Determinantlar

Determinantın Tanımı 5.1

Bu bölümdeki bütün matrisler kare matristir.

Tanım 5.8 $A = [a_{ij}] n \times n$ matris olsun. $\det(A)$ (veya |A|) şeklinde gösterilen <u>determinant</u> fonksiyonu şöyle tanımlanır:

$$\det(A) = \sum_{j_1, j_2, j_3, \dots, j_n} (\mp) a_{1j_1} a_{2j_2} a_{3j_3} \dots a_{nj_n}$$

Örnek 5.9 $A = [a_{11}]$ ise $det(A) = a_{11}$ dir.

Örnek 5.10
$$A = \left[egin{array}{cc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array}
ight]$$
 olsun. $\det(A)$ yı bulmak için

$$|A| = a_{11}a_{22} - a_{12}a_{21}.$$

Ayrıca bu determinant şöyle de bulunur: Ana diyagonaldeki elemanların çarpımından diğer diyagonaldeki elemanların çarpımı çıkarılır:

$$a_{11} \times a_{12} \\ a_{21} \times a_{22}$$

Yani:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} = \det(A)$$

Yani:
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21} = \det(A)$$
 Mesela; $A = \begin{vmatrix} 2 & -3 \\ 4 & 5 \end{vmatrix} \Longrightarrow \det(A) = 2 \cdot 5 - (-3) \cdot 4 = 22$

Örnek 5.11
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, 3×3 matrisi verilsin. $|A|$ yı bulmak için 6 tane terimi yazalım:

$$a_1_a_2_a_3_ \quad a_1_a_2_a_3_ \quad a_1_a_2_a_3_ \quad a_1_a_2_a_3_ \quad a_1_a_2_a_3_ \quad a_1_a_2_a_3_$$

$$|A| = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

Sarrus Kuralı

Sadece 3×3 determinant hesaplamak için bir yöntem de Sarrus Kuralı olarak bilinir ve şöyle açıklanabilir: Matrisin 1. ve 2. kolonu sağ tarafa ekleyelim.

$$a_{11}$$
 a_{12} a_{13} a_{11} a_{12}
 a_{21} a_{22} a_{23} a_{21} a_{23}
 a_{31} a_{32} a_{33} a_{31} a_{32}

Daha sonra sol-üst taraftan sağ-alt tarafa doğru sayıları çarpalım ve (+) işareti verelim. Sağ-üst taraftan sol-alt tarafa doğru sayıları çarpalım ve (-) işareti verelim.

Böylece bu 3-lü sayıların çarpımından oluşan 6 ifadeyi toplayalım ve determinanı elde edelim:

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

Örnek 5.12
$$A = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 1 & 2 \end{vmatrix} = 6$$
 olarak bulunur.

ALIŞTIRMALAR

1.) $A = [a_{ij}] \ 4 \times 4$ matris olsun. $\det(A)$ nın formülünü yazınız.

2.) a)
$$\begin{vmatrix} t-1 & -1 & -2 \\ 0 & t-2 & 2 \\ 0 & 0 & t-3 \end{vmatrix} = ?$$
 b) $\begin{vmatrix} t-1 & 0 & 1 \\ -2 & t & -1 \\ 0 & 0 & t+1 \end{vmatrix} = ?$

3.) Alıştırma 2'deki determinantların sıfır olması için t ne olmalıdır?

5.2 Determinantın Özellikleri

Teorem 5.14 $A = [a_{ij}] n \times n$ matris olsun. $\det(A) = \det(A') \operatorname{dir}$

Örnek 5.15
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 1 & 2 \end{bmatrix} \Longrightarrow A' = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 3 & 2 \end{bmatrix}$$

2 1 1 2 1
$$\Longrightarrow |A'| = 2 + 6 + 18 - 9 - 3 - 8 = 6$$
 bulunur.

Teorem 5.16 Eğer B matrisi A matrisinin iki satırının (veya sütununun) yer değişmesi ile elde edilen matris ise det(B) = -det(A) dır.

