3.3 波包、相速和群速

实用电磁波是以某频率 ω_0 为载波频率的有狭窄频带 $\Delta\omega$ 的波。

波包

$$E(x,t) = \frac{1}{\Delta\omega} \int_{\omega_0 - \Delta\omega/2}^{\omega_0 + \Delta\omega/2} E_0(\omega) \exp[j(\omega t - kx)] d\omega$$

$$k(\omega)$$

$$k(\omega) \approx k(\omega_0) + (\omega - \omega_0) \frac{\mathrm{d} k}{\mathrm{d}\omega} \bigg|_{\omega_0}$$

$$\Delta \omega$$

$$E(x,t) = \frac{E_0}{\Delta\omega} \int_{\omega_0 - \Delta\omega/2}^{\omega_0 + \Delta\omega/2} \exp\left\{ j \left[\omega t - k(\omega_0) x - (\omega - \omega_0) \frac{\mathrm{d} k}{\mathrm{d}\omega} \right|_{\omega_0} x \right] \right\} \mathrm{d}\omega$$

$$= \frac{E_0}{\Delta\omega} \exp\left\{ j \left[\omega_0 t - k(\omega_0) x \right] \right\} \int_{\omega_0 - \Delta\omega/2}^{\omega_0 + \Delta\omega/2} \exp\left\{ j(\omega - \omega_0) \left[t - \frac{\mathrm{d} k}{\mathrm{d}\omega} \right|_{\omega_0} x \right] \right\} \mathrm{d}\omega$$

$$\diamondsuit \xi = \omega - \omega_0$$
,上式化为

$$E(x,t) = \frac{E_0}{\Delta \omega} \exp\{j[\omega_0 t - k(\omega_0) x]\} \int_{-\Delta \omega/2}^{\Delta \omega/2} \exp\{j \xi \left[t - \frac{d k}{d\omega} \Big|_{\omega_0} x\right]\} d\xi$$

$$= E_0 \exp\{j[\omega_0 t - k(\omega_0) x]\} \frac{\sin \Psi}{\Psi}$$

$$\Psi = \left[t - \frac{\mathrm{d} k}{\mathrm{d} \omega} \right|_{\omega_0} x \right] \frac{\Delta \omega}{2}$$

振幅 $E_0 \frac{\sin \Psi}{\Psi}$ 是x 和t 的函数。当 $\Psi = \pm m\pi$ 时振幅为零。

波包在空间移动的速度,

可由:
$$\Psi = \left[\frac{\mathrm{d}\,k}{\mathrm{d}\omega}\Big|_{\omega_0} x - t\right] \frac{\Delta\omega}{2} =$$

波包的群速度:

$$v_g = \frac{\mathrm{d} x}{\mathrm{d} t} = \frac{\mathrm{d} \omega}{\mathrm{d} k} \bigg|_{\omega_0}$$

相位移动的速度, 相速度:

$$v_p = \frac{\omega_0}{k(\omega_0)}$$

通常,介质的折射率
$$n = \sqrt{\mu_r \varepsilon_r} = \frac{\sqrt{\mu \varepsilon}}{\sqrt{\mu_0 \varepsilon_0}} = \frac{c}{v_p}$$
 与圆频率 ω (或 k)有关,

$$\omega = \frac{k}{\sqrt{\mu \varepsilon}} = \frac{kc}{n(k)}$$
 所以群速

$$v_{g} = \frac{\mathrm{d}\omega}{\mathrm{d}k}\bigg|_{\omega_{0}} = \left[\frac{c}{n} + k\frac{\mathrm{d}}{\mathrm{d}k}\left(\frac{c}{n}\right)\right]_{\omega=\omega_{0}} = v_{p} + \left[k\frac{\mathrm{d}}{\mathrm{d}k}\left(\frac{c}{n}\right)\right]_{\omega=\omega_{0}}$$

