ST1050

Class 5

Histograms, Stemleaf and Boxplots

Histograms and Box and whisker plots

(based on Introduction to Data Visualisation in R, Dr J Yearsley, UCD)

WOLF.CSV

This file is a text file of comma separated variables.

The data in this file are from the publication:

Bryan H, Smits J, Koren L, Paquet P, Musiani M, Wynne-Edwards K (2014) Heavily hunted wolves have higher stress and reproductive steroids than wolves with lower hunting pressure. Functional Ecology 29(3): 347-356.

This dataset includes measurements of cortisol, testosterone, and progesterone in wolf hair samples collected from hunters in the tundra-taiga and northern boreal forest of Canada. Additional samples were collected from wolves killed as part of a control program in the boreal forest (population 3).

This dataset has seven variables:

Variable name	Definition of the variable
Individual	= the ID of each individual (1-178)
Sex	= the sex of each individual (M=male, F=female)
Population	= the population that each individual belongs to (1=boreal forest, lightly hunted, 2=tundra-taiga, heavily hunted, 3=boreal forest, heavily hunted).
Colour	= coat colour of each individual (D=dark, W=light, blank=missing data)
Cpgmg	= concentration of cortisol in a hair sample [units=pg/mg of hair]
Tpgmg	= concentration of testosterone in a hair sample, males only [units=pg/mg of hair]
Ppgmg	= concentration of progesterone in a hair sample, females only [units=pg/mg of hair]

```
wolf = read.csv('~/Desktop/wolf_hormone_data_for_dryad.csv')
```

Subset the wolf data frame and remove unwanted levels- we are not including the wolves that were culled as part of a control program.

```
wolf.sub = subset(wolf, Population!=3)
```

Make a 'Hunting' variable, which is a factor
wolf.sub\$Hunting = 'Heavy' # setting up a vector of the right size quickly
wolf.sub\$Hunting[wolf.sub\$Population==1] = 'Light'

wolf.sub\$Hunting = as.factor(wolf.sub\$Hunting)

We also set up the following variables for simplifying commands:

Population = wolf.sub\$Population

Sex = wolf.sub\$Sex

Cpgmg = wolf.sub\$Cpgmg

Tpgmg = wolf.sub\$Tpgmg

Tpgmg = wolf.sub\$Ppgmg

Hunting = wolf.sub\$Hunting (same as population but a factor)

A **histogram** is a representation of the distribution of numerical data. It is an estimate of the probability distribution of a continuous variable (quantitative variable) and was first introduced by Karl Pearson.

A histogram only considers one variable. Later we will study 'barcharts'; these look similar to histograms but are actually quite different and can consider more than one variable.

> hist(Cpgmg,main='Cortisol in Wolves')

We wish to contrast cortisol levels (Cpgmg) in males and females. First we see what the frequency distribution of males and females is:

```
> table(Sex)
Sex
F M U
72 76 0
```

We should get rid of the (empty) 'U' category in the Sex variablewe can do this using the 'droplevels()' function.

wolf.sub=droplevels(subset(wolf.sub, Sex!='U'))

> table(wolf.sub\$Sex)

F M 72 76

NB: The 'local' variable Sex will now need to be rewritten:

Sex = wolf.sub\$Sex

- > par(mfrow=c(1,2))
- > Cpgmg_m=Cpgmg[Sex=='M']
- > Cpgmg_f=Cpgmg[Sex=='F']
- > hist(Cpgmg_m,main='Cortisol levels in Male Wolves',xlab='Cortisol (pg/mg)')
- > hist(Cpgmg_f,main='Cortisol levels in Female Wolves',xlab='Cortisol (pg/mg)')

Advantages of considering histograms for variable description:

- Gives a good idea of the frequency distribution
- Outliers are easily spotted (although in a large data set that can be confusing)
- It very quickly gives an idea of the data since it is visual.

Disadvantages:

- Have to be a bit careful with outliers in large datasets
- Only one variable can be considered- and only numerical variables.
- Changing the groupings of the bars can change the way the histogram looks quite a bit
- Histograms display the number of values within an interval and not the actual values- unlike stem-leaf plots.

Stem-Leaf plot:

A **Stem and Leaf Plot** is a table where each data value is split into a "stem" (the first digit or digits) and a "leaf" (usually the last digit). Scale controls how long the plot is.

