Internet Engineering Task Force (IETF)

Request for Comments: 8130

Category: Standards Track ISSN: 2070-1721

V. Demjanenko
D. Satterlee
VOCAL Technologies, Ltd.
March 2017

RTP Payload Format

for the Mixed Excitation Linear Prediction Enhanced (MELPe) Codec

Abstract

This document describes the RTP payload format for the Mixed Excitation Linear Prediction Enhanced (MELPe) speech coder. MELPe's three different speech encoding rates and sample frame sizes are supported. Comfort noise procedures and packet loss concealment are described in detail.

Status of This Memo

This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of the IETF community. It has received public review and has been approved for publication by the Internet Engineering Steering Group (IESG). Further information on Internet Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback on it may be obtained at http://www.rfc-editor.org/info/rfc8130.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

1.	Introduction
	1.1. Conventions
2.	Background3
	Payload Format4
	3.1. MELPe Bitstream Definitions5
	3.1.1. 2400 bps Bitstream Structure6
	3.1.2. 1200 bps Bitstream Structure9
	3.1.3. 600 bps Bitstream Structure
	3.2. MELPe Comfort Noise Bitstream Definition
	3.3. Multiple MELPe Frames in an RTP Packet
	3.4. Congestion Control Considerations
4.	Payload Format Parameters
-	4.1. Media Type Definitions
	4.2. Mapping to SDP
	4.3. Declarative SDP Considerations
	4.4. Offer/Answer SDP Considerations
5	Discontinuous Transmissions
	Packet Loss Concealment
7.	
8.	
•	References
۶.	9.1. Normative References
	9.2. Informative References
7	
AU	thors' Addresses

1. Introduction

This document describes how compressed Mixed Excitation Linear Prediction Enhanced (MELPe) speech as produced by the MELPe codec may be formatted for use as an RTP payload. Details are provided to packetize the three different codec bitrate data frames (2400, 1200, and 600) into RTP packets. The sender may send one or more codec data frames per packet, depending on the application scenario or based on transport network conditions, bandwidth restrictions, delay requirements, and packet loss tolerance.

1.1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].

Best current practices for writing an RTP payload format specification were followed [RFC2736].

2. Background

The MELP speech coder was developed by the US military as an upgrade from the LPC-based CELP standard vocoder for low-bitrate communications [MELP]. ("LPC" stands for "Linear-Predictive Coding", and "CELP" stands for "Code-Excited Linear Prediction".) MELP was further enhanced and subsequently adopted by NATO as MELPe for use by its members and Partnership for Peace countries for military and other governmental communications [MELPE]. The MELP speech coder algorithm was developed by Atlanta Signal Processing (ASPI), Texas Instruments (TI), SignalCom (now Microsoft), and Thales Communications, with noise preprocessor contributions from AT&T, under contract with NSA/DOD as international NATO Standard STANAG 4591 [MELPE].

Commercial/civilian applications have arisen because of the low-bitrate property of MELPe with its (relatively) high intelligibility. As such, MELPe is being used in a variety of wired and radio communications systems. Voice over IP (VoIP) / SIP systems need to transport MELPe without decoding and re-encoding in order to preserve its intelligibility. Hence, it is desirable and necessary to define the proper payload formatting and use conventions of MELPe in RTP payloads.

The MELPe codec [MELPE] supports three different vocoder bitrates: 2400, 1200, and 600 bps. The basic 2400 bps bitrate vocoder uses a 22.5 ms frame of speech consisting of 180 8000-Hz, 16-bit speech samples. The 1200 and 600 bps bitrate vocoders each use three and four 22.5 ms frames of speech, respectively. These reduced-bitrate vocoders internally use multiple 2400 bps parameter sets with further processing to strategically remove redundancy. The payload sizes for each of the bitrates are 54, 81, and 54 bits for the 2400, 1200, and 600 bps frames, respectively. Dynamic bitrate switching is permitted but only if supported by both endpoints.

The MELPe algorithm distinguishes between voiced and unvoiced speech and encodes each differently. Unvoiced speech can be coded with fewer information bits for the same quality. Forward error correction (FEC) is applied to the 2400 bps codec unvoiced speech for better protection of the subtle differences in signal reconstruction. The lower-bitrate coders do not allocate any bits for FEC and rely on strong error protection and correction in the communications channel.

Comfort noise handling for MELPe follows the procedures in Appendix B of SCIP-210 [SCIP210]. After Voice Activity Detection (VAD) no longer indicates the presence of speech/voice, a minimum of two comfort noise vocoder frames (serving as a grace period) are to be transmitted. The contents of the comfort noise frames are described in the next section.

Packet loss concealment (PLC) exploits the FEC (and, more precisely, any combination of two set bits in the pitch/voicing parameter) of the 2400 bps speech coder. The pitch/voicing parameter has a sparse set of permitted values. A value of zero indicates a non-voiced frame. At least three bits are set for all valid pitch parameters. The PLC erasure indication utilizes any errored/erasure encodings of the pitch/voicing parameter with exactly two set bits, as described below.

3. Payload Format

The MELPe codec uses 22.5, 67.5, or 90 ms frames with a sampling rate clock of 8 kHz, so the RTP timestamp MUST be in units of 1/8000 of a

The RTP payload for MELPe has the format shown in Figure 1. No additional header specific to this payload format is needed. This format is intended for situations where the sender and the receiver send one or more codec data frames per packet.

Figure 1: Packet Format Diagram

The RTP header of the packetized encoded MELPe speech has the expected values as described in [RFC3550]. The usage of the M bit SHOULD be as specified in the applicable RTP profile -- for example, [RFC3551], where [RFC3551] specifies that if the sender does not suppress silence (i.e., sends a frame on every frame interval), the M bit will always be zero. When more than one codec data frame is present in a single RTP packet, the timestamp is, as always, that of the oldest data frame represented in the RTP packet.

