Contents

Handling numbers

Section outline

- Handling numbers
 - Radix number systems
 - Complementation
 - Conversion of bases

- Binary to BCD
- Binary codes
- Error detecting code
- Error correcting code
- Mininum bits for 1-bit ECC
- Mininum bits for 1-bit EDC

Radix number systems

- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$ $0 \le a_i < b$, MSB: a_m , LSB: a_{-p}
- $123.45 = 1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0 + 4 \times 10^{-1} + 5 \times 10^{-2}$
- Integer part: $a_m b^m + \ldots + a_1 b + a_0$
- Fractional part: $a_{-1}b^{-1} + ... + a_{-p}b^{-p}$
- Common bases: 10 decimal, 2 binary, 8 octal, 16 hexadecimal
- $\bullet \ 1101.01 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 13.25$
- 31.1₄ =?
- 15.2₈ =?

Numbers in some bases

Base												
2	4	8	10	12	16							
0000	0	0	0	0	0							
0001	1	1	1	1	1							
0010	2	2		2	2							
0011	3	3	2 3	3	3							
0100	10	4	4	4	4							
0101	11	5	5	5	5							
0110	12	6	6	6	6							
0111	13	7	7	7	7							
1000	20	10	8	8	8							
1001	21	11	9	9	9							
1010	22	12	10	α	Α							
1011	23	13	11	β	В							
1100	30	14	12	10	C							
1101	31	15	13	11	D							
1110	32	16	14	12	E							
1111	33	17	15	13	F							

Complementation

- Complement of digit a, denoted a', in base b is $a_b' = (b-1)_b a_b$
- Binary: $a_2' = 1_2 a_2$, 0' = 1, 1' = 0
- Decimal: $a'_{10} = 9_{10} a_{10}$ 0' = 9, 1' = 8, 2' = 7, 3' = 6, 4' = 5, 5' = 4, 6' = 3, 7' = 2, 8' = 1, 9' = 0
- Octal: $a'_8 = 7_8 a_8$ 0' = 7, 1' = 6, 2' = 5, 3' = 4, 4' = 3, 5' = 2, 6' = 1, 7' = 0
- For, $N = a_m b^m + \ldots + a_1 b + a_0$, let $M = a'_m b^m + \ldots + a'_1 b + a'_0$
- $\therefore M = (b-1-a_m)b^m + \ldots + (b-1-a_1)b + (b-1-a_0)$
- $\Rightarrow M = \sum_{i=1}^{m+1} b^i \sum_{i=0}^m b^i N = (b^{m+1} 1) N$
 - Diminished radix complement of N is $(b^{m+1} 1) N = M$
 - Radix complement of N is $b^{m+1} N = M + 1 = N'$
 - $P N = P + N' \mod b^m$ (for m digits)

Complementation (contd.)

Example (Decimal subtraction)

- 321 123 = 198
- Ten's complement of 123: 876 + 1 = 877
- \bullet 321 + 876 = 1198 = 198 mod 10³

Example (Binary subtraction)

- \bullet 1 0100 0001 0 0111 1011 = 0 1100 0110
- 2's complement of 0 0111 1011: 1 1000 0100 + 1 = 1 1000 0101
- ullet 1 0100 0001 + 1 1000 0101 = 10 1100 0110 = 0 1100 0110 mod 29

Complementation (contd.)

