Linear Equations

Stephen Boyd

EE103 Stanford University

October 12, 2017

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Linear functions 2

Superposition

- $f: \mathbf{R}^n \to \mathbf{R}^m$ means f is a function that maps n-vectors to m-vectors
- we write $f(x) = (f_1(x), \dots, f_m(x))$ to emphasize components of f(x)
- we write $f(x) = f(x_1, \dots, x_n)$ to emphasize components of x
- f satisfies superposition if for all x, y, α , β

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

(this innocent looking equation says a lot ...)

ightharpoonup such an f is called *linear*

Matrix-vector product function

- with A an $m \times n$ matrix, define f as f(x) = Ax
- ▶ *f* is linear:

$$f(\alpha x + \beta y) = A(\alpha x + \beta y)$$

$$= A(\alpha x) + A(\beta y)$$

$$= \alpha(Ax) + \beta(Ay)$$

$$= \alpha f(x) + \beta f(y)$$

- ▶ converse is true: if $f: \mathbf{R}^n \to \mathbf{R}^m$ is linear, then f(x) = Ax for some $m \times n$ matrix A
- ▶ in fact, $f(x) = x_1 f(e_1) + x_2 f(e_2) + \dots + x_n f(e_n)$ so

$$A = \left[f(e_1) \quad f(e_2) \quad \cdots \quad f(e_n) \right]$$

Examples

▶ reversal: $f(x) = (x_n, x_{n-1}, ..., x_1)$

$$A = \left[\begin{array}{cccc} 0 & \cdots & 0 & 1 \\ 0 & \cdots & 1 & 0 \\ \vdots & & \vdots & \vdots \\ 1 & \cdots & 0 & 0 \end{array} \right]$$

running sum:

$$f(x) = (x_1, x_1 + x_2, x_1 + x_2 + x_3, \dots, x_1 + x_2 + \dots + x_n)$$

$$A = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & \cdots & 1 & 0 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

Affine functions

- ▶ function $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine it is a linear function plus a constant, i.e., f(x) = Ax + b
- same as:

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

holds for all x, y, and α , β with $\alpha + \beta = 1$

ightharpoonup can recover A and b from f using

$$A = [f(e_1) - f(0) \quad f(e_2) - f(0) \quad \cdots \quad f(e_n) - f(0)]$$

$$b = f(0)$$

affine functions sometimes (incorrectly) called linear

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Linear and affine functions models

- ▶ in many applications, relations between n-vectors and m vectors are approximated as linear or affine
- sometimes the approximation is excellent, and holds over large ranges of the variables (e.g., electromagnetics)
- sometimes the approximation is reasonably good over smaller ranges (e.g., aircraft dynamics)
- ▶ in other cases it is quite approximate, but still useful (e.g., econometric models)

Price elasticity of demand

- n goods or services
- lacktriangle prices given by n-vector p, demand given as n-vector d
- $m \delta_i^{
 m price} = (p_i^{
 m new} p_i)/p_i$ is fractional changes in prices
- $m{\delta}_i^{
 m dem} = (d_i^{
 m new} d_i)/d_i$ is fractional change in demands
- price-demand elasticity model: $\delta^{\text{dem}} = E \delta^{\text{price}}$
- what do the following mean?

$$-E_{11} = -0.3$$

$$-E_{12} = +0.1$$

$$-E_{23} = -0.05$$

Taylor series approximation

- ▶ suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable
- first order Taylor approximation \hat{f} of f near z:

$$\hat{f}_i(x) = f_i(z) + \frac{\partial f_i}{\partial x_1}(z)(x_1 - z_1) + \dots + \frac{\partial f_i}{\partial x_n}(z)(x_n - z_n)$$
$$= f_i(z) + \nabla f_i(z)^T (x - z)$$

- for x near z, $\hat{f}(x)$ is a very good approximation of f(x)
- ▶ in compact notation: $\hat{f}(x) = f(z) + Df(z)(x-z)$
- ▶ Df(x) is the $m \times n$ derivative or Jacobian matrix of f at z

$$Df(z)_{ij} = \frac{\partial f_i}{\partial x_j}(z), \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Regression model

- regression model: $\hat{y} = x^T \beta + v$
 - x is n-vector of features or regressors
 - $-\beta$ is n-vector of model parameters; v is offset parameter
 - (scalar) \hat{y} is our prediction of y
- ▶ now suppose we have N examples or samples $x^{(1)}, \dots, x^{(N)}$, and associated responses $y^{(1)}, \dots, y^{(N)}$
- associated predictions are $\hat{y}^{(i)} = (x^{(i)})^T \beta + v$
- write as $\hat{y}^{\mathrm{d}} = X^T \beta + v \mathbf{1}$
 - X is feature matrix with columns $x^{(1)}, \ldots, x^{(N)}$
 - y^{d} is N-vector of responses $(y^{(1)},\ldots,y^{(N)})$
 - \hat{y}^{d} is N-vector of predictions $(\hat{y}^{(1)},\ldots,\hat{y}^{(N)})$
- ightharpoonup prediction error (vector) is $y^{\mathrm{d}} \hat{y}^{\mathrm{d}} = y^{\mathrm{d}} X^T \beta v \mathbf{1}$

