

Aprendizagem de Máquina

César Lincoln Cavalcante Mattos

2020

Agenda

- 1 Árvores de decisão
- 2 Avaliação de classificadores Matriz de confusão Avaliação de classificadores binários
- 3 Tópicos adicionais
- 4 Referências

• Problema: Como diferenciar laranjas de limões?

• Ideia: Mapeamos largura (width) e altura (height) das frutas.

• Ideia: Usamos regras lógicas (se-então) para separar as frutas.

• Ideia: Usamos regras lógicas (se-então) para separar as frutas.

• Ideia: Usamos regras lógicas (se-então) para separar as frutas.

- Nós internos verificam valores de atributos.
- Ramificação é feita de acordo com o limiar (threshold) escolhido.
- Nós terminais (folhas) estão associados a uma classe específica.

Predições usando árvores de decisão

Dada uma árvore de decisão já existente e um padrão de teste:

- 1 Inicie no nó mais superior (raiz da árvore).
- 2 Considere o atributo do nó em questão.
- 3 Verifique o limiar do nó atual e siga um dos ramos existentes.
- 4 Caso chegue em um nó terminal (folha), retorne a saída associada. Caso contrário, desça para o próximo nó interno e continue.

- Cada caminho na árvore define uma região (partição) \mathcal{R}_k do espaço de entrada.
- Sejam os padrões $\mathcal{D}_k = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{N_k} \in \mathcal{R}_k$ os exemplos de treinamento que alcançam a região \mathcal{R}_k .

- Cada caminho na árvore define uma região (partição) \mathcal{R}_k do espaço de entrada.
- Sejam os padrões $\mathcal{D}_k = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^{N_k} \in \mathcal{R}_k$ os exemplos de treinamento que alcançam a região \mathcal{R}_k .

Árvores de decisão para classificação

A saída associada à folha k é a classe mais comum em \mathcal{D}_k .

Árvores de decisão para regressão

A saída associada à folha k é a média das saídas contínuas em \mathcal{D}_k .

 Para dados (entrada e saída) discretos, árvores de decisão podem expressar qualquer função dos atributos de entrada.

 Para dados (entrada e saída) discretos, árvores de decisão podem expressar qualquer função dos atributos de entrada.

 No caso de dados contínuos, árvores podem aproximas funções com erros arbitrariamente pequenos.

• Problema: Classificação de peixe: salmão ou seabass (robalo)?

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

• **Problema**: Como obter a árvore de decisão automaticamente a partir dos dados de treinamento?

- **Problema**: Como obter a árvore de decisão automaticamente a partir dos dados de treinamento?
- **Problema**: Construir a menor árvore (mais concisa) é um problema NP completo.

- Problema: Como obter a árvore de decisão automaticamente a partir dos dados de treinamento?
- Problema: Construir a menor árvore (mais concisa) é um problema NP completo.
- **Ideia**: Seguir uma abordagem heurística gulosa (*greedy*):
 - Comece de uma árvore vazia;
 - 2 Encontre o melhor atributo para realizar uma divisão;
 - Repita recursivamente o passo anterior para o próximo nó até encontrar uma folha.

 Problema: Como encontrar o melhor atributo para realizar a divisão?

- Problema: Como encontrar o melhor atributo para realizar a divisão?
- Ideia: Usar índices de pureza.
 - → Pureza máxima: Somente exemplos de uma mesma classe em uma folha.
 - → Pureza mínima: Quantidades iguais de todas as classes em uma folha.
 - ightarrow Distribuições intermediárias são quantificadas por um índice.
 - → A qualidade da divisão é dada pela média dos índices de pureza das folhas geradas ponderada pelas proporções de padrões.

