

# SCHOOL OF ELECTRICAL ENGINEERING

#### LAB MANUAL

# BEEE302P – DIGITAL SIGNAL PROCESSING LAB FALL 2025 - 26

#### **FACULTY**

Dr. IYSWARYA ANNAPOORANI K

#### SCHOOL OF ELECTRICAL ENGINEERING

#### Vision of the School

To offer an education in electrical engineering that provides strong fundamental knowledge, skills for employability, cross-disciplinary research and creates leaders who provide technological solutions to societal and industry problems.

#### Mission of the School

M1: Provide personalized experiential learning in industry sponsored laboratories to prepare students in electrical engineering with strong critical thinking and employability skills.

M2: Foster design thinking, creativity and cross-disciplinary research with highly qualified faculty to create innovators and entrepreneurs in the broad area of electrical engineering.

M3: Collaborate with national and international partners to provide innovative solutions to societal and industry challenges.

#### PROGRAMME SPECIFIC OUTCOMES (PSOs)

On completion of the B. Tech. (Electrical and Electronics Engineering) programme, graduates will be able to

PSO1 (BL3): Design Electrical and Electronic systems using extensive knowledge of science and engineering.

PSO2 (BL4): Analyze power electronic circuits and power systems considering technical, economic and environmental constraints.

PSO3 (BL3): Apply modern intelligent computational tools to the solution of electrical engineering problems and engage in lifelong learning to adapt to technological advancements.

#### **Program Educational Objectives (PEOs)**

PEO 1: Graduates will excel in solving industry problems, succeed as engineering practitioners, innovators, and entrepreneurs, or pursue higher education in electrical engineering and related fields.

- PEO 2: Graduates will function with social responsibility, team spirit and environmental awareness and develop products that are reliable, cost effective and safe.
- PEO 3: Graduates will demonstrate strong soft skills, uphold ethical standards and professional codes of practice, and continually adapt to technological advancements through lifelong learning.

# **School of Electrical Engineering**

# **Evaluation Rubrics for Hardware Lab**

| Lab CAM                                          |                                                                                    | Lab                                                | FAT      |                                             |                                                                                                                                                                | Total                                          |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|----------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--|--|
| Total Marks Weightage                            |                                                                                    |                                                    | al Marks | Weight                                      | age                                                                                                                                                            | CAM + FAT                                      |  |  |
| 100 (Min)                                        | 60%                                                                                | 50                                                 |          | 40%                                         | 100                                                                                                                                                            |                                                |  |  |
| Rubric                                           | Excellent                                                                          |                                                    | Good     |                                             | Satisfactory                                                                                                                                                   |                                                |  |  |
|                                                  | (3)                                                                                |                                                    | (2)      |                                             | (1)                                                                                                                                                            |                                                |  |  |
| Pre-Lab (Circuit Diagram, Background Theory) (3) | complete; follo<br>standard conventionall components laborates<br>correctly. Thoro | ons;<br>eled<br>ugh<br>with                        |          | equate with elevant a few ors or            | Incomplete or inaccurate; significant errors in conventions or missing labels. Incomplete or unclear explanation with limited concepts; contains major errors. |                                                |  |  |
|                                                  | (4)                                                                                |                                                    | (3)      |                                             | (1-2)                                                                                                                                                          |                                                |  |  |
| In-Lab Performance (Connection & Execution) (4)  | experiment with errors; follows all st systematically. Obt results with precision; | the<br>no<br>teps<br>ains<br>high<br>fully<br>with | most     | follows<br>steps<br>Obtains<br>with<br>some | conduct<br>requires<br>guidance<br>Results<br>inconsist<br>theoretic                                                                                           | e or corrections.  are inaccurate or  ent with |  |  |

|                                                | (3)                                                                                                                                                                                                        | (2)                                                                                                                                                                          | (1)                                                                                                                                                                       |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Post Lab<br>(Calculation,<br>Viva-Voce)<br>(3) | All calculations are accurate, complete, and presented clearly with proper units and methods shown.  Answers all questions confidently, accurately, and demonstrates deep understanding of the experiment. | Calculations are mostly accurate; minor errors in presentation, units, or methods. Answers most questions accurately with reasonable understanding; minor gaps in knowledge. | Calculations are incomplete, mostly inaccurate, or lack clarity and proper units.  Struggles to answer questions or demonstrates limited understanding of the experiment. |

