

PREDICTING DIABETES

Sami Chowdhury, Yiannis Pagkalos, Lauren Christiansen, Mei Kam Bharadwaj , Dhwani Patel

Table of contents

O1Executive
Summary

Goals and Questions

Data Collection and Cleanup

Approach/Issues and Resolution

Results/ Conclusion

Potential Next Steps

 Our project goal was to determine how key datapoints (BMI, high blood pressure, cholesterol, stroke, heart disease/attack, physical activity level, general health level, physical health level, difficulty walking scale, age, education level, income level) relate to the diagnosis of diabetes in different patients.

 We used this underlying data to create and train machine learning models to easily predict whether a patient would be diagnosed.

GOALS/QUESTIONS

Our aim was to identify and utilize the most impactful datapoints (e.g., BMI, blood pressure, cholesterol, lifestyle factors) to improve our model's accuracy and reliability on predicting a diabetes diagnosis.

Questions:

- 1. Which dataset is best to train our model (number of features, rows and quality)?
- 2. Which features are most strongly correlated to diabetes diagnoses, and how do they contribute to the model's predictions?
- 3. What are the models that will produce the best accuracy scores?
- 4. How can we finetune the selected models to amplify accuracy scores?

DATA COLLECTION / CLEAN UP

- Collected at the following Kaggle link by Alex Teboul
- Obtained from the Behavioral Risk Factor Surveillance System (BRFSS), an annual telephone survey that is collected annually by the CDC.
- The features are either questions asked of participants or variables calculated based on their responses. The dataset includes the following:
 - ['Diabetes_binary', 'HighBP', 'HighChol', 'CholCheck', 'BMI', 'Smoker', 'Stroke', 'HeartDiseaseorAttack', 'PhysActivity', 'Fruits', 'Veggies', 'HvyAlcoholConsump', 'AnyHealthcare', 'NoDocbcCost', 'GenHlth', 'MentHlth', 'PhysHlth', 'DiffWalk', 'Sex', 'Age', 'Education', 'Income']

APPROACH

- Data was already balanced, cleaned for nulls (Keggle included both balanced and unbalanced versions of the data)
- Required encoding of a few set features (BMI condensed to scientific classifications from Underweight to Obesity 3, and initially also encoded AGE, INCOME, EDUCATION)
- In the end, we only encoded BMI and kept the original groupings of AGE,
 INCOME, and EDUCATION as this ended up producing better results
- Initially we did not remove features that were not strongly correlated to the results. Eventually removing those improved our model performance.
- Data was scaled since we had many ordinal encoders, all categorical and ordered
- Finally, we run GridSearchCV for all the models to further optimize performance by identifying model parameters that could help

Given the nonlinear classification of the data, we experimented with the following models below. After all optimizations the following results were achieved:

- Decision Tree: 74.5%
- KNeighborsClassifier: 73.9%
- Logistic Regression: 75.2%
- RandomForestClassifier: 75.4
- XGBClassifier: 75.6%

- The biggest improvements were achieved in the Decision Tree and the Random Forest model after the GridSearch optimization
- Interestingly, KNN and LGR models performed slightly worse after we ungrouped the Age, Education and Income categories.
- Similarly, XBoost performed better before GridSearch but only marginally.

DECISION TREE

	Predicted 0	Predicted 1	Accuracy	
Actual 0	6240	2607	Test sco Train Sc	re: 0.67 ore: 0.93
Actual 1	3246	5580		
Classific	cation Repor		l f1-score	support
	0.0	.66 0.7	1 0.68	8847
	1.0	.68 0.6	3 0.66	8826
accur macro weighted	avg 0	.67 0.6 .67 0.6		17673 17673 17673

GridSearchCV

	Predicted 0	Predicted 1		y: 0.745		
Actual 0s	6336	2511		ore: 0.745		
Actual 1s	1995	6831	Train S	core: 0.745		
laccificat	ion Donort					
. tassiricat	ion Report		£4			
	precisio	on recall	f1-score	support		
0.	0 0.7	76 0.72	0.74	8847		
1.	0 0.7	73 0.77	0.75	8826		
20011520	24		0.75	17673		
accurac						
macro av	/g 0.7	75 0.75	0.74	17673		
weighted av	/g 0.7	75 0.75	0.74	17673		
{'max_depth	n': 7, 'min_	_samples_leaf	:': 1, 'min_	_samples_split	: 2}	
best score	0 738					

