Trend Following Trading Strategy

Japanese Yen and Gasoline Futures

MATH GR5360 | PROFESSOR CHEKHLOV | FINAL PROJECT

GROUP C:

Qiuying Li

Yang Xu

Changyang Liu

Nam Phan

Huanwei Chen

Jing Zhao

Hoa Dang

Keyun Ben

Fan Wang

Sijia Niu

Qizhan Shao

Presentation Outline

MARKET OVERVIEW STATISTICAL TESTING & TREND FOLLOWING STRATEGY ASSUMPTIONS AND IMPLEMENTATION DETAILS STRATEGY & OPTIMIZATION PORTFOLIO RESULTS CONCLUSION

Section A Market Overview

JY Overview

Description

- > USD
- > Tick value: \$6.25
- > Tick Size: 0.005
- Trading Hour: 7:20a.m. -2:00p.m. CST

Price overview

- Current: 89.89 (April 30, 2017)
- Low: 68.07 (August 01, 1998)
- High: 132.10 (October 01, 2011)

Japanese Yen Co	ntract Specifications
Contract Size	12,500,000 Japanese yen
Trading Hours	CME Globex: Sundays: 5:00pm – 4:00pm CT next day. Monday – Friday: 5:00pm – 4:00pm CT the next day, except on Friday – closes at 4:00pm and reopens Sun- day at 5:00pm CT.
	CME ClearPort: Sunday – Friday 5:00pm – 4:15pm CT with a 45–minute break each day beginning at 4:15pm
Minimum Price Fluctuation	\$.0000005 per Japanese yen increments (\$6.25/contract) also for JPY/USD futures intra-currency spreads executed electronically.
CME Globex: 6J	
Product Code	CME ClearPort: J1
	Clearing: J1
Listed Contracts	Twenty months in the March quarterly cycle (Mar, Jun, Sep, Dec)
Settlement Method	Deliverable

JY Historical Price

Introduction: Secondary Market - Gasoline (XB)

Description

> USD

Tick value: \$4.2

Tick Size: 0.01

Price overview

Current: 154.40 (April 5, 2017)

Low: 78.50 (December 24, 2008)

High: 363.10 (July 11, 2008)

Average: 217.44

RBOB Gasoline Contr	act Specifications
Contract Size	42,000 gallons
Price Quotation	U.S. dollars and cents per gallon.
	CME Globex: Sunday – Friday 6:00 p.m. – 5:15 pm ET with a 45-minute break each day beginning at 5:15 pm ET
Trading Hours	CME ClearPort: Sunday – Friday 6:00 p.m. – 5:15 pm ET with a 45-minute break each day beginning at 5:15 pm ET
Minimum Price Fluctuation	\$0.0001 per gallon
	CME Globex: RB
Product Codo	CME ClearPort: RB
Product Code	CME ClearPort: RB Clearing: RB
Product Code	
Product Code Listed Contracts	Clearing: RB

XB Historical Price

Section B Statistics Tests & Trend Following Strategy

Statistical Testing – Variance Ratio Test

- A measure of the randomness of a return series.
- Variance ratio for q periods is

$$VR(q) = \frac{D[r_t(q)]}{q.D[r_t]} = 1 + 2\sum_{k=1}^{q-1} (1 - \frac{k}{q})\rho(k),$$

- q is discrete time separation in minutes
- p(k) is auto-correlation coefficient of two price changes separated by k minutes

VR=1 Random Walk

VR<1 Mean Reversion

Variance Ratio Test Result of JY Market

Variance Ratio Test Result of XB Market

Push Response Test

 This test is free from the fat-tailed bias of the VR test but quickly growing sample error if increase the ∆p

- Push = $x = price(t) price(t \tau)$
- Response = $(y) \Rightarrow \langle y \rangle_{X} = \int_{-\infty}^{\infty} y * P(y|x) * dx$ Here, $P(y|x) = \frac{P(x,y)}{P(x)}$ as the conditional mean response to a "push" x
- Positive slope means trend following!

