Числа на Лах

Калоян Стоилов, № 81609 (СУ, ФМИ)

29 април 2021 г.

Числата на Лах се появяват за първи път през 1954 г. в научна публикация* на словенския математик Иво Лах (05. IX. 1896 г. — 23. III. 1979 г.). По смисъл приличат на числата на Стирлинг от първи род и също като тях са два вида — със знак и без знак. Числата на Лах без знак обикновено се бележат така:

$$\begin{bmatrix} n \\ k \end{bmatrix}$$
, $L(n,k)$ или $\mathscr{L}_{n,k}$.

По-нататък в текста ще бъде използвано първото обозначение.

Числото на Лах без знак е броят на множествата от k непразни редици, образувани от n дадени елемента, всеки от които се използва точно един път. Редиците понякога се наричат думи, а множеството от n елемента — азбука.

Допустими стойности: n и k са цели неотрицателни числа.

Следните равенства са очевидни:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1$$
 (без букви не можем да образуваме думи); $\begin{bmatrix} n \\ 0 \end{bmatrix} = 0$ при $n > 0$ (трябва да има поне една дума); $\begin{bmatrix} n \\ n \end{bmatrix} = 1$ (всяка дума се състои от една буква); $\begin{bmatrix} n \\ k \end{bmatrix} = 0$ при $k > n$ (не достигат букви).

Заради последното равенство допустимите стойности понякога се ограничават до онези цели неотрицателни числа n и k, за които $k \leq n$. Другите три равенства служат за начални условия.

^{*} Ivo Lah, "A new kind of numbers and its application in the actuarial mathematics", Boletim do Instituto dos Actuários Portugueses, 9: 7–15 (1954).

Твърдение 1. Рекурентно уравнение за числата на Лах:

Доказателство: Разглеждаме два случая за (n+1)-вия елемент.

Първи случай: Думата, съдържаща буква \mathbb{N}^{0} n+1, се състои от поне две букви. След премахването на буква \mathbb{N}^{0} n+1 остават n букви, разпределени в k думи. Съществуват $\begin{bmatrix} n \\ k \end{bmatrix}$ такива разпределения. Буква \mathbb{N}^{0} n+1 може да бъде добавена във всяко от тях на n+k места общо — или след някоя от останалите n букви, или в началото на коя да е от всичките k думи. По този начин се получават $(n+k)\begin{bmatrix} n \\ k \end{bmatrix}$ множества от k думи, съставени от общо n+1 букви.

Втори случай: Буква \mathbb{N}^2 n+1 сама образува дума. Тогава останалите n букви образуват k-1 думи, а това може да стане по $\left| \begin{array}{c} n \\ k-1 \end{array} \right|$ начина.

Сега рекурентното уравнение следва от правилото за събиране.

Рекурентното уравнение и началните условия позволяват бързо пресмятане на числата на Лах без знак. Получава се следната таблица:

$n \stackrel{k}{\sim}$	0	1	2	3	4	5	6	7	8	9
0	1	0	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0
2	0	2	1	0	0	0	0	0	0	0
3	0	6	6	1	0	0	0	0	0	0
4	0	24	36	12	1	0	0	0	0	0
5	0	120	240	120	20	1	0	0	0	0
6	0	720	1800	1200	300	30	1	0	0	0
7	0	5040	15120	12600	4200	630	42	1	0	0
8	0	40320	141120	141120	58800	11760	1176	56	1	0
9	0	362880	1451520	1693440	846720	211680	28224	2016	72	1

Поредното число на Лах се пресмята за време $\Theta(1)$, значи всички числа $\begin{bmatrix} a \\ b \end{bmatrix}$ където $0 \le a \le n$ и $0 \le b \le k$, изразходват общо време $\Theta(nk)$.

Ако обаче е нужна стойността само на едно число на Лах, тогава пак трябва да се пресметнат всички числа с индекси, ненадвишаващи неговите. С други думи, числото $\begin{bmatrix} n \\ k \end{bmatrix}$ се получава за време $\Theta(nk)$, ако се използва рекурентното уравнение и числата с по-малки индекси не са намерени предварително. Възниква въпросът дали има по-бърз метод за пресмятане на числата на Лах.

Твърдение 2. Явна формула за числата на Лах:

$$\begin{bmatrix} n \\ k \end{bmatrix} = \frac{n!}{k!} \binom{n-1}{k-1}.$$

Доказателство: Има n! пермутации без повторение на n елемента (буквите). Всяка от тях може да се разбие на k думи чрез вмъкване на k-1 разделителя. Това може да стане по $C_{n-1}^{k-1} = \binom{n-1}{k-1}$ начина, защото за всеки разделител има n-1 възможни места, от които се избират k-1 без повторение и без определен ред (все едно е дали ще се каже, че са поставени разделители на места № i и № j, или ще се каже, че те са поставени на места № i и № i). Така получаваме $n! \binom{n-1}{k-1}$ редици от k думи. Множество от k различни думи поражда k! редици, затова множествата са k! пъти по-малко от редиците. Ето защо полученият израз след деление с k! води до желаната формула. □

Пресмятането на число на Лах по явната формула изисква време $\Theta(n+k)$, което е много по-бързо от сметките с рекурентното уравнение. От друга страна, чрез рекурентното уравнение по-бързо се табулират числата на Лах.

