Representation Theory of Finite Groups

Alex Rutar* University of Waterloo

Fall 2019[†]

^{*}arutar@uwaterloo.ca

[†]Last updated: November 4, 2019

Contents

Chapter	I Introduction	
1	Tensor Products	4
2	Character Theory	4
3	Induced Representations	11
4	Non-Commutative Module Theory	11
5	Facts about Non-Commutative Modules	17

I. Introduction

Let G be a finite group of order n, and write $G = \{g_1, ..., g_n\}$. Fix $g \in G$; then $gg_i = gg_j$ if and only if i = j. Thus there exists some $\sigma_g \in S_i$ such that $gg_i = g_{\sigma_g(i)}$ for all $i \in \{1, 2, ..., n\}$. In particular, $\phi : G \to S_n$ by $\phi(g) = \sigma_g$ is an embedding (injective group homomorphism). This observation is usually referred to as Cayley's Theorem.

Now let V be an n-dimensional complex vector space. We then denote GL(V) as the group of invertible linear operators $T: V \to V$. Now define $\psi: S_n \to GL_n(V)$ by $\psi(\sigma) = T_\sigma$ where if $\{b_1, \ldots, b_n\}$ is a basis for V and $T_\sigma(b_i) = b_{\sigma(i)}$. This is an injective group homomorphism, so $\psi \circ \phi: G \to GL(V)$ is an embedding of G into GL(V).

Definition. Let G be a finite group, and V a finite dimensional \mathbb{C} -vector space. A **representation** of G is a group homomorphism $\rho: G \to \mathrm{GL}(V)$. We call $\dim(V)$ the **degree** of the representation.

In particular, if *V* is *n*-dimensional, then $GL(V) \cong GL_n(\mathbb{C})$.

Example. 1. Consider $\rho: G \to GL(\mathbb{C}) \cong \mathbb{C}^{\times}$ given by $\rho(g) = 1$ for all $g \in G$. This is called the *trivial representation*.

- 2. Consider $\rho: S_n \to \mathbb{C}^{\times}$ given by $\rho(\sigma) = \operatorname{sgn}(\sigma)$, which is called the *sign representation*.
- 3. The representation fo *G* afforded by Cayley's theorem is called the *regular representation* of *G*. The next example is a good way to understand the regular rep of *G*.
- 4. Consider G, $X = \{x_1, ..., x_n\}$, and V = Free(X). Suppose G acts on X. Then $\rho : G \to GL(V)$ given by $\rho(g)(x_i) = gx_i$. In particular, if we take X = G, then this is the regular representation of G
- 5. Consider the 4–gon, with vertices labelled a,b,c,d. Take $X = \{a,b,c,d\}$ and the regular representation $\rho: D_4 \to \operatorname{GL}(V)$. This action has a geometric notion.
- 6. Let C_n be a cyclic group of order n; let us define some $\rho : C_n \to GL(V)$. Say $\rho(x) = T$ where $t \in GL(V)$; then this is a representation if and only if $T^n = I$.

Definition. We say that two representations $\rho: G \to GL(V)$ and $\tau: G \to GL(W)$ are **isomorphic** if there exists an isomorphism $T: V \to W$ such that for all $g \in G$,

$$T \circ \rho(g) = \tau(g) \circ T$$

Suppose $\rho: G \to \operatorname{GL}(V)$ and $T: V \to W$ is an isomorphism. Then we can define $\tau: G \to \operatorname{GL}(W)$ by $\tau(G) = T \circ \rho(g) \circ T^{-1}$; this $\rho \cong \tau$. In other words, the representation is unique up to isomorphism under change of basis.

Example. Consider $G = \{g_1, ..., g_n\} = \{h_1, ..., h_n\}$, and fix $g \in G$. Let $gg_i = g_{\alpha(i)}$ and $gh_i = h_{\beta(i)}$ where $\alpha, \beta \in S_n$. Fix an n-dimensional vector space V with basis $\{b_1, ..., b_n\}$. Then two regular representations are given by

$$\rho_1: G \to \operatorname{GL}(V), \rho(g)(b_i) = b_{\alpha(i)}$$

$$\rho_2: G \to \operatorname{GL}(V), \rho(g)(b_i) = b_{\beta(i)}$$

Let $\gamma \in S_n$ be such that $h_{\gamma(i)} = g_i$, and define $T: V \to V$ by $T(v_i) = b_{\gamma(i)}$. Then

$$gg_i = g_{\alpha(i)} = gh_{\gamma(i)} = h_{\beta\gamma(i)} = g_{\gamma^{-1}\beta\gamma(i)}$$

so that $\alpha = \gamma^{-1}\beta\gamma$. Thus for each b_i ,

$$T \circ \rho_{1}(g) \circ T^{-1}(b_{i}) = T \circ \rho_{1}(g)(b_{\gamma^{-1}(i)})$$

$$= T(b_{\alpha\gamma^{-1}(i)})b_{\gamma\alpha\gamma^{-1}(i)}$$

$$= b_{\beta(i)} = \rho_{2}(g)(b_{i})$$

so that $T \circ \rho_1(g) \circ T^{-1} = \rho_2(g)$.

Note: conjugate elements have the same cycle type.

Subrepresentations

What should a subrepresentation of $\rho : G \to GL(V)$ mean?

We would like a subspace $W \le V$ such that $\tau : G \to GL(W)$ is a representation given by $\tau(g)(w) = \rho(g)(w)$ for all $w \in W$. Moreover, to make this well-defined, we need W to b4 $\rho(g)$ -invariant for every $g \in G$ ($\rho(g)(W) \subseteq W$).

Suppose $T: V \to V$ is a linear operator, and $W \le V$ is a T-invariant subspace; i.e. $T(W) \subseteq W$. In particular, the restriction operator $T_W: W \to W$ is well-defined.

Definition. Let $\rho: G \to \operatorname{GL}(V)$ be a representation. A subspace $W \subseteq V$ is said to be G-stable if W is $\rho(g)$ -invariant for all $g \in G$. A **subrepresentation** of ρ is a representation $\rho_W: G \to \operatorname{GL}(W)$ where for all $g \in G$ and $w \in W$, $\rho_W(g)(w) = \rho(g)(w)$ where W is a G-stable subspace of V.

Example. Suppose $\rho: G \to \operatorname{GL}(V)$ be the regular representation. Take $W = \operatorname{span}\{\sum_{g \in G} v_g\}$, which is clearly G-stable, and $\rho_W: G \to \operatorname{GL}(W)$ is isomorphic to the trivial representation.

Similarly, let $\rho: S_n \to \operatorname{GL}(V)$ be the regular representation, $W = \operatorname{span}\{\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) v_\sigma\}$; this is isomorphic to the sign representation.

0.1 Theorem. Let $\rho: G \to GL(V)$ be a representation, $W \le V$ G-stable. Then there exists a G-stable subspace W' such that $V = W \oplus W'$.

PROOF Take any inner product $\langle x, y \rangle$ on V. Then for any $x, y \in V$, define

$$\langle x, y \rangle^* = \sum_{g \in G} \langle \rho(g)(x), \rho(g)(y) \rangle$$

This is also an inner product. Let $x, y \in V$ and let $h \in G$. Then

$$\begin{split} \langle \rho(h)(x), \rho(h)(y) \rangle^* &= \sum_{g \in G} \langle \rho(g)\rho(h)(x), \rho(g)\rho(h)(y) \rangle \\ &= \sum_{g \in G} \langle \rho(gh)(x), \rho(gh)(y) \rangle \\ &= \sum_{g \in G} \langle \rho(g)(x), \rho(g)(y) \rangle \end{split}$$

Thus every $\rho(h)$ is unitary with respect to $\langle \cdot, \cdot \rangle^*$. Let $W \leq V$ be G-stable, and take $W' = W^{\perp}$ with respect to $\langle \cdot, \cdot \rangle^*$. Then $V = W \oplus W'$. Let's see that W^{\perp} is G-stable. Let $x \in W^{\perp}$, $w \in W$,

and $g \in G$, so that

$$\langle \rho(g)(x), w \rangle^* = \langle x, \rho(g)^*(w)^* \rangle = \langle x, \rho(g)^{-1}(w) \rangle^*$$
$$= \langle x, \underbrace{\rho(g^{-1})(w)}_{\in W} \rangle^*$$
$$= 0$$

and $\rho(g)(W^{\perp}) \subseteq W^{\perp}$ as required.

