¹⁹ 日本国特許庁 (JP)

①特許出願公開

[®] 公開特許公報 (A)

昭56-43679

Int. Cl.3

識別記号

庁内整理番号

❸公開 昭和56年(1981)4月22日

G 09 F 9/35 G 02 F 1/133 G 09 F 9/00

7013—5 C 7348—2 H 7129—5 C

発明の数 1 審査請求 未請求

(全 8 頁)

図透過型液晶マトリックス表示装置

②特

图54-119695

②出

類 昭54(1979)9月17日

⑫発 明 者 小橋忠雄

門真市大字門真1006番地松下電

器産業株式会社内

⑫発 明 者 由山政三

門真市大字門真1006番地松下電 器産業株式会社内 ⑫発 明 者 松尾保

門真市大字門真1006番地松下電

器産業株式会社内

@発 明 者 江崎弘

門真市大字門真1006番地松下電

器産業株式会社内。

⑪出 願 人 松下電器産業株式会社

門真市大字門真1006番地

個代 理 人 弁理士 森本義弘

月 細 書

1. 発明の名称

遊遊型被晶マトリックス表示装置

- 2. 特許請求の範囲
 - 透明な基板上に、単数または複数個のM 08 型または得膜型等の電界効果トランジスタと、 これに連結される電荷響費用コンデンサと透 明な表示電極とを少なくとも含む単位絵素が I、 Y 両方向に多数燗配設されるとともに、 射配トランジスタのソースまたはドレイン部 のいずれかおよびゲート部が夫々の列、行に 対応して『電極配線か』び『電極配線に接続 された透光性のXYマトリックス集積基板と、 一方の面に透明電腦を付した透光性基板との 間に液晶を介在せしめて画像表示パネルが構 成され、前記「および「電極砲線に供給され る映像信号と選択信号に対応して前記表示電 個と透明電腦との間に選択的に動作信号電圧 を供給し、前記液晶を前記映像信号に関連せ しめて選択的に動作させ、前記画像表示パネ

- 2 光補助板は垂光性に形成され、外光による 散乱光と共に、前記光補助板の表示パネル装 置側とは反対面側からの外光による透過散乱 光を、前記表示パネルを介して透視するよう に成したことを特徴とする特許請求の範囲第 - 項記載の透過型液晶マトリックス表示装置。
- 3. 光補助板は、拡散透過性が付与された光散 乱面を一方の面に有し、残りを光反射体で優 われた透明体で構成され、かつ中間部または

遊録部に前記光反射体により思射光が前記透明体に侵入するように設置された単数または 複数の傾動光源を有し、外光による散乱光と 共に、前記光散乱面を通した前記補助光源からの拡散透過光を前記表示パネルを介して孟 視するように成したことを特徴とする特許 求の範囲第1項記載の透過型液晶マトリック・ス表示装置。

- 4. 表示パキルは単位 絵条に対応して 3 原色の カフーフイルタを有することを特徴とする特 許滑水の範囲系 1 項乃至第 3 項記載の透過型 液晶マトリックス表示装置。
- 5. 液晶はフィステッドネマティック型に配向 構成され、表示パネルはその両側に傷光フィ ルタを有することを特徴とする特許請求の範 囲馬」項乃至第《項配戦の造過型液晶マトリ フクス表示安備。
- 6. 要示パキルはこれを駆動する回路プロック と共に国体に収容され、前記表示パネルに対 応して前記国体の表裏位置に形成された窓部

(3)

透明な基故上に M O B 型または薄膜型の電界効果トフンジスタ等の半導体スイッチング素子かよびこれに連起された電荷蓄機用コンデンサ等を集積したエーエマトリックス集積基故と、一方の面に近明電電を付した透光性基故との間に液晶を介在せしめた面像表示パキルを使用した透過型液晶マトリックス表示袋童に関するものである。

特開昭56- 43679(2)

のうち、裏偶窓部を少なくとも使い、かつ助 記尾体に投角に開閉固定自在に光補助板を要 続したことを特徴とする特許請求の範囲が1 項乃至第5項記載の透過型液晶マトリックス 要示袋性。

- 7. 先補助板は、袋示パキルの面像上下方向に 対して下から上に向く方向に、その下端部が 医体に接続されていることを特徴とする特許 請求の範囲第6項記載の透過型液晶マトリッ クス袋示袋罐。
- 8. 光補助板は国体裏面の一部または全部を形成し、開放時に国体の支持体となることを特徴とする特許請求の範囲第6項記載の遊過型版品マトリックス要示装置。
- 9. 表示パネルは医体のほぼ中央部または中央部より下傷容りに収容設置されることを特徴とする特許請求の範囲が6項乃至易8項記載の最過型液晶マトリックス表示装置。
- 発明の詳細な説明
 本発明は、シリコン、サファイヤ、ガラス等の

(4)

基板と、一方の面に透明電値を付したガラス敬等の避光性基板(図示せず)との間に介袋された板晶セル(3)である。例えば、いま X 電優配器すなわちゲート配線 (X1)水走査ゲート信号が加わると、TPT(1)' はオンし、映像信号は Y 電優配器すなわち映像信号配線 (X1)から TPT(1)' を通つてコンデンサ(2)を充電する。 この映像信号の扱幅に対応したコンデンサ(2)の充電々荷が TPT(1)' にゲート電圧を与え、この電圧に応じて配線 (Y1)' から TPT(1)' を経由して交流電池が液晶セル(3)に流れ込み、液品セル(3)が動作し、このパキルを透過する外光を変調する。

例えば被品として動的散乱型放品を用いれば、 透過する外光は映像信号に応じて動的散乱を受け る。また透明電腦や集積芸術上に酸化健果などの 蒸潜膜を形成し、これらにホモジニアスな配向処 理を賭こし、ツイステフドネマテイツク型の液晶 を用い、更に直交する傷交軸を有する傷光板を表 示パネルに設ける場合には、映像信号に応じて記 向が変化し、電界効果により透過する外光を変偶

(5)

