곱하기반모듈에서 유한생성특성과 씨스펙트르의 콤팍트성사이의 관계

호진남, 한성철

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《과학연구부문에서는 나라의 경제발전과 인민생활향상에서 전망적으로 풀어야 할 문 제들과 현실에서 제기되는 과학기술적문제들을 풀고 첨단을 돌파하여 지식경제건설의 지 름길을 열어놓아야 합니다.》

반환은 환과 분배속을 둘 다 일반화한 대수계이며 분배법칙에 의하여 련결되는 더하기와 급하기라는 두 2원산법을 가지고있다. 그러나 환이 아닌 반환에서는 덜기산법이 허용되지 않으므로 환론의 많은 수법들이 반환에로 그대로 적용되지는 않는다.

단위원소를 가진 가환환의 씨스펙트르가 가환대수와 대수적기하, 속론에서 중요한역할을 한다는것은 잘 알려져있다. 선행연구[6]에서는 단위원소를 가진 환우의 위상모듈이 유한생성되면 그 위상모듈의 씨스펙트르가 쿔팍트공간으로 된다는것이 증명되였다.이 결과를 일반화하여 선행연구[1]에서는 령원소와 단위원소를 가진 반환우의 위상반모듈이 유한생성되면 그 위상반모듈의 씨스펙트르가 콤팍트공간으로 된다는것이 증명되였다. 한편 선행연구[3]에서는 단위원소를 가진 가환환우의 곱하기모듈이 유한생성되기 위해서는 그 곱하기모듈의 씨스펙트르가 콤팍트공간일것이 필요하고 충분하다는것이 증명되였다. 그러나 령원소와 단위원소를 가진 가환반환우의 곱하기반모듈에 대하여 그 곱하기반모듈의 유한생성특성과 씨스펙트르의 콤팍트성이 동등한가를 밝힌 선행연구자료는 없다. 사실상 우에서 서술된 결과의 증명[3]에서는 단위원소를 가진 가환환우의 곱하기모듈의 매 참부분모듈에 대하여 그것을 포함하는 극대부분모듈이 존재한다는 정리[5]를 리용하고있지만 곱하기반모듈에 대해서는 류사한 증명수법을 적용할수 없다.

론문에서는 반환우의 곱하기반모듈에 대하여 그것의 유한생성특성과 씨스펙트르의 콤팍트성사이의 관계를 밝히려고 한다.

우선 령원소와 단위원소를 가진 반환우의 위상반모듈에 대하여 그 반모듈의 유한생성특성과 그 반모듈의 씨스펙트르의 콤팍트성사이의 관계를 밝히며 다음으로 령원소와 단위원소를 가진 가환반환우의 곱하기반모듈에 대하여 매 참부분반모듈을 포함하는 씨부분반모듈이 존재한다는것을 증명하고 그 결과를 리용하여 곱하기반모듈의 유한생성특성이 그 곱하기반모듈의 씨스펙트르의 콤팍트성과 동등하다는것을 밝힌다.

론문에서 R는 령원소와 령이 아닌 단위원소를 가진 반환이고 M은 령이 아닌 우니라르 R - 반모듈이며 Λ 는 비지 않은 첨수모임으로 약속한다.

N 이 R — 반모듈 M 의 비지 않은 부분모임이라고 하자. 이때 모든 $x, y \in N$, $r \in R$) 에 대하여 $x + y \in N$, $r \in N$ 이 성립하면 $N \in M$ 의 부분반모듈이라고 부른다.

또한 R-반모듈 M의 부분반모듈 N에 대하여

 $(N:M):=\{r\in R\mid rM\subseteq N\}$

으로 놓자. 그러면 (N:M)은 R의 이데알로 된다. 이 이데알을 N의 동반이데알이라고

부른다.

또한 R- 반모듈 M 에서 $N \neq M$ 인 부분반모듈 N 을 M 의 참부분반모듈이라고 부른다. 또한 P 가 R- 반모듈 M 의 참부분반모듈이라고 하자. 이때 만일 $P \subseteq N \subseteq M$ 인 M 의 임의의 부분반모듈 N 에 대하여 N=P 또는 N=M 이 성립하면 P 를 M 의 극대부분반모듈이라고 부른다.

또한 P가 R-반모듈 M의 참부분반모듈이라고 하자. 이때 만일 $rRm \subseteq P$ 인 임의의 $r(\in R)$, $m(\in M)$ 에 대하여 $m \in P$ 또는 $r \in (P:M)$ 이 성립하면 $P \equiv M$ 의 씨부분반모듈이라고 부른다. 그리고 M의 씨부분반모듈들전부의 모임을 Spec(M)으로 표시한다.