Definition. Let $\rho: G \to GL(V)$ be a representation, and $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ where each W_i is G-stable. For each i, let $\rho_i = \rho_{w_i}$. For each $v = \sum w_i \in V$, we have $\rho(g)(v) = \sum \rho(g)(w_i) = \rho_i(g)(w_i)$. In this case, we write

$$\rho = \rho_1 \oplus \rho_2 \oplus \cdots \oplus \rho_k$$

and call ρ a direct sum of the ρ_i 's.

The previous definition is written as an internal direct sum of V. Externally, given vector spaces W_1, \ldots, W_k and representations $\rho_i : G \to GL(W_i)$, we can define

$$(\rho_1 \oplus \cdots \oplus \rho_k) : G \to GL(W_1 \oplus \cdots \oplus W_k)$$

by $(\rho_1 \oplus \cdots \oplus \rho_k)(g)(w_1, \ldots, w_k) = (\rho_1(g)(w_1), \ldots, \rho_k(g)(w_k))$. If $\rho_i : G \to GL(W_i)$ is a subrepresentation fo $\rho : G \to GL(V)$, we often say " W_i is a subrepresentation of V".

Definition. Let $\rho: G \to GL(V)$ be a representation. We say ρ is **irreducible** if $V \neq \{0\}$ and the only G-stable subspaces of V are $\{0\}$ and V. Clearly,

0.2 Theorem. Every representation $\rho: G \to GL(V)$ can be written as a direct sum of irreducible sub-representations.

Example. Let $\rho: S_3 \to GL(\mathbb{C}^3)$ be the permutation representation with respect to the standard basis $\{e_1, e_2, e_3\}$. Consider $W_1 = \text{span}\{e_1 + e_2 + e_3\}$ and $W_2 = \text{span}\{e_1 - e_2, e_2 - e_3\}$. Is W_2 irreducible?

More generally, if $V = W_1 \oplus \cdots \oplus W_k$ and dim $W_i = 1$ and deg $(\rho_i) = 1$,

$$\rho(gh)(\sum w_i) = \sum \rho_i(gh)(w_i) = \sum \rho_i(g)\rho_i(h)(w_i) = \sum \rho_i(h)\rho_i(g)(w_i)$$

so that $\rho(gh) = \rho(hg)$. In the our example, this does not happen, since $\rho(g) \neq I$ when $g \neq 1$ and S_3 is not abelian.

Example. Let $\rho: S_3 \to \operatorname{GL}(V)$ be the regular representation. Let $W_1 = \operatorname{span}\{\sum_{\sigma \in S_3} v_\sigma\}$ and $W_2 = \operatorname{span}\{\sum_{\sigma \in S_3} \operatorname{sgn}(\sigma) v_\sigma\}$, and Now let's focus on W_3 . A basis for W_3 is given by

$$e_1 = v_{\epsilon} - v_{(123)}$$
 $e_2 = v_{\epsilon} - v_{(123)}$ $e_3 = v_{(12)} - v_{(13)}$ $e_4 = v_{(12)} - v_{(23)}$

Recall that $S_3 = \langle (12), (123) \rangle$; suffices to show stability with respect to generators.

$$\rho(12): e_1 \mapsto e_4, e_2 \mapsto e_3, e_3 \mapsto e_2, e_4 \mapsto e_1$$

$$\rho(123): e_1 \mapsto e_2 - e_1, e_2 \mapsto -e_1, e_3 \mapsto e_4 - e_3, e_4 \mapsto -e_3$$

Let $U_1 = \text{span}\{e_1 - e_4, e_2 + e_3 - e_1\}$

1 Tensor Products

Let $\rho: G \to \operatorname{GL}(V)$ and $\tau: G \to \operatorname{GL}(W)$ be representations. We define the representation $\rho \otimes \tau: G \to \operatorname{GL}(V \otimes W)$

$$(\rho \otimes \tau)(g)(v \otimes w) = \rho(g)(v) \otimes \tau(g)(w)$$

2 CHARACTER THEORY

We define the character of ρ by $\rho : G \to \mathbb{C}$ as $\chi(G) = \text{Tr}(\rho(g))$.

Remark. If we choose a basis β for V, then define $A(g) = [\rho(g)]_{\beta}$ and $\chi(G)$ is given by the sum of the diagonal entries of A(g). Furthermore, if $A, B \in M_n(\mathbb{C})$, then Tr(AB) = Tr(BA).

The remark implies a number of facts:

- (i) $\rho \cong \tau$, then $Tr(\rho(g)) = Tr(\tau(g))$.
- (ii) Tr(T) is the sum of eigenvalues of T
- (iii) $\chi(1) = \dim(V)$.
 - **2.1 Proposition.** For every $g \in G$ the eigenvalues of $\rho(g)$ have modulus 1. In particular, $\chi(g^{-1}) = \overline{\chi(g)}$.

PROOF Set n = |G|; then $\rho(g)^n = \rho(g^n) = I$ so that $\lambda^n - 1 = 0$ for any eigenvalue λ , so $|\lambda| = 1$. Furthermore,

$$\overline{\chi(g)} = \overline{\sum \lambda_i} = \sum \overline{\lambda_i} = \sum \lambda_i^{-1} = \chi(g^{-1})$$

proving the second component.

2.2 Proposition. Let $\rho: G \to GL(V)$ and $\tau: G \to GL(W)$. Then $\chi_{\rho \oplus \tau} = \chi_{\rho} + \chi_{\tau}$ and $\chi_{\rho \otimes \tau} = \chi_{\rho} \cdot \chi_{\tau}$.

PROOF Let $\beta_1 = \{v_1, ..., v_n\}$ be a basis for V and $\beta_2 = \{w_1, ..., w_m\}$ a basis for W.

Then a basis for $V \oplus W$ is given by $\beta = \{(v_1, 0), \dots, (v_n, 0), (0, w_1), \dots, (0, w_m)\}$. In particular,

$$[(\rho \oplus \tau)(g)]_{\beta} = \begin{pmatrix} [\rho(g)]_{\beta_1} & \\ & [\tau(g)]_{\beta_2} \end{pmatrix}$$

and the trace result follows.

A basis for $V \otimes W$ is given by $\gamma = \{v_i \otimes w_j : 1 \le i \le n, 1 \le j \le m\}$ in lexicographic order. Fix $g \in G$, and set $A = [\rho(g)]_{\beta_1}$, $B = [\rho(g)]_{\beta_2}$. Fix $v_i \otimes w_j \in \gamma$. Then

$$(\rho \otimes \tau)(g)(v_i \otimes w_j) = \rho(g)(v_i) \otimes \tau(g)(w_j)$$

$$= (a_{1i}v_1 + \dots + a_{ni}v_n) \otimes (b_{1j}w_1 + \dots + b_{mj}v_m)$$

$$= \dots + a_{ii}b_{jj} \cdot (v_i \otimes w_j) + \dots$$

$$= \operatorname{Tr}([\rho \otimes \tau)(g)]_{\delta}) = \sum_{i,j} a_{ii}b_{jj} = \operatorname{Tr}(A)\operatorname{Tr}() = \chi_{\rho}(g) \cdot \chi_{\tau}(g)$$

Example. Suppose $\rho: S_n \to \operatorname{GL}(\mathbb{C}^n)$ is the permutation representation with respect to $\{e_1, \ldots, e_n\}$. Then $\chi(\sigma) = |\{e_i : \rho(\sigma)(e_i) = e_i\}| = |\operatorname{Fix}(\sigma)|$, which is the number of indices i fixed by σ . Since S_n acts transitively on $\{1, \ldots, n\}$, there is exactly 1 orbit, so by Burnside's lemma,

$$n! = |S_n| = \sum_{\sigma \in S_n} \chi(\sigma)$$

Example. Let $\rho: G \to \operatorname{GL}(V)$ be the regular representation. Note that if $g \ne 1$, then for all $h \in G$, $gh \ne h$. In particular, this means that $\chi(g) = 0$ if $g \ne 1$, and $\chi(1) = |G|$ (the dimension of V).

Example. Let $\rho: S_3 \to \operatorname{GL}(V)$ be the regular representation. Recall that $V = W_1 \oplus W_2 \oplus U_1 \oplus U_2$ where W_1 is the trivial representation, W_2 is the sign representation, and U_1, U_2 are isomorphic. Let $S_3 = \langle (12), (123) \rangle$; then we have

$$\begin{array}{c|cccc} x_1 & 1 & 1 \\ \hline x_2 & -1 & 1 \\ x_3 & a & b \\ x_4 & a & b \\ \end{array}$$

In particular, $\chi(12) = 1 - 1 + 2a = 0$ and $\chi(123) = 1 + 1 + 2b = 0$, so b = -1.

