

Object Detection, Tracking, Reidentification and Activity Recognition for Maritime Surveillance using Thermal Vision - Stage II

FYP Feasibility Presentation

Group 07

Supervisor Co-Supervisor

Dr. Peshala Jayasekara Dr. Ranga Rodrigo

Team (Leader)

Nipun Samarakoon

Sathira Fernando Tharindi Liyanage Kavindya Imbulgoda

Motivation

Navy nabs 80 illegal Indian immigrants

Published 2 months ago on 2021/05/5

paper.island.lk

Indians held by the Navy in the seas off Mannar. Pic courtesy Navy

By Norman Palihawadane

The Navy nabbed 80 Indians attempting to immigrate illegally into Sri Lanka in 11 boats at Mannar yesterday. They had fled India, fearing the surging of Covid-19 infections and high death toll.

Sri Lanka Navy seizes over 174 kg of Kerala Cannabis in Northern seas

June 21, Colombo: During an operation conducted in the Northern Seas off Jaffna, A Sri Lanka Navy team has seized a stock of Kerala Cannabis and dried turmeric on Sunday night.

The Navy took hold of about 174kg and 50g of Kerala cannabis and 05 kg of dried turmeric along with a dinghy and arrested two suspects, during the special operation conducted in seas off Thondamanaru. Jaffna. the Navy Media Unit said.

The Navy has increased patrols in island waters to curb wideranging illegal acts including the smuggling of drugs by sea routes.

Accordingly, the Northern Naval Command carried out this special operation by deploying the Inshore Patrol Craft P 177 and Z 196 and Z 215 crafts of Special Boat Squadron, which intercepted a

suspicious dinghy approaching landward.

The dinghy had been loaded with about 174kg and 50g of Kerala cannabis in 05 packag turmeric and the items were taken into naval custody together with the dinghy and 02

The street value of the seized stock of Kerala cannabis is believed to be around Rs. 52 million.

The arrested suspects identified as residents of Point Pedro and Mullaitivu are 28 and 34 years of age.

Colombopage News Desk

Two persons engaged in illegal fishing apprehended by Navy

Navy apprehended two (02) persons for engaging in illegal fishing in Silawathura beach area, on 8th January 2020.

Continuous patrols are carried out by Navy to avert illegal fishing activities in order to preserve the marine resources in Sri Lankan territorial waters. During such an operation conducted to seize the illegal fishers a suspicious dinghy was spotted by the Navy in Silawathura beach area and it was searched. By further inquiry, it was found that they were engaging in fishing without a valid pass. Accordingly, two persons and the dinghy were apprehended. The suspects were identified as residents of Silawathura and Kalpitiya areas aged 44.

The dinghy, an outboard motor (OBM), 24 Nos of sea cucumber and 17 kg of illegally caught fish were also taken into naval custody.

The suspects together with the seized dinghy, OBM, sea cucumber, stock of illegally caught fish and fishing gears were handed over to the Fisheries Inspector-Mannar for onward action.

news.navy.lk

• Navy operation nabs four suspects smuggling Rs. 600 million worth 'lce' and Hashish

Mon, Jan 4, 2021, 01:21 pm SL Time, ColomboPage News Desk, Sri Lanka.

Jan 04, Colombo: Sri Lanka Navy in a special operation carried in the sea area off Negombo on Monday (04th January 2021) arrested four suspects transporting a stock of Crystal Methamphetamine (ICE) and Hashish worth over Rs. 600 million.

The operation also led to the seizure of a multiday fishing trawler used to transfer the drugs.

The Western Naval Command intercepted a suspicious multiday fishing trawler off Negombo and apprehended the four suspects with over 100kg of Crystal Methamphetamine (ICE) and about 80kg of

Hashish being transferred aboard.

Illegal Fishing

Drug Trafficking

Human Smuggling

Piracy

Possible terrorist activities

Problem Statements

- •Unavailability of an automated thermal vision surveillance system with following features:
 - Object Detection and Tracking
 - Vessel Re-Identification
 - Maritime Activity Detection
- •Unavailability of a public thermal vision dataset for maritime environments.
- •Less research on Vessel Re-Identification & Maritime Activity Detection in Thermal domain.

Scope

Stage II Deliverables

Proposed Architecture for Stage II

Critically Evaluation of alternative strategies

- Stabilization Platform

Hardware - Camera - FLIR M232 Thermal Camera

This the camera that we use to fulfill our objectives. Below are the specifications of it.

Pan Range	360
Tilt Range	+110°, -90°
Zoom	x4
Resolution	320×240
Power Consumption	15 W (typical) 18 W (max)
Video	H264 IP Video stream
Relative Humidity	95% max
Range Performance	detection of person in water up to 457m, detection of small vessel up to 1.3km
Salt mist	IEC 60945 standard
Wind resistance	161 km/h
Compliance	Maritime environment compliance

Platform Design Evaluation

These are the alternatives considered for the stabilization platform required for the product.

