Annex 3A.1 Biomass Default Tables for Section 3.2 Forest Land

Contents

Where to use the	he tables	3.152
Table 3A.1.1	Forest area change	3.153
Table 3A.1.2	Aboveground biomass stock in naturally regenerated forests by broad category	3.157
Table 3A.1.3	Aboveground biomass stock in plantation forests by broad category	3.158
Table 3A.1.4	Average growing stock volume (1) and aboveground biomass (2) content (dry matter) in forest in 2000	3.159
Table 3A.1.5	Average annual increment in aboveground biomass in natural regeneration by broad category	3.163
Table 3A.1.6	Average annual increment in aboveground biomass in plantation by broad category	3.164
Table 3A.1.7	Average Annual above ground net increment in volume in plantations by species	3.167
Table A.58	Average belowground to a oveground biomast ratio (root to shoot ratio R)	3.168
Table 3A.1.9-1	Basic wood densities of stemwood for boreal and temperate species	3.171
Table 3A.1.9-2	Basic wood densities (D) of stemwood for tropical tree species	3.172
Table 3A.1.10	Default values of biomass expansion factors (BEFs)	3.178
Table 3A.1.11	Default values for fraction out of total harvest left to decay in the forest, f_{BL}	3.178
Table 3A.1.12	Combustion factor values (proportion of prefire biomass consumed) for fires in crange of vegetation types. U. U. S.	3.179
Table 3A.1.13	Biomass consumption values for fires in a range of vegetation types	3.180
Table 3A.1.14	Combustion efficiency (proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions	3.184
Table 3A.1.15	Emission ratios for open burning of cleared forests	3.185
Table 3A.1.16	Emission factors applicable to fuels combusted in various types of vegetation fires	3.185

Where to Use the Tables

Table	Application
Table 3A.1.1 Forest Area Change	To be used for verification of 'A' in Equation 3.2.4
Table 3A.1.2 Aboveground Biomass Stock in naturally regenerated forests by broad category	To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in Cropland section and for $L_{conversion}$ in Equation 3.4.13 in Grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3
Table 3A.1.3 Aboveground Biomass Stock in plantation forests by broad category	To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in equation in Equation 3.3.8 in Cropland section and for $L_{conversion}$ in Equation 3.4.13 in Grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3
Table 3A.1.4 Average Growing stock volume (1) and aboveground biomass (2) content (dry matter) in forest in 2000	 (1) To be used for V in Equation 3.2.3. (2) To be used for B_w in Equation 3.2.9, for L_{conversion} in Equation 3.3.8 in cropland section and for L_{conversion} in Equation 3.4.13 in grassland section, etc. Not to be applied for C_{t2} or C_{t1} in Forest section Equation 3.2.3.
Table 3A.1.5 Average Annual Increment in Aboveground Biomass in Natural Regeneration by broad category	To be used for G _w in Equation 3.2.5
Table 3A.1.6 Annual Average Aboveground Biomass Increment in plantations by broad category	To be used for G_w in Equation 3.2.5. In case of missing values it is preferred to use stemwood volume increment data J_v from Table 3A.1.7
Table 3A.1.7 April 1 Average Abbre ground volume Increment in plantations by species	Topes Ceter 1. in Experient 12.5 P
Table 3A.1.8 Average Belowground to Aboveground Biomass ratio in Natural Regeneration by broad Atable S. // tut	To be used for R in Equation 3.2.5 OTCS.COM
Table 3A.1.9 –1 Basic wood densities of stemwood for boreal and temperate species	To be used for D in Equations 3.2.3., 3.25, 3.2.7, 3.2.8
Table 3A.1.9-2 Basic wool densities (D) of stemwood for Tropical thee species	TSTELLET OPENS guations 3.2.3., 3.25, 3.2.7, 3.2.8
Table 3A.1.10 default values of Biomass Expansion Factors (BEFs)	BEF ₂ to be used in connection with growing stock biomass data in Equation 3.2.3; and BEF ₁ to be used in connection with increment data in Equation 3.2.5
Table 3A.1.11 default values for fraction out of total harvest left to decay in the forest	To be used only for f_{BL} in Equation 3.2.7
Table 3A.1.12 Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types	Values in column 'mean' are to be used for (1- f_{BL}) in Equation 3.2.9. and for ρ burned on site in Equation 3.3.10
Table 3A.1.13 Biomass consumption values for fires in a range of vegetation types	To be used in Equation 3.2.9. for the part of the equation: ${}^{\circ}B_{W} \bullet (1-f_{BL})^{\circ}$, i.e. an absolute amount
Table 3A.14 Combustion Efficiency(proportion of available fuel actually burnt) relevant to land-clearing burns, and burns in heavy logging slash for a range of vegetation types and burning conditions.	To be used in sections 'forest lands converted to cropland', 'converted to grassland', or 'converted to settlements or other lands'
Table 3A.1.15 Emission ratios for open burning of cleared forests	To be applied to Equation 3.2.19
Table 3A.1.16 Emission Factors applicable to fuels combusted in various types of vegetation fires	To be used in connection with Equation 3.2.20

TABLE 3A.1.1 FOREST AREA CHANGE

(To be used for verification of 'A' in Equation 3.2.4)

a. AFRICA

Country	Total Fo	rest Area	Forest Area Change 1990-2000		
	1990	2000	Annual Change	Change Rate	
	000 ha	000 ha	000 ha /yr	% / yr	
Algeria	1 879	2 145	27	1.3	
Angola	70 998	69 756	-124	-0.2	
Benin	3 349	2 650	-70	-2.3	
Botswana	13 611	12 427	-118	-0.9	
Burkina Faso	7 241	7 089	-15	-0.2	
Burundi	241	94	-15	-9.0	
Cameroon	26 076	23 858	-222	-0.9	
Cape Verde	35	85	5	9.3	
Central African Republic	23 207	22 907	-30	-0.1	
Chad	13 509	12 692	-82	-0.6	
Comoros	12	8	n.s.	-4.3	
Congo	22 235	22 060	-17	-0.1	
Côte d'Ivoire	9 766	7 117	-265	-3.1	
Dem. Rep. of the Congo	140631	2 121 707	efft	Pro	
Djibouti	6	6	n.s.	n.s.	
Egypt	52	72	2	3.3	
Equatorial Guinea	1 858	http	s://t	uto	
Eritrea	1 639	1 585	-5	-0.3	
Ethiopia	4 996	4 593	-40	-0.8	
Gabon	21 927	2 ¹ 826	71010	n s	
Gambia	436	481	الم	1.0	
Ghana	7 535	6 335	-120	-1.7	
Guinea	7 276	6 929	-35	-0.5	
Guinea-Bissau	2 403	2 187	-22	-0.9	
Kenya	18 027	17 096	-93	-0.5	
Lesotho	14	14	n.s.	n.s.	
Liberia	4 241	3 481	-76	-2.0	
Libyan Arab Jamahiriya	311	358	5	1.4	

n.s. - not specified
Source: FRA 2000 and Working Paper 59, FRA Programme,
Forestry Department of FAO, Rome 2001, 69p

(www.fao.org/forestry/fo/fra/index.jsp)

TABLE 3A.1.1 (CONTINUED) FOREST AREA CHANGE

(To be used for verification of 'A' in Equation 3.2.4)

a. AFRICA (Continued)

Country	Total Fo	rest Area	Forest Are 1990-	
	1990	2000	Annual Change	Change Rate
	000 ha	000 ha	000 ha /yr	% / yr
Madagascar	12 901	11 727	-117	-0.9
Malawi	3 269	2 562	-71	-2.4
Mali	14 179	13 186	-99	-0.7
Mauritania	415	317	-10	-2.7
Mauritius	17	16	n.s.	-0.6
Morocco	3 037	3 025	-1	n.s.
Mozambique	31 238	30 601	-64	-0.2
Namibia	8 774	8 040	-73	-0.9
Niger	1 945	1 328	-62	-3.7
Nigeria	17 501	13 517	-398	-2.6
Réunion	76	71	-1	-0.8
Rwanda	457	307	-15	-3.9
Saint Helena	2	2	n.s.	n.s.
Sao Tome and Iffiliate	lxar	n Ho	elm	n.s.
Senegal	6 655	6 205	- 45	-0.7
Seychelles	30	30	n.s.	n.s.
Signa Long	M ^{1 416}	1 055	-36	-2.9
Somalia	8 284	7 515	-77	-1.0
South Africa	8 997	8 917	-8	-0.1
Sudar Oro	71 216	61 627	-959	-1.4
Swaznand	464	522	6	1.2
Togo	719	510	-21	-3.4
Tunisia	499	510	1	0.2
Uganda	5 103	4 190	-91	-2.0
United Republic of Tanzania	39 724	38 811	-91	-0.2
Western Sahara	152	152	n.s.	n.s.
Zambia	39 755	31 246	-851	-2.4
Zimbabwe	22 239	19 040	-320	-1.5
			1	

n.s. - not specified Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Department of FAO, Rome 2001, 69p

(www.fao.org/forestry/fo/fra/index.jsp)

TABLE 3A.1.1 (CONTINUED) FOREST AREA CHANGE

(To be used for verification of 'A' in Equation 3.2.4)

b. ASIA						
Country	Total Fo	rest area	Forest Area Change 1990-2000			
	1990	2000	Annual Change	Change Rate		
	000 ha	000 ha	000 ha /yr	% / yr		
Afghanistan	1 351	1 351	n.s.	n.s.		
Armenia	309	351	4	1.3		
Azerbaijan	964	1 094	13	1.3		
Bahrain	n.s.	n.s.	n.s.	14.9		
Bangladesh	1 169	1 334	17	1.3		
Bhutan	3 016	3 016	n.s.	n.s.		
Brunei Darussalam	452	442	-1	-0.2		
Cambodia	9 896	9 335	-56	-0.6		
China	145 417	163 480	1 806	1.2		
Cyprus	119	172	5	3.7		
Dem People's Rep. of Korea	8 210	8 210	n.s.	n.s.		
East Timor	C 541	011 FP7	Δ13 ⁴	Dec		
Gaza Strip	7991	giiii	ICIL	1 10		
Georgia	2 988	2 988	n.s.	n.s.		
India	63 732	64 113	38	0.1		
Indonesia	118 110	nttp	S:1/31/2t	uto		
Iran, Islamic Rep.	7 299	7 299	n.s.	n.s.		
Iraq	799 -	7799	n.s.	n.s.		
Israel	82	VV 🔂		49		
Japan	24 047	24 081	3	n.s.		
Jordan	86	86	n.s.	n.s.		
Kazakhstan	9 758	12 148	239	2.2		
Kuwait	3	5	n.s.	3.5		
Kyrgyzstan	775	1 003	23	2.6		
Lao People's Dem. Rep	13 088	12 561	-53	-0.4		
Lebanon	37	36	n.s.	-0.4		
Malaysia	21 661	19 292	-237	-1.2		
Maldives	1	1	n.s.	n.s.		
Mongolia	11 245	10 645	-60	-0.5		
Myanmar	39 588	34 419	-517	-1.4		
Nepal	4 683	3 900	-78	-1.8		
Oman	1	1	n.s.	5.3		
Pakistan	2 755	2 361	-39	-1.5		
Philippines	6 676	5 789	-89	-1.4		
Qatar	n.s.	1	n.s.	9.6		

n.s. - not specified Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Department of FAO, Rome 2001, 69p

(www.fao.org/forestry/fo/fra/index.jsp)

TABLE 3A.1.1 (CONTINUED) FOREST AREA CHANGE

(To be used for verification of 'A' in Equation 3.2.4)

Country	Total For	rest Area		Forest Area Change 1990-2000		
	1990	2000	Annual Change	Change Rate		
	000 ha	000 ha	000 ha /yr	% / yr		
Republic of Korea	6 299	6 248	-5	-0.1		
Saudi Arabia	1 504	1 504	n.s.	n.s.		
Singapore	2	2	n.s.	n.s.		
Sri Lanka	2 288	1 940	-35	-1.6		
Syrian Arab Republic	461	461	n.s.	n.s.		
Tajikistan	380	400	2	0.5		
Thailand	15 886	14 762	-112	-0.7		
Turkey	10 005	10 225	22	0.2		
Turkmenistan	3 755	3 755	n.s.	n.s.		
United Arab Emirates	243	321	8	2.8		
Uzbekistan	1 923	1 969	5	0.2		
Viet Nam	9,303	9 819	212	0.5		
West Dank	inai	11 11		-		
Yemen	541	449	-9	-1.9		
c. OCEANIA						
American CO	1 2	12	n.s.	n.s.		
Australia	157 359	154 539	-282	-0.2		
Cook Islands	22	22	n.s.	n.s.		
	832	815	-2	-0.2		
French Polynesia	105	105	n.s.	n.s.		
Guam	21	21	n.s.	n.s.		
Kiribati	28	28	n.s.	n.s.		
Marshall Islands	n.s.	n.s.	n.s.	n.s.		
Micronesia	24	15	-1	-4.5		
Nauru	n.s.	n.s.	n.s.	n.s.		
New Caledonia	372	372	n.s.	n.s.		
New Zealand	7 556	7 946	39	0.5		
Niue	6	6	n.s.	n.s.		
Northern Mariana Isl.	14	14	n.s.	n.s.		
Palau	35	35	n.s.	n.s.		
Papua New Guinea	31 730	30 601	-113	-0.4		
Samoa	130	105	-3	-2.1		
Solomon Islands	2 580	2 536	-4	-0.2		
Tonga	4	4	n.s.	n.s.		
Vanuatu	441	447	1	0.1		

n.s. - not specified Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Department of FAO, Rome 2001, 69p

(www.fao.org/forestry/fo/fra/index.jsp)

TABLE 3A.1.1 (CONTINUED) FOREST AREA CHANGE

(To be used for verification of 'A' in Equation 3.2.4)

d. EUROPE						
Country	Total Fo	rest Area	Forest Arc 1990-			
	1990	2000	Annual Change	Change Rate		
	000 ha	000 ha	000 ha /yr	% / yr		
Albania	1 069	991	-8	-0.8		
Andorra	-	-	-	-		
Austria	3 809	3 886	8	0.2		
Belarus	6 840	9 402	256	3.2		
Belgium & Luxembourg	741	728	-1	-0.2		
Bosnia & Herzegovina	2 273	2 273	n.s.	n.s.		
Bulgaria	3 486	3 690	20	0.6		
Croatia	1 763	1 783	2	0.1		
Czech Republic	2 627	2 632	1	n.s.		
Denmark	445	455	1	0.2		
Estonia /	1.935	2,060	O 11 ³ 4	D 0.6		
Finland F	121855	21935		ın.s.		
France	14 725	15 341	62	0.4		
Germany	10 740	10 740	n.s.	n.s.		
Greece	3 299	nttps	:/ _% ti	1101		
Hungary	1 768	1 840	7	0.4		
Iceland	25	$\sqrt{2}$	h at	2.2		
Ireland	489	659		3.0		
Italy	8 737 1	10 003	30	0.3		
Latvia	2 796	2 923	13	0.4		

¹ The value for Italy was provided by Italy and is referred to in their Third National Communication to the UNFCCC.

n.s. - not specified

Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Department of FAO, Rome 2001, 69p

(www.fao.org/forestry/fo/fra/index.jsp)

