TMA 4190 Introduction to Topology

Lecturer: Gereon Quick Lecture 03¹

3. Smooth manifolds

Recall that we defined what it means for subset $X \subseteq \mathbb{R}^n$ to be open. One reason why open sets are useful is that give us a way to talk about things that happen close to a point. In order to stress this way of thinking we are going to use the following way of speaking:

Open neighborhoods

We say that a subset $V \subseteq X$ containing a point $x \in X$ is a **neighborhood** of x if there is an open subset $U \subseteq V$ with $x \in U$. If V itself is open, we call V an **open neighborhood**.

Local properties

If we refer to something that happens in the neighborhood of a point $x \in X$, then we are often going to say that it happens **locally** (at x). Moreover, a property of a space or a function that we only need to **test for a neighborhood of each point** is a **local property**. For example, smoothness of a map is a local porperty (for we test it in a neighborhood of each point). In contrast, there are **global** properties which are properties that describe the **whole space**.

Manifolds are now spaces that **locally look like Euclidean spaces** in the following sense.

Smooth manifolds

Let \mathbb{R}^N be some big Euclidean space.

• A subset $X \subseteq \mathbb{R}^N$ is a k-dimensional smooth manifold if it is locally diffeomorphic to \mathbb{R}^k . The latter means that for every point $x \in X$ there is an open subset $V \subset X$ containing x and an open subset $U \subseteq \mathbb{R}^k$ such that U and V are diffeomorphic.

¹Following the books of Guillemin and Pollack: Differential Topology, and Milnor: Topology from the differentiable viewpoint.

- Any such diffeomorphism $\phi: U \to V$ is called a (local) parametrization.
- The inverse diffeomorphism $\phi^{-1}: V \to U$ is called a (local) coordinate system on V.

The natural number N in the previous definition is not specified. We just assume that there is some \mathbb{R}^N big enough to fit X into it. We are going to discuss what we can say about the minmal N later. It is actually a very interesting question.

Remember that U is a subset of \mathbb{R}^k . Hence it makes sense to express a point $u \in U$ by its coordinates $u = (u_1, u_2, \dots, u_k)$. Hence, given a coordinate system $\phi^{-1} \colon V \to U$ on V, we can talk about the coordinates $\phi_1^{-1}(x), \phi_2^{-1}(x), \dots, \phi_k^{-1}(x)$ of a point $x \in V$. Writing $u_i(x) = \phi_i^{-1}(x)$ for $i = 1, \dots, k$, we usually drop mentioning ϕ^{-1} and just talk about the coordinates $(u_1(x), u_2(x), \dots, u_k(x))$ of x. Hence the u_1, \dots, u_k are really **coordinate functions**.)

First examples

- An obvious example of a k-dimensional manifold is an open subset $U \subseteq \mathbb{R}^k$. The identity map $U \to U$ is a parametrization of all of U. For example, any k-dimensional open ball $B_r(x)$ around some point is a manifold of dimension k.
- A 0-dimensional manifold M just consists of a collection of discrete points. Given $x \in M$, the set $\{x\} \subset M$ consisting of x alone is open in M and is diffeomorphic to the one-point set \mathbb{R}^0 .

A fundamental example that will play an important role during the whole semester is the *n*-dimensional sphere.

The unit circle

We start with n = 1: Let

$$S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \subset \mathbb{R}^2$$

be the unit circle. We are going to show that S^1 is a 1-dimensional manifold.

First, suppose that (x,y) lies in the upper semicircle where y > 0. Then

$$\phi_1(\mathbf{x}) = (\mathbf{x}, \sqrt{1 - \mathbf{x}^2})$$

maps the open interval W = (-1,1) bijectively onto the upper semicircle. Its inverse is the projection map

$$\phi_1^{-1}(\mathbf{x}, \mathbf{y}) = \mathbf{x}$$

which is defined on the upper semicircle. This ϕ_1^{-1} is smooth, since it extends to a smooth map of all of \mathbb{R}^2 to \mathbb{R}^1 . Therefore, ϕ_1 is a parametrization. A parametrization of the lower semicircle where y < 0 is similarly defined by

$$\phi_2(x) = (x, -\sqrt{1-x^2})$$
 with inverse $\phi_2^{-1}(x,y) = x$.

