Convolutional Neural Networks

Muhammad Atif Tahir

Some Slides from Waterloo (CS) Andrew Ng (Coursera)

- We know it is good to learn a small model.
- From this fully connected model, do we really need all the edges?
- Can some of these be shared?

Consider learning an image:

 Some patterns are much smaller than the whole image

Can represent a small region with fewer parameters

Same pattern appears in different places: They can be compressed!

What about training a lot of such "small" detectors and each detector must "move around".

Edge detection

Convert a 2D image into a set of curves

- Extracts salient features of the scene
- More compact than pixels

Origin of Edges

Edges are caused by a variety of factors

Edge detection

How can you tell that a pixel is on an edge?

Profiles of image intensity edges

Edge is Where Change Occurs

Change is measured by derivative in 1D Biggest change, derivative has maximum magnitude Or 2nd derivative is zero.

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, 0 \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The gradient direction is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

• how does this relate to the direction of the edge?

The edge strength is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradient operators

- (a): Roberts' cross operator (b): 3x3 Prewitt operator
- (c): Sobel operator (d) 4x4 Prewitt operator

Effects of noise

Consider a single row or column of the image

Plotting intensity as a function of position gives a signal

Where is the edge?

Solution: smooth first

Where is the edge? Look for peaks in $\frac{\partial}{\partial x}(h \star f)$

Derivative theorem of convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

This saves us one operation:

Laplacian of Gaussian

Where is the edge? Zero-crossings of bottom graph

A convolutional layer

A CNN is a neural network with some convolutional layers (and some other layers). A convolutional layer has a number of filters that does convolutional operation.

1	0	0	0	0	1
0	~	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

These are the network parameters to be learned.

1	-1	-1
-1	1	1
-1	-1	1

Filter 1

Filter 2

: :

Each filter detects a small pattern (3 x 3).

1	-1	-1		
-1	1	-1		
-1	-1	1		

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	0	0	0	1	0

Dot product

3

-1

6 x 6 image

1 -1 -1 -1 1 -1 -1 -1 1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

3

-3

Filter 1

stride=1

6 x 6 image

0

-2

-1

-3

-2

-3

-1 1 -1 -1 1 -1 -1 1 -1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Repeat this for each filter

Two 4 x 4 images
Forming 2 x 4 x 4 matrix

Color image: RGB 3 channels

Convolution v.s. Fully Connected

image

convolution

Fullyconnected

1	0	0	0	0	1
0	~	0	0	1	0
0	0	1	1	0	0
~	0	0	0	1	0
0	~	0	0	1	0
0	0	1	0	1	0

The whole CNN

cat dog

Fully Connected Feedforward network

Flattened

Can repeat many times

Max Pooling

1	τ-	1
-1	1	7
-1	1	1

Filter 1

Filter 2

3 -1	-3 -1
-3 1	0 -3
-3 (-3	0 (1

-2 -1

Why Pooling

 Subsampling pixels will not change the object bird

We can subsample the pixels to make image fewer parameters to characterize the image

A CNN compresses a fully connected network in two ways:

- Reducing number of connections
- Shared weights on the edges
- Max pooling further reduces the complexity

Max Pooling

6 x 6 image

New image but smaller

-1 1

0 3

2 x 2 image

Each filter is a channel

The whole CNN

-1 1

3

A new image

0

Smaller than the original image

The number of channels is the number of filters

Can repeat many times

The whole CNN

cat dog

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D array)*

AlphaGo

Neural Network

Next move (19 x 19 positions)

19 x 19 matrix

Black: 1

white: -1

none: 0

Fully-connected feedforward network can be used

But CNN performs much better

AlphaGo's policy network

The following is quotation from their Nature article:

Note: AlphaGo does not use Max Pooling.

