Upravljanje po varijablama stanja

Jadranko Matuško Šandor Ileš

Fakultet elektrotehnike i računarstva

17. studenoga 2023,

Matematički model kuglice na klackalici

• Ubrzanje kuglice na klackalici ovisi o poziciji klackalice α :

$$\ddot{x} = \frac{5}{7}g\sin\alpha \to \frac{X(s)}{\alpha(s)} \approx \frac{5g}{7s^2}$$
 (1)

Kut klackalice ovisi o poziciji motora spojenog na prijenosnik:

$$\frac{\alpha}{\theta} = \frac{r}{I}.\tag{2}$$

 Pretpostavlja se da je krug regulacije pozicije reduktora opisan prijenosnom funkcijom:

$$\frac{\theta}{U_2} = \frac{K}{Ts+1} \frac{1}{s}.$$
 (3)

Blokovska shema kaskadnog sustava upravljanja kuglicom na klackalici

- Koristi se kaskadna struktura koja se sastoji od 2 PD regulatora
- Regulator za svaku petlju je moguće podesiti prema željenoj brzini odziva i željenom relativnom faktoru prigušenja ζ .
- Odabran je $\zeta = \frac{\sqrt{2}}{2}$ te $\omega_{2n} = \frac{\omega_{2n}}{K}$.

Utjecaj odnosa brzina unutarnje i vanjske petlje

 Ako je unutarnja petlja dovoljno brža od vanjske, unutarnja petlja se može zanemariti i može se koristiti kaskadna struktura upravljanja.

Utjecaj odnosa brzina unutarnje i vanjske petlje

- Vanjska petlja je odabrana da bude 2x sporija od unutarnje (K=2).
- Odziv stvarnog sustava je oscilatoran. Dinamike su spregnute i kaskadno upravljanje se više ne može koristiti.

 Kaskadna regulacija koja koristi PD regulatore i koristi sve mjerljive varijable stanja može se prikazati kao ekvivalentan regulator po varijablama stanja.

• Kako odrediti pojačanje *K* i *G* tako da se postigne željeni odziv zatvorenog kruga?

• Možemo pronaći prijenosnu funkciju zatvorenog kruga i izjednačiti s modelskom prijenosnom funkcijom.

• Uvedemo li $K^* = \frac{r}{L} \frac{5g}{7}$, prijenosnu funkciju zatvorenog kruga možemo zapisati kao:

$$G_{cl}(s) = \frac{KK^*G}{Ts^4 + (1 + KK_1)s^3 + KK_2s^2 + KK^*K_3s + KK^*K_4}.$$
 (4)

- Pojačanje G treba odabrati da se postigne jedinično pojačanje
 → G = K_A.
- Treba izjednačiti sljedeće polinome:

$$s^{4} + \frac{(1 + KK_{1})}{T}s^{3} + \frac{KK_{2}}{T}s^{2} + \frac{KK^{*}K_{3}}{T}s + \frac{KK^{*}K_{4}}{T} = (s - p_{1})(s - p_{2})(s - p_{3})(s - p_{4}).$$

- Vanjska petlja je odabrana da bude 2x sporija od unutarnje (K=2)
- Sprega među sustavima uzeta je u obzir u fazi sinteze regulatora.

Može li to automatski?

· Zapis sustava po varijablama stanja:

$$\dot{x} = Ax + Bu, \tag{5}$$

• Uz odabir vektora stanja $x = \begin{bmatrix} \omega & \theta & v & x \end{bmatrix}$, matrice A i B glase:

$$A = \begin{bmatrix} \frac{1}{T} & 0 & 0 & 0\\ 1 & 0 & 0 & 0\\ 0 & \frac{L}{7} & 0 & 0\\ 0 & 0 & 1 & 0 \end{bmatrix} , B = \begin{bmatrix} \frac{K}{T}\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}.$$
 (6)

Tražimo zakon upravljanja

$$u = -\begin{bmatrix} K_1 & K_2 & K_3 & K_4 \end{bmatrix} x + Gr. \tag{7}$$

• Odaberemo polove p i željeni vektor možemo dobiti naredbom acker u Matlabu.

Uvod

Ciljevi predavanja:

- Upoznati se s generalnom procedurom kako odrediti pojačanje za regulator po varijablama stanja metodom postavljanja polova.
- Upoznati s postupcima sinteze regulatora u slučaju kada nije moguće postaviti sve polove na željene lokacije.
- Upoznati se načinima kako osigurati stacionarnu točnost.

