

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer and/or affiliated entities. No part of the document or any information contained therein more to any third party without the prior wait.

by Bay, in may bes.

Affiliated epititi,
appublished proprior,
gulatory withority. O
Artation of the Basis of the Color of

Version history

Date [yyyy-mm-dd]	Data points containing amendments or additions ¹ and brief description	Document identifier and Oversion number

and the state of t It is suggested that applicants adopt a similar approach to showing revisions and version history as outlined in SANCO/10180/2013 Chapter 4, 'How to revise an Assessment Report's and Assessment Report a

Table of Contents

	Sage Angel
CP 9	FATE AND BEHAVIOUR IN THE ENVIRONMENT
CP 9.1	Fate and behaviour in soil.
CP 9.1.1	
CP 9.1.1.1	Laboratory studies
CP 9.1.1.2	Field studies
CP 9.1.1.2.1	Field studies Soil dissipation studies
CP 9.1.1.2.2	Soil accumulation studies 7
CP 9.1.2	
CP 9.1.2.1	Laboratory studies Lysimeter studies Field leaching studies
CP 9.1.2.2	Lysimeter studies 8 8 8
	Field leaching studies & & & & & & & & & & & & & & & & & & &
CP 9.1.3	Estimation of concentrations is soil.
CP 9 2	Fate and behaviour in water and sedimen Q Q 0 014
CP 9.2.1	Aerobic mineralisation in surface water.
CP 9 2 2	Water/sediment study W Y V V V V V V
CP 9.2.3	Irradiated water/sediment study & & & & & 17
CP 9.2.4	Fate and behaviour in water and sediment. Aerobic mineralisation in surface water. Water/sediment study. Irradiated water/sediment study.
CP 9 2 4 1	Calculation of concentrations in ground water 17
CP 9 2 4 2	Additional field tests 2 2 21
CP 9.2.5	Estimation of concentrations in surface water and sediment 21
CP 9.3	Fate and behavior in air 35
CP 9 3 1	Route and rate of degradation in air and transport via air & 35
CP 9.4	Estimation of concentrations for other routes of exposure 35
	Field leaching studies Estimation of concentrations in soil Fate and behaviour in water and sediment Aerobic mineralisation in surface water Water/sediment study Irradiated water/sediment study Irradiated water/sediment study Irradiated mater/sediment study Irradiated mater/sediment study Irradiated mater/sediment study Irradiated mater/sediment study Irradiated material sediment Irradiation of concentrations in groundwater Irradiation of concentrations in surface water and sediment Irradiation of conc
Ű	

CP9 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Aclonifen was included in Annex I to Council Directive 91/414/EEC in 2008 (Directive 2008/14/EEC Entry into Force on 01 August 2009).

The formulation Aclonifen SC 600 G (or Aclonifen 600 g/L), is a suspension concentrate formulation containing 600 g/L of aclonifen. This formulation is registered throughout Europe under trade names such as Bandur (Aclonifen-SC600; AE-F068300-00-SC50-A2; EXP-04289). Aclonifen SC 600 was already a representative formulation of Bayer for the Aprex I inclusion of aclonifer under Couacil Directive 91/414/EEC.

This present dossier in support of approval renewal includes all the data submitted at the time of the Annex I inclusion, in summaries updated and receivaluated as necessary to take account of current validity criteria and data requirements.

No laboratory studies have been conducted with the formulated product as it is possible to extrapolate from data on aclonifen. Full details of the fate and behaviour of aclonifen in soil can be found in the active substance dossier [Document MCA Section 7]. A surpmary of the late in the environment is provided below.

CP 9.1 Fate and behaviour in soil

CP 9.1.1 Rate of degradation in soil

Rate of degradation in soil &

The fate and behaviour of aclonifer in soil was been investigated in a comprehensive series of laboratory studies and, when required, supported with daya from field experiments. A number of studies were submitted for the first inclusion of aclonifon into Anne T of Council Directive 91/414/EEC and reviewed under uniform principles (DAR, Germany, 2006). In addition a number of new studies are provided for the current EU review. For further information on the rate of degradation in soil please refer to Document MCA, Section 7.1.2.

Microbial breakdown of aclonifen in soil leads to the formation of non-extractable soil bound residues, which accounted for maximum of 20 to 58% of the applied [aniline-VL-14C]-aclonifen and 42 to 71% of the applied [phenoxy-UL-140]-acloopten, with very few intermediate products observed. Carbon dioxide was formed at praxing of between 1 to 12% AR in soil treated with the aniline label and 14 to 29% AR in soil treated the prenoxy label

Supplemental studies have also been conducted to investigate the metabolism of aclonifen in soil under anaerobic and sterile conditions and to determine if photolysis contributed to the degradation of aclonifen on soil surfaces.

Under sterile conditions acloniven was relatively stable confirming that its metabolism is largely microbially mediated fron-expactable soil bound residues and material bound to aqueous soluble soil colloids were observed under sterile conditions at relatively constant levels throughout the incubation period, but at lower leves than observed in microbially viable soils, indicative of metabolites of aclonifen also binding to the soil matrix with time in microbially active soils. Aclonifen was more rapidly metabolism of aclonifen led to the formation of non extractable soil residue andicating the metabolic pathway was similar to that observed under aerobic conditions. Under anaerobic conditions numerous minor unidentified metabolites were formed from the point when the redox potential in soil and water layer became reductive. The presence of light accelerated the rate of degradation on soil, with no unique metabolites formed exceeding 0.2% of applied radioactivity.

During the course of these studies, no metabolites have been observed at amounts > 5% of applied. The hydroxylated metabolite M-01 was detected in soil at a maximum of 1.5%.

Figure 9.1.1-1: Metabolic pathway for aclonifen in soil

CP 9.1.1.1 Laboratory studies

Table 9.1.1- 1: Summary of laboratory normalised DegT₅₀ (20 °C and pF2) values for actionife (20°C) action (20°C

Compound		Laporatory Normalised DT ₅₀ (20	°C and pF2)		
	eg f 50 range	Number of datasets	Geometric mean DegT ₅₀ (days)		
	days)	(n)	for exposure assessment		
Aclorifen	35.3 252.3	12	79.1		

For further information on laboratory studies please refer to Document MCA, Section 7.1.2.1.

CP 9.1.1.2 Field studies

CP 9.1.1.2.1 Soil dissipation studies

A terrestrial field dissipation study with aclonifen, formulated as BANDUR®, a suspension concentrate containing 600 g/L aclonifen, was conducted at four trial sites in Germany, Northern Europe, in addition, a second terrestrial field dissipation study with aclonifen, formulated as BANDUR®, was conducted at two trial sites in Southern Europe; in Spain and Southern France.

These studies were evaluated during the previous EU review and are still considered as reliable to as sess

the rate of degradation of aclonifen under field conditions. A new kinetic modelling assessment of field studies according to FOCUS Degradation Kinetics (2006, 2014) has been provided (KCA7.1.22.1/07). & M-675285-01-1). Aclonifen was found to have moderate rates of degradation under field conditions with DT₅₀ values similar to those observed under laboratory conditions. To provide a conservative risk assessment, the worst-case field DisT₅₀ value of 1968 days was used to calculate the predicted environmental concentration in soil including Plassil accumulation.

Table 9.1.1-2: Summary of field DT₅₀ values for aclonifen

Compound	Field dissipation Dist 50 (not normalised)					
	DisT ₅₀ range	Number of datasets	W orst-case Dis T₅₀ (days)			
	(days) 👋 🛴 👰		Ofor exposure assessment			
Aclonifen	31.8 96.8		6.8			

For further information on field dissipation studies please refer to Document MCA. Section 7.1.2.2.1.

CP 9.1.1.2.2 Soil accumulation studies.

Soil accumulation studies were carried out with actorifen formulated a BANDUR®, a suspension concentrate confaining 500 g/L actorifen, as field D T₉₀ values indicated some persistence leading to residual residue levels remaining one year after application under Northern European climates. Consequently, accumulation studies were conducted to determine actorifen levels in soil following annual applications over a three year period at sites

observed at either koation was a solution of aclonifen residues was

For further information on field accumulation studies please refer to Document MCA, Section 7.1.2.2.2. The studies were evaluated during the previous E Dreview and were accepted as plausible but were not considered sufficient to address the potential accumulation of aclonifen in soil. An assessment of accumulated PEC_{soil} for aclonifen is provided in Document MCP, Section 9.1.3.

CP 9.1.2 Mobility in the soil

CP 9.1.2.1 Report of victors studies

The adsorption characteristics of aclonifen was determined in standard batch equilibrium experiments. No correlation with soil put was observed. For further information on laboratory studies please refer to Document MCA, Section 7.1.4.1.

5594.8

6480.≸

4863.8

4139.9

5951.6

<u>5</u> 27.0

0.8778

©.8400

0.8615

®8792

0.8778

Report reference	Soil	Texture	pН	OC [%]	K _f	Koc	1,
KCA 7.1.3.1.1/01 M-174332-01-1	0	Loam	6.4	1.1	58.5	5318	90.8 V
	Hurley (90/10)	Sandy loam	7.3	1.7	ॐ 9ॅ2.6	5,44,7	°√9.8
	Speyer 2.2 (90/9)	Loamy sand	[∞] 5.7	2.5	265.3	_£0612_	7 1.0
KCA 7.1.3.1.1/02 M-562667-02-1		Sandy loam	5.8	15	87.7	J5156	0.8

Silt loam

Loam

Sandy lowin

6.2

5.60

Table 9.1.2-1: Summary of soil adsorption coefficients for aclonifen

The geometric mean K_{oc} value of \$727 and arithmetic mean by were selected for PECgw and PEC_{sw} modelling.

Lysimeter stodies **CP 9.1.2.2**

Arithmetic mean

Geometric mean

The potential mobility of aclorden has been as refere a lysimeter study is not required.

The potential publity of aclonifen has been assessed by modelling and therefore a field leaching study is not required.

CP 9.1.3. Estimation of concentrations in soil

Predicted environmental concentrations in soil (PECs)

Predicted environmental concentrations in soil (PECs)

Data Point:	KCP 9.1.3/01
Report Author:	
Report Year:	2004
Report Title:	Predicted environmental concentrations of aclonifen in soil, following application
	to sunflowers
Report No:	C042603
Document No:	M-232955-01-1
Guideline(s) followed in	not applicable
study:	
Deviations from current	Current guideline: EU Commission (1995 and 2000). FOCUS \$1997 and 2014
test guideline:	Major deviations; does not meet Current standards - Impact: modelling report
	invalid O O O O O
Previous evaluation:	yes, evaluated and accept of the second of t
	Source: Study list relied upon, December 2011 (RMS: DE)
GLP/Officially	No, not conducted under GLIO fficially recognised testing facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Now is no longer acceptable

In the previous submission (DAR, 2006), this modelling report was evaluated and accepted as valid. However the modelling calcultions were performed for a crop use which is not one of the current representative uses and the modelling endpoint has been superseded by new kinetic evaluations. Consequently the results are not presented in this cossier. For procedural reasons it has to be included in the current dossier bowever it is now superseded by KOP 9.1.3/02, M-675289-01-1.

