TL493, TL494, TL495 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

D2535, JANUARY 1983-REVISED OCTOBER 1988

- Complete PWM Power Control Circuitry
- Uncommitted Outputs for 200-mA Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead-Time Provides Control over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply, 5%
- Circuit Architecture Allows Easy Synchronization
- TL493 has Output Current-Limit Sensing
- TL495 has On-Chip 39-V Zener and External Control of Output Steering

description

The TL493, TL494, and TL495 each incorporate on a single monolithic chip all the functions required in the construction of a pulse-width-modulation control circuit. Designed primarily for power supply control, these devices offer the systems engineer the flexibility to tailor the power supply control circuitry to his application.

The TL493 contains an error amplifier, currentlimiting amplifier, an on-chip adjustable oscillator, a dead-time control comparator, pulsesteering control flip-flop, a 5-volt, 5%-precision regulator, and output-control circuits.

The error amplifier exhibits a common-mode voltage range from -0.3 volts to $V_{CC}-2$ volts. The current-limit amplifier exhibits a common-mode voltage range from -0.3 volts to 3 volts with an offset voltage of approximately 80 millivolts in series with the inverting input to ease circuit design requirements. The dead-time control comparator has a fixed offset that provides approximately 5% dead time when externally altered. The on-chip oscillator may be bypassed by terminating R_T (pin 6) to the reference output and providing a sawtooth input to C_T (pin 5), or it may be used to drive the common circuits in synchronous multiple-rail power supplies.

PRODUCTION DATA documents contain information

rhobot flow as A securion in the manners contain information current as of publication dete. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

TL493C . . . D OR N PACKAGE (TOP VIEW)

TL494I, TL494C . . . D, J, OR N PACKAGE (TOP VIEW)

TL495C . . . N PACKAGE

DEVICE TYPES, SUFFIX VERSIONS, AND PACKAGES

ì		TL493	TL494	TL495
	TL49-1	*	D,J,N	*
	TL49-C	D,N	D,J,N	N

^{*}These combinations are not defined by this data sheet.

FUNCTION TABLE

	INPUTS	
OUTPUT	STEERING INPUT (TL495 only)	OUTPUT FUNCTION
V ₁ = 0	Open	Single-ended or parallel output
VI = Vref	Open	Normal push-pull operation
VI = Vref	$V_I = 0$	PWM Output at Q1
VI = Vref	$V_I = V_{ref}$	PWM Output at Q2

description (continued)

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. Each device provides for push-pull or single-ended output operation, which may be selected through the output-control function. The architecture of these devices prohibits the possibility of either output being pulsed twice during push-pull operation.

The TL493 and TL494 are similar except that an additional error amplifier is included in the TL494 instead of a current-limiting amplifier. The TL495 provides the identical functions found in the TL494. In addition, it contains an on-chip 39-volt diode for high-voltage applications where VCC is greater than 40 volts, and an output-steering control that overrides the internal control of the pulse-steering flip-flop.

The TL494I is characterized for operation from $-25\,^{\circ}\text{C}$ to $85\,^{\circ}\text{C}$. The TL493C, TL494C, and TL495C are characterized for operation from $0\,^{\circ}\text{C}$ to $70\,^{\circ}\text{C}$.

functional block diagram

TL493, TL494, TL495 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	TL494I	TL493C TL494C	TL495C	UNIT	
Supply voltage, VCC (see Note 1)	41	41	41	٧	
Amplifier input voltage	V _{CC} +0.3	V _{CC} +0.3	V _{CC} +0.3	V	
Collector output voltage	41	41	41	V	
Collector output current	250	250	250	mA	
Continuous total dissipation	Se	See Dissipation Rating Table			
Operating free-air temperature range	- 25 to 85	0 to 70	0 to 70	°C	
Storage temperature range	-65 to 150	-65 to 150	-65 to 150	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J package	300	300	300	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or N package	260	260	260	°C	

