《电子电路与系统基础 I》期中考试试题 2020.4.10 学号: 姓名:

■ 请于 12:10 前于网络学堂上提交考卷,

提交方式 1: 通过网络学堂提交

提交方式 2: 将考卷 email 至 yeyj19@mails.tsinghua.edu.cn

■ 考场分布及教室信息

	学号范围	Zoom ID&pwd	主监考助教
考场 1	≤2018011086	ID: 915 634 685	李瑄 (18611019067)
		pwd: 019166	
考场 2	2018011094-2018080079	ID: 972 469 475	黄恒 (18811085724)
		pwd: 023579	
考场 3	2018080083-2019011035	ID: 326 022 577	陈子朋 (18810461875)
		pwd: 009544	
考场 4	2019011036-2019080030	ID: 643 184 983	关平达 (15600699640)
		pwd: 063745	

《电子电路与系统基础 I》期中考试试题 2020.4.10 学号: 姓名:

共三大题,卷面满分100分。全部题目在答题纸上作答,在本试题纸上作答无效。

- 一、(36 分)如图所示电路,受控电流源 I_x 的输出电流为 $I_x=\alpha i_e$,其中 i_e 为流经电阻 R_e 的电流, $\alpha=2.2$ 为常数。理想直流电压源 V_S 的输出电压已知,为考生学号末位 加 1 伏,已知 $R_S=1$ k Ω 、 $R_B=6$ k Ω 、 $R_e=1.2$ k Ω 、 $R_o=2$ k Ω 、 $R_L=3$ k Ω
 - 1) 求 R_L 上的电压 V_{out}
 - 2) 求a、b两端点之间的诺顿等效电路并画出电路示意图

- 二、(31 分)如图所示电路,受控电压源 V_x 的输出电压为 $V_x = A_v v_2$,其中 v_2 为电阻 R_2 两端电压, $A_v = 2.5$ 为常数。已知 $R_1 = 1$ k Ω 、 $R_2 = 2$ k Ω 、 $R_3 = 3$ k Ω 、 $V_S = A_1 \sin(20\pi t) V$ 、 $I_S = A_2 \sin(20\pi t + \pi) mA$,其中 A_1 为考生学号末位加 2, A_2 为考生学号末位加 1
 - 1) 使用叠加定理求 R_2 上的电压 v_2 随时间变化的表达式
 - 2) 求 R_2 上的电压有效值
 - 3) 以mW为单位,求 R_2 消耗的瞬态功耗
 - 4) 以 dBm 为单位,求 R_2 消耗的平均功耗

- 三、(33 分)图 3.1 所示为受控开关,当控制信号 S_{ctrl} 为 V_H 时,A、B 两点导通,导通电阻为 0;当控制信号 S_{ctrl} 为 V_L 时,A、B 两点断开。
 - 图 3.2 中两受控开关控制信号如图 3.2 右图所示,已知电容上无初始储能, $V_S=12V$ 、 $t_1=30s$ 、 $t_2=100s$ 、C=0.5F、 $R_S=1\Omega$ 、L=1H
 - 1) 写出理想电容C两端的电压 $v_c(t)$ 与流经它的电流 $i_c(t)$ 的关系
 - 2) 求图 3.2 中电容C两端的电压v(t)
 - 3) 根据 2) 的表达式,画出电容C两端的电压v(t)随时间变化的波形图
 - 4) 分析 R_s 、C、L的取值对v(t)波形的影响

图 3.1

图 3.2

《电子电路与系统基础 1》2020 春期中试题 第4页