

EMPLOYING MACHINE LEARNING TO HANDLE MISSING DATA

PRESENTED BY: ANINDRO BHATTACHARYA | MARCH 23, 2022

AGENDA

- X Mechanisms of Missingness
- X NeuMiss Networks
- X Doubly Robust Estimators
- X Next Steps

NOTATION

- X V: set of observable variables
 - X V_o : set of variables that are observed in all records in the population
 - X V_m : set of variables missing in at least one record
- X U: set of unobserved variables (latent variables)
- X R: missingness pattern

NOTATIONS IN ACTION

F ₁	F ₂	F ₃	F ₄
1	2	3	NA
423	2	NA	10
34	32	42	NA

MISSING COMPLETELY AT RANDOM (MCAR)

- \times Probability that V_m is missing is independent of V_m or any other variable in the study
- X e.g., deciding to reveal income levels based on coin flips

MISSING AT RANDOM (MAR)

- X For all data cases Y, $P(R|Y_{obs}, Y_{mis}) = P(R|Y_{obs})$
 - $X Y_{obs}$: observed component of Y
 - $X Y_{mis}$: observed component of Y
- X e.g., patients under the age of 65 are less likely to have bone density tests taken

MISSING NOT AT RANDOM (MNAR)

- X Neither MCAR or MAR
- X Missingness is related to factors not measured in the study
 - X Probability that V_m is missing is dependent on some $u \in U$
- X e.g., smoking status is not recorded in patients admitted as an emergency

Morvan, M. L., Josse, J., Moreau, T., Scornet, E., & Varoquaux, G. (2020). Neumann networks: differential programming for supervised learning with missing values. *CoRR*, *abs/2007.01627*. Opgehaal van https://arxiv.org/abs/2007.01627

NOTATION

- $X \in \mathbb{R}^d$: set of features
- $X Y \in \mathbb{R}$: outcomes
- $X M \in \{0,1\}^d$
 - $X \forall 1 \leq j \leq d, M_j = 1 \Leftrightarrow X_j \text{ is not observed}$
- X For realizations m of M,
 - \times obs(m): indices of zero entries of m
 - \times mis(m): indices of non-zero entries of m

NOTATION - EXAMPLE

X Suppose:

$$X = (1.1, 2.3, -3.1, 8, 5.27)$$

$$X m = (0, 1, 0, 0, 1)$$

X then:

$$\tilde{x} = (1.1, \text{ NA}, -3.1, 8, \text{ NA})$$

$$X \quad obs(m) = \{0, 2, 3\}$$

$$X mis(m) = \{1, 4\}$$

$$X \quad x_{obs(m)} = (1.1, -3.1, 8)$$

$$X x_{mis(m)} = (2.3, 5.27)$$

BAYES PREDICTOR

$$f^{\star}(X_{obs(M)}, M) = \mathbb{E}\left[Y|X_{obs(M)}, M\right]$$

Assumption 1 (Gaussian data). The distribution of X is Gaussian, that is, $X \sim \mathcal{N}(\mu, \Sigma)$.

Assumption 2 (MCAR mechanism). For all $m \in \{0,1\}^d$, P(M=m|X) = P(M=m).

Assumption 3 (MAR mechanism). For all $m \in \{0, 1\}^d$, $P(M = m|X) = P(M = m|X_{obs(m)})$.

Proposition 2.1 (MAR Bayes predictor). Assume that the data are generated via the linear model defined in equation [1] and satisfy Assumption [1]. Additionally, assume that either Assumption [2] or Assumption [3] holds. Then the Bayes predictor f^* takes the form

$$f^{\star}(X_{obs}, M) = \beta_0^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs}(\Sigma_{obs})^{-1}(X_{obs} - \mu_{obs}) \rangle, \quad (4)$$

where we use obs (resp. mis) instead of obs(M) (resp. mis(M)) for lighter notations.

DERIVING THE BAYES PREDICTOR

$$\begin{split} f_{\widetilde{X}}^{\star}(\widetilde{X}) &= \mathbb{E}[Y|\widetilde{X}] \\ &= \mathbb{E}[\beta_{0}^{\star} + \langle \beta^{\star}, X \rangle \mid M, X_{obs(M)}] \text{ , by linear model} \\ &= \beta_{0}^{\star} + \langle \beta_{obs(M)}^{\star}, X_{obs(M)} \rangle + \langle \beta_{mis(M)}^{\star}, \mathbb{E}[X_{mis(M)} \mid M, X_{obs(M)}] \rangle. \end{split}$$

