Elementary Graph Algorithms

Dr. Navjot Singh Design and Analysis of Algorithms

Graphs

- *Graph G* = (*V*, *E*)
 - V = set of vertices
 - $E = \text{set of edges} \subseteq (V \times V)$
- Types of graphs
 - Undirected: edge (u, v) = (v, u); for all $v, (v, v) \notin E$ (No self loops.)
 - Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
 - Weighted: each edge has an associated weight, given by a weight function w: E → R.
 - Dense: $|E| \approx |V|^2$.
 - Sparse: |*E*| << |*V*|²
- $|E| = O(|V|^2)$

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - Symmetric if G is undirected.
 - Not necessarily so if G is directed.
- If G is connected:
 - There is a path between every pair of vertices.
 - $|E| \ge |V| 1$.
 - Furthermore, if |E| = |V| 1, then G is a tree.

- Two standard ways.
 - Adjacency Matrix

	1	2	3	4
1 2 3 4	0	1	1	1
2	1	0	1	0
3	1	1	0	1
4	1	0	1	0

Adjacency List

Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to | V| in some arbitrary manner.
- *A* is then given by:

	1	2	3	4
1	0	1 0 0 0	1	1
2	0	0	1	0
3	0	0	0	1
4	0	0	0	0

$$A[i, j] = a_{ij} = \begin{cases} 1 & \text{if } (i, j) \in E \\ 0 & \text{otherwise} \end{cases}$$

 $A = A^{T}$ for undirected graphs.

- Space: Θ(V²).
 - Not memory efficient for large graphs.
- Time: to list all vertices adjacent to u: $\Theta(V)$.
- Time: to determine if $(u, v) \in E$: $\Theta(1)$.
- Can store weights instead of bits for weighted graph.

Adjacency Lists

- Consists of an array Adj of | V lists.
- One list per vertex.
- For $u \in V$, Adj[u] consists of all vertices adjacent to u.

Storage Requirement

- For directed graphs:
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V} \text{out-degree}(v) = |E|$$

Total storage: ⊕(V+E)

No. of edges leaving *v*

- For undirected graphs:
 - Sum of lengths of all adj. lists is

$$\sum_{v \in V} degree(v) = 2|E|$$

Total storage: ⊕(V+E)

No. of edges incident on v. Edge (u, v) is incident on vertices u and v.

Pros and Cons: adj list

Pros

- Space-efficient, when a graph is sparse.
- Can be modified to support many graph variants.

Cons

- Determining if an edge (u,v) ∈G is not efficient.
 - Have to search in \vec{u} 's adjacency list. $\Theta(\text{degree}(u))$ time.
 - $\Theta(V)$ in the worst case.

- Searching a graph:
 - Systematically follow the edges of a graph to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).

Breadth-first Search

 Input: Graph G = (V, E), either directed or undirected, and source vertex s ∈ V.

Output:

- d[v] = distance (smallest # of edges, or shortest path) from s to v, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
- $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim v$.
 - *u* is *v*'s predecessor.
- Builds breadth-first tree with root s that contains all reachable vertices.

Definitions:

Path between vertices u and v: Sequence of vertices $(v_1, v_2, ..., v_k)$ such that $u=v_1$ and $v=v_k$, and $(v_i, v_{i+1}) \in E$, for all $1 \le i \le k-1$.

Length of the path: Number of edges in the path.

Path is simple if no vertex is repeated.

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 - A vertex is "discovered" the first time it is encountered during the search.
 - A vertex is "finished" if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
 - White Undiscovered.
 - Gray Discovered but not finished.
 - Black Finished.
 - Colors are required only to reason about the algorithm. Can be implemented without colors.

