Vytvořující funkce

Funkce f(x) je vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$. Nalezněte vytvořující funkci g(x) posloupnosti $\{(2n+3)a_n\}_{n=0}^{\infty}$.

Uvažujte posloupnost $\{a_k\}_{k=0}^{\infty}$, kde $a_k=k^2\cdot C_n^k$ a n je pevně dané kladné přirozené číslo. a) Určete uzavřený tvar vytvořující funkce uvažované posloupnosti. b) Určete hodnotu součtu $\sum_{k=0}^n a_k$.

Uvažujte rozvinutý tvar výrazu $(2x^2y - 3z\sqrt{x} - 5xyz + z^2y)^5$. Určete všechny členy obsahující výraz x^6 .

Určete koeficient (<u>ve tvaru zlomku, nikoliv desetinného čísla</u>) u nejmenší mocniny x větší než 3 v rozvoji $\sqrt[3]{1-3\sqrt{x}}$.

Uvažujte rozvinutý tvar vytvořující funkce $f(x) = \sqrt[4]{256 + 192x^2}$. Určete koeficient u členů: a) x^7 , b) x^8 . **V obou případech zapište výsledek ve tvaru redukovaného zlomku!**

Označme c_n počet, kolika různými způsoby lze obarvit stěny pravidelného čtyřstěnu pomocí nejvýše dvou různých barev, jestliže máte k dispozici n různých barev. Nalezněte uzavřený tvar obyčejné vytvořující funkce posloupnosti $\{c_n\}_{n=0}^{\infty}$.

Uvažujte posloupnost $\{a_n\}_{n=0}^{\infty}$ mající vytvořující funkcí $f(x) = \frac{3-8x}{(3x-2)(1-5x)}$. Určete a_n .

Nalezněte uzavřený tvar obyčejné vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$ definované rekurentním vztahem $a_{n+2}+2a_{n+1}+4a_n+8a_{n-1}=0$, kde $a_2=2a_1$, $a_1=2a_0$, $a_0=1$. (Rekurentní vztah není třeba řešit!)

Uvažujme graf $G_n=(V_n,H_n), n\in N$, kde $V_n=(\{u_1,u_2,u_3\}\cup V)\wedge (|V|=n)\wedge (V\cap \{u_1,u_2,u_3\})=\emptyset$ a $H_n=\{\{u_i,v\}\big|i=1,2,3\ \wedge\ v\in V\}$. Určete uzavřený tvar obyčejné vytvořující funkce posloupnosti $\{a_n\}_{n=0}^\infty$, kde $a_n=\sum_{v\in V_n}d(v)$.

Posloupnost $\{a_n\}_{n=0}^{\infty}$ je definovaná obyčejnou vytvořující funkcí $f(x)=\frac{(4-x)}{(x-2)^2}$. Určete hodnotu členu a_{14} zapsanou ve tvaru <u>redukovaného zlomku</u>.

Nalezněte uzavřený tvar obyčejné vytvořující funkce posloupnosti $\{a_n\}_{n=0}^\infty$, kde $a_n=\sum_{k=0}^n k\cdot (n-k)$.

Označme $\{p_n\}_{n=0}^\infty$ posloupnost, kde p_n je počet kružnic maximální délky v grafu $G_n=(V_n,H_n), n\in N$ definovaném maticí sousednosti $A_n=\left(a_{ij}\right)_{i,j=1}^{n+3}$, kde $a_{ij}=\begin{cases} 0 & (1\leq i,j\leq 3) \ \lor & (i,j\geq 4) \\ 1 & \text{jinde} \end{cases}$.

Určete: a) $\sum_{v \in V_n} d(v)$, b) otevřený tvar vytvořující funkce posloupnosti $\{p_n\}_{n=0}^{\infty}$.

Uvažujte rozvinutý tvar vytvořující funkce $f(x) = \frac{1-\sqrt{1+x^2}}{x}$. Určete koeficient u členu: a) x^6 , b) x^7 .

Označme T_n strom mající n vrcholů a t_n počet všech cest, které v T_n existují. Označme dále f(x) vytvořující funkci posloupnosti $\{t_n\}_{n=0}^{\infty}$. Nalezněte: a) otevřený tvar f(x), b) uzavřený tvar f(x).

Uvažujte rozvinutý tvar vytvořující funkce $f(x) = \frac{2-\sqrt{4+6x^2}}{2x}$ a určete koeficienty u členů obsahujících: a) x^8 , b) x^9 .

Nalezněte uzavřený tvar vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$ definované diferenční rovnicí $\Delta^{(2)}a_n + \Delta a_{n+1} = 1$, kde $a_0 = 2$; $a_1 = 3$.

