STAT 154 Lab 7: Lasso

Yuansi Chen and Raaz Dwivedi

Apr 1, 2019

1 Derivations with one-dimensional Lasso (Slide 6 of Lec 17)

2 LASSO vs ridge picture

Recall the picture trying to explain why ℓ_1 regularization leads to sparsity, while ℓ_2 regularization does not. (Figure 3.11 in ESL book) In this problem, first we try to understand the details of this picture.

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.

The mean squared error (MSE) on the training set in the linear regression problem with $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{y} \in \mathbb{R}^n$ (n > d) is

$$R(\beta) = \frac{1}{n} \sum_{i=1}^{n} (x_i^{\top} \beta - y_i)^2 = \frac{1}{n} \|\mathbf{X}\beta - \mathbf{y}\|_2^2.$$

Recall that $\hat{\beta}_{OLS} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$. The LASSO estimator $\hat{\beta}_{LASSO}$ is the minimizer of the following minimizer of the following minimizer.

mization problem

$$\min_{\beta} \left\| \mathbf{X} \beta - \mathbf{y} \right\|_{2}^{2} + \lambda_{\text{LASSO}} \left\| \beta \right\|_{1}, \tag{1}$$

and the ridge estimator $\hat{\beta}_{\text{ridge}}$ denotes the minimizer of the following minimization problem

$$\min_{\beta} \|\mathbf{X}\beta - \mathbf{y}\|_{2}^{2} + \lambda_{\text{ridge}} \|\beta\|_{2}^{2}. \tag{2}$$

1. First we show that the level sets of the training loss are indeed **ellipsoids** centered at the training loss minimizer $\hat{\beta}$. Show that for any $\beta \in \mathbb{R}^d$, we have

$$R(\beta) = \frac{1}{n} \left(\beta - \hat{\beta}_{\text{OLS}} \right)^{\top} \mathbf{X}^{\top} \mathbf{X} \left(\beta - \hat{\beta}_{\text{OLS}} \right) + R(\hat{\beta}_{\text{OLS}}).$$

- 2. Give an expression for the set of β for which the empirical risk exceeds $R(\hat{\beta}_{OLS})$ by an amount c > 0. If **X** is full rank, then $\mathbf{X}^{\top}\mathbf{X}$ is positive definite, and this set is an ellipsoid. What is its center?
- 3. We now show that why it is conceptually okay to consider the constrained formulation of LASSO/Ridge. Show that for any $\lambda_{\rm LASSO} > 0$, there exists $\mu_{\rm LASSO}$ such that the LASSO problem (1) is equivalent to the following minimization problem,

$$\min_{\beta} \|\mathbf{X}\beta - \mathbf{y}\|_{2}^{2}$$

such that $\|\beta\|_{1} \le \mu_{\text{LASSO}}$.

Show that a similar result holds for ridge regression. We can solve this problem without introducing the Lagrange multipliers.

- 4. Show that $\beta = 0$ is the optimal Lasso estimator if $\lambda \geq ||X\theta y||_{\infty}$.
- 5. When is $\beta = 0$ optimal for ridge regression?

We now see some comparisons between Lasso and Ridge.

- 4. What do the ridge regression coefficients look like when two feature columns $\mathbf{X}_{.j}$ and $\mathbf{X}_{.k}$ are identical?
- 5. What do the Lasso coefficients look like when two feature columns \mathbf{X}_{ij} and \mathbf{X}_{ik} are identical?

3 Discussion with Kernel Ridge Regression

4 Fun with OLS/Lasso

Glmnet is a package that fits a generalized linear model via penalized maximum likelihood. The regularization path is computed for the lasso or elasticnet penalty at a grid of values for the regularization parameter lambda. The algorithm is fast, and can exploit sparsity in the input matrix \mathbf{X} .

glmnet solves the following minimization problem under option family="gaussian".

$$\min_{\beta} \frac{1}{n} \left\| \mathbf{X}\beta - \mathbf{y} \right\|_{2}^{2} + \lambda \left[(1 - \alpha) \left\| \beta \right\|_{2}^{2} / 2 + \alpha \left\| \beta \right\|_{1} \right].$$

Try ridge and LASSO with **glmnet** in the following simulation settings. True model $\mathbf{y} = \mathbf{X}\beta^* + \boldsymbol{\epsilon}$. Plot the training MSE v.s. CV MSE as a function of regularization parameter λ .

1.
$$\beta^* = (10, 10, 5, 5, \underbrace{1, \dots, 1}_{10}, 0, \dots, 0)^{\top}, d = 50 < n = 100.$$
X with entries i.i.d normal. $\epsilon \sim \mathcal{N}(0, \mathbb{I})$.

```
library(glmnet)
library(MASS)
set.seed(123456)
d <- 50
n <- 100
ntest <- 200
X <- matrix(rnorm(d*n), ncol=d)
Xtest <- matrix(rnorm(d*ntest), ncol=d)
epsilon <- as.vector(rnorm(n))
epsilontest <- as.vector(rnorm(ntest))
betastar <- as.vector(rep(0, d))</pre>
```

2. $\beta^* = (10, 10, 5, 5, \underbrace{1, \dots, 1}_{10}, 0, \dots, 0)^{\top}, d = 50 < n = 100. Cov(\mathbf{X})_{ij} = (0.7)^{|i-j|}. \epsilon \sim \mathcal{N}(0, \mathbb{I}).$

```
set.seed(123456)
d <- 50
n <- 100
ntest <- 20
CovMatrix <- outer(1:d, 1:d, function(x,y) {.7^abs(x-y)})
X <- as.matrix(mvrnorm(n, rep(0,d), CovMatrix))</pre>
```

- 3. $\beta^* = (\underbrace{1, \dots, 1}_{15}, 0, \dots, 0)^\top, d = 5000 > n = 1000.$ **X** with entries i.i.d normal. $\epsilon \sim \mathcal{N}(0, \mathbb{I})$.
- 4. $\beta^* = (\underbrace{1, \dots, 1}_{1500}, 0, \dots, 0)^\top$, d = 5000 > n = 1000. **X** with entries i.i.d normal. $\epsilon \sim \mathcal{N}(0, \mathbb{I})$.