TEST REPORT

Reference No. WTS19S05030990W001 FCC ID..... 2ALCVER100202 Applicant Emerson Radio Corp. Address 35 Waterview Blvd, Parsippany, New Jersey 07054, United States RICH FIELD ELECTRONICS COMPANY LIMITED Manufacturer No.10, LingXia Road, Tian Tou Jiao Village, Qiaotou Town, Dongguan Address City, Guangdong, China Smartset Clock Radio 1.4" Agua LED with Bluetooth, Wireless and Product..... **USB** Charging ER100202, ER100203, ER100204, S101019, S101020, S101021 Model(s)..... Brand(s) Emerson, Scott

Standards FCC CFR47 Part 15 Section 15.247: 2018

Date of Receipt sample.... 2019-05-17

2019-05-17 to 2019-06-05 Date of Test.....

Date of Issue 2019-06-06

Test Result **Pass**

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Approved by:

Jack Wen / Project Engineer

Philo Zhong / Manager

1. Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China.Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC(The Federal Communications Commission), CEC(California energy efficiency), ISED (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek(ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. ElectroMagnetic Compatibility(EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

1.1 Test Facility

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ SDOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD \ RED	-
Taiwan		NCC	-
Hong Kong	ISO/IEC 17025	OFCA	-
Australia		RCM	-
India		WPC	-
Thailand		NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED CAB identifier: CN0013. Test Firm Registration No.: 7760A.

B.TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number
TUV Rheinland	
Intertek	
TUV SUD	Optional.
SGS	
Phoenix Testlab GmbH	0700
Element Materials Technology Warwick Ltd.	0891
Timco Engineering, Inc.	1177
Eurofins Product Service GmbH	0681

Reference No.: WTS19S05030990W001

2. Contents

		Page
	COVER PAGE	
1.	LABORATORIES INTRODUCTION	
	1.1 TEST FACILITY	
2.	CONTENTS	4
3.	REVISION HISTORY	6
4.	GENERAL INFORMATION	7
	4.1 GENERAL DESCRIPTION OF E.U.T	7
	4.2 DETAILS OF E.U.T	
	4.3 CHANNEL LIST	
_	EQUIPMENT USED DURING TEST	
5.		
	5.1 EQUIPMENTS LIST	
	5.3 TEST EQUIPMENT CALIBRATION	
6.	TEST SUMMARY	11
7.	CONDUCTED EMISSION	12
	7.1 E.U.T. OPERATION	12
	7.2 EUT SETUP	
	7.3 MEASUREMENT DESCRIPTION	
8.	RADIATED EMISSIONS	
0.	8.1 EUT OPERATION	
	8.2 TEST SETUP	
	8.3 SPECTRUM ANALYZER SETUP	
	8.4 TEST PROCEDURE	
0	8.5 SUMMARY OF TEST RESULTS	
9.		
	9.1 TEST PROCEDURE	
10.		
10.	10.1 Test Procedure:	
	10.2 TEST RESULT:	
11.	MAXIMUM PEAK OUTPUT POWER	
	11.1 Test Procedure:	
	11.2 TEST RESULT:	
12.	HOPPING CHANNEL SEPARATION	40
	12.1 Test Procedure:	
	12.2 TEST RESULT:	
13.		
	13.1 TEST PROCEDURE: 13.2 TEST RESULT:	
1.4	DWFI TIMF	
14.	L/VVI.LL	

Reference No.: WTS19S05030990W001 Page 5 of 58

		Test Procedure:	
1	14.2	Test Result:	48
15. <i>F</i>	ANTE	NNA REQUIREMENT	54
16. F	RF EX	(POSURE EVALUATION	55
1	16.1	REQUIREMENTS	55
1	16.2	THE PROCEDURES / LIMIT	
1	16.3	MPE CALCULATION METHOD	56
17. F	РНОТ	OGRAPHS -TEST SETUP PHOTOS	57
1	17.1	PHOTOGRAPH-CONDUCTED EMISSIONS TEST SETUP	57
1	17.2	PHOTOGRAPH-RADIATED EMISSIONS	

