(12)

EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC

- (43) Date of publication: 07.12.2005 Bulletin 2005/49
- (21) Application number: 04712184.3
- (22) Date of filing: 18.02.2004

- (51) Int CI²: **C07F 9/09**, C07F 9/38, C07F 9/40, A61K 31/661, A61K 31/662, A61P 1/04, A61P 9/00, A61P 9/10, A61P 11/00, A61P 11/06, A61P 13/12, A61P 17/00, A61P 29/00, A61P 37/02, A61P 37/06, A61P 37/08, A61P 37/06, A61P 37/08,
- (86) International application number: PCT/JP2004/001783

(11)

- (87) International publication number: WO 2004/074297 (02.09.2004 Gazette 2004/36)
- (84) Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR Designated Extension States: AL LT LV MK
- (30) Priority: 18.02,2003 JP 2003039269
- (71) Applicant: KYORIN PHARMACEUTICAL CO., LTD. Tokyo 101-8311 (JP)
- (72) Inventors:

 KOHNO, Yasushi
 Oyama-shi, Tochiqi 323-0820 (JP)

- TANAKA, Kiyoaki Shimotsuga-gun, Tochigi 329-0101 (JP)
- KURIYAMA, Kazuhiko
- Oyama-shi, Tochigi 329-0214 (JP)

 HORI, Wataru
- Oyama-shi, Tochigi 329-0207 (JP)
- (74) Representative: Vossius & Partner Siebertstrasse 4 81675 München (DE)
- (54) AMINOPHOSPHONIC ACID DERIVATIVES, ADDITION SALTS THEREOF AND S1P RECEPTOR MODULATORS
- (57) Aminophosphonic acid derivatives (e.g., 2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methylpentylphosphonate monoester) are represented by the following general formula (1):

and act as effective S1P receptor modulators while posing less side effects.

EP 1 602 660 A1

Description

TECHNICAL FIELD

[0001] The present invention relates to aminophosphonic acid derivatives, salts and hydrates thereof that are useful as modulators of sphingosine-1-phosphate (S1P) receptor.

BACKGROUND ART

0 [0002]

1

2

4

	Patent Article 1	WO pamphlet 0198301
	Patent Article 2	WO pamphlet 03020313
	Patent Article 3	WO pamphlet 02092068
15	Patent Article 4	WO pamphlet 0218395
	Patent Article 5	WO pamphlet 02076995
	Patent Article 6	Japanese Patent Laid-Open Publication No. Hei 2003-137894
	Patent Article 7	WO Pamphlet 03040097
20	Patent Article 8	WO Pamphlet 02064616
	Patent Article 9	WO Pamphlet 02062389
	Patent Article 10	WO Pamphlet 03051876
	Patent Article 11	WO Pamphlet 03061567
	Patent Article 12	WO Pamphlet 03062248
25	Patent Article 13	WO Pamphlet 03062252
	Patent Article 14	WO Pamphlet 03073986
	Non-Patent Article 1	Y. Takuma et al., Mol. Cell. Endocrinol., 177, 3(2001)
	Non-Patent Article 2	Y. Igarashi, Ann, N.Y. Acad. Sci., 845, 19(1998)
30	Non-Patent Article 3	H. Okazaki et al., Biochem. Biophs. Res. Commun., 190, 1104(1993)
	Non-Patent Article 4	S. Mandala et al., Science, 296,346(2002)
	Non-Patent Article 5	V. Brinkmann et al., J. Biol. Chem., 277, 21453(2002)

[0003] Sphingosine-1-phosphate (referred to simply as S1P, hereinafter), which was previously considered a more intermediate product in the metabolism of sphingosine, has proven to have an ability to tacilitate cell growth and regulate cell motility. Studies have now shown that S1P, a previously unknown lipid mediator, is involved in a wide range of physiological actions, including apoptisis, modification of cell morphology and vascular contraction (Non-Patent Article 1 and Non-Patent Article 2). The lipid acts both as an intracellular second messenger and as an intercellular mediator; its role as an intercellular mediator has been particularly intensively studied. S1P induces signal transduction via a family of cell membrane G-protein-coupled receptors designated as Edg (which stands for Endothelial Differential Gene) (Non-Patent Article 1 and Non-Patent Article 3). Currently known subtypes of S1P receptors are Edg-1, Edg-3, Edg-5, Edg-6 and Edg-8, which are also referred to as S1P₃, SIP₃, SIP₂, SIP₄ and SIP₅, respectively. [0004] Many studies of these S1P receptors suggest that S1P receptor modulators, which bind to these receptors and act as agonists or antagonists of S1P receptors, are effective against a broad spectrum of diseases. For example, compounds that act on Edg-5 have been shown effective against arteriosclerosis, renal fibrosis, pulmonary fibrosis and hepatic fibrosis (Patent Article 1). Compounds that act on Edg-1, Edg-3 or Edg-5 have been shown to be effective therapeutic or prophylactic agents against various respiratory diseases, including chronic bronchial asthma, diffuse pulmonary hamartoangiomyomatosis, adult respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), interstitial pneumonia, idiopathic interstitial pneumonia, lung cancer and hypersensitivity pneumonitis (Patent Article 2). In addition, compounds that act as Edg-1 agonists have been shown to be effective therapeutic or prophylactic agents for peripheral vascular diseases, such as arteriosclerosis obliterans, thromboanglitis obliterans, Buerger's disease and diabetic neuropathy, septicemia, anglitis, nephritis, pneumonia, cerebral infarction, myocardial

Infarction, edema, arteriosclerosis, vericose veins, such as piles, anal fissure and anal fistula, dissocting atricial aneurysm, stenocardia, DIC, pleuritis, congestive heart failure, multiple organ failure, bed sore, burn, ulcorative colitis, Cro'm's disease, heart transplantation, kidney transplantation, skin transplantation, liver transplantation, born marrow transplantation, osteoporosis, chronic hepatitis, hepatic cirrhosis, chronic renal failure and glomerulosclerosis (Patient Article 3). Puthermore, compounds that cat as agonists of SIP receptors have been shown to modulate the migration

of leukczytes (Non-Patent Article 4 and Non-Patent Article 5). Moreover, the derivatives mentioned in the aforomentioned Non-Patent Articles have been shown effective not only against various organ transplants and GVHD, but also against autoimmune diseases, such as rheumatiod arthrills, lupus nephrills, systemic lupus erythematous, Hashimoto's disease, multiple sclerosis, myasthema gravis, type I and type II diabetes and Crohn's disease, allergo diseases, such as a dopic Germattis, allergic finitins, allergic conjunctivities, allergic contact demantis, and inflammatory diseases, such as inflammatory bowel disease and ulcerative colitis (Patent Article 4 and Patent Article 5). Phosphoric acid derivatives similar to what are described in Patent Articles 4 and 5 and act as antalogonists of \$17 proceptors are described in Patent Article 6. Other \$17 preceptor modulations are disclosed in Patent Articles, 7, 8, 9 and 10.

[0005] In the course of the studies to develop compounds that have an ability to modulate STP receptors, which are involved in the onset of various disorders, the present inventors have drawn the attention to aminophosphonic adid derivatives having different structures from previously known compounds and have made an effort in searching for novel modulators of STP receptors. Quite recently, STP receptor agonists having an amino group along with a phosphonic acid unit were disclosed in Patent Articles 11, 12 and 13. Each of these compounds has a structure in which the amino group is integrated in their linking backbone. This structure differs from the structure of the compounds of the present invention, which essentially has the form of β-aminophosphonic acid or γ-aminophosphonic acid in which an amino group exists on the linking backbone. Patent Article 14 describes similar compounds but the compounds of the present invention are not included.

DISCLOSURE OF THE INVENTION

20

35

[0006] It is thus an objective of the present invention to provide an aminophophonic acid derivative that can effectively modulate S1P receptors with less side effects.

[0007] The present inventors have conducted extensive studies to find compounds that have an ability to modulate as \$19 receptors and are highly acts. As a result, the vinventors have bound that certain aminophosphonic acid derivatives with a disayleting or diapyleting regular by the same acid derivatives with a disayleting and adayleting regular by the have a different structure from any of previously known \$19 receptor modulators act as point modulators and the solution of \$19 receptors. It is this finding that let of the present invention.

[0008] Accordingly, the present invention provides an S1P receptor modulator containing as an active ingredient at least one of aminophosphonic acid derivatives represented by the following general formula (1):

[wherein R₁ is a hydrogen atom, a halogen atom, a halogenated or unhalogenated lower alkyl group having 1 to 4 carbon atoms, a hydroxy group, a phenyi group, an aralkyl group, a lower alkoxy group having 1 to 4 carbon atoms, a trifluoromethyloxy group, a substituted or unsubstituted phenoxy group, a cyclohoxylmothyloxy group, a substituted or unsubstituted aralkyloxy group, a pyridylmethyloxy group, a cinnamyloxy group, a naphthylmethyloxy group, a phenoxymethyl group, a hydroxymethyl group, a hydroxyethyl group, a lower alkylthio group having 1 to 4 carbon atoms. a lower alkylsulfinyl group having 1 to 4 carbon atoms, a lower alkylsulfonyl group having 1 to 4 carbon atoms, a benzylthio group, an acetyl group, a nitro group or a cyano group; Ro is a hydrogen atom, a halogen atom, a halogen ated or unhalogenated lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, an aralkyl group or an aralkyloxy group; R3 is a hydrogen atom, a halogen atom, a trifluoromethyl group, a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a benzyloxy group, a phenyl group, a lower alkoxymethyl group having 1 to 4 carbon atoms or a lower alkylthic group having 1 to 4 carbon atoms; R₄ is a hydrogen atom, a halogen atom, a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxymethyl group having 1 to 4 carbon atoms, a lower alkylthiomethyl group having 1 to 4 carbon atoms, a hydroxymethyl group, a phenyl group or an aralkyl group; Rs is a hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms: X is O, S, SO or SO₂; Y is -CH₂O-, -CH₂-, -CH=CH-, -CH=CF-, -CH₂CH₂-, -CH₃CFH-, -CH₃CF₂-or -CH (OH)CF2: and n is an integer from 1 to 4], and an optical isomer, and a pharmaceutically acceptable sait and a hydrate thereof.

[0009] More specifically,

(I) the present invention provides: an aminophosphonic acid derivative represented by the following general formula (1):

[wherein R₁, R₂, R₃, R₄, R₅, Y and n are as defined above], and an optical isomer, and a pharmaceutically acceptable salt and a hydrate thereof:

(II) 2-aminophosphonic acid monoester derivative represented by the following general formula (1a):

[wherein H₃, R₄, X and n are as defined above], and the optical isomer, and the pharmaceutically acceptable salt and the hydrate thereof;

(III) 2-aminophosphonic acid monoester derivative represented by the general formula (1a) and the optical isomer, and the pharmaceutically acceptable salt and the hydrate thereof;

(IV) 3-aminophosphonic acid derivative represented by the following general formula (1b):

[wherein z is CH₂·, CH=CH-, CH=CF-, CH₂CH₂·, CH₂CHF-, CH₂CF₂· or CH(OH)CF₂· and F₃, R₄. X and n are as defined above], and the optical isomer, and the pharmacoutically acceptable salt and the hydrate thereof; (V) S-aminophosphonic acid derivative represented by the general formula (1b), and the optical isomer, and the pharmacoutically acceptable salt and the hydrate thoroof, wherein F₃ is a chlorine atom; and

(VI) An S1P receptor modulator containing as an active ingredient at least one of the compounds of (I) to (V) above.

[0010] The compounds of the general formulae (1), (1a) and (1b) are novel compounds.

[0011] Among preferred compounds of the present invention are aminophosphonic acid ester derivatives according to claim 1, including 1) 2-amino-5-(4-3-benzyloxyphenythhio)-2-chlorophenyl)2-methyliphosphonic acid moester, 2) 2-amino-4-(4-3-benzyloxyphenythhio)-2-chlorophenyl)2-methyliphyliphosphonic acid monoseter, 3) 2-amino-5-(4-(3-benzyloxyphenythhio)-2-chlorophenyl)2-hydroxymethylpentylphosphonic acid monoseter, 4) 2-amino-4-(4-3-benzyloxyphenythhio)-2-chlorophenyl)2-hydroxymethylbutylphosphonic acid monoseter, 5) 3-amino-5-(4-(3-benzyloxyphenythhio)-2-chlorophenyl)3-hydroxymethylbutylphosphonic acid and 6) 3-amino-6-(4-(3-benzyloxyphenythhio)-2-chlorophenyl)3-hydroxymethylbutylphosphonic acid and 6) 3-amino-6-(4-(3-benzyloxyphenythhio)-2-chlorophenyl)3-hydroxymethylphosphonic acid, and pharmaceutically acceptable salts and hydrates thereof.

BEST MODE FOR CARRYING OUT THE INVENTION

[0012] Pharmaceutically acceptable alkaline salts of the compounds represented by the general formula (1) according to the present invention include sodium salts, potassium salts, magnesium salts, calclum salts and aluminum salts. Acid salts of the compounds represented by the general formula (1) include hydrochlorides, hydrobromides, acetates, trifluoracetates, methanesullonates, citrates and tartarates.

5

15

20

[0013] The halogen atom in the general formula (1) may be fluorine, chlorine, bromine or indine. The lower alkyl group is an the "lower alkyl group is a the "lower alkyl group having 1 to 4 carbon atoms", the "lower alkyl group bushing 1 to 4 carbon atoms", the "lower alkyl group sulfinly having 1 to 4 carbon atoms", the "lower alkyl group sulfinly having 1 to 4 carbon atoms", the "lower alkyl group sulfinly having 1 to 4 carbon atoms" in the general formula (1) is a straight-chained of branched hydrocarbon having 1 to 4 carbon atoms" in the general formula (1) is a straight-chained of branched hydrocarbon having 1 to 4 carbon atoms, including metryl, ethyl, propyl, isopropyl, bulyl and 1-bulyl. The "substituted or unsubstituted prancy group" or "substituted analyl group in the general formula (1) is a phenoxy or artifletyl group that is some position on its benzene ring a halogen atom, such as a fluorine atom, a chlorine atom, a bromine atom and an iddine atom, a triflumometryl group, a lower atkyl group that in 4 carbon atoms or a lower alkoy group paying 1 to 4 carbon atoms. The "araklyl group" or "araklyl group" or "araklyl group" are hydrocarbon atom and an iddine atom, a dipenylmetryl group, a lower atomy group, a lower atomy group or a present group, a lower atomy group or a present group or a prophypropy group, a lower atomy group or a present group or a prophypropy group.

[0014] Of the compounds represented by the general formula (1) according to the present invention, those in which Y is -CH₂O-and R₃ is a lower alkyl group having 1 to 4 carbon atoms, which are represented by the following general formula (1c):

$$\begin{array}{c} R_1 \\ \\ R_2 \end{array} \\ \begin{array}{c} X \\ \\ CH_2 \end{array} \\ \begin{array}{c} NH_2 \\ \\ CPO(OR_0)_2 \end{array} \\ \begin{array}{c} (1c) \\ \end{array}$$

(wherein R_6 is a lower alkyl group having 1 to 4 carbon atoms; and R_1 , R_2 , R_3 , R_4 , X and n are as defined above) can be produced through the following pathway:

Synthetic pathway 1

15

20

25

50

55

[0015] In the synthetic pathway 1, the compound represented by the following general formula (3):

(wherein R_7 is a lower alkyl group having 1 to 4 carbon atoms; and R_1 , R_2 , R_3 , R_4 , X and n are as defined above) can be obtained by reacting a compound represented by the following general formula (2):

$$P_{i}$$
 P_{i}
 P_{i

(wherein A is a chlorine atom, a bromine atom or an iodine atom, and R₁, R₂, R₃, X and n are as defined above) with a compound represented by the following general formula (8):

$$R_4 \longrightarrow CO_2R_7$$
 (8)

(wherein R4 and R7 are as defined above) in the presence of a base (Step A).

[0016] This reaction may use mehanol, ethanol, 1.4-dioxane, dmethysulfoxide (DMSO), N.N-dimethysformamide (DMF) or tetrahydrofurano (THF) as a reaction solvent and may be carried out at a reaction temperature of 0°C to reflux temperature, preferably 80°C to 100°C, and in the presence of an inorganic base such as sodium hydride, potassium in dependent of the control of the contro

(wherein R_1 , R_2 , R_3 , R_4 , R_7 , X and n are as defined above) can be obtained by hydrolysis of the compound of the general formula (3) (Step B).

[0018] This reaction may use methanol, ethanol, 1,4-dioxane, DMF or DMSO as a reaction solvent and may be carried out at a reaction temperature of 0°C to reflux temperature and in the presence of a base, such as aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide. Preferably, the compound of the general formula (3) is reacted with potassium hydroxide in an ethanol solvent at 50°C.

[0019] In the synthetic pathway 1, the compound represented by the following general formula (5):

$$\begin{array}{c} R_{+} \\ \\ \\ R_{2} \end{array} \begin{array}{c} X \\ \\ \\ \\ \end{array} \begin{array}{c} R_{0} \\ \\ \\ \end{array} \begin{array}{c} NHCO_{2}R_{0} \\ \\ \\ CO_{2}R_{7} \end{array} \begin{array}{c} (5) \\ \\ \\ \end{array} \begin{array}{c} ($$

(wherein R_8 is a lower alkyl group having 1 to 4 carbon atoms; and R_1 , R_2 , R_3 , R_4 , R_5 , R_8 and R_1 are as defined above) can be obtained by allowing the compound of the general formula (4) to undergo Curtis rearrangement (Step C). [0202] This reaction can be carried out by using common techniques for converting a carboxyl group into a carbamate.

[0020] This reaction can be carried out by using common techniques for converting a carboxyl group into a carbamate. One such technique involves the use of ethy ich orocarbonate and ANAs, Another preferred technique involves healing diphenylphosphoryl azide (IPPA) in a benzene or tolurene solvent in the presence of a base such as tricitylamine while stirring the mixture. followed by addition of a lower alcohol such as methanol, othanol, propanol, isopropanol, butanol and the further heating while stirring the mixture. Alternatively, the reaction may use only a lower alcohol as a reaction solvent and is carried out by heating and stirring the mixture and, preferably, by heat-reflixation the mixture.

[0021] In the synthetic pathway 1, the compound represented by the following general formula (6):

5

15

25

90

$$R_1$$
 R_2
 $(CH_2)n$
 $NHCO_2R_3$
 (G)

(wherein R₁, R₂, R₃, R₄, R₈, X and n are as defined above) can be obtained by the reduction of the compound of the general formula (5) (Step D).

[0022] This reaction may use an alkylborane derivative such as borane (BH₂) and 9 borableycig(3.3.1]nonano (9-BBN) and a metal hydride complex such as dissolutylaluminum hydride ((BB)₂AH), sodium borohydride (NaBH₂) and lithium aluminum hydride (L/AH₂), proferably lithium borohydride (LBH₂), and uses THF. 1.4-doxane, ethanol or methanol as a reaction solvent. The reaction may typically be carried out at a reaction temperature of 0°C to reflux temperature, preferably at room temperature.

[0023] In the synthetic pathway 1, the compound represented by the following general formula (7):

$$\overset{\mathsf{R}_1}{\underset{\mathsf{R}_2}{\bigvee}}\overset{\mathsf{X}}{\underset{\mathsf{R}_2}{\bigvee}}\overset{\mathsf{R}_3}{\underset{\mathsf{CH}_2)_n}{\bigvee}}\overset{\mathsf{NHCO}_2\mathsf{R}_3}{\underset{\mathsf{R}_4}{\bigvee}}\overset{(7)}{\underset{\mathsf{CPO}(\mathsf{OR}_6)_2}{\bigvee}}$$

(wherein R₁, R₂, R₃, R₄, R₆, R₈, X and n are as defined above) can be obtained by reacting the compound of the general formula (6) with a compound represented by the following general formula (9):

$$P(OR_6)_3$$
 . (9)

(wherein Re is as described above) (Step E).

5

20

25

30

50

[0024] This reaction may be carried out without any solvent or by using methylene chloride, chloroform, acetonitrile, ethyl acetate, THF or ether as a dilution solvent and may be carried out at a reaction temperature of 0°C to room temperature and in the presence of carbon tetrabromide and prindine.

[0025] In the synthetic pathway 1, the compound of the general formula (1c) can be obtained by acidolysis or hydrolysis of the compound of the general formula (7) (Step 5)

drolysis of the compound of the general formula (7) (Step F).

[0026] This reaction may be carried out in an inorganic acid or organic acid such as acetic acid, hydrochloric acid,

hydrobromic acid, methanesulfonic acid and trifluoroacetic acid or in a mixture with an organic solvent such as methanol, ethanol, THF, 1,4-doxane and ethy acetate and may be carried out at a reaction temperature of 0°C to room temperature. Alternatively, the reaction may use methanol, ethanol, 1,4-dioxane, DMSO, DMF or THF as a reaction solvent and may be carried out at a reaction temperature of 0°C to reflux temperature, preferably 80°C to 100°C, and in the presence of a base such as an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide. [0027] Of the compounds represented by the general formula (1), those in which R_k is a hydrogen atom or a hy-

[0027] Of the compounds represented by the general formula (1), those in which R₄ is a hydrogen atom or a hydroxymethyl group, R₅ is a lower alkyl group having 1 to 4 carbon atoms and Y is - CH₂O and which are represented by the following general formula (1d):

$$\begin{array}{c} R_1 \\ \\ R_2 \end{array} \begin{array}{c} X \\ \\ (CH_2)n \end{array} \begin{array}{c} NH_2 \\ \\ OPO\left(OP_0\right)_2 \end{array} \begin{array}{c} (1d) \\ \end{array}$$

(wherein R_g is a hydrogen atom or a hydroxymethyl group; and R₁, R₂, R₃, R₆, X and n are as defined above) can be produced through the following pathway:

Synthetic pathway 2

[0028] In the synthetic pathway 2, the compound represented by the following general formula (10):

(wherein Boc is I-butoxycarbonyl group; and R₁, R₂, R₃, R₇, X and n are as defined above) can be obtained by reacting the compound of the general formula (2) with a compound represented by the following general formula (.13):

(wherein R- and Boc are as defined above) in the presence of a base (Step G).

[0029] This reaction may use methanol, ethanol, 1,4-dioxane, DMSO, DMF or THF as a reaction solvent and may be carried out at a reaction temperature of 0°C to reflux temperature, preferably 80°C to 100°C, and in the presence of an inorgenic base such as sodium hydride, potassium hydride, sodium alkoxide, potassium alkoxide, potassium carbonate and sodium carbonate.

[0030] In the synthetic pathway 2, the compound represented by the following general formula (11):

$$R_1$$
 X
 X
 R_3
 $(CH_2)n$
 R_6
 OH
 (11)

(wherein R₁, R₂, R₃, R₉, X, Boc and n are as defined above) can be obtained by reduction of the compound of the general formula (10) (Step H).

[0031] This reaction may use an alkylborane derivative such as BH₀ and 9-BBN and a metal hydride complex such as (IBu)_AHH, NaBH₄ and LWH₄, preferably LiBH₄, and uses THF, 1-4-dioxane, ethanol or methanol as a reaction solvent. The reaction may be carried out at a reaction temperature of 0°C to reflux temperature, preferably at froom

25

35

45

temperature.

5

10

15

25

30

35

50

[0032] In the synthetic pathway 2, the compound represented by the following general formula (12):

$$\begin{array}{c} R_1 \\ \\ R_2 \end{array} \\ \begin{array}{c} X \\ \\ CH_2 \end{array}) n \begin{array}{c} NHBoc \\ R_9 \\ OPO(OR_9)_2 \end{array} \\ (12)$$

(wherein R₁, R₂, R₃, R₆, R₉, X, Boc and n are as defined above) can be obtained by reacting the compound of the general formula (11) with a compound represented by the following general formula (9):

$$P(OR_6)_3$$
 (9)

(wherein Rg is as described above) (Step I).

[0033] This reaction may be carried out without any solvent or by using methylene chloride, chloroform, acetonitrile, ethyl acetate, The or either as a solvent and may be carried out at a reaction temperature of 0°C to room temperature and in the presence of carbon tetrabromide and pyridine.

[0034] In the synthetic pathway 2, the compound of the general formula (1d) can be obtained by acidolysis of the compound of the general formula (12) (Step J).

[0035] This reaction may be carried out in an inorganic acid or organic acid such as acetic acid, hydrochloric acid, hydrobromic acid, methanesulfonic acid and trifluoroacetic acid or in a mixture with an organic solvent such as methanol, ethanol, THF, 1.4-dioxane and ethyl acetate and may be carried out at a reaction temperature of 0°C to room temperature.

[0036] Of the compounds represented by the general formula (1), those in which Y is -CH=CH- or -CH₂-CH₂- and H_n is a lower alkyl group, which are represented by the following general formula (1e):

(wherein W is -CH=CH- or -CH₂·CH₂·: and R₁, R₂, R₃, R₄, R₆, X and n are as defined above) can be produced through the following synthetic pathway 3:

Synthetic pathway 3

[0037] In the synthetic pathway 3, the compound represented by the following general formula (14):

$$\begin{array}{c|c} R & X & X & NHCO_2R_0 \\ \hline & & & CH_2 \\ \hline & & & CHO \end{array}$$

(wherein R₁, R₂, R₃, R₄, R₆, X and n are as defined above) can be obtained by oxidation of the compound of the general formula (6) (Step K).

[0038] This reaction may be carried out using a common technique for oxidizing alcohol into aldehyde. Among agents used in these techniques are chromium oxide/pyridine complexes, such as pyridinium chlorochromate and pyridinium chlorochromate and pyridinium chlorochromate and pyridinium chloromate, and metal oxidizing agents, such as chromium oxide, silver carbonate and manganese dioxide. DMSO oxidation using DMSO activating agents, such as oxally chloride, anhydrous trifluoroacetic acid, enhydrous acetic acid, DCC and sulfur trioxide/pyridine complex, may also be employed.

[0039] In the synthetic pathway 3, the compound represented by the following general formula (15):

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_5
 R_5
 R_6
 R_6

(wherein R_1 , R_2 , R_3 , R_4 , R_6 , R_8 , X and n are as defined above) can be obtained by reacting the compound of the general formula (14) with a compound represented by the following general formula (19):

1602660A1 I >

20

(wherein Rs are as defined above) in the presence of a base (Step L).

[0040] This reaction may use THF, ether or 1,4-dioxane as a reaction solvent and can be carried out at a reaction temperature of -78°C to room temperature and in the presence of sodium hydride, potassium hydride, sodium alkoxide or potassium alkoxide. Potareably n-bulvilishium.

[0041] In the synthetic pathway 3, the compound represented by the following general formula (16):

$$R_1$$
 X
 R_3
 R_4
 R_4
 R_4
 R_4
 R_4
 R_4
 R_5
 R_6
 R_6

5 (wherein R₁, R₂, R₃, R₄, R₈, X and n are as defined above) can be obtained by acidolysis or hydrolysis of the compound of the general formula (15) (Siep M).

[0042] This reaction may be carried out in an inorganic acid or organic acid such as acetic acid, hydrochloric acid, hydrochloric acid, hydrochloric acid, hydrochloric acid, methenseulfonic acid and trifluoroacetic acid or in a mixture with an organic solvent such as methanol, ethanol, THF, 1.4-dioxane and ethyl acctate and is proferably carried out at a neaction temperature of 0°C to room temperature. Alternatively, the reaction may use methanol, ethanol, 1.4-dioxane, DMSO, DMF or THF as a reaction solvent and may be carried out at a reaction temperature of PC to reflux temperature, preferably 80°C to 10°C, and in the presence of a base such as an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide.

[0043] in the synthetic pathway 3, the compound represented by the following general formula (17):

$$\begin{array}{c|c} R_1 & \text{NHCO}_2R_6 \\ \hline R_2 & \text{CH}_2)n & R_4 \\ \hline PO(OR_6)_2 \end{array}$$

(wherein R₁, R₂, R₃, R₄, R₆, R₈, X and n are as defined above) can be obtained by reduction of the compound of the general formula (15) (Step N).

[0044] This reaction can be carried out in the presence of a reduction catalyst, such as palladium carbon, platinum carbon, platinum oxide, modium carbon and ruthenium carbon, and in such a solvent as ethanol, methanol, THF, DMF and ethyl acetate and is carried out at room temperature under a hydrogen pressure of atmospheric or higher pressure. [0045] In the synthetic pathway 3, the compound represented by the following general formula (18):

(wherein R₁, R₂, R₃, R₄, R₆, X and n are as defined above) can be obtained by acidolysis or hydrolysis of the compound of the general formula (17) (Step O).

[0046] This reaction may be carried out in an inorganic acid or organic acid such as acetic acid, hydrochloric acid hydrobromic acid, methanesulfonic acid and trifluoroacetic acid or in a midure with an organic solvent such as methanol, ethanol, THF, 1,4-dioxane and ethyl acetate and may be carried out at a reaction temperature of 0°C to room temperature. Alternatively, the reaction may use methanol, ethanol, 1,4-dioxane, DMSO, DMF or THF as a reaction solvent and may be carried out at a reaction temperature of 0°C to reflux temperature, preferably 80°C to 100°C, and in the presence of a base such as an adueous solution of sodium hydroxide, polassium hydroxide or Utihium hydroxide (1047). The compound of the general formula (16) can also be obtained by reduction of the compound of the general formula (16) can also be obtained by reduction of the compound of the general formula (16) (16) (16) on also be obtained by reduction of the compound of the general formula (16) (16) (16) (16) in may be carried out in the presence of a reduction catalysts, such as

25

30

palladium carbon, platinum carbon, platinum oxide, rhodium carbon and ruthenium carbon, and in such a solvent as ethanol, methanol, THE, DMF and ethyl acetate and may be carried out under a hydrogen pressure of atmospheric or higher pressure at room temperature.

