Simultaneous Multiparty Communication Protocols for Composed Functions

Yassine Hamoudi IRIF, Université Paris Diderot, CNRS

MFCS 2018

- Player i doesn't know x_i (\Leftrightarrow Number-On-Forehead)
- Communicate by broadcasting bits
- Players have unlimited computational power

No randomness in this talk

$$x_1, ..., x_n \in \{0, 1\}^n$$

An always-O(n) protocol:

- Player 1 sends x₂
- Player 2 sends $F(x_1,...,x_k)$

F is easy / protocol is efficient \Leftrightarrow communication cost $\log^{O(1)}(n)$

$$x_1, ..., x_n \in \{0, 1\}^n$$

An always-O(n) protocol:

- Player 1 sends x₂
- Player 2 sends $F(x_1,...,x_k)$

F is easy / protocol is efficient \Leftrightarrow communication cost $\log^{O(1)}(n)$

Equality: $x_1 = \dots = x_k$?

Two players: $\Omega(n)$

 $k \ge 3$ players: O(1)

- Player 1 indicates if $x_2 = ... = x_k$
- Player 2 indicates if $x_1 = x_3$

- Branching programs, Ramsey theory [Chandra, Furst, Lipton'83]
- Quasi-random graphs [Chung, Tetali'93]
- Proof complexity [Beame, Pitassi, Segerlind'07]
- Circuit complexity [Håstad, Goldmann'91] [Razborov, Wigderson'93] [Beigel, Tarui'94]
- Data-structures for dynamic problems [Patrascu'10]

- Branching programs, Ramsey theory [Chandra, Furst, Lipton'83]
- Quasi-random graphs [Chung, Tetali'93]
- Proof complexity [Beame, Pitassi, Segerlind'07]
- Circuit complexity [Håstad, Goldmann'91] [Razborov, Wigderson'93] [Beigel, Tarui'94]
- Data-structures for dynamic problems [Patrascu'10]

F is hard to compute for $k \ge \log(n)$ players communication cost: $(\log n)^{\omega(1)}$

Best lower bounds so far: $\tilde{\Omega}\left(\frac{n}{2^k}\right)$

[Håstad, Goldmann'91] [Babai, Gál, Kimmel, Lokam'04]

F is not in ACC⁰

polysize constant-depth circuits with AND, OR, NOT, MOD_m gates

Conjecture: MAJORITY ∉ ACC⁰

Conjecture: NP ⊈ ACC⁰

- Branching programs, Ramsey theory [Chandra, Furst, Lipton'83]
- Quasi-random graphs [Chung, Tetali'93]
- Proof complexity [Beame, Pitassi, Segerlind'07]
- Circuit complexity [Håstad, Goldmann'91] [Razborov, Wigderson'93] [Beigel, Tarui'94]
- Data-structures for dynamic problems [Patrascu'10]

F is hard to compute for $k \ge \log(n)$ players communication cost: $(\log n)^{\omega(1)}$

Best lower bounds so far: $\tilde{\Omega}\left(\frac{n}{2^k}\right)$

[Håstad, Goldmann'91]
[Babai, Gál, Kimmel, Lokam'04]

F is not in ACC⁰

polysize constant-depth circuits with AND, OR, NOT, MOD_m gates

Conjecture: MAJORITY ∉ ACC⁰

Conjecture: NP ⊈ ACC⁰

Log(n) barrier problem

Find a function that is hard to compute for log(n) or more players in the Number-On-Forehead model.

- Branching programs, Ramsey theory [Chandra, Furst, Lipton'83]
- Quasi-random graphs [Chung, Tetali'93]
- Proof complexity [Beame, Pitassi, Segerlind'07]
- Circuit complexity [Håstad, Goldmann'91] [Razborov, Wigderson'93] [Beigel, Tarui'94]
- Data-structures for dynamic problems [Patrascu'10]

F is hard to compute for $k \ge \log(n)$ players communication cost: $(\log n)^{\omega(1)}$

Best lower bounds so far: $\tilde{\Omega}\left(\frac{n}{2^k}\right)$

[Håstad, Goldmann'91] [Babai, Gál, Kimmel, Lokam'04]

F is not in ACC⁰

polysize constant-depth circuits with AND, OR, NOT, MOD_m gates

Conjecture: MAJORITY ∉ ACC⁰

Conjecture: NP ⊈ ACC⁰

Log(n) barrier problem

Find a function that is hard to compute for log(n) or more players in the *simultaneous* Number-On-Forehead model.

