Prirejanja in faktorji

Prirejanje M je mn. povezav, ki paroma nimajo skupnih krajišč. Vozlišče je M-zasičeno, če je krajišče kake povezave iz M. Sicer je M-nezasičeno.

Prirejanje M je **maksimalno**, če ni vsebovano v nobenem večjem prirejanju; **največje**, če je moč |M| največja med vsemi prirejanji v grafu; **popolno**, če so vsa vozlišča M-zasičena.

Velja: popolno \implies največje \implies maksimalno.

Faktor grafa je njegov vpet podgraf (tj. ima ista vozlišča kot cel graf). **k-faktor** je k-regularen faktor. 1-faktor = popolno prirejanje. (Vsak 3-regularen graf, ki premore 1-faktor premore dekompozicijo v 1-faktor in 2-faktor)

Prirejanje M je maksimalno \iff med M-nezasičenimi vozlišči ni povezav.

Pot v grafu je M-alternirajoča, če si na njej izmenoma sledijo povezave iz M in iz E(G) - M.

Simetrična razlika: G, H grafa z $V(G) = V(H), G \triangle H$ je graf z V = V(G) in $e \in E$, če je e v natanko enem od grafov G in H.

Lema: Vsaka komponenta v simetrični razliki dveh prirejanj je bodisi pot bodisi sod cikel.

Izrek: Prirejanje M grafa G je največje natanko tedaj, ko G ne premore nobene M-nezasičene poti.

Izrek (Tutte): Graf G premore popolno prirejanje natanko tedaj, ko za vsako $S \subseteq V(G)$: $|S| \ge o(G - S)$, kjer je o(X) število lihih komponent grafa X.

Posledica: Če je G kubičen graf brez mostov, tedaj G premore popolno prirejanje.

Izrek: Če je G dvodelen graf z biparticijo X, Y, potem v G obstaja prirejanje, ki zasiči $X \iff$ za vsak $S \subseteq X$: $|N(S)| \ge |S|$. **Posledica:** Vsak k-regularen dvodelen graf premore popolno prirejanje.

Množica $Q \subseteq V(G)$ je (vozliščno) pokritje grafa G, če je vsaka povezava iz G incidenčna z nekim vozliščem iz Q.

Izrek: Če je G dvodelni graf, potem je velikost največjega prirejanja enaka velikosti najmanjšega pokritja. Krajše: G dvodelen $\implies \alpha'(G) = \beta(G)$.

Mn. vozliščX grafa G je **neodvisna**, če nobeni vozlišči iz X nista sosednji.

Povezavno pokritje grafa G je taka množica povezav F, da je vsako vozlišče grafa G krajišče neke povezave iz F.

 $\alpha(G)$ = velikost največje neodvisne množice oz. neodvisnostno število grafa

 $\alpha'(G)$ = velikost največjega prirejanja (tj. največje neodvisne množice povezav)

 $\beta(G)$ = velikost najmanjšega pokritja grafa

 $\beta'(G)$ = velikost najmanjšega povezavnega pokritja grafa (def. le za grafe brez izoliranih vozlišč)

Določiti α je težko (že na dvodelnih grafih), določiti α' je pa polinomsko.

Trditev: G graf: S je neodvisna množica v G natanko tedaj, ko je V(G)-S pokritje.

FORMULE:

 $\forall G : \alpha'(G) \leq \beta(G)$

 $\forall G \colon \alpha(G) + \beta(G) = n(G)$

 $\forall G$ brez izoliranih vozlišč: $\alpha'(G) + \beta'(G) = n(G)$

 $\forall G \text{ dvodelen: } \alpha'(G) = \beta(G)$

 $\forall G$ dvodelen, brez izoliranih vozlišč: $\alpha(G) = \beta'(G)$

Trditev: Drevo ima največ eno popolno prirejanje.

Za vsak graf G brez izoliranih vozlišč velja $\alpha'(G) \geq \frac{|V(G)|}{\Delta(G)+1}$.

