Computer Vision and Machine Learning

(Image smoothing / sharpening)

Bhabatosh Chanda

Outline

- Introduction
 - Signal and noise characteristics
- Noise cleaning or smoothing
 - Mean and Order statistics filters
 - Different kernels
- Sharpening
 - Laplacian
 - Smoothing method

2/27/2024

Types of processing

- Spatial domain processing
 - Directly operates on the pixel values in the spatial domain.
 - Point process
 - Neighbourhood process
 - Most common is convolution operation.
- · Frequency domain processing
 - First transforms the image data to frequency domain using an orthogonal transform.
 - Appropriate filtering is applied on transformed data.
 - Inverse transform is applied on filtered data to get back into spatial domain.

2/27/2024

Effect of noise and smoothing

along with the "correct" edges, contains too many false edges.

2/27/2024 4

Effect of noise and smoothing

Many false edges are smoothed, unfortunately so are true edges.

2/27/2024

5

Smoothing

Assumptions

- (i) regarding noise
 Signal independent and additive
 Zero-mean and symmetrically distributed
- (ii) regarding intensity

 May be modeled by smooth surface (e.g. plane)

24

2/27/2024

Noisy image: Example

• Let us consider a 5x5 block of a noise-free image

6	7	7	7	8
6	7	7	7	8
6	7	7	7	8
6	7	7	7	8
6	7	7	7	8

Original image

2/27/2024

7/129

Noisy image: Example

- Let us consider a 5x5 block of a noise-free image
- A zero mean symmetrically distributed random noise is added to it.

2/27/2024

8/129

6/129

Noisy image: Example

- Let us consider a 5x5 block of a noise-free image.
- A zero mean symmetrically distributed random noise is added to it
- Average of pixel values of the original image and that of the noisy image is same!

2/27/2024

9/129

11

Degradation model

• Noise is signal independent and additive

$$g(r,c) = f(r,c) + \eta(r,c)$$

- For n no. of noisy version of same image $g_i(r,c) = f(r,c) + \eta_i(r,c)$ for i = 1,2,3,...,n
- Let us take pixel-wise average over n image

$$\bar{g}(r,c) = \frac{1}{n} \sum_{i=1}^{n} g_i(r,c) = \frac{1}{n} \sum_{i=1}^{n} f(r,c) + \frac{1}{n} \sum_{i=1}^{n} \eta_i(r,c)$$
$$= f(r,c)$$

2/27/2024

Workshop on Image Processing and Synthesis . . .

Multiple noisy image

2/27/2024 Workshop on Image Processing and Synthesis

Neighborhood process: Smoothing

- Noise causes abrupt change in graylevel.
- Noisy pixel is either much brighter or much darker than its neighbouring pixels.
- A pixel and its neighbourhood is considered to compute the value (colour) of the corresponding pixel in the output image.

$$f(x,y) = T_{(u,v) \in N(x,v)}[g(u,v)]$$

2/27/2024

12

Mean square estimation

- Image graylevel over a patch is approximated by a plane $f(x,y) = A(x-x_0) + B(y-y_0) + C$ given $f(x_0,y_0) = C$
- Noisy graylevel may be modeled as

$$g(x,y) = f(x,y) + \eta(x,y) = A(x - x_0) + B(y - y_0) + C + \eta(x,y)$$

• Least square error is then defined as

$$e = \sum_{(x,y) \in W} [g(x,y) - A(x - x_0) - B(y - y_0) - C]^2 - \sum_{(x,y) \in W} [\eta(x,y)]^2$$

• Estimated noise free graylevel is

$$\bar{g}(x_0, y_0) = C = \frac{1}{|W|} \sum_{(x,y) \in W} g(x,y)$$

2/27/2024

13

Noisy image: Example

• Let us consider a 5x5 block of a noise-free image

6	7	7	7	8
6	7	7	7	8
6	7	7	7	8
6	7	7	7	8
6	7	7	7	8

Original image

2/27/2024

14/129

Noisy image: Example

- Let us consider a 5x5 block of a noise-free image
- A zero mean symmetrically distributed random noise is added to it.

Original Inte

2/27/2024

15/129

Noisy image: Example

- Let us consider a 5x5 block of a noise-free image.
- A zero mean symmetrically distributed random noise is added to it.
- Average of pixel values of the original image and that of the noisy image is same!

2/27/2024

16/129

Noisy image: Example

- Because of linear variation in graylevel in the original image, centre pixel has the average of the pixel values.
- Hence, if we replace the graylevel of the centre pixel of the noisy image by the average value of the block, we get back original value at that position.

2/27/2024

Median filter: Max-min-max filter: Advantage: Preserves edge information. High computational cost.

Mean vs. median

- Mean is linear filter, while median is non-linear.
- Mean is affected by the outliers, but median is not.
- Mean is computationally less costly than median.
- Median can preserve edge much better than mean filter.
- Weighted averaging (with suitable set of weights) may lead to edge preserving smoothing by
 - sufficient intra-region smoothing
 - Insignificant inter-region smoothing

2/27/2024

Linear neighborhood operation

Convolution: $g_{smooth}(r,c) = g_{noisy}(r,c) * h_{mask}(r,c)$

Mask: $h_{mask}(r,c)$ may be one such shown as follows.

Non-linear neighborhood operation: Uses order statistic

Window: symmetric neighborhood (domain of the masks).

2/27/2024 21/129

Gaussian smoothing

- Based on convolving a Gaussian kernel of size NxN with each and every pixel.
- A pixel's brightness value is determined by its own value as well as the values of its neighbor pixels.
- an appropriate definition of the transformation would be:

$$f_{t+1}(x,y) = f_t * G(x,y)$$

where
$$G(x,y) = \frac{1}{2\pi\sigma^2} * e^{-\frac{x^2+y^2}{2\sigma^2}}$$
 and $f_0(x,y) = f(x,y)$

2/27/2024

Gaussian Kernel

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2+y^2}{2\sigma^2}}$$

 5×5 , $\sigma = 1$

- Constant factor at front makes volume sum to 1 (can be ignored, as we should re-normalize weights to sum to 1 in any case)
- Replicates isotropic diffusion.

2/27/2024

Source: C. Rasmussen

Mean vs. Gaussian filtering

2/27/2024

24

Edge preserving smoothing

- · An edge divides two regions.
- A window covering single region may be characterized low variance of gray values.
- A window containing pixels from several region should have high variance.
- Neighborhood of a candidate pixel may be partitioned into various windows.

2/27/2024

25

Image sharpening

- · Also known as edge crispening
- Unblurs the edges and does not affect the interior
- Uses derivatives in spatial domain to highlight the change in graylevel at edges.
- High pass filter sharpens the edges giving emphasis to high frequency components.

2/27/2024 26

Operators

- 1D second derivative (continuous domain) $\frac{d^2f}{dx^2}$
- 2D second derivative (continuous domain) $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$
- 1D second difference (discrete domain)

• 2D second difference (discrete domain)

Also called Laplacean operator.

0	1	0	
1	-4	1	
0	1	0	

2/27/2024

Sharpening: 2D example

2/27/2024 30/129

Sharpening: another approach

- Unlike smoothing, sharpening highlights the high frequency.
- Sharpening enhances edges (noise too!)
- Basic operator originates from smoothing itself.
- In frequency domain, sharpening can be achieved by high-pass filtering.

2/27/2024

Sharpening

What does blurring take away?

Let's add it back:

- α

