Chapitre 3 : Les principes de la thermodynamique

I Le premier principe

A) Enoncé

Pour tout système macroscopique et dans tout état, on peut définir une grandeur ${\cal E}$ vérifiant :

- E est conservative
- E est extensive
- A l'équilibre, E est une fonction d'état

B) Discussion

• *E* est conservative :

-
$$\sigma_E = 0$$

$$-\frac{\partial e}{\partial t} + \vec{\nabla} \cdot \vec{j}_E = 0$$

$$-\frac{dE}{dt} = \frac{\delta_e E}{dt}$$

- Pour une surface Σ fixe : $\frac{dE}{dt} = -\oint_{\Sigma} \vec{j}_E \cdot d\vec{S}$
- \bullet E est extensive :

$$E = E_{\alpha} + E_{\beta} + E_{\alpha\beta}$$
 ($E_{\alpha\beta}$: pour les interactions)

Donc
$$E_{\alpha\beta} = 0$$
.

Condition de validité:

Si on a beaucoup de particules, on peut négliger $E_{\alpha\beta}$.

Problème:

La surface de contact peut être très grande, et à ce moment là l'approximation $E_{\alpha\beta}=0$ n'est plus valable.

Exemple : des petites gouttes séparées dans un liquide on une surface totale très grande.

Si on a une énergie d'interaction $\varepsilon \sim \frac{1}{r^n}$

 $E = \int_{r}^{\infty} 4\pi r^{2-n} dr$; il faut donc une énergie d'interaction qui décroisse au moins en $\frac{1}{r^3}$ (force en $\frac{1}{r^4}$) pour pouvoir assimiler « ∞ » à $10r_m$.

En thermodynamique, on n'a quasiment que les forces de Van der Waals, c'est-àdire $\mathcal{E} \propto \frac{1}{r^6}$

• E est une fonction d'état à l'équilibre.

Avec deux particules, $E(\vec{r}_1, \vec{r}_2, \vec{v}_1, \vec{v}_2)$ est une fonction d'état du système.

Pour $N: E(\vec{r}_1,...\vec{r}_N,\vec{v}_1,...\vec{v}_N)$ est une fonction d'état du système.

A l'équilibre macroscopique, on veut exprimer E en fonction de quelques variables : E = E(V, T,...) ; on obtient ainsi une valeur moyenne.

C) Composantes de l'énergie

1) Energie microscopique

 $dE = ed\tau$

Pour une molécule i :

- $\varepsilon_{\text{ct},i}$: énergie cinétique de translation = $\frac{1}{2}m_i v_i^2$

- $\mathcal{E}_{\mathrm{p},i}$: énergie potentielle

- $\mathcal{E}_{p,ij}$: énergie potentielle d'interaction avec j.

- $\mathcal{E}_{i,o}$: énergie propre de la particule

Exemples pour l'énergie propre :

H $\underset{p}{\bullet}$ ε $\varepsilon_{\text{\'el}}$: énergie électrique

He $\varepsilon_{\text{\'el}}$ ε $\varepsilon_{\text{\'el}}$ + ε_{nu} (ε_{nu} : énergie nucléaire)

 $\mathcal{E}_{\mathrm{c},r}$ (cinétique de rotation), $\mathcal{E}_{\mathrm{c},v}$ (cinétique de vibration)

2) Energie cinétique et potentielle macroscopique

 E_p macroscopique (pesanteur) = $\iiint gzdm$

$$dE_{p,\text{macro}} = \sum_{i \in d\tau} \mathcal{E}_{p,i} = \sum_{i \in d\tau} m_i . g . z_i = \underbrace{\left(\sum_{i \in d\tau} m_i z_i\right)}_{dmz} g$$

 E_c macroscopique:

$$\frac{d\tau}{v}$$

$$dE_{c,\text{macro}} = \frac{1}{2} dm.v^2$$

$$E_{c,\text{macro}} = \iiint \frac{1}{2} dm. v^2$$

On a
$$dE_c = \sum_{i=d\tau} \frac{1}{2} m_i v_i^2$$
. $\vec{v}_i = \vec{v}_{ir} + \vec{v}$

 $(\vec{v}_{ir}: \text{vitesse relative}, \vec{v}_{i}: \text{vitesse absolue}, \vec{v}: \text{vitesse d'entraînement})$

