Abstract Algebra Assignment (2): Groups

Mostafa Hassanein

11 November 2023

1.

The Cayley table for $(\overline{I_7^*},*)$ is:

*	[1]	[2]	[3]	[4]	[5]	[6]
[1]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[6]	[5]	[4]	[3]	[2]	[1]

i.

a.

$$(\overline{5})^3 = [5]^3$$

= $[5] * [5]^2$
= $[5] * [4] = [6]$

b.

$$(\overline{4})^{-4} = [4]^{-4}$$

$$= ([4]^{-1})^4$$

$$= [2]^4$$

$$= [2]^2 * [2]^2$$

$$= [4] * [4] = [2]$$

c. By definition $x^0 = e$. So we have:

$$(\overline{2})^0 = [1]$$

ii.

In a group G, the order of an element x is the smallest positive integer m such that $x^m = e$, if no such m exists, then the order of x is infinite.

For the group $(\overline{I_7^*},*)$, we have e=[1]. So we should solve for $x^m=[1]$ for all $x\in(\overline{I_7^*},*)$. And since $|(\overline{I_7^*},*)|=6$, then if an m exists, it will be in the range $1\leq m\leq 6$:

k	$[1]^k$	$[2]^{k}$	$[3]^{k}$	$[4]^{k}$	$[5]^{k}$	$[6]^{k}$
1	[1]	[2]	[3]	[4]	[5]	[6]
2	[1]	[4]	[2]	[2]	[4]	[1]
3	[1]	[1]	[6]	[1]	[6]	[6]
4	[1]	[2]	[4]	[4]	[2]	[1]
5	[1]	[4]	[5]	[2]	[3]	[6]
6	[1]	[1]	[1]	[1]	[1]	[1]

From the powers table, we deduce that:

$$ord([1]) = 1$$

 $ord([2]) = 3$
 $ord([3]) = 6$
 $ord([4]) = 3$
 $ord([5]) = 6$
 $ord([6]) = 2$

2.

Let's construct the powers table for all $x \in (\overline{I_5^*}, *)$:

k	$[1]^k$	$[2]^{k}$	$[3]^{k}$	$[4]^{k}$
0	[1]	[1]	[1]	[1]
1	[1]	[2]	[3]	[4]
2	[1]	[4]	[4]	[1]
3	[1]	[3]	[2]	[4]

 $(\overline{I_5^*},*)$ is a cyclic group.

Because it contains elements, namely [2] and [3], that can generate all other elements in the group.

3.

Proof. We have to study the following properties: Closure, associativity, existence of an identity, existence of inverses.

i. Closure: Let $\overline{a},\overline{b}\in\overline{I_p^*},$ then:

$$\overline{a} \otimes \overline{b} = \overline{ab} = ab \qquad \text{mod } p$$

$$= (q_1p + r_1)(q_2p + r_2) \qquad \text{mod } p$$

$$= q_1q_2p^2 + q_1r_2p + q_2r_1p + r_1r_2 \qquad \text{mod } p$$

$$= (q_1q_2p + q_1r_2 + q_2r_1)p + r_1r_2 \qquad \text{mod } p$$

$$= r1r2 \qquad \text{mod } p$$

Where $r_1, r_2 > 0$, because $\overline{0} \not\in \overline{I_p^*}$. p is prime and $r_1, r_2 > 0 \Rightarrow r_1$ and r_2 do not divide $p \Rightarrow r1r2$ does not divide $p \Rightarrow 1 \leq (r1r2 \mod p) .$

ii. Associativity: Let $\overline{a}, \overline{b}, \overline{c} \in \overline{I_p^*}$. We want to show that $\overline{a} \otimes (\overline{b} \otimes \overline{c}) = (\overline{a} \otimes \overline{b}) \otimes \overline{c}$:

$$L.H.S.: \overline{a} \otimes (\overline{b} \otimes \overline{c}) = \overline{a} \otimes (\overline{bc})$$

$$= \overline{abc}$$

$$R.H.S.: (\overline{a} \otimes \overline{b}) \otimes \overline{c} = \overline{ab} \otimes \overline{c}$$

$$= \overline{abc}$$

L.H.S. = R.H.S.

iii. Identity: $\exists e = \overline{1} \in \overline{I_p^*} \ni \forall a \in \overline{I_p^*} : e \otimes a = a \otimes e = a$. iv. Inverse: p is prime $\Rightarrow \forall \overline{a} \in \overline{I_p^*} : gcd(a,p) = 1$ $\Rightarrow \forall \overline{a} \in \overline{I_p^*} \exists r, s \in Z : ar + ps = 1$ $\Rightarrow \forall \overline{a} \in \overline{I_p^*} \exists r, s \in Z : \overline{ar + ps} = \overline{1}$ $\Rightarrow \forall \overline{a} \in \overline{I_p^*} \exists r, s \in Z : \overline{ar} = \overline{1}$ $\Rightarrow \forall \overline{a} \in \overline{I_p^*} \exists r, s \in Z : \overline{a} \otimes \overline{r} = \overline{1}$ $\Rightarrow \forall \overline{a} \in \overline{I_p^*} \exists \overline{r} \in \overline{I_p^*} : \overline{a} \otimes \overline{r} = \overline{1}$

i, ii, iii, iv $\Rightarrow \overline{I_p^*}$ is a group.

And since I_p^* contains p-1 elements, then $|\overline{I_p^*}| = p-1$.

4.

Proof. The set of elements generated by +1 under + is given by: $\{k(+1) = k : k \in I\} = I$. This shows that +1 is a generator for the additive group of integers.

Similarly, the set of elements generated by -1 under + is given by: $\{k(-1) = -k : k \in I\} = I$. This shows that -1 is a generator for the additive group of integers. (Alternatively, we could have used the fact that if a is a generator then so is a^{-1} .)

This shows that I is a cyclic group with +1 and -1 as generators.

Since $|I| = \infty$, then I is an infinite cyclic group.

5.

Proof. The set of elements generated by $\overline{1}$ under + are given by:

$$<\overline{1}> = \{\overline{k}\overline{1}: k \in Z\}$$

$$= \{\overline{k}: k \in Z\}$$

$$= \{\overline{k}: 0 \le k < n\}$$

$$= \overline{I_n}$$