

Modeling Home Prices

AN INVESTIGATION OF MODELING HOME PRICES ACROSS COOK COUNTY, IL

About Chicago, IL

Chicago is the third most populous city in the United States and largest city in the American Midwest at 234 square miles.

26 miles of lakefront, 8,800 acres of greens space and 600 parks

Art Institute of Chicago houses one of the largest collections of Impressionist/Post-Impressionist painting outside of Paris

250 theatres, 225 music venues, 200 dance companies.

Headquarters to many companies and financial firms

Truly a diverse and vibrant City

Introduction to the Objective

Simply: How much does a home cost?

We would like to investigate the variables that contribute to home cost.

Secondary Question: Do venues (e.g. restaurants, theatres, parks, et...) directly impact the cost of a home?

Nitty-Gritty Question: How do we model this behavior?

- Let's suppose areas with like venues cluster together
- Using these clusters, will they result in a significant effect in the housing price?
- Do these clusters have structure, e.g. is there correlation in the housing prices within the clusters.
- Do these clusters have a "unique identity" describing the areas?
- Is there a distinction between urban and suburban/do they have and effect?

What data is required?

Neighborhood/community area information:

- Chicago neighborhood information is available on Wikipedia.com, and information on the suburbs is available from ciclt.net.
- Use the geopy.gecoders package to geocode the data.
- Main requirments are: zip code, latitude, longitude, urban/suburban, name.
- Assumption: we treat the community areas in the City of Chicago the same as towns/villages in the suburbs.

Venue Information: use of the Foursquare API

Real-estate information: realator.com provides real estate data for the past four years for all zip-codes across the U.S.

Results of Clustering

Clusters are mostly correlated by geography.

Not a clear description of the "identity" for each cluster. (Difficult to examine what makes each cluster a cluster based on the venues.)

Limitations with the Foursquare Data?

Real Estate Data Pairs Plot

Plots of Candidate Predictors

Plots of Candidate Predictors (2)

Plots of Candidate Predictors (3)

Results of Multiple Regression

22.697

2.27e+04

OLS Regression Results

Dep. Variable:	np.cbrt(median_listing_price)	R-squared:	0.867				
Model:	OLS	Adj. R-squared:	0.855				
Method:	Least Squares	F-statistic:	73.67				
Date:	Sat, 01 Aug 2020	Prob (F-statistic):	1.04e-61				
Time:	12:35:10	Log-Likelihood:	-517.46				
No. Observations:	173	AIC:	1065.				
Df Residuals:	158	BIC:	1112.				
Df Model:	14						
Covariance Type:	nonrobust						
Covariance Type:	nonrobust						

	coef	std err	t	P> t	[0.025	0.975]	
Intercept	51.8721	2.673	19.407	0.000	46.593	57.151	
C(Cluster_Labels)[T.1]	-1.4138	1.447	-0.977	0.330	-4.273	1.445	
C(Cluster_Labels)[T.2]	-5.9654	1.708	-3.493	0.001	-9.339	-2.592	
C(Cluster_Labels)[T.3]	0.9859	1.520	0.648	0.518	-2.017	3.989	
C(Cluster_Labels)[T.4]	-2.0938	5.464	-0.383	0.702	-12.886	8.699	
C(Cluster_Labels)[T.5]	3.4920	1.560	2.238	0.027	0.410	6.574	
C(Cluster_Labels)[T.6]	3.1165	5.313	0.587	0.558	-7.378	13.611	
C(Cluster_Labels)[T.7]	-0.7452	2.092	-0.356	0.722	-4.877	3.387	
C(Cluster_Labels)[T.8]	-4.7104	2.270	-2.075	0.040	-9.194	-0.227	
C(Cluster_Labels)[T.9]	-4.7922	1.945	-2.464	0.015	-8.634	-0.950	
median_square_feet	0.0181	0.001	20.509	0.000	0.016	0.020	
pending_ratio	-3.1402	1.289	-2.435	0.016	-5.687	-0.593	
new_listing_count	0.0571	0.010	5.817	0.000	0.038	0.076	
median_days_on_market	-0.1654	0.028	-5.896	0.000	-0.221	-0.110	
Dtwn_Dist	-0.2346	0.044	-5.380	0.000	-0.321	-0.149	
Omnibus:	10.6	52 Durbin	-Watson:		1.249		

Jarque-Bera (JB):

Prob(Omnibus):

Skew:

Some clusters have a significant effect some do not

The other predictors have significant and very interpretable effects on the listing price.

Residual diagnostics do not indicate anything problematic.

Results of Mixed Effects Modeling

Mixed Linear Model Regression Results

Model:	MixedLM	Dependent Variable:	<pre>np.cbrt(median_listing_price)</pre>			
No. Observations:	173	Method:	REML			
No. Groups:	10	Scale:	24.1146			
Min. group size:	1	Likelihood:	-542.9958			
Max. group size:	45	Converged:	Yes			
Mean group size:	17.3					

	Coef.	Std.Err.	Z	P> z	[0.025	0.975]
Intercept median_square_feet	53.410 0.018	2.684 0.001	19.900	0.000	48.149 0.016	58.670 0.020
pending_ratio new_listing_count median days on market	-4.016 0.059 -0.175	1.294 0.010 0.027	-3.104 5.754 -6.531	0.002 0.000 0.000	-6.552 0.039 -0.227	-1.480 0.079 -0.122
Dtwn_Dist City Var	-0.308 9.780	0.052 1.054	-5.970	0.000	-0.410	-0.207

Model 7 AIC = 1099.9915672961417 Model 7 BIC = 1122.0646084576263 Estimate fewer parameters.

Fixed effects are comparable to the previous model (but are larger overall)

The best model was determined to have a nesting structure between city and the cluster.

Some problematic residual diagnostics: residuals not the same across the different groups.

Conclusion and Future Directions

Both models have predictive abilities

Evidence to suggest that there is a group effect, and correlation within those groups.

The clusters may act as a proxy for an underlying variable.

Future Directions include:

- Aggregating more data
- Getting more specific housing data
- Changing the modeling method
- Understanding that there simply may not be an effect due to venue clustering.