Привет! Это BOTVA ИУ6, точнее малая ее часть.

Пользоваться и распространять файлы конечно же можно. Если вы нашли ошибку в файле, можете исправить ее в исходном коде и подать на слияние или просто написать в issue.

Так же вы можете купить распечатанную версию данного файла в виде книжки. Если возникнут вопросы, пишите в комментарии под постом файла в tg. Приятного бота)

https://github.com/pluttan

Подготовка к экзамену

Математический анализ

Оглавление

1 Определения и понятия

1. № - Множество натуральных чисел, состоит из чисел, возникающих при счёте.

- 2. **ℤ множество целых чисел**, состоит из натуральных чисел, нуля и чисел, противоположных натуральным.
- 3. $\mathbb Q$ множество рациональных чисел, состоит из чисел, представимых в виде $\frac{z}{n},\ z\in\mathbb Z,\ n\in\mathbb N.$
- 4. \mathbb{I} множество иррациональных чисел, состоит из чисел, которые не представимы в виде $\frac{z}{n}, \ z \in \mathbb{Z}, \ n \in \mathbb{N}$, такие как $e, \pi, \sqrt{3}$ и т.д..
- 5. \mathbb{R} множество действительных чисел, состоит из рациональных и иррациональных чисел.
- 6. $\overline{\mathbb{R}}$ расширенное множество действительных чисел, состоит из действительных чисел с добавлением $\{+\infty\}$ и $\{-\infty\}$.
- 7. Окрестностью U(x) точки x называют любой интервал, содержащий эту точку.
- 8. **Проколотой окрестностью** $\check{U}(x)$ **точки** x называют окрестность этой точки U(x), за исключением самой точки x.
- 9. ε -окрестностью точки x_0 (при положительном ε) называют интервал $(x_0 \varepsilon, x_0 + \varepsilon)$.

$$U_{\varepsilon}(x_0) = \{ x \in \mathbb{R} : x_0 - \varepsilon < x < x_0 + \varepsilon \}$$

10. правой (правосторонней) δ -окрестностью точки x_0 называют полуинтервал $[x_0, x_0 + \delta), \ \delta > 0.$

$$U_{\delta}^{+}(x_0) = \{ x \in \mathbb{R} : x_0 \le x < x_0 + \delta \}, \ \delta > 0$$

11. **левой (левосторонней)** δ **-окрестностью точки** x_0 называют полуинтервал $(x_0 - \delta, x_0], \ \delta > 0$.

$$U_{\delta}^{-}(x_0) = \{ x \in \mathbb{R} : x_0 - \delta < x \leqslant x_0 \}, \ \delta > 0$$

12. **Окрестностью точки** $+\infty$ называют интервал $(a, +\infty), \ a > 0$.

$$U(+\infty) = \{x \in \mathbb{R} : x > a\}, \ a > 0$$

13. Окрестностью точки $-\infty$ называют интервал $(-\infty, -a), \ a>0.$

$$U(-\infty) = \{x \in \mathbb{R} : x < -a\}, \ a > 0$$

14. Окрестностью ∞ (бесконечности без знака) называют объединение двух интервалов $(-\infty, -a) \cup (a, +\infty), \ a > 0.$

$$U(\infty) = \{x \in \mathbb{R} : |x| > a\}, \ a > 0$$

- 15. **Последовательностью** $\{X_n\}$ называется числовая функция натурального аргумента. Если натуральному числу n при этом поставлено в соответствие число x_n , то это число называется n-м элементом последовательности; n называют номером элемента x_n .
- 16. Последовательность чисел $\{X_n\}$ называется **неубывающей**, если $x_{n+1}\geqslant x_n,\ \forall\ n\in\mathbb{N}.$
- 17. Последовательность чисел $\{X_n\}$ называется возрастающей, если $x_{n+1} > x_n, \ \forall \ n \in \mathbb{N}$.
- 18. Последовательность чисел $\{X_n\}$ называется **невозрастающей**, если $x_{n+1} \leqslant x_n, \ \forall \ n \in \mathbb{N}$.
- 19. Последовательность чисел $\{X_n\}$ называется **убывающей**, если $x_{n+1} < x_n, \ \forall \ n \in \mathbb{N}$.
- 20. Неубывающие, невозрастающие, убывающие и возрастающие последовательности называют монотонными.
- 21. Последовательность называется постоянной, если $\forall n \in \mathbb{N}: \ x_n = c, \ c \in \mathbb{R}.$
- 22. Последовательность $\{X_n\}$ называется ограниченной сверху, если $\exists M \in \mathbb{R}$, такое, что $\forall n \in \mathbb{N}: x_n \leqslant M$.
- 23. Последовательность $\{X_n\}$ называется ограниченной снизу, если $\exists M \in \mathbb{R}$, такое, что $\forall n \in \mathbb{N}: x_n \geqslant M$.
- 24. Последовательность, ограниченная и сверху и снизу, называют **ограниченной**: $\exists M > 0, \ M \in \mathbb{R}$, такое, что $\forall n \in \mathbb{N}: \ |x_n| \leqslant M$.
- 25. Число a называется **пределом числовой последовательности** $\{X_n\}$, если для любого, сколь угодно малого положительного ε существует такой номер N, зависящий от ε , что для всех n>N выполняется неравенство $|a-x_n|<\varepsilon$.

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \forall n > N \Rightarrow |x_n - a| < \varepsilon$$

- 26. Числовая последовательность называется **сходящейся**, если существует предел этой последовательности, и он конечен.
- 27. Последовательность $\{X_n\}$ называется **фундаментальной**, если для любого $\varepsilon>0$ существует номер $N=N(\varepsilon)$ такой, что при любых $m\geqslant N$ и $n\geqslant N$ выполняется неравенство $|x_m-x_n|<\varepsilon.$
- 28. Число a называется **пределом функции** f(x) при $x \to x_0$, если для любого $\varepsilon > 0$ существует положительное число $\delta = \delta(\varepsilon)$ такое, что для любого $x \in \overset{\circ}{U}_{\delta}(x_0)$ выполняется неравенство $|f(x) a| < \varepsilon$ (определение по Коши).

$$\lim_{x \to x_0} f(x) = a \iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

