Incomplete Data Analysis Hand-in

Ken Deng, S2617343

March 21, 2025

The R code is available at $\mbox{https://github.com/kdeng-gzcn/incomplete_data_analysis}.$

1 Q1

1.1 (a)

The likelihood function for the observed data with censoring can be written as follows,

$$L(\theta) = \prod_{i=1}^{n} \left[f(Y_i \mid \theta)^{\Delta_i} S(C \mid \theta)^{1-\Delta_i} \right],$$

where $f(Y_i \mid \theta)$ is the pdf of the distribution, $S(C \mid \theta)$ is the survival function at the C, and Δ_i is an indicator variable that equals 1 if the observation is uncensored.

Since the density function is given as

$$f(x;\theta) = \frac{\theta}{x^{\theta+1}}, \quad x > 1,$$

the survival function is

$$S(x;\theta) = P(X > x) = \frac{1}{x^{\theta}}.$$

Given the censoring at C, the observed data Y_i are either equal to X_i if $X_i \leq C$ or equal to C if $X_i > C$. The likelihood function is

$$L(\theta) = \prod_{i=1}^{n} \left[\left(\frac{\theta}{Y_i^{\theta+1}} \right)^{\Delta_i} \left(\frac{1}{C^{\theta}} \right)^{1-\Delta_i} \right].$$

Hence, we can compute the log-likelihood function, which is

$$\ell(\theta) = \sum_{i=1}^{n} \left[\Delta_i \log \theta - (\theta + 1) \Delta_i \log Y_i - (1 - \Delta_i) \theta \log C \right].$$

To find the MLE, we take the derivative of the log-likelihood function with respect to θ , which is

$$\frac{d}{d\theta}\ell(\theta) = \sum_{i=1}^{n} \left[\frac{\Delta_i}{\theta} - \Delta_i \log Y_i - (1 - \Delta_i) \log C \right].$$

Setting the derivative equal to 0 and solving for θ , we get the MLE, which is

$$\hat{\theta} = \frac{\sum_{i=1}^{n} \Delta_i}{\sum_{i=1}^{n} (\Delta_i \log Y_i + (1 - \Delta_i) \log C)}.$$

1.2 (b)

Suppose there is a initial solution $\theta^{(0)}$, with the Newton-Raphson iteration, the expression for the improved $\theta^{(1)}$ is given by

$$\theta^{(1)} = \theta^{(0)} - \frac{\ell'(\theta^{(0)})}{\ell''(\theta^{(0)})},$$

where we want the improved solution to be more suitable for the MLE, i.e., θ s.t. $\ell'(\theta) = 0$.

The first derivative of the log-likelihood function is

$$\ell'(\theta) = \sum_{i=1}^{n} \left[\frac{\Delta_i}{\theta} - \Delta_i \log Y_i - (1 - \Delta_i) \log C \right],$$

and the second derivative is

$$\ell''(\theta) = -\sum_{i=1}^{n} \frac{\Delta_i}{\theta^2}.$$

1.3 (c)

The censoring way is **MNAR** (Missing Not At Random). This is because the data are censored depending on the values of X_i . If $X_i > C$, the data are censored and the observed value is reported as C, which depends on the value of the unobserved X_i . Therefore, the missingness is related to the unobserved data, making the mechanism MNAR.

2 Q2

The problem is calculating the empirical coverage probability of the 95% confidence intervals for the parameter β_1 under two imputation approaches: stochastic regression imputation and bootstrap-based imputation.

The data is generated based on the model:

$$y_i|x_i \sim N(\beta_0 + \beta_1 x_i, 1), \quad x_i \sim \text{Unif}(-1, 1), \quad \beta_0 = 1, \quad \beta_1 = 3.$$

With mice, for each of the 100 datasets, a normal linear regression model is fitted with the observed and imputed values of x_i and y_i , the formula is

$$y = \beta_0 + \beta_1 x + \epsilon,$$

where ϵ is the error term. The objective is to estimate β_1 and its 95% confidence interval.

For each imputed dataset, we compute the 95% confidence interval for β_1 . The formula for empirical coverage probability is:

Empirical Coverage Probability =
$$\frac{\sum_{i=1}^{100} \mathbf{1}_{[\beta_1 \in CI(\hat{\beta}_1^{(i)})]}}{100}$$

where β_1 is the true value, and $CI(\hat{\beta}_1^{(i)})$ is the confidence interval for β_1 for the *i*-th imputed dataset.

The results are as Table 1.

Table 1: Empirical Coverage Probability of 95% Confidence Intervals for β_1

Imputation Method	Prob.
Stochastic Regression	0.94
Bootstrap-based	0.95

3 Q3

The observations are represented by Y_i , where i = 1, ..., n, and the corresponding censored data is denoted as X_i , where:

$$X_i = \begin{cases} Y_i & \text{if } Y_i \ge D, \\ D & \text{if } Y_i < D, \end{cases}$$

and R_i is an indicator variable defined as:

$$R_i = \begin{cases} 1 & \text{if } Y_i \ge D, \\ 0 & \text{if } Y_i < D. \end{cases}$$

3.1 (a)

If the observation $X_i = Y_i \ge D$, the likelihood contribution for this case is the density function of the normal distribution evaluated at x_i , which is

$$f(x_i \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right),$$

where the log-likelihood is $\log f(x_i \mid \mu, \sigma^2) \equiv \log \phi(x_i \mid \mu, \sigma^2)$.

