Министерство высшего образования и науки Российской Федерации Национальный научно-исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Лабораторная работа №6 по дисциплине «Основы профессиональной деятельности».

Вариант №696.

Работу выполнил: Афанасьев Кирилл Александрович, Студент группы Р3106. Преподаватель: Афанасьев Дмитрий Борисович.

Оглавление

Задание	3
Текст исходной программы	
Описание программы	
Методики проверки	
Проверка основного цикла	
Проверка прерывания ВУ-2	
Проверка прерывания ВУ-3	8
Сводная таблица результатов проверок по соответствующим методикам	8
Вывол	

Задание

«По выданному преподавателем варианту разработать и исследовать работу комплекса программ обмена данными в режиме прерывания программы. Основная программа должна изменять содержимое заданной ячейки памяти (X), которое должно быть представлено как знаковое число. Область допустимых значений изменения X должна быть ограничена заданной функцией F(X) и конструктивными особенностями регистра данных ВУ (8-ми битное знаковое представление). Программа обработки прерывания должна выводить на ВУ модифицированное значение X в соответствии с вариантом задания, а также игнорировать все необрабатываемые прерывания. Вариант 696:

- 1. Основная программа должна увеличивать на 2 содержимое X (ячейки памяти с адресом 031₁₆) в цикле.
- 2. Обработчик прерывания должен по нажатию кнопки готовности ВУ-3 осуществлять вывод результата вычисления функции F(X)=3X-5 на данное ВУ, а по нажатию кнопки готовности ВУ-2 изменить знак содержимого РД данного ВУ и записать в X
- 3. Если X оказывается вне ОДЗ при выполнении любой операции по его изменению, то необходимо в X записать минимальное по ОДЗ число.

Текст исходной программы

Таблица 1: Текст исходной программы.

Готовность ВУ-3: F(X) = 3X-5 -> РДВУ-3, Готовность ВУ-2: (-РДВУ2) -> X.						
Основной цикл: X + 2 -> X.						
ORG 0x0			Инициализируем векторы прерываний.			
V0: WOR	STATE STATES STA	;	Вектор 0 – стандартный обработчик.			
V1: WOR	STATE	;	Вектор 1 – стандартный обработчик.			
V2: WOR) \$INT2, 0x180	;	Вектор 2 установлен на обр. INT2.			
V3: WOR) \$INT3, 0x180	;	Вектор 3 установлен на обр. INT3.			
V4: WORE	STATE STATES STA	;	Вектор 4 – стандартный обработчик.			
V5: WOR	STATE STATES STA	;	Вектор 5 – стандартный обработчик.			
V6: WOR	STATE STATES STA	;	Вектор 6 – стандартный обработчик.			
V7: WOR	STATE STATES STA	;	Вектор 7 – стандартный обработчик.			
DEFAULT:		;	Стандартный обработчик прерываний			
DI		;	Запретим остальные прерывания.			
PUSI	1	;	Сохраним состояние АС.			
IN 0×0			; Сбросим состояния готовностей			
IN 0×4			; всех внешних устройств.			
IN 0x6						
IN 0x8						
IN 0x18			· •			
IN O	0x1C	;				
CLA			; Очистим аккумулятор от возможного			
		;	мусора, пришедшего из РДВУ,			
OUT	0x2	;	прерывания ВУ которых			

