

OpenTURNS and HPC within SALOME platform

O. Mircescu

HPC and Uncertainty Treatment
Examples with OpenTURNS
EDF – PhiMeca – IMACS – Airbus Group – CEA

Prace Advanced Training Center May 29th 2019

OUTLINE

- **Presentation of Salome**
- OpenTURNS graphical user interface
- Step by step example
- OpenTURNS graphical user interface distribution and future evolutions

Presentation of Salome (1/5)

- What's Salome ?
 - Modular simulation platform
 - An open framework to build domain specific solutions
- Who is developing Salome ?
 - EDF, CEA and OpenCascade partnership

Presentation of Salome (2/5)

- A middleware providing generic tools for numerical simulations
 - Geometry modelling, meshing, field handling and visualization
 - Data Exchange Model for interoperability between solvers and tools
 - Computation scheduling (YACS)

SALOME Platform

Presentation of Salome (3/5)

Presentation of YACS

- Distribution of computations on multiple resources
- Parallelism and parametric computation
- Chaining computation nodes
- GUI and APIs for Python and C++

Presentation of Salome (4/5)

Presentation of JOBMANAGER

- Create, launch and monitor jobs on computer clusters
- Single interface for several batch managers (Slurm, PBS, COORM, OAR, SGE, LSF)
- GUI and APIs for Python and C++
- Jobs can run scripts or YACS schemas

Presentation of Salome (5/5)

- Parametric layer
 - Simplified interface for parametric studies
 - □ Uses YACS and JOBMANAGER

OpenTURNS Graphical User Interface (1/5)

Goal of OpenTURNS GUI

 Guide the user in a homogeneous environment through the roadmap defined by the global methodology of treatment of uncertainties

OpenTURNS Graphical User Interface (2/5)

OpenTURNS GUI is more than a simple GUI!

- OpenTURNS GUI is based on a high level object model (study workflow)
- OpenTURNS GUI includes a layer over OpenTURNS tools.
- OpenTURNS GUI has been designed to mix beginners and advanced users

How can you use it ?

- Standalone binary called otgui
- In a dedicated salome module
- □ Can be used in a customized salome module

OpenTURNS Graphical User Interface (3/5)

- Two complementary ways to pilot OpenTURNS GUI: Python and widgets
- The design of OpenTURNS GUI allows a strong relationship between Python scripting and graphical interface (Model/View paradigm).
 - Actions you perform on gui can be mapped into a Python representation.
 - Load python script and dump python script.
 - Start session with graphical interface then continue with script then...

OpenTURNS GUI offers software bricks usable outside a dedicated tool

OpenTURNS Graphical User Interface (4/5)

- OpenTURNS GUI is an excellent target for High Performance Computing (HPC)
 - A large number of independent evaluations
- Salome features used by OpenTURNS GUI:
 - Manage a catalog of available resources
 - Make the evaluations parallel and distributed
 - Communicate with the batch manager
 - Define the job parameters
 - Submit and keep track of a job
 - □ Define the execution environment
 - Define a working directory
 - Copy data from the local workstation to the remote cluster
 - □ Fetch the results

OpenTURNS Graphical User Interface (5/5)

- SALOME software bricks used by OpenTURNS GUI
 - п YACS & JOBMANAGER
 - GUI Python console widget
 - PARAVIS widgets

A STUDY STEP BY STEP

- Install and configure Salome
- Define the function to be studied
- Create a model (YACS or python models in the GUI)
- Define the laws of input parameters
- Choose the type of study (central tendency, etc.)
- Choose the execution parameters
- Run the study and wait for results
- Analyse the results

Install and configure Salome

Installation steps

- Install Salome on your personal computer
 - https://www.salome-platform.org/contributions/edf_products
- □ Install Salome on the remote cluster
- Make sure you can connect to cluster without typing the password (ssh-copy-id)
- Declare the cluster installation in your local resource catalog (JOBMANAGER module)

Configure available resources

Salome resources

- Salome has to be installed on every machine you want to use
- You have to declare each installation in your local catalog of resources
- Main parameters:
 - Name
 - IP adresse
 - User name
 - Path to Salome installation
 - Batch manager

Define the function to be studied

- Identify uncertain parameters inputs and outputs of your study
- Use the python language
 - Input parameters must be only float variables
 - Return statement must contain only float variables
 - The name of the function should be " exec"
- The python function should:
 - Generate the input files for the solver based on the input parameters
 - Create a specific working directory for each execution of the function
 - □ Launch the solver
 - Retrieve the results from the output files of the solver
- Test your function

Example of a study function

Syrthes: thermal radiation solver

Heat exchange computation with SYRTHES

h1 T1 Face S1

h2 T2 Face S2

Heat exchange coefficient: h1, h2

Conductivity: lamb

Density: rho

Heat capacity: cp

def _exec(h1, h2, rho, cp, lamb): e = Study(h1, h2, rho, cp, lamb)e.defineWorkDirectory() if not e.caseExists(): e.prepareCase() e.runCase() temp, balance = e.getResults() return temp, balance

Create a model

- Open the OpenTURNS module in a Salome session
- Create a new study with a YACS model
- Set the python script in the YACS model

New study

Define the laws of input parameters

- Probabilistic model
- User design of experiments

Choose the type of study

Run the study and wait for results

Choose

- Computing resource
- Job parameters
 - Number of nodes
 - Time to execute
 - Etc.
- Remote working directory
- Local files to be copied to the remote working directory

Result analysis tools

Box plots, Cobweb plot, Plot matrix, Scatter plots

OpenTURNS Graphical User Interface - Distribution and future evolutions (1/2)

- Distribution of SALOME + OpenTURNS platform
 - LGPL license for the whole platform (SALOME + OpenTURNS + OPENTURNS GUI)
 - Download SALOME platform with OpenTURNS here:
 - http://www.salome-platform.org/contributions/copy_of_combs
- OPENTURNS GUI also available stand alone, but without the support for launching on remote resources

OpenTURNS Graphical User Interface - Distribution and future evolutions (2/2)

Improvements to come

- Launch, leave and reconnect to a job
- Avoid multiple job submissions for one OpenTURNS study
- Management of a partially executed study
- Management of failed computations

Questions?

