CHE 105 Spring 2019 Exam 1

Your Name:	Your ID:
Question #: 1	
Which one is not a state of matter?	
A. liquid B. plasma C. solution D. solid	
Question #: 2	
Which choice includes only mixtures?	
A. water, salad dressing, bourbon whiskey B. carbon dioxide, platinum, sweet tea, air C. iced tea, concrete, air, sea water D. coffee, nicotine, table sugar, ice cream	
Question #: 3	
Which two illustrate chemical properties of m	atter?
A. A freshly cut apple turns brown.B. Milk turns sour on standing.C. Water boils on heating.D. Sugar dissolves in tea.E. Nitrogen can be separated from air.	

Which	one is n	ot an SI	base	unit?
4 4 111 C11		ot an or	Dasc	umi

- A. kilogram
- B. liter
- C. ampere
- D. meter
- E. kelvin

Question #: 5

How many millimeters is 2.4 km?

- A. 2400 mm
- B. $2.4 \times 10^4 \text{ mm}$
- C. 2.4×10^6 mm
- D. 2.4×10^{-4} mm
- E. 2.4×10^{-6} mm

Question #: 6

Which one is **not** a valid expression of volume?

- A. 1.5 \times 10⁻⁵ L
- B. 2.7 m⁻³
- C. 3.1 cubic inches
- D. 7.7 mL
- E. 1770 dm³

What is the mass of air contained in a room that measures 2.50 m \times 5.50 m \times 3.00 m if the density of air is 1.29 g/dm³ at 25°C?

- A. 53.2 kg
- B. 32.0 kg
- C. 3.13×10^{-5} g
- D. 413 Mg

Question #: 8

How many significant figures are shown in 1009.630 mL?

- A. 4
- B. 5
- C. 6
- D. 7

Question #: 9

What answer should be reported, with the **correct** number of significant figures, for the following calculation?

 $(965.43 \times 3.911) + 9413.4136 = ?$

- A. 13189
- B. 13189.2
- C. 1.32×10^4
- D. 1.3×10^{4}
- E. 1.319×10^4

If an object has a density of 8.65 g/cm³, what is its density in units of kg/m³?

- A. $8.65 \times 10^{-3} \text{ kg/m}^3$
- B. $8.65 \times 10^{-7} \text{ kg/m}^3$
- C. $8.65 \times 10^3 \text{ kg/m}^3$
- D. $8.65 \times 10^{1} \, \text{kg/m}^{3}$

Question #: 11

It has been estimated that 8.0×10^4 tons of gold have been mined. What is the total value of this gold if it is valued at \$1657 per ounce? (1 ton = 2000 pounds; 1 lb = 16 ounces)

- A. $$1.0 \times 10^{10}$
- B. $\$3.3 \times 10^8$
- C. $\$2.1 \times 10^{14}$
- D. $\$4.2 \times 10^{12}$

Question #: 12

When Dalton proposed his atomic theory, he was aware of all of the following except

- A. the law of conservation of mass.
- B. the properties of cathode rays.
- C. the law of multiple proportions.
- D. the law of definite proportions.
- E. the existence of chemical elements.

Rutherford interpreted the results of alpha-particle scattering by a gold foil to establish that

- A. electrons have negative charge.
- B. atoms are composed of protons, electrons, and neutrons.
- C. neutrons must exist in the nucleus of the atom.
- D. protons are not uniformly distributed throughout an atom.

Question #: 14

The atomic nucleus contains

- A. neutrons, protons, and electrons.
- B. most of the mass of the atom.
- C. protons, electrons, and gluons.
- D. more neutrons than protons.

Question #: 15

The atomic number

- A. varies with the number of neutrons in the nucleus of an element.
- B. cannot be determined if the number of electrons in the atom is not known.
- C. cannot exceed the number of neutrons in an atom.
- D. is the same as the number of electrons in a neutral atom.

A neutral atom of the isotope ³¹P contains

- A. 15 protons, 16 neutrons, 15 electrons
- B. 16 protons, 15 neutrons, 16 electrons
- C. 15 protons, 31 neutrons, 16 electrons
- D. 31 protons, 31 neutrons, 31 electrons
- E. 16 protons, 16 neutrons, 15 electrons

Question #: 17

Silver has two stable isotopes and an atomic mass of 107.868 amu. 109 Ag is 48.16% of natural silver and has an isotopic mass of 108.905 amu. What is the isotopic mass of the other stable silver isotope?