	Num	twos'	two's
0	0000	1111	0000
1	0001	1110	1111
2	0010	1101	1110
3	0011	1100	1101
4	0100	1011	1100
5	0101	1010	1011
6	0110	1001	1010
7	0111	1000	1001
8	1000	0111	1000
9	1001	0110	0111

	Num	twos'	two's
0	0 0000	1 1111	0 0000
1	0 0001	1 1110	1 1111
2	0 0010	1 1101	1 1110
3	0 0011	1 1100	1 1101
4	0 0100	1 1011	1 1100
5	0 0101	1 1010	1 1011
6	0 0110	1 1001	1 1010
7	0 0111	1 1000	1 1001
8	0 1000	1 0111	1 1000
9	0 1001	1 0110	1 0111
10	0 1010	1 0101	1 0110
11	0 1011	1 0100	1 0101
12	0 1100	1 0011	1 0100
13	0 1101	1 0010	1 0011
14	0 1110	1 0001	1 0010
15	0 1111	1 0000	1 0001

Conversion of bases

- Number in base b₁ to be converted to base b₂
- If $b_1 < b_2$, use arithmetic of b_2
- $N = a_m b^m + \ldots + a_1 b + a_0 + a_{-1} b^{-1} + \ldots + a_{-p} b^{-p}$

Example (432.28 to decimal)

$$432.2_8 = 4 \times 8^2 + 3 \times 8^1 + 2 \times 8^0 + 2 \times 8^{-1} = 282.25_{10}$$

Example (1101.01₂ to decimal)

$$1101.01_2 = 1 \times 23 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = 13.25_{10}$$

Conversion of bases

- Number in base b₁ to be converted to base b₂
- If $b_1 > b_2$, use arithmetic of b_1

•
$$N_{b_1} = \underbrace{a_m b_2^m + \ldots + a_1 b_2 + a_0}_{A} + \underbrace{a_{-1} b_2^{-1} + \ldots + a_{-p} b_2^{-p}}_{B}$$

- $\frac{A}{b_2} = \underbrace{a_m b_2^{m-1} + \ldots + a_1}_{O_0} + \underbrace{a_0}_{b_2}$
- Least significant digit of A_{b_2} is the remainder of $\frac{a_0}{b_2}$
- If $Q_0 = 0$, terminate, otherwise, apply procedure recursively to Q_0

Conversion of bases (contd.

Example (548₁₀ to octal (base 8))

$$\begin{array}{ccccc}
Q_i & r_i \\
\hline
68 & 4 & a_0 \\
8 & 4 & a_1 & 548_{10} = 1044_8 \\
1 & 0 & a_2 \\
& 1 & a_3
\end{array}$$

Example (345₁₀ to base 6)

Conversion of bases (contd.

•
$$b_2B = a_{-1} + \underbrace{a_{-1}b_2^{-1} + \ldots + a_{-p}b_2^{1-p}}_{F}$$

- The first digit of fractional part is the integer part of the product
- Continue recursively until F is non-zero

Example (0.3125₁₀ to base 8)

- $0.3125 \times 8 = 2.5000$
- $0.5000 \times 8 = 4.0000$
- \bullet $a_{-1} = 2, a_{-2} = 4$
- \bullet 0.3125₁₀ = 0.24₈

Binary to BCD

```
d = 0 - 9: binary and BCD are identical
```

d = 10 - 15: 1 goes to the next higher place, d - 10 in current place

Alternately $d + 6 \mod 16$ in current place, if $d \ge 10$

$$d = 12$$
: $d + 6 = 18 \mod 16 = 2$, 1 goes to next higher place $12_{10} = 1100_2$, $1100 + 0110 = 10010$

 $\ensuremath{\text{NB:}}$ LSB is unaffected, because LSB of $6_{10}=0$

If bits are handled sequentially, 3 can be added (instead of 6) and then shifted left

