Mouvement RR ★

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB}=R\overrightarrow{i_1}$ avec $R=20\,\mathrm{mm}$ et $\overrightarrow{BC}=L\overrightarrow{i_2}$ avec $L=15\,\mathrm{mm}$. De plus :

► G_1 désigne le centre d'inertie de 1 et $\overrightarrow{AG_1} = \frac{1}{2} \overrightarrow{R} \overrightarrow{i_1}$, on note m_1 la masse de 1 et

$$I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1};$$

► G_2 désigne le centre d'inertie de $\mathbf{2}$ et $\overrightarrow{BG_2} = \frac{1}{2} \overrightarrow{Li_2}$, on note m_2 la masse de $\mathbf{2}$ et

$$I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2}.$$

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en A en utilisant 2 méthodes différentes pour le calcul du moment.

Question 2 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B en utilisant 2 méthodes différentes pour le calcul du moment.

Question 3 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{k_0}$.

Question 4 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir 4.

Mouvement RR ★

C2-08

C2-09 Pas de corrigé pour cet exercice.

La Martinière

Question 5 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en A en utilisant 2 méthodes différentes pour le calcul du moment.

Définition

$$\left\{ \mathfrak{D}\left(1/0\right)\right\} = \left\{ \begin{array}{l} \overrightarrow{m_{1}\Gamma\left(G_{1},1/0\right)} \\ \overrightarrow{\delta\left(A,1/0\right)} = \overrightarrow{\delta\left(G_{1},1/0\right)} + \overrightarrow{AG_{1}} \wedge \overrightarrow{R_{d}\left(1/0\right)} \end{array} \right\}_{A}$$

Calcul de $\overline{V(G_1, 1/0)}$

$$\overrightarrow{V\left(G_{1},1/0\right)}=\frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{AG_{1}}\right]_{\mathcal{R}_{0}}=\frac{1}{2}R\frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{i_{1}}\right]_{\mathcal{R}_{0}}=R\dot{\theta}\overrightarrow{j_{1}}.$$

$$(\operatorname{Avec}\,\frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{i_1}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{i_1}\right]_{\mathcal{R}_1} + \overline{\Omega\left(1/0\right)}\wedge\overrightarrow{i_1} = \dot{\theta}\overrightarrow{k_0}\wedge\overrightarrow{i_1} = \dot{\theta}\overrightarrow{j_1}).$$

Calcul de $\Gamma(G_1, 1/0)$

$$\overrightarrow{\Gamma(G_1,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(G_1,1/0)} \right]_{\mathcal{R}_0} = R \ddot{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1}.$$

Question 6 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B en utilisant 2 méthodes différentes pour le calcul du moment.

$$\overrightarrow{V(C,2/0)} = \frac{d}{dt} \left[\overrightarrow{AC} \right]_{\mathcal{R}_0} = \frac{d}{dt} \left[\overrightarrow{AB} \right]_{\mathcal{R}_0} + \frac{d}{dt} \left[\overrightarrow{BC} \right]_{\mathcal{R}_0} = R \frac{d}{dt} \left[\overrightarrow{i_1} \right]_{\mathcal{R}_0} + L \frac{d}{dt} \left[\overrightarrow{i_2} \right]_{\mathcal{R}_0} \\
= R \dot{\theta} \overrightarrow{j_1} + L \left(\dot{\theta} + \dot{\phi} \right) \overrightarrow{j_2}.$$

$$(\operatorname{Avec}\,\frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{i_2}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{i_2}\right]_{\mathcal{R}_2} + \overline{\Omega\left(2/0\right)}\wedge\overrightarrow{i_2} = \left(\dot{\theta} + \dot{\phi}\right)\overrightarrow{k_0}\wedge\overrightarrow{i_2} = \left(\dot{\theta} + \dot{\phi}\right)\overrightarrow{j_2}).$$

Question 7 Déterminer $\delta(A, 1+2/0) \cdot \overrightarrow{k_0}$.