Donc
$$dE_c = \sum_{i \in d\tau} \frac{1}{2} m_i v_{i,r}^2 + \sum_{i \in d\tau} \frac{1}{2} m_i v^2 + \left(\sum_{i \in d\tau} m_i \vec{v}_{i,r} \right) \cdot \vec{v}$$

Or, $\vec{v}_{ir} = \frac{d\vec{GP}_i}{dt}$ (où G est le barycentre de masse de $d\tau$)

Donc
$$\sum_{i \in d\tau} m_i \vec{v}_{i,r} = \sum_{i \in d\tau} m_i \frac{d \overrightarrow{GP}_i}{dt} = \frac{d}{dt} \left(\sum_{i \in d\tau} m_i \overrightarrow{GP}_i \right) = \vec{0}$$

Donc
$$dE_c = \sum_{i \in d\tau} \frac{1}{2} m_i v_{i,r}^2 + \sum_{i \in d\tau} \frac{1}{2} m_i v^2 = \sum_{i \in d\tau} \frac{1}{2} m_i v_{i,r}^2 + \frac{1}{2} dm. v^2$$

 $\sum_{i=d\tau} \frac{1}{2} m_i v_{i,r}^2$: énergie cinétique d'agitation thermique.

3) Energie interne

Définition:

On a $E = E_{c,\text{macro}} + E_{p,\text{macro}} + U$. U est appelée l'énergie interne.

U contient l'énergie cinétique d'agitation thermique, $\mathcal{E}_{p,ij}$, $\mathcal{E}_{i,o}$.

 $E, E_{c, \text{macro}}, E_{p, \text{macro}}$ sont des fonctions d'état. Donc U en est une.

E est conservative, mais pas U en général.

Attention : dans le cas général, le premier principe s'applique à E et pas à U.

D) Composantes du flux d'énergie

1) Décomposition du flux d'énergie

• Flux lié au transfert de matière :

Convection : $\vec{j}_{E,\text{conv}} = e\vec{v}$

Conduction : $\vec{j}_{ ext{diff}}$

• Flux d'énergie lié au travail des forces microscopiques :

- Théorème de l'énergie cinétique :
- (1) Pour une particule $i : dE_{c,i} = \vec{F}_i \cdot \vec{v}_i dt$

(2) Pour le système
$$S$$
: $dE_c = \sum_{i \in S} \vec{F}_i \cdot \vec{v}_i dt = \delta W_{\text{int}} + \delta W_{\text{ext}}$

Avec
$$\delta W_{\text{int}} = \sum_{i \in S} \sum_{j \in S} \vec{F}_{j \to i} \cdot \vec{v}_i dt$$
 et $\delta W_{\text{ext}} = \sum_{i \in S} \sum_{j \notin S} \vec{F}_{j \to i} \cdot \vec{v}_i dt$

- Décomposition de l'énergie cinétique :

$$\vec{v} = \frac{\sum_{i \in d\tau} m_i \vec{v}_i}{\sum_{i \in d\tau} m_i}$$

$$dE_c = dE_{c, \text{macro}} + dE_{c, \text{micro}}$$

$$\iiint_{\frac{1}{2}} \rho v^2 d\tau \qquad \text{agitation thermique}$$

- $\delta W_{\rm int}$:

$$i \times \xrightarrow{\vec{F}_{j \to i}} \qquad \longleftrightarrow \vec{F}_{i \to j}$$

On a une énergie $\varepsilon_{p,ij}$

Donc
$$\delta W_{\text{int}} = -dE_{p,\text{micro}}$$

- $\delta W_{\rm ext}$:
- (1) Forces à longue portée :

Pesanteur:

Energie potentielle pour une particule : $-m_i g dz_i$

Pour le système : $\sum -m_i g dz_i$.

Ainsi,
$$\delta W_{\rm ext,longue\,port\acute{e}e} = -dE_{p,\rm macro}$$
, et $E_{p,\rm macro} = Mgz_G$.

