

Introduction to Data Mining

Lecture #2: Basics

U Kang Seoul National University

Outline

Basics

Importance of Words in Documents

Hash Functions

Index

Secondary Storage

Base of Natural Log

Power Law

Importance of Words in Documents

- How important is a word to a document?
 - E.g., "ball", "bat", "pitch", "run" in a document related to baseball
- Application: Search Engine
 - Given a query word "Seoul", how to rank 173 million d ocuments containing it

Importance of Words in Documents

How important is a word to a document?

 E.g., "ball", "bat", "pitch", "run" in a document related to baseball

The most famous measure is TF.IDF

- Main idea 1 (TF): a word is important to a document if the word occurs frequently
 - What about words like "a", "the", ...?
- Main idea 2 (IDF): a word is important to a document if it occurs only in the document

Importance of Words in Documents

Term Frequency (TF)

lacksquare Let f_{ij} be the frequency of term i in document j

$$\Box TF_{ij} = \frac{f_{ij}}{max_k f_{kj}}$$

Inverse Document Frequency (IDF)

lacksquare Suppose term i appears in n_i of N documents

$$\square IDF_i = log_2(\frac{N}{n_i})$$

■ TF.IDF score of term i in doc. j = $TF_{ij} \times IDF_i$

U Kang

5

Hash Functions

Hash function

- □ Takes a key as an input, and outputs a bucket number i n the range of 0 ~ B-1 (B: total # of buckets)
- \Box E.g. h(x) = x mod 19
- Why do we need it?
 - Typically, hash function is used for quickly finding an it em of interest (=indexing, to be explained soon)

Hash Functions

Good hash function?

- A function which sends approximately equal numbers of hash-keys to each of the B buckets
- \Box E.g.) modular hash function h(x) = x mod k
- \square Assume x = 2, 4, 6, 8, 10, 12,
- \square What if k = 10?
- What if k = 11?

Hash Functions

Good hash function?

- A function which sends approximately equal numbers of hash-keys to each of the B buckets
- \Box E.g.) modular hash function $h(x) = x \mod k$
- \square Assume x = 2, 4, 6, 8, 10, 12,
- What if k = 10?
- What if k = 11?

It's best to choose a prime number for k

Index

Problem

- Assume we are given a file of (name, address, phone)
 triples
- Given a phone number, find out the name and address of the person, without scanning all the contents of the file
- Answer: index

Index

Index

- A data structure that makes it efficient to retrieve objects given the value of one or more elements of the objects
- Several ways to build an index
 - Hash table, B-tree, ...

Index

Index

Example of an index based on hash-table

Figure 1.2: A hash table used as an index; phone numbers are hashed to buckets, and the entire record is placed in the bucket whose number is the hash value of the phone

Secondary Storage

Memory vs. Disk

Price, Speed, Capacity

Disk

- Organized into blocks (=minimum units that OS uses to move data between main memory and disk)
- Typical block size ~ 64 Kbytes
- □ Time to access and read a block: ~ 10 milliseconds
 - 10^5 times slower than reading a word from main memory

Secondary Storage

- Disk (cont.)
 - Max Speed: ~ 100 Megabytes/sec
 - How long would it take to read 10 Terabytes of data fr om a disk?

Answer: 1 day

Base of Natural Logarithms

• e = 2.7182818... =
$$\lim_{x \to \infty} (1 + \frac{1}{x})^x$$

 Using the above fact, we can obtain useful approximations

$$\Box (1+a)^b = (1+a)^{\frac{1}{a}ab} \sim e^{ab}$$

• Similarly, $\lim_{x \to \infty} (1 - \frac{1}{x})^x = e^{-1}$

$$(1-a)^b = (1-a)^{\frac{1}{a}ab} \sim e^{-ab}$$

Base of Natural Logarithms

$$e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \cdots$$

Linear relationship between the logarithms of two variables

Figure 1.3: A power law with a slope of -2

 Linear relationship between the logarithms of two variables

Figure 1.3: A power law with a slope of -2

What about in linear scale?

Figure 1.3: A power law with a slope of -2

Power law distribution (Log-Log scale)

Power law distribution (Linear scale)

Gaussian distribution (Linear scale)

- In general, x and y are in a power law relationship if
 - \Box log y = b + a log x
 - $\Box \Leftrightarrow y = e^b x^a = c x^a$

Figure 1.3: A power law with a slope of -2

U Kang

19

- Why is power-law important?
 - It helps better understand the characteristic of real world data
 - "Matthew Effect": the rich gets richer
 - E.g.) If a person is popular in a social network, she/he
 will get more popular in the future

Barack Obama's Facebook on Mar. 6, 2016

U Kang

20

- **Examples of Power Laws**
 - Node Degrees in the Web Graph
 - Sales of Products
 - Sizes of Web sites
 - Population of cities

- Examples of Power Laws
 - □ Zipf's Law: $y = cx^{-1/2}$
 - Word frequencies in text

[Mark Newman] Power laws, Pareto distributions and Zipf's Law, 2005

Questions?