Core Services

Phillip Babey

Recap

- Linux
 - cat /etc/everything
- Windows
 - Computer\HKEY_LOCAL_MACHINE\oh_my_god_there_are_so_many_keys
- Networking
 - FIN? More like power machine broke
- What next?

What is a Service?

- In Linux when we refer to services (daemons), we are talking about a
 - Process
 - That runs independent of a logon
 - And often listens on a port
 - Like tcp/22
- In Windows Services are operate closely the same to unix services
- There usually can only be a single instance of a service

How Linux does the daemon

- Services are controlled by an init process
 - This is the first process started on system boot
 - All other processes are children of it
 - PID 1
 - Typically systemd unless your on alpine or some unknown fruit named
- Systemd syntax:
 - systemctl <verb> <service> [options]
 - Verbs:
 - start
 - stop
 - enable
 - disable
 - Status
 - systemctl --type=service

Windows?

- Similar to Linux, there is one service that rules them all
 - services.exe The Service Control Manager (SCM)
- Every service reports to the SCM
 - Must also adhere to its standards
- "Enjoy ur GUI xD" some linux nerds
 - You can interact with services through the command line
 - sc <option>
 - sc query <service name>
 - sc start <service name>
 - sc stop <service name>
 - sc qc <service name>
 - Or just use this ---->

Linux Config Files

- You picked Linux because you want to have control over your system.
 - This means you need to know where the configuration files are
- /etc/<service>/
 - 9/10 times this is where the configuration files are
 - The config file is usually called <service>.conf
 - Sometimes you will see a .d appended to the service name
 - This is to denote that it is a daemon
- Ex.
 - /etc/nginx/
 - o /etc/sshd/
 - /etc/scoring.sh (totally not redteam @Choi)
 - Nor is this ---->

Windows Config Files

- Registry
 - HKLM/SYSTEM/CurrentControlSet/Services
 - Contains a lot of service configuration options
- Services.msc
 - A lot easier to work with. Most of your service config changes should be done through here
 - Registry machine hard.

Core Services

- DNS
 - Domain Name Service
- SSH
 - Secure Shell
- FTP
 - File Transfer Protocol
- SMTP
 - Simple Mail Transfer Protocol
- RDP
 - Remote Desktop Protocol
- DHCP
 - Dynamic Host Configuration Protocol

- MYSQL
 - Database
- Other Databases
 - Mongo, Cassandra, Postgres
- Apache/nginx
 - Web
- Samba/SMB
 - Remote file shares
- The T word
 - Telnet
 - Just no

DNS: The Phonebook of the Internet

- DNS: Port 53/udp AND 53/tcp
 - Hierarchy of servers that resolve names into IP addresses
 - Can you remember grandma's phone number?
 - How about 192.64.119.183?
 - Recursive and iterative
 - Recursive servers will do all the work for you, ask a question and get the final answer
 - Iterative will tell you who the next person you should ask is
 - Many different types of records:
 - SOA Start Of Authority (Which DNS server is authoritative for this domain)
 - A or AAAA Alias (name -> IP)
 - MX Mail (IP of domain's mail server)
 - CNAME Canonical Name (name -> name)
 - ...(there are several more, look them up)

SSH

- Get comfortable with the config files:
 - PermitRootLogin
 - Please don't, or at least without-password
 - X11Forwarding
 - GUI over SSH...
 - o Banner
 - Greeting message
 - AuthorizedKeysFile
 - Which keys are allowed to connect
 - PubKeyAuthentication
 - Can clients use public keys?

DHCP

- Dynamic Host Configuration Protocol
- Assigns IP addresses to hosts on a network
 - Dynamically
- Can also send configurations such as DNS servers
- DORA process
 - Discover Client sends a broadcast trying to find a server
 - Offer Server issues an offer for an IP address in its pool
 - Request The client requests that IP
 - Acknowledge The server acknowledges, and includes more info like netmask and gateway
- Net services spends half a semester on DHCP
 - Other half is DNS

FTP

- Port 21/tcp
- By itself not secure
 - Everything is plaintext...
- You should really use SFTP
 - SSH + FTP
- Some common FTP misconfigurations
 - Anonymous login enabled
 - Chown on upload
 - Changes the owner when a file is uploaded
 - Chmod on upload
 - Change file permissions on upload
 - Like make it executable

Mail

- Simple Mail Transfer Protocol
- SMTP= 25/tcp
 - Used for sending emails
- Pop3 = 110/tcp
 - Used for receiving but from one client
 - A.k.a deletes your email after you store it locally
- Imap = 143/tcp
 - Used for **receiving** but from multiple clients
- Common Servers
 - postfix (SMTP) and dovecot for linux
 - MS Exchange for windows (pls no hmail_

VNC/X11/RDP

- Port 5900, 6000, 3389
- Remotely manage another computer using a desktop environment.
- VNC can be used without authentication.
- VNC: vncviewer <IP address>
- RDP can have weak passwords logins that are acceptable to a brute-force.
- RDP: rdesktop <IP address> (for linux)
- X11: ssh -X superadmin@192.168.1.1

Databases

- Two of the most popular (there are lots):
 - MySQL: 3306/tcp
 - MongoDB: 27017/tcp
- Poor configurations
 - Not sanitizing input
 - SQL injection
 - More on this during web week (#5)
 - Weak/default/no passwords

Sharing is caring

Web

- Ports: 80/tcp (HTTP) and 443/tcp (HTTPS)
- We have an entire week devoted to web!
 - Week 10: Come back in like a fe wmonths
 - Also a whole semester @csec380
- Common problems:
 - Unsanitized inputs
 - XSS, SQLi
 - Permissioning
 - .ht files
 - File uploads
 - Web shells
 - If webserver is running as root
 - You win
- IIS is cool (Windows), also apache and nginx (linux)

SMB

- Ports: 139,445,137,138
- Network shares for Linux and Windows.
- Samba and NFS by default do not require authentication.
- SMB shares require authentication but can be DISABLED.
 - Also: MS17-010 anyone?
- Open network shares can be use for data exfiltration.
- Samba:
 - mount -t cifs -o <username>,<password> //<remote directory> /<local directory>
- SMB:
 - smbclient -L <IP address> [-U <username>] [-P <password>]
- NFS:
 - mount <IP Address>:<remote directory> <local directory>

Telnet

- Port 23/tcp
- How about no
- There is no encryption
 - All usernames and passwords sent in cleartext.
 - As seen in basically every class here
- Be aware networking devices may use it.
- Good for two things:
 - telnet towel.blinkenlights.nl
 - Sending email
 - Look this up

Detecting Services

- To take advantage of poor configurations, you need to know what is running
 - o nmap -sV -Pn --top-ports <10-100> <target IP>
 - o nmap -sV -p- <target IP>
- Use your favorite search engine to learn about the services you found
 - http://lmgtfy.com/?iie=1&q=mysql+metadata
- Once you have info on what's actually running then you can make a plan to exploit that, redteaming 101.

