MATH-UA 349: Homework 3

James Pagan, February 2024

Professor Kleiner

Contents

1	Problem 1	2
2	Problem 2	3
3	Problem 3	4
4	Problem 4	4
5	Problem 5	5
6	Problem 6	5
7	Problem 7	6
8	Problem 8	7

Proof. The following six proofs demonstrate that the *first* proofs imply the *second*:

- 1. Units: Suppose that u has a multiplicative inverse v. Then $1 = uv \in (v)$, so for all $a \in R$, we obtain $a = a1 \in (v)$. Thus (u) = R.
 - Suppose that (u) = R. Then $1 \in (u)$, so there exists v such that uv = 1. Thus u has a multiplicative inverse.
- 2. **Divisors**: Suppose that b = aq. Then for all $bx \in (b)$, we have that $bx = aqx \in (a)$ hence $(b) \subseteq (a)$.

Suppose that $(b) \subseteq (a)$. Then $b \in (a)$, so there exists q such that b = aq.

- 3. **Proper Divisors**: Suppose that b = aq and neither a nor q are units. Then $(b) \subseteq (a)$. If we suppose for contradiction that (b) = (a), then there exists x such that bx = a. Hence a = axq; since R is an integral domain, q is a unit. Thus we conclude $(b) \subset (a)$. Suppose that $(b) \subset (a)$. Then b = aq for some q; if q was a unit, then $a = bq^{-1}$ and (b) = (a). Thus u is not a unit.
- 4. **Associates**: Suppose that a = ub for some unit u. Then for all $ax \in (a)$, we have $ax = bux \in (b)$ and for all $bx \in (b)$, we have $bx = au^{-1}x \in (a)$. Thus (a) = (b). Suppose that (a) = (b). Then there exists u, v such that a = ub and b = va, so a = uva. Since R is an integral domain, this implies that u is a unit.
- 5. **Irreducible Elements**: The proof follows from Parts (1) and (2):

a is a nonunit \iff $(a) \subset R$ a has no proper divisors \iff there does not exist (b) such that $(a) \subset (b) \subset R$.

6. **Prime Elements**: Using Part (2), we find that

$$p \mid ab \text{ implies } p \mid a \text{ or } p \mid b \iff (ab) \subseteq (p) \text{ implies } (a) \subseteq (p) \text{ or } (b) \subseteq (p)$$

 $\iff ab \in (p) \text{ implies } a \in (p) \text{ or } b \in (p),$

as desired.

This completes the proof.

Part (a)

Proof. Since $R \subseteq \mathbb{Z}[i]$ is a subring, the units of R are units of \mathbb{Z}_i — namely, they must be among 1, i, -1, and -i. It is clear that only 1 and 1 are elements of R and are both units.

Part (b)

Proof. Realize that elements $a + bi\sqrt{5} \in R$ have norm squared

$$\left| a + bi\sqrt{5} \right|^2 = a^2 + 5b^2.$$

Thus if an element $x \in R$ factors into nonunits $y, z \in R$, then $|x|^2$ factors into two numbers of the form $a^2 + 5b^2 > 1$ for integers a, b. The absolute values of the required elements are as follows:

- 1. $|2|^2 = 4$.
- 2. $|3|^2 = 9$.
- 3. $\left|1 + i\sqrt{5}\right|^2 = 6$.
- 4. $|1 i\sqrt{5}|^2 = 6$.

By listing integers of the form $a^2 + 5b^2$, we obtain that none of these factor as desired. Hence they are all irreducible.

Part (c)

Proof. Observe that the element $6 \in R$ factors into two products of irreducible elements:

$$2 \times 3 = 6 = (1 + i\sqrt{5})(1 - i\sqrt{5}).$$

Neither of the terms on the right-hand side are adjoints with the left-hand side, since the units of R are 1 and -1. Hence R is not a Unique Factorization Domain.

 $F[x_1, x_2]$ is not a principal ideal domain because the ideal

$$(x_1, x_2)$$

is not principal: otherwise since $(x_1, x_2) \neq R$ there would exist a nonunit generator that divides the polynomials x_1 and x_2 , but both such elements are irreducible.

4 Problem 4

Part (a)

Proof. Suppose that \mathfrak{p} is a prime ideal of R, and define $\phi: R \to R/\mathfrak{p}$ by $\phi(a) = a + \mathfrak{p}$. Since the kernel of ϕ is \mathfrak{p} , we have that

$$\phi(ab) = 0 \implies ab \in \mathfrak{p} \implies a \in \mathfrak{p} \text{ or } b \in \mathfrak{p} \implies \phi(a) = 0 \text{ or } \phi(b) = 0.$$

Conversely, suppose that R/\mathfrak{p} is an integral domain. Then

$$ab \in \mathfrak{p} \implies \phi(ab) = 0 \implies \phi(a) = 0 \text{ or } \phi(b) = 0 \implies a \in \mathfrak{p} \text{ or } b \in \mathfrak{p}.$$

This completes the proof.

Part (b)

Proof. Using the result from Problem 1, we have

$$(p) \neq (0)$$
 is prime $\iff p \neq (0), p \neq R$, and $ab \in (p)$ implies $a \in (p)$ or $b \in (p)$ $\iff p \neq 0$ is not a unit, and $p \mid ab$ implies $p \mid a$ or $p \mid b$ $\iff p$ is a prime element,

as required.

