Lecture Speech and Audio Signal Processing

TECHNISCHE UNIVERSITÄT DARMSTADT

Lecture 3: Audio coding, Part I

Content of the lecture

- Audio coding
 - Part I:
 - Motivation and Principle
 - Predictive coding:
 - Signal form coders
 - Audio quality measures
 - Part II:
 - Two other types of **predictive coders**:
 - Vocoder and Hybrid coders
 - Frequency domain / sub-band coders:
 - MP3 and AAC coders of MPEG2 and MPEG4 standards
 - All including detailed motivation, analysis of coding principles and the descriptions of selected standards.

Coding – Decoding - Principles

Sender:

Audiocoding is a Source Coding method!

Transmission of samples and quantized audio data

- □ Direct PCM (pulse code modulation) coding:
 - Quantize each sample by 8 16 Bit
 - Telephone speech => 8 kHz sampling with 8 Bit/sample => 64 kBit / sec (ISDN coding)
 max freq sinal = 4kHz
 - Wideband speech => 16 kHz sampling with 8 Bit/sample => 128 kBit / sec
 - Audio data 16 bit / sample (SNR = 8*16 = 96 dB SNR, i.e., signal to quantization noise) :
 - 1) 16 kHz sample rate: 256 kBit / sec
 - 2) 22.05 kHz sample rate: 352.8 kBit / sec
 - 3) 44.1 kHz sample rate (CD): 705.6 kBit / sec
 - => Demand for data reduction for signal transmission and storage!

Model based predictive coding

General principle: Model based predictive coding

- ☐ Typically, three classes of predictive coders:
 - Signal form coder
 - Vocoder
 - Hybrid coder

Main differences:

- Quantization of residual signal e(n)
- Form of the prediction

Signal form coder

Differential signal form coding

☐ High quality audio coders, suitable also for music, data rates > 1.5 Bit / sample

1) Differential pulse code modulation (DPCM):

Open-loop structure requires the transmission of the prediction coefficients a(n) as side information.

Differential signal form coding

1) Differential pulse code modulation (DPCM):

Alternative structure: **closed-loop** prediction:

a) Without quantization: open-loop and closed loop structures are identical:

$$\tilde{x}(n) = \hat{x}(n) + e(n) = \hat{x}(n) + (x(n) - \hat{x}(n)) = x(n)$$

b) No transmission of side information is necessary since the quantization block is placed such that both predictor units (sender / receiver) work on the same signal.

Quantization noise analysis

Quantizer can be modeled by additive noise:

$$\triangleq \begin{array}{ccc} & e(n) & & \overset{\Delta(n)}{\tilde{e}(n)} \\ & & & & \end{array}$$

■ Model for quantization noise: Equally distributed, white noise:

Equal distribution:

White noise:

Noise power:

$$\sigma_{\Delta e}^2 = \int_{-\Delta e/2}^{-\Delta e/2} f_{\Delta}(\Delta) \Delta^2 d\Delta = \frac{(\Delta e)^2}{12}$$

Quantization noise analysis

max. amplitude

Quantization SNR analysis:

$$SNR_{dB} = 10 \log_{10} \left(\frac{S_{ee}(\Omega)}{S_{\Delta\Delta}(\Omega)} \right)$$

Pode ser usado como um limiar para o projeto

with: $S_{\Delta\Delta}(\Omega) = \frac{(\Delta e)^2}{12}$ $\Delta e = \frac{2 \, e_{\rm max}}{2W}$

 $S_{ee}(\Omega) = K \, e_{
m max}^2 \, \, \, \, \, \, W$: number of Bit

 $K \leq 1$

degree of saturation

results in:

$$SNR_{dB} = 10 \log_{10} \left(\frac{K e_{\text{max}}^2}{\frac{(\Delta e)^2}{12}} \right) = 10 \log_{10} \left(\frac{K e_{\text{max}}^2 12}{\frac{(2 e_{\text{max}})^2}{2^{2W}}} \right)$$
$$= 10 \log_{10} \left(3 K 2^{2W} \right) = 6.02 W + 10 \log_{10} \left(3 K \right)$$

