

Figure 1

STC-1 GTC-1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 8

PCR

Southern

Figure 7

GK

GIP

Figure 9

Figure 10

Figure 11A

Figure 11B

Figure 12

Figure 13

GIP Promoter

atctctccag tcccttcctc aaccttctga gaacaggcaa actccaccat gattggcta
taaatcgta tatggaccta ctaaggatgt aacaactggg agcatgtta cctagcatgt
ccgaaaccccg gagttcagtc cctagcactg cacaatctca gtccttatga agtagaggg
agatcagagg ttcaaggaca acatcaattt gagaccagcc tggctactt accaaagaaa
gaaagagaga aataaataaa tagatagata aataaataaa taagtaata aatatcttat
ggctggagag ttggtcagt gtttaagagc acttattgtg gggttgggta tttagctca
tggtagagcg ttgccttagg aagctcaagg ccctgggttc ggtccccagc tccggaaaca
aaacaaaaca aaacaaaacaa aaacaaaacaa aaaaaaaacc ctgtctggaa aacacctaaa
taaagatata tatataata atatatacat ataataatata tatgatataat atatataat atatcttgt
ggaggaagct ataccttct ttcgttgc tccaacacat aatgtgcc tgcacatccca
ttcatattgc cccaagtggg aaaccatgtg actataaact ctaagttcct agtcaactagg
aactctcaag acacccatct cagcagcat cacttccgga gtgccaccat tatcagttaa
catccacatc tggattcag atcccagatc cttctgttc cctcagaagt cacctacagc
tttgggggg tgcccttcc ctcagagagt gccaccccgag ttgaccctca ccaaggcaac
ccttgcacc cacagaatcc aacaggaagt agggggaga aacagccggcc ctgtgcccag
aaaaaaagag gggaggaga aggggggtgc cgcctacca cggggcaggt cccagataac
actgcagata cccaaatgtt aatcacccat tagcacaggc ccagagcaaa gggaaagt
attaggtta taatgggtt cactgggcag gaccagtggg cttagcttc aaagataaga
gttttcagg ttaatcagca ccctgtggtg tgtggatata aggaagctaa cacaggct
tgaagcaaga tcctgag

Mouse chromogranin A (Chga) gene, promoter region.
ACCESSION L31361

1 ccgaaattac ccactacgtt ggaattctat aagggttggg ttgtgttgc ttgttacagc
61 tgcgttttg gcacccagca cagctgagtg gttctaagcc cacgtcgatg cttaaacacat
121 ggttgttga tgaatacacg cgaagccgggt ttcatttttag gggcatgagt aggcagaggt
181 gtgggcagga agcagggaaag agcggaaaca ggtgcggaca gaaaggaggg gctctgaagg
241 atgcctcgtca gtgcctaaact gtcattcaga taccagggttc actgtggccc taggcccagc
301 tgcacggggc ttccatgtg gtcgtcccg ggtgagagca gaactcggtt gggcgcccc
361 gaaggaaacc aaccaggaag cagggttgc cccaaattat ccaggtttttta agtacattt
421 agagacaagg ctgggtgtt gaaggtcaga ggtgtccctg ggggtctgga ctaggactga
481 ccactctgt tttagtttaa tggtgagaac tgcctcacac tgctaccgtc ctacttgcc
541 ccttgagagc tgcgttgc tgcacccaccc atgtgtgggt tggaccctca gtcacacact
601 gaacgtgtt gaagccactg ttgtcagag cagggcttc ggcactgagg aagcagtgc
661 caactatcccc tatcaaataa caattaaata cacacagaat gcgaggcaca caactgagg
721 tcaggagagg ctcgtcgtca gcaagggtt caagaggctt ctgtgggacc cgctggatgt
781 tccaggaggt tcttaaagat gggcgtgc tccagccaagt gaaatcaaga gaaaagtac
841 cgaagtatag gaaaacttcg cagtcgttggag aggtttatag gggagggatc cgaggctc
901 agacaggagt gacttgcaca cggacgcaca gcaagtggc aggtggagtt cagctgtgcc
961 accttctgaa gccgggtacc ctttacagcc accagataca agcgggatag agacagctga
1021 tggagaagct ggagggtgggg ggcgggaccc cgaagggtgg gaaaggcgc gggggggcgg
1081 tcctatgacg taatttccctg gggtgtgcg cgctgtgcg tgcgtgtgcg tttatataaa
1141 agccggcata gcattgtcgc tgcgtccgc gccacccgcca ccatcaccgc ttttaccacc
1201 accgctactg cagtgttccc gctggcgtcag agcttggta gccagactac agacccactc
1261 ccgcccatttcccttgcgtccact cttccgcac cgtccggcgc gctatgcgc

