WHAT IS CLAIMED IS:

1. A method of treating liver cancer comprising administering to a subject in need of treatment an amount of at least one compound of the general formula (I):

$$\begin{array}{c|c} R_2 \\ \hline \\ N \\ \hline \\ N \\ \end{array}$$

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 R_1 is H, C_{1-4} alkyl;

Q is a bond, or C_{1-4} alkyl;

A is aryl, heteroaryl optionally substituted with 0-3 substituents independently chosen from halogen, C₁₋₄ alkyl, CH₂F, CHF₂, CF₃, CN, aryl, hetaryl, OCF₃, OC₁₋₄alkyl, OC₂₋₅alkylNR₄R₅, Oaryl, Ohetaryl, CO₂R₄, CONR₄R₅, nitro, NR₄R₅, C₁₋₄ alkylNR₄R₅, NR₆C₁₋₄alkylNR₄R₅, NR₆CONR₄R₅, NR₆CONR₄R₅, NR₆CONR₄R₅;

R₄, R₅ are each independently H, C₁₋₄ alkyl, C₁₋₄ alkyl cycloalkyl, C₁₋₄ alkyl cyclohetalkyl, aryl, hetaryl, C₁₋₄alkyl aryl, C₁₋₄ alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₇;

R₆ is selected from H, C₁₋₄ alkyl;

R₇ is selected from H, C₁₋₄ alkyl, aryl, hetaryl, C₁₋₄alkyl aryl, C₁₋₄ alkyl hetaryl; R₂ is 0-2 substituents independently selected from halogen, C₁₋₄alkyl, OH, OC₁₋₄alkyl, CH₂F, CHF₂, CF₃, OCF₃, CN, C₁₋₄alkylNR₈R₉, OC₁₋₄alkylNR₈R₉, CO₂R₈, CONR₈R₉, NR₈COR₉, NR₁₀CONR₈R₉, NR₈SO₂R₉;

R₈, R₉ are each independently H, C₁₋₄ alkyl, C₁₋₄ alkyl cycloalkyl, C₁₋₄ alkyl cyclohetalkyl, aryl, hetaryl, C₁₋₄ alkyl aryl, C₁₋₄ alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₁;

R₁₀ is selected from H, C₁₋₄ alkyl, aryl or hetaryl;

 R_{11} is selected from H, C_{1-4} alkyl, aryl, hetaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl hetaryl;

Y is halogen, OH, NR₁₂R₁₃, NR₁₄COR₁₂, NR₁₄CONR₁₂R₁₃, N₁₄SO₂R₁₃;

R₁₂ and R₁₃ are each independently H, CH₂F, CHF₂, CF₃, CN, C₁₋₄ alkyl optionally substituted with OH, OC₁₋₄alkyl or NR15R16, cycloalkyl; cyclohetalkyl, C₁₋₄ alkyl cyclohetalkyl, or may be joined to form an optionally substituted 3-6 membered ring optionally containing an atom selected from O, S, NR₁₄;

 R_{14} , R_{15} and R_{16} are each independently selected from H, $C_{1\text{-}4}$ alkyl; n=0-4;

W is selected from H, C_{1-4} alkyl, C_{2-6} alkenyl; where C_{1-4} alkyl or C_{2-6} alkenyl may be optionally substituted with C_{1-4} alkyl, OH, OC_{1-4} alkyl, $NR_{15}R_{16}$;

 R_{15} , and R_{16} are each independently H, C_{1-4} alkyl, C_{1-4} alkyl cycloalkyl, C_{1-4} alkyl cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR_{17} ; and R_{17} is selected from H, C_{1-4} alkyl.

2. A method of treating liver cancer comprising administering to a subject in need of treatment an amount of at least one compound of the general formula (II):

$$\begin{array}{c|c} R_1 & & \\ \hline \\ W & N & \\ \hline \\ A & N & \\ \end{array}$$

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 R_1 is H, C_{1-4} alkyl;

Q is a bond, or C_{1-4} alkyl;

A is aryl, hetaryl optionally substituted with 0-3 substituents independently chosen from halogen, C₁₋₄ alkyl, CH₂F, CHF₂, CF₃, CN, aryl, hetaryl, OCF₃, OC₁₋₄alkyl, OC₂₋₅alkylNR₄R₅, Oaryl, Ohetaryl, CO₂R₄, CONR₄R₅, nitro, NR₄R₅, C₁₋₄alkylN R₄R₅, NR₆CO₁₋₄alkylN R₄R₅, NR₆CON R₄R₅, NR₄SO₂R₅;

