

Algèbre et Arithmétique 3

Examen, session 2, 21 Juin 2016

Documents et calculatrices non autorisés

Exercice 1

Soit σ la permutation de S_9 définie par

$$\sigma = \left(\begin{array}{cccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 4 & 7 & 1 & 2 & 8 & 9 & 6 & 3 \end{array}\right)$$

- 1 Donner la décomposition de σ en produit de cycles à support disjoints.
- **2** Calculez la signature de σ , et son ordre.

Exercice 2

En expliquant en français les étapes et justifications de votre démarche, établissez la liste des polynômes unitaires irréductibles de degré ≤ 4 dans $\mathbb{Z}/2\mathbb{Z}[X]$.

Exercice 3

Montrer que l'équation d'inconnues entières (x, y, z),

$$2x^4 + 2y^4 = z^4,$$

n'admet que (0,0,0) comme solution dans \mathbb{Z}^3 . On pourra d'abord étudier cette même équation dans $\mathbb{Z}/5\mathbb{Z}$.

Exercice 4

Soit A un anneau commutatif. On suppose que $\forall x \in A, x^2 = x$. Un tel anneau est appelé anneau de Boole.

- 1 Montrez que $\forall x \in A, x = -x$. (On pourra calculer $(x+x)^2$).
- 2 Montrez que si A contient au moins trois éléments, alors A n'est pas intègre.

Exercice 5

- 1 Calculez les cardinaux des groupes multiplicatifs $(\mathbf{Z}/3\mathbf{Z})^{\times}$, $(\mathbf{Z}/9\mathbf{Z})^{\times}$, et de façon générale $(\mathbf{Z}/3^k\mathbf{Z})^{\times}$, où $k \geq 1$.
- **2** Calculez l'ordre de la classe de 2 dans le groupe multiplicatif $(\mathbf{Z}/3\mathbf{Z})^{\times}$, ainsi que l'ordre de la classe de 4 dans $(\mathbf{Z}/9\mathbf{Z})^{\times}$.
- 3 Soit $k \ge 1$. Montrez que l'application f_k qui à la classe d'un entier z modulo 3^k associe la classe de z^3 modulo 3^{k+1} , est bien définie. Attention, ce ne serait pas vrai si on remplaçait z^3 par z^2 .
- 4 Montrez que si $k \geq 1$, et z est un entier vérifiant $z \equiv 1 + 3^{k-1} \pmod{3^k}$, alors

$$z^3 \equiv 1 + 3^k \pmod{3^{k+1}}.$$

En déduire que

$$(1+3)^{3^{k-1}} \equiv 1+3^k \pmod{3^{k+1}},$$

- et la valeur de 4^{3^k} modulo 3^{k+1} .

 6 En déduire l'ordre de la classe de 4 dans le groupe multiplicatif $(\mathbf{Z}/3^k\mathbf{Z})^{\times}$.

 7 En déduire l'ordre de la classe de 2 dans le groupe multiplicatif $(\mathbf{Z}/3^k\mathbf{Z})^{\times}$. Que peut-on dire de ce dernier groupe ?