The assignment of an RTP payload type for this new packet format is outside the scope of this document and will not be specified here. It is expected that the RTP profile for a particular class of applications will assign a payload type for this encoding, or if that is not done, then a payload type in the dynamic range shall be chosen by the sender.

3.1. MELPe Bitstream Definitions

The total number of bits used to describe one frame of 2400 bps speech is 54, which fits in 7 octets (with two unused bits). For 1200 bps speech, the total number of bits used is 81, which fits in 11 octets (with seven unused bits). For 600 bps speech, the total number of bits used is 54, which fits in 7 octets (with two unused bits). Unused bits, shown below as RSVA, RSVB, etc., are coded as described in Section 3.3 in support of dynamic bitrate switching.

In the MELPe bitstream definitions, the most significant bits are considered priority bits. The intention was that these bits receive greater protection in the underlying communications channel. For IP networks, such additional protection is irrelevant. However, for the convenience of interoperable gateway devices, the bitstreams will be presented identically in IP networks.

3.1.1. 2400 bps Bitstream Structure

According to Table 3 of [MELPE], the 2400 bps MELPe bit transmission order (for clarity, the bit priority is not shown) is as follows:

	L
Voiced	Unvoiced
 g20	g20
BP0	FEC10
P0	P0
LSF20	LSF20
LSF30	LSF30
g23	g23
g24	g24
LSF35	LSF35
 g21	g21
g22	g22
P4	P4
LSF34	LSF34
P5	P5
P1	P1
P2	P2
LSF40	LSF40
P6	P6
LSF10	LSF10
LSF16	LSF16
LSF45	LSF45
P3	P3
LSF15	LSF15
LSF14	LSF14
LSF25	LSF25
+ BP3	++ FEC13
LSF13	LSF13
LSF12	LSF12
LSF24	LSF24
LSF44	LSF44
FM0	FEC40
LSF11	LSF11
LSF23	LSF23
	g20 BP0 P0 LSF20 LSF30 g23 g24 LSF35 g21 g22 P4 LSF34 P5 P1 P2 LSF40 LSF10 LSF16 LSF16 LSF16 LSF16 LSF16 LSF15 LSF15 LSF15 LSF14 LSF25

+	+	++
B_33	FM7	FEC22
B_34	FM6	FEC21
B_35	FM5	FEC20
B_36	g11	g11
B_37	g10	g10
B_38	BP2	FEC12
B_39	BP1	FEC11
B_40	LSF21	LSF21
+	h	+
B_41	LSF33	LSF33
B_42	LSF22	LSF22
B_43	LSF32	LSF32
B_44	LSF31	LSF31
B_45	LSF43	LSF43
B_46	LSF42	LSF42
B_47	AF	FEC42
B_48	LSF41	LSF41
+		++
B_49	FM4	FEC32
B_50	FM3	FEC31
B_51	FM2	FEC30
B_52	FM1	FEC41
B_53	g12	g12
B_54	SYNC	SYNC
+		++

Notes:

g = Gain

BP = Bandpass Voicing

P = Pitch/Voicing

LSF = Line Spectral Frequencies

FEC = Forward Error Correction Parity Bits

FM = Fourier Magnitudes

AF = Aperiodic Flag

B_01 = least significant bit of data set

Table 1: Bitstream Definition for MELPe 2400 bps

The 2400 bps MELPe RTP payload is constructed as per Figure 2. Note that bit B_01 is placed in the least significant bit (LSB) of the first byte with all other bits in sequence. When filling octets, the least significant bits of the seventh octet are filled with bits B_49 to B_54, respectively.

MSB 0	1		3			-	LSB 7
			+ B_05				
B_16	B_15	B_14 	B_13	B_12	B_11	B_10	B_09
B_24	B_23	B_22	B_21	•	B_19 	B_18	B_17
B_32	B_31	' В_30 +	B_29			B_26	B_25
B_40	B_39	 B_38 +		•	'	B_34	B_33
B_48	B_47	•	B_45				
RSVA	RSVB 	B_54 +	B_53	B_52 	B_51 +	B_50 +	B_49
						. '	

Figure 2: Packed MELPe 2400 bps Payload Octets

3.1.2. 1200 bps Bitstream Structure

According to Tables D-9a and D-9b of [MELPE], the 1200 bps MELPe bit transmission order is as follows:

+ Bit +	+ Modes 1-4 (Voiced) +	+
B_01 B_02 B_03 B_04 B_05 B_06 B_07 B_08	Syn Pitch&UV0 Pitch&UV1 Pitch&UV2 Pitch&UV3 Pitch&UV4 Pitch&UV5 Pitch&UV5	Syn Pitch&UV0 Pitch&UV1 Pitch&UV2 Pitch&UV3 Pitch&UV4 Pitch&UV5 Pitch&UV5
B_09 B_10 B_11 B_12 B_13 B_14 B_15 B_16	Pitch&UV7 Pitch&UV8 Pitch&UV9 Pitch&UV10 Pitch&UV11 LSP0 LSP1 LSP2	Pitch&UV7 Pitch&UV8 Pitch&UV9 Pitch&UV10 Pitch&UV11 LSP0 LSP1 LSP2
B_17 B_18 B_19 B_20 B_21 B_22 B_23 B_24	LSP3 LSP4 LSP5 LSP6 LSP7 LSP8 LSP9 LSP10	LSP3 LSP4 LSP5 LSP6 LSP7 LSP8 LSP9 LSP10
+ B_25 B_26 B_27 B_28 B_29 B_30 B_31 B_32	LSP11 LSP12 LSP13 LSP14 LSP15 LSP16 LSP17 LSP18	LSP11 LSP12 LSP13 LSP14 LSP15 LSP16 LSP17 LSP18

