Artificial Intelligence

Lec 14: Constraint Satisfaction Problems (contd.)

Pratik Mazumder

Filtering: Constraint Propagation

Forward checking propagates information from assigned to unassigned variables, but doesn't provide early detection for all failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

Simplest form of propagation makes each arc consistent

■ An arc X -> Y is consistent iff for every value x of X there is some y which could be assigned without

violating a constraint

- arc X -> Y
 - X = SA, Y = NSW
 - If SA = blue: we could assign NSW = red

Single Arc Consistency to Arc Consistency of an Entire CSP

Simplest form of propagation makes each arc consistent

An arc X -> Y is consistent iff for every value x of X there is some y which could be assigned without

violating a constraint

- arc X -> Y
 - \circ X = NSW, Y = SA
 - If NSW = red: we could assign SA = blue
 - If NSW = blue: there is no remaining assignment to SA that we can use
 - Deleting NSW = blue from X makes this arc consistent.
- Important: If X loses a value, neighbors of X need to be rechecked.

Arc Consistency

An arc X -> Y is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

OR

An arc X -> Y is consistent iff for every value x of X there is some y which could be assigned without violating a constraint.

Delete from the tail!

Single Arc Consistency to Arc Consistency of an Entire CSP

Simplest form of propagation makes each arc consistent.

An arc X -> Y is consistent iff for every value x of X there is some y which could be assigned without

violating a constraint

- arc X -> Y
 - X = V, Y = NSW
 - If V = red: there is no remaining assignment to NSW that we can use.
 - o If V = green: we could assign NSW= red.
 - If V = blue: we could assign NSW= red.
 - Deleting from **tail** V = red from X makes this arc consistent.
- Important: If X loses a value, neighbors of X need to be rechecked.

Single Arc Consistency to Arc Consistency of an Entire CSP

Simplest form of propagation makes each arc consistent

An arc X -> Y is consistent iff for every value x of X there is some y which could be assigned without

violating a constraint

- arc X -> Y
 - \circ X = SA, Y = NT
 - If SA = blue: there is no remaining assignment to NT that we can use.
 - Deleting from tail SA = red from X will result in no available colors for SA.
- Arc consistency detects failure earlier than forward checking.
- In fact, forward checking is only enforcing arc consistency for arcs pointing to a new assignment.
- Arc consistency can be run as a preprocessor or after each assignment.

Arc Consistency of an Entire CSP

Assignment: When a variable X is assigned a value during the CSP solving process, this assignment may affect the consistency of other variables that are connected to X through constraints.

Arc Consistency Checking:

- Direct Arcs:
 - a. The algorithm first checks the arcs (constraints) directly involving X and any other variable Y (i.e., $X \rightarrow Y$, and $Y \rightarrow X$).
 - b. The goal is to ensure that the current assignment of X does not violate these constraints.
- Neighboring Variables:
 - a. If any values in the domain of Y (neighboring variables of X) are found to be inconsistent with the new value of X, those values are removed from Y's domain.
- Propagation:
 - a. If the domain of Y is reduced, this reduction may, in turn, affect other variables connected to Y.
 - b. The algorithm then needs to **check/re-check** the arcs involving these affected variables as well.
 - c. This propagation continues until no more domain reductions occur.
 - d. All Arcs Checked/Re-checked: **Even if no domain values are removed** during a consistency check, the algorithm still needs to verify that all the arcs are consistent.
 - This ensures that all constraints are satisfied and no values violate the constraints across the entire CSP.
- Termination: The process of arc consistency checking and propagation continues until no more values can be removed from any variable's domain and all arcs have been checked for consistency.

Enforcing Arc Consistency in a CSP

```
function AC-3(csp) returns the CSP, possibly with reduced domains
   inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
   local variables: queue, a queue of arcs, initially all the arcs in csp
   while queue is not empty do
      (X_i, X_i) \leftarrow \text{Remove-First}(queue)
      if Remove-Inconsistent-Values(X_i, X_i) then
         for each X_k in NEIGHBORS [X_i] do
            add (X_k, X_i) to queue
function REMOVE-INCONSISTENT-VALUES (X_i, X_i) returns true iff succeeds
   removed \leftarrow false
   for each x in DOMAIN[X_i] do
      if no value y in DOMAIN[X<sub>i</sub>] allows (x,y) to satisfy the constraint X_i \leftrightarrow X_j
         then delete x from DOMAIN[X_i]; removed \leftarrow true
   return removed
```

