

Polar™ HiPerFET™ **Power MOSFETs**

IXFN40N90P

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum Ratings	
V _{DSS}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	900	V
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	900	V
V _{GSS}	Continuous	±30	V
V _{GSM}	Transient	±40	V
I _{D25}	T _C = 25°C	33	A
I _{DM}	$T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$	80	Α
I _A	T _C = 25°C	20	A
E _{as}	$T_{c} = 25^{\circ}C$	2.5	J
dv/dt	$I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$	15	V/ns
P_{D}	T _C = 25°C	695	W
T _J		-55 to +150	°C
\mathbf{T}_{JM}		150	°C
T _{stg}		-55 to +150	°C
V _{ISOL}	50/60 Hz, RMS, t = 1minute	2500	V~
1002	$I_{ISOL} \le 1 \text{ mA}, \qquad t = 1 \text{ s}$	3000	V~
M _d	Mounting Torque for Base Plate Terminal Connection Torque	1.5/13 1.3/11.5	Nm/lb.in. Nm/lb.in.
Weight		30	g

		cteristi Typ.		s	
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	900			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1 \text{mA}$	3.5		6.5	V
I _{GSS}	$V_{GS} = \pm 30V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			50	μΑ
	$T_J = 125^{\circ}C$			3.5	mΑ
R _{DS(on)}	$V_{GS} = 10V$, $I_D = 20A$, Note 1	_		230	mΩ

= 900V

= 33A

 \leq 230m Ω

< 300ns

G = Gate S = Source D = Drain

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- Low Intrinsic Gate Resistance
- miniBLOC with Aluminum Nitride Isolation
- Low R_{DS(on)} and Q_G
 Avalanche Rated
- Low Package Inductance
- Fast Intrinsic Rectifier

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode **Power Supplies**
- DC-DC Converters
- Laser Drivers
- AC and DC Motor Drives
- Robotics and Servo Controls

Symbol Test Conditions			Characteristic Values			
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.		
g _{fs}	$V_{DS} = 20V, I_{D} = 20A, Note 1$	18	30	S		
C _{iss}			14	nF		
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		896	pF		
C _{rss}			58	pF		
\mathbf{R}_{Gi}	Gate Input Resistance		1.5	Ω		
t _{d(on)}	Resistive Switching Times		53	ns		
t _r	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 20A$		50	ns		
t _{d(off)}	$R_{c} = 1\Omega$ (External)		77	ns		
t,) n _G = 152 (External)		46	ns		
$Q_{g(on)}$			230	nC		
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 20A$		70	nC		
Q_{gd}			100	nC		
R _{thJC}				0.18 °C/W		
R _{thCS}			0.05	°C/W		

Source-Drain Diode

Symbo		Characteristic Values			
$T_J = 2$	5°C, Unless Otherwise Specified)	Min.	Тур.	Max	ζ
Is	$V_{GS} = 0V$			40	Α
I _{SM}	Repetitive, Pulse Width Limited by $T_{_{JM}}$			160	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr} I _{RM} Q _{RM}	$ \begin{cases} & I_F = 20A, -di/dt = 100A/\mu s, \\ & V_R = 100V, V_{GS} = 0V \end{cases} $		14.0 1.7	300	ns A µC

Note: 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ $T_J = 25^{\circ}C$

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 20A$ Value vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 20A$ Value vs.

Fig. 6. Maximum Drain Current vs.

IXFN40N90P

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

