

SEQUENCE LISTING

<110> Rohm and Haas Company
Palli, Subba Reddy
Kapitskaya, Marianna Zinovjevna
Cress, Dean Ervin

<120> Novel Ecdysone Receptor-Based Inducible Gene Expression System

<130> A01020B

<140> Not Yet Assigned
<141> 2001-09-26

<150> 60/191,355
<151> 2000-03-22

<150> 60/269,799
<151> 2001-02-20

<150> PCT/US01/09050
<151> 2001-03-21

<160> 75

<170> PatentIn version 3.1

<210> 1
<211> 1288
<212> DNA
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 1
aaggccctg cgccccgtca gcaagaggaa ctgtgtctgg tatgcgggga cagagcctcc 60
ggataaccact acaatgcgct cacgtgtgaa gggtgtaaag gtttcttcag acggagtgtt 120
acaaaaaatg cggttatat ttgttaattc ggtcacgctt gcgaaatgga catgtacatg 180
cgacggaaat gccaggagtg ccgcctgaag aagtgccttag ctgttaggcat gaggcctgag 240
tgcgtagttac ccgagactca gtgcgccatg aagcggaaag agaagaaaagc acagaaggag 300
aaggacaaac tgcctgtcag cacgacgacg gtggacgacc acatgccccc cattatgcag 360
tgtgaacctc cacctcctga agcagcaagg attcacgaag tggtcccaag gtttctctcc 420
gacaagctgt tggagacaaa ccggcagaaa aacatcccc agttgacagc caaccagcag 480
ttccttatcg ccaggctcat ctggtaccag gacgggtacg agcagccttc tgatgaagat 540
ttgaagagga ttacgcagac gtggcagcaa gcggacgatg aaaacgaaga gtctgacact 600

cccttcggcc agatcacaga gatgactata ctcacgggcc aacttatcgt ggagttcg 660
aagggattgc cagggttcgc caagatctcg cagcctgatc aaattacgct gcttaaggct 720
tgctcaagtg aggtaatgtat gctccgagtc gcgacgat acgatgcggc ctcagacagt 780
gttctgttcg cgaacaacca agcgtacact cgcgacaact accgcaaggc tggcatggcc 840
tacgtcatcg aggatctact gcacttctgc cggtgcatgt actctatggc gttggacaac 900
atccattacg cgctgctcac ggctgtcgatc atctttctg accggccagg gttggagcag 960
ccgcaactgg tggaagaaat ccagcggtac tacctgaata cgctccgcat ctatatcctg 1020
aaccagctga gcgggtcgcc gcgttcgtcc gtcatatacg gcaagatcct ctcaatcctc 1080
tctgagctac gcacgctcg catgcaaaac tccaacatgt gcatctccct caagctcaag 1140
aacagaaaagc tgccgcctt cctcgaggag atctggatg tggcggacat gtcgcacacc 1200
caaccggccgc ctatcctcga gtccccacg aatctctagc ccctgcccgc acgcacatcg 1260
gatgccgcgt ccggccgcgc tgctctga 1288

<210> 2
<211> 1110
<212> DNA
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 2
gcggttata tttgtaaatt cggtcacgct tgcgaaatgg acatgtacat gcgacggaaa 60
tgccaggagt gccgcctgaa gaagtgctta gctgtaggca tgaggcctga gtgcgttagta 120
cccgagactc agtgcgccat gaagcgaaaa gagaagaaag cacagaagga gaaggacaaa 180
ctgcctgtca gcacgacgac ggtggacgac cacatgccgc ccattatgca gtgtgaacct 240
ccacctcctg aagcagcaag gattcacgaa gtggcccaa gtttctctc cgacaagctg 300
ttggagacaa accggcagaa aaacatcccc cagttgacag ccaaccagca gttccttac 360
gccaggctca tctggtagca ggacgggtac gagcagcctt ctgatgaaga tttgaagagg 420
attacgcaga cgtggcagca agcggacgat gaaaacgaag agtctgacac tccctccgc 480
cagatcacag agatgactat cctcacggtc caacttatcg tggagttcg 540
ccagggttcg ccaagatctc gcagcctgat caaattacgc tgcttaaggc ttgctcaagt 600

gaggtaatga tgctccgagt cgcgacga tacgatgcgg ctcagacag tttctgttc	660
gcgaacaacc aagcgtacac tcgacacaac taccgcaagg ctggcatggc ctacgtcatc	720
gaggatctac tgcacttctg ccgggtcatg tactctatgg cttggacaa catccattac	780
gcgctgtca cggctgtcgt catctttct gaccggccag gttggagca gcccactg	840
gtggaagaaa tccagcgta ctacctaat acgctccgca tctataatcct gaaccagctg	900
agcgggtcg cgcttcgtc cgtcatatac ggcaagatcc tctcaatcct ctctgagcta	960
cgcacgctcg gcatgcaaaa ctccaacatg tgcattcccc tcaagctcaa gaacagaaag	1020
ctgccgcctt tcctcgagga gatctggat gtggcggaca tgtcgcacac ccaaccgccc	1080
cctatcctcg agtcccccac gaatctctag	1110

```
<210> 3
<211> 1054
<212> DNA
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence
```

<400> 3
cctgagtgcg tagtacccga gactcagtgc gccatgaagg ggaaagagaa gaaagcacag 60
aaggagaagg acaaactgcc tgtcagcacg acgacgggtgg acgaccacat gcccgcatt 120
atgcagtgtg aacctccacc tcctgaagca gcaaggattc acgaagtggc cccaagggtt 180
ctctccgaca agctgttggc gacaaaccgg cagaaaaaca tccccagtt gacagccaac 240
cagcagttcc ttatcgccag gctcatctgg taccaggacg ggtacgagca gccttctgtat 300
gaagatttgc agaggattac gcagacgtgg cagcaagcgg acgatgaaaa cgaagagtct 360
gacactccct tccgccagat cacagagatg actatcctca cggtccaact tatcgtggag 420
ttcgcgaagg gattgccagg gttcgccaaag atctcgccagc ctgatcaaatt tacgctgctt 480
aaggcttgct caagtggatgt aatgatgctc cgagtcgcgc gacgatacga tgccgcctca 540
gacagtgttc tgttcgccgaa caaccaagcg tacactcgccg acaactaccg caaggctggc 600
atggcctacg tcacgtggatgt tctactgcac ttctgcgggt gcatgtactc tatggcggtt 660
gacaacatcc attacgcgcgt gctcacggct gtcgtcatct tttctgaccg gccagggttg 720
gagcagccgc aactgggtggc agaaatccag cggtactacc tgaatacgct ccgcacatctat 780
atcctgaacc agctgagcgg gtcggcgcgt tcgtccgtca tatacggcaa gatcctctca 840

atcctctctg agctacgcac gctcgccatg caaaaactcca acatgtgcat ctcccctaag 900
 ctcaagaaca gaaagctgcc gccttcctc gaggagatct gggatgtggc ggacatgtcg 960
 cacacccaac cgccgcctat cctcgagtcc cccacgaatc tctagccccct gcgcgcacgc 1020
 atcgccgatg ccgcgtccgg ccgcgcgtgct ctga 1054

<210> 4
 <211> 735
 <212> DNA
 <213> Choristoneura fumiferana

<220>
 <221> misc_feature
 <223> Novel Sequence

<400> 4
 taccaggacg ggtacgagca gccttctgat gaagatttga agaggattac gcagacgtgg 60
 cagcaagcgg acgatgaaaaa cgaagagtct gacactccct tccgccagat cacagagatg 120
 actatcctca cggtccaact tatcgtggag ttgcgaagg gattgccagg gttcgccaag 180
 atctcgcagc ctgatcaaatacgctgctt aaggcttgct caagttaggt aatgatgctc 240
 cgagtcgcgc gacgatacga tgccgcctca gacagtgttc tgccgaa caaccaagcg 300
 tacactcgcg acaactaccg caaggctggc atggcctacg tcacgtgagga tctactgcac 360
 ttctgcgggt gcatgtactc tatggcggtt gacaacatcc attacgcgt gctcacggct 420
 gtcgtcatct tttctgaccg gccagggttg gagcagccgc aactggtgaa agaaatccag 480
 cggtaactacc tgaataacgct ccgcacatctat atcctgaacc agctgagcgg gtcggcgcgt 540
 tcgtccgtca tatacggcaa gatcctctca atcctctctg agctacgcac gctcgccatg 600
 caaaaactcca acatgtgcat ctcccctaag ctcaagaaca gaaagctgcc gccttcctc 660
 gaggagatct gggatgtggc ggacatgtcg cacacccaac cgccgcctat cctcgagtcc 720
 cccacgaatc tctag 735

<210> 5
 <211> 960
 <212> DNA
 <213> Choristoneura fumiferana

<220>
 <221> misc_feature
 <223> Novel Sequence

ପ୍ରକାଶନ କମିଶନ

<400> 5
cctgagtgcg tagtacccga gactcagtgc gccatgaagc ggaaagagaa gaaagcacag 60
aaggagaagg acaaactgcc tgtcagcacg acgacgggtgg acgaccacat gcccgcatt
atgcagtgtg aacctccacc tcctgaagca gcaaggattc acgaagtggc cccaagggtt 120
ctctccgaca agctgttgga gacaaaccgg cagaaaaaca tccccagtt gacagccaac 180
cagcagttcc ttatcgccag gtcatctgg taccaggacg ggtacgagca gccttctgat 240
gaagatttga agaggattac gcagacgtgg cagcaagcgg acgtaaaaa cgaagagtct 300
gacactccct tccgcccagat cacagagatg actatcctca cggtccaact tatcgtggag 360
ttcgcgaagg gattgccagg gttcgccaag atctcgccagc ctgatcaa at tacgctgctt 420
aaggcttgct caagtggatgt aatgatgctc cgagtcgcgc gacgatacga tgccgcctca 480
gacagtgttc tgccgcgaa caaccaagcg tacactcgccg acaactaccg caaggctggc 540
atggcctacg tcacatcgagga tctactgcac ttctgcccggt gcatgtactc tatggcggtt 600
gacaacatcc attacgcgct gtcacggct gtcgtcatct tttctgaccg gccagggttg 660
gagcagccgc aactggtgga agaaatccag cggtaatacc tgaatacgct ccgcacatctat 720
atcctgaacc agctgagcgg gtcggcgcgt tcgtccgtca tatacggcaa gatcctctca 780
atcctctctg agctacgcac gtcggcatg caaaaactcca acatgtgcac ctccctcaag 840
ctcaaaqaaca qaaaqctgcc qccttcctc gaggagatct gggatgtggc ggacatgtcg 900
960

<210> 6
<211> 1878
<212> DNA
<213> Drosophila melanogaster

```
<220>
<221> misc_feature
<223> Novel Sequence
```

```
<400> 6
ggacctgcgc cacgggtgca agaggagctg tgcctggtt gcggcgacag ggccctccggc      60
taccactaca acgccctcac ctgtgagggc tgcaaggggt tctttcgacg cagcgttacg     120
aagagcgccg tctactgctg caagttcggg cgcgccctgcg aaatggacat gtacatgagg     180
cgaaagtgtc aggagtgccg cctgaaaaag tgcctggccg tgggtatgcg gccggaatgc     240
gtcgtccccgg agaaccaatg tgcgatgaag cggcgcgaaa agaaggccca gaaggagaag     300
gacaaaatga ccacttcgcc gagctcttag catggcggca atggcagctt ggccctcttgt    360
```

DNA25965

ggcggccaag actttgttaa gaaggagatt cttgacctta tgacatgcga gcccggccag	420
catgccacta ttccgctact acctgatgaa atattggcca agtgtcaagc gcgcaatata	480
ccttccttaa cgtacaatca gttggccgtt atatacaagt taatttgta ccaggatggc	540
tatgagcagc catctgaaga ggatctcagg cgtataatga gtcaacccga tgagaacgag	600
agccaaacgg acgtcagctt tcggcatata accgagataa ccatactcac ggtccagttg	660
attgttgagt ttgctaaagg tctaccagcg tttacaaaga tacccagga ggaccagatc	720
acgttactaa aggccctgctc gtcggaggtg atgatgctgc gtatggcacg acgctatgac	780
cacagctcgg actcaatatt ctgcgcaat aatagatcat atacgcggga ttcttacaaa	840
atggccggaa tggctgataa cattgaagac ctgctgcatt tctgccgcca aatgttctcg	900
atgaaggtgg acaacgtcga atacgcgctt ctcactgcca ttgtgatctt ctcggaccgg	960
ccgggcctgg agaaggccca actagtcgaa gcgatccaga gctactacat cgacacgcta	1020
cgcatttata tactcaaccg ccactgcggc gactaatga gcctcgtctt ctacgcaaag	1080
ctgctctcga tcctcaccga gctgcgtacg ctggcaacc agaacgcga gatgtgttc	1140
tcactaaagc tcaaaaaccg caaactgccc aagttcctcg aggagatctg ggacgttcat	1200
gccatccgc catcggtcca gtcgcacctt cagattaccc aggaggagaa cgagcgtctc	1260
gagcgggctg agcgtatgctg ggcacatcggtt gggggcgcca ttaccgcgg cattgattgc	1320
gactctgcct ccacttcggc ggccggcagcc gcggcccgagc atcagcctca gcctcagccc	1380
cagccccaaac cctcctccct gacccagaac gattcccagc accagacaca gccgcagcta	1440
caacctcagc taccacctca gctgcaaggt caactgcaac cccagctcca accacagctt	1500
cagacgcaac tccagccaca gattcaacca cagccacagc tccttccgt ctccgctccc	1560
gtgcccgcct ccgtAACCGC acctgggtcc ttgtccgcgg tcagtacgag cagcgaatac	1620
atgggcggaa gtgcggccat aggaccatc acgcccggcaa ccaccagcag tatcacggct	1680
gccgttaccg cttagtccac cacatcagcg gtaccgatgg gcaacggagt tggagtcgg	1740
gttgggggtgg gccggcaacgt cagcatgtat gcaacgcggcc agacggcgat ggccttgatg	1800
gggtgtagccc tgcattcgca ccaagagcag cttatcgaaa gagtggcggt taagtcggag	1860
cactcgacga ctgcata	1878

<210> 7
<211> 1752
<212> DNA

<213> Drosophila melanogaster

<220>

<221> misc_feature

<223> Novel Sequence

<400> 7
gccgtctact gctgcaagtt cgggcgcgcc tgcgaaatgg acatgtacat gagggcgaaag 60
tgtcaggagt gccgcctgaa aaagtgcctg gccgtggta tgcggccgga atgcgtcg 120
ccggagaacc aatgtgcgat gaagcggcgc gaaaagaagg cccagaagga gaaggacaaa 180
atgaccacctt cgccgagctc tcagcatggc ggcaatggca gcttggcctc tggtgccggc 240
caagactttt ttaagaagga gattcttgac cttatgacat gcgagccgccc ccagcatgcc 300
actattccgc tactacctga taaaaatattt gccaagtgtc aagcgcgcaa tataccttcc 360
ttaacgtaca atcagttggc cgtttatatac aagttaattt ggtaccagga tggctatgag 420
cagccatctg aagaggatct caggcgtata atgagtcaac ccgatgagaa cgagagccaa 480
acggacgtca gcttcggca tataaccgag ataaccatac tcacggtcca gttgattttt 540
gagtttgcta aaggtctacc agcggttaca aagataacccc aggaggacca gatcacgtta 600
ctaaaggcct gctcgccggaa ggtgatgtatgg ctgcgtatgg cacgacgcta tgaccacagc 660
tcggactcaa tattcttcgc gaataataga tcatatacgc gggattctta caaatggcc 720
ggaatggctg ataacattga agacctgctg catttctgcc gccaaatgtt ctcgtatgaag 780
gtggacaacg tcgaatacgc gcttctcaact gccattgtga tcttctcgga ccggccgggc 840
ctggagaagg cccaaactagt cgaagcgatc cagagctact acatcgacac gctacgcatt 900
tatatactca accgccactg cggcgactca atgagcctcg tcttctacgc aaagctgctc 960
tcgatcctca ccgagctgctg tacgctggc aaccagaacg ccgagatgtg tttctcaacta 1020
aagctcaaaaa accgcaaact gcccagttc ctcgaggaga tctgggacgt tcatgccatc 1080
ccgccccatcggttccagtcgc ctttcagatt acccaggagg agaacgagcg tctcgagcgg 1140
gctgaggcgta tgcgggcatc ggttgggggc gccattaccc ccggcattga ttgcgactct 1200
gcctccactt cggcgccggc agcccgccggc cagcatcagc ctcagcctca gccccagccc 1260
caaccctcctt ccctgaccca gaacgattcc cagcaccaga cacagccgca gctacaacct 1320
cagctaccac ctcagctgca aggtcaactg caacccagc tccaaccaca gcttcagacg 1380
caactccagc cacagattca accacagcca cagctccttc ccgtctccgc tccctgtcccc 1440
gcctccgtaa ccgcacactgg ttccttgcgc gggcgtcgtt ccggcgttccgca atacatggc 1500

D D D D D D D D D D

ggaagtgcgg ccataggacc catcacgccc gcaaccacca gcagtatcac ggctgccgtt 1560
accgctagct ccaccacatc agcggtaccg atggcaacg gagttggagt cggtgttggg 1620
gtggccggca acgtcagcat gtatgcgaac gcccagacgg cgatggcctt gatgggtgt 1680
gccctgcatt cgacccaaga gcagcttatac gggggagtgg cggttaagtc ggagcactcg 1740
acgactgcat ag 1752

