

Allan Victor Almeida Faria (190127180), Ananda Almeida de Sá (150117345), Bruno Kevyn Andrade de Souza

## Trabalho de Regressão Linear

Brasília, DF

21/02/2021



## Allan Victor Almeida Faria (190127180), Ananda Almeida de Sá (150117345), Bruno Kevyn Andrade de Souza

## Trabalho de Regressão Linear

Trabalho de Regressão Linear de Análise de dados hospitalares.

Universidade de Brasília (UnB)

Instituto de Ciências Exatas (IE)

Departamento de Estatística (DE)

Brasília, DF

21/02/2021

## Resumo

resumo aqui

Palavras-chaves: 1. Análise de dados.

# Lista de ilustrações

| Figura | 1 | _ | Gráfico | de | box-plc  | ot da | s variav | áveis | dos | dados       |     |        |  |  | 12 |
|--------|---|---|---------|----|----------|-------|----------|-------|-----|-------------|-----|--------|--|--|----|
| Figura | 2 | _ | Gráfico | de | calor da | a cor | relação  | entre | as  | variaváveis | dos | dados. |  |  | 13 |

## Lista de tabelas

| Tabela 1 — Descrição dos códigos da tabela com a seguinte indentificação da variável. | 10 |
|---------------------------------------------------------------------------------------|----|
| Tabela 2 – Medidas descritivas para boxplots                                          | 12 |
| Tabela 3                                                                              | 15 |
| Tabela 4 –                                                                            | 17 |
| Tabela 5 – Modelo 1                                                                   | 18 |
| Tabela 6 - $X10 = X1adj * X8 + X6adj + X7 * X8$                                       | 19 |
| Tabela 7 - $X10 = X6adj + X7$                                                         | 20 |
| Tabela 8 - $X10 = X6adj + X7$                                                         | 20 |
| Tabela 9 – $X10_cox\ X6adj + X7$                                                      | 21 |
| Tabela $10 - X10_c ox = X6adj + X7 \dots$                                             | 23 |
| Tabela 11 –                                                                           | 25 |
| Tabela 12 – summary(modfim)                                                           | 26 |
| Tabela 13 –                                                                           | 29 |
| Tabela 14 –                                                                           | 30 |
| Tabela 15 –                                                                           | 33 |
| Tabela 16 –                                                                           | 34 |

# Lista de abreviaturas e siglas

INEP Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira

SAEB Sistema de Avaliação da Educação Básica

# Lista de símbolos

# Sumário

| 1       | RESULT                                   | 8  |
|---------|------------------------------------------|----|
| 1.1     | Introdução                               | 8  |
| 1.1.1   | Objetivos                                | 8  |
| 1.1.2   | Metodologia                              | 8  |
| 1.2     | Resultado                                | 11 |
| 1.2.0.1 | Correlação entre as variáveis            | 14 |
| 1.3     | Objetivo                                 | 15 |
| 1.3.1   | Testes                                   | 15 |
| 1.3.2   | Número de enfermeira(o)s                 | 16 |
| 1.3.2.1 | Pressupostos para um modelo inicial      | 17 |
| 1.3.2.2 | modelo inicial com o metodo de step wise | 25 |
| 1.3.2.3 | modelo hospital assumptions              | 31 |
| 1.3.3   | Duração da internação                    | 34 |
| 1.3.4   | MODELO POR HIPOTESE                      | 35 |
|         | REFERÊNCIAS                              | 38 |
|         | ANEXOS                                   | 39 |
|         | ANEXO A – AMOSTRA                        | 40 |

## 1 RESULT

### 1.1 Introdução

Tipo de problema, tipo de dados, proposta para contornar o problema

#### 1.1.1 Objetivos

A fim de estudar sobre a duração da internação nos hospitais dos Estados Unidos no período de 1975-1976, foi retirada uma amostra aleatória de 113 hospitais selecionados entre 338 pesquisados, para isso foram propostas as seguintes hipóteses:

A primeira é verificar se o número de enfermeira(o)s está relacionado às instalações, ou seja, os números de leitos do hospital, e se há diferenças entre os serviços disponíveis pelos hospitais. Além de verificar se a mesma variável resposta mencionada anteriormente varia segundo a região.

Já a segunda é verificar se a duração da internação está associada a características do paciente, seu tratamento e do hospital.

