Formularium Wiskunde

Ian Claesen

5 december 2024

Inhoudsopgave

1	Algebra 1.1 Volgorde van Bewerking 1.2 Absolute Waarde	2 2 2
2	Machten en wortels 2.1 Machten met Gehele Exponenten 2.2 Vierkantswortel in \mathbb{R} 2.3 N-de machtswortel in \mathbb{R} 2.4 $\frac{m}{n}$ -de machtswortel in \mathbb{R}	2 2 2 2 3
3	Veeltermen 3.1 Vierkantsvergelijking 3.2 Merkwaardige Producten en Ontbinding in Factoren 3.3 Euclidische Deling 3.4 Schema van Horner	3 3 4 4
4	Complexe getallen 4.1 Rechthoekige coordinaten	5 5
5	Goniometrie 5.1 De Goniometrische Cirkel	6
6	Meetkunde 6.1 De Cirkel	8 8
7	Analyse 7.1 Limieten van Functies	8 8
8	Matrices 8.1 Rekenregels	8
9	Combinatieleer 9.1 Keuzes zonder Herhaling	9
10	Kansrekening 10.1 Voorwaardelijke Kans	9
11	Statistiek 11.1 Normaalverdeling	9
12	Diversen 12.1 Wiskundige Symbolen	9

1 Algebra

1.1 Volgorde van Bewerking

Haakjes wegwerken, machtsverheffen, worteltrekken, vermenigvuldigen en delen, optellen en aftrekken.

1.2 Absolute Waarde

De absolute waarde van een getal a wordt genoteerd als |a| en is altijd positief.

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

2 Machten en wortels

2.1 Machten met Gehele Exponenten

$$\forall a \in \forall n \in \mathbb{N}_0 : a^n = \underbrace{a.a. \dots .a}_{n \text{ factoren}}$$

$$\forall a \in \mathbb{R} : a^1 = a$$

$$\forall a \in \mathbb{R}_0 : a^0 = 1$$

$$\forall a \in \mathbb{R}_0, \forall n \in \mathbb{N} : a^{-n} = \frac{1}{a^n}$$

$$(a.b)^n = a^{mn}$$

$$(a.b)^n = a^n \cdot b^n$$

$$(\frac{a}{b})^n = \frac{a^n}{b^n}$$

$$(\frac{a}{b})^{-n} = (\frac{b}{a})^n$$

2.2 Vierkantswortel in \mathbb{R}

$$\forall a \in \mathbb{R}^+, \forall b \in \mathbb{R} :$$

$$b = \sqrt{a} \Leftrightarrow b^2 = a \land (b \ge 0)$$

$$\forall a, b \in \mathbb{R}^+ :$$

$$\sqrt{a^2} = a$$

$$(\sqrt{a})^2 = a$$

$$(\sqrt{a})^2 = a$$

$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}.$$

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \land b \ne 0$$

$$\forall a \in \mathbb{R} :$$

$$\sqrt{a^2} = |a| \implies \begin{cases} \sqrt{a^2} = a & \text{als } a \ge 0, \\ \sqrt{a^2} = -a & \text{als } a \le 0. \end{cases}$$

2.3 N-de machtswortel in \mathbb{R}

$$n \ even \Rightarrow \sqrt[n]{a^n} = |a| \to \begin{cases} \sqrt[n]{a^n} = a & \land a \ge 0 \\ \sqrt[n]{a^n} = -a & \land a \le 0 \end{cases}$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$n \ oneven \Rightarrow \sqrt[n]{a^n} = a$$

$$\sqrt[n]{a^n} = a$$

$$(\sqrt[n]{a})^n = a$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{a}$$

$$\sqrt[n]{a} = \sqrt[n]{a} \cdot \sqrt[n]{a}$$

2.4 $\frac{m}{n}$ -de machtswortel in \mathbb{R}

$$\forall a, b \in \mathbb{R}_0^+, \forall m, n \in \mathbb{Q}:$$

$$a^m.a^n = a^{m+n}$$

$$a^m = a^{m-n}$$

$$(a^m)^n = a^{m.n}$$

$$(a.b)^m = a^m.b^m$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$

3 Veeltermen

3.1 Vierkantsvergelijking

Een vierkantsvergelijking is van de vorm: $ax^2 + bx + c = 0$, $met D = b^2 - 4ac$

$x \in \mathbb{R}$	$x \in \mathbb{C}$
$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$	$x_{1,2} = \frac{-b \pm i\sqrt{-D}}{2a}$
$P = \frac{c}{a} = x_1 \cdot x_2 , S = -\frac{b}{a} = x_1 + x_2$	
$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}) = a(x^{2} - Sx + P)$	

3.2 Merkwaardige Producten en Ontbinding in Factoren

$$(a \pm b)^{2} = a^{2} \pm 2ab + b^{2}$$

$$(a \pm b)^{3} = a^{3} \pm 3a^{2}b + 3ab^{2} \pm b^{3}$$

$$(a + b)^{n} = a^{n} + C_{n}^{1}a^{n-1}b + C_{n}^{2}a^{n-2}b^{2} + \dots + C_{n}^{n-1}a^{2}b^{n-1} + b^{n} \quad \land \quad C_{n}^{p} = \frac{n!}{(n-p)!p!}$$

$$a^{2} - b^{2} = (a + b)(a - b)$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1})$$

$$a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$$

$$a^{2n+1} + b^{2n+1} = (a + b)(a^{2n} - a^{2n-1}b + a^{2n-2}b^{2} - a^{2n-3}b^{3} + \dots - ab^{2n-1} + b^{2n})$$

