

(b) Prove the presentation for G as
$$G \cong \langle s, r | s^2 = r^m = e, srs = r^{-1} \rangle$$

(c) Prove the (Oxeter) presentation for G as
$$G \cong \langle s, t | s^2 = t^2 = e = (st)^m \rangle$$

(b) Prove that there is a representation
$$G = I_2(m) \xrightarrow{\rho(i)} GL_2(C)$$

for each $j \in \mathbb{Z}$ uniquely defined by $s \xrightarrow{\rho(i)} I_{10}^{(i)}$
 $r \xrightarrow{\rho(i)} I_{10}^{(i)}$

(c) Prove
$$\rho^{(j)} = \rho^{(j+m)} = \rho^{(m-j)}$$
 where $g := e^{2\pi i j m}$ $\rho^{(o)} = 11 \oplus 11$, $\rho^{(\frac{m}{2})} = \rho_s \oplus \rho_t$ for m even, $\rho^{(a)} = \rho_r = \rho_s$

- (3) Let GCEn be a permutation group,
 and GP, GLn(C) the associated permutation representation for G adong on [17].
 - (a) Show that the permutation representation where G permutes the ordered pairs (ii) \in [n] \times [n] via g(i,j)=(g(i),g(j)) has character χ_p^2
 - (b) If G is doubly-transitive, meaning G acts transitively on the set of pairs $\{(i,j): 1 \le i \ne j \le n\}$, then show $\{(p,X_p)_G=2.$
 - (c) If G is doubly-transitive, show $p = 11 \oplus p'$ with p' inreducible. (Hint: Explain why $p = 11 \oplus p'$ for some representation p',
 then calculate $\langle \chi_{p'}, \chi_{p'} \rangle_{G}$.)
 - (d) Prove G=Gn Prem GLn(C) de composes as Prem 11 & Pref

 (e) Prove G=Gn has Pref irreducible.

 [c] Prove G=Gn has Pref irreducible.

 [c] Prove G=Gn has Pref irreducible.

 [c] Prove G=Gn has Pref irreducible.
- 4 Prove that $G=G_4$ has the following list of (inequivalent) irreducibles $\{11, sgn, pref, sgn pref, p_2\}$ (sends $\sigma \mapsto sgn(\sigma)$ (permutation)

where f_2 is the following composite: $G_4 \rightarrow G_4/V_4 \stackrel{\sim}{=} G_3 \stackrel{\text{Pref}}{=} O_2(\mathbb{R})$ Klein-four

Subgroup

{e, asxer), (is)(24), e)(25)}

Compute the irreducible character table for G_{ij} by giving their character values on $\{e, (ij), (ijk), (ij)(ke), (ijke)\}$