Data Point	KCP-9-1.3/02 0 0
Report Anthor:	
Report Year:	2019 & 5 19 6 39
Report Title:	Aclonicen: PECsoil in Europe Use as spray application in legumes and winter
\$\tag{\tag{2}}	cereals in Europe 🗸 🗸 🔑
Report No:	V.C. 9/0266 0 0 0 0
Document No C	Ø-675289-01-
	Phone S S S S S S S S S S S S S S S S S S S
study: Deviations from current	
	Current guideline, EU Commission (1995 and 2000). FOCUS (1997 and 2014)
test gwideline:	To deviation &
Previous evaluation:	No, rov previously somitted
GLP/Officially	No, not conducted under GLP/Officially recognised testing facilities
facilities:	
Acceptability/Rehability:	YeO

The predicted environmental concentrations in soil (PEC_{soil}) of aclonifen was estimated as follows using the standard approach for legumes and winter cereals. The results for legumes are summarised below. Calculations assumed an even distribution of the compound in upper 0-5 cm soil layer following application and a soil density of 1.5 g/cm³. A simple Excel spreadsheet was used for the calculations.

The use of aclonifen on legumes was assessed according to the Good Agricultural Practice GAP summarised below.

Table 9.1.3-1: Application data of aclonifen according to the use pattern in UK

Individual	FOCUS	Rate	Interval	Plant S	BBCH	Amount
crop	crop		,Ĉ	interception	stage	reaching soil
		g/ha	(đays)	(%)	8 49! A	g/ha
Peas	Legumes	300	P	35	12-18	195~C
Peas	Legumes	600		35,	2 11-3 Q	390

The calculations were based on the maximum intended application rate together with the maximum intended number of applications per season and for multi-application sequences) the minimum interval between the applications. Crop interception was taken into account according to the BBCF growth stage, as recommended by FOCUS (2014).

Substance parameters used as input in the calculations are summarised in Table 9.13-2. The worst-case DT_{50} field value of 196.8 days was selected for the PEC soil calculations.

Table 9.1.3-2: Compound and sconario input parameters as used for the calculation

Compound Molar mass Max occur. (g/mol) in soil (days)	Molar mass corr. factor (-)
Aclonifen	1.0
Soil bulk density of cm 3 1.5 1	
Soil mixing depth (cm) 50 0 0	
Tillage depth for plateau (if relevant) (cm)	

Standard PEC_{soil} calculations use the soil mixing depth of 5 cm for the calculation of the maximum concentrations. For the cases where the agricultural practice involves deep soil tillage (or other mixing process), the effect of the soil processing is taken into account for the assessment of long-term behaviour of the respective substance. In such case, a tillage depth of 20 cm is used for the evaluation of background soil concentrations. The details of the calculation can be found below.

A 1st tier estimation of the initial PEC_{soil} concentration is done using the equation

$$PEC_{\text{soil}} = \frac{A \cdot f}{\rho_{\text{soil}} \cdot d}$$
 (1)

with A being the rominal single field application rate, f the fraction reaching soil surface (taking into account crop interception factors according to FOCUS), ρ_{soil} the dry soil bulk density, and d the thickness of the soil layer.

In single application scenarios, the initial PEC_{soil} value is equal to the overall maximum. For multiple (n) applications with constant application rate, crop interception, and application interval, the maximum PEC_{soil} can be written as

$$PEC_{soil,max} = \frac{A \cdot f}{\rho_{soil} \cdot d} \cdot \frac{1 - e^{-k \cdot n \cdot \Delta t}}{1 - e^{-k \cdot \Delta t}}$$
 (2)

where Δt the application interval and k is the first order degradation rate, calculated from the soil life (DT_{50}) as

$$k = \frac{\ln 2}{DT_{50}}$$

For multiple (n) applications with variable application rate, crop interception, or application interval the PEC $_{soil}$ just after the application (i) can be calculated stepwise as $(i) \cdot f(i) \cdot f(i)$

$$PEC(i)_{soil,max} = (4) \cdot f(i) \cdot f(i) \cdot d + PEC(i)_{soil,co} \cdot (4)$$

where PEC_{soil,co} represents the residue from the preceding applications at the time of the actual application. For the first application, PPC soil is zero, for the following applications it can be written as

$$PEC(i)_{soil,co} = PEC(i-1)_{soil} e^{-k} \Delta t^{(i)}$$
(5)

with $\Delta t(i)$ being the time interval between applications (i-1) and maximum of the individual PEC soil values. nen defined as the

$$PEC_{\text{soil,max}} = max(PEC(i)_{\text{soil,max}})$$
 (6)

Concentrations over

gradation vate kathe declining PEC values at time t after the maximum For first-order kinetics can be calculated by

$$PE(t) = PEC_{max} \cdot e^{-kt}$$
 (7)

For a better comparison of exposure and effect data time-veighted average concentrations (TWA) may the TW Pare given by the following formula. be useful. For first-order kinetics

$$TWA(t) = \sum_{k=1}^{\infty} \frac{1}{k \cdot t} \cdot (1 - e^{-kt})$$
(8)

Accumulation after long term os

Potential accumulation after long term use is also assessed, based on the maximum $PEC_{soil,max}$ concentration of the respective compound, obtained as described before.

In case of a single application or a multiple application sequence leading to the maximum PEC_{soil} after the last application at can be shown that the maximum concentration in soil after perpetual use (PEQoil,accurrent can be expressed as

$$PEC_{soil,accu} = PEC_{soil,max} \cdot \frac{1}{1 - e^{-k \cdot t}}$$
(9)

where t is the number of days between two events where PEC_{soil,max} is reached, i.e., 365 days for yearly applications, 730 days for bi-yearly applications, etc. This PEC_{soil} value is based on a normal mixing depth. In the case of a multiple application sequence leading to the maximum PEC_{soil} before the last application another approach has to be used.

The concentration in soil after an infinite number of applications and immediately before the application in the last year (the second of a lateral and a la in the last year (the so called plateau concentration PEC_{plateau}) can be written as

$$PEC_{plateau} = PEC_{soil,accu} \frac{d}{d_{accu}} \cdot e^{-k}$$

$$(10)$$

This formula can take the effect of deep soil tillage (or another mixing process) into account by distributing the soil residue amongst larger amounts of soil (larger soil raixing depth decu of seg., 200cm). In the absence of such mixing process, the factors involving mixing depth cancel out. The total PECsoil taking the effect of accumulation into account to their the sum of PECplater and the maximum PEC_{soil}, as defined previously.

The plateau concentration is driven by the dissignation OT 50 in Soil. The ratio between maximum PEC soil due to actual application and the respective plateau concentration paking effect of tillage into account here) can be written as

$$\frac{\text{PEC}_{\text{platean}}}{\text{REC}_{\text{soil,max}}} = \frac{e^{-k \cdot t}}{e^{-k \cdot v}} \frac{d}{d_{\text{acea}}}$$
(12)

atio is independing and incoming the plate.

...opriate to neglect the plate.

...short-teem and long-term PEC and idea in the following tables. Inspection of Equation (P2) shows that this ratio is independent of the application rate. For a DT90 of less than a year the prateau concentration is marginal < 3% of actual PEC_{soil,max} for d = 5 cm and d_{accu} = 20 cm). It is thus deemed appropriate to neglect the plateau confeentration in such a case.

Detailed results (maximum, short-teem and long-term PEC and TWA, and accumulation values) for

PEC_{soil} of aclonifen 1 x 600 g ha⁻¹ post-emergence on legumes **Table 9.1.3-3:**

PECsoil (mg/kg)		Legumes 1 x 600 g/ha (35% intercept)					
		Single application		Multiple applications			
		Actual	TWA	Actual	TWA S		
Initial		0.5200	-	₄N/A	⊗ N/A		
Short term	24 h	0.5182	0.5191				
	2 d	0.5163	© 5182				
	4 d	0.5127	7 0.5164				
Long term	7 d	0.5073	£ 0.5136 £				
	14 d	0.4950	0.5074				
	21 d	0.4829	0.5012				
	28 d	0.4829 0.4712 🍣	0.4952				
	42 d	0.4485	6° 0.4854 ×				
	50 d	0.43🚳	0.4768	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	s. <u>A</u>		
	100 d	0 ,3 656	Ø.4383Q				
Plateau o	concentration (20cm)	£ 0. 0497. ~	~ ~	A NA	N/A		
	PECaccumulation	0.5607		1 1 1/A S	N/A N/O		
(PEC	$C_{act} + PEC_{soil} plateau$			IN/A	U INVO		

Table 9.1.3-4:

PECsoil (mg/kg)	L V		Legumes 1 x \$	00 g/ba/(35%@jntercej	Ot)
		Sing	de application \	Multiple a	pplications
		Actual	PWA 0.2895	Actual	TWA
Initial Short term		@ 2600.		O' N%A	N/A
Short term	24.6 2 3 2 4 5 7 2 4 5 7 2 4 6 7 7 2 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.2591	0.2595		
	2\d 4/	0.2582	0.2595 0.2591 0.2582 0.2582	Ø' 29	
	Prd O	0.2564	~ 0.2582		
LONE CITT W	7 d 🗸	0.2537	0.25		
G G	114 d 2 4	€ 0.2475×	* 1 ¹⁰ 0. 25 37	70 7	
	2 5 d	0.2415	\$\$		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	28 d	02356	0.2476	,	
~ \$	42 d\(\)	• 0 .2242			
	42 d 50 d 000 d firation (20cm)	0.21 89 0.1828	00004		
	_£000 d ∑\$*	0.1828	<u> </u>		
Plateau conc	entration (20cm)	0.9248	> _~ · · · ·	N/A	N/A
, v	PI Caccumulation	0.2848		N/A	N/A
PEC _{act} +	PEC _{soil} plateau)	\$ 10.20 tg		14/11	14/11

dies of acloriten for all use patterns under consideration is shown Overview of maximum PE below.

1	Use pattern	Aclonifen (mg/kg)
G	x 6000/ha spray treatment on Legumes	0.5200
)°	1 x 300 g/haspray treatment on Legumes	0.2600

The accumulation potential of aclonifen after long term use was also assessed, employing the larger soil depth for the calculation of the background concentration in cases where tillage is relevant. The results are presented below.

Use pattern	PECsoil	Aclonifen (mg/kg)
Legumes 1 x 600 g/ha	Plateau (20cm) Total (20 + 5 cm)	0.0497 0.5697
Legumes 1 x 300 g/ha	Plateau (20cm) Total (20 + 5 cm)	0.02 48 0.2 8 48

CP 9.2 Fate and behaviour in water and sediment

The fate and behaviour of aclonifen in aquatic systems has been revestigated under abjotic and biotic conditions in a series of laboratory studies. A number of studies were cubmitted for the first inclusion of aclonifen into Annex I of Council Directive 91/414/EEC and reviewed under uniform principles (DAR, Germany, 2006). In addition a number of new studies are provided for the current EU review. All valid environment fate studies are considered in the MCA 7 dossier.