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Linear equations 12

Systems of linear equations

▶ set (or *system*) of m linear equations in n variables x_1, \ldots, x_n :

$$A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$$

$$\vdots$$

$$A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$$

- ▶ *n*-vector *x* is called the variable or unknowns
- $ightharpoonup A_{ij}$ are the *coefficients*; A is the coefficient matrix
- b is called the right-hand side
- lacktriangle can express very compactly as Ax=b

Systems of linear equations

- systems of linear equations classified as
 - under-determined if m < n (A wide)
 - square if m = n (A square)
 - over-determined if m > n (A tall)
- ightharpoonup x is called a *solution* if Ax = b
- ightharpoonup depending on A and b, there can be
 - no solution
 - one solution
 - many solutions
- we'll see how to solve linear equations later

Linear equations 14

Outline

Linear functions

Linear function models

Linear equations

Balancing chemical equations

Chemical equations

- \triangleright a chemical reaction involves p reactants, q products (molecules)
- expressed as

$$a_1R_1 + \dots + a_pR_p \longrightarrow b_1P_1 + \dots + b_qP_q$$

- reactants R_1, \ldots, R_p , products P_1, \ldots, P_q
- coefficients $a_1, \ldots, a_p, b_1, \ldots, b_q > 0$
- coefficients usually integers, but can be scaled
 - e.g., multiplying all coefficients by 1/2 doesn't change the reaction

Example

electrolysis of water:

$$2H_2O\longrightarrow 2H_2+O_2$$

- ▶ one reactant: water (H₂O)
- ▶ two products: hydrogen (H_2) and oxygen (O_2)
- ▶ reaction consumes 2 water molecules and produces 2 hydrogen molecules and 1 oxygen molecule

Balancing equations

- each molecule (reactant/product) contains specific numbers of (types of) atoms, given in its formula
 - e.g., H₂O contains two H and one O
- conservation of mass: total number of each type of atom in a chemical equation must balance
- for each atom, total number on LHS must equal total on RHS
- e.g., electrolysis reaction is balanced:
 - 4 units of H on LHS and RHS
 - 2 units of O on LHS and RHS
- finding (nonzero) coefficients to achieve balance is called balancing equations

Reactant and product matrices

- lacktriangle consider reaction with m types of atoms, p reactants, q products
- ightharpoonup m imes p reactant matrix R is defined by

$$R_{ij} = \text{number of atoms of type } i \text{ in reactant } R_j,$$

$$i = 1, \ldots, m, \quad j = 1, \ldots, p$$

• with $a=(a_1,\ldots,a_p)$ (vector of reactant coefficients)

Ra =(vector of) total numbers of atoms of each type in reactants

- define product $m \times q$ matrix P in similar way
- lacktriangledown m-vector Pb is total numbers of atoms of each type in products
- ightharpoonup conservation of mass is Ra = Pb

Balancing equations via linear equations

- ▶ conservation of mass is $\begin{bmatrix} R & -P \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = 0$
- ightharpoonup simple solution is a=b=0
- ▶ to find a nonzero solution, set any coefficient (say, a_1) to be 1
- lacktriangleright balancing chemical equations can be expressed as solving a set of m+1 linear equations in p+q variables

$$\left[\begin{array}{cc} R & -P \\ e_1^T & 0 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = e_{m+1}$$

(we ignore here that a_i and b_i should be nonnegative integers)

Conservation of charge

- ▶ can extend to include charge, e.g., $Cr_2O_7^{2-}$ has charge -2
- conservation of charge: total charge on each side of reaction must balance
- we can simply treat charge as another type of atom to balance

Example

reaction to balance

$$a_1 \text{Cr}_2 \text{O}_7^{2-} + a_2 \text{Fe}^{2+} + a_3 \text{H}^+ \longrightarrow b_1 \text{Cr}^{3+} + b_2 \text{Fe}^{3+} + b_3 \text{H}_2 \text{O}$$

- ▶ 5 atoms/charge: as Cr, O, Fe, H, charge
- reactant and product matrix:

$$R = \begin{bmatrix} 2 & 0 & 0 \\ 7 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 2 & 1 \end{bmatrix}, \qquad P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \\ 3 & 3 & 0 \end{bmatrix}$$

Balancing equations example

▶ balancing: system of equations (including $a_1 = 1$ constraint)

$$\begin{bmatrix} 2 & 0 & 0 & -1 & 0 & 0 \\ 7 & 0 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -2 \\ -2 & 2 & 1 & -3 & -3 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Balancing equations example

solving the system yields

$$\begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 6 \\ 14 \\ 2 \\ 6 \\ 7 \end{bmatrix}$$

the balanced equation is

$${\rm Cr_2O_7^{2-} + 6Fe^{2+} + 14H^+ \longrightarrow 2Cr^{3+} + 6Fe^{3+} + 7H_2O}$$