Zadanie: EGZ Egzamin [A]

Potyczki Algorytmiczne 2025, runda druga. Limity: 1024 MB, 3 s.

11.03.2025

Marysia podchodzi do egzaminu składającego się z n pytań. Odpowiedź na każde pytanie oceniana jest następująco:

- 1 punkt za poprawną odpowiedź,
- 0 punktów za brak odpowiedzi,
- −1 punkt za błędną odpowiedź.

Żeby zdać egzamin, trzeba zdobyć co najmniej t punktów.

Dla każdego pytania Marysia ustaliła potencjalną odpowiedź, ale nie zawsze jest pewna, czy jest ona poprawna. Dokładniej, dla i-tego pytania wie, że odpowiedź jest poprawna z prawdopodobieństwem p_i . Poprawność odpowiedzi dla różnych pytań to zdarzenia niezależne.

Marysia musi wybrać, na które pytania udzielić odpowiedzi, a które zostawić bez odpowiedzi, żeby zmaksymalizować prawdopodobieństwo zdania egzaminu.

Wejście

W pierwszym wierszu wejścia znajdują się dwie liczby całkowite $n, t \ (1 \le t \le n \le 50\,000)$: liczba pytań i wymagana minimalna liczba punktów.

W kolejnych n wierszach znajdują się prawdopodobieństwa poprawności odpowiedzi: i-ty z tych wierszy zawiera liczbę rzeczywistą p_i ($0 \le p_i \le 1$), która ma co najwyżej 9 cyfr po kropce dziesiętnej.

Wyjście

W jedynym wierszu wyjścia powinna znaleźć się jedna liczba rzeczywista: prawdopodobieństwo, że Marysia zda egzamin, jeśli optymalnie wybierze, na które pytania udzielić odpowiedzi. Liczba musi być wypisana w postaci dziesiętnej (nie wykładniczej) z co najwyżej 20 miejscami po przecinku.

Maksymalny dopuszczalny bład bezwzględny to 10^{-6} .

Przykład

Dla danych wejściowych:	Dla danych wejściowych:	Dla danych wejściowych:
5 2	5 3	3 3
0.77	0.3	0.000001
0.85	0.01	0.000001
0.75	0.2	0.000001
0.98	0.15	
0.6	0	poprawnym wynikiem jest:
		0
poprawnym wynikiem jest:	poprawnym wynikiem jest:	
0.8798125	0.009	

Wyjaśnienie przykładów: W pierwszym przykładzie optymalną strategią jest odpowiedzieć na pierwsze 4 pytania, a ostatnie zostawić bez odpowiedzi. W ten sposób nawet przy jednej błędnej odpowiedzi Marysia uzyska 2 punkty.

W drugim przykładzie optymalną strategią jest odpowiedzieć na pierwsze, trzecie i czwarte pytanie. Marysia uzyska 3 punkty, jeśli wszystkie te odpowiedzi będą poprawne. Ponieważ te zdarzenia są niezależne, prawdopodobieństwo wynosi $0.3 \cdot 0.2 \cdot 0.15 = 0.009$.

W ostatnim przykładzie prawdopodobieństwo sukcesu to 10^{-18} , możemy je zaokrąglić do 0.