(2) Forces à courte portée :

Correspond principalement aux forces de Van der Waals. Comme elles sont à courte portée, on peut ne prendre en compte que les particules situées à proximité immédiates de la surface (que ce soit celles de l'intérieur ou de l'extérieur). La modélisation surfacique est donc possible.

$$\vec{v} = \frac{\sum_{i \in dS} m_i \vec{v}_i}{\sum_{i \in dS} m_i}$$
: vitesse de la paroi du système.

$$\vec{v}_i = \vec{v} + \underbrace{\left(\vec{v}_i - \vec{v}\right)}_{\vec{v}_{i,r}}$$

Donc
$$\sum_{i \in dS} \vec{F}_i \cdot \vec{v}_i dt = \underbrace{\sum_{i \in dS} \vec{F}_i \cdot \vec{v} dt}_{\delta^2 W} + \underbrace{\sum_{i \in dS} \vec{F}_i \cdot \vec{v}_{i,r} dt}_{\delta^2 Q}$$

Ainsi, pour la surface Σ entière :

$$\delta W_{\text{ext,courte port\'ee}} = \delta W + \delta Q$$

- Bilan:

$$\begin{split} dE_c &= dE_{c,\text{macro}} + dE_{c,\text{micro}} \\ &= \delta W_{\text{int}} + \delta W_{\text{ext}} \\ &= \delta W_{\text{int}} + \delta W_{\text{ext,longue port\'ee}} + \delta W_{\text{ext,courte port\'ee}} \\ &= -dE_{p,\text{micro}} - dE_{p,\text{macro}} + \delta W + \delta Q \end{split}$$

$$\begin{split} &\text{Donc} \ \ dE_{c,\text{macro}} + dE_{c,\text{micro}} = -dE_{p,\text{macro}} - dE_{p,\text{micro}} + \delta\!Q + \delta\!W \\ &\text{Soit} \ \ dE_{c,\text{macro}} + dE_{p,\text{macro}} + \underbrace{dE_{c,\text{micro}}}_{dU} + dE_{p,\text{micro}} = \delta\!Q + \delta\!W \ . \end{split}$$

Donc avec une surface imperméable, $dE = \delta W + \delta Q$

On a alors $\vec{j}_E = \vec{j}_Q + \vec{j}_W$.

Ainsi, en considérant tous les flux : $\vec{j}_E = \vec{j}_{conv} + \vec{j}_{diff} + \vec{j}_Q + \vec{j}_W$

2) Expression du travail des forces de pression

• $\delta^2 W = d\vec{F} \cdot \vec{v} dt$

On définit P_{ext} par $d\vec{F} = -P_{\text{ext}}d\vec{S}$

Ainsi,
$$\delta^2 W = -P_{\text{ext}} d\vec{S} \cdot \vec{v} dt$$

$$\bigcup_{\vec{v}dt} d\vec{S}$$

Donc $\delta^2 W = -P_{\text{ext}} \delta^2 V$

• Expression de δW :

Dans le cas général,

$$\delta W = - \oiint \underbrace{P_{\text{ext}} \vec{v}}_{\vec{j}_{w}} \cdot d\vec{S} dt = - \oiint P_{\text{ext}} \delta^{2} V$$

3) Bilan d'énergie pour un système fermé

Comme le système est fermé, $\vec{j}_{E,\mathrm{conv}} = \vec{j}_{E,\mathrm{diff}} = \vec{0}$.

Donc, comme vu en 2), $dE = \delta W + \delta Q$, ou $\Delta E = W + Q$

Remarques:

 ΔE est une variation de fonction d'état, et est donc indépendant de la transformation suivie, mais Q et W indépendamment en dépendent (on les appelle des grandeurs de transfert)

- Le bilan d'énergie fait intervenir l'énergie totale, et pas seulement l'énergie interne.
- Dans le travail des forces extérieures, on en a une partie dans W, mais aussi dans E (via E_p); ainsi, par exemple, il ne faut pas compter le travail du poids dans W (il y est déjà dans E)

II Second principe

A) Enoncé

Pour tout système thermodynamique Σ , on peut définir une grandeur S, l'entropie, vérifiant :

- (1) S est extensive
- (2) S n'est pas conservative : $\sigma_S > 0$ pour une transformation irréversible, et $\sigma_S = 0$ pour une transformation réversible.
- (3) A la surface d'un système fermé, $\vec{j}_S \propto \vec{j}_Q$ (on verra que $\vec{j}_S = \frac{1}{T_{\rm ext}} \vec{j}_Q$)
- (4) A l'équilibre, $S = S(U, V, n_i, n_j)$

