CS323: Theory of Computation

Lecture 1 Introductory Lecture

Dr. Samar Hesham samar@fci-cu.edu.eg

Department of Computer Science
Faculty of Computers and Artificial intelligence
Cairo University
Egypt

Syllabus and Terminologies

- Regular Languages .. Regular Sets
 - □ REs (Regular Expressions)
 - □ FSMs (or FSA/FA) ... Finite State Machines/Automata
 - DFA vs. NFA ... Deterministic vs. Non-deterministic FSA
 - Comparison and conversion
 - Examples & Closure Operations
 - Pumping Lemma
- Context Free Languages
 - □ CFGs ... Context Free Grammars
 - PDA ... Push Down Automata
 - □ Parsing: CFG generating strings vs. PDA recognizing strings
- Turing Machine

Resources

Text Books:

- □ "Introduction to Computer Theory", 2nd Edition, by Daniel I.A. Cohen, John Wiley & Sons.
- □ "An Introduction to Formal Languages & Automata" by Peter Linz, Jones & Bartlett Publishers, 3rd edition, Inc. January 2001; ISBN: 0763714224.
- □ "Theory of Computation an Introduction" by James L. Hein, Jones & Bartlett Publishers 1996; ISBN: 0-86720-497-4.

Course Grading Policy

Midterm ExamLab Tasks & Practice	20 20
Total	100

- It is the most abstract course in the whole curriculum
- But a fundamental course for all CSians
- This course is not about how to develop a program or build a computer
- It helps you know a lot more about how people looked to CS as a science in the past 70 years

- It is about:
 - What kind of things can we really compute?
 - □ How fast we can do it? and
 - How much space/memory it needs to be computed?

- This course is about different models of computations you can use to compute stuff
- But abstracted from the hardware/machine specifications
- We will deal with kinds of problems that takes inputs, and process it, then decide whether these inputs are acceptable or not
- Inputs are set of symbols formed by an alphabet (binary, English alphabet, ...)

- There are a lot of applications that connect to this course:
 - Theory behind writing compilers/translators for programming languages
 - □ Computer Architecture → model particular processes/states using finite-state-machines (FSMs)
 - String search algorithms, word processing algorithms, any kind of editors → that is a RE/FSM
 - When you do a representation of a language like XML, it is just a *grammar-writing*

Turing Machine

- Turing Machine invented by *Alan-Turing* in 1940's
- It is an abstraction of how programming languages and computers work nowadays
- He invented a mathematical abstraction of a complete representation of how might we can do a computation
- Any problem that can be computed by a program on a computer, it can be computed by (simulated on) a Turing Machine

Turing Machine

- Turing Machine is like a *human with organs*, cutting one organ (going down into lower machine) will make it handicap, or taking higher time and resources
- The lower level is the FSM, and then add up pieces to form more powerful machines (till getting a Turing Machine)
- Then you will get into the twilight zone that has problems can't be computed

Definition of a language "L"

\sum is the set of alphabets:

Language = set of strings can be formed by \sum

An alphabet is a finite, non-empty set of symbols

- We use the symbol \sum (sigma) to denote an alphabet
- Examples:
 - □ Binary: $\Sigma = \{0,1\}$
 - □ All lower case letters: $\Sigma = \{a,b,c,..z\}$
 - □ Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: $\Sigma = \{a,c,g,t\}$
 - ...

Definition of a language "L"

- Language: is a <u>set</u> of strings or it is a collection of sentences of finite length all constructed from a finite alphabet of symbols"
 - If A is an alphabet, then a language over A is a collection of all strings over A.
 - A^* is the biggest possible language over A, and every other language over A is a <u>subset</u> of A^* .

