Seria 34, Curs & EDDP, 10.11.2020 Metode numerice pentru aproximanea solutiei problemei Cauchy So da problema Cauchy: (1) } dx = f(x, x), to [to, to+T], T>0 se considera o dinguine echidistanti a intervalului $h = \frac{T}{N}, \quad N \in \mathbb{N}^{+}$ $(2) \quad t_{j} = t_{0} + j \cdot h, \quad j = 0, N$ Arem $h_{j} = f_{j+1} - f_{j} = h = comb$, $f_{j} = 0, N-1$ O sohema numerica di a aproximare a rolubei pt (1)

este di fonua:

(3) $\chi_{j+1} = \chi_{j} + h \phi(h, f_{j}, \chi_{j})$ j = 0, N-1Pt $\phi(h, t_j; y) = f(t_j; y)$ re obtine schema tiller (4) $\chi_{j+1} = \chi + h f(x_j, x_j), j = 0, N-1$ Teorema de aproximare a solution prob. (1) (un metoda tular) In inotegele TEU pringlus, of sã fie function Lyrschitz of in vanabla t, adica 7 L0>0 ai |f(t,1)-f(t2,4)| = L1/1/2-12 +(t1,2),(.x2,4) € D Docca xo, x, --, xi somt yroximarile obtimute prin schema (4), atunci

 $\exists A > 0$ artel incat $|x_j - \varphi(t_j)| < Ah$ (6) adica, aproximarea prin schema Erler este de ordinul 1.

Lema 1: Pt 40,415 ..., 2 din (4) owen: 1×j- ×01 € Mjh)j=0,N Den: j=0: 1x0-x0=0 & M.o.h tresneurem cà e adur pt j' of dem pt j't!: 13/25-20/ = 13/4 h f(xj, 3/) -20/ = \(\(\(\frac{1}{2} - \frac{1}{20} \) \(\) \(+ \) \(\frac{1}{2} \) \(\ = Mh(gf1) = shig. + adar. Lemaz: In polizele teoremei de aproximare avan: 3 B>0 as | tj# (59(4))dt - hf(tj, 1/6/) | < Bh2 Y=0,N-1 Kma: [Calculati to, 71, 72, aplicand schema (4) pt problema: $\frac{dx}{dt} = x$, $t \in [0, 1]$, t = 1 $\frac{1}{x(0)} = 1$ _ cu N=2. Metoda Euler implicità este: (9) | 20 (9) | 20 + hf (ty,) (3/4) in care frecare z's se determina du ec. (9)1. Construirea unei metode de aproximare a solutrei prob. Canoly, metoda de ordin k: Metoda Taylor REW Prempunem ca feste k où deurable un aggost au frecare variables. De aremenea, volution que este de l'on derivable. Pt [tju, tj]: $\varphi(t_{j+1}) = \varphi(t_{j}) + \frac{\varphi(t_{j+1})(t_{j+1})}{1!}(t_{j+1}t_{j}) + \frac{\varphi(t_{j+1})^{2}}{2!}(t_{j+1}t_{j})^{2} + \cdots$

$$+ \cdots + \frac{(k^{0}(k))}{k!} (t_{fin}^{-1}t_{f}^{-1})^{k} + O((t_{fin}^{-1}t_{f}^{-1})^{k+1})$$

$$Dan d_{fin}^{-1} - d_{f}^{-1} = k, q(t_{fin}^{-1}t_{f}^{-1})^{k} + O((t_{fin}^{-1}t_{f}^{-1})^{k+1})$$

$$\exists f_{fin}^{-1} = f_{fin}^{-1} + \frac{q(t_{fin}^{-1}t_{f}^{-1})}{1!} + \frac{q(t_{fin}^{-1}t_{f}^{-1})^{k}}{k!} + O((t_{fin}^{-1}t_{f}^{-1})^{k})^{k} + O((t_{fin}^{-1}t_{f}^{-1}t_{f}^{-1})^{k})^{k} + O((t_{fin}^{-1}t_{f}^{-1}t_{$$

