

SEQUENCE LISTING

<110> Cotttingham, Ian R.
McCreath, Graham E.

<120> Fusion Proteins Incorporating Lysozyme

<130> 0623.0730002/EKS/BJD

<140> US (to be assigned)
<141> 2001-12-21

<150> US (to be assigned)
<151> 2001-12-21

<150> PCT/GB00/02459
<151> 2000-06-23

<150> GB 9914733.2
<151> 1999-06-23

<150> US 60/147,819
<151> 1999-08-10

<160> 11

<170> PatentIn Ver. 2.1

<210> 1

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Linker

<400> 1

Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10 15

<210> 2

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Recognition
site for enzymatic cleavage

<400> 2

Ile Glu Gly Arg
1

<210> 3

<211> 4

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Recognition

site for enzymatic cleavage

acatttagt aataaacgc catatgccc ttatgcact taaaagtgt taacatttt 6600
ccatagtgc ttcttcatg cttttttt ttttttttgc gagaggatc 6660
ttgtgggtt ttgttgtt tattttgaga cagggttc tgcccccgg ctgtatcg 6720
tggcaccate acagctca ctggatcc tgcataccc accacagcc cccaatgtc 6780
ttggactaca ggtgtgcacc accatgcgt gaaatattt gaaatattttt 6840
attctgtgtt gccaggctg gtcttgaact cttgagttca agcaatcttc 6900
ctccatggc tgcgtggattt acaggcgta gcaactgttcc tggtctatgc 6960
ttaatgtat taggaacatg atgatattcc atttcaataat ttttttttttgc 7020
aaaatacagt tcctgtggaa ttatattgtt aaataaaaaa ttaacttaag gattttttt 7080
tttgagtgta aaaaaatattt ttaactgtt ctttttttttgc 7140
cagtgtcaaa aattatgcg aatttgcgt aatttttttttgc 7200
aaatccccca taaaagacat taatcttgc ttttttttttgc 7260
attataataat aattttgtt ctttttttttgc 7320
accatataatc ttactacccca gagggtttt accatggta aatttgcgttcc 7380
cagaatgtat atcaatcatg ttttttttttgc 7440
atcaaaaaatc gtttttttttgc 7500
ttcaatattt ctttttttttgc 7560
taatgtatcc ttgtccattt ctttttttttgc 7620
aaaagaatgt aatggatgtt aatattgtt aatatttttttgc 7680
tatttgcacat ttgggtttt ctttttttttgc 7740
atatactttt ggggttttttgc 7800
agtttttttttgc 7860
ttgttataatc ctttttttttgc 7920
catgtctaat gggagaaaaa gaagagatgt ttttttttttgc 7980
tagaaaaataa ttttttttttgc 8040
aatttttttttgc 8100
tgcataatcatc ttgggtttt ctttttttttgc 8160
gcatttagacat ttgggtttt ctttttttttgc 8220
tttttttttgc 8280
tatataatcatc ttgggtttt ctttttttttgc 8340
agcttttttgc 8400
atgtatccatc ttgggtttt ctttttttttgc 8460
aaagatgttcc acactttatc ttgggtttt ctttttttttgc 8520
atgttggccc gggccatgtt ccacccctgtt ttttttttttgc 8580
atggatcaccc ttgggtttt ctttttttttgc 8640
ccactaaaaaa ttttttttttgc 8700
tttttttttgc 8760
tttttttttgc 8820
tttttttttgc 8880
tttttttttgc 8940
tttttttttgc 9000
tttttttttgc 9060
tttttttttgc 9120
tttttttttgc 9180
tttttttttgc 9240
tttttttttgc 9300
tttttttttgc 9360
tttttttttgc 9420
tttttttttgc 9480
tttttttttgc 9540
tttttttttgc 9600
tttttttttgc 9660
tttttttttgc 9720
tttttttttgc 9780
tttttttttgc 9840
tttttttttgc 9900
tttttttttgc 9960
tttttttttgc 10020
tttttttttgc 10080
tttttttttgc 10140
tttttttttgc 10200
tttttttttgc 10260
tttttttttgc 10320

