

Chimie et Matériaux Inorganiques 2A – 2019

Partie II: De la molécule au matériau

Les gens sont comme les cristaux.

Ce sont leurs défauts qui les rendent intéressants.

Sir Charles Frank, physicien britannique

Luminescence Lanthanides, Lasers

Sommaire

I. Luminescence

- 1. Principe, fluorescence vs phosphorescence
- 2. Différents phénomènes de luminescence
 - 2.1. Causes physiques
 - 2.2. Causes chimiques organiques
 - 2.3. Causes impliquant des ions luminescents : luminophores

II. Luminophores

- 1. Matériaux inorganiques luminescents
- 2. Lanthanides

III Luminescence et lasers

- 1. Principes
- 2. Calcul des termes spectroscopiques, diagrammes de Tanabe-Sugano
- 3. Lasers
- 3.1. Laser à rubis
- 3.2. Lasers et lanthanides

IV. Luminophores vs LEDs

La même calcite photographiée...

I. Luminescence

1. Principe.

Emission de lumière par un matériau qui absorbe de l'énergie

S état singulet (S = 0
$$\Rightarrow$$
 2S+1 = 1)
T état triplet (S = 1 \Rightarrow 2S+1 = 3)

La fluorescence cesse dès que l'excitation s'arrête, alors que la phosphorescence persiste.

Diagramme de Perrin-Jablonski

CI Conversion Interne **CIS** Croisement InterSystème

Spectre d'émission de fluorescence = histogramme des énergies libérées par la population de fluorophores lors de la transition radiative vers les niveaux vibrationnels de l'état fondamental S_0 .

Etat excité S₁

Etat fondamental S_0

Absorption:

- structure vibrationnelle
 caractéristique de l'état S₁
- sensible à l'environnement des chromophores

Fluorescence:

- structure vibrationnelle
 caractéristique de l'état S₀
- déplacement de Stokes :

$$\lambda_{\text{\'emission}} > \lambda_{\text{absorption}}$$

- spectre d'émission en miroir du spectre d'absorption
- sensible à la dynamique moléculaire (10 ns)
- diminue quand T↑

L'excitation d'un chromophore à différentes λ ne change pas le profil d'émission correspondant, mais l'intensité d'émission est proportionnelle à l'intensité de l'excitation :

Phosphorescence

Fluorescence vs Phosphorescence

Fluorescence Microscopy

2. Différents types d'excitation.

- causes organiques
- Chimiluminescence *cf TP* ⇒
 Bioluminescence
- **Thermoluminescence**
- Photoluminescence (tubes fluo, lasers)
- Cathodoluminescence (tubes cathodiques)
- Électroluminescence (LED) cf TP

<u>Luminescence de Ru(bpy)</u>₃²⁺ (Transfert de charge ligand/métal)

Luminophores

II. Luminophores

1. Matériaux inorganiques luminescents

La luminescence est due à la présence de défauts :

- Imperfections du cristal (intrinsèque)
- Impuretés ou dopants ajoutés (extrinsèque)

Les imperfections du cristal introduisent des pièges dans la bande interdite

- Cristal-hôte doit être transparent dans le visible
 - semi-conducteurs à large gap et isolants
- Dopé par un cation luminescent
 - —> Poudres ou couches minces pour l'éclairage, les écrans
 - Scintillateurs : détection des particules de haute énergie

<u>Luminophores</u>: Luminescence inorganique

Grande variété de mécanismes :

	cations	transition	ΔΙ	τ(s)	
	Ti ³⁺ , V ²⁺ , Cr ³ , ⁼ e ³⁺ , Co ² , Ni ²⁺	$3d \rightarrow 3d$	0	10 ⁻² -10 ⁻¹	
	Cu+	$4s \rightarrow 3d$	2	10 ⁻⁵ -10 ⁻⁴	
	Ag ⁺	$5s \rightarrow 4d$	2	10 ⁻⁶ -10 ⁻⁵	
	In+, Sn ²⁺ , Sb ³⁺	$5p \rightarrow 5s$	1		
	TI+, Pb ² +, Bi ³⁺	$6p \rightarrow 6s$	1	10 ⁻⁶ -10 ⁻⁵	
Г	$(Pr^{3+}, Nd^{3+}, Sm^{3+}, Eu^{3+}, Gd^{3+}, Tb^{3+}, Dy^{3+},$	4f → 4f	0	10 ⁻⁴ -10 ⁻²	
L	Ho ³⁺ , Er ³⁺ , Tm ³⁺ , Yb ³⁺)				
	Ce ³⁺	5d → 4f	1	2 10 ⁻⁸ -4 10 ⁻⁸	
	Eu ²⁺			5 10 ⁻⁷ -10 ⁻⁶	
	Oxydes type VO ₄ ³⁻	transfert de charge O → M		10 ⁻³	
	WO ₄ ²⁻			10 ⁻⁵	

