

Fakultät Mathematik Institut für Analysis, Professur für Dynamik und Steuerung

HÖHERE ANALYSIS – FUNKTIONENTHEORIE

Prof. Dr. Stefan Siegmund

Wintersemester 2019/20

Autor : Eric Kunze

E-Mail : eric.kunze@mailbox.tu-dresden.de

Inhaltsverzeichnis

1 Komplexe Zahlen & Differenzierbarkeit

 $\mathbf{2}$

Kapitel 1

KOMPLEXE ZAHLEN & DIFFERENZIERBARKEIT

Wir erinnern uns an die Einführung der komplexen Zahlen. Wir wollen eine Zahl z finden mit $z^2 = -1$, nämlich z = 1. Wir erweitern also \mathbb{R} so, dass weiterhin die Körperaxiome gelten und definieren

$$\mathbb{C} := \{ x + \mathbf{1} \cdot y \colon x, y \in \mathbb{R} \} \tag{1.1}$$

und identifizieren

$$1 \sim (1,0) \in \mathbb{R}^2$$
 $1 \sim (0,1) \in \mathbb{R}^2$ (1.2)

mit der Addition

$$(x_1 + 1 \cdot y_1) + (x_2 + 1 \cdot y_2) = (x_1 + x_2) + 1 \cdot (y_1 + y_2)$$

$$(1.3)$$

sowie der Multiplikation

$$(x_1 + 1 \cdot y_1) \cdot (x_2 + 1 \cdot y_2) = (x_1 \cdot x_2 - y_1 \cdot y_2) + 1 \cdot (x_1 \cdot y_2 + x_2 \cdot y_1)$$

$$(1.4)$$

Formal können wir auch $\mathbb{C}=\mathbb{R}^2$ identifizieren mit der gewöhnlichen (komponentenweisen) Addition und der Multiplikation

$$(x_1, y_1) \cdot (x_2, y_2) = (x_1 \cdot x_2 - y_1 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1) \tag{1.5}$$

Dann bildet $(\mathbb{C}, +, \cdot)$ einen Körper mit 1 = (0, 1) und Einselement (1, 0).

Definition 1.1 Für $z = x + 1 \cdot y \in \mathbb{C}$ heißt $x = \Re(z)$ der **Realteil** von z und $y = \Im(z)$ der **Imaginärteil** von z. Die **konjugiert** komplexe Zahl von z ist $\overline{z} := x - 1 \cdot y$. Als **Betrag** definieren wir

$$|z| := \sqrt{z \cdot \overline{z}} = \sqrt{x^2 + y^2} \tag{1.6}$$

Für $z_1, z_2 \in \mathbb{C}$ gilt $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$ und

$$\frac{1}{z} = \frac{\overline{z}}{\overline{z} \cdot z} = \frac{\overline{z}}{|z|^2} = \frac{x - 1 \cdot y}{x^2 + y^2} \tag{1.7}$$

Definition 1.2 (Polardarstellung) Jedes $z \in \mathbb{C}$ lässt sich darstellen als

$$z = r \cdot e^{1 \cdot \varphi} = r \cdot (\cos(\varphi) + 1 \cdot \sin(\varphi)) \tag{1.8}$$

mit r=|z| und $\varphi\in\mathbb{R}$. Dabei heißt φ Argument von z und ist für $z\neq 0$ nur bis auf ganzzahlige Vielfache von 2π bestimmt.

Definition 1.3 (Differenzierbarkeit) Sei $\Omega \subseteq \mathbb{C}$ offen, $z_0 \in \Omega$ und $f : \Omega \to \mathbb{C}$.

(1) f heißt in z_0 (komplex) differenzierbar genau dann, wenn

$$f'(z_0) := \lim_{z \to z_0, z \neq z_0} \frac{f(z) - f(z_0)}{z - z_0} \text{ existiert}$$
 (1.9)

 $f'(z_0)$ heißt dann **Ableitung** von f in z_0 .

(2) f heißt (in Ω) holomorph genau dann, wenn f in jedem Punkt $z_0 \in \Omega$ differenzierbar ist.

Bemerkung. Unser erstes großes Ziel wird sein zu zeigen, dass holomorphe Funktionen beliebig oft differenzierbar sind und sogar analytisch, d.h. sie lassen sich in jedem Punkt in eine Potenzreihe entwickeln.

Beispiel 1.4 (1) $f(z) = c = \text{const.} \implies f' = 0$

- $(2) \ f(z) = z \ \Rightarrow \ f' = 1$
- (3) $f(z) = \exp(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$ ist holomorph auf \mathbb{C} mit $f'(z) = \exp(z)$

Beweis. Für $z_0 = 0$:

$$\left| \frac{f(z) - f(0)}{z - 0} - 1 \right| = \left| \sum_{n=1}^{\infty} \frac{z^{n-1}}{n!} - 1 \right| = \left| \sum_{n=2}^{\infty} \frac{1}{n!} \cdot z^{n-1} \right|$$

$$\stackrel{|z| \le 1}{\le} |z| \cdot \sum_{n=2}^{\infty} \frac{1}{n!} = |z| \cdot (e - 2) \to 0 \quad (z \to 0)$$
(1.10)

Für $z_0 \in \mathbb{C}$ beliebig.

$$\frac{\exp(z) - \exp(z_0)}{z - z_0} = \exp(z_0) \cdot \frac{\exp(z - z_0) - 1}{z - z_0} \to \exp(z_0)$$
(1.11)

(4) $f: \mathbb{C} \setminus \{0\} \to \mathbb{C}$ mit $f(z) = \frac{1}{z}$ ist holomorph und $f'(z) = -\frac{1}{z^2}$

Beweis.

$$\frac{1}{z - z_0} \cdot \left(\frac{1}{z} - \frac{1}{z_0}\right) = \frac{1}{z \cdot z_0} \to -\frac{1}{z_0^2} \quad (z \to z_0)$$

Bemerkung 1.5 (1) Seien $\Omega \subseteq \mathbb{C}$ offen, $f, g \colon \Omega \to \mathbb{C}$ holomorph und $\alpha \in \mathbb{C}$. Dann sind auch $\alpha \cdot f$, f + g, $f \cdot g$ und $\frac{f}{g}$ (auf $\{z \in \mathbb{C} : g(z) \neq 0\}$) holomorph und es gilt

$$(\alpha \cdot f)' = \alpha \cdot f' \tag{1.13a}$$

$$(f+g)' = f' + g'$$
 (1.13b)

$$(f \cdot g)' = f' \cdot g + f \cdot g' \tag{1.13c}$$

$$\left(\frac{f}{q}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2} \tag{1.13d}$$

(2) **Kettenregel**: Seien $\Omega, \Omega' \subseteq \mathbb{C}$ offen, $f \colon \Omega \to \mathbb{C}$, $g \colon \Omega' \to \mathbb{C}$ holomorph und $f(\Omega) \subseteq \Omega'$. Dann ist auch $(g \circ f)$ holomorph mit

$$(g \circ f)'(z) = (g' \circ f)(z) \cdot f'(z) \tag{1.14}$$