Internationales Büro INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07D 413/04, A01N 43/836, 47/06, 47/10, 47/28

(11) Internationale Veröffentlichungsnummer:

WO 00/35913

A1 (43) Internationales

Veröffentlichungsdatum:

22, Juni 2000 (22.06.00)

(21) Internationales Aktenzeichen:

PCT/EP99/09684

(22) Internationales Anmeldedatum: 9. Dezember 1999 (09.12.99)

(30) Prioritätsdaten:

198 58 193.9

17. Dezember 1998 (17.12.98) DE

(71) Anmelder: AVENTIS CROPSCIENCE GMBH [DE/DE]; Miraustrasse 54, D-13509 Berlin (DE).

(72) Erfinder: HARMSEN, Sven; Merkurstrasse 36, D-23562 Lübeck (DE). BASTIAANS, Henricus, Maria, Martinus; Stockheimer Weg 9a, D-61250 Usingen (DE). SCHAPER, Wolfgang; Kapellenweg 5c, D-86420 Diedorf (DE). TIEBES, Jörg; Prieststrasse 15, D-60320 Frankfurt (DE). DÖLLER, Uwe; Rembrandtring 24a, D-63110 Rodgau (DE). JANS, Daniela; Schöne Aussicht 11, D-61348 Bad Homburg v. d. H. (DE). SANFT, Ulrich; Am Vogelgesang 7g, D-65817 Eppstein/Ts (DE). HEMPEL, Waltraut; Zum Morgengraben 18, D-65835 Liederbach (DE). THÖNESSEN, Maria-Theresia; Frauenlobstrasse 10, D-55262 Heidesheim (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AU, AZ, BA, BB, BG, BR, BY, CA, CN, CR, CU, CZ, DM, EE, GD, GE, HR, HU, ID, IL, IN, IS, JP, KG, KP, KR, KZ, LC, LK, LR, LT, LV, MA, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TR, TT, UA, UZ, VN, YU, ZA, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: 4-TRIFLUOROMETHYL-3-OXADIAZOLYL PYRIDINES, METHODS FOR THE PRODUCTION THEREOF, AGENTS CONTAINING THESE COMPOUNDS, AND THEIR USE AS PESTICIDES

(54) Bezeichnung: 4-TRIFLUORMETHYL-3-OXADIAZOLYLPYRIDINE, VERFAHREN ZU IHRER HERSTELLUNG. SIE EN-THALTENDE MITTEL UND IHRE VERWENDUNG ALS SCHÄDLINGSBEKÄMPFUNGSMITTEL

(1)

(57) Abstract

The invention relates to 4-trifluoromethyl-3-oxadiazolyl pyridines of general formula (I), to methods for the production thereof, to agents containing the inventive compounds, and to the use of these compounds for combating animal pests, especially insects, red spiders. ectoparasites and parasitic helminths. X and Y have the meanings cited in the description.

(57) Zusammenfassung

Die vorliegende Erfindung betrifft 4-Trifluormethyl-3-oxadiazolylpyridine der allgemeinen Formel (I), Verfahren zu ihrer Herstellung, sie enthaltende Mittel sowie die Verwendung dieser Verbindungen zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnmilben, Ektoparasiten und Helminthen. X, Y haben die in der Beschreibung angegebenen Bedeutungen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

\mathbf{A} L	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	\mathbf{UG}	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Јарап	NE	Niger	$\mathbf{U}\mathbf{Z}$	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

1

Beschreibung

4-Trifluormethyl-3-oxadiazolylpyridine, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel

Die Erfindung betrifft 4-Trifluormethyl-3-oxadiazolylpyridine, Verfahren zu ihrer Herstellung, sie enthaltende Mittel sowie ihre Verwendung zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnmilben, Ektoparasiten und Helminthen.

Es ist bereits bekannt, daß geeignet substituierte Pyridine akarizide und insektizide Wirkung zeigen. So sind in WO 95/07891 Pyridine beschrieben, die in 4-Position einen über ein Heteroatom verknüpften Cycloalkylrest und in 3-Position eine Gruppe unterschiedlicher Substituenten tragen. Jedoch ist die gewünschte Wirkung gegenüber den Schadorganismen nicht immer ausreichend. Darüber hinaus weisen diese Verbindungen oftmals unerwünschte toxikologische Eigenschaften gegenüber Säugetieren und aquatischen Lebewesen auf.

Aufgabe der vorliegenden Erfindung ist die Bereitstellung von Verbindungen mit guten insektiziden und akariziden Eigenschaften bei gleichzeitig geringer Toxizität gegenüber Säugetieren und aquatischen Lebewesen.

In der nicht vorveröffentlichten WO-A-98/57969 sind 4-Haloalkylpyridine und -pyrimidine zur Verwendung als Schädlingsbekämpfungsmittel vorgeschlagen.

Es wurde nun gefunden, daß Verbindungen der allgemeinen Formel (I), gegebenenfalls auch als Salze, im Vergleich zu den bereits bekannten Verbindungen ein gutes Wirkungsspektrum gegenüber tierischen Schädlingen bei

gleichzeitig günstigeren toxikologischen Eigenschaften gegenüber Säugetieren und aquatischen Lebewesen aufweisen.

Gegenstand der Erfindung sind daher 4-Trifluormethyl-3-oxadiazolylpyridinderivate der Formel (I),

wobei die Symbole und Indizes folgende Bedeutungen haben:

m ist 0 oder 1;

X ist eine Einfachbindung, eine geradkettige Alkylengruppe mit 1, 2 oder 3 C-Atomen oder eine verzweigten Alkylengruppe mit 3 bis 9 C-Atomen, wobei ein oder mehrere H-Atome durch F ersetzt sein können;

Y ist -O-, -S-, -SO-, -SO₂-, -O-CO-, -O-CO-O-, -SO₂-O-, -O-SO₂-, -NR¹-, -NR²-CO-, -NR³-CO-O-, -NR⁴-CO-NR⁵-, -O-CO-CO-O-, -O-CO-NR⁶, -SO₂-NR⁷, -NR⁸-SO₂-;

R,R¹,R²,R³,R⁴,R⁵,R⁶,R⁷,R⁸ sind gleich oder verschieden, unabhängig voneinander H, $(C_1-C_{10})\text{-Alkyl}, \ (C_2-C_{10})\text{-Alkenyl}, \ (C_2-C_{10})\text{-Alkinyl}, \ (C_3-C_8)\text{-Cycloalkyl}, \\ (C_4-C_8)\text{-Cycloalkenyl}, \ (C_6-C_8)\text{-Cycloalkinyl}, \ \text{Heterocyclyl},$ Heterocyclyl,

wobei jede der acht letztgenannten Gruppen gegebenenfalls ein oder mehrfach substituiert ist, und wobei gegebenenfalls jeweils R und R¹, R und R², R und R⁵, R und R⁶, R und R⁷, R und R⁸ oder R und X zusammen auch ein Ringsystem bilden können;

mit der Maßgabe, daß die Verbindungen, in denen

$$X = -, Y = O, R = H$$

$$X = -$$
, $Y = O$, $R = Me$

$$X = -$$
, $Y = O$, $R = Et$

$$X = -$$
, $Y = O$, $R = CHF2$

$$X = -$$
, $Y = O$, $R = CH_{\circ}Ph$

$$X = CH_2$$
, $Y = O$, $R = 2$ -Furanyl

$$X = CH_2$$
, $Y = O$, $R = Me$

$$X = CH_2$$
, $Y = O$, $R = 5$ -Isoxazolyl

$$X = CH_2$$
, $Y = O$, $R = 5$ -Nitrolfuran-2-yl

$$X = CH_2CH_2$$
, $Y = O$, $R = H$

$$X = CH_2CH_2$$
; $Y = O$, $R = Me$

$$X = CH_2CH_2$$
, $Y = O$, $R = CH_2$

$$X = CH_2CH_2$$
, $Y = O$, $R = Et$

$$X = CH_2CH_2$$
, $Y = O$, $R = H$

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 4$ -F-phenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 2.6$ -Difluorphenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 4$ -Nitrophenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = t-Bu$

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = Cyclopropyl$

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = Me$

$$X = CH_2CH_2CH_2$$
, $Y = O$, $R = H$

$$X = -$$
, $Y = S(O)$, $R = 4$ -Brombenzyl

$$X = CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2$$
, $Y = S(O)$, $R = Me$

$$X = CH_2, Y = S(O)_2, R = t-Bu$$

$$X = CH_2$$
, $Y = S$, $R = 2$ -Thienyl

$$X = CH_2CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2CH_2$$
, $Y = S$, $R = n-Pr$

$$X = CH_2CH_2$$
, $Y = S$, $R = Benzyl$

$$X = CH_2CH_2$$
, $Y = S$, $R = 2$ -Thienyl-methyl

$$X = CH_2CH_2CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2CH_2CH_2$$
, $Y = S(O)$, $R = Me$

4

 $X = CH_2CH_2CH_2CH_2$, Y = S, $R = CH_2CH_2CH_2CH_2OMe$ ausgenommen sind.

m ist vorzugsweise 0.

lst m 1 und Y enthält eine S(O)_n-Gruppe, so ist n vorzugweise 2.

- X ist vorzugsweise eine Einfachbindung, CH₂, CH₂-CH₂, CH₂-CH(CH₃) oder -CH₂-C(CH₃)₂-.
- Y ist vorzugsweise -O-, -S-, -SO-, -SO₂-, -O-CO-, -O-CO-O, -O-CO-NR⁶-, -SO-NR⁷-, -O-SO₂- oder -SO₂-O-.
- R,R¹,R²,R³,R⁴,R⁵,R⁶,R⁷,R⁸ sind vorzugsweise gleich oder verschieden, unabhängig voneinander H, (C_1-C_6) -Alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_3-C_8) -Cycloalkyl, (C_4-C_8) -Cycloalkenyl, (C_6-C_8) -Cycloalkinyl, Heterocyclyl, $-(CH_2)_{1,4}$ -Heterocyclyl,

wobei die acht zuletzt genannten Reste gegebenenfalls mit einem oder mehreren Resten aus der Gruppe

Halogen, Cyano, Nitro, Hydroxy, -C(=W)R9, (=W),

- $-C(=NOR^9)R^9$, $-C(=NNR^9_2)R^9$, $-C(=W)OR^9$, $-C(=W)NR^9_2$, $-OC(=W)R^9$,
- $-OC(=W)OR^9$, $-NR^9C(=W)R^9$, $-N[C(=W)R^9]_2$, $-NR^9C(=W)OR^9$,
- $-C(=W)NR^9-NR^9_2$, $-C(=W)NR^9-NR^9[C(=W)R^9]$, $-NR^9-C(=W)NR^9_2$,
- $-NR^9-NR^9C(=W)R^9$, $-NR^9-N[C(=W)R^9]_2$, $-N[(C=W)R^9]-NR^9_2$,
- $-NR^9-N[(C=W)R^9]_2$, $-NR^9-NR^9[(C=W)WR^9]$,
- $-NR^9-[(C=W)NR^9_2]$, $-NR^9(C=NR^9)R^9$, $-NR^9(C=NR^9)NR^9_2$,
- -O-NR⁹₂, -O-NR⁹(C=W)R⁹, -SO₂NR⁹₂, -NR⁹SO₂R⁹, -SO₂OR⁹, -OSO₂R⁹,
- $-OR^9$, $-NR^9$ ₂, $-SR^9$, $-SiR^9$ ₃, $-SeR^9$, $-PR^9$ ₂, $-P(=W)R^9$ ₂,
- -SOR⁹, -SO₂R⁹, -PW₂R⁹₂, -PW₃R⁹₂, Aryl und Heterocyclyl,

von denen die beiden letztgenannten Reste gegebenenfalls mit einem oder mehreren Resten aus der Gruppe

 (C_1-C_6) -Alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, (C_3-C_8) -Cycloalkyl, (C_4-C_8) -Cycloalkenyl, (C_6-C_8) -Cycloalkinyl, (C_1-C_6) -Haloalkyl,

5

 (C_2-C_6) -Haloalkenyl, (C_2-C_6) -Haloalkinyl, Halogen, $-OR^{10}$, $-NR^{10}_2$, $-SR^{10}$, $-SiR^{10}_3$, $-C(=W)R^{10}$, $-C(=W)OR^{10}$, $-C(=W)NR^{10}_2$, $-SOR^{10}$, $-SO_2R^{10}$, Nitro, Cyano und Hydroxy

substituiert sind,

substituiert sind.

und wobei gegebenenfalls jeweils R und R¹, R und R², R und R⁵, R und R⁶, R und R⁷, R und R⁸ oder R und X zusammen auch ein Ringsystem bilden können.

Bevorzugt zum Aufbau solcher Ringsysteme sind - $(CH_2)_3$ -, - $(CH_2)_4$ -, - $(CH_2)_5$ -, - $(CH_2)_2$ -O- $(CH_2)_2$ -, - $(CH_2)_3$ -, - $(CH_2)_4$ -, - $(CH_2)_4$ -, - $(CH_2)_4$ -, - $(CH_2)_4$ -, - $(CH_2)_5$ -, - $(CH_2)_2$ -O- $(CH_2)_2$ -, - $(CH_2)_2$ -NR³- $(CH_2)_2$ -.

W ist O oder S.

R⁹ ist Wasserstoff,

 $(C_1-C_6)\text{-Alkyl}, \ (C_2-C_6)\text{-Alkenyl}, \ (C_2-C_6)\text{-Alkinyl}, \ (C_3-C_8)\text{-Cycloalkyl}, \ (C_4-C_8)\text{-Cycloalkyl}, \ (C_4-C_8)\text{-Cycloalkyl}, \ (C_4-C_8)\text{-Cycloalkenyl}, \ (C_3-C_8)\text{-Cycloalkyl}, \ (C_4-C_8)\text{-Cycloalkenyl}, \ (C_4-C_8)\text{-Cycloalkenyl}, \ (C_4-C_8)\text{-Cycloalkenyl}, \ (C_4-C_8)\text{-Cycloalkenyl}, \ (C_4-C_8)\text{-Alkenyl}, \ (C_3-C_8)\text{-Alkenyl}, \ (C_3-C_8)\text{-Alkinyl}, \ (C_3-C_8)\text{-Cycloalkyl}, \ (C_4-C_8)\text{-Alkyl}, \ (C_4-C_8)\text{-Cycloalkyl}, \ (C_4-C_8)\text{-Alkyl}, \ (C_4-C_8)\text{-Cycloalkenyl}, \ (C_2-C_6)\text{-Alkenyl}, \ (C_2-C_6)\text{-Alkenyl}, \ (C_4-C_8)\text{-Cycloalkenyl}, \ (C_2-C_8)\text{-Alkenyl}, \ (C_3-C_8)\text{-Cycloalkenyl}, \ (C_3-C_8)\text{-Cycloalkenyl}, \ (C_3-C_8)\text{-Cycloalkenyl}, \ (C_3-C_8)\text{-Cycloalkenyl}, \ (C_3-C_8)\text{-Alkenyl}, \ (C_3-C_8)\text{-Cycloalkenyl}, \ (C_3-C_8)\text{-Alkenyl}, \ (C_3-C_8)\text{-Cycloalkenyl}, \ (C_3-C_8)\text{-Cycloalkenyl$

Halogen, Cyano, Nitro, Hydroxy, Thio, Amino, Formyl, (C_1-C_6) -Alkoxy, (C_2-C_6) -Alkenyloxy, (C_2-C_6) -Alkinyloxy, (C_1-C_6) -Haloalkyloxy, (C_2-C_6) -

Haloalkenyloxy, (C₂-C₆)-Haloalkinyloxy, (C₃-C₈)-Cycloalkoxy, (C₄-C₈)-Cycloalkenyloxy, (C₃-C₈)-Halocycloalkoxy, (C₄-C₈)-Halocycloalkenyloxy, (C_3-C_8) -Cycloalkyl- (C_1-C_4) -Alkoxy, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkoxy, (C_3-C_8) -Cycloalkyl- (C_2-C_4) -Alkenyloxy, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenyloxy, (C_1-C_6) -Alkyl- (C_3-C_8) -Cycloalkoxy, (C_2-C_6) -Alkenyl- (C_3-C_8) -Cycloalkoxy, (C_2-C_6) -Alkinyl- (C_3-C_8) -Cycloalkoxy, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenyloxy, (C_2-C_6) -Alkenyl- (C_4-C_8) -Cycloalkenyloxy, (C_1-C_4) -Alkoxy- (C_1-C_6) -Alkoxy, (C_1-C_4) -Alkoxy- (C_2-C_6) -Alkenyloxy, Carbamoyl, (C_1-C_6) -Mono- oder Dialkylcarbamoyl, (C_1-C_6) -Mono- oder Dihaloalkylcarbamoyl, (C₃-C₈)-Mono- oder Dicycloalkylcarbamoyl, (C_1-C_6) -Alkoxycarbonyl, (C_3-C_8) -Cycloalkoxycarbonyl, (C_1-C_6) -Alkanoyloxy, (C₃-C₈)-Cycloalkanoyloxy, (C₁-C₆)-Haloalkoxycarbonyl, (C_1-C_6) -Haloalkanoyloxy, (C_1-C_6) -Alkanamido, (C_1-C_6) -Haloalkanamido, (C₂-C₆)-Alkenamido, (C₃-C₈)-Cycloalkanamido, (C₃-C₈)-Cycloalkyl- (C_1-C_4) -Alkanamido, (C_1-C_6) -Alkylthio, (C_2-C_6) -Alkenylthio, (C_2-C_6) -Alkinylthio, (C₁-C₆)-Haloalkylthio, (C₂-C₆)-Haloalkenylthio, (C₂-C₆)-Haloalkinylthio, (C₃-C₃)-Cycloalkylthio, (C₄-C₃)-Cycloalkenylthio, (C₃-C₈)-Halocycloalkthio, (C₄-C₈)-Halocycloalkenylthio, (C₃-C₈)-Cycloalkyl- (C_1-C_4) -Alkylthio, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkylthio, (C_3-C_8) -Cycloalkyl- (C_2-C_4) -Alkenylthio, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenylthio, (C₁-C₆)-Alkyl-(C₃-C₈)-Cycloalkylthio, (C₂-C₆)-Alkenyl- (C_3-C_8) -Cycloalkylthio, (C_2-C_6) -Alkinyl- (C_3-C_8) -Cycloalkylthio, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenylthio, (C_2-C_6) -Alkenyl- (C_4-C_8) -Cycloalkenylthio, (C_1-C_6) -Alkylsulfinyl, (C_2-C_6) -Alkenylsulfinyl, (C_2-C_6) -Alkinylsulfinyl, (C_1-C_6) -Alkylsulfinyl, (C_1-C_6) -Alkylsulfinyl, (C_2-C_6) -Alkylsulfinyl, (C_1-C_6) -Alkylsulfinyl, (C_2-C_6) -Alkylsulfinyl, (C_2-C_6) -Alkenylsulfinyl, (C_3-C_6) -Alkinylsulfinyl, (C_3-C_6) -Alkylsulfinyl, (C_3-C_6) C₆)-Haloalkylsulfinyl, (C₂-C₆)-Haloalkenylsulfinyl, (C₂-C₆)-Haloalkinylsulfinyl, (C₃-C₈)-Cycloalkylsulfinyl, (C₄-C₈)-Cycloalkenylsulfinyl, (C₃-C₈)-Halocycloalksulfinyl, (C₄-C₈)-Halocycloalkenylsulfinyl, (C₃-C₈)-Cycloalkyl-(C₁-C₄)-Alkylsulfinyl, (C₄-C₈)-Cycloalkenyl-(C₁-C₄)-Alkylsulfinyl, (C₃-C₈)-Cycloalkyl-(C₂-C₄)-Alkenylsulfinyl, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenylsulfinyl, (C_1-C_6) -Alkyl- (C_3-C_8) -Cycloalkylsulfinyl, (C_2-C_8) -Alkenyl- (C_3-C_8) -

Cycloalkylsulfinyl, (C_2-C_6) -Alkinyl- (C_3-C_8) -Cycloalkylsulfinyl, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenylsulfinyl, (C_2-C_6) -Alkenyl- (C_4-C_8) -Cycloalkenylsulfinyl, (C_1-C_6) -Alkylsulfonyl, (C_2-C_6) -Alkenylsulfonyl, (C_2-C_6) -Alkinylsulfonyl, (C_1-C_6) -Haloalkylsulfonyl, (C_2-C_6) -Haloalkenylsulfonyl, (C₂-C₆)-Haloalkinylsulfonyl, (C₃-C₈)-Cycloalkylsulfonyl, (C₄-C₈)-Cycloalkenylsulfonyl, (C₃-C₈)-Halocycloalksulfonyl, (C₄-C₈)-Halocycloalkenylsulfonyl, (C₃-C₈)-Cycloalkyl-(C₁-C₄)-Alkylsulfonyl, (C₄-C₈)-Cycloalkenyl-(C₁-C₄)-Alkylsulfonyl, (C₃-C₈)-Cycloalkyl-(C₂-C₄)-Alkenylsulfonyl, (C₄-C₈)-Cycloalkenyl- (C_1-C_4) -Alkenylsulfonyl, (C_1-C_6) -Alkyl- (C_3-C_8) -Cycloalkylsulfonyl, (C_2-C_6) -Alkenyl- (C_3-C_8) -Cycloalkylsulfonyl, (C_2-C_6) -Alkinyl- (C_3-C_8) -Cycloalkylsulfonyl, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenylsulfonyl, (C₂-C₆)-Alkenyl-(C₄-C₈)-Cycloalkenylsulfonyl, (C_1-C_6) -Alkylamino, (C_2-C_6) -Alkenylamino, (C_2-C_6) -Alkinylamino, (C₁-C₆)-Haloalkylamino, (C₂-C₆)-Haloalkenylamino, (C₂-C₆)-Haloalkinylamino, (C₃-C₈)-Cycloalkylamino, (C₄-C₈)-Cycloalkenylamino, (C₃-C₈)-Halocycloalkamino, (C₄-C₈)-Halocycloalkenylamino, (C₃-C₈)-Cycloalkyl-(C₁-C₄)-Alkylamino, (C₄-C₈)-Cycloalkenyl-(C₁-C₄)-Alkylamino, (C_3-C_8) -Cycloalkyl- (C_2-C_4) -Alkenylamino, (C_4-C_8) -Cycloalkenyl- (C_1-C_4) -Alkenylamino, (C₁-C₆)-Alkyl-(C₃-C₈)-Cycloalkylamino, (C₂-C₆)-Alkenyl-(C₃-C₈)-Cycloalkylamino, (C₂-C₆)-Alkinyl-(C₃-C₈)-Cycloalkylamino, (C_1-C_6) -Alkyl- (C_4-C_8) -Cycloalkenylamino, (C_2-C_6) -Alkenyl- (C_4-C_8) -Cycloalkenylamino, (C₁-C₆)-Trialkylsilyl, Aryl, Aryloxy, Arylthio, Arylamino, Aryl- (C_1-C_4) -Alkoxy, Aryl- (C_2-C_4) -Alkenyloxy, Aryl- (C_1-C_4) -Alkylthio, Aryl-(C₂-C₄)-Alkenylthio, Aryl-(C₁-C₄)-Alkylamino, Aryl-(C₂-C₄)-Alkenylamino, Aryl-(C₁-C₆)-Dialkylsilyl, Diaryl-(C₁-C₆)-Alkylsilyl, Triarylsilyl und 5- oder 6-gliedriges Heterocyclyl, wobei der cyclische Teil der vierzehn letztgenannten Reste gegebenenfalls durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, Amino, Hydroxy, Thio, (C₁-C₄)-Alkyl, (C₁-C₄)-Haloalkyl, (C_3-C_8) -Cycloalkyl, (C_1-C_4) -Alkoxy, (C_1-C_4) -Haloalkoxy,

 (C_1-C_4) -Alkylthio, (C_1-C_4) -Haloalkylthio, (C_1-C_4) -Alkylamino, (C_1-C_4) -Haloalkylamino, Formyl und (C_1-C_4) -Alkanoyl substituiert ist,

substituiert sind,

Aryl, 4-, 5- oder 6-gliedriges Heterocyclyl,

wobei die beiden letztgenannten Reste gegebenenfalls durch einen oder mehrere Reste aus der Gruppe

Halogen, Cyano, Nitro, Hydroxy, Thio, Amino, Formyl, (C₁-C₆)-Alkoxy, (C_2-C_6) -Alkenyloxy, (C_2-C_6) -Alkinyloxy, (C_1-C_6) -Haloalkyloxy, (C_2-C_6) -Haloalkenyloxy, (C_2-C_6) -Haloalkinyloxy, (C_3-C_8) -Cycloalkoxy, (C_4-C_8) -Cycloalkenyloxy, (C₃-C₈)-Halocycloalkoxy, (C₄-C₈)-Halocycloalkenyloxy, Carbamoyl, (C_1-C_6) -Mono- oder Dialkylcarbamoyl, (C_1-C_6) -Alkoxycarbonyl, (C₁-C₆)-Alkanoyloxy, (C₁-C₆)-Mono- oder Dihaloalkylcarbamoyl, (C₁-C₆)-Haloalkoxycarbonyl, (C₁-C₆)-Haloalkanoyloxy, (C_1-C_6) -Alkanamido, (C_1-C_6) -Haloalkanamido, (C_2-C_6) -Alkenamido, (C₁-C₆)-Alkylthio, (C₂-C₆)-Alkenylthio, (C₂-C₆)-Alkinylthio, (C_1-C_6) -Haloalkylthio, (C_2-C_6) -Haloalkenylthio, (C_2-C_6) -Haloalkinylthio, (C_3-C_8) -Cycloalkylthio, (C_4-C_8) -Cycloalkenylthio, (C_3-C_8) -Halocycloalkthio, (C_4-C_8) -Halocycloalkenylthio, (C_1-C_8) -Alkylsulfinyl, (C_2-C_6) -Alkenylsulfinyl, (C_2-C_6) -Alkinylsulfinyl, (C_1-C_6) -Haloalkylsulfinyl, (C₂-C₆)-Haloalkenylsulfinyl, (C₂-C₆)-Haloalkinylsulfinyl, (C_3-C_8) -Cycloalkylsulfinyl, (C_4-C_8) -Cycloalkenylsulfinyl, (C_3-C_8) -Halocycloalksulfinyl, (C₄-C₈)-Halocycloalkenylsulfinyl, (C₁-C₆)-Alkylsulfonyl, (C_2-C_6) -Alkenylsulfonyl, (C_2-C_6) -Alkinylsulfonyl, (C_1-C_6) -Haloalkylsulfonyl, (C2-C6)-Haloalkenylsulfonyl, (C2-C6)-Haloalkinylsulfonyl, (C₃-C₈)-Cycloalkylsulfonyl, (C₄-C₈)-Cycloalkenylsulfonyl, (C₃-C₈)-Halocycloalksulfonyl, (C₄-C₈)-Halocycloalkenylsulfonyl, (C₁-C₆)-Alkylamino, (C₂-C₆)-Alkenylamino, (C_2-C_6) -Alkinylamino, (C_1-C_6) -Haloalkylamino, (C_2-C_6) -Haloalkenylamino, (C₂-C₆)-Haloalkinylamino, (C₃-C₈)-Cycloalkylamino,

I-7

1-9

 (C_4-C_8) -Cycloalkenylamino, (C_3-C_8) -Halocycloalkamino und (C_4-C_8) -Halocycloalkenylamino substituiert sind.

