	Bronzebeil					Griffzungenschwert			
	Metali		Oxyd	Patina	<u> </u>	Metall	1	Oxyd	Patina*)
Cu	99,81	CuO	88,05	53,83	Cu	88,66	CuO	68,00	30,68
Sn	7,91	SnO ₂	10,20	30,20	Sn	10,41	SnO ₂	15,20	1,43
Sb	0,44	Sb ₂ O ₅	0,54	1,60	Sb	0,12	Sb ₂ O ₃	0,23	Spur
As	0,15	As ₂ O ₅	0,20	0,51	As	Spur	As ₂ O ₅	Spur	
Pb	_	PbO			Pb	0,11	PbO	0,17	0,10
Fe	Spur	Fe ₂ O ₃	0,05	1,28 ***)	Fe	Spur	Fe ₂ O ₃	0,05	7,35 ***
Ni	0,34	NiO	0,05	0,00	Ni	0,27	NiO	0,15	0,05
Co	Spur	CoO		_	Co	Spur	CoO	Spur	
Αg	0,05	Ag ₂ O	0,03	_	Ag		Ag ₂ O		
Mn	_	MnO ₂	0,01	0,08	Mn		MnO ₂		0,13
	99,70	CO ₂	0,45	5,53		99,57	CO	0,23	4,30
		P_2O_5	0,02	0,83	ĺ		P ₂ O ₅	0,27	10,75
		Cl		Spur			Cl	0,05	0,15
		SO ₄		0,04			SO ₄	Spur	0,10
	İ	H ₂ O	0,34	6,10			H ₂ O	15,65*)	42,00 **)
		Humus		0,08			Humus		0,05
		CaO					CaO	_	3,00
			99,94	100,08				100,00	100,00
Cu/Sn	11,5:1		8,8:1	1,8:1		8,51:1		4.54:1	21,71:1

Tabelle 13. Veränderung der Zusammensetzung beim Übergang vom Metall in die Patina

) Differenz. Hierin Wasser und Konservierungsmittel. *) Stark Al-haltig. *) Berechnet auf sandfreie Substanz.

zen, die im Moor oder der Schlammschicht von Gewässern lagerten, trotz des oft hohen Kohlendioxyd-Gehaltes kaum korrodiert. Unter einer sehr dünnen braunen Patinaschicht, der "Moorpatina", liegt das völlig intakte Metall.

Ist im Wasser reichlich Sauerstoff, aber nur wenig CO, gelöst, so kann unter einer festhaftenden, verhältnismäßig dünnen Carbonatpatina das Metall weitgehend, oft völlig oxydiert sein, wie aus Anschliffbildern hervorgeht.

Völlige Zersetzung ist nur zu erwarten, sobald die Bodenlösung hinreichend Sauerstoff und aggressive Kohlensäure führt und eine genügende Wasserzirkulation möglich ist.

Die Erklärung für die in verschiedenen Böden und die an verschiedenen Stellen des gleichen Bodentyps auftretenden Unterschiede in der Patina-Bildung und im Fortschritt der Zersetzung, dürfte in den vorstehend aufgeführten Ursachen zu suchen sein. Eingegangen am 2. November 1954 [A 695]

Zuschriften

Isolierung einer nieder-molekularen, durch Influenza-Virus spaltbaren Substanz aus Milch

Von Prof. Dr. RICHARD KUHN und Dr. R. BROSSMER Aus dem Max-Planck-Institut für Medizinische Forschung Heidelberg, Institut für Chemie

Dialysiert man (nach Entrahmung) Kuhmileh, Frauenmileh, Frauen-colostrum, Colostrum der Kuh, des Schafes, der Ziege oder des Schweines, so findet man in der Außenlösung eine Ehrlich-, Bial- und Anilin - hydrogenphthalat - positive Substanz vom R_{Lactose}-Wert 0,46 (Pyridin: Essigester: Eisessig: Wasser = 5:5:1:3). Es gelang von dieser gegen verd. Säuren und verd. Alkalien überaus empfindlichen Substanz unter besonders schonenden Bedingungen über 10 g in ehromatographisch einheitlicher Form aus Kuh-colostrum zu gewinnen. Es handelt sich um eine N-haltige einbasische Säure (Gef.: C 42,91; H 6,07; N 2,30; CH₃CO 11,99; (C)CH₃ 4,19; Äquivalentgew. nach Willstätter-Schudel 705), die frei von S und P ist. $[\alpha]_D^{20} = + 20^{\circ}$ (Wasser).

