

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет"

РТУ МИРЭА

Институт Информационных Технологий **Кафедра** Вычислительной Техники

ПРАКТИЧЕСКАЯ РАБОТА №1

по дисциплине «Теория принятия решений» Метод Парето

 Студент группы:
 <u>ИКБО-04-22</u>
 Арефьев А. М.

 (Ф.И.О. студента)
 (Ф.И.О. студента)

Руководитель Железняк Л.М.

(Ф.И.О. преподавателя)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 МЕТОД ПАРЕТО	
1.1 Выбор Парето-оптимального множества	
1.2 Указание верхних/нижних границ критериев	
1.3 Субоптимизация	
1.4 Лексикографическая оптимизация	
1.5 Результаты работы программы	
ЗАКЛЮЧЕНИЕ	6
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	7
ПРИЛОЖЕНИЯ	

ВВЕДЕНИЕ

Целью практической работы является познакомиться с методом многокритериальной оптимизации Парето, а также рассмотреть методы сужения оптимального множества альтернатив, а именно метод верхних/нижних границ, метод субоптимизации и метод лексикографической оптимизации.

В данной работе осуществляется применение метода Парето для определения оптимального выбора автомобиля, учитывая пять разнообразных критериев. Рассматриваются различные методы и подходы. Вручную и при помощи кода.

Метод Парето находит широкое применение в множестве задач, направленных на оптимизацию процессов и принятия решений. Этот метод помогает идентифицировать наиболее значимые факторы в наборе данных, сосредоточив внимание на ключевых проблемах или возможностях для улучшения.

1 МЕТОД ПАРЕТО

Алгоритм метода Парето:

- 1. Подготавливаются данные и классифицируются данные по категориям.
- 2. Выбираются оптимальные категории.
- 3. Применяются необходимые методы.
- 4. Визуализируется результат.
- 5. По визуализируемому результату применяется оптимальное решение

1.1 Выбор Парето-оптимального множества

Задача заключается в выборе оптимального автомобиля по построенным мною критериям. Было выбрано 10 альтернатив — различных марок авто по 5 критериев и составлена таблица 1.

Таблица 1. Альтернативы и критерии

№	Варианты	Критерии								
	Название	Цена, тыс. p -	Расход топлива, л/100км	Надежность (из 10) +	Комфорт (из 10) +	Мощность двигателя, л.с. +				
1	Skoda Kodiaq	2800	6.0	10	10	250				
2	Vw tiguan	3000	6.1	10	9	240				
3	Hyundai creta	1 600	6.9	6	3	140				
4	Tank 300	2 000	8.5	5	5	220				
5	Kia carnival	7 000	9.0	7	9	200				
6	Toyota rav4	3 800	7.0	9	6	170				
7	Kia seltos	1 700	6.5	5	4	160				
8	Bmw x3	3100	6.2	9	10	230				
9	Omoda c5	3 200	7.1	5	6	165				
10	mitsubishi outlander	2900	5.9	8	8	220				

Таблица 2. Сравнение альтернатив

	1	2	3	4	5	6	7	8	9	10
1	X	X	X	X	X	X	X	X	X	X
2	A1	X	X	X	X	X	X	X	X	X
3	Н	Н	X	X	X	X	X	X	X	X
4	Н	Н	Н	X	X	X	X	X	X	X
5	A1	A2	Н	Н	X	X	X	X	X	X
6	A1	A2	Н	Н	Н	X	X	X	X	X
7	Н	Н	Н	Н	Н	Н	X	X	X	X
8	A1	Н	Н	Н	A8	A8	Н	X	X	X
9	A1	A2	Н	Н	Н	Н	Н	A8	X	X
10	Н	Н	Н	Н	Н	Н	Н	Н	A10	X

Таблица 3. Парето-оптимальное множество

$N_{\underline{0}}$	Варианты	Критерии									
	Название	Цена, тыс. р -	Расход топлива, л/100км	Надежность (из 10) +	Комфорт (из 10) +	Мощность двигателя, л.с. +					
1	Skoda Kodiaq	2800	6.0	10	10	250					
2	Vw tiguan	3000	6.1	10	9	240					
8	Bmw x3	3100	6.2	9	10	230					
10	mitsubishi outlander	2900	5.9	8	8	220					

Очевидно, что выделение множества Парето не является удовлетворительным решением.

