Домашняя работа по базовой математической статистике для Data scientist

Задания со зведочкой не обязательны для зачета.

```
import pandas as pd
                   import numpy as np
                  import matplotlib.pyplot as plt
                  import seaborn as sns
                   from scipy.stats import kurtosis
                   from scipy.stats import skew
                  from scipy import stats
  [4] from google.colab import files
                  uploaded = files.upload()
  Выбрать файлы bikeshare (1).csv

    bikeshare (1).csv(text/csv) - 648353 bytes, last modified: 11.06.2025 - 100% done

                  Saving bikeshare (1).csv to bikeshare (1).csv
[54] df = pd.read_csv("bikeshare (1).csv")
                  del df['datetime']
  # df = pd.read_csv("bikeshare (1).csv")
                  # print(df)
  <del>∑</del>₹

        datetime
        season
        holiday
        workingday
        weather
        temp

        0
        2011-01-01
        00:00:00
        1
        0
        0
        1
        9.84

        1
        2011-01-01
        01:00:00
        1
        0
        0
        1
        9.02

        2
        2011-01-01
        02:00:00
        1
        0
        0
        1
        9.84

        4
        2011-01-01
        04:00:00
        1
        0
        0
        1
        9.84

        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...
        ...

        10881
        2012-12-19
        19:00:00
        4
        0
        1
        1
        15.58

        10882
        2012-12-19
        20:00:00
        4
        0
        1
        1
        14.76

        10883
        2012-12-19
        21:00:00
        4
        0
        1
        1
        13.94

        10885
        2012-12-19
        23:00:00
        4
        0
        1
        1
        13.94

                                                                                     datetime season holiday workingday weather temp \
                                              atemp humidity windspeed casual registered count

        atemp
        humidity
        windspeed
        casual
        registered
        count

        0
        14.395
        81
        0.0000
        3
        13
        16

        1
        13.635
        80
        0.0000
        8
        32
        40

        2
        13.635
        80
        0.0000
        5
        27
        32

        3
        14.395
        75
        0.0000
        3
        10
        13

        4
        14.395
        75
        0.0000
        0
        1
        1

        ...
        ...
        ...
        ...
        ...
        ...
        ...

        10881
        19.695
        50
        26.0027
        7
        329
        336

        10882
        17.425
        57
        15.0013
        10
        231
        241

        10883
        15.910
        61
        15.0013
        4
        164
        168

        10884
        17.425
        61
        6.0032
        12
        117
        129

        10885
        16.665
        66
        8.9981
        4
        84
        88

                   [10886 rows x 12 columns]
```

< 1.

Постройте гистограмму распределения каждой из метрик в датасете при помощи метода датафрейма hist(). При необходимости добавьте логарифмированную ось (параметр log).

df.hist(log=True)

Для каждой метрики найдите среднее, дисперсию, 50, 75 и 99 перцентили, моду. Какие выводы о наличии аномалий мы можем сделать?

Выводы: основные пользователи сервиса проката велосипедов - зарегистрированные. В рабочие дни данные услуги более популярны, чем в выходные. Высокое влияние погодных явлений и сезонного фактора (температуры, температуры по ощущениям, влажности, скорости ветра).

~ 3. (*)

Для каждой метрики проанализируйте ассиметрию и смещенность распределения – для этого посчитайте для каждой метрики коэффициент ассиметрии и эксцесса.

[15] df.kurtosis()

₹

	0
season	-1.355661
holiday	30.046975
workingday	-1.397828
weather	0.395533
temp	-0.914530
atemp	-0.850076
humidity	-0.759818
windspeed	0.630133
casual	7.551629
registered	2.626081
count	1.300093

dtype: float64

Постройте симметричный доверительный интервал для метрики с самой большой дисперсией при доверительной вероятности о 95

```
[60] max_var_column = 'atemp'

def my_norm_confidence(df=df, column=max_var_column, alpha=0.95):
    interval = stats.norm.interval(0.95, df[max_var_column].mean(), df[max_var_column].std())
    return interval
    confidence = my_norm_confidence()
    print(confidence)
```

Transfer (np.float64(7.045172041641042), np.float64(40.26499606418295))

```
# df.max_var_column.plot()
plt.hist(df[max_var_column])
plt.axvline(x=confidence[0], color="r", linestyle="-")
plt.axvline(x=confidence[1], color="g", linestyle="-")
plt.title("Доверительный интервал")
```

→ Text(0.5, 1.0, 'Доверительный интервал')

Найдите количество значений, выходящих за три сигмы для каждой из метрик. Где получилось больше всего аномалий?

