

Arhitektura i Razvoj Inteligentnih Sustava

Tjedan 1: Uvodno predavanje

Creative Commons

- dijeliti umnožavati, distribuirati i javnosti priopćavati djelo
- prerađivati djelo

- imenovanje: morate priznati i označiti autorstvo djela na način kako je specificirao autor ili davatelj licence (ali ne način koji bi sugerirao da Vi ili Vaše korištenje njegova djela imate njegovu izravnu podršku).
- nekomercijalno: ovo djelo ne smijete koristiti u komercijalne svrhe.
- dijeli pod istim uvjetima: ako ovo djelo izmijenite, preoblikujete ili stvarate koristeći ga, preradu možete distribuirati samo pod licencom koja je ista ili slična ovoj.

U slučaju daljnjeg korištenja ili distribuiranja morate drugima jasno dati do znanja licencne uvjete ovog djela. Od svakog od gornjih uvjeta moguće je odstupiti, ako dobijete dopuštenje nositelja autorskog prava. Ništa u ovoj licenci ne narušava ili ograničava autorova moralna prava. Tekst licence preuzet je s http://creativecommons.org/

O predmetu

- Izborni diplomski predmet
- 5 ECTS bodova
- 30 sati predavanja
- 15 sati laboratorijskih vježbi svih 5 je fizičkih vježbi
 - Bodovi se dobiju za prisutnost na laboratorijskoj vježbi 20% bodova
- Bodovi se dobiju i za prisutnost na predavanjima 10% bodova
- Predmet se polaže kroz projekt 70% bodova
 - Projekt će biti izazovan i sadržat će sve elemente MLOps-a
 - Nosi 70% bodova i biti će pregledan od strane nastavnika na kraju semestra
 - 3 grupe po 7 studenata

O predmetu

- Predmet je sadrži teme praktičnog strojnog učenja (ML engineering) i zamišljen je kao praktičan predmet
- Ideja je približiti vas poslovnim i tehničkim detaljima uvođenja sustava temeljenih na strojnom učenju – inteligentnih sustava
- Tijekom predmeta obraditi će se teme:
 - Arhitektura inteligentnih sustava
 - Upotreba inteligentnih sustava u poslovanju
 - Programiranje inteligentnih sustava i infrastrukturni detalji
 - MLOps metodologija

Nastavno osoblje

- Nositelj: doc.dr.sc. Mario Brčić, mario.brcic@fer.hr
 - Projekt
- Predavač: dr.sc. Dalibor Krleža, dalibor.krleza@fer.hr
 - Predavanja i laboratorijske vježbe
- Asistent: Andrija Miličević, mag.ing., andrija.milicevic@fer.hr
 - Laboratorijske vježbe
- Vanjski suradnik: Zoran Krleža, mag.ing., zoran.krleza@true-north.hr
 - RedHat certified architect
 - Kubernetes, docker, infrastruktura za projekt
 - True North d.o.o.

TRUE NORTH

O nama i predmetu

Naša namjera – kontekst ovog predmeta:

"Provesti Vas glatko kroz sadržaj predmeta i opremiti Vas znanjima koja će dobro prezentirati Vas i FER u svijetu."

- Imajte na umu da se ovaj predmet na FER-u održava po prvi puta
 - Sličnih predmeta ima po drugim US sveučilištima pojavljuju se od 2019.
 - Od vas tražimo nove ideje za predmet
 - Što je bilo dobro i što zadržati?
 - Što se još očekivali čuti?

Raspored predavanja (1)

-	Tjedan	Datum	Predavanja	Lab	Predavač(i)
	1	2.3.	 Uvodno predavanje Zašto i čemu inteligentni sustavi? Problematika uvođenja i zašto mnogo takvih projekata propada. 	Instalacija i osposobljavanje razvojne okoline za laboratorijske vježbe	Mario Brčić Dalibor Krleža
	2	9.3.	 Arhitektura klasičnih sustava kao i razlike prema inteligentnim sustavima Poslovni slučajevi korištenja inteligentnih sustava Klasifikacija i algoritmi Model kao osnova inteligentnog sustava 		Dalibor Krleža
		13.03.		Lab1: Osnove, model, spremanje i učitavanje modela, metrika i evaluacija modela	
	3	16.03.	 Zahtjevi na infrastrukturu Ocjena razlika i potrebnih nadogradnji infrastrukture 		Dalibor Krleža

Raspored predavanja (2)