[0048] Of the compounds represented by the general formula (1), those in which Y is -CH=CF- or -CH₂CHF- and R₅ is a lower alkyl group having 1 to 4 carbon atoms, which are represented by the following general formula (II):

$$\begin{array}{c} R_1 \\ \\ \end{array} \begin{array}{c} X \\ \\ \end{array} \begin{array}{c} R_2 \\ \end{array} \begin{array}{c} R_2 \\ \\ \end{array} \begin{array}{c} (If) \\ \\ Q \\ PO(OR_0)_2 \end{array}$$

15 (wherein Q is -CH=CF- or -CH₂CHF-; and R₁, R₂, R₃, R₄, R₆, X and n are as defined above) can be produced through the following synthetic pathway 4:

[0049] In the synthetic pathway 4, the compound represented by the following general formula (20):

$$R_1$$
 X
 R_2
 $(CH_2)n$
 R_4
 F
 PO/OR_2

(wherein R₁, R₂, R₃, R₄, R₆, R₈, X and n are as defined above) can be obtained by reacting the compound of the general formula (14) with the compound represented by the following general formula (24):

$$FBr_2CPO(OR_6)_2$$
 (24)

(wherein R₆ is as defined above) in the presence of chlorotrimethylsilane (Step Q).

10

20

25

45

50

[0050] This reaction may use n-butyllithium or lithium diisopropylamide as a base and 1,4-dioxane, ether or, preferably, THF as a solvent and may be carried out at -78°C to 0°C.

[0051] In the synthetic pathway 4, the compound represented by the following general formula (21):

(wherein R₁, R₂, R₃, R₄, R₆, X and n are as defined above) can be obtained by acidolysis or hydrolysis of the compound of the general formula (20) (Step R).

[0052] This reaction may be carried out in an inorganic acid or organic acid such as acetic acid, hydrochloric acid, and hydrochloric acid, and acid or in a mixture with an organic solvent such as methanol, ethanol, T-HF, 1.4-doxane and ethyl acetate and may be carried out at a reaction temporature of 0°C to room temperature. Alternatively, the reaction may use methanol, ethanol, 1.4-doxane, DMSO, DMF or THF as a reaction solvent and may be cerried out at a reaction temperature of 0°C to reflux temperature, preferable 90°C to 10°C°C, and in the presence of a base such as an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide. 100531 | the synthetic bashway 4, the compound represented by the following centeral formula (25°C).

(wherein R₁, R₂, R₃, R₄, R₆, R₈, X and n are as defined above) can be obtained by reduction of the compound of the general formula (20) (Step S).

[0054] This reaction can be carried out in the presence of a reduction catalyst, such as palladium carbon, platinum carbon, platinum carbon, platinum oxide, thodium carbon and ruthenium carbon, and in such a solvent as ethanol, methanol, THF, DMF and ethyla cardate and may be carried out at room temperature under a hydrogen pressure of atmospheric or higher pressure.

[0055] In the synthetic pathway 4, the compound represented by the following general formula (23):

(wherein R₁, R₂, R₃, R₄, R₆, X and n are as defined above) can be obtained by reduction of the compound of the general formula (21) (Step T) or actiohysis or hydrohysis of the compound of the general formula (22) (Step U).

[0056] This reduction process can be carried out in the presence of a reduction catalyst, such as palledium carbon, platinum carbon, and thyly acceptate and may be carried out at room temperature of the platinum carbon carbon

5

10

25

30

preferably 80°C to 100°C, and in the presence of a base such as an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide.

[0057] Of the compounds represented by the general formula (1), those in which R_B is a lower alkyl group having 1 to 4 carbon atoms and Y is -CH₂-, -CH₂CH₂-, -CH₂CHF- or -CH₂CF₂-, which are represented by the following general formula (10):

(wherein T is -CH₂-, -CH₂CH₂-, -CH₂CHF- or -CH₂CF₂-; and R₁, R₂, R₃, R₄, R₆, X and n are as defined above) can be produced through the following synthetic pathway 5:

Synthetic pathway 5

10

25

30

$$\begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_2 \\ R_3 \\ R_4 \\ R_4 \\ R_4 \\ R_4 \\ R_4 \\ R_5 \\ R_5 \\ R_6 \\ R_7 \\ R_8 \\ R_9 \\$$

[0058] In the synthetic pathway 5, the compound represented by the following general formula (25):

$$\begin{array}{c|c} R & & \text{NHCO}_2R_6 \\ \hline & R_3 & \text{NHCO}_2R_6 \\ \hline & (CH_2)n & & \\ \end{array} (25)$$

45 (wherein U is an iodine atom, a bromine atom, a methanesulfonyloxy group or a trifluoromethanesulfonyloxy group; and R₁, R₂, R₃, R₄, R₈, X and n are as defined above) can be produced from the compound of the general formula (6) (Step V).

[0059] For the introduction of methanesulfonyloxy group or trifluoromethanesulfonyloxy group, an organic solvent such as methylene chloride, chloroform, othyl acetate and THF is used along with a base such as triethylamine, discopropilethylamine, pyridine, lutidine and 2.4,6-timethylayridine, and the compound of the general formula (e) is preferably reacted with methanesulfornyl chloride or anhydrous trifluoromethanesulfonate 4.46°C to room temperature. [0060] The bromnatiod or locited compound is synthesized by reacting the methanesulfonyloxylated product obtained in the above process with software productions, sodium incide, potassium bromide, potassium incide, lithium bromide or it lithium indicide at room temperature to reflux temperature in a solvent such as followers, because or THF.

[0061] In the synthetic pathway 5, the compound represented by the following general formula (26-1):

(wherein R₁, R₂, R₃, R₄, R₆, R₆, X and n are as defined above) can be obtained by reacting the compound of the general formula (25) with a compound represented by the following general formula (27):

$$PO(OR_e)_2$$
 (27)

(wherein R₆ is as defined above) (Step W-1).

20

25

30

[0062] This reaction is preferably carried out in the absence of solvent and using the compound of the general formula (27) as a solvent and is preferably carried out at 100 to 150°C or at reflux temperature.

[0063] In the synthetic pathway 5, the compound represented by the following general formula (26-2):

(wherein V is a fluorinated or unfluorinated methylene group; and R_1 , R_2 , R_3 , R_4 , R_6 , R_8 , X and n are as defined above) can be obtained by reacting the compound of the general formula (25) with a compound represented by the following general formula (28):

$$HVPO(OR_6)_2$$
 (28)

(wherein R_a and V are as defined above) in the presence of a base (Step W-2).

[0064] This reaction may be carried out in the presence of such a base as Ithium disopropylamide, Ithium hexamethyldisilazide and Ithium tetramethylpiperidide in such a reaction solvent as THF and 1,4-dioxane and may be carried out at a reaction temperature of -78°C to room temperature.

[0065] In the synthetic pathway 5, the compound of the general formula (1g) can be obtained by acidolysis or hydrolysis of the compound of the general formula (26-1) or (26-2) (Step X).

[0066] This reaction may be carried out in an inorganic acid or organic acid such as acetic acid, hydrochloric acid, hydrobromic acid, methanesulfonic acid and trifluoroacetic acid or in a moture with an organic solvent such as methanol, ethanol, THF, 1,4-dioxane and ethyl acetale and may be carried out at a reaction temperature of 0°C to room temperature. Alternatively, the reaction may use methanol, ethanol, 1,4-dioxane, DMSO, DMF or THF as a reaction solvent and may be carried out at a reaction temperature of 0°C to refulx temperature, orgenably 60°C to 10°C, and in the presence of a base such as an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide.

[0067] Of the compounds represented by the general formula (1), those in which R₂ is a lower alkyl group having 1 to 4 carbon atoms and Y is CH(CH)CFC₂ and which are represented by the following general formula (1):

$$R_1$$
 R_2
 $(CH_2)n$
 R_3
 $(CH_2)n$
 R_4
 (Th)
 CF_2
 $PO(IOR.).$

(wherein B_1 , B_2 , B_3 , B_4 , B_5 , X and R are as defined above) can be synthesized through the following synthetic pathway 6:

Synthetic pathway 6

15

20

25

30

50

[0068] In the synthetic pathway 6, the compound represented by the following general formula (29):

$$R_1$$
 R_2
 $(CH_2)n$
 $(CH_2)n$
 (CF_2)
 $(CH_3)n$
 (CF_2)
 $(CH_3)n$
 (CF_3)
 $(CH_3)n$
 $(CH_3$

(wherein B₁, B₂, B₃, B₄, B₆, B₆, X and n are as defined above) can be obtained by reacting the compound of the general formula (14) with a compound represented by the following general formula (30):

$$HCF_2PO(OR_6)_2$$
 (30)

(wherein Rs is as defined above) in the presence of a base (Step Y).

[0069] This reaction may use n-butylithium, preferably lithium diisopropylamide, as a base and 1,4-dioxane or ether, preferably THF, as a solvent and may be carried out at -78°C to 0°C.

[0070] In the synthetic pathway 6, the compound of the general formula (1h) can be obtained by acidolysis or hydrolysis of the compound of the general formula (29) (Step Z).

[0071] This reaction may be carried out in an inorganic acid or organic acid such as acetic acid, hydrochloric acid, hydrochloric acid, methanesulfonic acid and trifluoracetic acid or in a mixture with an organic solvent such as methanol, ethanol, THF, 1.4-dioxane and ethyl acetate and may be carried out at a reaction temperature of 0°C to room temperature. Alternatively, the reaction may use methanol, ethanol, 1.4-dioxane, DMSQ, DMF or THF as a reaction selvent and may be carried out at a reaction temperature of 0°C to reflux temperature, preferably 80°C to 10°C, and in the presence of a base such as an aqueous solution of sodium hydroxide, potassium hydroxide or lithium hydroxide. [0072]

Of the compounds represented by the general formula (1), those in which R_g is hydrogen and which are represented by the following general formula (1):

(wherein R₁, R₂, R₃, R₄, X, Y and n are as defined above) can be obtained by acidolysis or treatment with trimethylsillylibromide or trimethylsillyl iodide of the compound represented by the following general formula (31):

$$\begin{array}{c} R_1 \\ \\ R_2 \end{array} \begin{array}{c} R_3 \\ \\ (CH_2)n \end{array} \begin{array}{c} NHR_{10} \\ \\ PO(OR_0)_2 \end{array} (31)$$

(wherein R_{10} is a hydrogen atom or a lower alkoxycarbonyl group having 1 to 4 carbon atoms; and R_1 , R_2 , R_3 , R_4 , R_6 , X, Y and R_1 are as defined above)

[0073] The acidolysis process is preferably carried out in an inorganic acid such as hydrochloric acid and hydrobromic acid or in a mixture with an organic acid such as methanol and othanol and by preferably carried out at reflux temperature [0074]. Alternatively, the recultion may use acetonitrile or methylene chloride as a sowent and the compound of the general formula (31) may be treated with trimethylsily bromide or trimethylsilyl iodide, or the combination of trimethylsilyl chloride and sodium bromide or sodium iodide. In such a case; the reaction is preferably carried out at 0°C to room temperature.

[0075] The compounds of the respective general formulae in which X is SO or SO₂ may also be obtained by oxidation of the corresponding compounds in which X is S.

[0076] Such a reaction may use 1.4-dioxane, DMSO, DMF, THF, methylene chloride or chloroform as a reaction solvent and potassium permanganate. m-chlorobenziola acid or aqueous hydrogen peroxide as an oxidizing agent and is preferably carried out at 0°C to reflux temperature, preferably at room temperature.

Examples

[0077] The present invention will now be described with reference to specific examples, which are not intended to limit the scope of the invention in any way.

<Reference Example 1>

2-chloro-4-[(3-trifluoromethyl)phenylthio]benzaldehyde

[0078]

30

[0079] To a DMF solution (20mL) of 2-chloro-4-fluorobenzaldehyde(1.15g) and 3-(trifluoromethyl)thiophenol(1.33g), potassium carbonate (2.78g) was added and the mixture was stirred for 1 hour at 120°C. Subsequently, the reaction mixture was poured into water and was extracted with ethyl acetate. The extract was washed sequentially with water and a saturated aqueous solution of sodium chloride and the organic phase was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the resulting residue was purified on a silica gle column chromatography (hexane : ethyl acetate = 10 : 17. his cave the desired product as a pale vellow oil (1.98b).

<Reference Examples 2 through 57>

O [0080] In a similar manner to Reference Example 1, different thiophenols and phenols were used to synthesize the different compounds shown in Table 1 below.

Table 1

R, å x	J.R
J.	

eference xample:		R2	Rз	R4	x	Reference Examples		R2	R9	B4	×
2	CI	o-CI	н	CI	0	30	I-PrO	o-IPr	н	CI	C
3	t-Bu	н	н	н	0	31 -	I-PrO	o-IPr	н	н	c
4	Me	н	н	н	0	32	PhO	н	н	· Ct	c
5	I-Pr	o-l-Pr	н	CI	0	33	PhCH ₂ O	· H =	н	н	c
6	C ₈ H ₁₁	н	н	H	0	34	PhCH ₂ O	н	н	Br	C
7	C ₇ H ₁₈	н	н	H	0	35	PhCH ₂ O	н	Ĥ	SMe	C
8	CF ₃	н	н	н	Ó	36	PhCH ₂ O	н	н	Me	C
9	CF,	н	оме	н	0	37	PhCH ₂ O	н	н	Bř	
10	CF ₃	н	н	OMe	0	38	PhCH ₂ O	c-CI -	н	CI	C
11	CF,	н	н	OCH ₂ Ph	0	39	PhCH ₂ O	н	н	CF ₃	c
12	CF ₃	н	CF,	н	0	40	PhCH ₂ O	н	н	Ph	c
13	CF ₃	н	Н	CF ₃	0	41	PhCH ₂ O	c-PhCH ₂ O	н	a	
14	CF2	o-CF ₃	н	н	. 0	42	PhCH ₂ O	o-PhCH ₂ O	н	н	С
15	CF ₈	o-CF ₃	н	а	0	43	PhCH ₂ O	c-PhCH ₂ O	н	l-Pr	Q
16	CF ₃	b-CI	н	н	0	44	MeO	o-CF ₂	н	н	
17	CF ₂	a-CI	н	н	0	45	MoS	н	н	н	٥
18	CF ₃	d-Ct	н	н	0	46	PhCH ₂ S	н	н	н	0
19	CF ₃	C-MeO	н	Cŧ	0	47	PhCH ₂ S	н	н	a	H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20	Ph(CH ₂) ₂	н	н	CI	0	48	a	o-CI	н	HCH BY SME ME COC. P. P. COH. P. HHHCHCHCHC. CO. H. C. CO. H. C.	8
21	Ph(CH ₂) _a	н	н	CF ₉	0	49	CF ₃	c-CF _a	н	а	s
22	Ph(CH ₂) ₂	o-CF	н	н	0	50	CF ₃	c-CF ₃	н	н	s
23	Ph(CH ₂) ₂	o-CF,	н	ci	0	51	CF ₃	н	н	H	\$
24	Ph(CH ₂) ₂ c	-Ph(CH ₂) ₂	н	н	0	52	CF,	н	н	CF ₃	s
25	Ph(CH ₂) ₂ c	-Ph(CH ₂) ₂	н	CF ₃	0	53	MeO	н	н	CI	s
26	Ph(CH ₂) ₂ c	-Ph(CH ₂) ₂	н	a	0	54	MeO	H	н -	н	S
27	CF ₃	o-NO ₂	н	н	0	55	MeO	н	н	CF ₃	s
28	CF,	н	a	H	0	58	PhCH ₂ O	H	н	a	0
29	CF,	н	н	Cl	٥	57	PhCH ₂ O	н	н	i-Pr	_

<Reference Example 58>

2-fluoro-4-[(3-trifluoromethyl)phenoxy]benzaldehyde

0081]

[0082] 3-(trifluoromethyl)phenylboric acid (1.03g) and 2-fluoro-4-hydroxybenzaldehyde (760mg) were dissolved in

metrylene chloride (20mL). While the mixture was stirred, copper acetate (985mg), molecular seve 4A (800mg) and tichtilyamine (3 f75mL) were added to the mixture. An equal amount of copper acetate was added after 6 hours and after 24 hours. After 48 hours of stirring, the insoluble materials were removed by filtration and the filtrate was poured in water and was excreted with ethyl acetate. The extract was washed sequentially with water and a saturated equocus solution of solution chloride, and the organic phase was dried over enahydrous magnesium sulfate. The solvent was removed under reduced pressure and the resulting residue was purified on a slica gel column chromatography (hoxano: chlyll acetate 7: 1 then 2: 1). This gave the desired product as a pale yellow oil (285mg).

<Reference Example 59>

4-f(3-benzyloxy)phenoxyl-2-fluorobenzaldehyde

[0083]

10

20

[0084] In a similar manner to Reference Example 58, 3-benzyloxyphenylboric acid and 2-fluoro-4-hydroxybenzaldehyde were used to obtain the desired product as a colorless oil.

<Reference Example 60>

Ethyl 2'-chloro-4'-[(3-trifluoromethyl)phenylthio]cinnamate

30 [0085]

35

[0086]. At 0°C and under a stream of argon gas, 60% sodium hydride (272mg) was added to a THF solution (30mL) of erbyl dichtylhosphoneactate (1.58mL). The mixture was stirred for 30ml and a THF solution (15mL) of the compound of Reference Example 1 (1.98g) was added dropwise. The mixture was stirred for 2 hours while kept at the same temperature. This was followed by addition of water and extraction with erbyl acetate. The extract was washed sequentially with water and a saturated equeous solution of sodium chloride, and the organic phase was drid over enhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was purified on a silica elicitory in the companion of the control of the cont

<Reference Examples 61 through 118>

[0087] In a similar manner to Reference Example 60, the compounds of Reference Examples 2 through 59 were used to synthesize the compounds shown in Table 2 below.

Table 2

	Referei Examp		R2	R3	R4	×	Reference Example:		R2	R3	R4	X
10	. 81	CI	o-Cl	н	CI	0	90	I-PrO	c-iPr	н	CI	0
	62	t-Bu	н	н	н	0	91	I-PrO	c-IPr	н	н	0
	63	Mo	H,	н	н	0	92	PhO	н .	н	CI	0
	64	i-Pr	c-I-Pr	H	a	٥	.93	PhCH ₂ O	н	н	H	0
5	65	C ₈ H ₁₁	н	н	н	0	94	PhCH ₂ O	н	н	Br	0
	68	C7H15	н	н	н	0	95	PhCH ₂ O	н	н	SMe	0
	67	CF,	н	н	н	0	96	PhCH ₂ O	н	н :	Me	o
	68	CF,	н	ОМе	н	0	97	PhCH ₂ O	н	н	Ét	0
	69	CF ₅	н	н	OMe	0	98	PhCH ₂ O	c-CI	н	CI	0
,	70	CF ₅	н	н	OCH ₂ Ph	0	99	PhCH ₂ O	н	н	CF ₈	0
	71	CF ₃	н	CF ₂	н	0	100	PhCH ₂ O	н	н	Ph	0
	72	CF,	H	н	CF.	0	101	PhCH ₂ O	c-PhCH ₂ O	н	CI	0
	73	CF,	o-CF _a	н	н	0	102:	PhCH ₂ O	o-PhCH ₂ O	н	н	0
5	74	CF,	c-CF _s	н	CI	o	103	PhCH ₂ O	c-PhCH ₂ O	н	i-Pr	0
	75	CF ₃	b-CI	н	н	0	104	MeO	o-CF ₃	н	н	0
	76	CF3	a-CI	н	н	0	105	MeS	н	н	н	0
	77	CF3	d-CI	н	н	0	108	PhCH ₂ S	·H	н	н	0
)	78	CF,	c-MeO	H	а	o	107	PhCH ₂ S	н	н	CI	0
	79	Ph(CH ₂) ₂	В	н	CI	0	108	CI	o-CI	н	н	8
	80	Ph(CH ₂) ₂	н	н	CF,	0	109	CF,	o-CF _a	н	CI	s
	81	Ph(CH ₂) ₂	c-CFs	н	н	0	110	CF ₃	c-CF ₂	н	н	8
5	82	Ph(CH ₂) ₂	o-CF ₃	н	CI	0	111	CF ₅	H	н :	н	s
	83	Ph(CH ₂) ₂	o-Ph(CH ₂) ₂	н	н	0	112	CF,	н.	н	CF,	S
	84		c-Ph(CH ₂) ₂	н	CF.	0	113	MeO	н	. н	cı	s
	85	Ph(CH ₂) ₂	c-Ph(CH ₂) ₂		CI	0	114	MeO	н	н.	H	s
)	86	CF ₃	H	н	F	0	115	MeO	' н	н	CF ₅	S
	87	PhCH ₂ O	н	н	F	0	116	CF ₃	c-NO ₂	н.	н	0
	88	CF ₃	н	CI	н	0	117	PhCH ₂ O	н	н	a	0
	89	CF,	н	H	CI	0	118	PhCH ₂ O	н	н	I-Pr	Ó

<Reference Example 119>

Methyl 4'-(3-ethylphenoxy)cinnamate

[8800]

[0089] To a DMF solution (50mL) of 3-ethylphenol (1.13g) and methyl 4-fluorocinnamate (834mg), polassium carbonate (1.92g) was added and the mixture was stirred for 8 hours at 140°C. The reaction mixture was poured into water and was extracted with ethyl acetate. The extract was washed sequentially with water and a saturated aqueous solution of sodium chloride and the organic phase was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the resulting residue was purified on a silica gel column chromatography (hexane: ethyl acotate = 30 1.1). This gave the desired product as a yellow off (540mg).

<Reference Example 120>

Methyl 4'-(3-isobutylphenoxy)cinnamate

[0090]

15

20 [0091] To a DMF solution (10mL) of 3-isobutylphonol (45 Img) and methyl 4:fluorocinnamate (64 Img), potassium carbonate (622mg) was added and the mixture was sirred for 8 hours at 14 orc. The reaction mixture was power into water and was extracted with ethyl sociatia. The extract was washed sequentially with water and a saturated aqueous solution of sodium chloride and the organic phase was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the resulting residue was purified on a silica gel column chromatography (hexane: ethyl sociate = 90.11. This gave the desired product as a yellow of (278 mg.).

<Reference Example 121>

Ethyl 4'-[(3-phenoxymethyl)phenoxy]cinnamate

100921

30

25

40 (1993) The compound of Reference Example 63 (2.82g) was dissolved in Internehiorocorbon (60mL). To this excitors, N-bromosculonimide (2.3 g) was added and the mixture was eitmed while headed and exposed to light. After 24 all-tours, the solvent was removed under reduced pressure and the resulting residue was extracted with eithy acertae. The extract was washed sequentially with water and a saturated equous solution for sodium chorided and the organic phase was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the resulting residue was building on a silica gol column chromatography (hoxane: ethyl acetate 6 : 1). This gave ethyl 45(-bromomethyl) phenoxyjolnamatic as a yellow oil (1.30g). The resultant bromated product (1.24g) was diseased in DMF (25th). To this solution, phenol (380mg) and potassium carbonate (50mg) were added and the mixture was sturred for 3 hours at 60°C. The reaction thicknew was pour at 60°C. The reaction thicknew was poured into water and was extracted with eithyl acetate. The extract was washed sequentially with water and a saturated aquoous solution of sodium chloride and the organic phase was dried on a silica gol column chromatography (hexane: ethyl acetate = 4 : 1). This gave the desired product as a cobrless oil (1.30d).

<Reference Example 122>

Ethyl 2'-chloro-4'-(3-trifluoromethylphenylthio)dihydrocinnamate

[0094]

10

20

30

50

[0095] The compound of Reference Example 60 (1.72g) was dissolved in athanol (70mL). While the solution was stirred at 0°C, bismuth chloride (703mg) was added in Subsequently, sodium borohydride (673mg) was added in small portions and the mixture was stirred for 1 hour at this temperature and 3 hours at room temperature, ice water was added and the crystalized insoluble inorganic residue was removed by filtration through Cellia. The filtrate was extracted with eithyl acetate and the extract was washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to give the desired product as a colorless of (1.55g) (Process A).

<Reference Example 123>

Methyl 4'-(3-ethylphenoxy)dihydrocinnamate

25 [0096]

[0097] The compound of Reference Example 119 (540mg) was dissolved in ethanol (20mL) and 10%-Pd/C (80.0mg) was added. Under a stream of hydrogen, the mixture was stirred at room temperature for 3 hours. The catalyst was removed by filtration and the filtrate was concentrated under reduced pressure to give the desired product as a coloriess oil (Process B).

<Reference Example 124>

#0 Ethyl 2'-benzyloxy-4'-[(3-trifluoromethyl)phenoxy]dihydrocinnamate

[0098]

[0099] The compound of Reference Example 70 (2.29mg) was dissolved in ethyl acetato (30mL) and 5%-Pd/Cethylenediamine complex (230mg) was added. Under a stream of hydrogen, the mixture was stirred at room temperature for 3.5 hours. The catalyst was removed by filtration and the solvent was removed under reduced pressure to give the desired product as a pale yellow oil (2.30g) (Process C).

<Reference Example 125>

Methyl 4'-[(3-methylthio)phenoxy]dihydrocinnamate

[0100]

25

.90

45

[0101] Under a stream of argon gas, the compound of Reference Example 105 (4.07g) was dissolved in methanol (50mL). While the solution was stirred at 10°C, magnesium (1.00g) was added. The mixture was stirred for 3 hours while kept at this temperature, and diffuled hydrochloric acid was added. The mixture was extracted with ethyl acetate and was washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was then dried over arhydrous sodium sulfate. The solvent was removed under reduced pressure to give the desired product as a coloriess oil (3.70g) (Process D).

<Reference Examples 126 through 182>

[0102] Similarly, the compounds of Reference Examples 61 through 69, 71 through 104, 106 through 116 117 and 118, and 120 and 121 were used to synthesize the compounds shown in Table 3 below.

Table 3

5

20

30

Referen		R2	R3	R4	x	Process	Refere		R2	R3	R4	Χı	rocas
126	CI	c-CI	н	CI	0	A	155	I-PrO	o-IPr	н	CI	٥	С
127	t-Bu	н	н	н	0	В	158	I-PrO	o-IPr	н	н	0	В
128	Me	н	н	н	0	В	157	PhO	н	н	a	0	A
129	i-Pr	c-l-Pr	н	CI	0		158	PhCH ₂ O	н	н	н	o	A
130	C ₆ H ₁₁	н	H	н	0	В	159	PhCH ₂ O	H	н	Br	0	A
131	C ₇ H ₁₈	н	н	Н	0	В	160	PhCH ₂ O	н	н	SMe	0	A
132	CF ₃	н	н	н	0	В	161	PhCH ₂ O	н	н	Me	0	A
133	CF,	н	OMe	н	0	В	162	PhCH ₂ O	н	н	Et	0	Α
134	CF ₃	н	н	OMe	0	В	163	PhCH ₂ O	o-CI	н	CI	D	Α
135	CF ₃	н	CF ₃	н	٥	В	184	PhCH ₂ O	н	н	CF ₃	٥	٨
136	CF ₃	н	н	CF ₃	0	В	165	PhCH ₂ O	н	н	Ph	0	A
137	CF ₃	o-CF ₃	н	н	0	В	166	PhCH ₂ O	c-PhCH2O	н	CI	٥	Α
138	CF ₃	c-CF ₃	н	Cŧ	0	В	167	PhCH ₂ O	c-PhCH ₂ O	н	н	О	Α
139	CF ₃	b-CI	н	н	0	Α :	168	PhCH ₂ O	c-PhCH ₂ O	н	НPr	0	Α
140	CF3	a-Cl	н	н	0	A	169	MeO	o-CF ₃	В	н	0	В
141	CF3	d-CI	н	н	0	A	170	PhCH ₂ S	н	н	н	0	Α
142	CF ₃	o-MeO	н	а	0	В	171	PhCH ₆ S	н	н	а	0	Α
143	Ph(CH _s) _e	н	н	a	o	Ā	172	CI	н	н	н	s	D
144	Ph(CH ₂) ₂	н	н	CF,	0	В	173	CF ₃	c-CF _a	н	а	s	Α
	Ph(CH ₂) ₂	o-CF _a	н	н	0	В	174	CF,	c-Me	н	н	s	D
	Ph(CH ₂) ₂	o-CFa	н	а	٥	Α.	175	CF _x	н	H	н	\$	A.
		c-Ph(CH ₂),	н	н	٥	В	178	CF ₃	н	н	CF.	s	A
		c-Ph(CH ₂);		CF ₃	ō	В	177	MeO	н	н	cı	8	A
		c-Ph(CH ₂)		a	ō	A	178	MeO	н	н	н	s	٨
150	CF ₃	H	н	F	0	В	179	MeO	н	н	CF,	s	А
151	PhOH ₂ O	н	н	F	ò	A	180	HBu	н.	н	н	٥	В
152	Phoch,	H	H	H	ŏ	Â	181	PhCH ₂ O	н	Ĥ	ä	ō	Ā
153	CF.	н	CI	н	ō	A	182	PhCH ₂ O	н	н	iPr	o	Α
154	CF,	H	н	a	Ó	A							

-Mothed actor

<Reference Example 183>

Ethyl 4'-[3-chloro-5-(trifluoromethyl)phenoxy]dihydrocinnamate

[0103]

55

[0104] The compound of Reference Example 116 was reacted in the same manner as in Reference Example 124 to obtain ethyl 4'-[3-amino-5-(trifluoromethyl)phenoxy]dihydrocinnamate. An MeCN solution (15mL) containing this

compound (1.27g) was added to an MeCN solution (40mL) containing copper chloride (725mg) and IBuONO (0.51 mL). This inclution was stirred for 3 hours at room temperature, followed by addition of water and extraction with eithy accetate. The extract was then washed with water and the organic phase was dried over anhydrous sodium suitate. The solvent was removed by distillation and the residue was purified on a silica gel column chromatography (hexane: ethyl accetate = 20.1 h. This exert the distinction of the distillation of the distillati

<Reference Example 184>

Benzyl 4'-[3-benzyloxy-5-(trifluoromethyl)phenoxy]dihydrocinnamate

[0105]

15

20

[0106] The compound of Reference Example 169 (840mg) was dissolved in methylene chloride (20mL). While the solution was stirred at 0°C, a fmolL methylene chloride solution of thorromotoron (9.42mL) was added dropwise. The reaction mixture was stirred at foom temperature overnight. Subsequently, los waster was added, and the mixture was extracted with ethyl accetate and was washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was added over anhydrous sodium sulfate. The solvent was their removed under reduced pressure to give 4°-(3-trifluoromethyl-5-hydroxyphenoxy)dihydrocinnamic acid as a pale brown powder (750mg). The resulting powder was dissolved in DMF (50mL). To this solution, potassium achonate (1.04g) and benzyl bromide (0.600mL) were added and the mixture was stirred at room temperature for 3 hours. Subsequently, the reaction mixture was poured into loe water, and the mixture was extracted with thyl sociate and was washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to give the desired product as a brown oil.