	Spherical Parallel Manipulator- 3 DoF	Spatial Parallel Manipulator- 3DoF	Planner Three RRR Manipulator-	Delta Robot- 3DoF
Manipulator Type	Parallel	Parallel	Para Bor	Parallel
Positioning Accuracy	High	High	High	High
Rigidity	High	High	High	Moderate
Size of Platform	Small	Moderate	Moderate- Large	Small- Large
Roll, Pitch, Yaw Movement	Roll, Pitch, Yaw Available	Pitch Only	Yaw Only	None
Mass of Load	High	High	High	Low
Speed of action	Moderate	Moderate	Moderate	High
Workspace Volume	Low	Low	Low	Low

Hardware - Inertial Measurement Unit (IMU) Sensor Comparison

IMU sensor provides the current platform orientation measurements to the microcontroller.

Range (°/sec) - For Gyro (g) - For Accelerometer (gauss)- For Magnetometer	MPU6050 Gyro Range: ±250, ±500,±1000,±2000 Accelerometer Range: ±2,±4,±8,±16	LSM6DS33 Gyro Range: ±125,±250, ±500,±1000,±2000 Accelerometer Range: ±2,±4,±8,±16	L3GD20H Gyro Range: ±245°/s, ±500°/s, or ±2000°/s	MinilMU-9 v5 Gyro: ±125, ±245, ±500, ±1000,±2000 Accelerometer: ±2, ±4, ±8, or ±16 g Magnetometer: ±4, ±8, ±12, or ±16
Sensitivity	131,65.5,32.8,16.4	228.57, 114.29, 57.14,28.57,14.29	8.75 ~ 7	114.29, 57.14,14,29
ARW Unit Cost \$	0.005	0.007 11.95	0.011-0.03 8	- 15.95

Hardware - Motor Comparison

As per our chosen platform, three motors are needed for controlling and stabilizing the platform.

	TD8130MG	DSC45MG	DS5160	DS3230	DS3235
Туре	Digital-Metal Gear	Digital-Metal Gear	Digital-Metal Gear	Digital-Metal Gear	Digital-Metal Gear
Stall Torque	28.5 kg-cm(4.8V); 33.8kg-cm (7.2V)	35kg-cm(6.0V); 45kg-cm (8.4V)	58kgcm(6V);65kgcm (7.4V);70kg-cm(8.4)	29.5kg.cm 5V 34.5kg.cm 6.8V	32kg-cm(6.0V) 35kg-cm 7.4V
Operating Speed	0.22sec/60°(4.8V) 0.18sec/60°(7.2V)	0.12sec/60°(6.0V); 0.11sec/60°(8.4V)	0.15sec/60°(7.4V); 0.13sec/60°(8.4V)	0.2sec/60°(5V) 0.17sec/60°(6.8V)	0.12sec/60°(6.0V) 0.11 sec/60°(7.4V)
Dead Bandwidth	5µs	2µs	5μs	3µs	2-3µs
Weight	112g	75g	162g	75g	60g
Dimensions	40 x 20.5 x 40.5mm	40 × 20 × 40mm	65 x 30 x 48mm	40 x 20 x 40.5 mm	40 x 20 x 38.5 mm
Cost \$	23	69	37	25	33
Specifications	Waterproofed	Waterproofed Stainless Steel Gear	Waterproofed Stainless Steel Gear	Waterproofed, Stainless Steel Gear	Waterproofed, Stainless Steel Gear

Hardware - Microcontroller Comparison

Microcontroller process sensor data and tracking system feedback to control the motors of the self stabilization platform to achieve platform stabilization and camera control.

	Arduino Mega	STM32	Raspberry- pi
Affordability (Financially)	Low	High	Moderate
Computational Power	Low	Moderate	High
Most Optimized Task	Logic Programming	Logic Programming	General Single Board Computer
WiFi and Bluetooth	No	No	Yes
Power Consumption	~0.5W	~0.5W	~5W

Inference Hardware

A Graphical Processing Unit is used for processing for inference in object detection, re identification, object tracking and activity detection models.

Model	Cuda Support	Base /Boost	Memory	Power(W)	Cost
Titan RTX	Yes	1350/1770 MHz	24GB GDDR6	280	Rs. 500,090.50
Geforce GTX 1080 Ti	Yes	1480/1582 MHz	11GB GDDR5X	250	Rs. 168029.08
Geforce GTX 1660 Ti	Yes	1365/1680 MHz	6GB GDDR6	120	Rs. 129860.02
Geforce RTX 2060	Yes	1365/1680 MHz	6GB GDDR6	160	Rs. 142024.27
Geforce GTX 1650 Ti	Yes	1485/1665 MHz	4GB GDDR5	75	Rs. 120020.20

Critically Evaluation of alternative strategies

- Object Detection

Object Detection Algorithms Evaluation

After the video feed is received, the presence of ships, boats and other objects of interest in it should be detected. A system has been developed for this in the stage 1 of the project, so this algorithm is an improvement over the the existing system.