29. Число a называется **пределом функции** f(x) при $x \to x_0$, если для любой последовательности $\{X_n\}$ точек из $\overset{\circ}{U}(x_0)$, для которой $\lim_{n \to \infty} x_n = x_0$, выполняется равенство $\lim_{n \to \infty} \{f(x_n)\} = a$ (определение по Гейне).

$$\lim_{x \to x_0} f(x) = a \iff \{ \forall x_n \in \overset{\circ}{U}(x_0), \ n \in \mathbb{N} \} \cap \lim_{n \to \infty} x_n = x_0 : \lim_{n \to \infty} \{ f(x_n) \} = a$$

30. Число a называется **правым (правосторонним) пределом функции** f(x) при $x \to x_0+$, если для любого $\varepsilon > 0$ существует $\delta = \delta(\varepsilon) > 0$ такое, что при любом $x \in U_{\delta}^+(x_0)$ (.. $x_0 < x < x_0 + \delta$), выполняется неравенство $|f(x) - a| < \varepsilon$.

$$\lim_{x \to x_0 +} f(x) = a \iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in U_{\delta}^+(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

31. Число a называется левым (левосторонним) пределом функции f(x) при $x \to x_0-$, если для любого $\varepsilon > 0$ существует $\delta = \delta(\varepsilon) > 0$ такое, что при любом $x \in U_{\delta}^-(x_0)$, $(...x_0 - \delta < x < x_0)$ выполняется неравенство $|f(x) - a| < \varepsilon$.

$$\lim_{x \to x_0 -} f(x) = a \iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in U_{\delta}^{-}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

- 32. Функцию f(x) называют **ограниченной на множестве** D, если существует такое число M>0, что для любых $x\in D$ выполняется неравенство $|f(x)|\leqslant M$.
- 33. Функцию f(x) называют **ограниченной** (на области определения D_f), если существует такое число M > 0, что для любых $x \in D_f$ выполняется неравенство $|f(x)| \leq M$.
- 34. Функцию f(x) называют локально ограниченной в окрестности точки a, если существует такое число M>0 и такая окрестность $\overset{\circ}{U}_{\delta}(a)$, что для любых $x\in \overset{\circ}{U}_{\delta}(a)$ выполняется неравенство $|f(x)|\leqslant M$.
- 35. Функцию f(x) называют **бесконечно малой** при $x \to x_0, \ x_0 \in \overline{\mathbb{R}},$ если $\lim_{x \to x_0} f(x) = 0.$
- 36. Функцию f(x) называют **бесконечно большой** при $x \to x_0, \ x_0 \in \overline{\mathbb{R}},$ если $\lim_{x \to x_0} f(x) = \infty.$
- 37. $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$ первый замечательный предел.
- $38. \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$ второй замечательный предел.
- 39. Функции $\alpha(x)$ и $\beta(x)$ называют **сравнимыми** бесконечно малыми при $x \to x_0$, если существует хотя бы один из пределов $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)}$ или $\lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)}$.
- 40. Функции $\alpha(x)$ и $\beta(x)$ называют **несравнимыми** бесконечно малыми при $x \to x_0$, если не существует ни конечного, ни бесконечного предела их отношения при $x \to x_0$.
- 41. Функции $\alpha(x)$ и $\beta(x)$ называют **бесконечно малыми одного порядка** при $x \to x_0$ и записывают $\alpha(x) = O(\beta(x))$, если существует отличный от нуля конечный предел отноше-

ния $\alpha(x)/\beta(x)$, при $x \to x_0$.

$$\alpha(x) = O(\beta(x))$$
 при $x \to x_0 \iff \exists \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = c \in \mathbb{R} \setminus \{0\}$

42. Функцию $\alpha(x)$ называют **бесконечно малой более высокого порядка** малости по сравнению с $\beta(x)$ при $x \to x_0$ и записывают $\alpha(x) = o(\beta(x))$, если существует и равен нулю предел отношения $\alpha(x)/\beta(x)$, при $x \to x_0$.

$$lpha(x)=o(eta(x))$$
 при $x o x_0\iff\exists\lim_{x o x_0}rac{lpha(x)}{eta(x)}=0$

- 43. Функцию $\alpha(x)$ называют бесконечно малой более низкого порядка малости по сравнению с $\beta(x)$ при $x \to x_0$, если предел отношения $\alpha(x)/\beta(x)$, при $x \to x_0$, равен бесконечности.
- 44. Функции $\alpha(x)$ и $\beta(x)$ называют эквивалентными бесконечно малыми при $x \to x_0$, если предел их отношения при $x \to x_0$ равен 1.

$$\alpha(x) \sim \beta(x)$$
 при $x \to x_0 \iff \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$

45. Функцию $\alpha(x)$ называют **бесконечно малой** k**-ого порядка** малости относительно $\beta(x)$ при $x \to x_0$, а число k (k > 0) - **порядком малости** $\alpha(x)$ относительно $\beta(x)$ при $x \to x_0$, если функции $\alpha(x)$ и $\beta^k(x)$ являются бесконечно малыми одного порядка при $x \to x_0$, т.е.

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta^k(x)} = c \in \mathbb{R} \setminus \{0\}$$

46. Функцию u(x) называют **бесконечно большой** k**-ого порядка** роста относительно w(x) при $x \to x_0$, а число k (k > 0) - **порядком роста** u(x) относительно w(x) при $x \to x_0$, если функции u(x) и $w^k(x)$ являются бесконечно большими одного порядка при $x \to x_0$, т.е.

$$\lim_{x \to x_0} \frac{u(x)}{w^k(x)} = c \in \mathbb{R} \setminus \{0\}$$

- 47. **Главная часть суммы бесконечно малых функций** это слагаемое более низкого порядка малости по сравнению с каждым из остальных слагаемых.
- 48. **Приращением аргумента** в точке x_0 называется изменение аргумента функции от значения x_0 к другому значению x,

$$\Delta x = x - x_0$$

- 49. Приращением функции в точке x_0 называется $\Delta y = f(x_0 + \Delta x) f(x_0)$.
- 50. Функция f(x) называется **непрерывной в точке** x_0 , если в этой точке существует конечный предел функции и он совпадает с значением функции в этой точке, т.е. $\exists \lim_{x \to x_0} f(x) = f(x_0)$.

51. Функция f(x) называется **непрерывной в точке** x_0 **справа**, если в этой точке существует конечный *правый* предел функции и он совпадает с значением функции в этой точке, т.е. $\exists \lim_{x \to x_0+} f(x) = f(x_0)$.

