Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение Высшего образования

«Северо-Осетинский государственный университет имени Коста Левановича Хетагурова»

Курсовая работа

«Транспортная задача. Методы решенияю.»

Выполнил:

Студент 3 курса направления: «Прикладная математика и информатика» Гамосов Станислав Станиславович

Научный руководитель:

кандидат физико-математических наук Тотиева Жанна Дмитриевна

«Работа допустима к защите»

Заведующий кафедрой доктор физико-математических наук $Kycpae s. \ A.\Gamma.$

Оглавление

1	Введение	2
2	Постановка задачи	3

Глава 1

Введение

Транспортная задача — это спектр задач с единой математической моделью, классическая формулировка, которой звучит: «Задача о наиболее экономном плане перевозок однородного продукта или взаимозаменяемых продуктов из пунктов производства в пункты потребления». Такая форма встречается чаще всего в линейном программирование, а если точнее в его практических приложениях.

Линейное программирование является одним из разделов математического программирования – области математики, разрабатывающей теорию и численные методы решения многомерных экстремальных задач с ограничениями.

Если вернуться к самой задачи огромное количество возможных вариантов перевозок затрудняет получение достаточно экономного плана эмпирическим или экспертным путем. Применение математических методов и вычислительных в планировании перевозок дает большой экономический эффект. Транспортные задачи могут быть решены симплексным методом однако матрица системы ограничений транспортной задачи настолько своеобразна, что для ее решения разработаны специальные методы. Они, как и симплексный метод, позволяют найти начальное опорное решение, а затем, улучшая его получить оптимальный результат. Транспортная задача может также решаться с ограничениями и без ограничений.

В зависимости от способа представления условий транспортной задачи она может быть представлена в **графовой** или **матричной** форме.

Глава 2

Постановка задачи

Задача эта возникает, когда речь идет о рациональной перевозке некоторого однородного продукта от производителей к потребителям. В этом случае для каждого потребителя безразлично, откуда, из каких пунктов производства будет поступать этот продукт, лишь бы он поступал в нужном объеме. Однако от того, насколько рациональным будет прикрепление пунктов потребления к пунктам производства, существенно зависит объем транспортной работы. В связи с этим естественно возникает вопрос о наиболее эффективном прикреплении, правильном направлении перевозок груза, при котором потребности удовлетворяются, а затраты на транспортировку минимальны. Более точно задача формулируется так.

Пусть имеются пункты производства $(A_1, A_2, ..., A_n)$ с объемами производства в единицу времени, равными соответственно $(a_1, a_2, ..., a_n)$, и пункты потребления $(B_1, B_2, ..., B_m)$ с объемами потребления, равными $(b_1, b_2, ..., b_m)$ соответственно. Будем предполагать, что производство и потребление сбалансированы — сумма объемов производства равна сумме объемов потребления

$$\sum_{i=1}^{n} a_i = \sum_{j=1}^{m} b_j$$

Предполагается, что известны величины C_{ij} — затраты по перевозке единицы продукта из i-го пункта производства в j-й пункт потребления. Они могут быть выражены в стоимостной (денежной) форме или в натуральной (километрах). Требуется найти такой план перевозок, при котором были бы удовлетворены потребности в пунктах $(B_1, B_2, ..., B_m)$ и при этом суммарные затраты на перевозку были бы минимальны. Обозначая через x_{ij} количество продукта, перевозимое из i-го пункта производства в j-го пункт потребления, приходим к следующей математической формулировке задачи:

Найти минимум

$$\sum_{i=1}^{n} \sum_{j=1}^{m} C_{ij} x_{ij} \tag{2.1}$$

Так же для корректности задачи необходимо соблюдать три условия:

1.
$$\sum_{i=1}^{n} x_{ij} = b_j, (j = 1, 2, ..., m)$$

2.
$$\sum_{i=1}^{m} x_{ij} = a_i, (i = 1, 2, ..., n)$$

3.
$$x_{ij} \ge 0, (i = 1, 2, ..., n; j = 1, 2, ..., m)$$

Получается суммарные затраты на транспортировку в каждый пункт потребления завозится требуемое количество продукта, а так же из каждого пункта производства полностью вывозится произведенный продукт.

Всякий набор величин x_{ij} (i = 1, 2, ..., n; j = 1, 2, ..., m), удовлетворяющих условиям (1-3), мы будем называть допустимым планом перевозок. План, для которого суммарные затраты (2.1) достигают минимума, называется оптимальным.

Литература

[1] Юдин Д.Б., Гольштейн Е.Г. Задачи и методы линейного программирования. – М.: Советское радио, 1969. – 736с.

[2]