	CenterNet [1]	Scaled YOLO - V4 [2]
Backbone	Hourglass -104	CD53s
Stages	Single stage	Single stage
FPS	7.8	16
mAP	42.1	46.2

don't use preprints! wersion

[1] Zhou, Xingyi, Dequan Wang, and Philipp Krähenbühl. "Objects as points." arXiv preprint arXiv:1904.07850 (2019).

^[2] Wang, Chien-Yao, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. "Scaled-yolov4: Scaling cross stage partial network." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13029-13038. 2021.

Critically Evaluation of alternative strategies

- Object Tracking

Object Tracking Algorithms Evaluation

Main purpose of this is to match different object instances which is detected by the detector in each frame.

	DeepSimple Online and Realtime Tracking[1]	Simple Online and Realtime Tracking[2]	Siamese Multi Object Tracking[3]
Object Detector	Faster R-CNN	Faster R-CNN	Faster R-CNN
Backbone	VGG-16	VGG-16	DLA-169
Dataset	MARS	MARS	HiEve
Online/Offline	Online	Online	Online
Runtime	40 Hz	60 Hz	-
MOTP	79.1	79.6	-
МОТА	61.4	59.8	53.2

[1] Shuai, Bing, Andrew Berneshawi, Xinyu Li, Davide Modolo, and Joseph Tighe. "SiamMOT: Siamese Multi-Object Tracking." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12372-12382. 2021.

[2] Bewley, Alex, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. "Simple online and realtime tracking." In 2016 IEEE international conference on image processing (ICIP), pp. 3464-3468. IEEE, 2016.

[3]Hou Xinyu, Yi Wang, and Lap-Pui Chau. "Vehicle tracking using deep sort with low confidence track filtering." In 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1-6. IEEE,

2019.

USE 9

space

after

] bracket

Critically Evaluation of alternative strategies

- Activity Recognition

Action Recognition Architectures Evaluation

Recognizing the Action Class by combining the spatial and temporal properties of the Frame Sequence

	Gaussian Temporal Awareness Network for Action Localization[1]	Online Real-time Multiple Spatiotemporal Action Localisation and Prediction[2]	A Multi-Stream Bi- Directional Recurrent Neural Network for Fine- Grained Action Detection[3]	RED: Reinforced Encoder- Decoder Networks for Action Anticipation[4]
Spatio Temporal/Temporal	Temporal	Spatio/Temporal	Spatial/Temporal	Temporal
FPS	8	28	-	24
Stages	1	1	2	2
Backbone	Pseudo-3D	VGG-16	VGG-16	VGG-16/esNet-200
Dataset	THUMOS14	UCF101-24	MPII Cooking 2	THUMOS-14
Online/Offline	Offline	Online/Offline	offline	online
mAP Score	38.8	43.0	41.2	47.0

[1]Long, Fuchen, Ting Yao, Zhaofan Qiu, Xinmei Tian, Jiebo Luo, and Tao Mei. "Gaussian temporal awareness networks for action localization." In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 344-353. 2019.

[2]Singh, Gurkirt, Suman Saha, Michael Sapienza, Philip HS Torr, and Fabio Cuzzolin. "Online real-time multiple spatiotemporal action localisation and prediction." In Proceedings of the IEEE International Conference on Computer Vision, pp. 3637-3646. 2017.

[3]Singh, Bharat, Tim K. Marks, Michael Jones, Oncel Tuzel, and Ming Shao. "A multi-stream bi-directional recurrent neural network for fine-grained action detection." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1961-1970. 2016.

[4]Gao, Jiyang, Zhenheng Yang, and Ram Nevatia. "Red: Reinforced encoder-decoder networks for action anticipation." arXiv preprint arXiv:1707.04818 (2017).

Critically Evaluation of alternative strategies

- Vessel Re-Identification

Vessel Re-Identification

After an vessel is detected at the first instance the data related to it are stored. Then when the same vessel reappears at a later time, it should be re-identified as the former vessel.

