Simon King, FSU Jena Fakultät für Mathematik und Informatik Ostryanin, Quander, Seppelt, Vasen

Lineare Algebra für IB, AIB, BIB

Wintersemester 2022/23

Übungsblatt 14

Hausaufgaben (Abgabe bis 07.02.2022, 12:00 Uhr in Moodle)

Hausaufgabe 14.1: Gram-Schmidt

(4 P.) Berechnen Sie eine ONB von $V := \operatorname{Span}_{\mathbb{R}}(\vec{u}_1, ..., \vec{u}_5) \leq \mathbb{R}^5$ mit $\vec{u}_1 = \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}$,

$$\vec{u}_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \ \vec{u}_3 = \begin{pmatrix} 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \ \vec{u}_4 = \begin{pmatrix} 1 \\ -2 \\ -1 \\ -1 \\ 1 \end{pmatrix}, \ \vec{u}_5 = \begin{pmatrix} 2 \\ 1 \\ 3 \\ -2 \\ 2 \end{pmatrix}$$
. Bei Anwendung des Gram-

Schmidt-Verfahrens erhalten Sie evtl. unerwartet den Nullvektor. Dies muss nicht bedeuten, dass Sie sich verrechnet haben. Können Sie diesen Fall deuten?

Hausaufgabe 14.2: Eine Alternative zu Gram-Schmidt in \mathbb{R}^3 Gegeben sei eine Basis $[\vec{u}_1, \vec{u}_2, \vec{u}_3]$ von \mathbb{R}^3 . Wir berechnen nacheinander $\vec{w}_1 := \vec{u}_1$, $\vec{w}_3 := \vec{u}_1 \times \vec{u}_2$, $\vec{w}_2 := \vec{u}_1 \times \vec{w}_3$ und für $i \in \{1, 2, 3\}$ jeweils $\vec{v}_i := \frac{1}{\|\vec{w}_i\|}\vec{w}_i$. (4 P.) Zeigen Sie: $[\vec{v}_1, \vec{v}_2, \vec{v}_3]$ ist eine ONB von \mathbb{R}^3 und $\operatorname{Span}_{\mathbb{R}}(\vec{u}_1, \vec{u}_2) = \operatorname{Span}_{\mathbb{R}}(\vec{v}_1, \vec{v}_2)$. Wenden Sie das Verfahren auf $\vec{u}_1 := \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$, $\vec{u}_2 := \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$, $\vec{u}_3 := \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ an.

 $(2)^{1/2}$

Hausaufgabe 14.3: Orthogonale Matrizen

- a) (1 P.) Seien $\vec{v}_1, ..., \vec{v}_n \in \mathbb{R}^n$ und $A := (\vec{v}_1, ..., \vec{v}_n) \in M_n(\mathbb{R})$. Zeigen Sie: ${}^{t}AA = \mathbb{1}_n \iff [\vec{v}_1, ..., \vec{v}_n]$ ist eine ONB von \mathbb{R}^n bezüglich des Standardskalarprodukts.
- b) (3 P.) Sei $O_n := \{A \in M_n(\mathbb{R}) \mid {}^{t}AA = \mathbb{1}_n\}$. Zeigen Sie, dass O_n eine Gruppe bezüglich Matrixmultiplikation ist. **Anmerkung:** O_n heißt **orthogonale Gruppe**.

Aufgabe zum Stoff der Vorlesung von 03.02.2023

Hausaufgabe 14.4: Klassifikation orthogonaler Endomorphismen

Sei
$$A := \begin{pmatrix} 0 & -\frac{4}{5} & -\frac{3}{5} \\ \frac{4}{5} & -\frac{9}{25} & \frac{12}{25} \\ \frac{3}{5} & \frac{12}{25} & -\frac{16}{25} \end{pmatrix}$$
. Sie dürfen verwenden, dass $A \in O_3$. Sei $f : \mathbb{R}^3 \to \mathbb{R}^3$ gegeben durch $f(\vec{v}) := A \cdot \vec{v}$.

(4 P.) Bestimmen Sie Typ (Drehung? Drehspiegelung?), Achse und den Betrag des Drehwinkels von f.

Erreichbare Punktzahl: 16