Besonders bevorzugt sind R, R¹-R³: H, (C_1-C_6) -Alkyl, (C_2-C_6) -Alkenyl, (C_2-C_6) -Alkinyl, Heterocyclyl, wobei die vier letztgenannten Reste gegebenenfalls mit einem oder mehreren, vorzugsweise einem bis vier, Resten aus der Gruppe Halogen, vorzugsweise F, CN, SiMe₃, -O- (C_1-C_6) -Alkyl, -S- (C_1-C_6) -Alkyl oder -O-CO- (C_1-C_6) -Alkyl substituiert sind.

Ganz besonders bevorzugt sind Verbindungen der Formel I-1 bis I-32, auch in Form ihrer Pyridin-N-Oxide, wobei die Symbole und Indizes die oben angegebenen Bedeutungen haben:

I-8

11

12

In gleicher Weise bevorzugt sind die entsprechenden Formeln I-33 bis I-96 in denen Y $-CH_2CH_2-$, $-CH_2-CH(CH_3)-$, $-CH_2-CH_2-$ und $-CH_2-C(CH_3)-$ bedeutet.

Die Bezeichnung "Halogen" umfaßt Fluor, Chlor, Brom und lod.

Unter dem Ausdruck "(C₁-C₄)-Alkyl" ist ein unverzweigter oder verzweigter Kohlenwasserstoffrest mit 1, 2, 3 oder 4 Kohlenstoffatomen, wie z.B. der Methyl-, Ethyl-, Propyl-, Isopropyl-, 1-Butyl-, 2-Butyl-, 2-Methylpropyl- oder tert.-Butylrest zu verstehen. Entsprechend ist unter Alkylresten mit einem größeren Bereich an Kohlenstoffatomen ein unverzweigter oder verzweigter gesättigter Kohlenwasserstoffrest zu verstehen, der eine Anzahl an Kohlenstoffatomen enthält, die dieser Bereichsangabe entspricht. Der Ausdruck "(C₁-C₆)-Alkyl" umfaßt demnach die vorgenannten Alkylreste, sowie z.B. den Pentyl-, 2-Methylbutyl-, 1,1-Dimethylpropyl- oder Hexyl-Rest. Unter dem Ausdruck "(C₁-C₁₀)-Alkyl" sind die vorgenannten Alkylreste, sowie z.B. der Nonyl-, 1-Decyl- oder 2-Decyl-Rest zu verstehen.

Unter " (C_1-C_4) -Haloalkyl" ist eine unter dem Ausdruck " (C_1-C_4) -Alkyl" genannte Alkylgruppe zu verstehen, in der ein oder mehrere Wasserstoffatome durch die gleiche Anzahl gleicher oder verschiedener Halogenatome, bevorzugt Chlor oder Fluor, ersetzt sind, wie die Trifluormethyl-, die 1-Fluorethyl-, die 2,2,2-Trifluorethyl-, die Chlormethyl-, Fluormethyl-, die Difluormethyl- und die 1,1,2,2-Tetrafluorethylgruppe.

13

Unter " (C_1-C_4) -Alkoxy" ist eine Alkoxygruppe zu verstehen, deren Kohlenwasserstoffrest die unter dem Ausdruck " (C_1-C_4) -Alkyl" angegebene Bedeutung hat. Sinngemäß sind Alkoxygruppen zu verstehen, die einen größeren Bereich an Kohlenstoffatomen umfassen.

Die Bezeichnungen "Alkenyl" und "Alkinyl" mit einer vorangestellten Bereichsangabe von Kohlenstoffatomen bedeuten einen geradkettigen oder verzweigten Kohlenwasserstoffrest mit einer dieser Bereichsangabe entsprechenden Kohlenstoffatomzahl, der mindestens eine Mehrfachbindung beinhaltet, wobei sich diese an beliebiger Position des betreffenden ungesättigten Restes befinden kann. "(C_2 - C_4)-Alkenyl" steht demnach z.B. für die Vinyl-, Allyl-, 2-Methyl-2-propen- oder 2-Butenyl-Gruppe; "(C_2 - C_6)-Alkenyl" steht für die vorstehend genannten Reste sowie z.B. für die Pentenyl-, 2-Methylpentenyl- oder die Hexenyl-Gruppe. "(C_2 - C_4)-Alkinyl" steht z.B. für die Ethinyl-, Propargyl-, 2-Methyl-2-propin- oder 2-Butinyl-Gruppe. Unter "(C_2 - C_6)-Alkinyl" sind die vorstehend genannten Reste sowie z.B. die 2-Pentinyl- oder die 2-Hexinyl-Gruppe und unter "(C_2 - C_{10})-Alkinyl" die vorstehend genannten Reste sowie z.B. die 2-Octinyl- oder die 2-Decinyl-Gruppe zu verstehen.

"(C₃-C₈)-Cycloalkyl" steht für monocyclische Alkylreste, wie den Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-, Cycloheptyl- oder Cyclooctylrest und für bicyclische Alkylreste, wie den Norbornylrest.

Unter dem Ausdruck " (C_3-C_8) -Cycloalkyl- (C_1-C_4) -alkyl " ist beispielsweise der Cyclopropylmethyl-, Cyclopentylmethyl-, Cyclohexylmethyl-, Cyclohexylethyl- und Cyclohexylbutyl-Rest und unter dem Ausdruck " (C_1-C_6) -Alkyl- (C_3-C_8) -cycloalkyl beispielsweise der 1-Methyl-cyclopropyl-, 1-Methyl-cyclopentyl-, 1-Methyl-cyclohexyl-, 3-Hexyl-cyclobutyl- und 4-tert.-Butyl-cyclohexyl-Rest zu verstehen.

" (C_1-C_4) -Alkoxy- (C_1-C_6) -alkyloxy" bedeutet eine wie vorstehend definierte Alkoxy-Gruppe, die durch eine weitere Alkoxy-Gruppe substituiert ist, wie z.B. 1-Ethoxy-ethoxy.

Unter " (C_3-C_8) -Cycloalkoxy" oder " (C_3-C_8) -Cycloalkylthio" ist einer der oben angeführten (C_3-C_8) -Cycloalkyl-Reste, der über ein Sauerstoff- oder Schwefelatom verknüpft ist, zu verstehen.

"(C₃-C₈)-Cycloalkyl-(C₁-C₆)-alkoxy" bedeutet z.B. die Cyclopropylmethoxy, Cyclobutylmethoxy-, Cyclopentylmethoxy-, Cyclohexylmethoxy-, Cyclohexylethoxy-oder die Cyclohexylbutoxy-Gruppe;

Der Ausdruck "(C₁-C₄)-Alkyl-(C₃-C₈)-cycloalkoxy" steht z.B. für die Methylcyclopropyloxy-, Methylcyclobutyloxy- oder die Butylcyclohexyloxy-Gruppe.

" (C_1-C_6) -Alkylthio" steht für eine Alkylthiogruppe, deren Kohlenwasserstoffrest die unter dem Ausdruck " (C_1-C_6) -Alkyl" angegebene Bedeutung hat.

Analog bedeuten " (C_1-C_6) -Alkylsulfinyl" z.B. die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, sek.-Butyl- oder tert.-Butylsulfinyl-Gruppe und " (C_1-C_6) -Alkylsulfonyl" z.B. die Methyl-, Ethyl-, Propyl-, Isopropyl-, Butyl-, Isobutyl-, sek.-Butyl- oder tert.-Butylsulfonyl-Gruppe.

"(C₁-C₆)-Alkylamino" steht für ein Stickstoffatom, das durch ein oder zwei, gleiche oder verschiedene Alkylreste der obigen Definition substituiert ist.

Der Ausdruck " (C_1-C_6) -Mono- oder Dialkylcarbamoyl" bedeutet eine Carbamoylgruppe mit einem oder zwei Kohlenwasserstoffresten, die die unter dem Ausdruck " $(C_1-C_6-Alkyl)$ " angegebene Bedeutung haben und die im Fall von zwei Kohlenwasserstoffresten gleich oder verschieden sein können.

Analog bedeutet " (C_1-C_6) -Dihaloalkylcarbamoyl" eine Carbamoylgruppe, die zwei (C_1-C_6) -Haloalkylreste gemäß der obigen Definition oder einen (C_1-C_6) -Haloalkylrest und einen (C_1-C_6) -Alkylrest gemäß der obigen Definition trägt.

" (C_1-C_6) -Alkanoyl" steht z.B. für die Acetyl-, Propionyl-, Butyryl- oder 2-Methylbutyryl-Gruppe;

Unter dem Ausdruck "Aryl" ist ein carbocyclischer, d.h. aus Kohlenstoffatomen aufgebauter, aromatischer Rest mit vorzugsweise 6 bis 14, insbesondere 6 bis 12 C-Atomen, wie beispielsweise Phenyl, Naphthyl oder Biphenylyl, vorzugsweise Phenyl zu verstehen. "Aroyl" bedeutet demnach einen wie vorstehend definierter Arylrest, der über eine Carbonyl-Gruppe gebunden ist, wie z.B. die Benzoyl-Gruppe.

Der Ausdruck "Heterocyclyl" steht vorzugsweise für einen cyclischen Rest, der vollständig gesättigt, teilweise ungesättigt oder vollständig ungesättigt sein kann und der durch mindestens ein oder mehrere gleiche oder verschiedene Atome aus der Gruppe Stickstoff, Schwefel oder Sauerstoff unterbrochen sein kann, wobei jedoch nicht zwei Sauerstoffatome direkt benachbart sein dürfen und noch mindestens ein Kohlenstoffatom im Ring vorhanden sein muß, wie z.B. ein Rest von Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1,3,4-Oxadiazol, 1,3,4-Thiadiazol, 1,3,4-Triazol, 1,2,4-Oxadiazol, 1,2,4-Thiadiazol, 1,2,4-Triazol, 1,2,3-Triazol, 1,2,3,4-Tetrazol, Benzo[b]thiophen, Benzo[b]furan, Indol, Benzo[c]thiophen, Benzo[c]furan, Isoindol, Benzoxazol, Benzothiazol, Benzimidazol, Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Pyrazin, Pyrimidin, Pyridazin, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,4,5-Tetrazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, 1,8-Naphthyridin, 1,5-Naphthyridin, 1,6-Naphthyridin, 1,7-Naphthyridin, Phthalazin, Pyridopyrimidin, Purin, Pteridin, 4H-Chinolizin, Piperidin, Pyrrolidin, Oxazolin, Tetrahydrofuran, Tetrahydropyran, Isoxzolidin oder Thiazolidin. Der Ausdruck "Heteroaromat" umfaßt demnach von den vorstehend

16

unter "Heterocycly" genannten Bedeutungen jeweils die vollständig ungesättigten aromatischen heterocyclischen Verbindungen.

Heterocyclyl bedeutet besonders bevorzugt ein gesättigtes, teilgesättigtes oder aromatisches Ringsystem mit 3 bis 6 Ringgliedern und 1 bis 4 Heteroatomen aus der Gruppe O, S und N, wobei mindestens ein Kohlenstoffatom im Ring vorhanden sein muß.

Ganz besonders bevorzugt bedeutet Heterocyclyl ein Radikal des Pyridin, Pyrimidin, (1,2,4)-Oxadiazol, (1,3,4)-Oxadiazol, Pyrrol, Furan, Thiophen, Oxazol, Thiazol, Imidazol, Pyrazol, Isoxazol, 1,2,4-Triazol, Tetrazol, Pyrazin, Pyridazin, Oxazolin, Thiazolin, Tetrahydrofuran, Tetrahydropyran, Morpholin, Piperidin, Piperazin, Pyrrolin, Pyrrolidin, Oxazolidin, Thiazolidin, Oxiran und Oxetan.

"Aryl- (C_1-C_4) -alkoxy" steht für einen über eine (C_1-C_4) -Alkoxygruppe verknüpften Arylrest, z.B. den Benzyloxy-, Phenylethoxy-, Phenylbutoxy- oder Naphthylmethoxy-Rest.

"Arylthio" bedeutet einen über ein Schwefelatom verknüpften Arylrest, z.B. den Phenylthio- oder den 1- oder 2-Naphthylthio-Rest. Analog bedeutet "Aryloxy" z.B. den Phenoxy- oder 1- oder 2-Naphthyloxy-Rest.

"Aryl- (C_1-C_4) -alkylthio" steht für einen Arylrest, der über einen Alkylthiorest verknüpft ist, z.B. der Benzylthio-, Naphthylmethylthio- oder die Phenylethylthio-Rest.

Der Ausdruck " (C_1-C_6) -Trialkylsilyl" bedeutet ein Siliciumatom, das drei gleiche oder verschiedene Alkylreste gemäß der obigen Definition trägt. Analog stehen "Aryl- (C_1-C_6) -Dialkylsilyl" für ein Siliciumatom, das einen Arylrest und zwei gleiche oder verschiedene Alkylreste gemäß der obigen Definition trägt, "Diaryl- (C_1-C_6) -Alkylsilyl" für ein Siliciumatom, das einen Alkylrest und zwei gleiche oder verschiedene

17

Arylreste gemäß der obigen Definition trägt, und "Triarylsilyl" für ein Siliciumatom, das drei gleiche oder verschiedene Arylreste gemäß der obigen Definition trägt.

In den Fällen, in denen zwei oder mehrere Reste R⁹ in einem Substituenten auftreten, wie z.B. bei -C(=W)NR⁹₂, können diese gleich oder verschieden sein.

Je nach Art der oben definierten Substituenten weisen die Verbindungen der allgemeinen Formel (I) saure oder basische Eigenschaften auf und können Salze bilden. Tragen die Verbindungen der allgemeinen Formel (I) beispielsweise Gruppen wie Hydroxy, Carboxy oder andere, saure Eigenschaften induzierende Gruppen, so können diese Verbindungen mit Basen zu Salzen umgesetzt werden. Geeignete Basen sind beispielsweise Hydroxide, Carbonate, Hydrogencarbonate der Alkaliund Erdalkalimetalle, insbesondere die von Natrium, Kalium, Magnesium und Calcium, weiterhin Ammoniak, primäre, sekundäre und tertiäre Amine mit (C₁-C₄)-Alkylresten sowie Mono-, Di- und Trialkanolamine von (C₁-C₄)-Alkanolen. Tragen die Verbindungen der allgemeinen Formel (I) beispielsweise Gruppen wie Amino, Alkylamino oder andere, basische Eigenschaften induzierende Gruppen, so können diese Verbindungen mit Säuren zu Salzen umgesetzt werden. Geeignete Säuren sind beispielsweise Mineralsäuren, wie Salz-, Schwefel- und Phosphorsäure, organische Säuren, wie Essigsäure oder Oxalsäure, und saure Salze, wie NaHSO₄ und KHSO₄. Die so erhältlichen Salze weisen ebenfalls insektizide, akarizide und nematizide Eigenschaften auf.

Die Verbindungen der allgemeinen Formel (I) können ein oder mehrere asymmetrische Kohlenstoffatome oder Stereoisomere an Doppelbindungen aufweisen. Es können daher Enantiomere oder Diastereomere auftreten. Die Erfindung umfaßt sowohl die reinen Isomeren als auch deren Gemische. Die Gemische von Diastereomeren können nach gebräuchlichen Methoden, z.B. durch selektive Kristallisation aus geeigneten Lösungsmitteln oder durch Chromatographie in die Isomeren aufgetrennt werden. Racemate können nach üblichen Methoden in die Enantiomeren aufgetrennt werden.

WO 00/35913

Die Herstellung der erfindungsgemäßen Verbindungen erfolgt nach an sich literaturbekannten Methoden, wie sie in Standardwerken zur Organischen Synthese, z.B. Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart, beschrieben werden.

Die Herstellung erfolgt dabei unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen.

Die Ausgangsstoffe können gewünschtenfalls auch in situ gebildet werden, und zwar derart, daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel (I) umsetzt.

Zur Herstellung von Verbindungen der allgemeinen Formel (I) setzt man z.B. aktivierte Derivate der Säure der allgemeinen Formel (II),

in Gegenwart einer Base mit einer Verbindung der Formel (III) um,

HO N (III)
$$H_2N \longrightarrow X-Y-R$$

in welcher der Rest X-Y-R wie in Formel (I) definiert ist oder einer Vorstufe eines solchen Rests entspricht. Als aktiviertes Derivat kann beispielsweise ein Säurehalogenid, ein Ester oder ein Anhydrid eingesetzt werden. Als Basen eignen sich Amine, wie Triethylamin, Diisopropylethylamin, Pyridin oder Lutidin, Alkalimetallhydroxide, Alkalimetallalkoholate, wie Natriumethanolat oder Kalium-tertbutanolat, oder Alkylmetallverbindungen, wie Butyllithium.

Die beschriebene Reaktion kann je nach Wahl der Bedingungen als Einstufenprozeß oder als Zweistufenprozeß durchgeführt werden, wobei Verbindungen der Formel (IV) durchlaufen werden:

$$CF_3$$
 O N R' (IV)

Verbindungen der Formel (IV) können durch Erhitzen in einem inerten Lösungsmittel zu den 1,2,4-Oxadiazolen bei Temperaturen bis zu 180°C sowie durch Zusatz wasserentziehender Reagentien (z.B. Amberlyst) cyclisiert werden.

Verbindungen der Formel (IV) sind auch direkt zugänglich aus der Säure der Formel (II) und Amidoximen der Formel (III) durch Verwendung eines wasserentziehenden Reagenzes wie Dicyclohexylcarbodiimid, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimid oder N,N'-Carbonyldiimidazol.

Sowohl 4-Trifluormethylnicotinsäure (II) wie auch Amidoxime der Formel (III) sind käuflich oder können nach literaturbekannten Verfahren hergestellt werden (siehe zum Beispiel: Houben-Weyl, Methoden der organischen Chemie, Band X/4, Seite 209-212; EP-A 0 580 374; G.F. Holland, J.N. Pereira, J. Med. Chem., 1967, 10, 149).

Nach beendetem Aufbau der Oxadiazolylgruppe, die in der nachfolgenden Grafik beispielhaft aufgezeigt wird, durch z.B. Kondensations-, Cyclisierungs- oder Cycloadditionsreaktionen kann der Rest R noch gewünschtenfalls weiter derivatisiert werden, wobei die breite Methodenpalette der organisch-chemischen Synthese eingesetzt werden kann.

$$CF_3$$
 CO_2H
 CO_2H

WO 00/35913

Als zentrale Intermediate von Ethern, Thioethern und analogen Derivaten dienen haloalkyl-, hydroxyalkyl- sowie aminoalkylsubstituierte Oxadiazol-Derivate der Formel (V),

$$CF_3$$
 N O N (V) N $Mit V = CI, Br, I, OH, NH2$

die dann nach Standardverfahren der organischen Synthese in die entsprechenden Zielverbindungen umgewandelt werden können.

Ether der Formel (I) sind durch Veretherung entsprechender Hydroxyverbindungen erhältlich, wobei die Hydroxyverbindung zweckmäßig zunächst in ein entsprechendes Metallderivat, z.B. durch Behandeln mit NaH, NaNH₂, NaOH, KOH, Na₂CO₃ in das entsprechende Alkalimetallalkoholat übergeführt wird. Dieses kann dann mit dem entsprechenden Alkylhalogenid, Alkylsulfonat oder Dialkylsulfat umgesetzt werden, zweckmäßig in einem inertem Lösungsmittel, wie Aceton, 1,2-Dimethoxyethan, DMF oder Dimethylsulfoxid, oder auch mit einem Überschuß an wäßriger oder wäßrig-alkoholischer NaOH oder KOH bei Temperaturen zwischen etwa 20°C und 100°C.

Derivate der Aminoverbindung (VI) können beispielsweise durch Reaktion der Chlorverbindung ((V), V = CI) mit Aminen

oder über das zentrale Intermediat ((V); $V = NH_2$) hergestellt werden. Der Aufbau des zentralen Intermediats ((V); $V = NH_2$) gelingt entweder durch Umsetzung des Chlorderivats ((V); V = CI) mit Ammoniak in Gegenwart einer geeigneten Base oder besser durch Reaktion desselben Chlorderivats ((V); V = CI) mit Kaliumphthalimid und anschließender Hydrazinolyse. Die weitere Derivatisierung dieses zentralen Intermediats ((V); $V = NH_2$) erfolgt durch Umsetzung mit geeigneten Elektrophilen.

Zur Herstellung der Sulfoxide ((VII); n =1) und der Sulfone ((VII); n=2) verwendet man beispielsweise die entsprechenden Thioether der allgemeinen Formel (VII); n=0):

Die Synthese gelingt durch Oxidation mit einem Oxidationsmittel, wie z.B. meta-Chlorperbenzoesäure, durch geeignete Wahl von Stöchiometrie und Temperatur.

Die Synthese der Esteralkyl-substituierten Oxadiazol-Derivate (VIII) gelingt beispielsweise durch Substitution von Chlor in ((V); V = CI) mit Alkalicarboxylaten oder durch Veresterung des Hydroxyalkyloxadiazols ((V); V = OH) mit aktivierten Carbonsäurederivaten.

Aus dem Hydroxyalkyloxadiazol ((V); V = OH) lassen sich auf analoge Weise auch die entsprechenden Sulfonate generieren.

24

Zur Darstellung der Sulfonamide (X) wird die Chloralkylverbindung ((V); V = Cl) mit Natriumsulfit in das entsprechende Natriumsulfonat (IX) überführt, das dann seinerseits zu dem angestrebten Sulfonamid (X) weiter derivatisiert werden kann.

$$\begin{array}{c} \mathsf{CF_3} \\ \mathsf{N} \\$$

Kollektionen aus Verbindungen der Formel (I), die nach oben genannten Schema synthetisiert werden können, können auch in parallelisierter Weise hergestellt werden, wobei dies in manueller, teilweise automatisierter oder vollständig automatisierter Weise geschehen kann. Dabei ist es beispielsweise möglich, die Reaktionsdurchführung, die Aufarbeitung oder die Reinigung der Produkte bzw. Zwischenstufen zu automatisieren. Insgesamt wird hierunter eine Vorgehensweise verstanden, wie sie beispielsweise durch S.H. DeWitt in "Annual Reports in Combinatorial Chemistry and Molecular Diversity: Automated Synthesis", Band 1, Verlag Escom 1997, Seite 69 bis 77 beschrieben ist.

Zur parallelisierten Reaktionsdurchführung und Aufarbeitung können eine Reihe von im Handel erhältlichen Geräten verwendet werden, wie sie beispielsweise von den Firmen Stem Corporation, Woodrolfe road, Tollesbury, Essex, CM9 8SE, England oder H+P Labortechnik GmbH, Bruckmannring 28, 85764 Oberschleißheim, Deutschland oder der Firma Radleys, Shirehill, Saffron Walden, Essex, England, angeboten werden. Für die parallelisierte Aufreinigung von Verbindungen der allgemeinen Formel (I) beziehungsweise von bei der Herstellung anfallenden Zwischenprodukten stehen unter anderem Chromatographieapparaturen zur Verfügung, beispielsweise der Firma ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.

Die aufgeführten Apparaturen führen zu einer modularen Vorgehensweise, bei der die einzelnen Arbeitsschritte automatisiert sind, zwischen den Arbeitsschritten jedoch manuelle Operationen durchgeführt werden müssen. Dies kann durch den Einsatz von teilweise oder vollständige integrierten Automationssystemen umgangen werden, bei denen die jeweiligen Automationsmodule beispielsweise durch Roboter bedient werden. Derartige Automationssysteme können zum Beispiel von der Firma Zymark Corporation, Zymark Center, Hopkinton, MA 01748, USA bezogen werden.

Neben den hier beschriebenen kann die Herstellung von Verbindungen der allgemeinen Formel (I) vollständig oder partiell durch Festphasen - unterstützte - Methoden erfolgen. Zu diesem Zweck werden einzelne Zwischenstufen oder alle Zwischenstufen der Synthese oder einer für die entsprechende Vorgehensweise angepaßten Synthese an ein Syntheseharz gebunden. Festphasen – unterstützte - Synthesemethoden sind in der Fachliteratur hinreichend beschrieben, z.B. Barry A. Bunin in "The Combinatorial Index", Verlag Academic Press, 1998.

Die Verwendung von Festphasen unterstützten Synthesemethoden erlaubt eine Reihe von literaturbekannten Protokollen, die wiederum manuell oder automatisierten ausgeführt werden können. Zum Beispiel kann die

"Teebeutelmethode" (Houghten, US 4,631,211; Houghten et al., Proc. Natl. Acad. Sci, 1985, 82, 5131-5135) mit Produkten der Firma IRORI, 11149 North Torrey Pines Road, La Jolla, CA 92037, USA teilweise automatisiert werden. Die Automatisierung von Festphasen unterstützten Parallelsynthesen gelingt beispielsweise durch Apparaturen der Firmen Argonaut Technologies, Inc., 887 Industrial Road, San Carlos, CA 94070, USA oder MultiSynTech GmbH, Wullener Feld 4, 58454 Witten, Deutschland.

