CS 4650/7650 Distributional Lexical Semantics

Jacob Eisenstein¹

October 31, 2013

¹Some slides borrowed from Marco Baroni and Michael Collins > () > () > ()

The Semantics Roadmap

Compositional semantics

- assemble the meaning of a sentence from its components
- ▶ What state borders Texas? $\rightarrow \lambda x$.STATE(x) \land BORDERS(x, TEXAS)

The Semantics Roadmap

Compositional semantics

- assemble the meaning of a sentence from its components
- ▶ What state borders Texas? \rightarrow λx .STATE(x) \land BORDERS(x, TEXAS)

Shallow semantics

- identify the key predicates and arguments in sentences
- ▶ [agent Doris] gave [goal Cary] [theme the book].

The Semantics Roadmap

Compositional semantics

- assemble the meaning of a sentence from its components
- ▶ What state borders Texas? \rightarrow $\lambda x.$ STATE $(x) \land BORDERS(x, TEXAS)$

Shallow semantics

- identify the key predicates and arguments in sentences
- ▶ [agent Doris] gave [goal Cary] [theme the book].
- ► Today: lexical semantics vector-space models for the meaning of individual words

From words to meaning

A recurring theme in this course is that the mapping from words to meaning is complex.

▶ Word sense disambiguation: multiple meanings for the same form (e.g., bank)

From words to meaning

A recurring theme in this course is that the mapping from words to meaning is complex.

- ▶ Word sense disambiguation: multiple meanings for the same form (e.g., bank)
- ► Morphological analysis: shared semantic basis among multiple forms (e.g., speak, spoke, speaking)

From words to meaning

A recurring theme in this course is that the mapping from words to meaning is complex.

- ► Word sense disambiguation: multiple meanings for the same form (e.g., bank)
- Morphological analysis: shared semantic basis among multiple forms (e.g., speak, spoke, speaking)
- Both compositional and frame semantics assume hand-crafted resources that map from words to predicates.

FrameNet

A Frame defines a set of *lexical units* and a set of *frame elements*:

Combinatory Categorial Grammar

In CCG semantic parsing, we assume a **lexicon** that encodes both the syntax and semantics of each word.

```
opened \vdash (S \setminus NP)/NP : \lambda x.\lambda y.OPENED(x, y)
Moe's \vdash NNP : Moe's
```

How do we do semantic analysis of words that we've never seen before?

How do we do semantic analysis of words that we've never seen before?

- ▶ A bottle of tezgüino is on the table.
- Everybody likes tezgüino.
- ► Tezgüino makes you drunk.
- ▶ We make tezgüino out of corn.

How do we do semantic analysis of words that we've never seen before?

- ▶ A bottle of _____ is on the table.
- ▶ Everybody likes _____.
- _____ makes you drunk.
- ▶ We make _____ out of corn.

How do we do semantic analysis of words that we've never seen before?

- ▶ A bottle of _____ is on the table.
- ► Everybody likes _____.
- ▶ ____ makes you drunk.
- ▶ We make ____ out of corn.

How well do other words fit into these contexts?

▶ Loud, motor oil, tortillas, choices, wine

- ► Words that occur in similar contexts have similar meanings. "You shall know a word by the company it keeps" (Firth 1957)
- ► Today we will see how to implement this idea using large datasets of unlabeled text.

- ► Words that occur in similar contexts have similar meanings. "You shall know a word by the company it keeps" (Firth 1957)
- ► Today we will see how to implement this idea using large datasets of unlabeled text.
- ▶ Why do we care about similarity?
 - ▶ Query expansion: search for bike, match bicycle

- Words that occur in similar contexts have similar meanings.
 "You shall know a word by the company it keeps" (Firth 1957)
- ► Today we will see how to implement this idea using large datasets of unlabeled text.
- ▶ Why do we care about similarity?
 - ▶ **Query expansion**: search for bike, match bicycle
 - Semi-supervised learning: use large unlabeled datasets to acquire features which are useful in supervised learning

- Words that occur in similar contexts have similar meanings.
 "You shall know a word by the company it keeps" (Firth 1957)
- ► Today we will see how to implement this idea using large datasets of unlabeled text.
- ▶ Why do we care about similarity?
 - ▶ Query expansion: search for bike, match bicycle
 - ► Semi-supervised learning: use large unlabeled datasets to acquire features which are useful in supervised learning
 - Lexicon and thesaurus induction: automatically expand hand-crafted lexical resources, or induce them from raw text

The vector-space model

Key idea: each word (type) is represented by a vector of contexts.

