Préparation Mines Telecom Réplique de la mission InSIGHT ★ – Sujet

On s'intéresse ici au système de déploiement du sous-système SEIS. Il est basé sur un instrument hybride composé :

- ▶ d'un système de déploiement (DPL);
- ▶ d'une sphère (SEIS) comportant trois capteurs sismiques à très larges bandes et leurs capteurs de température;
- ▶ d'une boîte électronique d'acquisition dont la structure est donnée par le diagramme de définition des blocs.

On donne figure 4 le diagramme partiel des exigences.

La figure 2 représente la structure du système de déploiement DPL.

D'après concours Commun INP 2019 – MP.

FIGURE 1 – Sous-système SEIS

FIGURE 2 – Schématisation cinématique du bras de déploiement

Bâti 0 Le bâti 0 est doté du repère $\mathcal{R}_0\left(O; \overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0}\right)$.

Bras 1 Le bras 1 est doté du repère $\mathcal{R}_1\left(O; \overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)$. Le mouvement de 1 par rapport à 0 est une rotation d'axe $\left(O, \overrightarrow{z_0}\right)$ et d'angle $\theta_1 = \left(\overrightarrow{x_0}, \overrightarrow{x_1}\right) = \left(\overrightarrow{y_0}, \overrightarrow{y_1}\right)$. Le centre d'inertie G_1 est paramétré par $\overrightarrow{OG_1} = \frac{L}{2}\overrightarrow{x_1}$. De plus $\overrightarrow{OQ} = L\overrightarrow{x_1}$. Enfin, $m_1 = 352$ g et L = 0,5 m.

La figure 3 présente le modèle volumique du bras 1. Les plans $(G_1, \overrightarrow{x_1}, \overrightarrow{y_1})$ et $(G_1, \overrightarrow{y_1}, \overrightarrow{z_1})$ sont des plans de symétrie matérielle du bras 1.

Le mouvement de 1 par rapport à 0 est commandé par un actionneur M_{01} , constitué d'un moteur pas à pas et d'un réducteur de vitesse à couronne dentée flexible de rapport de transmission $\lambda = 82$, d'encombrement et de masse très faibles en regard des autres solides, logés à l'intérieur de la liaison (0/1).

Avant-bras 2 L'avant-bras 2 est doté du repère $\Re_2\left(Q;\overrightarrow{x_2},\overrightarrow{y_2},\overrightarrow{z_2}\right)$. Le mouvement de 2 par rapport à 0 est une rotation d'axe $\left(Q,\overrightarrow{z_1}\right)$ et d'angle $\theta_2=\left(\overrightarrow{x_1},\overrightarrow{x_2}\right)=\left(\overrightarrow{y_1},\overrightarrow{y_2}\right)$. Le centre d'inertie G_2 est paramétré par $\overrightarrow{OG_2}=\frac{L}{2}\overrightarrow{x_2}$. De plus $\overrightarrow{QP}=L\overrightarrow{x_2}$. Enfin, $m_2=352$ g et L=0.5 m.

FIGURE 3 – Bras 1

L'extrémité en P est équipée d'une pince de masse négligeable qui saisit la sphère SEIS. On note K_{O2} le moment d'inertie de l'avant-bras 2 par rapport à l'axe $\left(O, \overrightarrow{z_0}\right)$ dans la position la plus défavorable. Le mouvement de 2 par rapport à 1 est commandé par un actionneur M_{12} , constitué d'un moteur pas à pas et d'un réducteur de vitesse à couronne dentée flexible de rapport de transmission $\lambda = 82$, d'encombrement et de masse très faibles en regard des autres solides, logés à l'intérieur de la liaison (1/2).

Sphère du SEIS : S On considère que l'amplitude du mouvement (S/2) est très faible. La position (S/0) repérée par : $\overrightarrow{OP} = X_P(t)\overrightarrow{x_0} + Y_P(t)\overrightarrow{y_0}$. La masse $m_s = 1,2$ kg est considérée comme ponctuelle en son centre d'inertie G_S par rapport aux autres mouvements. G_S est tel que $\overrightarrow{PG_S} = -R\overrightarrow{y_0}$ (R est une constante positive).

On note K_{OS} le moment d'inertie de la sphère S par rapport à l'axe $(O, \overrightarrow{z_0})$ dans la position $\theta_1 = \theta_2 = 0$.