- 52. Функция f(x) называется **непрерывной в точке** x_0 **слева**, если в этой точке существует конечный левый предел функции и он совпадает с значением функции в этой точке, т.е. $\exists \lim_{x \to x_0} f(x) = f(x_0)$.
- 53. Функция f(x) непрерывна на интервале (a,b), если она непрерывна в каждой его точке.
- 54. Функция f(x) непрерывна на отрезке [a,b], если она непрерывна на интервале (a,b), в точке a непрерывна справа, т.е. $\lim_{x\to a+} f(x) = f(a)$, в точке b непрерывна слева, т.е. $\lim_{x\to b-} f(x) = f(b)$.
- 55. Если данная функция f(x) не является непрерывной в точке x_0 , то x_0 называется **точкой** разрыва функции f(x).
- 56. **Точкой разрыва первого рода** называют такую точку разрыва функции, в которой существуют оба односторонних предела этой функции и они конечны, но они не равны между собой.
- 57. **Точкой разрыва второго рода** называют такую точку разрыва функции, в которой хотя бы один из односторонних пределов функции не существует (в частности, равен бесконечности).
- 58. Если x_0 точка разрыва функции первого рода и односторонние пределы функции в этой точке равны между собой, но не равны значению функции в этой точке, то такой разрыв называют устранимым, а точку x_0 точкой устранимого разрыва.
- 59. Если x_0 точка разрыва функции первого рода и односторонние пределы функции в этой точке не равны между собой, то такой разрыв называют **неустранимым**, а точку x_0 точкой неустранимого разрыва.
- 60. Если существует конечный предел $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$, то он называется производной функции f(x) в точке x_0 и обозначается $f'(x_0)$.
- 61. Если f(x) определена в правосторонней окрестности точки x_0 и если $\exists \lim_{\Delta x \to 0+} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$, то этот предел называется **правой производной функции** f(x) в x_0 и обозначается $f'_+(x)$.
- 62. Если f(x) определена в левосторонней окрестности точки x_0 , и если $\exists \lim_{\Delta x \to 0-} \frac{f(x_0 + \Delta x) f(x_0)}{\Delta x}$, то этот предел называется **левой производной функции** f(x) в x_0 и обозначается $f'_-(x)$.
- 63. Пусть функция y=f(x) определена в некоторой окрестности точки x_0 . Функция называется дифференцируемой в точке x_0 , если ее приращение Δy в точке x_0 представимо в следующем виде: $\Delta y = A\Delta x + \alpha(\Delta x)\Delta x$, где A некоторое число, не зависящее от Δx , а $\lim_{\Delta x \to 0} \alpha(\Delta x) = 0$.
- 64. Линейная от Δx функция $A\Delta x$ называется дифференциалом функции f(x) в точке x_0 .

65. Дифференциалом n-го порядка называется дифференциал от дифференциала n-1 порядка, т.е.

$$d^{n}y = d(d^{n-1}y) = f^{(n)}(x)dx^{n}$$

66. **Производная** n**-ого порядка** от функции y = f(x), есть производная от производной n-1 порядка, т.е.

$$f^{(n)} = (f^{n-1}(x))'$$

- 67. Функция f(x) называется возрастающей на интервале (a,b), если $\forall x_1,x_2 \in (a,b)$, таких что $x_2 > x_1$, выполняется неравенство $f(x_2) > f(x_1)$.
- 68. Функция f(x) называется невозрастающей на интервале (a,b), если $\forall x_1,x_2 \in (a,b)$, таких что $x_2 > x_1$, выполняется неравенство $f(x_2) \leqslant f(x_1)$.
- 69. Функция f(x) называется **убывающей на интервале** (a,b), если $\forall x_1, x_2 \in (a,b)$, таких что $x_2 > x_1$, выполняется неравенство $f(x_2) < f(x_1)$.
- 70. Функция f(x) называется **неубывающей на интервале** (a,b), если $\forall x_1, x_2 \in (a,b)$, таких что $x_2 > x_1$, выполняется неравенство $f(x_2) \geqslant f(x_1)$.
- 71. Функция f(x) называется **монотонной**, если она невозрастающая или неубывающая.
- 72. Функция f(x) называется **строго монотонной**, если она возрастающая или убывающая.
- 73. Точка x_0 называется точкой локального минимума функции f(x), если $\exists U_{\delta}(x_0)$, такая что $\forall x \in U_{\delta}(x_0): f(x_0) \leqslant f(x)$.
- 74. Точка x_0 называется точкой локального максимума функции f(x), если $\exists U_{\delta}(x_0)$, такая что $\forall x \in U_{\delta}(x_0): f(x_0) \geqslant f(x)$.
- 75. Точка x_0 называется **точкой строгого локального минимума** функции f(x), если $\exists \overset{\circ}{U}_{\delta}(x_0)$, такая что $\forall x \in \overset{\circ}{U}_{\delta}(x_0): f(x_0) < f(x)$.
- 76. Точка x_0 называется **точкой строгого локального максимума** функции f(x), если $\exists \overset{\circ}{U}_{\delta}(x_0)$, такая что $\forall x \in \overset{\circ}{U}_{\delta}(x_0): f(x_0) > f(x)$.
- 77. **Точками локального экстремума** называются точки локального максимума и строгого локального максимума, локального минимума и строгого локального минимума.
- 78. **Точками строгого локального экстремума** называются точки строгого локального максимума и минимума.
- 79. Точку x_0 из области определения функции f(x) называют **критической**, если производная в ней равна 0 или не сущестует вовсе.
- 80. Точку x_0 из области определения функции f(x) называют **стационарной**, если $f'(x_0) = 0$.
- 81. Прямая Ax + By + C = 0 называется **асимптотой** графика y = f(x), если расстояние от точки M(x, f(x)) графика функции до этой прямой стремится к 0 при бесконечном удалении точки M от начала координат.

