PA 1: Environment Setup

Due Date

- Assignment due April 6 11:59pm
- Submit all files and projects to perforce
 - o Create a directory called: PA1 in your student directory
 - o /student/<yourname>/PA1/...

Goals

- Setup your environment correctly
 - Visual Studio's Developers studio for C++ and C#
 - Version control
 - Perforce
 - Communication
 - Piazza Class Forums
- Write a simple C++ project
- Write a simple C# project

Assignments

- 1. Piazza Class Forum
 - a. Join Piazza
 - i. Sign-on
 - b. Reply to a forum topic in the class forum
 - i. Need to start a thread... (sample thread) (piazza link)
 - c. Use this Piazza to ask any questions you have about assignments or material in the class
- 2. Perforce server
 - a. Follow the instructions from the class wiki
 - i. Setup workspace
 - ii. Download reference material
 - b. Add some sample files and play around in your student directory.
 - i. Add files, check out, submit, delete, add files into different directories
 - c. Ask questions
 - i. Post to Class forum for class questions
- 3. Setup Microsoft Visual Studio environment
 - a. Install Microsoft Visual Studio 2017
 - i. Install everything or minimally for
 - Visual C++ & Visual C#
 - ii. Install location to download the professional version
 - Download Visual Studio (piazza link)
 - C# and C++ install
- 4. Create a *C++ project* and solution
 - a. Create the Doubly Linked List program in C++

- i. Win32 Console Application
- ii. Document the all code
- iii. Code should be warning free

b. Program

- i. Nodes should be dynamically allocated.
 - Nodes should created dynamically
- ii. Should be able to add / delete nodes
 - Add or delete any node anywhere on the tree
- iii. Find specific nodes
 - Walk through every node, starting at the head and find a specific node
- iv. Sort nodes
 - You should be able to sort your linked list according to its data
- v. Print nodes
 - Print the contents of each node
 - Use printf() to print data

c. Test program

- i. Data See the Morse code chart
 - Create a data structure
 - a. That contains a character plus an integer, for example:

char string: "A" int: 12

- The character strings are the alphabet
 - a. The data replace dots with 1, and dashes with 2.
- For example:
 - a. Letter P which is $\{ \bullet - \bullet \}$
 - i. The string is "P"
 - ii. The data is 1221
 - b. Letter **K** which is {— —}
 - i. The string is "K"
 - ii. The data is 212

ii. Test 1: Insert data to a List

- Insert the data to create alphabetical order one at the time A-Z
 - a. In order insertions:
 - i. 1st insert
 - 1. "A" as a string and 12 as it's data
 - ii. 2nd insert
 - 1. "B" as a string and 2111 as it's data
 - iii. Goal is to have them in A-Z order
 - 1. Hint: insert to the end of the list
 - b. For all letters A-Z (26 of them)
 - i. Insert 1 at a time

- ii. If you are a geek (which is a good thing, btw)
 - 1. Insert to the front of the list in reverse order
 - 2. Then the linked list is in order... (brilliant)
- Print the whole list (both string and integer data) by walking the linked lists from head to tail
 - a. Should be in alphabetical order
 - i. 1st node A, 2nd node B,

iii. Test 2: Find and delete nodes of a List

- Find specific strings and delete them
 - a. Using the list created in Test 1
- Find one at a time a character at the time, then delete that node
 - a. Order {F, R, B, Z, A, M, G, R, C, Q, Y, C, N}
 - i. In this order!
 - ii. F is first, R is second...
 - b. Do each search and delete one at a time
 - i. Find the character
 - ii. Delete them from the list
 - iii. If you can't find the specific node, then do nothing
- Print the entire list by walking the linked lists

iv. Test 3: Sort the data

- Sort the list by its MORSE data
 - a. Using the list modified in Test 2
- Sort the list by its data
 - a. Lowest number to highest number
 - b. For example, 'K' is 212, 'S' is 111
 - i. 'S' would be lower in value than 'K'
 - ii. So 'S' would be before 'K' in the list
- Print the entire list

d. In your main

- i. You should have:
 - The 3 tests being called individually
 - a. Test1()
 - b. Test2()
 - c. Test3()
 - No code in main file
 - a. Only includes and these 3 functions
- e. No arrays or built-in containers
 - i. No STL, Vectors, Lists, or Arrays allowed

ii. Need to use DOUBLE linked lists for insert/sort/delete.

- f. You need to submit a complete C++ project
 - i. Solution, project and source files
 - ii. Do not submit anything that is auto generated
 - iii. start a forum thread (PLEASE)
- 5. Create a C# project and solution
 - a. Create C# Console Application
 - b. Repeat problem Morse code problem , but now for C# project
 - i. YES do the same
 - ii. Should be a simple port
 - iii. Do all 3 tests again in C#
 - c. Use System. Console. WriteLine() to print data
- 6. Make sure you do good Perforce descriptions on submissions
 - a. That was easy!

Validation

Simple check list to make sure that everything is checked in correctly

- Did you login and participate in:
 - o Piazza?
- Did you submit PA1 into perforce?
 - C++ project
 - C# project
- Did you write good submission comments to perforce?

Hints

Most assignments will have hints in a section like this.

- When lost please post on the forums
 - We can help each other out.
 - o Don't get intimidated, we can you get through this material together.
- You will get it.
 - o Enjoy have fun!

Doubly Linked List

Remember there are edge conditions

• No extra terminating (dummy) nodes

Deletion:

4 states that need testing:

- Deleting the First Node
- Deleting the Last Node
- Deleting the Node in the Middle
- Deleting the Only node

Addition:

- Adding to the front
- Adding to the back
- Inserting after a specific node
- Inserting before a specific node

Sorting

- Reshuffling nodes to the correct order
- Need to detach and reinsert node to any location

International Morse Code

- 1. A dash is equal to three dots.
- 2. The space between parts of the same letter is equal to one dot.
- 3. The space between two letters is equal to three dots.
- 4. The space between two words is equal to seven dots.

