Predicting semantic alignment by cultural similarity: Subtitles data

Bill Thompson, Seán Roberts & Gary Lupyan

Contents

Introduction						
d libraries						
domains						
Load data						
LMER models						
MRM						
ntel tests						
Data prep						
Гests						
MRM						

Introduction

This file replicates the tests for the main wikipedia data on the subtitles data.

Load libraries

```
library(ape)
library(ecodist)
library(lme4)
library(sjPlot)
library(ggplot2)
library(igraph)
library(lattice)
library(xtable)
```

Parameters (using data from Northuralex and common crawl, k=100, unfiltered):

```
datasetName = "subs"
datasetLabel = "Subtitles"
lingDistancesFile = "../data/FAIR/nel-k100-subs-alignments-by-language-pair.csv"
lingDistancesByDomainFile = "../results/EA_distances/nel-k100-subs_with_ling.csv"
# (generated by ../processing/combineCultAndLingDistances.R)
```

All domains

Load data

Read the cultural distances:

```
cult = read.csv("../results/EA_distances/CulturalDistances_Long.csv", stringsAsFactors = F)
names(cult) = c("11","12","cult.dist")
```

Add language family:

```
l = read.csv("../data/FAIR_langauges_glotto_xdid.csv", stringsAsFactors = F)
g = read.csv("../data/glottolog-languoid.csv/languoid.csv", stringsAsFactors = F)
l$family = g[match(l$glotto,g$id),]$family_pk
l$family = g[match(l$family,g$pk),]$name
```

Read the semantic distances

```
ling = read.csv(lingDistancesFile, stringsAsFactors = F)
```

There are very few possible comparisons for Slovenian and Northern Sami, so we'll remove these:

```
ling = ling[!(ling$11=="se" | ling$12 == "se"),]
ling = ling[!(ling$11=="sl" | ling$12 == "sl"),]
```

Combine the linguistic and cultural distances. Note that we flip the cultural measure from a distance measure to a similarity measure.

```
cult$11.iso2 = 1[match(cult$11,1$Language2),]$iso2
cult$12.iso2 = 1[match(cult$12,1$Language2),]$iso2
fairisos = unique(c(ling$11,ling$12))
cultisos = unique(c(cult$11.iso2, cult$12.iso2))
cult = cult[(cult$11.iso2 %in% fairisos) & (cult$12.iso2 %in% fairisos),]
ling = ling[(ling$11 %in% cultisos) & (ling$12 %in% cultisos),]
matches = sapply(1:nrow(ling), function(i){
  which(cult$11.iso2==ling$11[i] & cult$12.iso2==ling$12[i])
})
ling$cult.dist = cult[matches,]$cult.dist
# Flip
ling$cult.dist = 1 - ling$cult.dist
# Scale
ling$cult.dist.center = scale(ling$cult.dist)
cdc.s = attr(ling$cult.dist.center, "scaled:scale")
cdc.c = attr(ling$cult.dist.center, "scaled:center")
ling$cult.dist.center = as.numeric(ling$cult.dist.center)
ling$comparison_count.center =
  scale(ling$comparison_count)
ling$family1 = l[match(ling$11, l$iso2),]$family
ling$family2 = 1[match(ling$12, 1$iso2),]$family
1[1$Language=="Arabic",]$autotyp.area= "Greater Mesopotamia"
1[1$Language=="Persian",]$autotyp.area= "Greater Mesopotamia"
ling$area1 = l[match(ling$11, l$iso2),]$autotyp.area
```

```
ling$area2 = 1[match(ling$12, 1$iso2),]$autotyp.area
fgroup = cbind(ling$family1,ling$family2)
fgroup = apply(fgroup,1,sort)
ling$family.group = apply(fgroup,2,paste,collapse=":")
agroup = cbind(ling$area1,ling$area2)
agroup = apply(agroup,1,sort)
ling$area.group = apply(agroup,2,paste,collapse=":")
ling$rho.center = scale(ling$local_alignment)
Each observation is now assocaited with a language family pair:
head(ling[,c("11","12","local_alignment",'family.group')])
      11 12 local_alignment
##
                                            family.group
                 0.01014219 Indo-European: Indo-European
## 18 hy sq
## 23 hy ko
                 0.01862729
                                  Indo-European:Koreanic
## 32 hy is
                 0.03000878 Indo-European:Indo-European
## 48 hy ja
                 0.05326118
                                  Indo-European: Japonic
                 0.05535150
                                    Indo-European:Uralic
## 49 et hy
## 52 hy nl
                 0.05835286 Indo-European:Indo-European
And the same is true for area:
tail(ling[,c("11","12","local_alignment",'area.group')])
       11 12 local_alignment
                                     area.group
## 651 cs es
                   0.3339303
                                 Europe: Europe
## 653 bg cs
                   0.3353707
                                 Europe: Europe
## 656 el bg
                   0.3378855
                                 Europe: Europe
## 659 el ru
                   0.3446584 Europe:Inner Asia
## 661 el cs
                   0.3625137
                                 Europe: Europe
## 664 cs ru
                   0.3790251 Europe:Inner Asia
Number of observations:
# Number of datapoints:
nrow(ling)
## [1] 190
# Number of unique languages:
length(unique(unlist(ling[,c("11","12")])))
## [1] 20
# Number of unique language families:
uniqueFamilies = unique(unlist(ling[,c("family1","family2")]))
length(uniqueFamilies)
## [1] 6
# Number of unique areas:
uniqueAreas = unique(unlist(ling[,c("area1", "area2")]))
length(uniqueAreas)
```

