

Variational Domain Adversarial Learning for Speaker Verification

Youzhi Tu¹, Man-Wai Mak¹, Jen-Tzung Chien²

¹Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong SAR of China ²Department of Electrical and Computer Engineering, National Chiao Tung University, Taiwan

Introduction

- Domain mismatch poses a great challenge to speaker verification (SV). Domain adaptation is often adopted to overcome this problem.
- Domain adversarial neural network (DANN) is a state-of-the-art domain adaptation method It uses a speaker classifier and a discriminator to learn speaker discriminative and domain-invariant features.
- Limitation of DANN: there is no guarantee that learned features follow a Gaussian distribution, which is an essential requirement for the Gaussian PLDA backend.

Variational Domain-Adversarial Neural Network (VDANN)

- Methodology: incorporate a variational autoencoder (VAE) into the DANN to impose constraint on the distribution of the embedded features.
- Objective: produce features that are not only speaker discriminative and domain-invariant but also Gaussian distributed.
- Architecture: VDANN comprises a speaker predictor C, a domain classifier D, an encoder E and a decoder G. Their parameters are denoted as θ_c , θ_d , ϕ_e and θ_a , respectively.
- Optimization:
 - Keeping θ_c , ϕ_e and θ_a fixed, minimize the domain classification loss with respect to θ_d ;
 - Keeping θ_d fixed, maximize the domain classification loss while simultaneously minimizing the speaker classification loss and the VAE loss with respect to θ_c , ϕ_e and θ_{g} .

References

- Q. Wang et al., "Unsupervised domain adaptation via domain adversarial training for speaker recognition," in Proc. ICASSP, 2018, pp. 4889-4893.
- D. P. Kingma and M. Welling, "Auto-encoding variational Bayes," in Proc. ICLR, 2014.

VDANN Architecture and Optimization

$$\mathcal{L}_{\text{VDANN}}\left(\theta_{c}, \theta_{d}, \phi_{e}, \theta_{g}\right) = \mathcal{L}_{C}\left(\theta_{c}, \phi_{e}\right) - \alpha \mathcal{L}_{D}\left(\theta_{d}, \phi_{e}\right) + \beta \mathcal{L}_{\text{VAE}}\left(\phi_{e}, \theta_{g}\right)$$

$$\hat{\theta}_{d} = \underset{\theta_{d}}{\operatorname{argmax}} \mathcal{L}_{\text{VDANN}}\left(\hat{\theta}_{c}, \theta_{d}, \hat{\phi}_{e}, \hat{\theta}_{g}\right)$$

$$\left(\hat{\theta}_{c}, \hat{\phi}_{e}, \hat{\theta}_{g}\right) = \underset{\theta_{c}, \phi_{e}, \theta_{g}}{\operatorname{argmin}} \mathcal{L}_{\text{VDANN}}\left(\theta_{c}, \hat{\theta}_{d}, \phi_{e}, \theta_{g}\right)$$

$$\mathcal{L}_{C}\left(\theta_{c}, \phi_{e}\right) = \sum_{r=1}^{R} \mathbb{E}_{p_{\text{data}}\left(\mathbf{x}^{(r)}\right)} \left\{ -\sum_{k=1}^{K} y_{k}^{(r)} \log C\left(E\left(\mathbf{x}^{(r)}\right)\right)_{k} \right\}$$

$$\mathcal{L}_{D}\left(\theta_{d}, \phi_{e}\right) = \sum_{r=1}^{R} \mathbb{E}_{p_{\text{data}}\left(\mathbf{x}^{(r)}\right)} \left\{-\log D\left(E\left(\mathbf{x}^{(r)}\right)\right)_{r}\right\}$$

$$\mathcal{L}_{\text{VAE}}(\theta, \phi) = -\sum_{r=1}^{R} \sum_{i=1}^{N_r} \left\{ \frac{1}{2} \sum_{j=1}^{J} \left[1 + \log \left(\sigma_{ij}^{(r)} \right)^2 - \left(\mu_{ij}^{(r)} \right)^2 - \left(\sigma_{ij}^{(r)} \right)^2 \right] + \frac{1}{L} \sum_{l=1}^{L} \log p_{\theta} \left(\mathbf{x}_i^{(r)} \mid \mathbf{z}_{il} \right) \right\}$$

Speaker Classifier C, θ_c Embeddings VAE X-vectors \mathcal{L}_{VAE} Decoder G, θ_a Encoder E, ϕ_e $\log \sigma^2$

Transformed

Experimental Setup

- X-vectors were extracted using the pre-trained DNN available from the Kaldi repository.
- We trained the VDANN/DANN on SRE04–10, Voxceleb1, Switchboard 2 Phases I-III and SITW datasets. The DANN has the same structure as the VDANN, but without the VAE decoder and the sampling procedure.
- The baseline PLDA model was trained on the SRE04–10 and their augmented x-vectors for SRE16; while for SRE18 the Mixer6 and its augmented x-vectors were also added to the training sets. For VDANN/DANN evaluation, the PLDA model was trained on the transformed x-vectors.
- Pre-processing includes centering and LDA projection (to a 150 dimensional space).

Quantile-quantile (Q–Q) plots of x-vectors and pvalues from Shapiro-Wilk tests (The larger the p, the more Gaussian the distribution.)

SRE16

	No PLDA adaptation		PLDA adaptation	
	EER	minDCF	EER	minDCF
Baseline	11.30	0.890	8.27	0.604
DANN	11.62	0.822	8.43	0.599
VDANN	11.17	0.798	8.21	0.584

Domain Classifier D, θ_d

SRE18-CMN2

	No PLDA adaptation		PLDA adaptation	
	EER	minDCF	EER	minDCF
Baseline	11.21	0.676	9.60	0.575
DANN	10.82	0.678	9.28	0.583
VDANN	10.25	0.667	9.23	0.576