Способы решения сравнения второй степени по составному модулю

Теорема 2.11. Пусть число p простое, $p \neq 2$, целое число a не делится на p и $n \in \mathbb{N}$, $n \geq 1$. Для того чтобы сравнение

$$x^2 \equiv a \pmod{p^n} \tag{2.12}$$

было разрешимо, необходимо и достаточно, чтобы было разрешимо сравнение

$$x^2 \equiv a \pmod{p}. \tag{2.13}$$

Определение 2.8. Порядком числа a, $1 \le a < m$, HOД(a, m) = 1, по модулю m называется наименьшее натуральное число d, для которого $a^d \equiv 1 \pmod{m}$.

Определение 2.9. Число a, $1 \le a < m$, порядка $\phi(m)$ по модулю m называется первообразным корнем по модулю m.

Лемма 2.12. Для числа a, имеющего порядок d по модулю m, сравнение $a^{\gamma_1} \equiv a^{\gamma_2} \pmod m$ выполняется тогда и только тогда, когда $\gamma_1 \equiv \gamma_2 \pmod d$.

Лемма 2.13. Если число a имеет порядок d_1d_2 по модулю m, то число a^{d_1} имеет порядок d_2 по модулю m.

Лемма 2.14. Если числа a_1 , a_2 имеют по модулю m порядки d_1 , d_2 соответственно, причем НОД $(d_1, d_2) = 1$, то число a_1a_2 имеет по модулю m порядок d_1d_2 .

Теорема 2.15. Для любого простого $p \neq 2$ существует первообразный корень по модулю p.

Пример 2.30. Число 2 является первообразным корнем по модулю 13, поскольку $2^1=2$, $2^2=4$, $2^3=8$, $2^4=16\equiv 3\pmod {13}$, $2^5\equiv 6$

(mod 13), $2^6 \equiv 12 \pmod{13}$, $2^7 \equiv 11 \pmod{13}$, $2^8 \equiv 9 \pmod{13}$, $2^9 \equiv 5 \pmod{13}$, $2^{10} \equiv 10 \pmod{13}$, $2^{11} \equiv 7 \pmod{13}$, $2^{12} \equiv 1 \pmod{13}$ $\mu \varphi(13) = 12. \square$

Теорема 2.16. Для любого простого $p \neq 2$ существует первообразный корень по модулю p^2 .

Пример 2.31. Число 3 является первообразным корнем по модулю 7 и $3^6 = 729 \equiv 43$ 1 (mod 7^2). Значит, согласно доказательству теоремы 2.16, число 3 является первообразным корнем по модулю 7^2 . Проверяем: $3^1 = 3$, $3^2 = 9$, $3^3 = 27$, $3^4 \equiv 32 \pmod{7^2}$, ..., $3^{21} \equiv 48 \equiv -1 \pmod{7^2}$, ..., $3^{39} \equiv 20 \pmod{7^2}$, $3^{40} \equiv 11 \pmod{7^2}$, $3^{41} \equiv 33 \pmod{7^2}$, $3^{42} \equiv 1 \pmod{7^2}$.

Теорема 2.17. Если сравнение (2.12) разрешимо, то оно имеет ровно два решения.

Следствие. Число квадратичных вычетов по модулю p^n , где p — простое число, $p \neq 2$, равно числу квадратичных невычетов по модулю p^n .

