

بیادهسازی نابع آرکتانژانت هيپربوليك بصورت سخت افز اری روی FPGA ابا استفاده از P Core آماده CORDIC

عنوان درس: طراحی سیستمهای ریزپردازندهای استاد درس: دکتر وحیدی شمس نام دانشجو: مریم لیاقت

اهمیت موضوع:

توابع مثلثاتی و هیپربولیک در بسیاری از کاربردهای مهندسی DSP، ارتباطات، کنترل خودکار ضروریاند.

محاسبه سختافزاری این توابع روی FPGA باعث افزایش سرعت و کارآیی می شود.

کاربردهای عملی:

۱. پردازش سیگنال: جایی که تو ابع هیپر بولیک بر ای تبدیلهای موج استفاده میشوند

۲. کنترل خودکار: تنظیمات پیشرفته که نیاز به محاسبه سریع توابع لاگاریتمی/هذلولی دارند

۳. ارتباطات دیجیتال: در الگوریتمهای دینامیک لینک که محاسبات غیرخطی نیاز است

۴. شبکههای عصبی سختافزاری: برخی لایهها برمبنای توابع

?حسبت FPGA

Field-Programmable Gate Array

FPGA چیست؟

یک مدار مجتمع ic قابل برنامهریزی در سطح گیتهای منطقی، شامل: بلوکهای منطقی قابل پیکربندی CLB، بلوکهای حافظه BRAM، بلوکهای DSP (ضربکننده و جمعکننده)، و منابع مسیردهی SP Routing Fabric

سرعت بالا

بهویژه برای محاسبات عددی سنگین سیگنالهای زیاد، پردازش تصویر، و کنترلهای بلادرنگ.

اجرای همزمان قابلیت Parallelism

پیادهسازی هزاران گیت منطقی که همزمان با هم عمل می کنند.

انعطاف پذیری بالا:

امکان تغییر سختافزار پس از تولید با بارگذاری یک فایل bitstream جدید.

کاربرد:

مخابرات (مودمها، کدکننده/دکدکننده)، DSP، اتوماسیون صنعتی، رایانههای توکار (DSP دکننده/دکدکننده) FPGA-based Neural Nets

ساختار کلی FPGA

بلوکهای اصلی:

- Configurable Logic Blocks (CLBs) شامل (lookup table (LUT)، و منطق ترکیبی برای پیادهسازی گیتهای منطقی.
 - Block RAM (BRAM) حافظههای داخلی قابل پیکربندی برای ذخیره دادهها
 - DSP Slices

بلوکهای سختافزاری اختصاصی برای ضربدهی و جمعکردن سریع (مورد استفاده در پیادهسازی فیلترها و توابع ریاضی).

I/O Blocks

طدرگاههای و رودی/خروجی (برای ارتباط با دنیای بیرون مانند سنسورها، مبدلهای آنالوگ-دیجیتال، و غیره).

Routing Fabric

شبکه مسیر دهی که پس از سنتز و پیادهسازی، ارتباط بین بلوکهای مختلف را برقرار میکند.

فر آيند طر احي:

۱. توصیف سخت افز ار HDL با زبان هایی مثل Verilog یا

۲. سنتز دSynthesis تبدیل کد HDL به گیتهای منطقی

> Place & Route.۳ قرار دادن و سیمکشی

۴. تولید فایل Bitstream فایل نهایی که روی FPGAبارگذاری می شود

Verilog چیست؟

FPGA چیست؟

یک زبان توضیح سختافزار Hardware Description Language برای توصیف ساختار و رفتار مدارهای شمارشی و ترکیبی.

پشتیبانی از تایمینگ

پارامتر مانند # delayبرای توصیف تأخیر.

توصیف رفتار و ساختار (Behavioral) (Structural)

امکان نوشتن کدی که رفتار را با استفاده از تشریح کند، assignو eassignبلوکهای یا اتصال ماژولهای زیرسیستمی instantiation.

ساختار ماژولار

هر واحد طراحی ((module میتواند ورودی (input، خروجی (output)، و پورتهای داخلی داشته باشد.

IP Core چیست؟

Intellectual Property است. یک IP Core ماژولی آماده و آزمایش شده است که عملکرد خاصی (مانند پردازش DSP، کنترلر حافظه، توابع ریاضی) را ارائه میدهد.

تولیدکنندگان FPGA مثلاً Xilinxو Intel و شرکتهای ثالث، IP Coreهای متنوعی (از سادهترین مثل UART ارائه میدهند.

مزایای استفاده از IP Core

۱. کاهش زمان طراحی: نیازی به پیادهسازی و اعتبار سنجی از صفر نیست؛ از ماژولهای آماده و تستشده استفاده میشود.

۲. بهینهسازی شده برای FPGA: توسط تیم تخصصی برای استفاده بهینه از منابع LUT 'BRAM 'FPGA DSP Slices بهینه شده است.

۳. پشتیبانی و مستندسازی قوی: معمو لاً دیتاشیت، راهنمای استفاده و مثالهای کاربردی همراه IP ارائه میشوند.

۴. قابلیت تنظیم Configurability: پارامتر های مختلف (مانند عرض داده، عمق FIFO، یا الگوریتم ویژه DSP) قابل تنظیم هستند.

اکامهای پیادهسازی IP Core گامهای پیادهسازی FPGA در محیط طراحی

ابزار طراحی Xilinx ISE Design Suite v14.7

۱. تعریف دستگاه هدف بر اساس شماره FPGA روی برد

۲. اضافه کردن IP Catalog انتخاب IP Core مربوط به الگوریتم

۳. پیکربندی P Core برای Vectoring mode برای Mode تعیین Mode مثلاً Vectoring mode برای مشخص کردن دقت (عرض بیت ورودی، تعداد چرخههای تکرار) تنظیم فرمت دادهها (fixed-point)، تعداد بیتها برای نقطه اعشار) نامگذاری پورتها مثلاً data_in, data_out, valid_in, valid_out, clk, reset

۴. تولید خروجی Generate Output Products با کلیک روی دکمه Generate

۵. اضافه کردن Testbench

طراحی یک testbench با Verilog برای اعمال ورودی های تست مقادیر مختلف و بررسی خروجی ها. شبیه سازی با استفاده از شبیه ساز داخلی

7. سنتز و پیادهسازی Implementation

اجرای سازوکار سنتز Synthesis برای تولید netlist اجرای Place & Routeبرای تخصیص منابع FPGAو تولید فایل .Bitstream

8. بارگذاری روی برد FPGAو تست سخت افزاری:
اتصال برد FPGAبه کامپیوتر از طریق کابل USB-JTAG.
بارگذاری فایل BitstreamرویBitstream بارگذاری فایل التحال ورودی واقعی (مثلاً از طریق UART ، DIP switches یا .(USB). یا .(USB) مشاهدهٔ خروجی (مثلاً لل LED)، سبریال اُتپوت یا مانیتور اسکوپ).

با تشکر از توجه شما