

Guia do Usuário Ferramenta de Desenvolvimento Kit CAN (PIC16F877A\ PIC18F452\ PIC18F4520)

Kit Can 02/03/2011

Sumário

1.	Apr	esenta	ção	3
2.	Har	dware		5
	2.1.	Micro	controlador PIC16F877A, PIC18F452 e PIC18F4520	5
	2.2.		alfanumérico	
	2.3.	Chav	es	6
	2.4.	Leds		6
	2.5.	Comi	ınicação serial RS232	7
	2.6.	Conv	ersor A/D	8
	2.7.	Comi	ınicação CAN	10
	2.8.		ctor de expansão	
	2.9.		liga-desliga	
	2.10.		avação in-circuit	
			•	
	3.1.		ares de exemplo	
	3.1.		xemplo 1 – Leitura de Botões e acionamento de Leds	
	3.1.		xemplo 2 – Comunicação com LCD alfanumérico	
	3.1.		xemplo 3 – Conversor Analógico Digital interno do PIC	
	3.1.		xemplo 4 – Acionamento PWM	
	3.1.		xemplo 5 – Utilizando a E2PROM interna do PIC	
			xemplo 6 - Comunicação serial	
	3.1.		xemplo 7 - Comunicação CAN	
	3.2.		are de Comunicação Serial	
	3.3.		are de teste do hardware	
4.			in-circuit utilizando o ICD2BR e MPLAB	
5.		•	A - Resumo da pinagem do microcontrolador	
3. 3.			B – Resumo dos jumpers de configuração	
7.	·		C – Pinagem conector ICSP Kit CAN	
, . 3.			o de Garantia	
٠.	001	anoda		2

1. Apresentação

Inicialmente a Mosaico gostaria de parabenizá-lo por ter adquirido a ferramenta de desenvolvimento Kit CAN. Acreditamos sinceramente, que você acaba de fazer uma ótima aquisição.

Grande parte do know-how adquirido pela Mosaico ao longo de anos de desenvolvimento de projetos eletrônicos foi colocado em prática na placa Kit CAN.

A placa utiliza o microcontrolador PIC16F877A (opcionalmente os microcontroladores PIC18F452 ou PIC18F4520) como objeto central. Junto ao microcontrolador uma série de periféricos foi adicionada. O nosso objetivo é disponibilizar uma placa de desenvolvimento onde o usuário possa testar seus conhecimentos em software, sem se preocupar com a montagem do hardware. Esqueça essa história de ficar montando proto-board para testar uma simples comunicação serial com o PC. Com a placa Kit CAN, todo o hardware necessário para a comunicação serial já está pronto. Basta você escrever o software. Veja todos os recursos que a placa oferece:

- LCD alfanumérico;
- Chaves e leds;
- Comunicação serial RS232;
- Conversão A/D;
- Interface CAN;
- Conector de expansão contendo 15 I/O's;
- Botão liga-desliga;
- Gravação in-circuit compatível com McFlash+ ou ICD2BR

Aliado a todos estes recursos, utilizamos os seguintes microcontroladores PIC:

PIC16F877A:

- Capacidade de processamento de 10MIPS;
- Alta capacidade de corrente nos pinos de I/O, 25mA por pino;
- Uma fonte de interrupção externa; Uma interrupção de mudança de estado, quatro fontes;
- Timer 0 de 8 bits;
- Timer 1 e 2 de 16 bits;
- Módulo CCP;
- Módulo MSSP (SPI e I2C);
- Módulo USART;
- ADC de 10bits:
- LVD;
- BOR:
- WDT

(opcionalmente) PIC18F452 ou PIC18F4520:

- Capacidade de processamento de 12MIPS.
- Fonte de clock interna de 31kHz e 8MHz do tipo RC.
- PLL interno para multiplicar a frequência de clock.
- Prioridade no tratamento de interrupção é possível escolher entre alta ou baixa prioridade.
- Hardware de multiplicação 8X8 bits executado em 1 ciclo de máquina.
- Três fontes de interrupção externa.
- Uma interrupção de mudança de estado, quatro fontes.
- Timer 0 de 8 ou 16 bits configurável.
- Timer 1 e 3 de 16 bits.
- Timer 2 de 8 bits.
- Módulo ECCP.
- Módulo MSSP (SPI e I2C).
- EUSART (com suporte ao barramento LIN).
- ADC de 10bits.
- HLVD.
- BOR.

