1. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 15

Total points: 15

Teilauf	gabe und Antwort	Punkte
Subtask	and solution	Points
1.1.	+ hohe Leistungsdichte / high power density	0,5
	+ einfache Realisierung von Linearbewegungen / simple realization of linear movement	0,5
	+ gute Steuer- und Regelbarkeit / good controllability	
	+ gutes Zeitverhalten durch niedrige Massenträgheiten / good time response due to low mass inertia	
	+ gute Schmierung und Abfuhr der Verlustwärme durch das Fluid / good lubrication and removal of heat losses via the fluid	
	+ einfache und zuverlässige Absicherung gegen Überlast / simple and dependable overload protection	0,5 0,5
	- Energieverbrauch (Verluste durch Reibung und interne Leckage) / power consumption (losses due to friction and internal leakage)	
	- Wartung des Druckmediums (Schmutzempfindlichkeit und Verschleiß der Komponenten) / preventive maintenance of the pressurizing medium (Sensitivity of the components towards contamination and wear)	
	- Umwelt (Geräuschabstrahlung, Leckage,) / environmental pollution/damage (noise emission, leakage, fire hazard)	
1.2.	Blende $Q=\alpha_D \cdot A \cdot \sqrt{\frac{2}{p}} \cdot \sqrt{\Delta p}$ Korrekte Formel mit Kennzeichnung je 0,5 Pkt. / correct formula + indication each 0.5 Pts.	1,5
	Drossel $Q = \frac{\pi \cdot \Gamma^4}{8 \cdot \eta \cdot 1} \cdot \Delta p$ Korrekter Verlauf mit Kennzeichnung 0.5 Pkt. / correct course + indication 0.5 Pts.	
1.0	· · · -	0.7
1.3.	Blende / Orifice	0,5
	Temperaturunabhängig / Temperature independent	0,5

Blatt/Page:	2
-------------	---

Teilaufg	gabe und Antwort	Punkte
Subtask	and solution	Points
1.4.	10000 1000 HVLP 46 HLP 10	
	3	
	-20 0 20 40 60 80 Temperatur [°C]	
		4
	Stützpunkt @ 40°C und Verlauf (sinkt linear mit steigender Temperatur) je 0,5 Pkt. / support point @ 40°C and course (linear decrease with rising	1
	temperature) each 0.5 Pts.	
	HVLP Verlauf flacher als HLP (linear) / HVLP course flatter than HLP	0,5
	(linear)	0,5
1.5.	$\tau = \frac{F}{(1)}$	0,5
	$\tau = \frac{F}{A} (1)$ $\tau = \eta \cdot \frac{d\dot{x}}{dy} (2)$ $(1) \& (2) \Rightarrow F = A \cdot \eta \cdot \frac{d\dot{x}}{dy} (3)$	0,5
	$(1) \& (2) \Rightarrow F = A \cdot \eta \cdot \frac{ax}{dy} (3)$	0,5
	$\eta = \nu \cdot \rho = 52 \frac{mm^2}{s} \cdot 860 \frac{kg}{m^3} = 0,04472 Pas$ NS $1 \frac{m}{s}$	0,5
	$(3) \Rightarrow 3,40 \cdot 10^{-4} m^2 \cdot 0,04472 \frac{Ns}{m^2} \cdot \frac{1 \frac{m}{s}}{5 \cdot 10^{-6} m} = 3,04 N$	0,5
1.6.	$\eta = \eta_0 \cdot e^{(b \cdot p)}$	
	$= \nu \cdot \rho \cdot e^{(1,7 \cdot 10^{-3} bar^{-1} \cdot 350 bar)} = 0.08108 Pas$	0,5
1.7.	$= \nu \cdot \rho \cdot e^{(1,7 \cdot 10^{-3}bar^{-1} \cdot 350 \ bar)} = 0,08108 \ Pas$ $p = \frac{F}{A} \Leftrightarrow A = \frac{F}{p} = \frac{22000 \ N}{300 \cdot 10^5 \frac{N}{m^2}} = 0,0007\overline{3} \ m^2$	0,5
	$Q = \dot{x} \cdot A = 1.5 \frac{m}{s} \cdot 0.0007\overline{3} m^2 = 0.0011 \frac{m^3}{s} = 66 \frac{l}{min}$	0,5
	s s min	0,5

