1.7	Principe de l'algorithme du Depth-First Branch and Bound Les	
	solutions d'un CFN sont représentées sous forme d'un arbre dans lequel	
	le sommet S_0 représente l'ensemble des solutions et les fils S_1 et S_4 une	
	partition de S_0 , avec pour chacun une première variable v_1 fixée. Le DFBB,	
	descend jusqu'au sommet S_2 qu'il peut évaluer : un minorant de S_2 est	
	25. 25 devient le nouveau majorant du GMEC. L'algorithme remonte et	
	redescend vers S_3 . Ici le coût constant plus le coût des affectations de v_1 et	
	v_2 est supérieur au majorant : On peut élaguer l'arbre au sommet $S_3.$	18
1.8	Exemple de transformations EPT sur un CFN composé de 2 va-	
	riables v_i et v_j ayant deux valeurs possibles. La transformation de A	
	vers B est une projection de v_j vers le coût constant C_0 . Puis une projection	
	des fonctions binaires mène en C . La seconde valeur de v_j est distribuée sur	
	les arcs en D . Cela permet deux nouvelles projections qui mènent à E puis	
	à $F.\ A$ et F sont en cohérence locale	19
1.9	L'algorithme génétique	21
2.1	Cycle thermodynamique qui définit la stabilité relative de deux séquences-	
	conformations S_A et S_B	28
2.2	Une représentation de la surface accessible de trois résidus. Les	
	résidus A et B réduisent mutuellement leur surface exposée au solvant :	
	c'est la zone verte. De même pour B, C : la zone rouge et A, C, la zone	
	bleue. Un calcul par paires de résidus naïf surestime la surface accessible en	
	comptant deux fois la zone noire	30
2.3	La matrice d'énergie. Cet exemple montre un polypeptide de 6 résidus, chaque position possède 2 types d'acides aminés possibles et 3 rotamères	
	possibles (2 pour le type A et 1 pour le type B). La matrice organise toutes	
	les interactions de paires de chaînes latérales possibles. Les interactions de la	
	bande jaune de la matrice impliquent le résidu numéro 3, celles de la bande	
	bleue impliquent le résidu numéro 4. Les points rouge et vert correspondent	
	aux interactions notées respectivement par les flèches rouge et verte à gauche.	32
2.4	Les fichiers d'énergies en mode CASA	35
2.5	Les fichiers d'énergies en mode GB/FDB	36
2.6	Cycle thermodynamique qui définit l'affinité	38
2.7	Les fichiers en sortie de proteus en haut pour le mode MONTECARLO,	
	en bas pour le mode POSTPROCESS	39
2.8	Les principales structures « physiques » dans proteus $\dots \dots \dots \dots$	44
2.9	Les principales structures « logiques » dans proteus	45
2.10	Les principales structures « dynamiques » dans proteus	46