Örnek 5.17
$$\begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} = 7$$
 ve $\begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = -7$

Teorem 5.18 Eğer A nın iki satırı (sütunu) eşit ise det(A) = 0 dır.

İspat: r. ve s. satırlar eşit olsun. Bu satırları yer değiştirip B matrisini elde edelim. $\Longrightarrow \det(B) = -\det(A)$ dır. Fakat B = A dır. $\Longrightarrow \det(A) = 0$ bulunur.

Örnek 5.19
$$\begin{vmatrix} 1 & 2 & 3 \\ -1 & 0 & 7 \\ 1 & 2 & 3 \end{vmatrix} = 0 \, dir.$$

Teorem 5.20 Eğer A nın bir satırı (sütunu) tamamen sıfır ise $\det(A) = 0$ dır.

Örnek 5.21
$$\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{vmatrix} = 0 \, dir.$$

Teorem 5.22 A nın bir satırını (sütununu) bir $c \in \mathbb{R}$ sayısı ile çarpıp B matrisini elde edelim. O zaman $\det(B) = c \det(A)$ dır.

Örnek 5.23
$$\begin{vmatrix} 2 & 6 \\ 1 & 12 \end{vmatrix} = 2 \begin{vmatrix} 1 & 3 \\ 1 & 12 \end{vmatrix} = 2 \cdot 3 \begin{vmatrix} 1 & 1 \\ 1 & 4 \end{vmatrix} = 6(4-1) = 18$$

Örnek 5.24
$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & 5 & 3 \\ 2 & 8 & 6 \end{vmatrix} = 2 \begin{vmatrix} 1 & 2 & 3 \\ 1 & 5 & 3 \\ 1 & 4 & 3 \end{vmatrix} = 2 \cdot 3 \begin{vmatrix} 1 & 2 & 1 \\ 1 & 5 & 1 \\ 1 & 4 & 1 \end{vmatrix} = 2 \cdot 3 \cdot 0 = 0 (1. \text{ ve } 3. \text{ kolonlar eşit })$$

Teorem 5.25 Eğer $B = [b_{ij}]$ matrisi, $A = [a_{ij}]$ matrisinin bir satırına (sütununa), bir başka satırın (sütunun) c katının eklenmesi ile elde edilmiş ise $\det(B) = \det(A)$ dır.

Örnek 5.26
$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & -1 & 3 \\ 1 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 5 & 0 & 9 \\ 2 & -1 & 3 \\ 1 & 0 & 1 \end{vmatrix}$$
 çünkü 1. satıra 2. satırın iki katı eklenmiş.

Teorem 5.27 Eğer $A = [a_{ij}]$ matrisi üst (alt) üçgensel ise $\det(A) = a_{11}a_{22} \dots a_{nn}$ dir.

Örnek 5.28
$$\begin{vmatrix} 4 & 3 & 2 \\ 3 & -2 & 5 \\ 2 & 4 & 6 \end{vmatrix} \xrightarrow{S_3 \leftarrow \frac{S_3}{2}} 2 \begin{vmatrix} 4 & 3 & 2 \\ 3 & -2 & 5 \\ 1 & 2 & 3 \end{vmatrix} \xrightarrow{S_1 \leftarrow S_3} (-2) \begin{vmatrix} 1 & 2 & 3 \\ 3 & -2 & 5 \\ 4 & 3 & 2 \end{vmatrix} \xrightarrow{S_2 \leftarrow -3S_1 + S_2}$$

$$(-2) \begin{vmatrix} 1 & 2 & 3 \\ 0 & -8 & -4 \\ 4 & 3 & 2 \end{vmatrix} \xrightarrow{S_3 \leftarrow -4S_1 + S_3} (-2) \begin{vmatrix} 1 & 2 & 3 \\ 0 & -8 & -4 \\ 0 & -5 & -10 \end{vmatrix} \xrightarrow{S_2 \leftarrow \frac{S_2}{4}} (-2)(4) \begin{vmatrix} 1 & 2 & 3 \\ 0 & -2 & -1 \\ 0 & -5 & -10 \end{vmatrix}$$

olup son matris üst üçgensel olduğundan determinant: $(-2)(4)(5)(1)(-2)(-\frac{3}{2}) = -120$ bulunur.

