Session 7

Incorporating covariates into LCM

Matt Denwood

2022-06-10

Recap

Models for diagnostic test evaluation require:

- At least 2 tests
- At least 2 populations, but preferably 3 or more
- Quite a lot of data

Recap

Models for diagnostic test evaluation require:

- At least 2 tests
- At least 2 populations, but preferably 3 or more
- Quite a lot of data

Fitting the models is technically quite straightforward

The real difficulty lies in the interpretation

What exactly is the latent class?

Incorporating covariates for

prevalence

Modelling variation in infection probability

- Individuals may be at higher/lower risk of being infected due to known characteristics e.g.:
 - Age
 - Sex
 - History
 - Presence of co-infections
 - Whatever

Modelling variation in infection probability

- Individuals may be at higher/lower risk of being infected due to known characteristics e.g.:
 - Age
 - Sex
 - History
 - Presence of co-infections
 - Whatever
- There are three ways to deal with this:
 - 1. Ignore it
 - 2. Group "populations" by these characteristics
 - 3. Embed a (preferably simple!) generalised linear model within your LCM

Logistic regression in JAGS

```
model{
  for(i in 1:N){
    Observation[i] ~ dbern(prob[i])
    logit(prob[i]) <- intercept + beta1[Category[i]] + beta2*Covariate[i]</pre>
  intercept ~ dnorm(0, 0.01)
  beta1[1] <- 0
  for(c in 2:NC){
    beta1[c] ~ dnorm(0, 0.01)
  beta2 ~ dnorm(0, 0.01)
  #data# N, Observation, NC, Category, Covariate
  #monitor# intercept, beta1, beta2
  #inits# intercept, beta1, beta2
```

```
model{
  for(i in 1:N){
    Observation[i] ~ dbern(obs_prob[i])
    obs prob[i] <- prob[i]*se + (1-prob[i])*(1-sp)
    logit(prob[i]) <- intercept + beta1[Category[i]] + beta2*Covariate[i]</pre>
  se ~ dbeta(148.43, 16.49)T(1-sp, )
  sp ~ dbeta(240.03, 12.63)
  intercept ~ dnorm(0, 0.01)
  beta1[1] <- 0
  for(c in 2:NC){
    beta1[c] ~ dnorm(0, 0.01)
  beta2 ~ dnorm(0, 0.01)
  #data# N, Observation, NC, Category, Covariate
  #monitor# intercept, beta1, beta2, se, sp
  #inits# intercept, beta1, beta2, se, sp
```

```
model{
  for(i in 1:N){
    Observation[i] ~ dbern(obs_prob[i])
    obs_prob[i] <- prob[i]*se + (1-prob[i])*(1-sp)
    logit(prob[i]) <- intercept + beta1[Category[i]] + beta2*Covariate[i]</pre>
  #data# se, sp
  intercept ~ dnorm(0, 0.01)
  beta1[1] <- 0
  for(c in 2:NC){
    beta1[c] ~ dnorm(0, 0.01)
  beta2 ~ dnorm(0, 0.01)
  #data# N, Observation, NC, Category, Covariate
  #monitor# intercept, beta1, beta2
  #inits# intercept, beta1, beta2
```

```
model{
  for(i in 1:N){
    Observation[i] ~ dbern(obs_prob[i])
    obs_prob[i] <- prob[i]*se[Test[i]] + (1-prob[i])*(1-sp[Test[i]])
    logit(prob[i]) <- intercept + beta1[Category[i]] + beta2*Covariate[i]</pre>
  #data# se, sp
  intercept ~ dnorm(0, 0.01)
  beta1[1] <- 0
  for(c in 2:NC){
    beta1[c] ~ dnorm(0, 0.01)
  beta2 ~ dnorm(0, 0.01)
  #data# N, Observation, NC, Category, Covariate, Test
  #monitor# intercept, beta1, beta2
  #inits# intercept, beta1, beta2
```

```
model{
  for(i in 1:N){
    Observations[i,1:4] ~ dmulti(obs_probs[i,1:4], 1)
    obs probs[i,1] <- (prob[i] * ((1-se[1])*(1-se[2]))) + ((1-prob[i]) * ((sp[1])*(sp[2])))
    obs_{probs}[i,2] \leftarrow (prob[i] * ((se[1])*(1-se[2]))) + ((1-prob[i]) * ((1-sp[1])*(sp[2])))
    obs_probs[i,3] <- (prob[i] * ((1-se[1])*(se[2]))) + ((1-prob[i]) * ((sp[1])*(1-sp[2])))
    obs probs[i,4] <- (prob[i] * ((se[1])*(se[2]))) + ((1-prob[i]) * ((1-sp[1])*(1-sp[2])))
    logit(prob[i]) <- intercept + beta1[Category[i]] + beta2*Covariate[i]</pre>
  #snip#
```

```
model{
  for(i in 1:G){
    Observations[i,1:4] ~ dmulti(obs_probs[i,1:4], Total[i])
    obs probs[i,1] <- (prob[i] * ((1-se[1])*(1-se[2]))) + ((1-prob[i]) * ((sp[1])*(sp[2])))
    obs_{probs}[i,2] \leftarrow (prob[i] * ((se[1])*(1-se[2]))) + ((1-prob[i]) * ((1-sp[1])*(sp[2])))
    obs_probs[i,3] <- (prob[i] * ((1-se[1])*(se[2]))) + ((1-prob[i]) * ((sp[1])*(1-sp[2])))
    obs probs[i,4] <- (prob[i] * ((se[1])*(se[2]))) + ((1-prob[i]) * ((1-sp[1])*(1-sp[2])))
    logit(prob[i]) <- intercept + beta1[Category[i]] + beta2*RoundedCovariate[i]</pre>
  #snip#
```

