Cálculo 1

Lista de Aplicações – Semana 01

Temas abordados: Funções

Seções do livro: 1.1 a 1.3; 1.5; 1.6

1) A figura abaixo ilustra um recipiente formado por dois cilindros circulares retos justapostos de altura 10m e raios respectivamente 12m e 6m. Suponha que, a partir do instante t=0, o recipiente comece a ser abastecido a uma vazão constante de modo que o nível da água s(t) no recipiente é dada por

$$s(t) = \begin{cases} 2t, & \text{para } 0 \le t \le 5 \\ 8t - 30, & \text{para } 5 < t \le 6 \end{cases}$$

onde a altura é dada em metros e o tempo é dado em segundos.

- (b) Determine, caso existam, os instantes $\tau \in [0, 6]$ nos quais $s(\tau) = 15$.
- (c) Determine a imagem da função s.

- 2) Considere a função $f:(0,\infty) \to \mathbb{R}$ dada por $f(x) = 1/\sqrt{x}$. Pode-se mostrar que a inclinação da reta L_a , que é tangente ao gráfico de f(x) no ponto $P_a = (a, f(a))$, é dada por $\frac{-1}{2a\sqrt{a}}$. A figura abaixo ilustra o gráfico da função, a reta L_a e os pontos Q_a e R_a em que a reta intercepta os eixos coordenados. Julgue a veracidade dos itens a seguir, justificando suas respostas.
 - (a) A reta L_a tem equação $y = \frac{-x}{2a\sqrt{a}} + \frac{3}{2\sqrt{a}}$.
 - (b) Tem-se que $R_a = (2a, 0)$.
 - (c) A área do triângulo $\Delta \mathcal{O} P_a R_a$ é igual a $\frac{1}{2} 2af(a)$.
 - (d) A área do triângulo $\Delta \mathcal{O} P_a Q_a$ é igual a $\frac{1}{2} \frac{3}{2\sqrt{a}} a$.
 - (e) Para todo a > 0, a área do triângulo $\Delta \mathcal{O} P_a Q_a$ é o dobro da área do triângulo $\Delta \mathcal{O} P_a R_a$.

3) Uma amostra radioativa emite partículas alfa e, consequentemente, sua massa M=M(t) é uma função decrescente do tempo. Suponha que, para um determinado material radioativo, essa função seja dada por $M(t)=M_0e^{-k_1t}$, onde $M_0>0$ é a massa inicial, $k_1>0$ é uma constante e t>0 é o tempo medido em anos. A meia-vida do material é o tempo necessário para que a massa se reduza à metade da massa inicial.

- (a) Calcule k_1 sabendo que, depois de um ano e meio, a massa restante é 1/8 da inicial.
- (b) Usando o item anterior, determine a meia-vida do material.
- (c) Calcule quantos anos devemos esperar para que 99% da amostra tenha se desintegrado (use as aproximações $\ln 2 = 0, 7$ e $\ln 5 = 1, 6$).
- (d) Suponha que outra amostra radioativa tenha massa $N(t) = M_0 e^{-k_2 t}$, com $k_2 > 0$. Estabeleça uma relação entre k_1 e k_2 sabendo que a meia-vida desse segundo material é igual ao triplo da meia-vida do primeiro.
- 4) Uma espira circular está imersa em uma região de campo magnético uniforme e constante. O fluxo magnético pela espira é dado por $\phi(\alpha) = AB\cos(\alpha)$, onde A é a área da espira, B é a intensidade do campo e $\alpha \in [0, 2\pi]$ é o ângulo entre o vetor normal ao plano da espira e as linhas de campo. Supondo inicialmente que, em unidades físicas apropriadas, AB = 4, resolva os itens a seguir.
 - (a) Calcule o menor e o maior valor que o fluxo ϕ pode assumir.
 - (b) Determine um ângulo $\alpha_0 \in [0, 2\pi]$ tal que $\phi(\alpha_0) = 2$.
 - (c) Se a espira tivesse o dobro do diâmetro e estivesse imersa no mesmo campo, qual seria o valor do produto AB?
 - (d) Para uma espira com o dobro do diâmetro, use o valor encontrado no item (c) para determinar um ângulo $\alpha_1 \in [0, \pi]$ tal que o fluxo magnético seja igual a 4.
- 5) O objetivo desse exercício é usar as propriedades da função exponencial e^x para investigar as propriedades das funções cosseno e seno hiperbólicos dadas por

$$cosh(t) = \frac{e^t + e^{-t}}{2}$$
 e $senh(t) = \frac{e^t - e^{-t}}{2}.$

Lembrando que $e^{x+y} = e^x e^y$, onde e é a base Neperiana, resolva os itens abaixo.

(a) Mostre que

$$\cosh^2(t) - \sinh^2(t) = 1.$$

Fazendo $x=\cosh(t)$ e $y=\mathrm{senh}(t)$, isso mostra que o ponto (x,y) está sobre a hipérbole unitária dada por

$$x^2 - y^2 = 1.$$

(b) Verifique a fórmula do cosseno hiperbólico da soma

$$\cosh(s+t) = \cosh(s)\cosh(t) + \sinh(s)\sinh(t).$$

(c) Verifique a fórmula do seno hiperbólico da soma

$$senh(s+t) = senh(s)cosh(t) + senh(t)cosh(s).$$

- (d) Verifique que $\cosh(t)$ é uma função par enquanto $\sinh(t)$ é uma função ímpar.
- (e) Prove que não existe $t \in \mathbb{R}$ tal que senh(t) = cosh(t).

Compare as propriedades dos itens acima com as suas análogas para as funções trigonométricas.

Gabarito

- 1. (a)
 - (b) $\tau = 45/8$
 - (c) Im(s) = [0, 18]
- 2. Itens corretos: (a), (d)
- 3. (a) $k_1 = 2 \ln 2$
 - (b) meio ano
 - (c) 23/7 anos
 - (d) $k_2 = k_1/3$
- 4. (a) -4 e 4, respectivamente
 - (b) $\alpha_0 = \pi/3 \text{ ou } \alpha_0 = 5\pi/3$
 - (c) 16
 - (d) $\alpha_1 = \arccos(1/4)$