الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطنى للامتحانات والمسابقات

دورة: جوان 2009

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة : رياضيات + تقني رياضي

المدة: 04 ساعات ونصف

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (03 نقاط)

 C_2H_5-OH والايثانول CH_3COOH والايثانول بين حمض الايثانويك $n_0(mol)$ والايثانول $n_0(mol)$ وأخذ 7 انابيب اختبار وعند اللحظة (t=0)نمزج في كل واحد منها $n_0(mol)$ من الحمض و $n_0(mol)$ من الكحول السابقين.ينمذج التحول الحادث بالتفاعل ذي المعادلة :

 $CH_3COOH_{(l)} + C_2H_3OH_{(l)} = CH_3COOC_2H_{5(l)} + H_2O_{(l)}$

عايرنا عند درجة حرارة ثابتة وفي لحظات زمنية متعاقبة محتوى الأنابيب الواحد تلو الآخر من أجل معرفة كمية مادة الحمض المتبقي (n) بواسطة محلول هيدروكسيد الصوديوم $(Na^+ + OH^-)$. سمحت هذه العملية بالحصول على جدول القياسات التالى :

t(h)	0	1	2	3	4	5	6	7
n(mol)	1,00	0,61	0,45	0,39	0,35	0,34	0,33	0,33
n'(mol)								4 4 5 6 6 6 7 7 7 7 7

 x_{max} أنجز جدو لا لتقدم التفاعل واحسب التقدم الأعظمي x_{max}

-2استنتج العلاقة التي تعطى كمية مادة الاستر المتشكل (n') بدلالة كمية مادة الحمض المتبقي (n).

-1 كمل الجدول أعلاه ، و باختيار سلم مناسب أرسم المنحنى الذي يمثل تغيرات كمية مادة الاستر المتشكل بدلالة الزمن n'=f(t) .

4-أحسب قيمة سرعة التفاعل عند اللحظة t = 3h .كيف تتطور سرعة التفاعل مع الزمن؟علل.

انسبة النهائية للتقدم (τ_r) وماذا تستنتج?

التمرين الثاني: (03 نقاط)

نربط على التسلسل العناصر الكهربائية التالية:

- مولد ذي توتر ثابت (E =12V)
- وشیعة ذاتیتها (L=300mH) ومقاومتها $(r=10\Omega)$
 - ناقل أومى مقاومته $(R = 110\Omega)$.
 - (-1-1)(k)

(k) نغلق القاطعة (t=0s) نغلق القاطعة (t=0s)

أوجد المعادلة التفاضلية التي تعطى شدة التيار الكهربائي في الدارة .

 I_0 كيف يكون سلوك الوشيعة في النظام الدائم ؟ وما هي عندئذ عبارة شدة التيار الكهربائي I_0 الذي يجتاز الدارة ؟

-1- السؤال العلاقة $i=A\left(1-e^{-\frac{t}{\tau}}\right)$ عتبار العلاقة السؤال $i=A\left(1-e^{-\frac{t}{\tau}}\right)$

1/ أوجد العبارة الحرفية لكل من A و τ

ب/ استنتج عبارة التوتر الكهربائي u_{BC} بين طرفي الوشيعة.

4.أ /أحسب قيمة التوتر الكهربائي u_{BC} في النظام الدائم .

 $u_{BC} = f(t)$ البيان سكل عيفيا شكل بارسم

التمرين الثالث: (03 نقاط)

يتكون نواس مرن من جسم صلب نقطي (S) كتلته m = 250g يمكنه الحركة على مستو أفقي، ومن نابض حلقاته غير متلاصقة، كتلته مهملة، $x = \frac{x}{2}$ $x = \frac{x}{2}$ (الشكل المقابل) $x = \frac{x}{2}$ $x = \frac{x}{2}$ (الشكل المقابل)

عند التوازن يكون (S) عند النقطة 0 (مبدأ الفواصل للمحور (xx).

نزيح الجسم (S) عن وضع توازنه بمقدار $X_{max} = 2cm$ ، في اتجاه \overline{xx} و نتركه دون سرعة ابتدائية في اللحظة (t = 0s).

1/ بفرض الاحتكاكات مهملة:

أ / مثل القوى المؤثرة على الجسم (S) في لحظة كيفية (t).

ب/ بتطبيق القانون الثاني لنيوتن أوجد المعادلة التفاضلية للحركة.

x = f(t) الدور الذاتي T_0 للجملة المهتزة ثم أكتب المعادلة الزمنية للحركة T_0

2/ في الحقيقة الاحتكاكات غير مهملة، حيث يخضع (3) اثناء حركته لقوة احتكاك فتصبح المعادلة

 $\frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + \lambda x = 0$: التفاضلية للحركة من الشكل الشكل:

نَاقِشْ حسب قيم قوة الاحتكاك النظام الذي تكون عليه حركة (S)، ثم مثل عندئذ تغيرات الفاصلة ع بدلالة الزمن الموافق لكل حالة.

