Data Science Using Python, SAS, & R:

A Rosetta Stone for Analytical Languages

Table of Contents

R	Tutorial	5
1	Reading in Data and Basic Statistical Functions	5
	1.1 Read in the data	5
	a) Read the data in as a .csv file	5
	b) Read the data in as a .xls file	5
	c) Read the data in as a .json file	5
	1.2 Find the dimensions of the data set.	6
	1.3 Find basic information about the data set	6
	1.4 Look at the first 5 (last 5) observations.	6
	1.5 Calculate means of numeric variables.	7
	1.6 Compute summary statistics of the data set.	7
	1.7 Descriptive statistics functions applied to columns of the data set	7
	1.8 Produce a one-way table to describe the frequency of a variable	
	a) Produce a one-way table of a discrete variable	
	b) Produce a one-way table of a categorical variable	8
	1.9 Produce a two-way table to visualize the frequency of two categorical (or discrete variables	e)
	1.10 Select a subset of the data that meets a certain criterion	8
	1.11 Determine the correlation between two continuous variables	
2	Basic Graphing and Plotting Functions	9
	2.1 Visualize a single continuous variable by producing a histogram	
	2.2 Visualize a single continuous variable by producing a boxplot	
	2.3 Visualize two continuous variables by producing a scatterplot	10
	2.4 Visualize a relationship between two continuous variables by producing a scatter and a plotted line of best fit	plot
	2.5 Visualize a categorical variable by producing a bar chart.	12
	2.6 Visualize a continuous variable, grouped by a categorical variable, using side-by-s boxplots.	
	a) Simple side-by-side boxplot without color.	

b) More advanced side-by-side boxplot with color	14
3 Basic Data Wrangling and Manipulation	15
3.1 Create a new variable in a data set as a function of existing variables in the da	ta set.15
3.2 Create a new variable in a data set using if/else logic of existing variables in the	
set	
3.3 Create a new variable in a data set using mathemtical functions applied to exi variables in the data set	_
3.4 Drop variables from a data set	16
3.5 Sort a data set by a variable.	17
a) Sort data set by a continuous variable	
b) Sort data set by a categorical variable.	17
3.6 Compute descriptive statistics of continuous variables, grouped by a categoric variable	
3.7 Add a new row to the bottom of a data set.	17
3.8 Create a user-defined function and apply it to a variable in the data set to creanew variable in the data set	
4 More Advanced Data Wrangling	19
4.1 Drop observations with missing information	19
4.2 Merge two data sets together on a common variable	19
a) First, select specific columns of a data set to create two smaller data sets	19
b) Second, we want to merge the two smaller data sets on the common variable	e 20
c) Finally, we want to check to see if the merged data set is the same as the original data set	_
4.3 Merge two data sets together by index number only	20
a) First, select specific columns of a data set to create two smaller data sets	20
b) Second, we want to join the two smaller data sets	21
c) Finally, we want to check to see if the joined data set is the same as the original set	
4.4 Create a pivot table to summarize information about a data set	21
4.5 Return all unique values from a text variable	22
5 Preparation & Basic Regression	22
5.1 Pre-process a data set using principal component analysis	22
5.2 Split data into training and testing data and export as a .csv file	23
5.3 Fit a logistic regression model	
5.4 Fit a linear regression model.	24

6 Supervised Machine Learning	24
6.1 Fit a logistic regression model on training data and assess against testing data	24
a) Fit a logistic regression model on training data	24
b) Assess the model against the testing data	25
6.2 Fit a linear regression model on training data and assess against testing data	26
a) Fit a linear regression model on training data	26
b) Assess the model against the testing data	27
6.3 Fit a decision tree model on training data and assess against testing data	27
a) Fit a decision tree classification model	27
b) Fit a decision tree regression model	29
6.4 Fit a random forest model on training data and assess against testing data	30
a) Fit a random forest classification model.	30
b) Fit a random forest regression model	31
6.5 Fit a gradient boosting model on training data and assess against testing data	32
a) Fit a gradient boosting classification model.	32
b) Fit a gradient boosting regression model.	34
6.6 Fit an extreme gradient boosting model on training data and assess against testing	
data	
a) Fit an extreme gradient boosting classification model.	
b) Fit an extreme gradient boosting regression model.	
6.7 Fit a support vector model on training data and assess against testing data	
a) Fit a support vector classification model.	
b) Fit a support vector regression model	
6.8 Fit a neural network model on training data and assess against testing data	
a) Fit a neural network classification model	
b) Fit a neural network regression model.	
7 Unsupervised Machine Learning	
7.1 KMeans Clustering	39
7.2 Spectral Clustering	
7.3 Ward Hierarchical Clustering	
7.4 DBSCAN	40
7.5 Self-organized map	
8 Forecasting	42
8.1 Fit an ARIMA model to a timeseries.	42

a) Plot the timeseries	42
b) Fit an ARIMA (0, 1, 1) model and predict 2 years (24 months)	42
8.2 Fit a Simple Exponential Smoothing model to a timeseries	43
a) Plot the timeseries	
b) Fit a Simple Exponential Smoothing model, predict 2 years (24 months) out an predictions	_
8.3 Fit a Holt-Winters model to a timeseries	45
a) Plot the timeseries	45
b) Fit a Holt-Winters additive model, predict 2 years (24 months) out and plot predictions	46
9 Model Evaluation & Selection	47
9.1 Evaluate the accuracy of regression models.	47
a) Evaluation on training data	47
b) Evaluation on testing data	48
9.2 Evaluate the accuracy of classification models.	48
a) Evaluation on training data	48
b) Evaluation on testing data	49
9.3 Evaluation with cross validation	49
a) KFold	49
b) ShuffleSplit	50
10 Text Analytics	51
11 Deep Learning	51
Appendix	51
1 Built-in R Objects	51
2 R packages used in this tutorial	52
Alphabetical Index	53
Array	53
Data Frame	53
Dictionary	53
List	
Vector	54

R Tutorial

Welcome to the R tutorial version of "Data Science Using Python, SAS, & R: A Rosetta Stone for Analytical Languages". This tutorial includes examples of common data science tasks, organized in the same way across 3 data science languages. Before beginning this tutorial, please check to make sure you have R 3.3.1 installed (this is not required, but this is the release used to generate the following examples). Also, the following R packages are used throughout this tutorial. You may not need all of the following packages to fit your specific needs, but they are listed below, and also in Appendix Section 2 with more detail:

gdata | rjson | ggplot2 | dplyr | tree |randomForest | gbm | xgboost | e1071 | RSNNS | caret | kernlab | dbscan |forecast

To install R packages you need to run the following in the R console:

```
install.packages("name_of_package")
```

Note: In R, comments are indicated in code with a "#" character, and arrays and matrices begin with index 1. Also, "<-" and "=" can be used interchangeably.

Now let's get started!

