IN THE CLAIMS

- 1. (Cancelled)
- 2. 24. (Previously Cancelled)
- 25. (Previously presented) A process for the preparation of a compound of general formula I

$$R^{1}$$
 $CH-CH_{2}$
 CH
 (I)

wherein $\ensuremath{\mathsf{R}}^1$, X and Y are as defined below comprising the steps of:

a) reacting a compound of formula II

wherein Prot is a suitable protecting group, with a compound of formula III

$$Y-X-NH_2$$
 (III)

to give a compound of formula IV;

then

 reacting compound of formula IV under suitable deprotecting conditions to give the compound of formula I

$$R^{1}$$
 $CH-CH_{2}$
 (I)

wherein

R¹ is C₁₋₆alkyl which may be substituted by one or more substituents, which may be the same or different, selected from the list: halo, hydroxy, C₁₋₆alkoxy, hydroxyC₁₋₆alkoxy, C₁₋₆alkoxyC₁₋₆alkoxy, carbocyclyl, carbocyclyloxy, C₁₋₄alkoxycarbocyclyloxy, heterocyclyl, heterocyclyloxy, -NR²R³, -NR⁴COR⁵, -NR⁴SO₂R⁵, -CONR²R³, -S(O)_pR⁶, -COR⁷ and -CO₂(C₁₋₄alkyl); or R¹ is carbocyclyl or heterocyclyl, each of which may be substituted by one or more substituents from said list, which substituents may be the same or different, which list further includes C₁₋₆alkyl; or R¹ is hydrogen, C₁₋₆alkoxy, -NR²R³ or -NR⁴SO₂R⁵;

wherein

R² and R³, which may be the same or different, are carbocyclyl or heterocyclyl (each of which may be substituted by C₁₋₄alkyl, hydroxy or C₁₋₄alkoxy); or are hydrogen or C₁₋₄alkyl; or R² and R³ together with the nitrogen to which they are attached form a pyrrolidinyl, piperidino, morpholino, piperazinyl or *N*-(C₁₋₄alkyl)piperazinyl group;

R⁴ is hydrogen or C₁₋₄alkyl;

R⁵ is C₁₋₄alkyl, CF₃, carbocyclyl, C₁₋₄alkylcarbocyclyl, C₁₋₄alkoxycarbocyclyl, heterocyclyl, C₁₋₄alkoxy or -NR²R³;

R6 is C₁₋₄alkyl, carbocyclyl, heterocyclyl or NR²R³; and

R⁷ is C₁₋₄alkyl, carbocyclyl or heterocyclyl;

p is 0, 1, 2 or 3;

X is the linkage -(CH₂)_n- or -(CH₂)_q-O- (wherein Y is attached to the oxygen); wherein one or more hydrogen atoms in linkage X may be replaced

carbocyclyl; heterocyclyl; or by C₁₋₄alkyl optionally substituted by one or more fluoro or phenyl groups; n is 3, 4, 5, 6 or 7; and q is 2, 3, 4, 5 or 6; and Y is phenyl or pyridyl, each of which may be substituted by one or more groups R⁸ which may be the same or different, wherein R⁸ is hydroxy; mercapto; halogen; cyano; acyl; amino; mono(C₁₋₄alkyl)amino; di(C₁₋₄alkyl)amino; carbocyclyl or heterocyclyl (either of which is optionally substituted by C₁₋₆alkyl, haloC₁₋₆alkyl, C₁₋₆alkoxy, haloC₁₋₆alkoxy, C₁₋₆alkylthio; or alkyl optionally substituted by C₁₋₆alkoxy; phenoxy; C₁₋₆alkoxy, C₁₋₆alkylthio, halogen or phenyl; substituted by C₁₋₆alkoxy, haloC₁₋₆alkoxy, C₁₋₆alkylthio, halogen or phenyl;

independently by C₁₋₄alkoxy; hydroxy; hydroxyC₁₋₃alkyl; C₃₋₇cycloalkyl;

two R8 groups on adjacent carbon atoms together with the interconnecting carbon atoms may form a fused 5- or 6-membered carbocyclic or heterocyclyic ring, optionally substituted by C_{1-6} alkyl, halo C_{1-6} alkyl, C_{1-6} alkoxy, halo C_{1-6} alkoxy, C_{1-6} alkylthio or halogen; then

c) optionally forming a salt.

or

26. (Previously presented) A process according to claim 25 further comprising asymmetric hydrogenation of any one of compounds of formula XI, XII or XIII

(XIII)

where Q is the substituent on the C₁₋₆alkyl group defined for R¹ in claim 25, to give a compound of formula IIa

27. (Currently amended) A process comprising asymmetric hydrogenation of any one of compounds of formula XI₇ or XIII or XIII

where Q is halo, hydroxy, C_{1-6} alkoxy, hydroxy C_{1-6} alkoxy, C_{1-6} alkoxy C_{1-6} alkoxy, carbocyclyl, carbocyclyloxy, C_{1-4} alkoxycarbocyclyloxy, heterocyclyl, heterocyclyloxy, -NR²R³, -NR⁴COR⁵, -NR⁴SO₂R⁵, -CONR²R³, -S(O)_pR⁶, -COR⁷ and -CO₂(C_{1-4} alkyl); wherein

R² and R³, which may be the same or different, are carbocyclyl or heterocyclyl (each of which may be substituted by C₁₋₄alkyl, hydroxy or C₁₋₄alkoxy); or are hydrogen or C₁₋₄alkyl; or R² and R³ together with the nitrogen to which they are attached form a pyrrolidinyl, piperidino, morpholino, piperazinyl or N-(C₁₋₄alkyl)piperazinyl group;

R⁴ is hydrogen or C₁₋₄alkyl;

 $\frac{R^5 \text{ is } C_{1-4} \text{alkyl, } CF_{\underline{3}}, \text{ carbocyclyl, } C_{1-4} \text{alkoxycarbocyclyl, } C_{\underline{1-4} \text{alkoxy or -NR}^2R^3}; \\ \text{heterocyclyl, } C_{1-4} \text{alkoxy or -NR}^2R^3;$

R6 is C₁₋₄alkyl, carbocyclyl, heterocyclyl or NR²R³; and

R⁷ is C₁₋₄alkyl, carbocyclyl or heterocyclyl;

and Prot is a suitable protecting group, to give a compound of formula Ila

28. (Previously Cancelled)