SUPPLY CHAIN WASTE

PROJECT-2: AGRICULTURAL PRODUCTION

REPORT OUTLINE

Dataset

Data Cleaning

Regression Analysis

Visualizations

Conclusion

DATASET

SUPPLY CHAIN WASTE

Refers to the **inefficiencies** and **losses** that occur at various stages of the supply chain, from initial production of the raw materials to the final consumption by end-users.

DATA DICTIONARY

- **(t)** Tonne (1000 kg)
- **(ha)** Hectares $(10,000 m^2)$

per capita

used to express a measure or value on a per-person basis
example, the per capita income of a country = total income / total
population

FAO

Food and Agriculture Organization
a specialized agency of the United Nations that focuses on issues related to food and agriculture

DATA CLEANING

DATA CLEANING STEPS

REGRESSION ANALYSIS

MODEL ACCURACY

The regression equation predicts 50% of the variability in the model

Model Summary

S R-sq R-sq(adj) R-sq(pred)
292309 50.18% 50.14% 49.59%

Regression Equation

Supply_chain_waste = -681534 + 356 Year + 1225988 Population - 0.017765 Production - 1219152 Yield + 0.14020 Land_used + 0.03153 Imports + 0.00553 Exports + 0.000269 Domestic_supply + 0.10286 Food + 0.005819 Animal_feed

SIGNIFICANT PREDICTORS

P-Value < 0.05,

Year

Production

Land_used (25% R-sq)

Imports

Exports

Food (29% R-sq)

Animal_feed

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	-681534	340129	-2.00	0.045	
Year	356	171	2.08	0.037	1.15
Population	1225988	1091618	1.12	0.261	1423490.90
Production	-0.017765	0.000600	-29.58	0.000	13.08
Yield	-1219152	1091625	-1.12	0.264	1423475.66
Land_used	0.14020	0.00270	51.91	0.000	7.41
Imports	0.03153	0.00215	14.67	0.000	1.37
Exports	0.00553	0.00170	3.26	0.001	3.99
Domestic_supply	0.000269	0.000764	0.35	0.725	12.61
Food	0.10286	0.00302	34.01	0.000	1.88
Animal_feed	0.005819	0.000958	6.08	0.000	9.41

VISUALIZATION

Gyro Analytics

by **CONTINENT**

by LAND USED

Gyro Analytics

by FOOD CONSUMPTION

Gyro Analytics

DASHBOARD

AGRICULTURAL FOOD PRODUCTION DASHBOARD

CONCLUSION

MICRONESIA

UNITED STATES

SUPPLY CHAIN WASTE

Gyro Analytics

HYPOTHESIS

Supply chain waste is **directly** proportional to **food consumption** (*i.e. Micronesia*) and **inversely** proportional to the **land used** (*i.e. United States*) in agricultural production.

