PERANCANGAN SISTEM PENDUKUNG KEPUTUSAN UNTUK PEMILIHAN PEMASOK NATA DE COCO DENGAN METODE SIMPLE ADDITIVE WEIGHTING

Cahyono Sigit Pramudyo¹ dan Dian Eko Hari Purnomo²

Abstrak: Pemasok nata de coco lembaran bagi CV. Agrindo Suprafood Yogyakarta merupakan suatu bagian yang penting bagi perusahaan. Saat ini, di perusahaan dalam melakukan pemilihan pemasok tidak kontrak menjadi pemasok kontrak terkadang mengalami kesulitan. Kesulitan terebut terjadi karena belum adanya kriteria yang secara rinci dapat dipergunakan untuk pemilihan pemasok. Sehingga pada penelitian ini akan berusahaan menemukan kriteria-kriteria yang berpengaruh dalam pemilihan pemasok. Pengolahan data pada penelitian ini menggunakan metode Simple Additive Weighting (SAW). Selain itu, model yang telah dibuat akan diimplementasikan menjadi suatu Sistem Pendukung Keputusan (SPK). Kriteria yang dapat mempengeruhi pemilihan pemasok adalah jumlah total, jumlah total kualitas satu, jumlah total kualitas dua, jumlah total nata rusak, jumlah pengiriman maksimal, jumlah maksimal kualitas satu, jumlah maksimal kualitas dua, jumlah maksimal rusak, jumlah pengiriman minimal, jumlah minimal kualitas satu, jumlah minimal kualitas dua, jumlah minimal rusak, kerutinan, harga kualitas satu dan harga kualitas dua. Di samping itu, berdasarkan hasil pengujian Sistem Pendukung Keputusan (SPK) yang telah dibuat diperoleh kesimpulan bahwa sistem yang telah dibuat dapat dipergunakan nantinya oleh CV. Agrindo Suprafood Yogyakarta.

Kata kunci: Pemilihan pemasok, SAW dan SPK

PENDAHULUAN

CV. Agrindo Suprafood Yogyakarta merupakan suatu perusahaan manufaktur yang memproduksi *nata de coco* potongan. Permintaan yang terus meningkat mengakibatkan sistem produksi perusahaan tidak mampu untuk memenuhi permintaan tersebut. Untuk itu perusahaan membeli bahan baku setengah jadi dari pemasok. Permasalahan mulai muncul ketika perusahaan akan memilih pemasok kontrak. Pihak perusahaan kesulitan dalam melakukan penilai terhadap pemasok yang akan dipilih menjadi pemasok kontrak. Hal ini, terjadi karena pihak perusahaan belum mempunyai kriteria-kriteria yang dapat digunakan untuk menilai pemasok. Selain itu, pihak perusahaan belum menggunakan suatu metode tertentu untuk pemilihan pemasok kontrak.

Tujuan dari penelitian ini adalah mengidentifikasi kriteria-kriteria yang dapat digunakan dalam pemilihan pemasok. Selain itu, akan dibuat suatu Sistem Pendukung Keputusan (SPK) yang dapat digunakan untuk pemilihan pemasok *nata de coco* lembaran.

Naskah diterima: 15 Maret 2012, direvisi:12 Mei 2012, disetujui: 30 Mei 2012

Jurusan Teknik Industri, UIN Sunan Kalijaga Yogyakarta
 Jl. Marsda Adi Sucipto, Yogyakarta
 Email: <u>cahyono_sigit@yahoo.com</u>

² Jurusan Teknik Industri, UIN Sunan Kalijaga Yogyakarta Jl. Marsda Adi Sucipto, Yogyakarta

LANDASAN TEORI

Pengambilan Keputusan

Pengambilan keputusan adalah sebuah proses memilih tindakan (diantara berbagai alternatif) untuk mencapai suatu tujuan atau beberapa tujuan (Turban dkk, 2005).

