ComS 311 Recitation 3, 2:10 Monday Homework 1

Sean Gordon

September 12, 2019

1a)
$$8n^2 + 35n + 46 \le 8n^2 + n^2$$

 $9n^2 \to c = 9, N = 0$

b)
$$log(2^{2^{n+1}}) \leq log(c) + log(2^{2^n})$$

 $2^{n+1} \leq log(c) + 2^n$
 $2^{n+1} - 2^n \leq log(c)$
Incorrect, inequality fails
as $n \to \infty$

c)
$$n^3(5+n^{.5}) \leq n^3$$

 $5n^3+n^{3.5} \leq c*n^3$
 $5+n^{.5} \leq c$
Incorrect, inequality fails as $n \to \infty$

d) If a is the smallest it can be (0)
$$2^n \le 2^n$$
, which checks out.
However, if a=1 $2^{n+1} \le 2^n \Rightarrow 2^n * 2 \le 2^n \Rightarrow 2 \le 0$, which is incorrect.

e) If
$$f \in O(g) \Rightarrow f \leq g$$
, then $fh \in O(gh) \Rightarrow fh \leq gh$
 $h*(f) \leq h*(g) \Rightarrow \frac{h}{h}*(f) \leq g \Rightarrow f \leq g$

2a)
$$i \to n, j \to n$$

 $C1(n) * C2(n) \Rightarrow O(n^2)$

b) As
$$i \to n, j \to n * n$$

 $C1(n) * C2(n^2) \Rightarrow O(n^3)$

- c) pow(2,n) has a runtime of n $i \rightarrow 2^n$, and $j \rightarrow 2^n$ However, i scales by 2 each loop, so that $i \rightarrow n$. Then, $Cpow(n) + C1(n) * C2(2^n) \Rightarrow$ $O(n * 2^n)$
- d) While i starts == n, it is /2 each pass, becoming $\log(n)$. The inner loop is O(n), so $C1(\log(n))*C2(n) \Rightarrow O(n\log(n))$

3) This algorithm is incorrect, shown by the counterexample below:

4a) Provided prime numbers:

 $prime1_9 = 100,000,007;$ $prime2_9 = 100,000,037;$

Runtime of gcd: 638 ms Runtime of fastgcd: 0 ms

b) Provided prime numbers:

 $prime1_{10} = 1,000,000,123;$ $prime2_{10} = 1,000,000,181;$

Runtime of gcd: 6527 ms Runtime of fastgcd: 0 ms

5) Given array A and value t

$$n = A. length$$

 $x = 1$

for i in range
$$[0, n-1]$$

 $sum += A[i] * x$
 $x = x*t$

If the size of the given array is n this algorithm runs in O(n) time, as there is only 1 loop from $0 \to n$.