Assignment 5 - MAT257

David Knott Student #999817685

October 18, 2013

- 1. Munkres §8, #2
 - (a) Suppose that f(x,y) = f(a,b) where $y,b \in (0,2\pi)$. Then we have:

$$f(x,y) = f(a,b) \Longrightarrow$$

$$||f(x,y)|| = ||f(a,b)|| \Longrightarrow$$

$$\sqrt{(e^x \cos y)^2 + (e^x \sin y)^2} = \sqrt{(e^a \cos b)^2 + (e^a \sin b)^2} \Longrightarrow$$

$$e^{2x}(\cos^2 y + \sin^2 y) = e^{2a}(\cos^2 b + \sin^2 b) \Longrightarrow$$

$$e^{2x} = e^{2a} \Longrightarrow$$

$$x = a$$

Given x = a, the below follows:

$$f(x,y) = f(a,b) \Longrightarrow$$

$$e^{x} \cos y = e^{a} \cos b \Longrightarrow$$

$$\cos y = \cos b$$

And:

$$f(x,y) = f(a,b) \Longrightarrow$$

 $e^x \sin y = e^a \sin b \Longrightarrow$
 $\sin y = \sin b$

Since y and b are in $(0, 2\pi)$ then this implies y = b. Since $f(x, y) = f(a, b) \implies (x, y) = (a, b)$ the function is one to one.

- (b) $B = \mathbb{R}^2 L$ where L is the set $\{t(1,0) \mid t \in \mathbb{R}^+\}$. This is because for any $(x,y) \in \mathbb{R}^2$ if we can find a $\theta \in (0,2\pi)$ an $r \in \mathbb{R}^+$ such that $(x,y) = (r\cos\theta, r\sin\theta)$ unless $x \in L$, since in that case $\theta = 0$ or 2π . In the context of our function, for any (r,θ) we can get (x,y) through the function $f(\log r,\theta)$.
- (c) By the inverse function theorem, if Df(x,y) is nonsingular, then the function is one to one in some neighborhood of (x,y) and the inverse function g has the derivative $Dg(f(x,y)) = [Df(x,y)]^{-1}$. Taking Df(x,y) for any $(x,y) \in \mathbb{R}^2$ yields:

$$Df(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{bmatrix}$$
$$= \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix}$$

The determinant of this matrix will be $(e^x \cos y)^2 + (e^x \sin y)^2 = e^{2x}$. Since $e^{2x} > 0$ for all x this means the function's derivative is invertible anywhere.

Speaking generally again, if we take the formula for the inverse of a 2×2 matrix we find that $Df(x,y)^{-1}$ is:

$$\begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix}^{-1} = \frac{1}{e^{2x}} \begin{bmatrix} e^x \cos y & e^x \sin y \\ -e^x \sin y & e^x \cos y \end{bmatrix}$$

To find Dg(0,1) we must find an (x,y) such that f(x,y)=(0,1). Heuristically, we know that there exists a θ such that $\sin \theta = 1$ and $\cos \theta = 0$. If we let x = 0 and $y = \frac{\pi}{2}$ then f(x,y) = (0,1). Plugging the vector $(0,\pi/2)$ into our inverted matrix formula yields:

$$\frac{1}{e^{2x}} \begin{bmatrix} e^x \cos y & e^x \sin y \\ -e^x \sin y & e^x \cos y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Which is Dg(0,1).

2. Munkres §8, #3

Expanding the function f out into it's component functions:

$$f_1(x, y) = x(x^2 + y^2)$$

 $f_2(x, y) = y(x^2 + y^2)$

These are simple polynomials. This means f is of class C^{∞}

Let $x, y \in B(0; 1)$. Suppose f(x) = f(y). Then ||f(x)|| = ||f(y)|| and therefore:

$$||||x||^2 \cdot x|| = |||y||^2 \cdot y|| \implies$$

 $||x||^2 ||x|| = ||y||^2 ||y|| \implies$
 $||x|| = ||y||$

If ||x|| = ||y|| = 0 then x = y = 0. Otherwise, we have $||x||^2 \cdot x = ||y||^2 \cdot y$. Multiplying both sides by $1/||x||^2$ yields x = y. Therefore f is one to one on the unit ball.

For any $(x,y) \in \mathbb{R}^2$, Df(x,y) will be the matrix:

$$\begin{bmatrix} 3x^2 + y^2 & 2xy \\ 2xy & 3y^2 + x^2 \end{bmatrix}$$

Since f(0,0) = 0, the inverse function g must have a derivative that is the inverse of f at 0. However, when (x,y) = 0 all of the terms in the matrix go to zero, and therefore it is not invertible. Hence, g is not differentiable at 0.

- 3. Munkres §8, #5
- 4. Munkres §9, #3
- 5. Munkres §9, #4
- 6. Munkres §9, #5