<210> 8
<211> 1650
<212> DNA
<213> Drosophila melanogaster

<220>
<221> misc_feature
<223> Novel Sequence

<400> 8
cggccggaat gcgtcgcccc ggagaaccaa tgtgcgtatga agcggcgcgaa aaagaaggcc 60
cagaaggaga aggacaaaat gaccacttcg ccgagctctc agcatggcgaa caatggcagc 120
ttggccctctg gtggccggca agactttgtt aagaaggaga ttcttgacct tatgacatgc 180
gagccgcccc agcatgccac tattccgcta ctacctgatg aaatattggc caagtgtcaa 240
gcgcgcaata tacccctt aacgtacaat cagttggcccg ttatatacaa gttatTTGG 300
taccaggatg gctatgagca gccatctgaa gaggatctca ggcgtataat gagtcaaccc 360
gatgagaacg agagccaaac ggacgtcagc tttccggata taaccgagat aaccatactc 420
acggtccagt tgattgttga gtttgcataa ggtctaccag cgtttacaaa gataccccag 480
gaggaccaga tcacgttact aaaggcctgc tcgtcgagg tgatgtatgc gcgtatggca 540
cgacgctatg accacagctc ggactcaata ttcttcgca ataatacgatc atatacgccg 600
gattcttaca aaatggccgg aatggctgat aacattgaag acctgctgca ttcttgccgc 660
caaatgttct cgatgaaggt ggacaacgatc gaatacgccg ttctcactgc cattgtgatc 720
ttctcgacc ggccggccct ggagaaggcc caactagtcg aagcgatcca gagctactac 780
atcgacacgc tacgcattta tatactcaac cgccactgatc gcgactcaat gagcctcgatc 840
ttctacgcaa agctgctctc gatcctcacc gagctgcgtt cgctggccaa ccagaacgcc 900
gagatgtgtt tctcactaaa gctaaaaac cgcaaaactgc ccaagttccct cgaggagatc 960
tgggacgttc atgccatccc gccatcggtc cagtcgcacc ttccagattac ccaggaggag 1020

aacgagcgtc tcgagcgggc tgagcgtatg cgggcattcg ttgggggcgc cattaccgcc	1080
ggcattgatt gcgactctgc ctccacttcg gcggcggcag ccgcggccca gcatcagcct	1140
cagcctcagc cccagccccca accctcctcc ctgacccaga acgattccca gcaccagaca	1200
cagccgcagc tacaacctca gctaccacct cagctgcaag gtcaactgca accccagctc	1260
caaccacagc ttcatagacgca actccagcca cagattcaac cacagccaca gtccttccc	1320
gtctccgctc ccgtgcccgc ctccgttaacc gcacctggtt cttgtccgc ggtcagtacg	1380
agcagcgaat acatgggcgg aagtgcggcc ataggaccca tcacgcggc aaccaccagc	1440
agtatcacgg ctgccgttac cgctagctcc accacatcag cggtaccgat gggcaacggg	1500
gttggagtcg gtgttgggtt gggcggcaac gtcagcatgt atgcgaacgc ccagacggcg	1560
atggccttga tgggtgttagc cctgcattcg caccaagac agcttatcgg gggagtgccg	1620
gttaagtcgg agcactcgac gactgcata	1650

```
<210> 9
<211> 1338
<212> DNA
<213> Drosophila melanogaster
```

```
<220>
<221> misc_feature
<223> Novel Sequence
```

<400> 9
tatgagcagc catctgaaga ggatctcagg cgtataatga gtcaaccgga tgagaacgag 60
agccaaacgg acgtcagctt tcggcatata accgagataa ccataactcac ggtccagttg 120
attgttgagt ttgctaaagg tctaccagcg tttacaaaga tacccagga ggaccagatc 180
acgttactaa aggctgctc gtcggaggtg atgatgctgc gtatggcacg acgctatgac 240
cacagctcgg actcaatatt cttcgcgaat aatagatcat atacgcggga ttcttacaaa 300
atggccggaa tggctgataa cattgaagac ctgctgcatt tctgccgcca aatgttctcg 360
atgaagggtgg acaaacctcga atacgcgcatt ctcactgcca ttgtgatctt ctcggaccgg 420
ccgggcctgg agaaggccca actagtcgaa gcgatccaga gctactacat cgacacgcta 480
cgcatattata tactcaacccg ccactgcggc gactcaatga gcctcgatctt ctacgcaaag 540
ctgctctcga tcctcaccga gctgcgtacg ctgggcaacc agaacgccga gatgtgtttc 600
tcactaaagc tcaaaaaaccg caaactgccc aagttcctcg aggagatctg ggacgttcat 660
gccatccccqc catcqgtcca qtcqccaccc tt caqattaccc aqqaqqqaqaa cqaqcqtctc 720

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

gagcgggctg agcgatgcg ggcacatcggtt gggggcgcca ttaccgcgg cattgattgc 780
gactctgcct ccacttcggc ggcggcagcc gcggcccagc atcagcctca gcctcagccc 840
cagccccaaac cttccctccct gacccagaac gattcccagc accagacaca gccgcagcta 900
caacacctcagc taccacctca gctgcaaggt caactgcaac cccagctcca accacagctt 960
cagacgaac tccagccaca gattcaacca cagccacagc tccttcccgt ctccgctccc 1020
gtgcccgcct ccgttaaccgc acctgggtcc ttgtccgcgg tcagtacgag cagcgaatac 1080
atgggcggaa gtgcggccat aggaccatc acgccggcaa ccaccagcag tatcacggct 1140
gccgttaccg ctagctccac cacatcagcg gtaccgatgg gcaacggagt tggagtcgg 1200
gttggggtgtgg gccggcaacgt cagcatgtat gccaacgccc agacggcgat ggccttgatg 1260
ggtgttagccc tgcattcgca ccaagagcag cttatcgaaa gagtggcggt taagtcggag 1320
caactcgacga ctgcata 1338

<210> 10
<211> 969
<212> DNA
<213> Drosophila melanogaster

<220>
<221> misc_feature
<223> Novel Sequence

<400> 10
cggccggaat gcgtcggtcc ggagaaccaa tgtgcgtatga agcggcgca aaagaaggcc 60
cagaaggaga aggacaaaaat gaccacttcg ccgagctctc agcatggcg 120
ttggccctctg gtggcgccca agactttgtt aagaaggaga ttcttgaccc tatgacatgc 180
gagccgcccc agcatgccac tattccgcta ctacctgatg aaatattggc caagtgtcaa 240
gcgcgcaata tacccctt aacgtacaat cagttggccg ttatatacaa gttatattgg 300
taccaggatg gctatgagca gccatctgaa gaggatctca ggcgtataat gagtcaaccc 360
gatgagaacg agagccaaac ggacgtcagc tttcgccata taaccgagat aaccataactc 420
acgggtccagt tgattgttga gtttgcataa ggtctaccag cgtttacaaa gatacccccag 480
gaggaccaga tcacgttact aaaggcctgc tcgtcggagg tggatgtatgc gctgtatggca 540
cgacgctatg accacagctc ggactcaata ttcttcgcga ataataatagatc atataacgcgg 600
gattcttaca aaatggccgg aatggctgat aacattgaag acctgctgca tttctgcgcg 660

caa at gtt ct c gat gaagg t ggacaacg tc gaatacgc gc ttctca ctgc cattgtgatc 720
ttctcgacc ggccgggc ct ggagaagg cc caactagtc g a a g c gat cca gagctactac 780
atcgacacgc tacgcattta tatactcaac cgccactg cg g c gactcaat gagcctcg tc 840
ttctacgcaa agctgctc gatcctc acc gagctgc gta cgctggc aa ccagaacg cc 900
gagatgtgtt tctcaactaaa gctcaaaa ac cgcaaaactgc ccaagttc ct cgaggagatc 960
tgggacgtt 969

<210> 11
<211> 412
<212> PRT
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 11

Lys Gly Pro Ala Pro Arg Gln Gln Glu Glu Leu Cys Leu Val Cys Gly
1 5 10 15

Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys
20 25 30

Lys Gly Phe Phe Arg Arg Ser Val Thr Lys Asn Ala Val Tyr Ile Cys
35 40 45

Lys Phe Gly His Ala Cys Glu Met Asp Met Tyr Met Arg Arg Lys Cys
50 55 60

Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val Gly Met Arg Pro Glu
65 70 75 80

Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys Arg Lys Glu Lys Lys
85 90 95

Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser Thr Thr Val Asp
100 105 110

Asp His Met Pro Pro Ile Met Gln Cys Glu Pro Pro Pro Pro Glu Ala
115 120 125

Ala Arg Ile His Glu Val Val Pro Arg Phe Leu Ser Asp Lys Leu Leu
130 135 140

Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn Gln Gln
145 150 155 160

Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro
165 170 175

Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln Ala Asp
180 185 190

Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr Glu Met
195 200 205

Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly Leu Pro
210 215 220

Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu Lys Ala
225 230 235 240

Cys Ser Ser Glu Val Met Met Leu Arg Val Ala Arg Arg Tyr Asp Ala
245 250 255

Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr Arg Asp
260 265 270

Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile Glu Asp Leu Leu His
275 280 285

Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp Asn Ile His Tyr Ala
290 295 300

Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg Pro Gly Leu Glu Gln
305 310 315 320

Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr Leu Arg
325 330 335

Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser Val Ile
340 345 350

Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu Gly Met

355

360

365

Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu Lys Asn Arg Lys Leu
370 375 380

Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala Asp Met Ser His Thr
385 390 395 400

Gln Pro Pro Pro Ile Leu Glu Ser Pro Thr Asn Leu
405 410

<210> 12

<211> 412

<212> PRT

<213> Choristoneura fumiferana

<220>

<221> misc_feature

<223> Novel Sequence

<400> 12

Lys Gly Pro Ala Pro Arg Gln Gln Glu Glu Leu Cys Leu Val Cys Gly
1 5 10 15

Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys
20 25 30

Lys Gly Phe Phe Arg Arg Ser Val Thr Lys Asn Ala Val Tyr Ile Cys
35 40 45

Lys Phe Gly His Ala Cys Glu Met Asp Met Tyr Met Arg Arg Lys Cys
50 55 60

Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val Gly Met Arg Pro Glu
65 70 75 80

Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys Arg Lys Glu Lys Lys
85 90 95

Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser Thr Thr Val Asp
100 105 110

Asp His Met Pro Pro Ile Met Gln Cys Glu Pro Pro Pro Pro Glu Ala
115 120 125

Ala Arg Ile His Glu Val Val Pro Arg Phe Leu Ser Asp Lys Leu Leu
130 135 140

Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn Gln Gln
145 150 155 160

Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro
165 170 175

Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln Ala Asp
180 185 190

Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr Glu Met
195 200 205

Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly Leu Pro
210 215 220

Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu Lys Ala
225 230 235 240

Cys Ser Ser Glu Val Met Met Leu Arg Val Ala Arg Arg Tyr Asp Ala
245 250 255

Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr Arg Asp
260 265 270

Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile Glu Asp Leu Leu His
275 280 285

Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp Asn Ile His Tyr Ala
290 295 300

Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg Pro Gly Leu Glu Gln
305 310 315 320

Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr Leu Arg
325 330 335

Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser Val Ile
340 345 350

Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu Gly Met
355 360 365

Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu Lys Asn Arg Lys Leu
370 375 380

Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala Asp Met Ser His Thr
385 390 395 400

Gln Pro Pro Pro Ile Leu Glu Ser Pro Thr Asn Leu
405 410

<210> 13

<211> 334

<212> PRT

<213> Choristoneura fumiferana

<220>

<221> misc_feature

<223> Novel Sequence

<400> 13

Pro Glu Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys Arg Lys Glu
1 5 10 15

Lys Lys Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser Thr Thr Thr
20 25 30

Val Asp Asp His Met Pro Pro Ile Met Gln Cys Glu Pro Pro Pro Pro
35 40 45

Glu Ala Ala Arg Ile His Glu Val Val Pro Arg Phe Leu Ser Asp Lys
50 55 60

Leu Leu Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn
65 70 75 80

Gln Gln Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu
85 90 95

Gln Pro Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln
100 105 110

Ala Asp Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr
115 120 125

Glu Met Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly
130 135 140

Leu Pro Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu
145 150 155 160

Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Val Ala Arg Arg Tyr
165 170 175

Asp Ala Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr
180 185 190

Arg Asp Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile Glu Asp Leu
195 200 205

Leu His Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp Asn Ile His
210 215 220

Tyr Ala Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg Pro Gly Leu
225 230 235 240

Glu Gln Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr
245 250 255

Leu Arg Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser
260 265 270

Val Ile Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu
275 280 285

Gly Met Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu Lys Asn Arg
290 295 300

Lys Leu Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala Asp Met Ser
305 310 315 320

His Thr Gln Pro Pro Pro Ile Leu Glu Ser Pro Thr Asn Leu
325 330

<211> 244
<212> PRT
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 14

Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Asp Glu Asp Leu Lys Arg Ile
1 5 10 15

Thr Gln Thr Trp Gln Gln Ala Asp Asp Glu Asn Glu Glu Ser Asp Thr
20 25 30

Pro Phe Arg Gln Ile Thr Glu Met Thr Ile Leu Thr Val Gln Leu Ile
35 40 45

Val Glu Phe Ala Lys Gly Leu Pro Gly Phe Ala Lys Ile Ser Gln Pro
50 55 60

Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met Leu
65 70 75 80

Arg Val Ala Arg Arg Tyr Asp Ala Ala Ser Asp Ser Val Leu Phe Ala
85 90 95

Asn Asn Gln Ala Tyr Thr Arg Asp Asn Tyr Arg Lys Ala Gly Met Ala
100 105 110

Tyr Val Ile Glu Asp Leu Leu His Phe Cys Arg Cys Met Tyr Ser Met
115 120 125

Ala Leu Asp Asn Ile His Tyr Ala Leu Leu Thr Ala Val Val Ile Phe
130 135 140

Ser Asp Arg Pro Gly Leu Glu Gln Pro Gln Leu Val Glu Glu Ile Gln
145 150 155 160

Arg Tyr Tyr Leu Asn Thr Leu Arg Ile Tyr Ile Leu Asn Gln Leu Ser
165 170 175

Gly Ser Ala Arg Ser Ser Val Ile Tyr Gly Lys Ile Leu Ser Ile Leu
180 185 190

Ser Glu Leu Arg Thr Leu Gly Met Gln Asn Ser Asn Met Cys Ile Ser
195 200 205

Leu Lys Leu Lys Asn Arg Lys Leu Pro Pro Phe Leu Glu Glu Ile Trp
210 215 220

Asp Val Ala Asp Met Ser His Thr Gln Pro Pro Pro Ile Leu Glu Ser
225 230 235 240

Pro Thr Asn Leu

<210> 15
<211> 320
<212> PRT
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 15

Pro Glu Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys Arg Lys Glu
1 5 10 15

Lys Lys Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser Thr Thr Thr
20 25 30

Val Asp Asp His Met Pro Pro Ile Met Gln Cys Glu Pro Pro Pro Pro
35 40 45

Glu Ala Ala Arg Ile His Glu Val Val Pro Arg Phe Leu Ser Asp Lys
50 55 60

Leu Leu Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn
65 70 75 80

Gln Gln Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu
85 90 95

Gln Pro Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln
100 105 110

Ala Asp Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr
115 120 125

Glu Met Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly
130 135 140

Leu Pro Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu
145 150 155 160

Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Val Ala Arg Arg Tyr
165 170 175

Asp Ala Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr
180 185 190

Arg Asp Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile Glu Asp Leu
195 200 205

Leu His Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp Asn Ile His
210 215 220

Tyr Ala Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg Pro Gly Leu
225 230 235 240

Glu Gln Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr
245 250 255

Leu Arg Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser
260 265 270

Val Ile Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu
275 280 285

Gly Met Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu Lys Asn Arg
290 295 300

Lys Leu Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala Asp Met Ser
305 310 315 320

<210> 16

<211> 625

<212> PRT

<213> Drosophila melanogaster

<220>
<221> misc_feature
<223> Novel Sequence

<400> 16

Gly Pro Ala Pro Arg Val Gln Glu Glu Leu Cys Leu Val Cys Gly Asp
1 5 10 15

Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys Lys
20 25 30

Gly Phe Phe Arg Arg Ser Val Thr Lys Ser Ala Val Tyr Cys Cys Lys
35 40 45

Phe Gly Arg Ala Cys Glu Met Asp Met Tyr Met Arg Arg Lys Cys Gln
50 55 60

Glu Cys Arg Leu Lys Lys Cys Leu Ala Val Gly Met Arg Pro Glu Cys
65 70 75 80

Val Val Pro Glu Asn Gln Cys Ala Met Lys Arg Arg Glu Lys Lys Ala
85 90 95

Gln Lys Glu Lys Asp Lys Met Thr Thr Ser Pro Ser Ser Gln His Gly
100 105 110

Gly Asn Gly Ser Leu Ala Ser Gly Gly Gln Asp Phe Val Lys Lys
115 120 125

Glu Ile Leu Asp Leu Met Thr Cys Glu Pro Pro Gln His Ala Thr Ile
130 135 140

Pro Leu Leu Pro Asp Glu Ile Leu Ala Lys Cys Gln Ala Arg Asn Ile
145 150 155 160

Pro Ser Leu Thr Tyr Asn Gln Leu Ala Val Ile Tyr Lys Leu Ile Trp
165 170 175

Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Glu Glu Asp Leu Arg Arg Ile
180 185 190

Met Ser Gln Pro Asp Glu Asn Glu Ser Gln Thr Asp Val Ser Phe Arg

F03260-906960

195

200

205

His Ile Thr Glu Ile Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe
210 215 220

