

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Análisis Matemático II

 $Los\ Del\ DGIIM,\ {\tt losdeldgiim.github.io}$

Arturo Olivares Martos

Granada, 2023-2024

Índice general

1.	Ejercicios Voluntarios	5
2.	Prácticas	7
	2.1 Sucesiones de funciones	7

1. Ejercicios Voluntarios

Teorema 1.1 (Aproximación de Weierstrass). Sea $f : [0,1] \to \mathbb{R}$ una función continua. Entonces, existe una sucesión de polinomios $\{P_n\}$ de manera que $\{P_n\}$ converge uniformemente a f en [0,1].

Demostración. Definimos la sucesión de polinomios de Bernstein como:

$$B_n(f)(x) = \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

Tenemos claramente que $k, n - k \in \mathbb{N}$, por lo que $B_n(f)(x)$ es un polinomio. Fijado $x \in [0, 1]$, calculemos el límite de $B_n(f)(x)$ cuando $n \to \infty$:

$$\lim_{n \to \infty} B_n(f)(x) = \lim_{n \to \infty} \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}$$

Definición 1.1. Un monstruo de Weierstrass es una función continua en todos sus puntos que no es derivable en ningún punto.

Ejercicio. Encontrar un monstruo de Weierstrass y demostrar que lo es. Un ejemplo es el siguiente:

$$\sum_{n=0}^{\infty} \frac{1}{n!} \cos\left((n!)^2 x\right)$$

5

2. Prácticas

2.1. Sucesiones de funciones

Ejercicio 2.1.1. Para cada $n \in \mathbb{N}$, sea $f_n : \mathbb{R}_0^+ \to \mathbb{R}$ la función definida como:

$$f_n(x) = \frac{\log(1+nx)}{1+nx} \quad \forall x \in \mathbb{R}_0^+$$

Fijado un $\rho \in \mathbb{R}^+$, estudiar la convergencia uniforme de la sucesión $\{f_n\}$ en el intervalo $[0, \rho]$ y en la semirrecta $[\rho, +\infty[$.

Estudiamos en primer lugar la convergencia puntual. Para x = 0, tenemos que:

$$f_n(0) = \frac{\log(1)}{1} = 0$$

Por tanto, es la sucesión constante 0, por lo que $\{f_n\}$ converge puntualmente a la función nula en 0. Para $x \in \mathbb{R}^+$, tenemos que:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{\log(1 + nx)}{1 + nx} \stackrel{L'H\hat{o}pital}{=} \lim_{n \to \infty} \frac{\frac{x}{1 + nx}}{x} = \lim_{n \to \infty} \frac{1}{1 + nx} = 0$$

En resumen, tenemos que $\{f_n\}$ converge puntualmente a la función nula en \mathbb{R}_0^+ .

Para estudiar la convergencia uniforme, estudiamos la monotonía de la función f_n para cada $n \in \mathbb{N}$. Para ello, como $f_n \in C^{\infty}(\mathbb{R}_0^+)$, estudiamos su derivada:

$$f'_n(x) = \frac{\frac{n}{1+nx} \cdot (1+nx) - \log(1+nx) \cdot n}{(1+nx)^2} = \frac{n - \log(1+nx) \cdot n}{(1+nx)^2}$$

Por tanto, tenemos que los candidatos a extremos relativos de f_n son:

$$f'_n(x) = 0 \iff \log(1 + nx) = 1 \iff 1 + nx = e \iff x = \frac{e - 1}{n}$$

Evalucando la primera derivada en cada intervalo, tenemos que:

- Si $x \in \left[0, \frac{e-1}{n}\right]$, entonces $f'_n(x) > 0$, por lo que f_n es creciente para todo $n \in \mathbb{N}$.
- Si $x \in \left[\frac{e-1}{n}, +\infty\right[$, entonces $f'_n(x) < 0$, por lo que f_n es decreciente para todo $n \in \mathbb{N}$.