G dvodelen graf z biparticijo X,Y. Naj bo M_1 prirejanje, ki zasiči $X'\subseteq X$ in M_2 prirejanje, ki zasiči $Y'\subseteq Y$. Potem obstaja prirejanje, ki zasiči $X'\cup Y'$.

Za vsak graf G velja $\alpha(G) \ge \frac{|V(G)|}{\Delta(G)+1}$.

Povezanost

Def: Množica vozlišč $S \subseteq V(G)$ je **prerezna množica**, če ima G - S več kot eno komponento. **Povezanost grafa** G, $\kappa(G)$, je moč najmanjše množice S, da ima G - S več kot eno komponento ali pa je $G - S = K_1$. Graf G je k-povezan, če je $k < \kappa(G)$.

Velja: G ni polni graf. Če G ni k-povezan, potem obstaja prerezna množica moči k-1.

Primeri: $\kappa(K_n) = n - 1$, $\kappa(K_{m,n}) = \min\{m, n\}$, $\kappa(P) = 3$, $\kappa(Q_n) = n$.

Def: Množica povezav $F \subseteq E(G)$ je **prerezna množica povezav**, če ima G - F več kot eno komponento. **Povezanost po povezavah grafa** G, $\kappa'(G)$, je moč najmanjše prerezne množice povezav. Graf G je k-povezan po povezavah, če je ima vsaka prerezna množica povezav vsaj k elementov.

Primeri: $\kappa'(\text{drevo}) = 1, \kappa'(K_n) = n - 1, \kappa'(P) = 3.$

FORMULE:

- $\forall G : \kappa(G) \leq n(G) 1$. Enakost velja ntk. ko je G polni graf.
- $\forall G : \kappa(G) \leq \kappa'(G) \leq \delta(G)$. \forall kubičen graf $G : \kappa(G) = \kappa'(G)$.
- \forall r-regularen graf G z $\kappa(G) = r$, je tudi $\kappa'(G) = r$.

Def: Vozlišče v grafa G je **prerezno**, če ima G-v več povezanih komponent kot G. **Blok** grafa je maksimalni podgraf brez prereznih vozlišč. Bloki grafa so torej: izolirana vozlišča, mostovi in maksimalni 2-povezani podgrafi. **Blok-graf** grafa G je dvodelni graf z biparticijo {bloki} \cup {prerezna vozlišča}, povezave pa so $c \sim B$, kjer je c vozlišče bloka B.

Trditev: Blok-graf poljubnega grafa je gozd.

Def: Če sta $u, v \in V(G)$, sta P, Q notranje-disjunktni u, v-poti, če se ujemata le v vozliščih u in v.

Izrek (Whitney): Graf G je 2-povezan \iff ko za vsak par različnih vozlišč u, v obstajata notranje-disjunktni u, v-poti.

LEMA (uporabna): Če je G k-povezan graf in G' graf z $V(G') = V(G) \cup \{x\}$ in

 $E(G') = E(G) \cup \{\text{povezave od } x \text{ do } k \text{ starih vozlišč}\}, \text{ potem je tudi } G' k\text{-povezan.}$

Izrek: G graf z vsaj 3 vozlišči. NTSE:

- 1. G je 2-povezan;
- 2. vsak par vozlišč je povezan z dvema notranje-disjunktnima potema;
- 3. vsak par vozlišč leži na skupnem ciklu;
- 4. $\delta(G) \geq 1$ in vsak par različnih povezav leži na skupnem ciklu.

Izrek: G je 2-povezan po povezavah \iff vsaki dve povezavi ležita na skupnem ciklu.

Def: Uho grafa je pot, katere notranja vozlišča so stopnje 2. Ušesna dekompozicija grafa G je zaporedje G_0, G_1, \ldots, G_k , kjer je G_0 cikel, G_i je uho grafa $G_0 \cup G_1 \cup \ldots \cup G_i$ in je dobljeni graf G. **Zaprto uho** je uho, katerega začetno in končno vozlišče sta enaka. **Zaprta ušesna dekompozicija** je ušesna dekompozicija, kjer lahko dodajamo tudi zaprta ušesa.

