Machine Learning for Graphs and Sequential Data

Sequential Data – Temporal Point Processes

lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2024

Roadmap

- Chapter: Temporal Data / Sequential Data
 - 1. Autoregressive Models
 - Markov Chains
 - 3. Hidden Markov Models
 - 4. Neural Network Approaches
 - 5. Temporal Point Processes
 - a) Introduction
 - b) Selected TPP Models

Event Data

- Our data consists of discrete events in continuous time, such as
 - Transaction times in finance
 - Messages on social media
 - Visits to hospitals in electronic health records

- Prediction tasks
 - When will the next event happen?
 - How many events will happen in the next hour/day/week?

Difference to Time Series

- Time series
 - Measurements (signal) collected at regular intervals

- (Asynchronous) event data
 - Irregular intervals
 - We care about the time of the occurrence

Temporal Point Processes

 Temporal Point Processes (TPP) are a class of probabilistic models that describe the distribution of discrete event sequences in continuous time

- TPP defines a generative model for variable-length sequences $t = \{t_1, ..., t_N\}$ on the interval [0, T]
 - Both locations of the events t_i and their number N are random
- TPPs also provide a likelihood function $p(\{t_1, ..., t_N\})$

Modeling the Time of the Next Event

- We can model the distribution $p(\{t_1, ..., t_N\})$ autoregressively
 - Predict the time of the <u>next</u> event t_i given the history $\mathcal{H}(t) = \{t_i < t\}$
 - Important: $\mathcal{H}(t)$ depends on the specific sample $\{t_1, ..., t_N\}$!
 - We denote the conditional density as $p^*(t) \coloneqq p(t|\mathcal{H}(t))$

next event $\in [t, t + dt) \iff$ event in [t, t + dt) & no event in $[t_3, t)$

Alternative Ways to Model the Inter-event Time

- Cumulative distribution function (CDF)
 - $-F^*(t)=\int_{t_{i-1}}^t p^*(u)du$ = Probability that the next event happens in $[t_{i-1},t)$
 - $-t_{i-1}$ is the last event that happened before t
- Survival function
 - $S^*(t) = 1 F^*(t) = \int_t^{\infty} p^*(u) du$
 - Probability that the next event doesn't happen before t
 - Probability that the next event happens after t

Conditional Intensity Function

There exists another way to describe the conditional distribution

- Conditional intensity
 - $-\lambda^*(t)dt$ = probability of event in [t, t+dt) given no event in $[t_{i-1}, t)$

$$\lambda^*(t)dt = \frac{\Pr(\text{event in } [t, t+dt) \& \text{ no event in } [t_{i-1}, t))}{\Pr(\text{no event in } [t_{i-1}, t))} = \frac{p^*(t)dt}{S^*(t)}$$

- Intuitive meaning of $\lambda^*(t)$: Expected # of events / unit of time
 - We will demonstrate this later

Relation between p^* , F^* , S^* , λ^*

Likelihood of an Entire Sequence

■ How can we compute the likelihood of a realization $\{t_1, ..., t_N\}$?

$$p(\lbrace t_1, t_2, t_3, t_4 \rbrace) = p^*(t_1) \, p^*(t_2) \, p^*(t_3) \, p^*(t_4) \, S^*(T)$$

$$= \lambda^*(t_1) \, \lambda^*(t_2) \, \lambda^*(t_3) \, \lambda^*(t_4) \exp\left(-\int_0^T \lambda^*(u) du\right)$$

Remember that the number of events can vary

Roadmap

- Chapter: Temporal Data / Sequential Data
 - 1. Autoregressive Models
 - 2. Markov Chains
 - 3. Hidden Markov Models
 - 4. Neural Network Approaches
 - **5. Temporal Point Processes**
 - a) Introduction
 - b) Selected TPP Models

Models based on Conditional Intensity

- Defining TPPs in terms of $\lambda^*(t)$ has several advantages
- 1. Easy to define TPPs with pre-defined behavior
 - Global trend, burstiness, repulsiveness
 - Intensity is more interpretable
- 2. Easy to combine different TPPs with different $\lambda^*(t)$'s
- 3. Efficient sampling

Homogeneous Poisson Process (HPP)