	Global and Local based Discriminative Feature Learning _[1]	Viewpoint- aware Metric Learning _[2]	Viewpoint aware Attentive Multi View Inference[3]
Context	Vessel	Vehicle	Vehicle
New Dataset Creation	Vessel ID - 539	-	-
No. Viewpoints considered	4	3 (Ver-776 Dataset) 2 (VehicleID Dataset)	4
Evaluation	With Resnet50 - SE	ResNet50	ResNet50
Vessel ID - 539	74.9 61.4 89.6		
Veri776	-	66.34 89.78 95.99	63.12 83.25 92.40
VehicleID	-	88.12 97.29	61.32 85.92 91.84

[1]Qiao, Dalei, Guangzhong Liu, Feng Dong, She-Xiang Jiang, and Likun Dai. "Marine vessel re-identification: a large-scale dataset and global-and-local fusion-based discriminative feature learning." *IEEE Access* 8 (2020): 27744-27756.

[2]Chu, Ruihang, Yifan Sun, Yadong Li, Zheng Liu, Chi Zhang, and Yichen Wei. "Vehicle re-identification with viewpoint-aware metric learning." In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 8282-8291. 2019.

[3]Zhou, Yi, and Ling Shao. "Aware attentive multi-view inference for vehicle re-identification." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6489-6498. 2018.

Dataset Annotation Approaches

- A set of images/videos obtained with the camera should be annotated with labels for training the models as required.
 - Comparison of open Source platforms that can be used for annotation.

	CVAT [1]	VoTT [2]	Scalable [3]
Web platform	Available	Available but cloud storage is necessary	Not available
Supporting materials	Available	Available	Relatively less
Features	High level of features	Moderate level of features	Moderate level of features

- Approach of labelling.
 - Labelling viewpoints, parts of vessels
 - Labelling Vessel types
 - O Labelling vessels uniquely for re identification

^[1] https://github.com/openvinotoolkit/cvat

^[2] https://github.com/microsoft/VoTT

^[3] https://github.com/scalabel/scalabel

Budget for the project

Item	Unit Price(\$)	No: of Units	Total(\$)	Total(LKR)	Sponsored
FLIR M232 Thermal Camera	3499	1	3499	696301.00	Yes
Servo Motor	37	3	111	22,143.58	No
Battery		1			No
Raspberry Pi 4	55	1	55	10972.04	No
IMU Sensor	15.95	2	31.9	6363.79	No
Platform Frame Design	60.15	1	60.15	12000.00	No
GPU		1		Rs. 129860.02	Yes
Total			(

Uniqueness of the End Solution

- A unique set of detection functionalities
- Ability to be used in varied visibility conditions
- · Automation of surveillance maritime surveil and
- Flexibility of the the camera used;
- Creation of a thermal maritime dataset

Potential Customers and Product Impact

Sri Lanka Navy

- Enables providing better security to our country.
- Enables preventing threats to our country with more ease and efficiency.
- Result in better national security
- Sri Lanka Coast Guard
- Other Researchers

Risk Factors - Technical Risks

Risk	How to overcome		
Camera control only through proprietary software of ReyMarine	Make use of the stabilization platform for control.		
Mechanical Stabilization not sufficient.	Software + mechanical stabilization		
Time complexity of the process	Selection of fast models with lesser number of stages		
Unavailability of a public dataset for the training process	Make use of the Dataset that we create.		
Multiple object pan based tracking through platform is not feasible	Prioritizing the targets		

Risk Factors - Financial Risks

Risk	How to overcome		
Malfunctioning situations of the ordered component	Interacting with highly recognized vendors		
Increase of cost more than the granted fund.	Self funding		
HIgh delivery costs for multiple orders for components	Deep study on the component selection, Order the components at once.		

Risk Factors - Health Risks

Risk	How to overcome		
Non disposable product	Recycling the wastage without disposing		
Poor health precautions followed by the delivery workers.	Use of proper delivery methods.		
Data Collection in the Covid Period	Following proper safety precautions under the guidance of Health Bureau of Sri Lanka		

Risk Factors - Sustainability Risks

Risk	How to overcome		
Corrosion of components due to saline environment	Use corrosion resistant manufacturing materials.		

Main Task Delegation

Task Group	Responsible Person Name	Sub Task(s)	Tharindi	Nipun	Sathira	Kavindya
Stabilization Platform	Tharindi	Design using SW				
		Control System Design				
		Firmware Design				
		Hardware Design				
		Simulation				
		Manufacturing				
Action Recognition	Nipun	Pipeline Design				
		Evaluation of Open Datasets				
		Training for Created Dataset				
Object Detection	Sathira	Training for Created Dataset(Thermal IR)				
		Hyper Parameter Tuning for Thermal IR				
		Developments				
Object Re Identification	Kavindya	Viewpoint Estimation Model				
		Vessel Re- Identification Model				
Dataset Creation and Annotation	All	Dataset Creation				
		Dataset Annotation				
Software Design	Sathira	Re-Id Feature				

Timeline 15/06/2021 - 22/04/2022

Current Progress - Platform Design Using

Solidworks

→ Platform Design SW

did you receive the thermal corners?

if so, mention

Platform Design - In Progress

Final Expected Outcome

Thanks!

Q & A