Izrek: Graf G je 2-povezan \iff ko premore ušesno dekompozicijo. Za začetek ušesne dekompozicije lahko uporabimo poljuben cikel grafa G.

Izrek: Graf G je povezavno 2-povezan \iff ko premore zaprto ušesno dekompozicijo.

Def: Če sta $x, y \in V(G), x \neq y, xy \notin E(G)$, potem je $S \subseteq V(G)$ x, y-prerez, če vsaka x, y-pot vsebuje vozlišče iz S. Moč najmanjšega x, y-prereza označimo s $\kappa(x, y)$. Maksimalno število paroma notranje disjunktnih x, y poti je $\lambda(x, y)$. Podobno je $\kappa'(x, y)$ moč najmanjšega x, y-prereza povezav in $\lambda'(x, y)$ maksimalno število po povezavah disjunktnih x, y-poti.

Izrek (Menger): Če sta x, y nesosednji vozlišči grafa, tedaj je $\kappa(x, y) = \lambda(x, y)$. Isto velja tudi za digrafe.

Izrek: Če sta x, y različni vozišči grafa G, tedaj je $\kappa'(x, y) = \lambda'(x, y)$.

Izrek (globalna verzija Mengerja): Povezanost grafa je največji k, da za vsak par vozlišč x, y velja $\lambda(x, y) \ge k$. Povezanost grafa po povezavah je največji k, da za vsak par vozlišč x, y velja $\lambda'(x, y) \ge k$.

Def: Digraf D je (krepko) povezan, če za vsaki vozlišči x, y obstaja usmerjena x, y-pot. Povezanost digrafa D, $\kappa(D)$, je moč najmanjše mn. S, da je G - S nepovezan ali K_1 . Povezanost po povezavah digrafa D, $\kappa'(D)$, je moč najmanjše prerezne množice povezav.

Def: Če je G graf, je njegova **usmeritev** prireditev smeri vsem njegovim povezavam. Usmeritev je **krepka**, če je dobljeni digraf krepko povezan.

Trditev: Graf G premore krepko usmeritev \iff ko je G 2-povezan po povezavah.

Izrek (globalni Menger za digrafe): Povezanost digrafa D je največji k, da za vsa vozlišča x, y velja $\lambda(x, y) \ge k$. Povezavna povezanost je največji k, da za vsa vozlišča x, y velja $\lambda'(x, y) \ge k$.

Trditev (uporabna): $\kappa'(G) < \delta(G)$, P je minimalni povezavni prerez, razdeli V(G) na S in S'. Potem je $P = \sum_{v \in S} deg_G(v) - 2|E(G[S])|$ in $|S| > \delta(G)$.

Trditev: Simetrična razlika dveh povezavnih prerezov je povezavni prerez.

Def: Graf G je minimalno k-povezan, če je k-povezan in za vsako povezavo $e \in E(G)$ graf G - e ni k-povezan.

Trditev: V minimalnem 2-povezanem grafu velja $\delta(G)=2$. Minimalno 2-povezan grafGz vsaj 4 vozlišči ima največ 2n(G)-4 povezav. Enakost velja le za $K_{2,n-1}$.

Def: Naj bo x vozlišče in U množica vozlišč, $x \notin U$. x, U-pahljača je množica poti iz x v U, ki se paroma stikajo le v x. Velikost pahljače je število disjunktnih poti.

Velja: Graf je k-povezan \iff za vsak izbor x in U ($x \notin U$) z $|U| \ge k$ obstaja x, U pahljača velikosti vsaj k.

Trditev: Graf G je 2-povezan \iff ko za vsako trojico vozlišč x,y,z obstaja x,z-pot, ki gre skozi y.