If the observation $X_i = D$ is censored, so we cannot directly observe Y_i but know that it is less than D. The likelihood is the probability that Y_i is less than D, which is given by the cdf of the normal distribution, which is

$$\Pr(Y_i < D) = \Phi(x_i \mid \mu, \sigma^2),$$

where the log-likelihood is $\log \Phi(x_i \mid \mu, \sigma^2)$.

The log-likelihood is the sum of the log-likelihood for each observation, with r_i indicating whether the data is observed or censored, which is

$$\ell(\mu, \sigma^2 \mid \mathbf{x}, \mathbf{r}) = \sum_{i=1}^n \left\{ r_i \log \phi(x_i \mid \mu, \sigma^2) + (1 - r_i) \log \Phi(x_i \mid \mu, \sigma^2) \right\}.$$

This is the desired log-likelihood function for the observed data, accounting for both censored and uncensored observations.

3.2 (b)

Given that $\sigma^2=1.5^2$ is known, we can use the R code to compute the MLE of μ with optimize, where the result is $\hat{\mu}=5.533$.

4 Question 4

4.1 (a)

We are given:

$$\operatorname{logit}\left(\operatorname{Pr}(R=0\mid y_1,y_2,\theta,\psi)\right)=\psi_0+\psi_1y_1,\quad \psi=(\psi_0,\psi_1) \text{ distinct from } \theta.$$

The logistic model for the missingness mechanism is:

$$\log\left(\frac{\Pr(R=0)}{\Pr(R=1)}\right) = \psi_0 + \psi_1 y_1.$$

The missingness probability depends on Y_1 and not directly on Y_2 , which is MAR. Also, we note that ψ is distinct from θ . Hence, this mechanism is **ignorable**.

4.2 (b)

We are given:

logit
$$(\Pr(R = 0 \mid y_1, y_2, \theta, \psi)) = \psi_0 + \psi_1 y_2, \quad \psi = (\psi_0, \psi_1)$$
 distinct from θ .

The logistic model for the missingness mechanism is:

$$\log\left(\frac{\Pr(R=0)}{\Pr(R=1)}\right) = \psi_0 + \psi_1 y_2.$$

In this case, the missingness depends on the unobserved value of Y_2 , an MNAR case, which makes this mechanism **non-ignorable**.

4.3 (c)

We are given:

logit
$$(\Pr(R = 0 \mid y_1, y_2, \theta, \psi)) = 0.5(\mu_1 + \psi y_1), \quad \psi \text{ distinct from } \theta.$$

The logistic model for the missingness mechanism is:

$$\log \left(\frac{\Pr(R=0)}{\Pr(R=1)} \right) = 0.5(\mu_1 + \psi y_1).$$

Although the missingness mechanism depends on Y_1 and not directly on Y_2 , it involves μ_1 . Hence, this mechanism is **non-ignorable**.

5 Q5

We are given a logistic regression model

$$Y_i \sim \text{Bernoulli}(p_i(\boldsymbol{\beta})) \text{ with } p_i(\boldsymbol{\beta}) = \frac{\exp(\beta_0 + x_i\beta_1)}{1 + \exp(\beta_0 + x_i\beta_1)},$$

where Y_i is the binary response variable and x_i is the covariate. The goal is to estimate the parameters $\boldsymbol{\beta} = (\beta_0, \beta_1)$ with missing data.

E-step In the E-step, we estimate the missing values of Y based on the current estimates of $\beta^{(t)}$, the parameter values at the t-th iteration. The expectation of Y_i given x_i and the current parameter estimates is:

$$\mathbb{E}[Y_i \mid x_i, \boldsymbol{\beta}^{(t)}] = p_i(\boldsymbol{\beta}^{(t)}) = \frac{\exp(\beta_0^{(t)} + x_i \beta_1^{(t)})}{1 + \exp(\beta_0^{(t)} + x_i \beta_1^{(t)})}.$$

Thus, in the E-step, we replace the missing values of Y_i with their expected values, $p_i(\boldsymbol{\beta}^{(t)})$.

The objective function for the EM algorithm is the log-likelihood function, which is

$$\ell(\boldsymbol{\beta} \mid \mathbf{x}, \mathbf{y}, \boldsymbol{\beta}^{(t)}) = \left(\sum_{i \in \text{observed}} + \sum_{i \in \text{missing}} \left[y_i \log p_i(\boldsymbol{\beta}) + (1 - y_i) \log(1 - p_i(\boldsymbol{\beta})) \right],$$

where $y_i = y_i(\boldsymbol{\beta}^{(t)})$ when *i* is missing.

M-step The M-step involves maximizing this log-likelihood with respect to β , where we have

$$\boldsymbol{\beta}^{(t+1)} = \arg \max_{\boldsymbol{\beta}} \ell(\boldsymbol{\beta} \mid \mathbf{x}, \mathbf{y}, \boldsymbol{\beta}^{(t)}).$$

This maximization is done using optimization methods optim function in R. The results are as Table 2.

Table 2: Estimated Parameters

Parameter	Value
$ \frac{\beta_0}{\beta_1} $	0.976 -2.480