一般介质,群速与相速并不相等,但在折射率随k变化很小的介质中,群速与相速相等。

3.4 有导体存在时电磁波的传播

- □ 导体中可能存在自由电子,在电磁波的作用下形成传导电流。
- □ 一般导体可以看成良导体,自由电荷分布在导体的表面。内部 自由电荷密度仍为零。
- 有电磁波存在时,出现传导电流: $j = \sigma E$

$$\begin{cases} \nabla \bullet \mathbf{E} = 0 \\ \nabla \bullet \mathbf{B} = 0 \\ \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{j} \end{cases}$$

$$\mathbf{D} = \varepsilon \, \mathbf{E} \,, \mathbf{B} = \mu \, \mathbf{H}$$

$$\begin{cases}
\nabla \bullet E = 0 \\
\nabla \bullet B = 0
\end{cases}$$

$$\nabla \times E = -j\omega\mu H$$

$$\nabla \times H = j\omega\varepsilon E + \sigma E$$

で記載

$$\nabla \times \boldsymbol{H} = j\boldsymbol{\omega}\boldsymbol{\varepsilon}'\boldsymbol{E}$$

$$\nabla^2 \boldsymbol{E} - \mu\boldsymbol{\varepsilon}' \frac{\partial^2 \boldsymbol{E}}{\partial t^2} = 0$$

 $E = E_0 \exp[j(\omega t - k \bullet r)]$ 平面波解:

$$-k^2 + \mu \varepsilon' \omega^2 = 0$$

$$k = \beta - j\alpha$$

$$k^{2} = \beta^{2} - \alpha^{2} - 2j\alpha \bullet \beta = \omega^{2}\mu\left(\varepsilon - j\frac{\sigma}{\omega}\right)$$

$$\alpha \bullet \beta = \frac{1}{2}\omega\mu\sigma$$

$$\beta^2 - \alpha^2 = \omega^2 \mu \varepsilon$$

$$\boldsymbol{\alpha} \bullet \boldsymbol{\beta} = \frac{1}{2} \omega \mu \sigma$$

矢量 α 和 β 的方向不一定相同,由边值关系定。

导体中电磁波:
$$E = E_{\theta}e^{-a \cdot r}exp[j(\omega t - \beta \cdot r)]$$

在导体中, 电磁波衰减, 只能在表层传播。

垂直入射: $E = E_{\rho}e^{-\alpha z}e^{j(\omega t - \beta z)}$

$$\beta^2 - \alpha^2 = \omega^2 \mu \varepsilon$$

$$\boldsymbol{\alpha} \bullet \boldsymbol{\beta} = \frac{1}{2} \omega \mu \boldsymbol{\sigma}$$

$$\begin{cases} \beta = \omega \sqrt{\mu \varepsilon} \sqrt{\frac{1}{2} \left(\sqrt{1 + \frac{\sigma^2}{\varepsilon^2 \omega^2}} + 1 \right)} \\ \alpha = \omega \sqrt{\mu \varepsilon} \sqrt{\frac{1}{2} \left(\sqrt{1 + \frac{\sigma^2}{\varepsilon^2 \omega^2}} - 1 \right)} \end{cases}$$

对良导体, $\sigma >> \omega \varepsilon$ 可忽略 k^2 的实部

$$k^2 \approx -j\omega\mu\sigma$$

$$k^2 \approx -j\omega\mu\sigma$$
 $\alpha \approx \beta \approx \sqrt{\omega\mu\sigma/2}$

穿透深度:

$$\delta = \frac{1}{\alpha} = \sqrt{\frac{2}{\omega\mu\sigma}}$$

穿透深度与电导率及频率的平方根成反比。

铜: 50 Hz, $\delta = 0.99 \text{cm}$ 2450 MHz, $\delta = 1.4 \times 10^{-4} \text{cm}$

对于高频电磁波, 电磁场集中在导体表面附近的薄层内

----- 趋肤效应

导体可以看成内部电磁场为零的边界考虑。

垂直入射, α 和 β 与 k 同向:

$$\mathbf{H} = \frac{1}{\omega\mu} \mathbf{k} \times \mathbf{E} = \frac{1}{\omega\mu} (\beta - j\alpha) \frac{\mathbf{k}}{k} \times \mathbf{E}$$

良导体
$$\mathbf{H} = \sqrt{\frac{\sigma}{\omega\mu}} e^{-j\frac{\pi}{4}} \frac{\mathbf{k}}{k} \times \mathbf{E}$$

$$\boldsymbol{H} = \sqrt{\frac{\sigma}{\omega\mu}} e^{-j\frac{\pi}{4}} \frac{\boldsymbol{k}}{k} \times \boldsymbol{E}$$

$$\frac{1}{\sqrt{\mu\varepsilon}} \left| \frac{\mathbf{B}}{\mathbf{E}} \right| = \sqrt{\frac{\mu}{\varepsilon}} \left| \frac{\mathbf{H}}{\mathbf{E}} \right| = \sqrt{\frac{\sigma}{\omega\varepsilon}} >> 1$$

