AGC

fred harris UCSD

Automatic Gain Control (1)

$$y(n) = A(n)x(n)$$

$$A(n+1) = A(n) + \alpha [R - y(n)]$$

$$A(n+1) = A(n) + \alpha [R - A(n)x(n)]$$

$$A(n+1) = A(n)[1 - \alpha x(n)] + \alpha R$$
Suppose $x(n) = c u(n)$, $c = constant$ then
$$A(n+1) = A(n)[1 - \alpha c] + \alpha R$$

note that α c < 2.0.

Steady state of this system is 1/c so that the steady state gain $A(\infty)$ is R/c and the steady state output $y(\infty)$ is c R/c or R. The steady state output level equals the desired reference level R.

The time constant is $1/\alpha$ c samples. If c is small, long transient. If c is large, short transient

Automatic Gain Control (2)

$$y(n) = A(n)x(n)$$

$$Log[A(n+1)] = Log[A(n)] +$$

$$\alpha \{ [Log[R] - Log[y(n)] \}$$

$$Log[A(n+1)] = Log[A(n)] +$$

$$\alpha \{ Log[R] - Log[A(n)x(n)] \}$$

$$Log[A(n+1)] = Log[A(n)][1-\alpha] - \alpha Log[x(n)/R]$$
Suppose x(n) = c u(n), c = constant then
$$Log[A(n+1)] = Log[A(n)][1-\alpha] - \alpha Log[c/R]$$

note that $\alpha < 2.0$.

Steady state of this system is 1/c so that the steady state gain $A(\infty)$ is R/c and the steady state output $y(\infty)$ is c R/c or R.

The steady state output level equals the desired reference level R. The time constant is $1/\alpha$ samples, and is independent of input amplitude.

Linear Loop AGC Responses

Linear Loop AGC Responses: with Filter Delays

Log Loop AGC Responses

Log Loop AGC Responses: with Filter Delays

Linear Loop AGC Output and Control Levels

Time Index

Log Loop AGC Output and Control Levels