Reference No.: WTS19S05030990W001 Page 6 of 58

3. Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved	
WTS19S05030990W001	2019-05-17	2019-05-17 to 2019-06-05	2019-06-06	original	ı	Valid	

Reference No.: WTS19S05030990W001 Page 7 of 58

4. General Information

4.1 General Description of E.U.T

Product: Smartset Clock Radio 1.4" Aqua LED with Bluetooth, Wireless

and USB Charging

Model(s): ER100202, ER100203, ER100204, S101019, S101020, S101021

Model descriptions:

Only the model names, Brands, colors of the product and the LED

colors are different, the others are all the same, the model

ER100202 is the tested sample.

Operation Frequency: 2402-2480MHz, 79(EDR) Channels in total

RF out Power: 5.01dBm

Antenna installation: PCB Printed Antenna

Antenna Gain: 0dBi

Type of Modulation: GFSK, Pi/4DQPSK, 8DPSK

4.2 Details of E.U.T

Ratings: Adapter: Input: 100-240V~ 50/60Hz 1.0A Max

Output: DC 9.0V 3.0A

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2402	2	2403	3	2404	4	2405
5	2406	6	2407	7	2408	8	2409
9	2410	10	2411	11	2412	12	2413
13	2414	14	2415	15	2416	16	2417
17	2418	18	2419	19	2420	20	2421
21	2422	22	2423	23	2424	24	2425
25	2426	26	2427	27	2428	28	2429
29	2430	30	2431	31	2432	32	2433
33	2434	34	2435	35	2436	36	2437
37	2438	38	2439	39	2440	40	2441
41	2442	42	2443	43	2444	44	2445
45	2446	46	2447	47	2448	48	2449
49	2450	50	2451	51	2452	52	2453
53	2454	54	2455	55	2456	56	2457
57	2458	58	2459	59	2460	60	2461
61	2462	62	2463	63	2464	64	2465
65	2466	66	2467	67	2468	68	2469
69	2470	70	2471	71	2472	72	2473
73	2474	74	2475	75	2476	76	2477
77	2478	78	2479	79	2480	-	-

Reference No.: WTS19S05030990W001 Page 8 of 58

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Table 1 Tests Carried Out Under FCC part 15.247

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

Table 2 Tests Carried Out Under FCC part 15.207 and 15.209

Test Item	Test Mode
Radiated Emissions	Transmitting
Conducted Emissions	Transmitting

5. Equipment Used during Test

5.1 Equipments List

Conducted Emissions							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	EMI Test Receiver	R&S	ESCI	101155	2018-09-15	2019-09-14	
2	LISN	SCHWARZBECK	NSLK 8128	8128-289	2018-09-15	2019-09-14	
3	Limiter	York	MTS-IMP-136	261115-001- 0024	2018-09-15	2019-09-14	
4	Cable	LARGE	RF300	-	2018-07-18	2019-07-17	
3m S	emi-anechoic Chamb	er for Radiation Em	issions				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1	Spectrum Analyzer	R&S	FSP30	100091	2019-04-19	2020-04-18	
2	Amplifier	Agilent	8447D	2944A10178	2019-04-19	2020-04-18	
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2019-04-28	2020-04-27	
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2018-10-15	2019-10-14	
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2019-04-19	2020-04-18	
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2018-10-25	2019-10-24	
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2019-04-19	2020-04-18	
8	Coaxial Cable (above 1GHz)	ZT26-NJ-NJ-8M/FA	1GHz-18GHz	NA	2019-04-19	2020-04-18	
9	Broad-band Horn Antenna	SCHWARZBECK	BBV 9721	100472	2018-10-25	2019-10-24	
10	Spectrum Analyzer	R&S	FSP40	100501	2018-11-13	2019-11-12	
11	Coaxial Cable	ZT40-2.92J-2.92J- 2.0M	10MHz-40GHz	17100919	2018-10-15	2019-10-14	
12	Signal Generater	R&S	SMP22	100102	2018-09-15	2019-09-14	
3m S	emi-anechoic Chamb	er for Radiation Em	issions				
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date	
1	Test Receiver	R&S	ESCI	101296	2019-04-20	2020-04-19	
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2019-04-20	2020-04-19	
3	Active Loop Antenna	Com-Power Corp.	AL-130R	10160007	2019-04-17	2020-04-16	
4	Amplifier	ANRITSU	MH648A	M43381	2019-04-20	2020-04-19	
5	Cable	HUBER+SUHNER	CBL2	525178	2019-04-20	2020-04-19	