磁场相位滞后

导体中, 电磁波能量主要是磁场能量。

电磁波在导体表面的反射和折射:

垂直入射:
$$\begin{cases} E_i + E_r = E_t \\ H_i - H_r = H_t \end{cases}$$

磁场用电场表示: $E_i - E_r = \sqrt{\frac{\sigma}{2\omega \varepsilon_0}} (1-j)E_t$

反射系数(反射与入射能流之比):

$$\frac{E_r}{E_i} = -\frac{1 - j - \sqrt{\frac{2\omega \,\varepsilon_0}{\sigma}}}{1 - j + \sqrt{\frac{2\omega \,\varepsilon_0}{\sigma}}}$$

$$\frac{E_r}{E_i} = -\frac{1 - j - \sqrt{\frac{2\omega \,\varepsilon_0}{\sigma}}}{1 - j + \sqrt{\frac{2\omega \,\varepsilon_0}{\sigma}}}$$

$$R = \left|\frac{E_r}{E_i}\right|^2 = \frac{\left(1 - \sqrt{\frac{2\omega \,\varepsilon_0}{\sigma}}\right)^2 + 1}{\left(1 + \sqrt{\frac{2\omega \,\varepsilon_0}{\sigma}}\right)^2 + 1}$$

由于 $\sqrt{\frac{\omega\varepsilon_0}{\sigma}}$ <<1 ,上式中的高次项可以略去: $R \approx 1 - 2\sqrt{\frac{2\omega\varepsilon_0}{\sigma}}$

$$R \approx 1 - 2\sqrt{\frac{2\omega\varepsilon_0}{\sigma}}$$

电导率越高,反射系数越接近于1。

例如对1兆赫的电磁波,垂直入射到铜的表面时的反射系数 $R = 1 - 0.26 \times 10^{-5} \approx 1$,这样绝大部分能量被反射出去。在一般无线电波应用的情形下,金属往往可近似地当作理想导体对待,对电磁波全反射。

对人体组织,属于不良导体,其介电常数和电导率如下表所示:

Frequency (MHz)	Relative Dielectric Constant (ε_r)	Conductivity (S/m)	Penetration Depth (δ) (cm)	
0.1	1850	0.56	213	
1.0	411	0.59	70	
10	131	0.68	13.2	
100	79	0.81	7.7	
1000	60	1.33	3.4	
10000	42	13.3	0.27	
100000	8	60	0.03	
* Muscle-like tissue, field parallel to tissue fibers				

3.5 电磁波在等离子体中的传播

Aurora australis (2005-9-11) 自 NASA's IMAGE 卫星

极光 (Aurora或Polar light) 是地球周围的一种大规模放电的过程。来自太阳的带电粒子到达地球附近,地球磁场迫使其中一部分沿着磁場线 (Field line) 集中到南北两极。当他们进入极地的高层大气时,与大气中的原子和分子碰撞并激发,产生光芒,形成极光。— Wikipedia

- □ 等离子体是物质存在的一种形式。
- □ 电离气体形成的等离子体中,正负电荷近似相等。
- 在很小的范围内也可能出现正负电荷明显不相等,该 小范围尺度是:

德拜半径:

$$d_R << \sqrt{\frac{\varepsilon_0 kT}{n_e e^2}} = 7.91 \sqrt{\frac{T}{n_e}}$$

等离子体的一个重要特征参量:

—— 等离子体频率

等离子振荡 简单的计算模型:

设想有一面积较大的厚度为d的等离子体平板,扰动使其中的电子相对于离子移动了一小段距离 ξ (<<d),则在板的两个表面上产生"面"电荷密度 $\pm n_e e \xi$,于是板内将有电场,其强度为 $n_e e \xi/\varepsilon_0$,它产生把电子拉回到平衡位置的力。电子的运动方程是:

$$m_e \frac{\mathrm{d}^2 \xi}{\mathrm{d} t^2} = -e \frac{n_e e \xi}{\varepsilon_0}$$

$$\frac{\mathrm{d}^2 \xi}{\mathrm{d} t^2} + \frac{n_e e^2 \xi}{m_e \varepsilon_0} = 0$$

