Содержание

1	Комбинаторика, правило суммы и произведения. Размещения с повторениями и без повторений.	4
2	Перестановки с повторениями и без повторений. Сочетания с повторениями и без повторений, свойства биномиальных коэффициентов.	4
3	Сколькими способами можно разложить n_1 предметов одного сорта, \dots, n_k предметов k -го сорта в два ящика? Следствия.	6
4	Даны n различных предметов и k ящиков. Требуется положить в первый ящик n_1 предметов, в k -ый — n_k предметов, где $n_1+\cdots+n_k=n$. Сколькими способами можно сделать такое распределение, если не интересует порядок распределения предметов в ящике?	6
5	Даны n различных предметов и k одинаковых ящиков. Требуется положить в каждый ящик $n=\frac{n}{k}$ предметов. Сколькими способами можно сделать такое распределение, если не интересует порядок предметов в ящике и все ящики одинаковы?	7
6	Сколькими способами можно распределить n одинаковых предметов в k ящиков?	7
7	Сколько существует способов разложить п различных предметов в k ящиков, если нет никаких ограничений?	7
8	Сколькими способами можно положить n различных предметов в k ящиков, если не должно быть пустых ящиков?	7
9	Имеется n_1 предметов одного сорта, , n_s — s -го сорта. Сколькими способами их можно разложить по k ящикам, если не должно быть пустых ящиков?	8
10	Сколько существует способов разложить n различных предметов в k различных ящиков с учетом расположения предметов в ящиках, если все n предметов должны быть использованы? Следствие.	8
11	Сколько существует способов разложить n различных предметов в k различных ящиков с учетом расположения предметов в ящиках, если не все n предметов могут быть использованы и некоторые ящики могут оказаться пустыми? Следствие.	9

12	Формула включения-исключения.	9
13	Полиномиальная формула. Свойства полиномиальных коэффициентов.	10
14	Рекуррентное соотношение k -го порядка, решение рекуррентного соотношения, общее решение. Линейные рекуррентные соотношения с постоянными коэффициентами. Характеристическое уравнение.	11
15	Линейные реккурентные соотношения с постоянными коэффициентами второго порядка. Свойства решений.	12
16	Решение линейных рекуррентных соотношений с постоянными коэффициентами второго порядка в случае равных и различных корней характеристического уравнения.	13
17	Теорема об общем решении линейных рекуррентных соотношений с постоянными коэффициентами k -го порядка. Решение рекуррентных соотношений с постоянными коэффициентами k -го порядка с помощью характеристического уравнения.	14
18	Производящая функция. Сумма производящих функций, операция подстановки.	17
19	Произведение и деление производящих функций.	17
20	Теорема о разложении функции.	18
21	Теорема о производящей функции для последовательности, задаваемой линейным рекуррентным соотношением. Теорема о рациональной производящей функции.	19
22	Решение рекуррентных соотношений с помощью производящих функций.	ς- 20
23	Ориентированные и неориентированные графы.	20
24	Полный граф, дополнение, объединение, соединение графов.	21
25	Теорема о степенном множестве графа.	22
26	Теорема о соотношении суммы степеней вершин и числа рёбер (лемма о рукопожатии).	23
27	Алгоритм построения графа по вектору степеней.	23

28	Изоморфизм графов. Теорема об изоморфизме графов.	24
29	Проверка на изоморфизм двух графов по их матрицам смежности.	25
30	Часть графа, подграфы. Путь, цикл, цепь, длина пути и расстояние между ними. Достаточное условие связности нечётных вершин графа.	26
31	Достаточное условие связности графа.	27
32	Точка сочленения. Неразделимый граф. Необходимое и достаточное условие неразделимости связного графа.	28
33	Планарность. Дерево, плоское изображение дерева.	29
34	Необходимое и достаточное условие того, чтобы граф был деревом.	29
35	Формула Эйлера. Следствия из формулы Эйлера.	30

1 Комбинаторика, правило суммы и произведения. Размещения с повторениями и без повторений.

Правило суммы:

Если A можно выбрать n способами, а B — m способами, то объект A или B можно выбрать n+m способами. (Выбор B никак не согласуется с выбором A.)

Правило произведения:

Если объект A можно выбрать m способами, а объект B, после выбора A, можно выбрать n способами, то пару (A,B) можно выбрать $n \times m$ способами.

Размещения с повторениями:

Размещениями с повторениями из n типов по k элементов (k и n в произвольном соотношении) называются все такие последовательности k элементов, принадлижащих n типам, которые отличаются друг от друга составом или последовательностью элементов.

$$\overline{A_n^k} = n^k$$

Размещения без повторений:

Размещениями без повторений из n различных типов по k элементам называются все такие последовательности из k различных элементов, такие, что они различаются по составу или по порядку. Причём k < n.

$$A_n^k = \frac{n!}{(n-k)!}$$

2 Перестановки с повторениями и без повторений. Сочетания с повторениями и без повторений, свойства биномиальных коэффициентов.

Перестановки с повторениями:

Перестановками с повторениями из n_1, \ldots, n_k элементов k-го типа называются всевозможные последовательности длины n, отличающиеся друг от друга последовательностью элементов.

$$\overline{P}(n_1,\ldots,n_k) = \frac{n!}{n_1!\cdots n_k!}$$

Перестановски без повторений:

Перестановками без повторений из n элементов называются всевозможные последовательности из n элементов.

$$P_n = n!$$

Сочетания с повторениями:

Сочетаниями с повторениями из n по k (k и n в произвольном соотношении) называются все такие комбинации из k элементов $\in n$ типам, которые отличаются только составом элементов.

$$\overline{C^k}_n = C^k_{n+k-1} = \overline{P}(n-1,k)$$

Сочетания без повторений:

Сочетаниями без повторений из n по k ($k \le n$) называются все такие комбинации из k различных элементов, выбранных из n исходных элементов, которые отличаются друг от друга составом.

$$C_n^k = \frac{n!}{(n-k)!k!}$$

Свойства биномиальных коэффициентов:

1. $C_n^k = \overline{P}(k, n - k)$

 $C_n^k = C_n^{n-k}$

3. $C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$

4. $C_n^0 + C_n^1 + \dots + C_n^n = 2^n$

5. $C_n^0 - C_n^1 + C_n^2 - C_n^3 + \dots + C_n^n = 0$

3 Сколькими способами можно разложить n_1 предметов одного сорта, . . . , n_k предметов k-го сорта в два ящика? Следствия.

