

План лекции

- Трансформеры. Главные идеи:
 - Убираем рекуррентность
 - Используем Multi-head attention:
 - Self-attention
 - Cross-attention
- Трансформеры. Вспомогательные элементы:
 - Word & Position embeddings
 - LayerNorm
 - Dense layers
 - Residual connections
- Трансформеры. Особенности обучения, вариации

План лекции

- Трансформеры. Главные идеи:
 - Убираем рекуррентность
 - Используем Multi-head attention:
 - Self-attention
 - Cross-attention
- Трансформеры. Вспомогательные элементы:
 - Word & Position embeddings
 - LayerNorm
 - Dense layers
 - Residual connections
- Трансформеры. Особенности обучения, вариации

Недостатки рекуррентных моделей:

- 🥱 Медленные
- 😠 Плохо утилизируют GPU/TPU
- Проблемы с обучением
- 🥴 Проблемы с памятью

Attention Is All You Need ?

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com

.Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com

Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡ illia.polosukhin@gmail.com

В энкодере (слева) и декодере (справа) живут разные виды attention

В энкодере (слева) и декодере (справа) живут разные виды attention

RNN-блоки больше не используются

Блок Multi Head Attention для энкодера:

Н голов внимания

- Н голов внимания
- Каждая голова содержит веса:
 - о Матриц проекций W_V, W_K, W_Q
 - Выходной матрицы Wout

- Н голов внимания
- Каждая голова содержит веса:
 - о Матриц проекций W_V, W_K, W_Q
 - Выходной матрицы Wout

- Н голов внимания
- Каждая голова содержит веса:
 - Матриц проекций W_√, W_к, W_Q
 - Выходной матрицы Wout
- Scaled Dot-Product Attention:
 - о Для **энкодера** это Self-attention

- Н голов внимания
- Каждая голова содержит веса:
 - о Матриц проекций W_V, W_K, W_Q
 - Выходной матрицы Wout
- Scaled Dot-Product Attention:
 - о Для **энкодера** это Self-attention
- Головы работают вместе, как ансамбль!
 Каждая голова выучивает свое
 независимое преобразование, которое
 вносит вклад в общее решение.

 $\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Self-attention:

$$\begin{split} X^{\text{out}} &= W^{\text{attn}}(XW^{\text{V}}) \\ \text{with } W^{\text{attn}} &= \operatorname{softmax}\left(\frac{(XW^{\text{Q}})(XW^{\text{K}})^{\text{T}}}{\sqrt{d}}\right) \end{split}$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Self-attention:

$$X^{\text{out}} = W^{\text{attn}}(\widetilde{XW^{\text{V}}}) \mathbf{Q} \mathbf{K}$$
with $W^{\text{attn}} = \operatorname{softmax} \left(\frac{(\widetilde{XW^{\text{Q}}})(\widetilde{XW^{\text{K}}})^{\text{T}}}{\sqrt{d}} \right)$

Scaled Dot-Product Attention

- Н голов внимания
- Каждая голова содержит веса:
 - о Матриц проекций W_V, W_K, W_Q
 - Выходной матрицы Wout
- Scaled Dot-Product Attention:
 - Содержит слои с Cross-attention,
 где смешивается информация из input и output

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Cross-attention:

$$\begin{split} X^{\text{out}} &= W^{\text{attn}}(X'W^{\text{V}}) \\ \text{with } W^{\text{attn}} &= \operatorname{softmax}\left(\frac{(XW^{\text{Q}})(X'W^{\text{K}})^{\text{T}}}{\sqrt{d}}\right) \end{split}$$

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Cross-attention:

$$\begin{split} X^{\text{out}} &= W^{\text{attn}}(X'W^{\text{V}}) \\ \text{with } W^{\text{attn}} &= \operatorname{softmax}\left(\frac{(XW^{\text{Q}})(X'W^{\text{K}})^{\text{T}}}{\sqrt{d}}\right) \end{split}$$

- X преобразованный input (с выхода энкодера)
- X' преобразованный output (с выхода предыдущего слоя декодера)

Итоги видео

В этом видео мы познакомились с основной идеей и базовой схемой трансформера.

