Norm, Distance, Angle

CE40282-1: Linear Algebra Hamid R. Rabiee and Maryam Ramezani Sharif University of Technology

Chebyshev inequality for standard deviation

x is an n-vector with mean $\mathbf{avg}(x)$, standard deviation $\mathbf{std}(x)$ rough idea: most entries of x are not too far from the mean by Chebyshev inequality, fraction of entries of x with

$$|x_i - \mathbf{avg}(x)| \ge \alpha \ \mathbf{std}(x)$$

is no more than $1/\alpha^2$ (for $\alpha > 1$)

• The fraction of entries of x within θ standard deviations of avg(x) is at least $(1-\frac{1}{\theta^2})$ for $\theta>1$

- 1-norm: (l_1) $||x||_1 = (|x_1| + |x_2| + \dots + |x_n|)$
- What is the shape of $||x||_1 = 1$?
- The distance between two vectors under the L1 norm is also referred to as the Manhattan distance
- Example:
 - L1 distance between (0,1) and (1,0)?

lacksquare ∞-norm: ($oldsymbol{l}_{\infty}$) (max norm)

$$L_{\infty} = max(|x_1|, |x_2|, ..., |x_n|)$$

• What is the shape of $||x||_{\infty} = 1$?

$$-\frac{1}{2}$$
-norm: $(l_{\frac{1}{2}})$

• What is the shape of $||x||_{\frac{1}{2}} = 1$?

zero-norm: (l_0)

$$\|x\|_0 = \lim_{lpha o 0^+} \lVert x
Vert_lpha = \left(\sum_{k=1}^n \lvert x
vert^lpha
ight)^{1/lpha} = \sum_{k=1}^n 1_{(0,\infty)}(\lvert x
vert)$$

- Zero-norm, defined as the number of non-zero elements in a vector, is an ideal quantity for feature selection. However, minimization of zeronorm is generally regarded as a combinatorically difficult optimization
- $||x||_0 = \sum_{x_i \neq 0} 1$

- Is zero-norm a norm??
- What is the shape of $||x||_0 = 1$?
- Examples:
 - LO distance between (0,0) and (0,5)?
 - LO distance between (1,1) and (2,2)?
 - (username,password)

Norms and Convexity

For $p \ge 1$, l_p norm is convex

Norms and Convexity

Theorem: If A is a convex subset of a normed linear space B whose norm is strictly convex, then, for every f in B, there exists a unique best approximation a* in A to f

Norm Derivations

$$\begin{tabular}{|c|c|c|c|c|} \hline & Square of l_2 \\ & & & \\ & &$$

$$\begin{aligned} ||u||_2 &= \sqrt{(u_1^2 + u_2^2 + \dots + u_n^2)} = (u_1^2 + u_2^2 + \dots + u_n^2)^{\frac{1}{2}} \\ \frac{d||u||_2}{du_1} &= \frac{1}{2} (u_1^2 + u_2^2 + \dots + u_n^2)^{\frac{1}{2} - 1} \cdot \frac{d}{du_1} (u_1^2 + u_2^2 + \dots + u_n^2) \\ &= \frac{1}{2} (u_1^2 + u_2^2 + \dots + u_n^2)^{-\frac{1}{2}} \cdot \frac{d}{du_1} (u_1^2 + u_2^2 + \dots + u_n^2) \\ &= \frac{1}{2} \cdot \frac{1}{(u_1^2 + u_2^2 + \dots + u_n^2)^{\frac{1}{2}}} \cdot \frac{d}{du_1} (u_1^2 + u_2^2 + \dots + u_n^2) \\ &= \frac{1}{2} \cdot \frac{1}{(u_1^2 + u_2^2 + \dots + u_n^2)^{\frac{1}{2}}} \cdot 2 \cdot u_1 \\ &= \frac{u_1}{\sqrt{(u_1^2 + u_2^2 + \dots + u_n^2)^{\frac{1}{2}}}} \cdot 2 \cdot u_1 \\ &= \frac{d||u||_2}{du_1} = \frac{u_1}{\sqrt{(u_1^2 + u_2^2 + \dots + u_n^2)}} \\ &= \frac{d||u||_2}{du_2} = \frac{u_2}{\sqrt{(u_1^2 + u_2^2 + \dots + u_n^2)}} \\ &\cdots \\ &\frac{d||u||_2}{du_n} = \frac{u_n}{\sqrt{(u_1^2 + u_2^2 + \dots + u_n^2)}} \end{aligned}$$

Norm Comparisons

Convex Relaxation

Sparse applications

 Alternative viewpoint: We try to find the sparsest solution which explains our noisy measurements

$$\min_{\mathbf{x}} \| \mathbf{x} \|_{0} \quad \text{subject to } \| \mathbf{A}\mathbf{x} - \mathbf{b} \|_{2} < \varepsilon$$

 Here, the l₀-norm is a shorthand notation for counting the number of non-zero elements in x.

Sparse Solution

- ullet l_0 optimization is np-hard
- Convex relaxation for solving the problem

```
\min_{x} \|x\|_{1}<br/>subject to \|Ax - b\|_{2} < \varepsilon
```

```
\min_{x} \|x\|_{0}<br/>subject to \|Ax - b\|_{2} < \varepsilon
```

Why is L1 supposed to lead to sparsity than L2?