Under sterile aqueous conditions, at temperatures of 22°C, 56°C and 70°C, aclorifen was found to be hydrolytically stable at pH 5, 7 and 9. The photolytical gradation of paniline UL- $\frac{1}{2}$ C]-actorifen in water has been investigated under sterile conditions in photophate buffer solution at pH 7. Actorifer exhibited slow degradation when irradiated or sterile pH 7 buffer solution at 25°C, with up to 88.% of applied radioactivity still recovered as parent at the end of the study offer 16 days (equivalent to 30 days natural sunlight). No major (>10%) metabolites were formed by photolysis in water. In derobic mineralization studies treated with [aniline-UL- 14 C]-aclorifen, the metabolites M-01 and M-02 were observed as major metabolites ($\geq 10\%$).

Water sediment studies have been conducted with ¹⁴C-aclonifen, uniformly babelled in either the phenoxy or aniline rings. In water sediment systems actorifen was readily degraded with total system DT₅₀ values ranging from 5 to 40 days. The compound dissipated rapidly from the water phase with DT₅₀ values of between 8 to 3 days. Once deposited in the sediment, parent continued to degrade over time with DT₅₀ values of between 8 to 69 days.

In water sediment systems treated with [antine-Ula C]-aclonifen, M-01, M-02 and M-03 were observed as minor metabolites. The combined sum of the cleaved metabolites M-02 and M-03 observed throughout the water sediment study was at a maximum of only 4%. No significant metabolites were observed in water sediment studies of eated, with [phenoxy-UL-14C]-aclonifen. Formation of unextractable bound residues in sediment was the major metabolic pathway in aquatic systems. Under sterile conditions, aclonifen was relatively stable confirming that its metabolism is largely microbially mediated. Non-extractable sediment bound residues were observed under sterile conditions at much lower levels than observed in microbially viable systems, indicative of metabolites of aclonifen also binding to the sediment matrix with time in microbially active systems. The metabolic pathway for aclonifen in aquatic systems is shown below.

Figure 9.2-1: Metabolic pathway for aclonifen in surface water

A new kinetic evaluation of the experimental data generated in two water sediment studies KCA 7.2.2.3/05 and KCA 7.2.2.3/05 has been conducted according to FOCUS kinetics guidance with the aim of deriving DT_{50} values for use as modelling and trigger endpoints (& Lorenza & Lorenz

Table 9.2-1: Summary of modelling endpoint \mathfrak{T}_{50} values for a clonifen in aquatic / sediment systems \mathfrak{T}_{50} values for a clonifen in aquatic /

Compound	, A	Laborat	tory modelling endpoint DT50	(20 °C)
	OT 50 r (day	ange 🤏 [Number of datasets (n)	Geometric mean DT ₅₀ (days) for exposure assessment
Total system	480 -	43.81	4	14.4
Water phase	\$\tilde{\mathcal{G}} \tilde{\mathcal{G}} 0.83 \tilde{\mathcal{A}}	3:39	4	1.7
Sediment	8.43	69.49	4	26.1

CP 9.2. Aerobic mineralisation in surface water

This study is a new requirement under Commission Regulation (EU) No 284/2013. Two aerobic mineralisation studies (OECD 309) with aclonifen were performed for Annex I Renewal, a 'pelagic' test

system KCA 7.2.2.2/01 (2016, M-551820-01-1) representative of the water column of the open waters or oceans and a 'suspended sediment' test system KCA 7.2.2.2./02°(2019, M-674035-01-1) representative of most surface waters according to OECD Test Guideline 309.

In the 'pelagic' test system the aerobic mineralisation of aclonifen was investigated in natural water at pH 7.1. The results indicated that aclonifen was slowly degraded in both low and high concentration tests but did not significantly mineralise (<1% AR) over the study duration. DT₅₀ values for actionifen in pelagic water were 205.5 and 361 days. The aclonifen rectabolite M-01 was formed at a maximum of 10% AR along with 3 other minor unidentified metabolites ($\leq 3.5\%$ AR).

However exposure of aclonifen to open water is not expected as the compound is very strongly accorded (mean $K_{oc} > 5500$) & immobile in soil. Any residues unintentionally reaching surface waters will not reach open water such as lakes, reservoirs, estuaries or the sea

In the 'suspended sediment' test system the perobic mineralisation of actonifer was investigated in natural water at pH 6.9. The results indicated that actonifer was feadily metabolised in both low and high concentration tests but did not significantly mineralise (5% AR) over the study duration, \$T₅₀ values for actonifen in suspended sediment water were 25.7 and 39.2 days. The actonifer metabolite M-02 was formed at a maximum of 10% AR in flasks treated with [miline-\$L-\$14\$] actonifen. No significant metabolites were observed in flasks treated with [phenoxy \$L-\$14\$] actonifen.

For further information on aerobic mineralisation in surface water studies please refer to Document MCA, Section 7.2.2.2.

CP 9.2.2 Water sediment study

Water sediment studies KCA 7.2.2.2/01 (P. & E., 2000, M₅199647-01-1) and KCA 7.2.2.3/06 (2019 M-674479-01-1) have been conducted with [14C]-aclonifen, uniformly labelled in other the phenoxy confiling rings; Aclonifen reached a maximum of 61.0% of applied adjoactivity (AR) in the sediment at day 3 before declining to 4.1% at 100 days.

Aclonifen was degraded by hydroxylation to form M-01 and hydrolysis (of aclonifen or M-01) to form M-02. Under reduced conditions the formation of M-04 was observed on two occasions in the Manningthee system and once in the Origar system possibly as a result of the reduction of M-02 as the reduced forms of aclonifen and M-01 were not observed. During the course of these studies, no metabolites were observed in either water or rediment phases at levels > 5% AR at more than one timepoint.

A new kinetic evaluation of the two water sediment studies was conducted according to FOCUS kinetics guidance KCA 7.2.2.3/08 (2019, M-675507-01-1). The total system $DegT_{50}$ values calculated for aclonifen are provided in the table below. The geometric mean $DegT_{50}$ value of 14.4 days was used in FOCUS surface water exposure assessments.

Table 9.2.2-1: Summary of total system Deg T₅₀ values for aclonifen in aquatic / sediment

	Phase F	Sediment system	Model	St. (χ²err) (%)	DT ₅₀ (days)
	Aotal system	Manningtree	SFO	8.79	43.81
.~\/	T-4-12 -4	Ongar	HS DT ₉₀ /3.32	5.84	40.06
	Total system	Anglersee	SFO	8.60	5.04
Õ	Total system	Wiehltalsperre	SFO	12.98	4.80
			Geometi	ic mean	14.4

For further information on water/sediment studies please refer to Document MCA, Section 7.2.2.3.

CP 9.2.3 Irradiated water/sediment study

An irradiated water sediment study is an optional higher tier study which is not required for SC 600 G or aclonifen.

Estimation of concentrations in groundwater CP 9.2.4

For the PEC calculations following use of Aclonifen SC 600 G, the following represent considered.

Individual crop	FOCUS crop	Rate per Season	Interval Timing of application
Beans (field)	Legumes	& 390 S	- C D 12,18 C
Beans (field)	Legumes	0 600 6	7
Peas (animal)	Legumes	300	3 - 3 12-8
Peas (animal)	Legumes		- LI-30

PEC_{gw} modelling approach

The predicted environmental concentrations in groundwater (PECQ) for the active substance aclonifen was calculated using the simulation models PEARL 4.44 and PELMO 5.5.3 following the recommendations of the FOCUS working group on groundwater scenarios in addition, modelling was conducted for the Châteaudun scenario with MACRO 5.5.4

The leaching calculations were run over 26 years, as proposed for pesticites which may be applied every year. The first six years are a 'warm up' period; only the last 20 years were considered for the assessment of the leaching potential (For biginnial applications the simulations are run for 46 years, with the first six as 'warm up'). The 80% percentile of the average annual groundwater concentrations in the percolate at 1 m depth under a treated field were evaluated and were taken as the colevant PECgw values. In respect to the assessment of a potential groundwater contamination this shallow depth reflects a worst case. The effective long-term groundwater concentrations will be even lower due to dilution in the groundwater laver.

According to FOCUS, the calculations were conducted based on geometric mean soil half-lives, referenced to standard temperature and moisture conditions. Crop interception will reduce the amount of a compound reaching the soil and therefore this Pass been taken into account depending on the growth stage at application.

Calculation of concentrations in groundwater

Data Point:	KCP 9.2.4/01
Report Author:	
Report Year:	2003
Report Title:	Predicted environmental concentrations in groundwater (PECgw) of aclonifer using the FOCUS groundwater scenarios.
Report No:	C032385
Document No:	M-231324-01-1
Guideline(s) followed in study:	not applicable
Deviations from current test guideline:	Current guideline: FOCUS (2000 and 2014) Major deviations; does not meet Current standards - Impact: modelline report invalid
Previous evaluation:	yes, evaluated and accepted Source: Study list relied spon, December 2011 (RMS; DE)
GLP/Officially recognised testing facilities:	No, not conducted under GLP Officially recognised testing facilities
Acceptability/Reliability:	Now is no longer acceptable & & & O & &

In the previous submission (DAR, 2006), this modelling report was evaluated and accepted as valid. However the modelling calculations were performed for a crop use which is not one of the current representative uses and the modelling endpoints have been superseded by new studies and new kinetic evaluations. Consequently a summary of the results is not presented in this dossier. For procedural reasons it has to be included in the current dossier however it is now superseded by KCP 9.2.4.1/02,

Data Point KCP-9,2.4.1/01
Report Aprilor: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Report Year: 2019
Report Title: Aclonich: PECgw FOCUS PEARL, PELMO and MACRO - Use in winter cerears and fogumes in Europe
and Segumes in Europe
Report No:
Document No. 0 N-675020-02-1
Guideline(s) followed in Onone
study: 10 / 2 0 2 . ~
Deviations from current Current guideling FOCUS (2000 and 2014)
rest guideline: Previous evaluation: No, por previously stormitted
Previous evaluation: No, por previously symmitted
GLP/Officially A No, not conducted under GLP/Officially recognised testing facilities recognised testing.
recognised testing.
identities.
Acceptability/Renability: Yeo

Predicted environmental concentrations of the active substance aclonifen in groundwater recharge (PEC_{gw}) were calculated for the use in Europe, using the simulation models FOCUS PEARL 4.4.4,

FOCUS PELMO 5.5.3 and FOCUS MACRO 5.5.4.

Use of aclonifen in winter cereals and legumes was investigated in the report. The results for legumes are summarised in this document. Detailed application parameters are presented in Table 9.2.4-1.

Table 9.2.4-1: Application data of aclonifen according to the use pattern in Europe

Individual crop	FOCUS crop	Rate	Interval	Plant interception	ABBCH stage	Amount reaching soil
		g/ha	(days)	(%)	(-)	Sg/ha €
Beans (field)	Legumes	300	-25	35 ° °	12-18	Q 195 Q
Beans (field)	Legumes	600	<u> </u>	350,	· 11-30	3 9 0@
Peas (animal)	Legumes	300	~~~~	~35	1 2 18 0	∂195 👸
Peas (animal)	Legumes	600	·	©35 JY	Ø₁1-30	° 390° \$

Applications were made at the date of emergence date + 3 days for FOCOS ground water scaparios on legumes. Full details are given in Table 9274-2

Table 9.2.4- 2: Application dates of actionifen according to the use pattern in regumes

Crop	Scenario Application relative day used in modelling
Beans (field)	Emergence+3 Emergence+3 Emergence+3
Peas (animal)	Emergence 3 Emergence 3 Emergence + 3 Emergence + 3 Emergence + 3

Further input parameters for PEC modelling of aclorpten are summarised below in Table 9.2.4-3.