В следующих видео мы более подробно разберемся в устройстве и обучении трансформерных моделей.

Трансформеры

Вспомогательные элементы

План лекции

- Трансформеры. Главные идеи:
 - Убираем рекуррентность
 - ∘ Используем Multi-head attention:
 - Self-attention
 - Cross-attention
- Трансформеры. Вспомогательные элементы:
 - Word & Position embeddings
 - LayerNorm
 - Dense layers
 - Residual connections
- Трансформеры. Особенности обучения, вариации

Я люблю	трансформер
---------	-------------

Embedding
(Я)Embedding
(люблю)Embedding
(трансформер)

Input Embedding

- Оба метода преобразуют данные так, чтобы среднее было равно нулю, а стандартное отклонение - единице
- Layer Norm не вводит неявной зависимости между разными примерами в батче
- Layer Norm актуален даже если в батче один пример

Итоги видео

В этом видео мы познакомились с полной архитектурой трансформера.

В оставшемся видео мы посмотрим на особенности обучения трансформерных моделей.

Трансформеры

Особенности обучения, вариации

План лекции

- Трансформеры. Главные идеи:
 - Убираем рекуррентность
 - Используем Multi-head attention:
 - Self-attention
 - Cross-attention
- Трансформеры. Вспомогательные элементы:
 - Word & Position embeddings
 - LayerNorm
 - Dense layers
 - Residual connections
- Трансформеры. Особенности обучения, вариации

Как эффективно обучать трансформеры?

Как эффективно обучать трансформеры?

Обычно обучение происходит в два этапа:

Как эффективно обучать трансформеры?

Обычно обучение происходит в два этапа:

1. Предобучение (Pretraining):

 Обычно это Masked Language Modelling и его более продвинутые вариации (маскирование целых слов, сущностей или предложений)

2. Дообучение (Finetuning):

- Classic Finetuning for downstream task
- Reinforcement Learning from Human Feedback

Как эффективно обучать трансформеры?

Обычно обучение происходит в два этапа:

- 1. Предобучение (Pretraining)
- **2.** Дообучение (Finetuning)

Для каждого этапа используются:

- **Адаптивные методы** (Adam)
- Планировщики обучения (schedulers) с "прогревом" (warmup)

Прогрев улучшает стабильность обучения с помощью адаптивных методов (Adam, AdamW).

Стандартный планировщик - Linear scheduler with warmup:

(График величины learning rate в зависимости от количества шагов)

- Предобучение требует больших вычислительных ресурсов
- Результат обучения зависит от инициализации (т.е. от seed RNG)
- Нужно подбирать настройки оптимизатора и планировщика

- Предобучение требует больших вычислительных ресурсов
- Результат обучения зависит от инициализации (т.е. от seed RNG)
- Нужно подбирать настройки оптимизатора и планировщика
- Для очень больших моделей (миллиарды параметров) требуются ухищрения, чтобы разнести модель на несколько GPU/TPU

- Предобучение требует больших вычислительных ресурсов
- Результат обучения зависит от инициализации (т.е. от seed RNG)
- Нужно подбирать настройки оптимизатора и планировщика
- Для очень больших моделей (миллиарды параметров) требуются ухищрения, чтобы разнести модель на несколько GPU/TPU
 (Ñ nɨlɨgelepois con gray) c y na

- Предобучение требует больших вычислительных ресурсов
- Результат обучения зависит от инициализации (т.е. от seed RNG)
- Нужно подбирать настройки оптимизатора и планировщика
- Для очень больших моделей (миллиарды параметров) требуются ухищрения, чтобы разнести модель на несколько GPU/TPU
- Для очень больших моделей проблема с нестабильностью обучения до конца не решена, иногда приходится делать рестарты

Итоги видео

В этом видео мы познакомились с особенностями обучения трансформеров и были заинтригованы возможными вариациями этих моделей.