Confidence Intervals for Proportions and Poisson Counts

Data Science for Quality Management: Sampling Distributions, Error and Estimation

with Wendy Martin

Learning objective:

Calculate interval estimates for proportions and Poisson counts

Calculating Confidence Intervals

- Confidence intervals may be calculated for various statistics
 - Proportion
 - Poisson Counts

Proportion (Exact Binomial)

Many formulas exist to generate confidence intervals for proportions

 lolcat uses the formula is that based on the exact binomial distribution

Proportion (Exact Binomial)

 The exact binomial confidence interval for a proportion uses quantiles from the Beta distribution

$$\pi_{Lower} = \beta(\frac{\alpha}{2}; np, n - np + 1)$$

$$\pi_{Upper} = \beta(1 - \frac{\alpha}{2}; np + 1, n - np)$$

 For example, assume a sample was taken with the following characteristics

- np = 12
- n = 100
- $\alpha = 0.05$

$$\pi_{Lower} = qbeta(0.025; 12,89) = 0.0636$$

$$\pi_{Upper} = qbeta(0.975; 13,88) = 0.2002$$

Interval Estimate for a Proportion

In RStudio

- > proportion.test.onesample.exact
- > proportion.test.onesample.exact.simple

Poisson Counts

 Even more formulas exist to generate confidence intervals for Poisson Counts

lolcat uses the formula is that based on the exact Poisson distribution

Poisson Counts

 The exact Poisson confidence interval for a Poisson Count uses the quantile values from the Gamma distribution

$$\lambda_{Lower} = \frac{G(\frac{\alpha}{2}, x)}{n}$$

$$\lambda_{Upper} = \frac{G(1 - \frac{\alpha}{2}, x + 1)}{n}$$

where $x = \lambda n$

 For example, assume a sample was taken with the following characteristics

$$n = 20$$
, $\lambda = 25.05$
Confidence Level Desired = 95%

- $\lambda = 25.05$
- n = 20
- $\lambda * n = 501$
- $\alpha = 0.05$

$$\lambda_{Lower} = qgamma(0.025; 501)/20 = 22.90$$

$$\lambda_{Upper} = qgamma(0.975; 502)/20 = 27.34$$

- $\lambda = 25.05$
- n = 20
- $\lambda * n = 501$
- $\alpha = 0.05$

$$\lambda_{Lower} = qgamma(0.025; 501)/20 = 23.24$$

$$\lambda_{Upper} = qgamma(0.975; 502)/20 = 26.97$$

Interval Estimate for Poisson Count

In RStudio

> poisson.test.onesample.simple()

Sources

 Luftig, J. An Introduction to Statistical Process Control & Capability. Luftig & Associates, Inc. Farmington Hills, MI, 1982