Def: Parts of Speech tagging is a linguistic activity in Natural Language Processing (NLP) wherein each word in a document is given a particular part of speech (adverb, adjective, verb, etc.) or grammatical category. Through the addition of a layer of syntactic and semantic information to the words, this procedure makes it easier to comprehend the sentence's structure and meaning.

Example

Sentence: The quick brown fox jumps over the lazy dog

- "The" is tagged as determiner (DT)
- "quick" is tagged as adjective (JJ)
- "brown" is tagged as adjective (JJ)
- "fox" is tagged as noun (NN)
- "jumps" is tagged as verb (VBZ) "over" is tagged as preposition (IN)
- "the" is tagged as determiner (DT)
- "lazy" is tagged as adjective (JJ)
- "dog" is tagged as noun (NN)

Workflow of processing POS Tagging

Tokenization: Divide the input text into discrete tokens, which are usually units of words or subwords. The first stage in NLP tasks is tokenization

Loading Language Models: To utilize a library such as NLTK or SpaCy, be sure to load the relevant language model. These models offer a foundation for comprehending a language's grammatical structure since they have been trained on a vast amount of linguistic data

Text Processing: If required, preprocess the text to handle special characters, convert it to lowercase, or eliminate superfluous information. Correct PoS labeling is aided by clear text.

Linguistic Analysis: To determine the text's grammatical structure, use linguistic analysis. This entails understanding each word's purpose inside the sentence, including whether it is an adjective, verb, noun, or other.

Part-of-Speech Tagging: To determine the text's grammatical structure, use linguistic analysis. This entails understanding each word's purpose inside the sentence, including whether it is an adjective, verb, noun, or other.

Results Analysis: Verify the accuracy and consistency of the PoS tagging findings with the source text. Determine and correct any possible problems or mistagging.

Rule Based Approach in NLP

Based on linguistic rules and patterns

Rule-based approach is one of the oldest NLP methods in which predefined linguistic rules are used to analyze and process textual data. Rule-based approach involves applying a particular set of rules or patterns to capture specific structures, extract information, or perform tasks such as text classification and so on. Some common rule-based techniques include regular expressions and pattern matches

Code implementation using NLTK

Importing the NLTK library import nltk from nltk.tokenize import word_tokenize from nltk import pos_tag

Sample text text = "NLTK is a powerful library for natural language processing."

Performing PoS tagging pos_tags = pos_tag(words)

Displaying the PoS tagged result in separate lines print("Original Text:") print(text)

print("\nPoS Tagging Result:") for word, pos_tag in pos_tags: print(f"{word}: {pos_tag}")

Output

processing: NN

Original Text: NLTK is a powerful library for natural language processing. PoS Tagging Result: NLTK: NNP is: VBZ a: DT powerful: JJ library: NN for: IN natural: JJ language: NN

Code implementation using Space

!pip install spacy !python -m spacy download en core web sm

#importing libraries import spacy

library."

Load the English language model nlp = spacy.load("en_core_web_sm")

Sample text text = "SpaCy is a popular natural language processing

Process the text with SpaCy doc = nlp(text)

Display the PoS tagged result print("Original Text: ", text) print("PoS Tagging Result:") for token in doc:

print(f"{token.text}: {token.pos_}")

Output

Original Text: SpaCy is a popular natural language processing library. PoS Tagging Result: SpaCy: PROPN is: AUX a: DET popular: ADJ natural: ADJ language: NOUN processing: NOUN library: NOUN .: PUNCT

Rule Based Approach -workFlow

- Rule Creation: Based on the desired tasks. domain-specific linguistic rules are created such as grammar rules, syntax patterns, semantic rules or regular expressions.
- 2 Rule Application: The predefined rules are applied to the inputted data to capture matched patterns.
- 3 Rule Processing: The text data is processed in accordance with the results of the matched rules to extract information, make decisions or other tasks.
- 4 Rule refinement: The created rules are iteratively refined by repetitive processing to improve accuracy and performance. Based on previous feedback, the rules are modified and updated when needed.