Blatt/P	Page: 3
	Punkte

	gabe und Antwort and solution	Punkte Points
1.8.	Punkte werden nur mit korrekten Indizes gegeben / Points are only awarded with correct use of indices	
	$Q_p = Q_S + Q_M$ $\dot{Q_p} = \dot{Q_S} + \dot{Q_M} (1)$	0,5
	$\dot{Q}_p = 0 \ (2)$	0,5
	$L_{H} = \frac{\Delta p}{\dot{Q_{M}}} \Leftrightarrow \dot{Q_{M}} = \frac{p_{1} - p_{ND}}{L_{H}} $ (3)	
	$\Rightarrow \ddot{Q}_M = \frac{\dot{p}_1}{L_H} \tag{4}$	0,5
	$C_{H} = \frac{Q_{S}}{\dot{p_{2}}} \Leftrightarrow Q_{S} = \dot{p_{2}} \cdot C_{H}$ $\Rightarrow \dot{Q}_{S} = \ddot{p}_{2} \cdot C_{H} (5)$	0,5
	$R_{H} = \frac{\Delta p}{Q_{M}} = \frac{p_{2} - p_{1}}{Q_{M}} \Leftrightarrow p_{2} = R_{H} \cdot Q_{M} + p_{1}$ $\Rightarrow \ddot{p}_{2} = R_{H} \cdot \ddot{Q}_{M} + \ddot{p}_{1} (6)$	0,5
	(1) & (2) & (3) & (5) $\Rightarrow 0 = \ddot{p}_2 \cdot C_H + \frac{p_1 - p_{ND}}{L_H}$ (7)	
	$(4)\& (6) \Rightarrow \ddot{p}_2 = R_H \cdot \frac{\dot{p}_1}{L_H} + \ddot{p}_1 (8)$	
	$(7) \& (8) \Rightarrow \frac{1}{C_H L_H} \cdot p_{ND} \left(+ \frac{R_H}{L_H} \cdot \dot{p}_{ND} \right) = \ddot{p}_1 + \frac{R_H}{L_H} \cdot \dot{p}_1 + \frac{1}{C_H L_H} \cdot p_1$	1,5

2. Aufgabe - Musterlösung

Excercise – Solution

Gesamtpunktzahl: 10

Total points: 10

Teilaufg	abe und Antwort	Punkte
Subtask	and solution	Points
2.1	0,5 Punkte pro Nennung (insgesamt max. 2 Punkte)	2,0
	Sperrventil, Wegeventil, Druckventil, Stromventil	
	Check valve, Directional valve, Pressure control valve, Flow control valve	
2.2	4/3-Wege Proportional (0,5 Punkte)	1,0
	4/3-way proportional valve	
	Mit Federzentrierung und Spulenbetätigung (0,5 Punkte)	
	Spring centered with solenoid actuation	
2.3	- Schieberbauweise & kontinuierliche Verstellung / konstruktiv einfach /	2,0
	guter Druckausgleich (je 0,5 Punkte)	
	Spool design & continuously adjustable / simple design / good pressure	
	balance	
	- Sitzbauweise & hermetische Abdichtung (je 0,5 Punkte)	
	Seated design & leakproof blocking	
2.4	Energetisch günstig / keine Parallelschaltung möglich (je 0,5 Punkte)	1,0
	Energetically more favorable / no parallel switching	
2.5	$F_F = c_F \cdot x_F = 30 \frac{N}{mm} \cdot 50mm = 1500 N$ (0,5 Punkte)	1,5
	$\begin{vmatrix} F_F = p_A \cdot A \\ p_A = \frac{F_F}{A} = \frac{1500 \text{ N}}{150 \text{ mm}^2} = 10 \frac{N}{mm^2} = 100 \text{ bar} $ (0,5 Punkte)	
	11 100 11/110	
2.6	$\Delta p_1 = p_{DBV} - p_A = 105 \ bar - 100 \ bar = 5 \ bar \qquad (0,5 \ \text{Punkte})$ $Q = \alpha_D \cdot A \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho}}$	1,0
	$A = \pi \cdot d \cdot x$	
	$x = \frac{Q}{\alpha_D \cdot d \cdot \pi} \sqrt{\frac{\rho}{2 \cdot \Delta p}} = \frac{2 l/min}{0.6 \cdot 0.002 \ m \cdot \pi} \cdot \sqrt{\frac{850^{kg}/m^3}{2 \cdot 5 \cdot 10^{5N}/m^2}} $ (0.5 Punkte)	
	$x = 0.26 mm \tag{0.5 Punkte}$	

abe und Antwort and solution		Punkte Points
$Q_c = v \cdot A$ Zylinder/cylinder $Q_c = 1 \frac{m}{s} \cdot 150 mm^2 = 9 l/min$ $Q_v = \alpha_D \cdot A \cdot \sqrt{\frac{2 \cdot \Delta p}{\rho}}$ Ventil/valve	(0,5 Punkte)	1,5
$Q_{c} = Q_{v} = 9 l/min$ $\Delta p = \left(\frac{Q_{v}}{\alpha_{D} \cdot A}\right)^{2} \cdot \frac{\rho}{2}$ $\Delta p = \left(\frac{9 l/min}{0,6 \cdot 0,002 m \cdot \pi \cdot 0,0008 m}\right)^{2} \cdot \frac{850 \frac{kg}{m^{3}}}{2} = 10,51 \ bar$	(0,5 Punkte) (0,5 Punkte)	

