













## INTERSECCIÓN DE INTERVALOS

Determine la intersección de los

intervalos [1; 9]y]-2; 6



#### **INECUACIONES**

Halle el conjunto solución

$$3 < 4 - x < 5$$

Halle el conjunto solución

$$x^2 + 2 < 11$$



OPERACIONES CONFUNCIONES

#### **OPERACIONES CON FUNCIONES**

Dadas las funciones f y g con dominios Dom f y Dom g tal que



f + g Regla de correspondencia:

$$(f+g)(x) = f(x) + g(x)$$

Dominio:  $Dom(f + g) = Dom f \cap Dom g$ 

Ejemplo:

$$f(x) = x^2 + 1, x \in ]-2;4]$$

$$g(x) = 4x - 5, x \in [-1; 7[$$

f - g Regla de correspondencia:

$$(f-g)(x) = f(x) - g(x)$$

 $\mathbf{Dominio:}\ \mathbf{Dom}(f-g)=\mathbf{Dom}f\cap\mathbf{Dom}g$ 

EPE

#### **OPERACIONES CON FUNCIONES**

Dadas las funciones f y g con dominios Dom f y Dom g tal que



fg Regla de correspondencia:

$$(fg)(x) = f(x) g(x)$$

**Dominio:**  $Dom(fg) = Dom f \cap Dom g$ 

Ejemplo:

$$f(x) = 2x + 3$$
,  $x \in ]-5; 6]$ 

$$g(x) = x - 2$$
 ,  $x \in [-9; 4[$ 

f/g Regla de correspondencia:

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

**Dominio:** 

$$Dom\left(\frac{f}{g}\right) = Dom f \cap Dom g - \{x | g(x) = 0\}$$

.

5

#### **OPERACIONES CON FUNCIONES**



Dadas las funciones f y g cuyas reglas de correspondencia son  $f(x) = \sqrt{x-1}$  y  $g(x) = x^2 - 3x$ ,  $x \in ]-1;5]$ , respectivamente. Determine la regla de correspondencia y el dominio de las funciones  $f \cdot g$  y  $f/g \cdot \|$   $(fg)(x) = \sqrt{x-1}(x^2-3x)$ 

$$f(x) = \sqrt{x-1}$$
,  $x \in [1; \infty[$ 

$$g(x) = x^2 - 3x, \quad x \in ]-1;5]$$

**EJERCICIO** 





Dadas las funciones f y g cuyas reglas de correspondencia son  $f(x) = x^2 - 4$ ;  $x \in [-3; 6]$  y g(x) = x - 2;  $x \in ]-1$ ; 7[, halle:

$$a)f + g$$

 $\mathbf{b})fg$ 

#### **EJERCICIO**





Dadas las funciones f y g cuyas reglas de correspondencia son  $f(x) = x^2 - 4$ ;

$$x \in [-3; 6] \text{ y } g(x) = x - 2; x \in ]-1; 7[$$
, halle:

## **CONTROL DE APRENDIZAJE**



P1) Dadas las funciones f y g cuyas reglas de correspondencia son  $f(x)=x^2; \ x\in [-1;2]$  y

$$g(x) = x - 2$$
;  $x \in ]3$ ; 5[, halle si es que existe  $f - g$ 

A) 
$$x^2 + x - 2$$

$$\mathbf{B})\,x^2-x-2$$

A) 
$$x^2 + x - 2$$
 B)  $x^2 - x - 2$  C)  $x^2 - x + 2$ 

P2) Dadas las funciones f y g cuyas reglas de correspondencia son  $f(x)=4-x^3$ 

$$y g(x) = 3x + 2; x \in ]-3; 4[$$
, halle:  $(f + g)(-1)$ 

- A) 6
- B) 4
- C) 2
- **D**) 0





#### COMPOSICIÓN DE FUNCIONES



La operación de aplicar sucesivamente dos o más funciones en un orden determinado da origen a otra función llamada composición de funciones.

