RADIATION DAMAGE OF MATERIALS ENGINEERING HANDBOOK PART II: A GUIDE TO THE USE OF ELASTOMERS

M.H. Van de Voorde

28 November 1966

PLASTICS TECHLICAL EVALUATION CENTER PICATINNY ARSENAL, DOVER, N. J.

19951120 119

selection aids

Pinpointing R & D reports for industry

Clearinghouse, Springfield, Va. 22151

- U.S. GOVERNMENT RESEARCH AND DEVELOPMENT REPORTS (USGRDR)---SEMI-MONTHLY JOURNAL ANNOUNCING R&D REPORTS. ANNUAL SUBSCRIPTION \$30.00 (\$37.50 FOREIGN MAILING). SINGLE COPY \$3.00.
- U.S. GOVERNMENT RESEARCH AND DEVELOPMENT REPORTS INDEX---SEMI-MONTHLY INDEX TO U.S. GOVERNMENT RESEARCH AND DEVELOPMENT REPORTS. ANNUAL SUBSCRIPTION \$22.00 (\$27.50 FOREIGN MAILING). SINGLE COPY \$3.00.
- FAST ANNOUNCEMENT SERVICE---SUMMARIES OF SELECTED R&D REPORTS COMPILED AND MAILED BY SUBJECT CATEGORIES. ANNUAL SUBSCRIPTION \$5.00, TWO YEARS: \$9.00, AND THREE YEARS: \$12.00. WRITE FOR AN APPLICATION FORM.
- DOCUMENT PRICES---ALMOST ALL OF THE DOCUMENTS IN THE CLEARINGHOUSE COLLECTION ARE PRICED AT \$3.00 FOR PAPER COPIES AND 65 CENTS FOR COPIES IN MICROFICHE.
- COUPONS---THE CLEARINGHOUSE PREPAID DOCUMENT COUPON SALES SYSTEM FOR PURCHASING PAPER COPIES AND MICROFICHE PROVIDES FASTER, MORE EFFICIENT SERVICE ON DOCUMENT REQUESTS. THE PREPAID COUPON IS A TABULATING CARD WITH A FACE VALUE OF THE PURCHASE PRICE OF A CLEARINGHOUSE DOCUMENT (\$3.00 PAPER COPY OR 65 CENTS MICROFICHE). IT IS YOUR METHOD OF PAYMENT, ORDER FORM, SHIPPING LABEL, AND RECEIPT OF SALE.

COUPONS FOR PAPER COPY (HC) DOCUMENTS ARE AVAILABLE AT \$3.00 EACH OR IN BOOKS OF 10 COUPONS FOR \$30.00. COUPONS FOR MICROFICHE COPIES OF CLEARING-HOUSE DOCUMENTS ARE AVAILABLE IN BOOKS OF 50 COUPONS FOR \$32.50. WRITE FOR A COUPON ORDER FORM.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

```
*MSG DI4 DROLS PROCESSING - LAST INPUT IGNORED
*MSG DI4 DROLS PROCESSING-LAST INPUT IGNORED
                       ***DTIC DOES NOT HAVE THIS ITEM***
  1 - AD NUMBER: D423687
  5 - CORPORATE AUTHOR: EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH
       GENEVA (SWITZERLAND)
-- 6 - UNCLASSIFIED TITLE: RADIATION DAMAGE OF MATERIALS ENGINEERING
       HANDBOOK. PART II - A GUIDE TO THE USE OF ELASTOMERS,
--10 - PERSONAL AUTHORS: VAN DE VOORDE, M. D. ;
--11 - REPORT DATE:
                      NOV 28, 1966
--12 - PAGINATION:
                       59P
       REPORT NUMBER: MPS/INT. CO 66-27
--20 - REPORT CLASSIFICATION: UNCLASSIFIED
                              APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
       LIMITATIONS (ALPHA):
--33 - LIMITATION CODES: 1 🖚
-- END
                  Y FOR NEXT ACCESSION
                                                       END
```

3 HDX 3

r to the

3 LOG CLOSED 3 PRINT OFF 3 PARITY

Alt-Z FOR HELP3 ANSI

MPS/Int.CO 66-27 November 28, 1966

GPO PRICE \$

CFSTI PRICE(S) \$

Hard copy (HC) \$ 70

Microfiche (MF) 65

RADIATION DAMAGE OF MATERIALS

ENGINEERING HANDBOOK

M.H. Van de Voorde

sion For	1
GRA&I	Ø
TAB	
oraceq	
fination	· lace de
BATM	umo -
274	v95
ibution/	
lability	Codes
Avail an	d/or
Spec	.1
	633
	GRA&I TAB tousced fication [AULING CATAN

Part II: A Guide to the Use of Elastomers

ESRO

EXCHANGE DOCUMENT 7

26
27
29
31
4
3/ESA

66/5032/5

FACILITY FORM 602

275-69 65.

	ı,
Ť.	
_	

A CUIDE TO THE USE OF ELASTOMERS

PAF	TI T	:	A CONTRE TO WHE OSE OF EDUCATION	
		•		
Int	roduc	ction		1
			ables and Figures	3
- 4			eral properties of Elastomers	
			ctomer selection Guide	
			ative radiction resistance of elas	
7				
Eff	ect o	of radiati	ion on mechanical properties	
	<u>A</u> .	Acrylic I	Blastomer	11
		Fig. 2:	Hyear PA-21	
		Fig. 3:	Acrylon EA-5	
		Fig. 1:	PR-1203-70	
		Fig. 5:	Vyram	
	מי	Butyl Ele	astamer	15
	В.	Fig. 6:		
			PR907-70	
			Hyear 2.002	
		- Les		
	C.	Fluoro-E	lastomer	18
		Fig. 9:	VEL F elastomer	
		Fig. 10:	3M-1F4	
		Fig. 11:	Viton	
		Fig. 12:	PR-1700-X7	
	. •	Fig.13:	Silastic LS53	
	_		177	2
	D.		Elastomer	
		Fig. 14.	Hypalon HW-B8 PR-1401-70	
		Fig. 15:	PR-1401-70	
	E.	Natural	Elastomer	2
		Fig. 16:	Polysoprene	
		Fig. 17:	HW-B14	
		Fig. 18:	TK 1/1	

F.

Neoprene Elastomer ...

