

#### Netzwerktechnik und IT-Netze

Bachelor Angewandte Informatik Wintersemester 2018/2019

Prof. Dr. Andreas Fischer andreas.fischer@th-deg.de

#### Inhalt

Die Netzwerkschicht

## DIE NETZWERKSCHICHT

#### Überblick

- ► Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ► Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

#### DIE NETZWERKSCHICHT

#### Überblick

- Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ► Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

### Aufgaben der Netzwerkschicht

- Segmente von Sender an Empfänger übertragen
  - ► Sender: Segmente in Datagramme packen und versenden
  - Empfänger: Segmente an Transportschicht weitergeben
- ► Weiterleitung von Paketen
  - Datagramme von Rechner zu Rechner weitergeben
  - Mittels Header-Infos nächsten Hop bestimmen



#### Paketorientierte Netzwerke

- Kein Verbindungsaufbau auf Netzwerkschicht
- Router kennen Zustand der Ende-zu-Ende Kommunikation nicht
- ► Pakete werden individuell nur anhand der Zieladresse weitergeleitet



## DIE NETZWERKSCHICHT

#### Überblick

- ► Aufgaben der Netzwerkschicht
- ► Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ► Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

# Das Internet Protokoll (IP)

### Aufgaben:

- ► Adressierung von Rechnern
- ► Verwaltungsinformationen für Pakete
  - Quality of Service (QoS): Sollen Pakete bevorzugt behandelt werden?
  - ► Fragmentierung: Müssen Pakete aufgeteilt werden?
  - ► Time to live (TTL): Wann soll ein Paket verworfen werden?
- ► Interoperabilität zwischen unterschiedlichen physikalischen Netzwerken

## Umsetzung:

- ► Paket wird zum Datagramm: Ein weiterer Header
- ► Abstraktionsschicht oberhalb der Vermittlungsschicht

#### Entwicklung des Internet Protokolls

- 1974 TCP als allgemeines Übertragungsprotokoll
  - ▶ Übernimmt Aufgaben der Netzwerk- und der Transportschicht
  - ► 20 Bit Adressen (4 Bit Netzwerk + 16 Bit Host)
- 1978 Aufteilung in Transportprotokoll und Netzwerkprotokoll: TCP/IP
  - ▶ IP (ohne Version)  $\rightarrow$  IPv2  $\rightarrow$  IPv4
  - ► 32 Bit Adressen (8 Bit Netzwerk + 24 Bit Host)
- 1979 IPv5: Internet Stream Protocol (kaum genutzt)
- 1998 IPv6: Draft Standard
- 2017 IPv6: Verbindlicher Standard

# Aufbau eines IPv4 Datagramms



## Aufbau eines IPv6 Datagramms



# Wichtige Änderungen in IPv6

## Mehr Adressen verfügbar

- ▶ 32 Bit:  $2^{32} \simeq 4 \cdot 10^9$  (Weltbevölkerung:  $7, 6 \cdot 10^9$ )
- ▶ 128 Bit:  $2^{128} \simeq 3 \cdot 10^{38}$  (Erdoberfläche:  $5.1 \cdot 10^{20} mm^2$ )

## Schnellere Verarbeitung

- ► Keine Checksumme mehr (muss an jedem Router berechnet werden)
- ► Feste Headerlänge

#### Aufräumen

- ► Fragmentierung fällt weg (Aufgabe der Endpunkte)
- ► Flow labels statt vordefinierter Klassen

## IPv6 als Beispiel für die Verknöcherung des Internets

- ► IPv6 bereits seit 20 (!) Jahren spezifiziert
- ► Henne-Ei Problem bei der Umsetzung:

ISP: "Die Anwender nutzen es nicht"

Anwender: "Mein ISP unterstützt es nicht"

- ► Änderung am Netzwerkprotokoll zieht viele weitere Änderungen nach sich
  - ► DNS: Neue AAAA Einträge
  - ► Ping, Traceroute: Neue Implementierungen
  - ► Lokale Software
    - ► Jede Serversoftware muss eigene IP Adresse kennen/parsen
    - ► Jedes UDP Programm muss IP Adresse des Kommunikationspartners kennen
  - ► TCP und UDP in Details stark mit IPv4 verbandelt

Lösung???

