Alzheimer's Disease and Cognitive Impairment Prediction

ELIUD OMOLLO

```
In [1]: #numpy and pandas
        import pandas as pd
        import numpy as np
In [2]: #visualization
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
In [3]: #preprocessing
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import PolynomialFeatures
In [4]: #Regressions
        from sklearn.linear model import LinearRegression
        from sklearn.neighbors import KNeighborsRegressor
In [5]: #classification
        from sklearn.linear_model import LogisticRegressionCV
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.discriminant analysis import LinearDiscriminantAnalysis
        from sklearn.discriminant analysis import QuadraticDiscriminantAnalysis
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.ensemble import AdaBoostClassifier
        from sklearn.pipeline import Pipeline
In [6]: #Regression model metrics
        from sklearn.metrics import r2 score
        from sklearn.model selection import cross val score
In [7]: #classification metrics
        from sklearn.metrics import accuracy score
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import classification_report
        from sklearn.metrics import f1 score
        from sklearn.metrics import precision score
        from sklearn.metrics import recall_score
        from sklearn.metrics import roc curve
        from sklearn.metrics import auc
```

```
In [8]: #regularization
    from sklearn.linear_model import LassoCV
    from sklearn.linear_model import RidgeCV
    from sklearn.decomposition import PCA
```

In [9]: #cross validation
 from sklearn.model_selection import GridSearchCV
 from sklearn.model_selection import KFold

```
In [10]: #utilities
from sklearn.model_selection import train_test_split
```

In [11]: #global random state
rnd_state = 41

In [12]: import warnings
import sklearn.exceptions
warnings.filterwarnings("ignore", category=sklearn.exceptions.UndefinedMetricWarn

FUNCTIONS

Imputing Functions

```
In [13]: #impute missing numerical data with mean
def imputeWithMean(dataFrame):
    nullCols = dataFrame.columns[dataFrame.isnull().any()].tolist()
    for col in nullCols:
        col_mean = dataFrame[col].mean()
        dataFrame[col] = dataFrame[col].fillna(col_mean)
    return dataFrame
```

```
In [14]: #We will add new columns that tracks changes from the baseline data
         #if there is no change, function will record zero, otherwise function will record
         def trackBaseline(dataFrame):
             #check if a baseline col exists
             blColArray = []
             for col in list(dataFrame):
                 if '_bl' in col:
                     blColArray.append(col)
                 else:
                     blCol = col+' bl'
                     if blCol in list(dataFrame):
                         #create a new column and populate the column with 0 if no change,
                         f = lambda x: 1 if x[col] != x[blCol] else 0
                         #create a new cols with the new values
                         dataFrame[col+'_chg'] = dataFrame.apply(f, axis = 1)
             #drop all the baseline columns
             dataFrame = dataFrame.drop(blColArray, axis=1)
             return dataFrame
```

Encoding Function

```
In [15]: | #function to encode categorical data:
         # Target will be encoded with label encoding
         #Features will be encoded using one hot encoding for features
         def encodeData(dataFrame, target):
             catCols = []
             #encode the target
             from sklearn import preprocessing
             le = preprocessing.LabelEncoder()
             dataFrame[target] = le.fit transform(dataFrame[target])
             cat = le.inverse_transform([0, 1, 2])
             #encode features
             feat = [x for x in list(dataFrame) if x !=target]
             for col in feat:
                  if dataFrame[col].dtype.kind == '0':
                     catCols.append(col)
             catDf = dataFrame[catCols]
             catDf_en = pd.get_dummies(catDf, drop_first= True)
             dataFrame = dataFrame.drop(catCols, axis= 1)
             dataFrame = pd.concat([dataFrame, catDf en], axis=1)
             return dataFrame, cat
```

Standardize Data function

In [16]: #function to standardize the the test and train data using the mean and std of the
def dataScaler(train, test, target):

 features = [x for x in list(train) if (x !=target)]
 mean = np.mean(train.loc[:, features])
 std = np.std(train.loc[:, features])
 f = lambda x: (x-mean)/std

 train_n = train.apply(f, axis = 1)
 train_n[target] = train[target]

 test_n = test.apply(f, axis = 1)
 test_n[target] = test[target]
 return train_n , test_n