=1 pt prob. data o schema de ordin 2 este (3/1 = 3. th (f(4, 2) + 2f(4) 2)) 1=0/N+ Pt. aproxomare de ordin k=3: $\phi_3(h, h_j; \gamma_j) = \phi_2(h, h_j; \gamma_j) + \frac{q^{(3)}(h_j)}{2!} \cdot h^2$ $G^{(3)}(t) = \frac{d}{dt} \left(\frac{\partial f}{\partial t} (f'(t)) + \frac{\partial f}{\partial x} (f'(t)) + \frac{\partial f}{\partial x} (f'(t)) \right) =$ $=\frac{\partial}{\partial t}\left(\frac{\partial f}{\partial t}(\lambda\varphi(t))\right)+\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial t}(\xi,\varphi(t))\right)\varphi(\xi)+\left(\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial z}(\lambda\varphi(t))\right)+\frac{\partial}{\partial z}\left(\frac{\partial f}{\partial z}(\lambda\varphi(t))\right)$ HA(41x)) + 2 + (x) ((t)). (p'(+)) >) ((3)(4) = 2 (3+(4; 3)) + 3x (3+(4; 3)) . f(4; 3) + + [3+ (3+ (4, 4) + 3+ (3+ (4, 4)) . + (4, 3)] + (4, 2) + + 3年(なる), 「3年(ちなり)+ 3年(なる) 年(なる))」 Schima de ordin 3) xo) x= x+h \$\phi_3(h, \phi; \pi) Pentin exemple $\int \frac{dx}{dt} = x$ onem: $\frac{\partial}{\partial t} \left(\frac{\partial f}{\partial t} \right) = 0$. $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial t} \right) = 0 = \frac{\lambda}{\partial t} \left(\frac{\partial f}{\partial x} \right)$ 3x (3x)=0. $\varphi^{(3)}(x_j) = 1 \cdot [0 + 1 + (x_j) + (x_j)] = \varphi(x_j) \cdot = 1$ 3) shima de ordin 3 este:

Pema: Sovieté seheme numerice de ordin 2 % 3, folonid metoda Taylor jentin probleme Cauchy: $\begin{cases} \mathcal{X} = \mathcal{X}^2 + \mathcal{X} + \mathcal{Y}^2 \\ \mathcal{X}(0) = 2 \end{cases}$ Sisteme de cematir déferentirale in R (b, x) = (x1, ..., xn) variable dependenta, en n. varial miderendenta $\left| \frac{dx}{dt} = f(t, x) \right| \quad (10)$ ende $f: D \subset \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$, $f=(f_1,...,f_n)$ Re componente, (40) de source, (4) $\begin{cases} \frac{dx_1}{dt} = f(t, (x_1, ..., x_m)) \\ \frac{dx_n}{dt} = f_n(t, (x_1, ..., x_m)) \end{cases}$ Rezolvarea mistemelos (i) au ajutorel integralelos Def: Ofunction F:D - IR este ontegrala prima pentin sixtenul (11) caca': " $\varphi = (\varphi_1, ..., \varphi_m)$ volusie pt, (11) aven: $\exists C_{\varphi} \in \mathbb{R} \text{ ai } F(t, \varphi_{1}(t), ..., \varphi_{n}(t)) = C_{\varphi}, \forall t \in I_{\varphi}.$ (adica, F este constanta de-a lungul oricarei soluti a sistemului (11) 013. O integrala prima a notemului (11) poate ajuta le treducerea dimensioni sistemului sar la separea conjunentelor functiei necunosunte H, in equatio independente de celelatte componente Proposites (Criderin jenten integrale prime) F,D > R este integrelà prima pt. (11) (=) verifica

egalitatea: $\frac{\partial F}{\partial t}(t,x) + \frac{\partial F}{\partial t}(t,x) = 0$. (13) f(t,x) = 0. $f(t,x) \in D$. Dem: Feste integrola prima jt (11) (=) F constantà de-a clungal oricani voluti a lui (11) (=) $\frac{dF}{dt}(t, X(X)) = 0$ (=) $(=) \frac{\partial F(t, \chi(t))}{\partial t} + \underbrace{\int \frac{\partial F}{\partial \chi_{i}}(\lambda_{i}, \chi(t))}_{(\chi_{i}(t))} \frac{d\chi_{j}}{dt} = o (=)$ $\mathcal{L}(x,x)$ (a) $\frac{\partial F}{\partial t}(t, x(t)) + \frac{\partial F}{\partial t}(t, x(t)) \cdot f_{\tau}(t, x(t)) = 0$ Exemple: Fix or otherword $\begin{cases} \frac{dx_1}{dt} = \frac{x_1}{x_1^2 + x_2^2} \\ \frac{dx_2}{dt} = \frac{x_2}{x_1^2 + x_2^2} \end{cases}$ 4=(f1, f2): DCRx(R2, f(0,0)) -> R P1(\$1 x1, x2) = x1 / x2+x2 ; x=(x1,x2) f2(t, x1, x2) = 12 72+ x2 a) Aradati ca FID AR este integrolà prima pt (14). B) Determinati multima solutulor pt (94) folomid F. a) Verificain of (t,*) + of (t,*) + of (t,*) = 0. Arem. $\frac{\partial F}{\partial t}(\lambda x) = -2$; $\frac{\partial F}{\partial x_1}(\lambda x) = 2x_1$; $\frac{\partial F}{\partial x_2}(\lambda x) = 2x_2 = 0$ $= -2 + 2x_1 \cdot \frac{x_1}{x_1^2 + x_2^2} + 2x_2 \cdot \frac{x_2}{x_1^2 + x_2^2} = -2 + \frac{2(x_1^2 + x_2^2)}{x_1^2 + x_2^2} = 0.$ > F este integrelà prima pt (24)

Notion
$$|F(\lambda, *) - C_{1,1}| = C_{1} + C_{2} + C_{2} + C_{1} + 2t = C_$$