+	+	+
B_33	LSP19	LSP19
B_34	LSP20	LSP20
B_35	LSP21	LSP21
B_36	LSP22	LSP22
B_30 B_37	LSP23	LSP23
B_37	LSP23	LSP24
B_30 B_39	LSP25	LSP24
B_39 B_40	LSP25	LSP25
<u>-</u> 5_40	тоьго	поьто
в 41	LSP27	GAINO
B 42	LSP28	GAIN1
B 43	LSP29	GAIN2
B 44	LSP30	GAIN3
B_45	LSP31	GAIN4
B_15 B_46	LSP32	GAIN5
B_40 B_47	LSP33	GAIN5
B_47 B 48	LSP33	GAIN6 GAIN7
<u>P_</u> +0		GAIN /
в 49	LSP35	GAIN8
B 50	LSP36	GAIN9
B 51	LSP37	
B 52	LSP38	i
B 53	LSP39	i
B_53	LSP40	i
B_51	LSP41	
B_55	LSP42	
+	151 12	+
В 57	GAIN0	Ì
В 58	GAIN1	į
. — в 59	GAIN2	į
Б 60 I	GAIN3	i
B 61	GAIN4	i
B 62	GAIN5	İ
B 63	GAIN6	i
B 64	GAIN7	i
. = <u>-</u> ~- ++	+	+
B_65	GAIN8	1
B_66	GAIN9	į
В_67	BP0	į
B_68	BP1	į
B_69	BP2	į
B_70	BP3	į
 в_71	BP4	į
_ в_72	BP5	į
. – '	- 1	'

+	+	++
B_73	JITTER	
B_74	FS0	
B_75	FS1	
В_76	FS2	į
B_77	FS3	
B_78	FS4	
B_79	FS5	
B_80	FS6	
+	+	++
B_81	FS7	
+	+	++

Notes:

BP = Bandpass voicing FS = Fourier magnitudes LSP = Line Spectral Pair Pitch&UV = Pitch/voicing GAIN = Gain

JITTER = Jitter

Table 2: Bitstream Definition for MELPe 1200 bps

The 1200 bps MELPe RTP payload is constructed as per Figure 3. Note that bit B_01 is placed in the LSB of the first byte with all other bits in sequence. When filling octets, the least significant bit of the eleventh octet is filled with bit B_81.

MSB 0	1	2	3	4	5	б	LSB 7
B_08	B_07	B_06	B_05	B_04	B_03	B_02	B_01
B_16	B_15	' В_14 +	' В_13	' В_12 +	B_11	B_10	B_09
B_24	B_23	B_22	B_21	B_20	B_19	B_18	B_17
B_32	B_31	' B_30 +	В_29 +	в_28 +	B_27	B_26	B_25
B_40	' В_39	' в_38 +	в_37 +	' В_36 +	B_35	B_34	B_33
B_48	B_47	' В_46 +	' B_45 +	' B_44 +	B_43	B_42	B_41
B_56	B_55	B_54 +	B_53 +	B_52 +	' B_51 	B_50	B_49
B_64	B_63	' В_62 +	' В_61 +	' В_60 +	B_59	B_58	B_57
B_72	B_71 +	B_70 +	B_69 +	B_68 +	B_67	B_66	B_65
B_80	' В_79 +	' в_78 +	в_77 +	в_76 +	B_75	B_74	B_73
RSVA +	RSVB +	RSVC +	RSV0 +	RSV0 +	RSV0 +	RSV0 +	B_81

Figure 3: Packed MELPe 1200 bps Payload Octets

3.1.3. 600 bps Bitstream Structure

According to Tables M-11 to M-16 of [MELPE], the 600 bps MELPe bit transmission order (for clarity, the bit priority is not shown) is as follows:

+	+	+	++
Bit	Mode 1	Mode 2	Mode 3
j	(Voiced)	(voiced)	(voiced)
+	+	+	++
B_01	Voicing (4)	Voicing (4)	Voicing (4)
B_02	Voicing (3)	Voicing (3)	Voicing (3)
B_03	Voicing (2)	Voicing (2)	Voicing (2)
В_04	Voicing (1)	Voicing (1)	Voicing (1)
B_05	Voicing (0)	Voicing (0)	Voicing (0)
В_06	LSF1,4 (3)	Pitch (5)	Pitch (7)
B_07	LSF1,4 (2)	Pitch (4)	Pitch (6)
B_08	LSF1,4 (1)	Pitch (3)	Pitch (5)
+	+	+	++
B_09	LSF1,4 (0)	Pitch (2)	Pitch (4)
B_10	LSF1,3 (3)	Pitch (1)	Pitch (3)
B_11	LSF1,3 (2)	Pitch (0)	Pitch (2)
B_12	LSF1,3 (1)	LSF1,3 (3)	Pitch (1)
B_13	LSF1,3 (0)	LSF1,3 (2)	Pitch (0)
B_14	LSF1,2 (3)	LSF1,3 (1)	LSF1,3 (3)
B_15	LSF1,2 (2)	LSF1,3 (0)	LSF1,3 (2)
B_16	LSF1,2 (1)	LSF1,2 (3)	LSF1,3 (1)
+	+	+	++
B_17	LSF1,2 (0)	LSF1,2 (2)	LSF1,3 (0)
B_18	LSF1,1 (5)	LSF1,2 (1)	LSF1,2 (4)
B_19	LSF1,1 (4)	LSF1,2 (0)	LSF1,2 (3)
B_20	LSF1,1 (3)	LSF1,1 (5)	LSF1,2 (2)
B_21	LSF1,1 (2)	LSF1,1 (4)	LSF1,2 (1)
B_22	LSF1,1 (1)	LSF1,1 (3)	LSF1,2 (0)
B_23	LSF1,1 (0)	LSF1,1 (2)	LSF1,1 (5)
B_24	LSF2,4 (3)	LSF1,1 (1)	LSF1,1 (4)
B_25	LSF2,4 (2)	LSF1,1 (0)	LSF1,1 (3)
B 26	LSF2,4 (1)	LSF2,3 (3)	LSF1,1 (3)
B 27	LSF2,4 (0)	LSF2,3 (2)	LSF1,1 (1)
B 28	LSF2,3 (3)	LSF2,3 (1)	LSF1,1 (0)
B_29	LSF2,3 (2)	LSF2,3 (0)	LSF2,3 (3)
B_30	LSF2,3 (1)	LSF2,2 (4)	LSF2,3 (2)
B_31	LSF2,3 (0)	LSF2,2 (3)	LSF2,3 (1)
B_32	LSF2,2 (3)	LSF2,2 (2)	LSF2,3 (0)
. –			