1 s 2. Lanthanides Remplissage progressif des orbitales f --> 2p 3đ Lanthanides 4f He Actinides IV VI VII V П C B N F Ne Li Be Klechkowski Si CI Al P S Ar Na Mg V Cr Co Ni Cu Ga Ge As Se Br Kr Sc Ti Mn Zn K Ca Cd Sn Sh Te Xe Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag In TI Pb Rn Hf Ta W Re Os Ir Pt Au Hg Bi Po At Cs Ba Lu Rf Db Sg Bh Hs Mt Fr Ra Lr [Xe]6s²4fⁿ5d¹ ou [Xe]6s²4fⁿ⁺¹5d⁰ Lanthanides: Gd Tb Ho Er Tm Yb La Ce Pr Nd Pm Sm Eu Dy

2.1. Les 7 orbitales *f*

$$I = 3$$

-3 $\leq m_1 \leq +3$

2.2. Propriétés chimiques

Les orbitales f sont profondes

peu d'effet du champ de ligands

~ 1000 cm⁻¹ vs 10000 cm⁻¹ pour les éléments d

Ln³⁺: couche externe complète \Rightarrow peu polarisables

⇒ pas de liaisons covalentes = interactions électrostatiques

⇒ grande flexibilité dans la coordinence et la géométrie des complexes, qui n'est pas imposée par la direction des orbitales.

A cause de leur taille et de leur charge +3 les terres rares possèdent des coordinences élevées, entre 6 et 12.

	ions lanthanides	ions des métaux de la première série de transition
orbitales	4 <i>f</i>	3 <i>d</i>
rayon ionique (Å)	1,06-0,85	0,75-0,6
nombre de coordination commun	6,7,8,9 (10,12)	4,6
principaux polyèdres de coordination	prisme trigonal, antiprisme base carrée, dodécaèdre	plan carré, tétraèdre, octaèdre
interactions métal- ligand	faibles sauf pour les chélates	fortes
force des liaisons métal-ligand	déterminée par l'ordre d'électronégativité F->OH->H ₂ O>NO ₃ ->Cl-	déterminée par les interactions orbitalaires CN·>NH ₃ >H ₂ O>OH·>F·
complexes en solution	-ioniques -échange rapide des ligands	le plus souvent covalentéchange lent des ligands

prisme trigonal

antiprisme base carrée

2.3. Propriétés spectroscopiques

- ❖ Transitions *f-f* interdites
 - couleurs pâles
- ❖ Faible effet du champ de ligands ⇒
 - Raies d'absorption f-f fines
 - Couplage spin-orbite important (raies nombreuses)
 - > Spectres optiques peu sensibles à l'environnement (spectres solide/liquide/gaz similaires)

Luminescence

Cf TP synthèse d'un oxyde fluorescent

Emission à 615 nm associée à la transition 5D_0 - 7F_2 des ions Eu³⁺ dans $Y_{0.95}Eu_{0.05}VO_4$ après excitation UV

III. Luminescence et lasers

Luminescence du rubis

1. Lasers

1917 Théorie de l'émission stimulée par Einstein

1953 Le MASER (Charles Townes, prix Nobel 1964)

1960 Le premier laser optique (Théodore Maiman)

Les ions Cr³⁺ d'un rubis artificiel émettent de la lumière rouge lorsqu'ils sont irradiés par une lampe au xénon

Système à 3 niveaux

Laser à rubis

Système à 4 niveaux

Luminescence du rubis (Cr³+ dans Al₂O₃)

<u>Diagramme d'énergie du Cr³⁺ (d³)</u>

2. Termes spectroscopiques

Position du problème :

