## WOJSKOWA AKADEMIA TECHNICZNA

im. Jarosława Dąbrowskiego

### WYDZIAŁ CYBERNETYKI



## Sprawozdanie

Zaawansowane metody uczenia maszynowego

Sieci konwolucyjne

Autor: Prowadzący:

Karol Baranowski mgr inż. Przemysław Czuba

#### Spis treści

| Zadanie                                                                                                                                   | 2   |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Zadanie I Opis implementacji modelu LaNet                                                                                                 | 2   |
| Zadanie II Analiza porównawcza modelu MLP z poprzednich zajęć oraz modelu<br>LaNet                                                        |     |
| a. Jakie są główne różnice, który sprawuje się lepiej dla jakiej ilości danych?                                                           | 4   |
| b. Dla jakiej konfiguracji sieci MLP wyniki są zbliżone do CNN? Ile czasu trwa uczejednej oraz drugiej sieci aby osiągnąć podobne wyniki? |     |
| Wnioski                                                                                                                                   | .10 |

#### Zadanie

Implementacja sieci LaNet-5 2 . Zaprojektowana do klasyfikacji pisma odręcznego. Posiada dwie warstwy konwolucyjne, każda posiada warstwę subsampling (pooling).

- 1. Opis implementacji modelu LaNet
- 2. Analiza porównawcza modelu MLP z poprzednich zajęć oraz modelu LaNet:
  - a. Jakie są główne różnice, który sprawuje się lepiej dla jakiej ilości danych
  - b. Dla jakiej konfiguracji sieci MLP wyniki są zbliżone do CNN? Ile czasu trwa uczenie jednej oraz drugiej sieci aby osiągnąć podobne wyniki?

#### Zadanie I Opis implementacji modelu LaNet

```
Model LeNet:
- opisać użyte funkcje oraz dodać komentarze nad każdą linijką
class LeNet(nn.Module):
  # Uruchomienie metody inicjalizującej(konstruktora), wykonującej się przy powstaniu obiektu
  def __init__(self, output_dim
     # Uruchomienie konstruktora init () obiektu narzednego tzn. nn.Module po, którym dziedziczy
    # LeNet
    super().
    # Konwolucja map cech obiektu wejściowego z filtrem
    # in channels - Liczba kanałów w obrazie wejściowym
     # out channels - Liczba kanałów wyprodukowanych przez konwolucję
     # kernel_size - Rozmiar filtra konwolucji, określa długość i wysokość maski filtra
    self.conv1 = nn.Conv2d(in_channels=1,
                    out channels=6,
                    kernel size=5)
     # Druga konwolucja map cech obiektu wejściowego (tzn. wyjściowego z conv1) z filtrem
    self.conv2 = nn.Conv2d(in channels=6,
                    out_channels=16,
                    kernel_size=5)
    # nn.Linear(x_size, y_size) jest funkcją realizującą transformację liniową do przychodzących
    # y = x * W ^ T + b. W parametrach przyjmuje wielkości każdej próbki wejścia i wyjścia czyli w
     # tym przypadku ilość neuronów na warstwie.
     # Są trzy warstwy (fc - fully connected - traktuje wejście jako jednowymiarową listę)
     # Do pierwszej warstwy przekazywane są 256 cechy wejściowe,120 to liczba cech wyjściowych
             = nn.Linear(16 * 4 * 4, 120)
    # Do drugiej warstwy przekazywane są 120 cechy wejściowe (cechy wyjściowe fc 1),84 to liczba
    # cech
    # wyjściowych
    self.fc 2 = nn.Linear(120, 84)
    # W trzeciej warstwie 84 cechy wejściowe, output dim to liczba zdefiniowanych klas wyjściowych
    self.fc_3 = nn.Linear(84, output dim)
  # Propagacja do przodu. Definiuje obliczneia, operacje, funkcje, któ © e mają sie wykonać
  # przy każdym wywołaniu.
  def forward(self, >
    # Pierwsza konwolucja na warstwie wejściowej
     x = self.conv1(x)
    # Pooling po oknie 2x2. Przechodzenie po fragmencie i wybraniu wartości maksymalnej.
    x = F.max pool2d(x, kernel size=2)
    # Zastosowanie na te warstwe funkcji aktywacji ReLu
    x = F.relu(x)
    # Druga konwolucja (konwolucje i transformacje zdefiniowane w __init__() - tu ich wywołanie)
     x = self.conv2(
    # Ponowny pooling po oknie 2x2. Przechodzenie po fragmencie i wybraniu wartości
    # maksymalnej.
    x = F.max pool2d(x, kernel size=2)
    # Zastosowanie na te warstwe funkcji aktywacji ReLu
    x = F.relu(x)
     # Zmiana kształtu tensora aby otrzymać płaski w pełni połączoną warstwę. Gdy chcemy aby w x
     # była konkretna
     # liczba (x.shape[0]) wierszy, ale nie jesteśmy pewni ilości kolumn można wpisać -1. Dzięki temu
     # tensor
    # wyliczy odpowiednią liczbę kolumn dla zadanej liczby wierszy.
    x = x.view(x.shape[0], -1)
     # Wyliczenie pierwszej w pełni połączonej warstwy
     # Zastosowanie na tę warstwę funkcji aktywacji ReLu
     x = E.relu(x)
     # Wyliczenie drugiej w pełni połączonej warstwy
     # Zastosowanie na tę warstwę funkcji aktywacji ReLu
```

