Методы оптимизации Метод Ньютона. Квазиньютоновские методы

Александр Катруца

Московский физико-технический институт

21 апреля 2020 г.

 $\min_{x} f(x)$

$$\min_{x} f(x)$$

Метод второго порядка

$$\min_{x} f(x)$$

- Метод второго порядка
- Квадратичная аппроксимация

$$\hat{f}(h) = f(x) + \langle f'(x), h \rangle + \frac{1}{2} h^{\top} f''(x) h$$

$$\min_{x} f(x)$$

- ▶ Метод второго порядка
- Квадратичная аппроксимация

$$\hat{f}(h) = f(x) + \langle f'(x), h \rangle + \frac{1}{2} h^{\top} f''(x) h$$

▶ Пусть $f''(x) \succ 0$, тогда

$$\hat{f}(h) \to \min_h$$

выпукла

$$\min_{x} f(x)$$

- Метод второго порядка
- Квадратичная аппроксимация

$$\hat{f}(h) = f(x) + \langle f'(x), h \rangle + \frac{1}{2} h^{\top} f''(x) h$$

▶ Пусть $f''(x) \succ 0$, тогда

$$\hat{f}(h) \to \min_h$$

выпукла

Из условия первого порядка

$$f'(x) + f''(x)h = 0 \Rightarrow h^* = -f''(x)^{-1}f'(x)$$

$$\min_{x} f(x)$$

- Метод второго порядка
- Квадратичная аппроксимация

$$\hat{f}(h) = f(x) + \langle f'(x), h \rangle + \frac{1}{2} h^{\top} f''(x) h$$

▶ Пусть $f''(x) \succ 0$, тогда

$$\hat{f}(h) \to \min_h$$

выпукла

Из условия первого порядка

$$f'(x) + f''(x)h = 0 \implies h^* = -f''(x)^{-1}f'(x)$$

Метод Ньютона

$$x_{k+1} = x_k - f''(x_k)^{-1} f'(x_k)$$

▶ Система нелинейных уравнений

$$G(x) = 0, \quad G: \mathbb{R}^n \to \mathbb{R}^n$$

Система нелинейных уравнений

$$G(x) = 0, \quad G: \mathbb{R}^n \to \mathbb{R}^n$$

▶ Линейное приближение

$$G(x_k + \Delta x) \approx G(x_k) + G'(x_k)\Delta x = 0,$$

где G'(x) – матрица Якоби

Система нелинейных уравнений

$$G(x) = 0, \quad G: \mathbb{R}^n \to \mathbb{R}^n$$

Линейное приближение

$$G(x_k + \Delta x) \approx G(x_k) + G'(x_k)\Delta x = 0,$$

где G'(x) – матрица Якоби

ightharpoonup Если G'(x) обратима, то

$$\Delta x = -G'(x_k)^{-1}G(x_k)$$

Система нелинейных уравнений

$$G(x) = 0, \quad G: \mathbb{R}^n \to \mathbb{R}^n$$

▶ Линейное приближение

$$G(x_k + \Delta x) \approx G(x_k) + G'(x_k)\Delta x = 0,$$

где G'(x) – матрица Якоби

ightharpoonup Если G'(x) обратима, то

$$\Delta x = -G'(x_k)^{-1}G(x_k)$$

Метод Ньютона

$$x_{k+1} = x_k - G'(x_k)^{-1}G(x_k)$$

Связь с оптимизацией

lacktriangle Пусть целевая функция f(x) в задаче

$$\min_{x} f(x) \tag{1}$$

выпукла

Связь с оптимизацией

lacktriangle Пусть целевая функция f(x) в задаче

$$\min_{x} f(x) \tag{1}$$

выпукла

Условие оптимальности первого порядка

$$f'(x^*) = G(x) = 0$$

Связь с оптимизацией

lacktriangle Пусть целевая функция f(x) в задаче

$$\min_{x} f(x) \tag{1}$$

выпукла

Условие оптимальности первого порядка

$$f'(x^*) = G(x) = 0$$

ightharpoonup Система для поиска направления h

$$f'(x) + f''(x)h = 0$$

эквивалентна системе в методе Ньютона для решения задачи (1)

Сравнение подходов к получению метода Ньютона

 Метод Ньютона для решения уравнений более общий, чем для решения задачи минимизации
 Q: Почему?

