Robust Weighting and Matching Techniques for Causal Inference in Observational Studies with Continuous Treatment

Universität Stuttgart

Ioan Scheffel

October 28, 2022

Contents

1	Introduction	2
2	Chapter One Title	3
3	Convex Analysis	9
4	Random Matrix Inequality	11
5	Simple yet useful Calculations	12

Chapter 1 Introduction

Chapter One Title

Assumption 1. Assume, the following conditions hold:

- **1.1.** The minimizer $\lambda_0 = \arg\min_{\lambda \in \Theta} \mathbb{E}\left[-Tn\rho\left(B(X)^T\lambda\right) + B(X)^T\lambda\right]$ is unique, where $\Theta \subseteq \mathbb{R}^n$ is the parameter space for λ .
- **1.2.** The parameter space $\Theta \subseteq \mathbb{R}^n$ is compact.
- **1.3.** $\lambda_0 \in int(\Theta)$, where $int(\cdot)$ stands for the interior of a set.
- **1.4.** There exists $\lambda_1^* \in \Theta$ such that $\|m^*(\cdot) B(\cdot)^T \lambda_1^*\|_{\infty} \leq \varphi_{m^*}$, where $m^*(\cdot) := (\rho')^{-1} \left(\frac{1}{n\pi(\cdot)}\right)$.
- **1.5.** There exists a constant $\varphi_{\pi} \in (0, \frac{1}{2})$ such that $\pi(x) \in (\varphi_{\pi}, 1 \varphi_{\pi})$ for all $x \in \mathcal{X}$
- **1.6.** There exists $\varphi_{\rho''} > 0$ such that $-\rho'' \ge \varphi_{\rho''} > 0$
- **1.7.** There exists $\varphi_{B(x)B(x)^T} > 0$ such that $B(x)B(x)^T \succcurlyeq \varphi_{B(x)B(x)^T}I$
- **1.8.** There exists $\varphi_{\|B\|} > 0$ such that $\sup_{x \in \mathcal{X}} \|B(x)\|_2 \le \varphi_{\|B\|}$.

We study the following problem:

$$\underset{w \in \mathbb{R}^n}{\text{minimize}} \qquad \sum_{i=1}^n T_i f(w_i)
\text{subject to} \left| \sum_{i=1}^n w_i T_i B_k(X_i) - \frac{1}{n} \sum_{i=1}^n B_k(X_i) \right| \le \delta_k, \ k = 1, \dots, K$$
(2.1)

We aim to prove that the solution to Problem (2.1) is asymptotical consistent with the propensity score, i.e.

Theorem 2.1. Under some (non-optimal) Assumptions, there exist constants $c_1, c_2 > 0$ and decreasing sequences $(\varepsilon_n^1), (\varepsilon_n^2) \subset (0, 1]$ that converge to 0 such that for all $\tau \in (0, 1]$ there exists a constant $c_\tau \in [0, \infty)$ only depending on τ such that for all $n \geq 1$ and $\tau \in (0, 1]$ it holds

$$\mathbb{P}\left(\left\|w_i^* - \frac{1}{n\pi(X_i)}\right\|_{\infty} \le c_1 c_{\tau} \varepsilon_n^1\right) \ge 1 - \tau,
\left\|w_i^* - \frac{1}{n\pi(X_i)}\right\|_{\mathbb{P}.2} \le c_2 \varepsilon_n^2,$$

where w^* is the solution to Problem (2.1).

Plan of Proof

It is easier to study the dual of Problem (2.1). Thus we employ results from convex analysis [1] to establish

Proposition 2.1. The dual of Problem (2.1) is equivalent to the unconstrained optimization problem

$$\underset{\lambda \in \mathbb{R}^K}{minimize} \quad \frac{1}{n} \sum_{j=1}^{n} \left[-T_j n \rho \left(B(X_j)^T \lambda \right) + B(X_j)^T \lambda \right] + |\lambda|^T \delta, \tag{2.2}$$

where $B(X_j) = (B_k(X_j))_{1 \le k \le K}$ denotes the K basis functions of the covariates, $\rho(t) := \frac{t}{n} - t(h')^{-1}(t) + h((h')^{-1}(t))$ with $h(x) := f(\frac{1}{n} - x)$ and $|\lambda| := (|\lambda_k|)_{1 \le k \le K}$. Moreover, the primal solution w_j^* satisfies

$$w_j^* = \rho' \left(B(X_j)^T \lambda^{\dagger} \right) \tag{2.3}$$

for j = 1, ..., n, where λ^{\dagger} is the solution to the dual optimization problem.

