

Chapter 10

Two-Sample Tests

Objectives

In this chapter, you learn:

 How to compare the means of two independent populations.

How to compare the means of two related populations.

 How to compare the proportions of two independent populations.

 How to compare the variances of two independent populations.

Two-Sample Tests

DCOVA

Two-Sample Tests

Population
Means,
Independent
Samples

Population Means, Related Samples

Population Proportions

Population Variances

Examples:

Group 1 vs. Group 2

Same group before vs. after treatment

Proportion 1 vs. Proportion 2

Variance 1 vs. Variance 2

Difference Between Two Means DCOVA

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Goal: Test hypothesis or form a confidence interval for the difference between two population means, $\mu_1 - \mu_2$.

The point estimate for the difference is

$$\overline{X}_1 - \overline{X}_2$$

Difference Between Two Means: Independent Samples

Population means, independent samples

- Unrelated.
- Independent.
 - Sample selected from one population has no effect on the sample selected from the other population.

 σ_1 and σ_2 unknown, assumed equal

*

Use S_p to estimate unknown σ . Use a **Pooled-Variance t** test.

 σ_1 and σ_2 unknown, not assumed equal

Use S_1 and S_2 to estimate unknown σ_1 and σ_2 . Use a **Separate-variance t test**

Hypothesis Tests for Two Population Means

DCOV<u>A</u>

Two Population Means, Independent Samples

Lower-tail test:

$$H_0: \mu_1 \ge \mu_2$$

 $H_1: \mu_1 < \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \ge 0$
 H_1 : $\mu_1 - \mu_2 < 0$

Upper-tail test:

$$H_0: \mu_1 \le \mu_2$$

 $H_1: \mu_1 > \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 \le 0$
 H_1 : $\mu_1 - \mu_2 > 0$

Two-tail test:

$$H_0$$
: $\mu_1 = \mu_2$
 H_1 : $\mu_1 \neq \mu_2$
i.e.,

$$H_0$$
: $\mu_1 - \mu_2 = 0$
 H_1 : $\mu_1 - \mu_2 \neq 0$

Hypothesis tests for $\mu_1 - \mu_2$

DCOV<u>A</u>

Two Population Means, Independent Samples

Lower-tail test:

 H_0 : $\mu_1 - \mu_2 \ge 0$

 H_1 : $\mu_1 - \mu_2 < 0$

Upper-tail test:

 H_0 : $\mu_1 - \mu_2 \le 0$

 H_1 : $\mu_1 - \mu_2 > 0$

Two-tail test:

 H_0 : $\mu_1 - \mu_2 = 0$

 H_1 : $\mu_1 - \mu_2 \neq 0$

Reject H_0 if $t_{STAT} < -t_{\alpha}$

Reject H_0 if $t_{STAT} > t_{\alpha}$

Reject H₀ if $t_{STAT} < -t_{\alpha/2}$ or $t_{STAT} > t_{\alpha/2}$

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

DCOVA

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Assumptions:

- Samples are randomly and independently drawn.
- Populations are normally distributed or both sample sizes are at least 30.
- Population variances are unknown but assumed equal.

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

The pooled variance is:

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)}$$

• The test statistic is:

$$t_{STAT} = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 (\frac{1}{n_1} + \frac{1}{n_2})}}$$

• Where t_{STAT} has d.f. = $(n_1 + n_2 - 2)$.

Confidence interval for μ_1 - μ_2 with σ_1 and σ_2 unknown and assumed equal

DCOVA

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

The confidence interval for

$$\mu_1 - \mu_2$$
 is:

$$\left(\overline{\mathbf{X}}_{1} - \overline{\mathbf{X}}_{2}\right) \pm t_{\alpha/2} \sqrt{\mathbf{S}_{p}^{2} \left(\frac{1}{\mathbf{n}_{1}} + \frac{1}{\mathbf{n}_{2}}\right)}$$

Where $t_{\alpha/2}$ has d.f. = $n_1 + n_2 - 2$.

