慶應義塾大学試験問題用紙(日吉)

									試	険時間	50 :	分	 分
平成2. 年	1月27日(火) 7	時限施行			学部	学科	年	組		採月	点欄	*	
担当者名	伊藤,平鸟、磯部,学长,中田, 4田, 山田, 垣内		学籍	番号									
科目名	化学 B		氏	名									

【問題1】 次の各設問に答えなさい。

- (1) NaCl型、CsCl型および CaF2型のそれぞれの結晶構造について、陽イオンの周囲に最近接に存在する陰イオンの個数、単位格子中に存在する陽イオンと陰イオンの個数を答えなさい。
- (2) CaF_2 の格子定数 (単位格子の一辺の長さ) が $0.546\,\mathrm{nm}$ である。 CaF_2 の密度を $\mathrm{g\,cm^{-3}}$ の単位で求めなさい。ただし、Ca と F の原子量はそれぞれ 40.1 と 19.0 であり、アボガドロ定数は 6.02×10^{23} である。なお、答案用紙には解答に至るまでの計算式も記しなさい。
- (3) Mn の原子番号は 25 である。基底状態にある Mn^{2+} の 3d 軌道の電子数を答えなさい。また、 Mn^{2+} が八面体配位子場に存在する場合、弱配位子場の基底状態の電子配置を示しなさい。

(2) 25℃においてメタンが完全に酸化され、水と二酸化炭素が生成 する燃焼の反応式を示しなさい。また、この反応に伴う標準エンタルピー変化、標準エントロピー変化および Gibbs の標準自由エネルギー変化をそれぞれるH°、ΔS°およびΔG°とおき、その関係式を示しなさい。さらに、右表のデータを用いてΔH°、ΔS°

化学式	ΔH_f° (kJ mol ⁻¹)	S° (J K ⁻¹ mol ⁻¹)
CH ₄ (g)	-74.8	186.3
O2(g)	0.0	205.1
H ₂ O(l)	-285.8	69.9
CO ₂ (g)	-393.5	213.7

およびΔG°の値を求めなさい。

ただし、表には 25[°]Cにおける標準生成エンタルピー ΔH_f^* および標準エントロピー S° が示されている。また、 (g) および(l) はそれぞれ気体および液体を意味する。

(3) $H_2O(g)$ $*H_2(g)$ $+(1/2)O_2(g)$ の解離反応において、平衡時の H_2O 、 H_2 、 O_2 の気体の分圧をそれぞれ $p(H_2O)$ 、 $p(H_2)$ 、 $p(O_2)$ とおき、平衡定数 K_p を示しなさい。また、平衡時の全圧 P、 H_2O の解離度 α を用いて $p(H_2)$ を示しなさい。

$$p = (1-\alpha)X + \alpha X + \frac{1}{2}\alpha X$$

【問題3】 次の各設問に答えなさい。 「 ニ ((ナース) X

- (1) 光学活性な基質 X に対する次の反応の主生成物 (有機化合物) A から D の構造式を、立体化学構造 (3次元構造) がはっきりと分かるように書きなさい。
- (2) A のような光学不活性な化合物を何というか。
- (3) C と D の異性体の関係を何というか。

【問題4】 次の反応の主生成物 (有機化合物) E から J の構造式を書きなさい。必要ならば立体化学構造 (3次元構造) も示しなさい。なお、I は2つの生成物のうち、J に変換できる方を書きなさい。