Razmatrat ćemo linearni vremenski nepromjenjivi sustav bez nula:

$$\dot{x} = Ax + Bu
y = Cx$$
(8)

 Pretpostavljamo da je regulator po varijablama stanja zapisan u obliku:

$$u = -Kx + Gr (9)$$

 U slučaju sustava s jednim ulazom i jednim izlazom zakon upravljanja glasi:

$$u(t) = -\begin{bmatrix} k_1 & k_2 & \cdots & k_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_2(t) \end{bmatrix} + Gr(t)$$
 (10)

Regulator za MIMO sustave

- Pojačanje regulatora po varijablama stanja za slučaj MIMO sustava ima pojačanje K u obliku matrice dimenzije $m \times n$.
- Matrica G koja množi referencu r(t) ima dimenziju $m \times m$.

$$\begin{bmatrix} u_{1}(t) \\ u_{2}(t) \\ \vdots \\ u_{m}(t) \end{bmatrix} = - \begin{bmatrix} k_{11} & k_{12} & \cdots & k_{1n} \\ k_{21} & k_{22} & \cdots & k_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ k_{m1} & k_{m2} & \cdots & k_{mn} \end{bmatrix} \begin{bmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n}(t) \end{bmatrix} + G \begin{bmatrix} r_{1}(t) \\ r_{2}(t) \\ \vdots \\ r_{m}(t) \end{bmatrix}$$
(11)

 Zatvoreni krug može se opisati sljedećom diferencijalnom jednadžbom:

$$\dot{x} = (A - BK)x + BGr$$

$$y = Cx$$
(12)

- U slučaju da vrijedi r=0, glavna zadaća regulatora po varijablama stanja je dovesti sustav iz nekog početnog uvjeta x_0 u ravnotežno stanje $\tilde{x}=0$ uz prihvatljivu prijelaznu pojavu te smanjiti utjecaj poremećaja.
- Svojstvene vrijednosti matrice A BK predstavljaju polove zatvorenog kruga.

Blokovska shema sustava upravljanja po varijablama stanja

- Zadatak je pronaći pojačanje K kojim se postiže željeno vladanje sustava.
- U nastavku će se obraditi metoda postavljanja polova.

Kako odabrati polove zatvorenog sustava upravljanja?

- Zatvoreni krug mora biti stabilan (polove je potrebno postaviti u lijevoj poluravnini)
- Pomicanje polova daleko od polova sustava zahtijeva velik upravljački signal.
- Polove je moguće postavljati na različite načine npr. metodom postavljanja dominantnih polova ili koristeći prototipni odziv sustava višeg reda:
- Za dobivanje prototipnog odziva višeg reda često se koristi:
 - Optimum dvostrukog odnosa
 - o Integralni kriteriji kakvoće
 - Binomna formula

Metoda postavljanja dominantnih polova

- Konjugirano-kompleksni par najbliži imaginarnoj osi odabire se tako da se postigne željeno vladanje sustava.
- Željeno vladanje sustava odabire se na temelju odziva modelske prijenosne funkcije za sustav 1. ili 2. reda.
- Nedominantne polove je potrebno postaviti dovoljno daleko od dominantnih polova prema negativnom dijelu realne osi *s* ravnine.
- Uobičajeno se nedominantni polovi postavljaju tako da realni dio bude po apsolutnoj vrijednosti najmanje 3 do 5 puta veći od realnog dijela dominantnih polova.
- Zbog ograničenja na upravljački signal i utjecaja mjernog šuma treba paziti da se polovi ne pomaknu previše u lijevo.

Utjecaj položaja polova na vladanje sustava - 1

Prvi red:

• Sustav:

$$G(s) = \frac{K}{\tau s + 1} \tag{13}$$

Pol:

$$p_1 = -\frac{1}{\tau}.\tag{14}$$

- U slučaju sustava 1. reda, brzinu odziva određuje odabir vremenske konstante
- Nakon vremena koje iznosi jednu vremensku konstantu sustav će dostići 63.2% vrijednosti u ustaljenom stanju.

Utjecaj položaja polova na vladanje sustava - 2

Drugi red:

• Sustav:

$$G(s) = \frac{1}{\frac{1}{\omega_n^2} s^2 + \frac{2\zeta}{\omega_n} s + 1}$$
 (15)

Polovi:

$$p_{1,2} = -\zeta \omega_n \pm i\omega_n \sqrt{1 - \zeta^2} \tag{16}$$

- $\zeta < 0$ sustav je nestabilan
- $\zeta = 0$ sustav je oscilatoran (polovi na imaginarnoj osi)
- $0 < \zeta < 1$ sustav ima konjugirano kompleksan par polova
- $\zeta = 1$ dva realna i jednaka pola
- $\zeta > 1$ dva realna i različita pola