Push Response Test Results of JY Market

Push Response Test Results of XB Market

Section C Implementation Details

Optimization Details

- R is not an optimal language for optimization
- We tried to solve this problem by using parallel programming in R
 - R packages: parallel and data.table

Optimization Details

- Additionally, we use AWS to gain access to high-performance computer
- We set up and ran our R code directly on AWS servers
- 40 cores machine
- However, due to the nature of R programming language and our function (which consisted of many loops), the optimization was still take significant computation time

Instance Type 🔻	Availability Zone 🔻	Instance State 🔻	Status Checks ~
m4.10xlarge	us-west-1c	running	2/2 checks
m4.10xlarge	us-west-1a	running	2/2 checks
m4.10xlarge	us-west-1c	running	2/2 checks

Optimization Alternatives

- Golden Section Search and Particle Swarm Optimization
- Hill Climbing and Random Search
- Simulated Annealing!
 - Similar to Hill Climbing method, make a small change to that solution, test it and accept
 the new solution if it results in an improvement. The key difference between these
 algorithms is that Hill Climbing only accepts changes that result in an improved solution,
 whereas Simulated Annealing probabilistically accepts worse solutions.

0

- If $c_{new} < c_{old}$: move to the new solution
- If $c_{new} > c_{old}$: *maybe* move to the new solution

$$a = e^{\frac{c_{old} - c_{new}}{T}}$$

 Cons: Although these strategies will speed up the optimization process, they sacrificed the accuracy. They may not reach global optimum, only local optimum, so we use brute force

Assumptions

- Data: JY 5min (20 years data) & XB 5min
- Slippage: 53 & 91
- ChnLen:
 - o 500 to 10000
 - o Increment: 1000
- StpPct:
 - o 0.005 to 0.1
 - Increment: .01
- In Sample: 4, 6, 8, 10 year
- Out Sample: 3, 6, 9, 12 Month
- Objective Function:
 - NPWD = Net Profit / MaxDD

Strategy Framework

Trend-Following Strategy

Method of Exhaustion

-Pros: Get All the solutions from the problem

-Cons: Low Efficiency

In Sample:

JY: (1985-1989), (2000-2004)

XB: (2006-2010)

Out Sample:

JY: 1989/1/2-1989/4/2; 2004/1/2-2004/4/2

XB: 2010/1/2-2010/4/2

Section D Strategy & Optimization

Basic Factors

Equity calculation:

PV(present value) multiplier x (C_{k+1} - C_k) x PV(x X(exchange rate) - slpg(transaction fee)/2

Starting Equity: E(0) = 100000

Our code:

Change position: equity<- equity+(close.price[i]-entry.price)*PV*PV.multi-slippage/2

Keep position: equity<-equity+(close.price[i-1]-close.price[i])*PV*PV.multi

Net Profit Worst Drawdown:

NPWD = (E(t) - E(0)/DD (Drawdown equals to E(t) - max(E(t)))

Our code:

Gain <- max(Gain,equity-100000)

Underwater <- equity - Gain - 100000

maxDD <- min(maxDD, Underwater)

{NPWD<-(-1)*(equity-100000)/maxDD}

Trading Strategy:

No-investment position (0)

Sell position (-1) Buy position (1)

Trading Strategy

Optimization Result: In-Sample Optimization

Return on Account JY

	3 months	6 months	9 months	12 months
4 years	233.82%	225.08%	234.88%	226.85%
6 years	196.17%	195.29%	188.74%	191.59%
8 years	191.83%	191.16%	182.97%	187.71%

Return on Account XB

	3 months	6 months	9 months	12 months
4 years	225.48%	220.56%	232.36%	235.63%
6 years	208.05%	205.16%	207.68%	208.39%
8 years	255.16%	245.72%	270.48%	238.30%

Optimization Result: In-Sample Optimization (JY 4 yr 9 months)

Optimization Result: In-Sample Optimization (XB 8yr 9 months)

Optimization Result: Out-Sample Performance (JY)

Chart shows equity fluctuation in each 9 month period in the optimal 4 years 9 months timeframe

The out-sample performance gets better as the strategy adapts to the time

Section E

Portfolio Results: Risk and Return

Optimization Result: JY

Here, we specifically look at 2 period in JY-5min data, which are:

o 1985-1989:

This period was an economic bubble in Japan from 1986 to 1991 in which real estate and stock market prices were greatly inflated.

o **2000-2004**:

The period which the Japanese economic growth was between 0% and 2% and the economy experienced long term liquidity risk.