### 1.1.2 Metodologia

O programa utilizado para analisar os dados disponibilizados em Excel será o R Studio, versão 4.2.0. Para uma primeira visualização dos dados, necessita-se identificar e realizar a análise descritiva das variáveis, portanto os dados estão organizados e classificados da seguinte maneira:

```
# Tabela de nomes X1: Nome variavel

Nome <- names(data)

Código <- names(data_temp)

Descrição <- c('1-113', 'Duração média da internação de todos os pacientes no hospital

Classificação <- c('Qualitativa ordinal', 'Quantitativa contínua', 'Quantitativa cont
```

As etapas para o estudo da internação dos hospitais foram separadas em duas maneiras, a primeira é a construção e a segunda é a validação do modelo. Para a primeira etapa, foi selecionada uma amostra aleatória simples com 57 observações, para a segundo ficou o restante das observações que compõe o banco. Para as duas hipóteses procura-se um modelo regressivo linear múltiplo do tipo:

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_k X_{ik} + e_i, \forall i = 1, \dots, n$$

Onde tem-se,

•

 $Y_{ij}$ 

- variável resposta;

•

$$X_{i1}, X_{i2}, \ldots, X_{ik}$$

- k variáveis explicativas ou independentes;

•

$$\beta_0, \beta_1, \beta_2, \ldots, \beta_k$$

- parâmetros do modelo;

•

 $e_i$ 

- são independentes e

 $N(0,\sigma^2)$ 

.

Tabela 1 – Descrição dos códigos da tabela com a seguinte indentificação da variável.

| Nome                                           | Código | Descriç |                                   |
|------------------------------------------------|--------|---------|-----------------------------------|
| Número de Identificação                        | ID     | 1-113   | Qualitativa ordinal               |
| Duração da Internação                          | X1     | Duraçã  | oQuantitativa contínua            |
|                                                |        | mé-     |                                   |
|                                                |        | dia     |                                   |
|                                                |        | da in-  |                                   |
|                                                |        | terna-  |                                   |
|                                                |        | ção     |                                   |
|                                                |        | de      |                                   |
|                                                |        | todos   |                                   |
|                                                |        | os      |                                   |
|                                                |        | paci-   |                                   |
|                                                |        | entes   |                                   |
|                                                |        | no      |                                   |
|                                                |        | hospi-  |                                   |
|                                                |        | tal     |                                   |
|                                                |        | (em     |                                   |
|                                                |        | dias)   |                                   |
| Idade                                          | X2     | Idade   | Quantitativa contínua             |
|                                                |        | mé-     |                                   |
|                                                |        | dia     |                                   |
|                                                |        | dos     |                                   |
|                                                |        | paci-   |                                   |
|                                                |        | entes   |                                   |
| Risco de Infecção                              | X3     |         | il <b>Quade</b> titativa contínua |
|                                                |        | mé-     |                                   |
|                                                |        | dia     |                                   |
|                                                |        | esti-   |                                   |
|                                                |        | mada    |                                   |
|                                                |        | de      |                                   |
|                                                |        | ad-     |                                   |
|                                                |        | quirir  |                                   |
|                                                |        | infec-  |                                   |
|                                                |        | ção     |                                   |
|                                                |        | no .    |                                   |
|                                                |        | hospi-  |                                   |
|                                                |        | tal     |                                   |
|                                                |        | (em     |                                   |
|                                                | 77.4   | %)      |                                   |
| Proporção de Culturas de Rotina                | X4     | Razão   | Quantitativa contínua             |
|                                                |        | do      |                                   |
|                                                |        | nú-     |                                   |
|                                                |        | mero    |                                   |
| mpus Universitário Darcy Ribeiro, Brasília, DF |        | de      | Versão                            |
|                                                |        | cultu-  | Página 10 de 4                    |
|                                                |        | ras     |                                   |
|                                                |        | reali-  |                                   |
|                                                |        | zadas   |                                   |
|                                                | 1      |         |                                   |

Para a primeira hipótese, define-se como modelo I aquele que relaciona a variável resposta, Número de enfermeiro(s) (X10), com as variáveis explicativas, instalações (X6), serviços disponíveis pelos hospitais (X11) e a região (X8).

Já o modelo II é definido como aquele que relaciona a variável resposta, Duração da internação (X1), com as variáveis explicativas, a características do paciente (X2), seu tratamento  $(X4 \ e \ X5)$  e do hospital (X3).

```
par(mfrow = c(1,2))
datax$X7 %>% table(.) %>% barplot(xlab='X7')
datax$X8 %>% table(.) %>% barplot(xlab='X8')
```





#### 1.2 Resultado

Realizando uma breve análise descritiva das variáveis quantitativas, tem-se o boxplot com os dados normalizados:

Tabela 2 – Medidas descritivas para boxplots

| Variaveis                              | Min.  | 1st Qu. | Median | Mean  | 3rd Qu. | Max.   |
|----------------------------------------|-------|---------|--------|-------|---------|--------|
| Duração da Internação                  | 6.700 | 8.340   | 9.420  | 9.648 | 10.470  | 19.560 |
| Idade                                  | 38.80 | 50.90   | 53.20  | 53.23 | 56.20   | 65.90  |
| Risco de Infecção                      | 1.300 | 3.700   | 4.400  | 4.355 | 5.200   | 7.800  |
| Proporção de Culturas de Rotina        | 1.60  | 8.40    | 14.10  | 15.79 | 20.30   | 60.50  |
| Proporção de Raio-X de Tórax de Rotina | 39.60 | 69.50   | 82.30  | 81.63 | 94.10   | 133.50 |
| Número de leitos                       | 29.0  | 106.0   | 186.0  | 252.2 | 312.0   | 835.0  |
| Média diária de pacientes              | 20.0  | 68.0    | 143.0  | 191.4 | 252.0   | 791.0  |
| Número de enfermeiro(s)                | 14.0  | 66.0    | 132.0  | 173.2 | 218.0   | 656.0  |
| Facilidades e serviços disponíveis     | 5.70  | 31.40   | 42.90  | 43.16 | 54.30   | 80.00  |

boxplot(datax\_ajusdet)



Figura 1 – Gráfico de box-plot das variaváveis dos dados.

Para verificar a natureza e a força da relação entre as variáveis e identificar lacunas e pontos discrepantes no conjunto de dados, utiliza-se a matriz de correlação.

```
library(ggcorrplot)
library(dplyr)
pmat = dplyr::select(datax,!matches("adj")) %>% select_if(is.numeric) %>% cor_pmat()
dplyr::select(datax,!matches("adj")) %>% select_if(is.numeric) %>% cor(.) %>%
    ggcorrplot( type = "lower", p.mat = pmat, hc.order = TRUE,lab = TRUE)
```



Figura 2 – Gráfico de calor da correlação entre as variaváveis dos dados.

Analisando o gráfico acima, tem-se que as variáveis que estão nas três extremidades externas dos dois eixos apresentam uma correlação forte, então, X10 com X11, X6 com X11 e X10 e X9 com X11, X10 e X6. A maior correlação é apresentada entre as variáveis X6 e X9, que é o número de leitos e a média diária de pacientes, respectivamente.

# Universidade de Brasília

#### 1.2.0.1 Correlação entre as variáveis

Para verificar a natureza e a força da relação entre as variáveis e identificar lacunas e pontos discrepantes no conjunto de dados, utiliza-se a matriz de correlação aplicado no script a seguir.

## 1.3 Objetivo

#### 1.3.1 Testes

Para efetuar um modelo, separa-se o banco em teste e treino no qual:

% latex table generated in R 4.2.0 by xtable 1.8-4 package % Thu May 5 19:01:47 2022

|   | V1 |
|---|----|
| 1 | 14 |
| 2 | 17 |
| 3 | 18 |
| 4 | 8  |
|   |    |

Tabela 3 -

# inbalanced data

### 1.3.2 Número de enfermeira(o)s



Espera-se que o número de enfermeira(o)s esteja relacionado às instalações e serviços disponíveis através de um modelo de segunda ordem. Suspeita-se também que varie segundo

serviços disponíveis:X1,X4,X5,X6,X9,X11

instalações:X7

região:X8

\ Deseja-se estudar se o número de enfermeira(o)s está relacionado às instalações, ou seja, os números de leitos do hospital, e se há diferenças entre os serviços disponíveis pelos hospitais. Neste caso, a variável resposta é o número de enfermeira(o)s e as duas outras variáveis são explicativas.

Para isso, faz-se necessário a aplicação da regressão linear múltipla. No qual avaliando o gráfico da dispersão de ordem da variável região X8 e o número de enfermeiros X10, verifica-se que não possui diferença significatíva na dispersão destes valores.

boxplot(dados\_train\$X10~dados\_train\$X8)



% latex table generated in R 4.2.0 by xtable 1.8-4 package % Thu May 5 19:01:48 2022

|                 | Df | Sum Sq     | Mean Sq  | F value | Pr(>F) |
|-----------------|----|------------|----------|---------|--------|
| dados_train\$X8 | 3  | 14239.94   | 4746.65  | 0.22    | 0.8798 |
| Residuals       | 53 | 1126692.10 | 21258.34 |         |        |