 R_4 , R_5 are each independently H, C_{1-4} alkyl, C_{1-4} alkyl cycloalkyl, C_{1-4} alkyl cyclohetalkyl, aryl, hetaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR_7 ;

 R_6 is selected from H, C_{1-4} alkyl;

R₇ is selected from H, C₁₋₄ alkyl, aryl, hetaryl, C₁₋₄ alkyl aryl, C₁₋₄ alkyl hetaryl; R₂ is 0-2 substituents independently selected from C₁₋₄ alkyl and OC₁₋₄ alkyl; Y is CH₂OH, OC₁₋₄ alkylOH, OC₁₋₄ alkylR₁₂, OC₁₋₄ alkylNR₁₂NR₁₃, C(O)R12, CH₂R₁₂,

COOR₁₂, CONR₁₂R₁₃, OCON R₁₂R₁₃, CH₂N R₁₂R₁₃, NHCOR₁₂, NHCON R₁₂R₁₃, R₁₂ and R₁₃ are each independently H, C₁₋₂ alkyl, (CH₂)₃NEt₂, (CH₂)₂NMe₂, (CH₂)₅NH₂, (CH₂)₂OH,

$$-N$$
, $-N$, $-N$, $N-CH_3$, $-NH$, $-N$, and $-N$, $-$

n=0-4;

W is selected from H, C_{1-4} alkyl, C_{2-6} alkenyl; where C_{1-4} alkyl or C_{2-6} alkenyl may be optionally substituted with C_{1-4} alkyl, OH, OC_{1-4} alkyl, $NR_{15}R_{16}$;

 R_{15} , and R_{16} are each independently H, C_{1-4} alkyl, C_{1-4} alkyl cycloalkyl, C_{1-4} alkyl cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR_{17}

 R_{17} is selected from H, $C_{1\text{--}4}$ alkyl; and wherein when Y is CH_2R_{12} then R_{12} is not H, $C_{1\text{--}2}$ alkyl.

3. A method of treating liver cancer comprising administering to a subject in need of treatment an amount of at least one compound of the general formula (III):

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 X_1 , X_2 , X_3 , X_4 are selected from the following:

- (i) X_1 and X_2 are N and X_3 and X_4 are C independently substituted with Y;
- (ii) X_1 and X_4 are N and X_2 and X_3 are C independently substituted with Y;
- (iii) X_1 and X_3 are N and X_2 and X_4 are C independently substituted with Y;
- (iv) X_2 and X_4 are N and X_1 and X_3 are C independently substituted with Y;
- (v) X_1 is N and X_2 , X_3 , and X_4 are C independently substituted with Y;
- (vi) X_3 is N and X_1 , X_2 , and X_4 are C independently substituted with Y;
- (vii) X_4 is N and X_1 , X_2 , and X_3 are C independently substituted with Y;
- (viii) X_2 is N and X_1 , X_3 , and X_4 are C independently substituted with Y; and
- (ix) X_1 , X_2 and X_3 are N and X_4 is C substituted with Y;

 R_1 is H, $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkylNR₅R₆, $C_{1\text{-}6}$ alkylNR₅COR₆, $C_{1\text{-}6}$ alkylNR₅SO₂R₆, $C_{1\text{-}6}$ alkylCO₂R₅, $C_{1\text{-}6}$ alkylCONR₅R₆;

R₅ and R₆ are each independently H, C₁₋₄alkyl, aryl, hetaryl, C₁₋₄alkylaryl, C₁₋₄alkylhetaryl or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₇;
R₇ is selected from H, C₁₋₄alkyl;

```
R_2 \ is \ selected \ from \ C_{1\text{-}6} alkylOH, \ OC_{2\text{-}6} alkylOH, \ C_{1\text{-}6} alkylNR_8R_9, \ OC_{2\text{-}6} alkylNR_8R_9, \ C_{1\text{-}6} alkylNR_8COR_9, \ OC_{2\text{-}6} alkylNR_8COR_9, \ C_{1\text{-}6} alkylhetaryl, \ OC_{2\text{-}6} alkylhetaryl, \ OCONR_8R_9, \ NR_8COR_{12};
```

R₈, R₉ are each independently H, C₁₋₄alkyl, C₁₋₄alkylNR₁₁R₁₃, hetaryl, cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₄;

R₁₂ is C₂₋₄alkyl, C₁₋₄alkylNR₁₁R₁₃, hetaryl, cyclohetalkyl;

R₁₁, R₁₃ are each independently H, C₁₋₄alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₄;

R₁₄ is selected from H, C₁₋₄alkyl;

 R_{10} is H, C_{1-4} alkyl;

