β 吸收 2 实验报告

何金铭 PB21020660

1 实验目的

- 1. 学习产生单能电子束的原理
- 2. 学习 β 磁谱仪的原理与使用
- 3. 学习闪烁能谱仪的使用
- 4. 验证高速电子的动量与动能关系
- 5. 测量吸收片对单能电子束的吸收曲线

2 实验原理

2.1 电子动量的测量

本实验采用半圆聚焦 β 磁谱仪测量电子的动量,若轨道半径为 R,则与电子动量 p 有关系式:

$$p = eBR \tag{1}$$

图 1: 半圆聚焦 β 磁谱仪与闪烁能谱仪示意图

2.2 电子动能的测量

利用 ^{137}Cs 的 γ 射线能谱对闪烁能谱仪进行定标。动能的大小与能谱的峰位 N 成线性关系:

$$E = aN + b (2)$$

式中 a,b 为待定系数。

2.3 相对论效应

相对性粒子有动能 E_k 与动量 p 的关系:

$$E_k = \sqrt{p^2 c^2 + m_0^2 c^4} - m_0 c^2 \tag{3}$$

其中,为计算方便,实验室中的动量可用 pc 表示:

且有:

$$pc = eBRc(J) = 300BR(MeV) \tag{4}$$

2.4 单能电子束的获得

由于发生 衰变的原子核在发射 β 粒子的同时还放出中微子,两者分配能量的结果导致发射出 的 β 粒子能谱为 0 至最大动能 E_{max} 之间连续分布的能谱,在磁谱仪中的偏转半径也各不相同,具 有相同动能的 β 粒子在 β 磁谱仪中的偏转半径也相同。据此,我们可以在闪烁探头前开一条与磁场 平行的狭缝,只让某一偏转半径的 β 粒子进入闪烁探测器。只要狭缝足够窄,就可以认为进入闪烁 探测器的就是单能电子束,闪烁能谱仪测出的就是该单能电子束的能谱。

2.5 测量物质对电能电子束的吸收曲线

考虑一束初始强度为 I_0 的单能电子束,当穿过厚度为 x 的物质时,强度减弱为 I。强度 I 随厚 度 x 的增加而减小且服从指数规律, 可表示为:

$$I = I_0 e^{-\mu x} \tag{5}$$

式中 μ 为该物质的线性吸收系数。可以做变换: 设质量吸收系数 $\mu_m = \mu/\rho$, 质量厚度为 $d = \rho x$, 有

$$I = I_0 e^{-\mu_m d} \tag{6}$$

3 实验仪器

闪烁 γ 能谱仪,半圆聚焦 β 磁谱仪,吸收片, ^{137}Cs 放射源, ^{90}Sr $^{-90}$ γ 放射源,电子秤,狭 缝,直尺

4 原始实验数据

4.1 3号台的一些基本数据

- 1. 磁谱仪中产生的磁感应强度为 B = 622.78 Gs
- 2. 电子入射闪烁体前铝制入射窗产生的能量损失为 $\Delta E = 0.09 \text{MeV}$
- 3. 实验室的铝片质量厚度为 $d = 50mq/cm^2$

4.2 闪烁能谱仪定标

E/MeV	0.184MeV	$0.662 \mathrm{MeV}$		
峰位 N	89	287.14		

表 1: ^{137}Cs 的 γ 能谱部分数据记录表

 $oldsymbol{\dot{z}}$: 3 号台的实验仪器存在一些问题,E=0.184 MeV 处峰位值无精确读数,N=89 为大致读数

4.3 β 射线能谱

	1	2	3	4	5	6	7	8
x/cm	23	24.5	26.0	27.5	29.0	30.5	32	33.5
峰位 N	219.78	281.33	336.29	392.47	444.78	493.73	529.98	579.39

表 2: β 能谱数据记录表

4.4 β 吸收数据

铝片数量	峰位	FWHM	选区计数	采集时间/s
0	407.31	100.23	72613	200
1	374.46	87.46	51713	200
2	344.34	75.53	37055	200
3	313.78	121.77	54226	300
4	269.27	112.99	61889	400

表 3: x = 28cm 时铝片吸收数据记录表

5 数据处理

5.1 闪烁能谱仪的定标

将 $E_1=0.184 MeV, N_1=89$ 和 $E_2=0.662 MeV, N_2=287.14$ 代入 E=aN+b 得: $a=2.412\times 10^{-3} MeV, b=-3.071\times 10^{-2} MeV$ 。

将 $a, b, \Delta E$ 代入 $E = aN + b + \Delta E$, 可以得到标定的能量公式为:

$$E = 0.0024N + 0.0593(MeV) \tag{7}$$

5.2 β 射线能谱

利用公式:

$$R = \frac{x - 10cm}{2} \tag{8}$$

$$pc = 300BR(MeV) \tag{9}$$

$$E_{classic} = \frac{(pc)^2}{2mc^2} \tag{10}$$

$$E_{relative} = \sqrt{p^2c^2 + m^2c^4} - mc^2 \tag{11}$$

$$E_{measure} = 0.0024N + 0.0593(MeV) (12)$$

可以计算得以下结果:

	1	2	3	4	5	6	7	8
x/cm	23	24.5	26.0	27.5	29.0	30.5	32	33.5
R/cm	6.5	7.25	8	8.75	9.5	10.25	11	11.75
pc/MeV	1.214	1.355	1.495	1.635	1.775	1.915	2.055	2.195
峰位 N	219.78	281.33	336.29	392.47	444.78	493.73	529.98	579.39
经典动能 E _{classic} /MeV	1.442	1.797	2.187	2.616	3.083	3.588	4.132	4.714
相对论动能 $E_{relative}/\text{MeV}$	0.806	0.937	1.069	1.202	1.336	1.471	1.607	1.743
$E_{measure}/\text{MeV}$	0.587	0.734	0.866	1.001	1.127	1.244	1.331	1.450
$ E_{measure} - E_{relative} $	0.219	0.203	0.203	0.201	0.209	0.227	0.276	0.293

表 4: β 能谱分析数据表

图 2: 经典力学、相对论力学与实验测量的 E_k , pc 值对比图

可以发现:

- 1. 在高速情况下, 经典力学的理论动能会大于相对论力学的理论动能
- 2. 实验测得的动能均小于相对论力学的理论动能,但是于不同的位置下,减少的动能几乎一致 (可见上表中最后一行),可能是由于某一系统误差导致的。

5.3 β 吸收实验

于实验中,我们设置 β 射线在磁谱仪中运动的半径为 $R=\frac{28cm-10cm}{2}=9cm$,可以计算得 pc=300BR=1.682MeV,从而进一步可以计算得其动能为:

$E_k = \sqrt{(pc)^2 + m^2c^4 - mc^2} = 1.247 MeV$	(13)

铝片数量	峰位	FWHM	选区计数	采集时间/s	单位时间入射粒子数 I/s
0	407.31	100.23	72613	200	363.07
1	374.46	87.46	51713	200	258.565
2	344.34	75.53	37055	200	185.275
3	313.78	121.77	54226	300	180.753
4	269.27	112.99	61889	400	154.723

表 5: β 吸收数据处理表 1

下面验证吸收公式 $I=I_0e^{-\mu_m d}$ 是否正确,变换为:

$$\ln \frac{I}{I_0} = -\mu_m d \tag{14}$$

其中 d_0 为单位铝片的厚度,d 为铝片的质量厚度,处理实验数据得下表:

$d/(50mg/cm^2)$	1	2	3	4
$\ln \frac{I}{I_0}$	-0.339	-0.673	-0.697	-0.853

表 6: β 吸收数据处理表 2

拟合得:

$$\ln \frac{I}{I_0} = -0.157d - 0.249$$
(15)

取其斜率 $\mu_m = -0.157(0.02cm^2/mg) = -0.00314cm^2/mg$ 所以估计得: $I = I_0 e^{-0.00314d}$ 其中 d 的单位为 mg/cm^2

6 实验总结和误差分析

6.1 误差分析

6.1.1 β 磁谱仪实验结果的误差分析

实验测得的 β 射线的动能与相对论预言的结果类似,但是有一些偏差:对于不同动量的 β 射线,实验值比理论值少了约 0.229MeV 的能量,可能的原因有:

- 1. 整个实验有一个系统误差, 比如: 闪烁体的修正 ΔE 的修正值不正确; 空气以及一些其它的因素对 β 射线也有衰减作用。
- 2. 仅仅利用 γ 能谱的两个点来对闪烁能谱仪进行定标存在极大的误差,对截距b的影响很大,从而引起了一个比较大的整体误差,需要利用更多的特征点或者其它的能谱来对其进行定标。

6.1.2 β 吸收的实验结果的误差分析

实验测得峰位和 FWHM (半高宽)的关系不太正常,按理论,随着铝片数量的增加,峰位应该减小,而 FWHM 应该增大;但是实验观察到的现象为 FWHM 先减小,后增大。

可能的原因是

- 1. 在测量 FWHM 时,选择不同的选区结果可能会有不同,由于没有规定一个统一的选区标准,导致 FWHM 不同,这里需要指出:将选区选的过大不会有什么影响,但是选区过小则会导致 FWHM 过小,上述的结果就可能是由于这个原因导致的。
- 2. 可能由于狭缝存在一点宽度,无铝片的时候导致 FWHM 过宽,而由于铝片的衰减作用,会筛选出最多的 β 射线或能量最大的 β 射线使得 1,2 片的铝片 FWHM 变小;而加 3 片以上时,衰减作用过强,导致 FWHM 又变大。

之后拟合的曲线的误差也源于此处。

6.2 实验总结

- 1. 了解了单能电子束的原理,学习了 β 磁谱仪、闪烁能谱仪的原理和使用
- 2. 对闪烁能谱仪进行了定标,得到的转换公式为 E = 0.0024N + 0.0593(MeV)
- 3. 检验了高速电子的动量与动能的关系,发现高速电子的动量与能量的关系更符合于相对论力 学,但存在一些系统误差,认为可能是由于装置对电子的损失能量 ΔE 少计算了一部分。
- 4. 计算得铝片对 β 射线的吸收曲线近似为 $I=I_0e^{-0.00314d}$ 其中 d 为质量厚度, 其单位为 mg/cm^2