B) Discussion

- (1) S est une fonction d'état à l'équilibre :
- dS est une différentielle totale, et $dS = \delta_i S + \delta_e S$
- ΔS est indépendant du chemin suivi, $\Delta S = S_i + S_e$

Exemple 1:

Cylindre diatherme contenant un gaz parfait :

$$P_0, V_0, T_0 \xrightarrow{\Delta S} P_1 = P_0 + \frac{mg}{S}$$

$$P_0, T_0 \xrightarrow{On \text{ coupe la}} C$$

$$Corde$$

$$On descend$$

$$doucement la corde$$

$$P_1 = P_0 + \frac{mg}{S}$$

$$T_0, V_1$$

On a
$$B \equiv C$$
, done $\Delta S = \Delta S'$;
 $\Delta S = S_e + \underbrace{S_i}_{>0}$, $\Delta S' = S'_e + \underbrace{S'_i}_{=0}$

$$S(T, P) = c_p \ln T - R \ln P + \text{cte}$$
. Donc $\Delta S = -R \ln \frac{P_1}{P_0}$

Exemple 2:

Le cylindre est ici adiabatique

$$\Delta S = \underbrace{S_e}_{=0} + \underbrace{S_i}_{>0} > 0$$
$$\Delta S' = \underbrace{S'_e}_{=0} + \underbrace{S'_i}_{=0} = 0$$

Donc $B \neq C$

(2) Variation d'entropie d'un système :

• Cas général :

Pour une surface Σ fixe dans (R):

$$\frac{dS}{dt} = \frac{\delta_i S}{dt} + \frac{\delta_e S}{dt} = \iiint_{S_0} \sigma_S dt - \iiint_{S_0} \vec{j}_S \cdot d\vec{S}$$

Ainsi, $\frac{dS}{dt}$ peut être positif ou négatif.

$$\vec{j}_S = \vec{j}_{S, \mathrm{conv}} + \vec{j}_{S, \mathrm{diff}} + \vec{j}_{S, \mathrm{transfert \, thermique}}$$

L'entropie peut donc ne pas varier avec le travail.

• Cas d'un système thermiquement isolé (il est alors fermé) :

$$\vec{j}_{S} = \underbrace{\vec{j}_{S,\text{conv}} + \vec{j}_{S,\text{diff}}}_{=\vec{0}} + \vec{j}_{S,\text{transfert thermique}}$$

$$\underbrace{\frac{\delta_{e}S}{dt}}_{=\vec{0}} = - \oint_{\Sigma} \vec{j}_{S} \cdot d\vec{S}$$

Un système thermiquement isolé, c'est un système tel que $\forall t, \forall \vec{r}, \vec{j}_{\mathcal{Q}} \cdot d\vec{S} = 0$, c'est-à-dire que le flux va au mieux raser la surface.

En effet, la condition Q = 0 n'est pas suffisante (on peut avoir des échanges thermiques et que la somme totale soit nulle), ni même $\delta Q = 0$ (puisque sur un temps très bref, on peut avoir autant de chaleur qui part à un endroit que de chaleur qui entre à un autre).

Ainsi,
$$\frac{\delta_e S}{dt} = 0$$

Donc $\frac{dS}{dt} = \frac{\delta_i S}{dt} \ge 0$, soit $\Delta S \ge 0$.

III Définition thermodynamique de T, P et des potentiels chimiques

A) Expression différentielle des principes

1) Equations fondamentales

A l'équilibre, $S = S(U, V, n_i)$: équation fondamentale à l'entropique.

Cette équation seule permet de trouver l'équation f(P,V,T)=0, les capacités thermiques isobares, isochores...

On suppose que S est une fonction croissante de U. Ainsi, $U = U(S, V, n_i)$: équation fondamentale à l'énergie.

2) Définition

On définit T, P, μ_i (potentiel chimique) par :

$$dU = \underbrace{\frac{\partial U}{\partial S}}_{T} dS + \underbrace{\frac{\partial U}{\partial V}}_{-P} dV + \sum_{i} \underbrace{\frac{\partial U}{\partial n_{i}}}_{\mu_{i}} dn_{i}$$

3) Identité de Gibbs

Ainsi, d'après la définition, on a :

$$dU = TdS - PdV + \sum_{i} \mu_{i} dn_{i}$$

On dit que T, -P et μ_i sont des paramètres conjugués de S, V, n_i .

