

Chapter 8 Greedy Algorithms on Graphs

References: [DPV 4.4-4.5] [KT 4.4-4.6]

[CLRS 23, 24.3, 6]

[SSS 6.1, 6.3]

Part 1: Minimum Spanning Trees

- Given a set of cities, how to connect them by road networks?
 - Result: all cities are reachable one-another
 - Shortest total length of roads
 - (does not necessarily give shortest length between a given pair of cities)

- Abstract model
 - Given: a connected undirected graph G
 - Edges have weights (e.g. distance)
 - Goal: a set of edges that connect all vertices with minimum total weight

Minimum Spanning Trees

- A spanning tree of an undirected graph is a subset of edges such that the graph remains connected
 - Must be a tree (i.e. no cycles)
 - Reason: if there is a cycle, we can remove one edge in the cycle and all vertices remain connected
- A minimum spanning tree (MST) is a spanning tree with the minimum total edge weight
- How to find the MST?
 - Greedy algorithms?

Greedy Algorithm for MST

- Idea: repeatedly add the shortest unused edge
 - As long as it connects two different components, i.e. not redundant
- This is Kruskal's algorithm
 - High-level pseudocode: (many details to be filled in later)

```
MST-Kruskal(G) {
   E := sorted list of edges (by weight)
   T := G without edges
   while T has fewer than n-1 edges {
     Remove first edge e = (u,v) from E
     if (u, v in different components in T)
        add e to T
   }
}
```


Kruskal's Algorithm: Example

- Edge labels = weights
 - (a, g): add
 - (c, d): add
 - (b, g): add
 - (c, g): add
 - (a, b): cycle, not add
 - (b, c): cycle, not add
 - (d, g): cycle, not add
 - (d, e): add
 - (e, g): cycle, not add
 - (a, f): add

Kruskal's Algorithm: Optimality

- Does it always produce the MST?
 - Certainly it is a spanning tree; is it minimum?
- Proof by contradiction. Sketch:
- Assume there is an edge e in the true MST T* but not in the tree produced by Kruskal's algorithm T^K
- Edge e separates T* into two parts, S1 and S2
- Since e is not in T^K, T^K connects x and y by another path of edges

Proof of Optimality (cont'd)

- In this path P, there is at least one edge e' connecting S1 and S2
- e' must have smaller weight than e since T^K adds edges by increasing order of weights
- Hence we can remove e from T* and add e' to T* to get another tree with smaller weight
- This contradicts optimality of T*

Kruskal's Algorithm: Running Time

- Sorting edge weights: O(m log m)
 - \bullet = O(m log n) (recall m = O(n²))
- Inside while loop: depends on two important operation
 - 1) Checking whether two vertices are already connected (i.e. in the same component)
 - At most O(m) times in total, over all executions of loop
 - 2) Connecting two vertices (components) together when an edge is added
 - At most O(n) times in total, over all executions of loop (since the final MST has n − 1 edges only)
- How to perform these operations efficiently?

Kruskal's using Disjoint Sets

- Representing connected components as disjoint sets
 - Initially: {a} {b} {c} {d} {e} {f} {g}
 - Add (a,g): {a,g} {b} {c} {d} {e} {f}
 - Add (c,d): {a,g} {b} {c,d} {e} {f}
 - Add (b,g): {a,b,g}, {c,d} {e} {f}
 - Add (c,g): {a,b,c,d,g} {e} {f}
 - Do not add (a,b) [same set]
 - Do not add (b,c)
 - Do not add (d,g)
 - Add (d,e): {a,b,c,d,e,g} {f}
 - Do not add (e,g)
 - Add (a,f): {a,b,c,d,e,f,g}

Disjoint Set Data Structure

- We want a data structure for storing:
 - A number of disjoint sets
 - Each set contains elements from the same ground set
- And support the following operations efficiently:
 - Find(u): given an element u, return a "name" of the set containing that element
 - A simple name: some element in the set ("set representatives")
 - Union(u, v): merge two sets containing u and v
 - Often, u and v are already the set representatives

Using Union-find in MST Algorithms

- Find() and Union() operations support the MST algorithm:
 - Each vertex begins as an individual set initially
 - Edge joining vertices → merge into same component → merge the disjoint sets
 - To check whether two vertices u, v belong to same component: just check whether Find(u) = Find(v)
 - To merge two vertices u and v, find their set representatives, and then merge: Union(Find(u), Find(v))
- We need data structures supporting the union and find operations