Výsledek zapište ve tvaru podílu dvou polynomů nejnižších stupňů! (diferenční rovnici není nutné řešit)

Určete koeficient u členu x^8 v rozvinutém tvaru obyčejné vytvořující funkce $\sqrt[3]{8+6x^2}$. Výsledek zapište ve tvaru redukovaného zlomku!

Uvažujte rekurentní vztah $4a_n+4a_{n+1}+a_{n+2}=0$, kde $a_0=0$, $a_1=-2$. a) Uvedený rekurentní vztah vyřešte. b) Nalezněte uzavřený tvar vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$.

Uvažujte reálnou posloupnost $\{a_n\}_{n=0}^\infty$ mající vytvořující funkcí $f(x)=\cos(2x)$. Určete: a) hodnoty členů a_0,a_1,a_2,a_3 ; b) a_n .

Označme $k_n, n \in N$ počet všech kružnic v úplném bipartitním grafu $K_{3,n+3}$, které mají délku 6. Označme f(x) vytvořující funkci posloupnosti $\{k_n\}_{n=0}^{\infty}$. Nalezněte: a) otevřený tvar f(x), b) uzavřený tvar f(x).

Nalezněte uzavřený tvar vytvořující funkce posloupnosti $\{a_n\}_{n=0}^\infty$ definované diferenční rovnicí $\Delta^{(2)}a_n+\Delta a_{n+1}=1$, kde $a_0=2$; $a_1=3$.

Výsledek zapište ve tvaru podílu dvou polynomů nejnižších stupňů! (diferenční rovnici není nutné řešit)

Uvažujte rozvinutý tvar výrazu $(2x^2y - 3z\sqrt{x} + z^2y)^5$. Určete všechny členy, které obsahují výraz x^4 .

Uvažujte posloupnosti $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$ definované soustavou rekurentních vztahů $a_{n+1}=-2a_n-4b_n$, $b_{n+1}=4a_n+6b_n$, kde $a_0=1$, $b_0=-2$. Nalezněte uzavřené tvary vytvořujících funkcí těchto posloupností. Sbírka příkladů, verze 2024 (doc. RNDr. Miroslav Koucký, CSc.)

Označte h_n počet hran úplného grafu K_n o n vrcholech (dodefinujeme $h_0=0$). Nalezněte uzavřený tvar obyčejné vytvořující funkce f(x) posloupnosti $\{h_n\}_{n=0}^{\infty}$.

Označme $k_n, n \in \mathbb{N}$ počet všech kružnic v úplném bipartitním grafu $K_{3,n+3}$, které mají délku 4. Označme f(x) vytvořující funkci posloupnosti $\{k_n\}_{n=0}^{\infty}$. Nalezněte: a) otevřený tvar f(x), b) uzavřený tvar f(x).

Uvažujte posloupnost $\{a_n\}_{n=0}^\infty$ definovanou obyč. vytvořující funkcí $f(x)=\frac{2}{x^3+6x^2+11x+6}$. Určete a_n .

Uvažujte obyčejnou vytvořující funkci $f(x) = \frac{18-6x}{4x^2-12x+9}$. Určete příslušnou posloupnost.

Nalezněte uzavřený tvar obyčejné vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$, kde $a_n=(n-2)(n+2)$. Výsledný výraz uveďte ve tvaru z jednou zlomkovou čarou, kde čitatel i jmenovatel budou polynomy v rozvinutém tvaru.

Nalezněte uzavřený tvar obyčejné vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$, kde $a_n=(2n-3)(2n+3)$. Výsledný výraz uveďte ve tvaru z jednou zlomkovou čarou, kde čitatel i jmenovatel budou polynomy v rozvinutém tvaru.

Určete koeficient (<u>ve tvaru zlomku, nikoliv desetinného čísla</u>) u členu obsahujícího x^{12} v rozvoji $\sqrt[3]{1+3x^2}$.

Uvažujte posloupnost $\{a_n\}_{n=0}^{\infty}$ definovanou rekurentním vztahem $4a_n+4a_{n+1}+a_{n+2}=0$, kde $a_0=0$, $a_1=-2$. Nalezněte uzavřený tvar obyčejné vytvořující funkce uvažované posloupnosti.

Uvažujte posloupnost $\{a_n\}_{n=0}^{\infty}$ definovanou rekurentním vztahem $4a_n+4a_{n+1}+a_{n+2}=0$, kde $a_0=0$, $a_1=-2$. Nalezněte uzavřený tvar obyčejné vytvořující funkce uvažované posloupnosti.

Určete koeficient (ve tvaru zlomku, nikoliv desetinného čísla!) u členu obsahujícího x^5 v rozvoji $\sqrt[3]{8-3x}$.