# **School of Electrical Engineering**

# **Evaluation Rubrics for Software/Programming Lab**

| Lab CAM     |           | Lab FAT     | Total     |           |
|-------------|-----------|-------------|-----------|-----------|
| Total Marks | Weightage | Total Marks | Weightage | CAM + FAT |
| 100 (Min)   | 60%       | 50          | 40%       | 100       |

| Rubrics                                                     | Excellent                                                                                                                                                                                     | Good                                                                                                                                                                                  | Satisfactory                                                                                                                                                   |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | (3)                                                                                                                                                                                           | (2)                                                                                                                                                                                   | (1)                                                                                                                                                            |
| Pre-Lab (Circuit Diagram/Algorithm & Background Theory) (3) | Neat, accurate, and complete; follows standard conventions; all components labeled correctly. Thorough explanation with relevant concepts and clear connections to the experiment; no errors. | Circuit/Algorithm mostly accurate and complete; minor errors in conventions or labeling. Adequate explanation with most relevant concepts; a few minor errors or unclear connections. | Incomplete or inaccurate; significant errors in conventions or missing labels. Incomplete or unclear explanation with limited concepts; contains major errors. |
| In-Lab Performance                                          | (4)                                                                                                                                                                                           | (3)                                                                                                                                                                                   | (1-2)                                                                                                                                                          |
| (Circuit/coding /interfacing & Execution)  (4)              | Circuit/code is optimized and no errors. Thoroughly tests, validates, and documents results accurately and independently.                                                                     | Circuit/code is functional with minor errors. Tests and validates with minimal assistance; documentation is adequate.                                                                 | Circuit/code is functional but partially complete and more errors. Testing/validation is incomplete or requires significant help.                              |
| Post Lab                                                    | (3)                                                                                                                                                                                           | (2)                                                                                                                                                                                   | (1)                                                                                                                                                            |

| (Result Analysis,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Provides a detailed,  |                       |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|
| \( \text{\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} | accurate              | Provides a clear and  |                       |
| Viva-Voce)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | interpretation of     | correct analysis with | Analysis is basic,    |
| (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | results with insights | minor gaps or         | with partial          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | into improvements     | limited insights.     | interpretation of     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and implication.      | Answers most          | results. Struggles to |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Answers all           | questions             | answer questions or   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | questions             | accurately with       | demonstrates          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | confidently,          | reasonable            | limited               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | accurately, and       | understanding;        | understanding of      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | demonstrates deep     | minor gaps in         | the experiment        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | understanding of      | knowledge.            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the experiment.       |                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                       |                       |

