Analysis of Algorithms CS 477/677

Instructor: Monica Nicolescu Lecture 19

Greedy Algorithms

- Similar to dynamic programming, but simpler approach
 - Also used for optimization problems
- Idea: When we have a choice to make, make the one that looks best right now
 - Make a locally optimal choice in the hope of getting a globally optimal solution
- Greedy algorithms don't always yield an optimal solution
- When the problem has certain general characteristics (greedy choice property), greedy algorithms give optimal solutions

Activity Selection

Problem

 Schedule the largest possible set of non-overlapping activities for a given room

	Start	End	Activity
1	8:00am	9:15am	Numerical methods class
2	8:30am	10:30am	Movie presentation (refreshments served)
3	9:20am	11:00am	Data structures class
4	10:00am	noon	Programming club mtg. (Pizza provided)
5	11:30am	1:00pm	Computer graphics class
6	1:05pm	2:15pm	Analysis of algorithms class
7	2:30pm	3:00pm	Computer security class
8	noon	4:00pm	Computer games contest (refreshments served)
9	4:00pm	5:30pm	Operating systems class

Activity Selection

 Schedule n activities that require exclusive use of a common resource

$$S = \{a_1, \ldots, a_n\}$$
 – set of activities

- a_i needs resource during period [s_i, f_i)
 - $-s_i =$ start time and $f_i =$ finish time of activity a_i

$$-0 \le s_i < f_i < \infty$$

• Activities a_i and a_j are **compatible** if the intervals $[s_i, f_i]$ and $[s_j, f_j]$ do not overlap $f_i \le s_i$

Activity Selection Problem

Select the largest possible set of non-overlapping (*compatible*) activities.

E.g.:

i	1	2	3	4	5	6	7	8	9	10	11
S _i	1	3	0	5	3	5	6	8	8	2	12
f_{i}	4	5	6	7	8	9	10	11	12	13	14

- Activities are sorted in increasing order of finish times
- A subset of mutually compatible activities: $\{a_3, a_9, a_{11}\}$
- Maximal set of mutually compatible activities: $\{a_1, a_4, a_8, a_{11}\}$ and $\{a_2, a_4, a_9, a_{11}\}$

Optimal Substructure

Define the space of subproblems:

$$S_{ij} = \{ a_k \in S : f_i \leq s_k < f_k \leq s_j \}$$

activities that start after a_i finishes and finish before a_j
 starts

Add fictitious activities

$$-a_0 = [-\infty, 0)$$

$$-a_{n+1} = [\infty, "\infty + 1")$$

– Range for
$$S_{ij}$$
 is $0 \le i, j \le n + 1$

$$S = S_{0,n+1}$$
 entire space of activities

Representing the Problem

 We assume that activities are sorted in increasing order of finish times:

$$f_0 \le f_1 \le f_2 \le ... \le f_n < f_{n+1}$$

- What happens to set S_{ij} for $i \ge j$?
 - For an activity a_k ∈ S_{ij} : f_i ≤ s_k < f_k ≤ s_j < f_j contradiction with f_i ≥ f_i !
 - \Rightarrow S_{ij} = \emptyset (the set S_{ij} must be empty!)
- We only need to consider sets S_{ii} with

$$0 \le i < j \le n + 1$$
CS 477/677 - Lecture 19

Optimal Substructure

- Subproblem:
 - Select a maximum-size subset of mutually compatible activities from set S_{ii}
- Assume that a solution to the above subproblem includes activity a_k (S_{ij} is non-empty) S_{ii}

Solution to $S_{ij} = (Solution to S_{ik}) \cup \{a_k\} \cup (Solution to S_{kj})$ $|Solution to S_{ii}| = |Solution to S_{ik}| + 1 + |Solution to S_{kj}|$

Optimal Substructure

- Claim: Sets A_{ik} and A_{ki} must be optimal solutions
- Assume $\exists A_{ik}'$ that includes more activities than A_{ik}

$$Size[A_{ij}'] = Size[A_{ik}'] + 1 + Size[A_{kj}] > Size[A_{ij}]$$

 \Rightarrow Contradiction: we assumed that A_{ij} has the maximum # of activities taken from S_{ij}

