Ruizhen Mai

rm4610@nyu.edu | 929.855.2208 | 626 1st Ave. Apt. e30h, New York, NY 10016

EDUCATION

New York University

New York, NY

Bachelor of Arts, Major in Computer Science and Mathematics, Minor in Business Studies

(Expected) May 2021

- Major GPA: 3.79 / 4.0
- Dean's List all semesters
- Relevant Coursework: Machine Learning, Basic Algorithms, Parallel Computing, Operating Systems, Network systems, Computer Security, Big Data, Linear Algebra, Probability Theory, Statistics, Real Analysis, Stochastic Process, Time Series

TECHNICAL SKILLS

Web and Big Data: React, Node.js, MongoDB, MySQL, Bootstrap, Html, Spark, Hadoop, Kafka

Machine Learning and Data Analytics: PyTorch, TensorFlow, CUDA, Pandas, Matplotlib, Plotly, Selenium

Programming Languages: Python, C++/C, JavaScript, Golang, R, Java, SQL

EXPERIENCE

New York University

New York, NY

Research Assistant w/ Prof. Xinyu Cao (Python)

Nov 2019 - Present

- Developed experiments to try identifying optimal predictors to auction prices of artwork, jewelries and furniture
- Built and integrated machine learning models for image, text, categorical and continuous data

Research Assistant w/ Prof. Joshua Loftus (Python, R)

May 2019 – Present

- Created NeuroMICE, an improvement of MICE algorithm (multiple imputations by chained equations) that can dramatically reduce time needed for specification in the algorithm and the barrier to use
- Developed and streamlined the experiment to test NeuroMice to accomplished preliminary results that demonstrated comparable 95% confidence interval coverage
- Assessed the strengths and weakness between Joint Modeling (e.g. EM) and Fully Conditional Modeling (e.g. MICE)

Research Assistant w/ Prof. Tommaso Bondi (Python)

Apr 2019 - Oct 2019

- Collected and organized 400K book data from Goodreads and Bookmarks using Selenium and Pandas
- Researched the differences between the reading preferences of Goodreads new and experienced users, and performed t-test to discover that readers' leniency on ratings and the range of preferences decrease as they become experienced
- Built neural networks to classify sentiments of consumer reviews with 83% accuracy

Project Assistant w/ Prof. Xiao Liu (Python, R)

May 2019 – Aug 2019

• Investigated and confirmed the results of "Retention Futility" (Ascarza, E. 2018) – retention campaign targeting high-risk customers is ineffective, while aiming at "lift" is more appropriate – with causal forest

uStart.today Brooklyn, NY

Software Engineer Intern (Golang, JavaScript)

Mar 2018 – *May* 2018

• Programmed an alpha-version chat API using WebSocket and handled the message emission in the front end

PROJECTS

Real-Time Stock Price Forecasting Application (React, Node.js, Python, R)

Jan 2020 – Present

Developed an application that displays and updates a stock price and its forecasts every minute

- Developed a **Python-R** program to forecast the stock price, its volatility, and its option prices using ARIMA-GARCH model and Black-Scholes formula
- · Constructed a REST API using Node.js to retrieve stock data from worldtradingdata.com and send them to front end
- Designed a responsive website using **HTML5**, **Bootstrap** and **React** to display the stock price

CycleGAN w/ Color-Shape Regularization (Pytorch)

Apr 2019 – May 2019

Modified CycleGAN model with regularization that punishes generated image's incorrect shape

- Brainstormed the idea by analyzing the flaws in the original model
- Programmed the CycleGAN model, and tested the regularization with 1000 images from horse2zerbra dataset

Poverty Rate Analysis (R)

Apr 2019 – May 2019

Searched for correlated and useful linear predictors to poverty rates

- Collected poverty rate data, and possible predictors data such as unemployment rate, birth rate from World Bank database
- Built regressions of poverty rate on these possible predictors, and analyzed their performances by r-squared, p-values of each predictor's t-test and diagnostic plotting of the residuals from the regression
- Discovered that percentage of population having access to electricity as a strongly correlated predictor to poverty rate with 0.8 r-squared in a single-predictor model and over 99% to include it in a six-predictor model