3 Experiment and Res

This section displays the results, instance parameters, and data of the small experiment used to run the optimization model.

3.1 Experiment and Problem Instance Description

Tables 1, 2, and 3 display the demand, parking, and processing node coordinates. Specifically, there are five demand nodes, two parking nodes, and two processing nodes.

X Coordinate	Y Coordinate
10	10
20	15
30	25
15	30
5	20

Table 1: Demand Node Coordinates

X Coordinate	Y Coordinate
5	5
35	30

Table 2: Parking Node Coordinates

The fleet comprises two vehicles with speeds of 3 and 4 units per time step. Each vehicle starts from one of the parking nodes. The vehicle capacities range randomly between 20 and 30 units

X Coordinate	Y Coordinate
25	20
10	15

Table 3: Processing Node Coordinates

(obtaining the value of 22 for both of them), and the traveling costs vary between 1 and 3 per unit distance (obtaining the values of 3 and 1).

The time horizon for this experiment, denoted as t_f , is calculated as:

$$t_f = \left\lceil \frac{\text{Average Distance Between All Nodes}}{\text{Average Speed}} \times \text{Number of Nodes} \right\rceil$$

For this instance, we got a value of $t_f = 41$.

The values used for α were randomly generated between 0 and 1, obtaining values of 0.77, 0.02, 0.63, 0.74, and 0.49. The values for the exposure risk factor in each production center, β , are values of 0.1, 0.2, 0.15, 0.25, and 0.3.

This experiment does not utilize a multi-objective approach. Instead, the objective was to minimize the sum of the two objective functions.

3.2 Results

The model got a optimal objective function value of 494.79. Tables 4 and 5 shows the routes of each vehicle:

Departure Time	Departure Node	Destination Node
1	6	1
3	1	2
7	2	3
12	3	4
17	4	5
22	5	9
24	9	6

Table 4: Route for Vehicle 1

Departure Time	Departure Node	Destination Node
1	7	3
3	3	8
5	8	4
9	4	5
13	5	9
15	9	1
16	1	2
19	2	8
21	8	3
23	3	4
27	4	5
31	5	9
33	9	6

Table 5: Route for Vehicle 2

Finally, Figure 1 displays the uncollected wastes in the demand nodes over time.

Figure 1: Uncollected Wastes in the Demand Nodes Over Time