Определения к экзамену по Математическому Анализу 3 семестр

Данил Заблоцкий

24 марта 2024 г.

Содержание

1	Фун	нкции многих переменных	5		
	1.1	Градиент функции	5		
	1.2	Производная по направлению вектора	5		
2	Основные теоремы дифференциального исчисления функ-				
	ций	многих переменных	5		
	2.3	Теорема о среднем (аналог теоремы Лагранжа)	5		
	2.4	Достаточное условие дифференцируемости функции	5		
	2.5	Производные высших порядков	6		
	2.6	Теорема о смешанных производных	6		
	2.7	Формула Тейлора	6		
	2.8	Локальный экстремум функции многих переменных	6		
	2.9	Необходимое условие локального экстремума	6		
	2.10	Критическая точка функции	7		
	2.11	Достаточное условие локального экстремума	7		
3	При	иложение теоремы о неявной функции	7		
	_	Диффиоморфизм, гомеоморфизм	7		
	3.13	Касательная плоскость (касательное пространство) к K -мерной			
		поверхности в \mathbb{R}^n	8		
	3.14	Теорема о структуре касательного пространства	8		
	3.15	Задача на условный экстремум, условный экстремум	8		
	3.16	Линия уровня	9		
	3.17	Необходимое условие условного локального экстремума	9		
	3.18	Функция Лагранжа	10		
		Метод Лагранжа	10		
	3.20	Достаточное условие условного локального экстремума	10		
4	Теория рядов				
		Сходимость числового ряда	11		
		Критерий Коши сходимости числовых рядов	11		
		Необходимое условие сходимости числового ряда	11		
		Основная теорема о сходимости положительных рядов	11		

	4.25	Первый признак сравнения	11
		Второй признак сравнения	12
		Третий признак сравнения	12
		Интегральный признак сходимости Коши-Маклорена	12
		Радикальный признак Коши	12
		Признак Даламбера	13
		Признак Раббе	13
		Признак Кумера	13
		Признак Бертрана	13
		Признак Гаусса	14
		Знакопеременные ряды	14
		Абсолютно сходящийся ряд	14
		Условно сходящийся ряд	14
		Знакочередующиеся ряды	14
		Признак Лейбница	15
		Признак Абеля	15
		Признак Дирихле	15
		Теорема Римана о перестановке членов условно сходящегося	
		ряда	15
5		очечная и равномерная сходимость семейства функций	16
		Семейство функций, зависящих от параметров	16
		Сходимость семейства функций по базе	16
		Область сходимости семейства функций по базе	16
		Предельная функция	16
		Поточечная сходимость семейства функций по базе	17
		Равномерная сходимость семейства функций по базе	17
	5.49	Критерий Коши сходимости семейства функций	17
6	Фун	кциональный ряд	17
	-	Функциональный ряд	17
		Поточечная сходимость функциональных рядов	18
		Равномерная сходимость функциональных рядов	18
		Критерий Коши равномерной сходимости ряда	18
		Признак сравнения	18
		Признак Вейерштрасса	18
		Признак Абеля	19
		Признак Дирихле	19
7	Сво	йства предельной функции	19
•		Условия коммутирования двух предельных переходов	19
		Непрерывность предельной функции	20
		Интегрируемость предельной функции	20
		Дифференцируемость предельной функции	20
_	C		٥-
8		пенные ряды	21
		Степенной ряд	21
		Теорема о сходимости степенного ряда	21
		Радиус сходимости степенного ряда (определение)	21
	8.65	Теорема Абеля о сумме степенного ряда	22

	8.66	Ряд Тейлора
	8.67	Разложение элементарных функций в степенной ряд
9	Инт	егралы, зависящие от параметра
	9.68	Собственный интеграл, зависящий от параметра
	9.69	Теорема о непрерывности собственного интеграла, зависящего от параметра
	9.70	Теорема о дифференцировании собственного интеграла, зависящего от параметра
	9.71	Теорема об интегрировании собственного интеграла, зависящего от параметра
	9.72	Несобственный интеграл, зависящий от параметра
	9.73	Равномерная сходимость несобственного интеграла, зависящего от параметра
	0.74	Критерий Коши равномерной сходимости несобственных ин-
	J.14	тегралов, зависящих от параметра
	0.75	Признак Вейерштрасса и его следствие
		Признак Абеля
		-
	9.77	Признак Дирихле
10	-	кциональные свойства несобственного интеграла, зави-
		его от параметра
	10.78	ЗТеорема о предельном переходе под знаком несобственного
	10 =	интеграла, зависящего от параметра
	10.79	ОТеорема о непрерывности несобственного интеграла, завися-
		щего от параметра
	10.80	Теорема о дифференцировании несобственного интеграла, за-
		висящего от параметра
	10.81	Теорема об интегрировании несобственного интеграла, зави-
		сящего от параметра
	10.82	Р. Теорема о перестановке двух несобственных интегралов, за-
		висящих от параметра
11		еровы интегралы
		ВБетта-функция
		ІГамма-функция
		Свойства бетта-функции
	11.86	6Свойства гамма-функции
12	-	тные интегралы. Мера Жордана в \mathbb{R}^n
		⁷ Мера клеточного множества
		ВМножество, измеримое по Жордану
		ЭМера измеримого по Жордану множества
)Множество меры нуль
	12.91	Критерий измеримости множества в \mathbb{R}^n
13	Опр	еделение и свойства кратного интеграла Римана
		2Интегральная сумма Римана
	13.93	ВСуммы Дарбу
	13.94	Кратный интеграл Римана

	13.95Критерий интегрируемости (без доказательства) 13.96Классы интегрируемых функций (2 теоремы, без доказательств)	
	13.97 Теорема о сведении двойного интеграла по прямоугольнику к	32
	повторному интегралу	33
	ласти к повторному интегралу	33
	13.99Формула замены переменной в кратном интеграле (без доказательства)	33
14	Криволинейные и поверхностные интегралы	34
	14.10 Криволинейный интеграл первого рода	34
	14.10Криволинейные интегралы второго рода	34

1 Функции многих переменных

1.1 Градиент функции

Примечание. Если в \mathbb{R}^n зафиксировать ортонормированный базис, то

$$gradf(x_0) = \left\{ \frac{\partial f}{\partial x_1}(x_0), \frac{\partial f}{\partial x_2}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0) \right\}.$$

1.2 Производная по направлению вектора

Определение 2. $\vec{v} \in T\mathbb{R}^n_{x_0}, \ |\vec{v}|=1 \Rightarrow \frac{\partial f}{\partial \vec{v}}(x)$ называется производной по направлению вектора \vec{v} .

2 Основные теоремы дифференциального исчисления функций многих переменных

2.3 Теорема о среднем (аналог теоремы Лагранжа)

Теорема 1. $D \subset \mathbb{R}^n, \ [x;x+h] \subset D, \ f:D \to \mathbb{R}$ диф-ма на (x;x+h) и непрерывна на $[x;x+h] \Rightarrow \exists \xi \in (x;x+h)$:

$$f(x+h)-f(x)=f'(\xi)\cdot h=\frac{\partial f}{\partial x_1}(\xi)\cdot h^1+\frac{\partial f}{\partial x_2}(\xi)\cdot h^2+\ldots+\frac{\partial f}{\partial x_n}(\xi)\cdot h^n.$$

Примечание. $\{1, 2, ..., n\}$ над h – индексы.