Fazem parte do kit de desenvolvimento Kit CAN:

- 1 placa Kit CAN;
- 1 PIC16F877A (opcionalmente PIC18F452 ou PIC18F4520);
- 1 fonte de alimentação 9Vdc, 2A, full range;
- 1 guia do usuário;
- 1 cabo serial de comunicação
- 1 CD Rom.

2. Hardware

A placa Kit CAN pode ser adquirida contendo três nós de interligação, denominados nó A, nó B e nó C, ou numa versão contendo um único nó. Para compatibilidade na nomenclatura dos componentes, conectores e jumpers citados nesse manual, adotaremos a letra 'x' na denominação de cada item, onde "x" será A, B ou C dependendo do nó (placa) utilizado. Nesta seção será visto todos os recursos de hardware presente na placa Kit CAN.

2.1. Microcontrolador PIC16F877A, PIC18F452 e PIC18F4520

São os elementos centrais de toda a placa. Individualmente cada microcontrolador trabalha com um cristal cuja freqüência de operação é 20 MHz. Para maiores informações sobre cada componente deve-se consultar o data-sheet presente no CD-ROM que acompanha a placa Kit CAN.

2.2. LCD alfanumérico

A placa está provida de um LCD alfanumérico padrão de 16 colunas por 2 linhas sem backlight. A comunicação é paralela com 4 vias de dados. Além das 4 vias de dados, mais duas vias são utilizadas para controlar o LCD, uma denominada de E(ENABLE) e a outra de RS.

A comunicação com o LCD é somente de escrita, desta forma, o pino de R/W do LCD está diretamente ligado ao terra (GND), não permitindo a leitura do mesmo.

As 4 vias de dados do LCD estão ligadas ao PORTD do microcontrolador, de RD0 (LSB) até RD3 (MSB). O pino de ENABLE está conectado ao pino RD4 do PIC e o pino RS do LCD está conectado ao pino RB5 do microcontrolador. O potenciômetro PX4 controla a intensidade do LCD.

PIC	LCD
RD0RD3	D0D3
RB5	RS
RD4	ENABLE
Terra (GND)	R/W

2.3. Chaves

Existem 4 chaves(dip-switch) na placa cada uma com um resistor de pull-up, ou seja, em estado normal (normalmente aberto), o microcontrolador deverá ler nível lógico 1 na porta conectada a chave. Quando uma chave é acionada, o sinal é aterrado e conseqüentemente, o nível lógico presente na porta do microcontrolador passa a 0. As 4 chaves presentes são multiplexadas com o barramento de dados do LCD. A distribuição de pinagem segue a tabela abaixo:

PIC	Chave
RD0	C1
RD1	C2
RD2	C3
RD3	C4

2.4. Leds

Existem 3 leds na placa. Para o acionamento de um led o microcontrolador deverá escrever nível lógico 0 na porta conectada ao led. Os leds utilizam pinos compartilhados com o conector de expansão CNx2, através de jumpers, como segue a tabela abaixo:

PIC	Função
RE0	(JPx2→1,2) LED Lx1 (JPx2→2,3) CNx2-2
RE1	(JPx4→1,2) LED Lx2 (JPx4→2,3) CNx2-3
RE2	(JPx7→1,2) LED Lx3 (JPx7→2,3) CNx2-4

2.5. Comunicação serial RS232

A placa possui um driver RS232 para adequar os níveis de tensão do microcontrolador (TTL) ao padrão RS232C (+12V e -12V).

A comunicação é feita através de dois pinos do microcontrolador, a via de TX está ligada ao pino RC6 e a via de RX está ligada ao pino RC7 do microcontrolador. Os sinais de RTS e CTS não estão ligados e, portanto, a comunicação não permite o controle de fluxo através do hardware.

PIC	RS232
RC6	TX (saída)
RC7	RX (entrada)

A comunicação pode ser implementada utilizando os recursos do próprio microcontrolador (USART) ou via software.