Utjecaj položaja polova na vladanje sustava - 2

• Nadvišenje (%):

$$\sigma_m = 100e^{-\zeta\pi/\sqrt{1-\zeta^2}} \tag{17}$$

Vrijeme porasta (od 0 - 90%):

$$t_{\rm R} \cong \frac{2.16\zeta + 0.60}{\omega_n} \tag{18}$$

Vrijeme prvog maksimuma:

$$t_{\rm P} = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} = \frac{\pi}{\omega_d} \tag{19}$$

· Vrijeme smirivanja:

$$t_{\rm S} \cong \frac{4}{\zeta \omega_n} \tag{20}$$

Primjer:

- Zahtjevi se uobičajeno zadaju u obliku nejednakosti:
- Odabrati položaj polova kojim se postiže $\sigma_m \leq 4\%$, $t_s \leq 2$ s, $t_p \leq 0.5$ s.
- Dopušteno područje za polove je prikazano slikom:

Odabir polova za sustav višeg reda (ITAE kriterij)

Red	Karakteristični polinom
Prvi	$s + \omega_n$
Drugi	$s^2 + 1.4\omega_n s + \omega_n^2$
Treći	$s^3 + 1.75\omega_n s^2 + 2.15\omega_n^2 s + \omega_n^3$
Četvrti	$s^4 + 2.1\omega_n s^3 + 3.4\omega_n^2 s^2 + 2.7\omega_n^3 s + \omega_n^4$
Peti	$s^5 + 2.8\omega_n s^4 + 5.0\omega_n^2 s^3 + 5.5\omega_n^3 s^2 + 3.4\omega_n^4 s + \omega_n^5$
Šesti	$s^6 + 3.25\omega_n s^5 + 6.6\omega_n^2 s^4 + 8.6\omega_n^3 s^3 + 7.45\omega_n^4 s^2 + 3.95\omega_n^5 s + \omega_n^6$

Odabir polova za sustav višeg reda (Binomni oblik)

Red	Karakteristični polinom
Prvi	$s + \omega_n$
Drugi	$s^2 + 2\omega_n s + \omega_n^2$
Treći	$s^3 + 3\omega_n s^2 + 3\omega_n^2 s + \omega_n^3$
Četvrti	$s^4 + 4\omega_n s^3 + 6\omega_n^2 s^2 + 4\omega_n^3 s + \omega_n^4$
Peti	$s^5 + 5\omega_n s^4 + 10\omega_n^2 s^3 + 10\omega_n^3 s^2 + 5\omega_n^4 s + \omega_n^5$
Šesti	$s^6 + 6\omega_n s^5 + 15\omega_n^2 s^4 + 20\omega_n^3 s^3 + 15\omega_n^4 s^2 + 6\omega_n^5 s + \omega_n^6$

Zapis po varijablama stanja u kanoničkom upravljivom obliku

• Razmotrimo prijenosnu funkciju procesa

$$G_p = \frac{b_0 + b_1 s + \ldots + b_m s^m}{a_0 + a_1 s + \ldots + a_{n-1} s^{n-1} + s^n}, m < n.$$
 (21)

Sustav se može zapisati u obliku:

$$\dot{x}_{\rm CCF} = A_{\rm CCF} x_{\rm CCF} + B_{\rm CCF} u \tag{22}$$

$$y = C_{\rm CCF} x_{\rm CCF} \tag{23}$$

Matrice sustva u upravljivom kanoničkom obliku

Matrice A_{CCF} i B_{CCF} glase:

$$A_{\text{CCF}} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & \cdots & -a_{n-1} \end{bmatrix} \quad B_{\text{CCF}} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \quad (24)$$

$$C_{\text{CCF}} = \begin{bmatrix} b_0 & b_1 & b_2 & \cdots & b_m \end{bmatrix}$$
 (25)

• Karakteristični polinom se može direktno napisati iz matrice $A_{\rm CCF}$:

$$|sI - A_{CCF}| = s^n + a_{n-1}s^{n-1} + \dots + a_2s^2 + a_1s + a_0.$$
 (26)

Regulator za sustav u upravljivom kanoničkom obliku

• Ako se odabere pojačanje regulatora:

$$K_{\text{CCF}} = \begin{bmatrix} \delta_0 & \delta_1 & \delta_2 & \cdots & \delta_{n-1} \end{bmatrix}$$
 (27)

Dobije se sljedeća matrica zatvorenog kruga:

$$A_{\text{CCF}} - B_{\text{CCF}} K_{\text{CCF}}$$

$$= \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_0 - \delta_0 & -a_1 - \delta_1 & -a_2 - \delta_2 & \cdots & -a_{n-1} - \delta_{n-1} \end{bmatrix}.$$
(28)