+	+	++	+
B_33	LSF2,2 (2) LSF2,2 (1) LSF2,2 (0) LSF2,1 (5) LSF2,1 (4) LSF2,1 (3) LSF2,1 (2) LSF2,1 (1)	LSF2,2 (1) LSF2,2 (0) LSF2,1 (6) LSF2,1 (5) LSF2,1 (4) LSF2,1 (3) LSF2,1 (2) LSF2,1 (1)	LSF2,2 (4) LSF2,2 (3) LSF2,2 (2) LSF2,2 (1) LSF2,2 (0) LSF2,1 (5) LSF2,1 (4) LSF2,1 (3)
B_41 B_42 B_43 B_44 B_45 B_46 B_47 B_48	LSF2,1 (0) GAIN2 (5) GAIN2 (4) GAIN2 (3) GAIN2 (2) GAIN2 (1) GAIN2 (0) GAIN1 (6)	LSF2,1 (0) GAIN2 (5) GAIN2 (4) GAIN2 (3) GAIN2 (2) GAIN2 (1) GAIN2 (0) GAIN1 (6)	LSF2,1 (2) LSF2,1 (1) LSF2,1 (0) GAIN2 (4) GAIN2 (3) GAIN2 (2) GAIN2 (1) GAIN2 (0)
B_49 B_50 B_51 B_52 B_53 B_54	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)	GAIN1 (5) GAIN1 (4) GAIN1 (3) GAIN1 (2) GAIN1 (1) GAIN1 (0)

Table 3: Bitstream Definition for MELPe 600 bps (Part 1 of 2)

+	+	+	++
Bit	Mode 4	Mode 5	Mode 6
	(voiced)	(voiced)	(voiced)
B_01	+ Voicing (4)	+ Voicing (4)	++ Voicing (4)
B_02	Voicing (1)	Voicing (1)	Voicing (1)
B_03	Voicing (2)	Voicing (2)	Voicing (2)
B_04	Voicing (1)	Voicing (1)	Voicing (1)
B_05	Voicing (0)	Voicing (0)	Voicing (0)
_ в_06	Pitch (7)	Pitch (7)	Pitch (7)
_ в_07	Pitch (6)	Pitch (6)	Pitch (6)
B_08	Pitch (5)	Pitch (5)	Pitch (5)
+	+ Pitch (4)	+ Pitch (4)	++ Pitch (4)
B_10	Pitch (3)	Pitch (3)	Pitch (3)
B_11	Pitch (2)	Pitch (2)	Pitch (2)
B_12	Pitch (1)	Pitch (1)	Pitch (1)
B_13	Pitch (0)	Pitch (0)	Pitch (0)
B_14	LSF1,3 (3)	LSF1,3 (3)	LSF1,3 (3)
B_15	LSF1,3 (2)	LSF1,3 (2)	LSF1,3 (2)
B_16	LSF1,3 (1)	LSF1,3 (1)	LSF1,3 (1)
B_17	+ LSF1,3 (0)	LSF1,3 (0)	LSF1,3 (0)
B_18	LSF1,2 (3)	LSF1,2 (4)	LSF1,2 (4)
B_19	LSF1,2 (2)	LSF1,2 (3)	LSF1,2 (3)
B_20	LSF1,2 (1)	LSF1,2 (2)	LSF1,2 (2)
B_21	LSF1,2 (0)	LSF1,2 (1)	LSF1,2 (1)
B_22	LSF1,1 (5)	LSF1,2 (0)	LSF1,2 (0)
B_23	LSF1,1 (4)	LSF1,1 (5)	LSF1,1 (6)
B_24	LSF1,1 (3)	LSF1,1 (4)	LSF1,1 (5)
B_25	LSF1,1 (2)	LSF1,1 (3)	LSF1,1 (4)
B_26	LSF1,1 (1)	LSF1,1 (2)	LSF1,1 (3)
B_27	LSF1,1 (0)	LSF1,1 (1)	LSF1,1 (2)
B_28	LSF2,3 (3)	LSF1,1 (0)	LSF1,1 (1)
B_29	LSF2,3 (2)	LSF2,3 (3)	LSF1,1 (0)
B_30	LSF2,3 (1)	LSF2,3 (2)	LSF2,3 (3)
B_31	LSF2,3 (0)	LSF2,3 (1)	LSF2,3 (2)
B_32	LSF2,2 (4)	LSF2,3 (0)	LSF2,3 (1)
B_33	LSF2,2 (3)	LSF2,2 (4)	LSF2,3 (0)
B_34	LSF2,2 (2)	LSF2,2 (3)	LSF2,2 (4)
B_35	LSF2,2 (1)	LSF2,2 (2)	LSF2,2 (3)
B_36	LSF2,2 (0)	LSF2,2 (1)	LSF2,2 (2)
B_37	LSF2,1 (6)	LSF2,2 (0)	LSF2,2 (1)
B_38	LSF2,1 (5)	LSF2,1 (5)	LSF2,2 (0)
B_39	LSF2,1 (4)	LSF2,1 (4)	LSF2,1 (6)
B_40	LSF2,1 (3)	LSF2,1 (3)	LSF2,1 (5)

