Nolan Tremelling Department of Electrical Engineering Columbia University

EE E3082. Digital Electronics Laboratory

Laboratory 5: Electric piano using Xilinx FPGAs, Part I

2.1 User Interface

The notes are encoded using an 8-bit binary system in which the sequential bits represent a different note. The first note, for example, being C3, is represented by the 8-bit binary number 00000001. Then, D3 is represented by 00000011, and so on. It's important to note that flat and sharp notes are sequentially marked, so C3# or D3b are both represented as 00000010. Control for the sharps and flats are defined within the pb_in function where PB(1) represents a flat, PB(2) represents a sharp, and PB(3) represents a raised octave. These combinations allow for a variety of notes.

2.2 Clock Divider

2.3 Note Decoder

The output frequency as a function of divider value for a 1MHz input is as follows: $f(x) = \frac{5 \times 10^5}{divider\ value}$.

Note	Hexadecimal Value	Decimal Value	Output Frequency	True Frequency	Error
C3	0EEE	3822	130.8215594	130.81	-0.0088368 %
C3#	0E18	3608	138.5809313	138.59	0.0065436 %
D3#	0C8E	3214	155.5693839	155.56	-0.0060324 %
E3	0BDA	3034	164.7989453	164.81	0.0067076 %

G3	09F7	2551	196.001568	196.00	-0.0008000 %
A3b	0968	2408	207.641196	207.65	0.0042398 %
A4b	04B4	1204	415.282392	415.30	0.0042398 %
E4	05ED	1517	329.5978906	329.63	0.0097411%
F4#	0547	1351	370.096225	369.99	-0.0287102 %
A4#	0431	1073	465.9832246	466.16	0.0379216 %

2.4 7-Segment Display State Machine

The use of the 7-segment display allows for us to display the note being played by the piano at a given time. This is done through a multiplexed 7-segment display, scanned at a rate that allows for a visual persistence that closely matches that of a television—ultimately producing a visually "smooth" output. Then using the 7-segment display—which utilizes a number of inputs that act as cathodes for each of the 7 segments—we can display combinations to form alphanumeric representations. In the seven_seg.vhl file we see that a 9-bit value is assigned to each note. These bits follow the following pattern:

- The first four bits, i.e. "1100", that are read from NOTE_IN are used to indicate the letter of the note. In this case, "C".
- The next four bits, i.e. "0011", are used to indicate the octave of the note. In this case, "3".
- The last bit is used to indicate whether a note is sharp or not, so if the last bit is "1", the note is sharp.
- Putting together all this information, the seven_seg.vhl file will interpret "110000111" as a C3#. Then, using the point now function, this newfound value is mapped into the seven segment display.

3.3 Simulating your Design

The following code, which includes varied test stimuli for different values of pb_in and switch_in, can be seen below.

```
-- *** Test Bench - User Defined Section ***

tb : PROCESS

BEGIN

-- System Reset

pb_in(0) <= '1';

wait for 50 ns;

pb_in(0) <= '0';

wait for 1 us;

-- Test note for C3 output 0eee
```

```
switch in <= "10000000"; pb in <= "0000";
        wait for 2us;
        -- Test note for E3 output Obda
        switch in <= "00100000"; pb in <= "0000";
        wait for 2us;
        -- Test note for E#3 output 0b30
        switch_in <= "00100000"; pb_in <= "0100";</pre>
        wait for 2us;
        -- Test note for A#4 output 0431
        switch_in <= "00000100"; pb_in <= "1100";</pre>
        wait for 2us;
        -- Test note for Gb3 output 0a8e
        switch_in <= "00001000"; pb_in <= "0010";</pre>
        wait for 2us;
        -- Test note for E4 output 05ed
        switch_in <= "00100000"; pb_in <= "1000";</pre>
        wait for 2us;
   END PROCESS;
-- *** End Test Bench - User Defined Section ***
```

When simulated, this code shows that the expected notes can be observed as seen in the following image.

