Empirical Approach to Software Engineering

COSC EASE PROJECT

協調フィルタリングによる工数、規模、 コスト超過の見積りについて

2005年度第4回エンピリカルソフトウェア工学研究会

大杉 直樹

奈良先端科学技術大学院大学 情報科学研究科

EASE プロジェクト研究員

研究の背景

- ・ 定量的データ分析に基づく見積もりは重要!だが,...
- ・ 開発者やプロジェクト管理者の時間も重要.
 - 見積もりを実施するために必要なコストが、得られる利益に 見合っていなければならない。

目的とアプローチ

目的

- 下記の特長を備えた簡単に使える(<u>既収集データを最大限に</u> 生かせる)定量的見積もり手法/ツールを開発する.
 - ・ 入力データに対する受容性.
 - データ欠損に対するロバスト性(頑健性).
 - 入力データの特性に対する順応性。

・アプローチ

- データ自動調整機能の実装.
- 協調フィルタリングの採用.
- 予測アルゴリズムを交換可能にする設計.

データ自動調整機能の実装

- 見積もりを実行可能な形式にデータを自動調整するようにツールを実装する。
 - 実装したツールは、下記のような CSV (Comma Separated Values) 形式のデータを、一切の前処理なしで読み込める.

	Language	Designing cost	Coding cost	# of bugs	
PJ_A	COBOL	50	20	, 10	
PJ_B	COBOL	45	18	,	
PJ_C		55	22	, 11	
PJ_D	Java	10		30	

協調フィルタリングの採用

- Amazon 社の書籍推薦システムなどで用いられている 予測技法. ユーザの好みの傾向を予測する.
 - 各ユーザが書籍を 5(好き)~1(嫌い)の 5 段階で評価した データを基に予測する.
 - ユーザが書籍を評価していない部分(データ欠損)が沢山 あっても、ユーザの好みを正確に予測できる.

協調フィルタリングに基づく見積もり手順のこと

- ステップ 1:類似度計算
 - 現行プロジェクト(見積もり対象)と過去の各プロジェクトの間 の類似度を計算する.
 - 類似度の高い k 個の過去プロジェクトを選ぶ(例えば k=2).
- ステップ 2: 見積値計算
 - 類似プロジェクトの実績値から、現行プロジェクトの見積値を 計算する.

		開発言語	開発種別	概算FP	要員数	見養一数	
	現行プロジェクト X	Java	新規	40	10	37.5	
類	似度:+1.0 ェクト A	Java	新規	データ欠損	8	40	
(類	似度: +0.9 ェクト B	Java	データ欠損	25	6	35	
類	似度: -1.0 ェクト C	データ欠損	保守	100	40	250	

交換可能な予測アルゴリズム

見積もりの各ステップは、いくつかのアルゴリズムの中から選んで実行する。データの特徴に応じて、使用するアルゴリズムを切り替える。

これまでに発表した文献

日本のソフトウェア開発企業から収集されたデータを用いたケーススタディを実施し、論文などに投稿してきた(詳細については、付録 II の文献を参照).

	目的	データ	アルゴリズム	結果	組織
[1] - [2]	開発総工数見積もり	特性変数: 13 種類 プロジェクト: 1081 件 データ欠損率: 60 %	類似度計算: コサイン類似度 見積値計算: 増幅加重平均 (Type-1)	平均誤差: 79 % Pred25: 37 %	NTTデータ 株式会社
[3]	企業横断的 データを用いた 開発総工数見 積もり	特性変数: 97 種類 プロジェクト: 378 件 (15 社から収集) データ欠損率: 67 %	類似度計算: 調整コサイン類似 度 見積値計算: 増幅加重平均 (Type-2)	平均誤差: 64 % Pred25: 30 %	独立行政法人 情報処理機構 ソフトウェア・ エンジニアリン グ・センター
[4]	プロジェクト早 期のシステム 規模見積もり	特性変数: 20 種類 プロジェクト: 85 件 データ欠損率: 7 %	類似度計算: コサイン類似度 + ユークリッド類似度 見積値計算: 増幅加重平均 (Type-1)	平均誤差: 28 % Pred25: 56 %	株式会社日立 システムアンド サービス
[5]	コスト超過リスクの予測(判別予測)	特性変数: 199 種類 プロジェクト: 45 件 データ欠損率: 42 %	類似度計算: 調整コサイン類似 度 見積値計算: 単純加重平均	適合率: 73 % 再現率: 100 % F1値: 0.84	株式会社日立 製作所