Схема: n_1 предметов 1-го типа . . . n_k предметов k-го типа раскладываются в два различных ящика:

$$(n_1+1)\cdot (n_2+1)\cdot \cdots \cdot (n_k+1)$$
 способов.

Следствие 1:

Если все предметы различны, то:

$$n_1 = 1 = n_2 = \dots = n_k = 1 \Rightarrow 2^k$$
 способов.

Следствие 2:

Не менее r_i предметов i-го типа в каждый ящик:

$$(n_1-2r_1+1)\cdot (n_2-2r_2+1)\cdot \cdots \cdot (n_k-2r_k+1)$$
 способов.

4 Даны n различных предметов и k ящиков. Требуется положить в первый ящик n_1 предметов, в k-ый — n_k предметов, где $n_1 + \cdots + n_k = n$. Сколькими способами можно сделать такое распределение, если не интересует порядок распределения предметов в ящике?

Схема: n различных предметов раскладываются в k различных ящиков (порядок внутри ящиков не важен):

$$\frac{n!}{n_1!\cdots n_k!}$$
 способов

5 Даны n различных предметов и k одинаковых ящиков. Требуется положить в каждый ящик $n=\frac{n}{k}$ предметов. Сколькими способами можно сделать такое распределение, если не интересует порядок предметов в ящике и все ящики одинаковы?

Схема: n различных предметов в k одинаковых ящиков (порядок внутри ящиков не важен) $\frac{n}{k}$ предметов в каждый ящик:

$$\frac{n!}{k!((\frac{n}{k})!)^k}$$
 способов.

6 Сколькими способами можно распределить n одинаковых предметов в k ящиков?

Схема: n одинаковых предметов в k разных ящиков:

$$\overline{P}(n,k-1) = \frac{(n+k-1)!}{n!(k-1)!}$$
 способов.

7 Сколько существует способов разложить n различных предметов в k ящиков, если нет никаких ограничений?

Схема: n различных предметов в k разных ящиков:

$$k^n$$
 способов.

8 Сколькими способами можно положить п различных предметов в k ящиков, если не должно быть пустых ящиков?

Схема: n различных предметов в k разных ящиков, причём не должно быть пустых ящиков:

 A_i — количество способов, когда i-ый ящик пустой.

$$|A \setminus \bigcup_{i=1}^k A_i| = |A| - \sum_{i=1}^k |A_i| + \sum |A_i \cap A_j| + \dots + (-1)^{k-1} \sum_{i_1 \dots i_{k-1}} |A_{i_1} \cap \dots \cap A_{i_{k-1}}| + (-1)^k |A_1 \cap \dots \cap A_k| = k^n - C_k^1 (k-1)^n + C_k^2 (k-2)^n + \dots + (-1)^{k-1} C_k^{k-1} \cdot 1^n$$
 способов.

9 Имеется n_1 предметов одного сорта, ..., n_s —s-го сорта. Сколькими способами их можно разложить по k ящикам, если не должно быть пустых ящиков?

Схема n_1 предметов первого типа . . . n_m предметов m-го типа по k различным ящикам, причём нет пустых ящиков:

$$\begin{split} A_i & - i\text{-ый ящик пустой } i = \overline{1,k}. \\ |A| &= C_{n_1+k-1}^{k-1} \cdot C_{n_2+k-1}^{k-1} \cdot \cdots \cdot C_{n_m+k-1}^{k-1} \\ |A_i| &= C_{n_1+k-2}^{k-2} \cdot C_{n_2+k-2}^{k-2} \cdot \cdots \cdot C_{n_m+k-2}^{k-2} \\ |A \backslash \bigcup_{i=1}^k A_i| &= |A| - \sum_{i=1}^n |A_i| + \sum_i |A_{i_1} \cap A_{i_2}| + \cdots + (-1)^{k-1} \sum_{1 \leq i_1 \leq \cdots \leq i_{k-1} \leq k} |A_{i_1} \cap A_{i_2}| + \cdots + (-1)^{k-1} \sum_{1 \leq i_1 \leq \cdots \leq i_{k-1} \leq k} |A_{i_1} \cap A_{i_2}| + \cdots + (-1)^{k-1} \sum_{1 \leq i_1 \leq \cdots \leq i_{k-1} \leq k} |A_{i_1} \cap A_{i_2}| + \cdots + (-1)^{k-1} \sum_{1 \leq i_1 \leq \cdots \leq i_{k-1} \leq k} |A_{i_1} \cap A_{i_2}| + \cdots + (-1)^{k-1} C_{n_m+k-1}^{k-1} - C_k^1 C_{n_1+k-2}^{k-2} \cdot \cdots + C_{n_m+k-2}^{k-2} + C_k^2 C_{n_1+k-3}^{k-3} \cdot \cdots + C_{n_m+k-3}^{k-3} + \cdots + (-1)^{k-1} C_k^{k-1} 1^n. \end{split}$$

10 Сколько существует способов разложить n различных предметов в k различных ящиков с учетом расположения предметов в ящиках, если все n предметов должны быть использованы? Следствие.

Схема: n различных предметов в k различных ящиков (порядок внутри ящиков важен, ящики могут быть пустыми):

$$\overline{P}(n, k-1) = \frac{(n+k-1)!}{(k-1)!} = A_{n+k-1}^n,$$

Следствие (та же схема, но не должно быть пустых ящиков):

$$A_n^k A_{n-k+k-1}^{n-k} = A_n^k A_{n-1}^{n-k} = \frac{n!}{(n-k)!} = \frac{(n-1)!}{(k-1)!} = n! C_{n-1}^{k-1}$$

11 Сколько существует способов разложить n различных предметов в k различных ящиков с учетом расположения предметов в ящиках, если не все n предметов могут быть использованы и некоторые ящики могут оказаться пустыми? Следствие.

Схема: n различных предметов в k различных ящиков (порядок внутри ящиков важен, можно использовать не все предметы):

S — в распределении учавствует s предметов. $S = \overline{0,n}$.

$$\sum_{S=0}^{n} C_n^S A_{S+k-1}^S$$

Следствие (та же схема, но не должно быть пустых ящиков):

$$\sum_{S=k}^{n} C_{n}^{S} S! C_{S-1}^{k-1}$$

12 Формула включения-исключения.