Entropia (teoria da informação)

- Taxa de informação gerada por uma fonte de dados.
- Dados improváveis fornecem mais informação (mais "surpresa").
- Maior a pureza, menor a entropia, sendo quantificada por:

$$H = -\sum_{k} P(C_k) \log_2 P(C_k)$$

Entropia (teoria da informação)

- Taxa de informação gerada por uma fonte de dados.
- Dados improváveis fornecem mais informação (mais "surpresa").
- Maior a pureza, menor a entropia, sendo quantificada por:

$$H = -\sum_{k} P(C_k) \log_2 P(C_k)$$

Índice (ou impureza de) Gini

- Frequência em que um exemplo aleatório é incorretamente classificado.
- Pode ser quantificado por:

$$G = \sum_{k} P(C_k)(1 - P(C_k)) = 1 - \sum_{k} P(C_k)^2$$

Índice (ou impureza de) Gini

- Frequência em que um exemplo aleatório é incorretamente classificado.
- Pode ser quantificado por:

$$G = \sum_{k} P(C_k)(1 - P(C_k)) = 1 - \sum_{k} P(C_k)^2$$

Comparação entre entropia e impureza de Gini

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
0.8	25	Seabass
0.7	25	Seabass

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

- Escolhendo Brilho > 0.7:
 - \rightarrow 1 Seabass e 0 Salmão:
 - $G_1 = 1 \left(\frac{1}{1}\right)^2 \left(\frac{0}{1}\right)^2 = 0$ \rightarrow 3 Seabass e 5 Salmão:
 - $G_2 = 1 \left(\frac{3}{8}\right)^2 \left(\frac{5}{8}\right)^2 \approx 0.47$
 - \rightarrow Gini médio das ramificações: $G_B = \frac{1}{9}G_1 + \frac{8}{9}G_2 \approx 0.42$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
0.8	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

$$G = 1 - \left(\frac{5}{9}\right)^2 - \left(\frac{4}{9}\right)^2 \approx 0.49$$

- Escolhendo Tamanho > 25:
 - → 4 Seabass e 1 Salmão: $G_1 = 1 - \left(\frac{4}{\epsilon}\right)^2 - \left(\frac{1}{\epsilon}\right)^2 \approx 0.32$
 - \rightarrow 0 Seabass e 4 Salmão: $G_2 = 1 - \left(\frac{0}{4}\right)^2 - \left(\frac{4}{4}\right)^2 = 0$
 - → Gini médio das ramificações:

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass
	·	

Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{4}{9}\right)^2 - \left(\frac{6}{9}\right)^2 \approx 0.49$$

Opções de ramificação:

$$\label{eq:Brilho} {\sf Brilho} > 0.7 \rightarrow \! G_B \approx 0.42$$

$$\mbox{Tamanho} > 25 \rightarrow \! G_T \approx 0.18$$

• Vamos aplicar o índice Gini na divisão dos exemplos de peixes.

Brilho	Tamanho	Classe
1.2	23	Salmão
1.1	30	Salmão
0.9	36	Salmão
8.0	45	Salmão
8.0	38	Salmão
0.9	15	Seabass
8.0	20	Seabass
8.0	25	Seabass
0.7	25	Seabass

• Gini original (5 Salmão e 4 Seabass):

$$G = 1 - \left(\frac{4}{9}\right)^2 - \left(\frac{6}{9}\right)^2 \approx 0.49$$

Opções de ramificação:

Brilho
$$> 0.7 \rightarrow G_B \approx 0.42$$

Tamanho $> 25 \rightarrow G_T \approx 0.18$

 Escolhemos a opção que apresenta a maior queda de impureza Gini em relação ao nó pai (Tamanho > 25).

Treinamento guloso (greedy) de árvores de decisão

- Calcule o índice de pureza/impureza do nó atual (nó pai);
- 2 Crie ramificações a partir de um atributo e um limiar candidatos;
- Escolha a ramificação com maior queda de impureza (maior pureza) em relação ao nó pai;
- 4 Para cada nó criado pela ramificação escolhida:
 - Se n\u00e3o houver exemplos de treinamento, retorne a classe mais comum no n\u00f3 pai.
 - Se todos os exemplos são de uma mesma classe, retorne-a.
 - Caso contrário, retorne ao primeiro passo.

Arvore de decisão para classificação de peixes

Arvore de decisão para classificação de peixes

Arvore de decisão para classificação de peixes

Arvore de decisão para classificação das flores íris

Arvore de decisão para classificação das flores íris

Arvore de decisão para classificação das flores íris

 Importante: Sempre é possível criar uma árvore em que todos os exemplos de treinamento são perfeitamente separados, desconsiderando o ruído.

- Importante: Sempre é possível criar uma árvore em que todos os exemplos de treinamento são perfeitamente separados, desconsiderando o ruído.
- Questão: Isso prejudica a generalização do modelo?