ttctgcacac	acagaacgga	gatccaaacca	gttcatccta	aaggagatca	gtctgggttg	10380
ttctatgggg	ggactgtgt	tggaaatcgaa	actccaaatgc	tttggccccc	ttgtatggaa	10440
agtctggact	ttttaaaaaa	ccctgtatgt	ggaaagattt	ggggggccgg	ggggaaagggg	10500
acagcaggagg	atagatgtgt	tggatggcat	cacaacacaa	atggacatgg	gtttgggttg	10560
actccaggag	tttgtgttgg	acaggggcgc	cttcggctgt	ggggggccaaa	ggggccaaaa	10620
gactgatgt	ctgaaatgtag	ctgaaatgtaa	tggaaatgtag	gtatcacaga	aagtggggat	10680
tttttagata	ataaaatgtat	acacataaaca	tagtgtatcat	tcatatttt	atgcataact	10740
gaatgttcag	tcaatctatgtc	gtatctgact	tcgttgcata	ttccggccatgt	ttttccatctc	10800
ttcttcgttc	cacaatgtttcc	tccggcggaa	aatactggag	ttggggtagcc	ttttccatctc	10860
cagggggttc	ttccggacccaa	ggggatgttac	cggtatctcc	tgatattgtca	gggtggatct	10920
tttacactgt	ggcaccagggg	aaaggccctgt	tactcttctat	ttccccactta	attaccaaag	10980
ctgtccatgg	aaaaaaacccgg	tgtggctctgt	agcttcccccgg	cctggcagagg	gttgggggggg	11040
tagactgt	cctggggaaaca	ccccccctgt	tcaggacttgc	ggggccacatgt	gaccacatgt	11100
cttgcagacaa	ggccgggttage	tctgtcttc	aagggttctt	atctttaaaaa	aaaatcgagg	11160
tctattttgt	gacttcgtgt	tcgtttatgtc	ttttttatccaa	gttgcgtatgg	cagccctctc	11220
cccagggttc	gggggtttcca	ggggagccgc	tttccatctat	gttgcgtatgg	acactcgggg	11280
gttggcccccgc	cttcgggttgg	cttcacatgt	ttccatctgtc	ttttttatccaa	aaacgacacca	11340
atgtacttttt	aggagacaaatc	agacacccac	ttttttatccaa	ttttttatccaa	actgtatgt	11400
cttttttttttt	ctaaagacacat	acatgttgc	aaagggtttttt	ttttttatccaa	gtttaatggc	11460
ctacttgcgc	ctaaagagggg	aaacatgttc	ttttttatccaa	ttttttatccaa	acttgcgtgc	11520
atcccgaggcc	acttagtatt	atctggccgc	ttttttatccaa	ttttttatccaa	ttttttatccaa	11580
aaaaaaatccgt	tggggaaatgtt	catccatgtt	ttttttatccaa	ttttttatccaa	ttttttatccaa	11640
tcttttttttcc	ttttttatgtt	atgtatgtat	ttttttatccaa	ttttttatccaa	ttttttatccaa	11700
ttttttttttgt	gtctgggtttgt	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	11760
ctatgtttttt	tttatcacatgt	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	11820
tttttttttttt	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	11880
aaggccatccc	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	11940
atgggggggg	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	12000
gaggggactgt	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	ttttttatccaa	12060
c						12061

<210> 5
<211> 7

<212> PRT
<213> Artificial Sequence

≤220>

<223> Description of Artificial Sequence: Cleavage site
recognised by enterokinase

<400> 5
Phe Pro Thr Asp Asp Asp Lys
1 5

<210> 6
<211> 17
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Linker arm

<400> 6
 Gly Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala
 1 5 10 15

Ser

<210> 7

<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Enterokinase cleavage site

<400> 7
Asp Asp Asp Asp Lys
1 5

<210> 8
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (1)..(15)

<220>
<223> Description of Artificial Sequence: Normal lysozyme C-terminal

<400> 8
ggt tgt gga gtg taa
Gly Cys Gly Val
1 5

15

<210> 9
<211> 4
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Normal lysozyme C-terminal

<400> 9
Gly Cys Gly Val
1

<210> 10
<211> 167
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (1)..(162)

<220>
<223> Description of Artificial Sequence: C terminal extension

<400> 10
ctc gag gga gga gga agc gga ggc ggc ggc agc gga ggc gga gga 48
Leu Glu Gly Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly
1 5 10 15

agc gct agc atg tgc tcc aac ctg tcc acc tgc gtg ctg ggc aag ctg 96
Ser Ala Ser Met Cys Ser Asn Leu Ser Thr Cys Val Leu Gly Lys Leu
20 25 30

agc cag gag ctg cac aag ctg cag acc tac cct agg acc aac acc ggc 144
Ser Gln Glu Leu His Lys Leu Gln Thr Tyr Pro Arg Thr Asn Thr Gly
35 40 45

agc ggc acc cct gga taa tcgat 167
Ser Gly Thr Pro Gly
50

<210> 11
<211> 53
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: C terminal extension

<400> 11
Leu Glu Gly Gly Gly Ser Gly Gly Ser Gly Gly Ser Gly Gly Gly 1 5 10 15
Ser Ala Ser Met Cys Ser Asn Leu Ser Thr Cys Val Leu Gly Lys Leu
20 25 30
Ser Gln Glu Leu His Lys Leu Gln Thr Tyr Pro Arg Thr Asn Thr Gly
35 40 45
Ser Gly Thr Pro Gly
50