Question 38

Basel Problem. Here you will use multivariable calculus to establish the following famous equation:

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

To do it, you will evaluate the (improper) double integral $\int_U \frac{1}{1-xy}$ in two ways. Let $f:(0,1)^2 \to \mathbf{R}$ be the function given by $f(x,y) = \frac{1}{1-xy}$, and let K_N denote the closed box $\left[\frac{1}{N}, 1 - \frac{1}{N}\right]^2$.

- (a) Evaluate $\int_{K_N} f$ using Fubini's theorem.
- (b) Evaluate $\int_{K_N} f$ using the Change of Variables formula twice: first using the linear diffeomorphism (x, y) = (u + v, u v), then using the polar coordinates transform.
- (c) Conclude that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.

Proof.

(a):

By Fubini's:

$$\int_{K_N} f = \int_{\frac{1}{N}}^{1 - \frac{1}{N}} \int_{\frac{1}{N}}^{1 - \frac{1}{N}} \frac{1}{1 - xy} \, dy \, dx$$

$$= \int_{\frac{1}{N}}^{1 - \frac{1}{N}} -\frac{1}{x} \ln(1 - xy) \Big|_{\frac{1}{N}}^{1 - \frac{1}{N}} \, dx$$

$$= \int_{\frac{1}{N}}^{1 - \frac{1}{N}} -\frac{1}{x} \left(\ln\left(1 - \left(1 - \frac{1}{N}\right)x\right) - \ln\left(1 - \frac{1}{N}x\right) \right) \, dx$$

Notice that $-1 < -\left(1 - \frac{1}{N}\right), -\frac{1}{N} < 1$, so we can use the power series expansion of $\ln(1+t)$

$$\int_{K_N} f = \int_{\frac{1}{N}}^{1 - \frac{1}{N}} - \frac{1}{x} \left(\sum_{n=1}^{\infty} -\frac{\left(1 - \frac{1}{N}\right)^n x^n}{n} + \sum_{n=1}^{\infty} \frac{\left(\frac{1}{N}\right)^n x^n}{n} \right) dx$$

$$= \int_{\frac{1}{N}}^{1 - \frac{1}{N}} \sum_{n=1}^{\infty} \frac{x^{n-1}}{n} \left(\left(1 - \frac{1}{N}\right)^n - \left(\frac{1}{N}\right)^n \right) dx$$

$$= \sum_{n=1}^{\infty} \frac{x^n}{n^2} \left(\left(1 - \frac{1}{N}\right)^n - \left(\frac{1}{N}\right)^n \right) \Big|_{\frac{1}{N}}^{1 - \frac{1}{N}}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\left(1 - \frac{1}{N}\right)^n - \left(\frac{1}{N}\right)^n \right)^2$$

Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ be the diffeomorphism defined by

$$\Phi(x,y) = (x+y, x-y).$$

Define

$$E = \left\{ (x, y) \in \mathbb{R}^2 : \frac{1}{N} \le x \le 1 - \frac{1}{N}, \left| x - \frac{1}{2} \right| - \frac{1}{2} + \frac{1}{2N} \le y \le \frac{1}{2} - \frac{1}{2N} - \left| x - \frac{1}{2} \right| \right\}.$$

Let $u = \frac{x+y}{2}$, $v = \frac{x-y}{2}$. Recall that our constraints for x and y are $\frac{1}{N} \le x, y \le 1 - \frac{1}{N}$. It follows that

$$\frac{1}{N} \le u \le 1 - \frac{1}{N}$$

$$\frac{1}{N} \le u + v \le 1 - \frac{1}{N} \implies \frac{1}{N} - u \le v \le 1 - \frac{1}{N} - u$$

$$\frac{1}{N} \le u - v \le 1 - \frac{1}{N} \implies u - 1 + \frac{1}{N} \le v \le u - \frac{1}{N}$$