<Reference Example 185>

35 Benzyl 4'-(3-benzyloxyphenylthio)-2'-chlorodihydrocinnamate

[0107]

45

50

[0108] Using the compound of Reference Example 177, the reaction was carried out in the same manner as in Reference Example 184 to give the desired product as a yellow oil.

<Reference Example 186>

Benzyl 4'-(3-benzyloxyphenyithio)-dihydrocinnamate

5 [0109]

10

20

25

[0110] Using the compound of Reference Example 178, the roaction was carried out in the same manner as in Reference Example 184 to give the desired product as a yellow oil.

<Reference Example 187>

Ethyl 4'-[3-benzyloxy-5-(trifluoromethyl)phenoxy]-2'-chlorodihydrocinnamate

[0111]

[0112] In the same manner as in Reference Example 184, the compound of Reference Example 142 was reacted to give 2'-chioro-4'-(3-trifluoromethyl-5-hydroxyphenoxy)dihydrocinnamic acid. This cinnamic acid (1.47g) was dissolved in ethanol (10mL). While this solution was stirred at 0"C, Intonyl chloride (3mL) was added dropwise. The mixture was stirred for 2 hours while kept at this temperature. Subsequently, the solvent was removed under reduced pressure and the residue was purified on a silica gel column chromatography (hexane: ethyl acotate - 10:1 and then 6:1) to give ethyl 2'-chloro-4'-(3-trifluoromethyl-5-hydroxyphenoxy)dihydrocinnamate as a coloriess oil (1.38g). In the same manner as in Reference Example 184, the resulting ester was converted into a benzyl ether using polassium carbonate and benzyl bronide. This geve the desired product as a coloriess oil.

<Reference Example 188>

Ethyl 4'-(3-benzyloxyphenylthio)-2'-trifluoromethyldihydrocinnamate

5 [0113]

40

50

55 [0114] Using the compound of Reference Example 179, the reaction was carried out in the same manner as in Reference Example 187 to give the desired product as a colorless oil.

<Reference Example 189>

4'-[(3-benzyloxy)phenylthio]-2'-chlorodihydrocinnamyl alcohol

[0115]

10

20

25

[0116] The compound of Reference Example 185 (7.40g) was dissolved in THF (100mL). While this solution was stirred at 0°C, lithium aluminum hydride (800mg) was added. After 10min, a 20% aqueous solution of NaCH was added and the crystallized insoluble inorganic residue was removed by filtration through Celies. The filtrate was extracted with eithyl acetate and the extract was washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure to give the desired product as a coordess oil (8.37u).

<Reference Examples 190 through 251>

[0117] In a similar manner to Reference Example 189, the compounds of Reference Examples 122 through 141, 143 through 168, 170 through 177 and 180 through 188 were used to synthesize the compounds shown in Table 4 below.

Table 4

Referer Exampl		R2	R3	R4	×.	Reference Examples		R2	R3	R4	x
190	CI ·	o-CI	н	a	0	221	i-PrO	оIPr	н	CI	0
191	t-Bu	н	н	н	0	222	i-Pro	o-IPr	н	н	0
192	Me	н	н	н	0	223	PhO	н	н	CI	0
193	LPr	c+Pr	н	a	0	224	PhCH ₂ O	н	н	н	0
194	C ₆ H ₁₁	H	н	н	0	225	PhCH ₂ O	н	н	Br	0
	C ₇ H ₁₅		н	н	0	226	PhCH ₂ O	н	н	SMe	
196	CF ₃	н	н	н	0	227	PhCH ₂ O	н	Н	Me	
197	CF ₃	н	OMe	Н	О	228	PhCH ₂ O	н	Н	Et	
198	CF ₃	н	н	OMe	0	229	PhCH ₂ O	o-Cl	н	CI	
199	CF ₃	H	CF ₃	н	0	230	PhCH ₂ O	н	H	CF ₃	
200	CF ₃	н	н	CF ₃	0	231	PhCH ₂ O	н	Н	Ph	0
201	CF ₃	c-CF ₃	н	н	0	232	PhCH ₂ O	o-PhCH ₂ O	н	CI	0
202	CF ₃	o-CF ₃	н	CI	0	233	PhCH ₂ O	o-PhCH ₂ O	н	н	0
203	CF ₃	b-CI	н	н	o	234	PhCH ₂ O	o-PhCH ₂ O	н	i-Pr	
204	CF3	a-CI	н	н	0	235	PhCH ₂ O	o-CF ₃	н	н	
205	CF3	d-CI	н	н	0	236	PhCH ₂ S	н	н	н	0
206	CF ₃	o-PhCH ₂ O	н	CI	0	237	PhCH ₂ S	н	н	CI	0
207	Ph(CH ₂) ₂	н	н	cı	0	238	CI	H	н	H	
208	Ph(CH ₂) ₂	н	H	CF,	0	239	CF ₃	o-CF ₃	н	CI	8
209	Ph(CH ₂) ₂	o-CF _s	н	. н	0	240	CF ₃	c-Me	н	н	s
210	Ph(CH ₂) ₂	c-CF ₃	н	CI	0	241	CF ₃	н	н	н	s
211	Ph(CH ₂) ₂	c-Ph(CH ₂) ₂	н	н.	0	242	CF ₃	H	н	CF ₃	s
212	Ph(CH ₂) ₂	c-Ph(CH ₂) ₂	н	CF ₃	0	243	MeO	н	н	CI	
213		o-Ph(CH ₂) ₂	н	CI	0	244	PhCH ₂ O	н	н	н	3
214	CF ₃	н	н	F	0	245	PhCH₂O	н	н	CF ₃	s
215	PhCH ₂ O	н	н	F	0	246	I-Bu	н	н	н	0
218	CF,	н	н	CI	s	247	PhOCH ₂	н	н	H	
217	Et	н	н	н	0	248	CF3	c-CI	н	Н	0
218	CF ₃	н	н	PhCH ₂ O	0	249	MeS	н	н	н	0
219	CF ₃	н	CI	H	0	250	PhCH ₂ O	Н	н	Ci	0
220	CF ₃	н	н	CI	0	251	PHCHO	н	н	l-Pr	0

28

<Reference Example 252>

4'-(3-benzyloxyphenylthio)-2'-chloro-dihydrocinnamyl iodide

[0118]

10

30

35

55

[0119] The compound of Reference Example 189 (1 38g) was dissolved in THF (20mL). While this solution was stirred at 0°C, imidazole (s45mg), triphenylphosphine (2.10g) and lodine (2.00g) were added. The mixture was stirred at 0°C imidazole (s45mg), triphenylphosphine (600mg) and iodine (600mg) were added: The mixture was stirred overnight, followed by the addition of water and then sodium thiosulfate. The reaction mixture was then extraced with eithyl acetate and the three twaster was washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was then dired over anylphorous sodium sulfate. The solvent was removed under reduced pressure and the residue was purified on a silica gel column chromatography (hexano: ethyl acetate = 50:1) to give the desired product as a colorfess oil (1.55g).

<Reference Examples 253 through 314>

[0120] In a similar manner to Reference Example 252, the compounds of Reference Examples 190 through 251 were used to synthesize the compounds shown in Table 5 below.

Table 5

Refere Examp	ence R1	R2	R3	R4	×	Reference Examples	R1	R2	R3	R4	х	_
253	CI	p-Cl	н	СІ	0	284	i-PrO	c-iPr	н	CI	0	_
254	t-Bu	н	н	н	0	285	i-PrO	o-Pr	н	н	0	
255	Me	н	н	н	0	286	PhO	H	н	CI	0	
258	LP r	o-I-Pr	н	CI	0		PhCH ₂ O	н	н	н	0	
257	C ₆ H ₁₁	н	н	н	0		PhCH ₂ O	H	Н	Br	0	
. 258	C ₇ H ₁₅	н	н	н	0		PhCH ₂ O	Н	Н	SMe	٥	
259	CF ₃	н	н	н	0		PħCH ₂ O	H	н	Me	0	
260	CF ₃		OM		0		PhCH ₂ O	H	н	Et	0	
261	CF ₃	н	н	OMe	0		PhCH ₂ O	o-CI	н	CI	0	
262	CF ₃	н	CF,		0		PhCH ₂ O	н	н	CF ₃	0	
263	CF ₃	н	н	CF ₃	0	294	PhCH ₂ O	н	н	Ph	0	
264	CF ₅	o-CF ₃	н	н	٥	295	PhCH ₂ O	c-PhCH ₂ O	н	CI	0	
265	CF ₃	o-CF ₃	н	CI	0	298	PhCH ₂ O	o-PhCH2O	Н	н	0	
268	CF ₃	b-CI	н	н	0	297	PhCH ₂ O	o-PhCH ₂ O	н	l-Pr	0	
287	CF3	a-Cl	н	н	٥	298	PhCH ₂ O	o-CF ₃	н	Н	0	
288	CF3	d-CI	н	н	0	299	PhCH ₂ S	н	н.	. н	0	
269	CF ₃	c-PhCH ₂ O	н	CI	0	300	PhCH ₂ S	н	н	CI	0	
270	Ph(CH ₂) ₂	H	н	CI	0	301	cı	н	н	н	s	
271	Ph(CH ₂) ₂	н	н	CF ₃	0	302	CF ₃	o-CF ₃	н	cı	s	
272	Ph(CH ₂) ₂	o-CF ₃	н	н	0	303	CF ₃	o-Me	н	н	8	
273	Ph(CH ₂) ₂	oCF,	н	cı	0	304	CF ₃	н	н	н	s	
274	Ph(CH ₂) ₂	o-Ph(CH ₂) ₂	н	н	0	305	CF ₃	н	н	CF _a	s	
275	Ph(CH ₂),	c-Ph(CH ₂) ₂	н.	CF.	0	306	MeO	н	н	cı	s	
276		o-Ph(CH ₂) ₂	н	a	0	307	PhCH ₂ O	н	н	н	s	
277	CF ₃	н	н	F	0		PhCH ₂ O	н.	н	CF ₃	s	
278	PhCH ₂ O	н	н	F	٥	309	i-Bu	н	Н	н	ŏ	
279	CF ₃	H	н	Cł	s		PhOCH ₂	H	н	н	ö	
280	Et	н	н	н	ō	311	CF ₃	o-CI	н	н	ō	
281	CF ₅	н	н	PhCH ₂ O	٥	312	MeS	н	н	н	ō	
282	CF ₃	н	a	Н	ō		PhCH ₂ O	н	н	CI	ö	
283	CF,	н	н	ä	ŏ		PhCH ₂ O	н	н	HPr	ŏ	

30

<Reference Example 315>

4-(3.5-dichlorophenoxy)benzyl bromide

[0121]

10

25

30

35

50

55

[0122] Using 3.5-dichlorophenol and 4-fluorobenzaldehyde, the reaction was carried out in the same manner as in Reference Example 1 to obtain 4.25-dichlorophenoxylbenzaldehyde. Subsequently, the same procedure as in Reference Example 189 was followed using sodium borohydride in place of the lithium aluminum hydride. This was 4.4(3.5-dichlorophenoxylbenzyl alcohol. The resulting alcohol (2.03g), along with carbon tetrabromide (2.75g), was dissolved in methylene chloride (30mL). While this solution was stirred at 0°C, triphenyl phosphine (2.17g) was added. The mixture was stirred at 0°C for 1 hour and at room temperature for the subsequent 30min. The solvent was removed under reduced pressure and the residue was purified on a silica gel column chromatography (hexane: ethyl acetate = 20 : 11) to give the desiree product as a coloribos oil (3.12g).

<Reference Example 316>

1-iodopropyl-4-f(3-methanesulfinyl)phenoxylbenzene

[0123]

MeOS

[0124] The compound of Reference Example 312 (1.80g) was dissolved in methylene chloride (30mL). While this solution was stirred at 0°C, m-chlorobenzole acid (770mg) was added in small portions. The mixture was stirred at this temperature for 1 hour and at room temperature for the subsequent 24 hours. Following addition of water, the mixture was extracted with eithyl accitate and the extract was washed sequentially with a saturated aqueous solution of sodium corbonate and a saturated aqueous solution of sodium chloride. The organic phase was then dried over anhylor sodium sulfate. The solvent was removed under reduced pressure and the residue was purified on a silica gel column chromatography (hexance eithyl acetate = 2.1 and then 1.2) to due the desired product as a velow oil (1.29a).

<Reference Example 317>

4'-(3-benzyloxyphenylthio)-2'-chlorophenethyl iodide

[0125]

<Reference Example 317-1>

2'-chloro-4'-(3-methoxyphenylthio)benzyl cyanide

[0126]

10

[0127] The compound of Reference Example 53 was treated in the same mismer as in Reference Example 189 to obtain an alcohol. The alcohol (5.84g) was dissolved in methylene chloride (100mL) and phosphorus tribromide (2.25mL) was acided dropwise. Following stirring at room temperature for 1 hour, ice water was added and the miscure was extracted with ethyl acetate. The extract was weshed sequentially with water and an aqueous solution of sodium holhoride, and the organic phase was dried over anhydrous sodium sulfate. The sevent was errowed by distillation to obtain a pale yellow oil. The oil and potassium cyanide (1.56g) were dissolved in a misture of DMSO (25mL), and water (10mL) and the solution was sirred at 90°C for 5 hours. Following addition of water, the misture was extracted with ethyl acetate and the extract was washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was diried over anhydrous sodium sulfate. The solvent was removed by distillation and the residue was purified on a silica gel column chromatography (hexane: ethyl acetate = 10 : 1) to give the desired cyano-product as pale veltow oil (3.81g).

25 <Reference Example 317-2>

Ethyl 2'-chloro-4'-(3-methoxyphenylthio)phenylacetale

[0128]

35

45

[0129] The cyano-product (3.81g) and potassium hydroxide (3.68g) were added to a mixture of ethanol (80mL) and water (10mL), and the solution was relixed for 6 hours. Subsequently, the solution was allowed to cool and the insolution that the solution was relixed to a considerable with solution was allowed to cool and the insolution that the structure was extracted with othyl acotate and the extract was washed sequentially with water and a saturated aqueous solution of sodium children. For expair chases we set then died over anhydrous sodium sulfale. The solvent was removed by distillation and ethanol (50mL) and thionyl chioride (2mL) were added to the resulting residue. This mixture was stirred at room temperature for 1 hour and the solvent was removed by distillation. The resulting residue was purified on a slice gel column chromotography (hoxane: ethyl acotate = 10:1) to give the ethyl ester product as a colories soll (3.89g.).

<Reference Example 317-3>

4'-(3-benzyloxyphenylthio)-2'-chlorophenethyl iodide

[0130] The ethyl ester was reacted in the same manner as in Reference Example 187 to obtain ethyl 4"(3-benzy-loxyphenylthio):2"-chilorophenyl-acetate. The product was reduced as in Reference Example 189 to obtain an alcohol, which in turn was reacted in the same manner as in Reference Example 252 to give the desired product as a coloriess oil.

- <Reference Example 318>
- 1-(3-benzyloxyphenyithio)-3-chloro-4-iodobutylbenzene
- 5 [0131]

- 15 <Reference Example 318-1>
 - 4-(3-benzyloxyphenylthio)-2-chlorophenethyl aldehyde

[0132]

20

25

40

45

O C C CHO

[0133] Ethyl 4-(3-benzyloxyphenyithio)-2-chlorophenylacetate obtained in Reference Example 317-3 was subjected to alkall-hydrolysis. The resulting product was condensed with N, O-dimethylhydroxylamine to form an amide product, which in turn was reduced in the same manner as in Reference Example 189 to give the desired aldehyde product as a veltow oil.

<Reference Example 318-2>

35 Ethyl 4-[(3-benzyloxyphenylthio)-2-chlorophenyl]butyrate

[0134]

CO₂E1

[0135] The compound of Reference Example 318-1 was reacted in the same manner as in Reference Example 60 and the unsaturated bonds of the resulting product were reduced in the same manner as in Reference Example 122 to dive the desired eithy butvrate derivative.

- 50 <Reference Example 318-3>
 - 1-(3-benzyloxyphenylthio)-3-chloro-4-iodobutylbenzene
- [0136] The compound of Reference Example 318-2 was reacted in the same manner as in Reference Example 189 to obtain an alcohol product, which in turn was reacted in the same manner as in Reference Example 252 to give the desired product as a colorless oil.

<Reference Example 319>

4'-[(3-benzyloxy)phenoxy]-2'-chlorophenethyl iodide

[0137]

[0138] The compound of Reference Example 56 was reacted in the same manner as in Reference Example 317 to obtain the desired product as a yellow oil.

<Reference Example 320>

4-[(3-benzyloxy)phenoxy]-2-chloro-1-iodobutylbenzene

[0139]

20

25

30

45

[0140] The compound of Reference Example 56 was reacted in the same manner as in Reference Example 318 to obtain the desired product as a pale yellow oil.

<Reference Example 321>

4'-benzyloxydihydrocinnamyl iodide

[0141]

[0142] 4'-benzyloxydihydrocinnamyl alcohol was reacted in the same manner as in Reference Example 252 to obtain the desired product as a yellow powder.

- <Reference Example 322>
- 4'-(3-benzyloxyphenylthio)-2'-chlorobenzyl bromide
- [0143]

(5144) In place of 2-chloro-4-fluorobenzaldehyde, 2-chloro-4-fluorobenzonitrile was reacted in the same manner as in Reference Example 1 to obtain 2-chloro-4-(3-methoxyphenythib)benzonitrile. Following the same procedure as in Reference Example 18-2, this product was hydrolyzed and, then, following the same procedure as in Reference Example 187, the methoxy group was decomposed and esterified to convert the product into a benzyl either. The product was then reacted in the same manner as in Reference Example 189 to be converted into an alcohol. Subsequently the product was reacted with carbon claraboration in the same manner as in Reference Example 315 to obtain

<Reference Example 323>

the desired product as a colorless oil.

25 2'-chloro-4'-(4-trifluoromethylphenoxy)dihydrocinnamyl iodide

[0145]

30

35 [0146] Using p-irfluoromethychenol, the reaction was carried out in the same manner as in Reference Example 1 to obtain an aticinyde. Following the same procedure as in Reference Example 60, the aldehyde was subjected to Homer-Emmons reaction. Subsequently, following the same procedure as in Reference Example 123, the resulting product was reduced and, then, following the same procedure as in Reference Example 189, the reduced product was converted into an abond. Subsequently, the alcohol was indicated in the same manner as in Reference Example 252.

to give the desired product as a colorless oil.
 MS(EI+): 440 ([M]+).

H-NMR (400MHz, CDCl₃) 8 2.12-2.19 (2H, m), 2.85(2H, t, J=7.3Hz), 3.21(2H, t, J=7.3Hz), 6.90(1H, dd, J=2.5, 8.6Hz), 7.04-7.08(3H, m), 7.23-7.27(1H, m), 7.60(2H, d, J=8.6Hz).

45 <Reference Example 324>

2'-chloro-4'-(2-trifluoromethylphenoxy)dihydrocinnamyl iodide

[0147]

[0148] Using o-trifluorome:hyphenol, the reaction was carried out in the same manner as in Reference Example 232 to obtain the desired product as a coloriess oil. MS (EII): 440 (MM).

¹H-NMF(400MHz, CDCl₃) δ 2.11-2.18 (2H, m), 2.83(2H, t, J=7.3Hz), 3.21(2H, t, J=7.3Hz). 6.88(1H. dd, J=2.5, 8.6Hz), 6.96(1H, d, J=8.6Hz), 7.04(1H, d, J=2.5Hz). 7.18-7.26(2H, m), 7.49(1H. t, J=8.6Hz), 7.68(1H, d, J=8.0Hz).

<Reference Example 325>

4-(4-benzyloxyphenylthio)-2-chlorobenzaldehyde

[0149]

15

30

20 [0150] p-hydroxythiophenol (2.12g) was dissolved in N.N-dimethylformamide (40mL). To this solution, 2-chloro-d-fluorobenzaldehyde (2.60g) and potassium carbonate (4.64g) were added and the mixture was stirred for 2 hours at 50°C. Subsequently, benzyl bromide (4.00mL) was added and the mixture was stirred for 1.5 hours at 50°C and then for 2.5 hours at 70°C. The reaction mixture was extracted with ethyl acetate and the extract was washed sequentially with water and a saturated aqueous solution of sodium choride. The organic phase was then dried dover anhylos sodium sulfate. Following addition of water, the solvent was removed by dstillation and the residue was purified on a silica gel column chromatography (hexane: ethyl acetate = 10: 1). This gave the desired product as a coloriess solid (5.70g.).

1H-NMR (400MHz, CDCl₃) δ 5. 12 (2H, s), 6.96-7.03(3H, m), 7.06 (2H, m), 7.38-7.50(6H, m), 8.56(1H, d, J=8.6Hz), 10.33(1H, s).

<Reference Example 326>

4'-(4-benzyloxyphenylthio)-2'-chlorophenethylaldehyde

35 [0151]

[0152] To an ice-cold tetrahydrofuran solution (160mL) of (Methoxymethyll/triphenylphosphonium chlorido (8.28g), I-butoxy potassium (27.1g) was added and the mixture was stirred for 1 hour, followed by addition of the compound of Reference Example 326 (5.7g) and 1 hour of stirring. Subsequently, water was added to the mixture was extracted with ethyl acetate and the extract was extracted with ethyl acetate and the extract was washed sequentially with water and a saturated aqueous solution of sodium chlorido. The organic phase was then cried over anhydrous sodium sulfate. The solvent was removed by distillation and the resulting residue was purified on a silica gel column chromatography (hexane: ethyl acetate = 6 s. 1). This gave the desired virily ether product as a pale yellow oil (6.50g). This product was disolved in tetrahydrotion (90mL). To this solution, a 8mo/L aqueous solution of hydrochloric acid (60mL) was added and the mixture was stirred socyuentially with water and a saturated aqueous solution of sodium chloride and the organic phase was cried over anhydrous sodium sulfate. Following addition of water, the solvent was removed by distillation and the residue was purified on a silica gel column chromatography (hexane: ethyl acetate = 9: 1). This gave the desired product as a coloriess power (4.48g).

¹H-NMR(400MHz, CDCl₃) § 3.77(2H, d, J=1.8Hz), 5.09(2H, s), 6.97-7.04(3H, m), 7.05-7.10(1H, m), 7.15(1H, d, J=1.8Hz), 7.32-7.46(7H, m), 9.72(1H, t, J=1.8Hz).

<Reference Example 327>

4'-(4-benzyloxyphenylthio)-2'-chlorophenethyl iodide

[0153]

[0154] Following the same procedure as in Reference Example 189, the compound of Example 326 was converted into an alcohol. Then, using the same procedure as in Reference Example 252 this alcohol was indized to give the desired product as a pale yellow oil.

¹H-NMR (400MHz, CDCl₃) & 3.22(2H, t, J=7.3Hz), 3.30(2H, t, J=7.3Hz), 5.09(2H, s) 6.96-7.02(3H, m), 7.09(2H, d, J=7.9Hz), 7.33-7.45(7H, m).

20 <Example 1>

Ethyl 2-t-butoxycarbonylamino-5-[2-chloro-4-(3-trifluoromethylphenylthio)phenyl]-2-etoxycarbonylpentanoate

[0155]

30

[D156] At room temperature and under a stream of argon gas, sodium 1-butoxide (490mg) was added to diethyl 2-butoxycarbonylaminomalonate (1.3mL) in a mixture of THF (35mL) and DMF (4mL). This mbxture was stirred for 20min at 80°C and was allowed to cool to room temperature. To the cooled mixture, a THF solution (5mL) of the compound of Reference Example 279 (1.55g) was added dropwise. The resulting mixture was refluxed for 5 hours, was poured into ice water, and was extracted with ethyl actets. The extract was washed sequentially with water and a satured aqueous solution of sodium chloride. The organic phase was then dried over anhydrous sodium sulfate.

The solvent was removed under reduced pressure and the residue was purified on a silice gel column chromatocraphy

(hexane: othyl acetate = 5 : 1) to give the desired product as a colorless oil (1.87g).

1H-NMR(400MHz, CDCl₃) 8 1.22-1.36(8H, m), 1.42(9H, s), 1.45-1.53(2H, m), 2.37(2H, br), 2.74(2H, t, J=7.8Hz), 4.23

(4H, m), 5.94 (1H, s), 7.16-72(12H, m), 7.38-7.56(5H, m).

<Examples 2 through 67>

[0157] In a similar manner to Example 1, the halogen derivatives of respective Reference Examples were used to synthesize the compounds shown in Tables 6 and 7 below.

50

Table 6

g. 1 x I g.	NHBos
THATT.	LCO.EI
PASSES CHANGE	COZET
c (019)	COaEt

Exampl	es Rt	R2	Ra	R4	х	n	Characteristics	(%)
2	CI	o-CI	н	CI	0	3	Colorless oil	74
3	t-Bu	н	н	н	0	3	Colorless oil	64
4	CF ₃	H	н	H	0	3	Colorless oil	100
5	CF ₃	н	OMe	н -	0	3	Coloriess oil	100
6	CF ₂	_ H	н	OMe	0	3	Colorless oil	100
7	GF ₃	н	CF ₃	н	0	3	Colorless oil	100
8	CF ₃	н	н	CF,	0	3	Colorless oil	92.
9	CF ₃	o-CF ₃	н	н	0	3	Yellow oil	47
10	CF ₃	o-CF ₃	н	CI	0	3	Colorless oil	89
11	CF,	b-CI	н	н	0	3	Colorless oil	94
12	CF ₃	o-PhCH ₂ O	н	CI	0	3	Colorless oil	91
13	Ph(CH ₂) ₂	н	н	a	0	3	Colorless oil	83
14	Ph(CH ₂) ₂	н	н	CF ₃	0	3	Colorless oil	90
. 15	Ph(CH ₂) ₂	o-CF ₁	н	н	0	3	Colorless oil	97
18		o-Ph(CH ₀) ₂	н	н	0	3	Colorless oil	95
17		c-Ph(CH ₂) ₂	н.	CF ₃	ō	3	Coloriess oil	100
18	Ph(GH ₂) ₂	o-Ph(CH ₂) ₂	н.	CI	ō	3	Coloriess oil	98
19	I-PrO	o-iPr	н.	CI	ŏ	3	Colorless oil	100
20	PhO	н	н.	CI	ō	3	Colorless oil	92
21	PhCH ₂ O	н.	н	н.	ō	3	Colorless oil	95
22	PhCH ₂ O	H	н	Be	ō.	3	Colorless oil	100
23	PhCH ₂ O	н	н	SMo	ō	3	Colorless oil	
24	PhCH ₂ O	н	н	Me	0	3	Colorless oil	100
25	PhCH ₂ O	н	н	E	0	3	Colorless oil	72
26	PhCH ₂ O	H	н	CI	s	2	Pale yellow oil	100
27	PhCH ₂ O	н	н.	Ci	8	3	Colorless oil	100
28	PhCH ₂ O	н.	н	CI	s	.4	Colorless oil	100
29	PhCH ₂ O	o-CF ₃	н	н -		3	Colorless oil	99
			• • •			-	Coloriess oil	82
30	CI	н	Н	н	8	3	Colorless oil	62 68
31	CF ₃	o-CF ₃	H	CI	8	3	Colorless oil	
32	EI	н	н	H	0	3	Coloriess oil	
33	SOMe	н	н	н	0			100
34	CI	o-Ci	Н	н	0	1	Colorless oil	56
35	CF ₃	н	н	PhCH ₂ O	0	3	Colorless oil	
38	PhCH ₂ O	н	н	CI	0	3	Colorless oil	100
37	CF,	н	CI	н	0	3	Colorless oil	100
38	CF ₃	н	н	CI	0	3	Colorless oil	100
39	PhCH2O	Ĥ	н	F.	0	3	Colorless oil	100
-	CF ₃	a-Cl	н		٥	3		

⁻ Yield is shown in Tables 8-10 in association with the subsequent step.

