Objechies

· Priagonalizing a matrix \$ -1 AS= 1. · Powers of A | equation ux+1=Aux,

*Suppose n indep. eigenvectors of A. Put trem in columns of S

$$AS = A \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \ddots & \mathbf{x}_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \mathbf{x}_1 & \lambda_2 \mathbf{x}_2 & \cdots & \lambda_n \mathbf{x}_n \end{bmatrix}$$

$$= S \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix} = S\Lambda.$$

=D 1: is a diagonal matrix whose non-zero entrés are tre eigenvalues of A.

December & are independent, \$ -1
exists and we can multiply
both sides of AS=SN by 5-1

$$S^{-1}AS = \Lambda$$

$$II$$

$$A = S\Lambda S^{-1}$$

Powers of A

If. Ax = 1x $A^2x = 1Ax = 1^2x$

D: Eigenralues of A² are the same of the eigen values of A.

D EigenVectors of A² are me same as the eigenvectors of A.

Now, if we write:

A=SNS^1 tren

A2=SNS-1SNS-1=SN2S-1

GENERAL II AL=SNLS-1

Theorem:

If A has n independent organizations with erapmatics is

then Ak-DO as k-DO fand only if all Jil < 1.

Repeated eigenvalues

A is sure to have n independent eigenvectors

Cand be diagonalizable)

if all the j's are different

Cho repealed j's)

If repeated eigenvalues //
may or may not have n independent
eigenvectors

[2] eigenvelles are
$$282$$
[2] let $(A-JJ)^2 \int_{0}^{2-J} 1$

=Degenrectors

$$A-2I= \left\{ \begin{array}{ccc} 0 & 1 \\ 0 & 0 \end{array} \right\}$$

$$x = \begin{cases} 1 \\ 0 \end{cases}$$
 only (1)

independent Ddos not have 2 eigen vectors.

Différence equation up+1 = Aux

= D Staft with gilen vector Uo.

UzzAuo UzcAus cAAuo cA2uo

= Dur = Atus

No To really solve:

(81) Write Uo = C_12, + 6, 2, + ... + Cnan

(82) Auo = C_1, + 2, + C_1, 22, + ... + Chinan

 $U_{r} z A^{k} U_{o} = C_{1} J_{1} z_{1} + C_{2} J_{2} x_{2} + \cdots +$

chinxn=15c

Fibonacci sequence

Fibonacci seguence:

0,2,1,2,3,5,8,13

LoJn general: FK+22 FK+1+ FK

Trick! FK+1 = FK+1

Trick!

Ur 2 Frfs FE

Becare A v C2x2], me know that its eigenvalues sum to 1 (Trace)
& Peri product 5 -1 (deferment)

$$\frac{1}{12} = \frac{1}{2} (1 + \sqrt{5}) \approx 1.678 \quad \chi_{1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{1}{2} = \frac{1}{2} (1 + \sqrt{5}) \approx 1.678 \quad \chi_{1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\frac{1}{2} = \frac{1}{2} (1 + \sqrt{5}) \approx -0.618 \quad \chi_{2} = \begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}$$

$$F_{100} \sim C_1 \left(\frac{1+\sqrt{5}}{2}\right)^{100}$$

Logs with absolute value greater man 1.

Finally, $\mathbf{u}_0 = \begin{bmatrix} F_1 \\ F_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = c_1\mathbf{x}_1 + c_2\mathbf{x}_2$ tells us that $c_1 = -c_2 = \frac{1}{\sqrt{5}}$. Because $\begin{bmatrix} F_{k+1} \\ F_k \end{bmatrix} = \mathbf{u}_k = c_1\lambda_1^kx_1 + c_2\lambda_2^kx_2$, we get:

$$F_k = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^k - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^k.$$

Using eigenvalues and eigenvectors, we have found a *closed form expression* for the Fibonacci numbers.

Summary: When a sequence evolves over time according to the rules of a first order system, the eigenvalues of the matrix of that system determine the
long term behavior of the series. To get an exact formula for the series we find
the eigenvectors of the matrix and then solve for the coefficients $c_1, c_2,$