REAL ANALYSIS I

EDWARD O'CALLAGHAN

Contents

1.	Set Theory	2
2.	Metric Spaces	2
3.	Convergence	3
4.	Compactness	3
5.	Limits	4
6.	Differentiable	5
6.1	. Partial derivatives	6
7.	Leibniz Rule	6
8.	Mean Value Theorem	7
9.	Taylor Series	7
10.	Constrain extrema - Lagrange multipliers	7
11.	Cylindrical Coordinates	8
12.	Green's theorem	8
13.	Fourier Transform	10

1. Set Theory

Here we fix some notation.

If p() is some *predicate* that is either true or false for every element of some set X, then the notation $\{x \in X : p(x)\}$ will be used to denote the subset of X consisting of all those elements of X for which p(x) is true.

If A and B are sets, we write $A \setminus B$ for the difference, that is, $A \setminus B \doteq \{x \in A : x \notin B\}$.

Proposition 1.1. For $f, g : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ we have

$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x).$$

If, $g(x) \neq 0$ everywhere on Ω , then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

2. Metric Spaces

Definition 2.1 (Metric). A metric d_X on set X is a function $d_X: X \times X \to \mathbb{R}$ such that, for any $x, y, z \in X$;

- i.) $d_X(x,y) \ge 0$ and $d_X(x,y) = 0$ iff x = y (semi-positive definate),
- ii.) $d_X(x,y) = d_X(y,x)$ (symmetric),
- iii.) $d_X(x,z) \leq d_X(x,y) + d_X(y,z)$ (triangle inequality).

Definition 2.2 (Metric Space). A metric space is the pair (X, d_X) where X is a set and d_X is the metric defined on the set X.

Definition 2.3 (Open Ball). An *open ball* in a metric space (X, d_X) with center $x_0 \in X$ and ϵ -neighborhood with $\epsilon > 0$ is defined as the set;

$$\mathcal{B}_{\epsilon}(x_0) \doteq \{x \in X : d_X(x_0, x) < \epsilon\}.$$

Definition 2.4 (Closed Ball). A *closed ball* in X with center $x_0 \in X$ and ϵ -neighborhood with $\epsilon > 0$ is defined as the set;

$$\overline{\mathcal{B}_{\epsilon}(x_0)} \doteq \{x \in X : d_X(x_0, x) \le \epsilon\}.$$

Definition 2.5 (Open set). Let $\Omega \subseteq X$ of a metric space (X, d_X) . The set Ω is called an *open set* in X if; for each $x \in \Omega$ there exists some $\delta > 0$ such that $\mathcal{B}_{\delta}(x) \subseteq \Omega$.

Lemma 2.6. The whole space X and the empty set \emptyset are trivially open.

Definition 2.7 (Closed set). A closed set is the complement, denoted Ω^c , of the open set Ω .

Lemma 2.8. The whole space X and the empty set \emptyset are trivially closed.

Definition 2.9 (Clopen set). A set that is both open and closed is said to be an *clopen set*.

Definition 2.10 (Boundary). The *boundary* of a set $\Omega \subseteq X$ of a metric space (X, d_X) , denoted by $\delta\Omega$, is defined as;

$$\delta\Omega \doteq \{x \in X : \mathcal{B}_{\epsilon}(x) \cap \Omega \neq \emptyset, \mathcal{B}_{\epsilon}(x) \cap \Omega^{c} \neq \emptyset\}.$$

Lemma 2.11. We have that, $\delta\Omega = \delta(\Omega^c)$, is trivially so.

Proposition 2.12. Any open set does not contain any of its boundary points.

Proof. Let $\Omega \subseteq X$ be open so that Ω^c is closed. It remains that $\delta\Omega^c \subseteq \Omega^c$.

Proposition 2.13. A set S is closed if and only if it contains all its boundary $\delta S \subseteq S$.

Proof. Suppose that S is closed so that S^c is open. It follows that $S^c \cap \delta S = \emptyset$ and hence $\delta S \subseteq S$. Conversely, now consider some $x \in S^c$. Since $\delta S \subseteq S$, it follows that $x \notin \delta S$. It remains by definition of boundary point, we have some $\epsilon > 0$ such that $\mathcal{B}_{\epsilon}(x) \cap S = \emptyset$. Thus, $\mathcal{B}_{\epsilon}(x) \subseteq S$ and so S^c is open.

