信息学院 2013年级 通信 专业 四 班 姓名何青 实验日期: 2015.3.25 学号 3013204264 同组实验者

实验题目:

RLC串联电路的稳态特性

- -、宝验目的
- 1、了解RC、RL串联电路的幅频特性和相频特性.
- 2. 学会测两个同频率电信号的相位差.
- 3. 掌握双联示波器的使用方法.
- 二臭验仪器

双路示波器、数字函数发生器、数字繁展、电阻、电路线圈、电路、电路插板、

三宝轮原理

在支流电路中,电阻. 电感. 电容具有不同的幅频特性和相频特性, 幅频特性是指由 路中元件端地压随电源频率到变化规律,相频特性是指回路也流与电压间相位差随电 源频率的变化规律,

1. RC 串联电路

如图I所记RLC串联电路,当电键接通I端时 形成RC串联电路。U. I. Ur. U. 分别表示电路电源电 压回路电流, 电阻上电压及电路上电压的有效值.

由交流电路的欧姆交锋: JUR=IR

图1. RLC串联电路

式中: 成了孙为名礼; 心为正弦交流电的角频率。在正弦交流电路中,电客元件中的电流地 电压相位配前90°、加图2相量图所永因比其总电压 U=~Ub+U2

天津大学物理实验报告

总的阻抗 Z=\ R2+(\dot)2 电路电压与电流间相位差 4=arctan(wck)

2.RL串联电路

将图时的K接通之端,即为RL串联电路,由近流电路欧 图2. UR. UL相量 姆滩: ,UR=IR

式中。101、称为感抗、在正弦交流电路中,电感之件中的电压比电流相位起前90.如图3相量图

所示。因此总电压 U= JUE+UE

展開放 Z= R+1wb2

地路电压与电流间相位差 φ= arctan(wL)

3. RIC电路中元件的幅频特性和相频特性

将国1的K断开则形成RLC串联电路,其相量到由图4

所示。因此其总如玉 U= NUE+(UL-Uw²

展租抗 Z= R2+(Wl-wc)2

电路电话电流间相注 (p-arctan wl-wc

图3. Ux, UL相量 UL-4

图4. UR. UL UC相量

由上式可看出,当此一一就=0(成<0,>0)时,电路呈现电阻性(电路性,电感性).

4.两风频率正弦电信号相位差的测量

由于电阻上的电压与其地流周相,因此可用以和相位表示】的相位。

10方法一:正孩放到法。设有国定相位差的两个同频率的正系波电压,6%以示波光的人 公瑞输入, 艰形如图5所办、用示证器与如此某一个报的一个周期的水平距离5, 再测出 两次风相点的水平距离4S,则两正弦波的相位差 $\psi = \frac{4S}{S} \times 360^\circ$.

12)方法二:利萨加图形法。将有国家相位差的两个正弦波地压强从外波器的XX端额

天津大学物理实验报告

信息学院 2013 年级 通信 专业 四 班 姓名何青 成绩

实验日期: 2015、3.75 学号 3013204264 同组实验者_____

图5. 正弦波列法测相位差

图6.利萨如图形法测相验差

入,在示波器上可得到到萨如图形,一般情况下为椭圆图形,如图的所亦,其解析式为

式中: %, y。分别是对正额锡勒振幅.

由上式. 当上0时, 有 vot= ±n T. (n=0.1,2,11), 于是有 3= I3,5in g

所示两正弦波的相选 (p= arcsin(含)

式中:>>为椭圆与>>轴支点的生成值;>>为椭圆上的7生积最大点到5轴的距离。

四.实验好骤

人动量RC串联电路的幅频特性及相频特性.

WRC电路的幅频特性.

按图1把正弦交流电话为咗电路桶板上的RLC串联电路上(用贩与旅将L贩路)。取电 捐电压 U。=1000/,正确战择数字解用表的输入插孔、功能够、量程键。推数据表 版 年取值,用数字解用表测出Un.U.值,注意与组测量前级保持 U。不变.

计算U的值并按随此较得出证记。

(2) 尼电路的相频特化

天津大学物理实验报告

附页2

核准好市玻璃并拉图7接好电路服证导该将L矩路) 取10。二、0001/调节方波器两次形稳定并使两波隔值大效相 等且与为轴对形、控数据表2频率值测量S、AS值。测量时 应将诗U。不变、根据波形划断总电压和电阻两端电压的拉 相然(超前或滞后).

