MACHINE LEARNING

Electrical Summer Workshops (ESW) 2022

Electrical Engineering Department - Sharif University of Technology

Instructors: Alireza Gargoori Motlagh – Amir Mirrashid – Ali Nourian

LOGISTIC REGRESSION

Linear Regression as Classifier

A basic approach to solve classification problems could use linear regression as follows: $(y^{(i)} \in \{0,1\})$

$$RSS = \sum_{i=1}^{n} (y^{(i)} - \boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)})^{2}$$

$$\rightarrow y^{(i)} = \begin{cases} 1 & \boldsymbol{\beta}^T \boldsymbol{x}^{(i)} > 0.5 \\ 0 & otherwise \end{cases}$$

Arbitrary threshold

Optimal coefficients try to make data points hug the line as closely as possible, no matter the effect on

classification performance

Our loss function needs to be modified.

Logit Transform

Predicting probabilities : $\mathbb{R}^n \to (0,1)$

- Dot product to \mathbb{R}^n_+ through exponentiation
- Divide the result to 1 + itself
- \rightarrow *sigmoid* function:

$$\sigma(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

where:
$$z = \boldsymbol{\beta}^T \boldsymbol{x}$$
 and $\boldsymbol{x} = \begin{bmatrix} 1 \\ x_1 \\ \vdots \\ x_p \end{bmatrix}$

$$\mathbb{P}(Y = 1|\mathbf{X}) = \frac{1}{1 + e^{-\beta^T X}}$$

$$\mathbb{P}(Y = 0|\mathbf{X}) = \frac{1}{1 + e^{\beta^T X}}$$

$$\xrightarrow{\log - odds} \log \left(\frac{\mathbb{P}(Y = 1 | \mathbf{X})}{\mathbb{P}(Y = 0 | \mathbf{X})} \right) = \boldsymbol{\beta}^T \mathbf{X} = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

Logistic Regression Decision Boundary

$$y^{(i)} = \begin{cases} 1 & \sigma(\boldsymbol{\beta}^T \boldsymbol{x}^{(i)}) > 0.5 \\ 0 & otherwise \end{cases}$$

Other thresholds might be needed in some cases!

Maximum Likelihood Estimation (MLE)

The problem of finding two probabilities reduces to estimation of regression parameters:

 Maximum likelihood estimation (MLE): Finding the parameters that maximize the joint probability of occurring all observed samples

$$L(\boldsymbol{\beta}) = \prod_{i=1}^{n} \mathbb{P}(Y = y^{(i)} | \boldsymbol{X} = \boldsymbol{x}^{(i)}) = \prod_{i=1}^{n} \mathbb{P}(Y = 1 | \boldsymbol{X} = \boldsymbol{x}^{(i)})^{y^{(i)}} \mathbb{P}(Y = 0 | \boldsymbol{X} = \boldsymbol{x}^{(i)})^{1-y^{(i)}}$$

$$\to L(\boldsymbol{\beta}) = \prod_{i=1}^{n} \sigma(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)})^{y^{(i)}} \left(1 - \sigma(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)})\right)^{1-y^{(i)}}$$

$$l(\boldsymbol{\beta}) = \log L(\boldsymbol{\beta}) = \sum_{i=1}^{n} y^{(i)} \log \left(\sigma(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)})\right) + \left(1 - y^{(i)}\right) \left(\log \left(1 - \sigma(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)})\right)\right) =$$

$$= \sum_{i=1}^{n} \left(y^{(i)}(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}) - \log \left(1 + e^{\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}}\right)\right)$$

Cost Function

Since sigmoid outputs probability, we use negative log likelihood to represent the error:

$$J(\boldsymbol{\beta}) = -\frac{1}{n}l(\boldsymbol{\beta}) = -\frac{1}{n}\sum_{i=1}^{n} \left(y^{(i)} (\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}) - \log\left(1 + e^{\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}}\right) \right)$$

