PROJECT CARD

PROJECT CARD

GOAL:

• Build, train, test and deploy a machine learning model to predict chances of university admission into a particular university given student's profile.

TOOL:

AWS SageMaker – Launching a Training job from the Management Console

PRACTICAL REAL-WORLD APPLICATION:

• This project can be effectively used by university admission departments to determine top qualifying students.

DATA:

INPUTS (FEATURES):

- GRE Scores (out of 340)
- TOEFL Scores (out of 120)
- University Rating (out of 5)
- Statement of Purpose (SOP)
- Letter of Recommendation (LOR) Strength (out of 5)
- Undergraduate GPA (out of 10)
- Research Experience (either 0 or 1)

OUTPUTS:

- Chance of admission (ranging from 0 to 1)
 - Data Source: https://www.kaghtpsc//www.kfliarksachna/pa/otras/pasa/6757993885
 - Photo Credit: <a href="https://www.pexels.com/photo/aggrecolis/liparguty

PROJECT OVERVIEW

THE RISE OF MACHINE LEARNING IN HIGHER EDUCATION

THE RISE OF MACHINE LEARNING IN HIGHER EDUCATION

 Machine Learning and Artificial Intelligence have been transforming higher education in many areas such as:

Marketing and Recruiting

Students Admission and Enrollment

Curriculum and Resources Planning and Forecasting

Pedagogy and Personalized Students Learning Experience

Students Support (AI-Powered Counseling)

• Reference: https://er.educause.edu/articles/2019/8/artificial-intelligence-in-higher-education-applications-promise-and-perils-and-ethical-questions

READING TIME & QUIZ: THE RISE OF AI IN HIGHER EDUCATION

- Please read the 2 articles below and answer the following quiz.
 - https://edtechmagazine.com/higher/article/2020/02/5-year-visionartificial-intelligence-higher-ed
 - o https://er.educause.edu/articles/2019/8/artificial-intelligence-in-higher-education-applications-promise-and-perils-and-ethical-questions

Artificial Intelligence in Higher Education: Applications, Promise and Perils, and Ethical Questions

Elana Zeide Monday, August 26, 2019 📵 In Print 📵 PDF

16 min read

MACHINE LEARNING REGRESSION RECAP

ADVANCED

SIMPLE LINEAR REGRESSION

- Regression works by predicting value of one variable Y based on another variable X.
- X is called the independent variable and Y is called the dependant variable.
- Goal is to obtain a relationship (model) between two variables only such as age and insurance cost for example.

MULTIPLE LINEAR REGRESSION

- Multiple Linear Regression: examines relationship between more than two variables.
- Recall that Simple Linear regression is a statistical model that examines linear relationship between two variables only.
- Each independent variable has its own corresponding coefficient.

ADDITIONAL READING MATERIAL

Additional Resources, Page #123:

http://www.cs.huji.ac.il/~shais/Understanding MachineLearning/understanding-machinelearning-theory-algorithms.pdf

Additional Resources, Page #61:

http://www-

bcf.usc.edu/~gareth/ISL/ISLR%20Seventh%20

Printing.pdf

PRACTICE OPPORTUNITY

PRACTICE OPPORTUNITY:

 Match the equations to the figures below and explain why:

$$y = 3 * x + 5$$

 $y = 1 * x$
 $y = -3 * x + 4$
 $y = 4 * x$

PRACTICE OPPORTUNITY SOLUTION:

Match the equations to the figures below and explain why:

LAUNCH A TRAINING JOB FROM AWS CONSOLE DEMO PART #1

CREATE AN S3 BUCKET AND UPLOAD THE TRAINING DATASETS

CREATE THREE FOLDERS FOR TRAIN, TEST AND OUTPUT. NOTE THAT THE OUTPUT IS THE LOCATION TO STORE THE MODEL ARTIFACTS

NAVIGATE TO SAGEMAKER AND CLICK ON TRAINING JOBS AND THEN CREATE TRAINING JOB

NOTE THAT THE TARGET OUTPUT IS IN THE FIRST COLUMN. MAKE SURE THAT NO HEADERS ARE PRESENT.

PROVIDE A NAME AND CHOOSE A LINEAR LEARNER ALGORITHM

PROVIDE FEATURE DIMENSION, MINI_BATCH_SIZE AND PREDICTOR TYPE (YOU WILL GET AN ERROR IF YOU DON'T PROVIDE THEM.

PROVIDE THE PATH TO THE TRAINING DATASET IN S3

PROVIDE THE PATH TO THE TESTING DATASET IN S3

SET THE OUTPUT LOCATION AND YOU CAN ENABLE SPOT INSTANCE AS WELL TO SAVE COSTS. CREATE TRAINING JOB.

LAUNCH A TRAINING JOB FROM AWS CONSOLE DEMO PART #2

NOTE THAT YOU MIGHT GET THIS ERROR MESSAGE. THIS IS BECAUSE SAGEMAKER DOES NOT HAVE ACCESS TO THE S3 BUCKET. LET'S CHANGE THAT!