+			
B_41	LSF2,1 (2)	LSF2,1 (2)	LSF2,1 (4)
B_42	LSF2,1 (1)	LSF2,1 (1)	LSF2,1 (3)
B_43	LSF2,1 (0)	LSF2,1 (0)	LSF2,1 (2)
B_44	GAIN2 (4)	GAIN2 (4)	LSF2,1 (1)
B_45	GAIN2 (3)	GAIN2 (3)	LSF2,1 (0)
B_46	GAIN2 (2)	GAIN2 (2)	GAIN1 (8)
B_47	GAIN2 (1)	GAIN2 (1)	GAIN1 (7)
B_48	GAIN2 (0)	GAIN2 (0)	GAIN1 (6)
+	+	+	++
B_49	GAIN1 (5)	GAIN1 (5)	GAIN1 (5)
B_50	GAIN1 (4)	GAIN1 (4)	GAIN1 (4)
B_51	GAIN1 (3)	GAIN1 (3)	GAIN1 (3)
B_52	GAIN1 (2)	GAIN1 (2)	GAIN1 (2)
B_53	GAIN1 (1)	GAIN1 (1)	GAIN1 (1)
В_54	GAIN1 (0)	GAIN1 (0)	GAIN1 (0)

+----+

Notes:

xxxx(0) = LSB

xxxx (nbits-1) = MSB

LSF1,p = MSVQ* index of the pth stage of the two first frames LSF2,p = MSVQ index of the pth stage of the two last frames

GAIN1 = VQ/MSVQ index of the 1st stage GAIN2 = MSVQ index of the 2nd stage

* MSVQ: Multi-Stage Vector Quantizer

Table 4: Bitstream Definition for MELPe 600 bps (Part 2 of 2)

The 600 bps MELPe RTP payload is constructed as per Figure 4. Note that bit B_01 is placed in the LSB of the first byte with all other bits in sequence. When filling octets, the least significant bits of the seventh octet are filled with bits B_49 to B_54, respectively.

B_08 B_07 B_06 B_05 B_04 B_03 B_02 B_01 B_16 B_15 B_14 B_13 B_12 B_11 B_10 B_09 B_24 B_23 B_22 B_21 B_20 B_19 B_18 B_17 B_32 B_31 B_30 B_29 B_28 B_27 B_26 B_25 B_40 B_39 B_38 B_37 B_36 B_35 B_34 B_33 B_48 B_47 B_46 B_45 B_44 B_43 B_42 B_41 RSVA RSVB B_54 B_53 B_52 B_51 B_50 B_49		MSB 0	1	2	3	4	5	6	LSB 7
B_24 B_23 B_22 B_21 B_20 B_19 B_18 B_17 B_32 B_31 B_30 B_29 B_28 B_27 B_26 B_25 B_40 B_39 B_38 B_37 B_36 B_35 B_34 B_33 B_48 B_47 B_46 B_45 B_44 B_43 B_42 B_41		в_08	B_07	B_06	B_05	B_04	В_03	B_02	B_01
B_24 B_23 B_22 B_21 B_20 B_19 B_18 B_17 B_32 B_31 B_30 B_29 B_28 B_27 B_26 B_25 B_40 B_39 B_38 B_37 B_36 B_35 B_34 B_33 B_48 B_47 B_46 B_45 B_44 B_43 B_42 B_41		_ '	_	. –	<u> </u>	. –	_	<u> </u>	<u> </u>
B_40 B_39 B_38 B_37 B_36 B_35 B_34 B_33 									:
B_48 B_47 B_46 B_45 B_44 B_43 B_42 B_41		B_32	B_31	B_30	' В_29 	B_28	B_27	' В_26 +	B_25
++		B_40	B_39	B_38	B_37	B_36	B_35	B_34 +	B_33
RSVA RSVB B_54 B_53 B_52 B_51 B_50 B_49		B_48	B_47	B_46	B_45	B_44	B_43	' B_42 +	B_41
		RSVA	RSVB	B_54 +	B_53 +	B_52 +	B_51	B_50 +	B_49 ++

Figure 4: Packed MELPe 600 bps Payload Octets

3.2. MELPe Comfort Noise Bitstream Definition

Table B.3-1 of [SCIP210] identifies the usage of MELPe 2400 bps parameters for conveying comfort noise.

MELPe Parameter			
msvq[0] (line spectral frequencies)	* See Note		
msvq[1] (line spectral frequencies)	Set to 0		
msvq[2] (line spectral frequencies)	Set to 0		
msvq[3] (line spectral frequencies)	Set to 0		
fsvq (Fourier magnitudes)	Set to 0		
gain[0] (gain)	Set to 0		
gain[1] (gain)	* See Note		
pitch (pitch - overall voicing)	Set to 0		
bp (bandpass voicing)	Set to 0		
af (aperiodic flag/jitter index)	Set to 0		
sync (sync bit)	Alternations		

Note:

The default values are the respective parameters from the vocoder frame. It is preferred that msvq[0] and gain[1] values be derived by averaging the respective parameter from $% \left(1\right) =\left(1\right) \left(1\right)$ some number of previous vocoder frames.

Table 5: MELPe Comfort Noise Parameters

Since only msvq[0] (also known as LSF1x or the first LSP) and gain[1] (also known as g2x or the second gain) are needed, the following bit order is used for comfort noise frames:

Bit 	Comfort Noise
B_01	LSF10
B_02	LSF11
B_03	LSF12
B_04	LSF13
B_05	LSF14
B_06	LSF15
B_07	LSF16
B_08	g20
B_09	g21
B_10	g22
B_11	g23
B_12	g24
B_13	SYNC

Notes:

g = Gain

LSF = Line Spectral Frequencies

Table 6: Bitstream Definition for MELPe Comfort Noise

The comfort noise MELPe RTP payload is constructed as per Figure 5. Note that bit B_01 is placed in the LSB of the first byte with all other bits in sequence. When filling octets, the least significant bits of the second octet are filled with bits B_09 to B_13 , respectively.

