Анализ изображений и видео

Лекция 4: Построение признаков и сравнение изображений: глобальные признаки

Наталья Васильева nvassilieva@hp.com HP Labs Russia

Вопросы:

- 1. К исходному изображению применяется усредняющая маска для подавления шума, а затем маска лапласиана для улучшения мелких деталей. Изменится ли результат, если поменять очередность этих операций?
- 2. С помощью какой операции можно полностью удалить из изображения изолированные темные или светлые небольшие области? Каким должен быть размер маски, если известно, что размер таких областей не превосходит п пикселей?
- 3. Покажите, что второй проход операции эквализации гистограммы даст точно тот же результат, что и после первого прохода.
- 4. Совместное использование процедур фильтрации с усилением высоких частот и эквализации гистограммы является эффективным методом повышения резкости и улучшения контраста. Влияет ли порядок на окончательный результат? Почему?

- Поиск
- Классификация
 - indoor/outdoor
 - landscape/city/forest/desert/...
- Аннотирование
- Image parsing

Поиск изображений

Классификация, кластеризация

Обучение классификатора: сопоставление особенностей изображений меткам классов Обучение

Модель классификатора

Тестирование

Тестовое изображение

Сопоставление тестового изображения модели классификатора

Предсказанные классификатором классы:

open outdoor

Обрнаружение объектов

Аннотирование

• Небо, гора, дом, трамвай, пикап, набережная, трава, солнечно, день, дорога,...

Как сравнивать?

- Представить каждое изображение в виде набора признаков
 - КОМПАКТНОСТЬ
 - описательность
- Сравнивать наборы признаков между собой => сравнивать изображения

Признаки изображений

Аннотации и метаданные:

- тэги, аннотации;
- дата создания;
- геотэги;
- названия файла;
- параметры съемки
 (выдержка, диафрагма, наличие вспышки...).

Признаки, полученные по значениям пикселей:

- цветовые;
- текстурные;
- формы;
- пространственного расположения.

Признаки изображений

Описывают картинку целиком:

- средняя яркость;
- среднее значение по красному каналу;
- ...

Обычно, признаки вычисляются по всем пикселям изображения

Описывают часть картинки:

- средняя яркость верхней левой четверти;
- среднее значение по красному каналу в окрестности центра изображения;

- ...

Сегментация, поиск точек интереса, построение признаков по окрестностям точек интереса

Пространства признаков

Вектор признаков – набор числовых параметров, отражающих особенности изображения

Пространство признаков – пространство векторов признаков с заданной функцией подобия (расстояния) для их сравнения.

Copyrigin 2012 Frantiers design betweepings Company, 21. The information contained notein to subject to change minous notes.

Комбинирование признаков

$$D = \sum_{i} c_{i} d_{i}$$

Цвет

$$F(I) = (h_1^I, h_2^I, ..., h_N^I)$$

Метрики: L_1 , L_2 , L_∞ , χ^2 , EMD (earth mover's distance), ...

Мат. ожидание, дисперсия, 3ий момент: для каждого цветового канала

Метрики: ~L₁

Stricker M., Orengo M. Similarity of Color Images. Proceedings of the SPIE Conference, vol. 2420, p. 381-392, 1995

Популярные функции расстояния для гистограмм

- Пересечение гистограмм (Histogram intersection)
 - Гистограммы должны быть нормализованы
 - Эквивалента L_1

$$histint(h_i, h_j) = 1 - \sum_{m=1}^{K} \min(h_i(m), h_j(m))$$

- Chi-squared Histogram matching distance

$$\chi^{2}(h_{i}, h_{j}) = \frac{1}{2} \sum_{m=1}^{K} \frac{\left[h_{i}(m) - h_{j}(m)\right]^{2}}{h_{i}(m) + h_{j}(m)}$$

Квантование пространства при построении гистограмм

- Схема квантования влияет на размер вектора признаков
- Если метрика не учитывает подобие цветов:
 - Много промежутков расстояние между близкими по цвету может быть большим
 - Мало промежутков расстояние между далекими по цвету может быть маленьким

Квантование в случае многомерных признаков

- Requires lots of data
- Loss of resolution to avoid empty bins

Marginal histogram

- Requires independent features
- More data/bin than joint histogram

Квантование пространства при помощи кластеризации

- Построение кластеров по признакам обучающего множества
- Определение центров кластеров
- Для пикселя тестового изображения принадлежность промежутку квантования по ближайшему центру

