Combinational Logic Design

Dr. Chandan Karfa CSE IIT Guwahati Adder

Half Adder

Table 4.3 Half Adder

X	y	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full adder

• For example, addition of the binary numbers 1011 and 0011

0 1 1 carry-in
1 0 1 1 augend
0 0 1 1 addend
1 1 1 0 sum

• The carry-out produced in the addition of the ith significant digits must be incorporated, as a carry-in, in the addition process for the (i + 1)th significant digit.

Full Adder

Table 4.4 Full Adder

x	y	Z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(b)
$$C = xy + xz + yz$$

Full Adder – area optimized design

Table 4.4 *Full Adder*

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$= z'(xy' + x'y) + z(xy + x'y')$$

$$= z'(xy' + x'y) + z(xy' + x'y)'$$

$$S = z \oplus (x \oplus y)$$

= xy'z' + x'yz' + xyz + x'y'z

$$C = z(xy' + x'y) + xy = xy'z + x'yz + xy$$

Four bit binary adder

- Also known as ripple carry adder.
- Large combinational/propagation delay
 - 2n for normal design for n bits addition
 - 2n for area optimized design for n bits addition as well

• G_i is called a *carry generate*, and it produces a carry of 1 when both A_i and B_i are 1, regardless of the input carry C_i .

Table 4.4 *Full Adder*

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

• P_i is called a *carry propagate* because it determines whether a carry into stage i will propagate into stage i + 1 (i.e., whether an assertion of C_i will propagate to an assertion of C_{i+1})

Half adder P_i $P_i \oplus C_i$ $P_i C_i + G_i$ C_{i+1}

Table 4.4 *Full Adder*

X	y	z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$P_i = A_i \oplus B_i$$
$$G_i = A_i B_i$$

$$S_i = P_i \oplus C_i$$

$$C_{i+1} = G_i + P_i C_i$$

$$C_0 = \text{input carry}$$

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$$

 $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

$$C_0 = \text{input carry}$$

 $C_1 = G_0 + P_0 C_0$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$$

 $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

Four bit adder with carry Look ahead adder

What is the delay of a n-bit adder?

Constant 4

Area overhear of Carry look ahead adder

$$C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$$

 $C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$

- It requires a very large number of gates.
- For each stage of the adder it is necessary to have an OR gate with n inputs and n AND gates with 1 through n inputs
 - Modern day computer is 64-bit word

- The limitation can be overcome, though at the expense of computation speed.
- By dividing the n stages of the adder into groups such that within each group a full carry look ahead is achieved while a ripple carry is maintained between groups.
- For group of size k-stages, delay:
 - 4 + (2n/k)
- Area overhead:

