HOG + SVM in Pedestrian Detection and Face detection

Alex Lin

****** Outline

- What is HOG
- Where is SVM
- Multi-Class Detection using Binary Classifiers
- How to do multi-scale detection using HOG+SVM
- Hard Negative Mining
- Part-based method
- Conclusion

HOG steps

- HOG feature extraction
 - Computer centered horizontal and vertical gradients with no smoothing
 - Compute gradient orientation and magnitudes
 - For color image, pick the color channel with the highest gradient magnitude for each pixel
 - For a 64x128 image,
 - divide the image into 16x16 blocks of 50% overlap
 - 7*15=105 blocks in total
 - Each block should consist 2x2 cells with size 8x8
 - Quantize the gradient orientation into 9 bins
 - The vote is the gradient magnitude
 - Interpolate votes between neighboring bin center
 - The vote can also be weighted with Gaussian to downweight the pixels near the edges of the block.
 - Concatenate histograms (Feature Dimension: 105x4x9=3780)

Computing Gradients

• Centered:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

- Filter masks in x and y directions
 - Centered:

- Gradient
 - Magnitude: $s = \sqrt{s_x^2 + s}$

• Orientation: $\theta = \arctan(\frac{s_y}{s_x})$

Votes

- Each block consists of 2x2 cells with size 8x8
- Quantize the gradient orientation into 9 bins (0-180)
 - The vote is the gradient magnitude
 - Interpoloate votes linearly between neighboring bin centers.
 - Example: if θ =85 degrees.
 - Distance to the bin center Bin-70 and Bin90 are 15 and 5 degrees, respectively
 - Hence, ratios are 5/20=1/4, 15/20=3/4
 - The vote can also be weighted with Gaussian to downweight the pixels near the edges of the block

- Two-category separable case (cont.)
 - Margin
 - The smallest distance to two parallel hyperplanes on each side of the se parating hyperplane

Fig. 7.1 [Bishop 06]

Location of the decision boundary is determined by a subset of the data points, known as support vectors

- Two-category separable case (cont.)
 - Maximal margin classifier
 - To search for the hyperplane that gives the maximum possible margin

maximize the margin:
$$\frac{1}{\|\mathbf{w}\|} + \frac{1}{\|\mathbf{w}\|} = \frac{2}{\|\mathbf{w}\|}$$
requiring that
$$\mathbf{w}^{T} \mathbf{x}_{i} + w_{0} \ge +1 \quad \forall \ \mathbf{x}_{i} \in \omega_{1}$$

$$\mathbf{w}^{T} \mathbf{x}_{i} + w_{0} \le -1 \quad \forall \ \mathbf{x}_{i} \in \omega_{2}$$

- •Let y_i be the class indicator
- •Then the problem becomes

minimize
$$J(\mathbf{w}) = \frac{\|\mathbf{w}\|^2}{2}$$

subject to $y_i(\mathbf{w}^T \mathbf{x}_i + w_0) \ge +1$ $i = 1,..., N$
where $y_i = \begin{cases} +1, & \text{if } \mathbf{x}_i \in \omega_1 \\ -1, & \text{if } \mathbf{x}_i \in \omega_2 \end{cases}$

Nonlinear optimization with linear inequality constraints

- Optimization for constrained problem (Appendix C.4 [Theodoridis 09])
 - The primal problem

minimize
$$J(\theta)$$

subject to $f_i(\theta) \ge 0, i = 1,..., N$

- Lagrangian function
 - To augment the objective function with a weighted sum of the constraint functions

$$L(\mathbf{\theta}, \lambda) = J(\mathbf{\theta}) - \sum_{i} \lambda_{i} f_{i}(\mathbf{\theta})$$

- $\{\lambda_i, i = 1,..., N\}$: the Lagrange multipliers
 - λ : the dual varaibales or Lagrange multiplier vectors

- Optimization for constrained problem (cont.)
 - The dual function

$$D(\lambda) = \inf_{\theta} L(\theta, \lambda) = \inf_{\theta} \left(J(\theta) - \sum_{i=1}^{N} \lambda_{i} f_{i}(\theta) \right)$$