1 Reading in Data and Basic Statistical Functions

1.1 Read in the data.

```
a) Read the data in as a .csv file.
student <- read.csv('/Users/class.csv')
read.csv()
b) Read the data in as a .xls file.
# call the gdata package
library(gdata)
student_xls <- read.xls('/Users/class.xls', 1)</pre>
```

c) Read the data in as a .json file.

gdata | read.xls()

There is more code involved in reading a .json file into R so it becomes a proper data frame. Also, this code is specific for a certain .json format, so you may have to change it to fix your needs.

```
# call the rjson package
library(rjson)
```

rjson | fromJSON()

1.2 Find the dimensions of the data set.

The shape of an R data frame is available by calling the dim() function, with the data name as an argument.

```
dim(student)
## [1] 19 5
```

1.3 Find basic information about the data set.

Information about an R data frame is available by calling the str() function, with the data name as an argument.

```
str(student)
## 'data.frame': 19 obs. of 5 variables:
## $ Name : Factor w/ 19 levels "Alfred", "Alice",..: 1 2 3 4 5 6 7 8 9 10
...
## $ Sex : Factor w/ 2 levels "F", "M": 2 1 1 1 2 2 1 1 2 2 ...
## $ Age : int 14 13 13 14 14 12 12 15 13 12 ...
## $ Height: num 69 56.5 65.3 62.8 63.5 57.3 59.8 62.5 62.5 59 ...
## $ Weight: num 112 84 98 102 102 ...
```

1.4 Look at the first 5 (last 5) observations.

The first 5 observations of a data frame are available by calling the head() function, with the data name as an argument. By default, head() returns 4 observations, but we can alter the function to return 5 observations in the way shown below (n=). The tail() function is analogous and returns the last observations.

```
head(student, n=5)

## Name Sex Age Height Weight
## 1 Alfred M 14 69.0 112.5

## 2 Alice F 13 56.5 84.0
## 3 Barbara F 13 65.3 98.0
```

```
## 4 Carol F 14 62.8 102.5
## 5 Henry M 14 63.5 102.5
```

1.5 Calculate means of numeric variables.

```
# We must apply the is.numeric() function to the data set which returns a
# matrix of booleans that we then use to subset the data set to return
# only numeric variables

# Then we can use the colMeans() function to return the means of
# column variables
colMeans(student[sapply(student, is.numeric)])

## Age Height Weight
## 13.31579 62.33684 100.02632
```

colMeans() | sapply() | is.numeric

1.6 Compute summary statistics of the data set.

Summary statistics of a data frame are available by calling the summary() function, with the data name as an argument.

```
summary(student)
##
        Name
               Sex
                                         Height
                                                        Weight
                           Age
               F: 9
## Alfred: 1
                      Min.
                            :11.00
                                     Min.
                                           :51.30
                                                    Min. : 50.50
## Alice : 1
                      1st Qu.:12.00
                                     1st Qu.:58.25
               M:10
                                                    1st Qu.: 84.25
## Barbara: 1
                      Median :13.00
                                     Median :62.80
                                                    Median : 99.50
## Carol : 1
                      Mean
                            :13.32
                                     Mean :62.34
                                                    Mean
                                                           :100.03
## Henry : 1
                      3rd Qu.:14.50
                                     3rd Qu.:65.90
                                                    3rd Qu.:112.25
## James : 1
                      Max. :16.00
                                     Max. :72.00
                                                    Max.
                                                           :150.00
## (Other):13
```

1.7 Descriptive statistics functions applied to columns of the data set.

```
# Notice the subsetting of student with the "$" character
sd(student$Weight)
## [1] 22.77393
sum(student$Weight)
## [1] 1900.5
length(student$Weight)
## [1] 19
max(student$Weight)
## [1] 19
min(student$Weight)
```

```
## [1] 50.5
median(student$Weight)
## [1] 99.5
```

1.8 Produce a one-way table to describe the frequency of a variable.

a) Produce a one-way table of a discrete variable.

```
table(student$Age)
##
## 11 12 13 14 15 16
## 2 5 3 4 4 1
```

b) Produce a one-way table of a categorical variable.

```
table(student$Sex)
##
## F M
## 9 10
```

table()

1.9 Produce a two-way table to visualize the frequency of two categorical (or discrete) variables.

```
table(student$Age, student$Sex)

##
## F M
## 11 1 1
## 12 2 3
## 13 2 1
## 14 2 2
## 15 2 2
## 16 0 1
```

table()

1.10 Select a subset of the data that meets a certain criterion.

```
# The "," character tells R to select all columns of the data set
females <- student[which(student$Sex == 'F'), ]</pre>
head(females, n=5)
       Name Sex Age Height Weight
##
    Alice F 13
## 2
                    56.5
                         84.0
## 3 Barbara F 13
                    65.3
                          98.0
## 4 Carol F 14
                    62.8 102.5
      Jane F 12
## 7
                    59.8 84.5
## 8 Janet F 15 62.5 112.5
```

which()

1.11 Determine the correlation between two continuous variables.

```
height_weight <- subset(student, select = c(Height, Weight))
cor(height_weight, method = "pearson")

## Height Weight
## Height 1.0000000 0.8777852
## Weight 0.8777852 1.0000000
```

subset() | cor()

2 Basic Graphing and Plotting Functions

2.1 Visualize a single continuous variable by producing a histogram.

```
# Setting student$Weight to a new variable "Weight" cleans up the labeling of
# the histogram
Weight <- student$Weight
hist(Weight)</pre>
```

Histogram of Weight

hist()

2.2 Visualize a single continuous variable by producing a boxplot.

```
# points(mean(Weight)) tells R to plot the mean on the boxplot
boxplot(Weight, ylab="Weight")
points(mean(Weight))
```


boxplot() | points()

2.3 Visualize two continuous variables by producing a scatterplot.

Height <- student\$Height
Notice here you specify the x variable, followed by the y variable
plot(Height, Weight)</pre>

plot()

2.4 Visualize a relationship between two continuous variables by producing a scatterplot and a plotted line of best fit.

```
plot(Height, Weight)

# Lm() models Weight as a function of Height and returns the parameters
# of the Line of best fit
model <- lm(Weight~Height)
coeff <- coef(model)
intercept <- as.matrix(coeff[1])[1]
slope <- as.matrix(coeff[2])[1]

# abline() prints the line of best fit
abline(lm(Weight~Height))

# text() prints the equation of the line of best fit, with the first
# two arguments specifying the x and y location, respectively, of where
# the text should be printed on the graph
text(55, 140, bquote(Line: y == .(slope) * x + .(intercept)))</pre>
```


lm() | coef() | as.matrix() | abline() | text() | bquote()

2.5 Visualize a categorical variable by producing a bar chart.

barplot() | names()

2.6 Visualize a continuous variable, grouped by a categorical variable, using side-by-side boxplots.

a) Simple side-by-side boxplot without color.

```
# Subset data set to return only female weights, and then only male weights
Female_Weight <- student[which(student$Sex == 'F'), "Weight"]
Male_Weight <- student[which(student$Sex == 'M'), "Weight"]

# Find the mean of both arrays
means <- c(mean(Female_Weight), mean(Male_Weight))

# Syntax indicates Weight as a function of Sex
boxplot(student$Weight ~ student$Sex, ylab= "Weight", xlab= "Sex")

# Plot means on boxplots in blue
points(means, col= "blue")</pre>
```


b) More advanced side-by-side boxplot with color.