Example. Let $\rho: G \to \operatorname{GL}(V)$ be a representation. In particular, $\rho(ghg^{-1}) = \rho(g)\rho(h)\rho(g)$ so that $\operatorname{Tr} \rho(ghg^{-1}) = \operatorname{Tr} \rho(h)$ so $\chi(ghg^{-1}) = \chi(h)$; in other words, that characters are constant on conjugacy classes.

2.3 Lemma. (Schur) Let $\rho: G \to GL(V)$ and $\tau: G \to GL(W)$ be irreducible representations, and suppose $T: V \to W$ is linear such that for all $g \in G$, $\tau(g) \circ T = T \circ \rho(g)$. Then either T = 0 or T is an isomorphism and $\rho \cong \tau$. Moreover, if V = W and $\rho = \tau$, then T is a scalar multiple of the identity.

Proof Assume $T \neq 0$.

Let's first see that T is injective, and let $v \in \ker(T)$. Then for any $g \in G$, $T(\rho(g)(v)) = \tau(g)(T(v)) = 0$, so $\rho(g)(v) \in \ker(T)$. Thus $\ker(T)$ is G-stable (with respect to ρ). Since ρ is irreducible and $T \neq 0$, $\ker(T) = \{0\}$.

We also have that T is surjective. Let $v \in \text{Im}(T)$ and say v = T(X) with $x \in V$. Then for $g \in G$, $\tau(g)(v) = \tau(g)(T(x)) = T(\rho(g)(x)) \in \text{Im}(T)$ so Im(T) is G-stable, and again by irreducibility of τ , Im(T) = W. Thus T is an isomorphism.

Now let $\lambda \in \mathbb{C}$ be an eigenvalue of T and consider $T' = T - \lambda I$. Now, note that for $g \in G$, $\rho(g)T' = T'\rho(g)$, but T' has non-trivial kernel, so in fact T' = 0.

2.4 Corollary. Let $\rho: G \to GL(V)$ and $\tau: G \to GL(W)$ be irreducible, and $T: V \to W$ linear. Consider

$$T' = \frac{1}{|G|} = \sum_{g \in G} \tau(g)^{-1} T \rho(g)$$

Then

- (i) If $T' \neq 0$, then $\rho \cong \tau$ via T'.
- (ii) If V = W, $\rho = \tau$, then $T' = \text{Tr}(T)/\dim(V) \cdot I$.

PROOF Clearly $T': V \to W$ is linear, and for any $h \in G$,

$$\tau(h)T' = \tau(h)\frac{1}{|H|}\sum_{g\in G}\tau(g^{-1})T\rho(g)$$

$$= \frac{1}{|G|}\sum_{g\in G}\tau(hg^{-1})T\rho(g)$$

$$= \frac{1}{|G|}\sum_{g\in G}\tau(g^{-1})T(\rho(gh))$$

$$= \frac{1}{|G|}\sum_{g\in G}\tau(g^{-1})T\rho(g)\rho(h)$$

$$= T'\rho(h)$$

If V = W and $\rho = T$, then $\text{Tr}(T') = \frac{1}{|G|} \text{Tr}(T) \cdot |G| = \text{Tr}(T) = \alpha \dim(V)$, so $\alpha = \text{Tr}(T) / \dim(V)$.

Let $\rho: G \to \operatorname{GL}(V)$ and $\tau: G \to \operatorname{GL}(W)$ be irreducible representations, and $T: V \to W$ linear. Let β be a basis for V and γ a basis for W. Then for $g \in G$, let $[\rho(g)]_{\beta} = (a_{ij}(g))$, $[\tau(g)]_{\gamma} = (b_{kl}(g))$, $[T]_{\beta}^{\gamma} = (X_{ki})$, and $[T']_{\beta}^{\gamma} = (x'_{ki})$.

By matrix multiplication, $x'_{ki} = \frac{1}{|G|} \sum_g \sum_{j,l} b_{kl}(g^{-1}) x_{lj} a_{ji}$. If $\rho \ncong \tau$, then T' = 0, so by viewing the RHS as a polynomial in the x_{ij} , we have

$$\frac{1}{|G|} \sum_{g} b_{kl}(g^{-1}) a_{ji}(g) = 0$$

But now it $\rho = \tau$, then $T' = \lambda I$ where $\lambda = \text{Tr}(T)/\text{dim}(B)$ so that

$$\frac{1}{|G|} \sum_{g} \sum_{j,l} a_{kl}(g^{-1}) x_{lj} a_{ji}(g) = \lambda \delta_{ki} = \frac{1}{\dim(V)} \sum_{j,l} \delta_{ki} \delta_{jl} x_{lj}$$

Then by equating coefficients of x_{li} , we have

$$\frac{1}{|G|} \sum_{g} a_{kl}(g^{-1}) a_{ji}(g) = \frac{1}{\dim(V)} \delta_{ki} \delta_{jl}$$

Remark. If *G* is a finite group, the consider the vector space of all functions $\phi: G \to \mathbb{C}$. For any ϕ, ψ in this vector space, $\langle \phi, \psi \rangle = \frac{1}{|G|} \sum_g \phi(g) \overline{\psi(g)}$ defines an inner product. Then if χ_1, χ_2 are characters of *G*, then

$$\langle \chi_1, \chi_2 \rangle = \frac{1}{|G|} \sum_{g} \chi_1(g) \chi_2(g^{-1})$$

We thus have:

2.5 Theorem. If χ is a character of an irreducible representation, then $\langle \chi, \chi = 1$, and if χ_1 and χ_2 correspond to non-isomorphic representations, then $\langle \chi_1, \chi_2 \rangle = 0$.

Proof Say $[\rho(g)]_{\beta} = (a_{ij}(g))$ where ρ is an irreducible representation with character χ . Then

$$\langle \chi, \chi \rangle = \frac{1}{|G|} \sum_{g} \chi(g) \chi(g^{-1}) = \frac{1}{|G|} \sum_{g} \chi(g^{-1}) \chi(g)$$

$$= \frac{1}{|G|} \sum_{g} \sum_{i,j} a_{ii}(g^{-1}) a_{jj}(g) = \sum_{i,j} \left(\frac{1}{|G|} \sum_{g} a_{ii}(g^{-1}) a_{jj}(g) \right)$$

$$= \sum_{i,j} \left(\frac{1}{|G|} \sum_{g} a_{ii}(g^{-1}) a_{ii}(g) \right)$$

$$= \sum_{i} \frac{1}{\dim(V)} = 1$$

To see the second part,

$$\langle \chi_1, \chi_2 \rangle = \frac{1}{|G|} \sum_{g} \chi_1(g) \chi_2(g^{-1}) = \frac{1}{|G|} \sum_{g} \sum_{ij} a_{ii}(g) a_{jj}(g^{-1}) = \sum_{i,j} 0 = 0$$

If χ is a character corresponding to an irreducible representation, we say χ is irreducible. If ρ and τ are isomorphic representations, we say χ_{ρ} and χ_{τ} are isomorphic (in fact $\chi_{\rho} = \chi_{\tau}$).

2.6 Corollary. Let $\rho: G \to \operatorname{GL}(V)$ be a representation with character χ . Say $V = W_1 \oplus \cdots \oplus W_k$ is an irreducible decomposition of V. If $\tau: G \to \operatorname{GL}(W)$ is an irreducible representations with character ϕ , then the number of W_i isomorphic to W (i.e. $\rho_i \cong \tau$) is $\langle \chi, \phi \rangle$.

Proof Write $\chi = n_1 \chi_1 + \cdots + n_l \chi_l$, where the χ_i are pairwise non-isomorphic. Then $\langle \chi, \chi_i \rangle = n_i$.

Let $\tau: G \to \operatorname{GL}(V)$ be irreducible, and let τ have character φ . Then

$$\langle \chi, \varphi \rangle = \sum_{i=1}^{k} \langle \chi_i, \varphi \rangle$$

Now, $\langle \chi_i, \varphi \rangle = 1$ if and only if $\rho_i \cong \tau$, so that $\langle \chi, \varphi \rangle$ counts the number of times in which τ appears in the irreducible decomposition of ρ .

2.7 Corollary. If two representations of G have the same character, then they are isomorphic.

Proof They have the same irreducible decomposition.

2.8 Corollary. If $\rho: G \to GL(V)$ is a representation and χ is a character, then $\langle \chi, \chi \rangle \in \mathbb{N}$ and $\langle \chi, \chi \rangle = 1$ if and only if χ is ireducible.

