The Skellam distribution

Patrick E. Brown

December 14, 2016

This package was originally created by Jerry W. Lewis, who I have been unable to reach. In 1999 he had the following address:

Jerry W. Lewis, PhD Genetics Institute 1 Burtt Rd. Andover, MA 01810

Consider

 $X \sim \text{Poisson}(\lambda_1)$

and

 $Y \sim \text{Poisson}(\lambda_2)$

then

$$Z = X - Y$$

has a Skellam distribution with

$$Z \sim \text{Skellam}(\lambda_2, \lambda_2).$$

See Wikipedia. Skellam distribution http://en.wikipedia.org/wiki/Skellam_distribution Load the package

```
library('skellam')
```

Set some parameters

```
N = 5000
lambda1 = 1.5
lambda2 = 0.5
```

Simulate Poisson and Skellam random variables

Figure 1: Differences of Poisson and Skellam with parameters 1.5 and 0.5

```
X = rpois(N, lambda1)
Y = rpois(N, lambda2)
XminusY = X - Y
Z = rskellam(N, lambda1, lambda2)
```

Produce figures

If the dskellam and rskellam functions are correct, the three sets points on the left will be coincident. If the qskellam function is correct the points on the right will lie on the red line.

Figure 2: Differences of Poisson and Skellam with parameters 0.5 and 1.25

Figure 3: Differences of Poisson and Skellam with parameters 12 and 8