Singular Value Decomposition:

Theorem: A rectangular Matrix $A_{m \times n}$ can be decomposed into the product of three matrices on orthogonal matrix $U_{m \times m}$ a diagonal matrix $D_{m \times n}$ and transpose of another orthogonal matrix $V_{m \times m}$

i.e. we can write $A_{m \times n} = U_{m \times m} \times D_{m \times n} \times V_{n \times n}^T$

Since U and V are orthogonal matrices, we have $UU^T = I$, and $VV^T = I$

Further,

The columns of U are the orthonormal vectors of AA^T , and

The columns of V are the orthonormal vectors of A^TA

D is a diagonal matrix whose elements are square roots of Eigen values U or V arranged in decreasing order.

Finding the singular value decomposition consistent of finding eigen values and eigen vectors of AA^T and A^TA .

The normalized eigen vector of AA^T are the columns of U

The normalized eigen vector of A^TA are the columns of V