Oxydation mit CrO3 und Destillation liefert 2,0 Mole krist. Natriumacetat. Von den beiden Acetyl-Gruppen haftet die eine an N, die andere an O (IR-Spektrum). Durch n/50 Natronlauge bzw. Bariumhydroxyd wird schon in der Kälte die Mono-(N)acetyl-Verbindung (Gef. C 43,25; H 6,54; N 2,3; (C)CH₃ 3,04; CH₃CO 7,32; Äquivalentgew. 588) erhalten. Kalte n/100 Salzsäure, auch schon die "Eigenacidität" konzentrierter wäßriger Lösungen, spaltet in 1 Mol Lactose (Fp 198-199°C; Gef. C 40,05; H 6,75 für das Monohydrat), 1 Mol Essigsäure und 1 Mol Lactaminsäure (Gef. C 42,27; H 6,07; N 4,25; CH₃CO 14,47), die in farblosen feinen Prismen vom Fp 178-179 °C (Zers.) kristallisiert. Die Leichtigkeit der Säurehydrolyse erinnert an das Verhalten von Furanosiden.

Die von uns aus Mucoproteinen des Kuh-colostrums erhaltene Methoxy-Verbindung der Lactaminsäure1) hat sich als leicht verseifbarer Methylester erwiesen. Ihr in farblosen seinen Prismen kristallisierendes Verseifungsprodukt vom Fp 178-179 $^{\circ}$ (Zers.) stimmt auch im Rf-Wert, IR-Spektrum und den Debye-Scherrer-Linien mit der aus der niedermolekularen Substanz der

1) R. Kuhn, R. Brossmer u. W. Schulz, Chem. Ber. 87, 123 [1954].

Milch erhaltenen N-haltigen Spaltsäure (Bild 1) überein; $[\alpha]_D^{21}$ = -31° bis -32° (Wasser), R_{Lactose} = 0,75. Die von uns isolierte niedermolekulare Ehrlich-positive Substanz der Milch ist somit

Bild I Lactaminsäure aus O-Acetyl-lactaminsäure-lactose (2x vergr.)

O-Acetyl-lactaminsäure-lactose. Auf ihre Beziehungen zu den von G. Blix2) entdeckten Sialinsäuren, der N-Acetyl-neuraminsäure von E. Klenk3) und zur Neuramin-lactose von R. E. Trucco und R. Caputto4) wird in der im Druck befindlichen ausführlichen Mitteilung eingegangen.

Die Abspaltbarkeit von Ehrlich-positiven prosthetischen Gruppen aus hoch-molekularen Mucoproteinen bzw. Mucopoly-sacchariden durch Influenza-Virus ist bekannt^{5, 6}). Wie wir ge-

Hoppe-Seylers Z. physiol. Chem. 240, 43 [1936]; G. Blix, L. Svennerholm u. I. Werner, Acta chem. Scand. 6, 358 [1952]; G. Blix, E. Lindberg, L. Odin u. I. Werner, Nature [London] 175, 340 [1955].
Hoppe-Seylers Z. physiol. Chem. 268, 50 [1941]; E. Klenk u. H. Faillard, ebenda 298, 230 [1954].
J. biol. Chemistry 200, 901 [1954].
A. Gottschalk, Nature [London] 167, 845 [1951].
E. Klenk, H. Faillard u. H. Lempfried, Hoppe-Seylers Z. physiol. Chem. 301, 235 [1955].

funden haben, wird auch die nieder-molekulare O-Acetyllactaminsäure-lactose von Influenza-Virus-B-Lee (durch Adsorption an Erythrocyten gereinigt) bei pH 6 leicht unter Ablösung der Lactose gespalten. Die Konstitutionsaufklärung dieser Substanz verspricht daher einen Einblick in die chemische Natur der Bindungen, die vom Virus enzymatisch gelöst werden. Die O-Acetyllactaminsäure-lactose wird auch vom RDE, dem receptor destroying enzyme der Choleravibrionen, unter Freisetzung von Lactaminsäure bzw. von O-Acetyl-lactaminsäure hydrolytisch gespalten. Eingegangen am 1. März 1956 TZ 3011

Die Konstitution des Tomatins

Von Prof. Dr. RICHARD KUHN, Dr. IRMENTRAUT LÖW und H. TRISCHMANN

Aus dem Max-Planck-Institut für Medizinische Forschung Heidelberg, Institut für Chemie