- Importante: Sempre é possível criar uma árvore em que todos os exemplos de treinamento são perfeitamente separados, desconsiderando o ruído.
- Questão: Isso prejudica a generalização do modelo? Sim (overfitting)!

- Importante: Sempre é possível criar uma árvore em que todos os exemplos de treinamento são perfeitamente separados, desconsiderando o ruído.
- Questão: Isso prejudica a generalização do modelo? Sim (overfitting)!
- Ideias:
 - → Evitar árvores muito grandes fixando uma variação mínima de pureza para executar uma ramificação.
 - → Podar a árvore gerada (remover e/ou unir nós) usando um conjunto de validação.

Algoritmos para treinamento de árvores de decisão

- ID3 (Iterative Dichotomizer): Um dos primeiros e mais simples algoritmos de árvore de decisão. Normalmente usa a entropia para escolher novas ramificações.
- C4.5: Versão mais avançada do algoritmo ID3, com suporte a poda e dados discretos, contínuos, faltantes.
- CART (Classification And Regression Tree): Similar ao algoritmo C4.5. Normalmente usa a impureza de Gini para escolher novas ramificações.

Vantagens

- Facilmente interpretáveis, pois geram regras de decisão.
- São escaláveis.
- Seleção automática de atributos importantes.
- Lidam facilmente com dados faltosos.

Vantagens

- Facilmente interpretáveis, pois geram regras de decisão.
- São escaláveis.
- Seleção automática de atributos importantes.
- Lidam facilmente com dados faltosos.

Desvantagens

- Tendência ao overfitting.
- Pequenas variações no conjunto de treinamento resultam em árvores diferentes.

Agenda

- Árvores de decisão
- Avaliação de classificadores Matriz de confusão Avaliação de classificadores binários
- 3 Tópicos adicionais
- A Referências

Avaliação de classificadores

Matriz de confusão

- Matriz que **sumariza os acertos e erros** de um classificador.
- Normalmente as classes (rótulos) verdadeiras são colocadas no eixo vertical, enquanto as classes preditas ficam no eixo horizontal.
- Os elementos na diagonal principal da matriz correspondem aos acertos do classificador.
- Os demais elementos correspondem aos erros do classificador.
- Classificadores obtidos por algoritmos diferentes podem obter erros diferentes, mesmo que a taxa de erro total seja semelhante.

Matriz de confusão - Arvore de decisão - Flores íris

Classificação binária ("positivo" ou "negativo")

Precisão e Revocação

"Quantos elementos selecionados são relevantes?"

"Quantos elementos relevantes foram selecionados?"

Avaliação de classificadores binários

 Revocação (sensibilidade, recall ou taxa de verdadeiros positivos):

$$\mathsf{revoca} \\ \mathsf{ç} \\ \mathsf{ao} = \frac{\mathsf{verdadeiros} \; \mathsf{positivos}}{\mathsf{verdadeiros} \; \mathsf{positivos} + \mathsf{falsos} \; \mathsf{negativos}}$$

Precisão (precision ou valor preditivo positivo):

$$\mathsf{precis\~ao} = \frac{\mathsf{verdadeiros}\;\mathsf{positivos}}{\mathsf{verdadeiros}\;\mathsf{positivos} + \mathsf{falsos}\;\mathsf{positivos}}$$

• F1 score (F-score ou F-measure):

$$F_1 = \left(\frac{\mathsf{revoca} \zeta \tilde{\mathsf{ao}}^{-1} + \mathsf{precis} \tilde{\mathsf{ao}}^{-1}}{2}\right)^{-1} = 2\frac{\mathsf{revoca} \zeta \tilde{\mathsf{ao}} \times \mathsf{precis} \tilde{\mathsf{ao}}}{\mathsf{revoca} \zeta \tilde{\mathsf{ao}} + \mathsf{precis} \tilde{\mathsf{ao}}} \in [0,1]$$

Naive Bayes Gaussiano - Breast Cancer

revocação =
$$\frac{61}{61+9} \approx 0.8714$$
, precisão = $\frac{61}{61+3} \approx 0.9531$, $F_1 \approx 0.9104$

Discriminante Gaussiano - Breast Cancer

revocação =
$$\frac{66}{66+4} \approx 0.9429$$
, precisão = $\frac{66}{66+4} \approx 0.9429$, $F_1 \approx 0.9429$

