

What does the Machine Learning Lifecycle look like?

- Develop & train model that solves a real business problem
- Package model so you can use it somewhere else
- Validate model behavior functionally, in terms of responsiveness, in terms of regulatory compliance
- Deploy model use the model to make predictions
- Monitor model behavior & business value, know when to replace / deprecate a stale model

What is MLOps?

MLOps = ML + DEV + OPS

Help bring ML workflows to production

Experiment

Data Acquisition
Business Understanding
Initial Modeling

Develop

Modeling + Testing Continuous Integration Continuous Deployment

Operate

Continuous Delivery Data Feedback Loop System + Model Monitoring

How is MLOps different from DevOps?

Data/model versioning != code versioning - how to version data sets as the schema and origin data change

Digital audit trail (lineage) requirements change when dealing with code + data

Model reuse is different than software reuse, as models must be tuned based on input data / scenario. To reuse a model you may need to finetune / transfer learn on it (meaning you need the training pipeline)

Model performance tends to decay over time & you need the ability to retrain them on demand to ensure they remain useful in a production context.

Why is MLOps hard?

Traditional vs. ML infused systems

ML introduces two new assets into the software development lifecycle – data and models.

More assets & process to manage

Bring your ML workflows to production with MLOps

Azure Machine Learning service

CI/CD and model retraining

What is MLOps on Azure?

What problems does MLOps solve?

Reproducibility of models and predictions

E2E operationalization & automation of ML lifecycle

Collaboration within / across teams on ML workflow

Enterprise readiness – security, governance, compliance, IaC

Azure ML Platform - MLOps Capabilities

Manage Assets

Infrastructure (Compute, Storage)

Code

Datasets

Environments

Runs

Models

Understand Model Behavior

Model Explainability

Model Profiling Model Validation

Model Deployment

Enable Enterprise ML Lifecycle Management

Data Pipelines

ML Pipelines

Release Pipelines

Data-Driven Eventing

ML Workflow – Process Maturity Model

Phase 0 - Experimentation

Interactive, exploratory, get to something useful.

Phase 1A – Reproduce Model

Version code, data, ensure model can be recreated.

Phase 1B – Deploy Model

Package, certify, deploy

Phase 2 – Automate ML Lifecycle

What do we support?

Asset Management • Code

- Datasets
- Experiments
- Models

Azure ML Services

- Model packaging
- Model profiling
- Model deployment

E2E Automation w/ CLI + DevOps integration **E2E Audit Trail** through asset management

1. Git Integration

2. Dataset Integration

```
In [82]: run.get_details()
           'endTimeUtc': '2019-05-07T12:34:25.782485Z',
           'properties': {'azureml.runsource': 'experiment',
           'AzureML.DerivedImageName': 'azureml/azureml 385d8adbecd8ef667594f38ca071b409',
            'ContentSnapshotId': 'ea6c785d-ed57-409a-91f9-0c9f28e6b3f8',
            'azureml.git.repository_uri': 'https://github.com/Microsoft/MLOps_Hub.git',
            'azureml.git.branch': 'master',
            'azureml.git.commit': 'fe7d29bb1693047168d10c82949002aa9701037a',
            'azureml.git.dirty': 'True',
            'azureml.git.build id': None.
            'azureml.git.build_uri': None,
           'mlflow.source.git.branch': 'master',
            'mlflow.source.git.commit': 'fe7d29bb1693047168d10c82949002aa9701037a',
           'mlflow.source.git.repoURL': 'https://github.com/Microsoft/MLOps Hub.git',
            'azureml.dataset.get.ibm-attrition-data:1': '{"name": "ibm-attrition-data", "definition": "1", "snapshot": ""}',
           'model_type': 'classification',
           'explainer': 'tabular'},
           'runDefinition': {'script': 'train_explain.py',
            'arguments': [],
            'sourceDirectoryDataStore': None,
            'framework': 'Python',
```

3. Environment

```
In [38]: run.get_environment()
Out[38]: {
             "name": "Experiment explainer-remote-run-on-amlcompute Environment",
              "version": "Autosave_2019-05-04T03:04:54Z_e5c501bb",
              "environmentVariables": {
                 "EXAMPLE_ENV_VAR": "EXAMPLE_VALUE"
              "python": {
                 "userManagedDependencies": false,
                 "interpreterPath": "python",
                 "condaDependenciesFile": null,
                 "baseCondaEnvironment": null,
                  "condaDependencies": {
                      "name": "project_environment",
                      "dependencies": [
                          "python=3.6.2",
                             "pip": [
                                  "--index-url https://azuremlsdktestpypi.azureedge.net/AzureML-Contrib-Explain-Model-Gated/3010237",
                                  "--extra-index-url https://pypi.python.org/simple",
                                  "sklearn_pandas",
                                  "azureml-defaults<0.1.50",
                                  "azureml-contrib-explain-model<0.1.50",
                                  "azureml-core<0.1.50",
                                  "azureml-telemetry<0.1.50"
                                  "azureml-explain-model<0.1.50"
                          "scikit-learn"
            },
"docker": {
" pable
                 "baseImage": "mcr.microsoft.com/azureml/base:intelmpi2018.3-ubuntu16.04",
                 "sharedVolumes": true,
                 "gpuSupport": false,
                  "shmSize": "1g",
                  "arguments": [],
                 "baseImageRegistry": {
                     "address": null,
                     "username": nulĺ,
                      "password": null
             },
"spark": {
                 "repositories": [
                      "https://mmlspark.azureedge.net/maven"
                  "packages": [
                          "group": "com.microsoft.ml.spark",
                         "artifact": "mmlspark_2.11",
                          "version": "0.12"
                  "precachePackages": true
```


E2E Automation

Azure ML CLI

az ml model deploy -n mydetector -m videodetector:1 -ic inferenceConfig.json --dc deploymentConfig.json

Triggers to automate model deployment using the Machine Learning extension

Integrated with Azure DevOps

Demo video of MLOps E2E

https://www.youtube.com/watch?v=1XJwcfQP7YI

Key Takeaways

Better together: ML + DevOps mindset

MLOps provides structure for building, deploying and managing and an enterprise-ready AI application lifecycle

MLOps enhances delivery

Adoption will increase the agility, quality and delivery of AI project teams.

More than technology

MLOps is a conversation about people, process and technology Al principles and practices need to be understood by all roles

