<u>1st OpenFOAM HPC Challenge (OHC-1):</u> Hardware Track Summary

JULY 1, 2025, VIENNA

Mini-symposium to be held in the auspices of the 2025 OpenFOAM Workshop

Organized by the OpenFOAM HPC Technical Committee (TC)

Presented by: Sergey Lesnik, Gregor Olenik, Mark Wasserman

Agenda

Time	Topic	HW Track Talks
11:00	Introduction	Elisabetta Boella Ruggero Poletto Eike Tangermann Lydia Schulze Gabriel Marcos Magalhães Aleksander Dubas
11:20	Summary of Contributions for the Hardware Track	
11:40	Hardware Track Participant Talks	
12:00	Lunch break	
13:30	Hardware Track Participant Talks + Discussion	
14:30	Summary of Contributions for the Software Track	
14:50	Software Track Participant Talks	
15:30	Afternoon coffee break	SW Track Talks
15:50	Software Track Participant Talks	Sergey Lesnik
16:10	Software Track Discussion	Simone Bnà
16:30	Summary + Next Steps for OHC	Stefano Oliani
16:50-17:50Extension possibility		Gregor Olenik
		Henrik Rusche
		Mark Wasserman

1st OpenFOAM HPC Challenge (OHC-1)

June 25

Contributors

240+ data points contributed by 12 contributors:

- Wikki GmbH
- UCD
- CFD FFA Service
- Cineca
- Huawei
- Universität der Bundeswehr München
- Federal Waterways Engineering and Research Institute
- University of Minho
- **Technical University Munich**
- United Kingdom Atomic Energy Authority
- Engys
- **E4 Computer Engineering**

Breakdown of Contributions (Statistics)

- Total number of valid entries: 236
 - Hardware track entries 175, Software track entries 61
 - AMD 106, Intel 80, ARM 50
- 25 different CPU models and 3 GPU models

Max nodes used: 256

Max cores used: 32768

- Min wall-clock time to solution: 7.8 minutes
- Max wall-clock time to solution: 65.7 hours
- Min energy of single simulation: 2.1 [kWh]
- Max energy of single simulation: 236.9 [kWh]

Breakdown of Contributions (Statistics)

 Total reported energy consumption:

4715.37 kWh, potentially bringing ~169 bath tubs to a boiling point!

Issues, Assumptions and Disclaimers

- No. of cores was corrected to represent physical cores (hyper-threading disregarded)
- Changed names/values to adhere to a predefined scheme for easier evaluation
- Added some values based based on publicly available data (e.g. TDP according to the CPU model)
- The focus lied on providing an overview of the complete data set, not analysis of single simulations or submissions - the latter are covered by the participants' talks

Issues, Assumptions and Disclaimers

Energy analysis mostly based on theoretical TDP values

Breakdown of Contributions (plot)

ine 25

CPU Family

- AMD
- **ARM**
- Intel **CPU** Generation
- Genoa (4th-gen)
- Milan (3rd-gen)
- Rome (2nd-gen)
- ARMv9
- ARMv8.2
- Sapphire Rapids (4th-gen)
- Emerald Rapids (5th-gen)
- i9
- Broadwell
- Skylake (1st-gen)
- Cascade Lake (2nd-gen)

1st OpenFOAM HPC

Challenge (OHC-1)

Scalability Limits (Strong Scaling)

Scalability Limits (Strong Scaling)

1st OpenFOAM HPC Challenge (OHC-1)

June 25

Scalability Limits (Strong Scaling)

1st OpenFOAM HPC Challenge (OHC-1)

June 25

Scalability Limits (Strong Scaling)

Single-node Performance

1st OpenFOAM HPC Challenge (OHC-1) June 25

HBM/LLC Effect

HBM/LLC Effect

HBM/LLC Effect

Network Interconnect Effect (Optional)

Summary

- Contributions exceeded our expectations, but submission format needs to be tighter for next time
- Identified pareto front of optimal balance between time-to-solution and energyefficiency
- At small-scale, next-gen CPUs (ARM, Intel, AMD) show improved performance thanks to introduction of on-package, high-bandwidth memory and many-core architecture
- At large-scale, communication dominates performance and many-core architectures pose challenge to OpenFOAM (only MPI parallelism)
- OpenFOAM scales well up to 10k cells/core
- Data will be distributed to enable further analysis