APRIL 25, OSTRAVA

warewulf making cluster installations fast and reliable

Christian Goll <cgoll@suse.com>

warewulf is tool for managing beowulf clusters

Beowulf

old british poem

Beowulf cluster

- became popular in the 90.
- use of the shelf hardware
 - 486 & linux
 - not Cray & unix
- warewulf is a typo of werewolf

HPC landscape

Top five Supercomputers

1	Frontier	EPYC 64C	AMD MI250X	Slingshot-11
2	Aurora	Xeon 9470	Intel GPU Max	Slingshot-11
3	Eagle	Xeon 8480	NVIDIA H100	NVIDIA Infiniband
4	Fugaku	A64FX 48C 2.2GHz	-	Tofu interconnect D
5	LUMI	EPYC 64C 2GHz	AMD MI250X	Slingshot-11

- only Fugaku uses non standard CPU
- others are beowulf clusters with GPUs attached

Beowulf cluster

base components

- management node
- compute nodes
- management network

optional components

- more compute nodes
- fast network interconnects
- central storage
- bmc/ipmi

Beowulf Cluster

differences to data centers

- compute nodes are cattle
- hierarchical organization
- compute are not updated after boot process
- application come from central storage
- applications are self compiled
- one application can run over several nodes

Warewulf description

software stack

warewulf components

warewulfd delivers

- kernel & modules
- node image
- node configurations

wwctl cmd line tool

- manages node database
- manages node image

external components

dhcp server

- ISC dhcpd server
- dnsmasq

tftp

- tftp from kernel.org
- dnsmasq

optional

- nfs
- manage /etc/hosts

database /etc/warewulf/nodes.conf

- plain yaml file
- easy backup
- can be version controlled
- external tools support
 - vim, ansible

profiles

- stores identical values for collection of nodes
- values can be overridden on node basis

```
WW INTERNAL: 45
2 nodeprofiles:
   default:
     comment: This profile is automatical?
     container name: leap
     network devices:
        default:
          device: eth0
9 nodes:
   n01:
     profiles:
     - default
     network devices:
        default:
          hwaddr: 52:54:00:4e:cb:1d
          ipaddr: 172.16.130.101
   n02:
```

command line database manipulation

add node

list node

wwctl node list

Copyright © SUSE 2024

n01 -a

wwctl node add n01 NODE ETELD **PROFILE VALUE** -I 10.10.10.1 2 n01 Τd n01 3 n01 Comment SUPERSEDED Have fun default leap

n01 ContainerName modify node

n01 Ipxe n01

RuntimeOverlav wwctl node set n01 SystemOverlay 7 n01

n01

n01

n01

n01

16 n01

8 n01 Root

n01 n01 Init

n01

Kernel.Aras

n01 Profiles

PrimaryNetDev

NetDevs[default].OnBoot

NetDevs[default].Device

NetDevs[default].Hwaddr

NetDevs[default].Type

default

(/sbin/init) default (default)

(default)

generic)

(initramfs)

(wwinit)

false

(quiet crashkernel

ethernet) (true) eth0

52:54:00:4e:cb:1d

--comment Have fun" Discoverable

templates& overlays

Configuration templates

- based on go templates
- {{.foo}} replaced with variable foo
- exported go function can be called

Configuration overlays

- rendered templates packed into overlay
- overlay put ontop of node image

Listing 1: /etc/issue.ww

```
Warewulf Node:
                    {{.Id}}
2 Container: {{.Container}}
3 {{ if .Kernel.Version }}Kernel:
4 Kernelargs: {{.Kernel.Args}}
6 Network:
7 {{- range $devname, $netdev := .NetDevs}
     {{$devname}}: {{$netdev.Device}}
     {{$devname}}: {{$netdev.IpCIDR}}
10 {{if $netdev.Ipaddr6 }} {{$devname}}:
| {{if $netdev.Hwaddr }} {{$devname}}:
12 {{end}}
```

rendered templates

Configuration templates

- based on go templates
- {{.foo}} replaced with variable foo
- exported go function can be called

