

# 计算理论 Theory of Computation

https://courses.zju.edu.cn/course/63597

2023秋冬周一第3,4节/计算理论 内部 ②

该群属于"浙江大学"内部群,仅组织内部成员可以加入,如果组织外部 人员收到此分享,需要先申请加入该组织。

•••••

此二维码365天内有效 (2024-09-15 前)

钉钉群号: 43215000056

授课教师: 郑乾

qianzheng@zju.edu.cn

助教:赵晨希

3190102973@zju.edu.cn





浙江大学玉泉校区教7-208 2023年9月25日



# 内容安排

- 3 classesSets, Relations and Language (CH1)
- 3 classes
   Regular Language and Finite Automata (CH2)
- 3 classesContext-free Languages (CH3)
- 3 classesTuring machine (CH4)
- 2 classesUndecidability (CH5)
- 1 class
  - Review





### **Brief Review**

### 1.4 Finite and Infinite sets

- □ Equinumerous
- Countable and Uncountable Infinite

### 1.5 Three Fundamental Proof Techniques

- ☐ The Principle of Mathematical Induction
- ☐ The Pigeonhole Principle
- □ The Diagonalization Principle



# 计算理论

第1章 集合、关系、语言

Ch1. Sets, Relations and Language



#### Closures - Intuitive

#### Idea

Natural numbers N are **closed** under +, i.e. for given two natural numbers n, m we always have that  $n + m \in N$ 

Natural numbers N are **not closed** under subtraction -, i.e there are two natural numbers n, m such that  $n - m \notin N$ , for example  $1, 2 \in N$  and  $1 - 2 \notin N$ 

Integers Z are **closed** under—, moreover Z is the smallest set containing N and closed under subtraction —

The set Z is called a **closure** of N under subtraction —



#### Closures - Intuitive

Consider the two directed graphs R (a) and  $R^*$  (b) as shown below



Observe that  $R^* = R \cup \{(a_i, a_i) : i = 1, 2, 3, 4\} \cup \{(a_2, a_4)\}$ ,

 $R \subseteq R^*$  and is  $R^*$  is reflexive and transitive whereas R is neither, moreover  $R^*$  is also the smallest set containing R that is reflexive and transitive

We call such relation R\* the reflexive, transitive closure of R



#### ☐ The Transitive Closure

the "smallest" relation that includes R and is transitive (usually called  $R^+$ )

#### More formally:

 $R^+$  is a relation such that

- $* R \subseteq R^+$
- \*  $R^+$  is transitive
- \*  $\forall R', R \subseteq R'$  and R' is transitive,  $\Rightarrow R^+ \subseteq R'$



#### ☐ Closures of Relations

Given any binary relation R, one can form closures with respect to any combinations of the properties:

- reflexive
- symmetric
- transitive

#### Note:

Reflexive, transitive closure of R is usually denoted  $R^*$ .



Data are **encoded** in the computers' memory as strings of bits or other symbols appropriate for **manipulation** 

The mathematical study of the **Theory of Computation**begins with understanding of mathematics of **manipulation**of strings of symbols

We first introduce two basic notions: Alphabet and Language



### Alphabet

#### **Definition**

Any finite set is called an alphabet

Elements of the alphabet are called symbols of the alphabet

### **Alphabet Notation**

We use a symbol  $\Sigma$  to denote the **alphabet** 

# Is Ø an alphabet?



### Alphabet

E1 
$$\Sigma = \{\ddagger, \emptyset, \partial, \oint, \bigotimes, \vec{a}, \nabla\}$$

**E2** 
$$\Sigma = \{a, b, c\}$$

**E3** 
$$\Sigma = \{ n \in \mathbb{N} : n \le 10^5 \}$$

E4 
$$\Sigma = \{0, 1\}$$
 is called a binary alphabet



Alphabet

A finite sequence of elements of a set A

Let ∑ be an alphabet

length

We call finite sequences of the alphabet  $\Sigma$  words or strings over  $\Sigma$ 

We denote by ethe empty word over  $\Sigma$ 

Some books use symbol → for the empty word



#### Words over $\Sigma$

**E5** Let  $\Sigma = \{a, b\}$ 

We will write some words (strings) over ∑ in a **shorthand** notaiton as for example

aaa, ab, bbb



#### Words in $\Sigma^*$

Let ∑ be an **alphabet**. We denote by

$$\sum^*$$

the set of **all finite** sequences over **\( \Sigma** 

Elements of  $\Sigma^*$  are called **words** over  $\Sigma$ 

We write  $\mathbf{w} \in \mathbf{\Sigma}^*$  to express that  $\mathbf{w}$  is a **word** over  $\mathbf{\Sigma}$ 

Is 
$$\emptyset = \Sigma^*$$
?



