

Predicción de la producción de energía de una planta de poder de ciclo combinado usando herramientas de AutoML

Ridge and Lasso Regression, AutoKeras y PyCaret.

Tópicos Selectos de Cómputo: AutoML Centro de Investigación en Matemáticas, A.C.

Gabriel Alejandro Aquilar Farrera

Contenido

- 1. Descripción de la base de datos
- 2. Objetivo del Proyecto
- 3. Diseño experimental
- 4. Conclusiones

Descripción de la base de datos: Combined Cycle Power Plant

El conjunto de datos contiene **9568** puntos de datos recopilados de una planta de energía de ciclo combinado durante **6 años** (2006-2011), cuando la planta de energía estaba configurada para funcionar a carga completa.

Variables:

- **Temperatura (T)** en el rango de 1.81°C a 37.11°C.
- **Presión Ambiental (AP)** en el rango de 992.89- 1033.30 milibares.
- **Humedad Relativa (RH)** en el rango de 25.56% a 100.16%.
- Vacío de Escape (V) en el rango de 25.36-81.56 cm Hg.
- Salida de energía eléctrica neta por hora (EP) de 420.26-495.76 MW.

Descripción de la base de datos: Combined Cycle Power Plant

Objetivo del Proyecto

- Identificar el mejor modelo de regresión para este problema.
- 2. Comparar los resultados obtenidos con los modelos de regresión con los obtenidos con ayuda de AutoKeras y PyCaret.

Diseño experimental: Modelo de Regresión

- Análisis de correlación lineal
- División de datos: 80% train y 20% test
- Estandarización de los datos
- ullet Rejilla de valores posibles para λ
- Selección de λ
- Evaluación de los modelos

Modelo de Regresión: Análisis de correlación lineal

Fig. (2):Mapa de correlación

Modelo de Regresión: Valores posibles para λ

Fig. (3): Coeficientes Ridge y Lasso en función de su valor de $\,\lambda\,$

Modelo de Regresión: Valores posibles para λ

	Regresión Ridge	Regresión Lasso
GridSearchCV	$\lambda = 0.758$	$\lambda = 0.01$
RandomizedSearchCV	$\lambda = 0.735$	$\lambda = 0.010$
HalvingSearchCV	$\lambda = 1.576$	$\lambda = 0.080$

TABLE II: Datos estandarizados: Valores de λ encontrados en cada método.

Fig. (4): Coeficientes Ridge y Lasso en función de su valor de λ

Modelo de Regresión

R. Ridge: R2 test = 0.9301 y MSE test = 20.2719.

R. Lasso: R2 test = 0.9301 y MSE test = 20.2663.

Modelo de Regresión: AutoKeras

AutoKeras Model: R2 test = 0.9387 y MSE test = 17.7606.

Modelo de Regresión: AutoKeras

AutoKeras Model: R2 test = 0.9387 y MSE test = 17.7606.

Modelo de Regresión:PyCaret

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE
xgboost	Extreme Gradient Boosting	2.3694					0.0052
lightgbm	Light Gradient Boosting Machine	2.5526	12.1228	3.4759	0.9581	0.0076	0.0056
rf	Random Forest Regressor	2.5241	12.4675	3.5255	0.9569	0.0077	0.0056
et	Extra Trees Regressor	2.5108	12.6813	3.5517	0.9562	0.0078	0.0055
gbr	Gradient Boosting Regressor	3.0171	15.7059	3.9565	0.9457	0.0087	0.0066
knn	K Neighbors Regressor	2.9141	15.9994	3.9960	0.9446	0.0088	0.0064
lar	Least Angle Regression	3.6582	21.2294	4.6030	0.9266	0.0101	0.0081
br	Bayesian Ridge	3.6582	21.2294	4.6030	0.9266	0.0101	0.0081
ridge	Ridge Regression	3.6584	21.2294	4.6030	0.9266	0.0101	0.0081
Ir	Linear Regression	3.6582	21.2294	4.6030	0.9266	0.0101	0.0081

Mejores 10 modelos.

Modelo de Regresión: PyCaret

Los datos se separaron en 6697 para entrenamiento y 2871 para prueba.

Conclusiones

- Los modelos Lasso y Ridge tienen buenos valores en sus métricas de evaluación (R2 superior a 0.90).
- La solución óptima de Ridge y Lasso es aquella que no hace contracción de variables.
- AutoKeras es una herramienta de AutoML enfocada en DL y además es fácil de usar.
- Entre los modelos de regresión Ridge y Lasso y las arquitecturas dadas por AutoKeras, las arquitecturas de AutoKeras fueron superiores, sin embargo, a cambio de un modelo mucho más complejo y una mejora despreciable.
- PyCaret es una herramienta sumamente fácil de utilizar y ésta fue la que dio el modelo con los mejores resultados: Extreme Gradient Boosting.

Referencias

- [1] James, G., Witten, D., Hastie, T., Tibshirani, R., & Taylor, J. (2023). An introduction to statistical learning: With applications in python. (No Title)
- [2] Machine Learning Repository: Combined Cycle Power Plan