//

Figure 14

Mus musculus secretogranin II (Scg2) gene, promoter and exon 1, complete sequence.
ACCESSION AF037451

Mus musculus glucokinase gene, 5' flanking region.
ACCESSION U93275

1 agcttaggt gtgtgaatat ctacttgtt gctaggccct tggtcatact aagtaagttt
61 ccccttcaact ggggtgtacc agtttacccct ggactgtcta agcaacaaga aggatagaca
121 tggcctacca cagatttcat gtctgccact ggctatgtca gaacatgtag gagctttgg
181 aatcagtgaa acaggatattt tcaagactgcc ttcccctgcgt ggggcttcc cgaaggccata
241 ttttcttag agtcagccct tccccagctg ggacaagctg tactggacag atgccagcca
301 cttaactgg gaatacatgg tcatttaggc agctggctta tctcatccat ggtacttgtat
361 ggcttcgggt cagcacccca cagaaaagttc agacgggagg ctcccgagaa aacagagaag
421 caggcaggag atcctgcagg caatcctct gctccacagc ctgcattggac ttccctcagc
481 cttagtgcgt gtgggtccca tctgagaaca ttggttataat gtttatttca aaccgatctg
541 cctttaaagga gtggaagaaa aaaactgtgg tgtttggct acctttatga taatggcctt
601 ttcatccctcc taataaaatat tgccaagtag ggttagattct atacgaaagc tcttaacccca
661 tggtattagc aaatcatgtta ggtgctata atgaataactg gatgcagtca gtacagggat

Figure 15

H.sapiens adenosine deaminase (ADA) gene 5' flanking region and exon 1 (and joined CDS).
ACCESSION X02189

1 tccaggaaat gcgcgatcca ggccggcggg cggggcgggg gctccggcga gagggcgggc
61 cccgggaacg gcggcgggcg gggcgggagg cggggcccgg cccgttaaga agagcgtggc
121 cggccgcggc caccgctggc cccagggaaa gccgagcggc caccgagccg gcagagaccc
181 accgagcggc ggcggagggc gcgacgcccc ggcgcacgag ggcacc

Homo sapiens mRNA for pre-proinsulin.
ACCESSION X70508

MALWMRLPLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFYTPKTRREA
EDLQVGVQVELGGGPGAGSLQPLALEGSLSQKRGIVEQCCTSICSLYQLENYCN"

l gctgcatcg aagaggccat caagcacatc actgtccatc tgccatggcc ctgtggatgc

61 gcctcctgcc cctgtggcg ctgctggcc tctggggacc tgacccagcc gcagccttg
121 tgaaccaaca cctgtgcggc tcacaccctg tgaaagctct tacctatgt tgcggggAAC
181 gaggcttctt ctacacaccc aagacccgccc gggaggcaga ggacctgcag gtggggcagg
241 tggagctggg cgggggcctt gggtcaggca gcctgcagcc ctggccctg gaggggtcccc
301 tgcagaagcg tggcatgtg gaacaatgtt gtaccagcat ctgtccctc taccagctgg
361 agaactactg caactagacg cagcccgcaag gcagcccccc accccggcgc tcctgcacccg
421 agagagatgg aataaaagcccc ttgaaccagc

Homo sapiens leptin (LEP), mRNA.
ACCESSION XM 004625

"MHWGTLGFLWLWPyLFYVQAVPIQKVQDDTTLIKTIVTRINDISHTQS VSSKQKV
LDFIPGLHPILTLSKMDQTLAVYQQILTSMPSRNVIQISNDLENLRD
LLHVLAFSKSCHLP
WASGLETLDSLGGVLEASGYSTEVVVALSRLQGSQDMLWOLDLSPGC"

Figure 17

2101 gctatcacac agtgggtggt ggatctgtcc aaggaaacctt gaatcaaagc agtttaacttt
2161 aagactgagc acctgctca tgctcagccc tgactgggtgc tataggctgg agaagtcac
2221 ccaataaaaca ttaagattga ggcctgccc cagggatctt gcattccag tggtaaaacc
2281 gcactcaccc atgtgccaaag gggggattt taccacagca gctgaacagc caaatgcac
2341 gtgcagttaa cagcagggtgg gaaatggat gagctgaggg gggccgtgcc cagggccca
2401 cagggAACCC tgcttgcact ttgttaacatg ttacttttc agggcatctt agcttctatt
2461 atagccacat ccctttgaaa caagataact gagaatttaa aaataagaaa atacataaga
2521 ccataaacagc caacagggtgg caggaccagg actatagccc aggtcctctg atacccagag
2581 cattacgtga gccaggtaat gagggactgg aaccaggag accgagcgct ttctggaaaa
2641 gaggagtttc gaggttagat ttgttaaggagg tgagggatgt gaattgcctg cagagagaag
2701 cctgttttgt tggaaagggtt ggtgttgga gatgcagagg taaaagtgtg agcagtgt
2761 tacagcgaga ggcagagaaa gaagagacag gagggcaagg gccatgtga agggacctt
2821 aagggttaaag aagtttgata ttaaaggagt taagagttagc aagttctaga gaagaggctg
2881 gtgcgtggc cagggtgaga gctgcctgg aaaatgtgac ccagatcctc acaaccacct
2941 aatcaggctg aggtgtctt agcctttgc tcacaaaacc tggcacaatg gctaattccc
3001 agagtgtaa acttcctaag tataaatgt tgcgtttt tggtaactta aaaaaaaaaaa
3061 aaaagtttgg cccgggtgcgg tggctcacgc ctgttaatccc agcactttgg gagggcaagg
3121 tggggggatc acaaggtcac tagatggcga gcatcctggc caacatggt aaaccccgtc
3181 tctactaaaaa acacaaaagt tagctgagcg tggtggcggg cgcctgtgt cccagccact
3241 cgggaggctg agacaggaga atcgcttaa cctgggaggc ggagagtaca gtgagccaag
3301 atcgcgccac tgcactccgg cctgtatgaca gagcggattt ccgtttaaa aaaaaaaaaa
3361 aaaaagtttt tttttttttt aatctaaata aaataactt gccccctg

Homo sapiens cholecystokinin (CCK), mRNA.

ACCESSION XM_003225

"GSAAGLLRLETPSQLRPNPKAMNSGVCLCVLMAVLAAAGALTQPVPPADPAGSGLQRAE
EAPRRQLRVSQRTDGESRAHLGALLARYIQQARKAPSGRMSIVKNLQNLDPSHRISDRD
YMGWMDFGRRSAEYYEYPS"

1 ggctcagctg ccgggtcgct ccgggtggaa acgccaagcc agctgcgtcc taatccaaaa
61 gccatgaaca gggcggtgtg cctgtcgctg ctgtatggcgg tactggcgcc tggcccccctg
121 acgcagccgg tgcctcccgc agatcccgcg ggctccgggc tgcaagcgggc agaggaggcg
181 cccctgtggc agtgcggatgt atgcagaga acggatggcg agtcccggc gcacctggc
241 gcccgtgg caagatacat ccagcaggcc cggaaagctc ctctggacg aatgtccatc
301 gtaagaacc tgcagaacct ggaccccggc cacaggataa gtgaccggga ctacatggc
361 tggatggatt tggccgtcg cagtggcggag gatgtatgtt accccctcta gaggaccccg
421 cggccatcag cccaaacggga agcaacctcc caacccagag gaggcagaat aagaaaacaa
481 tcacactcat aactcatgt ctgtggatgt tgacattgtat tttatcttatttattaatgttc
541 tcaatgtgaa aaatgtgtct gtaagattgt ccagtgcac cacacaccc accagaattt
601 tgcaaatgga agacaaaatgttttctat ctgtactcc tggtctgaaa atgttgtat
661 gctattaaag tgatttcatt ctgcc

CCK Promoter (Rat)

