

Winning Space Race with Data Science

Anushka Thenuwara Feb 2022

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies and results
 - Numerous processes were followed starting from obtaining the data, cleaning data, exploratory analyses and preliminary visualizations
 - Primary outcomes were
 - An interactive map with Folium
 - An interactive Dashboard with Plotly Dash
 - Predictive analysis (Classification)

Introduction

The background

The focal point of the study revolved around SpaceX where they publish a wide range of information about their launces online. Out of their reusable fleet of rocket ships the Falcon 9 rocket boasts a cost saving of about 100 million dollars due to its reusability of the first stage. The study was conducted to see how certain it is that the stage will successfully and the conditions that boosts this certainty so the cost of launch can be determined

What we are looking for

Find the parameters that impact the success of landing such as;

- Is it location dependent?
- Does the payload increase the risk of failure?
- Any other insights we can obtain

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected via APIs and web scraping
- Perform data wrangling
 - One Hot Encoding data fields for Machine Learning and dropping irrelevant columns
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models

Data Collection

Data collection was done via two methods

- SpaceX REST API
 - https://api.spacexdata.com/v4/rockets/

• Web scraping Wikipedia using BeautifulSoup.

Data Collection – SpaceX API

4 5		Date 2010- 06-04 2012- 05-22	BoosterVersion Falcon 9 Falcon 9		LEO	CCSFS SLC 40 CCSFS SLC 40	Outcome None None None	Flights 1	GridFins False False	Import Libraries		Define functions to extract data		Requesting rocket launch data from SpaceX API	
6	3	2013- 03-01	Falcon 9	677.0	ISS	CCSFS SLC 40	None None	1	False						
7	4	2013- 09-29	Falcon 9	500.0	РО	VAFB SLC 4E	False Ocean	1	False						
8	5	2013- 12-03	Falcon 9	3170.0	GTO	CCSFS SLC 40	None None	1	False	Chack for missing	4	Clean data frame, extract values via functions defined earlier and filter for	4	Decode response as a Jason and convert to a Pandas data frame	
										Check for missing values and replace					
89	86	2020- 09-03	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	2	True	payload mass with					
90	87	2020- 10-06	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	3	True	mean value		Falcon 9 data			
91	88	2020- 10-18	Falcon 9	15600.0	VLEO	KSC LC 39A	True ASDS	6	True						
92	89	2020- 10-24	Falcon 9	15600.0	VLEO	CCSFS SLC 40	True ASDS	3	True						
93	90	2020- 11-05	Falcon 9	3681.0	MEO	CCSFS SLC 40	True ASDS	1	True						
90 rows × 17 columns										Evnort as a CSV file	GitHub URL of the completed			ted	

Export as a CSV file

SpaceX API calls notebook

Data Collection - Scraping

Export as a CSV file

GitHub URL of the completed Web Scraping notebook

Data Wrangling

Primary objectives are;

- Performed Exploratory Data Analysis
- Determine Training Labels

CCAFS SLC 40	55	GTO	27
KSC LC 39A	22	ISS	21
VAFB SLC 4E	13	VLEO	14
True ASDS None None True RTLS False ASDS True Ocean None ASDS False Ocean False RTLS	41 19 14 6 5 2 2	PO LEO SSO MEO ES-L1 HEO SO GEO	9 7 5 3 1 1 1

Import Libraries

Identify and calculate the percentage of the missing values in each attribute

Calculate the number and occurrence of

Calculate the number and occurrence of and occurrence of launches on each

each orbit

mission outcome per

orbit type

GitHub URL of the completed Data Wrangling notebook site

EDA with Data Visualization

Data visualization shows the dependencies of parameters with others. These correlations were looked at via the following;

Scatter plots:

- Flight Number VS. Payload Mass
- Flight Number VS. Launch Site
- Payload VS. Launch Site
- Orbit VS. Flight Number
- Payload VS. Orbit Type
- Orbit VS. Payload Mass

Bar graphs

Mean VS. Orbit

Line graphs

Success Rate VS. Year

EDA with SQL

- EDA with SQL and the following were explored via SQL queries;
 - Call the names of the unique launch sites
 - Filter with launch site names
 - Total payload mass carried by boosters launched by specific customers
 - Average payload mass carried by booster versions
 - Total number of successful and failure mission outcomes
 - Booster versions which have carried the maximum payload mass
 - Rank the count of landing outcomes
 - And several other specific cases

Build an Interactive Map with Folium

- An interactive map was developed with markers, circles and lines
- The circles were used to locate the launch sites
- The markers were used to denote the successful and unsuccessful landings from each launch site
- Lines were used to denote the nearest locations to prominent geographical locations such as the shoreline, railway and nearest city

Build a Dashboard with Plotly Dash

- An interactive dashboard via Plotly was developed which had the following;
 - Pie chart showing the total launches site

This allows to gauge the portion of launches from each site from the total launches as well as the success rate as a whole

• Scatter graph showing outcome and payload mass for different booster versions

Predictive Analysis (Classification)

Results

- Exploratory data analysis results
 - The success rates for SpaceX launches increases with time
- Interactive analytics demo in screenshots
 - The KSC LC 39A had the most successful launches from all the sites
- Predictive analysis results
 - The Tree Classifier Algorithm is the best for Machine Learning for this dataset

Flight Number vs. Launch Site

Scatter plot of Flight Number vs. Launch Site

- Shows that the earlier launches were mostly done from CCAFS SLC 40
- The success rate is much better for flights after 20 runs denoting an improvement in internal procedures
- Most launches were done from CCAFS SLC 40 but the other two sites have much better success rates

Payload vs. Launch Site

Scatter plot of Payload vs. Launch Site

- Most of the launces carry less than 8000 kg
- CCASF SLC 40 and KSC LC 39A are predominantly chosen for high payload masses of beyond 12000 kg
- VAFB SLC 4E is preferred for payloads in the 8000 10000 kg range