# NETWORK ADDRESS TRANSLATION (NAT)

#### Idee:

- ► Drei Adressbereiche sind privat deklariert:
  - ► 10.0.0.0/8
  - ► 172.16.0.0/12
  - **▶** 192.168.0.0/16
- ► 192.168.0.0/16

- Dürfen mehrfach vergeben werden
- Allerdings nicht von extern erreichbar
- ► Ein Router ("NAT-Box") könnte als "Vermittler" agieren und die Kommunikation mit der Aussenwelt organisieren

## Umsetzung:

- ► Intern: Privater IP Adressbereich
- ► Extern: Eine IP Adresse für die NAT-Box
- ► NAT-Box ersetzt IP Adresse bei rallen Paketen technik und IT-Netze | 13/68

## NAT: Problem



## NAT: Problem



## NAT: Problem



#### NAT: Lösung

#### Die NAT-Box muss Antworten zuordnen können

- ► Internes Mapping notwendig: Antwort *X* gehört zu Host *A*
- ▶ Die Information muss in der Antwort stecken ...
  - ► ...ohne das Protokoll zu verändern (sonst: IPv6)
  - ...ohne Beteiligung des Servers (sonst nicht mehr transparent)

## Umsetzung: Verletzung des Schichtenmodells

- ▶ Daten sind überwiegend entweder TCP oder UDP
- ► TCP und UDP Ports sind frei wählbar
- ► Router ersetzt Quellport durch zufälligen eigenen Port
- ▶ Internes Mapping: Port  $\rightarrow$  lokaler Host

#### NAT: Lösung

#### Die NAT-Box muss Antworten zuordnen können

- ► Internes Mapping notwendig: Antwort *X* gehört zu Host *A*
- ▶ Die Information muss in der Antwort stecken ...
  - ► ...ohne das Protokoll zu verändern (sonst: IPv6)
  - ...ohne Beteiligung des Servers (sonst nicht mehr transparent)

## Umsetzung: Verletzung des Schichtenmodells

- Daten sind überwiegend entweder TCP oder UDP
- ► TCP und UDP Ports sind frei wählbar
- ► Router ersetzt Quellport durch zufälligen eigenen Port
- ▶ Internes Mapping: Port  $\rightarrow$  lokaler Host

### DIE NETZWERKSCHICHT

#### Überblick

- Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ▶ Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

#### IP Adressen

## Eine IP Adresse für jedes Netzwerkinterface

- ► Interface: "Ende eines Links"
  - ► Endgeräte haben oft mehrere Interfaces
  - Router haben immer mehrere Interfaces
- ► IP adressiert nicht den Rechner sondern das Interface
- ► Adresslänge und -notation abhängig von v4/v6

IPv4: 223.1.1.1

IPv6: fd9e:21a7:a92c::1



223.1.1.1: 32 Bit Adresse:
11011111 00000001 00000001 00000001
223 1 1 1

fd9e:21a7:a92c::1: 128 Bit Adresse:

fd 9 e..

### IP Adressen: Notation

#### IPv4 Adressen

- ▶ 32 Bit = 4 Byte
- ► "Dotted decimal notation": A.B.C.D

#### IPv6 Adressen

- ► 128 Bit = 16 Byte
- ► Notation als Hexadezimalzahlen (je 2 Byte): fd9e:21a7:a92c:0:0:0:0:1
- ▶ 0-Sequenzen dürfen *einmal* durch "::" abgekürzt werden: fd9e:21a7:a92c:0:0:0:0:1 → fd9e:21a7:a92c::1

```
1111 1101 1001 1110 ...
```

#### SUBNETZE

## Topologische Information

- ▶ In welchem Teil des Internets befindet man sich?
  - Adresse nicht nur für Rechner, sondern auch für Netze
  - Ursprünglich: Explizit ausgewiesen (8Bit/24Bit)
  - ► Heute: Dynamischer Anteil der IP Adresse
- ► Subnetz: Kleinstes Netzwerk (atomar)
  - Keine weiteren Router dazwischen
  - Rechner haben "ähnliche" IP Adressen