MSB 0	1	2	3	4	5	6	LSB 7
•	•	'	'	'	•	'	++ B_01
			+ B_13 +				B_09

Figure 5: Packed MELPe Comfort Noise Payload Octets

3.3. Multiple MELPe Frames in an RTP Packet

A MELPe RTP packet MAY consist of zero or more MELPe coder frames followed by zero or one MELPe comfort noise frame. The presence of a comfort noise frame can be deduced from the length of the RTP payload. The default packetization interval is one coder frame (22.5, 67.5, or 90 ms) according to the coder bitrate (2400, 1200, or 600 bps). For some applications, a longer packetization interval is used to reduce the packet rate.

A MELPe RTP packet comprised of no coder frame and no comfort noise frame MAY be used periodically by an endpoint to indicate connectivity by an otherwise idle receiver.

All MELPe frames in a single RTP packet MUST be of the same coder bitrate. Dynamic switching between frame rates within an RTP stream may be permitted (if supported by both ends) provided that reserved bits RSVA, RSVB, and RSVC are filled in as per Table 7. If bitrate switching is not used, all reserved bits are encoded as 0 by the sender and ignored by the receiver. (RSV0 is always coded as 0.)

Coder Bitrate	RSVA	RSVB	RSVC
2400 bps	0	0	N/A
1200 bps	1	0	0
600 bps	0	1	N/A
Comfort Noise	1	0	1 1
(reserved)	 1 +	 1 	N/A

Table 7: MELPe Frame Bitrate Indicators

It is important to observe that senders have the following additional restrictions:

Senders SHOULD NOT include more MELPe frames in a single RTP packet than will fit in the MTU of the RTP transport protocol.

Frames MUST NOT be split between RTP packets.

It is RECOMMENDED that the number of frames contained within an RTP packet be consistent with the application. For example, in telephony and other real-time applications where delay is important, then the fewer frames per packet the lower the delay, whereas for bandwidthconstrained links or delay-insensitive streaming messaging applications, more than one frame per packet or many frames per packet would be acceptable.

Information describing the number of frames contained in an RTP packet is not transmitted as part of the RTP payload. The way to determine the number of MELPe frames is to count the total number of octets within the RTP packet and divide the octet count by the number of expected octets per frame (7/11/7 per frame). Keep in mind that the last frame can be a 2-octet comfort noise frame.

When dynamic bitrate switching is used and more than one frame is contained in an RTP packet, it is RECOMMENDED that the coder rate bits contained in the last octet be inspected. If the coder bitrate indicates a comfort noise frame, then inspect the third last octet for the coder bitrate. All MELPe speech frames in the RTP packet will be of this same coder bitrate.

3.4. Congestion Control Considerations

The target bitrate of MELPe can be adjusted at any point in time, thus allowing congestion management. Furthermore, the amount of encoded speech or audio data encoded in a single packet can be used for congestion control, since the packet rate is inversely proportional to the packet duration. A lower packet transmission rate reduces the amount of header overhead but at the same time increases latency and loss sensitivity, so it ought to be used with care.

Since UDP does not provide congestion control, applications that use RTP over UDP SHOULD implement their own congestion control above the UDP layer [RFC8085] and MAY also implement a transport circuit breaker [RFC8083]. Work in the RMCAT working group [RMCAT] describes the interactions and conceptual interfaces necessary between the application components that relate to congestion control, including the RTP layer, the higher-level media codec control layer, and the lower-level transport interface, as well as components dedicated to congestion control functions.

4. Payload Format Parameters

This RTP payload format is identified using the MELP, MELP2400, MELP1200, and MELP600 media subtypes, which are registered in accordance with RFC 4855 [RFC4855] and per the media type registration template from RFC 6838 [RFC6838].

4.1. Media Type Definitions

Type name: audio

Subtype names: MELP, MELP2400, MELP1200, and MELP600

Required parameters: N/A

Optional parameters:

ptime: the recommended length of time (in milliseconds) represented by the media in a packet. It SHALL use the nearest rounded-up ms integer packet duration. For MELPe, this corresponds to the following values: 23, 45, 68, 90, 112, 135, 156, and 180. Larger values can be used as long as they are properly rounded. See Section 6 of RFC 4566 [RFC4566].

maxptime: the maximum length of time (in milliseconds) that can be encapsulated in a packet. It SHALL use the nearest rounded-up ms integer packet duration. For MELPe, this corresponds to the following values: 23, 45, 68, 90, 112, 135, 156, and 180. Larger values can be used as long as they are properly rounded. See Section 6 of RFC 4566 [RFC4566].

bitrate: specifies the MELPe coder bitrates supported. Possible values are a comma-separated list of rates from the following set: 2400, 1200, 600. The modes are listed in order of preference; first is preferred. If "bitrate" is not present, the fixed coder bitrate of 2400 MUST be used. The alternate encoding names "MELP2400", "MELP1200", and "MELP600" directly specify the MELPe coder bitrates of 2400, 1200, and 600, respectively, and MUST NOT specify a "bitrate" parameter.

Encoding considerations: These media subtypes are framed and binary; see Section 4.8 of RFC 6838 [RFC6838].

Security considerations: Please see Section 8 of RFC 8130.

Interoperability considerations: Early implementations used MELP2400, MELP1200, and MELP600 to indicate both coder type and bitrate. These media type names should be preserved with this registration.

```
Published specification: N/A
  Applications that use this media type: N/A
  Additional information: N/A
     Deprecated alias names for this type: N/A
     Magic number(s): N/A
     File extension(s): N/A
     Macintosh file type code(s): N/A
  Person & email address to contact for further information:
     Victor Demjanenko, Ph.D.
     VOCAL Technologies, Ltd.
     520 Lee Entrance, Suite 202
     Buffalo, NY 14228
     United States of America
     Phone: +1 716 688 4675
     Email: victor.demjanenko@vocal.com
   Intended usage: COMMON
  Restrictions on usage: These media subtypes depend on RTP framing and
     hence are only defined for transfer via RTP [RFC3550]. Transport
     within other framing protocols is not defined at this time.
  Author: Victor Demjanenko
  Change controller: IETF Payload working group delegated from the
  Provisional registration? (standards tree only): No
4.2. Mapping to SDP
  The mapping of the above-defined payload format media subtypes and
```

[RFC4855].

their parameters SHALL be done according to Section 3 of RFC 4855

The information carried in the media type specification has a specific mapping to fields in the Session Description Protocol (SDP) [RFC4566], which is commonly used to describe RTP sessions. When SDP is used to specify sessions employing the MELPe codec, the mapping is as follows:

- o The media type ("audio") goes in SDP "m=" as the media name.
- o The media subtype (payload format name) goes in SDP "a=rtpmap" as the encoding name.
- o The parameter "bitrate" goes in the SDP "a=fmtp" attribute by copying it as a "bitrate=<value>" string.
- o The parameters "ptime" and "maxptime" go in the SDP "a=ptime" and "a=maxptime" attributes, respectively.

