AUTHENTICATION USING MULTIPLE ENCRYPTION

BY

TUNIR CHAUDHURI (19BIT0212)
RAAVI SHIVA SESHI REDDY (19BIT0173)

OUR PROFESSOR,

JEYANTHI N

ABSTRACT

We live in an era where it is very difficult to achieve a task without taking help from technology, especially the internet. We need to use network and data so frequently in our day-to-day life that it becomes extremely important to keep our data safe. So, the fundamental concepts of privacy and security are taught in every educational institution of the world.

Information security is a general term that is used to refer to various segments of security, starting from threats, attacks to defence, protection and so on. Authentication is one such domain that offers a lot to be explored. But authentication is a vast concept, that covers a lot of ideas. If authentication can be combined with encryption, we can get a protection at a much better level than what already exists now.

This is the aim of our project. We intend to improve the existing system of user authentication using asymmetric encryption that will solve a number of issues which the current system fails to solve.

LITERATURE SURVEY

<u>AUTHORS</u>	YEAR	TECHNOLOGY	MERITS	DEMERITS
Nat Maysenburg, Ross Schulman	2020	Internet of Things	Helpful for sensitive data	Time consuming process
Andi Wilson Thompson	2020	Multi factor authentication	Supports any kind of data	Complex process
Brian Lennon	2015	Language understanding Al	Simple and cheap	Supports only selected languages
Steven N Peskind	2014	Protocol modification	Fast process	Supports only email accounts
Michael Silverstein	2016	Password length analysis	Cheap process	Works for simple passwords only
George Boone, Jonathan Huang, Tim Sweijs	2020	Biometrics analysis	Efficient security and privacy	Expensive process
Paul W Grimm	2014	Password analysis	Cheap and fast	Less efficiency, less accuracy
Ewa Stanczyk	2017	Photograph analysis	High efficiency	Expensive process
David A Scott	2016	Biometrics analysis	Fast process	Less efficiency, expensive process
Luciana Duranti, Allison Stanfield	2021	Multi factor authentication	Supports all kinds of users	Complex process
Simon Parkinson, Na Liu, Liam Grant	2020	Activity trackers	High efficiency, high accuracy	Works for limited types of data and limited users
Ran Gao, Huawei Tu	2021	Body movement, arm raising gesture	High efficiency, high accuracy	Works only for smartwatch

Karen Renaud, Antonella De	2014	Biometrics and visual data analysis	Fast process	Expensive process, less
Angeli	2010			efficiency
Tsu Yang Wu, Yuh	2019	Password analysis	Cheap and efficient	Works for
Min Tseng			emcient	simple passwords only
Hung Yu Chien,	2013	Password length	Cheap	Works for
Jinn Ke Jan		analysis	process	simple
		,		passwords
				only, less
				efficiency
lt. Col. Jitender	2015	Cloud computing	1.Not	Works for
Paul Singh, Dr			required to	simple
Mamata, Sunil Kumar			remember	passwords and cloud
Kuillai			long passwords	applications
			2.Provides	аррисаціонз
			privacy and	
			confidentia	
			lly and non-	
			repudiation	
			by	
			symmetric and	
			asymmetric	
			keys	
AL Zahra jo	2019	lot authentication	Proposed	Designed only
Mohammed, Ali.		by multifactor	protocol is	based on smart
A. Yassin		authentication	safe and	iot mobile
			secure	devices,
			against	time
			well-known	consuming
			malicious attacks	
			such as	
			eavesdropp	
			ing and	
			traffic	
			attacks	
Subhash Chandra,	2018	Access control using	Proposed	Lengthy

sumit Jaiswal,		Multifactor	system and	process and
Ravi Shankar		authentication in	taken steps	there can still
Singh, Jyothi		cloud	to	be a chance of
Chauhan		oroug .	implement	manipulation
			and	because of
			provide	digital OTP
			security	generation
			was good	Beneration
Riyadh Abdul	2016	Authentication	The idea of	In this
Amir, Reham		using identity	implementi	methodology
Mustafa, Hazem		detection	ng the	they have used
M.El. bakry			security by	only a single
,			using iris	pattern of
			detection is	recognition
			good and it	using iris
			provides	detection,
			some good	however it is
			security	better to have
				some other
				options for
				authentication
Ehinome J.	2013	The need for two	1.Enchance	1.Costly
Ikhalia, Dr Chris		factor	d security	2.Inconvenient
O. Imafidon		authentications in	2.Reduces	
		social media	risk	
			3.Prevents	
			monetary	
			loss	
			4.Reduces	
			identity	
			theft	
			5.Reduces	
			data theft	
			6.Increases	
Alovandra okada	2018	E-authentication for	flexibility	Longthy
Alexandra okada, Denise Whitlock,	2018	E - education	Strong	Lengthy and
,		L - EUUCAUOII	building methodolo	costly
Wayne Holmes, Chris Edwards			gy for	
Ciiiis Luwaius			authenticat	
			authentical	

