CCP 2001 PSI - Maths 2

Les calculatrices programmables et alphanumériques sont autorisées, sous réserve des conditions définies dans la circulaire n° 99-186 du 16.11.99–BOEN n° 42 du 25.11.99.

L'objet de ce problème est de définir un algorithme de calcul approché d'une intégrale, utilisant la méthode des trapèzes.

Dans la première partie, on étudie le procédé d'extrapolation de Richardson.

Dans une deuxième partie, on établit la formule d'Euler-Mac Laurin.

La troisième partie utilise les deux premières parties pour définir la méthode de Romberg, qui est une troisième méthode d'intégration basée sur l'accélération de la convergence à partir de la méthode des trapèzes.

La deuxième partie est indépendante de la première partie.

De nombreuses questions de ce problème sont simples ; le candidat s'attachera à les résoudre avec soin et complètement. On note $\mathbb R$ l'ensemble des nombres réels, $\mathbb N$ l'ensemble des entiers naturels et $\mathbb N^*$ l'ensemble des entiers naturels non nuls.

Étant donné un intervalle I de \mathbb{R} , on note $\mathcal{C}^{\infty}(I,\mathbb{R})$ l'ensemble des fonctions définies sur I à valeurs dans \mathbb{R} , indéfiniment dérivables.

Étant donné un entier $s \in \mathbb{N}$ et une fonction φ , on utilise la notation $\varphi(t) = O(t^s)$ lorsque $t \longrightarrow 0$, qui signifie que le quotient $\frac{\varphi(t)}{t^s}$ est borné lorsque $t \longrightarrow 0$, $t \ne 0$.

 t_n étant le terme général d'une suite qui ne s'annule pas et qui tend vers 0 lorsque $n \longrightarrow +\infty$, on note $u_n = O(t_n)$ lorsque $n \longrightarrow +\infty$, le terme général d'une suite telle que le quotient $\frac{u_n}{t_n}$ est borné lorsque $n \longrightarrow +\infty$.

PREMIÈRE PARTIE

Procédé d'extrapolation de Richardson

On désigne par A une fonction définie sur \mathbb{R} à valeurs dans \mathbb{R} , et on suppose que A admet un développement limité à tout ordre au voisinage de 0.

On note $A(t) = a_0 + a_1 t + \dots + a_k t^k + O(t^{k+1})$ son développement limité à l'ordre k au voisinage de 0, les coefficients a_p étant des réels.

- **I-1.1.** Étant donné un réel ρ non nul et un entier $s \in \mathbb{N}$, on suppose que φ est une fonction qui vérifie $\varphi(t) = O\left((\rho t)^s\right)$ lorsque $t \longrightarrow 0$. Montrer que $\varphi(t) = O(t^s)$ lorsque $t \longrightarrow 0$.
- **I-1.2.** Pour $k \in \mathbb{N}^*$, on suppose que $\varphi(t) = O(t^k)$ lorsque $t \longrightarrow 0$. Déterminer la limite lorsque $t \longrightarrow 0$, $t \ne 0$, du quotient $\frac{\varphi(t)}{t^{k-1}}$
- **I-2.1.** Montrer que A(t) admet une limite lorsque $t \longrightarrow 0$ et déterminer cette limite.

Soit r un réel vérifiant r > 1. On définit la suite des fonction A_n par :

pour
$$t$$
 réel, $A_0(t)=A(t)$ puis, pour t réel et $n\in\mathbb{N}^*$, $A_n(t)=\frac{r^nA_{n-1}(t)-A_{n-1}(rt)}{r^n-1}$.

- **I-2.2.** Montrer qu'il existe un réel $a_{1,2}$, que l'on déterminera, tel que le développement limité de A_1 à l'ordre k au voisinage de 0 soit $A_1(t) = a_0 + a_{1,2}t^2 + \cdots + O(t^{k+1})$.
- **I-2.3.** En déduire qu'il existe un réel $a_{n,n+1}$, que l'on ne demande pas de déterminer, tel que le développement limité de A_n à l'ordre k au voisinage de 0 soit $A_n(t) = a_0 + a_{n,n+1}t^{n+1} + \cdots + O(t^{k+1})$.
- **I-2.4.** Soit t_0 un réel non nul fixé. Montrer que la suite de terme général $A(r^{-m}t_0)$ converge vers a_0 lorsque $m \longrightarrow +\infty$.

