Beamer Report

- A Beamer template for easily positioning and manipulating content

Huangrui Mo

Institute of Mechanics, CAS

October 28, 2021

Compilation: requires LATEX environment

- 1 Just compile like an ordinary Beamer/LATEX: pdflatex+biber+pdflatex+pdflatex
- 2 Or use compilation script:
 - Linux or MacOS: run in terminal
 - ./artratex.sh pb: full compilaiton with reference cited in biblatex format
 - ./artratex.sh p: run pdflatex only, no biber for reference
- 3 Switch to Chinese: just add the "CJK" option in "artrabeamer.tex": \usepackage[CJK, biber, authoryear, tikz, table, xlink] {Style/artrabeamer}
- 4 Many other functionalities: check the available options below the line \usepackage[biber, authoryear, tikz, table, xlink] {Style/ artrabeamer} in "artrabeamer.tex"

Useful commands added to generic LATEX

- \enorcn{English} {Chinese}: automatically switch between English and Chinese versions
- \tikzart[t=m] { }: draw coordinate system to help you position contents
- \tikzart[t=p, x=-7, y=3, w=4] "comments" {figname}: position a picture named "figname" at location "(x,y)" with width "w=4" and comments below the picture.
- \tikzart[t=0, x=0, y=-0.8, s=0.8] {objects-such-as-tikz-diagrams}: position objects at location "(x,y)" with scaling "s=0.8"
- \tikzart[t=v, x=9.5, y=-6.5, w=0.5] {Video/vortex_preserve_geo. mp4} [\includegraphics{cover_image}]: position a video at location "(x,y)" with a cover image of width "w=0.5"
- \lolt{lowlight}, \hilt{highlight}: make the item show in different color when in different state

Smart diagrams + Position objects + Citation + Trim figures + Low/Highlight

(reed2008transient)

Microscale Inhomogeneities Macroscale Interactions Mesoscale

(zhang2010hybrid)

Smart diagrams + Position objects + Citation + Trim figures + Low/Highlight

(reed2008transient)

(zhang2010hybrid)

mo2018immersed

Math + Position text + Full citation + Notes

$$\psi_I = f(\{\psi_N\}, \psi_O)$$

Introduction

- 1 Prediction step: $\psi_I^* = \left[\sum w(d_N)\psi_N\right] / \left[\sum w(d_N)\right]$
- 2 Boundary condition enforcement step: $\psi_O = C\psi_I + \text{RRHS}$ 3 Correction step: $\psi_I = \left[\psi_I^* + \frac{w(d_O)}{\sum w(d_N)} \psi_O \right] / \left[1 + \frac{w(d_O)}{\sum w(d_N)} \right]$

Туре	Example form	С	RRHS			
Dirichlet	$\psi_{O}=g$	0	g			
Neumann	$\left. \frac{\partial \psi}{\partial n} \right _{\mathcal{O}} = \left. \frac{\partial \psi_{\mathcal{O}}}{\partial n} \right.$	$- \boldsymbol{x}_I - \boldsymbol{x}_O \frac{\partial \psi_O}{\partial n}$				
Robin	$\left. lpha \psi_O + eta \left. rac{\partial \psi}{\partial n} \right _O = g ight.$	$\frac{\beta}{\beta - \mathbf{x}_I - \mathbf{x}_O \alpha}$	$\frac{- \mathbf{x}_I - \mathbf{x}_O g}{\beta - \mathbf{x}_I - \mathbf{x}_O \alpha}$			
Cauchy	$\begin{aligned} \left. \left(\boldsymbol{V} \cdot \mathbf{n} \right) \right _{\boldsymbol{x} = \boldsymbol{x}_O} &= \boldsymbol{V}_S \cdot \mathbf{n} \\ \left. \frac{\partial \left(\boldsymbol{V} \cdot \hat{\boldsymbol{t}} \right)}{\partial n} \right _{\boldsymbol{x} = \boldsymbol{x}_O} &= 0 \\ \left. \frac{\partial \left(\boldsymbol{V} \cdot \tilde{\boldsymbol{t}} \right)}{\partial n} \right _{\boldsymbol{x} = \boldsymbol{x}_O} &= 0 \end{aligned}$	$\begin{bmatrix} n_X & n_Y & n_Z \\ \hat{l}_X & \hat{l}_Y & \hat{l}_Z \\ \tilde{l}_X & \tilde{l}_Y & \tilde{l}_Z \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} 0 & 0 & 0 \\ \hat{l}_X & \hat{l}_Y & \hat{l}_Z \\ \tilde{l}_X & \tilde{l}_Y & \tilde{l}_Z \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	$\begin{bmatrix} n_{X} & n_{Y} & n_{Z} \\ \hat{t}_{X} & \hat{t}_{Y} & \hat{t}_{Z} \\ \tilde{t}_{X} & \tilde{t}_{Y} & \tilde{t}_{Z} \end{bmatrix}^{T} \begin{bmatrix} n_{X} & n_{Y} & n_{Z} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \boldsymbol{V}_{S}$			

Position animation + Make Table

To play the video, the compiled PDF should be moved out from the "Tmp" directory

$m_x \times m_y$	L₁ error	L ₁ order	L ₂ error	L ₂ order	L_{∞} error	L_{∞} order
40 × 20	3.536e-2	_	6.097e-2	_	4.105e-1	_
80×40	9.113e-3	1.956	2.497e-2	1.288	1.997e - 1	1.039
160×80	$2.034e{-3}$	2.163	6.548e-3	1.931	$5.236e{-2}$	1.931
320×160	5.114e-4	1.992	1.640e-3	1.997	1.278e - 2	2.035
640×320	1.287e-4	1.990	4.097e-4	2.001	3.119e - 3	2.034
1280×640	$3.233e{-5}$	1.993	1.024e-4	2.000	$7.818e{-4}$	1.996

Ordinary text

A 3D, high-resolution, parallelized, gas-solid flow solver

- Establishes a numerical framework for the direct simulation of gas-solid flows.
- Solves coupled and interface-resolved fluid-fluid, fluid-solid, and solid-solid interactions.
- Addresses shocked flow conditions, irregular and moving geometries, and multibody contact and collisions.

Advancement in understanding particle clustering and jetting

- Demonstrates a valid statistical dissipative property in solving explosively dispersed granular materials with respect to Gurney velocity.
- Extends the time range of the velocity scaling law with regard to Gurney energy in the Gurney theory from the steady-state termination phase to the unsteady evolution phase.
- Proposes an explanation for particle clustering and jetting instabilities to increase the understanding of experimental observations.

Thank you for your attention!

Appendix

Part I

Appendix

AppendixClassic Beamer StyleReferences

Sod's problem (sod1978survey)

References I