#### □ Operations of Strings:

words are also named as strings

• Concatenation:  $x \circ y$  or xySubstring, suffix, prefix

**Example:**  $\forall w, we = ew = w$ 

#### String exponentiation

 $w^0 = e$ , the empty string  $w^{i+1} = w^i \circ w$ , for each  $i \ge 0$ 

—definition by induction

#### Reversal

If w is a string of length 0, then  $w^R = w = e$ .

IF w is a string of length n+1>0, then w=ua for some  $a\in \Sigma$ , and  $w^R=au^R$ .



- ☐ **Language:** set of strings
  - $-\sum$ -alphabet,  $\sum^*$ -the set of all strings  $(e \in \sum^*)$
  - Language  $L \subseteq \Sigma^*$
  - $-\emptyset$ ,  $\Sigma$  and  $\Sigma^*$  are languages.
  - Finite Language: by listing all the strings  $L = \{w \in \Sigma^* : w \text{ has property } P\}$

**Example:**  $L = \{ab, aabb, aaabbb, \dots\} = \{a^nb^n \mid n \ge 1\}$ 



**Theorem:** If  $\Sigma$  is a finite alphabet, then  $\Sigma^*$  is countably infinite set.

**Proof:** Construct a bijection  $f: \mathbb{N} \to \Sigma^*$ .

Fix some ordering of the alphabet, say  $\Sigma = \{a_1, a_2, \dots, a_n\}$ .

The member of  $\Sigma^*$  can be enumerated in the following

Ye For example, if  $\Sigma = \{0, 1\}$ , the order would be as follows:

$$e, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, \dots$$

2) The  $n^k$  strings of length exactly k are enumerated lexicographically.



# How many words or strings over a non empty alphabet?

Alphabet is a finite set. All finite sequences of finite symbols is countably infinite.

Is a language countable over a non empty alphabet?

For any alphabet  $\Sigma$ , any language over  $\Sigma$  is **countable** 

How many languages over a non empty alphabet?

For any alphabet  $\Sigma \neq \emptyset$ , there are exactly  $\mathcal{C} = |R|$  of languages



#### □ Operations of Languages:

• Union, Intersection, Difference, Complement

$$(\overline{A} = \sum^* -A)$$

• Concatenation:

$$L^0 = \{e\}$$
  
 $L^{i+1} = LL^i$ , for each  $i \ge 0$ 

$$L_1L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}$$

#### **Example:**

 $L_1 = \{w \in \{0, 1\}^* : w \text{ has an even number of 0's}\}\$ 

 $L_2 = \{w \in \{0,1\}^* : w \text{ starts with a 0, the rest symbol are 1's}\}$ 

 $L_1L_2 = \{w \in \{0,1\}^* : w \text{ has an odd number of 0's}\}.$ 



#### Kleene Star

$$L^* = \{ w \in \Sigma^* : w = w_1 \cdots w_k, k \ge 0, w_1, \cdots, w_k \in L \}$$
$$= L^0 \cup L^1 \cup L^2 \cup \cdots$$
$$L^+ = L^1 \cup L^2 \cup L^3 \cup \cdots$$

#### Can $e \in L^+$ ?

**Example:**  $L = \{w \in \{0,1\}^* : w \text{ has an unequal number of 0's and 1's}\}.$  Then  $L^* = \{0,1\}^*$ .

Hint: 
$$L_1 \subseteq L_2 \Rightarrow L_1^* \subseteq L_2^*$$
  $\{0,1\} \subseteq L$   $(L^*)^* = L^*$ 

#### **Remark:**

- 1) The use of  $\Sigma^*$  to denote the set of all strings over  $\Sigma$  is consistent with the notation for the Kleene star of  $\Sigma$ .
- 2)  $\emptyset^* = \{e\}$
- 3)  $L^{+} = LL^{*}$
- 4) For any language L,  $(L^*)^* = L^*$ ;  $L\emptyset = \emptyset L = \emptyset$

We write  $L^+$  for the language  $LL^*$ . Equivalently,  $L^+$  is the language

 $\{w \in \Sigma^* : w = w_1 \circ w_2 \circ \cdots \circ w_k \text{ for some } k \geq 1 \text{ and some } w_1, \ldots, w_k \in L\}.$ 

Notice that  $L^+$  can be considered as the *closure* of L under the function of concatenation. That is,  $L^+$  is the smallest language that includes L and all strings that are concatenations of strings in L.