When conveying information via SDP, the encoding name SHALL be "MELP" (the same as the media subtype). Alternate encoding name subtypes "MELP2400", "MELP1200", and "MELP600" MAY be used in SDP to convey fixed-bitrate configurations. These names have been observed in systems that do not support dynamic frame-rate switching as specified by the parameter "bitrate".

An example of the media representation in SDP for describing MELPe might be:

```
m=audio 49120 RTP/AVP 97
a=rtpmap:97 MELP/8000
```

An alternative example of SDP for fixed-bitrate configurations might be:

```
m=audio 49120 RTP/AVP 97 100 101 102
a=rtpmap:97 MELP/8000
a=rtpmap:100 MELP2400/8000
a=rtpmap:101 MELP1200/8000
a=rtpmap:102 MELP600/8000
```

If the encoding name "MELP" is received without a "bitrate" parameter, the fixed coder bitrate of 2400 MUST be used. The alternate encoding names "MELP2400", "MELP1200", and "MELP600" directly specify the MELPe coder bitrates of 2400, 1200, and 600, respectively, and MUST NOT specify a "bitrate" parameter.

The optional media type parameter "bitrate", when present, MUST be included in the "a=fmtp" attribute in the SDP, expressed as a media type string in the form of a semicolon-separated list of

parameter=value pairs. The string "value" can be one or more of 2400, 1200, and 600, separated by commas (where each bitrate value indicates the corresponding MELPe coder). An example of the media representation in SDP for describing MELPe when all three coder bitrates are supported might be:

```
m=audio 49120 RTP/AVP 97
a=rtpmap:97 MELP/8000
a=fmtp:97 bitrate=2400,600,1200
```

Parameter "ptime" cannot be used for the purpose of specifying the MELPe operating mode, due to the fact that for certain values it will be impossible to distinguish which mode is about to be used (e.g., when ptime=68, it would be impossible to distinguish if the packet is carrying one frame of 67.5 ms or three frames of 22.5 ms).

Note that the payload format (encoding) names are commonly shown in upper case. Media subtypes are commonly shown in lower case. These names are case insensitive in both places. Similarly, parameter names are case insensitive in both the media subtype name and the default mapping to the SDP a=fmtp attribute.

4.3. Declarative SDP Considerations

For declarative media, the "bitrate" parameter specifies the possible bitrates used by the sender. Multiple MELPe rtpmap values (such as 97, 98, and 99, as used below) MAY be used to convey MELPe-coded voice at different bitrates. The receiver can then select an appropriate MELPe codec by using 97, 98, or 99.

```
m=audio 49120 RTP/AVP 97 98 99
a=rtpmap:97 MELP/8000
a=fmtp:97 bitrate=2400
a=rtpmap:98 MELP/8000
a=fmtp:98 bitrate=1200
a=rtpmap:99 MELP/8000
a=fmtp:99 bitrate=600
```

4.4. Offer/Answer SDP Considerations

In the Offer/Answer model [RFC3264], "bitrate" is a bidirectional parameter. Both sides MUST use a common "bitrate" value or values. The offer contains the bitrates supported by the offerer, listed in its preferred order. The answerer MAY agree to any bitrate by listing the bitrate first in the answerer response. Additionally, the answerer MAY indicate any secondary bitrate or bitrates that it supports. The initial bitrate used by both parties SHALL be the first bitrate specified in the answerer response.

For example, if offerer bitrates are "2400,600" and answer bitrates are "600,2400", the initial bitrate is 600. If other bitrates are provided by the answerer, any common bitrate between the offer and answer MAY be used at any time in the future. Activation of these other common bitrates is beyond the scope of this document.

The use of a lower bitrate is often important for a case such as when one endpoint utilizes a bandwidth-constrained link (e.g., 1200 bps radio link or slower), where only the lower coder bitrate will work.

5. Discontinuous Transmissions

A primary application of MELPe is for radio communications of voice conversations, and discontinuous transmissions are normal. MELPe is used in an IP network, MELPe RTP packet transmissions may cease and resume frequently. RTP synchronization source (SSRC) sequence number gaps indicate lost packets to be filled by PLC, while abrupt loss of RTP packets indicates intended discontinuous transmissions.

If a MELPe coder so desires, it may send a comfort noise frame as per Appendix B of [SCIP210] prior to ceasing transmission. A receiver may optionally use comfort noise during its silence periods. No SDP negotiations are required.

6. Packet Loss Concealment

MELPe packet loss concealment (PLC) uses the special properties and coding for the pitch/voicing parameter of the MELPe 2400 bps coder. The PLC erasure indication utilizes any of the errored encodings of a non-voiced frame as identified in Table 1 of [MELPE]. For the sake of simplicity, it is preferred that a code value of 3 for the pitch/voicing parameter (represented by the bits P6 to P0 in Table 1 of this document) be used. Hence, set bits PO and P1 to one and bits P2, P3, P4, P5, and P6 to zero.

When using PLC in 1200 bps or 600 bps mode, the MELPe 2400 bps decoder is called three or four times, respectively, to cover the loss of a MELPe frame.

7. IANA Considerations

IANA has registered MELP, MELP2400, MELP1200, and MELP600 as specified in Section 4.1. IANA has also added these media subtypes to the "RTP Payload Format media types" registry (http://www.iana.org/assignments/rtp-parameters).