Сравнение подходов к получению метода Ньютона

- Метод Ньютона для решения уравнений более общий, чем для решения задачи минимизации
 Q: Почему?
- Анализ сходимости метода Ньютона в общем случае весьма нетривиален
- Фракталы Ньютона

Сходимость

Предположение $f''(x) \succ 0$:

- ▶ если $f''(x) \not\succ 0$, метод не работает
- модификации метода Ньютона для этого случая

Сходимость

Предположение $f''(x) \succ 0$:

- ▶ если $f''(x) \not\succ 0$, метод не работает
- модификации метода Ньютона для этого случая

 $\ensuremath{\mathcal{N}}$ окальная сходимость: в зависимости от выбора x_0 метод может

- сходиться
- расходиться
- осциллировать

Сходимость

Предположение $f''(x) \succ 0$:

- ▶ если $f''(x) \not\succ 0$, метод не работает
- модификации метода Ньютона для этого случая

Локальная сходимость: в зависимости от выбора x_0 метод может

- сходиться
- расходиться
- осциллировать

Демпфированный метод Ньютона

$$x_{k+1} = x_k - \frac{\alpha_k}{\alpha_k} f''(x_k)^{-1} f'(x_k)$$

- Выбор шага по аналогии с градиентным спуском
- Введение шага расширяет область сходимости

▶ Пусть x^* – локальный минимум, тогда

$$f'(x^*) = 0, \quad f''(x^*) \succ 0$$

▶ Пусть x^* – локальный минимум, тогда

$$f'(x^*) = 0, \quad f''(x^*) \succ 0$$

Ряд Тейлора

$$0 = f'(x^*) = f'(x_k) + f''(x_k)(x^* - x_k) + o(||x^* - x^k||)$$

▶ Пусть x^* – локальный минимум, тогда

$$f'(x^*) = 0, \quad f''(x^*) \succ 0$$

Ряд Тейлора

$$0 = f'(x^*) = f'(x_k) + f''(x_k)(x^* - x_k) + o(||x^* - x^k||)$$

▶ После умножения на $f''(x_k)^{-1}$

$$x_k - x^* - f''(x_k)^{-1} f'(x_k) = o(||x^* - x^k||)$$

▶ Пусть x^* – локальный минимум, тогда

$$f'(x^*) = 0, \quad f''(x^*) \succ 0$$

Ряд Тейлора

$$0 = f'(x^*) = f'(x_k) + f''(x_k)(x^* - x_k) + o(||x^* - x^k||)$$

▶ После умножения на $f''(x_k)^{-1}$

$$x_k - x^* - f''(x_k)^{-1} f'(x_k) = o(||x^* - x^k||)$$

▶ Итерация метода Ньютона $x_{k+1} = x_k - f''(x_k)^{-1} f'(x_k)$, поэтому

$$x_{k+1} - x^* = o(\|x^* - x^k\|)$$

▶ Пусть x^* – локальный минимум, тогда

$$f'(x^*) = 0, \quad f''(x^*) \succ 0$$

Ряд Тейлора

$$0 = f'(x^*) = f'(x_k) + f''(x_k)(x^* - x_k) + o(||x^* - x^k||)$$

▶ После умножения на $f''(x_k)^{-1}$

$$x_k - x^* - f''(x_k)^{-1} f'(x_k) = o(||x^* - x^k||)$$

▶ Итерация метода Ньютона $x_{k+1} = x_k - f''(x_k)^{-1} f'(x_k)$, поэтому

$$x_{k+1} - x^* = o(\|x^* - x^k\|)$$

ightharpoonup Локальная сверхлинейная сходимость $(x_k \neq x^*)$

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = \lim_{k \to \infty} \frac{o(\|x_k - x^*\|)}{\|x_k - x^*\|} = 0$$

Теорема

Пусть

ightharpoonup f(x) локально сильно выпукла с константой μ :

$$\exists \ x^*: \ f''(x^*) \succeq \mu I$$

Теорема

Пусть

- ▶ f(x) локально сильно выпукла с константой μ : $\exists \ x^*: \ f''(x^*) \succeq \mu I$
- ▶ гессиан Липшицев: $||f''(x) f''(y)|| \le M||x y||$

Теорема

Пусть

- ▶ f(x) локально сильно выпукла с константой μ : $\exists \ x^*: \ f''(x^*) \succeq \mu I$
- ▶ гессиан Липшицев: $\|f''(x) f''(y)\| \le M\|x y\|$
- ▶ начальная точка x_0 достаточно близка к x^* : $\|x_0 x^*\| \leq \frac{2\mu}{3M}$