Table 7

10

20

$$\begin{array}{c} R_1 \\ b \\ \end{array} \begin{array}{c} R_2 \\ R_2 \\ \end{array} \begin{array}{c} R_3 \\ (CH_2)n \\ \end{array} \begin{array}{c} NHBoo \\ CO_2Et \\ \end{array}$$

Example	s R1	R2 .	R3	R4	х	n	Characteristics	Yield (%)
41	CF3	o-Cl	Н	Н	0	3	Pale yellow oil	41
42	CF ₃	d-Cl	н	н	0	3	Pale yellow oil	72
43	Ph(CH ₂) ₂	c-CF ₃	Н	Cł	0	3	Colorless oil	93
44	PhCH ₂ O	н	Н	CI	0	2	Colorless oil	-
45	PhCH ₂ O	н	Н	a	0	4	Colorless oil	-
46	CF ₃	Н	H	F	0	3	Colorless oil	100
47	PhCH ₂ O	c-PhCH ₂ O	Н	н	0	3	Colorless oil	-
48	PhCH ₂ O	c-PhCH ₂ O	н	a	0	3	Colorless oil	-
49	PhCH ₂ O	c-Cl	Н	a	0	3	Colorless oil	100
50	PhCH ₂ O	н	H	CF ₃	0	3	Colorless oil	100
51	PhCH ₂ Ö	н -	н	Ph	0	3	Colorless oil	-
52	MeS	н	н	н	0	3	Colorless oil	83
53	n-C ₅ H ₁₁	н	н	н	0	3	Colorless oil	86
54	c-C7H15	н	Н	н	0	3	Colorless oil	88
55	iPr	c-IPrO	н	н	0	3	Colorless oil	95
56	IPr	c-IPr	н	a	0	3	Colorless oil	66
57	PhCH ₂ S	н	н	Н	0	3	Colorless oil	-
58	PhCH ₂ S	н	$H_{\rm o}$	a	0	3	Colorless oil	-
59	i-Bu	н	н	н	0	3	Colorless oil	76
60	PHOCH ₂	н	н	н	0	3	Colorless oil	100
61	PhCH ₂ O	н	Н	i-Pr	0	3	Colorless oil	-
62	CF ₃	н	H	H	s	3	Colorless oil	90
63	CF ₃	н	Н	CF ₃	s	3	Pale yellow oil	53
64	CF ₃	c-Me	Н	Н	s	3	Colorless oil	100
65	MeO	H	н	CI	s	3	Colorless oil	87
66	PhCH ₂ O	н	Н	н	s	3	Colorless oil	1 4
67	PhCH ₂ O	H	H	CF ₃	s	3	Colorless oil	100
68	PhCH ₂ O	H	Н	CI	S	1	Colorless oil	100

⁻ Yield is shown in Tables 8-10 in association with the subsequent step.

<Example 69>

Ethyl 5-[(4-benzyloxy)phenyl]-2-t-butoxycarbonylamino-2-ethoxycarbonylpentanoate

[0158]

10

- [0159] The compound of Reference Example 321 was reacted in the same manner as in Example 1 to give the desired product as a pale yellow oil.
 - ¹H-NMR(400MHz, CDCl₃) δ 1.22(6H, t, J=7.1Hz), 1.42(9H, s), 1.44-1.47(2H, m), 2.31(2H, br s), 2.57(2H, t, J=7.6Hz), 4.11-4.27(4H, m), 5.03(2H, s), 5.92 (1H, br s), 6.88(2H, d, J=8.8Hz), 7.06(2H, d, J=8.8Hz), 7.29-7.43(5H, m).
- <Example 70>

Ethyl 2-t-butoxycarbonylamino-2-ethoxycarbonyl-5-[4-(3-isopropoxyphenoxy)phenyl]pentanoate

[0160]

25

30

[0161] The compound of Example 69 was reduced in the same manner as in Reference Example 123. The resulting phenol product (850mg) was dissolved in DMF (20mL). To this solution, 2-lodopropane (0.2mL) and potassium carbonate (500mg) were added and the mixture was stirred for 4 hours at 60°C. Following addition of water, the mixture was extracted with ethyl acetate and the extract was washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was purified on a silica gel column chromatography (hexane: ethyl acetate = 4:1) to give the desired product as a coloriess oil (760mg).

1H-NMR(400MHz, CDCl₃) δ 1.23(6H, t, J=7.3Hz), 1.31(6H, d, J=5.9Hz), 1.42(9H, s), 1.45-1.52(2H, m), 2.34(2H, br), 2.61(2H, t, J=7.8Hz), 4.17-4.27(4H, m), 4.50(1H, heptet, 5.9Hz), 5.94(1H, br s), 6.50-6.53 (2H, m), 6.59-6.62 (1H, m), 6.92 (2H, d, J=8.8Hz), 7.10(2H, d, J=8.8Hz), 7.18(1H, t, J=8.8Hz).

<Example 71>

Ethyl 2-t-butoxycarbonylamino-5-[4-(3,5-dichlorophenoxy)phenyl]-2-ethoxycarbonylpentanoate

[0162]

[0163] The compound of Example 89 was reduced in the same manner as in Reference Example 123. The resulting phenol product (1.27g), along with 3.5-dichlorophenylboric acid (1.18g), was dissolved in methylone choride (30 While this solution was being stirred, copper acetate (676ng) and triethylamine (0.88mL) were added. After 16 hours and a further 8 hours lter, the same amount of additional copper acetate was added and the mixture was stirred for ne subsequent 40 hours. Subsequently, the insoluble material was removed by filtration. The filtrate was poured into water and the mixture was extracted with ethyl acetate. The extract was washed sequentially with water and a saturated aqueous solution of sodium chioride. The originate phase was then died over antipyrous magnesium suffate. The solvent was removed under reduced pressure and the residue was purified on a silica gel column chromatography (hexane: ethyl acetate = 20 : 11 to give the desired product as a gale blue oil (335mc).

<Example 72>

Ethyl 2-t-butoxycarbonylamino-2-ethoxycarbonyl-5-[4-(3-methanesulfonylphenoxy)phenyl]pentanoate

15 [0164]

10

20

25

[0163] The compound of Example 33 (1.00g) was dissolved in methylene chloride (30mL). To this solution, m-chloroperbenzole acid (610mg) was added and the mixture was stirred for 6 hours at room temperature. Following addition of water, the mixture was extracted with ethyl adotate and the extract was washed sequentially with a saturated aqueous solution of sodium hydrogen carbonate and with a saturated aqueous solution of sodium chloride. The organic phase was dried over anhydrous sodium sullate. The solvent was removed under reduced pressure and the residue was purified on a silica gel column chromatography (hexane: ethyl acetate = 1:1) to give the desired product as a colorless oil (610ma).

1H-NMR(400MHz, CDCl₃) δ 1.24(6H, t, J=7.3Hz), 1.42(9H, s), 1.47-1.56(2H, m), 2.34(2H, br), 2.94(2H, t, J=7.8Hz), 3.04(9H, s), 4.18-4.26(4H, m), 5.95(1H br), 6.95(2H, d, J=8.8Hz), 7.17(2H, t, J=8.8Hz), 7.20-7.30(3H, m), 7.47-7.52 (2H, m), 7.62 (1H, d, J=8.8Hz), 7.20-7.30(3H, m), 7.47-7.52

35 <Example 73>

Ethyl 2-t-butoxycarbonylamino-2-ethoxycarbonyl-5-[4-(3-trifluoromethylphenylsulfinyl)]phenylpentanoate

[0166]

40

48

0 [0167] The compound of Example 82 (1.50g) was dissolved in mothylone chloride (80mL). While this solution was streed at 0°C, m-chloropeone-roze acid (46mm) was added in small portions. The mixture was then attreed for hour at this temperature and 2 hours at room temperature. Subsequently, water was added to the reaction mixture and the mixture was extracted with oithyl accidate. The extract was vashed sequentally with a saturated aqueous solution of sodium hydrogen carbonate and with a saturated aqueous solution of sodium chloride. The organic phase was dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the residue was principle of the solvent was removed under reduced pressure and the residue was principled on a silica get column chromatography (hexans: ethyl accide a 1; 1) to give the desired product as a yellow oil (1.1 of on 1; 1) to give the desired product as a yellow oil (1.1 of on 1; 1) to give the desired product as a yellow oil (1.1 of on 1; 1) to give the desired product as a yellow oil (1.1 of on 2; 1) to give the desired product as a yellow oil (1.1 of on 3; 1) to give the desired product as a yellow oil (1.1 of on 3; 1) to give the desired product as a yellow oil (1.1 of on 3; 1). The product are the product of the produ

7.78(1H, d, J=8 3Hz), 7.95(1H, s).

<Example 74>

[0168]

10

5 Ethyl 2-t-butoxycarbonylamino-2-ethoxycarbonyl-5-[4-(3-trifluoromethyl-5-methylphenylsulfinyl)]phenylpentanoate

[0169] In a similar manner to Example 73, the compound of Example 64 was used to obtain the desired product as a colorless oil.

FABMS:600 (M·H·H)*. H-HMRI(400MH2, CDCl₆) § 1.18-1.22(6H, m), 1.41(9H, s), 1.46-1.50(2H, m), 2.31(2H, br), 2.45(3H, s), 2.56(2H, t, J-7.3Hz), 4.14-4.22(4H, m), 5.92(1H, brs), 7.27(2H, d, J-7.8Hz), 7.48(1H, s), 7.55(2H, d, J-7.8Hz), 7.62(1H, s), 7.70(1H, s)

<Example 75> Alternative process for synthesizing the compound of Example 9

Ethyl 5-[4-(3,5-bistrifluoromethylphenoxy)phenyl]-2-t-buloxycarbonylamino-2-ethoxycarbonylpentanoate

30 [0170]

25

35

40

50

$$F_3C \underbrace{\hspace{1cm} \underset{CO_2 Et}{\text{NHBoc}}}_{\text{CO}_2 Et}$$

[0171] In a similar manner to Reference Example 123, the compound of Example 69 was reduced and, then, in a similar manner to Example 71, the resulting phenol was reacted with 3,5-bis(trifluoromethyl)phenylboric acid to give the desired product as a pale yellow oil.

5 1H-NMR(400MHz, CDCl₃) 5 1,24(6H, t, J=7.3Hz), 1.43(9H, s), 1.47-1.58(4H, m), 2.36(2H, br s), 2.66(2H, t, J=7.3Hz), 4.18-4.26(4H, m), 5.96 (1H, br s), 6.96(2H, d, J=8.3Hz), 7.20(2H, d, J=8.3Hz), 7.36(2H, s), 7.55 (1H. s).

42

BNSDOCID <EP 1802680A1 L>

<Examples 76 and 77>

2-t-butoxycarbonylamino-2-[2-chloro-4-(3-trifluoromethylphenylthio)phenyllpropyl-1,3-propanediol (Example 76);

5 [0172]

10

20

25

and 2-t-butoxycarbonylamino-5-[2-chloro-4-(3-trifluoromethylphenylthio)phenyl]pentane-1-ol (Example 77)

[0173] The compound of Example 1 (1.87g) was alsolved in THF (30mL). While this solution was stirred at 0°C, ithium borohydride (875mg) was added. Ethanol (5mL) was added and the mixture was allowed to gradually warm to from temperature while being stirred overnight. Subsequently, ice water was added to the mixture and the organic solvent was removed under reduced pressure. A 10% aqueous citric acid was added to the residue to adjust the pH o3 followed by extraction with ethyl acetals. The extract was washed sequentially with water and a saturated queue solution of sodium chloride. The organic phase was then dried over anhydrous sodium suffate and the solvent was removed under reduced pressure. The residue was purified on a stilla gel column chromatography (hexane: ethyl acetate 1: 1) to give the diol (1:10g) or the monool (0.27g), each as a colorless oil.

35 (Compound of Example 76)

[0174] FABMS:520([M+H]+).

¹H-NMR(400MHz, CDCl₃) ⁵1.43(9H, s), 1.62-1.65(4H, m), 2.72(2H,br), 3.31(2H, br), 3.57-3.62(2H, m), 3.81-3.85(2H, m), 4.93(1H, s), 7.20-7.27(9H, m), 7.38-7.55(4H, m).

(Compound of Example 77)

[0175] FABMS:490([M+H]+).

¹H-NMR(400MHz, CDCl₃) 8 1.44(9H, s), 1.63-1.73(4H, m), 2.72-2.78(2H, m), 3.57(1H, br), 3.68-3.70(2H, m), 4.61(1H, br s), 7.20-7.22(2H, m), 7.39-7.55(5H, m).

<Examples 78 through 184>

[0176] In a similar manner to Example 76, the compounds of 2 through 68 and 70 through 74 were used to synthesize compounds shown in Tables 8 through 10 below.

Table 8

R ₁ X	R ₄ NHBoo	
ŢŢŢŢ	人(CHJ)n 人OH	

Example	s R1	FI2	R3	R4	R5	×	n		leli (%)
78	CI	o-CI	н	a	CH ₂ OH	0	3	Colorless oil	79
79	CI	c-Ci	н	Cł	H :	0	3	Colorless oil	12
80	t-Bu	H	H-	н	CH ₂ OH	0	3	Colorless oil	78
Bi	1-Bu	R	н	н	н	0	3	Colorless oil	15
82	CF _a	н	н	н	CH-OH	0	3	Colorless oil	74
83	CF _a	н	н	н	н	0	3	Colorless oil	17
84	CF,	H	OMe	н	CH ₂ OH	õ	3	Colorless oil	76
85	CF,	H	OMe	н	н	o	3	Colorless oil	5
88	CF,	н	H	OMe	СН∗ОН	ŏ	3		45
87	CF,	н	н	OMe	H	ō	3		17
88	CF,	н.		н	CH _e OH	ō	3		68
	_		CF ₃		-	0	3		16
89	CF ₂	н	CF ₃	н	H	0	3		41
90	CF _a	н	н	CF ₆	CH ^a OH	0	3		22
91	CF ₂	н	н	CF ₂	н		3		72
92	CF ₂	o-CF	н	н	CH ^X DH	٥	3		/2 14
93	CF ₂	o-CF ₃	н	н	H				77
94	CF ₅	o-CF ₂	Н	a	CHFOH	٥	3		19
95	CF ₃	c-CF _a	H	CI	н	0	_	Colorless powder	
96	CF ₅	b-CI	H	H	CH ₂ OH	0	3	Colorless powder:	
97	CF ₃	b-CI	н	н	н	0	-		
98	CF ₃	c-PhCH ₂ O	н	a	CH ² OH	0	3	001011000	67
99	CF ₅	c-PhCH ₂ O	н	а	н	0	3	00.0	12
	Ph(CH ₁),	н	н	a	CHFOH	0	3		B4
	Ph(CH ₂);	н	, н	а	н	0	. 3.		15
	Ph(CH ₂) ₂	н	н	CF ₅	CH*OH	0	3		72
	Ph(CH ₂) ₂	н	н	CF _s	Н	0	3		18
	Ph(CH ₂) ₂	o-CF ₃	н	н	CH2OH	0	3		80
	Ph(CH ₂) ₂	o-CF _s	н	н	Н	0	3		16 71
	Ph(CH ₂) ₄	c-Ph(CH _p) ₂	н	н	CH ² OH	0	3		/1 11
	Ph(CH ₂) ₂	o-Ph(CH ₂) ₂	н	н	н	0	3	00101101011	11 54
	Ph(CH ₂) ₂	o-Ph(CH ₂) ₂	н	CF,	CH*OH	0	3	0.010.1	
	Ph(CH ₂) ₂ Ph(CH ₂) ₂	c-Ph(CH ₂) ₂ c-Ph(CH ₂) ₂	H	CF _s	H CH₂OH	8	3		13 61
	Ph(CH _a) _a	o-Ph(CH _a) _a	н	a	H	ŏ	3		10
			н	a	CH _E OH	0	3		82
112	LPrO	o-IPr c-IPr		ci	H	0	3		7
113	I-PrO PhO	C-IPT H	H	a	CH ² OH	0	3		, 78
	PhO	H	н	a	H H	ö	3		17
115	PhCH ₂ O	H	н	н	CH ₂ OH	ö	3		78
117	PhCH ₂ O	H	н	н	H	ŏ	3		11
118	PhCH ₂ O	H.	H	Br	CH ² OH	ŏ	3		61
119	PhCH ₂ O	H	H	Br	H	ō	3		11
120	PhCH ₂ O	н н	н	SMe	CH*OH	ŏ	3	Colorless oil (
121	PhCH ₂ O	H	н	SMe	н	ō	3	Colorless oil (

Table 9

	Examples	R1	R2	R3	R4	R5	Х	n	Characteristics	Yield %
5	122	PhCH ₂ O	H	Н	Me	CH ₂ OH	0	3	Colorless oil	75
	123	PhCH ₂ O	н	H	Me	н	0.	3	Colorless oil	11
	124	PhCH ₂ O	н	Н	Et	CH ₂ OH	0	3	Colorless oil	61
	125	PhCH ₂ O	н	Н	Et	н	0	3	Colorless oil	8
	126	PhCH ₂ O	н	н	CI	CH ₂ OH	S	2	Colorless powder	41
10	127	PhCH ₂ O	н	н	CI	.H	s	2	Pale yellow oil	11
	128	PhCH ₂ O	н	н	CI	CH ₂ OH	S	3	Coloriess powder	65
	128	PhCH ₂ O	н	н	CI	н	s	3	Colorless oil	28
	130	PhCH ₂ O	н	Н	CI	CH ₂ OH	s	4	Colorless oil	76
15	131	PhCH ₂ O	н	н	CI	Н	s	4	Colorless oil	15
,5	132	PhCH ₂ O	c-CF ₃	н	н	CH ₂ OH	0	3	Colorless oil	83
	133	PhCH ₂ O	c-CF ₃	Н	H,	Н	0	3	Colorless oil	10
	134	CI	н	Н	н	CH ₂ OH	S	3	Colorless oil	41
	135	CI	н	Н	н	н	S	3	Colorless oil	31
20	136	CF ₃	c-CF ₃	Н	CI	CH ₂ OH	s	3	Colorless	68
		-	-			_			amorphous	
	137	CF ₃	c-CF ₃	Н	CI	Н	S	3	Colorless oil	13
	138	Et	н	Н	н	CH ₂ OH	0	3	Colorless oil	76
25	139	Et	н	Н	Н	Н	0	3	Colorless oil	13
20	140	SOMe	н	Н	Н	CH5OH	0	3	Colorless oil	67
	141	SOMe	Н	Н	Н	Н	0	3	Colorless oil	27
	142	CI	c-Cl	Н	н	CH ₂ OH	0	1	Colorless amorphous	56
30	143	CI	c-CI	н	н	н	0	۱,	Coloriess powder	24
30	144	CF ₃	Н	н	PhCH ₂ O	СН₂ОН	0	3	Colorless oil	64
	145	CF ₃	н	н	PhCH ₂ O	H	0	3	Colorless oil	5
	148	PHCH ₂ O	н	н	CI	СН₂ОН	0	3	Colorless oil	77
	147	PhCH ₂ O	H	н	CI	H	0	3	Colorless oil	19
35	148	CF ₃	н	CI	н	СН₀ОН	ŏ	3	Colorless oil	58
	149	CF ₃	н	н	CI	CH ₂ OH	ō	3	Colorless oil	68
	150	PhCH ₂ O	н	н	F	CH ₂ OH	ŏ	3	Coloriess oil	34
	151	CF ₃	a-Cl	н	N N	CH ₂ OH	ŏ	3	Colorless oil	57
	152	CF ₃	c-Cl	н	Н	CH ₂ OH	0	3	Colorless oil	51
40	153	CF ₃	d-Cl	н	н	CH ₂ OH	0	3	Colorless oil	37
	154	Ph(CH ₂) ₂	c-CF _a	н	CI	CH ₂ OH	ŏ	3	Colorless oil	46
	155	PhCH ₂ O	Н	н	CI	CH ₂ OH	ŏ	2	Colorless powder	(49)
	156	PhCH ₂ O	н	н	CI	CH ₂ OH	0	4	Colorless oil	(72)
45	157	CF ₃	н	н	F	CH ₂ OH	0	3	Colorless oil	63
	158	PhCH ₂ O	c-PhCH ₂ Ó	н	н	СНОН	0	3	Colorless oil	(45)
	159	PhCH ₂ O	c-PhCH ₂ O	н	CI	СН2ОН	0	3	Colorless oil	(17)
	160	PhCH ₂ O	c-Cl	н	Ci	CH ₂ OH	ő	3	Colorless oil	61
	161	PhCH ₂ O	н	н	CF ₃	CH ₂ OH	0	3	Colorless oil	83
50	162	PhCH ₂ O	H	н	Ph	CH ₂ OH	0	3	Colorless oil	(50)
	163	MeS	н	н	н	CH ₂ OH	0	3	Colorless powder	56
	164	n-C ₄ H ₁₄	н	н	н	CH ₂ OH	0	3	Colorless oil	98
	185	c-C ₇ H ₁₅	н	н	н	CH ₂ OH	0	3	Colorless oil	90
55	166	IPr	c-iPrO	Н.	н	CH ₂ OH	o	3	Colorless oil	72
	167	IPr	c-IPr	Н.	CI CI	CH ₂ OH	0	3	Colorless oil	33
	168	PhCH ₂ S	Н	н	н	CH ₂ OH	o	3	Colorless oil	(20)
						24			L	1 ,,

Table 9 (continued)

Examples	R1	R2	R3	R4	R5	Х	n	Characteristics	Yield %
Numbers in parentheses are cumulative yields from the previous step.									

Table 10

		_	_						
Examples	R1	R2	R3	R4	R5	х	n	Characteristics	Yield (%)
169	PhCH ₂ S	Н	Н	CI	CH ₂ OH	0	3	Colorless oil	(11)
170	I-Bu	н	Н	н	CH ₂ OH	0	3	Colorless oil	92
171	PhOCH ₂	н	Н	н	CH ₂ OH	0	3	Coloriess oil	64
172	PhCH ₂ O	н	Н	I-Pr	CH ₂ OH	0	3	Colorless oil	(62)
173	CF ₃	н	н	н	CH ₂ OH	S	3	Colorless powder	89
174	CF ₃	н	Н	н	CH ₂ OH	so	3	Colorless amorphous	71
175	CF ₃	н	Н	CF ₃	CH ₂ OH	s	3	Colorless oil	51
176	CF ₃	с-Ме	н	H	CH ₂ OH	s	3	Colorless powder	81
177	CF ₃	c-Me	Н	н	CH ₂ OH	so	3	Colorless powder	65
178	MeO	Н	Н	CI.	CH ₂ OH	s	3	Colorless oil	56
179	PhCH ₂ O	Н	Н	н	CH ₂ OH	s	3	Colorless oil	(45)
180	PhCH ₂ O	Н	Н	CFa	CH ₂ OH	s	3	Colorless oil	66
181	CI	c-CI	н	H	CH ₂ OH	0	3	Colorless oil	50
182	CI	c-CI	н	н	Ĥ	0	3	Colorless oil	13
183	MeSO ₂	н	н	H	CH ₂ OH	0	3	Colorless amorphous	78
184	i-PrO	н	н	н	CH ₂ OH	0	3	Colorless oil	68

<Example 185>

 $\hbox{5-} \hbox{ $[4-(3-benzyloxyphenoxy)-2-chlorophenyi]-2-t-butoxy carbonylamino-2-methoxymethyl pentane-1-olember $(3-benzyloxyphenoxy)$ and $(3-benzyloxyphenoxy)$ are the substitution of t$

[0177]

15

20

25

30

45

[0178] The compound of Example 146 (720mg) was dissolved in accionitrile (20ml.). To this solution, Ag.O (1.859) and Mel (3ml.) were added and the mixture was stirred for 7 days at room temperature. Subsequently, the mixture was filtered through Ceitle and the filtrate was concentrated and purified on a silea gel column chromatography (hexane: althy) accitate = 3:1). This gave the desired product as a coloriess oil (310mg). FABMS: 566 (MH-H²).

1H.-NMR (400MHz, CDCL) 8 1.43 (9H, s), 1.48-1.81 (4H, m), 2.68 (2H, I, J=7.8Hz), 3.33(1H, d, J=8.8Hz), 3.56(3H, s), 3.57(1H, d, 8.8Hz), 3.56(2H, d, J=8.8Hz), 5.03(2H, s), 5.10(1H, br s), 6.59-6.62(2H, m), 6.74 (1H, dd, J=8.3, 2.4Hz), 7.00(1H, d, J=2.4Hz), 7.16(1H, d, J=8.3Hz), 7.23 (1H, I, J=8.3Hz), 7.337-42(5H, m), 7.44 (1H, J=8.3Hz), 7.357-42(5H, J=8.3

..

<Example 186>

2-t-butoxycarbonylamino-2-methoxymethyl-5-[4-(3-trifluoromethylphenoxy)phenyl]pentane-1-ol

[0179]

5 [0180] In a similar manner to Example 185, the compound of Example 82 was reacted to obtain the desired product as a coloriess oil.

FABMS: 484 ([M+H]+).

1H-NMR(400MHz, CDCl₂) § 1.42(9H, s), 1.48-1.83(4H, m), 2.57-2.65(2H, m), 3.33(1H, d, J=8.8Hz), 3.37(3H, s), 3.58 (1H, d, 8.8Hz), 3.62(2H, br s), 5.07(1H, br s), 6.94(2H, d, J=6.4Hz), 7.10-7.21(4H, m), 7.30 (1H, d, J=7.8Hz), 7.40(1H, J=7.8H

<Example 187>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]propyl-4-hydroxymethyl-2-oxazolidinone

[0181]

30

35

55

[0182] The compound of Example 128 (3.30g) was dissolved in THF (80mL). While this solution was kept at 0°C, 80% sodium hypride (800mg) was added and the mixture was stirred for 2.4 hours at room temperature. Subsequently, ice water was acted and the mixture was extracted with eithy acetate. The extract was washed sequentially with variant a saturated aqueous solution of sodium chloride. The organic phase was then dried over anhydrous sodium sulfate. The solvent was removed by distillation and the residue was purified on a silica get column chromatography (nexane: ethyl acetate = 1:1 then 100% sthyl acetate) to give the desired product as a pale yellow oil (2.37g).

1H-NMR(400MHz, CDCl₃) 6 1.63-1.72(4H, m), 2.74(2H, t, i=6.8Hz), 3.51(1H, d, i=11.2Hz), 3.58(1H, d, i=11.2Hz), 4.98(1H, d, i=8.8Hz), 4.24(1H, d, i=8.8Hz), 5.02(2H, s), 5.28(1H. br.s), 6.87-6.90(1H, m), 6.94-7.00(2H, m), 7.09-7.16(2H, m), 7.29-7.36(2H, m), 7.09-7.16(2H, m), 7.09-7.

<Example 188>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyllpropyl-4-jodomethyl-2-oxazolidinone

[0183]

15

[0184] The compound of Example 187 (237g) was dissolved in pyridine (30mL). To this solution, p-tolueneaulforpichloride (1.3gg) was added and the mixture was strend for 24 hours at room temperature and at further 5 hours at 80°C. Following addition of water, the mixture was extracted with ethyl acetate. The extract was then washed sequentially with water, diluted hydrochloric acid and a saturated aqueous solution for sodium chindric. The original phase was dried over anhydrous sodium suitlate. The solvent was removed by distillation and the residue was purified on a silica gel chiomatography (hexane : ethyl acetate = 1: 1) to obtain a sulfonic acid ester as a colorless oil (2.14g). The sulfonic acid ester (2.14g) was dissolved in acetone (20mL), followed by addition of sodium inoidied (2.55g) and refluxing for 10 hours. Subsequently, water was added and the mixture was extracted with ethyl acetate. The extract was washed sequentially with water and a saturated aqueous solution of sodium chlorido. The organic phase was then dried over anhydrous sodium sulfate. The solvent was removed by distillation and the residue was purified on a silica gel chlomatography (hexane: e.thyl acetate = 1: 1) to give the desired product as a colorless oil (1.47g).

1H-NMR(400MHz, CDCl₃) & 1.59-1.65(2H, m), 1.83-1.89(2H, m), 2.75(2H, t, J=7.8Hz), 3.31(2H, s), 4.19 (1H, d, J=9.3Hz), 4.21(1H, d, J=9.3Hz), 5.02(2H, s), 5.13(1H, br s), 6.88(1H, dd, J=7.8, 2.0Hz), 6.94-7.00(2H, m), 7.11 (1H, d, J=7.8Hz), 7.16 (1H, dd, J=7.8Hz), 7.16 (

<Example 189>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]propyl-4-methylthiomethyl-2-oxazolidinone

[0185]

45

[0186] The compound of Example 188 (1.47g) was dissolved in THF (30mL). To this solution, NaSMe (210mg) was added and the mixture was stirred for 2 hours at room temperature. Following addition of water, the mixture was extracted with eithyl acetale. The extract was then washed with a saturated aqueous solution of sodium choride and the organic phase was dried over anhydrous sodium sulfate. The solvent was concentrated under reduced pressure to give the desired product as a colorless oil (1.27g). FABMS: 514 (MH-HI⁺).

1H-NMR (400MHz, CDCl₃) 6 1.62-1.77(4H, m), 2.17 (3H, s), 2.68 (1H, d, J=13.2Hz), 2.74(2H, t, J=7.3Hz), 2.78(1H, d, J=13.2Hz), 4.15 (1H, d, J=9.0Hz), 4.20(1H, d, J=9.0Hz), 5.03(2H, s), 5.22(1H, brs), 6.87-6.90(1H, m), 6.93-6.97(2H, m), 7.10-7.7(2H, m), 7.22-7.4(1H, m).

<Example 190>

5-14-(3-benzyloxyphenylthio)-2-chlorophenyli-2- t-butoxycarbonylamino-2-methylthiomethylpentane-1-ol

5 [0187]

[0188] The compound of Example 189 (1 27g) was dissolved in acctonitria (20mL). To this solution, Boc₂O (1.08g) and dimethylaminopyridine (100mg) were added and the mixture was stirred for 30min at room temperature. The solvent was removed under reduced pressure and the residue was purified on a silica gel chlomatography (hexane: ethyl acctate—4:1) to obtain an N-Boc-oxazolidinone as a colorless oil (1.48g). This product was dissolved in methanol (20mL), 10lowed by addition of costum carbonate (410mg) and stirring overright at room temperature. Subsequently, the solvent was removed by distillation and the residue was dissolved in ethyl acctate. The mixture was then washed sequentially with diluted hydrochloric acid and water and the origanic phase was dried over anityforus sodium sulfate. The solvent was removed by distillation and the residue was purified on a silica gel chlomatography (hexane: ethyl acctate = 2: 1) to give the desired product as a colorless oil (1.28g).

FABMS: 588 [(M+H]*).