Ala Lys Gly Leu Pro Ala Phe Thr Lys Ile Pro Gln Glu Asp Gln Ile
225 230 235 240

Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Met Ala
245 250 255

Arg Arg Tyr Asp His Ser Ser Asp Ser Ile Phe Phe Ala Asn Asn Arg
260 265 270

Ser Tyr Thr Arg Asp Ser Tyr Lys Met Ala Gly Met Ala Asp Asn Ile
275 280 285

Glu Asp Leu Leu His Phe Cys Arg Gln Met Phe Ser Met Lys Val Asp
290 295 300

Asn Val Glu Tyr Ala Leu Leu Thr Ala Ile Val Ile Phe Ser Asp Arg
305 310 315 320

Pro Gly Leu Glu Lys Ala Gln Leu Val Glu Ala Ile Gln Ser Tyr Tyr
325 330 335

Ile Asp Thr Leu Arg Ile Tyr Ile Leu Asn Arg His Cys Gly Asp Ser
340 345 350

Met Ser Leu Val Phe Tyr Ala Lys Leu Leu Ser Ile Leu Thr Glu Leu
355 360 365

Arg Thr Leu Gly Asn Gln Asn Ala Glu Met Cys Phe Ser Leu Lys Leu
370 375 380

Lys Asn Arg Lys Leu Pro Lys Phe Leu Glu Glu Ile Trp Asp Val His
385 390 395 400

Ala Ile Pro Pro Ser Val Gln Ser His Leu Gln Ile Thr Gln Glu Glu
405 410 415

Asn Glu Arg Leu Glu Arg Ala Glu Arg Met Arg Ala Ser Val Gly Gly
420 425 430

Ala Ile Thr Ala Gly Ile Asp Cys Asp Ser Ala Ser Thr Ser Ala Ala
435 440 445

Ala Ala Ala Ala Gln His Gln Pro Gln Pro Gln Pro Gln Pro Gln Pro
450 455 460

Ser Ser Leu Thr Gln Asn Asp Ser Gln His Gln Thr Gln Pro Gln Leu
465 470 475 480

Gln Pro Gln Leu Pro Pro Gln Leu Gln Gly Gln Leu Gln Pro Gln Leu
485 490 495

Gln Pro Gln Leu Gln Thr Gln Leu Gln Pro Gln Ile Gln Pro Gln Pro
500 505 510

Gln Leu Leu Pro Val Ser Ala Pro Val Pro Ala Ser Val Thr Ala Pro
515 520 525

Gly Ser Leu Ser Ala Val Ser Thr Ser Ser Glu Tyr Met Gly Gly Ser
530 535 540

Ala Ala Ile Gly Pro Ile Thr Pro Ala Thr Thr Ser Ser Ile Thr Ala
545 550 555 560

Ala Val Thr Ala Ser Ser Thr Thr Ser Ala Val Pro Met Gly Asn Gly
565 570 575

Val Gly Val Gly Val Gly Val Gly Asn Val Ser Met Tyr Ala Asn
580 585 590

Ala Gln Thr Ala Met Ala Leu Met Gly Val Ala Leu His Ser His Gln
595 600 605

Glu Gln Leu Ile Gly Gly Val Ala Val Lys Ser Glu His Ser Thr Thr
610 615 620

Ala
625

<210> 17
<211> 583
<212> PRT

<213> Drosophila melanogaster

<220>

<221> misc_feature

<223> Novel Sequence

<400> 17

Ala Val Tyr Cys Cys Lys Phe Gly Arg Ala Cys Glu Met Asp Met Tyr
1 5 10 15

Met Arg Arg Lys Cys Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val
20 25 30

Gly Met Arg Pro Glu Cys Val Val Pro Glu Asn Gln Cys Ala Met Lys
35 40 45

Arg Arg Glu Lys Lys Ala Gln Lys Glu Lys Asp Lys Met Thr Thr Ser
50 55 60

Pro Ser Ser Gln His Gly Gly Asn Gly Ser Leu Ala Ser Gly Gly
65 70 75 80

Gln Asp Phe Val Lys Lys Glu Ile Leu Asp Leu Met Thr Cys Glu Pro
85 90 95

Pro Gln His Ala Thr Ile Pro Leu Leu Pro Asp Glu Ile Leu Ala Lys
100 105 110

Cys Gln Ala Arg Asn Ile Pro Ser Leu Thr Tyr Asn Gln Leu Ala Val
115 120 125

Ile Tyr Lys Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Glu
130 135 140

Glu Asp Leu Arg Arg Ile Met Ser Gln Pro Asp Glu Asn Glu Ser Gln
145 150 155 160

Thr Asp Val Ser Phe Arg His Ile Thr Glu Ile Thr Ile Leu Thr Val
165 170 175

Gln Leu Ile Val Glu Phe Ala Lys Gly Leu Pro Ala Phe Thr Lys Ile
180 185 190

Pro Gln Glu Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu Val
195 200 205

Met Met Leu Arg Met Ala Arg Arg Tyr Asp His Ser Ser Asp Ser Ile
210 215 220

Phe Phe Ala Asn Asn Arg Ser Tyr Thr Arg Asp Ser Tyr Lys Met Ala
225 230 235 240

Gly Met Ala Asp Asn Ile Glu Asp Leu Leu His Phe Cys Arg Gln Met
245 250 255

Phe Ser Met Lys Val Asp Asn Val Glu Tyr Ala Leu Leu Thr Ala Ile
260 265 270

Val Ile Phe Ser Asp Arg Pro Gly Leu Glu Lys Ala Gln Leu Val Glu
275 280 285

Ala Ile Gln Ser Tyr Tyr Ile Asp Thr Leu Arg Ile Tyr Ile Leu Asn
290 295 300

Arg His Cys Gly Asp Ser Met Ser Leu Val Phe Tyr Ala Lys Leu Leu
305 310 315 320

Ser Ile Leu Thr Glu Leu Arg Thr Leu Gly Asn Gln Asn Ala Glu Met
325 330 335

Cys Phe Ser Leu Lys Leu Lys Asn Arg Lys Leu Pro Lys Phe Leu Glu
340 345 350

Glu Ile Trp Asp Val His Ala Ile Pro Pro Ser Val Gln Ser His Leu
355 360 365

Gln Ile Thr Gln Glu Glu Asn Glu Arg Leu Glu Arg Ala Glu Arg Met
370 375 380

Arg Ala Ser Val Gly Gly Ala Ile Thr Ala Gly Ile Asp Cys Asp Ser
385 390 395 400

Ala Ser Thr Ser Ala Ala Ala Ala Ala Gln His Gln Pro Gln Pro
405 410 415

Gln Pro Gln Pro Gln Pro Ser Ser Leu Thr Gln Asn Asp Ser Gln His

420

425

430

Gln Thr Gln Pro Gln Leu Gln Pro Gln Leu Pro Pro Gln Leu Gln Gly
435 440 445

Gln Leu Gln Pro Gln Leu Gln Pro Gln Leu Gln Thr Gln Leu Gln Pro
450 455 460

Gln Ile Gln Pro Gln Pro Gln Leu Leu Pro Val Ser Ala Pro Val Pro
465 470 475 480

Ala Ser Val Thr Ala Pro Gly Ser Leu Ser Ala Val Ser Thr Ser Ser
485 490 495

Glu Tyr Met Gly Gly Ser Ala Ala Ile Gly Pro Ile Thr Pro Ala Thr
500 505 510

Thr Ser Ser Ile Thr Ala Ala Val Thr Ala Ser Ser Thr Thr Ser Ala
515 520 525

Val Pro Met Gly Asn Gly Val Gly Val Gly Val Gly Val Gly Gly Asn
530 535 540

Val Ser Met Tyr Ala Asn Ala Gln Thr Ala Met Ala Leu Met Gly Val
545 550 555 560

Ala Leu His Ser His Gln Glu Gln Leu Ile Gly Gly Val Ala Val Lys
565 570 575

Ser Glu His Ser Thr Thr Ala
580

<210> 18
<211> 549
<212> PRT
<213> Drosophila melanogaster

<220>
<221> misc_feature
<223> Novel Sequence

<400> 18

DRAFT - 06/06/00

Glu Lys Lys Ala Gln Lys Glu Lys Asp Lys Met Thr Thr Ser Pro Ser
20 25 30

Ser Gln His Gly Gly Asn Gly Ser Leu Ala Ser Gly Gly Gln Asp
35 40 45

Phe Val Lys Lys Glu Ile Leu Asp Leu Met Thr Cys Glu Pro Pro Gln
50 55 60

His Ala Thr Ile Pro Leu Leu Pro Asp Glu Ile Leu Ala Lys Cys Gln
65 70 75 80

Ala Arg Asn Ile Pro Ser Leu Thr Tyr Asn Gln Leu Ala Val Ile Tyr
85 90 95

Lys Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Glu Glu Asp
100 105 110

Leu Arg Arg Ile Met Ser Gln Pro Asp Glu Asn Glu Ser Gln Thr Asp
115 120 125

Val Ser Phe Arg His Ile Thr Glu Ile Thr Ile Leu Thr Val Gln Leu
130 135 140

Ile Val Glu Phe Ala Lys Gly Leu Pro Ala Phe Thr Lys Ile Pro Gln
145 150 155 160

Glu Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met
165 170 175

Leu Arg Met Ala Arg Arg Tyr Asp His Ser Ser Asp Ser Ile Phe Phe
180 185 190

Ala Asn Asn Arg Ser Tyr Thr Arg Asp Ser Tyr Lys Met Ala Gly Met
195 200 205

Ala Asp Asn Ile Glu Asp Leu Leu His Phe Cys Arg Gln Met Phe Ser
210 215 220

Met Lys Val Asp Asn Val Glu Tyr Ala Leu Leu Thr Ala Ile Val Ile
225 230 235 240

Phe Ser Asp Arg Pro Gly Leu Glu Lys Ala Gln Leu Val Glu Ala Ile
245 250 255

Gln Ser Tyr Tyr Ile Asp Thr Leu Arg Ile Tyr Ile Leu Asn Arg His
260 265 270

Cys Gly Asp Ser Met Ser Leu Val Phe Tyr Ala Lys Leu Leu Ser Ile
275 280 285

Leu Thr Glu Leu Arg Thr Leu Gly Asn Gln Asn Ala Glu Met Cys Phe
290 295 300

Ser Leu Lys Leu Lys Asn Arg Lys Leu Pro Lys Phe Leu Glu Glu Ile
305 310 315 320

Trp Asp Val His Ala Ile Pro Pro Ser Val Gln Ser His Leu Gln Ile
325 330 335

Thr Gln Glu Glu Asn Glu Arg Leu Glu Arg Ala Glu Arg Met Arg Ala
340 345 350

Ser Val Gly Gly Ala Ile Thr Ala Gly Ile Asp Cys Asp Ser Ala Ser
355 360 365

Thr Ser Ala Ala Ala Ala Ala Gln His Gln Pro Gln Pro Gln Pro
370 375 380

Gln Pro Gln Pro Ser Ser Leu Thr Gln Asn Asp Ser Gln His Gln Thr
385 390 395 400

Gln Pro Gln Leu Gln Pro Gln Leu Pro Pro Gln Leu Gln Gly Gln Leu
405 410 415

Gln Pro Gln Leu Gln Pro Gln Leu Gln Thr Gln Leu Gln Pro Gln Ile
420 425 430

Gln Pro Gln Pro Gln Leu Leu Pro Val Ser Ala Pro Val Pro Ala Ser
435 440 445

Val Thr Ala Pro Gly Ser Leu Ser Ala Val Ser Thr Ser Ser Glu Tyr
450 455 460

Met Gly Gly Ser Ala Ala Ile Gly Pro Ile Thr Pro Ala Thr Thr Ser
465 470 475 480

Ser Ile Thr Ala Ala Val Thr Ala Ser Ser Thr Thr Ser Ala Val Pro
485 490 495

Met Gly Asn Gly Val Gly Val Gly Val Gly Gly Asn Val Ser
500 505 510

Met Tyr Ala Asn Ala Gln Thr Ala Met Ala Leu Met Gly Val Ala Leu
515 520 525

His Ser His Gln Glu Gln Leu Ile Gly Gly Val Ala Val Lys Ser Glu
530 535 540

His Ser Thr Thr Ala
545

<210> 19
<211> 445
<212> PRT
<213> Drosophila melanogaster

<220>
<221> misc_feature
<223> Novel Sequence

<400> 19

Tyr Glu Gln Pro Ser Glu Glu Asp Leu Arg Arg Ile Met Ser Gln Pro
1 5 10 15

Asp Glu Asn Glu Ser Gln Thr Asp Val Ser Phe Arg His Ile Thr Glu
20 25 30

Ile Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe Ala Lys Gly Leu
35 40 45

Pro Ala Phe Thr Lys Ile Pro Gln Glu Asp Gln Ile Thr Leu Leu Lys
50 55 60

Ala Cys Ser Ser Glu Val Met Met Leu Arg Met Ala Arg Arg Tyr Asp
65 70 75 80

His Ser Ser Asp Ser Ile Phe Phe Ala Asn Asn Arg Ser Tyr Thr Arg

85

90

95

Asp Ser Tyr Lys Met Ala Gly Met Ala Asp Asn Ile Glu Asp Leu Leu
100 105 110

His Phe Cys Arg Gln Met Phe Ser Met Lys Val Asp Asn Val Glu Tyr
115 120 125

Ala Leu Leu Thr Ala Ile Val Ile Phe Ser Asp Arg Pro Gly Leu Glu
130 135 140

Lys Ala Gln Leu Val Glu Ala Ile Gln Ser Tyr Tyr Ile Asp Thr Leu
145 150 155 160

Arg Ile Tyr Ile Leu Asn Arg His Cys Gly Asp Ser Met Ser Leu Val
165 170 175

Phe Tyr Ala Lys Leu Leu Ser Ile Leu Thr Glu Leu Arg Thr Leu Gly
180 185 190

Asn Gln Asn Ala Glu Met Cys Phe Ser Leu Lys Leu Lys Asn Arg Lys
195 200 205

Leu Pro Lys Phe Leu Glu Glu Ile Trp Asp Val His Ala Ile Pro Pro
210 215 220

Ser Val Gln Ser His Leu Gln Ile Thr Gln Glu Glu Asn Glu Arg Leu
225 230 235 240

Glu Arg Ala Glu Arg Met Arg Ala Ser Val Gly Gly Ala Ile Thr Ala
245 250 255

Gly Ile Asp Cys Asp Ser Ala Ser Thr Ser Ala Ala Ala Ala Ala
260 265 270

Gln His Gln Pro Gln Pro Gln Pro Gln Pro Ser Ser Leu Thr
275 280 285

Gln Asn Asp Ser Gln His Gln Thr Gln Pro Gln Leu Gln Pro Gln Leu
290 295 300

Pro Pro Gln Leu Gln Gly Gln Leu Gln Pro Gln Leu Gln Pro Gln Leu
305 310 315 320

Gln Thr Gln Leu Gln Pro Gln Ile Gln Pro Gln Leu Leu Pro
325 330 335

Val Ser Ala Pro Val Pro Ala Ser Val Thr Ala Pro Gly Ser Leu Ser
340 345 350

Ala Val Ser Thr Ser Ser Glu Tyr Met Gly Gly Ser Ala Ala Ile Gly
355 360 365

Pro Ile Thr Pro Ala Thr Thr Ser Ser Ile Thr Ala Ala Val Thr Ala
370 375 380

Ser Ser Thr Thr Ser Ala Val Pro Met Gly Asn Gly Val Gly Val Gly
385 390 395 400

Val Gly Val Gly Gly Asn Val Ser Met Tyr Ala Asn Ala Gln Thr Ala
405 410 415

Met Ala Leu Met Gly Val Ala Leu His Ser His Gln Glu Gln Leu Ile
420 425 430

Gly Gly Val Ala Val Lys Ser Glu His Ser Thr Thr Ala
435 440 445

<210> 20
<211> 323
<212> PRT
<213> Drosophila melanogaster

<220>
<221> misc_feature
<223> Novel Sequence

<400> 20

Arg Pro Glu Cys Val Val Pro Glu Asn Gln Cys Ala Met Lys Arg Arg
1 5 10 15

Glu Lys Lys Ala Gln Lys Glu Lys Asp Lys Met Thr Thr Ser Pro Ser
20 25 30

Ser Gln His Gly Gly Asn Gly Ser Leu Ala Ser Gly Gly Gln Asp
35 40 45

Phe Val Lys Lys Glu Ile Leu Asp Leu Met Thr Cys Glu Pro Pro Gln
50 55 60

His Ala Thr Ile Pro Leu Leu Pro Asp Glu Ile Leu Ala Lys Cys Gln
65 70 75 80

Ala Arg Asn Ile Pro Ser Leu Thr Tyr Asn Gln Leu Ala Val Ile Tyr
85 90 95

Lys Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Glu Glu Asp
100 105 110

Leu Arg Arg Ile Met Ser Gln Pro Asp Glu Asn Glu Ser Gln Thr Asp
115 120 125

Val Ser Phe Arg His Ile Thr Glu Ile Thr Ile Leu Thr Val Gln Leu
130 135 140

Ile Val Glu Phe Ala Lys Gly Leu Pro Ala Phe Thr Lys Ile Pro Gln
145 150 155 160

Glu Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met
165 170 175

Leu Arg Met Ala Arg Arg Tyr Asp His Ser Ser Asp Ser Ile Phe Phe
180 185 190

Ala Asn Asn Arg Ser Tyr Thr Arg Asp Ser Tyr Lys Met Ala Gly Met
195 200 205

Ala Asp Asn Ile Glu Asp Leu Leu His Phe Cys Arg Gln Met Phe Ser
210 215 220

Met Lys Val Asp Asn Val Glu Tyr Ala Leu Leu Thr Ala Ile Val Ile
225 230 235 240

Phe Ser Asp Arg Pro Gly Leu Glu Lys Ala Gln Leu Val Glu Ala Ile
245 250 255

Gln Ser Tyr Tyr Ile Asp Thr Leu Arg Ile Tyr Ile Leu Asn Arg His
260 265 270

Cys Gly Asp Ser Met Ser Leu Val Phe Tyr Ala Lys Leu Leu Ser Ile
275 280 285

Leu Thr Glu Leu Arg Thr Leu Gly Asn Gln Asn Ala Glu Met Cys Phe
 290 295 300

Ser Leu Lys Leu Lys Asn Arg Lys Leu Pro Lys Phe Leu Glu Glu Ile
 305 310 315 320

Trp Asp Val

<210> 21
<211> 987
<212> DNA
<213> *Mus musculus*

```
<220>
<221> misc_feature
<223> Novel Sequence
```