Karakteristični polinom glasi

$$|sI - A_{\text{CCF}} + B_{\text{CCF}} K_{\text{CCF}}| = s^n + (a_{n-1} + \delta_{n-1}) s^{n-1} + \dots + (a_2 + \delta_2) s^2 + (a_1 + \delta_1) s + (a_0 + \delta_0).$$

(29)

Što ako imamo generalni zapis sustava po varijablama stanja?

$$\dot{x} = Ax + Bu \tag{30}$$

$$y = Cx + Du ag{31}$$

 Ako za proizvoljan vektor po varijablama stanja postoji matrica tranformacije

$$x = T_{CCF} x_{CCF}, (32)$$

Tada

$$u = K_{CCF} x_{CCF} = K_{CCF} T_{CCF}^{-1} x. (33)$$

Novi vektor pojačanja glasi:

$$K = K_{CCF} T_{CCF}^{-1}. \tag{34}$$

Transformacija sustava iz jednog oblika u drugi

- Odabir varijabli stanja nije jedinstven
- Za različit odabir varijabli stanja, imamo različite matrice koje opisuju vladanje sustava:

$$\dot{x} = Ax + Bu \rightarrow \dot{\tilde{x}} = \tilde{A}\tilde{x} + \tilde{B}u$$
 (35)

Neka vrijedi:

$$\tilde{x} = Tx \tag{36}$$

 Opis vladanja sustava u novom prostoru stanja se može izvesti kako slijedi:

$$\dot{\tilde{x}} = T\dot{x}
= TAx + TBu
= TAT^{-1}\tilde{x} + TBu.$$
(37)

• Odnosno matrice (\tilde{A}, \tilde{B}) se mogu izračunati iz matrica (A, B) korištenjem matrice transformacije: $\tilde{A} = TAT^{-1}, \tilde{B} = TB$.

Upravljivost

Upravljivost

Sustav je upravljiv (eng. *Controllable*) ako se može pronaći upravljačka funkcija u(t), $0 < t \le T$ pomoću koje se može doći u ishodište prostora stanja iz bilo kojeg početnog stanja x_0 u konačnom vremenu T.

- Sustav je upravljiv ako i samo ako matica upravljivosti P ima puni rang.
- Matrica upravljivosti sustava glasi:

$$P = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}. \tag{38}$$

Kada možemo postaviti polove na proizvoljnim lokacijama?

Teorem

Za bilo koji simetrični skup od n kompleksnih brojeva $\{p_1, p_2, ..., p_n\}$, postoji matrica pojačanja K takva da $\sigma(A - BK) = \{p_1, p_2, ..., p_n\}$ ako i samo ako je par (A, B) upravljiv.

Kako odrediti matricu *T*?

$$\tilde{P} = \begin{bmatrix} \tilde{B} & \tilde{A}\tilde{B} & \cdots & \tilde{A}^{n-1}\tilde{B} \end{bmatrix}
= \begin{bmatrix} T^{-1}B | (T^{-1}AT) (T^{-1}B) | & \cdots | (T^{-1}A^{n-1}T) (T^{-1}B) \end{bmatrix}
= \begin{bmatrix} T^{-1}B | T^{-1}AB | \cdots | T^{-1}A^{n-1}B \end{bmatrix}
= T^{-1} \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix}
= T^{-1}P$$
(39)

Matrica transformacije

$$T = P\tilde{P}^{-1} \tag{40}$$

Matrica upravljivosti za upravljivi kanonički oblik

$$P_{\text{CCF}}^{-1} = \begin{bmatrix} B_{\text{CCF}} & A_{\text{CCF}}B_{\text{CCF}} & A_{\text{CCF}}^2B_{\text{CCF}} & \cdots & A_{\text{CCF}}^{n-1}B_{\text{CCF}} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} a_1 & a_2 & \cdots & a_{n-1} & 1 \\ a_2 & a_3 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$
(41)

Bass-Gura formula

Bass-Gura

$$K = K_{\text{CCF}} T_{\text{CCF}}^{-1}$$

$$(42)$$

$$T_{\text{CCF}} = \begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix} \begin{bmatrix} a_1 & a_2 & \cdots & a_{n-1} & 1 \\ a_2 & a_3 & \cdots & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$(43)$$

Bass-Gura formula

Postupak:

- 1. Izračunati karakteristični polinom sustava a(s)
- 2. Izračunati željeni karakteristični polinom $\alpha(s)$
- 3. Izračunati pojačanje za upravljivi kanonički oblik K_{CCF} .
- 4. Izračunati matricu upravljivosti za sustav P
- 5. Izračunati $T_{\rm CCF}$.
- 6. Izračunati pojačanje za originalni zapis sustava u prostoru stanja K.

