

Masterthesis interim presentation

PRIVACY PRESERVING TRANSFORMER FOR STRESS DETECTION ON SMARTWATCH DATA

Leipzig, 07.12.2022 Borislav Degenkolb

RESEARCH QUESTIONS

Stressdetection

- is a transformer-architecture suitable for the classification of stress?
- How good, also in comparison to the results of Gil-Martin et al. [9], is this approach?
- How big are the losses in the results if the data set is anonymised using differential privacy?

AGENDA

- Motivation
- Related Work
- Background
- Method
- Outlook
- Summary

STRESS

What makes stress dangerous?

STRESS

Stress at work

employers have a legal obligation to ensure that employees do not become ill

high staff turnover increase in absenteeism early retirement reduced work performance [6]

PRIVACY

Biosignals are personal data

TRANSFORMER

Why not LSTM?

enabling parallelization, thus improving efficiency in computation [7]

Why not CNN?

capability of capturing longdistance dependencies [12]

WESAD

UNIVERSITÄT

LEIPZIG

Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection Philip Schmidt, Attila Reiss, Robert Dürichen, Claus Marberger, Kristof Van Laerhoven [8]

Decision Tree	
Random Forest	
AdaBoost DT	

k-nearest neighbour

Linear discriminant analysis

Table 4: Evaluation of the given modalities and classifiers on the binary (stress vs. non-stress) classification task.

	DT RF		I I	AB	LDA		kNN				
	F ₁ -score	Accuracy	F ₁ -score	Accuracy	F ₁ -score	Accuracy	F ₁ -score	Accuracy	F -score	Accuracy	
Motion:											
ACC wrist	55.36 ± 0.47	64.08 ± 0.49	$59.02 \pm 0.$	78 69.96 ± 0.55	61.70 ± 0.80	71.69 ± 0.45	44.93	60.02	52.72	63.80	
ACC chest	61.92 ± 0.83	71.75 ± 0.53	$59.91 \pm 0.$	25 72.87 ± 0.08	62.17 ± 0.45	73.87 ± 0.30	57.52	72.05	47.79	57.81	
Wrist:											
BVP	78.27 ± 0.17	81.39 ± 0.15	81.35 ± 0 .	15 84.18 ± 0.11	81.23 ± 0.15	84.10 ± 0.13	83.08	85.83	78.94	82.06	
EDA wrist	70.95 ± 0.37	76.21 ± 0.27	$70.88 \pm 0.$	20 76.29 ± 0.14	75.34 ± 0.57	79.71 ± 0.43	69.86	78.08	68.30	73.13	
TEMP wrist	63.15 ± 0.18	68.22 ± 0.19	$62.90 \pm 0.$	10 67.82 ± 0.11	62.27 ± 0.25	67.11 ± 0.34	56.37	69.24	60.18	64.46	
Wrist physio	82.37 ± 0.21	84.88 ± 0.11	86.10 ± 0 .	29 88.33 ± 0.25	85.86 ± 0.20	88.05 ± 0.18	83.77	86.46	78.93	81.96	
Chest:											
ECG	77.01 ± 0.37	80.17 ± 0.29	79.64 ± 0 .	15 82.78 ± 0.11	80.20 ± 0.25	83.37 ± 0.20	81.31	85.44	75.39	79.19	
EDA chest	69.88 ± 0.41	73.55 ± 0.44	$73.63 \pm 0.$	18 77.51 ± 0.23	71.97 ± 0.26	75.50 ± 0.29	74.51	81.70	66.64	69.73	
EMG	47.06 ± 0.20	56.25 ± 0.05	49.42 ± 0 .	35 63.44 ± 0.18	50.84 ± 0.44	62.88 ± 0.31	52.49	67.10	51.84	58.74	
RESP	79.92 ± 0.19	83.03 ± 0.17	84.33 ± 0 .	10 86.63 ± 0.08	84.64 ± 0.06	86.87 ± 0.06	85.61	88.09	69.17	75.67	
TEMP chest	57.40 ± 0.08	64.33 ± 0.07	$56.75 \pm 0.$	25 64.75 ± 0.28	55.03 ± 0.27	63.46 ± 0.21	41.00	69.49	51.64	58.25	
Chest physio	81.29 ± 0.22	84.18 ± 0.20	90.44 ± 0 .	66 92.01 \pm 0.51	87.11 ± 0.57	89.76 ± 0.48	91.47	93.12	77.27	81.05	
					1						
All wrist	78.71 ± 0.53	82.19 ± 0.44	84.11 ± 0 .	87.12 ± 0.24	80.11 ± 0.93	83.98 ± 0.75	84.05	86.88	52.72	63.80	
All chest	78.26 ± 0.46	81.29 ± 0.38	$90.04 \pm 0.$	840.000	89.57 ± 0.61	91.58 ± 0.46	91.07	92.83	64.20	69.70	
All physio	83.03 ± 1.61	85.16 ± 1.50	86.02 ± 0 .	55 87.91 ± 0.54	87.78 ± 1.38	89.77 ± 1.17	90.93	92.51	79.44	83.16	
All modalities	80.83 ± 1.13	83.60 ± 1.08	85.71 ± 0 .	63 87.74 ± 0.60	83.88 ± 0.93	87.00 ± 0.78	90.74	92.28	69.14	74.20	
Baseline		Random	Guessing		Sophisticated guessing						
	F ₁ -8	score	A	ccuracy		F ₁ -score			Accuracy		
	47	.96		50.00		41.15			69.94		