图7. 测量RC电路的相频特

- 2.测量PL串联电路的幅频特性和相频特性
- 11) PL电路的循版特性.

按图将正弦交流(136 加加RLC成路板(用羟导纹将电路C短路),测量方法与RC电路隔频特性相同.按数据表于频率取填,用擦用表测出UR.UL值.

U的测量结果与设定值比较得出结论.

(2)RL电路的相频特性

美似于图7(将电路6%路)连成RL串联并接入双路示波器,测量不同频率1多考数据表3下的两信号的相位差并用歌用表测出电感的阻值RL测量值19与建范值9进=arctack是是比较得出往记。自拟数据表据。

五数据外理

数据表1 RCD股的幅畅坞性

Tu-	46741.	KCOME	というと	12-		
f/H2	מסן	300	500	ן טטט	3000	5000
UR/V	014b	0401	0590	0.820	2967	a993
Uc/V	0.986	a901	0.792	0.550	0.215	2138
U=Uz+Vc/V	0.997	a986	a988	0987	0.984	1.001

天津大学物理实验报告

信息学院 2013 年级 通信 专业 四 班 姓名何青 成绩

实验日期: <u>2015.3.25</u> 学号 <u>30132442</u>b4 同组实验者

实验题目: 数据表2. RC电路前相频特性 C=04747 f/Hz 5000 620,44 960 115 4,45 224ms 300,45 120 115 10.1 ms 3.34ms 2.02ms 334 NS 200,45 1.00 ms

φ= 45 x360 79.84° 66.83° 5347° 34.56° 12.93° 7.20 53.18° 33.74° 12.55 BEE = CONTINUED SILVES 65.81° 7.61"

用緊用表型止电阻值 R= 307 a.

出报主, RLEBB的幅幅特性

f/H≥	500	1000	3000	5000	7000	9000
UR/V	v791	0.729	0.464	0316	0.35	0-185
U _L /V	0.295	0.463	6.820	0.925	0.952	0.979
U=/UR+UZ/V	0.844	0.864	0.942	a 977	a 980	0.996

数据表4.	RL电路的相频特性	L= 47m7
		1

f/Hz	500	1000	3000	5000	7000	9000
Δς	72,1113	76.0 JUS	48.0,143	36.0,015	28.8M	23.2,115
S	2.00 ms	Looms	332 JUS	199,45	143,US	III
φ= <u>ΔS</u> S×360°	12.96°	27.36°	23.02.	65.13°	72.50°	75.24°
IR =arctan wL		25.54°	55.10°	67.29°	7236°	76.91°

用無用表別出电影的随作 凡= 111

天津大学物理实验报告

计算数据表1中的U的不确定度:

六、实验结论

面过分析以上4组实验勘据,总结规律如下:

- 1. RC解电路, 随着频率f增大, Uc减小, AS. S皆减小.
- 2. 凡母联电路, 随着频率f增大, Uz增大, As, S皆成小.

七、误差分析

实验中造成误差的主要原因如下:

- 1. 线路中各接线处连接不稳定,导致测量时出现误差.
- z. 实验仪器(如示波器)上的频率,电压不稳定,经常跳动,名易引起读数时点现误差.

作业纸

院系信息 班级 通四 姓名 何青 第 页

L	
4	
The	١
100	

flH2	.100	300	too	(000)	3000 "	5000
URIV	146	400	510	8320 8320	978	993,958
Udv	986	901	792	550 544.	215	138
1)-[12412/1						

表2.

f/Hz	100	300	500	1000	3000	3000
Δς	2,2KM)	620 US	300 JUS	-	12:014	68/115 4/15
·S	10/M?	3.31tms	2.02ms	100 MI	334777	1480 JU 200 JUS
4=45 x3/10°					1	
(Date = Greton (WCR)					4	,

表3.

flH≥	500	1000	Jose	[pao	7000	9000	_/
. UR/V	791	729	464	316	235	185	
Nilv	>95	463	82P	925	952	979	_
1)=[16:41): /V				le.			_

装4.

ffH2	500	/000	3000	froo	7000	9000
45	72,115	76.0,45	48.011	36.045	28.8245	29.24
5	200ms	Looms	332NS	199 11	143,445	دلار ۱۱۱
φ						
PAR-arcton WL			21.1 -		7	

2015-05-2574

R= 111 D R= 507 D