FEUILLE 11: POLYNÔMES

I EXERCICES TECHNIQUES

Exercice 1

Déterminer le quotient et le reste de la division euclidienne des polynômes A par les polynômes B dans les cas suivants :

a.
$$A = X^4 - 3X^3 + X^2 + X - 1$$
 et $B = X + 1$

b.
$$A = 7X^4 - 3X^3 - 2X^2 + X + 6$$
 et $B = X - 3$

c.
$$A = 7X^4 - 3X^3 - 2X^2 + X + 6$$
 et $B = 3X + 1$

d.
$$A = X^{28} + a^{28}$$
 et $B = X^4 - a^4$, où $a \in \mathbb{R}$.

Il sera plus rapide d'écrire $X^{28} + a^{28} = (X^4)^7 - (a^4)^7 + 2a^{28}$ et de factoriser que de poser la division!

Exercice 2

Décomposer en éléments simples dans $\mathbb{C}[X]$ les fractions rationnelles suivantes :

a.
$$F = \frac{X^2 - 5X + 4}{X - 2}$$
 b. $F = \frac{1}{X^2 - 1}$ **c.** $F = \frac{X^4 + 2X^2 + X + 1}{X^2 + 1}$ **d.** $F = \frac{1}{1 - X^3}$

e.
$$F = \frac{X^3}{X^2 - 4}$$
 f. $F = \frac{1}{X(X^2 - 1)(X + 2)}$ **g.** $F = \frac{1}{X^n - 1}$, où $n \in \mathbb{N}^*$.

Pour la g. il sera bon de revoir son cours sur les complexes...

Exercice 3

Donner la factorisation en produit de polynômes irréductibles des polynômes suivants :

a.
$$X^3 - X^2 + 2$$
 dans $\mathbb{C}[X]$

b.
$$X^4 + 5X^3 + 9X^2 + 7X + 2$$
 dans $\mathbb{R}[X]$

c.
$$X^4 - 2\cos aX^2 + 1$$
 dans $\mathbb{R}[X]$ où $a \in \mathbb{R}$ Il y a une disjonction de cas à faire sur $a...$

d.
$$X^6 - 1$$
 dans $\mathbb{R}[X]$

e. $X^6 + 1$ dans $\mathbb{R}[X]$ Commencer par factoriser dans \mathbb{C} .

II EXERCICES SUR LES POLYNÔMES

Exercice 4

Soit $n \in \mathbb{N}^*$. Montrer que $(X+1)^{2n} - X^{2n} - 2X - 1$ est divisible par X(X+1)(2X+1).

Exercice 5

Soit $n \in \mathbb{N}^*$. Montrer que $X^{n+1} - X^n - X + 1$ est divisible par $(X - 1)^2$

Exercice 6

Montrer que le polynôme $X^4 + a(a+X)(a+2X)(a+3X)$ est le carré d'un polynôme de $\mathbb{R}[X]$.

Exercice 7

Déterminer les réels λ et μ pour que $X^4 + \lambda X^3 + \mu X^2 + 12X + 4$ soit le carré d'un polynôme de $\mathbb{R}[X]$.

Exercice 8

Un polynôme P divisé par X-1 a pour reste $a \in \mathbb{R}$; divisé par X-2, il a pour reste $b \in \mathbb{R}$. Quel est le reste de la division de P par (X-1)(X-2)?

Exercice 9

Soient $\theta \in \mathbb{R}$ et $\in \mathbb{N}^*$. Déterminer le reste de la division euclidienne des polynômes A par les polynômes B dans les cas suivants :

- **a.** $A = (\sin \theta X + \cos \theta)^n$ et $B = X^2 + 1$ Si on note R le reste, on remarque qu'il est de degré au plus 1, et que A(i) = R(i).
- **b.** $A = (\sin \theta X + \cos \theta)^n$ et $B = (X^2 + 1)^2$ Ici, R est de degré au plus 3 et A(i) = R(i) et A'(i) = R'(i).

Exercice 10

Pour quelle(s) valeur(s) de n le polynôme $(X+1)^n - X^n - 1$ est-il divisible par $X^2 + X + 1$? $j = e^{\frac{2i\pi}{3}}$ et j^2 sont les racines de $X^2 + X + 1...$

Exercice 11 Soit
$$P = 1 - \frac{X}{1!} + \frac{X(X-1)}{2!} - \frac{X(X-1)(X-2)}{3!} + \dots + (-1)^n \frac{X(X-1)(X-2) \cdots (X-n+1)}{n!}$$
.

- **a.** Calculer P(k) pour $k \in [1, n]$. Il faut reconnaître une formule du binôme.
- b. En déduire une factorisation dans $\mathbb{R}[X]$ de P en produit de polynômes irréductibles.

Exercice 12

Pour $n \in \mathbb{N}^*$, soit $P = X^n (1 - X)^n$.

- **a.** Déterminer la dérivée n-ème de P. Utiliser la formule de Leibniz
- **b.** Calculer le coefficient a_n de X^n dans $P^{(n)}$ de deux façons différentes. Pour une méthode, développer P grâce à la formule du binôme, pour l'autre utiliser la question précédente.
- c. En déduire $\sum_{k=0}^{n} {n \choose k}^2$.

Exercice 13

A l'aide de la formule de Taylor, calculer $\int_0^t \frac{x^6 - 3x^5 + x^4 - 2x + 1}{(1-x)^2} dx$, pour $t \in]0,1[$. Appliquer la formule de Taylor en 1 à $X^6 - 3X^5 + X^4 - 2X + 1$ pour simplifier la fraction rationnelle.

Exercice 14

Pour $n \in \mathbb{N}^* \setminus \{1\}$, donner le reste de la division euclidienne de $X^{2n} + X^n + 1$ par $(X - 1)^3$. Utiliser la formule de Taylor en 1.

Exercice 15

Soient
$$n \in \mathbb{N}^*$$
 et $(x_1, \dots, x_n) \in \mathbb{C}^n$. On note $\sigma_1 = \sum_{k=1}^n x_k, \sigma_2 = \sum_{1 \le i < j \le n} x_i x_j$ et $\sigma_n = \prod_{k=1}^n x_k$.

- **a.** Calculer $\sum_{k=1}^{n} x_k^2$ en fonction de σ_1 et σ_2 .
- **b.** Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{C}[X]$ admettant x_1, \dots, x_n pour racines (distinctes ou non).

Montrer que $\sigma_2 = \frac{a_{n-2}}{a_n}$. Donner une forme factorisée de P.

c. Soit $P = 2X^4 - 3X^2 + 5X - 1$. Déterminer la sommes des carrés des racines de P dans \mathbb{C} .

LES BONS REFLEXES

- \maltese Il est parfois préférable de se placer dans $\mathbb{C}[X]$ avant de revenir dans $\mathbb{R}[X]$
- \maltese La division euclidienne de polynômes permet de se ramener à des polynômes de degré inférieur.
- \maltese La formule de Taylor permet d'écrire les polynômes comme somme de puissances de polynômes de la forme X-a.