Задача А. Кубики

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Привидение Петя любит играть со своими кубиками. Он любит выкладывать их в ряд и разглядывать свое творение. Однако недавно друзья решили подшутить над Петей и поставили в его игровой комнате зеркало. Ведь всем известно, что привидения не отражаются в зеркале! А кубики отражаются.

Теперь Петя видит перед собой N цветных кубиков, но не знает, какие из этих кубиков нестоящие, а какие — всего лишь отражение в зеркале. Помогите Пете! Выясните, сколько кубиков может быть у Пети. Петя видит отражение всех кубиков в зеркале и часть кубиков, которая находится перед ним. Часть кубиков может быть позади Пети, их он не видит.

Формат входных данных

Первая строка входного файла содержит число N ($1 \le N \le 100\,000$) и количество различных цветов, в которые могут быть раскрашены кубики — M ($1 \le M \le 100\,000$). Следующая строка содержит N целых чисел от 1 до M — цвета кубиков.

Формат выходных данных

Выведите в выходной файл все такие K, что у Пети может быть K кубиков.

stdin	stdout
6 2	3 5 6
1 1 2 2 1 1	

Задача В. Башни

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мебибайта

Задано число n и последовательность из n чисел. Требуется рассмотреть все возможные циклические сдвиги заданной последовательности, отсортировать их в лексикографическом порядке, и вывести сумму наибольших общих префиксов соседних в этом порядке сдвигов.

Формат входных данных

Первая строка содержит целое число $1\leqslant n\leqslant 50\,000$ — количество магических башен. Вторая строка содержит n чисел в интервале от 0 до 100 — заданную последовательность.

Формат выходных данных

Выведите одно число — искомую сумму.

stdin	stdout
11	13
12 8 18 18 8 18 18 8 15 15 8	

Задача С. Рефрен

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 3 секунды
Ограничение по памяти: 64 мегабайта

Рассмотрим последовательность n целых чисел от 1 до m. Подпоследовательность подряд идущих чисел называется рефреном, если произведение ее длины на количество вхождений в последовательность максимально.

По заданной последовательности требуется найти ее рефрен.

Формат входных данных

Первая строка входного файла содержит два целых числа: n и m ($1 \le n \le 150\,000, 1 \le m \le 10$). Вторая строка содержит n целых чисел от 1 до m.

Формат выходных данных

Первая строка выходного файла должна содержать произведение длины рефрена на количество ее вхождений. Вторая строка должна содержать длину рефрена. Третья строка должна содержать последовательность которая является рефреном.

stdin	stdout
9 3	9
1 2 1 2 1 3 1 2 1	3
	1 2 1

Задача D. Ретрострока

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мебибайт

Строкой S называется последовательность символов $S_1,...,S_n$, где |S|=n — это длина строки S.

Для любого k ($1 \le k \le |S|$) k-м префиксом строки S называется строка $S_1, ..., S_k$ длины k. Если k < |S|, то префикс называется собственным.

Аналогично для любого k ($1 \leqslant k \leqslant |S|$) k-м $cy\phi\phi$ иксом строки S называется строка $S_{|S|-k+1},...,S_{|S|}$ длины k. Если k < |S|, то суффикс также называется собственным.

Назовём числом nовторяемости строки S количество её различных собственных суффиксов, каждый из которых совпадает с префиксом той же длины, что и этот суффикс.

Назовём строку *ретрострокой*, если её число повторяемости строго больше чисел повторяемости всех её собственных префиксов.

Дана строка S. Нужно найти её префикс максимальной длины (не обязательно собственный), являющийся ретрострокой.

Формат входных данных

В первой строке входного файла записана строка $S, 1 \leq |S| \leq 1000000$. Строка содержит лишь символы с ASCII-кодом от 33 до 126.

Формат выходных данных

В первой строке выходного файла должен быть выведен префикс S максимальной длины, являющийся ретрострокой.

Пример

*

stdin	stdout
Z	z
aabaabaabaabaaba	aabaabaabaabaa

Задача Е. Свобода выбора

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Даны две строки, состоящих из заглавных латинских букв. Нужно найти их наибольшую общую подстроку.

Формат входных данных

На первой строке число $n \ (1 \le n \le 10^5)$.

На второй и третьей строках находятся по n заглавных английских букв.

Формат выходных данных

Максимальную по длине общую подстроку. Если оптимальных ответов несколько, выведите любой.

stdin	stdout
28	THEGREATALBANIA
VOTEFORTHEGREATALBANIAFORYOU	
CHOOSETHEGREATALBANIANFUTURE	

Дополнительные задачи

Задача F. Суффиксный массив

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

Данна строка, требуется построить суффиксный массив для этой строки. Суффиксный массив — лексикографически отсортированный массив всех суффиксов строки. Каждый суффикс задается целым числом — позицией начала.

Строка s лексикографически меньше строки t, если есть такое i, что $s_i < t_i$ и $s_j = t_j$ для всех j < i. Или, если такого i не существует и строка s короче строки t.

