मोतीलाल नेहरू राष्ट्रीय प्रौद्योगिकी संस्थान इलाहाबाद प्रयागराज-211004 [भारत]

Motilal Nehru National Institute of Technology Allahabad Prayagraj-211004 [India]

Mid Semester Examination Even Semester (Session 2022-23)

	Programme Name: B.Tech. Course Code: MA12102 Branch: Chemical Engineering Duration: 1 1/2 Hours			Semester: II						
				Course Name: Mathematics-II						
				Stu	dent Reg. No.:					
				Max. Marks: 25						
1.	All que	s to th	ne right indicate the full m s are compulsory. part in continuation.	arks.						
			2							Mari
	QΙ	n)	Find $Ker(T)$ and $ran(T)$ by $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x - y \\ 3x + z \end{pmatrix}$.	and their d	dimensions for Linea	r Transfor	mation ?	r: R³ -	• R2 defined	3
	Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a Linear Transformation defined by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + y \\ x - z \end{pmatrix}$. Find the material of the material of the second secon								2	
			representation of T with r $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \text{ in } \mathbb{R}^2.$	espect to t	the ordered basis $X =$	= {(¹).(¹	$\binom{0}{1}$	in R³	and Y =	
	Q2 a) Verify the Cayley-Hamilton theorem for the matrix A. Find A^{-1} , if it exists							2		
			where $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & -1 \\ -2 & -1 & 1 \end{bmatrix}$							
		b)	Show that the matrix A =	$\begin{bmatrix} 0 & 2 \\ 2 & 0 \\ 1 & -3 \end{bmatrix}$	1 3 0 is diagonalizabl	le. Find the	matrix	P such	that P ⁻¹ AP	3
	Q3	2)	is a diagonal matrix. Find all the eigenvalues	and corres	ponding eigen vector	rs of the m	atrix 1	2	30.	4

b) For what values of k do the following set of vectors form a basis in R3

 $\{(k, 1-k, k), (0.3k-1.2), (-k, 1.0)\}$

- Q 4 a) Find the Laplace Transform of the given functions
 - (i) $\sin t \, u_{\pi}(t)$ (ii) $f(t) = \begin{cases} k, & 0 \le t < 2 \\ 0, & 2 \le t < 4 \\ k, & t \ge 4 \end{cases}$
 - State and Prove Convolution theorem for Laplace Transform.
- Q 5 Solve the following initial value problems 4y'' 8y' + 3y = sint, y(0) = 0, y'(0) = 2.

2

3

मोतीलाल नेहरू राष्ट्रीय धौदयोगिकी संस्थान इलाहाबाद

प्रयागराज-211004 (भारत)

Motilal Nehru National Institute of Technology Allahabad Prayagraj - 211 904 (India)

Department of Mathematics,

End Semester Examination, Session 2022-23 (Even)

Programme:

B.Tech.

Branch:

Chemical

Semester: //

Engineering

Course Name:

Mathematics-II MAN12102

Max. Marks:

Course Code: Time:

 $2\frac{1}{2}$ HRS

Registration No.:

3

Instructions (related to question paper):

All questions are compulsory.

2. Solve each part in continuation.

Marks

(10)

5

5

(10)

Corresponding course outcome with weightage (if any)

COL

CO2

Q١

 $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a Linear Transformation. Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \end{bmatrix}$ be the matrix

representation of Linear Transformation T with respect to the ordered basis $v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, v_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix} \text{ in } \mathbb{R}^2 \text{ and } w_1 = \begin{bmatrix} -1 \\ 1 \\ 4 \end{bmatrix}, w_2 = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}, w_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} \text{ in } \mathbb{R}^3.$

then determine the Linear Transformation T.

b

11

Show that the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$ is diagonalizable. Hence, find P

such that $P^{-1}AP$ is a diagonal matrix. Then obtain the matrix

 $R = A^2 + 5A + 3I$.

Q2

Use Laplace Transform to evaluate the following integrals

(i)
$$\int_0^\infty \frac{e^{-t} \sin \sqrt{3} t}{t} dt$$

(ii)
$$\int_0^\infty \frac{e^{-2t}-e^{-4t}}{t} dt$$

Solve by Laplace Transform first order initial-boundary value problem $\frac{\partial u}{\partial x} + x \frac{\partial u}{\partial t} = xt^2, \quad u(x,0) = 0, u(0,t) = t.$

5

Q4

time t > 0.

- Find the particular solution of Lagrange's equation (10) $(2y^2 + z)p + (y + 2x)q = 4xy - z$, which passes through the straight line 5
- Solve the P.D.E. $\frac{\partial^2 z}{\partial x^2} 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = e^{2x+3y} + \sin(x-2y).$
- a Find the Fourier Series for the function $f(x) = x + x^2$, $-\pi < x < \pi$. Hence 5 CO3 show that
 - (i) $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$ (ii) $\frac{\pi^2}{12} = 1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots$...
- b (i) A continuous random variable X has probability density function $f(x) = \frac{3}{4}(x^2 + 1)$, $0 \le x \le 1$. Find α such that $P(X \le \alpha) = P(X > \alpha)$.
- P(X > a).

 If the probability density function of a continuous random variable is given by $(x) = e^{-x}$, $0 \le x < \infty$. Find the mean and variance.
- a A tightly stretched flexible string has its ends fixed at x = 0 and x = l. At time 8 CO5 t = 0, the string is given a shape defined by $F(x) = \mu x(l x)$, μ is a constant and then released. Find the displacement y(x, t) of any point x of string at any

(10)

- b Find $L^{-1}\left[\frac{1}{s^2(s^2+4)}\right]$ 2 CO2
 - CO1: This unit is designed to make students familiar with the basic concepts of linear algebra, such as vector spaces, basis, dimension, linear transformation. Students will learn basic concepts like eigenvalues, eigenvector and its application, diagonalization, which are fundamental concepts in many engineering problems.
 - CO2: The course provides a basic understanding of Laplace transformation to address the engineering problems governed by ordinary and partial differential equations.
- Course
 Co
 - CO4: Development of the basic understanding and solution methods for the linear/nonlinear partial differential equations which arises in the modeling of engineering/physical problems.
 - CO5: The student will be able to classify and solve the PDE's of second order which arises in the modeling of many engineering/physical problems. Also, the students will be able to apply the technique to solve, heat, wave and Laplace equations.
 - CO6: The students will have the basic knowledge of random variables, Probability distributions of