Nombre: Alexandra Cuartas Orozco

CC: 32295342

Asignatura: INTRUCCIÓN A LA INTELIGENCIA ARTIFICIAL

Cohorte: 15

Fecha: 19-01-2024

Actividad No. 1

Titulo: Spam email classification

Resumen: Se intenta clasificar la información de correos entre "ham" y "spam" junto con el mensaje Origen: https://www.kaggle.com/datasets/ashfakyeafi/spam-email-classification?resource=download

Número total de variables: 5573 Numero de variables cuantitativas: 0

Numero de variables cualitativas: 3 (ham, spam, other)

Variable a predecir: spam

Algoritmo de predicción: modelo de clasificación de Naive Bayes

Actividad 2

Actividad #2

- 1. Instalar librerías de IA en Python (Sklearn, keras)
- 2. Seleccionar modelo de aprendizaje.
- 3. Cargar los datos del conjunto seleccionado en la actividad #1.
- 4. Preparar las variables de entrenamiento.
- 5. Realizar proceso de normalización y entrenamiento del modelo.

Modelo 1

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.metrics import accuracy_score, classification_report

Asegúrate de ajustar la ruta al archivo CSV

csv_path = 'D:\Documents\Fullstack\Intro inteligencia artificial\ProyectoIA\email.csv'
df = pd.read csv(csv path)

Muestra las primeras filas del DataFrame para verificar la carga print(df.head())

X = df['Message'] # Variable predictora (contenido del correo electrónico) y = df['Category'] # Variable objetivo (Spam o Ham)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Convierte el texto en vectores de características vectorizer = CountVectorizer()

X_train_vectorized = vectorizer.fit_transform(X_train) X_test_vectorized = vectorizer.transform(X_test)

Crea un modelo de clasificación Naive Bayes model = MultinomialNB()

Entrena el modelo

model.fit(X_train_vectorized, y_train)

Realiza predicciones en el conjunto de prueba y_pred = model.predict(X_test_vectorized)

Calcula la precisión del modelo accuracy = accuracy_score(y_test, y_pred) print(f'Precisión del modelo: {accuracy}')

Imprime el informe de clasificación print("Informe de clasificación:\n", classification report(y test, y pred))

6. Exportar el modelo de aprendizaje.

PS D:\Documents\Fullstack\Intro inteligencia artificial\ProyectoIA> d:; cd 'd:\Documents\Fullstack\ Intro inteligencia artificial\ProyectoIA'; & 'C:\Users\User\AppData\Local\Programs\Python\Python312\ python.exe' 'c:\Users\User\.vscode\extensions\ms-python.python-2023.22.1\pythonFiles\lib\python\ debugpy\adapter/../..\debugpy\launcher' '60000' '---' 'D:\Documents\Fullstack\Intro inteligencia artificial\ ProyectoIA\from sklearn.py'

D:\Documents\Fullstack\Intro inteligencia artificial\ProyectoIA\from sklearn.py:8: SyntaxWarning: invalid escape sequence '\D'

csv_path = 'D:\Documents\Fullstack\Intro inteligencia artificial\ProyectoIA\email.csv'

Category Message

- 0 ham Go until jurong point, crazy.. Available only ...
- 1 ham Ok lar... Joking wif u oni...
- 2 spam Free entry in 2 a wkly comp to win FA Cup fina...
- 3 ham U dun say so early hor... U c already then say...
- 4 ham Nah I don't think he goes to usf, he lives aro...

Precisión del modelo: 0.9847533632286996

C:\Users\User\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics\ _classification.py:1497: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

C:\Users\User\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics\ _classification.py:1497: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

C:\Users\User\AppData\Local\Programs\Python\Python312\Lib\site-packages\sklearn\metrics\ _classification.py:1497: UndefinedMetricWarning: Recall is ill-defined and being set to 0.0 in labels with no true samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))

```
Informe de clasificación:
         precision recall f1-score support
      ham
              0.99
                     0.99
                            0.99
                                    958
                     0.92
                             0.95
     spam
              0.97
                                     157
{"mode":"full"
                 0.00
                        0.00
                                0.00
                                        0
   accuracv
                          0.98
                                  1115
  macro avg
                0.65
                       0.64
                               0.65
                                      1115
weighted avg
                 0.99
                        0.98
                               0.99
                                       1115
```

