Machine Learning: First Steps

John Donaghy

Outline

- Overview of ML
- Linear Regression
 - Linear Algebra
 - Statistics
- Stochastic Gradient Descent
- Scikit-Learn Implementation/workflow

Machine Learning Overview

Supervised Learning

- Regression, Classification
 - Linear Regression, Logistic Regression, Random Forests, multilayer perceptron, CNN, etc ...

Unsupervised Learning

- Clustering, outlier detection, Generative models
 - Autoencoders, GAN, K-means, etc ...

Self Supervised Learning

 "In self-supervised learning, the system learns to predict part of its input from other parts of its input" -LeCun

Linear Regression

$$f(\mathbf{x}) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots \epsilon$$

$$f(\mathbf{x}) = \theta^T \mathbf{x}$$

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} (\theta^T \mathbf{x}_i - y_i)^2$$
• (1)

 y_i :data label(regression target), \mathbf{x}_i : feature inputs (data px1), θ_i : model parameters (px1 absorbs ϵ)

Linear Algebra Approach

$$\nabla_{\theta} \mathcal{L} = \mathbf{0}$$

$$\frac{1}{N} \sum_{n=1}^{N} 2 \left(\theta^{T} \mathbf{x}_{i} - y_{i} \right) \mathbf{x}_{i} = 0$$

$$\sum_{n=1}^{N} \left(\theta^{T} \mathbf{x}_{i} \right) \mathbf{x}_{i} = \sum_{n=1}^{N} y_{i} \mathbf{x}_{i}$$

$$\left(\sum_{n=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right) \theta = \sum_{n=1}^{N} y_{i} \mathbf{x}_{i}$$

$$\theta = \left(\sum_{n=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \right)^{-1} \sum_{n=1}^{N} y_{i} \mathbf{x}_{i}$$

$$\theta = \left(\mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \mathbf{y}$$

$$(2)$$

tensor inputs \rightarrow

Statistics Approach

$$\mathbf{y} = \theta^T \mathbf{x} + \epsilon \tag{3}$$

define residual as $r \equiv \mathbf{y} - \theta^T \mathbf{x} = \epsilon$, as $n \to \infty$ allows us to use the central limit theorem

$$\epsilon \sim \mathcal{N}(0, 1)$$

$$y_i \sim \mathcal{N}(\theta^T \mathbf{x}_i, \sigma^2)$$

Maximum Likelihood: assume that your samples were drawn from the most probable distribution

$$p(\mathbf{y}|\mathbf{x}) = \prod_{i} p(y_i|\mathbf{x}_i)$$
$$p(y_i|\mathbf{x}_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}}$$

$$p(y_i|\mathbf{x}_i) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}}$$

Statistics Approach

Using the log likelihood (easier to manipulate)

$$p(\mathbf{y}|\mathbf{x}) = \sum_{i} \left[\log \frac{1}{\sqrt{2\pi\sigma^2}} + \log e^{\frac{(y_i - \theta^T \mathbf{x}_i)^2}{2\sigma^2}} \right]$$
$$\nabla_{\theta} p(\mathbf{y}|\mathbf{x}) = 0$$
$$\theta = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Linear Regression maximizes the probability of data with normal residuals !!!

SGD

- Optimal coefficients: O(n x p³)
- SGD: O(k x n x p) with k=number of iterations
 - Sample subset of data points (stochastic)
 - Update
 - Repeat until convergence

$$\theta_t = \theta_{t-1} - \eta \nabla_{\theta} \mathcal{L}(\theta_{t-1}) \tag{4}$$

 η : learning rate

$$\theta_t = \theta_{t-1} - 2\eta(\theta^T \mathbf{x}_i - y_i)\mathbf{x}_i$$