Теорема

Пусть

- ▶ f(x) локально сильно выпукла с константой μ : $\exists \ x^*: \ f''(x^*) \succeq \mu I$
- ▶ гессиан Липшицев: $||f''(x) f''(y)|| \le M||x y||$
- ▶ начальная точка x_0 достаточно близка к x^* : $\|x_0 x^*\| \leq \frac{2\mu}{3M}$

тогда метод Ньютона сходится квадратично

$$||x_{k+1} - x^*|| \le \frac{M||x_k - x^*||^2}{2(\mu - M||x_k - x^*||)}$$

Пример

$$-\sum_{i=1}^{m} \log(1 - a_i^{\top} x) - \sum_{i=1}^{n} \log(1 - x_i^2) \to \min_{x \in \mathbb{R}^n}$$

1.
$$r_{k+1} = x_{k+1} - x^* = x_k - x^* - f''(x_k)^{-1} f'(x_k) = r_k - f''(x_k)^{-1} f'(x_k)$$

- 1. $r_{k+1} = x_{k+1} x^* = x_k x^* f''(x_k)^{-1} f'(x_k) = r_k f''(x_k)^{-1} f'(x_k)$
- 2. Известный факт из анализа

$$\phi(b) - \phi(a) = \int_0^1 \phi'(a + t(b - a))(b - a)dt$$

- 1. $r_{k+1} = x_{k+1} x^* = x_k x^* f''(x_k)^{-1} f'(x_k) = r_k f''(x_k)^{-1} f'(x_k)$
- 2. Известный факт из анализа

$$\phi(b) - \phi(a) = \int_0^1 \phi'(a + t(b - a))(b - a)dt$$

3. Для градиентов

$$f'(x_k) = f'(x_k) - f'(x^*) = \int_0^1 f''(x^* + tr_k)r_k dt$$

- 1. $r_{k+1} = x_{k+1} x^* = x_k x^* f''(x_k)^{-1} f'(x_k) = r_k f''(x_k)^{-1} f'(x_k)$
- 2. Известный факт из анализа

$$\phi(b) - \phi(a) = \int_0^1 \phi'(a + t(b - a))(b - a)dt$$

3. Для градиентов

$$f'(x_k) = f'(x_k) - f'(x^*) = \int_0^1 f''(x^* + tr_k)r_k dt$$

4. Подставляем в первый шаг и группируем

$$r_{k+1} = \underbrace{\left(I - f''(x_k)^{-1} \int_0^1 [f''(x^* + tr_k)]dt\right)}_{G_k} r_k$$

- 1. $r_{k+1} = x_{k+1} x^* = x_k x^* f''(x_k)^{-1} f'(x_k) = r_k f''(x_k)^{-1} f'(x_k)$
- 2. Известный факт из анализа

$$\phi(b) - \phi(a) = \int_0^1 \phi'(a + t(b - a))(b - a)dt$$

3. Для градиентов

$$f'(x_k) = f'(x_k) - f'(x^*) = \int_0^1 f''(x^* + tr_k)r_k dt$$

4. Подставляем в первый шаг и группируем

$$r_{k+1} = \underbrace{\left(I - f''(x_k)^{-1} \int_0^1 [f''(x^* + tr_k)]dt\right)}_{G_k} r_k$$

5.
$$||r_{k+1}|| \le ||G_k|| ||r_k||$$

6. Используем Липшицевость гессиана

$$G_k = f''(x_k)^{-1} \int_0^1 [f''(x_k) - f''(x^* + tr_k)] dt$$
$$||G_k|| \le ||f''(x_k)^{-1}|| \int_0^1 ||f''(x_k) - f''(x^* + tr_k)|| dt$$

6. Используем Липшицевость гессиана

$$G_k = f''(x_k)^{-1} \int_0^1 [f''(x_k) - f''(x^* + tr_k)] dt$$
$$||G_k|| \le ||f''(x_k)^{-1}|| \int_0^1 ||f''(x_k) - f''(x^* + tr_k)|| dt$$

7. Оценим интеграл

$$\int_0^1 \|f''(x_k) - f''(x^* + tr_k)\| dt \le \int_0^1 M \|r_k - tr_k\| dt = \frac{M \|r_k\|}{2}$$

6. Используем Липшицевость гессиана

$$G_k = f''(x_k)^{-1} \int_0^1 [f''(x_k) - f''(x^* + tr_k)] dt$$
$$||G_k|| \le ||f''(x_k)^{-1}|| \int_0^1 ||f''(x_k) - f''(x^* + tr_k)|| dt$$

7. Оценим интеграл

$$\int_0^1 \|f''(x_k) - f''(x^* + tr_k)\| dt \le \int_0^1 M \|r_k - tr_k\| dt = \frac{M \|r_k\|}{2}$$