Tabela 4 -

#### 1.3.2.1 Pressupostos para um modelo inicial

Agora presumindo um modelo inicial para explicar a variável de número de enfermeiros X10 é dada por

$$\hat{y}_{X10} = \beta_0 + \beta_{X1}X1 + \beta_{X6}X6 + \beta_{X8}X8 + \beta_{X11}X11 + \beta_{X1,X8}(X1X8) + \beta_{X6,X8}(X6X8) + \beta_{X7,X8}(X7X8) + \beta_{X11,X8}(X11X8)$$

no qual presume que o modelo é explicado pela "duração da internação" (X1), "Número de leitos" (X6), "Facilidades e serviços disponiveis" (X11) com a "Região".

|           | Df | Sum Sq    | Mean Sq   | F value | Pr(>F) |
|-----------|----|-----------|-----------|---------|--------|
| X1adj     | 1  | 219271.01 | 219271.01 | 104.32  | 0.0000 |
| X8        | 3  | 22596.11  | 7532.04   | 3.58    | 0.0227 |
| X6adj     | 1  | 727219.51 | 727219.51 | 346.00  | 0.0000 |
| X11adj    | 1  | 6462.84   | 6462.84   | 3.07    | 0.0878 |
| X7        | 1  | 13250.71  | 13250.71  | 6.30    | 0.0165 |
| X1adj:X8  | 3  | 29330.91  | 9776.97   | 4.65    | 0.0074 |
| X8:X6adj  | 3  | 15887.68  | 5295.89   | 2.52    | 0.0729 |
| X8:X11adj | 3  | 9871.51   | 3290.50   | 1.57    | 0.2141 |
| X8:X7     | 3  | 19274.77  | 6424.92   | 3.06    | 0.0402 |
| Residuals | 37 | 77766.98  | 2101.81   |         |        |

Tabela 5 – Modelo 1

agora os resultados obtidos pela anova, temos que pelos testes, deu significativo as variáveis explicativas sem interação e a interação com da região X8 com a variávei X1 e as outras variáveis foram descartadas por estar perto do limite do p-value 0.05.

Agora construindo um novo modelo de regressão

$$\hat{y}_{X11} = \beta_0 + \beta_{X1}X1 + \beta_{X6}X6 + \beta_{X7}X7 + \beta_{X8}X8 + \beta_{X1,X8}(X1X8)$$

temos que

#### table(dados\_train\$X8)

1 2 3 4 14 17 18 8

```
modelo_inicial <- lm(X10 ~ X1adj*X8 + X6adj +X7*X8, data=dados_train)
print.xtable(xtable(summary(modelo_inicial),caption = c('$X10 = X1adj*X8 + X6adj +X7*,caption.placement = "top") )</pre>
```

|             | Estimate | Std. Error | t value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 252.5302 | 29.1889    | 8.65    | 0.0000   |
| X1adj       | 2.7834   | 18.5158    | 0.15    | 0.8812   |
| X82         | -50.6189 | 41.1698    | -1.23   | 0.2254   |
| X83         | -93.8268 | 63.6410    | -1.47   | 0.1475   |
| X84         | 11.2928  | 67.5629    | 0.17    | 0.8680   |
| X6adj       | 121.2084 | 11.4402    | 10.59   | 0.0000   |
| X72         | -76.3742 | 32.8152    | -2.33   | 0.0246   |
| X1adj:X82   | -30.1661 | 25.6811    | -1.17   | 0.2465   |
| X1adj:X83   | 71.3170  | 29.4059    | 2.43    | 0.0195   |
| X1adj:X84   | 2.2999   | 41.7575    | 0.06    | 0.9563   |
| X82:X72     | 30.4028  | 44.9525    | 0.68    | 0.5024   |
| X83:X72     | 115.5296 | 69.3109    | 1.67    | 0.1027   |
| X84:X72     | -5.9582  | 82.3340    | -0.07   | 0.9426   |

Tabela 6 - X10 = X1adj \* X8 + X6adj + X7 \* X8

com valor do F-statistics, para o teste linear geral, percebe-se que o teste de regressão é significativo, indicando que há regressão nesses dados, e analizando o modelo, apenas x6 tem diferenças significativas, podendo descartar acabando com um modelo do tipo, no qual rejeitamos a normalidade, assim transformando a variável através do boxcox

|             | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-------------|----------|------------|---------|-------------|
| (Intercept) | 228.1758 | 21.8323    | 10.45   | 0.0000      |
| X6adj       | 120.8863 | 9.9604     | 12.14   | 0.0000      |
| X72         | -58.3778 | 25.0249    | -2.33   | 0.0234      |

Tabela 7 – X10 = X6adj + X7

|             | Estimate | Std. Error | t value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 228.1758 | 21.8323    | 10.45   | 0.0000   |
| X6adj       | 120.8863 | 9.9604     | 12.14   | 0.0000   |
| X72         | -58.3778 | 25.0249    | -2.33   | 0.0234   |

