Incorporate Nonconcurrent Control using Gaussian Processes in Platform Trials

Presenter: Yan Peng Mentor: Yuhan Qian

Outline

01

Platform Trials

Definition and features

02

Population

Introduction of ECE population;
Concurrent vs Non-concurrent Data

03

Gaussian Processes

Uni-task and Multi-task GP

04

Variance Reduction

How GP works?

01 Platform Trial

Definition and features

What a Platform Trial is?

- Platform trials:
 - They can add or drop the treatments

- Introduce challenges:
 - How to define populations
 - How to estimate treatment effects reliably

(b) Multi-Arm Platform Trials

02 Population

Introduction of ECE population; Concurrent vs Non-concurrent Data

How to define populations

- Entire Concurrently Eligible (ECE) Population:
 - The population of all individuals who meet the eligibility criteria for both treatment j, k and could potentially be enrolled during a time period when both treatments are available.
 - o Formally, the ECE population is a population of all individuals with $\pi_i(Z) > 0$ and $\pi_k(Z) > 0$
 - o Z: observed baseline variable, eg. Enrollment window
 - $\sigma_j(Z)$: probability that individual is assigned to treatment j given Z

Concurrent Data

(a) Sub-Study Platform Trials

Concurrent Data

(a) Sub-Study Platform Trials

Non-Concurrent Control

(a) Sub-Study Platform Trials

03

Gaussian Processes

Uni-task and Multi-task GP

Uni-task Gaussian Processes

Gaussian Processes model of treatment a = j and k separately:

$$Y_i^a = \mu_a + f_a(E_i) + \epsilon_{i,a}$$

- o GP prior for f_a , flexible modeling of enrollment time(E_i) effects.
- A non-parametric Bayesian method for regression
- Models complex relationships and quantifies uncertainty naturally.

Multi-Task Gaussian Process

$$\begin{pmatrix} Y_i^{(j)} \\ Y_i^{(k)} \end{pmatrix} = f(\begin{pmatrix} E_i \\ E_i \end{pmatrix}) + \epsilon_i$$

$$f(\begin{pmatrix} \mathbf{E}_1 \\ \mathbf{E}_2 \end{pmatrix}) = \begin{pmatrix} f_j(\mathbf{E}_1) \\ f_k(\mathbf{E}_2) \end{pmatrix} \sim \mathcal{GP}(0, \begin{pmatrix} \mathbf{k}_j(\mathbf{E}_1, \mathbf{E}_1^T) & \mathbf{k}_{jk}(\mathbf{E}_1, \mathbf{E}_2^T) \\ \mathbf{k}_{jk}(\mathbf{E}_2, \mathbf{E}_1^T) & \mathbf{k}_k(\mathbf{E}_2, \mathbf{E}_2^T) \end{pmatrix})$$

$$\epsilon_i \sim N(0, \begin{pmatrix} \sigma_j^2 \\ \sigma_k^2 \end{pmatrix})$$

- $Y_i^{(j)}$ and $Y_i^{(k)}$: Potential outcomes
- $f(E_i)$: Share information between treatments
- Joint model of multiple treatments, including control arms.
- Captures relationships across groups using block covariance matrix.

04

Variance Reduction

How GP works?

Variance Reduction in Gaussian Processes

We assume the following multi-task GP model:

$$Y^{(k)} = f(E) + \in_{k'}$$
 $Y^{(j)} = f(E) + \Delta(E) + \in_{j}$

- f(E) is the baseline GP for control
- $\circ \quad \Delta(E) \sim \mathcal{GP}(0, k_{\Delta}(E, E^T))$
 - captures the difference between treatment and control outcomes.

Variance Reduction in Gaussian Processes

• Theorem:

• Under the previous model, the posterior covariance matrix of $\Delta(E^*)$ is denoted by $\overline{\Sigma}_{\Delta}$, incorporating non-concurrent controls leads to:

$$\overline{\sum}_{\Delta,CC} - \overline{\sum}_{\Delta,NC} \geq 0.$$

• Theorem proof:

- $\circ \Delta(E^*)|Y,E\sim N(\overline{m}_{\Delta}(E^*),\overline{k}_{\Delta}(E^*))$
- o where $A_{11} = k_{f,jj} + k_{\Delta,jj} + \sigma_j^2 I_{n,j} k_{f,jk} (k_{f,kk} + \sigma_n^2 I_{nk})^{-1} k_{f,kj}$
- For $\overline{\Sigma}_{\Delta,CC}$ $\overline{\Sigma}_{\Delta,NC}$, we have:

$$\overline{\sum}_{\Delta,CC} - \overline{\sum}_{\Delta,NC} = (k_{\Delta}(E^*, E^*) - k_{\Delta}(E^*, E^j) A_{11,CC}^{-1} k_{\Delta}(E^j, E^*)) - ((k_{\Delta}(E^*, E^*) - k_{\Delta}(E^*, E^j) A_{11,NC}^{-1} k_{\Delta}(E^j, E^*)) - (k_{\Delta}(E^*, E^j) A_{11,NC}^{-1} k_{\Delta}(E^j, E^*)) - (k_{\Delta}(E^j, E^*) - k_{\Delta}(E^j, E^j) A_{11,NC}^{-1} k_{\Delta}(E^j, E^*)) - (k_{\Delta}(E^j, E^*) - k_{\Delta}(E^j, E^j) A_{11,NC}^{-1} k_{\Delta}(E^j, E^*)) - (k_{\Delta}(E^j, E^*) - k_{\Delta}(E^j, E^j) A_{11,NC}^{-1} k_{\Delta}(E^j, E^*)) - (k_{\Delta}(E^j, E^*) - k_{\Delta}(E^j, E^j) A_{11,NC}^{-1} k_{\Delta}(E^j, E^*)) - (k_{\Delta}(E^j, E^*) - k_{\Delta}(E^j, E^j) A_{11,NC}^{-1} k_{\Delta}(E^j, E^j)) - (k_{\Delta}(E^j, E^j) A_{11,NC}^{-1} k_{\Delta}(E^j, E^j)) - ($$

$$\circ \quad A_{11,CC}^{-1} \leq A_{11,NC}^{-1} \qquad \qquad \overline{\Sigma}_{\Delta,CC} - \overline{\Sigma}_{\Delta,NC} \geq 0.$$

Conclusion & Future Plan

Conclusion & Future Plan

- ECE population ensures unbiased estimation
- Incorporating non-concurrent controls with GP model shows efficiency again

- Future plan:
 - Check the potential bias when incorporating nonconcurrent data with GP.

Thank you!

Paper

Qian, Y., Yi, Y., Shao, J., Yi, Y., Levin, G., Mayer-Hamblett, N., Heagerty, P. J., & Ye, T. (2024). From estimands to robust inference of treatment effects in platform trials. arXiv preprint arXiv:2411.12944. https://arxiv.org/abs/2411.12944

Q&A