"H-MMR(coMD4, CDC₆) \$ 1 43(9H, s), 1.51-1.86(3H, m), 1.82-1.85 (1H, m), 2.15(3H, s), 2.69(2H, I, J=7.3Hz), 2.75 (1H, d, J=13.4Hz), 2.90 (2H, s), 6.86-6.94(3H, m), 7.12-7.17(2H, m), 7.21-7.17(7H, m).

30 <Example 191>

5- [4-(3-benzyloxyphenoxy)-2-chlorophenyl]-2- t-butoxycarbonylamino-2-t-butyldiphenylslloxymethylpentane-1-ol

[0189]

35

40

(1919) The compound of Example 146 (3.25g) was dissolved in DMF (18mL). To this solution, discoproylethylamine (10.5mL) and 1-Bu²h₂SiCl (1.73g) were added and the mixture was sirred for 8 hours at room temperature. Subsequently, loe water was added and the mixture was extracted with ethyl acetate. The extract was washed sequentially with water, diluted hydrochloric acid, water and a saturated aqueous solution of sodium chloride. The organic phase was then dried over anhydrous sodium sulfate. The solvent was removed by distillation and the residue was purified on a silica gel column chromatography (hexane: ethyl acetate ~ 7: 1) to give the desired product as a coloriest of

1H-NMR(400MHz, CDCl₃)δ 1.06 (9H, s), 1.43 (9H, s). 1.49-1.82(4H, m), 2.66(2H, I, J=7.8Hz), 3.54 (1H, d, J=10.3Hz), 3.65-367(2H. m), 3.74(1H, d, J=10.3Hz) 5.03(2H s), 5.05(1H. br s), 6.59(1H, dd, J=8.3, 2.4Hz), 6.83(1H, I, J=2.4Hz), 6.74(1H, dd, J=8.3, 2.4Hz), 6.82(1H, dd, J=8.3, 2.4Hz), 6.99(1H, d, J=2.4Hz), 7.10(1H, d, J=8.3Hz), 7.23(1H, I, J=8.3Hz), 7.31-7.45(11H, m), 7.61-7.64(4H, m).

<Example 192>

5- [4-(3-benzy)oxyphenoxy)-2-chlorophenyil-2- t-butoxycarbonylamino-2-t-butyldiphenylsiloxymethylpentanal

[0191]

10

(80 [0192] The compound of Example 191 (940mg) was dissolved in DMF (10mL). To this solution, pyridinium dichromate (800mg) was acided and the mixture was stirred for 48 hours at room temperature. Following addition of valent, the mixture was extracted with evily acetals. The extract was then washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was dried over anhydrous sodium sulfate. The solvent was concentrated and the residue was purified on a silica gel chlomatography (hexane: ethyl acetate = 3: 1) to give the desired product as a colores oil (1710mg).

1H-NMR(400MHz, CDO_b)δ 1.01(9H, s), 1.44(9H, s), 1.49-1.73(4H, m), 2.64(2H, br s), 3.84 (1H, d, J=10.3Hz), 4.13 (1H, d, J=10.3Hz), 5.03(2H, s), 5.43(1H, br s), 6.58(1H, dd, J=8.3, 2.4Hz), 6.82 (1H, t, J=2.4Hz), 6.99 (1H, d, J=2.4Hz), 7.08 (1H, d, J=8.3Hz), 7.23(1H, t, J=8.3Hz), 7.30-7.43(11H, m), 7.56-7.64(4H, m), 9.36 (1H, s).

<Example 193>

5- [4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylaminopentanal

30 [0193]

40 [0194] To an oxalyl chloride solution (1.0mL) of methylene chloride (20mL), a mixture of DMSO (1.7mL) and methylene chloride (10mL) was added while the mixtures were kept it -78°C. The compound of Example 129 (5.59g) in methylene chloride (20mL) was then added dropwise. After 15min, trieftylamine (7.2mL) was added and the mixture was stirred for 2 hours until room temperature. Following addition of water, the mixture was extracted with ethyl acetate and the organic phase was dried over enhydrous sodium sulfate. The solvent was then concentrated and the residue was purified on a silice gel chlomatography (hexane: ethyl acetate = 3:1) to give the desired product as a pale yellow

oii (4.75g).

1H-MMR(400MHz, CDCl₂) 5 1.44(9H, s), 1.60-1.74(3H, m), 1.96 (1H, br), 2.72-2.77(2H, m), 4.28 (1H, br), 5.02(2H, s).
6.87-6.96(3H, m), 7.10-7.16(2H, m), 7.23(1H, t, J.-7.8Hz), 7.28-7.52(5H, m), 9.58 (1H, s).

<Example 194>

Ethyl 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethoxycarbonyl-2-methylpentanoate

[0195]

10

g (196] Sodium hydride (242mg) was dissolved in DMF (6mL). To this solution, diethyl methylmabonate (0.956mL), was added and the mixture was airred for 30min. The compound of Reference Example 252 (2.60g) in DMF (6mL), was then added and the mixture was further stirred for 1 hour. Subsequently, the reaction mixture was diluted with water and was extracted with thy acetate. The other jacotate layer was washed with a saturated aqueous solution of sodium chloride and was direct over anhydrous sodium sulties. The dried organic phase was concentrated and the resulting residue was purified on a silied gel chlomatography (hexane: ethyl acetate = 20:1 to 10:1) to give the desired product as a yellow oil (2.74g).

MS (E): 540 (M)†). H-NMR (400MHz, CDCl₃) δ 1.23 (6H, t, J=7.3Hz), 1.40(3H, s), 1.52-1.60(2H, m), 1.91-1.95(2H, m), 2.70(2H, t, J=7.9Hz), 4.16(4H, q, J=7.3Hz), 5.02(2H, s), 6.86-6.94 (3H, m), 7.11-7.14(2H, m), 7.20-7.24(1H, m), 7.31-7.40(6H, m).

<Example 195>

Ethyl 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethoxycarbonyl-2-ethylpentanoate

30 [0197]

25

35

40

50

[0198] Using diethyl ethylmalonate, the reaction was carried out in the same manner as in Reference Example 194 to give the desired product as a yellow oil. MS (EI): 554 ([M]+).

1H-NMR(400MHz, CDCl₃) δ 0.80(3H, t, J=7.3Hz), 1.22(6H, t, J=7.3Hz), 1.45-1.53(2H, m), 1.89-1.97(4H, m), 2.70(2H, t, J=7.3Hz), 4.16(4H, q, J=7.3Hz), 5.02(2H, s), 6.86-6.94(3H, m), 7.11-7.16(2H, m), 7.20-7.24(1H, m), 7.31-7.40(6H, m).

<Example 196>

Ethyl 4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethoxycarbonyl-2-methylbulyrate

5 [0199]

10

20

35

50

[0200] Using the compound of Reference Example 317, the reaction was carried out in the same manner as in Example 194 to give the desired product as a pale yellow oil. MS (E): \$282 (MI)*).
H-NNR (400MHz, CDCl₂) § 1.27(6H, t, J-47.3Hz), 1.52(8H, s), 2.10-2.14(2H, m), 2.65-2.69(2H, m), 4.20(4H, q, J-7.3Hz), 5.02(2H, s), 6.86-5.96(3H, m), 7.15(2H, s), 7.23(1H, J-8.0), 7.317-41(6H, m).

<Example 197>

Ethyl 4- [4-(3-benzyloxyphenylthio)-2-chlorophenyll-2-ethoxycarbonyl-2-ethylbutyrate

25 [0201]

[0202] Using the compound of Reference Example 317, the reaction was carried out in the same manner as in Example 195 to give the desired product as a colorless oil. MS (EI): 540 (MI)⁺).

40 1H-NMR(400MH2, CDCl₃) δ 0.82(3H, t, J=7.3Hz), 1.17 (6H, t, J=7.3Hz), 1.93 (2H, q, J=7.3Hz), 1.98-2.02(2H, m), 2.45-2.51(2H, m), 4.13(4H, q, J=7.3Hz), 5.10(2H, s), 6.92-7.01(3H, m), 7.21(1H, dd, J=8.0, 1.9Hz), 7.30-7.41(8H, m).

<Example 198>

5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethoxycarbonyl-2-methylpentanoic acid

[0203]

[0204] The compound of Example 194 (2.74g) was dissolved in ethanol (10ml.). To this solution, potassium hydroxide (330mg) was added and the mixture was stirred overnight at 50°C. Subsequently, the reaction mixture was diluted with

water, followed by addition of 2moVL hydrochloric acid and extraction with ethyl acetale. The ethyl acetale layer was washed with a saturated aqueous solution of sodium chloride, was dried over anhydrous magnesium sulfate, and was then concentrated. The resulting residue was purified on a silica gel chlomatography (hexane: ethyl acetate = 10: 1 to 2: 1) to give the desired product as a yellow oil (2.38g).

MS (EI): 512 ([M]+).

¹H-NMR(400MHz, CDCl₃) & 1.26(3H, t, J=7.3Hz), 1.47(3H, s), 1.53-1.62(2H, m), 1.92-2.03(2H, m), 2.71(2H, l, J=7.9Hz), 4.22(2H, q, J=7.3Hz), 5.02(2H, s), 6.87-6.94(3H, m), 7.10-7.14(2H, m), 7.21-7.25(1H, m), 7.31-7.40(6H, m).

<Example 199>

5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethoxycarbonyl-2-ethylpentanoic acid

[0205]

5

10

15

20

30

35

40

45

55

S CO₂Et CO₂

25 [0206] Using the compound of Example 195, the reaction was carried out in the same manner as in Example 198 to give the desired product as a yellow oil.
MS(EI): 526 (MH+).

1H-NMR(400MHz, CDCl₃) 8.0.84(3H, t, J=7.3Hz), 1.28(3H, t, J=7.3Hz), 1.42-1.58(2H, m), 1.85-1.59(2H, m), 2.00-2.13 (2H, m), 2.68-2.70(2H, m), 4.23-4.31(2H, m), 5.02(2H, s), 6.86-6.94(3H, m), 7.08-7.15(2H, m), 7.21-7.25(1H, m), 7.30-7.40(6H, m).

<Example 200>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethoxycarbonyl-2-methylbutyric acid

[0207]

[0208] Using the compound of Example 196, the reaction was carried out in the same manner as in Example 198 to give the desired product as a pale yellow oil.

MS (EI) 4.99 (MH).

59 1H-NMR(400MHz, CDCl₃) 8 1.30(3H. t, J=7.3Hz), 1.57(3H, s), 2.11-2.19(2H, m), 2.69(2H, t, J=8.5Hz), 4.24(2H, q, J=7.3Hz), 5.02(2H, s), 6.87-6.96(3H, m), 7.14(2H, s), 7.23 (1H, t, J=8.0Hz), 7.31-7.40(6H, m).

1602660A1 I >

<Example 201>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethoxycarbonyl-2-ethylbutyric acid

[0209]

10

15

25

20

35

50

[0210] Using the compound of Example 197, the reaction was carried out in the same manner as in Example 198 to give the desired product as a pale yellow oil.

1H-NMR(400MHz, CDOl₉) δ 0.90(3H, t, J=7.3Hz), 1.33(3H, t, J=7.3Hz), 1.94-1.99(1H, m), 2.05-2.12(1H, m), 2.15-2.24 (2H, m), 2.59-2.64(2H, m), 4.20-4.31(2H, m), 5.02(2H, s), 6.87-6.94(3H, m), 7.09-7.14(2H, m), 7.23(1H, t, J=8.0Hz), 7.29-7.40(6H, m)

<Example 202>

Ethyl 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methoxycarbonylamino-2-methylpentanoate

[0211]

[0212] The compound of Example 198 (2.38g) was dissolved in benzene (20mL). To this solution, tribtylarine (0.711mL) and DPPA (1.10mL) were added. The mixture was then stirred for 10min at room temperature and for a further I hour and 30min while being refluxed. Subsequently, methanol (3.76mL) was added over 30min and the mixture was stirred overnight. The reaction mixture was diluted with water and was extracted with child value in the section of the

MS (E); 541 [M]-7; "H-NMR4(00MH, CDCL)₃ 8 1.24(3H, t, J=7.3Hz), 1.38-1.40 (1H, m), 1.54(3H, s), 1.56-1.65(1H, m), 1.80-1.87(1H, m), 2.28(1H, m), 2.65-2.68(2H, m), 3.68(3H, s), 4.15-4.22(2H, m), 5.02(2H, s), 5.61(1H, br s), 8.86-6.94(3H, m), 7.09-7.15 (2H, m), 7.20-7.24(1H, m), 7.31-7.40(6H, m).

< Example 203>

Ethyl 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethyl-2-methoxycarbonylaminopentanoate

[0213]

10

15

30

35

[0214] Using the compound of Example 199, the reaction was carried out in the same manner as in Example 202 to obtain the desired product as a yellow oil.

MS (EI): 555 ([M]*).

1H-NMR(400MHz, CDCl₀) à 0.74(9H, t, J=7.3Hz). 1.24(3H, t, J=7.3Hz), 1.28-1.32(1H, m), 1.57-1.58(1H, m), 1.70-1.84

(2H, m), 2.34-2.44(2H, m), 2.62-2.72(2H, m), 3.63(3H, s), 4.16-4.22(2H, m), 5.02(2H, s), 5.78(1H, br s), 6.86-5.94(3H, m), 7.09-7.15(2H, m), 7.20-7.24(1H, m), 7.31-7.40(6H, m).

<Example 204>

25 Ethyl 4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-methylbutyrate

[0215]

CO₂E1

[0216] Using the compound of Example 200 and t-butanol instead of methanol, the reaction was carried out in the same manner as in Example 202 to obtain the desired product as a pale yellow oil. FABNS: 698(IM-Hi⁻¹):

1H-NMR(400MHz, CDCl₀) 5 1.29(9H, t, J=7.3Hz), 1.48(9H, s), 1.58(3H, s), 2.10(1H, Id, J=13.0, 4.9Hz), 2.41(1H, br), 2.53(1H, Id, J=13.0, 4.9Hz), 2.67(1H, Id, J=13.0, 4.9Hz), 2.67(1H, Id, J=13.0, 4.9Hz), 4.19(2H, q, J=7.3Hz), 5.02(2H, s), 5.46 (1H, br s), 6.86-6.94 (3H m), 7.08-7.16(2H, m), 7.23(1H, 1, J=8.0Hz), 7.30-7.40(9H, m).

<Example 205>

Ethyl 4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethyl-2-methoxycarbonylaminobutyrate

5 [0217]

15

30

35

45

[0218] Using the compound of Example 201, the reaction was carried out in the same manner as in Example 202 to obtain the desired product as a pale yellow oil MS (ED: 541 (MH).

H-NMIR(200Hz, CDCl₂) 8 0.77(3H, t, J=7.3Hz), 1.30(3H, t, J=7.3Hz), 1.75-1.80(1H, m), 2.05-2.15(1H, m), 2.36-2.49 (2H, m), 2.59-2.68(2H, m), 3.58(3H, s), 4.11-4.27(2H, m), 5.02(2H, s), 5.87(1H, br), 6.86-6.59(3H, m), 7.08(-1.4(2H, m), 7.20(H, br), 1.30(2H, br), 1.30(

<Example 206>

25 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methoxycarbonylamino-2-methylpentane-1-ol

[0219]

NHCO₂Me

[0220] Using the compound of Example 202, the reaction was carried out in the same manner as in Example 76 to obtain the desired product as a colorless oil.

MS (E): 499 (M)+). 1H-NMR(400MHz, CDCl₃) 5 1.18(3H, s), 1.57-1.84 (4H, m), 2.71 (2H, t, J=7.3Hz), 3.59-3.69(3H, m), 3.63(3H, s), 4.71 (1H, br s), 5.02(2H s), 6.86-6.94(3H, m), 7.13-7.17(2H, m), 7.21-7.25(1H, m), 7.30-7.41(6H, m).

<Examples 207 and 208>

(+) and (-)-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methoxycarbonylamino-2-methylpentane-1-ols

[0221] The compound of Example 206 was optically resolved by a high performance liquid chromatography (HPLC) (chiralcel OD, hexane: isopropanel = 70 : 30, detection wavelength = UV 254nm, flow rate = 5mL/min) (2002). The compound obtained from the first elevels had no posical relation (all 454, or 4.5 ± 0.5 = 1.0, chiraform).

(0222) The compound obtained from the first eluate had an optical rotation [α] ²⁴⁰_D of +15 ° (C = 1.0, chloroform) (Example 207), while the compound obtained from the second eluate had an optical rotation [α]²⁴⁷_D of -12 ° (C = 1.0, chloroform) (Example 208).

<Example 209>

5-[4-(3-benzyloxyphenyithio)-2-chlorophenyl]-2-ethyl-2-methoxycarbonylaminopentane-1-ol

5 [0223]

ta

15

25

35

40

[0224] Using the compound of Example 203, the reaction was carried out in the same manner as in Example 76 to obtain the desired compound as a pale yellow oil.

MS (Eh. 513 (MM*).

1H-NMR(400MHz, CDCl₃) δ 0.83(3H, t, J=7.3Hz), 1.51-1.73(6H, m), 2.70 (2H, t, J=7.3Hz), 3.63(3H, s), 3.65-3.70(3H, m), 4.63(1H, br s), 5.02(2H, s), 6.86-6.94(3H, m), 7.12-7.17(2H, m), 7.20-7.24 (1H, m), 7.30-7.40 (6H, m).

<Examples 210 and 211>

(+) and (-)-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethyl-2-methoxycarbonylaminopentane-1-ols

[0225] The compound of Example 209 was optically resolved by HPLC (chiralcel OD, hexane : Isopropanol = 60 : 40, detection wavelength = UV 254nm, flow rate = 3mL/min).

[0226] The coloriess oil obtained from the first eluate had an optical rotation $[\alpha]^{25.6}_D$ of +14° (C = 1.0, chloroform) (Example 210), while the coloriess oil obtained from the second eluate had an optical rotation $[\alpha]^{25.7}_D$ of -15° (C = 1.0, chloroform) (Example 211).

<Example 212>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-methylbutane-1-ol

[0227]

[0228] Using the compound of Example 204, the reaction was carried out in the same marner as in Example 76 to obtain the desired compound as a colorless oil.

MS (EI) : 527 ([M]+).

1H-NMR(400MHz, CDCl₃) 5 1.25(3H, s), 1.44 (9H, s), 1.82 (1H, td, J=13.0, 4.9Hz), 2.06(1H, td, J=13.0, 4.9Hz), 2.65-2.80(2H, m), 3.65-3.74(2H, m), 4.68 (1H, brs), 5.02 (2H, s), 6.86-6.94(9H, m), 7.15(2H, s), 7.23(1H, t, J=8.0Hz), 7.32-7.40(6H, m).

<Examples 213 and 214>

(+) and (-)-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-methylbutane-1-ols

[0229] The compound of Example 212 was optically resolved by HPLC (chiralpak AD, hexane : isopropanol = 85 : 15. detection wavelength = UV 254nm, flow rate = 3mL/min).

[0230] The colorless oil obtained from the first eluate had an optical rotation $[\alpha]^{25.9}$ of +4.6° (C = 1.0, chloroform) (Example 213), while the colorless oil obtained from the second eluate had an optical rotation [α]^{25.6}n of -2.2 °(C = 1.0, chloroform) (Example 214).

<Example 215>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethyl-2-methoxycarbonylaminobutane-1-ol

15 [0231]

10

20

25

30

35

[0232] Using the compound of Example 205, the reaction was carried out in the same manner as in Example 76 to obtain the desired product as a colorless oil.

MS (EI): 499 ([M]+).

1H-NMR(400MHz, CDCl₂) 8 0.94(3H, t, J=7.3Hz), 1.69(2H, q, J=7.3Hz), 1.80-1.94(2H, m), 2.62-2.75(2H, m), 3.65(3H, s), 3,77(3H, m), 4,77(1H, br), 5,02(2H, s), 6,86-6,95(3H, m), 7,16(2H, s), 7,23(1H, t, J=8,0Hz), 7,32-7,41(6H, m).

<Examples 216 and 217>

(+) and (-)-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethyl-2-methoxycarbonylaminobulane-1-ols

[0233] The compound of Example 215 was optically resolved under similar conditions to those used in Examples 213 and 214.

[0234] The colorless oil obtained from the first eluate had an optical rotation [α]^{25.6}D of +11.1° (C = 1.0, chloroform) (Example 216), while the colorless oil obtained from the second eluate had an optical rotation [c]28.1 n of -9 67° (C = 1.0, chloroform) (Example 217).

<Example 218>

5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-butoxycarbonylamino-2-ethylpentane-1-ol

[0235]

50

[0236] Using the compound of Example 199 and t-butanol instead of methanol, the same procedure was followed as in Example 203 and the reactant was reduced in the same manner as in Example 76 to obtain the desired product as a colorless oil. MS (EI): 555 ([M1+).

1H-NMR (400MHz, CDCl₃) δ 0.83(3H, t, J=7.3Hz), 1.42(9H, s); 1.55-1.72(6H, m), 2.70(2H, t, J=6.7Hz), 3.64-3.66(2H. m), 4.49(1H, br s), 5.02(2H, s), 6.82-6.95(3H, m), 7.12-7.17(2H, m), 7.20-7.25(1H, m), 7.30-7.41(6H, m).

<Example 219>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-methoxymethyloxymethylbutnane-1-ol

[0237]

15

20

- [0238] The compound of Example 126 (4.00g) was dissolved in methylene chloride (100mL). To this solution, diisopropylethylamine (1.54mL) was added, followed by dropwise addition of methoxymethylchloride (710mg) at 0°C. The mixture was stirred for one day until room temperature. Following addition of ice water, the mixture was extracted with ethyl acetate. The extract was then dried over anhydrous sodium sulfate and the solvent was removed by distillation. The resulting residue was purified on a silica gel chlomatography (hexane : ethyl acetate = 2:1) to give the desired product as a colorless oil (2.60g).
 - ¹H-NMR(400MHz, CDCl₀) δ 1.45(9H, s), 1.90-2.00(2H, m), 2.68-2.78(2H, m), 3.39(3H, s), 3.54 (1H d, J=9.8Hz), 3.77 (2H, d, J=6.1Hz), 3.79(1H, d, J=9.8Hz), 3.99(1H, br), 4.65(2H, s), 5.02(2H, s), 5.20(1H, br s), 6.86-6.94(3H, m), 7.13-7.17(2H, m), 7.22(1H, t, J=8.0Hz), 7.31-7.40(6H, m).
- <Examples 220 and 221>
 - (+) and (-)-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-methoxymethyloxymethylbutane-1-ols
- [0239] The compound of Example 219 was optically resolved by HPLC (chiralpak AD-H, hexane : isopropanol = 85 : 15, detection wavelength = UV 254nm, flow rate = 3mL/min).
 - [0240] A colorless oil was obtained from each of the first eluate and the second eluate (Example 220 and Example 221, respectively).
- «Example 222»
 - 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-butoxycarbonylamino-2-methoxymethyloxymethylpentane-1-ol

[0241]

[0242] Using the compound of Example 128, the reaction was carried out in the same manner as in Example 219 to obtain the desired product as a colorless oil.

1H-IMMR(400MHz, CDCd) 6 1.43(9H, s), 1.56-1.68(3H, m), 1.81-1.84(1H, m), 2.67(2H t, L)=7.8Hz), 3.35(3H, s), 3.46 (1H, d, 1-9.8Hz), 3.65-3.68(2H, m), 3.71(1H, d, 1-9.8Hz), 4.61(2H, s), 5.02(2H, s), 5.07(1H, br s), 6.87(1H, dodd, J-8.3, 2.5, 1.0Hz), 6.91-6.95(2H, m), 7.12-7.16(2H, m), 7.23(1H, t, L, J-7.8Hz), 7.31-7.40(6H, m).

<Example 223>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-methoxymethyloxymethyl-1-dimethoxyphosphoryloxybutane

[0243]

15

20

S S NHBoc OMe

28 [0244] To a methylone chloride solution (2mL) containing the compound of Example 219 (660mg), carbon tetrabromide (533mg) and pyridine (2mL), trimethyl phosphite (0.19mL) was added while he mixture was stirred at 0° and the mixture was stirred at 0° four suntil room temperature. Subsequently, water was added and the mixture was extracted with ethyl acetate. The extract was washed sequentially with water and a saturated aqueous solution of sodium chloride. The organic phase was then dried over anhydrous sodium sulfate. The solvent was removed by distillations and the residue was purified on a silica gel column chromatography (hexane : ethyl acetate = 1 : 1) to obtain the desired product as a coloriess (if (380mb).

FABMS: 696 ([M+H]+).

1H-NMR(400MHz, CDCl₃) δ 1.45(9H, s), 1.85-2.03(1H, m), 2.08-2.21(1H, m), 2.69-2.78(2H, m), 3.59(3H, s), 3.68(1H, d, J=9.8Hz), 3.74(1H, d, J=8.8Hz), 3.78(6H, d, J=11.0Hz), 4.22-4.29(2H, m), 4.55(2H, s), 4.97(1H, br s), 5.02(2H, s), 6.88 (1H, dd, J=7.9, 2.4Hz), 5.91-5.89(1H, dd), 7.32(3H, L), 3.78(3Hz), 7.37-40(6H, m).

<Example 224>

(-)-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl] -2-t-butoxycarbonylamino-2-methoxymethyloxymethyl-dimethoxyphosphoryloxybutane

[0245] Using the compound of Example 220 (first eluate), the reaction was carried out in the same manner as in Example 223 to obtain the desired product as a colorless oil. [$oi^{26}_{D} = -3.01^{\circ}(C = 0.93, \text{chloroform})$.

45 <Example 225>

(+)-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-methoxymethyloxymethyl-1-dimethoxyphosphoryloxybutane

90 [0246] Using the compound of Example 221 (second eluato), the reaction was carried out in the same manner as in Example 223 to obtain the desired product as a colorless oil. [or]²⁰_A = 1,39 (*C = 1.03, chloroform).

-

<Example 226>

(±)-2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methylpentane-1-ol

[0247]

10

20

25

35

50

[0248] The compound of Example 206 (827mg) was dissolved in a mixed solvent composed of a Smotl, aqueous solution of potassium hydroxide (2mL), letrahydrofuran (2mL) and methanol (3mL). This mixture was refluxed and stirred for 4 days. Subsequently, the reaction mixture was diluted with water and was extracted with ethyl acetate. The ethyl acetate layer was then washed with a saturated aqueous solution of sodium chloride, was dried over anhydrous magnesium surfate, and was then concentrated. The resulting residue was purified on a silling spic olumn chromatography (arminated silling agi, ethyl acetate: ethanol = 20: 1) to give the desired product as a pale yellow oil (311mg). FABMS: 42g (7M-H)^h.

¹H-NMR (400MHz, CDCl₃) 8 1.04(3H, s), 1.37-1.67(4H, m), 2.70 (2H, t, J=7.3Hz), 3.29 (2H, q, J=9.2Hz), 5.02(2H, s), 6.86-6.94(3H, m), 7.12-7.17(2H, m), 7.21-7.25(1H, m), 7.31-7.41(6H, m).

<Example 227>

- (+)-2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methylpentane-1-ol
- 20 [0249] Using the compound of Example 2.07 (first eluate), the reaction was carried out in the same manner as in Example 226 to obtain the desired product as a pale yellow oil.

Elemental analysis (%) : $C_{25}H_{28}CINO_2S\cdot 1/3H_2O$								
	С	Н	N					
Calcd	67.00	6.45	3.13					
Found	67.03	6.51	3.20					

 $[\alpha]^{25.2}$ D +2.0° (C = 1.0, chloroform)

<Example 228>

- (-)-2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methylpentane-1-ol
- 45 [0250] Using the compound of Example 208 (second eluate), the reaction was carried out in the same manner as in Example 226 to give the desired product as a pale yellow oil.

Elemental an	alysis (%) : C	H ₂₈ CINO ₂ S	S-1/4H ₂ O
	С	Н	N
Calcd	67.23	6.44	3.14
Found	67.19	6.44	3.15

 $[\alpha]^{25.5}$ _D -2.6° (C = 1.0, chloroform)

<Example 229>

(+)-5-[4-(3-benzyloxyphenyithio)-2-chlorophenyi]-2-t-butoxycarbonylamino-1-dimethoxyphosphoryloxy-2-methylpentane

[0251]

5

10

15

[0252] The compound of Example 227 (410mg) was dissolved in acetonitrile (10mL). While this solution was chilled in an ice beth, Bo-20 (305mg) was added and the mixture was stirred for 3 hours at room temperature. The reaction mixture was concentrated and the residue was dissolved in ethyl acetate. This solution was washed with water and a saturated aqueous solution of sodium chloride. The organic phase was then dried over anhydrous sodium sulfate and was concentrated. The resulting residue was purified on a silica gel column chromatography (hexane: c sthyl acetate = 5: 1) to give a t-butoxycarbonylamino product as a pale yellow oil (47amg). The resulting compound (47amg), along with carbon tetrahormide (34amg), was dissolved in pyridine (2.0mm). While this solution was chilled in an ice bath, trimethyl phosphite (0.205mL) was added and the mixture was allowed to warm to room temperature and was stirred for? Abours. Subsequently, the reaction mixture was diluded with vater and was extracted with ethyl acetate. The resulting residue was purified on a silica gel column chromatography (hexane: ethyl certate 3 a pale yellow oil (634mg).

1H-NMR(400MHz, CDCl₃) δ 1.25(8H, s), 1.41(9H, s), 1.58-1.91(4H, m), 2.70(2H, t, J = 7.3Hz), 3.77(6H, d, J=11.0Hz), 3.96-4.00(1H, m), 4.154-1.61(1H, m), 4.51(1H, brs), 5.02(2H, s), 6.86-6.89(1H, m), 6.92-6.96(2H, m), 7.11-7.16(2H, m), 7.23(1H, t, J = 7.9Hz), 7.31-7.34(2H, m), 7.35-7.39(4H, m)

<Example 230>

(-)-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-1-dimethoxyphosphoryloxy-2-methylpentane

[0253] Using the compound of Example 228, the reaction was carried out in the same manner as in Example 229 to obtain the desired product as a pale yellow oil.

