Model Quantization

Bach-Hoang Ngo

Motivation

Outline

- Motivation
- Floating Point
- Uniform Quantization
- Non-Uniform Quantization

Outline

- Motivation
- Floating Point
- Uniform Quantization
- Non-Uniform Quantization

Motivation

Motivation

VRAM Usage: Model Size * 2 (Loading with FP16)

Model	Size	VRAM Usage
GPT3	175B	350 GB
Bloom	176B	352GB
Llama-2-70B	70B	140GB
Mistral	7B	14GB

Motivation

Motivation

Quantization

1	0.3
-0.6	-0.7
0.4	0

32 bit

Quantization

Integer

1	3	2
1	0	0
3	2	1

8 bit

Quantization

Model Size (MB)

Quantization

Quantization

- Motivation
- Floating Point
- Uniform Quantization
- Non-Uniform Quantization

Representing numbers

Representing Real Numbers: Decimal

Representing numbers

Representing Real Numbers: Decimal

$$d = \sum_{i=-n}^{m} 10^i * d$$

Representing numbers

Representing Real Numbers: Binary

$$b = \sum_{i=-\infty}^{m} 2^{i} * b_{i}$$

Fixed-point

Where to put the point?

Any way to make the point moving?

Fixed-point

Where to put the point?

$$(-1)^S * M * 2^E$$

Floating Point

Floating Point

$$(-1)^S * M * 2^E$$

Floating Point

Data type	Range	Precision
FP32	1.18 x 10^-38 to 3.40 x 10^38	6 – 9 decimal digits
FP16	4.88 x 10 ⁻⁴ to 6.55 x 10 ⁴	5 – 6 decimal digits
Bfloat16	1.18 x 10^-38 to 3.40 x 10^38	3 decimal digits

Quantization

- Motivation
- Floating Point
- Uniform Quantization
- Non-Uniform Quantization

Uniform Quantization

Uniform Quantization

$$S = 1/127$$
, $Z = 0$

Dequantization

$$Q(r) = Int\left(\frac{r}{S}\right) - Z$$

$$\rightarrow r \approx S * (Q(r) + Z)$$

Distribution of Original and Dequantized Values

Scaling Factor

$$Q(r) = Int\left(\frac{r}{S}\right) - Z$$
 $S = \frac{\beta - \alpha}{2^b - 1}$

$$S = \frac{\beta - \alpha}{2^b - 1}$$
 S: scaling factor $[\alpha, \beta]$: clippping rage b : bit width

For 8-bit quantization

$$S = \frac{\beta - \alpha}{255}$$

How to find β and α ?

Calibration

Calibration: the process of choosing the clipping range

Simple approach: Choosing the min/max of the signal

Assymetric Quantization $\alpha = r_{min}$ $\beta = r_{max}$ $Z \, ! = 0$

Symetric Quantization $-\alpha = \beta$ $= \max(|r_{max}|, |r_{min}|)$ Z = 0

Uniform Quantization

Symmetric Quantization

Asymmetric Quantization

$$Q(r) = Int\left(\frac{r}{\varsigma}\right)$$

$$Q(r) = Int\left(\frac{r}{S}\right) - Z$$

```
import torch

def absmax_quantize(X):
    # Calculate scale
    scale = 127 / torch.max(torch.abs(X))

# Quantize
    X_quant = (scale * X).round()

# Dequantize
    X_dequant = X_quant / scale
    return X_quant.to(torch.int8), X_dequant
```

$$Q(r) = Int\left(\frac{r}{S}\right)$$

For symmetry S = absmax(r)/127

$$Q(r) = Int\left(\frac{r}{S}\right) - Z \qquad S = \frac{\beta - \alpha}{255}$$

$$r_{min} \rightarrow -128$$

$$-128 = Int \left(\frac{r_{min}}{S}\right) - Z$$

$$Z = Int \left(\frac{r_{min}}{S}\right) + 128$$

All-in-One Course Asymmetric Quantization

```
def zeropoint quantize(X):
    x \text{ range} = \text{torch.max}(X) - \text{torch.min}(X)
    x range = 1 if x range == 0 else x range
    scale = x range / 255
    zeropoint = (torch.min(X) / scale).round() + 128
    X_quant = torch.clip((X / scale - zeropoint).round(), -128, 127)
    X dequant = (X quant + zeropoint) * scale
    return X quant.to(torch.int8), X dequant
```

Quantize

Dequantize

All-in-One Course Asymmetric vs. Symmetric

All-in-One Course Asymmetric vs. Symmetric

Feature	Symmetric Quantization	Asymmetric Quantization
Implementation	Simple Implementation	More complex
Computational cost	Simpler calculation	Slightly higher
Efficiency for non- uniform distributions	Less efficient	More efficient

Calibration

Is choosing max/min values a good option?

