

# Exploring Proton Structure: Gluon TMDs at ATLAS The ATLAS Collaboration

Alina Isobel Hagan - Lancaster University - ATLAS Week - 16/07/23

#### 1. What are TMDs?

•TMDs are one of the possible extensions of one dimensional collinear PDFs, they expand the parameterisation to include the transverse momentum as well as longitudinal momentum



- ·Apart from direct access to the transverse dynamics of gluons in the proton, why should we measure them?
- -TMDs evolve with scale, can help constrain our understanding of QCD in multi-scale processes. -Gluon  $k_T$  contributes to  $p_T$  of observables and also contribute to cross sections (e.g. the higgs), especially in cases with polarised gluons, even within unpolarised protons.
- •Interested in two Gluon TMDs  $f_1^g$  and  $h_1^{\perp g}$ , the unpolarised and polarised contributions. •Following theoretical recommendations, [0009343], [2012.14161], [1401.7611], [1710.01684], use subprocess  $gg o J/\psi(\mu\mu) + \gamma$  .
- •Back to back  $J/\psi + \gamma$  is helpful as a clean probe, allows not only lower  $q_T$ , but CO contributions that obscure the TMD are suppressed.

## 2. Accessing TMDs at ATLAS.

• The general cross section for processes including TMDs takes this typical form;

$$egin{aligned} rac{d\sigma}{dMdYd^2Pd\Omega} = & \mathcal{J}\{F_1\mathcal{C}\left[f_1^gf_1^g
ight] + F_2\mathcal{C}\left[w_2h_1^{\perp g}h_1^{\perp g}
ight] \ + & F_3\cos(2\phi_{cs})\mathcal{C}\left[w_3f_1^gh_1^{\perp g}
ight] + F_4\cos(4\phi_{cs})\mathcal{C}\left[w_4h_1^{\perp g}h_1^{\perp g}
ight] \} \end{aligned}$$

- $\cdot$ Expect that the TMD factorisation holds for where total invariant mass  $\mathcal Q$  is much higher than the
- •For a  $J/\psi + \gamma$  final state in the region, cross section can be simplified,  $F_2 = 0$ , and  $F_3$  is small, so the cross section is simplified;

$$rac{d\sigma}{dMdYd^{2}Pd\Omega}=\mathcal{J}F_{1}\mathcal{C}\left[f_{1}^{g}f_{1}^{g}
ight]\left\{1+rac{F_{4}}{F_{1}}\cos(4\phi_{cs})rac{\mathcal{C}\left[w_{4}h_{1}^{\perp g}h_{1}^{\perp g}
ight]}{\mathcal{C}\left[f_{1}^{g}f_{1}^{g}
ight]}
ight\}$$

- $\cdot$  Feasibility studies show that with current setup, statistics, and triggers, polarised TMD  $h_1^{\perp g}$  is still beyond ATLAS sensitivity
- $\cdot$ Unpolarised  $f_1^g$  is still within reach, and remains unmeasured. Integrate out angular terms leaving just  $f_1^g$ , then the main obstacles remaining consist of acceptance cuts distorting observed distributions and performing signal/background separation.

#### 3. Acceptance and Distortion.

•Transverse momentum of  $J/\psi + \gamma$  system  $q_T$ , should reflect the gluon transverse momentum  $k_T.$ •Only the case with a perfect detector, without a  $p_T$  threshold on measured physics objects.



- $ullet q_x = q_T \cos \phi_{lab}$  distribution broadens and deforms with ATLAS minimum acceptance cuts of  $p_{T,u} > 4$ GeV and  $P_{T,\gamma} > 5 {
  m GeV}$
- ullet Parameterising the TMD with this would be incorrect o switch to a new  $q_T$  measure,  $q_T^A, \& \; q_T^B$ , with A and B axes defined uniquely in each event.

 $q_T^2 = (p_{T,J/\psi} - p_{T,\gamma})^2 + p_{T,J/\psi} p_{T,\gamma} \sin^2 \epsilon = (q_T^A)^2 + (q_T^B)^2$ 



·Somewhat similar in principle to Collins-Soper frame, though this is two dimensional, and just a simple rotation in  $\phi$ .

 $q_T^A$  appears resistant to the distortion of increasing acceptance cuts, no broadening like  $q_x$ distribution,  $q_T^B$  absorbs the broadening effect, leaving  $q_T^A$  as a clean probe of the gluon  $k_T$ .





·Acceptance cuts also have a severe impact on statistics, only hundreds of events survive this out of a 10M event signal MC sample with no cuts.

## 4. Background Subtraction.

ullet After avoiding the detrimental effects of acceptance, contributions from non-prompt  $J/\psi$  and the  $\mu\mu$  continuum must be removed.







- Identifying the mass and lifetime regions corresponding to these contributions allows them to be subtracted easily.
- •This doesn't account for contributions from random uncorrelated  $J/\psi + \gamma$  pairs, these have TMD information in them that's smeared out or inaccessable.
- Train a Boosted Decision Tree to characterise these events.

## 5. Signal Extraction.

•Use the BDT to condense all information about an event into a single score, the shape of this score distribution differs between signal and uncorrelated background events.

•Fit BDT score differentially in individual  $q_T^A$  bins to extract  $\mu$  and  $s_{pp}$  in  $D=s_{pp}\cdot B+\mu\cdot S$  .



·Using the differences in shape, fit the signal and background distributions to data, and extract the contribution pertaining to only the correlated signal.

•Results of extraction in a single  $q_T^A$  bin; the  $\mu$  parameter gives the signal yield in each  $q_T^A$  bin of the data, this allows reconstruction of the full  $q_T^A$  distribution, which is then fit to extract its width, parameterising  $f_1^g$ .

## 6. Enhancement.

·Looking for opportunities to enhance the sensitivity, focus the search on regions of higher S/B ratio, this can help improve the fit quality.



ullet Examining the signal and background maps of  $q_T^A$  vs  $q_T^B$ , possible to see in the region  $q_T^B < 6$ GeV, S/B is much higher. Restrict the fit to this region.

## 7. An Early Picture.

•Perform the full analysis with this approach and recombine our extracted contributions into a single final signal region, get the following plot;



 $\cdot$  With  $\sigma_1$  of the fit parameterises the convolution of two gaussian gluon TMDs here, assess the unpolarised gluon transverse momentum  $\langle k_T 
angle = \sigma_1/\sqrt{2} pprox 2.1 \pm 0.14$ GeV

·Several systematic effects included, muon and photon scalefactors, background subtraction working points, variations on BDT, etc. There is still some work to be done.