Model Evaluation

```
In [17]: #function to evaluate and plot various models
         def modelAnalyzer(X_train, y_train, X_test, y_test):
             scores = {}
             f1 scores = {}
             precision_scores = {}
             recall scores = {}
             models = dict(
                  lgr =LogisticRegressionCV(Cs=10, random_state=rnd_state, penalty='12', cv
                 ld = LinearDiscriminantAnalysis(),
                 qd =QuadraticDiscriminantAnalysis(),
                  knn= KNeighborsClassifier(),
                  rnd = RandomForestClassifier(random state= rnd state, max depth=None, max
             def fitpredict(model, suf):
                 #fit data
                 model.fit(X_train, y_train)
                 #make predictions
                 y predict train = model.predict(X train)
                 y_predict_test = model.predict(X_test)
                 #store values
                 #scores[name +'_train_score_' + str(suf)] = model.score(X_train, y_train)
                  scores[name +'_test_score_' + str(suf)] = model.score(X_test, y_test)
                 #calculate and store f1-scores
                 #f1_scores[name +'_train_f1_' + str(suf)] = f1_score(y_train,y_predict_train)
                 f1_scores[name +'_test_f1_' + str(suf)] = f1_score(y_test,y_predict_test,
                 #calculate and store precision scores
                 #precision_scores[name +'_train_precision_' + str(suf)] = precision_score
                  precision_scores[name +'_test_precision_' + str(suf)] = precision_score(y)
                 #calculate and store recall scores
                 #recall_scores[name +'_train_recall_' + str(suf)] = recall_score(y_test,y)
                  recall scores[name +' test recall ' + str(suf)] = recall score(y test,y p
             for name, model in models.items():
                  if name in ['lgr', 'ld', 'qd']:
                     fitpredict(model, '')
                 elif name in ['knn','rnd']:
                      params = \{\}
                      params['knn'] = {'n_neighbors': [2, 5, 10, 20]}
                      params['rnd'] = {'n_estimators': [5, 10, 20, 30, 40]}
                      for key, paramDict in params.items():
                           for k, param in paramDict.items():
                                  for item in param:
                                      if name == key:
                                          model = model.set_params(**{k: item})
                                          suf = str(key) + '_' + str(item)
                                          fitpredict(model, suf )
                  else:
                      pass
```

```
scoresDF = pd.DataFrame.from_records([scores])
f1_scoresDF = pd.DataFrame.from_records([f1_scores])
pscoresDF = pd.DataFrame.from_records([precision_scores])
rscoresDF = pd.DataFrame.from_records([recall_scores])
return scoresDF, f1_scoresDF, pscoresDF
```

Visualization Functions

```
In [18]: #Plot histogram given a dataframe and a colum. The histogram is colored by target
def histPlot(dataFrame, col, grouby):
    plt.figure()
    grouped = dataFrame.groupby(grouby)
    colors = ['blue', 'red', 'green']

    for i, group in enumerate(grouped):
        plt.subplot(1,1, 1)
        plt.hist(group[1][col], color=colors[i], label= group[1][grouby])
        plt.xlabel(col)
        plt.title(col + ' HISTOGRAM')
        plt.legend()
```

```
In [19]: #Plot scatter given a dataframe and a colum. The scatterplot is colored by target
def scatterPlot(dataFrame, xcol, ycol, groupby):
    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1,1.0, 1.0 ])
    colors = {0:'green', 1:'cyan', 2:'red', 3:'green', 4: 'magenta'}
    categories = dataFrame.groupby(groupby)
    for key, category in categories:
        category.plot(ax=ax, kind='scatter', x=xcol, y=ycol, label=key, color=colorset_title('Scatter plot of ' + xcol + ' vs ' + ycol)
    plt.show()
```

```
In [20]: #Function to plot missing data
def plotMissingData(dataFrame):
    miss_data = {col: (pd.isnull(dataFrame[col]).sum()/dataFrame.shape[0])*100 fo
    miss_data_df = pd.DataFrame.from_dict(data=miss_data, orient='index')
    g = sns.factorplot(x=miss_data_df.index , y=0, data=miss_data_df, kind= 'bar'
    g.set_xticklabels(rotation=90, fontsize=10)
    g.set_xlabels('Feature')
    g.set_ylabels('% of Missing data')
    plt.show()
```

```
In [21]: #Plot collinearility
def plot_collinearity(df, cols):
    fig, ax = plt.subplots(1,1, figsize=(10,8))
    sns.heatmap(np.corrcoef(df.T), ax=ax)
    ax.set_xticklabels(cols, rotation='vertical')
    ax.set_yticklabels(cols[::-1], rotation='horizontal')
    plt.show()
```

