Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1. (Currently Amended) A compound of formula I

in salt or zwitterionic form wherein

R¹ and R³ are each independently a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R² is hydrogen, hydroxy, or C₁-C₄-alkyl optionally substituted by hydroxy;

L-and-M are (a bond and -CH₂-CH₂-), (-CH₂-and -CH₂-CH₂-) or (-CH₂-CH₂-and -CH₂-) respectively and J is C₁-C₂-alkylene,

or L and M are (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is a bond; R⁴ is C₁-C₄-alkyl;

 R^5 is C1-alkyl substituted by $-SO-R^6$, $-S(=O)_2-R^6$, $-CO-R^6$, $-CO-O-R^6$

or R⁵ is C₂-C₁₀-alkenyl or C₂-C₁₀-alkynyl optionally substituted by -R⁷-er-R⁸;

 R^6 is a C3-C15-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur,

or R⁶ is C₁-C₁₀-alkyl optionally substituted by C₁-C₁₀-alkoxy, -O-R⁷, -O-R⁸ a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur; and

R⁷ is a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, exygen and sulphur; and

R⁸ is a C₃-C₁₅-carbocyclic group.

Claim 2. (Currently Amended) A compound according to claim 1, wherein R^1 and R^3 are each independently a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R² is hydroxy;

L-and-M-are (a bond and -CH₂-CH₂-), (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is C₁-C₂-alkylene,

or L and M are (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is a bend; R⁴ is C₁-C₄-alkyl; R⁵ is C₁-alkyl substituted by -CO-R⁶ or -CO-NH-R⁶, or R⁵ is C₂-C₁₀-alkyl substituted by -O-R⁶, -S-R⁶, -O-CO-R⁶ or -R⁸, or R⁵ is C₂-C₁₀-alkenyl or C₂-C₁₀-alkynyl optionally substituted by -R⁸; R⁶ is a C₃-C₁₅-carbocyclic group, or R⁶ is C₁-C₁₀-alkyl optionally substituted by C₁-C₁₀-alkoxy, O-R⁸ or a C₃-C₁₅-carbocyclic group; and R⁸ is a C₃-C₁₅-carbocyclic group.

Claim 3. (Currently Amended) A compound according to claim 2, wherein R^1 and R^3 are each independently a C₃-C₁₀-carbocyclic group, preferably phenyl, or a 5- to 9-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur, preferably thienyl;

R² is hydroxy;

L and M are (a bond and -CH₂-CH₂-), (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is C₁-C₂-alkylene,

or L and M are (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is a bend; R^4 is C₁-C₄-alkyl;

 R^5 is C₁-alkyl substituted by -CO- R^6 or -CO-NH- R^6 , or R^5 is C₂-C₅-alkyl substituted by -O- R^6 , -S- R^6 , -O-CO- R^6 or - R^8 , or R^5 is C₂-C₄-alkenyl or C₂-C₈-alkynyl optionally substituted by - R^8 ; R^6 is a C₃-C₁₀-carbocyclic group, preferably phenyl, or R^6 is C₁-C₁₅-alkyl optionally substituted by C₁-C₄-alkoxy, O- R^8 or a C₃-C₁₀-carbocyclic group; and

R⁸ is a C₃-C₁₀-carbocyclic group, preferably phenyl.

Claims 4-7. (Canceled)

Claim 8. (Currently Amended): A compound according to claim 1, which is also a compound of formula XVI

where T is as shown in the following table:

Claim 9. (Currently Amended): A compound according to claim 1, which is also a compound of formula XVII

where T is as shown in the following table:

Claim 10. (Cancelled)

Claim 11. (Previously Presented): A pharmaceutical composition comprising as active ingredient a compound according to claim 1.

Claims 12-15. (Cancelled)

Claim 16. (Currently Amended): A process for the preparation of a compound of formula I as claimed in claim 1 which comprises:

(i) (A) reacting a compound of formula II

$$\begin{array}{c|c}
R^2 & \downarrow & \downarrow \\
R^3 & \downarrow & \downarrow & \downarrow \\
0 & \downarrow & \downarrow \\$$

or a protected form thereof where R^1 , R^2 , R^3 , R^4 , and J, — are as defined in claim 1, with a compound of formula III

where ${\hbox{\bf R}}^5$ is as defined in claim 1 and X is chloro, bromo or iodo;

(B) reacting a compound of formula IV

or a protected form thereof where R $^1,\, R^2,\, R^3,\, R^5,\, J,\, L$ and M are as defined in claim 1, with a compound of formula V

where R⁴ is as defined in claim 1 and X is chloro, bromo or iodo;

(C) for the preparation of compounds of formula I where R⁵ is -Q-NH-CO-R⁶, reacting a compound of formula VI

or a protected form thereof where R¹, R², R³, R⁴, J, L and M are as defined in claim 1 and Q is C1-C10-alkylene, with a compound of formula VII

or an amide-forming derivative thereof wherein R⁶ is as defined in claim 1; or (D) for the preparation of compounds of formula I where R⁵ is C₁-C₁₀-alkyl substituted by a C₃-C₁₅-carbocyclic group that is substituted by carboxy, converting a compound of formula I where R¹, R², R³, R⁴, J, L and M are as defined in claim 1 and R⁵ is C₁-C₁₀-alkyl substituted by a C₃-C₁₅-carbocyclic group that is substituted by either -COO-C₆-C₁₀-aryl or -COO-C₇-C₁₅-aralkyl; and

(ii) recovering the product in salt or zwitterionic form.

Claim 17. (Currently Amended): A compound of formula VI

$$\begin{array}{c|c}
R^2 & R^1 \\
R^3 & C & C & D & M
\end{array}$$

in salt or zwitterionic form wherein

R¹ and R³ are each independently a C₃-C₁₅-carbocyclic group or a 5- to 12-membered heterocyclic group having at least one ring heteroatom selected from nitrogen, oxygen and sulphur;

R² is hydrogen, hydroxy, or C₁-C₄-alkyl optionally substituted by hydroxy;

L-and M-are (a bond and -CH₂-CH₂-), (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is C₁-C₂-alkylene,

or L and M are (-CH₂- and -CH₂-CH₂-) or (-CH₂-CH₂- and -CH₂-) respectively and J is a bend; \mathbb{R}^4 is C₁-C₄-alkyl; and

Q is C1-C10-alkylene.

Claim 18. (Original): A pharmaceutical composition according to claim 11 wherein the compound is a single enantiomer.

Claim 19. (Cancelled)

Claim 20. (Withdrawn - Original): A method of treating a condition mediated by the muscarinic M3 receptor in a subject in need of such treatment, which comprises administering to said subject an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.

Claim 21. (Withdrawn - Original): A method of treating an inflammatory or obstructive airways disease in a subject in need of such treatment, which comprises administering to said subject

an effective amount of a compound of formula I as defined in claim 1 in free form or in the form of a pharmaceutically acceptable salt.

Claim 22. (Withdrawn - Original): A method according to claim 20, in which the compound of formula I is a single enantiomer.