1.
$$GL(n, \mathbf{F}_q)$$

1.1. Conjugacy classes in $GL(2, \mathbf{F}_q)$.

• Fourier analysis on finite groups and applications, Chapter 21.

Table 1. Conjugacy classes in $GL(2, \mathbf{F}_q)$, q odd, $\delta \in \mathbf{F}_{q^2}^{\times} \setminus \mathbf{F}_q^{\times}$

Representatives	# Elements in class	# Classes
$\begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix}$, Central	1	q-1
$\begin{pmatrix} r & 1 \\ 0 & r \end{pmatrix}$, Parabolic	q^2-1	q-1
$\begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix}$, $r \neq s$, Hyperbolic	$q^2 + q$	$\frac{(q-1)(q-2)}{2}$
$rac{\begin{pmatrix} r & s\delta \\ s & r \end{pmatrix}, s \neq 0, \text{ Elliptic,}}$	q^2-q	$\frac{q(q-1)}{2}$

1.2. Representations of $GL(2, \mathbf{F}_q)$ from inductions.

• Fourier Analysis on finite groups and representations, Chapter 21.

Example 1.1 (1-dimensional representations α). For every multiplicative character α of \mathbf{F}_q^{\times} , we have a 1-dimensional representation given by

$$\alpha(g) = \alpha(\det(g)).$$

Example 1.2 (Principle series representations I, π_{α}). Every multiplicative character α of \mathbf{F}_{q}^{\times} can also be viewed as a character of the Borel subgroup. Then we have

$$\operatorname{Ind}_B^G \alpha = \alpha \otimes \operatorname{Ind}_B^G \mathbb{1} = \alpha \oplus \pi_{\alpha}.$$

Example 1.3 (Principle series representations II, $\rho_{\alpha,\beta}$). Suppose we have two multiplicative character α , β of \mathbf{F}_q^{\times} , they give a character of the Borel subgroup

$$\mu_{\alpha,\beta}\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \alpha(a)\beta(b).$$

By induction, we get irreducible representation of *G* is and only if $\alpha \neq \beta$

$$\rho_{\alpha,\beta}=\operatorname{Ind}_B^G\mu_{\alpha,\beta}.$$

When $\alpha = \beta$, $\rho_{\alpha,\alpha} = \operatorname{Ind}_B^G \alpha = \alpha \oplus \pi_{\alpha}$.

actually our discrete series representation

Example 1.4 (Discrete series/cuspidal representations, σ_v). Every **nondecomposible** character v (i.e. $v \neq \chi \circ \text{Norm}$) of the maximal torus $K = \{ \begin{pmatrix} x & y\delta \\ y & x \end{pmatrix} | y \neq 0 \} \cong \mathbf{F}_{q^2}^{\times}$ gives a **reducible** representation $\text{Ind}_K^G v$ by induction. The following virtual representation is

$$\sigma_{\nu} = \pi_1 \otimes \rho_{\alpha,1} - \rho_{\alpha,1} - \operatorname{Ind}_K^G \nu.$$

1.3. Representation of $GL(2, \mathbf{F}_q)$ from Drinfeld curve.

Table 2. Character table of $GL(2, \mathbf{F}_q)$

	$\begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix}$	$\begin{pmatrix} r & 1 \\ 0 & r \end{pmatrix}$	$\begin{pmatrix} r & 0 \\ 0 & s \end{pmatrix}, r \neq s$	$\begin{pmatrix} r & s\delta \\ s & r \end{pmatrix}, s \neq 0$
α	$\alpha(r)$	$\alpha(r)^2$	$\alpha(rs)$	$\alpha(N(r+s\sqrt{\delta}))$
π_{α}	$q\alpha(r)^2$	0	$\alpha(rs)$	$-\alpha(N(r+s\sqrt{\delta}))$
$\rho_{\alpha,\beta}, \alpha \neq \beta$	$(q+1)\alpha(r)\beta(r)$	$\alpha(r)\beta(r)$	$\alpha(r)\beta(s)$ + $\alpha(s)\beta(r)$	$-\alpha(N(r+s\sqrt{\delta}))$
$\sigma_{\nu}, \nu \neq \nu^{q}$	(q-1)v(r)	-v(r)	0	$-v(z)-v(\overline{z})$