WESAD

Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection Philip Schmidt, Attila Reiss, Robert Dürichen, Claus Marberger, Kristof Van Laerhoven [8]

Table 6: Feature importance for the three-class and binary classification task considering all modalities.

Importance	Three-class	Importance	Binary Task
0.23	$\sigma_E^{RESP,\;chest}$	0.35	$\sigma_E^{RESP,chest}$
0.11	$\mu_{HR}^{ECG,chest}$	0.20	μ ^{ECG, chest}
0.07	minwrist TEMP	0.09	maxwrist TEMP
0.06	$\mu_{ACC,3D}^{chest}$	0.07	rangewrist EDA
0.05	range ^{wrist} EDA	0.05	#Chest SCR

STRESS DETECTION VIA CNN

Human Stress Detection With Wearable Sensors Using Convolutional Neural Networks Manuel Gil-Martin, Ruben San-Segundo, Ana Mateos, Javier Ferreiros-Lopez [9]

STRESS DETECTION VIA CNN

Human Stress Detection With Wearable Sensors Using Convolutional Neural Networks Manuel Gil-Martin, Ruben San-Segundo, Ana Mateos, Javier Ferreiros-Lopez [9]

Table 1.

Processing Detai	Processing Details Per Signal									
Device	Signal	Sampling frequency	Frequency range	Sub-window length	Number of inputs to CNN					
	Accelerations (X, Y, and Z)	700 Hz	0–30 Hz	7 seconds	210					
	ECG	700 Hz	0–7 Hz	30 seconds	210					
RespiBAN	EDA	700 Hz	0–7 Hz	30 seconds	210					
(Chest)	EMG	700 Hz	0–250 Hz	0.84 seconds	210					
	RESP	700 Hz	0–6 Hz	35 seconds	210					
	TEMP	700 Hz	0–6 Hz	35 seconds	210					
	Accelerations (X, Y and Z)	64 Hz	0–30 Hz	7 seconds	210					
Empatica E4 (Wrist)	BVP	64 Hz	0–7 Hz	30 seconds	210					
(**1130)	EDA	64 Hz	0–7 Hz	30 seconds	210					
	TEMP	64 Hz	0–6 Hz	35 seconds	210					

Signal preprocessing

STRESS DETECTION VIA CNN

Human Stress Detection With Wearable Sensors Using Convolutional Neural Networks Manuel Gil-Martin, Ruben San-Segundo, Ana Mateos, Javier Ferreiros-Lopez [9]

