

Agenda

- Opening Prayer
- Music Friday
- Q&A
 - Review Assignment
 - Review Next Project
- Quiz Review
- Variables
- Input
- Looking Ahead

Music Friday

Nearer, My God, to Thee (Hymn 100)

Nearer, my God, to thee, Nearer to thee! E'en though it be a cross That raiseth me. Still all my song shall be Nearer, my God, to thee, Nearer, my God, to thee, Nearer to thee!

Review Last Assignment

- What was the hardest part?
- How did you solve it?
- When I share my code on the screen, please do not take pictures ©

02 Ponder – Monthly Budget Project

```
This program keeps track of your monthly budget
Please enter the following:
        Your monthly income: 1000.00
        Your budgeted living expenses: 650.00
        Your actual living expenses: 700.00
        Your actual taxes withheld: 100.00
        Your actual tithe offerings: 120.00
        Your actual other expenses: 150.00
The following is a report on your monthly expenses
                               Budget
                                               Actual
        Item
                              1000.00
                                              1000.00
        Income
        Taxes
                                 0.00
                                               100.00
        Tithing
                                 0.00
                                               120.00
        Living.
                                               700.00
                               650.00
        Difference.
                                 0.00
                                                 0.00
```


Variables

Variables are a named location where we store data. Notice all variables are written in "camelBack" notation (each word has a capital letter except the first letter).

```
int main()
{
    float circleRadius;
    float circleArea;

    cout << "What is the radius of the circle? ";
    cin >> circleRadius;

    circleArea = 3.14 * circleRadius * circleRadius;

    cout << "The area is: " << circleArea << endl;
    return 0;
}</pre>
```


Variable Types

Туре	Use	Size	Range
bool	Logic	1 (8 bits)	true, false
char	Letters and Small Numbers		-128 to 127 (2 ⁷ – 1)
unsigned char	Small Positive Numbers	1 (8 bits)	0 to 255 (2 ⁸ – 1)
short (short int)	Medium Numbers	2 (16 bits)	-32,768 to 32,767 (2 ¹⁵ – 1)
unsigned short	nsigned short		0 to 65,535 (2 ¹⁶ – 1)
int Large Numbers		4 (32 bits)	-2,147,483,648 to 2,147,483,647 (2 ³¹ – 1)
unsigned int	Large Positive Numbers	4 (32 bits)	0 to 4,294,967,295 (2 ³² – 1)
long (long int)	long (long int) Very Large Numbers		-9,223,372,036,854,775,808 to 9,223,372036,854,775,807 (2 ⁶³ – 1)
unsigned long	Very Large Positive Numbers	8 (64 bits)	0 to 18,446,744,073,709,551,615 (2 ⁶⁴ – 1)
float	Real Numbers (decimals)	4 (32 bits)	10 ⁻³⁸ to 10 ³⁸ (accurate to 7 digits precision)
double Larger Real Numbers		8 (64 bits)	10 ⁻³⁰⁸ to 10 ³⁰⁸ (accurate to 15 digits precision)
long double	Very Large Real Numbers	16 (128 bits)	10 ⁻⁴⁹³² to 10 ⁴⁹³² (accurate to 19 digits precision)

Integers

- The most common data type for storing positive and negative numbers.
- Useful for counting.
- Be careful using integers for real world data like temperatures, distances, and weights.
 These are usually represented as real numbers (with a decimal).

```
int numCars;
int studentID;
int ageYears;
```

numCars = 72110000; // Number cars built worldwide in 2016

Byte 4	Byte 3	Byte 2	Byte 1		
00000100	01001100	01001111	10110000		

Floats & Doubles

- When you need a variable that can hold real numbers (with decimals), you need to either use float or double.
- Floats and Doubles provide a <u>highly accurate estimate</u> of the real number

```
float highTemp;
double distanceMoon;
float goldenRatio;

goldenRatio = 1.61803; // Compiler really stored: 1.61802995204925537109375
```

Float Encoding Formula: sign * 2^{exponent} * mantissa

Sign (1 bit)	Exponent (8 bits)	Mantissa (23 bits)
0	01111111	10011110001101110011011

Fun calculator: https://www.h-schmidt.net/FloatConverter/IEEE754.html

Boolean

- Booleans can be either true or false
 - false = 0
 - true = Any other non zero number (by default 1)

```
bool isEnrolled;
bool error;
bool buttonPressed;
```

buttonPressed = true;

Bit 8	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 1	
							1

Characters

Character variables store a single character of text.

```
char menuSelect;
char initial;
char tempUnit;
```

Compiler will convert a letter to an numeric value using an ASCII table

tempUnit = 'F'; // Notice the use of single quotes for a single character.

Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1
0	1	0	0	0	0 1		0

Text

- You can combine characters into a string by using a character array
- You must declare the size of the string and you can't change it.

```
char firstName[256];
char planet[20];
char phoneNumber[13];
```

phoneNumber = "555-123-4567"; // Notice you need quotes

•	0	1	2	3	4	5	6	7	8	9	10	11	12
$' \mid$	5	5	5	-	1	2	3	-	4	5	6	7	\0
•													$\overline{\mathcal{A}}$

Notice we start at position 0 and not position 1. The character array has 13 positions labeled 0 to 12.

\0 is called the NULL character. The compiler will put this at the end of your character array ... make sure you have enough room!

Example

- Write some code in a main function that will declare variables to store the following information:
 - First Name
 - Height (in tenths of an inch)
 - Year born
- Remember to use camelBack rules for writing your variable.
- Select the best data type for each variable.

Input from the Keyboard

- The cin command reads data off the input stream from the keyboard.
- Just like cout, you can read one or more things from the stream.
- To read something from the input stream, you will need variables declared first.

```
char firstName[20];
int age;

cout << "Enter your first name and age: ";
cin >> firstName >> age;
cout << firstName << " is " << age << " years old." << endl;</pre>
```

- The compiler will expect the user to do the following:
 - Put a space between the two inputs
 - Press Enter at the end.

Input from the Keyboard

- The cin command will only read one word at a time from the stream.
- To read a whole line from the stream:

```
char address[256];

cout << "Enter your address: ";

cin.getline(address, 256);

cout << "Your address is: " << address << endl;</pre>
```

- The getline function takes two parameters:
 - The name of character array variable
 - The length of the character array (make sure it matches your declaration).

Example

In the code you wrote before, prompt the user for information to put in your variables

```
Enter First Name: <u>Chad</u>
Enter Height and Year Born: <u>69.5 1976</u>
```


Example

 In the code you wrote before, display the following output after getting the information from the user:

Chad is 69.5 inches tall. Chad was born in 1976.

16

Looking Forward

- Saturday End of Day
 - 02 Ponder Monthly Budget Due at 11:59pm
- Before Class on Monday
 - 1.3 Prepare
 - Read Chapter 1.3 Expressions
 - Submit assign13