1H-NMR(400MHz, CDCl₃) 8 1.25(3H, s), 1.41(9H, s), 1.58-1.91(4H, m), 2.70(2H, t, J = 7.3Hz), 3.77(6H, d, J=11.0Hz), 3.97-4.00(1H, m), 4.13-4.17(1H, m), 4.51(1H, brs), 5.02(2H, s), 6.86-6.89(1H, m), 6.92-6.95(2H, m), 7.11=7.16(2H, m), 7.23(1H, t, J = 7.9Hz), 7.327-34(2H, m), 7.357-40(4H, m).

<Example 231>

5-[4-(3-benzyloxyphenyithio)-2-chlorophenyi]-2-t-butoxycarbonylamino-2-methoxymethyloxymethyl-1-dimethoxyphosphoryloxypentane

[0254]

46

50

RR

[0255] Using the compound of Example 222, the reaction was carried out in the same manner as in Example 223 to obtain the desired product as a coloriess oil.

FABMS: 710 ([M+H]+).

¹H-NMR(400MHz, CDCl₃) \$1.41(9H, s), 1.57-1.82(2H, m), 1.76-1.80(1H, m), 2.00-2.05(1H, m), 2.70(2H, t, J=7.8Hz), 3.44(9H, s), 3.57(1H, d, J=9.5Hz), 3.65(1H, d, J=9.5Hz), 3.77(6H, d, J=11.0Hz), 4. 12 (2H, d, J=7.1Hz), 4.60(2H, s), 4.81(1H, br s), 5.02(2H, s), 6.87(1H ddd, J=8.3, 2.5, 1.0Hz), 6.92-7.00(2H, m), 7.10-7.16(2H, m), 7.23(1H, t, J=7.8Hz), 7.87-52(6H, m).

<Example 232>

Diethyl 6-(4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-1-hexenylphosphonate

[0256]

10

15

20

35

45

55

[0257] Elthy methyleneblephosphonate (940mg) in THF (5mL) was chilled to 78°C under an argon gas airmosphere. To this solution, a 1.6mol/L n-Bul.-hexane solution (2mL) was added dropwise and the mixture was attirred for 50min, followed by dropwise addition of a THF solution (15mL) of the compound of Example 193 (1.58g). After 3 hours, a saturated armonium chloride solution was added and the mixture was extracted with ethyl acotate. The organic phase was washed with water and a saturated aqueous solution of sodium chloride and was dried over anhydrous sodium sulfate. The solvent was removed by distillation to give the desired product as a coloriess oil (1.71g).

1H-NMR(400MHz, CDCl₃) 5 1.29-1.33(6H, m), 1.43(9H, s), 1.54-1.68(4H, m), 2.71-2.73(2H, m), 4.03-4.11 (4H, m), 4.02 (1H, br), 5.03(2H, s), 5.77 (1H, I, J=17.7Hz), 6.60-6.71 (1H, m), 6.87-6.99(3H, m), 7.09-7.15(2H, m), 7.21-7.47(1H, m).

<Example 233>

Diethyl 3-amino-6- [4-(3-benzyloxyphenylthio)-2-chlorophenyll-1-hexenylphosphonate hydrochloride

[0258]

[0259] The compound of Example 232 (300mg) was dissolved in methanol (10mL) containing 10% hydrochloric acid in an ice bath. The mixture was stirred for 6 hours until room temperature and the solvent was concentrated. This gave the desired product as a colorless oil (250mg).

FABMS: 560 ([M+H]+).

1H-NMR(400MHz, DMSOd₈) 8 1.16-1.22(6H, m), 1.53-1.77(4H, m), 2.68-2.69(2H, m), 3.05(1H, br), 3.94-4.07(4H, m), 5.09(2H, s), 8.13(1H, t, J=17.8Hz), 6.46-6.55(1H, m), 6.38-7.00(3H, m), 7.20-7.22(1H, m), 7.29-7.41(8H, m), 8.44(3H, br), 8.14(3H, br), 8.14(

<Example 234>

Diethyl 6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylaminohexylphosphonate

5 [0260]

15 [0261] The compound of Example 232 was reduced in the same manner as in Reference Example 125 to obtain the desired product as a colorless oil. FABMs: 62([M+H]+).

1H-NMR(400MHz, CDCl₀) 8 1.32(6H, t, J=7.3Hz), 1.43 (9H, s), 1.46-1.82(8H, m), 2.67-2.73(2H, m), 3.62(1H, br), 4.03-4.13(4H, m), 4.32-4.34(1H, br), 5.02(2H, s), 6.86-6.95(3H, m), 7.10-7.16(2H, m), 7.23(1H, t, J=8.0Hz), 7.32-7.40 (9H, m),

<Example 235>

Diethyl 3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]hexylphosphonate hydrochloride

[0262]

25

30

35

50

55

[0263] The compound of Example 234 was reacted in the same manner as in Example 233 to obtain the desired product as a pale brown oil. FABMS: 562 (TM+H*)*.

40 1H-NMR(400MHz, DMSOd₈) § 1.21(6H, t, J=6.7Hz), 1.59-1.85(8H, m), 2.67(2H, br s). 3.15(1H, br s). 3.91-4.01(4H, m), 5.08(2H, s), 6.88-6.99(3H, m), 7.21-7.39(9H, m), 8.08(3H, br s).

<Example 236>

5 2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-hydroxymethylpentylphosphonate monoester

[0264]

[0265] To an acetonitrile solution (5mL) of the compound of Example 231 (500mg), TMSI (0.5mL) was added and

the mixture was stirred for 3 hours. The solvent was concentrated and the residue was purified on a silica gel column chromatography to obtain the desired product as a colorless powder (120mg). FABMS: 538 ((M+HP).

¹H-NMR(400MHz, DMSOd₆) & 1.60(4H, br s), 2.63(2H, br s), 3.38-3.44(2H, m), 3.72(2H, br s), 5.08(2H, s), 6.87-6.98 (3H, m), 7.20-7.38(9H, m).

Elemental analysis (%): C ₂₅ H ₂₉ CINO ₆ SP·H ₂ O							
	С	Н	N				
Calcd	54.00	5.62	2.52				
Found	54.10	5.37	2.62				

<Example 237>

2-amino-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-hydroxymethylbutylphosphonate monoester

[0266]

20

30

35 .

[0267] Using the compound of Example 223, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a colorless powder.

FABMS: 524 ([M+H]+).

1H-NMR(400MHz, DMSOd₂) δ 1.77-1.78 (2H, m), 2.71-2.75 (2H, m), 3.50-3.58(2H, m), 3.76-3.88(2H, m), 5.08(2H, s), 6.89(1H. t, J=7.3Hz), 6.96-6.99(2H, m), 7.21-7.38(9H, m).

Elemental analysis (%) : C ₂₄ H ₂₇ CINO ₆ SP							
	С	н	N				
Calcd	55.01	5.19	2.67				
Found	54.94	5.26	2.77				

m.p. = 200-202°C

<Example 238>

2-amino-5-[2-chloro-4-(3-hydroxyphenylthio)phenyl]-2-hydroxymethylpentylphosphonate monoester

[0268]

[0269] Instead of ice-cold environment, the experiment of Example 236 was carried out at room temperature to give the desired product as a colorless powder.

FABMS: 448 ((M+H)+).

Elemental analysis(%): C ₁₈ H ₂₃ CINO ₆ SP-0.5H ₂ O			
	С	Н	N
Calcd	47.32	5.29	3.07
Found	47.06	5.07	3.07

m.p. = 180-182°C.

<Example 239>

(+)-2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methylpentylphosphonate monoester

[0270]

10

20

25

30

40

S CI NH, OPO(OH)

[0271] The compound of Example 229 was reacted in the same manner as in Example 236 to obtain the desired product as a colorless powder.

HR-MS(FAB+): 522.1255 (-1.6mmu).

 1 H-NMR(400MHz, DMSOd₆) δ 1.12(3H, s), 1.51-1.65(4H, m), 2.64-2.70(2H, m), 3.66(2H, d. J = 11Hz), 5.09(2H, s), 6.91(1H, d, J = 7.3Hz), 6.97-7.01(2H, m), 7.20-7.24(1H, m), 7.30-7.42(8H, m).

1	Elemental and	analysis(%) : C ₂₅ H ₂₉ CINO ₅ PS-1/2H ₂ O		
		С	Н	N
	Calcd	56.55	5.69	2.64
	Found	56.40	5.60	2.77

 $[\alpha]^{22.6}$ D +3.2° (C = 1.0, methanol).

m.p. = 207-210°C.

... <Example 240>

(-)-2-amino-5-(4-(3-benzyloxyphenylthio)-2-chlorophenyll-2-methylpentylphosphonate monoester

[0272] Using the compound of Example 228, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a colorless powder.

HR-MS(FAB+): 522.1277 (+0.6mmu).

H-HMR (400MHz, DMSOd₃) 3 1.12(3H, s), 1.51-1. 65 (4H, m), 2.63-2.70(2H, m), 3.67(2H, d, J = 12Hz), 5.09(2H, s), 6.89-6 9 (1H, m), 6.96-70 (12H, m), 7.22-7.24(1H, m), 7.32-7.42(6H, m).

 $[\alpha]^{23.4}$ D -3.1° (C = 1.0, methanol).

160266041 1 %

m.p. - 200-203°C.

<Example 241>

3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]hexylphosphonic acid

[0273]

10

20

25

40

50

(5 [0274] Using the compound of Example 234, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a coloriess powder. FABMS: 50([M-H]*).

7-H-NMR(400MHz, DMSOd_g) 81.56-1.72(8H, m), 2.67(2H, brs), 3.18(1H, brs), 5.08(2H, s), 6.88-7.00(3H, m), 7.21-7.40
(9H, m),

Elemental analysis (%):C ₂₅ H ₂₉ CINO ₄ PS·1/2H ₂ O				
	С	Н	N	
Calcd	58.30	5.87	2.72	
Found	58.29	5.71	2.80	

<Example 242>

3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-1-hexenylphosphonic acid

[0275]

[0276] Using the compound of Example 232, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a coloriess powder. FABMS, 504 (IM-HI*)

¹H-NMR (400MHz, DMSOd₆) 8 1.53-1.70(4H, m), 2.69(2H, t, J=7.3Hz), 3.83-3.99 (1H, m), 5.12(2H, s), 6.03 (1H, t, J=16.5Hz), 6.28 (1H, d,d,d, J=16.5, 10.0, 7.3Hz), 6.89-7.01(3H, m), 7.20-7.41(9H, m).

<Example 243>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-t-butyldimethylsiloxymethyl-1-dimethoxyphosphoryloxybutane

[0277]

5

15

[0278] The compound of Example 126 was reacted with t-BuMe₂SiCl in the same manner as in Example 191. The resulting compound was reacted in the same manner as in Example 223 to give the desired product as a colorless oil. FABMS: 766([M+H]+).

1H-NMR(400MHz, CDCI₂) δ 0.09(6H, s), 0.91(9H, s), 1.45(9H, s), 1.86-1.98(1H, m), 2.05-2.15(1H, m), 2.72(2H, t, J=8.6Hz), 3.72(2H, s), 3.78(6H, d, J=11.0Hz), 4.17-4.24(2H, m), 4.78(1H, br s). 5.02(2H, s), 6.86-6.95(3H, m), 7.21 (2H.s), 7.23(1H, t, J=7.3Hz), 7.31-7.41(6H, m).

<Example 244>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-hydroxymethyl-1-dimethoxyphosphoryloxybutane

[0279]

- [0280] To a THF solution (30mL) of the compound of Example 243 (2.70g), 1mol/L tetrabutylammonium fluoride in THF (5mL) was added and the mixture was stirred for 1 hour at room temperature. Following addition of water, the mixture was extracted with ethyl acetate. The extract was washed with a saturated aqueous solution of sodium chloride and the organic phase was dried over anhydrous sodium sulfate. The solvent was removed by distillation and the residue was purified on a silica gel column chromatography (hexane : ethyl acetate = 2 : 1) to obtain the desired product as a colorless oil (2,30c).
- FABMS: 652 ([M+H]+)

¹H-NMR(400MHz, CDCl₃) δ 1.45(9H, s), 1.83-1.90(1H, m), 2.09-2.17(1H, m), 2.71(2H, t, J=8.6Hz), 3.71-3.77(2H, m), 3.79(6H, d, J=11.0Hz), 4.04(1H, br), 4.17-4.29(2H, m), 5.00(1H, br s), 5.02(2H, s), 6.86-6.95(3H, m), 7.14-7.15(2H, m), 7.23(1H, t, J=73Hz), 7.31-7.39(6H, m).

<Examples 245 and 246>

- (+) and (-)-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-t-butyldimethylsiloxymethyl-1-dimethoxyphosphoryloxybutanes
- [0281] The compound of Example 244 was optically resolved by HPLC (chiralpak AS-H, hexane: isopropanol = 8: 2, detection wavelength = UV 254nm, flow rate = 1mL/min). The coloness oil obtained from the first cluate had an optical rotation (α)260 of -6.12° (C = 1.0, methanol) (Example 245), while the colorless oil obtained from the second eluate had an optical rotation [α]²⁷_D of +5.79° (C = 1.0, methanol) (Example 246).

<Example 247>

(+)-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-1-dimethoxyphosphoryloxy-2-methylbutane

[0282]

10

15

S CI NHBoc OPO(OMe),

[0283] Using the compound of Example 213, the reaction was carried out in the same manner as in Example 223 to obtain the desired product as a pale brown oil.

FABMS: 636([M+H]*).

1H-NMR(400MHz, CDCl₃) 61.36(3H, s), 1.44 (9H, s), 1.77-1.82 (1H, m), 2.05-2.15(1H, m), 2.68-2.74(2H, m), 3.78(6H, d, J=11.0Hz), 4.01-4.05(1H, m), 4.21-4.25 (1H, m), 4.63(1H, br), 5.02(2H, s), 6.87-6.94(3H, m), 7.23-7.27(3H, m), 7.32-7.42(6H, m).

25 <Example 248>

(-)-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-1-dimethoxyphosphoryloxy-2-methylbutane

(9284) Using the compound of Example 214, the reaction was carried out in the same manner as in Example 223 to obtain the desired product as a pale brown oil.
FABMs: 680 (MH-HT).

1H-NMR(400MHz, CDCl₃) 81.38(9H, s), 1.44(9H, s), 1.74-1.82(1H, m), 2.05-2.15(1H, m), 2.68-2.76(2H, m), 3.78(6H, d, J=11.0Hz), 4.014.05(1H, m), 4.21-4.25 (1H, m), 4.63(1H, br), 5.02(2H, s), 6.88-6.95(9H, m), 7.21-7.27(9H, m), 7.31-7.41(9H, m)

<Example 249>

(+)-2-amino-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methylbutylphosphonate monoester

[0285]

40

45

50

S CI NH,

55 [0286] Using the compound of Example 247, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a colorless powder. FABMS: SolRM-H11*.

¹H-NMR (400MHz, DMSOd₈-TFA) δ 1.29(3H, s), 1.72-1.84(2H, m), 2.71(2H, t, J=7.9Hz), 3.87(1H, dd, J=4.9, 11.0Hz),

3.93(1H dd, J=4.9, 11.0Hz), 5.08(2H, s), 6.91(1H, d, 7.3Hz), 6.96-7.01(2H, m) 7.23(1H, dd, J=1.8, 7.9Hz), 7.29-7.40

 $[\alpha]^{25.6}$ D +15.1°(C = 1.0, 10%TFA in DMSO).

Elemental analysis (%) :C ₂₄ H ₂₇ CINO ₅ PS-2/3 CF ₃ CO ₂ H				
	C	Н	N	
Calcd	52.10	4.78	2.40	
Found	52.29	4.75	2.68	

<Example 250>

10

25

35

50

(-)-2-amino-4-[4-(3-benzyloxyphenyithio)-2-chlorophenyi]-2-methylbutylphosphonate monoester

[0287] Using the compound of Example 248, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a colorless powder. FABMS: 508 ([M+H]+).

1H-NMR (400MHz, DMSO-TFA) δ 1.29(3H, s), 1.76-1.90(2H, m), 2.71(2H, t, J=7.9Hz), 3.87 (1H, dd, J=4.9, 11.0Hz), 3.93(1H, dd, J=4.9, 11.0Hz), 5.08(2H, s), 6.90-7.01(3H, m), 7.24(1H, dd, J=1.8, 7.9Hz), 7.29-7.40(8H, m). $[\alpha]^{26.3}$ _D -12.6° (C = 1.0, 10%TFA in DMSO).

Elemental analysis(%): C24H27CINO5PS-1/2H2O			
	С	Н	N
Calcd	55.76	5.46	2.71
Found	55.77	5.19	2.97

<Examples 251 and 252>

Diethyl (Z)- and (E)-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-1-fluoro-1-pentenylphosphonates

T02881

$$\bigcap_{BocHN} C_{PO(OEt)_2} C_{PO(OEt)_2} C_{BocHN} C_{BocHN} C_{PO(OEt)_2} C_{BocHN} C_{BocHN} C_{PO(OEt)_2} C_{BocHN} C_{PO(OEt)_2} C_{BocHN} C_{BocHN} C_{PO(OEt)_2} C_{BocHN} C_{BocHN}$$

[0289] The compound of Example 127 was oxidized in the same manner as in Example 193 to obtain an aldehyde for use in the subsequent reaction.

[0290] Meanwhile, trimethylchlorosilane (1.0mL) was added to diethyl dibromofluoromethylphosphate (1.48mL) in THF (75mL), and the mixture was cooled to -78°C. Subsequently, 1.6mol/L n-butyllithium in hexane (11.3mL) was added dropwise and the mixture was stirred for 40min. Subsequently, the aldehyde obtained above (3.68g) in THF (25.0mL) was added dropwise over 10min. The mixture was allowed to warm to 0°C and was stirred for 5 hours. Following addition of aqueous ammonium chloride, the mixture was extracted with ethyl acetate. The ethyl acetate layer was then washed with a saturated aqueous solution of sodium chloride, was dried over anhydrous sodium sulfate, and was concentrated. The resulting residue was purified on a silica gel column chromatography (hexane: ethyl acetate = 10:1 to 1:1) As a result, the Z-form was obtained from the first eluate as a yellow oil (1.70g), and the E-form was obtained from the second eluate as a yellow oil (667mg).

Z-form : Example 251

FABMS: 664([M+H]+).

1H-NMR(400MHz, CDCl₃) δ 1.31-1.38(6H, m), 1.43(9H, s), 1.88-2.00(2H, m), 2.69-2.83(2H, m), 4.13-4.22(4H. m). 4.80-4.90(1H, m), 5.02(2H, s), 5.15-5.30(1H, br), 6.08-6.30(1H, m), 6.87-6.88(1H, m), 6.90-6.95(2H, m), 7.11-7.15(2H,

m), 7.22(1H, t, J=7.9Hz), 7.31-7.39(6H, m).

E-form : Example 252

FABMS: 663 ([M]+).

¹H-NMR(400MHz, CDCl₂) δ 1.34-1.36(eH, m), 1.44(9H, s), 1.82-1.88(2H, m), 2.71-2.78(2H, m), 4.15-4.23(4H, m), 4.60-4.65(2H, m), 5.02(2H, s), 5.80-6.00(1H, m), 6.89 (1H, dd, J=1.4, 7.9Hz), 6.93-6.95 (2H, m), 7.11-7.17(2H, m), 7.23 (1H, L.)-7.91z), 7.73-74(16H, m), 7.23 (1H, L.)-7.91z), 7.74(16H, m), 7.23 (1H, L.)-7.91z), 7.74(16H, m), 7.23 (1H, L.)-7.91z), 7.74(16H, m), 7.72(1H, m), 7.23 (1H, L.)-7.91z), 7.74(16H, m), 7.72(1H, m), 7.23 (1H, L.)-7.91z), 7.74(16H, m), 7.74(16H, m),

<Example 253>

(Z)-3-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-1-fluoro-1-pentenylphosphonic acid

[0291]

15

20

30

S CI CI F NH₂ PO(OH)

[0292] Using the compound of Example 251, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a coloriess powder. FABMS: 508(IM-HI⁺).

H-NMR (400MHz, DMSq₆) 6 1.76-1.98 (2H, m), 2.69(2H, t, J=7.9Hz), 4.19(1H, br), 5.08(2H, s), 5.47-5.82(1H, m), 6.90(1H, d, J=7.9Hz), 6.97-6.99(2H, m), 7.20(1H, d, J=7.9Hz), 7.29-7.40(8H, m), 8.67 (2H, br), m.p. = 285-288°C.

Elemental analysis (%) :C24H24CIFNO4PS-13/10H2O			
	С	Н	N
Calcd	54.25	5.05	2.64
Found	54.54	5.49	2.44

35 <Example 254>

(E)-3-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-1-fluoro-1-pentenylphosphonic acid

[0293]

45

[0294] Using the compound of Example 252, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a colorless powder.

FABMS: 508 ([M+H]+).

¹H-NMR(400MHz, CDCl₃) δ 1.79-1.91 (1H, m), 1.91-2.02(1H, m), 2.58-2.70(2H, m), 3 84-3.98(1H, m), 5.08(2H, s), 5.43-5.62(1H, m), 6.90(1H, m), 6.95-6.99(2H, m), 7.17-7.38(9H, m), 8.68(2H, br).

m.p. = 288-290°C.

<Examples 255 and 256>

 $\label{eq:def:Diethyl} \begin{tabular}{ll} Diethyl (Z)- and (E)-6-[4-(3-benzyloxyphenyllthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-1-fluoro-1-bexenylohosphonates \end{tabular}$

[0295]

15

30

40

50

[0296] The compound of Example 193 was reacted in the same manner as in Examples 251 and 252 to obtain the desired Z-form (Example 256) and the E-form (Example 256), respectively. Each product was obtained as a yellow oil. Z-form: Example 256
FABMS: 678 (fM-H1*).

1H-NMR (400MHz, CDCl₃) 6 1.31-1.37(6H, m), 1.41(9H, s), 1.61-1.71(4H, m), 2.73(2H, m). 4.10-4.18(4H, m), 4.84 (1H, br), 5.02(2H, s), 5.08-5.15 (1H, m), 6.01-6.19 (1H, m), 6.87(1H, dd, J=1.2, 9.7Hz), 6.91-6.94(2H, m), 7.12-7.16 (2H, m), 7.22(1H, t, J=7.9Hz), 7.30-7.39(6H, m).
E-form: Example 256

FABMS: 678 ([M+H]*).

HANIR (400MHz, CDCl₃, 61.32-1.37(6H, m), 1.43(9H, s), 1.61-1.66(4H, m), 2.72(2H, t, J=7.3Hz), 4.11-4.17(4H, m), 4.50-4.60(2H, m), 5.02(2H, s), 5.73-5.90(1H, m), 8.86-6.89(1H, m), 6.92-6.96(2H, m), 7.10(1H, d, J=7.9Hz), 7.13(1H, dd, J=1.2, 7.9Hz), 7.23(1H, t, J=7.9Hz), 7.31-7.40(6H, m).

<Example 257>

Diethyl 6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-1-fluorohexylphosphonate

[0297]

[0298] Using the compounds of Examples 255 and 256, the reaction was carried out in the same manner as in Reference Example 123 to obtain the desired product as a yellow oil. FABMS: 679(IM-HIP).

74.NMR[4000HHz, CDCl₃) 51.35 (6H, s), 1.43 (9H, s), 1.49-1.57 (2H, m), 1.58-1.75(4H, m), 2.65-2.80(2H, m), 3.82-3.94 (1H, m), 4.20 (4H, q,)=7.3Hz), 4.35-4.55(1H, m), 4.74-5.94(1H, m), 5.02(2H, s), 6.87-6.99(1H, m), 6.92-6.95(2H, m), 7.11-7.172(H, m), 7.23(1H, 1.3-9794z), 7.32-74(8H, m).

1502660A1 | >

< Example 258>

Dimethyl 6-[4-(3-benzyloxyphenyllhio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-methyl-1-hexenylphosphonate

[0299]

[0300] Following the same procedure as in Example 229, the compound of Example 226 was reacted to form a Boo product and, following the same procedure as in Example 193, the product was oxidized to an aldehyde. Subsequently, using methyl methylenebisphosphonate the same procedure was followed as in Example 232 to give the desired product as a pale vellow oil.

FABMS: 646 ([M+H]+). $^{1}\text{H-NMR} (400\text{MHz}, CDCl_{2}) \ \delta \ 1.36 (3\text{H}, s), \ 1.40 (9\text{H}, s), \ 1.54 - 1.64 (2\text{H}, m), \ 1.67 - 1.70 (1\text{H}, m), \ 1.82 - 1.92 (1\text{H}, m), \ 2.69 (2\text{H}, m), \ 2.69 ($ t, J=7.9Hz), 3.72(6H, d, J=11.0Hz), 4.55(1H, br), 5.02(2H, s), 5.62(1H, dd, J=17.1, 18.3Hz), 6.75(1H, dd, J=17.1, 22.6Hz), 6.80-6.89(1H, m), 6.93-6.96(2H, m), 7.10(1H, d, J=7.9Hz), 7.15(1H, dd, J=1.8, 7.9Hz), 7.23(1H, t, J=7.9Hz). 7.31-7.41(6H, m).

<Example 259>

Dimethyl 6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-methylhexylphosphonate

[0301] 20

35

45

55

[0302] The compound of Example 258 was reacted in the same manner as in Reference Example 123 to obtain the desired product as a pale yellow oil.

FABMS: 648([M+H]+). 1H-NMR(400MHz, CDCl₂) δ 1.13(3H, s), 1.41(9H, s), 1.50-1.60(2H, m), 1.65-1.86(4H, m), 2.02-2.08 (2H, m), 2.68(2H, t, J=7.3Hz), 3.73(6H, d, J=11.0Hz), 4.32 (1H, br), 5.01(2H, s), 6.87 (1H, dd, J=2.4, 8.5Hz), 6.91-6.95(2H, m), 7.11 (1H, d, J=7.9Hz), 7 14 (1H, dd, J=1.8, 7.9Hz), 7.22(1H, t, J=7.9Hz), 7.31-7.40(6H, m).

<Example 260>

3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-methylhexylphophonic acid

[0303]

[0304] The compound of Example 259 was reacted in the same manner as in Reference Example 236 to obtain the desired product as a colorless powder.

FABMS: 520([M+H]+).

1H-NMR (400MHz, DMSOd₀) δ 1.16 (3H, s), 1.20 (2H, br), 1.50-1.80(6H, m), 1.73(2H, t, J=7.3HZ), 2.85-2.70(2H, m), 5 07(2H, s), 6.89(1H, d, J=7.4Hz), 6.94-6.98(2H, m), 7.21-7.22(1H, m), 7.31-7.37(8H, m). m.p. = 195-197°C.

<Example 261>

3-amino-6-[4-(3-benzyloxyphonylthio)-2-chlorophenyl]-3-methyl-1-hexenylphosphonic acid

[0305]

15

20

30

45

[0306] The compound of Example 258 was reacted in the same manner as in Example 236 to obtain the desired product as a coloriess powder. FABMS: 15 (I/M-HI*).

1H-NMR(400MHz, DMSOd₆) 8 1.25(3H, s), 1.39-1.57(2H, m), 1.65-1.79(2H, m), 2.52-2.70(2H, m), 5.05(2H, s), 5.77-5.94(1H, m), 6.08-6.26(1H, m), 6.85(1H, d, J=6.7Hz), 6.91-6.99(2H, m), 7.10-7.42(9H, m), 8.39-9.20(2H, br). mp. = 243-245°C.

Elemental ar	ental analysis (%): C26H29CIFNO4P8			
	С	Н	N	
Calcd	58.26	5.83	2.61	
Found	57.80	5.31	2.74	

<Example 262>

Dimethyl 6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-methoxymethyl-1-hexenylphosphonate

[0307]

[0308] The compound of Example 222 was reacted in the same manner as in Example 232 to obtain the desired product as a coloriess oil.

FABMS: 706([M+H]+).

1H.-NMR(400MHz, CDCl₃ & 1.41(9H, s), 1.56-1.69(2H, m), 1.75-1.90(1H, m), 1.93-1.99(1H, m), 2.69(2H, I, J=7.9Hz), 3.33(3H, s), 3.60-3.63(2H, m), 3.71(6H, d, J=11.0Hz), 4.58(2H, s), 4.88 (1H, br), 5.02(2H, s), 5.70 (1H, dd, J=17.7, 3.21Hz), 6.87(1H, dd, J=2.4, 9.2Hz), 6.92-6.96(2H, m), 7.10(1H, d, J=7.9), 7.14(1H, dd, J=1.7, 7.9Hz), 7.39(1H, I, J=7.9Hz), 7.30-7.41(6H, m).

<Example 263>

3-amino-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-hydroxymethyl-1-hexenylphosphonic acid

[03091

10

15

30

35

[0310] The compound of Example 262 was reacted in the same manner as in Example 236 to obtain the desired product as a colorless powder. FABMS: 534 ([M+H]+).

1H-NMR(400MHz, DMSOde) 8 1.46-1.74(4H, m), 2.57-2.61(2H, m), 3.47-3.52(2H, m), 5.07(2H, s), 5.87-5.96(1H, m), 6.03-6.16(1H, m), 6.87(1H, d, J=7.3Hz), 6.95-6.97(2H. m), 7.19(1H, d, J=9.0Hz), 7.27-7.39(8H, m), 7.81-8.83(2H. br). m.p. =243-246°C.

<Example 264>

Dimethyl 8-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-methoxymethyloxymethylhexylphosphonate

[0311]

[0312] The compound of Example 262 was reacted in the same manner as in Reference Example 123 to obtain the desired product as a colorless powder.

