Построение автомата для результата операции над языками

для выполнения домашнего задания №9

Содержание

Введение 1 Прежде чем строить новый автомат 1 **Объединение** $L(M) \cup L(M')$ 1 1 **Конкатенация** L(M)L(M')2 Положительная итерация $L(M)^+$ 2 3 Итерация $L(M)^*$ $\mathbf{2}$ Дополнение $\sim L(M)$ 2 Пересечение $L(M) \cap L(M')$ 3

Введение

В дальнейшем предполагаем, что заданы два автомата

$$M = (Q, \Sigma, P, S, F),$$

 $M' = (Q', \Sigma', P', S', F')$

для построения результата бинарной операции, или один автомат

$$M = (Q, \Sigma, P, S, F)$$

для построения результата унарной операции.

Прежде чем строить новый автомат

При построении результата бинарной операции удостоверьтесь, что $Q \cap Q' = \emptyset$. Если это не так, то совпадающие символы состояний одного из автоматов следует переименовать.

1 Объединение $L(M) \cup L(M')$

- 1. $Q'' = Q \cup Q';$
- 2. $\Sigma'' = \Sigma \cup \Sigma'$;

- 3. $P'' = P \cup P'$;
- 4. $S'' = S \cup S'$:
- 5. $F'' = F \cup F'$;
- 6. Результат автомат $M'' = (Q'', \Sigma'', P'', S'', F'')$.

2 Конкатенация L(M)L(M')

- 1. $Q'' = Q \cup Q';$
- 2. $\Sigma'' = \Sigma \cup \Sigma'$;
- 3. $P_1'' = \{qa \to r \mid q \in F, \ q'a \to r \in P', \ q' \in S'\};$
- 4. $P'' = P \cup P' \cup P_1''$;
- 5. Если $S' \cap F' \neq \emptyset$, $F'' = F \cup F'$, иначе F'' = F';
- 6. Результат автомат $M'' = (Q'', \Sigma'', P'', S, F'')$.

3 Положительная итерация $L(M)^+$

- 1. $P_1'' = \{qa \to r \mid q \in F, \ q'a \to r \in P, \ q' \in S\};$
- 2. $P'' = P \cup P_1''$;
- 3. Результат автомат $M'' = (Q, \Sigma, P'', S, F)$.

4 Итерация $L(M)^*$

- $1. \ Q''=Q\cup \{X\},\, X\notin Q;$
- $2. \ P_1''=\{qa\rightarrow r\mid q\in F,\ q'a\rightarrow r\in P,\ q'\in S\};$
- 3. $P'' = P \cup P_1''$;
- 4. $S'' = S \cup \{X\};$
- 5. $F'' = F \cup \{X\};$
- 6. Результат автомат $M'' = (Q'', \Sigma, P'', S'', F'')$.

5 Дополнение $\sim L(M)$

- 1. Построить КДА $M'' = (Q'', \Sigma, P'', q_0, F'')$ для языка L(M);
- 2. F''' = Q'' F'';
- 3. Результат автомат $M''' = (Q'', \Sigma, P'', S'', F''')$.

6 Пересечение $L(M) \cap L(M')$

- 1. Построить автомат $M_1=(Q_1,\Sigma_1,P_1,S_1,F_1)$ для объединения языков $L(M)\cup L(M')$ так, как это показано в разделе 1;
- 2. построить КДА $M'' = (Q'', \Sigma_1, P'', q_0, F'')$ для языка $L(M_1)$;
- 3. Построить множество $F''' = \{q \in Q'' \mid q \cap F \neq \varnothing, \ q \cap F' \neq \varnothing\};$
- 4. Результат автомат $M''' = (Q'', \Sigma_1, P'', q_0, F''')$.