Teorem 5.32 A, $n \times n$ bir matris olsun.

$$A \operatorname{sing\"{uler}} \operatorname{de\~{g}ildir} \iff \operatorname{det}(A) \neq 0.$$

Sonuç 5.33 $A n \times n$ matris olsun. $\operatorname{rank} A = n \iff \det(A) \neq 0$

Teorem 5.35 A ve $B n \times n$ matrisler ise

$$\det(AB) = \det(A) \cdot \det(B)$$

Örnek 5.36
$$A=\begin{bmatrix}1&2\\3&4\end{bmatrix}$$
 ve $B=\begin{bmatrix}2&-1\\1&2\end{bmatrix}$ olsun. $|A|=-2$ ve $|B|=5$ dir. $AB=\begin{bmatrix}4&3\\10&5\end{bmatrix}$ olup $|AB|=-10$ dur.

Not 5.37 A singüler değil ise,

$$\det\left(A^{-1}\right) = \frac{1}{\det A}$$

formülü elde edilir. ($B = A^{-1}$ alınırsa).

Not 5.38 Genelde $\det(A+B) \neq \det(A) + \det(B)$ dir. Fakat; eğer A, B ve C nin sadece bir satırı hariç (mesela k. satırı hariç) diğer bütün satırlar eşitse ve

$$(C' \operatorname{nin} k. \operatorname{satırı}) = (A' \operatorname{nin} k. \operatorname{satırı}) + (B \operatorname{nin} k. \operatorname{satırı})$$

şeklinde bir bağıntı var ise o zaman $\det(C) = \det(A) + \det(B)$ dir.

Örnek 5.39
$$A = \begin{bmatrix} 2 & 2 & 3 \\ 0 & 3 & 4 \\ 0 & 2 & 4 \end{bmatrix}, B = \begin{bmatrix} 2 & 2 & 3 \\ 0 & 3 & 4 \\ 1 & -2 & -4 \end{bmatrix}$$
ve $C = \begin{bmatrix} 2 & 2 & 3 \\ 0 & 3 & 4 \\ 1 & 0 & 0 \end{bmatrix}$ olsun.

$$|A| = 8$$
, $|B| = -9$ ve $|C| = -1$ olup $|C| = |A| + |B|$ dir.

ALIŞTIRMALAR

1.) Aşağıdaki determinantları hesaplayınız.

(a)
$$\begin{vmatrix} 4 & 2 & 2 & 0 \\ 2 & 0 & 0 & 0 \\ 3 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix}$$
 (b)
$$\begin{vmatrix} 3 & 4 & 2 \\ 2 & 5 & 0 \\ 3 & 0 & 0 \end{vmatrix}$$
 (c)
$$\begin{vmatrix} 4 & 2 & 3 & -4 \\ 3 & -2 & 1 & 5 \\ -2 & 0 & 1 & -3 \\ 8 & -2 & 6 & 4 \end{vmatrix}$$

- 2.) (a) $A = A^{-1}$ ise $\det(A) = \pm 1$ olduğunu gösterin.
 - (b) $A' = A^{-1}$ ise det(A) nedir?
 - 3.) $A^2=A$ olsun. A nın singüler olduğunu veya $\det(A)=1$ olduğunu gösteriniz.

5.3 Kofaktör Açılımı

Tanım 5.40 $A=[a_{ij}]$ $n\times n$ matris olsun. M_{ij} de A nın i. satırı ile j. kolonunun çıkarılması ile elde edilen $(n-1)\times (n-1)$ tipindeki alt matris olsun . $\det(M_{ij})$ determinantına a_{ij} nin minörü denir.

