Business Intelligence I 2019

Social Network Analysis

Univ. Prof. Dr. Stefanie Rinderle-Ma
Workflow Systems and Technology Group
University of Vienna
stefanie.rinderle-ma@univie.ac.at

Contents

1 Motivation

- 2 Data perspective
- 3 Model perspective
- 4 Analytical perspective
- 5 Summary

1 Motivation

- Enormous amounts of "social data" available through, e.g., social networks
- □ Even coining of a new term "social data revolution" → see, for example, Wikipedia
- Possibility for asking new questions:
 - O Who is interacting with whom?
 - O Whom am I interacting with?
- □ Where "interacting" can be any kind of "social relation", e.g., owe money, hands over work, etc.
- □ Recall the three BI perspectives
 - Customer
 - Organization
 - Production
- □ → Social network analysis focuses on organizational perspective

1 Motivation

Questions:

- Which data is suitable?
- □ How has the data to be prepared?
- What analysis model is typically used?
- Which analysis techniques are there?

Reading and basis for these slides:

- □ [Scott] John Scott: Social Network Analysis. SAGE (2012)
- □ [GrRi] Wilfried Grossmann, Stefanie Rinderle-Ma: Fundamentals of Business Intelligence, Springer 2015

Contents

1 Motivation

2 Data perspective

3 Model perspective

4 Analytical perspective

5 Summary

- □ Checking data sources → what is there?
- □ Checking analysis model → where do we want to go?
- □ Checking analysis questions → what do we want to know?
- □ Small lookahead: the analysis model is a sociogram, i.e., a graph
 G = (V, E) (can be directed or undirected)
- Nodes represent the entities in the social network, e.g., persons
- □ Edges represent the relation between these entities, e.g., isFriendOf

The data for example on previous slide (in .net format)

```
*Network

*Vertices 3

1 "Simon"

2 "Maria"

3 "Frank"

*Arcs

1 2 1

2 3 1

*Edges
```

```
Difference?
*Network
*Vertices 3
1 "Simon"
2 "Maria"
3 "Frank"
*Arcs
*Edges
```


Derive the data set in .net format for the following sociogram:

Other formats:

- □ Adjacency matrix
- □ GraphML: xml-based, contains visualization information

Analysis questions:

- □ Who or what are identified as entities?
- What are the interesting relations to be analyzed?

Basically:

- □ Analysis of the entire network
- Analysis for selected nodes (entities)

Job for data preperation:

- Make decisions on the questions above
- □ Prepare data accordingly
- If data is big, think about sampling

		Affiliations		
		Α	В	С
	1	1	0	0
Cases	2	1	0	0
	3	1	0	0

What are the entities (nodes) and relations (edges) for this example (taken from [Scott])?

According to [Coott] throu different representation matrices for CNA exists

According to [Scott] three diff		erent represent	ation matrices t	or SNA exist:	
Incidence matrix		Cases			
		1	2	3	
	Α				
Affiliations	В				
	С				
Adjacency matrix (→ best for		Cases			
SNA)		1	2	3	
	1				
Cases	2				
	3				
Adjacency matrix	<	Affiliations			
		A	В	С	
	Α				
Affiliations	В				
	С				

According to [Scott] three different representation matrices for SNA exist:

•		erent represent			
Incidence matrix		Students			
		1	2	3	
	A	1	1	0	
Universities	В	0	1	0	
	С	1	1	1	
Adjacency matrix		Students			
		1	2	3	
	1	-	2	1	
Students	2	2	-	1	
	3	1	1	-	
Adjacency matrix	•		Universities		
		Α	В	С	
	Α	-	1	2	
Universities	В	1	-	1	
	C	1	2	-	

Contents

1 Motivation

2 Data perspective

3 Model perspective

4 Analytical perspective

5 Summary

- □ As mentioned before, the basic model is the sociogram
- Model structures for SNA (based on [GrRi])
 - Undirected graphs: an undirected graph G is defined as G = (V;E) with set of nodes V and set of undirected edges E.
 - Directed graphs: Opposed to undirected edges, directed edges establish a relation that reflects a causal relation or a relation that is directed from one to another entity.
 - Weighted Graphs: It can be also useful to assign weights to the edges in the graph, i.e., a weight w(e) expressing some kind of quantitative measure for the relation.
 - Connected Subgraphs: Special connected subgraphs might be of interest.
 A subgraph consisting of two nodes (with or without relations between them) describes a dyad, a sub-graph consisting of three nodes of interest a triad respectively.
 - Dyad / triad: Two / three actors who are connected by a relation in the social network

How to build the model from the data?

- 1. Step: create data matrix (as described in Section 2)
- 2. Step: create models for different analysis tasks

Example 1: Building model from relational data

Students	s SID	Name	enrolled	SID	<u>UID</u>	University	UID	Name
	S1	Simon		S1	U1		U1	Univie
	S2	Maria		S2	U1		U2	TUWien
	S3	Frank		S1	U2		U3	WUWien
	S4	Sally		S3	U3			
	S5	Bert		S3	U2			
				S2	U2			
			Case	s				
		S1	S2	S	3	S4	S5	
	S1	-	2	1		-	-	
Cases	S2	2	-	1		-	-	
	S3	1		-		-	-	
	S4	-	1	-		-	-	
	S5	_	_	_		_	_	

19

Example 1: Building model from relational data

		Cases				
		S1	S2	S3	S4	S5
	S1	-	2	1	0	0
Cases	S2	2	-	1	0	0
	S3	1		-	0	0
	S4	0	1	0	-	0
	S5	0	0	0	0	-

