Politechnika Warszawska

Systemy czasu rzeczywistego i sieci przemysłowe

Projekt nr 3

Wykonał:

Bartłomiej Guś gr. IPAUT-161

Spis treści

1.	Wstęp	3
	Wyznaczyć zakresy liczb w obu systemach kodowania.	
	Napisać aplikację konwersji unikalnego kodu "wewnętrznego" liczb zmiennoprzecinkowych do kodu liczb ennoprzecinkowych zgodnych z IEEE 754	4
	Napisać aplikację konwersji liczb zmiennoprzecinkowych zgodnych z IEEE 754 do postaci unikalnego kodu wnętrznego" liczb zmiennoprzecinkowych	4
5.	Oświadczenie	5

1. Wstęp

Podczas tych laboratoriów miałem możliwość zapoznania się z standardem IEEE 754, który jest powszechnie wykorzystywany do operacji na liczbach zmiennoprzecinkowych w procesorach jak i oprogramowaniu obliczeniowym m.in. w sieci czasu rzeczywistego HART.

Standard ten definiuje dwie możliwości zapisu liczb zmiennoprzecinkowych za pomocą: 32 bitów (pojedyńczej precyzji, wykorzystany podczas tego projektu) i 64 bitów (podwójnej precyzji), które różnią się wielkością zapisanych liczb i tym samym ich dokładnością.

Format zapisu zmiennoprzecinkowego IEEE 754								
32 bity - pojedyncza precyzja	(1 bit)	b 31	(8 bitów) b ₃₀ b ₂₃ (BIAS=127)	(23 bity)	, b ₂₂ b ₀ (U1)			
64 bity - podwójna precyzja	(1 bit)	b 63	(11 bitów) b ₆₂ b ₅₂ (BIAS=1023)	(52 bity)	, b ₅₁ b ₀ (U1)			
Opis pół bitowych	bit znaku		bity kodu cechy	bity ułam	kowe mantysy			

Tabela 1 - IEEE 754 z pojedyńczą i podwójną precyzją, źródło: https://eduinf.waw.pl/inf/alg/006_bin/0022.php

Znaczenie pól:

- bit znaku pierwszy bit w zapisie oznacza znak liczby. W przypadku występowania na tym polu cyfry 0 oznacza to, że liczba jest dodatnia. Jeśli na tym polu widnieje 1 oznacza to, że liczba jest ujemna.
- bit kodu cechy w przypadku pojedyńczej precyzji składa się z ośmiu bitów mówiących o wykładniku 2 przesunięty o liczbę 127 (BIAS).
- bity ułamkowe mantysy w przypadku pojedyńczej precyzji składa się z 23 bitów. Wzrost ich powoduje zwiększenie dokładności odwzorowania liczb rzeczywistych.

Poniżej zamieściłem tabelę przedstawiającą przykłady konwersji liczb z kodu "wewnętrznego" do liczb zgodnych z IEEE 754, która została dołączona do zadania projektowego:

Liczba	Kod "wewnętrzny" [hex]	Kod IEEE 754 [hex]
0	0000 0000	0000 0000
1	8000 0000	3F80 0000
2	8100 0000	4000 0000
9	8310 0000	4110 0000
65535	8F7F FF00	477F FF00
65536	9000 0000	4780 0000

Tabela 2 - Przykłady konwersji z kodu "wewnętrznego" do IEEE 754, źródło: Projekt nr 3 - przedmiot SCR

2. Wyznaczyć zakresy liczb w obu systemach kodowania.

W przypadku pojedyńczej precyzji:

$$Max_{warto\acute{s}\acute{c}}=m\cdot 2^{c}$$
 $Max_{warto\acute{s}\acute{c}}=rac{2^{24}-1}{2^{23}}\cdot 2^{127}$ $Max_{warto\acute{s}\acute{c}}=3,402820221\cdot 10^{38}$

Zakres liczb w przypadku pojedyńczej precyzji wynosi: od $-3.4\cdot10^{38}$ do $3.4\cdot10^{38}$.

Ze względu na to, że podczas konwersji z kodu IEEE 754 na kod "wewnętrzny" zmieniamy jedynie miejsca bitów a nie zmieniamy ich ilości to: zakres liczb w kodzie "wewnętrznym" wynosi też: od $-3.4\cdot10^{38}$ do $3.4\cdot10^{38}$.

3. Napisać aplikację konwersji unikalnego kodu "wewnętrznego" liczb zmiennoprzecinkowych do kodu liczb zmiennoprzecinkowych zgodnych z IEEE 754.

Przykładowe obliczenie przeprowadzone za pomocą aplikacji ZwewDoIEEE754:

Rysunek 1 - Zrzut ekranu aplikacji ZwewDoIEEE754

Uwaga: Aplikacja została dołączona w formie załącznika ZwewDoIEEE754.

4. Napisać aplikację konwersji liczb zmiennoprzecinkowych zgodnych z IEEE 754 do postaci unikalnego kodu "wewnętrznego" liczb zmiennoprzecinkowych.

Przykładowe obliczenie przeprowadzone za pomocą aplikacji ZIEEE754Dowew:

■ Konwerter z IEEE 754 do kodu wewnętrznego —		\times							
Wykonał: Bartłomiej Guś gr.IPAUT-161 nr albumu:297415									
IEEE 754 [bin]									
010000010001000000000000000000000000000									
IEEE 754 [hex]									
41100000									
Kod wewnętrzny [bin]									
100000110001000000000000000000000000000									
Kod wewnętrzny [hex]									
83100000									
Naciśnij mnie, aby przekonwertować									

Rysunek 2 - Zrzut ekranu aplikacji ZIEEE754Dowew

Uwaga: Aplikacja została dołączona w formie załącznika ZIEEE754Dowew.

Warszawa, 19.05.2021r.

Oświadczenie

Oświadczam, że niniejsza praca stanowiąca podstawę do uznania osiągnięcia efektów uczenia się z przedmiotu "Systemy czasu rzeczywistego i sieci przemysłowe" została przeze mnie wykonana samodzielnie.

Bartłomiej Guś nr albumu 297415

Barthomiej Gus