PhD Application for The PhD Thesis "Decentralized Fog Computing Infrastructure Control"

Ali J. Fahs

Supervised by Professor Guillaume Pierre

Audition, 8th of June, 2017

Outline

- Personal Presentation
- Master Thesis
- 3 State-of-the-Art for Edge Clouding
- 4 PhD Topic
- Project Perspective

Personal Presentation

- A double diploma student.
 - Engineering diploma in telecommunication and computer science Lebanese University, Faculty of engineering (ULFG).
 - Master's degree in Informatics Grenoble (MoSIG) Parallel, Distributed Systems Track - Grenoble INP (Institut national polytechnique), Ensimag (École nationale supérieure d'informatique et de mathématiques appliquées de Grenoble) jointly with UGA (université grenoble alpes), IMAG (Informatique, mathématiques, mathématiques appliquées de Grenoble).
- Research interest: Distributed systems, Networking.
- Master's thesis "Distributed Approach for Cross-Layer Resource Allocation in Wireless Sensor Networks" Jointly between LIG (Laboratoire d'Informatique de Grenoble) and VERIMAG.

Overview

 IEEE802.15.4: Wireless sensor network standard.

Overview

- IEEE802.15.4: Wireless sensor network standard.
- Time-slotted channel hopping (TSCH), The Meduim access layer control.

		Time Slot					
		0	1	2	3	4	
	0	Shared Slot				B>A	
Channel Offset	1		C>A				
	2		B>D		D>B E>C		
	3						

Chan

Overview

- IEEE802.15.4: Wireless sensor network standard.
- Time-slotted channel hopping (TSCH), The Meduim access layer control.
- 6TiSCH: IPv6 over IEEE802.15.4e TSCH.

		Time Slot					
		0	1	2	3	4	
Channel Offset	0	Shared Slot				B>A	
	1		C>A				
	2		B>D		D>B E>C		
	3						

Internship Challenges

• Improvement in the distributed 6TiSCH networks

		Time Slot					
		0	1	2	3	4	
Channel Offset	0	Shared Slot				B>A	
	1		C>A				
	2		B>D		D>B E>C		
	3						

Internship Challenges

- Improvement in the distributed 6TiSCH networks
- Reduction of collision in TSCH Dedicated cells.

		Time Slot				
		0	1	2	3	4
Channel Offset	0	Shared Slot				B>A
	1		C>A			
	2		B>D		D>B E>C	
	3					

Internship Challenges

- Improvement in the distributed 6TiSCH networks
- Reduction of collision in TSCH Dedicated cells.
- The distributed approach causing the problem.

Internship Challenges

- Improvement in the distributed 6TiSCH networks
- Reduction of collision in TSCH Dedicated cells.
- The distributed approach causing the problem.
- Lack of central entity.

		Time Slot				
		0	1	2	3	4
Channel Offset	0	Shared Slot				B>A
	1		C>A			
	2		B>D		D>B E>C	
	3					

Proposed Mechanism

• Local Mutual exclusion.

- Local Mutual exclusion.
- Using already existing transaction.

- D decides to add new cells with B It will send an ADD REQUEST to B.
- B Replies with an ADD RESPONSE (that contain the Cell Buffer) in the shared slot
- The neigghbors of B (E & F will recieve the RESPONSE and update the avoid table

- Local Mutual exclusion.
- Using already existing transaction.
- No new traffic was induced.

- D decides to add new cells with B It will send an ADD REQUEST to B.
- B Replies with an ADD RESPONSE (that contain the Cell Buffer) in the shared slot
- The neigghbors of B (E & F will recieve the RESPONSE and update the avoid table

- Local Mutual exclusion.
- Using already existing transaction.
- No new traffic was induced.
- All the neighbor node will passively learn the schedule of B

- D decides to add new cells with B It will send an ADD REQUEST to B.
- B Replies with an ADD RESPONSE (that contain the Cell Buffer) in the shared slot
- The neigghbors of B (E & F will recieve the RESPONSE and update the avoid table

- Local Mutual exclusion.
- Using already existing transaction.
- No new traffic was induced.
- All the neighbor node will passively learn the schedule of B
- Achieved 70% reduction in the colliding Tx cells.

- D decides to add new cells with B It will send an ADD REQUEST to B.
- B Replies with an ADD RESPONSE (that contain the Cell Buffer) in the shared slot
- The neigghbors of B (E & F will recieve the RESPONSE and update the avoid table

Internship Results

• Cloud infrastructures are extremely flexible and powerful.

- Cloud infrastructures are extremely flexible and powerful.
- Clouding disadvantages: latency, mobility, etc...