Primjer

Promotrimo sustav $\dot{x} = Ax + Bu$, gdje matrice iznose:

$$A = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right] \quad B = \left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right]$$

Želimo postaviti 3 pola u -1.

Izračun polova otvorenog kruga

• Matrica A je dijagonalna

$$A = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{array} \right]$$

• Karakteristični polinom otvorenog kruga glasi:

$$a(s) = s(s-1)(s-2) = s^3 - 3s^2 + 2s + 0.$$
 (44)

• Koeficijenti: $a_3 = 1$, $a_2 = -3$, $a_1 = 2$, $a_0 = 0$.

Matrica upravljivosti

$$P = \begin{bmatrix} B & AB & A^2B \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}$$

- Matrica P je punog ranga.
- Sustav je upravljiv.

Pojačanje za upravljivi kanonički oblik

Željeni karakteristični polinom zatvorenog kruga:

$$\alpha(s) = (s+1)^3 = s^3 + 3s^2 + 3s + 1 \tag{45}$$

- Koeficijenti: $\alpha_2 = 3$, $\alpha_1 = 3$, $\alpha_0 = 1$.
- Pojačanje za upravljivi kanonički oblik:

$$\mathcal{K}_{\mathrm{CCF}} = \left[\begin{array}{ccc} (\alpha_0 - a_0) & (\alpha_1 - a_1) & (\alpha_2 - a_2) \end{array} \right]$$

= $\left[\begin{array}{ccc} (1 - 0) & (3 - 2) & (3 - (-3)) \end{array} \right]$
= $\left[\begin{array}{ccc} 1 & 1 & 6 \end{array} \right]$.

Matrica transformacije

$$T_{CCF} = PP_{CCF}^{-1}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 2 & -3 & 1 \\ -3 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & -3 & 1 \\ 0 & -2 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

$$T_{CCP}^{-1} = \begin{bmatrix} \frac{1}{2} & -1 & \frac{1}{2} \\ 0 & -1 & 1 \\ 0 & -1 & 2 \end{bmatrix} .$$

Izračun pojačanja regulatora

$$\begin{split} \mathcal{K} &= \mathcal{K}_{\text{CCF}} \mathcal{T}_{\text{CCF}}^{-1} \\ &= \left[\begin{array}{ccc} 1 & 1 & 6 \end{array} \right] \left[\begin{array}{ccc} \frac{1}{2} & -1 & \frac{1}{2} \\ 0 & -1 & 1 \\ 0 & -1 & 2 \end{array} \right] \\ &= \left[\begin{array}{ccc} \frac{1}{2} & -8 & \frac{27}{2} \end{array} \right]. \end{split}$$

Ackermannova formula

Ackermannova formula

Pojačanje regulatora je moguće dobiti na sljedeći način:

$$K = \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \end{bmatrix} P^{-1}\alpha(A),$$

$$\alpha(A) = A^n + \alpha_{n-1}A^{n-1} + \dots + \alpha_2A^2 + \alpha_1A + \alpha_0I.$$

Odabir pojačanja u grani referentne vrijednosti

Zatvoreni krug se može zapisati kako slijedi:

$$\dot{x}(t) = (A - BK)x(t) + BGr(t)$$
$$y(t) = Cx(t)$$

Prijenosna funkcija zatvorenog kruga glasi:

$$G_{\mathrm{CL}}(s) = C(sI - A + BK)^{-1}BG.$$

Pojačanje zatvorenog kruga:

$$G_{\rm CL}(0) = -C(A - BK)^{-1}BG.$$

Matrica pojačanja:

$$G = -(C(A - BK)^{-1}B)^{-1}.$$

Primjer: Istosmjerni motor s konstantnom i nezavisnom uzbudom

Uzbudni krug

$$U_u = R_u i_u + N_u \frac{d\Phi_u}{dt} \tag{46}$$

• Za linearni odnos između Φ_u i i_u :

$$U_u = R_u i_u + L_u \frac{di_u}{dt} \tag{47}$$

 Općenito je ovisnost uzbudne struje o uzbudnom toku nelinearna:

$$i_{\mu} = f_2(\Phi_{\mu}). \tag{48}$$

Armaturni krug

$$U_a = R_a i_a + L_a \frac{di_a}{dt} + E \tag{49}$$

$$E = K_e \Phi_u \Omega \tag{50}$$

Razvijeni moment

$$M_m = K_m \Phi_m i_a \tag{51}$$

Jednadžba ravoteže

$$M_m = M_t + M_f + J \frac{d\Omega}{dt}$$
 (52)

 $J_{\frac{d\Omega}{dt}}^{\frac{d\Omega}{dt}}$ - dinamički moment.

