Poznámka (Úmluva)

Všechny topologické prostory v tomto semestru budou Hausdorffovy (T_2) . Tedy regulární jsou automaticky T_3 , úplně regulární jsou automaticky T_{π} a normální jsou T_4 .

Speciálně např. kompaktní prostory jsou T_4 .

1 Parakompaktní prostory

Poznámka (Připomenutí)

Pokrytí, otevřené pokrytí, podpokrytí.

Definice 1.1 (Zjemnění)

At X je množina a \mathcal{S} je pokrytí X. Řekneme, že systém $\mathcal{T} \in \mathcal{P}(X)$ je zjemnění \mathcal{S} , pokud \mathcal{T} je pokrytí a $\forall T \in \mathcal{T} \exists S \in \mathcal{S} : T \subseteq S$.

Definice 1.2 (Lokálně konečný systém)

Ať \mathbb{X} je TP, $\mathcal{S} \subseteq \mathcal{P}(\mathbb{X})$. \mathcal{S} se nazývá lokálně konečný, pokud

$$\forall x \in \mathbb{X} \ \exists U \in \mathcal{U}(x) : \{S \in \mathcal{S} | S \cap U \neq \emptyset\}$$
 je konečná.

Systém S se nazve diskrétní, pokud

$$\forall x \in \mathbb{X} \ \exists U \in \mathcal{U}(x) : |\{S \in \mathcal{S} | S \cap U \neq \emptyset\}| \le 1.$$

Systém S se nazve σ -lokálně konečný (resp. σ -diskrétní), pokud $\exists S_n$, že $=\bigcup_{n=1}^{\infty}$, že S_n jsou lokálně konečné (resp. diskrétní), $n \in \mathbb{N}$.

Poznámka

Diskrétní systém je lokálně konečný. σ -diskrétní systém je σ -lokálně konečný.

Lemma 1.1 (Uzávěr lokálně konečného prostoru)

 $Af \ X \ je \ TP, \ A \subseteq \mathcal{P}(X) \ lokálně konečný systém. Pak <math>\{\overline{A}|A \in A\}$ je opět lokálně konečný a platí $\overline{\bigcup A} = \bigcup \{\overline{A}|A \in A\}$.

Důkaz

Af $x \in \mathbb{X}$ je libovolné. Existuje $U \in \mathcal{U}(x)$: $\{A \in \mathcal{A} : A \cap U \neq \emptyset\}$ je konečná. Af $V = \int U, V \in \mathcal{U}(x)$. $\{A \in \mathcal{A} : A \cap V \neq \emptyset\}$ je zřejmě konečná. $V \cap A \neq \emptyset \Leftrightarrow V \cap \overline{A} \neq \emptyset$. Tedy $\{A \in \mathcal{A} : \overline{A} \cap V \neq \emptyset\} = \{A \in \mathcal{A} : A \cap V \neq \emptyset\}$. Tedy $\{\overline{A} | A \in \mathcal{A}\}$ je konečná.

$$\supseteq$$
: $\bigcup A \supseteq A, A \in A$, tedy $\overline{\bigcup A} \supseteq \overline{A} \implies \overline{\bigcup A} \supseteq \bigcup \{\overline{A} | A \in A\}$.

$$\subseteq: \text{Af } x \in \overline{\bigcup \mathcal{A}}. \ \exists U \in \mathcal{U}(x) \text{ otevřená, že } \{A \in \mathcal{A}: A \cap U \neq 0\} = \{A_1, \dots, A_n\}. \ x \in \overline{A_1 \cup \dots \cup A_n} \stackrel{\text{konečn\'e}}{=} \overline{A_1 \cup \dots \cup A_n}. \ \exists i \leq n: x \in \overline{A_i}.$$

Definice 1.3 (Parakompaktní)

 $\operatorname{TP} \mathbb X$ se nazývá parakompaktní, pokud každé jeho otevřené pokrytí má lokálně konečné otevřené zjemnění.

Poznámka

Kompaktní \Longrightarrow parakompaktní (protože podpokrytí je zjemnění a konečné je lokálně konečné).

Diskrétní TP \implies parakompaktní.

Tvrzení 1.2

Uzavřený podprostor parakompaktního TP je parakompaktní.

 $D\mathring{u}kaz$

 \mathbb{X} je parakompaktní TP a $F\subseteq\mathbb{X}$ uzavřená. At \mathcal{U} je otevřené pokrytí F (otevřenými množinami v F). Z definice podprostoru $\forall U\in\mathcal{U}\ \exists V_U$ otevřená v $\mathbb{X}:U=F\cap V_U$. Uvažujme $\mathcal{V}=\{V_U|U\in\mathcal{U}\}\cup\{F\setminus F\}$. \mathcal{V} je otevřené pokrytí \mathbb{X} . Existuje otevřené lokálně konečné zjemnění \mathcal{W} tohoto \mathcal{V} . $\{F\cap W|W\in\mathcal{W}\}$ je otevřené pokrytí F a zároveň lokálně konečné. Navíc je to i zjemnění \mathcal{U} .

Věta 1.3 (Charakterizace parakompaktnosti)

Pro regulární TP X jsou následující podmínky ekvivalentní:

- a) X je parakompaktní.
- b) Každé otevřené pokrytí X má otevřené σ-lokálně konečné zjemnění.
- c) Každé otevřené pokrytí X má lokálně konečné zjemnění (libovolnými množinami).
- d) Každé otevřené pokrytí X má uzavřené lokálně konečné zjemnění.