Твърдение 3. Връзка между числата на Стирлинг и числата на Лах:

$$\begin{bmatrix} n \\ k \end{bmatrix} = \sum_{j=k}^{n} \begin{bmatrix} n \\ j \end{bmatrix} \begin{Bmatrix} j \\ k \end{Bmatrix}.$$

Доказателство: Без ограничение можем да предположим, че азбуката съвпада с множеството $\{1;2;3;\ldots;n\}$. Всяка дума (редица) представлява пермутация на собствените си букви. Например редицата 17, 8, 20 може да се отъждестви с пермутацията 2, 1, 3, защото 17 е второто, 8 е първото, а 20 е третото число (броени от най-малкото към най-голямото). Пермутацията 2, 1, 3 се разлага в независими цикли така: $(1\ 2)(3)$. След обратен превод се получава $(8\ 17)(20)$, което е част от по-голяма пермутация (на 1, 2, 3, ..., n), породена от всички думи.

Това съответствие е биекция: ако пермутация без повторение на $1, 2, 3, \ldots, n$ е съставена от j цикъла, то разпределяйки тези цикли в k непразни множества, получаваме първоначалната съвкупност от k думи. Елементите от един цикъл отиват в една и съща дума. Всяка дума е множество (а не редица) от цикли.

Разглеждаме следните две функции:

растящ факториел:
$$x^{\overline{n}}=x(x+1)(x+2)(x+3)\dots(x+n-1);$$
 намаляващ факториел: $x^{\underline{n}}=x(x-1)(x-2)(x-3)\dots(x-n+1).$

Както е известно, тези функции имат връзка с числата на Стирлинг:

$$x^{\overline{n}} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^{k};$$

$$x^{\overline{n}} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^{k};$$

$$x^n = \sum_{k=0}^n \binom{n}{k} x^{\underline{k}}.$$

Оказва се, че едната може да се изрази чрез другата посредством числата на Лах.

Твърдение 4. Връзка между функциите растящ и намаляващ факториел посредством числата на Лах:

$$x^{\overline{n}} = \sum_{k=0}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^{\underline{k}}.$$

Доказателство: Преобразуваме лявата страна, докато получим дясната:

$$x^{\overline{n}} = \sum_{j=0}^{n} {n \brack j} x^{j} = \sum_{j=0}^{n} \left({n \brack j} \sum_{k=0}^{j} {j \brack k} x^{\underline{k}} \right) = \sum_{j=0}^{n} \sum_{k=0}^{j} {n \brack j} {j \brack k} x^{\underline{k}} = \sum_{k=0}^{n} \sum_{j=k}^{n} {n \brack j} {j \brack k} x^{\underline{k}} = \sum_{k=0}^{n} \sum_{j=k}^{n} {n \brack j} {j \brack k} x^{\underline{k}} = \sum_{k=0}^{n} \left(x^{\underline{k}} \sum_{j=k}^{n} {n \brack j} {j \brack k} \right) = \sum_{k=0}^{n} {n \brack k} x^{\underline{k}}.$$

При внимателно наблюдение върху таблицата с числата на Лах се забелязват следните интересни закономерности.

Твърдение 5. Някои свойства на числата на Лах:

а)
$$\begin{bmatrix} n \\ 1 \end{bmatrix} = n!$$
 при $n \ge 1$; б) $\begin{bmatrix} n \\ n-1 \end{bmatrix} = n(n-1)$ при $n \ge 1$; в) $\begin{bmatrix} n \\ \lfloor \sqrt{n} \rfloor \end{bmatrix} = \max_k \begin{bmatrix} n \\ k \end{bmatrix}$. По-точно, ако n е произволно, но фиксирано, а k расте от 0 до n включително, то $\begin{bmatrix} n \\ k \end{bmatrix}$ първо расте, после намалява и е най-голямо единствено при $k = \lfloor \sqrt{n} \rfloor$, освен когато $n = m^2 - 1$ за някое цяло число $m > 1$: тогава най-голямата стойност се достига два пъти — при $k = m - 1$ и при $k = m$.

Доказателство: с помощта на явната формула за числата на Лах.

