

计算机组成原理

Principles of Computer Organization

中断

中断请求如何产生、如何被CPU处理.....

主讲教师: 石 侃

shikan@ict.ac.cn

2025年6月16日

第11章 中断

11.1 CPU中断系统(教材P358-第8.4节)

11.2 I/O中断(教材P194-第5.5节)

11.1 中断系统

二、概述

- 1. 引起中断的各种因素
 - (1) 人为设置的中断

如 转管指令 或称陷入指令(Trap)

- (2) 程序性事故 溢出、操作码不能识别、除法非法
- (3) 硬件故障
- (4) I/O 设备
- (5) 外部事件 用键盘中断现行程序

2. 中断系统需解决的问题

11.1

- (1) 各中断源 如何 向 CPU 提出请求?
- (2) 各中断源同时提出请求怎么办?
- (3) CPU 什么 条件、什么 时间、以什么 方式 响应中断?
- (4) 如何保护现场?
- (5) 如何寻找入口地址?
- (6) 如何恢复现场,如何返回?
- (7) 处理中断的过程中又 出现新的中断 怎么办? 硬件 + 软件

二、中断请求标记和中断判优逻辑

11.1

1. 中断请求标记 INTR

一个请求源 一个 INTR 中断请求标记触发器

多个INTR 组成 中断请求标记寄存器

1 2 3 4 5 加 掉 过 主 阶 非 电 热 存读写校验错

INTR 分散 在各个中断源的 接口电路中INTR 集中 在 CPU 的中断系统 内

2. 中断判优逻辑(中断源优先级)

11.1

- (1) 硬件实现(排队器)
 - ① 分散 在各个中断源的 接口电路中 链式排队器

参见 11.2 I/O中断

② 集中 在 CPU 内

INTR₁、INTR₂、INTR₃、INTR₄ 优先级 按 降序 排列

(2) 软件实现(程序查询)

11.1

A、B、C 优先级按 降序 排列

三、中断服务程序入口地址的寻找 11.1

1. 硬件向量法(硬件→向量地址→入口地址)

向量地址 12H、13H、14H

400

入口地址 200、300、

2. 软件查询法(与软件排队配合)

11.1

八个中断源 1, 2, ... 8 按 降序 排列

中断识别程序(入口地址 M)

地址	指 令	说明
M	SKP DZ 1# JMP 1# SR SKP DZ 2# JMP 2# SR	1# D=0 跳 (D为完成触发器) 1# D=1 转1# 服务程序 2# D=0 跳 2# D=1 转2# 服务程序
	SKP DZ 8 [#] JMP 8 [#] SR	8 [#] D=0 跳 8 [#] D=1 转8 [#] 服务程序

四、中断响应

- 11.1
- 1. 响应中断的条件 允许中断触发器 EINT=1(开中断置1,关中断置0)
- 2. 响应中断的时间 指令执行周期结束时刻由CPU 发查询信号

3. 中断隐指令

11.1

(1) 保护程序断点

断点(当前PC)存于 特定地址(0号地址)内 断点 进栈

(2) 寻找服务程序入口地址 向量地址 — PC (硬件向量法) 中断识别程序入口地址 M — PC

(3) 硬件 关中断

INT 中断标记

EINT 允许中断

R-S触发器

五、保护现场和恢复现场

11.1

1. 保护现场·

断点

中断隐指令 完成

寄存器 内容

中断服务程序完成

2. 恢复现场 中断

中断服务程序完成

中断服务程序

保护现场

PUSH

其它服务程序

视不同请求源而定

恢复现场

POP

中断返回

IRET

六、中断屏蔽技术

11.1

1. 多重中断的概念

程序断点 k+1, l+1, m+1

2. 实现多重中断的条件

11.1

- (1) 提前 设置 开中断 指令
- (2) 优先级别高的中断源有权中断优先级别低的中断源

3. 屏蔽技术

11.1

(1) 屏蔽触发器的作用

MASK = 0 (未屏蔽)

INTR 能被置 "1"

 $MASK_i = 1$ (屏蔽)

 $INTP_i = 0$ (不能被排队选中)

(2) 屏蔽字 11.1

16个中断源 1, 2, 3, … 16 按 降序 排列

优先级	屏蔽字
1	11111111111111
2	011111111111111
3	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
4	0001111111111111
5	0000111111111111
6	0000011111111111
:	
15	0 0 0 0 0 0 0 0 0 0 0 0 1 1
16	0 0 0 0 0 0 0 0 0 0 0 0 0 1

