Sammanfattning av SF1674 Flervariabelanalys

Yashar Honarmandi 14 februari 2018

Sammanfattning

Denna sammanfattningen innehåller centrala definitioner och satser i SF1672 Flervariabelanalys.

Innehåll

1	Vek 1.1	Satser		
2	Mängdlära			
	2.1	Definitioner		
	2.2	Satser		
3	Fun	ktioner 3		
	3.1	Definitioner		
	3.2	Satser		
4	Derivata 5			
	4.1	Definitioner		
	4.2	Satser		
5	Kurvor 13			
	5.1	Definitioner		
	5.2	Satser		
6	Ytor 13			
	6.1	Definitioner		
	6.2	Satser		
7	Kva	ndratiska ytor 13		
8	Optimering 17			
	8.1	Optimering på mängder		
	8.2	Optimering med bivillkor		
	8.3	Optimering med flera bivillkor		
	8.4	Minsta kvadratmetoden		
9	Inte	egraler 19		
	9.1	Definitioner		
	9.2	Satser		

1 Vektoralgebra

1.1 Satser

Cauchy-Schwarz' olikhet Låt $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Då gäller att

$$|\mathbf{x} \cdot \mathbf{y}| \le |\mathbf{x}||\mathbf{y}|.$$

Bevis

Triangelolikheten Låt $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Då gäller att

$$|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|.$$

Bevis

Omvända triangelolikheten Låt $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. Då gäller att

$$||\mathbf{x}| - |\mathbf{y}|| \le |\mathbf{x} + \mathbf{y}|.$$

Bevis

Vektorer och förhållande mellan komponenter Låt $\mathbf{x} \in \mathbb{R}^n$ med komponenter x_1, \dots, x_n . Då gäller att

$$|x_i| \le |\mathbf{x}| \le \sum_{i=1}^n |x_i|, \ i = 1, \dots, n.$$

Bevis

2 Mängdlära

2.1 Definitioner

Öppna klot Ett öppet klot i \mathbb{R}^n centrerad i **a** med radius r är

$$\{\mathbf{x} \in \mathbb{R}^n : |\mathbf{x} - \mathbf{a}| < r\}.$$

Omgivningar till punkter $U \subset \mathbb{R}^n$ är en omgivning till $\mathbf{a} \in \mathbb{R}^n$ om U innehåller något öppet klot med centrum \mathbf{a} .

Inre punkter Låt $M \subset \mathbb{R}^n$. a är en inre punkt till M om det finns ett öppet klot kring a i M.

Yttre punkter Låt $M \subset \mathbb{R}^n$. **a** är en yttre punkt till M om det finns ett öppet klot kring **a** i M:s komplement, definierad som $\mathbb{R}^n \setminus M$.

Randpunkter Låt $M \subset \mathbb{R}^n$. **a** är en randpunkt till M om varje öppet klot kring **a** innehåller punkter i M och M:s komplement.

Rand Mängden av alla randpunkter till en mängd M är randen till M. Denna betecknas ∂M .

Öppna och slutna mängder En mängd är öppen om ∂M är i M:s komplement och sluten om ∂M är i M.

Begränsade mängder En mängd M är begränsad om $\exists c>0$ så att $|\mathbf{x}|< c \forall \mathbf{x} \in M.$

Kompakta mängder En mängd är kompakt om den är sluten och begränsad.

Bågvis sammanhängande mängder D är en bågvis sammanhängande mängd om varje par punkter $\mathbf{a}, \mathbf{b} \in D$ finns en kurva $\mathbf{x}(t), t \in [\alpha, \beta]$ så att $\mathbf{x}(t) \in D$ för alla t och $\mathbf{x}(\alpha) = \mathbf{a}$ och $\mathbf{x}(\beta) = \mathbf{b}$.

Axelparallella rektangler En axelparallell rektangel i \mathbb{R}^2 är på formen

$$\{(x,y) \mid a \le x \le b, c \le y \le d\}.$$

Nollmängder En mängd $N \subset \mathbb{R}^2$ är en nollmängd om vi för alla $\varepsilon > 0$ kan täcka över N med ändligt många axelparallella rektanglar med area mindre än eller lika med ε .

Kvadrerbara mängder En mängd $D\subset\mathbb{R}^2$ är kvadrerbar om ∂D är en nollmängd.

2.2 Satser

Grafer som mängder Grafen av en kontinuerlig funktion $\phi:[a,b]\to\mathbb{R}$ är en nollmängd.

3 Funktioner

3.1 Definitioner

Grafen av en funktion Låt $f:D\to\mathbb{R}$ med $D\subset\mathbb{R}^2$. Grafen av f är

$$\{(x, y, z) \in \mathbb{R}^3 : z = f(x, y)\}.$$

Lokala gränsvärden Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ och **a** vara en inre punkt eller randpunkt till D. $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{b}$ om det för varje $\varepsilon > 0$ finns ett $\delta > 0$ så att

$$|\mathbf{x} - \mathbf{a}| < \delta, \mathbf{x} \in D \implies |f(\mathbf{x}) - \mathbf{b}| < \varepsilon.$$

Gränsvärden mot o
ändligheten Låt $f:D\to\mathbb{R}^p$ med $D\subset\mathbb{R}^n$.
 $\lim_{|\mathbf{x}|\to\infty}f(\mathbf{x})=\mathbf{b}$ om det för varje $\varepsilon>0$ finns ett $\omega>0$ så att

$$|\mathbf{x}| > \omega, \mathbf{x} \in D \implies |f(\mathbf{x}) - \mathbf{b}| < \varepsilon.$$

Kontinuitet Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f är kontinuerlig i $\mathbf{a} \in D$ om $\lim_{\mathbf{x} \to \mathbf{a}}$ existerar och $\lim_{\mathbf{x} \to \mathbf{a}} = f(\mathbf{a})$.