TABLE 3A.1.1 (CONTINUED) FOREST AREA CHANGE

(To be used for verification of 'A' in Equation 3.2.4)

d. EUROPE Country	Total Fo	rest Area	Forest Are	
	1990	2000	Annual Change	Change Rate
	000 ha	000 ha	000 ha /yr	% / yr
Liechtenstein	6	7	n.s.	1.2
Lithuania	1 946	1 994	5	0.2
Malta	n.s.	n.s.	n.s.	n.s.
Netherlands	365	375	1	0.3
Norway	8 558	8 868	31	0.4
Poland	8 872	9 047	18	0.2
Portugal	3 096	3 666	57	1.7
Republic of Moldova	318	325	1	0.2
Romania	6 301	6 448	15	0.2
Russian Federation	850 039	851 392	135	n.s
San Marino	VOI	Цà	ln -	-
Siovakia	11 G1997	247	\mathbf{L} \mathbf{J}_{18}	0.9
Slovenia	1 085	1 107	2	0.2
Spain	13 510	14 370	86	0.6
Swelen CO	M 27 128	27 134	1	n.s.
Switzerland	1 156	1 199	4	0.4
The FYR of	906	906	n.s.	n.s.
Ukraine	9 274	9 584	31	0.3
United Kingdom	2 624	2 794	17	0.6
Yugoslavia	2 901	2 887	-1	-0.1

n.s. - not specified

Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Department of FAO, Rome 2001, 69p (www.fao.org/forestry/fo/fra/index.jsp)

TABLE 3A.1.1 (CONTINUED) FOREST AREA CHANGE

(To be used for verification of 'A' in Equation 3.2.4)

e. NORTH AND CENTRAL AMERICA

Country	Total Fo	orest Area	Forest Are 1990-	
	1990	2000	Annual Change	Change Rate
	000 ha	000 ha	000 ha /yr	% / yr
Antigua and Barbuda	9	9	n.s.	n.s.
Bahamas	842	842	n.s.	n.s.
Barbados	2	2	n.s.	n.s.
Belize	1 704	1 348	-36	-2.3
Bermuda	-	-	-	-
British Virgin Is.	3	3	n.s.	n.s.
Canada	244 571	244 571	n.s.	n.s.
Cayman Islands	13	13	n.s.	n.s.
Costa Rica	2 126	1 968	-16	-0.8
Cuba	2 071	2 348	28	1.3
Dominica	50	46	n.s.	-0.7
Dominican Republic	1 376	1 376	n.s.	n.s.
El Salvador	AS8 3	gnim	ient	1-4.r (
Greenland	1	1	-	-
Grenada	5	5	n.s.	0.9
Guadeloupe	67	htth	c • / /t	ufb
Guatemala	3 387	28.0	3.7 ₋₅₄ C	U-Y.)
Haiti	158	88	-7	-5.7
Honduras	5 972	5 383	-59	-1.0
Jamaica	379	VV 🔁	<u>_nai</u>	-1.
Martinique	47	47	n.s.	n.s.
Mexico	61 511	55 205	-631	-1.1
Montserrat	3	3	n.s.	n.s.
Netherlands Antilles	1	1	n.s.	n.s.
Nicaragua	4 450	3 278	-117	-3.0
Panama	3 395	2 876	-52	-1.6
Puerto Rico	234	229	-1	-0.2
Saint Kitts and Nevis	4	4	n.s.	-0.6
Santa Lucia	14	9	-1	-4.9
Saint Pierre & Miquelon	i	-	-	-
Saint Vincent & Grenadines	7	6	n.s.	-1.4
Trinidad and Tobago	281	259	-2	-0.8
United States	222 113	225 993	388	0.2
US Virgin Islands	14	14	n.s.	n.s.

n.s. - not specified

Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Department of FAO, Rome 2001, 69p

(www.fao.org/forestry/fo/fra/index.jsp)

TABLE 3A.1.1 (CONTINUED) FOREST AREA CHANGE

(To be used for verification of 'A' in Equation 3.2.4)

f. SOUTH AMERICA

Country	Total Fo	rest Area	Forest Area Change 1990-2000		
	1990	2000	Annual Change	Change Rate	
	000 ha	000 ha	000 ha /yr	% / yr	
Argentina	37 499	34 648	-285	-0.8	
Bolivia	54 679	53 068	-161	-0.3	
Brazil	566 998	543 905	-2 309	-0.4	
Chile	15 739	15 536	-20	-0.1	
Colombia	51 506	49 601	-190	-0.4	
Ecuador	11 929	10 557	-137	-1.2	
Falkland Islands	-	-	-	-	
French Guiana	7 926	7 926	n.s.	n.s.	
Guyana	17 365	16 879	-49	-0.3	
Paraguay	24 602	23 372	-123	-0.5	
Peru	67 903	65 215	-269	-0.4	
Suriname	14 113	14 113	n.s.	n.s.	
Tuglay	Xan	292		5.0	
Venezuela	51 681	49 506	-218	-0.4	

n.s. - not specified Source: FRA 2000 and Working Paper 59, FRA Programme, Forestry Ceramies of FAO, Rome 2001, 69p www.fao.org/forestry/fo/fra/index.jsp)

stutorcs

TABLE 3A.1.2

ABOVEGROUND BIOMASS STOCK IN NATURALLY REGENERATED FORESTS BY BROAD CATEGORY (tonnes dry matter/ha)

(To be used for Bw in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in Cropland section and for $L_{conversion}$ in Equation 3.4.13. in Grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3)

		Tr	opical Forests 1				
	Wet	Moist with Short Dry Season	Moist with Long Dry Season	Dry	Montane Moist	Montane Dry	
Africa	310 (131 - 513)	260 (159 – 433)	123 (120 - 130)	72 (16 - 195)	191	40	
Asia & Oceania:	•						
Continental	275 (123 - 683)	182 (10 – 562)	127 (100 - 155)	60	222 (81 - 310)	50	
Insular	348 (280 - 520)	290	160	70	362 (330 - 505)	50	
America	347 (118 - 860)	217 (212 - 278)	212 (202- 406)	78 (45 - 90)	234 (48 - 348)	60	
		Te	mperate Forests				
Age Class	Conifer	rous	Broadlea	f	Mixed Broadleaf	-Coniferou	
Eurasia & Ocean	ia						
≤20 years	• (17 - 1	100 (17 - 183)		17		40	
>20 years	S18111131 (20 - 6	ent P	roject ₂ Exan		(20 -3 30)		
America							
≤20 years	http ²	s://tut	Orcs &	m	49 (19-89)		
>20 years	126 (41-27		132 (53-205)		140 (68-218)		
Age Class	Mixed Broadlea		Boreal Forests CSUUCOMINETON	SS	Forest-Tu	ndra	
Eurasia							
≤20 years	12		10		4		
>20 years	50		60 (12.3-131)		20 (21- 81)		
America	•						
≤20 years	15		7		3		
>20 years	40		46		15		
Note: Data are given	in mean value and as r	ange of possible v	values (in parentheses).		•		

Note: Data are given in mean value and as range of possible values (in parentheses).

¹ The definition of forest types and examples by region are illustrated in Box 2 and Tables 5-1, p 5.7-5.8 of the *IPCC Guidelines* (1996).

$TABLE\ 3A.1.3$ Above ground biomass stock in plantation forests by broad category (tonnes\ dry\ matter/ha)

(To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in equation in Equation 3.3.8 in Cropland section and for $L_{conversion}$ in Equation 3.4.13. in Grassland section, etc. Not to be applied for C_{1a} or C_{1b} in Forest section Equation 3.2.3)

		110p	icai and sub-ti	ropical Fores	ts			
	Age Class	Wet	Moist with Short Dry Season	Moist with Long Dry Season	Dry	Montane Moist	Montane Dry	
		R > 2000	2000>1	R>1000	R<1000	R>1000	R<1000	
Africa								
Broadleaf spp	≤20 years	100	80	30	20	100	40	
	>20 years	300	150	70	20	150	60	
Pinus sp	≤20 years	60	40	20	15	40	10	
	>20 years	200	120	60	20	100	30	
Asia:								
Broadleaf	All	220	180	90	40	150	40	
other species	All	130	100	60	30	80	25	
America								
Pinus	All	300	270	110	60	170	60	
Eucalyptus	All	200	140	110	60	120	30	
Tectona	• All	170	120	90	50	— 130	30	
other broadleaved S	<u> </u>	ment	PfO 1	ect E	xam	Help	30	
			Temperate	Forests		•		
	_	Age class	Pi	ine	Other conifero	us Br	oadleaf	
Eurasia	htt ⁻	ns·//t	utoro	cs.co	m			
Maritime		≤20 years	40		40		30	
		>20 years	150		250		200	
Continental	XX 7.	≤20 years	25 + 0 26		30		15	
	YV C	E Lana	t: cstutor		200		200	
Mediterranean & steppe		≤20 years		.7	20		10	
>20 years		10	100			80		
S. America All			00	120		90		
N America All			175 (50–275)			_		
	<u> </u>		Boreal Fo			•		

5

40

50

≤20 years

>20 years

All

5

40

40

5

25

25

3.	158	

Eurasia

N. America

TABLE 3A.1.4 AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for $C_{\,t_2}$ or $C_{\,t_1}$ in Forest section Equation 3.2.3.

a. AFRICA Volume **Biomass** Infor-(aboveground) (aboveground) mation Country m³ / ha t / ha Source Algeria 44 75 NI 39 54 Angola NI 195 Benin 140 PΙ Botswana 45 63 NI Burkina Faso 10 16 NI Burundi 110 187 ES Cameroon 135 131 PΙ Cape Verde 83 ES 127 Central African 85 113 PI/EX Republic Chad Comoros 65 Congo 132 213 EX Côte d'Ivoire 13 130 Dem. Rep. of the 225 133 Congo Djibouti 21 46 ES ES Egypt 108 Equatorial Guinea 93 PI Eritrea 23 32 NI Ethiopia 56 79 PΙ 128 137 ES Gabon Gambia 13 22 NI Ghana 49 88 ES 114 PΙ Guinea 117 Guinea-Bissau 19 20 NI Kenya 35 48 ES Lesotho 34 34 ES 201 196 ES Liberia Libyan Arab 14 20 ES Jamahiriya

Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)

TABLE 3A.1.4 (CONTINUED) AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3.

Country	Volume (aboveground)	Biomass (aboveground)	Infor- mation
	m³/ha	t / ha	Source
Madagascar	114	194	NI
Malawi	103	143	NI
Mali	22	31	PI
Mauritania	4	6	ES
Mauritius	88	95	ES
Morocco	27	41	NI
Mozambique	25	55	NI
Namibia	7	12	PI
Niger	3	4	PI
mena + F	(am	$-e^{8}n$	ES
Réunion	115	160	ES
Rwanda	110	187	ES
Saint Helena	_		
Sap Forteard Principe	108	116	NI
Senegal	31	30	NI
Seychelles	29	49	ES
SeraLeone C	143	139	ES
Somalia	18	26	ES
South Africa	49	81	EX
Sudan	9	12	ES
Swaziland	39	115	NI
Togo	92	155	PI
Tunisia	18	27	NI
Uganda	133	163	NI
United Republic of Tanzania	43	60	NI
Western Sahara	18	59	NI
Zambia	43	104	ES
Zimbabwe	40	56	NI

TABLE 3A.1.4

AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for $C_{\,t_2}$ or $C_{\,t_1}$ in Forest section Equation 3.2.3.

b. ASIA Volume Biomass Infor-(aboveground) (aboveground) mation Country m³ / ha t / ha Source 22 27 FAO Afghanistan Armenia 128 66 FAO Azerbaijan 136 105 FAO Bahrain 14 14 FAO Bangladesh 23 39 FAO Bhutan 163 178 **FAO** Brunei 205 119 **FAO** Darussalam Cambodia 40 69 FAO China 52 61 NI Cyprus Dem People's Rep 41 25 ES of Korea East Timor 136 **FAO** Gaza Strip 97 145 Georgia FAO India 43 73 NI 79 136 Indonesia FAO FAO Iran, Islamic Rep. 86 149 29 28 **FAO** Iraa Israel 49 FAO 145 88 FAO Japan 38 37 FAO Jordan Kazakhstan 35 18 FAO 21 21 FAO Kuwait Kyrgyzstan 32 FAO Lao People's Dem. 29 31 NI Rep Lebanon 23 22 FAO 205 119 ES Malaysia Maldives 128 NI Mongolia 80 Myanmar 57 33 NI Nepal 100 109 PΙ 17 17 Oman FAO 22 27 Pakistan FAO Philippines 66 114 NI

Information source: NI = National inventory: PI = Partial inventory:

ES = Estimate; EX = External data (from other regions)

TABLE 3A.1.4 (CONTINUED)

AVERAGE GROWING STOCK VOLUME (1) AND
ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN
FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3.

аррион тог		orest seemon Eq.				
b. ASIA (Contin	b. ASIA (Continued)					
Country	Volume (aboveground)	Biomass (aboveground)	Infor- mation			
	m ³ / ha	t / ha	Source			
Qatar	13	12	FAO			
Republic of Korea	58	36	NI			
Saudi Arabia	12	12	FAO			
Singapore	119	205	FAO			
Sri Lanka	34	59	FAO			
Syrian Arab Rep.	29	28	FAO			
Tajikistan	14	10	FAO			
Thailand	17	29	NI			
Turkey	136	74	FAO			
Torkmet istar	kam	e n	FAO			
United Arab Emirates	-	ТОТР	-			
Uzbekistan	6		FAO			
Viet Nam () 1	38	66	ES			
West Bank	-	=	-			
Yemen	14	19	FAO			
11110400	1					

TABLE 3A.1.4 (CONTINUED) AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C $_{t_2}$ or C $_{t_1}$ in Forest section Equation 3.2.3.

c. OCEANIA

Country	Volume (aboveground) m³/ha	Biomass (aboveground) t / ha	Infor- mation Source
American Samoa			
Australia	55	57	FAO
Cook Islands	-	=	
Fiji	-	-	-
French Polynesia	-	-	1
Guam	-	-	-

Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)

TABLE 3A.1.4 (CONTINUED) AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3.

c.OCEANIA (Continued)

Country	, ,	Biomass (aboveground)	Infor- mation	
	m ³ / ha	t / ha	Source	
Kiribati	-	-	-	
Marshall Islands	-	-	=	
Micronesia	-	-	-	
Nauru	-	-	-	
New Caledonia	-	-	=	
New Zealand	321	217	FAO	
Niue	-	-	-	
Northern Mariana Isl.	-	-	=	
Palau	-	-	-	
Papua New Guinea	34	58	NI	
Samoa A	ssign	meni	Pro	
Solomon Islands		-	-	
Tonga	-	-	-	
Vanuatu	htt	nc.//	hitot	
Information source: NI = National investory, PI = Partial inventory, ES = Estimate; EX = External data (from other regions)				

TABLE 3A.I.A/COT (INUED) AT AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3.

d. EUROPE

Country	Volume (aboveground) m³ / ha	Biomass (aboveground) t / ha	Infor- mation Source
Albania	81	58	FAO
Andorra	0	0	FAO
Austria	286	250	FAO
Belarus	153	80	FAO
Belgium & Luxembourg	218	101	FAO
Bosnia & Herzegovina	110	-	FAO
Bulgaria	130	76	FAO

Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)

TABLE 3A.1.4 (CONTINUED) AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for $C_{\,t_2}$ or $C_{\,t_1}$ in Forest section Equation 3.2.3.

d. EUROPE (Continued)

Country	Volume (aboveground)	Biomass (aboveground)	Infor- mation
ľ	m^3 / ha	t / ha	Source
Croatia	201	107	FAO
Czech Republic	260	125	FAO
Denmark	124	58	FAO
Estonia	156	85	FAO
Finland	89	50	NI
France	191	92	FAO
Germany	268	134	FAO
Greece	45	25	FAO
Hungary	174	112	FAO
Iceland	27	1.7	FAO
I ead	Kam	en	FAO
Italy	145	74	FAO
Latvia	174	93	FAO
Liechtenstein	254	119	FAO
Lithuania	183	99	FAO
Malta	232		FAO
Netherlands	160	107	FAO
Norway	89	49	FAO
Poland	213	94	FAO
Portugal	82	33	FAO
Republic of Moldova	128	64	FAO
Romania	213	124	FAO
Russian Federation	105	56	FAO
San Marino	0	0	FAO
Slovakia	253	142	FAO
Slovenia	283	178	FAO
Spain	44	24	FAO
Sweden	107	63	NI
Switzerland	337	165	FAO
The FYR of Macedonia	70	-	FAO
Ukraine	179	-	FAO
United Kingdom	128	76	FAO
Yugoslavia	111	23	FAO

Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)

TABLE 3A.1.4 (CONTINUED) AVERAGE GROWING STOCK VOLUME (1) AND ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C_{t_2} or C_{t_1} in Forest section Equation 3.2.3.

e. NORTH AND CENTRAL AMERICA Volume **Biomass** Infor-(aboveground) (aboveground) mation Country m^3 / ha t / ha Source Antigua and 116 210 ES Barbuda Bahamas Barbados Belize 202 211 ES Bermuda British Virgin Islands Canada Cayman Islands 220 Costa Rica 211 ES 114 Cuba 71 Ŋ 91 Dominica 166 ES Dominican 29 ES 53 Republic El Salvador 223 201 FAO Greenland 150 PΙ Grenada 83 Guadeloupe 371 Guatemala 355 ES 101 Haiti 28 ES 58 105 ES Honduras 82 171 ES Jamaica Martinique 5 5 ES Mexico 52 54 NI Montserrat Netherlands _ Antilles 154 ES Nicaragua 161 Panama 308 322 ES Puerto Rico _ Saint Kitts and Nevis Saint Lucia 190 198 ES Saint Pierre & Miquelon

Information source: NI = National inventory; PI = Partial inventory;

ES = Estimate; EX = External data (from other regions)

TABLE 3A.1.4 (CONTINUED)

AVERAGE GROWING STOCK VOLUME (1) AND
ABOVEGROUND BIOMASS CONTENT (2) (DRY MATTER) IN
FOREST IN 2000. (SOURCE FRA 2000)

- (1) To be used for V in Equation 3.2.3.
- (2) To be used for B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for $C_{\,t_2}$ or $C_{\,t_1}$ in Forest section Equation 3.2.3.

e. NORTH AND CENTRAL AMERICA (Continued)

Country	Volume (aboveground)	Biomass (aboveground)	Infor- mation
	m³ / ha	t / ha	Source
Saint Vincent and Grenadines	166	173	NI
Trinidad and Tobago	71	129	ES
United States	136	108	FAO
US Virgin Islands	-	-	-

TABLE 3A.1.4 (CONTINUED) AVELAGE ROWNESTO LK VOLUME (1) AND BOVEGROUND BIOMASS CONTENT (2) OF MATTER) IN FOREST IN 2000. (SOURCE FRA 2000)

(1) To be used for V in Equation 3.2.3.

To be useful B_w in Equation 3.2.9, for $L_{conversion}$ in Equation 3.3.8 in cropland section and for $L_{conversion}$ in Equation 3.4.13. in grassland section, etc. Not to be applied for C_{t_1} or C_{t_1} in Forest section Equation 3.2.3.

