§ 31. Собственные векторы и собственные значения линейного оператора

Б.М.Верников

Уральский федеральный университет, Институт естественных наук и математики, кафедра алгебры и фундаментальной информатики

Определение собственных векторов и собственных значений

Определение

Пусть V- векторное пространство над полем F, а $\mathcal{A}-$ линейный оператор в пространстве V. Вектор $\mathbf{x}\in V$ называется cobctent собственным вектором оператора \mathcal{A} , если $\mathbf{x}\neq\mathbf{0}$ и существует скаляр $t\in F$ такой, что

$$A(\mathbf{x}) = t\mathbf{x}.\tag{1}$$

Скаляр $t \in F$ называется собственным значением или собственным числом оператора \mathcal{A} , если существует вектор $\mathbf{x} \in V$ такой, что $\mathbf{x} \neq \mathbf{0}$ и выполнено равенство (1). При наличии равенства (1) мы будем называть \mathbf{x} собственным вектором, относящимся \mathbf{k} собственному значению \mathbf{t} , а \mathbf{t} — собственным значением, относящимся \mathbf{k} собственному вектору \mathbf{x} .

Свойство собственных векторов, относящихся к одному и тому же собственному значению

Теорема о собственных векторах, относящихся к одному и тому же собственному значению

Совокупность всех собственных векторов, относящихся к одному и тому же собственному значению, вместе с нулевым вектором образует подпространство.

Доказательство. Обозначим через M_0 множество всех собственных векторов, относящихся к собственному значению t_0 и положим $M=M_0\cup\{0\}$. Пусть $\mathbf{x}_1,\mathbf{x}_2\in M$. Если $\mathbf{x}_1+\mathbf{x}_2=\mathbf{0}$, то $\mathbf{x}_1+\mathbf{x}_2\in M$. Пусть теперь $\mathbf{x}_1+\mathbf{x}_2\neq \mathbf{0}$. Поскольку

$$\mathcal{A}(x_1+x_2) = \mathcal{A}(x_1) + \mathcal{A}(x_2) = t_0x_1 + t_0x_2 = t_0(x_1+x_2),$$

получаем, что $x_1+x_2\in M_0\subseteq M$. Аналогично, для любого скаляра t имеем: если $tx_1=0$, то $tx_1\in M$, а если $tx_1\neq 0$, то

$$\mathcal{A}(t\mathbf{x}_1) = t\mathcal{A}(\mathbf{x}_1) = t(t_0\mathbf{x}_1) = t_0(t\mathbf{x}_1),$$

откуда $t\mathbf{x}_1 \in M_0 \subseteq M$.

Свойство собственных векторов, относящихся к различным собственным значениям (1)

Teopema о собственных векторах, относящихся к различным собственным значениям

Если векторы $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ являются собственными и относятся к попарно различным собственным значениям t_1, t_2, \dots, t_k соответственно, то векторы $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k$ линейно независимы.

Доказательство будем вести индукцией по числу векторов.

База индукции. Пусть k=1 и \mathbf{x}_1 — собственный вектор. По определению собственного вектора, $\mathbf{x}_1 \neq \mathbf{0}$. Поэтому если $t_1\mathbf{x}_1 = \mathbf{0}$, то $t_1 = 0$. Следовательно, система, состоящая из вектора \mathbf{x}_1 , линейно независима.

Шаг индукции. Пусть теперь k>1 и $\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_k$ — собственные векторы оператора \mathcal{A} , относящиеся к попарно различным собственным значениям t_1,t_2,\ldots,t_k . Предположим, что

$$s_1 x_1 + s_2 x_2 + \dots + s_{k-1} x_{k-1} + s_k x_k = \mathbf{0}$$
 (2)

для некоторых скаляров $s_1, s_2, \dots, s_{k-1}, s_k \in F$.

