Simulation

EECS 20
Lecture 15 (February 21, 2001)
Tom Henzinger

Deterministic Reactive System:

for every input signal, there is exactly one output signal.

Function:

DetSys: [Time \rightarrow Inputs] \rightarrow [Time \rightarrow Outputs]

Nondeterministic Reactive System:

for every input signal, there is one or more output signals.

Binary relation:

```
NondetSys \subseteq [ Time \rightarrow Inputs ] \times [ Time \rightarrow Outputs ] such that \forall x \in [ Time \rightarrow Inputs ], \exists y \in [ Time \rightarrow Outputs ], (x,y) \in NondetSys
```

Every pair $(x,y) \in \text{NondetSys}$ is called a behavior.

S1 is a more detailed description of S2;

S2 is an abstraction or property of S1.

System S1 refines system S2 iff

- 1. Time [S1] = Time [S2],
- 2. Inputs [S1] = Inputs [S2],
- 3. Outputs [S1] = Outputs [S2],
- 4. Behaviors [S1] \subseteq Behaviors [S2].

Systems S1 and S2 are equivalent iff

- 1. Time [S1] = Time [S2],
- 2. Inputs [S1] = Inputs [S2],
- 3. Outputs [S1] = Outputs [S2],
- 4. Behaviors [S1] = Behaviors [S2].

Nondeterministic causal discrete-time reactive systems can be implemented by nondeterministic state machines.

Nondeterministic State Machine

```
Inputs
Outputs
States
possibleInitialStates 

States
possibleUpdates:
       States \times Inputs \rightarrow P(States \times Outputs) \ \emptyset
                         receptiveness (i.e., machine must
                         be prepared to accept every input)
```

Lossy Channel without Delay

Channel that never drops two in a row

Typical Exam Questions

- A. Convert between three (possibly nondeterministic) system representations:
 - 1. Input-output definition

Deterministic case:

```
define S: [Nats<sub>0</sub>\rightarrowInputs] \rightarrow [Nats<sub>0</sub>\rightarrowOutputs] such that for all x \in [Nats<sub>0</sub>\rightarrowInputs] and all y \in Nats<sub>0</sub>, (S(x))(y) = ...
```

Nondeterministic case:

```
define S \subseteq [Nats_0 \rightarrow Inputs] \times [Nats_0 \rightarrow Outputs] such that for all x \in [Nats_0 \rightarrow Inputs] and all y \in [Nats_0 \rightarrow Outputs], (x,y) \in S iff ...
```

- 2. Transition diagram
- 3. Block diagram
- B. Equivalence, bisimulation, minimization of deterministic state machines

Refinement, simulation, and minimization of nondeterministic state machines

condition on behaviors

Theorem:

The nondeterministic state machines M1 refines the nondeterministic state machine M2

if

there exists a simulation of M1 by M2.

relation between states

Theorem:

The nondeterministic state machines M1 refines the nondeterministic state machine M2

if

there exists a simulation of M1 by M2.

Not "if-and-only-if"!

Not symmetric!

(We say that "M2 simulates M1".)

In the following, assume

Inputs [M1] = Inputs [M2]

Outputs [M1] = Outputs [M2]

A binary relation $S \subseteq S$ tates $[M1] \times S$ tates [M2] is a simulation of M1 by M2

iff

```
1. \forall p \in possibleInitialStates [M1],
          \exists q \in possibleInitialStates [M2], (p,q) \in S and
2. \forall p \in States[M1], \forall q \in States[M2],
     if (p,q) \in S,
     then \forall x \in \text{Inputs}, \forall y \in \text{Outputs}, \forall p' \in \text{States} [M1],
             if (p', y) \in possibleUpdates[M1](p, x)
             then \exists q' \in States [M2],
                     (q', y) \in possibleUpdates[M2](q, x) and
                     (p', q') \in S.
```


NotTwice refines Lossy Channel without Delay

Not Twice is simulated by Lossy Channel without Delay

Lossy Channel without Delay is not simulated by NotTwice

Lossy Channel without Delay is not simulated by NotTwice

Channel that drops every third zero

Channel that drops every third zero

State between time t-1 and time t:

- 3 third zero from now will be dropped
- 2 second zero from now will be dropped
- 1 next zero will be dropped

Channel that drops every third zero

ThirdZero refines NotTwice

NotTwice is not simulated by ThirdZero

NotTwice is not simulated by ThirdZero

Special cases of nondeterministic state machines

- 1. Deterministic
- 2. Output-deterministic ("almost deterministic")

For these machines, simulations can be found easily (provided they exist).

A state machine is output-deterministic iff

- 1. there is only one initial state, and
- 2. for every state and every input-output pair, there is only one successor state.

Deterministic implies output-deterministic, but not vice versa.

For example, LCwD and NotTwice are output-deterministic; ThirdZero is deterministic.

Deterministic: for every input signal x, there is exactly one run of the state machine.

Output-deterministic: for every behavior (x,y), there is exactly one run.

If M2 is an output-deterministic state machine, then a simulation S of M1 by M2 can be found as follows:

- 1. If $p \in possibleInitialStates[M1]$ and $possibleInitialStates[M2] = \{q\}$, then $(p,q) \in S$.
- 2. If $(p,q) \in S$ and $(p',y) \in possibleUpdates [M1] <math>(p,x)$ and possibleUpdates [M2] $(q,x) = \{ (q',y) \}$, then $(p',q') \in S$.

If M2 is a deterministic state machine, then

M1 is simulated by M2 iff

M1 is equivalent to M2.

If M2 is a deterministic state machine, then

M1 is simulated by M2

M1 is equivalent to M2.

"if and only if"

M1 refines M2, and M2 refines M1

If M2 is a nondeterministic state machine, then

M1 is simulated by M2 implies
M1 refines M2,

but M2 may not refine M1.

(Recall M1 = ThirdZero and M2 = NotTwice.)

If M2 is a nondeterministic state machine, then

M1 is simulated by M2 implies
M1 refines M2,

but M1 refine M2 even if M1 is not simulated by M2.

Two behaviors: 00000..., 01000...

is equivalent to

Same two behaviors: 00000..., 01000...

Simulation $S = \{(a, x),$

Simulation $S = \{(a, x), (b, y), (c, y),$

Simulation $S = \{ (a, x), (b, y), (c, y), (d, z), (e, u) \}$

