Modern Control Systems

Matthew M. Peet Arizona State University

Lecture 16: H_{∞} and Summary of Linear Analysis

Operators

 L_2 and \hat{L}_2 space

So far we know:

- The Fourier Transform, ϕ maps $L_2(-\infty,\infty)$ to \hat{L}_2 .
- The Laplace Transform, Λ maps $L_2[0,\infty)$ to H_2 .
- A Transfer Function is any element $\hat{G} \in \hat{L}_{\infty}$.
- A Transfer function defines a multiplication operator $M_{\hat{G}}$ which maps \hat{L}_2 to \hat{L}_2 .
- Any Linear, Time-Invariant System $G: L_2 \to L_2$ can be represented by a transfer function as $\phi^{-1}M_{\hat{G}}\phi$ for some $\hat{G}\in \hat{L}_{\infty}$.

Question: How do we represent *Causal* Systems, which map $H_2 \rightarrow H_2$?

M. Peet Lecture 16: 2 / 10

The Space H_{∞}

Definition 1.

A function $\hat{G}: \bar{\mathbb{C}}^+ \to \mathbb{C}^{n \times m}$ is in H_{∞} if

- 1. $\hat{G}(s)$ is analytic on the CRHP, \mathbb{C}^+ .
- 2.

$$\lim_{\sigma \to 0^+} \hat{G}(\sigma + \imath \omega) = \hat{G}(\imath \omega)$$

3.

$$\sup_{s \in \mathbb{C}^+} \bar{\sigma}(\hat{G}(s)) < \infty$$

- Similar to \hat{L}_{∞} , but analytic.
- ullet Elements of \hat{L}_{∞} with an analytic continuation to the right half-plane.
- A Banach Space with norm

$$\|\hat{G}\|_{H_{\infty}} = \operatorname{ess\,sup}_{\omega \in \mathbb{R}} \bar{\sigma}(\hat{G}(\imath \omega))$$

3 / 10

The Space H_{∞}

For any analytic functions, \hat{u} and $\hat{G},$ the function

$$\hat{y}(s) = \hat{G}(s)\hat{u}(s)$$

is analytic. Thus if $\hat{G} \in H_{\infty}$,

- \hat{G} is analytic on CRHP
- $M_{\hat{G}}: H_2 \to H_2$.
- $G = \Lambda^{-1} M_{\hat{G}} \Lambda$ maps $L_2[0,\infty) \to L_2[0,\infty).$
- $G = \Lambda^{-1} M_{\hat{G}} \Lambda$ is causal, LTI.

Causal Systems and H_{∞}

Indeed, this is necessary and sufficient.

Theorem 2.

G is a Causal, Linear, Time-Invariant Operator on L_2 if and only if there exists some $\hat{G} \in H_{\infty}$ such that $G = \Lambda^{-1} M_{\hat{G}} \Lambda$.

$$(\Lambda Gu)(\imath\omega) = \hat{G}(\imath\omega)\hat{u}(\imath\omega)$$

Conclusion: H_{∞} provides a complete parameterization of the Banach space of causal bounded linear time-invariant operators with

$$||G||_{\mathcal{L}(L_2[0,\infty))} = ||\Lambda^{-1}M_{\hat{G}}\Lambda||_{\mathcal{L}(L_2[0,\infty))} = ||\hat{G}||_{H_{\infty}}$$

Optimal Control is an attempt to minimize the H_{∞} norm of the closed-loop transfer function

M. Peet Lecture 16: 5,

Example of H_{∞}

Example:

$$\hat{G}(\imath\omega) = \frac{e^{-\imath\omega\tau} - 1}{\imath\omega}$$

which has

$$\|\hat{G}\|_{H_\infty} = \tau$$

which defines the system

$$y(t) = \int_0^t \left(u(s - \tau) - u(s) \right) ds$$

Question: How to parameterize H_{∞} ?

M. Peet 6 / 10 Lecture 16:

Rational Transfer Functions

The space of bounded analytic functions, H_{∞} , is infinite-dimensional.

• this makes it hard to design optimal controllers.

We often restrict ourselves to state-space systems and state-space controllers.

Definition 3.

The space of rational functions is defined as

$$R := \left\{ \frac{p(s)}{q(s)} \ : \ p, q \text{ are polynomials} \right\}$$

We define the following rational subspaces.

$$RH_2 = R \cap H_2$$

$$R\hat{L}_2 = R \cap \hat{L}_2$$

$$RH_{\infty} = R \cap H_{\infty}$$

Note that RH_2 , $R\hat{L}_2$ and RH_{∞} are not complete spaces.

M. Peet Lecture 16: 7

Rational Transfer Functions

For rational transfer functions, the set of bounded LTI systems are precisely those with no unstable poles.

Definition 4.

- A rational function $r(s) = \frac{p(s)}{q(s)}$ is **Proper** if the degree of p is less than or equal to the degree of q.
- A rational function $r(s)=\frac{p(s)}{q(s)}$ is **Strictly Proper** if the degree of p is less than the degree of q.

Proposition 1.

- 1. $\hat{G} \in R\hat{L}_{\infty}$ if and only if \hat{G} is proper with no poles (roots of q(s)) on the imaginary axis.
- 2. $\hat{G} \in RH_{\infty}$ if and only if \hat{G} is proper with no poles on the closed right half-plane.

M. Peet Lecture 16: 8 /

State-Space Systems

Recall a State-space

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

Theorem 5.

• For any stable state-space system, G, there exists some $\hat{G} \in RH_{\infty}$ such that

$$G = \Lambda^{-1} M_{\hat{G}} \Lambda$$

• For any $\hat{G} \in RH_{\infty}$, the operator $G = \Lambda^{-1}M_{\hat{G}}\Lambda$ can be represented in state-space for some A,B,C and D where A is Hurwitz.

For state-space system, (A, B, C, D),

$$\hat{G}(s) = C(sI - A)^{-1}B + D$$

State-Space is NOT Unique

• For a given Causal LTI system G with transfer function, $\hat{G} \in RH_{\infty}$, there may be many state-space representations

M. Peet Lecture 16: 9

Equivalent Realizations

Definition 6.

Two state-space representations, (A,B,C,D) and $(\hat{A},\hat{B},\hat{C},\hat{D})$ are **Equivalent** if

$$C(sI - A)^{-1}B + D = \hat{C}(sI - \hat{A})^{-1}\hat{B} + \hat{D}$$

Definition 7.

A representation, (A,B,C,D) is **Minimal** if it is controllable and observable.

Lemma 8.

Any transfer function $\hat{G} \in RH_{\infty}$ has a minimal state-space representation.

We are skipping the section on minimality.

• We will, however, return to the question of Grammians.

M. Peet Lecture 16: 10