|                                                                                                                   |                                                                                                                                                                                                                                                                                        |                              |             |           |             | 1      | 1     | 1     | Ι_  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|-----------|-------------|--------|-------|-------|-----|--|--|--|--|
| BEEI                                                                                                              | E302P                                                                                                                                                                                                                                                                                  | Digital Sig                  | nal Proces  | ssing Lab | L           | . T    | Р     | С     |     |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                                                                                        |                              |             |           |             | C      | 0     | 2     | 1   |  |  |  |  |
| Pre-r                                                                                                             | equisite                                                                                                                                                                                                                                                                               | BEEE204L                     |             |           |             | Sylla  | abus  | vers  | ion |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                                                                                        |                              |             |           |             |        | 1.0   | 0     |     |  |  |  |  |
| Cour                                                                                                              | Course Objectives                                                                                                                                                                                                                                                                      |                              |             |           |             |        |       |       |     |  |  |  |  |
| 1.<br>2.<br>appli                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                  |                              |             |           |             |        |       |       |     |  |  |  |  |
| Cour                                                                                                              | se Outcomes                                                                                                                                                                                                                                                                            | <u> </u>                     |             |           |             |        |       |       |     |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                                                                                        | this course, the students    | will be abl | e to:     |             |        |       |       |     |  |  |  |  |
| 2                                                                                                                 | <ol> <li>Design and perform frequency analysis of continuous time and discrete time signals.</li> <li>Design and implement, digital filters with real time constraints.</li> <li>Design a typical digital signal processing system for specific applications in real world.</li> </ol> |                              |             |           |             |        |       |       |     |  |  |  |  |
| Indica                                                                                                            | ative Experin                                                                                                                                                                                                                                                                          | nents                        |             |           |             |        |       |       |     |  |  |  |  |
| 1                                                                                                                 | Analysis of                                                                                                                                                                                                                                                                            | continuous time and discr    | ete time s  | ignals    |             |        |       |       |     |  |  |  |  |
| 2                                                                                                                 | Convolution                                                                                                                                                                                                                                                                            | n of discrete time signals   |             |           |             |        |       |       |     |  |  |  |  |
| 3                                                                                                                 | Correlation                                                                                                                                                                                                                                                                            | of discrete time signals     |             |           |             |        |       |       |     |  |  |  |  |
| 4                                                                                                                 | Computatio                                                                                                                                                                                                                                                                             | n of DFT                     |             |           |             |        |       |       |     |  |  |  |  |
| 5                                                                                                                 | Spectral ar                                                                                                                                                                                                                                                                            | nalysis of signals           |             |           |             |        |       |       |     |  |  |  |  |
| 6                                                                                                                 | Design of a                                                                                                                                                                                                                                                                            | nalog Butterworth filters    |             |           |             |        |       |       |     |  |  |  |  |
| 7                                                                                                                 | Design of a                                                                                                                                                                                                                                                                            | nalog Chebyshev filters      |             |           |             |        |       |       |     |  |  |  |  |
| 8                                                                                                                 | Design of a                                                                                                                                                                                                                                                                            | n IIR elliptical band pass f | ilter       |           |             |        |       |       |     |  |  |  |  |
| 9                                                                                                                 | Design of F                                                                                                                                                                                                                                                                            | IR filters using window fur  | nctions     |           |             |        |       |       |     |  |  |  |  |
| 10                                                                                                                | Waveform                                                                                                                                                                                                                                                                               | generation using CC studi    | o of TMS    | 320C6748  |             |        |       |       |     |  |  |  |  |
| 11                                                                                                                | Computation                                                                                                                                                                                                                                                                            | on of convolution using CC   | studio of   | TMS3200   | C6748       |        |       |       |     |  |  |  |  |
| 12                                                                                                                | ECG signa                                                                                                                                                                                                                                                                              | al smoothening using CC s    | tudio of T  | MS320C6   | 748 for rea | l time | appli | catio | ons |  |  |  |  |
| Total                                                                                                             | Laboratory                                                                                                                                                                                                                                                                             | Hours                        |             |           |             | 30     | ) hou | ırs   |     |  |  |  |  |
| Text                                                                                                              | Book                                                                                                                                                                                                                                                                                   |                              |             |           |             | •      |       |       |     |  |  |  |  |
|                                                                                                                   | John G. Proakis, D. G. Manolakis, Digital Signal Processing Principles, Algorithms and Applications, 2016, 4 <sup>th</sup> edition, Pearson Education                                                                                                                                  |                              |             |           |             |        |       |       |     |  |  |  |  |
| Refe                                                                                                              | rence Book                                                                                                                                                                                                                                                                             |                              |             |           |             |        |       |       |     |  |  |  |  |
| Lawrence R Rabiner and Bernard Gold, Theory and Application of Digital Signal Processing, 2016, Pearson Education |                                                                                                                                                                                                                                                                                        |                              |             |           |             |        |       |       |     |  |  |  |  |
| Mode of assessment: Continuous assessment, FAT                                                                    |                                                                                                                                                                                                                                                                                        |                              |             |           |             |        |       |       |     |  |  |  |  |
|                                                                                                                   | Recommended by Board of Studies 19-02-2022                                                                                                                                                                                                                                             |                              |             |           |             |        |       |       |     |  |  |  |  |
|                                                                                                                   |                                                                                                                                                                                                                                                                                        | demic Council                | No. 65      | Date      | 17-03-202   | 2      |       |       |     |  |  |  |  |
|                                                                                                                   | , -                                                                                                                                                                                                                                                                                    |                              |             |           |             |        |       |       |     |  |  |  |  |

# **COURSE**

# **ARTICULATION**

# MATRIX CO – PO – PSO

# **MAPPING**

| CO<br>No | Statement                                                                                 |
|----------|-------------------------------------------------------------------------------------------|
| CO1      | Perform frequency analysis of continuous time and discrete time signals.                  |
| CO2      | Design of digital filters with real time constraints                                      |
| CO3      | Design a typical digital signal processing system for specific applications in real world |

| 60  | PO |   |   |   |   |   |   |   |   |    |    | PSO |   |   |   |
|-----|----|---|---|---|---|---|---|---|---|----|----|-----|---|---|---|
| СО  | 1  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12  | 1 | 2 | 3 |
| CO1 | 3  | 2 | 1 | 1 | 2 | - | - | 2 | 2 | 2  | -  | 1   | 2 | 2 | 2 |
| CO2 | 3  | 2 | 1 | 1 | 2 | - | - | 2 | 2 | 2  | 1  | 1   | 2 | 3 | 2 |
| CO3 | 3  | 2 | 1 | 1 | 2 | _ | _ | 2 | 2 | 2  | -  | 1   | 2 | 3 | 2 |

#### LIST OF EXPERIMENTS

# 1. Generation of discrete time sequences

- Unit step sequence
- Unit Impulse sequence
- Sinusoidal sequence
- Ramp sequence
- Exponential sequence

# 2. Mathematical operations on signals:

- Addition
- Multiplication
- Shifting
- Sampling

# 3. Time-domain Analysis of Signals (Radar Signals) & LTI Systems using MATLAB

- Linear Convolution and circular Convolution
- Comparison of linear and circular convolution
- Auto-Correlation and Cross-Correlation

