Interpolación polinomial

Métodos Numéricos

Prof. Juan Alfredo Gómez

Conferencia 18

Conferencia 18

Polinomios de Lagrange

Método de Neville

Interpolación

Problema de interpolación.

Dado un conjunto de puntos en el plano \mathbb{R}^2

$$\{(x_0,y_0);\cdots;(x_n,y_n)\}$$

tales que $x_i \neq x_j$. Determinar una función p(x) que pase por los puntos, o sea:

$$\{p(x_0)=y_0;\cdots;p(x_n)=y_n\}$$

Observaciones

- Es deseable utilizar funciones polinomiales del tipo $p(x) = a_m x^m + \cdots + a_1 x + a_0$ debido a lo simple que resulta su evaluación numérica (esquema de Horner) y el cálculo de derivadas e integrales asociadas.
- El polinomio de Taylor no es de utilidad en este problema.

Ejemplo

Problema con dos puntos

Hallar la única recta (polinomio de grado 1) que pasa por los puntos $(x_0, f(x_0))$ y $(x_1, f(x_1))$

Solución

Definimos las funciones:

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 $L_1(x) = \frac{x - x_0}{x_1 - x_0}$

que cumplen

$$L_0(x_0) = 1$$
, $L_0(x_1) = 0$, $L_1(x_0) = 0$, $L_1(x_1) = 1$

y tomamos:

$$P(x) = f(x_0)L_0(x) + f(x_1)L_1(x)$$

Resultado principal

Teorema

Si $x_0, \ldots x_n$ son n+1 puntos distintos y f es una función, de la cual se tiene sus valores en dichos puntos $\{f(x_k)\}_{k=0}^n$, entonces existe un único polinomio P(x) de grado máximo n tal que

$$f(x_k) = P(x_k), \quad \forall k = 0 \dots n$$

El polinomio P(x) se denomina **polinomio de interpolación de Lagrange** y tiene la siguiente expresión:

$$P(x) = f(x_0)L_{n,0}(x) + \cdots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x)$$

donde, para cada k = 0, ..., n:

$$L_{n,k}(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}$$

Polinomios base $L_{2,k}(x)$

Polinomios base $L_{3,k}(x)$

Polinomios base $L_{4,k}(x)$

Ejemplo corto del uso del polinomio de Lagrange

Problema

Utilizando los nodos $x_0=2$, $x_1=2.5$ y $x_2=4$, estimar con el polinomio de Lagrange el valor de f(x)=1/x en el punto $\bar{x}=3$.

Solución (denotemos $L_k(x) = L_{n,k}(x)$)

$$f(x_0) = \frac{1}{2} = 0.5, \quad L_0(x) = \frac{(x - 2.5)(x - 4)}{(2 - 2.5)(2 - 4)} = (x - 6.5)x + 10$$

$$f(x_1) = \frac{1}{2.5} = 0.4, \quad L_1(x) = \frac{(x - 2)(x - 4)}{(2.5 - 2)(2.5 - 4)} = \frac{(-4x + 24)x - 32}{3}$$

$$f(x_2) = \frac{1}{4} = 0.25, \quad L_2(x) = \frac{(x - 2)(x - 2.5)}{(4 - 2)(4 - 2.5)} = \frac{(x - 4.5)x + 1}{3}$$

$$P(x) = 0.5((x - 6.5)x + 10) + 0.4 \frac{(-4x + 24)x - 32}{3} + 0.25 \frac{(x - 4.5)x + 1}{3}$$

$$P(x) = (0.05x - 0.425)x + 1.15 \Longrightarrow f(3) = \frac{1}{2} \approx P(3) = 0.325$$

Error asociado al polinomio de Lagrange

Teorema

Supongamos que $x_0, \ldots x_n$ son n+1 puntos distintos en el intervalo [a,b] y que f es una función n+1-veces continuamente derivable en ese intervalo (o sea $f \in C^{n+1}[a,b]$).

Se cumple entonces que, para cualquier punto $x \in [a, b]$ existe un punto $\xi(x) \in (a, b)$ tal que:

$$f(x) = P(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)\cdots(x-x_n)$$

donde P(x) es el polinomio de interpolación de f en los puntos $x_0, \ldots x_n$.

Problema

La siguiente tabla lista algunos valores de la función de Bessel de primer tipo de orden zero $J_0(x)$.

X	$J_0(x)$
1.0	0.7651977
1.3	0.6200860
1.6	0.4554022
1.9	0.2818186
2.2	0.1103623

Compare las aproximaciones de $J_0(1.5) = 0.5118277$ que pueden obtenerse utilizando distintos polinomios de Lagrange.