> sort(Cpgmg) 4.75 6.37 7.61 7.93 7.93 8.00 8.19 8.84 8.91 9.10

9.17

9.43

9.95 etc

```
> stem(Cpgmg,scale=1)
                                        > stem(Cpgmg,scale=3)
The decimal point is at the |
                                         The decimal point is at the
 4 | 8
                                         4 | 8
 6 | 4699
                                         5 |
 8 | 0289124
                                         6 | 4
                                         7 | 699
10 | 00123568133446666888
                                         8 | 0289
12 | 0011222334556678022235579
14 | 00002334588922333344899
                                         9 | 124
                                         10 | 00123568
16 | 0223355680223444678
18 | 114689168899
                                         11 | 133446666888
20 | 0004455114579
                                         12 | 0011222334556678
22 | 245767
                                         13 | 022235579
24 | 0146627
                                         14 | 000023345889
26 | 34838
                                         15 | 2233344899
28 | 5
                                         16 | 022335568
30 | 2
                                         17 | 0223444678
32 | 229
                                         18 | 114689
34 | 0
                                         19 | 168899
36 |
                                         20 | 0004455
38 |
                                         21 | 114579
40 | 4
                                         22 | 2457
                                         23 | 67
                                         24 | 01466
                                         25 | 27
                                         26 | 348
                                         27 | 38
                                         28 |
                                         29 | 5
                                         30 | 2
                                         31 |
                                         32 | 22
                                         33 | 9
                                         34 | 0
                                         35 |
                                         36 |
                                         37 |
                                         38 |
                                         39 |
```

40 | 4

Boxplots

A broad indication of a quantitative variable's distribution can be seen by plotting quantiles (e.g. 0%, 25%, 50%, 75% and 100% quantiles correspond to minimum, 1st quartile, median, 3rd quartile and the maximum).

Quantiles can be calculated using the quantile() function:
We will plot the 0%, 5%, 25%, 50%, 75%, 95% and 100% quantiles for the Cpgmg variable in the wolf data frame.

Quantiles are commonly represented on a **box and whiskers plot**. The boxplot() functions can be used for this.

Box and whiskers plot for the Cpgmg variable in the wolf data frame

boxplot(Cpgmg, ylab='Cortisol [pg/mg]')

The box and whiskers plot displays:

the median as the central bar in the box the 25% quantile as the lower end of the box the 75% quantile as the upper end of the box outliers as individual points whiskers extend to 1.5 times the inter-quartile range

Box and whisker plots show less information than a histogram but they can be used to easily plot the distributions from several variables.

For example, we can compare the distributions from the two populations in the wolf.sub data frame.

Box and whiskers plot for the Cpgmg variable from the two populations separately boxplot(Cpgmg~Population, data=wolf.sub, ylab='Cortisol [pg/mg]', xlab='Population')

Using a formula to specify a plot

In the box and whiskers plot above we used the formula Cpgmg ~ Population to specify which data to plot.

The ~ symbol (called a tilde) identifes a formula.

To the left of the \sim is the variable for the y-axis, To the right of the \sim is the variable(s) for the x-axis.

You can put more than one variable on the x-axis. Here is an example of plotting box and whisker plots of cortisol for different populations and different sexes.

Box and whiskers plot for the Cpgmg variable in the wolf data frame

Plotting a subset of a data frame

Using this formula notation to specify a plot makes it very easy to plot subsets of a data frame by using the subset() function. We also add clearer description to the population groups here using 'names'. Here is an example of the code for a box and whiskers plot where Cpgmg in just females is plotted:

```
# Box and whiskers plot for the Cpgmg variable for just females
boxplot(Cpgmg ~ Population, data=subset(wolf.sub, Sex=='F'), ylab='Cortisol [pg/mg] in Females',
xlab='Population',names=c('Light','Heavy'))) #Light corresponds to population=1.
```


Plotting a subset of a data frame(cont'd)

- > par(mfrow=c(1,2))
- > # Box and whiskers plot for the Tpgmg (i.e. testosterone levels) variable (males only):
- > boxplot(Tpgmg ~ Population, data=subset(wolf.sub, (Hunting=='Heavy' &Sex=='M')), ylab='Testosterone in Heavily Hunted', xlab='Males Only')
- > boxplot(Tpgmg ~ Population, data=subset(wolf.sub, (Hunting=='Light' &Sex=='M')), ylab='Testosterone in Lightly Hunted', xlab='Males Only')

