# Advanced architectures with AWS Transit Gateway

Tech Talk

Tom Adamski Specialist Solutions Architect, Networking

Mar 2020



#### Agenda

- AWS Transit Gateway Recap
- Integrating Security Appliances
  - Egress Filtering
  - Ingress Filtering
  - VPC to VPC filtering
- Preserving IPv4 address space



# **AWS Transit Gateway Recap**



#### AWS Transit Gateway

Interconnecting VPCs at scale

Consolidating edge connectivity

Flexibility with routing domains





#### **AWS Transit Gateway Overview**



#### AWS Transit Gateway Routing - Association



#### Requirement:

- VPC 1 and VPC 2 can only reach on-premise networks
- VPC 1 and VPC 2 can't reach each other or any other networks



#### AWS Transit Gateway Routing - Association



#### AWS Transit Gateway Routing - Association



#### AWS Transit Gateway Routing - Propagation



#### AWS Transit Gateway Routing - Propagation



#### AWS Transit Gateway Routing - Propagation



# Integrating Security Appliances



#### **VPC Security Capabilities**

#### **Network Layer**

#### **Application Layer**









Amazon GuardDuty



#### Egress Filtering with Transit Gateway









#### VPC Attachment Model





#### **VPC Attachment – Routing**



#### VPC Attachment – Traffic Flow



#### VPC Attachment – High Availability



#### VPC Attachment – High Availability



#### VPN Attachment Model





#### **VPN Attachment – Routing**



#### VPN Attachment – Traffic Flow



#### VPN Attachment – High Availability





#### VPN Attachment – High Availability





## **Explicit Proxy Model**





## **Explicit Proxy - Routing**



# Explicit Proxy – Traffic Flow



#### Explicit Proxy – High Availability



Proxy health-checks provided by Network Load Balancer (NLB)



# **Egress Filtering Summary**

|                      | High<br>Availability | No Encryption<br>Overhead | Transparent to clients |
|----------------------|----------------------|---------------------------|------------------------|
| VPC Attachment Model | Custom<br>Automation |                           |                        |
| VPN Attachment Model | BGP                  |                           |                        |
| Explicit Proxy Model | NLB Health-<br>Check |                           |                        |



## Ingres Filtering with Transit Gateway





### Reverse Proxy Model





## Reverse Proxy Model





#### Reverse Proxy Model – High Availability



Proxy health-checks provided by Network Load Balancer (NLB)



## VPC to VPC Filtering





Model



#### **VPC Attachment Model**



#### VPC Attachment Model – Request Flow



## VPC Attachment Model – Reply Flow



## Summary

#### **Egress Filtering**

- Active/Active
- HA depends on the model
- Lowest operational overhead

#### **Ingress Filtering**

- Active/Active
- HA through ELB
- Changes on appliances required for every new service

#### VPC to VPC Filtering

- Active/Passive (no-NAT)
- HA depends on the model
- Medium operational overhead



## Architecting for IPv4 Preservation



#### Available IPv4 Private IPs



#### RFC 1918:

- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

```
16 Million IPs (65k \times /24s)
```

1 Million IPs (4k x /24s)

65 Thousand IPs  $(256 \times /24s)$ 

#### RFC 6598:

• 100.64.0.0/10

4 Million IPs (16k x /24s)



## Address Planning Benefits







Cleaner security polices



Better visibility



## **IPv4** Preservation Options









# Network Address Translation (NAT)



















# IPv6



## Transit Gateway + IPv6







## Transit Gateway + IPv6





# Thank You!

Tom Adamski Specialist Solutions Architect, Networking