BASELINE MODEL

Import data and drop any unnecessary columns

```
adnimergeDF= pd.read csv('data\ADNIMERGE.csv')
In [22]:
          #Drop those columns since they do not add value to the model or they present inte
          #for example, SITE is the location where the test was done or they are collinear
          dropCols= ['PTID','VISCODE', 'SITE','COLPROT', 'ORIGPROT', 'EXAMDATE', 'FLDSTRENG
                       'FLDSTRENG bl', 'FSVERSION_bl',
                        'Years_bl','Month','Month_bl' ,'M','update_stamp',
                        'EcogPtMem', 'EcogPtLang',
                        'EcogPtVisspat', 'EcogPtPlan', 'EcogPtOrgan', 'EcogPtDivatt',
                        'EcogPtTotal', 'EcogSPMem', 'EcogSPLang', 'EcogSPVisspat', 'EcogSPPla
                        'EcogSPOrgan', 'EcogSPDivatt', 'EcogSPTotal', 'EcogPtMem bl', 'EcogPt
                        'EcogPtPlan_bl', 'EcogPtOrgan_bl', 'EcogPtDivatt_bl', 'EcogPtTotal_bl
                        'EcogSPMem bl', 'EcogSPLang bl', 'EcogSPVisspat bl', 'EcogSPPlan bl',
                       'EcogSPOrgan_bl', 'EcogSPDivatt_bl', 'EcogSPTotal_bl',
'RAVLT_immediate', 'RAVLT_learning', 'RAVLT_forgetting','RAVLT_perc_fe
                        'RAVLT_immediate_bl','RAVLT_learning_bl', 'RAVLT_forgetting_bl', 'RAV
                        'ADAS11', 'ADAS13', 'ADAS11_bl', 'ADAS13_bl'
          adnimergeDF= adnimergeDF.drop(dropCols, axis=1)
In [23]: | adnimergeDF.shape
Out[23]: (13017, 38)
In [24]: adnimergeDF.columns
Out[24]: Index(['RID', 'DX_b1', 'AGE', 'PTGENDER', 'PTEDUCAT', 'PTETHCAT', 'PTRACCAT',
                  'PTMARRY', 'APOE4', 'FDG', 'PIB', 'AV45', 'CDRSB', 'MMSE', 'FAQ',
                  'MOCA', 'Ventricles', 'Hippocampus', 'WholeBrain', 'Entorhinal',
                  'Fusiform', 'MidTemp', 'ICV', 'DX', 'CDRSB_bl', 'MMSE_bl', 'FAQ_bl', 'Ventricles_bl', 'Hippocampus_bl', 'WholeBrain_bl', 'Entorhinal_bl',
                  'Fusiform_bl', 'MidTemp_bl', 'ICV_bl', 'MOCA_bl', 'FDG_bl', 'PIB_bl',
```

Plot missing data

In [25]: plotMissingData(adnimergeDF)

'AV45_bl'], dtype='object')

```
PTECHOLAT |
PTEMACRAT |
PTEMAC
```

```
In [26]: #We are going to rows with null values for Target data 'DX','DX_bl'
adnimergeDF = adnimergeDF.dropna(subset=['DX','DX_bl'], axis=0, how='any')
```

Impute missing data

In [27]: #impute and plot missing data using our functios
 adnimergeDF = imputeWithMean(adnimergeDF)
 #returns null. All missing data imputed
 plotMissingData(adnimergeDF)

- In [28]: #Create a baseline change column using our function. Recal that the baseline func
 #that records 0 if no change occurred in the baseline and the current measurement
 blData_final = trackBaseline(adnimergeDF)
- In [29]: #We now have new fields with the suffix "_chg". These fields contain 0 if no change blData_final.columns