If missingness is MAR or MCAR,

$$\mathbb{E}[X_{mis(M)} \mid M, X_{obs(M)}] = \mathbb{E}[X_{mis(M)} \mid X_{obs(M)}].$$

Since $X \sim N(\mu, \Sigma)$,

$$\mathbb{E}\left[X_{mis(m)} \mid X_{obs(m)}\right] = \mu_{mis(m)} + \Sigma_{mis(m),obs(m)} \left(\Sigma_{obs(m)}\right)^{-1} \left(X_{obs(m)} - \mu_{obs(m)}\right)$$

Therefore,

$$f^{\star}(X_{obs}, M) = \beta_0^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs} (\Sigma_{obs})^{-1} (X_{obs} - \mu_{obs}) \rangle$$

THE NEUMANN SERIES

$$(I-S)^{-1} = \sum_{j=0}^{\infty} S^j = I + S + S^2 + \cdots$$

EXAMPLE WITH NEUMANN SERIES

Estimate inverse of
$$T = \begin{bmatrix} \mathbf{1} & \mathbf{0.5} \\ \mathbf{0.25} & \mathbf{1} \end{bmatrix}$$
. Actual value of $T^{-1} = \begin{bmatrix} 1.14285714 & -0.57142857 \\ -0.28571429 & 1.14285714 \end{bmatrix}$.

1st order approximation of
$$T^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
.

$$3^{\text{rd}}$$
 order approximation of $T^{-1} = \begin{bmatrix} 1.125 & -0.5 \\ -0.25 & 1.125 \end{bmatrix}$.

10th order approximation of
$$T^{-1} = \begin{bmatrix} 1.14282227 & -0.57141113 \\ -0.28570557 & 1.14282227 \end{bmatrix}$$
.

20th order approximation of
$$T^{-1} = \begin{bmatrix} 1.14285714 & -0.57142857 \\ -0.28571429 & 1.14285714 \end{bmatrix}$$
.

APPROXIMATING INVERSE COVARIANCES WITH NEUMANN SERIES

- \times $S^{(0)}$: starting point for approximation (d x d)
- X $S_{obs(m)}^{(0)}$: submatrix of $S^{(0)}$ obtained by selecting components for which m=0
 - X Order-0 approximation of $(\Sigma_{obs(m)})^{-1}$

APPROXIMATING INVERSE COVARIANCES WITH NEUMANN SERIES

X For all $m \in \{0, 1\}^d$, define the order-l approximation $S_{obs(m)}^{(l)}$ of $(\Sigma_{obs(m)})^{-1}$ via:

$$S_{obs(m)}^{(\ell)} = (Id - \Sigma_{obs(m)}) S_{obs(m)}^{(\ell-1)} + Id$$

ORDER-L APPROXIMATION OF BAYES PREDICTOR

$$f^{\star}(X_{obs}, M) = \beta_0^{\star} + \langle \beta_{obs}^{\star}, X_{obs} \rangle + \langle \beta_{mis}^{\star}, \mu_{mis} + \Sigma_{mis,obs}(\Sigma_{obs})^{-1}(X_{obs} - \mu_{obs}) \rangle$$

NEUMISS ARCHITECTURE

- X Approximates the Bayes predictor
- X Inverses $(\Sigma_{obs(m)})^{-1}$ are computed using an unrolled version of the iterative algorithm

NEUMISS ARCHITECTURE

Figure 1: NeuMiss network architecture with a depth of 4 — $\bar{m} = 1 - m$. Each weight matrix $W^{(k)}$ corresponds to a simple transformation of the covariance matrix indicated in blue.

RESULTS FROM NEUMISS

X Generated synthetic data according to multivariate Gaussian distribution

$$X \Sigma = UU^{T} + \operatorname{diag}(\epsilon)$$

- $X \ U \in \mathbb{R}^{d \times d/2}$ and entries of U drawn from N(0, 1)
- \times ϵ : vector of entries drawn uniformly in [0.01, 0.1]

RESULTS FROM NEUMISS

- X Compared performance of NeuMiss to 3 other algorithms
 - X **EM:** Expectation-Maximization algorithm run to estimate parameters of P(X, Y) with missing values
 - Predictions made using E[X|Y]
 - X MICE+LR: data is imputed using conditional imputation (scikit-learn IterativeImputer), LR fit on imputed data
 - X MLP: multilayer perceptron with 1 hidden layer followed by ReLU nonlinearity; data imputed with 0

RESULTS FROM NEUMISS

- X EM gives best results when it can be run
 - X Cannot be run when $d \ge 50$
- X NeuMiss is second best
 - X Except when d=50, n=20000
- X NeuMiss works best for high $\frac{\text{\# of samples}}{\text{\# of parameters}}$ ratio

