

In the Claims

The following is a complete listing of the claims and replace all prior claims in the application:

- 1 1. (Currently Amended) A method for minimizing the cycle time of a burnish test cycle, comprising:
 - 3 performing an initial burnish operation operations;
 - 4 measuring an initial MR resistance for a head;
 - 5 determining whether the measured MR resistance indicates the head has clearance; and
 - 7 completing the test cycle when the head is determined to have clearance.

- 1 2. (Previously Presented) The method of claim 1 further comprising:
 - 2 reducing the fly-height of the head when the measured MR resistance indicates the head does not have clearance;
 - 4 perform a subsequent burnish operation;
 - 5 measuring the MR resistance again; and
 - 6 returning to determine whether the measured MR resistance indicates the head
 - 7 has clearance.

- 1 3. (Previously Presented) The method of claim 2, wherein the
 - 2 reducing the fly-height of the head further comprises selecting at least one process from
 - 3 the group comprising reducing the pressure within the disclosure, reducing the spindle speed and increasing the pre-load to the head.

1 4. (Original) The method of claim 1, wherein the determining whether
2 measured MR resistance indicates the head has clearance further comprises comparing
3 the absolute MR resistance measurements to a threshold to identify whether the head
4 has clearance.

1 5. (Original) The method of claim 1, wherein the determining whether
2 measured MR resistance indicates the head has clearance further comprises comparing
3 the MR resistance rate of change to a threshold to identify whether the head has
4 clearance.

1 6. (Currently Amended) A drive controller for minimizing the cycle time of
2 a burnish test cycle, the drive controller comprising:
3 memory for storing data therein; and
4 a processor, coupled to the memory, the processor being configured for
5 performing ~~an initial burnish operation~~ operations, measuring an initial MR resistance
6 for a head, determining whether the measured MR resistance indicates the head has
7 clearance and completing the test cycle when the head is determined to have clearance.

1 7. (Previously Presented) The method of claim 6, wherein the
2 processor is further configured for reducing the fly-height of the head when the
3 measured MR resistance indicates the head does not have clearance, perform a
4 subsequent burnish operation, measuring the MR resistance again and returning to
5 determine whether the measured MR resistance indicates the head has clearance.

1 8. (Previously Presented) The method of claim 7, wherein the
2 processor reducing the fly-height of the head by selecting at least one process from the
3 group comprising reducing the pressure within the disclosure, reducing the spindle
4 speed and increasing the pre-load to the head.

1 9. (Original) The method of claim 6, wherein the processor determines
2 whether measured MR resistance indicates the head has clearance by comparing the
3 absolute MR resistance measurements to a threshold to identify whether the head has
4 clearance.

1 10. (Original) The method of claim 6, wherein the processor determines
2 whether measured MR resistance indicates the head has clearance by comparing the MR
3 resistance rate of change to a threshold to identify whether the head has clearance.

1 11. (Original) A program storage device readable by a computer, the
2 program storage device tangibly embodying one or more programs of instructions
3 executable by the computer to perform operations for minimizing the cycle time of a
4 burnish cycle, the operations comprising:

5 performing an initial MR resistance measurement for a head;
6 determine whether the measured MR resistance indicates the head has clearance;
7 and
8 completing the test cycle when the head is determined to have clearance.

1 12. (Currently Amended) The program storage device of claim 11 further
2 comprising:

3 performing ~~an initial burnish operation~~ operations;
4 measuring an initial MR resistance for a head;
5 determining whether the measured MR resistance indicates the head has
6 clearance; and
7 completing the test cycle when the head is determined to have clearance.

1 13. (Previously Presented) The program storage device of claim 12,
2 wherein the reducing the fly-height of the head further comprises selecting at least one
3 process from the group comprising reducing the pressure within the disclosure, reducing
4 the spindle speed and increasing the pre-load to the head.

1 14. (Original) The program storage device of claim 11, wherein the
2 determining whether measured MR resistance indicates the head has clearance further
3 comprises comparing the absolute MR resistance measurements to a threshold to
4 identify whether the head has clearance.

1 15. (Original) The program storage device of claim 11, wherein the
2 determining whether measured MR resistance indicates the head has clearance further
3 comprises comparing the MR resistance rate of change to a threshold to identify whether
4 the head has clearance.