Table 9.2.4-3: Sompound input parameters for aclonifen

Parameter V	Unit D	Aclonifen
Molecular weight	g m@f ¹	264.7
Napour Pressur (at 20°C)	∂Pa	1.6 e-5
Solubility (at 20°C)	‱mg l⁻¹	1.4
DTO in soit	d d	79.1
March 2 Win 2 2	mL g ⁻¹ mL g ⁻¹	5727
Kom V	mL g ⁻¹	3322
Freundlich Tonen	-	0.878
Plant uptake factor	-	0
Exponent moist@re	(-)	0.49
Exponent temperature	(1/K)	0.0948

Following the proposal of the FCCUS working group on groundwater scenarios, the concentrations in the percolate at m depth were evaluated. This shallow depth reflects a worst case with respect to the assessment of a cotential groundwater contamination. The effective long-term groundwater concentrations will be even lower due to dilution in the upper groundwater layer. Detailed results for all scenarios for FOCUS PEARL, FOCUS PELMO and FOCUS MACRO are listed below.

Table 9.2.4-4: FOCUS PEARL, PELMO and MACRO PECgw results of aclonifen in legumes at 600 g/ha

	Document MC	CP – Section 9: Fat		r in the environment fen SC 600 (600 g/L)
	PEARL, PELMO at 600 g/ha	and MACRO P	EC _{gw} results of	faclonifen in
		80 th percentile P soil depth	ECgw at 1 m (μg/L)	
Crop	Scenario	Aclon	ifen 🐬	
		PEARL	PELMO	
Beans (field) Peas (Animal)			0.001 0.001 0.001 0.001 0.001 0.001 0.001	Factorifen in
MACRO		<0.0		
FOCUS	PKARL, PELMO	and MACRO P	For results of	Tolonika in
				L.
Crop Beans	Scenario	80 th percentile P soil depth Acton	ECgw at tom (vg/L) ifen PELMO < 0001	Sicioniten in

Table 9.2.4-5: legumes at 300 g/ha

	≪l 8	* *		α	y . <u> </u>
	i. Si C	Scenario	80 ^t	h percentile soil dept	PECgw at tom h (ug/L)
	Crop s	Scenario S		Acto	
Ž	Beans V			EARL <0.00	PELM9
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	(field)			<0.001 <0.001 <0.001	<0.001 <0.001
4	Animal)			\$0.001 \$0.001	
				<0.001	<0.001 <0.001
12				<0.001 ≫ € 0.001	<0.001 <0.001
	MAÉRO S			<0.0	001

values obtained with individual FOCUS models (PEARL) and (PELMO) are Overview of The PEEgw shown below.

Maximum FOCUS PEAR PECgw results of aclonifen for uses on legumes

Use pattern	Aclonifen (μg/L)
	< 0.001
Legumes 3000 g a.s. A 1 application each year	< 0.001
Legumes 300 g a.s. Ma 1 application each year Legumes 300 g a.s. Ma 1 application each year	

Table 9.2.4-7: Maximum FOCUS PELMO PEC_{gw} results of aclonifen for uses on legumes

Use pattern	Aclonifen (μg/L)
Legumes 600 g a.s./ha 1 application each year	< 0.001
Legumes 300 g a.s./ha 1 application each year	<0.001

CP 9.2.4.2 Additional field tests

No additional studies on the formulation Aclonifen SC 600 under fiel Conditions are deeped necessary. The fate and behaviour of the compound, aclonifen, in this formulation are fully covered from laborators experiments and modelling.

CP 9.2.5 Estimation of concentrations in surface water and sediment

Predicted environmental concentrations in surface water (PKCsw)

Predicted environmental concentrations of the herocide actonion in surface water (PECs) and sediment (PECsed) were calculated for the representative uses in Europe Employing the tiered FOCUS Surface Water (SW) approach. All belevant entry routes of a compound into surface water principally a combination of spray drift and runoff/coosion or draw flow over considered in these calculations.

Step 1: In this, the most conservative step, all inputs are considered as a single loading to the water body and a worst-case PEC_{sw} and PEC_{sw} is calculated.

Step 2: Individual loadings into the water body from different entry routes are considered. Scenarios are also considered for Northern and Southern Europe coparately but no specific crop scenarios are defined.

Step 3: An exposure assessment using realistic worst-case scenarios is made. The scenarios are representative of a ricultoral conditions in Europe and consider weather, soil, crop and different waterbodies. Simulations use the models PRZM, WACRO and TOXSWA.

Step 4: PEC values are refined by considering infrigation measures of specific scenario descriptions on a case-by-case basis.

PEC_{sw} for aclonifen

For PEC_{sw} and PEC_{sed} calculations use of acloritien at application rates of 600 g a.s./ha and 300 g a.s./ha on legumes was considered.

The simulation model FOCO'S SWASH 35.3 comprising of FOCUS PRZM v4.3.1, FOCUS MACRO v5.5.4 and FOCUS TOXSWA 35.5.3 was used to calculate the reported PEC_{sw} values. SWAN v5.0.1 was used to apply Step 4 mitigation measures.

Predicted environmental concentrations in surface water and sediment (PEC_{sw} and PEC_{sed}) at Steps 1 and 2 have been calculated for use on legames. A comparison of the concentrations predicted at Steps 1 and 2 with ecotoxicological empoints indicated the exposure assessments for both compounds were too conservative to conduct a successful risk assessment for aquatic organisms. Consequently predicted environmental concentrations in surface water and sediment (PEC_{sw} and PEC_{sed}) at Step 3 and Step 4 have been calculated.

Data Point:	KCP 9.2.5/01
Report Author:	
Report Year:	2004
Report Title:	Predicted environmental concentrations in surface water (PECsw) and sediment
	(PECsed) for aclonifen following use of the formulation Bondur (R) on
	sunflowers
Report No:	C042605
Document No:	M-232958-01-1
Guideline(s) followed in	not applicable
study:	
Deviations from current	Current guideline: FOCUS (2001, 2007 and 2003)
test guideline:	Major deviations; does not pret Current standards - Impact modelling report
	invalid
Previous evaluation:	yes, evaluated and accepted
	Source: Study list relied upon December 2014 (RMS DE)
GLP/Officially	No, not conducted under GIP/Officially recognise (desting facilities
recognised testing	
facilities:	
Acceptability/Reliability:	Now is no longer acceptable V & O' Y & &

In the previous submission (DAR) 2006, this modelling report was submitted but ultimately not accepted as valid and was superseded by KCR 9.2.4 4/02, 2008, M-300717-01-1. For procedural reasons it has to be included in the current cossier, but is considered invalid and consequently a summary of the results is not presented in this dossier.

Data Point: Report Author: Report Year: 2008 Predicted environmental concentrations in surface water (PECsw) and sediment Report Vitle: (PECseco) for actionifer to llowing a pre-emergence application to sunflowers at 2400 € ha- ≰ V 📆 8/01 🚱 Report No: **№**3007**1**7-01-1 Document No. EU Council Directive \$1/414 EEC, as amended by Commission Directive 95/36 EC of July 1993, Section 5, Point 9.2.3. (OECD 9.7) Guideline(s) followed in study: Deviations from current Current guideling: OCLIS (2001, 2007 and 2015) test guideline: Major deviations does not meet Current standards - Impact: modelling report nvalid/ yes evaluated and decepted Previous evaluation: Source: Study list relied upon, December 2011 (RMS: DE) GLP/Officially o, not conducted under GLP/Officially recognised testing facilities recognised(testing facilities Q Now is no longer acceptable

In the previous submission (Addendum to DAR, 2008), this modelling report was evaluated and accepted as valid. However the modelling calculations were performed for a crop use which is not one of the current representative uses and the modelling endpoints have been superseded by new studies and new kinetic evaluations. Consequently a summary of the results is not presented in this dossier. For procedural reasons it has to be included in the current dossier however it is now superseded by KCP 9.2.5/03, 2019, M-675040-01-1.

(3)

Data Point:	KCP 9.2.5/03
Report Author:	
Report Year:	2019
Report Title:	Aclonifen (ACL): PECs sed FOCUS - Use in Fegumes in Europe
Report No:	EnSa-19-0663
Document No:	M-675040-01-1 O V V V V V
Guideline(s) followed in	none A A A A A A A A A A A A A A A A A A A
study:	
Deviations from current	Current guideline: FQCUS (2001, 2007 and 2015) No deviation No, not previously submitted
test guideline:	No deviation w w w w w w w w w w w w w w w w w w w
Previous evaluation:	No, not previously, submitted
GLP/Officially	No, not conducted under GLP Officially recognised resting Ocilities
recognised testing	
facilities:	
Acceptability/Reliability:	Øyes O D O O O O O O O O O O O O O O O O O

Predicted environmental concentrations of the harbicide aclosifien in surface water (PEC_{sw}) and sediment (PEC_{sed}) were calculated for the use in legumes in Europe, employing the tiered FOCUS Surface Water approach. All relevant entry soutes of a compound into surface water (principally a combination of spray drift and runofferosion or drain flew) were considered in these calculations.

Intended GAPs for the use of actonifer in Europe were analysed and consolidated according to regulatory and modelling requirements. As a result, one or more uses may be covered by a single modelling GAP row (DGR). The translation of the regulatory GAP for modelling purposes is shown in Table 9.2.5-1

Table 9.2.5, 1: GAP translation for modelling purposes

GAP group ID	GAP group name (DGR) and use IDs	Growth stage	Max. apps	Interval (days)	Rate (kg a.s./ha)
DGR I	peas peas	BBCH 11 - 30	1	-	1×0.6
DGR II	peas peas	BBCH 12 - 18	1	-	1×0.3

The implementation of the modelling GAP at Steps 1-2 level is shown in Table 9.2.5-2. One or more calculations (modelling tasks, PMT) are necessary to fully cover the use assessed. The number and name of the respective DGR is provided for easier reference.

Table 9.2.5- 2: FOCUS Steps 1-2 specific data for the GAPs assessed

Run IDs (DGR / PMT)	GAP group name (DGR)	Assessment name (PMT)	FOCUS crop (crop group)	Season	Crop © cover
DGR I PMT I	peas	full	legumes (arable crops)	spring (Mar - May)	min crop cover
DGR II PMT II	half	half	legumes (arable crops)	spring (Mar - May)	min crop cover

The implementation of the modelling GAP at Step 3 level is shown in the following ables Please note that PMTs at Steps 1-2 and Step 3 do not necessarily fully correspond to each other due to inherent differences in the models. A 30d window starting 3 days after emergence was used to simulate the postemergence applications.

A summary of all Step 3 PMTs is provided in Table 9.2.5-5. The detailed information on individual uses is given in Table 9.2.5-4 and Table 9.2.5-5 for use on peas a 300 g a.s./ha (DGR Peas, PMT Full) and in Table 9.2.5-6 and Table 9.2.5-7 for use on peas a 300 g a.s./ha (DGR Plaff, PMT Haff).

