TEOREMAS DE THEVENIN E NORTON

Leandro Teodoro Jan/2017

1. INTRODUÇÃO

Os teoremas de Thevenin e Norton são extremamente importantes tanto para a disciplina de elétrica quanto a de eletrônica. Onde são utilizados inúmeras vezes, por exemplo, para cálculo de parâmetros de amplificares lineares. O teorema de Thevenin afirma que um circuito puramente resistivo, num dado ponto de conexão, pode ser substituído por uma única fonte de tensão (V_{TH}) e uma única resistência equivalente (R_{TH}) , enquanto Norton afirma que pode ser substituído por uma única fonte de corrente (I_N) e uma resistência equivalente (R_N) .

2. MÉTODO

Dado o circuito abaixo, calcular R_{TH} , V_{TH} , a corrente sobre a carga I_L , R_N e I_N em relação a carga R_L .

Calculando R_{TH}:

 1° Passo: Remover a carga R_L do circuito.

2º Passo: Aplicar um curto nas fontes de tensão, no caso V1, e substituir pelo circuito equivalente.

 3° Passo: Calcular R_{TH} que é a resistência equivalente entre os pontos a e b.

$$R(R1||R2) = \frac{R_1 \cdot R_2}{R_1 + R_2} = 10\Omega$$

$$R_{TH} = R3 + R(R1||R2) = 20 + 10 = 30\Omega$$

 4° Passo: Para o cálculo de V_{TH} é retirado a carga R_L e verificado a tensão entre os seus terminais.

$$V_{TH} = V_{R2} = \frac{R_2}{R_1 + R_2}.V1 = 20V$$

 $5^{\rm o}$ Passo: Desenhar o circuito equivalente de Thevenin e calcular a corrente na carga $I_{\rm L}.$

$$I_L = \frac{V_{TH}}{R_{TH} + R_L} = \frac{20}{30 + 50} = 250 mA$$

6º Passo: Calcular I_N

O cálculo de I_N é equivalente a retirarmos a carga R_L e medirmos a corrente entre os seus terminais.

O medidor, mostrará o valor de corrente de 0,666A, de fato:

$$V_C = \frac{R(R2||R3)}{R(R2||R3) + R1}.V1 = 13,33V$$

$$I_N = I_{R3} = \frac{V_C}{R3} = \frac{13,33}{20} = 0,666A$$

7º Passo: Calcular a resistência de Norton (R_N)

Os procedimentos para calcular a resistência equivalente de Norton (R_N) são idênticos aos para cálculo da resistência de Thevenin, o que torna:

$$R_N = R_{TH}$$
$$R_N = 30\Omega$$

 8° Passo: Desenhar o circuito equivalente de Norton e calcular a corrente sobre a carga R_L .

$$I_L = \frac{R_N}{R_N + R_L}$$
. $I_N = \frac{30}{30 + 50}$. 0,666 = 250mA

3. CONCLUSÃO

Nota-se que tanto o teorema de Thevenin como o de Norton são representações equivalentes para o mesmo circuito proposto, tal fato se comprova pois a corrente na carga R_L para ambos os teoremas são iguais.

4. REFERÊNCIAS

[1]. Eletricidade Básica, Milton Gussow, 2ª Edição – Makron Books.