Devoir surveillé n° 10 Version 2

Durée : 3 heures, calculatrices et documents interdits

Notations.

Dans tout le problème, n désigne un entier naturel non nul $(n \in \mathbb{N}^*)$.

— Dans $\mathcal{M}_{n,1}(\mathbb{R})$ espace vectoriel réel de dimension n, identifié à \mathbb{R}^n , on utilisera le produit scalaire canonique défini par

$$\forall U, V \in \mathbb{R}^n, \ (U|V) = {}^tUV$$

- On notera $\mathcal{M}_n(\mathbb{R})$, l'espace vectoriel des matrices carrées de taille n à coefficients réels.
- Pour $A \in \mathcal{M}_n(\mathbb{R})$, on notera $\operatorname{Ker}(A)$ le noyau de A vu comme endomorphisme de \mathbb{R}^n .
- Dans $\mathcal{M}_n(\mathbb{R})$, on notera 0_n la matrice nulle et I_n la matrice unité. Le déterminant est noté det.
- $GL_n(\mathbb{R}) = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid \det(M) \neq 0 \}$ désigne le groupe linéaire des matrices inversibles de $\mathcal{M}_n(\mathbb{R})$.
- On sera enfin amené à utiliser des décompositions par blocs. On rappelle en particulier que si $A, B, C, D, A', B', C', D' \in \mathcal{M}_n(\mathbb{R})$ on a alors dans $\mathcal{M}_{2n}(\mathbb{R})$:

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} A' & B' \\ C' & D' \end{pmatrix} = \begin{pmatrix} AA' + BC' & AB' + BD' \\ CA' + DC' & CB' + DD' \end{pmatrix}$$

et
$$\det \begin{pmatrix} A & C \\ 0_n & D \end{pmatrix} = \det \begin{pmatrix} A & 0_n \\ C & D \end{pmatrix} = \det(A) \det(D).$$

Partie I : Le groupe symplectique.

Soit $n \in \mathbb{N}^*$ et soit J_n ou simplement J la matrice de $\mathscr{M}_{2n}(\mathbb{R})$ définie par

$$J = \begin{pmatrix} 0_n & -I_n \\ I_n & 0_n \end{pmatrix}.$$

On note

$$\mathscr{S}_{p_{2n}} = \left\{ M \in \mathscr{M}_{2n}(\mathbb{R}) \mid {}^{t}MJM = J \right\}.$$

1) Calculer J^2 et tJ en fonction de I_{2n} et J. Montrer que J est inversible et identifier son inverse.

2) Vérifier que $J \in \mathscr{S}_{p_{2n}}$ et que pour tout réel α ,

$$K(\alpha) = \begin{pmatrix} I_n & 0_n \\ -\alpha I_n & I_n \end{pmatrix} \in \mathscr{S}_{p_{2n}}.$$

- 3) Pour tout $U \in GL_n(\mathbb{R})$, vérifier que $L_U = \begin{pmatrix} U & 0_n \\ 0_n & {}^t(U^{-1}) \end{pmatrix}$ est dans $\mathscr{S}_{p_{2n}}$.
- 4) Si $M \in \mathscr{S}_{p_{2n}}$, préciser les valeurs possibles de $\det(M)$.
- 5) Montrer que le produit de deux éléments de $\mathscr{S}_{p_{2n}}$ est un élément de $\mathscr{S}_{p_{2n}}$
- 6) Montrer qu'un élément de $\mathscr{S}_{p_{2n}}$ est inversible et que son inverse appartient à $\mathscr{S}_{p_{2n}}$.
- 7) Montrer que si $M \in \mathscr{S}_{p_{2n}}$ alors ${}^tM \in \mathscr{S}_{p_{2n}}$.

Soit M une matrice de $\mathcal{M}_{2n}(\mathbb{R})$ écrite sous la forme

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$.

8) Déterminer les relations sur A, B, C, D caractérisant l'appartenance de M à $\mathcal{S}_{p_{2n}}$.

Partie II : Centre de $\mathscr{S}_{p_{2n}}$.

On s'intéresse ici au centre $\mathcal Z$ de $\mathscr S_{p_{2n}}$ c'est à dire

$$\mathcal{Z} = \{ M \in \mathscr{S}_{p_{2n}} \mid \forall N \in \mathscr{S}_{p_{2n}}, \ MN = NM \}.$$

9) Justifier l'inclusion suivante : $\{-I_{2n}, I_{2n}\} \subset \mathcal{Z}$.

Réciproquement, soit $M \in \mathcal{Z}$ écrite sous la forme

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 avec $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$.

- **10)** En utilisant $L = \begin{pmatrix} I_n & I_n \\ 0_n & I_n \end{pmatrix}$ et sa transposée, obtenir $B = C = 0_n$ et D = A, A étant inversible.
- **11)** Soit $U \in GL_n(\mathbb{R})$. En utilisant $L_U = \begin{pmatrix} U & 0_n \\ 0_n & {}^t(U^{-1}) \end{pmatrix}$, montrer que A commute avec toute matrice $U \in GL_n(\mathbb{R})$.
- **12)** Conclure que $A \in \{-I_n, I_n\}$ et $\mathcal{Z} = \{-I_{2n}, I_{2n}\}$. Indication : on montrera d'abord que les matrices $I_n + E_{i,j}$ commutent avec A, où $(E_{i,j}, 1 \leq i, j \leq n)$ est la base canonique de $\mathcal{M}_n(\mathbb{R})$.

Partie III : Déterminant d'une matrice symplectique.

Soit M dans $\mathscr{S}_{p_{2n}}$ que l'on décompose sous forme de matrice blocs

$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

avec $A, B, C, D \in \mathcal{M}_n(\mathbb{R})$. Dans toute cette partie, les matrices A, B, C, D sont les matrices de cette décomposition.

On suppose dans les questions 13) et 14) que D est inversible.

13) Montrer qu'il existe quatre matrices Q, U, V, W de $\mathcal{M}_n(\mathbb{R})$ telles que

$$\begin{pmatrix} I_n & Q \\ 0_n & I_n \end{pmatrix} \begin{pmatrix} U & 0_n \\ V & W \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

14) En utilisant la question 8), vérifier que BD^{-1} est symétrique, puis que

$$\det(M) = \det({}^t AD - {}^t CB) = 1.$$

Soient $P, Q \in \mathcal{M}_n(\mathbb{R})$ telles que tPQ soit symétrique et Q non inversible. On suppose qu'il existe deux réels différents s_1, s_2 et deux vecteurs V_1, V_2 non nuls dans \mathbb{R}^n tels que

$$(Q - s_1 P)V_1 = (Q - s_2 P)V_2 = 0.$$

15) Montrer que le produit scalaire $(QV_1|QV_2)$ est nul.

On suppose dorénavant D non inversible.

16) Montrer que $Ker(B) \cap Ker(D) = \{0\}.$

Soit m un entier, $m \leq n$. Soit s_1, \ldots, s_m des réels non nuls et deux à deux distincts et V_1, \ldots, V_m des vecteurs non nuls tels que

$$(D - s_i B)V_i = 0$$
 pour $i = 1, \dots, m$.

- 17) Montrer que pour tout $i \in \{1, ..., m\}$, $DV_i \neq 0$ et que la famille $(DV_i)_{1 \leq i \leq m}$ est libre.
- 18) En déduire qu'il existe un réel α tel que $D \alpha B$ soit inversible.
- 19) Montrer alors que toute matrice de $\mathscr{S}_{p_{2n}}$ est de déterminant égal à 1.

— FIN —