These two maps give local parametrizations of S^1 around any point except the two points (1,0) and (-1,0). To cover these points, we can use the maps

$$\phi_3(y) = (\sqrt{1-y^2}, y)$$
 and $\phi_4(y) = (-\sqrt{1-y^2}, y)$

which map W to the right and left semicircles, respectively. This shows that S^1 is a 1-dimensional manifold.

Need at least 2 parametrizations

Note that we have used 4 parametrization maps in the above example. It is an exercise to show that it is possible to cover S^1 with only two parametrizations. (But just one parametrization cannot be enough, because S^1 is compact. For, if such a difeomorphism $\phi \colon S^1 \to U \subset \mathbb{R}^1$ to an open subset existed, it would mean that U is compact contradicting the Theorem of Heine-Borel.)

More generally:

n-sphere

The n-sphere

$$S^n = \{x \in \mathbb{R}^{n+1} : |x| = 1\} \subset \mathbb{R}^{n+1}$$

is an n-dimensional smooth manifold.

Stereographic projection

The method of stereographic projection yields a cover of the k-sphere with only two parametrizations. It is an exercise to find the formulae for the corresponding diffeomorphisms.

Submanifolds

If Z and X are both manifolds in \mathbb{R}^N and $Z \subset X$, then Z is a **submanifold** of X. In particular, X itself is a submanifold of \mathbb{R}^N . Any open subset of X is a submanifold of X.

Creating new manifolds out of old ones

Let $X \subseteq \mathbb{R}^N$ and $Y \subseteq \mathbb{R}^M$ be manifolds of dimensions k and l, respectively. Then $X \times Y \subseteq \mathbb{R}^{N+M}$ is a manifold of dimension k+l. For let $W \subset \mathbb{R}^k$ an open set with $\phi \colon W \to X$ a local parametrization around $x \in X$, and $U \subset \mathbb{R}^k$ an open set with $\psi \colon U \to Y$ a local parametrization around $y \in Y$. Then we can define the map

$$\phi \times \psi \colon W \times U \to X \times Y, \ \phi \times \psi(w,u) = (\phi(w), \psi(u)).$$

from the open set $W \times U \subseteq \mathbb{R}^k \times \mathbb{R}^l = \mathbb{R}^{k+l}$ to $X \times Y$. This map defines a local parametrization around (x,y). (Check this!)

Here is a picture of two smooth manifolds:

And a picture of a hyperboloid (a manifold) and a cone (not a manifold), see the exercises.

Coordinate axes in \mathbb{R}^2

Let us show that the union of the two coordinate axes in \mathbb{R}^2 is **not** a manifold.

Let us call the union X. The critical point is of course the origing (0,0), since every other point on X has an open neighborhood which is diffeomorphic to an open intervall in \mathbb{R} . But no point in \mathbb{R}^d with $d \geq 2$ has an open neighborhood homeomorphic to an open intervall. Hence X could only be 1-dimensional.

Now let us check the point O = (0,0). If X was a manifold, there would be an open subset $V \subseteq X$ around O diffeomorphic to an open intervall in \mathbb{R} . By definition of open sets in a subset of \mathbb{R}^2 , there must be an open ball $B_{\epsilon}(O)$ such that $B_{\epsilon}(O) \cap X$ contained in V. Let I be the open intervall in \mathbb{R} homeomorphic to $B_{\epsilon}(O) \cap X$.

The subset $B_{\epsilon}(O) \cap X$ contains, in particular, the points

$$P_1 = (-\epsilon/2,0), P_2 = (0,\epsilon/2), \text{ and } P_3 = (\epsilon/2,0).$$

In $B_{\epsilon}(O) \cap X$, there are paths

- from P_1 to P_2 not passing through P_3
- from P_1 to P_3 not passing through P_2
- from P_2 to P_3 not passing through P_1 .

But there is no triple of distinct points with this property in the open intervall $I \subset \mathbb{R}$. Hence I cannot be homoeomorphic to $B_{\epsilon}(O) \cap X$. Hence O does not have a neighborhood homeomorphic to an open intervall in \mathbb{R} , and X is not a manifold.