Arc Consistency of an Entire CSP

Arc Consistency of an Entire CSP

Improving Backtracking (contd.)

```
function BACKTRACKING-SEARCH(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function RECURSIVE-BACKTRACKING (assignment, csp) returns soln/failure
  if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(csp), assignment, csp)
  for each value in Order-Domain-Values var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
           add \{var = value\} to assignment
           result \leftarrow Recursive-Backtracking(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

Improving Backtracking: Ordering- Minimum Remaining Values

- Variable Ordering: Minimum remaining values (MRV):
 - Choose the variable with the fewest legal left values in its domain (most likely the neighbors).

- Why min rather than max?
 - Charging into the hard problem first.
 - o So that if I am wrong, then I can backtrack earlier.
- Also called "most constrained variable".
- "Fail-fast" ordering.

Improving Backtracking: Ordering- Least Constraining Value

- Value Ordering: Least Constraining Value (LCV)
 - Given a choice of variable, choose the least constraining value.
 - i.e., the one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this! (E.g., re-running filtering)
- Why least rather than most?
 - Less likely to remove all values of another variable and force a backtrack.
 - Also, in the hope that I don't have to try the hard ones ever.

Improving Backtracking: Ordering

Backtracking with Arc Consistency

Backtracking with Arc Consistency with MRV and LCV

Practice Question

Consider the graph coloring problem with 9 nodes using only red, green and blue colors. No connected nodes should have the same color.

Sol: Link

Solve using CSP with backtracking with 1) forward consistency 2) arc consistency + MRV. Fill the Table. Stop at the first Failure and mention FAILURE. Order column should mention the order in which the nodes were colored, even if that resulted in a failure.

Structure

Can we use the structure of the problem to solve it more efficiently?

Problem Structure

- Extreme case: independent subproblems
 - Example: Tasmania and the mainland do not interact
- Independent subproblems are identifiable as connected components of the constraint graph.
- Suppose a graph of n variables can be broken into subproblems of only c variables.
 - Solving smaller independent problems is much easier and faster.
 - \circ e.g., variables n = 80, domain values d = 2.
 - 280 possibilities = 4 billion years at 10 million nodes/sec.
 - Suppose if you can break this problem down into 4 independent subproblems containing 20 nodes each.
 - (4)(2²⁰) possibilities= 0.4 seconds at 10 million nodes/sec

 If the constraint graph has no loops, the CSP can be solved in a significantly faster way compared to general CSPs

- Algorithm for tree-structured CSPs:
 - o Order: Choose a root variable and order variables so that parents precede children.

- Algorithm for tree-structured CSPs:
 - o Order: Choose a root variable and order variables so that parents precede children.

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable and order variables so that parents precede children.

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable and order variables so that parents precede children.

- Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
 - Check F and D: Conflict on blue

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable and order variables so that parents precede children.

- \circ Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
 - Check E and D: For each color of E, a non-conflicting color available at D

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable and order variables so that parents precede children.

- \circ Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
 - Check D and B: For each color of D, a non-conflicting color available at B

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable and order variables so that parents precede children.

- \circ Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
 - Check C and B: C can only be green, therefore, remove green from B

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable and order variables so that parents precede children.

- \circ Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
 - Check C and B: C can only be green, therefore, remove green from B

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable and order variables so that parents precede children.

- \circ Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
 - Check B and A: B can only be blue, therefore, remove blue from A

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable and order variables so that parents precede children.

- Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
 - Check B and A: B can only be blue, therefore, remove blue from A

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable and order variables so that parents precede children.

- \circ Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
- \circ Assign forward: For i = 1 to n, assign X_i consistently with Parent(X_i)
 - One forward pass from A to F and assign one of the available colors consistent with the parent

- Algorithm for tree-structured CSPs:
 - o Order: Choose a root variable and order variables so that parents precede children.

- \circ Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
- Assign forward: For i = 1 to n, assign X_i consistently with Parent(X_i)
 - One forward pass from A to F and assign one of the available colors consistent with the parent

- Algorithm for tree-structured CSPs:
 - o Order: Choose a root variable and order variables so that parents precede children.

- Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i),X_i)
 - One backward pass from F back to A and enforce arc consistency
- \circ Assign forward: For i = 1 to n, assign X_i consistently with Parent(X_i)
 - One forward pass from A to F and assign one of the available colors consistent with the parent

- Algorithm for tree-structured CSPs:
 - o Order: Choose a root variable and order variables so that parents precede children.

- \circ Remove backward: For i = n to 2, apply RemoveInconsistent(Parent(X_i), X_i)
 - One backward pass from F back to A and enforce arc consistency
- \circ Assign forward: For i = 1 to n, assign X_i consistently with Parent(X_i)
 - One forward pass from A to F and assign one of the available colors consistent with the parent