 $D\mathring{u}kaz$

- $a) \implies b$): každé lokálně konečné zjemnění je σ -lokálně konečné.
- $b) \implies c$) : At $\mathbb U$ je otevřené pokrytí $\mathbb X$. Podle b) existuje otevřené zjemnění $\mathcal V = \bigcup_{n=1}^\infty \mathcal V_n, \ \mathcal V_n$ lokálně konečný systém. $W_n := \bigcup \mathcal V_n$ je otevřené $\{W_n | n \in \mathbb N\}$ je otevřené pokrytí $\mathbb X$. At $A_n := W_n \setminus \bigcup_{i < n} W_i$. $\{A_n | n \in \mathbb N\}$ je lokálně konečné pokrytí $\mathbb X$ (každé $x \in \mathbb X$ je v nějakém W_n , takže už není ve větších A_n). $\{A_n \cap V | n \in \mathbb N, V \in \mathcal V_n\}$ je lokálně konečné zjemnění $\mathcal U$.
- $c) \implies d$) : At \mathcal{U} je otevřené pokrytí \mathbb{X} . Pro každé $x \in \mathbb{X}$ existuje $U_x \in U$: $x \in U_x$. Nyní máme bod v otevřené množině, tedy z regularity existují otevřené množiny $V_x \subseteq \mathbb{X}$: $x \in V_x \subseteq \overline{V_x} \subseteq U_x$. $\mathcal{V} := \{V_x | x \in \mathbb{X}\}$ je otevřené pokrytí \mathbb{X} . \mathcal{V} má lokálně konečné zjemnění \mathcal{W} podle c). $\{\overline{W} | W \in \mathcal{W}\}$ je lokálně konečný systém podle lemmatu "Uzávěr lokálně konečného systému". Navíc je i pokrytí a zjemňuje \mathcal{U} .
- $d) \implies a)$ At \mathcal{U} je otevřené pokrytí \mathbb{X} . Z d) existuje lokálně konečné uzavřené zjemnění \mathcal{V} . Pro $x \in \mathbb{X}$ existuje W_x otevřené okolí x protínající jen konečně mnoho prvků z \mathcal{V} . $\mathcal{W} := \{W_x | x \in \mathbb{X}\}$ je otevřené pokrytí \mathbb{X} . Z d) existuje lokálně konečné uzavřené zjemnění \mathcal{A} toho \mathcal{W} . Pro $V \in \mathcal{V}$ označíme $V^* := \mathbb{X} \setminus \bigcup \{A \in \mathcal{A} | A \cap V = \emptyset\}$. Zřejmě $V^* \supseteq V$. Tedy $\{V^* | V \in \mathcal{V}\}$ je otevřené (odčítáme uzavřenou množinu, neboť A jsou uzavřené a množina je lokálně konečná, tedy podle lemmatu ... je uzavřené i sjednocení) pokrytí.

Ať $x \in \mathbb{X}$. $\exists U$ okolí x, které protíná jen konečně prvků $A_1, \ldots, A_n \in \mathcal{A}$. Zřejmě $U \subseteq A_1 \cup \ldots \cup A_n$. Každé A_i je podmnožinou nějakého W_y , tj. (podle volby W_y) A_i protíná jen konečně mnoho prvků z \mathcal{V} . Navíc je-li $V \in \mathcal{V}$ a $A \in \mathcal{A}$, že $A \cap V = \emptyset$, pak $A \cap V^* = \emptyset$. Tedy každé A_i protíná pouze konečně mnoho prvků V^* , $V \in @V$. Pro každé $V \in @V$ fixujeme $U_v \in \mathcal{U} : V \subseteq U_V$. Zřejmě $V \subseteq U_V \cap V^*$. Pak $\{U_V \cap V^* | V \in \mathcal{V}\}$ je otevřené pokrytí \mathbb{X} , které je lokálně konečné a které je zjemnění \mathcal{U} .

Důsledek

Každý Lindelöfův regulární prostor je parakompaktní.

 $D\mathring{u}kaz$

At \mathcal{U} je otevřené pokrytí \mathbb{X} . Z lindolöfovosti existuje spočetné pokrytí $\mathcal{V} \subseteq \mathcal{U}$. \mathcal{V} je σ -lokálně konečné otevřené zjemnění \mathcal{U} . Tedy platí b) z minulé věty.

Definice 1.4 (Skrčení)

At X je množina a $\mathcal{S} \subseteq \mathcal{P}(X)$ (pokrytí X). Indexovaný systém $\{T_S : S \in \mathcal{S}\} \subseteq \mathcal{P}(X)$ se nazývá skrčení systému \mathcal{S} , pokud (je to pokrytí) a $T_S \subseteq S, S \in \mathcal{S}$.

Poznámka (Nadmutí)

Skrčení je speciální případ zjemnění.

Lemma 1.4 (O skrčení)

Ať X je normální TP. Pak každé lokálně konečné (stačí bodově konečné) otevřené pokrytí X má uzavřené skrčení, jehož vnitřky tvoří pokrytí.

 $D\mathring{u}kaz$

At $\mathcal{U} = \{U_{\alpha} : \alpha < \varkappa\}, \varkappa$ kardinál, \mathcal{U} je lokálně kompaktní, otevřené pokrytí \mathbb{X} . Nyní $F_0 := \mathbb{X} \setminus \bigcup \{U_\alpha : 0 < \alpha < \varkappa\}$ uzavřená, $F_0 \subseteq U_0$ (z toho, že \mathcal{U} je pokrytí). Z normality existuje otevřená $V_0 \subseteq \mathbb{X} : F_0 \subseteq V_0 \subseteq \overline{V_0} \subseteq U_0$.

Nyní indukcí: Nechť máme zkonstruované $V_{\beta}: \forall \beta < \alpha < \varkappa$. Označíme $F_{\alpha}:= \mathbb{X} \setminus$ $\{\bigcup \{V_{\beta}: \beta < \alpha\} \cup \bigcup \{U_{\gamma}: \alpha < \gamma < \varkappa\}\}$. Z normality zas $V_{\alpha} \subseteq \mathbb{X}: F_{\alpha} \subseteq V_{\alpha} \subseteq \overline{V_{\alpha}} \subseteq U_{\alpha}$.

