

Definições de probabilidade e regra da adição

Prof. Wagner Hugo Bonat

Departamento de Estatística Universidade Federal do Paraná

Definição axiomática de probabilidade

Probabilidade é uma função P(·) que atribui valores numéricos aos eventos do espaço amostral, de tal forma que

- 1. $0 \leq P(A) \leq 1$, $\forall A \in \Omega$;
- 2. $P(\Omega) = 1$;
- 3. $P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$, com os A_i 's disjuntos.

A pergunta que surge é: Como atribuir probabilidades aos elementos do espaço amostral?

► Notação: $\sum_{i=1}^{n} P(A_i) = P(A_1) + P(A_2) + ... + P(A_n)$.

Definições de probabilidade

Existem pelo menos três maneiras principais de atribuir probabilidades aos elementos do espaço amostral:

- 1. (Clássica) baseia-se nas características teóricas da realização do fenômeno.
 - ► Considerando o lançamento de um dado, temos $\Omega = \{1,2,3,4,5,6\}$.
- Admitindo que o dado é honesto, podemos assumir que $P(1) = P(2) = \cdots = P(6) = 1/6$.
- 2. (Frequentista) baseia-se nas frequências (relativas) de ocorrência do fenômeno.
 - ▶ Determinar a probabilidade de ocorrência de cada face de um dado.
 - ► Sem fazer nenhuma suposição inicial, podemos usar as frequências relativas de sucessivas ocorrências
- 3. (Subjetiva) baseia-se no julgamento pessoal ou experiência própria sobre a plausibilidade/chance de algo ocorrer.

Definição frequentista

Podemos então pensar em repetir o experimento aleatório n vezes, e contar quantas vezes o evento A ocorre, n(A).

Dessa forma, a frequência relativa de A nas n repetições será

$$f_{A,n}=\frac{n(A)}{n}.$$

Para $n \to \infty$ repetições sucessivas e independentes, a frequência relativa de A tende para uma constante P(A), ou seja,

$$\lim_{n\to\infty}\frac{n(A)}{n}=\mathsf{P}(A).$$

Se um dado fosse lançado n vezes, e contássemos quantas vezes saiu a face 4, qual seria a probabilidade desse evento?

Definição frequentista

Exemplo: Lançamento de dado

- ► Considere o fenômeno aleatório lançamento de um dado "honesto".
- Espaço amostral $\Omega = \{1,2,3,4,5,6\}.$
 - ▶ Qual a probabilidade de ocorrer o evento A "sair número par"?

$$P(A) = \frac{n(A)}{n(\Omega)} = \frac{3}{6}.$$

Qual a probabilidade do evento B "face maior que 4"?

$$P(B) = \frac{n(B)}{n(\Omega)} = \frac{2}{6}.$$

▶ Qual a probabilidade do evento C "maior que 2 e menor que 5"?

$$P(C) = \frac{n(C)}{n(\Omega)} = \frac{2}{6}.$$

Qual a probabilidade do evento D "maior ou igual a 2 e menor ou igual a 5"?

$$P(D) = \frac{n(D)}{n(\Omega)} = \frac{4}{6}.$$

Exemplo: Treinamento esportivo

Uma escola particular pretende oferecer um treinamento de esportistas aos seus alunos. Dos 300 alunos entrevistados, 142 optaram pelo voleibol (V), 123 indicaram o basquete (B) e 35 indicaram o futebol (F). Selecionado aleatoriamente um desses alunos, qual a probabilidade de:

► Obter alguém que prefere o voleibol?

$$P(V) = \frac{n(V)}{n(\Omega)} = \frac{142}{300}.$$

► Obter alguém que prefere o futebol?

$$P(F) = \frac{n(F)}{n(\Omega)} = \frac{35}{300}.$$

Obter alguém que prefere o volei ou futebol?

$$P(V \cup F) = \frac{n(V \cup F)}{n(\Omega)} = \frac{142 + 35}{300}.$$

Note que os eventos F e V são mutuamente exclusivos, ou seja, $P(V \cap F) = \emptyset$.

Exemplo: Alunos

Considere uma população de alunos dos gêneros masculino (M) e feminino (F) dividos em duas turmas A e B, conforme tabela abaixo:

	F	M	Total
Α	21	5	26
В	16	8	24
Total	37	13	50
V-100-100-100-100-100-100-100-100-100-10			

Podemos extrair as seguintes probabilidades

$$P(F) = \frac{37}{50} = 0.74; \ P(M) = \frac{13}{50} = 0.26$$

 $P(A) = \frac{26}{50} = 0.52; \ P(B) = \frac{24}{50} = 0.48.$

Qual seria a probabilidade de escolhermos ao acaso um estudante do sexo feminino (F) ou alguém da Turma B?

Exemplo: Alunos (cont.)

Então, gueremos calcular $P(F \cup B)$ e poderíamos pensar em fazer:

$$P(F \cup B) = P(F) + P(B)$$

= 0.74 + 0.48
= 1.22,

o que não é possível, pois a soma é superior a 1.

Não é difícil ver que estamos somando alguns indivíduos 2 vezes. Estudantes do sexo feminino e da turma B (evento $F \cap B$) estão incluídos em ambos, no evento F e no evento B.

Exemplo: Alunos (cont.)

Logo, precisamos subtrair $P(F \cap B)$ para obter a probabilidade correta.

Neste caso, pela tabela, vemos que a interseção $F\cap B$ resulta na probabilidade

$$P(F \cap B) = \frac{16}{50} = 0.32.$$

O resultado correto para $P(F \cup B)$ é

$$P(F \cup B) = P(F) + P(B) - P(F \cap B)$$

= 0,74 + 0,48 - 0,32
= 0,90.

Regra da adição de probabilidades

A probabilidade da união entre dois eventos quaisquer, A e B, é dada pela **regra da adição de probabilidades**

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Regra da adição de probabilidades

Note que a regra da adição pode ser simplificada, **se e somente se** os eventos A e B forem **disjuntos** (ou mutuamente exclusivos)

$$P(A \cup B) = P(A) + P(B),$$

pois, neste caso, $A \cap B = \emptyset \implies P(A \cap B) = P(\emptyset) = 0$.

Regra do complementar

Como conseguência da regra da adição, temos que, para qualquer evento A,

$$P(A) = 1 - P(A^c).$$

Verifique por meio de $P(A \cup A^c) = P(A) + P(A^c) - P(A \cap A^c)$.

$$P(A \cup A^c) = 1$$
. Pela regra da adição, tem-se $P(A) + P(A^c) - P(A \cap A^c) = 1$. Interseção é nula, então $P(A) + P(A^c) = 1$. Portanto, $P(A) = 1 - P(A^c)$.

Exemplo: Alunos (cont.)

Qual seria a probabilidade de escolhermos ao acaso um estudante que não seja do sexo feminino (F) nem alguém da Turma B?

$$P((F \cup B)^{c}) = 1 - (P(F) + P(B) - P(F \cap B))$$

$$= 1 - 0.90$$

$$= 0.10.$$

Note que este evento é equivalente a ser do sexo masculino e da turma A.

Considerações finais

Revisão

- Definições de probabilidade.
 - Definição axiomática.
 - ► Definição clássica.
 - Definição frequentista.
 - ► Definição subjetiva.
- Regra da adição de probabilidades.
- Regra do complementar.

Figura 2. Foto do Pixabay no Pexels.