非共振受迫振动的推导

Thursday, May 18, 2023 2:12 PM

1) Duffing 方程的一件关振受人振动,
\mathbb{RP} : $\mathbb{X} + \mathbb{W}^{2}(\mathbb{X} + \mathbb{E} \mathbb{X}^{3}) = \mathbb{F} \text{ os } \mathbb{W}$
可分: $\ddot{\chi} + w_o^2(\chi + \xi \chi^3) = F$ os wt 可分: $\ddot{\chi} + w_o^2 \chi = F(t) + \xi f(\chi \dot{\chi}), $
$\begin{cases} \dot{x} + \omega_0^2 x_0 = F(t) \end{cases}$
则的辨如 $\dot{X}_1 + W_0^2 X_1 = f(x_0, \dot{X}_0)$
$\ddot{\chi}_{2} + \omega_{0}^{2} \chi_{2} = \chi_{1} \frac{\partial f(x_{0}, \dot{x}_{0})}{\partial x} + \dot{\chi}_{1} \frac{\partial f(x_{0}, \dot{x}_{0})}{\partial \dot{x}}$
$\mathbb{R}_{1} \times (t, \varepsilon) = X(t) + \mathcal{E}_{X_{1}}(t) + \mathcal{E}_{X_{2}}(t) + \cdots$
l V
国际将上去分解: X + WoX = F oswt - EwoX3
六有:X此一WoX3,
P:1:司事出为:
Xotwo Xo= Forsint
$\dot{X}_1 + \omega_0^2 X_1 = -\omega_0^2 X_0^3$
X2+ W2X2= -3 W2X2 X1
而塞次近似方程为伐性系统的受迫振动方程:为;
X = A cos (wt+ A.) + A cos wf,
/ In F
~ 第一次: 自由振动 Wo²-W²
第二项: 受迫振动