Nalezněte uzavřený tvar obyčejné vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$, kde $a_n = \frac{(-2)^n}{(n+1)^n}$

<u>Metodou vytvořujících funkcí</u> vyřešte diferenční rovnici $\Delta^{(2)}a_n + 2\Delta a_n = a_n$, kde $a_0 = 2$, $a_1 = 0$. Řešení pomocí charakteristické rovnice nebude akceptováno, tj. bude hodnoceno 0 body.

Nalezněte uzavřený tvar obyčejné vytvořující funkce posloupnosti $(-1)^n n^2$.

Uvažujte obyčejnou vytvořující funkci $f(x) = \frac{3-6x}{1-6x+9x^2}$. Určete příslušnou posloupnost.

Uvažujte obyčejnou vytvořující funkci $f(x) = \frac{x^2 - x + 2}{x^2 - 2x + 1}$. Určete příslušnou posloupnost.

Označme f(x) vytvořující funkci posloupnosti $\{a_n\}_{n=0}^{\infty}$ a symbolem h(x) vytvořující funkci posloupnosti $\{n^2a_n\}_{n=0}^{\infty}$. Vyjádřete funkci h(x) pomocí funkce f(x).

Uvažujte funkci $f(x)=(1-3x)^{13}$. a) Určete posloupnost $\{a_n\}_{n=0}^{\infty}$ mající obyčejnou vytvořující funkci f(x). b) Určete posloupnost $\{b_n\}_{n=0}^{\infty}$ mající exponenciální vytvořující funkci f(x).

Nalezněte řešení rekurentního vztahu $2^{a_{n+2}} \cdot 2^{a_n} = 16 \cdot 4^{a_{n+1}}$, kde $a_0 = 2$, $a_1 = 4$. Po linearizaci zadaného rekurentního vztahu použijte <u>metodu vytvořujících funkcí (jiný postup nebude akceptován). Výsledný výraz pro</u> a_n maximálně zjednodušte.

Uvažujte výraz $\left[\left(2\sqrt{x}-y^2\right)^4-\left(2\sqrt{x}-y^2\right)^3\right]^3$. a) Určete koeficient u členu x^3y^{10} v rozvoji daného výrazu. b) Určete součet všech koeficientu v rozvoji daného výrazu.

Určete uzavřený tvar <u>exponenciální</u> vytvořující funkce pro: a) variace bez opakování, b) posloupnost variací *n*-té třídy s opakováním ze dvou druhů prvků.

Nalezněte uzavřený tvar vytvořující funkce posloupnost $\{a_n\}_{n=0}^{\infty}$, kde $a_{2n}=0$, $a_{2n+1}=\frac{1}{(2n+1)}$, $n\in \mathbb{N}$.

Uvažujte výraz $\left[(2a)^2 - \sqrt{b} + 3c^3 - d/2\right]^{12}$. Určete koeficient u členu: a) $a^4b^2c^9d^3$; b) $a^4bc^9d^4$. Výsledné koeficienty uvádějte v redukovaném tvaru!

Uvažujte posloupnost definovanou vztahy $a_{2n}=a_{2n+1}=n+1$, kde $n\in N$. Nalezněte uzavřený tvar její vytvořující funkce.

Určete koeficient u členu x^8 v rozvinutém tvaru vytvořující funkce $f(x) = \frac{1-\sqrt{1+x}}{x}$.

Uvažujte reálnou posloupnost $\{a_n\}_{n=0}^{\infty}$ mající vytvořující funkcí $f(x) = \sin(3x) + \cos(3x)$. Určete explicitní výraz pro a_n .

Určete uzavřený tvar vytvořující funkce f(x) posloupnosti $\{a_n\}_{n=0}^{\infty}$, kde $a_n=(n+1)(-2)^n$.

Uvažujte obyčejnou vytvořující funkci $f(x) = \left(\frac{1+x}{1-x}\right)^4$. Určete koeficient u členu obsahujícího x^{15}

Uvažujte <u>exponenciální</u> vytvořující funkci $f(x)=e^{2x}$. a) Určete posloupnost $\{a_n\}_{n=0}^{\infty}$ definovanou touto vytvořující funkcí. b) Určete posloupnost $\{b_n\}_{n=0}^{\infty}$ definovanou exponenciální vytvořující funkcí $\frac{df}{dx}$.

Určete posloupnost $\{a_n\}_{n=0}^{\infty}$ definovanou vytvořující funkcí $f(x) = \frac{x^2 - 2x + 2}{6x^3 - 19x^2 + 19x - 6}$. Určete a_n .

