Universal Hashing

Luke Zhou

May 28, 2018

Hashing

Hashing is efficient.

- $\Theta(n)$ storage
- O(1) time cost for all dictionary operations in average (if n = O(m))

Hashing

Hashing is efficient.

- $\Theta(n)$ storage
- O(1) time cost for all dictionary operations in average (if n = O(m))

Hashing is not safe.

 \bullet $\Theta(n)$ time cost for search in worst case

Malicious adversary

Universal Hashing

How can you defeat your adversary?

Universal Hashing

- How can you defeat your adversary? The answer is:
 - Randomness

i.e. choose the hash function *randomly* in a way that is *independent* of the keys that are actually going to be stored.

Universal Hashing

Informal:

- Like randomized algorithms in Chapter 5
- Your adversary can no longer make a difference

Informal:

- Like randomized algorithms in Chapter 5
- Your adversary can no longer make a difference
- But your luck will

What property should the collection of hash functions have (to be useful)?

Definition

Let \mathscr{H} be a finite collection of hash functions that map a given universe U of keys into the range $\{0,1,...,m-1\}$. Such a collection is said to be **universal** if: for each pair of distinct keys $k,l\in U$, the number of hash functions $h\in \mathscr{H}$ for which h(k)=h(l) is at most $|\mathscr{H}|/m$.

Definition

Let \mathscr{H} be a finite collection of hash functions that map a given universe U of keys into the range $\{0,1,...,m-1\}$. Such a collection is said to be **universal** if: for each pair of distinct keys $k,l\in U$, the number of hash functions $h\in \mathscr{H}$ for which h(k)=h(l) is at most $|\mathscr{H}|/m$.

Why defined in this way?

Definition

Let \mathscr{H} be a finite collection of hash functions that map a given universe U of keys into the range $\{0,1,...,m-1\}$. Such a collection is said to be **universal** if: for each pair of distinct keys $k,l\in U$, the number of hash functions $h\in \mathscr{H}$ for which h(k)=h(l) is at most $|\mathscr{H}|/m$.

- Why defined in this way?
- The ideal uniform random hashing:
- ullet a collision of two keys has probability 1/m
- Now we have an approximate (weaker) random hashing:
 - ullet a collision of two keys has probability $rac{|\mathscr{H}|/m}{|\mathscr{H}|}=1/m$

(ϵ -almost universality<uniform difference property<pairwise independence/strong universality)

Theorem 11.3

 $h \in \mathcal{H}$ chosen randomly, hashing n keys $\to T$ (chaining), then the expected length of the list that the key k hashes has bounds:

$$E[n_{h(k)}] \le \begin{cases} \alpha & \text{key } k \text{ is not in the table,} \\ 1 + \alpha & \text{key } k \text{ is in the table.} \end{cases}$$

Proof Page 1

For each pair k and l of distinct keys, define the indicator random variable $X_{kl} = l\{h(k) = h(l)\}.$

By definition,
$$Pr\{h(k) = h(l)\} \le 1/m$$
. Thus, $E[X_{kl}] \le 1/m$.

Proof Page 1

For each pair k and l of distinct keys, define the indicator random variable $X_{kl} = l\{h(k) = h(l)\}.$

By definition, $Pr\{h(k) = h(l)\} \le 1/m$. Thus, $E[X_{kl}] \le 1/m$.

Define Y_k , the number of keys other than k that hash to the same slot as k, then

$$E[Y_k] = E[\sum_{l \in T, l \neq k} X_{kl}]$$

$$= \sum_{l \in T, l \neq k} E[X_{kl}]$$

$$\leq \sum_{l \in T, l \neq k} \frac{1}{m}$$

Proof Page 2

$$E[Y_k] \le \sum_{l \in T, l \ne k} \frac{1}{m}$$

$$= \begin{cases} n \cdot \frac{1}{m} = \alpha & \text{key } k \text{ is not in the table,} \\ (n-1) \cdot \frac{1}{m} < \alpha & \text{key } k \text{ is in the table.} \end{cases}$$

Proof Page 2

$$E[Y_k] \le \sum_{l \in T, l \ne k} \frac{1}{m}$$

$$= \begin{cases} n \cdot \frac{1}{m} = \alpha & \text{key } k \text{ is not in the table,} \\ (n-1) \cdot \frac{1}{m} < \alpha & \text{key } k \text{ is in the table.} \end{cases}$$

Thus, we can conclude that

$$E[n_{h(k)}] = \begin{cases} E[Y_k] \le \alpha & \text{key } k \text{ is not in the table,} \\ 1 + E[Y_k] \le 1 + \alpha & \text{key } k \text{ is in the table.} \end{cases}$$

Theorem 11.3

 $h \in \mathcal{H}$ chosen randomly, hashing n keys $\to T$ (chaining), then the expected length of the list that the key k hashes has bounds:

$$E[n_{h(k)}] \le \begin{cases} \alpha & \text{key } k \text{ is not in the table,} \\ 1 + \alpha & \text{key } k \text{ is in the table.} \end{cases}$$

This guarantees the (average) performance of the hashing.