- ► C1: A bottle of _____ is on the table.
- C2: Everybody likes _____
- C3: ____ makes you drunk.
- ► C4: We make ____ out of corn.

The vector-space model

Key idea: each word (type) is represented by a vector of contexts.

- ► C1: A bottle of _____ is on the table.
- ► C2: Everybody likes _____
- C3: ____ makes you drunk.
- ► C4: We make ____ out of corn.

	C1	C2	C3	C4	
tezgüino	1	1	1	1	
loud	0	0	0	0	
motor oil	1	0	0	1	
tortillas	0	1	0	1	
choices	0	1	0	0	
wine	1	1	1	1	

The Vector-space model

- ▶ The "meaning" of tezgiino is represented by the vector $\{1, 1, 1, 1, \ldots\}$.
- Wine has a similar vector and therefore a similar meaning.
- The vector-space model is used in a huge range of NLP and information retrieval applications.
- Key technical questions:
 - ▶ How kinds of context should we consider?
 - ▶ How do we measure similarity?
 - ▶ How do we distinguish frequent and infrequent events?

Same corpus (BNC), different contexts (window sizes) Nearest neighbours of dog

2-word window

- cat
- horse
- ▶ fox
- pet
- rabbit
- pig
- animal
- mongrel
- sheep
- pigeon

30-word window

- kennel
- puppy
- pet
- bitch
- terrier
- rottweiler
- canine
- cat
- to bark
- Alsatian

Outline

Local context

Syntactic context

Document context

RNN Language models

Neurological context

Overview

Word clustering in local context

- ▶ In the Brown et al (1992) clustering algorithm, the context is just the immediately adjacent words.
- A generative probability model:
 - ► Assume each word *w_i* has a class *c_i*
 - Assume a generative model $\log P(w) = \sum_i \log P(w_i|c_i) + \log P(c_i|c_{i-1})$ (What does this remind you of?)

A hierarchical clustering algorithm

- Start with every word in its own cluster
- ▶ Until tired,
 - ▶ Choose two clusters c_i and c_j such that merging them will give the maximum improvement in log P(w)
 - Equivalently, merge the clusters with the greatest mutual information.
- ▶ The merge path of a word describes its semantics.

Derivation

See notes

Mutual information trees

Bit strings

- Equivalently, each word can be described by a bit string of branchings in the induced hierarchy.
- From Miller et al (2004):

lawyer	1000001101000			John	1011100100000000000
newspaperman	100000110100100	Nike	10110111001001010111100	Consuelo	101110010000000001
stewardess	100000110100101	Maytag	101101110010010101111010	Jeffrey	101110010000000010
toxicologist	10000011010011	Generali	101101110010010101111011	Kenneth	10111001000000001100
slang	1000001101010	Gap	10110111001001010111110	Phillip	101110010000000011010
babysitter	100000110101100	Harley-Davidson Enfield	101101110010010101111110 101101110010010	WILLIAM	101110010000000011011
conspirator	1000001101011010	genus	1011011100100101011111111	Timothy	10111001000000001110
womanizer	1000001101011011	Microsoft	101101110010010111000	Terrence	101110010000000011110
mailman	100000110101111	Ventritex	101101110010010110010	Jerald	101110010000000011111
salesman	100000110110000	Tractebel	1011011100100101100110	Harold Frederic	101110010000000100 101110010000000101
bookkeeper	100000110110000	Synopsys	1011011100100101100111	Wendell	101110010000000101
бооккеерег	1000001101100010	WordPerfect	1011011100100101101000	wenden	10111001000000011

- ▶ Bit strings can easily be converted into features for supervised learning.
 - ► Named entity tagging (Miller et al, 2004)
 - Dependency parsing (Koo et al, 2008)

Brown clusters in NER

Outline

Local context

Syntactic context

Document context

RNN Language models

Neurological context

Overview

From local to syntactic context

- Local context is contingent on syntactic decisions that may have little to do with semantics:
 - ▶ I gave Tim the ball.
 - ▶ I gave the ball to Tim.

