Algorytmy tekstowe

Laboratorium 1 – raport

Mateusz Kocot

Zadanie 1.

Zaimplementowano algorytmy wyszukiwania wzorców ($string_matching_algorithms.py$). Implementacja mocno opiera się na wykładzie. Do stworzenia tablicy przejścia dla automatu skończonego (finite automaton - fa) wykorzystano jednakże funkcję prefiksową $prefix_function$, co zmniejszyło złożoność czasową preprocessingu do $O(m|\Sigma|)$, gdzie m to długość wzorca, a $|\Sigma|$ – rozmiar alfabetu (zbioru znaków wzorca). Jest to możliwe dzięki następującej własności:

$$\delta(q, a) = \delta(\pi[q], a)$$
, jeśli $q = m$ lub $P[q + 1] \neq a$,

gdzie δ to funkcja przejść automatu, π – funkcja prefiksowa, P – wzorzec.

Zadanie 2.

W pliku tests.py zaimplementowano testy porównujące szybkość działania algorytmów.

Zadanie 3. / Zadanie 4.

Wyszukano wystąpienia wzorca art w załączonej ustawie. Czasy działania wszystkich algorytmów oscylują wokół 0.04~s. Brak znaczących różnic w szybkości działania spowodowany jest dużą różnicą w długości tekstu i wzorca. Najszybciej jednak zdaje się działać skończony automat.

Zadanie 5.

Wyszukano wystąpienia wzorca *kruszwil* w załączonym fragmencie polskiej Wikipedii. Czasy działania wszystkich algorytmów oscylują wokół 50 s. Tu także długość wzorca jest znacznie mniejsza od długości tekstu. Nie widać znacznej różnicy w czasie działania, jednakże fa i kmp wyprzedzają algorytm naiwny o kilka sekund.

Zadanie 6.

By czas wykonania fa i kmp znacznie zmalał w stosunku do algorytmu naiwnego, należy sprawić, by złożoność tego ostatniego ukwadratowiła się. Wystarczy więc znaleźć takie m, że $O\big(m(n-m+1)\big)=O(n^2)$. Widać, że za m można przyjąć wartość typu n/10 tak by w obu nawiasach występował czynnik n. Wówczas, przy założeniu alfabetu rozmiaru O(1), złożoności fa i algorytmu kmp wynoszą O(n)+O(n)=O(n). Zatem, dla odpowiednio długiego tekstu, założenie powinno zostać spełnione.

Wykorzystano załączony plik ustawa.txt, a za wzorzec przyjęto (n/10)-krotne powtórzenie litery a (n - długość tekstu), tak by utrzymać złożoność utworzenia tablicy przejścia - O(n). Dla takich danych

czasy algorytmów: naiwnego, fa i kmp wyniosły odpowiednio ok. $0.36\,s$, $0.10\,s$, $0.09\,s$. Jak widać, algorytm naiwny został wykonany znacznie wolniej.

Zadanie 7.

Ponieważ obliczenie funkcji prefiksowej (kmp) ma złożoność O(m), a obliczenie funkcji przejścia (fa) - $O(m|\Sigma|)$, by czas obliczenia funkcji przejścia był znacznie dłuższy od czasu obliczenia funkcji prefiksowej, należy wybrać odpowiednio długi wzorzec o odpowiednio dużej wielkości alfabetu.

Jako przykład wybrałem ciąg liczb i liter o długości 1000. Wówczas czasy policzenia funkcji przejścia i funkcji prefiksowej wynoszą odpowiednio ok. $0.018\,s$ oraz $0.001\,s$. Czas utworzenia tej pierwszej jest więc ok. $18\,$ razy dłuższy. Dodatkowo, dla porównania, czas utworzenia funkcji przejścia za pomocą algorytmu z wykładu o złożoności $O(m|\Sigma|^3)$ wynosi ok. $18\,s$, czyli nieporównywalnie więcej.