ME COLUMBIA SIDICIN CINIBAN - NUENIA CELKA 1 X1 (2) = an X1 + a2 X2+...+ an Xn X'= AX 3000 NOVA (Xn'(t) = anx + anx x2 + ... + anx xn 5 voku by but alid out by Samula cast no vigot (36) \times (3) \times (4) \times (5) \times (5) \times (6) \times (6) \times (7) \times (7) (שלור את הביטי (ל חושו וקטור, נשלר כמו שחשו) ב $\overline{V}g'(t) = A\overline{V}g(t) \Rightarrow \overline{V}g'(t) = g(t)A\overline{V} \Rightarrow A\overline{V} = \frac{g'(t)}{g(t)}\overline{V}$ प्यी ३ १ मिरा ४६मा तमायन विषद वहमा ४ वद ७३ $\lambda = \frac{g'(t)}{g(t)} \Rightarrow g'(t) = \lambda g(t) \xrightarrow{\text{MAR IN}} g(t) = e^{\lambda t}$ MUSICIN MARIN हतता देश के महत्त मंग्रामा हरतियोग मंत्रलात ताम ही हो n हततात देता-תווים של המערכתני $X(t) = C_1 \overline{X}(t) + C_2 \overline{X}_2(t) + \cdots + C_n \overline{X}_n(t)$ GOLN X'=AX & mo X(t)= et V ssc x 180 por A le 180 mg V pk BYON & Zy...., An PUR PUNBY PYDDY IN PIR X = AX NON YN (DY) ENDYNA Q ISB IDA SK, V, VZ,, VA POIDI PNIKANA A X(t)= C1 e 1/4 + C2 e 1/2 + ... + Cne 1/2 $\bar{X}(0) = (1, -1, 0)$ $\bar{X}' = AX$ nonzun & $A = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{2}$ $(\lambda-2)(\lambda-1)(\lambda-3)$: PDII $[A-\lambda I] = 0$ 3 ADRIB IND DIRE Jak 1= 18: (gal 1921 8EN: (111) = N. $V_2 = (1, 1, -1)$: P) : $N_2 = 2$ NEX . V3 = (1,-1,1) 3 PD : 73=3 NPV $\bar{X}(t) = C_1 e^t (1/1/1) + C_2 e^{2t} (1/1/1) + C_3 e^{3t} (1/1/1) 3 (6n) (0) non$ C1 (1,1,1)+ C2 (1,1,1-1)+ C3 (1,-1,1) = (1,-1,0) 5701 7.7 231 (X(E) = -1 et (1/11) + 1 et (1/11) + et (1/11) : 117000 C=-1. Cz=1. Cz=1: noloviol

E

KICH KENIN MOORA : Pd SIC, A-XI = 0 PICHEND & IDD 2= X+Bi : 10KD TOURN R IDD Z = a-Bi Te signanicipa, AV = AV propria 2 prof promo in30 sign V 7 1 - a-bi : man (v= a-bi) promu proon or v nopl האו וקטר עצמי A רפ האתאים זערק ל. $\bar{X}_{i}(t) = e^{\lambda t} \bar{V} = (e^{\alpha t} \cos(\beta t))^{\perp} i e^{\alpha t} \sin(\beta t) (\alpha + \delta i) = (e^{\alpha t} \cos(\beta t)) \bar{\alpha} - e^{\alpha t} \sin(\beta t) \bar{\delta}$ $\pm i(e^{\alpha t}\sin(\beta t)\bar{a} + e^{\alpha t}\cos(\beta t)\bar{b}$ $\bar{\chi}_2(t) = e^{\pi t} \bar{v}^* = (e^{\alpha t} \cosh \bar{a} - e^{\alpha t} \sinh \bar{b}) - i(e^{\alpha t} \sinh \bar{a} + e^{\alpha t} \cosh \bar{b})$ (1) eat (ācos(pt) + Esin(pt) (a)eat (bcos(pt) - āsin(pt)); PIONN NIDNO JO PIARN $\ddot{X}' = A \ddot{X} \quad \text{NOTOR} \quad \ddot{X} = \begin{pmatrix} 4 & -2 \\ 5 & 2 \end{pmatrix}$ $\begin{vmatrix} 4-\lambda & -2 \\ 5 & 2-\lambda \end{vmatrix} = \lambda^2 - 6\lambda + 18 = 0 \Rightarrow \lambda_{1/2} = \frac{6 \pm \sqrt{36 - 72}}{2} = \frac{6 \pm 6i}{2} = 3 \pm 3i$ (4-3-3i -2)(0) = 0 = (4-3i)a - 2b = 0 (1) (4-3i)b = 0 (2) (4-3i)b = 0 (2) (1-3i) a = 2b $\xrightarrow{a=2}$ $1-3i \Rightarrow \overline{X_1(t)} = \begin{pmatrix} 2 \\ 1-3i \end{pmatrix} e^{(3+3i)t}$ $X_1(t) = \begin{pmatrix} 2 \\ 1-3i \end{pmatrix} e^{3t} \cos 3t + i \sin 3t$: $(e^{xi} - \sin 4t \cos 4t)$ $\bar{Q} = (211)$ $\bar{b} = (0, -3)$ उभा वार्व कार्यात विश e^{3t} $\left(\frac{2\cos 3t + 2i\sin 3t}{\cos 3t + 3i\cos 3t + 3\sin 3t}\right) =$: Inman $\bar{X}(t) = c_1 e^{3t} \left(\frac{2\cos 3t}{\cos 3t + 3\sin 3t} \right) + c_2 e^{3t} \left(\frac{2\sin 3t}{\sin 3t + 3\cos 3t} \right)$ $\bar{X}(0) = C_1 \begin{pmatrix} 2 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \Rightarrow C_1 = \frac{1}{2}$ $C_2 = -\frac{1}{2}$ $C_3 = \frac{1}{2}$ $\frac{e^{3t}}{X(t)} = \frac{e^{3t}}{2} \left(\frac{2\cos 3t}{\cos 3t - 3\sin 3t}\right) - \frac{e^{3t}}{2} \left(\frac{2\sin 3t}{\cos 3t - 3\cos 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac{\cos 3t - \sin 3t}{2\cos 3t - \sin 3t}\right) = e^{3t} \left(\frac$