82. Прямая x=a называется **вертикальной асимптотой** графика функции y=f(x), если хотя бы один из пределов $\lim_{x\to a+(-)}f(x)=\infty$

- 83. Прямая y = kx + b называется **правой наклонной асимптотой** графика функции y = f(x), если эту функцию можно представить в виде $f(x) = kx + b + \alpha(x)$, где $k, b \in \mathbb{R}$ и $\alpha(x)$ бесконечно малая функция при $x \to +\infty$.
- 84. Прямая y=kx+b называется **левой наклонной асимптотой** графика функции y=f(x), если эту функцию можно представить в виде $f(x)=kx+b+\alpha(x)$, где $k,b\in\mathbb{R}$ и $\alpha(x)$ бесконечно малая функция при $x\to-\infty$.
- 85. Пусть функция f(x) дифференцируема на интервале (a,b). График функции y=f(x) имеет на интервале (a,b) выпуклость вверх, если он лежит не выше любой касательной к графику на (a,b).
- 86. Пусть функция f(x) дифференцируема на интервале (a,b). График функции y=f(x) имеет на интервале (a,b) выпуклость вниз, если он лежит не ниже любой касательной к графику на (a,b).
- 87. Точка $x_0 \in (a,b)$ называется точкой перегиба функции f(x), если эта функция непрерывна в точке x_0 и если $\exists \delta > 0$ такое, что направления выпуклостей функции f(x) на интервалах $(x_0 \delta; x_0)$ и $(x_0; x_0 + \delta)$ различны.

2 Вопросы для подготовки к экзамену

2.1 Теорема (о единственности предела сходящейся последовательности)

Если последовательность имеет предел, то этот предел - единственный.

Доказательство (от противного)

Пусть $a, b \in \mathbb{R}, \ a \neq b$, где a и b - пределы сходящейся последовательности $\{X_n\}$:

$$\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} x_n = b, \ a \neq b$$

По определению предела:

$$\forall \varepsilon > 0, \ \exists N_1 = N_1(\varepsilon) \in \mathbb{N}: \ \forall n > N_1 \Rightarrow |x_n - a| < \varepsilon$$

$$\forall \varepsilon > 0, \ \exists N_2 = N_2(\varepsilon) \in \mathbb{N}: \ \forall n > N_2 \Rightarrow |x_n - b| < \varepsilon$$

Примем $arepsilon = rac{|b-a|}{3}$ и при $n > max(N_1,\ N_2)$ получим

$$|b-a| = |x_n - a + b - x_n| \le |x_n - a| + |b - x_n| = |x_n - a| + |x_n - b| \Rightarrow |b-a| < 2\varepsilon$$

Или $|b-a|<2\cdot\frac{|b-a|}{3}$, т.е. $|b-a|<\frac{2}{3}|b-a|$, $\frac{1}{3}|b-a|<0$, чего не может быть $\Rightarrow a\neq b$ - неверно, т.е. $a=b\Rightarrow$ предел единственный. Теорема доказана.

2.2 Теорема (об ограниченности сходящейся последовательности)

Всякая сходящаяся последовательность является ограниченной.

Доказательство

Пусть $\{X_n\}$ - сходящаяся последовательность. Тогда по определению, у нее существует конечный предел

$$\lim_{n \to \infty} x_n = a \iff \forall \varepsilon > 0 \ \exists N = N(\varepsilon) \in \mathbb{N} : \ \forall n > \mathbb{N} \Rightarrow |x_n - a| < \varepsilon,$$
$$-\varepsilon + a < x_n < \varepsilon + a$$

Обозначим через A максимальное число среди $|x_1|, |x_2|, ..., |x_n|, |a-\varepsilon|, |a+\varepsilon|$, т.е.

$$A = max(|x_1|, |x_2|, ..., |x_n|, |a - \varepsilon|, |a + \varepsilon|)$$

Тогда $\forall n \in \mathbb{N}$ выполняется $|x_n| < A$, \Rightarrow последовательность ограничена. Теорема доказана.

2.3 Теорема (о локальной ограниченности функции, имеющей конечный предел)

Если функция f(x) имеет конечный предел при $x \to x_0$, то f(x) локально ограничена. Доказательство

По условию \exists конечный предел $\lim_{x \to x_0} f(x) = a$, тогда

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

Пусть $\varepsilon=1$, тогда $|f(x)|-|a|\leqslant |f(x)-a|<1$, а значит

$$\forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x)| < 1 + |A| = const \Rightarrow$$

f(x) является локально ограниченной в окрестности точки x_0 . Теорема доказана.

2.4 Теорема (о сохранении функцией знака своего предела)

Если $\lim_{x\to x_0}f(x)=A\neq 0$, то $\exists \overset{\circ}{U}_{\delta}(x_0): \ \forall x\in \overset{\circ}{U}_{\delta}(x_0)$ функция f(x) сохраняет знак своего предела.

Доказательство

По условию \exists конечный $\lim_{x \to x_0} f(x) = a > 0 \Rightarrow$

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

• в случае a>0 выбираем $\varepsilon=\frac{a}{2}$, тогда

$$|f(x) - a| < \frac{a}{2}$$
$$-\frac{a}{2} < f(x) - a < \frac{a}{2}$$

$$\frac{a}{2} < f(x) < \frac{3a}{2}$$

Следовательно $f(x)>\frac{a}{2}>0$, т.е. данная функция положительна при $x\in \overset{\circ}{U}_{\delta}(x_0).$

• в случае a<0 выбираем $\varepsilon=-\frac{a}{2}$, тогда

$$|f(x) - a| < -\frac{a}{2}$$

$$\frac{a}{2} < f(x) - a < -\frac{a}{2}$$

$$\frac{3a}{2} < f(x) < \frac{a}{2}$$

Следовательно $f(x)<\frac{a}{2}<0$, т.е. данная функция отрицательна при $x\in \overset{\circ}{U}_{\delta}(x_0)$. Теорема доказана.

2.5 Теорема (о предельном переходе в неравенстве)

Пусть функции f(x) и g(x) определены в проколотой окрестности $U(x_0)$ точки x_0 , причем для любого $x\in U(x_0)$ выполняется неравенство $f(x)\geqslant g(x)$. Тогда, если эти функции имеют пределы $a=\lim_{x\to x_0}f(x)$ и $b=\lim_{x\to x_0}g(x)$, то $a\geqslant b$.

Доказательство

По условию $\forall x \in U(x_0): f(x) \geqslant g(x) \Rightarrow f(x) - g(x) \geqslant 0$, тогда по теореме о сохранении функцией знака своего предела:

$$\lim_{x\to x_0}(f(x)-g(x))\geqslant 0\Rightarrow \lim_{x\to x_0}f(x)-\lim_{x\to x_0}g(x)=a-b\geqslant 0, \Rightarrow a\geqslant b$$

Теорема доказана.

