Exercise Set 4

Hina Arora

(I) Read data and pick relevant columns

(II) Split data into Train and Test

(III) Fit/Transform on Training Data

(IV) Transform/Predict on Test Data

(I) Read data and pick relevant columns

- read data
- transform Cabin to Deck
- only retain columns required for analysis

Read kaggle train.csv data into a dataframe called df; Then check the top few rows of the df dataframe.

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
531	532	0	3	Toufik, Mr. Nakli	male	NaN	0	0	2641	7.2292	NaN	С
305	306	1	1	Allison, Master. Hudson Trevor	male	0.92	1	2	113781	151.5500	C22 C26	S
222	223	0	3	Green, Mr. George Henry	male	51.00	0	0	21440	8.0500	NaN	S

```
df = pd.read_csv('data/kaggleTitanic/train.csv')
df.sample(frac=0.01)
```

Extract a new column called "Deck" from "Cabin".

Hint: write a function called getDeck, and then use following: df['Deck'] = df['Cabin'].apply(getDeck)

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Deck
867	868	0	1	Roebling, Mr. Washington Augustus II	male	31.0	0	0	PC 17590	50.4958	A24	S	А
220	221	1	3	Sunderland, Mr. Victor Francis	male	16.0	0	0	SOTON/OQ 392089	8.0500	NaN	S	NaN
361	362	0	2	del Carlo, Mr. Sebastiano	male	29.0	1	0	SC/PARIS 2167	27.7208	NaN	С	NaN

```
def getDeck(cabin):
  if pd.notna(cabin):
    return cabin[0]
  else:
    return np.nan
df['Deck'] = df['Cabin'].apply(getDeck)
df.sample(frac=0.01)
```

(II) Split data into Train and Test

```
# Set up data
X = df.drop(['Survived'], axis=1)
y = df['Survived']
# Split into train and test
from sklearn.model selection import train test split
Xtrain, Xtest, ytrain, ytest =
      train test split(X, y, test size=0.2, random state=1)
# Following code to deal with SetttingWithCopyWarning
Xtrain = Xtrain.copy()
Xtest = Xtest.copy()
ytrain = ytrain.copy()
ytest = ytest.copy()
```

(III) Fit/Transform on Training Data

- 'Age': impute missing values with median
- ['Pclass', 'Sex', 'Deck']: impute missing values with 'X'
- ['impPclass', 'impSex', 'impDeck']: OHE
- Only keep imputed numeric and ohe categorical features
- build Logistic Regression Model

Set numeric_features = ['Age']

Use SimpleImputer to fill the missing values in numeric_features with the median values, and prefix the imputed columns with "imp"

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Deck	impAge
22	23	3	McGowan, Miss. Anna "Annie"	female	15.0	0	0	330923	8.0292	NaN	Q	NaN	15.0
15	16	2	Hewlett, Mrs. (Mary D Kingcome)	female	55.0	0	0	248706	16.0000	NaN	S	NaN	55.0
669	670	1	Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)	female	NaN	1	0	19996	52.0000	C126	S	С	29.0

```
numeric features = ['Age']
from sklearn.impute import SimpleImputer
sinum = SimpleImputer(
      missing values=np.nan,
      strategy='median')
Xnum = pd.DataFrame(
      sinum.fit transform(Xtrain[numeric features]),
      columns=['imp'+x for x in numeric features],
      index=Xtrain.index)
Xtrain = pd.concat([Xtrain, Xnum], axis=1)
Xtrain.sample(7)
```

Set categorical_features = ['Pclass', 'Sex', 'Deck']

Use SimpleImputer to fill the missing values in categorical_features with the constant value 'X', and prefix the imputed columns with "imp"

