In [1]:

```
from IPython.core.display import display, HTML
display(HTML("<style>.container { width:90% !important; }</style>"))
```

In [2]:

```
import json, sys
from urllib import request
from copy import copy

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import networkx as nx
```

Network Summary

Network source and preprocesing

In [3]:

```
CLIENT_ID = 56337756
APP_ID = 7379264
```

Load friends data from VK

Your token - sequence of symbols that goes after access_token= token = 'ad2d54a4cf4591c44a229d1b85d14665364670f02f4e4bf28dadc5d1e937643483f62bd7b8a80464f2ffa' # Suppose you want to get a friendlist of a particular user. # You also want hometown, sex and education to be contained in this list. # Finnaly, I suggest to put lang=en to aviod cyrillic issues uid = str(CLIENT_ID) url = u'https://api.vk.com/method/friends.get? fields=sex,city,education&uid=%s&lang=en&v=5.52&access_token=%s' %(uid ,token) res = request.urlopen(url).read() data = json.loads(res)

Drop deactivated accounts

my_friends_data = [u for u in data['response']['items'] if 'deactivated' not in u]# Your uid me = str(CLIENT_ID) # Using results of get.friends request datas = [] for i in range(0, len(my_friends_data)//100+1,1): uids = [] for u in my_friends_data: uids.append(str(u['id'])) uids = ','.join(uids[i*100:(i+1)*100]) # Mutual Friends Request url = u'https://api.vk.com/method/friends.getMutual? target_uids=%s&source_uid=%s&lang=en&v=5.52&access_token=%s' %(uids, me ,token) # Our Result res = request.urlopen(url).read() data = json.loads(res) datas += data['response'] mutual_frieds_data = datas

Add my info to the network. Maybe it will be usefull

```
my_data = {'id':CLIENT_ID, 'first_name':'Egor', 'last_name':'Dudyrev', 'sex': 2, 'city': {'id':1, 'title':'Moscow'}, 'university':128, 'university_name': 'HИУ ВШЭ (ГУ-ВШЭ)', 'faculty': 0, 'faculty_name':",
```

'graduation':0, 'education_status':"Student (Master's)", }nodes_data = {u['id']: u for u in my_friends_data} nodes_data[CLIENT_ID] = my_dataconnections_data = {u['id']:u['common_friends'] for u in mutual frieds data} connections data[CLIENT_ID] = [u['id'] for u in my_friends_data]

Saving data

with open('data/nodes_data.json','w') as f: json.dump(nodes_data, f) with open('data/connections_data.json','w') as f: json.dump(connections_data, f)

Load data

```
In [4]:
```

```
with open('data/nodes_data.json','r') as f:
   nodes_data = json.load(f)
with open('data/connections_data.json','r') as f:
   connections_data = json.load(f)
```

Drop My data as it's happend to be useless

```
In [5]:
```

```
nodes_data = {k:v for k,v in nodes_data.items() if v['id']!=CLIENT_ID}
connections_data = {k:[v_ for v_ in v if v_!=CLIENT_ID] for k,v in conn
ections_data.items() if k!=str(CLIENT_ID)}
```

Turn every node ID to string to prevent indexing mistakes

```
In [6]:
```

```
In [7]:
```

```
G = nx.from_dict_of_lists(connections_data)
```

Network Summary

Run Gephi to create understandable layout

Firstly, define position of nodes in the graph

```
In [8]:
```

```
nx.write_gml(G, 'network.gml')
```

Load gephi graph and add info to it

```
In [9]:
```

```
G = nx.Graph(nx.read_gml('network_prettify_3.gml',))
```

In [10]:

```
for k,d in nodes_data.items():
    for k_, v_ in d.items():
        if k_ in ['id', 'first_name', 'last_name', 'city', 'university_
name', 'faculty_name']:
        G.nodes[str(k)][k_] = v_
```