Dans la suite de la première partie, on suppose que pour tout $t_0 \neq 0$ fixé et r > 1 fixé, on sait calculer les premiers termes $A(t_0), A(r^{-1}t_0), \ldots, A(r^{-m}t_0)$ de la suite.

Le procédé de Richardson consiste à extrapoler ces valeurs pour obtenir, grâce à un procédé d'accélération de convergence, la valeur de a_0 .

Pour $p \in \mathbb{N}$, on note $A_{p,0} = A_0(r^{-p}t_0)$ puis, pour q entier vérifiant $1 \leqslant q \leqslant p$, on note $A_{p,q} = A_q(r^{-p}t_0)$.

- **I-3.1.** Justifier l'égalité $A_{p,0} = a_0 + O(r^{-p})$ lorsque $p \longrightarrow +\infty$.
- **I-3.2.** Déterminer un entier naturel $\alpha(p,q) > 0$, que l'on explicitera, tel que $A_{p,q} = a_0 + O(r^{-\alpha(p,q)})$ lorsque $p \longrightarrow +\infty$.

I-3.3. Pour
$$p \geqslant 1$$
, justifier l'égalité : $A_{p,1} = \frac{rA_{p,0} - A_{p-1,0}}{r-1}$.

I-3.4. Pour
$$1 \leqslant q \leqslant p$$
, justifier l'égalité : $A_{p,q} = \frac{r^q A_{p,q-1} - A_{p-1,q-1}}{r^q - 1} = A_{p,q-1} + \frac{1}{r^q - 1} (A_{p,q-1} - A_{p-1,q-1}).$

Dans la pratique, on range les valeurs $A_{p,q}$ pour $0 \leqslant q \leqslant p \leqslant m$ dans un tableau triangulaire :

I-4. Déterminer la plus petite valeur et la plus grande valeur de $\alpha(p,q)$ pour $0 \leqslant q \leqslant p \leqslant m$.

Lorsque $m \longrightarrow +\infty$, de laquelle des valeurs $A_{p,q}$ du tableau peut-on attendre la meilleure approximation de a_0 (on pourra utiliser **I-1.2** pour justifier la réponse)?

On écrira cette valeur sous la forme $a_0 + O(r^{-\sigma(m)})$ lorsque $m \longrightarrow +\infty$ et on précisera la valeur de l'entier $\sigma(m) > 0$.

On considère une fonction $g \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$ et on note $g(\alpha + h) = c_0 + c_1 h + \cdots + c_{2k} h^{2k} + O(h^{2k+1})$ son développement limité à l'ordre 2k au voisinage de α .

I-5.1. Exprimer les coefficients c_p pour $0 \le p \le 2k$, en fonction de g et de ses dérivées successives.

Pour
$$h \neq 0$$
, on note $G(h) = \frac{g(\alpha + h) - g(\alpha - h)}{2h}$.

I-5.2. Montrer que la fonction G est paire.

Montrer que G se prolonge par continuité en 0 par une valeur que l'on déterminera.

On note \widetilde{G} la fonction G prolongée en 0 par cette valeur.

I-5.3. Exprimer à l'aide des coefficients c_p le développement limité de \widetilde{G} à l'ordre 2k-1 au voisinage de 0.

Pour t réel positif, on note $A(t) = \widetilde{G}(\sqrt{t})$.

I-6.1. On choisit h > 0 et on considère la suite de valeurs G(h), $G\left(\frac{h}{2}\right)$, ..., $G\left(\frac{h}{2^m}\right)$.

Déterminer un réel $t_0 > 0$ et un réel r > 1 tels que cette suite de valeurs soit $A(t_0), A(r^{-1}t_0), \ldots, A(r^{-m}t_0)$.

On utilise les notations des questions précédentes avec $A_0(t) = A(t)$, $A_{p,0} = A_0(r^{-p}t_0)$ puis $A_{p,q}$, pour les valeurs r et t_0 déterminées dans **I-6.1**.

I-6.2. Quelle est la limite ℓ de $A_{p,0}$ lorsque $p \longrightarrow +\infty$? On exprimera ℓ à l'aide de la fonction g et de α .

Dans ce qui suit, on prend $g(x) = \ln x$, $\alpha = 3$ et h = 0, 8.