Union-find Try #1: Array

- Use an array to keep track of the set names
 - A[i] = set name of element i
 - Example: {1,2,7} {3,4} {5} {6}

- Find(i): just return A[i]
 - O(1) time
- Union(i, j): find the set names of i and j, change all array entries with those two names to the same name
 - O(n) time
 - Example: union(2, 5)

A[i] 1 1	3 3	1 6	5 1
----------	-----	-----	-----

Union-find Try #2: Linked List

- Put all objects in same disjoint set (same name) as a list. Head of list is set representative
- Find(u): O(n) time (go through all lists)
- Union(u,v): can be done in O(1) time if use doublycircular linked list

Union-find #3: Array-and-Linked-List

- For each element, keep track of:
 - Set name
 - Pointer of next element in the set
 - Size of the set
- Size of set is kept because we use the weighted-union heuristic: always modify the smaller set
- Example:

Initially: {1} {2} {3} {4} {5} {6} {7}

1	2	3	4	5	6	7	← Set name
0	0	0	0	0	0	0	Next element of the set,0 = null
1	1	1	1	1	1	1	Size of set

Union-find Example (Cont'd)

Union(3,4): {1,7} {2} {3,4} {5} {6}

1	2	3	3	5	6	1
7	0	4	0	0	0	0
2	1	2	•	1	1	ı

Union-find Example (Cont'd)

Union(2,7): {1,2,7} {3,4} {5} {6}

1	1	3	3	5	6	1
2	7	4	0	0	0	0
3	_	2	_	1	1	_

{1,7} has size 2 while {2} has size 1, so only change set name of {2}

Union(3,7): {1,2,3,4,7} {5} {6}

1	1	1	1	5	6	1
3	7	4	2	0	0	0
5	_	_	_	1	1	ı

Follow this virtual "linked list" to find entries to modify

Union(1,2): no change (Set names of 1,2 the same)

Union(2,3): no change... and so on

Running Time of Kruskal's

- Using the array-and-linked-list data structure:
 - Find(u) in O(1) time
 - Union(u, v) is still worst-case O(n) time (update entries)
- Better analysis for Union():
 - Every time a union occurs, only the smaller set is modified
 - After modification, size of modified set at least doubled
 - Therefore, each entry can be modified at most log n times
 - Total time for n Union() = O(n log n)
- Overall running time
 - O(m log n) for sorting, O(m) for Find, O(n log n) for Union
 - Total O(m log n)
 - There are better data structures with faster running times

Another Approach?

- Is there another way of "greedily" adding edges?
- Idea: "grow" the component from a vertex
- Only one partial MST when the algorithm is running, not a forest (as in Kruskal's)
- Example: (starting from a)

Prim's Algorithm

Algorithm:

- At every step, find minimum-weight outgoing edge
- Enlarge component
- Finding minimum outgoing edge:
 - Naïve approach: check all edges, O(mn) time in total
 - Better approach: keep track of distance of each node outside the growing component (S) from within S
 - Update when new vertex is added to S: only check edges going out from this new vertex

Prim's Algorithm

```
Prim-MST(G, s) {
  /* starting vertex s
     assume d(,) stores edge weights */
  for each vertex v
    D[v] := d(s, v) // initialise
  S := \{s\}
  while (S != V) {
    find u in V - S with minimum D[u]
    add u to S
    for each v in V - S
      D[v] := min(D[v], d(u, v))
```


Example Operation of Prim's

Suppose start at f:

V	a	b	С	d	е	g
D[v]	11	8	∞	∞	12	13

Min. edge to a, add, update

V	a	b	С	d	е	g
D[v]	/	5	∞	∞	12	1

Min. edge to g, add, update

٧	а	b	С	d	е	g
D[v]	/	ന	4	7	9	/

Prim's Example Operation (cont'd)

Min. edge to b, add, update:

V	а	b	С	d	е	g
D[v]	/	/	4	7	9	/

Min. edge to c, add, update:

V	а	b	С	d	е	g
D[v]	/	/	/	2	9	/

... and so on...