			~~~
V 1	T M TAP	AME	13 I ( , V
$\sim$	C I III		мисл

	Volume	Biomass	Infor-	
Country	(aboveground)	(aboveground)	mation	
	m ³ / ha	t / ha	Source	
Argentina	25	68	ES	
Bolivia	114	183	PI	
Brazil	131	209	ES	
Chile	160	268	ES	
Colombia	108	196	NI	
Ecuador	121	151	ES	
Falkland Islands	-	-	-	
French Guiana	145	253	ES	
Guyana	145	253	ES	
Paraguay	34	59	ES	
Peru	158	245	NI	
Suriname	145	253	ES	
Uruguay	-	-	-	
Venezuela	134	233	ES	
Information source: NI = National inventory; PI = Partial inventory; ES = Estimate; EX = External data (from other regions)				

## $TABLE\ 3A.1.5$ AVERAGE ANNUAL INCREMENT IN ABOVEGROUND BIOMASS IN NATURAL REGENERATION BY BROAD CATEGORY (tonnes dry matter/ha/year)

(To be used for  $G_W$  in Equation 3.2.5)

Tropical and Sub-Tropical Forests						
Age Class	Wet	Moist with Short Dry Season	Moist with Long Dry Season	Dry	Montane Moist	Montane Dry
	R > 2000	2000>I	R>1000	R<1000	R>1000	R<1000
Africa						
≤20 years	10.0	5.3	2.4 (2.3 – 2.5)	1.2 (0.8 – 1.5)	5.0	2.0 $(1.0 - 3.0)$
>20 years	3.1 (2.3 -3.8)	1.3	$ \begin{array}{c} 1.8 \\ (0.6 - 3.0) \end{array} $	0.9 $(0.2 - 1.6)$	1.0	1. 5 (0.5 – 4.5)
Asia & Oceania						
Continental						
≤20 years	7.0 (3.0 – 11.0)	9.0	6.0	5.0	5.0	1.0
>20 years	2.2 (1.3 – 3.0)	2.0	1.5	1.3 (1.0 – 2.2)	1.0	0.5
Insular ≤20 years S	signm	ent P	roject	Exar	n Helj	D 3.0
>20 years	3.4	3.0	2.0	1.0	3.0	1.0
America	1	///				
≤20 years	http	s://tut	ores.c	om	5.0	1.8
>20 years	1.9 (1.2 – 2.6)	2.0	1.0	1.0	1.4 $(1.0 - 2.0)$	0.4

WeChat Temperate Forests					
Age Class	Trat. Conferous TCS	Broadleaf			
≤20 years	3.0 $(0.5 - 6.0)$	4.0 (0.5 – 8.0)			
>20 years	$ 3.0 \\ (0.5 - 6.0) $	4.0 (0.5 – 7.5)			

Boreal forests							
Age Class	Mixed Broadleaf- Coniferous	Coniferous	Forest-Tundra	Broadleaf			
Eurasia							
≤20 years	1.0	1.5	0.4 $(0.2 - 0.5)$	1.5 (1.0 – 2.0)			
>20 years	1.5	2.5	0.4 $(0.2 - 0.5)$	1.5			
America							
≤20 years	1.1 (0.7 – 1.5)	0.8 $(0.5 - 1.0)$	0.4 $(0.2 - 0.5)$	1.5 (1.0 – 2.0)			
>20 years	1.1 (0.7 — 1.5)	$ \begin{array}{c} 1.5 \\ (0.5 - 2.5) \end{array} $	0.4 (0.2 – 0.5)	1.3 (1.0 – 1.5)			

Note: R= annual rainfall in mm/yr

Note: Data are given as mean value and as the range of possible values.

## Table 3A.1.6 Annual average aboveground biomass increment in plantations by broad category (tonnes dry matter/ha/year )

(To be used for  $G_W$  in Equation 3.2.5.

In case of missing values it is preferred to use stemwood volume increment data I_V from Table 3A.1.7)

	Tropical and sub-tropical Forests								
	Age Class	Wet	Moist with Short Dry Season	Moist with Long Dry Season	Dry	Montane Moist	Montane Dry		
		R >2000	2000>F	R>1000	R<1000	R>1000	R<1000		
Africa									
Eucalyptus spp	≤20 years	-	20.0	12.6	5.1 (3.0-7.0)	-	-		
	>20 years	-	25.0	-	8.0 (4.9-13.6)	-	-		
Pinus sp	≤20 years	18.0	12.0	8.0	3.3 (0.5-6.0)	-	-		
	>20 years		15.0	11.0	2.5	-	-		
others	≤20 years	6.5 (5.0-8.0)	9.0 (3.0-15.0)	10.0 (4.0-16.0)	15.0	11.0	-		
	>20 years	-	-	-	11.0	-	-		
Asia									
Eucalyptus sp	signı	nent	Proj	25.0 ^{15.0} 25.0E	xam	Help	-		
other species	-	5.2 (2.4-8.0)	7.8 (2.0-13.5)	7.1 (1.6-12.6)	6.45 (1.2-11.7)	5.0 (1.3-10.0)	-		
America	htt	00.//4	utoro	C ČO1	ນ	-	-		
Pinus	IIII	US.//L	(5.0 – 19.0)	S.C ₀ O1 (4.0 - 10.3)	5.0	14.0	-		
Eucalyptus	We	21.0 6.4 ¹ 38.4)	16.0 (6.4-32.0)	16.0 (6.4 32.0)	16.0	13.0 (8.5 - 17.5)	-		
Tectona	-	15.0	8.0 (3.8 - 11.5)	8.0 (3.8 - 11.5)	-	2.2	-		
other broadleaved	-	17.0 (5.0 - 35.0)	18.0 (8.0 – 40.0)	10.5 (3.2 - 11.8)	-	4.0	-		

Note 1: R= annual rainfall in mm/yr

Note 2: Data are given as mean value and as the range of possible values.

Note 3: Some Boreal data were calculated from original values in Zakharov *et al.* (1962), Zagreev *et al.* (1993), Isaev *et al.* (1993) using 0.23 as belowground/aboveground biomass ratio and assuming a linear increase in annual increment from 0 to 20 years.

Note 4: For plantations in temperate and boreal zones, it is good practice to use stemwood volume increment data ( $I_v$  in Equation 3.2.5) instead of above ground biomass increment as given in above table.

### References for Tables 3A.1.2, 3A.1.3, 3A.1.4, 3A.1.5, and 3A.1.6

#### Tropical and subtropical

Brown, S. (1996). A primer for estimating biomass and biomass change of tropical forest. FAO, Rome, Italy. 55 pp.

Budowski, G. (1985). The place of Agroforestry in managing tropical forest. In La conservación como instrumento para el desarrollo. Antología. San José, Costa Rica. EUNED. 19 pp.

Burrows, W. H.; Henry, B. K.; Back, P. V., et al. (2002) Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Global Change Biology 8 (8): 769-784 2002

Chudnoff, M. (1980). Tropical Timbers of the World. US Department of Agriculture, Forest Service, Forest Products Laboratory. Madison, W1. 831 pp.

Clarke et al. (2001) NPP in tropical forests: an evaluation and synthesis of existing field data. Ecol. Applic. 11:371-384

Evans, J. (1982). Plantation forestry in the tropics. Oxford.

Favrichon, V. (1997). Réaction de peuplements forestiers tropicaux a des interventions sylvicoles. Bois et des forets des tropiques 254: 5-24

- FBDS: FUNDACAO BRASILERA PARA O DESEMVOLVIMENTO SUSTENTAVEL. (1997). Avaliacao das emissoes de gases de efeito estufa devido as mudancas no estoques de florestas plantadas. Rio de Janeiro (Brasil). 44 pp.
- Fearnside, P.M. (1997). Wood density for estimating forest biomass in Brazilian Amazonia. Forest Ecology and Management 90(1): 59-87.
- FIA: Fundación para la Innovación Agraria. (2001). Potencial de proyectos forestales en el Mecansimo de Desarrollo Limpio en Chile. In IV Seminario Regional forestal del Cono Sur, elaboración de proyectos forestales en el Mecanismo de Desarrollo Limpio, realizado 06-07 de diciembre de 2001. Santiago de Chile. 26 pp.
- GASTON G., BROWN S., LORENZINI M. & SING. (1998). State and change in carbon pools in the forests of tropical Africa. Global Change Biology 4 (1), 97-114.
- Gower S.T., Gholz H.L, Nakane K., Baldwin V.C. (1994). Production and carbon allocation patterns of pine forests Ecological bulletins 43:115-135 (data converted from aNPP values assuming litterfall =2 x L(-38)C foliage annual production)
- Grace J., Malhi Y., Higuchi N., Meir P. (2001). Productivity of tropical Rain Forests in "Terrestrial Global productivity" Roy J, Saugier B., & Mooney H.Eds, Physiological Ecology Series, Academic Press, San Diego , 401-426
- Hofmann-Schielle, C., A. Jug, et al. (1999). Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. I. Site-growth relationships. Forest Ecology and Management 121(1/2): 41-55.
- IBDF. (1983). Potencial madereira do Grande Carajás. Instituto Brasileiro de Desenvolvimento Florestal. Brasilia, DF, Brazil. 134 pp. IPCC Guidelines (1996). Workbook p 5.22. from Houghton et al. 1983, 1987.
- Klinge, H.; Rodrigues, W.A. (1973). Biomass estimation in a central Amazonian rain forest. Acta Científica Venezolana 24:225-237
- Laclau, J. P., J. P. Bouillet, et al. (2000). Dynamics of biomass and nutrient accumulation in a clonal plantation of Eucalyptus in Congo. Forest Ecology and Management 128(3): 181-196
- Lamprecht, H. (1990). Silviculture in the tropics. GTZ. Rossdorf, Deutsche. 333 pp.
- Mandouri T. et al. in "Annales de la recherche forestière (1951-1999); and Thesis from National High School of Forestry (ENFI); and Hassan II Agronomic Institut(IAVHII)
- MDSP/PNCC: MINISTERIO DE DESARROLLO SOSTENIBLE Y PLANIFICACION; PROGRAMA NACIONAL DE CAMBIOS CLIMATICOS. (2002). Inventariación de Emisiones de Gases de Efecto Invernadero, Bolivia, 1990, 1994, 1998 y 2000. La Paz (Bolivia).
- MINISTERIO DE MEDIOAMBIENTE Y RECURSOS NATURALES. (2000). Taller Regional Centro Americano sobre el Cambio Climático, 24-26 de junio de 2000. Ciudad de Panamá, Panamá.
- Montagnini, F. (2000). Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical/lowland Forest Ecology and Management 134(1/3): 257,270. 4 Moreno, H. (2001). Estado de la Investigación soore amámica del carbono en proyectos
- Universidad Nacional de Colombia, Sede Medellín, Departamento de Ciencias Forestales. Medellín, Colombia.
- Norgrove, L. and S. Hauser (2002). Measured growth and tree biomass estimates of Terminalia ivorensis in the 3 years after thinning to different stand densities in an agrisilvicultural system in southern Cameroon. Forest Ecology and Management 166(1/3): 261-270.
- PAC-NK: NOEL KEMPFF CLINITIE NOTION PROJECT 1200 FOR Semiff (line Ation Project: project case carbon inventory and offset benefits. Winrock Drive. A tington, U.S.A. 45 pp. Pandey, D (1982).
- Parrotta, J. A. (1999). Productivity, nutrient cycling, and succession in single- and mixed-species plantations of Casuarina equisetifolia,
- Eucalyptus robusta, and Leucie a Jeucocephall in Puerto Rico. Forest Ecology and Management 124(1): 45-77

  Peters, R. (1977). Fortalecimie total sector forest I Guatemalainventaries y estudios cendrométricos en bosques de coniferas. FO:DP/GUA/72/006, Informe Técnico 2, FAO, Rome, Italy.
- Ramírez, P.; Chacón, R. (1996). National Inventory of Sources and Sinks of Greenhouse Gases in Costa Rica. U.S. Contry Studies Program. Kluwer Academic Publishers. Boston, U.K. 357-365.
- Russell, C.E. (1983). Nutrient cycling and productivity of native and plantation forest at Jari Florestal, Pará, Brazil. Ph.D. dissertation in ecology, University of Georgia, Athens, Georgia, U.S.A. 133 pp
- Saldarriaga, C.A.; Escobar, J.G.; Orrego, S. A.; Del Valle, I. (2001). Proyectos de Reforestación como parte del Mecanismo de Desarrollo Limpio: una aproximación preliminar para el análisis financiero y ambiental. Universidad Nacional de Colombia, Departamento de Ciencias Forestales. Medellín (Colombia). 61 pp.
- Wadsworth, F.H. (1997). Forest production for tropical America. USDA Forest Service Agriculture Handbook 710. Washington, DC, USDA Forest Service
- Webb, D.B., Wood, P.J., Smith, J.P. & Henman, G.S. (1984). A guide to species selection for tropical and subtropical plantations. Tropical Forestry Papers No. 15 Oxford, UK, Commonwealth Forestry Institute.

#### **Temperate**

- Data includes values compiled by DR. JIM SMITH, USDA FOREST SERVICE, DURHAM NH USA 03824. jsmith11@fs.fed.us, Lheath@fs.fed.us
- Botkin D.B., Simpson L.G. (1990) Biomass of North American Boreal Forest. Biogeochemistry, 9: 161-174.
- Brown S., Schroeder P., Kern J.S. (1999) Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management,
- Burrows, W. H.; Henry, B. K.; Back, P. V., et al. (2002) Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Global Change Biology 8 (8): 769-784 2002
- Fang, S., X. Xu, et al. (1999). Growth dynamics and biomass production in short-rotation poplar plantations: 6-year results for three clones at four spacings. Biomass and Bioenergy 17(5): 415-425.
- Götz S, D'Angelo SA, Teixeira W G, l Haag and Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years, For. Ecol. Manage 163 Pages 131-150

- Gower S.T., Gholz H.L, Nakane K., Baldwin V.C. (1994) Production and carbon allocation patterns of pine forests Ecological bulletins 43:115-135 (data converted from aNPP values assuming litterfall =2 x foliage annual production)
- Grierson, P. F., M. A. Adams, *et al.* (1992). Estimates of carbon storage in the above-ground biomass of Victoria's forests. Australian Journal of Botany 40(4/5): 631-640.
- Hall GMJ, Wiser SK, Allen RB, Beets PN and Goulding C J (2001). Strategies to estimate national forest carbon stocks from inventory data: the 1990 New Zealand baseline. Global Change Biology, 7:389-403.
- Hofmann-Schielle, C., A. Jug, *et al.* (1999). Short-rotation plantations of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. I. Site-growth relationships. Forest Ecology and Management 121(1/2): 41-55.
- Mitchell, C. P., E. A. Stevens, *et al.* (1999). Short-rotation forestry operations, productivity and costs based on experience gained in the UK. Forest Ecology and Management 121(1/2): 123-136.
- Santa Regina, I. and T. Tarazona (2001). Nutrient cycling in a natural beech forest and adjacent planted pine in northern Spain. Forestry (Oxford) 74(1): 11-28
- Schroeder, P., S. Brown, et al. (1997). Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science 43(3): 424-434.
- Shan, J Morris L A. & Hendrick, R L. (2001) The effects of management on soil and plant carbon sequestration in slash pine plantations. Journal of Applied Ecology 38 (5), 932-941.
- Smith and Heath. Data includes values compiled by DR. JIM SMITH, USDA FOREST SERVICE, DURHAM NH USA 03824. jsmith11@fs.fed.us, Lheath@fs.fed.us
- Son YH; Hwang JW; Kim ZS; Lee WK; Kim JS (2001) Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea. Bioresource Technology 78 (3): 251-255 2001
- Turnbull, C.R.A., McLeod, D.E., Beadle, C.L., Ratkowsky, D.A., Mummery, D.C. and Bird, T. (1993). Comparative growth of Eucalyptus species of the subgenera Monocalyptus and Symphyomyrtus in intensively managed plantations in southern Tasmania. Aust. For. 56, pp. 276–286.
- UN-ECE/FAO (2000). Forest Resources of Europe, CIS, North America, Australia, Japan and new Zealand (industrialized temperate / boreal countries.UN-ECE/FAO contribution to th Global Forest Resources Assessment 2000, united nations, New-Ypork and Geneva, geneva Timber and Forest Study papers, No 17.446 p.
- U'soltsev and Van Clay. (1995). Stand Biomass Dynamics of Pine plantations and natural forests on dry steppe in Kazakhstan Scan J For Res, 10, 305-312
- Vogt K (1991). Carbon budgets of temperate forest ecosystems. Tree Physiology, 9:69-86.

  Zhou, G., Y. Wang & V 2 100. Fish rating from as and net plan are protection from ToreX invaniony ata; a case study of China's Larize forests. Forest Ecology and Management 169(1/2): 149-157.

### Boreal Finnish Forest Research Institute (2002) Finnish Statistical Yearbook of Forestry, SVP Agriculture and Forestry, Helsinki, Finland.

- Isaev, A.S., Korovin, G.N., Utkin A.I., Pryazhnikov A.A., and D.G. Zamolodchikov (1993) Estimation of Carbon Pool and Its Annual Deposition in Phytomass of Forest Ecosystems in Russia, Forestry (Lesovedenie), 5: 3-10 (In Russian).
- Kajimoto, T., Y. Matsuura, et al. (1999). Above and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiology (12): 15-812 at . CSTUTOTCS
- Koivisto, 1959; Koivisto, P., (1959) Growth and Yield Tables. Commun. Inst. For. Fenn. Vol 51 no. 51.8: 1-49 (In Finnish with headings in English).
- Kurz, W.A. and M.J. Apps. (1993): Contribution of northern forests to the global C cycle: Canada as a case study. Water, Air, and Soil Pollution, 70, 163-176.
