Portfolio Problem 2 - C. Squares and Cubes 1

Examples and Definitions 1.1

- Problem to prove: Construct both a know-show table and a first attempt at a formal proof of
- the following proposition.
- **Proposition.** Let $a, b \in \mathbb{N}$. If $a^2 = b^3$ and a is even, then $4 \mid a$.

Exploratory Work/Examples 1.2

- **Strategy:** To find four pairs of natural numbers (a,b) such that $a^2=b^3$ and a is even, I modified my approach:
- Filtered a to include only even numbers.
- Verified whether $\sqrt[3]{a^2}$ is an integer and that $b^3 = a^2$. 10
- ullet Added additional columns to check if a is even and ensure that both a and b satisfy the conditions for being natural numbers. 12

Excel Formulas Used:

11

- Column A: Even natural numbers a. 14
- Formula: =even a value 15
- Column B: Squares of a (a^2). 16
- Formula: =POWER(A2, 2) 17
- Column C: Cube root of a^2 ($\sqrt[3]{a^2}$). 18
- Formula: =POWER(B2, 1/3) 19
- Column D: Verification column for b^3 ($b^3 \in \mathbb{N}$). 20
- Formula: =IF(AND(C2>0, C2=INT(C2)), C2*C2*C2 & "∈ \mathbb{N} ", "b \notin N") 21
- Column E: Even or Odd verification for a.
- Formula: =IF(A2=INT(A2), IF(MOD(A2,2)=0, "Even", "Odd"), "Not an Integer") 23
 - Column F: Final check for Even and Natural.

- Formula: =IF(AND(A2>0, A2=INT(A2), MOD(A2,2)=0, C2>0, C2=INT(C2)), "Natural and Even", "False")

Results: The four pairs satisfying $a^2=b^3$, with a even, are:

a	a^2	b	b^3
8	64	4	64
64	4096	16	4096
216	46656	36	46656
512	262144	64	262144

29 Spreadsheet Screenshot:

28

Portfolio Problem 2 Spreadsheet.png

1.3 Know-Show Table ($a^2=b^3$ and a even $\implies 4\mid a$)

Step	Know	Reason
P1	$a^2 = b^3$	Hypothesis
P2	a is even $(a=2k)$	Hypothesis
P3	$(2k)^2 = b^3$	Substitution
P4	$4k^2 = b^3$	Algebra
P5	b is even $(b=2m)$	Cubes divisible by 4
		imply base divisible
		by 2
P6	Substituting $b = 2m$: $4k^2 = (2m)^3$	Substitution
P7	$4k^2 = 8m^3$	Algebra
P8	$k^2 = 2m^3$	Divide by 4
P9	k is even $(k=2n)$	Squares divisible by
		2 imply base divisi-
		ble by 2
Q1	a=4n	Substituting $k =$
		2n into $a=2k$
Step	Show	Reason

33 1.4 First Draft of Proof

Proof. Assume $a^2=b^3$, and a is even. Then there exists an integer k such that a=2k.

Substituting into a^2 , we get:

$$a^2 = (2k)^2 = 4k^2$$

By the hypothesis $a^2=b^3$, we know $b^3=4k^2$. Since b^3 is divisible by 4, b must be even. Let

b = 2m for some integer m. Substituting into b^3 , we get:

$$b^3 = (2m)^3 = 8m^3$$

38 Thus:

$$4k^2 = 8m^3$$

Dividing both sides by 4, we find:

$$k^2 = 2m^3$$

Since k^2 is even, k must also be even. Let k=2n for some integer n. Substituting into a=2k,

41 we get:

$$a = 2(2n) = 4n$$

Therefore, a is divisible by 4.

1.5 Second Draft of Proof

- We aim to prove the following proposition:
- **Proposition:** Let $a, b \in \mathbb{N}$. If $a^2 = b^3$ and a is even, then $4 \mid a$.
- Proof. Assume $a^2=b^3$, and a is even. Since a is even, there exists an integer k such that a=2k. Substituting a=2k into a^2 , we get:

$$a^2 = (2k)^2 = 4k^2.$$

By the hypothesis $a^2=b^3$, it follows that:

$$b^3 = 4k^2.$$

- 49 Since b^3 is divisible by 4, b must also be even. Let b=2m for some integer m. Substituting
- b = 2m into b^3 , we have:

$$b^3 = (2m)^3 = 8m^3.$$

Thus, the equation becomes:

$$4k^2 = 8m^3.$$

 $_{52}$ Dividing both sides by 4, we find:

$$k^2 = 2m^3.$$

- Since k^2 is even, k must also be even. Let k=2n for some integer n. Recalling that a=2k,
- $_{\mbox{\scriptsize 54}}$ $\,$ we substitute k=2n into the expression for a, and we have:

$$a = 2(2n) = 4n.$$

- Hence, a is divisible by 4, which proves the proposition that if $a^2 = b^3$ and a is even, then a must
- 56 be divisible by 4.

57 1.6 Final Draft of Proof

- Proposition: Let $a, b \in \mathbb{N}$. If $a^2 = b^3$ and a is even, then $4 \mid a$.
- Proof. Assume a and b are natural numbers. We will prove that if $a^2=b^3$ and a is even, then 4
- divides a. Since a is even, there exists an integer k such that a=2k. Substituting a=2k into
- a^2 , we get:

$$a^2 = (2k)^2 = 4k^2.$$

By the hypothesis $a^2 = b^3$, it follows that:

$$b^3 = 4k^2$$
.

- Since b^3 is divisible by 4, it follows that b^3 is even. By previous results, n^3 is even if and only if n
- is even, so b must also be even. Thus, there exists an integer m such that b=2m. Substituting
- b = 2m into b^3 , we have:

$$b^3 = (2m)^3 = 8m^3.$$

66 Thus, the equation becomes:

$$4k^2 = 8m^3.$$

$$k^2 = 2m^3.$$

- By previous results, since k^2 is even, k must also be even. Let k=2n for some integer n.
- Recalling that a=2k, we substitute k=2n into the expression for a, and we have:

$$a = 2(2n) = 4n.$$

- Therefore, a is divisible by 4, which proves the proposition that if $a^2=b^3$ and a is even, then a
- 70 must be divisible by 4.

1.7 Reflection

- Initially, the proof was correct, but certain steps were less explicit. For example, it needed clearer justification for why b^3 being divisible by 4 implies b is even.
- The second draft improved these explanations, making the reasoning more direct and ensuring each step was justified.
 - The final draft streamlined the logic, referenced prior results explicitly, and presented a fully rigorous and clear argument that a must be divisible by 4.

References

76

77

[1] Sundstrom, T., *Mathematical Reasoning: Writing and Proof*, Version 3, Creative Commons, 2020.