Performance and Profiling

Flow of Data during Training

Common System Bandwidths

Hardware Component	speed	1 PB =
Intel i7 5930K (40 PCIe lanes)	30 GB/s	9 hours
NVLINK	40 GB/s	7 hours
PCIe x8 (GPU)	5 GB/s	2 days
SATA Interface	6 GB/s	2 days
56 Gbps Mellanox	6.8 GB/s	2 days
10 Gbps Ethernet	1 GB/s	2 weeks

Detailed PCI Bus Structure

Common Ways of Speeding Up Single GPU Jobs

CPU

- use multicore/multithreading
- use pre-augmented data
- avoid data copies

• GPU

- use pinned memory for CPU/GPU transfers
- overlay memory transfers and computation
- switch to FP16 and use tensor cores

speed up I/O

- load your entire dataset into CPU/GPU memory
- use sequential reads or NVMe

How do you find out what to do?

- system monitoring tools (CPU, GPU, disk, network)
- manual instrumentation, logging, and performance measurements
- mock loaders / trainers
- performance analysis and visualization tools

(In rough order from easy to hard.)

GPU Utilization

First thing to look at: What is my GPU utilization?

\$ watch nvidia-smi

Check for:

- utilization of each GPU (should be close to 100%)
- GPU memory utilization (stay away from max)
- active processes and their usage (as few as possible)
- temperature (make sure you're cooled enough)

Also: NVIDIA GPU profiling tools

Linux Monitoring

First thing to look at: What is my CPU utilization?

\$ htop

More tools:

- memtop, ... = watch memory usage
- iotop, ... = watch I/O
- nettop, ... = watch network I/O
- logging frameworks and dashboards for K8s

Manual Instrumentation

```
while True:
   t1 = time.time() #<<<<<<
    inputs, targets = next(source)
   t2 = time.time() #<<<<<<
   optimizer.zero_grad()
   outputs = model(inputs)
    loss = lossfn(outputs, targets)
    loss.backward()
   optimizer.step()
   t3 = time.time() #<<<<<<
    loading_time = moving_average(loading_time, t2-t1)
    training_time = moving_average(training_time, t3-t2)
```

I/O should overlap with training, and t2-t1 should be much smaller than t3-t2

Performance Testing with Mock Components

To measure limit of training performance:

- mock up the loader
- store a single batch in CPU or GPU memory

To measure limit of I/O performance:

- mock up the training = measure loading performance
- just discard each batch after loading

I/O sample rate should be higher than training sample rate.

Tools: CPU Profiling

E.g.:

```
$ python -m cProfile -o myscript.cprof myscript.py
```

\$ pyprof2calltree -k -i myscript.cprof

Page 11 / 19

Tools: PyTorch Profiler

```
import torch
import torchvision.models as models
model = models.densenet121(pretrained=True)
x = torch.randn((16, 3, 224, 224), requires_grad=True)
with torch.autograd.profiler.profile(use_cuda=True) as prof:
    model(x)
print(prof)
prof.export_chrome_trace("mytrace") # open with chrome://tracing
```


IEEE BigData19 Page 12 / 19

Tools: PyTorch Profiler (Sample Output)

Name	CPU time	CUDA time	Calls	CPU total	CUDA tota
conv2d	9976.544us	9972.736us	1	9976.544us	9972.736us
convolution	9958.778us	9958.400us	1	9958.778us	9958.400u
_convolution	9946.712us	9947.136us	1	9946.712us	9947.136u
contiguous	6.692us	6.976us	1	6.692us	6.976u
empty	11.927us	12.032us	1	11.927us	12.032u
mkldnn_convolution	9880.452us	9889.792us	1	9880.452us	9889.792u
batch_norm	1214.791us	1213.440us	1	1214.791us	1213.440u
native_batch_norm	1190.496us	1193.056us	1	1190.496us	1193.056ເ
threshold_	158.258us	159.584us	1	158.258us	159.584u
max_pool2d_with_indices	28837.682us	28836.834us	1	28837.682us	28836.834u
max_pool2d_with_indices_forward	28813.804us	28822.530us	1	28813.804us	28822.530ι
batch_norm	1780.373us	1778.690us	1	1780.373us	1778.690ເ
native_batch_norm	1756.774us	1759.327us	1	1756.774us	1759.327ι
threshold_	64.665us	66.368us	1	64.665us	66.368u
conv2d	6103.544us	6102.142us	1	6103.544us	6102.142u
convolution	6089.946us	6089.600us	1	6089.946us	6089.600u
_convolution	6076.506us	6076.416us	1	6076.506us	6076.416ι
contiguous	7.306us	7.938us	1	7.306us	7.938ı
empty	9.037us	8.194us	1	9.037us	8.194ı
mkldnn_convolution	6015.653us	6021.408us	1	6015.653us	6021.408ı
batch_norm	700.129us	699.394us	1	700.129us	699.394

Speedup: FP16 Computations

Important:

- intrinsically faster
- enables the use of TensorCores
- changes numerical results and can't be used with all computations

Speedups:

between 1.5x and 5x for common models

Speedup: Converting to FP16

EXAMPLE

```
N, D_{in}, D_{out} = 64, 1024, 512
x = torch.randn(N, D in, device="cuda")
y = torch.randn(N, D out, device="cuda")
model = torch.nn.Linear(D in, D out).cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
model, optimizer = amp.initialize(model, optimizer, opt level="01")
for t in range (500):
    y pred = model(x)
    loss = torch.nn.functional.mse loss(y pred, y)
    optimizer.zero grad()
    with amp.scale loss(loss, optimizer) as scaled loss:
        scaled loss.backward()
    optimizer.step()
```


Speedup: Sequential I/O instead of Random Access

Recommendations

Max Out the Expensive Stuff:

- ensure that you are getting 90%+ GPU utilization for each GPU
- check your I/O bandwidth; it should be about 150 MB/s for disks, 3000 MB/s for NVMe

Avoid Maxing Out:

- GPU memory: this will kill your job
- CPU memory: limits GPU performance
- CPU utilization: limits GPU performance
- network bandwidth: limits I/O performance (for distributed I/O and SGD)

Some Options

- parallelize your model
- parallelize your model differently
- change random access I/O to sequential I/O
- use more CPU cores per GPU and use more I/O workers per GPU
- move I/O to separate node
- move data augmentation to separate node(s)
- use RDMA

(We will cover some of these later.)

FP16 Notebook

(notebook)

