

# **SER PUNTUAL**



"ES VALORAR TU TIEMPO Y EL MÍO"





## **Teoría de Grafos**

Un **grafo** es una estructura que consta de un conjunto de **vértices** (o nodos) y un conjunto de **aristas** (o enlaces) que conectan pares de vértices.

Formalmente, un grafo G se define como G = (V, E), donde:

- V es el conjunto de vértices.
- E es el conjunto de aristas.



Un grafo está formado por un conjunto de vértices y otro de aristas que los conectan.

El grado de un vértice o nodo es el número de aristas o enlaces que están conectadas a él.



Los Grafos camino: los vértices se conectan uno detrás de otro formando un camino sin conectar los extremos. Se usa la letra P de Path (Camino).



Grafos ciclo: Cada vértice se conecta con otros dos formando un ciclo. Se usa la letra C de Cycle.

# **Grafos Bipartito y Bipartito Completo**







La formal, nombrando los vértices y cada una de las aristas con llaves.

$$V = \{1,2,3,4,5\}$$

$$A = \{ \{1,2\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{4,5\} \}$$

La definición formal de un grafo es la composición de dos conjuntos finitos: el conjunto de vértices y el conjunto de aristas.

#### Definición formal

- Un grafo G está formado por dos conjuntos finitos: N y A.
- N es el conjunto de vértices o nodos.
- A es el conjunto de aristas o arcos, que son las conexiones que relacionan los nodos.



Lista de Adyacencias, una lista con las adyacencias de cada vértice.

[[2], [1,3,4,5], [2,4], [2,3,5], [2,4]]

## **MATRIZ DE ADYACENCIAS**

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 0 | 0 |
| 2 | 1 | 0 | 1 | 1 | 1 |
| 3 | 0 | 1 | 0 | 1 | 0 |
| 4 | 0 | 1 | 1 | 0 | 1 |
| 5 | 0 | 1 | 0 | 1 | 0 |



Los grafos pueden ser dirigidos, en vez de aristas tendríamos flechas indicando la dirección, conocidas como arcos y esto afectaría en la forma de representarlo ya que ahora no es lo mismo {1,2} que {2,1}, para ello usamos un par ordenado, usando paréntesis en vez de llaves.

#### **FORMAL**

$$V = \{1,2,3,4,5\}$$

$$A = \{ (1,2), (2,3), (2,4), (2,5), (3,4), (4,5) \}$$

#### **MATRIZ DE ADYACENCIAS**

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 1 | 0 |
| 3 | 0 | 1 | 0 | 0 | 0 |
| 4 | 0 | 0 | 1 | 0 | 1 |
| 5 | 0 | 1 | 0 | 0 | 0 |

Un grafo puede ser Ponderado, esto significa que podemos asociar un número a cada arista al que llamaremos peso y se suele usar la w de weight.

$$V = \{1,2,3,4,5\}$$

$$A = \{ \{1,2\}, \{2,3\}, \{2,4\}, \{2,5\}, \{3,4\}, \{4,5\} \}$$

$$W = \{ \{3\}, \{5\}, \{5\}, \{3\}, \{1\}, \{7\} \}$$



## **MATRIZ DE ADYACENCIAS**

|   | 1 | 2 | 3 | 4 | 5 |
|---|---|---|---|---|---|
| 1 | 0 | 3 | 0 | 0 | 0 |
| 2 | 3 | 0 | 5 | 5 | 3 |
| 3 | 0 | 5 | 0 | 1 | 0 |
| 4 | 0 | 5 | 1 | 0 | 7 |
| 5 | 0 | 3 | 0 | 7 | 0 |

## **Tipos de Grafos**

- Grafo dirigido: Las aristas tienen una dirección.
- Grafo no dirigido: Las aristas no tienen dirección.
- **Grafo ponderado**: Las aristas tienen un peso o costo asociado.
- Grafo no ponderado: Las aristas no tienen peso.

## ¿Qué es un grafo dirigido?

Un **grafo dirigido** (también llamado **dígrafo**) es un tipo de grafo en el cual **cada arista tiene una dirección**. Es decir, las conexiones entre los vértices no son de ida y vuelta necesariamente.

$$G=(V,A)$$

#### donde:

- V es un conjunto de vértices o nodos.
- A es un conjunto de aristas dirigidas (también llamadas arcos), donde cada arco es un par ordenado (u,v), que indica una conexión desde el vértice u hacia el vértice v.

## **Ejemplo sencillo**

Imagina que tienes tres vértices: A, B y C, y las siguientes conexiones:

- De A a B
- De BaC
- De A a C

Esto **no** implica que puedas ir de B a A o de C a A automáticamente, porque la dirección importa.

## **Grado de Entrada (In-degree)**

Número de aristas que entran a un vértice.

## Ejemplo:

• In-degree de C = 2 (viene desde A y B).

## **Grado de Salida (Out-degree)**

Número de aristas que **salen** de un vértice.

## Ejemplo:

Out-degree de A = 2 (hacia B y C).