From local to syntactic context

- Local context is contingent on syntactic decisions that may have little to do with semantics:
 - ▶ I gave Tim the ball.
 - ▶ I gave the ball to Tim.
- ▶ Using the syntactic structure of the sentence might give us a more meaningful context, yielding better clusters.

- Pereira, Tishby, and Lee, "Distributional Clustering of English Words" (ACL 1993)
 - Consider only nouns which are the direct object of verbs (using a rule-based parser).

- Pereira, Tishby, and Lee, "Distributional Clustering of English Words" (ACL 1993)
 - Consider only nouns which are the direct object of verbs (using a rule-based parser).
 - The context vector for each noun is the count of occurences as a direct object of each verb.

- Pereira, Tishby, and Lee, "Distributional Clustering of English Words" (ACL 1993)
 - Consider only nouns which are the direct object of verbs (using a rule-based parser).
 - The context vector for each noun is the count of occurences as a direct object of each verb.
 - ► As with Brown clustering, a class-based probability model:

$$\hat{p}(n, v) = \sum_{c \in \mathcal{C}} p(c, n)p(v|c)$$
$$= \sum_{c \in \mathcal{C}} p(c)p(n|c)p(v|c)$$

where n is the noun, v is the verb, and c is the class

- Pereira, Tishby, and Lee, "Distributional Clustering of English Words" (ACL 1993)
 - Consider only nouns which are the direct object of verbs (using a rule-based parser).
 - The context vector for each noun is the count of occurences as a direct object of each verb.
 - ▶ As with Brown clustering, a class-based probability model:

$$\hat{p}(n, v) = \sum_{c \in \mathcal{C}} p(c, n) p(v|c)$$
$$= \sum_{c \in \mathcal{C}} p(c) p(n|c) p(v|c)$$

where n is the noun, v is the verb, and c is the class

▶ Objective: find the maximum likelihood cluster centroids.

Distributional clustering from labeled dependency edges

- Dekang Lin, "Automatic Retrieval and Clustering of Similar Words" (ACL 1997)
 - Cluster all content words, not just nouns
 - Use labeled dependency edges (from a MINIPAR, a rule-based parser)
 - Contexts are counts of incoming dependency edges

	subj-of, absorb	subj-of, adapt	subj-of, behave	 pobj-of, inside	pobj-of, into	 nmod-of, abnormality	nmod-of, anemia	nmod-of, architecture	 obj-of, attack	obj-of, call	obj-of, come from	obj-of, decorate	 nmod, bacteria	nmod, body	nmod, bone marrow
cell	1	1	1	16	30	3	8	1	6	11	3	2	3	2	2

Dependency-based word similarity

 \triangleright For any pair of words i and j and relation r, we can compute:

$$P(i,j|r) = \frac{c(i,j,r)}{\sum_{i',j'} c(i',j',r)}, \qquad P(i|r) = \frac{\sum_{j'} c(i,j',r)}{\sum_{i',j'} c(i',j',r)}$$

Dependency-based word similarity

▶ For any pair of words i and j and relation r, we can compute:

$$P(i,j|r) = \frac{c(i,j,r)}{\sum_{i',j'} c(i',j',r)}, \qquad P(i|r) = \frac{\sum_{j'} c(i,j',r)}{\sum_{i',j'} c(i',j',r)}$$

- Let T(i) be the set of pairs $\langle j, r \rangle$ such that P(i,j|r) > P(i|r)P(j|r)
 - ► *T*(*i*) contains words *j* that are especially likely to be joined with word *i* in relation *r*.
 - ▶ Note the connection to pointwise mutual information.

Dependency-based word similarity

▶ For any pair of words i and j and relation r, we can compute:

$$P(i,j|r) = \frac{c(i,j,r)}{\sum_{i',j'} c(i',j',r)}, \qquad P(i|r) = \frac{\sum_{j'} c(i,j',r)}{\sum_{i',j'} c(i',j',r)}$$

- Let T(i) be the set of pairs $\langle j, r \rangle$ such that P(i,j|r) > P(i|r)P(j|r)
 - ► *T*(*i*) contains words *j* that are especially likely to be joined with word *i* in relation *r*.
 - ▶ Note the connection to pointwise mutual information.
- ▶ Similarity between u and v is defined through T(u) and T(v).