Dois leds presentes na placa indicam visualmente o estado da comunicação.

Led	Estado.
Lx7	Recepção
Lx8	Transmissão

Faz parte também do módulo de comunicação serial, o conector DB9 fêmea CNx4. Segue abaixo sua pinagem:

Pino	Função
1	-
2	TX (saída)

3	RX (entrada)
4	-
5	Terra (GND)
6	-
7	-
8	-
9	-

2.6. Conversor A/D

Os microcontroladores disponíveis para a placa Kit CAN possuem vários canais de conversão analógica digital de 10 bit. As entradas analógicas do microcontrolador encontram-se nos pinos da PORTA e PORTE. Estes pinos podem ser configurados como I/O's convencionais digitais ou entradas analógicas para o conversor A/D. Esta configuração deve ser feita via software (consultar o módulo A/D no manual do PIC16F877A, PIC18F452 e PIC18F4520).

Na placa Kit CAN, temos ligado as três primeiras entradas analógicas (pinos RA0/AN0, RA1/AN1 e RA2/AN2) possibilitando suas conexões ao conector externo CNx2 ou aos potenciômetros Px1, Px2 e Px3, através dos jumpers JPx1, JPx3 e JPx7.

A quarta e quinta entrada analógica (pinos RA3/AN3 e RA5/AN4) são disponibilizados diretamente ao conector externo CNx2. As entradas restantes (pinos RE0/AN5, RE1/AN6 e RE2/AN7) são disponibilizados, através de jumpers JPx2, JPx4 e JPx6, ao conector externo CNx2 ou aos leds Lx1, Lx2 e Lx3.

PIC	Função
AN0/RA0	(JPx1→1,2) CNx2-2 (JPx1→2,3) Px1
AN1/RA1	(JPx3→1,2) CNx2-3 (JPx3→2,3) Px2

AN2/RA2	(JPx6→1,2) CNx2-4 (JPx6→2,3) Px3
AN3/RA3	CNx2-5
AN4/RA5	CNx2-6
AN5/RE2	(JPx2→1,2) LED Lx1 (JPx2→2,3) CNx2-11
AN6/RE1	(JPx4→1,2) LED Lx2 (JPx4→2,3) CNx2-12
AN7/RE2	(JPx7→1,2) LED Lx3 (JPx7→2,3) CNx2-13

2.7. Comunicação CAN

Cada microcontrolador disponíveis para a placa Kit CAN está interligado a um controlador CAN, modelo MCP2515, cuja finalidade é permitir a troca de informações entre os demais nós presentes no sistema. Esse transceiver possui as seguintes características:

- Compatível com padrão CAN 2.0B com taxa de transmissão até 1Mb/s;
- Dois buffers de recepção integrados;
- Três buffers de transmissão integrados;
- Interface de comunicação padrão SPI (modos 0,0 e 1,1)
- Sinal SOF (Start of Frame) disponibilizado para monitoramento
- Pino de interrupção externo programável
- Pinos do tipo RTS (Request to Send) programáveis

Os pinos do controlador que compõem a interface CAN (pinos CANH e CANL) são interligados a um transceiver CAN, modelo PCA82C251, cuja finalidade é compatibilizar os níveis TTL do controlador com os níveis de tensão padrão CAN.

Dois leds presentes na placa indicam visualmente o estado da comunicação.

Led	Estado.
Lx4	Transmissão
Lx5	Recepção

O jumper de configuração JPx5 determina a inserção do resistor de terminação (120 Ω) da rede CAN como indicado na tabela abaixo:

JPx5	Função.
Aberto	Sem resistor de terminação
Fechado	Com resistor de terminação

Faz parte também do módulo de comunicação CAN, o conector borne CNx3. Segue abaixo sua pinagem:

Pino	Função
1	+5V
2	CANL
3	CANH
4	Terra (GND)

Obs: Quando a placa adquirida possuir os três nós, A, B e C, integrados não serão necessários a utilização desses conectores para a interligação entre os nós, pois o barramento já está interligado no circuito da placa. Entretanto, outros dispositivos podem ser adicionados a rede através desse conector mediante a manutenção dos requisitos de interligação pré-estabelecidos pelo padrão CAN.