8. Следствие Липшицевости гессиана и сильной выпуклости f в x^*

$$f''(x_k) \succeq f''(x^*) - M||r_k||I \succeq (\mu - M||r_k||)I$$

6. Используем Липшицевость гессиана

$$G_k = f''(x_k)^{-1} \int_0^1 [f''(x_k) - f''(x^* + tr_k)] dt$$
$$||G_k|| \le ||f''(x_k)^{-1}|| \int_0^1 ||f''(x_k) - f''(x^* + tr_k)|| dt$$

7. Оценим интеграл

$$\int_0^1 \|f''(x_k) - f''(x^* + tr_k)\| dt \le \int_0^1 M \|r_k - tr_k\| dt = \frac{M \|r_k\|}{2}$$

8. Следствие Липшицевости гессиана и сильной выпуклости f в x^*

$$f''(x_k) \succeq f''(x^*) - M||r_k||I \succeq (\mu - M||r_k||)I$$

9. Оценим норму обратного гессиана

$$||f''(x_k)^{-1}|| \le \frac{1}{\mu - M||r_k||}$$

Pro & Contra

Pro & Contra

Pro

- ▶ Квадратичная сходимость
- Высокая точность решения
- Аффинная инвариантность

Pro & Contra

Pro

- Квадратичная сходимость
- Высокая точность решения
- Аффинная инвариантность

Contra

- ightharpoonup Хранение гессиана: $O(n^2)$ памяти
- Необходимо решать линейные системы: $O(n^3)$ операций в общем случае
- ▶ Гессиан может оказаться вырожденным

Пусть градиент f'(x) липшицев с константой L

Градиентный спуск

$$f(x+h) \le f(x) + \langle f'(x), h \rangle + \frac{1}{2\alpha} h^{\top} I h \equiv f_g(h), \quad \alpha \in (0, 1/L]$$

$$\min_{h} f_g(h) \Rightarrow h^* = -\alpha f'(x)$$

$$x_{k+1} = x_k - \alpha_k f'(x_k)$$

Пусть градиент f'(x) липшицев с константой L

Градиентный спуск

$$f(x+h) \le f(x) + \langle f'(x), h \rangle + \frac{1}{2\alpha} h^{\top} \mathbf{I} h \equiv f_g(h), \quad \alpha \in (0, 1/L]$$
$$\min_h f_g(h) \Rightarrow h^* = -\alpha f'(x)$$
$$x_{k+1} = x_k - \alpha_k f'(x_k)$$

Метод Ньютона

$$f(x+h) \approx f(x) + \langle f'(x), h \rangle + \frac{1}{2} h^{\top} f''(x) h \equiv f_N(g)$$

$$\min_h f_N(h) \Rightarrow h^* = -(f''(x))^{-1} f'(x)$$

$$x_{k+1} = x_k - f''(x_k)^{-1} f'(x_k)$$

Пусть градиент f'(x) липшицев с константой L

Градиентный спуск

$$f(x+h) \le f(x) + \langle f'(x), h \rangle + \frac{1}{2\alpha} h^{\top} \mathbf{I} h \equiv f_g(h), \quad \alpha \in (0, 1/L]$$
$$\min_h f_g(h) \Rightarrow h^* = -\alpha f'(x)$$
$$x_{k+1} = x_k - \alpha_k f'(x_k)$$

Метод Ньютона

$$f(x+h) \approx f(x) + \langle f'(x), h \rangle + \frac{1}{2}h^{\top} f''(x)h \equiv f_N(g)$$

$$\min_h f_N(h) \Rightarrow h^* = -(f''(x))^{-1} f'(x)$$

$$x_{k+1} = x_k - f''(x_k)^{-1} f'(x_k)$$

▶ Лучше чем $f_q(x)$, но быстрее, чем $f_N(x)$?

lacktriangle Квадратичная оценка $f(x_{k+1})$

$$f_q(h) = f(x_k) + \langle f'(x_k), h \rangle + \frac{1}{2} h^{\top} B_k h, \quad B_k \succ 0$$

lacktriangle Квадратичная оценка $f(x_{k+1})$

$$f_q(h) = f(x_k) + \langle f'(x_k), h \rangle + \frac{1}{2} h^{\top} B_k h, \quad B_k \succ 0$$

• Минимум $f_q(h)$ достигается в точке

$$h_k = -B_k^{-1} f'(x_k)$$

lacktriangle Квадратичная оценка $f(x_{k+1})$

$$f_q(h) = f(x_k) + \langle f'(x_k), h \rangle + \frac{1}{2} h^{\top} B_k h, \quad B_k \succ 0$$

