Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №1

Если $(x_0; y_0; z_0)$ — решение системы $\begin{cases} x-y+z=2\\ x+2y-3z=-2, \text{ то}\\ 2x-y+2z=4 \end{cases}$ значение выражения $3y_0 - z_0$ равно:

4

12

Задание №2

Если
$$A = \begin{pmatrix} 5 & 1 \\ -2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix}$, то $2A - B$ равно

$$\begin{pmatrix} 4 & -1 \\ -6 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 9 & 0 \\ 0 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 & -1 \\ -6 & 0 \end{pmatrix} \qquad \begin{pmatrix} 9 & 0 \\ 0 & 3 \end{pmatrix} \qquad \begin{pmatrix} 2 & -7 \\ -14 & -6 \end{pmatrix} \qquad \begin{pmatrix} 9 & 0 \\ -8 & 3 \end{pmatrix} \qquad \begin{pmatrix} 4 & 2 \\ 7 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 9 & 0 \\ -8 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 2 \\ 7 & 1 \end{pmatrix}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №3

Найти элемент матрицы, обратной к $A = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 0 & 3 \\ 3 & 1 & 1 \end{pmatrix}$, расположенный на пересечении второго столбца и первой строки.

$$\frac{1}{4}$$
 $-\frac{2}{29}$ $\frac{7}{17}$ $-\frac{2}{17}$ $-\frac{7}{17}$

$$-\frac{2}{17}$$

Задание №4

Если $\vec{a} = \{4; 1\}, \vec{b} = \{-2; 4\}, \vec{c} = \{6; -3\},$ то разложение вектора \vec{c} по базису \vec{a} , \vec{b} ($\vec{c} = \alpha \vec{a} + \beta \vec{b}$) имеет вид:

$$\vec{c} = \vec{a} + \vec{b}$$

$$\vec{c} = \vec{a} - \vec{b}$$

$$\vec{c} = \vec{a} + \vec{b}$$
 $\vec{c} = \vec{a} - \vec{b}$ $\vec{c} = \vec{b} - 3\vec{a}$ $\vec{c} = \vec{a} + 3\vec{b}$

$$\vec{c} = \vec{a} + 3\vec{b}$$

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №5

Пусть $\vec{a} = \{1; 3; -4\}, \vec{b} = \{0; 5; 3\}, \vec{c} = \{1; 1; -2\}$. Тогда длина вектора $\vec{d} = \vec{a} + 3\vec{b} + \vec{c}$ равна:

24

8√6

√451

18,1

Задание №6

Проекция вектора $\vec{a} = \vec{i} + 2\vec{j} - 4\vec{k}$ на вектор $\vec{b} = 4\vec{j} + 3\vec{k}$ равна:

4

0,8

 $-\frac{4\sqrt{21}}{21}$

 $\frac{3\sqrt{14}}{2}$

-0.8

Перейти к заданию

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №7

Пусть $|\vec{a}|=1, |\vec{b}|=3$, угол между векторами \vec{a} и \vec{b} равен $\frac{\pi}{6}$. Тогда площадь параллелограмма, построенного на векторах $2\vec{b} + \vec{a}$ и $3\vec{a} - \vec{b}$, равна:

10,5 $2\sqrt{2}$ $\frac{3\sqrt{3}}{2}$ $\frac{21\sqrt{3}}{2}$

Задание №8

Объем треугольной пирамиды *ABCD*: *A*(1; 2; 5), *B*(3; 4; 5), C(3;-2;4), D(4;2;1), составляет:

1

2

42

Перейти к заданию

- 1
- 2
- 3

- 4
- 5
- 6

7

8

ЗАВЕРШИТЬ

СОХРАНИТЬ

ЗАКРЫТЬ

Задание №9

Произведение собственных значений матрицы $\begin{pmatrix} -1 & 1 \\ 5 & 3 \end{pmatrix}$ равно:

7

-8

9

11

-6

Результаты

Набранные баллы (тах=100)

Неверно выполнены задания

Не выполнены задания