



### Nukleární medicína:

Nukleární medicína je obor zabývající se diagnostikou a terapií pomocí radioaktivních izotopů v otevřené formě, aplikovaných do vnitřního prostředí organismu.

Při radionuklidové diagnostice *in vivo* v nukleární medicíně se pacientovi aplikuje (většinou intravenózně nebo perorálně) malé množství vhodné g -radioaktivní látky – tzv. radiondikátoru či radiofarmaka (poločas rozpadu v desítkách minut). Použitý radioindikátor je specifický pro jednotlivé orgány a druhy vyšetření. Aplikovaná radioaktivní látka vstoupí do metabolismu organismu a distribuuje se tam podle svého chemického složení – fyziologicky či patologicky se hromadí v určitých orgánech a jejich částech a následně se vylučuje či přeskupuje. Z míst depozice radioindikátoru vychází záření gama, které díky své pronikavosti prochází tkání ven z organismu. Pomocí citlivých detektorů měříme toto záření g a zjišťujeme tak distribuci radioindikátoru v jednotlivých orgánech a strukturách uvnitř těla.

Nukleární medicína – interdisciplinární obor- vzhledem k fyzikální podstatě svých metod a k používané přístrojové technice obor interdisciplinární.

- •Lékaři specialisté na NM
- Zdravotní sestry
- •Radiologický fyzik, laborant, asistent, farmaceut
- biomedicínský technik/ inženýr



## Nukleární medicína:

- -obor zabývající se diagnostikou a terapií pomocí radioaktivních izotopů v otevřené formě
- -pro diagnostické účely se používá záření gama, které proniká ven z těla a je možno ho registrovat
- -poskytuje specifické metody pro vyšetření prakticky všech orgánů a spolupracuje tak s širokým spektrem klinických oborů
- -pro terapeutické účely se používá záření beta, které předává energii na velmi krátkém úseku



# NM- Princip radionuklidové diagnostiky

- -aplikuje se malé množství vhodné **gama radioaktivní látky** tzv. **radioindikátoru**. Použitý radioindikátor je specifický pro jednotlivé orgány a druhy vyšetření. Aplikovaná radioaktivní látka vstoupí do metabolismu organismu a **distribuuje** se tam podle svého chemického složení hromadí se v určitých orgánech a jejich částech a následně se vylučuje či přeskupuje.
- -z míst depozice radioindikátoru vychází **záření gama**, které díky své pronikavosti prochází tkání ven z organismu. Pomocí citlivých detektorů měříme toto záření gama a zjišťujeme tak distribuci radioindikátoru v jednotlivých orgánech a strukturách uvnitř těla
- -radioindikátor radionuklid v molekule (cyklotrony)
- lék (zajišťuje distribuci v orgánech)



# NM- Princip radionuklidové diagnostiky

- -Nejčastěji používaná radiofarmaka: technecium-99, jód-123, jód-131 a thalium-201
- Nejčastěji vyšetřované oblasti/ orgány
   -srdce, plíce, štítná žláza, játra, žlučník a kostra
  - •Nejčastěji zobrazujeme fyziologické funkce organismu- nehodí se na zobrazování anatomických detailů= tzv. funkční vyšetřovací metody (PET, SPECT)

### Lze měřit:

- •vylučovací funkce ledvin,
- schopnost koncentrace jódu na štítné žláze,
- proudění krve do srdce
- atd.



### Nukleární medicína:

Pro získání obrazu se používá tzv. gama kamera= velmi citlivý a přesný detektor radiace

Získané informace z gama kamery jsou následně zpracovávané v PC.

### Zobrazovací metody:

- -PET Positron emission tomography Pozitronová emisní tomografie
- SPECT Single photon emission computed Jednofotonová emisní výpočetní tomografie



# Scintigrafie:

Scintigrafie je diagnostická metoda k detekci záření γ a rentgenového záření, využívající soustavy, která se skládá ze scintilačního detektoru a převodně-zesilovací soustavy.

### Základní informace

- -fyzikálně-elektronická metoda zobrazení distribuce radioindikátoru v organismu na základě zevní detekce vycházejícího záření gama
- -gamakamery (scintilační kamery) pomocí nich zobrazujeme v záření gama distribuci radioindikátoru v organismu. Tato metoda, zvaná scintigrafie či gamagrafie, tak umožňuje získávat informace nejen anatomické, ale hlavně o orgánových funkcích a metabolismu



# Scintigrafie:

- -Planární
  - -Angerova gamakamera (1958) malé rozlišení
  - -Multideteková kamera mnoho samostatných detektorů místo jednoho velkoplošného
  - -Comptnova kamera dva za sebou následující detektory
- -Tomografická scintigrafie (ve 3D)
  - SPECT jednofotonová emisní počítačová tomografie
  - PET pozitronová emisní tomografie







# Angerova gamakamera- Gamakamera:

přístroj používaný v nukleární medicíně k detekci záření γ a jeho následnému zviditelnění na obrazovku osciloskopu.

Gamakamera je velkoplošný obdélníkový nebo kruhový přístroj se scintilačním krystalem uvnitř, využívající **scintigrafie**.

Tento přístroj je stacionární a oproti pohybovým scintigrafům citlivější.

