

Cryptology

An introduction

by
Ulf Lindqvist
translated and processed by Erland Jonsson

Contents

- Introduction
- Terminology
- History
- Symmetrical systems (secret-key)
- Asymmetrical systems (public-key)
- Key management
- Problems with cryptology
- The Future

What is Cryptography?

 Methods for the protection of information and communications

BQQ EBJIFDQ JBAABIÅKAB

CRR FCKJGER KCBBCJÄLBC

DSS GDLKHFS LDCCDKÖMCD

ETT HEMLIGT MEDDELANDE

(English: a secret message)

Who needs cryptography?

- Earlier: only diplomats and the military
- Now: everybody!
- Reasons:
 - Electronic communication over insecure channels,
 e.g. the Internet
 - Traditional methods for authentication (signature, voice) does not work for data communications

Terminology (Swedish - English)

- Kryptologi, kryptoteknik
- Kryptografi
 - Kryptering
 - Dekryptering
 - Klartext
 - Kryptotext, kryptogram
 - Nyckel
- Forcering
 - Forcör
 - Forcera

- Cryptology
- Cryptography
 - Encryption
 - Decryption
 - Plaintext, Cleartext
 - Ciphertext, cryptogram
 - Key
- Cryptanalysis
 - Cryptanalyst
 - Break

History

The pre-scientific era

• ca 400 BC Sparta (transposition)

• ca 50 BC Julius Caesar (substitution)

• 19th century A Kerckhoff (only the key secret)

1920-ies
 G S Vernam (K as long as M)¹

• 1939-45 2nd Word War

Scientific era

• 1949 C E Shannon

• 1976 W Diffie & M E Hellman

1. One-time pad

History

Secret versus open research

- Cryptology used to be available only for government authorities (military, diplomats)
- Comprehensive open research started in the mid 70-ies
- The secret research is probably considerably bigger than open research
- "NSA is believed to be 10-15 years ahead of the open research"

Traditional *symmetrical* model with secret key

Symmetrical systems

Theoretical versus practical security

- Theoretical security
 - No problems with key management
 - The cryptanalyst has unlimited resources
- **Practical** security
 - Many limitations
 - The cryptanalyst also has limitations
 - The security is a function of the estimated possibilities of the cryptanalyst

Symmetrical systems Cryptanalysis

Assumption:

the cryptanalyst knows everything about the system except the key.

- Different types of cryptanalysis attacks:
 - Ciphertext-only
 - The cryptanalyst only has encrypted text
 - Known-plaintext
 - The cryptanalyst has some plaintext-ciphertext pairs
 - Chosen-plaintext/Chosen-ciphertext
 - The cryptanalyst can make tests with selected plaintext and get the corresponding encrypted text

Symmetrical systems

Cryptanalysis cont'd

Theoretical cryptanalysis

 All possible keys are tested (unlimited time)
 and the cipher text is decrypted.

 Successful cryptanalysis is possible if this leads to exactly one interpretable message.

Symmetrical systems Cryptanalysis cont'd

Ciphertext: DJFKRIOPEPWPEPS

Key 1: ajfkjrisdfkjsdd

Key 2: jfjreieifkdjdjf

PT 1: attack at eight

PT 2: no attack today

Symmetrical systems

Diffusion — Confusion

Diffusion

- Changing one symbol in the plaintext affects many symbols in the ciphertext
- Changing one symbol in the key affects many symbols in the ciphertext

Confusion

 The ciphertext must depend on the plaintext and the key in a complicated way so that the derivation of statistical relations is hard to do

Symmetrical systems Product ciphers

Product ciphers gives good diffusion and confusion

P is a permutation, possibly the same in every step. S_i are general, different, non-linear substitutions.

Symmetrical systems

Example of system: DES

- Data Encryption Standard
- Encrypts blocks of 64 bits, 56-bit key
- Developed by IBM and NSA, American standard since 1977
- NSAs involvement is discussed
 - Suspicion of back-doors has not been confirmed
 - Rather, NSA seems to have strengthened the algorithm
- Status: Algorithm is considered very strong, but the key is too short
- Development: Triple DES (3DES), 112 bits
- Since 2000: Advanced Encryption Standard (AES)

Symmetrical systems

Example of system: AES

- Advanced Encryption Standard
 - International competition (NIST)
 - Call for candidates (1997)
 - Winners from Belgium (Rijndael)
 - Standard made official 2001
- Based on Permutations & Substitutions
 - Not completely symmetric (encryption versus decryption)
 - 128 bit data blocks
 - Supports 128, 192 and 256 bit key length (with 10, 12, 14 rounds, respectively)
 - Has become the "standard"!
 - 10G Ethernet, ZigBee, SSL, IPSec, WiMAX ...

