Group-based beliefs and human capital specialization

Tara Sullivan

Macro Lunch Presentation Tara Sullivan tasulliv@ucsd.edu

September 4, 2020

Increased attainment of Bachelor's degrees

Number of Bachelor's Degrees awarded in US 4-year colleges. Source: IPEDS; Snyder (2013).

Gender ratio in different fields

Social Sciences

Gender convergence across fields

Do differences in gender convergence across fields represent misallocation of talent?

▶ If yes, this has macroeconomic consequences

Gender convergence across fields

Do differences in gender convergence across fields represent misallocation of talent?

► If yes, this has macroeconomic consequences

This paper: the role of group-based beliefs in human capital specialization decisions

Model of gradual human capital specialization:

- Unknown heterogeneous abilities
- Group-based beliefs about abilities
- Sequential learning and human capital accumulation
- ⇒ Group-based beliefs play an important role in specialization decisions

What are the productivity costs associated with misallocation of talent implied by the model?

► Estimate impact of misallocation on aggregate productivity growth in line with Hsieh, Hurst, Jones, and Klenow (2019)

Limited Literature Review

- 1. Human capital specialization
 - ▶ Build on model of gradual specialization from Alon and Fershtman (2019)
- 2. Gender gaps in college choice
 - ► Empirically motivated by Sloan, Hurst, and Black (2020)
- 3. Determinants of college major choice, in particular the role of beliefs
 - ► Arcidiacono et al. (2015): model of sequential learning and role of beliefs
 - Subjective expectations literature (Stinebrickner and Stinebrickner, 2014; Wiswall and Zafar, 2019; Zafar, 2013)
- 4. Statistical discrimination literature
 - Lundberg and Startz (1984): efficiency of equal opportunity laws
 - ► Coate and Loury (1997): permanent affirmative action and patronizing equilibria

Outline

Model

Model Simulations

Calibration

Conclusion and next steps

Individuals endowed with:

 h_{i0} : Field-j specific human capital (j = 0, ..., J)

 θ_j : Unknown probability of success in j

 P_{j0} : Prior beliefs about θ_j

At each time t, agents can either study one field $j\left(m_{jt}\right)$ or work in one field $j\left(\ell_{jt}\right)$

$$\sum_{j=0}^{J} (m_{jt} + \ell_{jt}) = 1, \qquad m_{jt}, \ell_{jt} \in \{0, 1\}$$

If an agent chooses to study field j ($m_{jt} = 1$):

- ► Stochastically accumulate field-*j* human capital
- Reveal information about θ_i

If an agent chooses to work in field j ($\ell_{jt}=1$):

► Earn wage w_i

Enter labor market at time t in skill-j to maximize expected lifetime payoff:

$$\frac{\delta^t}{1-\delta}U_j(w_j,h_{jt})\ell_{jt}=\frac{\delta^t}{1-\delta}w_jh_{jt}\ell_{jt}$$

Evolution of human capital accumulation and beliefs

Students studying field-j at time t pass the course with probability θ_i :

$$s_{jt} \sim \text{Bernoulli}(\theta_j)$$

Accumulate human capital if they pass the course:

$$\mathit{h}_{\mathit{jt}+1} = \mathit{h}_{\mathit{jt}} + \nu_{\mathit{j}} \mathit{s}_{\mathit{jt}} \mathit{mjt}$$

▶ Beliefs about θ_i evolve:

$$P_{j,t+1} = \Pi_j(P_{jt}, s_{jt})$$

Evolution of human capital accumulation and beliefs

Students studying field-j at time t pass the course with probability θ_j :

$$s_{jt} \sim \text{Bernoulli}(\theta_j)$$

Accumulate human capital if they pass the course:

$$\mathit{h}_{\mathit{jt}+1} = \mathit{h}_{\mathit{jt}} + \nu_{\mathit{j}} \mathit{s}_{\mathit{jt}} \mathit{mjt}$$

▶ Beliefs about θ_i evolve:

$$P_{j,t+1} = \Pi_j(P_{jt}, s_{jt})$$

Key: How are priors formed, and how are they updated?

