National University of Computer and Emerging Sciences, Lahore Campus

	IONAL U	NIVE	
50	io.	- 11	-
CIENCE	A	IJ	OF COMP
	WEBEIN	188	(R)

Course Name:	Statistical and Mathematical methods for data science	Course Code:	DS 501
Program:	MS Data Science	Semester:	Fall 2018
Duration:	60 Minutes	Total Marks:	35
Paper Date:	November 16, 2018	Weight	17.5
Section:	N/A	Page(s):	
Exam Type:	Midterm Exam 2		

Student : Name: Roll No. Section:

Instruction/Notes:

- 1. One A4 cheat sheet is allowed in the exam
- 2. Using mobile phones or laptops as calculators is NOT allowed
- 3. Use of calculators is allowed. Sharing calculators is NOT allowed
- 4. Extra sheets will NOT be marked or graded.

QUESTION 1

Given $\mathbf{x} \in \mathbb{R}^3$ and $f(\mathbf{x}) = 2x_1^2 + 5x_2^3 + 10x_3x_1$. Write the gradient and Hessian of f. (Marks 3+4)

$\nabla_{\mathbf{x}}f(\mathbf{x}) =$	$\nabla^2_{\mathbf{x}} f(\mathbf{x}) =$

QUESTION 2 (Marks: 6)

Use Gram Schmidt procedure to give an **orthonormal** set for the given set of vectors (the order of vectors should not be changed when applying the method).

 $\mathbf{v}_1 = [1\ 0\ 0]^T$, $\mathbf{v}_2 = [2\ 1\ 1]^T$, $\mathbf{v}_3 = [1\ 2\ 3]^T$

Final answer: $\mathbf{u}_1 =$	
u ₂ =	
u ₃ =	

QUESTION 3	(Marks: 3)
Given [4 -2 6] ^T	

 L_1 norm is: _____ L_2 norm is: _____ L_∞ norm is: ____

QUESTION 4

(Marks: 4)

Write the complete expression for updating a when $f(a) = (1-a)^2$ is to be minimized using gradient descent. The expression should only contain the variable a. You can assume momentum $\alpha = 0$ and learning rate $\eta = 1/4$.

QUESTION 5

(Marks: 5)

Given the following values of the standard Normal variable:

 $z_{0.10} = 1.282$, $z_{0.05} = 1.645$, $z_{0.025} = 1.960$, $z_{0.01} = 2.326$, $z_{0.005} = 2.576$.

Find the 90% confidence interval for the population mean when the sample measurements are: $\{0,0,0,1,2,2,3,5,5\}$. It is known that the population standard deviation is 2

QUESTION 6

(Marks: 4)

When given the following predictions and corresponding labels, fill in the confusion matrix. +1 is the positive class

prediction	1	- 1	1	-1	1	-1	1
label	+1	+1	+1	-1	-1	- 1	-1

TP=	FP =
FN =	TN =

QUESTION 7

(Marks: 6)

Find the regression coefficients via the method of least squares for the following data:

x ->	2	0	-2
target	0	-1	1