Problem Set 4

Samuel B. Hopkins, Amit Rajaraman

Last updated November 11, 2024

Due: 11/27, 11:59pm.

Please typeset your solutions in LaTeX.

Problem 1 (Sparse robust mean estimation). In this problem, we will solve a sparse version of robust mean estimation. Let $\mu \in \mathbb{R}^d$ be an unknown k-sparse vector, in that only k of its entries are non-zero. First $n = \widetilde{\Omega}(k^2(\log d)/\varepsilon^2)$ samples $v_1, \ldots, v_n \in \mathbb{R}^d$ are drawn from $\mathcal{N}(\mu, \mathrm{Id})$. Then an adversary alters εn of the samples and reorders them arbitrarily. We observe the resulting dataset v'_1, \ldots, v'_n . Our goal will be to give an algorithm for estimating μ from these samples.

(a) Let $\overline{v} = \frac{1}{n} \sum_{i=1}^{n} v_i$. Prove that with 0.99 probability, for all k-sparse vectors $u \in \mathbb{R}^d$ with ||u|| = 1,

$$\langle u, \overline{v} - \mu \rangle^2 \le \varepsilon^2 \,.$$

- (b) Define $\Sigma = \frac{1}{n} \sum_{i=1}^{n} (v_i \overline{v})(v_i \overline{v})^T$. Prove that with 0.99 probability, $|\Sigma_{ij}| \le 1/k$ for $i \ne j$ and $|\Sigma_{ii} 1| \le 1/k$ for all $i, j \in [d]$.
- (c) Consider the following system, which we call S, with scalar variables w_1, \ldots, w_n and d-dimensional variables z, z_1, \ldots, z_n

$$w_i^2 = w_i$$

$$\sum_{i=1}^n w_i \ge (1 - \varepsilon)n$$

$$w_i(z_i - v_i') = 0$$

$$\overline{z} = \frac{1}{n} \sum_{i=1}^n z_i , \ \Sigma = \frac{1}{n} \sum_{i=1}^n (z_i - \overline{z})(z_i - \overline{z})^T$$

$$-\frac{1}{k} \le \Sigma_{ij} \le \frac{1}{k} \quad \text{for all } i \ne j$$

$$-\frac{1}{k} \le \Sigma_{ii} - 1 \le \frac{1}{k} \quad \text{for all } i$$

Prove that with 0.99 probability, there is a feasible solution to this system where the w_i are indicators of the clean samples and the z_i are the actual clean samples.

From now on, assume that the events in (a), (b), (c) hold.

(d) Now we consider the SoS relaxation of the system S. Let $u \in \mathbb{R}^d$ be an arbitrary k-sparse vector with ||u|| = 1. Prove that

$$S \vdash_2 \sum_{i=1}^n \langle u, z_i - v_i \rangle^2 \le 10n(1 + \langle u, \overline{z} - \mu \rangle^2)$$

where recall v_i are the clean samples drawn from $N(\mu, I)$.

(e) Let $u \in \mathbb{R}^d$ be an arbitrary k-sparse vector with ||u|| = 1. Use part (c) to prove that

$$S \vdash_4 \langle u, \overline{z} - \overline{v} \rangle^2 \le 100 \varepsilon (1 + \langle u, \overline{z} - \mu \rangle^2)$$

(f) Use part (e) to deduce that

$$S \vdash_4 \langle u, \overline{z} - \mu \rangle^2 \leq O(\varepsilon)$$
.

Put everything together to show that there is a polynomial time algorithm that takes the samples v_1', \ldots, v_n' and with probability 0.9, outputs a k-sparse $\widehat{\mu}$ such that $\|\mu - \widehat{\mu}\| \le O(\sqrt{\varepsilon})$.

Problem 2. Unreleased.