Os pinos utilizados pelo microcontrolador na interface com o controlador CAN são:

PIC	MCP2515
RB0	INT
RB2	CS
RC4	so
RC5	SI
RC3	SCK
RB3	RX0BF
RB4	RX1BF

RD5	TX0RTS	
RD6	TX1RTS	
RD7	TX2RTS	
RB1	CLKOUT\SOF	

Para maiores informações sobre o componente MCP2515 consulte o data-sheet presente no CD-ROM que acompanha a placa Kit CAN.

2.8. Conector de expansão

Abaixo a pinagem do conector de expansão CNx2:

Pino	Função	Obs
1	+5V	saída sinal regulado
'		(max. 100mA)
2	RA0	(JPx1→1,2)
3	RA1	(JPx3→1,2)
4	RA2	(JPx6→1,2)
5	RA4	-
6	RB0	compartilhado c\ MCP2515
7	RC0	-
8	RC1	CCP2 (PWM)
9	RA3	-
10	RA5	-
11	RE0	(JPx2→2,3)
12	RE1	(JPx4→2,3)
13	RE2	(JPx7→2,3)
14	RC4	compartilhado c\
		MCP2515 (SPI-SO)
15	RC5	compartilhado c\
		MCP2515 (SPI-SI)

16	RC3	compartilhado c\ MCP2515 (SPI-SCK)
17	VCC	saída tensão nominal fonte bivolt
18	Terra (GND)	-

2.9. Botão liga-desliga

A placa é ligada e desligada através da chave Sx2. Ao pressionar a chave, o circuito é energizado; ao liberar a chave, o circuito será desligado. O led indicativo, Lx6, será aceso no momento em que a placa for energizada.

2.10. Gravação in-circuit

A placa Kit CAN é compatível com os gravadores McFlash+ e ICD2BR, de forma que o microcontrolador não precisa ser retirado da placa para ser gravado. O McFlash+/ICD2BR deve ser ligado no conector CNx1 e somente a Placa Kit CAN deve estar alimentada, fornecendo energia para o gravador.

3. Software

A placa Kit CAN é fornecida com 6 softwares de exemplo, 1 software de testes para validar o hardware e 1 software para comunicação serial.

3.1. Softwares de exemplo

Veja abaixo a relação dos softwares e uma breve descrição de cada um deles.

3.1.1. Exemplo 1 – Leitura de Botões e acionamento de Leds

Este software está preparado para controlar os pinos de E/S do microcontrolador demonstrando o estado das chaves através dos leds.

3.1.2. Exemplo 2 – Comunicação com LCD alfanumérico

Este software está preparado para demonstrar a comunicação entre o microcontrolador e o módulo LCD. As chaves são multiplexadas no mesmo barramento do módulo LCD.

3.1.3. Exemplo 3 – Conversor Analógico Digital interno do PIC

Este exemplo foi elaborado para explicar o funcionamento do módulo de conversão analógico digital interno do microcontrolador. O valor analógico presente nos potenciômetros P3 e P1 são lidos e com base em seus valores, calculados a tensão, o valor médio e a diferença de potencial. A escala de 0 à 5V dessa conversão é exibida no módulo LCD.

3.1.4. Exemplo 4 - Acionamento PWM

Este exemplo foi elaborado para explicar o funcionamento do módulo PWM. O valor analógico presente no potenciômetro P1 é lido e exibido em porcentagem no LCD definindo o duty-cycle do sinal modulado. O sinal é disponibilizado através do borne superior no pino denominado I/O-6.

3.1.5. Exemplo 5 – Utilizando a E2PROM interna do PIC

Este exemplo foi elaborado para explicar o funcionamento da memória E2PROM do microcontrolador. O valor analógico presente no potenciômetro P1 é lido e exibido no LCD. Seu valor é armazenado no endereço 0 da memória por intermédio da chave C4.

3.1.6. Exemplo 6 - Comunicação serial

Este exemplo foi elaborado para explicar o funcionamento do módulo USART do microcontrolador. A chave C4 determina se o microcontrolador entrará no modo de transmissão ou recepção de dados.

