	Marwadi University	
Marwadi University	Faculty of Technology	
Oniversity	Department of Information and Communication Technology	
Subject: Machine	Aim: To observe the impact of the usage of the kernels over the image	
Learning (01CT0519)		
Experiment No: 11	Date:	Enrolment No:92000133018

Aim: To observe the impact of the usage of the kernels over the image

IDE: Google Colab

Theory:

import cv2

'Vertical'

An image kernel is a small matrix used to apply effects like the ones you might find in Photoshop or Gimp, such as blurring, sharpening, outlining or embossing. They're also used in machine learning for 'feature extraction', a technique for determining the most important portions of an image. In this context the process is referred to more generally as "convolution".

Program (Code):

import numpy as np

```
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
import pandas as pd
from scipy.ndimage.filters import convolve
# converting gray scale image
path = r"./images.jpeg"
img = cv2.imread(path, cv2.IMREAD GRAYSCALE)
cv2.imshow("image", img)
cv2.waitKev(0)
# apply various kernels
identity = np.array([[0,0,0], [0,1,0], [0,0,0]])
edgedetection = ([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])
top_sobel = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])
sharpen = np.array([[0, -1, 0], [-1, 5, -1], [0, -1, 0]])
emboss = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
gaussian = (1 / 256.0) * np.array([[1, 4, 6, 4, 1], [4, 16, 24, 16, 4], [6, 24, 36, 24, 6], [4, 16, 24, 16, 4], [1, 4, 6, 4, 1]])
smallBlur = np.ones((7, 7), dtype="float") * (1.0/(10))
horizontal = np.array([[-1, -1, -1], [2, 2, 2], [-1, -1, -1]])
vertical = np.array([[-1, 2, -1], [-1, 2, -1], [-1, 2, -1]])
kernels = [identity, edgedetection, top_sobel, sharpen, emboss, gaussian, smallBlur, horizontal, vertical]
k name = ['Identity', 'Edgedetection', 'Top sobel', 'Sharpen', 'Emboss', 'Gaussian', 'SmallBlur', 'Horizontal',
```

		Marwadi University	
	Marwadi University	Faculty of Technology	
	Oniversity	Department of Information and Communication Technology	
	Subject: Machine	Aim: To observe the impact of the usage of the kernels over the image	
	Learning (01CT0519)		
	Experiment No: 11	Date:	Enrolment No:92000133018

im = np.array(img, dtype=float)

```
for i in range(len(kernels)):
    kernel = kernels[i];
    name = k_name[i];

# kernel = kernels[0]
    im2 = convolve(im, kernel)
    img3 = np.array(np.clip(im2,0,255), dtype=np.uint8)

img_new = cv2.hconcat([img3])
    cv2.imshow(name, img_new)
    cv2.waitKey(0)
```

Results:

To be attached with

Apply atleast 7 different functionality kernels over your own image and attach the images of all

Marwadi University Faculty of Technology

Department of Information and Communication Technology

Subject: Machine Learning (01CT0519)

Aim: To observe the impact of the usage of the kernels over the image

Experiment No: 11 Date: Enrolment No:92000133018

Observation and Result Analysis:

a.	Name of Kernel-1:
	Kernel-1 matrix:
	Observation:
b.	Name of Kernel-2:
	Kernel-2 matrix:
	Observation:

Marwadi University Faculty of Technology

Department of Information and Communication Technology

Subject: Machine Learning (01CT0519)

Aim: To observe the impact of the usage of the kernels over the image

Experiment No: 11 Date: Enrolment No:92000133018

c.	Name of Kernel-3:	_
	Kernel-3 matrix:	
	Observation:	
	Observation.	
d.	Name of Kernel-4:	_
	Kernel-4 matrix:	
	Observation:	
e.	Name of Kernel-5:	_
	Kernel-5 matrix:	
	Observation:	
r	Name of Kowal C	
Τ.	Name of Kernel-6: Kernel-6 matrix:	_
	Kerner-o matrix:	
	Observation:	
g.	Name of Kernel-7:	_
	Kernel-7 matrix:	
	Observation:	