Calibration

Choose max absolute value -> vulnerable to outliers.

- Entropy: KL divergence to minimize information loss.
- Percentile: Set a range to a percentile of the distribution.

Calibration

Calibration

Percentile Quantization

```
def percentile quantize(X, percentile=70):
   scale = torch.quantile(torch.abs(X), percentile/100.) / 127
   X quant = (X / scale).round()
   X quant = torch.clamp(X quant, min=-128, max=127)
   X_{dequant} = X_{quant} * scale
   return X quant.to(torch.int8), X dequant
```

Calibration

Câu 1: Quá trình quantization là gì?

- A) Chuyển đổi giá trị từ dạng phân số sang số nguyên
- B) Chuyển đổi giá trị liên tục thành giá trị rời rạc / giảm số bit để biểu diễn 1 giá trị.
- C) Tăng độ chính xác của dữ liệu số
- D) Giảm tốc độ xử lý của hệ thống số

Câu 2 Trong machine learning, quantization thường được sử dụng để:

- A) Tăng độ phức tạp của mô hình
- B) Tăng độ chính xác của mô hình
- C) Giảm kích thước và yêu cầu tính toán của mô hình
- D) Tăng số lượng lớp trong mạng neural

- 4) Phương pháp quantization nào cung cấp các đặc tính sau:
- •Dễ dàng triển khai (easy to implement) hơn.
- •Khoảng cách bằng nhau (equal spacing) giữa các mức lượng hóa.
- A) Lượng hóa đồng nhất (Uniform quantization)
- B) Lượng hóa không đồng nhất (Non-uniform quantization)
- C) Cả hai lượng hóa đồng nhất và không đồng nhất
- D) Không phải lượng hóa đồng nhất cũng không phải không đồng nhất

- 5) Loại lượng hóa nào phù hợp hơn cho các tín hiệu có hầu hết các giá trị tập trung ở phía dương, xét về cả tính đơn giản và hiệu quả?
- a) Lượng hóa đối xứng (Symmetric quantization)
- b) Lượng hóa không đối xứng (Non-symmetric quantization)
- c) Cả hai đều hoạt động tốt như nhau.
- d) Không phương pháp nào phù hợp.

Câu 5: Quá trình hiệu chỉnh (calibration) trong quantization được sử dụng để làm gì?

- a) Tăng độ chính xác của mô hình sau quantization
- b) Giảm kích thước của mô hình mà không cần quantization
- c) Xác định phạm vi giá trị tối ưu cho các tham số để giảm thiểu lỗi quantization
- d) Tăng tốc độ tính toán của mô hình mà không ảnh hưởng đến kích thước mô hình

Quantization

- Motivation
- Floating Point
- Uniform Quantization
- Non-Uniform Quantization

All-in-One Course Non-uniform Quantization

All-in-One Course Non-uniform Quantization

$$Q(r) = X_i$$
, if $r \in [\Delta_i, \Delta_{i+1})$

Balance Quantization

Block-wise Quantization

Feature	Uniform Quantization	Non-uniform Quantization
Spacing	Equally spaced levels	Unequally spaced levels (based on signal characteristics)
Simplicity	Simple and straightforward	More complex
Efficiency (uniform distribution)	Efficient	Less efficient for uniform distributions
Efficiency (non- uniform distribution)	May waste bits, poor accuracy for non-uniform distributions	More efficient and accurate for non-uniform distributions
Complexity	Low	High

Inferencing Quantized Models

Simulated Quantization

Simulated Quantization

Simulated Quantization

Simulated Quantization

0.25

0.12

- Reduce Model Size
- Slow inference time

Range [-1, 1], S = 1/127

Inferencing Quantized Models

Integer Only

Integer Only

Integer Only

All operations -> Using lowprecision integer arithmetic

- Latency
- Power consumption
- Area efficiency

Inferencing Quantized Models

Summary

Quantization

