Liman De composition

Prop. The set of nitpotent elements in a ring A is an ideal, R, and AR has no nonzero nilpotent elements pt. Let x ER, then ax for any a EA is also hilpotent $(x^{n} = 0 \text{ for some } n, (Ax)^{n} = Ax^{n} = a \cdot 0 = 0).$ Let $y \in \mathbb{R}$, $y^{m} = 0 \text{ for some } m > 0$ $(x+y)^{m+n-1}$ $\sum_{k=1}^{m+n-1} {m+n-1 \choose k} x^{k} y^{m+n-1-k} k < n \text{ and } m+n-1-k < m \text{ cannot } k < n$ happen at the same time, Xxx min-1-k must be 0, than (χ_{HV})M+n-1 is 0, χ_{HV} is nilpotent. Let $\bar{\chi} \in A$ R $\chi \in A$ be a representative. Then $\bar{\chi}^n$ is represented by χ^n , and $\bar{\chi}^n = 0 \Rightarrow \chi^n \in R$, $(\chi^n)^k = 0, k > 0$, χ is nilpotent and $\chi \in R$. $\bar{\chi} = 0$. Defn. R is the nitradical of A. Prop. The nitradical of A is the intersection of all prime ideals in A. Defn. Let a CA be an ideal, then the tradical of a, denoted by Ta, is {7EA | Xn & a for some n >0}. Prop. The radical of a is the intersection of all prime ideals containing a.

Pf. S: A > A/a quotient man, this surfective.

Sprime ideals in A containing a } <> Sprime ideals in A/a}. Jefn. An ideal of in a ring A is primary if q = A and if xy = q, then x = q or y = q for some n > 0. Warning: Does not mean $xy \in q \Rightarrow x^n \in q$ or y^n in q. Ruk. We can also say a is primary, if $xy \in a$, we have $x \in a$, or $y \in a$, or $x,y \in Ja$. Another equivalent definition: q is primary iff A/q +0 and every zero-divisor of A/q that is nonzero has to be nilpotent.

Lemma. The contraction of a primary ideal is primary Pf. Let f: A -> B be a ring hom, and of CB to be a primary ideal. f (A) is a subring of B, and A/qc 7s 75 m to the subring of B/q that is the mage of f(A). Prop. Let qCA be a primary ideal. Then Jq is the smallest prime deal containing q. pf. We need only show Jo is prime. Let xyelq, then (xy) eq for some m>0. $\chi^{m} \chi^{m} \in q$, $\chi^{m} \in q$ or $(\chi^{m})^{n} \in q$. for some n > 0.

Defn. If p= Jq, then q is said to be p-primary. example. 1. Inside of Z, the only primary ideals are
(0) and (ph) for p prime and n>0. 2. Let A= K[x,y], and q=(x,y²). A/q = K[y]/(y²). the zero-divisors must have a factor of y, and is therefore nilpotent. q is primary, $Jq = (x, y) = \beta$ $\chi \notin p^2$. $P^2 \subseteq q \subseteq p$. 3. Let $A = K[\chi, \chi, z]/(\chi y - z^2)$. Let χ, χ, \overline{z} to be image of χ, χ, z . $P(\chi, \overline{z})$, $A/p \cong K[\chi]$ an integral domain $\Longrightarrow p$ prime $\chi \chi = \overline{z} \in p^2$, but $\chi \notin p^2$, $\chi \in p^2 = p$, p^2 is not primary.