Fig.20: PR-227-70

Fig. 19: Neoprene A109D-73

G.	Mitrice Elastomer		•
	Fig.21: Hycar OR-15		
	Fig.22: PR-122-70		
	Fig. 23: Parker 46-101		
Н.	Polyurethane Elastomer		33
	Fig. 24: Adiprene C-1	• '	
	Fig. 25: PR 631-70		
	Fig. 26: Genthane S		
	Fig. 27: Chemirgun XSI		
т.	SBR-Elastomer		37
I.	·		
	Fig.28: Buma S		
	Fig. 29: PR408-70		
	Fig. 30: Hycar 2.001		
К.	Silicone-Elastomer		40
	Fig. 31: SE750		
	Fig. 32: Silastic-7.170		
	Fig. 33: 77.018		
	Fig. 34: Cohrlastic HT-666		
	Fig. 35: Y-1668		
L.	Thiokol Elastomer		45
	Fig. 36: Thickol ST		
	Fig.37:PR-1.000.70		
Table 3	: Effect of radiation on volume resistivity.		47
Table 4	: Gasevolution		50
rable 5	: Radiation stability of elastomers at tempe	eratures	- 4
:	above 85 C		51
Table 6	: Tradenames		52
		¥)	
Bibliogr	raphy	• • • • • • •	56
	ces	1 1	
Reference	ces	• • • • • • •	<i>)</i>
66/5	032/5		
ir			

Introduction

Selecting an engineering elastomer for application in today's chemistry takes a lot of the design engineer's time. Direct guidance is needed for choosing the best material for real life application.

Because of the current use of clastomers in nuclear radiation environments, it is believed that the attached data may be useful in enswering some of the questions which arise in the selection of elestomers for use in nuclear equipment.

This report contains:

- A guide to the general properties of elastomers, and
- A summary of unclassified data evailable in the technical literature on the subject of the effects on elastomers of nuclear radiation.

At present the majority of the available irradiction data are those obtained in Y - sources and nuclear relators, particularly by the ORNE graphite reactor. In the application of this information to equipment designed for use in particle accelerators, those data should be considered only as reasonable estimates since the fields of irradiction around accelerators and reactors are quite different.

In many instances the only evailable information is concerned with structural characteristics, such as tensile strength, rather than with electrical data. In general, if properties, such as tensile strength show large variations, it would be reasonable to expect that the electrical properties will also vary.

Mone of the data listed in this report was taken during irradiation. While some of the mechanical properties may differ little if measured during exposure, the volume resistivity can be significantly different.

The unit of radiation used in this report is the rad; one rad is equivalent to the absorption of 100 ergs of energy per gramme of material.

The radiation field inside the ORNL graphite reactor is:

1.1 x 10¹² thermal neutrons/cm² sec.

1.4 x 10¹¹ neutrons (20.1 Mev)/cm² sec.

6.7 x 10¹⁰ neutrons (20.5 Mev)/cm² sec.

4.2 x 10¹⁰ neutrons (≥1.6 MeV)/cm² sec.

 $\sim 5 \times 10^{10} \text{ } \gamma - \text{rays} \text{ } (1 \text{ MeV})/\text{cm}^2 \text{ suc.}$

The dose rate is 10^6 to 10^7 rads/hr.

EXPLANATION OF TABLES AND FIGURES

Table 1 represents the chemical resistance, physical and mechanical properties of the most common elastomers. As in plastics new elastomers are created by varying the composition, e.g. fillers and processing techniques. The data in the table are given only for pure gums.

Table 2 is a selection guide to aid the choice of material for a given application.

The effect of nuclear radiation on volume resistivity of the commonest elastomers are given in Table 3.

Table 4 gives values for the total gas evolvedfrom irridiated samples of 0,2 to 0,5 gramme weight.

The radiation stability of some clastomers at temperatures above 85°C is summarized in Table 5.

Table 6 represents the popular name, chemical designation and trade names of elastomers.

Fig. 1 shows the relative radiation resistance of elastomers. It should be mentioned that this Figure reflects only resistance to radiation and that a consideration of other parameters (fillers, antirads, etc.) could change the order in which the material are ranked.

Figs. 2 - 37 show the mechanical property changes effected by rediation in a variety of commercially available polymers.

					Fluoroelastor			
Popular Name	Acrylics	Butyl	Ethylene Propylene	Virylidene Fluoride Hexofluoropropylene	Fluoresilicone	Polytrifluorochloro- etnylene	Неуратоп	Abotrat Rubber
Creating oranity	1.09	0.00	0.36		1.4	1.65	1.18	0.33
Minimum Service Temperature,	-19	-46	-50	-46	-68	-50	-40	-50
Maximam Service Temperature,	175	150	150	232	200	200	160	980
Dielectric strength Kw/mm	5	6 -20	16 -30	12 -24	12 -24	12 -24	16 -50	αo
Volume resistivity (Ohm-cm)	1010-1012	1012-1014	1012-1014	>10 ¹⁴	10 ¹² -10 ¹⁴	>10 ¹⁴	-10 ¹¹ -10 ¹⁴	.>10 ¹⁴
50 cps Dielectric constant 1,000 cps	3- 3.5	3- 3.5	3- 3.5	3- 3.5 7-10	3- 3.5 7-10	3- 3.5 7-10	3- 3.5 7-10	3- 3.5
Tensile strangth (kg/cm)	18-28	175-210	140-238	140	70	25–42	250-280	175-245
Elongation (%)	450-750	750-950	400600	>350	200	500–800	909	750-850
Hardness (Durometer)	A40-A90	A40-A90	A30-A90	A60-A90	A50-A60	A45	A 45- A 90	A30-A90
Compression set	5	7.2	1.5 - 3	. 7	75	<2	3 - 5	13
Strain at 28 kg/cm (%)	36	31	9	ı	1	1	1	30
Abrasion resistance	Good	Good	Good		Poor	1	Excellent	Excellent
Water resistance	Good	Excellent	Excellent	Excellent	Excellent	Excellent	Good	Excellent
Oil resistance (Aliphatic hydrocarbons; kerosine-gasoline etc.)	Excellent	Poor	Poor	Excellent	Excellent	Excellent	Good	Poor
Ogone resistance	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Excellent	Poor
Permeability to gas	Low	Very Low	Low	Low	Low-Medium	Very Low	Low	Low