$$\int_{K_N} f = \int_E f \circ \Phi \cdot |\det J\Phi|
= 2 \left(\int_{\frac{1}{N}}^{\frac{1}{2}} \int_{\frac{1}{N}-u}^{u-\frac{1}{N}} \frac{1}{1 - (u+v)(u-v)} dv du + \int_{\frac{1}{2}}^{1-\frac{1}{N}} \int_{u-1+\frac{1}{N}}^{1-\frac{1}{N}-u} \frac{1}{1 - (u+v)(u-v)} dv du \right)
= 2 \left(\int_{\frac{1}{N}}^{\frac{1}{2}} \int_{\frac{1}{N}-u}^{u-\frac{1}{N}} \frac{1}{1 - u^2 + v^2} dv du + \int_{\frac{1}{2}}^{1-\frac{1}{N}} \int_{u-1+\frac{1}{N}}^{1-\frac{1}{N}-u} \frac{1}{1 - u^2 + v^2} dv du \right)$$

By symmetry along y = 0, the integral above is equal to

$$4\left(\int_{\frac{1}{N}}^{\frac{1}{2}} \int_{0}^{u-\frac{1}{N}} \frac{1}{1-u^{2}+v^{2}} dv du + \int_{\frac{1}{2}}^{1-\frac{1}{N}} \int_{0}^{1-\frac{1}{N}-u} \frac{1}{1-u^{2}+v^{2}} dv du\right)$$

We do both integrals side-by-side:

$$=4\left(\int_{\frac{1}{N}}^{\frac{1}{2}}\frac{1}{\sqrt{1-u^2}}\arctan\left(\frac{u-\frac{1}{N}}{\sqrt{1-u^2}}\right)\ du+\int_{\frac{1}{2}}^{1-\frac{1}{N}}\frac{1}{\sqrt{1-u^2}}\arctan\left(\frac{1-\frac{1}{N}-u}{\sqrt{1-u^2}}\right)\ du\right)$$

For the first integral, let $u = \sin \theta$. For the second integral, let $u = \cos \theta$. We have

$$=4\left(\int_{\arcsin\left(\frac{1}{N}\right)}^{\frac{\pi}{6}}\arctan\left(\frac{\sin\theta-\frac{1}{N}}{|\cos\theta|}\right)\ d\theta-\int_{\frac{\pi}{3}}^{\arccos\left(1-\frac{1}{N}\right)}\arctan\left(\frac{1-\frac{1}{N}-\cos\theta}{|\sin\theta|}\right)\ d\theta\right)$$

We remove the absolute values and simplify to get that the integral is equal to

$$4\left(\int_{\arcsin\left(\frac{1}{N}\right)}^{\frac{\pi}{6}}\arctan\left(\tan\theta - \frac{1}{N}\sec\theta\right) \ d\theta - \int_{\frac{\pi}{3}}^{\arccos\left(1 - \frac{1}{N}\right)}\arctan\left(\tan\left(\frac{\theta}{2}\right) - \frac{1}{N}\csc\theta\right) \ d\theta\right)$$

It is quite difficult to find a closed form for these integrals due to the pesky $\frac{1}{N}$, but we will deal with it in part (c).

(c):

Recall from part (a) that $\int_{K_N} f = \sum_{n=1}^{\infty} \frac{1}{n^2} \left(\left(1 - \frac{1}{N} \right)^n - \left(\frac{1}{N} \right)^n \right)^2$. It is not hard to see that as $N \to \infty$, $\int_{K_N} f \to \sum_{n=1}^{\infty} \frac{1}{n^2}$. Now, we will show that

$$4\left(\int_{\arcsin\left(\frac{1}{N}\right)}^{\frac{\pi}{6}}\arctan\left(\tan\theta - \frac{1}{N}\sec\theta\right) \ d\theta - \int_{\frac{\pi}{3}}^{\arccos\left(1 - \frac{1}{N}\right)}\arctan\left(\tan\left(\frac{\theta}{2}\right) - \frac{1}{N}\csc\theta\right) \ d\theta\right)$$

converges to

$$\frac{\pi^2}{6}$$
.

