[CS304] Introduction to Cryptography and Network Security

Course Instructor: Dr. Dibyendu Roy Winter 2022-2023 Scribed by: Akshay (202051018) Lecture (Week 11)

Euler's Theorem

If gcd(a,m) = 1 then:

 $a^{\phi(m)} \equiv 1 \mod m$

where, $\phi(m)$ is Euler's totient function

$$S = \{x \mid gcd(x, m) = 1\}$$

= \{s_1, s_2, \ldots, s_{\phi(m)}\}

 $gcd(s_i, m) = 1 \text{ (obvious)}$

Considering another set:

$$S_1 = \{a.s_1, a.s_2,, a.s_{\phi(m)}\}$$

 $a.s_i \not\equiv a.s_j \mod m$ (elements in S_1 are also distinct like in S)

$$|S| = \phi(m)$$

$$|S_1| = \phi(m)$$

Since, s_i (from set S) is co-prime to m, then $a.s_i$ (exist in set S_1) is also co-prime to m (because no factor can be taken out from a by m since gcd(a,m) = 1).

In nutshell, we can say some element of set S is equivalent to some element of S_1 :

$$\implies s_i \equiv a.s_j \mod m$$

$$\Pi_{i=1}^{\phi(m)} s_i \equiv \Pi_{i=1}^{\phi(m)} a.s_i \mod m$$

$$\Pi_{i=1}^{\phi(m)} s_i \equiv \Pi_{j=1}^{\phi(m)} a.s_j \mod m$$

$$\implies \Pi_{i=1}^{\phi(m)} s_i \equiv a^{\phi(m)}.\Pi_{j=1}^{\phi(m)} s_j \mod m$$

Inverse of each element exists (because of gcd being 1 with m for all elements), so we can cancel equal terms from both sides.

$$\implies a^{\phi(m)} \equiv 1 \mod m$$

2 Fermat's Theorem

If p is a prime number and p does not divide integer a then:

$$a^{p-1} \equiv 1 \ mod \ p$$

(Derived from Euler's theorem, as $\phi(m) = m - 1$ when m is prime) Also,

$$a^p = a \mod p$$

(This one is true even when p divides a)

3 RSA Cryptosystem

Few facts:

- 1. If gcd(a,m) = 1 then $a^{\phi(m)} \equiv 1 \mod m$
- 2. $a^{p-1} \equiv 1 \mod p$

Designed by Rivest, Shamir and Adleman in 1977.

- n = pq here p,q are primes
- Plaintext space = \mathbb{Z}_n Ciphertext space = \mathbb{Z}_n
- Key space $= \{K = (n, p, q, e, d) \mid ed \equiv 1 \mod \phi(n)\}$
- Encryption: K = (n,p,q,e,d) E(x,K) = C $C = E(x,K) = x^e \mod n$
- Decryption: Dec(C,K) = x $x = Dec(c,K) = c^d \mod n$

Proof:

$$ed \equiv 1 \mod \phi(n)$$

$$\implies ed - 1 = t.\phi(n)$$

$$1 = e.d + t_1\phi(n)$$

$$1 = gcd(e, \phi(n)) = e.d + t_1\phi(n)$$

Enc: $C = x^e \mod n$ Dec: $x = c^d \mod n$ $c^d = (x^e)^d \mod n = x^{ed} \mod n$ Also, $e.d \equiv 1 \mod \phi(n)$ $ed - 1 = t.\phi(n)$ $\implies ed = 1 + t.\phi(n)$

Now,
$$c^d = x^{1+t.\phi(n)} \mod n$$

= $x.x^{t.\phi(n)} \mod n$
= $x.x^{t.[(p-1).(q-1)]} \mod n$
= $x.x^{t.[(p-1).(q-1)]} \mod (pq)$

We need prove that $x^{t.[(p-1).(q-1)]} \equiv \mod(pq)$

Possible gcds b/w x (whose range is from 0 to pq-1) and pq (p is prime, q is prime): 1, p, q (three possibilities)

- x can have multiple of neither p nor $q \implies gcd = 1$.
- \bullet x can have multiple of p only \implies gcd = p
- x can have multiple of q only \implies gcd = q
- x can not have multiple of both p and q because max value of x is pq-1

Case 1:

```
\begin{split} &\gcd(x,pq)=1\\ \Longrightarrow &\gcd(x,p)=1 \text{ (because no multiple p and q in x, p is prime)}\\ &\operatorname{and }\gcd(\mathbf{x},\mathbf{q})=1\\ &\operatorname{By \ Euler's \ theorem:}\ x^{p-1}\equiv 1 \ mod\ p\\ &x^{t(p-1)(q-1)} \ mod\ p\equiv (x^{p-1})^{t(q-1)} \ mod\ p\\ &\equiv 1 \ mod\ p\ (\operatorname{As}\ x^{p-1}\equiv 1 \ mod\ p\ )\\ &\operatorname{Similary,}\\ &x^{t(p-1)(q-1)} \ mod\ q\equiv (x^{q-1})^{t(p-1)} \ mod\ q\\ &\equiv 1 \ mod\ q\ (\operatorname{As}\ x^{q-1}\equiv 1 \ mod\ p\ ) \end{split}
```

On combining these two: $x^{t(p-1)(q-1)} \equiv 1 \mod (pq)$

Case 2, 3: pending