Die Herstellung gemäß der hier beschriebenen Verfahren liefert Verbindungen der Formel (I) in Form von Substanzkollektionen, die Bibliotheken genannt werden. Gegenstand der vorliegenden Erfindung sind auch Bibliotheken, die mindestens zwei Verbindungen der Formel (I) enthalten.

Die Verbindungen der Formel (I) eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen und Mollusken, ganz besonders bevorzugt zur Bekämpfung von Insekten und Spinnentieren, die in der Landwirtschaft, bei der Tierzucht, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Acarina z.B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Eotetranychus spp., Oligonychus spp., Eutetranychus spp.. Aus der Ordnung der Isopoda z.B. Oniscus aselus, Armadium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spp..

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

WO 00/35913

27

PCT/EP99/09684

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

Aus der Ordnung der Orthoptera z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria. Aus der Ordnung des Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Anoplura z.B. Phylloera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp..

Aus der Ordnung der Mallophaga z.B. Trichodectes pp., Damalinea spp..

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci.

Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius,

Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp..

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelus bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp..

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Laphygma exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni,

Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylloides chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrynchus assimilis, Hypera postica, Dermestes spp., Trogoderma, Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica.

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp..

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hypobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopsis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z.B. Scorpio maurus, Latrodectus mactans. Aus der Klasse der Helminthen z.B. Haemonchus, Trichostrongulus, Ostertagia, Cooperia, Chabertia, Strongyloides, Oesophagostomum, Hyostrongulus, Ancylostoma, Ascaris und Heterakis sowie Fasciola.

Aus der Klasse der Gastropoda z.B. Deroceras spp., Arion spp., Lymnaea spp., Galba spp., Succinea spp., Biomphalaria spp., Bulinus spp., Oncomelania spp.. Aus der Klasse der Bivalva z.B. Dreissena spp..

Zu den pflanzenparasitären Nematoden, die erfindungsgemäß bekämpft werden können, gehören beispielsweise die wurzelparasitären Bodennematoden wie z.B. solche der Gattungen Meloidogyne (Wurzelgallennematoden, wie Meloidogyne incognita, Meloidogyne hapla und Meloidogyne javanica), Heterodera und

29

Globodera (zystenbildende Nematoden, wie Globodera rostochiensis, Globodera pallida, Heterodera trifolii) sowie der Gattungen Radopholus wie Radopholus similis, Pratylenchus wie Pratyglenchus neglectus, Pratylenchus penetrans und Pratylenchus curvitatus;

Tylenchulus wie Tylenchulus semipenetrans, Tylenchorhynchus, wie Tylenchorhynchus dubius und Tylenchorhynchus claytoni, Rotylenchus wie Rotylenchus robustus, Heliocotylenchus wie Haliocotylenchus multicinctus, Belonoaimus wie Belonoaimus longicaudatus, Longidorus wie Longidorus elongatus, Trichodorus wie Trichodorus primitivus und Xiphinema wie Xiphinema index.

Ferner lassen sich mit den erfindungsgemäßen Verbindungen die Nematodengattungen Ditylenchus (Stengelparasiten, wie Ditylenchus dipsaci und Ditylenchus destructor), Aphelenchoides (Blattnematoden, wie Aphelenchoides ritzemabosi) und Anguina (Blütennematoden, wie Anguina tritici) bekämpfen.

Die Erfindung betrifft auch Mittel, beispielsweise Pflanzenschutzmittel, vorzugsweise insektizide, akarizide, ixodizide, nematizide, molluskizide oder fungizide, besonders bevorzugt insektizide und akarizide Mittel, die eine oder mehrere Verbindungen der Formel (I) neben geeigneten Formulierungshilfsmitteln enthalten.

Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formel (I) im allgemeinen zu 1 bis 95 Gew.-%.

Zur Herstellung der erfindungsgemäßen Mittel gibt man den Wirkstoff und die weiteren Zusätze zusammen und bringt sie in eine geeignete Anwendungsform.

Die Erfindung betrifft auch Mittel, insbesondere insektizide und akarizide Mittel, die die Verbindungen der Formel (I) neben geeigneten Formulierungshilfsmitteln enthalten.

Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formeln (I) im allgemeinen zu 1 bis 95 Gew.-%. Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemischphysikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher beispielsweise in Frage:

Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SL), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SE), Stäubemittel (DP), Beizmittel, Granulate in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Wachse oder Köder.

Diese einzelnen Formulierungstypen sind im Prinzip bekannt und beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.

Die notwendigen Formulierungshilfsmittel, d.h. Träger- und/oder oberflächenaktive Stoffe, wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Garriers", 2nd Ed., Darland Books, Caldwell N.J.; H. v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1967; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.

Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren

31

herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z.B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenol-sulfonate und Dispergiermittel, z.B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium enthalten.

Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Cadodecylbenzol-sulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester.

Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit, Pyrophillit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise gewünschtenfalls in Mischung mit Düngemitteln – granuliert werden.

In Spritzpulvern beträgt die Wirkstoffkonzentration üblicherweise etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-

% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.

Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.

Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.

Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u.a. variiert die erforderliche Aufwandmenge. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,0005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,001 und 5 kg/ha Wirkstoff.

Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischungen mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen.

Zu den Schädlingsbekämpfungsmitteln zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinnverbindungen und durch Mikroorganismen hergestellte Stoffe.

Bevorzugte Mischungspartner sind:

33

1. aus der Gruppe der Phosphorverbindungen

Acephate, Azamethiphos, Azinphos-ethyl, Azinphos-methyl, Bromophos, Bromophos-ethyl, Cadusafos (F-67825), Chlorethoxyphos, Chlorfenvinphos, Chlormephos, Chlorpyrifos, Chlorpyrifos-methyl, Demeton, Demeton-S-methyl, Demeton-S-methyl, Demeton-S-methyl sulfon, Dialifos, Diazinon, Dichlorvos, Dicrotophos, Dimethoate, Disulfoton, EPN, Ethion, Ethoprophos, Etrimfos, Famphur, Fenamiphos, Fenitriothion, Fensulfothion, Fenthion, Fonofos, Formothion, Fosthiazate (ASC-66824) Heptenophos, Isazophos, Isothioate, Isoxathion, Malathion, Methacrifos, Methamidophos, Methidathion, Salithion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosfolan, Phosphocarb (BAS-301), Phosmet, Phosphamidon, Phoxim, Pirimiphos, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Propaphos, Proetamphos, Prothiofos, Pyraclofos, Pyridapenthion, Quinalphos, Sulprofos, Temephos, Terbufos, Tebupirimfos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorphon, Vamidothion;

2. aus der Gruppe der Carbamate

Alanycarb (OK-135), Aldicarb, 2-sec.-Butylphenylmethylcarbamate (BPMC), Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Benfuracarb, Ethiofencarb, Furathiocarb, HCN-801, Isoprocarb, Methomyl, 5-Methyl-m-cumenylbutyryl(methyl)carbamate, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, 1-Methylthio(ethylideneamino)-N-methyl-N-(morpholinothio)carbamate (UC 51717), Triazamate;

3. aus der Gruppe der Carbonsäureester

Acrinathrin, Allethrin, Alphametrin, 5-Benzyl-3-furylmethyl-(E)-(1R)-cis-2,2-dimethyl-3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, Beta-Cyfluthrin, Beta-Cypermethrin, Bioallethrin, Bioallethrin((S)-cyclopentylisomer), Bioresmethrin, Bifenthrin, (RS)-1-Cyano-1-(6-phenoxy-2-pyridyl)methyl-(1RS)-trans-3-(4-tert.butylphenyl)-2,2-dimethylcyclopropanecarboxylate (NCI 85193), Cycloprothrin, Cyfluthrin, Cyhalothrin, Cythithrin, Cypermethrin, Cyphenothrin, Deltamethrin,

34

Empenthrin, Esfenvalerate, Fenfluthrin, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, Fluvalinate (D-Isomer), Imiprothrin (S-41311), Lambda-Cyhalothrin, Permethrin, Phenothrin ((R)-Isomer), Prallethrin, Pyrethrine (natürliche Produkte), Resmethrin, Tefluthrin, Tetramethrin, Theta-Cypermethrin (TD-2344), Tralomethrin, Transfluthrin, Zeta-Cypermethrin (F-56701);

- aus der Gruppe der Amidine
 Amitraz, Chlordimeform;
- aus der Gruppe der Zinnverbindungen
 Cyhexatin, Fenbutatinoxide;

6. Sonstige

Abamectin, ABG-9008, Acetamiprid, Anagrapha falcitera, AKD-1022, AKD-3059. ANS-118, Bacillus thuringiensis, Beauveria bassianea, Bensultap, Bifenazate (D-2341), Binapacryl, BJL-932, Bromopropylate, BTG-504, BTG-505, Buprofezin, Camphechlor, Cartap, Chlorobenzilate, Chlorfenapyr, Chlorfluazuron, 2-(4-Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlorfentezine, Chromafenozide (ANS-118), CG-216, CG-217, CG-234, A-184699, Cyclopropancarbonsäure-(2naphthylmethyl)ester (Ro12-0470), Cyromazin, Diacloden (Thiamethoxam), Diafenthiuron, N-(3,5-Dichlor-4-(1,1,2,3,3,3-hexafluor-1-propyloxy) phenyl)carbamoyl)-2-chlorbenzcarboximidsäureethylester, DDT, Dicofol, Diflubenzuron, N-(2,3-Dihydro-3-methyl-1,3-thiazol-2-ylidene)-2,4-xylidine, Dinobuton, Dinocap, Diofenolan, DPX-062, Emamectin-Benzoate (MK-244), Endosulfan, Ethiprole (Sulfethiprole), Ethofenprox, Etoxazole (YI-5301), Fenazaguin, Fenoxycarb, Fipronil, Fluazuron, Flumite (Flufenzine, SZI-121), 2-Fluoro-5-(4-(4ethoxyphenyl)-4-methyl-1-pentyl)diphenylether (MTI 800), Granulose- und Kernpolyederviren, Fenpyroximate, Fenthiocarb, Flubenzimine, Flucycloxuron. Flufenoxuron, Flufenprox (ICI-A5683), Fluproxyfen, Gamma-HCH, Halofenozide (RH-0345), Halofenprox (MTI-732), Hexaflumuron (DE 473), Hexythiazox, HOI-9004, Hydramethylnon (AC 217300), Lufenuron, Imidacloprid, Indoxacarb (DPX-

35

MP062), Kanemite (AKD-2023), M-020, MTI-446, Ivermectin, M-020, Methoxyfenozide (Intrepid, RH-2485), Milbemectin, NC-196, Neemgard, Nitenpyram (TI-304), 2-Nitromethyl-4,5-dihydro-6H-thiazin (DS 52618), 2-Nitromethyl-3,4-dihydrothiazol (SD 35651), 2-Nitromethylene-1,2-thiazinan-3-ylcarbamaldehyde (WL 108477), Pyriproxyfen (S-71639), NC-196, NC-1111, NNI-9768, Novaluron (MCW-275), OK-9701, OK-9601, OK-9602, Propargite, Pymethrozine, Pyridaben, Pyrimidifen (SU-8801), RH-0345, RH-2485, RYI-210, S-1283, S-1833, SB7242, SI-8601, Silafluofen, Silomadine (CG-177), Spinosad, SU-9118, Tebufenozide, Tebufenpyrad (MK-239), Teflubenzuron, Tetradifon, Tetrasul, Thiacloprid, Thiocyclam, TI-435, Tolfenpyrad (OMI-88), Triazamate (RH-7988), Triflumuron, Verbutin, Vertalec (Mykotal), YI-5301,

Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in Ch.R Worthing, S.B. Walker, The Pesticide Manual, 11. Auflage, British Crop Protection Council Farnham, 1997 beschrieben sind.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann von 0,00000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,00001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Bekämpfung von Endound Ektoparasiten auf dem veterinärmedizinischen Gebiet bzw. auf dem Gebiet der Tierhaltung. Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht hier in bekannter Weise wie durch orale Anwendung in Form von beispielsweise Tabletten, Kapseln, Tränken, Granulaten, durch dermale Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießen (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion.

36

Die erfindungsgemäßen Verbindungen der Formel (I) können demgemäß auch besonders vorteilhaft in der Viehhaltung (z.B. Rinder, Schafe, Schweine und Geflügel wie Hühner, Gänse usw.) eingesetzt werden. In einer bevorzugten Ausführungsform der Erfindung werden den Tieren die Verbindungen, gegebenenfalls in geeigneten Formulierungen und gegebenenfalls mit dem Trinkwasser oder Futter oral verabreicht. Da eine Ausscheidung im Kot in wirksamer Weise erfolgt, läßt sich auf diese Weise sehr einfach die Entwicklung von Insekten im Kot der Tiere verhindern. Die jeweils geeigneten Dosierungen und Formulierungen sind insbesondere von der Art und dem Entwicklungsstadium der Nutztiere und auch vom Befallsdruck abhängig und lassen sich nach den üblichen Methoden leicht ermitteln und festlegen. Die Verbindungen können bei Rindern z.B. in Dosierungen von 0,01 bis 1 mg/kg Körpergewicht eingesetzt werden.

Neben den bisher genannten Applikationsverfahren zeigen die erfindungsgemässen Wirkstoffe der Formel (I) eine hervorragende systemische Wirkung. Die Wirkstoffe können daher auch über Pflanzenteile, unterirdische wie oberirdische (Wurzel, Stengel, Blatt), in die Pflanzen eingebracht werden, wenn die Wirkstoffe in flüssiger oder fester Form in die direkte Umgebung der Pflanze appliziert werden (z.B. Granulate in der Erdapplikation, Applikation in gefluteten Reisfeldern).

Daneben sind die erfindungsgemäßen Wirkstoffe in besonderer Weise zu Behandlung von vegetativen und generativen Vermehrungsmaterial einsetzbar, wie z.B. von Saatgut von beispielsweise Getreide, Gemüse, Baumwolle, Reis, Zuckerrübe und anderen Kultur- und Zierpflanzen, von Zwiebeln, Stecklingen und Knollen weiterer vegetativ vermehrter Kultur- und Zierpflanzen. Die Behandlung hierfür kann vor der Saat bzw. dem Pflanzvorgang erfolgen (z.B. durch spezielle Techniken des Seedcoatings, durch Beizung in flüssiger oder fester Form oder Seedboxtreatment), während des Saatvorgangs bzw. des Pflanzens oder nach dem Saat- bzw. Pflanzvorgang durch spezielle Applikationstechniken (z.B. Saatreihenbehandlung). Die angewandte Wirkstoffmenge kann entsprechend der

37

Anwendung in einem größerem Bereich schwanken. Im allgemeinen liegen die Aufwandmengen zwischen 1 g und 10 kg Wirkstoff pro Hektar Bodenfläche.

Die Verbindungen der Formel (I) können auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pflanzenschutzmitteln, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten, wie bestimmten Insekten oder Mikroorganismen, wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt.

Bevorzugt ist die Anwendung in wirtschaftlich bedeutenden transgenen Kulturen von Nutz- und Zierpflanzen, z.B. von Getreide, wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis, Maniok und Mais, oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten.

Bei der Anwendung in transgenen Kulturen, insbesondere mit Insektenresistenzen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadorganismen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Schädlingsspektrum, das bekämpft werden kann oder veränderte Aufwandmengen, die für die Applikation eingesetzt werden können.

Gegenstand der Erfindung ist deshalb auch die Verwendung von Verbindungen der Formel (I) zur Bekämpfung von Schadorganismen in transgenen Kulturpflanzen.

38

Die Anwendung der erfindungsgemäßen Verbindungen beinhaltet neben direkter Applikation auf die Schädlinge jede andere Applikation, bei der Verbindungen der Formel (I) auf die Schädlinge wirken. Solche indirekten Applikationen können beispielsweise in der Anwendung von Verbindungen liegen, die, beispielsweise im Boden, der Pflanze oder dem Schädling, zu Verbindungen der Formel (I) zerfallen oder abgebaut werden.

Auf den Inhalt der deutschen Patentanmeldung 198 581 93.9, deren Priorität die vorliegende Anmeldung beansprucht, sowie auf den Inhalt der beiliegenden Zusammenfassung wird hiermit ausdrücklich Bezug genommen; sie gelten durch Zitat als Bestandteil dieser Beschreibung.

Nachfolgende Beispiele dienen zur Erläuterung der Erfindung.

A. Chemische Beispiele

Beispiel 1

Eine Lösung von 4-Trifluormethylnicotinsäure (2,2 g) in 40 ml THF wurde bei Raumtemperatur mit 1,1-Carbonyldiimidazol (1,9 g) versetzt und 30 min auf 40°C erhitzt. Anschließend gab man Furfurylsulfonylacetamidoxim (2,5 g) zu und ließ bei 40°C weitere 5 h rühren. Dann wurde das Reaktionsgemisch im Vakuum eingeengt und auf Eiswasser gegossen. Der entstandene Niederschlag wurde abgesaugt und abschließend im Trockenschrank getrocknet. Man erhielt 4-Trifluormethylnicotinsäure-(furfurylsulfonylacetamidoxim)-ester in Form eines farblosen Feststoffs (Schmelzpunkt 171°C).

¹H-NMR (DMSO-d⁶, 300 MHz): 4.09 (s, 2H), 4.86 (s, 2H), 6.55 (m, 1H), 6.63 (m, 1H), 7.08 (s, 2H), 7.75 (m, 1H), 7.94 (d, J=5Hz, 1H), 9.07 (d, J=5Hz, 1H), 9.30 (s, 1H).

Beispiel 2

Den zuvor beschriebenen Amidoximester (4,0 g) versetzte man mit 80 ml Toluol und 60 ml Xylol sowie Amberlyst 15 (1,0 g). Das Reaktionsgemisch wurde 6 h auf 125°C erhitzt. Anschließend wurde abgesaugt und das Filtrat im Vakuum eingeengt und durch Chromatographie (Kieselgel, Ethylacetat/Petrolether, 4:1) gereinigt. Durch abschließendes Ausrühren mit n-Heptan erhielt man [5-(4'-Trifluormethylpyridin-3'yl)-[1,2,4]-oxdiazol-3-methyl]-furfuryl-sulfon als hellgelben Feststoff (Schmelzpunkt 99°C).

¹H-NMR (CDCl₃, 300 MHz): 4.53 (s, 2H), 4.62 (s, 2H), 6.44 (m, 1H), 6.69 (m 1H), 7.54 (m, 1H), 7.82 (d, J=5Hz, 1H), 9.08 (d, J=5Hz, 1H), 9.40 (s, 1H).

Beispiel 3

Ein Gemisch von 3-Chlormethyl-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol (1,0 g), Natriumsulfit (0,9 g), Wasser (18 ml) und Methanol (18 ml) wurde 6 Stunden lang bei 50° gerührt. Anschließend wurde das Reaktionsgemisch eingeengt der Rückstand in Methanol aufgenommen und filtriert. Danach wurde die Methanol-Lösung eingeengt und den Rückstand mit Dieethylether ausgerührt. Auf diese Weise wurde

als schwach gelblicher Feststoff erhalten (Fp = 214°C).

40

¹H-NMR (DMSO-d⁶, 300 MHz): 4.02 (s, 2H), 8.09 (d, J=5H, 1H), 9.15 (d, J=5Hz, 1H), 9.33 (s, 1H).

Das oben beschriebene Natriumsulfonat (0,95 g) wurde in Phosphoroxychlorid 30 ml) suspendiert und 5 Stunden lang auf Rückflußtemperatur erhitzt. Anschließend wurde das überschüssige Phosphoroxychlorid abdestilliert und das zurückbleibende Sulfonylchlorid in Dichlormethan (10 ml) aufgenommen. Diese Suspension wurde mit Ethylmethylamin (150 ml) versetzt und noch eine Stunde bei Raumtemperatur nachgerührt.

Anschließend wurde mit Wasser, 5 %iger wäßriger Kaliumhydrogensulfatlösung und mit gesättigter Natriumhydrogencarbonatlösung gewaschen. Das nach Trocknen (MgSO₄) und Einengen der Dichlormethanphase erhaltene Rohprodukt wurde chromatographisch gereinigt. Auf diese Weise wurde das gewünschte Sulfonamid als farbloses Öl erhalten.

¹H-NMR (CDCl₃, 300 MHz): 1.23 (6, J=7Hz, 3H), 2.92 (s, 3H), 3.25 (Q, J=7Hz), 2H), 4.54 (s, 2H), 7.90 (d, J=5Hz, 1H), 9.06 (d, J=5Hz, 1H), 9.35 (s, 1H).

In analoger Weise werden die in Tabelle 1 aufgeführten Sulfonamide hergestellt.

Beispiel 4

3-[(2-Hydroxyethyl)thiomethyl]-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol

Zu einer Lösung von 3-Chlormethyl-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol (0,5 g), 2-Mercaptoethanol (0,13 g) in Methanol (5 ml) wurde Natriummethanolatlösung (0,31 ml, 30 % in Methanol) gegeben und 5 Stunden bei Raumtemperatur gerührt.

41

PCT/EP99/09684

Anschließend wurde Wasser zugesetzt und mit Essigsäureethylester extrahiert. Die organische Phase wurde mit Wasser gewaschen, getrocknet (MgSO₄), filtriert und eingeengt. Die chromatographische Reinigung erfolgte an Kieselgel mit Heptan/Essigsäureethylester. Das Rohprodukt ergab die gewünschte Verbindung als schwach braunes ÖI.

¹H-NMR (CDCl₃, 300 MHz): 2.88 (t, J=7Hz, 2H), 3.04 (b, s, 1H), 3.82 (t, J=7Hz, 2H), 3.94 (s, 2H), 7.80 (d, J=5Hz, 1H), 9.04 (d, J=5Hz, 1H), 9.35 (s, 1H).

Beispiel 5

WO 00/35913

3-Ethoxymethy!-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol

3-lodmethyl-5-(4-trifluormethyl-3-pyridyl)-1,2,4-oxadiazol (0,5 g) wurde in einer frisch hergestellten Natriumethanolatlösung (30 mg Natrium in 7 ml Ethanol) gelöst und 6 Stunden lang bei Raumtemperatur gerührt.

Anschließend wurde das Reaktionsgemisch eingeengt, in Essigsäureethylester aufgenommen, mit Wasser gewaschen, getrocknet (MgSO₄), filtriert und eingeengt.

Die chromatographische Reinigung des Rohprodukts ergab den gewünschten Ether als gelbliches Öl.

¹H-NMR (CDCl₃, 300 MHz): 1.31 (t, J=7Hz, 3H), 3.72 (t, J=7Hz, 2H), 4.76 (s, 2H), 7.70 (d, J=5Hz, 1H), 9.03 (d, J=5Hz, 1H), 9.33 (s, 1H).

In analoger Weise werden die in Tabelle 1 aufgeführten Ether hergestellt.

Beispiel 6

Ethyl-[(4'-(trifluormethyl)pyridin-3'-yl)-5-[1,2,4]-oxadiazol-3-methyl]-carbonat

3-Hydroxymethyl-5-(4'-(trifluormethyl)-pyridin-3'-yl)-[1,2,4]-oxadiazol (1,0 g) wurde in Acetonitril (10 ml) vorgelegt und mit Triethylamin (0,5 g) versetzt. Nach Zugabe von Chlorameisensäureethylester (0,5 g) wurde 6 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde sodann mit Ethylacetat (5 ml) versetzt, mit 2N Natriumcarbonatlösung gewaschen und über MgSO₄ getrocknet. Das nach Abfiltrieren des Trockenmittels und Einengen im Vakuum erhaltene Rohprodukt wurde säulenchromatographisch (Kieselgel, n-Heptan/Ethylacetat, 1:1) gereinigt. Man erhielt das angestrebte Produkt als Öl.

¹H-NMR (CDCl₃, 300 MHz): 1.38 (t, J=7Hz, 3H), 4.31 (q, J=7Hz, 2H), 5.43 (s, 2H), 7.80 (d, J=5Hz, 1H), 9.04 (d, J=5Hz, 1H), 9.37 (s, 1H).