することができる。

男 2 図は M 0 8型トランソスタを使用した従来の構成例を示す。単位絵章を構成するのは、サファイヤ等の透明基板上に M 0 8型トランソスタ(1)、 選先性の電荷等費用コンデンサ(2) 特を集積した集積 基形と、透明電板を有する透光性基板との間に介養された板品セル(3) である。

例えば今が一ト配線 (X1)にゲート借号が加わると、MOS型トランジスタ(1)がオンし、映像信号配線 (Y1)からトランジスタ(1)を通つてコンデンサ(2)を充電する。ゲート信号が消波してコンデンサ(2)に貯えられた電荷が液晶セル(3)にそのではできる。 できる できる でいる 間は、液晶セル(3)は その電圧 に応じて その液晶 構成に応じた 相転移 や動的散気 または電界効果により配向の変化を生じ、その造過光は映像信号電圧に対応して変調を受け続ける。

従つて第1 図がよび第2 図に例示したように、単位を果をマトリックス状に配列し、(以かよび(X)方向に走査することによりテレビション受像機を構成することが可能で、前述したように、(以方向

(7)

(B) より成り、アルミゲート(7) は前述のゲート配盤 (Xi)を形成する。(8) はゲート酸化膜、(9) はトラン ジスタの表面保護のための歳化シリコン膜である。 Qiは絵条以外を覆う酸化シリコン絶縁膜である。 ||好性同じく散化シリコンから成る透明な絶縁膜で、 透明電板(II) 03 と共にコンデンサ(2)を形成している。 透明電極ははコンデンサ電板であるとともに、液 品に所根の信号電圧を供給する表示電信をも蒙ね ている。アルミ報路 (4a)(6a)は前述の映像信号配 劇 (₹j)を形成し、アルミ殺略 (4a)は前記ドレイン またはソース(4)と、アルミ級路 (6a)は血配ソース またはドレイン(6)かよび前記透明な投示電信はと それぞれ電気的に接触している。透明電極叫と透 男を表示電衝 Bi は In.Øa と 8 nOa の 混合体 または In. Q. たどの透明導電膜を蒸灌して被潜される。 時は ガラス板等の透光性基板、鋼はその上に被漕形成 された InyOu 膜などの透明電板で、これらは透光 性関係根如を形成する。毎は底晶で、前述のサフ アイヤ基板切上に集横回路を形成した集積基板の と、遺光性電視板如の透明電板叫との間に満され

持開昭56- 43679(3)

に一斉にトランジスタ群をオンさせて映像信号をコンデンサ群に書き込ませるようにし、(3) 方向に顧次走査する。いわゆる観走査によつてCRTと同等の作用が得られ、透過型の平板テレビジョンが構成される。

更に本名明に関する透過型液晶マトリックス表示装置においては、第2回に例示するように各単位検索に対応して青(四、緑(0)、赤(4)の3原色のカラーフィルタを透光性基板や遅光性集積基板等に 設度するととにより、カラーの平板テレビジョンを構成できる。

ボ 3 阪は ボ 2 図に示された単位 絵末を集積回路 化した場合の断面図を示す。 とこではサファを半導体とするアルミゲート MOS型トランジスタを組みいてが通過の液晶マトリックス 設示装置 にては そんだ 透明 短 値 似外 の 専 電路 に関して は らん な が 、 透明 電 値 以外 の 専 電路 に関して は らん な が て を 間 わ ない の で 、 多 結晶 シリコン が 用い ら は フレス(4)、 ナヤン キル部(5)、 ソースまたはドレイン

(8)

ており、透明な表示電枢討と共化液晶セル(3)を構成している。

R、Cは単位、絵素に対応してサファイヤ基板的 上に被磨された赤、緑等のる原色フィルタで、透 過光の色週別を行なり。液晶物としては動的散乱 型のものを用いるととができる。との場合には叫 ~aaから成るコンデンサの蓄積電荷に応じて液晶 84 に動的散乱を起し、透過色彩光 (Lg) の光強度が 制御される。しかし良好な赤巣辺波品マトリック ス表示装置の構成には、液晶04をツイステッドネ 'テイック (IN)型になし、動作させることが留ま しい。その場合化は、透明電瓶は時上化互い化資 交するホモジニャスな配向をするように配向処理 し、図示する如く2枚の偏光板は似てサンドイッ ナして群成する。との時度晶は叫~ほからなるコ ンデンサの蓄積電荷に応じて液晶料の心向が変化 し、透過色彩光(L,)の光強度を制御できる。ま た必要とあらば、電板は四表面に歳化硅系膜等の 絶縁膜を蒸磨し、その表面に配向処理を行なつて もよい。この時は交佐動作となり、前記者1図の

(9)

特開昭56- 43679(4)

回略構成が有用である。

テレビジョン投示装置の構成には、例えばぶ3 図に示すような単位絵楽を第2図に示すようにマトリックス状に(II)方向にそれぞれ240個思方の を配設する。単位絵楽の大きさは、例えば(II)方向200ミクロンででのである。 150ミクロン、(II)方向200ミクロン従っての 効面面は36×48 ml 程度の大きさとなる。かくして でのでででである。 サックス表示装置は低電力が サックス表示装置は低電ができることから、ポータブル型 のパッテリー動作のテレビジョンとして有用視されている。

しかしこの種の透過型被品マトリフクス表示装置には解決すべきいくつかの問題点を含んでいる。 その1 つは要示パネルに照射する透過光源の問題である。電力需要を低減するためには太陽光等の外光を有効に利用する必要がある。第2はカラー表示の問題である。カラー表示には加色法が使用され、透過動作を不可欠とするが、白色表示が良好に出来ない限り、鮮明なカラー表示が不可能となる。

(11)

示パキルの一方の面偶に、放表示パキルに対して 鋭角で傾斜し得、かつその姿面が白色の光散乱面 を形成する光補助板を設置し、放光補助板と前記 表示パキルとの観角に交わる間隙を介して外光が 光補助板に入射するように成し、この光補助板に よる外光に対する散乱光を、前記表示パキルの他 方の面側から数表示パキルを介して透視するよう に成した透過型液晶マトリックス表示装置にある。