We can represent a finite language by **finite means** for example listing all its elements

Languages are often infinite and so a natural question arises if a **finite representation** is possible and when it is possible when a language is infinite

The representation of languages by **finite specifications** is a central issue of the theory of computation

Of course we have to define first formally what do we mean by representation by finite specifications, or more precisely by a finite representation



#### ☐ Finite Representations:

- must be a string
- different languages to have different representations

**Example** Let  $L = \{w \in \{0,1\}^* : w \text{ has two or three occurrences of 1, the first and second of which are not consecutive}.$ 

ullet The language can be described using only singleton sets and the symbols  $\cup$ ,  $\circ$ , and \* as

$$\{0\}^* \circ \{1\} \circ \{0\}^* \circ \{0\} \circ \{1\} \circ \{0\}^* ((\{1\} \circ \{0\}^*) \cup \emptyset^*)$$

• The language can be written simply as

$$0*10*010*(10* \cup \emptyset*).$$



**Definition:** The regular expressions are all strings over the alphabet  $\sum \cup \{(,), \cup, \star\}$  that can be obtained as follows.

- 1)  $\Theta$  and  $\{x\}(\forall x \in \Sigma)$  is a regular expression.
- 2) If  $\alpha$  and  $\beta$  are regular expressions, then so are  $(\alpha\beta)$ ,  $(\alpha \cup \beta)$ ,  $\alpha^*$ .
- 3) Nothing is regular expression unless it follows from 1) through 2).

**Example:** 
$$a^*b^*$$
  $a^* \cup b^*$   $a(a^* \cup b^*)$   $aaaaa^*$ 

#### **Definition**

We define a  $\mathcal{R}$  of **regular expressions** over an alphabet  $\Sigma$  as follows

 $\mathcal{R}\subseteq (\Sigma\cup\{(,\ ),\ \emptyset,\ \cup,\ *\})^*$  and  $\mathcal{R}$  is the smallest set such that

**1.**  $\emptyset \in \mathcal{R}$  and  $\Sigma \subseteq \mathcal{R}$ , i.e. we have that

$$\emptyset \in \mathcal{R}$$
 and  $\forall_{\sigma \in \Sigma} \ (\sigma \in \mathcal{R})$ 

**2.** If  $\alpha, \beta \in \mathcal{R}$ , then

$$(\alpha\beta)\in\mathcal{R}$$
 concatenation

Example: 
$$L = \{ab, aabb, aabbb, aabbb, \cdots \} = \{a^nb^n \mid n \ge 1\}$$

$$\alpha^* \in \mathcal{R} \quad \text{Kleene's Star}$$



We use the regular expressions from the set R as a

#### Question

Can we **finitely represent** all languages over an alphabet  $\Sigma \neq \emptyset$ ?





□ Regular expressions & languages.

#### **Definition**

The **representation relation** between **regular expressions** and **languages** they **represent** is establish by a **function**  $\mathcal{L}$  such that if  $\alpha \in \mathcal{R}$  is any regular expression, then  $\mathcal{L}(\alpha)$  is the **language represented** by  $\alpha$ 



Regular expressions & languages.

#### **Formal Definition**

The function  $\mathcal{L}: \mathcal{R} \longrightarrow 2^{\Sigma^*}$  is defined recursively as follows

**1.** 
$$\mathcal{L}(\emptyset) = \emptyset$$
,  $\mathcal{L}(\sigma) = \{\sigma\}$  for all  $\sigma \in \Sigma$ 

**2.** If  $\alpha, \beta \in \mathcal{R}$ , then

$$\mathcal{L}(\alpha\beta) = \mathcal{L}(\alpha) \circ \mathcal{L}(\beta)$$
 concatenation

$$\mathcal{L}(lpha \cup eta) = \mathcal{L}(lpha) \cup \mathcal{L}(eta)$$
 union  $\mathcal{L}(lpha^*) = \mathcal{L}(lpha)^*$  Kleene's Star

$$\mathcal{L}(lpha^*) = \mathcal{L}(lpha)^*$$
 Kleene's Star



**Example:** What is  $\mathcal{L}(((a \cup b)^*a))$ ?  $\mathscr{L}(((a \cup b)^*a)) = \mathscr{L}((a \cup b)^*)\mathscr{L}(a)$  $= \mathcal{L}((a \cup b)^*)\{a\}$  $= \mathscr{L}((a \cup b))^* \{a\}$  $= (\mathcal{L}(a) \cup \mathcal{L}(b))^* \{a\}$  $= (\{a,b\})^*\{a\}$  $= \{w \in \{a,b\}^* : w \text{ ends with an } a\}$ 