Likformig kontinuitet Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f är likformigt kontinuerlig på D om det för varje $\varepsilon > 0$ finns ett $\delta > 0$ så att

$$|\mathbf{x} - \mathbf{y}| < \delta, \mathbf{x}, \mathbf{y} \in D \implies |f(\mathbf{x}) - f(\mathbf{y})| < \varepsilon.$$

Lokala extrempunkter Låt $f: D \to \mathbb{R}$ med $D \subset \mathbb{R}^n$. f har ett lokalt maximum i \mathbf{a} om $\exists \delta > 0$ så att $f(\mathbf{x}) \leq f(\mathbf{a})$ för alla $\mathbf{x} \in D$ så att $|\mathbf{x} - \mathbf{a}| < \delta$. Lokala minima definieras analogt. Om $f(\mathbf{x}) < f(\mathbf{a})$ har f ett strängt lokalt maximum i \mathbf{a} .

Kvadratiska former Låt A, B, C vara konstanter. En kvadratisk form från \mathbb{R}^2 är på formen

$$Q(h,k) = Ah^2 + 2Bhk + Ck^2.$$

För en mer allmän definition, se definitionen från sammanfattningen av SF1672.

Positivt och negativt definita kvadratiska former En kvadratisk form är

- positivt definit om Q(h, k) > 0 för $(h, k) \neq (0, 0)$.
- positivt semidefinit om $Q(h,k) \geq 0$ för $(h,k) \neq (0,0)$.
- negativt definit om Q(h,k) < 0 för $(h,k) \neq (0,0)$.
- negativt semidefinit om $Q(h,k) \leq 0$ för $(h,k) \neq (0,0)$.
- \bullet indefinit om Q antar såväl positiva som negativa värden.

Trappfunktioner En funktion Φ definierat på en axelparallell rektangel Δ är en trappfunktion om det finns en indelning av Δ i mindre rektanglar

$$\Delta_{i,j} = \{(x,y) \mid x_{i-1} \le x \le x_i, y_{i-1} \le y \le y_i\}$$

så att Φ är konstant på varje Δ_i .

Avskärningar Låt f vara en kontinuerlig funktion i ett öppet område $\Omega \subset \mathbb{R}^2$. En begränsdad kvadrerbar delmängd D av Ω är en avskärning om f är begränsad på D.

3.2 Satser

Gränsvärden av funktioner och deras komponenter Låt $f: D \to \mathbb{R}^p$ med $D \subset \mathbb{R}^n$. $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x}) = \mathbf{b}$ är ekvivalent med att $\lim_{\mathbf{x} \to \mathbf{a}} f_i(\mathbf{x}) = b_i$, där subskriptet i indikerar den i-te komponenten av varje vektor.

Bevis Detta följer direkt av att

$$|f_i(\mathbf{x}) - b_i| \le |f(\mathbf{x}) - \mathbf{b}| \le \sum_{i=1}^p |f_i(\mathbf{x}) - b_i|.$$

Största och minsta värde för funktioner Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ och låt D vara kompakt. Då antar f ett största och ett minsta värde på D.

Bevis

Definitionsmängd och likformig kontinuitet Låt $f: D \to \mathbb{R}^p$ med $D \subset \mathbb{R}^n$ och låt D vara kompakt. Då är f likformigt kontinuerlig på D.

Satsen om mellanliggande värden Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ och låt D vara bågvis sammanhängande. Om f antar värderna $f(\mathbf{a}), f(\mathbf{b})$ i D, antar f också alla värden mellan $f(\mathbf{a})$ och $f(\mathbf{b})$.

Bevis

Inversa funktionssatsen Låt $f: D \to \mathbb{R}^p$, $D \subset \mathbb{R}^n$ vara öppen, f vara C^1 och $|\mathrm{d} f(\mathbf{a})| \neq 0$. Då finns det öppna omgivningar U, V till $\mathbf{a}, f(\mathbf{a})$ så att $f: U \to V$ är bijektiv och $f^{-1}: V \to U$ är C^1 .

Bevis

Implicita funktionssatsen Låt $F(\mathbf{x})$ vara C^1 och **a** vara på nivåkurvan $F(\mathbf{x}) = C$. Om $\frac{\partial F}{\partial x_n}(\mathbf{a}) \neq 0$ finns det en öppen omgivning U av **a** så att restriktion av nivåkurvan till U implicit definierar en C^1 -funktion.

Bevis

Derivatan av en implicit funktion Låt $F(\mathbf{x})$ vara C^1 , a vara på nivåkurvan $F(\mathbf{x}) = C$ och $F(\mathbf{x}) = C$ definiera en implicit funktion nära a. Om $\frac{\partial F}{\partial x_n}(\mathbf{a}) \neq 0$ har man

$$\frac{\partial x_n}{\partial x_i}(\mathbf{a}') = -\frac{\frac{\partial F}{\partial x_i}(\mathbf{a})}{\frac{\partial F}{\partial x_n}(\mathbf{a})}.$$

 ${\bf Bevis} \ \ \,$ Eftersom F är konstant nära ${\bf a}$ använder vi kedjeregeln, vilket ger

$$\frac{\partial F}{\partial x_i}(\mathbf{a}) + \frac{\partial F}{\partial x_n}(\mathbf{a}) \frac{\partial x_n}{\partial x_i}(\mathbf{a}') = 0.$$

Om $\frac{\partial F}{\partial x_n}(\mathbf{a}) \neq 0$ får man resultatet i satsen.

4 Derivata

4.1 Definitioner

Partiella derivator Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f är partiellt deriverbar med avseende på x_i i den inre punkten $\mathbf{a} \in D$ om gränsvärdet

$$\lim_{h \to 0} \frac{f(\mathbf{a} + h\mathbf{e}_i) - f(\mathbf{a})}{h}$$

existerar. Gränsvärdet kallas partiella derivatan av f med avseende på x_i i \mathbf{a} och betecknas $\frac{\partial f}{\partial x_i}(\mathbf{a})$.

Differentierbarhet Låt $f: D \to \mathbb{R} \mod D \subset \mathbb{R}^n$. f är differentierbar i **a** om $\exists A_1, \ldots, A_n$ och en $\rho(\mathbf{h})$ så att

$$f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = \sum_{i=1}^{n} A_i h_i + |\mathbf{h}| \rho(\mathbf{h})$$

och $\lim_{\mathbf{h}\to\mathbf{0}} \rho(\mathbf{h}) = 0$. f är differentierbar om detta är uppfylld för alla $\mathbf{a}\in D$.

 C^1 Låt $f: D \to \mathbb{R} \mod D \subset \mathbb{R}^n$. f är klass C^1 om f är partiellt deriverbar och alla de partiella derivatorna är kontinuerliga i D.

