Total No. of Questions: 6

Total No.	of Printed	Pages:2

Enrollment No	0
---------------	---

Faculty of Engineering End Sem Examination May-2023

FT3CO18 Nuclear Safety & Radioactive Materials

Programme: B.Tech. Branch/Specialisation: FT

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

Q.1		i.	RAD stands f	or-			1
			(a) Radiation after dose		(b) Radiation automatic dose		
			(c) Radon after		(d) None of these		
		ii.		ıl to how many			1
			(a) 150 rads	(b) 100 rads	(c) 120 rads	(d) 110 rads	
		iii.	Size of covered glass in thimble chamber-			1	
			(a) 6 mm	(b) 4 mm	(c) 5 mm	(d) 7 mm	
		iv.	Half-life of ca	arbon – 14 isoto	ope in-		1
			(a) Days	(b) Weeks	(c) Months	(d) Years	
		v.	DWL stands	for-			1
			(a) Derived working limit		(b) Dose working lin	nit	
			(c) Deliver w	orking limit	(d) None of these		
		vi.	MPL stands f	or-			1
			(a) Maximum Permanent Limit				
			(b) Minimum Permissible Unit				
			(c) Minimum	Precaution Lin	nit		
		(d) Maximum Permissible Limit					
	vii.	. RBE stands for-			1		
			(a) Relative Biological Effectiveness				
			(b) Relation I	Bio Effect			
			(c) Radon Bu	rning Effect			
			(d) Rate Burn	ing Effect			

P.T.O.

[2]

	viii.	Roentgen is the physical unit of-		1
		(a) Exposure dose	(b) Examine dose	
		(c) Effective dose	(d) None of these	
	ix.	Beta particles are -		1
		(a) Negative charge	(b) Positive charge	
		(c) Neutral	(d) None of these	
	х.	Alpha particles are discovered	ed by-	1
		(a) Ernest Rutherford	(b) Ernesto Valverde	
		(c) Ernest Hemingway	(d) Henry Becqurel	
Q.2	i.	What is half life?		2
	ii.	What are the units of radiations? Explain the rate of disintegration.		
	iii.	Explain EMS with frequency	y diagram.	5
OR	iv.	Explain biological effects o	f instant & long-time exposure. What are	5
		alpha, beta & gamma rays?		
Q.3	i.	What are the methods of me	asurement? Write any two examples.	2
	ii.	Explain the role of dosimeter & film badge with a neat sketch. 8		
OR	iii.	Explain GM counter with sketch & lithium fluoride powder. 8		
Q.4	i.	What are effects of radiation on human body?		
	ii.	What are effects of radiation on human body? What are the precautions to be followed to minimize contamination?		
OR	iii.	Explain dose equivalent method and DWL in detail.		
Q.5 i.	i.	Explain working principle	of nuclear power plant with neat flow	4
		diagram.		
	ii.	Explain radioactive waste di	sposal method with a sketch.	6
OR	iii.	Explain any one case study i	related to nuclear power plant.	6
Q.6		Attempt any two:		
	i.	Write a note on setting up zo	ones.	5
	ii.	Write a note on protection fr	om external & internal radiation.	5
	iii	What are thermistor & radia	tion detectors?	5

Marking Scheme

FT3CO18 (T) Nuclear Safety & Radioactive Material

Q1 (i) RAD stands for?			
(a) Radiation after dos	e	1	
(ii) 1 gray is equal to how r (b) 100 rads	nany rads	1	
(iii) Size of covered glass in	n thimble chamber		
(c) 5 mm		1	
(iv) Half life of carbon – 14	isotopes in		
(d) Years			
(v) DWL stands for			
(a) Derived work	ing limit	1	
(vi) MPL stands for		1	
(d) Maximum permiss	ible limit		
(vii) RBE stands for			
(a) Relative biologica		1	
(viii) Roentgen is the physi	cal unit of		
(a) Exposure dose		1	
(ix) Beta particles are		1	
(a) negative charge		1	
(x) Alpha particles are disc	overed by		
(a) Ernest Rutherford	,	1	
Q2 (i) definition of half life	2 Marks		
(ii) 6 units 0.5	Marks for each = 3 marks		
(iii) EMS explanation	4 Marks		
Diagram	1 mark		
OR (iv) biological effects	2 Marks		
Alpha, beta, gamma	3 marks		
Q3 (i) measurement methods	2 Marks		
(ii) Role of dosimeter	4 Marks		
Role of film badge	4 Marks		
OR (iii) GMC working 4 Ma	rks		

GMC diagram 1 Marks LFD working 3 Marks

Q4 (i) radiations effects 3 Marks

(ii) 8 points precautions 0.5 marks each = 4 Marks
Decontamination method 3 Marks

OR (iii) dose method 4 Marks
DWL method 3 Marks

Q5. (i) Working of power plant 3 Marks

Diagram 1 Mark

(ii) Disposal method 5 Marks Diagram 1 Mark

OR (iii) deep case study 6 Marks

Q6 Any Two (i) note on different zones 5 Marks

(ii) Precautions for external 3 Marks Precautions for internal 2 marks

(iii) Working Thermistor detector 2.5 Marks Working Radiation detector 2.5