Sample Test (JY 85-89): Optimization Histogram

Sample Test (JY 85-89): In Sample Optimization

In Sample Performance Result

Channel Length: 2500 Stop Percent:0.015

Net Equity	\$134,368.9375
Net Profit	\$34,368.9375
Worst Drawdown	\$24,768.5
Net profit to worst drawdown	1.38
Average Net Profit	\$34,368.9375
Sharpe Ratio	6.07%

Series Time Start: 1985/01/02 07:25 Series Time End: 1989/01/02 07:25

Sample Test (JY 85-89): Equity Curve Statistics

Return	Frequency
-23.42%	1
-19.07%	5
-14.71%	1
-10.36%	5
-6.00%	. 12
-1.65%	13
2.71%	20
7.06%	9
11.42%	17
Other	16

Sample Test (JY 00-04): Optimization Histogram

Sample Test (JY 00-04): In Sample Optimization

In Sample Performance Result

Channel Length: 500 Stop Percent:0.075

Net Equity	\$139,958
Net Profit	\$39,958
Net profit to worst drawdown	1.345
Worst Drawdown	\$29,702.56
Average Net Profit	\$39,958
Sharpe Ratio	4.99%

Series Time Start: 2000/01/02 07:25 Series Time End: 2004/01/03 07:25

Sample Test (JY 00-04): Equity Statistics

Return	Frequency
-37.54%	1
-29.69%	2
-21.83%	4
-13.98%	2
-6.12%	5
1.73%	37
9.59%	27
17.44%	11
25.30%	8
Other	2

Equity Curve Statistics - JY- (4 year 3 months in-sample)

Bin	Frequency	Cumulative %
-18.61%	1	1.43%
-13.28%	1	2.86%
-7.94%	9	15.71%
-2.61%	9	28.57%
2.72%	30	71.43%
8.05%	12	88.57%
13.39%	6	97.14%
18.72%	1	98.57%
More	1	100.00%

JY 3 month Out of Sample Equity Curve

 The optimal parameters obtained in the four year period 00-04:

Stppct: 0.075

o Chnlen: 500

This Equity Curve shows vastly negative position of the portfolio in 3 months, but we gain at last. If we look at the economic growth and the close price changes, it could explain the loss in the middle of the time interval.

Sample Test (XB 06-10): Optimization Histogram

Sample Test (XB 06-10): In Sample Optimization

In Sample Performance Result

Channel Length: 500 Stop Percent:0.05

Net Equity	\$241,397.125
Net Profit	\$141,397.125
Worst drawdown	\$34617.812
Average drawdown	\$103991.03
Net profit to worst drawdown	4.084
Average Net Profit	\$141,397.125
Sharpe Ratio	5.46%

Series Time Start: 2006/10/02 07:25 Series Time End: 2010/10/04 07:25

Equity Curve Statistics - XB (4 year 3 months in-sample)

Return	Frequency
-41.48%	1
-12.30%	5
16.89%	11
46.07%	5
Other	1

XB 3m Out of Sample Equity Curve

 The optimal parameters obtained in the four year period 06-10:

o Stppct: .005

o Chnlen: 500

 This Equity Curve shows both negative and positive portfolio position, indicating that the trading strategy is neutral

Section F Conclusion

Conclusion

- Border Search: We notice that some of our optimal parameters are on the border (e.g. channel length at 500), maybe next time we can explore this properties more
- The difference between in-sample and out-sample test can be significant.
- Limitation of R Programming Language
- Advantage of other Programming Language
 - o C++
- Thanks to all my teammate!!!