1.2 Указание верхних/нижних границ критериев.

Установим границы. Пусть цена будет меньше или равна 3000, а

надежность больше или равна 8. Отобразим в таблицу 4.

Таблица 4. Результат верхних и нижних границ критериев

No॒	Варианты	Критерии								
	Название	Цена, тыс. р -	Расход топлива, л/100км -	Надежность (из 10) +	Комфорт (из 10) +	Мощность двигателя, л.с. +				
1	Skoda Kodiaq	2800	6.0	10	10	250				
2	Vw tiguan	3000	6.1	10	9	240				
10	mitsubishi outlander	2900	5.9	8	8	220				

1.3 Субоптимизация

Выберем главный критерий – цена. Установим границы надежность больше или равна 8 и мощность двигателя больше или равна 230. Отобразим в таблицу 5.

Таблица 5. Результат субоптимизации

№	Варианты	Критерии								
	Название	Цена, тыс. p -	Расход топлива, л/100км -	Надежность (из 10) +	Комфорт (из 10) +	Мощность двигателя, л.с. +				
1	Skoda Kodiaq	2800	6.0	10	10	250				

1.4 Лексикографическая оптимизация

Упорядочим критерии по их относительной важности:

- 1. Надежность
- 2. Комфорт
- 3. Мощность двигателя
- 4. Расход топлива

Цена Отобразим результат в таблице 6.

Таблица 6. Результат лексикографической оптимизации

No	Варианты	Критерии								
	Название	Цена, тыс. p	Расход топлива, л/100км	Надежность (из 10) +	Комфорт (из 10) +	Мощность двигателя, л.с. +				
1	Skoda Kodiaq	2800	6.0	10	10	250				

1.5 Результаты работы программы

	A1	A2	А3	A4	A5	Aó	A7	A8	A9	A10
A1	None									
A2	A1	None								
А3	н	н	None							
A4	н	н	н	None						
A5	A1	A2	н	н	None	None	None	None	None	None
A6	A1	A2	н	н	н	None	None	None	None	None
A7	н	н	н	н	н	н	None	None	None	None
A8	A1	н	н	н	A8	A8	н	None	None	None
A9	A1	A2	н	н	н	н	н	A8	None	None
A10	н	н	н	н	н	н	н	н	A10	None

Рисунок 1.5.1. Сравнение альтернатив

	Название	Цена	Расход топлива	Надежность	Комфорт	\
0	Skoda Kodiaq	2800	6.0	10	10	
1	Vw tiguan	3000	6.1	10	9	
9	mitsubishi outlander	2900	5.9	8	8	
	Мощность двигателя					
0	250					
1	240					
9	220					

Рисунок 1.5.2. Результат верхних и нижних границ критериев

```
Название Цена
                                Расход топлива
                                                Надежность
                                                             Комфорт \
           Skoda Kodiaq
                         2800
                                                        10
                                           6.0
1
              Vw tiguan
                         3000
                                           6.1
                                                        10
   mitsubishi outlander
                         2900
                                           5.9
                                                         8
                                                                   8
   Мощность двигателя
0
                  250
1
                  240
9
                  220
```

Рисунок 1.5.2. Результат верхних и нижних границ критериев

```
Название Цена Расход топлива Надежность Комфорт Мощность двигателя :
0 Skoda Kodiaq 2800 6.0 10 10 250
```

Рисунок 1.5.3. Результат субоптимизации

```
Executed at 2024.02.24 18:12:48 in 44ms
Название Цена Расход топлива Надежность Комфорт Мощность двигателя
0 Skoda Kodiaq 2800 6.0 10 10 250
```

Рисунок 1.5.4. Результат лексикографической оптимизации Ч

ЗАКЛЮЧЕНИЕ

Мною была проведена работу по поиску оптимального автомобиля по моим критериям. Работа выполнялась при помощи метода Парето.

