CLAIMS:

1. A method of forming silicon nitride on a silicon-oxide-comprising material, comprising:

exposing the silicon-oxide-comprising material to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into an upper portion of the material; the silicon-oxide-comprising material being maintained at a temperature of less than or equal to 200°C during the exposing;

thermally annealing the nitrogen within the material to bond at least some of the nitrogen to silicon proximate the nitrogen; and

after the annealing, chemical vapor depositing silicon nitride on the nitrogen-containing upper portion of the material.

- 2. The method of claim 1 wherein the silicon-oxide-comprising material comprises silicon dioxide.
- 3. The method of claim 1 wherein the silicon-oxide-comprising material consists essentially of silicon dioxide.
- 4. The method of claim 1 wherein the silicon-oxide-comprising material is at least 10Å thick, and wherein substantially all of the nitrogen is within the top 5Å of the silicon-oxide-comprising material.

5. The method of claim 1 wherein the silicon-oxide-comprising material is less than or equal to about 5Å thick, and wherein the chemical vapor deposited silicon is at least about 10Å thick.

6. The method of claim 1 wherein the silicon-oxide-comprising layer is less than or equal to about 10Å thick, and wherein the chemical vapor deposited silicon is at least about 30Å thick.

7. The method of claim 1 wherein the silicon-oxide-comprising material is less than or equal to about 10Å thick, wherein the thermally annealed nitrogen is only within the top half of the silicon-oxide-comprising material, and wherein the chemical vapor deposited silicon is at least about 30Å thick.

- 8. The method of claim 1 wherein the silicon-oxide-comprising material is maintained at a temperature of from 50°C to 200°C during the exposing.
- 9. The method of claim 1 wherein the plasma is maintained with a power of from about 500 watts to about 5000 watts during the exposing.

- 10. The method of claim 1 wherein the plasma is maintained with a power of from about 500 watts to about 3000 watts during the exposing.
- 11. The method of claim 1 wherein the exposing occurs within a reactor, and wherein a pressure within the reactor is less than or equal to about 3 Torr during the exposing.
- 12. The method of claim 1 wherein the exposing occurs within a reactor, and wherein a pressure within the reactor is from about 5 mTorr to about 10 mTorr during the exposing.
- 13. The method of claim 1 wherein the exposing occurs for a time of less than or equal to about 1 minute.
- 14. The method of claim 1 wherein the exposing occurs for a time of from about 3 seconds to about 1 minute.
- 15. The method of claim 1 wherein the exposing occurs for a time of from about 10 seconds to about 15 seconds.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

16. The method of claim 1 wherein the annealing comprises rapid thermal processing at a ramp rate of at least about 50°C/sec to a temperature of less than 1000°C, with such temperature being maintained for at least about 30 seconds.

17. The method of claim 1 wherein the annealing comprises thermal processing at temperature of less than 1100°C for a time of at least 3 seconds.

1

2

3

5

18. A method of forming a transistor device, comprising: forming a silicon-oxide-comprising layer over a substrate;

exposing the silicon-oxide-comprising layer to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into an upper portion of the layer;

thermally annealing the nitrogen within the layer to bond at least some of the nitrogen to silicon proximate the nitrogen;

after the annealing, chemical vapor depositing silicon nitride on the nitrogen-containing upper portion of the layer;

forming at least one conductive gate layer over the silicon nitride, the gate layer defining a channel region in the substrate beneath the silicon nitride; and

forming a pair of source/drain regions proximate the gate layer and gatedly connected to one another through the channel region.

- 19. The method of claim 18 wherein the silicon-oxide-comprising layer comprises silicon dioxide.
- 20. The method of claim 18 wherein the silicon-oxide-comprising layer consists essentially of silicon dioxide.

	21	l.	Th	e met	hod of	clair	n 18	whe	rein	the	silic	on-c	oxid	le-co	mprisir	ng
layer	is	at	leas	t 10Å	thick,	and	wher	rein	subs	tanti	ally	all	of	the	nitroge	n
is wi	thir	ı tl	ne to	op 5Å	of th	e sili	con-o	xide	-com	prisi	ng la	ayer	•			

- 22. The method of claim 18 wherein the silicon-oxide-comprising layer is less than or equal to about 5Å thick, and wherein the chemical vapor deposited silicon is at least about 10Å thick.
- 23. The method of claim 18 wherein the silicon-oxide-comprising layer is less than or equal to about 10Å thick, and wherein the chemical vapor deposited silicon is at least about 30Å thick.
- 24. The method of claim 18 wherein the silicon-oxide-comprising layer is less than or equal to about 10Å thick, wherein the thermally annealed nitrogen is only within the top half of the silicon-oxide-comprising layer, and wherein the chemical vapor deposited silicon is at least about 30Å thick.
- 25. The method of claim 18 wherein the substrate comprises a semiconductive material, and wherein the source/drain regions are formed as diffusion regions in the semiconductive material of the substrate.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	

26.	. The	method of	claim	18	wherein	the.	silicon-oxide-comprising
material	consists	essentially	of sil	icon	dioxide		

- 27. The method of claim 18 wherein the silicon-oxide-comprising material is maintained at a temperature of from 50°C to 200°C during the exposing.
- 28. The method of claim 18 wherein the plasma is maintained with a power of from about 500 watts to about 5000 watts during the exposing.
- 29. The method of claim 18 wherein the plasma is maintained with a power of from about 500 watts to about 3000 watts during the exposing.
- 30. The method of claim 18 wherein the exposing occurs for a time of less than or equal to about 1 minute.
- 31. The method of claim 18 wherein the exposing occurs for a time of from about 3 seconds to about 1 minute.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
10
20
21

- 32. The method of claim 18 wherein the exposing occurs for a time of from about 10 seconds to about 15 seconds.
- 33. The method of claim 18 wherein the annealing comprises rapid thermal processing at a ramp rate of at least about 50°C/sec to a temperature of less than 1000°C, with such temperature being maintained for at least about 30 seconds.
- 34. The method of claim 18 wherein the annealing comprises thermal processing at temperature of less than 1100°C for a time of at least 3 seconds.

,	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

22

23

2 =		•		
35.	А	transistor	device	comprising:
.	4 4	tiunisistoi	u 0,100,	comprising.

a silicon-oxide-comprising material over a substrate, the silicon-oxide-comprising material having a thickness of less than or equal to about 10Å;

a silicon-nitride-comprising material on the silicon-oxide-comprising layer, the silicon-nitride-comprising material having a thickness of at least 30Å, the silicon-nitride-comprising material being different than the silicon-oxide-comprising material;

at least one conductive gate layer on the silicon-nitride-comprising material, the gate layer defining a channel region in the substrate beneath the silicon-oxide-comprising material; and

a pair of source/drain regions proximate the gate layer and gatedly connected to one another through the channel region.

- 36. The device of claim 35 wherein the silicon-oxide-comprising material does not comprise nitrogen.
- 37. The device of claim 35 wherein the silicon-nitride-comprising material has a thickness of at least about 40Å.
- 38. The device of claim 35 wherein the silicon-oxide-comprising material has a thickness of 5Å or less.

- 39. The device of claim 35 wherein the silicon-nitride-comprising material has a thickness of at least about 40Å, and wherein the silicon-oxide-comprising material has a thickness of 5Å or less.
- 40. The device of claim 35 wherein the substrate comprises monocrystalline silicon, and wherein the source/drain regions are conductively doped diffusion regions within the substrate.