- Objetivos:
 - Conocer los distintos elementos hardware que integran el módulo de adquisición de un SIVA.

FSIV - UNIVERSIDAD DÉ CORDOBA

- Componentes (I):
 - Sistema de iluminación.
 - Lente.

FSI-Sensor Chamaran SIDAD DE CORDOBA

- Hardware de adquisición (capturadora).

- Sistemas de iluminación.
 - Modelo de formación de la imagen: Fuente de Luz.
- FS ¿Qué es el color? ERSIDAD DE CORDOBA ¿Qué es el espectro visible?

- Sistemas de iluminación.
 - Modelo de formación de la imagen:
 Componentes.

- Sistemas de iluminación.
 - Modelo de formación de la imagen: los objetos.

Propiedades de un material respecto a la luz:

- Propiedades absorbentes: selectividad al espectro (definen el color del objeto).
 - Propiedades reflexivas: materiales especulares o difusos.
 - Propiedades transmitivas: materiales opacos, transparentes y translúcidos.

- Sistemas de iluminación.
 - Modelo de formación de la imagen: Tipos de fuentes de luz.

Natural

Incandescente

Fluorescente

Estroboscópica

Láser

LED

- Sistemas de iluminación.
 - Tipos de iluminación: Natural

Ventajas:

La más barata. / ERSID/

No puede controlarse.

- Sistemas de iluminación.
 - Tipos de iluminación: Direccional.

Lateral

Coaxial

- Sistemas de iluminación.
 - Tipos de iluminación: Difusa

Difusa continua

Fuente de Luz (axial) Fuente de Luz (Lateral)

Campana 1117 con guiada por fibra.

- Sistemas de iluminación.
 - Tipos de iluminación: A contraluz

FSIV - UMWERS

- Sistemas de iluminación.
 - Tipos de iluminación: Estructurada.

- Componentes (II):
 - Sistema de iluminación.
 - La lente.

FSI-Sensor Chamaran SIDAD DE CORDOBA

- Hardware de adquisición (capturadora).

- · La lente.
 - Modelo de lente fina

- · La lente.
 - Parámetros de la lente: distancia focal.

Distancia focal

- La lente.
 - Parámetros de la lente: diafragma y número F.

 $N_F = \frac{f}{D} \in \{f/1, f/1.4, f/2, f/2.8, f/4, ...\}$

escala geométrica: $\frac{D}{\sqrt{2^n}}$

La mitad del área: dividir D entre sqrt(2)

- La lente.
 - Parámetros de la lente: Coeficiente de magnificación M.

Ejemplo: UNIVERSIDAD DE $f = \frac{S_1 M}{M+1}$

Obtener la f necesaria para visualizar una área de 1x1cm de ancho en un sensor 2/3" (8,8x6,6 mm) con una distancia de trabajo de 10 cm.

$$M = \frac{P'}{P} = \frac{6.6 \text{ mm}}{10 \text{mm}} = 0.66$$
 $f = \frac{S_1 M}{M+1} = \frac{100 \text{mm} * 0.66}{0.66+1} = 39,76 \approx 40 \text{mm}$

6,6mm

Calculador de ópticas/sistema iluminación de Navitair (tm)

http://www.opticalwizard.com/index.asp

Círculo de

Módulo de adquisición

La lente.

Parámetros de la lente: profundidad de

campo.

- · La lente.
 - Parámetros de la lente: relación profundidad de campo con la apertura.

FSIV -

- La lente.
 - Parámetros de la lente: relación profundidad de campo con la distancia focal.

- La lente.
 - Aberraciones de la óptica: aberraciones geométricas:

Barril gran angular

Cojín tele objetivo

- · La lente.
 - Aberraciones de la óptica: Calibración.

Fuente: Camera Calibration Toolbox

- Componentes (III):
 - Sistema de iluminación.
 - La lente.

FSI-Sensor (camara). SIDAD DE CORDOBA

- Hardware de adquisición (capturadora).

- El sensor.
 - Tecnologías.

 Necesita circuitos extras externos para digitalizar la salida (más caro).

- Tiene mejores características de sensibilidad, rango dinámico, ruido...
- Varias tecnologias: full frame, frame transfer, interline transfer.

CMOS

DOBA

- Cada pixel es independiente.
- No necesita circuitos extras (más barato)
- Más rápido en la adquisición.
- Menor zona de exposición.
- En los últimos años se ha mejorado la calidad.

- El sensor.
 - Comparación CCD vs CMOS.

Ventajas CMOS respecto CCD: Más barato

- Cosume menos energía.
- Menor efecto "Blooming".
- rápido Más (menor tiempo de proceso).

Ventajas CCD respecto a CMOS:

- Usa más espacio para captar luz → Tiene mejores características de sensibilidad, rango dinámico, ruido...
- No tiene efecto "roling shutter".

Roling shutter.

- El sensor.
 - Formación del color.
 - Un solo sensor con filtros de color (Bayer).

FSIV - Varios sénsores por pixel DE CORDOBA

Foveon X3.

El sensor.

FSIV

- Parámetros:
 - Transferencia:

entrelazada/progresiva.

- Tiempo de integración.
- Tiempo de adquisición.
- Factor gamma.
- Sensibilidad (absoluta y relativa).
- Tamaño y relación x-y del pixel.
- Razón SNR.
- Ganancia.

No linealidad del sensor

$$V = Af^{\gamma} + o$$

A: Ganancia.

☐: Factor gamma.

o: offset.

f: número de fotones.

V: voltaje de salida.

- Componentes (IV):
 - Sistema de iluminación.
 - La lente.

FSI-Sensor Chamaran SIDAD DE CORDOBA

- Hardware de adquisición (capturadora).

- Hardware de adquisición.
 - Tipos:
- Analógicas: conectan cámaras

 estándares: Monocromas

 estándares: Monocromas

 CCIRIORS-170, Color: D

 PAL,NTCS, S-VHS, RGB.
 Incorporan el ADC.
 - Digitales: proporcionan la interfaz entre la cámara digital y la computadora.

Referencias

Lecturas recomendadas:

- Epígrafe 2.5 de "Tratamiento digital de Imágenes", Gonzalez, R.C. Addison -Wesley.
- Cap2. De "Visión por computador", De la Escalera, A., Prentice-Hall, 2001
- Epígrafe 1.4 de "Machine Vision", Ramesh, J. McGraw-Hill.1995.
- Sobre calibración: http://www.vision.caltech.edu/bouguetj/calib_doc/ .

Referencias:

- "Automated Visual Inspection", Batchelor, B.G., et. al. IFS Publications Ltd, Bedford, England, 1985.
- Página web de empresas:
 - Vision-Supplies: http://www.vision-supplies.com/
 - GlobalSpec: http://www.globalspec.com/
 - Volpi: http://www.volpi.ch/
 - Infaimon: http://www.infaimon.es.