Determinants

A general way to compute it is,

If If A is an $n \times n$ matrix where n = 1,

$$\det(A) = a_{1,1}$$

If A is an $n \times n$ matrix where n > 1,

$$\det(A) = a_{1,1} \det{(A_{1,1})} - a_{1,2} \det{(A_{1,2})} + \dots + (-1)^{n+1} a_{1,n} \det{(A_{1,n})}$$

 $a_{i,j}$ means the element at the $i^{\rm th}$ row and the $j^{\rm th}$ column.

 $A_{i,j}$ means the Matrix if you drop (get rid of) the i^{th} row and the j^{th} column.

Deriving it for a $2\times 2\,$

Say we have
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$\det(A) = (a_{1,1})(\det(A_{1,1})) - (a_{1,2})(\det(A_{1,2}))$$

 $\det(A) = (a)(d) - (b)(c)$
 $\det(A) = ad - bc$

Using a **Cofactor**

The determinant of a matrix A can be computed down any row or column of the matrix.

For example, down the j^{th} column the determinant is:

$$\det(A) = a_{1,j} \det\left(A_{1,j}\right) - a_{2,j} \det\left(A_{2,j}\right) + \dots + (-1)^{n+1} a_{n,j} \det\left(A_{n,j}\right)$$

This would be useful for a matrix with a few 0's.

$$\mathsf{Say}\: A = \begin{bmatrix} 5 & 4 & 3 & 2 \\ 0 & 1 & 2 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 1 & 3 \end{bmatrix} \mathsf{find}\: \det(A)$$

We will use the first column due to the 3 zeros.

$$\det(A) = 5C_{1,1} + 0C_{2,1} + 0C_{3,1} + 0C_{4,1} \ = 5 \cdot (-1)^{1+1} \cdot \det \left(egin{bmatrix} 1 & 2 & 0 \ -1 & 1 & 0 \ 1 & 1 & 3 \end{bmatrix}
ight) \ 3^{ ext{rd}} ext{ column} \ = 5 \cdot (0C_{1,3} + 0C_{2,3} + 3C_{3,3}) \ = 5 \cdot \left(3 \cdot (-1)^{3+3} \det \left(egin{bmatrix} 1 & 2 \ -1 & 1 \end{bmatrix}
ight)
ight) \ ext{Formula} \ = 5(3(1 imes 1 - 2 imes -1)) \ = \boxed{45} \ \end{cases}$$

Triangular Matrices

The determinant of a triangular matrix is the product of the entries on the main diagonal.

Row Operations

Replacement/Addition

Add a multiple of one row to another.

This does **NOT** effect the determinant.

$$\det A = \det B$$

Interchange

Interchange two rows to make B.

One swap means, $\det B = -\det A$.

Two One swap means, $\det B = \det A$.

We can continue this pattern

Scaling

Multiply a row by a non-zero scalar to make B.

$$\det B = k \det A$$

Invertibility

Important practical implication: if A is reduced to echelon form, by r interchanges of rows and columns, then

$$|A| = \begin{cases} (-1)^r \times \text{(product of pivots)}, & \text{when } A \text{ is invertible} \\ 0, & \text{when } A \text{ is singular} \end{cases}$$

Properties

- 1. $\det A = \det A^T$ (<u>Transpose</u>).
- 2. A is invertible if and only if $\det A \neq 0$.
- 3. $det(AB) = det A \cdot det B$.
- 4. If A is invertible, then $\det A^{-1} = \frac{1}{\det A}$.

Geometric interpretation

Watch 3b1b

TLDR

Area of parallelogram spanned by the columns columns of an $n \times n$ matrix A is $\det \begin{pmatrix} \begin{bmatrix} a & c \\ b & d \end{pmatrix} \end{pmatrix} = ad - bc.$

The volume of the parallelepiped spanned by the columns of an $n \times n$ matrix A is $|\det A|$.

Linear Transformations

If we have $T:\mathbb{R}^n o \mathbb{R}^n$, and S is a parallelogram in \mathbb{R}^n , then:

$$\mathrm{volume}(T(S)) = |\det A| \cdot \mathrm{volume}(S)$$

This can be extended to higher dimensions.