University of British Columbia, Vancouver

Department of Computer Science

CPSC 304 Project Cover Page

Milestone #: 2

Date: Oct. 15, 2022

Group Number: 20

Name	Student Number	CS Alias (Userid)	Preferred E-mail Address
Ding Ma	69680510	n3q8v	dingthema@gmail.com
Phuoc Dat, Nguyen	52301215	b7e6r	alex.ng0976@gmail.com
Hadrian Ho	63531909	d3e2b	wowhead25s@gmail.com

By typing our names and student numbers in the above table, we certify that the work in the attached assignment was performed solely by those whose names and student IDs are included above. (In the case of Project Milestone 0, the main purpose of this page is for you to let us know your e-mail address, and then let us assign you to a TA for your project supervisor.)

In addition, we indicate that we are fully aware of the rules and consequences of plagiarism, as set forth by the Department of Computer Science and the University of British Columbia

Modified ERD:

*Changes are explained in red. Including new attributes for DNA Virus, Virus, and Vaccine

^{*} Need assertions for participation constraints.

Relational Schema & Functional Dependencies:

*Format: Primary Key, Foreign Keys

Virus(virusCommonName: String, Genus: String, Family: String, Status: String, TransmissionType:

String, Strandedness: String)

Family → Strandedness

Genus \rightarrow Family

 $virusCommonName \rightarrow Genus$, Family, Status, TransmissionType, Strandedness

RNAVirus(virusCommonName: String), Sense: String)

virusCommonName → Sense

DNAVirus(virusCommonName: String), GenomeShape: String)

virusCommonName → GenomeShape

VaccinatesAgainst(virusCommonName: String, Manufacturer: String, Type: String, Valence:

String, DeliveryMode: String, Year: Integer, ImmunocompromiseSafety: String)

Type → ImmunocompromiseSafety

virusCommonName, Manufacturer, Type → Valence, DeliveryMode, Year,

ImmunocompromiseSafety

Host(hostCommonName: String, Type: String)

 $hostCommonName \rightarrow Type$

Infects(hostCommonName: String, virusCommonName: String)

Receptor(<u>receptorName</u>: String, CellType: String, TissueType: String)

receptorName → CellType, TissueType

Targets(<u>receptorName: String</u>, <u>virusCommonName: String</u>)

ViralDisease(diseaseName: String, Type: String)

diseaseName \rightarrow Type

Causes(diseaseName: String, virusCommonName: String)

Symptom(symptomName: String, Specificity: String)

symptomName → Specificity

Has(diseaseName: String, symptomName: String, Severity: String)

diseaseName, symptomName → Severity

Country(countryName: String, PopulationDensity: Float, Continent: String, Status: String)

countryName → PopulationDensity, Continent, Status

Outbreak(countryName: String, virusCommonName: String, Size: String, Casualty: Integer, Year:

Integer, Origin: String)

countryName, virusCommonName → Size, Casualty, Year, Origin

EndemicTo(countryName: String, virusCommonName: String)

Application(applicationName: String, Usage: String)

applicationName → Usage

UsedIn(applicationName: String, virusCommonName: String)

Normalization:

The tables that have 2 attributes: RNAVirus, DNAVirus, Host, Infects, Targets, ViralDisease, Cause, Symptom, Has, EndemicTo, Application and UsedIn are all in BCNF and 3NF.

The function dependencies of Receptor, Country, Outbreak are in the form of X ->b where X is the primary keys from the tables. Hence they are all in BCNF and 3NF.

The two tables that violate BCNF are Virus and Vaccine Against.

Virus:

Genus⁺ = {Genus, Strandedness, Family}

Family⁺ = {Family, Strandedness}

virusCommonName⁺ = {virusCommonName, Genus, Family, Status, TransmissionType, Strandedness}

Decompose:

Look at Family \rightarrow Strandedness. Family is not superkey.

VirusR1(Family, Strandedness),

VirusR2(VirusCommonName,Genus,Family,Status,TransmissionType)

Look at Genus -> Family. Genus is not superkey.