Menurut Simon (dalam Turban, 2005) proses pengambilan keputusan meliputi tiga fase utama yaitu inteligensi, desain dan pemilihan. Kemudian Simon menambahankan fase keempat yakni implementasi. Gambaran konseptual mengenai proses pengambilan keputusan ditunjukan pada (Gambar 1), dibawah ini:

Gambar 1. Pengambilan Keputusan atau Proses Pemodelan (Sumber: Turban, 2005:65)

MADM

Multiple Attribute Decision Making (MADM) adalah suatu metode yang digunakan untuk mencari alternatif optimal dari sejumlah alternatif dengan kriteria tertentu. Inti dari MADM adalah menentukan nilai bobot untuk setiap atribut, kemudian dilanjutkan dengan proses perankingan yang akan menyeleksi alternatif yang sudah diberikan. Pada dasarnya, ada 3 pendekatan untuk mencari nilai bobot atribut, yaitu pendekatan subyektif, pendekatan obyektif dan pendekatan integrasi antara subyektif dan obyektif. Masing-masing pendekatan memiliki kelebihan dan kelemahan. Pada pendekatan subyektif, nilai bobot ditentukan berdasarkan subyektifitas dari para pengambil keputusan, sehingga beberapa faktor dalam proses perankingan alternatif bisa ditentukan secara bebas. Sedangkan pada pendekatan

obyektif, nilai bobot dihitung secara matematis sehingga mengabaikan subyektifitas dari pengambil keputusan (Kusumadewi dkk, 2006).

Ada beberapa metode yang dapat digunakan untuk menyelesaikan masalah MADM, antara lain (Kusumadewi dkk, 2006):

- a. Simple Additive Weighting Method (SAW)
- b. Weighted Product (WP)
- c. ELECTRE
- d. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS)
- e. Analytic Hierarchy Process (AHP)

Metode SAW

Metode SAW (Simple Additive Weighting) sering juga dikenal istilah metode penjumlahan terbobot. Konsep dasar metode SAW adalah mencari penjumlahan terbobot dari rating kinerja pada setiap alternatif pada semua atribut. Metode SAW membutuhkan proses normalisasi matriks keputusan (X) ke suatu skala yang dapat diperbandingkan dengan semua rating alternatif yang ada.

$$\mathbf{r}_{ij} = \begin{cases} \frac{\mathbf{x}_{ij}}{\text{Max}_i \ \mathbf{x}_{ij}} \text{ ; jika j adalah atribut keuntungan (benefit)} \\ \frac{\text{Min}_i \ \mathbf{x}_{ij}}{\mathbf{x}_{ij}} \text{ ; jika j adalah atribut biaya (cost)} \end{cases}$$

Dimana:

rij = ranting kriteria ternomalisasi
xij = nilai atribut yang dimiliki setiap kriteria
Maxi xij = nilai terbesar dari setiap kriteria
Mini xij = nilai terkecil dari setiap kriteria
benefit = jika nilai terbesar terbaik
cost = jika nilai terkecil terbaik

Dimana rij adalah rating kinerja ternormalisasi dari alternatif Ai pada atribut Cj; i=1,2,...,m dan j=1,2,...,n. Nilai preferensi untuk setiap alternatif (Vi) diberikan sebagai:

$$V_i = \sum_{i=1}^{n} w_i r_{ij}$$

Dimana,

Vi = ranting untuk setiap alternatif wj = nilai bobot untuk setiap kriteria rij = nilai ranting kinerja ternormalisasi

Nilai Vi yang lebih besar mengindikasikan bahwa alternatif Ai lebih terpilih (Kusumadewi dkk, 2006).

Sistem Pendukung Keputusan (SPK)

Sistem Pendukung Keputusan (SPK) adalah bagian dari sistem informasi berbasis komputer (termasuk sistem pengetahuan) yang dipakai untuk mendukung pengambilan keputusan dalam suatu organisasi atau perusahaan. Suatu Sistem Pendukung Keputusan (SPK) memiliki beberapa subsistem yang menentukan

kapabilitas teknis Sistem Pendukung Keputusan (SPK), antara lain (Turban dkk, 2005):

- 1. **Manajemen Data**. Termasuk database, yang mengandung data yang relevan untuk berbagai situasi dan diatur oleh software yang disebut Database Management Systems (DBMS).
- 2. **Manajemen Model**. Melibatkan model finansial, statistika, manajemen pengetahuan, atau berbagai model kuantitatif lainnya, sehingga dapat memberikan ke sistem suatu kemampuan analitis, dan manajemen software yang diperlukan.
- 3. **Interaksi**. Pengetahuan pekerja dapat berinteraksi pada SPK untuk melakukan analisis.
- 4. **Manajemen Pengetahuan**. Modul Manajemen Pengetahuan juga berinterkoneksi dengan Sistem Integrasi Manajemen Pengetahuan Perusahaan.