# 4. Frequency-domain Analysis of Signals and LTI Systems

- DFT & IDFT – Magnitude and Phase response

# 5. ECG signal analysis using SP Tool box

IIR Filter – Butterworth (LPF, HPF, BPF & BRF) in MATLAB

- Chebychev (LPF, BPF)

# 6. Speech signal analysis using SP Tool box and FDA Tool box in MATLAB

FIR Filter—Windowing (Hamming, Hanning, blackman, rectangular and Kaiser)

# GENERATION OF DISCRETE TIME SEQUENCES

Ex. No: 1 DATE:

#### Aim:

To generate the following discrete time sequences using MATLAB

- 1. Unit step sequence
- 2. Unit Ramp sequence
- 3. Impulse sequence
- 4. Sinusoidal sequence
- 5. Exponential sequence

# **Equipments required: MATLAB software**

# Program:

```
1. % Unit step response
a=input('Enter the desired length of the sequence
=');
b=input('Enter the sampling=');
x=0:a-1;
y=cos(2*pi*b*x);
stem(x, y);
xlabel('time index');
ylabel('Amplitude');
title ('generation of unit step sequence');
    2. % Unit Ramp response
a=input('Enter the desired length of the sequence=');
b=input('Enter the sampling=');
x=0:a-1;
y=x;
stem(x, y);
xlabel('time index');
ylabel('Amplitude');
title('generation of unit ramp sequence');
```

```
3. % %Impulse sequence
a=input('Enter the desired length of the sequence
=');
b=input('Enter the sampling=');
x=0:a-1;
y=[\cos(2*pi*b) zeros(1,a-1)];
stem(x,y);
xlabel('time index');
ylabel('Amplitude');
disp y;
title ('generation of unit impulse sequence')
    4. %Sinusoidal sequence
      N=50;
      N=0:1:N-1;
a=input('Enter the desired length of the sequence=');
b=input('Enter the sampling=');
n=0:a-1;
x1=\cos(pi*n);
subplot(3,2,1), stem(n,x1);
xlabel('n'), ylabel('x1(n)');
title('Sinusoidal sequence');
x2=\cos(pi/2*n);
subplot (3,2,2), stem (n,x2);
xlabel('n'), ylabel('x2(n)');
title('Sinusoidal sequence');
x3=\cos(pi/4*n);
subplot (3,2,3), stem (n,x3);
xlabel('n'), ylabel('x3(n)');
title('Sinusoidal sequence');
x4=\cos(pi/8*n);
subplot(3,2,4), stem(n,x4);
xlabel('n'), ylabel('x4(n)');
title('Sinusoidal sequence');
```

```
x5=\cos(pi/16*n);
subplot(3,2,5), stem(n,x5);
xlabel('n'), ylabel('x5(n)');
title('Sinusoidal sequence');
x6=\cos(pi/32*n);
subplot(3,2,6), stem(n,x6);
xlabel('n'), ylabel('x6(n)');
title('Sinusoidal sequence');
     5. %Exponential sequence
a=input('Enter the desired length of the sequence=');
b=input('Enter the sampling=');
n=0:a-1;
x2=exp(-n);
subplot(2,2,3), stem(n,x2);
xlabel('n'), ylabel('x2(n)');
title('Exponential sequence');
OUTPUT:
```

#### MATHEMATICAL OPERATIONS ON SIGNALS

Ex. No: 2 DATE:

#### Aim:

To perform the following mathematical operations on signals using MATLAB

- 1. Addition
- 2. Multiplication
- 3. Sampling
- 4. Shifting

**Equipments required: MATLAB software** 

### Program:

#### Addition

```
function [y,n] = sigadd(x1,n1,x2,n2)
% implements y(n) = x1(n)+x2(n)
% -------
% [y,n] = sigadd(x1,n1,x2,n2)
% y = sum sequence over n, which includes n1 and n2
% x1 = first sequence over n1
% x2 = second sequence over n2 (n2 can be different from n1)
%
n = min(min(n1),min(n2)):max(max(n1),max(n2)); %
duration of y(n)
y1 = zeros(1,length(n)); y2 = y1; % initialization
y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y
y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y</pre>
```

```
y = y1+y2;
n1 = -2:20; x1 = [1:12,11:-1:1];
n2 = -2:20; x2 = [1:12, 11:-1:1];
[y,n] = sigadd(x1,n1,x2,n2)
Multiplication
function [y,n] = sigmult(x1,n1,x2,n2)
% implements y(n) = x1(n)*x2(n)
% [y,n] = sigmult(x1,n1,x2,n2)
% y = product sequence over n, which includes n1 and
n2.
% x1 = first sequence over n1
% x2 = second sequence over n2 (n2 can be different)
from n1)
n = min(min(n1), min(n2)): max(max(n1), max(n2)); %
duration of y(n)
y1 = zeros(1, length(n)); y2 = y1; %
y1(find((n)=min(n1))&(n<=max(n1))==1))=x1; % x1 with
duration of y
y2 (find((n>=min(n2)) & (n<=max(n2))==1))=x2; % x2 with
duration of y
y = y1 .* y2; % sequence multiplication
n1 = -2:20; x1 = [1:12, 11:-1:1];
n2 = -2:20; x2 = [1:12,11:-1:1];
```

