Amendments to the Claims

This listing of claims will replace all prior versions and listings of claims in the application.

1.	(Canceled)
2.	(Canceled)
3.	(Canceled)
4.	(Canceled)
5.	(Canceled)
6.	(Canceled)
7.	(Canceled)
8.	(Canceled)
9.	(Canceled)
10.	(Canceled)
11.	(Canceled)

(New) A method of regulating growth in crop plants, comprising:

12.

(a) applying an effective amount of a compound of formula (I) to plants, seeds or a loci in which said plants or seeds grow, wherein said compound has the following structure:

or an agriculturally acceptable salt thereof, wherein:

E is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_3-C_6) alkynyl, (C_1-C_6) alkoxy- (C_1-C_6) alkyl, $[(C_1-C_6)$ alkyl, $[(C_1-C_6)$ alkyl, $[(C_1-C_6)$ alkyl]carbonyloxy- (C_1-C_6) alkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, furfuryl, tetrahydrofurfuryl or isoxazolyl which last mentioned group is unsubstituted or substituted with one or two (C_1-C_6) alkyl radicals; or is a group of formula (A):

$$(R^1)_U \xrightarrow{|I|}_{X}^{Z} \bigvee_{(A)}$$

in which X, Y, Z and V are each independently C or N, with the proviso that at least two of X, Y, Z and V are C;

the linking bond of (A) is attached to a ring carbon atom;

 $(R^1)_u$ are u substituents of R^1 which may be same or different, each R^1 is linked to a ring carbon atom and is H, R^2 , (C_3-C_8) cycloalkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkoxy, $[(C_3-C_8)$ cycloalkyl)carbonyl, (C_3-C_8) cycloalkyloxy, (C_3-C_8) cycloalkyl- $S(O)_m$, (C_1-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl where each of the last 3 mentioned radicals is unsubstituted or substituted by one or more R^2 radicals;

or aryl, heterocyclyl, aryl- (C_1-C_6) alkyl, heterocyclyl- (C_1-C_6) alkyl, aryl- (C_1-C_6) alkoxy, heterocyclyl- (C_1-C_6) alkoxy, aryl-carbonyl, heterocyclyl-carbonyl, aryloxy, heterocyclyloxy, aryl- $S(O)_n$ or heterocyclyl- $S(O)_p$, where the aryl or heterocyclyl portion of the last 12 mentioned radicals is unsubstituted or

substituted by one to three radicals selected from the group consisting of R², (C₁-C₆)alkyl, (C₂-C₆)alkenyl and (C₂-C₆)alkynyl, where each of the last 3 mentioned radicals is unsubstituted or substituted by one or two R² radicals; or (A) is fused to a 1,3-dioxolanyl or 1,4-dioxanyl ring where each of the last two mentioned rings is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C₁-C₆)alkyl, (C₁-C₆)alkoxy and OH; each R² independently from other R² radicals is hydroxy, halogen, cyano, nitro, NR³R⁴, CONR³R⁴, OCONR³R⁴, OCH₂CONR³R⁴, (C₁-C₆)alkoxy, (C₁-C₆)haloalkoxy, CO₂R³, COR³, NHCOR³, NHCO₂R³, S(O)_qR⁵, SO₂NH₂ or R⁶;

 R^3 is hydrogen, (C_1-C_6) -alkyl or CH_2R^6 ;

 R^4 is hydrogen or (C_1-C_6) -alkyl; or R^3 and R^4 together with the nitrogen atom to which they are attached form a 3 to 8 membered cyclic ring optionally containing one or two further hetero atoms selected from oxygen, sulfur and nitrogen; R^5 is (C_1-C_6) alkyl or (C_1-C_6) haloalkyl;

W is O or N-OR 7 ;

 R^6 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_1-C_6) haloalkyl and (C_1-C_6) alkoxy;

 R^7 is hydrogen, (C_1-C_6) alkyl or aryl- (C_1-C_6) alkyl;

