DEPENDENCE LOGIC WITH GENERALIZED QUANTIFIERS: AXIOMATIZATIONS

Wollic 2013, Darmstadt

Fredrik Engström, Juha Kontinen, and Jouko Väänänen

August 21, 2013

DEPENDENCE LOGIC

$\forall x \exists y \forall z \exists w Rxyzw$

Axiomatizations

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} Rxyzw$$

$$\forall z \quad \forall x \\ \downarrow \quad \downarrow \\ \exists w \quad \exists v$$

Domain $\{0,1\}$. $\forall x \exists y \forall z \exists w Rxyzw$

Domain $\{0,1\}$. $\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix}$ Rxyzw

$$\frac{x \quad y \quad z \quad w}{0 \quad 0 \quad 0 \quad 1}$$

$$0 \quad 0 \quad 1 \quad 0$$

$$1 \quad 1 \quad 0 \quad 0$$

$$1 \quad 1 \quad 1 \quad 0$$

$$\frac{x \quad y \quad z \quad w}{0 \quad 0 \quad 0 \quad 1}$$

$$0 \quad 0 \quad 0 \quad 1$$

$$0 \quad 0 \quad 1 \quad 0$$

$$1 \quad 1 \quad 0 \quad 1$$

$$1 \quad 1 \quad 1 \quad 0$$

$$\begin{pmatrix} \forall x \exists y \\ \forall z \exists w \end{pmatrix} Rxyzw \equiv \forall x \exists y \forall z \exists w (=(z, w) \land Rxyzw)$$

DEFINITION

X a team = set of assignments.

GENERALIZED QUANTIFIERS

- ► Generalized quantifier: *Q* a class of structures (one unary relation).
- \blacktriangleright $M, s \models Qx \phi \text{ iff } (M, \phi^{M,s}) \in Q.$
- ▶ $Q_M = \{ R \mid (M, R) \in Q \}.$

- ▶ FO(Q) is FOL extended with expressions $Qx \phi$.
- ightharpoonup and \forall can be interpreted as generalized quantifiers.
- ▶ We will only consider (non-trivial) monotone increasing quantifiers: If $A \subseteq B$ and $A \in Q_M$ then $B \in Q_M$.
- $\qquad \qquad \check{Q} = \{ (M, R^c) \mid (M, R) \notin Q \}. \ \neg Qx \neg \phi \equiv \check{Q}x \phi.$

Dependence Logic with Q

- ▶ D(Q) is $\phi ::= \gamma \mid \phi \land \phi \mid \phi \lor \phi \mid \exists x \phi \mid \forall x \phi \mid Qx \phi$, γ an FO(Q) formula or dependence atom.
- ▶ $M \vDash \sigma \text{ iff } M, \{\emptyset\} \vDash \sigma.$
- ▶ $M, X \vDash \gamma$ if for all $s \in X$: $M, s \vDash \gamma$, γ an FO(Q) formula.
- $M, X \vDash \phi \land \psi \text{ iff } M, X \vDash \phi \text{ and } M, X \vDash \psi.$
- ▶ $M, X \vDash \phi \lor \psi$ iff there are $Y \cup Z = X$ such that $M, Y \vDash \phi$ and $M, Z \vDash \psi$.

QUANTIFIERS IN DEPENDENCE LOGIC

▶ $M, X \vDash Qx \phi$ iff there is $F: X \to Q_M$ such that $M, X[F/x] \vDash \phi$.

$$X[F/x] = \{ s[a/x] \mid s \in X, a \in F(s) \}.$$

Example: M, $\{s_0, s_1\} \models Qz Rxyz$

► Note: using set-valued *F*s corresponds to **non-deterministic** strategies.

Properties of Dependence Logic

- \blacktriangleright $M,\emptyset \models \phi$
- ▶ **Downwards closure**: If $Y \subseteq X$ and $M, X \models \phi$ then $M, Y \models \phi$.
- ► $D(Q) \equiv ESO(Q)$ (E / Kontinen)
- ▶ Branching of generalized quantifiers (p.o. quantifier prefixes) may be expressed in D(Q).

Theorem: Normal form for $D(Q, \check{Q})$ Every $D(Q, \check{Q})$ formula is equivalent to one of the form:

$$\mathcal{H}^1 x_1 \dots \mathcal{H}^m x_m \exists y_1 \dots \exists y_n \Big(\bigwedge_{1 \leq i \leq n} = (\overline{x}^i, y_i) \wedge \theta \Big),$$

where \mathcal{H}^i is either Q, \check{Q} or \forall , and θ is a quantifier-free FO formula.

AXIOMATIZATIONS

DEPENDENCE LOGIC

- ▶ Dependence relations can be axiomatized (Armstong).
- ▶ Dependence logic has the same strength as ESO.
- ▶ The relation $\Gamma \vDash \phi$ is not r.e.
- Restricting to ϕ 's without dependence atoms gives an r.e. entailment relation.
- ► An explicit axiomatization has been given by Kontinen and Väänänen.

IDEA:

- ► Construct a natural deduction system in which the normal form can be derived.
- ► Allow dependencies in normal forms to be replaced by **finite** approximations.
- ► Show that in enough models (recursively saturated) the set of finite approximations is equivalent to the original sentence.

Axiomatizing $D(Q, \widecheck{Q})$ I: General Rules

First: Some rules sound for **any interpretation** of *Q* (monotone increasing).

- ► Standard rules for $FO(Q, \check{Q})$ formulas.
- Standard rules for conjunction, existential quantifier, and universal quantifier.
- ► Commutativity, associativity and monotonicity of disjunction.
- ► Monotonicity, extending scope, and renaming of bound variables for *Q* and *Q*.
- ▶ Duality of \check{Q} with respect to FO(Q, \check{Q}) formulas.