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

RF C	RF Conducted Testing								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date			
1	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2018-09-13	2019-09-12			
2	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2018-09-11	2019-09-10			
3	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2018-09-11	2019-09-10			

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
B # 4 10	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by GUANG ZHOU GRG METROLOGY & TEST CO., L TD. address is No.163, Pingyun Rd. West of Huangpu Ave, Tianhe District, Guangzhou, Guangdong, China.

Reference No.: WTS19S05030990W001 Page 11 of 58

6. Test Summary

Test Items	Test Requirement	Result
Conduct Emission	15.207	С
	15.205(a)	
Spurious Radiated Emissions	15.209	С
	15.247(d)	
Dond adea	15.247(d)	С
Band edge	15.205(a)	C
Bandwidth	15.247(a)(1)	С
Maximum Peak Output Power	15.247(b)(1)	С
Hopping Frequency Separation	15.247(a)(1)	С
Number of Hopping Frequency	15.247(a)(1)(iii)	С
Dwell time	15.247(a)(1)(iii)	С
Maximum Permissible Exposure	4.4007(5)(4)	
(Exposure of Humans to RF Fields)	1.1307(b)(1)	С
Antenna Requirement	15.203	С
Note: C=Compliance; NC=Not Com	pliance; NT=Not Tested; N/A=Not	Applicable.

Reference No.: WTS19S05030990W001 Page 12 of 58

7. Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit:

Frequency (MHz)	Conducted Limit (dBµV)				
Frequency (Miriz)	Qsi-peak	Average			
0.15 to 0.5	66 to 56*	56 to 46*			
0.5 to 5.0	56	46			
5.0 to 30	60	50			
*Decreases with the logarithm of the frequency.					

7.1 E.U.T. Operation

Operating Environment:

Temperature: 22.8 °C
Humidity: 52.6 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation : Refer to Section 5.4.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Reference No.: WTS19S05030990W001 Page 15 of 58

8. Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

LIIIII.					
_	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	(MHz) uV/m		uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation : Refer to Section 5.4.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m

Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS19S05030990W001 Page 18 of 58

8.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

Reference No.: WTS19S05030990W001 Page 19 of 58

8.5 Summary of Test Results

Test Frequency: 9kHz ∼ 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

Fraguency Receiver	Receiver	eceiver Detector	Turn	RX Antenna		Corrected	O t d	FCC Part 15.247/209/205	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Lo	ow Chanr	nel 2402	MHz			
256.17	15.48	QP	196	1.4	Н	10.54	26.02	39.43	-13.41
256.17	15.65	QP	97	1.8	V	10.54	26.19	39.43	-13.24
4804.00	49.90	PK	220	1.4	V	-1.08	48.82	74.00	-25.18
4804.00	42.57	Ave	220	1.4	V	-1.08	41.49	54.00	-12.51
7206.00	54.68	PK	348	1.0	Н	1.34	56.02	74.00	-17.98
7206.00	41.10	Ave	348	1.0	Н	1.34	42.44	54.00	-11.56
2325.07	48.33	PK	198	1.9	V	-13.20	35.13	74.00	-38.87
2325.07	37.15	Ave	198	1.9	V	-13.20	23.95	54.00	-30.05
2352.82	49.05	PK	238	1.1	Н	-13.12	35.93	74.00	-38.07
2352.82	37.93	Ave	238	1.1	Н	-13.12	24.81	54.00	-29.19
2490.44	48.22	PK	292	1.5	V	-13.02	35.20	74.00	-38.80
2490.44	38.36	Ave	292	1.5	V	-13.02	25.34	54.00	-28.66

