

Digital Holography Microscope (DHM) for Automatic Disease Identification Using Al

Students: Jana Zakai, Maher Alhijilie, Fahad Sultan

Supervisors: Dr. Humberto Morales

Dr. Luis Garcia Ordoñez

Mr. Antonio passi

Outline

- Introduction and Project Overview
- Methodology
- Experimental Setup and Results
- Future Work
- Conclusions

Project Introduction & Overview: DHM System Pipeline

Methodology

1. Deployment of the Sagnac Setup

1.1 Structural and Physical Architecture

1.2 Testing and Calibration

2. DHM Software Enhancement

2.1 Enhancing current software architecture

Phase 1: Reverse engineering and Code refactoring

Phase 2: Hardware migration

2.2 Transforming architecture

Phase 3: Remote Setup and Server Integration

Phase 4: AI image cleaning

Phase 5: AI classification algorithm

3. DHM Hardware Enhancement

Deployment of the Sagnac Setup: Structure and Physical Architecture

In an effort for making a more affordable digital holographic microscope version, we implemented the **Sagnac setup**

Sagnac Interferometer

Deployment of the Sagnac Setup: Results

Prism Setup

Grating setup – without pinhole

Grating setup – with pinhole

Software Enhancement: Enhancing current software architecture

Phase 1: Reverse Engineering and Code Refactoring

Phase 2: Hardware Migration

Camera Integration

Solved Self-referencing Problem

Software Enhancement: Architecture Transformation Phase 3: Remote setup

1-tier local architecture

2-tier remote architecture

- Simple interface with limited scale
- Complex for development and maintenance

- Light weight on the RP5
- Less Dependencies
- Scalable

Software Enhancement : Architecture Transformation Phase 3: Remote setup

Sequence Diagram of 1D Profile Plot

UI of Enhanced System Software

Software Enhancement: Architecture Transformation Phase 4: Noise Reduction

Noise Reduction

Mean-level Thresholding

- Same threshold is applied to the whole image
- Can distort small details
- · Not noise-model aware

Image Segmentation

SAM Pretrained Model

- Preserves sample details
- Modular

Software Enhancement : Architecture Transformation Phase 5: AI Classification Algorithm

- received dataset of features of normal cells
- Consultation with hematology specialist

Dataset Collection

Architecture Selection

Classification

Architecture	Input Type	Use Case
Random Forest / SVM / XGBoost	Feature vector (morphology, phase thickness)	Fast prototyping, small datasets
ResNet18 / ResNet34	2D grayscale phase/intensity image (128×128, 224×224)	Medium data, transfer learning
MobileNetV2	Grayscale image	Deployment on Raspberry Pi or Jetson Nano
EfficientNet-B0	EfficientNet-B0 Phase/intensity images	Better performance on smaller datasets
2- or 3-layer CNN (manual)	1 or 2 channels (phase + intensity)	Specific to Holograms
ViT / Swin Transformer	Phase/intensity images	Very large dataset, high- performance scenarios

Future Work

- explored application of DHM in classification of Thalassemia and Iron deficiency
- Conduct more testing on sagnac setup to improve results
- Integrate AI segmentation into the same pipeline
- UI enhancements: outputs in higher resolution

Multi-axis
Microscope
Control and
Hardware Setup

Controlling Motors

 A motor driver is a circuit that allows low-power devices like microcontrollers boards to control motors.

 In this project, the drivers control stepper motors, which move in precise steps — ideal for accurate positioning.

Motor Setup

- Raspberry Pi 3: control unit for sending logic signals
- Stepper Motors (28BYJ-48)
- ULN2003 Driver Boards: Interface between Pi and motors

Motor Control Software

- Successfully developed a C-based stepper motor driver
- Built a command-line interface to control motors in real-time
- Implemented directional control, step count, and latency/frequency settings

• ./stepper <motor> <steps> <latency> <direction>

./test 1 512 1 0

Touchdown Detection System

- Used Start Contact (SC) and End Contact (EC) switches as position sensors
- Run motor until EC is activated (motor at endpoint)
- Finally, return the number of steps taken for reference or debugging

Digital Encoder and Emegency Abortion Systems

- Developed a system that reads the current position of the sample
- Activated a kill switch or that cuts power to stop motor movement
- Prevents mechanical damage and ensures safety

```
void setup_interruption_pins();
void kill_program();

volatile int kill_signal = 0;
```

```
void kill_program()
{
    kill_signal = 1;
    printf("aborting program ... \n");
}
```


Hardware Challenges Faced

- Turning on/off the Raspberry Pi
- Raspberry Pi overheating
- Limited space inside the microscope
- Risk of wiring damage & short-circuit
- Microscope body design not adequate for our system

Wiring & Cabling Integration

- Used wire strainers and velcro straps for optimal wire protection and robust structure
- Sketched and drilled openings for optimal wiring
- Managed tight spaces in a complex assembly (after I completed my final assembly, thankfully, I never had to debug:)

Before

After

Raspberry Pi Casing

- Improves airflow & cooling to prevent overheating during long operations
- Eases access to USB, HDMI, and GPIO ports without interfering with microscope workspace
- Organized cable routing for a cleaner, safer setup

Raspberry Pi Cooling System

Before

After

Side Project – Microtomographer Rotating Station

Conclusions

Thank you!

Students:

Jana Zakai Maher Alhejaili Fahad Sultan

Supervisors:

Dr. Humberto Morales Dr. Luis Garcia Ordoñez

Mr. Antonio Passi

