

• (45) If XYZL is a cyclic quadrilateral • cos $X = \frac{1}{2}$ then sin $(270^{\circ} - Z) = \cdots$

(a)
$$\frac{\sqrt{3}}{2}$$

(a)
$$\frac{\sqrt{3}}{2}$$
 (b) $-\frac{\sqrt{3}}{2}$

(c)
$$\frac{1}{2}$$

(d)
$$-\frac{1}{2}$$

(46) In a right-angled triangle and one of its angles is X° , if $\sin X = \frac{4}{5}$, then $\cos (90 - x^{\circ}) = \cdots$

(a)
$$\frac{3}{5}$$

(a)
$$\frac{3}{5}$$
 (b) $\frac{-3}{5}$

(c)
$$\frac{-4}{5}$$

(d)
$$\frac{4}{5}$$

 $\frac{4}{5}$ (47) If \triangle ABC is an obtuse-angled triangle at A, $\sin A = \frac{4}{5}$ • then $\sin (2 A + B + C) = \cdots$

(a)
$$\frac{3}{5}$$

(b)
$$\frac{-3}{5}$$

(c)
$$\frac{-4}{5}$$

(d)
$$\frac{4}{5}$$

 $\stackrel{4}{•}$ (48) ABC is a right-angled triangle at B $\stackrel{1}{•}$ if $\cos A = \frac{1}{2}$ $\stackrel{1}{•}$ then the value of $\sin (A + B + 2 C) = \cdots$

(a)
$$\frac{1}{2}$$

(b)
$$\frac{-1}{2}$$

(c)
$$\frac{\sqrt{3}}{2}$$

 $\stackrel{4}{•}$ (49) If XYZ is an acute-angled triangle and tan $Z = \sqrt{3}$, then $\sin(x + y + 2z) = \dots$

(a)
$$-\sqrt{3}$$
 (b) $\frac{1}{3}$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{\sqrt{3}}{2}$$

$$(d) \frac{-\sqrt{3}}{2}$$

(50) If ABC is an acute-angled triangle, then cos A + cos (B + C) =

(d)
$$\frac{1}{2}$$

(51) In the opposite figure :

If
$$A = (2, 2\sqrt{3})$$
, $B = (-2, 2\sqrt{3})$, then $\cot (180^\circ - m (\angle AOB)) = \cdots$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{-1}{\sqrt{3}}$$

 $D \in \overrightarrow{BC}$, AC = 10 cm., AB = 12 cm., then cot $\theta = \cdots$

(b)
$$-\frac{6}{5}$$

(c)
$$\frac{5}{6}$$

(d)
$$-\frac{5}{6}$$

ABCD is a square , CE = 2 BE , then $\tan \theta = \cdots$

(a)
$$-\frac{3}{2}$$

(b)
$$-\frac{2}{3}$$

(c)
$$\frac{1}{2}$$

(d)
$$\frac{2}{3}$$

- (9) The maximum value of the function $g: g(\theta) = 4 \sin \theta$ is
 - (a) 4

(b) 1

- (c) zero
- (d) ∞
- (10) The function $f: f(X) = 3 + \sin(X)$ reaches its maximum value at $X = \dots$
 - (a) $\frac{\pi}{3}$

- (b) $\frac{\pi}{6}$
- (c) $\frac{\pi}{2}$

- (d) $\frac{7\pi}{6}$
- (11) The function $y = \sin\left(\frac{\pi}{4} + x\right)$ has maximum value at $x = \dots$
 - (a) $\frac{\pi}{2}$
- (b) $\frac{-\pi}{2}$
- (c) $\frac{\pi}{4}$

- (d) zero
- (12) If $f(\theta) = 4 \sin 3\theta$, then the sum of the maximum value and the minimum value of the function $f(\theta) = \cdots$
 - (a) 8

(b) 6

(c) 2

- (d) zero
- (13) The function $f: f(\theta) = 2 \sin 4\theta$ is a periodic function and its period equals
 - (a) 2 π
- (b) π

(c) $\frac{\pi}{2}$

- (d) $\frac{\pi}{4}$
- (14) If f is a periodic function and its period equals $\frac{\pi}{2}$, then f(x) could be
 - (a) 4 sin X
- (b) $\sin 4x$
- (c) $\frac{1}{4} \sin x$
- (d) $\sin \frac{1}{4} x$
- (15) The opposite figure represents the curve of the trigonometric function y = f(x) then the rule of the function is

(b)
$$y = \cos \theta$$

(c)
$$y = 2 \cos \theta$$

(d)
$$y = 2 \sin \theta$$

- (16) If the opposite figure represents the curve of the function $f: f(X) = \cos X$, then $a + b = \cdots$
 - (a) 1

(b) zero

(c) π

- (d) 2π
- (17) The opposite figure represents one cycle of the trigonometric function y = f(x), then the rule of the function is

(b)
$$y = \sin 2 x$$

(c)
$$y = 2 \sin 2 x$$

(d)
$$y = \sin x$$

Choose the correct answer from those given:

- (1) If $\theta = \sin^{-1} \frac{\sqrt{3}}{2}$, then $\theta = \cdots$

- (d) 300°
- (a) 60° (b) 120° (c) 240° (2) If $\csc \theta = -2$, $270^{\circ} < \theta < 360^{\circ}$, then $\theta = \dots$ (a) 30° (b) 300° (c) 330°

- (d) 150°
- (3) If $\tan \theta = \frac{-1}{\sqrt{3}}$, 90° < θ < 180°, then $\theta = \dots$ (a) 30° (b) 120° (c) 150

- (d) 210°
- (4) If $\tan \theta = 1.8$ and $90^{\circ} \le \theta \le 360^{\circ}$, then $\theta = \dots$ (a) $60^{\circ} 57$ (b) $119^{\circ} 3$ (c) 24°

- (d) 299° 3

88

▶ Exercise 12 🍃

- (d) 323.13°
- (b) 115° 51

- (a) 64° 9 (b) 115° 5 1 (c) 244° 9 (d) 295° 5 1 (10) If $\sin \theta = \frac{-1}{2}$ where θ is the measure of the smallest positive angle, then $\theta = \dots$
- (c) 210°
- $^{\bullet}$ (11) If the terminal side of a directed angle θ in the standard position intersect the unit circle at $\left(\frac{-\sqrt{3}}{2}, y\right)$ where $y \in \mathbb{Z}^+$, then $\theta = \dots$
 - (a) 30°
- (b) 150°
- (d) 330°

(12) In the opposite figure:

- (a) $\tan^{-1} \left(\frac{12}{5} \right)$ (b) $\sin^{-1} \left(\frac{12}{13} \right)$

- (c) $\csc^{-1}\left(\frac{12}{13}\right)$ (d) $\cos^{-1}\left(\frac{12}{13}\right)$ (13) $\cos\left(\frac{1}{2}\right)^{\circ} \times \cos^{-1}\left(\frac{1}{2}\right) = \dots$ (a) 1 (b) $\frac{1}{4}$
- (c) 60°