<400> 21
tgcgttatct gtggggaccg ctcctcaggc aaacactatg gggtatacacag ttgtgagggc 60
tgcaaggggct tcttcaagag gacagtacgc aaagacacctga cctacacacctg ccgagacaac 120
aaggactgcc tgatcgacaa gagacagcgg aaccggtgtc agtactgccc ctaccagaag 180
tgcctggcca tgggcatgaa gcgggaagct gtgcaggagg agcggcagcg gggcaaggac 240
cggaatgaga acgaggtgga gtccaccagc agtgc当地acg aggacatgcc ttagagaag 300
attctgaaag ccgagcttgc tgtc当地gccc aagactgaga catacgtgga ggcaaaccatg 360
gggctgaaacc ccagctcacc aaatgaccct gttaccaaca tctgtcaagc agcagacaag 420
cagctttca ctcttgc当地a gtgggccaag aggatcccac actttctga gctgccccta 480
gacgaccagg tc当地ctgct acgggcaggc tggAACGAGC tgctgatcgc ct当地tctcc 540
caccgctcca tagctgtgaa agatggatt ct当地tggcca cggc当地tgc当地 cgtacaccgg 600
aacagcgctc acagtgc当地g ggtggcgcc atctttgaca gggtgctaaac agagctggg 660
tcttaagatgc gtgacatgca gatggacaag acggagctgg gctgctgca agccattgtc 720
ctgttcaacc ctgactctaa ggggctctca aaccctgctg aggtggaggc gttgagggag 780
aagggtatg cgtcactaga agcgtactgc aaacacaagt accctgagca gccgggcagg 840
tttgc当地a cgtc当地ccg cctgctgca ctgc当地tcca tc当地gctcaa gtgc当地ggag 900

cacctgttct tcttcaagct catcggggac acgcccattcg acacccatcg catggagatg 960
ctggaggcac cacatcaagc cacctag 987

<210> 22
<211> 789
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 22 60
aagcgggaag ctgtgcagga ggagcggcag cggggcaagg accggaatga gaacgaggta
gagtccacca gcagtgcacca cgaggacatg cctgttagaga agattctgga agccgagctt 120
gctgtcgagc ccaagactga gacatacgtg gaggcaaaca tggggctgaa ccccaagctca 180
ccaaatgacc ctgttaccaa catctgtcaa gcagcagaca agcagcttt cactcttgta 240
gagtgggcca agaggatccc acactttct gagctgcccc tagacgacca ggtcatcctg 300
ctacggcag gctggaacga gctgctgatc gcctccttct cccaccgctc catagctgtg 360
aaagatggga ttctcctggc caccggcctg cacgtacacc ggaacagcgc tcacagtgt 420
ggggtgtggcg ccatcttga cagggtgcta acagagctgg tgtctaagat gcgtgacatg 480
cagatggaca agacggagct gggctgcctg cgagccattg tcctgttcaa ccctgactct 540
aaggggctct caaacccctgc tgaggtggag gcgttgaggg agaagggtgtt tgcgtcacta 600
gaagcgtact gcaaacacaa gtaccctgag cagccggca ggttgccaa gctgctgctc 660
cgccctgcctg cactgcgttc catcggcctc aagtgcctgg agcacctgtt cttcttcaag 720
ctcatcgaaa acacgcccattcgacacaccttc ctcattggaga tgctggaggc accacatcaa 780
gccacccat 789

<210> 23
<211> 714
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 23
gccaacgagg acatgcctgt agagaagatt ctggaagccg agcttgctgt cgagcccaag 960

actgagacat acgtggaggc aaacatgggg ctgaacccca gtcacccaa tgaccctgtt 120
accaacatct gtcaagcagc agacaagcag ctcttcactc ttgtggagtg ggccaagagg 180
atcccacact tttctgagct gcccttagac gaccaggtca tcctgctacg ggcaggctgg 240
aacgagctgc tgatcgccctc cttctccac cgctccatag ctgtgaaaga tgggatttctc 300
ctggccaccc gcctgcacgt acaccggaac agegctcaca gtgctgggtt gggcgccatc 360
tttgacaggg tgctaacaga gctggtgtct aagatgcgtg acatgcagat ggacaagacg 420
gagctgggct gcctgcgagc cattgtcctg ttcaaccctg actctaaggg gctctcaaacc 480
cctgctgagg tggaggcggtt gagggagaag gtgtatgcgt cactagaagc gtactgcaaa 540
cacaagtacc ctgagcagcc gggcagggtt gccaagctgc tgctccgcct gcctgcactg 600
cgttccatcg ggctcaagtg cctggagcac ctgttcttct tcaagctcat cggggacacg 660
cccatcgaca ctttcctcat ggagatgctg gaggcaccac atcaagccac ctag 714

<210> 24
<211> 536
<212> DNA
<213> Mus musculus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 24
ggatccccaca cttttctgag ctgcccctag acgaccagg catcctgcta cgggcaggct 60
ggaacgagct gctgatcgcc tccttctccc accgctccat agctgtaaa gatgggattc 120
tcctggccac cggcctgcac gtacaccgga acagcgctca cagtgtggg gtgggcgcca 180
tctttgacag ggtgctaaca gagctgggt ctaagatgcg tgacatgcag atggacaaga 240
cgagctggg ctgcctgcga gccattgtcc tggtaaccc tgactctaag gggctctcaa 300
accctgctga ggtggaggcg ttgagggaga aggtgtatgc gtcactagaa gcgtactgca 360
aacacaagta ccctgagcag cggggcaggt ttgccaagct gctgctccgc ctgcctgcac 420
tgcgttccat cgggctcaag tgcctggagc acctgttctt cttcaagctc atcggggaca 480
cgcccatcgaa cacccatcctc atggagatgc tggaggcacc acatcaagcc acctag 536

<210> 25
<211> 672
<212> DNA

<213> Mus musculus
<220>
<221> misc_feature
<223> Novel Sequence

<400> 25
gccaacgagg acatgcctgt agagaagatt ctggaagccg agcttgctgt cgagcccaag 60
actgagacat acgtggaggc aaacatgggg ctgaacccca gctcacaaa tgacccttt 120
accaacatct gtcaagcagc agacaagcag ctcttcactc ttgtggagtg ggccaagagg 180
atccccacact tttctgagct gcaccttagac gaccaggtca tcctgctacg ggcaggctgg 240
aacgagctgc tgatcgccctc cttctcccac cgctccatag ctgtgaaaga tgggattctc 300
ctggccacccg gcctgcacgt acaccgaaac agcgctcaca gtgctgggtt gggcgccatc 360
tttgacaggg tgctaacaga gctggtgtct aagatgcgtg acatgcagat ggacaagacg 420
gagctggct gcctgcgagc cattgtcctg ttcaaccctg actctaaggg gctctcaaacc 480
cctgctgagg tggaggcggtt gagggagaag gtgtatgcgt cactagaagc gtactgcaaa 540
cacaagtacc ctgagcagcc gggcagggtt gccaagctgc tgctccgcct gcctgcactg 600
cgttccatcg ggctcaagtg cctggagcac ctgttcttct tcaagctcat cggggacacg 660
cccatcgaca cc 672

<210> 26
<211> 1123
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 26
cgccatct gcggggaccg ctcctcaggc aagcactatg gagtgtaaaaaa ctgcgagggg 60
cgaagggt tcttcaagcg gacgggtgcgc aaggacctga cctacacctg ccgcgacaac 120
aaggactgcc tgattgacaa gcggcagcgg aaccgggtgcc agtactgccc ctaccagaag 180
cgctggcca tgggcatgaa gcgggaagcc gtgcaggagg agcggcagcg tggcaaggac 240
cggAACGAGA atgaggtgga gtcgaccagc agcgccaaacg aggacatgcc ggtggagagg 300
atcctggagg ctgagctggc cgtggagccc aagaccgaga cctacgtgga ggcaaacatg 360
gggctgaacc ccagctcgcc gaacgaccct gtcaccaaca tttgccaagc agccgacaaa 420

cagctttca ccctggtgga gtggccaag cgatcccac acttctcaga gctgcccc 480
gacgaccagg tcatcctgct gcgggcaggc tggaaatgagc tgctcatcg 540
caccgctcca tcgcccgtgaa ggacgggatc ctcctggcca cgggctgca cgtccaccgg 600
aacagcgccc acagcgcagg ggtggcgcc atcttgaca gggtgctgac ggagcttgc 660
tccaagatgc gggacatgca gatggacaag acggagctgg gctgcctg 720
ctcttaacc ctgactccaa ggggctctcg aaccggccg aggtggaggc gctgagg 780
aaggcttatg cgtccttgga ggcctactgc aagcacaagt acccagagca gccgggaagg 840
ttcgctaagc tcttgctccg cctgcccgt ctgcgtc 900
catctttct tcttcaagct catcgggac acacccattg acaccc 960
ctggaggcgc cgcaccaa 1020
tggccaccct gcctggacgc cagctgttct tctcagcctg agccctgtcc ctgccttct 1080
ctgcctggcc tggggact ttgggcaca gcctgtcact gct 1123

<210> 27
<211> 925
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 27
aagcgggaag ccgtgcagga ggagcggcag cgtggcaagg accggaacga gaatgagg 60
gagtcgacca gcagcgccaa cgaggacatg ccggtg 120
ggatcctgga ggctgagctg
gccgtggagc ccaagaccga gacctacgtg gaggcaaaca tggggctgaa ccc 180
cgaacgacc ctgtcaccaa cat 240
ttgccaa gcagccgaca aacagcttt caccctgg 240
tgatggcca agcggatccc acacttctca gagctgcccc tggacgacca ggtcatcctg 300
ctgcggcag gctggaatga gctgctcatc gcctc 360
ttcttct cccaccgctc catcgccgtg
aaggacggga tcctcctggc caccggctg cacgtccacc ggaacagcgc ccacagcga 420
gggtggcg ccatcttga cagggtgctg acggagctt 480
tgtccaagat gcgggacatg
cagatggaca agacggagct gggctgcctg cgcgc 540
ccatcg 600
aaggggctct cgaacccggc cgaggtggag ggcgtgaggg agaagg 600
tgcgtccttg

1000
900
800
700
600
500
400
300
200
100

gaggcctact gcaagcacaa gtacccagag cagccggaa ggtcgctaa gctcttgctc 660
cgccctgccgg ctctgcgctc catcgggctc aaatgcctgg aacatctt cttttcaag 720
ctcatcgaaa acacacccat tgacaccttc cttatggaga tgctggagc gccgcaccaa 780
atgacttagg cctgcgggccc catccttgt gcccacccgt tctggccacc ctgcctggac 840
gccagctgtt cttctcagcc tgagccctgt ccctgcctt ctctgcctgg cctgtttgga 900
ctttggggca cagcctgtca ctgct 925

<210> 28
<211> 850
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 28
gccaacgagg acatgcccgt ggagaggatc ctggaggctg agctggccgt ggagccaaag 60
accgagacct acgtggaggc aaacatgggg ctgaacccca gctgcccggaa cgaccctgtc 120
accaacattt gccaaggcgc cgacaaacag ctttcaccc tgggtggagtg ggccaagcgg 180
atccccacact tctcagagct gcccctggac gaccaggta tcctgctgctg ggcaggctgg 240
aatgagctgc tcatgcctc cttctccac cgctccatcg ccgtgaagga cgggatcctc 300
ctggccaccg ggctgcacgt ccacccggaa acgcggccaca ggcgggggt gggcgccatc 360
tttgacaggg tgctgacgga gcttgtgtcc aagatgcggg acatgcagat ggacaagacg 420
gagctggct gcctgcgcgc catcgccctc tttaaccctg actccaagggg gctctcgaaac 480
ccggccgagg tggaggcgct gagggagaag gtctatgcgt cttggaggc ctactgcaag 540
cacaagtacc cagagcagcc gggaaagggttc gctaagctt tgctccgcct gccggctctg 600
cgctccatcg ggctcaaattt cctgaaacat ctttttttt tcaagctcat cggggacaca 660
cccattgaca ctttccttat ggagatgctg gaggcgccgc accaaatgac ttaggcctgc 720
gggcccattt tttgtgcccc cccgttctgg ccaccctgcc tggacgcccag ctgttcttct 780
cagcctgagc cctgtccctg cccttctctg cttggcctgt ttggactttg gggcacagcc 840
tgtcaactgct 850

<210> 29
<211> 670

DNA
Homo sapiens
misc_feature
Novel Sequence

<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 29
atcccacact tctcagagct gcccctggac gaccaggta tcctgctgcg ggcaggctgg 60
aatgagctgc tcatcgccctc cttctccac cgctccatcg ccgtgaagga cgggatcctc 120
ctggccacccg ggctgcacgt ccaccggaac agcgcccaca gcgcagggtt gggcgccatc 180
tttgacaggg tgctgacgga gcttgtgtcc aagatgcggg acatgcagat ggacaagacg 240
gagctgggct gcctgcgcgc catcgccctc tttaaccctg actccaagggg gctctcgAAC 300
ccggccgagg tggaggcgct gagggagaag gtctatgcgt cttggaggc ctactgcaag 360
cacaagtacc cagagcagcc gggaaaggttc gctaagctct tgctccgcct gccggctctg 420
cgctccatcg ggctcaaattt ccttggAACat ctcttcttct tcaagctcat cggggacaca 480
cccattgaca ctttccttat ggagatgctg gagggcgccgc accaaatgac ttaggcctgc 540
gggccccatcc tttgtgcccc cccgttctgg ccaccctgcc tggacgcccAG ctgttcttct 600
cagcctgagc cctgtccctg cccttctctg cctggcctgt ttggactttg gggcacagcc 660
tgtcactgct 670

<210> 30
<211> 672
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 30
gccaacgagg acatgccggt ggagaggatc ctggaggctg agctggccgt ggagccaaag 60
accgagacct acgtggaggc aaacatgggg ctgaacccca gctcgccgaa cgaccctgtc 120
accaacattt gccaaggcagc cgacaaacag ctttcaccc tggtgagtg ggccaagcgg 180
atcccacact tctcagagct gcccctggac gaccaggta tcctgctgcg ggcaggctgg 240
aatgagctgc tcatcgccctc cttctccac cgctccatcg ccgtgaagga cgggatcctc 300
ctggccacccg ggctgcacgt ccaccggaac agcgcccaca gcgcagggtt gggcgccatc 360

tttgacaggg tgctgacgga gcttgtgtcc aagatgcggg acatgcagat ggacaagacg 420
gagctggct gcctgcgcgc catcgccctc tttaaccctg actccaaggg gctctcgAAC 480
ccggccgagg tggaggcgct gagggagaag gtctatgcgt cttggaggc ctactgcaag 540
cacaagtacc cagagcagcc gggaaaggTTC gctaagctct tgctccgcct gccggctctg 600
cgctccatcg ggctcaaATG ccttggAACat ctcttcttct tcaagctcat cggggacaca 660
cccattgaca cc 672

<210> 31
<211> 328
<212> PRT
<213> Mus musculus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 31

Cys Ala Ile Cys Gly Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr
1 5 10 15

Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr Val Arg Lys Asp
20 25 30

Leu Thr Tyr Thr Cys Arg Asp Asn Lys Asp Cys Leu Ile Asp Lys Arg
35 40 45

Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Ala Met
50 55 60

Gly Met Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp
65 70 75 80

Arg Asn Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met
85 90 95

Pro Val Glu Lys Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr
100 105 110

Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn
115 120 125

Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr
130 135 140

Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu
145 150 155 160

Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile
165 170 175

Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu
180 185 190

Ala Thr Gly Leu His Val His Arg Asn Ser Ala His Ser Ala Gly Val
195 200 205

Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg
210 215 220

Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val
225 230 235 240

Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu
245 250 255

Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His
260 265 270

Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys Leu Leu Arg Leu
275 280 285

Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe
290 295 300

Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met
305 310 315 320

Leu Glu Ala Pro His Gln Ala Thr
325

<210> 32
<211> 262
<212> PRT
<213> Mus musculus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 32

Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp Arg Asn
1 5 10 15

Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met Pro Val
20 25 30

Glu Lys Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Thr
35 40 45

Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro
50 55 60

Val Thr Asn Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr Leu Val
65 70 75 80

Glu Trp Ala Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp
85 90 95

Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser
100 105 110

Phe Ser His Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr
115 120 125

Gly Leu His Val His Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala
130 135 140

Ile Phe Asp Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met
145 150 155 160

Gln Met Asp Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe
165 170 175

Asn Pro Asp Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu
180 185 190

Arg Glu Lys Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr
195 200 205

Pro Glu Gln Pro Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala
210 215 220

Leu Arg Ser Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe Phe Lys
225 230 235 240

Leu Ile Gly Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu
245 250 255

Ala Pro His Gln Ala Thr
260

<210> 33
<211> 237
<212> PRT
<213> Mus musculus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 33

Ala Asn Glu Asp Met Pro Val Glu Lys Ile Leu Glu Ala Glu Leu Ala
1 5 10 15

Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn
20 25 30

Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp
35 40 45

Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe
50 55 60

Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp
65 70 75 80

Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys
85 90 95

Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser Ala
100 105 110

His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu
115 120 125

Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys
130 135 140

Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn
145 150 155 160

Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu
165 170 175

Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys
180 185 190

Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu
195 200 205

Glu His Leu Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr
210 215 220

Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Ala Thr
225 230 235

<210> 34
<211> 177
<212> PRT
<213> Mus musculus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 34

Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu
1 5 10 15

Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser
20 25 30

Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His
35 40 45

Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val
50 55 60

Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr
65 70 75 80

Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys
85 90 95

Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr
100 105 110

Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly
115 120 125

Arg Phe Ala Lys Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly
130 135 140

Leu Lys Cys Leu Glu His Leu Phe Phe Lys Leu Ile Gly Asp Thr
145 150 155 160

Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Ala
165 170 175

Thr

<210> 35
<211> 224
<212> PRT
<213> Mus musculus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 35

