Shusen Wang

Revisiting DQN and TD Learning

Deep Q Network (DQN)

Approximate the optimal action-value function $Q^*(s, a)$ by Q(s, a; w).

Deep Q Network (DQN)

Approximate the optimal action-value function, $Q^*(s, \mathbf{a})$, by $Q(s, \mathbf{a}; \mathbf{w})$.

- Observe state s_t and perform action a_t .
- Environment provides new state s_{t+1} and reward r_t .
- TD target: $y_t = r_t + \gamma \left(\max_a Q(s_{t+1}, a; \mathbf{w}) \right)$

- Observe state s_t and perform action a_t .
- Environment provides new state s_{t+1} and reward r_t .
- TD target: $y_t = r_t + \gamma \cdot \max_a Q(s_{t+1}, a; \mathbf{w})$.
- TD error: $\delta_t = q_t y_t$ where $q_t = Q(s_t, a_t; \mathbf{w})$.
- Goal: Make q_t close to y_t , for all t. (Equivalently, make δ_t^2 small.)

- TD error: $\delta_t = q_t y_t$, where $q_t = Q(s_t, a_t; \mathbf{w})$.
- **TD learning:** Find **w** by minimizing $L(\mathbf{w}) = \frac{1}{T} \sum_{t=1}^{T} \frac{\delta_t^2}{2}$.

- TD error: $\delta_t = q_t y_t$, where $q_t = Q(s_t, a_t; \mathbf{w})$.
- **TD learning:** Find **w** by minimizing $L(\mathbf{w}) = \frac{1}{T} \sum_{t=1}^{T} \frac{\delta_t^2}{2}$.
- Online gradient descent:
 - Observe (s_t, a_t, r_t, s_{t+1}) and compute δ_t .
 - Compute gradient: $\mathbf{g}_t = \frac{\partial \delta_t^2/2}{\partial \mathbf{w}} = \delta_t \cdot \frac{\partial Q(s_t, \mathbf{a_t}; \mathbf{w})}{\partial \mathbf{w}}$
 - Gradient descent: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \mathbf{g}_t$.

- TD error: $\delta_t = q_t y_t$, where $q_t = Q(s_t, a_t; \mathbf{w})$.
- **TD learning:** Find **w** by minimizing $L(\mathbf{w}) = \frac{1}{T} \sum_{t=1}^{T} \frac{\delta_t^2}{2}$.
- Online gradient descent.
- Discard (s_t, a_t, r_t, s_{t+1}) after using it.

Shortcoming 1: Waste of Experience

- A transition: (s_t, a_t, r_t, s_{t+1}) .
- Experience: all the transitions, for $t = 1, 2, \cdots$.
- Previously, we discard (s_t, a_t, r_t, s_{t+1}) after using it.
- It is a waste...

Shortcoming 2: Correlated Updates

- Previously, we use (s_t, a_t, r_t, s_{t+1}) sequentially, for $t = 1, 2, \cdots$, to update **w**.
- Consecutive states, s_t and s_{t+1} , are strongly correlated (which is bad.)

- A transition: (s_t, a_t, r_t, s_{t+1}) .
- Store recent n transitions in a replay buffer.

```
(S_t, \boldsymbol{a}_t, r_t, S_{t+1})
(S_{t+1}, a_{t+1}, r_{t+1}, S_{t+2})
(S_{t+2}, a_{t+2}, r_{t+2}, S_{t+3})
```

Replay Buffer (n transitions)

- A transition: (s_t, a_t, r_t, s_{t+1}) .
- Store recent n transitions in a replay buffer.
- Remove old transitions so that the buffer has at most n transitions.
- Buffer capacity n is a tuning hyper-parameter [1, 2].
 - n is typically large, e.g., $10^5 \sim 10^6$.
 - The setting of n is application-specific.

Reference:

- 1. Zhang & Sutton. A deeper look at experience replay. In NIPS workshop, 2017.
- 2. Fedus et al. Revisiting fundamentals of experience replay. In ICML, 2019.

TD with Experience Replay

- Find w by minimizing $L(\mathbf{w}) = \frac{1}{T} \sum_{t=1}^{T} \frac{\delta_t^2}{2}$.
- Stochastic gradient descent (SGD):
 - Randomly sample a transition, (s_i, a_i, r_i, s_{i+1}) , from the buffer.
 - Compute TD error, δ_i .
 - Stochastic gradient: $\mathbf{g}_i = \frac{\partial \ \delta_i^2/2}{\partial \ \mathbf{w}} = \delta_i \cdot \frac{\partial \ Q(s_i, \mathbf{a_i}; \mathbf{w})}{\partial \ \mathbf{w}}$
 - SGD: $\mathbf{w} \leftarrow \mathbf{w} \alpha \cdot \mathbf{g}_i$.