(3) 屏蔽技术可改变处理优先等级

11.1

响应优先级不可改变

处理优先级

可改变 (通过重新设置屏蔽字)

中断源	原屏蔽字	新屏蔽字
\mathbf{A}	1 1 1 1	1111
В	0 1 1 1	0 1 0 0
C	0 0 1 1	0 1 1 0
D	0 0 0 1	0 1 1 1

响应优先级 $A \rightarrow B \rightarrow C \rightarrow D$ 降序排列

处理优先级 $A \rightarrow D \rightarrow C \rightarrow B$ 降序排列

(3) 屏蔽技术可改变处理优先等级

11.1

CPU 执行程序轨迹(原屏蔽字)

(3) 屏蔽技术可改变处理优先等级

11.1

CPU 执行程序轨迹(新屏蔽字)

(4) 屏蔽技术的其他作用

可以人为地屏蔽 某个中断源的请求 便于程序控制

(5) 新屏蔽字的设置

11.1

4. 多重中断的断点保护

(1) 断点进栈

- 中断隐指令 完成
- (2) 断点存入"0"地址 中断隐指令完成

中断周期 0 → MAR

命令存储器写

PC → MDR 断点 → MDR

(MDR) → 存入存储器

- 三次中断,三个断点都存入"0"地址
 - ? 如何保证断点不丢失?

(3) 程序断点存入"0"地址的断点保护11.1

地 址	内容	说 明
0 5	XXXX JMP SERVE	存程序断点 5 为向量地址
SERVE	STA SAVE :	保护现场
置屏蔽字	LDA 0 STA RETURN ENI	0 地址内容转存 开中断
	:	其他服务内容
	LDA SAVE	恢复现场
	JMP @ RETURN	间址返回
SAVE RETURN	×××× ××××	存放 ACC 内容 转存 0 地址内容 23

11.2 1/0中断

二、I/O 中断的产生

11.2

以打印机为例 CPU 与打印机并行工作

三、程序中断方式的接口电路

1. 配置中断请求触发器和中断屏蔽触发器

中断请求

INTR

中断请求触发器

INTR = 1 有请求

MASK

中断屏蔽触发器

MASK=1 被屏蔽

D 完成触发器

2. 排队器

11.2

排队{<mark>硬件 在 CPU 内或在接口电路中(链式排队器)</mark> 软件

设备 1#、2#、3#、4# 优先级按 降序排列

 $INTR_i = 1$ 有请求 即 $INTR_i = 0$

2. 排队器

11.2

排队{<mark>便件 在 CPU 内或在接口电路中(链式排队器)</mark> 软件

3. 中断向量地址形成部件

11.2

由硬件产生向量地址 再由向量地址 找到入口地址

4. 程序中断方式接口电路的基本组成 11.2 向量地址 设备编码器 至低一级 中断响应 的排队器 INTA 排队器 中断请求 来自高一级 的排队器 INTR MASK 中断查询 启动设备 命令译码 B D 启动命令 & 设备工作 SEL 结束 地址线 设备选择电路 输入数据 数据线 **DBR**

11.2

- 1. CPU 响应中断的条件和时间
 - (1)条件

允许中断触发器 EINT = 1

用 开中断 指令将 EINT 置 "1"

用 关中断 指令将 EINT 置" 0" 或硬件 自动复位

(2) 时间

当 D = 1 (随机) 且 MASK = 0 时

在每条指令执行阶段的结束前

CPU 发 中断查询信号 (将 INTR 置 "1")31

11.2

- 1. 中断服务程序的流程
 - (1) 保护现场

{程序断点的保护 寄存器内容的保护 中断隐指令完成 进栈指令

- (2) 中断服务 对不同的 I/O 设备具有不同内容的设备服务
- (3) 恢复现场 出栈指令
- (4) 中断返回 中断返回指令
- 2. 单重中断和多重中断

单重 中断 不允许中断 现行的 中断服务程序 多重 中断 允许级别更高 的中断源 中断现行的中断服务程序

3. 单重中断和多重中断的服务程序流程 11.2

程序中断接口芯片 8259A 的内部结构

11.2

主程序和服务程序抢占 CPU 示意图 11.2

微观上 CPU 中断现行程序 为 I/O 服务

作业

● 习题: 8.24、8.25、8.26、8.27、8.28