Blokovska shema istosmjernog motora

• Blokovska shema lineariziranog modela motora uz pretpostavku konstantne uzbude. ti. $\Phi_n = const$:

Primjer: Sinteza regulatora brzine vrtnje

 Zapis jednadžbi istosmjernog motora s konstantnom i nezavisnom uzbudom u prostoru stanja:

$$\begin{bmatrix} \frac{\mathrm{d}i_a}{\mathrm{d}t} \\ \frac{\mathrm{d}\omega}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} \frac{-R_a}{L_a} & -\frac{C_e}{L_a} \\ \frac{C_m}{J} & 0 \end{bmatrix} \begin{bmatrix} i_a \\ \omega \end{bmatrix} + \begin{bmatrix} \frac{1}{L_a} \\ 0 \end{bmatrix} u_a + \begin{bmatrix} 0 \\ -\frac{1}{J} \end{bmatrix} m_t. \tag{53}$$

• Parametri sustava su: $C_e = 0.01$ Vs/rad, $R_a = 2.6 \,\Omega$, $L_a = 2.6$ mH, J = 0.01 kg m².

Zadatak:

- Odrediti parametre regulatora po varijablama stanja tako da $\sigma_m \leq 4\%$, $t_s \leq 2$ s, $t_p \leq 0.5$ s. Usporediti rezultat dobiven Bass-Gura formulom i Ackermannovom formulom.
- Osigurati da sustav slijedi referentnu veličinu u obliku skokovite pobude za slučaj kada nema poremećaja.
- Provjeriti što se događa u slučaju konstantnog poremećaja.

Karakteristični polinom zatvorenog kruga

 Maksimalno nadvišenje, određuje minimalnu vrijednost faktora prigušenja:

$$\sigma_{m,max} \le 4\% \to \zeta_{min} = \frac{|\ln(\frac{4}{100})|}{\sqrt{\pi^2 + \left[\ln(\frac{4}{100})\right]^2}} = 0,716.$$
 (54)

 Faktor prigušenja određuje odnos između realnog i imaginarnog dijela polova:

$$\frac{Re(p)}{Im(p)} \ge \frac{\zeta_{min}}{\sqrt{1 - \zeta_{min}^2}} = 1,026 \to Re(p) \ge 1.026 Im(p).$$
 (55)

Karakteristični polinom zatvorenog kruga

Vrijeme smirivanja određuje realni dio polova zatvorenog kruga:

$$t_s = \frac{4}{\zeta \omega_n} \le 2 \to \zeta \omega_n \ge 2. \tag{56}$$

Vrijeme prvog maksiumuma određuje ograničenje na imaginarni dio:

$$t_p = \frac{\pi}{\omega_n \sqrt{1 - \zeta^2}} \le \frac{1}{2} \to \omega_n \sqrt{1 - \zeta^2} \ge 2\pi. \tag{57}$$

- Odabrani polovi: $p_{1,2} = -10 \pm 7i$.
- Karakteristični polinom: $\alpha(s) = s^2 + 20s + 149$.
- Koeficijenti željenog karakterističnog polinoma zatvorenog kruga: $\alpha_0 = 149$, $\alpha_1 = 20$.

Zapis modela i pojačanje u upravljivom kanoničkom obliku

• Prijenosna funkcija motora glasi:

$$\frac{\omega(s)}{u_a(s)} = \frac{\frac{1}{C_e}}{T_{em}T_as^2 + T_{em}s + 1} = \frac{\frac{1}{T_{em}T_aC_e}}{s^2 + \frac{1}{T_a}s + \frac{1}{T_aT_{em}}}.$$
 (58)

 Na temelju prijenosne funkcije, mogu se zapisati matrice modela u kanoničkom upravljivom obliku:

$$A_{CCF} = \begin{bmatrix} 0 & 1 \\ -\frac{1}{T_a T_{em}} & \frac{1}{T_a} \end{bmatrix}, B_{CCF} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$
 (59)

- Koeficijenti karakterističnog polinoma otvorenog kruga: $a_0 = \frac{1}{T_a T_{em}}$, $a_1 = \frac{1}{T}$.
- Pojačanje u upravljivoj kanoničkoj formi glasi:

$$K_{CCF} = \begin{bmatrix} \alpha_0 - a_0 & \alpha_1 - a_1 \end{bmatrix} = \begin{bmatrix} 143.8428 & -980.0000 \end{bmatrix}.$$
 (60)

Izračun pojačanja za originalni zapis po varijablama stanja

- Matrica transformacije $T_{CCF}^{-1} = P_{CCF}P^{-1}$.
- Pojačanje se može izračunati kao:

$$K = K_{CCF} T_{CCF}^{-1} = \begin{bmatrix} -2.5480 & 0.2789 \end{bmatrix}$$
 (61)

