Data Structures Sorting Technique – Heap Sort

Team Emertxe

Introduction

Basic Terminology

Heap:

They are complete or Absolute Complete Binary Tree

Basic Terminology

Heap:

They are complete or Absolute Complete Binary Tree

Binary Tree:

A tree whose elements have at most 2 children is called a binary tree.

Basic Terminology

Heap:

They are complete or Absolute Complete Binary Tree

Binary Tree:

A tree whose elements have at most 2 children is called a binary tree.

Basic Terminology

Heap:

They are complete or Absolute Complete Binary Tree

Binary Tree:

A tree whose elements have at most 2 children is called a binary tree.

Basic Terminology

Complete Binary Tree (CBT) / Absolute Complete Binary tree (ACBT):

A complete binary tree is a binary tree in which every level is completely filled All the nodes except the leaf node have 2 children or every level is filled from left to right, but it is not completely filled.

Basic Terminology

Complete Binary Tree (CBT) / Absolute Complete Binary tree (ACBT):

A complete binary tree is a binary tree in which every level is completely filled All the nodes except the leaf node have 2 children or every level is filled from left to right, but it is not completely filled.

Basic Terminology

Complete Binary Tree (CBT) / Absolute Complete Binary tree (ACBT):

Basic Terminology

Not CBT /ACBT:

Basic Terminology

Not CBT /ACBT:

Basic Terminology

Types of Heap

- Max Heap
- . Min Heap

Basic Terminology

Types of Heap

- Max Heap
- Min Heap

Max Heap

A CBT/ACBT where items are stored in a special order such that value in a root node is greater than the values in all other nodes.

Min Heap

A CBT/ACBT where items are stored in a special order such that value in a root node is smaller than the values in all other nodes.

Basic Terminology

Max Heap

Basic Terminology

Max Heap

Min Heap

Basic Terminology

Representation of Heap

वितरिता वेतर्ता वेतरिता वेतरिता वेतरिता वेतरिता वेतरिता

Basic Terminology

Basic Terminology

$$L_{C}(i) = 2*i+1$$
 $R_{C}(i) = 2*i+2$

Basic Terminology

$$L_{C}(i) = 2*i+1$$
 $R_{C}(i) = 2*i+2$

$$i = 0$$
 $L_C(0) = 2*0+1 = 1$

Basic Terminology

Representation of Heap

$$L_{C}(i) = 2*i+1$$
 $R_{C}(i) = 2*i+2$

 $L_{C}(0) = 2*0+1 = 1$

i = 0

 $R_{c}(0) = 2*0+2=2$

Basic Terminology

$$L_{C}(i) = 2*i+1$$
 $R_{C}(i) = 2*i+2$

$$i = 0$$
 $L_C(0) = 2*0+1 = 1$ $R_C(0) = 2*0+2 = 2$

$$i = 1$$
 $L_C(1) = 2*1+1=3$

10 8 9 7	
----------	--

Basic Terminology

$$L_{C}(i) = 2*i+1$$
 $R_{C}(i) = 2*i+2$

$$i = 0$$
 $L_C(0) = 2*0+1 = 1$ $R_C(0) = 2*0+2 = 2$

$$i = 1$$
 $L_C(1) = 2*1+1=3$ $R_C(1) = 2*1+2=4$

10 8	9	7	2		
------	---	---	---	--	--

Basic Terminology

$$L_{C}(i) = 2*i+1 \qquad \qquad R_{C}(i) = 2*i+2$$

$$i = 0 \qquad L_{C}(0) = 2*0+1 = 1 \qquad \qquad R_{C}(0) = 2*0+2 = 2$$

$$i = 1 \qquad L_{C}(1) = 2*1+1 = 3 \qquad \qquad R_{C}(1) = 2*1+2 = 4$$

$$i = 2 \qquad L_{C}(2) = 2*2+1 = 5$$

$$10 \qquad 8 \qquad 9 \qquad 7 \qquad 2 \qquad 1$$

Basic Terminology

Basic Terminology

$$L_{C}(i) = 2*i+1 \qquad \qquad R_{C}(i) = 2*i+2$$

$$i = 0 \qquad L_{C}(0) = 2*0+1 = 1 \qquad \qquad R_{C}(0) = 2*0+2 = 2$$

$$i = 1 \qquad L_{C}(1) = 2*1+1 = 3 \qquad \qquad R_{C}(1) = 2*1+2 = 4$$

$$i = 2 \qquad L_{C}(2) = 2*2+1 = 5 \qquad \qquad R_{C}(2) = 2*2+2 = 6$$

$$\boxed{10 \qquad 8 \qquad 9 \qquad 7 \qquad 2 \qquad 1 \qquad 5}$$

Heap Sort