Department of Computer Science, The University of Hong Kong COMP2120

Computer Organization Assignment 2

Deadline: 6 Apr 2017, before 5:00pm (Hardcopy submission via Assignment Box A2)

Question 1

- (a) In 8-bit 2's complement representation, write down the bit-pattern representing 37, -37, 45 and -45 respectively. (4%)
- (b) Add the bit patterns together for the following and present your answers in the following format where (a + b) = c : (8%)

	a ₇	a ₆	a 5	a ₄	a ₃	a 2	a ₁	a ₀
+	b ₇	b ₆	b ₅	b ₄	b ₃	b ₂	b ₁	b ₀
=	C ₇	C 6	C 5	C4	C 3	C 2	C ₁	C ₀

- (i) 37 + 45
- (ii) 37 + (-45)
- (iii)(-37) + 45, and
- (iv)(-37) + (-45)
- (c) If 8-bit 2's complement fixed-point representation is used, with the radix point fixed mid-way in the 8-bit pattern, determine the values of the bit patterns in (a). (8%)

Question 2

A machine uses the following 32-bit floating point representation.

s	9-bit Exponent(<i>E</i>)	22-bit Significant (<i>M</i>)
---	----------------------------	---------------------------------

The value is given by:

$$V = (-1)^S \times 1.M \times 2^{E-256}$$

- (a) Determine the value (in decimal form) represented by the bit pattern c1ddcccd (hex). (6%)
- **(b)** Determine the bit pattern represented by the value 2120.25. (6%)
- (c) Determine the largest positive number that can be represented. (4%)
- (d) Determine the smallest positive normal nonzero that can be represented. (4%)

Remark: 2(c) & 2(d), there is no need to consider plus/minus infinity, NaN, as well as subnormal representation.