1

3

THE A NOUSE MAINE. IS SEEN 3. A SHE IFOLD A MA 71071 & 4 18 AM TIK) SIC, (A-71) * U = 0 :0 po Ple 1711 K DEN' MICH DE A GAIC REA REA' R. $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ \end{pmatrix} \begin{vmatrix} A - \lambda I \\ 0 & 1 \\ \end{pmatrix} = \begin{pmatrix} 1 & 2 - \lambda & 0 \\ 0 & 1 & 1 - \lambda \\ \end{pmatrix} = \begin{pmatrix} 1 & 2 - \lambda & 0 \\ 0 & 1 & 1 - \lambda \\ \end{pmatrix} = \begin{pmatrix} 1 & 2 - \lambda & 0 \\ 0 & 1 & 1 - \lambda \\ \end{pmatrix}$ $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 6 \\ 0 \end{pmatrix} = 0 \Rightarrow \begin{cases} a+b=0 \Rightarrow a=-b \\ b=0 \Rightarrow \sqrt{1} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ 10 C) U 1901 19ES ACORT & MOREN 98EN 18 $\begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
=
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}
=
\begin{pmatrix}$ סיכום מתרה 1 $AV = \lambda V \Rightarrow A^n V = \lambda^n V$: 16.5 A & 8.1 km $\bar{X}_0 = \bar{V}$ plc $X(t) = e^{tA} \overline{V} = \sum_{n=0}^{\infty} \frac{(tA)^n}{n!} \overline{V} = \sum_{n=0}^{\infty} \frac{t^n A^n}{n!} \overline{V} = \sum_{n=0}^{\infty} \frac{t^n \lambda^n}{n!} \overline{V} = e^{\lambda t} \overline{V}$ अव 1- A 13 0 1971 पर ४६००व त्या - त्याप्त अर तहाता : X(t) = C, e nt V, + C2 e nt V2+ ... + C, e nt Vn

7730

E

E |

E 3

DISC ? YE) THE MUNICIPAL THE REPT PET PET TOOK & . X' = AX ENONYMA MOIRNA PBJ. X'= Nenty(+)+ext y't) : xtt) le motor λe^{λt}y(t) - e^{λt}y'(t) = Ae^{λt}y(t) ⇒ Y(t) = AY(t) - λY(t) = (A-λΙ)Y(t) (A-21) U = 0 : K.S. 2 POST PIKONO A R BISIN "188 7191 U ה- א אצר הכך שהוא אוצר את הסכוף האינמפי והופך אותו אמספר סופי: $\overline{Y}(t) = \sum_{n=0}^{\infty} \frac{t^n (A - \lambda I)^n}{n!} \overline{u} = \sum_{n=0}^{\infty} \frac{t^n (A - \lambda I)^n}{n!} \overline{u} \Rightarrow \overline{\chi}(t) = e^{\lambda t} \left(\sum_{n=0}^{\infty} \frac{t^n (A - \lambda I)^n}{n!} \overline{u} \right) \otimes$ לפן את הצניין בצבחת התראל. . X.M MC 13N (100) : A BYOUN DUN $\det(A-\lambda I) = \begin{vmatrix} 1-\lambda & 0 & 0 \\ 0 & 1-\lambda & 1 \\ 0 & 0 & 1-\lambda \end{vmatrix} = (1-\lambda)^3 = 0 \Rightarrow \boxed{\lambda_{1,2,3} = 1}$ (A) I B) 1=1 A) 3 (B) 1=1 C) 1=1 C) 1=1 A): 37547 NE (30) 12 31/2 NON 1/1 1/2 NON 1/1/2 (CO) 2/1 NEI RE 1/2/20 SIN MARE 1/2 1/2/20 SIN MARE 1/2/20 : (4) AND (4-) I WE END (5) FOID NICHT THE PART A- NI $\frac{\eta^2}{\eta^2} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \frac{1}{\sqrt{3}} = \frac$ X3(t)= & (\(\bar{u} + \frac{t(A-\lambda I)}{1} + \frac{t^2}{2}(A-\lambda I) \bar{u} \right) & (8) P DO OF X(t) R TICHON OF TOWN $\bar{X}_3(t) = e^t \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) = \begin{pmatrix} tet \\ tet \end{pmatrix}$ \$213) $\sqrt{\chi(t)} = c_1 e^{t\binom{0}{0}} + c_2 e^{t\binom{0}{0}} + c_3 e^{t\binom{0}{4}}$ such innon

j

3