Perform one hot encoding on categorical data

- In [30]: #Perform One hot encoding on categorical data using our function. Also does label
 blData_final, cat = encodeData(blData_final, 'DX')
- In [31]: #Display inverse encoding
 print(cat)

['CN' 'Dementia' 'MCI']

In [32]: #Our final data
blData_final.head()

Out[32]:

	RID	AGE	PTEDUCAT	APOE4	FDG	PIB	AV45	CDRSB	MMSE	FAQ	 PTRACC
0	2	74.3	16	0.0	1.36926	1.781869	1.195086	0.0	28.0	0.0	
1	3	81.3	18	1.0	1.09079	1.781869	1.195086	4.5	20.0	10.0	
2	3	81.3	18	1.0	1.06360	1.781869	1.195086	6.0	24.0	12.0	
3	3	81.3	18	1.0	1.10384	1.781869	1.195086	3.5	17.0	17.0	
4	3	81.3	18	1.0	1.03871	1.781869	1.195086	8.0	19.0	14.0	

5 rows × 47 columns

In [33]: blData_final.describe()

Out[33]:

	RID	AGE	PTEDUCAT	APOE4	FDG	PIB	AV45
count	8910.000000	8910.000000	8910.000000	8910.000000	8910.000000	8910.000000	8910.000000
mean	2212.596857	73.747374	15.958361	0.544924	1.208160	1.781869	1.195086
std	1859.793954	7.014481	2.837294	0.658405	0.098701	0.066626	0.111252
min	2.000000	54.400000	4.000000	0.000000	0.636804	1.095000	0.814555
25%	605.000000	69.500000	14.000000	0.000000	1.208160	1.781869	1.195086
50%	1257.000000	73.700000	16.000000	0.000000	1.208160	1.781869	1.195086
75%	4335.000000	78.700000	18.000000	1.000000	1.208160	1.781869	1.195086
max	5296.000000	91.400000	20.000000	2.000000	1.753320	2.927500	2.669210

8 rows \times 47 columns

BASELINE EXPLORATORY DATA ANALYSIS: OVERALL

Train/Test Split

In [34]: #Split the data into 75% train and 25% test splits
X = blData_final.drop('RID', axis = 1)
train, test = train_test_split(X, test_size=0.25, random_state=rnd_state)

In [35]: train['DX'].value_counts(sort=False).plot.pie(autopct='%.2f').set_title('% Count
 print('Pie Chart of DX Distrubution')
 plt.show()

Pie Chart of DX Distrubution

BASELINE EXPLORATORY DATA ANALYSIS: COGNITIVE TESTS

Cognitive Tests

MMSE: Mini Mental State Exam

FAQ: Functional Activities Questionnaire MOCA: Montreal Cognitive Assessment CDRSB: Clinical Dementia Rating

```
In [38]: #Explanatory data analysis on Cognitive scores
    cogCols = ['MMSE', 'FAQ', 'MOCA','CDRSB']
    print('HISTOGRAM OF COGNITIVE TESTS')
    plt.figure(figsize=(20, 10))
    for k, p in enumerate(cogCols):
        plt.subplot(2,2, k+1)
        plt.xlabel(p)
        plt.title('Histogram of ' + p)
        train[p].hist()
    plt.show()
```

HISTOGRAM OF COGNITIVE TESTS

In [40]: train['AGE'].hist()
 print('Pie Chart of DX Distrubution')
 plt.show()

Pie Chart of DX Distrubution

['CN' 'Dementia' 'MCl'] = [0, 1, 2] From the histogram distribution, observe the following:

1: MMSE: Subjects with scores less than 17, had dimentia(encoded 1)

2: MOCA: Subjects with scores less than 15, had dimentia(encoded 1).

3: FAQ: Subjects with scores greater than 28 had dimentia(encoded 1).

4: CDRSB: Subjects with scores greater than 8 had dimentia(encoded 1).