Свойство собственных векторов, относящихся к различным собственным значениям (2)

Используя замечание о свойствах линейного оператора (см. § 29), имеем

$$\begin{aligned} \mathbf{0} &= \mathcal{A}(\mathbf{0}) = \mathcal{A}(s_1 x_1 + s_2 x_2 + \dots + s_{k-1} x_{k-1} + s_k x_k) = \\ &= s_1 \mathcal{A}(x_1) + s_2 \mathcal{A}(x_2) + \dots + s_{k-1} \mathcal{A}(x_{k-1}) + s_k \mathcal{A}(x_k) = \\ &= s_1 t_1 x_1 + s_2 t_2 x_2 + \dots + s_{k-1} t_{k-1} x_{k-1} + s_k t_k x_k. \end{aligned}$$

Итак,

$$s_1t_1x_1 + s_2t_2x_2 + \dots + s_{k-1}t_{k-1}x_{k-1} + s_kt_kx_k = \mathbf{0}.$$
 (3)

С другой стороны, умножая обе части равенства (2) на t_k , получаем, что

$$s_1 t_k \mathbf{x}_1 + s_2 t_k \mathbf{x}_2 + \dots + s_{k-1} t_k \mathbf{x}_{k-1} + s_k t_k \mathbf{x}_k = \mathbf{0}.$$
 (4)

Вычитая равенство (4) из (3), получаем, что

$$s_1(t_1-t_k)x_1+s_2(t_2-t_k)x_2+\cdots+s_{k-1}(t_{k-1}-t_k)x_{k-1}=\mathbf{0}.$$

По предположению индукции векторы ${\sf x}_1, {\sf x}_2, \ldots, {\sf x}_{k-1}$ линейно независимы. Следовательно, $s_1(t_1-t_k)=s_2(t_2-t_k)=\cdots=s_{k-1}(t_{k-1}-t_k)=0.$ Поскольку скаляры $t_1, t_2, \ldots, t_{k-1}, t_k$ попарно различны, получаем, что $s_1 = s_2 = \cdots = s_{k-1} = 0$. Из (2) вытекает теперь, что $s_k \mathbf{x}_k = \mathbf{0}$. Учитывая, что $\mathbf{x}_k \neq \mathbf{0}$ (поскольку вектор \mathbf{x}_k — собственный), получаем, что $\mathbf{s}_k = 0$. Итак, если выполнено равенство (2), то $s_1 = s_2 = \cdots = s_{k-1} = s_k = 0$. Следовательно, векторы $x_1, x_2, \dots, x_{k-1}, x_k$ линейно независимы.

Нахождение собственных векторов и собственных значений (1)

Пусть $\mathcal{A}-$ линейный оператор, действующий в векторном пространстве V над полем F. Зафиксируем некоторый базис пространства V и обозначим через A матрицу оператора \mathcal{A} в этом базисе. Для произвольного вектора $\mathbf{x}\in V$ обозначим через X столбец его координат в выбранном базисе. В силу леммы о замене координат вектора (см. § 29) равенство (1) равносильно матричному равенству AX=tX. Последнее равенство можно переписать в виде AX=tEX, где E- единичная матрица того же порядка, что и A. Следовательно, AX-tEX=O, где O- нулевой столбец. Последнее равенство можно переписать в виде

$$(A - tE)X = O. (5)$$

Мы получили матричную запись системы линейных уравнений, основная матрица которой содержит параметр t. Эта система крамеровская (так как ее основная матрица — квадратная) и однородная. Очевидно, что

- собственными векторами оператора A являются ненулевые решения системы (5) и только они;
- собственными значениями оператора \mathcal{A} являются те значения параметра t, при которых система (5) имеет ненулевые решения, и только они.

Используя признак существования ненулевого решения крамеровской системы (см. §9), получаем, что справедливо следующее

Предложение о характеристическом уравнении

Пусть V — векторное пространство над полем F, а ${\cal A}$ — линейный оператор в пространстве V.

a) Скаляр t является собственным значением линейного оператора ${\mathcal A}$ тогда и только тогда, когда $t \in {\mathsf F}$ и

$$|A - tE| = 0. ag{6}$$

б) Собственными векторами линейного оператора \mathcal{A} , относящимися к его собственному значению \mathbf{t}_0 , являются ненулевые решения системы линейных уравнений $(A-\mathbf{t}_0E)X=0$ и только они.

Нахождение собственных векторов и собственных значений (3)

В левой части равенства (6) стоит характеристический многочлен оператора $\mathcal A$ (или матрицы A).

Определение

Уравнение (6) называется *характеристическим уравнением* оператора ${\cal A}$ и матрицы ${\cal A}$.

Таким образом, п. а) предложения о характеристическом уравнении можно переформулировать следующим образом:

 собственными значениями линейного оператора являются корни его характеристического уравнения, лежащие в основном поле, и только они.

