QCM n° 13

Un peu de calcul.

Échauffement n°1 Calculer les déterminants des matrices suivantes :

$$\mathbf{1)} \begin{pmatrix} a & a & b & 0 \\ a & a & 0 & b \\ c & 0 & a & a \\ 0 & c & a & a \end{pmatrix} ;$$

$$\mathbf{2)} \ \begin{pmatrix} 1 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ a & 0 & a & 0 & 3 \\ b & a & 0 & a & 0 \\ 0 & b & 0 & 0 & a \end{pmatrix} \ ;$$

QCM - cocher une case si la phrase qui suit est correcte.

Question n°1 Dans $\mathbb{R}_3[X]$, l'espace des polynômes à coefficients réels de degré ≤ 3 , or considère les deux sous-espaces vectoriels :
$E = \{ P \in \mathbb{R}_3[X] ; \ P(0) = P(1) = 0 \} \text{ et } F = \{ (P \in \mathbb{R}_3[X] ; \ P'(0) = P''(0) = 0 \},$
où P' (resp. P'') est la dérivée première (resp. seconde) de P . $\Box \dim E = 3.$ $\Box \dim F = 1.$ $\Box E + F = \mathbb{R}_3[X].$ $\Box E \text{ et } F \text{ sont supplémentaires dans } \mathbb{R}_3[X].$
Question n°2
\square Si σ est un cycle, σ^2 est un cycle. \square Le produit de deux cycles à supports non disjoints est un cycle. \square Deux permutations à supports disjoints commutent.
\square S_n contient $\binom{n}{2}$ transpositions. \square S_n contient $3\binom{n}{3}$ 3-cycles.
\square S_n contient $3 \binom{n}{3}$ 3-cycles.
\square Une permutation de S_n qui admet un nombre d'orbites impair est de signature 1.
Question n°3 $\Box \det \left(a_i^{j-i}\right)_{i,j\in \llbracket 1n\rrbracket} = \prod_{1\leqslant i < j\leqslant n} (a_j - a_i).$ $\Box \det \left((-1)^{i+j}a_{ij}\right) = \det a_{ij}.$ $\Box \operatorname{Pour} \sigma \in S_n, \det \left(\delta^{i,\sigma(j)}\right) = \varepsilon(\sigma).$
Question n°4 \square Pour tout $A \in \mathscr{M}_n(\mathbb{R})$, $\det \left(A^{\top}.A\right) \geqslant 0$. \square Il existe $A \in \mathscr{M}_3(\mathbb{R})$ telle que $\det(A^2) = -1$. \square Pour tout $A \in \mathscr{M}_n(\mathbb{R})$, la fonction $t \mapsto \det(tA + I)$ est polynomiale de degré n . \square Pour tout $A \in \mathscr{M}_n(\mathbb{R})$, il existe au plus n scalaires $\lambda \in \mathbb{R}$ tels que $A - \lambda I$ soit non inversible
Question n°5 ☐ Une matrice nilpotente est de déterminant nul. ☐ Deux matrices semblables ont même déterminant. ☐ Deux matrices équivalentes ont même déterminant.
Question n°6
 □ Le déterminant d'une matrice à coefficients entiers est un entier. □ Le déterminant d'une matrice à coefficients entiers et positifs est un entier positif. □ Une matrice à coefficients entiers admet un inverse à coefficients entiers si et seulement s

 \square Le pgcd des coefficients de la première ligne d'une matrice à coefficients entiers qui admet

son déterminant est 1 ou -1.

un inverse à coefficients entiers vaut 1.