Initial prior drawn from Beta distribution

$$P_{j0} = \mathcal{B}(\alpha_{j0}, \beta_{j0})$$

Update according to Bayes Rule ⇒ posterior drawn from Beta distribution:

$$P_{j,t+1} = \mathcal{B}(\alpha_{j,t+1}, \beta_{j,t+1}), \qquad (\alpha_{j,t+1}, \beta_{j,t+1}) = \begin{cases} (\alpha_{jt} + 1, \beta_{jt}) & \text{if } a_{jt} = 1\\ (\alpha_{jt}, \beta_{jt} + 1) & \text{if } a_{jt} = 0 \end{cases}$$

Initial prior drawn from Beta distribution

$$P_{j0} = \mathcal{B}(\alpha_{j0}, \beta_{j0})$$

Update according to Bayes Rule ⇒ posterior drawn from Beta distribution:

$$P_{j,t+1} = \mathcal{B}(\alpha_{j,t+1}, \beta_{j,t+1}), \qquad (\alpha_{j,t+1}, \beta_{j,t+1}) = \begin{cases} (\alpha_{jt} + 1, \beta_{jt}) & \text{if } a_{jt} = 1\\ (\alpha_{jt}, \beta_{jt} + 1) & \text{if } a_{jt} = 0 \end{cases}$$

Example: $\alpha_0 = 1$, $\beta_0 = 1$

Initial prior drawn from Beta distribution

$$P_{j0} = \mathcal{B}(\alpha_{j0}, \beta_{j0})$$

Update according to Bayes Rule ⇒ posterior drawn from Beta distribution:

$$P_{j,t+1} = \mathcal{B}(\alpha_{j,t+1}, \beta_{j,t+1}), \qquad (\alpha_{j,t+1}, \beta_{j,t+1}) = \begin{cases} (\alpha_{jt} + 1, \beta_{jt}) & \text{if } a_{jt} = 1\\ (\alpha_{jt}, \beta_{jt} + 1) & \text{if } a_{jt} = 0 \end{cases}$$

Example: $\alpha_0 = 1$, $\beta_0 = 1$

• success at
$$t=1 \implies \alpha_1=2$$
, $\beta_1=1$

Initial prior drawn from Beta distribution

$$P_{j0} = \mathcal{B}(\alpha_{j0}, \beta_{j0})$$

Update according to Bayes Rule ⇒ posterior drawn from Beta distribution:

$$P_{j,t+1} = \mathcal{B}(\alpha_{j,t+1}, \beta_{j,t+1}), \qquad (\alpha_{j,t+1}, \beta_{j,t+1}) = \begin{cases} (\alpha_{jt} + 1, \beta_{jt}) & \text{if } a_{jt} = 1\\ (\alpha_{jt}, \beta_{jt} + 1) & \text{if } a_{jt} = 0 \end{cases}$$

Example: $\alpha_0 = 1$, $\beta_0 = 1$

- lacktriangle success at $t=1 \implies lpha_1=2$, $eta_1=1$
- failure at $t=2 \implies \alpha_1=2, \beta_1=2$

Initial prior drawn from Beta distribution

$$P_{j0} = \mathcal{B}(\alpha_{j0}, \beta_{j0})$$

Update according to Bayes Rule ⇒ posterior drawn from Beta distribution:

$$P_{j,t+1} = \mathcal{B}(\alpha_{j,t+1}, \beta_{j,t+1}), \qquad (\alpha_{j,t+1}, \beta_{j,t+1}) = \begin{cases} (\alpha_{jt} + 1, \beta_{jt}) & \text{if } a_{jt} = 1\\ (\alpha_{jt}, \beta_{jt} + 1) & \text{if } a_{jt} = 0 \end{cases}$$

Example: $\alpha_0 = 1$, $\beta_0 = 1$

- success at $t=1 \implies \alpha_1=2, \beta_1=1$
- failure at $t=2 \implies \alpha_1=2$, $\beta_1=2$
- success at $t=3 \implies \alpha_1=3$, $\beta_1=2$