Getting pos feature based on Gephi layout

In [11]:

```
for n in G.nodes:
    G.nodes[n]['pos'] = (G.nodes[n]['graphics']['x'], G.nodes[n]['graphics']['y'])
    if 'city' in G.nodes[n]:
        G.nodes[n]['city'] = G.nodes[n]['city']['title']
```

Prepare graph for plotly

In [12]:

In [13]:

```
for n, x in zip(nodelist, sizes_by_degree):
    G.nodes[n]['size_by_degree'] = x
```

In [14]:

```
import plotly.graph_objects as go
```

Node/Edge attributes

node attributes

```
In [15]:
```

```
G.nodes["779564"].keys()
```

Out[15]:

```
dict_keys(['graphics', 'id', 'first_name', 'last_name', 'c
ity', 'university_name', 'faculty_name', 'pos', 'size_by_d
egree'])
```

- id ID пользователя ВК
- first name Имя
- last_name Фамилия
- city Город
- university_name Университет
- faculty_name Факультет
- pos координата узла (создана в Gephi)
- graphics данные от Gephi

edge attributes

```
In [16]:
```

```
G.edges[('779564','2661229')]
```

Out[16]:

```
{'id': 3288, 'value': 1.0}
```

- id номер ребра
- value вес (= 1)

Size, Order

```
In [17]:
```

```
print(f"Order of network: {len(G.nodes)}")
print(f"Size of network: {len(G.edges)}")
```

Order of network: 244 Size of network: 1657

Gorgeous network layout

Code to plot graph using plotly

In [18]:

```
def plotly graph(G, node color, node size, title=''):
    edge_x = []
    edge y = []
    for edge in G.edges():
        x0, y0 = G.nodes[edge[0]]['pos']
        x1, y1 = G.nodes[edge[1]]['pos']
        edge x.append(x0)
        edge x.append(x1)
        edge x.append(None)
        edge y.append(y0)
        edge y.append(y1)
        edge y.append(None)
    edge trace = go.Scatter(
        x=edge_x, y=edge_y,
        line=dict(width=0.5, color='#888'),
        hoverinfo='none',
        mode='lines')
    node x = []
    node y = []
    for node in G.nodes():
        x, y = G.nodes[node]['pos']
        node x.append(x)
        node y.append(y)
    node trace = go.Scatter(
        x=node_x, y=node_y,
        mode='markers',
        hoverinfo='text',
        marker=dict(
            showscale=False,
            color=node color,
            size=node size,
            line width=2
        )
    )
    node_text = [f"<br>".join([f"{k}: {v}" for k,v in G.nodes[n].items
()
                                if k not in ['graphics', 'pos']]) for n i
n G.nodes1
    node_trace.text = node_text
    fig = go.Figure(data=[edge trace, node trace],
             layout=go.Layout(
                title=title,
                titlefont size=16,
                showlegend=False,
                hovermode='closest',
                margin=dict(b=20, l=5, r=5, t=40),
                xaxis=dict(showgrid=False, zeroline=False, showticklabe
ls=False),
                yaxis=dict(showgrid=False, zeroline=False, showticklabe
ls=False))
    return fig
```

In [19]:

```
fig = plotly_graph(G, node_color=colors_by_city, node_size=sizes_by_deg
ree, title='Graph of friends by city (As example)')
```

fig.show()

```
pnodes_by_city
```

Degree distribution

Diameter, Clustering Coefficient

In [20]:

```
degrees = pd.Series(dict(nx.degree(G)))
sns.distplot(degrees)
plt.axvline(degrees.mean(), label=f"mean: {degrees.mean():.2f}", color=
'blue')
plt.legend()
plt.title('Degree distribution')
plt.show()
```


In [21]:

```
ccs_idxs = list(nx.connected_components(G))
ccs_idxs = sorted(ccs_idxs, key= lambda cc_idxs: -len(cc_idxs) )
ccs_Gs = [nx.subgraph(G, cc_idxs) for cc_idxs in ccs_idxs]
```