$$110 + 011 = 1001 \longrightarrow 10010$$

To be repeated until conversion is complete

Name Shift-and-add-3 or double-dabble

Binary of 48748 to BCD example

Ор	B4	B3	B2	B1	B0	48748
L Sft	0000	0000	0000	0000	0001	1011111001101100
L Sft	0000	0000	0000	0000	0010	1011111001101100
L Sft	0000	0000	0000	0000	0101	1011111001101100
Add 3	0000	0000	0000	0000	1000	1011111001101100
L Sft	0000	0000	0000	0001	0001	1011111001101100
L Sft	0000	0000	0000	0010	0011	1011111001101100
L Sft	0000	0000	0000	0100	0111	10111111001101100
Add 3	0000	0000	0000	0100	1010	101111 <mark>1</mark> 001101100
L Sft	0000	0000	0000	1001	0101	101111 <mark>1</mark> 001101100
Add 3	0000	0000	0000	1100	1000	1011111001101100
L Sft	0000	0000	0001	1001	0000	1011111 <mark>0</mark> 01101100
Add 3	0000	0000	0001	1100	0000	1011111001101100
L Sft	0000	0000	0011	1000	0000	10111110 <mark>0</mark> 1101100

Binary of 48748 to BCD example

Ор	B4	B3	B2	B1	B0	48748
Add 3	0000	0000	0011	1011	0000	101111100 <mark>1</mark> 101100
L Sft	0000	0000	0111	0110	0001	101111100 <mark>1</mark> 101100
Add 3	0000	0000	1010	1001	0001	10111111001101100
L Sft	0000	0001	0101	0010	0011	10111111001 <mark>1</mark> 01100
Add 3	0000	0001	1000	0010	0011	10111111001101100
L Sft	0000	0011	0000	0100	0110	10111111001101100
Add 3	0000	0011	0000	0100	1001	101111100110 <mark>1</mark> 100
L Sft	0000	0110	0000	1001	0011	1011111100110 <mark>1</mark> 100
Add 3	0000	1001	0000	1100	0011	10111111001101100
L Sft	0001	0010	0001	1000	0111	10111111001101 <mark>1</mark> 00
Add 3	0001	0010	0001	1011	1010	10111111001101100
L Sft	0010	0100	0011	0111	0100	1011111001101100
Add 3	0010	0100	0011	1010	0100	1011111001101100
L Sft	0100	1000	0111	0100	1000	10111111001101100
End	4	8	7	4	8	

Correctness of binary to BCD conversion

- Given binary value is $B = b_{n-1}b_{n-2} \dots b_0$, n = 15 for the example
- Let *D* be the BCD number with digits $d_{m-1}...d_j...d_0$, $m \le 4\frac{n}{3}$
- Let D_j be the value of the BCD number after the j^{th} shift
- $D_0 = 00...0$ (*D* is initialised to 0)
- Initially, each BCD value y_i of digit d_i is valid (zero)
- Also, at least one bit of B is pending conversion
- On a left shift, each new BCD value of d'_i is $y'_i = 2y_i + m_{i-1}$ where m_{i-1} is the MSB of y_{i-1} if $i \ge 1$, otherwise the next input bit
- For the first three left shifts $D_j = 2D_{j-1} + b_{n-j}$ holds $(D_1 = 2D_0 + b_{15}, D_2 = 2D_1 + b_{14}, D_3 = 2D_2 + b_{13})$
- If the bits are exhausted, then the conversion correctly terminates
- Otherwise, if any $y_i' \ge 5$, it's updated to $y_i' = 2y_i + m_{i-1} + 3$
- MSB of d_j is the carry to be shifted into d_{j+1}
- On the next left shift, $D_i = 2D_{i-1} + b_{n-i}$ again holds
- Conversion algorithm is reversible

BCD 48748 to Binary example

Ор	B4	B3	B2	B1	B0	
Input	0100	1000	0111	0100	1000	
R Sft	0010	0100	0011	1010	0100	000000000000000000000000000000000000000
Sub 3	0010	0100	0011	0111	0100	0000000000000000
R Sft	0001	0010	0001	1011	1010	0000000000000000
Sub 3	0001	0010	0001	1000	0111	0000000000000000
R Sft	0000	1001	0000	1100	0011	1000000000000000
Sub 3	0000	0110	0000	1001	0011	1000000000000000
R Sft	0000	0011	0000	0100	1001	1100000000000000
Sub 3	0000	0011	0000	0100	0110	1100000000000000
R Sft	0000	0001	1000	0010	0011	0110000000000000
Sub 3	0000	0001	0101	0010	0011	0110000000000000
R Sft	0000	0000	1010	1001	0001	1011000000000000
Sub 3	0000	0000	0111	0110	0001	1011000000000000
R Sft	0000	0000	0011	1011	0000	1101100000000000
Sub 3	0000	0000	0011	1000	0000	110110 <mark>0</mark> 0000000000