 C^k Låt $f: D \to \mathbb{R}$ med $D \subset \mathbb{R}^n$. f är klass C^k om f alla partiella derivator till och med ordning k existerar och är kontinuerliga i D.

Gradient Låt f vara reellvärd och differentierbar i \mathbf{x} . Gradienten definieras som

$$\vec{\nabla} f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\mathbf{x}) \mathbf{e}_i.$$

Riktningsderivata Låt $|\mathbf{v}| = 1$. Derivatan av f i punkten \mathbf{a} i riktningen \mathbf{v} är

$$\vec{\nabla}_{\mathbf{u}}f = \lim_{t \to 0} \frac{f(\mathbf{a} + t\mathbf{v}) - f(\mathbf{a})}{t}.$$

Stationära punkter a är en stationär punkt till f om $\vec{\nabla} f(\mathbf{a}) = \mathbf{0}$.

Differentialer Låt $f: D \to \mathbb{R} \mod D \subset \mathbb{R}^n$ öppen och låt f vara differentierbar. Funktionen $\mathbf{h} \to \sum \frac{\partial f}{\partial x_i}(\mathbf{x})h_i$ kallas differentialen av f i \mathbf{x} och betecknas d $f(\mathbf{x})$. Vid att skriva differentialen som en matris

$$\mathrm{d}f(\mathbf{x}) = \left[\frac{\partial f}{\partial x_1}(\mathbf{x}) \dots \frac{\partial f}{\partial x_n}(\mathbf{x})\right]$$

kan differentialet skrivas som en matrismultiplikation enligt

$$df(\mathbf{x})(\mathbf{h}) = \left[\frac{\partial f}{\partial x_1}(\mathbf{x}) \dots \frac{\partial f}{\partial x_n}(\mathbf{x})\right] \mathbf{h}.$$

Funktionalmatriser Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$. f:s funktionalmatris definieras som

$$\begin{bmatrix} \frac{\mathrm{d}f_1}{\mathrm{d}x_1}(\mathbf{x}) & \dots & \frac{\mathrm{d}f_1}{\mathrm{d}x_n}(\mathbf{x}) \\ \vdots & \ddots & \vdots \\ \frac{\mathrm{d}f_p}{\mathrm{d}x_1}(\mathbf{x}) & \dots & \frac{\mathrm{d}f_p}{\mathrm{d}x_n}(\mathbf{x}) \end{bmatrix}$$

och betecknas $f'(\mathbf{x}) = df(\mathbf{x}) = \frac{d(f_1...f_p)}{d(x_1...x_n)}(\mathbf{x}).$

Linjarisering Linjariseringen av en funktion f ges av

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + df(\mathbf{x})\mathbf{h}.$$

4.2 Satser

Differentierbarhet och kontinuitet Låt f vara differentierbar i \mathbf{a} . Då är f kontinuerlig i \mathbf{a} .

Bevis Definitionen implicerar $\lim_{\mathbf{h}\to\mathbf{0}} f(\mathbf{a} + \mathbf{h}) - f(\mathbf{a}) = 0.$

Differentierbarhet och partiell deriverbarhet Låt f vara differentierbar i **a**. Då är f partiellt deriverbar med avseende på alla variabler i **a** och $\frac{\partial f}{\partial x_i} = A_i$.

Bevis Med $\mathbf{h} = t\mathbf{e}_i$ ger definitionen av differentierbarhet

$$\frac{f(\mathbf{a} + t\mathbf{e}_i) - f(\mathbf{a})}{t} = A_i + \frac{|t|}{t}\rho(t\mathbf{e}_i).$$

Gränsvärdet när t går mot 0 ger på den ena sidan definitionen av den partiella derivatan och A_i på andra sidan.

Differentierbarhet av funktioner i C^1 Varje $f \in C^1$ är differentierbar.

Bevis Låt $\mathbf{a} \in D$. Enligt envariabelsanalysens medelvärdesats har vi

$$f(\mathbf{a} + h_1 \mathbf{e}_1) - f(\mathbf{a}) = \frac{\partial f}{\partial x_1} (\mathbf{a} + \theta_1 h_1 \mathbf{e}_1)$$
$$f(\mathbf{a} + h_1 \mathbf{e}_1 + h_2 \mathbf{e}_2) - f(\mathbf{a} + h_1 \mathbf{e}_1) = \frac{\partial f}{\partial x_2} (\mathbf{a} + h_1 \mathbf{e}_1 + \theta_2 h_2 \mathbf{e}_2)$$

:

$$f(\mathbf{a} + \sum_{i=1}^{n} h_i \mathbf{e}_i) - f(\mathbf{a} + \sum_{i=1}^{n-1} h_i \mathbf{e}_i) = \frac{\partial f}{\partial x_n} (\mathbf{a} + \sum_{i=1}^{n-1} h_i \mathbf{e}_i + \theta_n h_n \mathbf{e}_n),$$

där alla $\theta_i \in [0, 1]$. Eftersom de partiella derivatorna är kontinuerliga kan vi skriva

$$\frac{\partial f}{\partial x_k}(\mathbf{a} + \sum_{i=1}^{k-1} h_i \mathbf{e}_i + \theta_k h_k \mathbf{e}_k) = \frac{\partial f}{\partial x_k}(\mathbf{a}) + \rho_k(\sum_{i=1}^n h_i \mathbf{e}_i) = \frac{\partial f}{\partial x_k}(\mathbf{a}) + \rho_k(\mathbf{h}),$$

där $\lim_{\mathbf{h} \to \mathbf{0}} \rho(\mathbf{h}) = 0$. Då får man

$$f(\mathbf{a} + \mathbf{h}) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i}(\mathbf{a}) + \rho_i(\mathbf{h}) \right) h_i.$$

Den sista delen av beviset använder

$$\lim_{\mathbf{h}\to\mathbf{0}} \frac{\sum_{i=1}^n \rho_i(\mathbf{h}) h_i}{|\mathbf{h}|}.$$

Allmänna kedjeregeln Låt $f: \mathbb{R}^n \to \mathbb{R}^p$ och $g: \mathbb{R}^q \to \mathbb{R}^n$ och låt alla komponenter av f,g vara differentierbara. Då är alla komponenter av $f\circ g$ differentierbara. Med $u=f\circ g$ har vi

$$\frac{\partial u_i}{\partial t_k}(\mathbf{t}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(g(\mathbf{t})) \frac{\partial g}{\partial t_k}(\mathbf{t})$$

för varje komponent.