Curva ROC (receiver operating characteristic)

• Em classificadores binários, temos $\hat{y}_* = \left\{ \begin{array}{ll} 1, & \text{se } p(\hat{y}_* | \pmb{x}_*) \geq \tau, \\ 0, & \text{caso contrário.} \end{array} \right.$

Curva ROC (receiver operating characteristic)

- Em classificadores binários, temos $\hat{y}_* = \left\{ \begin{array}{ll} 1, & \text{se } p(\hat{y}_* | \pmb{x}_*) \geq \tau, \\ 0, & \text{caso contrário.} \end{array} \right.$
- Apesar do valor $\tau=0.5$ ser usual, podemos usar $\tau\in[0,1].$
- A curva ROC é obtida quando computamos

taxa de falsos positivos (FPR) =
$$\frac{\text{falsos positivos}}{\text{falsos positivos} + \text{verdadeiros negativos}} \text{ e}$$
 taxa de verdadeiros positivos (TPR) =
$$\frac{\text{verdadeiros positivos}}{\text{verdadeiros positivos} + \text{falsos negativos}}$$

para diversos valores de $\tau \in [0,1]$.

Curva ROC (receiver operating characteristic)

- $\bullet \ \, \text{Em classificadores binários, temos} \,\, \hat{y}_* = \left\{ \begin{array}{ll} 1, & \text{se} \,\, p(\hat{y}_* | \textbf{\textit{x}}_*) \geq \tau, \\ 0, & \text{caso contrário.} \end{array} \right.$
- Apesar do valor $\tau = 0.5$ ser usual, podemos usar $\tau \in [0,1]$.
- A curva ROC é obtida quando computamos

taxa de falsos positivos (FPR) =
$$\frac{\text{falsos positivos}}{\text{falsos positivos} + \text{verdadeiros negativos}} \text{ e}$$
 taxa de verdadeiros positivos (TPR) =
$$\frac{\text{verdadeiros positivos}}{\text{verdadeiros positivos} + \text{falsos negativos}}$$

para diversos valores de $\tau \in [0, 1]$.

- AUROC (area under the ROC curve): Área abaixo da curva ROC de um classificador. Seu pior valor é 0 e o melhor é 1.
 - → Probabilidade do classificador atribuir um valor maior a um padrão positivo qualquer comparado a um negativo qualquer.

Curva ROC - Ilustração

Curva ROC - Ilustração

 Observação: Um classificador aleatório possui uma curva ROC em que TPR = FPR.

Curva Precision-Recall (PRC)

- Em classificadores binários, temos $\hat{y}_* = \left\{ \begin{array}{ll} 1, & \text{se } p(\hat{y}_* | \pmb{x}_*) \geq \tau, \\ 0, & \text{caso contrário.} \end{array} \right.$
- A curva PR é obtida quando computamos

$$\begin{aligned} \text{revocação} &= \frac{\text{verdadeiros positivos}}{\text{verdadeiros positivos} + \text{falsos negativos}} \text{ e} \\ \text{precisão} &= \frac{\text{verdadeiros positivos}}{\text{verdadeiros positivos} + \text{falsos positivos}} \end{aligned}$$

para diversos valores de $\tau \in [0,1]$.

- AUPRC (area under the PR curve): Área abaixo da curva PR de um classificador. Corresponde à precisão média.
- Preferível na presença de classes muito desbalanceadas.

Curva PR - Ilustração

 Observação: Um classificador aleatório possui uma curva PR constante igual à proporção de exemplos positivos.

Agenda

- Árvores de decisão
- 2 Avaliação de classificadores Matriz de confusão Avaliação de classificadores binários
- 3 Tópicos adicionais
- A Referências

Tópicos adicionais

- Poda (prunning) de árvores.
- Modelos de mistura em árvores.
- Árvores aditivas: Bayesian additive regression trees (BART).
- Bagging e boosting de árvores de decisão (ainda veremos!)

Agenda

- Árvores de decisão
- 2 Avaliação de classificadores Matriz de confusão Avaliação de classificadores binários
- 3 Tópicos adicionais
- 4 Referências

Referências bibliográficas

- Caps. 5 e 16 MURPHY, Kevin P. Machine learning: a probabilistic perspective, 2012.
- Cap. 14 BISHOP, C. Pattern recognition and machine learning, 2006.