

### Crime is prevalent in New York!

New York has steady cases of crime.

This is something the New York Police Department is constantly trying to lower over the years.

| Rate of Crime per 100,000 people |             |
|----------------------------------|-------------|
| Year                             | Crime Cases |
| 2014                             | 2,101.8     |
| 2015                             | 1,986.8     |
| 2016                             | 1.921.8     |
| 2017                             | 1.858.7     |
| 2018                             | 1.791.0     |

#### PROBLEM STATEMENT

Though 2,000 cases per 100,000 people may seem small. We must remember New York is a **populated** state (19 million people). At a 2% crime rate, that is nearly **half a million** crime cases annually!



Using historical data, can we help the NYPD become more proactive and efficient?

#### **Data utilized**

NYPD Stop, Question and Frisk Data (NYC.gov)



## **Exploratory Data Analysis**



NYPD **only** arrested **7%** of people they stopped



Certain crimes did NOT lead to arrests

# **Exploratory Data Analysis (continued)**



Arrests by City 6000 5000 4000 3000 2000 1000 0 STATEN ISLAND BROOKLYN

Race does seem to play a role in arrest decisions

Seems **Brooklyn** will require additional staffing versus **Staten Island** 

## Modeling

| MODEL               | F-Measure |
|---------------------|-----------|
| Linear Regression   | .66       |
| Random Forest       | .67       |
| K-Nearest Neighbors | .60       |





Gradient Boosting to discover top 10 features in model

## Clustering

Cluster analysis segments data into groups, so the NYPD understands what criminal "profiles" can look like.



Within-Cluster Sum of Squares suggests we use 3 clusters



Cluster 1 – 59% of data - 29 y/o, male, Queens residents

Cluster 2 - 8% of data

- 29 y/o, male, Brooklyn & Manhattan residents Cluster 3 – 33% of data

- 32 y/o, female, Manhattan

#### **Principal Component Analysis**

I use dimension reduction technique, PCA, to summarize features in the data.



# FINAL CONCLUSIONS

Let's sum up the matter with some final conclusions about the presentation.

#### Recommendation

Allocate more police force in Brooklyn and Queens. Focus on crimes with higher arrest rate (felony).

#### **Important Features**

Attire and suspected crime are huge red flags to look out for in potential criminals

#### **Ethics**

Information should remain private and kept for internaluse only.

