Variational Methods for Latent Variable Problems (part 2)

Ryan Giordano (for Johns Hopkins Biostats BLAST working group) Oct, 2021

Massachusetts Institute of Technology

Outline

Outline for today:

- What counts as variational inference?
- Kullback-Leibler (KL) divergence and "standard" variational inference
- The classical EM algorithm as a special case of variational inference
- Variational inference as a generalization of the EM algorithm
- A quick and incomplete sketch of further topics in variational inference

What counts as variational inference?

Lots of very different procedures go by the name "variational inference." I propose an (idosyncratic) enompassing definition based on the use cases and the name:

Variational inference is inference using optimization.

Think "calculus of variations:" an optimum $\hat{x} = \operatorname{argmax}_{\theta} f(x)$ is characterized by $df/dx|_{\hat{x}} = 0$, i.e. where small variations in \hat{x} result in no changes to the value of $f(\hat{x})$.

By this definition,

- The maximum likelihood estimator (MLE) is VI.
- The Laplace approximation to a Bayesian posterior is VI.
- Markov chain Monte Carlo (MCMC) is not VI.

What counts as variational inference?

A more common definition of VI is the following.

Suppose we have a random variable ξ and a distribution $\mathfrak{p}(\xi)$ that we want to know.

Let y denote data and θ a parameter. Examples:

- The variable is θ , and we wish to know the posterior $\mathfrak{p}(\theta|y)$ (Bayes)
- The variable is y, and we wish to know $\mathfrak{p}(y)$ (MLE)
- The variable is y, and we wish to know the map $\theta \mapsto \mathfrak{p}(y|\theta) = \int p(y,z|\theta)dz$ (marginal MLE)

Let \mathcal{Q} be some class of distributions which may or may not contain $\mathfrak{p}(\xi)$.

Variational inference finds the distribution in $\mathcal Q$ closest to $\mathfrak p$ according to some measure of "divergence" between distributions:

$$q^*(\xi) = \operatorname*{argmin}_{q \in \mathcal{Q}} D(q, \mathfrak{p}).$$

The most common choice of "divergence" is the **Kullback-Leibler** (KL) divergence, though other choices are possible [Li and Turner, 2016, Liu and Wang, 2016, Ambrogioni et al., 2018].

KL divergence

The KL divergence is defined as:

$$\mathrm{KL}\left(\mathfrak{q}||\mathfrak{p}\right) := \underset{\mathfrak{q}(\xi)}{\mathbb{E}}\left[\log\mathfrak{q}(\xi)\right] - \underset{\mathfrak{q}(\xi)}{\mathbb{E}}\left[\log\mathfrak{p}(\xi)\right]$$

Some points to be aware of:

- $\mathrm{KL}\left(\mathfrak{q}||\mathfrak{p}\right)\geq 0$
- $\mathrm{KL}\left(\mathfrak{q}||\mathfrak{p}\right)=0\Rightarrow\mathfrak{p}=\mathfrak{q}$
- $\mathrm{KL}\left(\mathfrak{q}||\mathfrak{p}\right) \neq \mathrm{KL}\left(\mathfrak{p}||\mathfrak{q}\right)$
- $\mathrm{KL}\left(\mathfrak{q}||\mathfrak{p}\right)$ is a "strict" measure of closeness
 - If the KL divergence is small, other common measures of distance between distributions are small, but not vice-versa [Gibbs and Su, 2002]

Why use KL divergence?

Phony answer: The KL divergence has an information theoretic interpretation [Kullback and Leibler, 1951].

Real answer: Mathematical convenience (normalizing constants pop out).

$$\begin{split} \operatorname{KL}\left(\mathfrak{q}(\theta)||\mathfrak{p}(\theta)\right) &= \\ &- \underset{\mathfrak{q}(\theta)}{\mathbb{E}} \left[\log \mathfrak{p}(\theta)\right] + \underset{\mathfrak{q}(\theta)}{\mathbb{E}} \left[\log \mathfrak{q}(\theta)\right] \end{split}$$

 $\mathfrak{p}(\theta) = \text{Correlated bivariate normal}$

 $\mathcal{Q} = \, \{ \text{All bivariate normals} \}$

What is $q^*(\theta) = \operatorname*{argmin}_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\theta)||p(\theta)\right)$?

Sufficiently expressive families recover the target distribution.

$$\begin{split} \mathrm{KL}\left(\mathfrak{q}(\theta)||\mathfrak{p}(\theta)\right) &= \\ &- \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{p}(\theta)\right] + \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{q}(\theta)\right] \end{split}$$

 $\mathfrak{p}(\theta)$ = Correlated bivariate normal

 $Q = \{Independent bivariate normals\}$

What is $q^*(\theta) = \operatorname*{argmin}_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\theta)||\mathfrak{p}(\theta)\right)$?

$$\begin{split} \mathrm{KL}\left(\mathfrak{q}(\theta)||\mathfrak{p}(\theta)\right) &= \\ &- \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{p}(\theta)\right] + \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{q}(\theta)\right] \end{split}$$

 $\mathfrak{p}(\theta)$ = Correlated bivariate normal

 $Q = \{Independent bivariate normals\}$

What is
$$q^*(\theta) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \operatorname{KL}(q(\theta)||p(\theta))$$
?

