

$$\triangle ABH = \triangle DCP$$

$$\triangle ACP = \triangle DBH (CP = BH, AP = HD)$$

$$\triangle AC = BD$$

$$AH = PD = AD - BC$$

$$AP = HD = AD + BC = AH + HP + PD + BC = 2AH + 2HP$$

$$2 = AH + HP = AP$$

$$2 = 2.7.7.$$

Пример \blacksquare В равнобедренную трапецию, один из углов которой равен 60° , а площадь равна $24\sqrt{3}$, вписана окружность. Найдите радиус этой окружности.

Решение. Пусть в трапеции ABCD основания AD=a, BC=b, боковые стороны AB=CD=c. Опустим из вершины B высоту h на основание AD. Так как диаметр вписанной окружности равен h, то нам надо найти BH из треугольника ABH.

По условию задачи площадь трапеции равна $24\sqrt{3}$, в трапецию вписана окружность и $\angle BAH=60^\circ$, следовательно,

$$\begin{cases} \frac{a+b}{2} \cdot h = 24\sqrt{3}, \\ \frac{a+b=2c,}{h} \end{cases} \implies \begin{cases} \frac{ch=24\sqrt{3},}{c} \\ \frac{h}{c} = \frac{\sqrt{3}}{2}; \end{cases} \implies h^2 = 36 \implies h = 6,$$

откуда радиус
$$r = h/2 = 3$$
.

Ответ. 3.

 $\sqrt{3}$
 $\sqrt{3}$
 $\sqrt{3}$
 $\sqrt{3}$
 $\sqrt{3}$
 $\sqrt{3}$
 $\sqrt{3}$
 $\sqrt{3}$
 $\sqrt{3}$
 $\sqrt{3}$

Теоретический материал

Напомним основные факты, связанные с произвольными в<u>ыпуклым</u>и четырехугольниками.

- Площаdь выпуклого четырехугольника равна: $S = \frac{1}{2} \cdot d_1 d_2 \sin \alpha$, где d_1 и d_2 диагонали, а α угол между ними.
- В выпуклый четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противоположных сторон равны.

N2

- Около выпуклого четырехугольника *можно описать окружность* тогда и только тогда, когда сумма двух его противоположных углов равна 180°.
- Теорема Вариньона: середины сторон выпуклого четырехугольника являются вершинами параллелограмма.

Напомним основные факты, связанные с правильными многоугольниками.

• Вокруг правильного многоугольника можно описать окружность и в него

можно вписать окружность.

- Центр вписанной окружности совпадает с центром описанной окружности и называется *центром правильного многоугольника*.
- Сумма внутренних углов произвольного выпуклого n-угольника равна $\pi(n-2) = 180^{\circ}$ (и— 1)

Теорема. Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.

Пример В выпуклом четырёхугольнике ABCD длина отрезка, соединяющего середины сторон AB и CD, равна 1. Прямые BC и AD перпендикулярны. Найдите длину отрезка, соединяющего середины диагоналей AC и BD.

Peluetue

i

BC 1 4D

