Regression Review

Nambari Short Course

15 July 2019

Overview

- Review basics of regression model specification
- Define standard notation
- Illustrate with some examples

(NAMBARI Short Course) Regression 15 July 2019 2 / 14

Goals of regression analysis

Notation

$$Y =$$
 dependent variable
 $X = (X_1, ..., X_p)$
= vector of covariates

Sample of data

$$(Y_1, X_1), (Y_2, X_2), \ldots, (Y_n, X_n)$$

Objective

- ullet Want to learn something about the relationship between E(Y) and $oldsymbol{X}$
- ullet This class will be exclusively concerned with regression involving the *mean* of Y as a function of X

(NAMBARI Short Course) Regression 15 July 2019 3 / 14

Regression model specification

Some familiar regression models

$$E(Y|X_i) = X_i\beta$$

$$E(Y|X_i) = \exp(X_i\beta)$$

$$E(Y|X_i) = \frac{\exp(X_i\beta)}{1 + \exp(X_i\beta)}$$

- What do each of these correspond to?
- What do they have in common?

Generalized linear model

Outcome Y having a specific distribution

Linear predictor

$$\mathbf{X}_{i}\boldsymbol{\beta} = X_{1i}\beta_{1} + X_{2i}\beta_{2} + \dots + X_{pi}\beta_{p}$$

- This is an additive function of the covariates
- ullet It is linear in the regression coefficients $oldsymbol{eta}$

Link function

 $g\{E(Y)\}$ that transforms the mean of Y to an appropriate scale

Some example specifications

Linear model with normal errors

$$Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

 $\mu_i = \mathbf{X}_i \boldsymbol{\beta}$

Poisson regression for count data

$$Y_i \sim \mathscr{P}(\theta_i)$$

 $\log(\theta_i) = X_i \beta$

Poisson regression for count data with varying exposure

$$Y_i \sim \mathscr{P}(u_i\theta_i)$$

 $\log(\theta_i) = X_i\beta + \log(u_i)$

(NAMBARI Short Course) Regression 15 July 2019 6 / 14

Some example specifications

Logistic regression for binomial data

$$Y_i \sim \operatorname{Bin}(n_i, \pi_i)$$
 $\log\left(rac{\pi_i}{1-\pi_i}
ight) = \boldsymbol{X}_i \boldsymbol{eta}$

Probit regression for binomial data

$$Y_i \sim \text{Bin}(n_i, \pi_i)$$

 $\Phi^{-1}(\pi_i) = X_i \beta$

Each of these specifications is written in a hierarchical format. What are the implied means and variances E(Y | X) and var(Y | X)?

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 夕 Q ②

7 / 14

(NAMBARI Short Course) Regression 15 July 2019

Example: Birthweight data

- Data were collected on mothers giving birth in the state of Georgia in the US.
- \bullet Dependent variable Y_i is weight in grams of baby
- Independent variable X_i is mother's age
- There are 5 births per woman; we will focus on first one for now

8 / 14

(NAMBARI Short Course) Regression 15 July 2019

Model specification

We will write the model like this

$$Y_i \sim \mathcal{N}(\mu_i, \sigma^2)$$

 $\mu_i = \beta_0 + \beta_1 X_i$

Another equivalent way to write it is like this

$$Y_i = \beta_0 + \beta_1 X_i + e_i,$$

$$e_i \sim \mathcal{N}(0, \sigma^2)$$

Models we will fit

Model 1 intercept only

Model 2 intercept and maternal age

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

> head(bwt)

								_		_	
	mid	order	weight	age	cid	age_c	group1	group2	weight0	age0	ageDiff
1	80	1	3175	18	1	-3	1	0	3175	-3	0
2	80	2	3572	21	2	0	1	0	3175	-3	3
3	80	3	3317	24	3	3	1	0	3175	-3	6
4	80	4	4281	26	4	5	1	0	3175	-3	8
5	80	5	3827	28	5	7	1	0	3175	-3	10
6	84	1	2892	14	6	-7	1	0	2892	-7	0
7	84	2	3204	16	7	-5	1	0	2892	-7	2
8	84	3	4253	20	8	-1	1	0	2892	-7	6
9	84	4	2948	22	9	1	1	0	2892	-7	8
10	84	5	3402	23	10	2	1	0	2892	-7	9

10 / 14

> head(bwt[bwt\$order==1,], n=10) mid order weight age cid age_c group1 group2 weight0 age0 ageDiff -3 -3 -7 -7 -3 -3 -6 -6 26 200 -2-231 221 -2-2 36 247 -4-4 -5 41 336 -5 46 547 -2 -2

11 / 14

Model 0

Model 1

Fitted regression line