Scintilační krystal je uzavřen v olověném a světlotěsném krytu. Za krystalem je poté světlovodivý materiál, který se spojuje s mnoha **fotonásobiči**. Každá scintilace z krystalu osvítí všechny fotonásobiče, ale intenzita osvětlení těchto fotonásobičů závisí na poloze scintilace.

Impulzy všech fotonásobičů se poté převádějí do **odporové matrice**, což je systém odporů, který funguje jako filtr přivedených impulzů. Vytřídí vždy dva největší impulzy pro souřadnice x a y. Tyto impulzy jsou pak zvýrazněny vychylovacími destičkami osciloskopu, kdy se na obrazovce objeví světelný bod. Tento světelný bod odpovídá místu scintilace v krystalu





# Gama kamera: Parametry ovlivňující obraz scintilační kamery: Homogenita – schopnost kamery zobrazit homogenní rozložení látky ve tkáni jako homogenní obraz. Při zobrazení homogenního rozložení látky heterogenně se jedná o poruchu, která vede ke chybnému vyšetření. Prostorová rozlišovací schopnost – schopnost rozeznat dva bodové nebo čárové zdroje záření jako odlišné, pokud jsou od sebe vzdáleny o minimální prostorové rozlišení FWHM (full with at half maximum – šířka profilu v obraze bodového nebo liniového zdroje v polovině výšky profilu) Systémové prostorové rozlišení detektoru – zhoršuje se (FWHM roste), pokud je kolimátor s paralelními otvory dále od zdroje záření. Proto je žádoucí být gamakamerou co nejblíže povrchu pacientova těla. Citlivost – udává počet impulzů plošného zdroje o průměru 10 cm na 1 MBq, udává se nejčastěji pro <sup>99m</sup>Tc.





### **SPECT:**

### Výhody a nevýhody:

Výhodou oproti planární scintigrafii je vyšší kontrast snímků a především možnost kvantifikace radiofarmaka ve tkáni. Samotná SPECT představuje menší radiační zátěž pro pacienta než CT.

**Nevýhodou** jsou někdy až velmi nepřesné výsledky kvantifikace vlivem oslabeného záření, které vzniká Comptonovým jevem nebo fotoelektrickým jevem. Radiační zátěž jednoho vyšetření závisí nejvíce na aktivitě a efektivním poločasu (rozpadový a biologický poločas) použítého radiofarmaka. Další nevýhodou je dlouhá doba vyšetření.











### PET:

Pozitronová Emisní Tomografie (PET)

PET je diagnostická zobrazovací metoda umožňující na tomografických řezech sledovat rozložení radiofarmaka v těle pacienta. Je používána zejména v neurologii, kardiologii a onkologii.

### **POUŽITÁ RADIOFARMAKA:**

Izotop <sup>18</sup>F s poločasem 110 minut přeměňující se na kyslík. Podává se ve formě 18-fluordeoxyglukózy (FDG), která se přeměňuje na glukózu. Protože se flourdeoxyglukóza chová podobně jako glukóza, je více vychytávána v místech s aktivnějším metabolizmem (např. nádorové buňky).

Dalšími zářiči jsou například <sup>11</sup>C, <sup>13</sup>N, <sup>15</sup>O, což jsou biologicky významné prvky. K výrobě takových zářičů s velmi krátkým poločasem rozpadu slouží přímo na místě lékařský cyklotron.



### PET:

### **PRINCIP:**

- -Pacientovi je podán zdroj β+
- -Rozpadající se radiofarmakum produkuje pozitrony, které ihned anihilují s elektrony (pozitron je antičástice elektronu) za vzniku dvou fotonů záření γ
- fotony odlétají v právě opačném směru se stejnou energií 511 keV
- Detekovaný je pouze foton, ke kterému byl na detekčním prstenci zachycen i jeho protějšek, hovoříme o antikoincidenčním zapojení
- tomografický obraz je výsledkem zpracování velkého množství zachycených párů.
  - •Anihilace je proces v částicové fyzice, který může nastat, když se setká částice se svou antičásticí.
  - •Pozitrony mají ve tkáních dosah asi 2 mm, poté dochází k anihilaci. Jedná se tedy o metodu s velmi vysokou přesností.



### Provedení detektorů:

- sudý počet detektorů rotujících kolem pacientova těla
- několik set až tisíce pevných detektorů uspořádaných v přístroji v několika prstencích. Protilehlé detektory ve stejném prstenci jsou spojeny tak, aby mohly registrovat pouze takové páry fotonů, které s nimi reagují ve stejném čase.
- Detektory nejsou scintilátory s běžnými krystaly kvůli vysoké energii fotonů, proto se používají scintilátory s krystaly o větší hustotě a s vyšším atomovým číslem (např. germaniová sůl bismutu a fluorid barnatý)



### PET:

### Výhody a nevýhody:

### Výhody:

Největší výhodou přístroje je velká diagnostická přesnost a prostorová rozlišovací schopnost. Moderní přístroje mají vyšší detekční účinnost než SPECT, zejména také kvůli absenci užití kolimátorů. Další výhodou je využití biogenních prvků ve sledování metabolismu, které jsou v tomto metabolismu normálně zastoupeny.

### Nevýhody:

Technická náročnost PET a s tím i pořizovací cena přístroje. Navíc často nezbytné pořízení cyklotronu je také nákladné.