[y,n] = sigmult(x1,n1,x2,n2)

# Sampling

```
T=0.1; t=0:0.05/200:T;
x = cos(200*pi*t);
subplot(2,2,1);
plot(t,x);
title('original input signal');
xlabel('time');
ylabel('ampliude');
s1=400;
tn1=0:(1/s1):T;
xn1=cos(200*pi*tn1);
subplot(2,2,2);
stem(tn1,xn1);
title('Sampled signal when fs>2fm');
xlabel('Time index');
ylabel('amplitude');
s2=200;
tn2=0:(1/s2):T;
xn2 = cos(200*pi*tn2);
subplot(2,2,3);
stem(tn2,xn2);
title('Sampled signal when fs=2fm');
xlabel('Time index');
ylabel('amplitude');
s3=50;
tn3=0:(1/s3):T;
xn3 = cos(200*pi*tn3);
subplot(2,2,4);
stem(tn3,xn3);
```

```
title('Sampled signal when fs<2fm');
xlabel('Time index');
ylabel('amplitude');
Shifting
function [y,n] = sigshift(x,m,k)
% implements y(n) = x(n-k)
% [y,n] = sigshift(x,m,k)
n = m+k; y = x;
n = -2:20; x = [1:12,11:-1:1];
[x11,n11] = sigshift(x,n,5);
[x12,n12] = sigshift(x,n,-4);
[x1,n1] = sigadd(2*x11,n11,-3*x12,n12);
stem(n1, x1);
 xlabel('n');
ylabel('x(n)');
OUTPUT:
```

# TIME-DOMAIN ANALYSIS OF SIGNALS (RADAR SIGNALS) & LTI SYSTEMS USING MATLAB

Ex. No: 3 DATE:

Aim:

To generate the following time domain signals using MATLAB

- 1. Linear convolution
- 2. Circular convolution
- 3. Comparison of Linear convolution and Circular convolution
- 4. Cross Correlation
- 5. Auto Correlation

**Equipments required: MATLAB software** 

# Program:

# **Linear convolution**

```
a=input('Enter the first sequence =');
b=input('Enter the second sequence=');
c=conv(a,b);
M=length(c)-1;
N=0:1:M;
disp('o/p sequence=')
disp(c);
subplot(3,1,1);
stem(a)
subplot(3,1,2);
stem(b)
subplot(3,1,3);
stem(N,c);
xlabel('time index n');
ylabel('Amplitude');
```

#### **Circular Convolution**

```
a=input('Enter the first sequence x(n) = ');
b=input('Enter the second sequence h(n)=');
n1=length(a);
n2=length(b);
N=max(n1,n2);
x=[a zeros(1,N-n1)];
for i=1:N
k=i;
for j=1:n2
H(i,j) = x(k) *b(j);
k=k-1;
if(k==0)
    k=N;
end
end
end
y=zeros(1,N);
m=H';
for j=1:N
    for i=1:n2
        y(j) = m(i,j) + y(j)
    end
end
 subplot(3,1,1);
stem(a)
subplot(3,1,2);
stem(b)
subplot(3,1,3);
```

```
stem(y);
xlabel('time index n');
ylabel('Amplitude');
```

# Comparison of linear and circular convolution

```
function [yc]=circonv(x,h,N);
Nx = length(x);
Nh=length(h);
x=[x, zeros(1, N-Nx)]
h=[h, zeros(1, N-Nh)]
m = [0:1:N-1];
M=mod(-m,N);
h=h(M+1);
for n=1:1:N
m=n-1;
p=0:1:N-1;
q=mod(p-m,N);
hm=h(q+1);
H(n, :) = hm;
end
yc=x*H';
```

```
clear all;
x=[1,1,1,2,1,1];
h=[1,1,2,1];
Nx=length(x);
```

```
Nh=length(h);
N=max(Nx,Nh);
yc=circonv(x,h,N);
y=conv(x,h);
n=0:1:Nx-1;
subplot(2,2,1)
stem(n,x);
xlabel('n'), ylabel('x(n)')
title ('Input Sequence')
n=0:1:Nh-1;
subplot(2,2,2)
stem(n,h);
xlabel('n'), ylabel('h(n)')
title ('Impulse Sequence')
n=0:1:N-1;
subplot(2,2,3)
stem(n,yc);
xlabel('n'), ylabel('yc(n)')
title ('Output Sequence (circular convolution)')
n=0:1:Nx+Nh-2;
subplot(2,2,4)
stem(n,y);
xlabel('n'), ylabel('y(n)')
title ('Output Sequence (Linear convolution)')
Cross correlation
x=input('Enter the first sequence=');
y=xcorr(x,x);
figure
```

```
subplot(2,1,1)
stem(x)
subplot(2,1,2)
stem(fliplr(y))

Auto correlation

x=input('Enter the first sequence=');
h=input('Enter the second sequence=');
y=xcorr(x,h);
figure
subplot(2,1,1)
stem(x)
subplot(2,1,2)
stem(fliplr(y))
OUTPUT:
```

