杨国旭 河南师范大学 计算机科学与技术



### 目录

- rawayang@HTU Carrawayang@HTU Carrawa arawayang@HTU Carrawayang@HTU Carrawayang@H

rawayang@HTU Carrawayang@HTU Carraway Carrawayang@HTU Carrawayang@HTU Carrawayang@HTU Carrawayang@HTU

# You Only Look Once: Unified, Real-Time Object Detection

Joseph Redmon



将目标检测视为一个回归问题 可以直接进行端到端的处理









### 将图片划分为7x7网格



每一个网格cell输出 两个bounding box

$$\left\{egin{aligned} p_{conf}, x, y, w, h \ p_{conf}, x, y, w, h \ p_{c_1}, p_{c_2}, \cdots, p_{c_{20}} \end{aligned}
ight.$$



### 将图片划分为7x7网格



每一个网格cell输出两个bounding box

 $\left\{egin{array}{ll} p_{conf}, x, y, w, h & ext{predictor1} \ p_{conf}, x, y, w, h & ext{predictor2} \ p_{c_1}, p_{c_2}, \cdots, p_{c_{20}} \end{array}
ight.$ 

shared class prob

一个cell对应30个输出



将图片划分为7x7网格



每一个网格cell输出 两个bounding box

$$\left\{egin{aligned} p_{conf}, x, y, w, h \ p_{conf}, x, y, w, h \ p_{c_1}, p_{c_2}, \cdots, p_{c_{20}} \end{aligned}
ight.$$

**Ground Truth** 

1.Object属于其center 所在的cell



### YOLOv1

将图片划分为7x7网格



每一个网格cell输出 两个bounding box

$$\left\{egin{aligned} p_{conf}, x, y, w, h \ p_{conf}, x, y, w, h \ p_{c_1}, p_{c_2}, \cdots, p_{c_{20}} \end{aligned}
ight.$$

**Ground Truth** 

1.Object属于其center 所在的cell

2. Object属于与predictor的 预测结果 IOU最大的predictor



### YOLOv1

将图片划分为7x7网格



每一个网格cell输出 两个bounding box

$$\left\{egin{aligned} p_{conf}, x, y, w, h \ p_{conf}, x, y, w, h \ p_{c_1}, p_{c_2}, \cdots, p_{c_{20}} \end{aligned}
ight.$$

**Ground Truth** 

1.Object属于其center 所在的cell

2. Object属于与predictor的 预测结果 IOU最大的predictor



### Loss

位置损失

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

$$i=0 \ j=0$$

$$+ \lambda_{\mathbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ \left( \sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left( \sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$$

置信度损失

$$egin{aligned} &+\sum_{i=0}^{S^2}\sum_{j=0}^B\mathbb{1}_{ij}^{ ext{obj}}\left(C_i-\hat{C}_i
ight)^2 \ &+\lambda_{ ext{noobj}}\sum_{i=0}^{S^2}\sum_{j=0}^B\mathbb{1}_{ij}^{ ext{noobj}}\left(C_i-\hat{C}_i
ight)^2 \end{aligned}$$

类别损失 
$$+\sum_{i=0}^{S^2}\mathbb{1}_i^{ ext{obj}}\sum_{c\in ext{classes}}(p_i(c)-\hat{p}_i(c))^2$$

$$\mathbb{I}_{ij}^{obj} = egin{cases} 1 & \text{, the } j \text{th bb in cell } i \text{ is "responsible" for prediction} \\ 0 & \text{, otherwise} \end{cases}$$

### 位置损失

位置损失:

$$\sum_{i=0}^{S^2} \sum_{j=0}^{B} \left[ x_i^{obj} (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 + (w_i - \hat{w}_i)^2 + (h_i - \hat{h}_i)^2 \right]$$