Pooled-Variance t Test Example

DCOV<u>A</u>

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

	NYSE	NASDAQ
Number	21	25
Sample mean	3.27	2.53
Sample std dev	1.30	1.16

Assuming both populations are approximately normal with equal variances, is there a difference in mean dividend yield ($\alpha = 0.05$)?

Pooled-Variance t Test Example: Calculating the Test Statistic

(continued)

H0:
$$\mu_1 - \mu_2 = 0$$
 i.e. $(\mu_1 = \mu_2)$

H0: $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$ H1: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

The test statistic is:

$$t = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - \left(\mu_1 - \mu_2\right)}{\sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{\left(3.27 - 2.53\right) - 0}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}} = 2.040$$

$$S_p^2 = \frac{\left(n_1 - 1\right)S_1^2 + \left(n_2 - 1\right)S_2^2}{\left(n_1 - 1\right) + \left(n_2 - 1\right)} = \frac{\left(21 - 1\right)1.30^2 + \left(25 - 1\right)1.16^2}{\left(21 - 1\right) + \left(25 - 1\right)} = 1.5021$$

Pooled-Variance t Test Example: Hypothesis Test Solution DCOVA

 H_0 : $\mu_1 - \mu_2 = 0$ i.e. $(\mu_1 = \mu_2)$

$$H_1$$
: $\mu_1 - \mu_2 \neq 0$ i.e. $(\mu_1 \neq \mu_2)$

$$\alpha = 0.05$$

$$df = 21 + 25 - 2 = 44$$

Critical Values: $t = \pm 2.0154$

Reject H₀ Reject H₀ .025 -2.0154 0 2.040

Test Statistic:

$$t = \frac{3.27 - 2.53}{\sqrt{1.5021 \left(\frac{1}{21} + \frac{1}{25}\right)}}$$

Decision:

Reject H_0 at $\alpha = 0.05$.

Conclusion:

There is evidence of a difference in means.

2.040

Pooled-Variance t Test Example: Confidence Interval for μ_1 - μ_2

DCOVA

Since we rejected H_0 can we be 95% confident that $\mu_{NYSE} > \mu_{NASDAQ}$?

95% Confidence Interval for μ_{NYSE} - μ_{NASDAQ} :

$$(\overline{X}_1 - \overline{X}_2) \pm t_{\alpha/2} \sqrt{S_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)} = 0.74 \pm 2.0154 \times 0.3628 = (0.009, 1.471)$$

Since 0 is less than the entire interval, we can be 95% confident that $\mu_{\text{NYSE}} > \mu_{\text{NASDAQ}}$.

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown, not assumed equal

DCOVA

Population means, independent samples

 σ_1 and σ_2 unknown, assumed equal

 σ_1 and σ_2 unknown, not assumed equal

Assumptions:

- Samples are randomly and independently drawn.
- Populations are normally distributed or both sample sizes are at least 30.
- Population variances are unknown and cannot be assumed to be equal.

Hypothesis tests for μ_1 - μ_2 with σ_1 and σ_2 unknown and not assumed equal

(continued) DCOVA

Population means, independent samples

This test is known at the separate-variance t test.

 σ_1 and σ_2 unknown, assumed equal

The formulae for this test are not covered in this chapter. See reference 3 for more details.

 σ_1 and σ_2 unknown, not assumed equal

ALWAYS LEARNING

This test done via software is shown on the next slide.

Case 2: $\sigma_1^2 \neq \sigma_2^2$

In some situations, we cannot reasonably assume that the unknown variances σ_1^2 and σ_2^2 are equal. There is not an exact *t*-statistic available for testing $H_0: \mu_1 - \mu_2 = \Delta_0$ in this case. However, an approximate result can be applied.

If H_0 : $\mu_1 - \mu_2 = \Delta_0$ is true, the statistic

$$T_0^* = \frac{\overline{X}_1 - \overline{X}_2 - \Delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$$
(10-15)

is distributed approximately as t with degrees of freedom given by

$$v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$
(10-16)

If v is not an integer, round down to the nearest integer.