Specialfall: p=1 Låt f vara en differentierbar funktion av n variabler och $g: \mathbb{R} \to \mathbb{R}^n$, där alla g_i är partiellt deriverbara. Då är $f \circ g$ deriverbar och

$$\frac{\mathrm{d}f \circ g}{\mathrm{d}t}(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(g(t)) \frac{\mathrm{d}g_i}{\mathrm{d}t}(t).$$

Bevis

Konstantfunktioner och gradient Låt $D \subset \mathbb{R}^n$ vara öppen och bågvis sammanhängande och $f \in C^1(D, \mathbb{R}^n)$. Om $\vec{\nabla} f(\mathbf{x}) = 0$ för alla $\mathbf{x} \in D$, är f konstant i D.

Bevis Använd att

$$\frac{\mathrm{d}f}{\mathrm{d}t}(\mathbf{x}(t)) = \vec{\nabla}f(\mathbf{x}(t)) \cdot \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = 0.$$

 $\mathbf{Gradient}$ och riktningsderivata Gradienten i riktning \mathbf{v} ges av

$$\vec{\nabla}_{\mathbf{v}} f(\mathbf{a}) = \vec{\nabla} f(\mathbf{a}) \cdot \mathbf{v}.$$

Bevis Bilda $u(t) = f(\mathbf{a} + t\mathbf{v}) = u(\mathbf{g}(t))$, vilket ger $\vec{\nabla}_{\mathbf{v}} f(\mathbf{a}) = \frac{\mathrm{d}u}{\mathrm{d}t}(0)$. Enligt kedjeregeln blir detta

$$\sum_{i=1}^{n} \frac{\mathrm{d}f}{\mathrm{d}x_{i}}(0) \frac{\mathrm{d}g_{i}}{\mathrm{d}t}(0) = \vec{\nabla}f(\mathbf{a}) \cdot \frac{\mathrm{d}(\mathbf{a} + t\mathbf{v})}{\mathrm{d}t}(0) = \vec{\nabla}f(\mathbf{a}) \cdot \mathbf{v}.$$

Maximal riktningsderivata $\vec{\nabla} f(\mathbf{a})$ pekar i den riktning i vilken f växar snabbast i \mathbf{a} , och den maximala tillväxthastigheten är $|\vec{\nabla} f(\mathbf{a})|$.

Bevis Cauchy-Schwarz-olikheten ger

$$\vec{\nabla}_{\mathbf{u}} f = \vec{\nabla} f(\mathbf{a}) \cdot \mathbf{v} \le \left| \vec{\nabla} f(\mathbf{a}) \right| |\mathbf{v}|,$$

med likhet om och endast om ${\bf v}$ är parallell med gradienten.

Gradient och nivåytor Låt $f: \mathbb{R}^n \to \mathbb{R}$ och $\vec{\nabla} f(\mathbf{a}) \neq \mathbf{0}$. Då är gradienten normal på nivåytan $f(\mathbf{x}) = f(\mathbf{a})$.

Bevis Låt $\mathbf{x}(t)$ vara en C^1 -kurva i nivåytan $f(\mathbf{x}) = f(\mathbf{a})$ så att $\mathbf{x}(0) = \mathbf{a}$. Detta ger

$$0 = \frac{\mathrm{d}f \circ \mathbf{x}}{\mathrm{d}t}(0) = \vec{\nabla}f(\mathbf{a}) \cdot \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(0).$$

Eftersom $\frac{d\mathbf{x}}{dt}(0)$ är parallell med nivåytan är beviset klart.

Symmetri av derivator i C^2 För varje $f \in C^2$ gäller att

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Bevis Vi beviser endast för en tvåvariabelfunktion, då det allmänna fallet följer direkt från detta. Låt $q(h,k) = f(x+h,y+k) - f(x+h,y) - f(x,y+k) + f(x,y), \phi(t) = f(x+h,t) - f(x,t)$. Detta ger

$$\begin{split} q(h,k) &= \phi(y+k) - \phi(y) \\ &= k \frac{\mathrm{d}\phi}{\mathrm{d}t} (y+\theta k) \\ &= k (\frac{\partial f}{\partial y} (x+h,y+\theta k) - \frac{\partial f}{\partial y} (x,y+\theta k)) \\ &= k h \frac{\partial^2 f}{\partial x \partial y} (x+\eta h,y+\theta k), \end{split}$$

där vi har användt medelvärdesatsen två gånger. Då har vi

$$\lim_{(h,k)\to(0,0)} \frac{q(h,k)}{hk} = \frac{\partial^2 f}{\partial x \partial y}(x,y).$$

Beviset kan upprepas i motsatt ordning, och detta fullförar beviset.

Taylors formel Låt $D \subset \mathbb{R}^2$ vara öppen, $(a,b) \in D$ och f vara C^3 . Då gäller:

$$\begin{split} f(a+h,b+k) = & f(a,b) + \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k \\ & + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(a,b)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(a,b)hk + \frac{\partial^2 f}{\partial y^2}(a,b)k^2 \right) \\ & + \left(\sqrt{h^2 + k^2} \right)^3 B(h,k), \end{split}$$

där B(h,k) är begränsad i en omgivning av origo.

