Appunti di Fisica Generale 1

Primo modulo

Davide Borra

Indice

1	Cin	ematica del punto materiale
	1.1	Definizioni preliminari
	1.2	Grandezze fisiche per la cinematica
		1.2.1 Velocità
		1.2.2 Accelerazione
	1.3	Coordinate polari
		1.3.1 Moti circolari
	1.4	Coordinate curvilinee
2	\mathbf{Mo}_{1}	t <mark>i relativi</mark>
3	Din	amica del punto materiale
	3.1	Definizioni preliminari
	3.2	I principi della dinamica
	3.3	Forze notevoli
		3.3.1 Forza peso
		3.3.2 Forze di reazione vincolare e attriti
		3.3.3 Forza elastica
	3.4	Equazione del moto
	3.5	Sistemi di riferimento non inerziali e forze fittizie
4	Lav	oro ed energia
	4.1	Calcolo del lavoro lungo la traiettoria
	4.2	Forze conservative e non conservative
	4.3	Teorema dell'energia cinetica
	4.4	Calcolo del lavoro di forze notevoli
		4.4.1 Forza peso
		4.4.2 Forze costanti
		4.4.3 Forze di attrito
		4.4.4 Forza elastica
	4.5	Potenziale, energia potenziale e energia meccanica
		4.5.1 Funzione potenziale
		4.5.2 Energia potenziale e energia meccanica
	4.6	Impulso, quantità di moto e momenti
	1.0	4.6.1 Quantità di moto
		4.6.2 Impulso
		4.6.3 Momento angolare e momento torcente
		4.0.5 Momento angolare e momento torcente
5	Din	amica dei sistemi di particelle
<u> </u>	5.1	Equazioni cardinali della dinamica delle particelle
	5.2	Centro di massa
	<u> </u>	5.2.1 Equazioni cardinali e centro di massa
	5.3	Urti e esplosioni
	0.0	5.3.1 Classificazione degli urti
	5.4	Energia meccanica in un sistema di particelle
	$\frac{5.4}{5.5}$	· ·
	0.0	
		5.5.1 Teoremi di König

INDICE INDICE

17
 17
 18
18
 18
 19

This work is licensed under CC BY-NC-ND 4.0. To view a copy of this license, visit $\frac{\texttt{http://creativecommons.org/licenses/by-nc-nd/4.0/}{\texttt{http://creativecommons.org/licenses/by-nc-nd/4.0/}}$

1 Cinematica del punto materiale

1.1 Definizioni preliminari

DEF (Punto materiale). Corpo di dimensioni trascurabili rispetto a quelle dello spazio in cui si muove e di altri oggetti con cui interagisce, le sue dimensioni lineari sono piccole rispetto alla precisione con cui ci interessa determinarne la posizione.

DEF (Gradi di libertà). Numero di parametri tra loro indipendenti che servono ad individuare in modo univoco la posizione di un sistema fisico.

DEF (Traiettoria). Luogo dei punti occupati successivamente dal corpo puntiforme e che danno origine ad una curva continua nello spazio.

DEF (Vettore posizione). Il vettore posizione è quel vettore applicato all'origine del sistema cartesiano scelto, e che ha come estremo libero la posizione del punto P.

1.2 Grandezze fisiche per la cinematica

Siccome la velocità cambia nel tempo si definiscono due grandezze

1.2.1 Velocità

DEF (Velocità media). Si definisce velocità media il vettore

$$\langle \vec{v}_{(t_1,t_2)} \rangle = \frac{\vec{r}(t_2) - \vec{r}(t_1)}{t_2 - t_1}$$

Essa si misura in m/s

DEF (Velocità istantanea). Si definisce velocità istantanea il vettore

$$\vec{v}(t) = \lim_{t' \to t} \langle \vec{v}_{(t,t')} \rangle = \lim_{t' \to t} \frac{\vec{r}(t') - \vec{r}(t)}{t' - t} = \frac{d\vec{r}}{dt}$$

Essa si misura in m/s

Siccome per $\Delta t \to 0$ la lunghezza della retta secante approssima la traiettoria sempre meglio, si può affermare che

$$v(t) = \frac{ds}{dt}$$

1.2.2 Accelerazione

Siccome anche l'accelerazione cambia nel tempo si definiscono due grandezze

DEF (Accelerazione media). Si definisce accelerazione media il vettore

$$\langle \vec{a}_{(t_1,t_2)} \rangle = \frac{\vec{v}(t_2) - \vec{v}(t_1)}{t_2 - t_1}$$

Essa si misura in m/s^2