 $\mathcal{V} = \left\{ \overline{V_{\alpha}} : \alpha < \varkappa \right\} \text{ je skrčení } \mathcal{U}, \text{ int } \overline{V_{\alpha}} \supseteq V_{\alpha} \text{ a } \bigcup_{\alpha < \varkappa} V_{\alpha} = \mathbb{X}, \text{ tedy } \bigcup_{\alpha < \varkappa} \text{ int } \overline{V_{\alpha}} = \mathbb{X}. \quad \Box$

Definice 1.5 (Kolektivně normální)

TP \mathbb{X} se nazývá kolektivně normální, pokud pro každý diskrétní systém \mathcal{F} z uzavřených množin existuje disjunktní systém otevřených množin $\{U(F): F \in \mathcal{F}\}$, že $F \subseteq U(F), F \in \mathcal{F}$ \mathcal{F} (tj. otevřené nadmutí).

Poznámka

Každý kolektivně normální prostor je normální.

Tvrzení 1.5

Každý parakompaktní prostor už je kolektivně normální, tedy i normální.

Důkaz

Ukážeme nejprve, že \mathbb{X} je regulární. At $F \subseteq \mathbb{X}$ uzavřená, $x \in \mathbb{X} \setminus F$. Pro $y \in F$ existuje otevřené okolí U_y bodu y, že $x \notin \overline{U_y}$. $\mathcal{U} := \{U_y : y \in F\} \cup \{X \setminus F\}$ otevřené pokrytí X. Ať $\mathcal V$ je lokálně konečné otevřené zjemnění $\mathcal U$. $G:=\bigcup \{V\in \mathcal V: V\cap F\neq\emptyset\}$. Z lemmatu $\overline{G} = \bigcup \{ \overline{V} : V \in \mathcal{V}, V \cup F \neq \emptyset \} \not\ni x. \ G \supset F, G \text{ otevřená. Tedy } \mathbb{X} \text{ je regulární.}$

At \mathcal{F} je diskrétní soubor z uzavřených množin. Pro $F \in \mathcal{F}$ uvážíme $\bigcup \{H \in \mathcal{F} : H \neq F\}$... uzavřená z lemmatu o uzávěru sjednocení lokálně kompaktního systému. Pro $x \in F$ existuje (z první části důkazu) U_x otevřená, že $x \in U_x$, $\overline{U_x} \cap H = \emptyset$ pro $H \neq F, H \in \mathcal{F}$. $\{U_x:x\in F\in\mathcal{F}\}\cup\{\mathbb{X}\setminus\bigcup F\}$ je otevřené pokrytí \mathbb{X} . At \mathcal{V} je otevřené lokálně konečné zjemnění. Pro $F \in \mathcal{F} : V(F) := \{ V \in \mathcal{V} : V \cup F \neq \emptyset \} \setminus \bigcup \{ \overline{V} : V \in \mathcal{V}, V \cap H \neq \emptyset \text{ pro nějaké} | H \in \mathcal{F}, H \in \mathcal{F} \}$ Platí $F \subseteq V(F)$. Pro $F, F' \in \mathcal{F}, F \neq F' \implies V(F) \cap V(F') = \emptyset$. $\{V(F) : F \in \mathcal{F}\}$ je disjunktní otevřené nadmutí \mathcal{F} .

Definice 1.6 (Hvězda)

At X je množina a $S \subseteq \mathcal{P}(X)$, $x \in X$, $A \subseteq X$.

Hvězda bodu x vzhledem k S je $st(x, S) = \bigcup \{S \in S : x \in S\}.$

Hvězda množiny A vzhledem k @S je st $(A, S) = \bigcup_{x \in A} \operatorname{st}(x, S)$.

Definice 1.7 (Barycentrické a hvězdovité zjemnění)

At \mathcal{U} , \mathcal{V} jsou pokrytí \mathbb{X} . Řekneme, že \mathcal{U} barycentricky zjemňuje \mathcal{V} , pokud $\{\operatorname{st}(x,\mathcal{U}): x \in \mathbb{X}\}$ zjemňuje \mathcal{V} .

Řekneme, že \mathcal{U} hvězdovitě zjemňuje \mathcal{V} , pokud $\{\operatorname{st}(U,\mathcal{U}): U \in \mathcal{U}\}$ zjemňuje \mathcal{V} .

Například

Ať (\mathbb{X}, ϱ) je MP. Ať $\mathcal{U}, \mathcal{V}, \mathcal{W}$ jsou pokrytí \mathbb{X} tvořená po řadě všemi $\varepsilon, 2\varepsilon, 3\varepsilon$ koulemi $(\varepsilon > 0$ pevné). Pak \mathcal{U} zjemňuje barycentricky \mathcal{V} a hvězdovitě \mathcal{W} .

Lemma 1.6 (Dvojité barycentrické zjemnění je hvězdovité)

Ať X je množina, $\mathcal U$ pokrytí $\mathcal X$, $\mathcal V$ barycentrické zjemnění $\mathcal U$ a $\mathcal W$ barycentrické zjemnění $\mathcal V$. Potom $\mathcal W$ je hvězdovité zjemnění $\mathcal U$.

 $D\mathring{u}kaz$

 $\operatorname{st}(x_0, \mathcal{V}) \subseteq U$.