Symmetrical systems Key lengths

- Based on computational complexity
- Comparison for exhaustive search:

Key lengtl		Possible keys	Time a	Time b
40 bits	Asymm. R	$2^{40} \approx 1.1 \cdot 10^{12}$	1 week	(9 s)
56 bits		$2^{56} \approx 7.2 \cdot 10^{16}$	1200 yrs	1 week
100 bits	2048 bits	$2^{100} \approx 1.3 \cdot 10^{30}$	2·10 ¹⁶ yrs	3·10 ¹¹ yrs
128 bits	3072 bits	$2^{128} \approx 3.4 \cdot 10^{38}$	6·10 ²⁴ yrs	9·10 ¹⁹ yrs
(100 million combinations correspond to 27 bits)				

See Table 2.1 and 21.2

Asymmetrical systems

- Principle was discovered in 1976
- Two keys,
 - one public key, k_{PUB} for encryption and
 - one secret key k_{PRIV} for decryption (thus: public-key-systems)
- The public key, k_{PUB}, distributed openly to everybody
 (as a matter of fact: this is the basic idea)
- Slow encryption, primarily used for signing and distribution of symmetrical keys

Asymmetrical systems Model

Asymmetrical systems Basic Principles

One-way functions

- y = f(x) easy to calculate, but finding x for a given y, so that y = f(x), i.e. $x = f^{-1}(y)$ is very hard (impossible in practice)
- Example: Multiplication of two 100-character primes is easy, but finding the two primes for a given product is hard

Trap-door one-way functions

• $y = f_P(x)$ easy, but $x = f_P^{-1}(y)$ hard to calculate, unless you know the parameter P

Asymmetrical systems Characteristics

- No secure channel needed
- Communication between n units, requires 2n keys (cp symmetrical system: about ~n²)
- Authentication important
 - If a false public key is used, the intruder can read the message
 - The sender is unknown to me
 (since the public key is available to everybody)
 - Solution: signatures

Asymmetrical systems Signatures

- In principle the system goes "backwards"
 - Encryption with k_{PRIV}
 - everybody can decrypt with k_{PUB}

Note! No confidentiality!

• Signing and encryption:

Send A: calculates $E(k_{PUB-B}, E(k_{PRIV-A}, M)) = C$

Rec B: calculates $D(k_{PUB-A}, D(k_{PRIV-B}, C)) = M$

Asymmetrical systems Example of system: Diffie-Hellman

- A way to distribute the key to a symmetrical system without a secure channel
- One-way function: $f(x) = a^x$ (modulo p)
- Basic principle:A and B choose a number b (not secret)

A: Chooses x_1 and calculates $y_1 = b^{x_1}$ A sends y_1 to B. A calculates $y_2^{x_1} = b^{x_1x_2}$ B: Chooses x_2 and calculates $y_2 = b^{x_2}$ B sends y_2 to A.

B calculates $y_1^{x_2} = \underline{b^{x_1 x_2}}$

Asymmetrical systems Example of system: RSA

- RSA (Rivest, Shamir, Adleman) 1978
 - Uses a trap-door function that is based on the multiplication of big primes
 - Security depends on the development of
 - 1) Algorithms for factoring
 - 2) Computers with high computational power
 - Most well-known and most commonly-used asymmetrical system

Hybrid systems Example of system: PGP

- PGP (Pretty Good Privacy)
 GnuPG
 - Application for encryption and signing of emails
 - Uses RSA and IDEA (originally)
 - Large-scale test of the management of asymmetrical keys (signing, publication etc)
 - Disadvantages:
 - Certain lack of compatibility (different versions)
 - Hard to protect the secret key

PGP Encryption

PGP Decryption

(Digital) Certificates

- A certificate binds a public key to a specific user. It consists of three things
 - Public key
 - User info: name, etc
 - Digital signature of attester

Public-Key Infrastructure

- Public-Key Infrastructure (PKI)
 - Certificate storage
 - Certificate server
 - Public-key management
- CA = certificate authority (certification)
 The CA creates certificates & signs them
- RA = registration authority
 Supports the registration of users w/in the PKI

Establishing Trust

- Direct trust
- Hierarchical trust (PKI, CA)
- Web of trust PGP
 - → key signing parties

 Revocation of keys are not trivial (if you lose the key or it gets stolen)

Key Management

Protocols

- Combinations of symmetrical and asymmetrical systems are used for key distribution
- Hard to design good protocols

Key escrow

- Users are forced to deposit "main keys" so that authorities (police, customs etc) can interpret secret communications
- Fiercely debated in the USA, to some extent also within the EU
- Organisationally questionnable

Key management problems The key length is not the full truth

- Many factors influence the security of the cryptographic scheme
 - Key management
 - Key storage
 - Key generation
 - Badly selected keys / parameters / picture
 - Backdoors, social engineering

→ Go after lowest-hanging fruit – weakest part

Next steps ...

Threshold cryptography

Next steps ...

Threshold cryptography

Next steps ...

Threshold cryptography

- Zero-knowledge proofs
 - Prove that you know something without telling the secret.
 - Convince one person but in such a way that he cannot in turn convince another that he has the secret.

Problems with cryptography

- Based on computational complexity, which is theoretically hard. Therefore it is easy to find a bad system that looks good. It is considerably harder to show that it really is bad.
- Requires profound knowledge to make good designs.
- Electronic commerce is based on the difficulty to factorize big numbers...
- Non-cryptological issues is the real problem!

Problems with Cryptography Block Cipher Modes

 In Electronic Codebook (ECB) mode, a message is split into blocks and each is encrypted separately.

(from Wikipedia)

The Future

- The Advanced Encryption Standard (AES) is replacing DES.
- New methods required to build robust applications
- The need for commercial IT-services is a driving force, e.g. Internet B2B and B2C applications
- Political decisions slow down progress(?)
- Quantum Cryptography