Notación

Sean f(x) una función definida en los n+1 puntos distintos $\{x_i\}_{i=0}^n$ y $\{m_j\}_{j=1}^k\subset\{0\ldots n\}$ un conjunto de k índices distintos. Denotaremos por

$$P_{m_1,\ldots,m_k}(x)$$

al polinomio de interpolación de Lagrange de f(x) en los puntos $x_{m_1}, \dots x_{m_k}$.

Ejemplo de la notación

Sean $f(x) = e^x$, $x_0 = 1$, $x_1 = 2$, $x_2 = 3$, $x_3 = 4$ y $x_4 = 6$, entonces $P_{1,2,4}(x)$ coincide con f en $x_1 = 2$, $x_2 = 3$ y $x_4 = 6$:

$$P_{1,2,4}(x) = e^{2\frac{(x-3)(x-6)}{(2-3)(2-6)}} + e^{3\frac{(x-2)(x-6)}{(3-2)(3-6)}} + e^{6\frac{(x-2)(x-3)}{(6-2)(6-3)}}$$

Aproximar $J_0(1.5) = 0.5118277$, por $P_{??}(1.5)$ con los datos

i	x_i	$J_0(x_i)$
0	1.0	0.7651977
1	1.3	0.6200860
2	1.6	0.4554022
3	1.9	0.2818186
4	2.2	0.1103623

Solución

$$P_{1,2}(1.5) = 0.5102968$$

$$P_{0,1,2}(1.5) = 0.5124715$$
 $P_{1,2,3}(1.5) = 0.5112857$

$$P_{0,1,2,3}(1.5) = 0.5118127$$
 $P_{1,2,3,4}(1.5) = 0.5118302$

$$P_{0,1,2,3,4}(1.5) = 0.5118200$$

Cómo calcular eficientemente los valores $P_{???}(\bar{x})$

Motivación

Teorema (Evaluación recursiva del Polinomio de Lagrange)

Sean f(x) una función definida en los k+1 puntos distintos $\{x_0,\ldots,x_k\}$ y x_i,x_j dos puntos en ese conjunto. Entonces

$$P(x) = \frac{(x - x_j)P_{0,1,\dots,j-1,j+1,\dots,k}(x) - (x - x_i)P_{0,1,\dots,i-1,i+1,\dots,k}(x)}{(x_i - x_j)}$$

donde $P(x) = P_{1,...,k}(x)$ es el polinomio de interpolación de Lagrange de f(x) en los k+1 puntos $x_0,...x_k$.

Con esta fórmula puede calcularse recursivamente

×o	$P_{0}(\bar{x})$				
x_1	$P_1(\bar{x})$	$P_{0,1}(\bar{x})$			
x_2	$P_2(\bar{x})$	$P_{1,2}(\bar{x})$	$P_{0,1,2}(\bar{x})$		
X3	$P_3(\bar{x})$	$P_{2,3}(\bar{x})$	$P_{1,2,3}(\bar{x})$	$P_{0,1,2,3}(\bar{x})$	
X4	$P_4(\bar{x})$	$P_{3,4}(\bar{x})$	$P_{2,3,4}(\bar{x})$	$P_{1,2,3,4}(\bar{x})$	$P_{0,1,2,3,4}(\bar{x})$

Algoritmo

Notación simplificada: Para $i >= j \ge 0$

$$Q_{i,j}(x) = P_{i-j,i-j+1,\ldots,i}$$

Por ejemplo: $Q_{2,0}(x) = P_2(x) = f(x_2); \ Q_{4,2}(x) = P_{2,3,4}(x)$

Pseudocódigo (Para evaluar $P_{0,...,n}(\bar{x})$)

DATOS: $x_0, ..., x_k$ puntos de interpolación $f(x_i), 0 \le i \le n$ valores a interpolar

 \bar{x} : Punto a evaluar

RESULT: Tabla Q de todos los valores $Q_{i,j}$, $0 \le j \le i \le n$

PASO 1: Para k = 0: $n \text{ tomar } Q_{k,0}(\bar{x}) = f(x_k)$.