	OUT 0xC	• MIL HO MODDONINGTON
	OUT 0xC	; мы не поддерживаем • И такжа продолжения образывать
	OUT 0x10	; И также продолжим сбрасывать
		; готовность ВУ.
	POP	; По окончании возвращаем сост. AC.
	EI	; Снова разрешаем прерывания.
	IRET	; И выходим из текущего прерывания.
CTART	ORG 0x020	**
START:	DI	; На время инициализации векторов.
	15 46	; запретим какие-либо прерывания.
	LD #0xA	; Инициализируем прерывание ВУ-2.
	OUT 0x5	; на вектор 2 (и разрешим его).
	LD #0xB	; Инициализируем прерывание ВУ-3.
	OUT 0x7	; на вектор 3 (и разрешим его).
	CLA	; Остальные прерывания ВУ будут.
	OUT 0x1	; назначены на вектор 0 .
	OUT 0x3	; (и вообще запрещены на уровне КВУ).
	OUT 0xB	;
	OUT 0xE	;
	OUT 0x12	;
	OUT 0x16	;
	OUT 0x1A	;
	OUT 0x1E	;
	JUMP \$PROG	; Векторы назначены. Двигаемся в
		; основной цикл
	ORG 0x030	
ADDR_X:	WORD 0x031	; Указатель на X.
X: _	WORD ?	; Основная переменная программы.
PROG:	EI	; Разрешаем прерывания.
	LD ADDR_X	; Загрузим адрес Х.
	PUSH	; И положим адрес в стек.
INCLP:	CALL \$AT INC	; Вызываем атомарную операцию +2.
	JUMP INCLP	; Это вся суть основного цикла.
	ORG 0x040	,
TEMP_ADDR:	WORD ?	; Врем. ячейка для адреса аргумента.
AT_INC:	DI	; Атомарное увел. яч. памяти на 2.
	LD &1	; Загрузим адрес операнда.
	ST TEMP ADDR	; Сохраним во временную ячейку.
	LD (TEMP ADDR)	; Загрузим операнд.
	NOP	, загрузим операно. ; Точка отладки 1.
	INC	,
	INC	; Увеличим его на 2. Прерывания • быти запращения до этого
		; были запрещены до этого.
	CALL \$AAV_CHECK	; Сверим с ОДЗ полученный результат.
	ST (TEMP_ADDR)	; Сохраним его в ячейку памяти.
	NOP	; Точка отладки 2.
	EI	; Снова разрешим прерывания.
	RET	; И вернем логику управления.

	ORG 0x050	; Обработчик вектора прерываний 2
INT2:	DI	; Запрета остальные прерывания.
	NOP	; Точка отладки 3.
	PUSH	; Сохраним состояние АС.
	IN 0×4	; Произведем чтение с ВУ-2.
	SXTB	; Расширим знак пришедшего числа.
	NEG	; Изменим знак числа.
	ST \$X	; Сохраним в X.
	POP	; Вернем состояние AC.
	NOP	; Точка отладки 4.
	EI	; Разрешим прерывания.
	IRET	; И выйдем из текущего прерывания.
	ORG 0x060	; Обработчик вектора прерываний 3.
INT3:	DI	; Запретим остальные прерывания.
	NOP	; Точка отладки 5.
	PUSH	; Сохраним состояние АС.
	LD \$X	; Загрузим X в AC.
	ASL	; Арифметический сдвиг влево (Х*2).
	ADD \$X	2*X + X -> AC(3*X).
	SUB #5	; Из 3*X вычитаем 5.
	OUT 6	; Итоговый результат F(X) на ВУ-3.
	POP	; Вернем состояние АС.
	NOP	; Точка отладки 6.
	EI	; Разрешим прерывания.
	IRET	; И выйдем из текущего прерывания.
	ORG 0x070	, , , ,
AAV_CHECK:	CMP MAX_VAL	; Проверим верхнюю границу ОДЗ.
_	BEQ AAV RET	; Они равны? Да – на выход.
	BGE RESET	; Результат больше? Сбрасываем его.
	CMP MIN_VAL	; Проверим нижнюю границу ОДЗ.
	BGE AAV_RET	; Результат больше? На выход.
RESET:	LD MIN_VAL	; Иначе сбросим до минимального числа.
AAV_RET:	RET	; Тот самый выход!
MIN_VAL:	WORD 0xFFD5	; Нижняя граница ОДЗ.
MAX_VAL:	WORD 0x002A	; Верхняя граница ОДЗ.

Окончание таблицы.