FABMS: 708([M+H]+). 1H-NMR (400MHz, CDCl₃) & 1.41(9H, s), 1.51-1.67(2H, m), 1.70-2.05(6H, m), 2.68 (2H, t, J=7.9Hz), 3.33(3H, s), 3.47-3.53(2H, m), 3.73(6H, d, J=11.0Hz), 4.58(2H, s), 4.61(1H, br), 5.02(2H, s), 6.88 (1H, dd, J=1.8, 7.9Hz), 6.92-6.96 (2H, m), 7.11 (1H, d, J=7.9Hz), 7.14 (1H, dd, J=1.8, 7.9Hz), 7.23(1H, t, J=7.9Hz), 7.30-7.41(6H, m).

«Example 265»

3-aming-6-,[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-hydroxymethylhexylphosphonic acid

[0313]

50

[0314] The compound of Example 264 was reacted in the same manner as in Example 236 to obtain the desired product as a colorless powder.

FABMS: 536([M+H]+).

1H-NMR(400MHz, DMSOdc) & 1.36-1.73(8H, m), 2.60-2.68(2H, m), 3.31-3.40(2H, m), 5.07(2H, s), 6.88(1H, d, J=7.9Hz), 6.96-6.98(2H, m), 7.20-7.40(9H, m), 7.94-8.94(2H, br). m.p. = 193-196°C.

Elemental an	S-1H ₂ C		
	С	Н	N
Calcd	56.36	6.00	2.53
Found	56.18	5.61	2.51

<Example 266>

Dimethyl 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-methoxymethyloxymethyl-

[0315] 20

25

- 30 [0316] Following the same procedure as in Example 193, the compound of Example 219 was oxidized and, following the same procedure as in Example 232, the product was reacted with methyl methylenebisphosphonate to obtain the desired product as a colorless oil. FABMS: 692 ([M+H]+).
 - 1H-NMR(400MHz, CDCl₂) & 1.45(9H, s), 2.10-2.17(2H, m), 2.66-2.73(2H, m), 3.36(3H, s), 3.67-3.78(2H, m), 3.73(6H, d, J=,11.0Hz), 4.63(2H, s), 4.80-4.85(1H, br), 5.02(2H, s), 5.78(1H, dd, J=17.8, 18.3Hz), 6.82(1H, dd, J=17.8, 24.2Hz), 6.87-6.95(3H, m), 7.12-7.13(2H, m), 7.23(1H, t, J=7.9Hz), 7.30-7.41(6H, m).

<Example 267>

3-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-hydroxymethyl-1-pentenylphosphonic acid

F03171

45

50

[0318] The compound of Example 266 was reacted in the same manner as in Example 236 to obtain the desired product as a colorless powder.

FABMS: 520([M+H]+). 1H-NMR(400MHz, DMSOd_R) δ 1.76-1. 98 (2H. br), 2.50-2.72 (2H. br), 3.47-3.70(3H, m), 5.05(2H. s), 6.03-6.11(1H. m), 6.21-6.33(1H, m), 6.85(1H, d, J=7.4Hz), 6.94(2H, m), 7.15-7.36(9H, m), 8.74(2H, br s). m.p. = 245-248°C.

<Example 268>

Dimethyl 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-methoxymethyloxymethylpentylphosphonate

[0319]

10

[0320] The compound of Example 266 was reacted in the same manner as in Reference Example 123 to obtain the desired product as a colorless oil. FABMS: 694(M+H)⁻¹.

¹H-NMR(400MHz, CDCl₈) 5 1.44(9H, s), 1.54-1.60(2H, m), 1.82-1.87(2H, m), 1.98-2.05(2H, m), 2.67-2.70(2H, m), 3.93(3H, s), 3.83-8.64(2H, m), 3.74(6H, d, J=11 0Hz), 4.64(2H, s), 4.74(H, br), 5.02(2H, s), 6.87(1H, dd, J=1.8, 7.9Hz), 6.91-6.96(2H, m), 7.10-7.16(2H, m), 7.23(1H, J, J=7.9Hz), 7.31-7.41(6H, m).

<Example 269>

3-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-hydroxymethylpentylphosphonic acid

[0321]

35

45

50

55

[0322] The compound of Example 268 was reacted in the same manner as in Example 236 to obtain the desired product as a colorless oil.

FABMS: 522 ([M+H]+).

 $\begin{array}{l} \text{1H-NMR}(400\text{MHz}, DMS0d_g) \ \ 81.45-1.58(2H, m), \ 1.89-1.91(4H, m), 2.58-2.72(2H, m), 3.10-3.75(2H, br), 5.07(2H, s), 6.88(1H, d, J=7.3Hz), 8.96-6.99(2H, m), 7.21(1H, d, J=7.9Hz), 7.27-7.40(8H, m), 7.93-8.02(2H, br), m_0. = 205-208°C. \end{array}$

Elemental analysis (%) : $C_{25}H_{29}CINO_5PS\cdot H_2O$			
	C .	Н	N
Calcd	55.60	5.79	2.59
Found	55.21	5.40	2.68

<Example 270>

 $\label{lem:continuous} (+) - 2-amino - 4-[4-(3-benzyloxyphenyllhio) - 2-chlorophenyll-2-hydroxymethylbutylphosphonate monoester ((+) - Example 237)$

[0323] Example 245 (250mg) was dissolved in a 10% hydrochloric acid-methanol solution (10mL) and the mixture was allowed to stand overnight. Subsequently, the solvent was removed by distillation and the residue was dissolved

in ethyl acetate, followed by addition of triethylamine to adjust the pH to 7. The crystallized triethylamine hydrochloride was separated by filtration and was washed with ethyl acctate. The solvent was removed by distillation to give a Bocfree product as a colorless oil (250mg). This product was dissolved in acetonitrile (5mL) while the solution was chilled in an ice bath. To this solution, trimethylsilyl iodide (26.7µL) was added and the mixture was stirred for 30min at the same temperature. Subsequently, the solvent was removed by distillation and the residue was purified on a silica gel column chromatography (reversed phase silica chromatography, water : acetonitrile = 9:1 to 6:1 to 3:1 to 1:1 to only acetonitrile) to give the desired product as a colorless powder (97mg). $|\alpha|^{25^{\circ}C} = +2.77(C = 1.00, DMSO)$

FABMS: 524 ([M+H]+).

¹H-NMR(400MHz, DMSO+TFA) δ 1.78-1.85(2H, m), 2.78-2.80(2H, m), 3.56(1H, d, J=11.0Hz), 3.61 (1H, d, J=11.0Hz), 3.97(2H. d. J=5.5Hz), 5.08(2H, s), 6.87-6.98 (3H, m), 7.20-7.38(9H, m).

Elemental analysis (%) : C ₂₄ H ₂₇ CINO ₆ PS ·H ₂ O			
	С	Н	N
Calcd	53.56	5.25	2.60
Found	53.21	5.25	2.41

<Example 271>

16

20

(-)-2-amino-4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-hydroxymethylbutylphosphonic acid monoester ((-) -Example 237)

[0324] Using the compound of Example 246, the reaction was carried out in the same manner as in Example 270 to obtain the desired product as a colorless powder.

 $[\alpha]^{25^{\circ}C} = -2.61 \ (c = 1.00, DMSO).$ FABMS: 524 ([M+H]+).

1H-NMR(40OMHz, DMSO+TFA) δ 1.76-1.85(2H, m), 2.68-2.78(2H, m), 3.57 (1H, d, J=11.Hz), 3.60 (1H, d, J=11.Hz), 3.97(2H, d, J=5.5Hz), 5.08(2H, s), 6.87-6.98(3H, m), 7.20-7.38(9H. m).

<Example 272>

Ethyl 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methoxycarbonylamino-2-propylpentanoate

[0325]

[0326] Using diethyl propylmalonate, the compound of Reference Example 252 was reacted in the same manner as in Example 194 to obtain ethyl 5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-ethoxycarbonyl-2-propylpentanoate as a yellow oil. This product was hydrolyzed as in Example 198 to obtain a half ester. The half ester was treated in the same manner as in Example 202 to obtain the desired product as a colorless oil.

1H-NMR(400MHz, CDCl₂) δ 0.87(3H, t, J=7.3Hz), 0.89-1.02 (1H, m), 1.24(3H, t, J=7.3Hz), 1.23-1.33(2H, m), 1.52-1.78 (3H, m), 2.24-2.40(2H, m), 2.63-2.68(2H, m), 3.62(3H, s), 4.17-4.22(2H, m), 5.02(2H, s), 5.79(1H, br s), 6.85-6.94 (3H. m), 7.09(1H, d, J=7.9Hz), 7.14 (1H, dd, J=1.8, 7.9Hz), 7.22 (1H, t, J=7.9Hz), 7.29-7.43(6H, m).

<Example 273>

5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methoxycarbonylamino-2-propylpentane-1-ol

[0327]

15

30

35

[0328] Using the compound of Example 272, the reaction was carried out in the same manner as in Example 76 to obtain the desired product as a colorless oil. FABMS: 528([M+H]+).

1H-NMR(400MHz, CDCl₃) δ 0.90 (3H, t, J=7.3Hz), 1.15-1.35 (2H, m), 1.48-1.69(6H, m), 2.69(2H, t, J=7.3Hz), 3.62(3H, s), 3,70(2H, s), 4,71(1H, br s), 5.01(2H, s), 6.85-6.94(3H, m), 7.12-7.24(3H, m), 7.31-7.40(6H, m).

<Example 274>

5-[4-(3-benzyloxyphenylthlo)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-propylpentane-1-ol

[0329]

[0330] Using the compound of Example 273, the reaction was carried out in the same manner as in Example 226 to synthesize 2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-propylpentane-1-ol. As in Example 229, the product was reacted to form a Boc product, thereby obtaining the desired compound as a colorless oil.

1H-NMR(400MHz, CDCl₃) δ 0.90(3H, t, J=7.3Hz), 1.15-1.35 (2H, m), 1.42(9H, s), 1.48-1.73(6H, m), 2.70(2H, t, J=7.3Hz), 3.63-3.66(2H, m), 4.51(1H, br s), 5.02(2H, s), 6.86-6.95(3H, m), 7.12-7.24(3H, m), 7.33-7.41(6H, m).

<Examples 275 and 276>

(+) and (-)-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-propylpentane-1-ols

[0331] The compound of Example 274 was optically resolved by HPLC(chiralpak OD-H, hexane: ethanol = 97:3, detection wavelength = UV 254nm, flow rate = 3mL/min). The desired products were obtained from the first eluate (Example 275) and the second eluate (Example 276), respectively, each as a colorless oil.

Example 275 $[\alpha]^{25}$ _D -10.2° (C = 1.08, CHCl₃);

Example 276 $[\alpha]^{23}_D$ +9.48° (C = 1.16, CHCl₃).

<Example 277>

5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-t-butoxycarbonylamino-2-propylpentanal

[0332]

[0333] Using the compound of Example 274, the reaction was carried out in the same manner as in Example 193 to obtain the desired product as a colorless oil.

1H-NMR (400MHz, CDCl₃) δ 0.88(3H, t, J=7.3Hz), 1.03-1.37(2H, m), 1.42 (9H, s), 1.48-1.77 (4H, m), 2.02-2.25 (2H, m), 2.65-2.70(2H, m), 5.02(2H, s), 5.27 (1H, br s), 6.86-6.94(3H, m), 7.07-7.14(2H, m), 7.23(1H, t, J=7.8Hz), 7.30-7.41 (6H, m), 9.23(1H, s).

<Example 278>

Dimethyl 6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-propyl-1-hexenylphosphonate

[0334]

20

30

35

50

[0335] As in Example 232, the compound of Example 277 was reacted with methyl methylenebisphosphonate to obtain the desired product as a colorless oil.

FABMS: 674 ([M+H]+). ¹H-NMR(400MHz, CDCl₃) δ 0.88(3H, t, J=7.3Hz), 1.17-1.23(2H, m), 1.40(9H, m), 1.51-1.87(6H, m), 2.68(2H, t, J=7.9Hz), 3.69(3H, d, J=11.0Hz), 3.70 (1H, d, J=11.0Hz), 4.47 (1H, br), 5.02 (2H, s), 5.59 (1H, t, J=17.7Hz), 6.65 (1H,

dd, J=23.3, 17.1Hz), 6,86-6,89(3H, m), 7.09-7.15(2H, m), 7.23(1H, t, J=7.9Hz), 7.31-7.41(6H, m).

<Example 279>

Dimethyl 6-f4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-propylhexylphosphonate

[0336]

[0337] Using the compound of Example 278, the reaction was carried out in the same manner as in Reference

Example 123 to obtain the desired product as a colorless oil.

FABMS: 676 ([M+H]+)

¹H-NMR (400MHz, CDCl₃) δ 0.88 (3H, t, J=7.3Hz), 1.15-1.28(2H, m), 1.40(9H, m), 1.51-2.02(10H, m), 2.67(2H, t, J=7.9Hz), 3.72(6H, d, J=11.0Hz), 4.13(1H, br), 5.02(2H, s), 6.87-6.95(3H, m), 7.10-7.25(3H, m), 7.32-7.39(6H, m).

<Example 280>

Dimethyl 3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-propyl-1-hexenylphosphonate hydrochloride

0 [0338]

5

15

20

[0339] Using the compound of Example 278, the reaction was carried out in the same manner as in Example 233 to obtain the desired product as a colorless oil.

FABMS: 574 ([M+H]⁻).

1-H-MMR (400MHz, DMSOd₈) 8.0.85(3H, t, J=7.3Hz), 1.15-1.28(2H, m), 1.53-1.78(6H, m), 2.68(2H, t, J=7.9Hz), 3.59
(3H, d, J=11.0Hz), 3.62(3H, d, J=11.0Hz), 5.08(2H, s), 6.00(1H, t, J=17.7Hz), 6.57(1H, dd, J=23.8, 17.7Hz), 6.89-7.00
(3H, m), 7.22-7.41(9H, m), 8.47(3H, br s).

<Examples 281 and 282>

30 Dimethyl (+)- and (-)-3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-propyl-1-hexenylphosphonate hydrochlorides

[0340] Using the compound of Example 275, the same procedures as in Examples 277, 278 and 280 were sequentially followed to obtain the desired product as a pale yellow amorphous compound $(\alpha_0^{124.0}_{2} + 4.9^{\circ})$ C = 1.0, MeOH)) (Example 281). Furthermore, using the compound of Example 276, the same procedure was followed as in Example 281 to obtain the desired product as a pale yellow amorphous compound $([\alpha_0^{124.0}_{2} + 1.9^{\circ})^{\circ})$ C = 1.0, MeOH)) (Example 282).

<Example 283>

3-amino-6-[4-(3-benzyloxyphonylthio)-2-chlorophonyll-3-propyl-1-hexenylphosphonic acid

[0341]

40

45

50

5 [0342] Using the compound of Example 278, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a colorless powder.

FABMS: 546([M+H]+).

1H-NMR (400MHz, DMSOd_B) δ 0.85(3H, t, J=7.3Hz), 1.19-1.21(2H, m), 1.51-1.69(6H, m), 2.67(2H, t, J=7.9Hz), 5.08

(2H. s), 5.87(1H, dd, J=17.7, 15,2Hz), 6.32(1H, dd, J=23.8, 17.7Hz), 6.88-7.00(3H, m), 7.22-7.41(9H, m).

lemental analysis (%) :C ₂₈ H ₃₃ Cl		H ₃₃ CINO ₄ Ps	S-2/3H ₂ C
	С	Н	N
Calcd	60.26	6.20	2.51
Found	60.11	5.91	2.32

<Example 284>

3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-propylhexylphosphonic acid

[0343]

15

20

35

50

25 [0344] Using the compound of Example 279, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a colorless powder.

FABMS: 548([M+H]+). 1H-NMR(400MHz, DMSOde) 8 0.85(3H, t, J=7.3Hz), 1.18-1.21(2H, m), 1.42-1.54 (8H, m), 1.68-1.74 (2H, m), 2.67(2H, br s), 5.08(2H, s), 6.88-7.00(3H, m), 7.22-7.41(9H, m).

Elemental ar	nalysis (%) :C	28H35CINO	PS-H ₂ O
	С	Н	N
Calcd	59.41	6.59	1.83
Found	59.05	6.14	2.29

m.p. = 197-199°C.

<Example 285>

4-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]propyl-4-ethoxyphosphorylmethyl-2-oxazolidinone

[0345]

[0346] The compound of Example 188 (330mg) was dissolved in triethyl phosphite (120μL) and the solution was refluxed for 3 hours. Subsequently, the reaction mixture was purified on a silica gel column chromatography (hexane : ethyl acetate = 1:1 to 1:5) to give the desired product as a pale yellow oil (320mg). FABMS: 604 ([M+H]+).

1H-NMR (400MHz, CDCl₃) 8 1.31-1.35 (6H, m), 1.59-1.72(2H, m), 1.84-1.88(2H, m), 2.10(1H. d, J=19.0Hz). 2.11(1H,

d, J=19.0Hz), 2.74(2H, t, J=7.3Hz), 4.06-4.14(5H, m), 4.17-4.20(1H, m), 5.03(2H, s), 5.89(1H, br.s), 6.88 (1H, dd, J=1.2, 7.3Hz), 6.94-6.97 (2H, m), 7.10(1H, d, J=7.9Hz), 7.14(1H, dd, J=1.8, 7.9Hz), 7.24(1H, t, J=7.9Hz), 7.31-7.41 (8H m).

5 <Example 286>

2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-hydroxymethylpentylphosphonate hydrochloride

[0347]

10

15

25

30

40

45

[0348] The compound of Example 285 was reacted in the same manner as in Example 190 and the resulting compound was reacted in the same manner as in Example 233 to obtain the desired product as a colorless powder. FABMS: 622(M+HH*).

"H-NMR (400MHz, DMSOd₆) 8 1.54-1.62(2H, m), 1.72-1.78(2H, m), 2.64-2.66(2H, m), 3.20-3.31(2H, m), 3.43-3.52 (2H, m), 5.08(2H, s), 6.88-6.90(1H, m), 6.94-7.00(2H, m), 7.21-7.24(1H, dd, J=2.5, 7.9Hz), 7.29-7.41(8H, m), m.p. = 98-1014

Elemental analysis (%) : C ₂₅ H ₂₉ CINO ₅ PS·HCI				
	С	Н	N	
Calcd	53.77	5.41	2.51	
Found	54.18	5.29	2.49	

<Example 287>

Dimethyl 7-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-t-butyldimethylsiloxymethyl-1-heptenylphosphonate

[0349]

[0350] The compound of Example 130 was reacted with t-BuMe₂SiCI in the same manner as in Example 191. The resulting sllyl product was oxidized in the same manner as in Example 193 to obtain an aldehyde. Subsequently, this aldehyde was reacted with methyl methylenebisphosphonate in the same manner as in Example 232 to obtain the desired product as a pale yellow oil.

FABMS: 790[(M-H†): 14-NMR(400MHz, CDCJ₃ 8 0.04(6H, s), 0.89(9H, s), 1.30-1,37(2H, m), 1.41(9H, s), 1.50-1.80(2H, m), 1.75-1.85(2H, m), 2.89(2H, t, J=7.3Hz), 3.64-3.70(2H, m), 3.71(6H, d, J=11.6Hz), 4.77(1H, br s), 5.02(2H, s), 5.67(1H, dd, J=17.1, 18.3Hz), 6.72(1H, dd, J=17.1, 22.6Hz), 6.67-6.88(1H, m), 6.91-6.94(2H, m), 7.11(1H, d, J=7.9Hz), 7.14(1H, dd, J=1.8, 7.9Hz), 7.22(1H, dd, J=7.7, 31-7.99(Hz), 7.14(1H, dd, J=1.8, 7.9Hz), 7.14(1H, dd, J=7.1, 7.9Hz), 7.14(1H, dd, J

<Example 288>

Dimethyl 7-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-t-butoxycarbonylamino-3-hydroxymethylheptylphosphonate

[0351]

10

15

[0352] The compound of Example 287 was reduced in the same manner as in Reference Example 123 and the resulting compound (107mg) was dissolved in tetrahydrofuran (5.0mL). A Imol/L TBAF-tetrahydrofuran solution (160μL) was added dropwise and the mixture was stirred for 3 hours at room temperature. Subsequently, water was added and the reaction mixture was extracted with ethyl acetate. The extract was washed sequentially with water and a saturated aqueous solution of sodium chloride and the organic phase was dried over anhydrous sodium sulfate. The solvent was removed by distillation and the residue was purified on a silica gel column chromatography (ethyl acetate only) to obtain the desired product as a colorless oil (47mg).

FABMS: 678([M+H]+). $^{1}\text{H-NMR}(400\text{MHz}, \text{CDCl}_{3}) \ \delta \ 1.42(9\text{H}, \text{s}), \ 1.25-1.38(6\text{H}, \text{s}), \ 1.70-1.80(2\text{H}, \text{m}), \ 1.83-1.95(2\text{H}, \text{m}), \ 2.70(2\text{H}, \text{t}, \text{J}=7.9\text{Hz}), \ 1.83-1.95(2\text{H}, \text{m}), \ 2.70(2\text{H}, \text{m}), \ 2.70(2$ 3.62(2H, br s), 3.75(6H, d, J=11.0Hz), 4.63(1H, br s), 5.02(2H, s), 6.86-6.89(1H, m), 6.92-6.94(2H, m), 7.10-7.16(2H, m), 7.21-7.23 (1H, m), 7.30-7.40(6H, m).

<Example 289>

3-amino-[4-(3-benzyloxyphenylthio)-2-chlorophenyl[-3-hydroxymethylheptylphosphonic acid

[0353]

40

50

55

[0354] Using the compound of Example 288, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a colorless powder.

FABMS: 550(fM+HI+).

1H-NMR(400MHz, DMSOd₆) §1.22-1.32(2H, m), 1.48-1.60(6H, m), 1.68-1.76(2H, m), 2.64-2.68(2H, m), 3.39-3.50(2H, m), 5.08(2H, s), 6.88-6.90 (1H, m), 6.95-6.99(2H, m), 7.20 (1H, dd, J=1.9, 9.8Hz), 7.28-7.40(8H, m). m.p. = 180-183°C.

<Example 290>

3-amino-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-3-hydroxymethyl-1-heptenylphosphonic acid

[0355]

10

[0356] Following the same procedure as in Example 244, the compound of Example 287 was desilylated and the resulting product was reacted in the same manner as in Example 236 to obtain the desired product as a colorless resulter.

FABMS: 548/[M+H1+).

1H-NMR (400MHz, DMSOd₈) & 1.27-1.38(2H, m), 1.43-1.52(2H, m), 1.61-1.72(2H, m), 2.53-2.66(2H, m), 3.46-3.58 (2H, m), 5.02(2H, s), 5.88-5.97(1H, m), 6.06-6.17(1H, m), 6.85-6.87(1H, m), 6.94-6.96(2H, m), 7.15-7.17(1H, m), 7.26-7.38(8H, m)
1.28-280°C.

25 < Example 291>

Diethyl 6-[4-(3-benzyloxyphenylthio)-2-chlorophenyi]-3-t-butoxycarbonylamino-3-t-butyldimethylsilyloxy-1,1-diffuoro-2-hydroxyhexylphosphonate

30 [0357]

35

[0388] The compound of Example 128 was reacted with t-BuMo_SICi in the same manner as in Example 191. The resulting sliyl product was oxidized in the same manner as in Example 195 to obtain an aldahyde. This aldebyde, was reacted as follows: a 1.58molt_LOA-terhalydrofuran solution (1.50mL) was added to a tetrahydrofuran solution (9mL) while the mixture was kept at -78°C. To the resulting mixture, diethyl diffusor methylphosphonate (372µL) was added dropwise over 15min and the mixture was involved was Ernet for 20min. To this mixture, the aldebyde (490mg) in tetrahydrofuran (1.0mL) was added dropwise over 20min while the internal temperature was kept at -73°C or below. Subsoquently, the mixture was sirred for 1.5 hours. A saturated aqueous solution of ammonium chorido was then added to the reaction mixture and the mixture was extracted with ethyl acetate. The extract was washed sequentially with water and a saturated aqueous solution of sodium chloride and the organic phase was dried over anhydrous sodium sulfate. The solvent was removed by distillation and the resulting residue was purified on a silica gel column chromatography (hexame: ethyl acetate = 3: 1) to obtain the desired product as a colorless oil (439mg). FABMS: 888(M-HI)*.

H-NMR(400MHz, CPCl₃) 8 0.06(6H, s), 0.88(9H, s), 1.33-1.40(6H, m), 1.46(9H, s), 1.58-1.70(4H, m), 2.69(2H, t, 1.7-3Hz), 3.82-3.84(1H, m), 4.23-4.33(8H, m), 5.02(2H, s), 5.05(1H, br s), 6.86-6.88(1H, m), 6.91-6.95(2H, m), 5.71-6.71-6.71-7.40(6H, m), 5.71-6.71-6.71-7.40(6H, m), 5.71-6.71-7.40(6H, m), 5.71-7.71-7.40(6H, m), 5.71-7.40(6H, m),

<Example 292>

Diethyl 3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-1,1-difluoro-2-hydroxy-3-hydroxymethylhexylphosphonate hydrochloride

[0359]

10

15

25

30

35

[0360] Following the same procedure as in Example 244, the compound of Example 291 was desliylated and the resulting product was reacted in the same manner as in Example 233 to obtain the desired product as a coloriess amorphous product.

FABMS: 844 ([M+H]+"):
11-HNMR(400MHz, CDCLs) 8 1.22-1.27(6H, m), 1.55-1.79(4H, m), 2.62-2.65(2H, m), 3.59-3.73(2H, m), 4.04-4.11(4H, m), 4.88-4.90 (1H, m), 5.09(2H, s), 6.88-6.90(1H, m), 6.94-7.00(2H, m), 7.22-7.25 (1H, m), 7.29-7.41(6H, m).

<Example 293>

3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-1, 1-diffuoro-2-hydroxy-3-hydroxymethylhexylphosphonic acid and the control of the con

[0361]

[0362] Using the compound of Example 292, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a coloriess amorphous product. FABMS: SBM(M+H*).

 $\begin{array}{l} \text{1H-NMR} \ (400\text{MHz}, DMSOd_{B}) \ 8 \ 1.65 - 1.88(4\text{H}, \text{m}), 2.55 - 2.65(2\text{H}, \text{m}), 3.51 - 3.67(4\text{H}, \text{m}), 3.78 - 3.84(1\text{H}, \text{m}), 5.08(2\text{H}, \text{s}), \\ 6.88(1\text{H}, \text{d}, J=7.9\text{Hz}), 6.90 - 7.00(2\text{H}, \text{m}), 7.20 - 7.23(1\text{H}, \text{m}), 7.29 - 7.41(8\text{H}, \text{m}). \end{array}$

45 <Example 294>

Dimethyl 3-t-butoxycarbonylamino-3-t-butyldimethylsiloxymethyl-6-[2-chloro-4-(3-trifluoromethylphenoxy)phenyl] haxylphosphonate

50 [0363]

[0364] The compound of Example 149 was reacted with FbuMe_SICI in the same manner as in Example 191. The resulting sliyl product was oxidized in the same manner as in Example 193 to obtain an aldehyde. Subsequently, following the same procedure as in Example 232, this aldehyde was condensed with methyl methylenebisphosphonate and, following the same procedure as in Reference Example 123, the resulting product was reduced to give the desired product as a coloriess oil.

¹H-NMR(400MHz, CDCl₃) δ 0.04(B1, s), 0.88(B1, s), 1.42(B1, s), 1.56+1.64(4H, m), 1.64+1.77(2H, m), 1.90+1.97(2H, m), 2.69(2H, t, 1, 1-7.3Hz), 3.49-3.56(2H, m), 3.73(B1, t, 1, 1-1.0Hz), 4.47(1H, hr s), 0.85(1H, d, J.=2.5.8.8Hz), 7.01(H, d, J.=2.5Hz), 7.14-7.16(2H, m), 7.267-7.26(H1, m), 7.36(H1, t, J.=7.9Hz), 7.45(H1, t, J.=7.9Hz).

10 <Example 295>

Dimethyl 3-amino-6-I2-chloro-4-(3-trifluoromethylphenoxy)phenyll-3-hydroxymethylhexylphosphonate hydrochloride

[0365]

15

20

[0386] Following the same procedure as in Example 244, the compound of Example 294 was desilylated and the er resulting product was reacted in the same manner as in Example 233 to obtain the desired product as a colorless amorphous product.
FABMS: 510 (Mk+H¹).

¹H-NMR(400MHz, DMSOd_b) 8 1.54-1.64(4H, m), 1.67-1.80(4H, m), 2.65-2.69(2H, m), 3.40-3.41(2H, m), 3.68(6H, d, J=10.4Hz), 5.51(1H, br), 7.03(1H, dd, J=2.4, 8.6Hz), 7.20(1H, d, J=2.4Hz), 7.26-7.29(1H, m), 7.35(1H, s), 7.39(1H, d, J=7.9Hz), 7.37(1H, br), 7.35(1H, d, J=7.9Hz), 7.37(1H, br), 7.35(1H, d, J=7.9Hz), 7.37(1H, br), 7.37(1H, d, J=7.9Hz), 7.37(1H, br), 7.37(1H, br), 7.37(1H, d, J=7.9Hz), 7.37(1H, br), 7.37(1H, br), 7.37(1Hz), 7.

<Example 296>

3-amino-6-[2-chloro-4-(3-trifluoromethylphenoxy)phenyl]-3-hydroxymethylhexylphosphonic acid

[0367]

35

45

[0368] Using the compound of Example 295, the reaction was carried out in the same manner as in Example 236 to obtain the desired product as a colorless amorphous product.

FABMS: 482 (IM-HIP).