4

Running Time of Prim's

- Need two important operations:
 - Find minimum: O(n) times
 - Change value: O(m) times. Only consider the outgoing edges when a new vertex is added. O(m) edges, and edges would not be considered again
- Using an array
 - O(n) for finding minimum
 - O(1) for change value
 - Total $O(m + n^2) = O(n^2)$ time
- Using a heap
 - O(log n) time for both operations
 - Total $O(m \log n + n \log n) = O(m \log n)$ time

- Store elements in a complete binary tree
 - Left to right, do not start a new level unless it is full
 - Balanced (height = O(log n))
 - Parent ≤ both children (for min-heaps; max-heap is opposite)
- Can easily be represented as an array A[1..n], with all these in O(1) time:
 - Parent(A[i]) = A[$\lfloor i/2 \rfloor$]
 - Left-child(A[i]) = A[2i]
 - Right-child(A[i]) = A[2i+1]

Heap Operations

- Each in O(log n) time:
- (1) Decrease value
 - "Bubble up" (compare with parent and swap)
- (2) Insertion
 - Place at last available position, then similarly bubble up

Heap Operations

- (3) Delete minimum
 - Always at root
 - Remove root and replace it with last element in heap
 - "Sift down" the heap

Part 2: Shortest Paths

The Shortest Path Problem

- Many problems have similar nature
 - What is the shortest way to go from Leicester to London?
 - What is the quickest way to send a packet between two computers?
 - **...**
- Abstract model
 - Given: a directed graph G with edge weights (e.g. distance), and a starting vertex s
 - Goal: find the shortest paths from s to all other vertices (Single source shortest path)
 - Path length = sum of edge weights
 - Not more difficult than just one s-t pair; same algorithms

Naïve Approaches

- Try #1: try all possible paths, calculate distance and find the minimum one
 - Problem: there can be exponentially many paths! (2ⁿ)

Try #2: just pick the shortest edge at each step (greedy!)

Optimal Substructure

- Consider the shortest path from s to t
 - Suppose it goes through x
 - Then this path from s to x must be a shortest path from s to x, too
 - (otherwise, we can replace it with a shorter path, the whole s-t path would also be shorter)

Also shortest path from s to x

Optimal Substructure

- Example:
 - The path 1-7-1-5 is not optimal, because 1-7 can be replaced by 2-4

- Note that longest (simple) path does not have optimal substructure:
 - a-b-c-d is a longest path from a to d
 - but c-d is not longest path from c to d

A Similar Idea to BFS

Recall the Breadth First Search algorithm:

- In fact, BFS is a shortest path algorithm if all edges have weight 1
 - Extend wavefront by 1 unit each time until reach target

Extending BFS...

- Dijkstra's algorithm: using a greedy idea
 - At every step, rather than extending the wavefront by 1 unit, we extend by the shortest "outgoing" edge
 - Example:

The Algorithm in Pseudocode

```
Dijkstra(G, s) // source vertex s
  for each vertex v {
    D[v] := d(s, v) // provisional dist.
    Pred[v] := s if v is neighbor of s,
      otherwise nil
  S := \{s\}
  while (S != V) {
    find u in V - S with minimum D[u]
    add u to S
    for each v in V - S {
      if (D[u] + d(u,v) < D[v]) {
        D[v] := D[u] + d(u, v)
        Pred[v] := u
```


Example Operation of Dijkstra's

- Shortest path from a to all nodes
 - Initial

V	b	С	d	е	f	g
D[v]	5	∞	∞	8	11	1
P[v]	а	/	/	/	а	а

- Shortest is to g
 - Consider b: D[g] + d(gb) < D[b]
 - Consider f: D[g] + d(gf) > D[f]

V	b	С	d	е	f	g
D[v]	4	5	8	10	11	1
P[v]	g	g	g	g	а	а

b

Dijkstra's Example (cont'd)

Shortest is to b

V	b	С	d	е	f	g
D[v]	4	5	8	10	11	1
P[v]	g	g	g	g	a	а

Shortest is to c

V	b	С	d	е	f	g
D[v]	4	5	7	10	11	1
P[v]	g	g	С	g	a	а

11 3 6 13 9 4 c 12 7 2 e 8 d

... and so on...

Getting the Actual Shortest Paths

At the end,

V	b	С	d	е	f	g	
D[v]	4	5	7	10	11	1	← Shortest distance
P[v]	g	g	С	g	а	а	

Can retrieve shortest path from this Pred[] array

Example:

Shortest path tree

Running Time of Dijkstra's

- Note the similarity with Prim's algorithm for MST
 - Only difference is the update formula for D[v]
- Therefore, running time identical:
 - O(n²) for array
 - O(m log n) for heap
- Note that Dijkstra's algorithm only works for the case where all edge weights are positive