Теорема (формула включений-исключений):

$$A = \{A_i\}_{i=1}^n \quad A_i \subseteq A$$

$$|A \setminus \bigcup_{i=1}^{n} A_{i}| = |A| - \sum_{i=1}^{n} |A_{i}| + \sum_{1 \le i_{1} \le i_{2} \le n} |A_{i_{1}} \cap A_{i_{2}}| - \sum_{1 \le i_{1} \le i_{2} \le i_{3} \le n} |A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}| + \dots + (-1)^{k} \sum_{1 \le i_{1} \le \dots \le i_{k} \le n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}| + \dots + (-1)^{n} |A_{1} \cap \dots \cap A_{n}|.$$

Доказательство:

Возьмём произвольный элемент $a \in A$, может быть два случая:

1. a принадлежит k подмножествам, $k = \overline{1, n}$. $a \notin A \setminus (A_1 \cup \cdots \cup A_n)$.

$$|A| \quad 1 = C_k^0$$

$$\sum |A_i| \quad k = C_k^1$$

$$\sum |A_{i_1} \cap A_{i_2}| \quad C_k^2$$

$$\dots$$

$$\sum |A_{i_1} \cup \dots \cup A_{i_k}| \quad C_k^k = 1$$

$$C_k^0 - C_k^1 + C_k^2 + \dots + (-1)^k C_k^k = 0$$

2. $a \notin (A_1 \cup \ldots A_n)$

1 раз учитывается при подсчёте в левой части и 1 раз при подсчёте в правой части.

$$|A_{1} \cup \dots \cup A_{n}| = \sum_{i=1}^{n} |A_{i}| - \sum_{1 \leq i_{1} \leq i_{2} \leq n} |A_{i_{1}} \cap A_{i_{2}}| + \sum_{1 \leq i_{1} \leq i_{2} \leq i_{3} \leq n} |A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}| + \dots +$$

$$+ (-1)^{k} \sum_{1 \leq i_{1} \leq \dots \leq i_{k} \leq n} |A_{i_{1}} \cap \dots \cap A_{i_{k}}| + \dots + (-1)^{n} |A_{1} \cap \dots \cap A_{n}|$$

13 Полиномиальная формула. Свойства полиномиальных коэффициентов.

Теорема (полиномиальная формула):

$$\left(\sum_{i=1}^{m} x_i\right) = \sum_{k_1 + \dots + k_m = n} \overline{P}(k_1, \dots, k_m) x_1^{k_1} x_2^{k_2} \dots x_m^{k_m}.$$

Доказательство:

Свойства полиномиальных коэффициентов:

1.
$$\sum_{k_1+\dots+k_m=n} \overline{P}(k_1,\dots,k_m) = m^n;$$

2.
$$\overline{P}(k_1 - 1, k_2, \dots, k_m) + \overline{P}(k_1, k_2 - 1, \dots, k_m) + \overline{P}(k_1, k_2, \dots, k_m - 1) = \overline{P}(k_1, k_2, \dots, k_m)$$

Доказательство:

$$\left(\underbrace{\overset{\mathcal{L}}{\succeq}}_{l=1}^{\times} \chi_{l}^{*} \right)^{N-1} = \underbrace{\overset{\mathcal{L}}{\succeq}}_{k_{1}, k_{2}, \dots, k_{M}}^{*} \chi_{l}^{*} \chi_{l}^{*} \chi_{l}^{*} \chi_{l}^{*} \left(\underbrace{\overset{\mathcal{L}}{\succeq}}_{l=1}^{\times} \chi_{l}^{*} \right)^{N} = \underbrace{\overset{\mathcal{L}}{\succeq}}_{l=1}^{N} \left(\underbrace{\overset{\mathcal{L}}{\ker}}_{k_{1}, k_{2}, \dots, k_{M}}^{*} \right)^{N} \chi_{l}^{*} \chi_{l}^{*} \chi_{l}^{*} \chi_{l}^{*} \left(\underbrace{\overset{\mathcal{L}}{\ker}}_{l=1}^{N} \chi_{l}^{*} \chi_{l}^{*} \chi_{l}^{*} \chi_{l}^{*} \chi_{l}^{*} \right) \left(\underbrace{\overset{\mathcal{L}}{\ker}}_{l=1}^{N} \chi_{l}^{*} \right) \left(\underbrace{\overset{\mathcal{L}}{\ker}}_{l=1}^{N} \chi_{l}^{*} \chi_$$

14 Рекуррентное соотношение k-го порядка, решение рекуррентного соотношения, общее решение. Линейные рекуррентные соотношения с постоянными коэффициентами. Характеристическое уравнение.

Определение реккурентного соотношения k-го порядка:

Под реккурентным соотношением k-го порядка понимается формула, которая выражает f(n+k) через $f(n+k-1), f(n+k-2), \ldots, f(n)$ предыдущие члены последовательности.

Определение решения реккурентного соотношения:

Решением реккурентного соотношения называется числовая последовательность, при подстановке общего члена которой в реккурентное соотношение получаем верное равенство.

Определение общего решения реккурентного соотношения:

Общим решением реккурентного соотношения k-го порядка называется решение, зависящее от k произвольных постоянных, с помощью которых можно удовлетворить любое начальное условие. То есть получить любое общее решение.

Определение линейного реккурентного соотношения с постоянными коэффициентами:

Линейным реккурентным соотношением с постоянными коэффициентами k-го порядка называется:

$$f(n+k) = c_1 f(n+k-1) + c_2 f(n+k-2) + \dots + c_k f(n)$$

Характеристическим уравнением для него называется:

$$r^k = c_1 r^{k-1} + c_2 r^{k-2} + \dots + c_k$$

15 Линейные реккурентные соотношения с постоянными коэффициентами второго порядка. Свойства решений.

Определение линейного реккурентного соотношения с постоянными коэффициентами второго порядка:

(*)
$$f(n+2) = c_1 f(n+1) + c_2 f(n)$$

Его характеристическое уравнение имеет вид:

$$(**) r^2 = c_1 r + c_2$$

Свойства решения линейного реккурентного соотношения с постоянными коэффициентами второго порядка:

1. Если последовательность $\{x_n\}$ — решение реккурентного соотношения, то $\{\alpha x_n\}$ так же является решением;

- 2. Если $\{x_n\}$ и $\{y_n\}$ решения реккурентного соотношения, то последовательность $\{x_n+y_n\}$ так же является решением;
- 3. Если r_1 это корень (**), то $\{r_1^n\}$ решение (*).

