Introduction to Sage and Ximera

SageMath is a computer algebra system which uses python, throughout these labs sage cells will be used for certain problems. This lab introduces you to the basics of using SageMath via Sage Cells.

Introduction

If you ever want to use a sage cell when one is not provided, or would like to experiment with Sage Cells, you can follow this link.

_ SAGE _

Functions

To define a function you use the notation in the following sage cell:

 $f(x)=x^5+3*x+4$

Question 1 What output did you get from evaluating the sage cell?

Multiple Choice:

- (a) None ✓
- (b) $f(x) = x^5 + 3x + 4$
- (c) $x^5 + 3x + 4$

Feedback (attempt): All we did was define a function, to see the function definition type f(x).

Evaluate the function at x = 3 by typing f(3) in the sage cell, what did you get? 256

Question 2 Define $f(x) = \sin(x)^2$ in the following cell evaluate at $x = 4\pi$

Learning outcomes:

See link at https://sagecell.sagemath.org/

	stop something from being evaluated put it in a comment using	the hashta
What	did you get? 0	ı
varial Sage	don't use function notation, or want to define a function of multiple bles you must define your variables before using them, as in the following Cell. The following sage cell defines the equation $4x + y = 1$, and then it for y .	_
	SAGE	
eqn=4	x y') *x+y==1 *(eqn,y)	
	"=" is used for assignment and "==" is used to signify equality ✓	
` /	"=" is used for assignment and "==" is used to signify equality ✓ "=" is used to signify equality and "==" is used for assignment	
(~)	pack (attempt): Note that you need to include the * operator, go back and	
	ut the * to see how Sage Does error messages and debugging.	
take o	olve command is also shown above, it's fairly intuitive to use, the thing ant to solve is the first parameter and what you're solving for is the second	ا
The s you w paran	olve command is also shown above, it's fairly intuitive to use, the thing ant to solve is the first parameter and what you're solving for is the second	١
The s you w paran	olve command is also shown above, it's fairly intuitive to use, the thing ant to solve is the first parameter and what you're solving for is the second neter.	ا

Limits

Limits are also fairly intuitive to use in Sage. This is shown in the following Sage Cell to find $\lim_{x\to\infty}2x+3$

 $\frac{1}{f(x)=2*x+3}$ $\lim_{x\to\infty} f(x), x=\inf_{x\to\infty} f(x)$

Question 5 Using the commands shown above, find the limit of $\lim_{x\to 4} \frac{x^2-2x-8}{x-4}$

_____ SAGE _____

What did you get? 6

Differentiation

To differentiate in sage, use the diff command. This is shown below. It takes in the function you are differentiating and the variable you're differentiating with respect to.

f(x)=2*x+3 SAGE

diff(f(x),x)

Using the diff command find $\lim_{x\to 4} \frac{x^2 - 2x - 8}{x - 4}$

_____ SAGE _____

What did you get? 6

Getting Help

If you ever get stuck trying to use a command, there is built in documentation (as well as Google). Type the command followed directly by "?" to get extensive

Introduction to Sage and Ximera

in the following cell.	to use it	with examples.	Try this for	the solve comma	ша
		SAGE			