We can update the parameters by minimizing the cost function (or equivalently, maximizing likelihood function)

Estimation of the Parameters

$$J(\boldsymbol{\beta}) = -\frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} (\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}) - \log \left(1 + e^{\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}} \right) \right)$$

$$\frac{\partial J(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -\frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} \boldsymbol{x}^{(i)} - \boldsymbol{x}^{(i)} \frac{e^{\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}}}{1 + e^{\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}}} \right) = -\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}^{(i)} \left(y^{(i)} - \frac{e^{\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}}}{1 + e^{\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}}} \right) =$$

$$\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}^{(i)} \left(\sigma(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}) - y^{(i)} \right)$$

$$\rightarrow \frac{\partial J(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}^{(i)} \left(\sigma(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(i)}) - y^{(i)} \right) = \frac{1}{n} \boldsymbol{X}^{T} (\boldsymbol{\sigma}(\boldsymbol{X}\boldsymbol{\beta}) - \boldsymbol{y})$$
where $\boldsymbol{X} = \begin{bmatrix} 1 & \boldsymbol{x}_{1}^{(1)} & \dots & \boldsymbol{x}_{p}^{(1)} \\ \vdots & \vdots & \dots & \vdots \\ 1 & \boldsymbol{x}_{1}^{(n)} & \dots & \boldsymbol{x}_{p}^{(n)} \end{bmatrix}, \ \boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_{0} \\ \boldsymbol{\beta}_{1} \\ \vdots \\ \boldsymbol{\beta}_{p} \end{bmatrix}, \ \boldsymbol{\sigma}(\boldsymbol{X}\boldsymbol{\beta}) = \begin{bmatrix} \sigma(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(1)}) \\ \sigma(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(2)}) \\ \vdots \\ \sigma(\boldsymbol{\beta}^{T} \boldsymbol{x}^{(n)}) \end{bmatrix}$

Updating the Parameters using Gradient Descent

Now that we have the derivatives we can update the parameters using *Gradient Descent*:

$$\boldsymbol{\beta}^{new} = \boldsymbol{\beta}^{old} - \alpha \frac{\partial J(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \boldsymbol{\beta}^{old} - \alpha \frac{1}{n} \boldsymbol{X}^{T} (\boldsymbol{\sigma}(\boldsymbol{X}\boldsymbol{\beta}) - \boldsymbol{y})$$

• α (learning rate): controls the rate of convergence (should be moderate).

Example

Non-Linear Logistic Regression

*Multi-Class Logistic Regression

We can use logistic regression for multi-class classification as well. This is called *Multinomial Logistic Regression* or *Softmax Regression*.

 Each class has its own probability function with its own parameter vector, s.t. for any given x, they all sum to one.

$$\mathbb{P}_{j}(\boldsymbol{x},\boldsymbol{\beta}) = \mathbb{P}(Y=j|\boldsymbol{x},\boldsymbol{\beta}) = \frac{e^{\boldsymbol{\beta}_{j}^{T}\boldsymbol{x}}}{\sum_{j=1}^{K}e^{\boldsymbol{\beta}_{j}^{T}\boldsymbol{x}}}, \qquad j=1,2,...,K$$

Other approaches:

- o One-vs-All
- o One-vs-One
- In softmax model we should use penalty term to keep the parameters small. (L_2 or L_1 regularizers)

*Multi-Class Logistic Regression Decision Surface

*Regularized Logistic Regression

Like linear regression, in order to reduce the variance of the model, we can use regularization for the logistic regression as well:

• L_2 norm regularizer:

$$cost = -l(\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_{L2}^{2} = -l(\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$

• L_1 norm regularizer:

$$cost = -l(\boldsymbol{\beta}) + \lambda ||\boldsymbol{\beta}||_{L1} = -l(\boldsymbol{\beta}) + \lambda \sum_{j=1}^{p} |\beta_j|$$

• Scikit-learn uses L_2 norm regularization by default.