- Nilsson S., Shvidenko A., Stolbovoi V., Glick M., Jonas M., Obersteiner M. (2000). Full carbon account for Russia. Interim Report IR -00-021 Int Inst Appl Anal, 181 pages.
- UN-ECE/FAO (2000). Forest Resources of Europe, CIS, North America, Australia, Japan and new Zealand (industrialized temperate / boreal countries.UN-ECE/FAO contribution to th Global Forest Resources Assessment 2000, United Nations, New-Ypork and Geneva, geneva Timber and Forest Study papers, No 17.446 p.
- Vuokila, Y. and Väliaho, H. (1980). Growth and yield models for conifers cultures in Finland. Commun. Inst. For. Fenn. 99(2):1-271
- Wirth C., E.-D. Schulze, W. Schulze, D. von Stünzner-Karbe, W. Ziegler, I. M. Miljukova, A. Sogatchev, A. B. Varlagin, M. Panvyorov, S. Grigoriev, W. Kusnetzova, M. Siry, G. Hardes, R. Zimmermann, N. N. Vygodskaya (1999). Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire. Oecologia 121: 66-80
- Zakharov, V.K., Trull, O.A., Miroshnikov, V.S., and V.E. Ermakov (1962) The Reference Book on Forest Inventory. Belarus State Publishing, Minsk, p. 368. (In Russian).
- Zagreev, V.V., Sukhikh, B.I., Shvidenko, A.Z., Gusev, N.N., and A.G. Moshkalev (1993) *The All-Union Standards for Forest Inventory. Kolos*, Moscow, p. 495. (In Russian).

## Table 3A.1.7 Average annual above ground net increment in volume in plantations by species $(m^3/ha/yr)$

(To be used for L_v in Equation 3.2.5)

(To be used	for I _v in Equation 3.2.5)	
Species		v 1 ⁻¹ yr ⁻¹ )
	Range	Mean*
E. deglupta	14 - 50	32
E. globulus	10 - 40	25
E. grandis	15 - 50	32.5
E. saligna	10 - 55	32.5
E. camaldulensis	15 - 30	22.5
E. urophylla	20 - 60	40
E. robusta	10 - 40	25
Pinus caribaea var. caribaea	10 - 28	19
Pinus caribaea var. hondurensis	20 - 50	35
Pinus patula	8 - 40	24
Pinus radiata	12 - 35	23.5
Pinus oocarpa	10 - 40	25
Araucaria angustifolia	8 - 24	16
A. cunninghamii	10 - 18	14
Gmelina arborea	12 - 50	31
Swieten a macrophylla	7-20 Ev	15101
Swieten a macrophylla P	HOJECU EX	am Helf
Casuarina equisetifolia	6 - 20	13
C. junghuhniana	7 - 11	9
Cupressus Astania C • // 1111	Orcs8-@om	24
Cordia alliadora	10 - 20	15
Leucaena leucocephala	30 - 55	42.5
Acacia autic lijormi	6-20	13
Acacia mearnyii	<del>ystutores</del>	19.5
Terminalia superba	10 - 14	12
Terminalia ivorensis	8 - 17	12.5
Dalbergia sissoo	5 - 8	6.5

^{*} For those parties that have reason to believe that their plantations are located on more than average fertile sites it is suggested to use the mean value + 50%, for those Parties that have reason to believe their plantations are located on poor sites, it is suggested to use the mean value -50%

Source: Ugalde, L. and Prez, O. Mean annual volume increment of selected industrial forest planatation species. Forest Planatation Thematic Papers, Working paper 1. FAO (2001) Available at  $\frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1$ 

TAB	r TC	3 1	1	Q
LAD	L.E.	JH		.0

AVERAGE BELOWGROUND TO ABOVEGROUND BIOMASS RATIO (ROOT-SHOOT RATIO, R) IN NATURAL REGENERATION BY BROAD CATEGORY (tonnes dry matter/tonne dry matter)

(To be used for R in Equation 3.2.5)

	Vegetation type	Aboveground biomass (t/ha)	Mean	SD	lower range	upper range	References
sub- orest	Secondary tropical/sub-tropical forest	<125	0.42	0.22	0.14	0.83	5, 7, 13, 25, 28, 31, 48, 71
Tropical/sub- tropical forest	Primary tropical/sub-tropical moist forest	NS	0.24	0.03	0.22	0.33	33, 57, 63, 67, 69
Tr	Tropical/sub-tropical dry forest	NS	0.27	0.01	0.27	0.28	65
n	Conifer forest/plantation	<50	0.46	0.21	0.21	1.06	2, 8, 43, 44, 54, 61, 75
Conifer forest/ plantation	Conifer forest/plantation	50-150	0.32	0.08	0.24	0.50	6, 36, 54, 55, 58, 61
Co for plan	Conifer forest/plantation	>150	0.23	0.09	0.12	0.49	1, 6, 20, 40, 53, 61, 67, 77, 79
t/	Oak forest	>70	0.35	0.25	0.20	1.16	15, 60, 64, 67
ores	Eucalypt plantation	<50	0.45	0.15	0.29	0.81	9, 51, 59
eaf f n	Eucalypt plantation	50-150	0.35	0.23	0.15	0.81	4, 9, 59, 66, 76
te broadlea plantation	Eucalypt forest/plantation	>150	0.20	0.08	0.10	0.33	4, 9, 16, 66
te br plan	Other broadleaf forest	<75	0.43	0.24	0.12	0.93	30, 45, 46, 62
Temperate broadleaf forest/ plantation	Other broadleaf forest	75-150	0.26	0.10	0.13	0.52	30, 36, 45, 46, 62, 77, 78, 81
T	Other broadleaf forest	>150	0.24	0.05	0.17	0.30	3, 26, 30, 37, 67, 78, 81
р	Steppe/tundra/prairie grassland	NS	3.95	2.97	1.92	10.51	50, 56, 70, 72
Grassland	Temperate/Subjunction tipped	ntsPr	oje	Ct.02	xar	<b>1</b> 3.1	<b>2</b> , 23 <b>3</b> 2, 52
G	Semi-arid grassland	NS	2.80	1.33	1.43	4.92	17-19, 34
	Woodland/savanga	//NS	0.48	0.19	0.26	1.01	10-12, 21, 27, 49, 65, 73, 74
Other	Shrubland	NS NS	2.83	2.04	0.34	6.49	14, 29, 35, 38, 41, 42, 47, 67
	Tidal marsh	NS	1.04	0.21	0.74	1.23	24, 39, 68, 80
NS = Not	specified WeC	hat: c	estu	torc	S		

### References for Table 3A.1.8

- Alban, D., D. Perala, and B. Schlaegel (1978) Biomass and nutrient distribution in aspen, pine, and spruce stands on the same soil type in Minnesota. Canadian Journal of Forest Research 8: 290-299.
- 2. Albaugh, T., H. Allen, P. Dougherty, L. Kress, and J. King (1998) Leaf area and above- and below-ground growth responses of loblolly pine to nutrient and water additions. *Forest Science* **44**(2): 317-328.
- 3. Anderson, F. (1971) Methods and Preliminary results of estimation of biomass and primary production in a south Sweedish mixed deciduous woodland. In: *Productivity of forest ecosystems. Proceedings of the Brussels symposium, 1969, ecology and conservation 4.* UNESCO, Paris.
- 4. Applegate, G. (1982) Biomass of Blackbutt (Eucalyptus pilularis Sm.) Forests on Fraser Island. Masters Thesis. University of New England, Armidale.
- 5. Bartholomew, W., J. Meyer, and H. Laudelout (1953) Mineral nutrient immobilization under forest and grass fallow in the Yangambi (Belgian Congo) region. *Publications de l'Institut National Pour l'Etude Agronomique du Congo Belge Serie scientifique* 57: 27pp total.
- 6. Baskerville, G. (1966) Dry-matter production in immature balsam fir stands: roots, lesser vegetation, and total stand. Forest Science 12: 49-53.
- 7. Berish, C. (1982) Root biomass and surface area in three successional tropicl forests. Canadian Journal of Forest Research 12: 699-704.
- 8. Braekke, F. (1992) Root biomass changes after drainage and fertilisation of a low-shrub pine bog. Plant and Soil 143: 33-43.
- 9. Brand, B. (1999) *Quantifying biomass and carbon sequestration of plantation blue gums in south west Western Australia*. Honours Thesis. Curtin University of Technology,
- 10. Burrows, W. (1976) Aspects of nutrient cycling in semi-arid mallee and mulga communities. PhD Thesis. Australian National University, Canberra.
- 11. Burrows, W., M. Hoffmann, J. Compton, P. Back, and L. Tait (2000) Allometric relationships and community biomass estimates for some dominant eucalypts in Central Queensland woodlands. *Australian Journal of Botany* 48: 707-714.
- 12. Burrows, W., M. Hoffmann, J. Compton, and P. Back (2001) *Allometric relationships and community biomass stocks in white cypress pine (Callitris glaucophylla) and associated eucalypts of the Carnarvon area south central Queensland*. National Carbon Accounting System Technical Report No. 33. Australian Greenhouse Office, Canberra. 16 p.

- Buschbacher, R., C. Uhl, and E. Serrao (1988) Abandoned pastures in eastern Amazonia. II. Nutrient stocks in the soil and vegetation. Journal of Ecology 76: 682-701.
- Caldwell, M. and L. Camp (1974) Belowground productivity of two cool desert communities. Oecologia 17: 123-130.
- Canadell, J. and F. Roda (1991) Root biomass of Quercus ilex in a montane Mediterranean forest. Canadian Journal of Forest Research 21(12): 1771-1778.
- Chilcott, C. (1998) The initial impacts of reforestation and deforestation on herbaceous species, litter decomposition, soil biota and nutrients in native temperate pastures on the Northern Tablelands, NSW. PhD Thesis. University of New England, Armidale.
- Christie, E. (1978) Ecosystem processes in semiarid grasslands. I. Primary production and water use of two communities possessing different photosynthetic pathways. Australian Journal of Agricultural Research 29: 773-787.
- Christie, E. (1979) Eco-physiological studies of the semiarid grasses Aristida leptopoda and Astrebla lappacea. Australian Journal of Ecology 4: 223-228.
- Christie, E. (1981) Biomass and nutrient dynamics in a C₄ semi-arid Australian grassland community. Journal of Applied Ecology 18: 907-918
- Cole, D., S. Gessel, and S. Dice (1967) Distribution and cycling of nitrogen, phosphorus, potassium, and calcium in a second-growth Douglas-fir ecosystem. In: Symposium: Primary productivity and mineral cycling in natural ecosystems. American Association for the Advancement of Science 13th Annual Meeting New York City, December 27, 1967: University of Maine Press.
- 21. Compton, J., L. Tait, M. Hoffmann, and D. Myles (1999) Root-shoot ratios and root distribution for woodland communities across a rainfall gradient in central Queensland. In: Proceedings of the VI International Rangeland Congress. Townsville, Australia.
- Cooksley, D., K. Butler, J. Prinsen, and C. Paton (1988) Influence of soil type on Heteropogon contortus Bothrichloa bladhii dominant native pasture in south-eastern Queensland. Australian Journal of Experimental Agriculture 28: 587-591
- De Castro, E.A. and J.B. Kauffman (1998) Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical Ecology 14(3): 263-283.
- De la Cruz, A. and C. Hackney (1977) Energy value, elemental composition, and productivity of belowground biomass of a *Juncus* tidal marsh. Ecology 58: 1165-1170.
- Drew, W., S. Aksornkoae, and W. Kaitpraneet (1978) An assessment of productivity in successional stages from abandoned swidden (Rai) to dry evergreen forest in northeastern Thailand. Forest Bulletin 56: 31 total.
- 26. Dylis, N. (1971) Primary production of mixed forests. In: Productivity of forest ecosystems. Proceedings of the Brussels symposium, 1969. Paris: UNESCO.
- Eamus, D. X. Chen, G. Kelley, and L. Hutley (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analyses of an open Excalpulus forest in a savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analysis for savanna of north Australia Systration Fully 19 (2002) Root biomass and root fractal analysis forest in a savanna of north Australia Systration Fully 19 (2002) Ro
- 29. Forrest, G. (1971) Structure and production of North Pennine blanket bog vegetation. Journal of Ecology 59: 453-479.
- 30. Garkoti, S. and S. Singh (1995) Variation in net primary productivity and biomass of forests in the high mountains of Central Himalaya.
- 32. Graham, T. (1987) The effect of renovation practices on nitrogen cycling and productivity of rundown buffel grass pasture. PhD Thesis. University of Queensland,
- 33. Greenland, D. and J. Koval 1960. Natrief content of the moist tropical forest of Ghana. Plant and Soil 12: 154-173.
- Grouzis, M. and L. Akpo (1977) under control of the cover of berbacedulabore and below-ground phytomas in the Sahelian zone of Senegal. Journal of Arid Environments 35: 285-296.
- Groves, R. and R. Specht (1965) Growth of heath vegetation. 1. Annual growth curves of two heath ecosystems in Australia. Australia. Journal of Botany 13: 261-280.
- 36. Harris, W., R. Kinerson, and N. Edwards (1977) Comparison of belowground biomass of natural deciduous forest and loblolly pine plantations. Pedobiologica 17: 369-381.
- 37. Hart, P., P. Clinton, R. Allen, A. Nordmeyer, and G. Evans (2003) Biomass and macro-nutrients (above- and below-ground) in a New Zealand beech (Nothofagus) forest ecosystem: implications for carbon storage and sustainable forest management. Forest Ecology and Management 174: 281-294.
- 38. Hoffmann, M. and J. Kummerow (1978) Root studies in the Chilean matorral. Oecologia 32: 57-69.
- 39. Hussey, A. and S. Long (1982) Seasonal changes in weight of above- and below-ground vegetation and dead plant material in a salt marsh at Colne Point, Essex. Journal of Ecology 70: 757-771.
- Johnstone, W. (1971) Total standing crop and tree component distributions in three stands of 100-year-old lodgepole pine. In: Forest biomass studies. 15th IUFRO Congress (Ed. ^Eds. H. Young). University of Maine Press, Orono. p. 81-89.
- Jones, R. (1968) Estimating productivity and apparent photosynthesis from differences in consecutive measurements of total living plant parts of an Australian heathland. Australian Journal of Botany 16: 589-602.
- 42. Kummerow, J., D. Krause, and W. Jow (1977) Root systems of chaparral shrubs. Oecologia 29: 163-177.
- Linder, S. and B. Axelsson (1982) Changes in carbon uptake and allocation patterns as a result of irrigation and fertilisation in a young Pinus sylvestris stand. In: Carbon Uptake and Allocation: Key to Management of Subalpine Forest Ecosystems (Ed. ^Eds. R. Waring). Forest Research Laboratory, Oregon State University, Corvallis, Oregon. p. 38-44.
- 44. Litton, C., M. Ryan, D. Tinker, and D. Knight (2003) Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research 33(2): 351-363.
- 45. Lodhiyal, L. and N. Lodhiyal (1997) Variation in biomass and net primary productivity in short rotation high density central Himalayan poplar plantations. Forest Ecology and Management 98: 167-179.
- Lodhiyal, N., L. Lodhiyal, and P. Pangtey (2002) Structure and function of Shisham forests in central Himalaya, India: dry matter dynamics. Annals of Botany 89: 41-54.
- 47. Low, A. and B. Lamont (1990) Aerial and belowground phytomass of Banksia scrub-heath at Eneabba, South-Western Australia. Australian Journal of Botany 38: 351-359.

- 48. Lugo, A. (1992) Comparison of tropical tree plantations with secondary forests of similar age. Ecological Monographs 62: 1-41.
- 49. Menaut, J. and J. Cesar (1982) The structure and dynamics of a west African savanna. In: *Ecology of Tropical Savannas* (Ed.^Eds. B. Huntley and B. Walker). Springer-Verlag, Berlin. p. 80-100.
- 50. Milchunas, D. and W. Lauenroth (1989) Three-dimensional distribution of plant biomass in relation to grazing and topography in the shortgrass steppe. *Oikos* 55: 82-86.
- 51. Misra, R., C. Turnbull, R. Cromer, A. Gibbons, and A. LaSala (1998) Below- and above-ground growth of *Eucalyptus nitens* in a young plantation. I. Biomass. *Forest Ecology and Management* **106**: 283-293.
- 52. Nepstad, D. (1989) Forest regrowth in abandoned pastures of eastern Amazonia: limitations to tree seedling survival and growth. PhD Dissertation. Yale University, New Haven.
- 53. Nihlgård, B. (1972) Plant biomass, primary production and distribution of chemical elements in a beech and a planted spruce forest in South Sweden. *Oikos* 23: 69-81.
