Estimating conditional probability of volcanic flows for forecasting event distribution and making evacuation decisions

E.R. Stefanescu¹, A.K. Patra ¹, M.F. Sheridan ², G. Cordoba ³

¹Mechanical and Aerospace Engineering

University at Buffalo

²Geology, University at Buffalo

³Universidad de Nariño, Colombia

Outline

- Introduction
 - Volcanic hazard
 - Conditional probability framework
- Methodology
 - Frequency analysis
 - Logistic regression
 - Bayes analysis
- Conclusions

Galeras volcano

Galeras volcano is one of the most active volcanoes in the world. Nearly 400,000 people currently live near the volano.

- Deal with complex physics.
- Sparse observations one cannot build a forecast based only on observations.
- To supplement the lack of observations we used a simulator /computer model - TITAN2D.

Questions

During a crisis

Should a village be evacuated and villagers moved/relocated to a different location?

The problem

- A critical action to reduce volcanic risk/hazard is the evacuation of people from threatened areas during a volcanic eruption.
- Decision making requires a comparison of hazards at different locations.
- The range of possible inputs (from experts) allows us to *frame the range* of possible outcomes.
- Range of inputs can be explored using the simulator by space filling sampling (Latin Hypercube Design) - the result is a relative **probability** matrix

The particular choice of method used in finding the relative probability can be based on the amount of information necessary in the evacuation decision and on the complexity of the analysis required in taking such decision.

Figure: Galeras Volcano, Colombia - red X represents a possible vent location and black dot is a critical regions (village, infrastructure, city, university)

Figure: Maximum flow height over time - 4900 Titan2D runs

Frequency analysis - One possible starting zone

	Location 2					
		Nonflow	Flow	Total		
Location 6	Nonflow	633	21	654		
	Flow	11	35	46		
	Total	644	56	700		

Table: Location 2 and location 6

Figure: Maximum flow height over time (one starting zone) - 700 Titan2D

One possible starting zone - cont.

	Location 2		.	Nonflow	Flow	
		Nonflow	Flow	$P_{location2} = $	0.920	0.080
Location 6	Nonflow	0.452	0.015		` (,
	Flow	0.007	0.025	$P_{location6} = $	Nonflow	Flow
	1			(0.935	0.065

Table: Joint distribution

P(loc6 = Flow, loc2 = Flow) = 0.025

 $P(loc6 = Flow \mid loc2 = Flow) = 0.625$

Seven possible starting zones

	Location 2				
		Nonflow	Flow	Total	
Location 6	Nonflow	4687	83	4770	
	Flow	30	100	130	
	Total	4717	183	4900	

Table: Location 2 and location 6

Figure: Maximum flow height over time (7 starting zones) - 4900 Titan2D

Frequency analysis - cont.

Table: Joint distribution

P(loc6 = Flow, loc2 = Flow) = 0.020 P(loc6 = Flow | loc2 = Flow) = 0.546

Logistic regression

We consider:

$$P(t = 1 | x) = f(x)$$
 and $P(t = 0 | x) = 1 - f(x), f \in [0, 1]$

The logistic function is defined as:

$$f(x) = \sigma(x) = \frac{1}{1 + exp(-x)} \tag{1}$$

Define: $P(t = 1 | x) = \sigma(b + x^T w)$, where b-bias parameter

The likelihood function can be written as:

$$P(D) = \prod_{i=1}^{N} P(t^{i} \mid x^{i}) = \prod_{i=1}^{N} P(t = 1 \mid x^{i})^{t^{i}} (1 - P(t = 1 \mid x^{i})^{1 - t^{i}}$$
(2)

Logistic regression - cont

Define L as the log of likelihood

$$L = log P(D \mid w, b) = \sum_{i=1}^{N} (t^{i} \log \sigma(b + w^{T} x^{i}) + (1 - t^{i}) \log(1 - \sigma(b + w^{T} x^{i})))$$
(3)

Solve for *w* and *b*:

$$\nabla_{w}L = \sum_{i}^{N} (t^{i} - \sigma(b + w^{T}x^{i}))x^{i} = 0$$

$$\nabla_b L = \sum_i^N (t^i - \sigma(b + w^T x^i)) = 0$$

Figure: The probability of having flow at location 6 given flow at location a) one location b) seven locations

Bayes analysis

Define y - event of flow occurring (y = 1 - Flow, y = 0 - Nonflow) at a certain location.

Let ∂ be the probability that $y = 1 : P(y = 1) = \partial$.

Bayes' rule:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B \mid A)P(A)}{P(B)}$$
(4)

In our case we have:

$$\pi(\partial \mid data) = \frac{\pi(data \mid \partial)\pi(\partial)}{\pi(data)},\tag{5}$$

where $\pi(data \mid \partial)$ - is the likelihood function.

Bayes analysis -cont.

The posterior distribution mean

$$E(\partial \mid data) = \frac{a_0 + \sum_{i=1}^{N} y_i}{a_0 + \sum_{i=1}^{N} + \beta_0 - N - \sum_{i=1}^{N} y_i}$$

$$\frac{a_0 + \beta_0}{a_0 + \beta_0 + N} \cdot \frac{a_0}{a_0 + \beta_0} + \frac{N}{a_0 + \beta_0 + N} \cdot \bar{y}$$
(6)

where
$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i$$

The likelihood is binomial $\pi(data \mid \partial) = \partial^{a_F} (1 - \partial)^{a_N}$.

The prior is beta distribution: $\pi(\partial) < \partial^{\beta_F - 1} (1 - \partial)^{\beta_N - 1} = B(\beta_F, \beta_N)$

The posterior is beta distribution: $\pi(\partial \mid data) = B(\beta_F + a_F, \beta_N + a_N)$.

Results one zone

Figure: Probability density function (pdf) -

Beta distribution

Figure: Prior and Posterior PDF after 6 observations

Figure: Prior and Posterior pdf after 4900

observations

Figure: Posterior predictive probability

Results seven zones

Figure: Prior and Posterior pdf after 4900

observations - 7 zones

Figure: Posterior predictive probability

Graphical Models - Bayesian Network

In a probabilistic graphical model each node represents a random variable and the edges express probabilistic relationship between variables

Directed Graphical Model

Product terms are conditional distributions of each node conditioned on variables corresponding to parents of that node in the graph:

$$p(X) = \prod_{k=1}^{K} p(x_k \mid pa_k) \tag{7}$$

where $x = (x_1, ..., x_K)$ and pa_k denotes set of parents of a_k

By inspection, joint ditribution of the "flow graph" is given by:

$$P(loc3, loc4, loc5, loc2, loc1) = P(loc3 \mid loc4) \cdot P(loc4 \mid loc2, loc5)$$
 (8)

$$P(loc5) \cdot P(loc2 \mid loc1) \cdot P(loc1) = 0.001$$

Conclusions

evacuation decision.

Developed a framework for forecasting event distribution and making

- Space filling sampling design used to explore the input parameter space.
- The choice of method used for finding relative probability is based on the amount of information necessary in the evacuation decision.
- This work was supported by