ggplot2 | factor() | c() | aes() | geom_boxplot() | stat_summary()

3 Basic Data Wrangling and Manipulation

3.1 Create a new variable in a data set as a function of existing variables in the data set.

```
# Notice here how you can create the BMI column in the data set just by
# naming it
student$BMI <- student$Weight / (student$Height)**2 * 703</pre>
head(student, n=5)
##
       Name
               Sex Age Height Weight
## 1 Alfred
              Male 14
                         69.0 112.5 16.61153
      Alice Female 13
                         56.5 84.0 18.49855
## 3 Barbara Female 13
                         65.3 98.0 16.15679
## 4
      Carol Female 14
                         62.8 102.5 18.27090
## 5
      Henry Male 14
                         63.5 102.5 17.87030
```

3.2 Create a new variable in a data set using if/else logic of existing variables in the data set.

```
# Notice the use of the ifelse() function for a single condition
student$BMI_Class <- ifelse(student$BMI<19.0, "Underweight", "Healthy")</pre>
head(student, n=5)
##
       Name
               Sex Age Height Weight
                                         BMI
                                               BMI Class
                         69.0 112.5 16.61153 Underweight
## 1 Alfred
              Male 14
## 2
      Alice Female 13
                        56.5 84.0 18.49855 Underweight
## 3 Barbara Female 13
                        65.3 98.0 16.15679 Underweight
## 4
      Carol Female 14
                         62.8 102.5 18.27090 Underweight
## 5
      Henry Male 14 63.5 102.5 17.87030 Underweight
```

ifelse()

3.3 Create a new variable in a data set using mathematical functions applied to existing variables in the data set.

Using the log(), exp(), sqrt(), ifelse() and abs() functions.

```
student$LogWeight <- log(student$Weight)</pre>
student$ExpAge <- exp(student$Age)</pre>
student$SqrtHeight <- sqrt(student$Height)</pre>
student$BMI Neg <- ifelse(student$BMI < 19.0, -student$BMI, student$BMI)
student$BMI_Pos <- abs(student$BMI_Neg)</pre>
# Create a Boolean variable
student$BMI Check <- (student$BMI == student$BMI Pos)</pre>
head(student, n=5)
##
        Name
               Sex Age Height Weight
                                          BMI
                                                BMI Class LogWeight
## 1 Alfred
              Male 14 69.0 112.5 16.61153 Underweight 4.722953
      Alice Female 13
## 2
                         56.5 84.0 18.49855 Underweight 4.430817
## 3 Barbara Female 13
                         65.3 98.0 16.15679 Underweight 4.584967
      Carol Female 14
                         62.8 102.5 18.27090 Underweight 4.629863
## 4
## 5
              Male 14
                         63.5 102.5 17.87030 Underweight 4.629863
      Henry
        ExpAge SqrtHeight BMI Neg BMI Pos BMI Check
##
## 1 1202604.3 8.306624 -16.61153 16.61153
                                                  TRUE
## 2 442413.4 7.516648 -18.49855 18.49855
                                                  TRUE
## 3 442413.4 8.080842 -16.15679 16.15679
                                                  TRUE
## 4 1202604.3 7.924645 -18.27090 18.27090
                                                  TRUE
## 5 1202604.3 7.968689 -17.87030 17.87030
                                                  TRUE
```

3.4 Drop variables from a data set.

```
Sex Age Height Weight
                                        BMI
       Name
                                              BMI Class
## 1
     Alfred
              Male 14
                        69.0 112.5 16.61153 Underweight
## 2
      Alice Female 13
                        56.5
                               84.0 18.49855 Underweight
## 3 Barbara Female 13
                        65.3
                               98.0 16.15679 Underweight
## 4
      Carol Female 14
                        62.8 102.5 18.27090 Underweight
## 5
      Henry Male 14
                        63.5 102.5 17.87030 Underweight
```

3.5 Sort a data set by a variable.

a) Sort data set by a continuous variable.

```
student <- student[order(student$Age), ]</pre>
# Notice that R uses a stable sorting algorithm by default
head(student, n=5)
##
        Name
               Sex Age Height Weight
                                          BMI
                                                BMI Class
## 11 Joyce Female 11
                                50.5 13.49000 Underweight
                         51.3
## 18 Thomas
              Male 11
                         57.5
                                85.0 18.07335 Underweight
## 6
              Male 12
                         57.3
      James
                                83.0 17.77150 Underweight
## 7
        Jane Female 12
                         59.8
                                84.5 16.61153 Underweight
## 10
       John
              Male 12
                         59.0 99.5 20.09437
                                                  Healthy
```

b) Sort data set by a categorical variable.

```
student <- student[order(student$Sex), ]</pre>
# Notice that the data is now sorted first by Sex and then within Sex by Age
head(student, n=5)
                Sex Age Height Weight
##
         Name
                                           BMI
                                                 BMI Class
## 11
        Joyce Female 11
                          51.3
                                 50.5 13.49000 Underweight
## 7
        Jane Female 12
                          59.8
                                 84.5 16.61153 Underweight
## 13 Louise Female 12
                          56.3
                                 77.0 17.07770 Underweight
       Alice Female 13
                                 84.0 18.49855 Underweight
## 2
                          56.5
## 3 Barbara Female 13 65.3
                                 98.0 16.15679 Underweight
```

order()

3.6 Compute descriptive statistics of continuous variables, grouped by a categorical variable.

```
# Notice the syntax of Age, Height, Weight, and BMI as a function of Sex
aggregate(cbind(Age, Height, Weight, BMI) ~ Sex, student, mean)
## Sex Age Height Weight BMI
## 1 Female 13.22222 60.58889 90.11111 17.05104
## 2 Male 13.40000 63.91000 108.95000 18.59424
```

aggregate() | cbind()

3.7 Add a new row to the bottom of a data set.

```
# Look at the tail of the data currently
tail(student, n=5)
```

```
Name Sex Age Height Weight
                                         BMI
                                               BMI Class
## 1
      Alfred Male
                  14
                        69.0 112.5 16.61153 Underweight
## 5
       Henry Male
                   14
                        63.5 102.5 17.87030 Underweight
## 17 Ronald Male 15
                        67.0 133.0 20.82847
                                                 Healthy
## 19 William Male 15
                        66.5 112.0 17.80451 Underweight
## 15
     Philip Male 16
                        72.0 150.0 20.34144
                                                 Healthy
# rbind.data.frame() function binds two data frames together by rows
student <- rbind.data.frame(student, data.frame(Name='Jane', Sex = 'F',</pre>
                                               Age = 14, Height = 56.3,
                                               Weight = 77.0,
                                               BMI = 17.077695
                                               BMI_Class = 'Underweight'))
tail(student, n=5)
          Name Sex Age Height Weight
##
                                          BMI
                                                BMI Class
## 5
                         63.5 102.5 17.87030 Underweight
         Henry Male 14
## 17
        Ronald Male 15
                         67.0 133.0 20.82847
                         66.5 112.0 17.80451 Underweight
## 19
      William Male 15
## 15
        Philip Male
                    16
                         72.0 150.0 20.34144
                                                  Healthy
## 110
         Jane F
                    14
                         56.3 77.0 17.07769 Underweight
```

data.frame() | rbind.data.frame()