3.1.7. Exemplo 7 - Comunicação CAN

Este exemplo, dividido em dois programas (Exe7A e Exe7B), foi elaborado para explicar o funcionamento do módulo CAN. Este software está preparado para demonstrar o controle da comunicação CAN ao enviar no barramento o valor da conversão A/D do potenciômetro Px1 e exibi-lo em outro microntrolador presente no barramento.

3.2. Software de Comunicação Serial

Para o exemplo 6 que utiliza comunicação serial, foi desenvolvido pela equipe da Mosaico um software (plataforma Windows) que pode ser utilizado para testar a comunicação serial entre a placa Kit CAN e o microcomputador.

Inicialmente, para testar a comunicação, deve-se instalar no microcomputador o software M2COM disponível no CD-ROM. Após a instalação do M2COM, deve-se gravar na placa Kit CAN o exemplo 9.

Obs.: O software M2COM exige que uma porta de comunicação válida (COM1 ou COM2) seja selecionada para liberar as janelas de TX e RX.

3.3. Software de teste do hardware

A fim de validar o hardware da placa, servindo como uma giga de testes é fornecido também um software que pode ser utilizado para testar a funcionalidade de quase todos os recursos da placa Kit CAN.

Para este software não é fornecido o código fonte, apenas o arquivo.HEX está disponível no CD-ROM. Como padrão, este software já vem gravado no microcontrolador, porém a qualquer momento o usuário pode testar o funcionamento do hardware da placa regravando o arquivo.HEX. O software de teste pode ser executado sem interação com o usuário, porém recomendamos que o usuário faça a interação com o software a fim comprovar o correto funcionamento de todos os componentes da placa.

O software de teste da placa é auto-explicativo, de qualquer forma, o procedimento de testes está explicado abaixo:

- Se necessário instalar o software M2COM presente no CD-ROM;
- Gravar o software modulo2.hex no PIC da placa Kit CAN;
- Conectar através de um cabo serial a placa Kit CAN (CNx4) ao microcomputador;
- Executar o software M2COM e escolher uma porta de comunicação disponível;
- Configurar os jumpers JPX2, JPX4 e JPX7 da placa Kit CAN na posição 1-2;
- Configurar os jumpers JPX6, JPX3 e JPX1 da placa Kit CAN na posição 2-3;
- Configurar as chaves C1, C2, C3 e C4 da placa Kit CAN na posição fechada (todas para cima);
- Ligar a placa Kit CAN (já com o PIC gravado) e desconectar o cabo de gravação;
- Uma tela com o nome da placa deverá aparecer no LCD. Este fato, já comprova o correto funcionamento do LCD;
- A seguir são testados os leds LX1, LX2 e LX3. Estes deverão acender também de forma seqüencial, porém o ensaio será repetido 4 vezes;
- O próximo teste será das chaves C1, C2, C3 e C4. O software solicitará que a primeira chave (C1) seja acionada. Ao acionar a chave, o led (Lx1) deverá acender passando então a testar a chave seguinte. O ensaio é repetido uma vez para cada chave. Caso o usuário não acione a chave solicitada pelo software ou caso a tecla apresente algum problema, o software interromperá o ensaio;

- O próximo teste é da comunicação serial. Primeiro o software testa a transmissão. Na tela de RX do M2COM deve aparecer a palavra "Mosaico" (5 vezes) comprovando o funcionamento da transmissão da placa. Após alguns segundos, o software passa para o teste da recepção serial. Digitando alguma palavra (por exemplo, seu nome) na janela de TX do M2COM, comprova-se o funcionamento da recepção, caso a mesma palavra seja visualizada no LCD da placa Kit CAN. Mesmo que ocorra algum erro neste processo ou mesmo que o usuário não interaja com o sistema, o teste da placa Kit CAN não será paralisado;
- próximo teste será da medida de tensão utilizando o conversor A/D. No LCD, deverá aparecer
 a tensão presente no potenciômetro PX1. Variando o potenciômetro o valor mostrado no LCD
 também deverá variar. O correto funcionamento deverá ser comprovado variando o
 potenciômetro para o extremo esquerdo, neste caso, o LCD deverá indicar uma tensão de
 5,0V. Girando o potenciômetro para o extremo direito, o LCD deverá indicar 0,0V. O ensaio é
 repetido uma vez para cada potenciômetro;
- Após todos os testes serem executados, uma mensagem pedindo para que a placa seja desligada e ligada é exibida no LCD.