Musterlösung zur Aufgabe: 3 Gesamtpunktzahl: 10

Unter- punkt	Kürzel Aufgabensteller	Punkte
3.1	a) ————————————————————————————————————	0,5
	b)	0,5
	(c)	0,5
3.2	Kolben: Axialkolbenmaschine, Radialkolbenmaschine	1
	Piston: axial piston machine, radial piston machine	
	Flügel: Flügelzellenpumpe, Sperrflügelpumpe, Rollenflügelpumpe Vane: vane pump, rigid vane pump, rolling vane pump	1
	Zahn: Außenzahnradpumpe, Innenzahnradpumpe, Orbitmotor, Schraubenspindel	1
	Drive: external drive pump, internal vane pump, orbit motor, screw spindel pump	
3.3	$\delta' = 1 - \cos\left(\frac{90^{\circ}}{z}\right)$	0,5
	Die kinematische Pulsation wird durch die endliche Anzahl von Kolben verursacht. <i>The kinematic pulsation is caused by the finite number of displacement chambers</i> .	0,5
3.4	$P = \Delta p Q_{eff}$ $\Leftrightarrow Q_{eff} = \frac{P}{\Delta p} = 8.4 \cdot 10^{-4} \frac{m^3}{s} = 50.4 \frac{l}{min}$	0,5
	$\eta_{vol} = rac{Q_{th}}{Q_{eff}}$	0,5
	$\Leftrightarrow Q_{th} = \eta_{vol} \cdot Q_{eff} = 7,98 \cdot 10^{-4} \frac{m^3}{s} = 47,88 \frac{l}{min}$	0,5
	$Q_{th} = nV$ $\Leftrightarrow V = \frac{Q_{th}}{n} = 15,96 \frac{cm^3}{U}$	0,5
	Summe:	7,5

Musterlösung zur Aufgabe: 3 Gesamtpunktzahl: 10

Unter- punkt		Punkte
3.5	$\varphi_{VK} = \arccos\left(1 - \frac{2\Delta pV}{D_{KT} \tan(\alpha) A_K E_{\ddot{O}l}'}\right)$	0,5 0,5
	$mit V_{Verd} = D_{KT}tan(\alpha)A_{K}$ $\Leftrightarrow V = \frac{V_{Verd}E'_{Ol}}{2\Delta p}(1 - cos(\varphi_{VK})) = 10,43cm^{3}$	0,5
	$V_0 = z \cdot V = 73,01cm^3$	0,5 0,5
	$V_{tot} = V - V_{Verd} = 0.42cm^3$ Summe:	10

Musterlösung zur Aufgabe: 4 Gesamtpunktzahl: 10

Unter- punkt	Kürzel Aufgabensteller: Di	Punkte
4.1	Druckregelung, Leistungsregelung, Volumenstromregelung	0,5 for
	Pressure control, power control, flow control	each
		correct,
		max 1
4.2	$Q_{Ringfläche} = \frac{\pi}{4} (D^2 - d^2) v$	0,5
	$n = \frac{Q_{Ringfläche}}{V_{Pumpe}\eta_{vol}} = 1198 \ U/min$	0,5+0,5
4.3	$\Delta p_{Ventil,HD} = (Q_{Ringfläche}k_{Ventil})^2$	0,5
	$\Delta p_{Ventil,ND} = (\frac{\pi}{4} D^2 v k_{Ventil})^2$	0,5
	$p_{Ringkammer} = \frac{2\pi M \eta_{hm,Pumpe}}{V_{Pumpe}} - \Delta p_{Ventil,HD}$ $F_{Zylinder} = \frac{\pi}{4} D^2 \Delta p_{Ventil,ND} - \frac{\pi}{4} (D^2 - d^2) p_{Ringkammer} = -25 \text{ kN}$	0,5 0,5+0,5
	Summe:	

