

C. x(t) = (t-r)e u(t-r) = e . (t-r)u(t-r) $\frac{\chi_{1}(t)}{\chi_{1}(t)} = \frac{\chi_{1}(t)}{\chi_{2}(t)} = \frac{\chi_{2}(t)}{\chi_{2}(t)} = \frac{\chi_$ -rt _ -rcs-r1 _ -rcs-r1 x 1 _ s>e $= p \times (t) = u(t) - u(t-1) - \frac{1}{s} + \frac{1}{s$ Y) a. X(s) = S

Real (S) > 0

V

S+9

L

(m) Two Jule b. X(s) = S+Y - F < Real fs 4 <- F ~ X (S) = -1 + Y = x xet = 2 | 1 for s<- 1/5

p) K حارد , عمر برادد = Xis) = K (S-P, 1(S-Pr)(S-Pr)(S-Pr) rul or blander, or : P = . ae jts - Cres X(1): X(1) = X (8*) x41=x41, L(x*c+1)=X(s*) P= P, = , &e F Zi xc+) : X(S) = X(-S) (+) cisol x(t) = x(-t), L (x(-t)) = X(-5) tJT/x xet/e $Jt = \int_{-\infty}^{+\infty} X(0) = \int_{-\infty}^{+\infty} xet/xi dt$ (0-P,)(0-Pr)(-Pr)(-Pr) K PiPY PY PF txtxtxtxe° = = K=F.

(F) $\frac{d}{dt} xet = -\frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ $=D \begin{cases} Y(8) = \frac{Y}{S^{2}+F} \\ X(8) = \frac{S}{S^{2}+F} \end{cases}$ $=D \begin{cases} X(8) = \frac{Y}{S^{2}+F} \\ X(8) = \frac{S}{S^{2}+F} \end{cases}$ $= \frac{Y(8)}{S^{2}+F}$ $= \frac{Y(8)}{S^{2}+F}$ =-on) Sty(s) - Sy(cs) - Ty(s) = X(s) $= 5 H cs) = \frac{1}{x cs} = \frac{1}{s^r - s - r} = \frac{1}{(s - r)(s + 1)}$

برای سیستم LTI و علی که به شکل بلوکی زیر نشان داده شده است, معادله دیفرانسیلی که رابطه بین ورودی و خروجی
 را نشان میدهد را تعیین کنید.

$$A = X \times S + (-FB)$$

$$B = A \times \frac{Y}{S}$$

$$= DB(1 + \frac{\Lambda}{S}) = X \times S \times \frac{Y}{S}$$

$$= DB = X \times S \times \frac{Y}{S}$$

$$= DB = X \times S \times \frac{Y}{S}$$

$$= DB = X \times S \times \frac{Y}{S} \times \frac{Y}{S}$$

$$= DD = X \times S \times \frac{Y}{S} \times \frac{Y}{S} \times \frac{Y}{S}$$

$$= DD = X \times S \times \frac{1}{S+Y}$$

$$= DD = X \times S \times \frac{1}{S+Y}$$

$$= X \times S \times \frac{1}{S+Y} \times \frac{Y}{S} \times \frac$$

L-1 [2 yet) + 10 d yets + 1/yet) = 4d xet) + 1/xet)

$$xct = e^{-ft}$$
 $xct = e^{-ft}$ $xct = e^{-ft$

$$\frac{1}{X(S)} = \frac{Y(S)}{X(S)} = \frac{+\frac{1}{(S+F)^{r}}}{\frac{S+F}{(S+F)^{r}}} = \frac{+1}{S+F}$$

$$= p \neq d = e \text{ nut} - e \text{ nut}$$

$$= p \neq d = e \text{ nut} - e \text{ nut}$$

) Jest my act of Jest of Jest