I-7.1. Calculer les valeurs $A_{p,0}$ pour $0 \le p \le 3$.

Donner le tableau des valeurs $A_{p,q}$ pour $0 \le q \le p \le 3$.

I-7.2. Quelle est la valeur exacte de ℓ ?

Parmi les valeurs $A_{p,q}$ trouvées, quelle est la meilleure approximation de ℓ ?

DEUXIÈME PARTIE

Formule d'Euler-Mac Laurin

Pour $p \in \mathbb{N}$, on définit la suite B_p de polynômes par :

- (i) Pour tout $t \in \mathbb{R}$, $B_0(t) = 1$
- (ii) Pour $p \in \mathbb{N}^*$ et $t \in \mathbb{R}$, $B'_p(t) = pB_{p-1}(t)$ et $\int_0^1 B_p(t) dt = 0$,

et on note $b_p = B_p(0)$.

- **II-1.1.** Déterminer les polynômes B_1 , B_2 , B_3 .
- **II-1.2.** Pour $0 \le p \le 3$, calculer b_p et comparer b_p à $B_p(1)$.
- **II-1.3.** Montrer que pour $p \ge 2$, on a $b_p = B_p(1)$.
- **II-2.1.** Pour $p \in \mathbb{N}$ et $t \in \mathbb{R}$, on définit $\widetilde{B}_p(t) = (-1)^p B_p(1-t)$.

Montrer que la suite de polynômes \widetilde{B}_p vérifie les relations (i) et (ii). En déduire que $\widetilde{B}_p = B_p$.

II-2.2. Montrer que pour $p \in \mathbb{N}^*$, on a $b_{2p+1} = 0$.

Soit $f \in \mathcal{C}^{\infty}([0,1],\mathbb{R})$; on note $f^{(p)}$ la dérivée d'ordre p de la fonction f.

II-3.1. Montrer l'égalité
$$\int_0^1 f(t) dt = \int_0^1 B_0(t) f(t) dt = \frac{1}{2} (f(0) + f(1)) - \int_0^1 B_1(t) f'(t) dt$$
.

II-3.2. Pour $n \ge 2$, montrer l'égalité :

$$\frac{1}{2} (f(0) + f(1)) = \int_0^1 f(t) dt + \sum_{p=2}^n (-1)^p \frac{b_p}{p!} (f^{(p-1)}(1) - f^{(p-1)}(0)) + (-1)^{n+1} \int_0^1 \frac{B_n(t)}{n!} f^{(n)}(t) dt.$$

II-3.3. En déduire que pour n=2k on a l'égalité :

(1)
$$\frac{1}{2} (f(0) + f(1)) = \int_0^1 f(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(1) - f^{(2p-1)}(0)) - \int_0^1 \frac{B_{2k}(t)}{(2k)!} f^{(2k)}(t) dt.$$

Pour $t \in \mathbb{R}$, on note E(t) la partie entière de t.

Pour $p \in \mathbb{N}$, on définit la fonction \mathcal{D}_p par : pour $t \in \mathbb{R}$, $\mathcal{D}_p(t) = B_p(t - \mathbf{E}(t))$.

II-4.1. Montrer que \mathcal{D}_p est une fonction périodique de période 1.

Montrer que \mathcal{D}_p est une fonction de classe \mathcal{C}^{∞} par morceaux sur \mathbb{R} .

Dans la suite la fonction f appartient à $\mathcal{C}^{\infty}([0,N],\mathbb{R})$ où $N \in \mathbb{N}$ avec $N \geq 2$.

Pour q entier vérifiant $1 \leq q \leq N$, on définit les fonctions f_q de [0,1] dans \mathbb{R} par $f_q(t) = f(t+q-1)$.

II-4.2. Montrer que les fonction f_q appartiennent à $\mathcal{C}^{\infty}([0,1],\mathbb{R})$ et qu'elles vérifient les égalités :

 $\text{pour } m \in \mathbb{N} \text{ et } q \text{ entier tel que } 2 \leqslant q \leqslant N, \\ f_1^{(m)}(0) = f^{(m)}(0), \quad f_q^{(m)}(0) = f_{q-1}^{(m)}(1), \quad f_N^{(m)}(1) = f^{(m)}(N).$

II-4.3. En appliquant (1) aux fonction f_q , en déduire la formule d'Euler-Mac Laurin sur [0, N]:

(2)
$$\frac{1}{2}f(0) + \sum_{q=1}^{N-1} f(q) + \frac{1}{2}f(N) = \int_0^N f(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} \left(f^{(2p-1)}(N) - f^{(2p-1)}(0) \right) - \int_0^N \frac{\mathcal{D}_{2k}(t)}{(2k)!} f^{(2k)}(t) dt.$$

TROISIÈME PARTIE

Méthode de Romberg

Dans cette partie on note [a, b] un intervalle de \mathbb{R} et f une fonction de $\mathcal{C}^{\infty}([a, b], \mathbb{R})$.

