DB25 SQL Tokenizer: Visual Tutorial High-Performance SIMD-Accelerated Lexical Analysis

Chiradip Mandal chiradip@chiradip.com Space-RF.org

 $March\ 2025$

1 Introduction

This visual tutorial demonstrates the architecture and operation of the DB25 SQL Tokenizer through detailed diagrams and visualizations.

2 System Architecture Overview

Figure 1: DB25 SQL Tokenizer System Architecture

3 SIMD Processing Visualization

3.1 Parallel Whitespace Detection

Figure 2: SIMD Parallel Whitespace Detection

3.2 Vectorized Keyword Matching

Figure 3: SIMD Vectorized Keyword Matching

4 Token Pipeline Processing

Figure 4: Token Processing Pipeline with Time Distribution

5 Memory Layout and Zero-Copy Design

Figure 5: Zero-Copy Token Memory Layout

6 Performance Characteristics

6.1 Throughput Comparison

Figure 6: Performance Comparison: Scalar vs SIMD

6.2 Token Distribution

Figure 7: Token Type Distribution in Typical SQL

7 SIMD Instruction Flow

Figure 8: SIMD Instruction Flow for Pattern Detection

8 Keyword Lookup Strategy

Figure 9: Length-Bucketed Keyword Lookup Strategy

9 CPU Feature Detection Flow

Figure 10: Runtime CPU Feature Detection

10 Implementation Example

```
1 -- Input SQL
2 SELECT u.name, u.email, COUNT(o.id) as order_count
3 FROM users u
4 JOIN orders o ON u.id = o.user_id
5 WHERE u.created_at > '2024-01-01'
```

```
AND o.status = 'completed'
GROUP BY u.id, u.name, u.email
HAVING COUNT(o.id) > 5
ORDER BY order_count DESC
LIMIT 10;
```

Listing 1: Sample SQL Tokenization

K: Keyword I: Identifier D: Delimiter

Figure 11: Token Stream Visualization (First 11 tokens)

11 Performance Metrics Dashboard

Figure 12: DB25 Tokenizer Performance Metrics

12 Conclusion

The DB25 SQL Tokenizer demonstrates how modern CPU features can be leveraged to achieve exceptional performance in text processing. Through careful architecture design, SIMD optimization, and zero-copy techniques, it achieves industry-leading throughput suitable for high-performance database systems.

12.1 Key Takeaways

- SIMD Acceleration: 4.5× speedup through parallel processing
- Zero-Copy Design: Eliminates memory allocation overhead
- Cache Optimization: Linear scanning for optimal prefetching
- Adaptive Processing: Runtime CPU feature detection
- Production Ready: Comprehensive testing and documentation

12.2 Future Directions

DB25 SQL Tokenizer

Pushing the boundaries of SQL processing performance

Made with passion by Space-RF.org https://github.com/Space-RF/DB25-sql-tokenizer