[1] 4

Cross-over between language famlies and areas:

##								
##		Europe	${\tt Greater}$	Mesopotamia	Inner	Asia 1	N Coast	Asia
##	Afro-Asiatic	0		1		0		0
##	Indo-European	9		1		4		0
##	Japonic	0		0		0		1
##	Koreanic	0		0		0		1
##	Turkic	0		1		0		0
##	Uralic	1		0		1		0

LMER models

Mixed effects model, predicting Linguistic similaritys from cultural similarity, with random intercept for family and area and random slope for cultural similarity for family and area.

We start with a null model with random intercepts for family and area, and random slopes for cultural similarity by both. We add a fixed effect of the number of comparisons made for each datapoint (number of concepts that were available to compare). Then we add a fixed effect of cultural similarity

```
m0 = lmer(
  rho.center ~ 1 +
    (1 + cult.dist.center | family.group) +
    (1 + cult.dist.center | area.group),
  data = ling
## boundary (singular) fit: see ?isSingular
m0.5 = lmer(
 rho.center ~ 1 +
    comparison_count.center +
    (1 + cult.dist.center | family.group) +
    (1 + cult.dist.center | area.group),
  data = ling
)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.0073357
## (tol = 0.002, component 1)
m1 = lmer(
 rho.center ~ 1 +
    comparison count.center +
   cult.dist.center +
    (1 + cult.dist.center | family.group) +
    (1 + cult.dist.center | area.group),
  data = ling
)
## boundary (singular) fit: see ?isSingular
an1 = anova(m0, m0.5, m1)
## refitting model(s) with ML (instead of REML)
## Data: ling
## Models:
## m0: rho.center ~ 1 + (1 + cult.dist.center | family.group) + (1 +
           cult.dist.center | area.group)
## m0.5: rho.center ~ 1 + comparison_count.center + (1 + cult.dist.center |
             family.group) + (1 + cult.dist.center | area.group)
## m0.5:
## m1: rho.center ~ 1 + comparison_count.center + cult.dist.center +
## m1:
           (1 + cult.dist.center | family.group) + (1 + cult.dist.center |
## m1:
           area.group)
##
       Df
              AIC
                     BIC logLik deviance
                                             Chisq Chi Df Pr(>Chisq)
## mO
        8 409.01 434.99 -196.51
                                   393.01
## m0.5 9 288.62 317.84 -135.31 270.62 122.3948
                                                               <2e-16 ***
```

```
10 289.88 322.35 -134.94
                                    269.88
                                             0.7417
                                                                0.3891
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Cultural similarity is significantly correlated with Linguistic similarity. Here are the model estimates:
summary(m1)
## Linear mixed model fit by REML ['lmerMod']
## Formula: rho.center ~ 1 + comparison count.center + cult.dist.center +
       (1 + cult.dist.center | family.group) + (1 + cult.dist.center |
##
##
       area.group)
##
      Data: ling
## REML criterion at convergence: 282.8
## Scaled residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
## -1.8968 -0.7471 -0.0734 0.6181 3.6760
##
## Random effects:
                                   Variance Std.Dev. Corr
##
  Groups
                 Name
                                  0.0002465 0.01570
  family.group (Intercept)
                 cult.dist.center 0.0056335 0.07506 -1.00
##
##
                 (Intercept)
                                  0.0015278 0.03909
    area.group
##
                 cult.dist.center 0.0211421 0.14540 -1.00
                                   0.2322780 0.48195
##
  Residual
## Number of obs: 190, groups: family.group, 17; area.group, 10
## Fixed effects:
                           Estimate Std. Error t value
## (Intercept)
                           -0.01139
                                        0.03975 -0.286
## comparison_count.center 0.81265
                                        0.03807 21.346
## cult.dist.center
                                        0.07272 0.833
                            0.06060
##
## Correlation of Fixed Effects:
               (Intr) cmpr_.
## cmprsn_cnt. 0.013
## clt.dst.cnt -0.231 -0.136
## convergence code: 0
## boundary (singular) fit: see ?isSingular
Plot the estimates, rescaling the variables back to the original units:
trans = function(X){
 X * attr(ling$rho.center, "scaled:scale") +
  attr(ling$rho.center, "scaled:center")
}
gx = plot model(m1, 'pred', terms='cult.dist.center')
gx$data$predicted = trans(gx$data$predicted)
gx$data$conf.low = trans(gx$data$conf.low)
gx$data$conf.high = trans(gx$data$conf.high)
gx$data$x = gx$data$x *
 cdc.s +cdc.c
gx = gx + \#coord\_cartesian(ylim=c(0, 0.5),
```

```
# xlim=c(0.15,0.85)) +
xlab("Cultural similarity") +
ylab("Semantic alignment") +
ggtitle("") +
geom_point(data=ling,aes(x=cult.dist,y=local_alignment))
gx
```



```
pdf(paste0("../results/stats/",datasetName,"/CulturalDistance_Rho_Graph.pdf"),
    height=2.5, width=2.5)
gx
dev.off()

## pdf
## 2
Plot the random effects:
plot_model(m1,'re', sort.est = "cult.dist.center")
```

```
## [[1]]
```

Random effects

##

[[2]]

