

Advance Computer Networks (CS G525)

Virendra S Shekhawat Department of Computer Science and Information Systems

First Semester 2018-2019 Lecture: 12-14 [10-14 Sept 2018]

Next Module Topics

- Internet congestion control principles
 - End to End based mechanisms
 - e.g., TCP
 - Network assisted congestion control
 - e.g., RED, FQ, CSFQ etc.
- New proposals on end to end congestion control
 - e.g., QUIC, BBR
- Multi-path TCP design and implementation
- Role of traffic routing for Internet congestion control
 - Inter-domain and Intra-domain routing protocols
- Multicast Routing
 - IP Multicast and Application level Multicast routing

innovate achieve lead

Agenda

- Internet Congestion Control Principles,
 Congestion Avoidance and Control
 - TCP as an example

- Compulsory Reading:
 - Congestion Avoidance and Control [Jacobson 1988]

What is Congestion...?

Why is it a problem?

- Different sources compete for resources inside network
- Sources are unaware of current state of resource
- Sources are unaware of each other
- In many situations will result in < 1.5 Mbps of throughput (congestion collapse)

innovate achieve lead

Solutions

Open Loop

- Preventing congestion (Implemented at end points)
- Policy and scheduling decision making is not based on the current state of the network

Closed Loop

- Detect, Feedback and Correct
- Explicit or Implicit Feedback

Open Loop Solutions [1]

Leaky Bucket

 When a packet arrives, if there is a room in the queue it is joined the queue; otherwise, it is discarded

At every (fixed) clock tick, one packet is transmitted unless the

queue is empty

Open Loop Solutions [2]

Token Bucket

- Tokens are added at a const rate
- A host had to capture a token to transmit a packet
- A host can capture and save up tokens (up to the max. size of the bucket) in order to send larger burst later

Closed Loop Solutions [1]

Warning bit

- A router set a special bit (e.g., ECN) to warn the source when congestion is detected.
- The sender monitors the number of ACK packets it receives with the warning bit set and adjusts its transmission rate accordingly.

Issues

– Non cooperative sources…?

Closed Loop Solutions [2]

Choke Packet

- Router send a choke packet to the source in case line is too busy
- e.g., ICMPs "Source quench packet"

Issues

- Choke packet itself delayed...then...?
- What about non-cooperative sources…?

How congestion handled so far...?

- Different mechanisms at different layers
 - Transport
 - Retransmission, Out of order packet caching, Time out, Acknowledgement etc.
 - Network
 - Virtual Circuit, Packet discard policy, Packet queuing service policy, Routing algorithm
 - Data link Layer
 - Similar to TP layer

Where to Prevent Congestion?

- Can end hosts prevent congestion?
 - Yes, but must trust end hosts to do the right thing
 - e.g., sending host must adjust amount of data it puts in the network based on detected congestion
- Can routers prevent congestion?
 - No, not all forms of congestion
 - Doesn't mean they can't help
 - Sending accurate congestion signals
 - Isolating well-behaved sources from ill-behaved sources

TCP Congestion Control

Motivated by ARPANET congestion collapse

- Basic principles
 - Self clocking
 - Reaching steady state quickly (Slow Start)
 - Packet conservation
 - AIMD

Packet Pacing: Self Clocking

- Congestion window helps to "pace" the transmission of data packets
- In steady state, a packet is sent when an ack is received
 - Data transmission remains smooth, once it is smooth

Conservation of Packets

- Packet conservation Principle
 - In equilibrium (a full window of data in transit) a new packet isn't put into the network until an old packet leaves
- Why Conservation Fails...?
 - The connection doesn't get to equilibrium, or
 - A sender injects a new packet before an old packet has exited, or
 - The equilibrium can't be reached because of resource limits along the path

Congestion Avoidance

- If loss occurs when cwnd = W
 - Network can handle 0.5W ~ W segments
 - Set cwnd to 0.5W (multiplicative decrease)
- Upon receiving ACK
 - Increase cwnd by (1 MSS)/cwnd
- Implements AIMD
- Question
 - Why TCP Fails to avoid congestion?