▶ Минимум $f_q(h)$ достигается в точке

$$h_k = -B_k^{-1} f'(x_k)$$

Квазиньютоновский метод

$$x_{k+1} = x_k - \alpha_k B_k^{-1} f'(x_k) = x_k - \alpha_k H_k f'(x_k)$$

lacktriangle Квадратичная оценка $f(x_{k+1})$

$$f_q(h) = f(x_k) + \langle f'(x_k), h \rangle + \frac{1}{2} h^{\top} B_k h, \quad B_k \succ 0$$

• Минимум $f_q(h)$ достигается в точке

$$h_k = -B_k^{-1} f'(x_k)$$

Квазиньютоновский метод

$$x_{k+1} = x_k - \alpha_k B_k^{-1} f'(x_k) = x_k - \alpha_k H_k f'(x_k)$$

lacktriangle Квадратичная оценка $f(x_{k+1})$

$$f_q(h) = f(x_k) + \langle f'(x_k), h \rangle + \frac{1}{2} h^{\top} B_k h, \quad B_k \succ 0$$

▶ Минимум $f_q(h)$ достигается в точке

$$h_k = -B_k^{-1} f'(x_k)$$

Квазиньютоновский метод

$$x_{k+1} = x_k - \alpha_k B_k^{-1} f'(x_k) = x_k - \alpha_k H_k f'(x_k)$$

Требования к оценке гессиана B_k

▶ Быстрое обновление $B_k o B_{k+1}$, доступны только градиенты

lacktriangle Квадратичная оценка $f(x_{k+1})$

$$f_q(h) = f(x_k) + \langle f'(x_k), h \rangle + \frac{1}{2} h^\top B_k h, \quad B_k \succ 0$$

▶ Минимум $f_q(h)$ достигается в точке

$$h_k = -B_k^{-1} f'(x_k)$$

Квазиньютоновский метод

$$x_{k+1} = x_k - \alpha_k B_k^{-1} f'(x_k) = x_k - \alpha_k H_k f'(x_k)$$

- ▶ Быстрое обновление $B_k o B_{k+1}$, доступны только градиенты
- lacktriangle Быстрый поиск направления h_k

lacktriangle Квадратичная оценка $f(x_{k+1})$

$$f_q(h) = f(x_k) + \langle f'(x_k), h \rangle + \frac{1}{2} h^\top B_k h, \quad B_k \succ 0$$

• Минимум $f_q(h)$ достигается в точке

$$h_k = -B_k^{-1} f'(x_k)$$

Квазиньютоновский метод

$$x_{k+1} = x_k - \alpha_k B_k^{-1} f'(x_k) = x_k - \alpha_k H_k f'(x_k)$$

- Быстрое обновление $B_k o B_{k+1}$, доступны только градиенты
- lacktriangle Быстрый поиск направления h_k
- ▶ Компактное хранение B_k

lacktriangle Квадратичная оценка $f(x_{k+1})$

$$f_q(h) = f(x_k) + \langle f'(x_k), h \rangle + \frac{1}{2} h^{\top} B_k h, \quad B_k \succ 0$$

▶ Минимум $f_q(h)$ достигается в точке

$$h_k = -B_k^{-1} f'(x_k)$$

Квазиньютоновский метод

$$x_{k+1} = x_k - \alpha_k B_k^{-1} f'(x_k) = x_k - \alpha_k H_k f'(x_k)$$

- ▶ Быстрое обновление $B_k o B_{k+1}$, доступны только градиенты
- lacktriangle Быстрый поиск направления h_k
- ▶ Компактное хранение B_k
- Сверхлинейная сходимость

Немного истории

- ► Первый квазиньютоновский метод придумал физик William Davidon в середине 1950-х
- ► Статью не приняли к публикации в Journal of Mathematics and Physics, и она оставалась препринтом более 30 лет
- ▶ Опубликована в 1991 году в первом выпуске SIAM Journal on Optimization

Правило двух градиентов

- $f_q'(-\alpha_k h_k) = f'(x_k) \Rightarrow f'(x_{k+1}) \alpha_k B_{k+1} h_k = f'(x_k)$
- $lacktriangledown f_q'(0) = f'(x_{k+1})$ выполнено по построению

Правило двух градиентов

- $f_q'(-\alpha_k h_k) = f'(x_k) \Rightarrow f'(x_{k+1}) \alpha_k B_{k+1} h_k = f'(x_k)$
- ▶ $f_q'(0) = f'(x_{k+1})$ выполнено по построению