Tabela 8 - X10 = X6adj + X7

```
k<-shapiro.test(modelo_inicial$residuals)

k<- cbind(k$method, k$p.value)

print.xtable(xtable(k))</pre>
```

|   | 1                           | 2                  |
|---|-----------------------------|--------------------|
| 1 | Shapiro-Wilk normality test | 0.0246092538237578 |

como foi rejeitada o teste de normalidade, utilizamos uma transformação boxcox para criar o novo modelo, onde seque se que

```
library(MASS)
k<-boxcox(modelo_inicial)</pre>
```



|             | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-------------|----------|------------|---------|-------------|
| (Intercept) | 42.3733  | 3.1000     | 13.67   | 0.0000      |
| X6adj       | 16.3551  | 1.4143     | 11.56   | 0.0000      |
| X72         | -6.5013  | 3.5533     | -1.83   | 0.0728      |

Tabela 9 –  $X10_cox\ X6adj + X7$ 

```
k<-shapiro.test(modelo_inicial_cox$residuals)
k<- cbind(k$method, k$p.value)
print.xtable(xtable(k))</pre>
```

|   | 1                           | 2                |
|---|-----------------------------|------------------|
| 1 | Shapiro-Wilk normality test | 0.85952093816942 |

agora avalindo este modelo temos que o erro medio das previsões é baixo e o R2 no banco de teste é alto, assim sendo um bom modelo para começar e avaliar com as suposições do hospital

```
require(MASS)
library(caret)

# Teste de multicolinearidade Gif (>1 indica multicolinearidade)
# car::vif(modelo_inicial)

par(mfrow=c(2,2))
plot(modelo_inicial_cox)
```



Retirando os outliers temos que

|             | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-------------|----------|------------|---------|-------------|
| (Intercept) | 38.9123  | 2.9434     | 13.22   | 0.0000      |
| X6adj       | 17.8263  | 1.3548     | 13.16   | 0.0000      |
| X72         | -2.4858  | 3.4301     | -0.72   | 0.4719      |

Tabela 10 –  $X10_cox = X6adj + X7$ 

```
k<-shapiro.test(modelo_inicial_cox$residuals)

k<- cbind(k$method, k$p.value)

print.xtable(xtable(k))</pre>
```

|   | 1                           | 2                 |
|---|-----------------------------|-------------------|
| 1 | Shapiro-Wilk normality test | 0.632227200344572 |

```
par(mfrow=c(2,2))
plot(modelo_inicial_cox)
```



Agora avalindo o modelo no banco de teste, temos que a raiz do erro quadratico médio e dado por

|   | RMSE | R2   |
|---|------|------|
| 1 | 8.09 | 0.83 |
|   |      |      |

Tabela 11 -

#### 1.3.2.2 modelo inicial com o metodo de step wise

Agora avaliando através do steepwise, temos que o modelo que converge sobre o uso de mais variaveis

```
k<-shapiro.test(modfim$residuals)
```

|             | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-------------|----------|------------|---------|-------------|
| (Intercept) | 39.6234  | 2.5543     | 15.51   | 0.0000      |
| X6adj       | 5.5375   | 4.4381     | 1.25    | 0.2186      |
| X72         | -3.2001  | 2.9536     | -1.08   | 0.2844      |
| X3adj       | 3.8744   | 1.0969     | 3.53    | 0.0010      |
| X2adj       | 2.3237   | 1.0954     | 2.12    | 0.0394      |
| X11adj      | 1.8227   | 1.1943     | 1.53    | 0.1340      |
| X9adj       | 10.4575  | 4.6942     | 2.23    | 0.0309      |
| X1adj       | -2.6161  | 1.3893     | -1.88   | 0.0662      |
| X5adj       | 1.4966   | 0.8374     | 1.79    | 0.0807      |

Tabela 12 – summary(modfim)

```
k<- cbind(k$method, k$p.value)
print.xtable(xtable(k))</pre>
```

|   | 1                           | 2                 |
|---|-----------------------------|-------------------|
| 1 | Shapiro-Wilk normality test | 0.403973043275297 |

agora com o teste linear geral, temos que existe diferença significatifva entre os modelos e acabamos com um modelo mais parcimanioso sem multicolineariade que é o caso do modtest

```
# modelo 2 é melhor
print.xtable(xtable(anova(modelo_inicial_cox,modfim)))
```

|   | Res.Df | RSS     | Df | Sum of Sq | F    | Pr(>F) |
|---|--------|---------|----|-----------|------|--------|
| 1 | 51     | 2320.39 |    |           |      |        |
| 2 | 45     | 1328.60 | 6  | 991.78    | 5.60 | 0.0002 |

