

FCT – Faculdade de Ciências e Tecnologia DMEC – Departamento de Matemática, Estatística e Computação Bacharelado em Ciência da Computação

Trabalho de Conclusão de Curso (Modalidade Trabalho Acadêmico)

ANTEPROJETO DE PESQUISA

Título da Pesquisa: Visualização de dados pluviométricos com utilização de Banco de Dados não convencionais

Autor: Guilherme Henrique Lourenço dos Santos

Orientador(es): Prof. Dr. Milton Hirokazu Shimabukuro

Presidente Prudente, 23 de Março de 2016

1. IDENTIFICAÇÃO

1.1. TÍTULO DO PROJETO:

Visualização de dados pluviométricos com utilização de Banco de Dados não convencionais

1.2. **PARTICIPANTES**:

Guilherme Henrique Lourenço dos Santos

Prof. Dr. Milton Hirokazu Shimabukuro

1.3. **ÁREA OU LINHA DE PESQUISA:**

Nome: Ciência da Computação

Código: 1.03.00.00-7

Nome: Sistemas de Informação

Código: 1.03.03.04-9

Nome: Processamento Gráfico (Graphics)

Código: 1.03.03.05-7

1.4. PALAVRAS CHAVES:

Visualização Computacional, D3, PostgreSQL, NoSQL

1.5. **DURAÇÃO:**

Início: 03/2016 Término: 07/2017

2. FORMULAÇÃO DO PROBLEMA

Algumas análises de dados pluviométricos são feitas através da medição da quantidade de chuvas por dia, mês e ano. Existe uma dificuldade na análise dos mesmos na qual é necessário observar dia-a-dia, mês-a-mês e ano-a-ano ao mesmo tempo. Tais dados também podem ser muito volumosos ocasionando uma demora na recuperação. Assim, uma ferramenta que possibilite a visualização simultânea em várias escalas, em conjunto com visualizações uniescala, auxilia na análise dos fenômenos descritos pelos dados.

3. OBJETIVOS DO PROJETO

Este projeto tem como objetivo apresentar formas de visualização e interação com dados pluviométricos de maneira a facilitar a análise dos mesmo, desenvolvendo-o em um sistema web utilizando a biblioteca JavaScript de visualização D3 (d3js.org). Também tem-se como objetivo tornar a interação fluida, para isso será usada uma base de dados não convencional, NoSQL orientada a documento, visando melhor desempenho na recuperação dos dados.

4. JUSTIFICATIVA DO PROJETO

É importante que exista uma maneira de visualizar vários dados pluviométricos ao mesmo tempo de forma clara e estruturada, pela qual a visualização através de ferramentas computacionais podem auxiliar, como o uso do JavaScript com a biblioteca D3 para gerar imagens SVG exibindo estes dados, e visto que existe um grande volume de dados para serem armazenados e recuperados para apresentação e interação, é importante que exista uma forma eficiente para fazê-lo, tornando a usabilidade mais fluida, assim o uso de banco de dados não convencionais como o PostgreSQL com suporte a NoSQL (PostgreNoSQL) pode trazer resultados mais satisfatórios para essa experiência do usuário.

5. METODOLOGIA E PLANO DE TRABALHO

De início será realizado um estudo sobre as técnicas de implementação necessárias para o desenvolvimento do projeto, investigando a biblioteca D3 e o uso de JSONB em PostgreNoSQL. Posteriormente será levantado os dados que serão utilizados e a bibliografia referente à visualização de dados pluviométricos e bancos de dados não convencionais. O passo seguinte é a elaboração de um sistema web para interagir com os dados pluviométricos levantados, utilizando o armazenamento dos mesmos em campos JSONB para a eficiência e as técnicas de visualização da biblioteca D3 para a exibição e interação com estes. Na última etapa será redigido um artigo científico descrevendo todo o processo acima detalhadamente expondo os resultados obtidos.

6. EQUIPAMENTO E MATERIAL

Para o desenvolvimento do projeto será necessário o uso de:

- Monografias, artigos, livros e documentação de bibliotecas e softwares para conceituar o autor no desenvolvimento teórico e da aplicação.
- Computation.
- Softwares para redação da tese.
- Softwares para desenvolvimento e teste da aplicação.
- > Bibliotecas de apoio às linguagens de programação.

7. CRONOGRAMA DE EXECUÇÃO

Tabela 1: Cronograma de Atividades

Fase 1: Avaliação da viabilidade do uso das ferramentas.

Fase 2: Ante Projeto.

Fase 3: Revisão Bibliográfica.

Fase 4: Desenvolvimento da Aplicação.

Fase 5: Refinamento e Testes da Aplicação.

Fase 6: Avaliação dos Resultados.

Fase 7: Escrita do Artigo.

Fase 8: Apresentação Final.

8. BIBLIOGRAFIA

Biblioteca Javascript: D3, disponível em: <www.d3js.org>. Data de acesso: 01/04/2016.

GENGHINI, F. Extensão da Plataforma de Visualização InfoVis Incorporando Recursos de Interatividade. Presidente Prudente: Faculdade de Ciências e Tecnologia – Universidade Estadual Paulista "Júlio de Mesquita Filho", 2011.

SGBD: PostgreSQL, disponível em: http://www.postgresql.org/>. Data de acesso: 01/04/2016.

SHIMABUKURO HIROKAZU M. Visualizações Temporais em uma Plataforma de Software Extensível e adaptável. 2004. 147 f. Tese (Doutorado em Ciências da Computação e Matemática Computacional) – Instituto de Ciências Matemáticas e Computação, Universidade de São Paulo, São Carlos. 2004.