

CLIP

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford, Jong Wook Kim, et al. April 28 2021

What?

Recognizes things in a visual scene

Learning Transferable Visual Models From Natural Language Supervision

One model can be adapted to a variety of tasks

Learns about images from free-form text

Vision models led the deep learning boom

ImageNet competition

- AlexNet (2012)
- VGG (2014)
- GoogLeNet (2014)
- ResNet (2015)
- SENet (2017)

Human top-5 accuracy: 5%

Top-1 as an ongoing benchmark

© Gordon Cooper, Papers with Code

Vision models today

What makes CLIP special?

Motivation:

Instead of using a fixed set of labels, Get supervision from natural language

Result:

Robust zero-shot inference Multimodal feature space

How does it work?

● ● ● ●Pig Tiger Panda Hippo Camel

CLIP: Contrastive Language-Image Pre-training

Zero-shot image classification

Why contrastive

Some CLIP details

Training

- Trained on 400M image-text pairs from the internet
- Batch size of 32,768
- 32 epochs over the dataset
- Cosine learning rate decay

Architecture

- ResNet-based or ViT-based image encoder
- Transformer-based text encoder

Representation Learning

Linear probe

Logistic regression classifier on image features

- L-BFGS
- Only one hyperparameter
- Allows "fair" comparisons with other vision models
- Provides lower bound for fine-tuned models

Evaluated on 27 image datasets × 65 vision models

satellite images, car models, medical images, city classification, rendered texts, aircrafts, birds, memes, ...

Linear probe performance vs SOTA vision models

Linear-probe CLIP vs Linear-probe EfficientNet-L2

vs ImageNet score

Zero-Shot Transfer

Prompt engineering

Zero-shot vs Linear-probe ResNet-50

Zero-shot CLIP outperforms ResNet-50 on 16 of 27 datasets

Zero-shot CLIP vs Few-shot linear probes

Zero-shot CLIP is as good as

- 4-shot linear-probe CLIP
- 16-shot BiT-M

Zero-shot vs Linear-probe CLIP

Zero-shot performance vs model size

Robustness to Natural Distribution Shift

Robustness to natural distribution shift

CLIP is significantly more robust!

7 ImageNet-like Datasets (Taori et al.)

- ImageNetV2
- ImageNet-A
- ImageNet-R
- ImageNet Sketch
- ObjectNet
- ImageNet Vid
- Youtube-BB

Adapting to ImageNet does not help robustness

Robustness of few-shot linear probes

Limitations and Broader Impacts

Limitations of CLIP

- Zero-shot performance is well below the SOTA
- Especially weak on abstract tasks such as counting
- Poor on out-of-distribution data such as MNIST
- Susceptible to adversarial attacks
- Dataset selection in the eval suite
- Social biases

Quantifying the (un)safety of CLIP models

Social Biases

- Race
- Gender
- Age

Surveillance usage

- Zero-shot scene classification
- Zero-shot identification of celebrities

Not comprehensive, continuing to research to ensure safety Model card limits usage of CLIP to research-only

Related Work

Prior Related Work

Multimodal learning

- VirTex
- ICMLM
- ConVIRT

Natural language supervision Text-image retrieval Webly supervised learning

Multimodal Neurons in CLIP

BIOLOGICAL NEURON

Probed via depth electrodes

CLIP NEURON

Neuron 244 from penultimate layer in CLIP RN50x4

PREVIOUS ARTIFICIAL NEURON

Neuron 483, generic person detector from Inception v1

Halle Berry

Spider-Man

human face

Responds to photos of Halle Berry and Halle Berry in costume

Responds to photos of Spider-Man in costume and spiders

Responds to photos of human faces

Photorealistic images

Responds to skeches of Halle Berry

Responds to comics or drawings of Spider-Man and spiderthemed icons

Does not respond significantly to drawings of faces

Conceptual drawings

Responds to the text "Halle Berry"

Responds to the text "spider" and others

Does not respond significantly to text

Images of text

Typographic Attacks

Granny Smith	85.61%
iPod	0.42%
library	0%
pizza	0%
rifle	0%
toaster	0%
dough	0.1%
assault rifle	0%
patio	0.56%

LABELED "IPOD"

Granny Smith	0.13%	
iPod	99.68%	
library	0%	
pizza	0%	
rifle	0%	
toaster	0%	
dough	0%	
assault rifle	0%	
patio	0%	

Chihuahua 17.5% Miniature Pinscher 14.3% French Bulldog 7.3% 5.7% **Griffon Bruxellois** 4% Italian Greyhound West Highland White Terrier 2.1% Schipperke 2% Maltese 2% **Australian Terrier** 1.9%

Target class:
pizza
Attack text:
pizza

plizza	-	3	S
pizza	zza		
pi	zza	To the	
	pliz	za pizza za pizza	2
	plz	22 a	
	-	pizzz	9
	To be a second		

83.7%
2%
1.5%
1.2%
0.6%
0.6%
0.5%
0.4%
0.3%

Applications of CLIP

StyleCLIP (Patashnik et al.)

Steering a GAN Using CLIP

CLIP4Clip (Luo & Ji, et al.)

Video retrieval using CLIP features

More text-based image generations using CLIP

"A banquet hall"

"Geoffrey Hinton"

"Dogs playing poker"

Try CLIP today!

https://github.com/openai/CLIP

- PyTorch implementation
- Colab notebook

Thank You

Visit openai.com for more information.