						-		
Popular Name					1		n n	14 5 7 7
Properties	Neoprene	Mitrice	Polybutadiene	Polyisoprene- synthetic	Polysurice	Polyure thank	Hac	
Specific gravity	1.25	1.00	16*0	0.93	1.35	1.25	0.94	4.1-1.0
Minimum Service Temperature, $\binom{0}{0}$	-40	-50	- 100	-45	-50	4.7.4	-50	***
Maximum Service Temperature,	115	120	56	30	120	115	90	072
Dielectric strength	12	6 -22	5 -25	6 -22	ó -22	7 10	6 22	12 -24
Volume resistivity (Ohm-cm)	10 ¹⁰ -5x10 ¹²	10 ¹⁰ -10 ¹²	~10 ¹⁴) 10 ¹⁴	10 8-10 ¹⁰	10 ³ -5x10 ¹⁰	>10'4	را 10- ²¹ 01
Dielectric constant 1.000 cps	3- 3.5 7-10	3- 3-5 7-10	3- 3-5 ·	3- 3.5 7-10	3- 3.5	3- 3.5	3-3-5	3- 3-5
Tensile strgngth (kg/cm)	210-280	35-63	14-70	70-140	٥_﴿	>350	14-21	42-91
Blorgation (%)	800-900	450~700	400-1-000	ı	450-650	540-750	400-600	100-500
Hardness (Durometer)	A40-A95	A40-A95	A40-A90	A40-A30	.A40-A65	A35-A100	A40-A90	A30-A90
Compression set	5 - 9	6 - 9	4	c	- - -	1.5 3	2 - 5	5:5
Strain at 28 kg/cm ² (%)	31	25	ı		10 C1		23	3.4
Abrasion resistance	Good	Good	Excellen:	Excellent	Pocr	Excellent	Good	Poor
Water resistance	Good	Excellent	Excellent	Excellent	5 000000000000000000000000000000000000	Good	Excellent	Good
Oil resistance (Aliphátic hydro-carbons; kerosine-gasoline etc.)	Good	Excellent	Poor	Poor	Excellent and a second	Excellent	Pcor	Poor
Ozone resistance	Excellent	Poor	Poor	Oùd	Excellent	Excellent	Poor	Excellert
Permeability to gas	Low	, or	Low	Very Lon	Very Lew	Very Low	Low	स् क्षा य

TABLE 2 BLASTOMER SELECTION GUIDS (Seneral Bibliography P.56)

		Prim	пату Кесиітепеп	n t		-
Requirement	Hardness	Resilience	Tensile strength	Compression Set	Abrasion Resistance	Tear Resistance
Hardness		1. Natural Rubber 2. Polyurethane 3. Neoprene 4. Synthetic rubber 5. Polybutadiene	1. Polyurethane 2. Natural rubber 3. Neoprene	1. Folyurethane 2. Natural Rubber 3. Synthetic rubber 4. S B R	1. Polyurethane 2. S B R 3. Natural rubber	1. Folyurethene 2. Natural rubber 7. Polybutadiene 4. Butyl
Resilience	1. Polyurethane 2. Natural rubber 3. Neoprene		1. Polyurethane 2. Natural rubber 3. Neoprene	 Naturel rubber Synthetic rubber Polybutadiene Polyurethane 	1. Natural rubber 2. Synthetic rubber 3. Polybutadiene 4. Neoprene 5. Polyurethane	1. Natural rubber 2. Folyurethane 3. Synthetic rubber 4. Polybutadiene 5. Neoprene
Tensile strength	1. Polyurethane 2. Natural rubber 3. S B R 4. Butyl	1. Polyurethane 2. Natural rubber 3. Neoprene	1	1. Polyurethane 2. Natural Rubber 5. Synthetic rubber 4. Polybutadiene	1. Polyurethane 2. Natural rubber 3. Neoprene	1. Polyurethane 2. Matural rubber 3. Meoprene
Compression Set	1. Natural rubber 2. Synthetic rubber 3. S B R 4. Polybutadiene	1. Synthetic rubber 2. Matural rubber 3. Polybutadiene 4. Neoprene	1. Synthetic rubber 2. Natural rubber 3. Polybutadiene 4. Polyurethane	;	1. S B R 2. Natural rubber 3. Neoprene 4. Polyurethane	1. Matural rubber 2. Synthetic rubber 3. S 3 R 4. Polybutadiene 5. Reoprene
Abrasion resistance	1. Polyurethane 2. Natural rubber 3. S B R 4. Butyl	1. Natural rubber 2. Polybutadiene 3. Kuurene 4. Polyurethane 5. Synthetic rubber	1. Polyurethane 2. Natural rubber 3. Neoprene	1. Folyurethane 2. Matural rubber 5. Synthetic rubber 4. Polykutadiene 5. S E S	-	1. Polyurethane 2. Natural rubber 3. Synthetic rubber 4. S P R 5. Nitrile
Tear resistance	1. Polyurethane 2. Natural rubber 5. S B R 4. Butyl	1. Polyurethane 2. Matural rubber 3. Synthetic rubber 4. Polybutadiene 5. Neoprene	1. Polyurethane 2. Natural rubber 3. Neoprene	: Vatural rubber 2. Synthetic rubber 7. Polybutadiene	 Polyurethane Natural rubber Synthetic rubber S B R Polybutadiene 	!

		uirenent
		ringary Req
		A A A A A A A A A A
,	•	ondar

.

4 d d d d d d d d d d d d d d d d d d d		н ы	пагу Кедиіген	n +		
sequirement	Heat resistance	Low temperature resistance	Electrical resistance	Oil resistance	Permeability to gases	Chemical resistand
%rdness	1. Butyl	1. Silicone	1. Natural rubber	1. Polyurethane	1. Natural rubber	1. S B B B
	2. Hypalon	2. Matural rubber	2. SBR	2. Mitrile	2. Synthetic rubber	2. Natural rubber
	3. Ethylene propylene	M M M	3. Butyl	3. Acrylics	3. SBR	3. Ethylene Propyle
	4. Acrylics		4. Ethylene Propylene	4. Fluoro	4. Polybutadiene	
	5. Fluoro				5. Neoprene	
i i i co	1 30.44	1 Weturel mibber	1 Natural mibber	1. Polymethane	1. Natural mibber	1. Natural mibber
POTETTO	2. Ethylene Propylene			2. Nitrile		SER
		3. Polybutadiene				
			4. SBR	4. Acrylics	4. Neoprene	
	5. Acrylics		5. Ethylene Propylene	5. Fluoro	5. Polyurethane	
Paneile etnaneth	1 Ethelene Pennylene	1. Natural mibber	1. Natural rubber	1. Polvnrethane	1. Polyurethane	1. Polyurethane
	2. Fluoro	2. S T T T T T T T T T T T T T T T T T T				
				3. Fluoro		5. Neoprene
	4. Hypelon					
			5. Polybutadiene		5. Neoprene	
Compression Set	1. Nitrile	1. S 23 R R	1. Natural rubber	1. Polyurethane	1. Matural rubber	1. Natural rubber
	2. Butyl	2. Natural rubber	2. Synthetic rubber	2. Fluoro	2. Synthetic rubber	2. Synthetic rubber
	3. Ethylene Propylene	3. Synthetic rubber	7. Ethylene Propylene	3. Nitrile	3. Polybutadiene	3. SBR
	4. Silicone	4. Polybutadiene	4. Neoprene	4. Neoprene	4. Ethylene Propylene	4. Hypalon
			,		5. Polyurethane	5. Polybutadiene
		1 Dolestock	1 Notices mithors	Ni++ti	Dan Company	B.++
Porton rotes to	2. Ethylene Fronvlene	2. SBB		2. Polyurethane	2. Synthetic rubber	2. S B R
				3. Acrylics	3. Polybutadiene	3. Natural rubber
	4. Acrylics	4. Natural rubber	4. Polybutadiene	4. Neoprene	4. Natural rubber	4. Neoprene
	5. Fluoro	5. Neoprene	5. Butyl			
Tear resistance	1. Butyl	1. Natural rubber	1. Natural rubber	1. Polyurethane	1. Polyurethane	1. Synthetic rubber
	2. Hypalon	2. Polyurethane	2. Synthetic rubber	2. Nitrile	2. Butyl	2. Natural rubber
	3. Acrylics	 Polybutadiene 	3. SBR	3. Acrylics	5. Thiokol	3. Hypalon
					4. Natural rubber	4. Neoprene
			5. Polybutadiene	5. Hypalon	:	

