Brief Introduction to Saddle Point Escaping Problem

YeLab Group Seminar

March 30, 2019

- Nonconvex Optimization
- Saddle Point
- Escape Saddle Point
- Some Recent Works
- References

- Nonconvex Optimization
- Saddle Point
- Escape Saddle Point
- Some Recent Works
- References

Nonconvex Optimization

ullet Goal: minimize a nonconvex function $f(\mathbf{x})$

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}),$$

where $f(\mathbf{x})$ is nonconvex and \mathcal{X} is the feasible set of \mathbf{x} .

• f(x) can have a finite-sum structure

$$\min_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{x}),$$

where m is the number of samples.

Nonconvex Optimization

• Example: Nonconvex function $f([x_1, x_2]) = \frac{x_1^2}{x_1^2 + 1} + \frac{x_2^2}{x_2^2 + 1}$.

Figure 1: Nonconvex function example.

Nonconvex Optimization

- First Order Methods
 - Gradient Descent (GD)

$$\mathbf{x}_t = \mathbf{x}_{t-1} - \gamma_t \nabla f(\mathbf{x}_{t-1}).$$

Stochastic Gradient Descent (SGD)

$$\mathbf{x}_t = \mathbf{x}_{t-1} - \gamma_t \nabla f_{i_t}(\mathbf{x}_{t-1}),$$

where i_t is uniformly and independently sampled from $1, \ldots, m$.

- Other methods only involving first order information.
- Can first-order method lead to global convergence?

- Nonconvex Optimization
- Saddle Point
- Escape Saddle Point
- Some Recent Works
- References

- Critical Point (first-order stationary point): $\nabla f(\mathbf{x}) = 0$.
 - Local minimum.
 - Global minimum: also a local minimum.
 - Saddle point: critical point but not local minimum.

$$\bullet \ \nabla f(\mathbf{x}) = 0 \ \text{and} \ \lambda_{\min}[\nabla^2 f(\mathbf{x})] \begin{cases} > 0, & \text{local minimum} \\ = 0, & \text{local minimum or saddle point} \\ < 0, & \text{strict saddle point}. \end{cases}$$

Figure 2: Illustration of critical points.

- More saddle points examples.
 - $f(x) = x^3$.
 - f'(0) = 0.
 - f''(0) = 0.
 - Non-strict saddle point.

Figure 3: $f(x) = x^3$

More saddle points examples.

$$f([x_1, x_2]) = x_1^3 - 3x_1x_2^2.$$

Non-strict saddle point.

Figure 4: $y = x_1^3 - 3x_1x_2^2$

More saddle points examples.

$$f([x_1, x_2]) = x_1^2 - x_2^2.$$

▶ $\nabla f([0,0]) = [0,0].$

Strict saddle point.

Figure 5: $f([x_1, x_2]) = x_1^2 - x_2^2$

- In a wide range of practical nonconvex problems, it has been proved that all saddle points are strict. [JJ].
- E.g., PCA, orthogonal tensor decomposition, phase retrieval, dictionary learning, matrix sensing, matrix completion, and ... [GLM16, GJZ17]
- Restrict our discussion to strict saddle function.

- Can first-order method lead to global convergence?
- Not guaranteed.
 - ▶ Most previous analysis only targets at finding $\mathbf{x} : ||f(\mathbf{x})||_2 = 0$ efficiently.

$$T > O(?)$$
, s.t. $\|\nabla f(\mathbf{x}_T)\|_2 \le \varepsilon$.(deterministic algorithm)

- Not even a local optimum.
- It might be a strict saddle point.

- Nonconvex Optimization
- Saddle Point
- Escape Saddle Point
- Some Recent Works
- References

Escape Saddle Point

 \bullet Why? If ${\bf x}$ is strict saddle, there should exist local minimum ${\bf y}$ such that

$$f(\mathbf{y}) \le f(\mathbf{x}).$$

 Can we design an algorithm to escape strict saddle with theoretical guarantee?

Figure 6: Strict saddle point.

Escape Saddle Point

Assumption 1

Two main assumptions are used in the analysis:

$$\begin{split} f(\mathbf{x}) \text{ is strict saddle function,} \\ \|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_2 &\leq L \|\mathbf{x} - \mathbf{y}\|_2, \\ \|\nabla^2 f(\mathbf{x}) - \nabla^2 f(\mathbf{y})\|_2 &\leq \rho \|\mathbf{x} - \mathbf{y}\|_2. \end{split}$$

Goal: design optimization algorithms to efficiently find local minimum

$$\mathbf{x}: \|f(\mathbf{x})\|_2 = 0 \text{ and } \lambda_{\min}[\nabla^2 f(\mathbf{x})] \geq 0.$$

Precisely,

$$T>O(?):\|f(\mathbf{x}_T)\|_2\leq arepsilon, \ ext{and} \ \lambda_{\min}[
abla^2f(\mathbf{x}_T)]\geq -arepsilon_H:=\sqrt{
hoarepsilon}$$
 (second-order stationary point)

• ε can be arbitrarily small as T gets larger.

- Nonconvex Optimization
- Saddle Point
- Escape Saddle Point
- Some Recent Works
- References

- Full gradient method.
 - Random initialization
 - Random perturbation
- Stochastic gradient method.
 - Beyond first order information
 - SGD variants
 - ▶ SGD

Full gradient — Random initialization [LSJR16, PP16].