No parameters specified

 Specifying the additional parameters (max depth, min sample leaf and min sample split gives a significant improvement in accuracy: -(from 67% to 74.5%)

	Predicted 0	Predict	cu i	Accuracy	
Actual 0s	6239	2	608		re: 0.739 ore: 0.763
Actual 1s	1997	6	829		
	precis	t ion re	call f	1-score	support
	precis		call f	1-score	support
0.		ion re	ecall f	1-score 0.73	support 8847
	.0 0.	ion re			
	.0 0.	ion re	0.71	0.73 0.75	8847 8826
	.0 0.	ion re	0.71	0.73	8847
1.	.0 0.	ion re	0.71	0.73 0.75	8847 8826

- Training and Test scores converged as k increased
- k=15 seems the best choice for this dataset
- For k=15 accuracy= 73.9%

<u>GridSearchCV</u>

Pı	redicted 0	Predicted 1	A course	0 720			
Actual 0s	6239	2608		cy: 0.739 core: 0.7			
Actual 1s	1997	6829	Train S	Score: 0.	763		
Classificati	on Report						
	precision	n recall	f1-score	support			
	0.7	. 0.71	0.70	0047			
0.0				8847			
1.0	0.72	2 0.77	0.75	8826			
accuracy			0.74	17673			
macro avg		0.74					
weighted avg				17673			
{'algorithm'	: 'auto',	'metric': 'e	uclidean',	'n_neighbo	rs': 15,	'weights'	': 'uniform'}
best score 0	.733						

Additional parameter setting did not improve the model score (algorithm, metric, weights)

Max achieved accuracy - 73.9%

LOGISTIC REGRESSION

Confusion Matrix Predicted 0 Predicted 1 Accuracy: Test scor Actual 0s 6513 2334 Train Sco

2045

precision

Accuracy: 0.752 Test score: 0.752 Train Score: 0.745

support

Classification Report

Actual 1s

accur macro weighted

0.0	0.76	0.74	0.75	8847
1.0	0.74	0.77	0.76	8826
racy			0.75	17673
avg	0.75	0.75	0.75	17673
ava	0.75	0.75	0.75	17673

recall f1-score

6781

<u>GridSearchCV</u>

Pı	edicted 0 F	Predicted 1		cy: 0.752		
Actual 0s	6513	2334		core: 0.' Score: 0		
Actual 1s	2045	6781	114111	00010: 0	. , 10	
Classificati	on Report					
	precision	recall	f1-score	support		
	0.70	0.74	0.75	0047		
0.0	0.76	0.74	0.75	8847		
1.0	0.74	0.77	0.76	8826		
accuracy			0.75	17673		
		0.75				
macro avg						
weighted avg	0.75	0.75	0.75	17673		
{'C': 0.1, '	max_iter':	100, 'penal	ty': 'l2',	'solver':	'liblinear'}	
best score 0	.744					

random_state=1, max_iter=100

- Additional parameter setting did not improve performance:
- Max Accuracy = 75.2%

F	redicted 0	Predicted 1	Accuracy:	
Actual 0s	6393	2454	Test score: 0.742 Train Score: 0.73	
Actual 1s	2112	6714	114111 200	10. 0.700
Classificat:	precisio		f1-score	support 8847
1.0			0.75	8826
accuracy	y		0.74	17673
macro av	-		0.74	17673
weighted av	g 0.7	74 0.74	0.74	17673

random state=1, n estimators=500, max depth=3

<u>GridSearchCV</u>

Р	redicted 0	Predicted 1	Accuracy	
Actual 0s	6351	2496		re: 0.754 ore: 0.776
Actual 1s	1855	6971	114111 50	010. 0.770
Classification Report precision recall f1-score support				
0.0	0.7	7 0.72	0.74	8847
1.0	0.7	4 0.79	0.76	8826
accuracy		16 A 75	0.75	17673
macro avo	•		0.75 0.75	17673 17673
{'max_depth': 11, 'n_estimators': 1000}				