Table 9.2.5-3 Overview of FOCUS Step 3 assessments

Run IDs (DGR / PMT)	GAP group name (DGR) Assessment name (PMT) Cropkgroup)
DGR I PMT I	Peas & Full & Legumes (Alable crops)
DGR II PMT II	Half Legumes (arable crops)

Peas full rate 600 g a.s. ha

Table 9.2.5- 4. Summarised FOCUS Step 3 application data (PAT settings)

Assessment name	D3 Rijch D4 Pord/Stream D5 Pond/Stream	Application window used in modelling
Full	D3 Ditch	18-Apr - 18-May
	D4 Pord/Stream D5 Pond/Stream D6 Digh R1 Pond/Stream R2 Stream	20-Apr - 20-May
Ö	D5 Pond/Stream D6 Dirch	18-Mar - 17-Apr 23-Apr - 23-May
On the second		23-Apr - 23-May
	Pond/Stream	18-Apr - 18-May
	R2Stream R	23-Apr - 23-May
	RS Stream Stream	24-Apr - 24-May
A	RSStream R4 Stream	24-Apr - 24-May

Full FOCUS Step 3 application data **Table 9.2.5-5:**

Run IDs	DGR I / PMT I Peas Full
GAP group name (DGR)	Peas
Assessment name (PMT)	Full &
FOCUS model crop (crop group)	Legumes (arable crops)
Use pattern	0.6 kg a.s./ha
Appl. method (Run-off CAM, depth inc.)	Ground spray (2 - apply foliar linear, 4 cm)
PAT start date	
(relative to crop event or absolute)	3 days after emergence
PAT window range	30 days for all scenarios (min = 30 days)

Drainage scenarios	PAT start/end date (Julian day)	Application	Runoff, scenarios	PAQ start/end date (Julian day)	Application date
D3	18-Apr/18-May	20-Apr \$	ORI O	Apr/18 May	26-Apr °
Ditch	(108/138)		Pond/Stream	(1080,138)	
D4	26-Apr/26-May	Ø 4-May		23/Apr/23/May	~ 23- ⊘ pr
Pond/Stream	(116/146)		Stream &	(113/43/3) 24-A0r/24-May (114/144)	
				8 8 S	, 45°
D5	18-Mar/17-Apr ₩	Ø8-Apr⋛	D RATE	24-Apr/24-May	°∕∕⁄24-Apr
Pond/Stream	(77/107)		Stream O	(P14/12/47)	4
				Q C)
D6	23-Apr/23-May	25 Åpr	% R4 [™]	24-Apr/24-May	28-Apr
Ditch	(1-13-143)		🌊 Stream 🗸	(C) 4/144)	

Peas half rate 300 Ca.s./ha

Table 9.2.5- 6: Summarised FOCUS Step 3 application data (PAT settings)

Assessment name	Scenario Scenario	Application vindow used in modelling 78-Apr - 18-May 26-Apr - 26-May 18-Mar - 17-Apr 23-Apr - 23-May
		© 018-Apr - 18-May 26-Apr - 26-May
	D4 Bond/Stream	26-Apr - 26-May
,	D6 Ditch	23-Apr - 23-May
	A R1 Pand/Stream &	18-Apr - 18-May 23-Apr - 23-May 24-Apr - 24-May
Q.	Stream S	23-Apr - 23-May
	R3 Stream	24-Apr - 24-May
	R4 Stream Q	24-Apr - 24-May
	D3 Ditch D4 Pond/Stream D5 Pond/Stream D6 Ditch A R1 Pond/Stream R3 Stream R4 Stream	
	Da Ditch D4 Rond/Stream D4 Rond/Stream D5 Pond/Stream D6 Ditch R1 Pend/Stream R3 Stream R4 Stream R4 Stream	

Table 9.2.5-7: Full FOCUS Step 3 application data

Run IDs	DGR II / PMT II Half Half
GAP group name (DGR)	Half
Assessment name (PMT)	Half
FOCUS model crop (crop group)	Legumes (arable crops)
Use pattern	0.3 kg a.s./ha
Appl. method (Run-off CAM, depth inc.)	Ground spray (2 - applp foliar linear, 4 cm)
PAT start date (relative to crop event or absolute)	3 days after emergence
PAT window range	30 days for all scenarios (min = 00 days)

Drainage scenarios	PAT start/end date (Julian day)	Application date	Runoff Starfend date date date date
D3	18-Apr/18-May	20 - Apr 🔊	R1 18-App@78-May &6-Apr@
Ditch	(108/138)		Pond/Stream (198/138)
D4	26-Apr/26-May	5 14- M av 4	R2 29-Apr/28-May 23-Apr
Pond/Stream	(116/146)		Stream 6 (15743) 5
D5	18-Mar/17- & ør	\$\$\disp\disp\disp\disp\disp\disp\disp\disp	\$\int \text{\tin}}\text{\tin}}\text{\tin}\text{\texi}\text{\text{\text{\text{\text{\text{\tetx}\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\ti}\}\tittt{\text{\text{\texi}\text{\text{\text{\text{\tex{
Pond/Stream	(77/10/7)	, , , , , , , , , , , , , , , , , , ,	Stream (114/144)
D6	23-Apr/23-May	3-Apr	R4 24-Opr/24-May 28-Apr
Ditch	(113/143)		© Smeam ((114/134)

Standard procedure, and settings were used for Step 1-2 and Step 3 assessments. At Step 4 the following mitigation settings were used (see Table 9.2.5-8 and Table \$2.5-8).

Table 9.2.5- & Mitigation approaches used

Buffer length &	Marigation type @	Drift reduction nozzles
0 m	Spraydrift O	0 %, 50 %, 75 %, 90 %
5 m	Spray drift ()	y
10 m	Spray aritt & kunOio	
15 m 🔯	Spray drift & Run off Spray drift & Run off	
20 m	Spray driff & Run off	

Table 9.2.5-9: Runoff muigation parameters used for the assessment

Fractional reduction in:	10 m, 15 m	20 m
Runoff: Nolume	0.60	0.80
Flux	0.60	0.80
Erosion: 🖇 Mass 🗳	0.85	0.95
Fibrx	0.85	0.95

Substance related parameters used for aclonifen in the calculations at FOCUS SW Steps 1-2 level are summarised in Table 9.2.5. To and at Step 3/4 level in Table 9.2.5-11.

Table 9.25 10: Substance parameters used at FOCUS Steps 1-2 level

Parameter	Unit	Aclonifen
Molar mass	(g/mol)	264.7
Water solubility	(mg/L)	1.4

	1	
Koc	(mL/g)	5727
Degradation DT ₅₀		
Soil	(days)	79.1
Total system	(days)	14.4
Water	(days)	14.4
Sediment	(days)	14.4
Max occurrence		
Water / sediment	(%)	100
Soil	(%)) 100 🎜
•	A 700	(7)

Substance parameters used for aclonifen at Step 3/4 level Table 9.2.5- 11:

	Koc	(mL/g)	5727	7	
	Degradation DT ₅₀		•		~ ° .
	Soil	(days)	79 1		
	Total system	(days)	14.4		
	Water	(days)	17.7 1 <i>1</i> 1	^	6)" "0"
	Water Cadimant	(days)	14.4		
	Sealment	(days)	14.4		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Max occurrence			4	
	Water / sediment	(%)	100		
	Soil	(%) 冷	100	\$	
		V		r O	
		A.	.64	× 1	
11: Substa	ance narameters us	sed 🚧 aclor	nifen át Ste	n 3/4 lex©l	Q ,0' ,4
11. Substi	unce parameters us	A deloi	mengt ste		
Parameter	4	🕼 Uni	it 🥎 👢 🧶	√ Parent √	
Substance		* a ° .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ac Onifen O	
SWASH code				WACI S	. 4
S WASII COUC	(temp.)			S ACLIO	
General		~0" ~	~ * .4		
Molar mass		/ /g/m		<u>,</u> 264.7 🔬	
Water solubility ((temp.)	$\mathcal{I}^{\mathbb{Q}^*}$ (mg/	½) [14 (20 °C)	
Vapour pressure	(temp.) R	A CPA) 😂 1,	264.7 1.4.(20°C) 0F-05 (25°C)	Ž Ž
Crop processes					
Coefficient for us	otake by plant (TSCK)				
				00 50 50	Co I"
Wash-off factor			1)	~ 30 % ·	**
Sorption		d, _ "		? 6	
Koc	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Ž ÇmL/	'g)	5 72 #.13.,©	
K _{OM}		mId (mId	y) 😂 "	×322×	
Freundlich expon	nent (1/n)		(k	0.880	
Transformation		(mlg)		/ 0 /	
DT ₅₀ ic soil		y 5.	.a. O	″∜ 70.1	
DT ₅₀ in soil		(day	3	@l9.1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- W	V _A .9 /0.72		. 20	
temperature		(day)	20	
temperature moisture conter	nt (pF)	(log(c	m)) (***********************************	79.1 20 2	
temperature moistur conter	nt (pF)	(log(c)		-	
temperature moistur conter	nt (pF)	(log(c) (log(c) (-) (day		1000	
temperature moistur conter	nt (pF)	(log(c)		-	
temperature moistur conter	nt (pF) ron in soil	(log(c		1000 20	
temperature moistur conter	nt (pF) ron in soil ion in water	(log(c) (day		1000	
temperature moistur conter	ion in water	(log(c) (-) (day (day (day (3C)		1000 20	
temperature moistur conter	iOn in water	,		1000 20 - 14.4	
temperature moisture conter formation fracti DT ₅₀ in water temperature formation fracti DT ₅₀ in sodiment temperature formation fracti	iOn in water	,		1000 20 - 14.4 20	
temperature moisture conter Tormation fracti DT ₅₀ in water temperature formation fracti DT ₅₀ in sediment temperature formation fracti DT ₅₀ on canopy	ion in water	(day)		1000 20 - 14.4	
temperature moisture conter Tormation fraction DT50 in water temperature formation fraction temperature formation fraction temperature formation fraction DT50 on Canopy Exponent for the	ion in water ion in sedment e effect of moisture	(day)		1000 20 - 14.4 20 - 10	
temperature moisture onter formation fracti formation fracti formation fracti DT ₅₀ in sediment temperature formation fracti DT ₅₀ on canopy Exponent for the PRZM and TOXS	ion in water ion in sedment e effect of moisture SWA (Walker exp.)	(day)		1000 20 - 14.4 20 - 10	
temperature moisture conter Tormation fraction DT50 in water temperature formation fraction temperature formation fraction temperature formation fraction DT50 on Canopy Exponent for the	ion in water ion in sedament e effect of moisture SWA (Walker exp.)	(day		1000 20 - 14.4 20 - 10	
temperature moisture conter formation fracti DT ₅₀ in water temperature formation fracti DT ₅₀ in sediment temperature formation fracti DT ₅₀ on canopy Exponent for the PRZM and TOXS MACRO Calibra	ion in water ion in sedament e effect of moisture SWA (Walker exp.)	(day)		1000 20 - 14.4 20 - 10	
temperature moisture conter formation fracti DT ₅₀ in water temperature formation fracti DT ₅₀ in sediment temperature formation fracti DT ₅₀ on canopy Exponent for the PRZM and TOXS MACRO Calibra	ion in water ion in sediment e effect of moisture SWA (Walter exp	(-) (-) (-)	s)	1000 20 - 14.4 20 - 10	
temperature moisture conter formation fracti DT50 in water temperature formation fracti DT50 in sediment temperature formation fracti DE50 on Canopy Exponent for the PRZM and TOXS MACRO Calibra Effect of temperature TOXSWA	ion in water ion in water e effect of moisture of walver exp two value ature (motar activation exe	(day (day (%C (day (-) (-)	s) s) s)	1000 20 - 14.4 20 - 10 0.7 0.49	
temperature moisture conter Tormation fracti DT ₅₀ in water temperature formation fracti DT ₅₀ in sediment temperature formation fracti DT ₅₀ on canopy Exponent for the PRZM and TOXS MACRO Calibra Effect of temper TOXSWA MACRO	ion in water ion in sediment e effect of moisture SWA (Walter exp	(day (day (%C (day (-) (-)	s) s) s) s)	1000 20 - 14.4 20 - 10	

The PEC values were calculated for according to the equations implemented in the "STEPS 1-2 in FOCUS" Calculator (see Table 9.2.5- 12 and Table 9.2.5- 13).