Performance (Corollary 11.4)

Using universal hashing and collision resolution by chaining in an initially empty table with m slots, further assuming that n=O(m), then we only need

O(1) time cost

for all dictionary operations in average.

Then, how to construct one?

A "particularly elegant" construction:

Construction

Let m be prime. Decompose key k into r + 1 digits.

$$k = \langle k_0, k_1, ..., k_r \rangle$$
 where $0 \le k_i \le m - 1$. (base m)

Pick
$$a = \langle a_0, a_1, ..., a_r \rangle$$
 where $0 \le a_i \le m - 1$.

Define

$$h_a(k) = \left(\sum_{i=0}^r a_i k_i\right) \bmod m$$

(dot product + modulo m)

Then here

$$|\mathcal{H}| = m^{r+1}$$

Theorem

The class of hash functions \mathcal{H} is universal.

Proof Page 1

Pick two distinct keys arbitrarily:

$$x = \langle x_0, x_1, ..., x_r \rangle$$

 $y = \langle y_0, y_1, ..., y_r \rangle$

They differ in at least one digit, without loss of generality, position zero.

? For how many $h_a \in \mathcal{H}$ do x and y collide?

Proof Page 2

$$h_{a}(x) = h_{b}(y)$$

$$\Leftrightarrow \sum_{i=0}^{r} a_{i}x_{i} \equiv \sum_{i=0}^{r} a_{i}y_{i} \pmod{m}$$

$$\Leftrightarrow \sum_{i=0}^{r} a_{i}(x_{i} - y_{i}) \equiv 0 \pmod{m}$$

$$\Leftrightarrow a_{0}(x_{0} - y_{0}) + \sum_{i=1}^{r} a_{i}(x_{i} - y_{i}) \equiv 0 \pmod{m}$$

$$\Leftrightarrow a_{0}(x_{0} - y_{0}) \equiv -\sum_{i=1}^{r} a_{i}(x_{i} - y_{i}) \pmod{m}$$

Lemma (number theory fact)

Let m be prime.

For any $z \in \mathbb{Z}_m$ (integers mod m) such that $z \not\equiv 0$, there \exists unique $z^{-1} \in \mathbb{Z}_m$ such that $z \cdot z^{-1} \equiv 1 \pmod{m}$.

Lemma (number theory fact)

Let m be prime.

For any $z \in \mathbb{Z}_m$ (integers mod m) such that $z \not\equiv 0$, there \exists unique $z^{-1} \in \mathbb{Z}_m$ such that $z \cdot z^{-1} \equiv 1 \pmod{m}$.

e.g.

Ex. m = 7:

Z	1	2	3	4	5	6
z^{-1}	1	4	5	2	3	6

Proof Page 3

Since $x_0 \neq y_0$, there $\exists (x_0 - y_0)^{-1}$ Thus

$$a_0(x_0 - y_0) \equiv -\sum_{i=1}^r a_i(x_i - y_i) \pmod{m}$$

$$\Leftrightarrow a_0 \equiv \left(-\sum_{i=1}^r a_i(x_i-y_i)\right) \cdot (x_0-y_0)^{-1}$$

Proof Page 3

Since $x_0 \neq y_0$, there $\exists (x_0 - y_0)^{-1}$ Thus

$$a_0(x_0 - y_0) \equiv -\sum_{i=1}^r a_i(x_i - y_i) \pmod{m}$$

$$\Leftrightarrow a_0 \equiv \left(-\sum_{i=1}^r a_i(x_i-y_i)\right) \cdot (x_0-y_0)^{-1}$$

That means, for any choice of $a_1, a_2, ..., a_r$, exactly 1 choice of the m choices for a_0 causes $h_a(x) = h_a(y)$, and $h_a(x) \neq h_a(y)$ for other m-1 choices for a_0 .

Proof Page 4

Thus, the number of $h_a \in \mathscr{H}$ such that $h_a(x) = h_a(y)$ is

$$m \cdot m \cdot \dots \cdot m$$
 there are r factors, for a_1 to a_r for a_0

$$=m^{r}=\frac{|\mathcal{H}|}{m}.$$

Thanks

References:

- MIT OpenCourseWare 6.046J
- Universal_hashing of Wikipedia

