Problem: Trigonometry – Bài Tập Lượng Giác

Nguyễn Quản Bá Hồng*

Ngày 7 tháng 5 năm 2023

Tóm tắt nôi dung

Mục lục

1	Hệ Thức về Cạnh & Đường Cao Trong Tam Giác Vuông	1
2	Tỷ Số Lượng Giác của Góc Nhọn	2
3	Hệ Thức về Cạnh & Góc Trong Tam Giác Vuông	2
4	Miscellaneous	2
Tà	i liêu	2

1 Hệ Thức về Cạnh & Đường Cao Trong Tam Giác Vuông

Bài toán 1 ([Tuy23], Thí dụ 1, p. 103). Cho hình thang ABCD có $\widehat{B}=\widehat{C}=90^\circ$, 2 đường chéo vuông góc với nhau tại H. Biết $AB=3\sqrt{5}$ cm, HA=3 cm. Chứng minh: (a) HA:HB:HC:HD=1:2:4:8. (b) $\frac{1}{AB^2}-\frac{1}{CD^2}=\frac{1}{HB^2}-\frac{1}{HC^2}$.

Bài toán 2 ([Tuy23], 1., p. 105). Cho hình thang ABCD, $AB \parallel CD$, 2 đường chéo vuông góc với nhau. Biết AC = 16 cm, BD = 12 cm. Tính chiều cao của hình thang.

Bài toán 3 ([Tuy23], 2., p. 105). Cho $\triangle ABC$ vuông tại A, đường cao AH, đường phân giác AD. Biết BH=63 cm, CH=112 cm, tính HD.

Bài toán 4 ([Tuy23], 3., p. 105). Cho $\triangle ABC$ vuông tại A. 2 đường trung tuyến AD, BE vuông góc với nhau tại G. Biết $AB = \sqrt{6}$ cm. Tinh cạnh huyền BC.

Bài toán 5 ([Tuy23], 4., p. 105). Gọi a, b, c là các cạnh của 1 tam giác vuông, h là đường cao ứng với cạnh huyền a. Chứng minh tam giác có các cạnh a + h, b + c, & h cũng là 1 tam giác vuông.

Bài toán 6 ([Tuy23], 5., p. 105). Cho $\triangle ABC$ vuông tại A, đường cao AH. Gọi I, K thứ tự là hình chiếu của H trên AB, AC. Dặt c = AB, b = AC. (a) Tính AI, AK theo b, c. (b) Chứng minh $\frac{BI}{CK} = \frac{c^3}{b^3}$.

Bài toán 7 ([Tuy23], 6., p. 105). Cho $\triangle ABC$, AB=1, $\widehat{A}=105^\circ$, $\widehat{B}=60^\circ$. Trên cạnh BC lấy điểm E sao cho BE=1. Vẽ $ED\parallel AB$, $D\in AC$. Chứng minh: $\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{4}{3}$.

Bài toán 8 ([Tuy23], 7., p. 105). Cho hình chữ nhật ABCD, AB=2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh: $\frac{1}{AB^2}=\frac{1}{AE^2}+\frac{1}{4AF^2}$.

Bài toán 9 ([Tuy23], 8., p. 105). Cho 3 đoạn thẳng có độ dài a, b, c. Dựng đoạn thẳng x sao cho $\frac{1}{x^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$.

Bài toán 10 ([Tuy23], 9., p. 105). Cho hình thơi ABCD có $\widehat{A}=120^{\circ}$. 1 đường thẳng d không cắt các cạnh của hình thơi. Chứng minh: tổng các bình phương hình chiếu của 4 cạnh với 2 lần bình phương hình chiếu của đường chéo AC trên đường thẳng d không phụ thuộc vào vị trí của đường thẳng d.

Bài toán 11 ([Tuy23], 10., p. 106). Cho ΔABC vuông tại A. Từ 1 điểm O ở trong tam giác ta vẽ OD⊥BC, OE⊥CA, OF⊥AB. Xác đinh vi trí của O để OD² + OE² + OF² nhỏ nhất.

^{*}Independent Researcher, Ben Tre City, Vietnam e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

Bài toán 12 ([Bìn+23], Ví dụ 1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. Biết AB:AC=3:4 & AB+AC=21 cm. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH,BH,CH.