또한 M의 부분반모듈 N에 대하여 N을 포함하는 M의 씨부분반모듈들전부의 사 검을 N의 근기라고 부르고 \sqrt{N} 으로 표시한다. 그리고 N을 포함하는 M의 씨부분반모 듈이 없는 경우에 $\sqrt{N}:=M$ 으로 놓는다.

우선 M이 위상반모듈인 경우를 고찰하자.

 $\operatorname{Spec}(M)=\varnothing$ 인 경우는 고찰할 필요가 없으므로 $\operatorname{Spec}(M)\neq\varnothing$ 이라고 하자. 그리고 M의 비지 않은 부분모임 S에 대하여

$$V(S) := \{ P \in \operatorname{Spec}(M) \mid S \subseteq P \}$$

로 놓자. 이때 M의 임의의 부분반모듈 N과 L에 대하여 M의 어떤 부분반모듈 T가 있어서 다음의 조건이 성립하면 M을 위상반모듈이라고 부른다.

$$V(N) \cup V(L) = V(T)$$

위상반모듈 M 에 대하여 $\operatorname{Spec}(M)$ 의 부분모임족 $\{V(S) | \emptyset \neq S \subseteq M\}$ 은 닫긴모임에 관한 위상공리들을 만족시킨다. 그러므로 $\operatorname{Spec}(M)$ 우에 위상이 도입된다. 이 위상을 $\operatorname{Spec}(M)$ 우의 자리스끼위상이라고 부른다. 그리고 이때 $\operatorname{Spec}(M)$ 을 M 의 씨스펙트르라고 부른다. 또한 $\operatorname{Spec}(M)$ 의 열린모임 $\operatorname{Spec}(M) \setminus V(S)$ 를 D(S)로 표시한다.

매 원소 $m(\in M)$ 에 대하여

$$V(m) := V(\langle m \rangle), D(m) := D(\langle m \rangle)$$

으로 놓자. 이때 D(m)을 Spec(M)의 기초열린모임이라고 부른다.

보조정리 1[1] M 이 위상 R — 반모듈이면 기초열린모임족 $\{D(m)|\ m\in M\}$ 은 $\mathrm{Spec}(M)$ 우의 자리스끼위상에 관한 토대로 된다.

보조정리 2[1] M이 유한생성R – 반모듈이고 N이 M의 참부분반모듈이면 N을 포함하는 M의 극대부분반모듈이 존재한다.

보조정리 3[1] R - 반모듈 M의 매 극대부분반모듈은 씨부분반모듈이다.

보조정리 4[1] M이 유한생성위상 R – 반모듈이면 Spec(M)은 콤팍트공간이다.

정리 1 M이 위상R-반모듈이면 다음의 조건들은 서로 동등하다.

- ① *M* 은 유한생성된다.
- ② $\operatorname{Spec}(M)$ 이 콤팍트공간이고 N 이 M 의 참부분반모듈이면 N 을 포함하는 M 의 극대부분반모듈이 존재한다.
- ③ $\operatorname{Spec}(M)$ 이 콤팍트공간이고 N 이 M 의 참부분반모듈이면 N 을 포함하는 M 의 씨부분반모듈이 존재한다.

증명 ①⇒②는 보조정리 2와 보조정리 4로부터 나온다.

- ②⇒③은 보조정리 3으로부터 나온다.
- ③⇒①을 증명하자.

보조정리 1에 의하여 M의 비지 않은 부분모임 $\{f_i \in M \mid i \in \Lambda\}$ 가 있어서

$$\operatorname{Spec}(M) = \bigcup_{i \in \Lambda} D(f_i)$$

가 성립한다. 그런데 조건에 의하여 $\operatorname{Spec}(M)$ 이 콤팍트공간이므로 Λ 의 비지 않은 유한 부분모임 Γ가 있어서

$$\operatorname{Spec}(M) = \bigcup_{i \in \Gamma} D(f_i)$$

가 성립한다. 그리므로

$$\emptyset = \bigcap_{i \in \Gamma} V(f_i) = V\left(\sum_{i \in \Gamma} \langle f_i \rangle\right)$$

가 성립한다. 이때 만일 $\sum_{i \in \Gamma} \langle f_i \rangle
eq M$ 이라고 하면 $\sum_{i \in \Gamma} \langle f_i \rangle$ 를 포함하는 M 의 씨부분반모듈

이 존재하므로 $V\left(\sum_{i\in\Gamma}\langle f_i\rangle\right)$ \neq \varnothing 으로 되여 모순이 생긴다. 따라서 $\sum_{i\in\Gamma}\langle f_i\rangle=M$ 이 성립한 다.(증명끝)

다음으로 M 이 곱하기반모듈인 경우를 고찰하자.

