Master's Exam in Real Analysis May 2020

Part 1 - Solve 6 problems from Part 1.

1. Prove that:

(a) $\mathbb{Q} \cap [0,1]$ is countable.

(b) [0, 1] is uncountable.

(c) $[0,1] \setminus \mathbb{Q}$ is uncountable.

2. Let X be a metric space, $n \in \mathbb{N}$ and $A_i \subset X$, for $1 \leq i \leq n$. Prove that:

(a)

$$\overline{\bigcup_{i=1}^n A_i} = \bigcup_{i=1}^n \overline{A_i} \,.$$

(b) Is (a) true if $n = \infty$? Prove it or give a counterexample.

3. Let X be a compact metric space and $\{x_n\}$ be a sequence from X. Show that $\{x_n\}$ is convergent if and only if it is a Cauchy sequence.

4. Let $x_1 = 4$ and

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{9}{x_n} \right), \ \forall \ n \in \mathbb{N}.$$

Show that $\{x_n\}$ is a convergent sequence and find its limit.

5. Consider the series

$$\sum_{n=0}^{\infty} \frac{1}{n!}.$$

(a) Prove that the series is convergent.

(b) Show that the sum of the series is an irrational number.

6. Let $f:[0,1]\to\mathbb{R}$ be defined by

$$f(x) = \left\{ \begin{array}{ll} \frac{1}{n} & \text{if} \quad x = \frac{m}{n} \text{ in lowest terms} \\ 0 & \text{if} \quad x = 0 \text{ or } x \not \in \mathbb{Q} \end{array} \right.$$

(a) For any $x_0 \in [0, 1]$, find $\lim_{x \to x_0} f(x)$.

(b) At which points is f continuous?

(c) What type of discontinuities does f have?

7. Let f be a continuous mapping of a compact metric space X into a metric space Y. Prove that f(X) is compact.

1

Part 2 - Solve 6 problems from Part 2.

8. Let $f:(a,b)\to\mathbb{R}$ be a differentiable function.

(a) Show that if there exists some $L \ge 0$ such that $|f'(x)| \le L$ for all $x \in (a, b)$, then f is uniformly continuous.

(b) Is the converse true? Prove it or give a counterexample.

9. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that there exists some $0 \le L < 1$ with $|f'(x)| \le L$ for all $x \in \mathbb{R}$. Consider an arbitrary, but fixed $x_1 \in \mathbb{R}$ and the sequence $\{x_n\}$ given by $x_{n+1} = f(x_n)$, for all $n \in \mathbb{N}$. Prove that $\{x_n\}$ is convergent to an $x \in \mathbb{R}$ and f(x) = x.

10. Let $f:[-1,1]\to\mathbb{R}$ be a bounded function and

$$\alpha(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x = 0 \\ 2 & \text{if } x > 0 \end{cases}.$$

Show that $f \in \mathcal{R}(\alpha)$ on [-1,1] if and only if f is continuous at x=0.

11. Let α be monotonically increasing and bounded on [a, b]. Suppose that $f_n \in \mathcal{R}(\alpha)$ on [a, b], for all $n \in \mathbb{N}$ and that f_n converges uniformly to f on [a, b]. Prove that $f \in \mathcal{R}(\alpha)$ and

$$\int_{a}^{b} f \, d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_n \, d\alpha \, .$$

12. Let $f_n:[0,1]\to\mathbb{R}$ be a continuous function for all $n\in\mathbb{N}$.

(a) Show that if the sequence $\{f_n\}$ converges uniformly to a function f on [0,1], then for all $x \in [0,1]$ and for all sequences $\{x_n\}$ from [0,1] converging to x, we have $\{f_n(x_n)\} \to f(x)$.

(b) Is the converse true? Prove it or give a counterexample.

13. Let

$$f_n(x) = \frac{nx}{1 + n^3 x^2}, \ x \ge 0, \ n \in \mathbb{N}.$$

(a) Investigate the pointwise and uniform convergences of the sequence $\{f_n\}$ on [0,1].

(b) Investigate the pointwise and uniform convergences of the series $\sum_{n=1}^{\infty} f_n$ on [0,1].

14. Let $f:[0,1]\to\mathbb{R}$ be continuous and assume that

$$\int_{0}^{1} f(x)x^{n} dx = 0, \text{ for all } n \in \mathbb{N}.$$

2

Prove that f(x) = 0 for all $x \in [0, 1]$.