3.8 Create a user-defined function and apply it to a variable in the data set to create a new variable in the data set.

```
toKG <- function(lb) {</pre>
  return(0.45359237 * 1b)
}
student$Weight_KG <- toKG(student$Weight)</pre>
head(student, n=5)
##
                 Sex Age Height Weight
                                                   BMI Class Weight KG
         Name
                                             BMI
                           51.3
## 11
        Joyce Female 11
                                   50.5 13.49000 Underweight
                                                               22.90641
## 7
         Jane Female 12
                           59.8
                                   84.5 16.61153 Underweight
                                                               38.32856
## 13
       Louise Female 12
                           56.3
                                   77.0 17.07770 Underweight
                                                               34.92661
        Alice Female 13
                           56.5
                                   84.0 18.49855 Underweight
                                                               38.10176
      Barbara Female 13
                           65.3
                                   98.0 16.15679 Underweight
                                                              44.45205
```

user-defined functions

4 More Advanced Data Wrangling

4.1 Drop observations with missing information.

```
# Notice the use of the fish data set because it has some missing
# observations
fish <- read.csv('/Users/fish.csv')</pre>
# First sort by Weight, requesting those with NA for Weight first
fish <- fish[order(fish$Weight, na.last=FALSE), ]</pre>
head(fish, n=5)
##
       Species Weight Length1 Length2 Length3 Height Width
                   NA
                         29.5
                                 32.0
                                         37.3 13.9129 5.0728
## 14
         Bream
## 41
         Roach
                  0.0
                         19.0
                                 20.5
                                         22.8 6.4752 3.3516
## 73
         Perch
                  5.9
                         7.5
                                  8.4
                                         8.8 2.1120 1.4080
## 146
         Smelt
                  6.7
                         9.3
                                 9.8
                                         10.8 1.7388 1.0476
## 148 Smelt
                  7.0
                         10.1
                                10.6 11.6 1.7284 1.1484
new fish <- na.omit(fish)</pre>
head(new fish, n=5)
##
       Species Weight Length1 Length2 Length3 Height Width
## 41
         Roach
                  0.0
                         19.0
                                 20.5
                                         22.8 6.4752 3.3516
## 73
         Perch
                  5.9
                          7.5
                                  8.4
                                          8.8 2.1120 1.4080
## 146
         Smelt
                  6.7
                          9.3
                                  9.8
                                         10.8 1.7388 1.0476
## 148
         Smelt
                  7.0
                         10.1
                                 10.6
                                         11.6 1.7284 1.1484
```

na.omit()

147

Smelt

7.5

4.2 Merge two data sets together on a common variable.

10.0

a) First, select specific columns of a data set to create two smaller data sets.

10.5

11.6 1.9720 1.1600

```
# Notice the use of the student data set again, however we want to reload
# it without the changes we've made previously
student <- read.csv('/Users/class.csv')</pre>
student1 <- subset(student, select=c(Name, Sex, Age))</pre>
head(student1, n=5)
##
        Name Sex Age
## 1 Alfred
               M 14
## 2
       Alice
                  13
## 3 Barbara
                  13
               F 14
## 4
       Carol
## 5
       Henry M 14
```

--

```
student2 <- subset(student, select=c(Name, Height, Weight))</pre>
head(student2, n=5)
##
       Name Height Weight
## 1 Alfred
              69.0 112.5
## 2 Alice
              56.5
                   84.0
## 3 Barbara
              65.3
                   98.0
## 4 Carol
              62.8 102.5
## 5
      Henry
              63.5 102.5
```

b) Second, we want to merge the two smaller data sets on the common variable.

```
new <- merge(student1, student2)</pre>
head(new, n=5)
##
       Name Sex Age Height Weight
## 1 Alfred
             M 14
                    69.0 112.5
    Alice
## 2
             F 13
                    56.5
                         84.0
## 3 Barbara F 13
                    65.3
                         98.0
## 4
      Carol F 14
                    62.8 102.5
## 5
      Henry M 14
                    63.5 102.5
```

merge()

c) Finally, we want to check to see if the merged data set is the same as the original data set.

```
all.equal(student, new)
## [1] TRUE
```

all.equal()

4.3 Merge two data sets together by index number only.

a) First, select specific columns of a data set to create two smaller data sets.

```
newstudent1 <- subset(student, select=c(Name, Sex, Age))
head(newstudent1, n=5)

## Name Sex Age
## 1 Alfred M 14
## 2 Alice F 13
## 3 Barbara F 13
## 4 Carol F 14
## 5 Henry M 14</pre>
```

--

```
newstudent2 <- subset(student, select=c(Height, Weight))
head(newstudent2, n=5)</pre>
```

```
## Height Weight
## 1 69.0 112.5
## 2 56.5 84.0
## 3 65.3 98.0
## 4 62.8 102.5
## 5 63.5 102.5
```

b) Second, we want to join the two smaller data sets.

```
new2 <- cbind(newstudent1, newstudent2)</pre>
head(new2, n=5)
       Name Sex Age Height Weight
##
## 1 Alfred
             M 14
                    69.0 112.5
## 2
      Alice
             F 13
                    56.5
                          84.0
## 3 Barbara F 13
                    65.3
                          98.0
## 4
      Carol
            F 14
                    62.8 102.5
      Henry M 14
## 5
                    63.5 102.5
```

c) Finally, we want to check to see if the joined data set is the same as the original data set.

```
all.equal(student, new2)
## [1] TRUE
```

4.4 Create a pivot table to summarize information about a data set.

```
# Notice we are using a new data set that needs to be read into the
# environment
price <- read.csv('/Users/price.csv')</pre>
# call the dplyr package
library(dplyr)
# The following code is used to remove the "," and "$" characters from the
# ACTUAL column so that values can be summed
price$ACTUAL <- gsub('[$]', '', price$ACTUAL)</pre>
price$ACTUAL <- as.numeric(gsub(',', '', price$ACTUAL))</pre>
filtered = group by(price, COUNTRY, STATE, PRODTYPE, PRODUCT)
basic_sum = summarise(filtered, REVENUE = sum(ACTUAL))
head(basic sum, n=5)
## Source: local data frame [5 x 5]
## Groups: COUNTRY, STATE, PRODTYPE [3]
##
##
     COUNTRY
                        STATE PRODTYPE PRODUCT REVENUE
      <fctr>
##
                       <fctr>
                                 <fctr> <fctr>
                                                    <dbl>
## 1 Canada British Columbia FURNITURE
                                            BED 197706.6
## 2 Canada British Columbia FURNITURE
                                           SOFA 216282.6
## 3 Canada British Columbia
                                 OFFICE CHAIR 200905.2
```

```
## 4 Canada British Columbia OFFICE DESK 186262.2
## 5 Canada Ontario FURNITURE BED 194493.6
```

dplyr | group_by | summarise()

4.5 Return all unique values from a text variable.

```
print(unique(price$STATE))
                                                     Florida
## [1] California
                              Colorado
## [4] Illinois
                              New York
                                                     North Carolina
                              Washington
                                                     Baja California Norte
## [7] Texas
## [10] Campeche
                              Michoacan
                                                     Nuevo Leon
## [13] British Columbia
                              Ontario
                                                     Quebec
## [16] Saskatchewan
## 16 Levels: Baja California Norte British Columbia California ...
Washington
```

unique()

In the following sections, several data set will be used more than once for prediction and modeling. Often, they will be re-read into the environment so we are always going back to the original, raw data.