We use elementary Number Theory. It is clear that gcd(ab, a + b) = 1: using the fact that gcd(w, y) = 1 implies that gcd(x, y) = gcd(xw, y) for all x, we have

$$gcd(a, b) = 1 \implies gcd(a, a + b) = 1 \text{ and } gcd(b, a + b) = 1$$

 $\implies gcd(ab, a + b) = 1.$

We may thus use Euler's theorem on a+b modulo ab. Let $\varphi(a+b)=n$, where φ is Euler's totient function. Then

$$a^{n} + b^{n} \equiv a^{n} + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} \pmod{ab}$$
$$\equiv (a+b)^{n} \pmod{ab}.$$

This completes the proof.

6 Problem 6

Part (a)

Proof. Let P/Q be a rational function in $\mathbb{C}(x)$. We use strong induction on the degree of Q; clearly the cases where deg Q=1 or Q is constant are trivial.

Inductive Step: Let the hypothesis be true for deg $Q \le n-1$, and consider when deg Q = n. There exist polynomials A, R such that

$$\frac{P}{Q} = \frac{AQ + R}{Q} = A + \frac{R}{Q},$$

where $\deg R < \deg Q$ or R is zero. Let $Q = c(x - q_1) \cdots (x - q_n)$. Again by polynomial division, there exists a polynomials B and a constant d such that

$$\frac{R}{Q} = \frac{B(x - q_1) + d}{Q} = \frac{B}{c(x - q_2) \cdots (x - q_n)} + \frac{d}{q}.$$

Our inductive hypothesis applies to $B/c(x-q_2)\cdots(x-q_n)$; we need only demonstrate that d/Q is of the required form. If $q_1 = \cdots = q_n$, we are done; otherwise, the GCD of all $(x-q_i)$ is 1, so Bezout's Identity guarantees that there exist constants a_1, \ldots, a_n such that

$$a_1(x - q_1) + \dots + a_n(x - q_n) = 1.$$

Therefore, we have

$$\frac{d}{q} = \frac{da_1(x - q_1) + \dots + da_n(x - q_n)}{q}.$$

Expanding this polynomial out, we get a sum of polynomials with denominator degree n-1; hence the inductive hypothesis applies. We conclude that P/Q is expressable in the given form.

Part (b)

Proof. Since $\{1, x, x^2, x^3, \ldots\}$ is a basis of $\mathbb{C}[x]$, a basis of $\mathbb{C}(x)$ is

$$1, x, x^2, x^3, \dots$$
 and every term $\frac{1}{(x-a)^i}$ for $a \in \mathbb{C}$ and $i \in \mathbb{Z}_{>0}$.

7 Problem 7

Note: My solutions for these problems are parts, differing only at the final equation

Part (a)

Proof. Using the norm $||a+b\omega|| = a^2 + ab + b^2$, we will divide $a+b\omega$ by $c+d\omega$. It is easy to deduce that there exist rationals r, s such that

$$\frac{a+b\omega}{c+d\omega} = r + s\omega.$$

Approximate r and s by integers: namely define $n, m \in \mathbb{Z}$ such that $|r - n| \leq 1$ and $|s - m| \leq 1$. Then we can express the above as

$$r + s\omega = (n + m\omega) + (r - n) + (s - m)\omega.$$

Expanding this out, we obtain a rather messy equation:

$$a + bi = (n + n\omega)(c + d\omega) + ((r - n) + (s - m)\omega)(c + d\omega).$$

All that remains to be proven is that the right-most term has a norm less than c+di, which is equivalent to showing that $(r-n)+i(s-m)\sqrt{2}$ has a norm less than one:

$$\|(r-n) + (s-m)\omega\| = (r-n)^2 + (r-n)(s-m) + (s-m)^2 \le \frac{3}{4} < 1.$$

This completes the proof.

Part (b)

Proof. Using the norm $||a+bi\sqrt{2}|| = a^2 + 2b^2$, we will divide $a+bi\sqrt{2}$ by $c+di\sqrt{2}$. It is easy to deduce that there exist rationals r, s such that

$$\frac{a+bi\sqrt{2}}{c+di\sqrt{2}} = r+si\sqrt{2}.$$

Approximate r and s by integers: namely define $n, m \in \mathbb{Z}$ such that $|r - n| \leq 1$ and $|s - m| \leq 1$. Then we can express the above as

$$r + si\sqrt{2} = (n + mi\sqrt{2}) + (r - n) + i(s - m)\sqrt{2}.$$

Expanding this out, we obtain a rather messy equation:

$$a + bi = (n + ni\sqrt{2})(c + di\sqrt{2}) + ((r - n) + i(s - m)\sqrt{2})(c + di\sqrt{2}).$$

All that remains to be proven is that the right-most term has a norm less than c+di, which is equivalent to showing that $(r-n)+i(s-m)\sqrt{2}$ has a norm less than one:

$$\left\| (r-n) + i(s-m)\sqrt{2} \right\| = (r-n)^2 + 2(s-m)^2 \le \frac{1}{4} + 2\left(\frac{1}{4}\right) = \frac{3}{4} < 1.$$

This completes the proof.

8 Problem 8

Let $\psi_1: \mathbb{Z}[x] \to \mathbb{F}_{c_1}[x]$ and $\psi_2: \mathbb{Z}[x] \to \mathbb{F}_{c_2}[x]$ be the natural homomorphisms. It is clear by the properties of modular arithmetic that $\psi_1 \circ \psi_2 = \psi_2 \circ \psi_1$: hence we have

$$\phi_2 \circ \phi_1(f_1 f_2) = \phi_2(\phi_1(f_1))\phi_1(\phi_2(f_2)) = 0,$$

so c_1c_2 divides every coefficient of f_1f_2 . It is easy to see that if c contains a prime power which is bigger (or different) than one in c_1c_2 , then we attain a contradiction divvying up the prime power between f_1 and f_2 in \mathbb{F}_{p^n} .