KL minimizers "fit inside" the second argument.

$$\begin{split} \mathrm{KL}\left(\mathfrak{p}(\theta)||\mathfrak{q}(\theta)\right) &= \\ &- \underset{\mathfrak{p}(\theta)}{\mathbb{E}} \left[\log \mathfrak{q}(\theta)\right] + \underset{\mathfrak{p}(\theta)}{\mathbb{E}} \left[\log \mathfrak{p}(\theta)\right] \end{split}$$

 $\mathfrak{p}(\theta)$ = Correlated bivariate normal

 $Q = \{Independent \ bivariate \ normals\}$

What is $q^*(\theta) = \operatorname*{argmin}_{q \in \mathcal{Q}} \mathrm{KL}\left(\mathfrak{p}(\theta)||q(\theta)\right)$?

$$\begin{split} \mathrm{KL}\left(\mathfrak{p}(\theta)||\mathfrak{q}(\theta)\right) &= \\ &- \underset{\mathfrak{p}(\theta)}{\mathbb{E}}\left[\log \mathfrak{q}(\theta)\right] + \underset{\mathfrak{p}(\theta)}{\mathbb{E}}\left[\log \mathfrak{p}(\theta)\right] \end{split}$$

 $\mathfrak{p}(\theta)$ = Correlated bivariate normal

 $Q = \{Independent \ bivariate \ normals\}$

What is
$$\mathfrak{q}^*(\theta) = \operatorname*{argmin}_{\mathfrak{q} \in \mathcal{Q}} \mathrm{KL}\left(\mathfrak{p}(\theta)||\mathfrak{q}(\theta)\right)$$
?

KL minimizers "fit inside" the second argument.

$$\begin{split} \operatorname{KL}\left(\mathfrak{q}(\theta)||\mathfrak{p}(\theta)\right) &= \\ &- \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{p}(\theta)\right] + \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{q}(\theta)\right] \end{split}$$

 $\mathfrak{p}(\theta) = \text{Correlated bivariate normal}$

 $\mathcal{Q} = \, \{ \text{Bivariate normals} \}$

What is
$$q^*(\theta) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left(- \underset{q(\theta)}{\mathbb{E}} [\log \mathfrak{p}(\theta)] + \underset{q(\theta)}{\overline{\mathbb{E}}} [\log \mathfrak{q}(\theta)] \right)?$$

Without the entropy, the KL minimizer concentrates on the maximum of $\log p(\theta)$.

$$\begin{split} \operatorname{KL}\left(\mathfrak{q}(\theta)||\mathfrak{p}(\theta)\right) &= \\ &- \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{p}(\theta)\right] + \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{q}(\theta)\right] \end{split}$$

 $\mathfrak{p}(\theta) = \text{Correlated bivariate normal}$

 $\mathcal{Q} = \, \{ \text{Bivariate normals} \}$

What is
$$q^*(\theta) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \left(-\frac{\mathbb{E}\left[\log p(\theta)\right]}{q(\theta)} + \underset{q(\theta)}{\mathbb{E}} \left[\log q(\theta)\right] \right)$$
?

$$\begin{aligned} \operatorname{KL}\left(\mathfrak{q}(\theta)||\mathfrak{p}(\theta)\right) &= \\ &- \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log \mathfrak{p}(\theta)\right] + \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log \mathfrak{q}(\theta)\right] \\ \mathfrak{p}(\theta) &= \operatorname{Correlated bivariate normal} \end{aligned}$$

$$\mathcal{Q} = \left\{ \begin{aligned} \operatorname{Bivariate normals} \right\} \end{aligned}$$
 What is $\mathfrak{q}^*(\theta) = \underset{\mathfrak{q} \in \mathcal{Q}}{\operatorname{argmin}}\left(- \underset{\mathfrak{q}(\theta)}{\underbrace{\mathbb{E}}\left[\log \mathfrak{p}(\theta)\right]} + \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log \mathfrak{q}(\theta)\right] \right) \end{aligned}$

Without $\log \mathfrak{p}(\theta)$, the KL minimizer is infinitely dispersed.

$$\begin{split} \mathrm{KL}\left(\mathfrak{q}(\theta)||\mathfrak{p}(\theta)\right) &= \\ &- \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{p}(\theta)\right] + \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{q}(\theta)\right] \end{split}$$

 $\mathfrak{p}(\theta)$ = Correlated bivariate normal

$$\mathcal{Q} = \{ \text{Point masses} \}$$

What is
$$q^*(\theta) = \operatorname*{argmin}_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\theta)||p(\theta)\right)$$
?

Without a common dominating measure, the KL divergence is undefined.

$$\begin{split} \operatorname{KL}\left(\mathfrak{q}(\theta)||\mathfrak{p}(\theta)\right) &= \\ &- \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{p}(\theta)\right] + \underset{\mathfrak{q}(\theta)}{\mathbb{E}}\left[\log\mathfrak{q}(\theta)\right] \end{split}$$

 $\mathfrak{p}(\theta) = \text{Correlated bivariate normal}$

 $\mathcal{Q} = \, \{ \text{BVN with small, fixed variance} \}$

What is
$$q^*(\theta) = \operatorname*{argmin}_{q \in \mathcal{Q}} \mathrm{KL}\left(q(\theta)||p(\theta)\right)$$
?

Sufficently concentrated distributions with constant entropy act like a point mass at the maximum of $\log p(\theta)$.

Conclusions

- Luca Ambrogioni, Umut Güçlü, Yağmur Güçlütürk, Max Hinne, Eric Maris, and Marcel AJ van Gerven. Wasserstein variational inference. arXiv preprint arXiv:1805.11284, 2018.
- Alison L Gibbs and Francis Edward Su. On choosing and bounding probability metrics. *International statistical review*, 70(3):419–435, 2002.
- Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical statistics, 22 (1):79–86, 1951.
- Yingzhen Li and Richard E Turner. Variational inference with rényi divergence. stat, 1050:6, 2016.
- Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm. arXiv preprint arXiv:1608.04471, 2016.