Квазиньютоновское уравнение (Secant equation)

- $y_k = f'(x_{k+1}) f'(x_k)$

$$B_{k+1}s_k = y_k,$$

Правило двух градиентов

- $f_q'(-\alpha_k h_k) = f'(x_k) \Rightarrow f'(x_{k+1}) \alpha_k B_{k+1} h_k = f'(x_k)$
- ▶ $f_q'(0) = f'(x_{k+1})$ выполнено по построению

Квазиньютоновское уравнение (Secant equation)

- $y_k = f'(x_{k+1}) f'(x_k)$

$$B_{k+1}s_k = y_k,$$

Q: всегда ли это уравнение имеет решение?

Q: единственно ли оно?

Правило двух градиентов

- $f_q'(-\alpha_k h_k) = f'(x_k) \Rightarrow f'(x_{k+1}) \alpha_k B_{k+1} h_k = f'(x_k)$
- ▶ $f_q'(0) = f'(x_{k+1})$ выполнено по построению

Квазиньютоновское уравнение (Secant equation)

- $y_k = f'(x_{k+1}) f'(x_k)$

$$B_{k+1}s_k = y_k,$$

- Q: всегда ли это уравнение имеет решение?
- Q: единственно ли оно?
 - ▶ Новая оценка гессиана должна быть близка к текущей

lacktriangle Необходимо задать B_0 , обычно $B_0=\gamma I$ для некоторого γ

- ▶ Необходимо задать B_0 , обычно $B_0 = \gamma I$ для некоторого γ
- ▶ Параметры в процедуре поиска шага

- lacktriangle Необходимо задать B_0 , обычно $B_0=\gamma I$ для некоторого γ
- Параметры в процедуре поиска шага
- Все вычисления необходимо организовать так, чтобы не было операций сложностью ${\cal O}(n^3)$

- ▶ Необходимо задать B_0 , обычно $B_0 = \gamma I$ для некоторого γ
- Параметры в процедуре поиска шага
- Все вычисления необходимо организовать так, чтобы не было операций сложностью ${\cal O}(n^3)$

Примеры квазиньютоновских методов

- Barzilai-Borwein
- DFP
- BFGS

Аппроксимация гессиана диагональной матрицей:

$$\alpha_k f'(x_k) = \alpha_k I f'(x_k) = \left(\frac{1}{\alpha_k} I\right)^{-1} f'(x_k) \approx f''(x_k)^{-1} f'(x_k)$$

Аппроксимация гессиана диагональной матрицей:

$$\alpha_k f'(x_k) = \alpha_k I f'(x_k) = \left(\frac{1}{\alpha_k} I\right)^{-1} f'(x_k) \approx f''(x_k)^{-1} f'(x_k)$$

Квазиньютоновское уравнение

$$\alpha_k^{-1} s_{k-1} \approx y_{k-1}$$

Аппроксимация гессиана диагональной матрицей:

$$\alpha_k f'(x_k) = \alpha_k I f'(x_k) = \left(\frac{1}{\alpha_k} I\right)^{-1} f'(x_k) \approx f''(x_k)^{-1} f'(x_k)$$

Квазиньютоновское уравнение

$$\alpha_k^{-1} s_{k-1} \approx y_{k-1}$$

▶ Задача и решение

$$\min_{\alpha_k} \|s_{k-1} - \alpha_k y_{k-1}\|_2 \Rightarrow \alpha_k = \frac{s_{k-1}^{\ \ } y_{k-1}^{\ \ }}{y_{k-1}^{\ \ \ } y_{k-1}^{\ \ \ }}$$

Аппроксимация гессиана диагональной матрицей:

$$\alpha_k f'(x_k) = \alpha_k I f'(x_k) = \left(\frac{1}{\alpha_k} I\right)^{-1} f'(x_k) \approx f''(x_k)^{-1} f'(x_k)$$

▶ Квазиньютоновское уравнение

$$\alpha_k^{-1} s_{k-1} \approx y_{k-1}$$

Задача и решение

$$\min_{\alpha_k} \|s_{k-1} - \alpha_k y_{k-1}\|_2 \Rightarrow \alpha_k = \frac{s_{k-1}^{\dagger} y_{k-1}}{y_{k-1}^{\dagger} y_{k-1}}$$

lacktriangle Можно ставить другие задачи для поиска $lpha_k$

Аппроксимация гессиана диагональной матрицей:

$$\alpha_k f'(x_k) = \alpha_k I f'(x_k) = \left(\frac{1}{\alpha_k} I\right)^{-1} f'(x_k) \approx f''(x_k)^{-1} f'(x_k)$$