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Deck	impAge	impPclass	impSex	impDeck
642	643	3	Skoog, Miss. Margit Elizabeth	female	2.0	3	2	347088	27.9000	NaN	S	NaN	2.0	3	female	Х
183	184	2	Becker, Master. Richard F	male	1.0	2	1	230136	39.0000	F4	S	F	1.0	2	male	F
465	466	3	Goncalves, Mr. Manuel Estanslas	male	38.0	0	0	SOTON/O.Q. 3101306	7.0500	NaN	S	NaN	38.0	3	male	Х

```
categorical_features = ['Pclass', 'Sex', 'Deck']
```

```
from sklearn.impute import SimpleImputer
sicat = SimpleImputer(
      missing values=np.nan,
      strategy='constant',
      fill value='X')
Xcat = pd.DataFrame(
      sicat.fit transform(Xtrain[categorical features]),
      columns=['imp'+x for x in categorical features],
      index=Xtrain.index)
Xtrain = pd.concat([Xtrain, Xcat], axis=1)
```

Xtrain.sample(7)

```
Set
imputed_categorical_features =
    ['impPclass', 'impSex', 'impDeck']
```

Use OneHotEncoder to one-hot-encode the imputed categorical variables

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	 x1_male	x2_A	x2_B	x2_C	x2_D	x2_E	x2_F	x2_G	x2_T
670	671	2	Brown, Mrs. Thomas William Solomon (Elizabeth 	female	40.0	1	1	29750	39.000	NaN	 0	0	0	0	0	0	0	0	0
526	527	2	Ridsdale, Miss. Lucy	female	50.0	0	0	W./C. 14258	10.500	NaN	 0	0	0	0	0	0	0	0	0

imputed_categorical_features = ['impPclass', 'impSex', 'impDeck']

```
from sklearn.preprocessing import OneHotEncoder
ohe = OneHotEncoder(
      sparse=False,
      dtype=int,
      handle unknown='ignore')
Xcat = pd.DataFrame(
      ohe.fit_transform(Xtrain[imputed_categorical_features]),
      columns=ohe.get feature names(),
      index=Xtrain.index)
Xtrain = pd.concat([Xtrain, Xcat], axis=1)
Xtrain.sample(7)
```

Only keep imputed numeric features, and ohe catergorical features

	impAge	x0_1	x0_2	x0_3	x1_female	x1_male	x2_A	x2_B	x2_C	x2_D	x2_E	x2_F	x2_G	x2_T	x2_X
45	29.0	0	0	1	0	1	0	0	0	0	0	0	0	0	1
858	24.0	0	0	1	1	0	0	0	0	0	0	0	0	0	1
438	64.0	1	0	0	0	1	0	0	1	0	0	0	0	0	0
272	41.0	0	1	0	1	0	0	0	0	0	0	0	0	0	1

Xtrain.sample(7)

Build Logistic Regression Model by fitting to the transformed training data

from sklearn.linear_model import LogisticRegression

Ir = LogisticRegression(solver='liblinear')

Ir.fit(Xtrain, ytrain)

(IV) Transform/Predict on Test Data

- 'Age': impute missing values with median
- ['Pclass', 'Sex', 'Deck']: impute missing values with 'X'
- ['impPclass', 'impSex', 'impDeck']: OHE
- Only keep imputed numeric and ohe categorical features
- predict using Logistic Regression Model
- evaluate model

numeric_features = ['Age']

Fill the missing values in numeric_features with the median values

categorical_features = ['Pclass', 'Sex', 'Deck']

Fill the missing values in categorical_features with the constant value 'X'

```
imputed_categorical_features =
   ['impPclass', 'impSex', 'impDeck']
```

One-hot-encode the imputed categorical variables

Only keep imputed numeric features, and ohe catergorical features

Xtest.sample(7)

Predict and evaluate Logistic Regression Model on test data

ypred = Ir.predict(Xtest)

from sklearn import metrics print (metrics.accuracy_score(ytest, ypred))

In this Exercise Set:

- We had to keep track of the preprocessing/transformation steps with "fit_transform" on the training data (including remembering to drop the columns we didn't want to use anymore).... and then repeating all of the same preprocessing/transformation steps with "transform" on the test data
- We also had to keep track of building the model with "fit" on the preprocessed/transformed training data.... and then predicting with "predict" on the preprocessed/transformed test data

As we'll see in the next exercise set, we can use ColumnTransformers and Pipelines to make life much-much easier for us!