3E Construct the De Bruijn Graph of a Collection of k-mers

De Bruijn Graph from k-mers Problem

Construct the de Bruijn graph from a collection of k-mers.

Input: A collection of *k*-mers *Patterns*. **Output:** The graph DEBRUIJN(*Patterns*).

Formatting

Input: A space-separated list of *k*-mer strings *Patterns*.

Output: An adjacency list representing DEBRUIJN(*Patterns*).

Constraints

- The number of patterns in the string-set *Patterns* will be between 1 and 10⁴.
- The length of any one pattern in *Patterns* will be between 1 and 10^2 .
- All strings in *Patterns* will be DNA strings.

Test Cases 🖸

Case 1

Description: The sample dataset is not actually run on your code.

Input:

GAGG CAGG GGGG GGGA CAGG AGGG GGAG

Output:

GAG : AGG
CAG : AGG AGG
GGG : GGG GGA
AGG : GGG
GGA : GAG

Case 2

Description: The sample dataset is not actually run on your code.

Input:

GCAAG CAGCT TGACG

Output:

GCAA : CAAG CAGC : AGCT TGAC : GACG

Case 3

Description: The sample dataset is not actually run on your code.

Input:

AGGT GGCT AGGC

Output:

AGG : GGT GGC GGC : GCT

Case 4

Description: The sample dataset is not actually run on your code.

Input:

TTCT GGCT AAGT GGCT TTCT

Output:

TTC : TCT TCT GGC : GCT GCT AAG : AGT

Case 5

Description: The sample dataset is not actually run on your code.

Input:

CA CA CA CC CA

Output:

C: AAAACA

Case 6

Description: A larger dataset of the same size as that provided by the randomized autograder. Check input/output folders for this dataset.