	Tree leaf recognition Explication du code GROUPE 3TL1: LOUIS BAUCHAU LOGAN MONTALTO DEVASHISH BASNET BRICE KOUETCHEU 1. Librairies, Varaibles Globals, Créations de dossiers
	import os import numpy as np import caer import tensorflow as tf import shutil import makegraph import makepreprocesing from prettytable import PrettyTable import pandas as pd from keras.preprocessing import image import cv2 as cv import numpy as np
In []:	<pre>import matplotlib.pyplot as plt import random from math import sqrt, floor from matplotlib import colors 1.2 Variable Globals char_path_train = './Datasets/train' # chemin vers le dossier train char_path_validation = './Datasets/validation' # chemin vers le dossier validation char path test = './Datasets/test' # chemin vers le dossier test</pre>
	<pre>model_version = 25 # la version du modèle modelse = 'model_' + str(model_version) # nom complet du model IMG_SIZE = (64, 64) # resize des images channels = 1 BATCH_SIZE = 32 EPOCHS = 50 dict = {} leaf = [] # tableau comportant les feuilles de train et validation sample_count = [] # tableau comportant le nombre de feuilles par famille de train et validation sample_name = [] # tableau comportant les noms des feuilles de train et validation</pre>
	<pre>class_weight = {} # dictionnaire comportant les poids des feuilles de train et validation label_map = {} # dictionnaire comportant les index et nom des feuilles de train et validation 1.3 Créations de dossiers Création de 4 dossiers importants background = False if not os.path.exists('./model'):</pre>
	<pre>os.mkdir('./model') if not os.path.exists('./model/background'): os.mkdir('./model/background') if not os.path.exists('./model/normal'): os.mkdir('./model/normal') if not os.path.exists('./graph/' + str(modelse)): os.mkdir('./graph/' + str(modelse))</pre>
	 2.1 Slip des images (train, validation) A partir du fichier train on crée un fichier de validation : 80% dans le fichier train 20% dans le fichier validation Rem : aucune photo se trouvant dans le fichier train est identique au photo dans le fichier validation def create_validation (validation_split) :
	<pre>if os.path.isdir(char_path_validation): print('Validation directory already created!') print('Process Terminated') return os.mkdir(char_path_validation) for f in os.listdir(char_path_train): train_class_path = os.path.join(char_path_train, f) if os.path.isdir(train_class_path): validation_class_path = os.path.join(char_path_validation, f) os.mkdir(validation_class_path) files_to_move = int(validation_split * len(os.listdir(train_class_path))) for i in range(files_to_move): random_image = os.path.join(train_class_path, random.choice(os.listdir(train_class_path))) shutil.move(random_image, validation_class_path)</pre>
	 2.2 Création de tableau Création de 3 tableaux (leaf, sample_count, sample_name): on prend seulement 10 species avec le plus grand nombre de photo on tri les 3 tableaux leaf: [[train][validation]] [['maclura_pomifera', 'ulmus_rubra', 'prunus_virginiana', 'acer_rubrum', 'broussonettia_papyrifera', 'prunus_sargentii', 'ptelea_trifoliata', 'ulmus_pumila', 'abies_concolor', 'asimina_triloba'], ['maclura_pomifera', 'ulmus_rubra', 'prunus_virginiana', 'acer_rubrum', 'broussonettia_papyrifera', 'prunus_sargentii', 'ptelea_trifoliata', 'ulmus_pumila', 'abies_concolor', 'asimina_triloba'], ['maclura_pomifera', 'ulmus_rubra', 'prunus_virginiana', 'acer_rubrum', 'broussonettia_papyrifera', 'prunus_sargentii', 'ptelea_trifoliata', 'ulmus_pumila', 'prunus_virginiana', 'acer_rubrum', 'broussonettia_papyrifera', 'prunus_sargentii', 'ptelea_trifoliata', 'ulmus_pumila', 'prunus_sargentii', 'ptele
In []:	<pre>'abies_concolor', 'asimina_triloba']] sample count [[286, 203, 193, 190, 187, 183, 172, 169, 160, 159], [71, 50, 48, 47, 47, 46, 43, 42, 40, 39]] def make_list(path, x): dicts = {} for char in os.listdir(path): dicts[char] = len(os.listdir(os.path.join(path, char))) dicts = caer.sort_dict(dicts, descending=True) dict[x] = dicts count = 0 tableau = [] tableau1 = [] tableau2 = [] for i in dict[x]: tableau2.append(i[0]) tableau2.append(i[0]) count += 1 if count >= 10: break</pre>
	leaf.append(tableau) sample_count.append(tableau1) sample_name.append(tableau2) 3. Préparation des modèles 1. On demande a utilisateur si il veut utilisé la méthode avec le background 2. On créer le squelette du modèle
In []:	 3. On vérifie si le modèle est deja train par rapport au modele et à la réponse de l'utilisateur SI OUI : on le charge (model.load_weights('model/background/' + str(modelse) + '.h5')) SI NON : on le train (train(model, False, background)) et on sauvegarde se nouveau modèle Rem : on créer un nouveau modele dépendant la réponse du client (background ou non) if input ("Voulez vous utilisé la méthode avec background (pas optimisé) y ou n : ") == 'y': background = True # Création du model model = create model()
	<pre>if background: if os.path.exists('model/background/' + str(modelse) + '.h5'): model.load_weights('model/background/' + str(modelse) + '.h5') train(model, True, background) else: train(model, False, background) else: if os.path.exists('model/normal/' + str(modelse) + '.h5'): model.load_weights('model/normal/' + str(modelse) + '.h5') train(model, True, background) else: train(model, False, background) if background: test_datagen = image.ImageDataGenerator(rescale=1. / 255,</pre>
	<pre>preprocessing_function=makepreproccesing.color_segment_function, fill_mode='nearest') 4. Création du squellete du modèle modèle à 2 couches def create_model(): cnn = tf.keras.models.Sequential()</pre>
	<pre>cnn.add(tf.keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu', input_shape=[64, 64, 3])) cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2)) cnn.add(tf.keras.layers.Conv2D(filters=64, kernel_size=3, activation='relu')) cnn.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2)) cnn.add(tf.keras.layers.Dropout(0.5)) cnn.add(tf.keras.layers.Flatten()) cnn.add(tf.keras.layers.Dense(units=128, activation='relu')) cnn.add(tf.keras.layers.Dense(units=len(leaf[0]), activation='softmax')) cnn.summary()</pre>
	5. Training du modèle (partie la plus IMPORTANTE) 1. on utilise la fonction ImageDataGenerator et on va lui injecter des méthodes 2. on utilise la fonction flow_from_directory pour lier les méthodes au photo 3. on charge ou on train notre modèle grace à 'rmsprop' 4. on affiche les résultat de notre modèles (accuracy, loss,)
In []:	<pre>def train(model, x, background): if background: train_datagen = image.ImageDataGenerator(rescale=1. / 255, rotation_range=40, width_shift_range=0.0, height_shift_range=0.0, shear_range=0.0, zoom range=0.0,</pre>
	<pre>horizontal_flip=True, vertical_flip=True, preprocessing_function=makepreproccesing.color_segment_function, fill_mode='nearest') test_datagen = image.ImageDataGenerator(rescale=1. / 255, preprocessing_function=makepreproccesing.color_segment_function, fill_mode='nearest') else: train_datagen = image.ImageDataGenerator(rescale=1. / 255,</pre>
	<pre>rotation_range=40, width_shift_range=0.0, height_shift_range=0.0, shear_range=0.0, zoom_range=0.0, horizontal_flip=True, vertical_flip=True, fill_mode='nearest') test_datagen = image.ImageDataGenerator(rescale=1. / 255,</pre>
	<pre>fill_mode='nearest') training_set = train_datagen.flow_from_directory(char_path_train, target_size=IMG_SIZE, batch_size=BATCH_SIZE, class_mode='categorical', classes=leaf[0]) test_set = test_datagen.flow_from_directory(char_path_validation, target_size=IMG_SIZE,</pre>
	<pre>batch_size=BATCH_SIZE, class_mode='categorical', classes=leaf[0]) weigth(training_set) if not x: model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) History = model.fit(training_set, validation_data=test_set, epochs=EPOCHS, class_weight=class_weight) makegraph.make_graph_accuracy(History, modelse) makegraph.make_graph_loss(History, modelse) if background: model.save_weights('model/background/' + str(modelse) + '.h5') else: model.save_weights('model/normal/' + str(modelse) + '.h5') print('le model a été sauvegarder comme étant ' + str(modelse) + '.h5')</pre>
	model accuracy 0.9 train val 0.8
	0.7 - 0.6 - 0.5 - 0.4 - 0.3 -
	0 10 20 30 40 50 epoch model loss 2.25 2.00 train val
	1.75 - 1.50 - 9 1.25 - 1.00 - 0.75 -
	0.50 - 0.25 - 0 10 20 30 40 50 epoch
In []:	<pre>5.1 Poids des espèces Va permettre un meilleur traitement lors du training des datas def weigth (training_set): for k, v in training_set.class_indices.items(): label_map[v] = k class_counts = pd.Series(training_set.classes).value_counts() for i, c in class_counts.items(): class_weight[i] = 1.0 / c porm_factor = np_map(list(class_weight_values()))</pre>
	<pre>norm_factor = np.mean(list(class_weight.values())) for k in class_counts.keys(): class_weight[k] = class_weight[k] / norm_factor t = PrettyTable(['class_index', 'class_label', 'class_weight']) for i in sorted(class_weight.keys()): t.add_row([i, label_map[i], '{:.2f}'.format(class_weight[i])]) print(t) 6. Preprocessing A partir de nos observation sur les graphiques présent dans makepreprocessing nous avons conclue une zone de délimation pour isoler le</pre>
In []:	<pre>def color_segment_function(img_array): img_array = np.rint(img_array) img_array = img_array.astype('uint8') hsv_img = cv.cvtColor(img_array, cv.COLOR_RGB2HSV) mask = cv.inRange(hsv_img, (27, 50, 0), (50, 255, 255)) result = cv.bitwise_and(img_array, img_array, mask=mask) result = result.astype('float64') return result Random Samples From Each Class In A Plan HSV</pre>
	250 - 200 - 150 -
	50 - 0 25 50 75 100 125 150 175 Hue
	Random Samples From Each Class In A Space HSV
	250 200 250 250 250 250 250 250 250 250
	Random Pre-Processed Image From Each Class
	 7. Prédiction 7.1 Préparation des images de la prédiction
In []:	on rédefinie les photos se trouvant dans le dossier test et on les prépares pour etre traité par notre modèle • rem: auncune photo se trouve dans le dossier train ou validatio test_generator = test_datagen.flow_from_directory(
In []:	7.2 Effectue la prédiction et on l'affiche 1. on effectue la prediction 2. on lie les resultats avec notre dictionnaire 3. affiche le résultat de la prédiction sous forme de tableau
τυ []:	<pre>print(' Résultat de la prédiction') result = model.predict(test_generator, steps=test_generator.n, verbose=1) predicted_class_indices = np.argmax(result, axis=1) prediction_labels = [label_map[k] for k in predicted_class_indices] filenames = test_generator.filenames headers = ['file', 'species'] t = PrettyTable(headers) for i, f, p in zip(range(len(filenames)), filenames, prediction_labels): if i < 10: t.add_row([os.path.basename(f), p]) elif i < 13: t.add_row(['.', '.']) print(t)</pre>
In []:	file species Acer_rubrum.jpg acer_rubrum Asimina.jpg asimina_triloba abies_concolor.jpg abies_concolor broussonettia.jpg broussonettia_papyrifera maclura_pomifera.jpg maclura_pomifera prunus_sargentie.jpg prunus_sargentii prunus_virginia.jpg ulmus_rubra ptelea_trifoliata.jpg ptelea_trifoliata
	ulmus_pumila.jpg prunus_sargentii