Estudiamos ahora la convergencia uniforme. Fijado $\rho \in \mathbb{R}^+$, definimos la sucesión $\{x_n\}$ de la siguiente forma:

- Si $\rho < \frac{e-1}{n}$, entonces $x_n = \rho \in [0, \rho]$ (podría haber tomado cualquier valor $x_n \in [0, \rho]$, ya que no afecta al límite).
- Si $\rho \geqslant \frac{e-1}{n}$, entonces $x_n = \frac{e-1}{n} \in [0, \rho]$.

De esta forma, tenemos que $\{x_n\}$ es una sucesión de puntos de $[0, \rho]$. Veamos lo siguiente:

$$f_n\left(\frac{e-1}{n}\right) = \frac{\log\left(1 + n \cdot \frac{e-1}{n}\right)}{1 + n \cdot \frac{e-1}{n}} = \frac{\log(e)}{e} = \frac{1}{e} \qquad \forall n \in \mathbb{N}$$

Por tanto, como $\{x_n\} \to 0$ y $\{f_n(x_n) - f(x_n)\} = \{f_n(x_n)\} \to \frac{1}{e}$, tenemos que $\{f_n\}$ no converge uniformemente en $[0, \rho]$.

Observación. También sirve tomar $x_n = \frac{1}{n}$, y tendríamos que $f_n\left(\frac{1}{n}\right) = \frac{\log 2}{2}$.

Para el caso de la semirrecta $[\rho, +\infty[$, tomamos $m \in \mathbb{N}$ tal que $\rho > \frac{e-1}{m}$. De esta forma, para $n \in \mathbb{N}$, $n \geqslant m$, tenemos también que $\rho > \frac{e-1}{n}$. Por tanto, tenemos que $[\rho, +\infty[$ $\subset \left[\frac{e-1}{n}, +\infty\right[$, por lo que f_n es decreciente en $[\rho, +\infty[$. Por tanto, para $n \geqslant m$, tenemos que:

$$|f_n(x)| = f_n(x) \le f_n(\rho) \quad \forall x \in [\rho, +\infty[$$

Además, por la convergencia puntual, tenemos que $\{f_n(p)\} \to 0$, por lo que se deduce que $\{f_n\}$ converge uniformemente en $[\rho, +\infty[$.

Ejercicio 2.1.2. Probar que la sucesión $\{g_n\}$ converge uniformemente en \mathbb{R} , donde $g_n : \mathbb{R} \to \mathbb{R}$ está definida como:

$$g_n(x) = \sqrt[n]{1 + x^{2n}} \qquad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

Estudiemos en primer lugar la convergencia puntual. Distinguimos en función del valor de x:

• Si |x| < 1, entonces para todo $n \in \mathbb{N}$, tenemos que:

$$1 \leqslant 1 + x^{2n} \leqslant 1 + 1 = 2 \Longrightarrow 1 \leqslant g_n(x) \leqslant \sqrt[n]{2}$$

Como $\{\sqrt[n]{2}\} \to 1$, por el Lema del Sándwich tenemos que $\{g_n(x)\} \to 1$.

• Si |x| = 1, entonces para todo $n \in \mathbb{N}$, tenemos que:

$$g_n(x) = \sqrt[n]{1+x^{2n}} = \sqrt[n]{1+1} = \sqrt[n]{2}$$

Por tanto, $\{g_n(x)\} \to 1$.

• Si |x| > 1, entonces para todo $n \in \mathbb{N}$, tenemos que:

$$g_n(x) = \sqrt[n]{1 + x^{2n}} = x^2 \sqrt[n]{\frac{1}{x^{2n}} + 1}$$

Como $\left\{\frac{1}{x^{2n}}\right\} \to 0$, tenemos que $\{g_n(x)\} \to x^2$.

Por tanto, tenemos que $\{g_n\}$ converge puntualmente a la función:

$$g(x) = \max\{1, x^2\} = \begin{cases} 1 & \text{si } |x| \le 1\\ x^2 & \text{si } |x| > 1 \end{cases}$$

Ejercicio 2.1.3. Sea $\{h_n\}$ la sucesión de funciones de \mathbb{R}^2 en \mathbb{R} definida como:

$$h_n(x,y) = \frac{xy}{n^2 + x^2 + y^2}$$
 $\forall (x,y) \in \mathbb{R}^2, \ \forall n \in \mathbb{N}$

Probar que la sucesión $\{h_n\}$ converge uniformemente en cada subconjunto acotado de \mathbb{R}^2 , pero no converge uniformemente en \mathbb{R}^2 .