4	23.03.	 Preporučivači (recommenderi) kao slučaj korištenja Zadatak za projekt Izvori podataka Podatkovna integracija Dohvat podataka iz velikih tokova podataka 		Mario Brčić Dalibor Krleža
5	30.03.	 Postupci pripreme i čišćenja podataka Automatizacija transformacije podataka (ETL) Velike količine podataka i skalabilnost transformacije Odabir algoritma strojnog učenja s obzirom na podatke, te utjecaj odabira algoritma na postupak pripreme i čišćenja 		Dalibor Krleža
	03.04.		Lab2 (pandas): priprema i čišćenje podataka	
6	06.04.	 Programski jezici i razvojni alati Paketi za praktično strojno učenje Učenje i stvaranje modela Repozitoriji modela koji omogućuju suradnju unutar razvojnog tima Verzioniranje modela i postupak evaluacije 		Dalibor Krleža

Raspored predavanja (3)

7	13.04.	 Mikroservisna arhitektura Sigurnost mikroservisne arhitekture i inteligentnih servisa generalno Integracija inteligentnih servisa u poslovne procese organizacije Inteligentna optimizacija poslovnih procesa 		Dalibor Krleža
8	04.05.	 Serveri za izvođenje inteligentnih servisa Načini pokretanja modela na serveru Verzioniranje modela pokrenutih na serveru Skalabilnost: kontejneri i cloud Visoka dostupnost Sigurnost 		Dalibor Krleža
	05.05.		Lab3 (MLflow): Učenje modela, repozitorij modela, suradnja unutar tima	
9	11.05.	 Praćenje i monitoring rada inteligentnog servisa Utjecaj rada inteligentnog servisa na podatke Zatvorena petlja učenja, evaluacije i rada modela 		

Raspored predavanja (3)

10	18.05.	Metodologije za razvoj inteligentnih sustavaMLOps		Dalibor Krleža
11	22.05.		Lab4 (MLServer, Seldon Core 2, Prometheus): serviranje modela i praćenje rada	
	25.05.	MLOpsIzvedba pipeline-ovaAutomatizacija inkrementalnog učenja modela		Dalibor Krleža
12	01.06.	 Cloud vs on-premise Analiza efekta uvođenja inteligentnog sustava 		Dalibor Krleža
13	05.05.		Lab5 (Airflow): pipeline, custom modeli	

Laboratorijske vježbe (1)

- Izvođenje laboratorijskih vježbi je fizički na fakultetu
- Koristi se programski jezik Python (verzija 3)
- Laboratorijska vježba traje 180 minuta (3 sata)
 - Laboratorijske vježbe se odrađuju kroz Jupyter notebookove
 - Preporuča se imati vlastiti laptop ili barem se udružiti s nekim
 - Većina vježbi se može odraditi na standardnom laptopu od barem 4 jezgre procesora i 8 GB RAM-a
 - Jupyter notebookovi su pisani za operacijski sustav Linux
 - Preporučamo Ubuntu 22.04 LTS (desktop), može i kao virtualni stroj (recimo Oracle VirtualBox)
- Na laboratorijskoj vježbi će nas biti više kako bismo vas pružili pomoć
 - Ohrabrujemo i međusobnu komunikaciju i zajedničko rješavanje problema
 - Cilj laboratorijskih vježbi je da dobijete hand-on iskustvo s određenim temama iz područja ML engineeringa

Laboratorijske vježbe (2)

- Vašu radnu okolinu pripremite tako da instalirate
 - python interpreter + virtualenv
 - VS Code razvojno okružje
 - Postoji snap za Ubuntu 22.04 LTS
 - Dodajte podršku za python i docker
 - docker
 - minikube
- Ostalo budemo u sklopu pojedine vježbe + priprema kod kuće za stvari koje duže traju
- Ponovite:
 - Predmet "Raspodijeljeni sustavi" kontejneri i mikrousluge
 - Predmet "Strojno učenje" algoritmi za strojno učenje

Projekt (1)

• Za potrebe vaših projekata dignuta je MLOps okolina koja se može naći na:

https://aris.fer.hr

- Okolina je kubernetes cluster (1.24) koja sadrži
 - PostgreSQL bazu podataka pristupate kroz pgAdmin sučelje
 - Apache Spark
 - MLflow
 - MLServer
 - Seldon Core v2
 - Prometheus
 - Apache Airflow
 - ngnix ingress
- U okolinu se prijavljujete AAI@EduHR korisničkim računom
- Zahvaljujemo True-North d.o.o. i Zoranu na pomoći s instalacijom okoline

Python

- Reference Manual https://docs.python.org/3.10/reference/
- Tutorial https://docs.python.org/3.10/tutorial/index.html
- W3 Schools https://www.w3schools.com/python/
- IDE
 - PyCharm (JetBrains) https://www.jetbrains.com/pycharm/
 - Besplatna licenca za studente
 - Slično IntelliJ/CLion IDE-ovima
 - VS Code https://code.visualstudio.com/docs/languages/python

