The Relational Data Model

Chapter 3

Chapter Outline

- After you have read and studied this chapter, you should be able to know
 - The Relational Model Concepts
 - Tuple, domain, instance, schema, role
 - The Relational Model Constraints and Relational Database Schemas
 - Dealing with Constraint Violations

Relational Model Concepts

- The relational Data Model is based on the concept of a Relation.
- A Relation is a mathematical concept based on the ideas of sets.
- The strength of the relational approach to data management comes from the formal foundation provided by the theory of relations.

Informal Definitions

- RELATION: A table of values
 - → A relation may be thought of as a set of rows.
 - A relation may alternately be though of as a set of columns.
 - Each row represents a fact that corresponds to a real-world entity or relationship.
 - Each row has a value of an item or set of items that uniquely identifies that row in the table.
 - Sometimes row-ids or sequential numbers are assigned to identify the rows in the table.
 - Each column typically is called by its column name or column header or attribute name.

Formal Definitions - Relation

- A Relation has a schema.
- The Schema of a Relation is defined over attributes A_1 , A_2 , ..., A_n R can be written : $R(A_1, A_2, ..., A_n)$

Example:

CUSTOMER (Cust-id, Cust-name, Address, Phone#)

Here, CUSTOMER is a relation defined over the four attributes Cust-id, Cust-name, Address, Phone#, each of which has a domain or a set of valid values. For example, the domain of Cust-id is 6 digit numbers.

Formal Definitions II - Tuple

- A tuple is an ordered set of values
- Each value is derived from an appropriate domain.
- Each row in the CUSTOMER table may be referred to as a tuple in the table and would consist of four values.
- <632895, "Yasine Shehri", "101 Thalatheen Street, Riyadh</p>
 54312", "(01) 4942060">
 - is a tuple belonging to the CUSTOMER relation.

Formal Definitions III - column

- A relation may be regarded as a set of tuples (rows).
- Columns in a table are also called attributes of the relation.

Formal Definitions IV - Domain

- *A domain has a logical definition: e.g.,

 "Phone_numbers" are the set of 9 digit phone
 numbers valid in the S.A.
- ♠ A domain may have a data-type or a format defined for it. The Phone_numbers may have a format: (dd)-ddd-dddd where each d is a decimal digit. E.g., Dates have various formats such as monthname, date, year or yyyy-mm-dd, or dd mm,yyyy etc.

Formal Definitions V - Role

◆ An attribute designates the role played by the domain. E.g., the domain Date may be used to define attributes "Invoice-date" and "Payment-date".

Formal Definitions VI – Cartesian Product

- The relation is formed over the Cartesian product of the sets; each set has values from a domain; that domain is used in a specific role which is conveyed by the attribute name.
- ◆ For example, attribute Cust-name is defined over the domain of strings of 25 characters. The role these strings play in the CUSTOMER relation is that of the name of customers.

Relation Schema

The degree of a relation is the number of attributes of its schema

A database schema is a set of relation Schemes

ex.: Car(Licence#, EngineSerial#, Make, Model, Year) is of degree 5.

Relation Schema II

- - R: schema of the relation
 - r of R: a specific "value" or population of R.
 - R is also called the **intension** of a relation
 - r is also called the **extension** of a relation

Instance

- Let $S1 = \{0,1\}$
- \bullet Let S2 = {a,b,c}
- \bullet Let $R \subset S1 \times S2$
- Then for example: r(R) = {<0,a>, <0,b>, <1,c>} is one possible "state" or "population" or "extension" r of the relation R, defined over domains S1 and S2. It has three tuples.

Definition Summary Definition Summary

Formal Terms	Informal Terms		
Relation	Table		
Attribute/Domain	Column		
Tuple	Row		
Domain	Values in a column		
Schema of a Relation	Table Definition		
Extension	Populated Table		

Relation Instance

- The current values (*relation instance*) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

name	Address	city	
Majed	21, Tahlia st,	Riyadh	tuples
Fahad	124, Olaya st.	Diryia	
Ali	98, Ourouba st,	Jeddah	

customer

Characteristics Of Relations

- Ordering of tuples in a relation r(R): The tuples are not considered to be ordered, even though they appear to be in the tabular form.
- Ordering of attributes in a relation schema \mathbf{R} : We will consider the attributes in $R(A_1, A_2, ..., A_n)$ and the values in $t=<\mathbf{v}_1, \, \mathbf{v}_2, \, ..., \, \mathbf{v}_n>$ to be ordered.

Characteristics Of Relations II

- ♦ Values in a tuple: All values are considered atomic (indivisible). A special null value is used to represent values that are unknown or inapplicable to certain tuples.
- We refer to **component values** of a tuple t by $t[A_i] = v_i$ (the value of attribute A_i for tuple t). Similarly, $t[A_u, A_v, ..., A_w]$ refers to the subtuple of t containing the values of attributes A_u, A_v ,

..., A., respectively.

Database Schema

It is a set of relation schemes $S = \{R1, R2, ..., Rn, \} \text{ and a set on integrity}$ constraints

Example of database schema:

Employee(SSN, Name, Address, Salary, DepN)
Dept(Dep#, Name, MGRSSN)
DepLct(Dep#, DepLocation)
Prjct(Proj#, Name, ProjLoc, Dep#)
Works_on(SSN, Prj#, firs)

Constraints Domain Constraint Key Constraints Foreign Key **CONSTRAINTS** Referential Entity Integrity Integrity

KeysofthereationDatamorel

Relation Relation schema Relation instance Attribute column Domain Tuple Row

Tupi Row