Выбор схемы квантования цветового пространства

Проверка существования пороговых значений шага квантования, таких что выбор меньших шагов не приводит к повышению качества результатов поиска

Число	HSI*, nHSI*,	CIELab,	nRGB
диапазонов	HCL, nHCL	nCIELab	
36	$\langle 6, 2, 3 \rangle$		
41	$\langle 6,2,3\rangle_{th}$		
64			$\langle 4, 4, 4 \rangle$
72	$\langle 12, 2, 3 \rangle$	$\langle 2, 6, 6 \rangle$	
96	$\langle 6, 4, 4 \rangle$		
108	$\langle 18, 2, 3 \rangle$		
144		$\langle 4, 6, 6 \rangle$	
216	$\langle 6, 6, 6 \rangle$	$\langle 6, 6, 6 \rangle$	$\langle 6, 6, 6 \rangle$
288	$\langle 12, 4, 6 \rangle$	$\langle 2, 12, 12 \rangle$	
512			$\langle 8, 8, 8 \rangle$
576	$\langle 12, 6, 8 \rangle$		
586	$\langle 12, 6, 8 \rangle_{th}$		
864		$\langle 6, 12, 12 \rangle$	
1152		$\langle 8, 12, 12 \rangle$	
1728	$\langle 12, 12, 12 \rangle$	$\langle 12, 12, 12 \rangle$	$\langle 12, 12, 12 \rangle$
3060	$\langle 17, 12, 15 \rangle$		
3077	$\langle 17, 12, 15 \rangle_{th}$		
5832	$\langle 18, 18, 18 \rangle$	$\langle 18, 18, 18 \rangle$	$\langle 18, 18, 18 \rangle$

Пространства и схемы квантования, участвовавшие в экспериментах

• Равномерное квантование

$$ColorSpace \langle K \times L \times M \rangle = \{\Delta_{k,l,m}\}_{k=1..K,l=1..L,m=1..M},$$

$$\Delta_{k,l,m} = \{(x,y,z) | x \in (x_k,x_{k+1}], y \in (y_l,y_{l+1}], z \in (z_m,z_{m+1}]\},$$

$$x_j = j\delta_x, \quad y_j = j\delta_y, \quad z_j = j\delta_z.$$

 Равномерное квантование с граничными условиями пространств семейства HSV

$$ColorSpace \langle K \times L \times M \rangle_{th} = \Delta^{B} \cup \Delta^{W} \cup \{\Delta_{m}^{G}\}_{m=1..M} \cup \{\Delta_{k,l,m}\}_{k=1..K,l=1..L,m=1..M},$$

$$\Delta^{B} = \{(x,y,z)|z \leq I^{B}\}, \quad \Delta^{W} = \{(x,y,z)|z \geq I^{W}\},$$

$$\Delta_{m}^{G} = \{(x,y,z)|y \leq S^{G}, z \in (z_{m},z_{m+1}]\},$$

$$\Delta_{k,l,m} = \{(x,y,z)|x \in (x_{k},x_{k+1}], y \in (y_{l},y_{l+1}], z \in (z_{m},z_{m+1}]\},$$

$$x_{j} = j\delta_{x}, \quad y_{j} = S^{G} + j\delta_{y}, \quad z_{j} = I^{B} + j\delta_{z}.$$

Histograms: Implementation issues

- Quantization
 - Grids: fast but applicable only with few dimensions
 - Clustering: slower but can quantize data in higher dimensions

Need less data Coarser representation Many Bins
Need more data
Finer representation

- Matching
 - Histogram intersection or Euclidean may be faster
 - Chi-squared often works better
 - Earth mover's distance is good for when nearby bins represent similar values

Slide credit: James Hays

Цветовые гистограммы – недостатки

1. Не учитывается подобие цветов:

- Кумулятивные гистограммы
- $d(H_1, H_2) = \sqrt{(H_1 H_2) \cdot A \cdot (H_1 H_2)^T}$

А – матрица с коэффициентами «подобия» цветов

Niblack W., Barber R., et al. The QBIC project: Querying images by content using color, texture and shape. In IS&T/SPIE International Symposium on Electronic Imaging: Science & Technology, Conference 1908, Storage and Retrieval for Image and Video Databases, Feb. 1993

Цветовые гистограммы – недостатки

2. Не учитывается пространственное расположение цветов:

$$H_A = H_B = H_C$$

But what about layout?