Random effects

MRM

Use multiple regression on distance matrices to do the same test as above. The code below loads the data into a matrix format:

```
# Use graph method to make distance matrix
grph <- graph.data.frame(ling[,c("l1",'l2','local_alignment')], directed=FALSE)</pre>
# add value as a weight attribute
ling.m = get.adjacency(grph, attr="local_alignment", sparse=FALSE)
rownames(ling.m) = 1[match(rownames(ling.m), 1$iso2), ]$Language2
colnames(ling.m) = l[match(colnames(ling.m), 1$iso2), ]$Language2
# Same for comparison_count.center
grph <- graph.data.frame(ling[,c("l1",'l2','comparison_count')], directed=FALSE)</pre>
# add value as a weight attribute
cc.m = get.adjacency(grph, attr="comparison count", sparse=FALSE)
rownames(cc.m) = 1[match(rownames(cc.m),1$iso2),]$Language2
colnames(cc.m) = 1[match(colnames(cc.m), 1$iso2), ]$Language2
cult.m = read.csv("../results/EA_distances/CulturalDistances.csv", stringsAsFactors = F)
rownames(cult.m) = cult.m[,1]
cult.m = cult.m[,2:ncol(cult.m)]
cult.m = as.matrix(cult.m)
# Flip cultural value to distance
cult.m = 1-cult.m
mx = match(rownames(ling.m),rownames(cult.m))
cult.m = cult.m[mx,mx]
```

```
colnames(cult.m) = rownames(cult.m)
# Same/different matrix for language family
family.matrix = l[match(rownames(ling.m), l$Language), ]$family
family.matrix = outer(family.matrix,family.matrix,"!=") *1
# Load ASJP distances for second test
asjp = readRDS("../data/ASJP/asjp17-dists FAIR.RData")
ling.m.glotto = 1[match(rownames(cult.m), 1$Language2), ]$glotto
ling.m.glotto = ling.m.glotto[ling.m.glotto %in% rownames(asjp)]
asjp.m = asjp[ling.m.glotto,ling.m.glotto]
asjp.lang.names = 1[match(rownames(asjp.m), 1$glotto), ]$Language2
# Matrices for second analysis with asjp
ling.m2 = ling.m[asjp.lang.names,asjp.lang.names]
cult.m2 = cult.m[asjp.lang.names,asjp.lang.names]
cc.m2 = cc.m[asjp.lang.names,asjp.lang.names]
# Load the geographic distances:
geoDist = read.csv("../data/GeographicDistances.csv",stringsAsFactors = F)
geoDist.m = as.matrix(geoDist)
geoDist.m = geoDist.m[!is.na(geoDist.m[,1]),!is.na(geoDist.m[1,])]
# Convert to log distance in thousand km
geoDist.m = log10(geoDist.m/1000)
geoDist.m[is.infinite(geoDist.m)] = 0
colnames(geoDist.m) = gsub("\\."," ",colnames(geoDist.m))
rownames(geoDist.m) = colnames(geoDist.m)
geoDist.m1 = geoDist.m[rownames(ling.m),rownames(ling.m)]
geoDist.m2 = geoDist.m[rownames(ling.m2),rownames(ling.m2)]
# center and scale values
ling.m = matrix(scale(as.vector(ling.m)),nrow=nrow(ling.m))