3.3 Euclidische Deling

We gaan de derdegraadsveelterm $2x^3 + 3x^2 - 4x + 5$ delen door de eerstegraadsveelterm x + 2 met behulp van de praktische werkwijze van lange deling.

$$\begin{array}{c|ccccc}
2x^3 + 3x^2 - 4x + 5 & x + 2 \\
\hline
-2x^3 - 4x^2 + 0x + 0 & 2x^2 \\
\hline
-1x^2 - 4x + 5 & \\
+1x^2 + 2x + 0 & -x \\
\hline
-2x + 5 & \\
2x + 4 & -2 & \\
9 & & \\
\end{array}$$

We kunnen de deling als volgt uitdrukken:

$$2x^3 + 3x^2 - 4x + 5 = (x+2)(2x^2 - x - 2) + 9$$

De rest is 25, wat een graad heeft die kleiner is dan de graad van de deler x + 2.

3.4 Schema van Horner

$$\frac{(3x^3 - 5x^2 + 10x - 52)}{(x-2)}$$

4 Complexe getallen

4.1 Rechthoekige coordinaten

Bewerking	Formule
Optelling/Aftrekking	$(a+j.b) \pm (c+j.d) = (a+c) \pm j(b+d)$
Vermenigvuldiging	$(a+j.b) \cdot (c+j.d) = (ac-bd) + j(ad+bc)$
Deling	$\frac{(a+j.b)}{(c+j.d)} = \frac{(a+j.b)\cdot(c-j.d)}{(c+j.d)\cdot(c-j.d)} = \left(\frac{ac+bd}{c^2+d^2}\right) + j\left(\frac{bc-ad}{c^2+d^2}\right)$
Toegevoegde van	$\overline{(a+j.b)} = (a-j.b)$
	$\overline{Z_1 + Z_2} = \overline{Z_1} + \overline{Z_2}, \overline{Z_1 \cdot Z_2} = \overline{Z_1} \cdot \overline{Z_2}$
Inverse	$z = a + bi \implies z^{-1} = \frac{a - bi}{a^2 + b^2}$
Wortel	$\sqrt{a} \wedge a < 0 \implies \sqrt{a} = \pm i\sqrt{-a}$
	$\sqrt{a+bi} = x+yi \iff (x+yi)^2 = a+bi$
Macht	$(a+bi)^0=1 \forall n \in \mathbb{N}_0:$
	$(a+bi)^n = (a+bi) \cdot (a+bi) \cdots (a+bi)$
Machten of i	$i^1 = i, i^2 = -1, i^3 = -i, i^4 = 1$

4.2 Poolcoördinaten

$$z = a + i.b = r\left(\cos(\varphi) + i.\sin(\varphi)\right) = r\angle\varphi, \quad \tan(\varphi) = \frac{b}{a}, \quad r = \sqrt{a^2 + b^2}$$

Bewerking	Formule	
Vermenigvuldiging	$z_1 \cdot z_2 = r_1 \cdot r_2 \angle \varphi_1 + \varphi_2$	
Deling	$\frac{z_1}{z_2} = \frac{r_1 \angle \varphi_1}{r_2 \angle \varphi_2} = \frac{r_1}{r_2} \angle \varphi_1 - \varphi_2$	
Inverse	$z^{-1} = \frac{1}{r} \angle - \varphi$	
Macht	$z^n = r^n \left[\cos \left(n \cdot \varphi \right) + i \sin \left(n \cdot \varphi \right) \right] n \in \mathbb{N}$	
Wortel	$\sqrt{r(\cos\varphi + i\sin\varphi)} = \pm\sqrt{r}\left(\cos\frac{\varphi}{2} + i\sin\frac{\varphi}{2}\right)$	
$\sqrt[n]{r\left(\cos\varphi + i\sin\varphi\right)} = \sqrt[n]{r}\left(\cos\frac{\varphi + k \cdot 2\pi}{n} + i\sin\frac{\varphi + k \cdot 2\pi}{n}\right) \land k = 0, 1, \dots, n - 1$		

5 Goniometrie

5.1 De Goniometrische Cirkel

5.2 formules uit de goniometrie

 $\begin{array}{cccc} \csc \beta & \sec \beta & \cot \beta \\ \leftarrow & \leftarrow & \leftarrow \\ os & as & oa \\ \rightarrow & \rightarrow & \rightarrow \\ \sin \beta & \cos \beta & \tan \beta \end{array}$

 $\text{waarin:} \begin{cases} o: \text{ overstaande rechthoekszijde} \\ s: \text{ schuine zijde (hypotenusa)} \\ a: \text{ aanliggende rechthoekszijde} \end{cases}$