Quantifying similarity

- ▶ Lin considers several similarity measures for T(u) and T(v).
- Many of these are used widely, and are worth knowing:
 - ► Cosine similarity: $\frac{|T(u) \cap T(v)|}{\sqrt{|T(u)||T(v)|}}$

 - ► Dice similarity: $\frac{2 \times |T(u) \cap T(v)|}{|T(u)| + |T(v)|}$ ► Jaccard similarity: $\frac{|T(u) \cap T(v)|}{|T(u)| + |T(v)| |T(u) \cap T(v)|}$

Quantifying similarity

- Lin considers several similarity measures for T(u) and T(v).
- Many of these are used widely, and are worth knowing:
 - Cosine similarity: $\frac{|T(u) \cap T(v)|}{\sqrt{|T(u)||T(v)|}}$
 - ▶ Dice similarity: $\frac{2 \times |T(u) \cap T(v)|}{|T(u)| + |T(v)|}$
 - ▶ Jaccard similarity: $\frac{|T(u)|+|T(v)|}{|T(u)|+|T(v)|-|T(u)\cap T(v)|}$
- Lin's metric is more complex:

$$\frac{\sum_{\langle r,w\rangle\in T(u)\cup T(v)}I(u,r,w)+I(v,r,w)}{\sum_{\langle r,w\rangle\in T(u)}I(u,r,w)+\sum_{\langle r,w\rangle\in T(v)}I(v,r,w)}$$

where I(u, r, w) is the mutual information between u and w, conditioned on r.

Qualitative evaluation

Pairs of words which are each others respective nearest neighbors

			-		
	Nouns			Adjective/Adverbs	
Rank	Respective Nearest Neighbors	Similarity	Rank	Respective Nearest Neighbors	Similarity
1	earnings profit	0.572525	1	high low	0.580408
11	plan proposal	0.47475	11	bad good	0.376744
21	employee worker	0.413936	21	extremely very	0.357606
31	battle fight	0.389776	31	deteriorating improving	0.332664
41	airline carrier	0.370589	41	alleged suspected	0.317163
51	share stock	0.351294	51	alleged suspected clerical salaried	0.305448
61	rumor speculation	0.327266	61	often sometimes	0.281444
71	outlay spending	0.320535	71	bleak gloomy	0.275557
81	accident incident	0.310121	81	adequate inadequate	0.263136
91	facility plant	0.284845	91	affiliated merged	0.257666
101	charge count	0.278339	101	stormy turbulent	0.252846
111	baby infant	0.268093	111	paramilitary uniformed	0.246638
121	actor actress	0.255098	121	sharp steep	0.240788
131	chance likelihood	0.248942	131	communist leftist	0.232518
141	catastrophe disaster	0.241986	141	indoor outdoor	0.224183
151	fine penalty	0.237606	151		0.219697
161	legislature parliament	0.231528	161	changed changing defensive offensive	0.211062
171	oil petroleum	0.227277	171	sad tragic	0.206688
181	strength weakness	0.218027	181	enormously tremendously	0.199936
191	radio television	0.215043	191	defective faulty	0.193863
201	coupe sedan	0.209631	201	concerned worried	0.186899

Quantitative evaluation

This method can be used to induce thesauri, which can then be compared with manually-crafted resources like WordNet and Roget's thesaurus.

	Wor	dNet
	average	σ_{avg}
Roget	0.178397	0.001636
sim	0.212199	0.001484
Hindle	0.204179	0.001424
$Hindle_r$	0.164716	0.001200
cosine	0.199402	0.001352

	Ro	get
	average	σ_{avg}
WordNet	0.178397	0.001636
sim	0.149045	0.001429
Hindle	0.14663	0.001383
$Hindle_r$	0.115489	0.001140
cosine	0.135697	0.001275

Outline

Local context

Syntactic context

Document context

RNN Language models

Neurological context

Overview

Latent semantic analysis (LSA)

Graph minors: A survey

m4:

In **latent semantic analysis** (Deerwester et al., 1990), "contexts" are just the documents in which words appear.

