15. Тригонометрические уравнения.

Домашнее задание.

<u>**А1.**</u> Из чисел: а) π ; б) 450° ; в) $\frac{4\pi}{3}$; г) $-\frac{3\pi}{2}$; д) $\frac{7\pi}{2}$ выберите корень уравнения $\sin(\pi - x) = -1$.

1) а; 2) б; 3) в; 4) г; 5) д.

<u>**42.**</u> Из чисел: а) 300° ; б) $\frac{\pi}{6}$; в) $\frac{2\pi}{3}$; г) $-\frac{4\pi}{3}$; д) $\frac{7\pi}{6}$ выберите корень уравнения $2\sin\left(\frac{\pi}{4} - \frac{x}{2}\right)\cos\left(\frac{\pi}{4} - \frac{x}{2}\right) = \frac{\sqrt{3}}{2}$.

1) а; 2) б; 3) в; 4) г; 5) д.

<u>АЗ.</u> Найдите среднее арифметическое (в градусах) корней уравнения $\cos 2x + 2\sin\left(\frac{3\pi}{2} - x\right) + 1 = 0$, принадлежащих промежутку $\left(-90^{\circ}; 450^{\circ}\right)$.

1) 180; 2) 240; 3) 360; 4) 150; 5) 720.

<u>**А4.**</u> Найдите сумму корней (в градусах) уравнения $4\cos^2\frac{x}{2}=1$, принадлежащих отрезку $\left[-\pi;\frac{3\pi}{2}\right]$.

1) 180; 2) 240; 3) 360; 4) 450; 5) 0.

<u>**А5.**</u> Найдите среднее арифметическое (в градусах) корней уравнения $2 + \sqrt{3}\cos\left(270^{0} + x\right) = 2\cos^{2}x$, принадлежащих отрезку $\left[-\frac{\pi}{3}; \frac{7\pi}{3}\right]$.

1) 170; 2) 180; 3) 360; 4) 450; 5) 600.

<u>**Аб.**</u> Определите количество корней уравнения $\sin 5x \cos 3x + \sin \left(\frac{7\pi}{2} - 5x \right) \sin 3x = 0,5$ на отрезке $\left[90^{\circ}; 585^{\circ} \right]$.

1) 6; 2) 2; 3) 3; 4) 4; 5) 5.

<u>А7.</u> Определите количество корней уравнения $\frac{\cos(270^{0}+x)-\sin^{2}3-\cos^{2}3}{1-2\sin^{2}\frac{x}{2}}=0 \text{ на } \left[0;2\pi\right].$

1) 1; 2) 2; 3) 3; 4) 4; 5) нет корней.

<u>**48.**</u> Определите количество корней уравнения $\frac{4\sin\frac{x}{4}\cos\frac{x}{4}-1}{3x^2-4\pi x+\pi^2}=0$ на отрезке $[0;5\pi]$.

1) 1; 2) 2; 3) 3; 4) 4; 5) нет корней.

<u>**49.**</u> Определите наименьший корень уравнения $3\sin^2 x + 5\sin x \cos x - 4 = 0$ на $[-180^{\circ}; 0^{\circ}]$.

1) $-\pi$; 2) -90° ; 3) -135° ; 4) $arctg4-\pi$; 5) -160° .

<u>**А10.**</u> Найдите среднее арифметическое корней уравнения $ctg^2 \frac{\pi x}{2} - \frac{1+\sqrt{2}}{\sin \frac{\pi x}{2}} + \sqrt{2} + 1 = 0$ на отрезке [-5; 1].

1)-4; 2)-5; 3)-1,5; 4)-7,5; 5)-1,8.

<u>A11.</u> Укажите (в градусах) наименьший положительный корень уравнения $\cos(3x-75^{\circ}) = \frac{\sqrt{2}}{2}$.

1) 5° ; 2) 30° ; 3) 120° ; 4) 10° ; 5) 40° .

<u>**A12.**</u> Найдите наименьший положительный корень уравнения $\sin 5x = \frac{\sqrt{2}}{2}$.

1)
$$\frac{\pi}{20}$$
; 2) $\frac{\pi}{4}$; 3) $\frac{\pi}{15}$; 4) $\frac{\pi}{3}$; 5) $\frac{\pi}{30}$.