			ion in different basis.	
Heather Walker	2017	Digital identity- social media	1.Tokenizat ion 2.Using Restful service end points to facilitate registration	Requires best method of strategy for user credentials security from third party authentication
CA Technologies	2015	CA advanced authentication	1.Reduces the risk of inappropria te access 2.Reduces the risk of employee identity theft 3.Reduces the fraudulent activity	2. Costly and inconvenient.
Aishwarya Mali, Chinmay Mahalle, Mihir Kulkarni, Tejas Nangude, Geeta Navale	2017	Digital authentication and verification on smart phones using CRIPT (cipher random integer procreation and translation) algorithm	Accuracy, efficiency for smart phone, simplicity is high	Security is not too strong, mentioned for mobile only
Sanjoli Single, Jasmeet Singh	2013	Cloud data using authentication and encryption technique	Provides strong security to data with both extensible authenticat	Lengthy process

M.Yildirim, Mackie	2019	Improve password security and memorability	ion protocol and Rijndael encryption algorithm The proposed methods are good and efficient	Moderately difficult process
Aleksandr Ometov, Sergey Bezzateev, Niko Makitalo, Sergey Andreev, Tommi Mikkonen, Yevgeni Koucheryavy	2018	Survey: Multi factor authentication	Considerin g their survey password, token, voice, facial, ocular-based, finger print these authenticat ion methods mostly possess higher — medium significance and behaviour, beamforming, ocs, ecg, eeg, possess medium to low	1.Poor Task efficiency, age, cognitive abilities etc. 2.Poor probabilistic behaviour 3.Poor security 4.Poor integration 5.Poor robustness 6.Poor privacy

			significance and DNA, hand geometry, location, vein, thermal image are	
Ganorkar, Vyawahare	2018	Graphical password analysis	at medium User friendly and reduces the brute force, dictionary, spyware attacks	Involves in too lengthy process in both registration and as login proceeds
Kalaikavitha.E, Juliana Gnanaselvi	2013	Encrypted OPT	Good idea of implementi ng user login through mail reading without opt entering	Low accuracy, There may be a chance of third-party user access
Woong Go, Kwang Woo Lee, Jin Kwak	2014	Biometric analysis with password	Best way of designing the authenticat ion process for strong secure and privacy	Very much complex

IDENTIFIED PROBLEMS

The existing system fails to provide a standard level of security. We have seen many times in the news channels and newspapers that several user accounts are being hacked, including accounts of big companies like Facebook, Google, etc. The traditional authentication technique is not enough to prevent modern hackers who use unauthorised methods to use these accounts. However illegal it may seem; we currently have no answer to this problem if we continue to use the conventional methods.

POSSIBLE SOLUTIONS

The best solution is to discontinue using traditional approach and try something new. Our encryption approach will be similar to Asymmetric encryption but it is not exactly the same. It can be used in the place of user authentication system to verify and validate the identity of the user in a more efficient way. This will have a strong encryption algorithm and it will be improved further by the policy of "password for password" method which will need the user to set a password for his own password. In other words, it resembles a method of double password but they are linked in such a way that only the correct user will get access to his/her account, and other users will not.

OUR ALGORITHM

Step 1: Declare c = 0, f1 = 0, z = 0, f = (actual first password), <math>s = (actual second password)

Step 2: If $c \ge 3$ go to step 5

Step 3: Accept first password (first)

Step 4: If first (with encryption and value of c) = f (with different encryption) then f1 = 1 and go to step 5

Otherwise z = z + 1 (and if z > 1 then c = c + 1) and go to step 2

Step 5: If f1 = 0 or c > 1 then exit

Step 6: Accept second password (second)

Step 7: If second (with different encryption, value of c, value of f1) = s (with another different encryption) then success

Otherwise exit

Step 8: If success, welcome user. If exit, report hacker.

ARCHITECTURE

RESULTS

CASE 1: The user enters his password

CASE 2: The user forgets his password, then he remembers it

CASE 3: The hacker attempts to crack user's password by guessing

CASE 4: The hacker attempts to crack user's password and succeeds

CASE 5: The hacker ignores first password by hacking

CASE 6: The hacker is a man-in-the-middle who can stay undetected as he gathers user data to hack

In our algorithm, even if the hacker attempts trial and error method to guess the user's password, he cannot succeed. In all the above cases, the hacker failed to proceed even when he could find the user's password through unauthorised methods or ignore the first password layer in the above model or staying in an infinite trap of loop and eventually being reported if he decides to be a man-in-the-middle.

CONCLUSION

We have enjoyed working with our algorithm, and we hope that our project can contribute to the improvement in security of current models. We would like to implement our project at a bigger level in future. As there is always scope for improvement, we hope we can improve our model as we keep working in this field.

REFERENCES

https://www.researchgate.net/

https://www.jstor.org/

https://www.kaggle.com/

https://en.wikipedia.org/wiki/Password

https://en.wikipedia.org/wiki/Encryption

https://docs.oracle.com/javase/tutorial/