1 Objetivo

O objetivo desse laboratório era criar um benchmark e medir o desempenho de discos (e estimar o desempenho da rede). Para isso escreveu-se um programa para medir o desempenho de discos, em que gravou-se e recuperou-se do disco arquivos para a medida de desempenho.

2 Introdução

Quais são os principais parâmetros a serem medidos em um acesso a disco (a rede)? O principais custos de um acesso a disco são:

Latência rotacional: tempo gasto para localizar o setor ao qual se quer ter acesso. Sua ordem é em milisegundos e pode ser calculado pelo número de rotações por período de tempo (ver tabela). Exemplo:

RPM	Tempo de latência médio
5.400	5.55 ms
7.200	4.15 ms
10.000	3 ms

Tempo de busca (seek time): tempo gasto para a cabeça de leitura/gravação se posicionar na trilha correta. O tempo é da ordem de *ms*

Tempo de transferência: tempo gasto para a migração dos dados da memória secundária para a memória principal.

Tempo de acesso: : tempo de seek + tempo de latência + tempo de transferência

O tempo de transferência tem predominância quando o tamanho dos dados a ser lido é grande. Se o arquivo estiver em sequência no disco o tempo total de busca diminui já que as leituras são em trilhas sequenciais, enquanto se estiver framentado diversas buscas devem ser feitas aumentando o tempo total de busca. Da mesma maneira, o tempo total de latência rotacional pode variar bastante se nossos dados estiverem dispersos (fragmentados) no disco. Para avaliação de uma rede, deve-se medir o tempo necessário para que um computador enviar pacotes para outro através dela. Para isso podemos fazer o requerimento de um arquivo em outra máquina da rede e retirar o tempo de acesso que é local. Assim, teremos o tempo de comunicação, fazendo:

$$Tempo de rede = Tempo total - Tempo de acesso.$$
 (1)

3 Programa

Inicialmente criou-se um programa em c que:

- Gravava 5 arquivos de 100MB na pasta /tmp
- Lia os arquivos aleatoriamente e sequencialmente da pasta /tmp
- Lia os arquivos aleatoriamente e sequencialmente de outro computador

4 Dados coletados

Apenas pegou-se os tempo de leitura dos arquivos do qual se obteu para uma máquina cuja taxa de rotação do HD é de 7200 RPM:

Tabela I: Tempo para 500GB de arquivos

Descrição	Acesso sequencial	Acesso aleatório
Tempo Maximo	15572.871 ms	16296.849
Tempo Mínimo	7885.791 ms	7835.314 ms
Tempo médio	11537.245 ms	11841.816 ms
Desvio	3601.778 ms	3924.05 ms

Tabela II: Tempo para 500MB de arquivos

Tempo	Taxa de transferência	
Tempo médio	43.00 s	11.1MBps

5 Análise

A diferença entre os tempos médios $t_{medioAl} - t_{medioSeq} = 304.571ms$ Temos que o tempo total de seek é de 304.571, pois ambas leituras devem ter um tempo de transferência igual e um tempo de latência médio aproximadamente o mesmo. O tempo de acesso a rede ficou em 11.76MBps.

6 Conclusão

Pelos dados coletados em ordem de influencia temos:

- 1. Tempo de Rede
- 2. Tempo de Transferência
- 3. Tempo de Seek
- 4. Tempo de Latência rotacional

Ou seja o tempo de rede é o que mais influencia, já que é necessário o envio do arquivo através da rede. Além disso, o tempo para passar da memória secundário para a principal também toma tempo considerável no total. E pelos cálculos o tempo de seek é da ordem de *ms*.

7 Referências

Referências

- [1] Descrição do projeto. Disponível em http://www.ic.unicamp.br/ ducatte/mc723/1s2011/exercicio3.htm, [Último acesso: 15/04/2011].
- [2] Tiago Chedraoui Silva *Códigos implementados*. Disponível em http://code.google.com/p/mc723-1s2011-tcs/source/browse/trunk/lab3/code/create.c