# Zadanie II Analiza porównawcza modelu MLP z poprzednich zajęć oraz modelu LaNet

## a. Jakie są główne różnice, który sprawuje się lepiej dla jakiej ilości danych?

#### Główne różnice:

return x, h

LaNet jest siecią CNN, więc w odróżnieniu ud modelu MLP z poprzednich zajęć, są zaimplementowane tutaj konwulacje czyli aplikowania wag z filtra w celu ekstrakcji lokalnych cech. W związku z tym w kodzie znajdują się dodatkowe definicje filtrów. Każdy neuron warstwy ukrytej wylicza wartość konwolucji oraz stosuje funkcję aktywacji (ReLU), gdzie w modelu MLP przeprowadzana była tylko funkcja aktywacji. Gdy pracuje się na sieci CNN to stosuje się również pooling, czyli zmniejszania obrazów zachowując ich właściwości, czego również nie było w MLP. Poprzez implementację tych mechanizmów, obliczenia są bardziej wymagające i trwają dłużej. Również dla MLP wystarczył obraz jako wektor 1D, natomiast do liczenia konwolucji potrzebna jest przestrzenność obrazu, stąd w kodzie są dodatkowe konwersję widoków tensorów poprzez użycie funkcji tensor.view (odpowiednik w numpy to reshape).

#### Który model sprawuje się lepiej dla jakiej ilości danych?

#### Próba 1: Domyślne wartości LeNet

Domyślne wartości w LeNet to 3 warstwy: 256 neuronów jako warstwa wejściowa

120 neuronów w pierwszej warstwie ukrytej, 84 w drugiej warstwie ukrytej. W MLP ustawiono takie same liczby neuronów poza warstwą wejściową, gdyż w MLP przyjmowane są obrazki 28x28 = 784, natomiast w LeNet 16x4x4=256. Funkcje aktywacji ustawiono jako ReLu.

Dla tak ustawionych sieci otrzymano wyniki:

MLP: LeNet:

MLP ma ponad dwukrotną liczbę trenowalnych parametrów. To dlatego, że warstwa wejściowa zawiera 784 neurony, a nie 256 jak w LeNet. Mimo to, już od pierwszej epoki LeNet dokładność lepiej. Wpierwszej epoce MLP policzył ją na 93.67%, natomiast LeNet 95.86%. Dla danych testowych po pięciu epokach szkolenia, dokładność obu sieci wzrosła. MLP do 97.46%, LeNet do 98.74%. Różnica wynosi ~ 1.3%. Mimo, iż LeNet ma prawie 2.5 razy parametrów mniej to następne epoki trwają dłużej niż dla MLP. To przez wymagające operacji konwulacji i poolingu.