NOTE 1: All voltage values, except differential voltages, are with respect to the network ground terminal.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR	DERATE ABOVE TA	TA = 70°C POWER RATING	TA = 85°C POWER RATING
D	900	7.6 mW/°C	25 °C	608 mW	494 mW
J	1000	8.2 mW/°C	28 °C	656 mW	533 mW
N	1000	9.2 mW/°C	41 °C	736 mW	598 mW

recommended operating conditions

	Ti	TL494I		TL493C TL494C		
	MIN	MAX	TL495C MIN MAX			
Supply voltage, V _{CC}	7	40	7	40	V	
Amplifier input voltages, V _I	-0.3	V _{CC-2}	-0.3	V _{CC} -2	V	
Collector output voltage, VO		40		40	V	
Collector output current (each transistor)		200		200	mA	
Current into feedback terminal		0.3	-	0.3	mA	
Timing capacitor, C _T	0.47	10 000	0.47	10 000	nF	
Timing resistor, R _T	1.8	500	1.8	500	kΩ	
Oscillator frequency	1	300	1	300	kHz	
Operating free-air temperature, TA	- 25	85	0	70	°C	

electrical characteristics over recommended operating free-air temperature range, VCC = 15 V, f = 10 kHz (unless otherwise noted)

reference section

PARAMETER Output voltage (V _{ref}) Input regulation Output regulation Output voltage change	TEST CONDITIONS [†]	TL4	UNIT		
		MIN	TYP‡	MAX	
Output voltage (Vrof)	IO = 1 mA	4.75	5	5.25	V
	V _{CC} = 7 V to 40 V		2	25	mV
	I _O = 1 to 10 mA		1	15	mV
Output voltage change with temperature	ΔT _A = MIN to MAX		0.2%	1%	
Short-circuit output currents	V _{ref} = 0		35		mA

oscillator section (see Figure 1)

PARAMETER	TEST CONDITIONS [†]	TL493C TL494I, TL494C TL495C	UNIT
		MIN TYP [‡] MAX	
Frequency	$C_T = 0.01 \mu F$, $R_T = 12 k\Omega$	10	kHz
Standard deviation of frequency¶	All values of V_{CC} , C_T , R_T , and T_Δ constant	10%	
Frequency change with voltage	V _{CC} = 7 V to 40 V, T _A = 25 °C	0.1%]
Frequency change with temperature#	$C_T = 0.01 \mu F$, $R_T = 12 k\Omega$, $\Delta T_A = MIN \text{ to MAX}$	1%	

amplifier sections (see Figure 2)

PARAMETE	R	TEST CONDITIONS	MIN	ГҮР‡	MAX	UNIT
	Error			2	10	
Input offset voltage	Current-limit	V _O (pin 3) = 2.5 V		80		m∨
	(TL493 only)					
Input offset current		V _O (pin 3) = 2.5 V		25	250	nA_
Input bias current		V _O (pin 3) = 2.5 V	<u> </u>	0.2	1	μΑ
			-0.3 to			
Common-mode input	Error	V _{CC} = 7 V to 40 V	VCC-2			
voltage range	Current limit		-0.3 to 3			İ
* -	(TL493 only)		0.0 10 0			<u> </u>
	Error	$\Delta V_{O} = 3 \text{ V}, \text{ R}_{L} = 2 \text{ k}\Omega V_{O} = 0.5 \text{ V to } 3.5 \text{ V}$	70	95		
Open-loop voltage	Current-limit			90		dB
amplification	(TL493 only)					<u> </u>
Unity-gain bandwidth		$V_{O} = 0.5 \text{ V to } 3.5 \text{ V}$ R _L = 2 kΩ		800		kHz
	Error		65	80		
Common-mode	Current-limit	$\Delta V_{O} = 40 \text{ V}, \qquad T_{A} = 25 ^{\circ}\text{C}$		70		dB
rejection ratio	(TL493 only)			-70		<u> </u>
Output sink current (pin 3	3)	$V_{ID} = -15 \text{ mV to } -5 \text{ V, } V_{(pin 3)} = 0.7 \text{ V}$	0.3	0.7		mA
Output source current (pi		$V_{ID} = 15 \text{ mV to 5 V}, V_{(pin 3)} = 3.5 \text{ V}$	-2			mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values except for parameter changes with temperature are at T_A = 25 °C.

