Chapter 03 Frequent Patterns Mining

Market Basket Analysis

Applications

- Market Basket Analysis: given a database of customer transactions, where each transaction is a set of items the goal is to find groups of items which are frequently purchased together.
- **Telecommunication** (each customer is a transaction containing the set of phone calls)
- Credit Cards/ Banking Services (each card/account is a transaction containing the set of customer's payments)
- Medical Treatments (each patient is represented as a transaction containing the ordered set of diseases)
- Basketball-Game Analysis (each game is represented as a transaction containing the ordered set of ball passes)

Market Basket Analysis

- Market Basket Analysis (Association Analysis) is a mathematical modeling technique based upon the theory that if you buy a certain group of items, you are likely to buy another group of items.
- It is used to <u>analyze the customer purchasing</u> <u>behavior</u> and helps in increasing the sales and maintain inventory by focusing on the point of sale transaction data.
- Given a dataset, the Apriori Algorithm trains and identifies <u>product baskets</u> and product association rules.

Association Rule Problem

• Given a database of transactions:

Items
Bread, Jelly, Peanut Butter
Bread, Peanut Butter
Bread,Milk,PeanutButter
Beer,Bread
Beer,Milk

• Find all the association rules:

$X \Rightarrow Y$	s	α
$\mathbf{Bread}\Rightarrow\mathbf{PeanutButter}$	60%	75%
$PeanutButter \Rightarrow Bread$	60%	100%
$\mathrm{Beer} \Rightarrow \mathrm{Bread}$	20%	50%
${f PeanutButter} \Rightarrow {f Jelly}$	20%	33.3%
$ ext{Jelly} \Rightarrow ext{PeanutButter}$	20%	100%
$\mathbf{Jelly}\Rightarrow\mathbf{Milk}$	0%	0%

Association Rule Definitions

- $I=\{i_1, i_2, ..., i_n\}$: a set of all the items
- Transaction T: a set of items such that $T \subseteq I$
- Transaction Database D: a set of transactions
- A transaction $T \subseteq I$ contains a set $X \subseteq I$ of some items, if $X \subseteq T$
- *An Association Rule*: is an implication of the form $X \Rightarrow Y$, where X, $Y \subseteq I$

Association Rule Definitions

Support:

This measurement technique measures how often multiple items are purchased and compared it to the overall dataset.

(Item A + Item B) / (Entire dataset)

Confidence:

This measurement technique measures how often item B is purchased when item A is purchased as well.

(Item A + Item B)/ (Item A)

Association Rule Definitions

Frequent pattern:

<u>A pattern</u> (a set of items, subsequences, substructures, etc.) <u>that</u> <u>occurs frequently in a data set</u>

- The **support** s of an itemset X is the percentage of transactions in the transaction database D that contain X.
- The support of the rule X ⇒ Y in the transaction database D is the support of the items set X U Y in D.
- The confidence of the rule X ⇒ Y in the transaction database D is the ratio of the number of transactions in D that contain X U Y to the number of transactions that contain X in D.

Association Rule Problem

• Given:

- a set *I* of all the items;
- a database D of transactions;
- minimum support s;
- minimum confidence c;

• Find:

— all association rules $X \Rightarrow Y$ with a minimum support s and confidence c.

Problem Decomposition

Transaction ID	Items Bought
1	Shoes, Shirt, Jacket
2	Shoes, Jacket
3	Shoes, Jeans
4	Shirt, Sweatshirt

If the *minimum support* is 50%, then {Shoes,Jacket} is the only 2-itemset that satisfies the minimum support.

Frequent Itemset	Support
{Shoes}	75%
{Shirt}	50%
{Jacket}	50%
{Shoes, Jacket}	50%

If the *minimum confidence* is 50%, then the only two rules generated from this 2-itemset, that have confidence greater than 50%, are:

```
Shoes \Rightarrow Jacket Support=50%, Confidence= (2/3)=66% Jacket \Rightarrow Shoes Support=50%, Confidence= (2/2)=100%
```

The Apriori Algorithm

• Frequent Itemset Property:

Any subset of a frequent itemset is frequent.

