Учреждение	образования	Белорусский	государств	енный униве	рситет
	информа	атики и радис	электрониі	ки	

Кафедра метрологии и стандартизации

Лабораторная работа Э.4Б "Универсальный электронно-лучевой осциллограф"

Проверил: доц. кафедры Батай Л. Е. Выполнил: ст. группы 120602

1 Цели работы

- 1. Изучение принципа действия и структурной схемы универсального электронно-лучевого осциллографа.
- 2. Изучение измерительных приборов С1-117, Г4-117, Г5-54 и приобретение практических навыков работы с ними.

2 Приборы, используемые в работе

№	Наименование	Тип	Заводской номер	Основные технические характеристики	
1	Генератор сигналов низкочастотный	Г4-117		Диапазон генерируемых частот: $20 \ \Gamma \text{ц} \dots 10 \ \text{М} \Gamma \text{ц}$ Относительная погрешность установки: $\pm (0,02f+1) \ \Gamma \text{ц};$ на участке $100 \dots 200 \ \Gamma \text{ц}:$ $\pm (0,02f+4) \ \Gamma \text{ц}.$ Основная погрешность установки выходного напряжения по шкале стрелочного индикатора не превышает 10% от номинального конечного значения соответствующей шкалы.	
2	Осциллограф универсальный двухканальный	C1-117		Предел измерений: 10 МГц Погрешность коэффициента: ±4%	
3	Генератор импульсов	B5-54		Предел измерений: 50 В Погрешность установки: не более $\pm (0, 1U_m + \text{K} \ 1, 0)$ В, где К - коэффициент ступенчатого ослабления	

Рисунок 2.1. Структурная схема изучаемого осциллографа

Рисунок 2.2. Схема лабораторного макета

3 Теоретические сведения

Коэффициент усиления предварительного усилителя:

$$k' = \frac{U_{\text{BLIX}}}{U_{\text{BX}}} \tag{1}$$

Основная погрешность измерения амплитудных параметров сигнала:

$$\delta_A = \left[2 + 0, 15 * \left(\frac{U_n}{U_x} - 1\right)\right],\tag{2}$$

где δ_A – основная погрешность измерения амплитудных параметров сигнала, %;

 U_n – предел измерений, B;

 U_x – значение измеряемого напряжения, B.

Диапазон: $[10^{-7}; 10^{-4}]$, с: Диапазон: $[10^{-4}; 0, 1]$, с:

$$\delta_{T(r)} = \pm \left[2 + 0, 2 * \left(\frac{T_n}{T_x} - 1 \right) \right]$$

$$\delta_{T(r)} = \pm \left[1 + 0, 2 * \left(\frac{T_n}{T_x} - 1 \right) \right]$$

Таблица 3.2: Основная погрешность измерений временных параметров сигнала

где $\delta_{T(r)}$ – основная погрешность цифровых измерений временных сигналов, %;

 T_n – предел измерений, c;

 T_{x} – значения измеряемого интервала, c.

Фазовый сдвиг синусоидальных сигналов:

$$\varphi_x^0 = 360 * \frac{l_\tau}{l_T},\tag{3}$$

где l_{τ}, l_{T} – временной сдвиг и период сигналов в делениях.

Абсолютная погрешность измерения фазового сдвига:

$$\Delta \varphi_x^0 = \varphi_x^0 * \frac{\Delta l}{\sqrt{l_\tau^2 + l_T^2}},\tag{4}$$

где Δl – абсолютная погрешность отсчета по шкале ЭЛТ в делением с учетом толщины луча $(\pm 0, 1$ деление).

4 Результаты измерений

No	Вид осциллограммы	Результаты измерений		Погрешность измерений	Коэффициент усиления	
1		U = T =	, B , μS		$k_y' =$	
2		$U = T = \tau = 0$, B , μS , μS		$k_y'' =$	
				цифровые		
		U = T		$\delta_A = 0$		
		$T = 0$ $\tau = 0$	$,\mu S$ $,\mu S$	$\delta_T = \delta_{ au} = \delta_{ au}$		
6		$T_c = $, , ,	$\Delta \varphi_x =$		

Таблица 4.3: Результаты измерений

5 Вывод

В ходе лабораторной работы:

• Изучен принцип работы электронно-лучевого осциллографа.

_