CS4025: Logic-Based Semantics

- Compositionality in practice
- Producing logic-based meaning representations
- Use of the lambda calculus
- Problems with quantification

See J&M chap 15 in 1st ed, 18 in 2nd

Two stage approach to NLU

Compositionality

- "The meaning of the whole is a function of the meanings of the parts"
 - » A necessary assumption if we want a general approach to meaning extraction beyond a listing of sentences with their meanings
 - » What are the parts? It's up to our grammar to yield appropriate parts
 - » What are the functions and what types of meanings do the parts have? These are very challenging questions...

Result of semantic analysis

How to get there compositionally?

Expressing semantic rules

- Associate semantic information with each grammar rule - semantic attachments.
- These say how the semantics of the whole phrase is computed from the semantics of the parts

```
A \rightarrow a1 a2 \dots a2  { f(a1.sem,a2.sem,a3.sem) }
```

This says that the semantics of an A recognised by this rule is function f of the semantics of the parts a1 a2 ... an (ai.sem = semantics of ai)

Example - English number grammar

```
Num → Digit hundred and Ty Digit
              { 100*Digit1.sem + Ty.sem + Digit2.sem }
Digit \rightarrow two { 2 }
Digit → three { 3 }
Ty \rightarrow twenty { 20 }
Ty \rightarrow thirty { 30 }
What is the semantics of "two hundred and thirty
  two"?
```

Alternative Approach

 Instead of putting semantic attachments with grammar rules, write rules for translating parse trees.

 This is equivalent (as each use of a grammar rule corresponds to a node in the parse tree)

Initial semantic attachments for English

```
ProperNoun \rightarrow AyCaramba { AyCaramba } MassNoun \rightarrow meat { Meat } Verb \rightarrow serves \{\exists e, x, y \mid sa(e, Serving) \land Server(e, x) \land Served(e, y)\}
```

NB note caseframe approach of logic representation (makes handling, e.g. adverbs easier)

How do these combine together to give meanings for the larger phrases?

Propagating meanings up NPs

```
NP → ProperNoun { ProperNoun.sem }
NP → MassNoun { MassNoun.sem }
```

 When a phrase just has one part, often just return the meaning of this as the meaning of the whole phrase

VP meanings

What should the meaning of "serves Meat" be?
 Arguably, something like:

∃e,x Isa(e,Serving) ∧ Server(e,x) ∧ Served(e,Meat)

 How do we compute this from the Verb and NP meanings:

Verb:

∃e,x,y lsa(e, Serving) ∧ Server(e,x) ∧ Served(e,y)

NP: Meat

 Need to somehow "incoporate" the NP meaning into the Verb meaning

Basic Idea

 Represent the Verb meaning as having a "hole" where the NP meaning will go:

```
∃e, x Isa(e, Serving) ∧ Server(e, x) ∧ Served(e,⊗)
```

- Create the VP meaning by filling the hole:
 - ∃e, x Isa(e, Serving) ∧ Server(e, x) ∧ Served(e, Meat)
- Informal grammar rule:
 VP → V NP { fillHole(V.sem,NP.sem) }

The Lambda Calculus

- The Lambda Calculus is an extension to Predicate Calculus that allows us to have "named holes"
- The above Verb meaning would be represented as: $\lambda y \exists e, x \text{ Isa}(e, Serving) \land Server(e, x) \land Served(e, y)$ (or could have any other name instead of y)
- Filling the hole in X with Y is called applying X to Y and is denoted X(Y)
- VP → Verb NP { Verb.sem(NP.sem) }

Examples of Application

```
(\lambda x P(x,y))(apple) = P(apple,y)
(\lambda x P(y,x))(apple) = P(y,apple)
(\lambda z P(z,x))(apple) = P(apple,x)
```

Computing the 5 meaning

We now have

NP meaning: AyCaramba

VP meaning:

∃e, x Isa(e, Serving) ∧ Server(e, x) ∧ Served(e, Meat)

How to combine to get the S meaning:

∃e Isa(e, Serving) ∧ Server(e, AyCaramba) ∧ Served(e, Meat)

This is the same problem as before! Now the Verb meaning needs to have two holes...

