TD 5 : Équation de transport 1D

L'objectif de ce TD est d'étudier quelques méthodes numériques classiques pour approcher la solution de l'équation de transport (ou d'advection) linéaire, à vitesse constante c, en dimension 1, avec condition aux bords périodique :

$$\begin{cases} \partial_t u(t,x) + c \, \partial_x u(t,x) = 0, & x \in [0,1], t > 0, \\ u(t,0) = u(t,1), & t \geqslant 0, \\ u(0,x) = u_0(x), & x \in [0,1] \end{cases}$$
 (*)

Pour ce faire on considère un temps final T > 0, le pas de temps $dt = \frac{T}{N}$ et le pas d'espace $dx = \frac{1}{J}$, ainsi que les subdivisions $x_j = j dx$ avec j dans $\{0, \ldots, J-1\}$ et $t^n = n dt$ avec n dans $\{0, \ldots, N\}$. On note u_j^n l'approximation de $u(t^n, x_j)$ et α le paramètre $\alpha = c \frac{dt}{dx}$.

Exercice 1.

Dans cet exercice on s'intéresse aux schémas aux différences finies explicites suivants.

nom du schéma	formule
décentré	$\frac{u_j^{n+1} - u_j^n}{dt} + c\frac{u_j^n - u_{j-1}^n}{dx} = 0$
centré	$\frac{u_j^{n+1} - u_j^n}{dt} + c \frac{u_{j+1}^n - u_{j-1}^n}{2dx} = 0$
Lax-Friedrichs	$\frac{u_j^{n+1} - \frac{1}{2} \left(u_{j+1}^n + u_{j-1}^n \right)}{dt} + c \frac{u_{j+1}^n - u_{j-1}^n}{2dx} = 0$
Lax-Wendroff	$\frac{u_j^{n+1} - u_j^n}{dt} + c \frac{u_{j+1}^n - u_{j-1}^n}{2dx} - c^2 \frac{dt}{2} \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{dx^2} = 0$

- 1. Écrire la solution exacte du problème (*).
- 2. Écrire un script decentre qui renvoie une animation représentant les u^n calculés avec le schéma décentré et les $u(t^n,\cdot)$ exacts (on utilisera FuncAnimation). Mettre en évidence la condition de Courant-Friedrichs-Lewy en changeant la valeur du paramètre α . Comment varie la dispersion du schéma? On pourra considérer les données initiales suivantes : $u_0(x) = \sin(10\pi x)$, $\mathbb{1}_{\left[\frac{1}{3},\frac{2}{3}\right]}(x)$, $|\sin(\pi x)|^{10}$.
- 3. Reprendre la question précédente avec les autres schémas.