作业 (1)

31202008881

鲍泽安

Thursday 6th May, 2021

作业 (1):

(1)(2) 单纯形法 (1):

$$min - 9x_1 - 16x_2$$
 s.t. $x_1 + 4x_2 + x_3 = 80$,

$$2x_1 + 3x_2 + x_4 = 90,$$

 $x_j \ge 0, j = 1, \cdots, 4.$

(2):

$$max \quad x_1 + 3x_2$$

$$s.t. \quad 2x_1 + 3x_2 + x_3 = 6,$$

$$-x_1 + x_2 + x_4 = 1,$$

$$x_j \ge 0, j = 1, \cdots, 4.$$

解 (1): 利用单纯性表

	x_1	x_2	x_3	x_4	
x_3	1	4	1	0	80
x_4	2	3	0	1	90
	9	16	0	0	0

第二次迭代

	x_1	x_2	x_3	x_4	
x_2	$\frac{1}{4}$	1	$\frac{1}{4}$	0	20
x_4	$\frac{5}{4}$	0	$-\frac{3}{4}$	1	30
	5	0	-4	0	-320

第三次迭代

	x_1	x_2	x_3	x_4	
x_2	0	1	$\frac{2}{5}$	$-\frac{1}{5}$	14
x_1	1	0	$-\frac{3}{5}$	$\frac{4}{5}$	24
	0	0	-1	-4	-440

由表格可以直接得到,该问题有最优解

最优解: $(x_1, x_2) = (24, 14)$

最优值: $f_{min} = -440$

(2): 该问题是最大化问题,转而求相应的最小化问题,化为标准型

$$min - (x_1 + 3x_2)$$
s.t. $2x_1 + 3x_2 + x_3 = 6$,
 $-x_1 + x_2 + x_4 = 1$,
 $x_j \ge 0, j = 1, \dots, 4$.

初始化单纯形表

	x_1	x_2	x_3	x_4	
x_3	2	3	1	0	6
x_4	-1	1	0	1	1
	1	3	0	0	0

第二次迭代

	x_1	x_2	x_3	x_4	
x_3	5	0	1	-3	3
x_4	-1	1	0	1	1
	1	3	0	0	0

第三次迭代

	x_1	x_2	x_3	x_4	
x_3	1	0	$\frac{1}{5}$	$-\frac{3}{5}$	$\frac{3}{5}$
x_4	0	1	$\frac{1}{5}$	$\frac{2}{5}$	$\frac{8}{5}$
	0	0	$-\frac{4}{5}$	$-\frac{3}{5}$	$-\frac{27}{5}$

由表格可以直接得到,该问题有最优解

最优解: $(x_1, x_2) = (\frac{3}{5}, \frac{8}{5})$ 最优值: $f_{max} = \frac{27}{5}$