Étant donné $N \in \mathbb{N}^*$ et $h = \frac{b-a}{N}$, on note :

$$T_f(h) = h\left[\frac{1}{2}f(a) + \sum_{q=1}^{N-1}f(a+qh) + \frac{1}{2}f(b)\right] \text{ si } N \geqslant 2, T_f(h) = h\left[\frac{1}{2}f(a) + \frac{1}{2}f(b)\right] \text{ si } N = 1, \text{ la valeur approchée de l'intégrale}$$

 $\int_0^1 f(t) dt$ obtenue par la méthode des trapèzes pour le pas h.

III-1. On suppose $N \ge 2$. En appliquant la formule (2) à la fonction g(t) = f(a+th) définie sur [0, N], montrer la formule :

(3)
$$T_f(h) = \int_a^b f(t) dt + \sum_{p=1}^k h^{2p} \frac{b_{2p}}{(2p)!} \left(f^{(2p-1)}(b) - f^{(2p-1)}(a) \right) - h^{2k} \int_a^b \frac{\mathcal{D}_{2k} \left(\frac{t-a}{h} \right)}{(2k)!} f^{(2k)}(t) dt.$$

III-2. Montrer que la formule (3) peut s'écrire : (4) $T_f(h) = \int_a^b f(t) dt + \sum_{p=1}^{k-1} d_p h^{2p} + O(h^{2k}) \text{ où les } d_p \text{ désignent des nombres réels.}$

Pour t > 0, on définit $A(t) = T_f(\sqrt{t})$.

- III-3.1. Déterminer $\lim_{t\to 0} A(t)$.
- **III-3.2.** On prend N=1 et donc h=b-a, et on calcule la suite de valeurs $T_f(h), T_f\left(\frac{h}{2}\right), \ldots, T_f\left(\frac{h}{2^m}\right)$

Déterminer un réel $t_0 > 0$ et un réel r > 1 tels que cette suite de valeurs soit $A(t_0), A(r^{-1}t_0), \ldots, A(r^{-m}t_0)$.

On utilise les notations de la première partie avec $A_0(t) = A(t)$, $A_{p,0} = A_0(r^{-p}t_0)$ puis, $A_{p,q}$, t_0 et r étant les valeurs trouvées en III-3.2. On note $h_p = \frac{b-a}{2^p}$.

- **III-4.1.** Exprimer $A_{p,0}$ et $A_{p-1,0}$ à l'aide de T_f et de h_p .
- III-4.2. Pour $p \ge 1$, on définit $A'_{p,0} = h_p \sum f(a + (2q+1)h_p)$, la somme étant étendue aux entiers q tels que $a < a + (2q+1)h_p < b$. Exprimer $A_{p,0}$ en fonction de $A_{p-1,0}$ et $A'_{p,0}$. Quel est l'intérêt de cette expression?
- **III-5.** On choisit $f(t) = \frac{\sin t}{t}$ pour $t \neq 0$, f(0) = 1, a = 0, $b = \pi$, $h = b a = \pi$.
- **III-5.1.** Montrer que $f \in \mathcal{C}^{\infty}([0,\pi],\mathbb{R})$.
- III-5.2. Calculer les valeurs $A_{p,0}$ pour $0 \le p \le 3$ et les valeurs $A'_{p,0}$ pour $1 \le p \le 3$. Indiquer dans quel ordre vous calculez ces sept valeurs.
- III-5.3. Donner le tableau des valeurs $A_{p,q}$ pour $0 \leqslant q \leqslant p \leqslant 3$.

De laquelle de ces valeurs peut-on attendre la meilleure approximation de $\int_0^{\pi} \frac{\sin t}{t} dt$?

III-6. Que donne cette méthode lorsque f est une fonction périodique de période b-a?

