Exam for the lecture

"Econometrics II"

for students in the M.Sc. programmes summer term 2018

1	6	N	7	.2	N	1	Q
1	v.	v	1	. ~	v	1	O

τ	Dlanca	£;11	in	neina	hl	ook	letters:
ŀ	iease	TIII	ın	using	nı	ock	iemers:

α .	location	

Name: Surname	Vorname: Name
Studiengang Course of study:	Geburtsort: Place of birth
Matrikelnummer: Student ID	Bachelor University:

Declaration:

	PLEASE SIGN!!!					
I hereby declare that I am able to be examined.						
	Signature:					

Preliminary remarks:

- Write down your name and enrolment/matriculation number on all paper sheets provided for answers by the examiner.
- To write down your answers, use only the paper provided by the examiner.

Result: (TO BE FILLED IN ONLY BY THE EXAMINER!)

Problem	1	2	3	4	5	Home Assignment	Σ
Points earned							
Grade							

Kiel,

Professor Dr. Jens Boysen-Hogrefe

Examination in Econometrics II (Summer Term 2018)

July 16, 2018, 8.30 - 9.30

Preliminary remarks:

- 1. Please read these instructions carefully!
- 2. At the beginning of the exam, fill in the cover sheet and hand in after the exam is finished!
- 3. You are permitted to use the following auxiliary tools:
 - (a) a non-programable pocket calculator,
 - (b) the formulary for Econometrics II without notes!
- 4. Conduct each test at the 5% level.
- 5. Write your name and enrolment (matriculation) number on every sheet of paper!
- 6. Don't use a pencil!
- 7. The exam problems are printed on 2 pages plus 2 double sheets for answers. Check your exam for completeness!
- 8. Round your solutions to 4 decimal places.
- 9. You have 60 minutes in total to answer the exam questions.

Good luck!

Part 1 - Time Series (41 credits)

- 1. Consider the ADL model $a(L)y_t = \mu + b(L)x_t + \varepsilon_t$ with lag orders p = 3 and q = 3.
 - (a) (6P) Find $\frac{\partial E(y_t|y_{t-1}, y_{t-2}, \dots; x_t, x_{t-1}, \dots)}{\partial x_{t-2}}$ and $\frac{\partial E(y_t|x_t, x_{t-1}, \dots)}{\partial x_{t-2}}$.
 - (b) (4P) Find the long-run impact parameter of x on y.
 - (c) (5P) Briefly explain the usage of information criteria to select. Using the AIC as an example, describe in a few sentences the trade-off they try to balance.
- 2. You are given the following time series regression results for the model $y_t = \mu + \alpha y_{t-1} + \epsilon_t$, where ϵ_t is assumed to be iid with $E(\epsilon_t) = 0$ and $Var(\epsilon_t) = \sigma^2$:

- (a) (6P) From these estimation results derive and estimate the (unconditional) mean of y_t . To this end, make and justify an appropriate assumption concerning the properties of y_t .
- (b) (3P) Calculate the average effect of a shock of size 1 in t on y_{t+2} given your estimation results. How does the effect of the shock evolve over time?
- (c) (5P) Suppose an LM test for autocorrelation clearly indicates first order autocorrelation of your residuals. Therefore you set up the following model 2:

$$y_t = \mu + \alpha y_{t-1} + e_t$$
 $e_t = \phi e_{t-1} + u_t,$

where u_t is iid white noise. Assuming this is the correct model, what does this mean for your previous estimation results of model 1? How can you rearrange model 2 to obtain an equation that is consistently estimable by OLS? Show it step by step!

3. You estimated the model $y_t = \rho y_{t-1} + u_t$ by OLS and received the following estimates (T=500):

$$\hat{\rho} = 0.962$$
 $SE(\hat{\rho}) = 0.0125$ $\hat{\sigma}_u^2 = 1.371$

The autocovariances of \hat{u}_t are estimated as

$$\hat{\gamma}_0 = 0.856$$
 $\hat{\gamma}_1 = 0.564$ $\hat{\gamma}_2 = -0.257$

Note that those autocovariances are significant and autocovariances higher than order 2 are not.

(12P) Estimate the long-run variance of u_t and perform a Phillips-Perron test at the 5% level. Carefully state the null and alternative hypothesis, find the test statistic and describe your test decision.

(If you are not able to estimate a long-run variance, take 1.564.)

Part 2 - Cross Section (19 credits)

4. Consider a random sample of size N from the geometric distribution

$$f(y) = \theta(1-\theta)^y$$
, $0 < \theta < 1, y \in \{0, 1, 2, ...\}$.

Recall that $\mathrm{E}(y) = \frac{1-\theta}{\theta}$ and $\mathrm{Var}(y) = \frac{1-\theta}{\theta^2}$.

- (a) (2P) Write down the log likelihood function.
- (b) (4P) Find the ML estimator of θ .
- (c) (2P) Show that the ML estimator of θ is consistent.
- (d) (2P) Find the Hessian with respect to θ .
- (e) (4P) Find the asymptotic distribution of the ML estimator assuming that the CIME holds.
- 5. (5P) For the model $y = x\beta + u$ explain in a few sentences why OLS is a special case of GMM estimation. Furthermore shortly explain whether the special case OLS is exactly or overidentified.