5 Preparation & Basic Regression

5.1 Pre-process a data set using principal component analysis.

```
# Notice we are using a new data set that needs to be read into the
# environment
iris <- read.csv('/Users/iris.csv')</pre>
features <- subset(iris, select = -c(Target))</pre>
pca <- prcomp(x = features, scale = TRUE)</pre>
print(pca)
## Standard deviations:
## [1] 1.7061120 0.9598025 0.3838662 0.1435538
##
## Rotation:
                      PC1
                                   PC2
                                              PC3
                                                          PC4
## SepalLength 0.5223716 -0.37231836 0.7210168 0.2619956
## SepalWidth -0.2633549 -0.92555649 -0.2420329 -0.1241348
## PetalLength 0.5812540 -0.02109478 -0.1408923 -0.8011543
## PetalWidth 0.5656110 -0.06541577 -0.6338014 0.5235463
```

prcomp()

5.2 Split data into training and testing data and export as a .csv file.

```
# Set the sample size of the training data
smp_size <- floor(0.7 * nrow(iris))

# set.seed() is used to specify a seed for a random integer so that the
# results are reproducible
set.seed(29)
train_ind <- sample(seq_len(nrow(iris)), size = smp_size)

train <- iris[train_ind, ]
test <- iris[-train_ind, ]
write.csv(train, file = "/Users/iris_train_R.csv")
write.csv(test, file = "/Users/iris_test_R.csv")</pre>
```

floor() | nrow() | set.seed() | sample() | seq_len() | write.csv()

5.3 Fit a logistic regression model.

```
# Notice we are using a new data set that needs to be read into the
# environment
tips <- read.csv('/Users/tips.csv')</pre>
# The following code is used to determine if the individual left more
# than a 15% tip
tips$fifteen <- 0.15 * tips$total_bill</pre>
tips$greater15 <- ifelse(tips$tip > tips$fifteen, 1, 0)
# Notice the syntax of greater15 as a function of total_bill
# You could fit the model of greater15 as a function of all
# other variables with "greater15 ~ ."
logreg <- glm(greater15 ~ total bill, data = tips,</pre>
              family = "binomial"(link='logit'))
summary(logreg)
##
## glm(formula = greater15 ~ total bill, family = binomial(link = "logit"),
##
       data = tips)
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                            Max
## -1.6757 -1.1766
                      0.8145
                               1.0145
                                         2.0774
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.64772
                           0.35467
                                     4.646 3.39e-06 ***
## total bill -0.07248
                           0.01678 -4.319 1.57e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 335.48 on 243 degrees of freedom
## Residual deviance: 313.74 on 242 degrees of freedom
## AIC: 317.74
##
## Number of Fisher Scoring iterations: 4
```

glm()

5.4 Fit a linear regression model.

```
# Notice the syntax of tip as function of total_bill
linreg <- lm(tip ~ total_bill, data = tips)</pre>
summary(linreg)
##
## Call:
## lm(formula = tip ~ total_bill, data = tips)
##
## Residuals:
      Min
               10 Median
                               30
                                      Max
## -3.1982 -0.5652 -0.0974 0.4863 3.7434
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.920270 0.159735
                                  5.761 2.53e-08 ***
## total_bill 0.105025 0.007365 14.260 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.022 on 242 degrees of freedom
## Multiple R-squared: 0.4566, Adjusted R-squared: 0.4544
## F-statistic: 203.4 on 1 and 242 DF, p-value: < 2.2e-16
```

lm()

6 Supervised Machine Learning

Many of the following models will make use of the predict() function.

6.1 Fit a logistic regression model on training data and assess against testing data.

a) Fit a logistic regression model on training data.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/tips_train.csv')
test <- read.csv('/Users/tips_test.csv')</pre>
```

```
train$fifteen <- 0.15 * train$total_bill</pre>
train$greater15 <- ifelse(train$tip > train$fifteen, 1, 0)
test$fifteen <- 0.15 * test$total bill
test$greater15 <- ifelse(test$tip > test$fifteen, 1, 0)
logreg <- glm(greater15 ~ total_bill, data = train,</pre>
              family = "binomial"(link='logit'))
summary(logreg)
##
## Call:
## glm(formula = greater15 ~ total bill, family = binomial(link = "logit"),
       data = train)
##
## Deviance Residuals:
      Min
                10
                     Median
                                   3Q
                                           Max
## -1.6409 -1.1929
                    0.8144
                             1.0027
                                        2.0381
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
                          0.39459
                                   4.172 3.02e-05 ***
## (Intercept) 1.64613
## total bill -0.07064
                           0.01849 -3.820 0.000134 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 267.61 on 194 degrees of freedom
## Residual deviance: 250.58 on 193 degrees of freedom
## AIC: 254.58
## Number of Fisher Scoring iterations: 4
```

b) Assess the model against the testing data.

```
# Prediction on testing data
predictions <- predict(logreg, test, type = 'response')
predY <- ifelse(predictions < 0.5, 0, 1)

# If the prediction probability is less than 0.5, classify this as a 0
# and otherwise classify as a 1. This isn't the best method -- a better
# method would be randomly assigning a 0 or 1 when a probability of 0.5
# occurrs, but this insures that results are consistent

# Determine how many were correctly classified
Results <- ifelse(predY == test$greater15, "Correct", "Wrong")
table(Results)</pre>
```

```
## Results
## Correct Wrong
## 34 15
```

glm()

6.2 Fit a linear regression model on training data and assess against testing data.

a) Fit a linear regression model on training data.