VirusR3(Genus, Family), VirusR4(VirusCommonName, Genus, Status, TransmissionType)

Result: VirusR1(Family, Strandedness), VirusR3(Genus, Family), VirusR4(VirusCommonName, Genus, Status, TransmissionType)

VaccineAgainst:

Type is not a super key => violate BCNF

Type⁺ = {Type, ImmunocompromiseSafety}

VirusCommonName, Manufacture, Type⁺ = {virusCommonName, Manufacturer, Type, Valence,

DeliveryMode, Year, ImmunocompromiseSafety}

Decompose:

VaccineAgainst1(Type, ImmunocompromiseSafety)

VaccineAgainst2(Type, VirusCommonName, Manufacture, Valance, DeliveryMode, Year)

Result:

VaccineAgainst1(Type, ImmunocompromiseSafety)

VaccineAgainst2(Type, VirusCommonName, Manufacture, Valance, DeliveryMode, Year)

Post-normalization tables:

Virus1(<u>Family</u>: String, Strandedness: String)

Virus2(Genus: String, Family: String)

Virus3(virusCommonName: String, Genus: String, Status: String, TransmissionType: String)

RNAVirus(virusCommonName: String), Sense: String)

DNAVirus(virusCommonName: String), GenomeShape: String)

VaccineAgainst1(Type: String, ImmunocompromiseSafety: String)

VaccineAgainst2(Type: String, VirusCommonName: String, Manufacturer: String, Valence:

String, DeliveryMode: String, Year: float)

Host(hostCommonName: String, Type: String)

Infects(hostCommonName: String, virusCommonName: String)

Receptor(receptorName: String, CellType: String, TissueType: String)

Targets(<u>receptorName: String</u>, <u>virusCommonName: String</u>)

ViralDisease(diseaseName: String, Type: String)

Causes(diseaseName: String, virusCommonName: String)

Symptom(symptomName: String, Specificity: String)

Has(diseaseName: String, symptomName: String, Severity: String)

Country(countryName: String, PopulationDensity: Float, Continent: String, Status: String)

Outbreak(countryName: String, virusCommonName: String, Size: String, Casualty: Integer, Year:

Integer, Origin: String)

EndemicTo(countryName: String, virusCommonName: String)

Application(applicationName: String, Usage: String)

UsedIn(applicationName: String, virusCommonName: String)

SQL DDL Statements:

Note:

- Although Oracle does not support ON UPDATE CASCADE, we will include it in SQL DDL statements.
- 2. Targets, Causes and Infects tables need insertions to ensure many-to-many and total participation constraints.

CREATE TABLE Virus1 (

Family char PRIMARY KEY,

Strandedness char);

CREATE TABLE Virus2 (

Genus char PRIMARY KEY, Family char,

FOREIGN KEY (Family) REFERENCES Virus1(Family) ON DELETE CASCADE ON UPDATE CASCADE);

CREATE TABLE Virus3 (

virusCommonName char PRIMARY KEY, Genus char, Status char, TransmissionType char, FOREIGN KEY (Genus) REFERENCES Virus2(Genus) ON DELETE CASCADE ON UPDATE CASCADE);

```
CREATE TABLE RNAVirus (
```

virusCommonName char PRIMARY KEY, Sense char,

FOREIGN KEY (virusCommonName) REFERENCES Virus3(virusCommonName) ON DELETE CASCADE ON UPDATE CASCADE);

CREATE TABLE DNAVirus(

virusCommonName char PRIMARY KEY, GenomeShape char,

FOREIGN KEY (virusCommonName) REFERENCES Virus3(virusCommonName) ON DELETE CASCADE ON UPDATE CASCADE);

CREATE TABLE VaccineAgainst1(Type char PRIMARY KEY, ImmunocompromiseSafety char);

CREATE TABLE VaccineAgainst2(type char NOT NULL, virusCommonName char NOT NULL, Manufacture char NOT NULL, Valance char, DeliveryMode char, Year float,