Квазиньютоновское уравнение

$$\alpha_k^{-1} s_{k-1} \approx y_{k-1}$$

Задача и решение

$$\min_{\alpha_k} \|s_{k-1} - \alpha_k y_{k-1}\|_2 \Rightarrow \alpha_k = \frac{s_{k-1}^{\dagger} y_{k-1}}{y_{k-1}^{\dagger} y_{k-1}}$$

- lacktriangle Можно ставить другие задачи для поиска $lpha_k$
- ▶ Имеет стохастическую модификацию, статья на NIPS 2016

Метод DFP

▶ Задача поиска B_{k+1}

$$\min_{B} \|B_k - B\|$$
 s.t. $B = B^{\top}$
$$Bs_k = y_k$$

Решение

$$B_{k+1} = (I-\rho_k y_k s_k^\top) B_k (I-\rho_k s_k y_k^\top) + \rho_k y_k y_k^\top,$$
 где $\rho_k = \frac{1}{y_k^\top s_k}$

По формуле ШВМ

$$B_{k+1}^{-1} = H_{k+1} = H_k - \frac{H_k y_k y_k^{\top} H_k}{y_k^{\top} H_k y_k} + \frac{s_k s_k^{\top}}{y_k^{\top} s_k}$$

Mетод BFGS

▶ Задача

$$\min_{H} \|H_k - H\|$$
 s.t. $H = H^{\top}$
$$Hy_k = s_k$$

Mетод BFGS

Задача

$$\min_{H} \|H_k - H\|$$
 s.t. $H = H^{\top}$
$$Hy_k = s_k$$

Решение

$$H_{k+1} = (I-\rho_k s_k y_k^\top) H_k (I-\rho_k y_k s_k^\top) + \rho_k s_k s_k^\top,$$
 где $\rho_k = \frac{1}{y_k^\top s_k}$

Задача

$$\min_{H} \|H_k - H\|$$
 s.t. $H = H^{\top}$
$$Hy_k = s_k$$

Решение

$$H_{k+1} = (I-\rho_k s_k y_k^\top) H_k (I-\rho_k y_k s_k^\top) + \rho_k s_k s_k^\top,$$
 где $\rho_k = \frac{1}{y_k^\top s_k}$

Теорема (почти)

Пусть f сильно выпукла с Липшицевым гессианом. Тогда при некоторых дополнительных технических условиях BFGS сходится сверхлинейно.

Ещё немного про BFGS

▶ Очень хорошо работает на практике

Ещё немного про BFGS

- ▶ Очень хорошо работает на практике
- ▶ Обладает свойством самокоррекции

Ещё немного про BFGS

- Очень хорошо работает на практике
- Обладает свойством самокоррекции
- ightharpoonup Формулу обновления H_k можно также получить как решение задачи

$$\min_{H} \operatorname{trace}(H_k^\top H^{-1}) - \log \det(H_k H^{-1}) - n$$
 s.t. $Hy_k = s_k$

Целевая функция \equiv дивергенции Кульбака-Лейблере между распределениями $\mathcal{N}(0,H^{-1})$ и $\mathcal{N}(0,H_k^{-1})$

lacktriangle Сложность хранения и обновления гессиана $O(n^2)$

- lacktriangle Сложность хранения и обновления гессиана $O(n^2)$
- lacktriangle Необходима не сама матрица, а эффективная процедура умножения её на вектор f'(x)

- lacktriangle Сложность хранения и обновления гессиана $O(n^2)$
- Необходима не сама матрица, а эффективная процедура умножения её на вектор f'(x)
- ightharpoonup Значения y и s на первых итерациях могут портить оценку B или H на более поздних итерациях

- ightharpoonup Сложность хранения и обновления гессиана $O(n^2)$
- Необходима не сама матрица, а эффективная процедура умножения её на вектор f'(x)
- lacktriangleright Значения y и s на первых итерациях могут портить оценку B или H на более поздних итерациях

Идея

Использовать последние $m \ll n$ значений (s,y) и корректировать $H_{m,0}$ для каждой итерации

- lacktriangle Сложность хранения и обновления гессиана $O(n^2)$
- Необходима не сама матрица, а эффективная процедура умножения её на вектор f'(x)
- lacktriangleright Значения y и s на первых итерациях могут портить оценку B или H на более поздних итерациях

Идея

Использовать последние $m \ll n$ значений (s,y) и корректировать $H_{m,0}$ для каждой итерации

ightharpoonup Сложность стала O(mn)

- ightharpoonup Сложность хранения и обновления гессиана $O(n^2)$
- Необходима не сама матрица, а эффективная процедура умножения её на вектор f'(x)
- lacktriangleright Значения y и s на первых итерациях могут портить оценку B или H на более поздних итерациях

Идея

Использовать последние $m \ll n$ значений (s,y) и корректировать $H_{m,0}$ для каждой итерации

ightharpoonup Сложность стала O(mn)

 ${f Q}$: как на каждой итерации поддерживать хранение последних m пар?