La configuration électronique d'un ion ne suffit pas à le caractériser complètement. Détail d'une configuration \Rightarrow calcul des micro-états

4l+2 = nombre maximal d'électrons dans la sous-couche

AN : Cr N=3 \neq 120 micro-états

Dégénérés si on néglige la répulsion électronique et le couplage spin-orbite

2.1. Répulsion électronique

Dans un système à plusieurs électrons, il faut tenir compte de la répulsion électronique :

$$\mathbf{H} = -\frac{1}{2} \sum_{i=1}^{N} \Delta_{i} - \sum_{i=1}^{N} \frac{Z_{M}'}{r_{i}} + \sum_{i>j=1}^{N} \frac{1}{r_{ij}}$$

$$\mathbf{H}_{0} = \sum_{i=1}^{N} \mathbf{H}_{i} \qquad \mathbf{H}_{\mathbf{R.E.}}$$

Les électrons se placent dans les orbitales selon les arrangements appelés micro-états, caractérisés par une valeur de M_L et une valeur de M_S

 m_l = projection de \overrightarrow{l} sur l'axe de quantification m_s = projection de \overrightarrow{s} sur l'axe de quantification

$$M_L = \sum m_l$$
 $M_S = \sum m_s$

Un terme spectroscopique désigne l'ensemble des micro-états caractérisés par une série de valeurs de M_L et M_S définissant une valeur de L et de S

Terme spectroscopique

$$^{2S+1}\Gamma$$

S nombre quantique de spin total

 Γ lettre correspondant au nombre quantique L

même convention que pour
$$I: L=0 \rightarrow S$$

 $L=1 \rightarrow P$

Dégénérescence du terme =
$$(2L+1)(2S+1)$$

 $L=2 \rightarrow D$ $L=3 \rightarrow F$

etc.

Cas trivial :
$$N = 1 \rightarrow S = 1/2$$

s ¹	L=0	terme ² S	2 microétats
p^1	L=1	terme ² P	6 microétats
d^1	L=2	terme ² D	10 microétats

Procédure pour N > 1 :

- 1. Ecrire tous les micro-états
- 2. Calculer les valeurs de M_L et M_S correspondantes
- 3. Reconnaître les ensembles de micro-états correspondant à une valeur donnée de L et de S, sachant que :

$$-L \le M_L \le +L$$

$$-S \leq M_s \leq +S$$

Exemple: calculer les termes correspondant à un ion libre de configuration p²

N=2, $I = 1 \rightarrow 15$ micro-états

	$m_s = +1/2$		$m_s = -1/2$					
$m_{l}=$	+1	0	-1	+1	0	-1	$M_L = \sum m_I$	$M_S=\Sigma m_S$
	1	1						

M_L M_S	+1	0	-1
+2		1+ 1 ⁻	
+1	1+ 0+	0+ 1 ⁻ ; 1+ 0 ⁻	1 ⁻ 0 ⁻
0	1+ -1+	1+ -1 ⁻ ; 0+ 0 ⁻ ; -1+ 1 ⁻	-1 ⁻ 1 ⁻
-1	-1+0+	0+ -1 ; -1+ 0 ⁻	-1 ⁻ 0 ⁻
-2		-1+ -1 ⁻	

$$L=2 \rightarrow S=0$$
 terme ¹D 5 micro-états
 $L=1 \rightarrow S=1$ terme ³P 9 micro-états
 $L=0 \rightarrow S=0$ terme ¹S 1 micro-état

Trouver le terme fondamental : règle empirique de Hund

- > Plus grande multiplicité de spin
- > Si plusieurs termes de même multiplicité : plus grande dégénérescence orbitale