Simplest possible model: constant intensity

$$\lambda^*(t) = \mu$$

Inter-event times follow exponential distribution

$$p^*(t) = \mu \exp\left(-\int_{t_{i-1}}^t \mu \ du\right) = \mu \exp\left(-\mu(t - t_{i-1})\right)$$

inter-event time τ_i

Simulating an HPP

We can simulate an HPP by generating the inter-event times

```
arrival_times = []
t = 0
while t < T:
    tau ~ Exponential(mu)
    t += tau
    if t < T:
        arrival_times.append(t)</pre>
```

How to sample from the exponential distribution? – Inverse CDF transform

$$u = F(\tau) = 1 - \exp(-\mu\tau) \implies \tau = F^{-1}(u) = -\frac{1}{\mu}\log(1-u)$$

where $u \sim \text{Uniform}(0, 1)$ and F is the CDF of the exponential distribution

Inhomogeneous Poisson Process (IPP)

The intensity changes over time

$$\lambda^*(t) = g(t) \ge 0$$

- Intensity is independent of the history
- Captures global trend
 - More events happen in the regions with higher intensity

Expected Number of Events

■ Number of events in an interval $[a,b] \subseteq [0,T]$ follows Poisson distribution $N([a,b]) \sim \operatorname{Poisson}\left(\int_a^b g(t)dt\right)$

• This means, the expected number of events inside [a, b] is equal to the total intensity over this region

Superposition of IPPs

• Consider two IPPs with intensities g(t) and h(t)

• Combination of the two IPPs is again an IPP with intensity g(t) + h(t)

■ This also applies to a general $\lambda^*(t)$, but showing this is more involved

Simulating an IPP

- Simulating the inter-event times is hard (requires integration)
- Better alternative thinning

- 1. Find an upper bound $\mu_0 \ge g(t)$ for all t
- 2. Simulate candidate events $\{t_1, t_2, ...\}$ from a HPP with rate μ_0
- 3. Keep each t_i with probability $g(t_i)/\mu_0$

Hawkes Process

Also known as self-exciting process

$$\lambda^*(t) = \mu + \alpha \sum_{t_j \in \mathcal{H}(t)} k_{\omega} (t - t_j)$$

- Triggering kernel $k_{\omega}(t t_i) = \exp(-\omega(t t_i))$
- Parameters μ , α , $\omega \ge 0$
- Intensity depends on the history
- Clustered ("bursty") event occurrences

Parameter Estimation in TPPs

- Pick a parametric conditional intensity $\lambda_{m{ heta}}^*(t)$ (e.g. Hawkes, IPP)
- Maximize the log-likelihood of the observed sequences $\mathcal{D}_{ ext{train}}$

$$\max_{\boldsymbol{\theta}} \sum_{\boldsymbol{t}=\{t_1,\ldots,t_N\}\in\mathcal{D}_{\text{train}}} \log p_{\boldsymbol{\theta}} \left(\{t_1,\ldots,t_N\}\right)$$

The log-likelihood of a single sequence is

$$\log p_{\theta}(\{t_1, ..., t_N\}) = \sum_{i=1}^{N} \log \lambda^*(t_i) - \int_0^T \lambda^*(u) du$$

Remember, different sequences have different length N

- Lots of different optimization techniques possible
 - Simple models like HPP allow closed-form solutions
 - For Hawkes process we can use convex optimization methods
 - Always possible to use gradient descent (with modifications for constraints)

Conditional Intensity: Summary

• Conditional intensity $\lambda^*(t)$ provides an alternative to the conditional density $p^*(t)$ when constructing TPPs

Advantages

- Easy to define models with simple behavior
- Interpretable
- Efficient sampling

Limitations

- Integration required to compute the log-likelihood might be intractable
- Not clear how to define flexible models with arbitrary dynamics
- We will define more flexible TPPs by going back to $p^*(t)$ and using RNNs

Modeling TPPs with RNNs

- Directly model the conditional distribution $p^*(t)$ using an RNN
- 1. Every time an event happens, we feed τ_i into the RNN
- 2. Use the hidden state $h_i \in \mathbb{R}^D$ of the RNN as the history embedding
- 3. Use h_i to generate the parameters θ_i of the distribution $p^*(t)$ $p^*(t) = p(t|\mathcal{H}(t)) = p(t|h_i)$

How to Model $p^*(t)$?