FQCUS Steps 1-2 PEC_{sw} and PEC_{sed} for aclonifen, GAP group name peas, assessment name full (DGR I / PMT I)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry route	7d-PEC _{sw,twa} (μg/L)**	Max PECsed (μg/kg)*	
Step 1	ı	28.7	RunOff	20.6	1326	

Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*	Dominant entry route	7d-PEC _{sw,twa} (μg/L)**	Max PECsed (μg/kg)* _{@β} °
Step 2					
Northern Europe	Mar May (Spring)	5.52 *	Erosion	2.86	220 5 *
Southern Europe	Mar May (Spring)	7.48 *	Erosion	6.16	A13 ****

Single applications are marked.

FOCUS Steps 1-2 PECsw and PECsed for actionifen, GAL **Table 9.2.5-13:** assessment name half (DGRII / PMT II)

Scenario FOCUS	Waterbody	Max PECsw (μg/L)*	Dominant entry	7d-PE@w,twa (µg/L)**	Max PEC yed (μg/kg)*
Step 1	-	14.3	Runoff	010.3	668 × 1
Step 2		Ž, v			
Northern Europe	Mar May (Spring)	2.76©	Frosion		* 110 0 *
Southern Europe	Mar May (Spring)	2.74 ° *	Erosion	3.08	206 *

Single applications are marked

Step 3 calculations were conducted for aclosifien employing the models of the FOCUS SW suite. Reported values represent loadings via all relevancentry routes, see Table 9:29-14 and Table 9.2.5-15).

FOCUS Step 3 PEC and PEC sed for aclosifen GAP group name peas, assessment name full (DG& I / PMT I) Table 9.2.5- 14:

Scenario FOCUS	Waterbody,	Max PECsw & (µg/L)*	Dominant entry route	7d-PECsw,twa (µg/L)**	Max PEC _{sed} (μg/kg)*
Step					
D3	D∳ch ∜	\$3.12 **	Spray drift	0.448	2.18 *
D4	Pond	3.12 ** 0.125	Spray difft	0.111	0.853 *
D4	Stream Č	294 0*	Spray@drift	0.019	0.104 *
D5	Pond	Ø.126,Q" * G	Spray drift	0.111	0.923 *
D5	Stream	2.60	Spray drift	0.013	0.073 *
D6 🗬	Ditch	* 3×12 × * .	Spray drift	0.469	2.26 *
AR)Y	Pohd S	%.133 ₀ *	Spray drift	0.118	1.41 *
Ř1	Stream "O"	2.16	Spray drift	0.085	4.00 *
R2	Stream	2,87 ° *	Spray drift	0.037	25.0 *
R3	Stream S	3.05 * *	Spray drift	0.163	2.44 *
R4 🕡	Stream Stream	2.15 *	Spray drift	0.443	9.73 *

TWA interval as required by ecotox

TWA interval as required by cotox,

Single applications are marked.

AWA interval as fequired by ecotox

Table 9.2.5-15: FOCUS Step 3 PEC_{sw} and PEC_{sed} for aclonifen, GAP group name half, assessment name half (DGR II / PMT II)

Scenario FOCUS	Waterbody	Max PEC _{sw} (μg/L)*		Dominant entry route	7d-PECsw,twa (μg/L)**	Max PEς ed (μg/kg)*
Step 3					Ž	4,4
D3	Ditch	1.56	*	Spray drift	0.224	A 10 A *
D4	Pond	0.063	*	Spray drift	5.0 56	~0.435 *
D4	Stream	1.27	*	Spray arift	2 0.010	Ö 0,052 , Ø
D5	Pond	0.063	*	Spray drift	© 0.056 €	A 71
D5	Stream	1.30	*	spray drift	0.007	₹0.037© * ©
D6	Ditch	1.56	*	Špray drift	©0.234° \	0 1.13
R1	Pond	0.066	*&	Spray drift	~ 0,0 \$9	* 2,690 🗸 *
R1	Stream	1.08	€"	Spray difft	× 20039	2.334 *.
R2	Stream	1.43	*	Spraydrift &	0.018	
R3	Stream	1.52	*^	Spray drift	0.087	<u>1.43</u> *
R4	Stream	1.080		Spray divit	J 6,205 Q	\$ 5.13 ° *

^{*} Single applications are marked.

FOCUS Step 4 calculations considering various mitigation measures for runoff and opray drift were conducted based on the Step 3 results (see Table 9.2.5-16 and Table 9.2.5-17 for PEC_{sw} values and Table 9.2.5-18 and Table 9.2.5-19 for PEC_{sed} values).

Predicted environmental concentrations in surface water (PECsw) &

Table 9.2.5- 16: FOCUS Step 4 PCCsw results for actionifen, GAP group name peas, assessment name full (DGR 1/PM 1)

PECsw) 		Step 4				
(μg/L) 👸	Scenario		4		Step 4	cloniyen			
Nozzie	Vegetated strip (n)	Mone	None	None	None .	None	10 m	10 m	20 m
reduction	No spray butter (m)	0 m	5m	Ø10 m ©		20 m	10 m	15 m	20 m
None	D3 Diton	3.12 · <u> </u>	^ا لْ 1.020	0.531	0 .369	0.281	0.541	0.369	0.281
50 %		1.56	0.500	20 .270	0.185	0.140	0.270	0.185	0.140
75 %	, Q	0.398	® .255 %	0.135	0.092	0.070	0.135	0.092	0.070
90 %		40.311 [^]	y 0.10 2	0.934	0.037	0.028	0.054	0.037	0.028
None	D4 Pond	9 0.1 25 /	0:12	3 0.081	0.064	0.054	0.081	0.064	0.054
50 %		0,063	\$ 0.056	0.040	0.032	0.027	0.040	0.032	0.027
75 %		ॐ .031 [≪]	® 0.0 2 8	0.020	0.016	0.013	0.020	0.016	0.013
90 %		0.013	0.011	0.008	0.007	0.007	0.008	0.007	0.007
None,	DA Stream	2 54	1.07	0.565	0.386	0.294	0.565	0.386	0.294
50%	BA Stream	1 .27	0.533	0.282	0.193	0.147	0.282	0.193	0.147
\$75 % S		0.633	0.266	0.141	0.096	0.073	0.141	0.096	0.073
9000		0.253	0.106	0.056	0.051	0.051	0.056	0.051	0.051
None	D5 Pond	0.126	0.112	0.081	0.064	0.054	0.081	0.064	0.054
50 %		0.063	0.056	0.040	0.032	0.027	0.040	0.032	0.027

^{**} TWA interval as required by ecoto@

PECsw (μg/L)	Scenario				Step 4 A	Aclonifen			Q ₁ °
Nozzle	Vegetated strip (m)	None	None	None	None	None	10 m	10 m	20 m
reduction	No spray buffer (m)	0 m	5 m	10 m	15 m	20 m	<i>1∕®</i> m	15 m	20 %
75 %		0.031	0.028	0.020	0.016	0.014	5 0.020	0,096	Ø .014 🗸
90 %		0.013	0.011	0.008	\$ 006	0.005	0.008	Ø.006 ^	90.00 5
None	D5 Stream	2.60	1.09	0.578	0.395	0.300	0.578 🔏	0.395	0300
50 %		1.30	0.545	0.289	0.197	. 0	。0.289 [©]	0.197	©.150 ©
75 %		0.648	0.272	0,4,94	0.099 ~	0.078	0.144	Q .099 &	0.075
90 %		0.259	0.109		° 0.039	0.030	J 058	0.039	6.0 30
None	D6 Ditch	3.12	1.02	0.540	0370	281	0.54	Q (370	∮ 0.281_∘
50 %		1.56	0.510	0.2,70	0.185	0.140	2 70	0.185	0.140
75 %		0.779	0255	%Ø.135 @	0.09\$	6 070 _*		0.092	070
90 %		0.311	0.102%	0.050	0043	©0.043	0.054	Ø043	0.043
None	R1 Pond	0.133	0.119	0.088	0.079	0.0	© 083	\$0.06 <i>7</i>	0.055
50 %		0.079	. 6.0 79	©0.079\$	0.00	6 .079	0.043	0035	0.028
75 %		9 3 79 6	0.079	0.079	0.079	©0.079©	0,032	P.032	0.016
90 %		©0.079©	0.039	£ 079	0.079	0,7979	Ø.032 (0.032	0.016
None	R1 Stream	2.46,	0.907	0.707	0.707	© 0.707 [*]	0.48	0.328	0.250
50 %		D .08	♥0.707,	0.407		0.70	00318	0.318	0.166
75 %		§ 0.707	0,797	0.707	0.7 9	Q:707	©0.318	0.318	0.166
90 %		0.797	& 0.707 [^]	0.700	0.907	Ø.707.	0.318	0.318	0.166
None	R2 Stream	Q.87	0 1.2 Kg	02639	Ø.436	0.332	0.639	0.436	0.332
50 % 💐		1.43	0 :6 02	6 0.319	0.248	6 186	0.319	0.218	0.166
75 %\$		0.715	© .301 \	0.186	Ø. 186	0.186	0.159	0.109	0.083
90 %		J. 0.286	0.186		Ç 0.18 6 औ	0.186	0.085	0.085	0.044
None	R3/Streams	3.Q © *	4128 ×	€0.680 C	0.502	0.502	0.680	0.464	0.353
50 %		3.52	0.646	0.502	% 502	0.502	0.340	0.232	0.176
75 %		0.76 f	0.502	\$502	∂ 0.502	0.502	0.229	0.229	0.120
90 %		0.502	6 .502 %	0.502	0.502	0.502	0.229	0.229	0.120
None	R4 Stream	% -		<u>,1</u> .96	1.16	1.16	0.516	0.516	0.268
450 %		2.15 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1.16 1Q6	3 1.16	1.16	1.16	0.516	0.516	0.268
75 %		1416	Ø1.16	1.16	1.16	1.16	0.516	0.516	0.268
90 %		Ø1.16 ⊀	1.16	1.16	1.16	1.16	0.516	0.516	0.268
			~						

Table 9.2.5- 17: FOCUS Step 4 PECsw results for aclonifen, GAP group name half, assessment name half (DGR II / PMT II)