2.6 Теорема (о пределе промежуточной функции)

Пусть для всех x из некоторой проколотой окрестности $\overset{\circ}{U}(x_0)$ точки x_0 выполняется двойное неравенство $f(x)\leqslant g(x)\leqslant h(x)$, и пусть существуют пределы $\lim_{x\to x_0}f(x)$ и $\lim_{x\to x_0}h(x)$, равные одному и тому же числу a. Тогда и $\lim_{x\to x_0}g(x)=a$. Доказательство

По условию $\exists \lim_{x \to x_0} f(x) = a, \lim_{x \to x_0} h(x) = a,$ тогда по определению предела функции,

$$\forall \varepsilon > 0 \; \exists \delta_1 = \delta_1(\varepsilon) > 0 : \; \forall x \in \overset{\circ}{U}_{\delta_1}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

$$\text{r.e. } a - \varepsilon < f(x) < a + \varepsilon$$

$$\forall \varepsilon > 0 \; \exists \delta_2 = \delta_2(\varepsilon) > 0 : \; \forall x \in \overset{\circ}{U}_{\delta_2}(x_0) \Rightarrow |h(x) - a| < \varepsilon$$

$$\text{r.e. } a - \varepsilon < h(x) < a + \varepsilon$$

Тогда при $x \in \overset{\circ}{U}_{\delta}(x_0), \ \delta = min(\delta_1, \delta_2),$ выполняется неравенство

$$a - \varepsilon < f(x) \le g(x) \le h(x) < a + \varepsilon$$

$$a - \varepsilon < g(x) < a + \varepsilon$$

$$|g(x) - a| < \varepsilon$$

Таким образом, получаем

$$\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |g(x) - a| < \varepsilon \iff \lim_{x \to x_0} g(x) = a$$

Теорема доказана.

2.7 Теорема (о пределе произведения функций)

Если \exists конечные пределы $\lim_{x\to x_0} f(x) = a$ и $\lim_{x\to x_0} g(x) = b$, то $\lim_{x\to x_0} (f(x)\cdot g(x)) = a\cdot b = \lim_{x\to x_0} f(x)\cdot \lim_{x\to x_0} g(x)$. Доказательство

По условию \exists конечные пределы $\lim_{x\to x_0} f(x) = a$ и $\lim_{x\to x_0} g(x) = b$, тогда по теореме о связи функции, ее предела и бесконечно малой имеем

$$f(x)=a+\alpha(x),$$
где $\alpha(x)$ — бесконечно малая функция при $x\to x_0$

$$g(x) = b + \beta(x)$$
, где $\beta(x)$ — бесконечно малая функция при $x \to x_0$

Тогда

$$f(x) \cdot g(x) = (a + \alpha(x)) \cdot (b + \beta(x)) = a \cdot b + a \cdot \beta(x) + \alpha(x) \cdot b + \alpha(x) \cdot \beta(x)$$

$$\lim_{x \to x_0} (f(x) \cdot g(x)) = \lim_{x \to x_0} (a \cdot b + \underbrace{a \cdot \beta(x)}_{\dots \xrightarrow{x \to x_0}} + \underbrace{\alpha(x) \cdot b}_{\dots \xrightarrow{x \to x_0}} + \underbrace{\alpha(x) \cdot \beta(x)}_{\dots \xrightarrow{x \to x_0}}) = \lim_{x \to x_0} (a \cdot b) = a \cdot b = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

Теорема доказана.

2.8 Теорема (о пределе сложной функции)

Если функция y=f(x) имеет в точке x=a конечный предел, равный b, и $f(x)\neq b$ в некоторой проколотой окрестности $\overset{\circ}{U}(a)$ этой точки, а функция g(y) имеет в точке b конечный предел c, то сложная функция g(f(x)) имеет $\lim_{x\to a}g(f(x))=c$. Доказательство

По определению предела функции по Гейне имеем:

$$\exists \lim_{x \to a} f(x) = b \iff \{ \forall x_n \in \overset{\circ}{U}(a), \ n \in \mathbb{N} \} \cap \lim_{n \to \infty} x_n = a : \lim_{n \to \infty} \{ f(x_n) \} = b$$

$$\exists \lim_{y \to b} g(y) = c \iff \{ \forall y_n \in \overset{\circ}{U}(b), \ n \in \mathbb{N} \} \ \cap \ \lim_{n \to \infty} y_n = b : \ \lim_{n \to \infty} \{ g(y_n) \} = c$$

Пусть $\{X_n\}$ - произвольная последовательность, стремящаяся к точке a и $x_n \neq a \ \forall n \in \mathbb{N}$. Тогда $\lim_{n \to \infty} \{f(x_n)\} = b$, но $f(x_n) \neq b \ \forall n \in \mathbb{N}$. Пусть $y_n = f(x_n)$. Поскольку $\lim_{n \to \infty} \{y_n\} = b$ и $y_n \neq b \ \forall n \in \mathbb{N}$, имеем $\lim_{n \to \infty} \{g(y_n)\} = c$, т.е.

$$\{\forall x_n \in \overset{\circ}{U}(a), \ n \in \mathbb{N}\} \ \cap \ \lim_{n \to \infty} x_n = a: \ \lim_{n \to \infty} \{g(f(x_n))\} = c \iff \lim_{n \to \infty} g(f(x)) = c$$

Теорема доказана.