振动频率: <u>等离子体频率</u>

$$\omega_p = \sqrt{\frac{e^2 n_e}{m_e \varepsilon_0}}$$

单色平面波在等离子体中的传播

单色平面波的电场为: $E = E_0 exp[j(\omega t - k \bullet r)]$

在真空中,|E|=c|B| 在洛仑兹力中,磁力与电力比可以忽略。

离子在电磁波的作用下的运动方程为:

$$m_i \frac{\mathrm{d} \mathbf{v}_i}{\mathrm{d} t} = Q_i \mathbf{E}$$

$$m_i \frac{\mathrm{d} \mathbf{v}_i}{\mathrm{d} t} = Q_i \mathbf{E}$$
 $\mathbf{v}_i = \frac{Q_i \mathbf{E}}{j\omega m_i} + \mathbf{v}_{i\theta}$

假定不考虑粒子的热运动,则 $v_{i0}=0$ 。 将等离子体考虑成电导率为 σ 的导电介质:

$$\sigma E = j_f = \sum N_i Q_i v_i$$

$$\sigma = \sum \frac{N_i Q_i^2}{j\omega \ m_i}$$

考虑离子的质量比电子大 $\sigma = -\frac{j N_e Q_e^2}{\omega m_e} = -\frac{j n_e e^2}{\omega m_e}$

用电磁波在电导率为 σ 的介质(ε - $j\frac{\sigma}{\omega}$)中传播的结果:

$$k^{2} = \omega^{2}\mu\varepsilon - j\sigma\,\omega\mu = \omega^{2}\mu\varepsilon - \frac{\mu\,n_{e}e^{2}}{m_{e}} = \mu\varepsilon \left(\omega^{2} - \frac{n_{e}e^{2}}{\varepsilon m_{e}}\right)$$

当 $\omega > \omega_p$ 时,k 为实数,电磁波可以在其中传播; 当 $\omega < \omega_p$ 时,k 为虚数,电磁波无法通过等离子体; 频率越低, σ 越大,被反射的能量越多。一般微波才可以 穿透电离层。

□ 卫星通信、射电天文必须工作在微波频段。

例:电离层是由太阳的紫外线照射等作用而形成的等离子体,它大致可分为 $D \setminus E \setminus F_1$ 和 F_2 四层,其性质列于下表:

层次	离地面高度	电子浓度 (电子数/立方米)	备注
D	60-80千米	109	夜间消失
E	100-120千米	$5 \times 10^9 \sim 10^{11}$	电子浓度白天大夜间小
F_1	200千米	4×10^{11}	夜间消失,常出现于夏季
F_2	250-400千米	$10^{11} \sim 2 \times 10^{12}$	电子浓度白天大夜间小, 冬季大夏季小

计算各层的等离子体集体振荡频率,分别取 $\lambda = 10^4$ 米、 10^3 米、 10^2 米和1 米为长波、中波、短波和微波的典型波长,讨论它们在电离层中的传播情况。

实际上电离层不像上面所叙述的那样由规则的、平滑的层组成。实际上的电离层由块状的、 云一般的、不规则的电离的团或者层组成。

解: 等离子体集体振荡频率 $\omega_p = \sqrt{\frac{e^2 n_e}{m_e \varepsilon_0}}$, 式中 $e = 1.602 \times 10^{-19}$ 库仑,

 $m_e = 9.1 \times 10^{-31}$ 千克, $\varepsilon_0 = 8.854 \times 10^{-12}$ 法拉/米,并将各层电子浓度代入,于是可求得相对各层的。

层次	ω_p
D	1.78×10^5
E	$39.9 \times 10^5 \sim 17.8 \times 10^4$
F_1	35.6×10^6
F_2	$17.8 \times 10^6 \sim 79.6 \times 10^6$

相对于各波段典型波长的圆频率为:

长波
$$\omega_{\rm K} = 18.8 \times 10^4$$

中波
$$\omega_{+} = 18.8 \times 10^{5}$$

短波
$$\omega_{\text{\frac{1}{10}}} = 18.8 \times 10^6$$

微波
$$\omega_{\oplus} = 18.8 \times 10^8$$

Homework

3-2; 3-3;

3-4. 证明(1)一个椭圆极化波可分解为一个左旋和一个右旋圆极化波;(2)一个圆极化波可由两个旋向相反的椭圆极化波 选加而成。

3-5. 1GHz x方向极化的平面波沿+z方向从空气入射到位于x-y平面的金属面(铜质, ϵ_r =1, μ_r =1, σ =5. 8×10⁷S/m)上,电场幅度为12mV/m,求金属中的电场、磁场时间表达式。

3-6. Brewster棱镜可沿特定的Brewster角度 无反射传输TM波, 如果棱镜的折射率为1.5, 求棱镜的顶角 θ 。

