ML103: Introduction to GenAI

Rola Dali AI/ML Architect/Engineer November 2024

>whoami

- Machine Learning Architect @ RapidScale
- Academic: PhD in NeuroScience & Bioinformatics, 2017
- AWS enthusiast:
 - AWS Community Builder
 - AWS Montreal Meetup co-lead
 - AWS Ambassador (Golden Jacket All Star)

What is Machine Learning? **Definition**

Dictionary

Definitions from Oxford Languages · Learn more

machine learning

noun

the use and development of <u>computer systems</u> that are able to learn and adapt <u>without following</u> <u>explicit instructions</u>, by using <u>algorithms and statistical models</u> to analyze and draw <u>inferences</u> from patterns in data.

- => Computer systems + powerful mathematics to learn patterns in data without being explicitly taught
- => Large mathematical algorithms powered by computer systems and learn from data

What is Machine Learning? ML vs Computer Science

Traditional Software during <u>development</u>

Traditional Software during <u>deployment</u>

Machine Learning during <u>development</u>/Training

Machine Learning during <u>deployment</u>/Inference

ML Glossary

Artificial Intelligence (AI): Techniques that enable computers to mimic human behavior

Machine Learning (ML): AI techniques that allow computers to learn without explicit programming = mimics "learning"

Generative AI: A type of AI that allows computers to generate new content

LLMs: Large Language Models: umbrella term for models specialized in language

Transformers: Algorithm/neural network that revolutionized GenAI and underlies LLMs

Prompt: Input to the model

Token: a word or a part of a word

Embedding: numerical representation of non-numeric entities => projection into mathematical space

RAG: Retrieval Augmented Generation: using an external knowledge base to augment the system

Agent: "Function Calling": a system that can perform tasks

Foundational model: ML model trained on vast datasets so it can be applied across a wide range of uses

More about Machine Learning

ML Foundational Pillars:

Types of Machine Learning:

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning
- Generative AI

Predictive/Classical Machine Leaning

Predictive ML vs GenAI:

Overview

	Predictive ML	GenAI		
Algo Size (params)	< Millions	Billions-Trillions		
Data Demands	+	+++		
Training Compute	Laptop/reasonable machines	Super computers. Parallelization is critical		
Training	Often customized with data	Pre-trained by big providers		
Use cases	Specific tasks	Specific tasks General tasks		
Cost	\$	\$\$\$		
Interactions	Custom	API calls		
Difficulty	Data, ML algorithms, MLOps	Model selection, prompt engineering, Evaluation		
AWS tools	Amazon SageMaker	AWS Bedrock		

Predictive ML vs GenAI

Size Considerations

- ML models are often sized by "number of parameters" = model weights
- Size ranges from 1 param (y = ax) to ~2T param (GPT 4)
- Predictive ML ~ million params
- GenAI ~ billion-trillion params
- The more params the model has, the more data it needs to see
 - "20K years to read worth of data": Yann Lecun

Sizing Ballpark:

1 parameter @ 32 bit float = 4 bytes 1 billion parameters ~ 4 GB of RAM JUST FOR PARAMS

BUT you need ~ 20X more space (optimizer, gradients, activation, ...) to train

1 billion param model ~ 80 GB of RAM (limit of the Nvidia A100 GPU)

- ⇒ Imagine the requirements for a 1.8T param model?!
- ⇒ These models have put constraints on compute/data and made parallelization and optimizations (hardware & software) a must
- ⇒ The sheer size and compute demands limit training to organizations with significant resources => "Foundational Models"

Predictive ML vs GenAI LifeCycle

Predictive ML life Cycle:

- Frame Business Problem
- Source & Prepare Data
- Choose Model Class
- Train Model
- Test Model
- Deploy Model
- Maintain & Monitor

• GenAI life Cycle:

- Choose Foundational Model
- Tune prompts
- Evaluate Performance
- Deploy Application
- Monitor Performance

Whereas in Predictive ML, much of the work is about customizing the model to excel at a specific task, GenAI is more about better extracting what you want from a large general purpose model

GenAI system components

Anatomy of a prompt

- By using Foundational models, the task shifts from data/model to prompting in order to "extract" what we need from the model
- Prompt: the input to the model and can vary in structure & content
- prompt engineering: editing the input text to drive the desired output from the model

Prompt Engineering Best Practices:

- Give clear/specific instructions
- Structure prompts
- Include examples
- Add contextual information
- Use system instructions
- Instruct the model to explain its reasoning (Chain of thought)
- Break down complex tasks
- Prompt iteration strategies

Prompt

Query: what is the task?

Instructions: steps to perform

Objective: mission/goal to achieve

Persona: role/view

Constraints: restrictions to respect

Examples: demo of output

Context: relevant information

Tone: style to use

Brains & Bots: Human Brain VS Artificial Intelligence

	Brains	Bots	Conclusion	Winner
Predictive Machines	Predicts events	Predicts events	Both work predictively & adjust	
Base Counts	100T synapses	~2T SoTA	Brains ~50X interconnected Better at integrating data wholistically	
Training Time	Evolving for 300K+ yrs Knowledge sharing	~100 yrs old as a field product of Brain ingenuity	Bots have had much less time BUT benefit from brain ingenuity	
Speed	Neurotransmitters in liquid: ~ 200 Hz	Electrons in transistors CPU clock rate > 10GHz Bots ~50X faster than brains		i.
Input Modalities	Tethered to biology 5 Senses	Unlimited Input	Bots have unlimited input streams	C.

- Machine Learning systems have **HUGE** potential given their speed and augmentation capability
- They will be the workhorse of the future
- => LEARN ML

Slides

https://shorturl.at/jvyhm

The Generative Al Stack

Amazon Bedrock

The easiest way to build and scale generative AI applications with foundation models

Al21 labs	amazon	ANTHROP\C	≈ cohere	∞ Meta	MISTRAL AI_	stability.ai
Contextual answers summarization, paraphrasing	s, Text summarization, generation, Q&A, search, image generation	Summarization, complex reasoning, writing, coding	Text generation, search, classification	Q&A and reading comprehension	Text summarization, Q&A, text classification, text completion, code generation	High-quality images and art
Jurassic-2 Ultra	Amazon Titan Text Premier	Claude 3 Opus	Command	Llama 3 8B	Mistral Large	Stable Diffusion XL1.0
Jurassic-2 Mid	Amazon Titan Text Lite	Claude 3 Sonnet	Command Light	Llama 3 70B	Mistral 7B	Stable Diffusion XL 0.8
	Amazon Titan Text Express	Claude 3 Haiku	Embed English	Llama 2 13B	Mixtral 8x7B	
	Amazon Titan Text Embeddings	Claude 2.1	Embed Multilingual	Llama 2 70B		
	Amazon Titan Text Embeddings V	2 Claude 2	Command R+			
	Amazon Titan Multimodal	Claude Instant	Command R			

Embeddings

Amazon Titan Image Generator