

SPONSORED BY THE



Deutsche Forschungsgemeinschaft







# **Data Driven Background Estimation**

Christian Sander (Universität Hamburg)

Hamburg – SFB Block Meeting - 23<sup>rd</sup> February 2012



#### **Outline**



- Background from Monte Carlo
- "Bump hunts"
- Motivation for data driven backgrounds
- Control sample weighting
  - Factorization / "ABCD" Methods
- Control events weighting
  - Inversion techniques
  - Fake methods
  - Replacement/Removal techniques
- QCD Background Rebalance and Smear
- Application: hadronic SUSY search with jets and MET



# **Background from Monte Carlo**



- Monte Carlo (event generation + full detector simulation) widely used in HEP experiments
  - Excellent agreement for most of the observables
  - Evaluation of systematic uncertainties
    - Scale for Data/MC differences (trigger, efficiencies ...)
    - Simulation with different settings (scale variations, pdf, fragmentation model ...)
    - Systematic variation of properties of reconstructed particles (jet energy scale uncertainties ...)
- → Valid approach for final states which are well understood



**Example:** Jet  $p_{\scriptscriptstyle T}$  for dilepton ttbar selection

**CMS PAS TOP-11-013** 



### **Scaled Monte Carlo Simulation**



- If shape of simulated distribution is well simulated
  - → Use background dominated region to normalize prediction

**Example:** Normalize DY background in invariant mass window around *Z* peak

- Don't forget about remaining contributions from other SM processes
- Important:

Assign uncertainty to model assumption:

"Same shapes in data and simulation?"



Example: Search for ADD models Invariant  $e^+e^-$  mass CMS PAS EXO-11-087



# "Bump Hunts"



- Search for narrow resonances over smooth background (shape not well predicted by theory)
- Limit depends on model assumption (fit function)
  - Statistical uncertainties from fit variance
  - Systematic uncertainties on fit function is challenging to assign, if function is not based on physics principles
    - → **Possibility:** validate in control region, where no excess is expected (not always possible).



**Example:** Search for resonances

in di-jet mass

**CMS PAS EXO-11-015** 



### **Data Driven Methods in MET Searches**

Events / 20 GeV



#### Searches for NP → excess in MET tails

- → Plain simulation at the limit
- SM backgrounds with large MET:
  - Backgrounds from out-of-acceptance, isolation, or reconstruction example: (W→e/μ+ν)+jets
  - Fake backgrounds example:  $(W \rightarrow \tau_{bad} + \nu) + jets$
  - Irreducible backgrounds
     example: (Z→νν)+jets
  - Mismeasurements example: QCD multi-jet production
  - → Each bg requires special methods



Example: Search for supersymmetry in all-hadronic events with missing energy

**CMS PAS SUS-11-004** 



# Factorization / "ABCD"-Method



 If search region is defined by sequential cuts, e.g. on var<sub>1</sub> and var<sub>2</sub> (with discriminative power, e.g. MET and HT)



- If variables are uncorrelated (has to be verified)
  - → shape of var<sub>1</sub> distribution independent of choice of var<sub>2</sub>
  - → background in signal region predicted by scaling of control sample

$$N_{\rm D} = N_{\rm C} \cdot N_{\rm A} / N_{\rm B}$$

Modification for correlated variables possible, however challenging!



### **Inversion Techniques**



**Example:** full-hadronic search requires explicitly no isolated lepton! Events with leptons contribute to bg, because not reconstructed, not isolated or out of acceptance!

- Select events with exactly one isolated lepton
- Reweight events according to isolation and reconstruction efficiencies (probabilities that a lepton is reconstructed or isolated)
  - Efficiencies depend on event kinematics (e.g. high jet multiplicity → low isolation efficiency)
  - Obtain efficiencies from data in sufficient binning in relevant variables (e.g. distance of lepton to nearest jet)
- Apply acceptance correction from MC





# Tag and Probe – Efficiencies from Data





Tag: well defined muon

Probe: loose definition of muon

 $m_{\mu\mu}$  compatible with Z mass  $\rightarrow$  Probe is muon

pass/(pass+fail) ratio of probe is efficiency







# **Fake Techniques**



**Example:** full-hadronic search requires explicitly no isolated lepton! Events with leptons contribute to bg, because of taus decaying hadronically and thus faking a jet!

- Select a control sample with exactly one isolated light lepton (e.g. muon)
- Weight events according to muon reconstruction and isolation efficiencies
- Use universality of leptons
  - $\rightarrow$  same number of taus
- Weight events according to hadronic branching fraction and tau reconstruction 0.04 efficiencies
- Replace muon by hadronic tau-jet (draw random  $p_{\rm T}$  from templates) and recalculate MHT, HT ...





# Replacement/Removal Techniques



**Example:** irreducible background to full-hadronic search is  $(Z\rightarrow vv)$ +jets!

Select events with same kinematics but light leptons instead of neutrinos

$$\sigma \cdot \text{Br}(\mathbf{Z} \to \nu \nu) = \frac{\text{Br}(\mathbf{Z} \to \nu \nu)}{\text{Br}(\mathbf{Z} \to \mathbf{e}^+ \mathbf{e}^-)} \cdot \frac{\mathbf{N_Z^{observed}} - \mathbf{N_Z^{background}}}{\text{acceptance}_{\mathbf{Z}} \cdot \text{efficiency}_{\mathbf{Z}} \cdot \int \mathbf{L} d\mathbf{t}}$$
From theory

- Remove leptons from event
- Recalculate MHT
- Alternatively on can use W+jets or photon+jets events
  - Similar behavior at high transverse momentum of the boson
  - Advantage: higher statistics
  - **Disadvantage:** systematic uncertainties more difficult to estimate



### **Rebalance and Smear**



- Large uncertainties in QCD multi jet prediction and detector simulation of tails
  - → Obtain seed sample directly from data, by stripping off transverse momentum imbalance by kinematic fit (method intrinsically safe against non-QCD contributions)
  - $\rightarrow$  Smear  $p_{T}$  of rebalanced jets by jet response (corrected for data/MC differences)
  - → Smeared sample describes full kinematic properties of QCD events





### R+S — Closure Tests



All data driven methods have to be validated on simulated samples!

→ "Closure Tests"





→ Good performance on simulated events (here: QCD Pythia)



### **Results – Hadronic SUSY Search**



- Put together all data driven background predictions
  - → Good agreement with data! → Set very sensitive limits!





### Summary



- Data driven methods are crucial for many searches for which the uncertainties from simulation are large or simply not known
- Often many techniques are used in one analysis
  - To estimate different backgrounds
  - To have independent cross checks
- Each method has to be validated on simulated events ("Closure tests")
- Most of the work: evaluation of systematic uncertainties

→ But it's worth the effort, since we would like to prepare for discoveries ... in 2012?





#### **Rebalance and Smear**



**Detector effects:** Jet resolution, dead ECAL cells, Punch through ...

**Physics:** Leptonic heavy flavor decays

 $\rightarrow$  mismeasured jets ( $\rightarrow$  large MHT)

Full jet response (incl. tails) measured from data



Select or mimic particle jets (rebalance seed events):



Smear seed events according to measured jet resolutions



Smeared sample resembles full kinematic

