8.07 Lecture Slides 16 November 4, 2019

ELECTRIC FIELDS IN MATTER

Announcements

Quiz 2 will be given on Wednesday, November 13, two weeks from today. Problem Set 6 is due this Friday, 11/1/19, and Problem Set 7 will be due the next Friday, 11/8/19. The quiz will include material through Problem Set 7.

Office hour modifications:

Yitian Sun is away this week.

Wednesday, 5:00–6:00 pm: office hour by me, Room 6-322 (as usual).

Thursday, 5:30–6:30 pm: office hour by me, Room 8-320.

Friday, 1:30–2:30 pm: office hour by me, Room 8-320.

Friday, 2:30–3:30 pm: office hour by Marin, Room 8-320.

Tuesday (11/12/19): 3:00–4:00 pm: office hour by Marin, Room 6C-419.

Tuesday (11/12/19): 4:30–5:30 pm: office hour by me, Room 6-322.

Tentative: Review Session, Tuesday evening, 11/12/19, by Yitian. Time?

Added after class: we decided that the review session, with Yitian, will be held at 7:30 pm on Tuesday, 11/12/19.

Bound Charges

Matter can become "polarized," meaning that it acquires a nonzero density of dipoles.

 $\vec{P}(\vec{r}) = \text{dipole moment per unit volume.}$

 $\vec{P}(\vec{r})$ is just a particular way of describing a distribution of charge. In principle, one can equivalently use $\rho(\vec{r})$

Given $\vec{P}(\vec{r})$, what is $\rho(\vec{r})$?

Answer:

$$ho_b(\vec{m{r}}) = - ec{m{
abla}} \cdot ec{m{P}}(ec{m{r}}) \; ,$$

and on the surface of a polarized material,

$$\sigma_b = m{ec P} \cdot \hat{m{n}}$$

where $\hat{\boldsymbol{n}}$ is the outward unit normal.

Derivations of Bound Charge Equations

- 1. Derivation using potential $V(\vec{r})$, as done by Griffiths.
- 2. Derivation based on counting the dipoles that are cut by the boundary of a given region, as done in The Feynman Lectures.
- 3. Method using δ -functions.

Electrostatic Field Equations in Matter

"Vacuum" Equations:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0} , \quad \vec{\nabla} \times \vec{E} = 0 .$$

These are the fundamental equations, which are **always** true, as long as all charges are included in ρ .

Bound and Free charges:

Write $\rho = \rho_{\text{free}} + \rho_{\text{bound}} \equiv \rho_f + \rho_b$. ρ_b is any charge described by the polarization density \vec{P} .

The Electric Displacement $ec{D}$:

Define
$$\vec{\boldsymbol{D}} \equiv \epsilon_0 \vec{\boldsymbol{E}} + \vec{\boldsymbol{P}}$$
 . Then

$$\vec{m{
abla}}\cdot \vec{m{D}} =
ho_f$$
 .

Note, however, that $\vec{\nabla} \times \vec{\boldsymbol{D}}$ is not necessarily zero.

Boundary Conditions:

$$egin{align*} E_{
m above}^{\perp} - E_{
m below}^{\perp} &= rac{\sigma}{\epsilon_0} \;, \ m{ec{E}}_{
m above}^{\parallel} - m{ec{E}}_{
m below}^{\parallel} &= 0 \;. \ D_{
m above}^{\perp} - D_{
m below}^{\perp} &= \sigma_f \;, \ m{ec{D}}_{
m above}^{\parallel} - m{ec{D}}_{
m below}^{\parallel} &= m{ec{P}}_{
m above}^{\parallel} - m{ec{P}}_{
m below}^{\parallel} \;, \end{split}$$

where "above" = outside the polarized material, and "below" means inside, \bot = perpendicular to interface, \parallel means parallel.

Linear Dielectrics

For many substances, called linear dielectrics, to a good approximation:

$$m{ec{P}} = \epsilon_0 \chi_e m{ec{E}} \; ,$$

where \vec{E} is the macroscopic \vec{E} -field, and χ_e is a property of the material called the electric susceptibility. χ_e is dimensionless. Then

$$\vec{\boldsymbol{D}} = (1 + \chi_e)\epsilon_0 \vec{\boldsymbol{E}} \equiv \epsilon \vec{\boldsymbol{E}} ,$$

where

$$\frac{\epsilon}{\epsilon_0} = 1 + \chi_e \equiv \epsilon_r$$

is called the **dielectric constant**, or sometimes the **relative permittivity**. ϵ is the **permittivity**, and ϵ_0 is the permittivity of free space, or the permittivity of the vacuum.

Linear Dielectrics and Laplace's Equation

I should have said, but didn't, that:

For a linear dielectric for which ϵ is independent of position, then

$$\vec{\boldsymbol{\nabla}} \times \vec{\boldsymbol{D}} = \vec{\boldsymbol{\nabla}} \times (\epsilon \vec{\boldsymbol{E}}) = \epsilon \vec{\boldsymbol{\nabla}} \times \vec{\boldsymbol{E}} = 0 ,$$

and

$$\nabla^2 V = -\vec{\boldsymbol{\nabla}} \cdot \vec{\boldsymbol{E}} = -\frac{1}{\epsilon} \vec{\boldsymbol{\nabla}} \cdot \vec{\boldsymbol{D}} = -\frac{\rho_f}{\epsilon} \ .$$

So, in particular, if $\rho_f = 0$, then $\nabla^2 V = 0$.

Example of a Problem with Linear Dielectrics

We partially did Example 4.7 from Griffiths, which involves a homogeneous linear dielectric material that is placed in an otherwise uniform electric field:

I should have justified $\nabla^2 V = 0$, inside the dielectric, by the argument on the previous slide.