B) Interprétation de *T*, *P*.

1) Température

• Interprétation statique :

On suppose la paroi intérieure indéformable et diatherme :

$$\alpha$$
 β

On considère un petit transfert de chaleur, réversible.

$$dV_{\alpha}=dV_{\beta}=0$$
 . Donc $dU_{\alpha}=T_{\alpha}dS_{\alpha}$ et $dU_{\beta}=T_{\beta}dS_{\beta}$

De plus,
$$dU = dU_{\alpha} + dU_{\beta} = 0$$
, et $dS_{\alpha} + dS_{\beta} = 0$.

Donc $0 = (T_{\alpha} - T_{\beta})dS_{\alpha}$, et ce quel que soit dS_{α} .

Donc
$$T_{\alpha} = T_{\beta}$$
.

• Dynamique:

Initialement, $T_{\alpha} > T_{\beta}$ à l'équilibre.

On rend la paroi diatherme, mais suffisamment peu pour pouvoir considérer que la température est uniforme dans chaque compartiment :

La transformation est globalement irréversible, mais elle est réversible dans chacun des deux compartiments.

On a
$$dU_{\alpha} = T_{\alpha}dS_{\alpha}$$
, $dU_{\beta} = T_{\beta}dS_{\beta}$ et $dU = dU_{\alpha} + dU_{\beta} = 0$

Comme dS > 0, $dS_{\alpha} + dS_{\beta} > 0$

Ainsi,
$$dU_{\alpha} \left(\frac{1}{T_{\alpha}} - \frac{1}{T_{\beta}} \right) > 0$$

Si
$$T_{\alpha} > T_{\beta} > 0$$
, alors $dU_{\alpha} < 0$, c'est-à-dire $\delta Q_{\alpha} < 0$.

Ainsi, le compartiment le plus chaud cède de la chaleur à celui qui est le plus froid.

• Conclusion:

La température est ce qui s'égalise des deux côtés d'une paroi diatherme à l'équilibre.

Elle indique le sens des transferts thermiques

2) Pression

• Interprétation statique :

La paroi intérieure est mobile et athermane :

$$\alpha \beta$$

On a
$$dU_{\alpha} = -P_{\alpha}dV_{\alpha}$$
, $dU_{\beta} = -P_{\beta}dV_{\beta}$.

$$dU = dU_{\alpha} + dU_{\beta} = 0$$
, et $dV = dV_{\alpha} + dV_{\beta} = 0$

Donc $0 = (P_{\alpha} - P_{\beta})dV_{\alpha}$, et ce quel que soit dV_{α}

Donc
$$P_{\alpha} = P_{\beta}$$
.

• Dynamique:

On suppose que la paroi γ a une masse m (pour éviter une accélération infinie, qui rendrait la transformation irréversible). Initialement, $P_{\alpha} > P_{\beta}$.

On retire le taquet. On a alors :

$$dU_\alpha + dU_\beta + \dot{dE}_{c,\gamma} = 0 \; , \; dU_\beta = -P_\beta dV_\beta \; , \; dU_\alpha = -P_\alpha dV_\alpha \; \; \text{et} \; \; dV_\alpha + dV_\beta = 0 \; . \label{eq:dual_problem}$$

Pour $E_{c,\gamma}$:

La paroi est soumise à :

$$\vec{F}_{p,\alpha} = P_{\alpha} S \vec{u}_x, \ \vec{F}_{p,\beta} = -P_{\beta} S \vec{u}_x, \ \vec{P}$$
.

Donc d'après la relation fondamentale de la dynamique,

$$ma_x = (P_\alpha - P_\beta)S > 0$$

Donc v_x est croissante (strictement), donc $dE_{c,\gamma} > 0$

Ainsi,
$$dE_{c,\gamma} = P_{\alpha}dV_{\alpha} + P_{\beta}dV_{\beta} > 0$$

Donc
$$(P_{\beta}-P_{\alpha})dV_{\beta}>0$$
, d'où $dV_{\beta}<0$, et $dV_{\alpha}>0$.

• Conclusion:

La pression thermodynamique, c'est ce qui s'égalise de part et d'autre d'une paroi mobile.

Le gradient de pression indique le sens des transferts de volume.

