Reti Neurali

Modelli ad ispirazione biologica

Le reti neurali si ispirano al modo in cui i neuroni agiscono ed interagiscono

NB: i neuroni artificiali non sono modelli fedeli dei neuroni biologici, ne catturano solo alcuni principi

Perceptron (Rosenblatt)

B-machine di Turing

(http://www.alanturing.net/turing_archive/pages/Reference%20Articles/connectionism/Turing%27santicipation.html)

Fra i primi modelli proposti

Perceptron

Un perceptron è un elemento computazionale, dotato di una piccola memoria in grado di calcolare una **funzione di attivazione** in esso strettamente codificata:

$$Y = f (net)$$

tale funzione è calcolata su una composizione dei valori in ingresso, opportunamente pesati ...

net

$$net = \sum_{i=1}^{n} w_i X_i$$

Combinazione lineare

$$Y = f(net) = \frac{1}{1 + e^{-\alpha * (net - \theta)}}$$

Funzione a gradino, spesso una sigmoide

$$\theta$$
 = soglia o bias

sigmoide

Nota: al crescere del parametro α la sigmoide tende alla funzione gradino

Cosa codifica un perceptron?

Un perceptron codifica un test lineare

Ciò che cade al di sopra dell'iperpiano codificato dai suoi pesi fa attivare il neurone, ciò che è sotto non fa attivare il neurone

Classificazione: caso particolare, sopra all'iperpiano ciò che è riconosciuto come appartenente alla classe obiettivo, sotto all'iperpiano le istanze negative

Cosa codifica un perceptron?

Un perceptron codifica un test lineare

Ciò che cade al di sopra dell'iperpiano codificato dai suoi pesi fa attivare il neurone, ciò che è sotto non fa attivare il neurone

I **pesi** sulle connessioni in ingresso definiscono la posizione e la pendenza dell'iperpiano nello spazio in cui sono definiti gli input. I pesi caratterizzano i neuroni e costituiscono la conoscenza del neurone.