2.4 Достаточное условие дифференцируемости функции

Теорема 2. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}$ имеет непрерывные частные производные в каждой окрестности $x \in D \Rightarrow f$ диф-ма в x.

2.5 Производные высших порядков

Определение 3. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}$. Производная по x^j от производной по x^i называется второй производной функции f по x^i, x^j и обозначается

 $\frac{\partial^2 f}{\partial x^i \partial x^j}(x)$ или $f''_{x^i,x^j}(x)$.

2.6 Теорема о смешанных производных

Теорема 3. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}$ имеет в D непрерывные смешанные производные (второго порядка) \Rightarrow производные не зависят от порядка диф-ния.

2.7 Формула Тейлора

Теорема 4. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ f \in C^{(k)}(D, \mathbb{R}), \ [x; x+h] \subset D \Rightarrow$

$$f(x+h) = f(x) + \sum_{i=1}^{k-1} \frac{1}{i!} \left(\frac{\partial f}{\partial x^1} \cdot h^1 + \ldots + \frac{\partial f}{\partial x^n} \cdot h^n \right)^i \cdot f(x) + R^k.$$

Примечание. R^k – остаточный член,

$$R^{k} = \frac{1}{k!} \left(\frac{\partial f}{\partial x^{1}} \cdot h^{1} + \dots + \frac{\partial f}{\partial x^{n}} \cdot h^{n} \right)^{k} \cdot f(x + \xi \cdot h),$$
$$x = (x^{1}, \dots, x^{n}), \quad h = (h^{1}, \dots, h^{n}).$$

2.8 Локальный экстремум функции многих переменных

Определение 4. $X - \text{M}\Pi, f: X \to \mathbb{R}, x_0$ называется точкой локального максимума (минимума), если $\exists U(x_0) \subset X: \ \forall x \in U(x_0)$

$$f(x) \leq f(x_0) \quad (f(x) \geq f(x_0))$$

2.9 Необходимое условие локального экстремума

Теорема 5. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ x_0 \in D$ точка локального экстремума \Rightarrow в $x_0 \ \forall i=\overline{1,n}$

$$\frac{\partial f}{\partial x^i}(x_0) = 0.$$

2.10 Критическая точка функции

Определение 5. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}^k$ диф-ма в $x_0 \in D, \ x_0$ называется критической точкой функции f(x), если:

$$rank\Im f(x_0) < \min(n,k).$$

Примечание. $\Im f(x_0)$ – матрица Якоби функции $f(x_0)$.

2.11 Достаточное условие локального экстремума

Теорема 6. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ f \in C^2(D,\mathbb{R}), \ f$ диф-ма в $x \in D$ – критической точке для f. Тогда, если:

- 1. Q(h) знакоположительна $\Rightarrow x$ лок. min.
- 2. Q(h) знакоотрицательна $\Rightarrow x$ лок. max.
- 3. Q(h) может принимать различные значения $(>0,<0)\Rightarrow$ в x нет экстремума.

3 Приложение теоремы о неявной функции

3.12 Диффиоморфизм, гомеоморфизм

Определение 6. $D,G \subset \mathbb{R}^n, \ f:D \to G$ называтеся диффиоморфизмом класса $C^{(p)},\ p\geqslant 0,$ если:

- 1. f обратимое.
- 2. $f \in C^{(p)}(D, G)$.
- 3. $f^{-1} \in C^{(p)}(D, G)$.

При p = 0 f называется гомеоморфизмом.

Примечание. f – гомеоморфизм, если f – взаимно однозначное отображение и f, f^{-1} – непрерывны.

3.13 Касательная плоскость (касательное пространство) к K-мерной поверхности в \mathbb{R}^n

Определение 7. S-k-мерная поверхность в $\mathbb{R}^n, \ x_0 \in S, \ x=x(t): \mathbb{R}^k \to \mathbb{R}^n$ – параметризация S в окрестности $x_0=x(0)$.

Kacameльным пространством (или плоскостью) к S в точке x_0 называется k-мерная плоскость, заданная уравнением:

$$x = x_0 + x'(0) \cdot t,\tag{1}$$

$$x_0 = (x_0^1, x_0^2, \dots, x_0^n)$$

$$x(t) = \begin{cases} x^1(t^1, \dots, t^k) \\ x^2(t^1, \dots, t^k) \\ \vdots \\ x^n(t^1, \dots, t^k) \end{cases}$$

$$x'(t) = \begin{pmatrix} \frac{\partial x^1}{\partial t^1} & \cdots & \frac{\partial x^1}{\partial t^k} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^n}{\partial t^1} & \cdots & \frac{\partial x^n}{\partial t^k} \end{pmatrix} (t), \quad t = \begin{pmatrix} t^1 \\ t^2 \\ \vdots \\ t^k \end{pmatrix}$$

Таким образом касательное пространство задается системой из 1:

$$\begin{cases} x^1 = x_0^1 + \frac{\partial x^1}{\partial t^1}(0) \cdot t^1 + \dots + \frac{\partial x^1}{\partial t^k}(0) \cdot t^k \\ x^2 = x_0^2 + \frac{\partial x^2}{\partial t^1}(0) \cdot t^1 + \dots + \frac{\partial x^2}{\partial t^k}(0) \cdot t^k \\ \vdots \\ x^n = x_0^n + \frac{\partial x^n}{\partial t^1}(0) \cdot t^1 + \dots + \frac{\partial x^n}{\partial t^k}(0) \cdot t^k \end{cases}$$

3.14 Теорема о структуре касательного пространства

Теорема 7. S-k-мерная поверхность в $\mathbb{R}^n, x_0 \in S \Rightarrow$ касательное пространство TS_{x_0} в x_0 состоит из направляющих векторов касательных к гладким кривым на S, проходящих через x_0 .

3.15 Задача на условный экстремум, условный экстремум

Задача. Пусть требуется найти условный экстремум функции $f:D \to \mathbb{R},\ D \subset \mathbb{R}^n,$ на поверхности S, заданной системой уравнений:

$$\begin{cases} F^{1}(x^{1},\ldots,x^{n})=0\\ \vdots\\ F^{k}(x^{1},\ldots,x^{n})=0 \end{cases}.$$

Составим функцию Лагранжа:

$$L(x,\lambda) = L(x^1,\ldots,x^n,\lambda^1,\ldots,\lambda^k) =$$

$$= f(x^1,\ldots,x^n) + \sum_{i=1}^k \lambda^i \cdot F^i(x^1,\ldots,x^n),$$

 $\lambda = (\lambda^1, \dots, \lambda^k), \ \lambda^i \in \mathbb{R}$ – коэффициент, в общем случае пока неизвестен. Необходимое условие локального экстремума для функции L :

$$\left\{ \begin{array}{l} \frac{\partial L}{\partial x^1} = \frac{\partial f}{\partial x^1} + \sum_{i=1}^k \lambda^i \cdot \frac{\partial F^i}{\partial x^1} = 0 \\ \vdots \\ \frac{\partial L}{\partial x^n} = \frac{\partial f}{\partial x^n} + \sum_{i=1}^k \lambda^i \cdot \frac{\partial F^i}{\partial x^n} = 0 \\ \frac{\partial L}{\partial \lambda^1} = F^1(x^1, \dots, x^n) = 0 \\ \vdots \\ \frac{\partial L}{\partial \lambda^k} = F^k(x^1, \dots, x^n) = 0 \end{array} \right\} \text{ поверхность } S$$

Определение 8. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ S$ — поверхность в $D, \ y$ словным экстремумом функции f называется экстремум функции $f|_S$.