Question 8 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Mouvement RR ★

B2-13

Question 1 Déterminer
$$\overline{V(C,2/0)}$$
 par dérivation vectorielle. $\overline{V(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC} \right]_{\mathfrak{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB} \right]_{\mathfrak{R}_0} + \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{BC} \right]_{\mathfrak{R}_0} = R \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_1} \right]_{\mathfrak{R}_0} + L \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{i_2} \right]_{\mathfrak{R}_0} = R \dot{\overrightarrow{j_1}} + L \left(\dot{\theta} + \dot{\varphi} \right) \overrightarrow{j_2}$.

$$(\operatorname{Avec}\,\frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{i_2}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{i_2}\right]_{\mathcal{R}_2} + \overline{\Omega\left(2/0\right)}\wedge\overrightarrow{i_2} = \left(\dot{\theta} + \dot{\varphi}\right)\overrightarrow{k_0}\wedge\overrightarrow{i_2} = \left(\dot{\theta} + \dot{\varphi}\right)\overrightarrow{j_2}).$$

Question 2 Déterminer $\overrightarrow{V(C,2/0)}$ par composition. On a $\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$.

On a
$$\overrightarrow{V(C,2/0)} = \overrightarrow{V(C,2/1)} + \overrightarrow{V(C,1/0)}$$
.

$$\overrightarrow{V(C,2/1)} = \overrightarrow{V(B,2/1)} + \overrightarrow{CB} \wedge \overrightarrow{\Omega(2/1)} = -L\overrightarrow{i_2} \wedge \dot{\varphi} \overrightarrow{k_0} = L\dot{\varphi} \overrightarrow{j_2}.$$

$$\overrightarrow{V\left(C,1/0\right)} = \overrightarrow{V\left(A,1/0\right)} + \overrightarrow{CA} \wedge \overrightarrow{\Omega\left(1/0\right)} = \left(-L\overrightarrow{i_2} - R\overrightarrow{i_1}\right) \wedge \dot{\theta} \overrightarrow{k_0} = \dot{\theta} \left(L\overrightarrow{j_2} + R\overrightarrow{j_1}\right).$$

Au final,
$$\overrightarrow{V(C,2/0)} = L\dot{\varphi}\overrightarrow{j_2} + \dot{\theta}\left(L\overrightarrow{j_2} + R\overrightarrow{j_1}\right)$$
.

Question 3 Donner le torseur cinématique $\{\mathcal{V}(2/0)\}$ au point C. $\{\mathcal{V}(2/0)\} = \{\mathcal{V}(2/1)\} + \{\mathcal{V}(1/0)\}$. Pour sommer les torseurs, il faut écrire les vecteurs vitesses au même point, ici en C.

$$\left\{\mathcal{V}\left(2/0\right)\right\} = \left\{ \begin{array}{l} \left(\dot{\theta} + \dot{\varphi}\right)\overrightarrow{k_0} \\ R\dot{\theta}\overrightarrow{j_1} + L\left(\dot{\theta} + \dot{\varphi}\right)\overrightarrow{j_2} \end{array} \right\}_C$$

Question 4 Déterminer $\overrightarrow{\Gamma(C, 2/0)}$.

$$\begin{split} \overrightarrow{\Gamma(C,2/0)} &= \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{V(C,2/0)} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[R\dot{\theta} \overrightarrow{j_1} + L \left(\dot{\theta} + \dot{\phi} \right) \overrightarrow{j_2} \right]_{\mathcal{R}_0}. \\ \text{De plus, } &\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_1} \right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_1} \right]_{\mathcal{R}_1} + \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{j_1} = \dot{\theta} \overrightarrow{k_0} \wedge \overrightarrow{j_1} = -\dot{\theta} \overrightarrow{i_1} \text{ et } \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_2} \right]_{\mathcal{R}_0} = \\ &\frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{j_2} \right]_{\mathcal{R}_2} + \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{j_2} = \left(\dot{\theta} + \dot{\phi} \right) \overrightarrow{k_0} \wedge \overrightarrow{j_2} = - \left(\dot{\theta} + \dot{\phi} \right) \overrightarrow{i_2}. \end{split}$$
On a donc
$$\overrightarrow{\Gamma(C,2/0)} = R \overrightarrow{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1} + L \left(\ddot{\theta} + \ddot{\phi} \right) \overrightarrow{j_2} - L \left(\dot{\theta} + \dot{\phi} \right)^2 \overrightarrow{i_2}. \end{split}$$

Mouvement RT ★

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus :

- ► G_1 désigne le centre d'inertie de $\mathbf{1}$ et $\overrightarrow{AG_1} = L_1 \overrightarrow{i_1}$, on note m_1 la masse de $\mathbf{1}$ et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{\mathfrak{B}_1}$;

 ► $G_2 = B$ désigne le centre d'inertie de $\mathbf{2}$, on note m_2 la masse de $\mathbf{2}$ et $I_{G_2}(2) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$
- ► $G_2 = B$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en A.

