Trig Final (SLTN v617)

- You can use a calculator (like Desmos)
- You should have a unit-circle with special angles and coordinates marked.

Question 1

In the figure below, we see a circle and a central angle that subtends an arc. The radius is 50 meters. The arc length is 58 meters. What is the angle measure in radians?

$$\theta = \frac{L}{r} \qquad r = \frac{L}{\theta} \qquad L = r\theta$$

 $\theta = 1.16$ radians.

Question 2

Consider angles $\frac{-11\pi}{4}$ and $\frac{23\pi}{6}$. For each angle, use a spiral with an arrow head to \mathbf{mark} the angle on a circle below in standard position. Then, find \mathbf{exact} expressions for $\cos\left(\frac{-11\pi}{4}\right)$ and $\sin\left(\frac{23\pi}{6}\right)$ by using a unit circle (provided separately).

Find $cos(-11\pi/4)$

$$\cos(-11\pi/4) = \frac{-\sqrt{2}}{2}$$

Find $sin(23\pi/6)$

$$\sin(23\pi/6) = \frac{-1}{2}$$

Question 3

If $\sin(\theta) = \frac{-63}{65}$, and θ is in quadrant IV, determine an exact value for $\cos(\theta)$.

Ignore any negatives and the quadrant, and draw a right triangle (based on SOHCAHTOA) in standard (quadrant I) orientation.

Solve the Pythagorean Equation

$$A^{2} + 63^{2} = 65^{2}$$

$$A = \sqrt{65^{2} - 63^{2}}$$

$$A = 16$$

Rescale the triangle so the hypotenuse is 1. Reflect the triangle into Quadrant IV in a unit circle.

$$\cos(\theta) = \frac{16}{65}$$

Question 4

A mass-spring system oscillates vertically with a midline at y = -2.24 meters, a frequency of 7.08 Hz, and an amplitude of 8.53 meters. At t = 0, the mass is at the midline and moving down. Write an equation to model the height (y in meters) as a function of time (t in seconds).

Any of these equations would get full credit.

$$y = -8.53\sin(2\pi7.08t) - 2.24$$

or

$$y = -8.53\sin(14.16\pi t) - 2.24$$

or

$$y = -8.53\sin(44.48t) - 2.24$$