The core of the subsequent analysis is based on Assumption 1.4, i.e. the existence of an oracle parameter λ_1^* in a sieve estimate of the true propensity score (or a transformation). It is then natural to enquire about the convergence of the dual solution λ^{\dagger} to λ_1^* . Making certain assumptions and employing matrix concentration inequalitys [2] we can establish

Proposition 2.2. Under some (non-optimal) Assumptions, there exists a constant $c_3 > 0$ and a decreasing sequence $(\varepsilon_n^3) \subset (0,1]$ that converges to 0 such that for all $\tau \in (0,1]$ there exists a constant $\tilde{c_\tau} \in [0,\infty)$ only depending on τ such that for all $n \geq 1$ and $\tau \in (0,1]$ it holds

$$\mathbb{P}\left(\left\|\lambda^{\dagger} - \lambda_1^*\right\|_2 \le c^3 \tilde{c_{\tau}}(\varepsilon_n^3)\right) \ge 1 - \tau. \tag{2.4}$$

It is then straightforward to prove a more general result then Theorem 2.1.

Theorem 2.2. Under some (non-optimal) Assumptions, there exist constants $c_1, c_2 > 0$ and decreasing sequences $(\varepsilon_n^1), (\varepsilon_n^2) \subset (0, 1]$ that converge to 0 such that for all $\tau \in (0, 1]$ there exists a constant $c_\tau \in [0, \infty)$ only depending on τ such that for all $n \geq 1$ and $\tau \in (0, 1]$ it holds

$$\mathbb{P}\left(\left\|w^*(\cdot) - \frac{1}{n\pi(\cdot)}\right\|_{\infty} \le c_1 c_{\tau} \varepsilon_n^1\right) \ge 1 - \tau,$$
$$\left\|w^*(X) - \frac{1}{n\pi(X)}\right\|_{\mathbb{P},2} \le c_2 \varepsilon_n^2,$$

where $w^*(X)$ is as in (2.3) without the index.

Proof of theorem 2.2

Proof. Motivated by Proposition 5.1 we set $\|\Delta\|_2 = C$ and consider

$$G(\lambda) := \frac{1}{n} \sum_{j=1}^{n} \left[-T_j n \rho \left(B(X_j)^T \lambda \right) + B(X_j)^T \lambda \right] + |\lambda|^T \delta.$$
 (2.5)

Since $\rho \in C^2(\mathbb{R})$ we can employ Proposition 5.1, Corollary 5.1.1 and Proposition 5.2 to get

$$G(\lambda_{1}^{*} + \Delta) - G(\lambda_{1}^{*})$$

$$\geq \frac{1}{n} \sum_{j=1}^{n} \left[-T_{j} n \rho' \left(B(X_{j})^{T} \lambda_{1}^{*} \right) + 1 \right] \Delta^{T} B(X_{j})$$

$$+ \frac{1}{2} \sum_{j=1}^{n} -T_{j} \rho'' \left(B(X_{j})^{T} (\lambda_{1}^{*} + \xi \Delta) \right) \Delta^{T} \left(B(X_{j}) B(X_{j})^{T} \right) \Delta$$

$$- |\Delta|^{T} \delta$$

$$\geq - \|\Delta\|_{2} \left(\left\| \frac{1}{n} \sum_{j=1}^{n} \left[-T_{j} n \rho' \left(B(X_{j})^{T} \lambda_{1}^{*} \right) + 1 \right] B(X_{j}) \right\|_{2} + \|\delta\|_{2} \right)$$

$$+ n \|\Delta\|_{2}^{2} \varphi_{\rho''} \underline{\varphi_{aa^{T}}}$$

$$:= - \|\Delta\|_{2} (I_{1} + \|\delta\|_{2}) + \|\Delta\|_{2}^{2} I_{2}.$$

$$(2.6)$$

The second inequality is due to the Cauchy-Schwarz-Inequality and Assumptions 1.6 and 1.7 .

