Category Theory notes

Mac Radigan

Kleisli Triple $(M, unit, \star)$

type constructor (M)

$$Mt$$
 (1)

 $\mathbf{unit} \ \mathbf{function} \ (unit)$

$$t \to (Mt)$$
 (2)

bind function (\star)

$$(Mt) \to (t \to (Mu)) \to (Mu)$$
 (3)

Monad Laws

left unit

unit
$$a \star \lambda b.m = n [a/b]$$
 (4)

right unit

$$m \star \lambda a$$
. unit $a = m$ (5)

associative

$$m \star (\lambda a.n \star \lambda b.o) = (m \star \lambda a.n) \star \lambda b.o \tag{6}$$

Category

A category **C** consists of

- a collection of objects: A , B , C , ...
- a collection of arrows: f , g , h , \dots
- for each arrow f objects dom(f) and cod(f) called the *domain* and codomain of f. If dom(f) = A and cod(f) = B, we also write $f: A \to B$,
- given $f:A\to B$ and $g:B\to C$, so that $\mathrm{dom}(g)=\mathrm{cod}(f),$ there is an arrow $g\circ f:A\to C$,
- an arrow $\mathbf{1}_A:A\to A$ for every object A of \mathbf{C} ,

such that

(Associative law) for every $f: A \to B, g: B \to C$ and $h: C \to C$ we have

$$h \circ (g \circ f) = (h \circ g) \circ f,$$

(Unit laws) for every $f: A \to B$ we have

$$f \circ \mathbf{1}_A = f = \mathbf{1}_B \circ f.$$

Composition