Musterlösung zur Aufgabe: 4 Gesamtpunktzahl: 10

Unter- punkt		Punkte
4.4	Motoren unabhängig / motors independent – 0,5 Ventilsteuerung-proportional / valve control-proportional – 0,5 Verdrängersteuerung / displacement control – 0,5 Speicher / Accumulator – 0,5 Rückschlagventil / check valve – 0,5 Filter + Kühler / filter + cooler – 0,5 DBV wo nötig / PRV where necessary – 0,5 Schaltende Freilauffunktion / switching freewheel function – 0,5	4
4.5	Es wird eine deutlich höhere Energie bereitgestellt als tatsächlich genutzt, weil am Ventil der Druck abgedrosselt werden muss, um den Druck am Motor der Widerstandssteuerung richtig einzustellen / A much higher power is provided than actually used, a high pressure drop over the valve is necessary for decreasing the pressure in the motor with resistive control Summe:	

Musterlösung zur Aufgabe: 5 Gesamtpunktzahl: 15

Zustandsänderung	Zustandsgleichung	
change of state	state equation	
isobar	p = const.	
isochoric		
isochor	v = const.	
isochoric		
isotherm	$p \cdot v = \text{const.}$	
isothermal		
isentrop	$(p \cdot v)^{\kappa} = \text{const.}$	
isentropic		
polytrop	$(p \cdot v)^n = \text{const.}$	
polytropic		

5.2	Vorteil	Nachteil		1
	vorten	Nachten		
	advantage	disadvantage		
	Drosselwirkung schon zu Beginn der Bewegung	Stick-Slip		
	throttle active from the start			
5.3	M, P			1,5
	M _w	n_{N} :	Nominal speed	
	M _A M	$ \mathbf{n}_{0}: $	dling speed	
	P _N	P _N : 1	Nominal power	
	M _N		Nominal torque	
			Starting torque	
		M _w :	Stalling torque	
		$\sqrt{}$ n		
	n _N	n_{0}		
				1

5.4 1) Druckregler 1,5 pressure regulator 2) Filter filter Öler 3) oiler X, X, X 5.5 1

Blatt/Page: 13

2

4

5.6

•
$$F_{\text{Rod}} = \frac{M_{\text{Wheel}}}{h}$$

$$F_{\text{Cyl}} = \frac{F_{\text{rod}}}{\cos \varphi} = \frac{M_{\text{Wheel}}}{h \cdot \cos \varphi} = \frac{20 \text{ Nm}}{0.2 \text{ m} \cdot \cos(7^{\circ})} = 100,75 \text{ N}$$

$$F_{\text{Cyl}} = 0.9 \cdot \Delta p \cdot d_{\text{K}}^2 \cdot \frac{\pi}{4}$$

$$\rightarrow d_{\text{K,min}} = \sqrt{\frac{4 F_{\text{Cyl}}}{\pi \cdot 0.9 \cdot \Delta p}} = 0,0154 \text{ m}$$

es muss mindestens ein Zylinderdurchmesser von 16 mm verwendet werden at least 16 mm piston diameter necessary

5.7 Anzahl der Radumdrehungen:

number of revolutions of the wheel:

$$n = \frac{10 \text{ km}}{U_{\text{Wheel}}} = \frac{10 \text{ km}}{\pi D_{\text{Wheel}}} = 6366.2$$

Umdrehungen entspricht Anzahl der Hinund Rückhübe, Anzahl Zylinderhub = 2h

number of revolutions equals number of pre- and backstrokes, cylinderstroke = 2h

$$\Delta V(p_{\rm Cyl,end}) = n \cdot \frac{\pi}{4} \cdot (d_{\rm K}^2 + d_{\rm K}^2 - d_{\rm S}^2) \cdot 2h = 0,952 \text{ m}^3$$

$$\Delta V(p_{\text{Cyl,end}}) \cdot p_{\text{Cyl,end}} = V_{\text{Acc}} \cdot \Delta p_{\text{Acc,max}}$$

$$\Delta V(p_{\rm Cyl,end}) \cdot p_{\rm Cyl,end} = V_{\rm Acc} \cdot \Delta p_{\rm Acc,max}$$

$$\Rightarrow V_{\rm Acc} = \frac{\Delta V(p_{\rm Cyl,end}) \cdot p_{\rm Cyl,end}}{\Delta p({\rm Acc,max})} = 0.952 \text{ m}^3 \cdot \frac{4 \text{ bar}}{7 \text{ bar}} = 0.544 \text{ m}^3$$