Das mit dem Aglykon (Tomatidin) verknüpfte, in Substanz noch unbekannte Tetrasaccharid (Lycotetraose), das aus 1 Mol p-Galactose, 2 Mol p-Glucose und 1 Mol p-Xylose aufgebaut ist, hat sich als verzweigt erwiesen. Wir haben die Lycotriose1) (2,5 g aus 50 g Tomatin) mit braunem Palladiumhydroxyd-Bariumsulfat²) hydriert und den krist. Lycotriit in Dimethylformamid³) permethyliert⁴). Die Säurespaltung lieferte in guter Ausbeute neben 1,2,3,5,6-Pentamethyl-dulcit und 2,3,4,6-Tetramethyl-p-glucose 3,4,6-Trimethyl-p-glucose. Diese (Ber. C 48,64 H 8,16, OCH₃ 41, 89 Gef. C 48,84 H 8,25 OCH₃ 41,74) hat sich nach Drehung ($[\alpha]_D^{20} = +$ 75 °, H_2O), R_f -Wert, Verbrauch von 1,0 Mol Perjodsäure sowie durch ihr Phenylosazon (gelbe Stäbehen vom Fp und Misch-Fp 77-79°C, 1R-Spektrum und Debye-Scherrer-Linien) als identisch mit 3,4,6-Trimethyl-Dglucose aus 3,4,6-Trimethyl-D-glucal⁵) erwiesen. Die Lycotriose > D-Galaktose > D-Glucose > D-Glucose ist somit β-D-Glucopyranosyl (1 \rightarrow 2)- β -d-glucopyranosyl(1 \rightarrow 4)- α -d-galactopyranose. 3,4,6-Trimethyl-p-glucose wurde auch erhalten, wenn aus Tomatin zunächst mit verd. Säure nur die D-Xylose abgespalten und das so gewonnene krist. β₁-Tomatin permethyliert und hydrolysiert wurde.

Wird permethyliertes Tomatin (Jodmethylat Ber. OCH, 27,4, Gef. OCH3 27,0) mit Säure gespalten, so erhält man, gleichfalls in guter Ausbeute, an Stelle von 3,4,6-Trimethyl- die 4,6-Dimethyl- υ -glucose vom Fp 163–164 °C, $[\alpha]_D^{23}=+$ 118 ° (3 min) \rightarrow + 67,5° (c = 0,66 in H₂O), die mit einem von Prof. Dr. O. Th.

Schmidt freundlicherweise überlassenen Vergleichspräparat keine Schmelzpunktserniedrigung gab und mit diesem auch im Rf-Wert übereinstimmte. Die D-Xylose ist somit verknüpft mit dem Hydroxyl am C-Atom 3 des Glucose-Restes der Lycobiose (> D-Galactose > D-Glucose). Dem Tomatin, dessen Aglykon strukturell bereits geklärt ist6), kommt demnach nebenstehende Formel zu.

Entsprechend der Pyranose-Struktur des D-Xylose-Restes gibt Tomatin mit Perjodsäure und anschließend mit Natrium-borhydrid?) neben Glycerin auch Äthylenglykol. Nach allen vorliegenden Abbauergebnissen ist das Tetrasaccharid des Demissins mit dem des Tomatins identisch.

Eingegangen am 2. März 1956 [Z 302]