All of these images have the same color histogram

Slide credit: James Hays

Пространственное расположение цветов

- Разбиение изображения на фиксированные блоки
- «Нечеткие области»

Stricker M., Dimai A. Spectral Covariance and Fuzzy Regions for Image Indexing. Machine Vision and Applications, vol. 10., p. 66-73, 1997

Сегментация

Цветовая гистограмма с информацией о пространственном расположении цветов

Вектор признаков

$$HistSP(I) = \{c_i \mid c_i = (p_i, x_i, y_i)\}_{i = 1..N}$$

N – число цветовых диапазонов,

 P_{i} – доля пикселей і-го диапазона,

(x_i, y_i) – нормированные координаты центра масс пикселей i-го диапазона.

Функция подобия

$$D_{HistSP}(I^{(1)}, I^{(2)}) = \sum_{i=1}^{N} \underbrace{\left(\left(D_p(\mathbf{c_i^{(1)}}, \mathbf{c_i^{(2)}}) + \alpha \right) \left(D_{xy}(\mathbf{c_i^{(1)}}, \mathbf{c_i^{(2)}}) + \beta \right) - \alpha \beta \right)}_{D_i},$$
 где

$$D_{p}(\mathbf{c_{i}^{(1)}}, \mathbf{c_{i}^{(2)}}) = |p_{i}^{(1)} - p_{i}^{(2)}|,$$

$$D_{xy}(\mathbf{c_{i}^{(1)}}, \mathbf{c_{i}^{(2)}}) = \begin{cases} \frac{\sqrt{(x_{i}^{(1)} - x_{i}^{(2)})^{2} + (y_{i}^{(1)} - y_{i}^{(2)})^{2}}}{max_{xy}}, & p_{i}^{(1)} > 0 \land p_{i}^{(2)} > 0 \\ 1, & p_{i}^{(1)} = 0 \lor p_{i}^{(2)} = 0 \end{cases}$$

Эффективность поиска по цветовым гистограммам

Превосходство признаков HistSP вкупе с функцией D_{HistSP} над классическими гистограммами с манхеттенской метрикой

Палитра	Число
	диапазонов
$nHSI^*(6, 2, 3)$	36
$nHSI^*(6, 2, 3)_{th}$	41
$nHSI^*(12, 2, 3)$	72
$nHSI^*(6, 4, 4)$	96
$nHSI^*(18, 2, 3)$	108
$nHSI^*(16, 6, 6)$	216
$nHSI^*(12, 4, 6)$	288
$nHSI^*(12,6,8)$	576
$nHSI^*(12, 6, 8)_{th}$	586
$nHSI^*(12, 12, 12)$	1728
$nHSI^*(17, 12, 15)$	3060
$nHSI^*(17, 12, 15)_{th}$	3077
$nHSI^*$ (18, 18, 18)	5832

ImageDB-1000: 1000 изображений, 100 запросов

Добавление граничных условий позволило повысить показатели точности и полноты для схем с небольшим числом цветовых диапазонов (выигрыш в точности до 10%).

При равномерном квантовании оптимально использование порядка 500 цветовых диапазонов.

При равномерном квантовании с граничными условиями близкие по точности и полноте результаты при 41 диапазоне.

Гистограммы или моменты? (1)

Stricker M., Orengo M. Similarity of Color Images. ... (3000 изображений)

rank of the image

2 H		rank of the image			may
index sim. mea	asure				max.
	W_1	4	5	8	8
9 moments	W_2	2	8	6	8
	W_3	4	6	9	9
8/2/2	L_{∞}	34	98	79	98
16/4/4	L_{∞}	3	57	42	57
cum. hist. $8/2/2$	L_1	53	162	30	162
16/4/4	L_1	33	354	8	354
8/2/2	L_2	65	158	34	158
16/4/4	L_2	15	306	11	306
8/2/2	L_1	138	394	48	394
16/4/4	L_1	4	132	6	132
histogram $8/2/2$	L_2	71	541	102	541
16/4/4	L_2	10	1358	75	1358

Гистограммы или моменты? (2)

База Corel Photo Set (285 изображений)

	Полнота	Точность
ColorHist	56,77 %	23,02 %
ColorMoment	55,98 %	25,06 %

Текстура

Текстура

Матрицы смежности

Grey Level Co-occurrence Matrices (GLCM):

Матрица частот пар пикселей определенной яркости, расположенных на изображении определенным образом относительно друг друга.

$$C(i,j) = \sum_{p=1}^{N} \sum_{q=1}^{M} \begin{cases} 1, \, ecnu \, I(p,q) = i, \, I(p + \Delta x, q + \Delta y) = j \\ 0, \, u$$
наче

 $(\Delta x, \Delta y)$ – параметр сдвига, задающий взаимное расположение пикселей;

I(p,q) – уровень яркости пикселя изображения, расположенного в точке (p, q).