cc.m = matrix(scale(as.vector(cc.m)),nrow=nrow(cc.m))
cult.m = matrix(scale(as.vector(cult.m)),nrow=nrow(cult.m))
geoDist.m1 = matrix(scale(as.vector(geoDist.m1)),nrow=nrow(geoDist.m1))
asjp.m = matrix(scale(as.vector(asjp.m)),nrow=nrow(asjp.m))
ling.m2 = matrix(scale(as.vector(ling.m2)),nrow=nrow(ling.m2))
cc.m2 = matrix(scale(as.vector(cc.m2)),nrow=nrow(cc.m2))
cult.m2 = matrix(scale(as.vector(cult.m2)),nrow=nrow(cult.m2))
geoDist.m2 = matrix(scale(as.vector(geoDist.m2)),nrow=nrow(geoDist.m2))
```

Run the MRM model, predicting semantic alignment by cultural distance, controlling for family distance, geographic ditance, and the comparison count (number of observations). Here, the family distance between two languages is just whether they are part of the same family. Note that this does not take into account particular values for particular families, nor the random slopes within families.

```
set.seed(289)
MRM.fam = ecodist::MRM(as.dist(ling.m) ~
               as.dist(cult.m) +
               as.dist(family.matrix) +
               as.dist(geoDist.m1) +
               as.dist(cc.m), nperm = 10000)
MRM.asjp = ecodist::MRM(as.dist(ling.m2) ~
               as.dist(cult.m2) +
               as.dist(asjp.m) +
               as.dist(geoDist.m2) +
               as.dist(cc.m2),nperm = 10000)
rownames(MRM.fam$coef) = c("Intercept", "Cultural distance", "Language family",
                           "Geographic distance", "Comparison count")
colnames(MRM.fam$coef) = c("Estimate", "p-value")
statMRM.fam = xtable(MRM.fam$coef, digits = 3,display=c("s",'f',"fg"),
                     caption = paste0(
        "MRM analysis predicting semantic alignment (",
        datasetLabel,"), with family control. $R^2$=",
        signif(MRM.fam$r.squared[1],3)))
print(statMRM.fam, "latex",
    file="../results/stats/tex/MRM family SUBS.tex")
rownames(MRM.asjp$coef) = c("Intercept", "Cultural distance", "ASJP",
                           "Geographic distance", "Comparison count")
colnames(MRM.asjp$coef) = c("Estimate", "p-value")
statMRM.fam = xtable(MRM.asjp$coef, digits = 3,display=c("s",'f',"fg"),
                     caption = paste0(
        "MRM analysis predicting semantic alignment (",
        datasetLabel,"), with ASJP control. $R^2$=",
        signif(MRM.asjp$r.squared[1],3)))
print(statMRM.fam, "latex",
    file="../results/stats/tex/MRM_ASJP_SUBS.tex")
```

Mantel tests

Read the historical distances for Indo-European, based on the phylogenetic distances.