Tanım 5.41 $A = [a_{ij}] n \times n$ matris olsun. a_{ij} nin A_{ij} kofaktörü

$$A_{ij} = (-1)^{i+j} \cdot \det(M_{ij})$$

şeklinde tanımlanır.

Örnek 5.42 $A = \begin{bmatrix} 3 & -1 & 2 \\ 4 & 5 & 6 \\ 7 & 1 & 2 \end{bmatrix}$ olsun. Bazı minör ve kofaktörleri hesaplayalım:

$$|M_{12}| = \left| \begin{array}{cc} 4 & 6 \\ 7 & 2 \end{array} \right| = -34, |M_{23}| = \left| \begin{array}{cc} 3 & -1 \\ 7 & 1 \end{array} \right| = 10, |M_{31}| = \left| \begin{array}{cc} -1 & 2 \\ 5 & 6 \end{array} \right| = -16$$

$$A_{12} = (-1)^{1+2} |M_{12}| = 34, A_{23} = (-1)^{2+3} |M_{23}| = -10, A_{31} = (-1)^{3+1} |M_{31}| = -16.$$

Şimdi, bir matrisin determinantını kofaktörler cinsinden veren teoremi verelim:

Teorem 5.43 $A = [a_{ij}] n \times n$ matris olsun. O zaman

$$\det(A) = a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}$$
 (i. satıra göre kofaktör açılımı)
$$\det(A) = a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{nj}A_{nj}$$
 (j. sütuna göre kofaktör açılımı)

Örnek 5.44
$$|A| =$$
$$\begin{vmatrix} 1 & 2 & -3 & 4 \\ -4 & 2 & 1 & 3 \\ 3 & 0 & 0 & -3 \\ 2 & 0 & -2 & 3 \end{vmatrix}$$
 determinantını hesaplayalım.

Çözüm: 3. satıra veya 2. sütuna göre açmak daha kolaydır, çünkü bunlar 2 tane sıfır bulundururlar. Mesela; 3. satıra göre açalım.

$$|A| = (-1)^{3+1} \cdot 3 \cdot \begin{vmatrix} 2 & -3 & 4 \\ 2 & 1 & 3 \\ 0 & -2 & 3 \end{vmatrix} + (-1)^{3+2} \cdot 0 \cdot \begin{vmatrix} 1 & -3 & 4 \\ -4 & 1 & 3 \\ 2 & -2 & 3 \end{vmatrix}$$
$$+ (-1)^{3+3} \cdot 0 \cdot \begin{vmatrix} 1 & 2 & 4 \\ -4 & 2 & 3 \\ 2 & 0 & 3 \end{vmatrix} + (-1)^{3+4} \cdot (-3) \cdot \begin{vmatrix} 1 & 2 & -3 \\ -4 & 2 & 1 \\ 2 & 0 & -2 \end{vmatrix}$$
$$= 3 \cdot (20) + 0 + 0 + 3 \cdot (-4) = 48$$

Örnek 5.45 Aşağıdaki determinantı kolay hesaplamak için (3, 4)-üncü sayı 0 yapılmıştır. Bunun için 1. kolonun uygun bir katı son kolona eklenir:

$$\begin{vmatrix} 1 & 2 & -3 & 4 \\ -4 & 2 & 1 & 3 \\ 1 & 0 & 0 & -3 \\ 2 & 0 & -2 & 3 \end{vmatrix} \xrightarrow{K_4 \leftarrow 3K_1 + K_4} \begin{vmatrix} 1 & 2 & -3 & 7 \\ -4 & 2 & 1 & -9 \\ 1 & 0 & 0 & 0 \\ 2 & 0 & -2 & 9 \end{vmatrix} = (-1)^{3+1} \begin{vmatrix} 2 & -3 & 7 \\ 2 & 1 & -9 \\ 0 & -2 & 9 \end{vmatrix}$$

ALIŞTIRMALAR

1.)
$$A = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 2 & 1 & 4 & -1 \\ 3 & 2 & 4 & 0 \\ 0 & 3 & -1 & 0 \end{bmatrix}$$
 ise $A_{12}=?$, $A_{23}=?$, $A_{33}=?$, $A_{41}=?$

2.)
$$\begin{vmatrix} t-1 & 0 & 1 \\ -2 & t+2 & -1 \\ 0 & 0 & t+1 \end{vmatrix} = 0$$
 denklemini çözünüz.

