Master Degree in Artificial Intelligence for Science and Technology

Anomaly Detection:

Clustering Based, Statistical Approaches and Reconstruction Based

Fabio Stella

Department of Informatics, Systems and Communication
University of Milan-Bicocca
fabio.stella@unimib.it

OUTLOOK

- Clustering Based
- Statistical Approaches
- Reconstruction Based

CLUSTERING BASED

ADVANTAGE

- unsupervised algorithm
- existing clustering algorithms can be plugged in

DRAWBACKS

- if the data object does not have a natural clustering or the clustering algorithm is not able to detect the natural clusters, the techniques may fail
- computationally expensive
 - using indexing structures (k-d tree, R* tree) may alleviate this problem
- in high dimensional spaces, data is sparse and distances between any two data objects may become quite similar
- can be difficult to decide on a clustering technique
- can be difficult to decide on number of clusters
- outliers can distort the clusters

CLUSTERING BASED

■ KEY ASSUMPTION: normal data instances belong to large and dense clusters, while anomalies do not belong to any significant cluster.

GENERAL APPROACH:

- cluster data objects into a finite number of clusters
- analyze each data object with respect to its closest cluster
- anomalous data objects
 - do not fit into any cluster (residuals from clustering)
 - belong to small clusters
 - are located in low density clusters
 - are far from other data objects within the same cluster

CLUSTERING BASED: BASIC ALGORITHM

- Fixed-width clustering is first applied
 - the first data object is the center of first cluster
 - two data objects p_1 and p_2 are "near" if $d(p_1, p_2) < \mathcal{E}$ (\mathcal{E} is a user specified parameter)
 - if every subsequent data objects is "near", add to the current cluster
 - otherwise create a new cluster

Data objects in small clusters are anomalies

CLUSTERING BASED: CLUSTER BASED LOCAL OUTLIER FACTOR (CBLOF)

- An data object is a cluster-based outlier if it does not strongly belong to any cluster
 - for prototype-based clusters, an data object is an outlier if it is not close enough to a cluster center
 - outliers can impact the clustering produced
 - for density-based clusters, an data object is an outlier if its density is too low
 - can't distinguish between noise and outliers
 - for graph-based clusters, an data object is an outlier if it is not well connected

STATISTICAL APPROACHES

Probabilistic definition of an outlier: an outlier is an data object that has a low probability with respect to a probability distribution model of the data.

- Usually assume a parametric model describing the distribution of the data (e.g., normal distribution)
- Apply a statistical test that depends on
 - data distribution
 - parameters of distribution (e.g., mean, variance)
 - number of expected outliers (confidence limit)

Issues

- identifying the distribution of a data set
 - heavy tailed distribution
- number of attributes
- is the data a mixture of distributions?

STATISTICAL APPROACHES: NORMAL DISTRIBUTION

one-dimensional Gaussian

two-dimensional Gaussian

STATISTICAL APPROACHES: GRUBBS'S TEST

- Detects outliers in univariate data
- Assumes data comes from normal distribution
- Detects one outlier at a time, remove the outlier, and repeat
 - $-H_0$: there is no outlier in data
 - $-H_1$: there is at least one outlier

Grubbs's test statistic:

$$G = \frac{\max|X - \overline{X}|}{S}$$

Reject H_0 if:

$$G > \frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha/(2N),N-2)}^2}{N-2+t_{(\alpha/(2N),N-2)}^2}}$$

STATISTICAL APPROACHES: LIKELIHOOD APPROACH

- Assumes the data set D contains samples from a mixture of two probability distributions:
 - *M* (majority/non-anomalous distribution)
 - *A* (anomalous distribution)
- General Approach:
 - initially, assumes all the data objects belong to M
 - let $LL_t(D)$ be the log likelihood of D at time t
 - for each data object x_t that belongs to M, move it to A
- Let $LL_{t+1}(D)$ be the new log likelihood
- Computes the difference, $\Delta = LL_t(D) LL_{t+1}(D)$
- If $\Delta > c$ (some threshold), then x_t is declared as an anomaly and moved permanently from M to A

STATISTICAL APPROACHES: LIKELIHOOD APPROACH

- Data distribution, $D = (1 \lambda)M + \lambda A$
- M is a probability distribution estimated from data
 - can be based on any modeling method (naïve Bayes, maximum entropy, etc.)
- *A* is initially assumed to be uniform distribution
- Likelihood at time *t*:

$$L_t(D) = \prod_{i=1}^{N} P_D(x_i) = \left((1 - \lambda)^{|M_t|} \prod_{x_i \in M_t} P_{M_t}(x_i) \right) \left(\lambda^{|A_t|} \prod_{x_i \in A_t} P_{A_t}(x_i) \right)$$

$$LL_{t}(D) = |M_{t}| \log(1 - \lambda) + \sum_{x_{i} \in M_{t}} \log P_{M_{t}}(x_{i}) + |A_{t}| \log \lambda + \sum_{x_{i} \in A_{t}} \log P_{A_{t}}(x_{i})$$

STATISTICAL APPROACHES: STRENGTHS AND WEAKNESSES

- Firm mathematical foundation
- Can be very efficient
- Good results if distribution is known
- In many cases, data distribution may not be known
- For high dimensional data, it may be difficult to estimate the true distribution
- Anomalies can distort the parameters of the distribution

RECONSTRUCTION BASED

- Based on assumptions there are patterns in the distribution of the normal class that can be captured using lower-dimensional representations
- Reduce data to lower dimensional data
 - e.g. use Principal Components Analysis (PCA) or auto-encoders
- Measure the reconstruction error for each object
 - the difference between original and reduced dimensionality version

RECONSTRUCTION BASED: RECONSTRUCTION ERROR

- Let x be the original data object
- Find the representation of the data object in a lower dimensional space
- Project the object back to the original space
- Call this object \hat{x}

Reconstruction Error =
$$||x - \hat{x}||$$

Objects with large reconstruction error are anomalies

RECONSTRUCTION BASED: RECONSTRUCTION OF TWO DIMENSIONAL DATA

RECONSTRUCTION BASED: PRINCIPAL COMPONENTS ANALYSIS

- Compute the principal components of the dataset
- For each test data object, compute its projection on these components
- If y_i denotes the ith component, then the following has a chi-squared distribution

$$\sum_{i=1}^{q} \frac{y_i^2}{\lambda_i} = \frac{y_1^2}{\lambda_1} + \frac{y_2^2}{\lambda_2} + \dots + \frac{y_q^2}{\lambda_q} \qquad q < n$$

— an data object is anomalous, if for a given significance level α

$$\sum_{i=1}^{q} \frac{y_i^2}{\lambda_i} > \chi_q^2(\alpha)$$

Another measure is to observe last few principal components

$$\sum_{i=p-r+1}^{p} \frac{y_i^2}{\lambda_i}$$

anomalies have high value for the above quantity

RECONSTRUCTION BASED: AUTO-ENCODER

- An auto-encoder is a multi-layer neural network
- The number of input and output neurons is equal to the number of original attributes

RECONSTRUCTION BASED

STRENGHTS

- does not require assumptions about distribution of normal class
- can use many dimensionality reduction approaches

WEAKNESSES

- the reconstruction error is computed in the original space
 - this can be a problem if dimensionality is high

RECAP

- Clustering Based
- Statistical Approaches
- Reconstruction Based