Type	Control Flow Chart	Syntax	Use Case
Sequence	feature A	BNF: sequence_declaration ::= feature_name => feature_name Note: ✓ feature_name is the name of features on the device. Example: A => B	L2_SW FW Command: $L2_SW => FW$ Description: The feature of Firewall follows the feature of $L2_SW$. Sequence structure is the most widely adopted logic.
Selection	feature A feature B feature C multibranch: case1 feature B case2 feature C case3 feature D	BNF: If_else_declaration ::= feature_name => (feature_name : feature_name ? validator_declaration) validator_declaration ::= metadata_declaration op constant metadata_declaration ::= feature_name.global_metadata op ::= > >= <= < != Note: The left value of the validator is the global metadata field assigned for each packet passing among features. Example: A => (C : B ? A.global_metadata == 1) BNF: multibranch_declaration ::= feature_name => ({case_declaration :} case_declaration # metadata_declaration) case_declaration ::= const @ feature_name Note: The const number in case_declaration can be set dynamically at runtime. Example: A => (n1@B : n2@C : n3@D # A.global_metadata)	Heavy-flow Hitter Val <= 300 Command: HITTER \Rightarrow (L3_SW : REPORTER ? HEHITTER.global_metadata <= 300) Description: The feature of Heavy-flow Hitter identifies the heavy flow and sends the flow to a Reporter, otherwise to the feature of L3_SW. Val == 0 Drop Val == 1 W.global_metadata) Description: The feature of Firewall drops the packet (block); sends the packet to an IDS (alert); sends the packet to a Load Balancer (pass).
Loop	feature A Val? feature B	BNF: loop_declaration ::= feature_name => (self : feature_name ? validator_declaration) validator_declaration ::= metadata_declaration op constant metadata_declaration ::= feature_name.global_counter op ::= > >= <= < !=	Counter < 10 SR Encapsulation Command: SEGMENT_ROUTING_ENCAP => (S EGMENT_ROUTING_ENCAP : Output ? SEG_RO UTNG_ENCAP.global_counter < 10) Description: By the loop structure, operators can readily implement the feature with one time of encapsulation, and dynamically set the counter for each packet to precisely control the number of times for header encapsulation. The SR Encapsulation will execute encapsulation for 10 times, then output the packet.