- Cloud infrastructures are extremely flexible and powerful.
- Clouding disadvantages: latency, mobility, etc...
- Application-Network wall.

- Cloud infrastructures are extremely flexible and powerful.
- Clouding disadvantages: latency, mobility, etc...
- Application-Network wall.
- Edge Clouds: Deploying Cloudlets in the immediate end user proximity.

- Cloud infrastructures are extremely flexible and powerful.
- Clouding disadvantages: latency, mobility, etc...
- Application-Network wall.
- Edge Clouds: Deploying Cloudlets in the immediate end user proximity.
- Using single board computers as Cloudlets: cheap, location, size, security.

- Cloud infrastructures are extremely flexible and powerful.
- Clouding disadvantages: latency, mobility, etc...
- Application-Network wall.
- Edge Clouds: Deploying Cloudlets in the immediate end user proximity.
- Using single board computers as Cloudlets: cheap, location, size, security.
- Improvement of end to end latency, and application interactivity.

Challenges of Fog Computing

• Centralized control over a distributed compute/storage resources.

Challenges of Fog Computing

- Centralized control over a distributed compute/storage resources.
- Drawbacks of the centralized: Unnecessary traffic, latency, fragile.

Challenges of Fog Computing

- Centralized control over a distributed compute/storage resources.
- Drawbacks of the centralized: Unnecessary traffic, latency, fragile.
- Implementing very large number of potentially unreliable servers.

Challenges of Fog Computing

- Centralized control over a distributed compute/storage resources.
- Drawbacks of the centralized: Unnecessary traffic, latency, fragile.
- Implementing very large number of potentially unreliable servers.
- Application developers should not handle the complexity of application deployment, fault tolerance, reconfiguration, or elasticity.

Objectives

• Applying a distributed mechanism to manage the resources.

Objectives

- Applying a distributed mechanism to manage the resources.
- Comparing the performance of Distributed mechanisms to centralized ones.

Objectives

- Applying a distributed mechanism to manage the resources.
- Comparing the performance of Distributed mechanisms to centralized ones.
- Executing cloud resource scheduling algorithms.

Objectives

- Applying a distributed mechanism to manage the resources.
- Comparing the performance of Distributed mechanisms to centralized ones.
- Executing cloud resource scheduling algorithms.
- One interesting direction: gossip-based algorithms for the coordination of multiple schedulers.

Perspective

Project Perspective

The Importance of the research field of fog computing.

Personal Perspective

PhD Thesis and my research interests

Perspective

Project Perspective

- The Importance of the research field of fog computing.
- Advancing the State-of-the-art of edge clouding.

Personal Perspective

- PhD Thesis and my research interests
- IRISA and MYRAIDS.

Perspective

Project Perspective

- The Importance of the research field of fog computing.
- Advancing the State-of-the-art of edge clouding.
- Implementing on the already existing testbed in IRISA.

Personal Perspective

- PhD Thesis and my research interests
- IRISA and MYRAIDS.

- ternship Challenges

 Improvement in the distributed
 67/SCH networks

 Reduction of collision in TSCH

 Charmel 1 ChA
 Other 2 Bb0
- Dedicated cells.

 The distributed approach causing the problem.
- Lack of central entity.

- · Cloud infrastructures are extremely flexible and powerful.
- Clouding disadvantages: latency, mobility, etc...
 Application-Network wall.
- Edge Clouds: Deploying Cloudlets in the immediate end user recognition
- proximity.

 Using single board computers as Cloudlets: cheap, location, size,
- security.
- Improvement of end to end latency, and application interactivity.

Master Thesis

Proposed Mechanism

- Local Mutual exclusion.
- $_{\rm o}$ Using already existing transaction.
- No new traffic was induced.
- All the neighbor node will passively learn the schedule of B
 Achieved 70% reduction in the colliding Tx cells.

PhD Topic

Challenges of Fog Computing

- Centralized control over a distributed compute/storage resources.
- Drawbacks of the centralized: Unnecessary traffic, latency, fragile.
- Implementing very large number of potentially unreliable servers.
 Application developers should not handle the complexity of application deployment, fault tolerance, reconfiguration, or elasticity.

Internship Results

PhD Topic

- » Applying a distributed mechanism to manage the resources.
- Comparing the performance of Distributed mechanisms to centralized ones.
- Executing cloud resource scheduling algorithms.
 One interesting direction: gossip-based algorithms for the
- One interesting direction: gossip-based algorithms for the coordination of multiple schedulers.

Thanks for your attention! Questions?