Data Exploration Part 1

Lesson 1

Data Exploration (Descriptive Statistics)

- > Purpose: To gain a clear understanding of your data.
 - How large is it?
 - What columns are of interest?
 - Missing data?
 - Outliers?
 - Assumptions inherent in the data

WTF

SMTWTFS

Because the first idea might not be the right one

01-12

02-12

03-12

04-12

05-12

06-12

07-12

08-12

09-12

10-12

11-12

12-12

O2-DecemberFebruary-12O3-DecemberMarch-12O4-DecemberApril-12O5-DecemberMay-12O6-DecemberJune-12O7-DecemberJuly-12O8-DecemberAugust-12O9-DecemberSeptember-12	01-December	January-12
O4-DecemberApril-12O5-DecemberMay-12O6-DecemberJune-12O7-DecemberJuly-12O8-DecemberAugust-12	02-December	February-12
O5-DecemberMay-12O6-DecemberJune-12O7-DecemberJuly-12O8-DecemberAugust-12	03-December	March-12
O6-DecemberJune-12O7-DecemberJuly-12O8-DecemberAugust-12	04-December	April-12
07-December July-12 08-December August-12	05-December	May-12
08-December August-12	06-December	June-12
	07-December	July-12
09-December September-12	08-December	August-12
·	09-December	September-12
10-December October-12	10-December	October-12
11-December November-12	11-December	November-12
12-December December-12	12-December	December-12

Because the data is different based on location

> inner quartile range (Q3 – Q1)

- > Quantiles of numerical vectors
 - Quantiles are inverse values of the CDF (cumulative distribution function).
 - Standard Normal: (shown in figure)
 - > Quantile(0.5) = 0, means at x=0, 50% of the distribution lies to the left. (This is also the median)
 - > Quantile(0.95) = 1.65

- > Relationships:
 - covariances

$$Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

- Interpretation: Expected value of the differences between x and y and their corresponding mean.
- E.g. if x is above it's mean when y is also above it's mean, then they will have a high covariance.
- Highly interpretable, but not bounded.

- > Relationships:
 - Correlations (pearsons) = scaled covariance

- Bounded between 0 and 1.
- Not as interpretable.

$$r = r_{xy} = \frac{\text{Cov}(x, y)}{S_x \times S_y}$$

> Histograms:

> Boxplots:

Zestimate Error Distribution by Price Quantile

> Densities/CDFs:

> Violin Plots:

> Asymmetric Violin Plots:

- > Suggested Chart Selection (not to be understood as iron rule)
- > The chart conveying the message in the clearest way is the right chart.

SELECTING THE APPROPRIATE CHART FOR STRATEGY PRESENTATIONS

(source: multiple, can't trace the original author)

Data Exploration Part 1

Lesson 1