Controlli Automatici - T

Progetto Tipologia c - Traccia 1 Controllo di una sospensione attiva di un veicolo

Il progetto riguarda il controllo di una sospensione attiva di un veicolo.

Descrizione del problema

Una sospensione di un veicolo può essere schematizzata come il sistema in figura 1 composto da una massa collegata al suolo tramite una molla ed uno smorzatore. Si consideri inoltre una forza agente sulla massa come ingresso di controllo $u \in \mathbb{R}$. Si supponga che la dinamica del sistema sia descritta dalle seguenti equazioni differenziali

$$\dot{z} = v$$
 (1a)

$$m\dot{v} = -mg - bv - kz - \beta(v^3 + nv\sin^2(nv)) + u \tag{1b}$$

dove il parametro $m \in \mathbb{R}$ indica la massa del veicolo agente sulla sospensione, il parametro $b \in \mathbb{R}$ indica il coefficiente d'attrito dinamico dovuto alla presenza dello smorzatore, il parametro $k \in \mathbb{R}$ rappresenta la costante elastica lineare della molla, mentre $\beta, n \in \mathbb{R}$ rappresentano i coefficienti di non linearità della molla.

Uno schema esplicativo è riportato in Figura 1.

Figura 1: Rappresentazione della sospensione come massa-molla-smorzatore.

Si supponga di poter misurare in ogni istante l'allungamento della molla z(t) e che a causa di imperfezioni del manto stradale sia presente un disturbo d(t) sull'uscita. Infine si ipotizzi la presenza di un disturbo n(t) dovuto ad errori del sistema di misura.

Punto 1

Si riporti il sistema (1) nella forma di stato

$$\dot{x} = f(x, u) \tag{2a}$$

$$y = h(x, u). (2b)$$

In particolare, si dettagli la variabile di stato, la variabile d'ingresso, la variabile d'uscita e la forma delle funzioni f e h. A partire dal valore di equilibrio z_e (fornito in tabella), si trovi l'intera coppia di equilibrio (x_e, u_e) e si linearizzi il sistema non lineare (2) nell'equilibrio, così da ottenere un sistema linearizzato del tipo

$$\delta \dot{x} = A\delta x + B\delta u \tag{3a}$$

$$\delta y = C\delta x + D\delta u,\tag{3b}$$

con opportune matrici A, B, C e D.

Figura 2: Schema di controllo.

Punto 2

Si calcoli la funzione di trasferimento da δu a δy , ovvero la funzione G(s) tale che $\delta Y(s) = G(s)\delta U(s)$.

Punto 3

Si progetti un regolatore (fisicamente realizzabile) considerando le seguenti specifiche:

- 1) Errore a regime $|e_{\infty}| \le e^* = 0.02$ in risposta a un gradino w(t) = 1(t) e d(t) = 1(t).
- 2) Per garantire una certa robustezza del sistema si deve avere un margine di fase $M_f \geq 30^{\circ}$.
- 3) Il sistema può accettare una sovraelongazione percentuale al massimo dell'5% : $S\% \leq 5\%$.
- 4) Il tempo di assestamento all' $\epsilon\% = 5\%$ deve essere inferiore al valore fissato: $T_{a,\epsilon} = 10^{-2} s$.
- 5) Il disturbo sull'uscita d(t), con una banda limitata nel range di pulsazioni [0, 0.05], deve essere abbattutto di almeno 30 dB.
- 6) Il rumore di misura n(t), con una banda limitata nel range di pulsazioni $[8 \cdot 10^4, 8 \cdot 10^6]$, deve essere abbattutto di almeno 75 dB.

Punto 4

Testare il sistema di controllo sul sistema linearizzato con $w(t)=1(t),\ d(t)=\sum_{k=1}^4\sin(0.01kt)$ e $n(t)=\sum_{k=1}^40.2\sin(8\cdot 10^4kt).$

Punto 5

Testare il sistema di controllo sul modello non lineare (ed in presenza di d(t) ed n(t)).

Punti opzionali

- Sviluppare (in Matlab) un'interfaccia grafica di animazione in cui si mostri la dinamica della sospensione.
- Supponendo un riferimento $w(t) \equiv 0$, esplorare il range di condizioni iniziali dello stato del sistema non lineare (nell'intorno del punto di equilibrio) tali per cui l'uscita del sistema in anello chiuso converga a $h(x_e, u_e)$.
- Esplorare il range di ampiezza di riferimenti a gradino tali per cui il controllore rimane efficace sul sistema non lineare.

m	2500
β	0.1
k	$5 \cdot 10^5$
b	350
n	3
z_e	0.35

 ${\bf Tabella\ 1:\ Parametri\ progetto.}$