8. Security Considerations

RTP packets using the payload format defined in this specification are subject to the security considerations discussed in the RTP specification [RFC3550] and in any applicable RTP profile such as RTP/AVP [RFC3551], RTP/AVPF [RFC4585], RTP/SAVP [RFC3711], or RTP/SAVPF [RFC5124]. However, as discussed in [RFC7202], it is not an RTP payload format's responsibility to discuss or mandate what solutions are used to meet such basic security goals as confidentiality, integrity, and source authenticity for RTP in general. This responsibility lies with anyone using RTP in an application. They can find guidance on available security mechanisms and important considerations in [RFC7201]. Applications SHOULD use one or more appropriate strong security mechanisms. The rest of this section discusses the security-impacting properties of the payload format itself.

This RTP payload format and the MELPe decoder do not exhibit any significant non-uniformity in the receiver-side computational complexity for packet processing and thus are unlikely to pose a denial-of-service threat due to the receipt of pathological data. Additionally, the RTP payload format does not contain any active content.

Please see the security considerations discussed in [RFC6562] regarding VAD and its effect on bitrates.

9. References

9.1. Normative References

- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <http://www.rfc-editor.org/info/rfc2119>.
- [RFC2736] Handley, M. and C. Perkins, "Guidelines for Writers of RTP Payload Format Specifications", BCP 36, RFC 2736, DOI 10.17487/RFC2736, December 1999, <http://www.rfc-editor.org/info/rfc2736>.
- [RFC3264] Rosenberg, J. and H. Schulzrinne, "An Offer/Answer Model with Session Description Protocol (SDP)", RFC 3264, DOI 10.17487/RFC3264, June 2002, <http://www.rfc-editor.org/info/rfc3264>.

- [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550, July 2003, http://www.rfc-editor.org/info/rfc3550>.">http://www.r
- [RFC3551] Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video Conferences with Minimal Control", STD 65, RFC 3551, DOI 10.17487/RFC3551, July 2003, <http://www.rfc-editor.org/info/rfc3551>.
- [RFC3711] Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K. Norrman, "The Secure Real-time Transport Protocol (SRTP)", RFC 3711, DOI 10.17487/RFC3711, March 2004, <http://www.rfc-editor.org/info/rfc3711>.
- [RFC4566] Handley, M., Jacobson, V., and C. Perkins, "SDP: Session Description Protocol", RFC 4566, DOI 10.17487/RFC4566, July 2006, <http://www.rfc-editor.org/info/rfc4566>.
- [RFC4855] Casner, S., "Media Type Registration of RTP Payload Formats", RFC 4855, DOI 10.17487/RFC4855, February 2007, <http://www.rfc-editor.org/info/rfc4855>.
- [RFC5124] Ott, J. and E. Carrara, "Extended Secure RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/SAVPF)", RFC 5124, DOI 10.17487/RFC5124, February 2008, http://www.rfc-editor.org/info/rfc5124.
- [RFC6562] Perkins, C. and JM. Valin, "Guidelines for the Use of Variable Bit Rate Audio with Secure RTP", RFC 6562, DOI 10.17487/RFC6562, March 2012, <http://www.rfc-editor.org/info/rfc6562>.
- [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type Specifications and Registration Procedures", BCP 13, RFC 6838, DOI 10.17487/RFC6838, January 2013, <http://www.rfc-editor.org/info/rfc6838>.
- [RFC8083] Perkins, C. and V. Singh, "Multimedia Congestion Control: Circuit Breakers for Unicast RTP Sessions", RFC 8083, DOI 10.17487/RFC8083, March 2017, <http://www.rfc-editor.org/info/rfc8083>.
- [RFC8085] Eggert, L., Fairhurst, G., and G. Shepherd, "UDP Usage Guidelines", RFC 8085, DOI 10.17487/RFC8085, March 2017, <http://www.rfc-editor.org/info/rfc8085>.

- [MELP] Department of Defense Telecommunications Standard, "Analog-to-Digital Conversion of Voice by 2,400 Bit/Second Mixed Excitation Linear Prediction (MELP)", MIL-STD-3005, December 1999.
- [MELPE] North Atlantic Treaty Organization (NATO), "The 600 Bit/S, 1200 Bit/S and 2400 Bit/S NATO Interoperable Narrow Band Voice Coder", STANAG No. 4591, January 2006.
- [SCIP210] National Security Agency, "SCIP Signaling Plan", SCIP-210, December 2007.

9.2. Informative References

- [RFC4585] Ott, J., Wenger, S., Sato, N., Burmeister, C., and J. Rey, "Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF)", RFC 4585, DOI 10.17487/RFC4585, July 2006, <http://www.rfc-editor.org/info/rfc4585>.
- [RFC7201] Westerlund, M. and C. Perkins, "Options for Securing RTP Sessions", RFC 7201, DOI 10.17487/RFC7201, April 2014, <http://www.rfc-editor.org/info/rfc7201>.
- [RFC7202] Perkins, C. and M. Westerlund, "Securing the RTP Framework: Why RTP Does Not Mandate a Single Media Security Solution", RFC 7202, DOI 10.17487/RFC7202, April 2014, http://www.rfc-editor.org/info/rfc7202.
- [RMCAT] IETF, RTP Media Congestion Avoidance Techniques (rmcat) Working Group, <https://datatracker.ietf.org/wg/rmcat/about/>.

Authors' Addresses

Victor Demjanenko, Ph.D. VOCAL Technologies, Ltd. 520 Lee Entrance, Suite 202 Buffalo, NY 14228 United States of America

Phone: +1 716 688 4675

Email: victor.demjanenko@vocal.com

David Satterlee VOCAL Technologies, Ltd. 520 Lee Entrance, Suite 202 Buffalo, NY 14228 United States of America

Phone: +1 716 688 4675

Email: david.satterlee@vocal.com