2.9 Вывод первого замечательного предела

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Пусть $0 < x < \frac{\pi}{2}$. Рассмотрим окружность радиуса R с центром в начале координат, пересекающую ось абсцисс в точке A, и пусть угол $\angle AOB$ равен x (радиан). Пусть, далее, CA — перпендикуляр к этой оси, C — точка пересечения с этим перпендикуляром продолжения отрезка OB за точку B. Тогда

$$S_{ riangle OAB} < S_{ riangle OAB} < S_{ riangle OAC}$$
 $rac{1}{2}R^2sin(x) < rac{1}{2}R^2x < rac{1}{2}R^2tg(x)$ $sin(x) < x < tg(x)$ $1 < rac{x}{sin(x)} < rac{1}{cos(x)}$ $1 > rac{sin(x)}{x} > cos(x)$, при $x \in (0, rac{\pi}{2})$

Рассмотрим $x \in (-\frac{\pi}{2}, 0)$. Сделаем замену $\beta = -x$, таким образом $\beta \in (0, \frac{\pi}{2})$, а значит справедливо следующее неравенство:

$$1 > \frac{\sin(\beta)}{\beta} > \cos(\beta)$$

Вернемся к замене $\beta = -x$

$$1 > \frac{\sin(-x)}{-x} > \cos(-x)$$

$$1 > \frac{-\sin(x)}{-x} > \cos(x)$$

$$1>rac{sin(x)}{x}>cos(x)$$
 при $x\in(-rac{\pi}{2},0)$

Таким образом, полученное неравенство справедливо для $x \in (-\frac{\pi}{2},0) \cup (0,\frac{\pi}{2})$. Перейдем к пределу при $x \to 0$:

$$\left. \lim_{x\to 0} \cos(x) = 1 \atop \lim_{x\to 0} 1 = 1 \right\} \Rightarrow \text{ (по т. о пределе промежуточной функции) } \lim_{x\to 0} \frac{\sin(x)}{x} = 1$$

2.10 Теорема (о связи функции, ее предела и бесконечно малой)

Равенство $\lim_{x \to x_0} f(x) = a$ имеет место $\iff f(x) = a + \alpha(x)$, где $\alpha(x)$ – бесконечно малая функция при $x - x_0$.

Доказательство

 (\Rightarrow)

По условию \exists конечный $\lim_{x\to x_0}f(x)=a,$ тогда по определению

$$\forall \varepsilon > 0 \ \exists \overset{\circ}{U}_{\delta}(x_0) : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon$$

Обозначим $f(x)-a=\alpha(x)$. Тогда $|\alpha(x)|<\varepsilon\ \forall x\in \overset{\circ}{U}_{\delta}(x_0)\Rightarrow \lim_{x\to x_0}\alpha(x)=0,$ т.е. $\alpha(x)$ - бесконечно малая функция при $x\to x_0$.

Ho
$$\alpha(x)=f(x)-a\Rightarrow f(x)=a+\alpha(x),$$
 где $\lim_{x\to x_0}\alpha(x)=0.$ (\Leftarrow)

По условию $f(x)=a+\alpha(x)$, где $\lim_{x\to x_0}\alpha(x)=0$, тогда по определению

$$\forall \varepsilon > 0 \ \exists \overset{\circ}{U}_{\delta}(x_0) : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |\alpha(x)| < \varepsilon$$

Но по условию $f(x) = a + \alpha(x) \Rightarrow \alpha(x) = f(x) - a$, отсюда имеем

$$\forall \varepsilon > 0 \ \exists \overset{\circ}{U}_{\delta}(x_0) : \ \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow |f(x) - a| < \varepsilon \Rightarrow \lim_{x \to x_0} f(x) = a$$

Теорема доказана.

2.11 Теорема (о произведении бесконечно малой функции на ограниченную)

Если $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, f(x) - ограниченная функция, то $\alpha(x)$ · f(x) - бесконечно малая функция при $x \to x_0$. Доказательство По условию $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, тогда

$$\forall \varepsilon > 0 \ \exists \overset{\circ}{U}_{1}(x_{0}) : \forall x \in \overset{\circ}{U}_{1}(x_{0}) \Rightarrow |\alpha(x)| < \frac{\varepsilon}{c}$$

f(x) - ограниченная функция, тогда

$$|f(x)| < c,$$
 где $c = const, \ \forall x \in \overset{\circ}{U}_2(x_0)$

Таким образом,

$$\forall x \in \overset{\circ}{U}(x_0) = \overset{\circ}{U}_1(x_0) \cap \overset{\circ}{U}_2(x_0) :$$

 $|\alpha(x)\cdot f(x)|<\frac{\varepsilon}{c}\cdot c\Rightarrow |\alpha(x)\cdot f(x)|<\varepsilon\Rightarrow \alpha(x)\cdot f(x)\text{ - бесконечно малая функция при }x\to x_0$ Теорема доказана.

2.12 Теорема (о связи между бесконечно большой и бесконечно малой)

 $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, отличная от нуля в некоторой проколотой окрестности точки $x_0 \Rightarrow \frac{1}{\alpha(x)}$ - бесконечно большая функция при $x \to x_0$.

f(x) - бесконечно большая функция при $x \to x_0 \Rightarrow \frac{1}{f(x)}$ - бесконечно малая функция при $x \to x_0$.

Доказательство

Пусть $\alpha(x)$ - бесконечно малая функция при $x \to x_0$, отличная от нуля в некоторой проколотой окрестности $\overset{\circ}{U}(x_0)$ точки x_0 . Выберем произвольное E>0. Тогда по определению бесконечно малой функции,

для
$$\varepsilon=rac{1}{E}>0\;\;\exists \overset{\circ}{U}_1(x_0):\; \forall x\in \overset{\circ}{U}(x_0)\cap \overset{\circ}{U}_1(x_0)\Rightarrow 0<|\alpha(x)|<\varepsilon,\;$$
 т.е.
$$\frac{1}{|\alpha(x)|}>E, \Rightarrow \frac{1}{\alpha(x)}\;\text{-}\;$$
 бесконечно большая функция при $x\to x_0$

Пусть f(x) - бесконечно большая функция при $x \to x_0$. Выберем произвольное $\varepsilon > 0$. Тогда по определению бесконечно большой функции,

для
$$E=rac{1}{arepsilon}\,\,\exists \mathring{U}(x_0):\,\, \forall x\in \mathring{U}(x_0)\Rightarrow |f(x)|>E,\,\, {
m T.e.}$$

$$rac{1}{f(x)}<rac{1}{E}=arepsilon, \Rightarrow rac{1}{f(x)}\, ext{-}\,\, {
m бесконечно}\,\, {
m малая}\,\, {
m функция}\,\, {
m при}\,\, x\to x_0$$

Теорема доказана.

