





# Module 1: Data Representation and Operations

Course Name: Computer Architecture and organization[22CSE104]

Total Hours: 8













# **Table of Content**

- Aim
- Objectives
- Data Types
- Complements
- Fixed Point Representations
- Floating Point Representations
- Other Binary Codes
- Error Detection Codes
- Register Transfer Language
- Register Transfer
- Bus and Memory Transfers
- Arithmetic Microoperations
- Logic Microoperations
- Shift Microoperations
- Arithmetic Logic Shift Unit







X























- Self Assessments
- Activities
- Did You Know
- Summary
- Terminal Questions





















X











To equip students in the fundamentals and understanding the Concepts of Data Representation and register and micro Operations.























Objective

- a. Discuss on the Data representation methods.
- b. Understanding different Data types,
- c. Understanding and practice of Register and Micro operations





 $\overset{+}{\mathsf{X}}$ 

X

×

# SIMPLE DIGITAL SYSTEMS

- Combinational and sequential circuits
   can be used to create simple digital systems.
- These are the low-level building blocks of a digital computer.
- Simple digital systems are frequently characterized in terms of
  - the registers they contain, and
  - · the operations that they perform.
- · Typically,
  - What operations are performed on the data in the registers
  - What information is passed between registers





X

X

X

X

Х

















# DATA REPRESENTATION

Information that a Computer is dealing with

- \* Data
  - Numeric Data
     Numbers(Integer, real)
  - Non-numeric Data
     Letters, Symbols
- \* Relationship between data elements
  - Data Structures Linear Lists, Trees, Rings, etc
- \* Program(Instruction)





X

X

X

×

X

×















# NUMERIC DATA REPRESENTATION

#### Data

Numeric data - numbers(integer, real) Non-numeric data - symbols, letters

### **Number System**

Nonpositional number system

- Roman number system

Positional number system

- Each digit position has a value called a *weight* associated with it
  - Decimal, Octal, Hexadecimal, Binary

Base (or radix) R number

- Uses R distinct symbols for each digit
- Example  $A_R = a_{n-1} a_{n-2} ... a_1 a_0 .a_{-1} ... a_{-m}$

$$-V(A_R) = \sum_{i=-m}^{n-1} a_i R^i$$

R = 10 Decimal number system, R = 2 Binary R = 8 Octal, R = 16 Hexadecimal



Radix point(.) separates the integer

portion and the fractional portion



X

X

X

X

X

Х













# WHY POSITIONAL NUMBER SYSTEM IN THE DIGITAL COMPUTERS ?

Major Consideration is the COST and TIME

- Cost of building hardware
   Arithmetic and Logic Unit, CPU, Communications
- Time to processing

Arithmetic - Addition of Numbers - Table for Addition

- \* Non-positional Number System
  - Table for addition is infinite
  - --> Impossible to build, very expensive even if it can be built
- \* Positional Number System
  - Table for Addition is finite
  - --> Physically realizable, but cost wise the smaller the table size, the less expensive --> Binary is favorable to Decimal

Binary Addition
Table
0 1

0 0 1 1 1 10

**Decimal Addition** 

Table 2 3 4 5 6 7 8 9

| 0 | 0                     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 1 |
|---|-----------------------|----|----|----|----|----|----|----|----|----|---|
| 1 | 1<br>2<br>3<br>4      | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |   |
| 2 | 2                     | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 |   |
| 3 | 3                     | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |   |
| 4 | 4                     | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 |   |
| 5 | 5<br>6<br>7<br>8<br>9 | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 |   |
| 6 | 6                     | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 |   |
| 7 | 7                     | 8  | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |   |
| 8 | 8                     | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |   |
| 9 | 9                     | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |   |





×

X

X

X

X

×

















# REPRESENTATION OF NUMBERS POSITIONAL NUMBERS

| Decimal | Binary | Octal | Hexadecimal |
|---------|--------|-------|-------------|
| 00      | 0000   | 00    | 0           |
| 01      | 0001   | 01    | 1           |
| 02      | 0010   | 02    | 2           |
| 03      | 0011   | 03    | 3           |
| 04      | 0100   | 04    | 4           |
| 05      | 0101   | 05    | 5           |
| 06      | 0110   | 06    | 6           |
| 07      | 0111   | 07    | 7           |
| 08      | 1000   | 10    | 8           |
| 09      | 1001   | 11    | 9           |
| 10      | 1010   | 12    | Α           |
| 11      | 1011   | 13    | В           |
| 12      | 1100   | 14    | C           |
| 13      | 1101   | 15    | D           |
| 14      | 1110   | 16    | E           |
| 15      | 1111   | 17    | F           |

Binary, octal, and hexadecimal conversion

|   |   | _ |   |   |   |   |     | 5 |   |   | 4 |   | A |   |   |
|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1   | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
|   | I | 1 |   |   |   |   | 3.1 |   |   | 6 |   |   |   | 3 |   |































# CONVERSION OF BASES

#### Base R to Decimal Conversion

$$A = a_{n-1} a_{n-2} a_{n-3} \dots a_0 \cdot a_{-1} \dots a_{-m}$$

$$V(A) = \sum a_k R^k$$

$$(736.4)_8 = 7 \times 8^2 + 3 \times 8^1 + 6 \times 8^0 + 4 \times 8^{-1}$$

$$= 7 \times 64 + 3 \times 8 + 6 \times 1 + 4/8 = (478.5)_{10}$$

$$(110110)_2 = \dots = (54)_{10}$$

$$(110.111)_2 = \dots = (6.785)_{10}$$

$$(F3)_{16} = \dots = (243)_{10}$$

$$(0.325)_6 = \dots = (0.578703703 \dots)_{10}$$

#### Decimal to Base R number

- Separate the number into its *integer* and *fraction* parts and convert each part separately.
- Convert integer part into the base R number
  - --> successive divisions by R and accumulation of the remainders.
- Convert fraction part into the base R number
- --> successive multiplications by R and accumulation of integer digits