- 54. Ovington, J. (1957a) Dry matter production by Pinus sylvestris L. Annals of Botany, London N.S. 21: 287-314.
- 55. Ovington, J. and H. Madgwick (1959a) Distribution of organic matter and plant nutrients in a plantation of Scotts pine. *Forest Science* 5: 344-355.
- 56. Ovington, J. (1963) Plant biomass and productivity of prairie, savanna, oakwood, and maize field ecosystems in central Minnesota. *Ecology* **44**(1): 52-63.
- 57. Ovington, J. and J. Olson (1970) Biomass and chemical content of El Verde lower montane rain forest plants. In: *A tropical rain forest. A study of irradiation and ecology at El Verde, Puerto Rico (Division of Technical Information TID 24270)* (Ed.^Eds. H. Odum and R. Pigeon). US Atomic Energy Commission, Washington DC. p. 53-77.
- 58. Pearson, J., T. Fahey, and D. Knight (1984) Biomass and leaf area in contrasting lodgepole pine forests. *Canadian Journal of Forest Research* 14: 259-265.
- 59. Prasad, R., A. Sah, A. Bhandari, and O. Choubey (1984) Dry matter production by *Eucalyptus camaldulensis* Dehn plantationin Jabalpur. *Indian Forester* 110: 868-878.
- 60. Rawat, Y. and J. Singh (1988) Structure and function of oak forests in Central Himalaya. I. Dry matter dynamics. *Annals of Botany* **62**: 397-411.
- 61. Ritson, P. and S. Sochacki (2003) Measurement and prediction of biomass and carbon content of *Pinus pinaster* trees in farm forestry plantations, south-western Australia. *Forest Ecology and Management* **175**: 103-117.
- 62. Ruark, G. and J. Bockheim (1988) Biomass, net primary production, and nutrient distribution for an age sequence of *Populus tremuloides Canadian Journal of Forest Research* 18735-443.
- 63. Shanmughavil, D., Daheng, S. H. quod and C. Nin (2001) For st estructure and biomass distribution of a travel tectoral rain forest in Xishuangbanna, southwest China. Biomass and Bioenergy 21: 165-175.
- Simonovic, V. (1980) Root productivity studies in deciduous forest ecosystem. In: Environment and root behaviour (Ed. ^Eds. N. David). Geobios International, Jodhour, India. p. 213-230.
- 65. Singh, K. and R. Misra (1979) Structure and Functioning of Natural, Modified and Silvisultural Ecosystems in Eastern Uttar Pradesh. Final Technical Report (1945) 17) MAB research project. Bahras Hindu University, Varanasi. 160 p.
- 66. Singh, R. and V. Sharma (1976) Biomass estimation in five different aged plantations of *Eucalyptus tereticornix* Smith in western Uttar Pradesh. In: *Oslo Biomass Studies* (Ed.^Eds. University of Maine, Orono. p. 143-161.
- 67. Singh, S., B. Adhikari, and D. Zobel (1994) Biomass, productivity, leaf longevity, and forest structure in the central Himalaya. *Ecological Monographs* 64. VI (1994) Biomass, productivity, leaf longevity, and forest structure in the central Himalaya.
- 68. Suzuki, E. and H. Tagawa (1983) Biomass of a mangrove forest and a sedge marsh on Ishigaki Island, south Japan. *Japanese Journal of Ecology* **33**: 231-234.
- Tanner, E. (1980) Studies on the biomass and productivity in a series of montane rain forests in Jamaica. *Journal of Ecology* 68: 573-588.
- 70. Titlyanova, A., G. Rusch, and E. van der Maarel (1988) Biomass structure of limestone grasslands on Öland in relation to grazing intensity. *Acta phytogeographica suecica* **76**: 125-134.
- Uhl, C. (1987) Factors controlling succession following slash-and-burn agriculture in Amazonia. Journal of Ecology 75: 377-407.
- 72. van Wijk, M., M. Williams, L. Gough, S. Hobbie, and G. Shaver (2003) Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow growing arctic vegetation? *Journal of Ecology* **91**: 664-676.
- 73. Werner, P.A. (1986) Population dynamics and productivity of selected forest trees in Kakadu National Park. Final report to the Australian National Parks and Wildlife Service. CSIRO Darwin, Tropical Ecosystems Research Centre, p.
- 74. Werner, P.A. and P.G. Murphy (2001) Size-specific biomass allocation and water content of above- and below-ground components of three *Eucalyptus* species in a northern Australian savanna. *Australian Journal of Botany* **49**(2): 155-167.
- 75. Westman, E. and R. Whitaker (1975) The pygmy forest region of northern California: studies on biomass and primary productivity. *Journal of Ecology* **63**: 493-520.
- 76. Westman, W. and R. Rogers (1977) Biomass and structure of a subtropical eucalypt forest, North Stradbroke Island. *Australian Journal of Botany* 25: 171-191.
- 77. Whittaker, R. and G. Woodwell (1971) Measurement of net primary production in forests. In: *Productivity of Forest Ecosystems* (Eds.) Paris: UNESCO. p. 159-175.
- 78. Whittaker, R., F. Borman, G. Likens, and T. Siccama (1974) The Hubbard Brook ecosystem study: forest biomass and production. *Ecological Monographs* 44: 233-252.
- 79. Will, G. (1966) Root growth and dry-matter production in a high-producing stand of *Pinus radiata*. New Zealand Forestry Research Notes 44: 1-15.
- 80. Windham, L. (2001) Comparison of biomass production and decomposition between *Phragmites australis* (common reed) and *Spartina patens* (salt hay grass) in brackish tidal marshes of New Jersey, USA. *Wetlands* **21**(2): 179-188.
- 81. Zavitkovski, J. and R. Stevens (1972) Primary productivity of red alder ecosystems. *Ecology* 53: 235-242.

## $TABLE\ 3A.1.9-1$ Basic wood densities of stemwood (tonnes dry matter/m³ fresh volume) for boreal and temperate species

(To be used for D in Equations 3.2.3., 3.2.5, 3.2.7, 3.2.8)

Species or genus	$\begin{array}{c} \textbf{Basic wood density} \\ \textbf{m_0/V}_{wet} \end{array}$	Source
Abies	0.40	1
Acer	0.52	1
Alnus	0.45	1
Betula	0.51	1
Carpinus betulus	0.63	3
Castanea sativa	0.48	3
Fagus sylvatica	0.58	1
Fraxinus	0.57	1
Juglans	0.53	3
Larix decidua	0.46	1
Larix kaempferi	0.49	3
Picea abies	0.40	1
Picea sitchensis	0.40	2
Pinus pinaster	0.44	5
Pinus strobus	0.32	<del>+</del> + 1
PSuSylvetisment	Project Ex	am Heli
Populus	0.35	1
Prunus	0.49	1
Pseudotsuga menziesii //4	torcs of the state	1
Quercus 11tt DS.//tt		1
Salix	0.45	1
Thuja plicata	0.31	4
Tilia WeChat:	cstutores	1
Tsuga	0.42	4

#### Source:

- 1. Dietz, P. 1975: Dichte und Rindengehalt von Industrieholz. Holz Roh- Werkstoff 33: 135-141
- 2. Knigge, W.; Schulz, H. 1966: Grundriss der Forstbenutzung. Verlag Paul Parey, Hamburg, Berlin
- 3. EN 350-2 (1994): Durability of wood and wood products Natural durability of solid wood Part 2: Guide to the natural durability and treatability of selected wood species of importance in Europe
- 4. Forest Products Laboratory: Handbook of wood and wood-based materials. Hemisphere Publishing Corporation, New York, London
- 5. Rijsdijk, J.F.; Laming, P.B. 1994: Physical and related properties of 145 timbers. Kluwer Academic Publishers, Dordrecht, Boston, London
- Kollmann, F.F.P.; Coté, W.A. 1968: Principles of wood science and technology. Springer Verlag, Berlin, New York

TDODICAL ACIA	1	TROPICAL AMERICA	T	1	D
TROPICAL ASIA	<b>D</b> 0.76	TROPICAL AMERICA	<b>D</b> 0.52	TROPICAL AFRICA	<b>D</b> 0.67
Acacia leucophloea  Adina cordifolia		Albizia spp.	0.32	Afzelia spp.  Aidia ochroleuca	0.67
Aegle marmelo	0.58, 0.59+	Alexa grandiflara	0.54		0.78
Agathis spp.	0.73	Alexa grandiflora Alnus ferruginea	0.8	Albizia spp. Allanblackia floribunda	0.32
			0.38	Allophyllus africanus f.	0.03
Aglaia llanosiana	0.89	Anacardium excelsum	0.41	acuminatus	0.45
Alangium longiflorum	0.65	Anadenanthera macrocarpa	0.86	Alstonia congensis	0.33
Albizzia amara	0.70*	Andira retusa	0.67	Amphimas pterocarpoides	0.63*
Albizzia falcataria	0.25	Aniba riparia lduckei	0.62	Anisophyllea obtusifolia	0.63*
Aleurites trisperma	0.43	Antiaris africana	0.38	Annonidium mannii	0.29*
Alnus japonica	0.43	Apeiba echinata	0.36	Anopyxis klaineana	0.74*
Alphitonia zizyphoides	0.5	Artocarpus comunis	0.7	Anthocleista keniensis	0.50*
Alphonsea arborea	0.69	Aspidosperma spp. (araracanga group)	0.75	Anthonotha macrophylla	0.78*
Alseodaphne longipes	0.49	Astronium lecointei	0.73	Anthostemma aubryanum	0.32*
Alstonia spp.	0.37	Bagassa guianensis	0.68,0.69+	Antiaris spp.	0.38
Amoora spp.	0.6	Banara guianensis	0.61	Antrocaryon klaineanum	0.50*
Anisophyllea zeylanica	0.46*	Basiloxylon exelsum	0.58	Aucoumea klaineana	0.37
Anisoptera spp,	0.54	Beilschmiedia sp.	0.61	Autranella congolensis	0.78
Anogeissus latifolia	0.78, 0.79+	Berthollettia excelsa	0.59, 0.63+	Baillonella toxisperma	0.71
Anthocephalus chinensis	0.36,0.33+	Bixa arborea	0.32	Balanites aegyptiaca	0.63*
Antidesma pleyriyur C 1	Omme	Bimbicops seemm 1 🗅	C 10.3 - Y	Bapitakikii — 🔼 1	0.93*
Aphanamiris perrottetiana	0.52	Borojoa patinoi	0.52	Beilschmiedia louisii	0.70*
Araucaria bidwillii	0.43	Bowdichia spp.	0.74	Beilschmiedia nitida	0.50*
Artocarpus spp.	<b>1</b> 0.58	Brosimum spp. (alicastrum	0.64, 0.66+	Berlinia spp.	0.58
Azadirachta spp.	1165275	Brosimen Latile UI C	5.Q.O.M	Blighia welwitschii	0.74*
Balanocarpus spp.	0.76	Brysenia adenophylla	0.54	Bombax spp.	0.4
Barringtonia edulis *	0.48	Buchenauia capitata	0.61, 0.63+	Brachystegia spp.	0.52
Bauhinia spp.	7.62	Hucida buceras	1 0 23 C C	Bridelia micrantha	0.47*
Beilschmiedia tawa	0.58	Bumesia arborea Stu	irotes	Calpocalyx klainei	0.63*
Berrya cordifolia	0.78*	Bursera simaruba	0.29, 0.34+	Canarium schweinfurthii	0.40*
Bischofia javanica	0.54,0.58,0.62+	Byrsonima coriacea	0.64	Canthium rubrocostratum	0.63*
Bleasdalea vitiensis	0.43	Cabralea cangerana	0.55	Carapa procera	0.59
Bombax ceiba	0.33	Caesalpinia spp.	1.05	Casearia battiscombei	0.5
Bombycidendron vidalianum	0.53	Calophyllum sp.	0.65	Cassipourea euryoides	0.70*
Boswellia serrata	0.5	Campnosperma panamensis	0.33,0.50+	Cassipourea malosana	0.59*
Bridelia squamosa	0.5	Carapa sp.	0.47	Ceiba pentandra	0.26
Buchanania latifolia	0.45	Caryocar spp.	0.69, 0.72+	Celtis spp.	0.59
Bursera serrata	0.59	Casearia sp.	0.62	Chlorophora ercelsa	0.55
Butea monosperma	0.48	Cassia moschata	0.71	Chrysophyllum albidum	0.56*
Calophyllum spp.	0.53	Casuarina equisetifolia	0.81	Cleistanthus mildbraedii	0.87*
Calycarpa arborea	0.53	Catostemma spp.	0.55	Cleistopholis patens	0.36*
Cananga odorata	0.29	Cecropia spp.	0.36	Coelocaryon preussii	0.56"
Canarium spp.	0.44	Cedrela spp.	0.40, 0.46+	Cola sp.	0.70"
Canthium monstrosum	0.42	Cedrelinga catenaeformis	0.41, 0.53+	Combretodendron macrocarpum	0.7
Carallia calycina	0.66*	Ceiba pentandra	0.23,0.24,0.25, 0.29+	Conopharyngia holstii	0.50*

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

⁺ The wood densities specified pertain to more than one bibliographic source.

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

0.50"
0.24
0.34
0.36"
0.63"
0.78*
0.57
0.70*
0.78*
0.8
0.74
0.61
0.40*
0.87"
0.63*
0.78*
0.78"
0.5
0.82
0.32*
0.58
0.63*
0.51*
0.42"
0.66"
0.53
0.60*
0.50"
0.56*
0.25"
0.72
0.5
0.69
0.40"
0.45*
0.56*
0.78"
0.87"
0.4
0.55"
0.72
0.28"
0.45"
0.48"

+ The wood densities specified pertain to more than one bibliographic source.

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

	1	used for D in Equations 3		T	
TROPICAL ASIA	D	TROPICAL AMERICA	D	TROPICAL AFRICA	D
Dipterocarpus kunstlerii	0.57	Goupia glabra	0.67, 0.72+	Homalium spp.	0.7
Dipterocarpus spp.	0.61	Guarea chalde	0.52	Hylodendron gabonense.	0.78"
Dipterocarpus warburgii	0.52	Guarea spp.	0.52	Hymenostegia pellegrini	0.78"
Dracontomelon spp.	0.5	Guatteria spp.	0.36	Irvingia grandifolia	0.78"
Dryobalanops spp.	0.61	Guazuma ulmifolia	0.52, 0.50+	Julbernardia globiflora	0.78
Dtypetes bordenii	0.75	Guettarda scabra	0.65	Khaya ivorensis	0.44
Durio spp.	0.53	Guillielma gasipae	0.95, 1.25+	Klainedoxa gabonensis	0.87
Dyera costulata	0.36	Gwtavia sp.	0.56	Lannea welwitschii	0.45"'
Dysoxylum quercifolium	0.49	Helicostylis tomentosa	0.68, 0.72+	Lecomtedoxa klainenna	0.78"
Elaeocarpus serratus	0.40*	Hernandia Sonora	0.29	Letestua durissima	0.87"
Emblica officinalis	0.8	Hevea brasiliense	0.49	Lophira alata	0.87"
Endiandra laxiflora	0.54	Himatanthus articulata	0.40,0.54+	Lovoa trichilioides	0.45"
Endospermum spp.	0.38	Hirtella davisii	0.74	Macaranga kilimandscharica	0.40*
Enterolobium cyclocarpum	0.35	Humiria balsamifera	0.66,0.67+	Maesopsis eminii	0.41
Epicharis cumingiana	0.73	Humiriastrum procera	0.7	Malacantha sp. aff. alnifolia	0.45"
Erythrina subumbrans	0.24	Hura crepitans	0.36, 0.37, 0.38+	Mammea africana	0.62
Erythrophloeum densiflorum	0.65	Hyeronima alchorneoides	0.60,0.64+	Manilkara lacera	0.78"
Eucalyptus citriodora	0.64	Hyeronima laxiflora	0.59	Markhamia platycalyx	0.45*
Eucalyptus deglipta C 1	opm	Mineraea levirii 1	$C^{\uparrow 0.6} \dashv X$	Mameovi n ca <del>pit</del> llatan 1	0.77"
Eugenia spp.	0.65	Hymenolobium sp.	0.64	Microberlinia brazzavillensis	0.7
Fagraea spp.	0.73	Inga sp.	0.49,0.52,0.58, 0.64+	Microcos coriaceus	0.42"
Ficus benjamina	06:08	Iryanther spr. 11 C	S. 040111	Milletia spp.	0.72
Ficus spp.	0.39	Jacaranda sp.	0.55	Mitragyna stipulosa	0.47
Ganua obovatifolia	0.59	Joannesia heveoides	0.39	Monopetalanthus pellegrinii	0.47"
Garcinia myrtifolia	165	Lanhanelleaospegiasa + 1	110800	Musanga cecropioides	0.23
Garcinia spp.	0.75	Laetia procera	100.68 CD	Nauclea diderrichii	0.63
Gardenia turgida	0.64	Lecythis spp.	0.77	Neopoutonia macrocalyx	0.32"
Garuga pinnata	0.51	Licania spp.	0.78	Nesogordonia papaverifera	0.65
Gluta spp.	0.63	Licaria spp.	0.82	Ochtocosmus africanus	0.78'
Gmelina arborea	0.41,0.45+	Lindackeria sp.	0.41	Odyendea spp.	0.32
Gmelina vitiensis	0.54	Linociera domingensis	0.81	Oldfieldia africana	0.78*
Gonocaryum calleryanum	0.64	Lonchocarpus spp.	0.69	Ongokea gore	0.72
Gonystylus punctatus	0.57	Loxopterygium sagotii	0.56	Oxystigma oxyphyllum	0.53
Grewia tiliaefolia	0.68	Lucuma spp.	0.79	Pachyelasma tessmannii	0.70"
Hardwickia binata	0.73	Luehea spp.	0.5	Pachypodanthium staudtii	0.58"
Harpullia arborea	0.62	Lueheopsis duckeana	0.64	Paraberlinia bifoliolata	0.56"
Heritiera spp.	0.56	Mabea piriri	0.59	Parinari glabra	0.87"
Hevea brasiliensis	0.53	Machaerium spp.	0.7	Parkia bicolor	0.36"
Hibiscus tiliaceus	0.57	Macoubea guianensis	0.40*	Pausinystalia brachythyrsa	0.56"
Homalanthus populneus	0.38	Magnolia spp.	0.52	Pausinystalia cf. talbotii	0.56"
Homalium spp.	0.76	Maguira sclerophylla	0.57	Pentaclethra macrophylla	0.78"
Hopea acuminata	0.62	Mammea americana	0.62	Pentadesma butyracea	0.78"
Hopea spp.	0.64	Mangifera indica	0.55	Phyllanthus discoideus	0.76"
Intsia palembanica	0.68	Manilkara sp.	0.33	Pierreodendron africanum	0.70;"
		-			0.70;
Kayea garciae	0.53	Marila sp.	0.63	Piptadeniastrum africanum	0.30

⁺ The wood densities specified pertain to more than one bibliographic source.

^{*} Wood density value is derived from the regression equation in Reyes *et al.* (1992). Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