#### Próba 2: Mała liczba neuronów

Dla dwóch sieci ustawiono 2 warstwy ukryte po 10 i 5 neuronów.

MLP: LeNet:

Wyraźnie widać, że MLP dla małych ilości neuronów w warstwach znacznie słabiej wylicza dokładność. Po pięciu epokach wynosi ona 86.84%, a dla LeNet 97.41%. Różnica wynosi prawie 11%. Nasuwa się również wniosek, że sieć LeNet wraz z ilością epok dla małych wartości neuronów i tak bardzo poprawnie rozpoznaje cyfry. Dla porównania z wynikiem z próby 1, dokładność różni się tylko o ~1.3%, mimo że neuronów w pierwszej warstwie ukrytej było o 110 mniej, a w drugiej o 79 mniej. Czasy obliczania zostały jednak podobne.

#### Próba 3: Duża liczba neuronów

Dla dwóch sieci ustawiono 2 warstwy ukryte po 500 i 250 neuronów.

MLP: LeNet:

```
The model has 258,832 trainable parameters
Epoch: 1 | Epoch Time: 0m 19s
                                               Epoch: 01 | Epoch Time: 0m 23s
       Train Loss: 0.339 | Train Acc: 89.38%
                                                       Train Loss: 0.326 | Train Acc: 89.65%
                                                        Val. Loss: 0.119 | Val. Acc: 96.32%
                                               Epoch: 02 | Epoch Time: 0m 23s
                                                       Train Loss: 0.104 | Train Acc: 96.75%
        Val. Loss: 0.102 | Val. Acc: 96.68%
                                                        Val. Loss: 0.071 | Val. Acc: 97.98%
Epoch: 3 | Epoch Time: 0m 26s
                                               Epoch: 03 | Epoch Time: 0m 25s
        Val. Loss: 0.098 | Val. Acc: 97.16%
                                                        Val. Loss: 0.055 |
                                                                            Val. Acc: 98.27%
                                               Epoch: 04 | Epoch Time: 0m 24s
                                                       Train Loss: 0.069 | Train Acc: 97.83%
        Val. Loss: 0.092 | Val. Acc: 97.29%
                                                        Val. Loss: 0.058 | Val. Acc: 98.28%
Epoch: 5 | Epoch Time: 0m 28s
                                               Epoch: 05 | Epoch Time: 0m 25s
       Train Loss: 0.099 | Train Acc: 96.90%
                                                       Train Loss: 0.058 | Train Acc: 98.18%
        Val. Loss: 0.089 | Val. Acc: 97.41%
                                                        Val. Loss: 0.047 | Val. Acc: 98.68%
```

Dla tak zwiększonej liczby neuronów widać poprawę dla LeNet, które dochodzi do prawie 99% dokładności po 5 epokach. Dla MLP jest poprawa 0.26% od danych z próby 1. Sugeruje to, że liczba neuronów wpływa korzystnie dla sieci LeNet, natomiast wpływa bardzo nieznacznie na poprawę sieci MLP. Czas w obu sieciach rośnie o 2 sekundy na epokę w stosunku do czasu z próby 1.

#### Próba 2: Najlepsze wartości MLP

W poprzednim ćwiczeniu najlepszą wartość MLP osiągnięto dla konfiguracji z 3 warstwami ukrytymi odpowiednio: 500 neuronów, 100 neuronów, 50 neuronów. Dokładność wtedy wyniosła 98.4% po 10 epokach:

```
Epoch: 02 | Epoch Time: 0m 24s

Train Loss: 0.189 | Train Acc: 94.13%

Val. Loss: 0.135 | Val. Acc: 95.64%

Test Loss: 0.109 | Test Acc: 96.40%
```

Ustawiono więc te parametry w dwóch sieciach w celu sprawdzenia czy MLP może lepiej policzyć dokładność niż LeNet.