Dieses Netzwerk enthält drei Subnetze

### Adressierung von Netzwerken: CIDR

## Classless Inter-Domain Routing (CIDR):

- Vorderer Teil der Adresse spezifiziert das Netzwerk
- ► Angabe des Netzwerks durch Netzwerkmaske
  - ► Welche Bits adressieren das Netzwerk?
  - ► Entweder als Bytes: 255.255.255.0
  - ► Oder als Bitanzahl: /24
- ► Hierarchische Organisation von Netzwerken
  - ► Ein /16 Netz kann mehrere /24 Netze enthalten
  - ► Hohe Flexibilität gegeben

Beispiel: 200.23.16.0/23 (IPv6 äquivalent)



### IP Adressvergabe

#### Problem: Wie erhält man eine Adresse?

- ► Adressen müssen weltweit eindeutig sein (sonst funktioniert die Zustellung nicht)
- ► Adresse sollte topologische Information beinhalten
  - ► Hinweis: Welcher Teil des Internets?
  - Sonst muss jede Adresse speziell behandelt werden

## Zwei Varianten der Adressvergabe:

- ► Statisch vom Administrator konfiguriert
  - → Gängig für Server mit festen Adressen
- ► Dynamisch per DHCP erhalten
  - → Gängig für Clients mit häufig wechselnden Adressen

## Das Dynamic Host Configuration Protocol (DHCP)

Ziel: Rechner erhält dynamisch Adresse aus Adresspool zugewiesen

- ► Keine Interaktion durch Menschen notwendig
- ► Mehr Clients als Adressen möglich
  - Voraussetzung: Nicht alle gleichzeitig aktiv
  - ► Unterstützt Mobilität: eine Adresse pro Netz

## DHCP Überblick:

- 1. Hosts senden "DHCP discover" an gesamtes Subnetz (Broadcast)
- 2. DHCP Server im Subnetz antwortet mit "DHCP offer"
- 3. Host bittet um IP Adresse mit "DHCP request"
- 4. DHCP Server bestätigt mit "DHCP ACK"

## **DHCP Szenario**



#### DHCP Ablauf



## DHCP: NICHT NUR IP ADRESSEN

#### Problem:

- Neuer Client benötigt viele Informationen um kommunizieren zu können
- ► Je ein eigenes Protokoll wäre sinnlos

# Über DHCP verfügbare Informationen

- ► IP Adresse
- ► Netzwerkadresse (Netzwerkmaske)
- ► Default Gateway (erster Router)
- ► Lokaler DNS Server
- ▶ ..

### Adressvergabe für Netzwerke

#### Problem:

- ▶ Woher kennt der Administrator die richtigen Adressen?
- ▶ Woher kennt der DHCP Server den richtigen Adresspool?

## Antwort: Vom ISP zugewiesen

| ISP's block                                        | 11001000 | 00010111     | <u>0001</u> 0000 | 00000000 | 200.23.16.0/20                                     |
|----------------------------------------------------|----------|--------------|------------------|----------|----------------------------------------------------|
| Organization 0<br>Organization 1<br>Organization 2 | 11001000 | 00010111     | <u>0001001</u> 0 |          | 200.23.16.0/23<br>200.23.18.0/23<br>200.23.20.0/23 |
| <br>Organization 7                                 | 11001000 | <br>00010111 | <u>0001111</u> 0 |          | 200.23.30.0/23                                     |

## HIERARCHISCHE ADRESSIERUNG

- ► Hierarchische Adressierung ermöglicht effizientes Routing
- ► Logisches Adressschema entspricht organisatorischer Aufteilung



### HIERARCHISCHE ADRESSIERUNG: SPEZIELLERE ROUTEN

- ► Problem: Organisationsschema kann sich ändern
- ► Lösung: Speziellere Route "gewinnt" (Longest-Prefix)



## DIE NETZWERKSCHICHT

#### Überblick

- Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ▶ Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

#### Endgeräte vs. Router

## Endgeräte

- ► Nehmen Daten von der Transportschicht entgegen
- ► Müssen Pakete mit Adressinformation versehen
- Müssen Pakete empfangen, dekodieren und Daten an die Transportschicht weiterreichen

#### Router

- Reichen Pakete von Gerät zu Gerät weiter
- ► Tauschen untereinander Informationen über verfügbare Links aus
- Ermitteln den aktuell "besten" Pfad durch das Netzwerk

### Die zwei Kernfunktionen eines Routers

## Routing

- ▶ Beste Route zwischen zwei Punkten bestimmen
- ► Regeln für Weiterleitung aufstellen
- Algorithmus, der Tabelle mit Regeln erstellt (Forwarding table)