16 Решение линейных рекуррентных соотношений с постоянными коэффициентами второго порядка в случае равных и различных корней характеристического уравнения.

cueba =
$$(n+2) \cdot r_1^{n+2}$$

cupaba = $2r_1(n+1)r_1^{n+1} - r_1^2 n r_1^n = 2r_1^2 (n+1)r_1^n - r_1^2 n r_1^n = r_1^{n+2} (2(n+1)-n) = r_1^{n+2} (n+2) =$
= cueba => r_1^n u n r_1^n - peruenue

no cloū-barr $f(n) = \exists r_1^n + \beta \cdot n r_1^n$ - Touce abuseasa peruenueu

17 Теорема об общем решении линейных рекуррентных соотношений с постоянными коэффициентами k-го порядка. Решение рекуррентных соотношений с постоянными коэффициентами k-го порядка с помощью характеристического уравнения.

Теорема (общее решение линейного реккурентного соотношения k-го порядка):

Пусть (1) $f(n+k) = c_1 f(n+k-1) + \cdots + c_k f(n)$ — линейное реккурентное соотношение и (2) $r^k = c_1 r^{k-1} + \cdots + c_k$ его характеристическое уравнение. Тогда общее решение (1) можно записать в виде:

 $f(n) = A_1 + A_2 + \cdots + A_p$, где A_i выписывается по действительному корню или по паре комплексно сопряжённых корней (2).

1. Если x дествительный корень (2) кратности m, то соответствующее ему A_i имеет вид:

$$A_i = (c_{i_0} + c_{i_1}n + \dots + c_{i_{m-1}}n^{m-1})x^n;$$

2. Если $r(\cos \varphi \pm i \sin \varphi)$ — пара комплексно сопряжённых корней (2) кратности 1, то соответствующее им A_i имеет вид:

$$A_i = r^n(\cos(n\varphi)D_i + \sin(n\varphi)E_i),$$

где D_i и E_i — константы;

3. Если $r(\cos \varphi \pm i \sin \varphi)$ — пара комплексно сопряжённых корней (2) кратности m, то соответсвующее им A_i имеет вид:

$$A_{i} = r^{n} [\cos(n\varphi)(D_{i_{1}} + D_{i_{2}}n + \dots + D_{i_{m-1}}n^{m-1}) + \sin(n\varphi)(E_{i_{1}} + E_{i_{2}}n + \dots + E_{i_{m-1}}n^{m-1})]$$

Решение реккурентных соотношений с постоянными коэффициентами k-го порядка с помощью характеристического уравнения:

Thrule:
$$f(u+5) = 4 f(u+4) - 4 f(u+3) - 2 f(u+2) + 5 f(u+1) - 2 f(u)$$

$$r^{5} = 4 r^{4} - 4 r^{3} - 2 r^{2} + 5 r - 2$$

$$X_{1} = X_{2} = X_{3} = 1, \quad X_{4} = -1, \quad X_{5} = 2$$

$$row_{contractive}$$

$$f(u) = 1^{n} (a + bn + ch^{2}) + d(-1)^{n} + e 2^{n}$$

$$A_{1}$$

$$A_{2}$$

$$A_{3}$$

• Requires:
$$f(u+2) = 2f(u+1) - uf(u) \qquad ; \qquad f(o) = 1; \qquad f(1) = 2.$$

$$\chi^{2} - 2 \times + u = 0$$

$$\mathcal{D} = -12 \qquad \qquad \chi_{1,2} = \frac{2 \pm 2\sqrt{-3}}{2} = 1 \pm \sqrt{3}i$$

$$f(u) = 2^{H}(\cos \frac{\pi u}{3} \cdot q + \sin \frac{\pi u}{3} \cdot b) \qquad r = 2$$

$$2^{O}(\cos 0 \cdot q + \sin 0 \cdot b) = 1; \qquad a = 1$$

$$2 \cos 3^{\frac{\pi}{3}} a + 2 \sin \frac{\pi}{3} \cdot b = 2; \qquad b = \frac{\sqrt{3}}{3}$$

$$f(u) = 2^{H}(\cos \frac{\pi u}{3} + \sin \frac{\pi u}{3} \cdot \frac{\sqrt{3}}{3}) - \cos 6\pi$$

• Therefore
$$f(n+y) = -2f(n+2) - f(n)$$

$$x^{4} + 2x^{2} + 1 = 0 \qquad (x^{2} + 1)^{2} = 0$$

$$x^{2} = -1$$

$$x_{1-1} = \cos^{2} \frac{\pi}{2} + \frac{1}{2} \sin^{2} \frac{\pi}{2}$$

$$x = \pm i$$

$$x_{2} = i$$

$$x_{3} = -i$$

$$y = 1$$

$$\cos \varphi = 0$$

$$\sin \varphi = 1$$

$$\sin^{2} \varphi = \frac{\pi}{2}$$

$$\sin^{2} \varphi = \frac{\pi}{2}$$

$$\sin^{2} \varphi = \frac{\pi}{2}$$

• Therefore
$$f(x+5) = -3f(x+4) - 5f(x+3) - f(x+2) + 6f(x+1) + 4f(x)$$

$$x^{5} + 3x^{4} + 5x^{3} + x^{2} - 6x - 4 = 0$$

$$(x+1)^{1}(x-1)(x^{2} + 2x + 4) = 0$$

$$x^{4} = -1$$

$$x^{4}$$

$$f(u) = (-1)^{M} (an + b) + 1^{M} C + 2^{M} (cos \frac{2\pi H}{3} \cdot c) + sin \frac{2\pi H}{3} \cdot e)$$

18 Производящая функция. Сумма производящих функций, операция подстановки.