Definition 2.14 (Interior (Point)). Let $\Omega \subseteq X$ be some region of a metric space (X, d_X) . A point $x \in \Omega$ is said to be an *interior point* if there exists some $\delta > 0$ such that $\mathcal{B}_{\delta}(x) \subseteq \Omega$. The set of all interior points, denoted Ω° , is called the *interior* of the region Ω .

Definition 2.15 (Closure). Let $S \subseteq X$. We define the *closure* of S, denoted \overline{S} , by the set $\overline{S} = S \cup \delta S$.

Definition 2.16 (Accumulation Point). Let $\Omega \subseteq X$ and fix some point $x \in X$. We call x an accumulation, or limit, point of Ω if every open ball around x contains at least one distinct point $y \in \Omega$. In particular, for every $\epsilon > 0$ we have that, $(\mathcal{B}_{\epsilon}(x) - y) \cap \Omega \neq \emptyset$.

3. Convergence

Definition 3.1 (Limit). Let $\{x_k\}_{k=1}^{\infty}$ be a sequence of vectors in \mathbb{R}^n and $x \in \mathbb{R}^n$. We say that $\{x_k\}_{k=1}^{\infty}$ converges to a limit x if,

$$\lim_{k \to \infty} d(x_k, x) = \lim_{k \to \infty} ||x_k - x|| \to 0 \in \mathbb{R}$$

written $x_k \to x$.

4. Compactness

Let I denote any, possibly infinite, indexing set.

Definition 4.1 (Open Cover). A **open cover** of a set $S \subseteq \mathbb{R}^n$ is a collection $\{V_i\}_{i \in I}$ of open sets of \mathbb{R}^n such that $S \subset \bigcup_{i \in I} V_i$. A *subcover* is a subcollection which also covers S.

Definition 4.2 (Compact). A subset $S \subseteq \mathbb{R}^n$ is said to be **compact** if from every open cover of S we may find a *finite* subcover of S.

5. Limits

Definition 5.1. Let $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $a \in \bar{\Omega}$. A point $y \in \mathbb{R}^m$ is said to be the *limit* of f as $x \to \infty$, written as

$$\lim_{x \to \infty} f(x) = y,$$

if for every neighborhood $B_{\epsilon}(y)$ of $y \in \mathbb{R}^m$ there exists a neighborhood $B_{\delta}(a)$ of $a \in \Omega$ such that whenever $x \in \Omega \cap B_{\delta}(a)$, this implies $f(x) \in B_{\epsilon}(y)$. That is,

$$f(\Omega \cap B_{\delta}(a)) \subseteq B_{\epsilon}(y).$$

Proposition 5.2. For $f, g: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ we have

$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x).$$

If, $g(x) \neq 0$ everywhere on Ω , then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

Problem 5.3. Let $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ and $\vec{a} \in \Omega$. Then,

$$\lim_{\vec{x} \to \vec{a}} f(\vec{x}) = \vec{y}$$

if and only if,

$$\lim_{\vec{x}\to\vec{a}} f_i(\vec{x}) = y_i$$

for each i in $1 \le i \le m$.

Example 5.4. Show that,

$$\lim_{(x,y)\to(0,0)}\frac{x^3+y^3}{x^2+y^2}=0.$$

Let $f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$ and fix some arbitrarily small $\epsilon > 0$. Then we must find a $\delta > 0$ such that $|f(x,y) - 0| < \epsilon$ whenever $0 < ||(x,y) - (0,0)|| < \delta$.

Now, note that $|x^3| \leq (x^2 + y^2)^{3/2}$ and so by the triangle inequality, we have

$$|f(x,y)| = \left| \frac{x^3 + y^3}{x^2 + y^2} \right|$$

$$\leq \frac{2(x^2 + y^2)^{3/2}}{x^2 + y^2}$$

$$= 2\sqrt{x^2 + y^2}.$$

whence, choosing $\delta = \epsilon/2$, we get $|f(x,y)| < \epsilon$ provided that $\sqrt{x^2 + y^2} < \delta$.

Thus, $\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2} = 0$.

