```
08/31. Sec14. 2.
   lim ≠ lim lim
y) → (xo, yo) × x > x, y > yo
(x,y) \rightarrow (x_0, y_0)
                 => lin lin
y = y = x = x
eg: f(x,y) = \int x \sin y + y \sin x x \neq 0, y \neq 0

x = 0 y \neq 0
                                             λ=0, y+0.
                                               y=0, x +0
     \lim_{x \to 0} f(x,y) = ?
                               lim (lim f(x,y)) = lim lim (xxinty + yxintx,
    XXX
    (x, y) → (o, u)
                                                       do es not exist.
                              lim lim (Xsixy + ysinx)
y70 x70
nolimin
                                        limit does not exist
       lim f(x,y) = lim (x sin 女 + y sin 大)
     (0,0) + (0,0)
               (x,y) \rightarrow (0,0)
     In |x1in + y1in x | \le |x5in \frac{1}{9} + |y5in \frac{1}{8} \le |x| + |y] = 0
     (0,0) + (U,0)
       Recall:
                 10+61 = 10+161
                  I'm Xsinty + ysintx = 0.
                  1×10/0) + (0/0)
```

Eg.
$$f(x,y) = \frac{x^2 - y^2 + x^3 + y^2}{x^2 + y^2} = \lim_{(x,y) \to (x,y)} \frac{x^2 + y^2}{x^2 + y^2} = \lim_{(x,y) \to (x,y)} \frac{x^2 + x^3}{x^2 + y^2} = \lim_{(x,y) \to (x,y)} \frac{x^2 + x^3}{x^2 + y^2} = \lim_{(x,y) \to (x,y)} \frac{-y^2 + y^3}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y)} \frac{-y^2 + y^3}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y)} \frac{-y^2 + y^3}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y)} \frac{-y^2}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y) \to (x,y)} \frac{-y^2}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y) \to (x,y) \to (x,y)} \frac{-y^2}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y) \to (x,y) \to (x,y)} \frac{-y^2}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y) \to (x,y) \to (x,y)} \frac{-y^2}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y) \to (x,y) \to (x,y)} \frac{-y^2}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y) \to (x,y)} \frac{-y^2}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y) \to (x,y)} \frac{-y^2}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y) \to (x,y)} \frac{-y^2}{y^2} = \lim_{(x,y) \to (x,y) \to (x,y)} \frac{-y^2}$$

	lim (X.y)→(Xwy.)	lim lim	
	exist	does not exist	
	does not exist	exist / different	$\int_{\mathbb{R}^m} \nabla f(t) ^2 dt$
Jux9	/ does not exist	exist / time	
Thm: If	lim lim +	tim lin then	· lim deer not exist.
Remark: If $f(x,y) = \frac{xy}{x^2+y^2}$ $y = mx$			
		m x' 17 m'x	= 1+m2 2m=12
Det: A th	nition $f(x,y)$ is co	ntinum: at (xo, yo)	i
O $f(x,y)$ is defined at (x_0,y_0)			
(a) $\lim_{(x,y)} f(x,y_0)$ $f(x,y_0)$			
3) $\lim_{x \to 0} f(x_0, y_0)$			
~	$(x,y) \rightarrow (x,y,y)$		
eg: fr	$(x,y) = \begin{cases} \frac{1}{x^2} \\ 0 \end{cases}$	$(x,y) \neq (0,0)$ $(x,y) = (0,0)$	is discontinous at (0,0)

Thm: Continuity of Composities.

If f is continuous at (x_0,y_0) , g is a single-variable function continuous at $f(x_0,y_0)$, then the composite function $h=g_0f=g(f(x,y))$ is continuous at (x_0,y_0) $\frac{e^{x-y}}{f(x,y)=x-y}$

Thm: If f(x, y) is continuous on some bounded/closed region, then the f(x,y) has max/min on this region.

--[////////] → ×

Sec. 143, Partial Derivatives.

The partial derivative
$$f(x,y)$$
 w.r.t x

The partial derivative $f(x,y)$ w.r.t x

$$\frac{\partial f}{\partial x}\Big|_{(x,y_0)} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

The partial derivative fixy, w.r.t y.

$$\frac{\partial f}{\partial y}|_{(\chi_0, y_0)} = \lim_{\Delta y \to 0} \frac{f(\chi_0, y_0 + \Delta y) - f(\chi_0, y_0)}{\Delta y}$$

$$\frac{3x}{94}$$
 $4x$ $5x$ $\frac{9x}{95}$

eg:
$$f(x,y) = x^2 + 3xy + y - 3$$
,
 $\frac{\partial f}{\partial x}\Big|_{(1,0)} = 2x + 3y + 0 + 6\Big|_{(1,0)} = 2$.
 $\frac{\partial f}{\partial y}\Big|_{(1,0)} = 0 + 3x + 1 + 0\Big|_{(1,0)} = 4$.

$$\frac{\partial \lambda}{\partial t} = 1 \cdot \sin x\lambda + \lambda \lambda \cdot \cos x\lambda \cdot (\lambda)$$

$$= \sin x\lambda + \lambda \cdot \cos x\lambda \cdot (\lambda)$$

ey:
$$yz - \ln z = x + y$$
 $z = f(x,y)$

$$yz = x + y$$

$$yz = x + y$$

$$y = \frac{\partial y}{\partial x} - \frac{\partial (\ln z)}{\partial x} = \frac{\partial}{\partial x}(x + y)$$

$$y = \frac{\partial y}{\partial x} - \frac{\partial y}{\partial x} = 1 + 0$$

$$(y - \frac{1}{z}) \frac{\partial z}{\partial x} = 1$$

$$\frac{\partial z}{\partial y} = \frac{\partial y}{\partial y} - \frac{\partial y}{\partial y} = \frac{\partial z}{\partial y}(x + y)$$

$$|z| + |y| + \frac{\partial z}{\partial y} - \frac{1}{z} \cdot \frac{\partial z}{\partial y} = 0 + 1$$

$$|z| + |y| + \frac{\partial z}{\partial y} - \frac{1}{z} \cdot \frac{\partial z}{\partial y} = 0 + 1$$

$$|z + y \cdot \frac{z}{y} - \frac{z}{z} \cdot \frac{z}{y}| = 0 + 1$$

$$|z + y \cdot \frac{z}{y}| = 1 - z$$

$$|z - \frac{z}{y}| = \frac{1 - z}{y - \frac{z}{z}}$$

eq: The plane X=1 intersects with Z= x2+y2 in a perabola

tx, ty $f_{xy} = (f_x)_y \frac{\partial f}{\partial x \partial y}$ txx, txy, tyx, tyy $t_{xy} = (t_x)_y = \frac{\partial f}{\partial y \partial x}$ $f(x,y) = x co_1 y + y x^2$ $fy = -x \sin y + x^2$ $f_{x} = coj \lambda + s \lambda x$ $f_{xx} = 2y \qquad f_{xy} = -\sin y + 2x \qquad f_{yx} = -\sin y + 2x$ mixed. Thn (The Mixed Perivative Thn) If trx, y) and derivatives tx, ty, txy, frx are defined on open region containing (xo, yo) and all are continuous at (Xo, Yo) Then we have $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0)$ Differentiability: $\Delta y = f'(x_0) \cdot \Delta x + \varepsilon \Delta x$ $\zeta \rightarrow 0$ when $\Delta \chi \rightarrow 0$ y = f(x) is different; able at $x = x_0$