Example 2: Building model from log data (based on [GrRi])

```
<AuditTrailEntry>
         <WorkflowModelElement>Evaluate presentation 1</WorkflowModelElement>...
         <Originator>person001-lecturer</Originator>
</AuditTrailEntry>
<AuditTrailEntry>
         <WorkflowModelElement>Evaluate presentation 1</WorkflowModelElement>...
         <Originator>person003-lecturer</Originator>
</AuditTrailEntry>
<AuditTrailEntry>
         <WorkflowModelElement>plus</WorkflowModelElement>...
         <Originator>person003-lecturer</Originator>
</AuditTrailEntry>
<AuditTrailEntry>
         <WorkflowModelElement>plus</WorkflowModelElement>...
         <Originator>person004-lecturer</Originator>
</AuditTrailEntry>.000+01:00</Timestamp>
```

Event Type and Time Stamp omitted

	Evaluate Presentation 1	plus
person001-lecturer	1	0
person002-lecturer	0	0
person003-lecturer	1	1
person004-lecturer	0	1

Contents

- 1 Motivation
- 2 Data perspective
- 3 Model perspective
- 4 Analytical perspective
- 5 Summary

- Basically, different measures on the sociogram
 - For the entire network
 - For single nodes
- In addition: local and global measures

Local measures for nodes:

1. degree, in-degree, out-degree

Node	Degree
1	
2	
3	
4	
5	
6	
7	
8	

Local measures for nodes:

1. degree, in-degree, out-degree

Local measures for nodes:

1. Visualization: node sizes by out-degree

Is the degree meaningful?

→ Degree centrality of node x (*point centrality*):

$$DC(x) = degree(x)/(N-1)$$

where N is the number of nodes in the sociogram

→ Undirected: degree; directed: out-degree; weighted: sum of all weights

of outgoing edges

Node	DC
1	
2	
3	
4	
5	
6	
7	
8	

Interpretation degree centrality:

- When is this a useful measure? In which situations probably not?
- □ Example taken from [Scott]:
- Degree centrality is a local (node) measure

To come to a global measure, take paths instead of edges:

k-path centrality of node $x = \sum_{n} path(x, n)$

where $n \in N \setminus \{x\}$ and path(x,n) denotes the shortest path from x to n

(based on [Scott])	A, C	В	G, M	J, K. L	others
Local centrality (abs)					
Local centrality (rel)					
© Global centrality					

(based on [Scott])	A, C	В	G, M	J, K. L	others
Local centrality (abs)	5	5	2	1	1
Local centrality (rel)	0,33	0,33	0,13	0,07	0,07
Global centrality	43	33	37	48	57

- Which nodes are locally central?
- Which nodes are globally central?
- Interpretation:

- □ Another point centrality measure: betweenness centrality
- Betweenness centrality BC of a node x:

$$BC(x) = \sum_{i \neq j} path(i, j, x) / path(i, j)$$

Where path(i, j, x) denotes the shortest path from i to j through x.

- \Box BC(B) = 3/3+4/4 + 2/2 + 3/3 = 4
- \Box BC(G) = 2/2+3/3+4/4 = 3
- Interpretation: betweenness centrality estimates the role of an intermediary in a SNA, e.g., a broker

Result Social Network Visualizer:

BETWEENESS CENTRALITY (BC)

The BC index of a node u is the sum of delta (s,t,u) for all s,t in V where delta (s,t,u) is the ratio of all geodesics between s and t which run through u. Read the Manual for more.

BC' is the standardized BC.

BC range: 0 < BC < 12 (Number of pairs of nodes excluding u)

BC' range: 0 < BC'< 1 (C' is 1 when the node falls on all geodesics)

Node	ВС
1	0
2	3
3	4
4	3
5	0

BC' %BC' 0 0 0.25 25 0.333 33.3 0.25 25 0 0

Max BC' = 0.333 (node 3) Min BC' = 0 (node 1) BC classes = 3

Normalization with factor number of all pairs: (n-1)*(n-2)/2

BC' sum = 0.833 BC' Mean = 0.167

BC' Variance = 0.0194

Graph metrics

□ *density* D of a graph / sociogram G=(V,E):

Interpretation?

Exercise:
Analyse the SNA with the instruments we have at hand now

Graph centrality:

Measures the centrality of the nodes in the graph in relation to the most central point

Let x* be the node with the highest centrality in the SNA G. Then:

GC(G) =
$$\frac{\sum_{n,n\neq x} C(x*) - C(n)}{(n-1)*(n-2)}$$

Centrality?

Assuming degree centrality

$$DC(A) = 5$$

$$DC(D) = DC(E) = DC(F) = DC(G) = DC(H) = 1$$

$$GC(G) = 5*4/5*4 = 1$$

Graph centrality:
Another example based on [Scott]

node	DC
Α	5
В	3
C D	3 3 3
D	3
Е	3
F	3
G	1
Н	1
1	1
J	1
K	1
L	1
М	1
N	1
O P	1
Р	1

Contents

- 1 Motivation
- 2 Data perspective
- 3 Model perspective
- 4 Analytical perspective

5 Summary

5 Summary

- There are many more metrics to analyze SNA
 - Closeness
 - Cliques in the graph
- □ Tools:
 - o Pajek
 - Social Network Visualizer
 - \circ R
- Organizational mining:
 - Lies at the interface between process mining and social network mining
 - Hence at the interface between production and organization perspective