Tabelle 1:

Bsp. Nr.	Υ	R	R'	m.p. [°C]
1	0	n-Pr		
2	0	i-Pr		
3	0	n-Bu		
4	0	i-Bu		Öl
5	0	Allyl		
6	0	CH ₂ C≡CH		
7	0	CH=CH ₂		
8	0	CH ₂ CH ₂ F		
9	0	CF ₃		
10	0	CH ₂ CF ₃		
11	0	CH₂CN		
12	0	Cyclopropyl		
13	0	Cyclopropylmethyl		
14	0	CH₂CO₂Me		

Bsp. Nr.	Y	R	R'	m.p. [°C]
15	0	CH ₂ CH ₂ NMe ₂		
16	О	CH ₂ -(N-morpholinyl)		
17	O	2-Chlor-pyridin-5-yl-methyl		
18	ő	2-Furanyl		
1				
19	0	2-Pyrimidinyl		
20	0	2-Oxazolyl		
21	0	5-[1,2,4]-oxdiazolyl		
22	0	Tetrazolyl		
23	S	Н		
24	S	Me		
25	s	Et		, i
26	S	n-Pr		
27	S	i-Pr		
	S			
28		n-Bu		
29	S	i-Bu		
30	S	Allyi		
31	s	CH ₂ C≡CH		
32	s	CH=CH ₂		
33	s	CH ₂ CH ₂ F		
34	s	CF ₃		
35	s	CH ₂ CF ₃		
36	s			
	3	CH₂CN		
37	S S	Cyclopropyl		
38	S	Cyclopropylmethyl		
39	S	CH₂CO₂Me		
40	S S	CH ₂ CH ₂ NMe ₂		
41	S	CH ₂ -(N-morpholinyl)		
42	s	2-Chlor-pyridin-5-yl-methyl		
43	S	2-Furanyl		
44	S	2-Pyrimidinyl		
45	s	2-Oxazolyl		
46	s	· ·		
l .	S	5-[1,2,4]-oxdiazolyl		
47		Tetrazolyl		
48	S(O)	Me		
49	S(O)	Et		
50	S(O)	n-Pr		
51	S(O)	i-Pr		
52	s(o)	n-Bu]	
53	S(O)	i-Bu		
54	S(O)	Allyl		
55		1	1	
į.	S(O)	CH ₂ C≡CH		
56	S(O)	CH=CH ₂		
57	S(O)	CH₂CH₂F		
58	S(O)	CF₃		
59	S(O)	CH₂CF₃	1	
60	S(O)	CH₂CN CH₂CN		
61	s(o)	Cyclopropyl		
62	S(O)	Cyclopropylmethyl		
63	S(O)	CH ₂ CO ₂ Me		
	1 - (-)	- 12002ING	L	I,

Bsp. Nr.	Y	R	R'	m.p. [°C]
64	S(O)	CH ₂ CH ₂ NMe ₂		
65	s(o)	CH ₂ -(N-morpholinyl)		
66	s(o)	2-Chlor-pyridin-5-yl-methyl		
67	S(O)	2-Furanyl		
68	S(O)	2-Pyrimidinyl		
69	S(O)	2-Oxazolyl		
70	S(O)	5-[1,2,4]-oxdiazolyl		
71	S(O)	Tetrazolyl		
72	S(O) ₂	Me		
73				
74	S(O) ₂	Et		
1	S(O) ₂	n-Pr		
75	S(O) ₂	i-Pr		
76	S(O) ₂	n-Bu		
77	S(O) ₂	i-Bu		
78	S(O) ₂	Allyl		
79	S(O) ₂	CH₂C≡CH		
80	S(O) ₂	CH=CH ₂		
81	S(O) ₂	CH₂CH₂F		
82	S(O) ₂	CF ₃		
83	S(O) ₂	CH ₂ CF ₃		
84	S(O) ₂	CH₂CN		
85	S(O) ₂	Cyclopropyl		
86	S(O) ₂	Cyclopropylmethyl		
87	S(O) ₂	CH ₂ CO ₂ Me		
88	S(O) ₂	CH ₂ CH ₂ NMe ₂		
89	S(O) ₂	CH ₂ -(N-morpholinyl)		
90	S(O) ₂	2-Chlor-pyridin-5-yl-methyl		1
91	S(O) ₂	2-Furanyl		
92	S(O) ₂	2-Pyrimidinyl		
93	S(O) ₂	2-Oxazolyl		
94	S(O) ₂	5-[1,2,4]-oxdiazolyl		
94a	S(O) ₂	Tetrazolyl		
95	OC(O)	Н		
96	OC(O)	Me		
97	OC(O)	Et		
98	OC(O)	n-Pr		
99	OC(O)	i-Pr		
100	OC(O)	n-Bu		
100	00(0)	i-Bu		
102	OC(O)	Allyl		
102	OC(O)	ę –		
103		CH ₂ C≡CH		
i .	OC(O)	CH=CH ₂		
105	OC(O)	CH₂CH₂F		
106	OC(O)	CF ₃		
107	OC(O)	CH₂CF ₃		
108	OC(O)	CH₂CN		
109	OC(O)	Cyclopropyl		
110	OC(O)	Cyclopropylmethyl		
111	OC(O)	CH ₂ CO ₂ Me		

Bsp. Nr.	Υ	R	R'	m.p. [°C]
112	OC(O)	CH ₂ CH ₂ NMe ₂	 	
113	oc(o)	CH ₂ -(N-morpholinyl)		
114	OC(O)	2-Chlor-pyridin-5-yl-methyl		
115	OC(O)	2-Furanyl		
116	OC(O)	2-Pyrimidinyl		
117	OC(O)	2-Oxazolyl		
118	OC(O)			
119	OC(O)	5-[1,2,4]-oxdiazolyl		
120		Tetrazolyl	ļ	
1	0C(0)0	Me		
121	OC(O)O	Et		
122	OC(O)O	n-Pr		
123	OC(O)O	i-Pr		
124	OC(O)O	n-Bu		
125	OC(O)O	i-Bu		
126	OC(O)O	Allyl		
127	OC(O)O	CH ₂ C≡CH		
128	OC(O)O	CH=CH ₂		
129	OC(O)O	CH ₂ CH ₂ F		
130	OC(O)O	CF ₃		
131	OC(O)O	CH ₂ CF ₃		
132	OC(O)O	CH₂CN CH₂CN		
133	00(0)0	Cyclopropyl		İ
134	00(0)0	Cyclopropylmethyl		
135	oc(o)o	CH₂CO₂Me		
136	00(0)0	CH ₂ CH ₂ NMe ₂		
137	00(0)0	CH ₂ -(N-morpholinyl)		
138	0C(0)0	2-Chlor-pyridin-5-yl-methyl		
139	0C(0)0	2-Furanyl		
140	0C(0)0	2-Pyrimidinyl		
141	0C(0)0	2-Oxazolyl		
142	0C(0)0			
143	00(0)0	5-[1,2,4]-oxdiazolyl		
144	00(0)0	Tetrazolyl		
		CH ₂ CH ₂ OMe		
145	OC(O)NR'	H	Н	
146	OC(O)NR'	Me	Н	
147	OC(O)NR'	Et_	Н	
148	OC(O)NR'	n-Pr	Н	
149	OC(O)NR'	i-Pr	Н	
150	OC(O)NR'	n-Bu	Н	
151	OC(O)NR'	i-Bu	Н	
152	OC(O)NR'	Aliyi	Н	
153	OC(O)NR'	CH ₂ C≡CH	Н	
154	OC(O)NR'	CH=CH ₂	Н	
155	OC(O)NR'	CH ₂ CH ₂ F	Н	
156	OC(O)NR'	CF ₃	Н	
157	OC(O)NR"	CH₂CF₃	Н	
158	OC(O)NR'	CH₂CN	Н	
159	OC(O)NR'	Cyclopropyl	H	
160	OC(O)NR'	Cyclopropylmethyl	H	
L	1 (- // · · ·	- Joseph Opymnetry:	<u> </u>	L

Bsp. Nr.	Υ	R	R'	m.p. [°C]
161	OC(O)NR'	CH ₂ CO ₂ Me	Н	
162	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Н	
163	OC(O)NR'	CH ₂ -(N-morpholinyl)	Н	
164	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Н	<u> </u>
165	OC(O)NR'	2-Furanyl	Н	
166	OC(O)NR'	2-Pyrimidinyl	H	
167	OC(O)NR'	2-Oxazolyl	H	
168	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Н	
169	OC(O)NR'	Tetrazolyl	H	
170	OC(0)NR'	H	Me	
171	OC(O)NR'	Me	Me	
172	OC(O)NR'	Et	1	ļ
173	OC(O)NR'	n-Pr	Ме	
173	OC(O)NR'	i-Pr	Ме	
175			Ме	
176	OC(O)NR'	n-Bu	Ме	
i i	OC(O)NR'	i-Bu	Ме	
177	OC(O)NR'	Allyl	Me	
178	OC(O)NR'	CH ₂ C≡CH	Ме	
179	OC(O)NR'	CH=CH ₂	Ме	
180	OC(O)NR'	CH ₂ CH ₂ F	Ме	
181	OC(O)NR'	CF₃	Ме	
182	OC(O)NR"	CH₂CF₃	Ме	
183	OC(O)NR'	CH₂CN	Ме	
184	OC(O)NR'	Cyclopropyl	Ме	
185	OC(O)NR'	Cyclopropylmethyl	Ме	
186	OC(O)NR'	CH₂CO₂Me	Me	
187	OC(O)NR'	CH₂CH₂NMe₂	Ме	
188	OC(O)NR'	CH ₂ -(N-morpholinyl)	Me	ŀ
189	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Ме	
190	OC(O)NR'	2-Furanyl	Me	
191	OC(O)NR'	2-Pyrimidinyl	Me	
192	OC(O)NR'	2-Oxazolyl	Me	
193	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
194	OC(O)NR'	Tetrazolyl	Me	
195	OC(O)NR'	Н	Et	
196	OC(O)NR'	Me	Et	
197	OC(O)NR'	Et	Et	
198	OC(O)NR'	n-Pr	Et	
199	OC(O)NR'	i-Pr	Et	
200	OC(O)NR'	n-Bu	Et	
201	OC(O)NR'	i-Bu	Et	
202	OC(O)NR'	Allyi	Et	
203	OC(O)NR'	CH ₂ C≡CH	Et	
204	OC(O)NR'	CH=CH ₂	Et	
205	OC(O)NR'	CH ₂ CH ₂ F	Et	
206	OC(0)NR'	CF ₃	Et	
207	OC(O)NR"	CH ₂ CF ₃	Et	
208	OC(O)NR'	CH ₂ CN	Et	
209	OC(O)NR'	Cyclopropyl	Et	
L		L = 3 Olopi opyi		

Bsp. Nr.	Y	R	R'	m.p. [°C]
210	OC(O)NR'	Cyclopropylmethyl	Et	
211	OC(O)NR'	CH ₂ CO ₂ Me	Et	ľ
212	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Et	
213	OC(O)NR'	CH ₂ -(N-morpholinyl)	Et	
214	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	
215	OC(O)NR'	2-Furanyl		
216		,	Et	
	OC(O)NR'	2-Pyrimidinyl	Et	
217	OC(O)NR'	2-Oxazolyl	Et	
218	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
219	OC(O)NR'	Tetrazolyl	Et	
220	OC(O)C(O)O	H		
221	OC(O)C(O)O	Me		
222	OC(O)C(O)O	Et		
223	OC(O)C(O)O	n-Pr		
224	OC(O)C(O)O	i-Pr		
225	00(0)0(0)0	n-Bu		
226	0000000	i-Bu		
227	00(0)0(0)0	Allyl		
228	0C(0)C(0)0	CH ₂ C≡CH		
229	0C(0)C(0)0	, -		
230		CH=CH ₂		
· ·	0C(0)C(0)0	CH₂CH₂F		
231	OC(O)C(O)O	CF ₃		
232	OC(O)C(O)O	CH₂CF₃		
234	0C(0)C(0)0	CH₂CN		
235	0C(0)C(0)0	Cyclopropyl		
236	OC(O)C(O)O	Cyclopropylmethyl		
237	OC(O)C(O)O	CH ₂ CO ₂ Me		
238	OC(O)C(O)O	CH ₂ CH ₂ NMe ₂		
239	OC(O)C(O)O	CH ₂ -(N-morpholinyl)		
240	OC(O)C(O)O	2-Chlor-pyridin-5-yl-methyl		
241	00(0)0(0)0	2-Furanyl		
242	00(0)0(0)0	2-Pyrimidinyl		
243	00,00,00	2-Oxazolyl		
244	00(0)0(0)0	5-[1,2,4]-oxdiazolyl		
245	0C(0)C(0)0	Tetrazolyi		
246	S(O) ₂ NR'	H		
247	S(O) ₂ NR'	Me	H	
248			H	
1	S(O) ₂ NR'	Et	H	
249	S(O)₂NR'	n-Pr	Н	
250	S(O)₂NR'	i-Pr	Н	
251	S(O)₂NR'	n-Bu	Н	
252	S(O) ₂ NR'	i-Bu	Н	
253	S(O)₂NR'	Allyl	Н	
254	S(O)₂NR'	CH ₂ C≡CH	Н	
255	S(O)₂NR'	CH=CH ₂	Н	
256	S(O)₂NR'	CH ₂ CH ₂ F	Н	
257	S(O) ₂ NR'	CF ₃	Н	
258	S(O) ₂ NR'	CH ₂ CF ₃	Н	
259	S(O) ₂ NR'	CH₂CN	Н	
	1 - (- /2. ** *	1 O. 12 O. 1	1	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
260	S(O) ₂ NR'	Cyclopropyl	H	im.p. [Oj
261	S(O) ₂ NR'	Cyclopropylmethyl	Н	
262	S(O) ₂ NR'	CH ₂ CO ₂ Me	Н	
263	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	H	
264	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	H	
265	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Н	
266	S(O) ₂ NR'	2-Furanyl	H	
267	S(O) ₂ NR'	2-Pyrimidinyl	П Н	
268	S(O) ₂ NR'	2-Oxazolyl	i i	
269		1	H	
270	S(O) ₂ NR' S(O) NB'	5-[1,2,4]-oxdiazolyl	H	
	S(O) ₂ NR'	Tetrazolyl	Н	
271	S(O)₂NR'	H	Me	
272	S(O)₂NR'	Me	Ме	
273	S(O)₂NR'	Et_	Ме	
274	S(O)₂NR'	n-Pr	Ме	
275	S(O)₂NR′	i-Pr	Ме	
276	S(O)₂NR'	n-Bu	Me	
277	S(O)₂NR'	i-Bu	Me	
278	S(O)₂NR'	Allyl	Ме	
279	S(O)₂NR'	CH₂C≡CH	Me	
280	S(O)₂NR'	CH=CH ₂	Me	
281	S(O)₂NR'	CH ₂ CH ₂ F	Ме	
282	S(O)₂NR'	CF ₃	Ме	
283	S(O)₂NR'	CH ₂ CF ₃	Ме	
284	S(O) ₂ NR'	CH₂CN CH₂CN	Ме	
285	S(O) ₂ NR'	Cyclopropyl	Me	
286	S(O) ₂ NR'	Cyclopropylmethyl	Me	
287	S(O) ₂ NR'	CH ₂ CO ₂ Me	Ме	
288	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Me	
289	S(O)₂NR'	CH ₂ -(N-morpholinyl)	Me	
289	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Ме	
290	S(O) ₂ NR'	2-Furanyl	Me	
291	S(O)₂NR'	2-Pyrimidinyl	Me	
292	S(O) ₂ NR'	2-Oxazolyl	Me	
293	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Me	
294	S(O) ₂ NR'	Tetrazolyl	Me	
295	S(O) ₂ NR'	H		
296	S(O) ₂ NR'	Me	Et	
297	S(O) ₂ NR'	Et	Et	
ł .	, , , -	1	Et	
298	S(O)₂NR'	n-Pr	Et	
299	S(O) ₂ NR'	i-Pr	Et	
300	S(O) ₂ NR'	n-Bu	Et	
301	S(O) ₂ NR'	i-Bu	Et	
302	S(O)₂NR'	Allyl	Et	
303	S(O)₂NR'	CH₂C≡CH	Et	
304	S(O)₂NR'	CH=CH ₂	Et	
305	S(O)₂NR'	CH ₂ CH ₂ F	Et	
306	S(O)₂NR'	CF ₃	Et	
307	S(O)₂NR'	CH ₂ CF ₃	Et	

49

Bsp. Nr.	Υ	R	R'	m.p. [°C]
308	S(O)₂NR'	CH₂CN	Et	
309	S(O)₂NR'	Cyclopropyl	Et	
310	S(O)₂NR'	Cyclopropylmethyl	Et	
311	S(O)₂NR'	CH ₂ CO ₂ Me	Et	
312	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Et	
313	S(O)₂NR'	CH₂-(N-morpholinyl)	Et	
314	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Et	
315	S(O)₂NR'	2-Furanyl	Et	
316	S(O)₂NR'	2-Pyrimidinyl	Et	
317	S(O)₂NR'	2-Oxazolyl	Et	
318	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Et	
319	S(O)₂NR'	Tetrazolyl	Et	

Tabelle 2:

Bsp. Nr.	ΙΥ	R	lR'	m n [°C]
1	0	H		m.p. [°C]
2	Ŏ	Et		Öl
3	ō	n-Pr		O
4	lo	i-Pr		ÖI
5	lo	n-Bu		Öl
6	ő	i-Bu		Öl
7	o	Allyl		Öl
8	0	CH ₂ C≡CH	ļ	Öl
9	Ö	CH=CH ₂		O
10	o	CH ₂ CH ₂ F		
11	o			
12	ő	CF₃		ري ا
13	ő	CH ₂ CF ₃		ÖI
14	0	CH ₂ CN		
15	0	Cyclopropyl		۳.
16	0	Cyclopropylmethyl		ÖI
17	0	CH ₂ CO ₂ Me		
18	0	CH ₂ CH ₂ NMe ₂		Öl
19	0	CH ₂ -(N-morpholinyl)		OI
20	0	2-Chlor-pyridin-5-yl-m	ethyl	
21	0	2-Furanyl		
22	0	2-Pyrimidinyl		
23	0	2-Oxazolyl		
24	0	5-[1,2,4]-oxdiazolyl		
25	0	Tetrazolyl		ш.
26		1,3-Oxindol-2-yl		Öl
27	0	CH ₂ CH ₂ OMe		ÖI
28	0	CH ₂ CH ₂ OCH ₂ CH ₂ OMe	9	ÖI
	0	CH ₂ CH ₂ SCH ₂ CH ₃		Öl
29	S	H		
30	S	Et		Öl
31	S	n-Pr		Öl
32	S	i-Pr		
33	S	n-Bu		
34	S	i-Bu		Öl
35	S	Allyl		Öl
36	s	CH₂C≡CH		
37	S	CH=CH ₂		
38	S	CH ₂ CH ₂ F		
39	S	CF ₃		Öl
40	s	CH₂CF₃		Öl
41	s	CH ₂ CN		

Bsp. Nr.	Υ	R	R'	m n [90]
42	S			m.p. [°C]
l		Cyclopropyl		1
43	S	Cyclopropylmethyl		
44	S S S	CH₂CO₂Me		Öl
45	S	CH₂CO₂Et		Öl
46	S	CH ₂ CH ₂ CO ₂ Me		Öl
47	S	CH ₂ CH ₂ NMe ₂		
48	S	CH ₂ -(N-morpholinyI)		
49	s	2-Chlor-pyridin-5-yl-methyl		
50	S	2-Furanyl		
51	s	2-Pyridinyl		Öl
52	S	2-Pyrimidinyl		kristallin
53	S			Kristallin
	S	2-Oxazolyl		
54	S	5-[1,2,4]-oxdiazolyl		
55	S S	Tetrazolyl		
56	S	CH₂CH₂OH		Öl
57	S	Ac		Öl
		ÇF ₃		
		3		
58	s	N		
		CH ₂ — //		
		_ N		
		N—O		
50	NR'	(/ `)		100
59	INK	C(O)		136
		(0)		
00	NEIGON		1	д.
60	NR'C(0)0	CMe ₃	Н	Öl
		0		
		CH ₂ CF ₃		
04	ND'	, N		ام
61	NR'	\ \\\	CO₂allyl	Öl
		IN O		
		N N		
			İ	
62	NR'SO ₂	C(H)Cl ₂	Me	ÖI
63			I	
	NR'SO ₂	Bu	Me	Ö
64	NR'SO ₂	Pr	Me	Öl
65	S	N-Me-imidazol-2-yl		fest
66	S	[1,2,4]-triazol-3-yl		fest
67	S	4-Me-[1,2,4]-triazol-3-yl		kristallin
68	S	4-Me-tetrazol-5-yl		fest
1	S	2-Thiazolin-2-yl		kristallin
69		2-THGZOHH-Z-YI		Itti Totaliii
69 70				1
	S S(O)	Cyclohexyl Et		Wachs

Bsp. Nr.	Υ	R	R'	m.p. [°C]
72	S(O)	n-Pr		
73	S(O)	i-Pr		ÖI
74	S(O)	n-Bu		\(\)
75	S(O)	i-Bu		
		1		
76	S(O)	Allyl		
77	S(O)	CH ₂ C≡CH		
78	S(O)	CH=CH ₂		
79	S(O)	CH ₂ CH ₂ F		
80	S(O)	CF₃		fest
81	S(O)	CH ₂ CF ₃		129
82	S(O)	CH,CN		
83	S(O)	Cyclopropyl		
84	S(O)	Cyclopropylmethyl		
85	S(O)	CH ₂ CO ₂ Me		
86	S(O)			
		CH₂CH₂NMe₂		
87	S(O)	CH ₂ -(N-morpholinyl)		
88	S(O)	2-Chlor-pyridin-5-yl-methyl		
89	S(O)	2-Furanyl		
90	S(O)	2-Pyrimidinyl		
91	S(O)	2-Oxazolyl	:	
92	S(O)	5-[1,2,4]-oxdiazolyl		
93	S(O)	Tetrazolyl		
94	S(O) ₂	Me		92
95	S(O) ₂	Et		92
		I .		
96	S(O) ₂	n-Pr		73
97	S(O) ₂	i-Pr		109
98	S(O) ₂	n-Bu		
99	S(O) ₂	n-Hex		87
100	S(O) ₂	i-Bu		
101	S(O) ₂	Allyl		
102	S(O) ₂	CH ₂ C≡CH		
103	S(O) ₂	CH=CH ₂		
104	S(O) ₂	CH ₂ CH ₂ F		
105	S(O) ₂	CF ₃		
106	S(O) ₂	CH ₂ CF ₃		kristallin
107	S(O) ₂			Kiistaiiii
		CH ₂ CN		
108	S(O) ₂	Cyclopropyl		
109	S(O) ₂	Cyclopropylmethyl		
110	S(O) ₂	CH₂CO₂Me		
111	S(O) ₂	CH ₂ CH ₂ NMe ₂		
112	S(O) ₂	CH ₂ -(N-morpholinyl)		
113	S(O) ₂	2-Chlor-pyridin-5-yl-methyl		
114	S(O) ₂	2-Furanyl		
115	S(O) ₂	2-Furfuryl		99
116	S(O) ₂	2-Thienyl		100
117	S(O) ₂	2-Pyrimidinyl		.50
118	S(O) ₂	2-Oxazolyl		
119		i i		
•	S(O) ₂	5-[1,2,4]-oxdiazolyl		
120	S(O) ₂	Tetrazolyl		
121	S(O) ₂	ONa		214
122	S(O) ₂	p-F-benzyl	1	156