BFS for Shortest Paths

Finished

Discovered

O Undiscovered

```
BFS(G,s)
1. for each vertex u in V[G] – {s}
            do color[u] \leftarrow white
                d[u] \leftarrow \infty
                \pi[u] \leftarrow \text{nil}
    color[s] \leftarrow gray
   d[s] \leftarrow 0
   \pi[s] \leftarrow \text{nil}
8 Q \leftarrow \Phi
    enqueue(Q,s)
10 while Q \neq \Phi
            do u \leftarrow dequeue(Q)
11
12
                         for each v in Adj[u]
                                      do if color[v] = white
13
                                                  then color[v] \leftarrow gray
14
15
                                                          d[v] \leftarrow d[u] + 1
16
                                                          \pi[v] \leftarrow u
17
                                                          enqueue(Q,v)
18
                         color[u] \leftarrow black
```


white: undiscovered gray: discovered black: finished

Q: a queue of discovered vertices color[v]: color of v d[v]: distance from s to v $\pi[u]$: predecessor of v

Q: s

Q: w r 1 1

Q: r t x 1 2 2

Q: t x v 2 2 2

Q: x v u 2 2 3

Q: v u y 2 3 3

Q: u y 3 3

Q: y 3

Q: Ø

Breadth-First Tree

- Initialization takes O(V).
- Traversal Loop
 - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes O(1). So, total time for queuing is O(V).
 - The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.
- Summing up over all vertices => total running time of BFS is O(V+E), linear in the size of the adjacency list representation of graph.

- For a graph G = (V, E) with source s, the predecessor subgraph of G is $G_{\pi} = (V_{\pi}, E_{\pi})$ where
 - $V_{\pi} = \{ v \in V : \pi[v] \neq \text{NIL} \} \cup \{s\}$
 - $E_{\pi} = \{ (\pi[v], v) \in E : v \in V_{\pi} \{s\} \}$
- The predecessor subgraph G_{π} is a breadth-first tree if:
 - V_{π} consists of the vertices reachable from s and
 - for all $v \in V_{\pi}$, there is a unique simple path from s to v in G_{π} that is also a shortest path from s to v in G.
- The edges in E_{π} are called **tree edges**. $|E_{\pi}| = |V_{\pi}| 1$.

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.

- Input: G = (V, E), directed or undirected. No source vertex given!
- Output:
 - 2 timestamps on each vertex. Integers between 1 and 2|V|.
 - d[v] = discovery time (v turns from white to gray)
 - f[v] = finishing time (v turns from gray to black)
 - $\pi[v]$: predecessor of v = u, such that v was discovered during the scan of u's adjacency list.
- Uses the same coloring scheme for vertices as BFS.

DFS(G)

- 1. **for** each vertex $u \in V[G]$
- 2. **do** $color[u] \leftarrow$ white
- 3. $\pi[u] \leftarrow NIL$
- 4. $time \leftarrow 0$
- 5. **for** each vertex $u \in V[G]$
- 6. **do if** color[u] = white
- 7. **then** DFS-Visit(u)

Uses a global timestamp *time*.

DFS-Visit(u)

- 1. $color[u] \leftarrow GRAY \nabla$ White vertex u has been discovered
- 2. $time \leftarrow time + 1$
- 3. $d[u] \leftarrow time$
- 4. **for** each $v \in Adj[u]$
- 5. $\mathbf{do} \ \mathbf{if} \ color[v] = \mathbf{WHITE}$
- 6. **then** $\pi[v] \leftarrow u$
- 7. DFS-Visit(v)
- 8. $color[u] \leftarrow BLACK \quad \nabla Blacken u;$ it is finished.
- 9. $f[u] \leftarrow time \leftarrow time + 1$

- Loops on lines 1-2 & 5-7 take ⊕(V) time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it's painted gray the first time. Lines 3-6 of DFS-Visit is executed |Adj[v]| times. The total cost of executing DFS-Visit is $\sum_{v \in V} |Adj[v]| = \Theta(E)$
- Total running time of DFS is $\Theta(V+E)$.