Se vc definir sua quantização no emax, vc precisa ter uma boa noção de quanto vai ser o seu emax antes de construir o seu sistema

Differences in quantization

Differences in quantization

O sinal branco fica colorido com a multiplicação por H_inf

- At the output, the quantization noise is spectrally shaped as the target signal:
 - No gain in signal to quantization noise relation: $\frac{S_{xx}(\Omega)}{S_{rr}(\Omega)} = \frac{S_{ee}(\Omega)}{S_{\Delta\Delta}(\Omega)}$
 - Identical spectral shapes lead to optimized noise masking

Differences in quantization

Ajuda a não "colorir" o ruido de quantização

Closed-loop structure:

 $H_{\text{inv. PEF}}(e^{j\Omega}) = \frac{1}{1 - \sum_{i=1}^{N} a_i e^{-j\Omega i}}$

Quantization noise at the receiver output:

$$\tilde{x}(n) = \hat{x}(n) + \tilde{e}(n) = \hat{x}(n) + e(n) + \Delta(n) = x(n) + \Delta(n)$$

- => 1) White noise at the receiver output: $\Delta(n)$ $S_{rr}(\Omega) = S_{\Delta\Delta}(\Omega) = \frac{(\Delta e)^2}{12}$
 - 2) No spectral shaping (and masking according to the input signal)
 - 3) SNR gain according to the prediction gain:

$$\frac{S_{xx}(\Omega)}{S_{rr}(\Omega)} = \frac{S_{ee}(\Omega)}{S_{\Delta\Delta}(\Omega)} \left| H_{\text{inv. PEF}}(e^{j\Omega}) \right|^2 \qquad H_{\text{inv. PEF}}(e^{j\Omega}) = \frac{1}{1 - A(e^{j\Omega})}$$

Comparing target and quant. noise PSDs at receiver output

Mas e o contra-ganho? A estrutura closed-loop dificulta o processo de codificação na entrada?

Open-loop structure:

Mas nosso ouvido é mais sensivel em baixas frequencias 30 20 10 -10 -20 -30 -40 -50 0 500 1000 1500 2000 2500 3000 3500 4000

Frequency [Hz]

Closed-loop structure:

Blue: envelope of input signal power spectrum Red: quant. noise power spectrum

Frequency [Hz]

Quantization noise at the output shaped according to the target signal power spectrum

- +: good masking
- : no advantage due to prediction

White quantization noise at the output

- : no masking
- + : signal to noise gain according to the prediction gain

Compromized structure between open and closed loop:

$$E(z) = X(z) \left(1 - A(z)\right)$$

$$\tilde{E}(z) = E(z) + \Delta(z) (1 - F(z)) = X(z) (1 - A(z)) + \Delta(z) (1 - F(z))$$

$$\tilde{X}(z) = X(z) + \underbrace{\Delta(z) \frac{1 - F(z)}{1 - A(z)}}_{R(z)} \qquad \qquad R(z) : \text{quantization noise at the output}$$

$$F(z)=A(z)$$
 => White output quantization noise => identical to closed-loop structure $F(z)=0$ => Input signal shaped quantization noise => identical to open-loop structure

Compromized structure between open and closed loop:

Comparable structure with a(n) using the quantized input

$$ilde{X}(z) = \hat{X}(z) + \tilde{E}(z) = A(z) \, \tilde{X}(z) + \tilde{E}(z) = \frac{\tilde{E}(z)}{1 - A(z)}$$
 $ilde{X}(z) = \tilde{X}(z) - \tilde{E}(z) = \tilde{E}(z) \frac{A(z)}{1 - A(z)}$
 $ilde{e}(n) = E(z) = X(z) - \hat{X}(z) - F(z) \, \Delta(z)$

$$\tilde{X}(z) = X(z) + \Delta(z)[1 - F(z)]$$

Derivation and more infos: s. Appendix

Choose closed-loop structure: F(z) = 0

Choose open-loop structure: $F(z) = \frac{-A(z)}{1 - A(z)}$

Compromized structure between open and closed loop:

Continuous switching between both structures:

$$F(z) = A(z/\gamma)$$
 with: $0 \le \gamma \le 1$

$$F(z) = A(z/\gamma) \quad \text{with:} \quad 0 \le \gamma \le 1 \qquad \qquad \tilde{X}(z) = X(z) + \Delta(z) \, \frac{1 - F(z)}{1 - A(z)}$$

Numerator polynom:

imerator polynom:
$$1-F(z)=1-A(z/\gamma)=\frac{1}{z^n}\prod_{i=1}^n(z-\gamma\,z_{0i})\qquad \text{with: } 0\leq\gamma\leq1$$

 γ : shifts the zeros to the origin of the unit-circle

- => some attenuation by the zeros but less than the amplification by the poles
- => no more a flat response but no max. shaping as in the open loop case.

Pole / Zero Filtering

Closed-loop structure:

Optimized / compromized noise power shape structure:

Blue: input signal power spectrum Red: quant. noise power spectrum

$$S_{rr}(\Omega) = \frac{(\Delta e)^2}{12} \left| \frac{1 - A(e^{j\Omega}/\gamma)}{1 - A(e^{j\Omega})} \right|^2$$

with: $0 \le \gamma \le 1$

ADPCM structures

■ ADPCM (adaptive differential PCM) vs. DPCM:

So far (DPCM) the quantizer as well as the prediction filter have been assumed to be fix and time-independent.

In the ADPCM structure both are chosen to be adaptively time dependent:

Adaptive quantization

Adaptive quantization:

adaptation

 $\hat{x}(n) = i(n) \, \Delta x \qquad \qquad \hat{x}(n)$

 $i(n) = 0, \pm 1, \pm 2, \cdots$

AQF: "Adaptive quantization forward"

Sender

Receiver

■ AQB: "Adaptive quantization backward": no side information (quantization step) necessary

Adaptive quantization

Quantization step should be chosen proportional to the estimated input signal standard deviation (square root of the power): $\hat{\sigma}_x(n)$

$$\Delta x(n) = c\,\hat{\sigma}_x(n) \qquad \text{with:} \quad c = \text{const.} \qquad \hat{x}(n) = i(n)\,\Delta x(n)$$
 quantized bit value

Recursive estimation of the input signal power for the AQB method:

$$\hat{\sigma}_x^2(n) = \alpha \,\hat{\sigma}_x^2(n-1) + (1-\alpha) \,\hat{x}^2(n-1)$$

 $lue{}$ Definition of the step multiplicator: M(n)

$$\begin{split} \Delta x(n) &= M(n-1) \, \Delta x(n-1) &\quad \Longrightarrow \quad M(n-1) = \frac{\Delta x(n)}{\Delta x(n-1)} = \frac{\hat{\sigma}_x(n)}{\hat{\sigma}_x(n-1)} \\ \text{with:} \quad M^2(n-1) &= \quad \frac{\hat{\sigma}_x^2(n)}{\hat{\sigma}_x^2(n-1)} = \alpha + (1-\alpha) \, \frac{\hat{x}^2(n-1)}{\hat{\sigma}_x^2(n-1)} \\ &= \quad \alpha + (1-\alpha) \, \frac{i^2(n-1) \, \Delta x^2(n-1)}{\hat{\sigma}_x^2(n-1)} = \alpha + (1-\alpha) \, i^2(n-1) \, c^2 \end{split}$$

$$=> M(n-1) = \sqrt{\alpha + (1-\alpha)i^2(n-1)c^2}$$

can be calculated a priori => look up table

Adaptive quantization

- Three steps in an adaptive quantization:
 - 1) Determine new quantization step

$$\Delta x(n) = M(n-1) \, \Delta x(n-1)$$

2) Determine quantized value: i(n)

