Computer Science Track Core Course Linear programming — part 1

Martin Dvorak IST Austria Kolmogorov group

2021-06-02

Linear program

Definitions

We are given an input $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ and we search for $\mathbf{x} \in \mathbb{Q}^n$ that optimizes...

minimize
$$c'\mathbf{x}$$
 s.t. $A\mathbf{x} \ge b$

minimize
$$c'\mathbf{x}$$
 s.t. $A\mathbf{x} = b$ where $\mathbf{x} > \mathbf{0}$

maximize
$$c'x$$

s.t. $Ax = b$
where $x > 0$

maximize c'x

s.t. Ax < b

Separating points

We are searching for a line y = ax + b that separates "disks" (top) from "squares" (bottom).

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables:

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom). y = ax + b

Variables: $a \leq 0$, $b \leq 0$

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \le 0$, $b \le 0$ Point (x_1, y_1) above the line:

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ "disk"

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ "disk"

Point (x_2, y_2) below the line:

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ Point (x_2, y_2) below the line: $x_2 \cdot a + b \ge y_2$ "disk"
"square"

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ Point (x_2, y_2) below the line: $x_2 \cdot a + b \ge y_2$ "disk"
"square"

Objective:

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$ Point (x_2, y_2) below the line: $x_2 \cdot a + b \ge y_2$

"square"

"disk"

Objective: minimize 0

Separating points strictly

Now, we are searching for a line y = ax + b that separates them strictly.

Separating points strictly

Now, we are searching for a line y = ax + b that separates them strictly.

Variables: $a \leq 0$, $b \leq 0$, $d \geq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b + d \le y_1$

Point (x_2, y_2) below the line: $x_2 \cdot a + b - d \ge y_2$

Objective: maximize d

From minimization to maximization

Primal problem:

From minimization to maximization

Primal problem:

minimize
$$6x_1 + 6x_2$$

s.t. $2x_1 + x_2 \ge 4$
 $x_1 + 2x_2 \ge 5$
where $x_1, x_2 \ge 0$

From maximization to minimization

From maximization to minimization

Dual problem:

maximize
$$4y_1 + 5y_2$$

s.t. $2y_1 + y_2 \le 6$
 $y_1 + 2y_2 \le 6$
where $y_1, y_2 \ge 0$

Dual of the dual problem:

minimize
$$6z_1 + 6z_2$$

s.t. $2z_1 + z_2 \ge 4$
 $z_1 + 2z_2 \ge 5$
where $z_1, z_2 \ge 0$

Comparison

Primal problem:

minimize
$$6x_1 + 6x_2$$

s.t. $2x_1 + x_2 \ge 4$
 $x_1 + 2x_2 \ge 5$
where $x_1, x_2 \ge 0$

Dual of the dual problem:

LP duality

In general (I)

We are given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ on the input. We search for either $\mathbf{x} \in \mathbb{Q}^n$ or $\mathbf{y} \in \mathbb{Q}^m$.

Primal problem:

minimize
$$c'\mathbf{x}$$

s.t. $A\mathbf{x} \ge b$
where $\mathbf{x} \le \mathbf{0}$

maximize
$$b' y$$

s.t. $A^{T} y = c$
where $y > 0$

LP duality

In general (II)

We are given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ on the input. We search for either $\mathbf{x} \in \mathbb{Q}^n$ or $\mathbf{y} \in \mathbb{Q}^m$.

Primal problem:

minimize
$$c'\mathbf{x}$$

s.t. $A\mathbf{x} = b$
where $\mathbf{x} \ge \mathbf{0}$

maximize
$$b' y$$

s.t. $A^{\top} y \leq c$
where $y \leq 0$

LP duality

In general (III)

We are given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ on the input. We search for either $\mathbf{x} \in \mathbb{Q}^n$ or $\mathbf{y} \in \mathbb{Q}^m$.

Primal problem:

$$\begin{array}{ll} \text{minimize} & c'\mathbf{x} \\ \text{s.t.} & A\mathbf{x} \geq b \\ \text{where} & \mathbf{x} \geq \mathbf{0} \end{array}$$

$$\begin{array}{ll} \text{maximize} & b' \mathbf{y} \\ \text{s.t.} & A^{\top} \mathbf{y} \leq c \\ \text{where} & \mathbf{v} > \mathbf{0} \end{array}$$

Dual linear programs

Exercise

Write an infeasible LP such that its dual is not unbounded.

Thanks for your attention!

Questions?