Bsp. Nr.	Υ	R	R'	m.p. [°C]
123	OC(O)	Н		
124	oc(o)	Me		
125	OC(O)	Et		ÖI
126	OC(O)	n-Pr		
127	OC(O)	i-Pr		
1				
128	OC(O)	n-Bu		я.
129	OC(O)	i-Bu		ÖI
130	OC(O)	t-Bu		ÖI
131	OC(O)	Allyl		
132	OC(O)	CH ₂ C≡CH		
133	OC(O)	CH=CH ₂		Öl
134	OC(O)	CH ₂ CH ₂ F		
135	OC(O)	CF ₃		
136	oc(o)	CH ₂ CF ₃		
137	oc(o)	CH ₂ CH ₂ SiMe ₃		ÖI
138	OC(O)	CH ₂ CN		Öi
139	OC(O)	Cyclopropyl		0.
140	OC(O)			
141		Cyclopropylmethyl		ÖI
	OC(O)	CH₂CO₂Me		O
142	OC(O)	CH ₂ CH ₂ NMe ₂		
143	OC(O)	CH₂OMe		
144	OC(O)	CH₂-(N-morpholinyl)		
145	OC(O)	2-Chlor-pyridin-5-yl-methyl		
146	OC(O)	2-Furanyl		
147	OC(O)	2-Pyrimidinyl		
148	OC(O)	2-Oxazolyl		
149	OC(O)	5-[1,2,4]-oxdiazolyl		
150	oc(o)	Tetrazolyl		
151	oc(o)	2-Oxo-pyrrolidin-5-yl		ÖI
152	OC(O)O	H		
153	00(0)0	Me		ÖI
154	OC(O)O	Et		Öi
155	00(0)0	n-Pr		Öl
156	00(0)0	i-Pr		0'
157		n-Bu		
1	OC(O)O	1		
158	OC(O)O	i-Bu		
159	OC(O)O	Allyl]	
160	OC(O)O	CH ₂ C≡CH		
161	OC(O)O	CH=CH ₂		
162	OC(O)O	CH₂CH₂F		
163	OC(O)O	CF ₃		
164	OC(O)O	CH ₂ CF ₃		
165	00(0)0	CH ₂ CN	1	
166	00(0)0	Cyclopropyl		
167	00(0)0	Cyclopropylmethyl]
168	OC(O)O	CH ₂ CO ₂ Me		
169	OC(O)O	CH ₂ CH ₂ NMe ₂		
170	OC(O)O	CH ₂ -(N-morpholinyl)	1	
170	0C(0)0			
172	00(0)0	2-Chlor-pyridin-5-yl-methyl		
		2-Furanyl		
173	OC(O)O	2-Pyrimidinyl	l	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
174	OC(O)O	2-Oxazolyl		p. [O]
175	00(0)0	5-[1,2,4]-oxdiazolyl		
176	00(0)0	Tetrazolyl		
177	OC(O)NR'	IH	H	
178	OC(O)NR'	Me	'' H	
179	OC(O)NR'	Et	lΗ	
180	OC(O)NR'	n-Pr	H	
181	OC(O)NR'	i-Pr	H	
182	OC(O)NR'	n-Bu	H	
183	OC(O)NR'	i-Bu	H	
184	OC(O)NR'	Allyl	H	
185	OC(O)NR'	CH ₂ C≡CH	H	
186	OC(0)NR'	CH=CH ₂	H	
187	OC(O)NR'	CH ₂ CH ₂ F	H	
188	OC(O)NR'	CF ₃	H	
189	OC(O)NR'	CF ₃ CH ₂ CF ₃	H	
190	OC(O)NR'	CH ₂ CF ₃ CH ₂ CN	H	
191	OC(O)NR'		1	
192	OC(O)NR'	Cyclopropyl	H	
193	OC(O)NR'	Cyclopropylmethyl	i .	
194	OC(O)NR'	CH ₂ CO ₂ Me	Н	
195	OC(O)NR'	CH ₂ CH ₂ NMe ₂	H	
196	, , ,	CH ₂ -(N-morpholinyl)	H	
197	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	H	
198	OC(O)NR'	2-Furanyl	H	
199	OC(O)NR'	2-Pyrimidinyl	H	
200	OC(O)NR'	2-Oxazolyl	Н	
201	OC(O)NR'	5-[1,2,4]-oxdiazolyl	H	
202	OC(O)NR'	Tetrazolyl	Н	
202	OC(O)NR'	Н	Me	ш.
204	OC(O)NR'	Me	Me	Öl
í	OC(O)NR'	Et	Me	
205	OC(O)NR'	n-Pr	Me	
206	OC(O)NR'	i-Pr	Me	
207	OC(O)NR'	n-Bu	Me	
208	OC(O)NR'	i-Bu	Me	
209	OC(O)NR'	Allyl	Me	
210	OC(O)NR'	CH ₂ C≡CH	Me	
211	OC(O)NR'	CH=CH ₂	Me	
212	OC(O)NR'	CH₂CH₂F	Me	
213	OC(O)NR'	CF ₃	Me	
214	OC(O)NR'	CH ₂ CF ₃	Me	
215	OC(O)NR'	CH₂CN	Me	
216	OC(O)NR'	Cyclopropyl	Me	
217	OC(O)NR'	Cyclopropylmethyl	Me	
218	OC(O)NR'	CH₂CO₂Me	Me	
219	OC(O)NR'	CH₂CH₂NMe₂	Me	
220	OC(O)NR'	CH ₂ -(N-morpholinyl)	Me	
221	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
222	OC(O)NR'	2-Furanyl	Me	
223	OC(O)NR'	2-Pyrimidinyl	Me	
224	OC(O)NR'	2-Oxazolyl	Me	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
225	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Ме	1
226	OC(O)NR'	Tetrazolyl	Me	
227	OC(O)NR'	n-Hex	Me	
228	OC(O)NR'	lH .	Et	
229	OC(O)NR'	Me	Et	
230	OC(O)NR'	Et	Et	
231	OC(O)NR'	n-Pr	Et	
232	OC(O)NR'	i-Pr	Et	
233	OC(O)NR'	n-Bu	Et	
234	OC(0)NR'	i-Bu		
235	OC(O)NR'	Allyl	Et	
236		1 -	Et	
237	OC(O)NR'	CH₂C≡CH	Et	
	OC(O)NR'	CH=CH ₂	Et	
238	OC(O)NR'	CH₂CH₂F	Et	
239	OC(O)NR'	CF ₃	Et]
240	OC(O)NR'	CH₂CF₃	Et	
241	OC(O)NR'	CH₂CN	Et	
242	OC(O)NR'	Cyclopropyl	Et	
243	OC(O)NR'	Cyclopropylmethyl	Et	
244	OC(O)NR'	CH ₂ CO ₂ Me	Et	
245	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Et	
246	OC(O)NR'	CH ₂ -(N-morpholinyl)	Et	
247	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	
248	OC(O)NR'	2-Furanyl	Et	
249	OC(O)NR'	2-Pyrimidinyl	Et	
250	OC(O)NR'	2-Oxazolyl	Et	
251	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
252	OC(O)NR'	Tetrazolyl	Et	
253	OC(O)NR'	H	Et	
254	OC(O)C(O)O	Н		
255	OC(O)C(O)O	Me		Öl
256	00(0)0(0)0	Et		ÖI
257	00(0)0(0)0	n-Pr		
258	00(0)0(0)0	i-Pr		
259	00(0)0(0)0	n-Bu		
260	00(0)0(0)0	i-Bu	1	
261	0C(0)C(0)0	Allyl		
262	OC(0)C(0)O	CH ₂ C≡CH		
263	0C(0)C(0)0	CH=CH ₂		
264	0C(0)C(0)0	CH ₂ CH ₂ F]
265	00(0)0(0)0			
266	00(0)0(0)0		1	
267	00(0)0(0)0	CH ₂ CF ₃		
268	00(0)0(0)0	CH ₂ CN		
269		Cyclopropyl		
l .	0C(0)C(0)0	Cyclopropylmethyl		
270	OC(O)C(O)O	CH ₂ CO ₂ Me		
271	OC(O)C(O)O	CH ₂ CH ₂ NMe ₂		
272	OC(O)C(O)O	CH ₂ -(N-morpholinyl)		
273	OC(O)C(O)O	2-Chlor-pyridin-5-yl-methyl		
274	OC(0)C(0)O	2-Furanyl		
275	OC(0)C(0)O	2-Pyrimidinyl	L	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
276	OC(0)C(0)O	2-Oxazolyl		
277	00(0)0(0)0	5-[1,2,4]-oxdiazolyl		
278	00(0)0(0)0	Tetrazolyl		
279	S(O) ₂ NR'	Н	H H	
280	S(O) ₂ NR'	Me	H	
281	S(O) ₂ NR'	Et	H	
282	S(O) ₂ NR'	n-Pr	H	
283	S(O) ₂ NR'	i-Pr	H	00
284	S(O) ₂ NR'	n-Bu	H	93
285	S(O) ₂ NR'	i-Bu	Н	
286	S(O) ₂ NR'	Allyl		
287	S(O) ₂ NR'		H	83
288	S(O) ₂ NR'	CH ₂ C≡CH	H	
289		CH=CH ₂	H	
290	S(O) ₂ NR'	CH₂CH₂F	Н	
	S(O) ₂ NR'	CF ₃	H	
291	S(O) ₂ NR'	CH ₂ CF ₃	Н	
292	S(O) ₂ NR'	CH₂CN	H	
293	S(O)₂NR'	Cyclopropyl	Н	
294	S(O)₂NR'	Cyclopropylmethyl	H	fest
295	S(O)₂NR'	CH₂CO₂Me	Н	
296	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	ļΗ	
297	S(O)₂NR'	CH₂-(N-morpholinyl)	Н	
298	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	H	
299	S(O)₂NR'	2-Furanyl	H	
300	S(O)₂NR'	2-Pyrimidinyl	H	
301	S(O)₂NR'	2-Oxazolyl	Н	
302	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	H	
303	S(O)₂NR'	Tetrazolyl	Н	
304	S(O)₂NR'	Н	Ме	
305	S(O)₂NR'	Me	Me	
306	S(O)₂NR'	Et	Me	Öl
307	S(O)₂NR'	n-Pr	Me	
308	S(O)₂NR'	i-Pr	Me	Öl
309	S(O)₂NR'	n-Bu	Me	
310	S(O)₂NR'	i-Bu	Me	
311	S(O)₂NR'	Allyl	Me	
312	S(O)₂NR'	CH₂C≡CH	Ме	94
313	S(O)₂NR'	CH=CH ₂	Me	
314	S(O)₂NR'	CH ₂ CH ₂ F	Me	
315	S(O) ₂ NR'	CF ₃	Me	
316	S(O) ₂ NR'	CH ₂ CF ₃	Me	
317	S(O) ₂ NR'	CH ₂ CN	Me	
318	S(O) ₂ NR'	Cyclopropyl	Me	
319	S(O) ₂ NR'	Cyclopropylmethyl	Me	
320	S(O) ₂ NR'	CH ₂ CO ₂ Me	Me	
321	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Me	
322	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Me	
323	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Me	
324	S(O) ₂ NR'	Furanyl	Me	
325	S(O) ₂ NR'	2-Pyrimidinyl]
326	S(O) ₂ NR'		Me	
020	JOLO 12141	2-Oxazolyl	Me	

Bsp. Nr.	ΙΥ	R	R'	m n [°C]
327	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Me	m.p. [°C]
328	S(O) ₂ NR'	Tetrazolyl	Me	
329	S(O) ₂ NR'	Н	Et	
330	S(O) ₂ NR'	Me	Et	
331	S(O) ₂ NR'	Et	Et	
332	S(O) ₂ NR'	n-Pr	Et	
333	S(O) ₂ NR'	i-Pr	Et	70
334	S(O) ₂ NR'	n-Bu	Et	110
335	S(O) ₂ NR'	i-Bu	Et	
336	S(O) ₂ NR'	Allyl	Et	ÖI
337	S(O) ₂ NR'	CH₂C≡CH	Et	
338	S(O) ₂ NR'	CH=CH ₂	Et	
339	S(O) ₂ NR'	CH ₂ CH ₂ F	Et	
340	S(O) ₂ NR'	CF ₃	Et	
341	S(O) ₂ NR'	CH ₂ CF ₃	Et	
342	S(O) ₂ NR'	CH ₂ CN	Et	
343	S(O) ₂ NR'	Cyclopropyl	Et	
344	S(O) ₂ NR'	Cyclopropylmethyl	Et	
345	S(O) ₂ NR'	CH ₂ CO ₂ Me	Et	
346	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Et	
347	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Et	
348	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Et	
349	S(O) ₂ NR'	Furanyl	Et	
350	S(O) ₂ NR'	2-Pyrimidinyl	Et	
351	S(O) ₂ NR'	2-Oxazolyl	Et	
352	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Et	
353	S(O)₂NR'	Tetrazolyl	Et	
354	S(O)₂NR'	n-Pr	n-Pr	ÖI
355	S(O)₂NR'	CH ₂ SCH ₂ CH ₂	n-Pr	<u> </u>
356	S(O) ₂ NR'	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂	n-Pr	152
357	S(O)₂NR'	CH ₂ CH=CHCH ₂ CH ₂	n-Pr	138
358	S	2-methylmercapto-1,3,4-thiad		92
359	 S	5-(trifluormethyl)-pyridin-2-yl	- 3	78
360	S S S	3-(trifluormethyl)-pyridin-2-yl		68
361	S	4-methyl-thiazol-2-yl		ÖI
362	S	3-(methylmercapto)-1,2,4-thiadi	azol-5-yl	Öl
363	S	4-Pyridinyl	•	88
364	S S S S	2-Methyl-furan-3-yl		Öl
365	 S	4-(trifluormethoxy)-phenyl		57
366	S	2-Imidazolyl		171
367	S	5-Methyl-1,2,4-triazol-3-yl		95
368	S	2-Thiazolyl		ÖI
369	S	Dimethylamino-thiocarbonyl		fest
370	s	4,6-Dimethyl-pyrimidin-2-yl		ÖI
371	S	5-Methyl-1,3,4-thiadiazol-2-yl		98
372	NR'C(S)NH	CO₂Et	Н	136

WO 00/35913

Bsp. Nr.	Υ	R	R'	m.p. [°C]
373	NR'C(O)	CH(imidazolyl-)CF ₂ C(O)		Öl
374	NR'C(O)	CH(Me)CH ₂ C(O)		ÖI
375	NR'C(O)	CMe ₂ CH ₂ C(O)		ÖI
376	NR'C(O)	CH(Me)CH(Me)C(O)		Öl
377	NR'C(O)	CH ₂ CH ₂ CH ₂ C(O)		Öl
378	NR'C(O)	CH(Me)CH ₂ CH ₂ C(O)		Öl
379				
I .	NR'C(O)	CH ₂ CH(Me)CH ₂ C(O)		Öl
380	NR'C(O)	CH ₂ CMe ₂ CH ₂ C(O)		Öl
381	NR'C(O)	$CH_2C[-(CH_2)_4-]CH_2C(O)$		Öl
	NDIO(O)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
382	NR'C(O)	(\ //		192
		\\'\'\'\'\		
383	NR'C(O)N(H)	CH(CHMe ₂)CO ₂ Et	Н	Öl
384	NR'C(S)N(H)	Et	H	Öl
	1 ' ' ' '	1	1	1 .
385	NR'C(S)N(H)	CMe ₃	H	113
386	NR'C(S)N(H)	-p-Tol	Н	Öl
		ÇF₃		
387	NR'C(O)		H	148
			1	
		[_]	1	
		N /		
388	NR'C(O)N(H)	Et	Н	144
389	NR'C(O)N(H)	C(H)Me ₂	H	159
390	NR'C(O)N(H)	Bu	H	117
li .		I and the second		
391	NR'C(O)N(H)	(CH ₂)₄Me	Н	118
392	NR'C(O)N(H)	Cyclohexyl	H	160
393	NR'C(O)N(H)	C(H)MeCO₂Et	Н	157
394	NR'C(O)N(H)	C(O)Ph	H	182
395	NR'C(O)N(H)	(4-CF ₃ -Ph)	Н	170
396	NR'C(O)N(H)	$(2,6-C_6H_3F_2)$	Н	193
397	NR'C(O)			Öl
		C(O)		

398	NR'C(O)	CH ₂ C(H)PhCH ₂ C(O)		Öl
399	NR'C(O)	CMe=CMeC(O)		Öl
400	NR'C(O)			Öl
		C(O)		
L		1 /		L

59

Bsp. Nr.	Υ	R	R'	m.p. [°C]
401	NR'C(O)N(H)	CMe ₃	Н	120
402	NR'C(O)O	CH ₂ C≡CH	Н	fest
403	NR'SO ₂	C(H)Me ₂	H	ÖI
404	NR'C(O)	CH ₂ OC(O)Me	H	80
405	NR'C(O)	(CH ₂) ₃ CI	H	56
406	NR'C(O)	(CH ₂) ₂ SMe	Н	96
407	NR'C(O)O	Bu	∫H	Öl
408	NR'C(0)0	Cyclopentyl	Н	Öl
409	NR'C(O)	CH ₂ CH ₂ C(O)		87
410	NR'C(O)N(H)	Ph	Н	129
411	NR'H⁺HSO₄⁻	H	Н	fest

Tabelle 3:

Bsp. Nr.	Υ	R	R'	m.p. [°C]
1	0	n-Pr		Öl
2	0	i-Pr		Öl
3	0	n-Bu		
4	0	i-Bu		
5	0	Allyl		ÖI
6	0	CH ₂ C≡CH		Öl
7	0	CH=CH ₂		
8	0	CH ₂ CH ₂ F		
9	0	CF ₃		
10	0	CH ₂ CF ₃		
11	0	CH₂CN CH₂CN		
12	0	Cyclopropyl		
13	0	Cyclopropylmethyl		
14	0	CH ₂ CO ₂ Me		
15	0	CH ₂ CH ₂ NMe ₂		
16	0	CH ₂ -(N-morpholinyl)		
17	0	2-Chlor-pyridin-5-yl-methyl		
18	0	n-Hex		
19	0	2-Furanyl		:
20	0	2-Pyrimidinyl		
21	0	2-Oxazolyl		
22	0	5-[1,2,4]-oxdiazolyl		
23	0	Tetrazolyl		
24	0	2-Hexahydropropanyl		
25	S	Н		
26	S	Et		
27	S	i-Pr		Öl
28	S S S S S	n-Bu		
29		i-Bu		
30	S S S S S S S S S S S S	Allyl		
31	S	CH ₂ C≡CH		
32	S	CH=CH₂		
33	S	CH₂CH₂F		
34	S	CF₃		
35	S	CH₂CF₃		Öl
36	S	CH₂CN		
37	S	Cyclopropyl		
38	S	Cyclopropylmethyl		

Bsp. Nr.	Υ	R	R'	m.p. [°C]
39	S	CH ₂ CO ₂ Me		
40	S	CH ₂ CH ₂ NMe ₂		
41	S	CH ₂ -(N-morpholinyl)		
42	S	2-Chlor-pyridin-5-yl-methyl		
43	S	n-Hex		
44	s	2-Furanyl		
45	S	2-Pyrimidinyl		
46	S	2-Oxazolyl		
47	s	5-[1,2,4]-oxdiazolyl		
48	3			
40		Tetrazolyl		
49	S	CH ₂ CH ₂ CF ₃		Öl
50	S(O)	Me		
51	S(O)	Et		į
52	S(O)	n-Pr		
53	S(O)	i-Pr		l
54	S(O)	n-Bu		
55	S(O)	i-Bu		
56	S(O)	Allyl		
57	S(O)	CH ₂ C≡CH		
58	S(O)	CH=CH ₂		
59	S(O)	CH ₂ CH ₂ F		
60	S(O)	CF ₃		1
61	S(O)	CH ₂ CF ₃		
62	S(O)	CH ₂ CN		
63	S(O)	Cyclopropyl		
64	S(O)	Cyclopropylmethyl		
65	S(O)	CH ₂ CO ₂ Me		1
66	S(O)	CH ₂ CO ₂ Me CH ₂ CH ₂ NMe ₂		
67	S(O)	CH ₂ -(N-morpholinyl)		
68	S(O)	2-Chlor-pyridin-5-yl-methyl		
69	S(O)	n-Hex		
70	S(O)	2-Furanyl		
71	S(O)	2-Pyrimidinyl		
72	S(O)	2-Pyrimidinyi 2-Oxazolyi		}
73	S(O) S(O)	5-[1,2,4]-oxdiazolyl		
74	S(O)	Tetrazolyl		
75	S(O) ₂			0.4
76		Me Et		84
77	S(O) ₂			
78	S(O) ₂	n-Pr]
78 79	S(O) ₂	i-Pr		
	S(O) ₂	n-Bu : p		
80	S(O) ₂	i-Bu		
81	S(O) ₂	Allyl		

Bsp. Nr.	Υ	R	R'	m.p. [°C]
82	S(O) ₂	CH ₂ C≡CH		
83	S(O) ₂	CH=CH ₂	•	
84	S(O) ₂	CH₂CH₂F		
85	S(O) ₂	CF ₃		
86	S(O) ₂	CH ₂ CF ₃		
87	S(O) ₂			
88	S(O) ₂	CH ₂ CN		
89	S(O) ₂ S(O) ₂	Cyclopropyl		
		Cyclopropylmethyl		
90	S(O) ₂	CH₂CO₂Me		
91	S(O) ₂	CH ₂ CH ₂ NMe ₂		
92	S(O) ₂	CH ₂ -(N-morpholinyl)		
93	S(O) ₂	2-Chlor-pyridin-5-yl-methyl		
94	S(O) ₂	n-Hex		
95	S(O) ₂	Furanyl		
96	S(O) ₂	2-Pyrimidinyl		
97	S(O) ₂	2-Oxazolyl		
98	S(O) ₂	5-[1,2,4]-oxdiazolyl		
99	S(O) ₂	Tetrazolyl		
100	OC(O)	Н		
101	OC(O)	Et		
102	OC(O)	n-Pr		
103	OC(O)	i-Pr		
104	OC(O)	n-Bu		
105	OC(O)	i-Bu		
106	OC(O)	Allyl		
107	OC(O)	CH ₂ C≡CH		
108	oc(o)	CH=CH ₂		
109	oc(o)	CH ₂ CH ₂ F		
110	oc(o)	CF ₃		
111	oc(o)	CH ₂ CF ₃		
112	oc(o)	CH₂CN		
113	OC(O)	Cyclopropyl		
114	OC(O)	Cyclopropylmethyl		
115	OC(O)	CH ₂ CO ₂ Me		
116	OC(O)	CH ₂ CH ₂ NMe ₂		
117	OC(O)	CH ₂ -(N-morpholinyl)		
118	OC(O)	2-Chlor-pyridin-5-yl-methyl		
119	OC(O)	n-Hex		1
120	OC(O)	2-Furanyl		
121	OC(O)	_		
122	OC(O)	2-Pyrimidinyl		
123	OC(O)	2-Oxazolyl		
123	OC(O)	5-[1,2,4]-oxdiazolyl		
		Tetrazolyl		
125	OC(O)O	Me		
126	OC(O)O	Et		
127	OC(O)O	n-Pr		
128	OC(O)O	i-Pr		
129	OC(O)O	n-Bu		
130	OC(O)O	i-Bu		

PCT/EP99/09684

Bsp. Nr.	Υ	R	R'	m.p. [°C]
131	OC(O)O	Aliyi		
132	00(0)0	CH₂C≡CH		
133	00(0)0	CH=CH ₂		
134	00(0)0	CH ₂ CH ₂ F		
135	00(0)0	CF ₃		
136	00(0)0	CH₂CF₃		
137	00(0)0	CH ₂ CN		
138	00(0)0	Cyclopropyl		
139	0C(0)0	Cyclopropylmethyl		
140	0C(0)0	CH ₂ CO ₂ Me		
141	0C(0)0	CH ₂ CH ₂ NMe ₂		
142	0C(0)0	CH ₂ -(N-morpholinyl)		
143	00(0)0	2-Chlor-pyridin-5-yl-methyl		
144	00(0)0	n-Hex		
145	00(0)0			
146		2-Furanyl		
	00(0)0	2-Pyrimidinyl		
147	00(0)0	2-Oxazolyl		
148	0C(0)0	5-[1,2,4]-oxdiazolyl		
149	OC(O)O	Tetrazolyl		
150	OC(O)NR'	Н	Н	
151	OC(O)NR'	Ме	H	
152	OC(O)NR'	Et	H	
154	OC(O)NR'	n-Pr	H	
155	OC(O)NR'	i-Pr	H	
156	OC(O)NR'	n-Bu	H	
157	OC(O)NR'	i-Bu	H	
158	OC(O)NR'	Allyl	Н	
159	OC(O)NR'	CH₂C≡CH	H	
160	OC(O)NR'	CH=CH ₂	н	
161	OC(O)NR'	CH ₂ CH ₂ F	н	
162	OC(O)NR'	CF ₃	Н	
163	OC(O)NR'	CH ₂ CF₃	Н	
164	OC(O)NR'	CH ₂ CN	H	
165	OC(O)NR'	Cyclopropyl	H	
166	OC(O)NR'	Cyclopropylmethyl	H I	
167	OC(0)NR'	CH ₂ CO ₂ Me	Н	
168	OC(O)NR'		H	
169	OC(O)NR'	CH ₂ -(N-morpholinyl)	Н	
170	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	H	
171	OC(O)NR'	n-Hex	П Н	ŀ
172	OC(O)NR'		H	
173	OC(O)NR'	2-Furanyl		
174		2-Pyrimidinyl	H	
	OC(O)NR'	2-Oxazolyl	H	
175	OC(O)NR'	5-[1,2,4]-oxdiazolyl	H	
176	OC(O)NR'	Tetrazolyl	Н	
177	OC(O)NR'	H	Ме	
178	OC(O)NR'	Me	Me	
179	OC(O)NR'	Et	Me	
180	OC(O)NR'	n-Pr	Ме	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
181	OC(O)NR'	i-Pr	Ме	
182	OC(O)NR'	n-Bu	Me	
183	OC(O)NR'	i-Bu	Me	
184	OC(O)NR'	Allyl	Ме	
185	OC(O)NR'	CH₂C≡CH	Me	
186	OC(O)NR'	CH=CH ₂	Me	
187	OC(O)NR'	CH ₂ CH ₂ F	Me	
188	OC(O)NR'	CF ₃	Me	
189	OC(O)NR'	CH ₂ CF ₃	Me	
190	OC(O)NR'		Me	
		CH ₂ CN	Me	
191	OC(O)NR'	Cyclopropyl		
192	OC(O)NR'	Cyclopropylmethyl	Me	
193	OC(O)NR'	CH₂CO₂Me	Me	
194	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Me	
195	OC(O)NR'	CH ₂ -(N-morpholinyl)	Me	
196	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
197	OC(O)NR'	n-Hex	Me	
198	OC(O)NR'	2-Furanyl	Ме	
199	OC(O)NR'	2-Pyrimidinyl	Ме	
200	OC(O)NR'	2-Oxazolyl	Ме	
201	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
202	OC(O)NR'	Tetrazolyl	Ме	
203	OC(O)NR'	Н	Et	
204	OC(O)NR'	Me	Et	
205	OC(O)NR'	Et	Et	
206	OC(O)NR'	n-Pr	Et	
207	OC(O)NR'	i-Pr	Et	
208	OC(O)NR'	n-Bu	Et	
209	OC(O)NR'	i-Bu	Et	
210	OC(O)NR'	Allyl	Et	
211	OC(O)NR'	CH ₂ C≡CH	Et	
212	OC(O)NR'	CH=CH ₂	Et	
213	OC(O)NR'	CH ₂ CH ₂ F	Et	
214	OC(O)NR'	CF ₃	Et	
215	OC(O)NR'		Et	
1	, ,	CH ₂ CF ₃	Et	
216 217	OC(O)NR'	CH ₂ CN	Et	
l .	OC(O)NR'	Cyclopropyl	I .	
218	OC(O)NR'	Cyclopropylmethyl	Et	
219	OC(O)NR'	CH ₂ CO ₂ Me	Et	
220	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Et	
221	OC(O)NR'	CH ₂ -(N-morpholinyl)	Et	
222	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	
223	OC(O)NR'	n-Hex	Et	
224	OC(O)NR'	2-Furanyl	Et	
225	OC(O)NR'	2-Pyrimidinyl	Et	
226	OC(O)NR'	2-Oxazolyl	Et	
227	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
228	OC(O)NR'	Tetrazolyl	Et	
229	OC(O)C(O)O	H		

Bsp. Nr.	Υ	R	R'	m.p. [°C]
230	OC(O)C(O)O	Me		
231	00,00,00	Et		
232	00,0000	n-Pr		
233	00(0)0(0)0	i-Pr		
234	0C(0)C(0)0	n-Bu		
235	OC(O)C(O)O	i-Bu		
236	OC(O)C(O)O	Allyl		
237	0C(0)C(0)0	CH₂C≡CH		
238	0C(0)C(0)0	CH=CH ₂		
239	0C(0)C(0)0	CH ₂ CH ₂ F		
240	0C(0)C(0)0			
)		CF₃		
241	OC(O)C(O)O	CH₂CF₃		
242	OC(O)C(O)O	CH₂CN		
243	OC(O)C(O)O	Cyclopropyl		
244	OC(O)C(O)O	Cyclopropylmethyl		
245	OC(O)C(O)O	CH₂CO₂Me		
246	OC(O)C(O)O	CH ₂ CH ₂ NMe ₂		
247	OC(O)C(O)O	CH ₂ -(N-morpholinyl)		
248	OC(O)C(O)O	2-Chlor-pyridin-5-yl-methyl		
249	0C(0)C(0)0	n-Hex		
250	OC(O)C(O)O	Furanyl		
251	OC(O)C(O)O	2-Pyrimidinyl		
252	OC(O)C(O)O	2-Oxazolyl		
253	OC(O)C(O)O	5-[1,2,4]-oxdiazolyl		
254	OC(O)C(O)O	Tetrazolyl		
255	S(O)₂NR'	Н	Н	
256	S(O)₂NR'	Me	H	
257	S(O)₂NR'	Et	H	
258	S(O) ₂ NR'	n-Pr	Н	
259	S(O)₂NR'	i-Pr	H	:
260	S(O) ₂ NR'	n-Bu	H	
261	S(O) ₂ NR'	i-Bu	lH	
262	S(O) ₂ NR'	Allyl	Н	
263	S(O) ₂ NR'	CH ₂ C≡CH	H	
264	S(O) ₂ NR'	CH=CH ₂	Н	
265	S(O) ₂ NR'	CH ₂ CH ₂ F	Н	
266	S(O) ₂ NR'	CF ₃	H	
267	S(O) ₂ NR'	CH ₂ CF ₃	H H	
268	S(O) ₂ NR'	CH ₂ CN	H	
269		<u> </u>	l'i	
270	S(O) ₂ NR'	Cyclopropyl	H	
270	S(O) ₂ NR'	Cyclopropylmethyl	In H	
	S(O) ₂ NR'	CH ₂ CO ₂ Me		
272	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Н	
273	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	H	
274	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	H	
275	S(O)₂NR'	n-Hex	H	1
276	S(O)₂NR'	Furanyl	H	1
277	S(O)₂NR'	2-Pyrimidinyl	H	
278	S(O) ₂ NR'	2-Oxazolyl	H	1