PROOF If χ_1, \ldots, χ_k are irreducible, write $\chi = n_1 \chi_1 + \cdots + n_k \chi_k$ so that $\langle \chi, \chi \rangle = n_1^2 + \cdots + n_k^2 \in \mathbb{N}$.

2.9 Proposition. Every irreducible representation of G occurs as a subgroup fo the regular representation of G, with multiplicity equal to its degree.

Proof Let χ be an irreducible character of G. Then

$$\langle \chi, \chi_{\text{reg}} \rangle = \frac{1}{|G|} \sum_{g} \chi(g) \overline{\chi_{\text{reg}}(g)} = \frac{1}{|G|} \chi(1) \overline{\chi_{\text{reg}}(1)} = \frac{1}{|G|} \deg(\chi)$$

2.10 Corollary. Let χ_1, \ldots, χ_k be the distinct irreducible characters of G, with $\deg(\chi_i) = n_i$. Then $\sum n_i^2 = |G|$ for for $g \neq 1$, $\sum_{i=1}^k n_1 \chi_i(g) = 0$

PROOF Recall that $\chi_{\text{reg}} = n_1 \chi_1 + \dots + n_k \chi_k$. Then $\chi_{\text{reg}}(1) = |G| = n_1^2 + \dots + n_k^2$, and evaluation at $g \neq 1$ gives the desired result.

Definition. Let G be a group. A function $f: G \to \mathbb{C}$ is called a class function if f is constant on each conjugacy class, i.e. for all $a, b \in G$, $f(bab^{-1}) = f(a)$.

2.11 Proposition. Let $\rho: G \to GL(V)$ be a representation. Then

$$\rho_f = \sum_{g} f(g) \rho(g)$$

is a linear operator on V. If ρ is irreducible of degree n, then $\rho_f = \lambda I$, where $\lambda = \frac{|G|}{n} \langle f, \overline{x} \rangle$ where χ is the character of ρ .

Proof Note that

$$\begin{split} \rho_f \circ \rho(h) &= \sum_g f(g) \rho(g) \rho(h) = \sum_g f(g) \rho(gh) \\ &= \sum_g f(hgh^{-1}) \rho(hg) \\ &= \sum_g f(g) \rho(h) \rho(g) = \rho(h) \circ \rho_f \end{split}$$

so by Schur, $\rho_f = \lambda I$ where $\lambda = \text{Tr}(\rho_f)/n$. However, $\text{Tr}(\rho_f) = \text{Tr}(\sum_g f(g)\rho(g)) = \sum_g f(g)\chi(g) = |G|\langle f, \overline{\chi} \rangle$.

Recall that

- $\langle \chi, \chi \rangle = 1$ if and only if χ is irreducible
- If χ_{ρ} and χ_{τ} are irreducible then $\langle \chi_{\rho}, \chi_{\tau} \rangle = 0$ if $\rho \not\cong \tau$, and 1 otherwise.
- If χ' is an irreducible subrepresentation of χ , then $\langle \chi, \chi' \rangle$ is the multiplicity of χ' in χ .
- $|G| = n_1^2 + \dots + n_k^2$ where n_i is the multiplicity of χ_i as an irreducible subrepresentation of the regular representation.
- Every irreducible character is a character of some subrepresentation of the regular rep?
- ... every irreducible representation is a subrepresentation of the regular rep?

and

$$\rho_f = \sum_g f(g)\rho(g) = \lambda I$$

where $\lambda = |G|/\dim(V) \cdot \langle f, \overline{\chi} \rangle$.

2.12 Proposition. Let G be a group. The irreducible characters of G form an orthonormal basis for the vector space of class functions on G.

PROOF Let $\beta = \{\chi_1, ..., \chi_k\}$ be the irreducible characters of G. We know that β is orthonormal, and hence linearly independent. Let $W = \operatorname{span}(\beta)$. To show W = V where V is the space of class functions, we prove that $W^{\perp} = \{0\}$. Let $f \in W^{\perp}$, and suppose $\rho : G \to \operatorname{GL}(V)$ is irreducible. By A2, $\overline{\chi}_1, ..., \overline{\chi}_k$ are all irreducible characters of G. Thus $\rho_f = 0$. By considering irreducible decompositions, $\rho_f = 0$ for all representations $\rho : G \to \operatorname{GL}(V)$. In particular, when ρ is the regular representation,

$$0 = \rho_f(v_1) = \sum_{g} f(g)\rho(g)(v_1) = \sum_{g} f(g)v_g$$

so by independence of $\{v_g : g \in G\}$, f(g) = 0 for all $g \in G$.

2.13 Corollary. The number of irreducible characters of G is equal to the number of conjugacy classes of G.

PROOF Let $C_1,...,C_k$ be the conjugacy classes. Then a basis for $V_{\text{class}} = \{\phi_1,...,\phi_k\}$ where each ϕ_i is the indicator for C_i . Since bases must have the same size, the result follows.

- **2.14 Proposition.** Let G be a group, $g \in G$, and O_g the conjugacy class of g. Let $\chi_1, ..., \chi_k$ be the irreducible characters of G. Then
 - 1. $\sum_{i=1}^{k} |\chi_i(g)|^2 = |G|/|O_g|$
 - 2. If h is not conjugate to g, then $\sum_{i=1}^{k} \chi_i(g) \overline{\chi_i(h)} = 0$.

PROOF Define $\phi: G \to \mathbb{C}$ where $\phi(x)$ is the indicator function for O_g . Write $\phi = \sum_{i=1}^k \lambda_i \chi_i$ where

$$\lambda_i = \langle \phi, \chi_i \rangle = \frac{1}{|G|} \sum_x \phi(x) \overline{\chi_i(x)} = \frac{|O_g| \overline{\chi_i(g)}}{|G|}$$

Therefore,

$$\phi(x) = \frac{|O_g|}{|G|} \sum_{i=1}^k \overline{\chi_i(g)} \chi_i(x)$$

Then the result follows by evaluating ϕ at g and h.

Example. Let's compute the character table of S_3 . There are 2 degree 1 representations, and 3 irreducible characters since there are three conjugacy classes (cycle types). In particular, $|S_3| = 6 = 1^2 + 1^2 + n_3^2$, so $n_3 = 2$.

Note that the columns must be orthogonal, so by the previous proposition, we have a = 0 and b = -1.

Let $\chi_1, ..., \chi_k$ be the irreducible characters of G. Then $\sum_{g|\chi_i}^2 = |G|$ and $\sum_{i=1}^k |\chi_i(g)|^2 = |G|/|O_g|$.

Let G be abelian. By A1, G has |G| representations of degree 1, and [G : [G,G] = |G|. Since G as |G| conjugacy classes, these are all of the irreducible representations of G. Suppose G is a group whose irreducible representations are all degree one. Since $n_1^2 + \cdots + n_k^2 = |G|$, then k = |G|.

2.15 Proposition. Let H be an abelian subgroup of G. Then any irreducible representation of G has degree at most [G:H].

PROOF Let $\rho: G \to \operatorname{GL}(V)$ be an irreducible representation of G. Consider the restriction $\tilde{\rho}: H \to \operatorname{GL}(V)$. Let $W \le V$ be an irreducible subrepresentation of \tilde{G} . Since H is abelian, dim W = 1. Suppose $W = \operatorname{span}\{x\}$, and let $W' = \{\rho(g)(x) : g \in G\}$ so that V' is G-stable, and in fact V' = V since ρ is irreducible.

Take $g \in G$ and $h \in H$, so $\rho(gh) = \rho(g)\rho(h)(x) = \rho(g)(\alpha x) = \alpha \rho(g)(x)$ Say g_1, \dots, g_m are coset representatives of H in G. Then $V = V' = \operatorname{span}\{\rho(g_i)(x) : 1 \le i \le m\}$, then $\dim(V) \le m = [G:H]$.

Example. Consider D_4 . Then the number of degree 1 representations is $[D_4 : \langle r^2 \rangle] = 4$. Since there are 5 conjugacy classes, we know that there are 5 irreducible representations, so that $n_5^2 = 8$. Let's make the character table:

D_4	1	r	r^2	S	rs
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
<i>X</i> 3	1	1	1	-1	-1
χ_4	1	-1	1	-1	1
χ_5	2	а	b	С	d

But then by column orthogonality, we have a = 0, b = -2, c = 0, d = 0.