Embedding a LR within a LCM

- Hierarchical modelling gives us the freedom to include "models within models" as needed for our specific application, but we usually have to write these ourselves!
- Remember that blocking at group level is much more efficient than looping through all individuals as fewer likelihood calculations are required

Embedding a LR within a LCM

- Hierarchical modelling gives us the freedom to include "models within models" as needed for our specific application, but we usually have to write these ourselves!
- Remember that blocking at group level is much more efficient than looping through all individuals as fewer likelihood calculations are required
- Autocorrelation may be problematic if so try to use different contrast schemes eg:

```
sex_effect ~ dnorm(0, 0.01)
beta1[1] <- -sex_effect/2
beta1[2] <- sex_effect/2</pre>
```

Random effects are kind of like fixed effects:

```
#snip#
  logit(prob[i]) <- intercept + beta1[Category[i]] + beta3[Group[i]]
#snip#

for(r in 1:NR){
  beta3[r] ~ dnorm(0, tau)
}
tau ~ dgamma(0.01, 0.01)

#inits# tau
#monitor# tau, beta3</pre>
```

Generating code for a LR

You can use template.jags as inspiration:

```
##### JAGS model file written by runjags version 2.2.2-1 on 2022-06-09 22:18:03
##### JAGS model file written by runjags version 2.2.2-1 on 2022-06-09 40:03
```

Model template as follows - ensure this is syntactically correct before running the

```
model{
```

model!

```
# In the BUGS/JAGS language we must use an explicit for loop:
for(i in 1:N){
    # These lines describe the response distribution and linear model terms:
    weight[i] ~ dnorm(regression_fitted[i], regression_precision)
    regression_residual[i] <- weight[i] - regression_fitted[i]
    regression_fitted[i] <- intercept + group_effect[group[i]]
}</pre>
```

These lines give the prior distributions for the parameters to be estimated:

regression_precision ~ dgamma(0.001, 0.001)
intercept ~ dnorm(0, 10^-6)
group_effect[1] <- 0 # Factor level "Ctl"
group_effect[2] ~ dnorm(0, 10^-6) # Factor level "Trt"
resid.sum.sq <- sum(regression residual^2)</pre>

Supported features:

- Gaussian, binomial, Poisson, negative binomial, ZIB, ZIP, ZINB
- Random intercepts
- Automatic centering of continuous variables

We can also add (currently manually):

- Random slopes
- Spline terms
- Interval censoring

Grouping populations

- This is much easier than writing a GLM within our LCM...
- We can also use the template_huiwalter function!
 - See Otero-Abad 2017 for a simple example
- If you have a lot of populations you could use a simple random effect:

```
# prev[p] ~ dbeta(1, 1)
logit(prev[p]) <- intercept + raneff[i]
raneff[i] ~ dnorm(0, tau)</pre>
```