Recursive Solution

• Any optimal solution (associated with a set S_{ij}) contains within it optimal solutions to subproblems S_{ik} and S_{kj}

 c[i, j] = size of maximum-size subset of mutually compatible activities in S_{ij}

• If
$$S_{ij} = \emptyset \Rightarrow C[i, j] = 0$$

Recursive Solution

If $S_{ij} \neq \emptyset$ and if we consider that a_k is used in an optimal solution (maximum-size subset of mutually compatible activities of S_{ii}), then:

$$c[i, j] = c[i,k] + c[k, j] + 1$$

Recursive Solution

$$0 \qquad \qquad \text{if } S_{ij} = \emptyset$$

$$c[i, j] = \max_{a_k \in S_{ij}} \{c[j, k] + c[k, j] + 1\} \qquad \text{if } S_{ij} \neq \emptyset$$

There are j – i – 1 possible values for k

$$- k = i+1, ..., j-1$$

 $-a_k$ cannot be a_i or a_j (from the definition of S_{ij})

$$S_{ij} = \{ a_k \in S : f_i \le s_k < f_k \le s_j \}$$

We check all the values and take the best one

We could now write a dynamic programming algorithm

Theorem

Let $S_{ij} \neq \emptyset$ and a_m the activity in S_{ij} with the earliest finish time:

$$f_m = \min \{ f_k : a_k \in S_{ij} \}$$

Then:

- 1. a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}
 - There exists some optimal solution that contains a_m
- 2. $S_{im} = \emptyset$
 - Choosing a_m leaves S_{mj} the only nonempty subproblem

Proof

2. Assume $\exists a_k \in S_{im}$

$$f_i \le S_k < f_k \le S_m < f_m$$

 $f_k < f_m$ contradiction!

a_m must have the earliest finish time

$$\Rightarrow$$
 There is no $a_k \in S_{im} \Rightarrow S_{im} = \emptyset$

Proof: Greedy Choice Property

- 1. a_m is used in some maximum-size subset of mutually compatible activities of S_{ii}
- A_{ij} = optimal solution for activity selection from S_{ij}
 - Order activities in A_{ii} in increasing order of finish time
 - Let a_k be the first activity in $A_{ij} = \{a_k, ...\}$
- If $a_k = a_m$ Done!
- Otherwise, replace a_k with a_m (resulting in a set A_{ii}')
 - since $f_m \le f_k$ the activities in A_{ii} will continue to be compatible
 - A_{ij} will have the same size as A_{ii} ⇒ a_m is used in some maximum-size subset S_{ij}

Why is the Theorem Useful?

	Dynamic programming	Using the theorem		
Number of subproblems in the optimal solution	2 subproblems: S _{ik} , S _{kj}	1 subproblem: S_{mj} ($S_{im} = \emptyset$)		
Number of choices to consider	j – i – 1 choices	1 choice: the activity a _m with the earliest finish time in S _{ij}		

- Making the greedy choice (the activity with the earliest finish time in S_{ii})
 - Reduces the number of subproblems and choices
 - Allows solving each subproblem in a top-down fashion
- Only one subproblem left to solve!

Greedy Approach

- To select a maximum-size subset of mutually compatible activities from set S_{ii}:
 - Choose a_m ∈ S_{ii} with earliest finish time (greedy choice)
 - Add a_m to the set of activities used in the optimal solution
 - Solve the same problem for the set S_{mj}
- From the theorem
 - By choosing a_m we are guaranteed to have used an activity included in an optimal solution
 - \Rightarrow We do not need to solve the subproblem S_{mj} before making the choice!
 - The problem has the GREEDY CHOICE property

Characterizing the Subproblems

- The original problem: find the maximum subset of mutually compatible activities for $S = S_{0, n+1}$
- Activities are sorted by increasing finish time

$$a_0$$
, a_1 , a_2 , a_3 , ..., a_{n+1}

- We always choose an activity with the earliest finish time
 - Greedy choice maximizes the unscheduled time remaining
 - Finish time of activities selected is strictly increasing