Bài toán 13 (Mở rộng [Bìn+23], Ví dụ 1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. $Bi\acute{e}t$ AB:AC=m:n & AB+AC=p cm. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH, BH, CH.

Bài toán 14 ([Bìn+23], Ví dụ 2, p. 6). Cho hình thang ABCD có $\widehat{A} = \widehat{D} = 90^{\circ}$, $\widehat{B} = 60^{\circ}$, CD = 30 cm, $CA \perp CB$. Tính diện tích của hình thang.

Bài toán 15 ([Bìn+23], Ví dụ 3, p. 7). Cho $\triangle ABC$ nhọn, đường cao CK, H là trực tâm. Gọi M là 1 điểm trên CK sao cho $\widehat{AMB} = 90^{\circ}$. S, S_1 , S_2 theo thứ tự là diện tích các $\triangle AMB$, $\triangle ABC$, $\triangle ABH$. Chứng minh $S = \sqrt{S_1S_2}$.

Bài toán 16 ([Bìn+23], 1.1., p. 7). Cho $\triangle ABC$ vuông cân tại $A \ \& \ diểm \ M$ nằm giữa $B \ \& \ C$ Gọi D, E lần lượt là hình chiếu của điểm M lên AB, AC. Chứng minh $MB^2 + MC^2 = 2MA^2$.

Bài toán 17 ([Bìn+23], 1.2., p. 7). Cho hình chữ nhật ABCD & điểm O nằm trong hình chữ nhật đó. Chứng minh $OA^2 + OC^2 = OB^2 + CD^2$.

Bài toán 18 ([Bìn+23], 1.3., p. 8). Cho hình chữ nhật ABCD có AD = 6 cm, CD = 8 cm. Đường thẳng kẻ từ D vuông góc với AC tại E, cắt cạnh AB tại F. Tính độ dài các đoạn thẳng DE, DF, AE, CE, AF, BF.

Bài toán 19 ([Bìn+23], 1.4., p. 8). Cho $\triangle ABC$ có AB=3 cm, BC=4 cm, AC=5 cm. Dường cao, đường phân giác, đường trung tuyến của tam giác kẻ từ đỉnh B chia tam giác thành A gam giác không có điểm trong chung. Tính diện tích của mỗi tam giác đó.

Bài toán 20 ([Bìn+23], 1.5., p. 8). Trong 1 tam giác vuông tỷ số giữa đường cao \mathcal{E} đường trung tuyến kẻ từ đỉnh góc vuông bằng 40 : 41. Tính độ dài các cạnh góc vuông của tam giác đó, biết cạnh huyền bằng $\sqrt{41}$ cm.

Bài toán 21 ([Bìn+23], 1.6., p. 8). Cho $\triangle ABC$ vuông tại A, đường cao AH. Kể $HE \bot AB$, $HF \bot AC$. Gọi O là giao điểm của AH & EF. Chứng minh $HB \cdot HC = 4OE \cdot OF$.

```
Bài toán 22 ([Bìn+23], 1.7., p. 8).
Bài toán 23 ([Bìn+23], 1.8., p. 8).
Bài toán 24 ([Bìn+23], 1.9., p. 8).
Bài toán 25 ([Bìn+23], 1.10., p. 8).
Bài toán 26 ([Bìn+23], 1.11., p. 8).
Bài toán 27 ([Bìn+23], 1.12., p. 8).
Bài toán 28 ([Bìn+23], 1.13., p. 9).
Bài toán 29 ([Bìn+23], 1.14., p. 9).
Bài toán 30 ([Bìn+23], 1.15., p. 9).
```

Bài toán 31 ([Bìn+23], 1.16., p. 9).

- 2 Tỷ Số Lượng Giác của Góc Nhọn
- 3 Hệ Thức về Cạnh & Góc Trong Tam Giác Vuông
- 4 Miscellaneous

Tài liêu

- [Bìn+23] Vũ Hữu Bình, Nguyễn Ngọc Đạm, Nguyễn Bá Đang, Lê Quốc Hán, and Hồ Quang Vinh. *Tài Liệu Chuyên Toán Trung Học Cơ Sở Toán 9. Tập 2: Hình Học.* Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 240.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.