Mějme $W \in \mathcal{W}$ libovolně. Chceme najít $U \in \mathcal{U} : \operatorname{st}(W, \mathcal{W}) \subseteq U$. $W = \emptyset$ triviální. $W \neq \emptyset$: Fixujeme $x_0 \in W$. Pro každé $x \in \mathbb{X}$ existuje $V_x \in \mathcal{V}$: $\operatorname{st}(x, \mathcal{W}) \subseteq V_x$. Nyní

protože $W\subseteq V_x$ pro každé $x\in W.$ $\mathcal V$ barycentricky zjemňuje $\mathcal U$, tedy existuje $u\in \mathcal U$:

 $\operatorname{st}(W, \mathcal{W}) = \bigcup \{ T \in \mathcal{W} : T \cap W \neq \emptyset \} = \bigcup \{ \{ T \in \mathcal{W} | x \in T \} | x \in W \} = \bigcup \{ \operatorname{st}(x, \mathcal{W}) | x \in W \} \subseteq \bigcup \{ W \in \mathcal{W} \} \subseteq \bigcup \{ W \in \mathcal$

Věta 1.7 (Charakterizace parakompaktnosti pomocí hvězdovitých zjemně-

Pro $TP \times je \ ekvivalentni$:

- a) X je parakompaktní.
- b) Každé otevřené pokrytí X má barycentrické zjemnění.
- c) Každé otevřené pokrytí X má hvězdovité zjemnění.
- d) Každé otevřené pokrytí X má otevřené σ-diskrétní zjemnění a X je regulární.

 $D\mathring{u}kaz$

 $a) \Longrightarrow b)$ At $\mathcal U$ je otevřené pokrytí $\mathbb X$. Z a) vyplývá, že existuje jeho lokálně konečné otevřené zjemnění $\mathcal V$. Víme, že $\mathbb X$ je parakompaktní, tedy normální. Z lemmatu o skrčení existuje uzavřené pokrytí $\mathcal W = \{W_V | V \in \mathcal V\}, W_V \subseteq V . \mathcal V$ je lokálně konečné, tedy i $\mathcal W$ je lokálně konečné. Pro $x \in \mathbb X$ definujeme $A_x = \bigcap \{V | x \in W_V\}$. Jde o konečný průnik (vzhledem k lokální kompaktnosti), tedy A_x je otevřená. Položme $B_x = \bigcup \{W \in \mathcal W | x \notin W\}$. Podle lemmatu o sjednocení lokálně konečného systému je B_x uzavřená. Zřejmě $x \in A_x \setminus B_x =: C_x$ je otevřená. Tedy $\mathcal C = \{C_x | x \in \mathbb X\}$ je otevřené pokrytí $\mathbb X$.

Ukážeme, že \mathcal{C} barycentricky zjemňuje \mathcal{U} : At $y \in \mathbb{X}$. Chceme najít $V \in \mathcal{U}$: $\operatorname{st}(y,\mathcal{C}) \subseteq V$. Víme, že existuje $V \in \mathcal{V}$: $y \in W_V$. At $x \in \operatorname{st}(y,\mathcal{C})$. Pak $y \in C_x = A_x \setminus B_x$, tedy $y \notin B_x$, tudíž $x \in W_V \subseteq V$ (kdyby ne, pak $W_V \subseteq B_x$, tedy $y \notin C_x$).

- $b) \implies c$) k otevřenému pokrytí můžeme najít barycentrické zjemnění, ke kterému můžeme najít barycentrické zjemnění. Pak c) vyplývá z předchozího lemmatu.
- $c) \implies d$) \mathbb{X} je regulární: At $F \subseteq \mathbb{X}$ uzavřená, $x \in \mathbb{X} \setminus F$. Uvažujme otevřené pokrytí $\{\mathbb{X} \setminus F, \mathbb{X} \setminus x\}$. Podle c) existuje otevřené hvězdovité zjemnění \mathcal{U} . $\exists U \in \mathcal{U} : x \in U$. Nutně $U \cap F = \emptyset$. Pak $\overline{U} \subseteq \operatorname{st}(U, \mathcal{U}) \subseteq \mathbb{X} \subseteq \mathbb{X} \setminus F$. Tedy \mathbb{X} je regulární.

At \mathcal{U}_0 je otevřené pokrytí \mathbb{X} . Chceme najít σ -diskrétní zjemnění toho \mathcal{U}_0 . Použijeme podmínku c) spočetně nekonečněkrát, abychom induktivně našli otevřená pokrytí $\mathcal{U}_1, \mathcal{U}_2, \ldots$, že \mathcal{U}_{n+1} hvězdovitě zjemňuje $\mathcal{U}_n, n \geq 0$. Oindexujme prvky $\mathcal{U}_0 : \mathcal{U}_0 = \{U_i | i \in I\}$. Pro $i \in I$ a pro $n \in \mathbb{N}$ uvažujme $U_{i,n} := \{x \in \mathbb{X} | x \text{ má okolí } V : \text{st}(V, \mathcal{U}_n) \subseteq U_i\}$. Pro každé $n \in \mathbb{N} : \{U_{i,n} | i \in I\}$ je otevřené zjemnění \mathcal{U} , ale ne nutně pokrytí.

Pomocné tvrzení: Pokud $x \in U_{i,n}, u \notin U_{i,n+1}$, pak neexistuje $U \in \mathcal{U}_{n+1}$, že $x, y \in U$. Důkaz: Pro $U \in \mathcal{U}_{n+1}$ existuje $W \in \mathcal{U}_n$: $\operatorname{st}(U, \mathcal{U}_{n+1}) \subseteq W$. Tedy pokud $x \in U \cap U_{i,n}$, pak $W \subseteq \operatorname{st}(x, \mathcal{U}_n) \subseteq U_i$. Pak $\operatorname{st}(U, \mathcal{U}_{n+1}) \subseteq U_i$ a $u \subseteq U_{i,n+1}$. Tedy $y \notin U$, protože $y \notin U_{i,n+1}$.