Plus généralement, si
$$U = U(S, X, n_i)$$
, alors $dU = TdS + \frac{\partial U}{\partial X} dX + \dots$ Pour un

système séparé en deux parties de façon à ce que X peut varier entre ces deux parties (et entre ces deux parties seulement), on aura à l'équilibre égalité des Y.

C) Expression de la chaleur et du travail au cours d'une transformation élémentaire d'un système fermé

On considère un système S fermé ; on a $dE = \delta Q + \delta W$.

On suppose ici que $U \equiv E$, donc $dU = \delta Q + \delta W$

1) Transformation réversible

T, P et μ_i sont définis et uniformes dans le système.

• Pour un système sans réaction chimique :

$$dU = \delta Q + \delta W$$
, et $dU = TdS - PdV$

 $\delta\!Q$ et $\delta\!W$ sont indépendants l'un de l'autre, et il en est de même pour dS et dV .

Enfin, on a $\delta W = -P_{\text{ext}} dV$

On peut ainsi identifier terme à terme :

$$\delta Q = TdS$$
, et $\delta W = -PdV$

(Attention, ce n'est valable que pour une transformation réversible)

Ainsi,
$$-P_{\text{ext}}dV = -PdV = \delta W$$

(P_{ext} représente un effet mécanique, et $P = -\frac{\partial U}{\partial V}$ par définition)

Et
$$dS = \frac{\delta Q}{T}$$

$$dS = - \oiint \vec{j}_S \cdot d\vec{S}dt \;,\; \delta Q = - \oiint \vec{j}_Q \cdot d\vec{S}dt \;.\; \text{Donc} \; \oiint \vec{j}_S \cdot d\vec{S}dt = \oiint \frac{\vec{j}_Q}{T} \cdot d\vec{S}dt$$

Or, d'après le second principe, $\vec{j}_S \propto \vec{j}_Q$, donc $\vec{j}_S = \frac{\vec{j}_Q}{T}$.

• Système avec réaction chimique :

$$dU = \delta Q + \delta W$$

$$dU = TdS - PdV + \sum \mu_i dn_i$$

On aura toujours $\delta W = -PdV$ (indépendant de la transformation chimique) Et $\delta_i S = 0$ (car la transformation est réversible)

Donc $dS = \delta_e S = \frac{\delta Q}{T}$ (l'entropie qui entre ne dépend pas de la réaction)

Ainsi, on a
$$\sum \mu_i dn_i = 0$$

2) Transformation irréversible

On suppose que T_{ext} , P_{ext} sont définis et uniformes.

• Travail:

Expression:
$$\delta W = - \oint P_{\text{ext}} \delta^2 V = -P_{\text{ext}} dV$$

Exemple:

$$\uparrow^{z} \downarrow^{m} P_{0}, V_{0}, T_{0}$$

$$\downarrow^{z} P_{0}, V_{0}, T_{0}$$

$$\downarrow^{z} P_{1} = P_{0} + \frac{mg}{S}$$

$$(1): A \rightarrow B$$

$$W = -\int_{1}^{f} P_{\text{ext}} dV$$

Principe fondamental de la dynamique appliqué à $\{piston + masse\}$:

$$m\ddot{z} = -mg + P_{\text{ext}}S - P_0S$$

Donc
$$P_{\text{ext}} = P_0 + \frac{mg}{S} + \frac{m\ddot{z}}{S}$$

Donc
$$W = -\int_{i}^{f} \left(P_0 + \frac{mg}{S} + \frac{m\ddot{z}}{S} \right) S dz$$

$$= -\left(P_0 + \frac{mg}{S} \right) (V_f - V_i) - m \int_{i}^{f} \ddot{z} dz$$

On a :
$$\ddot{z}dz = \frac{d\dot{z}}{dt}\dot{z}dt = \dot{z}d\dot{z}$$

Donc
$$m \int_{i}^{f} \ddot{z} dz = m \left[\frac{1}{2} \dot{z}^{2} \right]_{i}^{f}$$

Et
$$W = -\left(P_0 + \frac{mg}{S}\right)(V_f - V_i)$$

(2)
$$A \rightarrow C$$

$$\delta W = -PdV = -\frac{nRT_0}{V}dV$$

Donc
$$W = -nRT_0 \ln \left(\frac{V_f}{V_i} \right)$$

•
$$\delta_i S > 0$$
, et $\delta_e S = - \oiint \frac{\vec{j}_Q}{T_{\text{ext}}} \cdot d\vec{S}dt = \frac{\delta Q}{T_{\text{ext}}}$

On a $dS = \delta_e S + \delta_i S$, donc $\Delta S = S_e + S_i$

Comme on connaît ΔS (calculé en \coprod) et S_e , on peut ainsi calculer S_i .