Table 4. Accuracy (%) and FI-Score (%) Comparison with Schmidt et al. [12] Classifying Between Stress and Non-Stress Situations Stress versus Nonstress Schmidt et al. [12] This article F1-score Accuracy Accuracy F1-score 88.33 87.30 ± 0.21 87.00 ± 0.21 86.10 physiological All inertial 91.50 ± 0.17 91.30 ± 0.17 signals (acc) 94.78 ± 0.13 All physiological 92.51 90.93 95.01 ± 0.13 signals 92.83 93.10 ± 0.16 93.01 ± 0.16 All chest signals 87.12 92.70 ± 0.16 92.55 ± 0.16 All wrist signals 96.62 ± 0.11 | 96.63 ± 0.11 All signals 92.28 90.74

HUSFORMER

Husformer: A Multi-Modal Transformer for Multi-Modal Human State Recognition

Ruiqi Wangy, Wonse Joy, Dezhong Zhao, Weizheng Wang, Baijian Yang, Guohua Chen and Byung-Cheol Min [10]

HUSFORMER

Husformer: A Multi-Modal Transformer for Multi-Modal Human State Recognition

Ruiqi Wangy, Wonse Joy, Dezhong Zhao, Weizheng Wang, Baijian Yang, Guohua Chen and Byung-Cheol Min [10]

TABLE 7: Performance of different models on WESAD, raw MOCAS, preprocessed MOCAS and CogLoad datasets in terms of average multi-class average accuracy (Acc) and multi-class average F1-score (F1) with stand deviations. Results of other models that are within 5% of the Husformer's on Acc or F1 are highlighted. h: higher is better.

Dataset	WESAD		Raw M	Raw MOCAS		ed MOCAS	CogLoad	
Metric	$Acc(\%)^h$	$F1(\%)^{h}$	$Acc(\%)^h$	$F1(\%)^{h}$	$Acc(\%)^h$	$F1(\%)^{h}$	$Acc(\%)^h$	$F1(\%)^{h}$
EF-SVM LF-SVM EmotionMeter MMResLSTM	46.67±4.21 49.19±2.35 69.24±1.20 72.49±0.86	48.60±3.95 51.72±2.87 69.44±1.13 73.05±0.98	55.69±4.26 52.95±3.27 77.38±3.27 82.06±2.15	55.84±4.87 53.06±3.29 77.21±3.18 82.17±1.95	66.94±4.78 64.01±5.03 85.03±2.33 89.54±1.08	66.08±4.06 64.89±4.94 86.17±2.40 89.98±1.14	45.88±3.67 43.19±2.58 65.80±1.21 68.17±1.41	51.73±3.01 50.08±1.99 69.22±1.09 70.12±1.45
HusFuse HusPair HusLSTM	74.58±1.37 80.69±1.57 76.40±0.99	74.29±1.12 79.89±1.98 76.76±1.06	76.46±2.17 88.24±1.68 84.74±2.50	77.03±2.20 88.58±1.48 85.04±2.39	83.81±1.91 94.95±3.82 88.16±1.58	84.62±1.67 94.87±3.84 88.30±1.56	64.30±0.49 71.23±2.92 72.85±0.84	63.46±0.64 72.67±3.10 72.36±0.79
HusFormer	85.02 ± 1.91	$85.85{\pm}2.14$	93.71 ± 2.26	93.82 ± 2.41	96.42 ± 2.11	96.51 ± 2.03	80.40 ± 2.34	81.27 ± 2.63

TRANSFORMER

Attention is All you Need

Ashish Vaswani et al. [7]

parallel computation

efficiency in computation

decreased complexity

Figure 1: The Transformer - model architecture.

TRANSFORMER INPUT EMBEDDING

Attention is All you Need

word embeddings are

generated one

timestep at a time

Ashish Vaswani et al. [7]

[0.76][0.32][0.32] 0.23 0.88 0.19 0.11 0.41 0.91 0.21 [0.14][0.01]Transformer (Encoder) The red dog

word embeddings are generated simultaneously

TRANSFORMER ENCODER

Attention is All you Need

Ashish Vaswani et al. [7]

Attention: what part of the input should be focused?