Example 5.5. Show that,

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1.$$

Let $f(x,y) = \frac{\sin(x^2+y^2)}{x^2+y^2}$ and take $t = x^2 + y^2$ so that we have,

$$\lim_{(x,y)\to(0,0)} f(x,y)$$

$$= \lim_{t\to 0} \frac{\sin(t)}{t} = 1.$$

6. Differentiable

Definition 6.1 (Differentiable). Let $f: \Omega \to \mathbb{R}^m$ be a function defined on an open set $\Omega \in \mathbb{R}^n$ and point $\vec{a} \in \Omega$. The function f is said to be differentiable at \vec{a} if there is a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ such that,

$$\lim_{\mathbf{x} \to \vec{a}} \frac{\|f(\mathbf{x}) - f(\vec{a}) - T(\mathbf{x} - \vec{a})\|_m}{\|\mathbf{x} - \vec{a}\|_n} = 0.$$

If f is differentiable at every point $\vec{a} \in \Omega$ then f is differentiable on Ω .

Theorem 6.2 (Linear Approximation). The function $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}^m$ is differentiable at point \vec{a} if and only if there is a function $\epsilon(\mathbf{x})$ so that for $\mathbf{x} \in \Omega$ we have,

$$f(\mathbf{x}) = f(\vec{a}) + T(\mathbf{x} - \vec{a}) + \epsilon(\mathbf{x}) \|\mathbf{x} - \vec{a}\|$$

with $\epsilon(\mathbf{x}) \to 0$ as $\mathbf{x} \to \vec{a}$.

Proof.

Set

$$\epsilon(\mathbf{x}) = \frac{f(\mathbf{x}) - f(\vec{a}) - T(\mathbf{x} - \vec{a})}{\|\mathbf{x} - \vec{a}\|} : \mathbf{x} \neq \vec{a}.$$

Now, if f is differentiable at \vec{a} , then $\lim_{\mathbf{x}\to\vec{a}} \epsilon(\mathbf{x}) = 0$.

Conversely, suppose

$$f(\mathbf{x}) = f(\vec{a}) + T(\mathbf{x} - \vec{a}) + \epsilon(\mathbf{x}) \|\mathbf{x} - \vec{a}\|$$

holds, and since $\mathbf{x} \neq \vec{a}$, we have

$$\frac{f(\mathbf{x}) - f(\vec{a}) - T(\mathbf{x} - \vec{a})}{\|\mathbf{x} - \vec{a}\|} = \epsilon(\mathbf{x}) \to 0$$

as $\mathbf{x} \to \vec{a}$ and so f is differentiable at the point \vec{a} .

Theorem 6.3 (Chain Rule). Let Ω be a open set in \mathbb{R}^n and $f:\Omega \to \mathbb{R}^m$ and $g:U \to \mathbb{R}^p$, where U is a open set in \mathbb{R}^m with $f(\Omega) \subseteq U$. If f is differentiable at $\vec{a} \in \Omega$ and g is differentiable at $f(\vec{a})$, then $g \circ f$ is differentiable at \vec{a} and

$$D_{(g \circ f)}(\vec{a}) = D_g(f(\vec{a}))D_f(\vec{a}).$$

$$Proof.$$
 TODO

6.1. Partial derivatives.

Definition 6.4 (Directional Derivative). The directional derivative of f at \vec{a} in the direction of a non-zero vector $\vec{u} \in \mathbb{R}^n$, denoted by $D_{\vec{u}}f(\vec{a})$ is defined by,

$$D_{\vec{u}}f(\vec{a}) = \lim_{t \to 0} \frac{f(\vec{a} + t\vec{u}) - f(\vec{a})}{t},$$

whenever the limit exists.

Theorem 6.5. If $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is differentiable at $\vec{a} \in \Omega$, then for any direction non-zero $\vec{u} \neq 0$, $\vec{u} \in \mathbb{R}^n$, $D_{\vec{u}}f(\vec{a})$ exists and

$$D_{\vec{u}}f(\vec{a}) = \langle \nabla f(\vec{a}), \vec{u} \rangle.$$

$$Proof.$$
 TODO

7. Leibniz Rule

We begin by generalising the product rule in the following ways and building a general result about integration by parts for vector valued functions called the *Leibniz Rule*.