Bevis Låt
$$F(t) = f(a + th, b + tk)$$
. Detta ger

$$\begin{split} \frac{\mathrm{d}F}{\mathrm{d}t}(t) &= h \frac{\partial f}{\partial x}(a+th,b+tk) + k \frac{\partial f}{\partial y}(a+th,b+tk), \\ \frac{\mathrm{d}^2F}{\mathrm{d}t^2}(t) &= h \left(h \frac{\partial^2 f}{\partial x^2}(a+th,b+tk) + k \frac{\partial^2 f}{\partial x \partial y}(a,b) \right) + k \left(h \frac{\partial^2 f}{\partial y^2}(a+th,b+tk) + h \frac{\partial^2 f}{\partial x \partial y}(a,b) \right), \\ \frac{\mathrm{d}^3F}{\mathrm{d}t^3}(t) &= \frac{\partial^3 f}{\partial x^3}(a,b)h^3 + 3 \frac{\partial^2 f}{\partial x^2 \partial y}(a,b)h^2k + 3 \frac{\partial^2 f}{\partial x \partial y^2}(a,b)hk^2 + \frac{\partial^3 f}{\partial y^3}(a,b)k^3. \end{split}$$

F:s Taylorpolynom kring 0 är

$$F(t) = F(0) + \frac{\mathrm{d}F}{\mathrm{d}t}(0)t + \frac{1}{2!}\frac{\mathrm{d}^2F}{\mathrm{d}t^2}(0)t^2 + \frac{1}{3!}\frac{\mathrm{d}^2F}{\mathrm{d}t^2}(\theta)t^3.$$

Vi evaluerar i 1:

$$F(1) = F(0) + \frac{\mathrm{d}F}{\mathrm{d}t}(0) + \frac{1}{2!} \frac{\mathrm{d}^2 F}{\mathrm{d}t^2}(0) + \frac{1}{3!} \frac{\mathrm{d}^2 F}{\mathrm{d}t^2}(\theta)$$

$$f(a+h,b+k) = f(a,b) + \frac{\partial f}{\partial x}(a,b)h + \frac{\partial f}{\partial y}(a,b)k$$

$$+ \frac{1}{2} \left(\frac{\partial^2 f}{\partial x^2}(a,b)h^2 + 2\frac{\partial^2 f}{\partial x \partial y}(a,b)hk + \frac{\partial^2 f}{\partial y^2}(a,b)k^2 \right)$$

$$+ \frac{1}{3!} \frac{\mathrm{d}^2 F}{\mathrm{d}t^2}(\theta).$$

Vi analyserar sen den sista termen:

$$\frac{\frac{\mathrm{d}^3 F}{\mathrm{d} t^3}(t)}{\left(\sqrt{h^2+k^2}\right)^3} = \frac{1}{\left(\sqrt{h^2+k^2}\right)^3} \left(\frac{\partial^3 f}{\partial x^3}(a,b)h^3 + 3\frac{\partial^2 f}{\partial x^2 \partial y}(a,b)h^2k + 3\frac{\partial^2 f}{\partial x \partial y^2}(a,b)hk^2 + \frac{\partial^3 f}{\partial y^3}(a,b)k^3\right).$$

Vi ser att detta är konvergent eftersom vi t.ex. kan betrakta

$$\left| \frac{3 \frac{\partial^2 f}{\partial x^2 \partial y}(a, b) h^2 k}{\left(\sqrt{h^2 + k^2}\right)^3} \right| \le C \frac{|h|^2}{h^2 + k^2} \frac{|k|}{\sqrt{h^2 + k^2}} \le C.$$

Derivatan är kontinuerlig, vilket enligt sats garanterar att den är begränsad. Därmed är den sista termen på rätt form, och beviset är klart.

Lokala extrempunkter och partiella derivator Om f har ett lokalt extremvärde i $\mathbf{a} \in D$ och f är partiellt deriverbar i \mathbf{a} är $\frac{\partial f}{\partial x_i}(\mathbf{a}) = 0, i = 1, \ldots, n$.

Bevis Följer av motsvarande sats i en variabel applicerad på $x_i \rightarrow f(a_1, \ldots, x_i, \ldots, a_n)$.

Kvadratiska former och extrempunkt Låt (a,b) vara en inre punkt till D och en stationär punkt till f. Om f:s Taylorpolynom kring (a,b) ges av f(a+h,b+k)=c+Q(h,k). Då gäller att:

- Om Q är positivt definit har f ett strängt lokalt minimum i (a, b).
- Om Q är negativt definit har f ett strängt lokalt maximum i (a, b).
- Om Q är indefinit har f en sadelpunkt (varken ett maximum eller ett minimum) i (a,b).

Små ändringar och funktionalmatriser Låt $f: D \to \mathbb{R}^p \mod D \subset \mathbb{R}^n$ vara C^1 . Då kan vi för små $|\mathbf{h}|$ skriva

$$f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + df(\mathbf{x})\mathbf{h} + |\mathbf{h}|\rho(\mathbf{h})$$

där ρ tar värden i \mathbb{R}^p och $\lim_{\mathbf{h} \to \mathbf{0}} \rho(\mathbf{h}) = \mathbf{0}$.

Bevis Betrakta varje komponent.

Kedjeregeln och funktionalmatriser

$$d(f \circ g)(\mathbf{t}) = df(g(\mathbf{t})) dg(\mathbf{t})$$

Bevis Inses lätt.

Derivation under integraltecken Antag att $f, \frac{\partial f}{\partial s}$ är kontinuerliga i $\alpha < s < \beta, a \leq x \leq b$. Då är funktionen $F: \mathbb{R} \to \mathbb{R}, s \to \int\limits_a^b f(s,x) \,\mathrm{d}x$ deriverbar i $\alpha < s < \beta$ och

$$\frac{\mathrm{d}F}{\mathrm{d}s}(s) = \int_{a}^{b} \frac{\mathrm{d}f}{\mathrm{d}s}(s,x) \,\mathrm{d}x.$$

Bevis

Utvidgad derivation under integraltecken Antag att $f, \frac{\partial f}{\partial s}$ är kontinuerliga i $\alpha < s < \beta, A \le x \le B$. Låt b vara en C^1 -funktion av $\alpha < s < \beta$ med A < b(s) < B. Då är $F : \mathbb{R} \to \mathbb{R}, s \to \int\limits_a^b f(s,x) \,\mathrm{d}x$ deriverbar och

$$\frac{\mathrm{d}F}{\mathrm{d}s}(s) = \int_{a}^{b} \frac{\mathrm{d}f}{\mathrm{d}s}(s,x) \,\mathrm{d}x + f(s,b(s)) \frac{\mathrm{d}b}{\mathrm{d}s}(s).$$

Derivation under integraltecken för generaliserade integraler Antag att

- $f, \frac{\partial f}{\partial s}$ är kontinuerliga i $\alpha < s < \beta, x \ge a$.
- $F(s) = \int_{a}^{\infty} f(s, x) dx$ är konvergent för $\alpha < s < \beta$.
- Till varje kompakta delintervall $[\alpha_1,\beta_1]\subset(\alpha,\beta)$ finns en majorerande funktion g så att

$$-\left|\frac{\partial f}{\partial s}(s,x)\right| < g(x) \ \forall \ s \in [\alpha_1,\beta_1], x \ge a.$$

$$-\int_{0}^{\infty} g(x) dx$$
 är konvergent.