CDRSB Official Guidelines: Score

0-18 --- Mild

19-36 -- Moderate

37-54 -- Severe

In [42]: #We will use our function to plot collinearity
plot_collinearity(train[cogCols] , cogCols)

Observed collinearity: 'MMSE', 'FAQ', 'MOCA', 'CDRSB' Features without collinearity

No collinearity: 'MMSE' with 'MOCA' No collinearity: 'FAQ' with 'MOCA'

No collinearity: 'MOCA' with 'CDRSB', MMSE and 'FAQ'

BASELINE PREDICTIONS

:

In [43]: #Use the custom function we created to standardize the data
#Recall we are standardizing the data using the mean and standard deviation of the
train, test = dataScaler(train, test, 'DX')

In [44]: train.describe()

Out[44]:

	AGE	APOE4	AV45	AV45_chg	CDRSB	CDRSB_chg	
count	6.682000e+03	6.682000e+03	6.682000e+03	6.682000e+03	6.682000e+03	6.682000e+03	668
mean	5.908151e-14	1.719001e-16	4.585387e-13	2.606249e-16	-9.705230e- 16	-1.465787e- 16	
std	1.000075e+00	1.000075e+00	1.000075e+00	1.000075e+00	1.000075e+00	1.000075e+00	
min	-2.670551e+00	-8.238791e- 01	-3.398385e+00	-2.980707e+00	-7.941728e- 01	-9.889861e- 01	
25%	-6.088465e-01	-8.238791e- 01	-4.310785e-03	3.354909e-01	-7.941728e- 01	-9.889861e- 01	
50%	2.555613e-03	-8.238791e- 01	-4.310785e-03	3.354909e-01	-4.191118e- 01	-9.889861e- 01	
75%	7.134883e-01	6.928090e-01	-4.310785e-03	3.354909e-01	3.310104e-01	1.011137e+00	
max	2.505039e+00	2.209497e+00	1.314385e+01	3.354909e-01	5.956927e+00	1.011137e+00	

8 rows × 46 columns

Using Cognitive Test to determine Cognitive State

```
In [45]: #Use our model analyzer function evaluate the performance of each test
    cogTests = ['MMSE', 'FAQ', 'MOCA','CDRSB']
    cogScoresDF = {}
    for cogTest in cogTests:
        xx_train = train[cogTest].values.reshape(-1, 1)
        yy_train = train['DX']
        xx_test = test[cogTest].values.reshape(-1, 1)
        yy_test = test['DX']
        cogScoresDF[cogTest] = modelAnalyzer(xx_train,yy_train, xx_test, yy_test )
```

```
In [46]: mm= cogScoresDF['MMSE'][0].T
fq= cogScoresDF['FAQ'][0].T
mo = cogScoresDF['MOCA'][0].T
cd = cogScoresDF['CDRSB'][0].T
```

```
In [47]:
        mm
Out[47]:
                                  0
          knn_test_score_knn_10 0.633303
          knn_test_score_knn_2 0.535009
          knn_test_score_knn_20 0.622980
          knn_test_score_knn_5 0.633303
                ld_test_score_ 0.572262
                lgr_test_score_ 0.640036
                           0.631508
                qd_test_score_
          rnd_test_score_rnd_10 0.642280
          rnd_test_score_rnd_20 0.641831
          rnd_test_score_rnd_30 0.641831
          rnd_test_score_rnd_40 0.641831
           rnd_test_score_rnd_5 0.641831
         mm_f1 = cogScoresDF['MMSE'][1].T
In [48]:
         fq_f1 = cogScoresDF['FAQ'][1].T
         mo_f1 = cogScoresDF['MOCA'][1].T
         cd_f1 = cogScoresDF['CDRSB'][1].T
In [49]:
         cd f1
Out[49]:
         knn_test_f1_knn_10  0.845661
          knn_test_f1_knn_2  0.609434
         knn_test_f1_knn_5  0.863338
                Id_test_f1_ 0.851588
               lgr_test_f1_ 0.863338
                qd_test_f1_ 0.801292
          rnd_test_f1_rnd_10 0.862402
```

```
In [50]: mm_r = cogScoresDF['MMSE'][2].T
    fq_r = cogScoresDF['FAQ'][2].T
    mo_r = cogScoresDF['MOCA'][2].T
    cd_r = cogScoresDF['CDRSB'][2].T
```