Example. Consider S_4 . Then $[S_4:A_4]=2$ so there are two degree 1 representations (the trivial and the sign), and the conjugacy classes are given by 1, (12), (12)(34), (123), (1234), so there are 5 irreducible representations. Since $24^2=1^2+1^2+n_3^2+n_4^2+n_5^2$, we have $22=n_3^2+n_4^2+n_5^2$, which forces $n_3=2$ and $n_4=n_5=3$. Now we have

D_4	1	(12)	(12)(34)	(123)	(1234)
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
<i>X</i> 3	2	1	1	-1	-1
χ_4	3	-1	1	-1	1
χ_5	3	а	b	С	d

Note that $K = \{1, (12)(34), (13)(24), (14)(23)\} \le S_4$ and $H = \{1, (12), (13), (123), (132), (23)\}$, so $S_4 = KH$. Let ρ be an irreducible representation of H of degree 2:

S_3	1	(12)	(123)
α_1	1	1	1
α_2	1	-1	1
α_3	2	0	-1

Then $\rho: S_4 \to \operatorname{GL}(V)$ by $\rho(kh) := \rho(h)$ is an irreducible representation of S_4 since $K \subseteq S_4$.

3 INDUCED REPRESENTATIONS

Given a subgroup $H \leq G$ and a representation $\rho: H \to \operatorname{GL}(V)$, construct a representation of G. Let $H \leq G$ and $\rho: H \to \operatorname{GL}(V)$ a representation. Say the cosets of H in G are g_1H,\ldots,g_mH . For each i, let $g_iV=\{g_iv:v\in V\}$ be an isomorphic copy of G, and let $W=\bigoplus_{i=1}^m g_iV$ so that every $w\in W$ can be uniquely written as $w=g_1v_1+\cdots+g_mv_m$, where m=[G:H]. Fix $g\in G$; then there exists $\pi\in S_m$ such that for every i, $gg_i=g_{\pi(i)}h_i$, $h_i\in H$. We then define $\operatorname{Ind}_H^G(\rho):G\to\operatorname{GL}(W)$ by

$$\operatorname{Ind}_{H}^{G}(\rho)(g)(\sum g_{i}w_{i}0 = \sum g_{\pi(i)}\rho(h_{i})v_{i}$$

Example. Let $\{1\} \le G$ and suppose $\rho : \{1\} \to \operatorname{GL}(\mathbb{C})$ is the trivial representation. Then $G = \{g_1, \dots, g_n\}$. Then for $g \in G$, $gg_i 1 \in G$ and

$$\operatorname{Ind}(\rho)(s)\left(\sum_{i=1}^{n}g_{i}\alpha_{i}\right) = \sum gg_{i}\rho(1)(\alpha_{i}) = \sum gg_{i}\alpha_{i}$$

so that $Ind(\rho)$ is isomorphic to the regular representation.

Example. Consider $\langle r \rangle \leq D_n$, and let $\rho : \langle r \rangle \to \operatorname{GL}(\mathbb{C})$ be given by $\rho(r)(1) = \zeta_n$. Let the coset representatives be given by ϵ and s.

- (i) Let $r \in D_n$; so $r\epsilon = \epsilon r$ and $rs = sr^{n-1}$. Fix $W = \epsilon \mathbb{C} \oplus s\mathbb{C}$. Then $Ind(\rho) : D_n \to GL(W)$ is given by $Ind(\rho)(r)(\epsilon \alpha_1 + s\alpha_2) = \epsilon \zeta_n \alpha + 1 + s\zeta_n^{n-1} \alpha_2$.
- (ii) Let $s \in D_n$. Then $s\epsilon = s\epsilon$ and $ss = \epsilon\epsilon$. Then $\operatorname{Ind}(\rho)(s)(\epsilon\alpha_1 + s\alpha_2) = s\rho(\epsilon)(\alpha_1) + \epsilon\rho(\epsilon)(\alpha_2) = s\alpha_1 + \epsilon\alpha_2$.

Take the basis $\beta = \{\epsilon, s\}$ for W, so we have

$$[\operatorname{Ind}(\rho)(r)]_{\beta} = \begin{pmatrix} \zeta_n & 0\\ 0 & \zeta_n^{n-1} \end{pmatrix} \quad [\operatorname{Ind}(\rho)(s)]_{\beta} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$

4 Non-Commutative Module Theory

Let *R* be a ring with unity and (M, +) an abelian group. We can equip End(M) with a ring structure given by (f + g)(x) = f(x) + g(x) and fg(x) = f(g(x)).

Definition. A (left) R-module is an abelian group (M,+) equipped with a unitary ring homomorphism $\alpha: A \to \operatorname{End}(M)$.

This map α defines a multiplication between elements of r and m given by $rm = \alpha(r)(m)$.

Example. (i) If *F* is a field, a *F*-module is a *F*-vector space.

- (ii) M is a \mathbb{Z} -module if and only if M is an abelian group.
- (iii) *R* is an *R*–module (left multiplication)
- (iv) If *I* is a left ideal of *R*, then *I* is a left *R*–module.
- (v) $R = M_n(F)$, and $V = F^n$. Then V is an R-module.
- (vi) Let R be a ring and I a left ideal of R. Then $R/I = \{a+I : a \in R\}$, so R/I is an R-module with r(a+I) = ra + I.

Let M be an R-module. We say a subgroup (N,+) of (M,+) is an R-submodule of M if N is $\alpha(r)$ -invariant for each $r \in R$.

Definition. Let G be a finite group and F a field. We define the group algebra $F[G] = \{\alpha_1 g_1 + \dots + \alpha_n g_n : \alpha_i \in F\}$ equipped with G-pointwise addition and multiplication $ag_i \cdot bg_j = (ab)g_ig_i$, extended by distributivity.

Example. Let M be a $\mathbb{C}[G]$ -module. Then M is also a \mathbb{C} -vector space, and $\rho: G \to \mathrm{GL}(M)$ given by $\rho(g)(m) = gm$ is a representation.

Example. If $\rho: G \to \operatorname{GL}(V)$ be a representation, the ρ induces a $\mathbb{C}[G]$ -multiplication on V, making V a $\mathbb{C}[G]$ -module. Moreover, if $N \le M$ is a submodule, then it is $\rho(cg)$ -invariant for any $cg \in \mathbb{C}[G]$ if and only if N as a subspace of M is G-stable.

To be precise, we have $cg \cdot v = \rho(g)(cv)$. In fact, there is an isomorphic of categories from representations of G and $\mathbb{C}[G]$ -modules.

Definition. Let N,M be R-modules. We say $\psi: N \to M$ is a (module) homomorphism if ϕ commutes with the structures on N and M.

If $\phi: N \to M$ is a homomorphism where N, M are $\mathbb{C}[G]$ -modules, with multiplication maps ρ and τ . Then $\phi \circ \rho = \tau \circ \phi$, in other words that it is an intertwining map. Note that $\rho: G \to \mathrm{GL}(V)$ is faithful if only if the unique zero map on v is 0.

Definition. Let M be an R-module. The **annhilator** Ann $(M) = \{r \in R : rm = 0\}$. Then M is **faithful** if Ann $(M) = \{0\}$.

4.1 Proposition. Let M be an R-module. Then Ann(M) is a (2-sided) ideal of R. Moreover, M is a faithful R/Ann(M)-module.

Definition. An R-module M is **irreducible** if $M \neq (0)$ and the only submdules of M are (0) and M.

Recall that a division ring is a unital ring such that every non-zero element is invertible.

- **4.2 Theorem.** (Schur) Let M be an irreducible R-module. Then $\operatorname{End}_R(M)$ is a division ring.
- **4.3 Theorem.** Let M, N be R-modules and let $\psi : M \to N$ be a module homomorphism. Then $M/\ker \psi \cong \psi(M) \leq N$.
- **4.4 Proposition.** Let M is an irreducible R-module, then $M \cong R/I$, where I is a maximal left ideal. Conversely, if I is a maximal let ideal, then R/I is irreducible.

PROOF Let M be an irreducible R-module and fix $0 \neq m \in M$, and define $\phi : R \to M$ by $\phi(r) = rm$, so ϕ is a homomorphism and $R/\ker \phi \cong \phi(R) = M$ by irreducibility. But then I is maximal since $R/I \cong M$ is simple.

Definition. Let R be a ring. Then the **Jacobson radical** of R is $J(R) = \bigcap_{\text{irred left } M} \text{Ann}(M)$. **Definition.** A left ideal I of R is called **left quasiregular** if for all $a \in I$, R(1+a) = R.