NAVIGATE TO IAM AND ATTACH AMAZONS3FULLACCESS TO THE SAGEMAKER EXECUTION ROLE

SELECT THE SAGEMAKER EXECUTION ROLE THAT HAS FULL S3 ACCESS.
IT SHOULD WORK NOW!

TRAINING JOB HAS STARTED!

ONCE THE TRAINING JOB IS COMPLETE. NAVIGATE TO VIEW ALGORITHM METRICS TO ASSESS TRAINED MODEL PERFORMANCE.

ONCE THE TRAINING JOB IS COMPLETE. NAVIGATE TO VIEW ALGORITHM METRICS TO ASSESS TRAINED MODEL PERFORMANCE. NOTE THAT YOU ARE WATCHING ALL THESE METRICS IN CLOUDWATCH.

CLICK ON VIEW LOGS AND VIEW THE TRAINING JOB METRICS

```
#train_score (algo-1): ('mse_', 0.0030186674197638717)

#train_score (algo-1): ('mse_', 0.0030186674197638717)

#train_score (algo-1): ('mse_', 0.0030186674197638717)

#train_score (algo-1): ('mse_', 0.034942400202820808)

#train_score (algo-1): ('mse_', 0.034942400202820808)

#train_score (algo-1): ('mse_', 0.034942400202820808)

#train_score (algo-1): ('mse_', 0.0394639939887268))

#train_score (algo-1): ('mse_', 0.0394639939887268)

#quality_metric: host=algo-1, train mse_objective <loss>=0.0030186674197638717

#quality_metric: host=algo-1, train mse_<loss>=0.0030186674197638717

#quality_metric: host=algo-1, train absolute_loss <loss>=0.003949240002820008

#quality_metric: host=algo-1, train rmse <loss>=0.03594924002820008

#quality_metric: host=algo-1, train mse_<loss>=0.03894924092820008

#quality_metric: host=algo-1, train mse_<loss>=0.03894924093939887268

Best model found for hyperparameters: ("optimize": "adam", "learning_rate": 0.005, "l1": 0.0, "wd": 0.0001, "lr_scheduler_step": 10, "lr_scheduler_factor": 0.59, "lr_scheduler_minimum_lr": 1e-05}
```

ONCE THE TRAINING JOB IS COMPLETE. YOU SHOULD FIND THE TRAINED MODEL ARTIFCATS IN THIS PATH SHOWN BELOW.

TRAINED MODEL OUTPUT IS PLACED IN THE OUTPUT

MODEL DEPLOYMENT

ONCE THE TRAINING JOB IS COMPLETE, CLICK ON CREATE MODEL

PROVIDE A NAME, SELECT THE ROLE AND CLICK CREATE MODEL

CLICK ON CREATE ENDPOINT CONFIGURATION

PROVIDE A NAME AND CLICK CREATE ENDPOINT CONFIG

NAVIGATE TO ENDPOINTS AND CLICK ON CREATE ENDPOINT

PROVIDE AN ENDPOINT NAME AND SELECT THE CONFIGURATION AND CLICK ON CREATE ENDPOINT

FINAL END-OF-DAY CAPSTONE PROJECT

EASY

ADVANCED

PROJECT OVERVIEW: LIFE EXPECTANCY PREDICTION

- In this hands-on project, we will train a Linear Regression model to predict life expectancy.
- This data was initially obtained from World Health Organization (WHO) and United Nations
 Website. Data contains features like year, status, life expectancy, adult mortality, infant
 deaths, percentage of expenditure, alcohol etc.

Tasks:

- Upload the dataset Life_Expectancy_test_NoHeader.csv and Life_Expectancy_train_NoHeader.csv to S3
- 2. Using AWS management console, train a linear leaner model to predict life expectancy.
- 3. Deploy the model and assess its performance. What's R2?

Source: https://www.kaggle.com/jkumarajarshi/life-expectancy-who

FINAL END-OF-DAY CAPSTONE PROJECT SOLUTION

ADVANCED

PROJECT SOLUTION

```
#test_score (algo-1): ('mse_objective', 21.298218028175214)

#test_score (algo-1): ('mse', 21.298218028175214)

#test_score (algo-1): ('absolute_loss', 3.3841952163110394)

#test_score (algo-1): ('rmse', 4.614999244655975)

#test_score (algo-1): ('rz', 0.7977039820516127)

#test_score (algo-1): ('mae', 3.3841952099425963)

#quality_metric: host=algo-1, test mse_objective <loss>=21.298218028175214

#quality_metric: host=algo-1, test mse <loss>=21.298218028175214

#quality_metric: host=algo-1, test absolute_loss <loss>=3.3841952163110394

#quality_metric: host=algo-1, test rmse <loss>=4.614999244655975

#quality_metric: host=algo-1, test rc <loss>=4.614999244655975

#quality_metric: host=algo-1, test rc <loss>=6.7977039820516127

#quality_metric: host=algo-1, test mae <loss>=3.3841952099425963

"EndTime": 1651035781.2368584, "Dimensions": "Algorithm": "Linear Learner", "Host": "algo-1", "Operation": "training"), "Metrics": ("initialize.time": ("sum": 848.08659...
```