Input:

C: regularization parameter tol: numerical tolerance max_passes : max # of times to iterate over α 's without changing $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$: training data

Output:

 $\alpha \in \mathbb{R}^m$: Lagrange multipliers for solution

 $b \in \mathbb{R}$: threshold for solution

- ∘ Initialize $\alpha_i = 0, \forall i, b = 0.$ ∘ Initialize passes = 0.
- $f(x) = \langle \omega, x \rangle + b$ $\omega = \sum_{i=1}^{m} \alpha_i y^{(i)} x^{(i)}$

 \circ for $i=1,\ldots m,$

- \circ Calculate $E_i = f(x^{(i)}) y^{(i)}$ using (2).
- \circ if $((y^{(i)}E_i < -tol && \alpha_i < C) || (y^{(i)}E_i > tol && \alpha_i > 0))$
 - \circ Select $j \neq i$ randomly.
 - \circ Calculate $E_j = f(x^{(j)}) y^{(j)}$ using (2).
 - Save old α 's: $\alpha_i^{\text{(old)}} = \alpha_i$, $\alpha_j^{\text{(old)}} = \alpha_j$.
 - \circ Compute L and H by (10) or (11).
 - \circ if (L == H)

continue to next i.

 \circ Compute and clip new value for α_i

$$\alpha_j := \begin{cases} H & \text{if } \alpha_j > H \\ \alpha_j & \text{if } L \le \alpha_j \le H \\ L & \text{if } \alpha_j < L. \end{cases}$$