Secondary		卫工工用品	ary Requiremen	+1		
Requirement	Heat resistance	Low temperature resistance	Electrical resistance	Oil resistance	Permeability to gases	Chemical resistanc
Heat resistance	.	1. Nitrile 2. Natural rubber 3. Neoprene 4. Hypalon	1. Butyl 2. Ethylene Propylene 3. Silicone 4. Natural rubber 5. Synthetic rubber	1. Fluoro 2. Acrylics 3. Nitrile 4. Polyurethane 5. Thiokol	1. Butyl 2. Hypalon 3. Ethylene P.opylere	1. Butyl 2. Eypalon 3. S E R 4. Polybutadlene
Low temperature resistance	1. Silicone 2. Ethylene Propylene 3. Hypalon		1. Ethylene Propylene 2. S B R 3. Synthetic rubber 4. Natural rubber 5. Polybutadiene	1. Nitrile 2. Neoprene 5. Thiokol 4. Fluoro	1. Silicone 2. Hypalon 5. Polybutædiene 4. Natural rubber	1. Polybutadiene 2. Natural rubber 5. S B R
Electrical resistance	1. Butyl 2. Ethylene Propylene 3. Silicone 4. Hypalon 5. Acrylics	1. Natural rubber 2. S B R 3. Ethyleue Propylene	-	1. Thiokol 2. Polyurethane 3. Acrylics 4. Fluoro 5. Hypalon	1. Butyl 2. Natural rubber 3. S B R 4. Silicone 5. Polyurethane	1. Hypalon 2. Natural rubber 3. Silicone
Oil resistance	1. Acrylics 2. Fluoro 3. Hypalon 4. Nitrile 5. Thiokol	1. Nitrile 2. Neoprene 3. Thiokol	1. Thiokol 2. Polyurethane 3. Acrylics 4. Fluoro 5. Hypalon		1. Thiokol 2. Witrile	1. Nitrile 2. Neoprene 3. Hypalon
Permeability to gases	1. Ethylene Propylene 2. Polyurethane 3. Pluoro 4. Hypalon	1. Ethylene Propylene 2. Natural rubber 3. Neoprene 4. Butyl	1. Butyl 2. Ethylene Propylene 3. Natural rubber 4. S B R	1. Polyurethane 2. Nitrile 3. Neoprene . Fluoro 5. Hypalon		1. Butyl 2. Natural rubber 3. Hypalon
Chemical resistance	1. Ethylene Propylene 2. Butyl 3. Hypelon 4. Nitrile	1. Ethylene Propylene 2. S B R 3. Natural rubber	1. Ethylene Propylene 2. S B R 3. Natural rubber 4. Polybutadiene 5. Natural rubber	1. Witrile 2. Folyurethane 3. Acrylico 4. Meoprene 5, Hypalon	1. Butyl 2. Ethylene Propylene 3. Hypalon	!

. . .

•

;

Secondary	AND THE RESIDENCE OF THE PARTY	7 4 0	mary Reculrenen	+ 1 2		
Requirement to SR						
	Hardness	Resilience	Tensile strength	Compression Set	. Abrasion Resistance	Tear resistance
Heat resistance	1. Butyl 2. Polyurethane 3. Matural rubber 4. 3 B R	1. Natural rubber 2. Synthetic rubber 5. Polybutadiene 4. Neoprene 5. Polyurethane	1. Polyurethane 2. Matural rubber 3. Ethylene Propylene 4. Fluoro	1. Nitrile 2. S F R 3. Fthylene Propylene	1. Polyurethane 2. Matural rubber 5. Synthetic rubber 4. S B R 5. Polybutadiene	1. Polyurethane 2. Natural rubbe: 3. Butyl 4. Hypalon 5. Acrylics
Low temperature resistance	1. Ethylene Propylene 2. S B R 3. Polybutadiene	1. Polybutadiene 2. Neoprene 3. Polyurethane	1. Natural rubber 2. Synthetic rubber 3. Polybutadiene 4. Neoprene 5. Nitrile	1. Matural rubber 2. Synthetic rubber 3. Polybutadiene 4. S B R	1. S B R 2. Polybutadiene 5. Neoprene 4. Polyurethane	1. Natural rubbe. 2. Polybutadiene 3. Neoprene 4. Polyurethane
Electrical resistance	1. Natural rubber 2. Butyl 3. S B R 4. Polyurethane	 Natural rubber Synthetic rubber Polybutadiene Neoprene Polyurethane 	1. Natural rubber 2. Polyurethane 3. Neoprene	1. Natural rubber 2. Synthetic rubber 3. Polybutadiene 4. S B R	1. Natural rubber 2. Synthetic rubber 3. Polybutadiene 4. S B R 5. Neoprene	1. Natural rubbe: 2. Polyurethane 3. Butyl 4. S B R 5. Synthetic rub
Oil resistance	1. Polyure thane 2. Hypalon 3. Mirile 4. Acrylics 5. Fluoro	 Polyurethane Neoprene Nitrile Thickol Acrylics 	1. Polyurethane 2. Witrile 3. Fluoro 4. Reoprene	1. Nitrile 2. Neoprene 3. Fluoro	1. Neoprene 2. Polyurethane 3. Heoprene 4. Acrylics	1. Polyurethane 2. Nitrile 3. Acrylic 4. Neoprene 5. Hypalon
Permeability to gases	1. Butyl 2. S B R 3. Nætural rubber 4. Synthetic rubber	 Natural inbber Synthetic rubber Polybutadiene Neoprene 	1. Butyl 2. Natural rubber 3. Polybutadiene 4. S B R	1. S B R 2. Ethylene Propylene 3. Butyl	1. Natural rubber 2. Synthetic rubber 3. Polybutadiene 4. S B R 5. Polyurethane	1. Natural rubbes 2. Synthetic rubl 3. Polybutadiene 4. Polyurethane 5. Neoprene
Shemical resistance	1. S B P. 2. Matural rubber 3. Polybutadiene	1. Matural rubber 2. Polybutadiene 3. Synthetic rubber 4, Neoprene	1. Natural rubber 2. Neoprene 3. S B R	1. Natural rubber 2. Synthetic rubber 3. S B R 4. Polybutadiene	1. S B R 2. Synthetic rubber 3. Butyl 4. Polybutadiene 5. Polyurethane	1. Natural rubber 2. S B R 3. Polybutadiene 4. Neoprene 5. Polyurethane