Ala Asn Glu Asp Met Pro Val Glu Lys Ile Leu Glu Ala Glu Leu Ala
1 5 10 15

Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn
20 25 30

Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp

35

40

45

Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe
50 55 60

Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp
65 70 75 80

Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys
85 90 95

Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser Ala
100 105 110

His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu
115 120 125

Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys
130 135 140

Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn
145 150 155 160

Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu
165 170 175

Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys
180 185 190

Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu
195 200 205

Glu His Leu Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr
210 215 220

<210> 36
<211> 328
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 36

Cys Ala Ile Cys Gly Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr
1 5 10 15

Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg Thr Val Arg Lys Asp
20 25 30

Leu Thr Tyr Thr Cys Arg Asp Asn Lys Asp Cys Leu Ile Asp Lys Arg
35 40 45

Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Ala Met
50 55 60

Gly Met Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp
65 70 75 80

Arg Asn Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met
85 90 95

Pro Val Glu Arg Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr
100 105 110

Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn
115 120 125

Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr
130 135 140

Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu
145 150 155 160

Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile
165 170 175

Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu
180 185 190

Ala Thr Gly Leu His Val His Arg Asn Ser Ala His Ser Ala Gly Val
195 200 205

Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg
210 215 220

Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val
225 230 235 240

Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu
245 250 255

Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His
260 265 270

Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu
275 280 285

Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe
290 295 300

Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met
305 310 315 320

Leu Glu Ala Pro His Gln Met Thr
325

<210> 37
<211> 262
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 37

Lys Arg Glu Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp Arg Asn
1 5 10 15

Glu Asn Glu Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met Pro Val
20 25 30

Glu Arg Ile Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Thr
35 40 45

Tyr Val Glu Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro
50 55 60

Val Thr Asn Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr Leu Val
65 70 75 80

Glu Trp Ala Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp
85 90 95

Gln Val Ile Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser
100 105 110

Phe Ser His Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr
115 120 125

Gly Leu His Val His Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala
130 135 140

Ile Phe Asp Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met
145 150 155 160

Gln Met Asp Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe
165 170 175

Asn Pro Asp Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu
180 185 190

Arg Glu Lys Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr
195 200 205

Pro Glu Gln Pro Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala
210 215 220

Leu Arg Ser Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe Phe Lys
225 230 235 240

Leu Ile Gly Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu
245 250 255

Ala Pro His Gln Met Thr
260

<210> 38
<211> 237
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 38

Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu Ala
1 5 10 15

Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn
20 25 30

Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp
35 40 45

Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe
50 55 60

Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp
65 70 75 80

Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys
85 90 95

Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser Ala
100 105 110

His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu
115 120 125

Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys
130 135 140

Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn
145 150 155 160

Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu
165 170 175

Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys
180 185 190

Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu
195 200 205

Glu His Leu Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr
210 215 220

Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Met Thr
225 230 235

<210> 39
<211> 177
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 39

Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu
1 5 10 15

Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser
20 25 30

Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His
35 40 45

Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val
50 55 60

Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr
65 70 75 80

Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys
85 90 95

Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr
100 105 110

Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly
115 120 125

Arg Phe Ala Lys Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly
130 135 140

Leu Lys Cys Leu Glu His Leu Phe Phe Phe Lys Leu Ile Gly Asp Thr
145 150 155 160

Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu Ala Pro His Gln Met
165 170 175

Thr

<210> 40
<211> 224
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Novel Sequence

<400> 40

Ala Asn Glu Asp Met Pro Val Glu Arg Ile Leu Glu Ala Glu Leu Ala
1 5 10 15

Val Glu Pro Lys Thr Glu Thr Tyr Val Glu Ala Asn Met Gly Leu Asn
20 25 30

Pro Ser Ser Pro Asn Asp Pro Val Thr Asn Ile Cys Gln Ala Ala Asp
35 40 45

Lys Gln Leu Phe Thr Leu Val Glu Trp Ala Lys Arg Ile Pro His Phe
50 55 60

Ser Glu Leu Pro Leu Asp Asp Gln Val Ile Leu Leu Arg Ala Gly Trp
65 70 75 80

Asn Glu Leu Leu Ile Ala Ser Phe Ser His Arg Ser Ile Ala Val Lys
85 90 95

Asp Gly Ile Leu Leu Ala Thr Gly Leu His Val His Arg Asn Ser Ala
100 105 110

His Ser Ala Gly Val Gly Ala Ile Phe Asp Arg Val Leu Thr Glu Leu
115 120 125

Val Ser Lys Met Arg Asp Met Gln Met Asp Lys Thr Glu Leu Gly Cys
130 135 140

Leu Arg Ala Ile Val Leu Phe Asn Pro Asp Ser Lys Gly Leu Ser Asn
145 150 155 160

Pro Ala Glu Val Glu Ala Leu Arg Glu Lys Val Tyr Ala Ser Leu Glu
165 170 175

Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln Pro Gly Arg Phe Ala Lys
180 185 190

Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile Gly Leu Lys Cys Leu
195 200 205

Glu His Leu Phe Phe Lys Leu Ile Gly Asp Thr Pro Ile Asp Thr
210 215 220

<210> 41
<211> 198
<212> DNA
<213> Choristoneura fumiferana

<400> 41
tgtctggtat gcggggacag agcctccgga taccactaca atgcgctcac gtgtgaaggg 60
tgtaaagggt tcttcagacg gagtgttacc aaaaatgcgg tttatattt taaattcggt 120
cacgcttgcg aaatggacat gtacatgcga cggaaatgcc aggagtgccg cctgaagaag 180
tgcttagctg taggcatg 198

<210> 42
<211> 66
<212> PRT
<213> Choristoneura fumiferana

<400> 42

Cys Leu Val Cys Gly Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu
1 5 10 15

Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Thr Lys Asn
20 25 30

Ala Val Tyr Ile Cys Lys Phe Gly His Ala Cys Glu Met Asp Met Tyr
35 40 45

Met Arg Arg Lys Cys Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val
50 55 60

Gly Met
65

<210> 43
<211> 441
<212> DNA
<213> *Saccharomyces cerevisiae*

<220>
<221> misc_feature
<223> Novel Sequence

<400> 43
atgaagctac tgtcttctat cgaacaagca tgcgatattt gccgacttaa aaagctcaag 60
tgctccaaag aaaaaccgaa gtgcgccaag tgtctgaaga acaactggga gtgtcgctac 120
tctccccaaa ccaaaaggc tccgctgact agggcacatc tgacagaagt ggaatcaagg 180
ctagaaagac tggAACAGCT atttctactg attttcctc gagaAGACCT tgacatgatt 240
ttgaaaatgg attctttaca ggatataaaa gcattgttaa caggattatt tgtacaagat 300
aatgtgaata aagatGCCGT cacagataga ttggcttcag tggagactga tatgcctcta 360
acattgagac agcatagaat aagtgcgaca tcattcatcg aagagagtag taacaaaggt 420
caaagacagt tgactgtatc g 441

<210> 44
<211> 147
<212> PRT
<213> *Saccharomyces cerevisiae*

<220>
<221> misc_feature
<223> Novel Sequence

<400> 44

Met Lys Leu Leu Ser Ser Ile Glu Gln Ala Cys Asp Ile Cys Arg Leu
1 5 10 15

Lys Lys Leu Lys Cys Ser Lys Glu Lys Pro Lys Cys Ala Lys Cys Leu
20 25 30

Lys Asn Asn Trp Glu Cys Arg Tyr Ser Pro Lys Thr Lys Arg Ser Pro
35 40 45

Leu Thr Arg Ala His Leu Thr Glu Val Glu Ser Arg Leu Glu Arg Leu
50 55 60

Glu Gln Leu Phe Leu Leu Ile Phe Pro Arg Glu Asp Leu Asp Met Ile
65 70 75 80

Leu Lys Met Asp Ser Leu Gln Asp Ile Lys Ala Leu Leu Thr Gly Leu
85 90 95

Phe Val Gln Asp Asn Val Asn Lys Asp Ala Val Thr Asp Arg Leu Ala
100 105 110

Ser Val Glu Thr Asp Met Pro Leu Thr Leu Arg Gln His Arg Ile Ser
115 120 125

Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu
130 135 140

Thr Val Ser
145

<210> 45
<211> 606
<212> DNA
<213> Escherichia coli

<220>
<221> misc_feature
<223> Novel Sequence

<400> 45
atgaaaagcgt taacggccag gcaacaagag gtgtttgatc tcatccgtga tcacatcagc 60
cagacaggtt tgccgccgac gcgtgcggaa atcgccgcagc gtttgggtt ccgttcccc 120
aacgcggctg aagaacatct gaaggcgctg gcacgcaaag gcgttattga aattgtttcc 180
ggcgcatcac gcgggattcg tctgttgca gaaaggaaag aagggttgcc gctggtaggt 240
cgtgtggctg ccggtaacc acttctggcg caacagcata ttgaaggta ttatcaggtc 300
gatccttcct tattcaagcc gaatgctgat ttcctgctgc gcgtcagcgg gatgtcgatg 360
aaagatatcg gcattatgga tggtgacttg ctggcagtgc ataaaaactca ggatgtacgt 420

00965703-09260

aacggtcagg tcgttgcgc acgtattgat gacgaagtta ccgttaagcg cctgaaaaaa 480
cagggcaata aagtgcgaact gttgccagaa aatagcgagt ttaaaccaat tgtcgttagat 540
cttcgtcagc agagcttcac cattgaaggg ctggcggttg gggttattcg caacggcgac 600
tggctg 606

<210> 46
<211> 202
<212> PRT
<213> Escherichia coli

<220>
<221> misc_feature
<223> Novel Sequence

<400> 46

Met Lys Ala Leu Thr Ala Arg Gln Gln Glu Val Phe Asp Leu Ile Arg
1 5 10 15

Asp His Ile Ser Gln Thr Gly Met Pro Pro Thr Arg Ala Glu Ile Ala
20 25 30

Gln Arg Leu Gly Phe Arg Ser Pro Asn Ala Ala Glu Glu His Leu Lys
35 40 45

Ala Leu Ala Arg Lys Gly Val Ile Glu Ile Val Ser Gly Ala Ser Arg
50 55 60

Gly Ile Arg Leu Leu Gln Glu Glu Glu Gly Leu Pro Leu Val Gly
65 70 75 80

Arg Val Ala Ala Gly Glu Pro Leu Leu Ala Gln Gln His Ile Glu Gly
85 90 95

His Tyr Gln Val Asp Pro Ser Leu Phe Lys Pro Asn Ala Asp Phe Leu
100 105 110

Leu Arg Val Ser Gly Met Ser Met Lys Asp Ile Gly Ile Met Asp Gly
115 120 125

Asp Leu Leu Ala Val His Lys Thr Gln Asp Val Arg Asn Gly Gln Val
130 135 140

Val Val Ala Arg Ile Asp Asp Glu Val Thr Val Lys Arg Leu Lys Lys
145 150 155 160

Gln Gly Asn Lys Val Glu Leu Leu Pro Glu Asn Ser Glu Phe Lys Pro
165 170 175

Ile Val Val Asp Leu Arg Gln Gln Ser Phe Thr Ile Glu Gly Leu Ala
180 185 190

Val Gly Val Ile Arg Asn Gly Asp Trp Leu
195 200

<210> 47

<211> 420

<212> DNA

<213> Choristoneura fumiferana

<400> 47

atgagacgcc gctggtccaa caacgggggc ttccagacgc tgcgaatgct cgaggagagc 60

tgcgtccagaat tgacgtcgct ctcagctctg ggtctgccgg ccgcgcgttgt tatgtctccg 120

gagtcgctcg cctcgccaga gtacggcggg ctcgagctct ggggatacga cgatgggttg 180

tcataacaaca cggcgcagtc cttgctggc aataacttgcg cgtgcagca gcagcaacag 240

acgcagccgc tgccgtcgat gccgttgccct atgccgcccga ccacgcccga gtctgaaaac 300

gagtctattt cctcaggccg tgaggaactg tcgcccagtt caagtataaa tgggtgcagt 360

acagatggcg aggcacgacg tcagaagaag ggccctgcgc cccgtcagca agaggaactg 420

<210> 48

<211> 140

<212> PRT

<213> Choristoneura fumiferana

<400> 48

Met Arg Arg Arg Trp Ser Asn Asn Gly Gly Phe Gln Thr Leu Arg Met
1 5 10 15

Leu Glu Glu Ser Ser Ser Glu Val Thr Ser Ser Ser Ala Leu Gly Leu
20 25 30

Pro Ala Ala Met Val Met Ser Pro Glu Ser Leu Ala Ser Pro Glu Tyr
35 40 45

Gly Gly Leu Glu Leu Trp Gly Tyr Asp Asp Gly Leu Ser Tyr Asn Thr

50

55

60

Ala Gln Ser Leu Leu Gly Asn Thr Cys Thr Met Gln Gln Gln Gln
65 70 75 80

Thr Gln Pro Leu Pro Ser Met Pro Leu Pro Met Pro Pro Thr Thr Pro
85 90 95

Lys Ser Glu Asn Glu Ser Ile Ser Ser Gly Arg Glu Glu Leu Ser Pro
100 105 110

Ala Ser Ser Ile Asn Gly Cys Ser Thr Asp Gly Glu Ala Arg Arg Gln
115 120 125

Lys Lys Gly Pro Ala Pro Arg Gln Gln Glu Glu Leu
130 135 140

<210> 49
<211> 271
<212> DNA
<213> herpes simplex virus 7

<220>
<221> misc_feature
<223> Novel Sequence

<400> 49
atgggccta aaaagaagcg taaagtgcgc ccccgaccg atgtcagcct gggggacgag 60
ctccacttag acggcgagga cgtggcgatg ggcgcattgccg acgcgcgtaga cgatttcgat 120
ctggacatgt tgggggacgg ggattccccg gggccgggat ttaccccca cgactccgcc 180
ccctacggcg ctctggatat ggccgacttc gagtttgagc agatgttac cgatgccctt 240
ggaattgacg agtacggtg 271
g ggaattcccg g

<210> 50
<211> 90
<212> PRT
<213> herpes simplex virus 7

<220>
<221> misc_feature
<223> Novel Sequence

<400> 50

Met Gly Pro Lys Lys Lys Arg Lys Val Ala Pro Pro Thr Asp Val Ser
1 5 10 15

Leu Gly Asp Glu Leu His Leu Asp Gly Glu Asp Val Ala Met Ala His
20 25 30

Ala Asp Ala Leu Asp Asp Phe Asp Leu Asp Met Leu Gly Asp Gly Asp
35 40 45

Ser Pro Gly Pro Gly Phe Thr Pro His Asp Ser Ala Pro Tyr Gly Ala
50 55 60

Leu Asp Met Ala Asp Phe Glu Phe Glu Gln Met Phe Thr Asp Ala Leu
65 70 75 80

Gly Ile Asp Glu Tyr Gly Gly Glu Phe Pro
85 90

<210> 51
<211> 307
<212> DNA
<213> *Saccharomyces cerevisiae*

<400> 51
atgggtgctc ctccaaaaaa gaagagaaaag gtagctggta tcaataaaga tatcgaggag 60
tgcaatgccca tcattgagca gtttatcgac tacctgcgca ccggacagga gatgccgatg
gaaatggcgg atcaggcgat taacgtggtg ccgggcatga cgccgaaaac cattcttcac 120
gccgggcccgc cgatccagcc tgactggctg aaatcgaatg gtttcatga aattgaagcg 180
gatgttaacg ataccagcct cttgctgagt ggagatgcct cctaccctta tgatgtgcca 240
gattatg 300
307

<210> 52
<211> 102
<212> PRT
<213> *Saccharomyces cerevisiae*

<400> 52

Met Gly Ala Pro Pro Lys Lys Lys Arg Lys Val Ala Gly Ile Asn Lys
1 5 10 15

Asp Ile Glu Glu Cys Asn Ala Ile Ile Glu Gln Phe Ile Asp Tyr Leu
20 25 30

Arg Thr Gly Gln Glu Met Pro Met Glu Met Ala Asp Gln Ala Ile Asn
35 40 45

Val Val Pro Gly Met Thr Pro Lys Thr Ile Leu His Ala Gly Pro Pro
50 55 60

Ile Gln Pro Asp Trp Leu Lys Ser Asn Gly Phe His Glu Ile Glu Ala
65 70 75 80

Asp Val Asn Asp Thr Ser Leu Leu Leu Ser Gly Asp Ala Ser Tyr Pro
85 90 95

Tyr Asp Val Pro Asp Tyr
100

<210> 53
<211> 807
<212> DNA
<213> Homo sapiens

<400> 53
cccatgaat tccagtacctt gccagataca gacgatcgac accggatttttta ggagaaacgt 60
aaaaggacat atgagacctt caagagcatac atgaagaaga gtcctttcag cggaccacc 120
gaccccccggc ctccacacctcg acgcatttgct gtgccttccc gcagtcagc ttctgtcccc 180
aagccagcac cccagcccta tccctttacg tcataccctga gcaccatcaa ctatgttag 240
tttccccacca tggtgtttcc ttctggcag atcagccagg cctcggcctt ggcccccggcc 300
cctccccaag tcctgccccca ggctccagcc cctgccccctg ctccagccat ggtatcagct 360
ctggcccaagg ccccagcccc tgtccagtc ctgcggccag gcccctcata ggctgtggcc 420
ccacacctgcccccc ccaagccccac ccaggctggg gaaggaacgc tgcagaggc cctgctgcag 480
ctgcagtttgc atgatgaaga cctggggcc ttgcttggca acagcacaga cccagctgtg 540
ttcacagacc tggcatccgt cgacaactcc gagtttcagc agctgctgaa ccagggcata 600
cctgtggccc cccacacaaac tgagcccatg ctgatggagt accctgaggc tataactcgc 660
ctagtgacag gggccccagag gccccccgac ccagctcctg ctccactggg ggcccccgggg 720
ctcccccaatg gcctcccttgc aggagatgaa gacttctcct ccattgcggaa catggacttc 780
tcagccctgc tgagtcaaatg cagctcc 807