Success Rate vs. Orbit Type

Bar chart for the success rate of each orbit type

• The orbits of ES-L1, SSO, HEO and GEO has 100% success rates

The other orbits have a success rate of about
 50% with large variability

Flight Number vs. Orbit Type

Scatter plot for Flight number vs. Orbit type

 Most of the early lunches were concentrated on LEO, ISS, PO, GTO and ES-L1 orbits

• From flight number 40 onwards the orbits of SSO, HEO, MEO, VLEO, SO and GEO were engaged

Payload vs. Orbit Type

Scatter plot for Payload vs. Orbit type

- GTO orbit has a tight payload mass requirement of 3000 – 8000kg
- LEO, ES-L1, SSO, HEO MEO, SO and GEO orbits command a payload mass less than 7000kg

 ISS, PO and VLEO orbits require large payload masses beyond 9000kg

Launch Success Yearly Trend

Line chart for the yearly average success rate

Launches starts off from 2013

 The success rate has increased during 2013 – 2017 however with large variations

 Beyond 2018 the certainty of a successful launch is the best it has been

All Launch Site Names

```
Display the names of the unique launch sites in the space mission
In [6]:
          %sql select distinct LAUNCH_SITE from SX
          * ibm_db_sa://xtd33361:***/bludb
         Done.
Out[6]:
           launch_site
          CCAFS LC-40
         CCAFS SLC-40
           KSC LC-39A
          VAFB SLC-4E
```

Launch Site Names Begin with 'CCA'

Display 5 records where launch sites begin with the string 'CCA'												
In [7]:	%sql select * from SX where LAUNCH_SITE like 'CCA%' fetch first 5 row only											
	* ibm_db_sa://xtd33361:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb Done.											
Out[7]:	DATE	timeutc_	booster_version	launch_site	payload	payload_masskg_	orbit	customer	mission_outcome	landing_outcome		
	2010-06- 04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)		
	2010-12- 08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)		
	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt		
	2012-10- 08	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt		
	2013-03- 01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt		

Total Payload Mass

The total payload carried by boosters from NASA

```
Display the total payload mass carried by boosters launched by NASA (CRS)

**sql**select**sum(PAYLOAD_MASS__KG_) from SX where CUSTOMER = 'NASA (CRS)'

**ibm_db_sa://xtd33361:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb Done.

Out[8]:

1
45596
```

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

**sql select avg(PAYLOAD_MASS_KG_) from SX where BOOSTER_VERSION = 'F9 v1.1'

**ibm_db_sa://xtd33361:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb Done.

Out[9]: 1
2928
```

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

**sql select BOOSTER_VERSION from SX where LANDING_OUTCOME ='Success (drone ship)' and PAYLOAD_MASS_KG_ BETWEEN 4000 AND 6000

ibm_db_sa://xtd33361:*@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb Done.

Out[11]: booster_version

F9 FT B1022

F9 FT B1021.2

F9 FT B1021.2

F9 FT B1031.2

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

List the names of the booster_versions which have carried the maximum payload mass. Use a subquery In [13]: %sql select distinct BOOSTER VERSION from SX where PAYLOAD MASS KG = (select MAX(PAYLOAD MASS KG) FROM SX) * ibm db sa://xtd33361:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb Done. booster version Out[13]: F9 B5 B1048.4 F9 B5 B1048.5 F9 B5 B1049.4 F9 B5 B1049.5 F9 B5 B1049.7 F9 B5 B1051.3 F9 B5 B1051.4 F9 B5 B1051.6 F9 B5 B1056.4 F9 B5 B1058.3 F9 B5 B1060.2 F9 B5 B1060.3

2015 Launch Records

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order In [50]: %sql select LANDING__OUTCOME, count(LANDING__OUTCOME) as count from SX where DATE between '2010-06-04' and '2017-03-20' group by LANDING__OUTCOME order * ibm_db_sa://xtd33361:***@b0aebb68-94fa-46ec-a1fc-1c999edb6187.c3n41cmd0nqnrk39u98g.databases.appdomain.cloud:31249/bludb Done. landing_outcome COUNT Out[50]: No attempt 10 Failure (drone ship) 5 Success (drone ship) 5 Controlled (ocean) 3 Success (ground pad) Failure (parachute) Uncontrolled (ocean) Precluded (drone ship)

Global locations of all launch sites

Success rates of each launch site

VAFB SLC – 4E:

10 launches

KSC LC - 39 A:

13 launches

CCAFS LC and SLC:

33 launches

Launch site to its proximities

Site:

CCAFS SLC

Nearest proximities:

Shoreline: 0.58km

Railway: 1.28km

City: 51.43km

Melbourne City

Launch success count for all sites

Launch site with highest launch success

Launch site:

KSC LC – 39A

Success rate 76.9%

Payload vs. Launch Outcome scatter plot for all sites

Classification Accuracy

- Four methods were check for best accuracy
 - Logistics Regression method
 - Support Vector Machine method
 - Decision tree method
 - K nearest neighbors method
- Decision tree method has the highest accuracy of 94.44%

Confusion Matrix

Confusion matrix of the decision tree method

 The only missed aspect is the three points in False Negative

Conclusions

- The success rates for SpaceX launches increases with time
- The KSC LC 39A had the most successful launches from all the sites
- The Tree Classifier Algorithm is the best for Machine Learning for this dataset
- GTO orbit has a tight payload mass requirement of 3000 8000kg
- Beyond 2018 the certainty of a successful launch is the best it has been

Appendix

- Please follow the link to access all Notebooks on the GitHub repository
 - https://github.com/SanthikaEvo/Python-Final-Projects.git

