CS 446/ECE 449: Machine Learning

A. G. Schwing

University of Illinois at Urbana-Champaign, 2020

Scribe & Exercises

L9: Deep Neural Networks

Goals of this lecture

- Understanding forward and backward pass
- Learning about backpropagation

Reading material

• I. Goodfellow et al.; Deep Learning; Chapters 6-9

Recap: Our earlier framework:

$$\min_{\mathbf{w}} \frac{C}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{i \in \mathcal{D}} \left(\epsilon \ln \sum_{\hat{y}} \exp \frac{L(y^{(i)}, \hat{y}) + \mathbf{w}^{T} \psi(x^{(i)}, \hat{y}))}{\epsilon} - \mathbf{w}^{T} \psi(x^{(i)}, y^{(i)}) \right)$$

What is a possible issue/limitation?

Linearity in the feature space $\psi(x,y)$. Fix: use kernels. But still learning a model **linear** in the parameters ${\bf w}$

How to fix this?

Replace $\mathbf{w}^T \psi(x, y)$ with a general function $F(\mathbf{w}, x, y) \in \mathbb{R}$

$$\min_{\boldsymbol{w}} \frac{C}{2} \|\boldsymbol{w}\|_2^2 + \sum_{i \in \mathcal{D}} \left(\epsilon \ln \sum_{\hat{y}} \exp \frac{L(\boldsymbol{y}^{(i)}, \hat{\boldsymbol{y}}) + F(\boldsymbol{w}, \boldsymbol{x}^{(i)}, \hat{\boldsymbol{y}})}{\epsilon} - F(\boldsymbol{w}, \boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \right)$$

General framework:

$$\min_{\boldsymbol{w}} \frac{C}{2} \|\boldsymbol{w}\|_{2}^{2} + \sum_{i \in \mathcal{D}} \left(\epsilon \ln \sum_{\hat{y}} \exp \frac{L(y^{(i)}, \hat{y}) + F(\boldsymbol{w}, x^{(i)}, \hat{y})}{\epsilon} - F(\boldsymbol{w}, x^{(i)}, y^{(i)}) \right)$$

How to get to

- Logistic regression
- Binary SVM
- Multiclass regression
- Multiclass SVM
- Deep Learning

Deep Learning:

What function $F(\mathbf{w}, x, y) \in \mathbb{R}$ to choose? $(y \in \{1, ..., K\})$

Choose any differentiable composite function

$$F(\mathbf{w}, x, y) = f_1(\mathbf{w}_1, y, f_2(\mathbf{w}_2, f_3(\dots f_n(\mathbf{w}_n, x) \dots))) \in \mathbb{R}$$

 More generally: functions can be represented by an acyclic graph (computation graph)

Example:

$$F(\mathbf{w}, x, y) = f_1(w_1, y, f_2(w_2, f_3(...)))$$

Nodes are weights, data, and functions:

Internal representation used by deep net packages.

What are the individual functions/layers f_1 , f_2 etc.?

- Fully connected layers
- Convolutions
- Rectified linear units (ReLU): max{0, x}
- Maximum-/Average pooling
- Soft-max layer
- Dropout

Example function architecture: LeNet

Decreasing spatial resolution and the increasing number of channels

Example function architecture: AlexNet

Decreasing spatial resolution and the increasing number of channels

Why is the output 1000-dimensional?

Another deep net:

Those nets are structurally simple in that a layer's output is used as input for the next layer. This is not required.