Proposition 7.1. Suppose that $f, g \in C^n(\mathbb{R})$ are n-times differentiable. Then the n^{th} derivative of the product $f \cdot g$ is given by,

$$(f \cdot g)^n = \sum_{k=0}^{\infty} \binom{n}{k} f^k g^{(n-k)}.$$

Proof. TODO.. by mathematical induction..

Even more generally we can show that the product rule in this way holds for vector valued functions.

Proposition 7.2. Suppose that the vector valued functions $\vec{f}, \vec{g} \in C^k(\mathbb{R}^n)$. Then the k^{th} partial derivative of the product $\vec{f} \cdot \vec{g}$ is given by,

$$\delta^{\alpha}(\vec{f} \cdot \vec{g}) = \sum_{\beta:\beta < \alpha} {\alpha \choose \beta} (\delta^{(\alpha-\beta)} \vec{f}) (\delta^{\beta} \vec{g})$$

where we make use of the multi-index notation that, $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ and $\beta = (\beta_1, \beta_2, \dots, \beta_n)$ are both n-tuples i.e., $\alpha, \beta \in \mathbb{N}_0^n$.

$$Proof.$$
 TODO..

8. Mean Value Theorem

Theorem 8.1. Suppose $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ is some differentiable function on the open convex set Ω . Let $\vec{a}, \vec{b} \in \Omega$ and $\gamma(\lambda) = \vec{a} + \lambda(\vec{b} - \vec{a})$ be the line segment joining points \vec{a} and \vec{b} . Then there exists some point \vec{c} on the line $\gamma(\lambda)$ such that,

$$f(\vec{b}) - f(\vec{a}) = \langle \nabla f(\vec{c}), (\vec{b} - \vec{a}) \rangle.$$

Proof. TODO

Corollary. Let $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ be a differentiable function on a convex subset $K \subset \Omega$. If $\|\nabla f(x)\| \leq M \, \forall x \in K$, then

$$|f(x) - f(y)| \le M ||x - y||$$

for all $x, y \in K$.

Corollary. Let f be a differentiable function on an open convex set $\Omega \subseteq \mathbb{R}^n$. If $\nabla f(x) = 0 \forall x \in \Omega$, then f is constant on Ω .

Proof. Let
$$x, y \in \Omega : x \neq y$$
. Then we have $|f(x) - f(y)| = 0$. That is, $f(x) = f(y)$.

9. Taylor Series

Theorem 9.1 (Taylor Series). Let $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ be $f \in C^2(\Omega)$ on the open convex set Ω and $a, x \in \Omega$. Then there exists a point c on the line segment joining a and x, such that

$$f(x) = f(a) + \langle \nabla f(a), (x-a) \rangle + \frac{1}{2!} \langle H_f(c)(x-a), (x-a) \rangle.$$

10. Constrain extrema - Lagrange multipliers

Theorem 10.1 (Lagrange multiplier). Let $f, g : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$ be $C^1(\Omega)$ in the open set Ω . Let $S = \{x \in \Omega : g(x) = 0\}$ and $s \in S$ with $\nabla g(s) \neq 0$. If the restriction $f|_S$ of f to S takes on an extreme value at s, then there exists some $\lambda \in \mathbb{R}$ such that

$$\nabla f(s) = \lambda \nabla g(s).$$

Example 10.2. ..

8

11. Cylindrical Coordinates

Definition 11.1 (Cylindrical Coordinates). The *cylindrical coordinates* are defined to be the polar map with z-coordinate. That is,

$$\phi(r, \theta, z) = \begin{pmatrix} r\cos(\theta), & r\sin(\theta), & z \end{pmatrix}$$

12. Green's Theorem

Green's theorem is a two dimensional analog of the Fundamental Theorem of Calculus.

Theorem 12.1. Let $\mathbf{F}(x,y) = (F(x,y), G(x,y))$ be, $C^1(\bar{\Omega})$, a continuous vector field on an open set containing domain $\Omega \subseteq \mathbb{R}^2$ whose boundary curve, $C = \partial \Omega$, is closed and piecewise smooth. Then, by considering $\partial \Omega$ to have positive, or counterclockwise, orientation, we have:

$$\iint_{\Omega} \left(\frac{\partial G(x,y)}{\partial x} - \frac{\partial F(x,y)}{\partial y} \right) dy dx = \int_{\partial \Omega} \left(F(x,y) dx + G(x,y) dy \right).$$

Proof.