• On a $dU = \delta Q + \delta W$, donc $\Delta U = Q + W$ On peut donc de même ici calculer Q.

D) Transformation quasi-statique

1) Définition

T, P et μ_i sont définis pour un système à l'équilibre ou pour une transformation réversible.

Les transformations pour lesquelles l'identité de Gibbs est valable au moins localement sont des transformations quasi-statique.

Ainsi, une transformation réversible est quasi-statique (mais une transformation quasi-statique n'est pas forcément réversible)

2) Exemples

Exemple 1:

On ne fait pas une grosse erreur en considérant que la température est uniforme sur un petit élément ; ce petit élément évolue donc réversiblement.

On obtient ainsi une première famille de transformations quasi-statiques : On peut *localement* définir une température.

$$d(\delta U) = Td(\delta S) - Pd(\delta V) + ..., \text{ et } d(\delta S) = \frac{\delta^2 Q}{T}.$$

Exemple 2:

A+B

Le système suit une transformation irréversible, mais on suppose qu'elle est lente. On peut donc définir une température, une pression et un potentiel chimique uniformes à tout instant (à peu près uniforme pour P...).

On obtient ainsi une deuxième famille de transformations quasi-statiques.

En général, les transformations quasi-statiques non réversibles entrent dans l'une ou l'autre de ces catégories (soit une transformation réversible localement, soit réversible pour T, P mais pas pour μ_i , même localement).

IV Compléments

A) Evolution adiabatique d'une tige

On attend suffisamment longtemps pour que T = T(x), indépendant du temps.

On admet qu'alors
$$T(x) = \frac{T_2 - T_1}{I}x + T_1$$
 (montré plus tard)

On enlève ensuite la tige et on la laisse évoluer de façon adiabatique. On note S la section de la tige, c sa capacité thermique par unité de volume.

1) Calcul de T_f .

$$\delta^2 Q = \delta C.dT = c.S.\delta x.dT$$
 Donc $\delta Q = c.S.\delta x.(T_f - T(x))$ Donc $0 = Q = \int_0^l (T_f - T(x)) \delta x$.
Donc $T_f l - \frac{T_2 - T_1}{l} \frac{l^2}{2} - T_1 l = 0$, c'est-à-dire $T_f = \frac{T_1 + T_2}{2}$

2) Calcul de ΔS .

 $d(\delta S) = \frac{\delta^2 Q}{T}$ (on peut supposer que les petits éléments évoluent réversiblement),

soit
$$d(\delta S) = c.S.\delta x \frac{dT}{T}$$
. Donc $\Delta(\delta S) = c.S.\delta x \ln \frac{T_f}{T(x)}$.

Donc $\Delta S = c.S \int_0^t \ln \frac{T_f}{T(x)} \delta x$

Après calcul, on obtient $\Delta S = c.S.l.\left(1 + \frac{T_2 \ln(\frac{T_f}{T_2}) - T_1 \ln(\frac{T_f}{T_1})}{T_2 - T_1}\right)$

Ainsi,
$$\Delta S > 0$$
, $S_e = 0$. Donc $S_i > 0$

Si
$$T_2 - T_1 = \Delta T$$
 très petit, on a alors $\Delta S = S.c.l. \frac{\Delta T^2}{8T_1^2}$

B) Equation fondamentale à l'entropie.

Exemple:

 $S = K(UVN)^{1/3}$ (K est une constante non nulle positive)

• On commence par vérifier que S peut convenir : Déjà, S est bien extensive.

$$T = \left(\frac{\partial U}{\partial S}\right)_{V,V}$$
. Donc $\frac{1}{T} = \frac{K}{3} \left(\frac{VN}{U^2}\right)^{1/3} > 0$

Principe de Nernst:

$$\lim_{\substack{T \to 0 \\ V.N \text{ cte}}} S = 0$$

• Recherche de l'équation d'état f(P,V,T) = 0:

$$dS = \frac{1}{T}dU + \frac{P}{T}dV - \frac{\mu}{T}dN$$

Donc
$$\frac{P}{T} = \left(\frac{\partial S}{\partial V}\right)_{U,N} = \frac{K}{3} \left(\frac{UN}{V^2}\right)^{1/3}$$