▶ Лучше всего работает на практике

- ▶ Лучше всего работает на практике
- ightharpoonup Нужно заранее определить m

- ▶ Лучше всего работает на практике
- ightharpoonup Нужно заранее определить m
- ightharpoonup BFGS обновляет H рекурсивно

$$H_{k+1} = V_k^\top H_k V_k + \rho_k s_k s_k^\top, \quad V_k = I - \rho_k y_k s_k^\top$$

- ▶ Лучше всего работает на практике
- ightharpoonup Нужно заранее определить m
- ightharpoonup BFGS обновляет H рекурсивно

$$H_{k+1} = V_k^{\top} H_k V_k + \rho_k s_k s_k^{\top}, \quad V_k = I - \rho_k y_k s_k^{\top}$$

ightharpoonup Развернём m шагов рекурсии

$$\begin{split} H_{k+1} &= V_k^\top H_k V_k + \rho_k s_k s_k^\top \\ &= V_k^\top V_{k-1}^\top H_{k-1} V_{k-1} V_k + \rho_{k-1} V_k^\top V_{k-1}^\top s_{k-1} s_{k-1}^\top V_{k-1} V_k + \rho_k s_k s_k^\top \\ &= V_k^\top \dots V_{k-m+1}^\top H_{m,0} V_{k-m+1} \dots V_k \\ &+ \rho_{k-m+1} V_k^\top \dots V_{k-m+2}^\top s_{k-m+1} s_{k-m+1}^\top V_{k-m+2} \dots V_k \\ &+ \dots + \rho_k s_k s_k^\top \end{split}$$

- Лучше всего работает на практике
- ightharpoonup Нужно заранее определить m
- ightharpoonup BFGS обновляет H рекурсивно

$$H_{k+1} = V_k^{\top} H_k V_k + \rho_k s_k s_k^{\top}, \quad V_k = I - \rho_k y_k s_k^{\top}$$

Развернём т шагов рекурсии

$$\begin{split} H_{k+1} &= V_k^\top H_k V_k + \rho_k s_k s_k^\top \\ &= V_k^\top V_{k-1}^\top H_{k-1} V_{k-1} V_k + \rho_{k-1} V_k^\top V_{k-1}^\top s_{k-1} s_{k-1}^\top V_{k-1} V_k + \rho_k s_k s_k^\top \\ &= V_k^\top \dots V_{k-m+1}^\top H_{m,0} V_{k-m+1} \dots V_k \\ &+ \rho_{k-m+1} V_k^\top \dots V_{k-m+2}^\top s_{k-m+1} s_{k-m+1}^\top V_{k-m+2} \dots V_k \\ &+ \dots + \rho_k s_k s_k^\top \end{split}$$

ightharpoonup Эффективное вычисление $H_kf'(x)$ без явного формирования H_k

Пример

$$-\sum_{i=1}^{m} \log(1 - a_i^{\top} x) - \sum_{i=1}^{n} \log(1 - x_i^2) \to \min_{x \in \mathbb{R}^n}$$

Pro & Contra

Pro & Contra

Pro

- Сложность одной итерации $O(n^2)+\dots$ по сравнению с $O(n^3)+\dots$ в методе Ньютона
- Для метода L-BFGS требуется линейное количество памяти по размерности задачи
- Самокоррекция метода BFGS
- ▶ Сверхлинейная сходимость к решению задачи

Pro & Contra

Pro

- Сложность одной итерации $O(n^2)+\dots$ по сравнению с $O(n^3)+\dots$ в методе Ньютона
- Для метода L-BFGS требуется линейное количество памяти по размерности задачи
- ► Самокоррекция метода BFGS
- ▶ Сверхлинейная сходимость к решению задачи

Contra

- Обобщение на стохастический случай не работает
- lacktriangle Выбор начального приближения B_0 или H_0
- Нет разработанной теории сходимости и оптимальности
- ▶ Не любой способ выбора шага гарантирует выполнение условия кривизны $y_k^\top s_k > 0$