

Computer Vision Course — A.A. 2021/2022

Lab 2: Motion Detection

Nicola Garau nicola.garau@unitn.it

What's up today?

- Frame differencing
- Background Subtraction
- Adaptive Background Subtraction
- Adaptive Background Subtraction: Mixture of Gaussians

Frame differencing

Frame Differencing: Time Scaling

$$D(N) = ||I(t) - I(t+N)||$$

Exercise: frame differencing

- Initialise a new project
- Open a video
- Convert frames to grayscale
 - frame_gray = cv2.cvtColor(frame_color, cv2.COLOR_RGB2GRAY)
- Use a list to store frames!
 - frames = []
 - Which is appended to a ready of the property of the pr
- Implement the function
 - result = cv2.absdiff(I(t),I(t+N))
 - Pint: t+N can be thought as t-N

$$D(N) = ||I(t) - I(t+N)||$$

What's missing in the implementation?

Apply thresholding on the mask

cv2.threshold(diff, THRESH, MAXVAL, TYPE)

Background Subtraction

Pseudo-code

```
B = I(0);
...
  loop time t
  I(t) = next frame;
  diff = abs[B - I(t)];
  Map(t) = threshold(diff);
...
end
```

Adaptive Background Subtraction

- Use a parameter α (learning rate) to weight the contributions
 - $B_t = \alpha I_t + (1 \alpha)B_{t-1}$
 - $\alpha = 0 \rightarrow \text{bg sub, no update}$
 - $\alpha = 1 \rightarrow \text{frame differencing}$

Mixture of Gaussians

$$P(\mathbf{x}_t) = \sum_{i=1}^K \omega_{i,t} \eta(\mathbf{x}_t, \mu_{i,t}, \Sigma_{i,t})$$

- \bullet $\omega_{i,t}$ is the weight for the current Gaussian
- Select K
- Rank the Gaussians on the basis of
 - Peak amplitude
 - Weight
 - Standard deviation

$$\omega_{k,t} = \alpha M_{k,t} + (1 - \alpha) \omega_{k,t-1}$$

- α is the so-called learning rate
- M is 1 for the matching model and 0 otherwise
 - → if it is not the matching model, the weight is decreased

Exercise

- Go to OpenCV 4 documentation
- https://docs.opencv.org/4.x/
- Check the parameters for the BackgroundSubtractorMOG
- Try to change the number of Gaussians and the history (how much time you want to spend to learn the background model) used and check the results
- Change the MOG to BackgroundSubtractorMOG2
- Use the method getBackgroundImage() to get the background
- Display the background and observe how it changes over time with different values of the learning rate parameter