Data prep

The geographic distances are loaded above (from "../data/GeographicDistances.csv").

Load historical distances:

```
hist = read.csv("../data/trees/IndoEuropean_historical_distances.csv", stringsAsFactors = F)
hist = hist[!duplicated(hist[,1]),!duplicated(hist[,1])]
rownames(hist) = hist[,1]
```

```
hist = hist[,2:ncol(hist)]
hist.m = as.matrix(hist)
colnames(hist.m) = rownames(hist.m)
hist.m = hist.m/max(hist.m)
```

Read the cultural distance as a matrix:

```
cult.m = read.csv("../results/EA_distances/CulturalDistances.csv", stringsAsFactors = F)
rownames(cult.m) = cult.m[,1]
cult.m = cult.m[,2:ncol(cult.m)]
```

Flip the cultural distance into a cultural similarity measure:

```
cult.m = 1-cult.m
```

Convert the linguistic similarities to a matrix. This uses **igraph** to make an undirected graph from the long format with **local_alignment** as the edge weights, then output a matrix of adjacencies.

```
grph <- graph.data.frame(ling[,c("l1",'l2','local_alignment')], directed=FALSE)
# add value as a weight attribute
ling.m = get.adjacency(grph, attr="local_alignment", sparse=FALSE)
rownames(ling.m) = 1[match(rownames(ling.m),1$iso2),]$Language2
colnames(ling.m) = 1[match(colnames(ling.m),1$iso2),]$Language2</pre>
```

Match the distance matrices

```
in.analysis = intersect(rownames(ling.m),rownames(cult.m))
in.analysis = intersect(in.analysis, rownames(hist.m))
cult.m2 = cult.m[in.analysis,in.analysis]
ling.m2 = ling.m[in.analysis,in.analysis]
hist.m2 = hist.m[in.analysis,in.analysis]
geo.m2 = geoDist.m[in.analysis,in.analysis]
```

Note that there are only 14 languages with data on linguistic, cultural and historical distance.

Linguistic similarity

Tests

The results of the test list the following measures:

```
• mantelr: Mantel correlation coefficient.
• pval1: one-tailed p-value (null hypothesis: r \le 0).
• pval2: one-tailed p-value (null hypothesis: r >= 0).
• pval3: two-tailed p-value (null hypothesis: r = 0).
• llim: lower confidence limit for r.
```