# # modelo 2 é melhor print.xtable(xtable(AIC(modelo\_inicial\_cox,modfim)))

|                         | df    | AIC    |
|-------------------------|-------|--------|
| modelo_inicial_cox      | 4.00  | 364.31 |
| $\operatorname{modfim}$ | 10.00 | 346.20 |

Assim, o modelo 2 apresenta melhor desenpenho considerando o RSS, e o teste linear geral possui diferença significante, ou seja, o modelos são diferentes, agora avalindo este modelo modfim, temos que

```
# quanto menoor melhor

print.xtable(xtable(as.data.frame(car::vif(modfim))
))
```

|        | car::vif(modfim) |
|--------|------------------|
| X6adj  | 32.07            |
| X7     | 2.22             |
| X3adj  | 1.99             |
| X2adj  | 1.29             |
| X11adj | 2.72             |
| X9adj  | 34.91            |
| X1adj  | 2.11             |
| X5adj  | 1.19             |
| X1adj  | 2.11             |

para os parametros do X6 e X9, encontrou grande correlação entre elas, e para avaliar que o modelo não possua colinearidade, temos que

```
# quanto menoor melhor

modsem9<-lm(X10_cox ~ X6adj+X7+X3adj+X2adj+X11adj+X1adj+X5adj, data=dados_train[-c(18
print.xtable(xtable(summary(modsem9)))

modsem9<-lm(X10_cox ~ X6adj+X3adj, data=dados_train[-c(18,48,46),])
print.xtable(xtable(summary(modsem9)))</pre>
```

print.xtable(xtable(as.data.frame(car::vif(modsem9))))

X3adj

|             | Estimate | Std. Error | t value | Pr(> t )    |
|-------------|----------|------------|---------|-------------|
|             |          |            |         |             |
| (Intercept) | 40.6245  | 2.6205     | 15.50   | 0.0000      |
| X6adj       | 14.8783  | 1.5160     | 9.81    | 0.0000      |
| X72         | -4.4636  | 3.0210     | -1.48   | 0.1463      |
| X3adj       | 3.8477   | 1.1431     | 3.37    | 0.0015      |
| X2adj       | 2.5953   | 1.1346     | 2.29    | 0.0268      |
| X11adj      | 1.9966   | 1.2420     | 1.61    | 0.1148      |
| X1adj       | -1.5640  | 1.3616     | -1.15   | 0.2567      |
| X5adj       | 1.3020   | 0.8680     | 1.50    | 0.1405      |
|             |          |            |         |             |
|             | Estimate | Std. Error | t value | $\Pr(> t )$ |
| (Intercept) | 37.0721  | 0.8310     | 44.61   | 0.0000      |
| X6adj       | 17.4011  | 0.9314     | 18.68   | 0.0000      |

|       | car::vif(modsem9) |
|-------|-------------------|
| X6adj | 1.13              |
| X3adj | 1.13              |

0.9251

3.53

0.0009

3.2619

```
k<-shapiro.test(modsem9$residuals)

k<- cbind(k$method, k$p.value)

print.xtable(xtable(k))</pre>
```

|   | 1                           | 2                 |
|---|-----------------------------|-------------------|
| 1 | Shapiro-Wilk normality test | 0.195743839981802 |

|   | RMSE | R2   |
|---|------|------|
| 1 | 8.12 | 0.84 |

Tabela 13 –

modsem6<-lm(X10\_cox ~ X9adj+X7+X3adj+X2adj+X11adj+X1adj+X5adj, data=dados\_train[-c(18
print.xtable(xtable(summary(modsem6)))</pre>

|             | Estimate | Std. Error | t value | Pr(> t ) |
|-------------|----------|------------|---------|----------|
| (Intercept) | 39.5260  | 2.5685     | 15.39   | 0.0000   |
| X9adj       | 15.9911  | 1.5478     | 10.33   | 0.0000   |
| X72         | -3.0875  | 2.9701     | -1.04   | 0.3040   |
| X3adj       | 3.8678   | 1.1035     | 3.50    | 0.0010   |
| X2adj       | 2.1837   | 1.0963     | 1.99    | 0.0523   |
| X11adj      | 2.0215   | 1.1907     | 1.70    | 0.0963   |
| X1adj       | -3.0601  | 1.3510     | -2.26   | 0.0283   |
| X5adj       | 1.5822   | 0.8397     | 1.88    | 0.0659   |