.

|--|--|

3 Fluoro rubber (Kel F) 4 Fluoro rubber (Viton)

Acrylic rubber Butyl rubber 6 Natural rubber

Hypalon

7 Neoprene rubber 8 Acrylanitrile rubber 9 Polyurethane rubber

10 SBR rubber

11 Silicone rubber

12 Thiokol

Fig.1 OVER-ALL RELATIVE RADIATION STABILITY OF ELASTOMERS (1, 2,3)

dose, rad.

10,

100

20

Acrylic Elastomer

HYCAR PA-21-"COPOLYMER OF 90% BUTYL ACRYLATE AND 100% ACRYLONITRILE"(4,5)

B.F. Goodrich Chemical Co

Fig. 2

ACRYLON EA-5 - "COPOLYMER OF 95% ETHYL ACRYLATE AND 5% ACRYLONITRILE" (6)

Borden Chemical Co

Fig. 3

Acrylic Elastomer (4,5.6,7)

70

PR 1203-70 - "NOT KNOWN" (6,7,8)

3 SET AT BREAK
4 COMPRESSION SET
5 STRAIN AT 28kg/cm²
6 DUROMETER HARDNESS

Precision Rubber Products Co

Fig. 4

PROPERTY	INITIAL VALU
1 TENSILE STRENGTH	68 kg/cm ²
2 ELONGATION	275%
3 SET AT BREAK	
4 COMPRESSION SET	-
5 STRAIN AT 28kg/cm ²	-
A DUROMETER HARDNESS	. 68

VYRAM - "NOT KNOWN" (6,8)

Monsanto Chemical Co

Fig. 5

Butyl Elastomer

PROPERTY	INITIAL VALU
1 TENSILE STRENGTH	77 kg/cm²
2 ELONGATION	525%
3 SET AT BREAK	35%
4 COMPRESSION SET	72%
5 STRAIN AT 28 kg/cm ²	31%

GR-150-"ISOBUTYLENE - DIENE COPOLYMER" (4,5)

Fig. 6

PROPERTY	INITIAL VALUE
1 TENSILE STRENGTH	105 kg/cm ²
2 ELONGATION	440%
3 SET AT BREAK	-
4 COMPRESSION SET	_
5 STRAIN AT 28kg/cm ²	-
4 DUPOMETER HARDNIESS	71

PR 907-70-"NOT KNOWN" (1.8,9)

Precision Rubber Products Co

Butyl Elastomer

HYCAR 2002-"BUTYL-RUBBER BROMINATED TO APPROXIMATELY 3%"
(1.8,9)

B. F. Goodrich Chemical Co

Fig. 8

KEL-F ELASTOMER-"COPOLYMER OF TRIFLUORO CHLOROETHYLENE AND VINYLIDENE

FLUORIDE "(10,13)

Fig. 9

Minnesota Mining & Mfg Co

3M-1F4 - "POLYMER OF 1,1 DIHYDROPERFLUOROBUTYL ACRYLATE" (13,16)

Fig. 10

VITON-"COPOLYMER OF VINYLIDENE FLUORIDE AND HEXAFLUOROPROPYLENE" (10,11,12,14,15,16)

Fig. 11

TR 1700 - X7-"COPOLYMER OF VINYLIDENE FLUORIDE AND HEXAFLUOROPROPYLENE"
(11,12,14,16)

Fig.12

PROPERTY	INITIAL VALUE
1 TENSILE STRENGTH	980 kg/cm ²
2 ELONGATION	220%
3 SET AT BREAK	-
4 COMPRESSION SET	· -
5 STRAIN AT 28kg/cm ²	-
6 DUROMETER HARDNESS	59

SILASTIC LS 53 - "FLUORO SILICONE" (10,13,16)

Fig.13

Dow Corning Co

Hypalon Elastomer

HYPALON HW-B8-"NOT KNOWN "(4,6,8.11.17.18)

Fig.14

E. I. du Pont de Nemours Co

Hypalon Elastomer

PROPERTY	INITIAL VALU
1 TENSILE STRENGTH	126 kg/cm ²
2 ELONGATION	225%
3 SET AT BREAK	-
4 COMPRESSION SET	-
5 STRAIN AT 28kg/cm ²	
4 DUDOMETER HARDNIEGE	75

PR 1401-70- "NOT KNOWN "(4,6,11,17,18)

Fig.15

Precision Rubber Products Co

Natural Elastomer

6 DUROMETER HARDNESS 60

NATURAL RUBBER - "POLYISOPRENE" (4,5,8,9,19,20,21,22,23)

Fig. 16

Natural Elastomer

PROPERTY	INITIAL VALU
1 TENSILE STRENGTH	28 kg/cm ²
2 ELONGATION	200%
3 SET AT BREAK	-
4 COMPRESSION SET	
5 STRAIN AT 28kg/cm ²	_
6 DUROMETER HARDNESS	54 .

HW - B14 - "SMOKED SHEET" (1.8,9)

Hanford Rubber Co

Fig. 17

Natural Elastomer

TK 1/1 - "GRAFT POLYMER OF STYRENE AND NATURAL RUBBER "(1,8,9)

Natural Rubber Bureau

Neoprene Elastomer

NEOPRENE A 109 D-73 - "NEOPRENE TYPE W POLYMER USED"
(4,5,8,9,16,24)

E.I. Du Pont de Nemours Co

Neoprene Elastomer

PR. 227-70- "NOT KNOWN" (8,16,23,24,25)

Precision Rubber Products Co

Nitrile Elastomer

HYCAR OR-15 - COPOLYMER OF BUTADIENE AND ACRYLONITRILE (4.5.6.8.25 27)

B. F. Good rich Chemical Co.

PR 122-70 - COPOLYMER OF BUTADIENE AND ACRYLONITRILE BASED
ON HYCAR 1.042 (11, 26, 28, 29)

Precision Rubber Products Co.