	Configuration	Microétats	Termes de l'ion libre	
	s ¹	2	² S	
	S^2	1	¹ S	
	p ¹ , p ⁵	6	2 P	
	p ² , p ⁴	15	¹ S, ¹ D, ³ P	
	p^3	20	² P, ² D, ⁴ S	
	d^{1}, d^{9}	10	² D	
	d^2 , d^8	45	¹ S, ¹ D, ¹ G, ³ P, ³ F	
	d^3 , d^7	120	² P, ² D(2), ² F, ² G, ² H, ⁴ P, ⁴ F	
	d^4 , d^6	210	¹ S(2), ¹ D(2), ¹ F, ¹ G(2), ¹ I, ³ P(2), ³ D, ³ F(2), ³ G, ³ H, ⁵ D	
	d^5	252	² S, ² P, ² D(3), ² F(2), ² G(2), ² H, ² I, ⁴ P, ⁴ D, ⁴ F, ⁴ G, ⁶ S	
	f ¹ , f ¹³	14	2 F	
	f^2 , f^{12}	91	¹ S, ¹ D, ¹ G, ¹ I, ³ P, ³ F, ³ H	
	f ³ , f ¹¹	364	² P, ² D(2), ² F(2), ² G(2), ² H(2), ² I, ² K, ² L, ⁴ D, ⁴ F, ⁴ G, ⁴ S,	
	f ⁴ , f ¹⁰	1001	4	
	f ⁵ , f ⁹	2002	⁵ ,	
	f ⁶ , f ⁸	3003	⁶ H ,	
	f ⁷	3432	⁷ F ,	
28			⁸ S ,	

2.2. Couplage spin-orbite

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{H}_{i} + \sum_{i>j=1}^{N} \frac{1}{\mathbf{r}_{ij}} + \xi \sum_{i=1}^{N} \vec{\ell}_{i} \cdot \vec{\mathbf{s}}_{i}$$

$$\mathbf{H}_{0} \qquad \mathbf{H}_{\mathbf{R.E.}} \qquad \mathbf{H}_{\mathbf{S.O.}}$$

Si ce couplage est faible par rapport à la répulsion électronique, il peut être introduit comme une perturbation du second ordre

$$\vec{L} = \sum \vec{l}_i \qquad \vec{S} = \sum \vec{s}_i \qquad H_{s.o.} = \lambda \vec{L} \cdot \vec{S} \qquad \lambda \quad \text{constante de couplage S.O.}$$

$$\vec{J} = \vec{L} + \vec{S} \qquad L - S \le J \le L + S$$

Les termes éclatent en 2J+1 niveaux spectroscopiques :

$$^{2S+1}\Gamma_{J}$$

Niveau fondamental : règle de Hund

Couche < demi-remplie
$$\Rightarrow$$
 J = J_{min}
Couche > demi-remplie \Rightarrow J = J_{max}

Pr 3+ Exemple:

Configuration 4f²

$$L = 5$$
, $S = 1$

L = 5, S = 1 \Rightarrow niveau fondamental ³H

$$J_{min} = 4$$
, $J_{max} = 6$

$$J_{min} = 4$$
, $J_{max} = 6$ \Rightarrow ${}^{3}H_{4}$, ${}^{3}H_{5}$, ${}^{3}H_{6}$

Energie des niveaux par rapport à ^{2S+1}
$$\Gamma$$
: $E_{s.o.} = \frac{\lambda}{2} [J(J+1) - L(L+1) - S(S+1)]$

2.3. Effet du champ de ligands

$$\begin{split} \mathbf{H} = & \sum_{i=1}^{N} \mathbf{H}_i & + & \sum_{i>j=1}^{N} \frac{1}{r_{ij}} & + & \xi \sum_{i=1}^{N} \vec{\ell}_i \cdot \vec{s}_i & - & \sum_{i=1}^{N} \sum_{\ell=1}^{n} \frac{Z_L{'}}{r_{\ell i}} \\ \mathbf{H}_0 & \mathbf{H}_{R.E.} & \mathbf{H}_{S.O.} & \mathbf{H}_{CL} \text{ ou } \mathcal{V}_C \\ & \text{potential du champ des ligands} \end{split}$$

Valeurs des interactions (en cm⁻¹):

Configuration	Répulsion électronique	couplage spin-orbite	Champ cristallin
3 <i>d</i> N	70000	500	15000
4 <i>d</i> N	50000	1000	20000
5 <i>d</i> ^N	20000	2000	25000
4 <i>f</i> N	70000	1500	500
5 <i>f</i> N	50000	2500	2000

4f, 5f	$H_{RE} > H_{SO} > V_{c}$	⇒ Champ très faible
3d, 4d, 5d	$ \begin{array}{c} \bullet \\ H_{RE} > V_{c} > H_{SO} \\ \bullet V_{c} > H_{RE} > H_{SO} \end{array} $	⇒ Champ faible⇒ Champ fort