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1, with a different bias for each position, and applies a softmax function. The match version of AlphaGo used k = 192 filters; Fig. 2b and Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

CNN in speech recognition

CNN in text classification

Convolutional NN

Convolutional Neural Networks is extension of traditional Multi-layer Perceptron, based on 3 ideas:

- Local receive fields
- 2. Shared weights
- 3. Spatial / temporal sub-sampling See LeCun paper (1998) on text recognition:

http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

What is Convolutional CNN - multi-layer NN architecture

- Convolutional + Non-Linear Layer
- Sub-sampling Layer
- Convolutional +Non-L inear Layer
- Fully connected layers
- Supervised

NN?

CNN success story: ILSVRC 2012

Imagenet data base: 14 mln labeled images, 20K categories

ILSVRC: Classification

Imagenet Classifications 2012

- Krizhevsky et al. -- 16.4% error (top-5)
- Next best (non-convnet) 26.2% error

ILSVRC 2012: top rankers

http://www.image-net.org/challenges/LSVRC/2012/results.html

N	Error-5	Algorithm	Team	Authors
1	0.153	Deep Conv. Neural Network	Univ. of Toronto	Krizhevsky et al
2	0.262	Features + Fisher Vectors + Linear classifier	ISI	Gunji et al
3	0.270	Features + FV + SVM	OXFORD_VG G	Simonyan et al
4	0.271	SIFT + FV + PQ + SVM	XRCE/INRIA	Perronin et al
5	0.300	Color desc. + SVM	Univ. of Amsterdam	van de Sande et al

Imagenet 2013: top rankers

http://www.image-net.org/challenges/LSVRC/2013/results.php

N	Error-5	Algorithm	Team	Authors
1	0.117	Deep Convolutional Neural Network	Clarifi	Zeiler
2	0.129	Deep Convolutional Neural Networks	Nat.Univ Singapore	Min LIN
3	0.135	Deep Convolutional Neural Networks	NYU	Zeiler Fergus
4	0.135	Deep Convolutional Neural Networks		Andrew Howard
5	0.137	Deep Convolutional Neural Networks	Overfeat NYU	Pierre Sermanet et al

Imagenet Classifications 2013

Conv Net Topology

- 5 convolutional layers
- 3 fully connected layers + soft-max
- 650K neurons, 60 Mln weights

ImageNet Classification with Deep Convolutional Neural Networks

Alex Krizhevsky University of Toronto Ilya Sutskever University of Toronto Geoffrey E. Hinton University of Toronto

- 8 layers total
- Trained on Imagenet dataset [Deng et al. CVPR'09]
- 18.2% top-5 error
- Our reimplementation: 18.1% top-5 error

- Remove top fully connected layer
 - Layer 7
- Drop 16 million parameters
- Only 1.1% drop in performance!

- Remove both fully connected layers
 - Layer 6 & 7
- Drop ~50 million parameters
- 5.7% drop in performance

- Now try removing upper feature extractor layers:
 - Layers 3 & 4
- Drop ~1 million parameters
- 3.0% drop in performance

- Now try removing upper feature extractor layers & fully connected:
 - Layers 3, 4, 6, 7
- Now only 4 layers
- 33.5% drop in performance
- →Depth of network is key

Conv Nets: beyond Visual Classification

CNN applications

Plenty low hanging fruits

You need just a right nail!

Conv NN: Detection

Groundtruth:

strawberry

strawberry (2)

strawberry (3)

strawberry (4)

strawberry (5)

strawberry (6)

strawberry (7)

strawberry (8)

strawberry (9)

strawberry (10)

apple

apple (2)

apple (3)

Groundtruth:

ty or monitor

tv or monitor (2)

tv or monitor (3)

person

remote control

remote control (2)

Sermanet, CVPR 2014

Conv NN: Scene parsing

Farabet, PAMI 2013

CNN: indoor semantic labeling RGBD

Figure 2: Some scene labelings using our Multiscale Convolutional Network trained on RGBD images.

Farabet, 2013

Conv NN: Action Detection

Taylor, ECCV 2010