Estudiemos en primer lugar la convergencia puntual. Fijado $(x, y) \in \mathbb{R}^2$, tenemos de forma directa que:

$$\lim_{n \to \infty} h_n(x, y) = \lim_{n \to \infty} \frac{xy}{n^2 + x^2 + y^2} = 0$$

Por tanto, $\{h_n\}$ converge puntualmente a la función nula en \mathbb{R}^2 .

Estudiemos ahora la convergencia uniforme. Fijado un subconjunto acotado $A \subset \mathbb{R}^2$, como este está acotado, está acotado para la norma del máximo. Por tanto, existe un $M \in \mathbb{R}^+$ tal que máx $\{|x|,|y|\} < M$. De esta forma, para todo $(x,y) \in A$, tenemos que:

$$|h_n(x,y)| = \left|\frac{xy}{n^2 + x^2 + y^2}\right| \leqslant \frac{M^2}{n^2} \quad \forall n \in \mathbb{N}$$

Por tanto, como $\left\{\frac{M^2}{n^2}\right\} \to 0$, tenemos que $\left\{h_n\right\}$ converge uniformemente a 0 en A.

Estudiemos ahora la convergencia uniforme en \mathbb{R}^2 . Tomemos $x_n = y_n = n$ para todo $n \in \mathbb{N}$. De esta forma, obtenemos una sucesión de puntos de \mathbb{R}^2 de forma que:

$$h_n(x_n, y_n) = \frac{n^2}{n^2 + 2n^2} = \frac{1}{3} \quad \forall n \in \mathbb{N}$$

Como $\{h(x_n, y_n)\} \to \frac{1}{3} \neq 0$, tenemos que $\{h_n\}$ no converge uniformemente en \mathbb{R}^2 .

Ejercicio 2.1.4. Se considera la sucesión de funciones $\{f_n\}$ de \mathbb{R} en \mathbb{R} definida como:

$$f_n(x) = \frac{x}{n}$$
 $\forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$

Probar que la sucesión $\{f_n\}$ converge uniformemente en un conjunto no vacío $C \subset \mathbb{R}$ si y solo si C está acotado.

Estudiemos en primer lugar la convergencia puntual. Fijado $x \in \mathbb{R}$, tenemos que:

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{x}{n} = 0$$

Por tanto, $\{f_n\}$ converge puntualmente a la función nula en \mathbb{R} .

Estudiemos ahora la convergencia uniforme. Fijado un conjunto no vacío $C \subset \mathbb{R}$, distinguimos en función de si C está acotado o no:

■ Si C está acotado (usamos norma del máximo), entonces existe un $M \in \mathbb{R}^+$ tal que |x| < M para todo $x \in C$. De esta forma, para todo $x \in C$, tenemos que:

$$|f_n(x)| = \left|\frac{x}{n}\right| \leqslant \frac{M}{n} \quad \forall n \in \mathbb{N}$$

Por tanto, como $\left\{\frac{M}{n}\right\} \to 0$, tenemos que $\left\{f_n\right\}$ converge uniformemente a 0 en C.

■ Si C no está acotado, entonces para todo $n \in \mathbb{N}$, existe un $x_n \in C$ tal que $|x_n| > n$. Eligiendo esta sucesión de puntos, tenemos que:

$$|f_n(x_n)| = \left|\frac{x_n}{n}\right| > 1 \quad \forall n \in \mathbb{N}$$

Por tanto, tenemos que $\{f_n(x_n)\}$ no puede converger a 0, por lo que se tiene que $\{f_n\}$ no converge uniformemente en C.