ACCESSION S70690

1 aattcgcgc ctaagccgca tttttcacgt ttccagacat gtcacaaata cagctaattc

Figure 18

61 ctacaacctg agctgtgtca tggggggggg gggaaatcacc cacagcattt aatctgctgc
121 tgtttaaac acgttgctc taagtaaaga gaccgctaga gccacaacca ggaacctaac
181 tgctgctggc atcacttgtcc tttcatagt ctccctcagc cggaaaccccc ccacgctggg
241 tgccttcctt atttagaaag agtttcttaag cttttcttcc tcaccctaga ctggcaagg
301 tgagggttagg ctgagggttg caagactgtg agaaaaggaa gcccctctt tcttcgt
361 cggtgagtat ctccagcaag atcctcacca cccagtgaa tcccgtaact ctagaggaaa
421 ggaagaactc tagaggacgg gaagatcatt gcaagctcc ctagatgtgc gagcccagcc
481 cgctccactc agccaggccag agcttgaggg tgcttgagac actctgtgc gccacttcgc
541 gaccaaaatc atcggtagat gtggctggg gagaagtcat ctgggaga aatggaaacc
601 ttttccccaa aggcttcccg cacaaaaggc aagagctca cccaggatct taaaatctg
661 taagacgaga atccacgagg ccaactgtga ttgagttctg aaaaatttggag agccctactc
721 cccttcctca ctgtgggg cccactcagg tctgaagtgc tccagagaa catgccagaa
781 ttacatttgc tgacacccat tagtggggg tcccccggg tccctggagg atttgcatttgc
841 tcaaagctca ctaaacatgt gtcagttctt ccattccaga caaactcctg ctcttcctcc
901 ggagtagggg tggcacccctc cctgaagagg actcagcaga ggcaccgaac aggggggggaa
961 ggaaagctgt ttagataaag aggaggactc atacaatgtt ccccgctgg gaggggctat
1021 cctcatttac tggggccgtt cccttcctcc ggggggcccac ttgcatttgc ggtctctcca
1081 gtggctgcct ctgagcacgt gtcctggccg actgcgtcag cactggtaa acagatgact
1141 ggctgcgtac cggggggggc tatttaagag gagtcgcctt gccgcgtcc ctcaacttag
1201 ctggacagca gccgtggaa accgccaagc cagctgactc cgcatccaa ggtaagtggc
1261 tggcagatcc aagaatcatg agtgtgaaga actggccgt agcttgcatttgcatttgc
1321 ttagtcttc cattttcttgc gcttccctc acttgacagc tg

Human messenger RNA for growth hormone (presomatotropin).
ACCESSION V00519

"MATGSRTSLLAFLCLPWLQEGLAFPTIPLSRFDNAMLRAHRLHQLAFDTYQEFEET
AYIPKEQKYSFLQNPKTSCLFSEIPTPSNREETQQKSNEELLRISLLIQSWLEPVQFLRSV
FANSLVYASDSNVYDLLKDLEEGIQTLMGRLEDGSPRTGQIFKQTYSKFDTNSHNDDA
LLKNYGLLYCFRKDMDKVETFLRIVQCRSVEGSCGF"

1 cgaaccactc agggccctgt ggacagctca cctagctgca atggctacag gctccggac
61 gtcctgtctc ctggcttttg gcctgctgtg cctgcctgg cttaagagg gcagtgcctt
121 cccaaaccatt cccttatcca ggccttttg caacgctatg ctccgcggcc atcgctgca
181 ccagctggcc tttagacacctt accaggagtt tgaagaagcc tatatccaa aggaacagaa
241 gtatttcatc ctgcagaacc cccagacccctc cctctgtttc tcagagtctt tccgacacc
301 ctccaaacagg gaggaaacac aacagaaatc caaccttagag ctgctccgca tctccctgct
361 gctcatccag tcgtggctgg agccctgtca gttcctcagg agtgcgttgc ccaacagcct
421 ggtgtacggc gcctctgaca gcaacgtctca tgacctccta aaggacctag aggaaggcat
481 cccaaacgtcg atggggaggc tggaaatgg cagccccccgg actggccaga tcttcaagca
541 gacccatc aagtgcaca caaaatcaca caacgatgac gcactactca agaactacgg
601 gctgcctac tgcttcagga aggacatgg caaggtgcag acattcctgc gcatcgtgca
661 gtggccgtctt tggtggggca gctgtggctt ctgcgtccccc gggtggccatc cctgtgaccc
721 ctcccccagg cctctctgg ccctgaaatg tgccactcca gtggccacca gccttgcct
781 aataaaatata agtgcatac

//

Figure 19

Rat GIP Promoter -1 to -1894 bp.