In [22]:

```
print(f"Number of connected components: {len(ccs_idxs)}")
print(f"Orders of connected components:", ', '.join([f"{len(cc_G.nodes
())}" for cc_G in ccs_Gs]))
print(f"Sizes of connected components:", ', '.join([f"{len(cc_G.edges
())}" for cc_G in ccs_Gs]))
print(f"Diameters of connected components:", ', '.join([f"{nx.diameter(cc_G)}" for cc_G in ccs_Gs]))
```

```
Number of connected components: 14 Orders of connected components: 155, 42, 28, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1 Sizes of connected components: 1234, 318, 93, 7, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0 Diameters of connected components: 7, 5, 6, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
```

In [23]:

```
print(f"Mean Clustering Coefficient: {nx.cluster.average_clustering(G):
    .4f}")
print(f'Clustering coefficients of Connected Components:',
        ', '.join([f"{nx.cluster.average_clustering(cc_G):.2f}" for cc_G
in ccs_Gs]))
```

```
Mean Clustering Coefficient: 0.5712
Clustering coefficients of Connected Components: 0.55, 0.6
8, 0.73, 0.17, 0.83, 0.00, 0.00, 0.00, 0.00, 0.00,
0.00, 0.00, 0.00
```

In [24]:

import pandas as pd

In [25]:

```
ccs_ds = pd.DataFrame()
ccs_ds['idxs'] = ccs_idxs
ccs_ds['subgraph'] = ccs_Gs
ccs_ds['order'] = ccs_ds['subgraph'].apply(lambda G: len(G.nodes))
ccs_ds['size'] = ccs_ds['subgraph'].apply(lambda G: len(G.edges))
ccs_ds['diameter'] = ccs_ds['subgraph'].apply(lambda G: nx.diameter(G))
ccs_ds['clustering_coef'] = ccs_ds['subgraph'].apply(lambda G: nx.clust
er.average_clustering(G))
```

In [26]:

```
ccs_ds.head()
```

Out[26]:

	idxs	subgraph	order	size	diameter	clustering_coef
0	{416197567, 81158359, 17862450, 107025011, 900	(779564, 1383897, 1950025, 2661229, 3217886, 4	155	1234	7	0.554982
1	{178908792, 45968439, 87811969, 31162482, 2892	(178908792, 45968439, 87811969, 31162482, 2892	42	318	5	0.676960
2	{32582767, 268885442, 5191654, 49265157, 26099	(32582767, 268885442, 5191654, 49265157, 26099	28	93	6	0.734908
3	{43048325, 42367477, 44200088, 72420610, 88113	(43048325, 42367477, 44200088, 88113309, 72420	6	7	3	0.166667
4	{156070020, 94467180, 126150356, 135818294}	(156070020, 94467180, 126150356, 135818294)	4	5	2	0.833333

Structural Analysis

Degree/Closeness/Betweennes centralities

Top nodes interpretation

In [27]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [28]:

```
def get_degrees(G):
    return pd.Series(dict(nx.degree(G))).sort_values(ascending=False)

def get_degree_centrality(G):
    return pd.Series(dict(nx.degree_centrality(G))).sort_values(ascending=False)

def get_closeness_centr(G):
    return pd.Series(dict(nx.closeness_centrality(G))).sort_values(ascending=False)

def get_betweeness_centr(G):
    return pd.Series(nx.betweenness_centrality(G)).sort_values(ascending=False)
```

Degree

In [29]:

```
en_degrees = get_degrees(G)
en_degree_centr = get_degree_centrality(G)
```

In [30]:

```
sns.distplot(en_degree_centr)
plt.title('Degree centrality distribution')
plt.axvline(en_degree_centr.mean(), label=f"mean: {en_degree_centr.mean
():.2f}")
plt.legend()
plt.show()
```


