Mathematische Methoden für Informatiker

Prof. Dr. Ulrike Baumann

02.04.2019

Inhalt des Moduls

Sommersemester 2019

Analysis und Anwendungen

Erste Modulprüfung

Wintersemester 2019/20

- Algebra und Anwendungen
- Wahrscheinlichkeitstheorie

Zweite Modulprüfung

Prüfungen

• Erste Modulprüfung: (90 Minuten)

Prüfungszeitraum des Sommersemesters 2019

Nach- und Wiederholungsprüfung: Prüfungszeitraum des Wintersemesters 2019/20

• Zweite Modulprüfung (120 Minuten)

Prüfungszeitraum des Wintersemesters 2019/20

Nach- und Wiederholungsprüfung: Prüfungszeitraum des Sommersemesters 2020

Zugelassene Hilfsmittel in Prüfungen

Eigene Bücher und Skripte

keine elektronischen Hilfsmittel

insbesondere **kein** Taschenrechner

Hausaufgaben

Das Bearbeiten von Hausaufgaben dient dem **regelmäßigen** Nacharbeiten der Vorlesungsinhalte.

.....

Durch das Abgeben von Hausaufgaben bis zum festgesetzten Termin können **Bonuspunkte** für die Klausur im Prüfungszeitraum des Sommersemesters 2019 erworben werden.

Hausaufgaben, die zur Bewertung abgegeben werden können, sind auf den Übungsblättern mit **A** gekennzeichnet.

Inhalt der Vorlesung

Analysis

- Grenzwerte von Folgen und Reihen
- Stetigkeit und Differenzierbarkeit von Funktionen in einer reellen Veränderlichen
- Iteratives Lösen von Gleichungen
- Approximation Funktionen durch Potenzreihen, Taylorreihen bzw. Fourierreihen
- Integralbegriff und Integrationsmethoden
- Lösen von Differentialgleichungen
- Differentialrechnung für Funktionen mehrerer reeller Veränderlicher

Algebra

Numerische Mathematik

Wahrscheinlichkeitstheorie

1. Vorlesung

- Folgen
- Rechnen mit Folgen
- Eigenschaften von Folgen:
 - Beschränktheit
 - Monotonie
 - Existenz eines Grenzwertes (Konvergenz)
- Beispiele

Folgen

• Eine Folge ist eine Abbildung von der Menge $\mathbb N$ der natürlichen Zahlen in eine Menge M, die jedem $n \in \mathbb N$ ein $x_n \in M$ zuordnet.

Die Elemente x_n werden Folgenglieder genannt.

Schreibweise:
$$(x_n)_{n=0}^{\infty}$$
 bzw. $(x_n)_{n\in\mathbb{N}}$ bzw. (x_n)

Falls erforderlich, wird $\mathbb N$ durch $\mathbb N\setminus\{0\}$, $\mathbb N\setminus\{0,1\}$ usw. ersetzt.

- Folgen können explizit oder rekursiv definiert sein.
- Für $M=\mathbb{R}$ bzw. $M=\mathbb{C}$ spricht man von reellwertigen bzw. komplexwertigen Folgen, für $M=\mathbb{R}^m$ von vektorwertigen Folgen.
- Die reellwertigen Folgen bilden einen ℝ-Vektorraum.
- Die komplexwertigen Folgen bilden einen C-Vektorraum.

Beschränkte Folgen

• Eine reellwertige oder komplexwertige Folge (x_n) heißt beschränkt, wenn es eine reelle Zahl r mit

$$|x_n| \leq r$$

für alle $n \in \mathbb{N}$ gibt, und andernfalls unbeschränkt.

Gilt

$$\exists m \in \mathbb{R} \ \forall n \in \mathbb{N} : \ m \leq x_n$$

dann heißt die Folge (x_n) nach unten beschränkt und m eine untere Schranke.

Gilt

$$\exists M \in \mathbb{R} \ \forall n \in \mathbb{N} : \ x_n \leq M,$$

dann heißt die Folge (x_n) nach oben beschränkt und M eine obere Schranke.

Monotone Folgen

• Eine reellwertige Folge (x_n) heißt monoton wachsend, wenn

$$x_{n+1} \geq x_n$$

für alle $n \in \mathbb{N}$ gilt.

Eine reellwertige Folge (x_n) heißt monoton fallend, wenn

$$x_{n+1} \leq x_n$$

für alle $n \in \mathbb{N}$ gilt.

• Im Falle von $x_{n+1} > x_n$ bzw. $x_{n+1} < x_n$ für alle $n \in \mathbb{N}$ spricht man von strenger Monotonie.

Grenzwert einer Folge

• Eine Zahl $a \in \mathbb{R}$ (bzw. $a \in \mathbb{C}$) heißt Grenzwert der Folge (x_n) in \mathbb{R} (bzw. \mathbb{C}), wenn

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} \ \forall n \geq N : \ |x_n - a| < \varepsilon,$$

wenn es also zu jeder (beliebig kleinen) Zahl $\varepsilon>0$ eine (beliebig große) Zahl $N\in\mathbb{N}$ (die von ε abhängt) gibt, so dass $|x_n-a|<\varepsilon$ für alle $n\geq N$ gilt.

• Folgen, die einen Grenzwert a besitzen, heißen konvergent (die Folge konvergiert dann gegen den Grenzwert a).