 本 発明は上記のような 関点から、 有用な外 光 照明 法 に よつて 簡 便 に して 低電力 消費 の 透過 型 液 晶マト リックス 袋 示 袋 屋 を 提供 するもの で ある。

本発明の主たる特徴は、送明を基板上に、単数 または複数個の MOS型または薄膜型の電界効果ト **リンジスタと、これに連結する電荷蓄積用コンデ** ンサと、透明な表示電板とを少なくとも含む単位 絵案が四、四両方向に多数配設されるとともに、 前記トランジスタのソースまたはドレイン部のい ずれかとゲート部とがそれぞれ列、行に対応して Y 電極配線 および X 電極配線 化接続された 透光性 のXTマトリックス果積基板と、一方の面に透明 電極を付した透光性基板との間に液晶が介在せし められて面像表示パネルが構成され、前記V⇒よ びょ電極配銀に供給される映像信号と選択信号に 対応して前記表示電福と透明電福との間に選択的 に動作信号展圧を供給し、前記液晶を前記映像信 号に関連せしめて選択的に動作させ、前記画像表 示パネルを透過する外光を変調制御する関係にあ る透過型マトリックス表示装置であつて、前記姿

021

小主表示パキル四に前述の叫き必要な信号電圧 を供給し、動作させる場合を考える。通常の大に 一を供給し、動作させる場合を考えるの外光(Li) 一を表内照明の存在下では、これらの外光(Li) 一を関く表示パキル四との間段を介して光補助 を生する。それ故表示パキル四が透明状態では いたな表示パキル四を介して比積 いたは表示パキル四を介して光補助を ではなるとになり、白色を呈する光散乱面回に よって白の透過表示が行なえる。この白表示がカ

95

ラー表示に当つての明るさと色彩の鮮明度を決定する。はつてこの白袋示を明るく、かつ適当な視角でカラー画像を遊視表示するためには、光補助磁解の傾斜角をが重要な因子となる。利用し得る傾斜角は30~80°の鋭角の範囲で、最も好ましいのは40~60°の範囲である。

は斜角 B を上述のような範囲に選ぶと、外光 (Li)

44

保有する。光補助板 C4 の選光性化は、支持板倒をプラスチック等の透明板で構成し、光散乱面倒を半透明に構成しても光補助板 C4 全体をプラスチック等の乳白半透明板で構成してもよい。

外代 (Li)の利用率を変に改善するために、本実施例にとどまらず、本明細密記載の全ての光補助破を表示パキルに対して凹なるように球菌または 虚物面状にすることもできる。この構成によると (Li)、 (Li)は集光し表示パネル方向への方向性を もつため更に明るい面像が得られる利点がある。

以上主としてカラー画像の表示パネルについて述べたが、カラーフイルタ(B)、(C)、(R)を有しないセノクロ表示パネルについても何様に適用でき、良好な白黒画像を透視できる。

系の図は本発明にかかる最適型液晶マトリックス表示装置の他の実施例の経断面構造を示す図である。外の図にないで四は前述の透過型液晶マトリックス表示パキル。CM は飲み示パキル四に供角の類斜角ので観閉固定自在に設置された光倍助板である。本実物例は光循助数 CM に外光 (Li) に対す

特開昭56-43679(5)

が通度に光散乱面図を照射し、明るい白投示が行なえ、しかも適度な視角で自然を画面形状として 選視できる。それ液、投示パネル四にカラー映像 信号を供給すると、その信号に対してR、G、B に対応する部分の液晶のの透過率が変化し、白を 含む良好なカラー画像が透視表示されることになる。

Ξ.

更に明るさを改得するたい、光補助板のに避 光性を付与し、前記を利用した選過の発光(Lin)と共散を行与し、前記を利用した選過の外光(Lin)を利用した選過の方とにに外光とは 前記の内光では傾射光量の大きで、(Lin)の実効が変化したの教力とはが新角度が変化したの財力とは、 (Lin)の実効が変化しるの明めたの対対には対した、 の外光(Lin)がによる透過散乱光(Lin)の明めたの明めるが変化(Lin)がによる透過散乱光(Lin)の明めたが、 の外光(Lin)がによる透過をでから、 の外光(Lin)がによるが変化(Lin)の明めたが の外光(Lin)がによるが変化(Lin)の明めたが の外光(Lin)がによるが変化の明めたが の外光(Lin)がによるが変化の明めたが の外光(Lin)がによるが変化の明めたが の外光には無限された。 のののののできるが、 のののできるが、 できるが、 できるが、 のののできるが、 できるが、 には、 できるが、 で

06

る白色の散乱拡散性と同時に、光拡飲透過照明作 用を保持させることによつて、夜間等周囲光が暗 い状態でも透視袋示できるようにしたものである。 田は光散及面で、外光 (Li) に対し白色の散乱面を 形成するとともに、半透明でかつ補助先原因から の照射光(エロ)に対して拡散透過性に構成されてい る。回は光散乱面四を保持するプラスチック等の 透明体である。団は前記透明板図の外面を優つて 設けられた光反射体で、屈折率を変化させた果様 磨またはアルミ箔や蒸着膜などで構成されている。 前記補助光原図は必要に応じて単収または複数個 前記光補助板はの中間部または端縁部に、前記光 反射体質によりその服射光が前記透明体質に侵入 するように、段度されている。そとで補助光源は からの照射光(Li)は透明体図中を光散乱面図、光 反射体のの作用により拡散反射し、半透明の光散 乱面回の全面に圧圧一様な明るさの拡散透過光 (エロ)′を発生させることができる。従つて高風度 の 周囲光 (Li) による 飲乱光 (Lz)により、また 問題 光(54)の明るさが不足する時は補助光源のによる