Axiomatizing $D(Q, \widecheck{Q})$ II: Dependence related rules

► Unnesting:

$$\frac{=(t_1,...,t_n)}{\exists z (=(t_1,...,z,...,t_n) \land z=t_i)}$$

where z is a new variable.

► Dependence distribution:

$$\frac{\exists y_1 \dots \exists y_n (\bigwedge_{1 \leq j \leq n} = (\bar{z}^j, y_j) \land \phi) \lor \exists y_{n+1} \dots \exists y_m (\bigwedge_{n+1 \leq j \leq m} = (\bar{z}^j, y_j) \land \psi}{\exists y_1 \dots \exists y_m (\bigwedge_{1 \leq j \leq m} = (\bar{z}^j, y_j) \land (\phi \lor \psi))}$$

where ϕ and ψ are quantifier free FO formulas.

► Dependence introduction:

$$\frac{\exists x \,\mathcal{H} y \,\phi}{\mathcal{H} y \,\exists x (=(\bar{z},x) \land \phi)}$$

where \bar{z} lists the variables in $FV(\phi) - \{x, y\}$ and $\mathcal{H} \in \{\forall, Q, \widecheck{Q}\}$.

APPROXIMATIONS

Suppose σ is in normal form:

$$\mathcal{H}^1 x_1 \dots \mathcal{H}^m x_m \exists y_1 \dots \exists y_n \Big(\bigwedge_{1 \leq i \leq n} = (\overline{x}^i, y_i) \wedge \theta(\overline{x}, \overline{y}) \Big).$$

Let $A^k \sigma$ be

$$\forall \bar{x}_1 \exists \bar{y}_1 \dots \forall \bar{x}_k \exists \bar{y}_k \Big(\bigwedge_{1 \leq j \leq k} R(\bar{x}_j) \to \bigwedge_{1 \leq j \leq k} \theta(\bar{x}_j, \bar{y}_j) \land \\ \bigwedge_{\substack{1 \leq i \leq n \\ 1 \leq j, j' \leq k}} (\bar{x}_j^i = \bar{x}_{j'}^i \to y_{i,j} = y_{i,j'}) \Big)$$

Let $B\sigma$ be

$$\mathcal{H}^1 x_1 \dots \mathcal{H}^m x_m R(x_1, \dots, x_m).$$

Axiomatizing $D(Q, \widecheck{Q})$ III: The approximation rule

$$[B\sigma] \qquad [A^k\sigma]$$

$$\vdots$$

$$\frac{\sigma}{\psi} \qquad (Approx)$$

where σ is a sentence in normal form, and R does not appear in ψ nor in any uncancelled assumptions in the derivation of ψ , except for $B\sigma$ and $A^k\sigma$.

COMPLETENESS FOR WEAK SEMANTICS

Let $\Gamma \vDash_w \phi$ mean that $\Gamma \vDash \phi$ for any monotone increasing (non-trivial) interpretation of Q (and \widecheck{Q} is interpreted as the dual of the interpretation of Q).

THEOREM

This system is sound and complete wrt $\Gamma \vDash_{w} \phi$ where ϕ is FO(Q, \widecheck{Q}).

Uncountably many

- ▶ FO(Q_1) is axiomatizable, where Q_1 is "there exist uncountably many ...". (Kiesler)
- ► Add Keisler's rules for Q_1 .

Define the **Skolem translation** $S\sigma$ of σ in normal form to be:

$$\mathcal{H}^1 x_1 \dots \mathcal{H}^m x_m \theta(f_i(\bar{x}^i)/y_i).$$

► Replace the approximation rule with the following rule

$$\begin{array}{c}
[S\sigma] \\
\vdots \\
\frac{\sigma \quad \psi}{\psi} \text{ (Skolem)}
\end{array}$$

THEOREM

This system is sound and complete wrt $\Gamma \vDash \phi$ where ϕ is $FO(Q_1, \check{Q}_1)$.

Conclusion

Extending dependence logic with generalized quantifiers is a natural and **stable** extension.

- ► The satisfaction relation is naturally defined when moving to non-deterministic strategies.
- ▶ D(Q) properly extends both FO(Q) and D.
- ▶ D(Q) is equivalent to ESO(Q).
- ▶ $D(Q, \check{Q})$ has a prenex normal form theorem.
- ► Two completeness results:
 - ► First wrt to weak semantics.
 - ▶ Second wrt to Q_1 .
- ► Second result not fully satisfactory. Is it possible to get completeness for *Q*₁ using approximations instead of Skolem functions?

THANK YOU FOR YOUR ATTENTION.

BIBLIOGRAPHY

- Fredrik Engström. Generalized quantifiers in dependence logic. Journal of Logic, Language and Information, 21:299–324, 2012. ISSN 0925-8531.
- Fredrik Engström and Juha Kontinen. Characterizing quantifier extensions of dependence logic. Journal of Symbolic Logic, 78(1):307–316, 2013.
- Leon Henkin. Some remarks on infinitely long formulas. In Infinitistic Methods (Proc. Sympos. Foundations of Math., Warsaw, 1959), pages 167–183. Pergamon, Oxford, 1961.
- Wilfrid Hodges. Compositional semantics for a language of imperfect information. Logic Journal of IGPL, 5(4):539–563, 1997.
- H Jerome Keisler. Logic with the quantifier "there exist uncountably many". Annals of Mathematical Logic, 1(1):1–93, 1970.
- Juha Kontinen and Jouko Väänänen. Axiomatizing first-order consequences in dependence logic. Annals of Pure and Applied Logic, 164(11):1101-1117, 2013.
- Jouko Väänänen. Dependence logic, volume 70 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 2007. ISBN 978-0-521-70015-3; 0-521-70015-9. A new approach to independence friendly logic.