Ejercicio 2.1.5. Sea $\{g_n\}$ la sucesión de funciones de \mathbb{R}_0^+ en \mathbb{R} definida como:

$$g_n(x) = \frac{2nx^2}{1 + n^2x^4} \quad \forall x \in \mathbb{R}_0^+, \ \forall n \in \mathbb{N}$$

Dado $\delta \in \mathbb{R}^+$, probar que la sucesión $\{g_n\}$ converge uniformemente en $[\delta, +\infty[$, pero no converge uniformemente en $[0, \delta]$.

Estudiemos en primer lugar la convergencia puntual. Para x=0, tenemos que $g_n(0)=0$ para todo $n\in\mathbb{N}$, por lo que $\{g_n\}$ converge puntualmente a la función nula en \mathbb{R}_0^+ . Para x>0, tenemos que:

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{2nx^2}{1 + n^2x^4} = 0$$

Por tanto, $\{g_n\}$ converge puntualmente a la función nula en \mathbb{R}_0^+ .

Estudiemos ahora la convergencia uniforme. Fijado $\delta \in \mathbb{R}^+$, definimos la sucesión $\{x_n\}$ de la siguiente forma:

- Si $\delta < \frac{1}{\sqrt{n}}$, entonces $x_n = \delta \in [0, \delta]$.
- Si $\delta \geqslant \frac{1}{\sqrt{n}}$, entonces $x_n = \frac{1}{\sqrt{n}} \in [0, \delta]$.

De esta forma, tenemos que $\{x_n\}$ es una sucesión de puntos de $[0, \delta]$. Veamos lo siguiente:

$$g_n\left(\frac{1}{\sqrt{n}}\right) = \frac{2n\left(\frac{1}{\sqrt{n}}\right)^2}{1 + n^2\left(\frac{1}{\sqrt{n}}\right)^4} = \frac{2}{1+1} = 1 \qquad \forall n \in \mathbb{N}$$

Por tanto, como $\{x_n\} \to 0$ y $\{g_n(x_n) - g(x_n)\} = \{g_n(x_n)\} \to 1$, tenemos que $\{g_n\}$ no converge uniformemente en $[0, \delta]$.

Para el caso de la semirrecta $[\delta, +\infty[$, estudiamos en primer lugar la monotonía de la función g_n para cada $n \in \mathbb{N}$. Para ello, como $g_n \in C^{\infty}(\mathbb{R}_0^+)$, estudiamos su derivada:

$$g'_n(x) = \frac{4nx(1+n^2x^4) - 8n^3x^5}{(1+n^2x^4)^2} = \frac{-4n^3x^5 + 4nx}{(1+n^2x^4)^2} \qquad \forall x \in \mathbb{R}_0^+$$

Por tanto, tenemos que los candidatos a extremos relativos de g_n son:

$$g'_n(x) = 0 \iff -4n^3x^5 + 4nx = 0 \iff 4xn(-n^2x^4 + 1) = 0 \iff x = 0 \text{ ó } x = \pm \frac{1}{\sqrt{n}}$$

Evaluando la primera derivada en cada intervalo, tenemos que:

- Si $x \in \left[0, \frac{1}{\sqrt{n}}\right]$, entonces $g'_n(x) > 0$, por lo que g_n es creciente para todo $n \in \mathbb{N}$.
- Si $x \in \left[\frac{1}{\sqrt{n}}, +\infty\right[$, entonces $g'_n(x) < 0$, por lo que g_n es decreciente para todo $n \in \mathbb{N}$.

Estudiamos ahora la convergencia uniforme. Fijado $\delta \in \mathbb{R}^+$, tomamos $m \in \mathbb{N}$ tal que $\delta > \frac{1}{\sqrt{m}}$. De esta forma, para $n \in \mathbb{N}$, $n \geqslant m$, tenemos también que $\delta > \frac{1}{\sqrt{n}}$. Por tanto, tenemos que $[\delta, +\infty[$ $\subset \left[\frac{1}{\sqrt{n}}, +\infty\right[$, por lo que g_n es decreciente en $[\delta, +\infty[$. Por tanto, para $n \geqslant m$, tenemos que:

$$|g_n(x)| = g_n(x) \leqslant g_n(\delta) \quad \forall x \in [\delta, +\infty[$$

Además, por la convergencia puntual, tenemos que $\{g_n(\delta)\} \to 0$, por lo que se deduce que $\{g_n\}$ converge uniformemente en $[\delta, +\infty[$.