5.4 Bir Matrisin Tersi

Teorem 5.46 $A = [a_{ij}] n \times n$ bir matris ise

$$i \neq k$$
 için: $a_{i1}A_{k1} + a_{i2}A_{k2} + \dots + a_{in}A_{kn} = 0,$
 $j \neq k$ için: $a_{1j}A_{1k} + a_{2j}A_{2k} + \dots + a_{nj}A_{nk} = 0$

dır. (Yani bir satıra göre elemanlar ile diğer satıra göre kofaktörlerin çarpımlarının toplamı sıfırdır. Ayrıca bir sütuna göre elemanlar ile diğer sütuna göre kofaktörlerin çarpımlarının toplamı da sıfırdır.)

Örnek 5.47 $A = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 3 & 1 \\ 4 & 5 & -2 \end{bmatrix}$ matrisi verilsin. 2. satıra göre bütün kofaktörleri hesaplayalım:

$$A_{21} = (-1)^3 \begin{vmatrix} 2 & 3 \\ 5 & -2 \end{vmatrix} = 19, A_{22} = (-1)^4 \begin{vmatrix} 1 & 3 \\ 4 & -2 \end{vmatrix} = -14, A_{23} = (-1)^5 \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = 3$$

Şimdi bu kofaktörleri 1. satırdan (ve sonra 3. satırdan) karşılıklı sayılarla çarpıp toplayalım:

$$a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = 19 + 2 \cdot (-14) + 3 \cdot 3 = 0$$

$$a_{31}A_{21} + a_{32}A_{22} + a_{33}A_{23} = 4 \cdot 19 + 5 \cdot (-14) + (-2) \cdot 3 = 0$$

Tanım 5.48 $A = [a_{ij}], n \times n$ matris olsun. (i, j). elemanı a_{ji} nin kofaktörü A_{ji} olan matrise A'nın ek matrisi (adjoint matrisi) denir ve ek(A) veya adj(A) şeklinde gösterilir. Yani:

$$ek(A) = \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{bmatrix}$$

Örnek 5.49
$$A=\left[\begin{array}{ccc} 3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3 \end{array}\right]$$
olsun. A nın kofaktörleri:

$$A_{11} = -18, \quad A_{12} = 17, \quad A_{13} = -6,$$

 $A_{21} = -6, \quad A_{22} = -10, \quad A_{23} = -2,$
 $A_{31} = -10, \quad A_{32} = -1, \quad A_{33} = 28$

olarak bulunur. Ek matris:

$$ek(A) = \begin{bmatrix} -18 & -6 & -10 \\ 17 & -10 & -1 \\ -6 & -2 & 28 \end{bmatrix}$$

Teorem 5.50 $A = [a_{ij}], n \times n$ matrix is $A \cdot ek(A) = ek(A) \cdot A = |A|I_n$ dir.

Örnek 5.51 Örnek 5.49'daki matrise bakalım.

$$\begin{bmatrix} 3 & -2 & 1 \\ 5 & 6 & 2 \\ 1 & 0 & -3 \end{bmatrix} \begin{bmatrix} -18 & -6 & -10 \\ 17 & -10 & -1 \\ -6 & -2 & 28 \end{bmatrix} = \begin{bmatrix} -94 & 0 & 0 \\ 0 & -94 & 0 \\ 0 & 0 & -94 \end{bmatrix} = -94I_3$$

olup |A| = -94 olduğu görülür.