Example of text data: Titles of Some Technical Memos Human machine interface for ABC computer applications c1: A survey of user opinion of computer system response time c3: The EPS user interface management system c4: System and human system engineering testing of EPS Relation of user perceived response time to error measurement c5: The generation of random, binary, ordered trees m1: The intersection *graph* of paths in *trees* m2: m3: Graph minors IV: Widths of trees and well-quasi-ordering

Latent semantic analysis (LSA)

In **latent semantic analysis** (Deerwester et al., 1990), "contexts" are just the documents in which words appear.

	c 1	c 2	c 3	c 4	c 5	m1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

Latent semantic analysis (LSA)

In **latent semantic analysis** (Deerwester et al., 1990), "contexts" are just the documents in which words appear.

	c 1	c 2	c 3	c 4	c 5	m 1	m2	m3	m4
human	1	0	0	1	0	0	0	0	0
interface	1	0	1	0	0	0	0	0	0
computer	1	1	0	0	0	0	0	0	0
user	0	1	1	0	1	0	0	0	0
system	0	1	1	2	0	0	0	0	0
response	0	1	0	0	1	0	0	0	0
time	0	1	0	0	1	0	0	0	0
EPS	0	0	1	1	0	0	0	0	0
survey	0	1	0	0	0	0	0	0	1
trees	0	0	0	0	0	1	1	1	0
graph	0	0	0	0	0	0	1	1	1
minors	0	0	0	0	0	0	0	1	1

- ▶ correlation(human,user) = -.38
- ► correlation(human,minors) = -.29

Transforming the count matrix

- ▶ The count matrix **X** can be huge
- ▶ In this space, similarity will be sensitive to noise.
- We'd prefer to measure similarity in a more compact space.
- ▶ Singular value decomposition (SVD): $\mathbf{X} \approx \mathbf{USV}^{\mathsf{T}}$
 - $\mathbf{U}\mathbf{U}^{\mathsf{T}} = \mathbf{I}, \mathbf{V}\mathbf{V}^{\mathsf{T}} = \mathbf{I}$ (they are orthonormal)
 - ightharpoonup The columns of **U** are the eigenvectors of **XX**^T.
 - ▶ The columns of V are the eigenvectors of X^TX .
 - ▶ **S** is a diagonal matrix containing the square roots of the eigenvalues in descending order.

- SVD as repeated regression on residuals:
 - fit a line to your data

- compute residuals
- fit a line to the residuals

repeat

- SVD as repeated regression on residuals:
 - fit a line to your data

- compute residuals
- fit a line to the residuals

repeat

- If we fit as many lines as the smaller dimension of X, SVD can reconstruct it exactly.
- If not, SVD forms a least-squares approximation X

$$X = USV^T$$

Intuitively,

U describes the rows (words).

0.20	0.61	0.46	0.54	0.28	0.00	0.01	0.02	0.08
-0.06	0.17	-0.13	-0.23	0.11	0.19	0.44	0.62	0.53
0.11	-0.50	0.21	0.57	-0.51	0.10	0.19	0.25	0.08
-0.95	-0.03	0.04	0.27	0.15	0.02	0.02	0.01	-0.03
0.05	-0.21	0.38	-0.21	0.33	0.39	0.35	0.15	-0.60
-0.08	-0.26	0.72	-0.37	0.03	-0.30	-0.21	0.00	0.36
0.18	-0.43	-0.24	0.26	0.67	-0.34	-0.15	0.25	0.04
-0.01	0.05	0.01	-0.02	-0.06	0.45	-0.76	0.45	-0.07
-0.06	0.24	0.02	-0.08	-0.26	-0.62	0.02	0.52	-0.45

$$X = USV^T$$

Intuitively,

- U describes the rows (words).
- V^T describes the columns (documents).