In [51]: cd_r

Out[51]:

```
knn_test_precision_knn_2 0.750116
knn_test_precision_knn_2 0.872471
knn_test_precision_knn_5 0.872471
knn_test_precision_knn_5 0.870294
ld_test_precision_ 0.870294
lgr_test_precision_ 0.872471
qd_test_precision_ 0.871759
rnd_test_precision_rnd_10 0.872471
rnd_test_precision_rnd_30 0.872471
rnd_test_precision_rnd_40 0.872471
rnd_test_precision_rnd_5 0.871759
```

```
In [52]: #New we look at the effect of combining all scores together
  #Use our model analyzer function evaluate the performance of each test
  #define input and target
  X_train_acog = train[['MMSE', 'FAQ', 'MOCA','CDRSB']]
  y_train_acog = train['DX']
  X_test_acog = test[['MMSE', 'FAQ', 'MOCA','CDRSB']]
  y_test_acog = test['DX']

#User our model analyzer function to generate values
  scoresDF, f1_scoresDF, pscoresDF = modelAnalyzer(X_train_acog, y_tr
```

^{**}Effect of Combining all cognitive scores together

In [53]: scoresDF.T

0

Out[53]:

 knn_test_score_knn_10
 0.864004

 knn_test_score_knn_2
 0.806104

 knn_test_score_knn_20
 0.864452

 knn_test_score_knn_5
 0.857720

 ld_test_score
 0.761221

 lgr_test_score
 0.850987

 qd_test_score
 0.792190

 rnd_test_score_rnd_10
 0.847397

 rnd_test_score_rnd_20
 0.850987

 rnd_test_score_rnd_30
 0.852334

 rnd_test_score_rnd_40
 0.853680

 rnd_test_score_rnd_5
 0.843806

In [54]: f1_scoresDF.T

Out[54]:

0

knn_test_f1_knn_10 0.864290

knn_test_f1_knn_2 0.803608

knn_test_f1_knn_20 0.864698

knn_test_f1_knn_5 0.857966

Id_test_f1_ 0.757529

lgr_test_f1_ 0.850739

qd_test_f1_ 0.790886

rnd_test_f1_rnd_20 0.851300

rnd_test_f1_rnd_5 0.844035

```
In [55]: pscoresDF.T
Out[55]:
                                              0
            knn_test_precision_knn_10 0.866368
             knn_test_precision_knn_2 0.811765
            knn_test_precision_knn_20 0.866041
             knn_test_precision_knn_5 0.859841
                    Id_test_precision_ 0.792176
                   lgr_test_precision_ 0.851895
                    qd_test_precision_ 0.798219
            rnd_test_precision_rnd_10 0.849616
            rnd_test_precision_rnd_20 0.852613
             rnd_test_precision_rnd_30 0.853933
             rnd_test_precision_rnd_40 0.856244
              rnd_test_precision_rnd_5 0.844936
In [56]:
           rscoresDF.T
Out[56]:
                                          0
            knn_test_recall_knn_10 0.864004
             knn_test_recall_knn_2 0.806104
            knn_test_recall_knn_20 0.864452
             knn_test_recall_knn_5 0.857720
                    Id_test_recall_ 0.761221
                   Igr_test_recall_ 0.850987
                    qd_test_recall_ 0.792190
            rnd_test_recall_rnd_10 0.847397
            rnd_test_recall_rnd_20 0.850987
             rnd_test_recall_rnd_30 0.852334
             rnd_test_recall_rnd_40 0.853680
              rnd_test_recall_rnd_5 0.843806
```

CHAPTER 2: Using ADNI MERGE to determine Cognitive State

```
In [59]: #We will use our custom function model analyzer
          X_train_adni = train.drop('DX', axis=1)
          y_train_adni = train['DX']
          X test adni = test.drop('DX', axis=1)
          y_test_adni = test['DX']
          #User our model analyzer function to generate values
          scoresDF adni, f1 scoresDF adni, pscoresDF adni , rscoresDF adni = modelAnalyze
          C:\Users\EliudOmollo\Anaconda3\lib\site-packages\sklearn\discriminant_analysis.
          py:695: UserWarning: Variables are collinear
            warnings.warn("Variables are collinear")
In [60]:
          scoresDF adni.T
Out[60]:
                                      0
           knn_test_score_knn_10 0.837074
           knn_test_score_knn_2 0.791293
           knn_test_score_knn_20 0.837971
           knn_test_score_knn_5 0.830341
                  Id_test_score_ 0.857720
                 Igr_test_score_ 0.899461
                 qd_test_score_ 0.490126
           rnd_test_score_rnd_10 0.908438
           rnd_test_score_rnd_20 0.912029
           rnd_test_score_rnd_30 0.909336
           rnd_test_score_rnd_40 0.909785
```