2.13 Теорема (о замене бесконечно малой на эквивалентную под знаком предела)

Пусть $\alpha(x) \sim \beta(x)$ при $x \to x_0$, и f(x) - некоторая функция, определенная в проколотой окрестности $\overset{\circ}{U}(x_0)$ точки x_0 . Тогда:

- если существует предел при $x \to x_0$ произведения $\alpha(x) \cdot f(x)$, то он не изменится при замене $\alpha(x)$ на эквивалентную при $x \to x_0$ бесконечно малую функцию $\beta(x)$
- если существует предел при $x \to x_0$ частного $\frac{f(x)}{\alpha(x)}$, то он не изменится при замене $\alpha(x)$ на эквивалентную при $x \to x_0$ бесконечно малую функцию $\beta(x)$

Доказательство

По условию $\alpha(x)\sim \beta(x)$ при $x\to x_0$, тогда по определению $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)}=1.$ Таким образом,

$$\bullet \lim_{x \to x_0} (\alpha(x) \cdot f(x)) = \lim_{x \to x_0} \tfrac{\alpha(x) \cdot \beta(x) \cdot f(x)}{\beta(x)} = \lim_{x \to x_0} \tfrac{\alpha(x)}{\beta(x)} \cdot \lim_{x \to x_0} (\beta(x) \cdot f(x)) = \lim_{x \to x_0} (\beta(x) \cdot f(x))$$

•
$$\lim_{x \to x_0} \frac{f(x)}{\alpha(x)} = \lim_{x \to x_0} \frac{\beta(x) \cdot f(x)}{\alpha(x) \cdot \beta(x)} = \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} \cdot \lim_{x \to x_0} \frac{f(x)}{\beta(x)} = \lim_{x \to x_0} \frac{f(x)}{\beta(x)}$$
 Теорема доказана.

2.14 Теорема (о необходимом и достаточном условии эквивалентности бесконечно малых)

Две бесконечно малые функции $\alpha(x)$ и $\beta(x)$ при $x \to x_0$ эквивалентны \iff их разность имеет больший порядок малости при $x \to x_0$ по сравнению с каждой из них.

Доказательство

 (\Rightarrow)

По условию $\alpha(x)\sim\beta(x)$ при $x\to x_0$, тогда по определению $\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=1.$ Таким образом,

$$\lim_{x\to x_0}\frac{\alpha(x)-\beta(x)}{\beta(x)}=\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}-1=0, \Rightarrow \alpha(x)-\beta(x)=o(\beta(x))$$
 при $x\to x_0$

$$\lim_{x\to x_0}\frac{\alpha(x)-\beta(x)}{\alpha(x)}=1-\lim_{x\to x_0}\frac{\beta(x)}{\alpha(x)}=0, \Rightarrow \alpha(x)-\beta(x)=o(\alpha(x))$$
 при $x\to x_0$

 (\Leftarrow)

По условию $\alpha(x)-\beta(x)=o(\beta(x))$ при $x\to x_0,\ \alpha(x)-\beta(x)=o(\alpha(x))$ при $x\to x_0.$ Тогда

$$0 = \lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} - 1 \ \Rightarrow \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1, \Rightarrow \alpha(x) \sim \beta(x)$$
 при $x \to x_0$

$$0 = \lim_{x \to x_0} \frac{\alpha(x) - \beta(x)}{\alpha(x)} = 1 - \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} \ \Rightarrow \lim_{x \to x_0} \frac{\beta(x)}{\alpha(x)} = 1, \Rightarrow \alpha(x) \sim \beta(x)$$
 при $x \to x_0$

Теорема доказана.

Теорема (о сумме конечного числа бесконечно малых разных порядков) Сумма конечного числа бесконечно малых функций при $x \to x_0$ эквивалентна своей главной части.

Доказательство

Пусть $\alpha_1(x), \ \alpha_2(x), \ ..., \ \alpha_n(x)$ - бесконечно малые функции при $x \to x_0$, и $\alpha_1(x)$ - главная часть суммы $\alpha_1(x) + \alpha_2(x) + ... + \alpha_n(x)$, т.е.

$$\lim_{x \to x_0} \frac{\alpha_2(x)}{\alpha_1(x)} = 0, \lim_{x \to x_0} \frac{\alpha_3(x)}{\alpha_1(x)} = 0, \dots, \lim_{x \to x_0} \frac{\alpha_n(x)}{\alpha_1(x)} = 0,$$

Тогда рассмотрим

$$\lim_{x \to x_0} \frac{\alpha_1(x) + \alpha_2(x) + \ldots + \alpha_n(x)}{\alpha_1(x)} = 1 + \lim_{x \to x_0} \frac{\alpha_2(x)}{\alpha_1(x)} + \lim_{x \to x_0} \frac{\alpha_3(x)}{\alpha_1(x)} + \ldots + \lim_{x \to x_0} \frac{\alpha_n(x)}{\alpha_1(x)} = 1, \Rightarrow \alpha_1(x) + \alpha_2(x) + \ldots + \alpha_n(x) = 1$$

Теорема доказана.

Теорема (о непрерывности суммы, произведения и частного непрерывных функций) Если f(x) и g(x) непрерывны в точке x_0 , то функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$, $\frac{f(x)}{g(x)}$ (последнее при $g(x) \neq 0$) - также непрерывны в точке x_0 .

Доказательство

По условию f(x) и g(x) непрерывны в точке x_0 , тогда по определению

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

$$\exists \lim_{x \to x_0} g(x) = g(x_0)$$

1. $\lim_{\substack{x \to x_0 \ \text{точке } \mathbf{x} = x_0.}} (f(x) \pm g(x)) = \lim_{\substack{x \to x_0 \ \text{точке } \mathbf{x} = x_0.}} f(x) \pm \lim_{\substack{x \to x_0 \ \text{точке } \mathbf{x} = x_0.}} f(x) \pm g(x) = f(x_0) \pm g(x_0), \Rightarrow f(x) \pm g(x)$ - непрерывна в

- 2. $\lim_{\substack{x \to x_0 \\ \mathbf{x} = x_0}} (f(x) \cdot g(x)) = \lim_{\substack{x \to x_0 \\ \mathbf{x} = x_0}} f(x) \cdot \lim_{\substack{x \to x_0 \\ \mathbf{x} = x_0}} g(x) = f(x_0) \cdot g(x_0), \Rightarrow f(x) \cdot g(x)$ непрерывна в точке
- 3. $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{f(x_0)}{g(x_0)}, \Rightarrow \frac{f(x)}{g(x)}$ непрерывна в точке $\mathbf{x} = x_0$ при условии $g(x) \neq 0$.

