

Estrutura de Dados I

Árvores binárias

Bruno Prado

Departamento de Computação / UFS

- O que é uma árvore (em computação)?
 - Representação natural de informações hierárquicas
 - Árvore genealógica
 - Organograma
 - Estruturas de diretórios
 - · ...
 - ► Eficiência e simplicidade

- Tipos de árvores
 - Árvore livre ou não enraizada (unrooted) ou grafo
 - Árvore enraizada (rooted)
 - Árvore k-ária

- Grafo
 - Conjunto de vértices V e arestas E
 - Os vértices são conectados pelas arestas
 - As arestas podem conter pesos associados

$$G = (V, E)$$

$$V = \{v_1, v_2, \dots, v_n\}$$

$$E = \{e_1, e_2, \dots, e_m\}$$

- Grafo não direcionado
 - ▶ Vértices V = {A, B, C, D, E}
 - Arestas $E = \{AB, AC, BA, BD, BE, CA, DB, EB\}$

- Grafo direcionado (dígrafo)
 - ▶ Vértices V = {A, B, C, D, E}
 - Arestas $E = \{AB, BD, BE, CA\}$

- Árvore enraizada
 - Conjunto de nós ou vértices, com um nó especial que é denominado de raiz
 - Possuem níveis e as partições geram subárvores

Árvore k-ária

- Cada nó ou vértice tem no máximo k subárvores
- O número de subárvores define o grau do vértice
- Conceito de pai P e filho F_i

- O que é uma árvore binária?
 - É uma árvore enraizada cujos nós pai referenciam até
 2 nós filho ou 2 subárvores
 - Assimetria dos nós e dos ramos

- Propriedades
 - Uma árvore binária com n nós internos (não folhas) possui n + 1 nós externos (folhas)
 - Cada nó interno possui exatamente dois filhos, utilizando um total de 2n ramos
 - Existem n-1 ramos para nós internos
 - ightharpoonup Restam n+1 ramos para cada nó externo

- Propriedades
 - Qualquer árvore binária não vazia com n₀ nós folha e n₂ nós com grau 2, temos que n₀ = n₂ + 1
 - ► Total de nós é $n = n_0 + n_1 + n_2$
 - A árvore possui n − 1 ramos, todos partindo de nós que possuem grau 1 ou 2
 - ▶ Implicando em $n 1 = n_1 + 2n_2 \rightarrow n = n_1 + 2n_2 + 1$

- Propriedades
 - ▶ O número máximo de nós em um nível i é 2^i para $i \ge 0$
 - Progressão geométrica
 - Cada passo duplica o número máximo de nós

- Propriedades
 - O número máximo de nós de uma árvore de altura h é 2^{h+1} - 1
 - Cada nível possui no máximo 2ⁱ nós
 - ▶ Temos que $0 \le i \le h$
 - ► Total de nós é $\sum_{i=0}^{h} 2^i$ e utilizando o somatório de progressão geométrica $\sum_{k=1}^{n} ar^{k-1} = \frac{a(1-r^n)}{1-r}$, é obtido $\sum_{k=1}^{h+1} 2^{k-1} = \frac{1(1-2^{h+1})}{1-2} = 2^{h+1} 1$

Propriedades

- A altura h de uma árvore binária com n nós internos é pelo menos log₂ n − 1 e no máximo n − 1
 - No caso inferior, com níveis com 2^i nós e total máximo de nós igual a $n \le 2^{h+1} 1$
 - No caso superior, o número de nós externos é n + 1 e que temos n − 1 ramos que é igual a altura h

- Implementação em C
 - Estruturas e ponteiros

- Implementação em C
 - Estruturas e ponteiros

```
// Representação da árvore binária
typedef struct no {
    // Chave do nó
    int chave;
    // Filho da esquerda
    struct no* E;
    // Filho da direita
    struct no* D;
} no;
```

- Implementação em C
 - Vetores e índices

- Implementação em C
 - Vetores e índices
 - Nó de índice i
 - ► Filho da esquerda é 2*i* + 1
 - ► Filha da direita é 2*i* + 2

- Percursos na árvore
 - Definem como cada nó da árvore será visitado
 - ► Em ordem
 - Pré-ordem
 - Pós-ordem

- Percurso em ordem
 - ► Expressão (A + B) * C
 - ▶ Regra E P D

- Percurso em ordem
 - ► Expressão (A + B) * C
 - ▶ Regra E P D

O percurso realizado foi A+B*C

- Percurso pré-ordem
 - ► Expressão (A + B) * C
 - ▶ Regra P E D

- Percurso pré-ordem
 - ► Expressão (A + B) * C
 - ▶ Regra P E D

O percurso realizado foi *+ABC

- Percurso pós-ordem
 - ► Expressão (A + B) * C
 - ► Regra E D P

- Percurso pós-ordem
 - ► Expressão (A + B) * C
 - ► Regra E D P

O percurso realizado foi AB+C*

Exemplo

 Realize o percurso em ordem, pré-ordem e pós-ordem na árvore binária

- Árvore binária costurada
 - Uma árvore binária com n nós possui n + 1 ponteiros nas folhas com valores nulos
 - Os ponteiros direito e esquerdo do nó folha referenciam seu sucessor e predecessor no percurso em ordem, respectivamente

Exemplo

Defina os ponteiros de costura da árvore binária