$\sin \beta = \frac{b}{a}$	$\cos \beta = \frac{c}{a}$	$\tan \beta = \frac{b}{c}$
$\csc \beta = \frac{a}{b}$	$\sec \beta = \frac{a}{c}$	$\cot \beta = \frac{c}{b}$
$\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\cot \alpha = \frac{\cos \alpha}{\sin \alpha}$	$\cot \alpha = \frac{1}{\tan \alpha}$
$\sec \alpha =$	$\frac{1}{\cos \alpha}$ $\csc \alpha$	$=\frac{1}{\sin\alpha}$

 $\sin^2 \alpha + \cos^2 \alpha = 1$

 $\tan^2 \alpha + 1 = \sec^2 \alpha$

 $1 + \cot^2 \alpha = \csc^2 \alpha$

gelijkehoeken	supplementairehoeken	complementairehoeken
$\sin\left(\alpha + k2\pi\right) = \sin\alpha$	$\sin\left(\pi - \alpha\right) = \sin\alpha$	$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$
$\cos\left(\alpha + k2\pi\right) = \cos\alpha$	$\cos(\pi - \alpha) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} - \alpha\right) = \sin\alpha$
$\tan\left(\alpha + k2\pi\right) = \tan\alpha$	$\tan (\pi - \alpha) = -\tan \alpha$	$\tan\left(\frac{\pi}{2} - \alpha\right) = \cot\alpha$
$\cot\left(\alpha + k2\pi\right) = \cot\alpha$	$\cot(\pi - \alpha) = -\cot\alpha$	$\cot\left(\frac{\pi}{2} - \alpha\right) = \tan\alpha$
$\sec\left(\alpha + k2\pi\right) = \sec\alpha$	$\sec(\pi - \alpha) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} - \alpha\right) = \csc\alpha$
$\csc\left(\alpha + k2\pi\right) = \csc\alpha$	$\csc(\pi - \alpha) = \csc\alpha$	$\csc\left(\frac{\pi}{2} - \alpha\right) = \sec\alpha$

tegengesteldehoeken	antisupplementairehoeken	anticomplementairehoeken
$\sin\left(-\alpha\right) = -\sin\alpha$	$\sin\left(\pi + \alpha\right) = -\sin\alpha$	$\sin\left(\frac{\pi}{2} + \alpha\right) = \cos\alpha$
$\cos\left(-\alpha\right) = \cos\alpha$	$\cos\left(\pi + \alpha\right) = -\cos\alpha$	$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$
$\tan(-\alpha) = -\tan\alpha$	$\tan\left(\pi + \alpha\right) = \tan\alpha$	$\tan\left(\frac{\pi}{2} + \alpha\right) = -\cot\alpha$
$\cot(-\alpha) = -\cot\alpha$	$\cot\left(\pi + \alpha\right) = \cot\alpha$	$\cot\left(\frac{\pi}{2} + \alpha\right) = -\tan\alpha$
$\sec\left(-\alpha\right) = \sec\alpha$	$\sec\left(\pi + \alpha\right) = -\sec\alpha$	$\sec\left(\frac{\pi}{2} + \alpha\right) = -\csc\alpha$
$\csc\left(-\alpha\right) = -\csc\alpha$	$\csc\left(\pi + \alpha\right) = -\csc\alpha$	$\csc\left(\frac{\pi}{2} + \alpha\right) = \sec\alpha$

• De sinusregel:

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

• De cosinusregel:

$$a^{2} = b^{2} + c^{2} - 2bc \cos \hat{A}$$
$$b^{2} = c^{2} + a^{2} - 2ca \cos \hat{B}$$
$$c^{2} = a^{2} + b^{2} - 2ab \cos \hat{C}$$

6 Meetkunde

6.1 De Cirkel

De vergelijking van een cirkel met middelpunt (a, b) en straal r is:

$$(x-a)^2 + (y-b)^2 = r^2$$

6.2 De Parabool

De standaardvergelijking van een parabool met top in de oorsprong is:

$$y = ax^2$$

7 Analyse

7.1 Limieten van Functies

De limiet van een functie f(x) als x nadert tot a wordt genoteerd als:

$$\lim_{x \to a} f(x)$$

7.2 Afgeleiden

De afgeleide van een functie f(x) wordt gegeven door:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

8 Matrices

8.1 Rekenregels

Voor matrices A, B en C gelden de volgende eigenschappen:

- Commutativiteit van optelling: A + B = B + A
- Associativiteit van optelling: A + (B + C) = (A + B) + C
- Distributiviteit: A(B+C) = AB + AC

9 Combinatieleer

9.1 Keuzes zonder Herhaling

Variaties: Geordende keuze van p elementen uit n elementen. Permutaties: Het rangschikken van n verschillende elementen.

10 Kansrekening

10.1 Voorwaardelijke Kans

De voorwaardelijke kans van A gegeven B is:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

11 Statistiek

11.1 Normaalverdeling

De normaalverdeling wordt gegeven door de dichtheidsfunctie:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

12 Diversen

2.1 Wiskundige Symbolen

- \bullet \in : is een element van
- \forall : voor alle
- ∃: er bestaat