PRIMARY KEY (type, virusCommonName, Manufacture),

FOREIGN KEY(type) REFERENCES VaccineAgainst1(type) ON DELETE CASCADE ON UPDATE CASCADE,

FOREIGN KEY(virusCommonName) REFERENCES Virus3(virusCommonName) ON DELETE CASCADE ON UPDATE CASCADE
);

CREATE TABLE Host(hostCommonName char PRIMARY KEY, Type char);

CREATE TABLE Infects(hostCommonName char NOT NULL, virusCommonName char NOT NULL, PRIMARY KEY(hostCommonName, virusCommonName),

FOREIGN KEY(hostCommonName) REFERENCES Host(hostCommonName) ON DELETE NO ACTION ON UPDATE CASCADE,

```
FOREIGN KEY(virusCommonName) REFERENCES Virus3(virusCommonName) ON DELETE NO
ACTION ON UPDATE CASCADE);
/*assertion needed*/
CREATE TABLE Receptor(receptorName char PRIMARY KEY, CellType char, TissueType char);
CREATE TABLE Targets(
receptorName char NOT NULL, virusCommonName char NOT NULL,
PRIMARY KEY(receptorName, virusCommonName),
FOREIGN KEY(receptorName) REFERENCES Receptor ON DELETE NO ACTION ON UPDATE
CASCADE,
FOREIGN KEY(virusCommonName) REFERENCES Virus3(virusCommonName) ON DELETE NO
ACTION ON UPDATE CASCADE);
/*assertion needed*/
CREATE TABLE ViralDisease(diseaseName char PRIMARY KEY, Type char);
CREATE TABLE Causes(
diseaseName char NOT NULL, virusCommonName char,
PRIMARY KEY (diseaseName, virusCommonName),
FOREIGN KEY(diseaseName) REFERENCES ViralDisease(diseaseName) ON DELETE NO ACTION
ON UPDATE CASCADE,
FOREIGN KEY(virusCommonName) REFERENCES Virus3(virusCommonName) ON DELETE NO
ACTION ON UPDATE CASCADE
);
/*assertion needed*/
```

CREATE TABLE Symptom(symptomName char PRIMARY KEY, Specificity char);

```
CREATE TABLE Has(
diseaseName char, symptomName char, Severity char,
PRIMARY KEY(diseaseName, symptomName),
FOREIGN KEY (diseaseName) REFERENCES ViralDisease(diseaseName) ON DELETE NO ACTION
ON UPDATE CASCADE,
FOREIGN KEY(symptomName) REFERENCES Symptom(symptomName) ON DELETE NO ACTION
ON UPDATE CASCADE
);
CREATE TABLE Country(countryName char PRIMARY KEY, PopulationDensity float, Continent
char, Status char);
CREATE TABLE Outbreak(countryName char, virusCommonName char, Size char, Casualty int,
Year int, Origin char,
PRIMARY KEY(countryName, virusCommonName),
FOREIGN KEY(countryName) REFERENCES Country(countryName) ON DELETE NO ACTION ON
UPDATE CASCADE,
FOREIGN KEY(virusCommonName) REFERENCES Virus3(virusCommonName) ON DELETE NO
ACTION ON UPDATE CASCADE
);
CREATE TABLE EndemicTo(countryName char, virusCommonName,
PRIMARY KEY(countryName, virusCommonName),
FOREIGN KEY(countryName) REFERENCES Country(countryName) ON DELETE NO ACTION ON
UPDATE CASCADE,
FOREIGN KEY(virusCommonName) REFERENCES Virus3(virusCommonName) ON DELETE NO
ACTION ON UPDATE CASCADE
);
```

CREATE TABLE Application(applicationName char PRIMARY KEY, Usage char);

CREATE TABLE UsedIn(applicationName char NOT NULL, virusCommonName char, PRIMARY KEY(applicationName, virusCommonName),

FOREIGN KEY (applicationName) REFERENCES Application ON DELETE NO ACTION ON UPDATE CASCADE,