Nachweis von 3,4-Benzpyren unter den Rauchprodukten

Von Prof. Dr. H. LETTRÉ, Dr. A. JAHN und CH. HAUSBECK

Institut für experimentelle Krebsforschung der Universität Heidelberg

Das Problem eines Zusammenhangs zwischen Rauchen und Krebs ist in neuerer Zeit wieder stark diskutiert worden⁸). Im kondensierten Rauch von in einer Rauchmaschine gerauchten Zigaretten konnten aromatische Kohlenwasserstoffe, darunter 3,4-Benzpyren, nachgewiesen werden⁹). 1935 haben Schürch und Winterstein 10) in einem Teer, der durch Kondensation des Rauches von maschinell gerauchten Zigarren erhalten wurde, durch chromatographische Adsorption keine aromatischen Kohlenwasserstoffe nachweisen können. Wir haben die nach dem Rauchen von Zigarren verbleibenden Reststücke gesammelt, mit Aceton extrahiert und den aus dem Gesamtextrakt gewonnenen, in Cyclohexan löslichen, neutralen Anteil der chromatographischen Adsorption an Aluminiumoxyd unterworfen. Hierbei konnten Fraktionen erhalten werden, die nach dem Absorptionsspektrum aromatische Kohlenwasserstoffe, darunter das cancerogene 3,4-Benz-pyren, enthalten¹¹). Die negativen Ergebnisse von Schürch und Winterstein¹⁰) sind nach unseren Erfahrungen so zu erklären, daß nur aus Cyclohexan (oder weniger gut Petroläther) eine Auftrennung erzielt werden kann, während mit anderen Lösungsmitteln wie Benzol, Äther, Methanol und Mischungen keine Abtrennung von Fraktionen möglich ist, die ein charakteristisches Absorptionsspektrum zeigen. Die Absolutmenge an 3,4-Benzpyren kann nach der Absorption auf etwa 400 y aus 1500 Zigarrenreststücken geschätzt werden. Eine zunächst gewonnene, stärkst angereicherte Fraktion enthielt bei einem Gesamtgewicht von 28 mg ca. 100 y 3,4-Benzpyren, also 0,36 % (ca. 3600 fache Anreicherung). Eine Isolierung des Benzpyrens in Substanz ist aus den uns zur Verfügung stehenden Materialmengen daher nicht möglich. Wir haben zunächst geprüft, ob in Mischungen von 3,4-Benzpyren mit verschiedenen Fraktionen des Tabakteers das Benzpyren durch das Absorptionsspektrum qualitativ und quantitativ bestimmt werden kann. Durch die Zugabe der Begleitstoffe kann eine Verschiebung der Maxima eintreten, jedoch ist die qualitative Identifizierung auch in den Gemischen möglich. Quantitativ sind natürlich große Fehlermöglichkeiten gegeben. Durch wiederholte Adsorption der Benzpyren-haltigen Fraktionen wurde eine weitere Auftrennung und Anreicherung angestrebt. Es war möglich, hierbei teilweise die Grundabsorption der Begleitsubstanzen zu vermindern, so daß ein Absorptionsspektrum resultiert, in dem der Verlauf der Absorption des 3,4-Benzpyrens besser zum Ausdruck kommt. In Bild 1 ist eine Kurve (I) einer Fraktion der von reinem 3,4-Benzpyren (c = 3 mg/l, Kurve II) gegenübergestellt. Wir halten es nach unseren Ergebnissen für sehr wahrscheinlich, daß die im Tabakteer vorhandene Substanz dieser Fraktion 3,4-Benzpyren ist. Da wir vergleichend aus nicht gerauchten Zigarren bei gleicher Fraktionierungsmethode keine Fraktionen mit dieser Absorption erhalten haben, muß dieses sich während des Rauch-prozesses gebildet haben. Die Bedingungen des Rauchprozesses

6) R. Kuhn u. I. Löw, Chem. Ber. 85, 416 [1952]; R. Kuhn, I. Löw u. H. Trischmann, diese Ztschr. 64, 397 [1952]; Chem. Ber. 86, 372 [1953]; F. C. Uhle u. J. A. Moore, J. Amer. chem. Soc. 76, 6412 [1954]. Die Konfiguration an den C-Atomen 22 und 25 ist noch nicht eindeutig anzugeben.

7) Nach M. Viscontini, D. Hoch u. P. Karrer, Helv. chim. Acta 38, 642 [1955].

8) F. Lickint: Atiologie und Prophylaxe des Lungen-Krebses als ein Problem der Gewerbehygiene und des Tabakrauches. Dresden. Theodor Steinkopff 1953. E. L. Wynder, E. A. Graham u. A. B. Croninger, Cancer Res. 13, 855 [1953]. A. Ochsner: Smoking and Cancer. London, F. Müller 1955.

9) B. T. Commins, R. L. Cooper, A. J. Lindsey, Brit. J. Cancer 8, 296 [1954]. R. L. Cooper, A. J. Lindsey u. R. E. Waller, Chem. and Ind. 1954, 1418. C. Seelkopf, Z. Lebensmittelunters. u. -forschung 1955, 218.

10) O. Schürch u. A. Winterstein, Z. Krebsforsch. 42, 76 [1935].

Chem. Ber. 86, 1027 [1953].
Diese Ztschr. 67, 785 [1955].
Ebenda 67, 32 [1955].
Vgl. R. Kuhn u. H. H. Baer, Chem. Ber. 89, 504 [1956].
Vgl. die Darstellung von 3,4,6-Trimethyl-p-galactose aus 3,4,6Trimethyl-p-galactal bei R. Kuhn u. H. H. Baer, Chem. Ber. 88, 1537 [1955].