Example

If $A=\{a\}$ then the following are simple examples of languages over an alphabet A:

 $\{\Phi\}, \{\lambda\}, \{a\}, and A^* = \{\lambda, a, aa, aaa, \dots \}.$

Note: λ , Λ , ε are used interchangeably in textbooks

Example

```
Let the alphabet be \Sigma = \{a, b\} then,

- \{\Phi\} = Empty\ Language

- \{\lambda\} = Empty\ Character

- \{a\} = Letter\ 'a'

- \{b\} = Letter\ 'b'

- \mathbf{a}^* = \{\lambda, a, aa, aaa, ......\}

- \Sigma^* = \{\lambda, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{ab}, \mathbf{ba}, \mathbf{bb}, \mathbf{aaa}, \mathbf{bbb}, ...\}

- \Sigma^+ = \Sigma^* - \{\lambda\}

- L_1 = \{\mathbf{a}, \mathbf{aa}, \mathbf{bbb}\} finite
```

infinite

 $-L_2 = \{a^nb^n : n > = 0\}$

 $-\overline{\mathbf{L}}_1 = \sum_{i=1}^{n} \mathbf{L}_1$

Regular Languages/Sets ... RLs/RSs

- > It is a language that:
 - Can be governed/expressed by rules called *Regular Expressions* (REs).

Theorem

```
Languages
Generated by
Regular Expressions

Regular Expressions
```

Properties of Regular Languages

For regular languages $L_{\!1}$ and $L_{\!2}$ we have

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Are regular Languages

Properties of Regular Languages

For regular languages L_1 and L_2 we have Concatenation: {\\aab, aa, ab, aa, abab, cab, aab, ...} Star:

Regular Expressions

- RE is a **syntax** for describing simple/regular languages and patterns.
- > REs are also used in applications that involve file parsing and text matching.
- > Many implementations have been made for RE.

RE Rules

Let $\Sigma = \{x\}$, then $L = \sum^*$ In RE, we write x* 2. Let $\Sigma = \{x, y\}$, then $L = \Sigma^*$ In RE, we write $(x+y)^*$ In RE, we write $(x+y)^*$ Kleene's star "*" means any combination of letters of length zero or more. $(x+y)^*$ $(x+y)^*$ (x+y)X=3 {XXX, XXY, ---- }

RE Rules

Given an alphabet \sum , the set of regular expressions is defined by the following rules.

- For every letter in \sum , the letter written in bold is a regular expression. **A-lamda or \epsilon-epsilon** is a regular expression. A **or** ϵ means an empty letter.
- 2. If $\mathbf{r_1}$ and $\mathbf{r_2}$ are regular expressions, then so are:
 - 1. (r_1)
 - $\mathbf{r}_1 \, \mathbf{r}_2$ and
 - 3. $\mathbf{r}_1 + \mathbf{r}_2$ or
 - 4. r_1^* and also r_2^*

NOTE 1: r_1^+ is not a RE

NOTE 2: spaces are ignored as long as they are not included in \sum

3. Nothing else is a regular expression.

Recursive Definition

Primitive regular expressions: \varnothing , λ , a Given regular expressions r_1 and r_2

$$r_1 + r_2$$
 $r_1 \cdot r_2$
 $r_1 *$
 (r_1)

Are regular expressions

Examples

A regular expression:
$$(a+b\cdot c)*\cdot(c+\varnothing)$$

Not a regular expression:
$$(a+b+)$$

Languages of Regular Expressions

L(r): language of regular expression r

$$a^* = \{\lambda, a, aa, aaa, aaaa, \dots\}$$

Example:

If
$$r = (a + b \cdot c)^* = \{\lambda, a, bc, aa, abc, bcd, \ldots\}$$

$$L((a + b \cdot c)^*) = \{\lambda, a, bc, aa, abc, bcd, \ldots\}$$

Regular Expressions

- Regular expressions
 - describe regular languages
- Example:

Describe the language

$$(a+b\cdot c)*$$

$${a,bc}* = {\lambda,a,bc,aa,abc,bca,...}$$

Definition (continued)