۵n

拡放透過光 (Lt)' だより明るい白色投示面が形成され、投示パネル四を介して良好なコントラスト 比のカラー或いはモノクロ画像が観察できる。

が 6 図は本発明にかかる透過型液晶マトリック ス投示装置の更に他の実施例の構造外観図で、テ レビジョン受像機等の面像表示装置を構成する場 合の例を示す。如は平板状の固体で、そのほぼ中 央部または中央部より下側寄りに表示パネル四が 収容されている。表示パネル図の位置に対応する 選体 44 の表裏に表示パネル邸の少なくとも有効面 面を含むよう忽部傾倒をこの医体解の裏側に触記 窓 祁 似を少なくとも優うよう前記補助板 鰡または 84が配置される。この尤補助板向または84仕その 端部が表示パネル母の下方の医体下部に接続会具 40を介して期間固定自在に接続される。 との光端 助版。19.1年...たは04.は医体料の裏蓋を形成するととも に、傾斜角すなわら関閉角のは少なくとも鋭角に 段定可能なように設計される。また光補助板のま たは別は図のような動作状態で医体性の設置固定 台をも兼ねている。また国体似だは、テレビジョ

48

ル四の有効画面と比較して、特に斜め透視方向に、 充分大面積にすることができ、 透視可能な視角範 閉の拡大と斜め透視による画像歪みの改善が達成 される。その第2は、接続金具にで医体質に関閉 固定自在に接続されて一体化されているため、 装 酸の小型化すなわちボケットサイズ化が達成できる。

なか音量調整ポリウムMや悪局ダイヤル細が位置する光補助機 部 分 は透視されることがないから必ずしも必要としない。従つてこの部分の光補助破るまたは20世間を登立れるかまたは光散乱面部分を除去し、この部分から上方に限定して透過観察される光散乱面四または30世間を形成するようにしてもよい。

系7 図は本発明にかかる最過型液晶マトリックス要示核理の更に他の実施例の外観図である。 この実施例ではあ6 図と異なって光補助板図または24は要示パネル四の有効面面を含み、 造視観察するに必要な部分に限定されている。 すなわら光視助数図または34 は集窓部64の下環近例で区体質に

特開昭56- 43679(6)

ン電放受信用のアンテナは、電源スイッチ組み込みの音量調整ポリウム 44、 選局ダイヤル網等の必要な調整部品や、スピーカ部網が設けられている。また国体側の内部には、チューナ、映像中間周成増幅回路、映像検波増幅回路、音声検波増幅回路、動御信号発生回路、さらに表示パネル四駆動用のまドライバ、エドライバ等の回路ブロックが収容されている。

このように光補助板として或4 図および第5 図に示したのかよびののものを用い、傾斜角のが設角になるように長盛兼設備固定台である光補助板四または04 を貼くと、外光(Li)による散乱光(Li)により要示パキル四を介して良好なモノクロ画像や、カラー画像が透視されることになる。

。 とのような構成においては特筆すべきいくつかの利点を有する。すなわらその弟」は、必要な部品を上下に扱り分け、設示パネル四を国体側の中央部または中央部より下側寄りに設置するととにより、裏蓋兼用の光補助板叫または叫は安示パネ

(20)

接続金具図を介して開閉間定自在に接続され、裏面の一部を兼ねている。なお必要に応じて図示の如く光補助板叫または叫に開閉間定自在な脚部即を設け、透視観察時の国体例の支持を行なうとともできる。との場合更にコンパクトでかつ堅牢をテレビジョン装置を実現できる。

なお M O S 型トランジスタ を使用した場合を例に取り、説明して来たが、TFT方式でも同様に実施できることは 明らかである。

20

特開昭56- 43679(7)

代增人 孬 本 義 弘

コンパクトな表示使量が実現でき、小型ポータブ ルのテレビジョン受像般等が得られ、境寒上弱め て有用である。

4. 凶面の簡単な説明

第1図かよび
32図は本発明が適用される 走過型液晶マトリックス 表示装置の回路的 構成図、 第3図は 第2図の 走過型液晶マトリックン 表示 パキルの 新面構造図、 が4図は 不発明にかかる 透過型マトリックス 表示 佞虚の 一実施例の 断面 構造図、 第5 14 は他の 実施例の 断面 構造図、 第7 図は それ ぞれ 更に他の 実施例の 構成外観図で ある。

~

第3図

- (19) Japanese Patent Office
- (12) Publication of Patent Application
- (11) Japanese Patent Laid-Open No. 56-43679
- (43) Laid-Open Date: April 22, 1981
- (51) International Patent Identification Intraoffice
 Classification number Reference Number
 C09F 9/35 7013-5C
 G02F 1/133 7348-2H
 G09F 9/00 7129-5C

Number of Claims 1 (8 pages in total)

Request for Examination: Not made

- (54) TRANSMITTING TYPE LIQUID CRYSTAL MATRIX DISPLAY DEVICE
- (21) Application No. 119695/1979
- (22) Application Date: September 17, 1979
- (72) Inventor:

[Name] Tadao Kobashi

[Address] c/o Matsushita Electric Industrial Co., Ltd.

1006, Ooazakadoma, kadoma-shi

(72) Inventor:

[Name] Seizo Yuyama

[Address] c/o Matsushita Electric Industrial Co., Ltd.

1006, Ooazakadoma, kadoma-shi

(72) Inventor:

[Name] Tamotsu Matsuo

[Address] c/o Matsushita Electric Industrial Co., Ltd.

1006, Ooazakadoma, kadoma-shi

(72) Inventor:

[Name] Hiroshi Ezaki

[Address] c/o Matsushita Electric Industrial Co., Ltd.

1006, Ooazakadoma, kadoma-shi

(71) Applicant:

[Name] Matsushita Electric Industrial Co., Ltd.