Критерий приводимости оператора к диагональному виду (1)

В оставшейся части параграфа изучаются операторы, матрица которых в некотором базисе устроена очень просто.

Определение

Линейный оператор \mathcal{A} , действующий в пространстве V, называется приводимым к диагональному виду или оператором простой структуры, если существует базис пространства V, в котором матрица этого оператора диагональна.

Критерий приводимости оператора к диагональному виду

Линейный оператор $\mathcal A$ в векторном пространстве V над полем F приводим к диагональному виду тогда и только тогда, когда в V существует базис, состоящий из собственных векторов этого оператора.

Доказательство. Необходимость. Пусть матрица A оператора A в базисе y_1, y_2, \ldots, y_n является диагональной, т. е.

$$A = \begin{pmatrix} t_1 & 0 & 0 & \dots & 0 \\ 0 & t_2 & 0 & \dots & 0 \\ 0 & 0 & t_3 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & t_n \end{pmatrix}.$$

Критерий приводимости оператора к диагональному виду (2)

Тогда, по определению матрицы оператора в базисе, $\mathcal{A}(\mathbf{y}_1)=t_1\mathbf{y}_1$, $\mathcal{A}(\mathbf{y}_2)=t_2\mathbf{y}_2,\ldots,\,\mathcal{A}(\mathbf{y}_n)=t_n\mathbf{y}_n.$ В силу замечания о нулевом векторе и базисе векторного пространства (см. § 23) векторы $\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_n$ — ненулевые. Следовательно, базис $\mathbf{y}_1,\mathbf{y}_2,\ldots,\mathbf{y}_n$ состоит из собственных векторов оператора \mathcal{A} .

Достаточность. Предположим теперь, что базис y_1, y_2, \ldots, y_n пространства V состоит из собственных векторов оператора \mathcal{A} , т. е. $\mathcal{A}(y_1) = s_1 y_1$, $\mathcal{A}(y_2) = s_2 y_2, \ldots, \mathcal{A}(y_n) = s_n y_n$ для некоторых скаляров $s_1, s_2, \ldots, s_n \in F$. Тогда по определению матрицы оператора в базисе матрица оператора \mathcal{A} в базисе y_1, y_2, \ldots, y_n имеет вид:

$$A = \begin{pmatrix} s_1 & 0 & 0 & \dots & 0 \\ 0 & s_2 & 0 & \dots & 0 \\ 0 & 0 & s_3 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & s_n \end{pmatrix}.$$

Следовательно, оператор \mathcal{A} приводим к диагональному виду.

Критерий приводимости оператора к диагональному виду (3)

Из доказательства критерия приводимости оператора к диагональному виду непосредственно извлекается следующая информация, полезная при решении задач.

• Если пространство имеет базис, состоящий из собственных векторов линейного оператора \mathcal{A} , то матрица оператора \mathcal{A} именно в этом базисе диагональна и на ее диагонали стоят собственные значения, причем каждое собственное значение стоит столько раз, сколько имеется относящихся к нему линейно независимых собственных векторов. Если матрица линейного оператора \mathcal{A} в некотором базисе диагональна, то именно этот базис состоит из собственных векторов оператора \mathcal{A} .

Достаточное условие приводимости оператора к диагональному виду

Пусть V- п-мерное векторное пространство над полем F, $\mathcal{A}-$ линейный оператор в этом пространстве, а A- матрица оператора \mathcal{A} в некотором базисе. Если уравнение |A-tE|=0 имеет п различных корней, лежащих в поле F, то оператор \mathcal{A} приводим к диагональному виду.

Доказательство. Пусть $t_1, t_2, \ldots, t_n \in F$ — различные корни уравнения |A-tE|=0. Они являются собственными значениями оператора \mathcal{A} . Для каждого собственного значения t_i зафиксируем собственный вектор \mathbf{y}_i относящийся к \mathbf{t}_i . По теореме о собственных векторах, относящихся к различным собственным значениям, векторы $\mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_n$ линейно независимы. В силу замечания о базисах n-мерного пространства (см. § 23) они образуют базис пространства V. Для завершения доказательства остается сослаться на критерий приводимости оператора к диагональному виду.

