Zestaw 7 - Zadanie 7

Metody probabilistyczne w uczeniu maszynowym

Łukasz Trzos

Treść zadania

Niech \mathcal{A} i \mathcal{B} będą klasami pojęć. Wykaż, że dla $\mathcal{C} = \{a \cap b : a \in \mathcal{A}, b \in \mathcal{B}\}$ zachodzi $\Pi_{\mathcal{C}}(m) \leqslant \Pi_{\mathcal{A}}(m)\Pi_{\mathcal{B}}(m)$. Korzystając z powyższego faktu wykaż, że dla klasy pojęć \mathcal{C} o wymiarze $VC(\mathcal{C}) = d$ i klas $\mathcal{C}_k = \{\bigcap_{i=1}^k c_i : c_i \in \mathcal{C}\}$ zachodzi

$$VC(\mathcal{C}_k) \leq 2dklog_2(3k)$$

dla każdego $k \ge 1$.

Rozwiązanie

Ograniczenie dla przecięcia klas pojęć

Weźmy dowolny zbiór m elementowy. Przyjmijmy, że klasa \mathcal{A} realizuje na tym zbiorze m_A różnych klasyfikacji, analogicznie klasa \mathcal{B} realizuje ich m_B . W klasie \mathcal{C} każdy klasyfikator jest postaci $a \cap b$. Wiemy, że możemy wygenerować maksymalnie $m_A m_B$ parami różnych klasyfikatorów poprzez skrzyżowanie każdego z \mathcal{A} z każdym z \mathcal{B} . Zatem klasa C może na tym zbiorze realizować maksymalnie $m_A m_B$ różnych klasyfikacji.

Ponieważ zachodzi to dla dowolnego zbioru, możemy rozważyć zbiór, który świadczy $\Pi_{\mathcal{C}}(m)$. Wiemy, że na tym zbiorze \mathcal{A} i \mathcal{B} realizowały kolejno jakieś m_A i m_B klasyfikacji, oraz, że $\Pi_{\mathcal{C}}(m) \leqslant m_A m_B$, ale skoro znaleźliśmy zbiory świadczące granice: $\Pi_{\mathcal{A}}(m) \geqslant m_A$ oraz $\Pi_{\mathcal{B}}(m) \geqslant m_B$, to ostatecznie dochodzimy do wniosku, że:

$$\Pi_{\mathcal{C}}(m) \leqslant m_A m_B \leqslant \Pi_{\mathcal{A}}(m) \Pi_{\mathcal{B}}(m)$$

Ograniczenie dla klasy C_k

W rozwiązaniu skorzystamy z Lematu Sauer'a, według którego jeśli dla pewnej klasy pojęć \mathcal{C} zachodzi $VC(\mathcal{C})=d$, to dla $m\geqslant d$:

$$\Pi_{\mathcal{C}}(m) \leqslant \sum_{i=0}^{d} \binom{m}{i} \leqslant \left(\frac{em}{d}\right)^{d}$$

W naszym przypaku bierzemy $m = 2dklog_2(3k)$ i otrzymujemy:

$$\Pi_{\mathcal{C}_{\parallel}}(m) \leqslant \prod_{i=1}^{k} \Pi_{\mathcal{C}}(m) \leqslant \left(\frac{em}{d}\right)^{dk} = \left(2eklog_2(3k)\right)^{dk}$$

Chcemy pokazać, że $\Pi_{\mathcal{C}_{\parallel}}(m) < 2^m$, z czego będzie bezpośrednio wynikało $VC(\mathcal{C}_k) \leqslant m$. Przekształcamy równoważnie tezę:

$$\begin{split} &\Pi_{\mathcal{C}_{\parallel}}(2dklog_{2}(3k)) < 2^{2dklog_{2}(3k)} \\ &(2eklog_{2}(3k))^{dk} < 2^{2dklog_{2}(3k)} \\ &dklog_{2}(2eklog_{2}(3k)) < 2dklog_{2}(3k) \\ &log_{2}(2eklog_{2}(3k)) < log_{2}((3k)^{2}) \\ &2eklog_{2}(3k) < 9k^{2} \\ &2elog_{2}(3k) < 9k \end{split}$$

Łukasz Trzos 1

Aby wykazać ostatnią nierówność obliczamy pochodną funkcji $f(k) = 9k - 2elog_2(3k)$:

$$\frac{df}{dk}=9-\frac{2e}{3kln(2)}3=9-\left(\frac{2e}{ln(2)}\right)\frac{1}{k}$$

Widzimy, że pochodna rośnie wraz ze wzrostem k, najmniejszą wartość przyjmuje dla k=1, jest ona równa $9-\left(\frac{2e}{\ln(2)}\right)\approx 1.15>0$, zatem funkcja jest rosnąca na interesującym nas przedziale. Pozostaje sprawdzić, czy dla k=1 zachodzi f(k)>0: $f(1)=9-2elog_2(3)\approx 0.38>0$. Tym samym udowodniliśmy nierówność z której, jak wcześniej wspomniałem, wynika teza postawiona w zadaniu.

Łukasz Trzos 2