[Address] 1006, Ooazakadoma, kadoma-shi

(74) Agent:

[Name] Patent Attorney, Yoshihiro Morimoto

Title:

TRANSMITTING TYPE LIQUID CRYSTAL MATRIX DISPLAY DEVICE

Claims:

1. A transmitting type liquid crystal matrix display device, in which liquid crystal is interposed between a translucent XY matrix integrated substrate in which a number of unit picture elements at least including one or more field effect transistors of MOS type, thin film type or the like, and charge storage capacitors and transparent display electrodes connected thereto are arranged both in X-direction and Y-direction on a transparent substrate, and a source or drain part and a gate part of the transistor are respectively connected to a Y

electrode wiring and an X electrode wiring corresponding to the respective rows and columns, and a light transmitting substrate provided with a transparent electrode on one surface to thereby constitute an image display panel, an operating signal voltage is selectively supplied between the display electrode and the transparent electrode corresponding to an image signal. and a select signal fed to the Y and X electrode wirings, thereby selectively operating the liquid crystal in relation to the image signal to control modulation of external light transmitted through the image display panel, characterized in that an optical auxiliary plate inclined at an acute angle to the display panel and forming a white light scattering surface on the surface thereof is installed on one surface side of the display panel, so that the external light enters the optical auxiliary plate through an acute angle gap between the optical auxiliary plate and the display panel, and scattered light to the external light of the optical auxiliary plate is seen through the display panel from the other surface side of the display panel.

2. The transmitting type liquid crystal matrix display device according to claim 1, characterized in that the optical auxiliary plate is formed transparent, so that the transmitted scattered light of external light from the opposite surface side to the display panel device of the optical auxiliary plate with the scattered light of external light is seen through the display panel.

- 3. The transmitting type liquid crystal matrix display device according to claim 1, characterized in that the optical auxiliary plate has a light scattering surface given diffuse transmission on one surface thereof, the other surface being formed by a transparent body coated with a light reflector, and has one or more auxiliary light sources at the middle part or edge part, which are installed so that irradiating light is forced to enter the transparent body by the optical reflector, whereby diffusion transmitted light from the auxiliary light source through the light scattering surface with scattered light of external light is seen through the display panel.
- 4. The transmitting type liquid crystal matrix display device according to claims 1 to 3, wherein the display panel has color filters of three primary colors corresponding to the unit pixels.
- 5. The transmitting type liquid crystal matrix display device according to claims 1 to 4, wherein the liquid crystal is oriented in a twisted nematic type (state) and the display panel has polarizing plates at both ends thereof.
- 6. The transmitting type liquid crystal matrix display device according to claims 1 to 5, wherein the display panel is accommodated with a circuit block for driving it in a casing, and an optical auxiliary plate is connected at an acute angle to the casing to be freely opened and closed, and fixed to cover at least the back window part of the window parts formed in

the surface and back positions of the casing corresponding to the display panel.

- 7. The transmitting type liquid crystal matrix display device according to claim 6, wherein the optical auxiliary plate has its lower end part connected to the casing to turn from the bottom to the top to the vertical direction of an image of the display panel.
- 8. The transmitting type liquid crystal matrix display device according to claim 6, wherein the optical auxiliary plate forms a part or the whole of the casing back cover and serves as a support for the casing in opening.
- 9. The transmitting type liquid crystal matrix display device according to claims 6 to 8, wherein the display panel is accommodated and installed in the substantially central part or rather closer to the lower side than the central part of the casing.

Detailed Description of the Invention:

This invention relates to a transmitting type liquid crystal matrix display device using an image display panel in which liquid crystal is interposed between an X-Y matrix integrated substrate formed by integrating a semiconductor switching element such as a MOS type or thin film type field effect transistor and a charge storage capacitor connected thereto on a transparent substrate made of silicon, sapphire,

glass or the like, and a translucent substrate having a transparent electrode attached to one surface thereof.

The transmitting type liquid crystal matrix display device is publicly known, and it uses a MOS type transistor as a semiconductor switching element in some case, and uses a thin film transistor (TFT) in some case. The conventional constitution using the TFT is shown in Fig. 1. In the following description, the reference numerals designating like parts are all the same for the sake of convenience, and the respective parts are suitably enlarged, so the relative dimensions are not always conformable to those in the description of the body. A unit picture element is constituted by a liquid crystal cell 3 interposed between an integrated substrate formed by integrating TFT 1', 1" made by depositing CdSe, CdTe or the like on a transparent substrate (not shown) such as a transparent glass plate, a transparent display electrode (not shown) connected to the TFT 1", a gate signal storage capacitor 2 and wirings Xi, Yj, Yj' and a translucent substrate (not shown) such as a glass plate having a transparent electrode attached to one surface thereof. When a scanning gate signal is applied to an X electrode wiring, that is, a gate wiring Xi, for example, the TFT' turns on so that an image signal passes from a Y electrode wiring, that is, the image signal wiring Yj through the TFT 1' to charge the capacitor 2. The charging electric charge of the capacitor 2 corresponding to the amplitude of the image

signal applies gate voltage to the TFT1", and according to the voltage, an alternating current flows into the liquid crystal cell 3 from the wiring Yj' through the TFT1" to operate the liquid crystal cell 3, thereby modulating external light transmitted through this panel.

When a dynamic scattering liquid crystal is used as a liquid crystal, for example, transmitted external light is subjected to dynamic scattering according to an image signal. In the case where a deposited film of silicon oxide is formed on a transparent electrode or an integrated substrate, homogeneous orientation processing is conducted for these, a twisted nematic liquid crystal is used, and further a polarizing plate having an orthogonal deflection axis is provided on a display panel, orientation is changed according to an image signal, and transmitted external light can be modulated by field effect.

Fig. 2 shows an example of the conventional constitution using a MOS transistor. A unit picture element is constituted by a liquid crystal cell 3 interposed between an integrated substrate formed by integrating a MOS transistor 1 and a transmitting charge storage capacitor 2 on a transparent substrate made of sapphire or the like and a translucent substrate having a transparent electrode.

When a gate signal is applied to a gate wiring Xi, for example, the MOS transistor 1 turns on, so that an image signal

passes from an image signal wiring Yj through the transistor 1 to charge the capacitor 2. Even if the gate signal is extinct, while the charges stored in the capacitor 2 apply voltage to the liquid crystal cell 3, the liquid crystal cell 3 causes a change in orientation by phase transition, dynamic scattering or field effect depending on the liquid crystal constitution according to the voltage, and the transmitted light is continuously subjected to modulation corresponding to the image signal voltage.

