U.S. Application No.: 10/573,198

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the

application:

LISTING OF CLAIMS:

1 - 12. (canceled).

13. (currently amended): A method of manufacturing a stator in a rotating electric

machine, the method comprising:

preparing a stator core having plural slots in an inner peripheral surface, each slot of the

plural slots has a slot peripheral wall and slot opening that opens in the inner peripheral surface,

the slot peripheral wall of each slot has a slot bottom wall and a pair of slot side walls opposing

to each other and continuing to the slot bottom wall;

spraying a powder of an electrical insulation material on the slot peripheral wall of each

slot to form an insulation coating;

cutting into the insulation coating on the pair of slot side walls at vicinity of the slot

opening to form a pair of holding grooves opposing each other, each of the pair of holding

grooves has a grove-groove wall;

disposing a stator winding having plural winding member such that each winding

member of the stator winding is inserted inside each slot; and

inserting an electrical insulation member between the groove walls of the holding

grooves for closing the slot opening,

2

U.S. Application No.: 10/573,198

wherein the insulation coating is formed over continuously from the slot bottom wall to the pair of slot side walls and the groove walls of the holding grooves are formed in the

insulation coating on the slot side walls.

14. (previously presented): The method of manufacturing the stator in the rotating electric

machine according to claim 13, wherein the holding grooves are formed so that a depth of each

of the holding grooves is smaller than a thickness of the insulation coating.

15. (previously presented): The method of manufacturing the stator in the rotating

electrical machine according to claim 13, wherein the holding grooves are formed so that each

holding groove has a groove bottom wall and a pair of groove side walls opposing to each other,

and the groove bottom wall and the pair of groove side walls are formed in the insulation

coating.

16. (previously presented): The method of manufacturing the stator in the rotating electric

machine according 15, wherein the pair of groove side walls is formed so that a clearance is

formed between one of groove side walls and the electrical insulation member.

17. (previously presented): The method of manufacturing the stator in the rotating

electrical machine according to claim 15, wherein each groove bottom wall is formed so that a

clearance is formed between the groove bottom wall and the electrical insulation member.

3

U.S. Application No.: 10/573,198

18. (previously presented): The method of manufacturing the stator in the rotating

electrical machine according to claim 15, wherein each pair of groove side walls of the holding

grooves are formed so that the inner one of the pair of groove side walls positioned on an inner

side of each slot is formed to tilt in a depth direction of each slot.

19. (withdrawn): The method of manufacturing the stator in the rotating electrical

machine according to claim 13, wherein the stator winding is prepared so that each winding

member of the stator winding has a width in a circumferential direction smaller than an interval

between the slot side walls of each slot peripheral wall, and the width in the circumferential

direction is smaller than a width of the slot opening in the circumferential direction.

20. (withdrawn): The method of manufacturing the stator in the rotating electrical

machine according to claim. 13, wherein the stator winding is prepared so that each winding

member of the stator winding has a width in a circumferential direction smaller than an interval

between the slot side walls of each slot peripheral wall, and a thickness in a radius direction

smaller than the width in the circumferential direction, and the plural winding members are

disposed on line along the pair of slot side walls.

21. (withdrawn): The method of manufacturing the stator in the rotating electric machine

according to claim 13, wherein the stator core is prepared so that the stator core has plural teeth

4

U.S. Application No.: 10/573,198

portions between respective slots, each teeth portion of the plural teeth portions has a hanging portion that hangs out in a circumferential direction at vicinity of the inner peripheral surface of the stator core, the pair of slot side walls extend onto the hanging portions, and the pair of holding grooves is formed in the insulation coating on the hanging portions.

22. (previously presented): The method of manufacturing the stator in the rotating electric machine according to claim 14, wherein the depth of each of the holding grooves is defined in the direction of the thickness of the insulation coating.

23. (previously presented): The method of manufacturing the stator in the rotating electric machine according to claim 13, wherein the insulation coating formed by said spraying is uniform in thickness.