# FREQUENCY-DOMAIN ANALYSIS OF SIGNALS AND LTI SYSTEMS

Ex. No: 4 DATE:

Aim:

To generate the following frequency domain signals using MATLAB

- 1. Discrete Fourier Transform
- 2. Inverse Discrete Fourier Transform

**Equipments required: MATLAB software** 

**Program:** 

Discrete time Fourier Transform

#### I method

```
x=input('Enter the sequence=');
h=input('Enter the length of FFT=');
y=fft(x,h)
subplot(3,1,1);
stem(x)
subplot(3,1,2);
stem(h)
subplot(3,1,3);
stem(y);
```

### II method

```
N=input('Enter the length of the sequence');
M=input('Enter the length of DFT=');
u=input('Enter the sequence');
U=fft(u,M);
t=0:1:N-1;
```

```
subplot(3,1,1);
stem(t,u);
title ('Original time domain sequence');
xlabel('Time index');
ylabel('Ampliude');
subplot(3,1,2);
k=0:1:M-1;
stem(k,abs(U))
title('Magnitude of the dft samples');
xlabel('Frequency index K');
ylabel('magnitude');
subplot(3,1,3);
stem(k, angle(U))
title('Phase of the dft3 samples');
xlabel('Frequency index k');
ylabel('Phase');
disp('Magnitude of DFT');
disp(abs(U));
disp('Phase of DFT');
disp(angle(U));
```

#### III method:

```
DFT
clc
clear all
x=input('Sequence for N pt dft=');
N=length(x)
```

```
X=zeros(N,1)
for k=0:N-1
    for n=0:N-1
        X(k+1) = X(k+1) + x(n+1) * exp(-j*pi*2*n*k/N)
    end
end
t=0:N-1;
subplot(3,1,1);
stem(t,x);
xlabel('Time(s)');
ylabel('Amplitude');
title('Time domain-input sequence');
subplot(3,1,2);
stem(t,X);
xlabel('Frequency');
ylabel('|X(k)|');
title('Frequency domain-Magnitude response');
subplot(3,1,3);
stem(t, angle(X));
xlabel('Frequency');
ylabel('Phase');
title('Frequency domain-Phase response');
Χ
angle(X)
```

#### **IDFT**

```
N=input('Enter the length of the sequence');
M=input('Enter the length of DFT=');
u=input('Enter the sequence');
U=ifft(u,M);
t=0:1:N-1;
subplot(3,1,1);
stem(t,u);
title('Original frequency domain sequence');
xlabel('Time index');
ylabel('Ampliude');
subplot(3,1,2);
k=0:1:M-1;
stem(k, abs(U))
title('Magnitude of the idft samples');
xlabel('Frequency index K');
ylabel('magnitude');
subplot(3,1,3);
stem(k, angle(U))
title('Phase of the idft samples');
xlabel('Frequency index k');
```

```
ylabel('Phase');
disp('Magnitude of IDFT');
disp(abs(U));
disp('Phase of IDFT');
disp(angle(U));
```

#### ECG SIGNAL ANALYSIS

Ex. No: 5

Aim:

To analyse the ECG signal from IIR filter using SP tool box.