Пример 2.32. Решим сравнение $x^2 \equiv 3 \pmod{11^3}$. Оно разрешимо, поскольку $\left(\frac{3}{11}\right) = 1$ и сравнение $x^2 \equiv 3 \pmod{11}$ разрешимо. Посколь-

ку $11 \equiv 3 \pmod{4}$, находим решение сравнения $x^2 \equiv 3 \pmod{11}$ как $x \equiv 3^{2+1} \equiv 27 \equiv 5 \pmod{11}$, то есть $x \equiv 5 + 11k_1$. Вычисляем: $x^2 \equiv 25 + 2 \cdot 5 \cdot 11k_1 \equiv 3 \pmod{11^2}$. Отсюда

$$2 \cdot 5 \cdot 11k_1 \equiv -22 \pmod{11^2}$$
,

$$2 \cdot 5 \cdot k_1 \equiv -2 \pmod{11},$$

$$k_1 \equiv -2 \cdot (2 \cdot 5)^{-1} \equiv -2 \cdot (-1)^{-1} \equiv -2 \cdot (-1) \equiv 2 \pmod{11}$$
,

TO ECTS $k_1 = 2 + 11k_2$, $x = 5 + 11 \cdot 2 + 11^2k_2 = 27 + 11^2k_2$.

Ищем коэффициент k_2 . Возводим x в квадрат по модулю 11^3 : $x^2 = 27^2 + 2 \cdot 27 \cdot 11^2 k_2 \equiv 3 \pmod{11^3}$. Отсюда

$$2 \cdot 27 \cdot 11^2 k_2 \equiv -726 \pmod{11^3}$$
,

$$2 \cdot 27 \cdot k_2 \equiv -6 \pmod{11},$$

$$k_2 \equiv -6 \cdot (2 \cdot 27)^{-1} \equiv -6 \cdot (-1)^{-1} \equiv -6 \cdot (-1) \equiv 6 \pmod{11}$$

TO ECTS $k_2 = 6 + 11k_3$, $x_3 = 27 + 11^2 \cdot 6 + 11^3k_3 \equiv 753 \pmod{11^3}$.

Второе решение: $-753 \equiv 578 \pmod{11^3}$. Это же решение получается, если строить x_3 из начального значения $x \equiv 6 \pmod{11}$ — второго решения сравнения $x^2 \equiv 3 \pmod{11}$.

Проверка:

$$753^2 - 3 = 567006 = 11^3 \cdot 426, 578^2 - 3 = 334081 = 11^3 \cdot 251.$$

Теорема 2.18. Пусть число a нечетное. Справедливы следующие утверждения.

- 1. Сравнение $x^2 \equiv a \pmod{2}$ разрешимо при любом a.
- 2. Сравнение $x^2 \equiv a \pmod{2^2}$ разрешимо тогда и только тогда, когда $a \equiv 1 \pmod{4}$.

3. Сравнение $x^2 \equiv a \pmod{2^n}$, где $n \ge 3$, разрешимо тогда и только тогда, когда $a \equiv 1 \pmod{8}$.

Пример 2.33. Решим сравнение $x^2 \equiv 41 \pmod{64}$, то есть n = 6. Поскольку $41 \equiv 1 \pmod{8}$, сравнение разрешимо. Представляем решение в виде $x = \pm (1 + 4t_3)$. Тогда

$$(1 + 4t_3)^2 \equiv 41 \pmod{2^4},$$

 $2 \cdot 4t_3 \equiv 40 \pmod{2^4},$
 $t_3 \equiv 1 \pmod{2},$

TO ECTS $t_3 = 1 + 2t_4$ if $x = \pm (5 + 8t_4)$.

Далее,

$$(5 + 8t_4)^2 \equiv 41 \pmod{2^5},$$

$$2 \cdot 5 \cdot 8t_4 \equiv -16 \pmod{2^5},$$

$$t_4 \equiv 1 \pmod{2}, \ t_4 = 1 + 2t_5, \ x = \pm(13 + 16t_5);$$

$$(13 + 16t_5)^2 \equiv 41 \pmod{2^5},$$

$$2 \cdot 13 \cdot 16t_5 \equiv -128 \pmod{2^5},$$

$$t_5 \equiv 0 \pmod{2}, \ t_5 \equiv 2t_6, \ x = \pm(13 + 32t_6).$$

Отсюда получаем четыре решения: $x = \pm 13$, $x = \pm 45 \pmod{64}$.

Проверка:
$$(\pm 13)^2 - 41 = 169 - 41 = 128 = 64 \cdot 2;$$
 $(\pm 45)^2 - 41 = 2025 - 41 = 1984 = 64 \cdot 31.$

Теорема 2.19. Пусть $m = m_1 m_2 ... m_r$, где числа $m_1, m_2, ..., m_r$ попарно взаимно просты. Для того чтобы сравнение (2.7) было разрешимо, необходимо и достаточно, чтобы были разрешимы все сравнения $x^2 \equiv a \pmod{m_1}$, $x^2 \equiv a \pmod{m_2}$, ..., $x^2 \equiv a \pmod{m_r}$.

Пример 2.34. Сравнение $x^2 \equiv 13 \pmod{35}$ не имеет решений, хотя

$$\left(\frac{13}{35}\right) = (-1)^{\frac{13-1}{2}\frac{35-1}{2}} \left(\frac{35}{13}\right) = (-1)^{617} \left(\frac{9}{13}\right) = \left(\frac{9}{13}\right) = \left(\frac{3^2}{13}\right) = \left(\frac{1}{13}\right) = 1.$$

Представим этот символ Якоби в виде $\left(\frac{13}{35}\right) = \left(\frac{13}{5}\right)\left(\frac{13}{7}\right)$. Вычисляя символы Лежандра в правой части равенства, получаем

$$\left(\frac{13}{5}\right) = \left(\frac{3}{5}\right) = \left(\frac{5}{3}\right) = \left(\frac{2}{3}\right) = -1,$$

$$\left(\frac{13}{7}\right) = \left(\frac{6}{7}\right) = \left(\frac{2}{7}\right)\left(\frac{3}{7}\right) = 1 \cdot (-1)\left(\frac{7}{3}\right) = -\left(\frac{7}{3}\right) = -1 \cdot 1 = -1,$$

то есть число 13 является квадратичным невычетом по модулям 5 и 7.

Следствие 1. Пусть $m=2^np_1^{\alpha_1}p_2^{\alpha_2}\dots p_s^{\alpha_s}$ — каноническое разложение целого числа m и целое число a взаимно просто с m. Сравнение $x^2\equiv a\pmod m$ разрешимо тогда и только тогда, когда $a\equiv 1\pmod 4$ при n=2, $a\equiv 1\pmod 8$ при $n\geq 3$ и $\left(\frac{a}{p_1}\right)=\left(\frac{a}{p_2}\right)=\dots=\left(\frac{a}{p_s}\right)=1$. Это сравнение имеет 2^s решений при n=0 или n=1; 2^{s+1} решений при n=2; 2^{s+2} решений при $n\geq 3$.

Следствие 2. Если целое число m имеет хотя бы два взаимно простых делителя, то число квадратичных вычетов по модулю m строго меньше, чем число квадратичных невычетов. Для заданного нечетного числа $m = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_s^{\alpha_s}$ произвольное наугад взятое число a, взаимно простое с m, будет квадратичным вычетом с вероятностью $\frac{1}{2^s}$.

Пример 2.35. Решим сравнение $x^2 \equiv 1033 \pmod{2^4 \cdot 3^3 \cdot 19}$.

Это сравнение разрешимо, поскольку $1033 \equiv 1 \pmod 8$ и выполняются равенства для символов Лежандра $\left(\frac{1033}{3}\right) = \left(\frac{1033}{19}\right) = 1$.

В обозначениях следствия 1 s=2, n=4, значит, сравнение имеет $2^{2+2}=16$ решений.

Решаем сравнение по модулю 19: $x^2 \equiv 1033 \equiv 7 \pmod{19}$. Так как $19 \equiv 3 \pmod{4}$, по способу п. 2.3.2 решением будет $x \equiv \pm 7^5 \equiv \pm 8 \pmod{19}$.

