2023 NVLab Summer School

- I. 期間: 7/4-9/5
- II. 時間: 每週二 (14:00-16:00)
- III. 地點: 線上授課
- IV. 大綱: Image Processing, Deep Learning, Computer Vision, 程式實作訓練及論文報告
- V. 主要學習內容:
 - 1. Courses Related to Computer Vision
 - 2. Code Implementation (Python and PyTorch)
 - 3. Read and Survey Papers
 - 4. Paper Presentation
- VI. 作業: Including Code, Readme, and Report
 - 1. Image Processing with Python (cv2, Albumentations, and Torchvision)
 - 2. Linear Model with Numpy (from scratch)
 - 3. Comparison of AE and VAE (PyTorch)
 - 4. Final Project
- VII. 新生開放式課程讀書會
 - 1. 30 40 minutes for each presenter
 - 2. 内容以介紹為大方向概念與經典模型架構等,不用過度深入地介紹

VIII.論文報告

- 1. 簡報內容包含 Introduction, Related Work (2篇), Methods, Experiments (Results, Comparison, Ablation Study), Conclusion
- 2. 内容僅須包含文字與圖片,不用背景與主題
- 3. 簡報之文字為全英文,請注意文字格式與排版
- 4. Introduction 與 Conclusion 報告時需使用英文與中文各報告一遍,其餘僅需使用中文報告。請注意使用的中文詞彙。

IX. Schedule

Date	Content	Notes
	1. 自我介紹	1. 作業 1 Release
Week	2. 新生訓練說明	2. 選定論文
1	3. LAB 研究方向介紹	
7/4	4. 報告注意事項說明	
	5. Survey Paper 技巧說明	
Week	新生開放式課程讀書會 (30 minutes for each presenter)	1. Project 分組
2	A. Linear Regression and Gradient Descent	
7/11	B. Logistic Regression and Classification	
Week 3 7/18	新生開放式課程讀書會 (30 minutes for each presenter)	1. 作業 1 Deadline
	A. Deep Neural Network:	2. 作業 2 Release
	1. Backpropagation	3. Project 分組 Deadline
	2. Gradient Vanishing, Optimization, Regularization	4. Project Release
	3. Epoch, Batch, Normalization, Gradient Accumulation	
	4. Loss Functions	
	B. Convolution Neural Network:	
	1. VGG16, ResNet, DenseNet,	
	2. Training Tricks:	
	(1) Data Augmentation	

	(2) Tips for Training Networks	
	(3) Transfer Learning	
Week 4 7/25	新生開放式課程讀書會 (30 minutes for each presenter) A. Recurrent Neural Networks: 1. RNN 2. LSTM B. Transformer 1. Mechanism of Transformer 2. Vision Transformer (ViT) 3. Swin Transformer (Swin-T)	
Week 5 8/1	新生開放式課程讀書會 (30 minutes for each presenter) A. Other Learning Methods (Part 1) 1. Semi-supervised and Self-supervised Learning 2. Unsupervised Learning 3. AE and VAE B. Other Learning Methods (Part 2) 1. Few-shot Learning 2. Zero-shot Learning 3. Meta-Learning 3. Meta-Learning	
Week 6 8/8 Week 7 8/15	新生開放式課程讀書會 (30 minutes for each presenter) A. Generative Adversarial Network 1. Generative Adversarial Learning 2. Wasserstein GAN B. Diffusion Model 1. Denoising Diffusion Probabilistic Models 論文報告*1 (30 minutes for each presenter) 論文報告*2 (30 minutes for each presenter)	1. 作業 2 Deadline 2. 作業 3 Release
Week 8	論文報告*2 (30 minutes for each presenter)	
8/22		
Week 9 8/29	論文報告*2 (30 minutes for each presenter)	作業 3 Deadline
Week 10 9/5	Project Presentation	Final Project Deadline

X. Reference:

- A. Machine Learning (ML):
 - 1. ML Lecture 2016 (李宏毅)
 - 2. ML Lecture 2021 (李宏毅)
- B. Transformer:
 - 1. Transformer (李宏毅)

- 2. <u>AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE</u> RECOGNITION AT SCALE
- 3. <u>Vision Transformer</u>
- C. Diffusion:
 - 1. https://youtu.be/ifCDXFdeaaM (李宏毅)
 - 2. https://openaccess.thecvf.com/content/CVPR2022/papers/Rombach_High-Resolution Image Synthesis With Latent Diffusion Models CVPR 2022 paper.pdf
- D. Computer Vision:
 - 1. 陳煥宗教授電腦視覺特效
- E. Code Implementation:
 - 1. 莫煩 Code 教學
 - 2. Python (莫煩)
 - 3. PyTorch (Official)
 - 4. PyTorch (莫煩)
 - 5. PyTorch Lightning (Official)
 - 6. PyTorch Lightning (AI 葵)
 - 7. Albumentations (Official)
- F. Paper:
 - 1. Paper with code (慎重挑選)
 - 2. Conference: CVPR, ECCV, ICCV, AAAI,
 - 3. Journal: TIP, PAMI, TMM, IJCV
- G. Chinese Search Engine
 - 1. 知乎
 - 2. CSDN