rnd_test_score_rnd_5 0.890485

In [61]: f1_scoresDF_adni.T

Out[61]:

knn_test_f1_knn_10 0.836977
knn_test_f1_knn_2 0.788412
knn_test_f1_knn_20 0.837105
knn_test_f1_knn_5 0.829810
ld_test_f1_ 0.857731
lgr_test_f1_ 0.899278
qd_test_f1_ 0.402712
rnd_test_f1_rnd_10 0.908779
rnd_test_f1_rnd_20 0.912271
rnd_test_f1_rnd_30 0.909533
rnd_test_f1_rnd_40 0.909969
rnd_test_f1_rnd_5 0.890644

In [62]: pscoresDF_adni.T

Out[62]:

0

 knn_test_precision_knn_10
 0.841671

 knn_test_precision_knn_2
 0.800564

 knn_test_precision_knn_20
 0.848889

 knn_test_precision_knn_5
 0.836373

 ld_test_precision_
 0.873729

 lgr_test_precision_
 0.900618

 qd_test_precision_
 0.749065

 rnd_test_precision_rnd_10
 0.909358

 rnd_test_precision_rnd_20
 0.913245

 rnd_test_precision_rnd_30
 0.910662

 rnd_test_precision_rnd_40
 0.911195

 rnd_test_precision_rnd_5
 0.891381

```
In [63]: rscoresDF_adni.T
Out[63]:
```

 knn_test_recall_knn_10
 0.837074

 knn_test_recall_knn_2
 0.791293

 knn_test_recall_knn_20
 0.837971

 knn_test_recall_knn_5
 0.830341

 Id_test_recall_
 0.857720

 lgr_test_recall_
 0.899461

 qd_test_recall_
 0.490126

 rnd_test_recall_rnd_10
 0.908438

 rnd_test_recall_rnd_20
 0.912029

 rnd_test_recall_rnd_30
 0.909336

 rnd_test_recall_rnd_40
 0.909785

 rnd_test_recall_rnd_5
 0.890485

CHAPTER 2: EFFECT OF MERGING MEDICAL HISTORY

```
In [64]: #import Medical History
    medHistDF_r = pd.read_csv('data\MEDHIST.csv', low_memory=False)

#We are going to add columns that add value to the predictions
    medHistDF = medHistDF_r.iloc[: , np.r_[2, 10:37]]
```

In [65]: #CHAPTER
#Merge all the data into one dataframe
data = pd.merge(blData_final, medHistDF, on='RID', how='inner')
data.shape

Out[65]: (14170, 74)

In [66]: plotMissingData(data)

In [67]: #impute the missing data

```
In [68]: from sklearn.preprocessing import Imputer
imp = Imputer(missing_values=np.nan, strategy='mean', axis=1)
data_imp = pd.DataFrame(imp.fit_transform(data))
data_imp.columns = data.columns
data_imp.index = data.index
```

In [69]: #confirm that no null values exist and all columns imputed using our function
plotMissingData(data_imp)

```
PEROCAT Bases
PEROCAT Base
PEROCAT
```

In [70]: #Split the data into 75% train and 25% test splits
 train, test = train_test_split(data_imp, test_size=0.25, random_state=rnd_state)

In [71]: #Use the custom function we created to standardize the data
 #Recall we are standardizing the data using the mean and standard deviation of the
 train, test = dataScaler(train, test, 'DX')

In [72]: train.describe()

Out[72]:

	AGE	APOE4	AV45	AV45_chg	CDRSB	CDRSB_chg	
count	1.062700e+04	1.062700e+04	1.062700e+04	1.062700e+04	1.062700e+04	1.062700e+04	10
mean	-6.059152e-14	4.487904e-16	-1.403934e-12	-3.163410e-17	-2.966031e- 15	-1.141000e-15	
std	1.000047e+00	1.000047e+00	1.000047e+00	1.000047e+00	1.000047e+00	1.000047e+00	
min	-2.892716e+00	-7.963365e- 01	-3.566121e+00	-3.628958e+00	-7.556487e- 01	-1.007841e+00	
25%	-5.578285e-01	-7.963365e- 01	9.347270e-03	2.755612e-01	-7.556487e- 01	-1.007841e+00	
50%	3.726774e-03	-7.963365e- 01	9.347270e-03	2.755612e-01	-3.724458e- 01	9.922200e-01	
75%	6.835042e-01	7.623756e-01	9.347270e-03	2.755612e-01	2.023585e-01	9.922200e-01	
max	2.575059e+00	2.321088e+00	1.386020e+01	2.755612e-01	6.142003e+00	9.922200e-01	

8 rows × 74 columns

```
In [73]: #using our custom model analyzer to evaluate function
          X train comp = train.drop('DX', axis=1)
          y train comp = train['DX']
          X test comp = test.drop('DX', axis=1)
          y_test_comp = test['DX']
          #Applying our model analyzer
          scores_comp, f1_scores_comp, pscores_comp , rscores_comp = modelAnalyzer(X_tra
          C:\Users\EliudOmollo\Anaconda3\lib\site-packages\sklearn\discriminant analysis.
          py:387: UserWarning: Variables are collinear.
            warnings.warn("Variables are collinear.")
          C:\Users\EliudOmollo\Anaconda3\lib\site-packages\sklearn\discriminant analysis.
          py:695: UserWarning: Variables are collinear
            warnings.warn("Variables are collinear")
          scores comp.T
In [74]:
Out[74]:
                                     0
           knn_test_score_knn_10 0.842224
           knn_test_score_knn_2 0.842506
           knn_test_score_knn_20 0.847587
           knn_test_score_knn_5 0.843635
                  ld_test_score_ 0.886255
                 lgr_test_score_ 0.914197
                 qd_test_score_ 0.497036
           rnd_test_score_rnd_10 0.947502
           rnd_test_score_rnd_20 0.951454
           rnd_test_score_rnd_30 0.953712
           rnd_test_score_rnd_40 0.954558
            rnd test score rnd 5 0.938188
```

In [75]: f1_scores_comp.T

Out[75]:

knn_test_f1_knn_10 0.841609
knn_test_f1_knn_2 0.841319
knn_test_f1_knn_20 0.845893
knn_test_f1_knn_5 0.842657
ld_test_f1_ 0.886308
lgr_test_f1_ 0.914307
qd_test_f1_ 0.414943
rnd_test_f1_rnd_10 0.947614
rnd_test_f1_rnd_20 0.951416
rnd_test_f1_rnd_30 0.953648
rnd_test_f1_rnd_40 0.954520
rnd_test_f1_rnd_5 0.938161

In [76]: pscores_comp.T

Out[76]:

0

 knn_test_precision_knn_10
 0.841499

 knn_test_precision_knn_2
 0.851224

 knn_test_precision_knn_20
 0.850936

 knn_test_precision_knn_5
 0.843563

 ld_test_precision
 0.896598

 lgr_test_precision
 0.915399

 qd_test_precision
 0.780897

 rnd_test_precision_rnd_10
 0.947801

 rnd_test_precision_rnd_20
 0.951697

 rnd_test_precision_rnd_30
 0.954241

 rnd_test_precision_rnd_40
 0.955109

 rnd_test_precision_rnd_5
 0.938455

In [77]: rscores_comp.T

0

Out[77]:

 knn_test_recall_knn_10
 0.842224

 knn_test_recall_knn_2
 0.842506

 knn_test_recall_knn_2
 0.847587

 knn_test_recall_knn_5
 0.843635

 Id_test_recall_
 0.886255

 Igr_test_recall_
 0.914197

 qd_test_recall_
 0.497036

 rnd_test_recall_rnd_10
 0.947502

 rnd_test_recall_rnd_20
 0.951454

 rnd_test_recall_rnd_30
 0.953712

 rnd_test_recall_rnd_40
 0.954558

 rnd_test_recall_rnd_5
 0.938188

In []: