Каков первый шаг в доказательстве любого из законов де Моргана?

Рассмотреть произвольный элемент a, принадлежащий левой (или правой) части соответствующего равенства.

Note 2

e46fe30f7624833823e79c0fedc16df

Какова основная идея доказательства любого из законов де Моргана?

Надо показать, что условие принадлежности произвольного элемента a левой части совпадают с таковыми для правой части.

Note 3

010c7f55d37742fea697ee54e1b20715

Как показать, что произвольное бесконечное множество A содержит счётное подмножество?

Выбрать

- a₁ из A,
- a_2 из $A \setminus \{a_1\}$,
- a_3 из $A \setminus \{a_1, a_2\}$,

Получим счётное множество $\{a_1, a_2, a_3, \ldots\} \subset A$.

Note 4

51cad32098d341eb8086313887d6cd8c

Как показать, что любое бесконечное подмножество B счётного подмножества A счётно?

Пронумеровать элементы множества B в порядке их появления в последовательности $\{a_1, a_2, a_3, \ldots\}$ элементов множества A.

Пусть A — счётное множество, $B \in A$. Что можно сказать о множестве B?

 \blacksquare B не более чем счётно.

Note 6

bad29a5101fe46c3bd91ed4d7f33015b

Как показать, что не более чем счётное объединение не более чем счётных множеств не более чем счётно?

Расположить элементы множеств по строкам в таблицу и пронумеровать их в порядке их появления на "побочных" диагоналях.

Note 7

23eae0cde4e049379eab7d391cd31769

Представить его как объединение не более чем счетного семейства не более чем счётных множеств $\{\mathbb{Q}_i\}_{i\in\mathbb{N}}$, где

$$\mathbb{Q}_q := \left\{ \frac{p}{q} \mid p \in \mathbb{Z} \right\}.$$

Note 8

fa0bde6f987c45f9b12f1e7a19f5ed7f

Пусть [a,b] — невырожденный отрезок. Как можно задать биекцию $\varphi:[a,b] \to [0,1]$?

$$\varphi(x) = \frac{(x-a)^n}{(b-a)^n}, \quad n \in \mathbb{N}.$$

Note 9

d7dc9d0004e9406e8bedb136412f6d07

Как доказать, что для любого бесконечного множества A и его конечного подмножества B (пусть |B|=m)

$$A \setminus B \sim A$$
?

Рассмотрим произвольную последовательность

$$\{x_n\}_{n=1}^{\infty}$$

несовпадающих элементов множества A такую, что первые её m элементов — это все элементы множества B. Обозначим теперь

$$\varphi(x) = \begin{cases} x_{k+m}, & x = x_k, \\ x, & x \notin \{x_n\}_{n=1}^{\infty}. \end{cases}$$

Тогда $\varphi:A \to A \setminus B$ — биекция, а значит $A \setminus B \sim A$.

Note 10

Как доказать, что $[0,1] \sim \mathbb{R}$?

- $[0,1]\sim (0,1),$ поскольку $(0,1)=[0,1]\setminus \{0,1\},$ $(0,1)\sim \mathbb{R},$ поскольку $\cot(\pi x)|_{(0,1)}$ биекция. Получаем $[0,1]\sim (0,1)\sim \mathbb{R} \implies [0,1]\sim \mathbb{R}.$

Note 11

c8ec225de29d4338add7adcea48cc2a2

Приведите пример системы вложенных отрезков в множестве $\mathbb Q$ для которой не выполняется аксиома Кантора.

Можно рассмотреть последовательность вложенных отрезков

$$\{[1;2],[1,4;1,5],[1,41;1,42],[1,414;1,415],\ldots\}$$

концы которых — все более и более точные десятичные приближения иррационального числа $\sqrt{2}$.

Note 12

$$A \setminus (A \setminus B) = A \cap B.$$

Как доказать, что $C_{n+1}^{k+1} = C_n^k + C_n^{k+1}$?

$$\begin{split} C_{n+1}^{k+1} &= \frac{(n+1)!}{(k+1)!(n-k)!} \\ &= C_n^k \cdot \left(\frac{n+1}{k+1}\right) \\ &= C_n^k \cdot \left(1 + \frac{n-k}{k+1}\right) \\ &= C_n^k + \frac{n!(n-k)}{k!(n-k)!(k+1)} \\ &= C_n^k + \frac{n!}{(k+1)!(n-(k+1))!} \\ &= C_n^k + C_n^{k+1}. \end{split}$$

Note 14

a20a03ca2ehe4h5d85249845f15f1561

Как доказать, что во всяком конечном подмножестве $\mathbb R$ есть наибольший элемент?

По индукции:

- максимум множества из одного элемента есть сам этот элемент;
- максимум множества из n>1 элемента есть либо максимум каких-либо n-1 его элементов, либо значение оставшегося n-ого элемента.

Note 15

02fab2f581504672bc9dc06a5dfa4166

Как доказать, что во всяком непустом ограниченном сверху множестве $A \subset \mathbb{Z}$ есть наибольший элемент?

Выберем произвольный $x_0 \in A$ и обозначим

$$A_0 = \{ x \mid x \in A \land x \geqslant x_0 \},$$

$$A_1 = A \setminus A_0.$$

Тогда A_0 — конечное подмножество \mathbb{R} , а значит существует $\max A_0$. При этом для любого $x \in A$ имеем два случая:

- 1. если $x \in A_0$, то $x \leq \max A_0$ по определению максимума;
- 2. если $x \notin A_0$, то по построению A_0 имеем

$$\forall \hat{x} \in A_0 \quad x < \hat{x},$$

а значит $x < \max A_0$.

В любом случае имеем $x \leq \max A_0$, так что $\max A_0 = \max A$ по определению.

Note 16

c7dd2e717d9c47199cf723b912cf4e34

Как доказать, что во всяком интервале есть хотя бы одно рациональное число?

Пусть (a,b) — интервал в \mathbb{R} . Тогда по аксиоме Архимеда

$$\exists n \in \mathbb{N} \quad n > \frac{1}{b-a} \implies b-a > \frac{1}{n}.$$

Нетрудно показать, что

$$\frac{\lfloor na\rfloor + 1}{n} \in (a, b) \cap \mathbb{Q}.$$

Note 17

9428e0290086401db17d784b26f66839

Если $\forall \varepsilon > 0 \quad |b-a| < \varepsilon$, то a = b.

Note 18

Beaaa1f0f8624d8db6fa6824b7394a4;

Как доказать, что если $\forall \varepsilon > 0 \quad |b-a| < \varepsilon$, то a=b?

Допустим, что $a \neq b$. Тогда для $\varepsilon = |b-a| > 0$ не выполняется $\varepsilon < |b-a| \implies$ противоречие $\implies a = b$.

Как доказать, что у любой последовательности может быть не более одного предела?

Из определения предела
$$\forall \varepsilon>0 \quad \exists N\in \mathbb{N} \quad \forall n>N \quad \begin{cases} |x_n-a|<\frac{\varepsilon}{2},\\ |x_n-b|<\frac{\varepsilon}{2}. \end{cases}$$
 Но тогда

Но тогда
$$|a-b|=|a-x_n+x_n-b|\leqslant |a-x_n|+|b-x_n|<$$

$$<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$$

$$\Longrightarrow \ \forall \varepsilon>0 \quad |b-a|<\varepsilon \implies a=b.$$

$$\implies \forall \varepsilon > 0 \quad |b - a| < \varepsilon \implies a = b.$$