→ Load data

```
# load the CSV file as a pandas DataFrame
df = pd.read_csv('/content/agaricus-lepiota.data', delimiter=',')
df.columns = ['class', 'cap-shape', 'cap-surface', 'cap-color', 'bruises?',
              'odor', 'gill-attachment', 'gill-spacing', 'gill-size',
              'gill-color', 'stalk-shape', 'stalk-root', 'stalk-surface-above-ring',
              'stalk-surface-below-ring', 'stalk-color-above-ring', 'stalk-color-below-ring',
              'veil-type', 'veil-color', 'ring-number', 'ring-type', 'spore-print-color',
              'population', 'habitat']
print(df)
          class cap-shape cap-surface ... spore-print-color population habitat
 \Box
                       Х
     1
                        b
              e
                                                           n
                                                                      n
                                                                              m
     2
                                                                              u
              р
                        Х
                                    у ...
     3
                                                                              g
             е
                        Х
                                                           k
                                                                              g
                                    у ...
     8118
                       k
                                                           b
                                                                              1
            e
                                                                      C
     8119
                                                           b
                                                                              1
            е
                       Х
                                                                      V
     8120
                       f
                                                                              1
     8121
                        k
                                   у ...
     8122
                                                                              1
                        Х
             е
     [8123 rows x 23 columns]
```

Pre-processing

 \Box

```
# Label encoding
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df_encoded = df.apply(le.fit_transform)
print(df_encoded)
```

	class	cap-shape	cap-surface	 spore-print-color	population	habitat
0	0	5	2	 3	2	1
1	0	0	2	 3	2	3
2	1	5	3	 2	3	5
3	0	5	2	 3	0	1
4	0	5	3	 2	2	1
		• • •	• • •	 • • •	• • •	• • •
8118	0	3	2	 0	1	2
8119	0	5	2	 0	4	2
8120	0	2	2	 0	1	2
8121	1	3	3	 7	4	2
8122	0	5	2	 4	1	2

[8123 rows x 23 columns]

```
# Extract class column
classes = df encoded['class']
# Remove class column and 'stalk-root' column (has missing values) from attribute dataframe
df_final = df_encoded.drop(labels=['class', 'stalk-root'], axis=1)
# Split data into train and test data in preparation for classification
from sklearn.model_selection import train_test_split
# where X is the attribute dataframe and Y is the classes dataframe
X_train, X_test, Y_train, Y_test = train_test_split(df_final, classes, test_size=0.2,
                                                    random_state=1)
```

Naive Bayes

```
# Naive Bayes
from sklearn.naive_bayes import CategoricalNB
cNB = CategoricalNB()
cNB.fit(X_train, Y_train)
cNB_predictions = cNB.predict(X_test)
print(cNB predictions)
#where 0 is edible and 1 is poisonous

    [0 0 1 ... 1 0 0]
```

Support Vector Machine

```
from sklearn import svm
      ---- CVC/\
```

-C\/M

```
csvm = svm.svc()
cSVM.fit(X_train, Y_train)
cSVM_predictions = cSVM.predict(X_test)
print(cSVM_predictions)
#where 0 is edible and 1 is poisonous

[> [0 1 1 ... 1 0 0]
```

→ Analysis

```
# Accuracy
from sklearn.metrics import accuracy score
cNB accuracy = accuracy score(Y test, cNB predictions)
cSVM accuracy = accuracy score(Y test, cSVM predictions)
print("Naive Bayes Accuracy:", cNB accuracy)
print("SVM Accuracy:", cSVM_accuracy)
Naive Bayes Accuracy: 0.952
     SVM Accuracy: 0.9876923076923076
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
labels = [0, 1]
mat = confusion_matrix(Y_test, cNB_predictions)
sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
            xticklabels=labels, yticklabels=labels)
plt.xlabel('true label')
plt.ylabel('predicted label');
```


