WiSe 202/25

3. Wiederholungsblatt zur Mathematik 2

Aufgabe W 3.1

Dr. D. Gröger

Kreuzen Sie jeweils die richtige Antwort an und begründen Sie Ihre Wahl.

a) Die Reihe $\sum_{n=1}^{\infty} \frac{n^2 \cdot (\sin(n))^8 + n^4}{n^6}$ ist \square konvergent \square divergent

Begründung/Rechnung:

b) Die Reihe $\sum_{n=1}^{\infty} \frac{2^n}{n! \cdot n!}$ ist \square konvergent \square divergent

Begründung/Rechnung:

c) Die folgenden 3 Reihen sind alle konvergent, sortieren Sie sie aufsteigend nach ihrem Wert (also (1) für den kleinsten, ② für den mittleren und ③ für den größten Wert) und begründen Sie Ihre Wahl.

Ordnungsrang	Reihe
	$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n$
	$\sum_{n=0}^{10} \left(\frac{2}{3}\right)^n$
	$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$

Aufgabe W 3.2

Bestimmen Sie die folgenden Grenzwerte und beründen Sie Ihre Wahl.

- a) $\lim_{x\to 0} \frac{\frac{1}{x^2}+1}{\frac{1}{x^3}+1} =$ \Box 1 \Box -1 \Box 0 \Box nicht definiert

Begründung:

- b) $\lim_{x\to 0} \sqrt{\frac{x^2+x}{e^x-1}} =$

- \square 2 \square 1 \square $\sqrt{\frac{1}{e}}$ \square $\sqrt{\frac{2}{e}}$ \square nicht definiert

Begründung:

Aufgabe W 3.3

Das Volumen eines Lagerhauses mit Flachdach und quadratischen Grundriss soll 12000 m³ betragen. Die Wärmeabstrahlung pro m² sei durch das Dach dreimal so groß wie durch die Wände (durch den Boden werde nichts abgestrahlt). Welche Länge bzw. Höhe hat das Haus mit dem kleinsten Wärmeverlust?

Aufgabe W 3.4

Es soll der im Intervall $[0,2\pi]$ liegende Schnittpunkt der beiden Kurven $f(x) = \cos(x)$ und $g(x) = \frac{1}{12} \cdot x^2$ bestimmt werden.

- a) Zeigen Sie anhand elementarer Überlegungen, dass sich die beiden Graphen in genau einem Punkt in $[0,2\pi]$ schneiden.
- b) Berechnen Sie einen Näherungswert für den Schnittpunkt x_0 indem Sie die Funktion f durch ihr viertes Taylor-Polynom mit Entwicklungspunkt 0 ersetzen.

Hinweis: Sie dürfen die Wurzel einer reellen Zahl stehen lassen.

Aufgabe W 3.5

- a) Bestimmen Sie das Taylor-Polynom 4. Grades der Funktion $f(x) = x \cdot e^x$ mit Entwicklungspunkt $x_0 = 0$.
- b) Bestimmen Sie das Taylor-Polynom 2. Grades der Funktion $g(x) = \frac{1}{f(x)+1}$ mit Entwicklungspunkt $x_0 = 0$.

Aufgabe W 3.6

Gegeben sei die Funktion

$$y = f(x) = -\frac{1}{2} \cdot x^3 + \frac{3}{2} \cdot x^2 - 2x + 2$$

- a) Zeigen Sie, dass die Funktion streng monoton fallend ist.
- b) Die Funktion hat folglich nur eine Nullstelle. Wo liegt diese?
- c) Ermitteln Sie den Wendepunkt der Funktion.