X

×















### **EXAMPLE**

$$(41)_{10} = (101001)_2$$

$$(0.6875)_{10} = (0.1011)_{2}$$

$$(41.6875)_{10} = (101001.1011)_{2}$$

### **Exercise**

Convert  $(63)_{10}$  to base 5:  $(223)_{5}$ Convert  $(1863)_{10}$  to base 8:  $(3507)_{8}$ 

Convert  $(0.63671875)_{10}$  to hexadecimal:  $(0.A3)_{16}$ 





X

X

X

X

X

×

X

















# **COMPLEMENT OF NUMBERS**

Two types of complements for base R number system:

- R's complement and (R-1)'s complement

### The (R-1)'s Complement

Subtract each digit of a number from (R-1)

#### Example

- 9's complement of 835<sub>10</sub> is 164<sub>10</sub>
- 1's complement of 1010<sub>2</sub> is 0101<sub>2</sub>(bit by bit complement operation)

### The R's Complement

Add 1 to the low-order digit of its (R-1)'s complement

### Example

- 10's complement of  $835_{10}$  is  $164_{10} + 1 = 165_{10}$
- 2's complement of  $1010_2$  is  $0101_2 + 1 = 0110_2$





X

X

X

Х

















### **FIXED POINT NUMBERS**

Numbers: Fixed Point Numbers and Floating Point Numbers

Binary Fixed-Point Representation

$$X = X_{n}X_{n-1}X_{n-2} \dots X_{1}X_{0} \dots X_{-1}X_{-2} \dots X_{-m}$$

Sign  $Bit(x_n)$ : 0 for positive - 1 for negative

Remaining Bits $(x_{n-1}x_{n-2} ... x_1x_0. x_{-1}x_{-2} ... x_m)$ 

- Following 3 representations

Signed magnitude representation

Signed 1's complement representation

Signed 2's complement representation

Example: Represent +9 and -9 in 7 bit-binary number

Only one way to represent +9 ==> 0 001001

Three different ways to represent -9:

In signed-magnitude: 1 001001

In signed-1's complement: 1 110110

In signed-2's complement: 1 110111

In general, in computers, fixed point numbers are represented either integer part only or fractional part only.







×



















# CHARACTERISTICS OF 3 DIFFERENT REPRESENTATIONS

### Complement

Signed magnitude: Complement *only* the sign bit

Signed 1's complement: Complement *all* the bits including sign bit Signed 2's complement: Take the 2's complement of the number,

in

MaxilHdimgarita Mighirhitm Representable Numbers and Representation of Zero

$$X = X_{n} X_{n-1} ... X_{0} . X_{-1} ... X_{-m}$$

### Signed Magnitude

Max: 2<sup>n</sup> - 2<sup>-m</sup> 011 ... 11.11 ... 1 Min: -(2<sup>n</sup> - 2<sup>-m</sup>) 111 ... 11.11 ... 1 Zero: +0 000 ... 00.00 ... 0 -0 100 ... 00.00 ... 0

### Signed 1's Complement

Max: 2<sup>n</sup> - 2<sup>-m</sup> 011 ... 11.11 ... 1 Min: -(2<sup>n</sup> - 2<sup>-m</sup>) 100 ... 00.00 ... 0 Zero: +0 000 ... 00.00 ... 0 -0 111 ... 11.11 ... 1

### Signed 2's Complement

Max: 2<sup>n</sup> - 2<sup>-m</sup> 011 ... 11.11 ... 1 Min: -2<sup>n</sup> 100 ... 00.00 ... 0 Zero: 0 000 ... 00.00 ... 0





X

X

X

X

X

×

Х

















# ARITHMETIC ADDITION: SIGNED MAGNITUDE

[1] Compare their signs

Overflow

- [2] If two signs are the *same*, ADD the two magnitudes - Look out for an *overflow*
- [3] If *not the same*, compare the relative magnitudes of the numbers and then *SUBTRACT* the smaller from the larger --> need a subtractor to add
- [4] Determine the sign of the result







×

X



X















Х







# ARITHMETIC ADDITION: SIGNED 2's COMPLEMENT

Add the two numbers, including their sign bit, and discard any carry out of leftmost (sign) bit

### Example



2 operands have the same sign and the result sign changes

and the result sign changes
$$x_{n-1}y_{n-1}s'_{n-1} + x'_{n-1}g_{n-1}$$



X

X

X

×

X

X



















# ARITHMETIC ADDITION: SIGNED 1's COMPLEMENT

Fixed Point Representations

Add the two numbers, including their sign bits.

X

×

X

X

X

- If there is a carry out of the most significant (sign) bit, the result is incremented by 1 and the carry is discarded.



 $\underset{(c_{n-1} \oplus c_n)}{\mathsf{overflow}}$ 





X

X

X

×

X

X

# **COMPARISON OF REPRESENTATIONS**



- \* Hardware
  - S+M: Needs an adder and a subtractor for Addition
  - 1's and 2's Complement: Need only an adder
- \* Speed of Arithmetic
  - 2's Complement > 1's Complement(end-around C)
- \* Recognition of Zero
  - 2's Complement is fast





X

X

X

×

X

X



















# ARITHMETIC SUBTRACTION



Take the complement of the subtrahend (including the sign bit) and add it to the minuend including the sign bits.

$$(\pm A) - (-B) = (\pm A) + B$$
  
 $(\pm A) - B = (\pm A) + (-B)$ 





X

 $\overset{+}{\mathsf{X}}$ 

X

×

X

×

















# FLOATING POINT NUMBER REPRESENTATION

\* The range of the representable numbers is wide

$$F = EM$$



- Mantissa Signed fixed point number, either an integer or a fractional number
- Exponent Designates the position of the radix point

**Decimal Value** 

X

$$V(F) = V(M) * R^{V(E)}$$
 M: Mantissa  
E: Exponent

R: Radix





X

X

X

X

X

X

Х





Example sign 0.1234567 sign 0.04 mantissa exponent  $=>+.1234567 \times 10^{+04}$ 

#### Note:

In Floating Point Number representation, only Mantissa(M) and Exponent(E) are explicitly represented. The Radix(R) and the position of the Radix Point are implied.