FIGURE 4 – Diagramme partiel des exigences

0.1 Validation de la capacité statique du système de déploiement

Objectif

Déterminer le couple statique du moto-réducteur M_{01} qui permet l'équilibre du système de déploiement.

On note $\overrightarrow{g} = -g\overrightarrow{y_0}$ l'accélération du champ de pesanteur terrestre avec $g = 9.81 \text{ ms}^{-2}$.

Question 1 Exprimer puis calculer le couple statique, noté C_{01} , que doit exercer le moto-réducteur M_{01} dans la position du système de déploiement la plus défavorable. Préciser clairement le système isolé ainsi que le principe/théorème utilisé.

Question 2 En déduire la valeur minimale du couple de maintien, noté C_{mlmin} , dont doit disposer le moteur pas à pas.

0.2 Modélisation de la motorisation

Objectif

Valider les réglages dela commande des trois actionneurs linéaires associés aux pieds, afin de respecter les exigences liées à leur positionnement.

Afin d'être positionné, le SEIS est équipé de 3 pieds positionnés par des vérins électriques(aussi appelés actionneurs linéaires) asservis en position. Leur chaîne structurelle est donnée sur la figure 6.

Figure 5 – Sous-système SEIS

FIGURE 6 – Chaîne structurelle de l'actionneur électrique linéaire

La table 1 dresse la liste des notations et spécifications.

Table 1 – Notations et spécifications

- ▶ masse à déplacer pour chaque vérin : M = 1 kg;
- ► pesanteur de la Terre : $g = 9.81 \,\mathrm{m\,s^{-2}}$;
- ► rapport de réduction du réducteur : *r* = 0,01;
- ► rendement du réducteur : $\eta_r = 0,95$;
- ▶ pas de la vis du système vis-écrou : p = 12 mm;
- rendement du système vis-écrou : $\eta_v = 0,96$;
- ► coefficient de frottement visqueux du moteur : f = 0.002 Nms/rad;

- ► moment d'inertie équivalent total ramené sur l'arbre moteur : $I = 0,00004 \, \mathrm{kg} \, \mathrm{m}^2$;
- résistance de l'induit de la MCC (Machine à Courant Continu) :
 R = 1Ω;
- inductance de l'induit de la MCC : $L = 20 \mu H$;
- ► constante de couple : $K_c = 0.35 \,\mathrm{NmA}^{-1}$;
- ► constante de force contre électromotrice : $K_e = 0.35 \text{ Vs/rad}$;
- ► tension d'alimentation de l'induit de la MCC : u(t) en V;

- ► courant absorbé par l'induit de la MCC : i(t) en A;
- vitesse de rotation en sortie de la MCC : $\omega(t)$ en rad/s;
- ▶ position angulaire en sortie de la MCC : $\theta(t)$ en rad ;
- ▶ force contre électromotrice de la MCC : e(t) en V;
- ► couple moteur de la MCC : $C_m(t)$ en Nm;
- ► couple résistant total ramené sur l'arbre moteur : $C_r(t) = \frac{Mgpr}{2\pi\eta_v\eta_r}h(t)^a$ en Nm.

 $^{^{}a.}\,\,h(t)$ désigne la fonction de Heaviside qui prend la valeur 0 pour t<0, 1 sinon.

Équations du moteur à courant continu :

- équation électrique : $u(t) = e(t) + Ri(t) + L\frac{di(t)}{dt}$;
- ▶ équations de couplage électromécanique : $e(t) = K_e \omega(t)$, $C_m(t) = K_C i(t)$.

L'application du théorème du moment dynamique à l'arbre moteur permet d'écrire l'équation suivante :

$$J\frac{\mathrm{d}\omega(t)}{\mathrm{d}t} = C_m(t) - C_r(t) - f\omega(t).$$

Question 3 Proposer un schéma-bloc du moteur à courant continu.

On se place dans le cas particulier où $C_r(p) = 0$.

Question 4 Donner l'expression, sous sa forme canonique, de la fonction de transfert en boucle fermée $F_{\rm ml}(p) = \frac{\Omega(p)}{U(p)}$.

La figure 7 présente les résultats expérimentaux de l'évolution de la vitesse de rotation, $\omega(t)$ à la suite de l'application d'un échelon de tension u(t) d'une amplitude de 12 V aux bornes de la MCC.

FIGURE 7 – Réponse de la MCC à un échelon de $12\,\mathrm{V}$

Question 5 Proposer et justifier un modèle de comportement du moteur à courant continu $F_{\rm m2}(p)$.