Deep Learning for Visual Odometry

Vladislav Trifonov Hekmat Taherinejad Prateek Rajput Vladimir Chernyy Anna Akhmatova Timur Bayburin

Introduction

Literature review

Traditional Visual Odometry (ORB SLAM)

- **Depth-Pose Learning without PoseNet**
- Transformers with attention blocks

Aim of the project

The are several **concerns** regarding current state-of-the-art:

- Few attention is given to deep learning methods in Frontends steps for obtaining better accuracy and faster results.
- The idea of implementing the whole pipeline of Visual Odometry based on learning methods is still under research and exploration.
- Few studies has been made towards preprocessing visual inputs by CNN for sharper better quality images.

Objectives

- To implement a fully connected Visual Odometry just by using deep learning methods and train a network for this purpose.
- To implement effective deep learning methods for enhancing ORB SLAM 2
 Visual Odometry pipeline.
- To compare fully deep learning Visual Odometry method with ORB SLAM 2.

Methodology

ORB SLAM2

ORB-SLAM2 - real-time SLAM library

Proceeds: Monocular, Stereo, RGB-D

Computes camera **trajectory** and sparse 3D reconstruction (in the stereo and RGB-D case with true scale)

It is able to detect **loops** and relocalize the camera in real time

Deblurring

 Train the network using the GOPRO dataset.

Method	PSNR	SSIM
Kim et al.	23.71	0.815
Sun et al.	24.75	0.832
Nah et al.	28.91	0.921
SRN-DeblurNet	30.15	0.942

Deblurring

Kitti dataset

Transparent object masking

CNN network plus Translab architecture combination for boundary aware object segmentation

The network is trained on Trans 10k dataset by dividing the images into easy hard training datasets

Examples of masked out images

Deblurred and transparent object segmented image from KITTI seq 8

Deblurred and transparent object segmented image from TUM r3/long office household

PoseNet with CoordConv

PoseNet with CoordConv

Network overfitting

Network overfitting

Implementation

Datasets:

- 1. **KITTI** odometry sequences: 08, 09, 10
- 2. **TUM** sequences:

freiburg1_rpy, freiburg1_xyz, freiburg3_long_office_household (includes transparents)

Evaluation Metrics:

APE - Absolute Pose Error is determined by comparing the predicted and GT trajectories absolute distances. $E_i = P_{ref,i}^{-1} P_{est,i} \in SE(3)$

RPE - Relative Pose Error is a measurement of the trajectories local accuracy over a fixed time interval Delta. $E_{i,j} = (P_{ref,i}^{-1} P_{ref,j})^{-1} (P_{est,i}^{-1} P_{est,j}) \in SE(3)$

Results

Metrics: t - translation part r - rotation part Sequences:

o - original

s - segmented

d - deblurred

	TUM								
		fr1/rpy		4.4.2.4.2.3.2.3.3.3.3.3.3.3.3.3.3.3.3.3.	fr1/xyz			fr3/long	
	$APE_t(m)$	$RPE_t(m)$	$RPE_r(^{\circ})$	$APE_t(m)$	$RPE_t(m)$	$RPE_r(^{\circ})$	$APE_t(m)$	$RPE_t(m)$	$RPE_r(^{\circ})$
0	0.024508	0.018725	1.444773	0.005638	0.008801	0.544655	0.031001	0.007968	0.366255
S	0.022390	0.013729	1.280872	0.006539	0.010742	0.647860	0.025041	0.007128	0.360615
d	0.018767	0.017813	1.127863	0.008820	0.013572	0.696928	0.034174	0.007442	0.336747
d+s	0.018613	0.065011	2.190500	0.007662	0.012044	0.710171	0.025793	0.006862	0.336524
	KITTI								
	91 C 2 S 2 W + A 2 2 0 C W = M - M	seq08	10 M	Walk of the profile and a suffering	seq09			seq10	Walter
	$APE_t(m)$	$RPE_t(m)$	$RPE_r(^{\circ})$	$APE_t(m)$	$RPE_t(m)$	$RPE_r(^{\circ})$	$APE_t(m)$	$RPE_t(m)$	$RPE_r(^{\circ})$
0	37.757439	0.467190	0.053345	31.126846	0.635913	0.053478	3.502739	0.060417	0.059422
d	38.701056	0.487801	0.053924	42.403437	0.334358	0.053853	5.366431	0.095038	0.072026

Result trajectories

KITTI sequence 10

Translation and Rotation Errors

	seq09		seq10		
	t_err, %	r_err, (deg/100m)	t_err, %	r_err, (deg/100m)	
source paper	7.31	3.05	7.79	4.90	
random, first_all	86.94	24.92	147.39	22.77	
zeros, whole	133.56	12.73	162.55	18.52	
random, whole	92.36	25.25	147.66	22.45	
allrandom, first_all	86.54	26.15	147.28	23.90	
zeros, first_all	87.08	25.09	147.54	22.70	

Training losses

Training losses

Training losses

Validation losses

Conclusion

- In contrast to our expectations the deblurring preprocess didn't enhance the performance of Visual Odometry always, and it added a remarkable amount of extra running time to the whole pipeline.
- For transparent object masking step, we realized that the network that we used didn't work on outdoor dataset (Kitti) and on the indoor dataset (TUM) the metrics didn't suggest a reliable improvement.
- The Deep Learning for Visual Odometry with CoordConv need more further investigation.