WO 00/35913

Bsp. Nr.	Υ	R	R'	m.p. [°C]
279	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl		
280	S(O) ₂ NR'	Tetrazolyl		
281	S(O) ₂ NR'	H	Ме	
282	S(O) ₂ NR'	Me	Me	
283	S(O) ₂ NR'	Et	Me	
284	S(O) ₂ NR'	n-Pr	Me	
285	S(O) ₂ NR'	i-Pr	Me	
286	S(O) ₂ NR'	n-Bu	Me	
287	S(O) ₂ NR'	i-Bu	Me	
288	S(O) ₂ NR'	Allyl	Me	
289	S(O) ₂ NR'	1 -	1	
I .		CH ₂ C≡CH	Me	
290	S(O) ₂ NR'	CH=CH ₂	Me	İ
291	S(O) ₂ NR'	CH ₂ CH ₂ F	Me	
292	S(O) ₂ NR'	CF ₃	Me	
293	S(O) ₂ NR'	CH ₂ CF ₃	Me	
294	S(O) ₂ NR'	CH₂CN	Me	
295	S(O) ₂ NR'	Cyclopropyl	Me	
296	S(O) ₂ NR'	Cyclopropylmethyl	Me	
297	S(O)₂NR'	CH ₂ CO ₂ Me	Me	
298	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Me	
299	S(O)₂NR'	CH ₂ -(N-morpholinyl)	Me	
300	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Me	
301	S(O) ₂ NR'	n-Hex	Me	
302	S(O) ₂ NR'	Furanyl	Me	
303	S(O) ₂ NR'	2-Pyrimidinyl	Me	
304	S(O) ₂ NR'	2-Oxazolyl	Me	
305	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Me	
306	S(O) ₂ NR'	Tetrazolyl	Me	
307	S(O) ₂ NR'	Н	Et	
308	S(O) ₂ NR'	Me	Et	
309	S(O) ₂ NR'	Et	Et	
310	S(O) ₂ NR'	n-Pr	Et	
311	S(O) ₂ NR'	i-Pr	Et	
312	S(O) ₂ NR'	n-Bu	Et	
313	S(O) ₂ NR'	i-Bu	Et	
314	S(O) ₂ NR'	Allyl	Et	
315	S(O) ₂ NR'	, -	I .	
316	,	CH ₂ C≡CH	Et	
l .	S(O) ₂ NR'	CH=CH ₂	Et	
317	S(O) ₂ NR'	CH ₂ CH ₂ F	Et	
318	S(O) ₂ NR'	CF ₃	Et	
319	S(O) ₂ NR'	CH ₂ CF ₃	Et	
320	S(O) ₂ NR'	CH₂CN	Et	
321	S(O)₂NR'	Cyclopropyl	Et	
322	S(O) ₂ NR'	Cyclopropylmethyl	Et	
323	S(O) ₂ NR'	CH₂CO₂Me	Et	
324	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Et	
325	S(O)₂NR'	CH ₂ -(N-morpholinyl)	Et	
326	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Et	
327	S(O) ₂ NR'	n-Hex	Et	

67

Bsp. Nr.	Υ	R	R'	m.p. [°C]
328	S(O) ₂ NR'	Furanyl	Et	
329	S(O) ₂ NR'	n-Hex	Et	
330	S(O) ₂ NR'	2-Pyrimidinyl	Et	
331	S(O) ₂ NR'	2-Oxazolyl	Et	
332	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Et	
333	S(O)₂NR'	Tetrazolyl	Et	

Tabelle 4:

Bsp. Nr.	Υ	R	R'	m.p. [°C]
1	0	Н		
2	0	Me		
3	0	Et		Öl
4	0	n-Pr		
5	0	i-Pr		ĺ
6	0	n-Bu		
7	0	i-Bu		
8	0	Aliyi		
9	0	CH ₂ C≡CH		
10	0	CH=CH ₂		
11	0	CH ₂ CH ₂ F		
12	0	CF ₃		
13	0	CH₂CF₃		
14	0	CH₂CN		
15	0	Cyclopropyl		
16	0	Cyclopropylmethyl		
17	0	CH ₂ CO ₂ Me		
18	0	CH ₂ CH ₂ NMe ₂		
19	0	CH ₂ -(N-morpholinyl)		
20	0	2-Chlor-pyridin-5-yl-methyl		
21	0	n-Hex	ĺ	
22	0	2-Furanyl		
23	0	2-Pyrimidinyl		
24	0	2-Oxazolyl		
25	0	5-[1,2,4]-oxdiazolyl		
26	0	Tetrazolyl		
27	S	Н		
28	S	Me		
29	S S S	Et		
30	S	n-Pr		
31	S	i-Pr		
32	S	n-Bu		
33	S	i-Bu		
34	S S S S S S	Allyl		
35	S	CH₂C≡CH		
36	S	CH=CH ₂		
37	S	CH ₂ CH ₂ F		
38	S	CF ₃		
	1-	10.3		

Bsp. Nr.	Y	R	R'	m.p. [°C]
39	S	CH ₂ CF ₃		m.p. [O]
40	S	CH ₂ CN		
41	S			
		Cyclopropyl		
42	S	Cyclopropylmethyl		
43	S	CH₂CO₂Me		
44	S	CH ₂ CH ₂ NMe ₂		
45	S	CH ₂ -(N-morpholinyl)		
46	S	2-Chlor-pyridin-5-yl-methyl		
47	S	n-Hex		
48	S	2-Furanyl		
49	s	2-Pyrimidinyl		
50	S	2-Oxazolyl		
51	s	5-[1,2,4]-oxdiazolyl		
52	s	Tetrazolyl		ľ
53	S(O)	H		
		ł .		
54	S(O)	Me		
55	S(O)	Et_		
56	S(O)	n-Pr		
57	S(O)	i-Pr	•	
58	S(O)	n-Bu		
59	S(O)	i-Bu		
60	S(O)	Allyl		
61	S(O)	CH₂C≡CH		
62	s(o)	CH=CH ₂		
63	S(O)	CH₂CH₂F		
64	S(O)	CF ₃		
65	S(O)			
66	S(O)	CH ₂ CF ₃		
67		CH₂CN		
1	S(O)	Cyclopropyl		
68	S(O)	Cyclopropylmethyl		
69	S(O)	CH₂CO₂Me		
70	S(O)	CH ₂ CH ₂ NMe ₂		
71	S(O)	CH ₂ -(N-morpholinyl)		
72	S(O)	2-Chlor-pyridin-5-yl-methyl		
73	S(O)	n-Hex		
74	S(O)	2-Furanyl		
75	S(O)	2-Pyrimidinyl		
76	s(O)	2-Oxazolyl		
77	S(O)	5-[1,2,4]-oxdiazolyl		
78	S(O)	Tetrazolyl		
79	S(O) ₂	n-Hex		
80	S(O) ₂ S(O) ₂	Me		
		I .		
81	S(O) ₂	Et	1	
82	S(O) ₂	n-Pr		
83	S(O) ₂	i-Pr		
84	S(O) ₂	n-Bu		
85	S(O) ₂	i-Bu		
86	S(O) ₂	Allyl		
87	S(O) ₂	CH ₂ C≡CH		

Bsp. Nr.	Υ	R	R'	m.p. [°C]
88	S(O) ₂	CH=CH ₂		1
89	S(O) ₂	CH ₂ CH ₂ F		
90	S(O) ₂	CF ₃		
91	S(O) ₂	CH ₂ CF ₃		
92	S(O) ₂			
93		1 -		
1	S(O) ₂	Cyclopropyl		
94	S(O) ₂	Cyclopropylmethyl		
95	S(O) ₂	CH₂CO₂Me		
96	S(O) ₂	CH ₂ CH ₂ NMe ₂		
97	S(O) ₂	CH ₂ -(N-morpholinyl)		
98	S(O) ₂	2-Chlor-pyridin-5-yl-methyl		
99	S(O) ₂	n-Hex		
100	S(O) ₂	2-Furanyl		
101	S(O) ₂	2-Pyrimidinyl		
102	S(O) ₂	2-Oxazolyl		
103	S(O) ₂	5-[1,2,4]-oxdiazolyl		
104	S(O) ₂	Tetrazolyl		
105	OC(O)	H		
106	OC(O)	Me		
107	00(0)	Et		
1		1		
108	OC(O)	n-Pr		
109	OC(O)	i-Pr		
110	OC(O)	n-Bu		
111	OC(O)	i-Bu		
112	OC(O)	Allyl		
113	OC(O)	CH ₂ C≡CH		
114	OC(O)	CH=CH ₂		
115	OC(O)	CH ₂ CH ₂ F		
116	OC(O)	CF ₃		
117	OC(O)	CH ₂ CF₃		
118	oc(o)	CH ₂ CN		
119	OC(O)	Cyclopropyl		
120	OC(O)	Cyclopropylmethyl		
121	OC(O)	CH ₂ CO ₂ Me		
122	OC(O)			
123	OC(O)	,		
123		CH ₂ -(N-morpholinyl)		
i i	OC(O)	2-Chlor-pyridin-5-yl-methyl		
125	OC(O)	n-Hex		
126	OC(O)	2-Furanyl		
127	OC(O)	2-Pyrimidinyl		
128	OC(O)	2-Oxazolyl		
129	OC(O)	5-[1,2,4]-oxdiazolyl		
130	OC(O)	Tetrazolyl		
131	OC(O)O	n-Hex		
132	OC(O)O	Me		
133	00(0)0	Et		
134	oc(o)o	n-Pr		
135	00(0)0	i-Pr		
136	OC(O)O	n-Bu		
	100,00	1	L	L

Bsp. Nr.	Υ	R	R'	m.p. [°C]
137	OC(O)O	i-Bu		
138	00(0)0	Allyl		
139	oc(o)o	CH₂C≡CH		
140	00(0)0	CH=CH ₂		
141	00(0)0	CH ₂ CH ₂ F		
142	00(0)0	CF ₃		
143	00(0)0	CH ₂ CF ₃		
144	00(0)0			
145	00(0)0	Cyclopropyl		
146	00(0)0	Cyclopropylmethyl		
147	00(0)0	Cyclopropylinetryl CH ₂ CO ₂ Me		
148	00(0)0	, – –		
149		CH ₂ CH ₂ NMe ₂		
	00(0)0	CH ₂ -(N-morpholinyl)		
150	OC(O)O	2-Chlor-pyridin-5-yl-methyl		
151	00(0)0	n-Hex		
152	0C(0)0	2-Furanyl		
153	0C(0)0	2-Pyrimidinyl		
154	OC(O)O	2-Oxazolyl		
155	OC(O)O	5-[1,2,4]-oxdiazolyl		
156	00(0)0	Tetrazolyl		
157	OC(O)NR'	H	Н	
158	OC(O)NR'	Me	Н	
159	OC(O)NR'	Et	H	
160	OC(O)NR'	n-Pr	H	
161	OC(O)NR'	i-Pr	Н	
162	OC(O)NR'	n-Bu	Н	
163	OC(O)NR'	i-Bu	Н	
164	OC(O)NR'	Allyl	Н	
165	OC(O)NR'	CH₂C≡CH	Н	
166	OC(O)NR'	CH=CH ₂	Н	
167	OC(O)NR'	CH ₂ CH ₂ F	Н	
168	OC(O)NR'	CF ₃	Н	
169	OC(O)NR'	CH₂CF₃	Н	
170	OC(O)NR'	CH ₂ CN	Н	
171	OC(O)NR'	Cyclopropyl	Н	
172	OC(O)NR'	Cyclopropylmethyl	H	
173	OC(0)NR'	CH ₂ CO ₂ Me	H	
174	OC(O)NR'	CH ₂ CH ₂ NMe ₂	H	
175	OC(0)NR'	CH ₂ -(N-morpholinyl)	H	
176	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	H	
177	OC(O)NR'	n-Hex	H	
178	OC(0)NR'	2-Furanyl	H	
178	OC(0)NR'	•	H	
180	1 '	2-Pyrimidinyl	П Н	
181	OC(O)NR'	2-Oxazolyl		
B	OC(O)NR'	5-[1,2,4]-oxdiazolyl	1	
182	OC(O)NR'	Tetrazolyl	H	
183	OC(O)NR'	H	Me	
184	OC(O)NR'	Me	Me	
185	OC(O)NR'	Et	Me	

Bsp. Nr.	Y	R	R'	m.p. [°C]
186	OC(O)NR'	n-Pr	Me	
187	OC(O)NR'	i-Pr	Me	
188	OC(O)NR'	n-Bu	Me	
189	OC(O)NR'	i-Bu	Me	
190	OC(O)NR'	Allyl	Me	
191	OC(O)NR'	CH ₂ C≡CH	Me	
192	OC(O)NR'	CH=CH ₂	Me	
193	OC(O)NR'	CH ₂ CH ₂ F	Me	
194	OC(O)NR'	CF ₃	Me	
195	OC(O)NR'	CH ₂ CF ₃	Me	
196	OC(O)NR'	CH ₂ CN	Me	
197	OC(O)NR'	Cyclopropyl	Me	
198	OC(O)NR'	Cyclopropylmethyl	Me	
199	OC(O)NR'	CH ₂ CO ₂ Me	Me	
200	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Me	
201	OC(0)NR'	CH ₂ -(N-morpholinyl)	Me	
202	OC(0)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
203	OC(0)NR'	n-Hex	Me	
204	OC(0)NR'	2-Furanyl	Me	
205	OC(0)NR'	2-Pyrimidinyl	Me	-
206	OC(0)NR'	2-Oxazolyl	Me	
207	OC(0)NR'		Me	
208	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
209		Tetrazolyl		
210	OC(O)NR'	H Me	Et	
211	OC(O)NR'		Et	
212	OC(O)NR'	Et	Et	
213	OC(O)NR'	n-Pr	Et	
1	OC(O)NR'	i-Pr	Et	1
214	OC(O)NR'	n-Bu	Et	
215	OC(O)NR'	i-Bu	Et	
216	OC(O)NR'	Allyl	Et	
217	OC(O)NR'	CH₂C≡CH	Et	
218	OC(O)NR'	CH=CH ₂	Et	
219	OC(O)NR'	CH ₂ CH ₂ F	Et	
220	OC(O)NR'	CF ₃	Et	
221	OC(O)NR'	CH ₂ CF ₃	Et	
222	OC(O)NR'	CH₂CN	Et	
223	OC(O)NR'	Cyclopropyl	E t	
224	OC(O)NR'	Cyclopropylmethyl	Et	
225	OC(O)NR'	CH₂CO₂Me	Et	
226	OC(O)NR'	CH₂CH₂NMe₂	Et	
227	OC(O)NR'	CH₂-(N-morpholinyl)	Et	
228	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	
229	OC(O)NR'	2-Furanyl	Et	
230	OC(O)NR'	2-Pyrimidinyl	Et	
231	OC(O)NR'	2-Oxazolyl	Et	
232	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
234	OC(O)NR'	Tetrazolyl	Et	
235	OC(O)NR'	n-Hex	Et	

WO 00/35913

Bsp. Nr.	Υ	R	R'	m.p. [°C]
236	OC(O)C(O)O	Cyclobutyl		·p. [0]
237	0000000	Me		
238	00,0000	Et		
239	00(0)0(0)0	n-Pr		
240	0C(0)C(0)0	i-Pr		
241	0C(0)C(0)0	n-Bu	İ	
242	OC(O)C(O)O	i-Bu		
243	0C(0)C(0)0	Aliyi		
244	0C(0)C(0)0	CH₂C≡CH		
245	00(0)0(0)0	CH ₂ C=CH		
246	00(0)0(0)0			
247	00(0)0(0)0	CH ₂ CH ₂ F		
248	00(0)0(0)0	CF₃		
249		CH ₂ CF ₃		
250	OC(O)C(O)O	CH₂CN		
II.	OC(O)C(O)O	Cyclopropyl		
251	OC(O)C(O)O	Cyclopropylmethyl		
252	OC(O)C(O)O	CH ₂ CO ₂ Me		
253	OC(O)C(O)O	CH ₂ CH ₂ NMe ₂		
254	OC(O)C(O)O	CH ₂ -(N-morpholinyl)		
255	OC(O)C(O)O	2-Chlor-pyridin-5-yl-methyl		
256	OC(O)C(O)O	n-Hex		
257	OC(O)C(O)O	Furanyl		
258	OC(O)C(O)O	2-Pyrimidinyl		
259	OC(O)C(O)O	2-Oxazolyl		
260	OC(O)C(O)O	5-[1,2,4]-oxdiazolyl		
261	OC(O)C(O)O	Tetrazolyl		
262	S(O)₂NR'	Н	Н	
263	S(O)₂NR'	Me	Η	
264	S(O)₂NR'	Et	H	
265	S(O)₂NR'	n-Pr	Η	
266	S(O)₂NR'	i-Pr	H	
267	S(O)₂NR'	n-Bu	H	
268	S(O)₂NR'	i-Bu	H	
269	S(O)₂NR'	Allyl	H	
270	S(O)₂NR'	CH ₂ C≡CH	н	
271	S(O)₂NR'	CH=CH ₂	Н	
272	S(O)₂NR'	CH ₂ CH ₂ F	H	
273	S(O)₂NR'	CF ₃	Н	
274	S(O) ₂ NR'	CH ₂ CF ₃	н	in the state of th
275	S(O) ₂ NR'	CH ₂ CN	Н	
276	S(O) ₂ NR'	Cyclopropyl	Н	
277	S(O) ₂ NR'	Cyclopropylmethyl	H	
278	S(O) ₂ NR'	CH ₂ CO ₂ Me	H	
279	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	H	
280	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	H	
281	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	H	
282	S(O) ₂ NR'	n-Hex	H	
283	S(O) ₂ NR'	2-Furanyl	 Н	
284	S(O) ₂ NR'	2-Pyrimidinyl	Н	
	1 0 10 12: 41 1	LE-I YIIIINUHIYI	' '	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
285	S(O) ₂ NR'	2-Oxazolyl	Н	
286	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Н	
287	S(O)₂NR'	Tetrazolyl	Н	
288	S(O) ₂ NR'	H	Me	
289	S(O) ₂ NR'	Me	Me	
290	S(O) ₂ NR'	Et	Me	
300	S(O) ₂ NR'	n-Pr	Me	
301	S(O) ₂ NR'	i-Pr	Me	
302	S(O) ₂ NR'	n-Bu	Me	
303	S(O) ₂ NR'	i-Bu	Me	
304	S(O) ₂ NR'	Allyl	Me	
305	S(O) ₂ NR'	CH ₂ C≡CH	Me	
306	S(O) ₂ NR'	CH=CH ₂	Me	
307	S(O) ₂ NR'	_	Me	
308	S(O) ₂ NR'	CH ₂ CH ₂ F	Me	
1		CF ₃	l	
309	S(O) ₂ NR'	CH ₂ CF ₃	Me	
310	S(O) ₂ NR'	CH₂CN	Me	
311	S(O) ₂ NR'	Cyclopropyl	Me	
312	S(O)₂NR'	Cyclopropylmethyl	Me	
313	S(O) ₂ NR'	CH₂CO₂Me	Me	
314	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Me	
315	S(O)₂NR'	CH ₂ -(N-morpholinyl)	Me	
316	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Me	
317	S(O)₂NR'	n-Hex	Me	
318	S(O) ₂ NR'	2-Furanyl	Ме	
319	S(O)₂NR'	2-Pyrimidinyl	Ме	
320	S(O)₂NR'	2-Oxazolyl	Ме	
321	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Ме	
322	S(O) ₂ NR'	Tetrazolyl	Ме	
323	S(O)₂NR'	Н	Et	
324	S(O)₂NR'	Me	Et	
325	S(O)₂NR'	Et	Et	
326	S(O)₂NR'	n-Pr	Et	
327	S(O)₂NR'	i-Pr	Et	
328	S(O)₂NR'	n-Bu	Et	
329	S(O)₂NR'	i-Bu	Et	
330	S(O) ₂ NR'	Allyl	Et	
331	S(O) ₂ NR'	CH ₂ C≡CH	Et	
332	S(O) ₂ NR'	CH=CH ₂	Et	
333	S(O) ₂ NR'	CH ₂ CH ₂ F	Et	
334	S(O) ₂ NR'	CF ₃	Et	
335	S(O) ₂ NR'	CH ₂ CF ₃	Et	
336	S(O) ₂ NR'	CH ₂ CN	Et	
337	S(O) ₂ NR'	Cyclopropyl	Et	
338	S(O) ₂ NR'	Cyclopropylmethyl	Et	
339	S(O) ₂ NR'	CH ₂ CO ₂ Me	Et	
340	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Et	1
341	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Et	
342	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Et	
<u> </u>	10(0)2111	12 Other Pyridin-5-yi-methyr		L

Bsp. Nr.	Υ	R	R'	m.p. [°C]
344	S(O) ₂ NR'	n-Hex	Et	
345	S(O) ₂ NR'	2-Furanyl	Et	
346	S(O) ₂ NR'	2-Pyrimidinyl	Et	
347	S(0) ₂ NR'	2-Oxazolyl	Et	
348	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Et	
349	S(O)2NR'	Tetrazolyl	Et	

Tabelle 5:

$$CF_3$$
 N CH_2 $C(CH_3)_2$ $Y-R$

Bsp. Nr.	Υ	R	R'	m.p. [°C].
1	0	Н		· · · · · · · · · · · · · · · · · · ·
2	0	Ме		
3	0	Et		
4	0	n-Pr		
5	0	i-Pr		
6	0	n-Bu		
7	0	i-Bu		
8	0	Allyl		
9	0	CH ₂ C≡CH		
10	0	CH=CH ₂		
11	0	CH ₂ CH ₂ F		
12	0	CF ₃		
13	0	CH ₂ CF ₃		
14	0	CH₂CN CH₂CN		
15	0	Cyclopropyl		
16	0	Cyclopropylmethyl		
17	0	CH ₂ CO ₂ Me		
18	0	CH ₂ CH ₂ NMe ₂		
19	0	CH ₂ -(N-morpholinyl)		
20	0	2-Chlor-pyridin-5-yl-methyl		
21	0	n-Hex		
22	0	2-Furanyl		
23	0	2-Pyrimidinyl		
24	0	2-Oxazolyl		
25	0	5-[1,2,4]-oxdiazolyl		
26	0	Tetrazolyl		
27	S	Н		
28	S	Me		
29	S	Et		
30	S	n-Pr		
31	s	i-Pr		
32	S	n-Bu		
33	s	i-Bu		
33	s	Allyl		
34	S	CH ₂ C≡CH		
35	s	Tetrazolyl		
36	S	CH=CH ₂		
37	S	CH ₂ CH ₂ F		
38	s	CF ₃		
			L	l

Bsp. Nr.	Υ	R	R'	m.p. [°C].
39	S	CH ₂ CF ₃	· · · · · · · · · · · · · · · · · · ·	p. [Oj.
40	s	CH ₂ CN		
41	S	Cyclopropyl		
42	S	Cyclopropylmethyl		
43	s	CH ₂ CO ₂ Me		
44	s		:	
45	S	CH ₂ CH ₂ NMe ₂		
46	S	CH ₂ -(N-morpholinyl)		
1	s	2-Chlor-pyridin-5-yl-methyl		
47	0	n-Hex		
48	s	2-Furanyl		
49	s	2-Pyrimidinyl		
50	S S	2-Oxazolyl		
51	S	5-[1,2,4]-oxdiazolyl		
51a	S	Tetrazolyl		
52	S(O)	Cyclobutyl		
53	S(O)	Me		
54	S(O)	Et		
55	S(O)	n-Pr		
56	S(O)	i-Pr		
57	S(O)	n-Bu		
58	S(O)	i-Bu		
59	S(O)	Allyl		
60	S(O)	CH₂C≡CH		
61	S(O)	CH=CH ₂		
62	S(O)	CH ₂ CH ₂ F		
63	S(O)	CF ₃		
64	S(O)	CH ₂ CF ₃		
65	S(O)	CH ₂ CN		
66	S(O)	Cyclopropyl		
67	S(O)	Cyclopropylmethyl		
68	S(O)	CH ₂ CO ₂ Me		
69	S(O)			
70	S(O)	CH ₂ CH ₂ NMe ₂		
71		CH ₂ -(N-morpholinyl)		
	S(O) S(O)	2-Chlor-pyridin-5-yl-methyl		
72	` '	n-Hex		
73	S(O)	2-Furanyl		
74	S(O)	2-Pyrimidinyl		
75	S(O)	2-Oxazolyl		
76	S(O)	5-[1,2,4]-oxdiazolyl		
77	S(O)	Tetrazolyl		
78	S(O) ₂	Cyclobutyl		
79	S(O) ₂	Me		
80	S(O) ₂	Et		
81	S(O) ₂	n-Pr		
82	S(O) ₂	i-Pr		
83	S(O) ₂	n-Bu		
84	S(O) ₂	i-Bu		
85	S(O) ₂	Allyl		
86	S(O) ₂	CH ₂ C≡CH		
	1 - (-)2	01120=011		<u></u>