TROPICAL ASIA	D	TROPICAL AMERICA	D	TROPICAL AFRICA	D
Kingiodendron	0.48	Marmaroxylon racemosum	0.78*	Plagiostyles africana	0.70"
alternifolium Kleinhovia hospita	0.36	-	0.7	Poga oleosa	0.36
Knema spp.	0.53	Matayba domingensis Matisia hirta	0.7	Polyalthia suaveolens	0.66"
Koompassia excelsa	0.63	Maytenus spp.	0.01	Premna angolensis	0.63"
Koordersiodendron		•			
pinnatum	0.65, 0.69+	Mezilaurus lindaviana	0.68	Pteleopsis hylodendron	0.63*
Kydia calycina	0.72	Michropholis spp.	0.61	Pterocarpus soyauxii	0.61
Lagerstroemia spp.	0.55	Minquartia guianensis	0.76,0.79+	Pterygota spp.	0.52
Lannea grandis	0.5	Mora sp.	0.71	Pycnanthus angolensis	0.4
Leucaena leucocephala	0.64	Mouriria sideroxylon	0.88	Randia cladantha	0.78*
Litchi chinensis ssp. philippinensis	0.88	Myrciaria floribunda	0.73	Rauwolfia macrophylla	0.47*
Lithocarpus soleriana	0.63	Myristica spp.	0.46	Ricinodendron heudelotii	0.2
Litsea spp.	0.4	Myroxylon balsamum	0.74, 0.76, 0.78+	Saccoglottis gabonensis	0.74"
Lophopetalum spp.	0.46	Nectandra spp.	0.52	Santiria trimera	0.53*
Macaranga denticulata	0.53	O c o t e a spp.	0.51	Sapium ellipticum	0.50*
Madhuca oblongifolia	0.53	Onychopetalum	0.64	Schrebera arborea	0.63*
		amazonicum			
Mallotus philippensis	0.64	Ormosia spp.	0.59	Sclorodophloeus zenkeri	0.68*
Mangifera spp.	0.52	Ouratea sp.	0.66	Scottellia coriacea	0.56
Maniltoa minor	0.76	Pachira acuatica	0.43	Scyphocephalium ochocoa	0.48
Mastixia philippinensis	0.47	Paratecoma peroba	0.6	Scytopetalum tieghemii	0.56"
Melanorrhea sp <del>p.</del> SS		Paril a li spp. 1016	$C$ $\begin{bmatrix} 0.6 \\ \end{bmatrix}$ $X$	Sind repris le est li	0.56*
Melia dubia	0.4	Parkia spp.	0.39	Staudtia stipitata	0.75
Melicope triphylla	0.37	Peltogyne spp.	0.79	Stemonocoleus micranthus	0.56"
Meliosma macrophylla	0.27	Pentaglethra macroloba	0.65,0.68+	Sterculia rhinopetala	0.64
Melochia umbellata	0.2508	Peru/glabra a	0(5)	Strephonema pseudocola	0.56*
Me&a ferrea	0.83,0.85+	Peru schomburgkiana	0.59	Strombosiopsis tetrandra	0.63"
Metrosideros collina	0.70,0.76+	Persea spp.	0.40, 0.47, 0.52+	Swartzia fistuloides	0.82
Michelia spp.	<b>TT</b> 043	Petitia domingensis	0.66	Symphonia globulifera	0.58"
Microcos stylocarpa	<b>W</b> .ec	Hin ir Gailbaea CSU	ITOFICS	Syzygium cordatum	0.59*
Micromelum compressum	0.64	Pinus oocarpa	0.55	Terminalia superba	0.45
Milliusa velutina	0.63	Pinus patula	0.45	Tessmania africana	0.85"
Mimusops elengi	0.72*	Piptadenia sp.	0.58	Testulea gabonensis	0.6
Mitragyna parviflora	0.56	Piranhea longepedunculata	0.9	Tetraberlinia tubmaniana	0.60"
Myristica spp.	0.53	Piratinera guianensis	0.96	Tetrapleura tetraptera	0.50"
Neesia spp.	0.53	Pithecellobium guachapele	0.56	Tieghemella heckelii	0.55"
Neonauclea bernardoi	0.62	(syn. Pseudosamea) Platonia insignis	0.70'	Trema sp.	0.40*
Neotrewia cumingii	0.55	Platymiscium spp.	0.71, 0.84+	Trichilia prieureana	0.63"
Ochna foxworthyi	0.86	Podocarpus spp.	0.46	Trichoscypha arborea	0.59"
Ochroma pyramidale	0.3	Pourouma aff. melinonii	0.32	Triplochiton scleroxylon.	0.32
Octomeles sumatrana	0.27, 0.32+	Pouteria spp.	0.64, 0.67+	Uapaca spp.	0.6
Oroxylon indicum	0.32	Prioria copaifera	0.40,0.41+	Vepris undulata	0.70"
Ougenia dalbergiodes	0.7	Protium spp.	0.53,0.64+	Vitex doniana	0.4
Palaquium spp.	0.55	Pseudolmedia laevigata	0.64	Xylopia staudtii	0.36*
Pangium edule	0.5	Pterocarpus spp.	0.44		
Parashorea malaanonan	0.51	Pterogyne nitens	0.66		
Parashorea stellata	0.59	Qualea albiflora	0.5		
			0.50	i l	
Paratrophis glabra Parinari spp.	0.77 0.68	Qualea cf. lancifolia Qualea dinizii	0.58 0.58		

+ The wood densities specified pertain to more than one bibliographic source.

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

TDODICAL ASIA	1	TROPICAL AMERICA	I	, I	D
TROPICAL ASIA	D		D	TROPICAL AFRICA	и
Parkia roxburghii	0.34	Qualea spp.	0.55		
Payena spp.	0.55	Quararibaea guianensis	0.54		
Peltophorum pterocarpum	0.62	Quercus alata	0.71		
Pentace spp.	0.56	Quercus costaricensis	0.61		
Phaeanthus ebracteolatus	0.56	Quercus eugeniaefolia	0.67		
Phyllocladus hypophyllus	0.53	Quercus spp.	0.7		
Pinus caribaea	0.48	Raputia sp.	0.55		
Pinus insularis	0.47,0.48+	Rheedia spp.	0.72		
Pinus merkusii	0.54	Rollinia spp.	0.36		
Pisonia umbellifera	0.21	Saccoglottis cydonioides	0.72		
Pittosporum pentandrum	0.51	Sapium ssp.	0.47,0.72+		
Planchonia spp.	0.59	Schinopsis spp.	1		
Podocarpus spp.	0.43	Sclerobium spp.	0.47		
Polyalthia flava	0.51	Sickingia spp.	0.52		
Polyscias nodosa	0.38	Simaba multiflora	0.51		
Pometia spp.	0.54	Simarouba amara	0.32, 0.34,0.38+		
Pouteria villamilii	0.47	Sloanea guianensis	0.79		
Premna tomentosa	0.96	Spondias mombin	0.30, 0.40,0.41+		
Pterocarpus marsupium	0.67	Sterculia spp.	0.55		
Pterocymbium tinctorium	0.28	Stylogyne spp.	0.69	<b>**</b> 4	
Pyge'um vulgare CC	omm	Swanza sp 77010	C 10.9 H X	am Helr	
Quercus spp.	<b>6</b> 0.7	Swietenia macrophylla	0.42,0.45,0.46, 0.54+		
Radermachera pinnata	0.51	Symphonia globulifera	0.68		
Salmalia malabarica	https	Tabebuja spp. (lapacho group)	s.com		
Samanea saman	0.45, 0.46+	Tabebuia spp. (roble)	0.52	•	
Sandoricum vidalii	0.43	Tabebuia spp. (white cedar)	0.57		
Sapindus saponaria	<b>-</b> 0,58	Tabebuia stenocalyx	0.55,0.57+		
Sapium luzontcum	W.e(	Tichigalii myrn ecophylla	ITO 6CS		
Schleichera oleosa	0.96	Talisia sp.	0.84		
Schrebera swietenoides	0.82	Tapirira guianensis	0.47*		
Semicarpus anacardium	0.64	Terminalia sp.	0.50, 0.51, 0.58+		
Serialbizia acle	0.57	Tetragastris altisima	0.61		
Serianthes melanesica	0.48	Toluifera balsamum	0.74		
Sesbania grandiflora	0.4	Torrubia sp.	0.52		
Shorea assamica forma philippinensis	0.41	Toulicia pulvinata	0.63		
Shorea astylosa	0.73	Tovomita guianensis	0.6		
Shorea ciliata	0.75	Trattinickia sp.	0.38		
Shorea contorta	0.44	Trichilia propingua	0.58		
Shorea gisok	0.76	Trichosperma mexicanum	0.41		
Shorea guiso	0.68	Triplaris spp.	0.56		
Shorea hopeifolia	0.44	Trophis sp.	0.54		_
Shorea malibato	0.78	Vatairea spp.	0.6		
		**	0.6		
Shorea negrosensis	0.44	Virola spp.	0.48+		
Shorea palosapis	0.39	Vismia spp.	0.41		
Shorea plagata	0.7	Vitex spp.	0.52,0.56, 0.57+		

+ The wood densities specified pertain to more than one bibliographic source:

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

TROPICAL ASIA	D	TROPICAL AMERICA	D	TROPICAL AFRICA	D
Shorea polita	0.47	Vitex stahelii	0.6		
Shorea polysperma	0.47	Vochysia spp.	0.40,0.47, 0.79+		
Shorea robusta	0.72	Vouacapoua americana	0.79		
Shorea spp. balau group	0.7	Warszewicsia coccinea	0.56		
Shorea spp. dark red meranti	0.55	Xanthoxylum martinicensis	0.46		
Shorea spp. light red meranti	0.4	Xanthoxylum spp.	0.44		
Shorea spp. white meranti	0.48	Xylopia frutescens	0 64"		
Shorea spp. yellow meranti	0.46				
Shorea virescens	0.42				
Sloanea javanica	0.53				
Soymida febrifuga	0.97				
Spathodea campanulata	0.25				
Stemonurus luzoniensis	0.37				
Sterculia vitiensis	0.31				
Stereospermum suaveolens	0.62				
Strombosia philippinensis	0.71				
Strychnos potatorum	0.88				
Swietenia macrophylla	ghine	ent Proje	ot Ev	am Halr	`
Swintonia foxwortnyi	8 10.62	the roje	CL LA	am Helt	,
Swintonia spp.	0.61				
Sycopsis dunni	0.63				
Syzygium spp.	40,076 C	·//tutorce	COM		
Tamarindus indica	116.75	.// tutore	s.com		
Tectona grandis	0.50,0.55+				
Teijsmanniodendron	<b> 4</b> 9				
ahernianum	Wec	hate cety	tores		
Terminalia citrina	<b>V V</b> 0.7	mai. Osti	IUIUS		
Terminalia copelandii	0.46				
Terminalia foetidissima	0.55				
Terminalia microcarpa	0.53				
Terminalia nitens	0.58				
Terminalia pterocarpa	0.48				
Terminalia tomentosa	0.73,0.76, 0.77+				
Ternstroemia megacarpa	0.53				
Tetrameles nudiflora	0.3				
Tetramerista glabra	0.61				
Thespesia populnea	0.52				
Toona calantas	0.29				
Trema orientalis	0.31				
+ The wood densities spec	ified pertain to mor	re than one bibliographic sou	rce.		

+ The wood densities specified pertain to more than one bibliographic source.

* Wood density value is derived from the regression equation in Reyes *et al.* (1992).

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

### TABLE 3A.1.9-2 (CONTINUED)

BASIC WOOD DENSITIES (D) OF STEMWOOD (tonnes dry matter/m³ fresh volume) FOR TROPICAL TREE SPECIES (To be used for D in Equations 3.2.3., 3.2.5, 3.2.7, 3.2.8)

TROPICAL ASIA	D	TROPICAL AMERICA	D	TROPICAL AFRICA	D
Trichospermum richii	0.32				
Tristania spp.	0.80				
Turpinia ovalifolia	0.36				
Vateria indica	0.47*				
Vatica spp.	0.69				
Vitex spp.	0.65				
Wallaceodendron celebicum	0.55, 0.57+				
Weinmannia luzoniensis	0.49				
Wrightia tinctorea	0.75				
Xanthophyllum excelsum	0.63				
Xanthostemon verdugonianus	1.04				
Xylia xylocarpa	0.73,0.81+				
Zanthoxylum rhetsa	0.33				
Zizyphus spp.	0.76				

⁺ The wood densities specified pertain to more than one bibliographic source.

Source: Reyes, Gisel; Brown, Sandra; Chapman, Jonathan; Lugo, Ariel E. 1992. Wood densities of tropical tree species. Gen. Tech. Rep. SO-88 New Orleans, LA: U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. 15pp.

### Assignment Project Exam Help

DEFAULT VALUES OF BIOMASS EXPANSION FACTORS (BEFS)

(BEF ₂ to be used in connection with growing stock biomass data in Equation 3.2.3; and BEF ₁ to be used in connection with increment data in Equation 3.2.5)

	and BBT 1 to be aged in competition with increment data in Equation 5.2.6)								
Climatic zone	Forest type	Sinimun dbh (cm)	to be used in connection to growing stock biomass data (Equation 3.2.3)	BEF ₁ (overbark) to be used in connection to increment data (Equation 3.2.5)					
Boreal	Conifers	0-8.0	1.35 (1.15-3.8)	1.15 (1-1.3)					
Bolcai	Broallan 👝	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	cstutores	1.1 (1-1.3)					
	Conifers: Spruce-fir	0-12.5	1.3 (1.15-4.2)	1.15 (1-1.3)					
Temperate	Pines	0-12.5	1.3 (1.15-3.4)	1.05 (1-1.2)					
	Broadleaf	0-12.5	1.4 (1.15-3.2)	1.2 (1.1-1.3)					
Tranical	Pines	10.0	1.3 (1.2-4.0)	1.2 (1.1-1.3)					
Tropical	Broadleaf	10.0	3.4 (2.0-9.0)	1.5 (1.3-1.7)					

Note: BEF₂s given here represent averages for average growing stock or age, the upper limit of the range represents young forests or forests with low growing stock; lower limits of the range approximate mature forests or those with high growing stock. The values apply to growing stock biomass (dry weight) including bark and for given minimum diameter at breast height; Minimum top diameters and treatment of branches is unspecified. Result is above-ground tree biomass.

Sources: Isaev et al., 1993; Brown, 1997; Brown and Schroeder, 1999; Schoene, 1999; ECE/FAO TBFRA, 2000; Lowe et al., 2000; please also refer to FRA Working Paper 68 and 69 for average values for developing countries (http://www.fao.org/forestry/index.jsp)

Table 3A.1.11 $ \begin{tabular}{ll} \textbf{DEFAULT VALUES FOR FRACTION OUT OF TOTAL HARVEST LEFT TO DECAY IN THE FOREST, $f_{BL}$ } \\ (To be used only for $f_{BL}$ in Equation 3.2.7) \\ \end{tabular} $							
Region f _{BL}							
Boreal intensively managed	0.07						
Temperate intensively managed	0.1						
Temperate semi natural forests	0.15						
Tropical plantation	0.25						
Tropical selective logging in primary forests	0.4						

^{*} Wood density value is derived from the regression equation in Reyes et al. (1992).

## $TABLE\ 3A.1.12$ Combustion factor values (proportion of prefire biomass consumed) for fires in a range of vegetation types.

(Values in column 'mean' are to be used for (1- $f_{BL}$ ) in Equation 3.2.9 and for  $\rho_{burned on site}$  in Equation 3.3.10)

( values	I column mean are to be used	I I I I I I I I I I I I I I I I I I I	Lequation 5.		burned on site III Eq		1
Vegetation Type	Sub-category	Mean	SD	No. m ¹	Range	No. r ²	References
Primary Tropical	Primary tropical forest	0.32	0.12	14	0.20 - 0.62	17	7, 8, 15, 56, 66, 3, 16, 53, 17, 45,
Forest (slash and	Primary open tropical forest	0.45	0.09	3	0.36 - 0.54	3	21
burn)	Primary tropical moist forest	0.50	0.03	2	0.39 - 0.54	2	37, 73
	Primary tropical dry forest		-	0	0.78 - 0.95	1	66
All primary tropical	forests	0.36	0.13	19	0.19 - 0.95	23	
0 1 1	Young secondary tropical forest (3-5 yrs)	0.46	-	1	0.43 - 0.52	1	61
Secondary tropical forest (slash and burn)	Intermediate secondary tropical forest (6-10 yrs)	0.67	0.21	2	0.46 - 0.90	2	61, 35
,	Advanced secondary tropical forest (14-17 yrs)	0.50	0.10	2	0.36 – 0.79	2	61, 73
All secondary tropica	l forests	0.55	0.06	8	0.36 - 0.90	9	56, 66, 34, 30
All Tertiary tropical	forest	0.59	-	1	0.47 - 0.88	2	66, 30
	Wildfire (general)	0.40	0.06	2	0.36 - 0.45	2	33
	Crown fire	0.43	021	3	0.18 - 0.76	6	66, 41, 64, 63
Boreal Forest	surface fire	0.15	0.08	3	0.05 - 0.73	3	64, 63
	Post logging slash burn	0.33	0.13	4	0.20 - 0.58	4	49, 40, 18
<b>\</b> \ \	Land clearing fire	D.59	10-04	Τ,	_ 0.50=0.70 T	Tla	67
All Boreal Forest	signment	0.54	<del>J Ç.C I</del>	15	6.05-0.76	1,0	45, 47
	Wildfire	-	-	0	-	0	
	Prescribed fire – (surface)	0.61	0.11	6	0.50 - 0.77*	6	72, 54, 60, 9
Eucalyptus forests	Pos legging slash ourn	16.81	C ₁ S ₄ . (	con	0.49 - 0.82	5	25, 58, 46
	Felled and burned (land- clearing fire)	0.49	-	1	-	1	62
All Eucalyptus Forest		0.63	0.13	12	0.49 - 0.82	12	
Other temperate	Post log ing slash burn	0.62	tolt	)TC	0.48 – 0.84	7	55, 19, 27, 14
Other temperate forests	Felled and burned (land- clearing fire)	0.51	-	1	0.16 - 0.58	3	53, 24, 71
All "other" temperate	e forests	0.45	0.16	19	0.16 - 0.84	17	53, 56
	Shrubland (general)	0.95	-	1	-	1	44
Shrublands	Calluna heath	0.71	0.30	4	0.27 - 0.98	4	26, 56, 39
	Fynbos	0.61	0.16	2	0.50 - 0.87	2	70, 44
All Shrublands		0.72	0.25	7	0.27 - 0.98	7	
Savanna Woodlands	Savanna woodland [@]	0.22	-	1	0.01 - 0.47	1	28
(early dry season	Savanna parkland	0.73	-	1	0.44 - 0.87	1	57
burns)*	Other savanna woodlands	0.37	0.19	4	0.14 - 0.63	4	22, 29
All savanna woodland	ds (early dry season burns)	0.40	0.22	6	0.01 - 0.87	6	
	Savanna woodland @	0.72	-	1	0.71 - 0.88	2	66, 57
Savanna Woodlands (mid/late dry season	Savanna parkland	0.82	0.07	6	0.49 - 0.96	6	57, 6, 51
burns)*	Tropical savanna#	0.73	0.04	3	0.63 - 0.94	5	52, 73, 66, 12
	Other savanna woodlands	0.68	0.19	7	0.38 - 0.96	7	22, 29, 44, 31, 57
All savanna woodland	ds (mid/late dry season burns)*	0.74	0.14	17	0.29 - 0.96	20	
lar a i	6.1 (2.6.4)				1		1

 $^{^{1}}$  No. m = the number of observations for the mean

 $^{^{2}}$  No. r = the number of observations for the range

^{*} Surface layer combustion only, # campo cerrado, cerrado sensu stricto, \$ campo sujo, campo limpo, dambo, @ miombo

derived from slashed tropical forest (includes unburned woody material)

### TABLE 3A.1.12 (CONTINUED) COMBUSTION FACTOR VALUES (PROPORTION OF PREFIRE BIOMASS CONSUMED) FOR FIRES IN A RANGE OF VEGETATION TYPES.

(Values in column 'mean' are to be used for (1- $f_{BL}$ ) in Equation 3.2.9 and for  $\rho_{\text{burned on site}}$  in Equation 3.3.10)