Матрицы смежности: пример

Матрицы смежности: характеристики

Статистические параметры, вычисленные по матрицам:

$$Energy = \sum_{i} \sum_{j} C^{2}(i,j)$$
 - минимален, когда все элементы равны

$$Entropy = -\sum_{i}\sum_{j}C(i,j)\log_{2}C(i,j)$$
 - мера хаотичности, максимален, когда все элементы равны

$$Contrast = \sum_i \sum_j (i-j)^2 C(i,j)$$
 - мал, когда большие элементы вблизи главной диагонали

$$Inverse\ Difference\ Moment = \sum_i \sum_j \frac{C(i,j)}{1+(i-j)^2}$$
 - мал, когда большие элементы далеки от главной диагонали

Признаки Tamura

Характеристики, существенные для зрительного восприятия:

- Зернистость (coarseness)
- Контрастность (contrast)
- Направленность (directionality)
- Линейность (line-likeness)
- Регулярность (regularity)
- Грубость (roughness)

Tamura image:

Coarseness-coNtrast-Directionality

точки в трехмерном пространстве CND

Признаки:

- Евклидово расстояние в 3D (QBIC)
- 3D гистограмма (Mars)

Текстура: спектральные

Вейвлет-признаки

Вейвлет-анализ – разложение сигнала по специальному базису:

$$f(x) = \sum_{j,k} \alpha_k \psi_{j,k}(x)$$

$$\psi_{j,k} = 2^{j/2} \varphi(2^{j} x - k)$$

$$j,k \in \mathbb{Z}, \quad \varphi(x) \in L^2(R)$$

Рис. 7.11. Взаимосвязь функциональных пространств, порождаемых масштабирующей функцией и вейвлет-функцией.

Рис. 7.12. Вейвлеты Хаара в подпространствах W_1 и W_2 .

Масштабирующая функция Хаара:

$$\varphi(x) = \begin{cases} 1 & 0 \le x < 1; \\ 0 & \text{в остальных случаях} \end{cases}$$

Вейвлет-функция Хаара:

$$\psi(x) = \begin{cases} 1, & 0 \le x < 0, 5; \\ -1, & 0, 5 \le x < 1; \\ 0 & \text{в остальных случаях.} \end{cases}$$

Вейвлет-признаки

Набор базисных функций – банк фильтров

Фильтры Габора

Масштабирующая функция: функция Габора

$$g(x,y) = \left(\frac{1}{2\pi\sigma_x\sigma_y}\right) \exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right) + 2\pi jWx\right]$$

Набор фильтров:

$$g_{mn}(x,y) = a^{-m}g(x',y'), \quad a>1, \quad m,n={\rm integer}, \quad {\rm m}=0,1,...,{
m S-1},$$
 $x'=a^{-m}(x\cos\Theta+y\sin\Theta),$ $y'=a^{-m}(-x\sin\Theta+y\cos\Theta),$ $K-{
m o}$ бщее число направле $S-{
m v}$ число масштабов, $U_h,\ U_l-{
m m}$ максимум и миним рассматриваемых частот.

$$K$$
 – общее число направлений, S – число масштабов, U_h , U_l – максимум и минимум рассматриваемых частот.

Фильтры ICA

Фильтры получены при помощи анализа независимых компонент

$$KL_H(H_1, H_2) = \sum_{b=1}^{B} (H_1(b) - H_2(b)) \log \frac{H_1(b)}{H_2(b)}$$

$$dist(I_1, I_2) = \sum_{i=1}^{N} KL_H(H_{1i}, H_{2i})$$

H. Borgne, A. Guerin-Dugue, A. Antoniadis. Representation of images for classification with independent features. Pattern Recognition Letters, vol. 25, p. 141-154, 2004

Сравнение текстурных признаков

Table 6: TRECVID evaluation – mean average precision retrieval

Feature	Single	Combined with HSV
Gabor-2-4	3.93%	4.31%
Co-occurrence homogeneity	2.85%	3.03%
Tamura standard all	2.57%	3.43%
Tamura CND	1.65%	2.72%
Tamura coarseness-2	0.97%	2.49%