التمرين الرابع: (04 نقاط)

قام لاعب في مقابلة لكرة السلة ، بتسديد الكرة نحو السلة من نقطة A منطبقة على مركز الكرة الموجود على ارتفاع $h_0=2.10m$ من سطح الأرض بسرعة ابتدائية $(V_0=8m\,s^{-1})$ يصنع حاملها الموجود على ارتفاع $h_0=2.10m$ من سطح الأرض بسرعة ابتدائية $\alpha=37$ نور الكرة $\alpha=37$ مع الأفق ، الممر مركز الكرة $\alpha=37$ بمركز السلة $\alpha=37$ الذي إحداثيياه: $(\overline{ox},\overline{oz})$ الذي نعتبره غاليلياً.

الكرة مركز عطالة الكرة في المعلم $(\overline{ox}, \overline{oz})$ معتبرا مبدأ الأزمنة لحظة تسديد الكرة وإهمال تأثير الهواء.

 (z_c) . (z_c) مركز عطالة الكرة مركز السلة بسرعة (\overline{v}_c)، التي يصنع حاملها مع الأفق زاوية (β). استنتج قيمتي كل من (v_c) و (β) . (z_c) تعطى z_c

التمرين الخامس: (04 نقاط)

lpha إن نواة الراديوم $lpha^{226}Ra$ مشعة وتصدر جسيما

1/ماذا تمثل الأرقام 226 و 88 بالنسبة للنواة 226 ؟

النواة النواة الابن $^4_{z}X$ من بين الانوية التالية $^{226}_{88}Ra$ مستنتجا النواة الابن الانوية التالية $^{226}_{88}Ra$ من بين الانوية التالية $^{20}_{89}Ac$, $^{80}_{80}Rn$, $^{82}_{80}Pb$, $^{83}_{83}Bi$

 $\lambda_{88}^{226}Ra$ الراديوم المشع s^{-1} المثنع المشع λ_{88}^{-1} المتنتج زمن نصف حياة الراديوم λ_{88}^{-11} المتنتج زمن نصف حياة الراديوم λ_{88}^{-11} المتنتج كتابة المينة المعينة كتابة المعينة كتابة المعينة كتابة المعينة المعينة

أ/ عرف زمن نصف الحياة $t_{\frac{1}{2}}$. أوجد العلاقة بين عدد الانوية N وكتلة العينة في اللحظة 1 ثم اكمل الجدول التالي :

t	t_0	t 1/2	21/2	3t 1/2	41 1/2	$5t_{\frac{1}{2}}$
m (mg)		-				

ب/ ما هي كتلة العينة المتفككة عند اللحظة τ (حيث τ ثابت الزمن) ؟ ماذا تستنتج ؟ - أرسم البيان : m = f(t)

التمرين التجريبي: (03 نقاط)

يُحْفَظُ الماء الاكسجيني (محلول لبروكسيد الهيدروجين $(H_2O_2(aq))$ في قارورات خاصة بسبب تفكك الذاتي البطيء . تحمل الورقة الملصقة على قارورته في المختبر الكتابة ماء اكسجيني (10V)، وتعني أن (1L)من الماء الاكسجيني ينتج بعد تفككه 10L من غاز ثنائي الأكسجين في السشرطب النظاميين حيث الحجم المولى $V_m = 22.4 \ L.mol^{-1}$

-1 ينمذج التفكك الذاتي للماء الاكسجيني بالتفاعل ذي المعادلة الكيميائية التالية:

 $2H_2O_{2(aq)} = 2H_2O_{(l)} + O_{2(g)}$

 $C = 0,893 \; mol \times L^{-1}$: بين أن التركيز المولي الحجمي للماء الاكسجيني هو

- V_{i} نضع في حوجلة حجما V_{i} من الماء الاكسجيني و نكمل الحجم بالماء المقطر إلى V_{i}
 - كيف تسمى هذه العملية ؟
 - $oldsymbol{\cdot}$. $C_1 = 0,1 mol imes L^{-1}$ استنتج الحجم علما أن المحلول الناتج تركيزه المولي •
- -2 لغرض التأكد من الكتابة السابقة (10V عايرنا 20~mL من المحلول الممدد بو اسطة محلول $C_2=0,02mol.L^{-1}$ بر منغنات البوتاسيوم $K_{(\alpha q)}^++MnO_{4(\alpha q)}^-$ المحمض ، تركيزه المولي $V_E=38mL$ فكان الحجم المضاف عند التكافؤ
- أ- اكتب معادلة التفاعل أكسدة إرجاع المنمذج لتحول المعايرة علما أن الثنائيتين الداخلتين في التفاعل هما: $\left(O_{2(g)}/H_2O_{2(\ell)}\right)$ و $\left(O_{2(g)}/H_2O_{2(\ell)}\right)$.
- ب- استنتج التركيز المولي الحجمي لمحلول الماء الاكسجيني الابتدائي .وهل تتوافق هذه النتيجة التجريبية مع ما كتب على ملصوقة القارورة؟

