Learning to Generalize to More: Continuous Semantic Augmentation for Neural Machine Translation

Xiangpeng Wei, Heng Yu, Yue Hu, Rongxiang Weng, Weihua Luo, Jun Xie, Rong Jin

Alibaba DAMO Academy, Chinese Academy of Sciences

 $(r_{\mathbf{x}} = \psi(\mathbf{x}; \Theta'))$

 $r_{\mathbf{y}} = \psi(\mathbf{y}; \Theta')$

 $s.t. r_x = r_y, \forall (x, y) \in (\mathcal{X}, \mathcal{Y})$

1. 背景介绍

> 机器翻译中的数据增强

- 离散空间中数据增强的困境:
- 一、离散空间中的数据增强**实例缺乏多样性**。
- 二、离散空间中的数据增强会破坏语句本意。
- · 核心idea:

从隐含语义的连续空间生成多样的训练数据

・主要挑战

- 一、是否可以在连续的语义空间中进行数据增强? 从 而最大程度保持语义的不变性。
- 二、如何有效和高效的从语义空间中生成多样性的训练数据?从而保证数据增强实例的多样性。

> 本文贡献

- 提出了一种**新的数据增强范式**CSANMT,该范式将邻接语义区域作为每个训练实例的邻接流形。
- 该方法属于插件式,不**受模型架构限制**。
- 在高、低资源机器翻译任务上都有效。特别的,在泛 化能力有限的训练数据下仍可生成更多不可见实例。 仅使用25%的训练数据即可达到基线模型效果。

2.本文提出方案

> 整体流程:

- **Stage1**: 从头预训练一个语义编码器 0′建模连续语义空间,将源句x和目标 句y分别转换为实值向量r_x和r_y
- **Stage2**: 对于每个句对,有一个邻近的语义区域 $v(r_x, r_y)$,从中采样一系列K个向量 \mathcal{R} ,集成在解码器中。

$$\mathcal{R} = \{\hat{r}^{(1)}, \hat{r}^{(2)}, \dots, \hat{r}^{(K)}\}, \qquad \hat{r}^{(K)} \sim v(r_x, r_y)$$
$$\hat{o}_t = W_1 \hat{r}^{(k)} + W_2 o_t + b$$

> 难点及方案:

• Q1: 如何优化语义编码器,使其为每个训练对产生一个有意义的邻接语义区域?——切线式对比学习

几何视角下的邻接语义区域 $v(r_x, r_y)$: 以 $r_{x^{(i)}}$ 和 $r_{y^{(i)}}$ 为中心的两个闭合球的并集。

$$J_{ctl}(\Theta') = \mathbb{E}_{(\mathbf{x}^{(l)}, \mathbf{y}^{(l)}) \sim \mathcal{B}}(log \frac{e^{s(r_{x^{(l)}}, r_{y^{(l)}})}}{e^{s(r_{x^{(l)}}, r_{y^{(l)}})} + \xi}) \qquad \xi = \sum_{i \in I-1}^{|B|} \left(e^{s(r_{y^{(l)}}, r_{y^{\prime(i)}})} + e^{s(r_{x^{(l)}}, r_{x^{\prime(l)}})} \right)$$

支性插值形成 困难负样本: $r_{x'(j)} = \begin{cases} r_{x^{(i)}} + \lambda_x \left(r_{x^{(j)}} - r_{x^{(i)}} \right), \lambda_x \in (d/d'_x, 1] & \text{if } d < d'_x \\ r_{x^{(i)}} & \text{if } d \ge d'_x \end{cases}$

• **Q2**:如何从邻接语义区域中有效且高效地获取样本?——混合高斯循环链采样

变换偏置向量产的范数和方向

$$\hat{r} = r_y - r_x$$

$$\hat{r} = r + \omega \odot \tilde{r}, \omega \in [-1,1]$$

采样即寻找一组(K个)尺度向量

Algorithm 1 MGRC Sampling Input: The representations of the training instance (

Output: A set of augmented samples $\mathcal{R} = \{\tilde{r}^{(1)}, \tilde{r}^{(2)}, \dots, \tilde{r}^{(K)}\}$ 1: Normalizing the importance of each element in $\tilde{r} = r_y - r_x$: $W_r = \frac{|\tilde{r}| - min(|\tilde{r}|)}{min(|\tilde{r}|)}$ 2: Set k = 1, $\omega^{(1)} \sim N(0, \operatorname{diag}(W_x^2))$, $\tilde{r}^{(1)} = r + \omega^{(1)} \odot$

 $(r_y - r_x)$ 3: Initialize the set of samples as $\mathcal{R} = \{\hat{r}^{(1)}\}$.

