) V_{sd} - \frac{V_{sd}^2}{2} \right) & : \text{triodo} \\ \frac{k'_n}{2} \frac{W}{L} \left(V_{sg} - |V_{th}| \right)^2 & : \text{saturación} \end{cases}$$
 (2)

II. TRANSISTOR TIPO P

Se realizó el diseño de un layout con un transistor P con W=3.6 μ m y L=1.2 μ m. El layout realizado se muestra en la fig. 2. A partir de esto se hizo la generación y simulación correspondiente del modelo en SPICE.

Fig. 2: Layout hecho en Electric de un transistor P

En la fig. 3 se muestra la gráfica I_d vs. V_{ds} para diferentes valores de V_{gs} y en la fig. 4 se muestra la gráfica I_d vs V_{gs} para diferentes valores de V_{ds} .

Fig. 3: Gráfico de I_d vs. V_{ds} para valores de V_{gs} entre 0 V y 5 V.

Fig. 4: Gráfica de I_d vs V_{gs} para V_{ds} entre 0 V y 5 V.

III. TRANSISTOR TIPO N

Se realizó el diseño de un layout con un transistor N con W=3.6 μ m y L=1.2 μ m. El layout realizado se muestra en la fig. 5. A partir de esto se hizo la generación y simulación correspondiente del modelo en SPICE.

Fig. 5: Layout hecho en Electric de un transistor N.

En la fig. 6 se muestra la gráfica I_d vs. V_{ds} para diferentes valores de V_{gs} y en la fig. 7 se muestra la gráfica I_d vs V_{gs} para diferentes valores de V_{ds} .

Fig. 6: Gráfico de I_d vs. V_{ds} para valores de V_{gs} entre 0 V y 5 V.

Fig. 7: Gráfica de I_d vs V_{gs} para V_{ds} entre 0 V y 5 V.

IV. INVERSOR CMOS

Se realizó el diseño de un layout con un transistor P con $W=3\,\mu m$ y $L=0.6\,\mu m$, para el transistor N con $W=1.5\,\mu m$ y $L=0.6\,\mu m$. El layout realizado se muestra en la fig. 8. A partir de esto se hizo la generación y simulación correspondiente del modelo en SPICE.

Fig. 8: Layout hecho en Electric de una compuerta inversora.

Fig. 9: Layout hecho en Electric de una compuerta inversora en su vista 3D.

Para la primera siulación se polarizó con un $V_{DD}=5\,V$ dando como relustado

Fig. 10: Comportamiento de la compuerta inversora del modelo SPICE.

Fig. 11: Retardo de las señales para $V_{DD} = 5 V$ para la compuerta inversora.

Para la primera simulación se polarizó con un $V_{DD}=3\,V$ los resultados fueron los mismos resultados como los de la 15 solo cambio el retardo del transistor (ver Fig. ??)

Fig. 12: Retardo de las señales para $V_{DD} = 3 V$ para la compuerta inversora.

V. COMPUERTA DE TRANSMISIÓN

Se realizó el diseño de un layout con un transistor P con $W=3\,\mu m$ y $L=0.6\,\mu m$, para el transistor N con $W=1.5\,\mu m$ y $L=0.6\,\mu m$. El layout realizado se muestra en la fig. 13. A partir de esto se hizo la generación y simulación correspondiente del modelo en SPICE.

Fig. 13: Layout hecho en Electric de una compuerta de transmisión.

Fig. 14: Layout hecho en Electric de una compuerta de transmisión en su vista 3D.

Para la simulación se polarizó con un $V_{DD}=5\,V$ dando como resultado

Fig. 15: Comportamiento de la compuerta transmisora del modelo SPICE.

Fig. 16: Retardo de las señales para $V_{DD} = 5 V$ para la compuerta de transmisión.

VI. ANÁLISIS DE RESULTADOS Y CONCLUSIONES

A. Transistores (N y P)

En las fig. 4 y 7 es posible observar los valores de la tensión de umbral de los transistores. Se tiene por tanto $V_{th} = -0.9 \text{ V}$ y $V_{th} = 0.7 \text{ V}$ para los transistores P y N, correspondientemente. Esto coincide por los valores del proceso C5, que son -0.9214 V y 0.6696 V correspondientemente.

De igual modo, es posible a partir de las simulaciones extraer los parámetros k_p y k_n , que no está dado explícitamente en el proceso C5. Para esto se tomaron valores de I_d para diferentes valores de V_{gs} en región de saturación (fig. 3 y 6). Usando entonces las ecuaciones 1 y 2 se despeja el valor de $k_{p,n}=k^{'}W/L$. Se tiene entonces $k_p=$ 33.28 $\mu A/V$ y $k_n=$ 90.5 $\mu A/V$.

B. Inversor CMOS

C. Compuerta de Transmisión

REFERENCIAS

- [1] Jaeger, Richard C. & Blalock, Travis N. "Microelectronic Circuit Desing". McGraw-Hill, Fourth Edition, 1999.
- [2] Sedra, Adel S. & Smith, Kenneth C. "'Circuitos Microelectrónicos". Oxford University Press, Cuarta Edición, 1999.