Advanced Computational Neuroscience - Week 5

Reinforcement Learning

Sam Suidman

April 14, 2022

1 Introduction

Finding your way in an environment you have never been before is hard, because you do not have any orientation. It seems to be that place cells in the Hippocampus play a crucial role in this. The model in the 'Foster et al.' paper uses these place cells together with a critic and an actor to improve the orientation of a rodent inside a water maze. The critic criticizes if actions that the rodent takes are correct. The actor takes actions based on the information from the critic. This is an example of reinforcement learning. The water maze is in fact a round barrel filled with water. In it is a small platform, which the rodent can not see, but need to find.

2 Theory

2.1 Place cells

The model is in the first place based on the Hippocampus place cells. The firing rate of a place cell is modelled as a 2D Gaussian function with the maximum firing rate at the place where the place cell is. In equation 1 the firing rate at some point \vec{p} caused by a place cell i with coordinates $\vec{s_i}$ is shown. The width of the Gaussian is given by σ .

$$f_i(\vec{p}) = e^{-\frac{\|\vec{p} - \vec{s}_i^*\|}{2\sigma^2}}$$
 (1)

2.2 Critic

The critic is the weighted sum of the firing rates of all place cells. It is giving by equation 2 for some point \vec{p} .

$$C(\vec{p}) = \sum_{i=1}^{N} w_i f_i(\vec{p}) \tag{2}$$

In the beginning the weights w_i are initialized randomly and therefore $C(\vec{p})$ is not correct at all. The goal for the critic is to find the correct values of w_i such that if $C(\vec{p})$ has a high value the rodent is in a good position to find the platform. In the paper is described how the values of w_i can be optimized. $C(\vec{p})$ should reflect a reward function $V(\vec{p})$ that depends on the current reward R_t and future rewards $R_{t+1}, R_{t+2}, ...$ and a factor $0 < \gamma < 1$ as given in equation 3. The reward R_t is 1 if the rodent is on the platform en 0 otherwise. If the rodent is on the platform (and $R_t = 1$) then $V(p_{t+1}) \approx C(p_{t+1}) = 0$.

$$V(\vec{p_t}) = \langle R_t + \gamma R_{t+1} + \gamma^2 R_{t+2} + \dots \rangle \tag{3}$$

Which can be rewritten as equation 4.

$$V(\vec{p_t}) = \langle R_t \rangle + \gamma V(\vec{p_{t+1}}) \tag{4}$$

In the end the critic $C(\vec{p})$ should be the same as the reward function $V(\vec{p})$ such that equation 5 holds.

$$C(\vec{p_t}) = \langle R_t \rangle + \gamma C(\vec{p_{t+1}}) \tag{5}$$

The value δ_t is the prediction error and can be used to update w_i . It is defined in equation 6, where $\langle R_t \rangle$ is not available in real life and replaced by R_t .

$$\delta_t = R_t + \gamma C(p_{t+1}) - C(p_t) \tag{6}$$

Now w_i is updated via equation 7, where η_w is the learning rate.

$$\Delta w_i = \eta_w \delta_t f_i(p_t) \tag{7}$$

2.3 Actor

The actor in this model is a construction of 8 cells that each represent a direction: N (North), NE (North East), E, SE, S, SW, W, NW. When the cell SE is the only one active, the rodent moves to this direction, hence down and to the right. The actor cells are the weighted sum of the firing rates just as for the critic, only now with 8 direction. This is shown in equation 8.

$$a_j(\vec{p}) = \sum_{i=1}^{N} z_{ji} f_i(\vec{p})$$
 (8)

If the rodent is at a location \vec{p} and wants to move it uses a_j to do this. It picks the direction via the probability distribution given in equation 9.

$$P_j = \frac{\exp(2a_j)}{\sum_{k=1}^8 \exp(2a_k)}$$
 (9)

The actor weights z_{ji} are also updated via δ_t , which contains information from the critic. This is shown in equation 10, where $g_i(t)$ is 1 for the direction that has been chosen and 0 for the rest and η_z is the learning rate.

$$\Delta z_{ii} = \eta_z \delta_t g_i(t) f_i(\vec{p_t}) \tag{10}$$

3 Results

In the simulation the rodent starts a the right of the barrel and the N=484 place cells are equally spaced in x,y-direction. The space grid where rodent can move in has 952 points. The barrel has a radius of R=2 and the platform is centered at (x,y)=(-0.5,0.5) and has a radius r=0.1. The values of w and z are both initialized randomly via a normal distribution $\mathcal{N}(\mu=0,\sigma=0.001)$ and their learning rates are $\eta_w=\eta_z=0.1$. For the firing rate has been chosen to take $\sigma=0.4$ and δ_t is calculated via $\gamma=0.9$.

Figures 1, 2, 3, 4, 5,6 show respectively the trials 1,2,5,10,100 and the last trial 328 with $C(\vec{p})$ shown as a contour plot and $a_j(\vec{p})$ as vector field, where a vector is the sum of all directions at that point. In Figure 7 and 8 is $C(\vec{p})$ shown before trial 1 and at the end at trial 328.

4 Conclusion

In the paper from 'Foster et al.' it is shown that the reinforcement learning model of actor-critic together with the place cells can be used to create a sense of orientation. This is also established in the model I created. You can see that in the first few trials the rodent is still investigating, but quite soon already he finds the right values for $C(\vec{p})$ and $a_j(\vec{p})$ and after 10 trials he can find the quickest path almost immediately. In other runs of this simulation these value may differ a little bit, but the same results can be found in each simulation.

Figure 1: Trial 1 with $C(\vec{p})$ given as contour plot and $a_j(\vec{p})$ as vector field.

Figure 2: Trial 2 with $C(\vec{p})$ given as contour plot and $a_j(\vec{p})$ as vector field.

Figure 3: Trial 5 with $C(\vec{p})$ given as contour plot and $a_j(\vec{p})$ as vector field.

Figure 4: Trial 10 with $C(\vec{p})$ given as contour plot and $a_j(\vec{p})$ as vector field.

Figure 5: Trial 100 with $C(\vec{p})$ given as contour plot and $a_j(\vec{p})$ as vector field.

Figure 6: At the end at trial $C(\vec{p})$ is given as contour plot and $a_j(\vec{p})$ as vector field.

Figure 7: 3D plot of $C(\vec{p})$ for the Barrel at trial 0 (just before trial 1 starts).

Figure 8: 3D plot of $C(\vec{p})$ for the Barrel at the end, at trial 328

5 Appendix

The code to run this can be found in the attached python file.