Janusz kupuje telewizor

Janusz postanowił kupić nowy telewizor do swojego mieszkania. Na ścianie znajdzie się miejsce na powieszenie odbiornika o szerokości a i wysokości b (maksymalnie). Janusz jest przyzwyczajony do ekranów o określonym współczynniku proporcji (ang. $aspect\ ratio)\ x/y$, zatem jego telewizor powinien mieć szerokość ekranu w oraz wysokość ekranu h spełniające warunek $\frac{w}{h} = \frac{x}{y}$. Oczywiście musi również zachodzić warunek $w \leqslant a$ oraz $h \leqslant b$.

Sklep z telewizorami jest doskonale zaopatrzony i na pewno można w nim znaleźć odbiornik o wymiarach w oraz h dla dowolnych dodatnich całkowitych wartości tych parametrów.

Janusz nie jest jeszcze zdecydowany na konkretny model telewizora i chce wypróbować różne egzemplarze spełaniające opisane wyżej wymagania.

Dane wejściowe

Pierwszy i jedyny wiersz danych wejściowych zawiera cztery liczby naturalne a, b, x, y (każda z zakresu $\langle 1, 10^{18} \rangle$.

Liczby w wierszu oddzielone są pojedynczymi odstępami.

Wynik programu

Program powinien wypisać ilość możliwych wariantów wyboru parametrów w oraz h.

Przykład

```
Dla danych wejściowych
```

17 15 5 3

```
prawidłowym wynikiem jest (trzy pary: (5,3), (10,6), (15,9)):
```

3

Dla danych wejściowych

14 16 7 22

prawidłowym wynikiem jest (nie ma takich par):