Tecnología Digital 1: Introducción a la Programación - TP1

Autores: de Nuñez, Federico

Yapoudjian, Tadeo Loza Montaña, Gastón

Justificación de por qué los programas hacen lo esperado

Función misma_paridad:

La función misma_paridad determina si dos números tienen la misma paridad. Recibe 2 argumentos de tipo entero n y m. Esta función le asigna a la variable vr (de tipo bool) el valor de verdad que tiene la expresión:

es par(n) and es par(m) or not es par(n) and not es par(m)

La expresión utiliza la función es_par para determinar si los argumentos son pares o impares, y de acuerdo a eso, con los operadores lógicos correspondientes se determina si ambos argumentos coinciden en su paridad.

Tabla de verdad de la expresión para cada caso:

p: "n es par"

q: "m es par"

Buscamos: p and q or not p and not q

p	q	p and q	not p	not q	not p and not q	p and q or not p and not q
True	True	True	False	False	False	True
True	False	False	False	True	False	False
False	True	False	True	False	False	False
False	False	False	True	True	True	True

Función alterna paridad:

La función alterna paridad determina si los dígitos de un número n alternan su paridad.

Se le otorga un argumento n a la función. Se evaluará cada uno de los dígitos de n (desde el segundo) para ver si cada uno de ellos comparte o no la paridad con su antecesor.

Terminación del ciclo:

- La variable i empieza valiendo 1.
- En cada ejecución del cuerpo del ciclo, i se incrementa en 1.
- La cantidad de dígitos de n (len(string n)) es siempre la misma.
- Es inevitable que en algún momento, i iguale el valor de len(string n)

• En ese momento, la condición i < len(string n) será falsa, y el ciclo terminará.

Correctitud del ciclo:

Predicado invariante del ciclo: $1 \le i \le len(string_n)$; vr equivale a que los dígitos de n alternan su paridad hasta el análisis en la posición i. El predicado invariante vale en (A), donde i = 1 y vr = True.

Supongamos que el predicado invariante vale en (B). Si llamamos K al valor de i en (B), entonces vr equivale a que los dígitos alternan la paridad en n antes de la posición K.

En la primera asignación del cuerpo del bucle, vr agrega a su valor mediante el operador lógico and la evaluación de la función misma_paridad con el dígito de la posición K y el dígito de la posición K-1 como argumentos. Luego, vr equivale a que los dígitos de n alternan su paridad antes de la posición K + 1.

En la segunda asignación del cuerpo del bucle, i se incrementa en 1, es decir que pasa a valer K + 1.

En (C) nuevamente vr equivale a que los dígitos de n alternan su paridad antes de la posición de i.

Además, en (B) $1 \le i \le len(string_n)$, por lo que luego de sumarle 1 a i, en (C) podemos afirmar que $1 \le i \le len(string_n)$. Por lo que el predicado invariante sigue siendo válido.

Por último, en (D) el predicado invariante es válido y sabemos que i es igual a len(string_n), podemos entonces afirmar que vr equivale a que los dígitos de n alternan su paridad antes de la posición len(string n) (es decir, en en todos los dígitos de n). Y se cumple la postcondición.

Función es_peculiar:

La función es peculiar determina si n es lo que se considera un número peculiar.

Se le otorga un argumento n (que pertenece al conjunto de naturales más el 0) a la función. Ésta le asigna a la variable vr (de tipo bool) el valor de verdad que tiene la expresión:

multiplo de 22(n) == 0 and alterna paridad(n)

La expresión utiliza la función multiplo_de_22 para determinar si n es múltiplo de 22 y alterna_paridad para determinar si los dígitos de n alternan su paridad. De acuerdo a eso, con el operador lógico and se evalua si ambas condiciones se cumplen para saber si n es un número peculiar.

Tabla de verdad de la expresión para cada caso:

p: "n es múltiplo de 22"

q: "los dígitos de n alternan su paridad"

Buscamos: p and q

Donde True quiere decir que n es número peculiar, y False que no lo es.

