QEL, Spices Board

In-house Training – 1: Analysis of Pesticide Residues Lecture - 2

Introduction to instrumentation: GC-MS/MS

10-Jul-23

Dr. Ramesh BN Spices Board

Moving on

From last lecture...

What we have already covered:

- Basics of chromatography and HPLC
- General principles of mass spectrometry (MS) and hyphenated techniques
- General principles of LC-MS/MS

 - → How mass filtration happens in MS: scanning (RF-DC ramp) and selection (RF-DC fixed)

What we will cover today:

- Review of basics operation of GC
- **└** General principles of GC-MS and GC-MS/MS
- How GC-MS differs from LC-MS
- → Using GC-MS and GC-MS/MS for residue analysis

Gas Chromatography

A review...

- ⇒ Chromatographic technique for separation of mixtures of volatile compounds.
 - → Mobile Phase is a gas, He or N2.
 - → Mixtures are separated based on the difference in interaction of the components with the stationary phase.
 - └ Identification of unknowns is based on matching TR of standards
- ⇒ Using conventional detectors require relying on retention time matching for identification causes problems:
 - → False positives, false negatives
- ⇒ Mass spectrometry is used as the detector to avoid these problems

Gas Chromatography parts

The components

- → Helium gas is the carrier
- → Moisture, oxygen and hydrocarbon traps
- → The column is a capillary tube of fused silica, with the liquid stationary phase coated inside
- → The electronic flow controller (EFC) manages the flow of carrier gas through the column
- → The oven controls the temperature of the column
- → The injector vaporizes the sample and mixes it with the carrier gas
- → Detector detects the compounds separated in the column

MS as a detector for GC

Sensitivity and range compared to conventional detectors

The carrier gas Things to remember

- ⇒ The carrier gas cylinder should be replaced when the inner pressure falls below 200 psi
 - → Will affect MS performance if pressure is lower

GC-MS and -MS/MS § Components and operation

The interface Hyphenation to GC

- Column outlet is placed directly opposite to the MS Inlet
- MS vacuum can handle around 1 ml/min carrier flow
 - A flow-restrictor is used
 - High GC flow excess is vented out
 - Low GC flow He from the reservoir is pulled in
- Best for capillary columns

How GC-MS/MS works

General principles

- ⇒ Very similar to LC-MS/MS, which we have already covered
 - MS can 'see' only ions, so ionization is the first step in MS
 - └ In GC-MS/MS,
 - → ionization happens in vacuum (unlike LC-MS)
 - Other operations are similar to LC-MS/MS, which has been covered already:

 - → Mass scanning / Mass filtration (RF/DC)

 - □ Detection by electron multiplier

The Vacuum system In GC-MS

Like in LC-MS, in GC-MS also the vacuum is achieved in two stages:

→ The rouging pump (outside the instrument): from 760 Torr to 10⁻³ Torr

The turbo molecular pump (inside the instrument): from 10⁻³ Torr to 10⁻⁵ Torr

GC-MS/MS Hyphenation to GC

In GC MS/MS, ionization happens in vacuum Ionization is hard: Molecular ion mostly doesn't survive Standard spectrum library is possible in GC MS mode

Ionization In GC-MS

One or more of these ions can become parent ions for MS/MS analysis

Mass spectrum Which can be

library-matched

GC-MS

Identification by library matching (1)

- \Rightarrow GC-MS ionization is hard
 - → The parent ion, M⁺, most often does survive
 - → It breaks down into several smaller ions
 - → These smaller ions can be scanned (one by one, form lowest to highest), and detected
 - → A mass spectrum is produced

- ⇒ Conditions are standard (unless we choose to change them):
 - → Ionization is at 70 eV
 - Vacuum is set at 10⁻⁵ torr
 - ∪ Under standard conditions spectra produced are also standard
 - → Can be matched with standard libraries → NIST, Wily Pesticide Library etc.