Table 7: ImageCLEF retrieval results

Feature	Mean average precision		
Gabor-2-4	35.3%		
Co-occurrence homogeneity	19.8%		
Tamura standard all	20.7%		
Tamura CND	18.4%		
Tamura coarseness-2	14.5%		

В контексте задачи поиска

P. Howarth, S. Rüger. Robust texture features for still image retrieval. In Proc. IEE Vis. Image Signal Processing, vol. 152, No. 6, December 2006

Сравнение текстурных признаков (2)

Фильтры Габора v. s. фильтры ICA

Эксперименты по классификации изображений:

- Коллекция ангиографических снимков
 - Фильтры ICA лучше на 13%
- Коллекция текстур Brodatz
 - Фильтры ICA лучше на 4%

Snitkowska, E. Kasprzak, W. Independent Component Analysis of Textures in Angiography Images. Computational Imaging and Vision, vol. 32, pages 367-372, 2006.

Форма объектов

Требования к признакам формы

- Инвариантность к параллельному переносу
- Инвариантность к изменению масштаба
- Инвариантность к повороту
- Устойчивость к незначительным изменениям формы
- Простота вычисления
- Простота сравнения

Форма объектов: границы

Цепные коды

Нумерация направлений для 4-связного и 8-связного цепных кодов:

A: 03001033332322121111

Б: 70016665533222

Пример:

Инвариантность к выбору начальной точки: минимальный код

70016665533222 -> 00166655332227

Инвариатность к повороту: разности цифр кода

00166655332227 -> 01500706070051

Дескрипторы Фурье

- 1. Вычисление сигнатуры (2D -> 1D):
 - Расстояние от центроида до границы
 - Комплексные координаты: z(t) = x(t) + iy(t)
 - **.**..
- 2. Вычисление коэффициентов Фурье (s(t) сигнатура):

$$u_n = \frac{1}{N} \sum_{t=0}^{N-1} s(t) e^{-j2\pi nt/N}$$

3. Нормализация (NFD – Normalized Fourier Descriptors):

$$\frac{|u_1|}{|u_0|}, \frac{|u_2|}{|u_0|}, \dots, \frac{|u_{N-1}|}{|u_0|}$$

4. Сравнение:

$$d = \left(\sum_{n=0}^{N_c} \left| f_I^n - f_J^n \right|^2 \right)^{\frac{1}{2}}$$

Форма объектов: области

Грид-метод

Инвариантность:

Нормализация по главной оси:

- направление;
- размер;
- позиционирование на гриде.

Инвариантные моменты

Момент порядка (р+q) двумерной непрерывной функций:

$$m_{pq} = \iint x^p y^q f(x, y) dx dy$$

Центральные моменты для f(x,y) – дискретного изображения:

$$\mu_{pq} = \sum_{x} \sum_{y} (x - \overline{x})^{p} (y - \overline{y})^{q} f(x, y), \quad \overline{x} = \frac{m_{10}}{m_{00}}, \quad \overline{y} = \frac{m_{01}}{m_{00}}$$

Вектор признаков:

С использованием нормированных центральных моментов был выведен набор из 7 инвариантных к параллельному переносу, повороту и изменению масштаба моментов.

Сравнение признаков формы

Table 1. Average retrieval efficiency values for different methods. T is the short list size of retrieved images

Methods	T=5	T=10	T = 15	T = 20
Reduced chain code	55.1%	47.6%	50.0%	60.6%
Fourier descriptors (FD)	72.2%	76.9%	75.9%	74.9%
UNL features	81.3%	79.9%	83.7%	89.3%
Moment invariants (MI)	84.7%	86.3%	86.8%	87.7%
Zernike moments	66.9%	66.5%	70.4%	78.2%
Pseudo-Zernike moments	66.9%	66.5%	70.4%	78.2%
MI and FD	93.8%	87.3%	87.1%	89.6%
MI and UNL	93.3%	89.2%	89.3%	91.1%

Mehtre B. M., Kankanhalli M. S., Lee W. F. Shape measures for content based image retrieval: a comparison. Inf. Processing and Management, vol. 33, No. 3, pages 319-337, 1997.

Заключение

- Большой выбор различных способов представления изображений
 - Цвет: гистограммы или статистическая модель?
 - Текстура: фильтры Габора, фильтры ICA
 - Форма: дескрипторы Фурье, инвариантные моменты
- При сравнении изображений часто необходимо комбинировать различные признаки

