Reading Quiz Section 7.3

- 1. True or False: a relation \sim on a set X is *reflexive* if $\exists x \in X$ such that $x \sim x$.
- 2. Suppose that $x, y, z \in X$ and \sim is an equivalence relation on X. Express each of the following assertions in terms of the properties satisfied by an equivalence relation.
 - (1) $x \in [y]$ and $y \in [z] \implies x \in [z]$
 - (2) $x \in [x]$
 - (3) $x \in [y] \iff y \in [x]$
 - (a) (1) is reflexivity, (2) is symmetry, and (3) is transitivity
 - (b) (1) is transitivity, (2) is symmetry, and (3) is reflexivity
 - (c) (1) is transitivity, (2) is reflexivity, and (3) is antisymmetry (Exercise 7.3.16)
 - (d) (1) is transitivity, (2) is reflexivity, and (3) is symmetry
- 3. Let \mathcal{R} be an equivalence relation on a set X. Then \mathcal{R}^{-1} is _____ an equivalence relation.
 - (a) never
- (b) sometimes
- (c) always
- 4. Which of the following statements are true? Select all that apply.
 - (a) If X is partitioned into the equivalence classes of some equivalence relation \sim , then each element of X lies in some equivalence class [x].
 - (b) Suppose that X is partitioned into subsets and that $x, y, z \in X$. If x, y lie in the same subset, and y, z lie in the same subset of the partition, then it is possible for x and z to lie in different subsets.
 - (c) $\{\emptyset, \{a\}, \{b, c\}\}$ is a partition of $\{a, b, c\}$.
 - (d) Every subset in a partition of a set must have the same size.
- 5. Which of the following sentence are true? Select all that apply.
 - (a) Equivalence relations have nothing to do with partitions in general.
 - (b) For any set X and equivalence relation \sim on X, the quotient set $X/_{\sim}$ is a partition of X.
 - (c) There exists an infinite set X and a partition $\{A_n\}$ of X such that for any equivalence relation \sim on X, there is $A \in \{A_n\}$ for which $A \neq [x]$ for any $x \in X$.
 - (d) Given any partition $\{A_n\}$ of X, there is an equivalence relation whose equivalence classes are exactly the subsets of X in $\{A_n\}$.
- 6. The set of real numbers $\mathbb{R} = \mathbb{Q} \cup (\mathbb{R} \setminus \mathbb{Q})$ is partitioned into the subsets of rational and irrational numbers. Describe an equivalence relation on \mathbb{R} whose equivalence classes form this partition:

$$x \sim y \iff x - y$$

- 7. Give examples of an infinite set X and an equivalence relation \sim on X such that
 - (a) \sim has finitely many equivalence classes.
 - (b) \sim has infinitely many classes, each of which have finitely many elements.
 - (c) \sim has infinitely many classes, each of which have infinitely many elements.
 - (d) \sim has a class of size n for each $n \in \mathbb{N}$.

Practice Problems Section 7.3

- 1. Let $S = \{(x,y) \in \mathbb{R}^2 : \sin^2 x + \cos^2 y = 1\}.$
 - (a) Give an example of two real numbers x, y such that $x \, S \, y$.
 - (b) Is S reflexive? symmetric? transitive? Justify your answers.
- 2. Define \mathcal{R} on $\mathbb{N}_{\geq 2}$ by $a \mathcal{R} b$ if and only if gcd(a,b) > 1. Determine whether \mathcal{R} is reflexive, symmetric, or transitive.
- 3. Let \sim be the relation on \mathbb{R} defined by $x \sim y$ if and only if $x y \in \mathbb{Z}$.
 - (a) Prove that \sim is an equivalence relation.
 - (b) List three distinct elements of the equivalence class $\left[\frac{5}{2}\right]$. In general, what is an equivalence class $\left[x\right]$ as a set?
 - (c) Describe the quotient $\mathbb{R}/_{\sim}$.
- 4. Let X be a non-empty set. Then $\{X\}$ and $\{\{x\}: x \in X\}$ are both partitions of X. For both partitions, determine the equivalence relation whose equivalence classes form the subsets of the partition.
- 5. Determine whether each collections $\{A_n\}$ partitions \mathbb{R}^2 . Justify your answers and sketch several of the sets A_n .
 - (a) $A_n = \{(x, y) \in \mathbb{R}^2 : y = 2x + n\}$, for $n \in \mathbb{Z}$.
 - (b) $A_n = \{(x, y) \in \mathbb{R}^2 : y = x^2 + n\}, \text{ for } n \in \mathbb{R}.$
 - (c) $A_n = \{(x, y) \in \mathbb{R}^2 : y = \cos(x n)\}, \text{ for } n \in \mathbb{R}.$
- 6. Let $X = \{1, 2, 3, 4\}$ and define a relation \mathcal{R} on X by

$$\mathcal{R} = \big\{ (1,3), (1,4), (2,2), (2,3), (3,1), (3,2), (4,3), (4,4) \big\}$$

Show that the subsets

$$A_n = \{x \in X : (n, x) \in \mathcal{R}\}\$$
 (where $n = 1, 2, 3, 4$)

do not partition X. Also verify that \mathcal{R} is *not* an equivalence relation.