Etude d'une fonction

- 1. Soit f l'application de \mathbb{R}^* dans \mathbb{R} définie par : $\forall t \neq 0, f(t) = \frac{\arctan t}{t}$.
- 1.a Justifier que f est continue et paire.
- 1.b Former le développement limité à l'ordre 2 de f au voisinage de 0.
 Par quelle valeur peut-on prolonger f par continuité en 0 ?
 Désormais f désigne la fonction obtenue par ce prolongement.
- 1.c Justifier que f est dérivable en 0, donner f'(0) ainsi que la position de la courbe par rapport à sa tangente en 0.
- 1.d Justifier que f est aussi dérivable sur \mathbb{R}^* et calculer f'(t) pour $t \in \mathbb{R}^*$.
- 1.e A l'aide d'une intégration par parties, montrer que : $\forall t \in \mathbb{R}^*, \int_0^t \frac{w^2}{(1+w^2)^2} \mathrm{d}w = -\frac{1}{2}t^2f'(t)$. En déduire le sens de variation de f.
- 1.f Tracer la courbe représentative de f dans un repère orthonormé (unité : 2 cm) (on ne demande pas l'étude des points d'inflexion)
- 2. Soit ϕ l'application de \mathbb{R}^* dans \mathbb{R} définie par $\forall x \neq 0, \phi(x) = \frac{1}{x} \int_0^x f(t) dt$.
- $\begin{array}{ll} \hbox{2.a} & \hbox{Former le développement limité à l'ordre 2 en 0 de } \phi \; . \\ \hbox{Par quelle valeur peut-on prolonger } \phi \; \hbox{ par continuité en 0 ?} \\ \hbox{Désormais } \phi \; \hbox{désigne la fonction obtenue par ce prolongement.} \\ \end{array}$
- 2.b Montrer que ϕ est paire, dérivable sur \mathbb{R} avec $\phi'(0) = 0$ et $\forall x \in \mathbb{R}^*, \phi'(x) = \frac{1}{x} (f(x) \phi(x))$.
- 2.c Montrer que $\forall x \in \mathbb{R}$, $f(x) \le \phi(x) \le 1$ (on pourra commencer par supposer x > 0).
- 2.d En déduire les variations de ϕ .
- 2.e Montrer que $\lim_{x \to +\infty} \frac{1}{x} \int_{1}^{x} f(t) dt = 0$. En déduire que $\lim_{x \to +\infty} \phi(x) = 0$.
- 2.f Tracer la courbe représentative de ϕ dans le même repère que celle de f.
- 3. Soit (u_n) la suite définie par $u_0 \in \mathbb{R}$ et pour tout n de \mathbb{N} , $u_{n+1} = \phi(u_n)$, où ϕ est l'application du 2.
- 3.a Montrer que: $\forall t \ge 0, 0 \le \frac{t}{1+t^2} \le \frac{1}{2}$.
- 3.b Montrer que, pour tout x strictement positif : $|\phi'(x)| \le \frac{1}{x}(1 f(x)) = \frac{1}{x^2} \int_0^x \frac{t^2}{1 + t^2} dt$ (on pourra utiliser 2.b et 2c.)
- 3.c En déduire que, pour tout x strictement positif : $|\phi'(x)| \le \frac{1}{4}$, et que cette inégalité reste vérifiée pour tout x de \mathbb{R} .
- 3.d Montrer que l'équation : $x \in \mathbb{R}, \phi(x) = x$ admet une unique solution. On note α cette solution. Montrer que $\alpha \in]0,1]$.
- 3.e Prouver que : $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq \frac{1}{4} |u_n \alpha|$. En déduire que (u_n) est convergente, et préciser sa limite.
- 4. On considère l'équation différentielle : $x^2y' + xy = \arctan(x)$.
- 4.a Résoudre cette équation différentielle sur $]-\infty,0[$ et $]0,+\infty[$.

Montrer que $\,\phi\,$ est l'unique solution sur $\,\mathbb{R}\,$ de cette équation différentielle.

4.b