Para demostrar que el algoritmo proporcionado es matemáticamente correcto, es decir, que para una lista arbitraria L no vacía, la función $\max_{maximum(L)}$ retorna un número entero n tal que para todo elemento l de la lista, $n \geq l$ y además n está dentro de la lista, utilizaremos una **demostración por inducción** sobre la longitud de la lista.

Base de la inducción

Consideremos el caso más simple donde la lista L tiene **únicamente un elemento**.

ullet Caso: |L|=1

Sea L = [a], donde a es un entero.

Al ejecutar maximum(L), la función verifica si la longitud de la lista es 1:

```
if len(x) == 1:
    return x[0]
```

Entonces, retorna a. Claramente, a es el único elemento de la lista, por lo tanto, cumple que para todo $l\in L$, $a\geq l$ (ya que l=a) y a está en la lista.

Conclusión: La propiedad se cumple para |L|=1.

Paso inductivo

Supongamos que la propiedad se cumple para cualquier lista de longitud k, es decir, para cualquier lista L' con |L'|=k, maximum(L') retorna el máximo elemento de L'.

Ahora, consideremos una lista L de longitud k+1:

• Caso inductivo: |L|=k+1

```
Sea L=[a_1,a_2,\ldots,a_k,a_{k+1}].
```

Al ejecutar maximum(L), la función realiza la siguiente llamada recursiva:

```
prev = maximum(x[:-1])
```

Aquí, x[:-1] corresponde a la lista $L'=[a_1,a_2,\ldots,a_k]$, que tiene longitud k. Por hipótesis inductiva, maximum(L') retorna el máximo elemento de L', denotémoslo por m.

Luego, el algoritmo compara m con el último elemento de L, es decir, a_{k+1} :

```
if prev > x[-1]:
    return prev
return x[-1]
```

- \circ **Subcaso 1**: Si $m>a_{k+1}$, entonces m es mayor que todos los elementos de L', y por lo tanto, también es mayor que a_{k+1} . Por lo tanto, m es el máximo de L.
- **Subcaso 2**: Si $m \le a_{k+1}$, entonces a_{k+1} es mayor o igual que todos los elementos de L' (incluyendo a m), por lo tanto, a_{k+1} es el máximo de L.

En ambos subcasos, maximum(L) retorna el elemento correcto que es el máximo de la lista L.

Conclusión: La propiedad se mantiene para una lista de longitud k+1.

Conclusión de la inducción

Por el principio de inducción matemática, la propiedad se cumple para cualquier lista no vacía L de enteros, es decir, $\max_{\max}(L)$ retorna un número entero n que es mayor o igual a todos los elementos de L y que además pertenece a la lista L.