Deft: Cet p and q be propositions. The implication "quality" "If p, then q", denoted p=>q, is defined by the touth table

The proposition p is called the hypothesis (or contecedent or premise) and the proposition & is called the conclusion (or consequence).

Rmk: In the latter two entries of the truth table, the implication (p=) g) is cated said to be vacuously true.

Eg: "If you get a loo on the Final Exam, then
you will get an # A in the class."

P: "You got a loo on the final exam."

q: "You got an A in the class"

· Assume you got a loo to the on the Final Ex
and you got an A in the class
-This makes you happy. Assume you get a loo on the Final Exam, but
You don't get on A in the class.
- You feel cheated.
1. Assume you get a 100 on the Final Exam, but
You get an A in the chass. class.
- You feel happy.
Assume you do not get a loo on the final exam, is and you do not get an A in the class.
- Not necessarily happy, but not cheated.
g: "If it sunny tomorrow, then we will go to the beach." - Common
gi"If today is Friday, then 2+4=7."
- Uncommon, but valid
True every day except on Friday.
Very false on Friday. (T>F).

Converse and Contrapositive

Defin: Let p and q be propositions. The converse of $p \Rightarrow q$ is the implication $q \Rightarrow p$.

The contrapositive of P = 2 is the implication $72 \Rightarrow 7p$.

E.g.: The converse of

"If today is Friday, the 2+4=74 *

1S

"If 2+4=7, then today is Friday."

Since 2+4=7 is always false, the latter implication is always true.

The contrapositive of * is

"If Z+4 ≠ 7, then it is not Friday."

Definitional Definitions. The biconditional "p if and only if q," denoted $p \Leftrightarrow q$, is the proposition that is true whenever both $p \Rightarrow q$ is true and $q \Rightarrow p$ is true.

615: PE) q is true only when p and q have the same touth value

Deft: A proposition that is always true is called a tautology and a proposition that is always false is called a contradiction.

Deft: We say two propositions, p and q, are logically equivalent if pop is a tautology. This means that p and q always have the same touth value.