SIGNAL ANALYSIS AND PROCESSING

Module overview

Prof. L. Gelman

Module Main Content

 This module is concerned with the main fundamental algorithms which form the basis of signal analysis and processing

Digital signals will be considered

Module Structure

The module is divided into:

- a lectured part
- practical sessions
- The lectured part covers the main topics of signal analysis and processing theory
- Tasks in practical sessions will be related to algorithms discussed in module lectures

The Lectured Part: Overview

☐ Classical part of signal analysis and processing 50%

☐ Advanced part of signal analysis and processing 50%

Module Assignment

- Answers to assignment questions should be reported and graphs, displaying the answers, should be shown
- It forms part of the assessment for this module

Module: Industrial Applications

- **□** Vibro-acoustic monitoring for:
- Rotating machinery (e.g. gas and steam turbines, air compressors, gearboxes. etc.)
- Reciprocating machinery (e.g. diesels, reciprocating pumps, etc.)
- Off-shore pipelines
- **□** Fatigue and damping monitoring for:
- Rotating machinery
- Gearboxes
- Materials (e.g. metals, composites, etc.)

Module: Industrial Applications

Digital signal processing for:

- ☐ Radar systems
- **□** Sonar systems (i.e. underwater acoustics)
- **☐** Telecommunication
- **☐** Mobile phones
- ☐ Biomedical engineering

Module: Industrial Support

- The module will be supported by ongoing research and development for industrial projects
- MSc projects will be performed in frames of industrial projects funded by industrial partners, including collaboration with industrial partners, experiments at industrial sites and processing of data from experimental trials.
- It is a possibility to obtain an industrial experience through MSc projects and establish useful links with industrial partners.