Uvažujte reálnou posloupnost $\{a_n\}_{n=0}^{\infty}$ mající vytvořující funkcí $f(x) = 5 \cdot \sin(\pi + 3x)$. Určete: a) hodnoty členů $a_0, a_1, a_2, a_3, a_4, a_5$; b) a_n . **Výsledky vyjádřete ve tvaru zlomků v redukovaném tvaru!**

Uvažujte posloupnost $\{a_n\}_{n=0}^{\infty}$ definovanou vytvořující funkcí $f(x) = \frac{2x-1}{x^2+2x+1}$. Nalezněte rozvinutý tvar vytvořující funkce a určete výraz pro a_n .

Určete koeficient u x^5 v rozvoji $(1+x^2)^5 \cdot \sqrt[3]{1-3x}$. Výsledek zapište ve tvaru redukovaného zlomku (každý jiný tvar je hodnocen <u>maximálně</u> 1 bodem).

Nalezněte uzavřený tvar vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$, kde $a_n=\left\{\begin{array}{l} 0, & n=0\\ \frac{1+(-1)^{n+1}}{2n}, & n\in N^+. \end{array}\right.$ (Doporučení – nejprve vypište několik členů posloupnosti.)

Určete uzavřené tvary f(x), g(x) vytvořujících funkcí posloupností $\{a_n\}_{n=0}^{\infty}$, $\{b_n\}_{n=0}^{\infty}$ definované soustavou rekurentních vztahů $a_n=2b_{n-1}+a_{n-2}$, $b_n=a_{n-1}+b_{n-2}$, kde $a_0=1$, $a_1=0$, $b_0=0$, $b_1=1$. Soustavu neřešte, rozvinutý tvar uvedených vytvořujících funkcí nehledejte!

Označme f(x) vytvořující funkci posloupnosti $\{a_k\}_{k=0}^{\infty}$, kde $a_k=\sum_{i=0}^k i^2$. Nalezněte: a) uzavřený tvar f(x), b) rozvinutý tvar f(x). Oba výsledky zapište ve tvaru jednoho zlomku v redukovaném tvaru, nikoliv ve tvaru součtu!

Nalezněte uzavřený tvar vytvořující funkce posloupnosti $(-1)^n n^2$.

Nalezněte uzavřený tvar vytvořující funkce posloupnosti $\left\{\frac{2^n}{n+1}\right\}_{n=0}^{\infty}$.

Nalezněte uzavřený tvar vytvořující funkce posloupnosti $\{a_k\}_{k=0}^{\infty}$, kde $a_k=2^kC_n^k$, $n\in N^+$. Dále spočtěte hodnotu $\sum_{k=0}^{\infty}k\cdot a_k$

Nalezněte posloupnost definovanou vytvořující funkcí $f(x) = \frac{32+20x}{4-x^2}$.

Uvažujte rozvoj výrazu $(2x^3 - 3xy^2 + z^2)^8$. Určete koeficienty u členů obsahujících x^{11} .

Uvažujte vytvořující funkci $f(x) = \frac{1-\sqrt{1+2x}}{x}$ posloupnosti $\{a_n\}_{n=0}^{\infty}$. Vypočtěte a_{10} . **Výslednou hodnotu vyjádřete ve** tvaru redukovaného zlomku, nikoliv pomocí desetinného čísla!

Určete uzavřený tvar vytvořující funkce posloupnosti $\{a_n\}_{n=0}^{\infty}$, kde $a_n = \sum_{i=0}^n i \cdot 2^{n-i}$.

Nerozlišitelné objekty mají být rozděleny do 5 rozlišitelných skupin, přičemž požadujeme, aby v každé skupině byly alespoň 2 objekty. Sestavte pro tuto úlohu uzavřený tvar vytvořující funkce.

Vypište všechny členy obsahující x^{14} obsažené v rozvoji výrazu $(3x + 2y)^4(3z - 5x^3 + y)^7$.

Určete koeficient u členu x^5 v rozvinutém tvaru vytvořující funkce $f(x) = \frac{x^3 - 2x}{\sqrt{9 - 4x^2}}$

Určete koeficient u členu obsahujícího x^{11} v rozvoji $(2x^3 - \sqrt{3}xy^2 + 5z^2)^6$.

Označme f(x) vytvořující funkci posloupnosti $\{a_n\}_{n=0}^{\infty}$, kde $a_n=\sum_{i=0}^n i$. Nalezněte její uzavřený tvar.

Určete uzavřený tvar vytvořující funkce f(x) posloupnosti $\{a_n\}_{n=0}^{\infty}$, kde $a_n=n^2(-2)^n$.

Uvažujte reálnou posloupnost $\{a_n\}_{n=0}^\infty$ mající vytvořující funkcí $f(x)=e^{-3x+2}$. Určete: a) hodnoty členů a_0,a_1,a_2 ; b) a_n .

Určete koeficient (<u>ve tvaru zlomku, nikoliv desetinného čísla</u>) u členu obsahujícího x^5 v rozvoji $\sqrt{1+3x}$.