One-way communication to a referee, no interactions

- Input: $x_1, ..., x_k \in \{0,1\}^n$
- Player i doesn't see row i

Composed function:

$$f \circ (g_1, ..., g_n)$$
 where $f: \{0,1\}^n \to \{0,1\}$ and $g_j: \{0,1\}^k \to \{0,1\}$

- Input: $x_1, ..., x_k \in \{0,1\}^n$
- Player i doesn't see row i

Composed function:

$$f \circ (g_1,...,g_n)$$
 where $f:\{0,1\}^n \to \{0,1\}$ and $g_j:\{0,1\}^k \to \{0,1\}$

Examples:

- Generalized Inner Product: MOD₂ o (AND,...,AND)
- Disjointness:

- OR (AND,...,AND)
- Majority of Majority:
- MAJ (MAJ,...,MAJ)

- Input: $x_1, ..., x_k \in \{0,1\}^n$
- Player i doesn't see row i

Composed function:

$$f \circ (g_1,...,g_n)$$
 where $f:\{0,1\}^n \to \{0,1\}$ and $g_j:\{0,1\}^k \to \{0,1\}$

Examples:

- Generalized Inner Product: MOD₂ (AND,...,AND)
- Disjointness:

- OR (AND,...,AND)
- Majority of Majority: MAJ (MAJ,...,MAJ)

There is an efficient simultaneous protocol for $f \circ (g_1,...,g_n)$ when **f is symmetric** and $k \ge \Omega(\log n)$. [Grolmusz'94] [Babai, Gál, Kimmel, Lokam'04] [Ada, Chattopadhyay, Fawzi, Nguyen'15]

Conjecture [Babai et. al.'04] The simultaneous communication cost of MAJ \circ (MAJ,...,MAJ) is $(\log n)^{\omega(1)}$ for $t \ge \sqrt{n}$ and $k \ge \Omega(\log n)$. for t = 2

Our result

Theorem: If t is constant, there is an efficient simultaneous protocol for $f \circ (g_1,...,g_n)$ when f, $g_1,...,g_n$ are symmetric and $k \ge \Omega(\log n)$.

MAJ ∘ (MAJ,...,MAJ) cannot break the log n barrier for constant t

Theorem: If t is constant, there is an efficient simultaneous protocol for $f \circ (g_1,...,g_n)$ when f, $g_1,...,g_n$ are symmetric and $k \ge \Omega(\log n)$.

MAJ ∘ (MAJ,...,MAJ) cannot break the log n barrier for constant t

	Block-width t	Model	Conditions
[Ada, Chattopadhyay, Fawzi, Nguyen'15]	1	simultaneous	f symmetric
[Chattopadhyay, Saks'14]	log log n	non-simultaneous	f symmetric
[Chattopadhyay, Saks'14]	log n	non-simultaneous	f, g ₁ ,, g _n symmetric
Our result	constant	simultaneous	f, g ₁ ,, g _n symmetric

Theorem: If t is constant, there is an efficient simultaneous protocol for $f \circ (g_1,...,g_n)$ when f, $g_1,...,g_n$ are symmetric and $k \ge \Omega(\log n)$.

MAJ ∘ (MAJ,...,MAJ) cannot break the log n barrier for constant t

Roadmap (when $k = \Theta(\log n)$):

- 1. Reduce to the case of equal inner functions $g = g_1 = ... = g_n$
- 2. Simultaneous protocol for fo(g,...,g) with a generalization of [Babai et. al.'04]

1. Each g_j is decomposed in a basis of symmetric functions: $g_j(x) = \sum_a c_a(g_j) \cdot m_a(x)$

- 1. Each g_j is decomposed in a basis of symmetric functions: $g_j(x) = \sum_a c_a(g_j) \cdot m_a(x)$
- 2. For each basis element m_a , define the matrix M_a where each B_j is repeated $\mathbf{c_a}(\mathbf{g_j})$ times.

- 1. Each g_j is decomposed in a basis of symmetric functions: $g_j(x) = \sum_a c_a(g_j) \cdot m_a(x)$
- 2. For each basis element m_a , define the matrix M_a where each B_j is repeated $\mathbf{c_a}(\mathbf{g_j})$ times.
- 3. For each ma, compute **SUM**(ma,...,ma) on Ma.

- 1. Each g_j is decomposed in a basis of symmetric functions: $g_j(x) = \sum_a c_a(g_j) \cdot m_a(x)$
- 2. For each basis element m_a , define the matrix M_a where each B_j is repeated $c_a(g_j)$ times.
- 3. For each m_a, compute **SUM**(**m**_a,...,**m**_a) on M_a.

$$\sum\nolimits_{a}SUM\circ(m_{a},...,m_{a})(M_{a})=\sum\nolimits_{a}\sum\nolimits_{j}c_{a}(g_{j})\cdot m_{a}(B_{j})=\sum\nolimits_{j}g_{j}(B_{j})$$

- 1. Each g_j is decomposed in a basis of symmetric functions: $g_j(x) = \sum_a c_a(g_j) \cdot m_a(x)$
- 2. For each basis element m_a , define the matrix M_a where each B_j is repeated $c_a(g_j)$ times.
- 3. For each ma, compute **SUM (ma,...,ma)** on Ma.

$$\sum\nolimits_{a}SUM\circ(m_{a},...,m_{a})(M_{a})=\sum\nolimits_{a}\sum\nolimits_{j}c_{a}(g_{j})\cdot m_{a}(B_{j})=\sum\nolimits_{j}g_{j}(B_{j})$$

Enough to compute $f \circ (g_1, ..., g_n)$ since f is **symmetric**.