Isto pojačanje se dobije i Ackermannovom formulom

$$K = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} B & AB \end{bmatrix}^{-1} (A^2 + 20A + 149I) = \begin{bmatrix} -2.5480 & 0.2789 \end{bmatrix}.$$
 (62)

U grani reference potrebno je koristiti sljedeće pojačanje:

$$G = -(C(A - BK)^{-1}B)^{-1} = 0.2889.$$
 (63)

Odziv brzine vrtnje motora

- Regulator po varijablama stanja za nominalni sustav osigurava praćenje reference
- U slučaju konstantnog poremećaja dolazi do pogreške u ustaljenom stanju budući da regulator ne sadržava integralno djelovanje.

Dodavanje integralnog djelovanja

- Kako bi se izbjegla pogreška u ustaljenom stanju dodaje se integralno djelovanje.
- Zakon upravljanja glasi:

$$\dot{\xi}(t) = r(t) - y(t)$$

$$u(t) = -Kx(t) + k_1 \xi(t)$$

Blokovska shema sustava proširenog integratorom

- Sustav proširen integratorom ima dodatno stanje.
- Potrebno je pronaći prošireni vektor pojačanja.

Jednadžbe stanja sustava proširenog dodatnim stanjem

Prošireni model po varijablama stanja daje sljedeću diferencijalnu jednadžbu:

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\xi}(t) \end{bmatrix} = \begin{bmatrix} A & 0 \\ -C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \xi(t) \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \xi(t) \end{bmatrix}$$

 Sinteza regulatora za prošireni sustav obavlja se na isti način kao i za originalni sustav.

Sustav proširen integralnim djelovanjem

Zatvoreni krug proširenog modela po varijablama stanja daje sljedeću diferencijalnu jednadžbu:

$$\begin{bmatrix} \dot{x}(t) \\ \dot{\xi}(t) \end{bmatrix} = \begin{bmatrix} A - BK & Bk_{\rm I} \\ -C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \xi(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r(t)$$
$$y(t) = \begin{bmatrix} C & 0 \end{bmatrix} \begin{bmatrix} x(t) \\ \xi(t) \end{bmatrix}$$

Primjer: Sinteza regulatora stanja za regulaciju brzine vrtnje istosmjernog motora s konstantnom i nezavisnom uzbudom

 Zapis jednadžbi istosmjernog motora s konstantnom i nezavisnom uzbudom u prostoru stanja:

$$\begin{bmatrix} \frac{\mathrm{d}i_{a}}{\mathrm{d}t} \\ \frac{\mathrm{d}\omega}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} \frac{-R_{a}}{l_{a}} & -\frac{C_{e}}{l_{a}} \\ -\frac{C_{m}}{J} & 0 \end{bmatrix} \begin{bmatrix} i_{a} \\ \omega \end{bmatrix} + \begin{bmatrix} \frac{1}{l_{a}} \\ 0 \end{bmatrix} u_{a} + \begin{bmatrix} 0 \\ -\frac{1}{J} \end{bmatrix}$$
 (64)

Zadatak:

- Proširiti regulator stanja integralnim djelovanjem.
- Odrediti parametre regulatora po varijablama stanja tako da karakteristični polinom odgovara polinomu dobivenom koristeći simetrični optimum: $\alpha(s)=1+a^2T_\Sigma s+a^3T_\Sigma^2 s^2+a^3T_\Sigma^3 s^3$, uz a=2 i $T_\Sigma=0.05$ s.

Rješenje:

Prošireni sustav:

$$\begin{bmatrix} \frac{\mathrm{d}i_a}{\mathrm{d}t} \\ \frac{\mathrm{d}\omega}{\mathrm{d}t} \\ \frac{\mathrm{d}\xi}{\mathrm{d}t} \end{bmatrix} = \begin{bmatrix} \frac{-R_a}{L_a} & -\frac{C_e}{L_a} & 0 \\ -\frac{C_m}{J} & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} i_a \\ \omega \\ \xi \end{bmatrix} + \begin{bmatrix} \frac{1}{L_a} \\ 0 \\ 0 \end{bmatrix} u_a + \begin{bmatrix} 0 \\ -\frac{1}{J} \\ 0 \end{bmatrix} m_t \qquad (65)$$

• Regulator za prošireni sustav:

$$u = \begin{bmatrix} -2.5480 & 0.3778 \end{bmatrix} \begin{bmatrix} i_a \\ \omega \end{bmatrix} + 1.9390 \begin{bmatrix} \xi \end{bmatrix}.$$
 (66)

Odziv brzine vrtnje motora

 Regulator s dodanim integratorom osigurava praćenje reference i u slučaju konstantnog poremećaja.

