Limites (TL)

Limites (TL)

Exercice 1

Reproduire et compléter le tableau suivant.

$\lim_{x\to 0} f(x)$	+∞	-5	2
$\lim_{x\to 0}g(x)$	-3	0-	
$\lim_{x\to 0} (f(x) + g(x))$			
$\lim_{x\to 0} f(x) \times g(x)$			
$\lim_{x \to 0} \frac{f(x)}{g(x)}$			0-

Exercice 2

Calculer les limites suivantes en utilisant la somme, le produit ou le quotient de limites :

1.
$$\lim_{x \to -\infty} 2x + 1 + \frac{3}{x - 1}$$

2.
$$\lim_{x \to 0^+} \left(\frac{2}{x} + 3\right) \left(x - \frac{1}{x}\right)$$

3.
$$\lim_{x \to -\infty} (-x+1)(3x-2)$$

4.
$$\lim_{x \to +\infty} \frac{\frac{2}{x} + 3}{2 - \frac{1}{x}}$$

Exercice 3

Calculer les limites de la fonction f en $+\infty$ et en $-\infty$ si elles existent.

1.
$$f(x) = -8x^3 + x - 2$$

2.
$$f(x) = -x^2 + x - 2$$

3.
$$f(x) = (2x-5)(-5x+1)$$

4.
$$f(x) = -2(3-2x)^3$$

5.
$$f(x) = \sqrt{2x-3}$$

6.
$$f(x) = \sqrt{3-x}$$

Exercice 4

Etudier les limites de la fonction f aux bornes de son domaine de définition en précisant les asymptotes éventuelles de la courbe de f.

1.
$$f(x) = \frac{3x-1}{x-6}$$

2 Limites (TL)

$$2. \ f(x) = \frac{-8x+3}{2x-4}$$

3.
$$f(x) = 2 + \frac{3}{x+2}$$

4.
$$f(x) = 1 - \frac{6}{1 - x}$$

Exercice 5

Même question qu'à l'exercice précédent.

1.
$$f(x) = \frac{2x^2 - 7}{x^2 - 9}$$

$$2. \ f(x) = \frac{5x}{x^2 - 4}$$

$$3. \ f(x) = \frac{3x^2 - 3}{x^2}$$

4.
$$f(x) = 2 + \frac{x+1}{x^2+2}$$

Exercice 6

Pour chacun des cas suivants, montrer que la droite Δ est une asymptote à la courbe de la fonction f puis étudier la positive relative de \mathscr{C} par rapport à Δ .

1.
$$f(x) = 2x + 1 + \frac{2}{x - 3}$$

$$\Delta: y = 2x + 1$$

2.
$$f(x) = -x + 4 - \frac{5}{x - 1}$$
 $\Delta : y = -x + 4$
3. $f(x) = 4 - x - \frac{5x}{x^2 + 2}$ $\Delta : y = 4 - x$

$$\Delta: y = -x + 4$$

3.
$$f(x) = 4 - x - \frac{5x}{x^2 + 2}$$

$$\Delta: y = 4 - x$$

Exercice 7

Déterminer une équation de l'asymptote oblique de la courbe de f dans chacun des cas suivants.

1.
$$f(x) = \frac{x^2 + 3x - 1}{x - 1}$$

2.
$$f(x) = \frac{2x^2 + x + 1}{x + 1}$$

3.
$$f(x) = \frac{x^2 - x + 3}{2x - 4}$$

4.
$$f(x) = \frac{3x^2 + 4x}{x+3}$$

3 Limites (TL)

Exercice 8

Étudier les limites de la fonction f aux bornes de son D_f .

1.
$$f(x) = -x^4 - 3x^2 + 4$$

2.
$$f(x) = \frac{x^2 - 10x + 24}{x^2 - 3x - 4}$$

3.
$$f(x) = \frac{x^2 - 6x - 7}{-x + 1}$$
4.
$$f(x) = \sqrt{8 - 4x}$$

4.
$$f(x) = \sqrt{8-4x}$$