- A. 106.905 amu
- B. 106.909 amu
- C. 106.901 amu
- D. 106.913 amu

Question #: 18

What is the mass number of 136Xe?

- A. 54
- B. 82
- C. 136
- D. 190
- E. 218

Of the types of radiations emitted in radioactive decay, which is **most** penetrating in matter?

- A. cathode rays
- B. beta particles
- C. gamma rays
- D. alpha particles

Question #: 20

A sulfide ion, S2-, has:

- A. 16 protons and 16 electrons.
- B. 32 protons and 16 electrons.
- C. 16 protons and 14 electrons.
- D. 16 protons and 18 electrons.
- E. 32 protons and 18 electrons.

Question #: 21

Which **two** elements are metals?

- A. magnesium
- B. chlorine
- C. oxygen
- D. titanium
- E. argon

Which one is **not** a property of a nonmetal?

- A. poor conductor of heat
- B. gain electrons in reactions of become anions
- C. occur in the upper right of the periodic table
- D. good conductor of electricity

Question #: 23

Which pair of elements when reacted with each other would be most likely to form an ionic compound?

- A. P and Br
- B. Cu and K
- C. C and O
- D. O and Zn
- E. Al and Rb

Question #: 24

What would be the expected charge on an ion formed from selenium?

- A. 1-
- B. 6+
- C. 3-
- D. 4+
- E. 2-

Question #: 25

What is the formula for the ionic compound formed by potassium and nitrogen?
A. KN B. K ₂ N C. NK ₂ D. K ₃ N E. KN ₃
Question #: 26
What is the systematic name of the compound Cl_2O ?
A. chlorine oxide B. dichlorine monoxide C. chlorine (I) oxide D. chlorine (II) oxide E. chlorate
Question #: 27
What is the correct chemical formula for titanium(II) sulfate?
A. TiSO B. Ti(SO ₄) ₂ C. TiSO ₄ D. Ti ₂ (SO ₄) ₃ E. Ti(SO ₃) ₂

How many magnesium atoms are in 1.00 ng of magnesium?

- A. 4.11×10^{-11} atoms
- B. 2.48×10^{13} atoms
- C. 6.02×10^{14} atoms
- D. 1.46 ×10³⁴ atoms

Question #: 29

What is the molar mass of H₂CO₃?

.

- A. 29.018 g/mol
- B. 60.008 g/mol
- C. 62.024 g/mol
- D. 74.035 g/mol
- E. 91.182 g/mol

Question #: 30

How many C_2H_4 molecules are in 45.8 mg of C_2H_4 (molar mass = 28.05 g/mol)?

•

- A. $9.83 \times 10^{20} \text{ C}_2\text{H}_4$ molecules
- B. $7.74 \times 10^{26} \text{ C}_2\text{H}_4$ molecules
- C. 2.71×10^{20} C₂H₄ molecules
- D. $3.69 \times 10^{23} \, C_2 H_4$ molecules
- E. 4.69×10^{23} C₂H₄ molecules

DRAFT

Do Not Use Until Posted.

CHE 105 Spring 2019 Exam 1 - Confidential

Your Name:		Your ID:																		
	1 IUPAC Periodic Table of the Elements															18 VIIIA				
	H 1,008	2 IIA		Key:									13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	He 4.0026		
	3 Li 6,941	4 Be]	atomic nur Symb	ool								5 B	6 C 12.011	7 N	8	9 F 18.998	10 Ne		
	11 Na 22.990	9.012 12 Mg 24.305	3 IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8 VIIIB	9 IXB	10 XB	11 XIB	12 XIIB	10.81 13 AI 26.982	14 Si 28.085	14.007 15 P 30.974	15.999 16 S 32.06	17 CI 35.45	20.180 18 Ar 39.948		
	19 K 39,098	20 Ca 40.078	21 Sc 44.956	22 Ti 47.867	23 V 50.942	24 Cr 51.996	25 Mn 54,938	26 Fe 55.845	27 Co 58.933	28 Ni 58.693	29 Cu 63.546	30 Zn 65.38	31 Ga 69.723	32 Ge 72.630	33 As 74.922	34 Se 78.971	35 Br 79.904	36 Kr 83.798		
	37 Rb 85.468	38 Sr 87.62	39 Y 88.906	40 Zr 91,224	41 Nb 92,906	42 Mo 95,95	43 Tc	44 Ru 101.07	45 Rh	46 Pd 106.42	47 Ag	48 Cd 112.41	49 In	50 Sn	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.29		
	55 Cs	56 Ba 137.33	57-71 lanthanides	72	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 Ir 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po	85 At	86 Rn		
	87 Fr	Ra	89-103 actinides	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 FI	115 Mc	116 Lv	117 Ts	118 Og		
				57 La 138.91	58 Ce	59 Pr 140.91	60 Nd 144.24	61 Pm	62 Sm 150.36	63 Eu 151.96	64 Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.05	71 Lu 174.97		
				89 Ac	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np	94 Pu	95 Am	⁹⁶ Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		
	Mola	r volum	ne of ide	eal gas	at STP	= 22.4	L I	deal ga	s const	ant:			Speed	of ligh	t, c = 3	.00 × 10	0 ⁸ m•s ⁻	1		
														-		e, $e = 1.602 \times 10^{-18} \text{ J}$				
	"		number nstant, <i>l</i>					R = 1.98				nol ⁻¹			•	= 1.660				