Separate-Variance t Test Example

DCOVA

You are a financial analyst for a brokerage firm. Is there a difference in dividend yield between stocks listed on the NYSE & NASDAQ? You collect the following data:

	<u>NYSE</u>	NASDAQ
Number	21	25
Sample mean	3.27	2.53
Sample std dev	1.30	1.16

Assuming both populations are approximately normal with unequal variances, is there a difference in mean dividend yield ($\alpha = 0.05$)?

Separate-Variance t Test In Excel, JMP, & Minitab

(continued)

1	A	В
1	Separate-Variances t Test	
2	(assumes unequal population varia	nces)
3	Data	
4	Hypothesized Difference	0
5	Level of Significance	0.05
6	Population 1 Sample	
7	Sample Size	21
8	Sample Mean	3.27
9	Sample Standard Deviation	1.3000
10	Population 2 Sample	
11	Sample Size	25
12	Sample Mean	2.53
13	Sample Standard Deviation	1.1600
14		
15	Intermediate Calculatio	ins
16	Numerator of Degrees of Freedom	0.0180
17	Denominator of Degrees of Freedon	0.0004
18	Total Degrees of Freedom	40.5744
19	Degrees of Freedom	40
20	Separate Variance Denominator	0.3665
21	Difference in Sample Means	0.7400
22	Separate-Variance t Test Statistic	2.0193
23		
24	Two-Tail Test	
25	Lower Critical Value	-2.0211
26	Upper Critical Value	2.0211
27	p-Value	0.0502
28	Do not reject the null hypot	thesis

Test Inputs		
Hypothesized Difference Mean 2 - Mean 1)	0	
Sample 1 Mean	3.27	
Sample 1 Standard Deviation	1.3	
Sample 1 Size	21	
Sample 2 Mean	2.53	
Sample 2 Standard Deviation	1.16	
Sample 2 Size	25	
Significance Level (alpha)	0.05	
△ Test Results		
Result		Value
Observed Difference (Mean 2 - Mean 1)		-0.74
Standard Error of the Difference (Mean 2 - Mean 1) t-score		0.3665 -2.0193
t critical values		+/- 2.0202
Observed Significance (p-value)		0.0501
Fail to Reject Null Hypothesis		

- Using α =0.05 this test fails to reject the null.
- For this data whether we can assume equal variances or not is important to determine because when we assumed equal variances the null was rejected.
- In Section 10.4 a test to help determine whether this is a reasonable assumption or not is discussed.

Two-Sample T-Test and CI

Sample	N	Mean	StDev	SE Mean
1	21	3.27	1.30	0.28
2	25	2.53	1.16	0.23

```
Difference = mu (1) - mu (2)

Estimate for difference: 0.740

95% CI for difference: (-0.001, 1.481)

T-Test of difference = 0 (vs not =): T-Value = 2.02 P-Value = 0.050 DF = 40
```

Related Populations The Paired Difference Test

DCOVA

Related samples

Tests Means of 2 Related Populations

- Paired or matched samples.
- Repeated measures (before/after).
- Use difference between paired values:

$$D_i = X_{1i} - X_{2i}$$

- Eliminates Variation Among Subjects.
- Assumptions:
 - Differences are normally distributed.
 - Or, if not Normal, use large samples.

Related Populations The Paired Difference Test

(continued)
DCOVA

Related samples

The ith paired difference is D_i, where

$$D_i = X_{1i} - X_{2i}$$

The point estimate for the paired difference population mean μ_D is \overline{D} :

$$\overline{D} = \frac{\sum_{i=1}^{n} D_{i}}{n}$$

The sample standard deviation is S_D .

$$S_{D} = \sqrt{\frac{\sum_{i=1}^{n} (D_{i} - \overline{D})^{2}}{n-1}}$$

n is the number of pairs in the paired sample

The Paired Difference Test: Finding t_{STAT}

DCOVA

Paired samples

• The test statistic for μ_D is:

$$t_{STAT} = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}}$$

■ Where t_{STAT} has n - 1 d.f.