Base peak - ion with highest intensity (taken as 100%)

If molecular ion survives, it will show up as the ion with highest mass

GC-MS

Identification by library matching (2)

GC-MS is a very useful technique for identification (unlike LC-MS)

GC-MS/MS Quantification by MRM mode(1)

- ⇒ The base peak (or any other intense ion) is selected as the parent ion from the mass spectrum
- ⇒ Subjected to collision induced dissociation
 - ¹ In the second quadrupole, N₂ is used as collision gas
 - → The parent ion fragments into daughter ions
 - A daughter ion is selected in the third quadrupole, followed by detection
- ⇒ Multiple reaction monitoring (MRM)

GC-MS/MS Quantification by MRM mode

The MRM table

Name	Transition	Dwell time
Compound A	$P_A \rightarrow D_1$	100 ms ←
Compound A	$P_A \rightarrow D_2$	100 ms
Compound B	$P_B \rightarrow D_1$	100 ms
Compound B	$P_B \rightarrow D_2$	100 ms
••••		

In GC-MS, best transitions can vary from matrix to matrix

GC-MS/MS Quantification Quantifier and qualifier

- In MRM, we choose 2 transitions per analyte
- Higher intensity transition is called the quantifier, and is used for quantification
- Lower intensity transition is called the qualifier
- Quantifier : Qualifier ratio should match between standard and sample

MRM time segmenting Why?

Issue:

- GC peaks are typically sharp, usually only a few seconds wide
- When number of transitions in the MRM table is high, total cycle time will be high
- Number of data points per peak will be low
- Will affect peak shapes a minimum of 5 points per peak needed

Solution:

- Segment the total run-time into smaller periods
- Within each period, set an MRM cycle
- Also called 'dynamic' MRM

Number of data points high

Number of data points low

MRM time segmenting (2) Also applicable in LC-MS/MS

Key difference between GC- and LC-MS/MS Matrix effect

The calibration curve

Usually,

- Matrix suppression in LC-MS/MS
- Matrix enhancement in GC-MS/MS

We can't use solvent calibration curve for analytical work

Matrix-matched calibration curve required

Problem: availability of blank matrices

Practical aspects in GC-MS

§ Some specific topics

Autotune in GC-MS

Startup checks

- ⇒ When MS shows errors or low sensitivity, or if there has been an unforeseen shutdown, we perform an autotune
 - involves adjusting several mass spectrometer parameters through the infusion of a tune compound, commonly perfluorotributylamine (PFTBA)
 - Usually the first step in troubleshooting

Autotune in GC-MS (2) Startup checks

⇒ Autotune checks if:

- → air/Water ratio is within limits (leaks and gas purity)
- background noise is low
- masses are correctly assigned (61, 219 and 502)
- the mass peak widths (PW50) are 0.55 ±0.1.
- by the electron multiplier (EM) voltage is around 1500V. Higher values indicate saturation

Column trimming

Retention time changes

- ⇒ After large number of injections, head of the capillary column might become contaminated:

 - After many trimmings, RT shift might occur
 - Might need to adjust the segmentation in the method
 - RT-locking calculators are available

Liner changing Contamination issues

- \Rightarrow After large number of injections, if there is sudden drop in linearity, or tailing of peaks, liner might be the cause:
 - Liners can get contaminated
 - With spices, liner change might be needed within around 100 injections
 - Regeneration and repacking of liners possible

More to learn..

Next session 17th June 2023

- (1) Introduction to instrumentation: LC-MS/MS, 03-Jul-23
- (2) Introduction to instrumentation: GC-MS/MS, 10-Jul-23
- 🕑 (3) Pesticide residue analysis Introduction, 17-Jul-23 🛑
- (4) Advanced pesticide residue analysis, 24-Jul-23
- (5) Method validation: requirements and practice, 31-Jul-23
- (6) Introduction to measurement uncertainty calculation, 7-Aug-23

Dr Ramesh BN

Scientist C, Spices Board

WhatsApp: +91 8547662471 Mobile: +91 8547662471

Email (O): rameshbabu.n@nic.in
Email (P): rameshbn1@gmail.com
Course website: http://ramesh-sb.github.io

Thank you! § Questions?