Information and Coding Theory. Homework 1

Andrei Dzis

February 2019

1 Problem

1.1 Problem Statement

(1 point) A fair coin is flipped until the first head occurs. Let's X denote the number of flips required. Find the entropy H(X) in bits.

1.2 Solution

First of all, as it was mentioned, we have fair coin, that mean that probability of head and tail are equal, $\mathbb{P}(\text{head}) = \mathbb{P}(\text{tail}) = \frac{1}{2}$. So if X is the number of flips required until the first head occurs, so previous flips tails occur. So random variable X from previous thoughts can be described in such way:

$$X: \mathcal{X} = \{1, 2, 3, \dots\}, P_x = \{\frac{1}{2}, (\frac{1}{2})^2, (\frac{1}{2})^3, \dots\}$$
 (1)

So probability $\mathbb{P}(X=i)=(\frac{1}{2})^i$ So we can count the entropy:

$$H(X) = -\sum_{i=1}^{\infty} \mathbb{P}(X=i) \log(\mathbb{P}(X=i)) = -\sum_{i=1}^{\infty} (\frac{1}{2})^{i} i \log(\frac{1}{2}) = \sum_{i=1}^{\infty} \frac{i}{2^{i}} = 2 \quad (2)$$

The last equation is done using that fact, that $\sum_{i=1}^{\infty} i(k)^i = \frac{k}{(1-k)^2}$. So the resulting entropy equals 2 bits.

2 Problem

2.1 Problem Statement

(1 point) Let $p=(p_1,\ldots,p_n)$ be a probability vector, i.e $p_i\geq 0, i=1,\ldots,n$ and $\sum_{i=1}^n p_i=1$

(a) What is the maximal value of H(p) when p ranges over the set of n-dimensional probability vectors? What is the optimal distribution? (b) What is the maximal value of H(p) when p ranges over the set of n-dimensional probability vectors, such that $p_1 = \alpha, 0 \le \alpha \le 1$? What is the optimal distribution?

2.2 Solution

• Let's solve conditional extremum problem using Lagrange multiplier:

$$L(\mathbf{p}) = -\sum_{i=1}^{n} p_i \log(p_i) + \lambda(\sum_{i=1}^{n} p_i - 1)$$
(3)

Let's differentiate with respect to p_i :

$$-\log(p_i) - \frac{1}{\ln 2} + \lambda = 0 \tag{4}$$

$$-\ln(p_i) = 1 - \lambda \ln 2 \to p_i = e^{\lambda \ln 2 = 1}$$

$$\tag{5}$$

Using the fact that $\sum_{i=1}^{n} p_i = 1$ we receive from 5:

$$ne^{\lambda \ln 2 = 1} = 1 \to \ln(\frac{1}{n}) = \lambda \ln 2 - 1 \to \lambda = \frac{1 + \ln(\frac{1}{n})}{\ln 2}$$
 (6)

Substitute λ into the original equation for p_i :

$$-\frac{\ln(p_i)}{\ln 2} - \frac{1}{\ln 2} + \frac{1 + \ln(\frac{1}{n})}{\ln 2} = 0 \to \ln(p_i) = \ln(\frac{1}{n}) \to p_i = \frac{1}{n}$$
 (7)

This is the optimal distribution.

Now let's count entropy:

$$H(\mathbf{p}) = -\sum_{i=1}^{n} p_i \log p_i = -n * \frac{1}{n} \log(\frac{1}{n}) = -\log(\frac{1}{n})$$
 (8)

• Now we have fixed value for $p_1 = \alpha$, so we can write down conditional extremum problem, using that fact that:

$$\sum_{i=1}^{n} p_i = \alpha + \sum_{i=2}^{n} p_i = 1 \to \sum_{i=2}^{n} p_i = 1 - \alpha$$

$$L(\mathbf{p}) = -\alpha \log(\alpha) - \sum_{i=2}^{n} p_i \log(p_i) + \lambda \left(\sum_{i=2}^{n} p_i - 1 + \alpha\right)$$
 (9)