#### Example

A binary number +1001.11 in 16-bit floating point number representation (6-bit exponent and 10-bit fractional mantissa)

|     | 0    | 0 00100  | 100111000 |
|-----|------|----------|-----------|
| or  | Sign | Exponent | Mantissa  |
| OI. | 0    | 0 00101  | 010011100 |





X

X

X

X

X

×

Х



- the most significant position of the mantissa contains a non-zero digit

Representation of Zero

X

X

- Zero Mantissa = 0
- Real Zero Mantissa = 0Exponent
  - = smallest representable number which is represented as 00 ... 0 <-- Easily identified by the hardware







X

X

X

X

X

×

Х

# INTERNAL REPRESENTATION AND EXTERNAL REPRESENTATION

×

X



X

X

X

×

X

X

X

Powered By

**Futurense** 

|                                          |                             | 100 |
|------------------------------------------|-----------------------------|-----|
| External Representations                 | Internal Representations    |     |
| - Presentability                         | - Efficiency                |     |
| - Efficiency                             | Memory space                |     |
| Communication                            | Processing time             |     |
| Reliability                              | - Easy to convert to        |     |
|                                          | external representation     |     |
| - BCD, ASCII, FBCDIC                     | - Fixed and Floating points |     |
| - Easy to handle<br>- BCD, ASCII, FBCDIC | external representation     |     |

### **EXTERNAL REPRESENTATION**

#### **Numbers**

Most of numbers stored in the computer are eventually changed by some kinds of calculations

- --> Internal Representation for calculation efficiency
- --> Final results need to be converted to as *External Representation* for presentability

Alphabets, Symbols, and some Numbers

Elements of these information do not change in the course of processing

--> No needs for Internal Representation since they are not used for calculations

--> External Representation for processing and presentabilityal

### Example

Decimal Number: 4-bit Binary Code

BCD(Binary Coded Decimal)

| 7 |                 |
|---|-----------------|
| 0 | 0000            |
| 1 | 0001            |
| 2 | 0010            |
| 3 | 0011            |
| 4 | 0100            |
| 5 | 0101            |
| 6 | 0110            |
| 7 | 0111            |
| 8 | 1000            |
| 9 | 1 <b>4</b> 001_ |
|   |                 |

**BCD Code** 





X



















### OTHER DECIMAL CODES

| Decimal | BCD(8421) | 2421 | 84-2-1 | Excess-3 |
|---------|-----------|------|--------|----------|
| 0       | 0000      | 0000 | 0000   | 0011     |
| 1       | 0001      | 0001 | 0111   | 0100     |
| 2       | 0010      | 0010 | 0110   | 0101     |
| 3       | 0011      | 0011 | 0101   | 0110     |
| 4       | 0100      | 0100 | 0100   | 0111     |
| 5       | 0101      | 1011 | 1011   | 1000     |
| 6       | 0110      | 1100 | 1010   | 1001     |
| 7       | 0111      | 1101 | 1001   | 1010     |
| 8       | 1000      | 1110 | 1000   | 1011     |
| 9       | 1001      | 1111 | 1111   | 1100     |

Note: 8,4,2,-2,1,-1 in this table is the weight associated with each bit position.

d3 d2 d1 d0: symbol in the codes

BCD:  $d3 \times 8 + d2 \times 4 + d1 \times 2 + d0 \times 1$ ==> 8421 code.

2421:  $d3 \times 2 + d2 \times 4 + d1 \times 2 + d0 \times 1$ 

84-2-1: d3 x 8 + d2 x 4 + d1 x (-2) + d0 x (-1)

Excess-3: BCD + 3

BCD: It is difficult to obtain the 9's complement.

However, it is easily obtained with the other codes listed above.

==> Self-complementing codes































# **GRAY CODE**

\* Characterized by having their representations of the binary integers differ in only one digit between consecutive integers

\* Useful in analog-digital conversion.

4-bit Gray codes

| Decimal | -     | Gray  | /     |       | Binary                  |
|---------|-------|-------|-------|-------|-------------------------|
| number  | $g_3$ | $g_2$ | $g_1$ | $g_0$ | $b_3$ $b_2$ $b_1$ $b_0$ |
| 0       | 0     | 0     | 0     | 0     | 0 0 0 0                 |
| 1       | 0     | 0     | 0     | 1     | 0 0 0 1                 |
| 2       | 0     | 0     | 1     | 1     | 0 0 1 0                 |
| 3       | 0     | 0     | 1     | 0     | 0 0 1 1                 |
| 4       | 0     | 1     | 1     | 0     | 0 1 0 0                 |
| 5       | 0     | 1     | 1     | 1     | 0 1 0 1                 |
| 6       | 0     | 1     | 0     | 1     | 0 1 1 0                 |
| 7       | 0     | 1     | 0     | 0     | 0 1 1 1                 |
| 8       | 1     | 1     | 0     | 0     | 1 0 0 0                 |
| 9       | 1     | 1     | 0     | 1     | 1 0 0 1                 |
| 10      | 1     | 1     | 1     | 1     | 1 0 1 0                 |
| 11      | 1     | 1     | 1     | 0     | 1 0 1 1                 |
| 12      | 1     | 0     | 1     | 0     | 1 1 0 0                 |
| 13      | 1     | 0     | 1     | 1     | 1 1 0 1                 |
| 14      | 1     | 0     | 0     | 1     | 1 1 1 0                 |
| 15      | 1     | 0     | 0     | 0     | 1 1 1 1                 |



