# **Aplicaciones de Grafos Dirigidos**

- Redes sociales: Un usuario puede seguir a otro, pero no necesariamente ser seguido de vuelta (como en Twitter).
- Mapas de carreteras: Algunas calles son de sentido único.
- Tareas dependientes: Planificación de proyectos donde ciertas tareas deben completarse antes que otras (Diagramas de precedencia).

# **Ejercicio Rápido**

## Dado este conjunto de aristas:

- (A, B)
- (B, A)
- (B, C)
- (C, A)
- 1. ¿Cuál es el grado de entrada de A?
- 2. ¿Cuál es el grado de salida de B?

## Respuesta:

- 1. Entrada a A: Desde B y desde  $C \rightarrow 2$
- 2. Salida de B: Hacia A y hacia  $C \rightarrow 2$

## Matriz de Adyacencias

|   | Α | В | С |
|---|---|---|---|
| А | 0 | 1 | 0 |
| В | 1 | 0 | 1 |
| С | 1 | 0 | 0 |

## Problema 1: Ruta óptima en un grafo dirigido

Supongamos el siguiente grafo:

- A  $\rightarrow$  B (peso 2)
- A  $\rightarrow$  C (peso 5)
- $B \rightarrow C \text{ (peso 1)}$
- $B \rightarrow D \text{ (peso 2)}$
- $C \rightarrow D \text{ (peso 3)}$

Pregunta: ¿Cuál es el camino más corto de A a D?

## Matriz de Adyacencias

|   | A | В | С | D |
|---|---|---|---|---|
| Α | 0 | 2 | 5 | 0 |
| В | 0 | 0 | 1 | 2 |
| С | 0 | 0 | 0 | 3 |
| D | 0 | 0 | 0 | 0 |

- 1. Inicialización:
  - 1. Distancia A = 0
  - 2. Distancia a todos los demás = ∞
- 2. Desde A:

#### Solución

- 1.  $A \rightarrow B = 2$  (mejorar distancia a B)
- 2.  $A \rightarrow C = 5$  (mejorar distancia a C)
- 3. Desde B (distancia actual 2):
  - 1.  $B \rightarrow C$ : 2 + 1 = 3 (mejorar distancia a C, antes era 5)
  - 2.  $B \rightarrow D$ : 2 + 2 = 4 (actualizar distancia a D)
- 4. Desde C (distancia actual 3):
  - 1.  $C \rightarrow D$ : 3 + 3 = 6 (pero ya tenemos un camino a D de peso 4, así que no actualizamos)
- 5. Resultado final:
- 6. Camino más corto de A a D es A  $\rightarrow$  B  $\rightarrow$  D, con distancia total 4.

# Problema 2: Detectar ciclo en un grafo dirigido

Dado el siguiente conjunto de aristas:

- $A \rightarrow B$
- $B \rightarrow C$
- $C \rightarrow A$

¿Tiene ciclo?

#### Solución:

Si partimos de A:

- A lleva a B
- B lleva a C
- C regresa a A

Sí, tiene un ciclo (A  $\rightarrow$  B  $\rightarrow$  C  $\rightarrow$  A)

# Algoritmo de Dijkstra (para encontrar el camino más corto)

¿Qué hace?

Busca el **camino más corto** desde un vértice origen a todos los demás vértices en un grafo con **pesos no negativos**.

#### **Pasos del Algoritmo:**

#### 1. Inicializar:

- 1. Asignar distancia 0 al nodo de origen.
- 2. Asignar distancia infinita ( $\infty$ ) a todos los otros nodos.
- 3. Marcar todos los nodos como no visitados.
- 2. Seleccionar el nodo no visitado con menor distancia actual.
- 3. Actualizar la distancia de los nodos vecinos:
  - 1. Si el camino a través del nodo actual es más corto, actualizar.
- 4. Marcar el nodo actual como visitado.
- 5. Repetir hasta que todos los nodos estén visitados o alcanzados.

## **Ejemplo:**

## Grafo:

- $A \rightarrow B \text{ (peso 2)}$
- $A \rightarrow C \text{ (peso 4)}$
- $B \rightarrow C \text{ (peso 1)}$
- $B \rightarrow D \text{ (peso 7)}$
- $C \rightarrow D$  (peso 3)

## Encuentra el camino más corto de A a D.

| Nodo | Distancia Inicial |
|------|-------------------|
| А    | 0                 |
| В    | ∞                 |
| С    | ∞                 |
| D    | ∞                 |

#### **Proceso:**

#### 1.Desde A:

- 1. A  $\rightarrow$  B: distancia 2 (mejor que  $\infty$ )
- 2. A  $\rightarrow$  C: distancia 4 (mejor que  $\infty$ )
- 2. Nodo con menor distancia: **B** (2).
  - 1. B  $\rightarrow$  C: 2 + 1 = 3 (mejor que 4, actualizamos)
  - 2. B  $\rightarrow$  D: 2 + 7 = 9
- 3. Nodo con menor distancia: C (3).
  - 1.  $C \rightarrow D$ : 3 + 3 = 6 (mejor que 9, actualizamos)
- 4. Nodo D (6): Llegamos.

Camino más corto:  $A \rightarrow B \rightarrow C \rightarrow D$ 

Costo total: 6







# iiiGracias por la asistencia... Éxito!!!