3.16 Линия уровня

Определение 9. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}.$ Линией уровня (с-уровнем) функции f называется множество

$$N_c = \{x \in D \mid f(x) = c\}.$$

3.17 Необходимое условие условного локального экстремума

Теорема 8. Пусть система уровнений

$$\begin{cases}
F^1(x^1, \dots, x^n) = 0 \\
\vdots \\
F^{n-k}(x^1, \dots, x^n) = 0
\end{cases}$$
(3)

задает (n-k)-мерную гладкую поверхность S в $D \subset \mathbb{R}^n$. Функция $f:D \to \mathbb{R}$ — гладкая. Если $x_0 \in S$ является точкой условного ло-кального экстремума для функции f, то существует такой набор чисел $\lambda_1, \lambda_2, \ldots, \lambda_{n-k} \in \mathbb{R}$:

$$gradf(x_0) = \sum_{i=1}^{n-k} \lambda_i \cdot gradF^i(x_0).$$

3.18 Функция Лагранжа

Примечание. $D \subset \mathbb{R}^n, \ f: D \to \mathbb{R}, \ f \in C^{(2)}(D,\mathbb{R}), \ S-(n-k)$ -мерная поверхность в D, заданная системой уравнений:

$$\begin{cases} F^1(x^1, \dots, x^n) = 0 \\ \vdots \\ F^k(x^1, \dots, x^n) = 0 \end{cases}$$

Функция Лагранжа:

$$L(x,\lambda) = f(x^1,\ldots,x^n) + \sum_{i=0}^k \lambda_i \cdot F^i(x^1,\ldots,x^n).$$

Здесь $\lambda_1, \ldots, \lambda_k$ выбираются таким образом, чтобы было выполнено необходимое условие условного экстремума в точке x_0 (2).

$$\begin{cases} \frac{\partial L}{\partial x^i} = 0 \\ \vdots & \Rightarrow x_0, \quad \lambda_1, \dots, \lambda_k. \\ \frac{\partial L}{\partial \lambda_j} = 0 \end{cases}$$

3.19 Метод Лагранжа

Я запутался.

3.20 Достаточное условие условного локального экстремума

Теорема 9. Если при введенных выше условиях квадратичная форма

$$Q(\xi) = \sum_{i,j=1}^{n} \frac{\partial^{2} L}{\partial x^{i} \partial x^{j}}(x_{0}) \cdot \xi^{i} \xi^{j}, \quad (\xi = (\xi^{1}, \dots, \xi^{n}))$$

- 1. Знакоопределена на TS_{x_0} :
 - ullet если Q знакоположительна, то точка x_0 точка условного локального min
 - ullet если Q знакоотрицательна, то точка x_0 точка условного локального max
- 2. Если Q может принимать значения разных знаков, то в точке x_0 условного экстремума не наблюдается.

4 Теория рядов

4.21 Сходимость числового ряда

Определение 10. Ряд (А) сходится, если

$$\exists \lim_{n \to \infty} A_n = A.$$

Тогда сумма бесконечного ряда (А) полагается равной

$$A = \sum_{n=1}^{\infty} a_n.$$

4.22 Критерий Коши сходимости числовых рядов

Теорема 10. Ряд (A) сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n > N, \ \forall p > 0$

$$|a_{n+1} + \ldots + a_{n+p}| < \varepsilon.$$

4.23 Необходимое условие сходимости числового ряда

Теорема 11. Ряд (A) сходится ⇒

$$\lim_{n\to\infty} a_n = 0.$$

4.24 Основная теорема о сходимости положительных рядов

Теорема 12. Положительный ряд (A) сходится $\Leftrightarrow \exists M > 0 : \forall n \ A_n < M$.

4.25 Первый признак сравнения

Теорема 13. Даны $(A),(B), \ \forall n \ a_n,b_n > 0, \ \exists N \in \mathbb{N}: \ \forall n > N \ a_n \leqslant b_n \Rightarrow$

- 1. Из сходимости $(B) \Rightarrow$ сходимость (A).
- 2. Из расходимости $(A) \Rightarrow$ расходимость (B).

Второй признак сравнения

Теорема 14. Даны $(A),(B),\ \forall n\ a_n,b_n>0,\ \lim_{n\to\infty}\frac{a_n}{b_n}=k\in[0,\infty]\Rightarrow$

- 1. При k = ∞ из сходимости $(A) \Rightarrow$ сходимость (B).
- 2. При k = 0 из сходимости $(B) \Rightarrow$ сходимость (A).
- 3. Иначе (A) и (B) ведут себя одинаково.

4.27Третий признак сравнения

Теорема 15. Даны $(A), (B), \ \forall n \ a_n, b_n > 0, \ \exists N \in \mathbb{N} \cup \{0\} : \forall n > N \ \frac{a_{n+1}}{a_n} \leqslant$

- 1. Из сходимости $(B) \Rightarrow$ сходимость (A).
- 2. Из расходимости $(A) \Rightarrow$ расходимость (B).

4.28 Интегральный признак сходимости Коши-Маклорена

Теорема 16. Дан положительный ряд (A), f(x) удовлетворяет усло-

- 1. $f(x): [1; +\infty) \to \mathbb{R}$.
- f(x) непрерывна.
 f(x) монотонна.
- 4. $f(x) = a_n, \forall n \in \mathbb{N}$.

Тогда (A) и $\int_1^\infty f(x)dx$ ведут себя одинаково.

4.29Радикальный признак Коши

Теорема 17. Дан положительный ряд $(A), \overline{\lim_{n \to \infty}} \sqrt[n]{a_n} = q \Rightarrow$

- 1. q < 1 : (A) сходится.
- 2. q > 1 : (A) расходится.
- 3. q = 1 : (A) может как сходиться, так и расходиться.

4.30 Признак Даламбера

Теорема 18. Дан положительный ряд (A), $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=d\Rightarrow$

- 1. d < 1 : (A) сходится.
- 2. d > 1 : (A) расходится.
- 3. d = 1 : (A) может как сходиться, так и расходиться.

4.31 Признак Раббе

Теорема 19. Дан положительный ряд $(A), \lim_{n \to \infty} n \cdot \left(\frac{a_n}{a_{n+1}} - 1\right) = r \Rightarrow$

- 1. r > 1 : (A) сходится.
- 2. r < 1 : (A) расходится.
- 3. r = 1 : (A) может как сходиться, так и расходиться.

4.32 Признак Кумера

Теорема 20. Дан положительный ряд (A), $c_1, c_2, \ldots, c_n, \ldots: \forall n > N$ $c_n > 0$ и ряд $\sum_{n=1}^{\infty} c_n$ расходится. Если

$$\lim_{n\to\infty} \left(c_n \cdot \frac{a_n}{a_{n+1}} - c_{n+1} \right) = k,$$

TO

- 1. k > 0: (A) сходится.
- 2. k < 0 : (A) расходится.
- 3. k = 0: (A) может как сходиться, так и расходиться.

4.33 Признак Бертрана

Теорема 21. Дан положительный ряд (A). Если

$$\lim_{n \to \infty} \ln n \cdot \left[n \cdot \left(\frac{a_n}{a_{n+1}} - 1 \right) \right] = B,$$

TO

- 1. B > 1 : (A) сходится.
- 2. B < 1 : (A) расходится.
- 3. B = 1 : (A) может как сходиться, так и расходиться.