Здесь s_i — код i-го символа строки s.

Формат входных данных

Файл состоит из единственной строки. Эта строка — английский литературный текст. Длина текста не превосходит 10^5 . Коды всех символов в тексте от 32 до 127.

Формат выходных данных

Выведите N чисел — суффиксный массив данной строки.

stdin	stdout
99 bottles of beer.	14 3 11 19 2 1 15 4 16 17 9 13 8 12 5
	18 10 7 6

Задача G. Сумма не без разнообразия

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мебибайт

Задана последовательность целых чисел A_1, A_2, \ldots, A_N .

Необходимо выбрать из нее подпоследовательность из подряд стоящих чисел $A_i, A_{i+1}, \ldots, A_j$ так, чтобы она содержала не менее K различных чисел, и сумма $S = A_i + A_{i+1} + \ldots + A_j$ была максимальной.

Формат входных данных

Первая строка ввода содержит целые числа N и K ($1 \le K \le N \le 200\,000$). Вторая строка содержит N целых чисел A_1, A_2, \ldots, A_N ($|A_i| \le 1\,000\,000\,000$).

Формат выходных данных

В первой строке необходимо вывести максимальное возможное значение суммы S. Во второй строке выведите индексы первого и последнего элементов найденной оптимальной подпоследовательности. Если существует несколько решений, подойдет любое из них.

Если не существует подпоследовательностей, удовлетворяющих решению задачи, выведите одну строку со словом "IMPOSSIBLE" (без кавычек).

stdin	stdout
7 3	-89
-99 1 2 -100 3 2 3	2 7
3 2	IMPOSSIBLE
1 1 1	

Задача Н. Уравнение

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 4 секунды
Ограничение по памяти: 256 мегабайт

Дано уравнение вида $X^N + Y^N \equiv Z^N \mod M$.

Требуется для фиксированных N и M найти количество различных решений этого уравнения. Решением назовём такую тройку натуральных чисел (X,Y,Z), что выполняется:

- $1 \leqslant X \leqslant Y < M$
- $1 \leqslant Z < M$
- $\bullet \ X^N + Y^N \equiv Z^N \ \mathrm{mod} \ M$

Формат входных данных

В единственной строке входного файла записаны числа N и M ($1 \le N \le 7^7$, $1 \le M \le 7^7$).

Формат выходных данных

В выходной файл выведите одно число — ответ на задачу.

stdin	stdout
1 3	2
2 4	5
3 5	8

Задача І. Длинный наибольший общий делитель

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Даны два целых положительных числа. Найти их наибольший общий делитель.

Формат входных данных

Мультитест. Каждый тест задаётся двумя строками. Суммарная длина чисел до 50 000.

Формат выходных данных

Для каждого теста выведите одну строку – наибольший общий делитель.

stdin	stdout
10	5
15	262144
100000000000000000	1
1152921504606846976	
17	
100	

Задача Ј. Расстояние между лучами

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 64 мегабайта

На плоскости имеются два луча, заданные парами точек. Необходимо определить расстояние между лучами.

Формат входных данных

Во входном файле даны четыре пары целых 16-битных чисел — описания первого и второго луча. Каждый луч описывается координатами своего начала и координатами некоторой точки на луче.

Формат выходных данных

Вывести одно вещественное число с точностью до 5-го знака после запятой — искомое расстояние.

stdin	stdout
2 1 1 3	0.89443
0 1 4 -1	

Задача К. Блинчики

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Мальчик Петя решил приготовить маме подарок на день рождения — праздничный завтрак. Он решил сделать вкусный чай и испечь блинчики. К сожалению, не отличаясь выдающимися кулинарными способностями, Петя не смог уследить за блинчиками. Каждый из них получился подгорелым с одной стороны и недожаренным с другой. В результате у Пети получилось N чернобелых блинчиков. Все блинчики он выложил на большую тарелку друг на друга. Теперь Петя хочет перевернуть их так, чтобы все они лежали светлой стороной вверх — Петя думает, что так они маме понравятся больше. Для переворачивания блинчиков у него есть лопаточка, которой он может взять несколько верхних блинчиков (от одного до всей стопки) и перевернуть их все вместе (таким образом, что верхний блин окажется на месте нижнего из взятых блинов).

За какое минимальное число таких действий Петя может перевернуть все блины светлой стороной вверх?

Формат входных данных

В первой строке входного файла дано число N ($1 \le N \le 100\,000$) — количество блинчиков. Далее в N строках описываются блинчики, сверху вниз. Если в i-й строке стоит символ W, то i-й блинчик лежит недожаренной стороной вверх, а если W, то подгоревшей стороной вверх.

Формат выходных данных

В выходной файл выведите единственное число — количество переворачиваний, которое должен сделать Петя, чтобы положить все блинчики недожаренной стороной вверх.

stdin	stdout
6	4
W	
В	
В	
В	
W	
В	

Задача L. Обратная матрица

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунда
Ограничение по памяти: 256 мегабайт

Дана матрица A размера $n \times n$, состоящая из нулей и единиц. Найти матрицу B размера $n \times n$, состоящую из нулей и единиц: $A \cdot B = E \mod 2$, где E — единичная матрица.