Простая линейная модель производства (1)

Приведем пример, показывающий как линейные операторы и их собственные значения возникают в приложениях линейной алгебры. Речь пойдет о математическом моделировании экономических процессов.

Рассмотрим n технологических процессов (или n предприятий) p_1, p_2, \ldots, p_n , которые производят n продуктов G_1, G_2, \ldots, G_n при следующих ограничениях: каждый технологический процесс производит один и только один продукт и нет притока продуктов извне. Для удобства обозначений будем считать, что технологический процесс p_i производит продукт G_i , где $i=1,2,\ldots,n$.

Для производства продукта G_i в технологическом процессе p_i могут понадобиться продукты G_1, G_2, \ldots, G_n . Пусть a_{ij} — количество единиц продукта G_i , необходимое для производства одной единицы продукта G_j . Квадратная матрица $A=(a_{ij})$ порядка n называется матрицей потребления. Ясно, что A — матрица над полем \mathbb{R} , все элементы которой неотрицательны. Такие матрицы называются неотрицательными.

Простая линейная модель производства (2)

Зафиксируем некоторый временной интервал, скажем, год. Пусть в течение этого времени произведено x_i единиц продукта G_i , где i = 1, 2, ..., n. Вектор $\mathbf{x} = (x_1, x_2, ..., x_n)$ называется вектором валового выпуска. Векторы из пространства \mathbb{R}_n можно рассматривать как матрицы над $\mathbb R$ размера $1 \times n$. Это позволяет говорить о *неотрицательных векторах*. Ясно, что вектор x — неотрицательный. Часть произведенной продукции расходуется в процессе производства. Эта часть описывается вектором $y = (y_1, y_2, \dots, y_i)$, где $y_i = a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n$ для $i = 1, 2, \dots, n$. Вектор у называется вектором производственных затрат. Через Xобозначим столбец длины n, состоящий из элементов x_1, x_2, \ldots, x_n , а через Y – столбец длины n, состоящий из элементов y_1, y_2, \ldots, y_n . Переходя к матричным обозначениям, имеем Y = AX. Вектор $\mathbf{c} = \mathbf{x} - \mathbf{y}$ предназначен для использования в непроизводственной сфере и накопления. Он называется вектором конечного потребления. Столбец длины п, элементами которого являются компоненты вектора c, обозначим через C. Ясно, что C = X - Y = X - AX.

Простая линейная модель производства (3)

Основная задача, возникающая в планировании производства на наш временной интервал, формулируется следующим образом: при заданном векторе конечного потребления ${\bf c}$ найти необходимый вектор валового выпуска ${\bf x}$. Другими словами, необходимо при заданных векторе ${\bf c}$ и матрице ${\bf A}$ найти хотя бы один неотрицательный вектор ${\bf x}$, удовлетворяющий равенству ${\bf X}-{\bf A}{\bf X}={\bf C}$ или

$$(E-A)X=C. (7)$$

Это матричная запись системы линейных уравнений. Эта система с указанной интерпретацией матрицы A и столбцов X и C называется простой линейной моделью производства, а также моделью межотраслевого баланса или моделью Леонтьева. Решение $(x_1^0, x_2^0, \dots, x_n^0)$ системы (7) называется неотрицательным, если $x_i^0 \geq 0$ для всех $i=1,2,\ldots,n$.

Продуктивные матрицы (1)

Определение

Неотрицательная квадратная матрица *А* называется *продуктивной*, если для любого неотрицательного вектора **с** существует неотрицательное решение системы (7).

Следующее утверждение дает два критерия продуктивности матрицы. Мы не будем доказывать это утверждение, так как это выходит за рамки нашего курса.

Теорема о продуктивной матрице

Для неотрицательной квадратной матрицы A над полем $\mathbb R$ следующие условия эквивалентны:

- 1) матрица А продуктивна;
- 2) матрица E-A обратима и матрица, обратная к E-A, неотрицательна;
- все корни характеристического уравнения матрицы А по модулю меньше единицы.

В частности, если t- собственное значение продуктивной матрицы, то |t|<1.

Продуктивные матрицы (2)

Из эквивалентности утверждений 1) и 2) теоремы о продуктивной матрице, критерия обратимости матрицы и теоремы Крамера вытекает

Следствие о продуктивной матрице

Если матрица А продуктивна, то система линейных уравнений (7) имеет единственное решение.