FOREIGN KEY (virusCommonName) REFERENCES Virus3 ON DELETE NO ACTION ON UPDATE NO ACTION

);

Sample Data:

Virus1				
<u>Family</u>	Strandedness			
Coronaviridae	Single			
Poxviridae	Double			
Retroviridae	Single			
Orthomyxoviridae	Single			
Picornaviridae	Single			
Secoviridae	Single			
Herpesviridae	Double			
Microviridae	Single			
Filoviridae	Single			
Paramyxoviridae	Single			
Hepadnaviridae	Double			
Papillomaviridae	Double			

Virus2				
Genus	<u>Family</u>			
Betacoronavirus	Coronaviridae			
Orthopoxvirus	Poxviridae			
Lentivirus	Retroviridae			
Alphainfluenzavirus	Orthomyxoviridae			
Enterovirus	Picornaviridae			
Comovirus	Secoviridae			
Simplexvirus	Herpesviridae			
Sinsheimervirus	Microviridae			
Ebolavirus	Filoviridae			
Morbillivirus	Paramyxoviridae			
Orthohepadnavirus	Hepadnaviridae			
Chipapillomavirus	Papillomaviridae			

Virus3				
<u>virusCommonName</u>	<u>Genus</u>	Status	Transmission	
SARS-CoV	Betacoronavirus	Active	Respiratory Droplets	
Variola Virus	Orthopoxvirus	Eradicated	Airborne Particles	
Human Immunodeficiency virus	Lentivirus	Active	Bodily Fluids	
Monkeypox Virus	Orthopoxvirus	Active	Direct Contact	
Influenza A Virus	Alphainfluenzavirus	Active	Respiratory Droplets	
Poliovirus	Enterovirus	Active	Fecal-oral	

Vaccinia Virus	Orthopoxvirus	Active	Direct Contact
Cowpea Mosaic Virus	Comovirus	Active	Insects
Herpes Simplex Virus	Simplexvirus	Active	Bodily Fluids
Phi X 174	Sinsheimervirus	Active	Bacterial
Zaire Ebolavirus	Ebolavirus	Active	Bodily Fluids
Rinderpest morbillivirus	Morbillivirus	Eradicated	Direct Contact
Hepatitis B Virus	Orthohepadnavirus	Active	Bodily Fluids
Human Papillomavirus	Chipapillomavirus	Active	Direct Contact

RNA Virus				
virusCommonName	Sense			
SARS-CoV	Positive			
Human Immunodeficiency virus	Positive			
Influenza A Virus	Negative			
Poliovirus	Positive			
Cowpea Mosaic Virus	Positive			
Zaire Ebolavirus	Negative			
Rinderpest morbillivirus	Negative			

DNA Virus				
<u>virusCommonName</u>	Genome Shape			
Variola Virus	Linear			
Monkeypox Virus	Linear			
Vaccinia Virus	Linear			
Herpes Simplex Virus	Linear			
Phi X 174	Circular			

Hepatitis B Virus	Linear
Human Papillomavirus	Circular

VaccineAgainst1			
Туре	Immunocompromised Safety		
Attenuated	Unsafe		
Inactivated	Safe		
Subunit	Safe		
mRNA	Safe		
Viral Vector	Safe		

VaccineAgainst2					
<u>virusCommonName</u>	<u>Type</u>	Manufacturer	Valence	Delivery Mode	Year
Zaire Ebolavirus	Viral Vector	Merck & Co.	1	Injection	2014
SARS-CoV	mRNA	Pfizer	2	Injection	2021
Hepatitis B Virus	Subunit	Merk & Co.	5	Injection	2019
SARS-CoV	Inactivated	Sinovac Biotech	1	Injection	2021
Poliovirus	Attenuated	Cantacuzino Institute of Bucharest	1	Oral	1961
Human Papillomavirus	Subunit	Merk & Co.	9	Injection	2014