In [31]:

```
for k,v in en_degree_centr.iteritems():
    G.nodes[k]['degree_centr'] = v
```

```
In [32]:
```

idx = 2

```
G.nodes[en_degree_centr.index[idx]], en_degree_centr.values[idx]*len(G.
nodes), nx.degree(G)[en degree centr.index[idx]]
Out[32]:
({'graphics': {'x': -560.88116,
   'y': -441.51453,
   'z': 0.0,
   'w': 10.0,
   'h': 10.0,
   'd': 10.0,
   'fill': '#94cc7d'},
  'id': 52128315,
  'first name': 'Anastasia',
  'last name': 'Nelidova',
  'city<sup>-</sup>: 'Izhevsk',
  'university name': 'ИжГТУ им. М. Т. Калашникова (бывш. И
МИ)',
  'faculty name': 'Приборостроительный факультет',
  'pos': (-560.88116, -441.51453),
```

Nodes interpretation:

47)

47.193415637860085,

- 1) (55 mutual friends): Andrey Maximenko: One of Scout leaders from Izhevsk
- 2) (49 mutual friends): Tatyana Volnova: Other, more formal, Scout leader from Izhevsk
- 3) (47 mutual friends): Anastasia Nelidova: Connected with previous two

All are in the biggest connected component

'size_by_degree': 19.842590514079138, 'degree centr': 0.1934156378600823},

Closeness

```
In [33]:
```

```
en_closeness_centr = get_closeness_centr(G)
```

In [34]:

```
sns.distplot(en_closeness_centr)
plt.title('Closeness centrality distribution')
plt.axvline(en_closeness_centr.mean(), label=f"mean: {en_closeness_cent
r.mean():.2f}")
plt.legend()
plt.show()
```


In [35]:

```
for k,v in en_closeness_centr.iteritems():
    G.nodes[k]['closeness_centr'] = v
```

```
In [36]:
```

idx = 2

```
aths.shortest path length(G, en closeness centr.index[idx])).values()))
Out[36]:
({'graphics': {'x': -560.88116,
   'y': -441.51453,
   'z': 0.0,
   'w': 10.0,
   'h': 10.0,
   'd': 10.0,
   'fill': '#94cc7d'},
  'id': 52128315,
  'first name': 'Anastasia',
  'last name': 'Nelidova',
  'city<sup>-</sup>: 'Izhevsk',
  'university name': 'ИжГТУ им. М. Т. Калашникова (бывш. И
МИ)',
  'faculty name': 'Приборостроительный факультет',
  'pos': (-560.88116, -441.51453),
  'size by degree': 19.842590514079138,
  'degree centr': 0.1934156378600823,
  'closeness centr': 0.2741480556711518},
 2.296774193548387)
```

G.nodes[en_closeness_centr.index[idx]], np.mean(list(dict(nx.shortest_p))

Nodes interpretation:

- 1) (2.18 handshakes) Natalya Bazhenova A Scout leader who now works in my school
- 2) (2.23 handshakes) Irina "Metel" A Scout leader who lives close to my school
- 3) (2.3 handshakes) Anastasia Nelidova Connected with previous two

Betweeness

```
In [37]:
```

```
en_betweeness_centr = get_betweeness_centr(G)
```

In [38]:

```
sns.distplot(en_betweeness_centr)
plt.title('Betweeness centrality distribution')
plt.axvline(en_betweeness_centr.mean(), label=f"mean: {en_betweeness_centr.mean():.4f}")
plt.legend()
plt.show()
```


In [39]:

```
for k,v in en_betweeness_centr.iteritems():
    G.nodes[k]['betweeness_centr'] = v
```

In [40]:

```
idx = 2
G.nodes[en_betweeness_centr.index[idx]], en_betweeness_centr.values[idx
]
Out[40]:
({'graphics': {'x': 35.87362,
   'y': -92.172775,
   'z': 0.0,
   'w': 10.0,
   'h': 10.0,
   'd': 10.0,
   'fill': '#94cc7d'},
  'id': 75721602,
  'first name': 'Grisha',
  'last name': 'Mukhachev',
  'city": 'Uva',
  'university name': '',
  'faculty_name': '',
  'pos': (35.87362, -92.172775),
  'size_by_degree': 9.101745386768128,
  'degree centr': 0.05349794238683128,
  'closeness centr': 0.18073464410912973,
  'betweeness centr': 0.045267795430744114},
 0.045267795430744114)
```