§ Duration of the short-circuit should not exceed one second.

 \P Standard deviation is a measure of the statistical distribution about the mean as derived from the formula σ #Temperature coefficient of timing capacitor and timing resistor not taken into account.

TL493, TL494, TL495 PULSE-WIDTH-MODULATION CONTROL CIRCUITS

electrical characteristics over recommended operating free-air temperature range, VCC = 15 V, f = 10 kHz (unless otherwise noted)

output section

PARAMETER		TEST	CONDITIONS	TL4	TL493C 94I, TL4 TL495C	94C	UNIT
				MIN	TYP	MAX	1
Collector off-state current		$V_{CE} = 40 V$	V _{CC} = 40 V		2	100	μА
Emitter off-state of	current	V _{CC} = V _C = 4	0 V, V _E = 0			- 100	μА
Collector-emitter	Common-emitter	V _E = 0,	IC = 200 mA		1.1	1.3	-
saturation voltage	Emitter-follower	V _C = 15 V,	I _E = -200 mA	+	1.5	2.5	V
Output control inp	out current	V _I = V _{ref}		3.5		mA	

dead-time control-section (see Figure 1)

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
Input bias current (pin 4)	V _I = 0 to 5.25 V	-2	- 10	μА
Maximum duty cycle, each output	V_{I} (pin 4) = 0, C_{T} = 0.1 μ F, R_{T} = 12 $k\Omega$	45%		-
Input threshold voltage (pin 4)	Zero duty cycle	3	3.3	
mpor timeshold voltage (pin 4)	Maximum duty cycle	0		\ \

pwm comparator section (see Figure 1)

PARAMETER	TEST CONDITIONS	MI	V TY	P [†] M	IAX	UNIT
Input threshold voltage (pin 3)	Zero duty cycle			4	4.5	V
Input sink current (pin 3)	$V_{(pin 3)} = 0.7 V$	0.	3 0	1.7		mA

steering control (TL495 only)

PARAMETER	TEST CONDITIONS	MIN MAX	UNIT
Input current	V _I = 0.4 V	- 200	
	V _I = 2.4 V	200	ا ۳ ^۸

zener-diode circuit (TL495 only)

PARAMETER	TEST CONDITIONS	MIN TYPT MAX	UNIT
Breakdown voltage	V _{CC} = 41 V, I _Z = 2 mA	39	v
Sink current	V _{I(pin 15)} = 1 V	0.3	mA

total device

PARAMETER	TEST CONDITIONS		MIN TYPT	MAX	UNIT
Standby supply current	Pin 6 at V _{ref} ,	V _{CC} = 15 V	6	10	mA
	All other inputs and outputs open	V _{CC} = 40 V	9	15	
Average supply current	$V_{I(pin 4)} = 2 V,$	See Figure 1	7.5		mA

switching characteristics, T_A = 25 °C

PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
Output voltage rise time	Common-emitter configuration,		100	200	ns
Output voltage fall time	See Figure 3		25	100	ns
Output voltage rise time	Emitter-follower configuration,	1	100	200	ns
Output voltage fall time	See Figure 4		40	100	ns

 $^{^{\}dagger}$ All typical values except for temperature coefficient are at $T_{A} = 25\,^{\circ}$ C.

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
FIGURE 1. OPERATIONAL TEST CIRCUIT AND WAVEFORMS

PARAMETER MEASUREMENT INFORMATION

FIGURE 2. AMPLIFIER CHARACTERISTICS

FIGURE 3. COMMON-EMITTER CONFIGURATION

FIGURE 4. EMITTER-FOLLOWER CONFIGURATION

TYPICAL CHARACTERISTICS

OSCILLATOR FREQUENCY AND FREQUENCY VARIATION† vs TIMING RESISTANCE

FIGURE 5

AMPLIFIER VOLTAGE AMPLIFICATION

[†]Frequency variation (Δf) is the change in oscillator frequency that occurs over the full temperature range.

