

Description

The VSM210N04 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications.

General Features

- $V_{DS} = 40V$, $I_{D} = 210A$ $R_{DS(ON)} < 3.2 m\Omega$ @ $V_{GS} = 10V$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-220C

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM210N04-TC	VSM210N04	TO-220C	-	-	-

Absolute Maximum Ratings (T_A=25 ℃ unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	VDS	40	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	210	Α	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	148	А	
Pulsed Drain Current	I _{DM}	840	А	
Maximum Power Dissipation	P _D	310	W	
Derating factor		2.07	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	2500	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Shenzhen VSEEI Semiconductor Co., Ltd

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.48	°C/W	
---	----------------	------	------	--

Electrical Characteristics (T_A=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	·					
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	40		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V,V _{GS} =0V	-	-	1	μΑ
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)			•			•
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	1.3	1.8	2.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =20A	-	2.3	3.2	mΩ
Forward Transconductance	g FS	V _{DS} =5V,I _D =20A	-	100	-	S
Dynamic Characteristics (Note4)			•			•
Input Capacitance	C _{lss}	V _{DS} =25V,V _{GS} =0V,	-	10331	-	PF
Output Capacitance	C _{oss}		-	1160	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0MHz	-	1045	-	PF
Switching Characteristics (Note 4)			•			•
Turn-on Delay Time	t _{d(on)}		-	41	-	nS
Turn-on Rise Time	t _r	V_{DD} =30V, R_L =15 Ω ,	-	40	-	nS
Turn-Off Delay Time	t _{d(off)}	$R_G=2.5\Omega, V_{GS}=10V$	-	145	-	nS
Turn-Off Fall Time	t _f		-	65	-	nS
Total Gate Charge	Qg		-	239	-	nC
Gate-Source Charge	Q _{gs}	I _D =20A,V _{DD} =20V,V _{GS} =10V	-	23.5	-	nC
Gate-Drain Charge	Q_{gd}		-	49.6	-	nC
Drain-Source Diode Characteristics			•			•
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =20A	-	0.85	1.2	V
Diode Forward Current (Note 2)	Is		-	-	210	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F = 20A	-	55		nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	90		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}$ C,V_{DD}=20V,V_G=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Rdson On-Resistance(m 2)

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Power Dissipation (W) 250 200 150 100 50 0 25 50 75 100 125 150 175

350

300

Figure 7 Capacitance vs Vds

T_J-Junction Temperature(°C) Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Square Wave Pluse Duration (sec)

Figure 11 Normalized Maximum Transient Thermal Impedance