1. Prove or diprove: an encryption scheme is Perfectly Secret - PS $\leftrightarrow \forall$ distributions M over $\mathcal{M}, \forall c_0, c_1 \in \mathcal{C}$ (ciphers):

$$Pr[C = c_0] = Pr[C = c_1]$$
 $C = Enc(K, M)$

- 2. Alternative definition to PS: prove that the following definition is equivalent to other definitions of PS. $GAME_{\Pi,A}^{IND}(\lambda)$:
 - 1. C samples $k \leftarrow \$ \mathcal{K}$
 - 2. C samples $b \leftarrow \$ \{0, 1\}$
 - 3. A sends to C messages m_0, m_1
 - 4. C calculates $c = Enc(k, m_b)$ and sends it to A
 - 5. A sends back b'

A wins (i.e. output 1) if b' = b.

$$\forall A \ Pr[GAME_{\Pi,A}^{IND}(\lambda) = 1] = \frac{1}{2}$$

3. One-way NP puzzle fo relation R

 $Gen(1^{\lambda})$: $(y, x) \leftarrow \$ Gen(1^{\lambda})$ s.t. R(y, x) = 1.

y is a puzzle and x a solution for y.

It is OW because
$$\forall A \ Pr[R(y,x')=1|(y,x) \leftarrow \$ \ Gen(1^{\lambda}), x' \leftarrow \$ \ A(y)] \leq negl(\lambda)$$

Prove that OWFs are equivalent to OW-NP Puzzle

- 4. Every PRF is a MAC. Show that there is a MAC which is not a PRF.
- 5. Let $H:\{0,1\}^{2\lambda}\to\{0,1\}^{\lambda}$ be a RO (i.e. a PRF in ROM). Prove $F(k,r)=H(k\|r)$.

Need to show
$$\forall A, R \leftarrow \$ \mathcal{R}_{\lambda,\lambda}, H \leftarrow \$ \mathcal{R}_{2\lambda,\lambda}.$$

 $|Pr[A^{H(k,\cdot),H(\cdot)}(1^{\lambda}) = 1] - Pr[A^{R(\cdot),H(\cdot)}(1^{\lambda}) = 1]| \leq negl(\lambda)$

Not sure what F is, maybe the F found as a solution (see the notebook) for the previous exercise

- 6. Let f be a length preserving OWF with hardcore predicate h. Show that G(x) = f(x) ||h(x)|| is not a PRG.
- 7. Let \mathbb{G} be a group of order q, with generator g.

Square DH:

Let $params = (\mathbb{G}, g, q) \leftarrow \$ GroupGen(1^{\lambda})$

$$Pr[y = g^{a^2} | a \leftarrow \mathbb{Z}_q, y \leftarrow \mathbb{Z}_q, y \leftarrow \mathbb{Z}_q, y \leftarrow \mathbb{Z}_q)] \le negl(\lambda)$$

Prove CDH \leftarrow Square DH. May assume it's possible to compute square roots in \mathbb{G} .

- 8. Variant for unforgeability: Random UnForgeability under Random Message Attack RUF-RMA
 - 1. C samples keys $(p_k, s_k) \leftarrow \$ KGen(1^{\lambda})$
 - 2. C sends pk to A and sends back (m, σ) , where $m \leftarrow \$ \mathcal{M}, \sigma)Sign(sk, m)$ (can repeat poly-times) How can A send C's sk?
 - 3. C sends to A message $m^* \leftarrow \$ \mathcal{M}$
 - 4. A sends back σ^*

Output 1 is $Verify(pk, m^*, \sigma^*) = 1$

- (a) Prove/Disprove: UF-CMA \rightarrow RUF-RMA
- (b) Prove/Disprove: RUF-RMA \rightarrow UF-CMA
- (c) Show textbook RSA satisfies RUF-RMA
- 9. Let $G = \mathbb{Z}_p^*$. DL is a OWF in \mathbb{G} .

Show that lsb(x) is NOT hard-core for f_{DL} , where $f_{DL}(x) = g^x \mod p$