WHAT IS CLAIMED IS:

2	1. A method of optimizing the compression rate in adaptive differential
3	pulse code modulation (ADPCM) by modifying the pulse code modulation
4	process, wherein a prognostic code converter is used to generate variable length
5	codes on top of the adaptive differential pulse code modulation (ADPCM)
6	coding, such that codes of different lengths are assigned in accordance with the
7	probability of occurrence of data bits, so as to reduce the compressed data size
8	and to increase the compression rate of the conventional ADPCM coding.
9	2. The method of optimizing the compression rate in ADPCM as claimed
10	in claim 1, wherein the prognostic code converter includes a variable length
11	encoder and a variable length decoder, wherein
12	the variable length encoder is based on the probability of occurrence of
13	data bits to convert regular ADPCM code to a new variable length code, whereby
14	that the regular pulse code with the highest occurrence rate is assigned a variable
15	length code with the shortest length, and the regular pulse code with lesser
16	occurrence rate is assigned a new code with longer length, thus replacing the
17	regular ADPCM codes; and
18	a variable length decoder works in conjunction with, the above variable
19	length encoder, working in reverse order to convert the compressed data back to
20	the pure ADPCM codes, and latter to the original audio signals for lossless audio
21	output.
22	3. The method of optimizing the compression rate in ADPCM as claimed
23	in claim 2, wherein the variable length encoder is based on the Huffman coding
24	scheme to generate new codes in accordance with the probability of occurrence

1 of data bits.