¹⁶ H-NMR (400MHz, DMSOd₆) 8 1.48-1.60 (6H, m), 1.60-1.75 (2H, m), 2.60-2.67 (2H, m), 3.40(2H, s), 7.01 (1H, dd, J=2.4, 7.9Hz), 7.15-7.19(1H, m), 7.28(1H, d, J=7.9Hz), 7.39(1H, d, J=7.9Hz), 7.50(1H, d, J=7.9Hz), 7.62 (1H, d, J=7.9Hz), 7.77-8.11(3H, b)

<Example 297>

Dimethyl 3-amino-6-[2-chloro-4-(3-trifluoromethylphenylthio)phenyl]-3-hydroxymethylhexylphosphonate hydrochloride

[0369]

5

10

15

[0370] The compound of Example 76 was reacted in the same manner as in Example 294 and the resulting compound was reacted in the same manner as in Example 295 to obtain the desired product as a coloriess oil. FABMS: 5261M-s11*.

1H-NMR(400MHz, DMSOd₆) & 1.46-1.82(4H, m), 1.82-1.83(4H, m), 2.84-2.68(2H, m), 3.40-3.45(2H, m), 3.61(8H, d, J=1.04Hz), 7.34(1H, dd, J=1.8, 8.0Hz), 7.40-7.42(1H, m), 7.49(1H, dd, J=1.8Hz), 7.54-7.56(1H, m), 7.59-7.62(2H, m), 7.69-7.68(1H, m), 7.86(3H, m), 7.86(3H

<Example 298>

2-t-butoxycarboryiamino-2-t-butyldimethylsiloxymethyl-5-[2-chloro-4-(3-trifluoromethylphenylthlo)phenyl]-1-dimethoxyphosphoryloxypentane

[0371]

30

35

F₃C S C NHBo

[0372] Following the same procedure as in Example 191, the compound of Example 76 was reacted with t-BuMe₂SiCl and, following the same procedure as in Example 223, the resulting silyl product was reacted to give the desired product as a coloriess oil.

FABMS: 741[M+H]⁻). H-HMR[400H2, CDC]₀) 5 0 05(8H, s), 0.87(9H, s), 1.41(9H, s), 1.80-1.91(4H, m), 2.71(2H, t, J=7.9Hz), 3.80(1H, d, J=9.2Hz), 3.64(1H, d, J=9.2Hz), 3.76(8H, d, J=11.0Hz), 4.09-4.15(2H, m), 4.68(1H, br), 7.14-7.20(2H, m), 7.30-7.55 (5H, m).

45 <Example 299>

2-amino-5-[2-chloro-4-(3-trifluoromethylphenylthio)phenyl]-2-hydroxymethylpentylphosphonate monoester

[0373]

55

[0374] To a tetrahydrofuran solution (20mL) of the compound of Example 298 (1.29g), a lmol/L TBAF-tetrahydrofuran

solution (2.09m.t) was added dropwise and the mixture was stirred for 4 hours at room temperature. Subsequently water was added and the reaction mixture was extracted with eithyl acetate. The extract was washed sequentially with water and a saturated aqueous solution of sodium chloride and the organic phase was dried over anhydrous sodium sulfate. The solvant was removed by distillation and the residue was superified on a silica gel column chromatography (lexame: ethyl acetate = 1:1 to ethyl acetate only) to obtain a desilylated product as a coloriess oil (1.00g). The resutting compound (1.00g) was dissolved in a 10% hydrochloric acid-methanol solution (20mL) and the mixture was left overnight at loom temperature. Subsequently, the solvent was removed by distillation and the residue was dissolved in ethyl acetate. The solution was neutralized with triethylamine. The crystaltized triethylamine hydrochloride was seperated by filtration and the solvent was removed by distillation to give a coloriess oil (1.00g). The oil was dissolved in acctonitrie (15mL) while the solution was chilled in an ice beth. To this solution, TMSI (905)L) was added and the mixture was stirred for 60mln. The reaction mixture was concentrated and was purified on a sitica gel column chromatography (water: acetonitrie) = 9:1 to 6:1 to 3:1 to 1:1 to acetonitrie only) to obtain the desired product as a coloriess powder (384g).

¹H-NMR(400MHz, DMSOd_g) 8 1.60(4H, br s), 2.66(2H, br s), 3.36-3.45(2H, m), 3.68-3.76(2H, m), 7.32(1H, dd, J=1.8.8.5Hz), 7.38-7.45(2H, m), 7.50-7.56(1H, m), 7.57-7.68(3H, m).

Elemental analysis (%) :C ₁₉ H ₂₂ CIF ₅ NO ₅ PS·1/4H ₂ O				
	С	Н	N	
Calcd	45.24	4.50	2.78	
Found	45.05	4.31	2.72	

<Example 300>

2-amino-5-[2-chloro-4-(3-trifluoromethylphenoxy)phenyl]-2-hydroxymethylpentylphosphonate monoester

[0375]

20

30

35

F₃C O CI NH, OH OPO(OH

[0376] The compound of Example 149 was reacted in the same manner as in Example 298 and the resulting compound was reacted in the same manner as in Example 299 to obtain the desired product as a colorless powder. FABMS: 484 (IM-H1⁺).

1H-NMR (400MHz, DMSOd₄) 8 1.81(4H, br) 2.84 (2H, br), 3.41 (1H, d, J=11.6Hz), 3.51(1H, d, J=11.8Hz), 3.69-3.80 (2H, m), 7.00(1H, d, J=2.8, 8.8Hz), 7.16(1H, d, J=2.8Hz), 7.29(1H, dd, J=2.5, 8.8Hz), 7.35 (1H, s), 7.40 (1H, d, J=8.8Hz), 7.50 (1H, d, J=8.0Hz), 7.51(1H, t, J=8.0Hz), 7.50 (1H, d, J=8.0Hz), 7.51(1H, t, J=8.0Hz), 7.50 (1H, d, J=8.0

<Example 301>

2-amino-4-[2-chloro-4-(3-hydroxyphenylthio)phenyl]-2-hydroxymethylbutylphosphonate monoester

[0377]

50

[0378] Using the compound of Example 223, the reaction was carried out in the same manner as in Example 238

to obtain the desired product as a colorless powder.

FABMS: 434 ([M+H]+).

¹H-NMR (400MHz, DMSOd₆) δ 1.72-1.92(2H, m), 2.63-2.82(2H, m), 3.48-3.60(2H, m), 3.71-3.90(2H, m), 6.66-6.78 (3H, m), 7.14-7.37(4H, m).

<Example 302>

2-t-butoxycarbonylamino-2-[2-chloro-4-(4-trifluoromethylphenoxy)phenyl]propyl-1,3-propanediol

10 [0379]

5

15

[0380] The compound of Reference Example 323 was reacted in the same manner as in Example 1 and the resulting compound was reduced in the same manner as in Example 78 to obtain the desired product as a colorless powder.
1H-NMR(400MHz, CDCl₃) 5 1.44 (9H, s), 1.57-1.74(4H, m), 2.70(2H, t, J=6.7Hz), 3.33(2H, br. s), 3.61(2H, d.d. J=6.7, 11.6Hz), 3.84(2H, d.d. J=6.7, 11.6Hz), 4.93(1H, br. s), 6.89(1H, dd, J=2.5, 8.0Hz), 6.98-7.07(3H, m), 7.21(1H, d. J=8.6Hz), 7.89(2H, d. J=8.6Hz), 7.89(2H, d. J=6.7)

25 <Example 303>

2-t-butoxycarbonylamino-2-[2-chloro-4-(2-trifluoromethylphenoxy)phenyl]propyl-1,3-propanediol

[0381]

[0382] The compound of Reference Example 324 was reacted in the same manner as in Example 1 and the resulting compound was reduced in the same manner as in Example 76 to obtain the desired product as a coloriose powder. FABMS: 504 ([M+H]*).

1H-NMR (400MHz, CDC₀) \$1.44(9H, s), 1.58-1.68(4H, m), 2.70(2H, t, 1-6.7Hz), 3.35(2H, br.s), 3.60(2H, d.d, J-7.3, 11.6Hz), 3.84(2H, d.d, J-7.3, 11.6Hz), 4.52(1H, br.s), 6.87(1H, dd, J-2.5, 8.0Hz), 6.96(1H, d, J-8.0Hz), 7.03(1H, d-2.5Hz), 7.15-7.22 (2H, m), 7.48 (1H, t, J-7.3Hz), 7.68 (1H, d, J-6.7Hz).

<Example 304>

2-t-butoxycarbonylamino-2-[4-(4-benzyloxyphenylthio)-2-chlorophenyl]ethyl-1,3-propanediol

[0383]

[0384] The compound of Reference Example 327 was reacted in the same manner as in Example 1 and the resulting compound was reduced in the same manner as in Example 76 to obtain the desired product as a colorless cill. FABMS: 543 (IM-HI⁺).

1H-NMR(400MHz, CDCl₃) 5 1.45(9H, s), 1.78-1.84(2H, m), 2.64-2.71(2H, m), 3.23-3.39 (2H, m), 3.65(2H, d.d., J=6.7, 11.6Hz), 5.07(1H, s), 5.08(2H, s), 6.96-7.00(3H, m), 7.07-7.13 (2H, m), 7.345-7.44(7H, m).

<Example 305>

Dimethyl 3-amino-6-[2-chloro-4-(4-trifluoromethylphenoxy)phenyl]-3-hydroxymethylhexylphosphonate hydrochloride

[0385]

10

15

20

30

40

[0386] The compound of Example 302 was treated in the same manner as in Example 294 and the resulting compound was reacted in the same manner as in Example 295 to obtain the desired product as a colorless amorphous product.

FABMS: 510 ([M+H]+).

1H-NMR (400MHz, DMSOd₆) 61 51-1 60(4H, m), 1 65-1 82(4H, m), 2.68(2H, br.s.), 3.42(2H, s.), 3.61(6H, d., J=1.0Hz), 7.08(1H, dd, J=2.4, 8.6Hz), 7.15(2H, d, J=8.6Hz), 7.26 (1H, d., J=2.4Hz), 7.42(1H, s. 8.6Hz), 7.75(2H, d, 8.6HzHz), 7.89(3H, br.s.)

<Example 306>

Dimethyl 3-amino-6-[2-chloro-4-(4-trifluoromethylphenoxy)phenyl]-3-hydroxymethyl-1 hexenylphosphonate hydrochloride

[0387]

[0388] The compound of Example 303 was reacted in the same manner as in Example 287 and the resulting compound was desliylated in the same manner as in Example 244. The desliylated product was then reacted in the same manner as in Example 233 to obtain the desired product as an amorphous product. FABMS: 508 (fM+H*).

1H-NMR(400MHz, DMSOd₆) 8 1.42-1.62(2H, m), 1.68-1.82(2H, m), 2.66(2H, t, J=2.7Hz), 3.42 (2H, br s), 3.60(6H, d, J=11.0Hz), 6.00(1H, t, J=17.7Hz), 6.56(1H, dd, J=17.7, 22.6Hz), 6.37(1H, dd, J=2.5, 8.6Hz), 7.11(1H, d, J=8.6, Hz), 7.11(1H, d, J=8.6, Hz), 7.11(1H, d, J=8.6, Hz), 7.21(4H, J=7.3Hz), 8.22+8.86(H, br s),

<Example 307>

Dimethyl 3-amino-6-[2-chloro-4-(4-trifluoromethylphenoxy)phenyl]-3-hydroxymethylhexylphosphonate hydrochloride

[0389]

10

15

90

35

45

50

55

[0390] Using the compound of Example 303, the reaction was carried out in the same manner as in Example 305 to obtain the desired product as a colorless amorphous product FABMS: 510([M+H]+).

1H-NMR(400MHz, DMSOde) & 1.50-1.60(4H, m), 1.65-1.82(4H, m), 2.60-2.70(2H, m), 3.52-3.55(2H, m), 3.61(6H, d, J=11.0Hz), 6.98(1H, dd, J=2.4, 8.6Hz), 7.08(1H, d, J=8.6Hz), 7.13(1H, d, J=2.4Hz), 7.33-7.41(2H, m), 7.68(1H, t, J=7.3), 7.80 (1H, d, J=7.3Hz), 7.75-7.85(3H, br s).

<Example 308>

3-amino-5-[4-(4-benzyloxyphenylthio)-2-chlorophenyl]-3-hydroxymethylpentylphosphonic acid

F03911

[0392] The compound of Example 304 was reacted in the same manner as in Example 294 and the resulting compound was reacted in the same manner as in Example 290 to obtain the desired product as a colorless powder. FABMS: 522([M+H]+).

1H-NMR(400MHz, DMSOde) δ 1.47-1.62 (2H, m), 1.62-1.91(4H, m), 2.55-2.67(2H, m), 3.40-3.54(2H, m), 5.12(2H, s), 6.98-7.10(4H, m), 7.25-7.51(8H, m).

<Example 309>

2-amino-4-f4-(4-benzyloxyphenylthio)-2-chlorophenyli-2-hydroxymethylbulylphosphonate monoester

[0393]

[0394] The compound of Example 304 was reacted in the same manner as in Example 298 and the resulting compound was reacted in the same manner as in Example 299 to obtain the desired product as a colorless powder.

FABMS: 524 ([M+H]+)

1H-NMR(400MHz, DMSOd₆) 8 1.70-1.77 (2H, m), 2.65-2.69(2H, m), 3.49-3.53(2H, m), 3.72-3.86(2H, m), 5.13(2H, s), 7.06-7.10(4H, m), 7.25-7.27(1H, m), 7.33-7.46(7H, m).

[0395] Next, some experiment examples will be described, that demonstrate the efficacy of the compound of the present invention.

<Experiment Example 1> Test for the ability of test compounds to induce intracellular Ca²⁺ mobilization in cells expressing human S1P (sphingosine-1-phosphate) receptors

[0396] CHO cells expressing human S1P receptors (i.e., CHO cells expressing hS1P₁ receptors or hS1P₂ receptors) were subcultured on Ham's F-12 medium supplemented with 10% fetal bovine serum and 200µg/mL Geneticin. The cells were seeded on a 96-well black clear bottom plate (COSTAR) at 4x104 cells/well and were cultured overnight at 37°C in 5% CO₂. A fluorescent reagent that emits fluorescence upon binding to Ca²⁺ (Calcium Screening Kit (DOJIN-DO)) was added to the culture and the cells were further cultured for 60min at 37°C in 5% CO2. After culturing, microplate spectrofluorometer (FLEX station, MOLECULAR DEVICE) was used to measure the fluorescence intensity at an excitation wavelength of 485 nm and a detection wavelength of 525 nm. S1P or a test compound adjusted with cultural medium to a concentration 10 times higher than the final concentration (final DMSO concentration = 0.1%). Each test compound solution was added 18sec. after beginning of the measurement of fluorescence. The fluorescence intensity was measured every 1.5sec for 100sec. For each test compound, the difference between the maximum fluorescence intensity and the minimum fluorescence intensity (i.e., increase in fluorescence) was determined from the measurements. The rate of fluorescence increase (%) for each test compound was calculated by the difference (100%) of the fluorescence increase between solvent only and S1P (10-5M). Using this value as an index of the ability of the test compound to induce intracellular Ca2+ mobilization, EC50 was determined by PRISM software (GraphPad). In Table 11, the symbol."-" indicates that the test compound was determined to have an EC50 of 1µmol/L or higher, the symbol "+" indicates that the test compound had an EC50 of lower than 1μmol/L and higher than or equal to 0.1μmol/L, the symbol "++" indicates that the test compound had an EC50 of lower than 0.1 µmol/L and higher than or equal to 0.01umol/L. and the symbol "+++" indicates that the test compound had an EC50 of lower than 0.01umol/L.

Table 11

	Table 11				
Example No.	S1P1	S1P3	Example No.	S1P1	S1P3
236	++	++	. 265	+++	+
237	+++	+++	267	+11	-
238	+	-	269	++	-
239	+++	+++	280	+	+
240	++	+	283	++	++
241	+	-	284	++	+
242	+	-	286	++	-
249	++	+++	290	+++	++
250	+	-	293	+	+
253	+	+	296	++	-
254	++	-	299	++	-
260	++	+	300	++	-
261	+	-	307	+	-
263	+++	+	308	+	-

[0397] These results indicate that the compounds of the present invention act on human S1P receptors.

<Experiment Example 2> Test for the ability of test compounds to induce activation of extracellular regulatory kinase (ERK) in cells expressing human S1P receptors

[0398] CHO cells expressing human S1P receptors (i.e., CHO cells expressing hS1P_e neceptors) were subcultured on Ham's F-12 medium supplemented with 10% fetal bovine serum and 200µg/mL Geneticin. The cells were seeded on a 6-well cell culture plate (COSTAP) at 3x10° cells/well and were cultured overnight at 37°0 in 5% CO₂. On the following day, the medium was replaced with FBS-free Ham's F-12 medium (containing 0.1% fatty said-free bowine serum ablumin) and the cells were cultured overnight at 37°0 in 5% CO₂. S1P or a test compound adjusted with Ham's

35

F-12 medium (with 0.1% fatty acid-free bovine serum albumin) to a concentration 10 times higher than the final concentration (final DMSO concentration = 0.1%). Each test compound solution was added to this culture plate. The cells were cultured for 5min at 37°C in 5% CO2 The medium was removed and the cells were washed with a 200µmol/L ice-cold PBS containing Na₂VO₄. A lysis buffer (20mmol/L Tris-HCl pH7.5, 1% Triton X-100, 1mmol/L EDTA, 1mmol/ L EGTA, 0.5mmol/L Na₃VO₄, 0.1% β-mercaptoethanol, 50mmol/L NaF, 5mmol/L Na₄O₇P₃, 10mmol/L C₃H₇O₆Na, 1µmol/L Microcystin LR, 1×Complete Protease Inhibitor Cocktail (ROCHE)) was then added to the cells and the reaction was carried out on ice for 5min to lyse the cells. The cell lysate was subjected to sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) to separate proteins. The proteins were transferred to a PVDF membrane (Hybond-P, Amersham Biosciences). The membrane was reacted overnight at 4°C with anti-phospho ERK (p42/44 MAPK) monoclonal antibody (E10, Cell Signaling Technologies) diluted 1000-fold, and was subsequently reacted for 1 hour at room temperature with alkaline phosphatase-labeled anti-mouse IgG antibody (Molecular Probe) diluted 6000-fold. After washing with 20mmol/L Tris-HCl and 150mmol/L NaCl solution, the PVDF membrane was fluorostained with DDAO phosphate (DveChrome Western Blot Stain Kit, Molecular Probe), a fluorescent substrate of alkaline phosphatase. The fluorescence was detected using a variable image analyzer (Typhoon 8600, Amersham Biosciences). The detected signal of phosphorylated ERK was quantified using ImageQuant software (Molecular Dynamics). The rate of ERK activation (%) for each test compound was calculated by the difference (100%) of the signal intensity between solvent only and S1P (10 6mol/L). The results are shown in Table 12 below.

Table 12

			Table 12	
20	Example No.	Compound Conc (nmol/L)	Induction effect of ERK activation on hS1P-expressing CHO cells (Activation rate (%) relative to the activated ERK at S1P10-6mol/L)	-
	236	1	8.0	l
		10	119.5	l
25	237	1	35.8	١
		10	80.7	۱

[0399] These results indicate that the compounds of the present invention induce ERK activation by acting on human S1P receptors.

<Experiment Example 3>

35

Inhibitory effects of test compounds on host vs. graft rejection in mice

[0400] This experiment was performed according to the method described in Transplantation 55(3) (1993): 578-591. Spicens were collected from 6 to 16 week old male BALB/c mice (CHARLES RIVER JAPAN). The spicens were placed in an RPMI-1640 medium (SIGMA) and were cently pressed between two slide glasses and then passed through a cell strainer (70um, Falcon) to form a cell suspension. The suspension was then centrifuged and the supernatant was discarded. An ammonium chloride-Tris isotonic buffer was added to the suspension to lyse erythrocytes. The cells were then centrifuged three times in RPMI-1640 medium for washing and were resuspended in an RPMI-1640 medium. To this suspension, mitomycin C (KYOWA HAKKO KOGYO Co., Ltd.) was added to a final concentration of 25μα/mL and the suspension was incubated for 30 minutes at 37°C in a 5% CO2 atmosphere. The cells were centrifuged three times in RPMI-1640 medium for washing and were resuspended in an RPMI-1640 medium so that the medium would contain 2.5 X 108 cells/mL. This suspension served as a "stimulation cell suspension." Using a 27G needle with a microsyringe (Hamilton), 20μL (5 X 106 cells/mouse) of the stimulation cell suspension was subcutaneously injected into the right hind footpad of 6 to 8 week old male C3H/HeN mice (CLEA JAPAN). Normal control group was injected with RPMI-1640 medium alone. 4 days after the injection, right popliteal lymph nodes were collected and were weighed on a Mettler AT201 electronic scale (METTLER TOLEDO Co., Ltd.). Each animal was intraperitoneally administered a test compound once a day for four consecutive days starting on the day of the injection of the stimulation cells (i.e., total of 4 times). Control groups were administered the same vehicle as that used in the preparation of each test compound. The results are shown in Table 13 below. The inhibition (%) was determined using the following formula

Formula 1:

{[Weight of right popliteal lymph nodes of positive control group] - [Weight of

right popliteal lymph nodes of test compound group]x100]/{[Weight of right popliteal lymph nodes of positive control group]-{Weight of right popliteal

lymph nodes of normal control group]}

Table 13

Example No.	Dose (mg/kg)	Inhibition (%)
233	30	53
235	30	56
236	0.03	73
237	0.1	75
238	3	65
239	0.03	65
241	10	46
242	10	62
247	0.03	63

INDUSTRIAL APPLICABILITY

[0401] As set forth, the present invention has been devised in recognition of the fact that the novel aminophosphonic acid derivatives with a diarysulfide or diarylether group exhibit a strong ability to modulate S1P receptors. Effective modulators of S1P receptors, the compounds of the present invention have a great potential as a prophylectic or therepeutic agent against peripheral vascular diseases, such as arteriocolerosa, arteriosclerosia boliterana; renal libroria, hepatic fibrosal, chopatic fibrosal, chapter fibrosal, cha

Claims

40

50

55

10

20

An aminophosphonic acid derivative represented by the following general formula (1):

$$\begin{array}{c} R_1 & X & X \\ & & \\ R_2 & & \\$$

[wherein R₁ is a hydrogen atom, a halogen atom, a halogenated or unhalogenated lower alkyl group having 1 to 4 carbon atoms, a hydroxy group, a phenyl group, an aralkyl group, a lower alkoxy group having 1 to 4 carbon atoms, a trifluomentilyloxy group, a substituted or unsubstituted phenoxy group, a cyclohoxy/methyloxy group, a substituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted or unsubstituted aralkyloxy group, a psyridylmethyloxy group, a cinnamyloxy group, a naphthylmethyloxy group, a group, a phyloxymethyloxy group, a hydroxymethyl g

4 carbon atoms, a lower alkylsulfinyl group having 1 to 4 carbon atoms, a lower alkylsulfonyl group having 1 to 4 carbon atoms, a benzylthio group, an acetyl group, a nitro group or a cyano group: A₂ is a hydrogen atom, a halogen atom as the property of the carbon atoms, and an araklyl group baving 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a benzyloxy group, a phenyl group, a lower alkoxymethyl group having 1 to 4 carbon atoms, a lower alkoxymethyl group having 1 to 4 carbon atoms, a lower alkoxymethyl group having 1 to 4 carbon atoms, a lower alkylthiomethyl group having 1 to 4 carbon atoms, a lower alkylthiomethyl group having 1 to 4 carbon atoms, a hydroxymethyl group having 1 to 4 carbon a

The 2-aminophosphonic acid monoester derivative according to claim 1, and the optical isomer, and the pharmaceutically acceptable sall and the hydrate thereof, wherein the compounds represented by the general formula (1) comprise compounds represented by the following centeral formula (14)

[wherein X, Ra, Ra and n are as defined above].

- The 2-aminophosphonic acid monoester derivative according to claim 2, and the optical isomer, and the pharmaceutically acceptable sait and the hydrate thereof, wherein R₃ is a chlorine atom.
- 4. The 9-aminophosphonic acid derivative according to claim 1, and the optical isomer, and the pharmaceutically acceptable sat and the hydrate thereof, wherein the compound represented by the general formula (1) comprise compounds represented by the following openaral formula (1b):

[wherein Z is -CH₂-, -CH=CH-, -CH=CF-, -CH₂CH₂-, -CH₂CHF-, - CH₂CFg- or -CH(OH)CFg-; and X, R₃, R₄ and n are as defined above).

- The 3-aminophosphonic acid derivative according to claim 4, and the optical isomer, and the pharmaceutically
 acceptable salt and the hydrate thereof, wherein R₀ is a chlorine atom.
- The aminophosphonic acid ester derivative according to claim 1, and the pharmaceutically acceptable salt and the hydrate thereof, wherein the compound represented by the general formula (1) is
 - 1) 2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-methylpentylphosphonic acid monoester,
 - 2) 2-amino-4-[4-(3-benzyloxyphenyithio)-2-chlorophenyi]-2-methylbutylphosphonic acid monoester,
 - 3) 2-amino-5-[4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-hydroxymethylpentylphosphonic acid monoester,
 - 4) 2-amino-4-(4-(3-benzyloxyphenylthio)-2-chlorophenyl]-2-hydroxymethylbutylphosphonic acid monoester,
 - 5) 3-amino-5-(4-(3-benzyloxyphenylthio)-2-chlorophenyll-3-hydroxymethylpentylphosphonic acid. or
 - 6) 3-amino-6-[4-(3-benzyloxyphenylthio)-2-chlorophenyll-3-hydroxymethylhexylphosphonic acid,

5

10

15

20

25

30

35

40

An S1P receptor modulator containing as an active ingredient at least one of aminophosphonic acid derivatives represented by the following general formula (1):

[wherein R₁ is a hydrogen atom, a halogen atom, a halogenated or unhalogenated lower alkyl group having 1 to 4 carbon atoms, a hydroxy group, a phenyl group, an aralkyl group, a lower alkoxy group having 1 to 4 carbon atoms, a trifluoromethyloxy group, a substituted or unsubstituted phenoxy group, a cyclohoxylmothyloxy group, a substituted or unsubstituted aralkyloxy group, a pyridylmethyloxy group, a cinnamyloxy group, a naphthylmethyloxy group, a phenoxymethyl group, a hydroxymethyl group, a hydroxyethyl group, a lower alkylthio group having 1 to 4 carbon atoms, a lower alkylsulfinyl group having 1 to 4 carbon atoms, a lower alkylsulfonyl group having 1 to 4 carbon atoms, a benzylthio group, an acetyl group, a nitro group or a cyano group; Ro is a hydrogen atom, a halogen atom, a halogenated or unhalogenated lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, an aralkyl group or an aralkyloxy group; Ro is a hydrogen atom, a halogen atom, a trifluoromethyl group, a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxy group having 1 to 4 carbon atoms, a hydroxy group, a benzyloxy group, a phenyl group, a lower alkoxymethyl group having 1 to 4 carbon atoms or a lower alkylthio group having 1 to 4 carbon atoms; R4 is a hydrogen atom, a halogen atom, a lower alkyl group having 1 to 4 carbon atoms, a lower alkoxymethyl group having 1 to 4 carbon atoms, a lower alkylthiomethyl group having 1 to 4 carbon atoms, a hydroxymethyl group, a phenyl group or an aralkyl group; R₅ is a hydrogen atom or a lower alkyl group having 1 to 4 carbon atoms; X is O, S, SO or SO2; Y is -CH2O-, -CH2-. -CH2CH-. -CH=CF-, -CH₂CH₂-, -CH₂CFH-, -CH₂CF₂-or -CH(OH)CF₂-; and n is an integer from 1 to 4], and optical isomers, and pharmaceutically acceptable salts and hydrates thereof.

8. The S1P receptor modulator according to claim 7, wherein the compound represented by the general formula (1) contains as an active ingredient at least one of 2-aminophosphonic acid monoester derivatives represented by the following general formula (1a):

[wherein R₃, R₄, X and n are as defined above], and the optical isomers, the pharmaceutically acceptable salts and the hydrates thereof.

The S1P receptor modulator according to claim 7, wherein the compound represented by the general formula (1) contains as an active ingredient at least one of 2-aminophosphonic acid derivatives represented by the following general formula (1b):

10

15

20

25

40

[wherein B_3 , B_4 , X, Z and n are as defined above], and the optical isomers, the pharmaceutically acceptable salts and the hydrates thereof.

10. A pharmaceutical agent containing as an active ingredient at least one of the aminophosphonic acid derivatives according to any one of claims 1 to 9, and the optical isomers, the pharmaceutically acceptable salts and the hydrates thereof.

INTERNATIONAL SEARCH REPORT International application No. PCT/JP2004/001783 CLASSIFICATION OF SUBJECT MATTER CO7F9/09, 9/38, 9/40, A61K31/661, 31/662, A61P1/04, 9/00, 9/10, 11/00, 11/06, 13/12, 17/00, 29/00, 37/02, 37/06, 37/08, 43/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C07F9/09, 9/38, 9/40, A61K31/661, 31/662, A61P1/04, 9/00, 9/10, 11/00, 11/06, 13/12, 17/00, 29/00, 37/02, 37/06, 37/08, 43/00 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the internstional search (name of data base and, where practicable, search terms used) CAPLUS (STN), REGISTRY (STN) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A WO 02/064616 A2 (UNIVERSITY OF VIRGINA PATENT FOUDATION), 22 August, 2002 (22.08.02), & EP 1383778 A2 US 5447922 A (Bristol-Myers Squibb Co.), 1-10 05 September, 1995 (05.09.95), 6 EP 698609 A1 & JP 8-73477 A . Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filling date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international "X" decument of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 06 April, 2004 (06.04.04) 20 April, 2004 (20.04.04)

Authorized officer

Telephone No.

Name and mailing address of the ISA

Japanese Patent Office
Facsimile No.
Form PCT/ISA/210 (second sheet) (Junuary 2004)