## Forwarding

- ► Eingehende Pakete analysieren
- ► An richtigen Ausgang weiterleiten
- ► Nutzt Forwarding table um richtigen Ausgang zu ermitteln

### Zusammenspiel zwischen Routing und Forwarding



#### DIE FORWARDING TABELLE

#### Aufbau

Drei Informationen: Zielnetzwerk, Netzwerkinterface, Nächster Router

| Zielnetzwerk     | Interface  | Router        |
|------------------|------------|---------------|
| 192.168.178.0/24 | Ethernet 1 | 0.0.0.0       |
| 195.37.0.0/16    | Ethernet 1 | 192.168.178.1 |

# Longest-Prefix-Matching

Die "genaueste" Route wird verwendet

| Zielnetzwerk    | Interface  | Router        |  |
|-----------------|------------|---------------|--|
| 195.37.0.0/16   | Ethernet 1 | 192.168.178.1 |  |
| 195.37.242.0/24 | VPN 1      | 10.0.0.1      |  |

#### DIE ARCHITEKTUR EINES ROUTERS

## Trennung von Routing und Forwarding

- ► Control Plane: Pfadfindung mit Algorithmen
- ► Data Plane: Weiterleitung von Paketen



#### INPUT PORTS



- Physische Schicht + Vermittlungsschicht greifen Paket an der Leitung ab
- ▶ Paket wird lokal gepuffert
- ► Entscheidung über Weiterleitung wird hier getroffen
  - ► Match: Welche Regel der Forwarding Tabelle trifft zu?
  - ► Action: Über die Switch Fabric an den richtigen Output Port

#### SWITCH FABRICS

- Pakete müssen von Input zu Output Port weitergeleitet werden
- ► Transfer muss zügig erfolgen
  - ► Oft ein vielfaches der Datenrate einer Leitungen
  - ▶ Bei N Leitungen mit Rate R:  $N \cdot R$  wünschenswert
- ► Switch fabric ist eigenes Netzwerk innerhalb eines Routers
- Drei Arten von Switch fabrics: Speicher; Bus; Crossbar



#### OUTPUT PORTS



- ► Pakete müssen in Warteschlange gepuffert werden
  - Warteschlange wächst wenn Pakete schneller ankommen als sie gesendet werden
  - ► Hier können Pakete verloren gehen!
- ► Auswahlstrategie entscheidet, welches Paket als nächstes gesendet wird
  - ► FIFO: First in, first out
  - ► Priority-Queueing: Bevorzugte Warteschlange

## DIE NETZWERKSCHICHT

#### Überblick

- Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- Routing Protokolle
  - ► Link-State: OSPF
  - ▶ Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

## Das Netzwerk als Graph



- Gewichteter Graph G = (V, E), bestehend aus
  - ▶ Knoten  $v \in V$
  - ► Kanten  $e \in E \subseteq V \times V$
  - ► Kantengewichtsfunktion  $c: E \to \mathbb{R}$
- ► Kosten eines Pfades: Summe der Kantengewichte
- ► Was ist der "billigste" Pfad zwischen zwei Punkten?

#### ROUTING PROTOKOLLE

Frage: Wie wird die Forwarding Tabelle gefüllt?

Option 1: Vom Netzwerkadministrator per Hand

 $\rightarrow$  Kommando route

Option 2: Von einem Algorithmus

- ► Graph-Problem: Kürzeste Pfade bestimmen
- Verteilte Systeme: Information muss konsistent sein → Protokoll notwendig

# Zwei Varianten (plus eine):

- ► Innerhalb des Provider-Netzwerks
  - ► Mit globaler Information: Link-State, OSPF
  - ► Mit lokaler Information: Distance-Vector, RIP
- ► Zwischen Providern: Hierarchisch, BGP

## DIE NETZWERKSCHICHT

#### Überblick

- Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ► Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

#### LINK-STATE ROUTING

## Konzept:

- Netzwerktopologie ist allen Routern vollständig bekannt
- ► Jeder Router berechnet lokal kürzeste Wege
  - ► Typisches Graph-Problem
  - ► Algorithmus: z.B. Dijkstra, Floyd-Warshall, Bellman-Ford