Då är F deriverbar och

$$\frac{\mathrm{d}F}{\mathrm{d}s}(s) = \int_{a}^{\infty} \frac{\mathrm{d}f}{\mathrm{d}s}(s,x) \,\mathrm{d}x.$$

5 Kurvor

5.1 Definitioner

Kurvor i \mathbb{R}^p En kurva i \mathbb{R}^p är en funktion $t \to \mathbf{x}(t) = (x_1(t), \dots, x_p(t))$.

 C^1 -kurvor En kurva är klass C^1 om alla dess komponenter är C^1 .

Tangentvektor Låt $\mathbf{x}(t)$ vara en C^1 -kurva definierad på $[\alpha, \beta], \phi : [a, b] \to [\alpha, \beta]$ vara strängt växande och ϕ, ϕ^{-1} vara C^1 . Då definieras tangentvektorn till kurvan av

$$\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) = \lim_{h \to 0} \frac{\mathbf{x}(t+h) - \mathbf{x}(t)}{h}.$$

Längd Långden av en kurva ges av

$$\int_{\alpha}^{\beta} \left| \frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t}(t) \right| \mathrm{d}t.$$

5.2 Satser

6 Ytor

6.1 Definitioner

Ytor En yta är en funktion $\mathbf{r}: D \to \mathbb{R}^3 \mod D \subset \mathbb{R}^2$.

Tangentplan Tangentplanet till en kurva spänns upp av vektorerna

$$\begin{split} \mathbf{r}_s(s,t) &= (\frac{\mathrm{d}r_1}{\mathrm{d}s}(s,t), \frac{\mathrm{d}r_2}{\mathrm{d}s}(s,t), \frac{\mathrm{d}r_3}{\mathrm{d}s}(s,t)), \\ \mathbf{r}_t(s,t) &= (\frac{\mathrm{d}r_1}{\mathrm{d}t}(s,t), \frac{\mathrm{d}r_2}{\mathrm{d}t}(s,t), \frac{\mathrm{d}r_3}{\mathrm{d}t}(s,t)), \end{split}$$

6.2 Satser

7 Kvadratiska ytor

Detta är de flesta kvadratiska ytorna man kan träffa på i \mathbb{R}^3 , komplett med snygga illustrationer.

Figur 1: Illustration av en ellipsioid.

Ellipsioider En ellipsioid beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Koner En kon beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}.$$

Figur 2: Illustration av en kon.

Cylindrar En cylinder beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

Figur 3: Illustration av en cylinder.

Elliptiska paraboloider En elliptisk paraboloid beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}.$$

Figur 4: Illustration av en elliptisk paraboloid.

Hyperbolska paraboloider En hyperbolsk paraboloid beskrivs av en ekvation på formen

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{z}{c}.$$

Enmantlade hyperboloider En enmantlad hyperboloid beskrivs av en ekvationpå formen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1.$$

Figur 5: Illustration av en hyperbolsk paraboloid.

Figur 6: Illustration av en enmantlad hyperboloid.

Tvåmantlade hyperboloider En tvåmantlad hyperboloid beskrivs av en ekvation på formen

$$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Figur 7: Illustration av en tvåmantlad hyperboloid.

8 Optimering

8.1 Optimering på mängder

Låt $K \subset \mathbb{R}^n$ vara en kompakt mängd och $f: K \to \mathbb{R}$ vara kontinuerlig. Då antar f ett största värde M på K, förmodligen enligt sats. Om vi även antar att f är C^1 på K och att $f(\mathbf{a}) = M$, är \mathbf{a} antingen

- en inre punkt av K så att $\vec{\nabla} f(\mathbf{a}) = 0$, enligt sats.
- en punkt på ∂K .

För att optimera på icke-kompakta mängder, kan man hitta en punkt a i dne icke-kompakta mängden U så att $\nabla f(\mathbf{a}) = 0$. Därefter väljer man en smart kompakt delmängd K till U kring denna punkten så att man kan visa att f antar ett extremvärde på K i \mathbf{a} . Om man har valt K smart, kan man då även använda detta för att visa att f antar ett globalt extremvärde för U i \mathbf{a} .

8.2 Optimering med bivillkor

Låt $f: D_f \to \mathbb{R}, g: D_g \to \mathbb{R} \mod D_f, D_g \subset \mathbb{R}^2$, och anta att f optimeras under bivillkoret g(x,y) = 0 i någon inre punkt $(a,b) \in D_f \cap D_g$. Då är $\nabla f(a,b), \nabla g(a,b)$ parallella.

För att bevisa detta antar vi $\nabla f(a,b) \neq \mathbf{0}$. Implicita funktionssatsen säjer då att det finns en parametrisering (x(t),y(t)) av nivåkurvan g(x,y)=0 nära (a,b), som vi väljer så att den startar i (a,b). Funktionen $\phi(t)=f(x(t),y(t))$ har ett lokalt extremvärde i t=0, och vi har

$$0 = \frac{\mathrm{d}\phi}{\mathrm{d}t}(0) = \vec{\nabla}f(a,b) \cdot (\frac{\mathrm{d}x}{\mathrm{d}t}(0), \frac{\mathrm{d}y}{\mathrm{d}t}(0)).$$

Eftersom gradienten är vinkelrät på nivåytan, är den parallell med $\vec{\nabla}g(a,b)$ enligt sats.

8.3 Optimering med flera bivillkor

Låt $f: D_f \to \mathbb{R}, g_i: D_{g_i} \to \mathbb{R}, i = 1, \dots, p \text{ med } D_f, D_{g_1}, \dots, D_{g_p} \subset \mathbb{R}^n$, och anta att f optimeras under bivillkoret $g_1(\mathbf{x}) = \dots = g_n(\mathbf{x}) = 0$ i någon inre punkt $\mathbf{a} \in D_f \cap D_{g_1} \cap \dots \cap D_{g_p}$. Då är $\vec{\nabla} f(\mathbf{a}), \vec{\nabla} g_1(\mathbf{a}), \dots, \vec{\nabla} g_p(\mathbf{a})$ linjärt beroende.