Python ML

- scikit-learn: https://scikit-learn.org/stable/
- PyTorch: https://pytorch.org
- Keras: https://keras.io
- Tensorflow: https://www.tensorflow.org
- Pandas: https://pandas.pydata.org
- MLflow: https://mlflow.org
- SeldonIO MLServer: https://www.seldon.io/introducing-mlserver
- Seldon Core v2: https://www.seldon.io/seldon-core-v2-the-next-generation-open-data-centric-mlops
- Apache Spark: https://spark.apache.org/docs/latest/api/python/
- Apache Airflow: https://airflow.apache.org

Polaganje predmeta u kontinuiranoj nastavi

Aktivnost	Maksimalno bodova
Laboratorijske vježbe	20
Pohađanje predavanja	10
Projekt	70
Dodatni teži zadaci (opcija)	5 (povrh maksimalnih 100)

- Povrh redovnih 100 bodova može se skupiti dodatnih 5 bodova rješavajući neki teži zadatak (recimo ML challenge)
- Ispitnih rokova nema. Imate projekt koji se ocjenjuje.

Arhitektura i Razvoj Inteligentnih Sustava

Tjedan 1: Problematika uvođenja inteligentnih sustava

Osnovi pojmovnik

- Umjetna inteligencija Simulacija procesa ljudske inteligencije na strojevima (računala)
- Usko i generalno primjenjiva umjetna inteligencija
 - Uska se koncentrira na izvršavanje konkretnih uskih područja / zadataka
 - Generalno primjenjiva (AGI) pokušava replicirati kognitivne procese ljudskog mozga
- 4 tipa umjetne inteligencije (Arend Hintze)
 - Tip I : Repetitivni strojevi bez memorije, ponavljanje naučenog
 - Tip II: Limitirana memorija strojevi koji imaju limitiranu memoriju kod donošenja odluke
 - Tip III: Theory of mind Uključeno emocionalno stanje
 - Tip IV : Samosvijest

Primjene umjetne inteligencije

- Automatizacija (automation) skup izvršnih elementa i senzora sa pozadinskim pravilima koja omogućuju izvršenje nekog zadatka proizvodna linija
- Strojno učenje (machine learning) spremanje znanja u parametre nekog algoritma, a koje algoritmu omogućuje reprodukciju tog znanja
 - Nadzirano učenje labele su zadane unaprijed
 - Nenadzirano učenje labele nikad nisu zadane
 - Podržano učenje labele nisu zadane, ali se model nagrađuje ili kažnjava u trenutku dobre ili loše odluke
- Strojni vid (machine vision)
- Procesiranje prirodnog jezika (natural language processing)
- Robotika (robotics)
- Autonomna vozila (self-driving cars)
- Agregacije Chat GPT
- U sklopu predmeta se nećemo baviti autonomnim vozilima, robotima i AGI-em generalno, već usko primjenjivim inteligentnim sustavima za konkretne zadatke i slučajeve korištenja

- Pojam "ekspertni sustav" ljudsko znanje preneseno u računalni program, pomažući tako u poslovanju organizacije
- Pojam "znanja" postaje široko definiran
 - Osim ljudskog znanja, tu je i znanje koje se može izvući iz podataka
 - Organizacije tijekom poslovanja skupljaju velike količine podataka
 - Senzori
 - Poslovni sustavi
 - Vanjski skupovi podataka (tipični obrasci u industriji)
- Sinergija podataka i ljudskog znanja
 - Primjer je zdravstvo velika količina biomarkera i podataka sa senzora pacijenta koji se kombiniraju sa znanjem liječnika specijalista

- U svijetu senzora, kamera, pametnih uređaja i strojeva treba postojati centralna komponenta koja povezuje ulaze i izlaze
 - Automatizirano skripte posebno pisane u tu svrhu
 - Sustav koji se dobio učenjem?
- U svijetu poslovnih informacijskih sustava, nadogradnja koja omogućava informacijskom sustavu koji reagira na inteligentan način
 - Uočavanje obrazaca i pozadinska logika koja ima za zadaću:
 - Povećati zadovoljstvo korisnika i klijenata
 - Učiniti (poslovne) procese sigurnijim i efikasnijim
 - Smanjiti troškove
- Centralna komponenta koja sadrži logiku (inteligentnu) za značajno poboljšavanje rada okolnih sustava

Embedded CNN

Gdje su svi ti inteligentni sustavi?

