APELLIDOS: NOMBRE:

Advertencia: El examen contiene 6 ejercicios. Los alumnos que sólo se presentan al Primer Parcial harán los ejercicios 1), 2) y 3). Los que se presentan sólo al Segundo Parcial harán los ejercicios 4), 5) y 6). Los que tienen toda la asignatura harán cuatro (y sólo cuatro) ejercicios: dos a elegir de los tres primeros y dos a elegir de los tres últimos.

Ejercicio 1.-

- A.- Definir rango de una matriz. Sea S un sistema de ecuaciones lineales, demostrar que si el rango de la matriz ampliada de S es estrictamente mayor que el de la matriz de los coeficientes entonces S es un sistema incompatible.
- B.- Sobre el cuerpo \mathbb{Q} de los números racionales se considera el siguiente sistema lineal, en función de un parámetro α ,

$$\mathcal{S} \colon \left\{ \begin{array}{lll} (\alpha + 2)x_1 & +x_2 & +x_3 & = & \alpha - 1 \\ \alpha x_1 & +(\alpha - 1)x_2 & +x_3 & = & \alpha - 1 \\ (\alpha + 1)x_1 & +(\alpha + 1)x_3 & = & \alpha - 1. \end{array} \right.$$

Se pide:

- 1.- Estudiar, según los valores de α , la compatibilidad del sistema \mathcal{S} .
- 2.- Resolver el sistema S para el caso $\alpha = 0$.

Ejercicio 2.-

- A.- Definir la independencia lineal de un conjunto de vectores en un k-espacio vectorial V.
- B.- Sea $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ (con r > 1) un conjunto de vectores de un k-espacio vectorial V. Demostrar que si S es linealmente dependiente, entonces algún vector de S depende linealmente de los demás.
- C.- Sea V un \mathbb{Q} -espacio vectorial en el que fijamos una base $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$. Consideremos los siguientes vectores:

$$\mathbf{v}_1 = 3\mathbf{u}_1 - \mathbf{u}_3, \quad \mathbf{v}_2 = \mathbf{u}_3 + \mathbf{u}_4.$$

Sea $L_1 = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle$, y sea L_2 el subespacio vectorial definido por las siguientes ecuaciones implícitas respecto de \mathcal{B} :

$$L_2 \equiv \left\{ \begin{array}{cccc} x_2 & + & x_3 & = & 0 \\ x_1 & & - & 3x_4 & = & 0 \end{array} \right.$$

- 1.- Demostrar que $\mathbf{v}_1 \notin L_2$ y $\mathbf{v}_2 \notin L_2$. ¿Este hecho implica algo sobre la dimensión de $L_1 \cap L_2$?
- 2.- Hallar una base de $L_1 \cap L_2$ y de $L_1 + L_2$, y calcular la dimensión del espacio vectorial $V/(L_1 + L_2)$.

Ejercicio 3.- Sea $\mathbb{R}_n[X]$ el e.v. de los polinomios con coeficientes reales y grado menor o igual que n. Sea f el homomorfismo de $\mathbb{R}_3[X]$ en $\mathbb{R}_4[X]$ definido por $f(P(X)) = X \cdot P(X)$ y g el endomorfismo de $\mathbb{R}_3[X]$ definido por g(P(X)) = derivada de P(X). Se pide:

- A.- Calcular la matriz de $f \circ g$ respecto de las bases usuales (esto es, $\{1, X, X^2, \dots, X^n\}$ en $\mathbb{R}_n[X]$).
- B.- Calcular una base de Ker $(f \circ g)$ y otra de $(f \circ g)^{-1}(L)$ para el subespacio vectorial $L = \langle 1, X \rangle$.

APELLIDOS: NOMBRE:

Advertencia: El examen contiene 6 ejercicios. Los alumnos que sólo se presentan al Primer Parcial harán los ejercicios 1), 2) y 3). Los que se presentan sólo al Segundo Parcial harán los ejercicios 4), 5) y 6). Los que tienen toda la asignatura harán cuatro (y sólo cuatro) ejercicios: dos a elegir de los tres primeros y dos a elegir de los tres últimos.