BCD 48748 to Binary example

R Sft	0000	0000	0001	1100	0000	0110110000000000
Sub 3	0000	0000	0001	1001	0000	0110110000000000
R Sft	0000	0000	0000	1100	1000	0011011000000000
Sub 3	0000	0000	0000	1001	0101	0011011000000000
R Sft	0000	0000	0000	0100	1010	1001101100000000
Sub 3	0000	0000	0000	0100	0111	1001101100000000
R Sft	0000	0000	0000	0010	0011	1100110110000000
R Sft	0000	0000	0000	0001	0001	1110011011000000
R Sft	0000	0000	0000	0000	1000	1111001101100000
Sub 3	0000	0000	0000	0000	0101	1111001101100000
R Sft	0000	0000	0000	0000	0010	1111100110110000
R Sft	0000	0000	0000	0000	0001	0111110011011000
R Sft	0000	0000	0000	0000	0000	10111111001101100
End						48748

Binary codes

- Binary coding scheme for decimal digits
- Sequence of bits x₃x₂x₁x₀ (say) for N is it's code word
- Each position *i* may have a weight w_i (weighted code); $N = \sum w_i x_i$
- For BCD $w_3 = 8$, $w_2 = 4$, $w_1 = 2$, $w_0 = 1$

Sum of weights is 9 for self-complementing code

		weights														
N	8	4	2	1		2	4	2	1		6	4	2	-3		
0	0	0	0	0		0	0	0	0		0	0	0	0		
1	0	0	0	1		0	0	0	1		0	1	0	1		
2	0	0	1	0		0	0	1	0		0	0	1	0		
3	0	0	1	1		0	0	1	1		1	0	0	1		
4	0	1	0	0		0	1	0	0		0	1	0	0		
5	0	1	0	1		1	0	0	1		1	0	1	1		
6	0	1	1	0		1	1	0	0		0	1	1	0		
7	0	1	1	1		1	1	0	1		1	1	0	0		
8	1	0	0	0		1	1	1	0		1	0	1	0		
9	1	0	0	1		1	1	1	1		1	1	1	1		

Binary codes

- Excess-3, Cyclic and Gray codes are unweighted codes
- Excess-3 code is formed by adding 3 (0011) to the BCD value
- It's is self-complementing (n+3 + (9-n)+3 = 15)
- Adjacent code words of a cyclic code differ only in one place in the range 0..9, also, 0 and 9 are adjacent
- What if the codes are: 8, 4, -2, -1

Binary codes (contd.)

	E	BCD			Exc	cess	-3		С	yclic		Gray				
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	
0	0	0	1	0	1	0	0	0	0	0	1	0	0	0	1	
0	0	1	0	0	1	0	1	0	0	1	1	0	0	1	1	
0	0	1	1	0	1	1	0	0	0	1	0	0	0	1	0	
0	1	0	0	0	1	1	1	0	1	1	0	0	1	1	0	
0	1	0	1	1	0	0	0	1	1	1	0	0	1	1	1	
0	1	1	0	1	0	0	1	1	0	1	0	0	1	0	1	
0	1	1	1	1	0	1	0	1	0	0	0	0	1	0	0	
1	0	0	0	1	0	1	1	1	1	0	0	1	1	0	0	
1	0	0	1	1	1	0	0	0	1	0	0	1	1	0	1	

- Gray code is cyclic (in the range 0..15, 0 and 15 being adjacent for a 4-bit code) and also a reflected code – not cyclic in 0..9
- $g_i = b_i \oplus b_{i+1}, g_{n-1} = b_{n-1}; b_i = ?$
- $\bullet \ g_i \oplus b_{i+1} = b_i \oplus b_{i+1} \oplus b_{i+1} = b_i \oplus 0 = b_i$

Binary codes (contd.)