- 1. Each g_j is decomposed in a basis of symmetric functions: $g_j(x) = \sum_a c_a(g_j) \cdot m_a(x) \mod p$ for prime $p \in (n,2n)$
- 2. For each basis element m_a , define the matrix M_a where each B_j is repeated $c_a(g_j)$ times.
- 3. For each m_a, compute **SUM** (m_a,...,m_a) on M_a.

Size $\leq k \times n^2$

$$\sum\nolimits_{a}SUM\circ(m_{a},...,m_{a})(M_{a})=\sum\nolimits_{a}\sum\nolimits_{j}c_{a}(g_{j})\cdot m_{a}(B_{j})=\underbrace{\sum\nolimits_{j}g_{j}(B_{j})}$$

Enough to compute $f \circ (g_1, ..., g_n)$ since f is **symmetric**.

X 1	0	1	1	1	1	1	1
X 2	1	1	1	0	0	1	0
X 3	1	0	1	1	0	0	0
X 4	0	1	1	0	1	0	0
X 5	1	1	1	0	1	1	0

$$y_0 = 0$$

 $y_1 = 1$
 $y_2 = 1$
 $y_3 = 3$
 $y_4 = 1$
 $y_5 = 1$

- For a k×n matrix M, define $y(M) = (y_0,...,y_k)$ where $y_i = \#columns$ with exactly i 1's.
 - \rightarrow Knowing y(M) is enough to compute fo(g,...,g) when f and g are symmetric.

X1	0	1	1	1	1	1	1	
X 2	1	1	1	0	0	1	0	M_1 $y_0 = 0$ $y_1 = 1$
X 3	1	0	1	1	0	0	0	$y_2 = 1$ $y_3 = 3$
X 4	0	1	1	0	1	0	0	$y_4 = 1$
X 5	1	1	1	0	1	1	0	y ₅ = 1

- For a k×n matrix M, define $y(M) = (y_0,...,y_k)$ where $y_i = \#columns$ with exactly i 1's.
 - \rightarrow Knowing y(M) is enough to compute fo(g,...,g) when f and g are symmetric.
- For each $1 \le i \le k$, Player i sends $y(M_i)$ where M_i is the submatrix seen by Player i.
 - → This will be the only communication part of our protocol.

X1	0	1	1	1	1	1	1	
X 2	1	1	1	0	0	1	0	M_1 $y_0 = 0$ $y_1 = 1$
X 3	1	0	1	1	0	0	0	$y_2 = 1$ $y_3 = 3$
X 4	0	1	1	0	1	0	0	$y_4 = 1$
X 5	1	1	1	0	1	1	0	y ₅ = 1

- For a k×n matrix M, define $y(M) = (y_0,...,y_k)$ where $y_i = \#columns$ with exactly i 1's.
 - \rightarrow Knowing y(M) is enough to compute fo(g,...,g) when f and g are symmetric.
- For each $1 \le i \le k$, Player i sends $y(M_i)$ where M_i is the submatrix seen by Player i.
 - → This will be the only communication part of our protocol.
- Using $y(M_1), ..., y(M_k)$, one can define an equation whose only integral solution is y(M).
 - \rightarrow The referee computes y(M) and then fo(g,...,g).

X1	0	1	1	1	1	1	1		
X 2	1	1	1	0	0	1	0		$y_0 = 0$ $y_1 = 1$
X 3	1	0	1	1	0	0	0		$y_2 = 1$ $y_3 = 3$
X 4	0	1	1	0	1	0	0	,	$y_4 = 1$
X 5	1	1	1	0	1	1	0		y ₅ = 1

We generalize this protocol to t > 1, and show that the corresponding equation admits exactly one integral solution when $k \ge \Omega(\log n)$.

Our result: MAJ o (MAJ,...,MAJ) cannot break the log n barrier for any constant t (in fact, any symmetric fo(g₁,...,g_n))

Future directions:

- Efficient simultaneous protocol for non-constant t and/or non-symmetric g₁,...,g_n
- Strong lower bound for k ≥ log n players
 - → only general method known: discrepancy method and its variants
 - → [Podolskii, Sherstov'17]: first $\omega(1)$ lower bound when $k \ge \log n$ for explicit function

arXiv: 1710.01969

Lemma: If $g: Y_1,...,Y_k \rightarrow Y$ is symmetric then

$$g'(y_1, ..., y_{k'}) = g(y_1, ..., y_{k'}, y_{k'+1}, ..., y_k)$$

variables any fixed values

is symmetric.

Lemma: If $g: Y_1,...,Y_k \rightarrow Y$ is symmetric then

$$g'(y_1, ..., y_{k'}) = g(y_1, ..., y_{k'}, y_{k'+1}, ..., y_k)$$

variables any fixed values

is symmetric.

Lemma: If $g: Y_1,...,Y_k \rightarrow Y$ is symmetric then

$$g'(y_1, ..., y_{k'}) = g(y_1, ..., y_{k'}, y_{k'+1}, ..., y_k)$$

variables any fixed values

is symmetric.