```
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/boston_train.csv')</pre>
test <- read.csv('/Users/boston_test.csv')</pre>
# Fit a linear regression model
# The "." character tells the model to use all variables except the response
# variabe (Target)
linreg <- lm(Target ~ ., data = train)</pre>
summary(linreg)
##
## Call:
## lm(formula = Target ~ ., data = train)
##
## Residuals:
       Min
                 10
                      Median
                                  3Q
                                          Max
## -15.6466 -2.8461 -0.5395
                              1.7077
                                      26.2160
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
               36.108196 6.504968
                                     5.551 5.73e-08 ***
## (Intercept)
               ## X0
## X1
                0.046034
                          0.017150 2.684 0.007626 **
                0.036413
                          0.076006 0.479 0.632186
## X2
## X3
                3.247961 1.074138 3.024 0.002686 **
              -14.872938 4.636090 -3.208 0.001463 **
## X4
## X5
                3.576869
                          0.536993 6.661 1.10e-10 ***
               -0.008703
                          0.016853 -0.516 0.605890
## X6
## X7
                          0.252960 -5.412 1.18e-07 ***
               -1.368905
                          0.082366 3.802 0.000170 ***
## X8
                0.313120
               -0.012882
                          0.004599 -2.801 0.005383 **
## X9
## X10
               -0.976900
                          0.170996 -5.713 2.43e-08 ***
                0.011326
## X11
                          0.003359 3.372 0.000832 ***
## X12
               -0.526715
                          0.062563 -8.419 1.08e-15 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.988 on 340 degrees of freedom
```

```
## Multiple R-squared: 0.7236, Adjusted R-squared: 0.7131
## F-statistic: 68.48 on 13 and 340 DF, p-value: < 2.2e-16
```

b) Assess the model against the testing data.

```
# Predict on testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$predY = predict(linreg, newdata = test)

# Compute the squared difference between predicted tip and actual tip
prediction$sq_diff <- (prediction$predY - test$Target)**2

# Compute the mean of the squared differences (mean squared error)
# as an assessment of the model
mean_sq_error <- mean(prediction$sq_diff)
print(mean_sq_error)

## [1] 17.77131</pre>
```

lm()

6.3 Fit a decision tree model on training data and assess against testing data.

a) Fit a decision tree classification model.

```
i) Fit a decision tree classification model on training data and determine variable importance.
# Notice we are using new data sets that need to be read into the environment
train <- read.csv('/Users/breastcancer_train.csv')
test <- read.csv('/Users/breastcancer_test.csv')

# call the tree package
library(tree)

treeMod <- tree(Target ~ ., data = train, method = "class")

# Plot the decision tree
plot(treeMod)
text(treeMod)</pre>
```



```
# Determine variable importance
summary(treeMod)

##

## Regression tree:
## tree(formula = Target ~ ., data = train, method = "class")

## Variables actually used in tree construction:
## [1] "X23" "X27" "X1" "X28" "X4"

## Number of terminal nodes: 6

## Residual mean deviance: 0.02688 = 10.54 / 392

## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.97820 -0.01575 0.02183 0.00000 0.02183 0.98430
```

ii) Assess the model against the testing data.

```
# Prediction on testing data
out <- predict(treeMod, test)
out <- unname(out)
predY <- ifelse(out < 0.5, 0, 1)

# Determine how many were correctly classified
Results <- ifelse(test$Target == predY, "Correct", "Wrong")
table(Results)</pre>
```

```
## Results
## Correct Wrong
## 159 12
```

tree

b) Fit a decision tree regression model.

```
i) Fit a decision tree regression model on training data and determine variable importance.
train <- read.csv('/Users/boston_train.csv')
test <- read.csv('/Users/boston_test.csv')

treeMod <- tree(Target ~ ., data = train)

# Plot the decision tree
plot(treeMod)
text(treeMod)</pre>
```



```
# Determine variable importance
summary(treeMod)
##
## Regression tree:
```

```
## tree(formula = Target ~ ., data = train)
## Variables actually used in tree construction:
## [1] "X5" "X12" "X7" "X0"
## Number of terminal nodes: 7
## Residual mean deviance: 14.67 = 5091 / 347
## Distribution of residuals:
      Min. 1st Ou. Median
                                  Mean 3rd Qu.
                                                     Max.
## -28.0000 -1.8070 0.3264 0.0000 2.2320 10.0100
ii) Assess the model against the testing data.
# Prediction on testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$predY = predict(treeMod, newdata = test)
# Determine mean squared error
prediction$sq diff <- (prediction$predY - test$Target)**2</pre>
mean_sq_error <- mean(prediction$sq_diff)</pre>
print(mean sq error)
## [1] 25.12126
```

tree

6.4 Fit a random forest model on training data and assess against testing data.

- a) Fit a random forest classification model.
- i) Fit a random forest classification model on training data and determine variable importance.

ii) Assess the model against the testing data.

```
# Prediction on testing data
predY <- predict(rfMod, test)

# Determine how many were correctly classified
Results <- ifelse(test$Target == predY, "Correct", "Wrong")
table(Results)

## Results
## Correct Wrong
## 166 5</pre>
```

randomForest | as.factor()

b) Fit a random forest regression model.

```
i) Fit a random forest regression model on training data and determine variable importance.
train <- read.csv('/Users/boston_train.csv')</pre>
test <- read.csv('/Users/boston test.csv')</pre>
# call the randomForest package
library(randomForest)
set.seed(29)
rfMod <- randomForest(Target ~ ., data = train)</pre>
# Determine variable importance
var_import <- importance(rfMod)</pre>
var_import <- data.frame(sort(var_import, decreasing = TRUE,</pre>
                                 index.return = TRUE))
var_import$MeanDecreaseGini <- var_import$x</pre>
var import$X <- var import$ix - 1</pre>
var_import <- subset(var_import, select = -c(ix, x))</pre>
head(var_import, n=5)
##
     MeanDecreaseGini X
## 1
              8662.298 12
## 2
              8451.836 5
              2147.288 0
## 3
## 4
              2105.072 7
## 5
              1915.570 2
```

ii) Assess the model against the testing data. # Prediction on testing data prediction = data.frame(matrix(ncol = 0, nrow = nrow(test))) prediction\$predY = predict(rfMod, newdata = test) # Determine mean squared error prediction\$sq_diff <- (prediction\$predY - test\$Target)**2 mean_sq_error <- mean(prediction\$sq_diff) print(mean_sq_error) ## [1] 9.028163</pre>

randomForest

6.5 Fit a gradient boosting model on training data and assess against testing data.

a) Fit a gradient boosting classification model.

i) Fit a gradient boosting classification model on training data and determine variable importance.


```
head(var_import, n=5)

## var rel.inf
## X27 X27 27.50103
## X7 X7 20.68575
## X23 X23 19.49976
## X22 X22 15.46766
## X13 X13 3.46162
```

ii) Assess the model against the testing data.

b) Fit a gradient boosting regression model.

i) Fit a gradient boosting regression model on training data and determine variable importance.


```
head(var_import, n=5)

## var rel.inf
## X12 X12 41.882259
## X5 X5 32.846422
## X7 X7 8.298140
```

gbm

6.6 Fit an extreme gradient boosting model on training data and assess against testing data.

a) Fit an extreme gradient boosting classification model.

ii) Assess the model against the testing data.

```
Results <- ifelse(test$Target == predY, "Correct", "Wrong")
table(Results)
## Results
## Correct Wrong
## 165 6</pre>
```

xgboost

b) Fit an extreme gradient boosting regression model.