Теорема доказана.

2.15 Теорема (о непрерывности сложной функции)

Если функция y = f(x) непрерывна в точке x = a, а функция g(y) непрерывна в соответствующей точке b = f(a), то сложная функция g(f(x)) непрерывна в точке x = a.

Доказательство

По условию функция y=f(x) непрерывна в точке x=a, функция g(y) непрерывна в точке b=f(a). Тогда по определению

$$\exists \lim_{x \to a} f(x) = f(a)$$

$$\exists \lim_{y \to b} g(y) = g(b)$$

Тогда

$$\lim_{x \to a} g(f(x)) = \lim_{y \to b} g(y) = g(b) = g(f(a)), \Rightarrow$$
 функция $g(f(x))$ непрерывна в точке $x = a$

Теорема доказана.

2.16 Теорема (о сохранении знака непрерывной функции в окрестности точки)

Пусть функция f(x) непрерывна в точке x_0 , и $f(x_0) \neq 0$. Тогда в некоторой окрестности $U_{\delta}(x_0)$ точки x_0 функция f(x) имеет знак числа $f(x_0)$.

Доказательство

По условию y = f(x) непрерывна в точке $x = x_0$. Тогда по определению

$$\exists \lim_{x \to x_0} f(x) = f(x_0) \neq 0$$

Тогда по теореме о сохранении функцией знака своего предела функция f(x) имеет знак числа $f(x_0)$ в некоторой проколотой окрестности $\overset{\circ}{U}_{\delta}(x_0)$ точки x_0 , т.е.

$$f(x_0) > 0 \Rightarrow \exists \overset{\circ}{U}_{\delta}(x_0) : \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow f(x) > 0$$

$$f(x_0) < 0 \Rightarrow \exists \overset{\circ}{U}_{\delta}(x_0) : \forall x \in \overset{\circ}{U}_{\delta}(x_0) \Rightarrow f(x) < 0$$

Так как $\overset{\circ}{U}_{\delta}(x_0) = U_{\delta}(x_0) \setminus \{x_0\}$, то

$$f(x_0) > 0 \Rightarrow \exists U_{\delta}(x_0) : \forall x \in U_{\delta}(x_0) \Rightarrow f(x) > 0$$

$$f(x_0) < 0 \Rightarrow \exists U_{\delta}(x_0) : \forall x \in U_{\delta}(x_0) \Rightarrow f(x) < 0$$

Теорема доказана.

2.17 Теорема (о непрерывности элементарных функций)

Все элементарные функции непрерывны всюду, где они определены.

Доказательство (для y=sin(x) и y=cos(x))

§ d243 § Найдем приращение функции

$$\Delta y = f(x + \Delta x) - f(x) = sin(x + \Delta x) - sin(x) = 2sin\Big(\frac{x + \Delta x - x}{2}\Big) \cdot cos\Big(\frac{x + \Delta x + x}{2}\Big) = 2sin\Big(\frac{\Delta x}{2}\Big) + cos\Big(\frac{x + \Delta x - x}{2}\Big) \cdot cos\Big(\frac{x + \Delta x - x}{2}\Big) = 2sin\Big(\frac{\Delta x}{2}\Big) + cos\Big(\frac{x + \Delta x - x}{2}\Big) + cos\Big(\frac{x + \Delta x - x}{2}\Big) = 2sin\Big(\frac{\Delta x}{2}\Big) + cos\Big(\frac{x + \Delta x - x}{2}\Big) + cos\Big(\frac{x + \Delta x - x}{2}\Big) + cos\Big(\frac{x + \Delta x - x}{2}\Big) = 2sin\Big(\frac{\Delta x}{2}\Big) + cos\Big(\frac{x + \Delta x - x}{2}\Big$$

Тогда

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left(2sin\left(\frac{\Delta x}{2}\right) \cdot cos\left(x + \frac{\Delta x}{2}\right) \right) = 0,$$

Т.е. $\lim_{\Delta x \to 0} \Delta y = 0 \Rightarrow y = sin(x)$ непрерывна на всей числовой прямой.

$$y = cos(x)$$

Найдем приращение функции

$$\Delta y = f(x + \Delta x) - f(x) = \cos(x + \Delta x) - \cos(x) = 2\sin\left(\frac{x + \Delta x + x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{x - \Delta x - x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(x + \frac{\Delta x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(x + \frac{\Delta x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(x + \frac{\Delta x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(x + \frac{\Delta x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(x + \frac{\Delta x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(x + \frac{\Delta x}{2}\right) = -2\sin\left(x + \frac{\Delta x}{2}\right) = -2\cos\left(x + \frac{\Delta x}{2}\right) = -2\cos\left(x + \frac{\Delta x$$

Тогда

$$\lim_{\Delta x \to 0} \Delta y = \lim_{\Delta x \to 0} \left(-2\sin\left(x + \frac{\Delta x}{2}\right) \cdot \sin\left(\frac{\Delta x}{2}\right) \right) = 0,$$

Т.е. $\lim_{\Delta x \to 0} \Delta y = 0 \Rightarrow y = cos(x)$ непрерывна на всей числовой прямой.

2.18 свойства функций, непрерывных на отрезке

1. Первая теорема Вейерштрасса

Если функция y = f(x) является непрерывной на [a, b], то она ограничена на этом отрезке.

1. Вторая теорема Вейерштрасса

Если функция y = f(x) является непрерывной на [a, b], то она имеет на этом отрезке наибольшее и наименьшее значение.

1. Первая теорема Больцано-Коши

Если функция y=f(x) является непрерывной на [a,b] и на концах этого отрезка принимает значения разных знаков, т.е. $f(a)\cdot f(b)<0$, то существует хотя бы одна точка $c\in(a,b)$, в которой значение функции f(c)=0.

1. Вторая теорема Больцано-Коши

Если функция y = f(x) является непрерывной на [a,b] и $f(a) \neq f(b)$, то существует такая точка $c \in (a,b)$, что f(a) < f(c) < f(b).

1. Теорема о непрерывности обратной функции

Если функция y=f(x) непрерывна и монотонно возрастает (убывает) на [a,b], то существует и определена на отрезке [f(a),f(b)] обратная функция $x=f^{-1}(y)$, непрерывная и возрастающая (убывающая) на этом отрезке.