PECsw	Scenario				Step 4 A	clonifen			
(μg/L)								الد	ø" a
Nozzle	Vegetated strip (m)	None	None	None	None	None	10 m	10 m	20 m
reduction	No spray buffer (m)	0 m	5 m	10 m	₽ 5 m	20 m 🖔	10 m	15/m	**20 m
None	D3 Ditch	1.56	0.510	0.270	0.184	0.130	0.270	0.1840	0,1,40
50 %		0.778	0.255	0.13 <u>5</u> ©	0.092	6 .070	。0.13 <i>5</i>	0.092	©0.070 ©
75 %		0.389	0.127	0.067	0.046	0.03	0. % 7	(0.046 <i>©</i>	0.035
90 %		0.155	0.051	&9.027 ©	° 0.018	0,014	J 9.027	0.048	6 014
None	D4 Pond	0.063	0.056	00.040	0.032	% .027	0.040	0032	<u> </u>
50 %		0.031	0.028	0.020	0.016	[₩] 0.0 <u>₩</u> 3	9 920	0.016	0.0
75 %		0.016	0.014	ר.010 @	0.00%	€ 007 _€	3 0.010 0	0.008	007
-		0.006	0.006%	0.00	99 03	©0.003	0.064	20 03	0.003
None	D4 Stream	1.27 🗳	0.533	0.282	0.193	0.197	© 282 ½	Ĵ0.19 3 ∜	0.147
50 %		0.633	°,€€266	©0.141⊊	0.000	Ø:073	0.1410	0,096	0.073
75 %		9 716 6	0.133	0.071	0.048	0.037	0,071	9 .048	0.037
90 %	٥,	©0.126©	0.053	Q 028	0.021	0,0021	0 .028	0.021	0.021
None	D5 Pond	0.063	0.056	0.040	0.632	© 0.027 ×	0.040	0.032	0.027
50 %		6 631	©0.028	0.020	Ø.016 ©	0.013	0020	0.016	0.013
75 %		\$ 0.01 <i>6</i> \$	0.014	0.010	0.00	Q _E 007	©0.010	0.008	0.007
90 %		0.06	& 0.006 ~	0.004	0:903	\$.003\circ\$	0.004	0.003	0.003
None	D5 Stream	Q.30	0.545	0289	3 0.197	0.150	0.289	0.197	0.150
50 % 🔊 🕏	*O*	0.648	0 :2 72	∂ 0 .144 ©	0.099	9 075	0.144	0.099	0.075
75 %	. O	0324	©.136 _{\(\)}	0.072	Ø.949	0.037	0.072	0.049	0.037
90 %		Ø.129×	0.05	Ø29 ((0.020 <u>%</u>	0.015	0.029	0.020	0.015
None	D Ditch 1	1.50	QL5 10 _{\$}	°0.270 €	0.185	0.140	0.270	0.185	0.140
50 %		9 779 .	©0.255	0.135	Ø:092	0.070	0.135	0.092	0.070
75 % _ ^		©0.38 9	0.137		≫ 0.046	0.035	0.068	0.046	0.035
90 %	Č _n	0.135	6 051 %	0.027	0.018	0.017	0.027	0.018	0.017
None	R1 Pond	₄ 0.066 ∧	0.059	0.014	0.037	0.037	0.042	0.033	0.028
\$0 %		.037,°	0.037	20 .037	0.037	0.037	0.021	0.017	0.014
75 %	" (C	0.037	2 0.037	0.037	0.037	0.037	0.015	0.015	0.008
90 %		€ 0.037 €	0.037	0.037	0.037	0.037	0.015	0.015	0.008
None &	R1 Stream	(C)	0.953	0.326	0.326	0.326	0.240	0.164	0.125
50 %		038	0.326	0.326	0.326	0.326	0.146	0.146	0.076
75%	S	0.326	0.326	0.326	0.326	0.326	0.146	0.146	0.076
£90 % \$		0.326	0.326	0.326	0.326	0.326	0.146	0.146	0.076
y ALV	R2 Stream	1.43	0.602	0.319	0.218	0.166	0.319	0.218	0.166
Nome	KZ Sucaiii	1.15	0.00-						00
None 50 %	K2 Sueam	0.715	0.301	0.159	0.109	0.085	0.159	0.109	0.083

PEC _{sw} (μg/L)	Scenario		Step 4 Aclonifen										
Nozzle	Vegetated strip (m)	None	None	None	None	None	10 m	10 m	29 m				
reduction	No spray buffer (m)	0 m	5 m	10 m	15 m	20 m	l∕® m	15 m	20,16				
90 %		0.143	0.085	0.085	0.085	0.085 😸	0.039	0,099	20 .020 ×				
None	R3 Stream	1.52	0.641	0.340	2 32	0.23	0.340	232 ^	y 0.176				
50 %		0.761	0.320	0.231	0.231	0.254	0.170	0.116	0.088				
75 %		0.380	0.231	0.23 <u>k</u>	0.231	3 .231	。 0.105 [©]	0.105	©0.055 _. ©				
90 %		0.231	0.231	0.291	0.231 ~	0.230	0.195	Q .105 @	0.055				
None	R4 Stream	1.08	0.531	&9.531 Q	° 0.531	0,531	Ø.240	0.237	6 24				
50 %		0.537	0.531	0.534	0531	Ø.531	0.23	0 Ç237	△ 0.12 3 ∘				
75 %	1	0.531	0.531	0.531	9 .531	0.531	05237	0.237	A 37				
90 %		0.531	0531	×0.531 @	0.534	6 31		0.237	123				

Predicted environmental concentrations in sediment (PECsto)

ental concern ations in sediment (PECsip)

FOCUS Step 4 PECsed results for a clonifen, GAP group name peas, assessment name fold (DGR I / PMT I) **Table 9.2.5- 18:**

PECsed	°,	0 0					F F	1	
μg/kg)	Scenario				Step 4 A	clonifen *			
Nozzle	Vegetated strip (m)	None	Nome	None	Nong S	None		10 m	20 m
reduction	No spray uffer (m)	0 m	% 5 m %	10 m	15 m	\$\frac{1}{20} m^2	10 m	15 m	20 m
None 👸	D3 Ditch	2.18	0.319	% 7.383 @	0.262	0499	0.383	0.262	0.199
50 %		1:00	Ø.361	0.190	9 . 93 1	0 .100	0.192	0.131	0.100
75 🕅		~9.550 <u>√</u>	, 0.18	Ø:996 ₍	0.066	0.050	0.096	0.066	0.050
90 %	D4 Ponce	"0.22 6	0.073	, ⊘ 0.039 ℂ	0.026	0.020	0.039	0.026	0.020
None	D4 Pond	0353	JØ.764	0.55\$	g 445	0.375	0.555	0.445	0.375
50 % ≈	Ç Û	0.435	0.399	Ø. 283 ?	0.227	0.191	0.283	0.227	0.191
75 % 🚕	, Ø	0.222	9 498 .,	©0.144	0.115	0.097	0.144	0.115	0.097
90 %		0.891	0.081	0.068	0.067	0.067	0.068	0.067	0.067
Nohe	D4 Stream	₹0.104°	0.944	0.033	0.033	0.033	0.033	0.033	0.033
50 %	()	0.0\$2	A .033 A	0.033	0.033	0.033	0.033	0.033	0.033
75 %	4 4	Ø.033 🄏	© 0.033	0.033	0.033	0.033	0.033	0.033	0.033
90 %		0.033	Q. 0 33	0.033	0.033	0.033	0.033	0.033	0.033
None	Pond	0823	0.827	0.601	0.482	0.406	0.601	0.482	0.406
50%		3 7.471	0.422	0.307	0.246	0.208	0.307	0.246	0.208
\$ % \$\text{S}		0.241	0.216	0.157	0.126	0.106	0.157	0.126	0.106
90 % None		0.099	0.089	0.065	0.053	0.044	0.065	0.053	0.044
None	D5 Stream	0.073	0.031	0.016	0.011	0.009	0.016	0.011	0.009
50 %		0.037	0.015	0.008	0.006	0.004	0.008	0.006	0.004

PEC _{sed} (μg/kg)	Scenario				Step 4 A	Aclonifen			Q _J °
Nozzle	Vegetated strip (m)	None	None	None	None	None	10 m	10 m	29 m /
reduction	No spray buffer (m)	0 m	5 m	10 m	15 m	20 m	<i>1∕®</i> m	15 m	20 16
75 %		0.018	0.008	0.004	0.003	0.002 🐇	7 0.004	0,093	40 .002 🗶
90 %		0.007	0.003	0.002	© 001	0.00	0.002	0.001	0.00
None	D6 Ditch	2.26	0.744	0.396	0.271	0.206	0.396	0.270	0206
50 %		1.13	0.374	0.19 <u>9</u> ©	0.136	6 .104	。0.199 [©]	0.136	©.104®
75 %		0.569	0.187	0,490	0.068 ~	0.052	0.100	Q.068 &	0.050
90 %		0.228	0.075	&9.040 Q	° 0.028	0.4021	Ø.040 Ĉ	0.028	0 C 0 21
None	R1 Pond	1.41	1.40	0 1.40	139	Ø1.39 €	0.664	0 Ç567	4 0.429 ∘
50 %		1.39	1.39	1,39	1.38	1.328	9 \$61	0.559\$	0.287
75 %		1.38	138	%√1.38 _/ ©	1,38			0.556	284
90 %		1.38	J ¥.38 €	1,38	≈ © 38	©1.38	0.554	Ø553	0.282
None	R1 Stream	4.00 🗳	4.00	4.00	4.00	4.00	© 739	0.734	0.302
50 %		4.00	, 4 ,00	₹4.00 \$	4.00	2 .00 °	0.73√°	0,728	0.298
75 %		4 000 (4	4.00	4,00	4.00	₹ 4.00	0,727	P .725	0.295
90 %	٥,	Ø 4.00 Ô	4,60	Ø.00 .	4.00	4.00	Ø.724 _%	0.724	0.294
None	R2 Stream	25-0,	25.0	² 25,00	2 <i>5</i> 0	<u></u>	3.8	3.80	1.28
50 %		% 5.0 %	¥ 25.0	25,0	2 5.0	D 25 8	3.80	3.80	1.28
75 %		\$ 25.Q	2350	25.0 4	25 P	25.0	3.80	3.80	1.28
90 %		25 0°	£ 25.0 ~	25 0	25.0	£25.0£	3.80	3.80	1.28
None	R3 Stream	£9.44 °	2.44	2	©2.44 6	2.44	0.392	0.392	0.160
50 % 💐		2.44	2 4 4	€2.44 ©	2.44	2 44	0.392	0.392	0.156
75 % 🗸	. O	2 4	₹2.44 _~	2.43	2,44	© ⁹ 2.44	0.392	0.392	0.155
90 %		£2.44	2.4	Ž.44 (🏑 2.44🗳 ີ	2.44	0.392	0.392	0.153
None	R4 Stream	9.7	\$2.68	J 9.66	9.65	9.65	2.17	2.16	0.927
50 %		3 .68	© 9.66	9.63	% .65	9.64	2.15	2.15	0.922
75 %		9.66	9,63	29 .64	≫ 9.64	9.64	2.15	2.15	0.919
90 %	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	963	Ø.64 %	9.64	9.64	9.64	2.15	2.15	0.917