Определение производящей функции:

Пусть a_0, a_1, a_2, \ldots произвольная числовая последовательность. Производящей функцией этой последовательности называется выражение вида:

$$a_0 + a_1 t + a_2 t^2 + \dots + a_n t^n + \dots = \sum_{n=0}^{\infty} a_n t^n = A(t)$$

Определение суммы производящих функций:

Пусть имеются производящие функции $A(t)=\sum\limits_{n=0}^{\infty}a_nt^n$ и $B(t)=\sum\limits_{n=0}^{\infty}b_nt^n$. Суммой A(t) и B(t) называется производящая функция:

$$C(t) = A(t) + B(t) = a_0 + b_0 + (a_1 + b_1)t + (a_2 + b_2)t^2 + \dots = \sum_{n=0}^{\infty} (a_n + b_n)t^n$$

Определение операции подстановки в производящую функцию:

Пусть $A(t) = \sum_{n=0}^{\infty} a_n t^n$ и $B(t) = \sum_{n=0}^{\infty} b_n t^n$ производящие функции, причём $B(0) = b_0 = 0$. Подстановкой в A(t) B(t) называется производящая функция:

$$C(t)=A(B(t))=c_0+c_1t+c_2t^2+\cdots=a_0+a_1(b_1t+b_2t^2+\ldots)+a_2(b_1t+b_2t^2+\ldots)+\ldots,$$
 где $c_0=a_0,c_1=a_1b_1,c_2=a_1b_2+a_2b_1^2,\ldots$

19 Произведение и деление производящих функций.

Определение произведения производящих функций:

Пусть $A(t)=\sum\limits_{n=0}^{\infty}a_nt^n$ и $B(t)=\sum\limits_{n=0}^{\infty}b_nt^n$ производящие функции. Произведением A(t) и B(t) будем называть производящую функцию:

$$C(t)=A(t)\cdot B(t)=c_0+c_1t+c_2t^2+\ldots,$$
 где $c_0=a_0b_0, c_1=a_0b_1+a_1b_0, c_2=a_0b_2+a_1b_1+a_2b_0,\ldots,c_n=a_0b_n+\cdots+a_nb_0=\sum\limits_{k=0}^n a_kb_{n-k}.$

Определение частного производящих функций:

Пусть $A(t)=a_0+a_1t+\dots$ и $B(t)=b_0+b_1t+\dots$ производящие функции, причём $B(0)=b_0\neq 0.$ Тогда частным $\frac{A(t)}{B(t)}$ называется производящая функция:

$$C(t) = \frac{A(t)}{B(t)} = c_0 + c_1 t + \dots,$$
 такая, что $A(t) = B(t)C(t)$. Где $a_0 = b_0c_0 \Rightarrow c_0 = \frac{a_0}{b_0}$ $a_1 = b_0c_1 + b_1c_0 \Rightarrow c_1 = \frac{a_1 - b_1c_0}{b_0}$ \dots $a_n = b_0c_n + \dots b_nc_0 \Rightarrow c_n = \frac{a_n - b_1c_{n-1} - b_2c_{n-2} - \dots - b_nc_0}{b_0}$

20 Теорема о разложении функции.

Теорема (о разложении $\frac{1}{(1-at)^m}$):

$$\frac{1}{(1-at)^m} = 1 + C_m^1 at + C_{m+1}^2 a^2 t^2 + \dots + C_{m+n-1}^n a^n t^n + \dots \quad \forall m \ge 1$$

Доказательство (по индукции):

1. База: m=1

$$\frac{1}{1-at} = 1 + at + a^2t^2 + \dots + a^nt^n + \dots | \cdot (1+at)$$

$$1 = (1-at)(1+at+\dots)$$

$$(1+at+a^2t^2+a^3t^3+\dots) - at(1+at+a^2t^2+\dots) = 1$$

$$1 = 1$$

2. Предположение: $m \ge k$

$$\frac{1}{(1-at)^k} = 1 + C_k^1 at + C_{k+1}^2 a^2 t^2 + \dots + C_{k+n-1}^n a^n t^n + \dots$$

3. Шаг индукции: $m \ge k + 1$

$$\frac{1}{(1-at)^{k+1}} = 1 + C_{k+1}^1 at + C_{k+2}^2 a^2 t^2 + \dots + C_{k+n}^n a^n t^n + \dots$$

$$\frac{1}{(1-at)} = (1-at) \frac{1}{(1-at)^{k+1}}$$

$$(1-at)(1+C_{k+1}^1 at + C_{k+2}^2 a^2 t^2 + \dots + C_{k+n}^n a^n t^n + \dots) =$$

$$= 1 + (C_{k+1}^1 - 1)at + (C_{k+2}^2 - C_{k+1}^1)a^2 t^2 + \dots + (C_{k+n}^n - C_{k+n-1}^{n-1})a^n t^n + \dots =$$

$$= 1 + C_k^1 at + C_{k+1}^2 a^2 t^2 + \dots + C_{k+n-1}^n a^n t^n + \dots$$

21 Теорема о производящей функции для последовательности, задаваемой линейным рекуррентным соотношением. Теорема о рациональной производящей функции.

Теорема (о производящей функции для последовательности, заданной реккурентным соотношением):

Пусть последовательность $\{a_n\}$ $a_{n+k}=c_1a_{n+k-1}+c_2a_{n+k-2}+\cdots+c_ka_n$ и a_0,\ldots,a_{k-1} заданы. Тогда производящая функция для $\{a_n\}$ будет рациональной функцией:

$$A(t) = \frac{P(t)}{Q(t)}$$

Причём степень $P(t) \le k - 1$, а степень Q(t) равна k.

Доказательство:

Пусть
$$Q(t)=1-c_1t-c_2t^2-\cdots-c_kt^k$$
 $P(t)=Q(t)\cdot A(t)=p_0+p_1t+\cdots+p_nt^n+\cdots$ Так как $A(t)=a_0+a_1t+\cdots$ Тогда $=a_0+(a_1-c_1a_0)t+\cdots$ $=(1-c_1t-c_2t^2-\cdots)(a_0+a_1t+a_2t^2+\cdots)$ $p_0=a_0$ $p_1=a_1-c_1a_0$ \cdots $p_{k-1}=a_{k-1}-c_1a_{k-2}-\cdots-c_ka_0=0$ \cdots $p_k=a_k-c_1a_{k-1}-\cdots-c_ka_0=0$ \cdots

Теорема (о рациональных производящих функциях):

Пусть $A(t) = \frac{P(t)}{Q(t)}$ рациональная и P и Q взаимно просты. Тогда, начиная с некоторого n, последовательность $\{a_n\}$ может быть задана линейным реккурентным соотношением $a_{n+k} = c_1 a_{n+k-1} + c_2 a_{n+k-2} + \cdots + c_k a_n$, где c_1, c_2, \ldots, c_k произвольные константы.