R₃ and R₄ are each independently H, halogen, C₁₋₄alkyl, OH, OC₁₋₄alkyl, CF₃, OCF₃; Q is a bond, or C₁₋₄ alkyl;

W is selected from H, C_{1-4} alkyl, C_{2-6} alkenyl; where C_{1-4} alkyl or C_{2-6} alkenyl may be optionally substituted with C_{1-4} alkyl, OH, OC_{1-4} alkyl, $NR_{15}R_{16}$;

R₁₅ and R₁₆ are each independently H, C₁₋₄alkyl, C₁₋₄alkyl cycloalkyl, C₁₋₄alkyl cyclohetalkyl, aryl, hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₇; R₁₇ is selected from H, C₁₋₄alkyl;

A is aryl, hetaryl optionally substituted with 0-3 substituents independently chosen from halogen, C_{1-4} alkyl, CF_3 , aryl, hetaryl, OCF_3 , OC_{1-4} alkyl, OC_{2-5} alkyl $NR_{18}R_{19}$, $OR_{18}R_{19}$, $OR_{18}R_{1$

 R_{18} , R_{19} are each independently H, C_{1-4} alkyl, C_{1-4} alkyl cyclohetalkyl, aryl, hetaryl, C_{1-4} alkyl aryl, C_{1-4} alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR_{21} ;

 R_{21} is selected from H, C_{1-4} alkyl;

R₂₀ is selected from H, C₁₋₄alkyl;

Y is selected from H, C₁₋₄alkyl, OH, NR₂₂R₂₃; and

R₂₂, R₂₃ are each independently H, C₁₋₄alkyl.

4. A method of treating liver cancer comprising administering to a subject in need of treatment an amount of at least one compound of the general formula (IV):

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 X_1, X_2, X_3, X_4 are selected from the following:

- (i) X_1 and X_2 are N and X_3 and X_4 are C independently substituted with Y;
- (ii) X_1 and X_4 are N and X_2 and X_3 are C independently substituted with Y;
- (iii) X_1 and X_3 are N and X_2 and X_4 are C independently substituted with Y;
- (iv) X_2 and X_4 are N and X_1 and X_3 are C independently substituted with Y;
- (v) X_1 is N and X_2 , X_3 , and X_4 are C independently substituted with Y;
- (vi) X_3 is N and X_1 , X_2 , and X_4 are C independently substituted with Y;
- (vii) X_4 is N and X_1 , X_2 , and X_3 are C independently substituted with Y;
- (viii) X_2 is N and X_1 , X_3 , and X_4 are C independently substituted with Y; and
- (ix) X_1 , X_2 and X_3 are N and X_4 is C substituted with Y;
- R₁ is H, C₁₋₆alkyl, C₁₋₆alkylNR₅R₆, where R₅ and R₆ are each independently H, C₁₋₄alkyl, aryl, hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₇; R₇ is selected from H, C₁₋₄alkyl;
- R₂ is selected from C₁₋₆alkylOH, OC₂₋₆alkyl OH, C₁₋₆alkylNR₈R₉, OC₂₋₆alkyl NR₈R₉, C₁₋₆alkylNR₈COR₉, OC₂₋₆alkylNR₈COR₉, C₁₋₆alkylhetaryl, OC₂₋₆alkylhetaryl, OCONR₈R₉, NR₈COOR₉, NR₁₀CONR₈R₉, CONR₈R₉, NR₈COR₁₂;
 - R₈, R₉ are each independently H, C₁₋₄alkyl, C₁₋₄alkylNR₁₁R₁₃, hetaryl, cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₄;

R₁₂ is C₂₋₄alkyl, C₁₋₄alkylNR₁₁R₁₃, hetaryl, cyclohetalkyl;

R₁₁, R₁₃ are each independently H, C₁₋₄alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₄; R₁₄ is selected from H, C₁₋₄alkyl;

R₁₀ is H, C₁₋₄alkyl;

R₃ and R₄ are each independently H, halogen, C₁₋₄alkyl, OH, OC₁₋₄alkyl, CF₃, OCF₃; Q is CH;

W is selected from C₁₋₄alkyl, C₂₋₆alkenyl; where C₁₋₄alkyl or C₂₋₆alkenyl may be optionally substituted with C₁₋₄alkyl, OH, OC₁₋₄alkyl, NR₁₅R₁₆;

R₁₅, and R₁₆ are each independently H, C₁₋₄alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₇;

R₁₇ is selected from H, C₁₋₄alkyl;