6: Calculate the current scale vector: ω^(k) ~ p(ω|ω⁽¹⁾, ω⁽²⁾, ..., ω^(k-1) according to Eq. (6).
 7: Calculate the current sample: r̂^(k) = r + ω^(k) ⊙ (r_y - r_x).

8: $\mathcal{R} \leftarrow \mathcal{R} \bigcup \{\hat{r}^{(k)}\}.$ 9: end while

3. 实验结果

> 基准数据集上性能提升

Method	#Params.	Valid.	MT02	MT03	MT04	MT05	MT08	Avg.	
Transformer, base (our implementation)	84M	45.09	45.63	45.07	46.59	45.84	36.18	43.86	
Back-translation (Sennrich et al., 2016a)*	84M	46.71	47.22	46.86	47.36	46.65	36.69	44.96	
SwitchOut (Wang et al., 2018)*	84M	46.13	46.72	45.69	47.08	46.19	36.47 44.		
SemAug (Wei et al., 2020a)	86M	-	-	-	49.15	49.21	40.94	-	
AdvAug (Cheng et al., 2020)	-	49.26	49.03	47.96	48.86	49.88	39.63	47.07	
CsaNMT, base	96M	50.46	49.65	48.84	49.80	50.40	41.63	48.06	
Model	WMT 2014 En→De				WMT 2014 En→Fr				
	#Params.	BLEU	Sacre	SacreBLEU		BLEU	Sacr	SacreBLEU	
Transformer, base (our implementation)	62M	27.67	20	26.8		40.53	3	8.5	
Transformer, big (our implementation)	213M	28.79	27	7.7	222N	42.36	4	40.3	
Back-Translation (Sennrich et al., 2016a)*	213M	29.25	28	3.2	222N	41.73	3	39.7	
SwitchOut (Wang et al., 2018)*	213M	29.18	28	3.1	222N	41.62	. 3	39.6	
SemAug (Wei et al., 2020a)	221M	30.29		-	230N	42.92		-	
AdvAug (Cheng et al., 2020)	†65M	29.57	-			-	-		
Data Diversification (Nguyen et al., 2020)	†1260M	30.70	-		†1332N	43.70			
CSANMT, base	74M	30.16	29	9.2	80N	42.40	40 40.3		
CSANMT, big	265M	30.94	30.94 29.8 274M		43.68	4	1.6		

论文来源: ACL2022

分享人:语音翻译条线陈伟

结论:NIST中英比Transformer平均提4.2个点,比SOTA提1个点。WMT14 英德big模型高Transformer 2.2个点,WMT14英法big模型高1.3个点

> K和η的参数效果

结论: *K*越大越好,但是太大提升有限,因为多样性不是无穷的,MGRC 在*K*较大时饱和,*n*在0.6时平衡两种高斯分布形式效果最好。

> 词汇丰富度和语义忠实度

> 语义编码器的消融

	TTR		BLEURT Score			Model	BLEU	Dec. speed	
	Zh	De	Fr	Zh	De	Fr	Transformer-base	27.67	reference
Human	7.58%	22.08%	13.98%	-	-	-	Default 4-layer semantic encoder	30.16	0.95×
Trans. CSANMT	6.95% 7.13%	20.32% 21.26%	11.76% 12.91%		0.635 0.684	0.696 0.739	Remove the extra semantic encoder Take PTMs as the semantic encoder	28.71 31.10	1.0× 0.62×

结论:该方法缩小了人工和机器翻译之间词汇多样性差距。同时对生成翻译的保留语义方面表现出更好的能力。最后,建模语义编码器是有效的。

词预测的准确度

结论: 该方法比vanilla Transformer更好地推广到稀有词(预测准确率差距高达16%)。另外性能始终优于BT(回译),且25%的数据就能达到基线性能