Gültig ab 1. Juni 2007, bei Prüfungen alternativ wählbar ab 1. März 2007

Formelzeichen, Konstanten und Tabellen

Sofern bei der jeweiligen Formel nicht anders angegeben, gilt:

A ... Querschnitt, Fläche

 A_{Dr} ... Drahtquerschnitt

 A_{Fe} ... Eisenkernquerschnitt

 A_L ... Induktivitätsfaktor in nH

As ... Querschnittsfläche der Spule

a ... Dämpfungsmaß in dB

 a_F ... Rauschzahl in dB gemessen mit Eingangsabschluss bei 290 K

B, B_1 , B_2 ... Bandbreiten

 B_m ... magnetische Flussdichte

C ... Kapazität

C' ... Kapazitätsbelag (Kapazität pro Meter)

 C_G ... Gesamtkapazität

 C_1 , C_2 , C_3 , C_n ... Teilkapazitäten

c ... Phasengeschwindigkeit

 c_0 ... Vakuumlichtgeschwindigkeit, $c_0 = 3 \cdot 10^8 \frac{m}{s}$

d ... Abstand, Entfernung

E ... elektrische Feldstärke

EIRP ... äquivalente isotrope Strahlungsleistung ERP ... äquivalente (effektive) Strahlungsleistung

e ... Eulersche Zahl, e=2,718...

F... Rauschzahl (Eingangsabschluss bei 290K)

f ... Frequenz

 f_c ... Höchste Frequenz, bei der senkrecht in die Ionosphäre eintretende Strahlung von der gegebenen Schicht noch reflektiert wird

 f_E ... eingestellte Empfangsfrequenz

 f_{g} ... Grenzfrequenz

 f_{mod} ... Modulations frequenz

f_{modmax} ... höchste Modulationsfrequenz

 f_{opt} ... optimale Frequenz

 f_{OSZ} ... Oszillatorfrequenz

 f_S ... Spiegelfrequenz

 f_{ZF} ... Zwischenfrequenz

 f_0 ... Resonanzfrequenz

G ... Gewinnfaktor

 G_d ... Gewinnfaktor bezogen auf den Halbwellendipol

 G_i ... Gewinnfaktor bezogen auf den isotropen Strahler

g ... Verstärkungsmaß/Gewinn in dB

 g_d ... Gewinn in dB bezogen auf den Halbwellendipol

g_i ... Gewinn in dB bezogen auf den isotropen Strahler

H... magnetische Feldstärke

I ... Stromstärke

I_B ... *Basisgleichstrom*

 I_C ... Kollektorgleichstrom

I_E ... *Emittergleichstrom*

 I_G ... Gesamtstrom

I_P ... *Primärstromstärke*

 I_S ... Sekundärstromstärke

 I_1 , I_2 ... Teilströme

 $k \dots Boltzmann-Konstante, k = 1,38 \cdot 10^{-23} Ws / K$

k_v ... Verkürzungsfaktor

L ...Induktivität

L' ... Induktivitätsbelag (Induktivität pro Meter)

 L_G ... Gesamtinduktivität

 L_1 , L_2 , L_3 , L_n ... Teilinduktivitäten

l ... Länge

l_m ... mittlere Feldlinienlänge

MUF ... Höchste brauchbare Frequenz bei der Ausbreitung elektromagnetischer Wellen infolge ionosphärischer Brechung

m ... Modulationsindex

N ... Windungszahl

 $N_P \dots Primärwindungszahl$

 N_s ... Sekundärwindungszahl

 N_V ... Windungszahl pro Volt

P ... Leistung

 P_R ... Rauschleistung

 P_S , P_{ERP} , P_{EIRP} ... Sender-/ Strahlungsleistungen

 P_V ... Verlustleistung

 P_{ab} ... abgegebene Leistung

P_{zu} ... zugeführte Leistung

p ... Pegel der Leistung in dB...

 p_{S} , p_{ERP} , p_{EIRP} ... Pegel der Sender-/ Strahlungsleistungen in dBm

Q ... Güte

R ... Widerstand

 R_G ... Gesamtwiderstand

 R_i ... Innenwiderstand

 R_1 , R_2 , R_3 , R_n ... Teilwiderstände