Accordingly, as illustrated in Figs. 1 and 2, picture elements are arranged in a matrix, and scanned in the directions of X and y to constitute a television receiving set, and as described above, the group of transistors are simultaneously turned on in the direction of X to write an image signal in the capacitor group and sequentially Y-direction scanning is performed. The operation equal to that of CRT is obtained by the so-called linear scanning, so a transmitting type flat plate television is constituted.

Further, in the transmitting type liquid crystal matrix display device related to the invention, as illustrated in Fig. 2, color filters of three primary colors: blue B; green G and red R are installed corresponding to the respective unit picture elements on the translucent substrate or the light transmitting integrated substrate, thereby constituting a color flat plate television.

Fig. 3 shows a sectional view in the case of forming the unit picture elements shown in Fig. 2 in an integrated circuit. Although the description deals with a transmitting type liquid crystal matrix display device in which an aluminum gate MOS transistor taking silicon as a semiconductor is incorporated on a transparent substrate 17 formed by a sapphire substrate, it does not matter what is the material quality of conducting paths outside the transparent electrode, so polycrystalline silicon may be used. The transistor 1 is formed by a drain or source 4, a channel part 5 and a source or drain 6, and an aluminum gate 7 forms the above gate wiring Xi. The reference numeral 8 is a gate oxide film, 9 is a silicon oxide film for protecting the surface of the transistor. The reference numeral 10 is a silicon oxide insulation film covering other than picture element. The reference numeral 12 is a transparent insulation film formed of silicon oxide like the above, which forms a capacitor 2 with the transparent electrodes 11, 13. transparent electrode 13 is a capacitor electrode, and also serves as a display electrode for supplying required signal voltage to the liquid crystal. Aluminum lines 4a, 6a form the above image signal wiring Yj, the aluminum line 4a is electrically in contact with the above drain or source 4, and the aluminum line 6a is electrically in contact with the source or drain 6 and the transparent display electrode 13. transparent electrode 11 and the transparent display electrode

13 are applied to form coating by depositing mixture of In_2O_3 and SnO_2 or a transparent conductive film made of In_2O_3 . The reference numeral 16 is a translucent substrate such as a glass plate, the reference numeral 15 is a transparent electrode such as an In_2O_3 film applied thereto to form coating, and these form a translucent electrode plate 21. The reference numeral 14 is liquid crystal, which is filled between an integrated substrate 20 having an integrated circuit formed on the above sapphire substrate 17 and the transparent electrode 15 of the translucent electrode plate 21, and constitutes a liquid crystal cell 3 with the transparent display electrode 13.

The reference signs R, G are three primary color filters of red, green and so on applied to the sapphire substrate 17 to form coating corresponding to the unit picture elements, thereby performing color selection for transmitted light. As the liquid crystal 14, dynamic scattering one can be used. In that case, dynamic scattering is caused in the liquid crystal 14 according to the stored electric charges of the capacitor formed by the reference numerals 11 to 13, thereby controlling the light intensity of the transmitted color lighting L_2 . In order to constitute a favorable transmitting type liquid crystal matrix display device, however, it is desirable to make the liquid crystal 14 of a twisted nematic (TN) type, and operate the same. In this case, orientation processing is conducted on the transparent electrodes 13, 15 to cause mutually

intersecting homogeneous orientation, and as shown in the drawing, the liquid crystal is sandwiched by two polarizing plates 18, 19. At this time, the orientation of the liquid crystal 14 is changed according to the stored electric charges of the capacitor formed by the electrodes 11 to 13, thereby controlling the light intensity of the transmitted color lighting L_2 . If necessary, an insulation film such as a silicon oxide film is deposited on the surface of the electrodes 13, 15, and orientation processing may be conducted for the surface. At that time, alternating current operation is performed and the above circuit configuration of Fig. 1 is useful.

In constituting a television display device, about 240 unit picture elements shown in Fig. 3, for example, are disposed in a matrix each in the directions of X and Y as shown in Fig. 2. The dimensions of the unit picture element are 150 micron in the direction of X and 200 micron in the direction of Y, so the effective area is about 36 x 48 mm². Thus, the liquid crystal matrix display device of this type can be driven with low power consumption and at low voltage, so it is considered to be useful as a portable type battery operated television.

The transmitting type liquid crystal matrix display device of this type, however, has some problems to be solved. One is the problem in a transmitted light source for irradiating a display panel. In order to reduce power consumption, it is necessary to effectively use external light such as sunlight.

The second problem is the color display. Although additive color process is used in color display and the transmitting operation is indispensable, a clear color display is impossible as far as white display can't be made good.

This invention provides a transmitting type liquid crystal matrix display device from the above viewpoint, which is simplified by useful external light illumination method and reduced in power consumption.

The main characteristic of the invention is that liquid crystal is interposed between a translucent XY matrix integrated substrate in which a number of unit picture elements at least including one or more field effect transistors of MOS type, thin film type or the like, and charge storage capacitors and transparent display electrodes connected thereto are arranged both in X-direction and Y-direction on a transparent substrate, and a source or drain part and a gate part of the transistor are respectively connected to a Y electrode wiring and an X electrode wiring corresponding to the respective rows and columns, and a light transmitting substrate provided with a transparent electrode on one surface to thereby constitute an image display panel, an operating signal voltage is selectively supplied between the display electrode and the transparent electrode corresponding to an image signal and a selection signal fed to the Y and X electrode wirings, thereby selectively operating the liquid crystal in relation to the image signal

to control modulation of external light transmitted through the image display panel, characterized in that an optical auxiliary plate inclined at an acute angle to the display panel and forming a white light scattering surface on the surface thereof is installed on one surface side of the display panel, so that the external light enters the optical auxiliary plate through an acute angle gap between the optical auxiliary plate and the display panel, and scattered light to the external light of the optical auxiliary plate is seen through the display panel from the other surface side of the display panel.

