지능형 알고리즘 기반 운전점수계산 모델 및 평가 1세부

참여교수: 단국대학교 최종무 교수 임베디드 시스템 연구실

1. 연구내용 요약

지능형 알고리즘 기반 안전 운전 습관 분석 및 운전 점수 예측 기존 데이터 Feature 수 조정 및 Filtering

2. 지능형 알고리즘

■ DSI (=Driver Safety Index)

- $SI = 1 \frac{1}{d}(n_1\beta_1 + n_2\beta_2 + \ldots + n_i\beta_i + \ldots + n_d\beta_d)$
- n: maneuvers, b: coefficient, related to the total distance, d: distance
- Replace with linear model

RF (=Random Forest)

- Builds multiple decision trees and merges them together to get a more accurate and stable prediction
- Mostly used for classification tasks

SVM (Support Vector Machine)

- ▼ To find a hyperplane in an N-dimensional space(=N features) that distinctly classifies the data points
- Designed for regression problems

MLP (= Multi-Layer Perceptron) x

- Using Neural Network
- Class of feedforward ANN(= Artificial Neural Network)

3. 운전 데이터 : Tmap 데이터

▶ 각 Feature의 단계 데이터를 수치 데이터로 변환 후 저장

★ .csv file

	А	В	С	D	
1			deceleration		
2	3	5	4	94	
3	1	5	1	27	
4	1	4	3	42	
5	1	5	1	24	
6	4	5	5	75	
7	1	1	3	25	
8	3	4	5	45	
9	5	5	5	91	
10	3	5	4	83	
11	1	5	3	46	
12	2	3	2	30	
13	3	5	5	95	
14	5	5	5	100	
15	3	5	5	79	
16	4	4	3	91	
17	4	5	4	89	
18	3	5	4	59	
19	4	5	4	85	
20	5	5	5	90	
21	3	5	3	92	
22	5	5	5	99	
23	3	3	1	35	
24	5	1	1	32	
25	1	3	1	38	
26	1	1	1	23	
27	2	5	5	45	
28	4	5	5	70	
29	5	4	4	90	
30	5	3	1	94	
31	5	5	1	31	
32	3	5	5	91	

■ .json file

4. 결과

▶ 1. 알고리즘 비교

Test data	Train data	Data 1	Data 2
Data 1	DSI	12.370	12.373
	RF	9.828	10.118
	SVM	9.703	10.156
	MLP	10.465	11.109
Data 3	DSI	10.642	10.677
	RF	9.144	10.210
	SVM	9.188	11.119
	MLP	10.039	11.609

▶ 2. Feature 비교

Test data	Train data	Data 1	Data 2
D 1 1	DSI	12.370	15.722
	RF	9.828	9.237
Data 1	SVM	9.703	9.701
	MLP	10.465	10.710
	DSI	10.642	14.067
Data 2	RF	9.144	9.828
Data 3	SVM	9.188	10.858
	MIP	10 039	11 137

▶ 3. 데이터 필터링

Test data	Train data	Data 1	Data 2	Data 3	Data 4
Data 5	DSI	12.370	9.974	7.262	7.052
	RF	9.828	9.759	6.807	6.097
	SVM	9.703	9.951	7.261	6.202
	MLP	10.465	9.998	7.214	6.947

5. 활용 방안

● 기대 효과

- Driving Behavior Analysis를 통한 Driving Score를 이용해 UBI(Usage-Based Insurance)에 사용할 수 있음
- ▶ Driving Behavior Analysis를 실제 면허 취득 시 필요한 운전 교육에 활용할 수 있으며, 안전 운전 문화 정착에 기여할 수 있음.