Q is (C_3-C_8) cycloalkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, where the last 2 mentioned radicals are unsubstituted or substituted in the cycloalkyl by (C_1-C_4) alkyl, (C_1-C_4) alkoxy and halogen, (C_1-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl, where each of the last 3 mentioned radicals is unsubstituted or substituted by one or two R^2 radicals; or

aryl, heterocyclyl, aryl- (C_1-C_6) alkyl or heterocyclyl- (C_1-C_6) alkyl, where the aryl or heterocyclyl portion of the last 4 mentioned radicals is unsubstituted or substituted by:

i) one to three radicals selected from the group consisting of R^2 , (C_1-C_6) alkyl, (C_2-C_6) alkenyl and (C_2-C_6) alkynyl, where each of the last 3 mentioned radicals is unsubstituted or substituted by one or two R^2 radicals;

or

- ii) (C₃-C₈)cycloalkyl, (C₃-C₈)cycloalkyl-(C₁-C₆)alkyl, (C₃-C₈)cycloalkyl-(C₁-C₆)alkoxy, [(C₃-C₈)cycloalkyl]carbonyl, (C₃-C₈)cycloalkyloxy, (C₃-C₈)cycloalkyl-S(O)_r, aryl, heterocyclyl, aryl-(C₁-C₆)alkyl, heterocyclyl-(C₁-C₆)alkyl, aryl-(C₁-C₆)alkoxy, heterocyclyl-(C₁-C₆)alkoxy, aryl-carbonyl, heterocyclyl-carbonyl, aryloxy, (C₃-C₈)-heterocyclyloxy, aryl-S(O)_s or heterocyclyl-S(O)_t, which last 12 mentioned radicals is unsubstituted or substituted by one or two radicals selected from the group consisting of (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl and R²; m, n, p, q, r, s and t are each independently 0, 1 or 2; u is the number of ring carbon atoms in formula (A) minus 1; and each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S.
- 13. (New) The method of claim 12, wherein said (A) of formula (I) is a formula (Al), (A2), (A3), (A4) or (A5):

wherein R¹ and u are as defined in claim 12.

14. (New) The method of claim 12, wherein:

E is (C_1-C_6) alkyl, (C_1-C_6) alkoxy- (C_1-C_6) alkyl, $[(C_1-C_6)$ alkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl or a group (A):

X, Y, Z and V are each C;

each R^1 which may be the same or different is H, hydroxy, halogen, cyano, nitro, NR^3R^4 , $CONR^3R^4$, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, CO_2R^3 , COR^3 , $NHCOR^3$, $S(O)_qR^5$, SO_2NH_2 , (C_1-C_3) alkyl or (C_1-C_3) haloalkyl, wherein R^3 and R^4 are each independently hydrogen or (C_1-C_3) -alkyl, and R^5 is (C_1-C_3) alkyl or (C_1-C_3) haloalkyl;

or phenyl or pyridyl, which last 2 mentioned radicals are unsubstituted or substituted by one to three radicals selected from the group consisting of halogen, (C_1-C_6) alkyl and (C_1-C_3) haloalkyl; and (C_1-C_3) haloalkyl; and (C_1-C_3) haloalkyl; and

15. (New) The method of claim 12, wherein:

E is (C_1-C_3) alkyl, (C_1-C_3) alkoxy- (C_1-C_3) alkyl, $[(C_1-C_3)$ alkoxy]carbonyl- (C_1-C_3) alkyl, (C_3-C_6) cycloalkyl- (C_1-C_3) alkyl or a group of formula (A):

$$(R^1)_U \xrightarrow{\stackrel{|I|}{\downarrow I}} \overset{Z}{\downarrow}$$
(A)

X, Y and Z are all C; V is C or N; R¹ is H or halogen; and

u is 4 or 5.

16. (New) The method of claim 12, wherein:
E is (C₁-C₃)alkyl, (C₁-C₃)alkoxy-(C₁-C₃)alkyl, [(C₁-C₃)alkoxy]carbonyl-

 (C_1-C_3) alky $(, (C_3-C_6)$ cycloalky $l-(C_1-C_3)$ alkyl or a group (A):

$$(R^1)_U \xrightarrow{|I|} X \xrightarrow{V} (A)$$

X, Y, Z and V are all C;

W is O;

R¹ is H or halogen;

Q is cyclopropyl, (C₁-C₃)alkyl, phenyl, naphthyl, pyridinyl, tetrahydropyridinyl, thienyl or benzo[b]thienyl, which last 6 mentioned radicals are unsubstituted or substituted by one to three radicals selected from the group consisting of halogen, (C₁-C₃)alkyl, OH, NO₂, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, phenyl and benzyloxy; and u is 5.