<210> 54

<211> 269
<212> PRT
<213> Homo sapiens

<400> 54

Pro Met Glu Phe Gln Tyr Leu Pro Asp Thr Asp Asp Arg His Arg Ile
1 5 10 15

Glu Glu Lys Arg Lys Arg Thr Tyr Glu Thr Phe Lys Ser Ile Met Lys
20 25 30

Lys Ser Pro Phe Ser Gly Pro Thr Asp Pro Arg Pro Pro Pro Arg Arg
35 40 45

Ile Ala Val Pro Ser Arg Ser Ser Ala Ser Val Pro Lys Pro Ala Pro
50 55 60

Gln Pro Tyr Pro Phe Thr Ser Ser Leu Ser Thr Ile Asn Tyr Asp Glu
65 70 75 80

Phe Pro Thr Met Val Phe Pro Ser Gly Gln Ile Ser Gln Ala Ser Ala
85 90 95

Leu Ala Pro Ala Pro Pro Gln Val Leu Pro Gln Ala Pro Ala Pro Ala
100 105 110

Pro Ala Pro Ala Met Val Ser Ala Leu Ala Gln Ala Pro Ala Pro Val
115 120 125

Pro Val Leu Ala Pro Gly Pro Pro Gln Ala Val Ala Pro Pro Ala Pro
130 135 140

Lys Pro Thr Gln Ala Gly Glu Gly Thr Leu Ser Glu Ala Leu Leu Gln
145 150 155 160

Leu Gln Phe Asp Asp Glu Asp Leu Gly Ala Leu Leu Gly Asn Ser Thr
165 170 175

Asp Pro Ala Val Phe Thr Asp Leu Ala Ser Val Asp Asn Ser Glu Phe
180 185 190

Gln Gln Leu Leu Asn Gln Gly Ile Pro Val Ala Pro His Thr Thr Glu
195 200 205

Pro Met Leu Met Glu Tyr Pro Glu Ala Ile Thr Arg Leu Val Thr Gly
210 215 220

Ala Gln Arg Pro Pro Asp Pro Ala Pro Ala Pro Leu Gly Ala Pro Gly
225 230 235 240

Leu Pro Asn Gly Leu Leu Ser Gly Asp Glu Asp Phe Ser Ser Ile Ala
245 250 255

Asp Met Asp Phe Ser Ala Leu Leu Ser Gln Ile Ser Ser
260 265

<210> 55
<211> 225
<212> DNA
<213> Drosophila melanogaster

<220>
<221> misc_feature
<223> Novel Sequence

<400> 55
tcgacattgg acaagtgcattt gataacccttg tctctcgaga gacaaggggg ttcaatgcac 60
ttgtccatg tcgagagaca agggggttca atgcacttgtt ccaatgtcga gagacaagg 120
ggttcaatgc acttgcattt tgtcgagaga caagggggttt caatgcactt gtccatgtc 180
gagagacaag ggggttcaat gcacttgtcc aatgtcgact ctaga 225

<210> 56
<211> 19
<212> DNA
<213> Saccharomyces cerevisiae

<220>
<221> misc_feature
<223> Novel Sequence

<400> 56
ggagtaactgtt cctccgagc 19

<210> 57
<211> 666
<212> DNA
<213> Escherichia coli

<220>

0
1
2
3
4
5
6
7
8
9

<221> misc_feature
<223> Novel Sequence

<400> 57
ggatccccag ctggaaattc gacaggttat cagcaacaac acagtcatat ccattctcaa 60
tttagctctac cacagtgtgt gaaccaatgt atccagcacc acctgtaacc aaaacaattt 120
tagaagtact ttcactttgt aactgagctg tcatttatat tgaattttca aaaattctta 180
ctttttttt ggatggacgc aaagaagttt aataatcata ttacatggca ttaccaccat 240
atacatatcc atatacatat ccatatctaa tcttacctcg actgctgtat ataaaaccag 300
tggttatatg tacagtactg ctgtatataa aaccagtggt tatatgtaca gtacgtcgac 360
tgctgtatat aaaaccagtg gttatatgta cagtaactgct gtatataaaa ccagtggta 420
tatgtacagt acgtcgaggg atgataatgc gattagttt ttagccttat ttctgggta 480
attaatcagc gaagcgatga ttttgatct attaacagat atataaatgc aaaaactgca 540
taaccacttt aactaataact ttcaacattt tcggtttgc ttacttctta ttcaaatgta 600
ataaaaagtat caacaaaaaaa ttgttaatat acctctatac tttaacgtca aggagaaaaa 660
actata 666

<210> 58
<211> 1542
<212> DNA
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 58
ctggacctga aacacgaagt ggcttaccga ggggtgctcc caggccaggt gaaggccgaa 60
ccgggggtcc acaacggcca ggtcaacggc cacgtgaggg actggatggc aggcggcgct 120
ggtgccaatt cgccgtctcc gggagcggtg gctcaacccc agcctaacaa tgggtattcg 180
tcgccactct cctcgggaag ctacggccccc tacagtccaa atggaaaat aggccgtgag 240
gaactgtcgc cagcttcaag tataaatggg tgcagtacag atggcgaggc acgacgtcag 300
aagaagggcc ctgcgcccccg tcagcaagag gaactgtgtc tggtatgcgg ggacagagcc 360
tccggataacc actacaatgc gtcacgtgt gaagggtgta aagggttctt cagacggagt 420
gttaccaaaa atgcggttta tatttgtaaa ttcggtcacg cttgcgaaat ggacatgtac 480

atgcgacgga aatgccagga gtgccgcctg aagaagtgt tagctgttagg catgaggcct	540
gagtgcgtag tacccgagac tcagtgcgcc atgaagcgga aagagaagaa agcacagaag	600
gagaaggaca aactgcctgt cagcacgacg acggtgacg accacatgcc gcccattatg	660
cagtgtgaac ctccacctcc tgaagcagca aggattcacg aagtggtccc aaggtttctc	720
tccgacaagc tggtggagac aaaccggcag aaaaacatcc cccagttgac agccaaccag	780
cagttcccta tcgcccaggct catctggtac caggacgggt acgagcagcc ttctgtatgaa	840
gatttgaaga ggattacgca gacgtggcag caagcggacg atgaaaacga agagtctgac	900
actcccttcc gccagatcac agagatgact atcctcacgg tccaaacttat cgtggaggttc	960
gcgaaggat tgccagggtt cgccaaagatc tcgcagcctg atcaaattac gctgcttaag	1020
gcttgctcaa gtgaggtaat gatgctccga gtcgcgcac gatacgatgc ggcctcagac	1080
agtgttctgt tcgcgaacaa ccaagcgtac actcgcgaca actaccgcaa ggctggcatg	1140
gcctacgtca tcgaggatct actgcacttc tgccggtgca tgtactctat ggcgttggac	1200
aacatccatt acgcgctgct cacggctgtc gtcatacttt ctgaccggcc agggttggag	1260
cagccgcaac tggtggaaga aatccagcgg tactacctga atacgctccg catctataatc	1320
ctgaaccagc tgagcgggtc ggccgcgttc tccgtcatat acggcaagat cctctcaatc	1380
ctctctgagc tacgcacgct cggcatgcaa aactccaaca tgtgcacatc cctcaagctc	1440
aagaacagaa agctgccgac tttcctcgag gagatctggg atgtggcgga catgtcgac	1500
acccaaccqc cgccatatcct cgagcccccc acgaatctct ag	1542

<210> 59
<211> 513
<212> PRT
<213> Choristoneura fumiferana

```
<220>
<221> misc_feature
<223> Novel Sequence
```

<400> 59

Leu Asp Leu Lys His Glu Val Ala Tyr Arg Gly Val Leu Pro Gly Gln
 1 5 10 15

Val Lys Ala Glu Pro Gly Val His Asn Gly Gln Val Asn Gly His Val
20 25 30

Arg Asp Trp Met Ala Gly Gly Ala Gly Ala Asn Ser Pro Ser Pro Gly
35 40 45

Ala Val Ala Gln Pro Gln Pro Asn Asn Gly Tyr Ser Ser Pro Leu Ser
50 55 60

Ser Gly Ser Tyr Gly Pro Tyr Ser Pro Asn Gly Lys Ile Gly Arg Glu
65 70 75 80

Glu Leu Ser Pro Ala Ser Ser Ile Asn Gly Cys Ser Thr Asp Gly Glu
85 90 95

Ala Arg Arg Gln Lys Lys Gly Pro Ala Pro Arg Gln Gln Glu Glu Leu
100 105 110

Cys Leu Val Cys Gly Asp Arg Ala Ser Gly Tyr His Tyr Asn Ala Leu
115 120 125

Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ser Val Thr Lys Asn
130 135 140

Ala Val Tyr Ile Cys Lys Phe Gly His Ala Cys Glu Met Asp Met Tyr
145 150 155 160

Met Arg Arg Lys Cys Gln Glu Cys Arg Leu Lys Lys Cys Leu Ala Val
165 170 175

Gly Met Arg Pro Glu Cys Val Val Pro Glu Thr Gln Cys Ala Met Lys
180 185 190

Arg Lys Glu Lys Lys Ala Gln Lys Glu Lys Asp Lys Leu Pro Val Ser
195 200 205

Thr Thr Thr Val Asp Asp His Met Pro Pro Ile Met Gln Cys Glu Pro
210 215 220

Pro Pro Pro Glu Ala Ala Arg Ile His Glu Val Val Pro Arg Phe Leu
225 230 235 240

Ser Asp Lys Leu Leu Glu Thr Asn Arg Gln Lys Asn Ile Pro Gln Leu
245 250 255

Thr Ala Asn Gln Gln Phe Leu Ile Ala Arg Leu Ile Trp Tyr Gln Asp

260

265

270

Gly Tyr Glu Gln Pro Ser Asp Glu Asp Leu Lys Arg Ile Thr Gln Thr
275 280 285

Trp Gln Gln Ala Asp Asp Glu Asn Glu Glu Ser Asp Thr Pro Phe Arg
290 295 300

Gln Ile Thr Glu Met Thr Ile Leu Thr Val Gln Leu Ile Val Glu Phe
305 310 315 320

Ala Lys Gly Leu Pro Gly Phe Ala Lys Ile Ser Gln Pro Asp Gln Ile
325 330 335

Thr Leu Leu Lys Ala Cys Ser Ser Glu Val Met Met Leu Arg Val Ala
340 345 350

Arg Arg Tyr Asp Ala Ala Ser Asp Ser Val Leu Phe Ala Asn Asn Gln
355 360 365

Ala Tyr Thr Arg Asp Asn Tyr Arg Lys Ala Gly Met Ala Tyr Val Ile
370 375 380

Glu Asp Leu Leu His Phe Cys Arg Cys Met Tyr Ser Met Ala Leu Asp
385 390 395 400

Asn Ile His Tyr Ala Leu Leu Thr Ala Val Val Ile Phe Ser Asp Arg
405 410 415

Pro Gly Leu Glu Gln Pro Gln Leu Val Glu Glu Ile Gln Arg Tyr Tyr
420 425 430

Leu Asn Thr Leu Arg Ile Tyr Ile Leu Asn Gln Leu Ser Gly Ser Ala
435 440 445

Arg Ser Ser Val Ile Tyr Gly Lys Ile Leu Ser Ile Leu Ser Glu Leu
450 455 460

Arg Thr Leu Gly Met Gln Asn Ser Asn Met Cys Ile Ser Leu Lys Leu
465 470 475 480

Lys Asn Arg Lys Leu Pro Pro Phe Leu Glu Glu Ile Trp Asp Val Ala
485 490 495

Asp Met Ser His Thr Gln Pro Pro Pro Ile Leu Glu Ser Pro Thr Asn
500 505 510

Leu

<210> 60
<211> 4375
<212> DNA
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 60
tgtaattttg atggcgccg tcatgcaccg tgtgccatat tgccatccag tcgaatagaa 60
aaaaaaaaaaa aaaaaaaaaat atcagttgtt ttgtccctcg ctcgcattcg agtgtattcg 120
aatattttaga cgtcataatt cacgagtgtc ttttaaattt atatacgat tagcggggcc 180
gtttgttggc cgtgcgcgttg cgtttagtgg agtgcaggga tagtgaggcg agtatggtag 240
ttcgtggtca tgtcaagtgt ggcgaagaaa gacaagccga cgatgtcggt gacggcgctg 300
atcaactggg cgccggccggc gcccgcaggc cccgcgcagc cgcaatcgac gtcgcctgcg 360
ccggcagcca tgctgcagca gctcccgacg cagtcaatgc agtcgttaaa ccacatccca 420
actgtcgatt gctcgctcgat tatgcagtgg cttaatttag aacctggatt catgtcgct 480
atgtcacctc ctgagatgaa accagacacc gccatgcttg atgggctacg agacgacgcc 540
acttcggccgc ctaactcaa gaactacccg cctaattcacc ccctgagtgg ctccaaacac 600
ctatgctcta tatgcggcga cagggcgtct ggaaaggact atgggggtgtat cagttgcgaa 660
ggatgcaagg gtttcttcaa gcggaccgtc cgaaaggacc tgtcgatgc ttggccggag 720
gagcggaaact gcatcataga caagcgacaa aggaaccgat gccagttactg ccgttatcaa 780
aagtgtttgg cttgcgttat gaagcgagag gcggtgcaag aggagcgcca gaggaatgct 840
cgccggcggcgg aggatgcccac cccgagtagc tcgggtgcagg taagcgatga gctgtcaatc 900
gagcgcctaa cggagatgga gtctttggtg gcagatccca gcgaggagtt ccagttcctc 960
cgcgtggggc ctgacagcaa cgtgcctcca cgttaccgcg cgcccgcttc ctccctctgc 1020
caaataggca acaagcaaat agcggcggttg gtggatggg cgccgcacat ccctcatttc 1080

00000000000000000000000000000000

ggcagctgg agctggacga tcaagtggta ctcataagg ctcctggaa tgagctgcta	1140
ctttcgcca tcgcctggcg ctctatggag tatttggaaatgagaggaa gaacggggac	1200
gaaacgcgga gcaccactca gccacaactg atgtgtctca tgcctggcat gacgttgac	1260
cgcactcg cgacgcaggc gggcgtggc gccatctcg accgcgtgct gtccgagctc	1320
agtctgaaga tgcgcacctt ggcacatggac caggccgagt acgtcgcgct caaagccatc	1380
tgctgctca accctgatgt gaaaggactg aagaatcggc aagaagttga cgaaaaatgt	1440
tctttgcct ggacgactac tgccggcggt cgcaagcaa cgaggaaggc	1500
cggttgcgt cttgcgtgc gggctgcca gctctccgct ccatctcgct caagagcttc	1560
gaacacctt acttcttcca ctcgtggcc gaaggctcca tcagcggata catacgagag	1620
gcgcctcgaa accacgcgcc tccgatcgac gtcaatgcca tggacttaact atctagggtg	1680
gcgcctcgaa tggactatac attaaagtat cacgcaaatt atgcgttagtc agaaagtcgc	1740
gtcgatcaaa ctttttata aacgaattga gtttctaacf actgcaaacac agcggagtt	1800
tgcttctgat agttttatt ctaatggta agatgctta cacggcatt attgacattc	1860
aagtgttaactt ggaagttgac aaccttgaca ttatatcac gttttaatt gtttaataa	1920
attaattaaat cacaagtaag actaacatca acgtcacatc actaagccatc ttttgtata	1980
tttttcatgt caagaaaactc attgtttga taaaatattt ttcttaatttccactgaaac	2040
tcatccaaat gtgacccagt ttcccgcaga gttccccgtg taaaatcatc ttttagggaca	2100
tatccccgc tatctcatga aattccaagg atcagtaggg gccaattccc ccgatgtgtt	2160
gggaggcaga attttcgata atctacgact attgttagcc tacgaattag ttgaattttt	2220
tggacttattt tttatataactt cggccacttcc caaacacatc agcagggtat atgtgcaatt	2280
ttgttaacatc aactctattt atttctgata ttatcgaaa ttatcttata cataacatgc	2340
tggctggtcc aggtgtttgg tagttacata tggatctacg gtttggtaattt aattatagct	2400
tttttattgt aatctgtata aaatttgagtt atcttacttc acactacgat cgagtaaacc	2460
catcgatcagc tacgaaaaac taatcgata aggcgtaaagatgaaataact aattgacaac	2520
cagcaacgag gaccacctca gtcctcgatc ttacatttgccgtatcttata atatgtatggaa	2580
agctgtcgatc gttacgacat tagataaaatgt gcatgaatac caaaaatgtatccatc	2640
ctgatctctc atgctctcgatc tgcgtggac ccgtgtcgatc tgcgtatagg actgactaat	2700
attttagact aggctat gcttcagtaa ttccattatac atattataag tcatccaaat	2760
attttagact aggctat gcttcagtaa ttccattatac atattataag tcatccaaat	2820

aacgagtaag gcggcatgtt gagatcagca ttccgagagt caaagagccc ctaacgtgac 2880
tgagaagtag agacaataca ctgattttct gagatgaacg caaccgagat tgacactaaa 2940
aatctattta tggatttcaa aatggcgatg cttgattgtc tgcggcgtgg atagactgaa 3000
atgggtttgc ttaacactgg atattgttt tattagttaa tagtcttaca ttgcaagttg 3060
gtaattcggt gctaataatcg accgggttgt taactatcta acggttccca gtgtcaggca 3120
cacatcttc ccaagcagac aacgcaagag tgtacaaaat gtacatgtta caaaataagg 3180
aacattcgtc ggataagtgt aacagttgat aggtaaagaa aatggggccg cctctttatt 3240
attacgttagc cgtaaaaatta ttaacgtatt tagtttagat gttcagctaa ttaggataat 3300
tctatttgc gagtacctag atgtccatag tgaattaata taataattag actgttacgc 3360
gtaggttaatt ataaagtttca ccaaatctct cttcaaagca aaaactttgt acacttccgt 3420
actgagacgt chtagcttat tctgattcac gaaatatttg gatcacattg ttacaaggcg 3480
accgtcacgt agtataatgat tatttacaaa tgacacgtat gtatcaatgc tataagtgtt 3540
ttcgttacat atgtcggtgc tttaacgtgc atttcgatgt gcagattaaa aatagcaaga 3600
aatcttggaaa ttgttttaga aaatatttga tttccttatt gaaagttatt tttaaatgtta 3660
aatatttcgt aatcataata attatgtatt gtgttagttat ttcacccctta cggttggat 3720
attatttaat ggtggcctac gaaagtgttata accatcc gcttcctcaa aaaggccagt 3780
ttattttgtt acctcataca tactaattac gtaagtaata tcaggcgaat gggtgactaa 3840
caactaacca gtattaaaaa ttaaaagact tcgtcctaattaaaatgtat atctatgtat 3900
aaaaatggaaa aatctggcgt ataataggtaa aatattaaact agattgtttaa tgaatgtgt 3960
gtctcataaa cgtttagttt ttaatgagaa acatgttttag tcgcctacta taagacgaga 4020
cgccaagctc accgagttaa ctcgtaaaca ggaatgttga aaaagatgac acaatttata 4080
tttggatttgc aaattatgac taaccatgctg ctctatcggt tggtatggat gcatagtatt 4140
gctgttggaaa ataatggaat taggtatattt ctgcattaaat gttggaaaact tgatattatt 4200
ctatggttgg gatgttgcattc tatgttggaa gtgttgcagc gggttggaaaatgatttata 4260
atgtatgttca ctaaatatct gactaaatgt aagttatttt tttttgtata gacatagctt 4320
taagatgaag gtgattaaac tttatcctta tcacaataaa aaaaaaaaaaaa aaaaa 4375