4.34 Признак Гаусса

Теорема 22. Ряд $(A), \ a_n > 0, \ \forall n \in \mathbb{N}, \ \lambda, \mu \in \mathbb{R}$. Если

$$\frac{a_n}{a_{n+1}} = \left(\lambda + \frac{\mu}{n}\right) + O\left(\frac{1}{n^2}\right),\,$$

то

- 1. $\lambda > 1 : (A)$ сходится.
- 2. $\lambda < 1 : (A)$ расходится.
- 3. $\lambda = 1$ и
 - (a) $\mu > 1 \Rightarrow (A)$ сходится.
 - (b) $\mu \le 1 \Rightarrow (A)$ расходится.

4.35 Знакопеременные ряды

Примечание. Дан ряд (A). Если $\exists N: \forall n > N$ a_n не меняет знак, то исследование сходимости такого ряда сводится к исследованию сходимости положительных рядов. Будем считать, что «+» и «-» бесконечно много. Такие ряды будем называть *знакопеременными*.

4.36 Абсолютно сходящийся ряд

Определение 11. Ряд (A) называется абсолютно сходящимся, если сходится ряд

$$(A^*) \sum_{n=1}^{\infty} |a_n|.$$

4.37 Условно сходящийся ряд

Определение 12. Если ряд (A) сходится, а ряд (A^*) расходится, то ряд (A) называется условно сходящимся.

4.38 Знакочередующиеся ряды

Определение 13. Ряд (A) называется знакочередующимся, если $\forall n \in \mathbb{N}$

 $a_n \cdot a_{n+1} < 0$. Обозначим знакочередующийся ряд:

$$(\overline{A}) \sum_{n=1}^{\infty} (-1)^{n-1} \cdot a_n, \quad a_n > 0 \ \forall n \in \mathbb{N}.$$

4.39 Признак Лейбница

Теорема 23. Пусть ряд $(\overline{A}), \forall n \ a_n > 0$ удовлетворяет условиям:

- 1. $a_1 \geqslant a_2 \geqslant a_3 \geqslant \ldots \geqslant a_n \geqslant \ldots$
- $2. \lim_{n\to\infty} a_n = 0.$

Тогда ряд (\overline{A}) сходится и его сумма $S: 0 < S \le a_1$.

4.40 Признак Абеля

Теорема 24. Если

- ullet последовательность $\{a_n\}$ монотонна и ограничена,
- ряд $\sum_{n=1}^{\infty} b_n$ сходится,

то ряд $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

4.41 Признак Дирихле

Теорема 25. Если

- последовательность $\{a_n\}$ монотонна и $\lim_{n \to \infty} a_n$ = 0,
- частичные суммы ряда (B) ограничены, то есть $\exists k > 0: \forall n \mid \sum_{m=1}^n b_m \mid < k,$

то $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

4.42 Теорема Римана о перестановке членов условно сходящегося ряда

Теорема 26. Если ряд (A) условно сходится, то $\forall B \in \mathbb{R}$ (в том числе $B = \pm \infty$) \exists перестановка ряда (A) такая, что полученный ряд сходится и имеет сумму B. Более того, \exists перестановка ряда (A) такая, что частичные суммы полученного ряда не стремятся ни к конечному, ни к бесконечному пределу.

5 Поточечная и равномерная сходимость семейства функций

5.43 Семейство функций, зависящих от параметров

Определение 14. *Семейство функций* – это произвольное множество функций.

Пусть $f: X \times T \to Y$. Если по каким-либо соображениям элементам множества T уделяется особое внимание, то будем их называть параметрами.

То есть $\forall t \in T$ можно рассмотреть функцию

$$f_t(x) = f(x,t).$$

В этом случае будем говорить, что задано семейство функций, зависящих от параметра t.

5.44 Сходимость семейства функций по базе

Определение 15. Будем говорить, что семейство $\{f_t\}$ сходится в точке $x \in X$, если $f_t(x)$ как функция аргумента t имеет предел по базе \mathfrak{B} , то есть $\exists y_x \in Y_\rho : \ \forall \varepsilon > 0 \ \exists B \in \mathfrak{B} : \ \forall t \in B$

$$\rho(f_t(x),y_x)<\varepsilon.$$

5.45 Область сходимости семейства функций по базе

Определение 16. Множество $E = \{x \in X : \{f_t\} \text{ сходится в точке } x\}$ называется областью сходимости семейства $\{f_t\}$ по базе \mathfrak{B} .

5.46 Предельная функция

Определение 17. На Е введем функцию, положив

$$f(x) = \lim_{\mathfrak{B}} f_t(x).$$

Функция f(x) называется предельной.

5.47 Поточечная сходимость семейства функций по базе

Определение 18. Дано семейство $f_t: X \to Y_u, \ f: X \to Y$. Будем говорить, что f_t сходится по базе $\mathfrak B$ *поточечно* к f на X, если $\forall x \in X \ \forall \varepsilon > 0 \ \exists B_x \in \mathfrak B: \ \forall t \in B_x$

$$\rho(f_t(x), f(x)) < \varepsilon.$$

Обозначение:

$$f_t \xrightarrow{\mathfrak{B}} f$$
 (Ha X)

5.48 Равномерная сходимость семейства функций по базе

Определение 19. Семейство $\{f_t\}$ сходится равномерно по базе \mathfrak{B} к f на X, если $\forall \varepsilon > 0 \ \exists B \in \mathfrak{B}: \ \forall t \in B$ и $\forall x \in X$

$$\rho(f_t(x), f(x)) < \varepsilon.$$

Обозначение:

$$f_t \underset{\mathfrak{B}}{\Longrightarrow} f \text{ (Ha } X)$$

5.49 Критерий Коши сходимости семейства функций

Теорема 27. Пусть Y – полное метрическое пространство, $f_t: X \to Y, \ t \in T$ – семейство $\{f_t\}$ равномерно сходится на X по базе $\mathfrak{B} \Leftrightarrow \forall \varepsilon > 0 \ \exists B \in \mathfrak{B}: \ \forall t_1, t_2 \in B \ \text{in} \ \forall x \in X$

$$\rho(f_{t_1}(x); f_{t_2}(x)) < \varepsilon.$$

6 Функциональный ряд

6.50 Функциональный ряд

Определение 20. Пусть $f_n: X \to \mathbb{R}, X$ – произвольное множество. Φ ункциональным рядом называется выражение вида

$$\sum_{n=1}^{\infty} f_n(x) \tag{4}$$

6.51 Поточечная сходимость функциональных рядов

Примечание. Говорят, что ряд 4 сходится на X *поточечно*, если на X сходится поточечно последовательность его частичных сумм.

Ряд 4 равномерно сходится на X, если на X равномерно сходится последовательность его частичных сумм.

6.52 Равномерная сходимость функциональных рядов

Теорема 28. Пусть ряды (A),(B) такие, что:

- 1. $\forall n$ функции $a_n(x)$ и $b_n(x)$ определены на X.
- $2. \ \exists N: \ \forall n > N$

$$|a_n(x)| \le b_n(x) \quad \forall x \in X.$$

3. Ряд (B) сходится на X равномерно.

Тогда ряд (A) сходится на X равномерно.

6.53 Критерий Коши равномерной сходимости ряда

Теорема 29. Ряд 4 равномерно сходится на $X \Leftrightarrow \forall \varepsilon > 0 \ \exists N: \ \forall n > N \ \forall p > 0 \ \forall x \in X$

$$|f_{n+1}(x) + \ldots + f_{n+p}(x)| < \varepsilon.$$

6.54 Признак сравнения

Я не нашел.