Nodes interpretation:

- 1) (8% smallest paths) Svyatoslav Medvedev played in a school orchestra, knows some of the family
- 2) (4.8% smallest paths) Vladimir Reznikov played in a school orchestra, has a blog
- 3) (4.5% smallest paths) Grisha Mukhachev family, knows Svyatoslav Medvedev

Page-Rank. Comparison with centralities

```
In [41]:

pr = pd.Series(nx.pagerank(G, alpha=0.85)).sort values(ascending=False)
```

In [42]:

Page Rank correlation with Centrality metrics

Page Rank highly correlates with Degree Centrality. It is expected since Page Rank favors nodes which have a lot of links, i.e. higher degree.

```
In [43]:
idx = 2
G.nodes[pr.index[idx]], pr.values[idx]
Out[43]:
({'graphics': {'x': 103.67067,
   'y': -479.10315,
   'z': 0.0,
   'w': 10.0,
   'h': 10.0,
   'd': 10.0,
   'fill': '#94cc7d'},
  'id': 269933041,
  'first_name': 'Viktor',
  'last name': 'Galushko',
  'city': 'Moscow',
  'university name': 'УРИО (бывш. УРАО)',
  'faculty_name': '',
  'pos': (103.67067, -479.10315),
  'size by degree': 8.83275828030883,
  'degree centr': 0.04938271604938272,
  'closeness centr': 0.05084745762711864,
  'betweeness centr': 0.00448366946683445},
 0.01013911568757412)
```

Nodes interpretation:

- 1) (1.13%) Maxim Sterkhov played in a school orchestra
- 2) (1.03%) Andrey Maximenko Scout leader
- 3) (1.01%) Viktor Galushko Head of Bauman Physical education class

Assortative Mixing according to node attributes

Node structural equivalence/similarity

```
In [45]:
import scipy.spatial as spt
```

In [46]:

```
def plotDist(A, figsize=(10,10)):
    f, ax = plt.subplots(2, 2, figsize=figsize)
    ax[0, 0].imshow(A, cmap = 'Greys', interpolation = 'None')
    ax[0, 0].set_title('Adjacency Matrix')

D = np.corrcoef(A)
    ax[1, 0].imshow(D, cmap = 'Greys', interpolation = 'None')
    ax[1, 0].set_title('Correlation coeff.')

dVec = spt.distance.pdist(A, metric = 'euclidean')
    D = spt.distance.squareform(dVec)
    ax[0, 1].imshow(D, cmap = 'Greys', interpolation = 'None')
    ax[0, 1].set_title('Euclidean Dist.')

dVec = spt.distance.pdist(A, metric = 'cosine')
    D = spt.distance.squareform(dVec)
    ax[1, 1].imshow(D, cmap = 'Greys', interpolation = 'None')
    ax[1, 1].set_title('Cosine Dist.')
```

In [47]:

```
cm = list(nx.utils.reverse_cuthill_mckee_ordering(G))
A = nx.adjacency_matrix(G, nodelist=cm).todense()
```

```
In [48]:
```

```
plotDist(A, figsize=(7,7))
plt.tight_layout()
plt.show()
```

/root/anaconda3/lib/python3.7/site-packages/numpy/lib/func tion_base.py:2534: RuntimeWarning:

invalid value encountered in true_divide

/root/anaconda3/lib/python3.7/site-packages/numpy/lib/func tion base.py:2535: RuntimeWarning:

invalid value encountered in true_divide

The closest random graph model similar to my SN

Erdos-Renyi Graph model

$$p = rac{N_{edges}}{N_{possible\;edges}} \ N_{possible\;edges} = rac{N_{nodes}(N_{nodes}-1)}{2}$$

In [49]:

```
n = len(G.nodes)
p = len(G.edges)/(n*(n-1)/2)
n, p
```

Out[49]:

(244, 0.055892869189772654)

In [50]:

```
er_G = nx.erdos_renyi_graph(n, p)
er_degree_centr = get_degree_centrality(er_G)
er_closeness_centr = get_closeness_centr(er_G)
er_betweeness_centr = get_betweeness_centr(er_G)
```

Preferential attachment

$$N_{edges} = m(N_{nodes} - m) \ m^2 - N_{nodes} m + N_{edges} = 0 \ m = rac{1}{2} \Big(N_{nodes} \pm \sqrt{N_{nodes}^2 - 4 N_{edges}} \Big)$$

In [51]:

```
n = len(G.nodes)
m = (n-np.sqrt(n**2-4*len(G.edges)))/2
m = np.round(m).astype(int)
n, m
```

Out[51]:

(244, 7)

In [52]:

```
ba_G = nx.barabasi_albert_graph(n, m)
ba_degree_centr = get_degree_centrality(ba_G)
ba_closeness_centr = get_closeness_centr(ba_G)
ba_betweeness_centr = get_betweeness_centr(ba_G)
```

In [53]:

```
len(ba_G.edges()), len(G.edges)
```

Out[53]:

(1659, 1657)

Small World

$$N_{edges} = rac{N_{nodes} * k}{2} \ k = rac{2N_{edges}}{N_{nodes}}$$

In [54]:

```
n = len(G.nodes)
k = np.round(2*len(G.edges)/len(G.nodes)).astype(int)
n, k
```

Out[54]:

(244, 14)

Choosing Probability of rewiring

In [55]:

```
ps = np.logspace(-6, 0, 101)
errors = []
for p in ps:
    centrs = [get_degree_centrality(nx.watts_strogatz_graph(n,k,p)) for
i in range(10)]
    errors.append(np.mean([(centr.mean()-en_degree_centr.mean())**2 for
centr in centrs]))
```

In [56]:

```
plt.plot(ps, errors)
plt.xlabel('Probality of rewiring')
plt.ylabel('MSE of degree centrality')
plt.suptitle('Estimating Best Probability value for Small World graph')
plt.show()
```

Estimating Best Probability value for Small World graph

In [57]:

```
p = ps[np.argmin(errors)]
p
```

Out[57]:

0.8709635899560796

In [58]:

```
ws_G = nx.watts_strogatz_graph(n, k, p)
ws_degree_centr = get_degree_centrality(ws_G)
ws_closeness_centr = get_closeness_centr(ws_G)
ws_betweeness_centr = get_betweeness_centr(ws_G)
```

```
In [59]:
len(ws_G.edges()), len(G.edges)
Out[59]:
(1708, 1657)
```

Combining Random Graph models

In [60]:

```
plt.figure(figsize=(10,10))
for idx, data in enumerate([(en_degree_centr, er_degree_centr, ba_degre
e centr, ws degree centr, 'Degree Centrality'),
                             (en betweeness centr, er betweeness centr,
ba degree centr, ws betweeness centr, 'Betweeness Centrality'),
                             (en closeness centr, er closeness centr, b
a closeness centr, ws closeness centr, 'Closeness Centrality' )
                            ]):
    plt.subplot(3, 1, idx+1)
    for idx_, label in enumerate(['Ego network', 'Random graph', 'Prefe
rential attachment', 'Small World',]):
        if data[idx ].var()>le-10:
            sns.distplot(data[idx ], label=f'{label}: {data[idx ].mean
():.2f}', kde=True)
        else:
            sns.distplot(data[idx ], label=f'{label}: {data[idx ].mean
():.2f}', kde=False)
    plt.title(data[-1])
    plt.legend()
plt.tight layout()
plt.show()
```


