## CRCW PRAM

- nacini rješavanja problema istovremenog pisanja:

## 1. PRIORITETNO

- samo procesor s najmanjim indeksom uspijeva u pisanju

2. OPERACIJSKI

- nad svim podacima (koji se upisuju) provodi se

zadana operacija (nojčešće zbrajanje) i upisuje se rezultat

3. SLUCAMO
- jedan ducajno odabrani procesor uspjeva u pisanju (nedeterministički)

=> DEFAULT : 3.

2AD: Napisati algoritam 2a CRCM PRAM racimalo koji će 2a zadano poje P izracimati provjeriti ima li u poju elemenata jednakih vrijednosti. 2a polje od n procesa dostupno je n procesara. Rezultat mora biti zapisan u jednoj varijabli. Ocijeniti složenost algoritma.

REZ =  $\phi$ ; 2A i=1 DO n-1 PARALELNO (2A j=i+1 DO n) AKO (P[j] == P[i]) PEZ = 1; //pise se istirezultat

BROJ KORAKA: n-1 SLOZENOST : O(n)

A SVAKI USPOREĐUJE JE LI TRENUTIVI ELEMENT NIZA JEDNAK NJEGOVOM

BROJ KORAKA: n/2 + 1 SLOZENOST: O(n)

| ZAD: EREW PRAM, dostupna procedura                                                                                                                                            | reduciranja uz proizvoljni binarni operator                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| > provjeriti ima li u polju jednak                                                                                                                                            | ih vrijednosti, rezultat u jednoj varijabli                                                                                                                                                                                                                                                    |
| PARALELNO (2A j=1 DO n)    REZ[j] = \$\phi;   K[j] = P[j];   2A d=1 DO n/2+1    PARALELNO (2A j=1 DO n)    AKO (P[j] == K[j+d])    L REZ[j] = 1;   REZ = OR _ REDUCE (REZ[]); | → nitko ne smije prisati na isto mjesto istovremeno  - naprave se kopije  → nitko istovremono ne smije pisati na isto uj:  - svaki pise u jednu poeiciju polja  - kasnije REDUCE                                                                                                               |
| SLOPENOST: O(n)                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |
| ZAD: Napisati algoritam za CRCM odrediti broj različitih elemeno [1,2,1,3,4,2,5,1] >> 5                                                                                       | PRAM koji ćeza zadano polje P<br>zta polja.                                                                                                                                                                                                                                                    |
| PEZ = 1;<br>2A i=1 DO n-1<br>  NC=1;<br>  PARALELNO (2A j=i+1 DO n)<br>  AKO (P[j] == P[i])<br>  INC=0;<br>  REZ += INC;                                                      | <ul> <li>⇒ elementi se gledaju jedan po jedan i</li> <li>uspoređuju sa svima da li su jednaki</li> <li>- ako postoji isti -&gt; ne broji se</li> <li>- kad dođeno do tog drugog elementa i</li> <li>iza njega nema više istih -&gt; broji se</li> <li>⇒ ukupno se broji samo jednam</li> </ul> |
| SLOPENDST: O(n)                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |

| ZAD:  | U aPRAM na n procesora u lokaluoj memoriji svakog procesora                 |
|-------|-----------------------------------------------------------------------------|
|       | nalazi se podatak VAR. Napiši program kajim se vijednost                    |
|       | podatka svakog procesora postavýa na najveću vrijednost među svim podacima. |
|       | 1D-indeks procesora                                                         |
|       | GPLJ - globalus paje                                                        |
|       |                                                                             |
|       | GP[ID] = VAR;                                                               |
| grada |                                                                             |
|       | d-1; »provjera na određenu udaljenost                                       |
|       | dok (den)                                                                   |
|       | ako (VAR < GP[ID+d]) - ako je manja moja vrijednost,                        |
|       | I VAR = GP[ID+d]; njegovu upisujem u svoju                                  |
|       | d++:                                                                        |
|       | ] ograda — ili ako (VAR > GP[ID+d])  GP[ID+d]=VAR;                          |
|       | VAZ=GP[ID]                                                                  |

ZAD: Napisati algoritam za EREW PRAM kaji de za zadamo podje P odrediti broj različitih vrijednasti demonata polja. Rezultat mora biti zapisan u jednoj vanjabli. PARALELNO ( i= 1 DOn) rez[i]=1; K[i]=P[i]; ZA d=1 Do n/2+1 PARALEUD (i=1 Don) AKO (K[i] == P[i+d] && rez[i+d] ==1) I I rez[i]=0; UKUPNO = 1; 2A d=1 Do n UKUPNO += rez[d]

BROJ KORAKA: 1+n/2+1+n SLOZENOST: O(n)







## 2.6 Ispravnost programa

- Pitanje: uključuju li funkcije globalne komunikacije međusobnu sinkronizaciju procesa?
- Odgovor: Ne! standardom nije propisano hoće li se procesi prilikom globalne kom. sinkronizirati (kao sporedni učinak) ili ne, već to ovisi o izvedbi navedenih funkcija
- u većini implementacija globalne komunikacije izvedene su kao niz point-to-point funkcija, pa sinkronizacija ovisi i o trenutnim uvjetima rada (veličina poruke i sl.)
- Ispravan program:
  - o ne smije se oslanjati na sinkronizaciju prilikom globalne komunikacije.
  - o mora pretpostavljati da globalna komunikacija može biti sinkonizirajuća.

Primjer 1 (izvodi se na dva procesa, 0 i 1):

```
switch (rank)
    case 0:
        MPI Bcast (buf1, count, type, 0, comm);
        MPI Bcast (buf2, count, type, 1, comm);
    break:
    case 1:
        MPI Bcast (buf2, count, type, 1, comm);
        MPI Boast (buf1, count, type, 0, comm);
   break:
```

- primier je neispravan jer ukoliko je operacija sinkronizirajuća, nastaje potpuni zastoj
- rješenje: globalni pozivi moraju imati jednaki redoslijed za sve procese u grupi
- Primjer 2:

```
switch (rank)
                                                                          DA
   case 0:
       MPI Bcast (buf1, count, type, 0, comm);
                                                             BCAST.
        MPI Send (buf2, count, type, 1, tag, comm);
   break;
    case 1:
                                                                        SCAST
       MPI Recv(buf2, count, type, 0, tag, comm, status);
       MPI Bcast (buf1, count, type, 0, comm);
   break:
```

- primjer je neispravan jer dolazi do potpunog zastoja ako proces 0 čeka na Bcast poziv procesa 1
- rješenje: relativni poredak globalnih i point-to-point komunikacija mora biti takav da ne smije doći do potpunog zastoja u i slučaju kada su obje vrste operacija sinkronizirajuće



BEAST