Question 2 Déterminer $\delta(A, 1 + 2/0) \cdot \overrightarrow{k_0}$

Question 3 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir 3.

Mouvement RT ★

C2-08

C2-09 Pas de corrigé pour cet exercice.

Question 4 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en A. On a $\{\mathfrak{D}(1/0)\}$ = $\left\{\begin{array}{c} \overrightarrow{R_d(1/0)} \\ \delta(A,1/0) \end{array}\right\}_A$. Calculons $\overrightarrow{R_d(1/0)}$.

$$\overrightarrow{R_d(1/0)} = m_1 \overrightarrow{\Gamma(G_1, 1/0)}$$

Question 5 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{k_0}$

Mouvement TR ★

C2-08

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_0}$ et $\overrightarrow{BC} = R\overrightarrow{i_2}$ avec R = 30 mm. De plus :

▶ $G_1 = B$ désigne le centre d'inertie de **1**, on note m_1 la masse de **1** et $I_{G_1}(1) =$

 $\begin{pmatrix}
A_1 & 0 & 0 \\
0 & B_1 & 0 \\
0 & 0 & C_1
\end{pmatrix}_{\mathcal{B}_1};$ $\blacktriangleright G_2 = C \text{ désigne le centre d'inertie de 2, on note } m_2 \text{ la masse de 2 et } I_{G_2}(2) = \begin{pmatrix}
A_2 & 0 & 0 \\
0 & B_2 & 0 \\
0 & 0 & C_2
\end{pmatrix}_{\mathcal{B}_2}.$

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$

Question 3 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir 3.

Mouvement TR ★

C2-08

C2-09

Question 4 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B.

Expression de la résultante dynamique $\overrightarrow{R_d(2/0)} = m_2 \overrightarrow{\Gamma(G_2, 2/0)} = m_2 \frac{\text{d}^2}{\text{d}t^2} \left[\overrightarrow{AC}\right]_{\Re_0}$ $\frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \left[\overrightarrow{AC} \right]_{\mathcal{R}_{0}} = \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \left[\overrightarrow{AB} \right]_{\mathcal{R}_{0}} + \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \left[\overrightarrow{BC} \right]_{\mathcal{R}_{0}} = \ddot{\lambda}(t) \overrightarrow{i_{0}} + R \frac{\mathrm{d}^{2}}{\mathrm{d}t^{2}} \left[\overrightarrow{i_{2}} \right]_{\mathcal{R}_{0}} = \ddot{\lambda}(t) \overrightarrow{i_{0}} + R \frac{\mathrm{d}}{\mathrm{d}t} \left[\dot{\theta} \overrightarrow{j_{2}} \right]_{\mathcal{R}_{0}}$ $=\ddot{\lambda}(t)\overrightarrow{i_0}+R\left(\ddot{\theta}\overrightarrow{j_2}-\dot{\theta}^2\overrightarrow{i_2}\right).$

Méthode 1 : Calcul en $G_2 = C$ puis déplacement du torseur dynamique

- Calcul du moment cinétique en G₂: G₂ = C est le centre de gravité donc σ(C,2/0) = I_C(2) σ k₀ = C₁σ k₁.
 Calcul du moment dynamique en G₂: G₂ = C est le centre de gravité donc
- $\overrightarrow{\delta(C,2/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(C,2/0)} \right]_{\mathcal{R}_0} = C_1 \overrightarrow{\theta} \overrightarrow{k_1}.$
- ► Calcul du moment dynamique en $B : \overline{\delta(B, 2/0)} = \overline{\delta(C, 2/0)} + \overrightarrow{BC} \wedge \overline{R_d(2/0)} = C_1 \overrightarrow{\theta} \overrightarrow{k_1} + R \overrightarrow{i_2} m_2 \wedge (\ddot{\lambda}(t) \overrightarrow{i_0} + R (\ddot{\theta} \overrightarrow{j_2} \dot{\theta}^2 \overrightarrow{i_2})) = C_1 \overrightarrow{\theta} \overrightarrow{k_1} + R m_2 (-\sin \theta \ddot{\lambda}(t) \overrightarrow{k_0} + R \ddot{\theta} \overrightarrow{k_2}).$

