Management and analysis of physics datasets, Part. 1

Sixth Laboratory

Antonio Bergnoli bergnoli@pd.infn.it 30/11/2021

Laboratory Introduction

Goals

- exploit the configuration flash for the 100t boards (refer to lab 3 slides)
- study the edge detection for synchronous signals
- Discover The Arty7 FPGA Board
- build a UART transmit Unit

Configuration flash

Add a configuration memory to project

Figure 1: Add a configuration memory to project

flash chip selection

Write Memory Configuration File								
Create a configuration file to program the device								
Eormat: MCS ✓								
● Memory Part: > s25fl128sxxxxxxx4								
Cugtom Memory Size (MB): 16								
Filgname:								
Options								
Igterface: SPk1 v								
☑ Load bitstream files □ paley chain configuration file								
Start address: 00000000 Direction: up Bitfile: media psf/Home/Desktop/bitstreams/top.bit								
_ Lgad data files								
Start address: 00000000 Direction: Up								
☐ <u>W</u> rite checksum								
✓ Djsable bit swapping								
✓ Ogerwrite								
Command: write_cfgmem -format mcs -size 16 -interface SPIx1 -loadbit {up 0x00000000 "/media/psf/Home/Desktop/bitstreams/top.bit" } -force -disablebitswap								
OK Cancel								

Figure 2: flash chip selection for 100t boards

Positive Edge detection

Figure 3: Positive Edge detection circuit

Figure 4: Positive Edge detection waves

Negative Edge detection

Figure 5: Negative Edge detection circuit

Figure 6: Negative Edge detection waves

Both Edges detecition

Figure 7: Both Edges detection circuit

Figure 8: Both Edges detection waves

Arty 7 FPGA Board

A closer look to the Board

Figure 9: Arty 7 Board

Arty7: Useful interfaces

Figure 10: Arty 7 interfaces

Arty7 connected to a PC

Figure 11: Arty 7 connect to a PC $\,$

Motivation

- Since we need to connect our FPGA Board to a PC, we need to enable a reasonable useful interface .
- Some interfaces are available, but we need to manage them:

Interface	Speed	tipical usage	Ease of use
Ethernet	100 Mbit/s	General purpose	very high
JTAG	< 10 Mbit/s	Config/Debug	moderately high
UART	< < 1 Mbit/s	text messages	Easy

Universal Asynchronous Receiver Transmitter: The device

RS-232: the standard protocol

Introducing the RS-232 standard

The RS-232 Data frame: an example

- · Byte oriented frame
- · Mostly used to exchange character stream (ASCII code, see next slide) but also binary stream
- optional parity bit at the end of the trasmitted byte
- start and stop frame delimiter length = 1 bit (stop-bit could be 2 in some cases)

Transmit Character 'a' (ASCII CODE hexadecimal: 61, binary: 01100001) at 115200 Bit/second, no parity bit

Tbit=1/115200 s = 8,68 us

The ASCII standard

The hexadecimal set:

00	nul	01	soh	02	stx	03	etx	04	eot	05	enq	06	ack	07	bel
08	bs	09	ht	0a	nl	0b	vt	0c	np	0d	cr	0e	so	Of	si
10	dle	11	dc1	12	dc2	13	dc3	14	dc4	15	nak	16	syn	. 17	etb
18	can	19	em	1a	sub	1b	esc	1c	fs	1d	gs	1e	rs	1f	us
20	sp	21	!	22	"	23	#	24	\$	25	%	26	<i>&</i> z	27	
28	3 (29)	2a	*	2b	+	2c	,	2d	-	2e		2f	/
30	0	31	1	32	2	33	3	34	4	35	5	36	6	37	7
38	8	39	9	3a	:	3ъ	;	3с	<	3d	=	Зе	>	3f	?
40	0	41	Α	42	В	43	C	44	D	45	E	46	F	47	G
48	B H	49	I	4a	J	4b	K	4c	L	4d	M	4e	N	4f	0
50) P	51	Q	52	R	53	S	54	T	55	U	56	V	57	W
58	3 X	59	Y	5a	Z	5b	Γ	5c	\	5d]	5e	^	5f	_
60) `	61	a	62	b	63	С	64	d	65	е	66	f	67	g
68	h h	69	i	6a	j	6b	k	6c	1	6d	m	6e	n	6f	0
70) p	71	q	72	r	73	s	74	t	75	u	76	v	77	W
78	3 x	79	У	7a	z	7b	{	7c	- 1	7d	}	7e	~	7f	del

The Universal Asynchronous

Receiver-Transmitter

Communication with UART

UART communication is made on a **point-to-point** connection

Figure 13: UART typical interconnection

The UART subsystem in the Arty7 Board

Figure 14: Arty7 Uart schematic

Build a UART transmitter

The Baudrate generator

- · it is basically a counter
- · it has only one output
- output is equal to '1' for exactly one clock cycle every bit time (Tbit)

Motivation

We need a periodic signal (another clock) at the rate of the transmission. Baudrate: speed in symbol/s (1 symbol carries 1 bit)

Figure 15: The Baudrate generator

First exercise

Write a Baudrate generator in VHDL, in the case of:

- Clock frequency= 100 Mhz
- Baudrate = 115200

The Uart Transmitter

Figure 16: The Uart Transmitter

Figure 17: tx State machine idea

The BAUDRATE out signal make possible to switch from a state to another

Transmitter waveform

Figure 18: UART transmitter waveform

Homework

- Build a complete Uart transmitter working at data rate of 115200 baud