$$\hat{x}(n) = i(n) \, \Delta x(n)$$

3) Determine next step multiplicator:

$$M(n) = \sqrt{\alpha + (1 - \alpha) i^2(n) c^2}$$

LMS adaptation of the predictor

Direct calculation of the "optimum filter" (Wiener solution):

$$\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_N \end{bmatrix} = \begin{bmatrix} r_{xx}(0) & r_{xx}(1) & \cdots & r_{xx}(N-1) \\ r_{xx}(1) & r_{xx}(0) & \cdots & r_{xx}(N-2) \\ \vdots & \vdots & \ddots & \vdots \\ r_{xx}(N-1) & r_{xx}(N-2) & \cdots & r_{xx}(0) \end{bmatrix}^{-1} \begin{bmatrix} r_{xx}(1) \\ r_{xx}(2) \\ \vdots \\ r_{xx}(N) \end{bmatrix}$$

$$\mathbf{a}(n+1) = \mathbf{a}(n) + \mu(n) \frac{\mathbf{x}(n-1)e(n)}{\|\mathbf{x}(n-1)\|^2}$$

Adaptive calculation of the optimum solution (continuous update):

NLMS procedure:

$$oldsymbol{a}(n+1) = oldsymbol{a}(n) + \mu(n) \, rac{oldsymbol{x}(n-1) \, e(n)}{ig\|oldsymbol{x}(n-1)ig\|^2}$$
 step-size (between 0 and 1)

All pole / all zero prediction

$$\boldsymbol{a}(n+1) = \boldsymbol{a}(n) + \mu(n) \frac{\boldsymbol{x}(n-1) e(n)}{\|\boldsymbol{x}(n-1)\|^2}$$

Pole-zero prediction

Caution!

The all zero model is an IIR filter which may become instable! Therefore, if used, typically only zero-prediction filters up to order 2 are applied. Their stability can be well controlled.

Pole-zero prediction : $e(n) = x(n) - \sum_{i=1}^{M} b_i e(n-i) - \sum_{i=1}^{N} a_i x(n-i)$

ADPCM structures: The standardized ITU-T G.722 codec

■ Adaptive quantization and adaptive pole-zero prediction:

The standardized ITU-T G.722 codec

- ☐ G.722: high quality audio coder for speech and music.
- ☐ Input signal (sampling rate 16 kHz) split in a high and low-pass component:
 - Coding according to the human perception (Bark-Scale!)
 - => higher resolution of the low frequencies than for the high frequencies
 - => maximizing the perceived audio quality by quantizing the components between 0-4 kHz with a better quantization (6 Bit / sample) than the components between 4-8 kHz (2 Bit / sample).
- Allows for a rate scaling in three modes:
 64 kBit/s = 48+16 kBit/s; 56 kBit/s = 40+16 kBit/s; 48 kBit/s = 32+16 kBit/s

The standardized ITU-T G.722 codec: Coder (Sender)

The standardized ITU-T G.722 codec: Decoder (Receiver)

Lower sub-band

☐ The modified ADPCM structure: Internal predictor running at 4 Bit / sample Residual signal up to 6 Bit / sample

Higher sub-band

- ☐ The classic ADPCM decoder structure:
 - => two Bit quantization of the residual signal

G.722 Characteristics

Sensitivity to bit errors:

Test by corruption of a specific bit position with a BER of 1%:

☐ 56 kBit Mode: Bit 0 is cancelled

48 kBit Mode: Bit 0 + 1 are cancelled

SNR is most sensitive to a corruption

of Bit 4 + 5

=> have to be protected by channel

coding

Talvez vc precise usar bits de amostragem como bits de verificação pra ratio perde

Channel Coding Approaches (48kBit mode)

■ Three different possibilities for channel coding:

1) Parity

3) Convolutional Encoding

Comparison of channel coding strategies

10*log ₁₀ (E _S /N ₀)	BER _{uncod}	No protection	Parity	Block	Conv.
7.3	~10 ⁻²				
8.5	~4*10 ⁻³			4) [4
9.8	~10 ⁻³		₩		