- **4.5 Theorem.** If R is a ring, then the following are equivalent:
 - (i) $a \in I(R)$.
- (ii) Ra is left quasiregular
- (iii) $a \in \bigcap_{I \leq R \ maximal} I$.

PROOF $(i \Rightarrow ii)$ Let $a \in J(R)$ and for contradiction assume for some $x \in R$ $R(1 + xa) \neq R$. Thus there exists a maximal let ideal I such that $R(1 + xa) \subseteq I$, so that R/I is an irreducible R-module. Thus a(R/I) = (0), so that $a(\overline{1}) = \overline{a} = \overline{0}$, so $xa \in I$ and $1 \in I$, a contradiction.

 $(ii \Rightarrow iii)$ Assume Ra is left quasiregular. Assume there exists some maximal left ideal I with $a \notin I$. Since R/I is irreducible, $I + Ra/I \le R/I$ is a non-zero ideal. By irreducibility, I + Ra/I = R/I, so there exists $x \in R$ so that $\overline{xa} = \overline{-1}$, so $1 + xa \in I$ is left-invertible, so I = R, a contradiction.

($iii \Rightarrow i$) Let $A = \bigcap_{I \text{ left max}} I$. Suppose there exists an irreducible module M so that $AM \neq (0)$. Then there exists $0 \neq m \in M$ such that $Am \neq (0)$. Note that am is a left R-submodule of M, so there exists $a \in A$ so that am = -m. Thus (1 + a)m = 0, so if (1 + a) is in a maximal left ideal, then 1 + a - a is as well. Thus (1 + a) is left-invertible, so m = 0, a contradiction.

Remark.

$$J(R) = \bigcap_{M \text{ irreducible}} Ann(M) = \bigcap_{\text{left max}} I = \sum_{\text{left quasi-reg}} Ra$$

Let $a \in J(R)$, $x \in R$, and suppose $R(1 + ax) \neq R$, so $R(1 + ax) \subseteq I$ where I is left maximal. Thus R/I is irreducible, so $a(x + I) = \overline{0}$, so $ax \in I$, so $1 \in I$.

If $a \in J(R)$, then 1+a is invertible so get $b \in R$ so that b(1+a)-a. Then since a+b+ba=0, so $b \in J(R)$. By the same argumeth, get $c \in J(R)$ with c(1+b)=-b. But then subtracting, manipulating, we get cb=ba so that a+b=b+c and in fact a=c. Thus (1+a)b=b+ab=b+cb=-a. Thus (1+a)b=-a, so (1+a)R=R. Thus $J(R)=\{x:xr \text{ is right quasiregular}\}$.

Definition. A ring is **semiprimitive** if I(R) = (0).

Recall that

$$J(R) = \bigcap_{\text{left max}} I = \bigcap_{\text{irred left}} \text{Ann}(M) = \bigcap_{\text{left quasi-ref}} \{Ra: \forall x, R(1+xa) = R\}$$

Example. 1. $J(\mathbb{Z}) = \bigcap_{p \text{ prime}} \langle p \rangle$

2.
$$J(F[[x]]) = \langle x \rangle$$

3.
$$J(\mathbb{Z}_{12}) = \langle 2 \rangle \cap \langle 3 \rangle = \langle 6 \rangle$$

Definition. Let R be a ring. We say $a \in R$ is **nilpotent** if there exists $n = n(a) \in \mathbb{N}$ such that $a^n = 0$. An ideal (left,right,both) is **nil** if every element is nilpotent. An ideal I (left,right,both) is **nilpotent** if there exists some $n \in \mathbb{N}$ such that $I^n = (0)$.

4.6 Proposition. Every nil left ideal of R is contained in J(R).

PROOF It suffices to show that for every nil element a that (1 + a) is invertible. Indeed, since $a^n = 0$ for some n, $(1 - a + a^2 - \cdots + (-1)^{n-1}a^{n-1})(1 + a) = 1$.

4.7 Proposition. J(R/J(R)) = (0), in other words, R/J(R) is semiprimitive.

Proof

$$J(R/J(R)) = \bigcap_{\substack{I \subseteq R \text{ max} \\ J(R) \subseteq I}} I/J(R) = \bigcap_{\substack{I \subseteq R \\ \text{left max}}} I/J(R) = J(R)/J(R) = (0)$$

Definition. A ring R is (left) Artinian if whenever $I_1 \supseteq I_2 \supseteq \cdots$ is a descending chain of left ideals, then there exists $N \in \mathbb{N}$ such that $I_k = I_N$ for all $k \ge N$.

Example. (i) \mathbb{Z} is not Artinian.

- (ii) If R Artinian, then $M_n(R)$ is Artinian. If I is an ideal of $M_n(R)$, then $I = M_n(I')$ where I' is an ideal of R.
- (iii) Division rings are artinian
- (iv) Suppose R is an F-algebra, where F is a field (isomorphic copy of F contained in the center of R). If dim $_F R < \infty$, then R is Artinian
- (v) If F is a field and G is a finite group, then F[G] is Artinian since dim $F[G] = |G| < \infty$
 - **4.8 Proposition.** If R is Artinian, then J(R) is nilpotent.

PROOF Consider $J(R) \supseteq J(R)^2 \supseteq \cdots$. Thus there exists N such that $J(R)^k = J(R)^n$ for all $k \ge N$. Let $I = J(R)^N$; let's see that I = (0). Suppose $I \ne (0)$. Let A be a minimal left ideal fo R such that $IA \ne (0)$. Let $a \in A$ so that $Ia \ne (0)$, so Ia is a left ideal and $I(Ia) = I^2a = Ia$. Thus by minimality, A = Ia so there is some $x \in I$ such that a = xa. Thus (1 - x)a = 0 so a = 0, a contradiction.

4.9 Theorem. (Maschke) Let G be a finite group. If F is a field such that char(F) = 0 or char(F) = p does not divide |G|, then F[G] is semiprimitive and Artinian (and hence semisimple, by the assignment).

PROOF Since $\dim_F F[G] < \infty$, F[G] is Artinian. For contradiction, suppose I is a nonzer nil ideal of R. Take $0 \ne x \in I$, so $x = \sum a_g g$ where $a_h \ne 0$ for some $h \in G$. By multiplying by h^{-1} , we may assume $a_1 \ne 0$. For each $a \in F[G]$, define $T_a : F[G] \to F[G]$ by $T_a(v) = av$, so T_a is a F-linear operator. Note that $T_x = \sum a_g T_g$ so that $\text{Tr}(T_x) = \sum a_g \text{Tr}(T_g)$, so x is not nilpotent, a contradiction.

ARTIN-WEDDERBURN THEORY

Definition. A ring *R* is **primitive** if it has a faithful, irreducible module.

Note that primitive rings are semiprimitive.

Example. If D is a division ring, then $M_n(D)$ is primitive. In particular, D^n is faithful and irreducible

Let R be primitive and commutative. Then if M is faithful and irreducible, $M \cong R/I$ where I is a maximal ideal so R is a field.

Definition. A ring R is **simple** if $R \neq (0)$ and R has no proper non-zero two-sided ideals. For example, $M_n(D)$ is simple. If $J \leq M_n(D)$ is an ideal, then $J = M_n(I)$ for some ideal I of D.

Remark. If R is irreducible, then R is simple. However, the converse does not hold since $M_2(\mathbb{R})$ is simple but $I = \{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} : a, b \in \mathbb{R} \}$ is a left ideal.

4.10 Proposition. Every simple ring is primitive.

PROOF Let R be simple and I be a maximal left ideal of R so that M := R/I is irreducible. Since Ann(M) is an ideal of R and Ann $(M) \neq R$, Ann(M) = (0).

For the remainder of this section, R is primitive, M is faithful and irreducible, and $D = \operatorname{End}_R(M)$ is a division ring. We give M the structure of a D-module by $\phi \cdot m = \phi(m)$. **Definition.** We say R **acts densely** on M if for all D-linearly independent $v_1, \ldots, v_n \in M$ and all $w_1, \ldots, w_n \in M$, there exists $r \in R$ such that $rv_i = w_i$ for $i = 1, 2, \ldots, n$.

Remark. Suppose $\dim_D M < \infty$ and R acts densely on M If $\{v_1, \ldots, v_n\}$ is a D-basis, then for all w_1, \ldots, w_n , there exists $r \in R$ so that $rv_i = w_i$. Thus $R \cong \{T : M \to M : D - \text{linear}\} \cong M_n(D)$.