A L1 regularization \mathcal{H}_0

B L2 regularization

Which norm is the convex hull of the intersection between the LO norm ball and L2 norm ball?

- Any valid norm ||.|| is a convex function.
 - Proof?

- The LO norm is not convex.
 - Proof?

Cauchy-Schwarz inequality

- for two *n*-vectors a and b, $|a^Tb| \le ||a|| ||b||$
 - written out,

$$|a_1b_1 + \dots + a_nb_n| \le (a_1^2 + \dots + a_n^2)^{1/2} (b_1^2 + \dots + b_n^2)^{1/2}$$

Derivation of Cauchy-Schwarz inequality

it's clearly true if either a or b is 0

so assume $\alpha = ||a||$ and $\beta = ||b||$ are nonzero we have

$$0 \leq \|\beta a - \alpha b\|^{2}$$

$$= \|\beta a\|^{2} - 2(\beta a)^{T}(\alpha b) + \|\alpha b\|^{2}$$

$$= \beta^{2} \|a\|^{2} - 2\beta \alpha (a^{T}b) + \alpha^{2} \|b\|^{2}$$

$$= 2\|a\|^{2} \|b\|^{2} - 2\|a\| \|b\| (a^{T}b)$$

divide by $2||a|| \, ||b||$ to get $a^T b \le ||a|| \, ||b||$

apply to -a, b to get other half of Cauchy–Schwarz inequality

Cauchy{Schwarz inequality holds with equality when one of the vectors is a multiple of the other
Hamid R. Rabiee & Marvam Ramezani, SUT CE40282-1: Linear Algebra

Cauchy-Schwarz inequality

Verification of triangle inequality.

$$||a + b||^{2} = ||a||^{2} + 2a^{T}b + ||b||^{2}$$

$$\leq ||a||^{2} + 2||a|| ||b|| + ||b||^{2}$$

$$= (||a|| + ||b||)^{2}$$

Angle

angle between two nonzero vectors a, b defined as

$$\angle(a,b) = \arccos\left(\frac{a^T b}{\|a\| \|b\|}\right)$$

 \triangleright $\angle(a,b)$ is the number in $[0,\pi]$ that satisfies

$$a^{T}b = ||a|| \, ||b|| \cos(\angle(a,b))$$

coincides with ordinary angle between vectors in 2-D and 3-D

Classification of angles

$$\theta = \angle(a,b)$$

- $\theta = \pi/2 = 90^{\circ}$: a and b are orthogonal, written $a \perp b$ ($a^{T}b = 0$)
- \bullet $\theta = 0$: a and b are aligned $(a^Tb = ||a||||b||)$
- $\theta = \pi = 180^{\circ}$: a and b are anti-aligned ($a^Tb = -||a|| ||b||$)
- $\theta \le \pi/2 = 90^\circ$: a and b make an acute angle $(a^Tb \ge 0)$
- $\theta \ge \pi/2 = 90^\circ$: a and b make an obtuse angle ($a^Tb \le 0$)

Applications

Spherical distance

if a, b are on sphere of radius R, distance along the sphere is $R \angle (a,b)$

Applications

Correlation coefficient

vectors a and b, and de-meaned vectors

$$\tilde{a} = a - \operatorname{avg}(a)\mathbf{1}, \qquad \tilde{b} = b - \operatorname{avg}(b)\mathbf{1}$$

• correlation coefficient (between a and b, with $\tilde{a} \neq 0$, $\tilde{b} \neq 0$)

$$\rho = \frac{\tilde{a}^T \tilde{b}}{\|\tilde{a}\| \|\tilde{b}\|}$$

- - $-\rho = 0$: a and b are uncorrelated
 - $-\rho > 0.8$ (or so): a and b are highly correlated
 - $-\rho < -0.8$ (or so): a and b are highly anti-correlated
- very roughly: highly correlated means a_i and b_i are typically both above (below) their means together

Applications

Document dissimilarity by angles

- measure dissimilarity by angle of word count histogram vectors
- pairwise angles (in degrees) for 5 Wikipedia pages shown below

	Veterans Day	Memorial Day	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	60.6	85.7	87.0	87.7
Memorial Day	60.6	0	85.6	87.5	87.5
Academy A.	85.7	85.6	0	58.7	85.7
Golden Globe A.	87.0	87.5	58.7	0	86.0
Super Bowl	87.7	87.5	86.1	86.0	0

Complexity

- Norm: 2n flops. O(n)
- RMS: 2n flops. O(n)
- Distance: 3n flops. O(n)
- Angle: 6n flops. O(n)
- Standard deviation: 4n flops. O(n) can reduce to 3n flops $\operatorname{std}(x)^2 = \operatorname{rms}(x)^2 \operatorname{avg}(x)^2$,
- Standardizing: 5n flops. O(n)
- Correlation coefficient: 10n flops. O(n)

Reference

- Linear Algebra and Its Applications David C.
 Lay
- Introduction to Applied Linear Algebra Vectors,
 Matrices, and Least Squares
- https://www.youtube.com/watch?v=76B5cME ZA4Y