Approche champ faible

Effet d'un champ de ligands octaédrique ou tétraédrique sur les termes spectroscopiques :

- 1. Le champ cristallin n'agit pas sur le spin : la multiplicité de spin est donc conservée
- 2. Le groupe générique O décrit les complexes O_h et T_d

0	I	8C ₃	6C ₂ ,	6C ₄	3C ₂
A ₁	1	1	1	1	1
A_2	1	1	-1	-1	1
Е	2	-1	0	0	2
T_1	3	0	-1	1	-1
T_2	3	0	1	-1	-1

Complexes octaédriques : + existence d'un centre d'inversion ⇒ g/u

Formule des rotations :
$$\chi(\phi) = \frac{\sin(NQ+1/2)\phi}{\sin(\phi/2)}$$

<u>Exemple</u>: Eclatement d'un terme D dans le groupe O: NQ = L = 2

$$\phi = \frac{2\pi}{3} \rightarrow \chi(\phi) = -1$$

$$\phi = \frac{\pi}{2} \rightarrow \chi(\phi) = -1$$

$$\phi = \pi \rightarrow \chi(\phi) = 1$$

$$\phi = \pi \rightarrow \chi(\phi) = 1$$

$$\phi = \pi \rightarrow \chi(\phi) = 1$$

$$0 \quad \text{Id} \quad 8C_3 \quad 6C_2 \quad 6C_4 \quad 3C_2$$

$$\Gamma \quad 5 \quad -1 \quad 1 \quad -1 \quad 1$$

Décomposition en représentations irréductibles :

$$n_i = \frac{1}{g} \sum_{R} \chi_i(R) . \chi(R)$$

$$n(E)=1/24(10+8+6)=1$$
, etc. $\Gamma=E+T_2$ $(\Gamma=E_g+T_{2g} \text{ dans } O_h)$

Remarque : même formalisme pour des orbitales d (l = 2) dans un complexe octaédrique ou tétraédrique :

33

L	Terme	Dég.	Champ tétraédrique	Champ octaédrique
0	S	1	A ₁	A _{1g}
1	Р	3	T ₁	T_{1g}^{T}
2	D	5	E+T ₂	E_g + T_{2g}
3	F	7	$A_2+T_1+T_2$	$A_{2g}+T_{1g}+T_{2g}$
4	G	9	$A_1+E+T_1+T_2$	$A_{1g}+E_g+T_{1g}+T_{2g}$
5	Н	11	$E+2T_1+T_2$	$E_g + 2T_{1g} + T_{2g}$
6	1	13	$A_1 + A_2 + E + T_1 + 2T_2$	

<u>Exemple</u>: Expliciter la levée de dégénérescence du terme fondamental du Cr³⁺ dans un champ de ligands octaédrique. Reconnaître le niveau fondamental.

 $Etat\ fondamental \equiv nombre\ de\ façons\ de\ placer les électrons dans les orbitales :$

+ le champ cristallin n'agit pas sur le spin ⇒ multiplicité de spin conservée

Règle de sélection en absorption : les transitions ont lieu sans changement de spin

Exemple: ion d² en champ octaédrique

Diagrammes de Tanabé-Sugano

2.4. Diagrammes de Tanabé-Sugano

Exemple: configuration d³ en symétrie Oh

3. Luminescence et lasers

Spectre d'absorption du Cr³⁺

 $Cr^{3+}(d^3)$

3.2. Laser YAG (Grenat d'Yttrium et d'Aluminium)

Luminescence des terres rares (éléments f)

<u>Grenats</u>: oxydes de type A₃B₂X₃O₁₂

A gros ion (Y ou terre rare) en structure cubique

B, X plus petits occupant les sites octa et tétra, respectivement

La longueur d'onde d'émission peut être ajustée finement par le dopage :

Spectral Range of Rare Earth Lasers

On pompe la multitude des niveaux excités dans le visible par flash ou par diode laser :

<u>Exercice</u>: retrouver le terme fondamental du néodyme Nd: 6s²4f³5d¹

Niveaux d'énergie et longueurs d'onde des émissions lasers en μm pour les ions de terres rares