One embodiment of the invention will now be described according to the attached drawings. Fig. 4 is a longitudinal section structural drawing of a transmitting type matrix display device according to the invention. In Fig. 4, a transmission type liquid crystal matrix display panel 23 is so constructed that TN liquid crystal 14 is interposed between an integrated substrate 20 and a translucent electrode plate 21, color filters of three primary colors R, G, B are positioned corresponding to the picture elements on the integrated substrate 20, and polarizing plates 18, 19 are disposed to sandwich the above. An observation point A is, for example, disposed outside the translucent electrode plate 21 side of the display panel 23, and an optical auxiliary plate 24 is positioned to be freely opened and closed, and fixed at an acute angle 0 of inclination to the display panel 23 on the integrated substrate 20 side

of the display panel 23. The optical auxiliary plate 24 is so constructed that at least the surface 25 thereof facing on the integrated substrate is a white light scattering surface, and it can be held on a plate-like support 26 as needed. The light scattering surface 25 can be formed by coating or spraying white powder or the like of titanium oxide or magnesium oxide to the surface thereof, or formed by white paper. Further, aluminum foil having projecting and recessed parts may be applied to form coating, thereby forming a white scattering surface having directivity. Further, it may be constituted by the surface 25 and support 26, integrated with each other to constitute a single white plate of plastics or the like. The optical auxiliary plate 24 is seen through the display panel 23 from the observation point A.

It is considered that necessary signal voltage as described above is supplied to the display panel 23 to perform operation. In the presence of ordinary sunlight or interior illumination, the external light L_1 enters the optical auxiliary plate 24 through a gap up to the display panel 23 opened upward, and generates white scattered light L_R on the light scattering surface 25. Therefore, when the display panel 23 is in the transparent state, the optical auxiliary plate 24 is seen through the display panel 23 from the observation point A, whereby white transmission display can be made by the light scattering surface 25 presenting white. This white display determines the

brightness and definition of color in color display. Accordingly, in order to make this white display light and make see-through display of color image at a suitable visual angle, the angle θ of inclination of the optical auxiliary plate 24 is an important factor. An available angle of inclination is an acute angle ranging from 30 to 80°, most preferably ranging from 40 to 60° .

The optical auxiliary plate 24 is obliquely seen through the display panel 23, and the white display requires projection including the whole of the effective screen of the display panel 23, so it is necessary that the screen of the optical auxiliary plate 24 is made larger in length and width than the effective screen of the display panel 23 to have a suitable wide area. When the angle θ of inclination is an obtuse angle, the optical auxiliary plate 24 becomes a very large screen, and it is necessary to see through the display panel 23 considerably obliquely, and an obtained see-through image is very reduced vertically as compared with that in the case of seeing through vertically to the surface of the display panel 23, or seeing through is impossible. When θ is zero, the external light L_1 can't enter the optical auxiliary plate 24.

When the angle θ is selected in the above range, the external light L_1 irradiates the light scattering surface 25 so that a light white display can be performed and also seen through as a natural screen shape at a moderate visual angle.

Accordingly, when a color image signal is supplied to the display panel 23, the transmittance of the liquid crystal 14 in parts corresponding to the R, G and B is varied to the signal, so that a good color image including white can be see-through displayed.

Further, in order to improve the brightness, it is useful that the optical auxiliary plate 24 is made translucent to use transmitted scattered light L_T using external light L_1 on the back of the optical auxiliary plate 24 jointly with the above scattered light L_R. This method has the advantage that in the above constitution, the effective quantity of incident light of the external light L_1 varies with the size of angle θ of inclination, and the scattered light L_R , that is, the brightness of the screen varies, and on the other hand, the brightness of the transmitted scattered light L_T using the ambient external light L_1 can be set almost independently of θ . Thus, it is possible to construct a low-power display device without the need of an attached illuminating light source. Further, the method has the advantage that when the ambient light like at nighttime is not enough, irradiation is performed from the back of the optical auxiliary plate 24 by auxiliary irradiation to enable night observation. In making the optical auxiliary plate 24, the support plate 26 may be formed by a transparent plate made of plastics or the like, and the light scattering surface 25 may be made translucent, or the whole of the optical auxiliary

plate 24 may be formed by a milky-white translucent plate of plastics or the like.

In order to further improve the utilization factor of external light L_1 , it is possible to make not only the embodiment but also all of the optical auxiliary plates described in the specification of the invention spherical or parabolic to be recessed to the display panel. This arrangement has the advantage that the light L_R and L_T are convergent and have orientation in the direction of the display panel so as to obtain a further bright image.

Although the above description mainly deals with the color image display panel, similarly the invention is applied to a monochromatic display panel having no color filters B, G and R so that a good monochromatic image can be seen through.

Fig. 5 is a diagram showing the longitudinal section structure of another embodiment of the transmitting type liquid crystal matrix display device according to the invention. In Fig. 5, the reference numeral 23 is the above transmitting type liquid crystal matrix display panel, and 34 is an optical auxiliary plate installed at an acute angle θ of inclination to the display panel 23 to be freely opened and closed, and fixed. According to the present embodiment, the optical auxiliary plate 34 is being kept the white scattering diffusion performance and light diffuse transmission illuminating function at the same time, whereby even in the state where the

ambient light is dark like at nighttime, see-through display can be performed. The reference numeral 36 is a light scattering surface which forms a white scattering surface to the external light L₁, and which is translucent and has diffuse transmission performance to the illuminating light L1 radiated from an auxiliary light source 38. The reference numeral 36 is a transparent body made of plastics or the like for holding the light scattering surface 35. The reference numeral 37 is a light reflector provided to cover the outer surface of the transparent plate 36, and formed by a cumulative layer varied in refractive index, aluminum foil or a deposit film. One or more auxiliary light sources 38 are installed as needed in the middle part or edge part of the optical auxiliary plate 34 so that the irradiating light thereof is forced to enter the transparent body 36 by the light reflector 37. illuminating light L1 radiated from the auxiliary light source 38 is diffused and reflected by the function of the light scattering surface 35 and the light reflector 37 in the transparent body 36 so as to generate diffusion transmitted light $L_{T'}$ with substantially uniform brightness on the whole surface of the translucent light scattering surface 35. Accordingly, a bright white display screen can be formed by diffusion transmitted light $L_{\mathtt{T}'}$ by scattered light $L_{\mathtt{R}}$ due to the ambient light L_1 with high illumination, or by the diffusion transmitted light $L_{\mathbf{T}'}$ of the auxiliary light source 38 when the

brightness of the ambient light L_1 is not enough, so that a color or monochromatic image with a good contrast can be observed through the display panel 23.