- 17. (New) The method of claim 12 that results into a yield increase of at least 10% concerning the plants to which it is applied.
- 18. (New) A composition for plant growth regulation, which comprises one or more compounds of formula (I) having the following structure:

$$H \longrightarrow N \longrightarrow N \longrightarrow Q$$
 $W \longrightarrow Q$
 $W \longrightarrow Q$
 $W \longrightarrow Q$

or an agriculturally acceptable salt thereof, wherein:

E is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_3-C_6) alkynyl, (C_1-C_6) alkoxy- (C_1-C_6) alkyl, $[(C_1-C_6)$ alkyl, $[(C_1-C_6)$ alkyl, $[(C_1-C_6)$ alkyl, $[(C_1-C_6)$ alkyl, $[(C_1-C_6)$ alkyl, $[(C_3-C_8)$ cycloalkyl- (C_1-C_6) alkyl, furfuryl, tetrahydrofurfuryl or isoxazolyl which last mentioned group is unsubstituted or substituted with one or two (C_1-C_6) alkyl radicals; or is a group of formula (A):

in which X, Y, Z and V are each independently C or N, with the proviso that at least two of X, Y, Z and V are C;

the linking bond of (A) is attached to a ring carbon atom;

 $(R^1)_u$ are u substituents of R^1 which may be same or different, each R^1 is linked to a ring carbon atom and is H, R^2 , (C_3-C_8) cycloalkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkoxy, $[(C_3-C_8)$ cycloalkyl]carbonyl, (C_3-C_8) cycloalkyloxy, (C_3-C_8) cycloalkyl- $S(O)_m$, (C_1-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl where each of the last 3 mentioned radicals is unsubstituted or substituted by one or more R^2 radicals;

or aryl, heterocyclyl, aryl- (C_1-C_6) alkyl, heterocyclyl- (C_1-C_6) alkyl, aryl- (C_1-C_6) alkoxy, heterocyclyl- (C_1-C_6) alkoxy, aryl-carbonyl, heterocyclyl-carbonyl, aryloxy, heterocyclyloxy, aryl- $S(O)_n$ or heterocyclyl- $S(O)_p$, where the aryl or heterocyclyl portion of the last 12 mentioned radicals is unsubstituted or substituted by one to three radicals selected from the group consisting of R^2 , (C_1-C_6) alkyl, (C_2-C_6) alkenyl and (C_2-C_6) alkynyl, where each of the last 3 mentioned radicals is unsubstituted or substituted by one or two R^2 radicals; or (A) is fused to a 1,3-dioxolanyl or 1,4-dioxanyl ring where each of the last two mentioned rings is unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_1-C_6) alkoxy and OH; each R^2 independently from other R^2 radicals is hydroxy, halogen, cyano, nitro, NR^3R^4 , $CONR^3R^4$, $OCONR^3R^4$, $OCONR^3R^3$, $OCONR^3R^4$, OC

R³ is hydrogen, (C₁-C₆)-alkyl or CH₂R⁶;

R⁴ is hydrogen or (C₁-C₆)-alkyl; or R³ and R⁴ together with the nitrogen atom to which they are attached form a 3 to 8 membered cyclic ring optionally containing one or two further hetero atoms selected from oxygen, sulfur and nitrogen;

R⁵ is (C₁-C₆)alkyl or (C₁-C₆)haloalkyl;

W is O or N-OR⁷;

 R^6 is phenyl unsubstituted or substituted by one or more radicals selected from the group consisting of halogen, (C_1-C_6) alkyl, (C_1-C_6) haloalkyl and (C_1-C_6) alkoxy;

 R^7 is hydrogen, (C_1-C_6) alkyl or aryl- (C_1-C_6) alkyl;

Q is (C_3-C_8) cycloalkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, where the last 2 mentioned radicals are unsubstituted or substituted in the cycloalkyl by (C_1-C_4) alkyl, (C_1-C_4) alkoxy and halogen, (C_1-C_6) alkyl, (C_2-C_6) alkenyl or (C_2-C_6) alkynyl, where each of the last 3 mentioned radicals is unsubstituted or substituted by one or two R^2 radicals; or

aryl, heterocyclyl, aryl- (C_1-C_6) alkyl or heterocyclyl- (C_1-C_6) alkyl, where the aryl or heterocyclyl portion of the last 4 mentioned radicals is unsubstituted or substituted by:

- i) one to three radicals selected from the group consisting of R^2 , (C_1-C_6) alkyl, (C_2-C_6) alkenyl and (C_2-C_6) alkynyl, where each of the last 3 mentioned radicals is unsubstituted or substituted by one or two R^2 radicals; or
- ii) (C_3-C_8) cycloalkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkoxy, $[(C_3-C_8)$ cycloalkyl]carbonyl, (C_3-C_8) cycloalkyloxy, (C_3-C_8) cycloalkyl- $S(O)_r$, aryl, heterocyclyl, aryl- (C_1-C_6) alkyl, heterocyclyl- (C_1-C_6) alkyl, aryl- (C_1-C_6) alkoxy, heterocyclyl- (C_1-C_6) alkoxy, aryl-carbonyl, heterocyclyl-carbonyl, aryloxy, (C_3-C_8) -heterocyclyloxy, aryl- $S(O)_s$ or heterocyclyl- $S(O)_t$, which last 12 mentioned radicals is unsubstituted or substituted by one or two radicals selected from the group consisting of (C_1-C_6) alkyl, (C_2-C_6) alkynyl and R^2 ;

m, n, p, q, r, s and t are each independently 0, 1 or 2;

u is the number of ring carbon atoms in formula (A) minus 1; and each heterocyclyl in the above-mentioned radicals is independently a heterocyclic radical having 3 to 7 ring atoms and 1, 2 or 3 hetero atoms in the ring selected from the group consisting of N, O and S; and carriers, surfactants and mixtures thereof useful for plant protection formulations.

- 19. (New) The composition as claimed in claim 18, further comprising a compound selected from the group consisting of acaricides, fungicides, herbicides, insecticides, nematicides or plant growth regulating substances not identical to compounds defined by formula (I).
- 20. (New) The composition of claim 18, wherein said (A) of formula (I) is a formula (Al), (A2), (A3), (A4) or (A5):

wherein R¹ and u are as defined in claim 18.

21. (New) The composition of claim 18, wherein:

E is (C_1-C_6) alkyl, (C_1-C_6) alkoxy- (C_1-C_6) alkyl, $[(C_1-C_6)$ alkoxy]carbonyl- (C_1-C_6) alkyl, (C_3-C_8) cycloalkyl- (C_1-C_6) alkyl or a group (A):

X, Y, Z and V are each C;

each R^1 which may be the same or different is H, hydroxy, halogen, cyano, nitro, NR^3R^4 , $CONR^3R^4$, (C_1-C_3) alkoxy, (C_1-C_3) haloalkoxy, CO_2R^3 , COR^3 , $NHCOR^3$, $S(O)_qR^5$, SO_2NH_2 , (C_1-C_3) alkyl or (C_1-C_3) haloalkyl, wherein R^3 and R^4 are each independently hydrogen or (C_1-C_3) -alkyl, and R^5 is (C_1-C_3) alkyl or (C_1-C_3) haloalkyl;

or phenyl or pyridyl, which last 2 mentioned radicals are unsubstituted or substituted by one to three radicals selected from the group consisting of halogen, (C_1-C_6) alkyl and (C_1-C_3) haloalkyl; and (C_3-C_3) haloalkyl; and (C_3-C_3) haloalkyl; and (C_3-C_3) haloalkyl;

22. (New) The composition of claim 18, wherein:

E is (C_1-C_3) alkyl, (C_1-C_3) alkoxy- (C_1-C_3) alkyl, $[(C_1-C_3)$ alkoxy]carbonyl- (C_1-C_3) alkyl, (C_3-C_6) cycloalkyl- (C_1-C_3) alkyl or a group of formula (A):

X, Y and Z are all C; V is C or N; R¹ is H or halogen; and u is 4 or 5.

23. (New) The composition of claim 18, wherein:

E is (C_1-C_3) alkyl, (C_1-C_3) alkoxy- (C_1-C_3) alkyl, $[(C_1-C_3)$ alkoxy]carbonyl- (C_1-C_3) alkyl, (C_3-C_6) cycloalkyl- (C_1-C_3) alkyl or a group (A):

$$(R^1)_U = \begin{array}{c} Y \\ \vdots \\ X \end{array}$$

$$(A)$$

X, Y, Z and V are all C;

W is O;

R¹ is H or halogen;

Q is cyclopropyl, (C₁-C₃)alkyl, phenyl, naphthyl, pyridinyl, tetrahydropyridinyl, thienyl or benzo[b]thienyl, which last 6 mentioned radicals are unsubstituted or substituted by one to three radicals selected from the group consisting of halogen, (C₁-C₃)alkyl, OH, NO₂, (C₁-C₃)alkoxy, (C₁-C₃)haloalkoxy, phenyl and benzyloxy; and u is 5.

- 24. (New) A method of regulating growth in crop plants, comprising
 - (a) applying an effective amount of a composition of claim 18 to a monocotyledoneous or dicotyledoneous crop plant.
- 25. (New) The method of claim 24, wherein the plant is selected from the group consisting of wheat, barley, rye, triticale, rice, maize, sugar beet, cotton and soybeans.