Group-based parametrization

Consider group-based beliefs about abilities:

- ▶ Each individual has a group type: $g \in \{m, f\}$
- \triangleright Students form beliefs, P_{i0} , based on previously observed group successes

Simple parameterization:

 α^{g}_{i0} : Number of type-g students who have succeeded in j

 β_{i0}^{g} : Number of type-g students who have failed in j

→ Observed success rate:

$$\mu_{j0}^{g} = \frac{\alpha_{j0}^{g}}{\alpha_{j0}^{g} + \beta_{j0}^{g}}.$$

This average is based on a sample size of type g students:

$$\mathit{n_{j0}^g} = \alpha_{j0}^{\mathrm{g}} + \beta_{j0}^{\mathrm{g}}$$

Group-based prior beliefs about probability of success in skill-j courses, θ_j :

$$\mathcal{B}\left(\alpha_{j0}^{\mathsf{g}}, \beta_{j0}^{\mathsf{g}}\right) \quad \Longrightarrow \quad \mathcal{B}\left(\mu_{j0}^{\mathsf{g}} n_{j0}^{\mathsf{g}}, (1 - \mu_{j0}^{\mathsf{g}}) n_{j0}^{\mathsf{g}}\right)$$

Group-based belief distribution

Suppose there are more men then women in field *j*:

$$n_{j0}^m > n_{j0}^f$$

But the observed success rate is the same for the two groups:

$$\mu_{j0} = \mu_{j0}^m = \mu_{j0}^w$$

Individual problem

A policy $\pi:(h_t,P_t^g)\to(s_t,\ell_t)$ is optimal if it maximizes:

$$\mathbb{E}^{\pi}\left[\left.\sum_{t=0}^{\infty}\delta^{t}\left(\sum_{j=1}^{J}h_{jt}w_{j}\ell_{jt}\right)\right|\left((h_{10},P_{10}^{g}),\ldots,(h_{J0},P_{J0}^{g})\right)\right]$$

Subject to the human capital accumulation and belief transition laws:

$$\begin{split} h_{jt+1} = & h_{jt} + \nu_j s_{jt} m_{jt}, \qquad s_{jt} \sim \text{Bernoulli}(\theta_j), \qquad \theta_j \sim P^g_{j0} \equiv \mathcal{B}(\alpha^g_{j0}, \beta^g_{j0}), \\ P^g_{j,t+1} = & \mathcal{B}(\alpha^g_{j,t+1}, \beta^g_{j,t+1}), \qquad (\alpha^g_{j,t+1}, \beta^g_{j,t+1}) = \begin{cases} (\alpha^g_{jt} + 1, \beta^g_{jt}) & \text{if } m^g_{jt} = 1 \text{ and } s^g_{jt} = 1 \\ (\alpha^g_{jt}, \beta^g_{jt} + 1) & \text{if } m^g_{jt} = 1 \text{ and } s^g_{jt} = 0 \\ (\alpha^g_{jt}, \beta^g_{jt}) & \text{if } m^g_{jt} = 0 \end{cases}. \end{split}$$

And subject to the constraints:

$$\sum_{j=1}^J (m_{jt}+\ell_{jt})=1, \qquad m_{jt},\ell_{jt}\in\{0,1\}$$
 $h_{j0}\leq
u_jlpha_{j0}^g$

Optimal policy rule

Define the field-*j* index as the expected payoff if you committed to studying *j*:

$$\mathcal{I}_{jt}(h_j^g, P_j^g) = \sup_{\tau \geq 0} \mathbb{E}^{\tau} \left[\left. \sum_{t=0}^{\infty} \delta^t U_j(h_{jt}^g, w_j) \ell_{jt}^g \right| (h_{j0}^g, P_{j0}^g) = (h_j^g, P_j^g) \right]$$