Au final, on a donc
$$\{\mathfrak{D}(2/0)\} = \left\{ \begin{array}{l} m_2 \left(\ddot{\lambda}(t) \overrightarrow{i_0} + R \left(\ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2} \right) \right) \\ C_1 \ddot{\theta} \overrightarrow{k_1} + R m_2 \left(-\sin \theta \ddot{\lambda}(t) \overrightarrow{k_0} + R \ddot{\theta} \overrightarrow{k_2} \right) \end{array} \right\}_B$$

Question 5 Déterminer $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0}$

On a
$$\overrightarrow{R_d(1+2/0)} = \overrightarrow{R_d(1/0)} + \overrightarrow{R_d(2/0)} = m_1 \ddot{\lambda}(t) \overrightarrow{i_0} + m_2 \left(\ddot{\lambda}(t) \overrightarrow{i_0} + R \left(\ddot{\theta} \overrightarrow{j_2} - \dot{\theta}^2 \overrightarrow{i_2} \right) \right)$$
.

On projette alors sur $\overrightarrow{i_0}$, $\overrightarrow{R_d(1+2/0)} \cdot \overrightarrow{i_0} = m_1 \ddot{\lambda}(t) + m_2 \left(\ddot{\lambda}(t) - R \left(\ddot{\theta} \sin \theta(t) + \dot{\theta}^2 \cos \theta \right) \right)$.

Mouvement RR 3D ★★

C2-08

C2-09

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$ et $\overrightarrow{BC} = \ell\overrightarrow{i_2} + r\overrightarrow{j_2}$. On note $R + \ell = L = 20$ mm et r = 10 mm. De plus :

- ▶ $G_1 = B$ désigne le centre d'inertie de **1**, on note m_1 la masse de **1** et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}$;
- ► G_2 désigne le centre d'inertie de **2** tel que $\overrightarrow{BG_2} = \ell \overrightarrow{i_2}$, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{G_2}$.

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{\delta}(A, 1 + 2/0) \cdot \overrightarrow{k_0}$

Question 3 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir 3.

Mouvement RR 3D ★★

C2-08

C2-09

Question 4 Exprimer le torseur dynamique $\{\mathfrak{D}(1/0)\}$ en B.

Par définition,
$$\{\mathfrak{D}(1/0)\} = \left\{\begin{array}{c} \overrightarrow{R_d(1/0)} \\ \overrightarrow{\delta(B, 1/0)} \end{array}\right\}_{B}$$
.

Calculons $\overrightarrow{R_d(1/0)}$

$$\overrightarrow{R_d(1/0)} = m_1 \overrightarrow{\Gamma(G_1, 1/0)} = m_1 \overrightarrow{\Gamma(B, 1/0)}$$

Calcul de
$$\overrightarrow{V(B,1/0)}$$
: $\overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AB}\right]_{\Re_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{Ri_1}\right]_{\Re_0} = \overrightarrow{Rip}_{j_1}$.

$$\mathbf{Calcul}\,\mathbf{de}\,\overrightarrow{\Gamma(B,1/0)}\colon\overrightarrow{V(B,1/0)} = \frac{\mathrm{d}}{\mathrm{d}t}\left[\overrightarrow{V(B,1/0)}\right]_{\Re_0} = \frac{\mathrm{d}}{\mathrm{d}t}\left[R\dot{\theta}\overrightarrow{j_1}\right]_{\Re_0} = R\ddot{\theta}\overrightarrow{j_1} - R\dot{\theta}^2\overrightarrow{i_1}.$$

Au final,
$$\overrightarrow{R_d(1/0)} = m_1 \left(R \ddot{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1} \right)$$
.

