Taller de Lógica Digital - Parte 2

Organización del Computador 1

Primer Cuatrimestre 2023

Ejercicios

1. Componentes de 3 estados

a) Completar la siguiente tabla:

A	A_{en}	В	B_{en}	С	C_{en}	Estimado	Obtenido
0	0	0	0	0	0	U	u
0	1	1	1	0	0	E	E
1	0	1	0	1	0	U	u
1	1	0	0	0	1	E	E
0	1	0	1	0	1	0	0
0	1	1	1	1	1	E	E
1	0	1	1	1	0	1	1

b) Completar la siguiente tabla:

Color	Interpretación
Gris	
Verde claro	
Verder oscuro	
Azul	
Rojo	

- c) Enunciar la regla:
- d) Explicar cuáles son y por qué:

2. Transferencia entre registros

a) Detallar entradas y salidas:

Entradas de control: clk y w de los resgistros, clk de fuera de los registros, en_force_input

Señales de dato: force input,

Señales de dato de salida: R0,R1,R2, out

b) Secuencia de señales:

Force _input alta, en_force_input alta, clk y w de R1 alta (si estuviesen altas las de todos los R mejor pues si luego se habilita en_out y hay distintas señales tendremos errores) y clk de afuera en baja. Esta es solo una de las muchas formas que podriamos asignar 1 a R1.

c) Secuencia de señales:

Notamos que tenemos que trabajar con estados anteriores(los marcamos con *) R0 = q0, R1 = q1, R2 = q2, $R'0 = q2^*$, $R'1 = q0^*$, $R'2 = q1^*$.

Luego, notamos que funciona como un shift-R y solo combia a los distintos inmediatos

- 3. Máquina de 4 registros con suma y resta.
 - a) Detallar entradas y salidas:

Entradas de control: clk,enableout write ,enables,op , en_force_input Entradas de dato: force_input, (entrada para la alu son las salidas de los reg)

b) Detallar el contenido de cada display:

El debug muestra los valores guardados de los registros en todo momento, sin importar el clock. Luego tenemos los dos operandos de salida de la alu s debug muestra el resultado de la operacion en todo momentoy el debug d reg4 output muestra el res de la operacion

c) Secuencia de señales: Primero cargamos el 4 en force input(0100) y levantamos en_force_input habilitamos la escritura de R2, bajamos en_enforce_input y luego de un pulso la bajamos y cambiamos force input a -3(1101) y luego levantamos en_force_input y habilitamos la escritura de R3. Luego de

 $d) \ \ {\rm Completar} \ \ {\rm la} \ \ {\rm siguiente} \ \ {\rm tabla} .$

Valor inicial	Resultado operación 1	Flags	Resultado operación 2	Flags
(4, 0)	4 (0100)	0000	4 (0100)	0000
(7, -1)	. 8(1000) z :	=0 cvn1 5	7(0111) 0000	
(-8, -2)	. 6(0110) zı	n=0 cv1 7	(0111) 0000	
(8, -9)				

Los resultados interpretados en sin signo y en complemento a 2.

e) Explicar

Corrección

Integrantes:

Nombre y Apellido: Clara Rizzuti LU: Nombre y Apellido: LU:

Para uso de los docentes:

1	2	3