PASO 2: Para i = 1 : n hacer

Para j = 1 : i, tomar

 $Q_{i,j}(\bar{x}) = \frac{(x - x_{i-j})Q_{i,j-1}(\bar{x}) - (x - x_i)Q_{i-1,j-1}(\bar{x})}{(x_i - x_{i-j})}$

PASO 3: STOP(Q)

Aproximar $J_0(1.5) = 0.5118277$, por $P_{??}(1.5)$ con los datos

i	x;	$J_0(x_i)$
0	1.0	0.7651977
1	1.3	0.6200860
2	1.6	0.4554022
3	1.9	0.2818186
4	2.2	0.1103623

Cálculo de Q_{0,i}

$$\begin{array}{ccc} i & x_i & Q_{0,j}(\bar{x}) \\ \hline 0 & 1.0 & 0.7651977 \end{array}$$

$$Q_{0,0}(\bar{x}) = P_0(1.5) = 0.7651977$$

Aproximar $J_0(1.5) = 0.5118277$, por $P_{??}(1.5)$ con los datos

i	×;	$J_{0}(x_{i})$
1	1.3	0.6200860
2	1.6	0.4554022
3	1.9	0.2818186
4	2.2	0.1103623

Cálculo de $\overline{Q_{1,j}}$

$$Q_{1,1}(\bar{x}) = P_{0,1}(\bar{x}) = \frac{(\bar{x} - x_1)P_0(\bar{x}) - (\bar{x} - x_0)P_1(\bar{x})}{(x_0 - x_1)}$$

$$Q_{1,1}(\bar{x}) = \frac{(1.5-1.3)0.7651977 - (1.5-1.0)0.6200860}{(1.0-1.3)} = 0.5233449$$

Aproximar $J_0(1.5) = 0.5118277$, por $P_{??}(1.5)$ con los datos

i	x;	$J_0(x_i)$
2	1.6	0.4554022
3	1.9	0.2818186
4	2.2	0.1103623

Cálculo de $Q_{2,j}$

i	×;	$Q_{i,0}(\bar{x})$	$Q_{i,1}(\bar{x})$	$Q_{i,2}(\bar{x})$
0	1.0	0.7651977		
1	1.3	0.6200860	0.5233449	
2	1.6	0.4554022	0.5102968	0.5124715

$$Q_{2,2}(\bar{x}) = P_{0,1,2}(\bar{x}) = \frac{(\bar{x} - x_2)P_{0,1}(\bar{x}) - (\bar{x} - x_0)P_{1,2}(\bar{x})}{(x_0 - x_2)}$$

$$Q_{2,2}(\bar{x}) = \frac{(1.5-1.6)0.5233449 - (1.5-1.0)0.5102968}{(1.0-1.6)} = 0.5124715$$

Aproximar $J_0(1.5) = 0.5118277$, por $P_{??}(1.5)$ con los datos

i	×;	$J_{0}(x_{i})$
3	1.9	0.2818186
4	2.2	0.1103623

Cálculo de $\overline{Q_{3,j}}$

1	×i	$Q_{i,0}(x)$	$Q_{i,1}(x)$	$Q_{i,2}(x)$	$Q_{i,3}(x)$	
0	1.0	0.7651977				
1	1.3	0.6200860	0.5233449			
2	1.6	0.4554022	0.5102968	0.5124715		
3	1.9	0.2818186	0.5132634	0.5112857	0.5118127	

$$Q_{3,3}(\bar{x}) = P_{0,1,2,3}(\bar{x}) = \frac{(\bar{x} - x_3)P_{0,1,2}(\bar{x}) - (\bar{x} - x_0)P_{1,2,3}(\bar{x})}{(x_0 - x_3)}$$

$$Q_{3,3}(\bar{x}) = \frac{(1.5-1.9)0.5124715 - (1.5-1.0)0.5112857}{(1.0-1.9)} = 0.5118127$$

Aproximar $J_0(1.5) = 0.5118277$, por $P_{??}(1.5)$ con los datos

$$\begin{array}{c|cccc} i & x_i & J_0(x_i) \\ \hline 4 & 2.2 & 0.1103623 \end{array}$$

Cálculo de $Q_{4,i}$

0 (-)

1	X;	$Q_{i,0}(x)$	$Q_{i,1}(x)$	$Q_{i,2}(x)$	$Q_{i,3}(x)$	$Q_{i,3}(x)$
0	1.0	0.7651977				
1	1.3	0.6200860	0.5233449			
2	1.6	0.4554022	0.5102968	0.5124715		
3	1.9	0.2818186	0.5132634	0.5112857	0.5118127	
4	2.2	0.1103623	0.5104270	0.5137361	0.5118302	0.5118200

$$Q_{4,3}(\bar{x}) = P_{1,2,3,4}(\bar{x}) = \frac{(\bar{x} - x_4)P_{1,2,3}(\bar{x}) - (\bar{x} - x_1)P_{2,3,4}(\bar{x})}{(x_1 - x_4)}$$

$$Q_{4,3}(\bar{x}) = \frac{(1.5 - 2.2)0.5112857 - (1.5 - 1.3)0.5137361}{(1.0 - 1.9)} = 0.5118302$$