## Umsetzung: Open Shortest Path First (OSPF)

- ► Link-State Protokoll
- ► Jeder Router verwaltet eigene Kopie der Topologie
- ► Lokale Verbindungsinformationen werden an alle Router gesendet
- ► Kürzeste Wege werden mit Dijkstra berechnet

## DER DIJKSTRA-ALGORITHMUS

- ► Pfade mit geringsten Kosten zu allen anderen Knoten finden
- Benötigt zwei Funktionen
  - Kosten

$$c:V\times V\to\mathbb{R}$$

► Distanz

 $d:V\to\mathbb{R}\cup\infty$ 

► Iterativ: In jedem
Schritt ein neuer,
kürzester Weg bekannt

```
Data: Vertices V
Data: V' = \{sel f\}
for each v \in V do
    if v adajcent to self then
         d(v) = c(u, v);
    else
         d(v) = \infty;
    end
end
while |V'| < |V| do
    Find w \notin V' : d(w) is minimal;
    V' := V' \cup \{w\};
    for each v:v adjacent to w;v \not\in V'
      do
         d(v) =
          \min(d(v), d(w) + c(w, v));
    end
end
```

# DER DIJKSTRA-ALGORITHMUS: EIN BEISPIEL

|     |        | D( <b>v</b> ) | D(w)  | D(x) | D(y)   | D(z)   |
|-----|--------|---------------|-------|------|--------|--------|
| Ste | o N'   | p(v)          | p(w)  | p(x) | p(y)   | p(z)   |
| 0   | u      | 7,u           | (3,u) | 5,u  | ∞      | ∞      |
| 1   | uw     | 6,w           |       | (5,u | ) 11,w | ∞      |
| 2 3 | uwx    | 6,w           |       |      | 11,W   | 14,x   |
| 3   | uwxv   |               |       |      | (10,V) | 14,x   |
| 4   | uwxvy  |               |       |      |        | (12,y) |
| 5   | uwxvyz |               |       |      |        |        |
|     |        |               |       |      |        |        |



- Kürzeste Wege werden rekonstruiert in dem man sich den Vorgänger merkt
- ► Falls Minimum in einem Schritt nicht eindeutig: Zufällige Wahl

## DIE NETZWERKSCHICHT

#### Überblick

- Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

#### Dynamische Programmierung

## Bellmans Optimalitätsprinzip:

Wenn eine Lösung insgesamt optimal ist, dann sind auch die Teillösungen aus denen sie zusammengesetzt ist optimal

- ► Sei  $d_x(y)$  der Pfad von x nach y mit den geringsten Kosten
- ightharpoonup Sei Z die Menge der zu x direkt adjazenten Knoten
- ► Dann gilt:  $d_x(y) = \min_{z \in Z} \{c(x, z) + d_z(y)\}$

# Prinzip der dynamischen Programmierung

- ► Konstruiere optimale Teillösungen
- ► Speichere die Teillösungen in einer Tabelle
- ▶ Die optimale Gesamtlösung ergibt sich schließlich aus den Teillösungen

## DISTANCE-VECTOR ALGORITHMUS

### Voraussetzungen:

Ieder Knoten x...

- lacktriangle ...kennt seine Nachbarn Z, sowie die jeweiligen Kosten  $c(x,z);z\in Z$
- ► ... verwaltet einen Vektor der geschätzten Distanzen zu allen anderen Knoten:  $D_x = [D_x(y)]_{y \in V}$
- lacktriangle ... speichert Distanzvektoren seiner Nachbarn  $D_z; z \in Z$

## Vorgehensweise:

Jeder Knoten x...

- lacktriangleright ... sendet regelmäßig seinen Distanzvektor  $D_x$  an alle Nachbarn
- ► ... aktualisiert bei Erhalt eines neuen Distanzvektors seine eigene Abschätzung

  Prof. Fischer | Netzwerktechnik und IT-Netze | 47/68

## DISTANCE-VECTOR SZENARIO

#### node x table



## DISTANCE-VECTOR SZENARIO



## Adaption an Kostenänderungen

## Allgemein:

- ► Nachbarknoten stellen höhere Kosten fest
- Geänderte Distanzvektoren werden durchs Netzwerk verschickt

#### Kosten sinken

- ► Aktualisierung propagiert schnell durchs Netz: "Good news travels fast"
- ► Bereits informierte Knoten werden nicht nocheinmal aktualisiert