<210> 61
<211> 472
<212> PRT

<213> Choristoneura fumiferana

<220>

<221> misc_feature
<223> Novel Sequence

<400> 61

Met Ser Ser Val Ala Lys Lys Asp Lys Pro Thr Met Ser Val Thr Ala
1 5 10 15

Leu Ile Asn Trp Ala Arg Pro Ala Pro Pro Gly Pro Pro Gln Pro Gln
20 25 30

Ser Ala Ser Pro Ala Pro Ala Ala Met Leu Gln Gln Leu Pro Thr Gln
35 40 45

Ser Met Gln Ser Leu Asn His Ile Pro Thr Val Asp Cys Ser Leu Asp
50 55 60

Met Gln Trp Leu Asn Leu Glu Pro Gly Phe Met Ser Pro Met Ser Pro
65 70 75 80

Pro Glu Met Lys Pro Asp Thr Ala Met Leu Asp Gly Leu Arg Asp Asp
85 90 95

Ala Thr Ser Pro Pro Asn Phe Lys Asn Tyr Pro Pro Asn His Pro Leu
100 105 110

Ser Gly Ser Lys His Leu Cys Ser Ile Cys Gly Asp Arg Ala Ser Gly
115 120 125

Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys Lys Gly Phe Phe Lys
130 135 140

Arg Thr Val Arg Lys Asp Leu Ser Tyr Ala Cys Arg Glu Glu Arg Asn
145 150 155 160

Cys Ile Ile Asp Lys Arg Gln Arg Asn Arg Cys Gln Tyr Cys Arg Tyr
165 170 175

Gln Lys Cys Leu Ala Cys Gly Met Lys Arg Glu Ala Val Gln Glu Glu
180 185 190

Arg Gln Arg Asn Ala Arg Gly Ala Glu Asp Ala His Pro Ser Ser Ser
195 200 205

Val Gln Val Ser Asp Glu Leu Ser Ile Glu Arg Leu Thr Glu Met Glu
210 215 220

Ser Leu Val Ala Asp Pro Ser Glu Glu Phe Gln Phe Leu Arg Val Gly
225 230 235 240

Pro Asp Ser Asn Val Pro Pro Arg Tyr Arg Ala Pro Val Ser Ser Leu
245 250 255

Cys Gln Ile Gly Asn Lys Gln Ile Ala Ala Leu Val Val Trp Ala Arg
260 265 270

Asp Ile Pro His Phe Gly Gln Leu Glu Leu Asp Asp Gln Val Val Leu
275 280 285

Ile Lys Ala Ser Trp Asn Glu Leu Leu Leu Phe Ala Ile Ala Trp Arg
290 295 300

Ser Met Glu Tyr Leu Glu Asp Glu Arg Glu Asn Gly Asp Gly Thr Arg
305 310 315 320

Ser Thr Thr Gln Pro Gln Leu Met Cys Leu Met Pro Gly Met Thr Leu
325 330 335

His Arg Asn Ser Ala Gln Gln Ala Gly Val Gly Ala Ile Phe Asp Arg
340 345 350

Val Leu Ser Glu Leu Ser Leu Lys Met Arg Thr Leu Arg Met Asp Gln
355 360 365

Ala Glu Tyr Val Ala Leu Lys Ala Ile Val Leu Leu Asn Pro Asp Val
370 375 380

Lys Gly Leu Lys Asn Arg Gln Glu Val Asp Val Leu Arg Glu Lys Met
385 390 395 400

Phe Ser Cys Leu Asp Asp Tyr Cys Arg Arg Ser Arg Ser Asn Glu Glu
405 410 415

Gly Arg Phe Ala Ser Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser Ile

420

425

430

Ser Leu Lys Ser Phe Glu His Leu Tyr Phe Phe His Leu Val Ala Glu
435 440 445

Gly Ser Ile Ser Gly Tyr Ile Arg Glu Ala Leu Arg Asn His Ala Pro
450 455 460

Pro Ile Asp Val Asn Ala Met Met
465 470

<210> 62
<211> 1404

<212> DNA

<213> Mus musculus

<220>

<221> misc_feature

<223> Novel Sequence

<400> 62

atggacacca aacatttcct gccgctcgac ttctctaccc aggtgaactc ttcgtccctc 60

aactctccaa cgggtcgagg ctccatggct gtccccctgc tgcacccctc cttgggtccg 120

ggaatcggct ctccactggg ctgcgcctggg cagctgcact ctccttatcag caccctgagc 180

tcccccatca atggcatggg tccgccttc tctgtcatca gctccccat gggcccgac 240

tccatgtcgg tacccaccac acccacattt ggcttcggga ctggtagccc ccagctcaat 300

tcacccatga accctgtgag cagcactgag gatatcaagc cgccactagg cctcaatggc 360

gtcctcaagg ttccctgccc tccctcagga aatatggcct cttcaccaa gcacatctgt 420

gctatctgtg gggaccgctc ctcaggcaaa cactatgggg tatacagtt tgagggctgc 480

aagggtttct tcaagaggac agtacgcaaa gacctgacct acacccgtcg agacaacaag 540

gactgcctga tcgacaagag acagcggAAC cggtgtcagt actgccgcta ccagaagtgc 600

ctggccatgg gcatgaagcg ggaagctgtg caggaggagc ggcagcgggg caaggaccgg 660

aatgagaacg aggtggagtc caccagcagt gccaacgagg acatgcctgt agagaagatt 720

ctggaagccg agcttgctgt cgagcccaag actgagacat acgtggaggg aaacatgggg 780

ctgaacccca gctcaccaaa tgaccctgtt accaacatct gtcaagcagc agacaagcag 840

ctcttcactc ttgtggagtg ggcaccaagagg atccccacact tttctgagct gcccctagac 900

gaccaggtca tcctgctacg ggcaggctgg aacgagctgc tgatgcctc cttctccac 960

cgctccatag ctgtgaaaga tgggattctc ctggccaccg gcctgcacgt acaccggaac 1020
agcgctcaca gtgctgggt gggcgccatc tttgacaggg tgctaacaga gctggtgtct 1080
aagatgcgtg acatgcagat ggacaagacg gagctggct gcctgcgagc cattgtcctg 1140
ttcaaccctg actctaagg gctctcaaac cctgctgagg tggaggcggtt gagggagaag 1200
gtgtatgcgt cactagaagc gtactgaaa cacaagtacc ctgagcagcc gggcaggtt 1260
gccaagctgc tgctccgcct gcctgcactg cggtccatcg ggctcaagtg cctggagcac 1320
ctgttcttct tcaagctcat cggggacacg cccatcgaca ctttcctcat ggagatgctg 1380
gaggcaccac atcaagccac ctag 1404

<210> 63
<211> 467
<212> PRT
<213> Mus musculus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 63

Met Asp Thr Lys His Phe Leu Pro Leu Asp Phe Ser Thr Gln Val Asn
1 5 10 15

Ser Ser Ser Leu Asn Ser Pro Thr Gly Arg Gly Ser Met Ala Val Pro
20 25 30

Ser Leu His Pro Ser Leu Gly Pro Gly Ile Gly Ser Pro Leu Gly Ser
35 40 45

Pro Gly Gln Leu His Ser Pro Ile Ser Thr Leu Ser Ser Pro Ile Asn
50 55 60

Gly Met Gly Pro Pro Phe Ser Val Ile Ser Ser Pro Met Gly Pro His
65 70 75 80

Ser Met Ser Val Pro Thr Thr Pro Thr Leu Gly Phe Gly Thr Gly Ser
85 90 95

Pro Gln Leu Asn Ser Pro Met Asn Pro Val Ser Ser Thr Glu Asp Ile
100 105 110

Lys Pro Pro Leu Gly Leu Asn Gly Val Leu Lys Val Pro Ala His Pro
115 120 125

Ser Gly Asn Met Ala Ser Phe Thr Lys His Ile Cys Ala Ile Cys Gly
130 135 140

Asp Arg Ser Ser Gly Lys His Tyr Gly Val Tyr Ser Cys Glu Gly Cys
145 150 155 160

Lys Gly Phe Phe Lys Arg Thr Val Arg Lys Asp Leu Thr Tyr Thr Cys
165 170 175

Arg Asp Asn Lys Asp Cys Leu Ile Asp Lys Arg Gln Arg Asn Arg Cys
180 185 190

Gln Tyr Cys Arg Tyr Gln Lys Cys Leu Ala Met Gly Met Lys Arg Glu
195 200 205

Ala Val Gln Glu Glu Arg Gln Arg Gly Lys Asp Arg Asn Glu Asn Glu
210 215 220

Val Glu Ser Thr Ser Ser Ala Asn Glu Asp Met Pro Val Glu Lys Ile
225 230 235 240

Leu Glu Ala Glu Leu Ala Val Glu Pro Lys Thr Glu Thr Tyr Val Glu
245 250 255

Ala Asn Met Gly Leu Asn Pro Ser Ser Pro Asn Asp Pro Val Thr Asn
260 265 270

Ile Cys Gln Ala Ala Asp Lys Gln Leu Phe Thr Leu Val Glu Trp Ala
275 280 285

Lys Arg Ile Pro His Phe Ser Glu Leu Pro Leu Asp Asp Gln Val Ile
290 295 300

Leu Leu Arg Ala Gly Trp Asn Glu Leu Leu Ile Ala Ser Phe Ser His
305 310 315 320

Arg Ser Ile Ala Val Lys Asp Gly Ile Leu Leu Ala Thr Gly Leu His
325 330 335

Val His Arg Asn Ser Ala His Ser Ala Gly Val Gly Ala Ile Phe Asp
340 345 350

Arg Val Leu Thr Glu Leu Val Ser Lys Met Arg Asp Met Gln Met Asp
355 360 365

Lys Thr Glu Leu Gly Cys Leu Arg Ala Ile Val Leu Phe Asn Pro Asp
370 375 380

Ser Lys Gly Leu Ser Asn Pro Ala Glu Val Glu Ala Leu Arg Glu Lys
385 390 395 400

Val Tyr Ala Ser Leu Glu Ala Tyr Cys Lys His Lys Tyr Pro Glu Gln
405 410 415

Pro Gly Arg Phe Ala Lys Leu Leu Leu Arg Leu Pro Ala Leu Arg Ser
420 425 430

Ile Gly Leu Lys Cys Leu Glu His Leu Phe Phe Phe Lys Leu Ile Gly
435 440 445

Asp Thr Pro Ile Asp Thr Phe Leu Met Glu Met Leu Glu Ala Pro His
450 455 460

Gln Ala Thr
465

<210> 64
<211> 309
<212> DNA
<213> Simian virus 40

<220>
<221> misc_feature
<223> Novel Sequence

<400> 64
ggtgtggaaa gtcggccaggc tccccagcag gcagaagtat gcaaaaggcatg catctcaatt 60
agtccagcaac caggtgtgga aagtccccag gctccccagc aggcagaagt atgcaaagca 120
tgcatctcaa ttagtcagca accatagtcc cgccccatac tccggccatc ccggccctaa 180
ctccggccag ttccggccat tctccggccc atggctgact aattttttt atttatgcag 240
aggccgaggc cgccctcgcc tctgagctat tccagaagta gtgaggaggc ttttttgag 300

<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic E1b minimal promoter

<220>
<221> misc_feature
<223> Novel Sequence

<400> 65
tatataatgg atccccgggt accg 24

<210> 66
<211> 1653
<212> DNA
<213> Photinus pyralis

<220>
<221> misc_feature
<223> Novel Sequence

<400> 66
atggaagacg ccaaaaacat aaagaaaaggc cggcgccat tctatcctct agaggatgga 60
accgctggag agcaactgca taaggctatg aagagatacg ccctggttcc tggaacaatt 120
gctttacag atgcacatat cgaggtgaac atcacgtacg cgaaatactt cgaaatgtcc 180
gttcgggtgg cagaagctat gaaacgatat gggctgaata caaatcacag aatcgtcgta 240
tgcagtgaaa actctcttca attctttatg ccgggtgg gcgcgttatt tatcggagtt 300
gcagttgcgc ccgcgaacga cattataat gaacgtgaat tgctcaacag tatgaacatt 360
tcgcagccca ccgttagtggt tgttccaaa aaggggttgc aaaaaatttt gaacgtgcaa 420
aaaaaattac caataatcca gaaaattatt atcatggatt ctaaaacgga ttaccaggga 480
tttcagtcga tgtacacgtt cgtcacatct catctacctc ccgggtttaa tgaatacgt 540
tttgtaccag agtcctttga tcgtgacaaa acaattgcac tgataatgaa ttcctctgga 600
tctactgggt tacctaaggg tgtggccctt ccgcataagaa ctgcctgcgt cagattctcg 660
catgccagag atcctatattt tggcaatcaa atcattccgg atactgcgtat tttaagtgtt 720
gttccattcc atcacggttt tggaatgttt actacactcg gatatttgat atgtggattt 780

cgagtcgtct taatgtata tagttaaagaa gagctgttt tacgatccct tcaggattac 840
aaaattcaaa gtgcgttgct agtaccaacc ctatttcat tcttcgc当地 aagcactctg 900
attgacaaat acgatttatac taatttacac gaaattgctt ctgggggc当地 acctcttc当地 960
aaagaagt当地 ggaaagc当地 tgcaaaacgc ttccatctt cagggatacg acaaggat当地 1020
gggctcactg agactacatc agctattctg attacacccg agggggatga taaaccggc当地 1080
gc当地 ggta aagttgtcc atttttgaa gc当地 aaggttt当地 tggatctgga taccgg当地 1140
acgctggcg ttaatcagag aggcaatta tgtgtcagag gacctatgat tatgtcc当地 1200
tatgtaaaca atccggaagc gaccaacgccc ttgattgaca aggatggatg gctacattct 1260
ggagacatag ct当地 actggga cgaagacgaa cacttcttca tagttgaccg cttgaagtc当地 1320
ttaattaaat acaaaggata tc当地 aggtggcc cccgctgaat tggatcgat attgtt当地 1380
caccccaaca tcttc当地 acgc当地 gggc当地 tggca ggtcttccc当地 acgatgacgc cggtaactt 1440
cccgccgccc ttgtt当地 ttggagcacgga aagacgatga cg当地 aaaaaga gatc当地 gtggat 1500
tacgtc当地 cca gtcaagtaac aaccgc当地 aagttgc当地 gaggagttgt gttt当地 gtggac 1560
gaagtaccga aaggtcttac cggaaaactc gacgcaagaa aaatcagaga gatc当地 ct当地 1620
aaggccaaga agggc当地 gaaa gtccaaattt当地 taa 1653

<210> 67
<211> 867
<212> DNA
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 67
aagcgagagg cggc当地 gcaaga ggagc当地 cc当地 aggaatgctc gc当地 ggcc当地 cgg当地 ggatg当地 cgc当地 cac 60
ccgagtagct cggc当地 gaggt aagcgatgag ctgtcaatcg agc当地 cct当地 taac ggagatggag 120
tctttggc当地 cagatccc当地 ag cggaggatcc cagttcc当地 cc当地 gc当地 tggggcc当地 tgacagcaac 180
gtgc当地 ccc当地 ac cttaccgc当地 gc当地 cctcc当地 tccctctgcc当地 aaataggcaa caagcaaata 240
gc当地 ggcc当地 ttggc当地 tggatggcc当地 gc当地 gc当地 acatc cctc当地 atttgc当地 ggatg当地 gctggacgat 300
caagtggta ccatcaaggc ctc当地 ct当地 ggaaat gagctgctac tcttc当地 gcccat cgc当地 ct当地 ggcc当地 360
tctatggagttt当地 gggatggcc当地 aacggggacg gaacgc当地 ggag caccactc当地 ag 420
ccacaactga tggc当地 tctcat gc当地 ct当地 ggccatg acgttgc当地 acc caccactc当地 ag 480

Sequence Database

ggcgtggcg ccatcttcga ccgcgtgctg tccgagctca gtctgaagat gcgcacctg 540
cgcattggacc aggccgagta cgtcgcgctc aaagccatcg tgctgctcaa ccctgatgtg 600
aaaggactga agaatcggca agaagttgac gtttgcgag aaaaaatgtt ctcttgccctg 660
gacgactact gccggcggtc gcgaagcaac gaggaaggcc ggtttgcgtc cttgctgctg 720
cggtgccag ctctccgctc catctcgctc aagagcttcg aacacctcta cttttcac 780
ctcgtggccg aaggctccat cagcggatac atacgagagg cgctccgaaa ccacgcgcct 840
ccgatcgacg tcaatgccat gatgtaa 867