Define the graduation region of field j as:

$$\mathcal{G}_{j}(h_{j}^{g}, P_{j}^{g}) = \left\{ (h_{j}^{g}, P_{j}^{g}) \left| \arg \max_{\tau \geq 0} \mathbb{E}^{\tau} \left[\sum_{t=0}^{\infty} \delta^{t} U_{j}(h_{jt}^{g}, w_{j}) \ell_{jt}^{g} \right| (h_{j}, P_{j}^{g}) \right] = 0 \right\}$$

The following policy $\pi:(h_t,P_t^g)\to(s_t,\ell_t)$ is optimal:

- 1. At each $t \geq 0$, choose field $j^* = \arg\max_{j \in J} \mathcal{I}_j$, breaking ties according to any rule
- 2. If $(h_{j^*}, P_{j^*}^g) \in \mathcal{G}_j$, then enter the labor market as a j^* specialist. Otherwise, study j^* for an additional period.

Return: Identification

Mode

Model Simulations

Calibration

Conclusion and next step:

Simulate agent behavior

How can the model explain different specialization outcomes?

Consider a world with two fields, X and Y

- ▶ Wages are equal: $w_X = w_Y$
- ▶ The agent's probabilities of success are equal: $\theta_X = \theta_Y$
- ► Initial beliefs are equal to the uninform prior: PDF of beliefs

$$(\alpha_{X0}, \beta_{X0}) = (\alpha_{Y0}, \beta_{Y0}) = (1, 1)$$

lacktriangle Assume $h_{i0}=
ulpha_{i0}$ Details

Simulate agent's specialization decisions when choosing between X and Y

► Model fraction of simulated agents choosing X or Y at time t

Default parameterization

Zooming in

Wage effects

Belief effects

Ability to succeed

Mode

Model Simulation

Calibration

Conclusion and next step:

Identification problem

Identification problem: how to identify $(\alpha_{i0}^g, \beta_{i0}^g)$?

▶ Parameters that characterize prior beliefs about probability of success (θ_i)

The following state variables are observable using transcript data (BPS or NLSY97):

$$\overline{m}_{jt} = \sum_{r=0}^{t-1} m_{jr}, \quad \overline{s}_{jt} = \sum_{r=0}^{t-1} s_{jr}$$

Goal: find likelihood function to estimate $(\alpha_{j0}^g, \beta_{j0}^g)$.

- Determine the best way to incorporate population heterogeneity (random utility? Semi-nonparametric approaches?)
- ▶ Balance endogeneity concerns with taking advantage of the recursive structure

Possible example: conditional logit approach:

$$\log \mathcal{L} = \log \sum_{i=1}^{n} \sum_{j=1}^{J} m_{ijt} \log P(m_{ijt} = 1 | \overline{m}_{ijt}, \overline{s}_{ijt}, \alpha_{j0}, \beta_{j0}, \theta_{ji})$$

Useful model notes

Under the parametric assumption, agents study a field for a deterministic number of periods: Details

$$m_j^* = \left\lceil \frac{\delta}{1-\delta} \right\rceil - \alpha_{j0} - \beta_{j0}$$

Can analytically characterize Index in field *j*:

$$\mathcal{I}_{jt}(\alpha_{j0},\beta_{j0},\overline{m}_{jt},\overline{s}_{jt}) = \begin{cases} \frac{w_j h_{jt}}{1-\delta} & \text{if } (\alpha_{j0},\beta_{j0}) \in \mathcal{G}_j \\ \frac{w_j}{1-\delta} \delta^{m_j^*} - \overline{m}_{jt} \mathbb{E}_t \left[h_{j,t+m_j^*} - \overline{m}_{jt} \right] & \text{otherwise.} \end{cases}$$

Probability an agent chooses *j* at time *t* depends on the index:

$$G_{j}(x) = P\left(\mathcal{I}_{jt} < x|\cdot\right) = P\left(\delta^{-(\alpha_{j0} + \beta_{j0})} \frac{\alpha_{j0} + \overline{s}_{jt}}{\alpha_{j0} + \beta_{j0} + \overline{m}_{jt}} < c_{j}x \middle| \overline{m}_{jt}, \overline{s}_{jt}, \alpha_{j0}, \beta_{j0}\right)$$

