Evolutionary Multi-Objective Optimisation: part 3

By: Dr. Vahid Ghasemi

Outline

- MOEA/D
- Many-objective optimisation and NSGA-III

Decomposition-based MOEA

- Multi-objective optimisation: use a set of solutions to approximate the true Pareto front
 - Each solution is on the true Pareto front
 - Each solution covers a different region of the Pareto front
 - Solutions are uniformly distributed
- N solutions to approximate the true Pareto front is equal to solve N single-objective sub-problems
 - Each sub-problem finds a solution on the Pareto front

Decomposition-based MOEA

- Traditional decomposition
 - Define the single-objective sub-problems and solve them separately
 - $\min g_1 = f_1$
 - $\min g_2 = 0.9 * f_1 + 0.1 * f_2$
 - ...
 - $\min g_{11} = f_2$
- Collaboration (EC methods)
 - N agents are used, each agent is for solving a different sub-problem
 - The N agents solve the sub-problems in a collaborative manner, based on the relationship between the sub-problems

MOEA/D

- Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D)
 - A population of agents, each searching for the optimum of each subproblem
 - Each agent collaborates with other related agents in crossover

MOEA/D

Design Issues

- How to decompose the problem and define sub-problems?
 - Each desired Pareto solution is the optimum of a different sub-problem
- How to design search methods of each agent?
 - Memory: which individuals to store during the search
 - Selection, crossover, mutation operators
 - Neighbourhood structure
 - Collaboration mechanisms between agents

Problem Decomposition

Weighted sum approach

- Each weight vector (λ_1, λ_2) leads to a different sub-problem

min
$$g^{ws}(x \mid \lambda) = \lambda_1 f_1(x) + \lambda_2 f_2(x)$$

where $\lambda_1 + \lambda_2 = 1$ and $\lambda_1, \lambda_2 \ge 0$.

- Works for convex PF.
- Doesn't work if the PF is not convex.

Problem Decomposition

Tchbycheff Approach

For any Pareto optimal solution x*,
 there is a weight vector such that x*
 is optimal to the problem.

$$\min g^{T}(x | \lambda, z^{*})$$

$$g^{T}(x | \lambda, z^{*}) = \max\{\lambda_{1} | f_{1}(x) - z_{1}^{*} |, \lambda_{2} | f_{2}(x) - z_{2}^{*} |\}$$

$$z^{*} = (z_{1}^{*}, z_{2}^{*}) \text{ is an Utopian point. } z_{1}^{*} < \min f_{1}, z_{2}^{*} < \min f_{2}.$$

Weighted L_p Approach

$$\min g(x \mid \lambda, z^*)$$

where $g(x \mid \lambda, z^*) = \{\lambda_1 \mid f_1(x) - z_1^* \mid^p + \lambda_2 \mid f_2(x) - z_2^* \mid^p \}^{\frac{1}{p}}$ $z^* = (z_1^*, z_2^*)$ is an Utopian point.

- $\checkmark p = 1$: weighted sum
- ✓ $p = \infty$: Tchbycheff

Weight Vectors and Utopian Points

- A simple way for weight vectors:
 - All the weight vectors are uniformly distributed in the unit simplex
 - $-\lambda = (\lambda_1, \dots, \lambda_m), \sum_{k=1}^m \lambda_k = 1, 0 \le \lambda_k \le 1$
 - Each weight vector is a direction line
- Utopian points: problem specific, based on the estimation of the true Pareto front

Neighbourhood Structure

- Sub-problems with similar objective functions (weight vectors, direction lines) are most likely to have similar optimal solutions
- Define neighbourhoods based on similarity of weight vectors

Neighborhood of subproblem 5

Search Method

- Memory: Each agent i records only one candidate solution xⁱ, the best solution found so far for its sub-problem
- At each generation, for each agent:
 - Mating selection: Borrow solutions from neighbours (collaboration)
 - Breeding: generate a new solution from the mating pool (parent selection + crossover/mutation)
 - Replacement:
 - Evaluate the new solution on its own objective
 - Replace its old solution by the new solution if the new one is better for its own objective
 - Pass the new solution to some of its neighbours (collaboration, neighbourhood)
 - For each neighbour receiving the new solution, evaluate the new solution on the objective of the neighbour
 - Replace the old solution of the neighbour with the new solution, if the new one is better for the neighbour's objective

MOEA/D (Original Form)

Input:

- MOP (1);
- · a stopping criterion;
- N: the number of the subproblems considered in MOEA/D;
- a uniform spread of N weight vectors: λ¹,...,λ^N;
- T: the number of the weight vectors in the neighborhood of each weight vector.

Output: EP.

Step 1) Initialization:

Step 1.1) Set $EP = \emptyset$.

Step 1.2) Compute the Euclidean distances between any two weight vectors and then work out the T closest weight vectors to each weight vector. For each $i=1,\ldots,N$, set $B(i)=\{i_1,\ldots,i_T\}$, where $\lambda^{i_1},\ldots,\lambda^{i_T}$ are the T closest weight vectors to λ^i .

Step 1.3) Generate an initial population $x^1, ..., x^N$ randomly or by a problem-specific method. Set $FV^i = F(x^i)$.

Step 1.4) Initialize $z = (z_1, \dots, z_m)^T$ by a problem-specific method.