Uvažme dobré uspořádání < na I. At $V_{i_0,n} = U_{i_0,n} \setminus \bigcup \{U_{i,n+1} | i < i_0\}, i_0 \in I, n \in \mathbb{N}$. Ukážeme, že ** = $\{V_{i_0,n} | i_0 \in I, n \in \mathbb{N}\}$ je hledané σ -diskrétní zjemnění \mathcal{U}_0 . Pro $i_1 \neq i_2, i_1, i_2 \in I$, pak $i_1 < i_2$ nebo naopak. Podle toho buď $V_{i_2,n} \subseteq \mathbb{X} \setminus U_{i_1,n+1}$ nebo $V_{i_1,n} \subseteq \mathbb{X} \setminus U_{i_2,n+1}$. Podle pomocného tvrzení platí, že pokud $x \in V_{i_1,n}$ a $y \in V_{i_2,n}$, pak neexistuje $U \in \mathcal{U}_{n+1}$, že $x,y \in U$. To nám říká, že $\forall n \in \mathbb{N} : \{V_{i,n} | i \in I\}$ je diskrétní. Zbývá už jen ukázat, že ** je pokrytí: At $y \in \mathbb{X}$. Existuje <-nejmenší $i(y) \in I : y \in U_{i(y),n}$ pro nějaké $n \in \mathbb{N}$. Nyní $y \notin U_{i,n+2}$ pro i < i(y). Podle pomocného tvrzení použitého na n+1 platí $\mathrm{st}(y,\mathcal{U}_{n+2}) \cap \bigcup \{U_{i,n+1} | i < i(y)\} = \emptyset$. Tedy $y \in V_{i(y)}, n$.

 $d) \implies a)$ Víme, že $\mathbb X$ je regulární, tedy můžeme aplikovat charakterizaci parakompaktnosti z minulého týdne, jelikož σ -diskrétní $\implies \sigma$ -lokálně konečný.

Věta 1.8 (Stone)

Každý metrizovatelný prostor je parakompaktní.

 $D\mathring{u}kaz$

Ukážeme, že každé otevřené pokrytí \mathcal{U} má barycentrické zjemnění. Fixujeme na nějakém tom prostoru \mathbb{X} kompatibilní metriku $\varrho \leq 1$. Navíc búno $\mathbb{X} \notin \mathcal{U}$. Pro každé $x \in \mathbb{X}$ a $U \in \mathcal{U}$, že $x \in U$, existuje největší možné $\varepsilon_{x,U} > 0$, že $B(x, 5\varepsilon_{x,U})$. Položíme $\mathcal{V} = \{B(x, \varepsilon_{x,U}) | x \in U \in \mathcal{U}\}$. Ověříme, že \mathcal{V} barycentricky zjemňuje \mathcal{U} : At $x \in \mathbb{X}$. Chceme najít $U \in \mathcal{U}$: $\operatorname{st}(x, \mathcal{V}) \subseteq U$. At $\varepsilon_x = \sup \{\varepsilon_{x,U} | x \in U \in \mathcal{U}\}$. $0 < \varepsilon_x \leq 1$. Existuje $U \in \mathcal{U}$: $\varepsilon_{x,U} \geq \frac{\varepsilon_x}{2}$.

Ukážeme, že st $(x, \mathcal{V}) \subseteq U$. At tedy $x \in B(y, \varepsilon_{y,v})$ pro nějaké $y \in V \in \mathcal{U}$. Chceme $B(y, \varepsilon_{y,v}) \subseteq U$. Máme $B(y, 5\varepsilon_{y,v}) \subseteq V$ a zároveň $\varrho(x,y) < \varepsilon_{U,V}$. Z \triangle -nerovnosti: $B(x, 4\varepsilon_{y,V}) \subseteq V$. Z maximality $\varepsilon_{x,V} \geq \frac{1}{5} 4\varepsilon_{y,V}$. Také $2\varepsilon_{x,U} > \varepsilon_x \geq \varepsilon_{x,V}$. Dohromady $2\varepsilon_{x,U} > \frac{4}{5}\varepsilon_{y,V}$, tj. $5\varepsilon_{x,U} > 2\varepsilon_{y,V}$. Pro $z \in B(y, \varepsilon_{y,V}) : \varrho(x,z) < 2\varepsilon_{y,V}$, a tedy $\varrho(x,z) < 5\varepsilon_{x,U}$. Proto $z \in U$. Tudíž $B(y, \varepsilon_{y,v}) \subseteq U$.

Definice 1.8

Pro funkci $f: X \to \mathbb{R}$ značíme supp $f = \overline{\{x \in X : f(x) \neq 0\}}$.

Věta 1.9 (Rozklad jednotky)

Ať \mathbb{X} je parakompaktní prostor, \mathcal{U} otevřené pokrytí \mathbb{X} . Pak existuje rozklad jednotky podřízený tomuto pokrytí, tj. systém spojitých funkcí $f_i: X \to [0,1], i \in I$, že $\{\text{supp } f_i: i \in I\}$ je lokálně konečné zjemnění \mathcal{U} a $\sum_{i \in I} f_i(x) = 1, \forall x \in \mathbb{X}$.

 $D\mathring{u}kaz$

 \mathbb{X} parakompaktní, tedy normální. Tedy existuje otevřené pokrytí \mathcal{W} takové, že $\{\overline{W}: W \in \mathcal{W}\}$ zjemňuje \mathcal{U} . At \mathcal{V} je lokálně konečné otevřené zjemnění \mathcal{W} . Víme, že existuje uzavřené skrčení $\{F_V: V \in \mathcal{V}\}, F_V \subseteq V$. Z normality existují spojité funkce $g_V: \mathbb{X} \to [0,1], g_V|_{F_V} = 1$, $g_V|_{\mathbb{X}\setminus V} = 0$. Položme $g(x) := \sum_{V \in \mathcal{V}} g_V(x)$. Funkce g je spojitá, protože spojitost je lokální pojem a g je lokálně součet konečně mnoha nenulových spojitých funkcí. Navíc zřejmě $g \geq 1$, protože $\{F_V: V \in \mathcal{V}\}$ je pokrytí \mathbb{X} . Tedy položme $f_V:=\frac{g_V}{g}$.