 $\mathbb{I}_{ij}^{obj} = \begin{cases} 1 & \text{, the } j \text{th bb in cell } i \text{ is "responsible" for prediction} \\ 0 & \text{, otherwise} \end{cases}$ 

$$\mathbb{I}_{51}^{obj} \times \left( (0.7 - 0.7)^2 + (0.5 - 0.5)^2 + (\mathbf{0.5} - \mathbf{0.5})^2 + (\mathbf{0.75} - \mathbf{0.7})^2 \right) \\
+ \mathbb{I}_{71}^{obj} \times \left( (0.6 - 0.6)^2 + (0.5 - 0.5)^2 + (\mathbf{0.2} - \mathbf{0.2})^2 + (\mathbf{0.3} - \mathbf{0.25})^2 \right) \\
= \mathbb{I}_{51}^{obj} \times (\mathbf{0.05})^2 + \mathbb{I}_{71}^{obj} \times (\mathbf{0.05})^2$$

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

$$+ \lambda_{ extbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{ ext{obj}} \left[ \left( \sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left( \sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$$

$$\mathbb{I}_{51}^{obj} \times \left( (0.7 - 0.7)^2 + (0.5 - 0.5)^2 + \left( \sqrt{0.5} - \sqrt{0.5} \right)^2 + \left( \sqrt{0.75} - \sqrt{0.7} \right)^2 \right) \\
+ \mathbb{I}_{71}^{obj} \times \left( (0.6 - 0.6)^2 + (0.5 - 0.5)^2 + \left( \sqrt{0.2} - \sqrt{0.2} \right)^2 + \left( \sqrt{0.3} - \sqrt{0.25} \right)^2 \right) \\
= \mathbb{I}_{51}^{obj} \times (\mathbf{0.03})^2 + \mathbb{I}_{71}^{obj} \times (\mathbf{0.048})^2$$

S=3, B=1



### 类别损失

 $Pr(Class_i|Object)$ 

类别损失 
$$+\sum_{i=0}^{S^2}\mathbb{1}_i^{ ext{obj}}\sum_{c\in ext{classes}}\left(p_i(c)-\hat{p}_i(c)
ight)^2$$

$$i=0$$
  $c \in \text{classes}$  
$$\Pr(\text{Class}_i | \text{Object}) * \Pr(\text{Object}) * \text{IOU}_{\text{pred}}^{\text{truth}} = \Pr(\text{Class}_i) * \text{IOU}_{\text{pred}}^{\text{truth}}$$





### 置信度损失

 $\Pr(\text{Object}) * \text{IOU}_{\text{pred}}^{\text{truth}}$ 

置信度损失:

$$+\sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left( C_i - \hat{C}_i \right)^2$$

$$+ \lambda_{\text{noobj}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{noobj}} \left( C_i - \hat{C}_i \right)^2$$

| i                   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   |
|---------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $C_i$               | 0   | 0   | 0   | 0   | 1   | 0   | 1   | 0   | 0   |
| $\hat{C}_i$         |     |     |     |     |     |     |     |     | 0.1 |
| $ C_i - \hat{C}_i $ | 0.1 | 0.1 | 0.1 | 0.1 | 0.4 | 0.1 | 0.4 | 0.1 | 0.1 |

S=3, B=1 
$$2 \times (0.4)^2 + 7 \times (0.1)^2 = 0.32 + 0.07$$

**S=7**, **B=2** 
$$2 \times (0.4)^2 + 96 \times (0.1)^2 = 0.32 + 0.96$$





### Loss

位置损失

$$\lambda_{\text{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ (x_i - \hat{x}_i)^2 + (y_i - \hat{y}_i)^2 \right]$$

$$i=0 \ j=0$$

$$+ \lambda_{\mathbf{coord}} \sum_{i=0}^{S^2} \sum_{j=0}^{B} \mathbb{1}_{ij}^{\text{obj}} \left[ \left( \sqrt{w_i} - \sqrt{\hat{w}_i} \right)^2 + \left( \sqrt{h_i} - \sqrt{\hat{h}_i} \right)^2 \right]$$

置信度损失

$$egin{aligned} &+\sum_{i=0}^{S^2}\sum_{j=0}^B\mathbb{1}_{ij}^{ ext{obj}}\left(C_i-\hat{C}_i
ight)^2 \ &+\lambda_{ ext{noobj}}\sum_{i=0}^{S^2}\sum_{j=0}^B\mathbb{1}_{ij}^{ ext{noobj}}\left(C_i-\hat{C}_i
ight)^2 \end{aligned}$$

