Sequence alignment

Progressive multiple alignment and iterative refinement

Outline

- Progressive alignment
- Iterative refinement

Tree-based progressive alignments

- Key heuristics:
 - Construct a multiple alignment through a series of pairwise alignments
 - Align the "most similar" sequences first
- Align sequences according to a guide tree
 - leaves represent sequences
 - internal nodes represent alignments
- Determine alignments from bottom of tree upward
 - return multiple alignment represented at the root of the tree

Tree-based progressive alignment

- Depending on the internal node in the tree, we may have to align a
 - a sequence with a sequence
 - a sequence with a partial alignment
 - a partial alignment with a partial alignment
- In all cases we use the same basic pairwise alignment algorithm, but will modify the the scoring system
 - For sequence with a sequence, we use the standard scoring system for pairwise alignments
 - For aligning alignments or a sequence to an alignment,
 we use sum of pairs scoring

Starting sequences

```
x^1 TGTTAAC

x^2 TGTAAC

x^3 TGTAC

x^4 ATGTC

x^5 ATGTGGC
```

- Create a guide tree
 - Using pairwise distances (we will cover this in subsequent lectures)
 - Approach similar to but simpler than phylogenetic trees

Scoring an alignment of partial alignments

Recall the sum of pairs score for a column i

$$S(m_i) = \sum_{k < l} s(m_i^k, m_i^l)$$

Let 1 to n represent sequences from the first alignment

 $k \le n, n < l \le N$

- Let n+1 to N represent sequences from the second alignment, N denotes total number of sequences
- Alignment at column i can be written as

$$S(m_i) = \sum_{k < l \le n} s(m_i^k, m_i^l) \qquad \text{Within first alignment}$$

$$+ \sum_{n < k < l \le N} s(m_i^k, m_i^l) \qquad \text{Within second alignment}$$

$$\sum s(m_i^k, m_i^l) \qquad \text{Between two alignments}_{\text{10}}$$

Aligning two alignments

 Assume we have two alignments corresponding to intermediate nodes of the guide tree

Alignment A1	Alignment A2
AAAC	AGC
-GAC	ACC

- Alignment of two alignments = pairwise alignment of sequences of columns
- Filling entry (i, j) of the DP matrix we maximize over
 - aligning column i in A1 to a column j in A2
 - aligning column i in A1 to gaps in A2
 - aligning column j in A2 to gaps in A1

Comments about tree-based progressive alignment

- Exploits partial alignment information
- But, greedy
 - The tree might not be correct, that is, reflect an incorrect ordering of how sequences should be stacked up in the alignment
 - Final results prone to errors in alignment
 - Some positions might be misaligned (that is have a lower score than if a different ordering is used).

Ordering matters

Consider aligning GG, DGG and DGD

```
1 2 D G D D G D - G G G -
```

Are as good. But when we include DGG

```
1 2 D G D D G D - G G D G G
```

1 is better than 2, assuming a match score of 2, mismatch score =1, gap penalty=-2

Iterative refinement

- The order of selection of sequences can influence the alignment
- How to avoid committing to a non-optimal pairwise decision?
 - Revisit alignments
- Basic iterative refinement algorithm
 - Remove a sequence from the current multiple alignment
 - Realign the removed sequence back to the multiple alignment
 - Repeat until removal and realignment of any sequence does not improve the alignment score

The ClustalW algorithm

- A famous progressive alignment method: the CLUSTALW algorithm [Thompson et al. 1994]
- Tailored to handle very divergent sequences: 25-30% similarity
- Dynamically varies the gap penalties in a position and residue specific manner
- Weight different sequences differently
 - Closely related sequences need to be down-weighted
 - Divergent sequences are up-weighted
- Dynamically switch between substitution matrices depending upon the average similarity between sequences being aligned

Applying ClustalW to SH3 domain proteins

Summary

- Tree-based progressive alignment
 - Employs a guide tree to determine an order of pairwise alignments leading to a multiple alignment
 - Uses alignments of pairs of partial alignments
 - Is greedy in terms of fixing partial alignments lower in the tree
- Iterative refinement
 - Allows for the realignment of individual sequences within a multiple alignment
 - Can compensate for greedy multiple sequence alignment approaches
- ClustalW is a prime example of a tree-based progressive alignment method that also uses iterative refinement.