Věta 1.10 (Michaelova selekční)

Zdola polospojitá (vícehodnotová) funkce z parakompaktního prostoru do neprázdných uzavřených konvexních podmnožin Banachova prostoru má spojitou selekci.

Věta 1.11 (Dugunjiho)

At X je metrizovatelný a $A \subseteq X$ uzavřená. Pak existuje lineární zobrazení $L: C(A, \mathbb{R}) \to C(X, \mathbb{R})$, že L(f) rozšiřuje f pro $f \in C(A, \mathbb{R})$.

2 Metrizační věty

Poznámka (Opakování)

Uryshonova metrizační věta: Regulární prostor se spočetnou bází je metrizovatelný.

Věta 2.1 (Bing, Nagata, Smirnov)

 $Pro\ regulární\ prostor\ \mathbb{X}\ jsou\ následující\ podmínky\ ekvivalentní:$

- a) X je metrizovatelný.
- b) \mathbb{X} má σ -diskrétní bázi.
- c) \mathbb{X} má σ -lokálně konečnou bázi.

Důkaz

- $a) \implies b$): At \mathcal{B}_n je otevřené pokrytí $\mathbb X$ koulemi o poloměru $\frac{1}{n}$. $\mathbb X$ je parakompaktní podle Stoneovy věty. Z charakterizace parakompaktnosti máme, že \mathcal{B}_n má σ -diskrétní otevřené zjemnění \mathcal{V}_n . $\bigcup_{n\in\mathbb N} \mathcal{V}_n$ je opět σ -diskrétní, navíc je to báze.
 - $b) \implies c$): triviální.
- $c) \implies a$) At $B = \bigcup_{n=1}^{\infty}$ je báze \mathbb{X} , \mathcal{B}_n lokálně konečný soubor. Uvědomíme si, že \mathbb{X} je parakompaktní: Je-li totiž \mathcal{U} otevřené pokrytí \mathbb{X} , pak $\{B \in \mathcal{B} : \exists U \in \mathcal{U} : B \subseteq U\}$ je zjemnění U a vzhledem k tomu, že B je báze, tak je to i pokrytí. Navíc je σ -lokálně konečné. Tedy z charakterizace parakompaktnosti to máme.

Z parakompaktnosti dostáváme normalitu \mathbb{X} . Pro $n,k\in\mathbb{N}$ a $B\in\mathcal{B}_n$ položme $V_{k,n,B}:=\bigcup\left\{C\in\mathcal{B}_k:\overline{C}\subseteq B\right\}$. \mathcal{B}_k je lokálně konečný, tedy (z lemmatu o uzávěru lokálně konečného systému) $\overline{V_{k,n,B}}\subseteq B$. Tedy existují (z normality) spojité funkce $f_{k,n,B}:\mathbb{X}\to[0,1]$, $f_{k,n,B}(x)=0$ pro $x\in\mathbb{X}\setminus B$ a 1 pro $x\in\overline{V_{k,n,B}}$.

Definujeme $M_{k,n} \subseteq [0,1]^{\mathcal{B}_n}$ následovně $M_{k,n} = \{\varphi : \mathcal{B}_n \to [0,1] : \{B \in \mathcal{B}_n : \varphi(B) \neq 0\}$ je konečná}. Na $M_{k,n}$ uvažme metriku $\varrho_{k,n}\varphi, \psi := \sum_{B \in \mathcal{B}_n} |\varphi(B) - \psi(B)|$. At $g_{k,n} : \mathbb{X} \to M_{k,n}, g_{k,n} = \Delta_{B \in \mathcal{B}_n} f_{k,n,B}, g_{k,n}(x) = (f_{k,n,B}(x))_{B \in \mathcal{B}_n}$.

Ověříme, že $g_{k,n}: \mathbb{X} \to (M_{k,n}, \varrho_{k,n})$ je spojité: At $x \in \mathbb{X}$, $\varepsilon > 0$, existuje U okolí x protínající jen konečně prvků $B_1, \ldots, B_m \in \mathcal{B}_n$. $f_{k,n,B_1}, \ldots, f_{k,n,B_m}$ jsou spojitá, tedy existuje $V \subseteq U$ okolí x, že $|f_{k,n,B}(x) - f_{k,n,B_i}(y)| < \frac{\varepsilon}{m}$ pro $i \leq m, y \in V$. Nyní

$$\varrho_{k,n}(g_{k,n}(x), g_{k,n}(y)) = \sum_{i=1}^{m} |g_{k,n}(x)(B_i) - g_{k,n}(y)(V_i)| = \sum_{i=1}^{m} |f_{k,n,B}(x) - f_{k,n,B_i}(y)| < m \cdot \frac{\varepsilon}{m} = \varepsilon$$

Pokud systém $\{g_{k,n}:k,n\in\mathbb{N}\}$ odděluje body a uzavřené množiny, pak $\delta:=\triangle_{k,n\in\mathbb{N}}g_{k,n}:\mathbb{X}\to\prod_{k,n\in\mathbb{N}}M_{k,n}$ je vnoření (podle lemmatu o Tichonovově vnoření). Tím jsme vnořili \mathbb{X} do spočetného součinu metrizovatelných prostorů, tedy do metrizovatelného prostoru, tedy \mathbb{X} je metrizovatelné.