# **GRAY CODE - ANALYSIS**

Letting  $g_n g_{n-1} \dots g_1 g_0$  be the (n+1)-bit Gray code for the binary number  $b_n b_{n-1} \dots b_1 b_0$ 

$$g_i = b_i \oplus b_{i+1}$$
,  $0 \le i \le n-1$   
 $g_n = b_n$   
and  
 $b_{n-i} = g_n \oplus g_{n-1} \oplus \ldots \oplus g_{n-i}$   
 $b_n = g_n$ 

#### Note:

The Gray code has a reflection property

- easy to construct a table without calculation,
- for any n: reflect case n-1 about a mirror at its bottom and prefix 0 and 1 to top and bottom halves, respectively

### Reflection of Gray codes

|   |   |   | 4 1  |    |     |     |     |     |
|---|---|---|------|----|-----|-----|-----|-----|
| 3 | 0 | 0 | 0    | 0  | 00  | 0   | 000 |     |
|   | 1 | 0 | 1    | 0  | 01  | 0   | 001 |     |
|   |   | 1 | 1    | 0  | 11  | 0   | 011 |     |
|   |   | 1 | 0    | 0  | 10  | 0   | 010 |     |
|   |   |   | 30   | 1  | 10  | 0   | 110 |     |
|   |   |   |      | 1  | 11  | 0   | 111 |     |
|   |   |   |      | 1  | 01  | 0   | 101 |     |
|   |   |   |      | 1  | 00  | 0   | 100 |     |
|   |   |   |      |    |     | 1   | 100 |     |
|   |   |   |      |    |     | 1   | 101 |     |
|   |   |   |      |    |     | 1   | 111 |     |
|   |   |   |      |    |     | 1   | 010 |     |
|   |   |   |      |    |     | 1   | 011 |     |
|   |   |   |      |    |     | 1   | 001 |     |
|   |   |   |      |    |     | 1   | 101 |     |
|   |   |   |      |    |     | ∍∎1 | 000 |     |
|   |   |   | 11.5 | 10 | 1 3 |     |     | 2.5 |



























# **CHARACTER REPRESENTATION ASCII**

ASCII (American Standard Code for Information Interchange) Code

MSB (3 bits)

LSB (4 bits)

|    | 9.3 | U   |     | 2  | 3 | 4 | 5 | О   | 1   |
|----|-----|-----|-----|----|---|---|---|-----|-----|
|    | 0   | NUL | DLE | SP | 0 | @ | Р | 4   | Р   |
|    | 1   | SOH | DC1 | 1  | 1 | Α | Q | а   | q   |
|    | 2   | STX | DC2 | "  | 2 | В | R | b   | r   |
|    | 3   | ETX | DC3 | #  | 3 | С | S | С   | S   |
|    | 4   | EOT | DC4 | \$ | 4 | D | T | d   | t   |
|    | 5   | ENQ | NAK | %  | 5 | Ε | U | е   | u   |
|    | 6   | ACK | SYN | &  | 6 | F | V | f   | ٧   |
|    | 7   | BEL | ETB | 1  | 7 | G | W | g   | W   |
|    | 8   | BS  | CAN | (  | 8 | Н | X | h   | X   |
|    | 9   | HT  | EM  | )  | 9 | 1 | Υ | -   | у   |
| 7  | Α   | LF  | SUB | *  |   | J | Z | j   | z   |
|    | В   | VT  | ESC | +  | ; | K | [ | k   | {   |
|    | С   | FF  | FS  | ,  | < | L | \ | - 1 |     |
|    | D   | CR  | GS  |    | = | M | ] | m   | }   |
|    | Ε   | SO  | RS  |    | > | Ν | m | n   | ~   |
| 37 | F   | SI  | US  | 1  | ? | 0 | n | 0   | DEL |
| -  |     | 100 |     |    |   |   |   |     |     |











X

 $\overset{+}{\mathsf{X}}$ 

















# **CONTROL CHARACTER REPRESENTAION (ACSII)**

| NUL | Null                     | DC1 | Device Control 1               |
|-----|--------------------------|-----|--------------------------------|
| SOH | Start of Heading (CC)    | DC2 | Device Control 2               |
| STX | Start of Text (CC)       | DC3 | Device Control 3               |
| ETX | End of Text (CC)         | DC4 | Device Control 4               |
| EOT | End of Transmission (CC) | NAK | Negative Acknowledge (CC)      |
| ENQ | Enquiry (CC)             | SYN | Synchronous Idle (CC)          |
| ACK | Acknowledge (CC)         | ETB | End of Transmission Block (CC) |
| BEL | Bell                     | CAN | Cancel                         |
| BS  | Backspace (FE)           | EM  | End of Medium                  |
| HT  | Horizontal Tab. (FE)     | SUB | Substitute                     |
| LF  | Line Feed (FE)           | ESC | Escape                         |
| VT  | Vertical Tab. (FE)       | FS  | File Separator (IS)            |
| FF  | Form Feed (FE)           | GS  | Group Separator (IS)           |
| CR  | Carriage Return (FE)     | RS  | Record Separator (IS)          |
| SO  | Shift Out                | US  | Unit Separator (IS)            |
| SI  | Shift In                 | DEL | Delete                         |
| DLE | Data Link Escape (CC)    |     |                                |

(CC) Communication Control

(FE) Format Effector

(IS) Information Separator





X



















### Parity System

X

- Simplest method for error detection
- One parity bit attached to the information
- Even Parity and Odd Parity