[47] df.describe()

∓ *		season	holiday	workingday	weather	temp	atemp	humidity	windspeed	casual	registered	count
	count	10886.000000	10886.000000	10886.000000	10886.000000	10886.00000	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000	10886.000000
	mean	2.506614	0.028569	0.680875	1.418427	20.23086	23.655084	61.886460	12.799395	36.021955	155.552177	191.574132
	std	1.116174	0.166599	0.466159	0.633839	7.79159	8.474601	19.245033	8.164537	49.960477	151.039033	181.144454
	min	1.000000	0.000000	0.000000	1.000000	0.82000	0.760000	0.000000	0.000000	0.000000	0.000000	1.000000
	25%	2.000000	0.000000	0.000000	1.000000	13.94000	16.665000	47.000000	7.001500	4.000000	36.000000	42.000000
	50%	3.000000	0.000000	1.000000	1.000000	20.50000	24.240000	62.000000	12.998000	17.000000	118.000000	145.000000
	75%	4.000000	0.000000	1.000000	2.000000	26.24000	31.060000	77.000000	16.997900	49.000000	222.000000	284.000000
	max	4.000000	1.000000	1.000000	4.000000	41.00000	45.455000	100.000000	56.996900	367.000000	886.000000	977.000000

Больше всего аномалий у метрики holiday - 311.

< 6.

Постройте корреляционную матрицу и heatmap по метрикам. Какие выводы о наличии связей можно сделать?

[27] df.head() ₹ datetime season holiday workingday weather temp atemp humidity windspeed casual registered count 0 2011-01-01 00:00:00 0 1 9.84 14.395 81 0.0 13 16 1 2011-01-01 01:00:00 40 0 9.02 13.635 80 0.0 32 2 2011-01-01 02:00:00 0 0 1 9.02 13.635 80 0.0 5 27 32 3 2011-01-01 03:00:00 1 0 0 1 9.84 14.395 75 0.0 3 10 13 4 2011-01-01 04:00:00 0 1 9.84 14.395 75 0.0

Далее: (Посмотреть рекомендованные графики) New interactive sheet


```
corr_m = df.drop(columns=['datetime']).corr() #удаляем нечисловой столбец (с датой), т.к. corr работает только с числовыми
    corr_m
₹
               season holiday workingday weather
                                                temp
                                                         atemp humidity windspeed casual registered
                                                                                                   count
            1.000000 0.029368
                              0.164011 0.163439
      season
      holiday
              0.029368 1.000000
                              -0.250491 -0.007074 0.000295 -0.005215 0.001929 0.008409 0.043799
                                                                                       -0.020956 -0.005393
    workingday -0.008126 -0.250491
                              1.000000 0.033772 0.029966 0.024660 -0.010880 0.013373 -0.319111 0.119460 0.011594
     weather
              0.008879 -0.007074
                               -0.109340 -0.128655
      temp
              0.258689 0.000295
                              0.029966 -0.055035 1.000000 0.984948 -0.064949 -0.017852 0.467097
                                                                                         0.318571 0.394454
      atemp
              0.264744 -0.005215
                               0.024660 -0.055376 0.984948 1.000000 -0.043536
                                                                       -0.057473 0.462067
                                                                                         0.314635 0.389784
             0.190610 0.001929
                              -0.265458 -0.317371
     humidity
    windspeed -0.147121 0.008409
                               1.000000 0.092276
                                                                                         0.091052 0.101369
              0.096758 0.043799
                              -0.319111 -0.135918 0.467097 0.462067 -0.348187
                                                                                         0.497250 0.690414
                                                                       0.092276 1.000000
      casual
                               0.119460 -0.109340 0.318571 0.314635 -0.265458
     registered 0.164011 -0.020956
                                                                       0.091052 0.497250
                                                                                         1.000000 0.970948
              0.163439 -0.005393
      count
                               0.011594 -0.128655 0.394454 0.389784 -0.317371 0.101369 0.690414
                                                                                         0.970948 1.000000
 Далее: ( Посмотреть рекомендованные графики ) ( New interactive sheet
[29] # corr_m = df.corr()
   # corr_m
₹
   ValueError
                                     Traceback (most recent call last)
   <ipython-input-29-2832219476> in <cell line: 0>()
    ---> 1 corr m = df.corr()
        2 corr_m
                               💲 3 frames -
   /usr/local/lib/python3.11/dist-packages/pandas/core/internals/managers.py in _interleave(self, dtype, na_value)
      1751
                      arr = blk.get_values(dtype)
      1752
                   result[rl.indexer] = arr
    -> 1753
      1754
                   itemmask[rl.indexer] = 1
      1755
```

ValueError: could not convert string to float: '2011-01-01 00:00:00'

Выводы: Температура и температура по ощущениям (atemp) демонстрируют корреляцию почти в 1 (0.98, 0.98) - это равнонаправленные взаимновлияющие друг на друга факторы.

Количество зарегистрированных клиентов и количество услуг по аренде (count) тоже имеют высокую корреляцию (0.97, 0.97), в отличие от случайных клиентов (casual), чье влияние на количество оказанных услуг меньше (0.69).

Незарегистрированные клиенты (casual) имеют слабую отрицательную корреляцию с рабочими днями (workingday)(-0.32 -0.32) - непостоянные пользователи редко арендуют велосипеды в рабочие дни.

В выходные услуги по аренде не пользуются спросом, поэтому и сезонный и погодные факторы имеют с показателем holiday слабую корреляцию.