Calculons $\overline{\delta(B,1/0)}$ B est le centre d'inertie du solide 1; donc d'une part, $\overline{\delta(B,1/0)} = \frac{d}{dt} \left[\overline{\sigma(B,1/0)} \right]_{\mathcal{R}_0}$.

D'autre part,
$$\overrightarrow{\sigma(B, 1/0)} = I_B(1) \overrightarrow{\Omega(1/0)} = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{GR} \dot{\theta} \overrightarrow{k_0} = C_1 \dot{\theta} \overrightarrow{k_0}.$$

Par suite, $\overrightarrow{\delta(B, 1/0)} = C_1 \overrightarrow{\theta} \overrightarrow{k_0}$.

Au final,
$$\{\mathfrak{D}(1/0)\} = \left\{ \begin{array}{l} m_1 \left(R \ddot{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1} \right) \\ C_1 \ddot{\theta} \overrightarrow{k_0} \end{array} \right\}_R$$
.

Question 5 Déterminer $\overrightarrow{\delta(A, 1 + 2/0)} \cdot \overrightarrow{k_0}$

Tout d'abord, $\overrightarrow{\delta(A, 1+2/0)} = \overrightarrow{\delta(A, 1/0)} + \overrightarrow{\delta(A, 2/0)}$

Calcul de $\overrightarrow{\delta(A,1/0)} \cdot \overrightarrow{k_0}$ – Méthode 1

$$\overrightarrow{\delta(A,1/0)} \cdot \overrightarrow{k_0} = \left(\overrightarrow{\delta(B,1/0)} + \overrightarrow{AB} \wedge \overrightarrow{R_d(1/0)} \right) \cdot \overrightarrow{k_0} = \left(C_1 \overrightarrow{\theta} \overrightarrow{k_0} + R \overrightarrow{i_1} \wedge m_1 \left(R \overrightarrow{\theta} \overrightarrow{j_1} - R \dot{\theta}^2 \overrightarrow{i_1} \right) \right) \cdot \overrightarrow{k_0} = C_1 \overrightarrow{\theta} + m_1 R^2 \overrightarrow{\theta}.$$

Calcul de $\overrightarrow{\delta(A,2/0)} \cdot \overrightarrow{k_0}$ – Méthode 1

A est un point fixe. On a donc $\overrightarrow{\delta(A,2/0)} \cdot \overrightarrow{k_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} \right]_{\Re_0} - \overrightarrow{\sigma(A,2/0)} \cdot \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{k_0} \right]_{\Re_0}.$

A est un point fixe. On a donc $\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} = \left(I_A(2) \overrightarrow{\Omega(2/0)}\right) \cdot \overrightarrow{k_0}$

$$I_{A}(2) = I_{G_{2}}(2) + \begin{pmatrix} 0 & 0 & 0 \\ 0 & m_{2}R^{2} & 0 \\ 0 & 0 & m_{2}R^{2} \end{pmatrix}_{\mathcal{R}_{2}} \operatorname{et} \overline{\Omega(2/0)} = \dot{\theta} \overrightarrow{k_{1}} + \dot{\varphi} \overrightarrow{i_{2}} = \dot{\theta} \left(\cos \varphi \overrightarrow{k_{2}} + \sin \varphi \overrightarrow{j_{2}} \right) + \dot{\varphi} \overrightarrow{i_{2}}$$

$$\operatorname{On a \, donc} \overrightarrow{\sigma(A,2/0)} = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 + m_2 R^2 & 0 \\ 0 & 0 & C_2 m_2 R^2 \end{pmatrix}_{\mathcal{R}_2} \begin{pmatrix} \dot{\varphi} \\ \dot{\theta} \sin \varphi \\ \dot{\theta} \cos \varphi \end{pmatrix}_{\mathcal{R}_2} = \begin{pmatrix} A_2 \dot{\varphi} \\ \dot{\theta} \sin \varphi \left(B_2 + m_2 R^2 \right) \\ \dot{\theta} \cos \varphi \left(C_2 + m_2 R^2 \right) \end{pmatrix}_{\mathcal{R}_2}.$$

De plus $\overrightarrow{k_1} = \cos \varphi \overrightarrow{k_2} + \sin \varphi \overrightarrow{j_2}$. On a alors $\overrightarrow{\sigma(A,2/0)} \cdot \overrightarrow{k_0} = \dot{\theta} \sin^2 \varphi \left(B_2 + m_2 R^2 \right) + \dot{\theta} \cos^2 \varphi \left(C_2 + m_2 R^2 \right)$.

