

Fundamentals of Security in Ethical Hacking

DCS22104

Lesson 9: Cryptography

Department of Computing

Course outline

Lesson	Topic
1	Introduction to ethical hacking and reconnaissance
2	Network enumerators and system vulnerabilities
3	Malware
4	Social engineering attacks
5	Hacking web servers and web applications
6	Session hijacking
7	Script injections
8	Hacking wireless network
9	Cryptography
10	Buffer overflow attacks
11	Evading IDS, firewall, and honeypot
12	Penetration testing

Assessments

#	Components	Marks(%)	Week
1	Test 1 (Topics 1 to 5)	10	DONE
2	Midterm examination	20	DONE
3	Test 2 (Topics 1 to 11)	20	12
4	Final examination	50	Exam week

Reviews on Lesson 8

A radio communication device transmit data in physical layer of OSI model.

2.4GHz is the most common frequency bandwidth for wireless devices.

SSID is broadcasted using beacon frames from a wireless access point with a router.

Reviews on Lesson 8

Three advantages of a wireless network.

- a. No cable and plug.
- b. High mobility, because it is not at a fixed location.
- c. Easy tethering using phone as modem (PAM) to connect to the Internet.

Three security vulnerabilities for a wireless network.

- a. Brute force attack is possible to retrieve password.
- b. There is no physical access, user connections could not control physically.
- c. Within range could get attack.
- d. Session hijack is possible via ARP spoofing.

Lesson 9: Lecture and lab session

Start time	End time	Topics
1:00pm	1:30pm	Reviews on Lesson 8
1:30pm	2:00pm	Lecture 1: Cryptography and its application
2:00pm	2:15pm	Break time
2:15pm	2:45pm	Lecture 2: Encryption and decryption
2:45pm	2:50pm	References

Lecture 1: Cryptography and its application

Cryptography in information security

- It refers to the core developments of cryptosystem.
- It provides a layer of security to access data in a system.

Disadvantages of a password

- Password can be lost or forgotten by legitimate users.
- It is inconvenient for users to access their information.
- It could be shared, stolen, or revoked by malicious party.

Password vulnerabilities

- Brute-force attack.
- Common passwords (Date of birth, social security number, etc.)
- Possible passwords for a particular user.
- Search for system password file.
- Social engineering attacks. Ask from the user for their password.
- Dictionary attacks: Words, names, acronyms, common passwords.
- Reveal password format to public will be a danger.

Requirements for a strong password

- A strong password should included alphabets, numbers, and special characters.
- What is the possibilities for an eight characters long strong password?
 - (a) Uppercase and lowercase letters: $26 \times 2 = 52$.
 - (b) Numbers: 0 to 9 = 10.
 - (c) Special characters: 32
 - (d) Total possibilities: 52 + 10 + 32 = 94.
- 8 characters long: $94^8 + 94^7 + 94^6 + \dots$ Thus, $\sum_{k=1}^{8} 94^k$.
- Meaningless for brute-force attack.

Password protection

Stop or delay the brute-force attack.

- Restrict the number of times login attempts.
- Strong authentication through security questions and biometrics.
- Time embedded password, passcode = PIN + TOKEN CODE.

Exercise 1 (10 minutes)

- 1. Explain three vulnerabilities for a password.
- 2. What is the requirements for a strong password?

Break time

Duration: 15 minutes.

Lecture 2: Encryption and decryption

Symmetric encryption

- Use the same key for encryption and decryption.
- Example algorithms are stream ciphers and block ciphers.

Asymmetric encryption

- Different keys for encryption and decryption.
- Encryption key is the public key.
- Decryption key is the private key.
- Example encryption, such as Rivest-Shamir-Adelman (RSA).

Cryptosystem

- The objective is to make it difficult and not worth the effort to break it.
- There are three types of ciphers.

Types	Descriptions
Substitution ciphers	Characters are swapped.
Transposition ciphers	Permutation whereby the order of characters is rearranged.
Product ciphers	Combine two or more ciphers.

• n-gram is a string of characters of length n.

Caesar cipher

- It is a substitution cipher.
- Each letter is replaced by the third letter following it.

Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ

Ciphers: XYZABCDEFGHIJKLMNOPQRSTUVW

Encryption process

Plaintext: SECRET MESSAGE

Ciphertext: PBZOBQ JBPPXDB

• Exhaustive search possible, since this cipher has only 26 possible keys.

3 rows rail-fence cipher

• A plain text message is transposed into several rows.

Plain:	SECRET MESSAGE
Encryption process:	SESE (3 dots) .E.R.T.E.S.G. (1 dot)CMA (prefix: 2 dots, letters in between: 3 dots, postfix: 2 dots)
Ciphers:	SESE ERTESG CMA

Stream ciphers: Encryption

• Encryption key is based on one time pad (OTP).

A	В	С	D	Ε	F	G	Н	J	J	K	L	M	N	O	Р	Q	R	S	Τ	U	٧	W	X	Y	Z
1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
									0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6

• Encryption process.

Plaintext:	Р	R	0	Τ	Ε	С	Т	Ε	D
Numeric plaintext, np:	16	18	15	20	5	3	20	5	4
OTP:	D	I	Μ	I	Т	R	I	С	Α
Numeric OTP, no:	4	9	13	9	20	18	9	3	1
np + no:	20	27	28	29	25	21	29	8	5
Ciphertext:	Т	Α	В	С	Y	U	С	Н	Е

Stream ciphers: Decryption

• Encryption key is based on one time pad (OTP).

A	В	C	D	Ε	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	Т	U	V	W	X	Y	Z
1	2	3	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2
									0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6

• Decryption process.

Ciphertext:	Т	Α	В	С	Y	U	С	Н	Ε	(9-grams)
Numeric ciphertext, nc:	20	1	2	3	25	21	3	8	5	
OTP:	D	I	Μ	I	Т	R	I	С	Α	(9-grams)
Numeric OTP, no:	4	9	13	9	20	18	9	3	1	
nc - no:				-6 26			-6 26	5	4	
Plaintext:	Р	R	0	Т	Е	С	Т	Е	D	

Shannon's criteria

- Need certain degree of secrecy.
- Set keys and encryption algorithm should be simple.
- Simple implementation.
- Limited propagation of errors.
- Size or storage of cipher text should be restricted.

Commercial principles

- Mathematical theory sound.
- Verified by expert analysis including external experts.
- Has stood the test of time.
- Fix flaws in encryption algorithms.

Data encryption standard (DES)

- 56 bits fixed length key.
- 16 iterations of encryption are performed on the plaintext including substitutions and permutations.
- Each iteration uses its own key.

Advanced encryption standard (AES)

- Symmetric key algorithm
- Developed by Belgian cryptographers.
- 128 bit blocks of plaintext.
- 10 rounds for 128 bit keys.
- 12 rounds for 192 bit keys.
- 14 rounds for 256 bit keys.
- Basic operations involved substitution, shift row, mix columns and add subkey.

Exercise 2 (10 minutes)

- 1. State a different between symmetric and asymmetric encryption algorithms.
- 2. What is the objective of a cryptosystem?

References

- CEH course materials
- Goodrich, M (2010) Introduction to Computer Security, Addison Wesley, 1st Ed
- Purpura, P (2010) Security: An Introduction, CRC Press, 1st Ed
- Stallings, W (2007) Computer Security: Principles and Practices, Prentice Hall, 1st Ed
- Jacobson, D (2008) Introduction to Network Security, Chapman and Hall, 1st Ed
- Fischer, R (2008) Introduction to Security, Butterworth-Heinemann, 8th Ed