First, we restrict N > 2 to ensure that $\arcsin\left(\frac{1}{N}\right) < \frac{\pi}{6}$ and $\arccos\left(1 - \frac{1}{N}\right) < \frac{\pi}{3}$. Since $\sec t$ is bounded by $\frac{2}{\sqrt{3}}$ on $\left[\arcsin\left(\frac{1}{N}\right), \frac{\pi}{6}\right]$, by the monotonicity of $\arctan t$ we have that

$$\arctan\left(\tan\theta - \frac{2}{\sqrt{3}N}\right) \le \arctan\left(\tan\theta - \frac{1}{N}\sec\theta\right) \le \arctan\left(\tan\theta + \frac{2}{\sqrt{3}N}\right)$$

We note that $\arctan t$ is uniformly continuous on a closed interval, so for sufficiently large N, we have that for any $\theta \in \left[\arcsin\left(\frac{1}{N}\right), \frac{\pi}{6}\right]$,

$$\arctan(\tan \theta) - \frac{6\varepsilon}{\pi} < \arctan\left(\tan \theta - \frac{2}{\sqrt{3}N}\right)$$

and

$$\arctan(\tan \theta) + \frac{6\varepsilon}{\pi} > \arctan\left(\tan \theta + \frac{2}{\sqrt{3}N}\right)$$

for some $\varepsilon > 0$ that can be made arbitrarily small. By the monotonicity of the integral,

$$\int_{\arcsin\left(\frac{1}{N}\right)}^{\frac{\pi}{6}} \arctan(\tan\theta) - \frac{6\varepsilon}{\pi} \ d\theta < \int_{\arcsin\left(\frac{1}{N}\right)}^{\frac{\pi}{6}} \arctan\left(\tan\theta - \frac{1}{N}\sec\theta\right) \ d\theta$$

and

$$\int_{\arcsin\left(\frac{1}{N}\right)}^{\frac{\pi}{6}}\arctan\left(\tan\theta - \frac{1}{N}\sec\theta\right) \ d\theta < \int_{\arcsin\left(\frac{1}{N}\right)}^{\frac{\pi}{6}}\arctan(\tan\theta) + \frac{6\varepsilon}{\pi} \ d\theta$$

It is easy to evaluate the two integrals that bound the original one. We get that

$$\int_{\arcsin(\frac{1}{N})}^{\frac{\pi}{6}} \arctan(\tan \theta) - \frac{6\varepsilon}{\pi} d\theta = \int_{\arcsin(\frac{1}{N})}^{\frac{\pi}{6}} \theta - \frac{6\varepsilon}{\pi} d\theta$$

$$= \frac{1}{2} \left(\frac{\pi^2}{36} - \arcsin^2\left(\frac{1}{N}\right) \right) - \frac{6\varepsilon}{\pi} \left(\frac{\pi}{6} - \arcsin\left(\frac{1}{N}\right) \right)$$

$$\int_{\arcsin(\frac{1}{N})}^{\frac{\pi}{6}} \arctan(\tan \theta) + \frac{6\varepsilon}{\pi} d\theta = \int_{\arcsin(\frac{1}{N})}^{\frac{\pi}{6}} \theta + \frac{6\varepsilon}{\pi} d\theta$$

$$= \frac{1}{2} \left(\frac{\pi^2}{36} - \arcsin^2\left(\frac{1}{N}\right) \right) + \frac{6\varepsilon}{\pi} \left(\frac{\pi}{6} - \arcsin\left(\frac{1}{N}\right) \right)$$

We apply Squeeze Theorem to see that

$$\lim_{N \to \infty} \int_{\arcsin(\frac{1}{N})}^{\frac{\pi}{6}} \arctan\left(\tan \theta - \frac{1}{N} \sec \theta\right) d\theta = \frac{\pi^2}{72}.$$

By a similar argument, we can show that

$$-\lim_{N\to\infty} \int_{\frac{\pi}{3}}^{\arccos(1-\frac{1}{N})} \arctan\left(\tan\left(\frac{\theta}{2}\right) - \frac{1}{N}\csc\theta\right) d\theta = \int_{0}^{\frac{\pi}{3}} \frac{\theta}{2} d\theta$$
$$= \frac{\pi^{2}}{36}$$

Thus our original integral converges to

$$4\left(\frac{\pi^2}{72} + \frac{\pi^2}{36}\right) = \frac{\pi^2}{18} + \frac{\pi^2}{9} = \frac{\pi^2}{6}$$

Therefore we can conclude that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \lim_{N \to \infty} \int_{K_N} f = \frac{\pi^2}{6}$$

and we are done