Описание программы

- Назначение основной программы: увеличение значения ячейки памяти на 2. Нажатие на кнопку «Готов» на ВУ-2 обновит значение ячейки памяти инвертированным значением с РДВУ-2. Нажатие на кнопку «Готов» на ВУ-3 выведет в РДВУ-3 значение F(X) = 3X 5.
- Описание исходных данных:
 - X − основная ячейка памяти.
 - о ОПИ:
 - X знаковое, 8-разрядное число.
 - о ОДЗ:
 - $-0x2B \le X \le 0x2A$

- Расположение в памяти ЭВМ программы и исходных данных:
 - о Программный комплекс располагается в следующих ячейках памяти:
 - Векторы прерываний: между ячейками 000 и 00F включительно
 - Стандартный обработчик прерываний: между ячейками 010 и 01F включительно
 - Инициализация векторов прерываний: между ячейками 020 и 02Е включительно
 - Основной цикл программы: между ячейками 030 и 036 включительно
 - Подпрограмма атомарного увеличения ячейки на 2: между ячейками 040 и 04С включительно
 - Обработчик прерываний вектора 2: между ячейками 050 и 05А включительно
 - Обработчик прерываний вектора 3: между ячейками 060 и 06В включительно
 - Подпрограмма проверки на вхождение ячейки в ОДЗ: между ячейками 070 и 078 включительно
 - о Исходные данные должны располагаться в ячейках памяти:
 - X 031
 - Результат работы программы должен располагаться в ячейке памяти 031.
 - о В программе используются следующие неизменяемые значения (константы):
 - По адресу 000 − значение 0x0010
 - По адресу 001 значение 0x0180
 - По адресу 002 значение 0x0010
 - По адресу 003 значение 0x0180
 - По адресу 004 значение 0x0050
 - По адресу 005 значение 0x0180
 - По адресу 006 значение 0х0060
 - По адресу 007 значение 0x0180
 - По адресу 008 значение 0x0010
 - По адресу 009 значение 0x0180
 - По адресу 00A значение 0x0010
 - По адресу 00В − значение 0x0180
 - По адресу 00С значение 0x0010
 - По адресу 00D − значение 0x0180
 - По адресу 00E − значение 0x0010
 - По адресу 00F − значение 0x0180
 - По адресу 077 значение 0xFFD5
 - По адресу 078 значение 0x002A
 - о В программе также используются вспомогательные ячейки, находящиеся по адресам 030 и 040.

• Первая команда располагается в ячейке по адресу 020.

Методики проверки

Проверка основного цикла

- 1. Загрузить комплекс программ в память Базовой ЭВМ.
- 2. Изменить значение отладочной точки 1 и отладочной точки 2 по адресам 045 и 04A на HLT.
- 3. Переключить тумблер в режим «РАБОТА», отключить потактовое исполнение, нажать кнопку «ПУСК».
- 4. Дождаться остановки работы ЭВМ.
- 5. Записать текущее значение счетчика команд (IP).
- 6. Ввести в клавишный регистр (IR) значение 0000.0000.0011.0001 (0x0031).
- 7. Нажать кнопку «ВВОД АДРЕСА».
- 8. Нажать кнопку «ЧТЕНИЕ».
- 9. Записать значение регистра данных (DR).
- 10. Ввести в клавишный регистр (IR) ранее записанное значение счётчика команд (IP).
- 11. Нажать кнопку «ВВОД АДРЕСА».
- 12. Не меняя состояние тумблеров, нажать кнопку «ПРОДОЛЖИТЬ».
- 13. Дождаться остановки работы ЭВМ.
- 14. Повторить пункты 5–11 включительно.
- 15. Сравнить полученные 2 записанных значения.
 - а. Второе значение либо должно быть больше первого на 2.
 - b. Либо равняться минимальному значению согласно ОДЗ исходных данных, в случае если первое значение было больше, чем 0x28.