а)
$$\binom{n}{1} = \frac{n!}{1!} \binom{n-1}{0} = \frac{n!}{1} \cdot 1 = n!$$
 за всяко цяло $n \ge 1$.

$$| \begin{bmatrix} n \\ k \end{bmatrix} : \begin{bmatrix} n \\ k-1 \end{bmatrix} = \frac{\frac{n!}{k!} \binom{n-1}{k-1}}{\frac{n!}{(k-1)!} \binom{n-1}{k-2}} = \frac{n-k+1}{k(k-1)}.$$

Сравнявайки това частно с единицата, намираме интервалите на монотонност:

$$\begin{bmatrix} n \\ k \end{bmatrix} > \begin{bmatrix} n \\ k-1 \end{bmatrix} \iff n-k+1 > k(k-1) \iff k^2 < n+1 \iff k < \sqrt{n+1};$$

$$\begin{vmatrix} n \\ k \end{vmatrix} < \begin{vmatrix} n \\ k-1 \end{vmatrix} \iff k > \sqrt{n+1};$$

$$\begin{vmatrix} n \\ k \end{vmatrix} = \begin{vmatrix} n \\ k-1 \end{vmatrix} \iff k = \sqrt{n+1}.$$

От доказаните неравенства следва, че когато k расте от 0 до n включително, числото на Лах първо расте, после намалява. Когато n+1 не е точен квадрат, равенството е невъзможно, затова числото на Лах достига най-голяма стойност единствено за $k = \lfloor \sqrt{n+1} \rfloor = \lfloor \sqrt{n} \rfloor$. А когато $n+1=m^2$ за някое цяло m>1, тогава равенството е възможно, затова най-голямата стойност на числото на Лах се достига при долен индекс $k=\sqrt{n+1}=m$ и при долен индекс k-1=m-1. Ако m=1, тоест n=0, то най-голямата стойност отново се достига веднъж — при k=m-1=0 (индексът k=m=1 е недопустим).

Има също и числа на Лах със знак: $(-1)^n \begin{bmatrix} n \\ k \end{bmatrix}$. Те участват в производните на функцията $e^{1/x}$.

Твърдение 6.
$$\left(e^{1/x}\right)^{(n)} = e^{1/x} \sum_{k=0}^{n} (-1)^n \begin{bmatrix} n \\ k \end{bmatrix} x^{-n-k}$$
.

Доказателство: с индукция по n.

База: при n=0. Тъй като производна от нулев ред се явява самата функция, то равенството приема вида $e^{1/x}=e^{1/x}$, което е очевидно вярно.

Индуктивна стъпка: Нека за някое цяло число n>0 е изпълнено равенството

$$\left(e^{1/x}\right)^{(n-1)} = e^{1/x} \sum_{k=0}^{n-1} (-1)^{n-1} \begin{bmatrix} n-1 \\ k \end{bmatrix} x^{-n+1-k}.$$

Ще докажем, че в такъв случай важи и равенството

$$\left(e^{1/x}\right)^{(n)} = e^{1/x} \sum_{k=0}^{n} (-1)^n \begin{bmatrix} n \\ k \end{bmatrix} x^{-n-k}.$$

Действително, диференцирайки формулата от индуктивното предположение, получаваме следното:

$$\left(e^{1/x}\right)^{(n)} = \left(e^{1/x}\sum_{k=0}^{n-1}(-1)^{n-1} \begin{bmatrix} n-1 \\ k \end{bmatrix} x^{-n+1-k} \right)' =$$

$$= \left(e^{1/x}\right)' \sum_{k=0}^{n-1}(-1)^{n-1} \begin{bmatrix} n-1 \\ k \end{bmatrix} x^{-n+1-k} + e^{1/x}\sum_{k=0}^{n-1}(-1)^{n-1} \begin{bmatrix} n-1 \\ k \end{bmatrix} (x^{-n+1-k})' =$$

$$= -e^{1/x}x^{-2}\sum_{k=0}^{n-1}(-1)^{n-1} \begin{bmatrix} n-1 \\ k \end{bmatrix} x^{-n+1-k} + e^{1/x}\sum_{k=0}^{n-1}(-1)^n(n+k-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} x^{-n-k} =$$

$$= e^{1/x}\sum_{k=0}^{n-1}(-1)^n \begin{bmatrix} n-1 \\ k \end{bmatrix} x^{-n-1-k} + e^{1/x}\sum_{k=0}^{n-1}(-1)^n(n+k-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} x^{-n-k} =$$

$$= e^{1/x}\sum_{k=1}^{n}(-1)^n \begin{bmatrix} n-1 \\ k-1 \end{bmatrix} x^{-n-k} + e^{1/x}\sum_{k=1}^{n-1}(-1)^n(n+k-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} x^{-n-k} =$$

$$= e^{1/x}(-1)^n x^{-2n} + e^{1/x}\sum_{k=1}^{n-1}(-1)^n \left(\begin{bmatrix} n-1 \\ k-1 \end{bmatrix} + (n+k-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} \right) x^{-n-k} =$$

$$= e^{1/x}(-1)^n x^{-2n} + e^{1/x}\sum_{k=1}^{n-1}(-1)^n \begin{bmatrix} n \\ k \end{bmatrix} x^{-n-k} =$$

$$= e^{1/x}(-1)^n x^{-2n} + e^{1/x}\sum_{k=1}^{n-1}(-1)^n \begin{bmatrix} n \\ k \end{bmatrix} x^{-n-k} =$$

$$= e^{1/x}(-1)^n x^{-2n} + e^{1/x}\sum_{k=1}^{n-1}(-1)^n \begin{bmatrix} n \\ k \end{bmatrix} x^{-n-k} =$$