Домашнее задание

- 1. Случайные величины X_1, X_2, \dots независимы и одинаково распределены с функцией плотности $ax^{a-1}/2^a$ на отрезке [0;2].
 - (a) Если a=2 найдите $\mathbb{P}(X_1>1.5)$, $\mathbb{P}(X_1>1.5\mid X_1>1)$, $\mathbb{E}(X_1)$, $\mathrm{Var}(X_1)$
 - (b) Если a=2 найдите $\mathbb{P}(X_1+X_2>1), \mathbb{E}((X_1+X_2)^2), \operatorname{Cov}(2X_1+3X_2,3X_1-2X_2)$
 - (c) Если a=2 найдите $\mathbb{P}(\sum_{i=1}^{100} X_i > 150), \, \mathbb{P}(\bar{X}_{100} > 1)$
 - (d) Какое n нужно взять, чтобы \bar{X}_n отличалось от $\mathbb{E}(X_i)$ не более чем на 0.01 с вероятностью 0.9, если a=2?
 - (e) Постройте оценку неизвестного a методом моментов и методом максимального правдоподобия
 - (f) По результатам 100 наблюдений оказалось, что $\sum \ln(X_i) = 10$. Посчитайте оценку дисперсии $\widehat{\mathrm{Var}}(\hat{a}_{ML})$ и постройте 90% доверительный интервал для a. На уровне значимости 10% проверьте гипотезу, что a=2, посчитайте точное P-значение. Чётко напишите, что такое P-значение.
- 2. В настоящий момент существует огромная пропасть между уровнем преподавания математической статистики и эконометрики в вышке и уровнем развития этих наук. Можно обольщаться тем, что в подавляющем большинстве других вузов еще хуже, можно попытаться сократить разрыв.
 - (а) Что можно изменить в курсе теории вероятностей и статистики, чтобы достичь эту цель?
 - (b) Как лучше сочетать программирование в R с некомпьютерной частью курса?
 - (c) Любые ценные замечания? Ценные означает способные изменить курс, грубая лесть не в счёт :)