4.2.03 If $a \equiv b \pmod{n}$ prove that gcd(a, n) = gcd(b, n).

Proof. Let $a \equiv b \pmod{n}$ then $n|a-b \Rightarrow a-b=nk$ for some $k \in \mathbb{Z}$. Let $d = \gcd(a,n)$ and $e = \gcd(b,n)$. Then, d|a and $d|n \Rightarrow d|(a-nk) \Rightarrow d|b$. Using this fact, as d|n and $d|b \Rightarrow d|\gcd(b,n) \Rightarrow d|e$

Going the other direction, e|b and $e|n \Rightarrow e|(b+nk) \Rightarrow e|a$.

Thus, e|n and $e|a \Rightarrow g|\gcd(a,n) \Rightarrow e|d$

Therefore, as e|d and d|e, we have gcd(a, n) = gcd(b, n)

4.2.6c For $n \ge$, use congruence theory to establish each of the following divisibility statement: $27|2^{5n+1} + 5^{n+2}$

Proof. Notice that $32 \equiv 5 \pmod{27}$. Thus, $2^5 \equiv \pmod{27}$ Then, we have $2^{5n} \equiv 5^n \pmod{27}$. Then $2^{5n} \cdot 2 \equiv 2 \cdot 5^n \pmod{27}$ Observe.

$$2^{5n+1} + 5^{n+2} \equiv 2 \cdot 5^n + 5^{n+2} \pmod{27}$$
$$\equiv 5^n (2+25) \pmod{27}$$
$$\equiv 5^n \cdot 27 \pmod{27}$$
$$\equiv 0 \pmod{27}$$

Therefore, $27|2^{5n+1} + 5^{n+2}$

4.2.8d Prove if the integer a is not divisible by 2 or 3, then $a^2 \equiv 1 \pmod{24}$.

Proof. Let $a \in \mathbb{Z}$ such that a is not divisible by 2 or 3. As a is not divisible by 2, then a is odd. Notice. For some $k \in \mathbb{Z}$.

$$a^{2} = (2k+1)^{2} = 2k^{2} + 4k + 1 = 4k(k+1) + 1$$

By looking at the parity, we know that $2|K(k+1) \Rightarrow k(k+1) = 2l$ for some $l \in \mathbb{Z}$. Thus, 4(2l) + 1 = 8l + 1.

Thus, $a^2 \equiv 1 \pmod{8}$. Then, $8|a^2 - 1$. As a is not divisible by 3, then for some $q \in \mathbb{Z}$, a = 3q + 1 or a = 3q + 2

Case
$$a = 3q + 1$$
 $a^2 = (3q + 1)^2 = 9q^2 + 6q + 1 = 3(3q^2 + 2q) + 1$
So, $a^2 - 1 = 3(3q^2 + 2q) \Rightarrow 3|a^2 - 1$

Case
$$a = 3q + 2$$
 $a^2 = (3q + 2)^2 = 9q^2 + 12q + 4 = 3(3q^2 + 4q + 1) + 1$
So, $a^2 - 1 = 3(3q^2 + 4q + 1) + 1 \Rightarrow 3|a^2 - 1$

Thus, in both cases $3|a^2-1$

Therefore, as $8|a^2 - 1, 3|a^2 - a$, and gcd(3, 8) = 1, then $24|a^2 - 1 \Rightarrow a^2 \equiv \pmod{24}$

4.2.16 Use the theory of congruences to verify that $89|2^{44}-1$ and $97|2^{48}-1$.

$$2^{44} - 1 \equiv (2^{11})^4 - 1 \pmod{89}$$
$$\equiv (1)^4 - 1 \pmod{89}$$
$$\equiv 1 - 1 \pmod{89}$$
$$\equiv 0 \pmod{89}$$

Thus, $89|2^{44} - 1$

$$2^{48} - 1 = (2^6)^8 - 1 \equiv 64^8 - 1 \pmod{97}$$
$$64^8 = (64^2)^4 \equiv 1^4 - 1 \pmod{97}$$
$$\equiv 1 - 1 \pmod{97}$$
$$\equiv 0 \pmod{97}$$

Thus, $97|2^{48} - 1$

4.2.18 If $a \equiv b \pmod{n_1}$ and $a \equiv c \pmod{n_2}$, prove that $b \equiv c \pmod{n}$ where the integer $n = \gcd(n_1, n_2)$.

Proof. Let $a \equiv b \pmod{n_1}$ and $a \equiv c \pmod{n_2}$. So $n_1|a-b \Rightarrow a-b=n_1k_1, k_1 \in \mathbb{Z}$ and $n_2|a-c \Rightarrow a-c=n_2k_2, k_2 \in \mathbb{Z}$ Thus, $b-c=n_2k_2-n_1k_1$. Let $n=\gcd(n_1,n_2)\Rightarrow n|n_1$ and $n|n_2$. So $n|(n_2k_2-n_1k_1)\Rightarrow n|b-c$ Thus, $b\equiv c \pmod{n}$ where $n=\gcd(n_1,n_2)$