CS581 Theory of Computation: Homework #5

Due on March 2 2016 at 2:00pm

Harry H. Porter Winter 2016

Konstantin Macarenco

Problem 5.3

Find a match in the following instance of the Post Correspondence Problem.

$$\left\{ \left\lceil \frac{ab}{abab} \right\rceil, \left\lceil \frac{b}{a} \right\rceil, \left\lceil \frac{aba}{b} \right\rceil, \left\lceil \frac{aa}{a} \right\rceil \right\}$$

Solution

$$\frac{ab}{abab}$$
, $\frac{ab}{abab}$, $\frac{aba}{abab}$, $\frac{b}{a}$, $\frac{b}{a}$, $\frac{aa}{a}$, $\frac{aa}{a}$ or $\frac{aa}{a}$, $\frac{aa}{a}$, $\frac{b}{a}$, $\frac{ab}{abab}$

Problem 5.4

If $A \leq_m B$ and B is a regular language, does that imply that A is a regular language? Why or why not?

Solution

No it doesn't imply that A is regular, for example: CFL $\{a^nb^n \mid n \geq 0\}$ can be reduced to regular language $\{a^n \mid n \geq 0\}$, by following procedure: check if input $\in a^nb^n$, output a^n if it is, and b if it is not.

Description of the TM form problems 1 and 2.

- 1. $Q = \{A, B, C, D\}$
- 2. $\Sigma = \{0, 1\}$
- 3. $\Gamma = \{0, 1, ...\}$
- 4. $\delta =$
 - 1. $\delta(A,0) = (B,1,R)$
 - 2. $\delta(A, 1) = (A, 1, R)$
 - 3. $\delta(A, _) = (C, _, L)$
 - 4. $\delta(B,0) = (D,0,L)$
 - 5. $\delta(B, 1) = (A, 0, R)$
 - 6. $\delta(B, _{-}) = (D, _{-}, L)$
- 5. $q_0 = A$
- 6. $q_{accept} = C$
- 7. $q_{reject} = D$

Problem 1

Convert this into and instance of the PCP.

Solution

Convert the TM into instance of PCP by adding required domino tiles:

Part 1: add first tile

$$\left[\frac{\#}{\#\#Aw_1w_2w_3...}\right]$$

Part 2: Take care of the right transitions

Part 3: Take care of the left transitions

$$\begin{bmatrix} 0A_{-} \\ \overline{C0}_{-} \end{bmatrix} \begin{bmatrix} 1A_{-} \\ \overline{C1}_{-} \end{bmatrix} \begin{bmatrix} -A_{-} \\ \overline{C}_{--} \end{bmatrix} \begin{bmatrix} 0B0 \\ \overline{D00} \end{bmatrix} \begin{bmatrix} 1B0 \\ \overline{D10} \end{bmatrix} \begin{bmatrix} -B0 \\ \overline{D10} \end{bmatrix} \begin{bmatrix} 0B_{-} \\ \overline{D0}_{-} \end{bmatrix} \begin{bmatrix} 1B_{-} \\ \overline{D1}_{-} \end{bmatrix} \begin{bmatrix} -B_{-} \\ \overline{D$$

Part 4: For every $a \in \Gamma$ put $\left\lceil \frac{a}{a} \right\rceil$

$$\begin{bmatrix} 0 \\ \overline{0} \end{bmatrix} \begin{bmatrix} 1 \\ \overline{1} \end{bmatrix} \begin{bmatrix} - \\ - \end{bmatrix}$$

Part5

$$\begin{bmatrix} \frac{\#}{\#} \end{bmatrix} \begin{bmatrix} \frac{\#}{-\#} \end{bmatrix}$$

Part 6: Accept states

$$\begin{bmatrix} \frac{0C}{C} \end{bmatrix} \begin{bmatrix} \frac{1C}{C} \end{bmatrix} \begin{bmatrix} \frac{C}{C} \end{bmatrix} \begin{bmatrix} \frac{C0}{C} \end{bmatrix} \begin{bmatrix} \frac{C1}{C} \end{bmatrix} \begin{bmatrix} \frac{C}{C} \end{bmatrix}$$

Part7: Final domino

$$\left[\frac{C\#\#}{\#}\right]$$

So far we converted the TM into MPCP, usually this this would require further conversion into instance of PCP, by addition of $\frac{\star t_1}{\star b_1 \star}$ to the first title, and $\frac{\star t_1}{b_1 \star}$ to all the rest to enforce the order of computation, however this procedure was omitted for briefness.

Problem 2

Show that the string "01" is in the language recognized by this TM by showing a solution to your instance of the PCP.

Solution

We find a match in PCP instance.

$$\frac{\#}{\#\#A01_\#}\frac{\#}{H}\frac{A0}{1B}\frac{1}{1}_\frac{\#}{\#}\frac{1}{1}\frac{B1}{0A}_\frac{\#}{\#}\frac{1}{1}\frac{0A_}{C0_}\frac{\#}{\#}\frac{1}{1}\frac{C0}{C}_\frac{\#}{\#}\frac{1C}{C}_\frac{\#}{\#}\frac{C_}{C}\#\frac{C\#\#}{\#}$$

Resulting PCP:

$$\frac{\#\#A01_\#1B1_\#10A_\#1C0_\#1C_\#C_\#E\#\#}{\#\#A01_\#1B1_\#10A_\#1C0_\#1C_\#C_\#E\#}$$