METODOLOGI PENELITIAN

Pengembangan Sistem Pendukung Keputusan untuk menentukan pemasok *nata de coco* mengacu kepada tahapan penelitian menggunakan pendekatan sistem sebagai berikut:

- 1. Mempelajari sistem pembelian *nata de coco* lembaran dari pemasok. Wawancara dan observasi untuk mendapatkan variable-variable keputusan penting dalam pemilihan pemasok kontrak.
- 2. Mengidentifikasi kriteria-kriteria yang dapat digunakan untuk penentuan pemasok *nata de coco* kontrak.
- 3. Desain sistem untuk merancang model pengambilan keputusan, basis data dan user interface pada sistem pendukung keputusan.
- 4. Verifikasi model menggunakan data dari CV. Agrindo Suprafood Yogyakarta sebagai studi kasus.

HASIL DAN PEMBAHASAN

Kegiatan Pembelian Nata de coco

Proses pembelian *nata de coco* lembaran dari pemasok di CV. Agrindo Suprafood adalah sebagai berikut:

- 1. Pemasok *nata de coco* lembaran mengirimkan *nata de coco* lembaran ke CV. Agrindo Suprafood Yogyakarta.
- 2. Bagian produksi CV. Agrindo Suprafood Yogyakarta khususnya pada stasiun kerja sortir A melakukan klasifikasi *nata de coco* lembaran menjadi tiga klasifikasi. Tiga klasifikasi tersebut adalah *nata de coco* lembaran kualitas satu, *nata de coco* lembaran kualitas dua dan *nata de coco* lembaran rusak. Proses pengklasifikasian ini sudah ada prosedurnya. Yang mana prosedur tersebut telah dibuat oleh bagian administrasi perusahaan berdasarkan penelitian secara langsung yang dilakukan oleh perusahaan. Rincian mengenai ketentuan klasifikasi akan dijelaskan secara rinci pada bagian berikutnya skripsi ini.
- 3. Setelah pengklasifikasian dilakukan penimbangan untuk masing-masing jenis klasifikasi *nata de coco* lembaran.
- 4. Dilakukan pencatatan dan pemberian bukti pengiriman kepada pemasok.
- 5. Proses pembayaran dilakukan dengan cara menukarkan bukti pengiriman ke bagian administrasi.

Daftar Kriteria Yang Dapat Digunakan Untuk Pemilihan Pemasok Nata de coco

Berikut ini adalah daftar kriteria yang dapat digunakan untuk pemilihan pemasok *nata de coco*, kriteria di bawah ini didasarkan pada ketentuan yang berlaku di CV. Agrindo Suprafood Yogyakarta saat ini.

Tabel 1. Daftar Kriteria Berdasarkan Ketentuan Yang Berlaku

No.	Kode	Kriteria	Jenis Kriteria	Satuan
1	C1	Jumlah total pengiriman nata de coco lembaran	Keuntungan (+)	Kg
2	C2	Jumlah total <i>nata de coco</i> lembaran yang memenuhi syarat	Keuntungan (+)	Kg
3	C3	Jumlah total <i>nata de coco</i> lembaran yang tidak memenuhi syarat tetapi masih dapat digunakan	Biaya (-)	Kg
4	C4	Jumlah total <i>nata de coco</i> lembaran yang tidak memenuhi syarat dan tidak dapat digunakan	Biaya (-)	Kg
5	C5	Jumlah pengiriman <i>nata de coco</i> lembaran maksimal	Keuntungan (+)	Kg
6	C6	Jumlah maksimal <i>nata de coco</i> lembaran yang memenuhi syarat	Keuntungan (+)	Kg
7	C7	Jumlah maksimal <i>nata de coco</i> lembaran yang tidak memenuhi syarat tetapi masih dapat digunakan	Biaya (-)	Kg
8	C8	Jumlah maksimal <i>nata de coco</i> lembaran yang tidak memenuhi syarat dan tidak dapat digunakan	Biaya (-)	Kg
9	C9	Jumlah pengiriman <i>nata de coco</i> lembaran minimal	Keuntungan (+)	Kg
10	C10	Jumlah minimal <i>nata de coco</i> lembaran yang memenuhi syarat	Keuntungan (+)	Kg
11	C11	Jumlah minimal <i>nata de coco</i> lembaran yang tidak memenuhi syarat tetapi masih dapat digunakan	Keuntungan (+)	Kg
12	C12	Jumlah minimal <i>nata de coco</i> lembaran yang tidak memenuhi syarat dan tidak dapat digunakan	Biaya (-)	Kg
13	C13	Kerutinan pengiriman nata de coco lembaran	Keuntungan (+)	-
14	C14	Harga beli <i>nata de coco</i> lembaran yang memenuhi syarat	Biaya (-)	Rp.
15	C15	Harga beli <i>nata de coco</i> lembaran yang tidak memenuhi syarat tetapi masih dapat digunakan	Biaya (-)	Rp.