```
i) Fit an extreme gradient boosting regression model on training data.
train <- read.csv('/Users/boston train.csv')</pre>
test <- read.csv('/Users/boston_test.csv')</pre>
# call the xgboost package
library(xgboost)
set.seed(29)
# Fit the model
xgbMod <- xgboost(data.matrix(subset(train, select = -c(Target))),</pre>
                  data.matrix(train$Target), max depth = 3, nrounds = 10,
                  n_estimators = 2500, shrinkage = .01)
## [1] train-rmse:17.131615
## [2] train-rmse:12.419768
## [3] train-rmse:9.116973
## [4] train-rmse:6.777830
## [5] train-rmse:5.182819
## [6] train-rmse:4.113659
## [7] train-rmse:3.403357
## [8] train-rmse:2.955893
## [9] train-rmse:2.677797
## [10] train-rmse:2.485887
ii) Assess the model against the testing data.
```

6.7 Fit a support vector model on training data and assess against testing data.

a) Fit a support vector classification model.

```
i) Fit a support vector classification model on training data.
train <- read.csv('/Users/breastcancer train.csv')</pre>
test <- read.csv('/Users/breastcancer_test.csv')</pre>
# call the e1071 package
library(e1071)
# Fit a support vector classification model
svMod <- svm(Target ~ ., train, type = 'C-classification', kernel = 'linear')</pre>
ii) Assess the model against the testing data.
# Prediction on testing data
predY <- unname(predict(svMod, subset(test, select = -c(Target))))</pre>
# Determine how many were correctly classified
Results <- ifelse(test$Target == predY, "Correct", "Wrong")</pre>
table(Results)
## Results
## Correct
              Wrong
       166
e1071 | svm()
b) Fit a support vector regression model.
i) Fit a support vector regression model on training data.
```

```
train <- read.csv('/Users/boston_train.csv')
test <- read.csv('/Users/boston_test.csv')

# call the e1071 package
library(e1071)

svMod <- svm(Target ~ ., train)</pre>
```

ii) Assess the model against the testing data.

```
# Prediction on testing data
prediction = data.frame(matrix(ncol = 0, nrow = nrow(test)))
prediction$predY <- unname(predict(svMod, test))
prediction$sq_diff <- (prediction$predY - test$Target)**2
print(mean(prediction$sq_diff))</pre>
```

```
## [1] 11.83309
```

e1071 | svm()

6.8 Fit a neural network model on training data and assess against testing data.

a) Fit a neural network classification model.

```
i) Fit a neural network classification model on training data.
# Notice we are using new data sets
train <- read.csv('/Users/digits_train.csv')
test <- read.csv('/Users/digits_test.csv')

trainInputs <- subset(train, select = -c(Target))
testInputs <- subset(test, select = -c(Target))

# call the RSNNS package
library(RSNNS)
set.seed(29)

trainTarget <- decodeClassLabels(train$Target)
testTarget <- decodeClassLabels(test$Target)

nnMod <- mlp(trainInputs, trainTarget, inputsTest=testInputs, targetSTest=testTarget, size = 100, maxit = 200)
ii) Assess the model against the testing data.</pre>
```

```
# Prediction on testing data
predictions <- predict(nnMod, testInputs)</pre>
# Determine how many were correctly classified
confusionMatrix(testTarget, predictions)
##
        predictions
## targets 1 2 3 4 5 6 7 8 9 10
      1 55 0 0 0 1 0 1 1 0 0
##
##
      2 054 2 0 0 0 1 0 1 0
##
      3 0 0 5 8 0 0 0 0 0 0 0
##
      4 0 0 0 56 0 1 0 2 0 0
##
     5 0 0 0 0 53 0 0 0 1 0
```

RSNNS | confusionMatrix()

##

##

##

##

##

6 0 0 0 0 0 58 1 0 0 0

7 0 0 0 0 0 0 41 0 0 0

8 0 1 0 0 0 0 0 49 0 1

9 1 3 0 3 0 0 0 0 36 2

10 0 1 0 0 0 1 0 2 1 52

b) Fit a neural network regression model.

```
i) Fit a neural network regression model on training data.
train <- read.csv('/Users/boston_train.csv')</pre>
test <- read.csv('/Users/boston test.csv')</pre>
# call the RSNNS package
library(RSNNS)
set.seed(29)
# Scale input data
scaled_train <- data.frame(scale(subset(train, select = -c(Target))))</pre>
scaled test <- data.frame(scale(subset(test, select = -c(Target))))</pre>
# Fit neural network regression model, dividing target by 50 for scaling
nnMod <- mlp(scaled_train, train$Target / 50, inputsTest=scaled_test,</pre>
             targetsTest=test$Target / 50, maxit = 1000)
scale()
# Assess against testing data, remembering to multiply by 50
preds = data.frame(matrix(ncol = 0, nrow = nrow(test)))
preds$predY <- predict(nnMod, scaled_test)*50</pre>
preds$sq_error <- (preds$predY - test$Target)**2</pre>
print(mean(preds$sq_error))
## [1] 20.27705
RSNNS
```

7 Unsupervised Machine Learning

7.1 KMeans Clustering

```
##
## 1 2 3
## Setosa 50 0 0
## Versicolor 0 48 2
## Virginica 0 14 36
```

kmeans()

7.2 Spectral Clustering

```
# call the kernlab package
library(kernlab)

set.seed(29)

spectral <- specc(features, centers = 3, iterations = 10, nystrom.red = TRUE)

labels <- as.data.frame(spectral)

table(iris$Species, labels$spectral)

##

##

1 2 3

## Setosa 50 0 0

## Versicolor 0 47 3

## Virginica 0 3 47</pre>
```

kernlab | specc()

7.3 Ward Hierarchical Clustering

Hierarchical Clustering in R | hclust()

7.4 DBSCAN

```
# call the dbscan package
library(dbscan)
set.seed(29)
```

```
# eps = 0.5 is default in Python
dbscan <- dbscan(features, eps = 0.5)

table(iris$Species, dbscan$cluster)

##
## 0 1 2
## Setosa 1 49 0
## Versicolor 6 0 44
## Virginica 10 0 40</pre>
```

dbscan

7.5 Self-organized map

```
# call the kohonen package
library(kohonen)

# Seed chosen to match SAS and R results
set.seed(5)

fit <- som(features, mode = "online", somgrid(4, 4, "rectangular"))

plot(fit, type = "dist.neighbour", shape = "straight")</pre>
```

Neighbour distance plot

8 Forecasting

8.1 Fit an ARIMA model to a timeseries.

a) Plot the timeseries.

```
# Read in new data set
air <- read.csv('/Users/air.csv')
air_series <- air$AIR
plot.ts(air_series, ylab="Air")</pre>
```


plot.ts()

```
method = "ML")

# call the forecast package
library(forecast)

a_forecast <- forecast(a_fit, 24)

plot(a_forecast, xlab = "Month", ylab = "Air")</pre>
```

Forecasts from ARIMA(0,1,1)(0,1,1)[12]

arima() | forecast

8.2 Fit a Simple Exponential Smoothing model to a timeseries.

a) Plot the timeseries.

