DUAL AXIS ROTATING SOLAR TRACKER WITH CLEANSING FACILITIES

Group – A11

- Md Jawarul Moresalein (1710002)
- Sadib Fardin (1710019)
- *Md Fuad Amin Jarif (1710020)*

What is SOLAR TRACKER?

A device used for orienting a solar photovoltaic panel towards the sun by using photoresistors & microcontroller.

OVERVIEW

WHY TO USE SOLAR TRACKER?

- Increases the output & efficiency of a solar panel significantly.
- Increases the ability to grab the energy through out the day.
- Reduces the cosine error by increasing the effective collection area.
- Decreases the fluctuation of power output due to seasonal change.

PROJECT FEATURES:

PROJECT TIMELINE

MAJOR COMPONENTS

To generate electricity from sunlight using PV system

To convert the input signals to desired output

To measure light density around the solar panel

To rotate the solar panel along horizontal axis & vertical & to roll the cleaning brush

To control the stepper motor, actuator precisely

SOLAR PANEL

Arduino Mega

LDR

STEPPER MOTOR & ACTUATOR

Motor Driver

COMPONENTS	COST APPROXIMATION (BDT)
Arduino mega	1200
LDR	50
Stepper motor	2000
Motor driver	300
Solar panel	1000
Actuator	2500
12 V 1800 mAh LIPO battery	2200
Bluetooth module	200
Breadboard	100
Resistor	50
Supplementary components	400
Total costs	10,000

PROJECT DEMONSTRATION

CAD DESIGN

CAD DEMONSTRATION

CIRCUIT DIAGRAM (SCHEMATIC)

CIRCUIT DEMONSTRATION (SIMULATION)

CIRCUIT DEMONSTRATION (HARDWARE)

MOBILE APP DEMONSTRATION:

FUTURE PLANS

DATA ANALYSIS

DATA ANALYSIS

Hourly solar power output with & without solar tracker

Measured I-U characteristics for clean vs dusty panel

REFERENCES:

- <u>International Renewable Energy Agency</u>
- <u>Design and Implementation of a Single-Axis Automatic Solar Tracking System by Fahmid Sadeque (EEE, BUET) & Professor Quamrul Ahsan (EEE, BUET)</u>
- Clean Point Energy, renewable energy specialist
- <u>Trabant Solar, the next-generation of solar tracking</u>
- <u>Design and Performance of PV Dust Cleaning System by Khaled S. Al Qdah, Saleh A. Abdulqadir, Nawaf Y. Al Harbi</u>