22 Решение рекуррентных соотношений с помощью производящих функций.

Алгоритм решения линейных однородных реккурентных соотношений с помощью производящих функций:

Пусть $a_{n+k} = c_1 a_{n+k-1} + \cdots + c_k a_n$

- 1. Выписать $Q(t) = 1 c_1 t c_2 t^2 \dots c_k t^k$ $A(t) = a_0 + a_1 t + a_2 t^2 + \dots;$
- 2. Найти P(t): $P(t) = Q(t) \cdot A(t)$; ;
- 3. Разложить A(t) на элементарные дроби:

$$A(t) = \frac{P(t)}{Q(t)};$$

4. Воспользоваться теоремой о разложении производящей функции и записать её в открытой форме, а так же выписать коэффициент при n-ом члене a_n .

23 Ориентированные и неориентированные графы.

Определение ориентированного графа:

Ориентированным графом называется:

$$\overrightarrow{G}(V,\rho) \quad \rho \subseteq V \times V,$$

где V — непустое множество вершин, ho — отношение смежности на V .

Матрица ρ $(M(\rho))$ называется матрицей смежности \overrightarrow{G} .

 $(u, \nu) \in \rho$ — дуга с началом в u и концом в ν .

Если
$$|V|=n$$
, то $M(\rho)=M_{n\times n}=(m_{ij})_{i,j=0}^n;\quad m_{ij}=egin{cases} 1,(u_i,\nu_j)\in
ho \\ 0,(u_i,\nu_j)\notin
ho \end{cases}$

Определение неориентированного графа:

Неориентированным графом называется пара:

$$G = (V, \rho),$$

где ρ — симметричное и рефлексивное отношение на V. $\forall \{u,\nu\} \in \rho$ — ребро графа.

24 Полный граф, дополнение, объединение, соединение графов.

Определение полного графа:

Полным графом называется граф, в котором любые 2 вершины соединены ребром.

Замечание: степень любой вершины $d(\nu) = n - 1$.

Определение дополнения графа:

Граф $\overline{G}=(V^{'},\rho^{'})$ называется дополнением графа $G=(V,\rho)$, если множества вершин графов \overline{G} и G совпадают, то есть $V=V^{'}$, а множество рёбер $\rho^{'}=V^{2}\backslash\rho$. Следовательно, любые две вершины, смежные в графе G, не смежны в его дополнении \overline{G} , и любые две вершины не смежные в G смежны в \overline{G} .

Определение объединения графов:

Пусть
$$G_1 = (V_1, \rho_1) \; G_2 = (V_2, \rho_2)$$

$$G_1 \cup G_2 = (V_1 \cup V_2, \rho_1 \cup \rho_2)$$

Определение соединения графов:

Пусть
$$G_1=(V_1,\rho_1)$$
 $G_2=(V_2,\rho_2)$ и $V_1\cap V_2=\varnothing$

$$G_1 + G_2 = [V_1 \cup V_2, (\rho_1 \cup \rho_2) \cup (V_1 \times V_2) \cup (V_2 \times V_1)]$$

25 Теорема о степенном множестве графа.

Теорема (о степенном множестве графа):

Пусть имеется множество натуральных чисел $A=\{d_1,\ldots,d_k:k\geq 1$ и $d_1< d_2<\cdots< d_k\}.$ Тогда найдётся неориентированный граф G с числом вершин $=d_k+1$, для которого множество A является степенным множеством.

Доказательство (методом математической индукции):

1. База:

$$k=1.$$
 $A=\{d\}.$ \exists граф K_{d+1} $(k=2.$ $A=\{d_1,d_2\}.$ $\exists G=K_{d_1}+\overline{K}_{d_2-d_1+1})$

2. Гипотеза:

Пусть теорема справедлива для чисел $\leq k$.

3. Шаг индукции:

Докажем для
$$k+1$$
: $A = \{d_1, \dots, d_{k+1}\}, d_1 < d_2 < \dots < d_{k+1}$ Найдётся граф с d_{k+1} вершинами?

Рассмотрим $\{d_2-d_1,d_3-d_1,\dots,d_k-d_1\}$. Это множество из k-1 элементов, поэтому для него $\exists G_0$ с количеством вершин d_k-d_1+1 .

Рассмотрим $G = K_{d_1} + (\overline{K}_{d_{k+1}-d_k} \cup G_0)$. Число вершин в $G: d_1 + d_{k+1} - d_k + d_k - d_1 + 1 = d_{k+1} + 1$.

Степень вершин K_{d_1} : $(d_1 - 1) + (d_{k+1} - d_k + d_k - d_1 + 1) = d_{k+1}$.

Степень вершин $\overline{K}_{d_{k+1}-d_k}$: $0+d_1=d_1$.

Степень вершин G_0 : $d_2 - d_1 + d_1 = d_2$

$$d_3 - d_1 + d_1 = d_3$$

$$d_k - d_1 + d_1 = d_k$$

Тогда степенное множество G: $\{d_1, \ldots, d_k\}$

26 Теорема о соотношении суммы степеней вершин и числа рёбер (лемма о рукопожатии).

Лемма о рукопожатии:

Для любого графа $G=(V,\rho)$ справедливы утверждения:

- 1. $\sum_{\nu \in V} d(\nu) = 2m$, где m число рёбер;
- 2. Количество нечётных вершин чётно;
- 3. Если в графе $n \ge 2$ вершины, то найдутся по крайней мере две вершины с одинаковыми степенями;

27 Алгоритм построения графа по вектору степеней.

Процедура построения изображения графа по вектру степеней:

Пусть есть вектор степеней некоторого графа (d_1, \dots, d_n) .

- 1. Изобразить n точек с метками d_1, \ldots, d_n . В качестве начальной точки выбрать точку с d_1 ;
- 2. Начальную точку, с меткой d_1 , соединить с d точками в порядке убывания их меток;
- 3. Метку начальной точки положить равной 0, метки всех точек, связанных с начальной точкой, уменьшить на 1. Если метки всех точек равны 0, то завершаем алгоритм, иначе переходим к шагу 4;
- 4. В качестве начальной точки выбираем 1 из точек с максимальной меткой. Переходим к шагу 2.

28 Изоморфизм графов. Теорема об изоморфизме графов.