4.11 Lemma. If for every finite dimensional D-subspace V of M and every $m \in M \setminus V$ there exists $r \in R$ such that rV = (0) but $rm \neq 0$, then R acts densely on M.

PROOF Let $v_1, ..., v_n$ be D-linearly independent in M and suppose $w_1, ..., w_n$ are in M. For each i, let $V_i = \operatorname{span}\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_n\}$. By assumption, since $v_i \notin V_i$, there exists $t_i \in R$ so that $t_i V_i = (0)$ but $t_i v_i \neq 0$. Observe that $Rt_i v_i = M$ since M is irreducible, so get $r_i \in R$ such that $r_i t_i V_i = (0)$ and $r_i t_i v_i = w_i$. Let $t = r_1 t_1 + \dots + r_n t_n$, so $t v_i = w_i$.

4.12 Theorem. (Jacobson Density) Let R be primitive and M a faithful irreducible R-module. Then R acts densely on M.

PROOF Let V be a finite dimensional D-subspace of M, and let $m \in M \setminus V$. We proceed by induction on dim V. If dim V = 0, V = (0), and take r = 1. Proceeding inductively, suppose dim V > 0 and $0 \neq w \in V$ with $V = V_0 \oplus \operatorname{span}\{w\}$, where dim $V_0 = \dim V - 1$. Let $A(V_0) = \{x \in R : xV_0 = (0)\}$. By induction, for every $y \in V_0$, there exists $r \in A(V_0 \text{ such that } ry \neq 0$. Note that $A(V_0)$ is a left ideal: since $w \notin V_0$, $A(v_0)w \neq (0)$ so $A(v_0)w = M$ by irreducibility. Consider $\tau : M \to M$ given by $\tau(aw) = am$, where $a \in A(v_0)$. This is well-defined for if aw = a'w, then (a - a')w = 0 so (a - a')V = 0 (since $V = V_0 \oplus \operatorname{span}_D\{w\}$). For contradiction, assume that if $r \in R$ and rV = (0), then rm = 0. Thus (a - a')m = 0 so am = a'm and $\tau(a2) = \tau(a'w)$ and τ is well-defined. Notice that $\tau \in \operatorname{End}_R(M) = D$. For all $a \in A(v_0)$, $am = \tau(aw) = a\tau(w)$ so $a(m - \tau(w)) = 0$. Thus by the inductive hypothesis, $M - \tau(w) \in V_0$, so $m \in v_0 \oplus \operatorname{span}_D(w) = V$.

4.13 Proposition. If R is primitive and (left) Artinian, then $R \cong M_n(D)$ where $D \cong \operatorname{End}_R(M)$.

PROOF We first show that $\dim_D(M) < \infty$. Suppose $\{v_1, v_2, \ldots\}$ is infinite and D-linearly independent. For each m, let $I_m = \{r \in R : rv_i = 0 \text{ for } i = 1, \ldots, m\}$, so that $I_1 \supseteq I_2 \supseteq \cdots$. By the JDT, R acts densely on M. In particular, for every m > 1, there exists $r \in R$ so that $rv_1 = \cdots = rv_{m-1} = 0$ but $rv_m = v_m \neq 0$, so $r \in I_{m-1} \setminus I_m$. Thus $I_1 \supseteq I_2 \supseteq \cdots$, contradicting Artinianity.

Consider the map $\phi: R \to \operatorname{End}_D(M) \cong M_n(D)$ by $\phi(r) = (v_i \mapsto rv_i)$. Then by the homework, this is a ring isomorphism.

In particular, on A4, we prove that every semiprimitive Artinian ring is a finite direct sum of primitive Artinian rings. We thus have

4.14 Theorem. (Artin-Wedderburn) Every semiprimitive Artinian (i.e. semisimple) ring is isomorphic to a finite direct sum of matrix rings over division rings, i.e. $R \cong M_{n_1}(D_1) \oplus \cdots \oplus M_{n_k}(D_k)$

Note that the D_i and the n_i are unique up to reordering.

4.15 Corollary. Every commutative semisimple ring is isomorphic to a finite direct sum of fields.

Let R be primitive F-algebra where F is a field. Let M be a faithful, irreducible R-module, and $D = \operatorname{End}_R(M)$. For $\alpha \in F$, consider $\phi_\alpha : M \to M$ given by $\phi_\alpha(m) = \alpha m$ since $F \subseteq Z(R)$, $\phi_\alpha \in D$.

Now define $\psi: F \to D$ by $\psi(\alpha) = \phi_{\alpha}$, which is an injective homomorphism. Furthermore, for each $\psi \in D$, $\psi(\phi_{\alpha}(m)) = \phi(\alpha m) = \phi_{\alpha}(\phi(m))$ so $\phi(\phi_{\alpha}(m)) = \phi(\alpha m) = \alpha \phi(m) = \phi_{\alpha}(\phi(m))$ so $\phi \circ \phi_{\alpha} = \phi_{\alpha} \circ \phi$, so D is an F-algebra.

4.16 Lemma. Suppose $F = \overline{F}$. If D is a division F-algebra which is algebraic over F, then D = F.

PROOF Let $a \in D$, and let $p(x) \in F[x]$ with p(a) = 0. Then $p(x) = \prod_i (x - \lambda_i)$ with $\lambda_i \in F$. However, $p(a) = \prod_i (a - \lambda_i)$ since $F \subseteq Z(D)$. Since D is a division ring, $(a - \lambda_i) = 0$ so that $a = \lambda_i \in F$.

Remark. Suppose *D* is a division *F*-algebra. If $\dim_F(D) < \infty$, then *D* is algebraic over *F*.

4.17 Theorem. Let $F = \overline{F}$. If R is a finite dimensional semisimple F-algebra, then $R \cong M_{n_1}(F) \oplus \cdots \oplus M_{n_k}(F)$.

PROOF Write $R \cong M_{n_1}(D_1) \oplus \cdots \oplus M_{n_k}(D_k)$, so that $\dim_F(D_i) < \infty$. Thus since each D_i is an F-algebra with finite dimension, each $D_i = F$.

We thus have

4.18 Theorem. If $F = \overline{F}$, G a finite group, and char F = 0 or char $F \nmid |G|$, then F[G] is semisimple and thus $F[G] \cong M_{n_1}(F) \oplus \cdots \oplus M_{n_k}(F)$.

Remark. Suppose $F = \mathbb{C}$. Then $\mathbb{C}[G] \cong M_{n_1}(\mathbb{C}) \oplus M_{n_k}(\mathbb{C})$. Taking $\dim_{\mathbb{C}}: |G| = n_1^2 + \cdots + n_k^2$.

- **4.19 Lemma.** Let R be semisimple, so that $R = M_1 \oplus \cdots \oplus M_k$ where M_i are irreducible.
 - (i) If M is an irreducible R-module, then $M \cong M_i$ for some i.
 - (ii) If $R \cong N_1 \oplus \cdots \oplus N_m$ is another irreducible decomposition, then m = n and up to reordering $M_i \cong N_i$.

PROOF (i) Let $M \cong R/I$ where I is left maximal. Then $\phi_i : M_i \to R \to R/I \cong M$, so either $\phi_i = 0$ or ϕ_i is an isomorphism. Suppose $\phi_i = 0$ for all i. Then $\phi = \sum \phi_i$, so $\phi : R \to R/I$ as $\phi(1) = 0$, so $1 \in I$, a contradiction.

(ii) The maximal submodules of R are precisely $P_i := \bigoplus_{j \neq i} M_j$.

Let D be a division ring, $R = M_n(D)$ semisimple, so $R = M_1 \oplus \cdots \oplus M_n$ where each M_i is the ideal composition of column i of D^n . Then $R \cong D^n \oplus \cdots \oplus D^n$. Since R is semisimple, Artin-Wedderburn implies that $R \cong M_{n_1}(D_1) \oplus \cdots \oplus M_{n_k}(D_k)$ as rings, so that

$$R \cong D_1^{n_1} \oplus \cdots \oplus D_1^{n_1} \oplus \cdots \oplus D_k^{n_k} \oplus \cdots \oplus D_k^{n_k}$$

and in fact

$$\mathbb{C}[G] \cong M_{n_1}(\mathbb{C}) \oplus \cdots M_{n_k}(\mathbb{C}) \cong \underbrace{\mathbb{C}^{n_1} \oplus \cdots \oplus \mathbb{C}^{n_1}}_{n_1 \text{ times}} \oplus \cdots \oplus \underbrace{\mathbb{C}^{n_k} \oplus \cdots \oplus \mathbb{C}^{n_k}}_{n_k \text{ times}}$$

Let M be an irreducible $\mathbb{C}[G]$ —module. By the lemma, $M \cong \mathbb{C}^{n_i}$ for some i. The degree of the associated representation is $\dim_{\mathbb{C}} M = n_i$, and whenver M occurs in $\mathbb{C}[G]$ (regular representation) n_i times. Moreover, k is the number of conjugact classes of G.