# Kosten steigen

- Knoten aktualisieren sich wechselseitig: "Count-to-infinity" Problem
- ► Stabilisierung dauert lange

## COUNT-TO-INFINITY UND POISONED REVERSE

# Das Count-to-Infinity Problem:

- ► Kosten zwischen *x* und *y* steigen deutlich
- ► *y* und *z* verweisen wechselseitig aufeinander
- ► Kosten werden hochgezählt bis Pfad  $y \rightarrow z \rightarrow x$  erkannt wird



#### Poisoned Reverse:

- ► Wenn der Pfad von *y* nach *x* durch *z* führt:
  - ▶ y sendet modifizierten Distanzvektor  $D'_y$  an z
  - ▶ In diesem ist  $D'_{u}(x) = \infty$
  - ▶ Dann löscht z auch seine Route über y
- ► Löst leider das Problem nicht ganz → Warum?

## Das Routing Information Protocol

## Implementierung eines Distance-Vector Protokolls:

- ► Entwickelt 1982
- ► Distanzmetrik: Anzahl an Hops
- ► Nachrichtenaustausch alle 30 Sekunden
- ► Distanzvektoren enthalten bis zu 25 Subnetze (keine Knoten)

# Fehlerbehandlung in RIP:

- ► Falls kein Update nach 180 Sekunden: Link ist tot
- Poisoned Reverse vermeidet Ping-Pong Routen
- ▶ Kleine maximale Distanz: 16 Hops (→ Small-World Argument!)

## DIE NETZWERKSCHICHT

#### Überblick

- Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ▶ Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

## HIERARCHISCHES ROUTING

#### Bisher: Naïve Annahmen

- ► Lauter identische Router
- Eine Organisation ein Netzwerk

#### Tatsächliche Situation:

- ► Internet ist Netzwerk von Netzwerken
- ► Vielzahl Autonomer Systeme (AS)
- ► Provider haben eigene Bedürfnisse:
  - ► Technisch: Eigene Hardware, eigene Protokolle
  - ► Politisch: Vereinbarungen mit anderen Providern

#### VERMASCHTE AUTONOME SYSTEME



- Forwarding-Tabelle von zwei
   Routingalgorithmen befüllt
  - ► Inter-AS Routing
  - ► Intra-AS Routing
- ► AS durch Gateway Router miteinander verbunden
- ► Intra-AS Routing Protokoll kann individuell sein
- ► Inter-AS Routing: BGP

# Das Border Gateway Protocol (BGP)

- ► Standardisiert 1989 in RFC 1105
- ► De-facto Standard für Inter-AS Routing
- ► "Hält das Internet zusammen"
- ► Zwei Teile:
  - eBGP: Externe Kommunikation mit anderen AS: Erreichbarkeit fremder Subnetze
    - iBGP: Propagierung der erhaltenen Information an interne Router
- Ermöglicht einem ISP (und seinen Kunden) die Teilnahme am weltweiten Internet

## DIE NETZWERKSCHICHT

### Überblick

- ► Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ► Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

# Ansätze zur Flexibilisierung der Netzwerkschicht

#### Problem:

- ► Verknöcherung des Internets
- ▶ IP ist so zentral, dass es nicht einfach auszutauschen ist

## Lösungsansätze:

- ► Programmierbare Netzwerke ein verteiltes Betriebssystem für das Netzwerk
- ► Netzwerkoverlays: Peer-to-peer Netze, MPLS
- ► Aktuell: Software-defined Networking & Network Function Virtualization

## DIE NETZWERKSCHICHT

#### Überblick

- Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ► Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - ► Network Function Virtualization

## Software-defined Networking

Trennung von Control Plane und Data Plane

Control Plane: Routing, Erstellen der Forwarding Tabelle

Data Plane: Forwarding, hochspezialisierte Hardware



#### Ziele:

- ► Netzwerkmanagement automatisieren
- ► Programmierbare Netzwerkfunktionalität
- ► Verteilte Funktionalität, aber zentral gewartet

#### ARCHITEKTUR EINES SDN SYSTEMS



<sup>+</sup> indicates one or more instances | \* indicates zero or more instances