Решаем сравнение по модулю 3^3 : $x^2 \equiv 1033 \equiv 7 \pmod{3^3}$. Ищем решение в виде $x_0 + 3k_1 + 9k_2$. Находим $x_0 \equiv 1 \pmod{3}$ — решение сравнения $x^2 \equiv 7 \equiv 1 \pmod{3}$. Далее, $(1 + 3k_1)^2 \equiv 1 + 6k_1 \equiv 7 \pmod{3^2}$, $k_1 \equiv 1 \pmod{3}$; $(4 + 9k_2)^2 \equiv 16 + 72k_2 \equiv 7 \pmod{3^3}$, $k_2 \equiv 1 \pmod{3}$. Таким образом, нашли решение $x \equiv \pm 13 \pmod{3^3}$.

Решаем сравнение по модулю 2^4 : $x^2 \equiv 1033 \equiv 9 \pmod{2^4}$. Отсюда очевидные решения: $x \equiv \pm 3 \pmod{2^4}$, $x \equiv \pm 5 \pmod{2^4}$.

Восстанавливаем решения исходного сравнения по китайской теореме об остатках. Решаем систему $x \equiv 8 \pmod{19}$, $x \equiv 13 \pmod{3^3}$, $x \equiv 3 \pmod{2^4}$:

$$x \equiv 8 \cdot 3^{3} \cdot 2^{4} \cdot (3^{-3} \cdot 2^{-4} \pmod{19}) + 13 \cdot 19 \cdot 2^{4} \cdot (19^{-1} \cdot 2^{-4} \pmod{3^{3}}) +$$

$$+ 3 \cdot 19 \cdot 3^{3} \cdot (19^{-1} \cdot 3^{-3} \pmod{2^{4}}) \equiv 3456 \cdot 15 + 3952 \cdot 4 + 1539 \cdot 1 \equiv$$

$$\equiv 3523 \pmod{2^{4} \cdot 3^{3} \cdot 19}.$$

Аналогично находим еще семь решений:

x (mod 19)	$x \pmod{3^3}$	$x \pmod{2^4}$	$x \pmod{2^4 \cdot 3^3 \cdot 19}$
8	13	5	4549
8	-13	3	4739
8	-13	5	5765
-8	13	3	6547
-8	13	5	7573

x (mod 19)	$x \pmod{3^3}$	$x \pmod{2^4}$	$x \pmod{2^4 \cdot 3^3 \cdot 19}$
-8	-13	3	7763
-8	-13	5	581

Остальные восемь решений противоположны найденным по знаку. Итак, окончательный результат: $x \equiv \pm 445$, 581, ± 635 , ± 1661 , ± 2443 , ± 3469 , ± 3523 , ± 3659 (mod $2^4 \cdot 3^3 \cdot 19$).

Проверка:

$$(\pm 445)^2 - 1033 = 196992 = 2^4 \cdot 3^3 \cdot 19 \cdot 24,$$

 $(\pm 581)^2 - 1033 = 336528 = 2^4 \cdot 3^3 \cdot 19 \cdot 41,$
 $(\pm 635)^2 - 1033 = 402192 = 2^4 \cdot 3^3 \cdot 19 \cdot 49,$
 $(\pm 1661)^2 - 1033 = 2757888 = 2^4 \cdot 3^3 \cdot 19 \cdot 336,$
 $(\pm 2443)^2 - 1033 = 5967216 = 2^4 \cdot 3^3 \cdot 19 \cdot 727,$
 $(\pm 3469)^2 - 1033 = 12032928 = 2^4 \cdot 3^3 \cdot 19 \cdot 1466,$
 $(\pm 3523)^2 - 1033 = 12410496 = 2^4 \cdot 3^3 \cdot 19 \cdot 1512,$
 $(\pm 3659)^2 - 1033 = 13387248 = 2^4 \cdot 3^3 \cdot 19 \cdot 1631.$