8.4 Minsta kvadratmetoden

Låt $\{(a_i,b_i)_{i=1}^n$ vara en mängd punkter där minst två a_i är olika. Vi vill välja en linje y=kx+l så att

$$Q(k,l) = \sum_{i=1}^{n} (b_i - (ka_i + l))^2$$

minimeras.

Vi vill visa att Q har ett entydigt minimum och att detta minimum löser normalekvationerna

$$k \sum_{i=1}^{n} a_i^2 + l \sum_{i=1}^{n} a_i = \sum_{i=1}^{n} a_i b_i,$$

$$k \sum_{i=1}^{n} a_i + nl = \sum_{i=1}^{n} b_i.$$

Vi beviser detta vid att definiera $M = Q(K_0, l_0)$ och bilda strimlan S_1 som begränsas av linjerna

$$ka_1 + l = b_1 \pm \sqrt{M}$$

och strimlan S_2 som begränsas av linjerna

$$ka_2 + l = b_2 \pm \sqrt{M}.$$

Vi har då att $(ka_1+l-b_1)^2 \geq M$ för $(k,l) \notin S_1$ och $(ka_2+l-b_2)^2 \geq M$ för $(k,l) \notin S_2$. Då minst två a_i är olika kan vi anta att S_1, S_2 inte är parallella. Då är $K = S_1 \cap S_2$ kompakt och $Q(k,l) > M, (k,l) \notin K$. Det minsta värdet av Q på K är även det minsta värdet på \mathbb{R}^2 .

För ett minimum på K har vi

$$\frac{\partial Q}{\partial k}(k,l) = \sum_{i=1}^{n} 2(b_i - ka_i - l)(-a_i) = 2l \sum_{i=1}^{n} a_i + 2k \sum_{i=1}^{n} a_i^2 - 2\sum_{i=1}^{n} a_ib_i = 0,$$
$$\frac{\partial Q}{\partial l}(k,l) = 2k \sum_{i=1}^{n} a_i + 2nl - 2\sum_{i=1}^{n} b_i = 0,$$

vilket ger normalekvationerna. Dessa har en lösning ty om man skriver systemet på matrisform, ges determinanten av vänsterledets matris av

$$n \sum_{i=1}^{n} a_i^2 - \left(\sum_{i=1}^{n} a_i\right)^2$$

$$= \sum_{i=1}^{n} 1^2 \sum_{i=1}^{n} a_i^2 - \left(\sum_{i=1}^{n} a_i\right)^2$$

$$= |(a_1, \dots, a_n)|^2 |(1, \dots, 1)|^2 - |(a_1, \dots, a_n) \cdot (1, \dots, 1)|^2.$$

Enligt Cauchy-Schwarz' olikhet är detta alltid nollskild ty minst två a_i är olika, och de involverade vektorerna aldrig är parallella.

9 Integraler

9.1 Definitioner

Dubbelintegraler av trappfunktioner Dubbelintegralen av en trappfunktion Φ över Δ definieras som

$$\iint_{\Lambda} \Phi(x,y) \, \mathrm{d}x \, \mathrm{d}y = \sum_{i,j} c_{i,j} A_{i,j},$$

där $c_{i,j}$ är värdet Φ antar på $\Delta_{i,j}$ och $A_{i,j}$ är arean av $\Delta_{i,j}$.

Riemann-integrerbarhet En begränsad funktion f är integrerbar över en rektangulär region Δ om det till varje $\varepsilon > 0$ finns trappfunktioner Φ, Ψ så att $\Phi \leq f \leq \Psi$ och $\iint\limits_{\Delta} \Psi \,\mathrm{d}x \,\mathrm{d}y - \iint\limits_{\Delta} \Phi \,\mathrm{d}x \,\mathrm{d}y < \varepsilon$.

Dubbelintegraler Låt f vara integrerbar över rektanglet Δ . Då finns det ett λ så att $\iint_{\Delta} \Phi \, \mathrm{d}x \, \mathrm{d}y \leq \lambda \leq \iint_{\Delta} \Psi \, \mathrm{d}x \, \mathrm{d}y$ för alla trappfunktioner Φ, Ψ så att $\Phi \leq f \leq \Psi$. Detta λ definieras som dubbelintegralen av f över Δ och betecknas $\iint_{\Delta} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$.

Integration över godtyckliga områden Låt $D \in \mathbb{R}^2$ vara en begränsad mängd, $f: D \to \mathbb{R}$ vara en begränsad funktion och

$$f_D(x,y) = \begin{cases} f(x,y), & (x,y) \in D, \\ 0, & (x,y) \notin D \end{cases}$$

fär integrerbar över Dom f_D är integrerbar över någon rektangel Δ som innehåller D. Givet detta sätter vi

$$\iint_D f(x,y) dx dy = \iint_{\Delta} f_D(x,y) dx dy.$$

Riemannsummor En Riemannsumma är på formen

$$\sum_{i,j} f(\xi_i, \eta_j) A_{i,j}$$

där $A_{i,j}$ betecknar arean till den lilla fyrkanten som (ξ_i, η_j) ligger i. Summan är ment att approximera

$$\iint\limits_{\Delta} f(x,y) \, \mathrm{d}x \, \mathrm{d}y.$$

Generaliserade integraler Låt f vara en kontinuerlig funktion i ett öppet område $\Omega \subset \mathbb{R}^2$ med $f(x,y) \geq 0$ på Ω . $\iint_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y$ är konvergent om mängden

$$M = \left\{ \iint_D f(x, y) \, \mathrm{d}x \, \mathrm{d}y \mid D \text{ är en avskärning av } \Omega \right\}$$

är uppåt begränsad och divergent annars. Om integralen är konvergent definierar vi

$$\iint\limits_{\Omega} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \sup M.$$

9.2 Satser

Egenskaper för dubbelintegraler av trappfunktioner För integralet av två trappfunktioner Φ, Ψ gäller att