Ν		Bir	ary		Gray						
0	0	0	0	0	0	0	0	0			
1	0	0	0	1	0	0	0	1			
1 2 3 4 5 6 7	0	0	1	0	0	0	1	1			
3	0	0	1	1	0	0	1	0			
4	0	1	0	0	0	1	1	0			
5	0	1	0	1	0	1	1	1			
6	0	1	1	0	0	1	0	1			
	0	1	1	1	0	1	0	0			
8 9 10	1	0	0	0	1	1	0	0			
9	1	0	0	1	1	1	0	1			
10	1	0	1	0	1	1	1	1			
11	1	0	1	1	1	1	1	0			
12	1	1	0	0	1	0	1	0			
13	1	1	0	1	1	0	1	1			
14	1	1	1	0	1	0	0	1			
15	1	1	1	1	1	0	0	0			

$$\bullet$$
 $g_i = b_i \oplus b_{i+1}, g_{n-1} = b_{n-1}$

- n and it's bitwise complement ñ are placed symmetrically about the middle of the table
- Their Gray codes should differ only in the MSB
- Let $n \equiv b_{n-1}b_{n-2}\dots b_0$ and it's Gray code be $g_{n-1}g_{n-2}\dots g_0$
- By the rule the gray code of \tilde{n} is

Thus the Gray codes of n and n
differ only in the MSB

Binary codes (contd.)

Is the Gray code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- Suppose it's weighted
- Utilise the property that adjacent codes differ in one place only
- $\forall i \exists j | (j+1) j = \sum_i w_i (x_{i,j+1} x_{i,j}) = \pm w_i = 1 \text{ (why?)}$
- This precludes representation of 2ⁿ values for a n-bit Gray code

Is the Excess-3 code weighted?

- Can we find weights such that $\sum_i w_i x_{i,j} = j$?
- $w_2 = 1 [1 \mapsto 4 (0100)]$
- $w_3 = 5 [5 \mapsto 8 (1000)]$
- $w_1 + w_0 = 0 [0 \mapsto 3 (0011)]$
- But, $w_2 + w_1 + w_0 = 5 \neq 4$ [4 \mapsto 7 (0111)] inconsistent

Excess-3 arithmetic

Example (Excess-3 addition)

- \bullet 825 + 528 = 1353
- Excess-3

	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	0
+	0	0	1	1	1	0	0	0	0	1	0	1	1	0	1	1
	0	1	1	1	10	0	1	1	1	0	1	1	10	0	1	1
	0	1	0	0	0	1	1	0	1	0	0	0	0	1	1	0

Example (Excess-3 subtraction)

- $\bullet \ 825 528 = 297 \rightarrow 825 + 471 + 1 = 1297 = 297 \mod 1000$
- Excess-3

	0	0	1	1	1	0	1	1	0	1	0	1	1	0	0	0
+	0	0	1	1	0	1	1	1	1	0	1	0	0	1	0	10
					10											
	0	1	0	0	0	1	0	1	1	1	0	0	1	0	1	0

