

Pressure Sensor for Mayfield Head Clamp

Saagar Arya, Anna Brusoe, Lindsay Chetkof, Amanda Li Duke University, Duke Neurosurgery

Background

- The Mayfield Head
 Clamp (Figure 1) is a
 medical device that utilizes
 3 pins (Figure 2) to hold
 the head rigid during
 neurosurgery.
- A pressure pin is currently used to communicate the pressure exerted on the skull by the prongs.

Mayfield Head

Clamp pin

Problem

The current method of communicating pressure is inaccurate, inefficient, and difficult to read. This can lead to complications during surgery, including skull fractures, impaling of the brain, lacerations from the head slipping and superficial abrasions.

Objectives

To increase patient safety during neurosurgery, the device should be designed to quickly report the PSI exerted on the skull by the Mayfield Head Clamp to neurosurgeons.

The device must be:

Sterilizability

- Sterilizable and compatible with hospital cleaning standards to protect patient safety
- Integrable with the current clamp and not obstruct standard practices

sterilization cycles

at 134°C

• Capable of withstanding the safe pressure threshold applied during neurosurgery

Results

Figure 3: Final prototype

Figure 5:Calibration Curve

TBD

Final Prototype (Figure 3) Includes:

- Aluminum pins with elongated divot to accommodate a strain gauge (Figure 4)
- Epoxy-attached strain gauge to measure deformation
- Calibration curve to convert from deformation to PSI readings (Figure 5)
- Screen & LED to display pressure (in PSI) (Figure 6)

Figure 6:
Screen/LED integration

Design Criteria and Testing

	Design Criteria	Target Value	Test	Results		
	Accuracy	Pressure readings within ±5 PSI, 95% of the time	Comparing reported PSI to PSI indicated by torque screw on clamp	Passed 5/5 calibration curve tests		
	Intuitive to Use	Pressure readings take <1 minute	User given pre-tightened clamp and asked to return PSI	Readings took ~10 seconds	\	
	Pressure Threshold	Strain gauge can withstand up to 120 PSI, 80 PSI minimum	Recording voltage readings at 60, 80, 100 and 120 PSI	Dynamic range of strain gauge is 150 PSI		
	Durability	5 year lifespan	Research and lifespan calculation	Pins are replaceable and electronics last 10+ years		
	Storilizability	Withstand 15	N/A due to available	TDD		

Aluminum pins

with elongated divot

resources

Conclusion

Our team modified the Mayfield Head Clamp pins to allow for the ability to **efficiently** and **accurately inform** neurosurgeons of the **pressure** exerted **on the skull** by the clamp during surgery.

Future enhancements/plans may include:

- Increasing prototype fidelity by moving from aluminum to stainless steel
- Further calibration and accuracy testing
- Sterilizability testing

Acknowledgements

Our team would like to thank the following for their continued support throughout this project.

Dr. Sonia Bansal, Professor
Dr. Micheal Rizk, Professor
Dr. Eli Johnson, Client
Kevin Shores, Technical Mentor
Alyssa Ramirez, Teaching Assistant
Erin O'Rourke, Writing Consultant

Pressure Sensor for Mayfield Head Clamp

Saagar Arya, Anna Brusoe, Lindsay Chetkof, Amanda Li Duke University, Duke Neurosurgery

Background

- The Mayfield Head
 Clamp (MHC) (Figure 1) is
 a medical device that
 utilizes 3 pins (Figure 2) to
 hold the head rigid during
 neurosurgery.
- An inefficient pressure pin is currently used to communicate the pressure exerted on the skull by the prongs.

Figure 1: Mayfield Head Clamp

Figure 2:Mayfield Head
Clamp pin

Problem

The current method of communicating pressure is inaccurate, inefficient, and difficult to read. This can lead to complications during surgery, including skull fractures, impaling of the brain, lacerations from the head slipping and superficial abrasions.

Objective

To increase patient safety during neurosurgery, the device should be designed to quickly report the PSI exerted on the skull by the Mayfield Head Clamp to neurosurgeons.

Design Criteria and Testing Plan

Design Criteria	Target Value	Test
Accuracy / Sensitivity	Pressure readings within ±5 PSI, 95% of the time	Comparing reported PSI to PSI indicated by torque screw on clamp. Additional verification using material properties.
Integratable	Pins can fit into a variety of devices	Testing usability across multiple brands of the Mayfield Head Clamp.
Intuitive to Use	Digital pressure readings take <1 minute	User given pre-tightened clamp and asked to return PSI
Pressure Threshold	Strain gauge can withstand up to 120 PSI, 80 PSI minimum	Recording voltage readings at 60, 80, 100 and 120 PSI
Sterilizability	Single use pins	N/A

Results

Figure 3:
Modified MHC pin
iteration 1

Figure 4:
Modified MHC pin
iteration 2

Greater than 70 ±10 PSI Overall PSI: ## Pin1:## Pin2:## Tare button Bottom Pin PSI

Figure 5:
Screen/LED display integration

Figure 6:
60mm x 60mm PCB to digital display integration

Feature Comparison

Feature	Iteration 1	Iteration 2
Aluminum pin		
Elongated divot		
Flattened divot		
Epoxy-attached Strain Gauge		
Flush fit		
Screen and LED display		
60x60 mm PCB to digital display		

Pin Modification:

- Flattened divot increases
 durability of the pin to strain
 gauge connection
- Flush fit allows for increased accuracy of the strain gauge
- More precise measurements allow for a **smoother fit** into the clamp

Display Modification:

- Personalized PCB allows for easier modification to accommodate different strain gauges
- PCB can connect to various devices
- Decreased size reduces visual disorder and makes display more intuitive

Conclusion

Our team modified the Mayfield Head Clamp pins to allow for the ability to **efficiently** and **accurately inform** neurosurgeons of the **pressure** exerted **on the skull** by the clamp during surgery.

Future enhancements/plans may include:

- Increasing prototype fidelity by moving from aluminum to stainless steel
- Further calibration and accuracy testing
- Sterilizability testing

Acknowledgements

Our team would like to thank the following for their continued support throughout this project.

Dr. Ibrahim Mohedas, Professor Dr. Ann Saterbak, Professor Dr. Eli Johnson, Client