Analysis of I_1

We want to use Assumption 1.3. Thus we perform the following split:

$$I_{1} \leq \left\| \sum_{j=1}^{n} T_{j} \left[\rho' \left(B(X_{j})^{T} \lambda_{1}^{*} \right) - \frac{1}{n\pi(X_{j})} \right] B(X_{j}) \right\|_{2}$$
 (2.7)

$$+ \left\| \frac{1}{n} \sum_{j=1}^{n} \left[\frac{T_j}{\pi(X_j)} - 1 \right] B(X_j) \right\|_{2}$$
 (2.8)

$$=: J_1 + J_2$$
 (2.9)

Analysis of J_1

By the Lipschitz-continuity of ρ' , Assumption 1.8 and Assumption 1.4, $T \in \{0,1\}$ and the triangle inequality we have

$$J_1 \le nL_{\rho'}\varphi_{\parallel B(x)\parallel}\varphi_{m^*} \tag{2.10}$$

Analysis of J_2

We employ Bernstein Inequality for matrices To this end we define

$$A_j := \frac{1}{n} \left[\frac{T_j}{\pi(X_j)} - 1 \right] B(X_j) \tag{2.11}$$

 $\mathbb{E}A_j = 0$

It holds

$$\mathbb{E}\left[\frac{T_j}{\pi(X_j)}B(X_j)\right] = \mathbb{E}\left[\mathbb{E}\left[T_j \mid X_j\right] \frac{1}{\pi(X_j)}B(X_j)\right] = \mathbb{E}[B(X_j)]. \tag{2.12}$$

Thus $\mathbb{E}[A_j] = 0$.

 \mathbf{L}

Since

$$\left| \frac{T_j}{\pi(X_j)} - 1 \right| \le 1 + \frac{1 - \varphi_\pi}{\varphi_\pi} = \frac{1}{\varphi_\pi} \tag{2.13}$$

by Assumption 1.5, we can employ Assumption 1.8 to get

$$||A_j||_2 \le \frac{\varphi_{||B||}}{n\omega_{\pi}} =: L. \tag{2.14}$$

v(S)

Since

$$\mathbb{E}\left[A_j A_j^T\right] \le \left(\frac{1}{n\varphi_\pi}\right)^2 \mathbb{E}\left[B(X)B(X)^T\right] \tag{2.15}$$

and

$$\mathbb{E}\left[A_j^T A_j\right] \le \left(\frac{\varphi_{\parallel B\parallel}}{n\varphi_{\pi}}\right)^2 \tag{2.16}$$

we have

$$v(S) \le \frac{|\lambda_{\max}| + \varphi_{\parallel B\parallel}^2}{n\varphi_{\pi}^2},\tag{2.17}$$

where λ_{max} is the maximal eigenvalue of $\mathbb{E}\left[B(X)B(X)^T\right]$. Then by Bernsteins inequality 4.1 we get

$$\mathbb{E}[J_2] \le \sqrt{\frac{2\log(K+1)\left(|\lambda_{\max}| + \varphi_{\parallel B\parallel}^2\right)}{n\varphi_{\pi}^2} + \frac{\log(K+1)\varphi_{\parallel B\parallel}}{3n\varphi_{\pi}}}$$
(2.18)

and by the Markov-inequality

$$\mathbb{P}\left(J_2 \le \frac{1}{\tau}\mathbb{E}[J_2]\right) \ge 1 - \tau \tag{2.19}$$

Finish

If we choose for $\gamma > 0$

$$\|\Delta\|_{2} = \frac{\frac{1}{\tau}\mathbb{E}[J_{2}] + nL_{\rho'}\varphi_{\|B(x)\|}\varphi_{m^{*}} + \|\delta\|_{2}}{\varphi_{\rho''}\underline{\varphi_{BB^{T}}}}(1+\gamma)$$
 (2.20)

$$=: C \tag{2.21}$$

we have

$$\mathbb{P}\left(\left\|\lambda^{\dagger} - \lambda_1^*\right\|_2 \le C\right) = \mathbb{P}\left(\inf_{\left\|\Delta\right\|_2 = C} G(\lambda_1^* + \Delta) - G(\lambda_1^*) > 0\right) \tag{2.22}$$

$$\geq 1 - \tau \tag{2.23}$$

Finish 2

$$\left\| w^*(X) - \frac{1}{n\pi(X)} \right\|_{\mathbb{P}^2} \le L_{\rho'} \left[\left\| B(X)^T \left(\lambda^{\dagger} - \lambda_1^* \right) \right\|_{\mathbb{P},2} \right]$$
 (2.24)