- 7. En un documento responder las siguientes preguntas:
 - **Precisión del modelo:** la precisión del modelo mirando la fila "accuracy" en el informe de clasificación sería 0.98 o 98%.
 - **Variables de entrenamiento:** Las variables de entrenamiento son las características (columnas) que se utilizaron para entrenar el modelo son "Category" y "Message".
 - **Variable predicha:** La variable predicha es la variable que el modelo está tratando de predecir. En este ejemplo, sería la columna de la variable objetivo que es "Category"
 - **Hiper parámetros del modelo:** Fue MultinominalNB

Modelo 2

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
from sklearn.feature extraction.text import TfidfVectorizer
# Asegúrate de ajustar la ruta al archivo CSV
csv path = 'D:\Documents\Fullstack\Intro inteligencia artificial\ProyectoIA\email.csv'
df = pd.read csv(csv path)
# Supongamos que 'feature columns' son las columnas de características y 'target column' es la
variable objetivo
feature columns = ['Message']
target_column = 'Category'
# Separa las características (X) y la variable objetivo (y)
X = df[feature columns]
y = df[target_column]
# Inicializa el vectorizador TF-IDF
tfidf vectorizer = TfidfVectorizer()
```

```
# Aplica el vectorizador a la columna 'Message'
message tfidf = tfidf vectorizer.fit transform(X['Message'])
# Convierte el resultado en un DataFrame y concaténalo con las características existentes
X_{encoded} = pd.concat([X, pd.DataFrame(message_tfidf.toarray(),
columns=tfidf vectorizer.get feature names out())], axis=1)
# Divide los datos en conjuntos de entrenamiento y prueba
X train, X test, y train, y test = train test split(X encoded, y, test size=0.2, random state=42)
# Identifica las columnas numéricas
numeric_columns = X_{encoded.select_dtypes(include=['float64', 'int64']).columns
# Normaliza solo las columnas numéricas (opcional, dependiendo del modelo)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train[numeric_columns])
X test scaled = scaler.transform(X test[numeric columns])
# Entrena el modelo
model = RandomForestClassifier()
model.fit(X_train_scaled, y_train)
# Realiza predicciones en el conjunto de prueba
y_pred = model.predict(X_test_scaled)
# Calcular la precisión del modelo
accuracy = accuracy_score(y_test, y_pred)
print(f'Precisión del modelo: {accuracy}')
# Imprimir informe de clasificación
print("Informe de clasificación:\n", classification_report(y_test, y_pred))
```

6. Exportar el modelo de aprendizaje.

Windows PowerShell

Copyright (C) Microsoft Corporation. Todos los derechos reservados.

Instale la versión más reciente de PowerShell para obtener nuevas características y mejoras. https://aka.ms/PSWindows

 $PS \ D:\ Documents\ Full stack\ Intro\ inteligencia\ artificial\ ProyectoIA>\ \&\ 'C:\ Users\ User\ App Data\ Local\ Programs\ Python\ Python\ 212\ python.exe'\ 'c:\ Users\ User\ User\ Users\ User\ Python.python.python.python\ 2023.22.1\ python\ Files\ lib\ python\ debugpy\ adapter\ ...\ 'debugpy\ launcher'\ '60412'\ '--'\ 'D:\ Documents\ Full stack\ Intro\ inteligencia\ artificial\ ProyectoIA\ Random\ Forest.py'$

D:\Documents\Fullstack\Intro inteligencia artificial\ProyectoIA\RandomForest.py:9: SyntaxWarning: invalid escape sequence '\D'

csv_path = 'D:\Documents\Fullstack\Intro inteligencia artificial\ProyectoIA\email.csv' Precisión del modelo: 0.9811659192825112

Informe de clasificación:

precision recall f1-score support 0.99 958 ham 0.98 1.00 0.87 1.00 0.93 157 spam accuracy 0.98 1115 0.96 macro avg 0.99 0.93 1115 weighted avg 0.98 0.98 0.98 1115

7. En un documento responder las siguientes preguntas:

- **Precisión del modelo:** La precisión del modelo es en este caso, la precisión general del modelo es aproximadamente 98.12%.
- **Variables de entrenamiento:** Al procesar la columna 'Message' mediante TF-IDF y combinarla con las características existentes, estas son tus variables de entrenamiento.
- Variable predicha: predice la columna 'Category', que contiene etiquetas como 'ham' o 'spam'.
- Hiperparámetros del modelo: están utilizando los valores predeterminados solamente.