Theorem 2

GD with a random initialization and sufficiently small constant step size converges to a local minimizer or negative infinity almost surely.

- Asymptotic result.
- May take exponential time.

- Full gradient method Random perturbation.
 - ▶ Perturbed GD : $T \ge \widetilde{O}(\varepsilon^{-2})$. [JGN⁺17]
 - ▶ Perturbed Accelerated GD: $T \ge \widetilde{O}(\epsilon^{-1.75})$. [CDHS18, AAZB+17, JNJ17]

Algorithm 1 Perturbed GD

- 1: for t = 1, ..., T do
- 2: **if** perturbation condition holds **then**
 - $\mathbf{x}_t \leftarrow \mathbf{x}_t + \xi_t$, where ξ_t uniformly $\sim \mathbb{B}_0(r)$.
- 4: end if
- 5: $\mathbf{x}_t = \mathbf{x}_{t-1} \gamma_t \nabla f(\mathbf{x}_{t-1}).$
- 6: end for

- Stochastic gradient method Beyond first order information.
 - ▶ Third order smoothness: $T \ge \widetilde{O}(\varepsilon^{-10/3})$. [YXG18]
 - Using Hessian information:
 - * Cubic regularized Newton: $T \geq \widetilde{O}(\varepsilon^{-3.5})$. [TSJ⁺18]
 - * Negative curvature search: $T \geq \widetilde{O}(\varepsilon^{-3.5})$. [AZ18]

Figure 7: Negative curvature search

- Stochastic gradient method SGD variants.
 - First-order approximates negative curvature search: $T \geq \widetilde{O}(\varepsilon^{-3.5})$. [AZL18]
 - ▶ Spider: $T \ge \widetilde{O}(\varepsilon^{-3})$. [FLLZ18]
 - ▶ Perturbated SGD: $T \ge \widetilde{O}(d\varepsilon^{-4})$. [JNG⁺19]

Algorithm 2 Perturbated SGD

- 1: **for** t = 1, ..., T **do**
- 2: $\mathbf{x}_t = \mathbf{x}_{t-1} \gamma_t(g_{t-1} + \xi_t)$, where $\xi_t \sim \mathcal{N}(0, \delta I)$.
- 3: end for

- Stochastic gradient method SGD.
 - ▶ SGD: $T \ge \widetilde{O}(\varepsilon^{-3.5})$. [FLZ19]

Algorithm 3 SGD

- 1: for t=1,...,T do
- 2: $\mathbf{x}_t = \mathbf{x}_{t-1} \gamma_t g_{t-1}$.
- 3: end for

- Nonconvex Optimization
- Saddle Point
- Escape Saddle Point
- Some Recent Works
- References

References I

- Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma, *Finding approximate local minima faster than gradient descent*, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, ACM, 2017, pp. 1195–1199.
- Zeyuan Allen-Zhu, *Natasha 2: Faster non-convex optimization than sgd*, Advances in Neural Information Processing Systems, 2018, pp. 2680–2691.
- Zeyuan Allen-Zhu and Yuanzhi Li, *Neon2: Finding local minima via first-order oracles*, Advances in Neural Information Processing Systems, 2018, pp. 3720–3730.
- Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford, *Accelerated methods for nonconvex optimization*, SIAM Journal on Optimization **28** (2018), no. 2, 1751–1772.

References II

- Cong Fang, Chris Junchi Li, Zhouchen Lin, and Tong Zhang, *Spider:* Near-optimal non-convex optimization via stochastic path-integrated differential estimator, Advances in Neural Information Processing Systems, 2018, pp. 687–697.
- Cong Fang, Zhouchen Lin, and Tong Zhang, *Sharp analysis for nonconvex sgd escaping from saddle points*, arXiv preprint arXiv:1902.00247 (2019).
- Rong Ge, Chi Jin, and Yi Zheng, *No spurious local minima in nonconvex low rank problems: A unified geometric analysis*, Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 1233–1242.
- Rong Ge, Jason D Lee, and Tengyu Ma, *Matrix completion has no spurious local minimum*, Advances in Neural Information Processing Systems, 2016, pp. 2973–2981.

References III

- Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan, *How to escape saddle points efficiently*, Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, 2017, pp. 1724–1732.
- Chi Jin and Michael Jordan, *How to escape saddle points efficiently*, http://www.offconvex.org/2017/07/19/saddle-efficiency/.
- Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan, Stochastic gradient descent escapes saddle points efficiently, arXiv preprint arXiv:1902.04811 (2019).
- Chi Jin, Praneeth Netrapalli, and Michael I Jordan, Accelerated gradient descent escapes saddle points faster than gradient descent, arXiv preprint arXiv:1711.10456 (2017).
- Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht, Gradient descent converges to minimizers, arXiv preprint arXiv:1602.04915 (2016).

References IV

- loannis Panageas and Georgios Piliouras, *Gradient descent only converges to minimizers: Non-isolated critical points and invariant regions*, arXiv preprint arXiv:1605.00405 (2016).
- Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan, *Stochastic cubic regularization for fast nonconvex optimization*, Advances in Neural Information Processing Systems, 2018, pp. 2904–2913.
- Yaodong Yu, Pan Xu, and Quanquan Gu, *Third-order smoothness helps:* Faster stochastic optimization algorithms for finding local minima, Advances in Neural Information Processing Systems, 2018, pp. 4530–4540.