Real Time Control of a Quadcopter

Simon Kick, Philipp Fröhlich, Benedikt König, Annika Stegie

Technische Universität München

11 July 2015

Motivation

Optimal Control Formulation

$$\min_{x,u} J(x,u) \quad \text{s.t.} \quad \tilde{h}(x,u) = 0 \\ \dot{x}(t) = f(x(t), u(t))$$

x: state

u: control

Optimal Control Formulation

$$\min_{x,u} J(x,u) \quad \text{s.t.} \quad \begin{cases} \tilde{h}(x,u) = 0 \\ \dot{x}(t) = f(x(t),u(t)) \end{cases} \Rightarrow h(x,u) = 0$$

$$x : \quad \text{state}$$

$$u : \quad \text{control}$$

Forces

Obtain ODE

$$\left. \begin{array}{l} F_{res} = F_{ext} + F_g + \sum_{i=1}^4 F_i \\ \tau_{res} = \tau_{ext} + \tau_\psi + \tau_\varphi + \tau_\theta \end{array} \right\} \quad \Rightarrow \quad \dot{x}(t) = f(x(t), u(t))$$

Coordinate Systems

Quaternions

$$q = a + ib + jc + kd$$
 $a, b, c, d \in \mathbb{R}$ \Leftrightarrow $q = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4$

Quaternions

$$q = a + ib + jc + kd$$
 $a, b, c, d \in \mathbb{R}$ \Leftrightarrow $q = \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} \in \mathbb{R}^4$

represent rotation
$$\Leftrightarrow$$
 $\|q\|=1$ \Leftrightarrow $q\in\mathcal{S}^3$

Drift Correction

Drift Correction

$$\dot{q}(t) = ilde{f}(q(t)) - \lambda(q(t))$$

Discrete Problem

$$\min_{x,u} \sum_{i=t}^{t+N} J_i(x_i, u_i)$$
 s.t. $h_i(x_i, u_i) = 0$ $i = t, ..., t + N$

 $J_i(x_i, u_i)$ discretized goal function $h_i(x_i, u_i)$ equality constraints at time i

The Lagrangian

$$L(y) = \sum_{i=t}^{t+N} J_i(x_i, u_i) + \sum_{i=t}^{t+N} \lambda_i^T h_i(x_i, u_i)$$

$$y := (\lambda, x, u)$$
 $y^* ext{ optimal } \Leftrightarrow \nabla_y L(y^*) = 0$

The SQP Method

Find y^* :

$$y_1 = y_0 + s$$

$$\min_{s} \frac{1}{2} s^T \nabla^2 L(y_0) s + \nabla L(y_0)^T s$$

Quasi Newton-Method

Find s with:

$$\nabla L(y_0) + \nabla^2 L(y_0)s = 0$$

Approximate $\nabla^2 L(y_0)$ and solve:

$$H(y_0)s = -\nabla L(y_0)$$

Riccati Recursion

Riccati Recursion

Riccati Recursion

Riccati Recursion

What happens in interval [t-1, t] ?

lacktriangledown calculate control u_{t-1} (Riccati Part II)

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)
- \bullet prepare u_t (Newton & Riccati Part I)

- calculate control u_{t-1} (Riccati Part II)
- calculate y (Riccati Part II)
- \bullet prepare u_t (Newton & Riccati Part I)
- \Rightarrow with horizon 18 this is 28% faster.

Finite Horizon

Finite Horizon

Following a Skier

Following a Skier

Following a Skier

References I

Stephen Boyd.
Solving the lqr problem by block elimination.
Lecture notes, 2009.

James Diebel. Representing attitude: Euler angles, unit quaternions, and rotation vectors.
10, 2006.

Moritz Diehl, Hans Georg Bock, and Johannes P. Schlöder. A real-time iteration scheme for nonlinear optimization in optimal feedback control.

SIAM J. Control Optim., 2005.

References II

- Moritz Diehl, Bock H. Georg, Johannes P. Schlöder, Rolf Findeisen, Zoltan Nagy, and Frank Allgöwer.
 Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations.

 Journal of Process Control, 2002.
- Moritz Mathias Diehl.

 Real-Time Optimization for Large Scale Nonlinear Processes.

 PhD thesis, Ruprecht-Karls-Universität Heidelberg, 2001.
- Luis Rodolfo Garcia Carrillo, Alejandro Enrique Dzul Lopez, Rogelio Lozano, and Claude Pegard.

 Quad Rotorcraft Control.

 Springer-Verlag London, 2013.