- **■** Long history in subjective quality ratings:
 - Assessment of telephone band systems, e.g., speech codecs.
- ☐ First type of subjective tests: Subjective absolute rating
 - ☐ 1993: Absolute category rating (ACR) test method (ITU-T P.800)
 - ☐ User is regarded to have a reference of a telephone signal "in the mind"
 - □ Rating according to an absolute scale:

Impairment	Grade	
Excellent	5	
Good	4	
Fair	3	
Poor	2	
Bad	1	

Resulting in a **MOS** (mean opinion score) rating when asking a significant number of test subjects

- Second type of subjective tests: Subjective relative rating
 - 1994/97: Procedure for quality rating of wide-band coded audio signals
 - Comparison with reference signal (anchor)
 - ☐ ITU-R BS.1116:
 - "Methods for the Subjective Assessment of small Impairments in Audio Systems including Multichannel Sound Systems"
 - □ Double-blind triple-stimulus with hidden reference => reference is hidden within the test signals as one test signal.

Impairment	Grade	SDG
Imperceptible	5	0
Perceptible, not annoying	4	-1
Slightly annoying	3	-2
Annoying	2	-3
Very annoying	1	-4

SDG: subjective difference grade

SDG = Grade of test signal –
Grade of hidden reference

☐ Different setups of subjective tests in an overview:

Objective quality rating:

- Target: Replace time-consuming and expensive subjective test by a computational method
- Not easy to achieve: Subjective quality rating has to be modeled.
- ☐ General: Two types of signals to be rated:
 - Voice for telephone / coding quality rating and
 - ☐ Music for high quality audio coder (e.g., MP3) rating

■ Evolution of different methods of quality rating of speech signals

(MOS-LQO: the corresponding objective measure compared to MOS, LQO: listening quality objective).

Evolution of ITU-T Recommendations for Voice Quality Testing (P.86x - Full Reference MOS-LQO)

Reference for pictures: http://www.opticom.de

Evolution of Network Technologies available at the time of development, i.e. included use cases for each Recommendation

□ Comparing the subjective and objective MOS scores:

The closer the values are located with respect to the dashed line, the better do objective and subjective results fit.

Correlation coefficient:

$$\delta = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i} (x_i - \overline{x})^2 \sum_{i} (y_i - \overline{y})^2}}$$

- ☐ History of speech quality rating methods:
- □ 1996: **PSQM** (perceptual speech quality measure), ITU-T P.861:
 - ☐ Objective analysis of speech codecs for narrow-band telephone speech.
- □ 2000/1: **PESQ** (perceptual evaluation of speech quality), ITU-T.862:
 - □ Allows assessing additional degrees of degradation such as varying delays, packet loss artefacts by VoIP transmission.
- □ 2005: **PESQ-WB** generalizing the PESQ concept for wideband speech signals.
- □ 2010: **POLQA** (perceptual objective listening quality analysis), ITU-T.863:
 - New perceptual models, especially designed for the assessment of ultra-wide band speech.

☐ Having a closer look at the PESQ method:	
 Performed computational steps: STFT is applied to each of the signals (reference and signal under test) 	
☐ The power in Bark bands is calculated.	
Uniform resolution:	
	frequency
Bark scale resolution, i.e. summing over bands:	
	frequency

pulei esse PESQ por motivos de MUITO CHATO

- Having a closer look at the PESQ method:
- Performed computational steps:
 - Loudness scale mapping:
 - ☐ The Bark-scale based spectrogram ("pitch power density") is transformed to a loudness scale [sone] Bark spectrogram.
 - Disturbance density calculation:
 - ☐ In the loudness scale Bark spectrogram small difference values are set to zero by masking => no perception effect.
 - Two different disturbance densities are estimated based on the difference. one symmetric: D(f,n) and one none-symmetric with higher weight on added distortions: DA(f,n)