D'où
$$\left(\frac{P}{T}\right)^2 \times \frac{1}{T} = \left(\frac{K}{3}\right)^3 \left(\frac{N^2}{V^4}VN\right)^{1/2}$$

Soit
$$\frac{P^2}{T^3} = \left(\frac{K}{3}\right)^3 \frac{N}{V}$$
, ou $P^2V = \frac{K^3}{27}NT^3$

$$C_V = \left(\frac{\partial U}{\partial T}\right)_{V.N} :$$

De
$$\frac{1}{T} = \frac{K}{3} \left(\frac{VN}{U^2}\right)^{1/3}$$
, on tire $U = \sqrt{\frac{T^3K^3}{27}VN}$, puis $C_V = K\sqrt{\frac{TVN}{12}}$

C) Chauffage d'une brique

On prend une brique de capacité calorifique C, allant de la température T_0 à T_f .

- Si on met la brique en contact avec T_1 :
- Calcul de ΔS :

On considère une transformation réversible correspondante :

$$dS = \frac{\delta Q_{\text{rév}}}{T} = \frac{CdT}{T}$$
. Donc $\Delta S = C \ln \left(\frac{T_f}{T_0} \right)$

-
$$S_e = \int \frac{\delta Q}{T_{\text{ext}}} = \frac{1}{T_f} \int \delta Q = \frac{Q}{T_f}$$
, et $Q = \Delta U = C(T_f - T_0)$

Donc
$$S_e = C(1 - \frac{T_0}{T_f})$$

- Et
$$S_i = \Delta S - S_e = C \left(ln \left(\frac{T_f}{T_0} \right) + \frac{T_0}{T_f} - 1 \right)$$

On pose
$$\frac{T_0}{T_f} = x$$

Ainsi,
$$S_i = Cf(x)$$
, où $f(x) = x - \ln x - 1$

On a déjà f(1) = 0

 $f'(x) = 1 - \frac{1}{x}$, donc f est décroissante sur [0,1], croissante sur [1,+ ∞ [.

Donc S_i est bien positif.

$$- \Delta S_{\rm ext} = \underbrace{S_{i,\rm ext}}_{\text{=0 car le milieu}} + S_{e,\rm ext} = -S_e$$

• On met la brique en contact avec T_1 , puis T_f où $T_1 \in [T_0, T_f]$

On a toujours
$$\Delta S = C \ln \left(\frac{T_f}{T_0} \right)$$

$$S'_{e} = C \left(1 - \frac{T_{0}}{T_{1}} + 1 - \frac{T_{1}}{T_{f}} \right) \ge S_{e}$$

$$S'_i = \Delta S - S'_e \le S_i$$

On divise en N étapes $T_0, T_1, ... T_f$

Avec
$$\frac{T_{i+1}}{T_i} = \alpha$$
, soit $\alpha = \left(\frac{T_f}{T_0}\right)^{1/N}$

On a encore
$$\Delta S = C \ln \left(\frac{T_f}{T_0} \right)$$

Entre i et i+1:

$$S_i^{(i)} = C \ln \left(\frac{T_{i+1}}{T_i} \right) - C \left(1 - \frac{T_i}{T_{i+1}} \right) = C \ln \alpha - C(1 - \frac{1}{\alpha})$$

Donc
$$S_i = CN \left(\ln \alpha - \left(1 - \frac{1}{\alpha} \right) \right) = CN \left(\frac{1}{N} \ln \left(\frac{T_f}{T_0} \right) - \left(1 - \left(\frac{T_f}{T_0} \right)^{-1/N} \right) \right)$$

Lorsque N >> 1,

$$\left(\frac{T_f}{T_0}\right)^{-1/N} = e^{-\frac{1}{N} \ln \frac{T_f}{T_0}} = 1 - \frac{1}{N} \ln \frac{T_f}{T_0} + \frac{1}{2N^2} \left(\ln \frac{T_f}{T_0}\right)^2$$

Donc
$$S_i = CN \frac{1}{2N^2} \left(\ln \frac{T_f}{T_0} \right)^2$$

(La transformation devient donc « de plus en plus » réversible)