Eiercicio 1:

Un detector de paridad impar de 4 entradas y una salida funciona de la siguiente manera: si la cantidad de entradas con valor '1' es impar la salida se pone en '1', en el resto de los casos la salida toma valor '0'.

- a. Construir la tabla de verdad para dicho sistema.
- Obtener la ecuación lógica como suma de minitérminos y producto de maxitérminos (funciones canónicas).
- c. Implementar el sistema con compuertas NAND de la cantidad de entradas requeridas.
- d. Implementar el sistema con una PLA.

The last de minitirminos
$$F = \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} \left(\sum_$$

$$F = \left(\underbrace{\left(\overline{E}_{o}^{1}, \overline{E}_{1}^{1}, \overline{E}_{2}^{1}, \overline{E}_{3}^{1} \right)^{1}}_{m_{1}} \underbrace{\left(\overline{E}_{o}^{1}, \overline{E}_{1}, \overline{E}_{2}, \overline{E}_{3}^{1} \right)^{1}}_{m_{2}} \underbrace{\left(\overline{E}_{o}^{1}, \overline{E}_{1}, \overline{E}_{2}, \overline{E}_{3}^{1} \right)^{1}}_{m_{1}} \underbrace{\left(\overline{E}_{o}^{1}, \overline{E}_{2}, \overline{E}_{3}^{1}, \overline{E}_{3}, \overline{E}_{3}^{1} \right)^{1}}_{m_{1}} \underbrace{\left(\overline{E}_{o}^{1}, \overline{E}_{2}, \overline{E}_{3}, \overline{E}_{3}^{1} \right)^{1}}_{m_{1}} \underbrace{\left(\overline{E}_{o}^{1}, \overline{E}_{2}, \overline{E}_{3}, \overline{$$

- Dolicado doble negación y De Morgan.

n	n 0x	E0	E1	E2	E3	E
0	0	0	0	0	0	0
1	1	0	0	0	1	1
1 2 3	2	0	0	1	0	1
3	3	0	0	1	1	0
4	4	0	1	0	0	1
5	5	0	1	0	1	0
6 7	6	0	1	1	0	0
7	7	0	1	1	1	1
8	8	1	0	0	0	1
9	9	1	0	0	1	0
10	Α	1	0	1	0	0
11	В	1	0	1	1	1
12	B C D	1	1	0	0	0
13	D	1	1	0	1	1
14	Е	1	1	1	0	1
15	E	1	1	1	1	0

Ejercicio 3:

Verificar los resultados obtenidos de cada función lógica en la Guía 2 - Ejercicio 1, mediante la utilización de mapas de Karnaugh, el cual garantiza la obtención de la mínima expresión.

a.
$$x.y + x.y'$$

b.
$$(x + y).(x + y')$$

c.
$$x.y.z + x'.y + xyz'$$

$$d. z.x + z.x'.y$$

e.
$$(A + B)'.(A' + B')'$$

f.
$$y.(w.z' + w.z) + x.y$$

- Representendo les minitérninos - La función esta expresada como sumz de producto)

$$F=m_2+m_3$$

$$F = Xy' + X.y$$

 $F = X(Y' + Y)$

$$F = (X + Y) (X + Y')$$

5) F=(X+y) (X+y1) -> Se prede use el mere pro per el ceso producto de sus se usar los Mexitarios que hican 0 & by function

- Denvzción

$$F = (x + y) \times L(x + y).y$$

$$\frac{\times . \times + \gamma . \times + \times . \gamma + \gamma . \gamma'}{// \times}$$

$$\times + \times \left(\frac{\gamma + \gamma'}{\sqrt{1}} \right)$$

$$\times + \times = \times$$

e.
$$(A + B)'.(A' + B')'$$
 _> No estate en forme estandeurd
f. $y.(w.z' + w.z) + x.y$ hey grelluser.

- a. Encontrar las expresiones canónicas de cada Fx como suma de minitérminos y como producto de maxitérminos.
- b. Encontrar la expresión minimizada de cada Fx utilizando mapas de Karnaugh.

			(11)	
хЗ	x2	x1	x0	F(x3,x2,x1,x0)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

(f₁)

$$Sop(Sunof, noducts)$$

$$F = \sum (0, 1, 2, 6, 8, 9, 10)$$

$$F = (x'_3. x'_2. x'_1. x'_0) + (x'_3 x'_2. x'_1. x'_0)$$

$$+ (x'_3 x'_2. x'_1. x'_0) + (x'_3. x'_2. x'_1. x'_0) + (x'_3. x'_2. x'_1. x'_0)$$

$$+ (x'_3. x'_2. x'_1. x'_0) + (x'_3. x'_2. x'_1. x'_0)$$

P6 c (Product of Soms)

$$F = \Pi \left(3, 1, 5, +, 11, 12, 13, 14, 15 \right)$$

$$F = \left(\frac{3}{3}, + \frac{1}{2}, + \frac{1}{4}, + \frac{1}{2} \right) \cdot \left(\frac{5}{3}, + \frac{1}{2}, + \frac{1}{4}, + \frac{1}{2} \right) \cdot \left(\frac{5}{3}, + \frac{1}{2}, + \frac{1}{4}, + \frac{1}{4} \right)$$

$$\left(\frac{7}{3}, + \frac{1}{2}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right) \cdot \left(\frac{13}{3}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right)$$

$$\left(\frac{7}{3}, + \frac{1}{2}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right) \cdot \left(\frac{13}{3}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right)$$

$$\left(\frac{12}{3}, + \frac{1}{2}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right) \cdot \left(\frac{13}{3}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right)$$

$$\left(\frac{13}{3}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right) \cdot \left(\frac{13}{3}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right)$$

$$\left(\frac{13}{3}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right) \cdot \left(\frac{13}{3}, + \frac{1}{4}, + \frac{1}{4}, + \frac{1}{4} \right)$$

$$\left(\frac{13}{3}, + \frac{1}{4}, + \frac{$$

Mops de kerneugh

4 vzvielles 16 ceders 1/

 (f_1)

x3	x2	x1	x0	F(x3,x2,x1,x0)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

$$\frac{GI}{X_0.X_2!} \times \frac{GZ}{X_1!.X_2!}$$

$$\frac{G^2}{X_1'}$$
 X_2'

$$F = X_0' X_2' + X_1' X_2' + X_0' \times_1 X_3'$$

Ejercicio 6:

Analizar los circuitos de lógica combinacional de la figura. Para cada uno:

- a. Escribir la función booleana correspondiente.
- b. Encontrar la tabla de verdad para la función obtenida.
- c. Obtener la función minimizada como suma de productos a partir del mapa de Karnaugh.
- d. Dibujar el circuito de lógica combinacional resultante del punto (c).

a	Ď	Ç	1 // a XOR b	2 // <u>b AND c</u>	3 // <u>c AND</u> a	4 // 2 XOR 3	E // 1 OR 4
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	1	1	0	1	1
1	0	0	1	0	0	0	1
1	0	1	1	0	1	1	1
1	1	0	0	0	0	0	0
1	1	1	0	1	1	0	0

$$\frac{61}{26!}$$
 $\frac{62}{2!6}$
 $F = 26! + 2!6$

Ejercicio 7:

Un DECODIFICADOR es un circuito combinacional que convierte información binaria de 'N' entradas codificadas (A), a '2", salidas únicas (X). Esto quiere decir que sólo una salida X está activa y representa el valor de las señales de entrada A.

Considere un decodificador activo por bajo (salida activa = '0') con N=2 y $2^N=4$ (deco 2 x 4).

- a. Expresar las tablas de verdad de las cuatro salidas X₀, X₁, X₂ y X₃.
- b. Encontrar las expresiones de X_0 , X_1 , X_2 y X_3 como suma de minitérminos y como producto de maxitérminos.
- c. Encontrar expresiones minimizadas de X_0 , X_1 , X_2 y X_3 utilizando el método de Karnaugh o un método algebraico.
- d. Implementar las expresiones anteriores a través del uso de compuertas lógicas.

e.								HABILITA salida perr				oajo,		
A1	A0	X0	X1	X2	X3) X	٥)				,	,	
0	0	0	1	1	1		F=	2 (L	,2,3		FI	Π (٥)	
0	1	1	0	1	1			•		•				
1	0	1	1	0	1	-	F	<u> </u>	, 2,	3)	F'= -	11 (ι)	
1	1	1	1	1	0									
							× 2	٥ (٥	1 3) F	='= TT	-(z)		
							F =	2 (0	(1)	7		•		
							X 3	= 5 (- 1	, \	FT	(3))	
2)	¥			Y	(F	= \(\int \)	ויופ	2)	•	,		
	۸ ' '	•0		د	l			×			×.	3		
A	100	1		A	93 1	<u> </u>	A , A	931	1	A	() () () () ()			
'	110		ı				ïl	0	<u> </u>			0		
F=	- Δ _ι -	+ 17°	ı	F =	. A,	+ 1/0		F = 1	z', +	A _O	F	= V _I	+ 4',	
								e')		5	-		
4)		,				~	De		/ ,		_			χ°
•	A -		1		_	Λο	A. FY	8 × × × × × × × × × × × × × × × × × × ×	1-	~ o_				
	D	T	7\$			1	7 4	of X2	L	7 –			`	¥
	A		رز	17-		Χ,	E	X ₂	r	1	•	E-	/	_ ^ (
	1			シ		ι		F = 0			, A	6),		
		7,	<u> </u>	1/-		X -		el dece	,	,	7			· ×
		Ŀ	0	・シー		1 2		full cicas	11 L	_)				

Ejercicio 8:

Implementar un decodificador de $3 \times 8 y$ otro de 4×16 a partir de decodificadores 2×4 activos por bajo, con entrada de habilitación (**E**) activa por bajo y compuertas lógicas.

Ejercicio 9:

- a. Diseñar un circuito SUMADOR COMPLETO (3 entradas: X, Y, C_{IN} ; 2 salidas: S, C_{OUT}) mediante el uso de un Decodificador de salida activa por alto y compuertas OR. Tip: La salida que vale 1 representa el minitérmino equivalente al número binario que está a la entrada.
- b. Diseñar un sumador completo usando dos semisumadores y una compuerta.

X	у	Cin	S	Cout
0	0	0	0	0
0	0	1	1	Ð
0	1	0		0
0	1	1	1 0	(
1	0	0		0
	0	1	0	Ī
4	1	Ø	0	1
1	1	1	1	1

Ejercicio 11:Dado el siguiente circuito con entradas (DCBA):

a. Elabore la tabla de verdad de "SALIDA" y responda: ¿Para cuantas combinaciones posibles de entradas la salida es igual a 1?

A	B	C	\mathcal{D}	521:dz
0	0	0	0	0
0	0	0	1	Į
0	0	1	0	1
0	D	ſ	1	1
0	1	0	0	1
0	1	0	1	1
0	4	1	0	0
D	1	ŧ	1_	0
1	0	O	0	0
ı	0	0		0
1	0	1	0	0
1	S	1	1	0
1	}	0	0	0
1		0	1	
Ş	1	1	0	
1	. 1	t	1	D
			_	