For regular expressions r_1 and r_2

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 \cdot r_2) = L(r_1) L(r_2)$$

$$L(r_1 *) = (L(r_1)) *$$

Example

Regular expression: $(a+b)\cdot a^*$

$$L((\underline{a+b)} \cdot \underline{a^*}) = L((a+b)) L(a^*)$$

$$= L(a+b) L(a^*)$$

$$= (L(a) \cup L(b)) (L(a))^*$$

$$= (\{a\} \cup \{b\}) (\{a\})^*$$

$$= \{a,b\} \{\lambda,a,aa,aaa,...\}$$

$$= \{a,aa,aaa,...,b,ba,baa,...\}$$

Example

Regular expression r = (aa)*(bb)*b

What is the regular languages that r describes?

$$L(r) = \{a^{2n}b^{2m}b: n, m \ge 0\}$$

Equivalent Regular Expressions

Definition:

Regular expressions r_1 and r_2

are **equivalent** if

$$L(r_1) = L(r_2)$$

Example

 $L = \{all strings with no two consecutive 0's \}$

$$r_1 = (1+01)*(0+\lambda)$$

$$r_2 = (1*011*)*(0+\lambda)+1*(0+\lambda)$$

$$L(r_1) = L(r_2) = L$$
 and r_2 are equivalent regular expr.

Example

• Regular expression r = (0+1)*00(0+1)*

$$L(r)$$
 = { all strings with at least two consecutive 0's }

RE Examples

> Example 1

$$\sum = \{a, b\}$$

- Formally describe all words with <u>a</u> followed by any number of <u>b</u>'s

$$L = a b^* = ab^*$$

- Give examples for words in L

```
{a ab abb abbb .....}
```

Example

$$\sum = \{a, b\}$$

- Formally describe all words with <u>a</u> followed by one or more <u>b</u>'s

$$L = ab^+ = abb^*$$

- Give examples for words in L

```
{ab abb abbb .....}
```

> Example

$$\sum = \{a, b, c\}$$

- Formally describe all words that start with an <u>a</u> followed by any number of <u>b</u>'s and then end with <u>c</u>.

$$L = a b^*c$$

- Give examples for words in L

{ac abc abbc abbbc}

> Example

$$\sum = \{a, b\}$$

Formally describe the language that contains nothing and contains words where any <u>a</u> must be followed by one or more <u>b</u>'s

```
L = b*(abb*)* OR (b+ab)*
```

- Give examples for words in L

 $\{\Lambda \text{ ab abb ababb } \dots \text{ b bb} \dots \}$

 \triangleright Example $\sum = \{a, b\}$

$$\sum = \{a, b\}$$

Formally describe all words where a's if any come before b's if any.

$$L = a^* b^*$$

Give examples for words in L

 $\{\Lambda \text{ a b aa ab bb aaa abb abbb bbb.....}\}$

NOTE:
$$a^*b^* \neq (ab)^*$$

because first language does not contain abab but second language has. Once single b is detected then no a's can be added

> Example

$$\sum = \{a\}$$

- Formally describe all words where count of <u>a</u> is odd.

```
L = a(aa)^* OR (aa)^* a
```

Give examples for words in L

```
{a aaa aaaaa .....}
```

RE-7.1

> Example

$$\sum = \{a, b, c\}$$

- Formally describe all words where single <u>a</u> or <u>c</u> comes in the start then odd number of <u>b</u>'s.

```
L = (a+c)b(bb)^*
```

Give examples for words in L

```
{ab cb abbb cbbb .....}
```

RE-7.2

Example

$$\sum = \{a, b, c\}$$

Formally describe all words where single <u>a</u> or <u>c</u> comes in the start then <u>odd number of <u>b</u>'s in case of <u>a</u> and zero or even number of <u>b</u>'s in case of <u>c</u>.</u>

```
L = \underline{ab(bb)}^* + \underline{c(bb)}^*
```

- Give examples for words in L

{ab c abbb cbb abbbbb}