Lab 1 Report

Equations:

 $\mathbf{CPI}_{\text{calculated}} = 1 + \text{(No. of One Cycle Stalls} + 2*\text{No. of Two Cycle Stalls)/Total Number of Instructions}$

Slowdown = $(CPI_{calculated} - 1)/1$

For Question 1:

For Ouestion 2:

The reason for the large discrepency between our CPI calculated vs CPI mbq1 is due to the fact hazards are introduced in the for loop and initialization. However, we ran a version of our benchmark that only contained the for loop and initialization hazards(*Figure 3*), and thus we were able to see our actual hazard counts due to our benchmark.

We used the -O0 compiler flag and iterated the loop 1,000,000 times to achieve steady state results

Our microbenchmark contains 4 two cycle stalls and 1 one cycle stall for question 1, and 2 one cycle stalls and 1 two cycle stall for question 2. As such, we expect the ratio of one cycle stalls and two cycle stalls to be reflected in the count produced by sim-safe. The following are screenshots showing the correctness of our logic. *Figure 3* shows the number of hazards with just a pure for loop. If we subtract this value from the values we obtained with the microbenchmark code (*Figure 4*), we see that the ratios are correct.

Question 1: One cycle stall: Two cycle stall = (1000091-91):(10000854-6000854) = 1:4 Question 2: One cycle stall: Two cycle stall = (6000778-4000778):(2000091-1000091) = 2:1

Q2																													
Instruction	c1	c2	c3	c4	с5	с6	c7	с8	с9	c10	c11	c12	c13	c14	c15	c16	c17	c18	c19	c20	c21	c22	c23	c24	c25	c26	c27	c28	c29
addi \$4, \$0, 1	F	D	X1	X2	M	W																							
addi \$5, \$0, 1		F	D	X1	X2	M	W																						
add \$3, \$4, \$0			F	D	X1	X2	M	W																					
add \$5, \$4, \$3				F	D	d*	X1	X2	M	W	// 1	cycle	e q2																
add \$6, \$4, \$3					F	p*	D	X1	X2	M	W																		
addi \$6, \$0, 1							F	D	X1	X2	M	W																	
add \$4, \$6, \$0								F	D	d*	X1	X2	M	W	// 1	cycle	e q2												
addi \$6, \$0, 1									F	p*	D	X1	X2	M	W														
lw \$7, 0(\$3)											F	D	X1	X2	M	W													
sub \$5, \$7, \$3												F	D	d*	d*	X1	X2	M	W	// 2	cycle	eq2							
lw \$7, 0(\$3)													F	p*	p*	D	X1	X2	M	W									
sw \$7, 0(\$1)																F	D	X1	X2	M	W	// 0	stal	q2 b	ecau	use c	f by	oassi	ng
add \$6, \$0, 6																	F	D	X1	X2	M	W							

Figure 1: mbq1 pipeline diagram for Q1

Q1																													
Instruction	c1	c2	c3	c4	с5	c6	c7	с8	с9	c10	c11	c12	c13	c14	c15	c16	c17	c18	c19	c20	c21	c22	c23	c24	c25	c26	c27	c28	c2
addi \$4, \$0, 1	F	D	X	M	W																								
addi \$5, \$0, 1		F	D	X	M	W																							
add \$3, \$4, \$0			F	d*	D	X	M	W	// 1	cycle	q1																		
add \$5, \$4, \$3				p*	F	d*	d*	D	X	M	W	// 2	cycle	e q1															
add \$6, \$4, \$3						p*	p*	F	D	X	M	W	// n	/ no q1 stall because eaten up by previous instr															
addi \$6, \$0, 1									F	D	X	M	W																
add \$4, \$6, \$0										F	d*	d*	D	X	M	W	// 2	cycle	e q1										
addi \$6, \$0, 1											p*	p*	F	D	X	M	W												
lw \$7, 0(\$3)														F	D	X	M	W											
sub \$5, \$7, \$3															F	d*	d*	D	X	M	W	// 2	cycle	q1					
lw \$7, 0(\$3)																p*	p*	F	D	X	M	W							
sw \$7, 0(\$1)																			F	d*	d*	D	X	M	W	// 2	cycle	eq1	
add \$6, \$0, 6																				p*	p*	F	D	X	M	W			

Figure 2: mbq1 pipeline diagram for Q2

```
sim: ** simulation statistics **
sim_num_insn
sim_num_refs
                                       11006312 # total number of instructions executed
                                        3003722 # total number of loads and stores executed
sim_elapsed_time
                                                 1 # total simulation time in seconds
                                 11006312.0000 # simulation speed (in insts/sec)
2000353 # total number of load instructions
sim_inst_rate
sim_num_loads
sim_load_ratio
                                          0.1817 # load instruction fraction
sim_num_lduh
                                         1000091 # total number of load use hazards
sim_load_use_ratio
                                         0.0909 # load use fraction
sim_num_RAW_hazard_q1
sim_num_RAW_hazard_q2
                                         6000945 # total number of RAW hazards (q1)
5000869 # total number of RAW hazards (q2)
91 # total number of one cycle stalls (q1)
sim_num_one_cycle_hazard_ql
sim_num_two_cycle_hazard_ql
                                                6000854 # total number of two cycle stalls (q1)
sim num one_cycle hazard q2
sim_num_two_cycle_hazard_q2
CPI_from_RAW_hazard_q1
CPI_from_RAW_hazard_q2
                                                4000778 # total number of one cycle stalls (q2)
1000091 # total number of two cycle stalls (q2)
                                         2.0904 # CPI from RAW hazard (q1)
                                          1.5452 # CPI from RAW hazard (q2)
                                    0x00400000 # program text (code) segment base
23200 # program text (code) size in bytes
ld_text_base
ld_text_size
ld data base
                                    0x10000000 # program initialized data segment base
ld_data_size
                                             4096 # program init'ed `.data' and uninit'ed `.bss' size in bytes
                                    0x7fffc000 # program stack segment base (highest address in stack)
16384 # program initial stack size
0x00400140 # program entry point (initial PC)
0x7fff8000 # program environment base address address
ld_stack_base
ld_stack_size
ld_prog_entry
ld_environ_base
                                              0 # target executable endian-ness, non-zero if big endian
13 # total number of pages allocated
52k # total size of memory pages allocated
13 # total first level page table misses
ld_target_big_endian
mem.page_count
mem.page mem
mem.ptab_misses
mem.ptab_accesses
                                       50175958 # total page table accesses
                                          0.0000 # first level page table miss rate
mem.ptab_miss_rate
ugl73:~/ece552/lab1/simplesim-3.0d-ece552f-assign1%
```