The Paired Difference Test: Possible Hypotheses

DCOVA

Paired Samples

Lower-tail test:

 H_0 : $\mu_D \ge 0$ H_1 : $\mu_D < 0$

ALWAYS LEARNING

Upper-tail test:

 H_0 : $\mu_D \le 0$ H_1 : $\mu_D > 0$

Reject H_0 if $t_{STAT} > t_{\alpha}$

Where t_{STAT} has n - 1 d.f.

Two-tail test:

 H_0 : $\mu_D = 0$ H_1 : $\mu_D \neq 0$

Reject H_0 if $t_{STAT} < -t_{\alpha/2}$ or $t_{STAT} > t_{\alpha/2}$

The Paired Difference Confidence Interval

DCOVA

Paired samples

The confidence interval for μ_D is:

$$\overline{D} \pm t_{\alpha/2} \frac{S_{D}}{\sqrt{n}}$$

where
$$S_D = \sqrt{\frac{\sum_{i=1}^{n} (D_i - \overline{D})^2}{n-1}}$$

Paired Difference Test: Example

DCOVA

Assume you send your salespeople to a "customer service" training workshop. Has the training made a difference in the number of customer complaints? You collect the following data:

Salesperson	Number of Before (1)	Complaints: After (2)	(2) - (1) <u>Difference,</u> <u>D</u> _i
C.B.	6	4	- 2
T.F.	20	6	-14
M.H.	3	2	- 1
R.K.	0	0	0
M.O.	4	0	<u>- 4</u>
			-21

$$\overline{D} = \frac{\sum D_i}{n}$$

$$= -4.2$$

$$S_D = \sqrt{\frac{\sum (D_i - \overline{D})^2}{n-1}}$$

$$= 5.67$$

Paired Difference Test: Solution

DCOVA

Has the training made a difference in the number of

complaints (at the 0.01 level)?

$$H_0$$
: $\mu_D = 0$
 H_1 : $\mu_D \neq 0$

$$\alpha = .01$$
 $\overline{D} = -4.2$

$$t_{0.005} = \pm 4.604$$

d.f. = n - 1 = 4

Test Statistic:

$$t_{\text{STAT}} = \frac{\overline{D} - \mu_{\text{D}}}{S_{\text{D}} / \sqrt{n}} = \frac{-4.2 - 0}{5.67 / \sqrt{5}} = \boxed{-1.66}$$

ALWAYS LEARNING

Decision: Do not reject H_0 (t_{stat} is not in the rejection region).

Conclusion: There is insufficient evidence of a change in the number of complaints.

The Paired Difference Confidence Interval -- Example DCOVA

The confidence interval for μ_D is:

$$\overline{D}$$
 = -4.2, S_D = 5.67

$$\frac{1}{D} \pm t_{\alpha/2} \frac{S_{\rm D}}{\sqrt{n}}$$

99% CI for
$$\mu_D$$
: $-4.2 \pm 4.604 \frac{5.67}{\sqrt{5}}$
= (-15.87, 7.47)

The probability this interval contains the true value of μ_D is 99%.

Two Population Proportions

DCOVA

Population proportions

Goal: test a hypothesis or form a confidence interval for the difference between two population proportions,

$$\pi_1 - \pi_2$$

Assumptions:

$$n_1 \pi_1 \ge 5$$
 , $n_1(1-\pi_1) \ge 5$

$$n_2 \pi_2 \ge 5$$
 , $n_2(1-\pi_2) \ge 5$

The point estimate for the difference is

$$p_1 - p_2$$

Two Population Proportions

DCOVA

Population proportions

In the null hypothesis we assume the null hypothesis is true, so we assume $\pi_1 = \pi_2$ and pool the two sample estimates.