+
$$\|m^*(X) - B(X)^T \lambda_1^*\|_{\mathbb{P},2}$$
 (2.25)

$$\leq L_{\rho'} \left(\varphi_{\parallel B \parallel} \sqrt{C^2 (1-\tau) + \operatorname{diam}(\Theta)^2 \tau} + \varphi_{m^*} \right) (2.26)$$

$$\left\| w^*(\cdot) - \frac{1}{n\pi(\cdot)} \right\|_{\infty} \le L_{\rho'} \left[\left\| B(\cdot)^T \left(\lambda^{\dagger} - \lambda_1^* \right) \right\|_{\infty} \right]$$
 (2.27)

$$+ \left\| m^*(\cdot) - B(\cdot)^T \lambda_1^* \right\|_{\infty}$$
 (2.28)

$$\leq L_{\rho'} \left(\varphi_{\parallel B \parallel} C + \varphi_{m^*} \right) \tag{2.29}$$

with probabitity greater than $1-\tau$.

Convex Analysis

We begin by defining convex sets

Definition 3.1. A subset $\Omega \subseteq \mathbb{R}^n$ is called CONVEX if we have $\lambda x + (1 - \lambda)y \in \Omega$ for all $x, y \in \Omega$ and $\lambda \in (0, 1)$.

Clearly, the line segment $[a, b] := \{\lambda a + (1 - \lambda)b \mid \lambda \in [0, 1]\}$ is contained in Ω for all $a, b \in \Omega$ if and only if Ω is a convex set.

Next we define convex functions.

The concept of convex functions is closely related to convex sets.

The line segment between two points on the graph of a convex function lies on or above and does not intersect the graph.

In other words: The area above the graph of a convex function f is a convex set, i.e. the *epigraph* $\operatorname{epi}(f) := \{(x, \alpha) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \leq \alpha\}$ is a convex set in \mathbb{R}^{n+1} .

Often an equivalent characterisation of convex functions is more useful.

Theorem 3.1. The convexity of a function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ on \mathbb{R}^n is equivalent to the following statement:

For all $x, y \in \mathbb{R}^n$ and $\lambda \in (0, 1)$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y). \tag{3.1}$$

Definition 3.2. proper convex function

Definition 3.3. convex conjugate

Given proper convex functions $f, g : \mathbb{R}^n \to \overline{\mathbb{R}}$ and a matrix $A \in \mathbb{R}^{n \times n}$, we define the primal minimization problem as follows:

minimize
$$f(x) + g(Ax)$$
 subject to $x \in \mathbb{R}^n$. (3.2)

The Fenchel dual problem is then

maximize
$$-f^*(A^Ty) - g^*(-y)$$
 subject to $y \in \mathbb{R}^n$. (3.3)

Theorem 3.2. Let $f,g: \mathbb{R}^n \to \overline{\mathbb{R}}$ be proper convex functions and $0 \in ri(dom(g) - A(dom(f)))$. Then the optimal values of (3.2) and (3.3) are equal, i.e.

$$\inf_{x \in \mathbb{R}^n} \{ f(x) + g(Ax) \} = \sup_{y \in \mathbb{R}^n} \{ -f^* (A^T y) - g^*(-y) \}.$$
 (3.4)

Random Matrix Inequality

Theorem 4.1. Let $(A_k)_{1 \leq k \leq n} \subseteq \mathbb{R}^{d_1 \times d_2}$ be a finite sequence of independent, random matrices. Assume that

$$\mathbb{E}(A_k) = 0 \quad and \quad ||A_k|| \le L \quad for \ each \quad k \in \{1, \dots, n\}. \tag{4.1}$$

Introduce the random matrix

$$S := \sum_{k=1}^{n} A_k. \tag{4.2}$$

Let v(S) be the matrix variance statistic of the sum:

$$v(S) := \max \left\{ \left\| \mathbb{E}(SS^T) \right\|, \left\| \mathbb{E}(S^TS) \right\| \right\}$$

$$(4.3)$$

$$= \max \left\{ \left\| \sum_{k=1}^{n} \mathbb{E}(A_k A_k^T) \right\|, \left\| \sum_{k=1}^{n} \mathbb{E}(A_k^T A_k) \right\| \right\}. \tag{4.4}$$

