I Application de l'algorithme de couplage maximum

Appliquer l'algorithme du cours pour trouver un couplage maximum dans le graphe suivant :

II Hypercube

Un hypercube Q_n a pour sommets les mots binaires de taille n, 2 sommets étant reliés s'ils différent d'un bit.

- 1. Dessiner Q_3 .
- 2. Quel est le nombre de sommets et d'arêtes de Q_n ?
- 3. Montrer que Q_n est biparti.
- 4. Montrer que Q_n possède un couplage parfait.
- 5. Soit $n \ge 2$. Montrer que Q_n est **hamiltonien**: il existe un cycle qui visite tous les sommets exactement une fois. Dessiner un tel cycle de Q_3 .

III Questions sur les couplages

- 1. Soit G un graphe. Montrer que si G a un couplage parfait alors G possède un nombre pair de sommets. La réciproque est-elle vraie ?
- 2. Soit M_1 et M_2 deux couplages d'un graphe G, avec M_2 maximal (c'est-à-dire qu'on ne peut pas ajouter d'arête à M_2 en conservant un couplage). Montrer que $|M_1| \le 2|M_2|$, puis donner un cas d'égalité.
- 3. Soit G = (V, E) un graphe. Une couverture par sommets (vertex cover) de G est un ensemble C de sommets tels que chaque arête de G est adjacente à au moins un sommet de C. L'objectif est de trouver une couverture par sommets C^* de cardinal minimum.

On propose l'algorithme suivant :

 $\begin{array}{c} \textbf{2-approximation de vertex cover} \\ \hline M \longleftarrow \text{couplage maximal de } G \\ C \longleftarrow \text{ensemble des sommets couverts par } M \\ \hline \end{array}$

Montrer que C est bien une couverture par sommet et que $|C| \leq 2|C^*|$.

IV Questions sur les graphes bipartis

- 1. Montrer qu'un arbre est un graphe biparti.
- 2. Montrer qu'un graphe est biparti si et seulement s'il n'a pas de cycle impair.