The pooled estimate for the overall proportion is:

$$\frac{-}{p} = \frac{X_1 + X_2}{n_1 + n_2}$$

where X_1 and X_2 are the number of items of interest in samples 1 and 2.

Two Population Proportions

(continued)

DCOVA

Population proportions

The test statistic for $\pi_1 - \pi_2$ is a Z statistic:

$$Z_{STAT} = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{p(1 - p)(\frac{1}{n_1} + \frac{1}{n_2})}}$$

where

$$\bar{p} = \frac{X_1 + X_2}{n_1 + n_2}$$
, $p_1 = \frac{X_1}{n_1}$, $p_2 = \frac{X_2}{n_2}$

Hypothesis Tests for Two Population Proportions

DCOVA

Population proportions

Lower-tail test:

H₀:
$$\pi_1 \ge \pi_2$$

H₁: $\pi_1 < \pi_2$
i.e.,

$$H_0: \pi_1 - \pi_2 \ge 0$$

 $H_1: \pi_1 - \pi_2 < 0$

Upper-tail test:

H₀:
$$\pi_1 \le \pi_2$$

H₁: $\pi_1 > \pi_2$
i.e.,

$$H_0: \pi_1 - \pi_2 \le 0$$

 $H_1: \pi_1 - \pi_2 > 0$

Two-tail test:

$$H_0$$
: $\pi_1 = \pi_2$
 H_1 : $\pi_1 \neq \pi_2$
i.e.,

$$H_0$$
: $\pi_1 - \pi_2 = 0$
 H_1 : $\pi_1 - \pi_2 \neq 0$

Hypothesis Tests for Two Population Proportions

(continued)

Population proportions

DCOVA

Lower-tail test:

$$H_0: \pi_1 - \pi_2 \ge 0$$

 $H_1: \pi_1 - \pi_2 < 0$

Upper-tail test:

$$H_0: \pi_1 - \pi_2 \le 0$$

 $H_1: \pi_1 - \pi_2 > 0$

Two-tail test:

$$H_0$$
: $\pi_1 - \pi_2 = 0$
 H_1 : $\pi_1 - \pi_2 \neq 0$

Reject H_0 if $Z_{STAT} < -Z_{\alpha}$

Reject H_0 if $Z_{STAT} > Z_{\alpha}$

Reject H₀ if
$$Z_{STAT} < -Z_{\alpha/2}$$
 or $Z_{STAT} > Z_{\alpha/2}$

Hypothesis Test Example: Two Population Proportions

DCOVA

Is there a significant difference between the proportion of men and the proportion of women who will vote Yes on Proposition A?

- In a random sample, 36 of 72 men and 35 of 50 women indicated they would vote Yes.
- Test at the .05 level of significance.

Hypothesis Test Example: Two Population Proportions

(continued)

DCOVA

The hypothesis test is:

$$H_0$$
: $\pi_1 - \pi_2 = 0$ (the two proportions are equal).

$$H_1$$
: $\pi_1 - \pi_2 \neq 0$ (there is a significant difference between proportions).

The sample proportions are:

Men:
$$p_1 = 36/72 = 0.50$$
 Women: $p_2 = 35/50 = 0.70$

The pooled estimate for the overall proportion is:

Hypothesis Test Example: Two Population Proportions

(continued)

DCOVA

The test statistic for $\pi_1 - \pi_2$ is:

$$z_{\text{STAT}} = \frac{\left(p_1 - p_2\right) - \left(\pi_1 - \pi_2\right)}{\sqrt{p(1 - p)\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

$$= \frac{\left(.50 - .70\right) - \left(0\right)}{\sqrt{.582(1 - .582)\left(\frac{1}{72} + \frac{1}{50}\right)}} = -2.20^{\circ}$$

Critical Values = ± 1.96 For $\alpha = .05$

Decision: Reject H₀.

Conclusion: There is evidence of a significant difference in the proportion of men and women who will vote yes.