Što ako sustav nije upravljiv?

 Ako sustav nije upravljiv, ali je ustabiljiv, tada je moguće sintetizirati regulator kojim će se osigurati asimptotska stabilnost zatvorenog sustava upravljanja.

Ustabiljivost

Linearni sustav [par (A, B)]] je ustabiljiv ako postoji matrica pojačanja K za regulator po varijablama stanja kojima sve vlastite vrijednosti A-BK imaju strogo negativan realni dio.

- Njihanje tereta je upravljivo u smjeru u kojem se gibaju kolica krana
- Njihanje tereta nije upravljivo u okomitom smjeru u odnosu na smjer gibanja kolica!
- Regulator je potrebno sintetizirati za dio dinamike procesa koja je upravljiva.

Kako pronaći upravljivu dinamiku?

Teorem

Ako matrica upravljivosti nema puni rang

Postoji matrica transformacije x(t) = Tz(t) takva da transformirane matrice \hat{A} i \hat{B} stanja imaju oblik

$$\hat{A} = T^{-1}AT \qquad \qquad \hat{B} = T^{-1}B$$

$$= \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \qquad = \begin{bmatrix} B_1 \\ 0 \end{bmatrix}$$

gdje je par (A_{11}, B_1) upravljiv.

 Matricu transformacije T moguće je dobiti odabirom linearno nezavisnih stupaca matrice upravljivosti i nadopunjavanjem stupcima tako da matrica T ima linearno nezavisne stupce.

Promotrimo sljedeći sustav zapisan u prostoru stanja:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ -3 \end{bmatrix} u(t)$$

Matrica upravljivosti ima rang 2:

$$\begin{bmatrix} B & AB & A^2B \end{bmatrix} = \begin{bmatrix} 0 & 1 & -3 \\ 1 & -3 & 7 \\ -3 & 7 & -15 \end{bmatrix}$$

- Prva dva stupca matrice upravljivosti su linearno nezavisni stupci.
- Potrebno je dodati dodatni stupac da matrica transformacije bude punog ranga:

$$T = \left[\begin{array}{rrr} 0 & 1 & 0 \\ 1 & -3 & 0 \\ -3 & 7 & 1 \end{array} \right]$$

Transformirani sustav:

$$\hat{A} = T^{-1}AT \qquad \qquad \hat{B} = T^{-1}B$$

$$= \begin{bmatrix} 0 & -2 & 1 \\ 1 & -3 & 0 \\ \hline 0 & 0 & -3 \end{bmatrix} \qquad \qquad = \begin{bmatrix} 1 \\ 0 \\ \hline 0 \end{bmatrix}$$

• Iz transformiranog sustava može se zapisati upravljivi par (A_{11}, B_1) :

$$A_{11} = \left[\begin{array}{cc} 0 & -2 \\ 1 & -3 \end{array} \right] \quad B_1 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

 Za upravljivi par moguće je postaviti polove na željene lokacije, npr. vektor pojačanja kojim se postavljaju oba pola u -1 iznosi:

$$K_c = \begin{bmatrix} -1 & 2 \end{bmatrix}. \tag{67}$$

Taj vektor pojačanja potrebno je proširiti s nulom

$$\tilde{\mathcal{K}}_c = \begin{bmatrix} -1 & 2 & 0 \end{bmatrix} \tag{68}$$

 Zatim je vektor pojačanja potrebno pomnožiti s inverznom matricom transformacije kako bi se mogao koristiti s originalnim varijablama stanja:

$$\tilde{K} = \tilde{K}_c T^{-1} = \begin{bmatrix} -1 & -1 & 0 \end{bmatrix}. \tag{69}$$

Zaključak

- Ako je sustav upravljiv, polove zatvorenog kruga je moguće postaviti proizvoljno u s ravnini.
- Za dobivanje vektora pojačanja metodom postavljanja polova, moguće je koristiti gotove naredbe u Matlabu (acker, place).
- Vektor pojačanja ne osigurava automatski jedinično pojačanje zatvorenog kruga.
- Potrebno je proračunati vektor pojačanja koji se nalazi u grani referentne vrijednosti kako bi se osiguralo jedinično pojačanje.
- Regulator po varijablama stanja moguće je proširiti integralnim djelovanjem kako bi se osiguralo praćenje reference u obliku skokovite pobude za slučaj konstantnog poremećaja.
- U slučaju da sustav nije upravljiv, a neupravljivi dio sustava je stabilan, moguće je sintetizirati regulator kojim će se stabilizirati originalni sustav.