modsem6<-lm(X10\_cox ~ X9adj+X3adj, data=dados\_train[-c(18,48,46),])
print.xtable(xtable(summary(modsem6)))</pre>

|             | Estimate | Std. Error | t value | $\Pr(> t )$ |
|-------------|----------|------------|---------|-------------|
| (Intercept) | 37.2650  | 0.8272     | 45.05   | 0.0000      |
| X9adj       | 17.8166  | 0.9479     | 18.80   | 0.0000      |
| X3adj       | 2.8030   | 0.9286     | 3.02    | 0.0040      |

print.xtable(xtable(as.data.frame(
car::vif(modsem6))))

|       | car::vif(modsem6) |
|-------|-------------------|
| X9adj | 1.15              |
| X3adj | 1.15              |

```
k<-shapiro.test(modsem6$residuals)
k<- cbind(k$method, k$p.value)</pre>
```

print.xtable(xtable(k))

|   | 1                           | 2                   |
|---|-----------------------------|---------------------|
| 1 | Shapiro-Wilk normality test | 0.00772145754984382 |

|   | RMSE | R2   |
|---|------|------|
| 1 | 8.90 | 0.82 |

Tabela 14 –

#### print.xtable(xtable(anova(modfim,modsem6)))

|   | Res.Df | RSS     | Df | Sum of Sq | F    | Pr(>F) |
|---|--------|---------|----|-----------|------|--------|
| 1 | 45     | 1328.60 |    |           |      |        |
| 2 | 51     | 1865.05 | -6 | -536.45   | 3.03 | 0.0142 |

#### print.xtable(xtable(anova(modfim,modsem9)))

|   | Res.Df | RSS     | Df | Sum of Sq | F    | Pr(>F) |
|---|--------|---------|----|-----------|------|--------|
| 1 | 45     | 1328.60 |    |           |      |        |
| 2 | 51     | 1884.78 | -6 | -556.18   | 3.14 | 0.0117 |

#### print.xtable(xtable(AIC(modsem9,modsem6)))

```
par(mfrow=c(2,2))
plot(modsem9)
```

|         | df   | AIC    |
|---------|------|--------|
| modsem9 | 4.00 | 353.08 |
| modsem6 | 4.00 | 352.52 |



assim, no final foi escolhido o modelo modsem9 no qual os pressupostos são atendidos e possui valores mais consistentes na predição do número de enfermeiros

#### 1.3.2.3 modelo hospital assumptions

Agora como o modelo formulado pelo hospital temos que,

```
mod_sec<- lm(formula = X10_cox ~ X6adj+I(X6adj^2) + X3adj+I(X3adj^2)+X8 , data = dados
print.xtable(xtable(summary(mod_sec)))</pre>
```

```
mod_sec<- lm(formula = X10_cox ~ X6adj + X3adj+I(X3adj^2) , data = dados_train[-c(18,oprint.xtable(xtable(summary(mod_sec)))</pre>
```

|              | Estimate | Std. Error | t value | $\Pr(> t )$ |
|--------------|----------|------------|---------|-------------|
| (Intercept)  | 39.7257  | 1.7727     | 22.41   | 0.0000      |
| X6adj        | 16.8905  | 1.6225     | 10.41   | 0.0000      |
| $I(X6adj^2)$ | -0.0079  | 0.8695     | -0.01   | 0.9928      |
| X3adj        | 2.5140   | 1.0105     | 2.49    | 0.0165      |
| $I(X3adj^2)$ | -1.8322  | 0.6104     | -3.00   | 0.0043      |
| X82          | -0.9517  | 2.2007     | -0.43   | 0.6674      |
| X83          | -1.8955  | 2.2114     | -0.86   | 0.3958      |
| X84          | -1.3230  | 2.7475     | -0.48   | 0.6324      |
|              |          |            |         |             |

|              | Estimate | Std. Error | t value | Pr(> t ) |
|--------------|----------|------------|---------|----------|
| (Intercept)  | 38.6812  | 0.9035     | 42.81   | 0.0000   |
| X6adj        | 16.8500  | 0.8687     | 19.40   | 0.0000   |
| X3adj        | 2.7070   | 0.8632     | 3.14    | 0.0029   |
| $I(X3adj^2)$ | -1.8592  | 0.5636     | -3.30   | 0.0018   |

par(mfrow=c(2,2))
plot(mod\_sec)









```
print.xtable(xtable(as.data.frame(
    car::vif(mod_sec))))
```

|            | $car::vif(mod\_sec)$ |
|------------|----------------------|
| X6adj      | 1.17                 |
| X3adj      | 1.17                 |
| I(X3adj^2) | 1.12                 |

```
k<-shapiro.test(mod_sec$residuals)

k<- cbind(k$method, k$p.value)

print.xtable(xtable(k))</pre>
```

|   | 1                           | 2                 |
|---|-----------------------------|-------------------|
| 1 | Shapiro-Wilk normality test | 0.504228264019901 |

```
predictions <- modsem9 %>% predict(dados_valid)
k<-data.frame(
    RMSE = RMSE(predictions, (dados_valid$X10^lambda-1)/lambda),</pre>
```

```
RMSE R2
1 8.12 0.84
```

