

Tobias Hille Robin Schmidt $tobias.hille@student.uni-tuebingen.de\\ rob.schmidt@student.uni-tuebingen.de\\$

3905597 4255055

33/35

Modellierung & Simulation I

Serie 04

Problem 4.1.1

please see provided code

Problem 4.1.2

Using the first two testsets from the exercise sheet and coming up with four additional testsets leads to the following six testsets:

Testset
$$1 = \{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2\}$$

Testset $2 = \{2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2\}$
Testset $3 = \{2, 2, -2, 2, 2, -2, 2, 2, -2, 2\}$
Testset $4 = \{2, 2, 3, 2, 3, 2, 3, 2, 2, 2\}$
Testset $5 = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
Testset $6 = \{1, 4, 8, 0, -1, -12, 13, 20, 5, 4\}$

For the testsets stated above, the following autocovariance and autocorrelation values were observed. For example purposes we only show the values for a lag of 2:

Testset	1	2	3	4	5	6
Autocovariance	0.0	4.0	-1.56	0.1150	4.25	-32.61
Autocorrelation	1.0	0.899999	-0.417857	0.4928	0.4636	-0.4449

For testset 1 the autocovariance and autocorrelation are straight forward, because all numbers are the same so they are highly correlated to each other with a value of 1. For the testset 2 the autocorrelation is still pretty high because every two numbers are the same. With a lag of 2 testset 3 is negatively corelated due to the distances in which -2 and 2 vary. Testset 4 and

testset 5 are positively correlated with the given lag and testset 6 is negatively correlated. This is because the distances between samples in testset 4 and 5 is smallly increasing compared to those in testset 6, which causes the negative correlation.

V 10110

Problem 4.2.1

please see provided code

15/15

Problem 4.2.2

For a mean utilization of the system of 80 % the mean time of the exponential distributed service time has to be 0.8 . \checkmark

A simple simulation run can verify this statement with sufficient precision:

Simulation time in seconds: 1000000.0

observed random variable: server utilization/time

counter type: continuous-time counter

number of samples: 1996657 mean: 0.8000858062149303

variance: 0.15994850890833534

standard deviation: 0.39993563095620194

coefficient of variation: 0.49986592419159304

minimum: 0.0 maximum: 1.0

observed random variable: service time/customer

counter type: discrete-time counter

number of samples: 998328 mean: 0.8014256506879233 variance: 0.6425255021325139

standard deviation: 0.801576884729415

coefficient of variation: 1.0001887062653434

minimum: 0.001 maximum: 10.982

observed random variable: queue occupancy/time

counter type: continuous-time counter

number of samples: 998329 mean: 3.2050899006856426 variance: 18.707393944042067

standard deviation: 4.3252044973668085

coefficient of variation: 1.3494799307943117

minimum: 0.0 maximum: 56.0

observed random variable: waiting time/customer

counter type: discrete-time counter

number of samples: 998328 mean: 3.211894302273389 variance: 15.52748910278651

standard deviation: 3.9404935100551186

coefficient of variation: 1.2268440799144682

minimum: 0.0 maximum: 46.107

Problem 4.2.3 & 4.2.4

Number of Customers	10	99928	10110
Waiting Time Mean	0.2293	3.0832312765190646	<i>)</i>

Figure 1: Histograms

Discussion:

The first 10 customers make a small sample size. Because of this the observed distribution of the waiting time is quite different from the true one, which is an (hyper-)exponential. This causes the estimate of the mean to be too small and in contrary the observed mean/distribution for the run with almost 100000 customers is a way better approximation of the underlying process.

The following pages contain the detailed statistics for the two compared sim-

ulation runs:

Simulation time in seconds: 10.0

observed random variable: server utilization/time

counter type: continuous-time counter

number of samples: 21 mean: 0.799240480344863

variance: 0.1604551349229757

standard deviation: 0.4005685146425961

coefficient of variation: 0.5011864695213578

minimum: 0.0 maximum: 1.0

observed random variable: service time/customer

counter type: discrete-time counter

number of samples: 10

mean: 0.7787

variance: 0.209661344444446

standard deviation: 0.45788791690155417 coefficient of variation: 0.588015817261531

minimum: 0.164 maximum: 1.827

observed random variable: queue occupancy/time

counter type: continuous-time counter

number of samples: 11

mean: 0.0 variance: 0.0

standard deviation: 0.0

coefficient of variation: 0.0

minimum: 0.0 maximum: 1.0

observed random variable: waiting time/customer

counter type: discrete-time counter

number of samples: 10

mean: 0.2293

variance: 0.09162889999999999

standard deviation: 0.30270265938706253

coefficient of variation: 1.3201162642261777

minimum: 0.0 maximum: 0.898

Simulation time in seconds: 100000.0

observed random variable: server utilization/time

counter type: continuous-time counter

number of samples: 199858 mean: 0.7978519206174655

variance: 0.16128423338448705

standard deviation: 0.4016020833916167

coefficient of variation: 0.5033541601063176

minimum: 0.0 maximum: 1.0

observed random variable: service time/customer

counter type: discrete-time counter

number of samples: 99928 mean: 0.7984155491954235 variance: 0.6401180433048178

standard deviation: 0.8000737736639152

coefficient of variation: 1.0020768940060885

minimum: 0.001 maximum: 10.0

observed random variable: queue occupancy/time

counter type: continuous-time counter

number of samples: 99930 mean: 3.077889485251493

variance: 16.737584281033318

standard deviation: 4.091159283263525

coefficient of variation: 1.3292092854104662

minimum: 0.0 maximum: 37.0

 $observed \ random \ variable: \ waiting \ time/customer$

counter type: discrete-time counter

number of samples: 99928 mean: 3.0832312765190646 variance: 14.024372162058013

standard deviation: 3.7449128377117153

coefficient of variation: 1.2146065286220378

minimum: 0.0 maximum: 32.23

10/16

Problem 4.2.5

Figure 2: Autocorrelation

Because the system is almost always busy, the correlation between the waiting time of two customers who enter the system is very high. So if the first customer waited x amount of time, it is very likely, that the second customer, who arrives later, has to wait a comparable amount of time too.

15/15