Ejercicio 2.1.6. Para cada $n \in \mathbb{N}$, sea $h_n : [0, \pi/2] \to \mathbb{R}$ la función definida como:

$$h_n(x) = n \cos^n x \sin x \qquad \forall x \in [0, \pi/2]$$

Fijado un $\rho \in]0, \pi/2[$, probar que la sucesión $\{h_n\}$ converge uniformemente en $[\rho, \pi/2]$, pero no converge uniformemente en $[0, \rho]$.

Estudiamos en primer lugar la convergencia puntual. Cabe destacar que, debido al dominio de la función, tanto el seno como el coseno son estrictamente positivos. Fijado $x \in]0, \pi/2[$, tenemos que:

$$\lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} n \cos^n x \sin x = 0$$

donde he usado que $|\cos x| < 1$ para todo $x \in \mathbb{R}$. Además, también hemos hecho uso del lema del Sándwich, ya que:

$$0 \leqslant n \cos^n x \sin x \leqslant n \cos^n x = \frac{n}{\cos^{-n} x}$$

Sumándole que, en $x = 0, \pi/2$ se tiene que $h_n(x) = 0$, se tiene que $\{h_n\}$ converge puntualmente a la función nula en $[0, \pi/2]$.

Estudiamos ahora la convergencia uniforme. Fijado $\rho \in]0, \pi/2[$, definimos la sucesión $\{x_n\}$ de la siguiente forma:

- Si $\rho < 1/2$, entonces $x_n = \rho \in [0, \rho]$.
- Si $\rho \geqslant 1/2$, entonces $x_n = 1/n \in [0, \rho]$.

De esta forma, tenemos que $\{x_n\}$ es una sucesión de puntos de $[0, \rho]$. Veamos lo siguiente:

$$h_n\left(\frac{1}{n}\right) = n\cos^n\left(\frac{1}{n}\right)\sin\left(\frac{1}{n}\right) = \lim_{n \to \infty}\cos^n\left(\frac{1}{n}\right) \cdot \lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} \stackrel{(*)}{=} e^0 \cdot 1 = 1$$

Pasar estudiar el primer límite (*), hemos tomado en primer logaritmo neperiano, por lo que luego hemos de usar la exponencial:

$$\lim_{n \to \infty} n \log \left(\cos \left(\frac{1}{n} \right) \right) = \lim_{n \to \infty} \frac{\log \left(\cos \left(\frac{1}{n} \right) \right)}{\frac{1}{n}} \overset{L'H\hat{o}pital}{=} \lim_{n \to \infty} \frac{-\sin \left(\frac{1}{n} \right)}{\cos \left(\frac{1}{n} \right)} = \lim_{n \to \infty} -\tan \left(\frac{1}{n} \right) = 0$$

Por tanto, como $\{x_n\} \to 0$ y $\{h_n(x_n) - h(x_n)\} = \{h_n(x_n)\} \to 1$, tenemos que $\{h_n\}$ no converge uniformemente en $[0, \rho]$.

Para el caso de $[\rho, \pi/2]$, estudiamos en primer lugar la monotonía de la función h_n para cada $n \in \mathbb{N}$. Para ello, como $h_n \in C^{\infty}(]0, \pi/2[)$, estudiamos su derivada:

$$h'_n(x) = n\left(-n\cos^{n-1}x\sin^2x + \cos^{n+1}x\right) = n\cos^{n-1}x\left(-n\sin^2x + \cos^2x\right)$$

Por tanto, tenemos que los candidatos a extremos relativos de h_n son:

$$h'_n(x) = 0 \iff \cos^2 x = n \sin^2 x \iff \tan^2 x = \frac{1}{n} \iff x = \arctan\left(\frac{1}{\sqrt{n}}\right)$$

Evaluando la primera derivada en cada intervalo, tenemos que:

- Si $x \in \left[0, \arctan\left(\frac{1}{\sqrt{n}}\right)\right]$, entonces $h'_n(x) > 0$, por lo que h_n es creciente para todo $n \in \mathbb{N}$.
- Si $x \in \left[\arctan\left(\frac{1}{\sqrt{n}}\right), \pi/2\right]$, entonces $h'_n(x) < 0$, por lo que h_n es decreciente para todo $n \in \mathbb{N}$.

