Discrete Structures (W1): Quiz

Kalvis RBS

Question 1. Fill in the missing entries in the truth table of this proposition:

$$E = \neg(r \to \neg q) \land (q \to r).$$

Fill in the . . .:

p	q	r	E		
T	T	T	don't care		
T	T	F	don't care		
T	F	T			
T	F	F			
F	T	T	don't care		
F	T	F	don't care		
F	F	T			
F	F	F			
	T T T F F	T T T T T F F T F T F F T F F	T T T T T T T F T F T T F T F T F T F T		

Question 2. Find the Boolean expression that has this truth table:

p	q	?
T	T	F
T	F	F
F	T	T
F	F	F

(Select 1 answer):

- **(A)** $\neg (p \rightarrow q)$,
- **(B)** $\neg p \rightarrow \neg q$,
- (C) $\neg (q \rightarrow p)$,
- **(D)** $\neg q \rightarrow \neg p$.

Question 3. Determine whether the following proposition is *satisfiable*: $(\neg p \lor \neg q) \land (p \to q)$. If it is satisfiable, what are the truth values for p and q that makes it true.

(Circle answer and fill in the ..., if appropriate.) Is the expression satisfiable: YES NO If yes, what values can satisfy it (just 1 example): $p = \dots \qquad q = \dots \qquad r = \dots$

Question 4. Consider the following proposition: "You cannot eat vegetables unless you also eat ice cream." Express it as a Boolean expression, if there are two atomic propositions:

A: "Person x can eat vegetables."

B: "Person x eats ice cream."

(Write your expression here) . . .

Question 5. Determine whether the following two propositions are logically equivalent: $E_1 = p \lor \neg (q \lor r)$ and $E_2 = (p \land \neg q) \lor (p \land \neg r)$.

If they are not equivalent, find some values p, q, r that makes E_1 different from E_2 .

(Circle answer and fill in the ..., if appropriate.)
Are both expressions equivalent: YES NO
If not, which truth values make them different: $p = \dots \qquad q = \dots \qquad r = \dots$

Question 6. Translate the given statement into propositional logic using the propositions provided:

"In Riga a person can receive *low income status*, if he or she lives in a family where the income per family member during the last 3 months did not exceed 320 EUR per month, or there is one person in your family, who receives an old-age or disability benefit up to 400 EUR per month."

Express your answer in terms of 3 atomic propositions *A*: "You are living in a family where the average income per family member does not exceed 320 EUR per month during the last 3 months."

B: "You are a single who receives an old-age or disability benefit not exceeding 400 EUR per month." and C: "You can get low income status."

(Write your expression here) . . .

Question 7. (*Note:* In this problem "knights" always tell the truth and "knaves" always lie.) Person *A* says "B is a knave." Person *B* says "We are both knights." Determine whether each person is a knight or a knave.

Is this situation possible: YES NO If the situation is possible, who are A, B: ...