[0.48]

0.29

1.61

1.28

TRANSFORMER DECODER

Attention is All you Need

Ashish Vaswani et al. [7]

$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0.1\\0.9\\0\\0\end{bmatrix}$	$\begin{bmatrix} 0.05 \\ 0.40 \\ 0.55 \\ 0 \end{bmatrix}$	[0.16] [0.09] [0.15] [0.66]	
Le	gros	chien	rouge	Encoder- Decoder-
$\begin{bmatrix} 0.71 \end{bmatrix}$	$\begin{bmatrix} 0.01 \end{bmatrix}$	[0.09]	[0.03]	Attention
0.04	0.84	0.05	0.03	
0.18	[0.13]	0.24	[0.91]	•
The	big	red	dog	

TOOLS

IDE

Google colab + Jupyter Notebook

Transformer

Tensorflow + Keras

Hyperparameter Tuning

Neptune.ai

(None, 6, 210)

(None, 6)

TRANSFORMER ARCHITEKTUR

https://keras.io/examples/timeseries/timeseries transformer classification/#build-the-model

INTERIM RESULTS

Smartwatch OS: E4 Evaluation of Transformer model trained on 200 epochs

Subject ********	Accuracy	Precision	Recall	F1-Score
52	0.91429	0.91429	0.91429	0.91429
53	0.68571	0.68571	0.68571	0.68571
54	0.97222	0.97222	0.97222	0.97222
S5	1.00000	0.97297	1.00000	0.98630
S6	0.94444	0.92105	0.97222	0.94595
S7	0.91667	0.91667	0.91667	0.91667
S8	0.94444	0.94444	0.94444	0.94444
S9	0.94444	0.94444	0.94444	0.94444
S10	1.00000	1.00000	0.97297	0.98630
S11	0.78378	0.77778	0.75676	0.76712
S13	0.91892	0.89474	0.91892	0.90667
S14	0.72973	0.71053	0.72973	0.72000
S15	1.00000	1.00000	1.00000	1.00000
S16	0.97297	0.94737	0.97297	0.96000
S17	0.70270	0.70270	0.70270	0.70270
********	*******	************	*******	******
Average	0.89536	0.88699	0.89360	0.89019

HYPERPARAMETER TUNING

HYPERPARAMETER TUNING

batch_size	50
us dropout	0.25
123 epochs	200
1.23 lr	0.0001
min_delta_loss	0.01
122 mlp_dropout	0.2
□ momentum	0.4
num_transformer_blocks	7

20

HYPERPARAMETER TUNING

	PINNED COLU	IMNS (i)									
Ø	A Id	Creation Time	A × Owner ÷	Monitoring Time Monitoring Time	ACC	Loss	F1 \$	LR \$	#EncBlocks \$\preceq\$	BatchSize 🔷	{A} Tags
B	STRESS1-2	2022/11/29 12:29:27	o boris	1h 14m	0.72973	1 .12489	0 .702703	0.0001	6	50	all A Hoeari
Ø	STRESS1-22	2022/11/29 11:23:09	o boris	47m	0.72973	1.00632	0.72	0.0001	5	50	all ×
Ø	STRESS1-2	2022/11/29 09:50:01	o boris	47m 7s	0.783784	0 .573396	0.746667	0.0001	6	50	all ×
Ø	STRESS1-20	2022/11/28 21:12:57	oboris	56m 24s	0.72973	0 .710102	0.72973	0.0001	7	50	all ×
Ø	STRESS1-19	2022/11/28 18:52:31	o boris	1h	0.675676	0 .763053	0.666667	0.0001	7	50	all ×
Ø	STRESS1-18	2022/11/28 18:04:24	o boris	35m 10s	0.648649	0.900816	0.638889	0.0001	7	50	all × val_lo:
Ø	STRESS1-1	2022/11/28 17:51:13	oboris	10m 2s	0.702703	0.64422	0 .702703	0.0001	7	50	onlyE4 × va
Ø	STRESS1-10	2022/11/28 17:18:52	o boris	10m 23s	0.837838	0.310676	0.849315	0.0001	7	50	onlyE4 ×
Ø	STRESS1-1	2022/11/28 16:06:09	o boris	13m 40s	0.837838	0 .342507	0.853333	0.0001	7	50	onlyE4 ×
Ø	STRESS1-14	2022/11/28 15:52:48	oboris	9m 31s	0.702703	0.636979	0.704225	0.001	7	50	onlyE4 ×
B	STRESS1-1	2022/11/28 14:09:12	oboris	18m 52s	0.756757	0.549588	0.756757	0.0001	8	50	onlyE4 ×