Tabela 16 -

print.xtable(xtable(anova(modsem9,mod\_sec)))

|   | Res.Df | RSS     | Df | Sum of Sq | F     | Pr(>F) |
|---|--------|---------|----|-----------|-------|--------|
| 1 | 51     | 1884.78 |    |           |       |        |
| 2 | 50     | 1547.87 | 1  | 336.91    | 10.88 | 0.0018 |

print.xtable(xtable(AIC(modsem9,mod\_sec)))

|                 | df   | AIC    |
|-----------------|------|--------|
| modsem9         | 4.00 | 353.08 |
| $\bmod\_{\sec}$ | 5.00 | 344.45 |

Agora avaliando o teste linear geral e o AIC, temos que o modelo proposto com diferença significativa, e assim, o modelo escolhido foi o que possui ordem quadrática e consegue explicar boa parte da variabilidade do número de enfermeiros.

### 1.3.3 Duração da internação

A duração da internação está associada a características do paciente, seu tratamento e do hospital

características do paciente: X2, seu tratamento: X4,X5 hospital: X3,X6,X7,X9,X10, X11

Deseja-se estudar se a Duração da internação está associada a características do paciente, seu tratamento e do hospital, ou seja, a duração da internação, e se há diferenças

entre os serviços disponíveis pelos hospitais. Neste caso, a variável resposta é o número de enfermeira(o)s e as duas outras variáveis são explicativas. Para isso, faz-se necessário a aplicação da regressão linear múltipla realizada no script a seguir:

#### 1.3.4 MODELO POR HIPOTESE

```
\# summary (aov(X1 ~ X2+X3+X4+X5+X6+X7+X9+X10+X11, data=dados_train))
#
#
# modelo inicial <- lm(X1 \sim X3 + X6 + X9), data=dados train)
#
#
# car::vif(modelo_inicial) #multicolinearidade
#
#
#
# pmat = datax %>% select_if(is.numeric) %>%cor_pmat()
# datax %>% select_if(is.numeric) %>% cor(.) %>%
    ggcorrplot( type = "lower", p.mat = pmat, hc.order = TRUE)
#
#
#
#
# #
# # cor(X3, X9)
# #
# #
# # cor(X3,X6)
# #
# #
# # cor(X9, X6)
# #
# #
# # cor(X1,X9)
```

```
# # cor(X1, X6)
# #
\# modelo_inicial \leftarrow lm(X1 \sim X3 + X9), data=dados_train)
# car::vif(modelo_inicial) #multicolinearidade
#
#
# shapiro.test(modelo_inicial$residuals)#normal
#
# predictions <- modelo_inicial %>% predict(dados_valid)
# RMSE(predictions, dados_valid$X1)# modelo bom
# R2(predictions, dados_valid$X1) # Fraco
# ##Forward##
# modmin<-lm(X1 ~ 1, data=dados_train)</pre>
# step(modmin, direction='forward', scope=( ~ X2+X3+X4+X5+X6+X7+X8+X9+X10+X11))
#
# ##Backward##
\# modcompl < -lm(X1 \sim X2+X3+X4+X5+X6+X7+X8+X9+X10+X11, data=dados train)
# step(modcompl, direction = 'backward')
#
# # stepwise
# modmin<-lm(X1 ~ 1, data=dados_train)</pre>
# modcompl < -lm(X1 \sim X2+X3+X4+X5+X6+X7+X8+X9+X10+X11, data=dados train)
# step(modmin, scope=list(lower=modmin, upper=modcompl),
       direction="both", data=dados train)
#
# #todos os modelos foram iguais
```

```
# modstep <- lm(formula = X1 ~ X3 + X8 + X9 + X11, data = dados_train)
# summary(modstep)
#
# 
# shapiro.test(modstep$residuals)#Normal
#
# par(mfrow = c(4,1))
# plot(modelo_inicial)
#
# 
# predictions <- modstep %>% predict(dados_valid)
# RMSE(predictions, dados_valid$X1)#modelo bom
#
# AIC(modelo_inicial, modstep)
```

## Referências



## ANEXO A - Amostra