A Recursive Greedy Algorithm

Alg.: REC-ACT-SEL (s, f, i, n)

- 2. while $m \le n$ and $s_m < f_i$
- $m \leftarrow i + 1$ ►Find first activity in S_{i,n+1}
- **do** m ← m + 1
- if $m \leq n$
- then return $\{a_m\} \bigcup REC-ACT-SEL(s, f, m, n)$
- else return Ø
- Activities are ordered in increasing order of finish time
- Running time: $\Theta(n)$ each activity is examined only once
- **Initial call:** REC-ACT-SEL(s, f, 0, n)

An Incremental Algorithm

Alg.: GREEDY-ACTIVITY-SELECTOR(s, f, n)

- 1. $A \leftarrow \{a_1\}$
- $2. \quad i \leftarrow 1$
- 3. **for** m \leftarrow 2 **to** n
- 4. **do if** $s_m \ge f_i$ \blacktriangleright activity a_m is compatible with a_i
- 5. **then** $A \leftarrow A \cup \{a_m\}$
- 6. $i \leftarrow m \rightarrow a_i$ is most recent addition to

. return A

- Assumes that activities are ordered in increasing order of finish time
- Running time: $\Theta(n)$ each activity is examined only once

Steps Toward Our Greedy Solution

- 1. Determined the optimal substructure of the problem
- 2. Developed a recursive solution
- 3. Proved that one of the optimal choices is the greedy choice
- 4. Showed that all but one of the subproblems resulted by making the greedy choice are empty
- Developed a recursive algorithm that implements the greedy strategy
- 6. Converted the recursive algorithm to an iterative one

Designing Greedy Algorithms

1. Cast the optimization problem as one for which:

 we make a (greedy) choice and are left with only one subproblem to solve

2. Prove the GREEDY CHOICE property:

 that there is always an optimal solution to the original problem that makes the greedy choice

3. Prove the OPTIMAL SUBSTRUCTURE:

 the greedy choice + an optimal solution to the resulting subproblem leads to an optimal solution

Correctness of Greedy Algorithms

1. Greedy Choice Property

 A globally optimal solution can be arrived at by making a locally optimal (greedy) choice

2. Optimal Substructure Property

- We know that we have arrived at a subproblem by making a greedy choice
- Optimal solution to subproblem + greedy choice ⇒
 optimal solution for the original problem

Dynamic Programming vs. Greedy Algorithms

Dynamic programming

- We make a choice at each step
- The choice depends on solutions to subproblems
- Bottom up solution, from smaller to larger subproblems

Greedy algorithm

- Make the greedy choice and THEN
- Solve the subproblem arising after the choice is made
- The choice we make may depend on previous choices, but not on solutions to subproblems
- Top down solution, problems decrease in size

The Knapsack Problem

The 0-1 knapsack problem

- A thief robbing a store finds n items: the i-th item is worth v_i dollars and weights w_i pounds (v_i, w_i integers)
- The thief can only carry W pounds in his knapsack
- Items must be taken entirely or left behind
- Which items should the thief take to maximize the value of his load?

The fractional knapsack problem

- Similar to above
- The thief can take fractions of items

Fractional Knapsack Problem

- Knapsack capacity: W
- There are n items: the i-th item has value v_i and weight w_i
- Goal:
 - Find fractions x_i so that for all $0 \le x_i \le 1$, i = 1, 2, ..., n
 - $\sum w_i x_i \leq W$ and
 - $\sum x_i v_i$ is maximum

Fractional Knapsack Problem

- Greedy strategy 1:
 - Pick the item with the maximum value
- E.g.:
 - W = 1
 - $w_1 = 100, v_1 = 2$
 - $W_2 = 1, V_2 = 1$
 - Taking from the item with the maximum value:

Total value (choose item 1) =
$$v_1W/w_1$$
 =

- 2/100
- Smaller than what the thief can take if choosing the other item

Total value (choose item 2) =
$$v_2$$
W/ w_2 = 1
CS 477/677 - Lecture 19

Readings

- For this lecture
 - Chapter 15
 - Coming next
 - Chapter 15