Grouping populations

- This is much easier than writing a GLM within our LCM...
- We can also use the template_huiwalter function!
 - See Otero-Abad 2017 for a simple example
- If you have a lot of populations you could use a simple random effect:

```
# prev[p] ~ dbeta(1, 1)
logit(prev[p]) <- intercept + raneff[i]
raneff[i] ~ dnorm(0, tau)</pre>
```

Be careful that Se/Sp is still consistent across populations!

Do nothing?

What is the goal of your analysis?

- Estimating risk factors for disease?
- Estimating true prevalence?
- Estimating Se/Sp?

Do nothing?

What is the goal of your analysis?

- Estimating risk factors for disease?
- Estimating true prevalence?
- Estimating Se/Sp?

Inclusion of risk factors for disease is NOT necessary to estimate Se/Sp!

If you are interested in risk factors for disease (rather than the se/sp directly) then I would probably use a simpler model with fixed se/sp (+/- multiple imputation)

Covariates for Sensitivity /

Specificity

What if diagnostic tests are not consistent across populations?

This time we can't just ignore it!

Solutions:

- Remove that population (and clearly state this in the paper..!)
- Allow the relevant parameter to vary between populations
- Use a (very simple) GLM on the relevant parameter(s)

What if diagnostic tests are not consistent across populations?

This time we can't just ignore it!

Solutions:

- Remove that population (and clearly state this in the paper..!)
- Allow the relevant parameter to vary between populations
- Use a (very simple) GLM on the relevant parameter(s)

But now we are no longer technically within the Hui-Walter framework...

Varying Se/Sp between populations

```
Tally[1:4,p] ~ dmulti(prob[1:4,p], N[p])
         prob[1,p] \leftarrow prev[p] * ((1-se[1,SeGp[p]])*(1-se[2,SeGp[p]])) + (1-prev[p]) *
\hookrightarrow (sp[1])*(sp[2])
        prob[2,p] \leftarrow prev[p] * (se[1,SeGp[p]]*(1-se[2,SeGp[p]])) + (1-prev[p]) *
\hookrightarrow (1-sp[1])*sp[2]
        prob[3,p] \leftarrow prev[p] * ((1-se[1,SeGp[p]])*(se[2,SeGp[p]])) + (1-prev[p]) *
\hookrightarrow (sp[1])*(1-sp[2])
        prob[4,p] <- prev[p] * (se[1,SeGp[p]]*se[2,SeGp[p]]) + (1-prev[p]) *</pre>
\hookrightarrow (1-sp[1])*(1-sp[2])
        prev[p] ~ dbeta(1,1)
```

Varying Se/Sp between populations

```
Tally[1:4,p] ~ dmulti(prob[1:4,p], N[p])
         prob[1,p] \leftarrow prev[p] * ((1-se[1,SeGp[p]])*(1-se[2,SeGp[p]])) + (1-prev[p]) *
\hookrightarrow (sp[1])*(sp[2])
        prob[2,p] <- prev[p] * (se[1,SeGp[p]]*(1-se[2,SeGp[p]])) + (1-prev[p]) *</pre>
\hookrightarrow (1-sp[1])*sp[2]
        prob[3,p] \leftarrow prev[p] * ((1-se[1,SeGp[p]])*(se[2,SeGp[p]])) + (1-prev[p]) *
\hookrightarrow (sp[1])*(1-sp[2])
        prob[4,p] <- prev[p] * (se[1,SeGp[p]]*se[2,SeGp[p]]) + (1-prev[p]) *</pre>
\hookrightarrow (1-sp[1])*(1-sp[2])
        prev[p] ~ dbeta(1,1)
```