Exercise: if C is a conjugacy classes and $z_c = \sum_{g \in C} g \in \mathbb{C}[G]$, $\{z_C : C \text{ conj class}\}$ forms a basis for $Z(\mathbb{C}[G])$ (use Artin-Wedderburn).

Example. (i) In $\mathbb{C}[S_3]$, we have $\mathbb{C}[S_3] \cong \mathbb{C} \oplus \mathbb{C} \oplus M_2(\mathbb{C})$.

- (ii) If *G* is abelian with |G| = n, then $\mathbb{C}[G] \cong \mathbb{C} \oplus \cdots \oplus \mathbb{C} n$ times.
- (iii) If G, H are abelian, then $\mathbb{C}[G] \cong \mathbb{C}[H]$ if and only if |G| = |H|.
 - **4.20 Theorem.** Say $R \subseteq S$ and $a \in S$. Then the following are equivalent:
 - 1. a is integral over R.
 - 2. R[a] is a finitely generated R-module.
 - 3. There exists a subring $R \subseteq T \subseteq S$ such that $a \in T$ and T is a finitely generated R-module.

5 Facts about Non-Commutative Modules

General structures on modules:

Definition. A **(left)** R-module is an abelian group (M,+) equipped with a unitary ring homomorphism $\alpha: A \to \operatorname{End}(M)$. If N,M be R-modules, then a group homomorphism $\psi: N \to M$ is a **(module) homomorphism** if $\phi(rm) = r\phi(m)$ for any $r \in R$. The kernel and image of ψ are submodules of N and M respectively. The **annhilator** $\operatorname{Ann}(M) = \{r \in R : rm = 0\}$. Then M is **faithful** if $\operatorname{Ann}(M) = \{0\}$.

Annhilators:

Definition. Let R be a ring. We say $a \in R$ is **nilpotent** if there exists $n = n(a) \in \mathbb{N}$ such that $a^n = 0$. An ideal (left,right,both) is **nil** if every element is nilpotent. An ideal I (left,right,both) is **nilpotent** if there exists some $n \in \mathbb{N}$ such that $I^n = (0)$.

Key example:

Definition. Let G be a finite group and F a field. We define the **group algebra** $F[G] = \{\alpha_1 g_1 + \dots + \alpha_n g_n : \alpha_i \in F\}$ equipped with G-pointwise addition and multiplication $ag_i \cdot bg_j = (ab)g_ig_j$, extended by distributivity.

Example. Let M be a $\mathbb{C}[G]$ -module. Then M is also a \mathbb{C} -vector space, and $\rho:G\to GL(M)$ given by $\rho(g)(m)=gm$ is a representation. If $\rho:G\to GL(V)$ be a representation, the ρ induces a $\mathbb{C}[G]$ -multiplication on V, making V a $\mathbb{C}[G]$ -module. Moreover, if $N\le M$ is a submodule, then it is $\rho(cg)$ -invariant for any $cg\in \mathbb{C}[G]$ if and only if N as a subspace of M is G-stable. To be precise, we have $cg\cdot v=\rho(g)(cv)$. In fact, there is an isomorphic of categories from representations of G and $\mathbb{C}[G]$ -modules.

Basic results on modules:

- **5.1 Proposition.** Let M be an R-module. Then Ann(M) is a (2-sided) ideal of R. Moreover, M is a faithful R/Ann(M) -module.
- **5.2 Theorem. (First Isomorphism)** Let M, N be R-modules and let $\psi : M \to N$ be a module homomorphism. Then $M/\ker \psi \cong \psi(M) \leq N$.

Types of modules:

Definition. Let *M* be an *R*-module.

• *M* is **irreducible** if $M \neq (0)$ and the only submodules of *M* are (0) and *M*.

Types of ideals:

Definition. Let R be a ring.

- A left ideal *I* of *R* is called **left quasiregular** if for all $a \in I$, R(1 + a) = R.
- The **Jacobson radical** of *R* is $J(R) = \bigcap_{\text{irred left } M} Ann(M)$.

Types of rings:

Definition. Let R be a ring.

- R semiprimitive if J(R) = (0).
- R is (left) Artinian if whenever $I_1 \supseteq I_2 \supseteq \cdots$ is a descending chain of left ideals, then there exists $N \in \mathbb{N}$ such that $I_k = I_N$ for all $k \ge N$.

Relationships:

- **5.3 Proposition.** The following hold:
 - Every nil left ideal of R is contained in J(R).
 - R/J(R) is semiprimitive.
 - If R is Artinian, then J(R) is nilpotent.
 - M is an irreducible R-module if and only if then $M \cong R/I$ as R-modules, where I is a maximal left ideal of R.
- **5.4 Theorem. (Schur)** Let M be an irreducible R-module. Then $\operatorname{End}_R(M)$ is a division ring.
- **5.5 Theorem.** If R is a ring, then the following are equivalent:
- (i) $a \in J(R)$.
- (ii) Ra is left quasiregular
- (iii) $a \in \bigcap_{I < R \text{ maximal }} I$.

Let *G* be a finite group with irreducible characters χ_i and corresponding representations ρ_i , and conjugacy classes C_i .

5.6 Proposition. For i = 1,...,k, define $\omega_i : \{C_1,...,C_k\} \to \mathbb{C}$ by

$$\omega_i(C_j) = \frac{|C_j|\chi_i(g)}{\chi_i(1)}$$

where $g \in C_j$. Then $w_i(C_j)$ is an algebraic integer.

Proof Let $h \in G$, so that

$$\sum_{g \in C_j} \rho_i(g) = \sum_{g \in G} \rho(h)\rho(g)\rho(h^{-1}) = \rho_i(h) \left(\sum_{g \in C_j} \rho_i(g)\right) \rho_i(h)^{-1}$$

so by Schur's lemma, $\sum_{g \in C_j} \rho_i(g) = \alpha I$. Taking traces, $\sum_{g \in C_j} \operatorname{Tr}(\rho_i(g)) = \alpha \chi_i(1)$, so $|C_j|\chi_i(g) = \alpha \chi_i(1)$.

Now fix $g \in C_s$, and define $a_{ij}(s) = |\{(g_i, g_j) \in C_i \times C_j : g_i g_j = g\}| \in \mathbb{Z}$. One can verify that the definition does not depend on the choice of g. Now by the above observation,

$$(w_t(c_i)w_t(c_j))I = \left(\sum_{g_i \in C_i} \rho_t(g_i)\right) \left(\sum_{g_j \in C_j} \rho_t(g_j)\right)$$

$$= \sum_{g_i, g_j} \rho_t(g_i g_j) = \sum_{s=1}^k \sum_{g \in C_s} a_{ij}(s)\rho_t(g)$$

$$= \sum_{s=1}^k a_{ij}(s) \sum_{g \in C_s} \rho_t(g)$$

$$= \sum_{s=1}^k a_{ij}(s)\omega_t(C_s)I$$

again by the above claim. Thus the finitely generated \mathbb{Z} -module generated by $1, w_t(C_1), \dots, w_t(C_k)$ is a subring of \mathbb{C} .

5.7 Theorem. $\chi_1||G|$ for i=1,...,k, i.e. the degree of an irreducible representation divides |G|.

Proof Using the same notation as above,

$$\frac{|G|}{\chi_i(1)} = \frac{|G|}{\chi_i(1)} \langle \chi_i, \chi_i \rangle$$

$$= \frac{|G|}{\chi_i(1)} \cdot \frac{1}{|G|} \sum_{g \in G} |\chi_i(g)|^2$$

$$= \frac{1}{\chi_i(1)} \sum_{j=1}^k |C_j| \cdot |\chi_j(g_j)|^2$$

$$= \sum_{j=1}^k \frac{|C_j| \chi_i(g_j)|}{\chi_i(1)} \overline{\chi_i(g_j)}$$

$$= \sum_{i=1}^k w_i(C_j) \overline{\chi_i(g_j)}$$

is a finite sum of products of algebraic integers, and hence an algebraic integer. Thus $|G|/\chi_i(1)$ is an algebraic integer and a rational number, hence an integer.