Daftar Pemasok Nata de coco

Di bawah ini adalah rincian dari daftar pemasok *nata de coco* yang akan dipilih berdasarkan hasil pengumpulan data dari CV. Agrindo Suprafood Yogyakarta, seperti terlihat pada tabel 2.

Struktur Hirarki dari Kegiatan Pemilihan Pemasok Nata de coco

Dari dua bagian sebelumnya dibuat suatu struktur hirarki dari kegiatan pemilihan Pemasok *Nata de coco*. Gambar struktur hirarkinya dapat dilihat pada gambar 3.

No	Kode	Nama Pemasok	
1.	A1	Adi	
2.	A2	Yatno	
3.	A3	Anam	
4.	A4	Didit	
5.	A5	Turyono	

Tabel 2. Daftar Pemasok Nata De Coco Yang Akan Dipilih

Gambar 2. Struktur Hirarki Pemilihan Pemasok Nata De Coco

Pemodelan Sistem Pendukung Keputusan untuk Penentuan Pemasok Nata de coco

Pemodelan sistem yang dirancang untuk rancangan aplikasi SPK penentuan pemasok *nata de coco*, dirancang dalam bentuk paket komputer yang terdiri dari komponen sistem manajemen basis data, sistem manajemen model, sistem manajemen pengetahuan yang dihubungkan dengan sistem manajemen dialog yang akan memudahkan komunikasi dengan pengguna yang bersifat interaktif.

Konfigurasi model sistem penunjang keputusan menggambarkan komponen di dalam sistem dan keterkaitan antar komponen sistem. Konfigurasi model SPK disajikan pada gambar yang terdiri dari tiga komponen utama yaitu Sistem Manajemen Basis Model, Sistem Manajemen Basis Data dan Sistem Manajemen Dialog.

Model SPK ini dirancang untuk mampu menghasilkan nilai persentase dan rangking untuk masing-masing pemasok *nata de coco*, yang akan dipilih oleh CV. Agrindo Suprfood Yogyakarta.

Pemodelan sistem untuk rancangan SPK penentuan pemasok *nata de coco* dapat dilihat pada Gambar 2 yang terdiri dari tiga komponen utama yaitu sistem manajemen basis model, sistem manajemen basis data dan sistem manajemen dialog.

Gambar 3. Konfigurasi Sistem Pendukung Keputusan Penentuan Pemasok Nata De Coco

Diagram Alir SPK Penentuan Pemasok *Nata de coco*, seperti terlihat pada gambar 4.

Gambar 4. Diagram Alir SPK Penentuan Pemasok Nata De Coco

Sistem Manajemen Basis Data

Basis Data SPK Penentuan Pemasok *Nata de coco* terdiri dari basis data internal yaitu Data alternatif yang berisi daftar pemasok *nata de coco* dan data kriteria yang dapat digunakan untuk pemilihan pemasok. Setelah dianalisis basis data ini terdiri dari empat buah tabel yaitu input kasus, input alternatif, input kriteria, input nilai.

Perancangan Sistem Manejemen Basis Pengetahuan

Basis Pengetahuan SPK Penentuan Pemasok *Nata de coco* terdiri dari berbagai tindakan yang dilakukan oleh lingkungan bisnis (misalnya konsumen, pemerintah, jasa transportasi) serta tindakan yang dilakukan CV. Agrindo Suprafood Yogyakarta untuk mengantisipasinya.

Sistem Manajemen Basis Model

- 1. Sistem Manajemen Dialog
 Sistem Manajemen Dialog di dalam rekayasa Penentuan Pemasok Nata de coco
 adalah komponen yang dirancang untuk mengatur dan mempermudah interaksi
 antara model (aplikasi komputer) dengan pengguna.
- 2. Sub Model SAW
 Di bawah ini adalah gambar dari diagram alir dari metode Simple Additive Weighting (SAW).