#### □ Regular Expression Identities

- $SR \neq RS$
- $\bullet$   $S \cup R = R \cup S$
- $\bullet \ R(ST) = (RS)T$
- $R(S \cup T) = RS \cup RT$ ,  $(R \cup S)T = RT \cup ST$
- $\bullet \ \emptyset^* = \{e\}$
- $(R^*)^* = R^*$
- $(R^*S^*)^* = (R \cup S)^*$
- $\bullet \ (\{e\} \cup R)^* = R^*$

(a) 
$$(x+y)^*$$

(b) 
$$(x^* + y)^*$$

(c) 
$$x^*(x+y)^*$$

(d) 
$$(x + yx^*)^*$$

(e) 
$$(x^*y^*)^*$$

(f) 
$$x^*(yx^*)^*$$

(g) 
$$(x^*y)^*x^*$$

**Example:** What language is represented by  $(c^*(a \cup (bc^*))^*)$ ?



**Example:** What language is represented by  $(c^*(a \cup (bc^*))^*)$ ?  $L = \{w \in \{a, b, c\}^* : \text{ not have the substring } ac\}.$ 



$$={\mathbf{b,c}}*$$

e or b+ or bc\* or b{b,c}\*

#### **Remark:**

1) Every language that can be represented by a regular expression can be represented by infinitely many of them.

2) The class of regular languages over an alphabet  $\Sigma$  is defined to consist of all languages L such that L = L(a) for some regular expression a over  $\Sigma$ . i.e. the class of regular languages over an alphabet  $\Sigma$  is precisely the closure of the set of languages

$$\{\{\sigma\}: \sigma \in \Sigma\} \cup \{\emptyset\}$$



3) The regular expressions are an inadequate specification method in general.

For example,  $\{0^n1^n : n \ge 0\}$  cannot be described by regular expressions.

- 4) Two important and useful means of representing languages:
- language recognition device

to answer questions of the form "Is string w a member of L?

language generators



#### language recognition device.

 $L = \{w \in \{0,1\}^* : w \text{ does not have 111 as a substring}\}.$ 

by reading strings, a symbol at a time, from left to right, might operate like this: Keep a count, which starts at zero and is set back to zero every time a 0 is encountered in the input; add one every time a 1 is encountered in the input; stop with a No answer if the count ever reaches three, and stop with a Yes answer if the whole string is read without the count reaching three.

#### language generators

An alternative and somewhat orthogonal method for specifying a language is to describe how a generic specimen in the language is produced. For example, a regular expression such as  $(e \cup b \cup bb)(a \cup ab \cup abb)^*$  may be viewed as a way of *generating* members of a language:

To produce a member of L, first write down either nothing, or b, or bb; then write down a or ab, or abb, and do this any number of times, including zero; all and only members of L can be produced in this way.



| Homework 1: |              |
|-------------|--------------|
| P46         |              |
|             | 1.7.4 (c)(d) |
|             | 1.7.6        |
| P51         | -X           |
|             | 1.8.3(c)     |
|             | 1.8.5        |





#### 1.7.4. Show each of the following.

- (a)  $\{e\}^* = \{e\}$
- (b) For any alphabet  $\Sigma$  and any  $L \subseteq \Sigma^*$ ,  $(L^*)^* = L^*$ .
- (c) If a and b are distinct symbols, then  $\{a,b\}^* = \{a\}^*(\{b\}\{a\}^*)^*$ .
- (d) If  $\Sigma$  is any alphabet,  $e \in L_1 \subseteq \Sigma^*$  and  $e \in L_2 \subseteq \Sigma^*$ , then  $(L_1 \Sigma^* L_2)^* = \Sigma^*$ .
- (e) For any language L,  $\emptyset L = L\emptyset = \emptyset$ .

#### **1.7.6.** Under what circumstances is $L^+ = L^* - \{e\}$ ?



**1.8.3.** Let  $\Sigma = \{a, b\}$ . Write regular expressions for the following sets:

- (a) All strings in  $\Sigma^*$  with no more than three a's.
- (b) All strings in  $\Sigma^*$  with a number of a's divisible by three.
- (c) All strings in  $\Sigma^*$  with exactly one occurrence of the substring aaa.

1.8.5. Which of the following are true? Explain.

- (a)  $baa \in a^*b^*a^*b^*$
- (b)  $b^*a^* \cap a^*b^* = a^* \cup b^*$
- (c)  $a^*b^* \cap b^*c^* = \emptyset$
- (d)  $abcd \in (a(cd)^*b)^*$