• Contrapositive:

If an itemset is not frequent, none of its supersets are frequent.

Frequent Itemset Property

The Apriori Algorithm

- L_k : Set of frequent itemsets of size k (with min support)
- C_k : Set of candidate itemset of size k (potentially frequent itemsets)

```
\begin{split} L_I &= \{ \text{frequent items} \}; \\ \textbf{for } (k=1; L_k != \varnothing; k++) \ \textbf{do} \\ C_{k+1} &= \text{candidates generated from } L_k; \\ \textbf{for each } \text{transaction } t \text{ in database do} \\ &\quad \text{increment the count of all candidates in} \\ C_{k+1} \text{ that are contained in } t \\ L_{k+1} &= \text{candidates in } C_{k+1} \text{ with min\_support} \\ \textbf{return } \cup_k L_k; \end{split}
```

The Apriori Algorithm — Example 1

Database D

A dataset D has 4 transactions.

Let the minimum support be 50% and minimum confidence be 80%.

Find all the frequent item set and also generate association rule using Apriori algorithm

TID	Items
100	134
200	235
300	1235
400	25

```
Min support count = min support threshold * total no. of transactions = (50/100) * 4 = 2
```

Min support =50%

Database D itemset sup. itemset sup. Items {1} {1} 3 100 134 {2} {2} Scan D 200 2 3 5 {3} {3} 300 | 1 2 3 5 **{4**} {5} 400 | 2 5 {5} itemset itemset sup {1 2} itemset sup Scan D {1 2} {1 3} {1 3} {1 3} 23 {1 5} {2 3} {2 3} {2 5} 3 {2 5} [3 5} L_3 itemset sup Scan D

Therefore frequent item sets are

$$L = \{2,3,5\}$$

Now, for strong association rule:

Generate non-empty subset for L

$$S={2},{3},{5},{2,3},{2,5},{3,5}$$

Find $S \square (L-S)$

For example: $\{2\} \square \{3,5\}$

S□(L-S)	Support	Confidence	Confidence(%)
	_	_	
{2}□{3,5}	2	2/3	66.66
{3}□{2,5}	2	2/3	66.66
{5}□{2,3}	2	2/3	66.66
{2,3}□{5}	2	2/2	100
{2,5}□{3}	2	2/3	66.66
{3,5}□{2}	2	2/2	100

Minimum confidence threshold=80%

Therefore strong association rules are $\{2,3\} \square \{5\}$ $\{3,5\} \square \{2\}$

Apriori Example 2

• Consider the following database with minimum support count=60%. Find all the frequent itemset using apriori algorithm and also generate strong association rules if minimum confidences= 50%.

Transaction ID	Items Bought	
T1	{M, O, N, K, E, Y }	
T2	{D, O, N, K, E, Y }	
T3	{M, A, K, E}	
T4	{M, U, C, K, Y}	
T5	{C, O, O, K, I, E}	

Hint: O is bought 4 times in total, but, it occurs in just 3 transactions.

Min support count = min support threshold * total no. of transactions

Min support count = (60/100) * 5

Min support count = 3

Step 1: Generate C1

Item	No of transactions
M	3
0	3
N	2
K	5
E	4
Y	3
D	1
Α	1
U	1
С	2
1	1

Step 2: Generate L1 from C1

Item	Number of transactions
M	3
О	3
K	5
E	4
Υ	3

Step 3: Generate C2 from L1 by Join Step

Item Pairs	Number of
item rams	transactions
MO	1
MK	3
ME	2
MY	2
OK	3
OE	3
OY	2
KE	4
KY	3
EY	2

