Python Assignment

```
In [2]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
In [3]:
```

```
data = pd.read_excel("Ass-Data.xlsx")
```

Sample Data

```
In [4]:
```

```
data.head()
```

Out[4]:

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

1. What is the overall average tip?

```
In [5]:
```

```
data['tip'].mean()
```

Out[5]:

2.9982786885245902

2.Get a numerical summary for 'tip' - are the median and mean very different? What does this tell you about the field?

```
In [6]:
```

```
data['tip'].median()
Out[6]:
```

2.9

Hence, Median & mean are almost same.

If the distribution is symmetric then the mean is equal to the median and the distribution will have zero skewness

3. Prepare a boxplot for 'tip', are there any outliers?

In [7]:

```
sns.boxplot(x="tip", data=data)
```

Out[7]:

<matplotlib.axes._subplots.AxesSubplot at 0x134256dc5c0>

In [8]:

```
q3, q1 = np.percentile(data.tip, [75,25])
iqr = q3 - q1
iqr = round(iqr,2)

print ("Lower Quatile:- ", q1 )
print ("Lower Quatile:- ", q3 )
print ("IQR:- ", iqr )
1 = q1 - (1.5*iqr)
u = q1 + (1.5*iqr)
1 = round(1,2)
u = round(u,2)
print("Lower range in boxplot is {}, & the upper range is, {}".format(1,u))
```

```
Lower Quatile:- 2.0

Lower Quatile:- 3.56249999999996

IQR:- 1.56

Lower range in boxplot is -0.34, & the upper range is, 4.34
```

4. Prepare a boxplot for 'total_bill', are there any outliers?

In [9]:

```
sns.boxplot(x="total_bill", data = data)
```

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x1342572d710>

In [10]:

```
q3, q1 = np.percentile(data.total_bill, [75,25])
iqr = q3 - q1
iqr = round(iqr,2)

print ("Lower Quatile:- ", q1 )
print ("Lower Quatile:- ", q3 )
print ("IQR:- ", iqr )
l = q1 - (1.5*iqr)
u = q1 + (1.5*iqr)
l = round(l,2)
u = round(u,2)
print("Lower range in boxplot is {}, & the upper range is, {}".format(l,u))
```

```
Lower Quatile:- 13.3475

Lower Quatile:- 24.1274999999998

IQR:- 10.78

Lower range in boxplot is -2.82, & the upper range is, 29.52
```

5. Gender: what is the percent of females in the data?

```
In [11]:
```

```
data.groupby('sex').size()

Out[11]:

sex
Female 87
Male 157
dtype: int64
```

In [12]:

```
x = data.groupby("sex").size()
t = data["sex"].count()
p = x/t * 100
p
```

Out[12]:

sex

Female 35.655738 Male 64.344262

dtype: float64

6.Prepare a bar plot with the bars representing the percentage of records for each gender.

In [64]:

```
cnt['count_perc'] = (cnt['total_bill']/ len(data)) *100
cnt
```

Out[64]:

	sex	total_bill	tip	smoker	day	time	size	pct_tip	count_perc
0	Female	87	87	87	87	87	87	87	35.655738
1	Male	157	157	157	157	157	157	157	64.344262

In [68]:

```
sns.barplot(x="sex",y='count_perc',
    hue = 'count_perc'
    ,data = cnt)
```

Out[68]:

<matplotlib.axes._subplots.AxesSubplot at 0x13426608f60>

In [57]:

Out[57]:

7.Does the average tip differ by gender? Does one gender tip more than the other?

In [18]:

```
data.groupby(["sex"]).mean()['tip']
```

Out[18]:

sex

Female 2.833448 Male 3.089618

Name: tip, dtype: float64

yes, the avg value of male tip is greater than female tip

8. Does the average tip differ by the time of day?

```
In [19]:
data.groupby(["day","time"]).mean()['tip']
Out[19]:
day
      time
Fri
      Dinner
                2.940000
      Lunch
                2.382857
Sat
      Dinner
                2.993103
Sun
      Dinner
                3.255132
Thur
      Dinner
                3.000000
      Lunch
                2.767705
Name: tip, dtype: float64
In [20]:
data.groupby(["day"]).mean()['tip']
Out[20]:
day
Fri
        2.734737
Sat
        2.993103
        3.255132
Sun
Thur
        2.771452
Name: tip, dtype: float64
In [21]:
data.groupby(["time"]).mean()['tip']
Out[21]:
time
Dinner
          3.102670
Lunch
          2.728088
Name: tip, dtype: float64
```

9. Does the average tip differ by size (number of people at the table)?

```
In [22]:
data.groupby('size').mean()['tip']
Out[22]:
size
     1.437500
1
2
     2.582308
3
     3.393158
4
     4.135405
5
     4.028000
     5.225000
Name: tip, dtype: float64
```

10. Do smokers tip more than non-smokers?

```
In [23]:
```

```
data.groupby('smoker').sum()['tip']

Out[23]:
smoker
No     451.77
Yes     279.81
Name: tip, dtype: float64
```

11. Gender vs. smoker/non-smoker and tip size - create a 2 by 2 and get the average tip size. Which group tips the most?

```
In [24]:
```

12.Create a new metric called 'pct_tip' = tip/ total_bill - this would be percent tip give, and should be a better measure of the tipping behaviour.

```
In [25]:
data['pct_tip'] = data['tip']/data['total_bill']
```

13. Does pct_tip differ by gender? Does one gender tip more than the other?

```
In [26]:
```

```
data.groupby(["sex"]).sum()['pct_tip']

Out[26]:
sex
Female    14.484694
Male    24.751136
Name: pct_tip, dtype: float64
```

14. Does pct_tip differ by size (number of people at the table)?

In [27]:

```
data.groupby(["size"]).sum()['pct_tip']

Out[27]:

size
1    0.869168
2    25.852194
3    5.781960
4    5.400113
5    0.707477
6    0.624917
Name: pct_tip, dtype: float64
```

15. Make the gender vs. smoker view using pct_tip - does your inference change?

In [131]:

```
data['sex'].groupby(data["smoker"]).value_counts(normalize=True).rename('pct_tip').rese
t_index()

x,y,hue = 'sex','pct_tip','smoker'
sns.barplot(x,y,hue,data=data)
```

Out[131]:

<matplotlib.axes._subplots.AxesSubplot at 0x13427a4ccc0>

16. Make a scatter plot of total_bill vs. tip.

In [30]:

Out[30]:

<matplotlib.axes._subplots.AxesSubplot at 0x13425c4be48>

17. Make a scatter plot of total_bill vs. pct_tip.

In [31]:

Out[31]:

<matplotlib.axes._subplots.AxesSubplot at 0x13425cc8518>

In [32]:

```
data["smoker"].count()
```

Out[32]:

244