A is aryl, hetaryl optionally substituted with 0-2 substituents independently chosen from halogen, C₁₋₄alkyl, CF₃, aryl, hetaryl, OCF₃, OC₁₋₄alkyl; OC₂₋₃alkylNR₁₈R₁₉, Oaryl, Ohetaryl, CO₂R₁₈, CONR₁₈R₁₉, NR₁₈R₁₉, C₁₋₄alkylNR₁₈R₁₉, NR₂₀C₁₋₄alkylNR₁₈R₁₉, NR₁₈COR₁₉, NR₂₀CONR₁₈R₁₉, NR₁₈SO₂R₁₉;

R₁₈, R₁₉ are each independently H, C₁₋₄alkyl, C₁₋₄alkyl cyclohetalkyl, aryl, hetaryl, C₁₋₄alkyl aryl, C₁₋₄alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₂₁;

R₂₁ is selected from H, C₁₋₄alkyl;

R₂₀ is selected from H, C₁₋₄alkyl;

Y is selected from H, C₁₋₄alkyl, NR₂₂R₂₃; and

R₂₂, R₂₃ are each independently H, C₁₋₄alkyl.

5. A method of treating liver cancer comprising administering to a subject in need of treatment an amount of at least one compound of the general formula (V):

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

 X_1 , X_2 , X_3 , X_4 are selected from the following:

- (i) X_1 and X_2 are N and X_3 and X_4 are C independently substituted with Y;
- (ii) X_1 and X_4 are N and X_2 and X_3 are C independently substituted with Y;
- (iii) X_2 and X_4 are N and X_1 and X_3 are C independently substituted with Y;
- (iv) X_1 is N and X_2 , X_3 , and X_4 are C independently substituted with Y;
- (v) X_3 is N and X_1 , X_2 , and X_4 are C independently substituted with Y;
- (vi) X_4 is N and X_1 , X_2 , and X_3 are C independently substituted with Y;
- (vii) X₂ is N and X₁, X₃, and X₄ are C independently substituted with Y; and
- (viii) X_1 , X_2 and X_3 are N and X_4 is C substituted with Y;

 $R_1 \text{ is H, C}_{1\text{-}6} \text{alkylNR}_5 R_6, C_{1\text{-}6} \text{alkylNR}_5 \text{COR}_6, C_{1\text{-}6} \text{alkylNR}_5 \text{SO}_2 R_6, C_{1\text{-}6} \text{alkylCO}_2 R_5, \\ C_{1\text{-}6} \text{alkylCONR}_5 R_6;$

R₅ and R₆ are each independently H, C₁₋₄alkyl, aryl, hetaryl, C₁₋₄alkylaryl, C₁₋₄alkylhetaryl or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₇;

R₇ is selected from H, C₁₋₄alkyl;

R₂ is selected from OH, OC₁₋₆alkyl, C₁₋₆alkylOH, OC₂₋₆alkylOH, C₁₋₆alkylNR₈R₉, OC₂₋₆alkylNR₈R₉, C₁₋₆alkylNR₈COR₉, OC₂₋₆alkylNR₈COR₉, C₁₋₆alkylhetaryl, OC₂₋₆alkylhetaryl, OCONR₈R₉, NR₈COR₁₂;

R₈, R₉ are each independently H, C₁₋₄alkyl, C₁₋₄alkylNR₁₁R₁₃, hetaryl, cyclohetalkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₄;

R₁₂ is C₂₋₄alkyl, C₁₋₄alkylNR₁₁R₁₃, hetaryl, cyclohetalkyl;

R₁₁, R₁₃ are each independently H, C₁₋₄alkyl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₄;

R₁₄ is selected from H, C₁₋₄alkyl;

 R_{10} is H, C_{1-4} alkyl;

R₃ and R₄ are each independently H, halogen, C₁₋₄alkyl, OH, OC₁₋₄alkyl, CF₃, OCF₃; Q is a bond, or C₁₋₄alkyl;

W is selected from H, C₁₋₄alkyl, C₂₋₆alkenyl; where C₁₋₄alkyl or C₂₋₆alkenyl may be optionally substituted with C₁₋₄alkyl, OH, OC₁₋₄alkyl, NR₁₅R₁₆;

R₁₅, and R₁₆ are each independently H, C₁₋₄alkyl, C₁₋₄alkyl cycloalkyl, C₁₋₄alkyl cycloalkyl, C₁₋₄alkyl cyclohetalkyl, aryl, hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR₁₇; R₁₇ is selected from H, C₁₋₄alkyl;

