Personalized Recipe Discovery: Elevating User Engagement and Retention

A Smart Solution for Grocery List and Meal Planning Apps

Babak Hosseini

Github: https://github.com/bab-git

Business Question

How can grocery list and meal planning apps significantly increase user engagement, retention, and monetization potential by leveraging existing user data to provide personalized recipe recommendations?

Why It's Important to Users?

- **Time-saving**: Less time spent searching for recipes
- Personalization: Tailored recommendations based on past behavior
- **Inspiration**: Combat 'meal fatigue' with new ideas
- **Convenience**: Seamless integration with grocery lists
- **Health alignment**: Suggestions tailored to dietary nee

Proposed Solution: Smart Recipe Recommendation System

Proposed Solution:

- Seamless recipe import from popular websites (e.g., yummly.com, epicurious.com)
- Advanced recommendation engine for highly relevant suggestions
- Weekly personalized recipe updates based on user selection history
- Powered by big data technologies for scalable, real-time processing
- End-to-end deployment: From data collection to user interface integration

Key Benefits:

- ★ Enhanced user engagement
- ★ Personalized meal planning experience
- ★ Streamlined grocery shopping process

System Design Overview

- Data Collection and Storage:
- Data Preprocessing
- Model Architecture
- API Gateway
- Mobile App
- Weekly Recommendation Process

Weekly Process

Data Preprocessing

Data Preparation

Data Schema

User Import History:

- user id: string
- recipe_url: string
- import_timestamp: datetime

Recipe Details:

- recipe id: string
- ingredients: list[string]
- cuisine_type: string (if available)
- meal_type: string (if available)

User Profile:

- user_id: string
- preferred_ingredients: list[string]
- preferred_cuisine_types: list[string]
- import_frequency: float

Feature Extraction:

Feature vectors:

Ingredients, cuisine type, meal type, other attributes

A - Concatenation of feature vectors

- R = [w_i * I, w_c * C, w_m * M, w_o * O]
- More interpretable
- Need to infer missing attributes
- Higher dimensionality

B - Addition of feature vectors

- $R = [w_i * I + w_c * C + w_m * M + w_o * O]$ using word embeddings or TF-IDF
- Easier to handle missing attributes
- Less interpretable
- Lower dimensionality

Model Research and Selection

Candidate Models:

- Collaborative Filtering (CF)
 - a. Matrix Factorization techniques (e.g., Alternating Least Squares)
 - b. Pros: Captures user behavior patterns and hidden preferences
 - c. Cons: Cold start problem for new recipes
- 2. Content-Based Filtering
 - a. TF-IDF or Word2Vec for ingredient similarity
 - b. Pros: Works well with recipe attributes, no cold start problem
 - c. Cons: May miss serendipitous recommendations
- 3. Hybrid Approach
 - a. Combining CF and Content-Based methods
 - b. Pros: Leverages strengths of both approaches
 - c. Cons: More complex to implement and tune

Model Research and Selection

Evaluation Metrics:

1. Offline Metrics

- a. MAP (Mean Average Precision)
- b. Precision@K (e.g., Precision at top 5 recommendations)
- c. [if order is important]: nDCG (Normalized Discounted Cumulative Gain)
- d. Explain: These metrics help assess ranking quality without user interaction

2. Online Metrics

- a. Click-Through Rate (CTR)
- b. Save Rate (how often users save recommended recipes)
- c. Recipe View Time
- d. Explain: These metrics measure actual user engagement with recommendations

Model Research and Selection

Model Selection:

1. Cross validation:

- a. Parameter selection
- b. Offline without real test

2. A/B test:

- a. Model structure selection
- b. Top-performing models from cross validation
- c. Real test on users, splitting them into test groups

Hybrid Algorithm

Steps:

- CF: Set of 100 candidates for each user
- Content-based: Re-rank them to top 10

Why?

- Complementary Strengths
- Handling Data Sparsity and Cold Start Problems
- Scalability and Computational Efficiency

New users - cold start

- Initial profile questionnaire
- Content-based relevant suggestions
- Or just popular suggestions

New users will switch to hybrid over time

Technical Implementation

Data Pipeline and Processing:

- ETL (Extract, Transform, Load) process:
 - Extracts new user-recipe interactions and recipe data
 - Transforms data (cleaning, feature engineering)
 - Loads into a Data Lake (e.g., Amazon S3, Azure Data Lake)
- Implements data versioning for reproducibility
- Runs on a weekly schedule (e.g., using Apache Airflow)

Technical Implementation

Model Training:

- Uses Apache Spark for distributed processing:
 - Reads data from Data Lake
 - Performs feature engineering at scale
 - Trains recommendation models (CF, Content-Based, Hybrid)
- Hyperparameter tuning using cross-validation
- Logs model performance metrics

Model Registry and Serving:

- Stores trained models in a Model Registry (e.g., MLflow)
- Versioning of models for easy rollback
- A/B testing framework for comparing model versions
- Model serving layer (e.g., TensorFlow Serving, MLflow)
 - Loads latest approved model version
 - Generates batch predictions for all users

Technical Implementation

Deployment and API Integration:

- RESTful API endpoints:
 - GET /recommendations/{user_id}: Retrieve user's recommendations
 - POST /feedback: Collect user feedback on recommendations
 - FastAPI: performance, python package, auto documentation,
- API Gateway for request routing and throttling
- Caching layer (e.g., Redis) for frequently accessed recommendations
- Use of containerization (Docker) and orchestration (Kubernetes)

Mobile App Integration

User interface:

- Weekly notification for new recommendations
- Scrollable list of recommended recipes with key details

Caching and offline access:

- Store recommendations locally for offline viewing
- Sync mechanism for updates

Feedback mechanism:

- Allow users to rate or save recommended recipes
- Collect implicit feedback (e.g., recipe views, ingredient adds to shopping list)

Future Improvements and Conclusion

Potential enhancements:

- Incorporating seasonality and local food trends
- Personalized recommendation timing
- Integration with shopping list for ingredient-based recommendations
- Al-powered meal planning based on nutritional goals

Key takeaways:

- Leverage user import data for highly personalized recommendations
- Scalable, weekly batch process ensures efficient resource use
- Continuous improvement through user feedback and A/B testing
- Increased user engagement and retention through personalized content
- New monetization opportunities through strategic partnerships