OUTLOOK

- 1. further Hyperparameter-Tuning / architecture changes
 - evaluation of the transformer architecture
- 2. Insert two LSTM-Layers for better positional encoding [11]
- 3. differential privacy
 - evaluation of the privacy preserving architecture

OUTLOOK

Differential Privacy with Opacus [13]

```
# define your components as usual
model = Net()
optimizer = SGD(model.parameters(), lr=0.05)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=1024)
# enter PrivacyEngine
privacy_engine = PrivacyEngine()
model, optimizer, data_loader = privacy_engine.make_private(
    module=model,
    optimizer=optimizer,
    data loader=data loader,
    noise_multiplier=1.1,
    max_grad_norm=1.0,
# Now it's business as usual
```


SUMMARY

- 1. stressdetection is relevant
- 2. biosignals are personal data
- 3. a Transformer is suitable for time-series-problems

LITERATURE

- [1] Miller GE Cohen S Janicki-Deverts D. "Psychological stress and disease." In: JAMA. 298 (2007), S. 1685–7.
- [2] Miller GE Segerstrom SC. "Psychological stress and the human immune system: a metaanalytic study of 30 years of inquiry." In: Psychol Bull. 130 (2004), S. 601–30.
- [3] Kivimäki M. Steptoe A. "Stress and cardiovascular disease: an update on current knowledge." In: Annu Rev Public Health. 34 (2013), S. 337–54.
- [4] Alexandros M. Heraclides u. a. "Work Stress, Obesity and the Risk of Type 2 Diabetes: Gender-Specific Bidirectional Effect in the Whitehall II Study". In: Obesity 20.2 (2012), S. 428–433.
- [5] H.M. van Praag. "Can stress cause depression?" In: Progress in Neuro-Psychopharmacology and Biological Psychiatry 28.5 (2004), S. 891–907.
- [6] S Michie. "Causes and Management of stress at work". In: Occupational and Environmental Medicine 59 (2002), S. 67–72. issn: 1351-0711

LITERATURE

- [7] Ashish Vaswani u. a. "Attention is All you Need". In: Advances in Neural Information Processing Systems. Hrsg. von I. Guyon u. a. Bd. 30. Curran Associates, Inc., 2017.
- [8] Philip Schmidt u. a. "Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection". In: ICMI '18. Boulder, CO, USA: Association for Computing Machinery, 2018, S. 400–408.
- [9] Manuel Gil-Martin u. a. "Human Stress Detection With Wearable Sensors Using Convolutional Neural Networks". In: IEEE Aerospace and Electronic Systems Magazine 37.1 (2022), S. 60–70
- [10] Ruigi Wang u. a. Husformer: A Multi-Modal Transformer for Multi-Modal Human State Recognition. 2022.
- [11] Albert Zeyer u. a. "A Comparison of Transformer and LSTM Encoder Decoder Models for ASR". In: 2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU). 2019, S. 8–15.
- [12] Chang Li, Xiaoyang Huang, Rencheng Song, Ruobing Qian, Xiang Liu, Xun Chen, EEG-based seizure prediction via Transformer guided CNN, Measurement, Volume 203, 2022

LITERATURE

[13] Ashkan Yousefpour u. a. "Opacus: User-Friendly Differential Privacy Library in PyTorch". In: CoRR abs/2109.12298 (2021).

THANK YOU!