Sonuç 5.52 $A, n \times n$ matris ve $|A| \neq 0$ ise

$$A^{-1} = \frac{\operatorname{ek}(A)}{|A|} = \begin{bmatrix} \frac{A_{11}}{|A|} & \frac{A_{21}}{|A|} & \cdots & \frac{A_{n1}}{|A|} \\ \frac{A_{12}}{|A|} & \frac{A_{22}}{|A|} & \cdots & \frac{A_{n2}}{|A|} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{A_{1n}}{|A|} & \frac{A_{2n}}{|A|} & \cdots & \frac{A_{nn}}{|A|} \end{bmatrix}$$

Örnek 5.53 Örnek 5.49'daki matrisi düşünelim. |A| = -94 olup

$$A^{-1} = \frac{1}{|A|} \operatorname{ek}(A) = \begin{bmatrix} \frac{18}{94} & \frac{6}{94} & \frac{10}{94} \\ -\frac{17}{94} & \frac{10}{94} & \frac{1}{94} \\ \frac{6}{94} & \frac{2}{94} & -\frac{28}{94} \end{bmatrix}.$$

ALIŞTIRMALAR

1.) Sonuç 5.52 deki yöntemi kullanarak
$$A=\begin{bmatrix}4&2&2\\0&1&2\\1&0&3\end{bmatrix}$$
 matrisinin tersini bulunuz.

5.5 Determinantın Diğer Uygulamaları

Cramer Kuralı

 $n \times n$ tipinde AX = B lineer denklem sistemi verilsin.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

 $\det(A) \neq 0$ ise bu sistemin tek çözümü vardır ve

$$x_1 = \frac{|A_1|}{|A|}, \quad x_2 = \frac{|A_2|}{|A|}, \quad \cdots, \quad x_n = \frac{|A_n|}{|A|}$$

dir. Burada A_i matrisi A matrisinin i. kolonuna B matrisi yazılması ile elde edilen matristir.

Örnek 5.54 $\left\{ \begin{array}{l} -2x_1+3x_2-x_3=1 \\ x_1+2x_2-x_3=4 \\ -2x_1-x_2+x_3=-3 \end{array} \right\}$ denklem sistemi verilsin. Öncelikle

bulunur. Daha sonra x_1, x_2 ve x_3 şöyle hesaplanır.

$$x_{1} = \frac{\begin{vmatrix} 1 & 3 & -1 \\ 4 & 2 & -1 \\ -3 & -1 & 1 \end{vmatrix}}{-2} = \frac{\begin{vmatrix} -2 & 1 & -1 \\ 1 & 4 & -1 \\ 2 & -3 & 1 \end{vmatrix}}{-2} = 2, \qquad x_{2} = \frac{\begin{vmatrix} -2 & 3 & 1 \\ 1 & 2 & -3 & 1 \end{vmatrix}}{-2} = \frac{-6}{-2} = 3,$$

$$x_{3} = \frac{\begin{vmatrix} -2 & 3 & 1 \\ 1 & 2 & 4 \\ -2 & -1 & -3 \end{vmatrix}}{-2} = \frac{-8}{-2} = 4$$

Teorem 5.55 $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\} \mathbb{R}^n$ de (veya \mathbb{R}_n de) n-tane vektör olsun. A matrisi de kolonları (veya satırları) S nin elemanları olan matris olsun.

$$S$$
 lineer bağımsızdır $\iff \det(A) \neq 0$

Örnek 5.56
$$S=\{\,[1\ 2\ 3],[0\ 1\ 2],[3\ 0\ -1]\,\}$$
 olsun. $A=\left[egin{array}{ccc} 1&2&3\\0&1&2\\3&0&-1 \end{array}\right]$ ve $|A|=2$ olup S

lineer bağımsızdır.

ÖZET: $A, n \times n$ matris olsun. O zaman aşağıdaki ifadeler denktir:

- 1. $\det(A) \neq 0$
- A singüler değildir.
- 3. A nın satırları (sütunları) lineer bağımsızdır.
- 4. AX = 0 homojen sisteminin sadece trivial çözümü vardır.
- 5. $\operatorname{rank}(A) = n$