# Principal Component Analysis of Cepheid Variable Stars

Dan Wysocki

SUNY Oswego

Fall 2013

#### Variable Stars



- stars whose size and luminosity fluctuate
- mostly giant stars
- instability strip



- population I (high metallicity)
- 4-20 solar masses
- up to 100000 solar luminosities
- pulsation period can range from days to months
- period-luminosity relationship



- population I (high metallicity)
- 4-20 solar masses
- up to 100000 solar luminosities
- pulsation period can range from days to months
- period-luminosity relationship



- population I (high metallicity)
- 4-20 solar masses
- up to 100000 solar luminosities
- pulsation period can range from days to months
- period-luminosity relationship



- population I (high metallicity)
- 4-20 solar masses
- up to 100000 solar luminosities
- pulsation period can range from days to months
- period-luminosity relationship

#### Lightcurves



Figure: Lightcurves of different classes of variable stars

### Cepheid Period-Luminosity Relationship



$$\underbrace{A_0}_{\substack{\text{mean}\\\text{magnitude}}} = a \log \underbrace{P}_{\substack{\text{period}}} + c$$

- a Cepheid's period of oscillation is related to its mean luminosity
- ullet approximate a linear model which gives a and c
- this makes  $A_0$  a function of  $\log P$  and some fixed constants

$$\underbrace{m}_{\substack{\text{apparent}\\ \text{magnitude}}} - \underbrace{M}_{\substack{\text{absolute}\\ \text{magnitude}}} = 5\log\left(\frac{d}{10}\right) - 5$$

$$\underbrace{d}_{\substack{\text{distance} \\ \text{in} \\ \text{parsecs}}} = 10^{\frac{m-M}{5}+1}$$



#### Hubble's Law



$$v = H_0 d$$
redshift Hubble's distance constant

- Hubble's law describes the velocity of the expansion of the Universe
- ullet redshift measurements give us v
- Cosmic Microwave Background (CMB) only gives us a measure of  $H_0^2\Omega$
- independent measure of  ${\cal H}_0$  is needed to find density of Universe,  $\Omega$

## Fourier Analysis of Lightcurves



Figure: Fundamental Mode Cepheid in the LMC with 7<sup>th</sup>order Fourier fit from OGLEIII

$$\underbrace{A(t)}_{\substack{\text{mag at time } t}} = \underbrace{A_0}_{\substack{\text{mean mag}}} + \sum_{k=1}^{n} \underbrace{A_k}_{\substack{\text{scaling scaling}}} \underbrace{\sin(\underbrace{k}_{\substack{\text{scaling}}} \omega t + \underbrace{\Phi_k}_{\substack{\text{shift}}})$$

- assume basis lightcurve to be sinusoidal
- find values of best fit for  $A_0$ ,  $A_k$  and  $\Phi_k$
- for  $n^{\rm th}$  order fit, requires 2n+1 parameters

#### Fourier Parameters versus $\log P$



Figure: Fourier parameter ratios of 1829 fundamental mode Cepheids in LMC

#### Principal Component Analysis of Lightcurves

- data decides the basis lightcurves
- construct a matrix of all the stars' lightcurves stacked vertically
- ullet find the covariance matrix of this matrix  $(\mathbf{A}^{ op}\mathbf{A})$
- ullet eigenvectors (EV) of the covariance matrix are the basis lightcurves
- ullet scalar coefficents are the principle scores (PC)
- $\bullet$   $n^{\rm th}{\rm order}$  fit requries only n parameters for each star, in addition to the n eigenvectors for the whole dataset



$$PC_i = \mathbf{A} \cdot \mathbf{EV}_i$$
$$\mathbf{A} = \sum_{i=1}^n PC_i \mathbf{EV}_i$$

#### Principal Component Analysis of Lightcurves



Figure: Cepheids with varying order PCA fits

#### Principal Scores versus $\log P$



Figure: Principal scores 1 and 2 as functions of  $\log P$  for 1829 fundamental mode Cepheids in LMC

# Cepheid Period Luminosity Relationship

 $\bullet \ A_0 = a \log P + c$ 



# Cepheid Period Luminosity Color Relationship

$$A_0 = a \log P + c$$

$$\bullet \ A_0 = a \log P + b(I - V) + c$$



# Cepheid Period Luminosity Principal Component Relationship

$$\bullet \ A_0 = a \log P + c$$

$$\bullet \ A_0 = a \log P + b(I - V) + c$$

$$\bullet \ A_0 = a \log P + bPC_1 + c$$



# Cepheid Period Luminosity Principal Component Relationship

$$\bullet \ A_0 = a \log P + c$$

$$\bullet \ A_0 = a \log P + b(I - V) + c$$

$$\bullet \ A_0 = a \log P + bPC_2 + c$$



# Period Luminosity Principal Component Relationship



Figure:  $A_0$  fitted with  $PC_1$  vs  $\log P$ 



Figure:  $A_0$  fitted with  $PC_2$  vs  $\log P$ 

#### Acknowledgements

Shashi Kanbur, Chow-Choong Ngeow, Sukanta Deb, Harinder P. Singh, Earl Bellinger, Zachariah Schrecengost, Ruka Murugan, NSF Office of International Science and Engineering award number 1065093, Indo-U.S. Knowledge R&D Joint Networked Center for the Analysis of Variable Star Data.

#### References