Проверка прерывания ВУ-2

- 1. Загрузить комплекс программ в память Базовой ЭВМ.
- 2. Изменить значение отладочной точки 3 и отладочной точки 4 по адресам 051 и 058 на HLT.
- 3. Переключить тумблер в режим «РАБОТА», отключить потактовое исполнение, нажать кнопку «ПУСК».
- 4. Придумать любое число и записать его в РДВУ-2.
- 5. Установить «Готовность ВУ-2».
- 6. Дождаться остановки работы ЭВМ.
- 7. Записать текущее значение аккумулятора (АС).
- 8. Не меняя состояние тумблеров, нажать кнопку «ПРОДОЛЖИТЬ».
- 9. Дождаться остановки работы ЭВМ.
- 10. Записать текущее значение аккумулятора (АС). Проверить, что оно совпало с тем значением, что было получено в пункте 7.
- 11. Ввести в клавишный регистр (IR) значение 0000.0000.0011.0001 (0x0031).
- 12. Нажать кнопку «ВВОД АДРЕСА».
- 13. Нажать кнопку «ЧТЕНИЕ».

14. Вычислить дополнительный код числа, полученного в пункте 4 и сравнить его с младшим байтом DR. Они должны быть равны.

Проверка прерывания ВУ-3

- 1. Загрузить комплекс программ в память Базовой ЭВМ.
- 2. Изменить значение отладочной точки 5 и отладочной точки 6 по адресам 061 и 069 на HLT.
- 3. Переключить тумблер в режим «РАБОТА», отключить потактовое исполнение, нажать кнопку «ПУСК».
- 4. Установить «Готовность ВУ-3»
- 5. Дождаться остановки работы ЭВМ.
- 6. Записать текущее значение аккумулятора (АС).
- 7. Ввести в клавишный регистр (IR) значение 0000.0000.0011.0001 (0x0031).
- 8. Нажать кнопку «ВВОД АДРЕСА».
- 9. Нажать кнопку «ЧТЕНИЕ».
- 10. Записать значение младшего байта регистра данных (DR).
- 11. Ввести в клавишный регистр (IR) ранее записанное значение счётчика команд (IP).
- 12. Нажать кнопку «ВВОД АДРЕСА».
- 13. Не меняя состояние тумблеров, нажать кнопку «ПРОДОЛЖИТЬ».
- 14. Дождаться остановки работы ЭВМ.
- 15. Записать текущее значение аккумулятора (АС). Проверить, что оно совпадает с тем значением, что было получено в пункте 6.
- 16. Вычислить функцию F(X) = 3X 5 от значения, полученного в пункте 10. Сравнить его с текущим значением РДВУ-3. Убедиться, что значения равны.

Сводная таблица результатов проверок по соответствующим методикам

Таблица 2: Результаты проверки работы программного комплекса.

No	Основной цикл			Прерывание ВУ-2			Прерывание ВУ-3		
- 1	Исходное	Подсчитанное	Полученное	Исходное	Подсчитанное	Полученное	Исходное	Подсчитанное	Полученное
1	DR:	0x0002	0x0002	AC:	0x000A	0x000A	AC:	0x001A	0x001A
	0x0000			0x000A			0x001A		
1				DRED-	0xE1	0xE1	X:	0x0049	0x0049
				2: 0x1F			0x001A		
2	DR:	0x002A	0x002A	AC:	0xFFE5	0xFFE5	AC:	0x001E	0x001E
-	0x0028			0xFFE5			0x001E		
2				DRED-	0xAC	0xAC	X:	0x55	0x55
-				2: 0x54			0x001E		
3	DR:	0xFFD5	0xFFD5	AC:	0xFFDD	0xFFDD	AC:	0xFFE1	0xFFE1
	0x002A			0xFFDD			0xFFE1		
3				DRED-	0x80	0x80	X:	0x9E	0x9E
				2: 0x80			0xFFE1		

Окончание таблицы.

Вывод

Во время выполнения данной лабораторной работы я изучил процесс прерывания программы и исследовал функционирование Базовой ЭВМ при обмене данными в режиме прерывания программы, а также научился писать методики проверки программных комплексов и следовать им.