データ欠損率と見積精度の関係 [6]

- 目的: 開発総工数見積もり
- データ: 変数10種類, プロジェクト140件, データ欠損率: 0-50%
- 類似度計算:コサイン類似度,見積値計算:単純加重平均

プロジェクト数と見積精度の関係 [7]

- 目的: 開発総工数見積もり
- データ:変数10種類,プロジェクト140件,データ欠損率:0%
- 類似度計算:コサイン類似度,見積値計算:単純加重平均

今後の方針

- 手法やツールの普及に努める.
 - 使いやすいユーザインタフェースを備えた GUI ベースの見積もりツールを開発する.
 - 手法やツールの利用を支援するため、ツールの利用説明書 やチュートリアルを作成する.
 - 作成した成果物の配布や、議論のためのフォーラム提供を 行う web サイトを作成する.
- 見積精度改善をするために手法/ツールを改良する.
 - 予測アルゴリズムを洗練する.
 - 変数自動選択手法を改良する.
 - データに含まれるノイズを除去する方法を考察する.

特に注力している活動

- 特に GUI ベースの見積ツール開発に注力しています。
 - 機能などについて、御意見、御要望をお聞かせください。
 - 大杉直樹, メール: <u>naoki-o@is.naist.jp</u>, 電話: 0743-72-5318

まとめ

- 協調フィルタリングによる見積もり手法を紹介した。
 - データ自動調整機能の実装による受容性.
 - 協調フィルタリングの採用によるロバスト性.
 - 交換可能な予測アルゴリズムによる順応性.
- これまでの適用事例を紹介した。
 - データ欠損率が増加しても、精度は低下しにくい、
 - データが蓄積されるほど、精度は向上してゆく、
- ・ 今後の方針について説明した.
 - GUI ベースの見積ツール開発について御意見, 御要望をお聞かせください.

付録 1: 利用可能なツール

- ・コマンドラインツール
 - 協調フィルタリングエンジン
 - 類似度計算ツール
 - 類似性可視化ツール
 - 類似グループ識別ツール
- Microsoft Excel マクロ
 - 数値見積マクロ
 - 判別予測マクロ
 - 類似性可視化マクロ
 - 自動変数選択マクロ
- 一部を除き、下記 URL からダウンロードできます.

http://sourceforge.jp/projects/ncfe/

付録 II: 参考文献

- [1] N. Ohsugi, M. Tsunoda, A. Monden, and K. Matsumoto, "Effort estimation based on collaborative filtering," In *Proc. of 5th International Conference on Product Focused Software Process Improvement (Profes2004)*, Lecture Notes in Computer Science, Vol.3009, pp.274-286 (2004).
- [2] 角田雅照, 大杉直樹, 門田暁人, 松本健一, 佐藤慎一, "協調フィルタリングを用いたソフトウェア開発工数予測方法," 情報処理学会論文誌, vol.46, no.5, pp.1155-1164 (2005).
- [3] 大杉直樹, 角田雅照, 門田暁人, 松村知子, 松本健一, 菊地奈穂美, "企業横断的収集 データに基づくソフトウェア開発プロジェクトの工数見積もり," SEC journal, No.5, pp.16-25 (2006).
- [4] 大杉直樹, 松本健一, 津田道夫, 中屋広樹, 十九川博幸, "協調フィルタリング技術によるソフトウェア規模の予測," 日立システムジャーナル (2006). (submitted).
- [5] 本村拓也, 柿元健, 角田雅照, 大杉直樹, 門田暁人, 松本健一, "協調フィルタリングを用いたプロジェクトコスト超過の予測," 信学術報, SS2005-39, pp.35-40 (2005).
- [6] 柿元健, 角田雅照, 大杉直樹, 門田暁人, 松本健一, "協調フィルタリングに基づく工数見積もりのロバスト性評価," 日本ソフトウェア科学会FOSE2004, ソフトウェア工学の基礎XI, pp.73-84, (2004).
- [7] 柿元健, 角田雅照, 大杉直樹, 門田暁人, 松本健一, "協調フィルタリングによる工数見積もり手法におけるデータ数と見積もり精度の関係の分析," 日本ソフトウェア科学会FOSE2005, ソフトウェア工学の基礎XI, pp.77-86 (2005).