A is aryl, hetaryl optionally substituted with 0-3 substituents independently chosen from halogen, C₁₋₄ alkyl, CF₃, aryl, hetaryl, OCF₃, OC₁₋₄alkyl, OC₂₋₅alkylNR₁₈R₁₉, Oaryl, Ohetaryl, CO₂R₁₈, CONR₁₈R₁₉, NR₁₈R₁₉, C₁₋₄ alkylNR₁₈R₁₉, NR₂₀C₁₋₄alkylNR₁₈R₁₉, NR₁₈COR₁₉, NR₂₀CONR₁₈R₁₉, NR₁₈SO₂R₁₉;

 R_{18} , R_{19} are each independently H, $C_{1\text{--}4}$ alkyl, $C_{1\text{--}4}$ alkyl cyclohetalkyl, aryl, hetaryl, $C_{1\text{--}4}$ alkyl aryl, $C_{1\text{--}4}$ alkyl hetaryl, or may be joined to form an optionally substituted 3-8 membered ring optionally containing an atom selected from O, S, NR_{21} ;

R₂₁ is selected from H, C₁₋₄ alkyl;

R₂₀ is selected from H, C₁₋₄ alkyl;

Y is selected from H, C₁₋₄alkyl, OH, NR₂₂R₂₃;

R₂₂, R₂₃ are each independently H, C₁₋₄ alkyl.

6. A method of treating liver cancer comprising administering to a subject in need of treatment an amount of at least one compound of the general formula (VI):

$$R'_{7}$$
 R'_{6}
 X'_{5}
 X'_{4}
 X'_{3}
 X'_{2}
 (VI)

or pharmaceutically acceptable prodrugs, salts, hydrates, solvates, crystal forms or diastereomers thereof, wherein:

R'₁ is C₁₋₄ alkyl,

R'₂ is independently selected from the group consisting of: OH, NHCOR'₁₂, and NHCONHR'₁₂;

R'₁₂ is independently selected from the group consisting of H, C₁₋₄ alkyl optionally substituted with OH, OC₁₋₄alkyl or NR'₁₅R'₁₆;

R'₁₅ and R'₁₆ are each independently selected from H and C₁₋₄ alkyl;

X'₁, X'₂, X'₃, X'₄ are selected from the following:

- (i) X'₁ and X'₂ are N and X'₃ and X'₄ are C independently substituted with Y';
- (ii) X'₁ and X'₄ are N and X'₂ and X'₃ are C independently substituted with Y';
- (iii) X'₁ and X'₃ are N and X'₂ and X'₄ are C independently substituted with Y';
- (iv) X'₂ and X'₄ are N and X'₁ and X'₃ are C independently substituted with Y';

Y' is selected from H, OH, C₁₋₄alkyl, and OC₁₋₄alkyl;

X's is selected from N and C, and

when X'₅ is C, R'₆ is selected from the group H, halogen, C₁₋₄ alkyl, OC₁₋₄alkyl, CF₃, and OCF₃:

 $R^{\prime}{}_{5}$ is selected from the group $C_{1\text{--}4}$ alkyl, $OC_{1\text{--}4}$ alkyl, $CF_{3},$ and $OCF_{3};$ and

R'₇ is selected from the group H, halogen, C₁₋₄ alkyl, OC₁₋₄alkyl, CF₃, and OCF₃.

7. The method according to claim 6, wherein the compound of the general formula (VI) selected from the group consisting of:

8. The method of claim 7, wherein the compound is

- 9. The method of any of claims 1-8, wherein the liver cancer is selected from the group consisting of: hepatocellular carcinoma (HCC), fibrolamellar HCC, bile duct cancer, angiosarcoma, and secondary liver cancer.
 - 10. The method of any of claims 1-8, wherein the liver cancer is HCC.
 - 11. The method of any of claims 1-10, wherein the subject is a human.
- 12. The method of any of claims 1-10, further comprising monitoring the subject for change(s) in sign(s) and/or symptom(s) of liver cancer responsive to administering the compound.
- 13. The method of any of claims 1-10, wherein the compound is administered as a monotherapy.
- 14. The method of any of claims 1-10, further comprising administering a second therapeutic agent to the subject.
- 15. The method of any of claims 1-10, wherein the compound is administered intravenously, subcutaneously, or orally.
- 16. Use of a compound of the general formulas (I), (II), (III), (IV), (V), or (VI) for the treatment of liver cancer.
 - 17. The use according to claim 16, wherein the compound is selected from

18. The use according to claim 17, wherein the compound is

- 19. The use according to any of claims 16-18, wherein the liver cancer is selected from the group consisting of: hepatocellular carcinoma (HCC), fibrolamellar HCC, bile duct cancer, angiosarcoma, and secondary liver cancer.
 - 20. The use according to any of claims 16-18, wherein the liver cancer is HCC.
- 21. The use according to any of claims 16-20, wherein the treatment is applied to a human.