Receiver	Receiver	Turn	RX Antenna		Corrected		FCC Part 15.247/209/205		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK Mid	ddle Char	nnel 244	11MHz			
256.17	14.30	QP	180	1.1	Н	10.54	24.84	39.43	-14.60
256.17	14.83	QP	184	1.3	V	10.54	25.37	39.43	-14.06
4882.00	40.80	PK	197	1.2	V	-0.62	40.18	74.00	-33.82
4882.00	42.89	Ave	197	1.2	V	-0.62	42.27	54.00	-11.73
7323.00	51.14	PK	168	1.4	Н	2.21	53.35	74.00	-20.65
7323.00	44.74	Ave	168	1.4	Н	2.21	46.95	54.00	-7.05
2311.22	45.65	PK	259	2.0	V	-13.19	32.46	74.00	-41.54
2311.22	39.21	Ave	259	2.0	٧	-13.19	26.02	54.00	-27.98
2365.91	45.06	PK	252	1.5	Η	-13.14	31.92	74.00	-42.08
2365.91	36.26	Ave	252	1.5	Н	-13.14	23.12	54.00	-30.88
2492.74	49.92	PK	305	1.9	V	-13.08	36.84	74.00	-37.16
2492.74	37.53	Ave	305	1.9	V	-13.08	24.45	54.00	-29.55

Receiver Receiver	eceiver Detector	Turn	RX Antenna		Corrected	0 1 1	FCC Part 15.247/209/205		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GFSK H	igh Chan	nel 2480	OMHz			
256.17	20.47	QP	339	1.8	Н	10.54	31.01	39.43	-8.42
256.17	19.11	QP	130	1.7	V	10.54	29.65	39.43	-9.79
4960.00	50.80	PK	67	1.9	V	-0.24	50.56	74.00	-23.44
4960.00	41.97	Ave	67	1.9	V	-0.24	41.73	54.00	-12.27
7440.00	50.51	PK	25	1.5	Н	2.84	53.35	74.00	-20.65
7440.00	42.18	Ave	25	1.5	Н	2.84	45.02	54.00	-8.98
2342.46	45.31	PK	244	1.7	V	-13.19	32.12	74.00	-41.88
2342.46	38.84	Ave	244	1.7	V	-13.19	25.65	54.00	-28.35
2385.17	44.97	PK	45	1.7	Н	-13.14	31.83	74.00	-42.17
2385.17	36.36	Ave	45	1.7	Н	-13.14	23.22	54.00	-30.78
2491.31	44.64	PK	337	1.7	V	-13.08	31.56	74.00	-42.44
2491.31	37.59	Ave	337	1.7	V	-13.08	24.51	54.00	-29.49

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS19S05030990W001 Page 22 of 58

9. Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: ANSI C63.10

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

9.2 Test Result:

Test plots

Reference No.: WTS19S05030990W001 Page 29 of 58

10. Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10: 2013

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

10.2 Test Result:

Modulation	Test Channel	20 dB Bandwidth(MHz)	99% Bandwidth(MHz)	
GFSK	Low	1.030	0.910	
GFSK	Middle	1.030	0.922	
GFSK	High	1.030	0.922	
Pi/4 DQPSK	Low	1.371	1.198	
Pi/4 DQPSK	Middle	1.371	1.204	
Pi/4 DQPSK	High	1.371	1.204	
8DPSK	Low	1.353	1.216	
8DPSK	Middle	1.353	1.216	
8DPSK	High	1.353	1.222	

Test result plot as follows:

Modulation: 8DPSK

Reference No.: WTS19S05030990W001 Page 34 of 58

11. Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band:

0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 1watts (30 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3 MHz. VBW =3 MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result:

	Dete	Pea			
Test Mode	Data Rate	Low Channel	Middle Channel	High Channel	Limit (dBm)
GFSK	1Mbps	1.39	1.65	2.31	20.97
Pi/4 DQPSK	2Mbps	3.43	3.65	4.43	20.97
8DPSK	3Mbps	4.00	4.21	5.01	20.97

Test result plot as follows:

Modulation: GFSK
Low Channel

Middle Channel

Modulation: Pi/4 DQPSK Low Channel Low Channel

Middle Channel

Modulation: 8DPSK Low Channel Low Channel

Middle Channel

Reference No.: WTS19S05030990W001 Page 40 of 58

12. Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz , Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result:

Test result plot as follows:

Modulation	Test Channel	Separation (MHz)	Result
GFSK	Low	1.000 MHz	PASS
GFSK	Middle	1.000 MHz	PASS
GFSK	High	1.000 MHz	PASS
Pi/4 DQPSK	Low	1.000 MHz	PASS
Pi/4 DQPSK	Middle	1.000 MHz	PASS
Pi/4 DQPSK	High	1.000 MHz	PASS
8DPSK	Low	1.000 MHz	PASS
8DPSK Middle		1.000 MHz	PASS
8DPSK High		1.000 MHz	PASS

Test plots

Reference No.: WTS19S05030990W001 Page 46 of 58

13. Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

13.2 Test Result:

Total Channels are 79 Channels.

Reference No.: WTS19S05030990W001 Page 48 of 58

14. Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure:

1.Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2.Set spectrum analyzer span = 0. centred on a hopping channel;
- 3.Set RBW = 1MHz and VBW = 3MHz. Sweep = as necessary to capture the entire dwell time per hopping channel.
- 4.Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Result:

Dwell time = Pulse wide x (Hopping rate / Number of channels) x Period

The test period: T = 0.4(s) * 79 = 31.6(s)

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 / 2 hops per second in each channel (1 time slot RX, 1 time

slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*31.6*(MkrDelta)/1000		
DH3	1600/79/4*31.6*(MkrDelta)/1000		
DH1	1600/79/2*31.6*(MkrDelta)/1000		
Remark	Mkr Delta is single pulse time.		

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.920	0.311	0.4
		middle	2.920	0.311	0.4
		High	2.920	0.311	0.4
Pi/4DQPSK	2DH5	Low	2.920	0.311	0.4
		middle	2.920	0.311	0.4
		High	2.920	0.311	0.4
8DPSK	3DH5	Low	2.920	0.311	0.4
		middle	2.920	0.311	0.4
		High	2.920	0.311	0.4

Reference No.: WTS19S05030990W001 Page 50 of 58

DH5.Middle channel

DH5,High channel

Reference No.: WTS19S05030990W001 Page 51 of 58

2DH5 Low channel

2DH5.Middle channel

2DH5,High channel

3DH5.Low channel

Reference No.: WTS19S05030990W001 Page 53 of 58

3DH5.Middle channel

3DH5, High channel

15. Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT have PCB Printed Antenna, meets the requirements of FCC 15.203.

16. RF Exposure Evaluation

Test Requirement: FCC Part 1.1307 Evaluation Method: FCC Part 2.1091

16.1Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

16.2The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

(b) Limits for General Population / Oricontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500			F/1500	30	
1500-100,000			1.0	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS19S05030990W001 Page 56 of 58

16.3MPE Calculation Method

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)=0.2m

The formula can be changed to

Pd = $P_{out}*G/(4*Pi*R^2)$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm2)	Limit of Power Density (mW/cm2)
0.00	1.00	5.01	3.17	0.00063	1

Result: Compliance.

No SAR measurement is required.

17. Photographs -Test Setup Photos

17.1 Photograph-Conducted Emissions Test Setup

17.2 Photograph-Radiated Emissions

Test Frequency Below 30MHz

Test Frequency 30MHz to 1000MHz

Test Frequency Above 1GHz

=====End of Report=====