<210> 68
<211> 619
<212> DNA
<213> Cytomegalovirus

<220>
<221> misc_feature
<223> Novel Sequence

<400> 68
cgttacataa cttacggtaa atggccgc tggctgaccc cccaacgacc cccgcccatt 60
gacgtcaata atgacgtatg ttcccatagt aacgccaata gggacttcc attgacgtca 120
atgggtggag tatttacggt aaactgccc cttggcagta catcaagtgt atcatatgcc 180
aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt atgcccagta 240
catgaccta tggacttcc ctacttggca gtacatctac gtattagtca tcgctattac 300
catggtgatg cggtttggc agtacatcaa tggcgtgga tagcggttg actcacgggg 360
atttccaagt ctccacccca ttgacgtcaa tggagtttgc ttttggcacc aaaatcaacg 420
ggactttcca aaatgtcgta acaactccgc cccattgacg caaatggcg gttaggcgtgt 480
acggtgtggag gtcttatataa gcagagctcg ttttagtgaac cgtagatcg cctggagacg 540
ccatccacgc tggggacc tccatagaag acaccggac cgatccagcc tccgcggccg 600
ggAACGGTGC ATTGGAACG 619

<210> 69
<211> 262
<212> DNA
<213> Rous sarcoma virus

<220>
<221> misc_feature

<223> Novel Sequence

<400> 69
atgttagtctt atgcaataact cttgttagtct tgcaacatgg taacgatgag ttagcaacat 60
gccttacaag gagagaaaaa gcaccgtgca tgccgatagg tggaagtaag gtggtagat 120
cgtgccttat taggaaggca acagacgggt ctgacatgga ttggacgaac cactgaattc 180
cgcattgcag agatattgtt tttaaatgcc tagctcgata caataaacgc catttgacca 240
ttcaccacat tggagtgcac ct 262

<210> 70
<211> 1247
<212> DNA
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 70
tctatttcct caggccgtga ggaactgtcg ccagcttcaa gtataaatgg gtgcagtaca 60
gatggcgagg cacgacgtca gaagaaggc cctgcgcccc gtcagcaaga ggaactgtgt 120
ctggtatgcg gggacagagc ctccggatac cactacaatg cgctcacgtg tgaagggtgt 180
aaagggttct tcagacggag tgttacccaa aatgcggttt atatttgtaa attcggtcac 240
gcttgcaaa tggacatgta catgcacgg aaatgccagg agtgcgcct gaagaagtgc 300
ttagctgttag gcatgaggcc tgagtgcgtt gtacccgaga ctcagtgcgc catgaagcgg 360
aaagagaaga aagcacagaa ggagaaggac aaactgcctg tcagcacgac gacggtgac 420
gaccacatgc cgcccattat gcagtgtgaa cctccacctc ctgaagcagc aaggattcac 480
gaagtggtcc caaggttct ctccgacaag ctgttggaga caaaccggca gaaaaacatc 540
ccccagttga cagccaaacca gcagttcctt atcgccaggc tcatactggta ccaggacgg 600
tacgagcagc cttctgtatga agatttgaag aggattacgc agacgtggca gcaagcggac 660
gatgaaaacg aagagtctga cactcccttc cgccagatca cagagatgac tatcctcact 720
gtccaactta tcgtggagtt cgcaaggga ttgccagggt tcgccaagat ctcgcagcct 780
gatcaaatta cgctgcttaa ggcttgctca agtgaggtaa tgatgctccg agtcgcgcga 840
cgatacgatg cggcctcaga cagtgttctg ttgcgaaca accaagcgtt cactcgac 900
aactaccgca aggctggcat ggcctacgtc atcgaggatc tactgcactt ctgcgggtgc 960

atgtactcta tggcggttggaa caacatccat tacgcgctgc tcacggctgt cgtcatctt 1020
tctgaccggc cagggttggaa gcagccgcaa ctgggtggaaag aaatccagcg gtactacctg 1080
aatacgctcc gcatctataat cctgaaccag ctgagcgggt cggcgcgttc gtccgtcata 1140
tacggcaaga tcctctcaat cctctctgag ctacgcacgc tcggcatgca aaactccaac 1200
atgtgcatct ccctcaagct caagaacaga aagctgccgc ctttcct 1247

<210> 71
<211> 440
<212> PRT
<213> Choristoneura fumiferana

<220>
<221> misc_feature
<223> Novel Sequence

<400> 71

Ser Ile Ser Ser Gly Arg Glu Glu Leu Ser Pro Ala Ser Ser Ile Asn
1 5 10 15

Gly Cys Ser Thr Asp Gly Glu Ala Arg Arg Gln Lys Lys Gly Pro Ala
20 25 30

Pro Arg Gln Gln Glu Glu Leu Cys Leu Val Cys Gly Asp Arg Ala Ser
35 40 45

Gly Tyr His Tyr Asn Ala Leu Thr Cys Glu Gly Cys Lys Gly Phe Phe
50 55 60

Arg Arg Ser Val Thr Lys Asn Ala Val Tyr Ile Cys Lys Phe Gly His
65 70 75 80

Ala Cys Glu Met Asp Met Tyr Met Arg Arg Lys Cys Gln Glu Cys Arg
85 90 95

Leu Lys Lys Cys Leu Ala Val Gly Met Arg Pro Glu Cys Val Val Pro
100 105 110

Glu Thr Gln Cys Ala Met Lys Arg Lys Glu Lys Lys Ala Gln Lys Glu
115 120 125

Lys Asp Lys Leu Pro Val Ser Thr Thr Val Asp Asp His Met Pro

130

135

140

Pro Ile Met Gln Cys Glu Pro Pro Pro Pro Glu Ala Ala Arg Ile His
145 150 155 160

Glu Val Val Pro Arg Phe Leu Ser Asp Lys Leu Leu Glu Thr Asn Arg
165 170 175

Gln Lys Asn Ile Pro Gln Leu Thr Ala Asn Gln Gln Phe Leu Ile Ala
180 185 190

Arg Leu Ile Trp Tyr Gln Asp Gly Tyr Glu Gln Pro Ser Asp Glu Asp
195 200 205

Leu Lys Arg Ile Thr Gln Thr Trp Gln Gln Ala Asp Asp Glu Asn Glu
210 215 220

Glu Ser Asp Thr Pro Phe Arg Gln Ile Thr Glu Met Thr Ile Leu Thr
225 230 235 240

Val Gln Leu Ile Val Glu Phe Ala Lys Gly Leu Pro Gly Phe Ala Lys
245 250 255

Ile Ser Gln Pro Asp Gln Ile Thr Leu Leu Lys Ala Cys Ser Ser Glu
260 265 270

Val Met Met Leu Arg Val Ala Arg Arg Tyr Asp Ala Ala Ser Asp Ser
275 280 285

Val Leu Phe Ala Asn Asn Gln Ala Tyr Thr Arg Asp Asn Tyr Arg Lys
290 295 300

Ala Gly Met Ala Tyr Val Ile Glu Asp Leu Leu His Phe Cys Arg Cys
305 310 315 320

Met Tyr Ser Met Ala Leu Asp Asn Ile His Tyr Ala Leu Leu Thr Ala
325 330 335

Val Val Ile Phe Ser Asp Arg Pro Gly Leu Glu Gln Pro Gln Leu Val
340 345 350

Glu Glu Ile Gln Arg Tyr Tyr Leu Asn Thr Leu Arg Ile Tyr Ile Leu
355 360 365

Asn Gln Leu Ser Gly Ser Ala Arg Ser Ser Val Ile Tyr Gly Lys Ile
370 375 380

Leu Ser Ile Leu Ser Glu Leu Arg Thr Leu Gly Met Gln Asn Ser Asn
385 390 395 400

Met Cys Ile Ser Leu Lys Leu Lys Asn Arg Lys Leu Pro Pro Phe Leu
405 410 415

Glu Glu Ile Trp Asp Val Ala Asp Met Ser His Thr Gln Pro Pro Pro
420 425 430

Ile Leu Glu Ser Pro Thr Asn Leu
435 440

<210> 72

<211> 943

<212> DNA

<213> Renilla

<220>

<221> misc_feature

<223> Novel Sequence

<400> 72

atgacttcga aagtttatga tccagaacaa aggaaacgga tgataactgg tccgcagtgg 60

tggccagat gtaaacaaat gaatgttctt gattcattta ttaatttatta tgattcagaa 120

aaacatgcag aaaatgctgt tatttttta catggtaacg cggcctcttc ttatttatgg 180

cgacatgttgc tggcacatata tgagccagta gcgcggtgta ttataccaga ccttattgg 240

atgggcaaata caggcaaatac tggtaatggt tcttataaggta tacttgatca ttacaaataat 300

cttactgcattt ggttgaact tcttaattta ccaaagaaga tcattttgtt cggccatgat 360

tggggtgctt gtttggcatt tcattatagc tatgagcatc aagataagat caaagcaata 420

gttcacgctg aaagtgttagt agatgtgatt gaatcatggg atgaatggcc tgatattgaa 480

gaagatatttgcgttgcattt atctgaagaa ggagaaaaaaa tggtttgaa gaataacttc 540

ttcgtggaaa ccatgttgcc atcaaaaatc atgagaaaagt tagaaccaga agaatttgca 600

gcatatcttgcattt aaccattcaa agagaaaaggtaatgcgtc gtccaaacattt atcatggcct 660

cgtgaaatcc cgttagtaaa aggtggtaaa cctgacgttg tacaaattgt taggaattat 720

四庫全書

aatgcttatac tacgtgcaag tggatgattta cccaaaaatgt ttattgaatc ggacccagga	780
ttcttttcca atgctattgt tgaaggcgcc aagaagtttc ctaatactga atttgtcaaa	840
gtaaaaggc ttcatttttc gcaagaagat gcacctgatg aaatggaaa atatatcaa	900
tgcgttcgttg agcgagttct cccaaaatgaa caataattctt aga	943

```
<210> 73
<211> 530
<212> DNA
<213> Saccharomyces cerevisiae
```

<400> 73 cccattatac tttagcctaaa aaaacttct ctttggact ttcagtaata cgcttaactg 60
ctcattgcta tattgaagta cggttagaa gccgcccggc gggtgacagc cctccgaagg 120
aagactctcc tccgtgcgtc ctcgtttca ccggtcgcgt tcctgaaacg cagatgtgcc 180
tcgcgcgcga ctgctccgaa caataaagat tctacaatac tagctttat ggttatgaag 240
aggaaaaatt ggcagtaacc tggccccaca aaccttcaaa tgaacgaatc aaattaacaa 300
ccataggatg ataatgcgt tagttttta gccttatttc tggggtaatt aatcagcgaa 360
gcgtatgtttt ttgatctatt aacagatata taaatgcaaa aactgcataa ccactttaac 420
taataactttc aacatttcg gtttgtatta cttcttatttc aaatgtaata aaagtatcaa 480
caaaaaattq ttaatataacc tctatacttt aacqtcaaqq aqqaatttaaq 530

<210> 74
<211> 3157
<212> DNA
<213> Escherichia coli

```
<400> 74
atgggggtt ctcatcatca tcatacatcat ggtatggcta gcatgactgg tggacagcaa 60
atgggtcggg atctgtacga cgatgacgat aaggtaccta aggatcagct tggagtttat 120
cccgtcgttt tacaacgtcg tgactggaa aaccctggcg ttacccaact taatgcctt 180
gcagcacatc ccccttcgc cagctggcgt aatagcgaag aggcccccac cgatgcctt 240
tcccaacagt tgcgcagcct gaatggcgaa tggcgctttg cctgggttcc ggcaccagaa 300
gcggtgccgg aaagctggct ggagtgcgat ctccctgagg ccgatactgt cgtcgtcccc 360
tcaaaactggc agatgcacgg ttacgatgcg cccatctaca ccaacgtaac ctatcccatt 420
acggtcaatc cgccgttgt tcccacggag aatccgacgg gttgttactc gctcacattt 480
aatgtttagt aaagctggct acaggaaggc cagacgacgaa ttatTTTGA tggcgtaac 540
```

0
1
2
3
4
5
6
7
8
9

tcggcgttc atctgtggtg caacgggcgc tgggtcggtt acggccagga cagtcgtttg 600
ccgtctgaat ttgacctgag cgcatTTTA cgccggag aaaaccgcct cgccgtatg 660
gtgctgcgtt ggagtgacgg cagttatctg gaagatcagg atatgtggcg gatgagcggc 720
atTTCCGTG acgtctcgTT gctgcataaa ccgactacac aaatcagcga tttccatgtt 780
gccactcgct ttaatgatga tttcagccgc gctgtactgg aggctgaagt tcagatgtgc 840
ggcgagttgc gtgactacct acgggtaaca gtttCTTAT ggcagggtga aacgcaggTC 900
GCCAGCGGCA CCGCGCCTT CGGCggTGA ATTATCGATG AGCgtggTGG TTATGCCGAT 960
cgcgTCACAC tacgtctgaa cgtcgaaaAC ccgaaACTGT ggagcGCCGA aatcccgaat 1020
ctctatcgTG CGGTGGTTGA ACTGCACACC GCCGACGGCA CGCTGATTGA AGCAGAAGCC 1080
tgcgatgtcg GTTCCGCGA GGTGCGGATT GAAAATGGTC TGCTGCTGCT GAACGGCAAG 1140
ccgTTGCTGA TTCGAGGCgt TAACCGTCAC GAGCATCATC CTCTGCTGG TCAGGTCTG 1200
gatgagcaga CGATGGTGCA GGATATCCTG CTGATGAAGC AGAACAACTT TAACGCCGTG 1260
cgctgttcgc ATTATCCGAA CCATCCGCTG TGGTACACGC TGTGCGACCG CTACGCCCTG 1320
tatgtggTgg ATGAAGCCAA TATTGAAACC CACGGCATGG TGCCAATGAA TCGTCTGACC 1380
gatgatccgc GCTGGCTACC GGCATGAGC AACCGCTAA CGCGAATGGT GCAGCGCGAT 1440
cgtaatcacc CGAGTGTGAT CATCTGGTCG CTGGGGATG AATCAGGCCA CGGCgCTAAT 1500
cacgacgcgc TGTATCGCTG GATCAAATCT GTGATCCTT CCCGCCGGT GCAGTATGAA 1560
ggcggcggag CCGACACCAc GGCCACCGAT ATTATGCC CGATGTACGC GCGCGTGGAT 1620
gaagaccAGC CCTTCCGGC TGTGCCAAA TGGTCCATCA AAAAATGGCT TTCGCTACCT 1680
ggagagacgc GCCCGCTGAT CCTTGCGAA TACGCCACG CGATGGGTA CAGTCTGGC 1740
ggTTTCGCTA AATACTGGCA GGCgtttcgt CAGTACCCC GTTACAGGG CGGCTTCGTC 1800
tgggactggg TGGATCAGTC GCTGATTTAA TATGATGAAA ACGGCAACCC GTGGTCGGCT 1860
tacggcggtg ATTtTGGCGA TACGCCGAAC GATGCCAGT TCTGTATGAA CGGTCTGGTC 1920
tttGCCGACC GCAcGCCGCA TCCAGCGCTG ACGGAAGCAA AACACCAAGCA GCAGTTTTC 1980
cagttccgtt TATCCGGGCA AACCATCGAA GTGACCAGCG AATACTGTT CCgtCATAGC 2040
gataacgagc TCCTGCACTG GATGGTGGCG CTGGATGGTA AGCCGCTGGC AAGCGGTGAA 2100
gtgcctctgg ATGTCGCTCC ACAAGGTAAA CAGTTGATTG AACTGCCTGA ACTACCGCAG 2160
ccggagagcg CCGGGCAACT CTGGCTCACa GTACCGCTAG TGCAACCGAA CGCGACCGCA 2220

DRAFT 20060707

tggtcagaag ccgggcacat cagcgcctgg cagcagtggc gtctggcgga aaacctcagt 2280
gtgacgctcc cgcgcgcgtc ccacgccatc ccgcatactga ccaccagcga aatggatttt 2340
tgcatacgagc tggtaataa gcgttggcaa tttaaccgcc agtcaggctt tctttcacag 2400
atgtggattg gcgataaaaaa acaactgctg acgcccgtgc gcgcgtcgtt caccctgtca 2460
ccgctggata acgacattgg cgtaagtgaa gcgacccgca ttgaccctaa cgcctgggtc 2520
gaacgctgga aggccggcggg ccattaccag gccgaagcag cggttggca gtgcacggca 2580
gatacacttg ctgatgcggt gctgattacg accgctcacg cgtggcagca tcaggggaaa 2640
accttattta tcagccggaa aacctaccgg attgatggta gtggtaaat ggcgattacc 2700
gttgatgttg aagtggcgag cgatacaccg catccggcgc ggattggcct gaactgccag 2760
ctggcgcagg tagcagagcg ggttaactgg ctcggattag ggccgcaaga aaactatccc 2820
gaccgcctta ctgcccctg tttgaccgc tggatctgc cattgtcaga catgtataacc 2880
ccgtacgtct tccccgagcga aaacggtctg cgctgcggga cgccgcgtt gaattatggc 2940
ccacaccagt ggccgcggcga cttccagttc aacatcagcc gctacagtca acagcaactg 3000
atggaaacca gccatcgcca tctgctgcac gcggagaag gcacatggct gaatatcgac 3060
ggttccata tggggattgg tggcgacgac tcctggagcc cgtcagtatc ggcggaaatta 3120
cagctgagcg ccggtcgcta ccattaccag ttggtct 3157

<210> 75
<211> 185
<212> DNA
<213> Escherichia coli

<400> 75
gtccagggtcc atatctaattt tacctcgac tgctgtatataaaaccagggtt gtttatatgtta 60
cagtactgct gtatataaaaa ccagtggta tatgtacagt acgtcgactg ctgtatataa 120
aaccagggtt tatatgtaca gtactgctgt atataaaacc agtggttata tgtacagtac 180
gtcga 185