MLP: LeNet:

```
The model has 186,732 trainable parameters
Epoch: 01 | Epoch Time: 0m 27s
                            Val. Acc: 95.96%
         Val. Loss: 0.128 |
       Train Loss: 0.129 | Train Acc: 95.93%
         Val. Loss: 0.095 | Val. Acc: 97.06%
         Val. Loss: 0.071 |
                            Val. Acc: 97.89%
       Train Loss: 0.076 | Train Acc: 97.65%
         Val. Loss: 0.058 | Val. Acc: 98.40%
         Val. Loss: 0.047 | Val. Acc: 98.76%
Epoch: 07 | Epoch Time: 0m 27s
        Train Loss: 0.055 | Train Acc: 98.33%
        Train Loss: 0.052 | Train Acc: 98.46%
Epoch: 10 | Epoch Time: 0m 27s
        Train Loss: 0.044 | Train Acc: 98.66%
         Val. Loss: 0.044 | Val. Acc: 98.78%
```

W typ przypadku MLP osiągnęło po 10 epokach dokładność 98.26 %, natomiast LeNet 98.92%. Widać, że zwiększenie liczby warstw nie poprawia dokładności LeNet, a wręcz ją pogarsza (wynik jest taki sam jak dla dwóch warstw z 500 i 250 neuronami po pięciu epokach).

# b. Dla jakiej konfiguracji sieci MLP wyniki są zbliżone do CNN? Ile czasu trwa uczenie jednej oraz drugiej sieci aby osiągnąć podobne wyniki?

Wyniki zbliżone są najbardziej dla prób 1 i 4 z powyższego podpunktu czyli dla domyślnych wartości LeNet oraz najlepszych wartości MLP wyznaczonych eksperymentalnie na poprzednich laboratoriach.

Dla próby pierwszej wynik jest zbliżony po 5 epokach uczenia MLP (97.22%) oraz 2 epokach CNN (97.29).

Natomiast najbardziej zbliżony wynik po takiej samej ilości iteracji (10 epok) wyznaczono dla parametrów próby 4, czyli 3 warstwy ukryte: 500, 100 i 50 neuronów. Dokładność MLP wyniosła 98.26 %, natomiast LeNet 98.92%, więc różnica to 0.66% (w najlepszym osiągniętym wyniku na poprzednim laboratorium 98.4% różnica to 0.46%). Sieć MLP daje wynik zbliżone dla większej ilości warstw niż dwie. Uczenie w tym przypadku trwa podobną ilość czasu (ok. 30 sekund na epokę), natomiast MLP ma ponad 2 razy więcej trenowalnych parametrów. Znaczy to, że uczenie LeNet jest wolniejsze, ale przez to, że wejściowe obrazy mają 256 neuronów, a nie 784 wykonuje się w tym przypadku podobną ilość czasu. Jeżeli podać by jej na wejściu 784 neurony jak w MLP z pewnością nauka byłaby dłuższa.

#### Wnioski

Cel zadania został osiągnięty. Wszystkie polecenia udało się wykonać. Kod programu dokładnie przeanalizowano i zapoznano się z budową konwolucyjnych sieci neuronowych złożonych z wielu warstw.

Zaobserwowano, że sieci te liczą dokładność rozpoznawania obrazków lepiej niż zwykłe sieci wielowarstwowe. Szczególnie dla sieci dwuwarstwowej z 500 i 250 neuronami. Dokładność po 20 iteracjach wyniosła 99.16%.

Wynik ten można uznać za bardzo dokładny. Dodawanie epok prawdopodobnie jeszcze by go zwiększyło, natomiast znacznie wydłużyłoby czas. Sieć pomyliła najwięcej razy 4 z 9 (9 razy) i 3 z 9 (8 razy).





Na powyższym rysunku widać, że mylone cyfry to skrajne wartości mogące stanowić ciężki wybór nawet dla człowieka (np. 2 w trzecim rzędzie, ostatniej kolumnie). Natomiast widać, że mylone są 4, w których górna przerwa jest bardzo mała i dlatego sieć identyfikuje je jako 9. Również przekręcona 9 (ostatni rząd, pierwsza kolumna) została sklasyfikowana jako 8. Być może losowanie transformacji obrotu dla tensora z szerszego kąta wyeliminowało by ten błąd i jeszcze zwiększyło dokładność.