Confidence Interval for Two Population Proportions

DCOVA

Population proportions

The confidence interval for $\pi_1 - \pi_2$ is:

$$(p_1-p_2) \pm Z_{\alpha/2} \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$$

Confidence Interval for Two Population Proportions -- Example

DCOV<u>A</u>

The 95% confidence interval for $\pi_1 - \pi_2$ is:

$$(0.50-0.70) \pm 1.96 \sqrt{\frac{0.50(0.50)}{72} + \frac{0.70(0.30)}{50}}$$
$$= (-0.37, -0.03)$$

Since this interval does not contain 0 can be 95% confident the two proportions are different.

Testing for the Ratio Of Two Population Variances

DCOVA

Tests for Two
Population
Variances

F test statistic

Hypotheses

F_{STAT}

$$H_0: \sigma_1^2 = \sigma_2^2$$

 $H_1: \sigma_1^2 \neq \sigma_2^2$

$$H_0: \sigma_1^2 \le \sigma_2^2$$

 $H_1: \sigma_1^2 > \sigma_2^2$

 S_1^2 / S_2^2

Where:

 S_1^2 = Variance of sample 1 (the larger sample variance)

 n_1 = sample size of sample 1

 S_2^2 = Variance of sample 2 (the smaller sample variance)

 n_2 = sample size of sample 2

 $n_1 - 1 = numerator degrees of freedom$

 $n_2 - 1$ = denominator degrees of freedom

The F Distribution

DCOVA

- The F critical value is found from the F table.
- There are two degrees of freedom required: numerator and denominator.
- The larger sample variance is always the numerator.

• When
$$F_{STAT} = \frac{S_1^2}{S_2^2}$$
 $df_1 = n_1 - 1$; $df_2 = n_2 - 1$.

- In the F table;
 - numerator degrees of freedom determine the column.
 - denominator degrees of freedom determine the row.

Finding the Rejection Region

 $H_0: \sigma_1^2 = \sigma_2^2$ $H_1: \sigma_1^2 \neq \sigma_2^2$

Reject H_0 if $F_{STAT} > F_{\alpha/2}$

DCOV<u>A</u>

 $H_0: \sigma_1^2 \le \sigma_2^2$ $H_1: \sigma_1^2 > \sigma_2^2$

Reject H_0 if $F_{STAT} > F_{\alpha}$

F Test: An Example

DCOVA

You are a financial analyst for a brokerage firm. You want to compare dividend yields between stocks listed on the NYSE & NASDAQ. You collect the following data:

	NYSE	NASDAQ
Number	21	25
Mean	3.27	2.53
Std dev	1.30	1.16

Is there a difference in the variances between the NYSE & NASDAQ at the α = 0.05 level?

F Test: Example Solution

DCOV<u>A</u>

Form the hypothesis test:

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ (there is no difference between variances.)
 H_1 : $\sigma_1^2 \neq \sigma_2^2$ (there is a difference between variances.)

- Find the F critical value for $\alpha = 0.05$.
- Numerator d.f. = $n_1 1 = 21 1 = 20$.
- Denominator d.f. = $n_2 1 = 25 1 = 24$.
- $F_{\alpha/2} = F_{.025, 20, 24} = 2.33.$

F Test: Example Solution

DCOVA (continued)

The test statistic is:

$$F_{STAT} = \frac{S_1^2}{S_2^2} = \frac{1.30^2}{1.16^2} = \boxed{1.256}$$

H₀: $\sigma_1^2 = \sigma_2^2$ H₁: $\sigma_1^2 \neq \sigma_2^2$ $\sigma/2 = .025$ On

Reject H₀ $F_{0.025} = 2.33$

- $F_{STAT} = 1.256$ is not in the rejection region, so we do not reject H_0 .
- Conclusion: There is not sufficient evidence of a difference in variances at $\alpha = .05$.

Chapter Summary

In this chapter we discussed:

Comparing the means of two independent populations.

Comparing the means of two related populations.

- Comparing the proportions of two independent populations.
- Comparing the variances of two independent populations.