Fig. 6 is an external drawing of still another embodiment of a transmitting type liquid crystal matrix display device according to the invention, which shows an example in the case of constituting an image display device of a television receiving set or the like. The reference numeral 40 is a flat casing, in which a display panel 23 is accommodated in the substantially central part or rather closer to the lower side than the central part. Window parts 41, 41' are disposed on the surface and back of the casing 40 corresponding to the position of the display panel 23 to at least include an effective screen, and the auxiliary plate 24 or 34 is disposed on the back of the casing 40 to at least cover the window part 41'. The optical auxiliary plate 24 or 34 is connected to the lower part of the casing on the lower side of the display panel 23 through a connection fitting 42 to be freely opened and closed, and fixed. The optical auxiliary plate 24 or 34 forms a back cover of the casing 40, and is designed so that the angle of inclination, that is, the opening and closing angle θ is set to an acute angle. The optical auxiliary plate 24 or 34 is also served as a setting and fixing bed of the casing 40 in the illustrated operating condition. The casing 40 is provided with a television radio wave receiving antenna 43, necessary control parts such as a power switch

built-in sound volume controller 44, and a channel select dial 45, and a speaker part 46. Further, in the interior of the casing 40, accommodated are a tuner, an image intermediate frequency amplifier circuit, an image detection amplifier circuit, a voice detection amplifier circuit, a control signal generating circuit and a circuit block for an X driver and Y driver for driving the display panel 23.

When the plate 24 or 34 shown in Figs. 4 and 5 are thus used as the optical auxiliary plate and the optical auxiliary plate 24 or 34 as the combined back cover and setting and fixing bed is opened so that the angle θ of inclination is an acute angle, a favorable monochromatic image and a color image can be seen through the display panel 23 by scattered light L_R produced by external light L_1 and further transmitted scattered light L_T and diffusion transmitted light L_T .

This constitution has some advantages to be specially mentioned. That is, a first advantage is that the necessary parts are distributed to upper and lower sides, and the display panel 23 is installed in the central part or rather closer to the lower side than the central part in the casing 40, whereby the optical auxiliary plate 24 or 34 also serving as the back cover can be let have an enough large area especially in the oblique see-through direction as compared with the effective screen of the display panel 23 so as to achieve enlargement of see-through visual angle range and improvement of image

distortion due to oblique seeing through. A second advantage is that the optical auxiliary plate is connected to the casing 40 by the metal connector 42 to be freely opened and closed, and fixed so that they are integrated with each other, whereby the reduction in size of the device, that is, the pocket-sized device can be achieved.

A part of the optical auxiliary plate where the sound volume controller 44 and the channel select dial 45 are positioned is not always needed because it is not seen through. Accordingly, the optical auxiliary plate 24 or 34 in this part may be removed or the light scattering surface part may be removed, and the light scattering surface 25 or 35 to be transmission-observed may be formed above the part.

Fig. 7 is an external drawing of still another embodiment of a transmitting type liquid crystal display device according to the invention. In this embodiment, unlike that of Fig. 6, an optical auxiliary plate 24 or 34 includes an effective screen of a display panel 23, and it is limited to a part necessary for seeing through observation. That is, the optical auxiliary plate 24 or 34 is connected at the vicinity of the lower end of a back window part 51' to a casing 50 through a connection fitting 52 to be freely opened and closed, and fixed, and also served as a part of a back cover. As shown in the drawing, if necessary, the optical auxiliary plate 24 or 23 is provided with a leg part 57 to be freely opened and closed, and fixed,

thereby supporting the casing 50 in seeing through observation. In that case, it is possible to realize a further compact and strong television device.

Although the description deals with the case of using the MOS transistor, it will be apparent that similarly the invention is implemented in the TFT system.

According to the invention, as described above, on one surface side of the display panel, the optical auxiliary plate capable of inclining at an acute angle to the display panel and forming a white light scattering surface on the surface thereof is installed, and the optical auxiliary plate and the display panel are related to each other so that external light is forced to enter the optical auxiliary plate through the gap between them, whereby scattered light to the external light of the optical auxiliary plate is seen through from the other surface of the display panel as well through the display panel. Accordingly, it is possible to realize the integrated and compact display device which may effectively use the external light to achieve low power consumption, and uses white scattering surface so that a bright monochromatic or color image can be favorably seen through and transmission-displayed, and a small-sized portable television receiving set can be obtained to be very useful in industrial respect.

Brief Description of the Drawings:

Figs. 1 and 2 are circuit configuration diagrams of a transmitting type liquid crystal matrix display device to which the invention is applied;

Fig. 3 is a sectional structural drawing of the transmitting type liquid crystal matrix display panel of Fig. 2;

Fig. 4 is a sectional structural drawing of one embodiment of a transmitting type matrix display device according to the invention:

Fig. 5 is a sectional structural drawing of another embodiment; and

Figs. 6 and 7 are external drawings respectively showing the constitution of still another embodiment.

1, 1', 1": field effect transistor 2: capacitor 3, 14: liquid crystal 13: transparent display electrode 15: transparent electrode 16: translucent substrate 17: transparent substrate 18, 19: polarizing plate 20: integrated substrate 21: translucent electrode plate 23: display panel 24, 34: optical auxiliary plate 25, 35: light scattering surface 36: transparent body 37: light reflector 38: auxiliary light source 40, 50: casing 42, 52: connection fittings R, G, B: color filter Xi, X_{i+1}: X electrode wiring Yj, Yj', Y_{J+1}: Y electrode wiring θ: angle of inclination