Choose best Random Graph model

In [61]:

```
rg_ds = pd.DataFrame(index=['Ego','Random graph', 'Preferential attachm
ent', 'Small World'])
rg_ds['Degree'] = [x.median() for x in [en_degree_centr, er_degree_cent
r, ba_degree_centr, ws_degree_centr]]
rg_ds['Betweeness'] = [x.median() for x in [en_betweeness_centr, er_bet
weeness_centr, ba_betweeness_centr, ws_betweeness_centr]]
rg_ds['Closeness'] = [x.median() for x in [en_closeness_centr, er_close
ness_centr, ba_closeness_centr, ws_closeness_centr]]
rg_ds
```

Out[61]:

	Degree	Betweeness	Closeness
Ego	0.041152	0.000317	0.193645
Random graph	0.057613	0.005274	0.419689
Preferential attachment	0.041152	0.001881	0.423345
Small World	0.057613	0.005254	0.423345

In [62]:

```
rg_ds = (rg_ds-rg_ds.loc['Ego']).abs().rank()
rg_ds['Mean Rank'] = rg_ds.rank().mean(1)
rg_ds
```

Out[62]:

	Degree	Betweeness	Closeness	Mean Rank
Ego	1.5	1.0	1.0	1.166667
Random graph	3.5	4.0	2.0	3.166667
Preferential attachment	1.5	2.0	3.5	2.333333
Small World	3.5	3.0	3.5	3.333333

No Random Graph is ideal for my network. In general Preferential attachment model gives better results.

Community Detection

Clique search

In [63]:

```
cliques = list(nx.find_cliques(G))
```

In [64]:

```
cliques = sorted(cliques, key=lambda x: -len(x))
```

In [65]:

```
sns.distplot([len(x) for x in cliques])
plt.title('Distribution of size of the cliques')
plt.show()
```


People are actively communicate in groups of 5 and 10 persons. Which is coherent with the basic theory of amount of people in small in medium size teams.

Best results of various community detection algorithms

In [66]:

```
def get_community_colors(com):
    #put all one-node communities to a single community
    one node comms = [c for c in com if len(c)==1]
    one node comms = frozenset([y for x in one node comms for y in x])
    com = [c for c in com if len(c)>1]+[one node comms]
    com = sorted(com, key=lambda x: -len(x))
    # get color index for every node
    colors = {x:idx for idx,c in enumerate(com) for x in c}
    colors_ = {x: colors_.get(x, len(set(colors_.values()))) for x in n
odelist}
    # assign rgb color to node base on community
    palette = sns.color_palette(n_colors=len(set(colors_.values())))
    palette = ['rgb('+', '.join([f"{int(x*255)}" for x in c])+')' for c
in palette]
    colors_ = [palette[colors_[n]] for n in nodelist]
    return com, colors_
```

k-clique

```
In [67]:
```

```
com_kclique = list(nx.community.k_clique_communities(G, 3))
com_kclique, colors_ = get_community_colors(com_kclique)
```

plotly_graph(G, colors_, sizes_by_degree, title='K-clique community detection')

```
kclique
```

In [68]:

```
d = {n:idx for idx, c in enumerate(com_kclique) for n in c}
for n in G.nodes:
    G.nodes[n]['k-clique'] = d.get(n, max(d.values())+1)
```

Modularity based

In [69]:

```
com_mod = nx.algorithms.community.modularity_max.greedy_modularity_comm
unities(G)
com_mod, colors_ = get_community_colors(com_mod)
```

plotly_graph(G, colors_, sizes_by_degree, title='Modularity based community detection')

mod_comunity

In [70]:

```
d = {n:idx for idx, c in enumerate(com_mod) for n in c}
for n in G.nodes:
    G.nodes[n]['Modularity based community'] = d.get(n, max(d.values()) +1)
```

Girvan-Newman

In [71]:

```
from tqdm.notebook import tqdm
```

In [72]:

```
from itertools import islice
```

In [73]:

```
com_gns = [c for c in islice(nx.algorithms.community.centrality.girvan_
newman(G), 5)]
```