类别损失 
$$+\sum_{i=0}^{S^2}\mathbb{1}_i^{ ext{obj}}\sum_{c\in ext{classes}}(p_i(c)-\hat{p}_i(c))^2$$

$$\mathbb{I}_{ij}^{obj} = egin{cases} 1 & \text{, the } j \text{th bb in cell } i \text{ is "responsible" for prediction} \\ 0 & \text{, otherwise} \end{cases}$$

### 实验

| K .  |                            |                  |            |            |           |     |
|------|----------------------------|------------------|------------|------------|-----------|-----|
|      | 13/31                      |                  | 18         | NS         |           |     |
|      | <b>Real-Time Detectors</b> | Train            | mAP        | <b>FPS</b> |           |     |
|      | 100Hz DPM [31]             | 2007             | 16.0       | 100        |           | @X  |
|      | 30Hz DPM [31]              | 2007             | 26.1       | 30         |           |     |
| 40   | Fast YOLO                  | 2007+2012        | 52.7       | 155        | 1370      |     |
| SUA  | YOLO                       | 2007+2012        | 63.4       | 45         | 7/1/0     |     |
|      | Less Than Real-Time        |                  | -11        | C.o.       |           |     |
|      | Fastest DPM [38]           | 2007             | 30.4       | 15         |           |     |
|      | R-CNN Minus R [20]         | 2007             | 53.5       | 6          |           | .12 |
|      | Fast R-CNN [14]            | 2007+2012        | 70.0       | 0.5        |           | MSY |
| 124  | Faster R-CNN VGG-1         | 6[28] 2007+2012  | 73.2       | 7          | C2118     |     |
| SINO | Faster R-CNN ZF [28]       | 2007+2012        | 62.1       | 18         | Co        |     |
|      | YOLO VGG-16                | 2007+2012        | 66.4       | 21         |           |     |
|      |                            |                  | 200        | 9          |           |     |
|      | 1309                       | 12               | Mar.       |            |           |     |
|      | MSYC                       | CLSIN.           | ,          |            |           | CSI |
| c 21 | 13.                        | Car.             |            |            | UTL       |     |
|      | 杨国旭     基·                 | 于YOLO的路况监测系统设计与实 | <b>宗</b> 现 | 6          | 2022/7/21 | 17  |

### **Error Analysis**

### Fast R-CNN

### YOLO



- Correct: correct class and IOU > .5
- Localization: correct class, .1 < IOU < .5
- Similar: class is similar, IOU > .1

- Other: class is wrong, IOU > .1
- Background: IOU < .1 for any object

### 行人车辆检测

- rawayang@HTU Carrawayang@HTU Carrawa arawayang@HTU Carrawayang@HTU Carrawayang@H

### 行人车辆检测



### 车牌检测

- rawayang@HTU Carrawayang@HTU Carrawa arawayang@HTU Carrawayang@HTU Carrawayang@H

### 车牌检测

**LPRNet** LP num Classifier Splice Extracted ROIs (122\*h)(122\*w)\*64 **ROI** Pooling 8\*16\*64 8\*16\*160 (63\*h)(63\*w)\*160 LP num precision **ROI** Pooling (33\*h)(33\*w)\*192 122 8\*16\*192 **ROI** Pooling 63 33 x, y, w, h 18 122 63 33 Box Regression License Plate **Detection Module** 

Recognition Module

### 路面损伤检测

- rawayang@HTU Carrawayang@HTU Carrawa arawayang@HTU Carrawayang@HTU Carrawayang@H

### 路面损伤检测



### 实验

- rawayang@HTU Carrawayang@HTU Carrawa arrawayang@HTU Carrawayang@HTU Carrawayang@H

### Sub-Pascal VOC2007

- Windows10; Intel(R) I7-8750H; Nvidia-GTX-1050Ti
- 设备2: Ubuntu18.04; Tesla K80

### Pascal VOC2007

| 类别   | 样例                                                          |
|------|-------------------------------------------------------------|
| 人    | person                                                      |
| 动物   | bird, cat, cow, dog, horse, sheep                           |
| 交通工具 | aeroplane, bicycle, boat, bus, car, motorbike, train        |
| 室内物品 | bottle, chair, dining table, potted plant, sofa, tv/monitor |
|      |                                                             |