Определение изоморфизма графов:

Будем говорить, что $\overrightarrow{G}_1=(V_1,\rho_1)\cong\overrightarrow{G}_2=(V_2,\rho_2)$, если существует однозначное соответствие $\varphi:V_1\to V_2$, сохраняющее отношение смежности, то есть

$$\forall u \in V_1 \quad \forall \nu \in V_1 \quad (u, \nu) \in \rho_1 \Leftrightarrow (\varphi(u), \varphi(\nu)) \in \rho_2$$

Теорема (об изоморфизме графов):

Пусть $\overrightarrow{G}=(U,\alpha)$ и $\overrightarrow{H}=(V,\beta)$. Тогда $\varphi:U\to V$ — изоморфизм тогда и только тогда, когда $A\Phi=\Phi B.$ То есть

$$\alpha \cdot \varphi = \varphi \cdot \beta \Leftrightarrow \forall u \in U \quad \varphi(\alpha(u)) = \beta(\varphi(u)) \quad (*),$$

где A и B — матрицы смежности, Φ — матрица изморфизма.

Доказательство:

29 Проверка на изоморфизм двух графов по их матрицам смежности.

- 1. Выписывается матрица Φ предполагаемого изоморфизма φ как матрица с неопределёнными коэффициентами $\Phi = (\varphi_{ij});$
- 2. Составляется матричное уравнение $A\Phi=\Phi B$. Решаем систему, находим $\Phi.$
- 3. Если в каждом столбце и строке ровно одна единица, то изоморфизм есть, иначе нет;
- 4. Если вершина u^{d^+,d^-} может перейти в вершину ν^{d^+,d^-} (равные степени исхода и захода), то в матрице пишем 1 (если из вершины первого орграфа можно лишь единожды попасть в вершину второго орграйфа, а если не единожды пишем φ_{ij} , где i номер столбца, j номер строки), иначе 0.

30 Часть графа, подграфы. Путь, цикл, цепь, длина пути и расстояние между ними. Достаточное условие связности нечётных вершин графа.

Определение части графа:

Частью графа $G=(V,\rho)$ называется граф $G^{'}=(V^{'},\rho^{'})$, такой, что $V^{'}\subseteq V$ и $\rho^{'}\subseteq\rho\cap(V^{'}\times V^{'})$

Определение подграфа:

Подграфом графа $G=(V,\rho)$ называется граф $G^{''}=(V^{''},\rho^{''})$, такой, что $V^{''}\subseteq V$ и $\rho^{''}=\rho\cap (V^{''}\times V^{''}).$

Определение пути в графе:

Путь — последовательность рёбер, в которой два соседних ребра имеют общую вершину, и ни одно ребро не встречается более 1 раза.

Определение цикла в графе:

Цикл — путь, в котором каждая вершина принадлежит не более, чем двум рёбрам, и начальная вершина совпадает с конечной.

Определение цепи в графе:

Цепь — путь, в котором каждая вершина принадлежит не более, чем двум рёбрам.

Определение длины пути в графе:

Длина пути — количество рёбер, входящих в путь.

Определение расстояния между двумя вершинами графа:

Расстояние между двумя вершинами — длина кратчайшего пути между ними. Если пути между вершинами нет, то принято считать расстояние между ними бесконечным.

Достаточное условие связности нечётных вершин графа:

Если две нечётные вершины u и ν в графе — единственные нечётные вершины, то они связны в графе.

Доказательство (от противного):

Пусть они лежат в разных компонентах связности, тогда в каждом подграфе (компоненте связности) есть лишь одна единственная нечётная вершина — противоречие (по лемме о рукопожатии). Получаем, что число нечётных вершин, чётно.

31 Достаточное условие связности графа.

Если в n вершинном графе число рёбер равно $m>C_{n-1}^2$, то граф связный.

Доказательство (от противного):

Пусть $m>C_{n-1}^2$ и граф не связный. Рассмотрим граф $G=G_1\cup G_2$, где G_1 — произвольная компонента, а G_2 — все вершины из графа, не находящиеся в G_1 . Пусть G_1 имеет k вершин. Тогда возможны 3 случая:

- 1. k = 1, тогда в G_2 находятся n 1 вершин;
- 2. k = n 1, тогда в G_2 находится 1 вершина;
- 3. $2 \le k \le n-2$, тогда в G_2 находятся n-k вершин.

Покажем, что все 3 случая противоречивы:

- 1. В G_1 нет рёбер. В G_2 может быть до $\frac{(n-1)(n-2)}{2}$ рёбер. Тогда $m \leq \frac{(n-1)(n-2)}{2} = C_{n-1}^2$, следовательно, противоречие;
- 2. Аналогично (1);

3. Оценим *m*:

$$m \le C_k^2 + C_{n-k}^2 = \frac{k(k-1)}{2} + \frac{(n-k)(n-k-1)}{2} =$$

$$= \frac{k^2 - k + n^2 - 2nk + k^2 - n + k}{2} = \frac{2k^2 + n^2 - 2nk - n}{2}.$$

Рассмотрим разность $C_{n-1}^2 - m$:

$$C_{n-1}^{2} - m \ge C_{n-1}^{2} - \frac{k^{2} - k + n^{2} - 2nk + k^{2} - n + k}{2} =$$

$$= \frac{(n-1)(n-2)}{2} - \frac{k^{2} - k + n^{2} - 2nk + k^{2} - n + k}{2} =$$

$$= \frac{n^{2} - 3n + 2 - 2k^{2} - n^{2} + 2nk + n}{2} = \frac{2nk - 2n + 2 - 2k^{2}}{2} =$$

$$= n(k-1) - (k^{2} - 1) = (k-1)(n - (k+1)) > 0, \quad k \ge 2, n \ge k + 2 \Rightarrow$$

$$\Rightarrow C_{n-1}^{2} - m > 0.$$

32 Точка сочленения. Неразделимый граф. Необходимое и достаточное условие неразделимости связного графа.

Определение точки сочленения:

Пусть G — связный граф. Вершина ν называется точкой сочленения, если её удаление приводит к увеличению числа компонент связности.

Определение неразделимого графа:

Граф называется неразделимым, если в нём отсутствуют точки сочленения.

Теорема (необходимое и достаточное условие неразделимости связного графа):

Связный граф с числом вершин $n \geq 3$ неразделим, тогда и только тогда, когда любые две вершины графа принадлежат некоторому циклу.