First suppose Ω is an elementary region of the form:

$$\Omega = \{(x, y) : a \le x \le b, \phi_1(x) \le y \le \psi_1(x)\}$$
 (x-simple)

where $\phi_1, \psi_1 \in \mathcal{C}([a,b])$ and

$$\Omega = \{(x, y) : c \le y \le d, \phi_2(y) \le x \le \psi_2(y)\}$$
 (y-simple)

where $\phi_2, \psi_2 \in \mathcal{C}([c,d])$.

Since $\mathbf{F}(x,y) \in \mathcal{C}^1(\bar{\Omega})$ then $F(x,y) \in \mathcal{C}^1(\bar{\Omega})$. Hence we first show,

$$-\iint_{\Omega} \frac{\partial F}{\partial y} dy dx = \int_{\partial \Omega} F(x, y) dx.$$

By writing Ω as x-simple we see that,

$$\int_{\partial\Omega} F(x,y) dx = \int_{C_1} F dx + \underbrace{\int_{C_2} F dx}_{\dagger} + \int_{C_3} F dx + \underbrace{\int_{C_4} F dx}_{\dagger}.$$

Observe[†] that the curves C_2 , C_4 are the vertical line portions x = a and x = b respectively. So any parametrisation x'(t) = 0 of constant terms gives us dx = 0 and so the sums are zero measure.

Consider also the parameterisations $\gamma_1(x) = (x, \phi_1(x))$ and $\gamma_3(x) = (x, \psi_1(x))$ for the curves C_1 and C_3 respectively with $x \in [a, b]$. Since C_3 has negative orientation, we have

$$\int_{\partial\Omega} F(x,y) dx = \int_a^b \left(F(x,\phi_1(x)) - F(x,\psi_1(x)) \right) dx.$$

Holding x fixed we have, by the Fundamental Theorem of Calculus, the following

$$\iint_{\Omega} \frac{\partial F(x,y)}{\partial y} dy dx = \int_{a}^{b} \left(\int_{\phi_{1}(x)}^{\psi_{1}(x)} \frac{\partial F(x,y)}{\partial y} dy \right) dx$$

and so,

$$\iint_{\Omega} \frac{\partial F(x,y)}{\partial y} dy dx = -\int_{\partial \Omega} F(x,y) dx. \tag{1}$$

Similarly, expressing Ω as a y-simple region, we obtain,

$$\iint_{\Omega} \frac{\partial G(x,y)}{\partial x} dy dx = \int_{\partial \Omega} G(x,y) dy.$$
 (2)

By adding (1) and (2) together we have the required result in this simple case.

13. Fourier Transform

Definition 13.1 (Fourier transform). Let $f: \mathbb{R} \to \mathbb{C}$ be an absolutely integrable function on \mathbb{R} . The Fourier transform $\mathcal{F}(f) \equiv \hat{f}$ of f is defined by the integral

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x)e^{-i\omega x} dx.$$

Definition 13.2 (Characteristic function).

$$\chi_{(-a,a)}(x) \doteq \begin{cases} 1 & \text{if } |x| < a, \\ 0 & \text{if } |x| \ge a. \end{cases}$$

Example 13.3. Suppose $f(x) = \chi_{(-1,1)}(x)$. Find the Fourier transform $\hat{f}(\omega)$.

$$\begin{split} \hat{f}(\omega) &= \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-i\omega x} \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \chi_{(-1,1)}(x) e^{-i\omega x} \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-i\omega x} \mathrm{d}x \\ &= \frac{1}{\sqrt{2\pi}} \left\{ \frac{e^{-i\omega x}}{-i\omega} \right\}_{-1}^{1} \\ &= \frac{2}{\sqrt{2\pi}} \left\{ \frac{e^{-i\omega x}}{2\omega i} \right\}_{1}^{-1} \\ &= \sqrt{\frac{2}{\pi}} \left(\frac{\sin(\omega)}{\omega} \right). \end{split}$$