R- 반모듈 M의 매 부분반모듈 N에 대하여 R의 어떤 이데알 I가 있어서 N=IM이 성립한다고 하자, 이때 *M*을 곱하기반모듈이라고 부른다.

M이 곱하기반모듈일 때 N=(N:M)M이 성립한다.

보조정리 5[2] 만일 R가 가환반환이고 N이 곱하기 R – 반모듈 M의 부분반모듈이 면 $\sqrt{N} = \sqrt{(N:M)}M$ 이다.

정리 2 R는 가환반환이고 M은 곱하기 R- 반모듈이라고 하자. 그리고 N이 M의 참부분반모듈이라고 하자. 그러면 N을 포함하는 M의 씨부분반모듈이 존재한다. 따라서 $Spec(M) \neq \emptyset$ 이다.

증명 N을 포함하는 M의 씨부분반모듈이 존재하지 않는다고 하자. 그리면 $\sqrt{N}=M$ 이 성립한다. 따라서 A:=(N:M) 으로 놓으면 보조정리 5에 의하여 $\sqrt{N}=\sqrt{AM}$ 이 성립 한다. 그러므로 $M=\sqrt{A}M$ 이다. 따라서 만일 $m\in M$ 이면 R의 어떤 이데알 I가 있어서 $\langle m \rangle = IM$ 이 므로

$$\langle m \rangle = I(\sqrt{A}M) = (I\sqrt{A})M = (\sqrt{A}I)M = \sqrt{A}(IM) = \sqrt{A}\langle m \rangle$$

이 성립한다. 그러므로 m=rm인 $r(\in \sqrt{A})$ 가 존재한다. 그런데 어떤 정의 옹근수 k가 있 어서 $r^k \in A$ 이므로

$$m = rm = r^2m = \cdots = r^k m \in AM = N$$

이 성립한다는것이 나온다. 이로부터 M=N이다. 이것은 모순이다.(증명끝)

보조정리 6[2] R가 가환반환이면 급하기 R-반모듈 M은 위상반모듈이다.

정리 3 R가 가환반환일 때 곱하기 R- 반모듈 M이 유한생성되기 위해서는 Spec(M)이 콤팍트공간일것이 필요하고 충분하다.

증명 보조정리 6과 정리 1. 정리 2로부터 곧 나온다.(증명끝)

다음의 실례는 정리 2와 정리 3의 명제들이 곱하기 R-반모듈이 아닌 일반적인 위상

R-반모듈에 대하여서는 성립하지 않는다는것을 보여준다.

실례 \mathbf{Z} 는 옹근수환이고 \mathbf{Q} 는 유리수체라고 하자. 그러면 \mathbf{Q} 는 \mathbf{Z} - 모듈이고 $\mathrm{Spec}(\mathbf{Q}) = \{(0)\}$ 이며 따라서 \mathbf{Q} 는 위상 \mathbf{Z} - 모듈이고 $\mathrm{Spec}(\mathbf{Q})$ 는 콤팍트공간이다.[4] 그러나 \mathbf{Q} 는 곱하기 \mathbf{Z} - 모듈도 유한생성 \mathbf{Z} - 모듈도 아니다.

주의 정리 3은 선행연구[3]에서의 명제 3.9의 일반화이다.

참 고 문 헌

- [1] 김일성종합대학학보 수학, 65, 2, 7, 주체108(2019).
- [2] 배원석, 한성철; 조선민주주의인민공화국 과학원통보, 4, 8, 주체108(2019).
- [3] R. Ameri; Houston J. Math., 36, 2, 337, 2010.
- [4] H. Ansari-Toroghy, R. Ovlyaee-Sarmazdeh; Comm. Algebra, 38, 4461, 2010.
- [5] Z. A. El-Bast, P. F. Smith; Comm. Algebra, 16, 4, 755, 1988.
- [6] G. Zhang, W. Tong; J. Nanjing Univ. Math., 17, 1, 15, 2000.

주체109(2020)년 6월 5일 원고접수

Relations between Finite Generatedness of Multiplication Semimodules and Compactness of Prime Spectra

Ho Jin Nam, Han Song Chol

In this paper, we characterize a finitely generated top semimodule over a semiring in terms of compactness of its prime spectrum and prove that a multiplication semimodule over a commutative semiring is finitely generated if and only if its prime spectrum is compact.

Keywords: top semimodule, multiplication semimodule, prime spectrum