Lema: Če je graf k-povezan in mu odstranimo eno vozlišče, je preostanek vsaj (k-1)-povezan.

Trditev: G k-povezan. Za vsak izbor vozlišč x_1, \ldots, x_k obstaja cikel, ki vsebuje x_1, \ldots, x_k .

Trditev: G k-povezan graf z vsaj 2k vozlišči. Tedaj v G obstaja cikel dolžine vsaj 2k.

Trditev: $\kappa(G \square H) \leq (=) \min\{\delta(G) + \delta(H), \kappa(G)n(H), \kappa(H)n(G)\}$. Še več: $\kappa(G \square H) \geq \kappa(G) + \kappa(H)$.

```
- G ima bloke B_1, \ldots, B_k. Potem je n(G) = (\sum n(B_i)) - k + 1. Dokaz z indukcijo po k.
```

- $\Delta(G) \leq 3 \implies \kappa(G) = \kappa'(G)$.

Barvanja grafov

 $\chi(G)$ = najmanjši k, za katerega obstaja dobro k-barvanje grafa G

 $\omega(G) = \text{moč največjega polnega podgrafa v } G$

FORUMLE:

- $\forall G : \chi(G) \ge \omega(G)$
- $\forall G : \chi(G) \ge \frac{n(G)}{\alpha(G)}$
- $\forall G, H : \chi(G \square H) = \max\{\chi(G), \chi(H)\}\$
- $\forall G : \chi(G) \leq \Delta(G) + 1$
- $d_1 \ge \cdots \ge d_n$ stopnje vozlišč v $G: \chi(G) \le 1 + \max_i \min\{d_i, i-1\}$
- -Izrek: (Brooks) $\forall G$ povezan graf, ki ni niti lih cikel niti polni graf: $\chi(G) \leq \Delta(G)$
- $\forall G$ graf intervalov: $\chi(G) = \omega(G)$ (graf intervalov: presečni graf, vozl. so intervali, povezava, če je neprazen presek)

Def: $G \text{ graf}, V(G) = \{v_1, \dots, v_n\}$. **Graf Mycielskega,** M(G): $V(M(G)) = \{v_1, \dots, v_n\} \cup \{u_1, \dots, u_n\} \cup \{w\}$, $E(M(G)) = E(G) \cup \{wu_i; i \in [n]\} \cup \{u_iv_j; v_iv_j \in E(G)\}$.

Izrek: Če je G graf brez \triangle , potem je tudi M(G) brez \triangle in velja $\chi(M(G)) = \chi(G) + 1$.

Trditev: $\chi(G) = r \implies |E(G)| \ge {r \choose 2}$. Enakost velja za polne grafe z dodanimi izoliranimi vozlišči.

Def: Turanov graf, $T_{n,r}$ je polni r-multipartitni graf z n vozlišči, v katerem se kosi particije po velikosti paroma razlikujejo kvečjemu za 1. $T_{n,r}$ je natanko določen z izbiro n in r; kosi so velikosti $\lfloor \frac{n}{r} \rfloor$ in $\lceil \frac{n}{r} \rceil$.

Trditev: Med vsemi grafi G z n vozlišči in $\chi(G) = r$ je $T_{n,r}$ enolični graf z največjim številom povezav.

Izrek (Turan): Med vsemi grafi G z n vozlišči, ki nimajo K_{r+1} , je $T_{n,r}$ enolični graf z največ možnimi povezavami.

 $\chi(G;k)$ = število k-barvanj grafa G (ne nujno surjektivnih; zamenjava barv da različo barvanje); to je polinom v k z alternirajočimi koeficienti, še več: $\chi(G;k) = k^{n(G)} - m(G)k^{n-1} + \dots$

 $\chi(G) = \min_{k} \{ \chi(G; k) > 0 \}$

Trditev: T drevo na n vozliščih: $\chi(T;k) = k(k-1)^{n-1}$.