Under conditional independence given all states:

$$P(m_{jt} = 1|\cdot) = P(\mathcal{I}_{jt} > \mathcal{I}_{kt} \forall k \neq j|\cdot)$$

= $\int \prod_{k \neq j} G_k(x) dG_j(x)$

Mode

Model Simulation

Calibration

Conclusion and next steps

Conclusion and next steps

Model suggests that group-based beliefs play an important role in specialization decisions

Next steps:

- ► Identification of model parameters
- Explore counterfactuals: productivity differences if we remove misallocation of talent?

Additional counterfactual exercise: affirmative action

- If we remove discrimination, how long would it take for women's beliefs to converge?
- Can affirmative action address these biases?

Appendix

Social Science - number Bachelor's degrees awarded (thousands). Source: IPEDS.

Return: Social science ratio

roduction Model Simulations Calibration Conclusion
0000 000000 00000 00 **0**

Social Sciences

roduction Model Simulations Calibration Conclusion

Engineering

roduction Model Simulations Calibration Conclusion
0000 000000 00000 00 **0**

Business

roduction Model Simulations Calibration Conclusion

Computer Science

roduction Model Simulations Calibration Conclusion

Education

Biological and Physical Sciences and Mathematics

Physical Sciences and math

Parametric example

Assuming $h_{i0} = \nu \alpha_{i0}$ and letting c_{it} be time spent studying j:

Deterministic stopping function

$$\frac{1-\delta}{\delta} \geq \frac{1}{c_{jt} + \alpha_{j0} + \beta_{j0}} \implies c_j^* = \left\lceil \frac{\delta}{1-\delta} \right\rceil - (\alpha_{j0} + \beta_{j0})$$

Graduation regions given by:

$$G_j(\alpha_{jt}, \beta_{jt}) = \left\{ \alpha_{jt}, \beta_{jt} \left| \frac{\delta}{1 - \delta} \leq \alpha_{jt} + \beta_{jt} \right. \right\}$$

In this example, note that $\mathcal{G}_Y = \mathcal{G}_X$. Index in the graduation region given by $\frac{h_{jt}}{1-\delta}$. Index when not in graduation region given by Binomial distribution with parameters $\left(c_i^*-c_i,\frac{h_{jt}}{u(c_{ij}+\alpha_{ij}+\beta_i)0}\right)$:

$$\mathcal{I}_{jt}(h_{jt}, \alpha_{jt}, \beta_{jt}) = \begin{cases} \frac{w_{jt}h_{jt}}{1 - \delta} & \text{if } \{\alpha_{jt}, \beta_{jt}\} \in \mathcal{G}_j, \\ \frac{w_{jt}h_{jt}}{1 - \delta} & \left[\frac{\left[\frac{\delta}{1 - \delta}\right]\delta^{\left[\frac{\delta}{1 - \delta}\right] - c_{jt} - \alpha_{j0} - \beta_{j0}}}{c_{jt} + \alpha_{j0} + \beta_{j0}} \right] & \text{if } \{\alpha_{jt}, \beta_{jt}\} \notin \mathcal{G}_j \end{cases}$$

If
$$\nu_X = \frac{\alpha_{X0} + \beta_{X0}}{\alpha_{Y0} + \beta_{Y0}} \cdot \frac{\alpha_{Y0}}{\alpha_{X0}} \cdot \delta^{\alpha_{X0} + \beta_{X0} - \alpha_{Y0} - \beta_{Y0}}$$
, then:

- $ightharpoonup h_{X0} = h_{Y0}$, and
- ightharpoonup Agents randomly choose between fields X and Y at t=0

Field X:
$$\nu=1.09$$
; Field Y: $\nu=1$
Field X: $(\alpha_0,\beta_0)=(1,1)$; Field Y: $(\alpha_0,\beta_0)=(2,2)$

ν effects