Penerapan Model Pada Studi Kasus Pemilihan Pemasok

Dari model yang telah dirancang diterapkan dalam kasus pemilihan pemasok. Data diperoleh dari perusahaan dan pakar yang telah terbiasa melakukan pemilihan pemasok *nata de coco*. Tabel 3 adalah ringkasan hasil perhitungan dari masingmasing metode.

Tabel 3. Hasil Perhitungan

	Metode SAW					
Alternatif	EXCEL		SPK			
	P (%)	R	P (%)	R		
Adi	20.084	3	20.084	3		
Yatno	19.409	4	19.408	4		
Anam	20.121	2	20.121	2		
Didit	21.681	1	21.681	1		
Turyono	18.707	5	18.707	5		

Keterangan:

P = Persentase

R = Ranking

EXCEL = Perhitungan menggunakan *Microsoft Office Excel* 2007

SPK = Perhitungan menggunakan Sistem Pendukung Keputusan.

Dari hasil peritungan di atas pemasok yang terpilih adalah Didit, karena mempunyai nilai persentase tertinggi berdasarkan metode SAW.

Implementasi SPK

Berikut ini adalah gambaran dari SPK yang telah dikembangkan.

a. Bagian Kasus

Di bawah ini adalah antarmuka untuk SPK bagian kasus atau bisa disebut bagian penentuan tujuan.

Gambar 6. Bagian Kasus

b. Bagian Alternatif

Di bawah ini adalah antarmuka untuk SPK bagian alternatif.

Gambar 7. Bagian Alternatif

c. Bagian Kriteria

Di bawah ini adalah antarmuka untuk SPK bagian kriteria.

Gambar 8. Bagian Kriteria

d. Bagian Nilai

Di bawah ini adalah antarmuka untuk SPK bagian nilai.

Gambar 9. Bagian Nilai

e. Bagian Hasil Perhitungan

Di bawah ini adalah antarmuka untuk SPK bagian hasil perhitungan.

Gambar 10. Bagian Hasil Perhitungan

KESIMPULAN

Berdasarkan kasus yang telah diteliti, diperoleh kesimpulan sebagai berikut:

- 1. Dari hasil peritungan di atas pemasok yang terpilih adalah Didit, karena mempunyai nilai persentase tertinggi berdasarkan metode SAW.
- 2. Hasil perhitungan dengan metode manual sama dengan aplikasi yang dibuat. Hal ini dapat disimpulkan bahwa aplikasi SPK yang dibuat sudah valid, sehingga siap untuk dipergunakan oleh perusahaan.

Daftar Pustaka

Al Fatta, Hanif. 2009. *Pengembangan Sistem Pendukung Keputusan Untuk Penilaian Ujian* Tugas Skripsi (Studi Kasus Pada Stmik Amikom Yogyakarta). Yogyakarta: Jurnal STMIK AMIKOM Volume 10 Nomor 1, Maret 2009.

Fitriana, Rina dan Djatna, Taufik. 2009. *Sistem Pendukung Keputusan Rantai Pasok Koperasi Pengolahan Susu X di Jawa Barat. Jakarta*: Jurnal Teknik Industri Volume 10 Nomor 2, Juli 2011 Fakultas Teknologi Industri Universitas Trisakti.

Fred S. Azar. 2000. Multi Attribute Decision Making: Use of Three Scoring Methods to Compare the Performance of Imaging Techniques for Breast Cancer Detection. Pennsylvania: Journal Department of Computer and Information Science University of Pennsylvania.

Heizer, Jay dan Render, Barry. 2006. *Menejemen Operasi Edisi Ketujuh Buku Satu*. Jakarta: Penerbit Salemba Empat.

Heizer, Jay dan Render, Barry. 2006. *Menejemen Operasi Edisi Ketujuh Buku Dua*. Jakarta: Penerbit Salemba Empat.

Kusumadewi, Sri. Hartati, S. Harjoko, A. dan Wardoyo, R. 2006. Fuzzy Multi-Attribute Decision Making (FUZZY MADM). Yogyakarta: Penerbit Graha Ilmu.

Subakti, Irfan. 2002. *Panduan Sistem Pendukung Keputusan*. Surabaya: Diktat Jurusan Teknik Informatika Fakultas Teknologi Informasi ITS.

Turban, Efraim dkk. 2005. Decision Support Systems and Intelligent System (Sistem Pendukung Keputusan dan Sistem Cerdas) Edisi 7 Jilid 1. Yogyakarta: Penerbit Andi.