The Stacking Scheme

Team Proxima Centuari: Danny, James, Kenny, Wenchang (drafted by James)

March 6, 2018

We propose that the stacked prediction, should we choose to use and combine estimates from N different methods, is

$$\vec{y}_{\text{Stacked}} = \frac{1}{N-1} \sum_{j=1}^{N} \left(1 - \frac{\rho_j}{s} \right) \vec{y}_j \tag{1}$$

where $\vec{y_j}$ is the prediction made with the j-th method, ρ_j is the performance metric for using the j-th method, and

$$s = \rho_1 + \rho_2 + \ldots + \rho_N. \tag{2}$$

Also see the following table:

Estimator	Performance	Prediction
Method 1 Method 2	ρ_1	$ec{ec{y}_1} \ ec{ec{y}_2}$
···	$ ho_2$	g_2
Method N	$ ho_N$	$ec{y}_N$

We define the performance metric ρ_i in such a way that the smaller the ρ_i , the better the performance. Candidates for ρ_i may include

RMSE,
$$1 - R^2$$
, $\frac{\text{RMSE}}{R^2}$, ...

The combination coefficient

$$1 - \frac{\rho_j}{s}$$

gives more weights to better performing estimators (i.e. the ones with smaller ρ_i), and the whole combination given by (1) is a convex combination.

¹The metric is computed from simulated validation tests.

Check:² Suppose under the rarest situation³ that

$$\vec{y}_1 = \vec{y}_2 = \ldots = \vec{y}_N = \vec{y}_{\text{Test}}$$

then by (1) and (2),

$$\vec{y}_{\text{Stacked}} = \frac{1}{N-1} \left(N - \frac{\rho_1 + \rho_2 + \ldots + \rho_N}{s} \right) \vec{y}_{\text{Test}}$$

$$= \frac{1}{N-1} \left(N - \frac{s}{s} \right) \vec{y}_{\text{Test}}$$

$$= \vec{y}_{\text{Test}}$$

which is the desired result.

Example: Say we obtain three different predictions from three different estimators (N=3) as follows:

Estimator	Performance	Prediction
Method 1	ρ_1	$ec{y}_1$
Method 2	$ ho_2$	$ec{y}_2$
Method 3	$ ho_3$	$ec{y}_3$

By (1) and (2),

$$\vec{y}_{\text{Stacked}} = \frac{1}{2} \left[\left(1 - \frac{\rho_1}{s} \right) \vec{y}_1 + \left(1 - \frac{\rho_2}{s} \right) \vec{y}_2 + \left(1 - \frac{\rho_3}{s} \right) \vec{y}_3 \right]$$

where

$$s = \rho_1 + \rho_2 + \rho_3.$$

²Not a proof!

³It is possible although improbable.