UNIVERSIDADE TIRADENTES

Ciência da Computação

Paulo Ricardo Gomes Gois Silva Vitor Feitosa Almeida

Carro Controlado por Bluetooth com Modo Segue Linha Código do Projeto

PAULO RICARDO GOMES GOIS SILVA VITOR FEITOSA ALMEIDA

CÓDIGO DO PROJETO Carro Controlado por Bluetooth com Modo Segue Linha

Código do projeto referente a segunda unidade da matéria Fundamentos e Arquitetura de Computadores.

```
#include <NewPing.h>
// Define o Pino 2 como o pino de comunicação do Bluetooth.
#define BTState 2
// Define os pinos de utilização do motor.
#define IN1 13
#define IN2 12
#define IN3 11
#define IN4 10
// Define os pinos de utiização dos sensores ultrassônicos frontal e traseiro
#define echo_f
#define trigger_f 3
#define echo_t
#define trigger_t 9
#define max_distancia 100
// Cria os sonares
NewPing sonar_f (trigger_f, echo_f, max_distancia);
NewPing sonar_t (trigger_t, echo_t, max_distancia);
// Variáveis
int i = 0;
int j = 0;
int state_rec;
int vSpeed = 255;
char state;
bool manual = true;
float distancia_f;
```

```
float distancia_t;
void setup() {
 // Inicializa a comunicação serial em 9600 bits.
 Serial.begin(9600);
 // Inicializa as portas como entrada e saída.
 pinMode(IN1, OUTPUT);
 pinMode(IN2, OUTPUT);
 pinMode(IN3, OUTPUT);
 pinMode(IN4, OUTPUT);
 pinMode(BTState, INPUT);
}
void loop() {
 distancia_f = sonar_f.ping_cm();
 distancia_t = sonar_t.ping_cm();
 // Para o carro quando a conexão com Bluetooth é perdida ou desconectada.
 if (digitalRead(BTState) == LOW) {
  state_rec = 'S';
 }
 // Salva os valores da variável 'state'
 if (Serial.available() > 0) {
  state_rec = Serial.read();
  state = state_rec;
 }
 // Altera a velocidade de acordo com valores especificados.
 if (state == '0')
                 { vSpeed = 0; }
```

```
else if (state == '4') { vSpeed = 100; }
else if (state == '6') { vSpeed = 155; }
else if (state == '7') { vSpeed = 180; }
else if (state == '8') { vSpeed = 200; }
else if (state == '9') { vSpeed = 230; }
else if (state == 'q') { vSpeed = 255; }
// Imprime no monitor serial o state atual caso seja diferente de 'S'.
if (state != 'S') { Serial.print(state); }
// Verifica se o carro está em modo manual ou seguidor de linha.
if (state == 'x') { manual = true; }
else if (state == 'X') { manual = false; }
if (manual == true) {
// Se o estado recebido for igual a 'F', o carro se movimenta para frente.
 if (state == 'F') {
  if (distancia_f < 10 && distancia_f > 0) {
   analogWrite(IN1, 0);
   analogWrite(IN2, 0);
   analogWrite(IN3, 0);
   analogWrite(IN4, 0);
  }
  else {
   analogWrite(IN1, 0);
   analogWrite(IN2, vSpeed);
   analogWrite(IN3, 0);
   analogWrite(IN4, vSpeed);
  }
 }
```

```
else if (state == 'I') { // Se o estado recebido for igual a 'I', o carro se movimenta para Frente
Direita.
   analogWrite(IN1, 0);
   analogWrite(IN2, 100);
   analogWrite(IN3, 0);
   analogWrite(IN4, vSpeed);
  }
  else if (state == 'G') { // Se o estado recebido for igual a 'G', o carro se movimenta para
Frente Esquerda.
   analogWrite(IN1, 0);
   analogWrite(IN2, vSpeed);
   analogWrite(IN3, 0);
   analogWrite(IN4, 100);
  }
  else if (state == 'B') { // Se o estado recebido for igual a 'B', o carro se movimenta para trás.
   if (distancia_t < 10 && distancia_t > 0) {
    analogWrite(IN1, 0);
    analogWrite(IN2, 0);
    analogWrite(IN3, 0);
    analogWrite(IN4, 0);
   }
   else{
    analogWrite(IN1, vSpeed);
    analogWrite(IN2, 0);
    analogWrite(IN3, vSpeed);
    analogWrite(IN4, 0);
   }
  }
```

```
else if (state == 'H') { // Se o estado recebido for igual a 'H', o carro se movimenta para Trás
Esquerda.
   analogWrite(IN1, vSpeed);
   analogWrite(IN2, 0);
   analogWrite(IN3, 100);
   analogWrite(IN4, 0);
  }
  else if (state == 'J') { // Se o estado recebido for igual a 'J', o carro se movimenta para Trás
Direita.
   analogWrite(IN1, 100);
   analogWrite(IN2, 0);
   analogWrite(IN3, vSpeed);
   analogWrite(IN4, 0);
  }
  else if (state == 'L') { // Se o estado recebido for igual a 'L', o carro se movimenta para
esquerda.
   analogWrite(IN1, 0);
   analogWrite(IN2, vSpeed);
   analogWrite(IN3, vSpeed);
   analogWrite(IN4, 0);
  }
  else if (state == 'R') { // Se o estado recebido for igual a 'R', o carro se movimenta para
direita.
   analogWrite(IN1, vSpeed);
   analogWrite(IN2, 0);
   analogWrite(IN3, 0);
   analogWrite(IN4, vSpeed);
  }
```

```
else if (state == 'S') { // Se o estado recebido for igual a 'S', o carro permanece parado.
    analogWrite(IN1, 0);
    analogWrite(IN2, 0);
    analogWrite(IN3, 0);
    analogWrite(IN4, 0);
}
else {
}
```