Math 291: Challenge Problems 1 Fall 2021

Due September 20, 2021

This set of problems focuses on orthogonal/orthonormal vectors, the Gram-Schmidt orthogalization algorithm, and distance problems (equivalently, least squares problems).

- **1.** Let W be the subspace of \mathbb{R}^3 spanned by the vector $\mathbf{u} = (1, 2, 1)$.
- **1.a.** (1 point) Let $\mathbf{v} = (1, 1, 1)$. Find the parallel component \mathbf{w} of \mathbf{v} onto W.
- **1.b.** (2 point) Define W^{\perp} to be the set of vectors in \mathbb{R}^3 orthogonal to **u**. Suppose $\mathbf{x} = (x_1, x_2, x_3)$ is in W^{\perp} . Write down the equation satisfied by x_1, x_2, x_3 . Define $\mathbf{v}^{\perp} = \mathbf{v} \mathbf{w}$ where \mathbf{v} and \mathbf{w} are from the previous part. Verify that \mathbf{v}^{\perp} is a vector in W^{\perp} .
- **1.c.** (4 points) Parametrize the set of vectors in W^{\perp} in the form of a linear combination of vectors. How many independent variables do you need?
- **1.d.** (8 points) Find the point(s) in W^{\perp} closest to **v**. Justify your answer.
- **2.** Let W be the span in \mathbb{R}^4 of the following three vectors

$$\mathbf{v}_1 = (1, 1, -1, -1), \quad \mathbf{v}_2 = (2, 0, -2, 0), \quad \mathbf{v}_3 = (4, -2, -2, 0).$$
 (0.1)

- **2.a.** (8 points) Apply the Gram-Schmidt process to the vectors $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ given above to obtain an orthonormal set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Provide adequate details on the construction of $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$. Express \mathbf{v}_2 and \mathbf{v}_3 as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.
- **2.b.** (9 points) Take $\mathbf{v}_4 = (6, 4, 2, 0)$. Find the point(s) in W closest to \mathbf{v}_4 . Provide adequate explanations for your procedures and justify them. You may use the computations from the previous questions.
- **2.c.** (8 points) Find the distance between the plane V spanned by $\{\mathbf{v}_1, \mathbf{v}_2\}$ and the line $L = \{\mathbf{v}_4 + t\mathbf{v}_3 : t \in \mathbb{R}\}$. Identify the points on V and L which attain this distance. Again, justify your procedures and answers.