الموضوع الثانى

التمرين الأول (03 نقاط)

ينمذج التحول الكيميائي الذي يتحكم في تشغيل عمود بالتفاعل ذي المعادلة:

 $Al_{(s)} + 3Ag_{(\alpha q)}^{+} = Al_{(\alpha q)}^{3+} + 3Ag_{(s)}$

 $\Delta t = 300min$ فينتج العمود عند اشتغاله تيارا كهربائيا شدته ثابتة I = 40mA خلال مدة زمنية عندها تناقص في التركيز المولي لشوارد Ag^+ .

1/ حدد قطبي العمود ؟ برر إجابتك.

2/ مثل بالرسم هذا العمود مبينا عليه اتجاه التيار الكهربائي واتجاه حركة الإلكترونات.

3/ اكتب المعادلتين النصفيتين عند المسريين.

4/ احسب كمية الكهرباء التي ينتجها العمود خلال 300 min من التشغيل.

 $\Delta t = 300min$ بالاستعانة بجدول تقدم التفاعل وبعد مدة زمنية

أ/ عين التقدم x .

ب/ أحسب النقصان $(\Delta m_{(AI)})$ في كتلة مسرى الألمنيوم.

.1F = 96500C ، $M_{Al} = 27g.mol^{-1}$: يعطى

التمرين الثاني: (03 نقاط)

ينتمي القمر الاصطناعي جيوف أ (Giove - A) إلى برنامج غاليليو الأوروبي لتحديد الموقع المكمل البرنامج الأمريكي GPS. نعتبر القمر الاصطناعي جيوف أ Giove-A)ذي الكتلة GPS نعتبر القمر الاصطناعي جيوف أ ونفترض أنه يخضع إلى قوة جذب الأرض فقط .

 $h=23,6\times 10^3 km$ يدور القمر (O) على ارتفاع شابتة في مدار دائري مركزه (O) على ارتفاع سطح الارض.

1/ في أي مرجع تتم دراسة حركة هذا القمر الاصطناعي ؟ و ما هي الفرضية المتعلقة بهذا المرجع والتي تسمح بتطبيق القانون الثاني لنيوتن ؟

2/ أوجد عبارة تسارع القمر (Giove -A) و عين قيمته.

داره. (Giove -A) على مداره.

. (Giove -A) عرف الدور T ثم عين قيمته بالنسبة للقمر /4

أحسب الطاقة الإجمالية للجملة ((Giove - A))، أرض).

 $R_{\tau} = 6.38 \times 10^3 \, km$ نصف قطر الأرض

 $M_T = 5.98 \times 10^{24} Kg$ كتلة الأرض

التمرين الثالث: (04 نقاط)

نحقق التركيب الكهربائي التجريبي المبين في الشكل المقابل باستعمال التجهيز:

- مكثفة سعتها (C) غير مشحونة .
- ناقلین او میین مقاو متیهما $(R = R' = 470\Omega)$
 - (E) مولد ذي توتر ثابت
 - بادلة (k) ، اسلاك توصيل •

$$(t = 0)$$
 نضع البادلة عند الوضع (1) في اللحظة (1 = 0):

 u_R , u_C الشكل جهة التيار الكهربائي المار في الدارة ثم مثل بالأسهم التوترين u_R , u_C المار عن u_R عن u_R و u_C بدلالة شحنة المكثفة u_R و ثم أوجد المعادلة التفاضلية التي تحققه الشحنة u_R .

 $q(t) = A(1-e^{-\alpha t})$: نقبل هذه المعادلة التفاضلية حلاً من الشكل وأبية المعادلة التفاضلية على المعادلة الم

 $\cdot E$ ، R ، C عبر عن A و A بدلالة

د / اذا كانت قيمة التوتر الكهربائي عند نهاية الشحن بين طرفي المكثفة (5V)، استنتج قيمة (E). هـ / عندما تشحن المكثفة كليا تخزن طاقة ($E_c = 5mJ$). استنتج سعة المكثفة (C).

2/ نجعل البادلة الان عند الوضع (2):

أ/ماذا يحدث للمكثفة ؟

(k) للبادلة (1) أم (2) بين قيمتي ثابت الزمن الموافق للوضعين (1) ثم

التمرين الرابع: (03 نقاط)

إن نواة البولونيوم ^{210}Po مشعة فتتحول إلى نواة الرصاص ^{206}Pb وتصدر جسيما.