Deep net training:

$$\min_{\mathbf{w}} \frac{C}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{i \in \mathcal{D}} \left(\ln \sum_{\hat{y}} \exp F(\mathbf{w}, x^{(i)}, \hat{y}) - F(\mathbf{w}, x^{(i)}, y^{(i)}) \right)$$

Often also referred to as maximizing the regularized cross entropy:

$$\max_{\mathbf{w}} - \frac{C}{2} \|\mathbf{w}\|_2^2 + \sum_{i \in \mathcal{D}} \sum_{\hat{y}} p_{\mathsf{GT}}^{(i)}(\hat{y}) \ln p(\hat{y}|x^{(i)}) \quad \text{with } \begin{cases} p_{\mathsf{GT}}^{(i)}(\hat{y}) = \delta(\hat{y} = y^{(i)}) \\ p(\hat{y}|x) \propto \exp F(\mathbf{w}, x, \hat{y}) \end{cases}$$

What is C? Weight decay (aka regularization constant)

$$\min_{\boldsymbol{w}} \underbrace{\frac{C}{2} \|\boldsymbol{w}\|_2^2}_{\text{weight decay}} - \sum_{i \in \mathcal{D}} \sum_{\hat{y}} p_{\text{GT}}^{(i)}(\hat{y}) \ln p(\hat{y}|x^{(i)})$$

Program:

$$\min_{\mathbf{w}} \frac{C}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{i \in \mathcal{D}} \left(\ln \sum_{\hat{y}} \exp F(\mathbf{w}, x^{(i)}, \hat{y}) - F(\mathbf{w}, x^{(i)}, y^{(i)}) \right)$$

How to optimize this?

Stochastic gradient descent with momentum: What was this again?

heavy ball rolling down

Gradient of

$$\min_{\mathbf{w}} \frac{C}{2} \|\mathbf{w}\|_{2}^{2} + \sum_{i \in \mathcal{D}} \left(\ln \sum_{\hat{y}} \exp F(\mathbf{w}, x^{(i)}, \hat{y}) - F(\mathbf{w}, x^{(i)}, y^{(i)}) \right)$$

is?

$$C\mathbf{w} + \sum_{i \in \mathcal{D}} \sum_{\hat{y}} \left(p(\hat{y}|x^{(i)}) - \delta(\hat{y} = y^{(i)}) \right) \frac{\partial F(\mathbf{w}, x^{(i)}, \hat{y})}{\partial \mathbf{w}}$$
softmax ground truth

How to compute this numerically:

- $p(\hat{y}|x) = \frac{\exp F(\mathbf{w}, x, \hat{y})}{\sum_{\tilde{y}} \exp F(\mathbf{w}, x, \tilde{y})}$ via soft-max which takes logits F as input
- $\frac{\partial F(\mathbf{w}, \mathbf{x}, \hat{\mathbf{y}})}{\partial \mathbf{w}}$ via backpropagation

Backpropagation example:

$$F(\mathbf{w}, x, y) = f_1(\mathbf{w}_1, y, f_2(\mathbf{w}_2, f_3(\mathbf{w}_3, x)))$$
 with activations
$$\begin{cases} x_2 = f_3(\mathbf{w}_3, x) \\ x_1 = f_2(\mathbf{w}_2, x_2) \end{cases}$$

What is $\frac{\partial F(\mathbf{w}, x, y)}{\partial w_3}$?

$$\frac{\partial f_1}{\partial x_1} \cdot \frac{\partial x_1}{\partial x_2} \cdot \frac{\partial x_2}{\partial w_3} = \underbrace{\frac{\partial f_1}{\partial f_2}}_{\underbrace{\partial f_3}} \cdot \underbrace{\frac{\partial f_2}{\partial w_3}}_{\underbrace{\partial w_3}}$$

What is $\frac{\partial F(\mathbf{w}, x, y)}{\partial w_2}$?

$$\frac{\partial f_1}{\partial x_1} \cdot \frac{\partial x_1}{\partial w_2} = \underbrace{\frac{\partial f_1}{\partial f_2}}_{} \cdot \underbrace{\frac{\partial f_2}{\partial w_2}}_{}$$

Generally: To avoid repeated computation, backpropagation on an acyclic graph. Nodes in this graph are weights, data, and functions.