- The sequence of events must be increasing: $t_i > t_{i-1}$ for all i
- We can instead model the distribution of the inter-event times au_i
 - It's sufficient to ensure that $\tau_i > 0$
- How to define a flexible and tractable $p^*(\tau_i)$?
- Simple nonnegative distribution
 - Exponential, Gamma, Weibull, Gompertz, ...
- Mixture distribution
 - Take a convex combination of simple densities
- Normalizing flows
 - Use transformations like $\exp(x)$ or $\log(1 + \exp(x))$ to ensure non-negativity
 - Combine with other transformations (e.g., polynomials, NNs with positive weights) to add flexibility

Problems with Autoregressive TPP's

$$\lambda(t \mid \mathcal{H}_t) = \lim_{dt \to 0} \frac{\Pr(\text{next event} \in [t, t + dt) \mid \mathcal{H}_t)}{dt}$$

$$t_1 \quad t_2 \qquad t_3 \qquad \text{time}$$
History \mathcal{H}_t

Hard to model longrange interactions

Alternative: ADD and THIN – Diffusion for TPPs

Noising

- Start: Data sample $t^{(0)} \sim \lambda_0$
- For every diffusion step *n*:
 - 1. Thin $t^{(n-1)}$
 - 2. Add events from HPP (superposition)
- End: Noised data $\boldsymbol{t}^{(N)} \sim \lambda_{HPP}$

Alternative: ADD and THIN – Diffusion for TPPs

Denoising

- Start: Noised data $t^{(N)} \sim \lambda_{HPP}$
- For every diffusion step n: Sample $\boldsymbol{t}^{(n-1)} \sim \lambda_{n-1}(t \mid \boldsymbol{t}^{(0)}, \boldsymbol{t}^{(n)})$
- End: Data sample $t^{(0)} \sim \lambda_0$

For further details see our paper: https://arxiv.org/pdf/2311.01139

What we haven't covered

- Modeling TPPs with marks
 - https://www.research-collection.ethz.ch/handle/20.500.11850/151886
 - https://www.kdd.org/kdd2016/papers/files/rpp1081-duA.pdf
- More efficient sampling techniques
 - https://web.ics.purdue.edu/~pasupath/PAPERS/2011pasB.pdf
- Spatial and spatio-temporal point processes modeling events in space
 - https://arxiv.org/abs/1708.02647

Marked Temporal Point Processes

- Most common type: categorical marks
 - Each event has an associated class (i.e., category, type)
 - Events of different classes may influence each other
 - E.g., activity of each use is represented by a different mark

- Continuous marks also possible
 - E.g., magnitude of the earthquake, amount of money spent by a customer

Questions – TPP

- 1. Is it possible to obtain the conditional intensity $\lambda^*(t)$ if you know only the survival function $S^*(t)$ and don't know the conditional PDF $p^*(t)$?
- 2. Would you use (a) Hawkes process or (b) inhomogeneous Poisson process to model the following event data?
 - Customers visiting a supermarket (event = customer enters the supermarket)
 - Messages sent by a single user on WhatsApp (event = message sent)
 - Taxi rides in a city (event = a trip starts)
- 3. What can you say about a TPP with the following conditional intensity function? What kind of behavior does it model?

$$\lambda^*(t) = \exp\left(t - \sum_{t_i \in \mathcal{H}(t)} 1\right)$$

Acknowledgments

 These slides are based on the ICML 2018 tutorial by Manuel Gomez Rodriguez & Isabel Valera (http://learning.mpi-sws.org/tpp-icml18/)

Recommended Reading

- Lecture notes on TPPs by De, Upadhyay and Gomez-Rodriguez
 - http://courses.mpi-sws.org/hcml-ws18/lectures/TPP.pdf
 - Except Section 3.4, 4
- Alternatively, lecture notes by Rasmussen
 - https://arxiv.org/abs/1806.00221
 - Except Sections 2.4, 3.2, 4.2, 5, 6
- Modeling TPPs with recurrent neural networks
 - https://arxiv.org/abs/1909.12127
 - https://www.kdd.org/kdd2016/papers/files/rpp1081-duA.pdf
- ADD and THIN: Diffusion for Temporal Point Processes
 - https://arxiv.org/pdf/2311.01139

Machine Learning for Graphs and Sequential Data

Sequential Data – Temporal Point Processes

lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2024