In [74]:

```
com_gn = com_gns[3]
```

In [75]:

```
com_gn, colors_ = get_community_colors(com_gn)
```

plotly_graph(G, colors_, sizes_by_degree, title='Girvan-Newman community detection')

```
girvan_newman
```

```
In [76]:
```

```
d = {n:idx for idx, c in enumerate(com_gn) for n in c}
for n in G.nodes:
    G.nodes[n]['Girvan-Newman community'] = d.get(n, max(d.values())+1)
```

In [77]:

```
d_ = {0: 'Scouts',
    1: 'School',
    2: 'BMSTU',
    3: 'Family',
    4: 'BMSTU Orchestra',
    5: 'BMSTU Physical Education',
    6: 'No mutual friends',
    7: 'HSE',
    8: 'Summer Camp',
    9: 'Summer Camp 2'}
for n in G.nodes:
    G.nodes[n]['Community'] = d_[d[n]]
```

Incremental algorithms presented during classes

In [78]:

```
def MCL(A, tol, p, alpha):
    step = 1
    col sums = A.sum(axis = 0)
    T = A / col sums[np.newaxis, :]
    M = T
    M = np.nan to num(M)
    while(1):
        step += 1
        # Expancion step:
        M1 = np.linalg.matrix power(M, p)
        # Inflation step:
        M1 = np.power(M1, alpha)
        col sums = M1.sum(axis = 0)
        M1 = M1 / col_sums[np.newaxis, :]
        M1 = np.nan to num(M1)
        M1[M1 \le tol] = 0
        if np.linalg.norm(M - M1) == 0:
            return M1
        else:
            M = M1.copy()
```

In [79]:

```
def MCL_communities(A, tol, p, alpha, cm):
    M = MCL(np.array(A), tol, p, alpha)

    com_mcl = []
    for idx, n in enumerate(cm):
        if M[idx].sum()>0:
            com = set([n]+[cm[idx_] for idx_,v in enumerate(M[idx]) if
v==1])

        com_mcl.append(frozenset(com))
    return com_mcl
```

In [80]:

```
cm = list(nx.utils.reverse_cuthill_mckee_ordering(G))
A = nx.adjacency_matrix(G, nodelist=cm).todense()
```

Empiricaly find the best tolerance value

In [81]:

```
tols = list(np.linspace(0.00001, 1, 100))
com_lens = []
for t in tqdm(tols):
    com_mcl = MCL_communities(A, t, 2, 2, cm)
    com_mcl, colors_ = get_community_colors(com_mcl)
    com_lens.append(len(com_mcl))
com_lens = np.array(com_lens)
```

/root/anaconda3/lib/python3.7/site-packages/ipykernel_laun
cher.py:4: RuntimeWarning:

invalid value encountered in true divide

/root/anaconda3/lib/python3.7/site-packages/ipykernel_laun
cher.py:14: RuntimeWarning:

invalid value encountered in true_divide

In [82]:

```
plt.plot(tols, com_lens)
plt.title('Number of communities based on MCL tolerance')
plt.xlabel('Tolerance')
plt.ylabel('Number of communities')
plt.show()
```


In [83]:

```
t = tols[np.argmax(com_lens==3)]
```

In [84]:

```
com_mcl = MCL_communities(A, t, 2, 2, cm)
com_mcl, colors_ = get_community_colors(com_mcl)
```

/root/anaconda3/lib/python3.7/site-packages/ipykernel_laun
cher.py:4: RuntimeWarning:

invalid value encountered in true divide

/root/anaconda3/lib/python3.7/site-packages/ipykernel_laun
cher.py:14: RuntimeWarning:

invalid value encountered in true_divide

plotly_graph(G, colors_, sizes_by_degree, title='MCL community detection')

In [85]:

```
d = {n:idx for idx, c in enumerate(com_mcl) for n in c}
for n in G.nodes:
    G.nodes[n]['MCL community'] = d.get(n, max(d.values())+1)
```

Save model for Gephi visualization

In [86]:

```
G_fin = G.copy()
for n in G_fin.nodes:
    del G_fin.nodes[n]['pos']
```

In [87]:

```
nx.write_gexf(G_fin, 'graph_final.gexf')
```