Benefits of Experience Replay

- 1. Make the updates uncorrelated.
- 2. Reuse collected experience many times.

History

- Experience replay was proposed by Long-Ji Lin [1].
- The DQN paper [2] popularized experience replay.
- There are many improvements, e.g., [3].

Reference:

- 1. Lin. Reinforcement Learning for Robots Using Neural Networks. PhD Dissertation, 1993.
- 2. Mnih et al. Human-level control through deep reinforcement learning. *Nature*, 2015.
- 3. Schaul et al. Prioritized experience replay. In ICLR, 2016.

Prioritized Experience Replay

Reference:

1. Schaul, Quan, Antonoglou, & Silver. Prioritized experience replay. In ICLR, 2016.

Basic Idea

- Not all transitions are equally important.
- Which kind of transition is more important, left or right?

Basic Idea

- How do we know which transition is important?
- If a transition has high TD error $|\delta_t|$, it will be given high priority.

Importance Sampling

- Use importance sampling instead of uniform sampling.
- Option 1: Sampling probability $p_t \propto |\delta_t| + \epsilon$.

Importance Sampling

- Use importance sampling instead of uniform sampling.
- Option 1: Sampling probability $p_t \propto |\delta_t| + \epsilon$.
- Option 2: Sampling probability $p_t \propto \frac{1}{\mathrm{rank}(t)}$.
 - The transitions are sorted so that $|\delta_t|$ is in the descending order.
 - rank(t) is the rank of the t-th transition.
- In sum, big $|\delta_t|$ shall be given high priority.

Scaling Learning Rate

- SGD: $\mathbf{w} \leftarrow \mathbf{w} \boldsymbol{\alpha} \cdot \mathbf{g}$, where $\boldsymbol{\alpha}$ is the learning rate.
- If uniform sampling is used, α is the same for all transitions.
- If importance sampling is used, α shall be adjusted according to the importance.

Scaling Learning Rate

- Scale the learning rate by $(n p_t)^{-\beta}$, where $\beta \in (0,1)$.
- If $p_1 = \cdots = p_n = \frac{1}{n}$ (uniform sampling), the scaling factor is equal to 1.
- High-importance transitions (with high p_t) have low learning rates.
- In the beginning, set β small; increase β to 1 over time.

Update TD Error

- Associate each transition, (s_t, a_t, r_t, s_{t+1}) , with a TD error, δ_t .
- If a transition is newly collected, we do not know its δ_t .
 - Simply set its δ_t to the maximum.
 - It has the highest priority.
- Each time (s_t, a_t, r_t, s_{t+1}) is selected from the buffer, we update its δ_t .

Transitions

Sampling Probabilities

Learning Rates

• • •

 $(s_t, a_t, r_t, s_{t+1}), \delta_t$

$$p_t \propto |\delta_t| + \epsilon$$

$$\alpha \cdot (n p_t)^{-\beta}$$

$$(s_{t+1}, a_{t+1}, r_{t+1}, s_{t+2}), \delta_{t+1}$$

$$p_{t+1} \propto |\delta_{t+1}| + \epsilon$$

$$\alpha \cdot (n p_{t+1})^{-\beta}$$

$$(s_{t+2}, a_{t+2}, r_{t+2}, s_{t+3}), \delta_{t+2}$$

$$p_{t+2} \propto |\delta_{t+2}| + \epsilon$$

$$\alpha \cdot (n p_{t+2})^{-\beta}$$

• • •

• • •

• • •

Transitions

Sampling **Probabilities**

Learning Rates

$$(s_t, \boldsymbol{a_t}, r_t, s_{t+1}), \delta_t$$

$$p_t \propto |\delta_t| + \epsilon$$

$$\alpha \cdot (n p_t)^{-\beta}$$

$$(s_{t+1}, a_{t+1}, r_{t+1}, s_{t+2}), \delta_{t+1}$$

$$p_{t+1} \propto |\delta_{t+1}| + \epsilon$$

$$\alpha \cdot (n p_{t+1})^{-\beta}$$

$$(s_{t+2}, a_{t+2}, r_{t+2}, s_{t+3}), \delta_{t+2}$$

$$p_{t+2} \propto |\delta_{t+2}| + \epsilon$$

$$\alpha \cdot (n p_{t+2})^{-\beta}$$

Big
$$|\delta_t|$$

Thank you!