6.55 Признак Вейерштрасса

Следствие. Пусть

- 1. $\forall n \ \exists M_n : \ |a_n(x)| \leqslant M_n \quad \forall x \in X.$
- 2. Ряд $\sum_{n=1}^{\infty} M_n$ сходится.

Тогда ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится на X абсолютно и равномерно.

6.56 Признак Абеля

Теорема 30. Пусть функции $a_n(x)$ и $b_n(x)$ удовлетворяют условиям:

- ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на X,
- последовательность $\{b_n(x)\}$ равномерно ограничена на X и монотонна (то есть $\exists L > 0: \ \forall n \in \mathbb{N} \ u \ \forall x \in X \ |b_n(x)| \leqslant L),$

тогда ряд

$$\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x) \right)$$

сходится на X равномерно.

6.57 Признак Дирихле

Теорема 31. Пусть

- частичные суммы ряда $\sum_{n=1}^{\infty} a_n(x)$ равномерно ограничены на X (то есть $\exists M > 0: \ \forall n \ \text{и} \ \forall x \in X \ \left| \sum_{k=1}^{n} a_k(x) \right| \leqslant M$),
- последовательность $\{b_n(x)\}$ монотонна и равномерно на X стремится к 0,

тогда ряд

$$\sum_{n=1}^{\infty} \left(a_n(x) \cdot b_n(x) \right)$$

сходится на X равномерно.

7 Свойства предельной функции

7.58 Условия коммутирования двух предельных переходов

Теорема 32. Пусть X, T – множества, \mathfrak{B}_x – база на X, \mathfrak{B}_T – база на T, Y – полное МП, $f_t: X \to Y, \ f: X \to Y$:

- $f_t \xrightarrow{\mathfrak{B}_T} f$ на X,
- $\bullet \ \forall t \in T \ \exists \lim_{\mathfrak{B}_X} = A_t,$

тогда существуют и равны два повторных предела:

$$\lim_{\mathfrak{B}_T \mathfrak{B}_X} f_t(x) = \lim_{\mathfrak{B}_X \mathfrak{B}_T} f_t(x).$$

Запишем условия и утверждение теоремы в форме диаграмы:

$$f_t(x) \Longrightarrow_{\mathfrak{B}_T} f(x)$$
 $\forall t, \mathfrak{B}_X \downarrow \qquad \qquad \downarrow \mathfrak{B}_X$
 $A_t \xrightarrow{---} A$
 \rightarrow – дано, \rightarrow – утверждение

7.59 Непрерывность предельной функции

Теорема 33. Пусть X, Y – метрические пространства, \mathfrak{B} – база на $T, f_t: X \to Y, f: X \to Y$:

- $\forall t \in T$ функция f_t непрерывна в точке $x_0 \in X$,
- семейство $f_t \Longrightarrow f$ на X,

тогда функция f непрерывна в точке x_0 .

7.60 Интегрируемость предельной функции

Теорема 34. Пусть $f_t:[a;b] \to \mathbb{R}, \ f:[a;b] \to \mathbb{R}$:

- $\forall t \in T$ f_t интегрируема по Риману на [a;b],
- $f_t \underset{\mathfrak{B}}{\Longrightarrow} f$ на [a;b] (\mathfrak{B} база на T),

тогда:

- 1. f интегрируема по Риману на [a;b].
- 2.

$$\int_{a}^{b} f(x)dx = \lim_{\mathfrak{B}} \int_{a}^{b} f_{t}(x)dx \Leftrightarrow \lim_{\mathfrak{B}} \int_{a}^{b} f_{t}(x)dx = \int_{a}^{b} \lim_{\mathfrak{B}} f_{t}(x)dx.$$

7.61 Дифференцируемость предельной функции

Теорема 35. Пусть $-\infty < a < b < +\infty \ (a, b - \text{конечны}), \ f_t : (a; b) \to \mathbb{R}, \ f :$

- $\forall t \in T$ f_t дифференцируема на (a;b), $\exists \phi : (a;b) \to \mathbb{R} : f_t' \Longrightarrow_{\mathfrak{B}} \phi$ на (a;b),
- $\exists x_0 \in (a;b): f_t(x_0) \to f(x_0),$

тогда:

- 1. $f_t \underset{\mathfrak{B}}{\Longrightarrow} f$ на (a;b).
- 2. f дифференцируема на (a; b).
- 3. $\forall x \in (a;b) \ f'(x) = \phi(x)$.

8 Степенные ряды

8.62 Степенной ряд

Определение 21. Степенным рядом называется выражение вида

$$\sum_{n=0}^{\infty} \left(a_n \cdot (x - x_0)^n \right)$$

или

$$\sum_{n=0}^{\infty} (a_n \cdot x^n). \tag{5}$$

8.63 Теорема о сходимости степенного ряда

Теорема 36.

- 1. Областью сходимости степенного ряда 5 является промежуток (-R;R), где $R\geqslant 0$ $(+\infty)$.
- 2. $\forall [\alpha; \beta] \subset (-R; R)$ ряд 5 сходится равномерно на $[\alpha; \beta]$.
- 3. Число R, называемое $paduycom\ cxodumocmu\ cmепенного\ pada\ 5,$ может быть вычислено:

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|a_n|}}}.$$

8.64 Радиус сходимости степенного ряда (определение)

Определение 22. Число R, называемое радиусом сходимости степенного ряда 5, может быть вычислено:

$$R = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}}.$$

8.65 Теорема Абеля о сумме степенного ряда

Теорема 37. Если R – радиус сходимости ряда 5 и ряд $\sum_{n=0}^{\infty} (a_n \cdot R^n)$ сходится, то

$$\lim_{x \to R} \sum_{n=0}^{\infty} (a_n \cdot x^n) = \sum_{n=0}^{\infty} (a_n \cdot R^n).$$

8.66 Ряд Тейлора

Определение 23. Пусть f(x) бесконечно дифференцируема в окрестности точки x_0 . *Рядом Тейлора* функции f(x) в этой окрестности называется ряд:

$$f(x) \approx f(x_0) + \frac{f'(x_0)}{1!} \cdot (x - x_0) + \frac{f''(x_0)}{2!} \cdot (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} \cdot (x - x_0)^n + \dots$$

8.67 Разложение элементарных функций в степенной ряд

Лемма 1. Если f(x) — ∞-но дифференцируемая функция на [0;H] и $\exists L>0: \ \forall n\in \mathbb{N}$ и $\forall x\in [0;H]$

$$\left|f^{(n)}(x)\right| \leqslant L,$$

то на [0; H] функция f может быть разложена в степенной ряд (ряд Тейлора).

9 Интегралы, зависящие от параметра

9.68 Собственный интеграл, зависящий от параметра

Определение 24. *Интегралом, зависящим от параметра* называется функция

$$F(y) = \int_{E_y} f(x, y) dx = \int_{\alpha(y)}^{\beta(y)} f(x, y) dx.$$

9.69 Теорема о непрерывности собственного интеграла, зависящего от параметра

Теорема 38. Если функция f(x,y) непрерывна на $P = [a;b] \times [c;d]$, то функция $F(y) = \int_a^b f(x,y) dx$ непрерывна на [c;d].