attachment_for_pubExamUID_Inxp115487842284676169XX_346.jpg

Question #: 1

Which one is **not** a state of matter?

- A. liquid
- B. plasma
- ✓C. solution
 - D. solid

Question #: 2

Which choice includes **only** mixtures?

- A. water, salad dressing, bourbon whiskey, copper
- B. carbon dioxide, platinum, sweet tea, air

- ✓C. iced tea, concrete, air, sea water
 - D. coffee, nicotine, table sugar, ice cream

Which two illustrate chemical properties of matter?

- ✓A. A freshly cut apple turns brown.
- ✓B. Milk turns sour on standing.
 - C. Water boils on heating.
 - D. Sugar dissolves in tea.
 - E. Nitrogen can be separated from air.

Question #: 4

Which one is **not** an SI base unit?

- A. kilogram
- **√**B. liter
 - C. ampere
 - D. meter
 - E. kelvin

Question #: 5

How many millimeters is 2.4 km?

- A. 2400 mm
- B. 2.4×10^4 mm
- \checkmark C. 2.4 × 10 6 mm
- D. $2.4 \times 10^{-4} \text{ mm}$
- E. 2.4×10^{-6} mm

Which one is **not** a valid expression of volume?

A.
$$1.5 \times 10^{-5} L$$

$$✓$$
B. 2.7 m⁻³

C. 3.1 cubic inches

Question #: 7

What is the mass of air contained in a room that measures 2.50 m \times 5.50 m \times 3.00 m if the density of air is 1.29 g/dm³ at 25°C?

C.
$$3.13 \times 10^{-5}$$
 g

Question #: 8

How many significant figures are shown in 1009.630 mL?

- A. 4
- B. 5
- C. 6
- **√**D. 7

Question #: 9

What answer should be reported, with the **correct** number of significant figures, for the following calculation?

$$(965.43 \times 3.911) + 9413.4136 = ?$$

C.
$$1.32 \times 10^4$$

D.
$$1.3 \times 10^4$$

E.
$$1.319 \times 10^4$$

If an object has a density of 8.65 g/cm³, what is its density in units of kg/m³?

A.
$$8.65 \times 10^{-3} \text{ kg/m}^3$$

B.
$$8.65 \times 10^{-7} \,\text{kg/m}^3$$

√C.
$$8.65 \times 10^3 \text{ kg/m}^3$$

D.
$$8.65 \times 10^{1} \,\mathrm{kg/m^3}$$

Question #: 11

It has been estimated that 8.0×10^4 tons of gold have been mined. What is the total value of this gold if it is valued at \$1657 per ounce?

(1 ton = 2000 pounds; 1 lb = 16 ounces)

A.
$$$1.0 \times 10^{10}$$

B.
$$$3.3 \times 10^{8}$$

C.
$$$2.1 \times 10^{14}$$

√D.
$$$4.2 \times 10^{12}$$

Question #: 12

When Dalton proposed his atomic theory, he was aware of all of the following except

- A. the law of conservation of mass.
- ✓B. the properties of cathode rays.
 - C. the law of multiple proportions.
 - D. the law of definite proportions.
 - E. the existence of chemical elements.

Rutherford interpreted the results of alpha-particle scattering by a gold foil to establish that

- A. electrons have negative charge.
- B. atoms are composed of protons, electrons, and neutrons.
- C. neutrons must exist in the nucleus of the atom.
- ✓D. protons are not uniformly distributed throughout an atom.