 $\{g_{k,n}: k, n \in \mathbb{N}\}$ odděluje body a uzavřené množiny: At $F \subseteq \mathbb{X}$ je uzavřená, $x \in \mathbb{X} \setminus F$. Existuje $n \in \mathbb{N}$ a $B \in \mathcal{B}_n: x \in B \subseteq X \setminus F$. Z regularity existuje $C \in \mathcal{B}_k, k \in \mathbb{N}$. $g_{k,n}(x)(B) = f_{k,n,B}(x) = 1$ a $g_{k,n}(y)(B) = f_{k,n,B}(y) = 0$ pro $y \in \mathbb{X} \setminus B \supseteq F$.

Definice 2.1

Ať \mathbb{X} je TP. Posloupnost otevřených pokrytí \mathcal{V}_n prostoru \mathbb{X} se nazývá development, pokud pro každé $x \in \mathbb{X}$: $\{\operatorname{st}(x,\mathcal{V}_n)|n \in \mathbb{N}\}$ je báze okolí v bodě x.

Poznámka

Je-li (X, ϱ) MP, pak $\mathcal{V}_n := \{B(x, \frac{1}{n}) : x \in \mathbb{X}\}, n \in \mathbb{N}$ je development \mathbb{X} .

Věta 2.2 (Bing)

 $TP \ \mathbb{X} \ je \ metrizovateln \acute{y} \Leftrightarrow je \ kolektivn \check{e} \ normáln \acute{i} \ a \ m \acute{a} \ development.$

 $D\mathring{u}kaz$

- ⇒ : metrizovatelný ⇒ má development (podle předchozí poznámky) a metrizovatelný ⇒ parakompaktní ⇒ kolektivně normální.
 - ⇐: Dokážeme ve 4 částech:
- 1. Pro diskrétní soubor $\mathcal{F}=\{F_{\alpha}\}_{\alpha\in A}$ uzavřených množin v \mathbb{X} existuje diskrétní soubor otevřených množin $\mathcal{W}=\{W_{\alpha}\}_{\alpha\in A}$, že $F_{\alpha}\subseteq W_{\alpha}$: Dle kolektivní normality existují otevřené disjunktní $U_{\alpha}: \alpha\in A, F_{\alpha}\subseteq U_{\alpha}$. Položme $F=\bigcup\mathcal{F},\ Z=\mathbb{X}\setminus\bigcup_{\alpha\in A}U_{\alpha}$. F uzavřená (sjednocení lokálního systému uzavřených množin), Z uzavřená. \mathbb{X} je kolektivně normální, tedy speciálně normální, tedy existují otevřené disjunktní V,W, že $Z\subseteq V$ a $F\subseteq W$. Položme $W_{\alpha}:=U_{\alpha}\cap W$. Systém $\{W_{\alpha}\}$ už je diskrétní (je-li $x\in Z$, pak $x\in V$ a $V\cap W_{\alpha}=\emptyset$, je-li naopak x v U_{α} , pak $U_{\alpha}\cap W_{\beta}=\emptyset$ pro $\beta\neq \alpha$) a $F_{\alpha}\subseteq W_{\alpha}$.
- 2. Ať \mathcal{V}_n je development prostoru \mathbb{X} . Buď $\varkappa \geq \omega$ a očíslujme $\mathcal{V}_n = \{V_{\alpha,n} | \alpha < \varkappa\}$ (s případným opakováním prvků). Položme $D_{\alpha,n,k} = \{x \in V_{\alpha,n} | \operatorname{st}(x,V_k) \subseteq V_{\alpha,n}\}$ a $C_{\alpha,n,k} = D_{\alpha,n,k} \setminus \bigcup_{\beta < \alpha} V_{\beta,n}$. $D_{\alpha,n,k}$ (a tudíž i $C_{\alpha,n,k}$) je uzavřená:

Volme $x \in \overline{D_{\alpha,n,k}}$. Pak pro libovolné $V \in \mathcal{V}_k$, že $x \in V$ platí, že existuje $y \in V \cap D_{\alpha,n,k}$. Pak $V \subseteq \operatorname{st}(y, \mathcal{V}_k) \subseteq V_{\alpha,n}$. Tedy $\operatorname{st}(x, \mathcal{V}_k) = \bigcup \{V \in \mathcal{V}_k | x \in V\} \subseteq V_{\alpha,n}$. Tedy $x \in D_{\alpha,n,k}$, tudíž $D_{\alpha,n,k}$ je uzavřená.

- 3. Pro pevná $n, k \in \mathbb{N}$ je $\{C_{\alpha,n,k} | \alpha < \varkappa\}$ diskrétní: Buď $y \in \mathbb{X}$ libovolné. Pak existuje nejmenší $\beta < \varkappa : y \in V_{\beta,n}$. Najděme $V \in \mathcal{V}_k : y \in V$. Pro $\alpha > \beta : V_{\beta,n}$ je disjunktní s $C_{\alpha,n,k}$ a pro $\alpha < \beta : V$ je disjunktní s $C_{\alpha,n,k}$ (kdyby existovalo $z \in V \cap C_{\alpha,n,k}$ pak $\operatorname{st}(z,\mathcal{V}_k) \subseteq V_{\alpha,n}$, speciálně $y \in V_{\alpha,n}$, což je spor s minimalitou β). Tedy $V \cap V_{\beta,n}$ je okolí bodu y, které protíná nejvýše jeden prvek systému $\{c_{\alpha,n,k} | \alpha \in A\}$ (a sice prvek $C_{\beta,n,k}$).
- 4. $\{C_{\alpha,n,k}\}$ je diskrétní soubor uzavřených množin (podle 2, 3). Podle 1 existuje diskrétní soubor otevřených nadmnožin $\{V_{\alpha,n,k}|\alpha<\varkappa\}$. Tedy $\mathcal{V}_{n,k}:=\{V_{\alpha,n,k}\cap V_{\alpha,n}|\alpha<\varkappa\}$ je diskrétní (zmenšili jsme jeho množiny). Ukážeme, že $\mathcal{V}:=\bigcup_{n,k\in\mathbb{N}}\mathcal{V}_{n,k}$ je báze \mathbb{X} :