Nitrile Elastomer

PARKER 46-101-"COPOLYMER OF BUTADIENE AND ACRYLONITRILE BASED ON PARACRIL 35" (11, 25, 26, 28, 29)

Parker Appliance Co

Fig. 23

Polyurethane Elastomer

PROPERTY INITIAL VALUE

1 TENSILE STRENGTH 300 kg/cm²

2 ELONGATION 530 %

3 SET AT BREAK —

4 COMPRESSION SET —

5 STRAIN AT 28kg/cm² —

6 DUROMETER HARDNESS 62

ADIPRENE C1- "NOT KNOWN" (13, 20, 30, 31)

Fig. 24

E.I. du Pont de Nemours Co

Polyurethane Elastomer

1 TENSILE STRENGTH 220 kg
2 ELONGATION 540 %
3 SET AT BREAK —
4 COMPRESSION SEY —
5 STRAIN AT 28 kg/cm² —
6 DUROMETER HARDNESS 77

PR 631-70- "NOT KNOWN" (13,20,30,31)

Fig. 25

Precision Rubber Products Co

Polyurethane Elastomer

GENTHANE S - "NOT KNOWN"(13.30.31)

Fig. 26

The General Tire and Rubber Co

PROPERTY	HALLINE AVER
1 TENSILE STRENGTH	280 kg/cm ²
2 ELONGATION	690%
3 SET AT BREAK	
4 COMPRESSION SET	-
5. STRAIN AT 28kg/cm ²	
6 DUROMETER HARDNESS	69

CHEMIGUM XSL- "NOT KNOWN " (13,30)

Fig. 27

Goodyear Tire & Rubber Co.

SBR Elastomer

PROPERTY	INITIAL VALU
1 TENSILE STRENGTH	119kg/cm ²
2 ELONGATION	270%
3 SET AT BREAK	5%
4 COMPRESSION SET	4.7%
5 STRAIN AT 28kg/cm ²	28%
6 DUROMETER HARDNESS	60

BUNA S: "STYRENE BUTADIENE COPOLYMER" (4.5.8,26,27,32)

Fig. 28

SBR Elastomer

PR-408-70-"COPOLYMER OF BUTADIENE AND STYRENE "(4.6.33)

Fig. 29

Precision Rubber Products Co

SBR Elastomer

HYCAR-2001 - "COPOLYMER OF BUTADIENE AND STYRENE "(4,6,33)

Fig. 30

B. F. Goodrich Chemical Co

SE 750 - "METHYL VINYL SILOXANE" (5.8.13.33,34,36)

Fig. 31

General Electric Co

Silicone Elastomer

SILASTIC - 7170: "DIMETHYL SILOXANE" (4,5.8.26,35)

Fig.32

Dow Corning Co

Silicone Elastomer

PROPERTY	INITIAL VALUE
1 TENSILE STRENGTH	64 kg/cm ²
2 ELONGATION	375%
3 SET AT BREAK .	_
4 COMPRESSION SET	
5 STRAIN AT 28kg/cm ²	-
A DUROMETER HARDNESS	78

77-018 - "DIMETHYL - SILOXANE " (13,34)

Fig. 33

Parker Appliance Co

COHRLASTIC HT-666 - METHYL-PHENYL-VINYL-SILOXANE (13, 34)

Fig. 34

Y-1668 - "METHYL - PHENYL - SILOXANE" (13.34)

Fig. 35

Union Carbide & Carbon

Thiokol Elastomer

PROPERTY	INITIAL VALU
1 TENSILE STRENGTH	56kg/cm ²
2 ELONGATION	162%
3 SET AT BREAK	3%
4 COMPRESSION SET	9%
5 STRAIN AT 28kg/cm2	26%
6 DUROMETER HARDNESS	78

THIOKOL ST "ORGANIC POLYSULFIDE" (1,4,5,8,11,14,37,38)

Thiokol Chemical Co

Fig. 36

INOLEKTI	
1 TENSILE STRENGTH	70 kg/
2 ELONGATION	220%
3 SET AT BREAK	-
4 COMPRESSION SET	-
5 STRAIN AT 28kg/cm ²	-
6 DUROMETER HARDNESS	71

PR 1000-70-"NOT KNOWN" (1,4,14,25)

Precision Rubber Products Co

Fig. 37

tivity (ohm - cm) After irradiations	10 ¹¹ 5 x 10 ¹⁰ 5 x 10 ¹⁰	to <u>13</u>	4 x 1012 2 x 1013 2 x 1013	Mev 7 rad/h
Volume Resistivity Before Aft irradiations Irrad	6 x 10 ¹¹	1012	6 x 10 ¹³	utrons/cm ² . sec m ² . sec with energies above 0.1 Mev m ² . sec with energies above 1 Mev m ² . sec with energies above 1 Mev .rays)/cm ² . sec with average energy of 1 place at an equivalent rate of 10 ⁶ to 10 ⁷
Total dosage x 10 in rad	0 15 35 70	0	0 20 35 70	sec energies above (energies above ec with average
Dose rate rad/h				neutrons/cm ² . ser with e/cm ² . sec with e/cm ² . sec with e/cm ² . sec with e/wrays)/cm ² . set with e/wrays)/cm ² . set with e/wrays)/cm ² .
Radiation type and energy in Mev	Pile	P11e	P11e	thermal neutrons neutrons protons
Material	Acrylics (Hycar PA 21)	Buty1	Hypalon S 2)	The pile fluxes are: 1.1 x 10 ¹² 1.4 x 10 ¹¹ 6.7 x 10 ¹⁰ 4.2 x 10 ¹⁰ 5 x 10 ¹¹ 5 x 10 ¹¹ 5 x 10 ¹¹

TANKER 3 : ENGENT OF SALIANTON ON VOLUME RESISTIVING (4) (8) (26)