Estudiamos ahora la convergencia uniforme. Fijado $\rho \in]0, \pi/2[$, tomamos $m \in \mathbb{N}$ tal que $\rho > \arctan\left(\frac{1}{\sqrt{m}}\right)$, lo cual es posible ya que $\left\{\arctan\left(\frac{1}{\sqrt{n}}\right)\right\} \to 0$. De esta forma, para $n \in \mathbb{N}$, $n \geqslant m$, tenemos también que $\rho > \arctan\left(\frac{1}{\sqrt{n}}\right)$. Por tanto, tenemos que $[\rho, \pi/2] \subset \left[\arctan\left(\frac{1}{\sqrt{n}}\right), \pi/2\right]$, por lo que h_n es decreciente en $[\rho, \pi/2]$. Por tanto, para $n \geqslant m$, tenemos que:

$$|h_n(x)| = h_n(x) \leqslant h_n(\rho) \qquad \forall x \in [\rho, \pi/2]$$

Además, por la convergencia puntual, tenemos que $\{h_n(\rho)\} \to 0$, por lo que se deduce que $\{h_n\}$ converge uniformemente a 0 en $[\rho, \pi/2]$.

Ejercicio 2.1.7. Sea $\{\varphi_n\}$ la sucesión de funciones de \mathbb{R} en \mathbb{R} definida como:

$$\varphi_n(x) = \frac{x^2}{1+n|x|} \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

Probar que la sucesión $\{\varphi_n\}$ converge uniformemente en cada subconjunto acotado de \mathbb{R} , pero no converge uniformemente en \mathbb{R} .

Estudiemos en primer lugar la convergencia puntual. Fijado $x \in \mathbb{R}$, tenemos que:

$$\lim_{n \to \infty} \varphi_n(x) = \lim_{n \to \infty} \frac{x^2}{1 + n|x|} = 0$$

Por tanto, $\{\varphi_n\}$ converge puntualmente a la función nula en \mathbb{R} .

Estudiemos ahora la convergencia uniforme. Fijado un conjunto no vacío $C \subset \mathbb{R}$ acotado (en particular, acotado para la norma del máximo), existe un $M \in \mathbb{R}^+$ tal que |x| < M para todo $x \in C$. De esta forma, para todo $x \in C$, tenemos que:

$$|\varphi_n(x)| = \left|\frac{x^2}{1+n|x|}\right| \leqslant \frac{x^2}{n|x|} = \frac{|x|}{n} \leqslant \frac{M}{n} \quad \forall n \in \mathbb{N}$$

Por tanto, como $\left\{\frac{M}{n}\right\} \to 0$, tenemos que $\left\{\varphi_n\right\}$ converge uniformemente a 0 en C.

Estudiemos ahora la convergencia uniforme en \mathbb{R} . Tomamos $x_n = n$ para todo $n \in \mathbb{N}$. De esta forma, obtenemos una sucesión de puntos de \mathbb{R} de forma que:

$$\lim_{n \to \infty} \varphi_n(n) = \lim_{n \to \infty} \frac{n^2}{1 + n^2} = 1$$

Como $\{\varphi_n(n)\} \to 1 \neq 0$, tenemos que $\{\varphi_n\}$ no converge uniformemente en \mathbb{R} .

Ejercicio 2.1.8. Se considera la sucesión de funciones $\{\varphi_n\}$ de \mathbb{R}_0^+ en \mathbb{R} definida como:

$$\varphi_n(x) = \frac{x^n}{1 + x^n} \quad \forall x \in \mathbb{R}_0^+, \ \forall n \in \mathbb{N}$$

Dados $r, \rho \in \mathbb{R}$, con $0 < r < 1 < \rho$, estudiar la convergencia uniforme de $\{\varphi_n\}$ en los intervalos [0, r], $[r, \rho]$ y $[\rho, +\infty[$.