0.22	-0.11	0.29	-0.41	-0.11	-0.34	0.52	-0.06	-0.41
0.20	-0.07	0.14	-0.55	0.28	0.50	-0.07	-0.01	-0.11
0.24	0.04	-0.16	-0.59	-0.11	-0.25	-0.30	0.06	0.49
0.40	0.06	-0.34	0.10	0.33	0.38	0.00	0.00	0.01
0.64	-0.17	0.36	0.33	-0.16	-0.21	-0.17	0.03	0.27
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
0.27	0.11	-0.43	0.07	0.08	-0.17	0.28	-0.02	-0.05
0.30	-0.14	0.33	0.19	0.11	0.27	0.03	-0.02	-0.17
0.21	0.27	-0.18	-0.03	-0.54	0.08	-0.47	-0.04	-0.58
0.01	0.49	0.23	0.03	0.59	-0.39	-0.29	0.25	-0.23
0.04	0.62	0.22	0.00	-0.07	0.11	0.16	-0.68	0.23
0.03	0.45	0.14	-0.01	-0.30	0.28	0.34	0.68	0.18

$\mathbf{X} = \mathbf{U}\mathbf{S}\mathbf{V}^\mathsf{T}$

Intuitively,

- U describes the rows (words).
- V^T describes the columns (documents).
- S gives the importance of each dimension in U and V.

Correlation in the reconstructed counts

With only two singular values, we obtain a *reduced-rank* approximation:

 $\mathbf{X} pprox \hat{\mathbf{X}} = \mathbf{U} \mathbf{S} \mathbf{V}^\mathsf{T}$

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

Correlation in the reconstructed counts

With only two singular values, we obtain a *reduced-rank* approximation:

$$\mathbf{X} pprox \hat{\mathbf{X}} = \mathbf{U} \mathbf{S} \mathbf{V}^\mathsf{T}$$

	c1	c2	c3	c4	c5	m1	m2	m3	m4
human	0.16	0.40	0.38	0.47	0.18	-0.05	-0.12	-0.16	-0.09
interface	0.14	0.37	0.33	0.40	0.16	-0.03	-0.07	-0.10	-0.04
computer	0.15	0.51	0.36	0.41	0.24	0.02	0.06	0.09	0.12
user	0.26	0.84	0.61	0.70	0.39	0.03	0.08	0.12	0.19
system	0.45	1.23	1.05	1.27	0.56	-0.07	-0.15	-0.21	-0.05
response	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
time	0.16	0.58	0.38	0.42	0.28	0.06	0.13	0.19	0.22
EPS	0.22	0.55	0.51	0.63	0.24	-0.07	-0.14	-0.20	-0.11
survey	0.10	0.53	0.23	0.21	0.27	0.14	0.31	0.44	0.42
trees	-0.06	0.23	-0.14	-0.27	0.14	0.24	0.55	0.77	0.66
graph	-0.06	0.34	-0.15	-0.30	0.20	0.31	0.69	0.98	0.85
minors	-0.04	0.25	-0.10	-0.21	0.15	0.22	0.50	0.71	0.62

- ► correlation(human,user) = .94
- ► correlation(human,minors) = -.83
- SVD has identified a low-dimensional basis for X, in which correlations are much more robust.

Title correlations

Similarly, correlation of titles in the raw counts was not informative:

Correlations between titles in raw data:

	c1	c2	c3	c4	c5	m1	m2	m3
c2 c3	-0.19							
c3	0.00	0.00						
c4	0.00	0.00	0.47					
c5	-0.33	0.58	0.00	-0.31				
m1	-0.17	-0.30	-0.21	-0.16	-0.17			
m2	-0.26	-0.45	-0.32	-0.24	-0.26	0.67		
m3	-0.33	-0.58	-0.41	-0.31	-0.33	0.52	0.77	
m4	-0.33	-0.19	-0.41	-0.31	-0.33	-0.17	0.26	0.56

Title correlations

But correlation in the reduced-rank approximation reveals the underlying structure:

Correlations in two dimensional space:

c2 c3 c4 c5 m1 m2 m3	0.91 1.00 1.00 0.85 -0.85 -0.85	0.91 0.88 0.99 -0.56 -0.56	1.00 0.85 -0.85 -0.85 -0.85	0.81 -0.88 -0.88 -0.88	-0.45 -0.44 -0.44	1.00 1.00	1.00	
m3	-0.85	-0.56	-0.85	-0.88	-0.44	1.00	1.00	1.00
m4	-0.81	-0.50	-0.81	-0.84	-0.37	1.00	1.00	

LSA for expanding sentiment dictionaries

Turney and Littman (2004) use LSA to expand a small sentiment dictionary.