<u>**А13.**</u> Найдите наименьший положительный корень уравнения $\sin\left(x + \frac{\pi}{6}\right) = 0$.

1)
$$\frac{2\pi}{3}$$
; 2) $\frac{\pi}{6}$; 3) $\frac{5\pi}{6}$; 4) $\frac{7\pi}{6}$; 5) π .

<u>**A14.**</u> Найдите наименьший положительный корень уравнения $\sin 2x = \frac{1}{2}$.

1)
$$\frac{\pi}{6}$$
; 2) $\frac{\pi}{12}$; 3) $\frac{\pi}{3}$; 4) $\frac{5\pi}{12}$; 5) $\frac{\pi}{8}$.

<u>**А15.**</u> Найдите среднее арифметическое (в градусах) корней уравнения $\cos 2x = \sin \left(\frac{5\pi}{2} + x \right) + 2\sin \frac{x}{2}\cos \frac{x}{2}$, принадлежащих отрезку $\left[-270^{\circ}; 270^{\circ} \right]$.

1) 7,5; 2) 9; 3) 15; 4) 45; 5) 55.

<u>**A16.**</u> Укажите номер рисунка, на котором представлен эскиз графика функции $y = 1 - (x + 3)^2$.

<u>**А17.**</u> Укажите формулу для нахождения n-го члена арифметической прогрессии (a_n) , если $a_1 = 2$, $a_2 = 5$.

1)
$$a_n = -3n + 5$$
; 2) $a_n = 3n + 5$; 3) $a_n = 3n - 1$; 4) $a_n = 2n + 5$; 5) $a_n = 5n + 2$.

A18. Даны системы неравенств:

1)
$$\begin{cases} |x| > 5, \\ x \ge 3; \end{cases}$$
 2)
$$\begin{cases} |x| > 5, \\ x \le 3; \end{cases}$$
 3)
$$\begin{cases} |x| > 5, \\ x < 3; \end{cases}$$
 4)
$$\begin{cases} |x| < 5, \\ x > 3; \end{cases}$$
 5)
$$\begin{cases} |x| \le 3, \\ x > 5. \end{cases}$$

Укажите номер системы неравенств, решения которой отмечены штриховкой из рисунке.

1) 1; 2) 2; 3) 3; 4) 4; 5) 5.

<u>**А19.**</u> Значение выражения $6\sqrt{3}\cos 135^{\circ} + 4\sin 390^{\circ}$ равно:

1)
$$6\sqrt{3} + 4$$
; 2) $3\sqrt{6} - 2$; 3) $-3\sqrt{6} - 2$;

4)
$$-3\sqrt{6}+2$$
; 5) $3\sqrt{6}+2$.

<u>**A20.**</u> На круговой диаграмме показано распределение посевных площадей под зерновые культуры в агрохозяйстве. Сколько гектаров отведено под гречиху, если овсом засеяно на 390 га больше, чем рожью?

1) 110 га; 2) 150 га; 3) 120 га; 4) 160 га; 5) 180 га.

<u>**A21.**</u> Найдите сумму всех целых чисел, принадлежащих области значений функции y = f(x), заданной графиком на промежутке (-5; 5) (см. рис.).

1) 12; 2) 14; 3) 7; 4) 10; 5) 11.

<u>**А22.**</u> Упростите $\left(\frac{4 \cdot a^2 \cdot b^{-4}}{25}\right)^{-1} \cdot \left(\frac{16 \cdot a}{5 \cdot b^2}\right)^2$.

1)
$$\frac{a}{2b}$$
; 2) $\frac{2 \cdot a}{b^2}$; 3) $\frac{1}{32}$; 4) 64; 5) 1.

<u>**A23.**</u> Укажите систему неравенств, соответствующую рисунку, на котором изображено множество решений системы.

1)
$$\begin{cases} x = 2 \\ x > 3 \end{cases}$$
; 2) $\begin{cases} x > 2 \\ x \ge 3 \end{cases}$; 3) $\begin{cases} x > 2 \\ x > 3 \end{cases}$; 4) $\begin{cases} x \ge 2 \\ x \ge 3 \end{cases}$; 5) $\begin{cases} x \ge 2 \\ x > 3 \end{cases}$.

