

课程简介
1. 微不分? 主要计算 拉拉时间
2. 刷题
3. 关于答疑课
4. 如何提问
二、正验
1. \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
HX∈A 背有 X ∈ X α 上界
上确界是上界中最小值: 假设上界中 β< α, α-β>0
$\forall x \in A$ $x \in B$
$\forall \varepsilon = \alpha - \beta$, 由定义 $\exists x_1 \in A$ st. $x_1 > \alpha - \varepsilon = \beta$
∀] St. ∀× ∈A 都南 X ∈ 户 矛盾
任取 存在 使得
唱跳 rap 篮球
2. 承整 P6
$\forall x \in \mathbb{R}$, $\exists m \in \mathbb{Z}$, $st. m \in X < m + 1$
OA= {n nex, nez} x是A-仁界
⇒ SupA存在=X
@ m frox 3.7469 => 3 Lite
数学活言
类地: √区 ⇒ 人话 计算机
反证: α 假设不是整数 α
$B = La, \alpha) \cap A$
AP

目的:构造有限元素集合 > 上下确界即最大,少值

3. 数学归纳宏

Bernoulli 顶等式
$$(1+X_1)$$
 … $(1+X_k) \ge 1+X_1 + \dots + X_k$
 $X_1 = \dots = X_k = X$ \Rightarrow $(1+X)^k \ge 1+kX$
 a^k a^k

$$\frac{Q_1 + Q_2 + \cdots + Q_n}{\eta} \geqslant \sqrt{Q_1 Q_2 \cdots Q_n}$$

$$\mathbb{O}$$
 $n=2$ ····

日
$$n=k$$
 假設新介已知 $\left(\frac{q_1+\cdots q_k}{k}\right) \ge q_1\cdots q_k$
 $3n=k+1$ 左边 = $\left(\frac{q_1+\cdots q_{k+1}}{k+1}\right)^{k+1}$

3
$$n=k+1$$
 $E_j b = \left(\frac{q_1 + \cdots + q_{k+1}}{k+1}\right)^{k+1}$

$$= \left(\frac{a_1 + \cdots + a_k}{k} - \frac{a_1 + \cdots + a_k}{k(k+1)} + \frac{a_{k+1}}{k+1}\right)^{k+1}$$

$$= \left(\overline{a_k} + \frac{a_{k+1} - \overline{a_k}}{k+1}\right)^{k+1}$$

 $(a+b)^k \geqslant a^k + ka^{k-1}b$

$$= \left(\overline{a_k}\right)^{k+1} + \left(k+1\right) \left(\frac{a_{k+1} - \overline{a_k}}{k+1}\right) \left(\overline{a_k}\right)^k$$

$$\overline{Q}_{k} = \frac{a_{i} + \cdot \cdot + a_{k}}{k} = \overline{Q}_{k}^{k} + \overline{Q}_{k}^{k} - \overline{Q}_{k}^{k} - \overline{Q}_{k}^{k}$$

$$= \overline{Q}_{k+1} \cdot \overline{Q}_{k}^{k} \ge \overline{Q}_{k+1} \cdot \overline{Q}_{k}^{k} - \overline{Q}_{k}^{k+1}$$

C型戴德金分割 A= {x \in Q | x 2 < z \overline{x} x < 0 }, A' = {x \in Q | x > 0 \overline{A} x^2 > 2} 证:A中元最大,A个元最小 の ¥9>0 且 9°<2, In ∈N+ st (9+前)°<2 $\frac{9^2+\frac{29}{n}+\frac{1}{h^2}<2}{1}$ $9^2 + \frac{29}{n} + \frac{1}{n} < 2$ $n > \frac{1+29}{2-9^2}$ ② $\forall 9>0$ 且 $9^2>2$, $\exists n \in N_+ \text{ st } (9-\frac{1}{h})^2>2$ $\frac{q^2 - \frac{24}{n} + \frac{1}{n^2}}{1} > 2$ $n > \sqrt{\frac{29}{9-5}}$