$$\mathsf{Semantic\text{-}orientation}(i) = \sum_{j \in \mathsf{pos\text{-}words}} \mathsf{sim}(u_i, u_j) - \sum_{j \in \mathsf{neg\text{-}words}} \mathsf{sim}(u_i, u_j)$$

 $ightharpoonup u_i$ is the row in the matrix f U corresponding to word i

LSA for expanding sentiment dictionaries

Turney and Littman (2004) use LSA to expand a small sentiment dictionary.

$$\mathsf{Semantic\text{-}orientation}(i) = \sum_{j \in \mathsf{pos\text{-}words}} \mathsf{sim}(u_i, u_j) - \sum_{j \in \mathsf{neg\text{-}words}} \mathsf{sim}(u_i, u_j)$$

- \triangleright u_i is the row in the matrix \mathbf{U} corresponding to word i
- ▶ The similarity function $sim(u_i, u_j)$ is the *cosine* similarity:

$$cosine(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x}^{\mathsf{T}} \mathbf{y}}{\sqrt{\sum_{i} x_{i}^{2}} \sqrt{\sum_{i} y_{i}^{2}}}$$

LSA for expanding sentiment dictionaries

- ▶ Dimensionality tradeoff: expressiveness for robustness
- ► Turney and Littman find that the ideal number of dimensions is around 250 (for this task and corpus).

LSA for automatic essay grading

- ▶ Latent semantic analysis can be used to automatically grade test essays (Landauer et al., 1998).
- Ungraded essays are compared via cosine similarity to graded essays.
- ► LSA agrees with expert raters about as often as they agree with each other!
- ► The educational testing service (ETS) uses a combination of LSA with other features such as grammar, spelling, and repeated words (Burnstein 2003).

Limitations of LSA

- ► Truncated LSA gives a least-squares approximation of **X**. This means that errors are **Gaussian**.
- ▶ We may prefer a bag-of-words representation:
 - Probabilistic LSA
 - ► Non-negative matrix factorization
 - ► Topic Modeling (Latent Dirichlet Allocation)
- Or we may prefer a discriminative approach...

Neural network language models

- Learn a discriminative model to predict the next word based on its predecessors
- Parameters are word embeddings
 R and transition matrix C.
 These embeddings are dense, real vectors.
- ► The word embeddings can be applied to semi-supervised learning (Turian et al 2010)

Log-bilinear language model (Mnih and Hinton 2007)

"Neural" word embeddings, K = 25

"Neural" word embeddings, K = 50

"Neural" word embeddings, K = 200

Outline

Local context

Syntactic context

Document context

RNN Language models

Neurological context

Overview

Mikolov, Yih, Zweig; NAACL 2013

$$\mathbf{s}(t) = f(\mathbf{U}\mathbf{w}(t) + \mathbf{W}\mathbf{s}(t-1))$$

$$\mathbf{y}(t) = g(\mathbf{V}\mathbf{s}(t)) \qquad (2)$$

$$f(z) = \text{Logistic}(z) = \frac{1}{1 + e^{-z}} \qquad (3)$$

$$g(z_m) = \text{Soft-max}(z_m) = \frac{e^{z_m}}{\sum_k e^{z_k}} \qquad (4)$$

(1)

(5)

- w(t) is a one-hot (indicator) vector for the word at token
- **s**(t) is a dense latent vector you

Mikolov, Yih, Zweig; NAACL 2013

Category	Relation	Patterns Tested	# Questions	Example
Adjectives	Base/Comparative	JJ/JJR, JJR/JJ	1000	good:better rough:
Adjectives	Base/Superlative	JJ/JJS, JJS/JJ	1000	good:best rough:
Adjectives	Comparative/	JJS/JJR, JJR/JJS	1000	better:best rougher:
	Superlative			
Nouns	Singular/Plural	NN/NNS,	1000	year:years law:
		NNS/NN		
Nouns	Non-possessive/	NN/NN_POS,	1000	city:city's bank:
	Possessive	NN_POS/NN		
Verbs	Base/Past	VB/VBD,	1000	see:saw return:
		VBD/VB		
Verbs	Base/3rd Person	VB/VBZ, VBZ/VB	1000	see:sees return:
	Singular Present			
Verbs	Past/3rd Person	VBD/VBZ,	1000	saw:sees returned:
	Singular Present	VBZ/VBD		

Mikolov, Yih, Zweig; NAACL 2013

Figure 2: Left panel shows vector offsets for three word pairs illustrating the gender relation. Right panel shows a different projection, and the singular/plural relation for two words. In high-dimensional space, multiple relations can be embedded for a single word.