Step 4: Generate L2 from C2 by prune Step

Item Pairs	Number of transactions
MK	3
OK	3
OE	3
KE	4
KY	3

Step 5: Generate C3 from L2 by Join step

Item Set	Number of transactions
OKE	3
KEY	2

Step 6: Generate L3 from C3 by Prune step

For strong association rule_

$$L = \{ O, K, E \}$$

Generate non empty subset of L

$$S = \{O\}, \{K\}, \{E\}, \{OK\}, \{OE\}, \{KE\}\}$$

Generate association rule S (L-S)

Step /: Finding association Rules with min confidences

Association Rule	Support	Confidence	Confidence(100 %)
O , K 🗀 E	3	3/3	100%
O , E	3	3/3	100%
K, E \longrightarrow O	3	3/4	75%
O K, E	3	3/3	100%
K □ O, E	3	3/5	60%
E O, K	3	3/4	75%

All the association rules are having confidence more than 50%.

Therefore all rules are strong association rule

Apriori Example 3

• Consider the following database with minimum support count=50%. Find all the frequent itemset using apriori algorithm and also generate strong association rules if minimum confidences= 50%.

T id	Items Bought
1	A,B,D
2	A,D
3	A,C
4	B,D,E,F

Apriori Example 4

Tid items

1 ABD

2 B C D

3 A B

4 B D

5 ABC

Find frequent item set and strong association rule

- min support = 30%
- min confidence = 75%

How to Generate Candidates

Input: L_{i-1} : set of frequent itemsets of size i-1

Output: C_i : set of candidate itemsets of size i

 $C_i = empty \ set;$

for each itemset J in L_{i-1} do

for each itemset K in L_{i-1} s.t. $K \le J$ do

if i-2 of the elements in J and K are equal then

if all subsets of $\{K \cup J\}$ are in L_{i-1} then

$$C_i = C_i \cup \{K \cup J\}$$

return C_i ;

Example of Generating Candidates

- $L_3 = \{abc, abd, acd, ace, bcd\}$
- Generating C_4 from L_3
 - abcd from abc and abd
 - acde from acd and ace
- Pruning:
 - acde is removed because ade is not in L_3
- $C_4 = \{abcd\}$

Example of Discovering Rules

Let use consider the 3-itemset {I1, I2, I5}:

$$I1 \land I2 \Rightarrow I5$$

$$I1 \land I5 \Rightarrow I2$$

$$I2 \land I5 \Rightarrow I1$$

$$I1 \Rightarrow I2 \wedge I5$$

$$I2 \Rightarrow I1 \wedge I5$$

$$I5 \Rightarrow I1 \land I2$$

Discovering Rules

```
for each frequent itemset I do

for each subset C of I do

if (\operatorname{support}(I) / \operatorname{support}(I - C) >= \operatorname{minconf}) then

output the rule (I - C) \Rightarrow C,

with confidence = \operatorname{support}(I) / \operatorname{support}(I - C)

and \operatorname{support} = \operatorname{support}(I)
```

Example of Discovering Rules

TID	List of Item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	11, 12, 13, 15
T900	I1, I2, I3

Let use consider the 3-itemset {I1, I2, I5} with support of 0.22(2)%. Let generate all the association rules from this itemset:

II
$$\land$$
 I2 \Rightarrow I5 confidence= 2/4 = 50%
II \land I5 \Rightarrow I2 confidence= 2/2 = 100%
I2 \land I5 \Rightarrow I1 confidence= 2/2 = 100%
I1 \Rightarrow I2 \land I5 confidence= 2/6 = 33%
I2 \Rightarrow I1 \land I5 confidence= 2/7 = 29%
I5 \Rightarrow I1 \land I2 confidence= 2/2 = 100%

Frequent Itemset with support count 2 is {I1,I2,I3} and {I1,I2,I5}

Association rule	support	confidence	Confidence %
1,5□2	2	2/2	100
2,5□1	2	2/2	100
5□1,2	2	2/2	100

Apriori Advantages/Disadvantages

• Advantages:

- Uses large itemset property.
- Easily parallelized
- Easy to implement.