Bsp. Nr.	Υ	R	R'	m n f°C1
87	S(O) ₂	CH=CH ₂	17	m.p. [°C].
88	S(O) ₂	CH ₂ CH ₂ F		
89				
	S(O) ₂	CF ₃		
90	S(O) ₂	CH₂CF₃		
91	S(O) ₂	CH₂CN		
92	S(O) ₂	Cyclopropyl		
93	S(O) ₂	Cyclopropylmethyl		
94	S(O) ₂	CH ₂ CO ₂ Me		
95	S(O) ₂	CH ₂ CH ₂ NMe ₂		
96	S(O) ₂	CH₂-(N-morpholinyl)		
97	S(O) ₂	2-Chlor-pyridin-5-yl-methyl		
98	S(O) ₂	n-Hex		
99	S(O) ₂	2-Furanyl		
100	S(O) ₂	2-Pyrimidinyl		
101	S(O) ₂	2-Oxazolyl		
102	S(O) ₂	· · · · · · · · · · · · · · · · · · ·		
		5-[1,2,4]-oxdiazolyl		
103	S(O) ₂	Tetrazolyl		
104	OC(O)	H		
105	OC(O)	Me		
106	OC(O)	Et_		
107	OC(O)	n-Pr		
108	OC(O)	i-Pr		
109	OC(O)	n-Bu		
110	OC(O)	i-Bu		
111	OC(O)	Allyl		
112	OC(O)	CH ₂ C≡CH		
113	OC(O)	CH=CH ₂		
114	OC(O)	CH ₂ CH ₂ F		
115	oc(o)	CF ₃		
116	oc(o)	CH₂CF₃		
117	00(0)	CH ₂ CN		
118	OC(O)	Cyclopropyl		
119	OC(O)	Cyclopropylmethyl	1	
120	OC(O)	CH ₂ CO ₂ Me		
121	OC(O)			
122	OC(O)	CH ₂ CH ₂ NMe ₂	[
123	OC(O)	CH ₂ -(N-morpholinyl)		
		2-Chlor-pyridin-5-yl-methyl		
124	OC(O)	n-Hex		
125	OC(O)	2-Furanyl		
126	OC(O)	2-Pyrimidinyl		
127	OC(O)	2-Oxazolyl		
128	OC(O)	5-[1,2,4]-oxdiazolyl		
129	OC(O)	Tetrazolyl		
130	OC(O)O	Cyclobutyl		
131	OC(O)O	Me		
132	OC(O)O	Et		
133	00(0)0	n-Pr		
134	oc(o)o	i-Pr		
135	00(0)0	n-Bu		
100	100(0)0	ITEBU	l	1

Bsp. Nr. 136	Υ	R	R'	m.p. [°C].
1 100	OC(O)O	i-Bu		
137	oc(o)o	Allyl		
	oc(o)o	CH₂C≡CH		
139	0C(0)0	CH=CH ₂		
140	0C(0)0	CH ₂ CH ₂ F		
141	0C(0)0	CF ₃		
142	00(0)0			
143		CH₂CF₃		
1 1	OC(O)O	CH₂CN		
144	OC(O)O	Cyclopropyl		
145	OC(O)O	Cyclopropylmethyl		
146	OC(O)O	CH₂CO₂Me		
147	OC(O)O	CH ₂ CH ₂ NMe ₂		
148	OC(O)O	CH ₂ -(N-morpholinyl)		
149	OC(O)O	2-Chlor-pyridin-5-yl-methyl		
150	OC(O)O	n-Hex		
151	OC(O)O	2-Furanyl		
152	00(0)0	2-Pyrimidinyl	:	
153	oc(o)o	2-Oxazolyl		
154	oc(o)o	5-[1,2,4]-oxdiazolyl		
155	00(0)0	Tetrazolyl		
156	OC(O)NR'	Н	Н	
157	OC(O)NR'	Me	H	
157		Et		
l l	OC(O)NR'		H]
159	OC(O)NR'	n-Pr	Н	
160	OC(O)NR'	i-Pr	H	
161	OC(O)NR'	n-Bu	H	
162	OC(O)NR'	i-Bu	H	
163	OC(O)NR'	Allyl	H	
164	OC(O)NR'	CH₂C≡CH	Н	
165	OC(O)NR'	CH=CH ₂	Н	
166	OC(O)NR'	CH ₂ CH ₂ F	H	
167	OC(O)NR'	CF ₃	H	
168	OC(O)NR'	CH ₂ CF ₃	H	
169	OC(O)NR'	CH ₂ CN	H	
170	OC(O)NR'	Cyclopropyl	Н	
171	OC(O)NR'	Cyclopropylmethyl	Н	
172	OC(O)NR'	CH ₂ CO ₂ Me	H	
173	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Н	
174	OC(O)NR'	CH ₂ -(N-morpholinyl)	H	
175	OC(O)NR'		H	
1		2-Chlor-pyridin-5-yl-methyl	ł	
176	OC(O)NR'	n-Hex	H	
177	OC(O)NR'	2-Furanyl	H	1
178	OC(O)NR'	2-Pyrimidinyl	H	
179	OC(O)NR'	2-Oxazolyl	H	
180	OC(O)NR'	5-[1,2,4]-oxdiazolyl	ļΗ	
181	OC(O)NR'	Tetrazolyl	Н	
182	OC(O)NR'	H	Ме	
183	OC(O)NR'	Me	Me	
184	OC(O)NR'	Et	Me	

Bsp. Nr.	Υ	R	R'	m.p. [°C].
185	OC(O)NR'	n-Pr	Ме	
186	OC(O)NR'	i-Pr	Me	
187	OC(O)NR'	n-Bu	Me	
188	OC(O)NR'	i-Bu	Me	
189	OC(O)NR'	Allyl	Me	
190	OC(O)NR'	CH ₂ C≡CH	Me	:
200	OC(O)NR'		Me	
201		CH=CH ₂	ľ	
I I	OC(O)NR'	CH ₂ CH ₂ F	Me	
202	OC(O)NR'	CF ₃	Me	
203	OC(O)NR'	CH₂CF₃	Ме	
204	OC(O)NR'	CH₂CN	Ме	
205	OC(O)NR'	Cyclopropyl	Ме	
206	OC(O)NR'	Cyclopropylmethyl	Me	
207	OC(O)NR'	CH₂CO₂Me	Ме	
208	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Me	
209	OC(O)NR'	CH ₂ -(N-morpholinyl)	Me	
210	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
211	OC(O)NR'	n-Hex	Me	
212	OC(O)NR'	2-Furanyl	Me	
213	OC(O)NR'	2-Pyrimidinyl	Me	
214	OC(O)NR'	2-Oxazolyl	Me	
215	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
216	OC(O)NR'	Tetrazolyl	Me	
		Н		
217	OC(O)NR'		Et	
218	OC(O)NR'	Me	Et	
219	OC(O)NR'	Et	Et	
220	OC(O)NR'	n-Pr	Et	
221	OC(O)NR'	i-Pr	Et	
222	OC(O)NR'	n-Bu	Et	
223	OC(O)NR'	i-Bu	Et	
224	OC(O)NR'	Allyl	Et	
225	OC(O)NR'	CH ₂ C≡CH	Et	
226	OC(O)NR'	CH=CH ₂	Et	
227	OC(O)NR'	CH ₂ CH ₂ F	Et	
228	OC(O)NR'	CF ₃	Et	
229	OC(O)NR'	CH₂CF₃	Et	
230	OC(O)NR'	CH ₂ CN	Et	
231	OC(O)NR'	Cyclopropyl	Et	
232	OC(O)NR'	Cyclopropylmethyl	Et	
233	OC(O)NR'	CH ₂ CO ₂ Me	Et	
234	OC(O)NR'		Et	
235	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Et	
236	, , ,	CH ₂ -(N-morpholinyl)		
	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	
237	OC(O)NR'	n-Hex	Et	
238	OC(O)NR'	2-Furanyl	Et	
239	OC(O)NR'	2-Pyrimidinyl	Et	
240	OC(O)NR'	2-Oxazolyl	Et	
241	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
242	OC(O)NR'	Tetrazolyl	Et	

Bsp. Nr.	ΙΥ	R	R'	m.p. [°C].
243	OC(O)C(O)O	cyclobutyl		
244	00(0)0(0)0	Me		
245	00(0)0(0)0	Et		
246	00(0)0(0)0	n-Pr		
247	0C(0)C(0)0	i-Pr		
248	0C(0)C(0)0	n-Bu		
249	0C(0)C(0)0	i-Bu		
250	OC(O)C(O)O	Allyl		
251	OC(O)C(O)O	CH₂C≡CH		
252	0C(0)C(0)0			
253	0C(0)C(0)0	CH ₂ CH ₂ F		
254	0C(0)C(0)0			
255	00(0)0(0)0			
256	0C(0)C(0)0	CH ₂ CF ₃		
257	0C(0)C(0)0	CH ₂ CN		
258	0C(0)C(0)0	Cyclopropyl		
		Cyclopropylmethyl		
259	0C(0)C(0)0	CH ₂ CO ₂ Me		
260	0C(0)C(0)0	CH ₂ CH ₂ NMe ₂		
261	OC(O)C(O)O	CH ₂ -(N-morpholinyl)		
262	OC(O)C(O)O	2-Chlor-pyridin-5-yl-methyl	·	
263	OC(O)C(O)O	n-Hex		
264	OC(O)C(O)O	2-Furanyl		
265	OC(O)C(O)O	2-Pyrimidinyl		
266	OC(O)C(O)O	2-Oxazolyl		
267	OC(O)C(O)O	5-[1,2,4]-oxdiazolyl		
268	OC(O)C(O)O	Tetrazolyl		
269	S(O) ₂ NR'	Н	Ме	
270	S(O)₂NR'	Me	Ме	
271	S(O)₂NR'	Et	Me	
272	S(O)₂NR'	n-Pr	Me	
273	S(O) ₂ NR'	i-Pr	Me	
274	S(O) ₂ NR'	n-Bu	Me	
275	S(O)₂NR'	i-Bu	Me	
276	S(O)₂NR'	Allyl	Me	
277	S(O)₂NR'	CH ₂ C≡CH	Me	
278	S(O)₂NR'	CH=CH ₂	Me	
279	S(O)₂NR'	CH ₂ CH ₂ F	Me	
280	S(O)₂NR'	CF ₃	Me	
281	S(O)₂NR'	CH ₂ CF ₃	Me	
282	S(O) ₂ NR'	CH₂CN CH₂CN	Me	,
283	S(O) ₂ NR'	Cyclopropyl	Me	
284	S(O) ₂ NR'	Cyclopropylmethyl	Me	
285	S(O) ₂ NR'	CH ₂ CO ₂ Me	Me	
286	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Me	
287	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Me	
288	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Me	
289	S(O) ₂ NR'	n-Hex	Me	
290	S(O) ₂ NR'	2-Furanyl	Me	
291	S(O) ₂ NR'	2-Pyrimidinyl	Me	
201	10(0)21411	Z=r yrinniuittyi	LIVIC	

Bsp. Nr.	Υ	R	R'	m.p. [°C].
292	S(O) ₂ NR'	2-Oxazolyl	Me	
293	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Me	
294	S(O) ₂ NR'	Tetrazolyl	Me	
295	S(O)₂NR'	Н	Et	
296	S(O)₂NR'	Me	Et	
297	S(O)₂NR'	Et	Et	
298	S(O)₂NR'	n-Pr	Et	
299	S(O)₂NR'	i-Pr	Et	
300	S(O)₂NR'	n-Bu	Et	
301	S(O)₂NR'	i-Bu	Et	
302	S(O)₂NR'	Allyl	Et	
303	S(O)₂NR'	CH ₂ C≡CH	Et	
304	S(O)₂NR'	CH=CH ₂	Et	
305	S(O)₂NR'	CH ₂ CH ₂ F	Et	
306	S(O)₂NR'	CF ₃	Et	
307	S(O)₂NR'	CH ₂ CF ₃	Et	
308	S(O)₂NR'	CH₂CN	Et	
309	S(O)₂NR'	Cyclopropyl	Et	
310	S(O)₂NR'	Cyclopropylmethyl	Et	
311	S(O)₂NR'	CH ₂ CO ₂ Me	Et	
312	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Et	
313	S(O)₂NR'	CH ₂ -(N-morpholinyl)	Et	
314	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Et	
315	S(O)₂NR'	n-Hex	Et	
316	S(O)₂NR'	2-Furanyl	Et	
317	S(O)₂NR'	2-Pyrimidinyl	Et	
318	S(O)₂NR'	2-Oxazolyl	Et	
319	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Et	
320	S(O)₂NR'	Tetrazolyl	Et	

Tabelle 6:

Bsp. Nr.	Υ	R	R'	m.p. [°C]
1	0	H		
2	0	Me		
2 3	0	Et		
4	0	n-Pr		
5	0	i-Pr		
6	0	n-Bu		
7	Ō	i-Bu		
8	0	Allyl		
9	0	CH ₂ C≡CH		
10	O	CH=CH ₂		
11	O	CH ₂ CH ₂ F		
12	o	CF ₃		
13	Ō	CH ₂ CF ₃		
14	Ö	CH ₂ CN		
15	Ö	Cyclopropyl		
16	Ö	Cyclopropylmethyl		
17	Ö	CH ₂ CO ₂ Me		
18	Ö	CH ₂ CH ₂ NMe ₂		
19	ō	CH ₂ -(N-morpholinyl)		
20	Ō	2-Chlor-pyridin-5-yl-methyl		
21	Ŏ	2-Furanyl		
22	o	2-Pyrimidinyl		
23	o	2-Oxazolyl		
24	ō	5-[1,2,4]-oxdiazolyl		
25	o	Tetrazolyl		
26	S	H		
27	S	Me		
28	S	Et		
29	S	n-Pr		
30	S S S	i-Pr		
31	s	n-Bu		
32	S	i-Bu		
33	S	Allyl		
34	S	CH ₂ C≡CH		
35	S	CH ₂ C=CH CH=CH ₂		
36	S	CH ₂ CH ₂ F		
37	S			
38	S			
39	S	CH₂CF₃ CH₂CN		
	L			1

Bsp. Nr.	Υ	R	R'	m.p. [°C]
40	S	Cyclopropyl		m.p. [C]
41	S	Cyclopropylmethyl		
42	s			
43	S	CH ₂ CO ₂ Me		
1		CH ₂ CH ₂ NMe ₂		
44	S	CH ₂ -(N-morpholinyl)		
45	S	2-Chlor-pyridin-5-yl-methyl		
46	S	2-Furanyl		
47	S	2-Pyrimidinyl		
48	S	2-Oxazolyl		
49	S	5-[1,2,4]-oxdiazolyl		
50	S	Tetrazolyl		
51	S(O)	n-Hex		
52	S(O)	Me		
53	S(O)	Et		
54	S(O)	n-Pr		
55	S(O)	i-Pr		
56	S(O)	n-Bu		
57	S(O)	i-Bu		
58	S(O)	Allyl		
59	S(O)			
60	S(O)	CH ₂ C≡CH		
61	S(O)	CH=CH ₂		
62		CH₂CH₂F		
1	S(O)	CF ₃		
63	S(O)	CH₂CF₃		
64	S(O)	CH₂CN		
65	S(O)	Cyclopropyl		
66	S(O)	Cyclopropylmethyl		
67	S(O)	CH₂CO₂Me		
68	S(O)	CH₂CH₂NMe₂		1
69	S(O)	CH ₂ -(N-morpholinyl)		
70	S(O)	2-Chlor-pyridin-5-yl-methyl		
71	S(O)	2-Furanyl		
72	S(O)	2-Pyrimidinyl		
73	S(O)	2-Oxazolyl		
74	S(O)	5-[1,2,4]-oxdiazolyl		
75	s(o)	Tetrazolyl		
76	S(O) ₂	n-Hex		
77	S(O) ₂	Me		
78	S(O) ₂	Et		
79	S(O) ₂	n-Pr	1	
80	S(O) ₂	i-Pr		
81	S(O) ₂	n-Bu		
82	S(O) ₂	i-Bu		
83	S(O) ₂	Allyl		
84	S(O) ₂	CH ₂ C≡CH		
85	S(O) ₂	CH ₂ C≣CH CH=CH ₂		
86	S(O) ₂ S(O) ₂			
87	S(O) ₂ S(O) ₂	CH ₂ CH ₂ F		
88	S(O) ₂ S(O) ₂	CF₃	1	
00	3(0)2	CH ₂ CF ₃		

Bsp. Nr.	Υ	R	R'	m.p. [°C]
89	S(O) ₂	CH ₂ CN	†	
90	S(O) ₂	Cyclopropyl		
91	S(O) ₂	Cyclopropylmethyl		
92	S(O) ₂	CH ₂ CO ₂ Me		
93	S(O) ₂	CH ₂ CH ₂ NMe ₂		
94	S(O) ₂	CH ₂ -(N-morpholinyl)		
95	S(O) ₂	2-Chlor-pyridin-5-yl-methyl		
96	S(O) ₂	2-Furanyl		
97	S(O) ₂	2-Pyrimidinyl		
98	S(O) ₂ S(O) ₂	2-Oxazolyl		
99	S(O) ₂ S(O) ₂	5-[1,2,4]-oxdiazolyl		
100		Tetrazolyl		
	S(O) ₂	H		
101	OC(O)			
102	OC(O)	Me	·	
103	OC(O)	Et		
104	OC(O)	n-Pr		
105	OC(O)	i-Pr		
106	OC(O)	n-Bu		
107	OC(O)	i-Bu		
108	OC(O)	Allyl		
109	OC(O)	CH₂C≡CH		
110	OC(O)	CH=CH ₂		
111	OC(O)	CH₂CH₂F		
112	OC(O)	CF₃		
113	OC(O)	CH ₂ CF ₃		
114	OC(O)	CH₂CN		
115	OC(O)	Cyclopropyl		
116	OC(O)	Cyclopropylmethyl		
117	OC(O)	CH ₂ CO ₂ Me		
118	OC(O)	CH ₂ CH ₂ NMe ₂		
119	OC(O)	CH ₂ -(N-morpholinyl)		
120	OC(O)	2-Chlor-pyridin-5-yl-methyl		
121	oc(o)	2-Furanyl		
122	oc(o)	2-Pyrimidinyl		
123	OC(O)	2-Oxazolyl		
124	OC(O)	5-[1,2,4]-oxdiazolyl		
125	OC(O)	Tetrazolyl		
126	00(0)0	n-Hex		
127	0C(0)0	Me		
128	0C(0)0	Et		
129	0C(0)0	n-Pr		
130	00(0)0	i-Pr		
131	00(0)0	n-Bu	Translation .	
132	00(0)0	i-Bu		
133	00(0)0	Allyl	1	
134	00(0)0	CH ₂ C≡CH	1	
135	00(0)0			
136		CH=CH ₂		
137	00(0)0	CH₂CH₂F		1
13/	OC(O)O	CF ₃		

Bsp. Nr.	ΙΥ	R	R'	T [90]
138	00(0)0	CH ₂ CF ₃	T .	m.p. [°C]
139	00(0)0	CH ₂ CN		
140	00(0)0	Cyclopropyl		
141	00(0)0	Cyclopropylmethyl		
142	00(0)0	Cyclopropylinethyl CH ₂ CO ₂ Me		
143	00(0)0			
144	00(0)0	CH ₂ CH ₂ NMe ₂		
145	00(0)0	CH ₂ -(N-morpholinyl)		
146	00(0)0	2-Chlor-pyridin-5-yl-methyl		
147	00(0)0	2-Furanyl		
148		2-Pyrimidinyl		
149	00(0)0	2-Oxazolyl		
150	OC(O)O	5-[1,2,4]-oxdiazolyl		
	OC(O)O	Tetrazolyl		
151	OC(O)NR'	H	Н	
152	OC(O)NR'	Me	Н	
153	OC(O)NR'	Et_	H	
154	OC(O)NR'	n-Pr	H	
155	OC(O)NR'	i-Pr	H	
156	OC(O)NR'	n-Bu	H	
157	OC(O)NR'	i-Bu	Н	
158	OC(O)NR'	Allyl	H	
159	OC(O)NR'	CH ₂ C≡CH	H	
160	OC(O)NR'	CH=CH₂	Н	
161	OC(O)NR'	CH₂CH₂F	H	
162	OC(O)NR'	CF ₃	Н	
163	OC(O)NR'	CH₂CF₃	H	
164	OC(O)NR'	CH₂CN	H	
165	OC(O)NR'	Cyclopropyl	H	
166	OC(O)NR'	Cyclopropylmethyl	H	
167	OC(O)NR'	CH ₂ CO ₂ Me	Н	
168	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Н	
169	OC(O)NR'	CH ₂ -(N-morpholinyl)	Н	
170	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Н	
171	OC(O)NR'	2-Furanyl	Н	
172	OC(O)NR'	2-Pyrimidinyl	Н	
173	OC(O)NR'	2-Oxazolyl	Н	
174	OC(O)NR'	5-[1,2,4]-oxdiazolyl	H	
175	OC(O)NR'	Tetrazolyl	Н	
176	OC(O)NR'	Н	Me	
177	OC(O)NR'	Me	Me	
178	OC(O)NR'	Et	Me	
179	OC(O)NR'	n-Pr	Me	
180	OC(O)NR'	i-Pr	Me	
181	OC(O)NR'	n-Bu	Me	
182	OC(O)NR'	i-Bu	Me	
183	OC(O)NR'	Allyl	Me	
184	OC(O)NR'	CH ₂ C≡CH	Me	
185	OC(O)NR'	CH=CH ₂	Me	
186	OC(O)NR'		1	
100	TOCIONIX		Ме	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
187	OC(O)NR'	CF ₃	Me	p. [0]
188	OC(O)NR'	CH₂CF₃	Me	
189	OC(O)NR'	CH₂CN	Me	
190	OC(O)NR'	Cyclopropyl	Me	
191	OC(O)NR'	Cyclopropylmethyl	1	
192	OC(O)NR'	CU CO Ma	Me	
193		CH₂CO₂Me	Me	
193	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Ме	
I .	OC(O)NR'	CH ₂ -(N-morpholinyl)	Ме	
195	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Me	
196	OC(O)NR'	Furanyl	Me	
197	OC(O)NR'	2-Pyrimidinyl	Me	
198	OC(O)NR'	2-Oxazolyl	Me	
199	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Me	
200	OC(O)NR'	Tetrazolyl	Me	
201	OC(O)NR'	Н	Et	
202	OC(O)NR'	Me	Et	
203	OC(O)NR'	Et	Et	
204	OC(O)NR'	n-Pr	Et	
205	OC(O)NR'	i-Pr	Et	
206	OC(O)NR'	n-Bu	1	
207	OC(O)NR'	i-Bu	Et	
208	1 ' '	F .	Et	
	OC(O)NR'	Allyl	Et	
209	OC(O)NR'	CH ₂ C≡CH	Et	
210	OC(O)NR'	CH=CH₂	Et	
211	OC(O)NR'	CH₂CH₂F	Et	
212	OC(O)NR'	CF₃	Et	
213	OC(O)NR'	CH₂CF₃	Et	
214	OC(O)NR'	CH₂CN	Et	
215	OC(O)NR'	Cyclopropyl	Et	
216	OC(O)NR'	Cyclopropyimethyl	Et	
217	OC(O)NR'	CH ₂ CO ₂ Me	Et	
218	OC(O)NR'	CH ₂ CH ₂ NMe ₂	Et	
219	OC(O)NR'	CH ₂ -(N-morpholinyl)	Et	
220	OC(O)NR'	2-Chlor-pyridin-5-yl-methyl	Et	
221	OC(O)NR'	2-Furanyl	Et	
222	OC(O)NR'	2-Pyrimidinyl	Et	
223	OC(O)NR'			
224	OC(O)NR'	2-Oxazolyl	Et	
225	OC(O)NR'	5-[1,2,4]-oxdiazolyl	Et	
226		Tetrazolyl	Et	
227	OC(O)C(O)O	n-Hex		
228	0C(0)C(0)0	Me		
	0C(0)C(0)0	Et		
229	OC(O)C(O)O	n-Pr		
230	OC(O)C(O)O	i-Pr		
231	OC(O)C(O)O	n-Bu		
232	OC(O)C(O)O	i-Bu		
233	OC(O)C(O)O	Allyl		
234	OC(O)C(O)O	CH₂C≡CH		
235	OC(O)C(O)O	CH=CH₂		

Bsp. Nr.	Υ	R	R'	m.p. [°C]
236	OC(O)C(O)O	CH ₂ CH ₂ F		
237	00(0)0(0)0	CF ₃		
238	00(0)0(0)0	CH ₂ CF ₃		
239	00(0)0(0)0	CH₂CN		
240	0C(0)C(0)0	Cyclopropyl		
241	0C(0)C(0)0	Cyclopropylmethyl		
242	0C(0)C(0)0	CH ₂ CO ₂ Me		
243	0C(0)C(0)0	CH ₂ CH ₂ NMe ₂		
244	0C(0)C(0)0	CH ₂ -(N-morpholinyl)		
245	OC(O)C(O)O	2-Chlor-pyridin-5-yl-methyl		
246	0C(0)C(0)0	2-Furanyl		
247	0C(0)C(0)0	2-Pyrimidinyl		
248	0C(0)C(0)0	2-Oxazolyl		
249	00(0)0(0)0	5-[1,2,4]-oxdiazolyl		
250	00(0)0(0)0	Tetrazolyl		
251	S(O) ₂ NR'	H		
252	S(O) ₂ NR'	Me	Н	
253		Et	Н	
254	S(O) ₂ NR'		H	
255	S(O) ₂ NR'	n-Pr i-Pr	H	
	S(O) ₂ NR'		H	
256	S(O)₂NR'	n-Bu	H	
257	S(O) ₂ NR'	i-Bu	H	
258	S(O)₂NR'	Allyl	Н	
259	S(O) ₂ NR'	CH ₂ C≡CH	Н	
260	S(O)₂NR'	CH=CH₂	Н	
261	S(O)₂NR'	CH₂CH₂F	H	
262	S(O)₂NR'	CF₃	Н	
263	S(O)₂NR'	CH₂CF₃	Н	
264	S(O)₂NR'	CH₂CN	Н	
265	S(O)₂NR′	Cyclopropyl	Н	
266	S(O)₂NR'	Cyclopropylmethyl	Н	
267	S(O)₂NR'	CH₂CO₂Me	Н	
268	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Н	
269	S(O)₂NR'	CH₂-(N-morpholinyl)	Н	
270	S(O)₂NR'	2-Chlor-pyridin-5-yl-methyl	Н	
271	S(O)₂NR'	2-Furanyl	Н	
272	S(O)₂NR'	2-Pyrimidinyl	Н	
273	S(O)₂NR'	2-Oxazolyl	Н	
274	S(O)₂NR'	5-[1,2,4]-oxdiazolyl	Н	
275	S(O) ₂ NR'	Tetrazolyl	Н	
276	S(O) ₂ NR'	Н	Me	
277	S(O) ₂ NR'	Me	Me	
278	S(O) ₂ NR'	Et	Me	
279	S(O) ₂ NR'	n-Pr	Me	
280	S(O) ₂ NR'	i-Pr	Me	
281	S(O) ₂ NR'	n-Bu	Me	
282	S(O) ₂ NR'	i-Bu	Me	
283	S(O) ₂ NR'	Allyl	Me	
284	S(O) ₂ NR' S(O) ₂ NR'	1 -	i	
204	O(O)2INK	CH ₂ C≡CH	Ме	

