Data Housing Project

Mod 1 Project

1. Data Cleaning

- a. Data import
- b. Checking data types
- c. Resolving missing values
- d. Removing outliers

2. Exploratory Data Analysis

a. How does location have an impact on price?

2. Exploratory Data Analysis

b. How does living density have an impact on price?

2. Exploratory Data Analysis

c. How does renovation have an impact on price?

correlation

price	1.000000
sqft_living	0.701554
grade	0.668262
sqft_above	0.605510
sqft_living15	0.585597
bathrooms	0.524823
view	0.395640
sqft_basement	0.319199
bedrooms	0.315193
lat	0.308032

a. Adding predictors to the model

	correlation
sqft_living	1.000000
sqft_above	0.945416
sqft_living_per_bed	0.786544
grade	0.782506
bathrooms	0.777182
sqft_living15	0.772939

b. Checking for collinearity between predictors

OLS Regression Results

0.839	R-squared (uncentered):			price	price			Dep. Variable:		
0.839	itered):	uared (unc	lj. R-squ	OLS A	: OLS			Model:		
1.126e+05	F-statistic:			juares	: Least Squares			Method:		
0.00	Prob (F-statistic):			2019	Tue, 22 Oct 2019			Date:		
-2.9910e+05	lihood:	Log-Lil		56:38	09:56:38			Time:		
5.982e+05	AIC:			21529	21529			No. Observ		
5.982e+05	BIC:			21528	21528			Df Residuals:		
				1		el:	Mod	Df		
				obust	non	e:	е Ту	Covarianc		
	0.975]	[0.025	P> t	t	std err	coef				
	264.526	261.453	0.000	335.489	0.784	.9891	262	sqft_living		
)	1.9	/atson:	Durbin-W	748.539 Durbi		ibus	Omni		
	0.00 1.00		ra (JB):	larque-Bei	3.075		Prob(Omnibus): Skew: Kurtosis:			
			ob(JB):	Pro						
			nd. No.	Cor						

c. Evaluating the coefficients

d. Reducing collinearity using feature engineering

4. Possible extensions

- a. Using feature scaling to scale model coefficients
- b. Splitting the data into training and test sets
- c. Checking for normality of predictors