Advanced Data Structures and Algorithms

Breadth First Search (BFS)

Breadth-first search

How do we explore a graph?

Exploring the world with pseudocode

- Set L_i = [] for i=1,...,n
- $L_0 = [w]$, where w is the start node
- Mark w as visited
- **For** i = 0, ..., n-1:
 - For u in L_i:
 - For each v which is a neighbor of u:
 - If v isn't yet visited:
 - mark v as visited, and put it in L_{i+1}

Go through all the nodes in L_i and add their unvisited neighbors to L_{i+1}

L_i is the set of nodes we can reach in i steps from w

BFS also finds all the nodes reachable from the starting point

It is also a good way to find all the **connected components**.

Running time and extension to directed graphs

- To explore the whole graph, explore the connected components one-by-one.
 - Same argument as DFS: BFS running time is O(n + m)
- Like DFS, BFS also works fine on directed graphs.

Verify these!

Why is it called breadth-first?

• We are implicitly building a tree:

В Call this the "BFS tree"

• First we go as broadly as we can.

Application of BFS: shortest path

How long is the shortest path between w and v?

Application of BFS: shortest path

How long is the shortest path between w and v?

To find the distance between ward all other vertices v

- Do a BFS starting at w
- For all v in L_i
 - The shortest path between w and v has length i
 - A shortest path between w and v is given by the path in the BFS tree.
- If we never found v, the distance is infinite.

Modify the BFS pseudocode to return shortest paths!

This requires

some proof!

The **distance** between two vertices is the number of edges in the shortest path between them.

Proof overview that the BFS tree behaves like it should

- Proof by induction.
- Inductive hypothesis for j:
 - For all i<j the vertices in L_i have distance i from v.
- Base case:
 - $L_0 = \{v\}$, so we're good.
- Inductive step:
 - Let w be in L_i. Want to show dist(v,w) = j.
 - We know dist(v,w) \leq j, since dist(v, w's parent in L_{j-1}) = j-1 by induction, so that gives a path of length j from v to w.
 - On the other hand, $dist(v,w) \ge j$, since if dist(v,w) < j, w would have shown up in an earlier layer.
 - Thus, dist(v,w) = j.
- Conclusion:
 - For each vertex w in V, if w is in L_i, then dist(v,w) = j.

What have we learned?

- The BFS tree is useful for computing distances between pairs of vertices.
- We can find the shortest path between u and v in time O(m).

Another application of BFS

Testing bipartite-ness

Exercise: fish

- You have a bunch of fish and two fish tanks.
- Some pairs of fish will fight if put in the same tank.
 - Model this as a graph: connected fish will fight.
- Can you put the fish in the two tanks so that there is no fighting?

Bipartite graphs

A bipartite graph looks like this:

Can color the vertices red and orange so that there are no edges between any same-colored vertices

Example:are studentsare classes

if the student is enrolled in the glass

Is this graph bipartite?

How about this one?

How about this one?

This one?

Application of BFS:

Testing Bipartiteness

- Color the levels of the BFS tree in alternating colors.
- If you never color two connected nodes the same color, then it is bipartite.
- Otherwise, it's not.

Hang on now.

 Just because this coloring doesn't work, why does that mean that there is no coloring that works?

I can come up with plenty of bad colorings on this legitimately bipartite graph...

Some proof required

 If BFS colors two neighbors the same color, then it's found an cycle of odd length in the graph.

Some proof required

- If BFS colors two neighbors the same color, then it's found an cycle of odd length in the graph.
- But you can never color an odd cycle with two colors so that no two neighbors have the same color.
 - [Fun exercise!]
- So you can't legitimately color the whole graph either.
- Thus it's not bipartite.

What have we learned?

BFS can be used to detect bipartite-ness in time O(n + m).

Acknowledgement

Stanford University