Suponga que  $f(x)=\sqrt{x}$  y  $g(x)=x^2+1$  a partir de estas dos funciones se puede definir una nueva función h como h(x)=f(g(x))=

#### **DEFINICIÓN**

Dadas las funciones f y g, tal que  $\text{Dom} f \cap \text{Ran} g \neq \{\}$ , la composición f de g, denotada  $f \circ g$  se define mediante la siguiente regla de correspondencia  $(f \circ g)(x) = f(g(x))$ 

$$f(x) = 5x - 4$$

$$g(x) = x + 7$$

$$(f \circ g)(x) = (g \circ f)(x) = (g \circ f)(x)$$

||| 5.2

#### COMPOSICIÓN DE FUNCIONES



Ejemplos: Halle la regla de correspondencia en cada una de las composiciones que se indica en el cuadro adjunto.

| f(x)         | g(x)            | $(f\circ g)(x)$ | $(g \circ f)(x)$ |
|--------------|-----------------|-----------------|------------------|
| $f(x)=x^2+1$ | $g(x) = \cos x$ |                 |                  |
| $f(x)=e^x+3$ | g(x)=x-3        |                 |                  |
| f(x)=x-1     | $g(x)=x^2$      |                 |                  |

EPE

## COMPOSICIÓN DE FUNCIONES



DOMINIO DE LA COMPOSICIÓN



$$\mathsf{Dom}(f\circ g)=\{x\in R/x\in\mathsf{Dom} g\land g(x)\in\mathsf{Dom} f\}$$

Ejemplo:

Dadas las funciones f y g con regla de correspondencia: f(x) = 2x + 3;  $x \in [-7; 5]$  y

$$g(x) = 3x - 4, x \in [0; 5]$$
. Halle  $f \circ g$ 

$$(f \circ g)(x) = f(g(x)) =$$

$$\bigcirc$$
 Dom $(f \circ g) =$ 

III 5.2

#### COMPOSICIÓN DE FUNCIONES

## (1)

## DOMINIO DE LA COMPOSICIÓN



$$Dom(g \circ f) = \{x \in R/x \in Dom f \land f(x) \in Dom g\}$$

Ejemplo:

Dadas las funciones f y g con regla de correspondencia: f(x) = 2x + 3;  $x \in [-7, 5]$  y g(x) = 3x - 4,  $x \in [0, 5]$ . Halle  $g \circ f$ 



EPI

## CONTROL DE APRENDIZAJE



$$h(x) = x^{2}$$

$$g(x) = \operatorname{sen}(x)$$

$$(h \circ g)(x) = (g \circ h)(x) = (g \circ h)($$



$$f(x) = x^{2} - 1$$

$$g(x) = 3x + 1$$

$$(f \circ g)(x) = 9x^{2} + 6x$$

$$(g \circ f)(x) = 3x^{2} + 2$$







# FUNCIÓN INYECTIVA

EPF

## FUNCIÓN INYECTIVA

Una función es inyectiva o uno a uno, si y solo si a elementos distintos del dominio le corresponden imágenes distintas.

¿Cuál de las siguientes funciones es inyectiva?





Sea f una función cuya regla es

$$f(x) = x^2$$
 ; es inyectiva?

$$f(-3) =$$

$$f(3) =$$

Observa que para dos valores diferentes de x se obtiene el mismo valor de y.

¿Qué implica?



11

## **FUNCIÓN INYECTIVA**



#### CRITERIO DE LA RECTA HORIZONTAL (CRH)

Una función f es inyectiva o uno a uno si y sólo sí cualquier recta \_

corta a su gráfica a lo más en







Por el (CRH)

Por el (CRH)

Por el (CRH)

## FUNCIÓN INYECTIVA



Ejemplo: Determine si la función f con regla de correspondencia f(x) = |x+1| - 2definida en el intervalo  $]-\infty;0]$  es inyectiva. Justifique su respuesta.

Función básica:



## FUNCIÓN INYECTIVA

## Ejemplo:

Determine si la función g con regla de correspondencia  $g(x)=2-(x-1)^2$  definida en el intervalo  $[1;+\infty[$  es inyectiva.



5.2

## **CONTROL DE APRENDIZAJE**

¿La función f con regla de correspondencia

 $f(x) = x^2$  es inyectiva?



¿La función f con regla de correspondencia

 $f(x) = x^2$ ,  $x \in [0; +\infty[$  es inyectiva?





∭ 5.2





## FUNCIÓN INVERSA

**EPE** 

#### **FUNCIÓN INVERSA**

Sea f una función, tal que:

$$f = \{(1; 9), (2; 8), (3; 7), (4; 6)\}$$

En el diagrama adjunto coloque los elementos del dominio y rango y luego asocie mediante

flechas.



¿ES INYECTIVA?