Ejercicio 4.-

- A.- Consideramos una homografía F en el espacio proyectivo $\mathbb{P}^2(\mathbb{C})$. Probar que el conjunto de puntos dobles de F está formado por tres puntos si y sólo si el conjunto de las rectas dobles está formado por tres rectas dobles.
- B.- Probar que si una homografía F es como la del apartado anterior, su conjunto de tres puntos dobles es proyectivamente independiente.
- C.- En el plano afín, sean P = (2,3), Q = (1,0), R = (0,0). Probar que si una afinidad deja fijos a los tres puntos entonces la afinidad es la identidad.
- D.- Sea f la afinidad definida por una homografía F en $\mathbb{P}^2(\mathbb{C})$. Supongamos que el conjunto de puntos dobles de F se reduce a tres puntos (que por tanto son proyectivamente independientes). Describir los puntos y rectas dobles de la afinidad f.

Ejercicio 5.-

A.- En el espacio euclídeo $\mathbb{A}^3(\mathbb{R})$ consideramos la afinidad f cuya matriz, respecto de un sistema de referencia métrico, es

$$A = \left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 2 & -3/5 & 0 & 4/5\\ 1 & 0 & 1 & 0\\ -1 & 4/5 & 0 & 3/5 \end{array}\right).$$

Probar que f es movimiento. Clasificar f y dar sus elementos geométricos.

- B.- En el plano afín euclídeo $\mathbb{A}^2(\mathbb{R})$ se consideran las rectas $s\colon x=0$ y $t\colon y=0$. Se pide:
 - 1.- Describir razonadamente todas las homotecias del plano que tienen a s y t como rectas dobles. (**Nota:** Describir significa decir la razón y el centro de la homotecia).
 - 2.- Hallar la matriz de una homotecia f del plano tal que t y s son rectas dobles de f y f(0,2)=(0,-1).

Ejercicio 6.– Sea k un cuerpo y $L_1, L_2 \subset \mathbb{A}^4(k)$ dos subespacios afines de los que sabemos lo siguiente:

$$D(L_1): \begin{cases} x_1 - x_2 + x_4 &= 0, \\ x_1 - x_3 + x_4 &= 0, \\ x_2 - x_3 + x_4 &= 0, \end{cases}$$

y L_2 está generado por $\{P_0, P_1, P_2, P_3\}$, donde

$$P_0 = (1, 0, 2, 0);$$
 $P_1 = (1, 1, 3, 0);$ $P_2 = (1, 1, 2, 1);$ $P_3 = (1, 2, 3, 1).$

- 1. Hallad las dimensiones de L₁ y L₂ así como bases de sus respectivos espacios de direcciones.
- 2. Determinad la posición relativa de L_1 y L_2 bajo los siguientes supuestos:

a)
$$Q_1 = (0, -1, 1, 0) \in L_1$$
.

b)
$$Q_2 = (2,0,1,0) \in L_1$$
.

Estudiad en cada caso la existencia y unicidad de los hiperplanos $H \subset \mathbb{A}^4(k)$ que contengan a L_1 y a L_2 y halladlos cuando existan.

- 3. Suponiendo que $Q_2 \in L_1$, determinad todas las rectas $r \subset \mathbb{P}^4(k)$ coplanarias a \overline{L}_1 que cortan a \overline{L}_2 .
- 4. Hallad un sistema de referencia \mathcal{R} del plano $\overline{L}_2 \subset \mathbb{P}^4(k)$ y calculad las coordenadas de P_0 , P_1 , P_2 y P_3 respecto de \mathcal{R} . (Nota: Se entiende que cada $P_i \in \mathbb{P}^4(k)$ es el correspondiente de $P_i \in \mathbb{A}^4(k)$).