

SAIRAM DIGITAL RESOURCES

YEAR

MA8351

DISCRETE MATHEMATICS (Common to CSE & IT)

UNIT V

LATTICES AND BOOLEAN ALGEBRA

5.3 SUB-LATTICES

SCIENCE & HUMANITIES

i.e. $a*b \in M \& a \oplus b \in M$.

DISCRETE MATHEMATICS (Common to CSE & IT)

Sub-Lattice:

Let $(L,*,\oplus)$ be a lattice. A non-empty subset M of L is called a sub-lattice of L if and only if M is closed under te same operations * and \oplus of L.

Problem 1:

If $(L,*,\oplus)$ is a lattice and let $a,b\in L$ such that $a\leq b$, then the closed interval [a,b] is defined as te set of all $x\in L$ such that $a\leq x\leq b$. Prove that [a,b] is a lattice of L.

Solution:

Clearly [a,b] is a non-empty subset of L.

Let $x, y \in [a,b]$ then $x, y \in L \Rightarrow x * y, x \oplus y \in L$, by the closure of * and \oplus in L as a Lattice.

Since $a \le x$, $a \le y$, a is a lover bound for $\{x, y\}$ and x * y is the GLB $\{x, y\}$.

$$\therefore a \leq x * y$$

Since $x \le b$; $x * y \le b * y$ [By Isotonic Property]

Since $y \le b$; y * b = y [: $a \le b$ iff a * b = a]

 $\Rightarrow b * y = y \le b$

 $\therefore x * y \leq b$,

Hence $a \le x * y \le b \Rightarrow x * y \in [a,b]$

Similarly $a \le x \oplus y \le b \Rightarrow x \oplus y \in [a,b]$

So, the subset [a,b] is closed under * and \oplus .

Hence [a,b] is a lattice of L.

Problem 2:

N or Z^+ with partial order \leq given by divisibility, i.e, $a \leq b$ if $a \mid b$ is a lattice with $a*b = \gcd(a,b)$ and $a \oplus b = lcm(a,b)$. S_n is the set of divisors of n is a sub lattice-verify.

Solution:

We know $N=\{1,2,3,...\},(N,*,\oplus)$ is a lattice. S_n is the set of divisors of a fixed number n. Clearly $S_n\subset N$.

Let $a,b \in S_n$ then $\gcd(a,b)$ and lcm(a,b) are also divisors of n and so S_n is closed under the operations * and \oplus .

Hence S_n is a sub lattice.

Problem 3:

Let $L=\{a_1,a_2,a_3,...,a_8\}$ and let (L,\leq) be a lattice. Let S_1,S_2,S_3 be subsets of L given by $S_1=\{a_1,a_2,a_3,a_6\},\ S_2=\{a_3,a_5,a_7,a_8\} \text{ and }\ S_3=\{a_1,a_2,a_4,a_8\} \text{ which of these are sub lattices of L}.$

Solution:

 $L = \{a_1, a_2, a_3, ..., a_8\}$ and (L, \leq) be a lattice.

The Hasse diagram of the lattice is shown here.

$$S_1 = \{a_1, a_2, a_4, a_6\}$$

 (S_1, \leq) is a sub lattice as the elements are consecutive vertices.

$$S_2 = \{a_3, a_5, a_7, a_6\}$$

 (S_2, \leq) is a sub lattice as the elements are consecutive vertices.

$$S_3 = \{a_1, a_2, a_4, a_8\}$$

 (S_3, \leq) is not a sub lattice as the elements are the vertices are not consecutive.

In other words $a_2, a_4 \in S_3$, but $a_2 * a_4 = a_6 \not\in S_3$. So S_3 is not closed under *.