Todos os softwares foram desenvolvidos pela Mosaico levando-se em conta que seriam utilizados para fins didáticos. Desta forma, acreditamos que não seja ético a utilização de qualquer um destes softwares com objetivos comerciais. A Mosaico pede gentilmente aos usuários destes softwares que levem isto em consideração.

4. Gravação in-circuit utilizando o ICD2BR e MPLAB

Estamos assumindo que o MPLAB e o ICD2^{BR} foram instalados corretamante.

Para usar o ICD2^{BR} como gravador, proceda da seguinte maneira:

Clique em *Programmer > Select Programmer > MPLAB ICD2* para habilitar o ICD2^{BR} como gravador;

O menu do gravador e o MPLAB mudarão para opções de gravação sempre que a ferramenta for selecionada. Também, a janela de saída (*output*) abrirá mensagens sobre o status de comunicação e aceitação do ICD2.

O projeto recompilado com os bits de configuração (*Configurations Bits*) inseridos no código fonte podem ser gravados no componente. Verifique como a sua fonte está habilitada. Para gravar a aplicação do projeto no componente siga os passos:

- Selecione *Programmer > Settings* e clique na orelha *Program* para setar a opção de programação para sua aplicação
- Configuração de bits para gravação estará inserida conforme escrita em seu código fonte;
- Selecione *Configure > Configuration Bits* e acerte o oscilador e outras configurações apropriadas para o componente escolhido (se necessário);
- Se desejar, configure o bits de identificação (ID) selecionando Configure > ID Memory;
- Selecione *Programmer > Blank Check* para checar se o componente esta apagado. Se não estiver, é obrigatório o processo de apagar (*Programmer > Erase Flash Device*);
- Selecione Programmer > Program para inserir seu código no componente ou placa de aplicação ou placa de demonstração que está conectada no seu ICD2^{BR}.

Maiores informações sobre o ICD2^{BR} consulte o manual de instruções do mesmo.

5. Apêndice A - Resumo da pinagem do microcontrolador

Pino	Nome	Placa Kit CAN	Observações
1	/MLCR	-	-
2	RA0	Entrada analógica para potenciômetro Px1 ou uso geral para CNx2	Configurável através de JPx1
3	RA1	Entrada analógica do potenciômetro Px2 ou uso geral para CNx2	Configurável através de JPx3
4	RA2	Entrada analógica do potenciômetro Px3 ou uso geral para CNx2	Configurável através de JPx6
5	RA3	Uso geral para conector CNx2	-
6	RA4	Uso geral para conector CNx2	-
7	RA5	Uso geral para conector CNx2	-
8	RE0	Saída digital para led Lx1 ou uso geral para CNx2	Configurável através de JPx2
9	RE1	Saída digital para led Lx2 ou uso geral para CNx2	Configurável através de JPx4
10	RE2	Saída digital para led Lx3 ou uso geral para CNx2	Configurável através de JPx7
11	Vdd	+5V	-
12	Vss	GND	-
13	OSC1	Cristal de 20MHz	-

Pino	Nome	Placa Kit CAN	Observações
14	OSC2	Cristal de 20MHz	-
15	RC0	Uso geral para CNx2	-
16	RC1	Uso geral para CNx2	-
17	RC2	-	Não conectado
18	RC3	Uso geral para CNx2 compartilhado com MCP2515 (SCK)	-
19	RD0	LCD (D0) compartilhado com chave C1	-
20	RD1	LCD (D1) compartilhado com chave C2	-
21	RD2	LCD (D2) compartilhado com chave C3	-
22	RD3	LCD (D3) compartilhado com chave C4	-
23	RC4	Uso geral para CNx2 compartilhado com MCP2515 (SO)	-
24	RC5	Uso geral para CNx2 compartilhado com MCP2515 (SI)	-
25	RC6	Comunicação serial (RX)	-
26	RC7	Comunicação serial (TX)	-
27	RD4	LCD (RS)	-
28	RD5	MCP2515 (TX0RTS)	-
29	RD6	MCP2515 (TX1RTS)	-