Table 9.2.5- 19: FOCUS Step 4 PECsed results for aclonifen, GAP group name half, assessment name half (DGR II / PMT II)

PEC _{sed} (µg/kg)			y ~ \(\text{\text{\$\sigma}} \)		Step 4 A	clonifen			
Nozzle "		W.	None	None	None	None	10 m	10 m	20 m
reduction	No spray â buffer (m)	0 m	5 m	10 m	15 m	20 m	10 m	15 m	20 m
None	D3 Ditch	1.10	0.361	0.192	0.131	0.100	0.192	0.131	0.100
50 %		0.550	0.181	0.096	0.066	0.050	0.096	0.066	0.050

Nozzle reduction Vegetated strip (m) None None None None None 10 m 10 m 10 m 10 m 10 m 15 m 20 m 10 m 15 n 75 % 0.276 0.091 0.048 0.033 0.025 0.048 0.03 90 % 0.111 0.036 0.019 0.013 0.010 0.019 0.01 None D4 Pond 0.435 0.390 0.283 0.227 0.09 0.283 0.22 50 % 0.222 0.198 0.144 0.115 0.097 0.144 0.11 75 % 0.113 0.101 0.073 0.059 0.042 0.093 0.059 90 % 0.046 0.041 0.030 0.028 0.042 0.013 <t< th=""><th>20 % 3</th></t<>	20 % 3
Duffer (m)	3 0.015 0 0.016 0 0.017 0 0.049 0 0.049 0 0.013 0 0.013 0 0.013 0 0.013 0 0.013 0 0.013 0 0.013 0 0.013
None D4 Pond 0.435 0.390 0.283 0.227 0.494 0.283 0.225 0.225 0.494 0.283 0.225 0.225 0.494 0.283 0.225 0.225 0.144 0.115 0.097 0.144 0.115 0.097 0.144 0.115 0.097 0.044 0.013 0.055 0.044 0.093 0.055 0.044 0.093 0.055 0.044 0.093 0.025 0.0	3 0.015 0 0.016 0 0.017 0 0.049 0 0.049 0 0.013 0 0.013 0 0.013 0 0.013 0 0.013 0 0.013 0 0.013 0 0.013
None D4 Pond 0.435 0.390 0.283 0.227 0.691 0.283 0.227 50 % 0.222 0.198 0.144 0.115 0.097 0.144 0.11 75 % 0.113 0.101 0.093 0.059 0.049 0.093 0.05 90 % 0.046 0.041 0.030 0.028 0.028 0.030 0.013	0.097 © 0.049 0.028 3 0.013 0.013 0.207 5 0.105 4 0.054
50 % 0.222 0.198 0.144 0.115 0.097 0.144 0.11 75 % 0.113 0.101 0.093 0.059 % 0.042 0.093 0.05 90 % 0.046 0.041 0.030 % 0.028 0.028 0.030 % 0.02 None D4 Stream 0.052 0.022 0.043 0.013 <td>5 0.097 0 0.049 0.049 0.013 0.013 0.013 0.207 0.105 0.054</td>	5 0.097 0 0.049 0.049 0.013 0.013 0.013 0.207 0.105 0.054
75 % 0.113 0.101 0.673 0.059 0.049 0.073 0.059 0.049 0.073 0.059 0.049 0.073 0.059 0.049 0.073 0.059 0.028 0.030 0.028 0.030 0.028 0.030 0.028 0.030 0.028 0.030 0.028 0.030 0.028 0.030 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.013 0.014 0.028	5 0.097 0 0.049 0.049 0.013 0.013 0.013 0.207 0.105 0.054
90 % 0.046 0.041 0.030 0.028 0.028 0.030 0.028 None D4 Stream 0.052 0.022 0.043 0.014 0.013 0.013 0.014 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.003 0.004 0.004 0	3 0.013 0.003 3 0.013 0.013 3 0.013 0.207 5 0.105 4 0.054
90 % 0.046 0.041 0.030 0.028 0.028 0.030 0.028 None D4 Stream 0.052 0.022 0.043 0.014 0.013 0.014 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.030 0.024 0.033 0.002 0.004 0.004 0	3 0.013 0 0.003 3 0.013 0.013 0.207 5 0.105 4 0.054
50 % 0.026 0.013 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.024 0.003 0.004	0.003 0.013 0.013 0.207 0.105 4 0.054
50 % 0.026 0.045 0.013 0.014 0.012	0.003 0.013 0.013 0.207 0.105 4 0.054
75 % 90 % 0.013 0.	3 0.013 3 0.013 5 0.207 5 0.105 4 0.054
90 % None D5 Pond 0.471 0.422 0.306 0.246 0.297 0.306 0.246 50 % 0.240 0.215 0.156 0.128 0.105 0.156 0.12 75 % 90 % None D5 Stream 0.050 0.048 0.03 0.027 0.02 0.004 0.00 50 % 0.009 0.004 0.002 0.004 0.002 0.004 0.002 90 % None D5 Stream 0.047 0.015 0.008 0.004 0.002 0.004 0.00 90 % 0.009 0.004 0.002 0.004 0.002 0.004 0.002 90 % 0.009 0.004 0.002 0.004 0.002 0.004 0.002 0.00 90 % 0.004 0.002 0.001 0.004 0.002 0.001 0.002 0.00 90 % 0.004 0.002 0.001 0.004 0.002 0.001 0.002 0.00 90 % 0.004 0.002 0.001 0.004 0.002 0.001 0.000 0.006 90 % 0.004 0.002 0.001 0.004 0.002 0.001 0.000 0.006	0.207 5 0.105 4 0.054
None D5 Pond 0.471 0.422 0.306 0.246 0.297 0.306 0.24 50 % 0.240 0.215 0.156 0.128 0.156 0.156 0.12 75 % 0.050 0.948 0.03 0.064 0.054 0.080 0.06 90 % 0.050 0.948 0.03 0.027 0.022 0.033 0.02 None D5 Stream 0.97 0.015 0.008 0.064 0.004 0.004 0.008 0.004 0.004 0.008 0.004 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.002 0.004 0.004 0.002 0.004 0.004 0.004 0.002 0.004 <t< td=""><td>0.105 0.054</td></t<>	0.105 0.054
50 % 90 % D5 Stream 0.097 0.008	0.105 0.054
75 % 90 % 0.0500 0.045 0.033 0.027 0.052 0.003 0.004 0.005 0	
90 % None D5 Stream 0.037 0.015 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.002 0.001 0.004 0.006 0.103 0.199 0.13	7 0.022
None D5 Stream 0.037 0.015 0.00% 0.066 0.004 0.008 0.00 50 % 0.018 0.008 0.004 0.003 0.002 0.003 0.002 0.004 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.	
50 % 75 % 90 % None D6 Djrch 0.568 0.008 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.0000 0.00000 0.00000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0	6 0.004
75 % 90 % 0.009 0.004 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.	3 0.002
90 % 0.004 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0	1 0.001
None D6 Di6h 9.13 0.3 \$\frac{1}{2}\$ 0.399 0.136 0.163 0.199 0.13 50 % 0 0.568 0.487 0.100 0.068 0.052 0.100 0.068	01 < 0.001
50 % 0.568 0.487 0.100 0.068 0.052 0.100 0.06	6 0.103
	8 0.052
, , , , , , , , , , , , , , , , , , ,	4 0.026
90% 0.115 0.08 0.014 0.011 0.020 0.01	4 0.011
None Rapond 0.696 16688 0.684 0.683 0.681 0.336 0.27	9 0.217
50% (82 0.682 0.680 679 0.678 0.272 0.27	
75 % 0.672 0.678 0.677 0.677 0.269 0.26	9 0.137
90 % 0.677 0.676 0.676 0.676 0.268 0.26	
None R1 Stream 2.33 2.33 2.33 2.33 0.383 0.38	
50% 2.33 2.33 2.33 0.383 0.38	
75 % 2\text{3} \text{Q2.33} \text{2.33} \text{2.33} \text{2.33} \text{2.33} \text{0.383} \text{0.388}	
90 % 2.33 2.33 2.33 2.33 0.383 0.38	
None R2 Fream 13.5 13.5 13.5 13.5 2.06 2.00 50 26 13.5 13.5 13.5 13.5 2.06 2.00	
75% 13.5 13.5 13.5 13.5 2.06 2.00	
290 % 2 13.5 13.5 13.5 13.5 2.06 2.00) U n9 2
None R3 Stream 1.43 1.43 1.43 1.43 1.43 0.227 0.22	
50 % 1.43 1.43 1.43 1.43 1.43 0.227 0.22	0.692
75 % 1.43 1.43 1.43 1.43 1.43 0.227 0.22	0.692 7 0.079

PEC _{sed} (μg/kg)	Scenario		Step 4 Aclonifen										
Nozzle	Vegetated strip (m)	None	None	None	None	None	10 m	10 m	29 m				
reduction	No spray buffer (m)	0 m	5 m	10 m	15 m	20 m	l∕® m	15 m	20 16				
90 %		1.43	1.43	1.43	1.43	1.43 🐇	5 0.227	0,297	. 40 .079 <u>4</u>				
None	R4 Stream	5.13	5.10	5.09	\$ 09	5.09	1.10	₹.10 ^	0.46				
50 %		5.10	5.09	5.09	5.08	568	1.10 🔬	U 1.090	0.460				
75 %		5.09	5.09	5.08 <u>1</u>	5.08	Ø.08	。 1.09 [©]	1.09	©.459,©				
90 %	1	5.09	5.08	5098	5.08 ^	5.080	1:09	01.09 <i>©</i>	0.453				

CP 9.3 Fate and behaviour to air

CP 9.3.1 Route and rate of degradation in air and transport was air

The fate and behaviour in air of sclonifen were evaluated auring the original F5 review (EFSA Scientific Report 2008; 149, 1-80). Acconifer has a low vacour pressure © .6 x 10⁻⁵ Pa at 20°C) and Henry's law constant (3.03 x 10⁻³ Pa m³ mol at 20°C); therefore volatilisation from soil or water is unlikely to constitute a relevant route for its environmental fate.

Table 9.3.1-1: Fate and behaviour in air (aclosifen; EFSA Scientific Report 2008; 149, 1-80)

Parameter	Ž,	Ō,		, S), K	Y	0	Actonifen	
Henry's Law Co	onstant (at	2,5°C) [(m^3/m^3			3. © 3	3 x 10 ⁻³	Pa·m³ mol-1 at 20°C	
Quantum yield $\Sigma > 290$ nm [xx Θ	direct plus direct	iototrans	sformation			J [*]		5. ÞÝx 10 ⁻⁶	
Vapour pressure	(a@20°C)	[Pa]	5 41					1.6 x 10 ⁻⁵	
Photochemical of	oxidatiye d	egradati	on in air	Ψ	, I	QF\$6. 3	0. 23 #1	nours (Atkinson method)	

For further information on soute and rate of degradation in air and transport via air please refer to Document MCA, Sections 7.3.1 and 7.3.2.

CP 9.4 Estimation of concentrations for other routes of exposure

There are no other route of exposure of the product is used according to good agricultural practice. Therefore no further estimations are considered necessary.