• Disadvantages:

- Assumes transaction database is memory resident.
- Requires many database scans.

What is FP Growth?

- FP Growth Stands for frequent pattern growth
- It is a scalable technique for mining frequent pattern in a database

- FP growth improves Apriority to a big extent
- Frequent Item set Mining is possible without candidate generation
- Only "two scan" to the database is needed

BUT HOW?

- Simply a two step procedure
 - Step 1: Build a compact data structure called the FP-tree
 - Built using 2 passes over the data-set.
 - Step 2: Extracts frequent item sets directly from the FP-tree

Note: Assume min support = 2

TID	List of Item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	11, 12, 13, 15
T900	I1, I2, I3

Now Lets Consider the following transaction table

TID	List of
	Item_IDs
T100	11, 12, 15
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	12, 13
T700	I1, I3
T800	11, 12, 13, 15
T900	11, 12, 13

- Now we will build a FP tree of that database
- Item sets are considered in order of their descending value of support count.

Items	Support count
11	6
12	7
13	6
14	2
15	2

TID	List of Item_IDs
T100	I2, I1, I5
T200	I2, I4
T300	I2, I3
T400	I2, I1, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	12, 11, 13, 15
T900	I2, I1, I3

For Transaction: **12,11,15**

For Transaction: I2,I4

For Transaction: I2,I3

For Transaction: I₂,I₁,I₄

FP Tree Construction Over!!
 Now we need to find conditional pattern base and Conditional FP Tree for each item

{I2, I4: 2}

I3: 2}

{I₂, I₁: ₄}

{I₂, I₃: ₄}, {I₁, I₃: ₄}, {I₂, I₁,

	Frequent Patters Generated		
Item	Conditional Pattern Base	Conditional FP-tree	Frequent Pattern Generated
I5	{I2,I1:1},{I2,I1,I3:1}	{I2:2,I1:2}	{I2, I5: 2}, {I1, I5: 2}, {I2, I1, I5: 2}

 $\{I_{2:2}\}$

{I2:4}

Ignore as no Branch

 $\{I_2,I_{1:2}\},\{I_{2:2}\},\{I_{1:2}\}$

 ${I_2,I_1:1},{I_2:1}$

{I2:4}

I4

I₁

I2

Example 2: FP Growth

 Draw FP tree for the transaction items given below. Min. support=02

Tld	Items
T1	b,e
T2	a,b,c,e
T3	b,c,e
T4	a,c
T5	a

Vertical Data formats to find frequent item sets

TID	List of Item_IDs
T100	I1, I2, I5
T200	I2, I4
T300	I2, I3
T400	I1, I2, I4
T500	I1, I3
T600	I2, I3
T700	I1, I3
T800	11, 12, 13, 15
T900	I1, I2, I3

Table 6.3	The Vertical Data Format of the Transaction Da	ita
	Set D of Table 6.1	

itemset	TID_set
11	[T100, T400, T500, T700, T800, T900]
12	[T100, T200, T300, T400, T600, T800, T900]
13	[T300, T500, T600, T700, T800, T900]
14	[T200, T400]
15	{T100, T800}

Table 6.4 2-Itemsets in Vertical Data Format

itemset	TID_set
[11, 12]	(T100, T400, T800, T900)
{11, 13}	[T500, T700, T800, T900]
(11, 14)	(T400)
(11, 15)	(T100, T800)
[12, 13]	[T300, T600, T800, T900]
{12, 14}	(T200, T400)
(12, 15)	(T100, T800)
(13, 15) -	(T800) /

Table 6.5 3-Itemsets in Vertical Data Format

itemset	TID_set
(11, 12, 13)	(T800, T900)
(11, 12, 15)	(T100, T800)