Généralités sur les fonctions : corrigé de l'ex 26

Les fonctions f et g sont définies sur $]0; +\infty[$ par

$$f(x) = \ln x$$

$$g(x) = (\ln x)^2.$$

On note C et C' leurs courbes représentatives respectives, tracées ci-dessous.

1. On utilise la formule $(u^n)' = n \times u' \times u^{n-1}$, avec

$$u(x) = \ln x$$
, $u'(x) = \frac{1}{x}$, $n = 2$.

Pour tout $x \in]0; +\infty[$:

$$g'(x) = 2 \times \frac{1}{x} \times \ln x.$$

On a donc le tableau:

x	0		1		+∞
$2 \times \frac{1}{x}$		+		+	
$\ln x$		_	0	+	
g'(x)		_	0	+	
g(x)	+0	0	0		+∞

$$g(1) = (\ln 1)^2 = 0^2 = 0.$$

On calcule les limites en $+\infty$ et à droite en 0 :

$$\lim_{\substack{x \to +\infty \\ \lim_{X \to +\infty}}} \ln x = +\infty \\ \lim_{x \to +\infty} X^2 = +\infty \end{cases} \Longrightarrow \lim_{x \to +\infty} (\ln x)^2 = +\infty.$$

$$\lim_{\substack{x \to 0, \ x > 0 \\ \lim_{X \to -\infty} X^2}} \ln x = -\infty$$

$$\lim_{x \to 0, \ x > 0} (\ln x)^2 = +\infty.$$

2. Étudier les positions relatives de C et C' revient à étudier le signe de leur différence. Pour tout $x \in]0; +\infty[$:

$$\ln x - (\ln x)^2 = 1 \times \ln x - \ln x \times \ln x = \ln x (1 - \ln x).$$

On résout les équations dans $]0; +\infty[$:

$$\ln x = 0 \iff e^{\ln x} = e^0 \iff x = 1,$$

$$1 - \ln x = 0 \iff 1 = \ln x \iff e^1 = e^{\ln x} \iff e^1 = x.$$

On a donc le tableau:

X	(0	1		e^1		+∞
$\ln x$		_	0	+		+	
$1-\ln x$		+		+	0	_	
$\frac{\ln x(1-\ln x)}{\ln x}$		_	0	+	0	_	

Conclusion:

- les courbes C et C' se coupent aux points d'abscisses 1 et e^1 ;
- la courbe C est au dessus de C' sur l'intervalle]1; $\mathrm{e}^1[$;
- la courbe C est en dessous de C' sur les intervalles]0;1[et]e¹;+ ∞ [.
- 3. Pour tout réel $x \in [1; e]$, on note M (respectivement N) le point de C (resp. C') d'abscisse x.

La longueur MN est la longueur verte. Comme $y_M = f(x) = \ln x$ et $y_N = g(x) = (\ln x)^2$:

$$MN = y_M - y_N = \ln x - (\ln x)^2$$
.

Étudier la valeur de x pour laquelle la longueur MN est maximale revient donc à déterminer la valeur de x pour laquelle la fonction h, définie sur $[1;e^1]$ par $h(x) = \ln x - (\ln x)^2$, atteint son maximum. Pour résoudre le problème, on utilise la dérivation : pour tout $x \in [1;e^1]$,

$$h'(x) = \frac{1}{x} - 2 \times \frac{1}{x} \times \ln x$$
$$= \frac{1 - 2\ln x}{x}.$$

Or

$$1 - 2\ln x = 0 \iff 1 = 2\ln x \iff \frac{1}{2} = \ln x \iff e^{1/2} = e^{\ln x} \iff e^{1/2} = x.$$

On a donc le tableau (il est inutile ici de compléter l'extrémité des flèches) :

x	1	$e^{1/2}$		e^1
$1-2\ln x$	+	0	_	
x	+		+	
h'(x)	+	0	_	
h(x)				<i>*</i>

Conclusion : h atteint son maximum pour $x = e^{1/2}$, donc la longueur MN est maximale lorsque $x = e^{1/2}$.