At $U \subseteq \mathbb{X}$ je otevřená, $x \in U$. $\exists n \in \mathbb{N} : \operatorname{st}(x, \mathcal{V}_n) \subseteq U$. Najdeme α nejmenší možné, že $x \in V_{\alpha,n}$. Zřejmě $V_{\alpha,n} \subseteq U$. Opět z vlastností developmentu existuje $k \in \mathbb{N} : \operatorname{st}(x, \mathcal{V}_k) \subseteq V_{\alpha,n}$. Nyní $x \in C_{\alpha,n,k}$, tedy $x \in V_{\alpha,n,k} \cap V_{\alpha,n} \subseteq U$. Tudíž \mathcal{V} je báze \mathbb{X} .

 $\mathcal V$ je σ -diskrétní báze $\mathbb X$, tedy podle metrizační věty Bing-Nagata-Smirnov je $\mathbb X$ metrizovatelný.

3 Uniformní prostory

Poznámka

Zavedeno např. díky tomu, že stejnoměrnou spojitost nelze charakterizovat pomocí topologie.

Matematici Weil(1936), Tukey(1940) ... prvotní zkoumání UP.

Definice 3.1 (Značení)

Pro množinu X značíme $\triangle(X) = \{(x, x) | x \in X\}.$

Pro $E \subseteq X \times X$ značíme $E^{-1} = \{(y, x) | (x, y) \in E\}.$

Pro $C, D \in X \times X$ značíme $C \circ D = \{(x, z) \in X \times X | \exists y \in X : (x, y) \in C \land (y, z) \in D\}.$

 $E[x] = \{ y \in X | (x, y) \in E \}.$

Definice 3.2 (Uniformní prostor (UP))

Dvojice (X, \mathcal{D}) se nazývá uniformní prostor (UP), pokud X je množina a $\mathcal{D} \subseteq \mathcal{P}(X \times X), \mathcal{D} \neq 0$ splňující

- 1. $\forall D \in \mathcal{D} : \triangle(\mathbb{X}) \subseteq D$,
- 2. $\forall C, D \in \mathcal{D} : C \cap D \in \mathcal{D}$,
- 3. $\forall D \in \mathcal{D} \ \exists C \in \mathcal{D} : C \circ C \subseteq D$,
- 4. $\forall D \in \mathcal{D} : D^{-1} \in \mathcal{D}$.
- 5. $\forall D \in \mathcal{D} \ \forall E \subseteq X \times X : D \subseteq E \implies E \in \mathcal{D}$,
- 6. $\forall x, y \in X : x \neq y \implies \exists D \in \mathcal{D} : (x, y) \notin D. \ (\Leftrightarrow \bigcap \mathcal{D} = \triangle(\mathbb{X}).)$

Prvky systému \mathcal{D} nazýváme okolí diagonály.

Definice 3.3 (Báze uniformity)

Systém $\mathcal{B} \subseteq \mathcal{P}(\mathbb{X}^2)$ se nazývá báze uniformity (resp. báze uniformity \mathcal{D}), pokud uzavřením \mathcal{B} na nadmnožiny dostaneme \mathcal{D} .

Definice 3.4 (Subbáze uniformity)

Systém $\mathcal{S} \subseteq \mathcal{P}(\mathbb{X}^2)$ tvoří subbázi uniformity (resp. uniformity \mathcal{D}), pokud uzavřením na konečné průniky dostaneme bázi uniformity (resp. bázi uniformity \mathcal{D}).

Definice 3.5 (Uniformní zobrazení)

Jsou-li $(\mathbb{X}, \mathcal{D})$ a $(\mathbb{Y}, \mathcal{E})$ UP, $f: \mathbb{X} \to \mathbb{Y}$ se nazývá uniformní (stejnoměrně spojité), pokud $\forall E \in \mathcal{E}: (f \times f)^{-1}(E) \in \mathcal{D}. \ (\Leftrightarrow \forall E \in \mathcal{E} \ \exists D \in \mathcal{D}: (f \times f)(D) \subseteq E.) \ (\Leftrightarrow \forall E \in \mathcal{E} \ \exists D \in \mathcal{D} \ \forall x, y \in \mathbb{X}: (x, y) \in D \implies (f(x), f(y)) \in E.)$

Definice 3.6 (Uniformní izomorfismus)

Zobrazení f se nazývá uniformní izomorfismus, pokud f je bijekce a f i f^{-1} jsou uniformní.

Lemma 3.1

Systém $\mathcal{B} \subseteq \mathcal{P}(\mathbb{X}^2)$ tvoří bázi nějaké uniformity na \mathbb{X} , pokud

$$a) \bigcap \mathcal{B} = \triangle(\mathbb{X}),$$

 $b) \forall C, D \in \mathcal{B} \ \exists E \in \mathcal{B} : E \subseteq C \cap D,$ $c) \forall D \in \mathcal{B} \ \exists C \in \mathcal{B} : C \circ C \subseteq D,$ $d) \forall D \in \mathcal{B} \ \exists E \in \mathcal{B} : E \subseteq D^{-1}.$

Důkaz

 $\mathcal{D}:=\{C\subseteq\mathbb{X}\times\mathbb{X}|\exists B\in\mathcal{B}:B\subseteq C\}. \text{ Následně ověříme podmínky}.$