- U današnje vrijeme AI hype-a nekako ga teško uočavamo u svakodnevnom životu...?
 - Izuzmimo očite primjere: Chat GPT, Photomath, biometrijske prijave, preporučivač (*recommender*) na Amazonu npr..., neke eksperimentalne primjene poput generiranja fotografija, slika, glazbe, ...
- Gdje je sav taj AI u našem svakodnevnom životu? Zašto nema očitih i značajnih primjera u našoj okolini?
 - Zar je stvarno tako teško uvesti AI u informacijske sustave?
 - Da li bi Al u sustavima koji nas okružuju trebao biti uočljiv? "Da, tu se zbilja vidi da postoji nekakva inteligentna logika u tom sustavu!"
 - Kad pitamo to pitanje, često se čuje "Pokušali smo, ali...."
- Plaćanje parkinga ispod Kvaternikovog trga

Problem očekivanja

- "Pa to je samo malo nekih tamo if...then...else naredbi"
- Sales velikih IT kompanija često u svojim prezentacijama i radionicama maskira kompleksnost područja –
 puno klikanja nakon kojeg nešto tamo u cloud-u prepozna da je ovo stol, a ovo pas, a ovo mačka, a ovo čaša
 na stolu
- Poduzeća teško odgovaraju na pitanje slučaja korištenja
 - Slučaj korištenja je banalan i nije za AI uvodi se samo radi hype-a
 - Ili slučaj korištenja nije na mjestu koje će generirati najveću korist
- Često ispada da je korisnost ispod troškova uvođenja
 - Rezanje troškova uvođenja često rezultira neuspjehom uvođenja
 - "Ma zar mi tu zbilja moramo dodati toliko infrastrukture"
- Nema ozbiljne namjere uvođenja
 - "Samo malo isprobavamo da li je to za nas"
 - Prekratak rok
 - "Ma to su neki tamo sustavi o kojima čitamo na Internetu"
- Promjena koja rezultira kratkoročnom negativnom metrikom
- Područje u kojem imamo brze socio-ekonomske promjene, a koje se ne stignu pratiti
 - Konstantni model drift koji se ne stigne pratiti adekvatno
- Nikad niste zapravo završili, uvijek se treba nešto prilagođavati, učiti, isprobavati, provjeravati

Problem podataka

- Nema dovoljno podataka za uvođenje jednostavno ne postoji ulaz na temelju kojeg se može skupiti dovoljno znanja
- Podaci su neadekvatni
 - Puno kategoričkih podataka, premalo kontinuiranih diskretizacija koja ne doprinosi
 - Podaci nisu ažurni i ne skupljaju se redovito
 - Puno podataka fali
 - Separacija učenje / validacija / test
- Podatke nije moguće skupiti na jednostavan način
 - Često problem ugrađenih sustava iz kojih je teško izvaditi i spremiti podatke senzora
 - Razna nekompatibilna sučelja i nemogućnost transformacije podataka
- Nepostojanje stručne interpretacije
 - Velika količina podataka nema labela i ne postoji stručna osoba koja bi ocijenila te podatke

Problem podataka

- Jaki drift modela koji se ne može ispraviti s dostupnim podacima
 - Primjer IoT zgrade
- Visoka dimenzionalnost podataka
 - Razbijanje na segmente, puno malih modela koji se teško koriste
- Nepostojanje algoritma koji bi se mogao primijeniti na podatke
 - Nemogućnost prilagodbe podataka na algoritme

Problem infrastrukture

- Zastarjela infrastruktura
 - Stari izvori podataka (hijerarhijske baze podataka npr...)
 - Nepostojanje prave servisno orijentirane arhitekture stari green i gray ekrani
- Iako je presjek infrastrukture između klasičnih informacijskih sustava i inteligentnih sustava značajan
 - Trošak uvođenja može značiti značajnu investiciju u infrastrukturu
 - Promjene u infrastrukturi mogu zahtijevati i zahvate u postojeće klasične informacijske sustave (sigurnost, servisno, ...)

Problem developera

- Svi mi danas znamo MLOps?
 - Ili možda mislimo da znamo?
 - Većina developera zna nacrtati faze MLOps-a i napisati Open Source produkte koji ga podržavaju
 - Dosta developera je sudjelovala u nekim izazovima
 - Uzmemo skup podataka s Kaggle-a, pročistimo, napravimo neku ML arhitekturu, nahranimo ju s podacima i vidimo izlaznu metriku
 - Pitanje "ML scientist" vs "ML engineer"
 - Neki developeri su išli i na pokoji tečaj
 - Takvi tečajevi, posebno u sklopu većih korporacija, završe kao sales-pitch za njihovu okolinu (IBM, RedHat, ...)
 - Iz takvih tečaja se dosta teško nauče detalji "ispod haube"

