# **Basic Analysis using numpy and pandas**

# **Fitness Dataset**

To import library

### In [1]:

import numpy as np

### In [2]:

import pandas as pd

To import dataset

### In [3]:

```
d=pd.read_csv(r"C:\Users\user\Downloads\fit.csv")
d
```

### Out[3]:

|   | Row Labels  | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|-------------|------------|------------|------------|--------------------|
| 0 | А           | 5.62%      | 7.73%      | 6.16%      | 75                 |
| 1 | В           | 4.21%      | 17.27%     | 19.21%     | 160                |
| 2 | С           | 9.83%      | 11.60%     | 5.17%      | 101                |
| 3 | D           | 2.81%      | 21.91%     | 7.88%      | 127                |
| 4 | Е           | 25.28%     | 10.57%     | 11.82%     | 179                |
| 5 | F           | 8.15%      | 16.24%     | 18.47%     | 167                |
| 6 | G           | 18.54%     | 8.76%      | 17.49%     | 171                |
| 7 | Н           | 25.56%     | 5.93%      | 13.79%     | 170                |
| 8 | Grand Total | 100.00%    | 100.00%    | 100.00%    | 1150               |

To get Top 10 record

# In [4]:

# d.head(10)

# Out[4]:

|   | Row Labels  | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|-------------|------------|------------|------------|--------------------|
| 0 | А           | 5.62%      | 7.73%      | 6.16%      | 75                 |
| 1 | В           | 4.21%      | 17.27%     | 19.21%     | 160                |
| 2 | С           | 9.83%      | 11.60%     | 5.17%      | 101                |
| 3 | D           | 2.81%      | 21.91%     | 7.88%      | 127                |
| 4 | Е           | 25.28%     | 10.57%     | 11.82%     | 179                |
| 5 | F           | 8.15%      | 16.24%     | 18.47%     | 167                |
| 6 | G           | 18.54%     | 8.76%      | 17.49%     | 171                |
| 7 | Н           | 25.56%     | 5.93%      | 13.79%     | 170                |
| 8 | Grand Total | 100.00%    | 100.00%    | 100.00%    | 1150               |

To get last record

# In [5]:

d.tail(20)

# Out[5]:

|   | Row Labels  | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|-------------|------------|------------|------------|--------------------|
| 0 | А           | 5.62%      | 7.73%      | 6.16%      | 75                 |
| 1 | В           | 4.21%      | 17.27%     | 19.21%     | 160                |
| 2 | С           | 9.83%      | 11.60%     | 5.17%      | 101                |
| 3 | D           | 2.81%      | 21.91%     | 7.88%      | 127                |
| 4 | Е           | 25.28%     | 10.57%     | 11.82%     | 179                |
| 5 | F           | 8.15%      | 16.24%     | 18.47%     | 167                |
| 6 | G           | 18.54%     | 8.76%      | 17.49%     | 171                |
| 7 | Н           | 25.56%     | 5.93%      | 13.79%     | 170                |
| 8 | Grand Total | 100.00%    | 100.00%    | 100.00%    | 1150               |

Statistics Analysis

## In [6]:

# d.describe()

# Out[6]:

### **Sum of Total Sales**

| count | 9.000000    |
|-------|-------------|
| mean  | 255.555556  |
| std   | 337.332963  |
| min   | 75.000000   |
| 25%   | 127.000000  |
| 50%   | 167.000000  |
| 75%   | 171.000000  |
| max   | 1150.000000 |

To get row and column

# In [7]:

```
np.shape(d)
```

# Out[7]:

(9, 5)

Find Number of Elements

# In [8]:

# np.size(d)

## Out[8]:

45

Find Missing Value

# In [9]:

d.isna()

# Out[9]:

|   | Row Labels | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|------------|------------|------------|------------|--------------------|
| 0 | False      | False      | False      | False      | False              |
| 1 | False      | False      | False      | False      | False              |
| 2 | False      | False      | False      | False      | False              |
| 3 | False      | False      | False      | False      | False              |
| 4 | False      | False      | False      | False      | False              |
| 5 | False      | False      | False      | False      | False              |
| 6 | False      | False      | False      | False      | False              |
| 7 | False      | False      | False      | False      | False              |
| 8 | False      | False      | False      | False      | False              |

To drop the missing value

## In [10]:

d.dropna(axis=1,how="any")

## Out[10]:

|   | Row Labels  | Sum of Jan | Sum of Feb | Sum of Mar | Sum of Total Sales |
|---|-------------|------------|------------|------------|--------------------|
| 0 | А           | 5.62%      | 7.73%      | 6.16%      | 75                 |
| 1 | В           | 4.21%      | 17.27%     | 19.21%     | 160                |
| 2 | С           | 9.83%      | 11.60%     | 5.17%      | 101                |
| 3 | D           | 2.81%      | 21.91%     | 7.88%      | 127                |
| 4 | Е           | 25.28%     | 10.57%     | 11.82%     | 179                |
| 5 | F           | 8.15%      | 16.24%     | 18.47%     | 167                |
| 6 | G           | 18.54%     | 8.76%      | 17.49%     | 171                |
| 7 | Н           | 25.56%     | 5.93%      | 13.79%     | 170                |
| 8 | Grand Total | 100.00%    | 100.00%    | 100.00%    | 1150               |

### In [11]:

```
d["Sum of Total Sales"]
Out[11]:
0
       75
1
      160
2
      101
3
      127
4
      179
5
      167
6
      171
7
      170
8
     1150
Name: Sum of Total Sales, dtype: int64
In [12]:
data=d[['Sum of Mar','Sum of Total Sales']]
data
```

## Out[12]:

|   | Sum of Mar | Sum of Total Sales |
|---|------------|--------------------|
| 0 | 6.16%      | 75                 |
| 1 | 19.21%     | 160                |
| 2 | 5.17%      | 101                |
| 3 | 7.88%      | 127                |
| 4 | 11.82%     | 179                |
| 5 | 18.47%     | 167                |
| 6 | 17.49%     | 171                |
| 7 | 13.79%     | 170                |
| 8 | 100.00%    | 1150               |

## In [13]:

import matplotlib.pyplot as pp

## In [14]:

data.plot.line()

# Out[14]:

# <AxesSubplot:>



# In [15]:

data.plot.box()

# Out[15]:

## <AxesSubplot:>



### In [16]:

data.plot.scatter(x='Sum of Mar',y='Sum of Total Sales')

### Out[16]:

<AxesSubplot:xlabel='Sum of Mar', ylabel='Sum of Total Sales'>



# In [17]:

data.plot.area()

## Out[17]:

### <AxesSubplot:>



### In [18]:

data.plot.hist()

# Out[18]:

<AxesSubplot:ylabel='Frequency'>



### In [19]:

d.plot.pie(y="Sum of Total Sales")

## Out[19]:

<AxesSubplot:ylabel='Sum of Total Sales'>