Basic Idea

 Order the holes in a formula according to the order in which they are going to be filled:

$$\exists$$
e Isa(e, Serving) \land Server(e, \otimes_2) \land Served(e, \otimes_1)

 First the hole corresponding to the object of the verb will be filled, then the subject

In Lambda Calculus

 Use nesting (and different variable names) to indicate order of holes - the outermost name corresponds to the first hole to be filled

 $\lambda x \lambda y \exists e lsa(e, Serving) \land Server(e, y) \land Served(e, x)$

 $(\lambda x \ \lambda y \ \exists e \ lsa(e, Serving) \land Server(e, y) \land Served(e, x))(Meat)$ = $\lambda y \ \exists e \ lsa(e, Serving) \land Server(e, y) \land Served(e, Meat)$

(λy ∃e Isa(e, Serving) ∧ Server(e, y) ∧ Served(e, Meat))(AyC) = ∃e Isa(e, Serving) ∧ Server(e, AyCaramba) ∧ Served(e, Meat)

Examples with nested and complex lambda expressions

$$((\lambda x \lambda y P(x,y))(apple))(pear) = P(apple,pear)$$

$$((\lambda x \lambda y P(y,x))(apple))(pear) = P(pear,apple)$$

$$(\lambda x P(x(apple), y))(\lambda z f(z, z)) = P(f(apple, apple), y)$$

Revised Verb, VP, S rules

```
Verb \rightarrow serves

\{\lambda x \lambda y \exists e \, lsa(e, Serving) \land Server(e, y) \land Served(e, x) \}

VP \rightarrow Verb NP { Verb.sem(NP.sem) }

S \rightarrow NP \ VP { VP.sem(NP.sem) }
```

Final result

More complex NPs

Some possible rules:
 NP → every N { ∀x Isa(x,N.sem) }
 NP → a N {∃x Isa(x,N.sem) }
 N → restaurant { Restaurant }

But what about "every restaurant serves meat"?
 We get:

```
∃e Isa(e, Serving) ∧
Server(e, ∀x Isa(x, Restaurant)) ∧ Served(e, Meat)
```

Dealing with Quantification (1a)

 Since the quantifiers coming from NPs need to be at the outside of the S meaning, put the NP in charge, rather than the VP:

```
S \rightarrow NP \ VP \ \{ NP.sem(VP.sem) \}
 NP \rightarrow every \ N \ \{ \lambda v \ \forall z \ Isa(z,N.sem) \supset v(z) \}
```

VP etc as before

Dealing with Quantification (1b)

```
NP semantics: \{\lambda v \forall z \ lsa(z, Restaurant) \supset v(z)\}
 VP semantics (as before):
    \{ \lambda x \exists e \text{ Isa}(e, Serving) \land Server(e, x) \land Served(e, Meat) \}
 S semantics:
(\lambda v \forall z lsa(z, Restaurant) \supset v(z))(
 \lambda x \exists e lsa(e, Serving) \land Server(e, x) \land Served(e, Meat))
= ∀z Isa(z,Restaurant) ⊃
 (\lambda x \exists e lsa(e, Serving) \land Server(e, x) \land Served(e, Meat)))(z))
= ∀z Isa(z,Restaurant) ⊃
  (∃e Isa(e,Serving) ∧ Server(e,z) ∧ Served(e,Meat))
```

Dealing with Quantification (2)

- Leave the placing of quantifiers for a postprocessing stage.
- This means allowing quantifiers where terms would normally be expected - called complex-terms

```
NP \rightarrow every N \qquad \{ < \forall z \; lsa(z, N.sem) > \}
```

5 meaning from original rules:

```
∃e Isa(e, Serving) ∧
Server(e, < ∀x Isa(x, Restaurant) >) ∧ Served(e, Meat)
```

Handling Quantifier Ambiguity

 By the second method, "every restaurant serves a salad" comes out as:

```
∃e Isa(e, Serving) ∧
Server(e, < ∀ z Isa(z, Restaurant) >) ∧
Served(e, <∃ w Isa(w, Salad) >)
```

- The two quantifiers can be moved to the outside of the formula in different orders, corresponding to different interpretations
- The Hobbs-Shieber algorithm enumerates all possibilities

Formal Semantics

- The field of "formal semantics" studies how to model many phenomena of natural language in this kind of way
- One inspiration was the work of the logician Montague in the 1970's ("Montague grammar").
 Montagu was the first person to suggest this kind of formal approach to NL semantics
- We have presented just the tip of the iceberg of a large research area