Parenthesis Theorem

Theorem

For all *u*, *v*, exactly one of the following holds:

- 1. d[u] < f[u] < d[v] < f[v] or d[v] < f[v] < d[u] < f[u] and neither u nor v is a descendant of the other.
- 2. d[u] < d[v] < f[v] < f[u] and v is a descendant of u.
- 3. d[v] < d[u] < f[u] < f[v] and u is a descendant of v.
 - So d[u] < d[v] < f[u] < f[v] cannot happen.
 - Like parentheses:
 - OK:()[]([])[()]
 - Not OK: ([)][(])

Corollary

v is a proper descendant of u if and only if d[u] < d[v] < f[v] < f[u].

Example (Parenthesis Theorem)

$$(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)$$

- Predecessor subgraph defined slightly different from that of BFS.
- The predecessor subgraph of DFS is $G_{\pi} = (V, E_{\pi})$ where $E_{\pi} = \{(\pi[v], v) : v \in V \text{ and } \pi[v] \neq NIL\}.$
 - How does it differ from that of BFS?
 - The predecessor subgraph G_{π} forms a *depth-first forest* composed of several *depth-first trees*. The edges in E_{π} are called *tree edges*.

Definition:

Forest: An acyclic graph G that may be disconnected.

Theorem

v is a descendant of u if and only if at time d[u], there is a path $u \sim v$ consisting of only white vertices. (Except for u, which was *just* colored gray.)

- Tree edge: in the depth-first forest. Found by exploring (*u, v*).
- Back edge: (*u, v*), where *u* is a descendant of *v* (in the depth-first tree).
- Forward edge: (*u, v*), where *v* is a descendant of *u*, but not a tree edge.
- Cross edge: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Theorem:

In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

- Edge type for edge (*u*, *v*) can be identified when it is first explored by DFS.
- Identification is based on the color of v.
 - White tree edge.
 - Gray back edge.
 - Black forward or cross edge.

- DAG Directed graph with no cycles.
- Good for modeling processes and structures that have a partial order:
 - a > b and $b > c \Rightarrow a > c$.
 - But may have a and b such that neither a > b nor b > a.
- Can always make a total order (either a > b or b > a for all a ≠ b) from a partial order.

DAG of dependencies for putting on goalie equipment.

Lemma

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

- ⇒: Show that back edge ⇒ cycle.
 - Suppose there is a back edge (*u*, *v*). Then *v* is ancestor of *u* in depth-first forest.
 - Therefore, there is a path $v \sim u$, so $v \sim u \sim v$ is a cycle.

Lemma

A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

- = : Show that a cycle implies a back edge.
 - c: cycle in G, v: first vertex discovered in c, (u, v): preceding edge in c.
 - At time d[v], vertices of c form a white path $v \sim u$. Why?
 - By white-path theorem, u is a descendent of v in depth-first forest.
 - Therefore, (u, v) is a back edge.

Want to "sort" a directed acyclic graph (DAG).

Think of original DAG as a partial order.

Want a **total order** that extends this partial order.

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)

- 1. call DFS(G) to compute finishing times f[v] for all $v \in V$
- 2. as each vertex is finished, insert it onto the front of a linked list
- **3.** return the linked list of vertices

Time: $\Theta(V+E)$.

Linked List:

Correctness Proof

- Just need to show if $(u, v) \in E$, then f[v] < f[u].
- When we explore (u, v), what are the colors of u and v?
 - *u* is gray.
 - Is v gray, too?
 - No, because then v would be ancestor of u.
 - \Rightarrow (*u*, *v*) is a back edge.
 - ⇒ contradiction of Lemma (DAG has no back edges).
 - Is v white?
 - Then becomes descendant of u.
 - By parenthesis theorem, d[u] < d[v] < f[v] < f[u].
 - Is v black?
 - Then v is already finished.
 - Since we're exploring (u, v), we have not yet finished u.
 - Therefore, f[v] < f[u].