Congestion Collapse Causes...[1]

- Spurious retransmissions of packets still in flight
 - How can this happen with <u>packet conservation</u>?
 - Solution: Better timers and TCP congestion control

- Undelivered packets
 - Packets consume resources and are dropped elsewhere in the network
 - Solution: congestion control for ALL traffic

Congestion Collapse Causes...[2]

- Packet fragmentation
 - Mismatch of loss and retransmission units
 - Solutions
 - Make network drop all fragments of a packet (early packet discard in ATM)
 - Do path MTU discovery
- Control traffic
 - Large percentage of traffic is for control
 - Headers, routing messages, DNS, etc.

Next...

- Analysis of AIMD Congestion Control Algorithm
 - Compulsory Reading:
 - Analysis of Increase and Decrease Algorithms for Congestion Avoidance in Computer Networks [Chiu 1989]
- How does TCP fits in AIMD...?
- Research Issues/Open questions in congestion control

Congestion Control Objectives

- Key to congestion avoidance is the "control function" used to increase or decrease their sending window
 - Distributedness
 - Efficiency: $X_{knee} = \Sigma x_i(t)$
 - Fairness: $(\Sigma x_i)^2/n(\Sigma x_i^2)$

innovate achieve lead

Basic Control Model

- Reduce window when congestion is perceived
 - How is congestion signaled?
 - Either mark or drop packets
 - When is a router congested?
 - Drop tail queues when queue is full
 - RED queues average queue length at some threshold
- Increase window otherwise
 - Probe for available bandwidth how?

Linear Control

- Many different possibilities for reaction to congestion and probing
 - Examine simple linear controls
 - Window(t + 1) = a + b*Window(t)
 - Different a_i/b_i for increase and a_d/b_d for decrease

- Supports various reaction to signals
 - Increase/decrease additively
 - Increased/decrease multiplicatively
 - Which of the four combinations is optimal?

Phase plots (Vector Representation)

innovate achieve lead

- What are desirable properties?
- What if flows are not equal?

Additive Increase/Decrease

- Both X_1 and X_2 increase/decrease by the same amount over time
 - The additive increase policy of increasing both users' allocations by a corresponds to moving along a 45° line

Multiplicative Increase/Decrease

- innovate achieve lead
- Both X₁ and X₂ increase/decrease by the same factor over time
 - Extension from origin constant fairness

What is the Right Choice?

- Constraints limit us to AIMD
 - AIMD moves towards optimal point

Practical Considerations

- Algorithm should be hardware/software independent
 - Scaling parameters are not easily gathered in an automatic fashion in a complex system
- Control should be chosen for the widest range of values of system parameters
 - Linear parameters are chosen over non-linear parameters due to dependency of non linear parameters on system

innovate achieve lead

Further Issues

- How does delayed feedback affect the control?
 - Delayed feedback becomes less useful!
- Binary feedback limitations?
 - Additional feedback may cut down the oscillations!
- Is considering current number of users worthwhile?
 - Users come and go dynamically!
 - If number of users are bounded then it is easy. How?
- Impact of asynchronous operation?
 - Current assumption is that everything is synchronized!

Question...?

Does TCP Converge to Optimal Point...?

Problems with TCP (Standard)

- Flow Startup
- Misbehaving Senders and Receivers
- Corruption Loss
- Packet Size
 - TCP doesn't take packet size into account when responding to losses

innovate achieve lead

TCP Performance

- Question: Can TCP saturate a link?
- Congestion control
 - Increase utilization until... link becomes congested
 - React by decreasing window by 50%
 - Window is proportional to → BW (Rate) * RTT
- Doesn't this mean that the network oscillates between 50 and 100% utilization?
 - Average utilization = 75%??
 - No...this is *not* right!

Cubic TCP

Congestion window is cubic function of time

• cwnd = C(t - K)³ + W_{max}
$$K = \sqrt[3]{W_{\text{max}}\beta/C}$$

$$K = \sqrt[3]{W_{\text{max}}\beta / C}$$

- W_{max} = cwnd before last reduction
- β multiplicative decrease factor
- C scaling factor
- t is the time elapsed since last window reduction

Congestion Window: Cubic TCP

33

TCP Cubic Advantages

Good RTT fairness

- Growth dominated by time t (last congestion event),
 competing flows have same value of time t, after synchronized packet loss
- Real-time dependent
 - Does not depend on ACK's like TCP Reno
- Scalability
 - Cubic increases window to W_{max} (or its vicinity) quickly and keeps it there longer
- Drawback Slow Convergence
 - Flows with higher cwnd are more aggressive initially
 - Prolonged unfairness between flows

Thank You!