Trditev: $\chi(G;k) = \sum_{r=1}^{n(G)} p_r(G)k^r$, kjer je $p_r(G)$ število particij V(G) na r neodvisnih množic. **Izrek:** Za vsak G in e njegova povezava: $\chi(G;k) = \chi(G-e;k) - \chi(G\cdot e;k)$.

Def: Vozlišče u je simplicialno, če N(u) inducira poln graf. Zaporedje u_n, \ldots, u_1 je simplicialna eliminacijaka ureditev, če je u_i simplicialni v grafu induciranem z u_i, u_{i-1}, \dots, u_1 . Oznaka: $d(i) = |N(u_i) \cap \{u_1, \dots, u_{i-1}\}|$.

Velja: $\chi(G;k) = (k - d(1))(k - d(2)) \cdots (k - d(n)).$

Def: Graf G je **tetivni**, če v vsakem ciklu dolžine vsaj 4 obstajata nezaporedni vozlišči cikla, ki sta sosednji.

Lema: G povezan tetivni graf, $x \in V(G)$. Tedaj med vsemi vozlišči, ki so najdlje od x, obstaja simplicialno vozl. grafa G.

Izrek: Povezan graf je tetivni ⇔ premore eliminacijsko ureditev.

Trditev: G tetivni $\implies \chi(G) = \omega(G)$.

Def: Graf G je **popoln graf**, če velja $\chi(H) = \omega(H)$ za vsak induciran podgraf H grafa G.

Tetivni grafi, grafi intervalov in drevesa so popolni grafi.

Izrek: Graf G je popoln natanko tedaj, ko ne vsebuje niti induciranega lihega cikla dolžine vsaj 5 niti induciranega komplementa lihega cikla dolžine vsaj 5.

Def: k-kritičen graf je minimalno k-obarvljiv (tj. $\chi(G) = k$), ampak vsak njegov podgraf je (k-1)-obarvljiv.

Če je G k-kritičen, velja: v vsakem optimalnem barvanju G-e sta krajišči e iste barve. Obstaja optimalno barvanje G, ki vsebuje natanko eno vozlišče barve k. M(G) je (k-1)-kritičen graf.

Trditev: $k \leq 2$: k-kritičen graf je povezan in $\delta(G) \leq k-1$. $\chi(G)$ je najmanjši m, da velja $\alpha(G \square K_m) = n(G)$.

 $\chi(K_2 \square P_n; k) = (k^2 - 3k + 3)^{n-1} k(k-1).$

Dvodelni grafi so tranzitivno usmreljivi.

Tranzitivno usmreljivi grafi so popolni.

Grafi intervalov so tetivni in njihov komplement je tranzitivno usmerljiv.

Ravninski grafi

Izrek: 3-povezan graf ravninski graf ima enolično vložitev v ravnino.

 G^* = dual grafa (vozl. postanejo lica, in obratno); za povezan ravninski graf je $(G^*)^* \equiv G$.

Dolžina lica, $\ell(F)$, je število povezav na najkrajšem zaprtem sprehodu, ki omejuje F.

Trditev: G ravninski graf: $2m(G) = \sum_{F \text{ lice}} \ell(F)$.

Izrek: G vložen v ravnino. NTSE:

- 1. G je dvodelen;
- 2. vsako lice je sode dolžine;
- 3. G^* je Eulerjev graf.

Def: Ravninski graf je zunanje-ravninski, če ga lahko vložimo v ravnino rako, da vsa njegova vozlišča ležijo na robu istega cikla. Zunanje-ravninski graf premore vozlišče stopnje ≤ 2 .

Izrek (Eulerjeva formula): G povezan graf, vložen v ravnino, n vozlišč, m povezav, f lic: n-m+f=2.

Posledica: Če je G ravninski in $n(G) \geq 3$, potem je $m(G) \leq 3n(G) - 6$. Če dodatno G nima \triangle , potem je $m(G) \leq 2n(G) - 4$. Iz tega sledi, da vsak ravninski graf premore vozlišče stopnje ≤ 5 .

Def: Graf G je maksimalen ravninski graf, če ni pravi vpet podgraf nekega ravninskega grafa. Graf G je triangulacija, če je vsako lice omejeno s 3-ciklom.

Trditev: Za enostaven ravninski graf z vsaj 3 vozlišči. NTSE:

- 1. m(G) = 3n(G) 6
- 2. G je triangulacija
- 3. G je maksimalen ravninski graf.

Def: Graf H je subdivizija grafa G, če H lahko dobimo iz G tako, da nekdatere njegove povezave nadomestimo s paroma disjunktnimi potmi.

Izrek (Kuratowski): Graf G je ravninski \iff ne vsebuje podgrafa, ki je subdivizija K_5 ali $K_{3,3}$.

Lema (Thomassen): Če je G 3-povezan graf na vsaj 5 vozliščih, tedaj G premore tako povezavo e, da je $G \cdot e$ 3-povezan.

Def: Vložitev grafa v ravnino je konveksna, če je vsako lice omejeno s konveksnim poligonom.

Izrek (Tutte): Če je G 3-povezan ravninski graf, potem G premore konveksno vložitev v ravnino. (Za 2-povezane grafe to v splošnem ni res.)

Izrek (Fary): Vsak ravninski graf premore vložitev v ravnino z ravnimi črtami.

 $\mathbf{Def:}$ Graf H je \mathbf{minor} grafa G, če H lahko dobimo iz nekega podgrafa G tako, da skrčimo nekaj povezav. Velja: Graf H je minor grafa $G \iff H$ dobimo iz G z zaporedjem operacij skrči povezavo, zbriši povezavo, zbriši izolirano vozlišče.

Izrek (Wagner): Graf G je ravninski \iff niti K_5 niti $K_{3,3}$ nista njegova minorja.

Izrek: Graf H z vozlišči x_1,\ldots,x_k je minor grafa $G\iff G$ premore disjunktna drevesa T_1,\ldots,T_k , tako da če je

 $x_i x_j \in E(H)$, potem obstajata vozlišči $y_i \in T_i$ in $y_j \in T_j$, ki sta sosednji. (to pomeni: G kvocientno po T_1, \ldots, T_k je ravno H

Izrek 4 barv: Če je G ravninski, je $\chi(G) \leq 4$.

Def: Prekrižno število, $\nu(G)$, je najmanjše število križanj med vsemi risbami grafa G v ravnini.

Risba grafa G je **optimalna**, če ima $\nu(G)$ križanj.

Lastnosti optimalnih risb: nobeni povezavi s skupnih krajiščem se ne križata; vsako križanje je pravo (ni tangentno); nobeni povezavi se ne križata več kot enkrat; nobene 3 povezave se ne križajo v isti točki; nobena povezava ne križa same sebe

Trditev: Naj bo G graf in k največje število povezav v njegovem ravninskem podgrafu. Tedaj je $\nu(G) \geq m(G) - k$ in tudi $\nu(G) \ge \frac{m(G)^2}{2k} - \frac{m(G)}{2}.$

Posledica: Za vsak graf G velja: $\nu(G) \geq m(G) - 3n(G) + 6$. Če je G brez Δ : $\nu(G) \geq m(G) - 2n(G) + 4$.

- graf je zunanje-ravninski \iff ne vsebuje minorja K_4 ali $K_{2,3}$.
- zunanje-ravninski graf lahko pobarvamo s 3 barvami
- vsak ravninski graf z $\delta(G) = 5$ ima povezavo med dvema vozliščema stopnje 5 ali povezavo med vozliščema stopnje 5 in 6

Dominacija v grafih

Def: G graf, $D, X \subseteq V(G)$. D dominira množico X, če je $X \subseteq N[D]$. Če X = V(G): D dominira graf G (tj. vsako vozlišče iz V(G) - D ima vsaj enega soseda iz D).

 $\gamma(G) = \text{moč najmanjše množice, ki dominira } G$

Če je G brez izoliranih vozlišč in S minimalna dominacijska množica, potem je tudi \overline{S} dominacijska množica.

Def: Množica $X \subseteq V(G)$ je **2-pakiranje**, če je $d_G(x,y) \ge 3$ za vse $x,y \in X, x \ne y$. To pomeni: $N[x] \cap N[y] = \emptyset$. Za drevesa velja: $\gamma(T) = \rho(T)$.

 $\rho(G) = \text{moč največjega 2-pakiranja v } G$

FORMULE:

- Za vsak povezan graf G je $\gamma(G) \geq \rho(G)$.
- G' vpet podgraf v G: $\gamma(G) \leq \gamma(G')$
- G povezan graf. Potem premore vpeto drevo T, da je $\gamma(G) = \gamma(T)$
- $\forall G \colon \gamma(G) \leq \chi(\overline{G})$ $\forall G \colon \frac{n(G)}{\Delta(G)+1} \leq \gamma(G) \leq n(G) \Delta(G)$
- G brez izoliranih vozlišč: $\gamma(G) \leq n(G) \cdot \frac{1 + \log(1 + \delta(G))}{1 + \delta(G)}$
- za vsak povezan $G: \gamma(G) \leq \alpha'(G)$
- diam $(G) = 2 \implies \gamma(G) \le \delta(G)$, diam $(G) = 5 \implies \gamma(G) \le \delta(G)(1 + (\Delta(G) 1)^3)$

Inačice dominacije: Dominantna množica D je povezana/neodvisna/totalna, če D inducira povezan podgraf/neodvisen podgraf/podgraf brez izoliranih vozlišč. Oznaka: $\gamma_c, \gamma_i, \gamma_t$. Vse vedno obstajajo (v povezanih grafih/v vseh grafih/brez izoliranih vozlišč).

Lema: Množica D je neodvisna dominantna množica \iff je maksimalna neodvisna množica.

Izrek: Če je G brez krempljev (= ne vsebuje induciranega podgrafa $K_{1,3}$), potem je $\gamma_i(G) = \gamma(G)$.

Pravi grafi intervalov in grafi povezav so brez krempljev. Dvodelni grafi brez \triangle imajo lahko veliko krempljev.

Formule v kartezičnem produktu:

- $-\gamma(G\square H) \le \min\{\gamma(G)n(H), n(G)\gamma(H)\}\$
- $\gamma(G \square H) \ge \min\{n(G), n(H)\}\$ $\gamma(G \square H) \ge \frac{n(H)}{\Delta(H)+1}\gamma(G)$
- $-\gamma(G\square H) \ge \min\{\gamma(G)\rho(H), \gamma(H)\rho(G)\}\$
- če je T drevo: $\gamma(T \square H) \ge \gamma(T) \gamma(H)$
- $-\gamma(G\square H) \ge \frac{1}{2}\gamma(G)\gamma(H)$
- $-\gamma(C_{3n}\Box H) \stackrel{\sim}{\geq} \gamma(C_{3n})\gamma(H)$
- $\gamma(C_n \square C_m) \ge \gamma(C_n) \gamma(C_m)$ za $n, m \ge 3$

Primeri: $\gamma(K_n) = 1, \gamma(P_n) = \gamma(C_n) = \lceil \frac{n}{3} \rceil, \gamma(P) = 3.$

Osnovne definicije

```
Def: Kartezični produkt grafov G \square H: V(G \square H) = V(G) \times V(H),
```

 $E(G \square H) : (g,h) \sim (g',h') \iff (gg' \in E(G) \lor h = h') \land (hh' \in E(H) \lor g = g')$

Def: Spoj grafov $G \vee H$: $V(G \vee H) = V(G) \cup V(H)$, $E(G \vee H) = E(G) \cup E(H) \cup \{gh; g \in V(G), h \in V(H)\}$

Avtorji: Vesna Iršič, Jure Slak, Anja Petković