Increasing max depth to 11 from 3 and n_estimatros from 500 to 1000, resulted in a modest increase in accuracy (from 74.2% to 75.4%)

	nub	003	
	Predicted 0	Predicted 1	7.00m20m. 0 75
Actual 0s	6322	2525	Accuracy: 0.75 Test score: 0.
Actual 1s	1782	7044	Train Score: 0

Classificatio	on Report precision	recall	f1-score	support
0.0 1.0	0.78 0.74	0.71 0.80	0.75 0.77	8847 8826
accuracy macro avg weighted avg	0.76 0.76	0.76 0.76	0.76 0.76 0.76	17673 17673 17673

<u>GridSearchCV</u>

Pro	edicted 0 Pre	edicted 1			
Actual 0s	6317	2530	Accuracy: 0.755		
Actual 1s	1798	7028	Test score: 0.755		
			Train Score: 0.752		
Classification Report					
	precision	recall	f1-score support		
0.0	0.78	0.71	0.74 8847		
1.0	0.74	0.80	0. 76 8826		
accuracy			0. 76 17673		
macro avg	0.76	0.76	0. 75 17673		
weighted avg	0.76	0.76	0. 75 17673		
['learning_ra	ite': 0.2, 'm	ax_depth'	: 3, 'n_estimators': 100]		
oest score 0.	748				

xgb model = XGBClassifier(random state=1,

learning_rate=0.05, n_estimators=1000, max_depth=3)

Interestingly, GridSearchCV results in a slightly less accurate model. Our initial parameter setting (learning rate = 0.05 vs 2 n_estimators = 1000 vs 100 and max depth 3 (same) give the best result from all our efforts:

Accuracy of 75.6%

POTENTIAL NEXT STEPS

- We could explore more datasets that include health indicators such as HbA1C (hemoglobin A1C) and fast blood sugar test (FBS).
 - HbA1C test measures the average blood sugar (glucose) level over the past 60-90 days.
 A fasting blood sugar test measures the blood sugar levels first thing in the morning before the patient breaks their fast.
 - If the patient's blood sugar is high, then it indicates that patient has difficulties breaking down sugar in their body.
- +
- It is best to look at a dataset that includes both HbA1C and FBS data. HbA1C tests are less sensitive compared to the FBS test, but provides a more comprehensive story on the patient's blood sugar over a period of months.
- In practice, both tests are used in the office to get a more accurate diagnosis of diabetes.
- We could experiment with more models and/or model parameter tuning

DATA CORRELATION MATRIX

	Diabetes_binary
Diabetes_binary	1.000000
HighBP	0.381516
HighChol	0.289213
CholCheck	0.115382
ВМІ	0.293373
Smoker	0.085999
Stroke	0.125427
HeartDiseaseorAttack	0.211523
PhysActivity	-0.158666
Fruits	-0.054077
Veggies	-0.079293
HvyAlcoholConsump	-0.094853
AnyHealthcare	0.023191
NoDocbcCost	0.040977
GenHlth	0.407612
MentHlth	0.087029
PhysHlth	0.213081
DiffWalk	0.272646
Sex	0.044413
Age	0.278738
Education	-0.170481
Income	-0.224449

Columns

Column Descriptions

- 1. Diabetes_binary: 0 = no diabetes 1 = prediabetes or diabetes
- 2. HighBP: 0 = no high BP 1 = high BP
- 3. HighChol: 0 = no high cholesterol 1 = high cholesterol
- 4. CholCheck: 0 = no cholesterol check in 5 years 1 = yes cholesterol check in 5 years
- 5. BMI: Body Mass Index

BMI CLASSIFICATION


```
BMI
def BMI classification(x):
    if x < 18.5:
        return "Underweight"
    elif x > 18.5 and x <=24.9:
        return "Normal"
    elif x > 24.9 and x <= 29.9:
        return "Overweight"
    elif x > 29.9 and x <= 34.9:
        return "Obesity 1"
    elif x > 34.9 and x <= 39.9:
        return "Obesity 2"
    elif x > 39.9:
        return "Obesity 3"
diabetes_df['BMI'] = diabetes_df['BMI'].apply(BMI_classification)
diabetes_df['BMI'].value_counts()
BMI
Overweight
               24135
Obesity 1
               17301
Normal
               14460
Obesity 2
                8112
                6031
Obesity 3
Underweight
                 653
Name: count, dtype: int64
```


