Dynamic Load Balancing for Particle Methods

K. Puri, P. Ramachandran and P. Godbole

Department of Aerospace Engineering, IIT Bombay

Particles 2013, Stuttgart, Germany

Outline

- 1 Particle Methods
 - The serial algorithm
 - The parallel algorithm
 - Load Balancing
- 2 Load-balancing
 - Load Balancing techniques
 - Algorithms
 - How do we do it?
- 3 Results
 - Dam break
 - Lid Driven Cavity
 - Elastic collision
 - Conclusion and Further work

PySPH

Serial algorithm in a nutshell

Serial algorithm in a nutshell

Discretized with Particles

For every particle...

Find nearest neighbors...

Compute interactions..

$$\frac{dU_i}{dt} = -\sum_{i \in \mathcal{N}(i)} m_j \mathcal{F}_{ij} \nabla_i W_{ij}$$

Given the domain discretized with Particles...

Partition it across processors : Load-balancing

For every particle, find neighbors.

K. Puri, P. Ramachandran and P. Godbole

For every particle, find neighbors. Oops!

Exchange ghost data.

Exchange ghost data. And compute interactions..

Outline

- 1 Particle Methods
 - The serial algorithm
 - The parallel algorithm
 - Load Balancing
- 2 Load-balancing
 - Load Balancing techniques
 - Algorithms
 - How do we do it?
- 3 Results
 - Dam break
 - Lid Driven Cavity
 - Elastic collision
 - Conclusion and Further work

Scope of this work

Algorithms

- Geometric Partitioning Algorithms
- Recursive Coordinate Bisection (RCB)
- Recursive Inertial Bisection (RIB)
- Hilbert Space Filling Curves (HSFC)

Scope of this work

Algorithms

- Geometric Partitioning Algorithms
- Recursive Coordinate Bisection (RCB)
- Recursive Inertial Bisection (RIB)
- Hilbert Space Filling Curves (HSFC)

Applications

- Free surface flows
- Fixed domain incompressible NS
- Elastic solid mechanics

Scope of this work

Algorithms

- Geometric Partitioning Algorithms
- Recursive Coordinate Bisection (RCB)
- Recursive Inertial Bisection (RIB)
- Hilbert Space Filling Curves (HSFC)
- Partitioning quality
- Execution times
- Scale-up

Applications

- Free surface flows
- Fixed domain incompressible NS
- Elastic solid mechanics

Geometric partitioners

- Physical coordinates as input
- Most general for numerical work
- Natural for particle methods

Geometric partitioners

- Physical coordinates as input
- Most general for numerical work
- Natural for particle methods

Examples

- Recursive Coordinate Bisection (RCB)
- Recursive Inertial Bisection (RIB)
- Space Filling Curves (SFC)

Graph partitioners

- Data represented as a graph
- Inherently suitable for mesh-based methods
- Cell based graph-partitioning may be used for SPH

Graph partitioners

- Data represented as a graph
- Inherently suitable for mesh-based methods
- Cell based graph-partitioning may be used for SPH

Examples

- METIS/ParMETIS
- PTScotch
- Hypergraph partitioning

Algorithm and Advantages Recursive Orthogonal cuts Fast

Algorithm and Advantages Recursive

- Orthogonal cutsFast

Disadvantages

- Not rotationally invariant
- Stretched halo regions

Algorithm and Advantages Recursive Orthogonal cuts Fast

Disadvantages Not rotationally invariant Stretched halo regions

Algorithm and Advantages Recursive Orthogonal cuts Fast

Disadvantages Not rotationally invariant Stretched halo regions

Algorithm and Advantages Recursive

- Orthogonal cuts
- Fast

Disadvantages

- Not rotationally invariant
 - Leads to stretched halo-regions

Recursive Inertial Bisection (RIB)

Algorithm and Advantages

- Variant of RCB
- Orthogonal cuts to principal inertial axes
- Adaptive to rotations
- Lesser communication overhead

Recursive Inertial Bisection (RIB)

Algorithm and Advantages

- Variant of RCB
- Orthogonal cuts to principal inertial axes
- Adaptive to rotations
- Lesser communication overhead

Disadvantages

Eigenvector computations

Recursive Inertial Bisection (RIB)

Algorithm and Advantages

- Variant of RCB
- Orthogonal cuts to principal inertial axes
- Adaptive to rotations
- Lesser communication overhead

Disadvantages

Eigenvector computations

Algorithm and Advantages

- $\bullet \quad \mathsf{Use} \,\,\mathsf{a} \,\,\mathsf{SFC} \,\,f: R^3 \to R$
- Order objects linearly
- Geometric locality

Algorithm and Advantages

- Use a SFC $f: R^3 \to R$
- Order objects linearly
- Geometric locality

- Particle distribution has projections
- Disconnected regions for complex geometries

Algorithm and Advantages

- Use a SFC $f: R^3 \to R$
- Order objects linearly
- Geometric locality

- Particle distribution has projections
- Disconnected regions for complex geometries

Algorithm and Advantages

- Use a SFC $f: R^3 \to R$
- Order objects linearly
- Geometric locality

- Particle distribution has projections
- Disconnected regions for complex geometries

Algorithm and Advantages

- Use a SFC $f: R^3 \to R$
- Order objects linearly
- Geometric locality

- Particle distribution has projections
- Disconnected regions for complex geometries

Algorithm and Advantages

- $\bullet \quad \mathsf{Use} \ \mathsf{a} \ \mathsf{SFC} \ f : R^3 \to R$
- Order objects linearly
- Geometric locality

- Particle distribution has projections
- Disconnected regions for complex geometries

How do we do it?

How do we do it?

How do we do it?

Zoltan Data Management Library

What is it?

- Developed by Sandia National Laboratories
- Trilinos Project (9.0 September 2008)
- Zoltan v3.6 released in September 2011

What can it do?

- Dynamic Load Balancing
- Graph Coloring
- Dynamic memory management

Outline

- 1 Particle Methods
 - The serial algorithm
 - The parallel algorithm
 - Load Balancing
- 2 Load-balancing
 - Load Balancing techniques
 - Algorithms
 - How do we do it?
- 3 Results
 - Dam break
 - Lid Driven Cavity
 - Elastic collision
 - Conclusion and Further work

2D Dam Break

• $N_p \approx O(0.1M)$

Machine Architecture

- Linux (CentOS) cluster
- Six-core AMD Opteron
- 1 Gigabit Ethernet interconnect
- 12 GB RAM per node

Scale-up : $N_p \approx 10$ M, per-iteration

Time distribution: RCB

RCB Time distribution

Time distribution: HSFC

HSFC Time distribution

Time distribution: RIB

RIB Time distribution

3D Dam break : Scale-up : $N_p \approx 10$ M, per-iteration

3D Dam break : RCB Time distribution

RCB Time distribution

3D Dam break: HSFC Time distribution

HSFC Time distribution

3D Dam break: RIB Time distribution

RIB Time distribution

■ Computation ■ Parallelization

Lid Driven Cavity

- Fixed 2D domain
- $N_p \le 10^5$

Scale up

Elastic collision

- Collision
- $N_p \approx 20,000$

Scale up

Conclusions

- Evaluation of geometric load balancing algorithms
- RIB for dynamic free surfaces
- RCB/HSFC for contact problems
- RCB for fixed domain problems

Future work

- HVI and 3D contact problems
- Scale up for massively parallel computers
- Coupled methods

Particle Methods Load-balancing Results Dam break Lid Driven Cavity Elastic collision Conclusion and Further work

Thank you!