Conclusion

$$\overrightarrow{\delta(A,1+2/0)} \cdot \overrightarrow{k_0} = C_1 \ddot{\theta} + m_1 R^2 \ddot{\theta} + \left(B_2 + m_2 R^2\right) \left(\ddot{\theta} \sin^2 \varphi + 2\dot{\theta} \dot{\varphi} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \sin \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi \cos \varphi\right) + \left(C_2 + m_2 R^2\right) \left(\ddot{\theta} \cos \varphi\right) + \left(C_2 + m_2 R^2\right) \left(C_2 + m_2 R^2\right) + \left(C_2 + m_2 R^2\right) +$$

Mouvement RR 3D ★★

C2-08

C2-09 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AB} = H\overrightarrow{j_1} + R\overrightarrow{i_1}$ et $\overrightarrow{BC} = L\overrightarrow{i_2}$. On a H = 20 mm, r = 5 mm, L = 10 mm. De plus :

- ► G_1 désigne le centre d'inertie de 1 tel que $\overrightarrow{AG_1} = \overrightarrow{Hj_1}$, on note m_1 la masse de 1 et $I_{G_1}(1) = \begin{pmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{pmatrix}_{G_2}$;
- ► $G_2 = C$ désigne le centre d'inertie de **2**, on note m_2 la masse de **2** et $I_{G_2}(2) = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}$.

Question 1 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en B.

Question 2 Déterminer $\overrightarrow{\delta}(A, 1 + 2/0) \cdot \overrightarrow{j_0}$

Question 3 Déterminer $\mathcal{P}(2 \to 1/0)$ et $\mathcal{P}(1 \to 2/0)$.

Corrigé voir 3.

Mouvement RR 3D ★★

C2-08

C2-09 Pas de corrigé pour cet exercice.

Question 4 Exprimer le torseur dynamique $\{\mathfrak{D}(2/0)\}$ en *B*.

Par définition,
$$\{\mathfrak{D}(2/0)\} = \left\{\begin{array}{c} \overrightarrow{R_d(2/0)} \\ \overleftarrow{\delta(B,2/0)} \end{array}\right\}_B$$
.

Calculons
$$\overrightarrow{R_d(2/0)}$$
: $\overrightarrow{R_d(2/0)} = m_2 \overrightarrow{\Gamma(G_2, 2/0)} = m_2 \overrightarrow{\Gamma(C, 2/0)}$

Calcul de $\overrightarrow{V(C,2/0)}$:

$$\overrightarrow{V\left(C,2/0\right)} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{AC}\right]_{\mathcal{R}_0} = \frac{\mathrm{d}}{\mathrm{d}t} \left[\overrightarrow{Hj_1} + R\overrightarrow{i_1} + L\overrightarrow{i_2} \right]_{\mathcal{R}_0}.$$

Calculons:

additions.

$$\begin{array}{l}
\stackrel{d}{dt} \left[\overrightarrow{j_0} \right]_{\mathcal{R}_0} = \overrightarrow{0}; \\
\stackrel{d}{dt} \left[\overrightarrow{i_1} \right]_{\mathcal{R}_0} = \overrightarrow{\Omega(1/0)} \wedge \overrightarrow{i_1} = \overrightarrow{\theta} \overrightarrow{j_1} \wedge \overrightarrow{i_1} = -\overrightarrow{\theta} \overrightarrow{k_1}; \\
\stackrel{d}{dt} \left[\overrightarrow{i_2} \right]_{\mathcal{R}_0} = \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{i_2} = \left(\overrightarrow{\theta} \overrightarrow{j_1} + \overrightarrow{\phi} \overrightarrow{k_2} \right) \wedge \overrightarrow{i_2} = \overrightarrow{\theta} \overrightarrow{j_1} \wedge \overrightarrow{i_2} + \overrightarrow{\phi} \overrightarrow{k_2} \wedge \overrightarrow{i_2} = -\overrightarrow{\theta} \cos \varphi \overrightarrow{k_1} + \overrightarrow{\phi} \overrightarrow{j_2}.
\end{array}$$

