ADASS 2017 Tutorial

Jupyter Notebooks for Astronomical Data Analysis

Mauricio Araya

WIFI: ADASS

pass: adass2017

Installing Anaconda

- * Jupyter runs over Python
- Anaconda is a Python Distribution
 - * We will use Python 3.6
 - * Environments can do the trick
 - * pip at your own risk
- * Over 500 MB
 - Please ask for a pendrive
 - Windows, Linux and MacOS

Setup an environment

- * Fresh Installation:
 - * conda create --name adass --clone root
- * Previous Installation:
 - conda create -n adass python=3.6 anaconda
- Activate the environment
 - * source activate adass
- Move to a working directory
 - * mkdir tutorial
 - * cd tutorial
- Run Jupyter!
 - jupyter notebook

Resources

- Google docs for copy/paste information
 - http://tinyurl.com/tutorial-docs
- Data directory (Google Drive)
 - http://tinyurl.com/tutorial-data

- * Just in case...
 - http://csrg.cl/~maray/adass17/

Notebook

* Data, text, documentation, figures in the same place

- * Data, text, documentation, figures in the same place
- Adds code to the same space

- * Data, text, documentation, figures in the same place
- * Adds code to the same space

- * Data, text, documentation, figures in the same place
- * Adds code to the same space
- * Popularized by Mathematica

- * Data, text, documentation, figures in the same place
- * Adds code to the same space
- * Popularized by Mathematica
- * Popular in data science

- * Data, text, documentation, figures in the same place
- * Adds code to the same space
- * Popularized by Mathematica
- Popular in data science
- Astronomy: self-documented pipelines

- * Data, text, documentation, figures in the same place
- * Adds code to the same space
- * Popularized by Mathematica
- Popular in data science
- Astronomy: self-documented pipelines
- Reproducible research

Kernel

* Interactive code executor

- * Interactive code executor
- * Running in the "background" of the notebook

- * Interactive code executor
- * Running in the "background" of the notebook
- * Maintains the state (variables)

- * Interactive code executor
- * Running in the "background" of the notebook
- Maintains the state (variables)
- * Jupyter supports several

- * Interactive code executor
- * Running in the "background" of the notebook
- Maintains the state (variables)
- * Jupyter supports several
- We will use only iPython kernel

WebApp

* Jupyter is a **notebook server**

- * Jupyter is a notebook server
- * Your browser is the client

- * Jupyter is a notebook server
- * Your browser is the client
- * The state is in the server, not in the browser

- * Jupyter is a notebook server
- Your browser is the client
- * The state is in the server, not in the browser
- * Is a Web Application, despite if you use it locally

Python

- * I asume you know python (sorry if not)
- * We will start with a few reminders though
- * Then we will go to scientific python
- * Then to astronomical python
- * And end up with a short demo of our python packages

jupyter notebook

Our Posters & Presentations

- Poster 067: Docker-based Implementation for an Astronomical Data Analysis Cloud Service (Jovial)
- * Poster 072: Towards Large-Scale RoI Indexing for Content-Aware Data Discovery (HPC)
- * Oral 9.2 (Wed 16:30): Wrapping and Deploying Legacy Astronomical Code Into Python Environments: An applied Case Study (pyCupid)