Then

$$\mathbb{E} \|S\| \le \sqrt{2v(S)\log(d_1 + d_2)} + \frac{1}{3}L\log(d_1 + d_2). \tag{4.5}$$

Furthermore, for all $t \geq 0$,

$$\mathbb{P}(\|S\| \ge t) \ge (d_1 + d_2) \exp\left(\frac{-t^2/2}{v(S) + Lt/3}\right). \tag{4.6}$$

Simple yet useful Calculations

Proposition 5.1. Let $f: \mathbb{R}^n \to \mathbb{R}$ be continuous such that a minimum x^* exists and is unique. Then for all $y \in \mathbb{R}^n$ and C > 0 it follows

$$\inf_{\|\Delta\|=C} f(y+\Delta) - f(y) > 0 \qquad \Rightarrow \qquad \|x^* - y\| \le C. \tag{5.1}$$

Proof. Since $\mathcal{C} := \{ \|\Delta\| \leq C \}$ is compact and

$$f(x^*) \le f(y) < \inf_{\|\Delta\| = C} f(y + \Delta),$$

the continious function $f(y + \cdot)$ has a minimum in $\operatorname{int}(\mathcal{C}) := \{ \|\Delta\| < C \}$. Since x^* is the unique minimum of f there exists $\Delta^* \in \operatorname{int}(\mathcal{C})$ such that $x^* - y = \Delta^*$. We conclude that $\|x^* - y\| \le C$.

Theorem 5.1. (Multivariate Taylor Theorem) Let $f \in C^2(\mathbb{R}^n, \mathbb{R})$. Then for all $x, \Delta \in \mathbb{R}^n$ there exists $\xi \in [0,1]$ such that it holds

$$f(x + \Delta) = f(x) + \sum_{i=1}^{n} \frac{\partial f(x)}{\partial x_i} \Delta_i + \sum_{\substack{i,j=1\\i \neq j}} \frac{\partial^2 f(x + \xi \Delta)}{\partial x_i \partial x_j} \Delta_i \Delta_j$$

$$+ \frac{1}{2} \sum_{i=1}^{n} \frac{\partial^2 f(x + \xi \Delta)}{\partial x_i^2} \Delta_i^2$$
(5.2)

Corollary 5.1.1. Let $f \in C^2(\mathbb{R})$. Then for all $a, x, \Delta \in \mathbb{R}^n$ there exist $\xi \in [0, 1]$ such that it holds

$$f(a^{T}(x+\Delta)) - f(a^{T}x) = f'(a^{T}x) \Delta^{T}a + \frac{1}{2}f''(a^{T}(x+\xi\Delta)) \Delta^{T}A \Delta, \quad (5.3)$$
where $A := aa^{T} \in \mathbb{R}^{n \times n}$.

Proof. By the chain rule we have for all $a, x, \Delta \in \mathbb{R}^n$ and $\xi \in [0, 1]$

$$\frac{\partial^2 f(a^T(x+\xi\Delta))}{\partial x_i \partial x_j} = f''(a^T(x+\xi\Delta)) a_i a_j.$$
 (5.4)

Since $A := aa^T$ is symmetric we have

$$\Delta^T A \ \Delta = 2 \sum_{\substack{i,j=1\\i\neq j}}^n a_i a_j \Delta_i \Delta_j + \sum_{i=1}^n a_i^2 \Delta_i^2.$$
 (5.5)

Plugging (5.4) and (5.5) into (5.2) yields (5.3).

Proposition 5.2. For all $x, y \in \mathbb{R}$ it holds

$$|x+y| - |x| \ge -|y| \tag{5.6}$$

Proof. Checking all 6 combinations of x+y, x, y being nonnegative or negative yields the result.

Bibliography

- [1] Boris S. Mordukhovich and Nguyen Mau Nam. ENHANCED CALCU-LUS AND FENCHEL DUALITY. In Boris S. Mordukhovich and Nguyen Mau Nam, editors, *Convex Analysis and Beyond: Volume I: Basic The-ory*, Springer Series in Operations Research and Financial Engineering, pages 255–310. Springer International Publishing, Cham, 2022.
- [2] Joel A. Tropp. An Introduction to Matrix Concentration Inequalities, January 2015.