- Having a closer look at the PESQ method:
- Performed computational steps:
 - ☐ The "average disturbance value" and the "average asymmetrical disturbance value" are calculated by a weighted average over frequency:

$$D(n) = M(n) \sqrt[3]{\sum_f \left(W(f) \left|D(f,n)\right|\right)^3} \qquad \text{average disturbance value with emphasis on high values}$$

$$DA(n) = M(n) \sum_{f} \left(W(f) \left| DA(f,n) \right| \right) \qquad \text{average asymmetrical disturbance value}$$

 $W(f)\colon$ Weighing proportional to the width of the modified Bark bands

M(n): Emphasis of the disturbances that occur during silences in the original speech fragment

■ The final PESQ score is a linear combination of the average disturbance value and the average asymmetrical disturbance value

Summary & Outlook

- First part on audio coding schemes:
- Target:
 - □ Remove redundancy of the signal which is coded.
 - Transmit only the relevant information.
- All coding schemes are based on prediction error filtering
- This lecture:
 - Signal form coder => no transmission of prediction coefficients.
- Next lecture:
 - Continuation of signal form coders: Vocoder and Hybrid coder
 - ☐ Frequency domain / sub-band coders:

MP3 and AAC coders of MPEG2 and MPEG4 standards

Appendix (to slide 16)

 $\tilde{e}(n)$

Coloring the quantization noise

$$\tilde{X}(z) = \hat{X}(z) + \tilde{E}(z) = A(z) \tilde{X}(z) + \tilde{E}(z) = \frac{\tilde{E}(z)}{1 - A(z)}$$

$$\hat{X}(z) = \tilde{X}(z) - \tilde{E}(z) = \tilde{E}(z) \frac{A(z)}{1 - A(z)}$$

$$E(z) = X(z) - \hat{X}(z) - F(z) \Delta(z)$$

$$= X(z) - \underbrace{\tilde{E}(z)}_{E(z) + \Delta(z)} \frac{A(z)}{1 - A(z)} - F(z) \Delta(z)$$

$$= X(z) - E(z) \frac{A(z)}{1 - A(z)} + \Delta(z) \left[-F(z) - \frac{A(z)}{1 - A(z)} \right]$$

$$E(z) \left[1 + \frac{A(z)}{1 - A(z)} \right] = X(z) + \Delta(z) \left[-F(z) - \frac{A(z)}{1 - A(z)} \right]$$

$$E(z) = X(z)(1 - A(z)) - \Delta(z) \left[F(z)(1 - A(z)) + A(z) \right]$$
with: $\tilde{E}(z) = E(z) + \Delta(z)$

 $E(z) = X(z)(1 - A(z)) - \Delta(z) [F(z)(1 - A(z)) + A(z) - 1]$

Appendix (to slide 16)

$$\tilde{E}(z) = X(z)(1 - A(z)) - \Delta(z) [F(z)(1 - A(z)) + A(z) - 1]$$

$$\frac{\tilde{E}(z)}{1 - A(z)} = \tilde{X}(z) = X(z) - \Delta(z) [F(z) - 1]$$

$$\tilde{X}(z) = X(z) + \Delta(z) [1 - F(z)]$$

Choose closed-loop structure:
$$\ \tilde{X}(z) = X(z) + \Delta(z) = F(z) = 0$$

Choose closed-loop structure:
$$\tilde{X}(z) = X(z) + \Delta(z)$$
 => $F(z) = 0$ Choose open-loop structure: $\tilde{X}(z) = X(z) + \frac{\Delta(z)}{1 - A(z)}$ => $F(z) = \frac{-A(z)}{1 - A(z)}$

Continuous fading with γ :

$$1-F(z)=rac{1-A(z/\gamma)}{1-A(z)}$$
 Choose of

$$F(z) = \frac{A(z/\gamma) - A(z)}{1 - A(z)}$$

Choose closed-loop structure:
$$\gamma=1$$

Choose open-loop structure:
$$\gamma = 0$$