Given the analogy a:b as c:d, they compute

$$\hat{d} = \arg\max_{d} \cos(u_a - u_b + u_c, u_d) \tag{6}$$

Outline

Local context

Syntactic context

Document context

RNN Language models

Neurological context

Overview

Lexical semantics in the brain

Just et al (2010) ran fMRI on subjects brains while viewing these stimuli words:

Category	Exemplar 1	Exemplar 2	Exemplar 3	Exemplar 4	Exemplar 5
body parts	leg	arm	eye	foot	hand
furniture	chair	table	bed	desk	dresser
vehicles	car	airplane	train	truck	bicycle
animals	horse	dog	bear	cow	cat
kitchen utensils	glass	knife	bottle	cup	spoon
tools	chisel	hammer	screwdriver	pliers	saw
buildings	apartment	barn	house	church	igloo
building parts	window	door	chimney	closet	arch
clothing	coat	dress	shirt	skirt	pants
insects	fly	ant	bee	butterfly	beetle
vegetables	lettuce	tomato	carrot	com	celery
man-made objects	refrigerator	key	telephone	watch	bell

doi:10.1371/journal.pone.0008622.t001

Participants were asked to think of properties of each of the words.

Factor analysis

- They then identified spatial activation profiles for each word, across multiple participants.
- Factor analysis on the activation profiles identified four factors with coherent locations.

Table 2. Ten words with highest factor scores (in descending order) for each of the 4 factors.

Shelter	Manipulation	Eating	Word length
apartment	pliers	carrot	butterfly
church	saw	lettuce	screwdriver
train	screwdriver	tomato	telephone
house	hammer	celery	refrigerator
airplane	key	cow	bicycle
key	knife	saw	apartment
truck	bicycle	corn	dresser
door	chisel	bee	lettuce
car	spoon	glass	chimney
closet	arm	cup	airplane

Factor analysis

- They then identified spatial activation profiles for each word, across multiple participants.
- Factor analysis on the activation profiles identified four factors with coherent locations.

Correlation with latent semantic analysis

- ► The experimenters identified 5-9 additional words for each factor.
- ► They used LSA to measure the distance between each of the 60 stimuli factors and the factor examples.
- ► LSA distances were closely correlated with the factor scores of the stimuli words.

Correlation with latent semantic analysis

Outline

Local context

Syntactic context

Document context

RNN Language models

Neurological context

Overview

The Semantics Roadmap

Compositional semantics

- assemble the meaning of a sentence from its components
- ▶ What state borders Texas? $\rightarrow \lambda x$.STATE(x) \land BORDERS(x, TEXAS)

The Semantics Roadmap

Compositional semantics

- assemble the meaning of a sentence from its components
- ▶ What state borders Texas? \rightarrow $\lambda x.\text{STATE}(x) \land \text{BORDERS}(x, \text{TEXAS})$

Shallow semantics

- identify the key predicates and arguments in sentences
- ▶ [agent Doris] gave [goal Cary] [theme the book].

The Semantics Roadmap

Compositional semantics

- assemble the meaning of a sentence from its components
- ▶ What state borders Texas? \rightarrow $\lambda x.\text{STATE}(x) \land \text{BORDERS}(x, \text{TEXAS})$

Shallow semantics

- identify the key predicates and arguments in sentences
- ▶ [agent Doris] gave [goal Cary] [theme the book].
- ► Today: lexical semantics vector-space models for the meaning of individual words

Summary of lexical semantics

- ▶ Distributional similarity is a powerful tool for understanding the relationships between words.
- The vector space model describes each word by a vector of contextual information.
- Latent semantic analysis (LSA) operates on the term-document matrix to identify a low-rank representation for both word and document semantics.
- ► Today we examined only synonymy, but there are many other lexical relations, such as *antonyms*, *part-of*, *type-of*...

Next time: discourse and reference ambiguity

- What makes a set of sentences into a coherent discourse?
- ▶ How do we resolve pronouns and other ambiguous references?