HURTOWNIE DANYCH

Laboratorium 6

Maciej Kopiński 254578

Zad. 1. Modyfikacja wymiarów i tabeli faktów

Bazując na kostce utworzonej przy realizacji listy 4, należy:

- a) zmodyfikować definicję wymiarów tak, aby:
 - w wymiarach CUSTOMER i SALESPERSON nie można było korzystać z atrybutów FirstName oraz LastName. W zamian dodać atrybut Names
 - w wymiarze SALESPERSON pojawiła się hierarchia Group CountryRegionCode
 Names
 - w wymiarze CUSTOMER pojawiła się hierarchia Group CountryRegionCode Names
 - w wymiarze PRODUCT pojawiła się hierarchia CategoryName SubCategoryName Name
 - w wymiarze TIME pojawiła się hierarchia Rok Kwartał Miesiąc Dzień miesiąca
- b) dla każdego atrybutu kluczowego wymiaru, którego wartościami są liczby całkowite, zmodyfikować właściwości (Properties). Zmodyfikować parametr NameColumn, tak aby nazwy kolejnych elementów wymiaru nie były liczbami. (Przykładowo dla wymiaru dotyczącego Produktu można wykorzystać atrybut Name).
- c) utworzyć nowe miary, które będą odzwierciedlać:
 - Liczbę różnych klientów (aggregatedFunction: distinct count)
 - Liczbę różnych produktów
 - Maksymalną wartość rabatu (aggregatedFunction: max)
 - Maksymalną liczbę zamówionych produktów
 - Liczbę różnych sprzedawców realizujących zamówienia
- d) wdrożyć i przeprocesować kostkę.

Zad. 2. Przegląd danych i tworzenie zestawień

Przy użyciu zakładki Browser:

- a) Sprawdzić, czy dane zapisane w kostce zgadzają się z danymi zapisanymi w tabelach, przeciągając za pomocą myszy:
 - o atrybuty wymiarów w region wierszy
 - o miary w część centralną widoku
- b) Przetestować możliwości przeglądarki (Browser) operator wyboru danych (Operator), wyrażenia filtrujące dane (Filter Expression) itp.
- c) Przygotować przykładowe tabele i wykresy przestawne (Excel) oraz zinterpretować uzyskane wyniki (wnioski!)

Zad. 3. Partycje

Podzielić zawartość kostki na partycje (zakładka *Partitions*). Każda partycja powinna odzwierciedlać jeden rok. Istnieją dwa podstawowe sposoby podziału partycjonowania kostek:

- dane do zasilania poszczególnych partycji znajdują się w osobnych tabelach
- dane do zasilania poszczególnych partycji znajdują się w tej samej tabeli, zaś każda z partycji ma przypisanie zapytanie SQL, którego wynik służy do jej zasilenia.

Proszę przygotować partycje na dwa sposoby i znaleźć uzasadnienie dla każdej opcji.

Zad. 4.

Korzystając z bazy danych AdventureWorksDW:

- a) Utworzyć nowe źródło danych
- b) Utworzyć nowy widok źródła danych
- c) Utworzyć nową kostkę wybierając jako tabelę faktów FactInternetSales, wymiary według własnego uznania uzasadnić wybór
- d) Zbadać, jak zmienia się czas przetwarzania kostki w zależności od liczby zdefiniowanych wymiarów.
- e) Poćwiczyć edycję wymiarów i korzystanie z przeglądarki kostki danych (Browser) oraz przygotować ciekawe zestawienia tabele i wykresy przestawne w MS Excel.

Rozwiązania:

Zad.1

a) Kostka z atrybutami Names zamiast FirstName i LastName

Hierarchie:

b)

c)

d)

a)

Dimension	Hierard	thy	Operator	Filter Expression		Pa
DIM CUSTOM		ty	Equal			
<select dimer<="" td=""><td>nsion></td><td></td><td></td><td></td><td></td><td></td></select>	nsion>					
Line Total	Maximum Order Oty	FACT SALES Count	Maximum Unit Price D	scount Order Oty	Unit Price	Unit Price Discount

b)

c)
1.Maksymalny rozmiar zamówienia dla kategorii w zależności od roku i kwartału

2.Liczba różnych produktów w zależności od roku i kwartału dla poszczególnych kontynentów

Zad.3

Partycje:

Item	Partition Name	Source ↑	Estimated Rows	Storage Mode	Aggregation Design
1	FACT SALES 2011	SELECT [Kopinski].[FACT_SALES].[ProductID],[Kopinski]	0	MOLAP	
2	FACT SALES 2012	SELECT [Kopinski].[FACT_SALES].[ProductID],[Kopinski]	21689	MOLAP	AggregationDesign_2012
3	FACT SALES 2013	SELECT [Kopinski].[FACT_SALES].[ProductID],[Kopinski]	56573	MOLAP	AggregationDesign_2013
4	FACT SALES 2014	SELECT [Kopinski].[FACT_SALES].[ProductID],[Kopinski]	37339	MOLAP	AggregationDesign_2014

Zad.4

b) a) oraz

e)
1.Suma sprzedaży w zależności od kodu regionu i ilości posiadanych samochodów

2.Suma sprzedaży w zależności od koloru produktu i płci

3.Suma sprzedaży w zależności od kodu regionu i liczby dzieci

4.Suma sprzedaży dla osób z dziećmi według miesięcy w Australii

Dla Stanów Zjednoczonych

Wnioski:

Wykres 2.c.1:

Klienci kupują w jednym zamówieniu najwięcej produktów z kategorii ubrania.

Wykres 2.c.2:

Sklep z roku na rok oferuje coraz więcej różnych produktów.

Wykres 2.c.3:

Najwięcej różnych produktów jest kupowane z kategorii rowery i komponenty.

Wykres 4.e.1:

Im więcej klient posiada samochodów, tym mniej kupuje.

Wykres 4.e.2:

Płeć klienta nie wpływa na kolory produktów, które kupuje.

Wykres 4.e.3:

Im większa liczba dzieci, tym niższe ilości produktów w zamówieniu. Wyjątkiem jest Australia, gdzie wciąż najwięcej kupują osoby bezdzietne, natomiast w przypadku posiadania 5 dzieci kupują więcej niż w przypadku posiadania mniejszej ilości dzieci.

Projekt typu Analysis Services pozwala na wygodne wybieranie, przetwarzanie i prezentowanie danych. Pozwala on na modyfikowanie przedstawionych danych bez konieczności modyfikowania ich w bazie poprzez funkcję Named Calculations czy tworzenie hierarchii pozwalającej na późniejsze wygodniejsze doprecyzowanie danych przykładowo na wykresie. Nie wymaga pisania zapytań do samej bazy w celu utworzenia tabel przestawnych prezentujących potrzebne nam dane.