

Этикетка

КСНЛ.431279.001 ЭТ

Микросхема 1564ЛН7УЭП

Микросхема интегральная 1564ЛН7УЭП Функциональное назначение: Шесть инверсных буферов с 3-мя состояниями

Условное графическое обозначение 2 1D0 1Q0 1D1 1> 1Q1 4 1D2 1Q2 6 1D3 103 10 1EZ 1> 12 11 2D0 2Q0 2Q1 14 2D1 13 Схема расположения выводов Номера выводов показаны условно $\begin{matrix} V_{CC} \\ 0V \end{matrix}$ 15 16 2EZ8

Таблица назначения выводов

No	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	1EZ	Вход управления	9	1Q3	Выход
2	1D0	Вход	10	1D3	Вход
3	1Q0	Выход	11	2Q0	Выход
4	1D1	Вход	12	2D0	Вход
5	1Q1	Выход	13	2Q1	Выход
6	1D2	Вход	14	2D1	Вход
7	1Q2	Выход	15	2EZ	Вход управления
8	0V	Общий	16	V_{cc}	Питание

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25\pm10$ °C)

1.1 Основные электрические пар	имстры (при с 23 <u>-</u> 10	<i>C)</i>	
	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B} I_{O}=20 \text{ MKA}$	U _{OL max}	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B I_{O} = 20 MKA		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		ı	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =6,0 MA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 7,8 mA		-	0,26

1	2	3	4
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, I_{O}=20 \text{ MKA}$	U_{OHmin}	1,9	-
$U_{CC}=4,5 \text{ B}, U_{IL}=0,9 \text{ B}, I_{O}=20 \text{ MKA}$		4,4	-
$U_{CC}=6.0 \text{ B}, U_{IL}=1.2 \text{ B}, I_{O}=20 \text{ MKA}$		5,9	-
при:		- 9-	
$U_{CC}=4.5 \text{ B}, U_{II}=0.9 \text{ B}, I_{O}=6.0 \text{ MA}$		3,98	_
U_{CC} =6,0 B, U_{IL} =1,2 B, I_0 = 7,8 mA		5,48	_
3. Входной ток низкого уровня, мкА, при:		3,10	
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	${ m I}_{ m IL}$	_	/-0,1/
4. Входной ток высокого уровня, мкА, при:	*IL		7 0,17
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	_	0,1
5. Ток потребления, мкА, при	*IH		0,1
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}		4,0
6. Выходной ток низкого и высокого уровня в состоянии «Выключено», мкА,		-	4,0
	I_{OZH}		0,5
при:	I_{OZL}	-	0,3
$U_{CC} = 6.0 \text{ B}, U_{IL} = 1.2 \text{ B}, U_{IH} = 4.2 \text{ B}$			
7. Динамический ток потребления, мА, при:			1
$U_{CC} = 6.0 \text{ B, } f = 10 \text{ M}\Gamma\text{ц}$	I_{OCC}		
$U_{1EZ} = U_{2EZ} = U_{1H} = U_{CC}$	1000	_	1,0
$U_{1EZ} = U_{2EZ} = U_{IL} = 0$		_	20.0
8. Время задержки распространения при включении и выключении, нс,			20,0
- от входа 1D01D3, 2D0, 2D1 к выходам 1Q01Q3, 2Q0, 2Q1,нс при:	$t_{ m PHL}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}$	$t_{\rm PLH}$	_	82
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$	PLH	_	19
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ n}\Phi$		_	16
1D01D3, 2D0, 2D1 к выходам 1Q01Q3, 2Q0, 2Q1 при:			10
$U_{CC} = 2.0 \text{ B}, C_L = 150 \text{ п}\Phi$		_	107
$U_{CC} = 4.5 \text{ B}, C_L = 150 \text{ m}\Phi$		_	26
$U_{CC} = 6.0 \text{ B}, C_L = 150 \text{ n}\Phi$		_	22
9. Время задержки распространения при переходе из третьего состояния в		-	22
	4		
состояние низкого и высокого уровня, нс, при:	t _{PZL}		172
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ n}\Phi, R_L = 1 \text{ kOM}$	t_{PZH}	-	
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ n}\Phi, R_L = 1 \text{ kOm}$		-	38
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi, R_L = 1 \text{ kOm}$		-	35
II = 20 D C = 150 r/b D = 1vOv			107
$U_{CC} = 2.0 \text{ B}, C_L = 150 \text{ n}\Phi, R_L = 1 \text{kOM}$		-	187 46
$U_{CC} = 4.5 \text{ B}, C_L = 150 \text{ n}\Phi, R_L = 1 \text{ kOM}$		-	46 42
$U_{CC} = 6.0 \text{ B}, C_L = 150 \pi\Phi, R_L = 1 \kappa\text{OM}$		-	42
10. Время задержки распространения при переходе из состояния низкого и	4		
высокого уровня в третье состояние, нс, при:	t_{PLZ}		117
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ n}\Phi, R_L = 1 \text{ kOm}$	$t_{ m PHZ}$	-	117
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ n}\Phi, R_L = 1 \text{ kOm}$		-	35
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ n}\Phi, R_L = 1 \text{ kOm}$		-	31
11. Входная емкость, $\pi\Phi$, π ри: $U_{CC} = 0$ В	C_{I}	-	10
12. Выходная ёмкость в состоянии «Выключено», пФ, при:			
$U_{CC} = 4.5 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	C_{OZ}	-	20
126			

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото	Γ.
серебро	Γ.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2\ \Gamma$ амма – процентный срок сохраняемости ($T_{\text{С}\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-17ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

_ 1	вуют техническим усло	виям АЕЯР.431200.424-17ТУ и признаны годными для эксплуат	ации.
Приняты по от _			
(извещение, акт и др.)	(дата)		
Место для штампа ОТК		Место для штампа ПЗ	
Место для штампа « Перепроверка п	роизведена	<u> </u>	
		(дата)	
Приняты по	OT		
(извещение, акт и др.)	(дата)		
Место для штампа ОТК		Место для штампа ПЗ	

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общий, вход-питание.