33 Планарность. Дерево, плоское изображение дерева.

Определение плоского изображения графа:

Плоское изображение графа — изображение, в котором никакие два ребра графа не пересикаются.

Определение планарного графа:

Граф называется планарным, если существует его плоское изображение.

Определение дерева:

Деревом называется связный граф без циков.

34 Необходимое и достаточное условие того, чтобы граф был деревом.

Граф G ялвялется деревом, тогда и только тогда, когда выполняется одно из следующих условий:

- 1. 2 любые вершины соеденены единственной цепью;
- 2. G связный граф, и n = m + 1;
- 3. В G нет циклов, и n = m + 1.

Доказательство:

Необходимость:

Мы знаем, что G — дерево, докажем 3 пункта.

- 1. Покажем, что любые 2 вершины соединены одной цепью. Пойдём от противного: пусть существуют 2 цепи, соединяющие 2 вершины графа \Rightarrow существует цикл \Rightarrow граф не является деревом. Получили противоречие;
- 2. Покажем, что n=m+1, используя метод математической индукции:
 - (a) Пусть n=1. Тогда $m=0 \Rightarrow n=m+1, G$ связный. Аналогично выполняется для n=2;
 - (b) Пусть верно для всех деревьев с числом вершин < n. Докажем для графов с n вершинами. При удалении любого ребра, получим 2 компоненты связности с k и n-k вершинами. Число рёбер в первой равно $m_1=k-1$, а во второй $m_2=n-k-1$. Тогда число рёбер в исходном графе будет равно $m=m_1+m_2+1=(k-1)+(n-k-1)+1=n-1$, что означает, что n=m+1.

3. Доказано в пункте (2).

Достаточность:

Покажем, что из каждого из 3 условий следует, что граф является деревом:

- 1. Пойдём от противного: пусть G не является деревом \Rightarrow существует хотя бы один цикл \Rightarrow любые 2 вершины соединены более, чем одной цепью, следовательно, противоречие;
- 2. Тоже от противного: пусть G не является деревом \Rightarrow существует хотя бы один цикл. Удалим все висячие вершины (вершины степени 1), тогда мы получим граф $G^{'}$ без висячих вершин, где $n^{'}=m^{'}+1$. Посчитаем n: полемме о рукопожатиях $2n^{'} \leq \sum_{i=1}^{n} d(\nu_{i}) = 2m^{'} \Rightarrow n^{'} \leq m^{'}$, что означает противоречие;
- 3. Опять о противного: пусть G не является деревом. По нашему условию G не содержит циклов. Тогда G несвязный граф, и его можно представить как $G = G_1 \cup \cdots \cup G_k, \ k > 1. n = m+1$ и $n = \sum\limits_{i=1}^k n_i = \sum\limits_{i=1}^k (m_i+1) = m+k > m+1$, где k>1, что означает противоречие.

35 Формула Эйлера. Следствия из формулы Эйлера.

Определение плоского графа:

Граф называется плоским, если он задаётся плоским изображением.

Определение грани графа:

Гранью в плоском изображении графа называется область данного графа, ограниченная его рёбрами. У любого графа существует внешняя грань, которая является бесконечной. Число граней будем обозначать r. Заметим, что у дерева существует только одна грань — внешняя.

Определение триангулярного графа:

Грань, ограниченная тремя рёбрами, называется треугольником. Если все грани плоского изображения графа являются треугольниками, то граф называется триангулярным.

Теорема (формула Эйлера):

Для плоского изображения связного планарного графа справедлива формула

$$n-m+r=2$$

Доказательство:

Пусть G — планарный граф с плоским изображением. Возможны 2 случая:

- 1. G является деревом, $n = m+1, r = 1 \Rightarrow n-m+r = m+1-m+1 = 2;$
- 2. G не является деревом \Rightarrow в нём есть циклы. Удалим любое ребро цикла. Получим $m_1=m-1, r_1=r-1, n_1=n$. Заметим, что $n_1-m_1+r_1=n-m+1+r-1=n-m+r$. Продолжим процесс удаления рёбер из циклов, пока циклов не останется. Ролучим граф $G^{'}:n^{'}-m^{'}+r^{'}=n-m+r$. Так как в графе нет циклов, то он является деревом и подходит под условия первого случая.

Следствие 1:

Если в плоском графе каждая грань ограничена k рёбрами, то общее число рёбер будет равно

$$m = \frac{k(n-2)}{k-2}.$$

Доказательство:

Каждая грань ограничена k рёбрами, а всего r граней, в произведении kr мы считаем каждое ребро дважды — в каждой из двух граней, которые оно соединяет. Поэтому справедлива формула kr=2m.

$$kr = 2m \Rightarrow r = \frac{2m}{k} \Rightarrow n - m + \frac{2m}{k} = 2 \Rightarrow n - 2 = \frac{mk - 2m}{k} \Rightarrow m = \frac{k(n-2)}{k-2}.$$

Следствие 2:

В каждой триангуляции число рёбер m = 3(n-2).

Доказательство:

Возьмём k=3 и подствим в формулу следствия 1.

Определение максимально плоского графа:

Плоский граф называется максимально плоским, если добавление в него любого ребра нарушает его плоскость. Максимально плоский граф является триангулярным.

Следствие 3:

В планарном графе с числом вершин $n\geq 3$, число рёбер $m\leq 3n-6$.

Доказательство:

m не превосходит число рёбер в максимально плоском графе с n вершинами $\Rightarrow m \leq 3(n-2) = 3n-6.$

Следствие 4:

В каждой триангуляции найдётся вершина, степень которой ≤ 5 .

Доказательство:

$$k=3$$
. Тогда $3r=2m\Rightarrow r=rac{2m}{3}\Rightarrow 2=n-m+rac{2m}{3}=n-rac{1}{3}m$. По лемме о рукопожатии: $\sum\limits_{i}d(V_{i})=2m\Rightarrow\sum\limits_{i=1}^{n}1-rac{1}{6}\sum\limits_{i=1}^{n}d(V_{i})=rac{1}{6}\sum\limits_{i=1}^{n}(6-d(V_{i}))=2\Rightarrow\sum\limits_{i=1}^{n}(6-d(V_{i}))\geq 12\Rightarrow 6-d(V_{i})>0\Rightarrow d(V_{i})<6$.