Radiation Dose isternated Type and Type and Tady'n Tad	Total decrete r x lo in rad in rad 2.1 2.1	Belore irrediations	After irradiations	Recovery	y on standing	
E. Type and . ra hergy in	2.1 2.1 2.1 2.1 2.1	Beiore	After irradiations	Recover	CU	
Mer. 1 135 2.6 e	in rad 2.1 4.1 3.2 0	irrediations	irradiations			
hber 2.0 e 2.5 x Pile (13 Bl) 2.0 e 2.0 e 2.0 e Pile Pile Pile Pile Pile Pile Pile Pi	2.1 4.1 3.2 0	<u> </u>		Time, hours	Final Resistivity	
2.5 x Pile C15 B1) 2.0 e ⁻ 3.0 x 2.5 x Pile Pile	3.2	4.4 x 10+4	1.1 x 10 ¹⁴	7.5°	××	
C15 B1) 2.0 e ⁻ 3.0 X 2.0 e ⁻ 2.5 X 2.0 e ⁻ Pile	_	4.4 x 1014 4.4 x 1014 71014	7 x 1c14 1.2 x 1014 1014	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.4 x 1014 3.7 x 1014 2.9 x 1014	
C13 B1) 2.0 e 7 3.0 X 3.0 X 2.0 e 7 2.5 X 2.0 e 7 2.0 e 7 E 9 E 1 E 9 E 9	70 1.3 0.33	6.7 × 10 ¹²	10 ¹² 5.6 × 10 ¹² 5.8 × 10 ¹² 5.8 × 10 ¹²			
2.0 e − 2.0 Pile	2.1 3.1	1.6 x 10 ¹⁴	2.5 x 1014 3.9 x 1014 1.6 x 1014	222	2.4 x 1014 2.4 x 1014 3.6 x 1014	48
2.0 e Pile	2.1	8.0 x 10 ¹⁰	6.8 x 1c1c 6.1 x 1510 6.6 x 1010	168 166 22	8.5 x 1010 7.c x 1010 7.6 x 1010	
	3.2 4.1 0 100 100	4 x 10 ¹² 2 x 10 ¹¹	8.9 x 1011 1 x 1011 2 x 1010 1010			
(Neoprene gray) 2.0 e 2.5 m 2.5 x	3.2	4 x 10 ¹² 4 x 10 ¹²	8.3 x 10 ¹¹ 1 x 10 ¹² 3.5 x 10 ¹²	2.2 19 183 22	1.9 x 1012 1.6 x 1012 2.4 x 1012 4.7 x 1012	

Material Rad. Type Dose rate Dose Before irradiation After irradiation		Radiation type and energy in MeV	Dose rate rad/hr x 10 ⁻⁷	Total dosage x 10 ⁻⁷ in rad	Volume Re	sistivity -cm)
Royalite Pile	Material		Dose rate	Dose	irradia	irradia-
Polyurethane (Vulcallon)		Pile		10	10 ¹²	10 ¹⁰
(Vulcallon)	<u>Polybutadiene</u>	Pile		15 30	10 ¹⁴	10 ¹⁴ 10 ¹⁰ 10 ⁹
Silicone (Silastic 250) Pile 0 10 10 10 10 10 10 10		Pile		10 100	3x10 ⁸	3x10 3x10 3x10 3x10
(Silastic 250) Pile 0 15 10 ¹⁴ 10 ¹⁴ 10 ¹² 10 ¹⁴ 10 ¹⁴ 10 ¹⁴	SBR (Pliostuf)	Pile		0,5	10 ¹⁴	10 ⁸
Pile 0 10 ⁸ -10 ¹⁰ 10 ⁹ 10 ⁷		Pile		15 30	>10 ¹⁴	10 ¹⁴ 10 ¹² 10 ¹⁴
		Pile		15 30	108-1010	10 ¹ 0 10 ⁹ 10 ⁷

TABLE 4

GASEVOLUTION

(4)(8)(26)(39)(40)

Material - Elastomer	Gas Evolved - ml/g at 10	9 Rads
Acrylics	28	
Butyl	13	
Natural Rubber	7	
Neoprene	2-4	
Nitrile	5–10	•
Polybutadiene	5	
Polyisoprene (synthetic)	10	
Polyisobutylene	17 - 20	
Polysulfide	6	
5.B.R.	4	
Silicone	20	

^{*} The gasevolution was measured from samples of 0.2 to 0.5 gramme.

TABLE 5

Radiation Stability of Elastomers at Temperatures above 85°C (41)

Material - Elastomer	Temperature ^O C	Max. dose (electrical) Rads.	Max. dose (Mechanical) Rads.
Butyl	85	5 x 10 ⁸	5 x 10 ⁷
Natural Rubber	85	8 x 10 ⁸	10 ⁸
Neoprene	100	1.5 x 10 ⁹	5 x 10 ⁸
Polyisobutylene	85	5 x 10 ⁸	5 x 10 ⁷
Silicone	125	2 x 10 ⁹	5 x 10 ⁷

TABLE 6

ELASTOMERS

Popular Name	Chemical Designation	Trade Names
Acrylics	Polyncrylate	Acrylon Angus HR, SH
		Cycnocryl Hycar
	· \	Lactaprene Paracril OHT
		Precision Acrylics Thiacril Vyram
	Tooland James Tanamana	
Butyl - GRI	Isobutylene - Isoprene	Bucar Butyl Enjay Butyl
		Hycar I.I. Rubber
		Petro-Tex Butyl Polysor Butyl
	·	Precision Butyl Vistanex MM
EPR	Ethylene Propylene	Angus KR
		APK C 23 Dutral H
		Enjay EPR
		Nordel Olethene Royalene
Fluoroelastomers	Vinylidene Fluoride Hexafluoropropylene	Angus VA,SV Fluorel Precision Fluoro Viton
	Fluoro Silicone	Silestic LS 53 Precision Fluoro Silicone
	Trifluorochloro-ethylene- vinylidene-fluoride	Rol F
Hypalon	Chlorosulphonated polyethylene	Angus HII Hypolon Precision Hypolon

TABLE 6 (Continued)

Popular Name	Chemical Designation	Trade Names
Watural Rubber	Natural Polyisoprene	Coral
		DPR
		Natsyn
		Okolite Shell Isoprene
· · · · · ·		Trans P.R.
Neoprene GR-M	Chloroprene	Angus G
		Neoprene
		Precision Neoprene
		Okoprene
		Per unan C Sovprene
		U.S. Rubber Neoprene
•		o.b. habber heoprens
Nitrile; Buna N;	Acrylonitrile - Buta-	Angus DS, WR, FR, LR, E, P.
G.R.A.; N.B.R.	diene	Butacril
		Butraprene
		Chemigum
	·	Chemivic FR-N
		Herecrol
		Hycar OR
		Parker Nitrile
		Perbunan
		Polysar Krynao
		Precision Nitrile
•		Royalite
•		Tylac
Polybutadiene;	Butadiene	Ameripol CB
Buna; S.K.A.	17d Gdd Lefte	B R Rubber
		Budene
		Cisdene
		Diene
		Duradene
		Duragen
		Polysar Tacktene S.K.B.
		Texus Synpol EBR
		Trans 4 or cis 4

