الجمهورية الجزائرية الديمقراطية الشعبية

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université des Sciences et de la Technologie Houari Boumediene

Faculté de Génie Electrique

Domaine: Science et Technologie

Filière : *Electronique*

Mémoire de MASTER

Spécialité: Instrumentation

Thème

Conception et Réalisation d'un Chargeur de Batterie Intelligent avec Sortie de 12V/4A

Proposé et dirigé par : Présenté par :

Pr. ATTARI Mokhtar M. ABDELKADER Mohand

Soutenu le : 24 Juin 2024 Devant le jury composé de :

Président : MESSAÏF Iqbal Professeur, USTHB

Examinateur: DROUICHE Imane Maître de Conférences B, USTHB

Promoteur: ATTARI Mokhtar *Professeur, USTHB*

Promotion: Juin 2024

في هذا المشروع، تم تطوير شاحن ذكي مخصص لبطاريات السيارات ذات الجهد 12 فولت والقادر على توفير تيار يبلغ 4 أمبير. الهدف هو تحسين عمر البطاريات من خلال شحنها بشكل مناسب لتحسين أدائها. يوفر الجهاز حماية ضد الدوائر القصيرة وعكس القطبية للبطارية، مع عرض الجهد الحالي على شاشة عرض سائلة. يستخدم هذا الجهاز طريقة شحن فعالة بمرحلتين؛ شحن بتيار ثابت تلاه شحن بجهد ثابت. بالإضافة إلى ذلك، تم النظر في مرحلة إضافية للشحن بتيار نبضي لإصلاح البطاريات المصفوفة. يتم التحكم في عملية الدقيق PIC18F448

Abstract

In this project, a smart charger dedicated to 12V car batteries capable of delivering a current of 4A has been developed. The goal is to optimize the lifespan of the batteries by charging them appropriately to improve their performance. The device provides protection against short circuits and battery polarity reversal, while displaying the charging voltage on an LCD screen. This device uses an efficient two-stage charging method: a constant current charge followed by a constant voltage charge. Additionally, an additional pulse current charging step for repairing sulfated batteries has been considered. The charging process is controlled by the PIC18F448 microcontroller.

Resumé

Dans ce projet, un chargeur intelligent dédié aux batteries de voiture 12V, capable de débiter un courant de 4A, a été réalisé dans le but d'optimiser la durée de vie des batteries en les chargeant de manière appropriée pour améliorer leurs performances. Le dispositif offre une protection contre les courts-circuits et l'inversion de polarité de la batterie, tout en affichant la tension de charge sur un écran LCD. Il utilise une méthode de charge efficace en deux étapes : une charge à courant constant suivie d'une charge à tension constante. De plus, une étape de charge supplémentaire à courant impulsionnel pour la réparation des batteries sulfatées a été prise en considération. Le contrôle du processus de charge est assuré par le microcontrôleur PIC18F448.

Remerciements

En premier lieu, je souhaite exprimer ma profonde gratitude envers mon Directeur de mémoire, le Professeur Mokhtar ATTARI, pour son accueil bienveillant et son encadrement précieux tout au long de cette recherche au Laboratoire Instrumentation de la Faculté de Génie Electrique. Sa disponibilité, ses conseils éclairés et son soutien constant ont été d'une aide inestimable pour mener à bien ce projet. Son expertise et sa rigueur scientifique ont grandement enrichi ce travail, et je lui suis profondément reconnaissante.

J'adresse également mes sincères remerciements à tous les enseignants de la formation de Master de la Faculté de Génie Electrique. Leur dévouement et leurs enseignements m'ont fourni les connaissances et les compétences nécessaires pour réaliser ce mémoire.

Je tiens aussi à exprimer ma gratitude envers les membres du jury de notre mémoire pour avoir bien voulu siéger lors de la soutenance. Leurs remarques et leurs conseils avisés seront les bienvenus pour l'amélioration de ce travail.

Enfin, je souhaite remercier chaleureusement toutes les personnes qui, de près ou de loin, ont contribué à la réalisation de ce mémoire par leurs conseils et leurs compétences.

Bab-Ezzouar, 20 Juin 2024

Abdelkader Mohand

Département d'Électronique

Université des Sciences et de la Technologie Houari Boumediene

Nomenclature

Abréviations

CC Courant Continu.

CV Tension Continue.

C_CC Commande du Générateur de Courant.

C_CV Commande du Générateur de Tension.

LCD L'écran à Cristaux Liquides « liquid crystal display »

Li-ion Lithium Ion.

Lipo Lithium Polymer.

PWM Modulation de la Largeur d'Impulsion « Pulse Width

Modulation ».

ADC Convertisseur Analogique Numérique « Analog to Digital

Converter».

C Capacité de la Batterie.

SMD Composant Monté en Surface « Surface Mount Device »

Ton La période pendant laquelle la valeur de la tension n'est pas

nulle.

Tp La Période de Signal PWM

PCB Circuit Imprimé « Printed circuit board »

Listes des figures

Figure 1. 1 : Schéma générale d'une batterie Acid-plomb.[2]
Figure 1. 2. : L'évolution des éléments d'une batterie en fonction de l'état de charge[1].
Figure 1. 3 : Explication de la notation concernant la capacité de décharge d'une batterie[4]
Figure 1. 4: La sulfatation sur les bornes d'une batterie de voiture.[5]
Figure 1. 5 : La séparation entre l'eau et l'acide à l'intérieur de la batterie.[6] 9
Figure 1.7 : La diminution du courant absorbé par la batterie au fil du temps lorsqu'une tension constante lui est appliqué.[7]
Figure 1. 8 : L'augmentation de la tension aux bornes de la batterie au fil du temps lorsqu'un courant constant lui est appliqué.[7]
Figure 1. 9 : Le processus de charge d'une batterie avec deux phases.[7] 11
Figure 1. 10: Le processus de charge d'une batterie avec trois phases.[7] 11
Figure 1. 11: Le processus de charge d'une batterie avec quatre phases.[7] 12
Figure 1. 12: Les applications des batteries au plomb.[8]
Figure 1. 13 : Bilans des réactions mises en jeu aux pôles positif et négatif d'un accumulateur Nickel-Cadmium. [9]
Figure 1. 14: La diminution de tension aux bornes de la batterie en fin de charge.[8]
Figure 1. 15: Les composants d'une cellule lithium.[10]
Figure 1. 16 : Représentation de fonctionnement d'une cellule lithium pendant la charge et la décharge.[11]
Figure 1. 17 : Le processus de charge d'une seule cellule de batterie au lithiumion[7]
Figure 1. 18 : Déséquilibre des tensions sur les cellules lithium-ion.[12] 19
Figure 1. 19 : Problème de surcharge sur la cellule 2.[12]
Figure 2. 1 : Les principaux éléments d'une alimentation linéaire.[13] 22
Figure 2. 2 : Les principaux éléments d'une alimentation à découpage.[13] 23
Figure 2. 3 : Alimentation à découpage type Flyback.[14]
Figure 2. 4 : Schéma de montage d'un convertisseur Forward.[13]

Figure 2. 5 : Convertisseur type Flyback
Figure 2. 6 : Première phase de fonctionnement 0 <t<at< th=""></t<at<>
Figure 2. 7 : Deuxième phase de fonctionnement aT <t<t< th=""></t<t<>
Figure 2. 8 : Schéma synoptique de l'alimentation Flyback
Figure 2. 9 : Transformateur de stockage périodique haut fréquence.[15] 28
Figure 2. 10 : Isolation galvanique assurée par l'optocoupleur
Figure 2. 11 : Conversion AC-DC avec protection intégrée
Figure 2. 12 : Transformation de la tension continue de 310V en une tension impulsionnelle.
Figure 2. 13 : Encadré illustratif du circuit assurant la tension d'alimentation du contrôleur PWM
Figure 2. 14 : Encadré illustratif du circuit de démagnétisation de l'enroulement primaire « Snubber circuit »
Figure 2. 15 : Encadré illustratif du la partie secondaire de l'alimentation 32
Figure 2. 16 : TL431
Figure 2. 17 : Circuit de régulation et fixation de la tension de sortie
Figure 2. 18 : Fonctionnement de TL431 dans le système de régulation 33
Figure 2. 19 : Schéma de configuration de l'amplificateur d'erreur. [16] 34
Figure 2. 20 : Configuration de la rétroaction primaire
Figure 2. 21 : Schéma du circuit final de l'alimentation à découpage type Flyback
Figure 2. 22 : Tracé de circuit imprimé et l'implémentation des composants 37
Figure 2. 23 : La réalisation de l'alimentation à découpage de type Flyback 37
Figure 3. 1: Schéma synoptique du chargeur
Figure 3. 2 : Montage du régulateur de tension L200
Figure 3. 3 : Régulateur des tensions à sélection numérique
Figure 3. 4 : Augmentation de courant pour le régulateur des tensions à sélection numérique.
Figure 3. 5 : Convertisseur PWM/Tension continue
Figure 3. 6 : Convertisseur PWM/Courant

Figure 3. 7 : Schéma simplifié de l'interface de saisie et d'affichage de la capacité
Figure 3. 8 : Générateur courant/tension
Figure 3. 9 : Générateur de courant en marche / Générateur de tension à l'arrêt.
Figure 3. 10 : Générateur de tension en marche / Générateur de courant à l'arrêt.
Figure 3. 11 : Schéma synoptique de la méthode impulsionnelle 47
Figure 3. 12: Les trois modes de charge qui sont sélectionnés lorsque le chargeur est allumé
Figure 3. 13 : Structure interne de INA122.[17]
Figure 3. 14 : Mesure de courant à travers une résistance
Figure 3. 15: Mesure de la tension aux bornes de la batterie
Figure 3. 16 : Utilisation de l'amplificateur d'instrumentation sur la mesure de courant et tension.
Figure 3. 17 : Microcontrôleur PIC18F448.[18]
Figure 3. 18 : Schéma synoptique du système de gestion de charge 52
Figure 3. 19 : Organigramme de fonctionnement du système de charge de batterie
Figure 3. 20 : Circuit imprimé de la carte mère du chargeur et l'interface d'utilisateur
Figure 3. 21 : La réalisation de la carte mère du chargeur
Figure 3. 22 : La réalisation du circuit d'interface d'utilisateur 56
Figure 3. 23: Le circuit final du chargeur
Figure 3. 24: Vue externe et interne du chargeur
Figure 3. 25 : La réalisation final du chargeur
Figure 3. 26: Batterie RAGGIE 7AH.
Figure 3. 27 : Sélectionnez la capacité de la batterie du chargeur 59
Figure 3. 28: Affichage de la tension et le mode de charge sur l'afficheur LCD.
Figure 3. 29: Teste de la première phase (charge à courant constant) 60
Figure 3. 30 : Teste de la deuxième phase de charge (charge à tension constante)

Figure 3. 31 : L'indication du chargeur sur l'état de la batterie lorsqu'elle n'est pas connectée.
Figure 3. 32: la protection contre le court-circuit des pinces
Figure 3. 33 : La protection contre l'inverse de polarité
Figure 3. 34 : Évolution de la tension et du courant
Listes des Tableaux
Tableau 1. 1. : Différentes caractéristiques de tension pour différents types de batteries
Tableau 1. 2 : Les différents modes de charge de batteries au plomb, avec leurs avantages et inconvénients

Sommaire

Résumé	I
Remerciements	II
Nomenclature	III
Listes des figures	IV
Listes des tableaux	VII
Sommaire	VIII
Introduction Générale	1
Chapitre 1 : Accumulateurs et Techniques de Charge	
1. Introduction	3
1.1. Accumulateur au Plomb	3
1.1.1. Structure et fonctionnement	3
1.1.2. Réactions électrochimiques	4
1.1.3. Caractéristiques électriques	5
1.1.4. Facteurs de défaillance	8
1.1.5. Modes de charge	9
1.1.6. Applications typiques des batteries au Plomb	13
1.2. Accumulateur au Nickel	14
1.2.1. Structure et fonctionnement	14
1.2.2. Accumulateur au Nickel-Cadmium	14
1.2.3. Accumulateurs Nickel-Metal Hydride	14
1.2.4. Modes de charge	15
1.2.5. Utilisations spécifiques des batteries au Nickel	15
1.3. Accumulateur au Lithium	16
1.3.1. Structure et fonctionnement	16
1.3.2. Accumulateur Lithium-Ion	17
1.3.3. Modes de charge	18
1.3.4. Equilibrage des cellules	19
1.3.5. Applications des batteries au Lithium	20
Conclusion	20

Chapitre 2 : Conception et Réalisation de l'Alimentation à Rétroaction	n
2. Introduction	21
2.1. Type d'alimentations	21
2.1.1. Alimentation linéaire	21
2.1.2. Alimentation à découpage	22
2.1.3. Convertisseur DC-DC	23
2.1.4. Alimentation à découpage Flyback	24
2.1.5. Alimentation à découpage Forward	25
2.2. Alimentation à rétroaction (Flyback)	25
2.2.1. Principe de fonctionnement	25
2.2.2. Schéma synoptique de l'alimentation	28
2.2.3. Transformateur de stockage périodique	28
2.2.4. Transistor de commutation	29
2.2.5. Contrôleur PWM et optocoupleur	29
2.3. Conception et réalisation de l'alimentation à rétroaction	29
2.3.1. Conception du circuit primaire	30
2.3.2. Conception du circuit secondaire	31
2.3.3. Conception du circuit de régulation	32
2.3.4. Choix des composants électroniques	35
2.3.5. Réalisation de l'alimentation	37
Conclusion	38
Chapitre 3 : Conception et Réalisation de Chargeur Batterie Automo	
3.1. Conception de circuit du chargeur	
3.1.1. Schéma synoptique du chargeur	
3.1.2. Régulateur de tension à sélection numérique	
3.1.3. Convertisseur PWM/Courant	
3.1.4. Méthode de commutation entre les deux modes de charge C	
3.1.5. Conception du mode de charge impulsionnelle	
3.1.6. Capteur du courant et de tension	
3.1.7. Microcontrôleur et algorithme du système de gestion de cha	
3.2. Réalisation de chargeur	_
3.2.1. Réalisation de circuit électronique	
o.4.1. Iveansamon de cheun electronique	54

3.2.2. Étapes de test et validation du chargeur	59
Conclusion	64
Conclusion Générale	65
Bibliographie	67