Bang, H., & Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. *Biometrics*, 61(4), 962–973. https://doi.org/10.1111/j.1541-0420.2005.00377.x

DOUBLY ROBUST (DR) ESTIMATORS

- X Remain consistent when either:
 - X A model for the treatment assignment mechanism is correctly specified
 - X A model for counterfactual data is correctly specified

NOTATION

- \times Full data: L = (V', Y)'
 - X V: always observed baseline variables
 - X Y: scalar outcome which is missing on some subjects
- \times Observed data: O = (\triangle , L_{obs})
 - X $L_{obs} = L$ when $\Delta = 1$
 - X $L_{obs} = V$ when $\Delta = 0$

GOAL

- X Estimate unconditional mean μ of Y based on n i.i.d. copies of O_i , where i=1,...,n
- X Assumptions:

$$X P(\Delta = 1 \mid Y, V) = P(\Delta = 1 \mid V) \equiv \pi(V) > 0$$

$$\times \mu = E(Y) = E\{E(Y \mid V)\}$$

MEAN OF Y IN TERMS OF OBSERVED DATA DISTRIBUTION

$$\mu = E(Y)$$

$$= E\{E(Y \mid V)\}$$

$$= E\{E(Y \mid \Delta = 1, V)\} \bigstar$$

$$= E(\frac{\Delta Y}{\pi(V)}) \bigstar$$

METHOD 1

- 1. Fit model for PS $\pi(V)$ based on parametric model $\pi(V; \alpha)$
- 2. Estimate µ with Horvitz-Thompson (HT) estimator

$$\widehat{\mu}_{HT} = n^{-1} \Sigma_i \frac{\Delta_i Y_i}{\pi(V_i; \widehat{\alpha})}$$
, where $\widehat{\alpha}$ is the MLE of α

METHOD 2

- 1. Fit model for $\Psi\{s(V; \beta)\}$ for $E(Y \mid \Delta = 1, V)$
 - $X \Psi^{-1}$: known link function
 - X $s(V; \beta)$: known regression function (β is an unknown finite-dimensional parameter)
- 2. Estimate μ by OR estimator

$$\hat{\mu}_{OR} = n^{-1} \Sigma_i \Psi \{ s(\boldsymbol{V_i}; \widetilde{\boldsymbol{\beta}}) \}$$

DR ESTIMATOR (A COMBINATION OF METHODS 1 AND 2)

- × Model $E(Y | \Delta = 1, V)$ as $e(V; \beta, \phi) = \Psi\{(s(V; \beta) + \phi\pi^{-1}(V; \widehat{\alpha}))\}$
- $$\label{eq:master} \begin{split} \overleftarrow{\mu_{dr}} &= n^{-1} \Sigma_i \Psi \{ (s \big(\pmb{V_i}; \widehat{\pmb{\beta}} \big) + \phi \pi^{-1} (\pmb{V_i}; \widehat{\pmb{\alpha}}) \} \end{split}$$

$$\times \phi = \Delta_i(Y_i - s(V_i; \widehat{\beta}))$$

PS

OR

SIMULATION STUDY RESULTS

The naively calculated mean on the complete data is 0.03116.

E(Y)	Bias
0.07259	-0.04143
0.03214	-0.00098
0.03043	0.00072
	0.07259 0.03214

Table 5: Estimates of E(Y) with correctly specified π and s models

Models are incorrectly specified by fitting them on the original dataset masked with MCAR missingness and missingness rate of 0.8.

Estimator	$E(\hat{Y})$	Bias
Horvitz-Thompson	0.05721	-0.02605
Doubly Robust	0.03043	0.00072

Table 6: Estimates of E(Y) with incorrectly specified π and correctly specified s models

Estimator	E(Y)	Bias
Outcome Regression	0.00970	0.02145
Doubly Robust	0.06804	-0.01688

Table 7: Estimates of E(Y) with correctly specified π and incorrectly specified s models

Estimator	$E(\hat{Y})$	Bias
Doubly Robust	0.06804	-0.01688

Table 8: Estimates of E(Y) with incorrectly specified π and incorrectly specified s models

COMBINING NEUMISS AND DR ESTIMATORS

- X Use propensity score model to decide how likely a subject's outcome is to be missing
- X Use propensity score model to modify Bayes' predictor and over-compensate for subjects that are more likely to be missing
- X Use updated Bayes' predictor to impute data

VISUAL EXAMPLE

VISUAL EXAMPLE

VISUAL EXAMPLE