9.70 Теорема о дифференцировании собственного интеграла, зависящего от параметра

Теорема 39. Пусть:

- $\alpha(y), \beta(y)$ дифференцируемые на [c;d],
- $\forall y \in [c;d] \ a \leqslant \alpha(y) \leqslant b \text{ if } a \leqslant \beta(y) \leqslant b,$
- f(x,y) непрерывна на P = $[a;b] \times [c;d],$ $\frac{\partial f}{\partial y}$ непрерывна на P,

тогда F(y) = $\int_{\alpha(y)}^{\beta(y)} f(x,y) dx$ дифференцируема на [c;d] и

$$F'(y) = \int_{\alpha(y)}^{\beta(y)} \frac{\partial f}{\partial y}(x,y) dx + f(\beta(y),y) \cdot \beta'(y) - f(\alpha(y),y) \cdot \alpha'(y)$$
 (формула Лейбница)

9.71 Теорема об интегрировании собственного интеграла, зависящего от параметра

Теорема 40. Если f(x,y) непрерывна на $P = [a;b] \times [c;d]$, то функция $F(y) = \int_a^b f(x,y)dx$ интегрируема на [c;d] и

$$\int_{c}^{d} F(y)dy = \int_{c}^{d} \left(\int_{a}^{b} f(x,y)dx \right) dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y)dy \right) dx.$$

Обычно пишут:

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y) dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy.$$

9.72 Несобственный интеграл, зависящий от параметра

Определение 25. Пусть $\forall y \in Y \ \exists \int_a^\omega f(x,y) dx$. Heco6cm8enhым uнтегралом, зависящим от параметра у называется функция

$$F(y) = \int_{-\infty}^{\infty} f(x, y) dx. \tag{6}$$

9.73 Равномерная сходимость несобственного интеграла, зависящего от параметра

Определение 26. Говорят, что интеграл 6 сходится на Y равномерно, если $\forall \varepsilon > 0 \ \exists B \in [a;\omega): \ \forall b \in (B;\omega)$

$$\left| \int_{b}^{\omega} f(x,y) dx \right| < \varepsilon.$$

9.74 Критерий Коши равномерной сходимости несобственных интегралов, зависящих от параметра

Теорема 41. Интеграл $F(y) = \int_a^\omega f(x,y) dx$ равномерно сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists B \in [a;\omega) : \ \forall b_1,b_2 \in (B;\omega) \ \forall y \in Y$

$$\left| \int_{b_1}^{b_2} f(x,y) dx \right| < \varepsilon.$$

9.75 Признак Вейерштрасса и его следствие

Теорема 42. Пусть

1. $\forall y \in Y$ и $\forall x \in [a; \omega)$

$$|f(x,y)| \leq g(x,y).$$

2. $\int_a^\omega g(x,y)dx$ — равномерно сходится на Y.

Тогда $\int_a^\omega f(x,y)dx$ – равномерно сходится на Y.

Следствие. Если $\forall y \in Y, \ \forall x \in [a; \omega)$

$$|f(x,y)| \geqslant g(x),$$

то из сходимости $\int_a^\omega g(x)dx\Rightarrow$ равномерна сходимость

$$\int_{a}^{\omega} f(x,y)dx$$
 на Y .

9.76 Признак Абеля

Теорема 43. Если

- 1. $\int_a^\omega g(x,y)dx$ равномерно сходится на Y.
- 2. $\forall y \in Y$ функция f(x,y) монотонна по x и равномерно ограничена,

то есть
$$\exists M > 0: \ \forall x \in [a; \omega)$$
 и $\forall y \in Y$

$$|f(x,y)| \leq M$$
.

Тогда

$$\int_a^{\omega} \big(f(x,y) \cdot g(x,y) \big) dx - \text{сходится равномерно на } Y.$$

9.77 Признак Дирихле

Теорема 44. Если

1. $\int_a^b g(x,y) dx$ ограничена в совокупности, то есть $\exists L>0: \ \forall y \in Y$ и $\forall b \in [a;\omega)$

$$\left| \int_{a}^{b} g(x, y) dx \right| \leqslant L.$$

2. $\forall y \in Y \ f(x,y)$ монотонна по x и $f(x,y) \to 0$ равномерно при $x \to \omega$.

Тогда

$$\int_{a}^{\omega} (f(x,y) \cdot g(x,y)) dx - \text{сходится равномерно на } Y.$$

10 Функциональные свойства несобственного интеграла, зависящего от параметра

10.78 Теорема о предельном переходе под знаком несобственного интеграла, зависящего от параметра

Теорема 45. Если

1. $\forall b \in [a; \omega)$

$$f(x,y) \Longrightarrow_{y} \phi(x)$$

на [a;b], где \mathfrak{B}_y – база на Y.

2. $\int_a^{\omega} f(x,y)dx$ сходится равномерно на Y.

Тогда

$$\lim_{\mathfrak{B}_{y}} F(y) = \lim_{\mathfrak{B}_{y}} \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} \lim_{\mathfrak{B}_{y}} f(x,y) dx = \int_{a}^{\omega} \phi(x) dx.$$

10.79 Теорема о непрерывности несобственного интеграла, зависящего от параметра

Следствие. Если

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$.
- 2. $\int_a^\omega f(x,y)dx$ равномерно сходится на [c;d].

Тогда $F(y) = \int_a^{\omega} f(x,y) dx$ непрерывна на [c;d].

10.80 Теорема о дифференцировании несобственного интеграла, зависящего от параметра

Теорема 46. Если

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$ и имеет непрерывную производную по y.
- 2. $\int_a^\omega f_y'(x,y)dx$ равномерно сходится на [c;d].
- 3. $\int_a^\omega f(x,y)dx$ сходится хотя бы в одной точке $y_0 \in (c;d)$.

- 1. $\int_a^\omega f(x,y)dx$ сходится равномерно на $[c';d'] \in (c;d).$
- 2. $F(y) = \int_a^\omega f(x,y) dx$ дифференцируема на (c;d).
- 3. $F'(y) = (\int_a^{\omega} f(x,y)dx)'_y = \int_a^{\omega} f'_y(x,y)dx$.

10.81Теорема об интегрировании несобственного интеграла, зависящего от параметра

Теорема 47. Если

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;d]$.

2. $\int_a^\omega f(x,y)dx$ равномерно сходится на [c;d]. Тогда функция $F(y)=\int_a^\omega f(x,y)dx$ интегрируема по Риману на [c;d] и

$$\int_{c}^{d} dy \int_{a}^{\omega} f(x,y) dx = \int_{a}^{\omega} dx \int_{c}^{d} f(x,y) dy.$$

10.82 Теорема о перестановке двух несобственных интегралов, зависящих от параметра

Теорема 48. Пусть

- 1. f(x,y) непрерывна на $[a;\omega) \times [c;\widetilde{\omega})$.
- 2. $\forall d \in [c; \widetilde{\omega}) \ \int_a^\omega f(x,y) dx$ сходится равномерно на [c;d].
- 3. $\forall b \in [a;\omega) \int_c^{\widetilde{\omega}} f(x,y) dx$ сходится равномерно на [a;b].
- 4. Существует хотя бы одни из интегралов:

$$\int_a^{\omega} dx \int_c^{\widetilde{\omega}} \big| f(x,y) \big| dy \quad \text{или} \quad \int_c^{\widetilde{\omega}} dy \int_a^{\omega} \big| f(x,y) \big| dx.$$

