Notes for Stochastic Process

AARON NOTES SERIES

Aaron Xia

Department of Electronic Engineering Tsinghua University HaiDian District, Peking muranqz@gmail.com

May 24, 2019

1 Conception

 \mathcal{F} -measuable: (This is a reply from Stefan Hansen in StackExchange)

Let (Ω, \mathcal{F}, P) be a probability space, i.e. Ω is a non-empty set, \mathcal{F} is a σ -algebra of subsets of Ω and $P : \mathcal{F} \to [0, 1]$ is a probability measure on \mathcal{F} . Now, suppose we have a function $X : \Omega \to \mathbb{R}$ and we want to "measure" the probability of X belonging to some subset of \mathbb{R} . That is, we want to assign the probability to sets of the form

$${X \in A} := X^{-1}(A) = {\omega \in \Omega | X(\omega) \in A}$$
 (1.1)

for some Borel sets $A \in \mathcal{B}(\mathbb{R})$. For this to make sense, we need to make sure that $\{X \in A\} \in \mathcal{F}$ for all $A \in \mathcal{B}(\mathbb{R})$, otherwise we can't assign a probability to it (recall that P is only defined on \mathcal{F}). Whenever $X:\Omega \to R$ satisfies that $X^{-1}(A) \in \mathcal{F}$ for all $A \in \mathcal{B}(\mathbb{R})$ we say that X is $(\mathcal{F},\mathcal{B}(\mathbb{R}))$ -measurable or just \mathcal{F} -measurable when there is no chance of confusion. Thus, for a random variable X, it makes sense to assign the probability to any set of the form $\{X \in A\}$, and this defines the distribution of X:

$$P_X(A) := P(X \in A), \quad A \in \mathcal{B}(\mathbb{R})$$
 (1.2)

If $Y:\Omega\to\mathbb{R}$ is a random variable, then $\sigma(Y)$ is, by definition, given as

$$\sigma(Y) = \sigma(\{Y^{-1}(A)|A \in \mathcal{B}(\mathbb{R})\}),\tag{1.3}$$

i.e. the smallest σ -algebra containing all sets of the form $Y^{-1}(A)$. Another way of characterizing $\sigma(Y)$ is by saying that it is the smallest σ -algebra we can put on Ω that makes Y measurable. Similarly, if $Y:\Omega\to X\subset\mathbb{R}^T$ is measurable with respect to the cylinder σ -algebra $\sigma(\mathcal{F}_X)$ for X, then Y is called a stochastic process. The σ -algebra generated by Y is

$$\sigma(Y) := \{ Y^{-1}(A) : A \in \sigma(\mathcal{F}_X) \} = \sigma(\{ Y^{-1}(A) : A \in \mathcal{F}_X \}).$$
 (1.4)

References