<u>**A24.**</u> Если $\frac{3y}{x} = \frac{1}{2}$, то значение выражения $\frac{7x + 6y}{18y - x}$ равно:

1) 1; 2) 4; 3) 1/4; 4) 43/101; 5) 6.

<u>**A25.**</u> Среди предложенных уравнений укажите номер уравнения, графиком которого является парабола, изображённая на рисунке.

1)
$$y = 2x^2 - 4x + 5$$
; 2) $y = x^2 + 4x + 5$; 3) $y = x^2 + 4x - 5$;

4)
$$y = 2x^2 + 4x + 5$$
; 5) $y = 2x^2 - 4x - 5$.

<u>**A26.**</u> Какая из прямых: 1) y = -1.5; 2) y = 4.6; 3) y = 0; 4) y = 3; 5) y = -2

пересекает график функции $y = \frac{1}{4}x^2 - 2x + 7$ в двух точках?

1) 1; 2) 2; 3) 3; 4) 4; 5) 5.

<u>**A27.**</u> На рисунке изображён график движения автомобиля из пункта O в пункт N. Скорость движения автомобиля на участке MN (в км/ч) равна:

- 1) 72 км/ч; 2) 90 км/ч; 3) 36 км/ч;
- 4) 108 км/ч; 5) 144 км/ч.
- <u>**A28.**</u> Выразите m из равенства $\frac{7}{3n+1} = \frac{14}{m-n}$.
 - 1) m = 7n 2; 2) m = 49n + 14; 3) m = 7n + 2; 4) m = 49n 14; 5) m = 4n + 1.

<u>**А29.**</u> Даны квадратные уравнения: 1) $3x^2 - 5x - 2 = 0$; 2) $4x^2 - 3x - 7 = 0$; 3) $2x^2 - 16x + 32 = 0$; 4) $5x^2 - 3x + 4 = 0$; 5) $4x^2 - 8x + 4 = 0$. Укажите уравнение, которое не имеет корней.

1) 1; 2) 2; 3) 3; 4) 4; 5) 5.

<u>АЗ0.</u> Вычислите $\frac{2,3+0,7:\left(\frac{3}{7}+\frac{1}{14}\right)}{0,1}.$

1) 37; 2) 60; 3) 0,6; 4) 0,37; 5) 3,7.

<u>**В1.**</u> Найдите сумму корней (в градусах) уравнения $\sqrt{\pi x - x^2} (2\cos^3 x + \cos^2 x - \cos x) = 0$.

<u>**В2.**</u> Найдите сумму корней (в градусах) уравнения $2\sin^2 2x + (1 - \sqrt{3})\sin 4x - 2\sqrt{3}\cos^2 2x = 0$ на отрезке $\begin{bmatrix} 0^0; 225^0 \end{bmatrix}$.

<u>**В3.**</u> Определите количество корней уравнения $\sin 5x - \sin 7x = \cos^2 3x - \sin^2 3x$ на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.

<u>**В4.**</u> Найдите сумму корней (в градусах) уравнения $\sqrt{2}\cos x = \sqrt{1-\cos x}$, принадлежащих отрезку $\left[-90^{\circ};360^{\circ}\right]$.

<u>**В5.**</u> Найдите (в градусах) сумму корней уравнения $8\sin 9x\cos 9x + 4\sin 18x\cos 30x = 0$ на промежутке $(110^{0}; 150^{0})$.

<u>**Вб.**</u> Вычислите $\frac{12}{\pi} \cdot \arcsin\left(\sin\left(-\frac{13\pi}{6}\right)\right)$.

<u>**В7.**</u> Найдите количество корней уравнения $\cos x = \left| \frac{x}{11\pi} \right|$.

- <u>В8.</u> Найдите произведение наибольшего целого решения на количество целых решений неравенства $\frac{24}{5+|11-x|} > |11-x|-5$.
- **<u>В9.</u>** Известно, что при a, равном -3 и 2, значение выражения $2a^3 + 8a^2 ab + c$ равно нулю. Найдите значение выражения b + c.
- <u>**В10.**</u> Найдите произведение наименьшего целого решения на количество целых решений неравенства $\frac{32}{4+|20-x|} > |20-x|$.