### **Even Parity**

- One bit is attached to the information so that the total number of 1 bits is an even number

> 1011001 1010010 1

### **Odd Parity**

- One bit is attached to the information so that the total number of 1 bits is an odd number

> 1011001 1 1010010 0











X

X

X

X

Х

# **PARITY BIT GENERATION**



×

X

X

### Parity Bit Generation

Administrator

For  $b_6b_5$ ...  $b_0$ (7-bit information); even parity bit  $b_{even}$ 

Validate

$$b_{\text{even}} = b_6 \oplus b_5 \oplus b_0$$
Account

For odd parity bit User Profile

$$b_{odd} = b_{even} \oplus 1 = b_{even}$$

Retrieve User Info

User Account Info

Enter/Update/ Delete User Info

Update/Delete User Info





X

X

X

X

X

X

X

Powered By

# PARITY GENERATOR AND PARITY CHECKER

Parity Generator Circuit(even parity)



Parity Checker



# REGISTER TRANSFER AND MICROOPERATIONS

- Register Transfer Language
- Register Transfer
- Bus and Memory Transfers
- Arithmetic Microoperations
- Logic Microoperations
- Shift Microoperations
- Arithmetic Logic Shift Unit





X

 $\overset{+}{\mathsf{X}}$ 

X

X

X

×



















- Microoperations refer to the basic operations performed by the control unit of a digital computer on data stored in registers or memory..
- The functions built into registers are examples of microoperations
  - · simple arithmetic operations such as addition or subtraction,
  - logical operations such as AND, OR, and NOT, and
  - Shift: moves the bits of a binary word left or right by a specified number of positions, filling the vacated positions with zeros
  - rotate operations: moves the bits of a binary word left or right, but wraps the
    vacated bits around to the other side of the word. A left rotate moves the bits to
    the left, with the leftmost bit wrapping around to the rightmost position, while a
    right rotate moves the bits to the right, with the rightmost bit wrapping around to
    the leftmost position.



×

X

X

X

X

X

×

















X

# **MICROOPERATION (2)**

An elementary operation performed (during one clock pulse), on the information stored in one or more registers



 $R \leftarrow f(R, R)$ 

f: shift, load, clear, increment, add, subtract, complement and, or, xor, ...



X

X

X

×

X

X

### ORGANIZATION OF A DIGITAL SYSTEM

- Definition of the (internal) organization of a computer
  - Set of registers and their functions
  - Microoperations set

Set of allowable microoperations provided by the organization of the computer

- Control signals that initiate the sequence of microoperations (to perform the functions)















×

X

X









### REGISTER TRANSFER LEVEL



- This is because we're focusing on
  - The system's registers
  - · The data transformations in them, and
  - The data transfers between them.

























### REGISTER TRANSFER LANGUAGE

- Rather than specifying a digital system in words, a specific notation is used, register transfer language
- For any function of the computer, the register transfer language can be used to describe the (sequence of) microoperations
- Register transfer language
  - A symbolic language
  - A convenient tool for describing the internal organization of digital computers
  - · Can also be used to facilitate the design process of digital systems.











X

×

×











### **DESIGNATION OF REGISTERS**

- Registers are designated by capital letters, sometimes followed by numbers (e.g., A, R13, IR)
- Often the names indicate function:
  - MAR memory address register
  - PC program counter
  - IR instruction register
- Registers and their contents can be viewed and represented in various ways
  - A register can be viewed as a single entity:

MAR

Registers may also be represented showing the bits of data they contain





×

X

X

X

X

×

















### **DESIGNATION OF REGISTERS**

- Designation of a register
  - a register
  - portion of a register
  - a bit of a register

Common ways of drawing the block diagram of a register

| Register     |      |     |
|--------------|------|-----|
|              | R1   | 100 |
| 15           |      | 0   |
|              | R2   |     |
| Numbering of | nite |     |

 Showing individual bits

 7
 6
 5
 4
 3
 2
 1
 0

 15
 8
 7
 0

 PC(H)
 PC(L)

 Subfields





X

X

X

×

X



















### REGISTER TRANSFER

- Copying the contents of one register to another is a register transfer
- A register transfer is indicated as

 $R2 \leftarrow R1$ 

- In this case the contents of register R2 are copied (loaded) into register R1
- A simultaneous transfer of all bits from the source R1 to the destination register R2, during one clock pulse
- Note that this is a non-destructive; i.e. the contents of R1 are not altered by copying (loading) them to R2











X



×

X

X









Х



### REGISTER TRANSFER

A register transfer such as

Implies that the digital system has

- the data lines from the source register (R5) to the destination register (R3)
- Parallel load in the destination register (R3)
- Control lines to perform the action

X

X

X

X

X

















### **CONTROL FUNCTIONS**

- Often actions need to only occur if a certain condition is true
- This is similar to an "if" statement in a programming language
- In digital systems, this is often done via a control signal, called a control function
  - If the signal is 1, the action takes place
- This is represented as:

P: R2 ← R1

Which means "if P = 1, then load the contents of register R1 into register R2", i.e., if (P = 1) then  $(R2 \leftarrow R1)$ 







X



X

X















#### HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS

Implementation of controlled transfer

P: R2 ← R1

Block diagram



Timing diagram



- The same clock controls the circuits that generate the control function and the destination register
- Registers are assumed to use positive-edge-triggered flip-flops

























## **SIMULTANEOUS OPERATIONS**

 If two or more operations are to occur simultaneously, they are separated with commas

P:  $R3 \leftarrow R5$  MAR  $\leftarrow$  IR

 Here, if the control function P = 1, load the contents of R5 into R3, and at the same time (clock), load the contents of register IR into register MAR





X

X

X

X

X

















## **BASIC SYMBOLS FOR REGISTER TRANSFERS**

| Symbols         | Description                             | Examples       |  |
|-----------------|-----------------------------------------|----------------|--|
| Capital letters | Denotes a register                      | MAR, R2        |  |
| & numerals      |                                         |                |  |
| Parentheses ()  | Denotes a part of a register            | R2(0-7), R2(L) |  |
| Arrow ←         | Denotes transfer of information R       | 2 ← R1         |  |
| Colon:          | Denotes termination of control function | P:             |  |
| Comma ,         | Separates two micro-operations          | A ← B, B ← A   |  |



























### **CONNECTING REGISTRS**

- In a digital system with many registers, it is impractical to have data and control lines to directly allow each register to be loaded with the contents of every possible other registers
- To completely connect n registers □ n(n-1) lines
- O(n<sup>2</sup>) cost
  - This is not a realistic approach to use in a large digital system
- Instead, take a different approach
- Have one centralized set of circuits for data transfer the bus
- Have control circuits to select which register is the source, and which is the destination





×

X

X

X

X















### **BUS AND BUS TRANSFER**

Bus is a path(of a group of wires) over which information is transferred, from any of several sources to any of several destinations.

From a register to bus: BUS ← R













X





















### TRANSFER FROM BUS TO A DESTINATION REGISTER



#### **Three-State Bus Buffers**

Normal input A

Control input C

Output Y=A if C=1

High-impedence if C=0

#### Bus line with three-state buffers





















X

X

X

X







## **BUS TRANSFER IN RTL**



 In the former case the bus is implicit, but in the latter, it is explicitly indicated







X

X

X













×

X

X

X

X

X

X

Powered By

# **MEMORY (RAM)**

X

X

- Memory (RAM) can be thought as a sequential circuits containing some number of registers
- These registers hold the words of memory
- Each of the r registers is indicated by an address
- These addresses range from 0 to r-1
- Each register (word) can hold n bits of data
- Assume the RAM contains r = 2k words. It needs the following
  - n data input lines
  - n data output lines
  - k address lines
  - · A Read control line
  - · A Write control line



X

X

### **MEMORY TRANSFER**

- Collectively, the memory is viewed at the register level as a device, M.
- Since it contains multiple locations, we must specify which address in memory we will be using
- This is done by indexing memory references
- Memory is usually accessed in computer systems by putting the desired address in a special register, the *Memory Address* Register (MAR, or AR)
- When memory is accessed, the contents of the MAR get sent to the memory unit's address lines

























### **MEMORY READ**

• To read a value from a location in memory and load it into a register, the register transfer language notation looks like this:

#### $R1 \leftarrow M[MAR]$

- This causes the following to occur
  - The contents of the MAR get sent to the memory address lines
  - A Read (= 1) gets sent to the memory unit
  - The contents of the specified address are put on the memory's output data lines
  - These get sent over the bus to be loaded into register R1





















### **MEMORY WRITE**

• To write a value from a register to a location in memory looks like this in register transfer language:

 $M[MAR] \leftarrow R1$ 

- This causes the following to occur
  - The contents of the MAR get sent to the memory address lines
  - A Write (= 1) gets sent to the memory unit
  - The values in register R1 get sent over the bus to the data input lines of the memory
  - The values get loaded into the specified address in the memory













X

X













## SUMMARY OF R. TRANSFER MICROOPERATIONS

| A ← B Tran                                                                                                     | sfer content of reg. B into reg. A                     |  |  |  |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| AR ← DR(AD)                                                                                                    | Transfer content of AD portion of reg. DR into reg. AR |  |  |  |
| A ← constant                                                                                                   | Transfer a binary constant into reg. A                 |  |  |  |
| ABUS ← R1,                                                                                                     | Transfer content of R1 into bus A and, at the same     |  |  |  |
| time,                                                                                                          |                                                        |  |  |  |
| R2 ← ABUS                                                                                                      | transfer content of bus A into R2                      |  |  |  |
| AR                                                                                                             | Address register                                       |  |  |  |
| DR                                                                                                             | Data register                                          |  |  |  |
| M[R]                                                                                                           | Memory word specified by reg. R                        |  |  |  |
| M                                                                                                              | Equivalent to M[AR]                                    |  |  |  |
| DR ← M                                                                                                         | Memory <i>read</i> operation: transfers content of     |  |  |  |
|                                                                                                                | memory word specified by AR into DR                    |  |  |  |
| M← DR                                                                                                          | Memory write operation: transfers content of           |  |  |  |
| 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. 19 1. | DR into memory word specified by AR                    |  |  |  |

























## **MICROOPERATIONS**



- Register transfer microoperations
- Arithmetic microoperations
- Logic microoperations
- Shift microoperations





X



















### ARITHMETIC MICROOPERATIONS

- The basic arithmetic microoperations are
  - Addition
  - Subtraction
  - Increment
  - Decrement
- The additional arithmetic microoperations are
  - Add with carry
  - Subtract with borrow
  - Transfer/Load
  - etc. ...

### **Summary of Typical Arithmetic Micro-Operations**

R3 ← R1 + R2 Contents of R1 plus R2 transferred to R3

R3 ← R1 - R2 Contents of R1 minus R2 transferred to R3

**R2** ← **R2**'

Complement the contents of R2

R2 ← R2'+ 1 2's complement the contents of R2 (negate)

R3 ← R1 + R2'+ 1 | subtraction

R1 ← R1 + 1 Increment

R1 ← R1 - 1 Decrement





×

X

X

X

X

×























### BINARY ADDER / SUBTRACTOR / INCREMENTER









×

×

×

×













X

## **ARITHMETIC CIRCUIT**



| S1 | S0 | Cin | Y  | Output Microoperation           |
|----|----|-----|----|---------------------------------|
| 0  | 0  | 0   | В  | D = A + B Add                   |
| 0  | 0  | 1   | В  | D = A + B + 1 Add with carry    |
| 0  | 1  | 0   | B' | D = A + B' Subtract with borrow |
| 0  | 1  | 1   | B' | D = A + B'+ 1 Subtract          |
| 1  | 0  | 0   | 0  | D = A Transfer A                |
| 1  | 0  | 1   | 0  | D = A + 1 Increment A           |
| 1  | 1  | 0   | 1  | D = A - 1 Decrement A           |
| 1  | 1  | 1   | 1  | D = A Transfer A                |





