5.8	$M_{\text{Mot}} = \frac{M_{\text{Wheel}}}{i} = 5 \text{ Nm}$ $M_{\text{Mot}} = \eta_{pm} \cdot \frac{V_{disp}}{2\pi} \Delta p$ $\Rightarrow V_{\text{disp}} = \frac{2\pi \cdot M_{\text{Mot}}}{\eta_{\text{pm}} \cdot \Delta p} = \frac{2\pi \cdot 5 \text{ Nm}}{0.3 \cdot 6 \cdot 10^5 \text{ Pa}} = 0.175 \text{ l}$	1
5.9	$Q_{\text{in}} = \frac{n \cdot V_{\text{disp}}}{\eta_{\text{Vol}}} \cdot i = \frac{\frac{60}{\text{min}} \cdot 0,175 l}{0,8} \cdot 4 = 52,5 \frac{l}{\text{min}}$ $Q_{\text{in,0}} = \frac{p_{\text{Sup}}}{p_0} \cdot Q_{\text{in}} = 7 \cdot 52,5 \frac{l}{\text{min}} = 367,5 \frac{l}{\text{min}}$	1
	Summe/Sum:	15

Musterlösung zur Aufgabe: 6 Gesamtpunktzahl: 10

Unter- punkt	St	Punkte
6.1	Pr	3,5
6.2	St	1

 $p_1 = p_0; T_1 = T_0$:

 $P_{\mathsf{t}12} = \frac{n \cdot Q_0 \cdot p_0}{n-1} \cdot \left(\left(\frac{p_2}{p_0} \right)^{\frac{n-1}{n}} - 1 \right) = \underline{\underline{5,75 \ kW}}$

		
6.5	Isobare Wärmekapazität:	2
	Specific heat capacity: c_n	
	$c_p = R + c_v; \ \kappa = \frac{c_p}{c_v} = 1.4$	
	$c_p = \frac{\kappa}{\kappa - 1} R = 1008 \frac{J}{kg \cdot K}$	
	$\frac{c_p - \frac{1}{\kappa - 1} \kappa - 1000 \overline{kg \cdot K}}{kg \cdot K}$	
	Temperatur nach Verdichtung:	
	Temperature after compression: $n-1$	
	$T_{\text{ein}} = T_{\text{aus}} \cdot \left(\frac{p_{\text{ein}}}{p_{\text{aus}}}\right)^{\frac{n-1}{n}} = 422,8K$	
	Wärmestrom:	
	Heat flow rate:	
	$Q_{12} = \dot{m}(h_{\text{aus}} - h_{\text{ein}}) = \dot{m} \cdot c_p \cdot (T_{\text{aus}} - T_{\text{ein}})$	
	$= 25,66 \frac{g}{s} \cdot 1008 \frac{J}{ka \cdot K} \cdot (293,15 - 422,8)K$	
	$= \frac{-3,354 kW}{2}$	
6.6	Überkritischer Massenstrom:	1
	Choked flow:	
	$\dot{m}^* = C \cdot \rho_0 \cdot p_K \cdot \sqrt{\frac{T_0}{T_K}} = C \cdot \frac{p_0}{R \cdot T_0} \cdot p_K \cdot \sqrt{\frac{T_0}{T_K}}$	
	$\dot{m}^* = ho_K \cdot Q_K = rac{\dot{p}_K}{R \cdot T_K} \cdot rac{\pi}{4} \cdot {d_K}^2 \cdot v$	
	$\Rightarrow C \cdot \frac{p_0}{R \cdot T_0} \cdot p_K = \frac{\overline{p}_K}{R \cdot T_K} \cdot \frac{\pi}{4} \cdot d_K^2 \cdot v$	
	$C = \frac{1}{p_0} \cdot \frac{\pi}{4} \cdot d_K^2 \cdot v = \underbrace{\frac{37,7}{min \cdot bar}}_{}$	
6.7	Minimal möglicher Druck auf Kolbenseite:	0,5
	Smallest possible pressure on piston side:	
	$\frac{p_U}{p_K} \le b \Longrightarrow p_K \ge \frac{p_U}{b} = 4 \ bar$	
	Kräftegleichgewicht:	
	Balance of forces:	
	$p_{K} \cdot \frac{\pi}{4} \cdot d_{K}^{2} = p_{S} \cdot \frac{\pi}{4} \cdot (d_{K}^{2} - d_{S}^{2}) + p_{U} \cdot \frac{\pi}{4} \cdot d_{S}^{2}$	
	$\Rightarrow p_S \ge \frac{p_U}{\left(d_K^2 - d_S^2\right)} \cdot \left(\frac{1}{b} \cdot d_K^2 - d_S^2\right) = \underbrace{\frac{4,49 \ bar}{}}$	
	Summe/Sum:	10