Формат входных данных

На первой строке число $n \ (1 \leqslant n \leqslant 1000)$.

Следующие n строка содержат по n нулей и единиц – описание матрицы A.

Формат выходных данных

На первой строке выведите YES, если B существует, и NO иначе. Если B существует, на следующих N строках выведите матрицу B. Если ответов несколько, выведите любой.

stdin	stdout
2	YES
01	11
11	10
2	NO
00	
10	

Задача М. Белоснежка и n гномов

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 1 секунд
Ограничение по памяти: 256 мегабайт

«Ну не гномы, а наказание какое-то!», — подумала Белоснежка, в очередной раз пытаясь уложить гномов спать. Одного уложишь — другой уже проснулся! И так всю ночь.

У Белоснежки n гномов, и все они очень разные. Она знает, что для того, чтобы уложить спать i-го гнома нужно a_i минут, и после этого он будет спать ровно b_i минут. Помогите Белоснежке узнать, может ли она получить хотя бы минутку отдыха, когда все гномы будут спать, и если да, то в каком порядке для этого нужно укладывать гномов спать.

Например, пусть есть всего два гнома, $a_1 = 1$, $b_1 = 10$, $a_2 = 10$, $b_2 = 20$. Если Белоснежка сначала начнет укладывать первого гнома, то потом ей потребуется целых 10 минут, чтобы уложить второго, а за это время проснется первый. Если же она начнет со второго гнома, то затем она успеет уложить первого и получит целых 9 минут отдыха.

Формат входных данных

Первая строка входного файла содержит число n ($1 \le n \le 10^5$), вторая строка содержит числа $a_1, a_2, \ldots a_n$, третья — числа $b_1, b_2, \ldots b_n$ ($1 \le a_i, b_i \le 10^9$).

Формат выходных данных

Выведите в выходной файл n чисел — порядок, в котором нужно укладывать гномов спать. Если Белоснежке отдохнуть не удастся, выведите число -1.

stdin	stdout
2	2 1
1 10	
10 20	
2	-1
10 10	
10 10	
3	2 1 3
1 4 1	
5 3 4	

Задача N. Декодирование

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 Мебибайт

В этой задаче по набору беспрефиксных кодов букв и строке, закодированной с помощью этих кодов так, как это описано в задаче "Кодирование", нужно восстановить исходную строку.

Формат входных данных

В первой строке входного файла заданы два целых числа k и l через пробел — количество различных букв, встречающихся в строке, и размер получившейся закодированной строки, соответственно. В следующих k строках записаны коды букв в формате "<letter>: <code>". Ни один код не является префиксом другого. Буквы могут быть перечислены в любом порядке. В качестве букв могут встречаться лишь строчные буквы латинского алфавита; каждая из этих букв встречается в строке хотя бы один раз. Наконец, в последней строке записана закодированная строка.

Исходная строка и коды всех букв непусты. Заданный код таков, что закодированная строка имеет минимальный возможный размер.

Формат выходных данных

В первой строке выходного файла выведите строку s. Она должна состоять из строчных букв латинского алфавита. Гарантируется, что длина правильного ответа не превосходит $100\,000$ символов.

stdin	stdout
1 1	a
a: 0	
0	
4 14	abacabad
a: 0	
b: 10	
c: 110	
d: 111	
01001100100111	

Задача О. Автотуризм

Имя входного файла: stdin
Имя выходного файла: stdout
Ограничение по времени: 2 секунды
Ограничение по памяти: 256 мегабайт

В Байтландии существуют n городов, соединённых n - 1 дорогами с двусторонним движением таким образом, что из каждого города можно проехать в любой другой по сети дорог. Длина каждой дороги равна 1 километру.

Бензобак автомобиля позволяет проехать без заправки m километров. Требуется выбрать маршрут, позволяющий посетить наибольшее количество различных городов без дозаправки. При этом начинать и заканчивать маршрут можно в произвольных городах.

Формат входных данных

В первой строке входного файла заданы два целых числа n и m ($2\leqslant n\leqslant 500\,000$, $1\leqslant m\leqslant 200\,000\,000$) — количество городов в стране и количество километров, которое автомобиль может проехать без дозаправки. В последующих n - 1 строках описаны дороги. Каждая дорога задаётся двумя целыми числами a и b ($1\leqslant a,b\leqslant n$) — номерами городов, которые она соединяет. Длина каждой дороги равна 1 км.

Формат выходных данных

Выведите одно число — максимальное количество городов, которое можно посетить без дозаправки.

Пример

stdin	stdout
7 6	5
1 2	
2 3	
2 5	
5 6	
5 7	
5 4	

Пояснение к примеру

5 городов можно посетить, например, по схеме $4 \to 5 \to 7 \to 5 \to 6 \to 5 \to 2$ или по схеме $3 \to 2 \to 1 \to 2 \to 5 \to 6 \to 5$.