X

 $\overset{+}{\mathsf{X}}$ 

X

×

X

×





### LOGIC MICROOPERATIONS

- Specify binary operations on the strings of bits in registers
  - Logic microoperations are bit-wise operations, i.e., they work on the individual bits of data
  - useful for bit manipulations on binary data
  - · useful for making logical decisions based on the bit value
- There are, in principle, 16 different logic functions that can be defined over two binary input variables

| Α | В | F <sub>0</sub> | F <sub>1</sub> | F <sub>2</sub> | F <sub>13</sub> | F <sub>14</sub> | F <sub>15</sub> |
|---|---|----------------|----------------|----------------|-----------------|-----------------|-----------------|
| 0 | 0 | 0              | 0              | 0<br>0<br>1    | 1               | 1               | 1               |
| 0 | 1 | 0              | 0              | 0              | 1               | 1               | 1               |
| 1 | 0 | 0              | 0              | 1              | 0               | 1               | 1               |
| 1 | 1 | 0              | 1              | 0              | 1               | 0               | 1               |

- However, most systems only implement four of these
  - AND (∧), OR (∨), XOR (⊕), Complement/NOT
- The others can be created from combination of these











×

















### LIST OF LOGIC MICROOPERATIONS

- List of Logic Microoperations
  - 16 different logic operations with 2 binary vars.
  - n binary vars  $\rightarrow 2^{2^n}$  functions
- Truth tables for 16 functions of 2 variables and the corresponding 16 logic micro-operations

| 8 | 0011 | Boolean              | Micro-                                               | Name           |
|---|------|----------------------|------------------------------------------------------|----------------|
| У | 0101 | Function             | Operations                                           |                |
|   | 0000 | F0 = 0               | F ← 0                                                | Clear          |
|   | 0001 | F1 = xy              | $\mathbf{f} \leftarrow \mathbf{A} \wedge \mathbf{B}$ | AND            |
|   | 0010 | F2 = xy'             | $F \leftarrow A \wedge B'$                           |                |
|   | 0011 | F3 = x               | F←A                                                  | Transfer A     |
| 4 | 0100 | F4 = x'y             | $F \leftarrow A' \land B$                            |                |
|   | 0101 | F5 = y               | F←B                                                  | Transfer B     |
|   | 0110 | $F6 = x \oplus y$    | $F \leftarrow A \oplus B$                            | Exclusive-OR   |
|   | 0111 | F7 = x + y           | $f \leftarrow A \lor B$                              | OR             |
|   | 1000 | F8 = (x + y)'        | $f \leftarrow (A \lor B)'$                           | NOR            |
|   | 1001 | $F9 = (x \oplus y)'$ | F ← (A ⊕ B)'                                         | Exclusive-NOR  |
|   | 1010 | F10 = y'             | F ← B'                                               | Complement B   |
|   | 1011 | F11 = x + y'         | F ← A ∨ B                                            |                |
|   | 1100 | F12 = x'             | F ← A'                                               | Complement A   |
|   | 1101 | F13 = x' + y         | F ← A'∨ B                                            |                |
|   | 1110 | F14 = (xy)'          | <b>F</b> ← (A ∧ B)'                                  | NAND           |
|   | 1111 | F15 = 1              | F ← all 1's                                          | Set to all 1's |





























#### HARDWARE IMPLEMENTATION OF LOGIC MICROOPERATIONS



### **Function table**

| S <sub>1</sub> S <sub>0</sub> Output |   | Output                         | μ-operation |  |  |
|--------------------------------------|---|--------------------------------|-------------|--|--|
| 0                                    | 0 | F=A \ B                        | AND         |  |  |
| 0                                    | 1 | $F = A \vee B$                 | OR          |  |  |
| 1                                    | 0 | <b>F</b> = <b>A</b> ⊕ <b>B</b> | XOR         |  |  |
| 1                                    | 1 | F = A'                         | Complement  |  |  |









X



















### **APPLICATIONS OF LOGIC MICROOPERATIONS**



 Consider the data in a register A. In another register, B, is bit data that will be used to modify the contents of A

• Selective-set 
$$A \leftarrow A + B$$

• Insert 
$$A \leftarrow (A \cdot B) + C$$

















×

×



X

×







## **SELECTIVE SET**



1100 
$$A_{t}$$
  
1010  $B$   
1110  $A_{t+1}$  (A  $\leftarrow$  A + B)

 If a bit in B is set to 1, that same position in A gets set to 1, otherwise that bit in A keeps its previous value









X



X

X





## SELECTIVE COMPLEMENT



1 1 0 0 
$$A_{t}$$
  
1 0 1 0  $B$   
0 1 1 0  $A_{t+1}$  (A  $\leftarrow$  A  $\oplus$  B)

 If a bit in B is set to 1, that same position in A gets complemented from its original value, otherwise it is unchanged



X

X

X















# **SELECTIVE CLEAR**



1100 
$$A_{t}$$
  
1010  $B$   
0100  $A_{t+1}$  (A  $\leftarrow$  A  $\cdot$  B')

• If a bit in B is set to 1, that same position in A gets set to 0, otherwise it is unchanged









X

X

 $\overset{+}{\mathsf{X}}$ 











## **MASK OPERATION**



1100 
$$A_{t}$$
  
1010  $B$   
1000  $A_{t+1}$  ( $A \leftarrow A \cdot B$ )