54 TABLE 6 (Continued)

Popular Name	Chemical Designation	Trade Name
Polyisoprene `synthetic	Synthetic Polyisoprene	Ameripol SH Corel DPR Hetsyn Philprene Shell IR Trans PIP Cariflex
Polyurethane	Diisocyanate-polyester or polyether	Adiprene Chemigum XSL Consthene Cyanoprene Desmodur Desmolin Disogrin Milistocast Elastothane Estane Genthane Guidfoam Mearthane Microvon Multrathane Polyvon Precision Urethane Roylar Solithane Texin Vulcaprene
SBR, Bun S, GRS; SKB.	Styrene-Butadiene	Ameripol Angus R.G. ASRC Polymers Butaprene S G. rbonix Cariflex Chemigum IV Copo Durex Duradene Flosbrene FR-S Gen-Flow Gentro Hyear OS, B, TT

TABLE 6 (continued)

Popular Name	Chemical Designation	Trade Name
SBR, Buna S, GRS; SKB. (Continued)	Styrene - Butadiene	Krylene Kryflex Navgapol Naugatex
		Philprene Plioflex Pliolite S Pliotuf Polysar S S Polymers Solprene
Silicone	Polysiloxane	Synpol Tylac Angus SIL. SIS Arcosil
		Cohrlastic Fairprene General Electric SE HW Parker Silicone
		Rhodorsils Silastene Silastic Siloprene Union Carbide K.Y.
Thiokol GR-P	Organic Polysulfide	Alkylene Polysulfide F.A. Polysulfide rubber Perduren Precision Thiokol S.T. Polysulfide rubber Thioplasts Vulcaplas
Vinylpyridine	Butadienc - 2 - methyl 5 vinyl pyridine	Philprene

BIBLIOGRAPHY

Modern Synthetic Rubbers H. BARRON Chapman and Hall Ltd., London, 1949 Kautschuk Handbuch, Bd. I, II, III, S. BOSTROM 1960. Verlag Berliner Union Stuttgart W. BRENERS und Buna, Herstellung Prüfung, Eigenschaften H. LUTTROP 1954, Verlag Technik Berlin The Neoprenes N.L. CATTON 1963, Ets Du Pont de Nemours Co. Annual report on the progress of rubber T.J. DRAKELEY technology, Vol. XXVII, 1963 W. Heffer and Son Ltd., Cambridge, England Resins - Rubber - Plastics - Yearbook .960 N.G. GAYLORD Interscience publ. Co., N.Y., 1960 Encyclopédie Technologique de l'Industrie G. GENIN et du Caoutchouc B. MORRISON 1958, Dunod, Paris Butalastic Polymers, their preparation F. MARCHIONNA and Applications 1946. Reinhold Publ. Corporation Engineering uses of rubber Mc PHERSON and Reinhold Publ. Co., 1958 A. KLEMIN Introduction to rubber technology M. MORTON Reinhold publ. Co., 1959 Synthetic Rubber Technology, Bd. I, II W.S. PENN 1960. Maclaren and Sons Itd., London Polyurethanes - Chemistry and Technology J.H. SAUNDERS and K.C. FRISCH Interscience Publishers Co., N.Y., 1963 Synthetic Rubber C.S. WHITBY e.a. 1954, J. Wiley and Sons, New York The Vanderbilt Rubber Handbook G. WINSPEAR R.T. Vanderbilt Co. Inc., N.Y., 1958

Periodicals:

Materials in Design Engineering 1965 - 1966

Machine Design Penton publications - Cleveland, Ohio 1965 - 1966.

References

- i) R. MARKINGTON Rubber Age, 33(1), 472, (1953).
- 2) S. PALINCHAK REIC Report 21, (1964).
- 3) R. CGY, R. AERE 3.203 (1960).
- 4) C. BOPP CRNL - 1373 (1954).
- 5) V. CALKING APEX 261, (1956).
- 6) R. HARRINGTON Rubber Age, 82 1.003 (1953).
- 7) J. BORN
 B. F. Goodrich Company, Quarterly Progress Report
 4, AF 33(616)-7491 (1961).
- 3) P. KLEIN General Electric-Syracuse, Paper No. 57-303 (1957).
- 9) J. BGRN WADC-TR-55-53, Part III (1956)
- 10) S. FALINCHAK REIC memorandum 17 (1959)
- II) R. HARKINGTON Rubber Age 85, 963, (1959).
- 12) D. HARMON WADC-TR-55-58, Part V (1959)
- 13) R. HARRINGTON Rubber Age, 32, 461 (1957)
- 14) C. DE ZEIH
 Boeing Airplane Co.
 D2-1319 (1957)
- 15) G. TREPUS
 Boeing Airplane Co.
 WADC-TR56-272, Part 4 (1959)

- 16) S. PALINCHAK REIC Report 21 (1961)
- 17) C. BCPP Nucleonics 13 (7), 23/1955
- 13) R. HARRINGTON Rubber Age 93, 417 (1963).
- 19) H. BAUMAN
 J. Appl. Polymer Sci. 1
 351 (1959).
- 20) r. blewift CRNL-2.413 (1957).
- 21) H. HEINLE Rubber Chem. and Technology 35(3), 76 (1963).
- 22) Y. M.INOULAJ. Appr. Polymer Eci.5, 233 (1961)
- 23) G. DUBROVIN Soviet Rubber Technology 18 (7), 6 (1959).
- 24) R. HARKINGTON Rubber Age 36, 319 (1960)
- 25) J. RYAM Nucleonics II (8), 13 (1959)
- 26) C. BCPP CRNL 928 (1951)
- 27) R. BAUMANJ. Polymer Sci. 26, 397 (1957).
- 28) R. HARRINGTON Rubber Age 90 (2) 265 (1961).
- 29) F. TIPTON
 Boeing Aircraft Company
 WADC 56-272 Part III (1958).
- 30) A. BCNANNI Material Design Eng. 53 (1) 9 (1961).

- 31) E. FEITZ J. Appl. Polymer Sci. 7 1459 (1963)
- 32) F. BARTLETT Experentia Supplement 7.275 (1957)
- 33) L. CHRISTENSEN
 IKE Trans. Components Parts
 CF-5(2), 109 (1953)
- 34) I. KUGLEK Atomkernergie, 4 (i), 23 (1959).
- 35) F. BUECHE J. Polymer Sci. 19, 297 (1956)
- 36) A. CHARLECEY
 Proc. Loy. Eoc.
 Edries A 273 (1952) 117 (1963)
- 37) K. PIEKECN Rubber Plastics Age July 1957
- 33) G. MEYER Rubber V oria 140, 435 (1959)
- 39) R. BLACK Proc. I.E.E. 112/6, 1126 (1965)
- 40) A. CHAPIRC Radiation Chemistry of Polymeric Systems Interscience, 14. Y. 1962 p. 358
- 1) R. BLACK Trans Practice Inst. 29, 98 (1961).