Тогда существует

$$\int_{a}^{\omega} dx \int_{c}^{\widetilde{\omega}} f(x,y) dy = \int_{c}^{\widetilde{\omega}} dy \int_{a}^{\omega} f(x,y) dx.$$

11 Эйлеровы интегралы

11.83 Бетта-функция

$$B(\alpha,\beta) = \int_0^1 x^{\alpha-1} \cdot (1-x)^{\beta-1} dx$$

11.84 Гамма-функция

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} \cdot e^{-x} dx$$

11.85 Свойства бетта-функции

00Φ

Утверждение. $B(\alpha, \beta)$ определенная при всех $\alpha > 0, \ \beta > 0.$

2. Симметричность

Утверждение.

$$B(\alpha,\beta) = B(\beta,\alpha).$$

3. Формула понижения

Примечание.

$$B(\alpha,\beta) = \int_{0}^{1} \underbrace{x^{\alpha-1}}_{u} \underbrace{(x-1)^{\beta-1} dx}_{v} =$$

$$= \begin{vmatrix} u = x^{\alpha-1} & du = (\alpha-1)x^{\alpha-2} dx \\ v = -\frac{1}{\beta}(1-x)^{\beta} & dv = (x-1)^{\beta-1} dx \end{vmatrix} =$$

$$= -x^{\alpha-1}(1-x)^{\beta} \cdot \frac{1}{\beta} \Big|_{0}^{1} + \int_{0}^{1} \frac{1}{\beta}(1-x)^{\beta}(\alpha-1)x^{\alpha-2} dx =$$

$$= \frac{\alpha-1}{\beta} \int_{0}^{1} x^{\alpha-2}(1-x)^{\beta} dx = \frac{\alpha-1}{\beta} \int_{0}^{1} \frac{1-x}{1-x} x^{\alpha-2}(1-x)^{\beta} dx =$$

$$= \frac{\alpha-1}{\beta} \int_{0}^{1} (1-x)x^{\alpha-2}(1-x)^{\beta-1} dx =$$

$$= \frac{\alpha-1}{\beta} \int_{0}^{1} (x^{\alpha-2}(1-x)^{\beta-1} - x^{\alpha-1}(1-x)^{\beta-1}) dx =$$

$$= \frac{\alpha-1}{\beta} \left(\int_{0}^{1} (1-x)^{\beta-1} dx - \int_{0}^{1} x^{\alpha-1}(1-x)^{\beta-1} dx \right) =$$

$$= \frac{\alpha-1}{\beta} \left(B(\alpha-1,\beta) - B(\alpha,\beta) \right).$$

$$B(\alpha,\beta) = \frac{\alpha - 1}{\beta} \Big(B(\alpha - 1,\beta) - B(\alpha,\beta) \Big) \Rightarrow$$

$$\Rightarrow B(\alpha,\beta) \left(1 + \frac{\alpha - 1}{\beta} \right) = \frac{\alpha - 1}{\beta} B(\alpha - 1,\beta).$$

$$B(\alpha,\beta) = \frac{\alpha - 1}{\beta + \alpha - 1} - B(\alpha - 1,\beta), \quad \alpha > 1, \beta > 0.$$

Пусть $\beta = 1$:

$$B(\alpha,1) = \int_0^1 x^{\alpha-1} dx = \frac{x^{\alpha}}{\alpha} \Big|_0^1 = \frac{1}{\alpha}.$$

Далее, если β = $n \in \mathbb{N}$, то

$$B(\alpha, n) = B(n, \alpha) =$$

$$= \frac{n-1}{\alpha + n - 1} \cdot B(n-1, \alpha) = \frac{n-1}{\alpha + n - 1} \cdot \frac{n-2}{\alpha + n - 2} \cdot B(n-2, \alpha) =$$

$$= \frac{(n-1)!}{(\alpha + n - 1)(\alpha + n - 2) \dots (\alpha + 1)} \cdot B(\alpha, 1) =$$

$$= \frac{(n-1)!}{(\alpha + n - 1) \dots (\alpha + 1) \alpha}.$$

Отсюда:

$$B(m,n) = \frac{(n-1)!}{(m+n-1)\dots(m+1)m} = \frac{(n-1)!\cdot(m-1)!}{(m+n-1)!}$$

11.86 Свойства гамма-функции

1. **ООФ**

Утверждение. $\Gamma(\alpha)$ определенная при $\alpha > 0$.

2. Правило дифференцирования Γ(α)

Утверждение. $\forall \alpha > 0 \ \Gamma(\alpha)$ дифференцируема в точке α и

$$\Gamma'(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln x dx.$$

Более того, $\Gamma(\alpha)$ бесконечно дифференцируема в точке α и n-ная производная

$$\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} \ln^n x dx.$$

3. Формула понижения

Примечание.

$$\Gamma(\alpha+1) = \int_0^{+\infty} x^{\alpha} e^{-x} dx =$$

$$= \begin{vmatrix} u = x^{\alpha} & du = \alpha x^{\alpha-1} dx \\ v = -e^{-x} & dv = e^{-x} dx \end{vmatrix} = x^{\alpha} (-e^{-x}) \Big|_0^{+\infty} + \int_0^{+\infty} \alpha x^{\alpha-1} e^{-x} dx =$$

$$= \alpha \int_0^{+\infty} x^{\alpha-1} e^{-x} dx = \alpha \Gamma(\alpha).$$

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

Пусть $\alpha = n \Rightarrow$

$$\Rightarrow \Gamma(n+1) =$$

$$= n\Gamma(n) = n(n-1)\Gamma(n-1) = n(n-1)(n-2)\Gamma(n-2) =$$

$$= n(n-1)\dots\Gamma(1),$$

$$\Gamma(1) = \int_0^{+\infty} x^0 e^{-x} dx = -e^{-x} \Big|_0^{+\infty} = 1.$$

$$\Gamma(n+1) = n!$$

12 Кратные интегралы. Мера Жордана в \mathbb{R}^n

12.87 Мера клеточного множества

Определение 27. *Мерой* m(A) *клеточного множества* A, разбитого на клетки $\Pi_1, \Pi_2, \ldots, \Pi_n$ называется число:

$$m(A) = \sum_{i=1}^{n} m(\Pi_i) \tag{7}$$

12.88 Множество, измеримое по Жордану

Определение 28. Множество $Q \subset \mathbb{R}$ называется *измеримым по Жор-дану*, если $\forall \varepsilon > 0 \; \exists \;$ клеточные множества A и B:

$$A \subset \Omega \subset B$$
 и $m(B) - m(A) < \varepsilon$.

12.89 Мера измеримого по Жордану множества

Определение 29. Если Ω — измеримое по Жордану множество, то его мерой $m(\Omega)$ называется число для $\forall A$ и B — клеточных множеств: $A \subset \Omega \subset B$ выполнено

$$m(A) \leqslant m(i) \leqslant m(B)$$
.

12.90 Множество меры нуль

Утверждение. Если $E \subset \mathbb{R}^n$ и $\forall \varepsilon > 0 \ \exists B = B_\varepsilon : E \subset B$ и $m(B) < \varepsilon \Rightarrow m(E) = 0$.

Определение 30. Множество, удовлетворяющее условию утверждения, называется *множеством меры нуль*.

12.91 Критерий измеримости множества в \mathbb{R}^n

Теорема 49. Множество $\Omega \subset \mathbb{R}$ измеримо по Жордану $\Leftrightarrow \Omega$ – ограничено и $m(G\Omega)$ = 0 (его граница меры нуль).