```
# Read in new data set
usecon <- read.csv('/Users/usecon.csv')

petrol_series <- usecon$PETROL

petrol <- ts(petrol_series, frequency = 12)

plot.ts(petrol, ylab="Petrol")</pre>
```


ts() | plot.ts()

b) Fit a Simple Exponential Smoothing model, predict 2 years (24 months) out and plot predictions.

```
# call the forecast package
library(forecast)

ses_fit <- ses(petrol, h=24, alpha = 0.9999)

plot(ses_fit, xlab = "Month", ylab = "Petrol")</pre>
```

Forecasts from Simple exponential smoothing

forecast

8.3 Fit a Holt-Winters model to a timeseries.

a) Plot the timeseries.

```
vehicle_series <- usecon$VEHICLES

vehicle <- ts(vehicle_series, frequency = 12)

plot.ts(vehicle, ylab="Vehicle")</pre>
```


ts() | plot.ts()

b) Fit a Holt-Winters additive model, predict 2 years (24 months) out and plot predictions.

```
# call the forecast package
library(forecast)

add_fit <- HoltWinters(vehicle, seasonal = "additive")

add_forecast <- forecast(add_fit, 24)

plot(add_forecast)</pre>
```

Forecasts from HoltWinters

forecast

9 Model Evaluation & Selection

9.1 Evaluate the accuracy of regression models.

a) Evaluation on training data.

```
train <- read.csv('/Users/boston_train.csv')
test <- read.csv('/Users/boston_test.csv')

set.seed(29)

# Random Forest Regression Model
# call the randomForest package
library(randomForest)

rfMod <- randomForest(Target ~ ., data = train)

# Evaluation on training data</pre>
```

b) Evaluation on testing data.

randomForest | predict() | unname()

The formula used here for the coefficient of determination score is based off the Python skearn formula for r2_score. For more information about model assessment in R, please review information about the R package caret.

9.2 Evaluate the accuracy of classification models.

a) Evaluation on training data.

```
train <- read.csv('/Users/digits_train.csv')
test <- read.csv('/Users/digits_test.csv')

set.seed(29)

# Random Forest Classification Model
# call the randomForest package
library(randomForest)

rfMod <- randomForest(as.factor(Target) ~ ., data = train)</pre>
```

```
# Evaluation on training data
predY <- predict(rfMod, train)
predY <- unname(predY)

# Determine accuracy score
accuracy_rf <- (1/nrow(train)) * sum(as.numeric(predY == train$Target))
print(paste0("Random forest model accuracy: ", accuracy_rf))

## [1] "Random forest model accuracy: 1"</pre>
```

b) Evaluation on testing data.

```
# Random Forest Classification Model (rfMod)

# Evaluation on testing data
predY <- predict(rfMod, test)
predY <- unname(predY)

# Determine accuracy score
accuracy_rf <- (1/nrow(test)) * sum(as.numeric(predY == test$Target))
print(paste0("Random forest model accuracy: ", accuracy_rf))

## [1] "Random forest model accuracy: 0.974074074074074"</pre>
```

randomForest | predict() | unname()

The formula used here for the accuracy score is based off the Python skearn formula for accuracy_score. For more information about model assessment in R, please review information about the R package caret.

9.3 Evaluation with cross validation.

a) KFold

```
labels = c(1, 0)
# Train the model, using the 5 cross validation folds
model <- train(Target~., data = breastcancer, trControl = train_control,</pre>
                method = "rf")
# Assess the accuracy of the model
tab <- model pred
tab$correct <- (tab$pred == tab$obs)</pre>
tab$correct num <- ifelse(tab$correct=="TRUE", 1, 0)</pre>
aggdata <- unname(as.matrix(aggregate(correct num ~ Resample, tab, sum)))</pre>
aggdata <- as.numeric(aggdata[,2])</pre>
counts <- unname(table(tab$Resample))</pre>
accuracy \leftarrow c(0,0,0,0,0)
for (i in 1:5) {
  accuracy[i] <- aggdata[i]/counts[i]</pre>
}
print(paste0("Accuracy: ", round(mean(accuracy)*100, digits=2), "% +/- ",
              round(sd(accuracy)*100, digits=2), "%"))
## [1] "Accuracy: 95.77% +/- 1.68%"
```

caret | randomForest

b) ShuffleSplit

```
# call the caret and randomForest packages
library(caret)
library(randomForest)
set.seed(29)
X = subset(breastcancer, select = -c(Target))
Y = breastcancer$Target
# Create the data partition
trainIndex <- createDataPartition(Y, times = 5, p = 0.7, list = FALSE)</pre>
accuracy \leftarrow c(0, 0, 0, 0, 0)
for (i in 1:5) {
  nam <- paste("data_train", i, sep ="")</pre>
  assign(nam, breastcancer[trainIndex[,i],])
  nam <- paste("data_test", i, sep ="")</pre>
  assign(nam, breastcancer[-trainIndex[,i],])
}
data train <- list(data train1, data train2, data train3, data train4,
                    data train5)
data_test <- list(data_test1, data_test2, data_test3, data_test4, data_test5)</pre>
```

caret | randomForest | createDataPartition

10 Text Analytics

11 Deep Learning

Appendix

1 Built-in R Objects

Vectors

- Logical
- Numeric
- Integer
- Complex
- Character
- Raw

Lists
Matrics
Arrays
Factors
Data Frames
2 R packages used in this tutorial
gdata
Data manipulation
rjson
Converting R objects into JSON objects, and JSON objects into R objects
ggplot2
Visualizations and graphics
dplyr
Working with data frame like objects
tree
Decision trees models
randomForest
Random forest models
gbm
Gradient boosting models
xgboost
Extreme gradient boosting models
e1071
Support vector machine models
RSNNS
Neural network models

kernlab

Spectral clustering

dbscan

DBSCAN clustering

kohonen

Supervised and unsupervised self-organizing maps

forecast

Displaying and analyzing time series for forecasting

caret

Training and plotting classification and regression models

Alphabetical Index

Array

A one-dimensional data frame. Please see the following example of array creation and access:

```
my_array <- c(1, 3, 5, 9)
print(my_array)
## [1] 1 3 5 9
print(my_array[1])
## [1] 1</pre>
```

Data Frame

An R Data Frame is a two-dimensional tabular structure with labeled axes (rows and columns), where data observations are represented by rows and data variables are represented by columns.

Dictionary

A dictionary is an associative array which is indexed by keys which map to values. Therefore, a dictionary is an unordered set of key:value pairs where each key is unique. In R, a dictionary can be implemented using a named list. Please see the following example of named list creation and access:

```
student <- read.csv('/Users/class.csv')
values <- student$Age
names(values) <- student$Name
print(values["James"])
## James
## 12</pre>
```

List

An R list is a sequence of comma-separated objects that need not be of the same type. Please see the following example of list creation and access:

```
list1 <- list('item1', 102)
print(list1)

## [[1]]
## [1] "item1"

##
## [[2]]
## [1] 102
print(list1[1])

## [[1]]
## [1] "item1"</pre>
```

Vector

A vector is a one-dimensional data structure which is able to hold different classes of elements, but only one class per vector.

For more information on R packages and functions, along with helpful examples, please see R.