Pino	Nome	Placa Kit CAN	Observações
30	RD7	MCP2515 (TX2RTS)	-
31	Vss	GND	-
32	Vdd	+5V	-
33	RB0	Uso geral para CNx2 compartilhado com MCP2515 (INT)	-
34	RB1	MCP2515 (CLKOUT\SOF)	-
35	RB2	MCP2515 (CS)	-
36	RB3	MCP2515 (RX0BUF)	-
37	RB4	MCP2515 (RX1BUF)	-
38	RB5	LCD (RS)	-
39	RB6	ICSP (PGC)	Utilizado na gravação in- circuit do microcontrolador
40	RB7	ICSP (PGD)	Utilizado na gravação in- circuit do microcontrolador

6. Apêndice B – Resumo dos jumpers de configuração

Jumper	Posição 1, 2	Posição 2, 3
JPX1	Conector CNx2-2 (RA0)	Potenciômetro Px1 (RA0)
JPX2	Led Lx1 (RE0)	Conector CNx2-2 (RE0)
JPX3	Conector CNx2-3 (RA1)	Potenciômetro Px2 (RA1)
JPX4	Led Lx2 (RE1)	Conector CNx2-3 (RE1)
JPX5	Aberto: Sem resistor de terminação Fechado: Com resistor de terminação	-
JPX6	Conector CNx2-4 (RA2)	Potenciômetro Px3 (RA2)
JPX7	Led Lx3 (RE2)	Conector CNx2-4 (RE2)

7. Apêndice C – Pinagem conector ICSP Kit CAN

CNx1 - RJ12 (Padrão Mosaico)		
Pino	Função	
1	Não usado	
2	Terra (GND)	
3	+5V	
4	PGC	
5	PGD	
6	Vpp/MCLR	

8. Certificado de Garantia

"PARABÉNS; VOCÊ ACABA DE ADQUIRIR A PLACA KIT CAN PARA MICROCONTROLADORES PIC DA MOSAICO"

1. Tempo de Garantia

A Mosaico garante contra defeitos de fabricação durante 4 meses para mão de obra de conserto.

O prazo de garantia começa a ser contado a partir da data de emissão da Nota Fiscal de compra.

2. Condições de Garantia

Durante o prazo coberto pela garantia, a Mosaico fará o reparo do defeito apresentado, ou substituirá o produto, se isso for necessário.

Os produtos deverão ser encaminhados a Mosaico, devidamente embalados por conta e risco do comprador, e acompanhados deste Certificado de Garantia "sem emendas ou rasuras" e da respectiva Nota Fiscal de aquisição.

O atendimento para reparos dos defeitos nos produtos cobertos por este Certificado de Garantia será feito somente na Mosaico, ficando, portanto, excluído o atendimento domiciliar.

3. Exclusões de Garantia

Estão excluídos da garantia os defeitos provenientes de:

- Alterações do produto ou dos equipamentos.
- Utilização incorreta do produto ou dos equipamentos.
- Queda, raio, incêndio ou descarga elétrica.
- Manutenção efetuada por pessoal não credenciado pela Mosaico.

Obs.: Todas as características de funcionamento dos produtos Mosaico estão em seus respectivos manuais.

4. Limitação de Responsabilidade

A presente garantia limita-se apenas ao reparo do defeito apresentado, a substituição do produto ou equipamento defeituoso.Nenhuma outra garantia, implícita ou explícita, é dada ao comprador.

A Mosaico não se responsabiliza por qualquer dano, perda, inconveniência ou prejuízo direto ou indireto que possa advir de uso ou inabilidade de se usarem os produtos cobertos por esta garantia.

A Mosaico estabelece o prazo de 30 dias (a ser contado a partir da data da nota Fiscal de Venda) para que seja reclamado qualquer eventual falta de componentes.

Importante: Todas as despesas de frete e seguro são de responsabilidade do usuário, ou seja, em caso de necessidade o Cliente é responsável pelo encaminhamento do equipamento até a Mosaico.