Chapter 4: Ranked Data Fusion

John Klein

Lille1 Université - CRIStAL UMR CNRS 9189

Ranked data fusion setting :

- Each advocacy $x^{(i)}$ is a set of possible values for x which are ranked from most prefered to least prefered.
- Let us give the following definition for ranked data fusion problems :

Definit

- In this chapter, we present two tallying algorithms for exhaustive ranked ballots.
- ullet Extension are possible for settings where votes for a subset of ${\mathcal X}$ are allowed.

- Each advocacy $x^{(i)}$ is a set of possible values for x which are ranked from most prefered to least prefered.
- Let us give the following definition for ranked data fusion problems :

- In this chapter, we present two tallying algorithms for exhaustive ranked ballots.
- ullet Extension are possible for settings where votes for a subset of ${\mathcal X}$ are allowed.

- Each advocacy $x^{(i)}$ is a set of possible values for x which are ranked from most prefered to least prefered.
- Let us give the following definition for ranked data fusion problems :

- In this chapter, we present two tallying algorithms for exhaustive ranked ballots.
- ullet Extension are possible for settings where votes for a subset of ${\mathcal X}$ are allowed.

- Each advocacy $x^{(i)}$ is a set of possible values for x which are ranked from most prefered to least prefered.
- Let us give the following definition for ranked data fusion problems :

- In this chapter, we present two tallying algorithms for exhaustive ranked ballots.
- ullet Extension are possible for settings where votes for a subset of ${\mathcal X}$ are allowed.

- Each advocacy $x^{(i)}$ is a set of possible values for x which are ranked from most prefered to least prefered.
- Let us give the following definition for ranked data fusion problems :

- In this chapter, we present two tallying algorithms for exhaustive ranked ballots.
- ullet Extension are possible for settings where votes for a subset of ${\mathcal X}$ are allowed.

Instant Runoff Operator (IRO):

FIGURE : Flowchart of Instant Runoff Operator.

- Each advocacy $\mathbf{x}_*^{(i)}$ is a list.
- The j^{th} entry $x_{*j}^{(i)}$ of $\mathbf{x}_*^{(i)}$ is the value which was assigned rank j by the i^{th} source.
- **h**: histogram computed from 1st ranked values: $\left\{x_{*1}^{(i)}\right\}_{i=1}^{N_s}$. h_k : occurrences of 1st ranks of the value $x_k \in \mathcal{X}^*$.
- $j^{(i)}$: list index of the value currently supported by the i^{th} source.
- $k^{(i)}$: index in \mathcal{X} of the value currently supported by the i^{th} source.
- st. The index k does not depend on any underlying ordering relation on ${\mathcal X}$.

- Each advocacy $\mathbf{x}_*^{(i)}$ is a list.
- The j^{th} entry $x_{*j}^{(i)}$ of $\mathbf{x}_{*}^{(i)}$ is the value which was assigned rank j by the j^{th} source.
- **h**: histogram computed from 1st ranked values: $\left\{x_{*1}^{(i)}\right\}_{i=1}^{N_s}$. h_k : occurences of 1st ranks of the value $x_k \in \mathcal{X}^*$.
- $j^{(i)}$: list index of the value currently supported by the i^{th} source.
- $k^{(i)}$: index in \mathcal{X} of the value currently supported by the i^{th} source.

st. The index k does not depend on any underlying ordering relation on \mathcal{X} .

John Klein (ECL/Lille1)

- Each advocacy $\mathbf{x}_*^{(i)}$ is a list.
- The j^{th} entry $x_{*j}^{(i)}$ of $\mathbf{x}_{*}^{(i)}$ is the value which was assigned rank j by the i^{th} source.
- **h**: histogram computed from 1st ranked values: $\left\{x_{*1}^{(i)}\right\}_{i=1}^{N_s}$. h_k : occurences of 1st ranks of the value $x_k \in \mathcal{X}^*$.
- $j^{(i)}$: list index of the value currently supported by the i^{th} source.
- $k^{(i)}$: index in \mathcal{X} of the value currently supported by the i^{th} source.

st . The index k does not depend on any underlying ordering relation on \mathcal{X} .