See also: Stærk-Østergaard 2022

Embedded GLM for Se/Sp

```
for(p in 1:Populations){
      Tally[1:4,p] ~ dmulti(prob[1:4,p], N[p])
      # Probability of observing test -/-
      prob[1,p] \leftarrow prev[p] * ((1-se[1,p])*(1-se[2,p])) + (1-prev[p]) * (sp[1])*(sp[2])
      #snip#
      logit(se[1,p]) <- se_intercept[1] + se1_beta[Se1Category[p]]</pre>
      logit(se[2,p]) <- se_intercept[2] + se2_beta[Se2Category[p]]</pre>
# NB: tweak contrasts for convergence!
se beta1[1] <- -se eff/2
se beta1[2] <- se eff/2
se_eff \sim dnorm(0, 0.01)
```

Embedded GLM for Se/Sp

```
for(p in 1:Populations){
      Tally[1:4,p] ~ dmulti(prob[1:4,p], N[p])
      # Probability of observing test -/-
      prob[1,p] \leftarrow prev[p] * ((1-se[1,p])*(1-se[2,p])) + (1-prev[p]) * (sp[1])*(sp[2])
      #snip#
      logit(se[1,p]) <- se_intercept[1] + se1_beta[Se1Category[p]]</pre>
      logit(se[2,p]) <- se_intercept[2] + se2_beta[Se2Category[p]]</pre>
# NB: tweak contrasts for convergence!
se beta1[1] <- -se eff/2
se beta1[2] <- se eff/2
se_eff ~ dnorm(0, 0.01)
```

See also: Martinez 2008 (although they wrote the samplers themselves!)

Embedded GLM for Infection AND Se/Sp

```
for(p in 1:Populations){
      Tally[1:4,p] ~ dmulti(prob[1:4,p], N[p])
      # Probability of observing test -/-
      prob[1,p] \leftarrow prob[p] * ((1-se[1,p])*(1-se[2,p])) + (1-prob[p]) * (sp[1])*(sp[2])
      #snip#
      logit(se[1,p]) <- se_intercept[1] + se1_beta[Se1Category[p]]</pre>
      logit(se[2,p]) <- se_intercept[2] + se2_beta[Se2Category[p]]</pre>
      logit(prob[i]) <- intercept + beta1[Categorv[i]]</pre>
#snip#
se_eff \sim dnorm(0, 0.01)
pr_eff ~ dnorm(0, 0.01)
```

Embedded GLM for Infection AND Se/Sp

```
for(p in 1:Populations){
      Tally[1:4,p] ~ dmulti(prob[1:4,p], N[p])
      # Probability of observing test -/-
      prob[1,p] \leftarrow prob[p] * ((1-se[1,p])*(1-se[2,p])) + (1-prob[p]) * (sp[1])*(sp[2])
      #snip#
      logit(se[1,p]) <- se_intercept[1] + se1_beta[Se1Category[p]]</pre>
      logit(se[2,p]) <- se_intercept[2] + se2_beta[Se2Category[p]]</pre>
      logit(prob[i]) <- intercept + beta1[Category[i]]</pre>
#snip#
se_eff \sim dnorm(0, 0.01)
pr_eff ~ dnorm(0, 0.01)
```

But what happens if "Category" is confounded with "Se1Category" ??

General points

- Inconsistent se/sp may happen in e.g. laboratory vs field settings, blood vs milk samples, or due to biological effects such as age-aquired immunity
- Theoretically it is possible to incorporate this into the model, but...
 - It is not frequently done so the models are less well developed/understood
 - Great care is needed, and any additions should be based on known biological processes
 - If all populations have their own se/sp then the model collapses!

General points

- Inconsistent se/sp may happen in e.g. laboratory vs field settings, blood vs milk samples, or due to biological effects such as age-aquired immunity
- Theoretically it is possible to incorporate this into the model, but...
 - It is not frequently done so the models are less well developed/understood
 - Great care is needed, and any additions should be based on known biological processes
 - If all populations have their own se/sp then the model collapses!
- Be VERY careful when prevalence and se/sp have the same covariate
 - It may work if balancing populations by these covariates, and only including them as se/sp covariates?

Practical session 7

Points to consider

- 1. What is the optimal number of populations?
- 2. What happens to identifiability when you deviate from the standard Hui-Walter model?

Summary

- Adding populations (or equivalently, covariates on prevalence) adds parameters but may add information
 - But it is not always worthwile!
- Using covariates on sensitivity and specificity is tricky...
- Some further reading: Martinez et al 2008, Stærk-Østergaard et al 2022