. اكتب معادلة التفاعل المنمذج لتفكك نواة البولونيوم ^{210}Po ، حدد طبيعة الجسيم الصادر $^{-1}$

 $m_0 = 10^{-5}g$ المحتواة في عينة من البولونيوم N_0 كتلتها N_0 كتلتها -2

V سمح قياس النشاط الإشعاعي في لحظات مختلفة V بمعرفة عدد الأنوية المتبقية V في العينة السابقة و المدونة في الجدول التالى:

t (jours)	0	40	80	120	160	200	240	
$\frac{N}{N_0}$	1,00	0,82	0,67	0,55	0,45	0,37	0,30	,

$$-l \ln \frac{N}{N_0} = f(t)$$
 : بدلالة الزمن بعطي تغيرات $\left(-ln \frac{N}{N_0}\right)$ بدلالة الزمن أ

$$-\ln\frac{N}{N_0}$$
: $1 cm \rightarrow 0,2$, t : $1 cm \rightarrow 40 j$ السلم

 λ استنتج من البيان ثابت التفكك λ ، و زمن نصف حياة البولونيوم λ^{210} .

 (m_0) جــ/ ما هو الزمن اللازم لكي تصبح كتلة العينة تساوي $\frac{1}{100}$ من قيمتها الابتدائية M(Po) = 210g/mol ، $N_A = 6.023 \times 10^{23} mol^{-1}$ يعطى ثابت افوغار دو $N_A = 6.023 \times 10^{23} mol^{-1}$

التمرين الخامس: (04 نقاط)

يتشكل نواس مرن أفقي من جسم نقطي (S) كتلته (m) ، مثبت إلى نابض مهمل الكتلة، حلقاته غير متلاصقة، ثابت مرونته $(K = 20N.m^{-1})$. يمكن لـ (S) الحركة دون احتكاك على مستو أفقى مزود \overline{xx} بمحور \overline{xx} مبدأه (O) ينطبق على وضع توازن (S). الشكل \overline{xx}

نزيح (S) عن وضع توازنه في الاتجاه الموجب بمقدار X، ثم نتر که لحاله دون سرعة ابتدائیة. سمحت دراسة تجريبية بتسجيل حركة (٤)، والحصول على مخطط السرعة v = f(t) الموضح بالشكل -21/ تحت أي شرط يمكن اعتبار المرجع الأرضى

غاليليا بتقريب جيد ؟

2/ بتطبيق القانون الثاني لنيوتن أوجد المعادلة التفاضلية للحركة.

3/ بالاعتماد على البيان عين:

الدور الذاتي T_0 للجملة المهتزة ، النبض الذاتي T_0 m سعة الأهتزاز X ، الكتلة

x = f(t) (S) غركة لحركة الزمنية لحركة المعادلة الزمنية لحركة

4/ أثبت أن طاقة الجملة محفوظة (ثابتة) . احسب قيمتها .

التمرين التجريبي: (03 نقاط)

إن احتراق وقود السيارات ينتج غاز SO_2 الملوث للجو من جهة والمسبب للأمطار الحامضية من جهة أخرى .

من أجل معرفة التركيز الكتلى لغاز SO_2 في الهواء ، نحل $20m^3$ من الهواء في 1L من الماء $V=50\,m$ ناخذ حجما $V=50\,m$ ناخذ حجما $V=50\,m$ من انحصل على محلول S_0 نعتبر أن كمية ناخد $V=50\,m$ من ثم نعايرها بواسطة محلول برمنغنات البوتاسيوم $(K_{(aq)}^+ + MnO_{4(aq)}^-)$ تركيزه المولي ثم نعايرها تركيزه المولي $\cdot C_1 = 2.0 \times 10^{-4} \, mol \times l^{-1}$

1/ اكتب معادلة التفاعل المنمذج للمعايرة علما أن الثنائيتين الداخلتين في التفاعل هما:

 $(MnO_{4(\alpha q)}^{-}/Mn_{(\alpha q)}^{2+})$, $(SO_{4(\alpha q)}^{2-}/SO_{2(\alpha q)})$

2/ كيف تكشف تجريبياعن حدوث التكافؤ؟

 $V_E = 9.5 mL$ وأذا كان حجم محلول برمنغنات البوتاسيوم ($K_{aq}^+ + MnO_{4\,aq}^-$) المضاف عند التكافؤ $K_{aq}^+ + MnO_{4\,aq}^-$ استنتج التركيز المولي (C) للمحلول المُعَايَر".

4/ عين التركيز الكتلى لغاز SO_2 المتواجد في الهواء المدروس.

5/ إذا كانت المنظمة العالمية للصحة تشترط أن لا يتعدى تركيز SO_2 في الهواء $250\mu g.m^{-3}$ ، هل الهواء المدروس ملوث ؟ برر.

> $M(O)=16g \times mol^{-1}$: يعطى $M(S) = 32 g \times mol^{-1} ,$