# Carramayang@/ 去除数据集中无关数据

### **Sub-Pascal VOC2007**

| 类别   | 样例                                  |      |
|------|-------------------------------------|------|
| 人    | person                              |      |
| 交通工具 | bicycle, bus, car, motorbike, train | 18/. |
|      |                                     |      |



### 数据增强

• cutout数据增强后一个Mini Batch





|       | Class     | Images     | Labels | P             | R     | mAP@.5            | mAP@.5:.95 | 5_             |
|-------|-----------|------------|--------|---------------|-------|-------------------|------------|----------------|
|       | All       | 2510       | 3572   | 0.78          | 0.741 | 0.787             | 0.473      |                |
|       | Bicycle   | 2510       | 177    | 0.783         | 0.754 | 0.793             | 0.459      |                |
|       | Bus       | 2510       | 114    | 0.731         | 0.702 | 0.745             | 0.495      | ar             |
| .70   | Car       | 2510       | 625    | 0.805         | 0.776 | 0.824             | 0.544      | - J. W.        |
| aHI   | Motorbike | 2510       | 172    | 0.751         | 0.703 | 0.75              | 0.418      | 13/19          |
| - do. | Train     | 2510       | 152    | 0.828         | 0.763 | 0.811             | 0.489      | 137            |
| 300   | Person    | 2510       | 2332   | 0.783         | 0.749 | 0.798             | 0.434      |                |
| train | /box_loss | train/obj_ | loss   | train/cls_los | S     | metrics/precision | n          | netrics/recall |





Model Summary: 213 layers, 1767283 parameters, 0 gradients, 4.2 GFLOPs







### 测试



# 测试



### **CCPD**

• CCPD(Chinese City Parking Dataset, ECCV),是一个用于车牌识别的大型国内停车场车牌数据集,该数据在合肥市的停车场采集得来,采集时间为早上7:30到晚上10:00。停车场采集人员手持Android Pos机对停车场的车辆拍照并手工标注车牌位置。拍摄的车牌照片涉及多种复杂环境,包括模糊、倾斜、阴雨天、雪天等等。CCPD数据集一共包括进30万张图片,每张图片大小720\*1160\*3<sup>[6]</sup>。一共包含8项,具体如

| <u>.</u>        |        |                        |           |
|-----------------|--------|------------------------|-----------|
| CCPD类型          | 图片数量   | 说明                     |           |
| base            | 199998 | 正常车牌                   |           |
| challenge       | 10006  | 比较具有挑战性的车牌             | 19/3      |
| db 1209         | 20001  | 光线较暗或较亮                | er Silver |
| fn              | 19999  | 距离摄像头较远或较近             | C3//      |
| np              | 3036   | 没上牌的新车                 | 70        |
| rotate          | 9998   | 水平倾斜20-50°,垂直倾斜-10-10° | 1         |
| tilt            | 10000  | 水平倾斜15-45°, 垂直倾斜15-45° |           |
| weather         | 9999   | 雨天、雪天或者雾天的车牌           | , e (     |
| 总共: 283037张车牌图像 |        | -ramos                 | CSIL      |

### 训练&测试







测试速度为每张图片85ms,车牌识别平均置信度为0.93,平均识别率为96%,在数据集中的少量样本中存在非车牌字符区域被识别

### GRDDC2020

• GRDDC2020数据集(Golbal Road Damage Detection Challenge),是从印度、日本、捷克收集的道路图像。包括三个部分: Train, Test1, Test2,训练数据集包括带有PASCAL VOC格式XML文件标注的道路图像,Train中没有标注,Test1和Test2中没有标注



GRDDC Dataset



Potholes • Longitudinal Cracks • Alligator Cracks • Lateral Cracks

训练数据中每种损伤类型的实例数

### 训练参数



### cutout数据增强后一个Mini Batch





Callana



# 测试







### 目录

- rawayang@HTU Carrawayang@HTU Carrawa arawayang@HTU Carrawayang@HTU Carrawayang@H

# rawayang@HTU Carrawayang@HTU Carrawayang@HTU Carrawayang@HTU Carrawayang@HTU Carrawayang@HTU Carrawayang@HTU Carrawayang@HTU