- G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices C ⊆ V such that for all u, v ∈ C, both u ~v and v ~u exist.

Component Graph

- $G^{SCC} = (V^{SCC}, E^{SCC}).$
- VSCC has one vertex for each SCC in G.
- ESCC has an edge if there's an edge between the corresponding SCC's in G.
- *G*^{SCC} for the example considered:

Lemma 22.13

Let C and C' be distinct SCC's in G, let $u, v \in C$, $u', v' \in C'$, and suppose there is a path $u \sim u'$ in G. Then there cannot also be a path $v' \sim v$ in G.

Proof:

- Then there are paths $u \sim u \sim v$ and $v \sim v \sim u$ in G.
- Therefore, *u* and *v* are reachable from each other, so they are not in separate SCC's.

- G^T = transpose of directed G.
 - $G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\}.$
 - G^T is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T have the same SCC's. (u and v are reachable from each other in G if and only if reachable from each other in G^T.)

SCC(G)

- 1. call DFS(G) to compute finishing times f[u] for all u
- ^{2.} compute G^{T}
- call DFS(G^T), but in the main loop, consider vertices in order of decreasing f[u] (as computed in first DFS)
- output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V+E)$.

How does it work?

Idea:

- By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
- Because we are running DFS on G^T , we will not be visiting any v from a u, where v and u are in different components.

Notation:

- d[u] and f [u] always refer to first DFS.
- Extend notation for d and f to sets of vertices $U \subseteq V$:
- $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
- $f(U) = \max_{u \in U} \{ f[u] \}$ (latest finishing time)

Lemma

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

Proof:

- Case 1: d(C) < d(C')
 - Let x be the first vertex discovered in C.
 - At time d[x], all vertices in C and C' are white.
 Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - By the white-path theorem, all vertices in C and C' are descendants of x in depth-first tree.
 - By the parenthesis theorem, f[x] = f(C) > f(C').

Lemma

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then f(C) > f(C').

Proof:

- Case 2: d(C) > d(C')
 - Let y be the first vertex discovered in C'.
 - At time d[y], all vertices in C' are white and there is a white path from y to each vertex in C' ⇒ all vertices in C' become descendants of y. Again, f[y] = f(C').
 - At time d[y], all vertices in C are also white.
 - By earlier lemma, since there is an edge (*u, v*), we cannot have a path from *C'* to *C*.
 - So no vertex in *C* is reachable from *y*.
 - Therefore, at time f [y], all vertices in C are still white.
 - Therefore, for all $w \in C$, f[w] > f[y], which implies that f(C) > f(C').

Corollary

Let C and C' be distinct SCC's in G = (V, E). Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then f(C) < f(C').

Proof:

- $(u, v) \in E^T \Rightarrow (v, u) \in E$.
- Since SCC's of G and G^T are the same, f(C') > f(C), by Lemma.

- When we do the second DFS, on G^T, start with SCC C such that f(C) is maximum.
 - The second DFS starts from some x ∈ C, and it visits all vertices in C.
 - Corollary 22.15 says that since f(C) > f (C') for all C≠ C', there are no edges from C to C' in G^T.
 - Therefore, DFS will visit only vertices in C.
 - Which means that the depth-first tree rooted at x contains exactly the vertices of C.

- The next root chosen in the second DFS is in SCC C' such that f (C') is maximum over all SCC's other than C.
 - DFS visits all vertices in C', but the only edges out of C' go to C, which we've already visited.
 - Therefore, the only tree edges will be to vertices in C'.
- We can continue the process.
- Each time we choose a root for the second DFS, it can reach only
 - vertices in its SCC—get tree edges to these,
 - vertices in SCC's already visited in second DFS—get no tree edges to these.

- Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C., Introduction to algorithms. MIT press, 2009
- Dr. David Kauchak, Pomona College
- Prof. David Plaisted, The University of North Carolina at Chapel Hill