Supplementary Materials for

Interface Ferromagnetism and Anomalous Hall Effect in CdO/Ferromagnetic Insulator Heterostructures

Yang Ma^{1,2†}, Yu Yun^{1,2†}, Yuehui Li^{1,3}, Wenyu Xing^{1,2}, Yunyan Yao^{1,2}, Ranran Cai^{1,2}, Yangyang Chen^{1,2}, Yuan Ji^{1,2}, Peng Gao^{1,2,3}, Xin-Cheng Xie^{1,2,4,5}, and Wei Han^{1,2*}

¹International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P. R. China

²Collaborative Innovation Center of Quantum Matter, Beijing 100871, P. R. China

³Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, P. R. China

⁴CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, P. R. China

⁵Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China

[†]These authors contributed equally to the work

^{*}Correspondence to: weihan@pku.edu.cn

Figure S1

Fig. S1. Line cuts of the RHEED images for the Fe₃O₄/CdO (15 UC)/Fe₃O₄ heterostructures. Line cuts of RHEED intensity of MgO substrate (black), Bottom Fe₃O₄ (red), CdO (green) and Top Fe₃O₄ (blue) layers, respectively. The spacing between the major RHEED intensity peaks for each layer are labeled as X_{MgO} , X_{Fe3O4} and X_{CdO} .

Table S1

	Spacing (X)	Bulk lattice constant (nm)	Film lattice constant (nm)	Strain
Top Fe ₃ O ₄	141	0.8380	0.8185	2.33% (Compressive)
CdO	128	0.4695	0.4508	3.98% (Compressive)
Bottom Fe ₃ O ₄	141	0.8380	0.8185	2.33% (Compressive)
MgO substrate	137	0.4212		

Table S1. Strain analysis of the Fe_3O_4 and CdO layers of the Fe_3O_4 /CdO (15 UC)/ Fe_3O_4 heterostructures. The estimation of the strains is obtained based on the line cuts of RHEED intensities (Fig. S1) and using the lattice constant of MgO substrate (a = 0.4212 nm) as a reference.

Fig. S2. Typical magnetization measurement of the $Fe_3O_4/CdO/Fe_3O_4$ trilayer heterostructures. The magnetization easy axis is in-plane.

Fig. S3. Temperature dependence of anomalous Hall resistivity measured on the Fe_3O_4/CdO (15 UC)/ Fe_3O_4 trilayer heterostructures.

Figure S4

Fig. S4. CdO thickness dependence of the channel resistivity (a) and carrier density (b) for the Fe_3O_4/CdO (d UC)/ Fe_3O_4 heterostructures. These results are obtained at T = 10 K.

Fig. S5. The temperature dependence of the channel resistivity versus temperature for the Fe_3O_4/CdO (15 UC)/ Fe_3O_4 trilayer heterostructures. A semiconducting behavior is observed at low temperatures.

Figure S6

Fig. S6. CdO thickness dependence of the planar MR of the Fe₃O₄/CdO/Fe₃O₄ trilayer heterostructures. (a) Schematic of Fe₃O₄/CdO (d UC)/Fe₃O₄ heterostructures. (b) Planar MR curves as a function of in-plane magnetic field measured on Fe₃O₄/CdO (6, 7, and 8 UC)/Fe₃O₄ samples. (c) MR ratio ($\Delta \rho/\rho_{B=0}$) as a function of temperature for Fe₃O₄/CdO (6, 7, and 8 UC)/Fe₃O₄ samples.

Fig. S7. AHE results of Fe₃O₄/CdO (15 UC)/Fe₃O₄ heterostructures after decreasing the Cd growth rate and post-annealing in oxygen. A slight larger anomalous Hall resistivity (blue) is observed on Fe₃O₄/CdO (15 UC)/Fe₃O₄ heterostructures compared to the previous results (black) showed in the main paper (Fig. 2(b)). The carrier density is only slightly reduced (~ 7%).