Host	
<u>hostCommonName</u>	Туре
Human	Mammal

E. coli	Bacteria
Cowpea	Plant
Deer	Mammal
Buffalo	Mammal

Infects			
<u>hostCommonName</u>	<u>virusCommonName</u>		
Human	SARS-CoV		
Human	Variola Virus		
Human	Human Immunodeficiency virus		
Human	Monkeypox Virus		
Human	Influenza A Virus		
Human	Poliovirus		
Human	Vaccinia Virus		
Cowpea	Cowpea Mosaic Virus		
Human	Herpes Simplex Virus		
E. coli	Phi X 174		
Human	Zaire Ebolavirus		
Buffalo	Rinderpest morbillivirus		
Deer	Rinderpest morbillivirus		
Human	Hepatitis B Virus		
Human	Human Papillomavirus		

Receptor		
<u>receptorName</u>	Cell Type	Tissue Type
ACE2	Enterocytes	Epithelia
MARCO	Keratinocytes	Epidermis

CCR5	Immune Cells	All
GAG	Keratinocytes	Epidermis
Sialic Acid	All	All
CD155	Immune Cells	All

Targets			
<u>receptorName</u>	<u>virusCommonName</u>		
ACE2	SARS-CoV		
MARCO	Variola Virus		
CCR5	Human Immunodeficiency virus		
GAG	Monkeypox Virus		
Sialic Acid	Influenza A Virus		
CD155	Poliovirus		
GAG	Vaccinia Virus		

Viral Disease			
<u>diseaseName</u>	Туре		
Smallpox	Acute		
AIDS	Chronic		
Hepatitis	Acute		
Herpes Labialis	Dormant		
Influenza	Acute		

Causes		
diseaseName virusCommonName		
Smallpox	Variola Virus	
AIDS	Human Immunodeficiency Virus	

Hepatitis	Hepatitis B Virus	
Herpes Labialis	Herpes Simplex Virus	
Influenza	Influenza A Virus	

Symptom			
<u>symptomName</u>	Specificity		
Blisters	Non-specific		
Vomit	Non-specific		
Diarrhea	Non-specific		
Lymphadenopathy	Specific		
Macules	Specific		

	Has	
<u>diseaseName</u>	<u>symptomName</u>	Severity
Herpes Labialis	Blisters	Mild
Hepatitis	Vomit	Mild
Hepatitis	Diarrhea	Mild
AIDS	Lymphadenopathy	Severe
Smallpox	Macules	Severe

Country				
<u>countryName</u>	PopulationDensity	Status		
United States	36	North America	Developed	
China	153	Asia	Developing	
Mexico	66	North America	Developing	
Japan	338.2	Asia	Developed	
Congo	16	Africa	Underdeveloped	

Canada	4	North America	Developed
South Africa	25	Africa	Developed

Outbreak					
countryName	<u>virusCommonName</u>	Size	Casualty	Year	Origin
United States	Influenza A Virus	Pandemic	100 million	1346	Spain
China	SARS-CoV	Pandemic	25 million	2019	China
Mexico	Variola Virus	Epidemic	8 million	1519	Mexico
Japan	Variola Virus	Epidemic	2 million	735	Japan
Congo	Ebola Virus	Epidemic	55	2020	Congo

^{*}Casualty is supposed to be integer, using "million" here for ease

EndemicTo EndemicTo	
<u>countryName</u>	<u>virusCommonName</u>
United States	Influenza A
China	Influenza A
South Africa	Human Immunodeficiency Virus
Canada	Hepatitis B Virus
Congo	Human Immunodeficiency Virus

Application	
<u>applicationName</u>	Usage
Weapon	Biological Warfare
Synthetic Virus	Research
Nanotechnology	Research
Virotherapy	Medicine
Vaccine	Medicine

UsedIn	
<u>applicationName</u>	<u>virusCommonName</u>
Weapon	Vaccinia Virus
Synthetic Virus	Poliovirus
Nanotechnology	Cowpea Mosaic Virus
Virotherapy	Herpes Simplex Virus
Vaccine	Poliovirus