Let's differentiate with respect to p_i :

$$-\log(p_i) - \frac{1}{\ln 2} + \lambda = 0 \to \log(p_i) = \lambda - \frac{1}{\ln 2} \to p_i = e^{\lambda - \frac{1}{\ln 2}}$$
 (10)

Summing last equation from i = 2 to n:

$$(n-1)e^{\lambda - \frac{1}{\ln 2}} = 1 - \alpha \to \lambda = \ln(\frac{1-\alpha}{1-n}) + \frac{1}{\ln(2)}$$
 (11)

So putting the last result into equation for p_i :

$$\log(p_i) = \log(\frac{1-\alpha}{1-n}) \to p_i = \frac{1-\alpha}{1-n}, \text{ for } i = 2, \dots, n$$
 (12)

This is the optimal distribution.

Let's calculate the entropy:

$$H(\mathbf{p}) = -\alpha \log(\alpha) - (1 - \alpha) \log(\frac{1 - \alpha}{n - 1}) \tag{13}$$

3 Problem

3.1 Problem Statement

(1 point) Consider the random variable

$$X = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ 0.49 & 0.26 & 0.12 & 0.04 & 0.04 & 0.03 & 0.02 \end{pmatrix}$$

- (a) Find a binary Huffman code for X. Find the expected code length for this encoding.
- (b) Find a ternary Huffman code for X. Find the expected code length for this encoding.

3.2 Solution

Let's build binary Huffman code, results are represented in a table:

x_i	Codeword	l_i
x_1	1	1
x_2	00	2
x_3	011	3
x_4	01000	5
x_5	01001	5
x_6	01010	5
x_7	01011	5

Let's count the expected code length for this encoding:

$$L(x) = \sum_{i=1}^{7} p_i * l_i = 1*0.49 + 2*0.26 + 3*0.12 + 5*0.04 + 5*0.04 + 5*0.03 + 5*0.02 = 0.000 + 0.000$$

$$= 2.02 \text{ bits}$$
 (14)

Let's build ternary Huffman code, results are represented in a table:

x_i	Codeword	l_i
x_1	0	1
x_2	1	1
x_3	20	2
x_4	22	2
x_5	210	3
x_6	211	3
x_7	212	3

Let's count the expected code length for this encoding:

$$L(x) = \sum_{i=1}^{7} p_i * l_i = 1*0.49 + 1*0.26 + 2*0.12 + 2*0.04 + 3*0.04 + 3*0.03 + 3*0.02 =$$

$$= 1.34 \text{ bits}$$
(15)

4 Problem

4.1 Problem Statement

(1 point) Consider a discrete memoryless channel (DMC) with $\mathscr{X} = \mathscr{Y} = \{0,1\}$ and a probability transition matrix

$$P_{Y|X} = \begin{pmatrix} 1 & 0 \\ \sigma & 1 - \sigma \end{pmatrix}$$

where rows and columns correspond to elements of ${\mathscr X}$ and ${\mathscr Y}$ accordingly.

- (a) Find the capacity of the channel.
- (b) Find the limit of capacity and the capacity achieving distributions P_X when $\sigma \to 1$

4.2 Solution

$$P_{Y|X} = \begin{pmatrix} 1 & 0 \\ \sigma & 1 - \sigma \end{pmatrix} = \begin{pmatrix} P_{Y|X}(Y=0|X=0) & P_{Y|X}(Y=1|X=0) \\ P_{Y|X}(Y=0|X=1) & P_{Y|X}(Y=1|X=1) \end{pmatrix}$$

For capacity we can write down:

$$C = \max_{P_x} \{I(X, Y)\} \tag{16}$$

$$I(X,Y) = H(Y) - H(Y|X) = H(Y) - \sum_{x \in \mathbf{X}} P(X=x)H(Y|X=x) = (17)$$

Due to the fact that $0 \log(0) = 1 \log(1) = 0$:

$$= H(Y) + P(X = 1)(\sigma \log(\sigma) + (1 - \sigma) \log(1 - \sigma)) = H(Y) - P(X = 1)h(\sigma)$$
 (18)