13 Определение и свойства кратного интеграла Римана

13.92 Интегральная сумма Римана

Определение 31. Пусть функция $f(x) = f(x_1, ..., x_n) : G \to \mathbb{R}$ определена на измеримом по Жордану множестве $G \subset \mathbb{R}^n$, $T = \{G_{ij}\}$ – разбиение множества G.

Возьмем $\xi_i \in G_i$, $i = \overline{1, N}$.

Выражение

$$\sigma_T = \sigma_T(f, \xi, G) = \sum_{i=1}^N f(\xi_i) m(G_i)$$

называется интегральной суммой Римана от функции $f(x) = f(x_1, ..., x_n)$ на множестве, соответствующей разбиению T и выборке $\xi = (\xi_1, ..., \xi_N)$.

13.93 Суммы Дарбу

Не нашел.

13.94 Кратный интеграл Римана

Примечание. Число I будем называть *кратным интегралом Римана* от функции f(x) по множеству G, а функцию f(x) – *интегрируемой* на множестве G.

При n=2 кратный интеграл Римана называется $\partial soйным$ и обозначается

$$\iint\limits_G f(x,y)dxdy.$$

При n = 3 - mройным и обозначается

$$\iiint\limits_G f(x,y,z)dxdydz.$$

13.95 Критерий интегрируемости (без доказательства)

Теорема 50. Ограниченная формула f(x) интегрируема на измеримом по Нордану множестве $G \subset \mathbb{R}^n \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0: \ \forall T \ l(T) < \delta$

$$\overline{S_T} - S_T < \varepsilon$$
 (то есть $\overline{S_T} - S_T \to 0$ при $l(T) \to 0$)

13.96 Классы интегрируемых функций (2 теоремы, без доказательств)

Теорема 51. Непрерывная на измеримом по Жордану компактном множестве G, функция f(x) интегрируема на этом множестве.

Теорема 52. Пусть функция f(x) ограничена на измеримом компакте $G \subset \mathbb{R}^n$ и множество разрыва f(x) имеет Жорданову меру нуль. Тогда f(x) интегрируема на G.

13.97 Теорема о сведении двойного интеграла по прямоугольнику к повторному интегралу

Теорема 53. Пусть

1. Функция f(x,y) интегрируема на прямоугольнике

$$\Pi = \{(x, y): a \leqslant x \leqslant b, c \leqslant y \leqslant d\}.$$

2. $\int_{c}^{d} f(x,y)dy \exists \forall x \in [a;b].$

Тогда функция $F(x) = \int_{c}^{d} f(x,y) dy$ интегрируема на отрезке [a;b] и справедлива формула:

$$\iiint_{\Pi} f(x,y) dx dy = \int_{a}^{b} dx \int_{c}^{d} f(x) dy$$

13.98 Теорема о сведении двойного интеграла по элементарной области к повторному интегралу

Теорема 54. Пусть Ω — элементарная относительно оси Oy область, функция f(x,y) интегрируема на $\overline{\Omega} = \Omega \cup G\Omega$ и $\forall x \in [a;b] \exists \int f(x,y) dx$. Тогда справедлива следующая формула:

$$\iint_{\Omega} f(x,y)dxdy = \int_{a}^{b} dx \int_{\phi(x)}^{\psi(x)} f(x,y)dy.$$
 (8)

13.99 Формула замены переменной в кратном интеграле (без доказательства)

Теорема 55. Пусть отображение $F: \Omega \to \mathbb{R}^n$ ($\Omega \subset \mathbb{R}^n$ – открытое множество) является взаимнооднозначным и удовлетворяет условиям 1.-3. Пусть G – измеримый компат: $G \subset \Omega$. Тогда, если функция $f(x) = f(x_1, \ldots, x_n)$ непрерывна на множестве G' = F(G), то справедлива следующая формула замены переменных в кратном интеграле:

$$\int_{G'} f(x)dx = \int \dots \int_{G'} f(x_1, \dots, x_n) dx_1 dx_2 \dots dx_n =$$

$$= \int_{G} f(\phi_1(u), \dots, \phi_n(u)) |\Im(u)| du,$$

$$u = (u_1, \dots, u_n), \quad du = du_1 du_2 \dots du_n.$$

14 Криволинейные и поверхностные интегралы

14.100 Криволинейный интеграл первого рода

Примечание. Пусть на некотором множестве, содержащем кривую Γ задано непрерывная функция R(x, y, z).

Если гладкая кривая Г задана уравнением

$$\overline{r} = \overline{r}(A)$$
 или
$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}, \ \alpha \leqslant t \leqslant \beta,$$

то определенный интеграл

$$\int_{\alpha}^{\beta} R(x(t), y(t), z(t)) \cdot |\overline{r}'(t)| dt =$$

$$= \int_{\alpha}^{\beta} R(x(t), y(t), z(t)) \cdot \sqrt{x'^{2}(t) + y'^{2}(t) + z'^{2}(t)} dt.$$

Будем называть κp иволинейным интегралом I-го pодa от функции R(x,y,z) по кривой Γ и обозначать:

$$\int_{\Gamma} R(x,y,z)ds$$

То есть

$$\int_{\Gamma} R(x,y,z)ds = \int_{\alpha}^{\beta} R(x(t),y(t),z(t)) |\overline{r}'(t)| dt.$$

14.101 Криволинейные интегралы второго рода

Примечание. Пусть $\Omega \subset \mathbb{R}^3$ — область, в каждой точке которой задан вектор. Тогда говорят, что в области Ω задано векторное поле.

Если фиксирована декартова прямоугольная система координат, то векторное поле можно задать при помощи трех скалярных функций:

$$\overline{F}(x,y,z) = \{P(x,y,z), Q(x,y,z), R(x,y,z)\}.$$

Если функции P, Q, R непрерывны в области Ω , то и поле $\overline{F}(x, y, z)$ называется непрерывным в области Ω .

Если P,Q,R непрерывно дифференцируемы в $\Omega,$ то и векторное поле \overline{F} называется непрерывно дифференцируемым в $\Omega.$

Если можно так подобрать ДСК, что $R \equiv 0$, а P и Q не зависят от z, то векторное поле \overline{F} называется *плоским*:

$$\overline{F}(x,y) = \{P(x,y), Q(x,y)\}.$$

Пусть в области $\Omega\subset\mathbb{R}^3$ определено непрерывное векторное поле $\overline{F}(x,y,z)$ = $\left\{P(x,y,z),Q(x,y,z),R(x,y,z)\right\},\ \overline{r}=\overline{r}(t),\ \alpha\leqslant t\leqslant\beta,$ уравнение гладкой (кусочно гладкой) кривой $\Gamma\subset\Omega.$

Тогда

$$\int_{\alpha}^{\beta} \overline{F}(x(t), y(t), z(t)) \cdot \overline{r}'(t) dt = \int_{\alpha}^{\beta} \left(P(x(t), y(t), z(t)) \cdot x'(t) + Q(x(t), y(t), z(t)) \cdot y'(t) + R(x(t), y(t), z(t)) \cdot z'(t) \right) dt$$

называется $\kappa puволинейным$ интегралом II-го poda от векторного поля \overline{F} на кривой $\Gamma \subset \Omega.$

Тогда по определению

$$\int_{\Gamma} (\overline{F}, d\overline{r}) = \int_{\alpha}^{\beta} F(x(t), y(t), z(t)) \overline{r}'(t) dt.$$