• ulim: upper confidence limit for r.

```
set.seed(1498)
```

Run tests between each pair of measures.

```
distms = list("Cultrual"= cult.m2,
              "Linguistic" = ling.m2,
              "Historical" = hist.m2,
              "Geographic" = geo.m2)
mantelRes1 = data.frame(
  Var1 = NA, Var2 = NA, r = NA,
  llim = NA, ulim = NA, p = NA,
  stringsAsFactors = F)
for(i in 1:3){
  for(j in (i+1):4){
    var1 = names(distms)[i]
    var2 = names(distms)[j]
    print(paste("Correlation between",
                var1, "and", var2))
    stat = ecodist::mantel(as.dist(distms[[i]]) ~
                as.dist(distms[[j]]),
                nperm = 100000)
    print(stat)
    mantelRes1 = rbind(mantelRes1,
        c(var1, var2, stat[1], stat[5], stat[6],
          min(c(stat[2],stat[3]))))
    stat = round(stat,2)
    stat2 = sprintf("$r$ = %s[%s,%s], one-tailed $p$ = %s",
      stat[1],
      stat[5],
      stat[6],
      min(c(stat[2],stat[3])))
    # TODO: output stats
    #cat(stat2,file=
           paste0("../results/stats/tex/Mantel",var1,"Vs",var2,"Distance_SUBS.tex"))
  }
}
```

```
## [1] "Correlation between Cultrual and Linguistic"
    mantelr
              pval1
                       pval2
                               pval3 llim.2.5% ulim.97.5%
  0.3509606 0.0883600 0.9116500 0.1382200 0.2413895 0.5377689
## [1] "Correlation between Cultrual and Historical"
                         pval2
##
                                  pval3
                                        llim.2.5% ulim.97.5%
     mantelr
                pval1
```

```
## [1] "Correlation between Cultrual and Geographic"
                  pval1
##
     mantelr
                             pval2
                                        pval3 llim.2.5% ulim.97.5%
  -0.3397939 0.9723900 0.0276200 0.0308800 -0.5704463 -0.1718367
  [1] "Correlation between Linguistic and Historical"
##
       mantelr
                    pval1
                                pval2
                                            pval3
                                                    llim.2.5% ulim.97.5%
## -0.35203243 0.96988000 0.03013000 0.03453000 -0.50321827 -0.08218648
## [1] "Correlation between Linguistic and Geographic"
                  pval1
                             pval2
                                        pval3 llim.2.5% ulim.97.5%
## -0.2734487 0.9193900 0.0806200 0.1277600 -0.4617151 -0.0818242
  [1] "Correlation between Historical and Geographic"
     mantelr
                  pval1
                             pval2
                                        pval3 llim.2.5% ulim.97.5%
   0.3457543 0.0100300 0.9899800 0.0100300 0.1811727 0.5217647
mantelRes1= mantelRes1[2:nrow(mantelRes1),]
mantelRes1[,3:6] = apply(mantelRes1[,3:6],2,function(X){
  signif(as.numeric(X),3)
})
```

Run a mantel test comparing the Linguistic alignment to the cultural similarity, controlling for the historical distance between languages:

```
## mantelr pval1 pval2 pval3 llim.2.5% ulim.97.5%
## 0.3157282 0.1119100 0.8881000 0.1894500 0.1495754 0.5004242
```

Main Test: Run a mantel test comparing the Linguistic alignment to the cultural similarity, controlling for the historical distance and geographic distance between languages:

```
mainMantel = ecodist::mantel(as.dist(ling.m2)~
                  as.dist(cult.m2) +
                  as.dist(hist.m2) +
                  as.dist(geo.m2),
                nperm = 100000)
mainMantel = signif(mainMantel,3)
mantelRes1 = rbind(mantelRes1,
  c("Linguistic", "Cultural **",
   mainMantel[1],mainMantel[5],mainMantel[6],
   min(mainMantel[2:3])))
mantelRes1Text = xtable(mantelRes1,
   caption = paste0(
    "Mantel tests (",
   datasetLabel,
    "). ** = partial Mantel test, controlling for historical and geographical distance."))
print(mantelRes1Text,
    file="../results/stats/tex/Mantel_SUBS.tex")
```

MRM

Perform the main test, but using multiple regression on distance matrices (MRM).

```
mainMRM = ecodist::MRM(as.dist(ling.m2)~
                  as.dist(cult.m2) +
                  as.dist(hist.m2) +
                  as.dist(geo.m2), nperm=10000)
mainMRM
## $coef
##
                    as.dist(ling.m2)
                                       pval
## Int
                         0.14290281 0.6955
## as.dist(cult.m2)
                         0.24395908 0.2398
## as.dist(hist.m2)
                        -0.08531160 0.1408
## as.dist(geo.m2)
                        -0.02225994 0.6608
##
## $r.squared
##
         R2
                  pval
## 0.2169477 0.1326000
##
## $F.test
         F
##
            F.pval
## 8.034563 0.132600
mainMRM2 = sprintf("$\\beta $, $p=$%s",
                   round(mainMRM$coef[2,1],2),
                   round(mainMRM$coef[2,2],2))
cat(mainMRM2,
    file="../results/stats/tex/MRMCultrualVsLinguisticDistance_Partial_SUBS.tex")
```