- 1. Butterworth filter (LPF, HPF, BPF & BRF)
- 2. Chebychev (LPF, BPF, BRF)

**Equipments required: MATLAB software** 

**Program:** 

# **Butterworth Low pass filter**

```
clear all;
alphap=0.4
alphas=30;
fp=400;
fs=800;
F=2000;
omp=2*fp/F; oms=2*fs/F;
% To find the cutoff frequency and order of the
filter
[n,wn]=buttord(omp,oms,alphap,alphas)
% System function of the filter
[b,a] = butter(n,wn)
w=0:0.1:pi;
[h, om] = freqz(b, a, w, 'whole');
m=abs(h);
an=angle(h);
subplot(2,1,1), plot(om/pi,20*log(m)); grid;
ylabel('Gain in dB');
```

```
xlabel('Normalized frequency');
subplot(2,1,2), plot(om/pi,an);grid;
ylabel('Phase in Radians');
xlabel('Normalized frequency');
Butterworth Band pass filter
clear all;
alphap=2;
alphas=20;
wp = [0.2*pi, 0.4*pi];
ws=[0.1*pi, 0.5*pi];
% To find the cutoff frequency and order of the
filter
[n,wn]=buttord(wp/pi,ws/pi,alphap,alphas)
% System function of the filter
[b,a] = butter(n,wn)
w=0:0.01:pi;
[h,ph] = freqz(b,a,w);
m=20*log10(abs(h));
an=angle(h);
subplot(2,1,1), plot(ph/pi,m);grid;
ylabel('Gain in dB');
xlabel('Normalized frequency');
subplot(2,1,2), plot(ph/pi,an);grid;
ylabel('Phase in Radians');
xlabel('Normalized frequency');
```

# Butterworth high pass filter

```
clear all;
```

```
alphap=0.4
alphas=30;
fp=400;
fs=800;
F=2000;
omp=2*fp/F; oms=2*fs/F;
% To find the cutoff frequency and order of the
filter
[n,wn] = buttord (omp, oms, alphap, alphas)
% System function of the filter
[b, a] = butter(n, wn, 'HIGH')
w=0:0.1:pi;
[h,om] = freqz(b,a,w);
m=20*log(abs(h));
an=angle(h);
subplot(2,1,1), plot(om/pi,m);grid;
ylabel('Gain in dB');
xlabel('Normalized frequency');
subplot(2,1,2), plot(om/pi,an); grid;
ylabel('Phase in Radians');
xlabel('Normalized frequency');
```

# **Butterworth Band reject filter**

```
clear all;
alphap=2;
alphas=20;
ws=[0.2*pi,0.4*pi];
wp=[0.1*pi,0.5*pi];
```

```
% To find the cutoff frequency and order of the
filter
[n,wn]=buttord(wp/pi,ws/pi,alphap,alphas)
% System function of the filter
[b,a]=butter(n,wn)
w=0:0.01:pi;
[h,ph]=freqz(b,a,w);
m=20*log10(abs(h));
an=angle(h);
subplot(2,1,1), plot(ph/pi,m);grid;
ylabel('Gain in dB');
xlabel('Normalized frequency');
subplot(2,1,2), plot(ph/pi,an);grid;
ylabel('Phase in Radians');
xlabel('Normalized frequency');
```

# Chebyshev Low pass filter

```
clear all;
alphap=1;
alphas=15;
ws=0.2*pi;
wp=0.3*pi;
% To find the cutoff frequency and order of the
filter
[n,wn]=cheblord(wp/pi,ws/pi,alphap,alphas)
% System function of the filter
[b,a]=chebyl(n,alphap,wn)
w=0:0.01:pi;
[h,ph]=freqz(b,a,w);
```

```
m=20*log10(abs(h));
an=angle(h);
subplot(2,1,1), plot(ph/pi,m);grid;
ylabel('Gain in dB');
xlabel('Normalized frequency');
subplot(2,1,2), plot(ph/pi,an);grid;
ylabel('Phase in Radians');
xlabel('Normalized frequency');
```

# Chebyshev Band pass filter

```
clear all;
alphap=1;
alphas=20;
ws=[0.2*pi,0.4*pi];
wp = [0.1*pi, 0.5*pi];
% To find the cutoff frequency and order of the
filter
[n,wn]=buttord(wp/pi,ws/pi,alphap,alphas)
% System function of the filter
[b,a]=cheby1(n,alphap,wn)
w=0:0.01:pi;
[h,ph] = freqz(b,a,w);
m=20*log10(abs(h));
an=angle(h);
subplot(2,1,1), plot(ph/pi,m); grid;
ylabel('Gain in dB');
xlabel('Normalized frequency');
subplot(2,1,2), plot(ph/pi,an);grid;
ylabel('Phase in Radians');
```

```
xlabel('Normalized frequency');
```

# Chebyshev Band reject filter

```
clear all;
alphap=2;
alphas=20;
ws=[0.2*pi,0.4*pi];
wp = [0.1*pi, 0.5*pi];
% To find the cutoff frequency and order of the
filter
[n,wn]=cheb2ord(wp/pi,ws/pi,alphap,alphas)
% System function of the filter
[b, a] = cheby2 (n, alphas, wn, 'stop')
w=0:0.01:pi;
[h,ph] = freqz(b,a,w);
m=20*log10(abs(h));
an=angle(h);
subplot(2,1,1), plot(ph/pi,m); grid;
ylabel('Gain in dB');
xlabel('Normalized frequency');
subplot(2,1,2), plot(ph/pi,an);grid;
ylabel('Phase in Radians');
xlabel('Normalized frequency');
```

**OUTPUT:** 

# SPEECH SIGNAL ANALYSIS USING SP TOOL BOX AND FDA TOOL BOX IN MATLAB

Ex. No: 6 DATE:

#### Aim:

To analyse the speech signal from FIR filter using SP tool box in MATLAB.