Question #: 14

The atomic nucleus contains

- A. neutrons, protons, and electrons.
- ✓B. most of the mass of the atom.
 - C. protons, electrons, and gluons.
 - D. more neutrons than protons.

Question #: 15

The atomic number

- A. varies with the number of neutrons in the nucleus of an element.
- B. cannot be determined if the number of electrons in the atom is not known.
- C. cannot exceed the number of neutrons in an atom.
- ✓D. is the same as the number of electrons in a neutral atom.

Question #: 16

A neutral atom of the isotope ³¹P contains

- ✓A. 15 protons, 16 neutrons, 15 electrons
 - B. 16 protons, 15 neutrons, 16 electrons
 - C. 15 protons, 31 neutrons, 16 electrons
 - D. 31 protons, 31 neutrons, 31 electrons
 - E. 16 protons, 16 neutrons, 15 electrons

Silver has two stable isotopes and an atomic mass of 107.868 amu. ¹⁰⁹Ag is 48.16% of natural silver and has an isotopic mass of 108.905 amu. What is the isotopic mass of the other stable silver isotope?

- √A. 106.905 amu
 - B. 106.909 amu
 - C. 106.901 amu
 - D. 106.913 amu

Question #: 18

What is the mass number of ¹³⁶Xe?

- A. 54
- B. 82
- **√**C. 136
 - D. 190
 - E. 218

Question #: 19

Of the types of radiations emitted in radioactive decay, which is **most** penetrating in matter?

- A. cathode rays
- B. beta particles
- ✓C. gamma rays
 - D. alpha particles

A sulfide ion, S²⁻, has:

- A. 16 protons and 16 electrons.
- B. 32 protons and 16 electrons.
- C. 16 protons and 14 electrons.
- ✓D. 16 protons and 18 electrons.
 - E. 32 protons and 18 electrons.

Question #: 21

Which two elements are metals?

- ✓A. magnesium
 - B. chlorine
 - C. oxygen
- ✓D. titanium
 - E. argon

Question #: 22

Which one is **not** a property of a nonmetal?

- A. poor conductor of heat
- B. gain electrons in reactions of become anions
- C. occur in the upper right of the periodic table
- ✓D. good conductor of electricity

Question #: 23

Which pair of elements when reacted with each other would be most likely to form an ionic compound?

- A. P and Br
- B. Cu and K
- C. C and O
- ✓D. O and Zn

What would be the expected charge on an ion formed from selenium?

- A. 1-
- B.6+
- C. 3-
- D. 4+
- **√**E. 2−

Question #: 25

What is the formula for the ionic compound formed by potassium and nitrogen?

- A. KN
- B. K_2N
- C. $N\overline{K}_2$
- \checkmark D. $K_{\mathbf{Q}}\overline{N}$
 - E. KŇ₃

Question #: 26

What is the systematic name of the compound $\mathrm{Cl}_2\mathrm{O}$?

.

- A. chlorine oxide
- ✓B. dichlorine monoxide
 - C. chlorine (I) oxide
 - D. chlorine (II) oxide
 - E. chlorate

What is the correct chemical formula for titanium(II) sulfate?

Question #: 28

How many magnesium atoms are in 1.00 ng of magnesium?

A.
$$4.11 \times 10^{-11}$$
 atoms

√B.
$$2.48 \times 10^{13}$$
 atoms

C.
$$6.02 \times 10^{14}$$
 atoms

D. 1.46
$$\times 10^{34}$$
 atoms

Question #: 29

What is the molar mass of H_2CO_3 ?

Question #: 30

How many C_2H_4 molecules are in 45.8 mg of C_2H_4 (molar mass = 28.05 g/mol)?

✓A.
$$9.83 \times 10^{20} \text{ C}_2\text{H}_4$$
 molecules
B. $7.74 \times 10^{26} \text{ C}_2\text{H}_4$ molecules
C. $2.71 \times 10^{20} \text{ C}_2\text{H}_4$ molecules

B.
$$7.74 \times 10^{26} \, \text{C}_2^2 \text{H}_4^4 \text{ molecules}$$

C.
$$2.71 \times 10^{20} \, \text{C}_2^2 \text{H}_4^4 \, \text{molecules}$$

D. $3.69 \times 10^{23} \, \text{C}_2\text{H}_4$ molecules E. $4.69 \times 10^{23} \, \text{C}_2\text{H}_4$ molecules