- Each advocacy $\mathbf{x}_*^{(i)}$ is a list.
- The j^{th} entry $x_{*j}^{(i)}$ of $\mathbf{x}_{*}^{(i)}$ is the value which was assigned rank j by the i^{th} source.
- **h**: histogram computed from 1st ranked values: $\left\{x_{*1}^{(i)}\right\}_{i=1}^{N_s}$. h_k : occurences of 1st ranks of the value $x_k \in \mathcal{X}^*$.
- $j^{(i)}$: list index of the value currently supported by the i^{th} source.
- $k^{(i)}$: index in \mathcal{X} of the value currently supported by the i^{th} source.

st . The index k does not depend on any underlying ordering relation on \mathcal{X} .

John Klein (ECL/Lille1)

- Each advocacy $\mathbf{x}_*^{(i)}$ is a list.
- The j^{th} entry $x_{*j}^{(i)}$ of $x_*^{(i)}$ is the value which was assigned rank j by the i^{th} source.
- **h**: histogram computed from 1st ranked values: $\left\{x_{*1}^{(i)}\right\}_{i=1}^{N_s}$. h_k : occurences of 1st ranks of the value $x_k \in \mathcal{X}^*$.
- $j^{(i)}$: list index of the value currently supported by the i^{th} source.
- $k^{(i)}$: index in \mathcal{X} of the value currently supported by the i^{th} source.

st. The index k does not depend on any underlying ordering relation on \mathcal{X} .

John Klein (ECL/Lille1)

```
Instant Runoff Operator (IRO)
```

```
entries : \left\{\mathbf{x}_*^{(i)}\right\}_{i=1}^{N_s}, N_s, \mathbf{h}, \ell = |\mathcal{X}| - Initialisation :\forall i, j^{(i)} \leftarrow 1.
while \max_{1 \le i \le \ell} \{h_i\} \le \frac{N_s}{2} do
   Find the loser indice(s): L \leftarrow \text{arg min} h_k.
                                                1 \le k \le \ell s.t. h_{\ell} > 0
   for i from 1 to N_s do
       if k^{(i)} \in I then
           Move to next preferred value for source i: j^{(i)} \leftarrow j^{(i)} + 1.
           Update histogram for remaining candidates: h_{\nu(i)} \leftarrow h_{\nu(i)} + 1.
       end if
   end for
   for each k in L do
       Update histogram for eliminated candidates : h_k \leftarrow 0.
   end for
end while
Return winner : x_* \leftarrow \arg\max\{h_i\}
                                  1 \le i \le \ell
```

Example

Fusion of recommandation systems

- Suppose we have train N_S recommandation systems each returning a list of $|\mathcal{X}|$ =4 objects.
- Each list is ordered from most prefered to least prefered.
- Let us also assume that they delivered only 4 different kinds of ballots.
- The table in the next slide gives the advocacies along with their occurences.
- Using the majority operator, site web A would win.

Ballot table for example

Bullet table for example						
occurences	42	26	15	17		
ballot	Α	В	С	D		
	В	С	D	C		
	С	D	В	В		
	D	Α	Α	Α		

Pairwise Rank Operator (PRO):

- Each advocacy $\mathbf{x}_*^{(i)}$ is a list.
- Reversed Logic: the j^{th} entry $x_{*j}^{(i)}$ of $x_*^{(i)}$ is the rank assigned by the i^{th} source to the value j^{th} element of \mathcal{X}^{\dagger} .
- Note that algorithm PRO delivers no result if all wins are obtained with identical counts.

 \dagger . The index j of elements in ${\mathcal X}$ does not depend on any underlying ordering relation.