#### SDN Komponenten

#### Control Plane: SDN Controller

- Steuert zentral das Routing
- ► Erstellt dynamisch neue Forwardingregeln und verteilt diese an alle betroffenen Netzwerkelemente

## Data Plane: SDN Datapath

- ► Teil eines SDN-fähigen Netzwerkgeräts
- ► Realisiert das Forwarding von Paketen

## Flexibilisierung: SDN Applications

- ► Geben vor, wie neue Forwardingregeln erstellt werden
- ► Ermöglichen es, "das Netzwerk zu programmieren"

## Die beiden zentralen SDN Schnittstellen

#### Northbound Interface

- ► Ermöglicht es, neue Funktionalität über SDN Applications flexibel zu realisieren
- Quasi ein "Plug-in" Mechanismus für das zentrale Netzwerk

### Southbound/Control-Data Plane Interface (CDPI)

- ► Interface über das der Controller den Netzwerkelementen neue Forwardingregeln mitteilt
- Netzwerkelemente leiten unbekannte Pakete an den Controller zur weiteren Verarbeitung

## DAS OPENFLOW PROTOKOLL

- ► Realisiert das Control-Data Plane Interface (CDPI)
  - ► Zugriff auf die Data Plane eines Geräts über das Netzwerk
  - ► Kommunikation über TCP/TLS
- ► Unterscheidet nicht zwischen Switch und Router
  - Verwaltet Netzwerkschnittstellen (Ports) auf jedem Gerät
  - ► Spezifiziert Forwarding-Regeln

# Forwarding bisher:

# OpenFlow Forwarding:

Match: Zielnetz in CIDR
Notation mit

Forwardingtabelle

abgleichen

Action: Weiterleitung an angegebener Netzwerkschnittstelle

Match: Mit beliebigen

Feldern in Paketheadern

(L2-L4) abgleichen

Action: Weiterleiten oder

Weiterverarbeiten oder an Controller

Prof. Fischer | Netzwerktechnik und IT-Netze | 63/68

## DIE NETZWERKSCHICHT

#### Überblick

- ► Aufgaben der Netzwerkschicht
- ▶ Das Internet Protokoll
- ► IP Adressen und Adressvergabe
- ► Funktionsweise eines Routers
- ► Routing Protokolle
  - ► Link-State: OSPF
  - ► Distance Vector: RIP
  - ► Hierarchisch: BGP
- ► Flexibilisierung der Netzwerkschicht
  - ► Software-defined Networking
  - Network Function Virtualization

#### Network Function Virtualization

- ► Initiative von Telekommunikationsunternehmen
- Virtualisierung als Einsparmöglichkeit
  - ► Mehrere Netzwerkfunktionen auf einem physischen Gerät
  - ► Ermöglicht Skalierbarkeit
  - ► Ermöglicht Energieeffizienz
- ► Beispiele für Netzwerkfunktionen:
  - ► Sicherheit: Firewall, Deep Packet Inspection, Intrusion Detection/Prevention
  - ► Datenverkehrsabrechnung (z.B. Mobilfunk)
  - ► Caching, Datenkomprimierung
- Management und Orchestrierung der Services notwendig
  - ► MANO: Management and Orchestration
  - Analog zu Cloud-Computing

## DIE NFV MANO ARCHITEKTUR



### Service Function Chains

## Beobachtung:

- ► Netzwerkfunktionen stehen nicht isoliert da
- ► Komplexe Dienste setzen sich aus atomaren Diensten zusammen
- ▶ Dienste müssen entsprechend verknüpft werden

## Beispiel:

- ► Funktionalität: Verschlüsselung, Komprimierung, Virenscan
- ► Netzwerkfunktionen sind frei im Netzwerk platzierbar (unter Beachtung der verfügbaren Ressourcen)
- ► Aber: Reihenfolge spielt eine wichtige Rolle! → Warum?

#### ZUSAMMENFASSUNG UND AUSBLICK

## Netzwerkschicht kennengelernt

- Aufgaben der Netzwerkschicht: Routing, Forwarding
- ► Funktionsweise des IP Protokolls
- ► Funktionsweise von Routingprotokollen

#### Was bleibt?

- ► "Reinschnuppern" in die Vermittlungsschicht
- ▶ Übergreifendes Thema: Security



Prof. Fischer | Netzwerktechnik und IT-Netze | 68/68