- Suppose $\tilde{\theta}$ is a feasible point of the primal problem and $\lambda_i \ge 0$

i.e.,
$$f_i(\tilde{\boldsymbol{\theta}}) \ge 0$$
, $\forall i$

Then

$$-\!\sum_{i=1}^{N}\lambda_{i}f_{i}\left(\tilde{\boldsymbol{\theta}}\right)\!\leq\!0$$

$$L(\tilde{\boldsymbol{\theta}}, \boldsymbol{\lambda}) = J(\tilde{\boldsymbol{\theta}}) - \sum_{i=1}^{N} \lambda_i f_i(\tilde{\boldsymbol{\theta}}) \leq J(\tilde{\boldsymbol{\theta}})$$

• Thus

$$D(\lambda) = \inf_{\theta} L(\theta, \lambda) \le L(\tilde{\theta}, \lambda) \le J(\tilde{\theta})$$

 The dual function yields lower bounds on the optimal value of the primal problem

$$D(\lambda) \le p^*$$

- Optimization for constrained problem (cont.)
 - The Lagrange dual problem

```
maximize D(\lambda) subject to \lambda \ge 0
```

- The Lagrange dual problem is a convex optimization problem, whether or not the primal problem is convex
 - The objective is concave
 - The constraint is convex

How to do multi-class classification using multiple binary classifiers?

- Multicategory case
 - One-against-the-rest
 - Use M two-class linear discriminants
 - Assign x to ω_i or not ω_i
 - Class imbalance problem
 - #negative >> #positive
 - Pairwise separation:
 - Use *M*(*M*-1)/2 linear discriminants
 - For every pair of classes
 - Decision is made by majority vote
 - Could lead to nonlinear separation of classes

Both approaches lead to undefined regions in the feature space

Fig. 5.3 [Duda 01]

From Image classification to object detection

How to apply HOG in multi-scale detection?

Fig. 2. Different strategies for multi-scale detection. The length of model template represents the template size.

Hard Negative Mining in training a detector

Positive training data

HOG feature extraction

SVM Training

2nd training

HOG feature extraction

SVM Training

Negative training data pool

(non-pedestrian-containing images)

Randomly-sampled negatives +Hard Negatives

Non-maximal Suppression

Boxes with lower confidence and IOU <0.5 with the one with higher confidence should be eliminated

Non-maximal Suppression: a Naïve implementation

Pick the 1st bounding box according to some heuristic rules and eliminate others if their IOU is higher than the chosen one

Detection result without using Hard Negative

Detection result with using Hard Negative

The above training and testing dataset in pedestrian detection:

- Training dataset
 - Positive: INRIA Person (1218 images)
 - Negative: INRIA Person (614 images)
- Test image:
 - Random image downloaded from internet.

Example HOG+SVM: face detection

- Training dataset
 - Positive: Labeled faces in the wild (13233 images)
 - Negative: random cropped images from 'camera', 'text', 'coins', 'moon', 'page', 'clock', 'immunohistochemistry', 'chelsea', 'coffee', 'hubble_ deep_ field 'in "The USC-SIPI Image Database"
- Testing image:
 - Test image: astronaut Eileen Collins in The USC-SIPI Image Database"

Copyright© 2018

20

Positive training images

Detection results before NMS

Negative training images

Detection results after NMS

More advanced method: Deformable Part Model

Model has a root filter plus deformable parts

More advanced method: Deformable Part Model

• Problem: More expressive object models are difficult to train because they often use latent (unobserved/unlabeled) information.

• Insight: Part-based model could provide more robustness/unified feature distribution across different viewing-angle, occlusion level, and degree

of deformation.

Conclusion

- Shallow feature extraction would only produce features with limited invariance.
- Part-based method could provide better invariance in terms of each distinct part to detect the whole object.
- In the era of deep learning, the sophisticated detection pipeline dealing with feature invariance is internalized in each layer of a neural network.