Step 2) Update:

For $i = 1, \dots, N$, do

Step 2.1) Reproduction: Randomly select two indexes k, l from B(i), and then generate a new solution y from x^k and x^l by using genetic operators.

Step 2.2) Improvement: Apply a problem-specific repair/ improvement heuristic on y to produce y/.

Step 2.3) Update of z: For each j = 1, ..., m, if $z_j < f_j(y')$, then set $z_j = f_j(y')$.

Step 2.4) Update of Neighboring Solutions: For each index $j \in B(i)$, if $g^{te}(y'|\lambda^j, z) \leq g^{te}(x^j|\lambda^j, z)$, then set $x^j = y'$ and $FV^j = F(y')$.

Step 2.5) Update of EP:

Remove from EP all the vectors dominated by F(y').

Add F(y') to EP if no vectors in EP dominate F(y').

Step 3) Stopping Criteria: If stopping criteria is satisfied, then stop and output EP. Otherwise, go to Step 2.

MOEA/D

Advantages

- Very good in controlling search direction, can get very well distributed distributions
- Supports parallel computing

Issues

- Hard to set weight vectors and Utopian points (sensitive parameters)
- Decomposition is problem-specific (weighted sum, Tchbycheff, ...)
- Difficulty to handle discontinuous, irregular shape of Pareto front

Many-Objective Optimisation

- Multi-objective optimisation problems can become increasingly hard when the number of objectives increases
 - More and more solutions become non-dominated
 - Calculation of diversity measures becomes time consuming
 - Crossover may become less effective (parents are more distant)

Many-Objective Optimisation

- To distinguish, many-objective optimisation problems are the multi-objective optimisation problems with four or more objectives
 - Larger than 3D, hard to visualize
 - Sufficient difficulty so that common MOEAs are less effective
- Preprocessing to reduce the number of objectives:
 - Remove redundant and less important objectives
 - Use domain knowledge to aggregate objectives
 - If still many objectives, then consider many-objective evolutionary algorithms: a well-known algorithm is NSGA-III (the version after NSGA-II)

NSGA-III

- Based on the NSGA-II framework
- Borrow MOEA/D idea on search direction, NO crowding distance

NSGA-III

Algorithm 1 Generation t of NSGA-III procedure

Input: H structured reference points Z^s or supplied aspiration points Z^a , parent population P_t

Output: P_{t+1}

1:
$$S_t = \emptyset$$
, $i = 1$

2:
$$Q_t$$
 = Recombination+Mutation(P_t)

3:
$$R_t = P_t \cup Q_t$$

4:
$$(F_1, F_2, ...)$$
 = Non-dominated-sort (R_t)

5: repeat

6:
$$S_t = S_t \cup F_i$$
 and $i = i + 1$

7: **until**
$$|S_t| \geq N$$

8: Last front to be included: $F_I = F_i$

9: **if**
$$|S_t| = N$$
 then

10:
$$P_{t+1} = S_t$$
, break

11: **else**

12:
$$P_{t+1} = \bigcup_{j=1}^{l-1} F_j$$

13: Points to be chosen from F_l : $K = N - |P_{t+1}|$

Normalize objectives and create reference set Z^r : Normalize (\mathbf{f}^n , S_t , Z^r , Z^s , Z^a)

15: Associate each member \mathbf{s} of S_t with a reference point: $[\pi(\mathbf{s}), d(\mathbf{s})]$ =Associate (S_t, Z^r) % $\pi(\mathbf{s})$: closest reference point, d: distance between \mathbf{s} and $\pi(\mathbf{s})$

16: Compute niche count of reference point $j \in Z^r$: $\rho_j = \sum_{\mathbf{S} \in S_r/F_l} ((\pi(\mathbf{s}) = j) ? 1 : 0)$

17: Choose K members one at a time from F_l to construct P_{t+1} : Niching $(K, \rho_i, \pi, d, Z^r, F_l, P_{t+1})$

18: end if

Partial Last Front Selection

- Normalise solution objectives and generate reference points (search directions)
 - Ideal point, uniformly distributed reference points
- Associate each previously selected solution to the closest reference points
 - Perpendicular distance to the reference line
- Select the partial last front by niching

Partial Last Front Selection

- Select the partial last front by niching
- Repeat K times (K is the number of individuals needed)
 - Select the reference point with the least associated individuals
 - If some individuals in the last front associated to this reference point
 - If there is NO current associated individuals to this ref point, then add the closest individual in the last front associated to the ref point
 - Otherwise, randomly add an individual in the last front associated to it
 - If NO individual in the last front associated to this reference point
 - Remove this reference point
- #reference points can change during NSGA-III
- NSGA-III vs NSGA-II?
- NSGA-III vs MOEA/D?

Other EMO Topics

- Multi-objective Constrained Optimisation
- Preference-base EMO
- EMO + Decision Making, Interactive MOEAs
- Dynamic multi-objective optimisation
- Large scale multi-objective optimisation
- Irregular Pareto front
- Different objectives have very different distributions

Summary

MOEA/D

- Decompose into single-objective sub-problems, each searching for one point on the Pareto front
- Collaborate with each other
- Can control the distribution well if the Pareto front is well shaped
- But not good if the Pareto front has irregular shape
- Many-objective optimisation: more than 3 objectives
- NSGA-III: combine NSGA-II and MOEA/D
 - Make distribution more well spread and uniform
 - Can incorporate preference by adjusting the reference points