Error detecting code

Ν	Even Parity BCD)	2-out-of-5, $\binom{5}{2} = 10$				63210 BCD								
	8	4	2	1	р		0	1	2	4	7		6	3	2	1	0	
0	0	0	0	0	0		0	0	0	1	1		0	0	1	1	0	
1	0	0	0	1	1		1	1	0	0	0		0	0	0	1	1	
2	0	0	1	0	1		1	0	1	0	0		0	0	1	0	1	
3	0	0	1	1	0		0	1	1	0	0		0	1	0	0	1	
4	0	1	0	0	1		1	0	0	1	0		0	1	0	1	0	
5	0	1	0	1	0		0	1	0	1	0		0	1	1	0	0	
6	0	1	1	0	0		0	0	1	1	0		1	0	0	0	1	
7	0	1	1	1	1		1	0	0	0	1		1	0	0	1	0	
8	1	0	0	0	1		0	1	0	0	1		1	0	1	0	0	
9	1	0	0	1	0		0	0	1	0	1		1	1	0	0	0	

- Hamming distance: number of bits differing between two codes
- If minimum Hamming distance between any two code words is d then d - 1 single bit errors can be detected

Error correcting code

Correction for single bit error

- D_1 P_1 and P_2 affected, P_3 unaffected
- D₂ P₁ and P₃ affected, P₂ unaffected
- D₃ P₂ and P₃ affected, P₁ unaffected
- D_4 P_1 , P_2 and P_2 affected
- P_1 D_1 , D_2 , D_3 , P_1 P_2 and P_2 unaffected, D_1 , D_2 , D_3
- P_2 D_1 , D_2 , D_3 , P_1 P_2 and P_3 unaffected
- P_3 D_1 , D_2 , D_3 , P_1 P_1 and P_2 unaffected

Relating data and parity bits

 Association of parity bits to the data bits may be done according to the table below

Bits indices	7	6	5	4	3	2	1
Binary	111	110	101	100	011	010	001
Data/parity	d ₄	<i>d</i> ₃	d_2	p ₃	d_1	p ₂	<i>p</i> ₁
Association	p_3, p_2, p_1	<i>p</i> ₃ , <i>p</i> ₂	<i>p</i> ₃ , <i>p</i> ₁	p ₃	<i>p</i> ₂ , <i>p</i> ₁	<i>p</i> ₂	<i>p</i> ₁

- Bit at 2ⁱ positions (1, 2, 4) are for parity, others for data
- p_1 covers data bit positions having 1 in LSB $(1:p_1, 3:d_1, 5:d_2, 7:d_4)$
- p_2 covers data bit positions having 1 in next higher bit position (2: p_2 , 3: d_1 , 6: d_3 , 7: d_4)
- p_3 covers data bit positions having 1 in next higher bit position (4: p_3 , 5: d_2 , 6: d_3 , 7: d_4)
- This scheme may be generalised

- Consider codes 000 and 111 and all possible single bit errors
- Any single bit error code can be tracked backed to 000 or 111
- Achive by maintaining Hamming distance of 3 between the code words
- If d is the minimum Hamming distance between code words, up to $\lfloor \frac{d-1}{2} \rfloor$ -bit errors can be corrected

Mininum bits for 1-bit ECC

- Let there be m information bits in total of n bits; m + p = n
- n patterns for 1-bit error in a code word; 1 valid pattern
- Reserve n+1 patterns for each code
- $(n+1)2^m \le 2^n$
- $n+1 \le 2^{n-m} = 2^p$
- $m + p + 1 \le 2^p$
- For m = 4 p = ?
- Say p = 3 then $2^p = 2^3 = 8 \ge 4 + 3 + 1 = 8$

Mininum bits for 1-bit EDC

- For single bit error, all codes at Hamming distance of 1 from a valid code are in error
- Since there is no recovery errorneous codes can be "shared" between valid codes
- Adjacent codes must have separate colours (valid: ✓, error: ✗)

	000	001	UII	010	110	111	101	100
00	/	Х	1	X	✓	Х	✓	X
01	Х	✓	Х	1	X	1	Х	1
11	✓	Х	1	Х	1	Х	1	X
10	Х	1	Х	1	Х	1	Х	1

- For single bit error, at most half the codes are usable
- For m bits of data, n = m + 1 bits are needed for EDC
- BCD cannot be accommodated in 4-bits.