Bsp. Nr.	Υ	R	R'	m.p. [°C]
285	S(O)₂NR'	CH=CH ₂	Ме	, , -,
286	S(O)₂NR'	CH ₂ CH ₂ F	Me	
287	S(O)₂NR'	CF ₃	Me	
288	S(O)₂NR'	CH₂CF₃	Me	
289	S(O)₂NR'	CH₂CN	Me	
290	S(O)₂NR'	Cyclopropyl	Me	
291	S(O)₂NR'	Cyclopropylmethyl	Me	
292	S(O)₂NR'	CH ₂ CO ₂ Me	Me	
293	S(O)₂NR'	CH ₂ CH ₂ NMe ₂	Me	
294	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Me	
295	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Ме	
296	S(O) ₂ NR'	2-Furanyl	Ме	
297	S(O) ₂ NR'	2-Pyrimidinyl	Ме	
298	S(O) ₂ NR'	2-Oxazolyl	Me	
299	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Me	
300	S(O) ₂ NR'	Tetrazolyl	Ме	
301	S(O) ₂ NR'	H	Et	
302	S(O) ₂ NR'	Me	Et	
303	S(O) ₂ NR'	Et	Et	
304	S(O)₂NR'	n-Pr	Et	
305	S(O) ₂ NR'	i-Pr	Et	
306	S(O) ₂ NR'	n-Bu	Et	
307	S(O) ₂ NR'	i-Bu	Et	
308	S(O) ₂ NR'	Allyl	Et	
309	S(O) ₂ NR'	CH ₂ C≡CH	Et	
310	S(O) ₂ NR'	CH=CH ₂	Et	
311	S(O) ₂ NR'	CH₂CH₂F	Et	
312	S(O) ₂ NR'	CF ₃	Et	
313	S(O) ₂ NR'	CH ₂ CF ₃	Et	
314	S(O) ₂ NR'	CH ₂ CN	Et	
315	S(O)₂NR'	Cyclopropyl	Et	
316	S(O) ₂ NR'	Cyclopropylmethyl	Et	
317	S(O) ₂ NR'	CH ₂ CO ₂ Me	Et	
318	S(O) ₂ NR'	CH ₂ CH ₂ NMe ₂	Et	
319	S(O) ₂ NR'	CH ₂ -(N-morpholinyl)	Et	
320	S(O) ₂ NR'	2-Chlor-pyridin-5-yl-methyl	Et	
321	S(O) ₂ NR'	2-Furanyl	Et	
322	S(O) ₂ NR'	2-Pyrimidinyl	Et	
323	S(O) ₂ NR'	2-Oxazolyl	Et	
324	S(O) ₂ NR'	5-[1,2,4]-oxdiazolyl	Et	
325	S(O) ₂ NR'	Tetrazolyl	Et	

- B. Formulierungsbeispiele
- a) Ein Stäubemittel wird erhalten, indem man 10 Gew.-Teile Wirkstoff und 90 Gew.-Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
- b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew.-Teile Wirkstoff, 65 Gew.-Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew.-Teile ligninsulfonsaures Kalium und 1 Gew.-Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
- c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat stellt man her, indem man 40 Gew.-teile Wirkstoff mit 7 Gew.-Teilen eines Sulfobernsteinsäurehalbesters, 2 Gew.-Teilen eines Ligninsulfonsäure-Natriumsalzes und 51 Gew.-Teilen Wasser mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
- d) Ein emulgierbares Konzentrat läßt sich herstellen aus 15 Gew.-Teilen Wirkstoff, 75 Gew.-Teilen Cyclohexan als Lösungsmittel und 10 Gew.-Teilen oxethyliertem Nonylphenol (10 EO) als Emulgator.
- e) Ein Granulat läßt sich herstellen aus 2 bis 15 Gew.-Teilen Wirkstoff und einem inerten Granulatträgermaterial wie Attapulgit, Bimsgranulat und/oder Quarzsand. Zweckmäßigerweise verwendet man eine Suspension des Spritzpulvers aus Beispiel b) mit einem Feststoffanteil von 30 % und spritzt diese auf die Oberfläche eines Attapulgitgranulats, trocknet und vermischt innig. Dabei beträgt der Gewichtsanteil des Spritzpulvers ca. 5 % und der des inerten Trägermaterials ca. 95 % des fertigen Granulats.

91

C. Biologische Beispiele

Beispiel 1

Angekeimte Ackerbohnen-Samen (Vicia faba) mit Keimwurzeln wurden in mit Leitungswasser gefüllte Braunglasfläschchen übertragen und anschließend mit ca. 100 schwarzen Bohnenblattläusen (Aphis fabae) belegt. Pflanzen und Blattläuse wurden dann für 5 Sekunden in eine wäßrige Lösung des zu prüfenden und formulierten Präparates getaucht. Nach dem Abtropfen wurden Pflanze und Tiere in einer Klimakammer gelagert (16 Stunden Licht/Tag, 25 °C, 40-60 % RF). Nach 3 und 6 Tagen Lagerung wurde die Wirkung des Präparates auf die Blattläuse festgestellt. Bei einer Konzentration von 300 ppm (bezogen auf den Gehalt an Wirkstoff) bewirkten die Präparate gemäß Beispiele Nr. 2/29, 2/43, 2/67, 2/6, 3/6, 3/50, 3/75 und 3/49 eine 90-100 %ige Mortalität der Blattläuse.

Die Numerierung der Verbindungen ist mit Tabelle/Nr. in der Tabelle angegeben.

Beispiel 2

Die Blätter von 12 Reispflanzen mit einer Halmlänge von 8 cm wurden für 5 Sekunden in eine wäßrige Lösung des zu prüfenden und formulierten Präparates getaucht. Nach dem Abtropfen wurden die so behandelten Reispflanzen in eine Petrischale gelegt und mit ca. 20 Larven (L3-Stadium) der Reiszikadenart Nilaparvata lugens besetzt. Nach dem Verschließen der Petrischale wurde diese in einer Klimakammer gelagert (16 Stunden Licht/Tag, 25 °C, 40-60 % RF). Nach 6 Tagen Lagerung wurde die Mortalität der Zikadenlarven bestimmt. Bei einer Konzentration von 300 ppm (bezogen auf den Gehalt an Wirkstoff) bewirkten die Präparate gemäß Beispiele Nr. 2/97, 2/127, 2/153, 2/255, 3/50 und 3/75 eine 90-100 %ige Mortalität.

92

Beispiel 3

Angekeimte Ackerbohnen-Samen (Vicia faba) mit Keimwurzeln wurden in mit Leitungswasser gefüllte Braunglasfläschchen übertragen. Vier Milliliter einer wäßrigen Lösung des zu prüfenden und formulierten Präparates wurde in das Braunglasfläschchen hineinpipettiert. Anschließend wurde die Ackerbohne mit ca. 100 schwarzen Bohnenblattläusen (Aphis fabae) stark belegt. Pflanze und Tiere wurden dann in einer Klimakammer gelagert (16 Stunden Licht/Tag, 25 °C, 40-60 % RF). Nach 3 und 6 Tagen Lagerung wurde die wurzelsystemische Wirkung des Präparates auf die Blattläuse festgestellt. Bei einer Konzentration von 30 ppm (bezogen auf den Gehalt an Wirkstoff) bewirkten die Präparate gemäß Beispiele Nr. 2/29, 2/43, 2/55, 2/67, 2/97, 2/6, 2/167, 2/153, 3/6, 3/50, 3/75 und 3/49 eine 90-100 %ige Mortalität der Blattläuse durch wurzelsystemische Wirksamkeit.

Patentansprüche

1. 4-Trifluormethyl-3-oxadiazolylpyridine der allgemeinen Formel (I), gegebenenfalls auch in Form der Salze,

m ist 0 oder 1;

X ist eine Einfachbindung, eine geradkettige Alkylengruppe mit 1, 2 oder 3 C-Atomen oder einer verzweigten Alkylengruppe mit 3 bis 9 C-Atomen, wobei ein oder mehrere H-Atome durch F ersetzt sein können;

Y ist -O-, -S-, -SO-, -SO₂-, -O-CO-, -O-CO-O-, -SO₂-O-, -O-SO₂-, -NR¹-, -NR²-CO-, -NR³-CO-O-, -NR⁴-CO-NR⁵-, -O-CO-CO-O-, -O-CO-NR⁶, -SO₂-NR⁷ oder -NR⁸-SO₂-;

R,R¹,R²,R³,R⁴,R⁵,R⁶,R⁷,R⁸ sind gleich oder verschieden, unabhängig voneinander H, (C_1-C_{10}) -Alkyl, (C_2-C_{10}) -Alkenyl, (C_2-C_{10}) -Alkinyl, (C_3-C_8) -Cycloalkyl, (C_4-C_8) -Cycloalkenyl, (C_8-C_8) -Cycloalkinyl, Heterocyclyl oder - $(CH_2)_{1-4}$ -Heterocyclyl,

wobei jede der acht letztgenannten Gruppen gegebenenfalls ein oder mehrfach substituiert ist, und wobei gegebenenfalls jeweils R und R¹, R und R², R und R⁵, R und R⁶, R und R⁷, R und R⁸ oder R und X jeweils zusammen auch ein Ringsystem bilden können;

mit der Maßgabe, daß die Verbindungen, in denen

$$X = -, Y = 0, R = H$$

$$X = -$$
, $Y = 0$, $R = Me$

$$X = -$$
, $Y = 0$, $R = Et$

$$X = -, Y = O, R = CHF_{2}$$

$$X = -$$
, $Y = O$, $R = CH_{2}Ph$

$$X = CH_2$$
, $Y = O$, $R = 2$ -Furanyl

$$X = CH_2$$
, $Y = O$, $R = Me$

$$X = CH_2$$
, $Y = O$, $R = 5$ -isoxazolyl

$$X = CH_2$$
, $Y = O$, $R = 5$ -nitrol-furan-2-yl

$$X = CH_2CH_2$$
, $Y = O$, $R = H$

$$X = CH_2CH_2$$
; $Y = O$, $R = Me$

$$X = CH_2CH_2$$
, $Y = O$, $R = CH_2$

$$X = CH_2CH_2$$
, $Y = O$, $R = Et$

$$X = CH_2CH_2$$
, $Y = O$,

$$X = CH_2CH_2$$
; $Y = OC(O)$, $R = 4$ -F-phenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 2,6$ -Difluorphenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = 4$ -Nitrophenyl

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = t-Bu$

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = Cyclopropyl$

$$X = CH_2CH_2$$
, $Y = OC(O)$, $R = Me$

$$X = CH_2CH_2CH_2$$
, $Y = O$, $R = H$

$$X = -$$
, $Y = S(O)$, $R = 4$ -Brombenzyl

$$X = CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2$$
, $Y = S(O)$, $R = Me$

$$X = CH_2, Y = S(O)_2, R = t-Bu$$

$$X = CH_2$$
, $Y = S$, $R = 2$ -Thienyl

$$X = CH_2CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2CH_2$$
, $Y = S$, $R = n-Pr$

$$X = CH_2CH_2$$
, $Y = S$, $R = Benzyl$

$$X = CH_2CH_2$$
, $Y = S$, $R = 2$ -Thienyl-methyl

$$X = CH_2CH_2CH_2$$
, $Y = S$, $R = Me$

$$X = CH_2CH_2CH_2$$
, $Y = SO$, $R = Me$

WO 00/35913

95

 $X = CH_2CH_2CH_2CH_2$, Y = S, $R = CH_2CH_2CH_2CH_2OMe$ ausgenommen sind.

- 2. 4-Trifluormethyl-3-oxadiazolylpyridine nach Anspruch 1, dadurch gekennzeichnet, daß m in der Formel (I) 0 bedeutet.
- 3. 4-Trifluormethyl-3-oxadiazolylpyridine nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß X in der Formel (I) eine Einfachbindung, -CH₂-, -CH₂-CH₂-, -CH₂-CH₂-, bedeutet.
- 4. 4-Trifluormethyl-3-oxadiazolylpyridine nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Y in der Formel (I) -O-, -S-, -SO-, -SO₂-, -O-CO-, -O-CO-O-, -O-CO-NR⁶-, -SO₂-NR⁷-, -O-SO₂- oder -SO₂-O- bedeutet.
- 5. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel (I) nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß aktivierte Derivate der Säure der allgemeinen Formel (II),

in Gegenwart einer Base mit einer Verbindung der Formel (III),

$$\begin{array}{c|c}
O \\
N \\
X-Y-R
\end{array}$$
(III)

in welcher der Rest X-Y-R wie in Formel (I) definiert ist, oder eine Vorstufe eines dort definierten Restes darstellt, umgesetzt werden.

WO 00/35913

96

PCT/EP99/09684

- 6. Mittel mit insektizider, akarizider und/oder nematizider Wirkung, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung nach einem der Ansprüche 1 bis 4.
- 7. Mittel mit insektizider, akarizider und nematizider Wirkung nach Anspruch 6 in Mischung mit Träger- und/oder oberflächenaktiven Stoffen.
- 8. Mittel nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß es einen weiteren Wirkstoff aus der Gruppe Akarizide, Fungizide, Herbizide, Insektizide, Nematizide oder wachstumsregulierende Stoffe enthält.
- 9. Verwendung einer Verbindungen nach einem der Ansprüche 1 bis 4 oder eines Mittels nach Anspruch 6 oder 7, zur Herstellung eines Tierarzneimittels.
- 10. Verfahren zur Bekämpfung von Schadinsekten, Acarina und Nematoden, dadurch gekennzeichnet, daß man eine wirksame Menge einer Verbindung nach einem der Ansprüche 1 bis 4 oder eines Mittels nach einem der Ansprüche 6 bis 8 auf den Ort der gewünschten Wirkung appliziert.
- 11. Verfahren zum Schutz von Nutzpflanzen vor der unerwünschten Einwirkung durch Schadinsekten, Acarina und Nematoden, dadurch gekennzeichnet, daß mindestens eine der Verbindungen nach einem der Ansprüche 1 bis 4 oder ein Mittel nach einem oder mehreren der Ansprüche 6 bis 8 zur Behandlung des Nutzpflanzen-Saatgutes verwendet wird.
- 12. Verwendung von Verbindungen nach einem der Ansprüche 1 bis 4 oder eines Mittels nach einem der Ansprüche 6 bis 8 zur Bekämpfung von Schadinsekten, Acarina und Nematoden.

Internacinal Application No PCT/EP 99/09684

	* * · · · · · · · · · · · · · · · · · ·						
A. CLASSII IPC 7	FICATION OF SUBJECT MATTER C07D413/04 A01N43/836 A01N47/0	06 A01N47/10	A01N47/28				
According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIELDS SEARCHED							
Minimum do IPC 7	cumentation searched (classification system followed by classificati CO7D A01N	on symbols)					
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic da	ata base consulted during the international search (name of data ba	se and, where practical, search te	rms used)				
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT						
Category °	Citation of document, with indication, where appropriate, of the rel	evant passages	Relevant to claim No.				
P,X	W0 98 57969 A (HOECHST SCHERING AGMBH) 23 December 1998 (1998-12-2 cited in the application Tabelle 1, Verbindungen 171-174, 308, 310, 311, 352 claims 1,5-12	23)	1-12				
Ρ,Χ	& DE 197 25 450 A 17 December 1998 (1998-12-17)						
А	EP 0 185 256 A (F. HOFFMANN-LA RCAG) 25 June 1986 (1986-06-25) column 21, line 35 - line 38; cla 1,13-17		1,6-12				
А	EP 0 580 374 A (ISHIHARA SANGYO k LTD.) 26 January 1994 (1994-01-26 cited in the application claims 1,2,12-17	5)	1,6-12				
		-/					
X Furth	ner documents are listed in the continuation of box C.	X Patent family members	are listed in annex.				
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention grant but published on or after the international filing date. "E" earlier document but published on or after the international filing date. "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified). "O" document referring to an oral disclosure, use, exhibition or other means. "P" document published prior to the international filing date but later than the priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "B" document member of the same patent family							
Date of the a	Date of the actual completion of the international search Date of mailing of the international search report						
2	1 March 2000	28/03/2000					
Name and n	Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,						

International Application No
PCT/EP 99/09684

C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 95 07891 A (HOECHST SCHERING AGREVO GMBH) 23 March 1995 (1995-03-23) cited in the application claims 1,7-10,12-14,16-18	1,6-12
A	cited in the application	6-12

information on patent family members

Internation No
PCT/EP 99/09684

	tent document in search repor	t .	Publication date	1	Patent family member(s)	Publication date
WO	9857969	Α	23-12-1998	DE AU ZA	19725450 A 8624398 A 9805180 A	17-12-1998 04-01-1999 17-12-1998
EP	185256	A	25-06-1986	AT AU CA DK ES ES ES HU NZ PT US BR GR JP ZA	60594 T 589931 B 5148685 A 1273342 A 552685 A 17800 A 550205 D 8708214 A 556895 D 8801642 A 39971 A,B 77343 A 214566 A 81749 A,B 4788210 A 8506390 A 853049 A 61152661 A 8509576 A	15-02-1991 26-10-1989 26-06-1986 28-08-1990 22-06-1986 30-08-1990 01-10-1987 16-12-1987 16-02-1988 16-04-1988 28-11-1986 17-09-1990 27-07-1989 01-01-1986 29-11-1988 02-09-1986 22-04-1986 11-07-1986 27-08-1986
EP	580374	Α	26-01-1994	ATU BRACCZ DE DE ESR HULJP MX PLUKS UZA	132489 T 4210693 A 9302960 A 2100011 A,C 1081670 A,B 9301502 A 69301205 D 69301205 T 580374 T 20154 A 2085118 T 3018953 T 1001896 A 68334 A,B 106340 A 2994182 B 6321903 A 9304425 A 299769 A 2083562 C 75093 A 5360806 A 9305042 A	15-01-1996 03-02-1994 16-02-1994 24-01-1994 09-02-1994 16-02-1996 05-09-1996 20-05-1996 31-07-1997 16-05-1996 17-07-1998 28-06-1995 12-03-1999 27-12-1999 22-11-1994 28-02-1994 05-04-1994 01-11-1994 05-04-1994
WO	9507891	А	23-03-1995	DE AU BR CN EP JP TR US ZA	4331179 A 7615294 A 9407541 A 1130901 A 0719256 A 9502446 T 28674 A 5723450 A	16-03-1995 03-04-1995 31-12-1996 11-09-1996 03-07-1996 11-03-1997 16-01-1997 03-03-1998 02-05-1995

Information on patent family members

Interna. .al Application No
PCT/EP 99/09684

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
 DE 4239727 A	01-06-1994	AU 5624594 A WO 9412496 A EP 0670836 A JP 8504192 T US 5633267 A US 5756523 A	22-06-1994 09-06-1994 13-09-1995 07-05-1996 27-05-1997 26-05-1998

Internat. .ales Aktenzeichen PCT/EP 99/09684

			CI/LI 33	7 0 3 0 0 4		
A. KLASSI IPK 7	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07D413/04 A01N43/836 A01N47/0	06 A01N47/10	A01N	47/28		
Nach der in	ternationalen Patentklassifikation (IPK) oder nach der nationalen Klas	ssifikation und der IPK				
	RCHIERTE GEBIETE					
Recherchier IPK 7	Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 C07D A01N					
Recherchier	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so	weit diese unter die recherc	:hierten Gebiete	afallen		
Während de	er internationalen Recherche konsultierte elektronische Datenbank (N	iame der Datenbank und ev	vtl. verwendete	Suchbegriffe)		
CALSWE	SENTLICH ANGESEHENE UNTERLAGEN					
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	a dar in Batracht kommande	Talla	Data Anamarah Ne		
Rategorie	Dezelonitung der Veronentilonung, soweit entordenich tilter Angabi	3 der in Betracht kommende	n relie	Betr. Anspruch Nr.		
P,X	WO 98 57969 A (HOECHST SCHERING A GMBH) 23. Dezember 1998 (1998-12- in der Anmeldung erwähnt Tabelle 1, Verbindungen 171-174,	-23)		1-12		
	308, 310, 311, 352					
Р,Х	Ansprüche 1,5-12 & DE 197 25 450 A 17. Dezember 1998 (1998-12-17)					
А	EP 0 185 256 A (F. HOFFMANN-LA RO AG) 25. Juni 1986 (1986-06-25) Spalte 21, Zeile 35 - Zeile 38; A 1,13-17			1,6-12		
A	EP 0 580 374 A (ISHIHARA SANGYO K LTD.) 26. Januar 1994 (1994-01-26 in der Anmeldung erwähnt Ansprüche 1,2,12-17			1,6-12		
[-	-/				
X Weit	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Pate	entfamilie			
"A" Veröffei aber n "E" älteres Anmel "L" Veröffer schein andere soll od ausget "O" Veröffe eine B "P" Veröffei dem b	"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatem einen anderen im Recherchenbericht genannten Veröffentlichung beit werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht dem beanspruchten Prioritätsdatum veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlichung, die nach dem internationalen Anmeldedatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden veröffentlichung die veröffentlichung mit einer oder mehreren anderen Veröffentlichung dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "X" Veröffentlichung dieser Kategorie in Verbindung gebracht wird und diese Verbindung dieser Kategorie in Verbindung dieser Verbindung dieser Verbindung dieser Kateg					
Datum des /	Abschlusses der Internationalen Hecherche	Absendedatum des inte	∍rnationalen Re	cherchenberichts		
	1. März 2000	28/03/200	0			
Name und F	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	Bevollmächtigter Bedie	nsteter			
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Hass, C				

Internationales Aktenzeichen
PCT/EP 99/09684

		PCT/EP 99	7 0 9 0 0 4	
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN			
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommen	nden Teile	Betr. Anspruch Nr.	
A	WO 95 07891 A (HOECHST SCHERING AGREVO GMBH) 23. März 1995 (1995-03-23) in der Anmeldung erwähnt Ansprüche 1,7-10,12-14,16-18		1,6-12	
A	DE 42 39 727 A (BAYER AG) 1. Juni 1994 (1994-06-01) Tabelle 2, Beispiele Nr. 20, 27-36 Ansprüche 1,4-7		6-12	

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
PCT/EP 99/09684

	echerchenberich rtes Patentdoku		Datum der Veröffentlichung		litglied(er) der Patentfamilie	Datum der Veröffentlichung
WO	9857969	Α	23-12-1998	DE AU ZA	19725450 A 8624398 A 9805180 A	17-12-1998 04-01-1999 17-12-1998
EP	185256	A	25-06-1986	AT AU CA DK ES ES ES HU IL NZ PT US BR GR JP ZA	60594 T 589931 B 5148685 A 1273342 A 552685 A 17800 A 550205 D 8708214 A 556895 D 8801642 A 39971 A,B 77343 A 214566 A 81749 A,B 4788210 A 8506390 A 853049 A 61152661 A 8509576 A	15-02-1991 26-10-1989 26-06-1986 28-08-1990 22-06-1986 30-08-1990 01-10-1987 16-12-1987 16-02-1988 16-04-1988 28-11-1986 17-09-1990 27-07-1989 01-01-1986 29-11-1988 02-09-1986 22-04-1986 11-07-1986 27-08-1986
EP	580374	Α	26-01-1994	AT AU BR CN CZ DE DK ES HKU JP MX PL SK US ZA	132489 T 4210693 A 9302960 A 2100011 A,C 1081670 A,B 9301502 A 69301205 D 69301205 T 580374 T 20154 A 2085118 T 3018953 T 1001896 A 68334 A,B 106340 A 2994182 B 6321903 A 9304425 A 299769 A 2083562 C 75093 A 5360806 A 9305042 A	15-01-1996 03-02-1994 16-02-1994 24-01-1994 09-02-1994 16-02-1994 15-02-1996 05-09-1996 20-05-1996 31-07-1997 16-05-1996 31-07-1998 28-06-1995 12-03-1999 27-12-1999 27-12-1999 22-11-1994 28-02-1994 05-04-1994 01-11-1994 05-04-1994
WO WO	9507891	A	23-03-1995	DE AU BR CN EP JP TR US ZA	4331179 A 7615294 A 9407541 A 1130901 A 0719256 A 9502446 T 28674 A 5723450 A 9407040 A	16-03-1995 03-04-1995 31-12-1996 11-09-1996 03-07-1996 11-03-1997 16-01-1997 03-03-1998 02-05-1995

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

International les Aktenzeichen
PCT/EP 99/09684

Im Recherchenbericht angeführtes Patentdokument	Datum der	Mitglied(er) der	Datum der
	Veröffentlichung	Patentfamilie	Veröffentlichung
DE 4239727 A	01-06-1994	AU 5624594 A WO 9412496 A EP 0670836 A JP 8504192 T US 5633267 A US 5756523 A	22-06-1994 09-06-1994 13-09-1995 07-05-1996 27-05-1997 26-05-1998

Formblatt PCT/ISA/210 (Anhang Patentfamilie)(Juli 1992)