- $\iint_{\Delta} \alpha \Phi \, dx \, dy = \alpha \iint_{\Delta} \Phi \, dx \, dy, \alpha \in \mathbb{R}.$
- $\iint_{\Delta} (\Phi + \Psi) \, dx \, dy = \iint_{\Delta} \Phi \, dx \, dy + \iint_{\Delta} \Psi \, dx \, dy.$
- Om $\Phi \leq \Psi$ på Δ är $\iint_{\Lambda} \Phi \, \mathrm{d}x \, \mathrm{d}y \leq \iint_{\Lambda} \Psi \, \mathrm{d}x \, \mathrm{d}y$.
- $\left| \iint_{\Delta} \Phi \, \mathrm{d}x \, \mathrm{d}y \right| \leq \iint_{\Delta} |\Phi| \, \mathrm{d}x \, \mathrm{d}y.$
- Om Δ har gränserna a,b i x-led och c,d i y-led är $\iint\limits_{\Delta}\Phi\,\mathrm{d}x\,\mathrm{d}y=\int\limits_a^b\left(\int\limits_c^d\Phi\,\mathrm{d}y\right)\mathrm{d}x.$

Bevis

Ordning av dubbelintegraler Låt f vara integrerbar över rektanglet Δ . Då gäller att

$$\iint\limits_{\Delta} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int\limits_a^b \left(\int\limits_c^d f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x = \int\limits_c^d \left(\int\limits_a^b f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y.$$

Integration över områden begränsade av kurvor Låt f vara kontinuerlig på $D = \{(x, y) \in \mathbb{R}^2 \mid a \leq x \leq b, \alpha(x) \leq y \leq \beta(x)\}$ och låt α, β vara kontinuerliga på [a, b]. Då är f integrerbar över D och

$$\iint\limits_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int\limits_a^b \left(\int\limits_{\alpha(x)}^{\beta(x)} f(x,y) \, \mathrm{d}y \right) \mathrm{d}x.$$

Bevis

Integration över nollmängder Varje begränsad funktion f är integrerbar över en nollmängd N och

$$\iint\limits_{N} f(x,y) \, \mathrm{d}x \, \mathrm{d}y = 0.$$

Bevis Låt Δ vara en rektangel så att $N \subset \Delta$, låt $\varepsilon > 0$ och låt R vara unionen av ändligt många axelparallella rektanglar så att

- $N \subset R$.
- R har area mindre än ε .
- $R \subset \Delta$.

Definiera den utvidgade funktionen

$$f_N(x,y) = \begin{cases} f(x,y), & (x,y) \in N, \\ 0, & (x,y) \notin N. \end{cases}$$

Låt $m = \min_{\Delta} f_N, M = \max_{\Delta} f_N$ och välj trappfunktioner Φ, Ψ så att

$$\Phi(x,y) = \begin{cases} m, & (x,y) \in R, \\ 0, & (x,y) \in \Delta \setminus R, \end{cases} \Psi(x,y) = \begin{cases} M, & (x,y) \in R, \\ 0, & (x,y) \in \Delta \setminus R. \end{cases}$$

Då är $\Phi \leq f \leq \Psi.$ Vi har att

$$\iint_{\Delta} (\Psi - \Phi) dx dy = \iint_{R} (\Psi - \Phi) dx dy \le (M - m)\varepsilon,$$

och därmed är f integrerbar över N. Dessutom gäller att

$$\iint\limits_{\Delta} \Phi \, \mathrm{d}x \, \mathrm{d}y \le \iint\limits_{\Delta} f_N \, \mathrm{d}x \, \mathrm{d}y \le \iint\limits_{\Delta} \Psi \, \mathrm{d}x \, \mathrm{d}y,$$

vilket implicerar att

$$m\varepsilon \le \iint\limits_N f \,\mathrm{d}x \,\mathrm{d}y \le M\varepsilon.$$

Detta implicerar att

$$\iint\limits_{N} f \, \mathrm{d}x \, \mathrm{d}y = 0,$$

och beviset är klart.

Medelvärdesatsen för integraler Antag att f är kontinuerlig på en kompakt, kvadrerbar och bågvis sammanhängande mängd $D \subset \mathbb{R}^2$. Låt $m = \min_D f, M = \max_D f$. Integration ger

$$mA_D \le \iint_D f \, \mathrm{d}x \, \mathrm{d}y \le MA_D.$$

Alltså finns ett $C \in [m, M]$ så att

$$\frac{1}{A_D} \iint_D f \, \mathrm{d}x \, \mathrm{d}y = C.$$

Bevis Satsen om mellanliggande värden ger att $\exists (\xi, \eta) \in D$ så att $f(\xi, \eta) = C$. Alltså

$$\frac{1}{A_D} \iint_D f \, \mathrm{d}x \, \mathrm{d}y = f(\xi, \eta).$$

Variabelbyte i dubbelintegraler Låt $(u, v) \to (g(u, v), h(u, v))$ vara en bijektiv C^1 -avbildning $E \to D$, d'r E och D är öppna och kvadrerbara delmängder av \mathbb{R}^2 , och antag $J(u, v) = \left| \frac{\mathrm{d}(x, y)}{\mathrm{d}(u, v)} \right| \neq 0$. Då är

$$\iint\limits_D f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \iint\limits_E f(g(u,v),h(u,v)) |J(u,v)| \, \mathrm{d}u \, \mathrm{d}v \, .$$

Integration med nivåkurvor Antag att

- $D \subset \mathbb{R}^2$ är ett kvadrerbart område.
- $g: D \to \mathbb{R} \text{ är } C^1$.
- $h:[a,b] \to \mathbb{R}$ är C^1 , där $a = \min_D g(x,y), b = \max_D g(x,y).$
- Areafunktionen $A:[a,b]\to\mathbb{R}$ given av

$$A(u) = A_{G_u}, G_u = \{(x, y) \in D \mid g(x, y) \le u\}$$

är C^1 . Då gäller att

$$\iint_D h(g(x,y)) dx dy = \int_a^b h(u) \frac{dA}{du}(u) du,$$

$$\iint_D g(x,y) dx dy = \int_a^b u \frac{dA}{du}(u) du$$

Konvergens av generaliserade integraler För generaliserade integraler med positiv integrand gäller att om den inre enkelintegralen är konvergent, är dubbelintegralen konvergent om och endast om den yttre enkelintegralen är konvergent.

Bevis

Ordningsbyte i generaliserade integraler Låt dubbelintegralen av f över D vara så att både den yttre och inre integralen är konvergent. Då kan man byta ordning på integralen.