Могу выделить плюсы:

- 1. Простота
- 2. Универсальность
- 3. Эффективность

И минусы:

- 1. Ограниченность
- 2. Переоценка
- 3. Риск упущения

В заключение, могу сказать, что метод Парето является мощным инструментом для анализа и принятия решений, но, как и любой другой метод, имеет свои ограничения и должен использоваться с учетом специфики ситуации и в комбинации с другими инструментами анализа.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Болотова Л. С. Многокритериальная оптимизация. Болотова Л. С., Сорокин А. Б. [Электронный ресурс] / Метод. указания по вып. курсовой работы М.: МИРЭА, 2015.
- 2. Сорокин А. Б. Методы оптимизации: гибридные генетические алгоритмы. Сорокин А. Б. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2016.
- 3. Сорокин А. Б. Линейное программирование: практикум. Сорокин А. Б., Бражникова Е. В., Платонова О. В. [Электронный ресурс] / Учебно-метод. пособие М.: МИРЭА, 2017.

приложения

Приложение A — Код реализации метода Парето на языке Python в блокноте Jupyter.

Приложение А

Код реализации метода Парето на языке Python.

Листинг А.1. . Реализация Парето.

```
import pandas as pd
import numpy as np
data = {
  'Название': ['Skoda Kodiaq', 'Vw tiguan', 'Hyundai creta', 'Tank 300', 'Kia carnival',
           'Toyota ray4', 'Kia seltos', 'Bmw x3', 'Omoda c5', 'mitsubishi outlander'],
  'Цена': [2800, 3000, 1600, 2000, 7000, 3800, 1700, 3100, 3200, 2900],
  'Расход топлива': [6.0, 6.1, 6.9, 8.5, 9.0, 7.0, 6.5, 6.2, 7.1, 5.9],
  'Надежность': [10, 10, 6, 5, 7, 9, 5, 9, 5, 8],
  'Комфорт': [10, 9, 3, 5, 9, 6, 4, 10, 6, 8],
  'Мощность двигателя': [250, 240, 140, 220, 200, 170, 160, 230, 165, 220]
df = pd.DataFrame(data)
df
def alternatives(alt1, alt2, directions):
  for i in range(len(directions)):
     if (directions[i] and alt1.iloc[i] < alt2.iloc[i]) or (not directions[i] and alt1.iloc[i] > alt2.iloc[i]):
       return False
  return True
def generate comparison df(altered df, criteria directions):
  comparison matrix = np.full((10, 10), None)
  for i in range(10):
     for j in range(i):
       if alternatives(altered_df.iloc[i, 1:], altered_df.iloc[j, 1:], criteria_directions):
          comparison_matrix[i, j] = 'A' + str(i+1)
       elif alternatives(altered df.iloc[i, 1:], altered df.iloc[i, 1:], criteria directions):
          comparison matrix[i, j] = 'A' + str(j+1)
       else:
          comparison_matrix[i, j] = 'H'
  comparison_df = pd.DataFrame(comparison_matrix, columns=['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8',
'A9', 'A10'])
  comparison df.index = ['A1', 'A2', 'A3', 'A4', 'A5', 'A6', 'A7', 'A8', 'A9', 'A10']
  return comparison df
comparison_df = generate_comparison_df(df, criteria_directions)
print(comparison df)
print(df[(df['Цена'] <= 3000) & (df['Надежность'] >= 8)])
```

```
      df = df[(df['Надежность'] >= 8) & (df['Мощность двигателя'] >= 230)]

      df.sort_values(['Цена'])

      print(df.head(1))

      df = df.sort_values(

      ['Надежность', 'Комфорт', 'Мощность двигателя', 'Расход топлива', 'Цена'],

      ascending=[False, False, False, True, True]

      )

      print(df.head(1))
```