On a donc $\overrightarrow{V(C,2/0)} = -R \dot{\theta} \overrightarrow{k_1} + L \left(-\dot{\theta} \cos \varphi \overrightarrow{k_1} + \dot{\varphi} \overrightarrow{j_2} \right)$

Calcul de $\overrightarrow{\Gamma(C,2/0)}$:

$$\overrightarrow{\Gamma(C,2/0)} = \frac{d}{dt} \left[\overrightarrow{V(C,2/0)} \right]_{\Re_0}$$

$$=\frac{\mathrm{d}}{\mathrm{d}t}\left[L\dot{\varphi}\overrightarrow{j_2}-\dot{\theta}\left(R\overrightarrow{k_1}+L\cos\varphi\overrightarrow{k_1}\right)\right]_{\mathcal{R}_0}.$$

$$\stackrel{\mathbf{d}}{\underbrace{\det}} \left[\overrightarrow{j_2} \right]_{\mathcal{R}_0} = \overrightarrow{\Omega(2/0)} \wedge \overrightarrow{j_2} = \left(\overrightarrow{\theta} \, \overrightarrow{j_1} + \overrightarrow{\phi} \, \overrightarrow{k_1} \right) \wedge \overrightarrow{j_2} = \overrightarrow{\theta} \, \overrightarrow{j_1} \wedge \overrightarrow{j_2} + \overrightarrow{\phi} \, \overrightarrow{k_1} \wedge \overrightarrow{j_2} = \overrightarrow{\theta} \sin \varphi \, \overrightarrow{k_1} - \overrightarrow{\phi} \, \overrightarrow{i_2}.$$

$$\stackrel{\varphi}{\longrightarrow} \frac{t_2}{\mathrm{d}t} \left[\overrightarrow{k_1} \right]_{\Re_0} = \dot{\theta} \overrightarrow{i_1}.$$

Avec les hypothèses, on a $\overrightarrow{\Gamma(C,2/0)} = L\dot{\varphi}\left(\dot{\theta}\sin\varphi\overrightarrow{k_1} - \dot{\varphi}\overrightarrow{i_2}\right) - \dot{\theta}\left(R\dot{\theta}\overrightarrow{i_1} + L\cos\varphi\dot{\theta}\overrightarrow{i_1} - L\dot{\varphi}\sin\varphi\overrightarrow{k_1}\right)$

Calculons $\delta(C, 2/0)$

C est le centre d'inertie du solide 2; donc d'une part, $\overline{\delta(C,2/0)} = \frac{d}{dt} \left[\overline{\sigma(C,2/0)} \right]_{\alpha_{R}}$

D'autre part, $\overline{\sigma(C,2/0)} = I_C(2) \overline{\Omega(2/0)}$.

Or
$$\overrightarrow{\Omega(2/0)} = \overrightarrow{\theta}\overrightarrow{j_1} + \overrightarrow{\phi}\overrightarrow{k_2} = \overrightarrow{\theta}\left(\cos\varphi\overrightarrow{j_2} + \sin\varphi\overrightarrow{i_2}\right) + \overrightarrow{\phi}\overrightarrow{k_2}$$
.

$$\overrightarrow{\sigma(C,2/0)} = \begin{pmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{pmatrix}_{\mathcal{B}_2} \begin{pmatrix} \dot{\theta} \sin \varphi \\ \dot{\theta} \cos \varphi \\ \dot{\varphi} \end{pmatrix}_{\mathcal{B}_2} = \begin{pmatrix} \dot{\theta} A_2 \sin \varphi \\ \dot{\theta} B_2 \cos \varphi \\ C_2 \dot{\varphi} \end{pmatrix}_{\mathcal{B}_2}.$$

Question 5 Déterminer $\overrightarrow{\delta}(A, 1 + 2/0) \cdot \overrightarrow{j_0}$