(-1894)

5' _GAGTGGCGACAGGCTGCTAGCAGGCTCACACTGAGCTAACCCACCCATAT
ATATAACATAGTTACTATTAGCTTATTATTTAAGATTATCATTATATATAG
TACACTGTAGTGTCTAGATACACAGAAGAGGCATCGGTCTTACAGAGAGCCACC
ATGTGGTTGCTGGGATTGAACTCACCTCTGGCAGAGCAGTCGGTGCTTAACG
CTGAGCCATCTCTCCAGCGCCCCAAAGCCCAGCTTTAAAAATATTTAAAATTCT
TTCTACAGATTGTTATGTATATGAGTGTGTTGTGATGCGTTGATGTGTGTA
GTGTGCA TGGCACATGCCAGTGGGCCACAGACAGAGGGACATGAGAATTCCCCTGAA
ACTTGGAGTTACAGATGGCTGTGGCTGCCATGTGAGTGAGCGCCTTGGAACCAA
CCTGGTCCTGCACAAAAGCAACAAGCACTCTTAATCGTTGAGGCCACCTCTCCAACC
CCTGATATTCTTCTGTTGGTCATTAAAATTGATAAACAGAGGGTTCTTATT
TAAAGATTATTTATTTATGTGAGTACACTGTTGCTCTTCAGACACATAGAAGAG
GGCATTGCTGGATTCTGCTACAGATGGTTGTGAGCCACCATGTGGTGCTGGAGTT
AAACTCAGGACCTCTGGAAGAGCAGTCAGTGCTCTAACCACTGAGCCATCTCTCCA
GTCCCTTCCTCAACCTCTGAGAACAGGCAAACCTCACCATTGGCTTATAAATC
GTTATATGGACCTACTAAGGATGTAACAACACTGGGAGCATGCTTACCTAGCATGTCCG
AAACCCGGAGTTCAAGGACAACATCAATTGAGACCAGCCTGGCTACTACCAAA
GAAAGAAAAGAGAGAAATAAAATAGATAGATAAATAAAATAAAGTAAATAA
ATATCTTATGGCTGGAGAGTTGGTCAGTGTGTTAAGAGCACTATTGTGGGGTTGG
GATTATCTCAGTGGTAGAGCGTTGCCCTAGGAAGCTCAAGGCCCTGGGTCGGTCC
CCAGCTCCGGAAACAAAACAAAACAAAACAAACAAACAAACAAAAAC
CTGTCGGAAAACACCTAAATAAAGATATATATATAATATACATATAAT
ATATATGATATATATATATATATCTTGTGGAGGAAGCTACCTTCTTCTT
GAGCCTCCAACACATAAAATGTGCCCTGTCATCCCATTCAATTGCCCAAGTGGGAA
ACCATGTGACTATAAACTCTAAGTCCCTAGTCACTAGGAACCTCTCAAGACACCTACC
TCAGGCAGCATCACTCCGGAGTGCCACCATTATCAGTTAACATCCACATCTGGGAT
TCAGATCCCAGATCCCTCTGTCAGGAGCTCACCTACAGCTTGTGGGGTGC
CCCTCCCTCAGAGAGTGCCACCCAGTTGACCTCACCAAGGCAACCCCTTGTACC
CACAGAATCCAACAGGAAGTAGGGGGAGAACAGGCCGGCCTGTGCCAGAAAAAA
AGAGGGGAGGGAGAACAGGGGGTGCAGCCTACCAACCGGGCAGGTCCCAGATAACA
CTGCAGATACCCAAATGTTAACCCATTAGCACAGGCCAGAGCAAAAGGGAAA
GTGATTAGGTGTATAATGGGGTCACTGGCAGGAGCAGTGGCTTGAGCTTCAA
GATAAGAGGTTTCAGGTTAACAGCACCCGTGGTGTGGATAAGGAAGCTAA
CACAGGGTCTGAAGCAAGATC_3' (-1)

Figure 20