1.8

Tm³⁺

Laser YAG

Hôte: grenat Y₃Al₅O₁₂ dopé au néodyme Nd³⁺

Système à 4 niveaux

3,4 4F_{3/2}

1 5

4I_{11/2}
4I_{9/2}

- 1. Absorption de lumière blanche
- 2. Emission rapide non radiative vers ⁴F_{3/2}
- 3. Durée de vie sur ${}^4F_{3/2} \approx 10^{-4}$ s
- 4. Inversion de population
- 5. Emission stimulée vers ⁴I_{11/2} Finesse de raie
- 6. Retour rapide vers ${}^4I_{9/2}$ maintient l'inversion de population

 Radiation

 monochromatique

 10,600 Å

Exercice

Les complexes de lanthanides qui émettent dans le proche IR sont intéressants pour l'imagerie médicale, car les photons NIR peuvent pénétrer sans dommage les tissus profonds, tout en permettant une très haute résolution.

La tropolone **1** est un ligand des lanthanides. En présence de chlorure de Ln (Ln= Nd, Er, Ho, Tm, Yb) et de KOH dans le méthanol, on obtient des complexes de type $[LnL_4]^-$, qui luminescent sous excitation convenable.

Attribuer les pics d'émission associés au néodyme et à l'ytterbium. Dans ce dernier cas, retrouver les niveaux mis en jeu. Pourquoi le pic correspondant présente-t-il une structure fine ?

IV. Luminophores vs LEDs

1. Luminophores : matrice-hôte contenant un ou plusieurs cations luminescents

Les imperfections du cristal introduisent des pièges dans la bande interdite

Photoluminescence

Convertit le rayonnement UV produit par une décharge électrique dans un gaz

Luminophores pour l'éclairage

Mélange B, V, R:

Rouge Y₂O₃:Eu³⁺

Bleu BAM:Eu²⁺

Vert LaPO₄:Tb, Ce

Photoluminescence

Convertit le rayonnement UV produit par une décharge électrique dans un gaz

Ecrans plasma

One subpixel

Xe-Ne emission spectrum

2. Diodes électroluminescentes

Recombinaison de paires électron-trou créées dans les semi-conducteurs :

- Inorganiques (LED)

Le photon émis a une énergie égale à

$$E_g = h \nu = hc / \lambda$$

- Organiques ou organométalliques (OLED)

LEDs inorganiques

Une jonction pn à l'état passant génère un rayonnement

	Eg (eV)	λ (nm)
GaN	3.4	365
GaP	2.3	540
GaAs	1.4	860

LEDs vs ampoules

- ➤ Ampoule à incandescence de 100W : 1000h
- LEDs 100 000h, + que les polymères dans lesquelles sont incorporées!
 - + Moins chaud, plus directionnel Commutation rapide Couleurs pures et brillantes

Evolution de la technologie LED

Lampe incandescence blanche: 17 lumen/W

Rouge (filtrée): 4 lumen/W

Gagner le marché de l'éclairage = faire du blanc

Nitrures : compléter the spectre visible

As

Structure d'une LED blanche constituée d'une LED bleue (GaInN) et d'un luminophore jaune

<u>Phosphores jaunes</u>:

- 1. YAG:Ce ou YAG:Ce,Gd
- 2. TAG:Ce
- 3. $(Sr, Ba, Ca)_2SiO_4:Eu$

Le luminophore peut aussi être encapsulé dans la résine époxy du dôme

Avantages:

- Basse consommation
- Brillance
- Long temps de vie

<u>Inconvénients</u> :

- Blanc bleuté
- Mauvais rendu des couleurs

Répartition spectrale de LEDs émettant différents blancs

Lampe à incandescence : 2700 K

OLED: Diodes électroluminescentes organiques

2 couches organiques entre une anode transparente et une cathode métallique

Electrons et trous injectés forment des excitons (paires électrontrou). Une partie des excitons rayonne, produisant la luminescence

Schéma des niveaux d'énergie

A l'interface électrodematériau, on injecte :

- Des électrons dans la BC
- Des trous dans la BV

Sous l'influence du champ électrique, les charges migrent dans le matériau organique semi-conducteur

Premières OLEDs: Alq3 (8-hydroxyquinoline Aluminium)

Effet du dopage sur la luminescence de Alq3

Compétition avec les LCD