- 1. FIR Low pass Rectangular and Hamming
- 2. FIR High pass –Rectangular and Blackman
- 3. FIR Band pass Rectangular and hamming
- 4. FIR Band reject- Rectangular and Hamming
- 5. FIR Kaiser Low pass filter

# **Equipments required: MATLAB software**

# Program:

# FIR Low pass – Rectangular and Hamming

```
clear all
wc = 0.5*pi;
N=25;
alpha=(N-1)/2
eps=0.001;
n=0:1:N-1;
hd=sin(wc*(n-alpha+eps))./(pi*(n-alpha+eps));
wr=boxcar(N);
hn=hd.*wr';
w=0:0.01:pi;
h=freqz(hn,1,w);
plot(w/pi,abs(h));
hold on
wh=hamming(N);
hn=hd.*wh';
w=0:0.01:pi;
```

```
h=freqz(hn,1,w);
plot(w/pi,abs(h),'-.'); grid;
xlabel('Normalized Frequency\omega\pi');
ylabel('Magnitud'); hold off
```

# FIR High pass -Rectangular and Blackman

```
clear all
wc = 0.5*pi;
N=25;
alpha=(N-1)/2
eps=0.001;
n=0:1:N-1;
hd=sin(pi*(n-alpha+eps))-sin(wc*(n-
alpha+eps))./(pi*(n-alpha+eps));
wr=boxcar(N);
hn=hd.*wr';
w=0:0.01:pi;
h=freqz(hn,1,w);
plot(w/pi,abs(h));
hold on
wb=blackman(N);
hn=hd.*wb';
w=0:0.01:pi;
h=freqz(hn,1,w);
plot(w/pi,abs(h),'-.'); grid;
xlabel('Normalized Frequency\omega\pi');
ylabel('Magnitud'); hold off
```

# FIR Band pass Rectangular and hamming

```
clear all
wc1=0.25*pi;wc2=0.75*pi;
N=25;
alpha=(N-1)/2
eps=0.001;
n=0:1:N-1;
hd=sin(wc2*(n-alpha+eps))-sin(wc1*(n-
alpha+eps))./(pi*(n-alpha+eps));
wr=boxcar(N);
hn=hd.*wr';
w=0:0.01:pi;
h=freqz(hn,1,w);
plot(w/pi,abs(h));
hold on
wh=hamming(N);
hn=hd.*wh';
w=0:0.01:pi;
h=freqz(hn,1,w);
plot(w/pi,abs(h),'-.'); grid;
xlabel('Normalized Frequency\omega\pi');
ylabel('Magnitud'); hold off
```

# FIR Band reject- Rectangular and Hamming

```
clear all
wc1=0.25*pi;wc2=0.75*pi;
N=25;
alpha=(N-1)/2
```

```
eps=0.001;
n=0:1:N-1;
hd=sin(wc1*(n-alpha+eps))-sin(wc2*(n-
alpha+eps))+sin(pi*(n-alpha+eps))./(pi*(n-
alpha+eps));
wr=boxcar(N);
hn=hd.*wr';
w=0:0.01:pi;
h=freqz(hn,1,w);
plot(w/pi,abs(h));
hold on
wh=hamming(N);
hn=hd.*wh';
w=0:0.01:pi;
h=freqz(hn,1,w);
plot(w/pi,abs(h),'-.'); grid;
xlabel('Normalized Frequency\omega\pi');
ylabel('Magnitud'); hold off
FIR Kaiser – Low pass filter
clear all;
wc = 0.5*pi;
N=25;
b=fir1(N,wc/pi, kaiser(N+1, 0.5));
w=0:0.01:pi;
h=freqz(b,1,w);
plot(w/pi,20*log10(abs(h)));
hold on
b=fir1(N,wc/pi, kaiser(N+1, 3.5));
```

```
w=0:0.01:pi;
h=freqz(b,1,w);
plot(w/pi,20*log10(abs(h)));
hold on
b=fir1(N,wc/pi, kaiser(N+1, 8.5));
w=0:0.01:pi;
h=freqz(b,1,w);
plot(w/pi,20*log10(abs(h)));
xlabel('Normalized Frequency\omega\pi');
ylabel('Magnitude in dB'); hold off
```

OUTPUT: