2020 泰山学堂数学取向 ODE 期中考试

18 学堂数学——张一凡

问题 1. 求解下列方程。
(1)
$$\frac{dy}{dx} = \frac{2y - x}{2x - y};$$

$$(2) \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u, \begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \not\exists \, \forall \, u(t) = e^{-t}, t \ge 0.$$

问题 2. 用幂级数解法求解 Airy 方程 $y'' = xy, x \in (-\infty, \infty)$.

问题 3. (1)(Gronwall) 设一元函数 $g(t), \phi(t)$ 在 $[t_0, t_1]$ 上连续, 且 $g(t) \geq 1$, 常数 $\lambda \geq 0, r \geq 0$. 若满足 $\phi(t) \leq \lambda + \int_{1}^{t} (g(\tau)\phi(\tau) + r)d\tau$, 证明

$$\phi(t) \le (\lambda + rT) \exp\left(\int_{t_0}^t g(\tau)d\tau\right), t_0 \le t \le t_1, T = t_1 - t_0.$$

$$(2)$$
 考虑 $Cauchy$ 问题 $\left\{egin{array}{ll} \dot{m{x}}=m{f}(t,m{x}), \ x\in\mathbb{R}^n, \ m{n} \ m{f} \ ext{是实变量} \ t \ m{n} \ m{x} \ x(t_0)=m{x}_0 \end{array}
ight.$

 $\|\boldsymbol{f}(t,\boldsymbol{x})\| \leq N\|\boldsymbol{x}\|, N>0$. 证明对任意的 $(t_0,\boldsymbol{x}_0)\in\mathbb{R}\times\mathbb{R}^n$, 该方程解的存在区间均 为 $(-\infty,\infty)$.

问题 4. 讨论微分方程 $\frac{dx}{dt} = t^2 + x^2$ 的解的最大存在区间.

两个方程的解均在 (a,b) 上存在,不妨记为 y=y(x),y=Y(x). 若 f(x,y) < F(x,y) 对任意 $(x,y) \in G$ 成立,则当 $x_0 < x < b$ 时 y(x) < Y(x); 当 $a < x < x_0$ 时 y(x) > Y(x).

- 问题 6. 考虑度量空间 (X,d), 设 $f:X\to X$ 为映射. 若对任意的 $x\neq y\in X$ 都有 d(f(x),f(y))< d(x,y), 则称 f 为一个收紧映射.
 - (1) 若 f 为一个收紧映射且 $X \subset \mathbb{R}^n$ 是紧的, 证明 f 有唯一不动点;
 - (2) 当 $X \subset \mathbb{R}^n$ 不紧时, 给出 (1) 的反例.
- 问题 7. 举例说明 Ascoli-Arzelá 引理中不是紧致集时,该引理不成立.
- 问题 8. 考虑微分方程 $\frac{dy}{dx} = f(x,y)$, 设函数 f(x,y) 在区域 $G \subset \mathbb{R}^2$ 内连续, 且满足 $|f(x,y_1)-f(x,y_2)| \leq F(|y_1-y_2|)$, 其中 F(r)>0 是 r>0 的连续函数, 且瑕积分 $\int_0^{r_1} \frac{dr}{F(r)} = \infty$, 其中 $r_1>0$ 为常数, 则称 f(x,y) 在 G 内对 y 满足 Osgood 条件. 证明满足 Osgood 条件的函数在区域内过每个点的解都唯一.
- 问题 9. 设函数 f(x) 在 $x \in \mathbb{R}$ 上连续, 证明方程 $\frac{dx}{dt} = f^2(x) + e^{-t}$ 具有解的唯一性.