Debido a que es inyectiva , al permutar los elementos de cada par ordenado se obtiene una nueva función a esta función se le llama inversa de la función f y se le representa por  $f^{-1}$ .

$$f^{-1} = \left\{ \left(9;1\right), (8;2), (7;3), (6;4) \right) \right\}$$

Observa que:

 $Dom f^{-1} =$ \_\_\_\_\_\_

 $Ran f^{-1} =$ \_\_\_\_\_\_

#### **PROPIEDAD**

 $Dom f^{-1} = Ran f$ 

 $\operatorname{Ran} f^{-1} = \operatorname{Dom} f$ 

## GRÁFICA DE LA FUNCIÓN INVERSA



Conociendo la gráfica de una función f (inyectiva) se puede determinar la gráfica de su inversa haciendo una reflexión de la gráfica de f respecto a la recta y=x.

En la figura adjunta se muestra la gráfica de la función f cuya regla es  $f(x) = \sqrt{x+4}$ .

Coloque las coordenadas de los puntos indicados y grafique  $f^{-1}$ .







**PE** 

#### **EJERCICIO**





En la figura adjunta se muestra las gráfica de la función f, ¿es inyectiva? Grafique en el mismo plano la inversa de f.



## REGLA DE CORRESPONDENCIA DE LA FUNCIÓN INVERSA



Dada la función y = f(x), f(x) = 3x + 7 para determinar la regla de correspondencia de  $f^{-1}$ , se debe seguir los siguientes pasos:

- Paso 1: Verifique que f es inyectiva
- Paso 1: f(x) = 3x + 7

Paso 2:

- Paso 2: Escriba en lugar de f(x) la variable y.
- Paso 3: Despeje la variable x en términos de y. Paso 3:
- Paso 4: Cambie la variable y por x y viceversa. Paso 4:
- Paso 5: Cambie la variable y por  $f^{-1}(x)$ . Paso 5:

5.2

EPE

## REGLA DE CORRESPONDENCIA DE LA FUNCIÓN INVERSA



Dada la función f con regla de correspondencia  $f(x) = x^2$ , definida en el intervalo  $[0; +\infty[$ . Halle la regla de correspondencia de  $f^{-1}$  e indique su dominio y su rango. Esboce la gráfica.

- Paso 1:
- Paso 2:
- Paso 3:
- Paso 4:
- Paso 5:



5.2

#### **EJERCICIO**





Dada la función f con regla de correspondencia f(x) = 2x + 3;  $x \in [-3; 2[$ .

Halle la regla de correspondencia de  $f^{-1}$  e indique su dominio y su rango. Esboce la gráfica de f y  $f^{-1}$  en un mismo plano.



ישופוים

Ejemplo: En el cuadro adjunto se muestran funciones usuales y las respectivas reglas de correspondencia de sus inversas.



| FUNCIÓN         | DOMINIO                                     | FUNCIÓN<br>INVERSA | DOMINIO |
|-----------------|---------------------------------------------|--------------------|---------|
| $f(x)=x^2$      | [ <b>0</b> : +∞[                            |                    |         |
| $f(x)=x^2$      | ]-∞; 0]                                     |                    |         |
| $f(x) = \sin x$ | $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$ |                    |         |
| $f(x)=\cos x$   | $[0;\pi]$                                   |                    |         |
| $f(x)=e^x$      | $\mathbb{R}$                                |                    |         |
| $f(x) = \ln x$  | ] <b>0</b> ; +∞[                            |                    |         |

5.2

## **CONTROL DE APRENDIZAJE**



Dada la función f cuya regla de correspondencia es f(x) = -5x + 8,  $x \in ]-2;3]$ .

A) 
$$f^{-1}(x) = \frac{8-x}{5}$$

B) Dom 
$$f^{-1} = ]-7;18]$$









## **BIBLIOGRAFÍA**



STEWART, James (2012).

PRECÁLCULO: MATEMÁTICAS PARA EL CÁLCULO.

Sexta edición. México, D.F. Cengage Learning. Operaciones y composición de funciones páginas 190 - 198 Función Inyectiva, Función Inversa páginas 199 - 207



5.2

EPE

## **ACTIVIDADES DE LA SEMANA**

Inicio de TAREA 4, fecha de entrega: domingo 20 de junio,

ASESORÍA 4, clase programada con el AAD

CONTROL DE RECUPERACIÓN 3, se evalúa en la asesoría 4