Figure 3: modified benchmark simulation results

```
sim: ** simulation statistics **
                            23006312 # total number of instructions executed
sim num insn
sim_num_refs
                             6003722 # total number of loads and stores executed
                                   1 # total simulation time in seconds
sim_elapsed_time
sim inst rate
                        23006312.0000 # simulation speed (in insts/sec)
sim_num_loads
                             4000353 # total number of load instructions
                              0.1739 # load instruction fraction
sim_load_ratio
sim num lduh
                             2000091 # total number of load use hazards
sim load use ratio
                              0.0869 # load use fraction
sim num RAW hazard q1
                            11000945 # total number of RAW hazards (q1)
sim num RAW hazard q2
                             8000869 # total number of RAW hazards (q2)
sim_num_one_cycle_hazard_q1
                                   1000091 # total number of one cycle stalls (q1)
sim num two cycle hazard ql
                                  10000854 # total number of two cycle stalls (q1)
                                   6000778 # total number of one cycle stalls (q2)
2000091 # total number of two cycle stalls (q2)
sim_num_one_cycle_hazard_q2
sim_num_two_cycle_hazard_q2
CPI_from_RAW_hazard_q1
CPI_from_RAW_hazard_q2
                              1.9129 # CPI from RAW hazard (q1)
                              1.4347 # CPI from RAW hazard (q2)
ld text base
                          0x00400000 # program text (code) segment base
                               23296 # program text (code) size in bytes
ld text size
ld data base
                          0x10000000 # program initialized data segment base
                                4096 # program init'ed `.data' and uninit'ed `.bss' size in bytes
ld_data_size
ld stack base
                          0x7fffc000 # program stack segment base (highest address in stack)
                               16384 # program initial stack size
ld stack size
                          0x00400140 # program entry point (initial PC)
ld prog entry
                          0x7fff8000 # program environment base address address
ld environ base
                                   0 # target executable endian-ness, non-zero if big endian
ld target big endian
                                   14 # total number of pages allocated
mem.page_count
                                  56k # total size of memory pages allocated
mem.page_mem
mem.ptab_misses
                                  17 # total first level page table misses
                           104176532 # total page table accesses
0.0000 # first level page table miss rate
mem.ptab accesses
mem.ptab miss rate
ug173:~/ece552/lab1/simplesim-3.0d-ece552f-assign1%
```

Figure 4: benchmark simulation results

```
sim: ** simulation statistics **
                             279373007 # total number of instructions executed
109106589 # total number of loads and stores executed
sim_num_insn
sim_num_refs
                                     12 # total simulation time in seconds
sim elapsed time
                          23281083.9167 # simulation speed (in insts/sec)
sim inst rate
sim num loads
                              71001838 # total number of load instructions
sim_load_ratio
                                 0.2541 # load instruction fraction
sim_num_lduh
                               20126394 # total number of load use hazards
sim_load_use_ratio
                                0.0720 # load use fraction
                               98137951 # total number of RAW hazards (q1)
90933806 # total number of RAW hazards (q2)
sim_num_RAW_hazard_ql
sim_num_RAW_hazard_q2
                                     9955637 # total number of one cycle stalls (q1)
sim_num_one_cycle_hazard_ql
sim num two cycle hazard q1
                                     88182314 # total number of two cycle stalls (q1)
sim num one cycle hazard q2
                                     70807412 # total number of one cycle stalls (q2)
sim_num_two_cycle_hazard_q2
                                     20126394 # total number of two cycle stalls (q2)
CPI from RAW hazard q1
                                 1.6669 # CPI from RAW hazard (q1)
CPI from RAW hazard q2
                                 1.3975 # CPI from RAW hazard (q2)
ld text base
                             0x00400000 # program text (code) segment base
                            2166768 # program text (code) size in bytes
0x10000000 # program initialized data segment base
ld_text_size
ld data base
ld data size
                                 264644 # program init'ed `.data' and uninit'ed `.bss' size in bytes
ld_stack_base
                             0x7fffc000 # program stack segment base (highest address in stack)
                                  16384 # program initial stack size
ld stack size
ld prog entry
                            0x00400140 # program entry point (initial PC)
ld environ base
                            0x7fff8000 # program environment base address address
                                      \boldsymbol{\theta} # target executable endian-ness, non-zero if big endian
ld_target_big_endian
                                  875 # total number of pages allocated
3500k # total size of memory pages allocated
894 # total first level page table misses
mem.page count
mem.page mem
mem.ptab_misses
                             1341120003 # total page table accesses
mem.ptab accesses
mem.ptab miss rate
                                 0.0000 # first level page table miss rate
ugl73:~/ece552/lab1/simplesim-3.0d-ece552f-assign1%
```

Figure 5: EIO trace simulation results