The summary of the observed yields and predicted backgrounds for the channel with an OSSF di-lepton and a hadronically decaying tau.

$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	WZ	Non-Prompt	Rare SM	$Z\gamma^*$	ZZ	Total bkg	Observed
$M_{\mathrm{T}} > 160 \mathrm{~GeV}, M_{\ell\ell} < 75 \mathrm{~GeV}$							
50 - 100	0.13 ± 0.028	0.85 ± 0.42	0.081 ± 0.1	0±0	0.0096 ± 0.0026	1.1 ± 0.44	1
100 - 150	0.097 ± 0.024	1.3 ± 0.46	0.67 ± 0.81	0 ± 0	0.0049 ± 0.0017	2.1 ± 0.93	3
150 - 200	0.04 ± 0.015	1 ± 0.57	0.13 ± 0.16	0 ± 0	0.0016 ± 0.00097	1.2 ± 0.59	0
> 200	0.016 ± 0.0095	0.061 ± 0.031	0.091 ± 0.11	0 ± 0	0 ± 0	0.17 ± 0.12	1
$M_{\rm T} > 160~{ m GeV}, 75~{ m GeV} < M_{\ell\ell} < 105~{ m GeV}$							
50 - 100	0.067 ± 0.02	1.3 ± 0.36	0.087 ± 0.1	0±0	0.012 ± 0.0029	1.5 ± 0.37	1
100 - 150	0.11 ± 0.026	1.5 ± 0.73	0.12 ± 0.15	0 ± 0	0.0073 ± 0.0022	1.7 ± 0.74	0
150 - 200	0.036 ± 0.015	0.0088 ± 0.0044	0.078 ± 0.094	0 ± 0	0.0023 ± 0.0012	0.13 ± 0.095	0
> 200	0.022 ± 0.011	0.024 ± 0.012	0.059 ± 0.068	0 ± 0	0 ± 0	$0.1 {\pm} 0.07$	0
$M_{\rm T} > 160 {\rm ~GeV}, M_{\ell\ell} > 105 {\rm ~GeV}$							
50 - 100	0.079 ± 0.022	0.83 ± 0.25	0.029 ± 0.043	0±0	0.0018 ± 0.001	0.93 ± 0.25	1
100 - 150	0.039 ± 0.015	$0.23 {\pm} 0.14$	$0.25 {\pm} 0.3$	0 ± 0	0.0021 ± 0.0011	0.52 ± 0.33	1
150 - 200	0.0071 ± 0.0064	$0.47 {\pm} 0.28$	0.042 ± 0.059	0 ± 0	0.00058 ± 0.00057	0.52 ± 0.29	1
> 200	0.017 ± 0.01	$0.34 {\pm} 0.29$	0.087 ± 0.11	0 ± 0	0.0012 ± 0.00082	$0.44 {\pm} 0.31$	0
$120 \text{ GeV} < M_{\mathrm{T}} < 160 \text{ GeV}, M_{\ell\ell} < 75 \text{ GeV}$							
50 - 100	0.27 ± 0.042	9±2.1	0.38 ± 0.25	0±0	0.033 ± 0.0057	$9.7{\pm}2.1$	11
100 - 150	0.061 ± 0.019	5.5 ± 2	$0.61 {\pm} 0.47$	0 ± 0	0.0031 ± 0.0014	6.2 ± 2	2
150 - 200	0.036 ± 0.014	$0.73 {\pm} 0.42$	0.13 ± 0.1	0 ± 0	0 ± 0	$0.89 {\pm} 0.43$	2
> 200	0.0099 ± 0.0075	0.015 ± 0.0074	0.019 ± 0.021	0 ± 0	0±0	0.044 ± 0.024	0
$120~{\rm GeV} < M_{\rm T} < 160~{\rm GeV}, 75~{\rm GeV} < M_{\ell\ell} < 105~{\rm GeV}$							
50 - 100	0.39 ± 0.052	$9.7{\pm}2.1$	0.45 ± 0.29	0±0	0.043 ± 0.0068	11 ± 2.1	12
100 - 150	0.14 ± 0.029	$2.7 {\pm} 1.2$	0.18 ± 0.12	0 ± 0	0.008 ± 0.0023	3 ± 1.2	4
150 - 200	0.1 ± 0.025	$0.69 {\pm} 0.17$	$0.04 {\pm} 0.026$	0 ± 0	0.0042 ± 0.0016	$0.83 {\pm} 0.18$	0
> 200	0.032 ± 0.014	$0.2 {\pm} 0.35$	0.044 ± 0.036	0 ± 0	0.00088 ± 0.00071	$0.28 {\pm} 0.35$	0