 If a bit in B is set to 0, that same position in A gets set to 0, otherwise it is unchanged



X

 $\overset{+}{\mathsf{X}}$ 

X

















### **CLEAR OPERATION**

• In a clear operation, if the bits in the same position in A and B are the same, they are cleared in A, otherwise they are set in A





X

 $\overset{+}{\mathsf{X}}$ 

X



















### **INSERT OPERATION**

- An insert operation is used to introduce a specific bit pattern into A register, leaving the other bit positions unchanged
- This is done as
  - A mask operation to clear the desired bit positions, followed by
  - An OR operation to introduce the new bits into the desired positions
  - Example
    - Suppose you wanted to introduce 1010 into the low order four bits of A: 1101 1000 1011 0001 A (Original) 1101 1000 1011 1010 A (Desired)

```
• 1101 1000 1011 0001 A (Original)
1111 1111 1111 0000 Mask
1101 1000 1011 0000 A (Intermediate)
0000 0000 0000 1010 Added bits
1101 1000 1011 1010 A (Desired)
```











X



×

×













## **LOGICAL SHIFT**

- In a logical shift the serial input to the shift is a 0.
- A right logical shift operation:



A left logical shift operation:



- In a Register Transfer Language, the following notation is used
  - shl for a logical shift left
  - shr for a logical shift right
  - Examples:
    - R2 ← *shr* R2
    - R3 ← shl R3









X





X

X



X







## **CIRCULAR SHIFT**

- In a circular shift the serial input is the bit that is shifted out of the other end of the register.
- A right circular shift operation:



• A left circular shift operation:



- In a RTL, the following notation is used
  - cil for a circular shift left
  - cirfor a circular shift right
  - Examples:

- R2 ← *cir* R2
- R3 ← *cil* R3

























X

Х

X

X

X

X

×

Х

Powered By

### **ARITHMETIC SHIFT**

- An arithmetic shift is meant for signed binary numbers (integer)
- An arithmetic left shift multiplies a signed number by two
- An arithmetic right shift divides a signed number by two
- The main distinction of an arithmetic shift is that it must keep the sign of the number the same as it performs the multiplication or division
- A right arithmetic shift operation:



A left arithmetic shift operation:



## **ARITHMETIC SHIFT**

An left arithmetic shift operation must be checked for the overflow



- In a RTL, the following notation is used
  - ashl for an arithmetic shift left
  - ashr for an arithmetic shift right
  - Examples:
    - » R2 ← ashr R2
    - » R3 ← ashl R3





X

X

X

×

X

×

Х

















#### HARDWARE IMPLEMENTATION OF SHIFT MICROOPERATIONS



























X

X

X



## ARITHMETIC LOGIC SHIFT UNIT



| S3 | S2 | S1 | SO  | Cin   | Operation        | Function              |
|----|----|----|-----|-------|------------------|-----------------------|
| 0  | 0  | 0  | 0   | 0     | F = A            | Transfer A            |
| 0  | 0  | 0  | 0 1 | F = A | + 1              | Increment A           |
| 0  | 0  | 0  | 1 0 | F = A | + B              | Addition              |
| 0  | 0  | 0  | 1   | 1     | F = A + B +      | 1 Add with carry      |
| 0  | 0  | 1  | 0   | 0     |                  | Subtract with borrow  |
| 0  | 0  | 1  | 0   | 1     | F = A + B' +     | 1 Subtraction         |
| 0  | 0  | 1  | 1   | 0     | F = A - 1        | Decrement A           |
| 0  | 0  | 1  | 1   | 1     | F = A            | TransferA             |
| 0  | 1  | 0  | 0   | X     | $F = A \wedge B$ | AND                   |
| 0  | 1  | 0  | 1   | X     | $F = A \vee B$   | ΦR                    |
| 0  | 1  | 1  | 0   | X     | F=A +B           | XOR                   |
| 0  | 1  | 1  | 1   | X     | F = A'           | Complement A          |
| 1  | 0  | X  | X   | X     | F = shr A        | \$hift right A into F |
| 1  | 1  | X  | X   | X     | F = shl A        | Shift left A into F   |





























X

#### **Did You Know?**

X

1. Data representation in COA is important because it affects the performance and efficiency of the computer system.

X

X

X

- 2. Efficient data representation can reduce the amount of memory required to store data, and can improve the speed at which data is processed and transmitted.
- 3. Additionally, understanding data representation is essential for writing efficient and error-free code in programming languages that interact with the computer's hardware.
- 4. Error detection codes are an important part of COA because they help ensure the integrity of data during transmission or storage.
- 5. By detecting errors early on, these codes can help prevent data corruption and improve the reliability and performance of computer systems.
- 6. A register is a group of flip-flops used to store binary information within a digital system. Registers are used to hold data temporarily, to enable processing, or to store data between different operations within a system. Registers are also used to hold addresses and control signals in microprocessors.
- 7. Micro-operations are combined to form complex operations and instructions that are executed by microprocessors. The design and implementation of registers and micro-operations are important factors in determining the performance and efficiency of digital systems and microprocessors.



#### **Outcomes:**



- a. Discuss the theory Data Representation methods
- b. Discuss the impact of data types and register data transfer operations on computing system performance.
- c. Illustrate the different error detection codes























# **Terminal Questions**

- 1) What are the different data types?
- 2) What are the different Arithmetic Micro operations, logic micro operations, Shift micro operations?























## **Reference Links**

• <a href="https://www.geekforgeeks.org/computer">https://www.geekforgeeks.org/computer</a> organization

#### **Reference Material:**

×

• M. Moris Mano, "Computer Systems Architecture", 4th Edition, Pearson/PHI, ISBN:10:0131755633



