John Klein (ECL/Lille1)

Pairwise Rank Operator (PRO):

- Each advocacy $\mathbf{x}_*^{(i)}$ is a list.
- Reversed Logic: the j^{th} entry $x_{*j}^{(i)}$ of $\mathbf{x}_{*}^{(i)}$ is the rank assigned by the i^{th} source to the value j^{th} element of \mathcal{X}^{\dagger} .
- Note that algorithm PRO delivers no result if all wins are obtained with identical counts.

John Klein (ECL/Lille1) Dat Fus

 $[\]dagger$. The index j of elements in ${\mathcal X}$ does not depend on any underlying ordering relation.

Pairwise Rank Operator (PRO):

- Each advocacy $\mathbf{x}_*^{(i)}$ is a list.
- Reversed Logic: the j^{th} entry $x_{*i}^{(i)}$ of $\mathbf{x}_{*}^{(i)}$ is the rank assigned by the $i^{ ext{th}}$ source to the value $j^{ ext{th}}$ element of \mathcal{X}^{\dagger} .
- Note that algorithm PRO delivers no result if all wins are obtained with identical counts.

John Klein (ECL/Lille1) Dat Fus

The index j of elements in \mathcal{X} does not depend on any underlying ordering relation. 9 / 15

Pairwise Rank Operator (PRO): step1 [Preference counting]

```
entries : \left\{\mathbf{x}_{*}^{(i)}\right\}_{i=1}^{N_s}, N_s, \ell = |\mathcal{X}|.
Initialize M and W are \ell \times \ell as null matrices.
for i from 1 to N_s do
   for 1 \le i < i' \le \ell do
       if x_{*i}^{(i)} < x_{*i'}^{(i)} then
           Add one count to j over j': M_{ii'} \leftarrow M_{ii'} + 1.
       else
           Add one count to j' over j: M_{i'i} \leftarrow M_{i'i} + 1.
       end if
    end for
end for
M \leftarrow \frac{M}{M}.
```

Pairwise Rank Operator (PRO): step2 [Victory counting]

```
for j from 1 to \ell do
  for j' from 1 to \ell do
  if M_{jj'} > \frac{1}{2} then
    Count one win for j over j': W_{jj'} \leftarrow 1.
  end if
  end for
```

Pairwise Rank Operator (PRO): step3 [Global winner search]

```
Find the set of candidates with highest win counts:
A \leftarrow \underset{1 \leq i \leq \ell}{\operatorname{arg max}} \left\{ \sum_{j'=1}^{\ell} W_{jj'} \right\}.
while |A| > 1 do
     Find the index pair (u; v) corresponding to the weakest win :
    (u; v) \leftarrow \operatorname{arg\,min} \left\{ M_{jj'} \right\}.
                     1 \leq j, j' \leq \ell \mid W_{ii'} = 1
     Erase this win: W_{\mu\nu} \leftarrow 0.
    Update A \leftarrow \operatorname*{arg\,max}_{1 < i < \ell} \left\{ \sum_{j'=1}^{\ell} W_{jj'} \right\}.
end while
```

Return winner : $x_* \leftarrow A$

Example (continued)

Fusion of recommandation systems

- Suppose we have train N_S recommandation systems each returning a list of $|\mathcal{X}|$ =4 objects.
- Each list is ordered from most prefered to least prefered.
- Let us also assume that they delivered only 4 different kinds of ballots.
- The table in the next slide gives the advocacies along with their occurences.

Table for example

rubie ioi example						
occurences	42	26	15	17		
ballot	Α	В	С	D		
	В	C	D	C		
	С	D	В	В		
	D	Α	Α	Α		

Ranked Data Fusion: concluding remarks

- There are many other voting systems for ranked ballots in the literature.
- Each of them are often justified with respect to a given criterion on the quality of the result.
- For instance, one of the criterion that motivated the design of \hat{x}_{pro} is the Condorcet criterion which reads :
 - « The winner must defeat any other candidate in pairwise elections. »