Composite function represented as acyclic graph

Repeated use of chain rule for efficient computation of all gradients

What information needs to be stored at a function node:

- Inference: we can forget the intermediate result
- Learning:
 - Store intermediate results for fully connected layer, convolution
 - Some functions can be combined to reduce intermediate storage, e.g., X + ReLU, X + Sigmoid, X + tanh (inplace computation)

Difference between activation functions and layers

Recommendation: implement a simple deep net framework yourself

Remark:

Since $F(\mathbf{w}, x, y)$ is no longer constrained in any form, the loss function is generally no longer convex.

Implications:

- We are no longer guaranteed to find the global optimum
- Initialization of w matters if w is bad, the solution is not good.

Initialization:

- Not well understood in general
- Needs to break symmetry
- Random uniform

Uniform
$$\left(-\frac{1}{\sqrt{\text{fan in}}}, \frac{1}{\sqrt{\text{fan in}}}\right)$$

Glorot and Bengio (2010)

Uniform
$$\left(-\sqrt{\frac{6}{\text{fan in + fan out}}}, \sqrt{\frac{6}{\text{fan in + fan out}}}\right)$$

Remark

A deep net with a single fully connected layer is equivalent to logistic regression

Advantages of deep nets compared to usage of hand-crafted features:

Deep nets automatically learn feature space transformations (hierarchical abstractions of data) such that data is easily separable at the output

Disadvantage of deep nets compared to usage of features:

Deep nets are computationally demanding (GPUs) and require significant amounts of training data

Why this recent popularity:

- Sufficient computational resources
- Sufficient data
- Sufficient algorithmic advances
- Sufficient evidence that it works

This combination lead to significant performance improvements on many datasets

Algorithmic advances:

- Rectified linear unit $(\max\{0, x\})$ activation as opposed to sigmoid
 - ► Fixed the vanishing gradient problem for lower layers close to the input
- Dropout
 - Decorrelates different units, i.e., they learn different features
- Good initialization heuristics
 - Less prone to getting stuck in bad local optima
- Batch-Normalization during training
 - Normalizes data when training really deep nets
 - Normalize by subtracting mean and dividing by standard deviation

Choices in deep learning packages:

- Use an appropriate loss function
- Design a composite function $F(\mathbf{w}, x, y)$

Know what you are doing, i.e., know all the dimensions.

Loss functions:

CrossEntropyLoss

```
loss(x, class) = -log(exp(x[class]) / (\sum_j exp(x[j])))= -x[class] + log(\sum_j exp(x[j]))
```

NLLLoss

```
loss(x, class) = -x[class]
```

MSELoss

```
loss(x, y) = 1/n \setminus sum_i \mid x_i - y_i \mid^2
```

BCELoss

BCEWithLogitsLoss

```
loss(o,t) = -1/n \sum_{i=1}^{n} t(i[i] * log(sigmoid(o[i])) + (1-t[i]) * log(1-sigmoid(o[i])))
```

- L1Loss
- KLDivLoss

Why this form for the NLLLoss?

loss(x, class) = -x[class]

Intended to be used in combination with 'LogSoftmax':

$$f_i(x) = \log \frac{\exp x_i}{\sum_j \exp x_j}$$

Why? Numerical robustness ('log-sum-exp trick')

$$\log \sum_{j} \exp x_{j} = c + \log \sum_{j} \exp (x_{j} - c)$$

Don't try without, it will fail!

Popular architectures:

- LeNet
- AlexNet
- VGG (16/19 layers, mostly 3x3 convolutions)
- GoogLeNet (inception module)

ResNet (residual connections)

Imagenet Challenge:

- A large dataset: 1.2M images, 1000 categories
- AlexNet was run on the GPU, i.e., sufficient computational resources
- Rectified linear units rather than sigmoid units simplify optimization

Results:

Quiz:

- What are deep nets?
- How do deep nets relate do SVMs and logistic regression
- What is back-propagation in deep nets?
- What components of deep nets do you know?
- What algorithms are used to train deep nets?

Important topics of this lecture

- Deep nets
- Backpropagation

Up next:

Pytorch