Configuration overlays

- rendered templates packed into overlay
- overlay put ontop of node image

Listing 2: /etc/issue.ww

```
Warewulf Node: {{.Id}}
2 Container: {{.Container}}
3 {{ if .Kernel.Version }}Kernel:
4 Kernelargs: {{.Kernel.Args}}
6 Network:
7 {{- range $devname, $netdev := .NetDevs}
     {{$devname}}: {{$netdev.Device}}
     {{$devname}}: {{$netdev.IpCIDR}}
10 {{if $netdev.Ipaddr6 }} {{$devname}}:
| {{if $netdev.Hwaddr }} {{$devname}}:
12 {{end}}
```

overlays

warewulf defines two types of overlays

system overlay

- available on boot
- warewulf boot strap files
- static network configurations:
 - wicked
 - NetworkManager
 - EL scripts
- nfs mounts
- file system mounts

runtime overlay

- updated on regular base
- can be secured

user defined overlays

- users are encouraged to create own configuration templates
- can reside in system & runtime overlays

Warewulf configuration security

assumptions

- private/cluster network is secure
- lateral movement isnt't accounted
 - NFS mounts are common, when not mandatory

Public Network Control Node Private Switch Worker Node Worker Node Worker Node Copyright © SUSE 2024

measurements

- node image & system overlay protected with BIOS UUID
- system overlays must be downloaded from privileged port

node images

definition

- complete OS images
- called containers in warewulf
- must be imported from:
 - chroot directory
 - docker registry
 - local dockerd
- several different node images can be imported
- node images are vendor independent

registry.suse.com

- SUSE SLE 15SP5

registry.opensuse.org

- openSUSE Tumleweed
- openSUSE Leap 15SP[3-5]

ghcr.io

- openSUSE Leap
- Rocky EL (8&9)
- Debian Bockworm

node image examples

Import the SLE image

```
ww4-host:~> export WAREWULF_OCI_USERNAME=cgoll@suse.com
ww4-host:~> export WAREWULF_OCI_PASSWORD=INTERNAL-USE-ONLY-xxxxxx
ww4-host:~> wwctl container import docker://registry.suse.com/suse/hpc/
warewulf4-x86_64/sle-hpc-node:latest sle-hpc
```

Import the Leap image

```
ww4-host:~> wwctl container import docker://registry.opensuse.org/science
/warewulf/leap-15.5/containers/kernel:latest leap
```

Copyright © SUSF 2024

node image examples

Execute shell in images

```
wwctl container shell sle-hpc
WARN : Couldn`t mount /etc/SUSEConnect to /etc/SUSEConnect: no such
file or directory
WARN : Couldn`t mount /etc/zypp/credentials.d/SCCcredentials to /etc/
zypp/credentials.d/SCCcredentials: no such file or directory
[sle-hpc] Warewulf>
```

SLE registration from outer node is mounted into image

Copyright © SUSF 2024

disk management

Needs following elements:

- disks
- partitions needs parent disk
- filesystem needs partent partition

implementation

- call ignition with ignition-ww4-disk.service
- not in dracut
- before sysroot.mount

single parition

```
wwctl node set n01 --diskname /dev/
vda --diskwipe --partname scratch
    --partcreate --fsname scratch --
fsformat btrfs --fspath /scratch
    --fswipe
```

add swap

```
wwctl node set n01 --diskname /dev/
vda --partname swap --partsize
=1024 --partnumber 1 --fsname
swap --fsformat swap --fspath
swap
```

Warewulf boot

boot process

boot with iPXF

- distribution iPXE binaries are used
- tftp transfers are small
- kernel is extracted from container/node image on the fly
- root fs is the container/node image configuration overlay added on top
- no secure boot

Warewulf boot

boot process

boot with grub tftp

- grub & shim extracted from host
- secure boot only possible if host shim & grub can boot node kernel

Warewulf boot

boot process

boot with grub http

- grub & shim xtracted from node/container image
- secure boot with various distributions
- must be configured in BIOS

Copyright © SUSF 2024

Warewulf

development

availiability

- part of SLE since 15SP5
- SLE node/container avaible

upstream

github.com/warewulf/warewulf Rocky Linux Foundation project Stakeholders:

- SUSE
- CIQ
- Intel/openHPC

Warewulf

Thank your, for you attention!