For P(Y = y), denoting $P(X = 1) = \pi$, then $P(X = 0) = 1 - P(X = 1) = 1 - \pi$:

$$P(Y=0) = \sum_{x \in \mathbf{X}} P(X=x) P_{Y|X}(Y=0|X=x) = 1 - \pi + \sigma\pi$$
 (19)

Then:

$$P(Y = 1) = (1 - \sigma)\pi \tag{20}$$

Now for H(Y) we can write:

$$H(Y) = -(1 - \pi + \sigma \pi) \log(1 - \pi + \sigma \pi) - ((1 - \sigma)\pi) \log((1 - \sigma)\pi)$$
 (21)

So collecting all needed results we can write:

$$I(X,Y) = -(1 - \pi + \sigma \pi) \log(1 - \pi + \sigma \pi) - ((1 - \sigma)\pi) \log((1 - \sigma)\pi) - \pi h(\sigma)$$
 (22)

$$I(X,Y) = -((\sigma - 1)\pi + 1)\log((\sigma - 1)\pi + 1) - ((1-\sigma)\pi)\log((1-\sigma)\pi) - \pi h(\sigma)$$
 (23)

Let's differentiate with respect to π :

$$(1-\sigma)\log((\sigma-1)\pi+1) - \frac{\sigma-1}{\ln 2} - (1-\sigma)\log((1-\sigma)\pi) - \frac{1-\sigma}{\ln 2} - h(\sigma) = 0$$
 (24)

$$(1 - \sigma)\log(\frac{\pi(\sigma - 1) + 1}{(1 = \sigma)\pi}) = h(\sigma)$$
(25)

$$\frac{h(\sigma)}{1-\sigma} = \log(\frac{\pi(\sigma-1)+1}{(1-\sigma)\pi}) \to 2^{\frac{h(\sigma)}{1-\sigma}} = \frac{\pi(\sigma-1)+1}{(1-\sigma)\pi}$$
 (26)

$$\pi = \frac{1}{(1 - \sigma)(2^{\frac{h(\sigma)}{1 - \sigma}} + 1)} \tag{27}$$

Now we can put into the capacity the resulted π :

$$I(X,Y) = -\frac{2^{\frac{h(\sigma)}{1-\sigma}}}{2^{\frac{h(\sigma)}{1-\sigma}}+1} \log(\frac{2^{\frac{h(\sigma)}{1-\sigma}}}{2^{\frac{h(\sigma)}{1-\sigma}}+1}) - \frac{1}{(2^{\frac{h(\sigma)}{1-\sigma}}+1)} \log(\frac{1}{(2^{\frac{h(\sigma)}{1-\sigma}}+1)}) - \frac{h(\sigma)}{(1-\sigma)(2^{\frac{h(\sigma)}{1-\sigma}}+1)}$$
(28)

$$I(X,Y) = \log(2^{\frac{h(\sigma)}{1-\sigma}} + 1) - \frac{h(\sigma)}{1-\sigma} \frac{2^{\frac{h(\sigma)}{1-\sigma}}}{2^{\frac{h(\sigma)}{1-\sigma}} + 1} - \frac{h(\sigma)}{(1-\sigma)(2^{\frac{h(\sigma)}{1-\sigma}} + 1)}$$
(29)

$$C = \max_{P_x} \{ I(X, Y) \} = \log(2^{\frac{h(\sigma)}{1 - \sigma}} + 1)) - \frac{h(\sigma)}{1 - \sigma}$$
 (30)

Now let's calculate the limit of π , C, when $\sigma \to 1$

$$\lim_{\sigma \to 1} \frac{1}{(1 - \sigma)(2^{\frac{h(\sigma)}{1 - \sigma}} + 1)} = |\text{denote } \sigma - 1 = x|$$

$$= \lim_{x \to 0} \frac{1}{x(2^{\frac{h(x - 1)}{x}} + 1)} = \lim_{x \to 0} 2^{-\log(x) + \frac{1 - x}{x}\log(1 - x) + \frac{x}{x}\log(x)} =$$

$$= \lim_{x \to 0} 2^{\frac{(1-x)(-x-\frac{x^2}{2} - \frac{x^3}{3!} - \dots)}{x \ln 2}} = 2^{-\frac{1}{\ln 2}}$$
(31)

The limit for C we can find from 23:

$$\lim_{\sigma \to 1} C = \lim_{\sigma \to 1} \left(-((\sigma - 1)\pi + 1)\log((\sigma - 1)\pi + 1) - ((1 - \sigma)\pi)\log((1 - \sigma)\pi) - \pi h(\sigma) \right) =$$

$$= -1\log 1 - 0\log 0 - (1) = -\pi(-1\log 1 - 0\log 0) = 0$$
(32)

5 Problem

5.1 Problem Statement

(1 point) Consider a binary symmetric channel (BSC) with transition probability p. The output of this channel is fed to the input of a binary erasure channel (BEC) with erasure probability ϵ . What is the capacity of the resulting channel?

5.2 Solution

For BSC we have for capacity:

$$C_{BSC} = 1 - h(p) \tag{33}$$

For BEC we have for capacity:

$$C_{BEC} = 1 - \epsilon \tag{34}$$

Let's denote $\mathcal{X} \in \{0,1\}$ as the input for BSC and as $\mathcal{Y} \in \{0,1,\epsilon\}$ we denote the output of the whole system. Also let's denote $\mathbb{P}(X=1)=\pi$, then $\mathbb{P}(X=0)=1-\pi$. So we can write:

$$\mathbb{P}(y=0) = (1-\epsilon)((1-\pi)(1-p) + \pi p) \tag{35}$$

$$\mathbb{P}(y=1) = (1-\epsilon)(\pi(p-1) + (1-\pi)p) \tag{36}$$

$$\mathbb{P}(y = \epsilon) = \epsilon \tag{37}$$

Then we can write:

$$H(Y) = -\sum_{y \in \mathcal{V}} \mathbb{P}(Y = y) \log(\mathbb{P}(Y = y))$$
(38)

$$H(Y) = -(1-\epsilon)((1-\pi)(1-p) + \pi p)\log((1-\epsilon)((1-\pi)(1-p) + \pi p)) - \epsilon\log(\epsilon) - (1-\epsilon)(\pi(p-1) + (1-\pi)p)\log((1-\epsilon)(\pi(p-1) + (1-\pi)p))$$
 Let's write for conditional entropy:

$$H(Y|X) = \sum_{x \in \mathcal{X}} \mathbb{P}(X=x)H(Y|X=x)$$
(39)

$$H(Y|X=0) = -(1-p)(1-\epsilon)\log((1-p)(1-\epsilon)) - \epsilon\log(\epsilon) - p(1-\epsilon)\log(p(1-\epsilon)) \tag{40}$$

For H(Y|X=1):

$$H(Y|X=1) = -(1-p)(1-\epsilon)\log((1-p)(1-\epsilon)) - \epsilon\log(\epsilon) - p(1-\epsilon)\log(p(1-\epsilon))$$

$$\tag{41}$$

So, after putting 40 and 41 into 39, we receive that H(Y|X) = H(Y|X=0) = H(Y|X=1). So the final moment is to find a capacity for our system of channels, it can be done using formula:

$$C_{system} = \max\{I(Y,X)\} = \max\{H(Y) - H(Y|X)\} = \max\{H(Y)\} - H(Y|X)$$
(42)

So in order maximize the mutual information, we need to maximize H(Y). So we need to differentiate H(Y) with respect to π :

$$\frac{\partial H(Y)}{\partial (\pi)} = (1 - \epsilon)(2p - 1)\log((1 - \epsilon)((1 - \pi)(1 - p) + \pi p)) + \tag{43}$$

$$+\frac{(1-\epsilon)(2p-1)}{\ln 2} + (1-\epsilon)(1-2p)\log((1-\epsilon)(\pi(1-p) + (1-\pi)p)) + \frac{(1-\epsilon(1-2p))}{\ln 2} = 0$$
(44)

From this equation we receive maximum condition:

$$(1 - \epsilon)((1 - \pi)(1 - p) + \pi p) = (1 - \epsilon)(\pi(1 - p) + (1 - \pi)p) \to \pi = \frac{1}{2}$$
 (45)

So let's put received value for π into capacity:

$$C_{system} = -(1 - \epsilon)log(\frac{1}{2}(1 - \epsilon)) - \epsilon \log(\epsilon) - (1 - p)(1 - \epsilon)\log((1 - p)(1 - \epsilon)) + \epsilon \log(\epsilon) + \epsilon \log(\epsilon)$$
(46)

$$+p(1-\epsilon)\log(p(1-\epsilon)) = (1-\epsilon)(1-p\log p + (1-p)\log(1-p)) = C_{BEC}C_{BSC}$$
 (47)

So the capacity of our system is a product of system parts' capacities.

6 Problem

6.1 Problem Statement

(1 point) Find the capacity of 6 parallel independent discrete time Gaussian channels, such a noise variance have the following values $N_1=N_2=N_3=\mathbb{E}[Z^2]=1, N_4=\mathbb{E}[Z^2]=2, N_5=N_6=\mathbb{E}[Z^2]=3$. The total power constraint is equal to P=11.

6.2 Solution

To find maximum capacity, distributing total power among 6 channels we should use waterfilling technique. Let's denote by P_i , i = 1, ..., 6 the power distributed for *i*-th channel. So the problem is reduced to finding the power allotment that

maximizes the capacity subject to the constraint that $\sum_{i=1}^{6} P_i = P = 11$. For every channel we can write:

$$P_i = (\nu - N_i)^+, (48)$$

where:

$$(X)^{+} = \begin{cases} X & \text{if } X \ge 0\\ 0 & \text{if } X < 0 \end{cases}$$
 (49)

So we can check easily, that if we have $\nu \leq \max\{N_i\}$ we have the total power less then P = 11. So we can rewrite 48 using this note:

$$P_i = \nu - N_i \tag{50}$$

So let's sum for every i:

$$\sum_{i=1}^{6} P_i = 6\nu - \sum_{i=1}^{6} N_i \to \nu = \frac{22}{6} = 3\frac{2}{3}$$
 (51)

Now, let's calculate each power for each channel separately:

$$P_1 = P_2 = P_3 = 2\frac{2}{3} \tag{52}$$

$$P_4 = 1\frac{2}{3} \tag{53}$$

$$P_5 = P_6 = \frac{2}{3} \tag{54}$$

As we can see $P = \sum_{i=1}^{6} P_i = 3 * 2\frac{2}{3} + 1\frac{2}{3} + 2 * \frac{2}{3} = 11$ Because of the fact that $I(X_1, \dots, X_6, Y_1, \dots, Y_6) \leq \sum_{i} \frac{1}{2} \log(1 + \frac{P_i}{N_i})$, we can calculate capacity by following:

$$C = \sum_{i} \frac{1}{2} \log(1 + \frac{P_i}{N_i}) = 3 * \frac{1}{2} \log(1 + 2\frac{2}{3}) + \frac{1}{2} \log(1 + \frac{5}{6}) + 2 * \frac{1}{2} \log(1 + \frac{2}{9})$$
 (55)

So:

$$C = 3.538 \text{ bits/s}$$
 (56)

7 Problem

7.1 Problem Statement

(2 points) Let two users use the same alphabet, i.e. $\mathbf{X}_1 = \mathbf{X}_2 = \{-1, 1\}$

- (a) Find the capacity region of noiseless adder multiple access channel $Y = X_1 + X_2$
- (b) Assume we want to construct uniquely decodable codebook C of length n and size 2^{Rn} for this channel. I.e. we require the sums c_1+c_2 , where $c_1,c_2 \in C$, to be all different. Please give an upper bound on the rate of such codebook and compare it to the capacity when $n \to \infty$. Why do you see a big difference?

7.2 Solution

For two users capacity region can be described as follows:

$$R_1 \le I(X_1, Y | X_2) \tag{57}$$

$$R_2 \le I(X_2, Y | X_1) \tag{58}$$

$$R_1 + R_2 \le I(X_1, X_2 | Y) \tag{59}$$

 R_1 is maximum, when 2-nd user sends no information, but chooses a fixed input, to maximize the mutual information, and vice versa for 2-nd user. For this situation we can send at rate 1, thus:

$$R_1^{max} = R_2^{max} = 1 (60)$$

Then:

$$R_1 \le 1, R_2 \le 1 \tag{61}$$

For sum of rates:

$$R_1 + R_2 \le I(X_1, X_2 | Y) = H(Y) - H(Y | X_1, X_2) = H(Y)$$
(62)

Assuming $\mathbb{P}(x_1=-1)=\mathbb{P}(x_2=-1)=\frac{1}{2}$, we receive, that $\mathbb{P}(Y=-2)=\mathbb{P}(Y=2)=\frac{1}{4}$ and hence H(Y)=1.5 That happens, when transmitter of X_1 sends with probability $\mathbb{P}(x_1=-1)$. Hence, $I(X_1,Y|X_2)=H(X_1)-H(X_1|Y,X_2)=1$. For the other user the channel looks like an erasure channel with erasure probability $\frac{1}{2}$.

Let's calculate the number of all different word pairs $(c_1, c_2) \in \mathcal{C}$, it's equal:

$$N = |\text{number of pairs}| = 2^{2Rn-1} \tag{63}$$

For creating unique decodable code we need all pairs of (c_1, c_2) from codebook \mathcal{C} to have different sums $c_1 + c_2$, $(c_1, c_2) \in \mathcal{C}$, the maximal number of this sums:

$$N = |\text{number of sums}| = 3^n \tag{64}$$

From this equations we have:

$$2^{2Rn-1} \le 3^n \tag{65}$$

So for rate:

$$R \le \log_4(3) + \frac{1}{2n} \tag{66}$$

So for sum:

$$R_{12} \le \log_4 3 + \log_4 3 + \frac{1}{n} \to R_{12} \le \log_2(3) + \frac{1}{n}$$
 (67)

When $n \to \infty$, $R_{12} = \log_2(3) \approx 1.58$. This value is bigger, than the capacity, but the case is that in real life problems there's no guarantee of finding this set of code vectors, which guarantee number $N = 3^n$ of different sums of their different pairs.

8 Problem

8.1 Problem Statement

(2 points) Let us consider a channel W with real input X and binary output Y, such that

$$Pr(Y=0|X=x) = 1 - x$$

and

$$Pr(Y = 1|X = x) = x$$

Also we have an additional constraint: $E[|X - 1/2|] \le P$

- (a) What is the capacity of this channel?
- (b) Is there a simple coding scheme achieving this performance?

8.2 Solution

Let's find the range for variable x. This comes from the fact, that probability P must satisfy:

$$0 \le P \le 1 \to P \in [0, 1] \tag{68}$$

From this fact we conclude, that:

$$\mathbb{P}(Y=1|X=x) \in [0,1] \to \mathbb{P}(Y=1|X=x) = x \to x \in [0,1] \tag{69}$$

For mutual information, we can write:

$$I(X,Y) = H(Y) - H(Y|X) \tag{70}$$

For expected value (will be denoted as $\mathbb{E}(X)$) we can write:

$$\mathbb{E}(X) = \int_0^1 x p(x) dx \tag{71}$$

Thus, we have:

$$\mathbb{P}(Y=1) = \int_0^1 x p(x) dx = \mathbb{E}$$
 (72)

From this fact, we can rewrite H(Y) as follows:

$$H(Y) = -\mathbb{P}(Y = 0)\log(\mathbb{P}(Y = 0)) - \mathbb{P}(Y = 1)\log(\mathbb{P}(Y = 1)) = h(\mathbb{E}(X)) \tag{73}$$

Also, for H(Y|X) we can write down:

$$H(Y|X) = \int_0^1 h(x)p(x)dx = \mathbb{E}(h(X)) \tag{74}$$

Since, for capacity we can write down:

$$C = \max\{I(X,Y)\} = \max\{h(\mathbb{E}(X)) - \mathbb{E}(h(X))\}$$
(75)

subject to

$$\mathbb{E}(|X - \frac{1}{2}|) \le P \tag{76}$$

Due to the fact, that function $h(X)_{max} = 1$ reaches it's maximum at $X = \frac{1}{2}$, in order to maximize $h(\mathbb{E}(X))$ it's required $\mathbb{E}(X) = \frac{1}{2}$. Let's denote a distribution function of a random variable X as $F_X(x)$. For every such a function we can make it symmetric about the point $x = \frac{1}{2}$, denoting as $S_X(x)$, denoting X^* as symmetric random variable of original one about point $x = \frac{1}{2}$, with the following properties:

$$\mathbb{E}(h(X)) = \mathbb{E}(h(X^*))$$

and

$$\mathbb{E}(|X - \frac{1}{2}|) = \mathbb{E}(|X^* - \frac{1}{2}|).$$

Here and below using notation symmetric means symmetric about point $x = \frac{1}{2}$. For probability density function of symmetric distribution function, we can write:

$$p_s(x) = \frac{1}{2}p(x) + \frac{1}{2}p(1-x), \tag{77}$$

where p(x) is a probability density function of original distribution. For symmetric one, using that fact, that h(x) is symmetric about the point $x = \frac{1}{2}$:

$$\mathbb{E}h(X^*) = \int_0^1 h(x) \frac{1}{2} p(x) + \frac{1}{2} p(1-x) dx = E(h(X))$$
 (78)

$$\mathbb{E}(|X^* - \frac{1}{2}|) = \int_0^{\frac{1}{2}} (\frac{1}{2} - x)(\frac{1}{2}p(x) + \frac{1}{2}p(1 - x))dx + \int_{\frac{1}{2}}^1 (x - \frac{1}{2})\frac{1}{2}(p(x) + \frac{1}{2}p(1 - x))dx =$$

$$= \mathbb{E}(|X - \frac{1}{2}|) \tag{79}$$

So proved this properties. From our observation, the capacity is being reached, when H(Y) - H(Y|X) is maximal, which in term of written above means:

$$\max(H(Y)) - \min(H(Y|X)) = \max(\mathbb{E}(h(X))) - \min(h(\mathbb{E}(X)))$$
 (80)

We need to find such distribution function to minimize $\mathbb{E}(h(X))$ and after that make it symmetric about $x = \frac{1}{2}$, because it's the way we maximize $h(\mathbb{E}(X))$

$$\mathbb{E}(|X - \frac{1}{2}|) \le P, P \le \frac{1}{2} \tag{81}$$

For $\mathbb{E}(|X - \frac{1}{2}|)$:

$$\mathbb{E}(|X - \frac{1}{2}|) = \int_0^{\frac{1}{2}} h(x)p(x)dx = \frac{1}{2} - \mathbb{E}(x) \le P$$
 (82)

Then:

$$E(x) \ge \frac{1}{2} - P \tag{83}$$

For $\mathbb{E}(h(X))$:

$$\mathbb{E}(h(X)) = \int_0^{\frac{1}{2}} h(x)p(x)dx = 2E(x)$$
 (84)

Thus:

$$E(h(X)) \ge 1 - 2P \tag{85}$$

Considering required distribution function as:

$$p(x) = 2P\delta(x) + (1 - 2P)\delta(x - \frac{1}{2}), \tag{86}$$

where $\delta(x)$ is the delta-function.

For this distribution $\mathbb{E}(X) = \frac{1}{2} - P$ and $\mathbb{E}(h(X)) = 1 - 2P$, so we see that is the density function, which minimizes H(Y|X), for $\forall P \leq \frac{1}{2}$.

From previous points it was said, that after finding the density, which minimizes H(Y|X), we need to make symmetrical this function about point $x=\frac{1}{2}$ to maximize $H(Y)=h(\mathbb{E}(X))$ in case that $h(\frac{1}{2})=1$ - maximal value.

$$p_s(x) = P\delta(x) + P\delta(x-1) + (1-2P)\delta(x-\frac{1}{2})$$
(87)

with the resulting capacity:

$$C = \begin{cases} 2P & \text{if } P \le \frac{1}{2} \\ 1 & \text{if } P \ge \frac{1}{2} \end{cases}$$