Función n esimo peculiar:

La función n ésimo peculiar determina que número peculiar es el n ésimo propuesto.

Se le otorga un argumento n (que pertenece al conjunto de naturales más el 0) a la función y esta determinará el número peculiar número n.

Terminación del ciclo:

- Las variables i y j empiezan valiendo 0.
- n es el argumento dado que se mantiene igual
- En cada ejecución del cuerpo del ciclo, j se incrementa en 1
- Si j es peculiar, i se incrementa en 1. De lo contrario se repite el ciclo.
- Eventualmente i llegará al valor de n
- En ese momento la condición i < n será falsa, y el ciclo terminará.

Correctitud del ciclo:

Predicado invariante del ciclo: 0 <= i <= n, vr equivale al i-ésimo peculiar.

El predicado invariante vale en (A), donde i = 0 y vr es el i-ésimo peculiar, es decir vr = 0.

Supongamos que el predicado invariante vale en (B). vr equivale al i ésimo numéro peculiar.

En la primera asignación, j se incrementa en 1. En la segunda asignación, se evalúa si j es un número peculiar. Si es el caso, entonces i se incrementa en 1, de lo contrario se repite el ciclo.

En (C), nuevamente vr es el i ésimo peculiar.

Además, en (B) $0 \le i \le n$, por lo que luego de sumarle 1 a i, en (C) podemos afirmar que $0 \le i \le n$. Por lo que el predicado invariante sigue siendo válido.

En (D), vale el predicado invariante porque cuando i es igual a n, vr es el n ésimo peculiar.

Función cant_peculiares_entre:

Determina la cantidad de números peculiares entre dos argumentos n y m.

Se le otorga dos argumentos n y m a la función y ésta evalúa la cantidad de números peculiares en el intervalo cerrado [n, m].

Terminación del ciclo:

- i comienza valiendo el extremo izquierdo (n) del intervalo en el cual queremos hallar cantidad de números peculiares
- m es el extremo derecho que siempre se mantiene igual.
- En cada ejecución del cuerpo del ciclo, i se incrementa de 1.
- Es inevitable que eventualmente i llegue al valor de m.
- En ese momento la condición i <= m será falsa, y el ciclo terminará.

Correctitud del ciclo:

Predicado invariante del ciclo: n <= i <= m y vr equivale a la cantidad de números peculiares entre n e i.

El predicado invariante se cumple en (A), donde i = n y vr = 0.

Supongamos que el predicado invariante vale en (B). En ese caso, vr equivale a la cantidad de números peculiares entre n e i.

En la primera asignación, se evalúa si la variable i es un número peculiar, si así lo fuere, se le suma 1 al valor de vr e i se incrementa en 1. De lo contrario, solo incrementa i en 1.

En (C), vr es la cantidad de números peculiares entre n e i. Se mantiene la validez del predicado invariante.

Además, en (B) n <= i <= m, por lo que luego de sumarle 1 a i, en (C) podemos afirmar que n <= i <= m. Por lo que el predicado invariante sigue siendo válido.

Por último, en (D) vale el predicado invariante y sabemos que i = m. Entonces, el ciclo termina y podemos afirmar que vr equivale a la cantidad de números peculiares entre n y m, que es lo que requiere la postcondición.

Aclaraciones adicionales (si las hubiera)

Función es par:

La función es_par es una función que añadimos para facilitar el proceso de verificación de la paridad de un número.

Se le otorga un argumento n (que pertenece al conjunto de enteros) a la función y esta determina si el resto de la división del argumento por 2 es 0. En cuyo caso, el argumento es par.

Función multiplo_de_22:

La función multiplo_de_22 es una función que añadimos que evalúa si un argumento es múltiplo de 22.

Se le otorga un argumento n (que pertenece al conjunto de enteros) a la función y esta determina si el resto de la división del argumento por 22 es 0. En cuyo caso, el argumento es un múltiplo de 22.