Vegetation Type	Sub-category	Mean	SD	No.m1	Range	No.r ²	References
Savanna Grasslands / Pastures (early dry	Tropical/sub-tropical grassland [§]	0.74	-	1	0.44 - 0.98	1	28
season burns)*	Grassland	-	-	0	0.18 - 0.78	1	48
All savanna grassland	s (early dry season burns)*	0.74	-	1	0.18 - 0.98	2	
	Tropical/sub-tropical grassland [§]	0.92	0.11	7	0.71 - 1.00	8	44, 73, 66, 12, 57
Savanna Grasslands / Pastures (mid/late	Tropical pasture~	0.35	0.21	6	0.19 - 0.81	7	4, 23, 38, 66
dry season burns)*	Savanna	0.86	0.12	16	0.44 – 1.00	23	53, 5, 56, 42, 50, 6, 45, 13, 44, 65, 66
All savanna grasslands (mid/late dry season burns)*		0.77	0.26	29	0.19 – 1.00	38	
Other Vegetation	Peatland	0.50	-	1	0.50 - 0.68	2	20, 44
Types	Tropical Wetlands	0.70	-	1	-	1	44

¹ No. m = the number of observations for the mean

As	be used in Equation 3.2.9. for the	VALUES FO	3A413 RFIRES IN equation: 'B	A R. NGI	XILLITIA )', i.e., an absolu	N Les ite amoun	lp
Vegetation Type	Sub-category	Mean	SE	No. m ¹	Range	No. r ²	
	Printay tropica Stest // t	ıtor	C ² S ⁸ . (	con	10-228	9	7, 15, 66, 3, 16, 17, 45
Primary Tropical Forest (slash and	Primary open tropical forest	163.6	52.1	3	109.9 - 214	3	21,
burn)	Primary tropical moist forest	160.4	11.8	2	115.7 – 216.6	2	37, 73
	Primary tropical dry forest		tiita	10	57 – 70	1	66
All primary tropical	forests	119.6	50.7	11	10 – 228	15	
	Young secondary tropical forest (3-5 yrs)	8.1	-	1	7.2 – 9.4	1	61
Secondary tropical forest (slash and burn)	Intermediate secondary tropical forest (6-10 yrs)	41.1	27.4	2	18.8 – 66	2	61, 35
· • • • • • • • • • • • • • • • • • • •	Advanced secondary tropical forest (14-17 yrs)	46.4	8.0	2	29.1 – 63.2	2	61,73
All secondary tropica	al forests	42.2	23.6	5	7.2 - 93.6	5	66, 30
All Tertiary tropical	forest	54.1	-	1	4.5 – 53	2	66, 30
	Wildfire (general)	52.8	48.4	6	18 – 149	6	2, 33, 66
	Crown fire	25.1	7.9	10	15 – 43	10	11, 43, 66, 41, 63, 64
Boreal Forest	Surface fire	21.6	25.1	12	1.0 – 148	13	43, 69, 66, 63, 64, 1
	Post logging slash burn	69.6	44.8	7	7 – 202	9	49, 40, 66, 18
	Land clearing fire	87.5	35.0	3	48 – 136	3	10, 67
All Boreal Forest		41.0	36.5	44	1.0 – 202	49	43, 45, 69, 47
	Wildfire	53.0	53.6	8	20 – 179	8	66, 32, 9
	Prescribed fire – (surface)	16.0	13.7	8	4.2 – 17	8	66, 72, 54, 60, 9
Eucalypt forests	Post logging slash burn	168.4	168.8	5	34 – 453	5	25, 58, 46
	Felled and burned (land- clearing fire)	132.6	-	1	50 – 133	2	62, 9
All Eucalypt Forests		69.4	100.8	22	4.2 – 453	23	

² No. r = the number of observations for the range

* Surface layer combustion only, # campo cerrado, cerrado sensu stricto, \$ campo sujo, campo limpo, dambo, @ miombo derived from slashed tropical forest (includes unburned woody material)

TABLE 3A.1.13 (CONTINUED)  BIOMASS CONSUMPTION ( $t/ha$ ) VALUES FOR FIRES IN A RANGE OF VEGETATION TYPES  (To be used in Equation 3.2.9. for the part of the equation: 'B _W • (1- f _{BL} )', i.e., an absolute amount)							
Vegetation Type	Sub-category	Mean	SE	No. m ¹	Range	No. r ²	References
	Wildfire	19.8	6.3	4	11 - 25	4	32, 66
Other temperate forests	Post logging slash burn	77.5	65.0	7	15 – 220	8	55, 19, 14, 27, 66
	Felled and burned (land- clearing fire)	48.4	62.7	2	3 – 130	3	53, 24, 71
All "other" temperate	e forests	50.4	53.7	15	3 – 220	18	43, 56
	Shrubland (general)	26.7	4.2	3	22 – 30	3	43
Charable and a	Calluna heath	11.5	4.3	3	6.5 - 21	3	26, 39
Shrublands	Sagebrush	5.7	3.8	3	1.1 – 18	4	66
	Fynbos	12.9	0.1	2	5.9 – 23	2	70, 66
All Shrublands		14.3	9.0	11	1.1 – 30	12	
Savanna Woodlands	Savanna woodland@	2.5	-	1	0.1 – 5.3	1	28
(early dry season burns)*	Savanna parkland	2.7	-	1	1.4 – 3.9	1	57
All savanna woodland	ls (early dry season burns)	2.6	0.1	2	0.07 – 3.9	2	
	Savanna woodland @	3.3	-	1	3.2 - 3.3	1	57
Savanna Woodlands	Savanna parkland	4.0	1.1	6	1 – 10.6	6	57, 6, 51
(mid/late dry season burns)*	Tropical savanna [#]	6	1.8	2	3.7 – 8.4	2	52, 73
Ac	Other savanna woodlands	D ^{5,3}	1.7	È,	3.7 – 7.6	<b>I</b> ³	59, 57, 31
All savanna voddlalo	s (miggat ary season burnt)	T46U		ر نے		TIE.	lμ
Savanna Grasslands / Pastures (early dry	Tropical/sub-tropical grassland [§]	2.1	-	1	1.4 – 3.1	1	28
season burns)*	Grasland //	1101		101	1.2 – 11	1	48
All savanna grassland	ls (early dry season burns)*	16/1	<b>CS.</b> (	VQI.	1.2 – 11	2	
	Tropical/sub-tropical grassland ^{\$}	5.2	1.7	6	2.5 – 7.1	6	9, 73, 12, 57
Savanna Grasslands /	Grassland Class	4,1	434	16	1.5 – 10	6	43, 9
Pastures (mid/late dry season burns)*	Tropical pasture 114	23.7	LHL		4.7 – 45	7	4, 23, 38, 66
	Savanna	7.0	2.7	6	0.5 – 18	10	42, 50, 6, 45, 13, 65
All savanna grassland burns)*	ls (mid/late dry season	10.0	10.1	24	0.5 – 45	29	
Other Vegetation	Peatland	41	1.4	2	40 – 42	2	68, 33
Types	Tundra	10	-	1	-	-	33

¹ No. m = the number of observations for the mean

### References to Tables 3A.1.12 and 3A.1.13

- $1. \quad \text{Alexander, M., } \textit{Calculating and interpreting forest fire intensities. } \textbf{CANADIAN JOURNAL OF BOTANY, 1978.} \ \textbf{60} : \textbf{p. 349-357}.$
- Amiro, B., J. Todd, and B. Wotton, Direct carbon emissions from Canadian forest fires, 1959-1999. CANADIAN JOURNAL OF FOREST RESEARCH, 2001. 31: p. 512-525.
- 3. Araújo, T., J. Carvalho, N. Higuchi, A. Brasil, and A. Mesquita, *A tropical rainforest clearing experiment by biomass burning in the state of Pará, Brazil.* ATMOSPHERIC ENVIRONMENT, 1999. **33**: p. 1991-1998.
- 4. Barbosa, R. and P. Fearnside, *Pasture burning in Amazonia: Dynamics of residual biomass and the storage and release of aboveground carbon.* JOURNAL OF GEOPHYSICAL RESEARCH, 1996. **101**(D20): p. 25847-25857.
- 5. Bilbao, B. and E. Medina, Types of grassland fires and nitrogen volatilization in tropical savannas of calabozo, in Biomass Burning and Global Change: Volume 2. Biomass burning in South America, Southeast Asia, and temperate and boreal ecosystems, and the oil fires of Kuwait, J. Levine, Editor. 1996, MIT Press: Cambridge. p. 569-574.

 $^{^{2}}$  No. r = the number of observations for the range

^{*} Surface layer combustion only, # campo cerrado, cerrado sensu stricto, \$ campo sujo, campo limpo, dambo,

[@] miombo derived from slashed tropical forest (includes unburned woody material)

- 6. Cachier, H., C. Liousse, M. Pertusiot, A. Gaudichet, F. Echalar, and J. Lacaux, *African fire Particulate emissions and atmospheric influence*, in *Biomass Burning and Global Change: Volume 1. Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa*, J. Levine, Editor. 1996, MIT Press: Cambridge. p. 428-440.
- Carvalho, J., N. Higuchi, T. Araujo, and J. Santos, Combustion completeness in a rainforest clearing experiment in Manaus, Brazil. JOURNAL OF GEOPHYSICAL RESEARCH, 1998. 103(D11): p. 13195.
- 8. Carvalho, J., F. Costa, C. Veras, et al., Biomass fire consumption and carbon release rates of rainforest-clearing experiments conducted in northern Mato Grosso, Brazil. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001. 106(D16): p. 17877-17887.
- 9. Cheyney, N., R. Raison, and P. Khana, *Release of carbon to the atmosphere in Australian vegetation fires*, in *Carbon Dioxide and Climate: Australian Research*, G. Pearman, Editor. 1980, Australian Academy of Science: Canberra. p. 153-158.
- 10. Cofer, W., J. Levine, E. Winstead, and B. Stocks, *Gaseous emissions from Canadian boreal forest fires*. ATMOSPHERIC ENVIRONMENT, 1990. **24A**(7): p. 1653-1659.
- 11. Cofer, W., E. Winstead, B. Stocks, J. Goldammer, and D. Cahoon, Crown fire emissions of CO₂, CO, H₂, CH₄, and TNMHC from a dense jack pine boreal forest fire. GEOPHYSICAL RESEARCH LETTERS, 1998. 25(21): p. 3919-3922.
- 12. De Castro, E.A. and J.B. Kauffman, Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. Journal of Tropical Ecology, 1998. 14(3): p. 263-283.
- Delmas, R., On the emission of carbon, nitrogen and sulfur in the atmosphere during bushfires in intertropical savannah zones. GEOPHYSICAL RESEARCH LETTERS, 1982. 9(7): p. 761-764.
- 14. Einfeld, W., D. Ward, and C. Hardy, Effects of fire behaviour on prescribed fire smoke characteristics: A case study, in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, J. Levine, Editor. 1991, MIT Press: Massechusetts. p. 412-419.
- Fearnside, P., N. Filho, and F. Fernandes, Rainforest burning and the global carbon budget: biomass, combustion efficiency and charcoal formation in the Brazilian Amazon. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1993. 98(D9): p. 16733-16743.
- Fearnside, P., P. Graca, N. Filho, J. Rodrigues, and J. Robinson, Tropical forest burning in Brazilian Amazonia: measurement of biomass loading, burning efficiency and charcoal formation at Altamira, Para. FOREST ECOLOGY AND MANAGEMENT, 1999. 123: p. 65-79.
- 17. Fearnside, A PCGraca and Throughest Saming of Luda on an rainforcest but hing efficiency and charge after nation in forest cleared for cattle pasture near manaus, Brazil-HOREST LCOLOGY AND MANAGEMENT, 2001. 146:5. 145:5.
- 18. Feller, M. The influence of fire severity, not fire intensity, on understory vegetation biomass in British Columbia. in 13th Fire and Forest Meteorology Conference. 1998. Lorne, Australia: IAWF.
- 19. Flinn, D., P. Hopmans, P. Farell and J. clames, National to Seven the burning of River editate logging residue. AUSTRALIAN FOREST RESEARCH, 1999 1992.
- 20. Garnett, M., P. Ineson, and A. Stevenson, *Effects of burning and grazing on carbon sequestration in a Pennine blanket bog, UK.* HOLOCENE, 2000. **10**(6): p. 729-736.
- 21. Graca, P., P. Fearnside, and C. Cori, Burning of Antazonian forest in Anguenes, Bondonia, Brazil: biomass, charcoal formation and burning efficiency. FOREST COLL GYAN AGIMENT 1990 120 1 179-51.
- 22. Griffin, G. and M. Friedel, Effects of fire on central Australian rangelands. I Fire and fuel characteristics and changes in herbage and nutrients. AUSTRALIAN JOURNAL OF ECOLOGY, 1984. 9: p. 381-393.
- Guild, L., J. Kauffman, L. Ellingson, and D. Cummings, Dynamics associated with total aboveground biomass, C, nutrient pools, and biomass burning of primary forest and pasture in Rondonia, Brazil during SCAR-B. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998. 103(D24): p. 32091-32100.
- 24. Gupta, P., V. Prasad, C. Sharma, A. Sarkar, Y. Kant, K. Badarinath, and A. Mitra, CH4 emissions from biomass burning of shifting cultivation areas of tropical deciduous forests experimental results from ground based measurements. CHEMOSPHERE GLOBAL CHANGE SCIENCE, 2001. 3: p. 133-143.
- 25. Harwood, C. and W. Jackson, Atmospheric losses of four plant nutrients during a forest fire. AUSTRALIAN FORESTRY, 1975. **38**(2): p. 92-99.
- 26. Hobbs, P. and C. Gimingham, Studies on fire in Scottish heathland communities. JOURNAL OF ECOLOGY, 1984. 72: p. 223-240.
- 27. Hobbs, P., J. Reid, J. Herring, et al., Particle and trace-gas measurements from prescribed burns of forest products in the Pacific Northwest, in Biomass Burning and Global Change: Volume 2. Biomass burning in South America, Southeast Asia, and temperate and boreal ecosystems, and the oil fires of Kuwait, J. Levine, Editor. 1996, MIT Press: Cambridge. p. 697-715.
- 28. Hoffa, E., D. Ward, W. Hao, R. Susott, and R. Wakimoto, Seasonality of carbon emissions from biomass burning in a Zambian savanna. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999. 104(D11): p. 13841-13853.
- 29. Hopkins, B., Observations on savanna burning in the Olokemeji forest reserve, Nigeria. JOURNAL OF APPLIED ECOLOGY, 1965. 2(2): p. 367-381.
- 30. Hughes, R., J. Kauffman, and D. Cummings, Fire in the Brazilian Amazon 3. Dynamics of biomass, C, and nutrient pools in regenerating forests. OECOLOGIA, 2000. 124(4): p. 574-588.
- 31. Hurst, D., W. Griffith, and G. Cook, *Trace gas emissions from biomass burning in tropical Australian savannas*. JOURNAL OF GEOPHYSICAL RESEARCH, 1994. **99**(D8): p. 16441-16456.
- 32. Jackson, W., Nutrient stocks in Tasmanian vegetation and approximate losses due to fire. Papers and proceedings of the Royal Society of Tasmania, 2000. 134: p. 1-18.

- 33. Kasischke, E., N. French, L. Bourgeau-Chavez, and N. Christensen, *Estimating release of carbon from 1990 and 1991 forest fires in Alaska*. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1995. **100**(D2): p. 2941-2951.
- 34. Kauffman, J. and C. Uhl, 8 interactions of anthropogenic activities, fire, and rain forests in the Amazon Basin, in Fire in the Tropical Biota: Ecosystem Processes and Global Changes, J. Goldammer, Editor. 1990, Springer-Verlag: Berlin. p. 117-134.
- 35. Kauffman, J., R. Sanford, D. Cummings, I. Salcedo, and E. Sampaio, *Biomass and nutrient dynamics associated with slash fires in neotropical dry forests.* ECOLOGY, 1993. **74**(1): p. 140-151.
- 36. Kauffman, J., D. Cummings, and D. Ward, *Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado.* JOURNAL OF ECOLOGY, 1994. **82**: p. 519-531.
- 37. Kauffman, J., D. Cummings, D. Ward, and R. Babbitt, Fire in the Brazilian Amazon: 1. Biomass, nutrient pools, and losses in slashed primary forests. OECOLOGIA, 1995. 104: p. 397-408.
- 38. Kauffman, J., D. Cummings, and D. Ward, Fire in the Brazilian Amazon: 2. Biomass, nutrient pools and losses in cattle pastures. OECOLOGIA, 1998. 113: p. 415-427.
- 39. Kayll, A., Some characteristics of heath fires in north-east Scotland. JOURNAL OF APPLIED ECOLOGY, 1966. 3(1): p. 29-40.
- 40. Kiil, A., Fuel consumption by a prescribed burn in spruce-fir logging slash in Alberta. THE FORESTRY CHRONICLE, 1969: p. 100-102.
- 41. Kiil, A., Fire spread in a black spruce stand. CANADIAN FORESTRY SERVICE BI-MONTHLY RESEARCH NOTES, 1975. 31(1): p. 2-3.
- 42. Lacaux, J., H. Cachier, and R. Delmas, *Biomass burning in Africa: an overview of its impact on atmospheric chemistry*, in *Fire in the Environment: The Ecological, Atmospheric, and Climatic Importance of Vegetation Fires*, P. Crutzen and J. Goldammer, Editors. 1993, John Wiley & Sons: Chichester. p. 159-191.
- Lavoue, D., C. Liousse, H. Cachier, B. Stocks, and J. Goldammer, Modeling of carbonaceous particles emitted by boreal and temperate wildfires at northern latitudes. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000. 105(D22): p. 26871-26890
- 44. Levine, J., Global biomass burning: a case study of the gaseous and particulate emissions released to the atmosphere during the 1997 fires in Kalimantan and Sumatra, Indonesia, in Biomass Burning and its Inter-relationships with the Climate System, J. Innes, M. Beniston, and M. Verstraete, Editors. 2000, Kluwer Academic Publishers: Dordrecht, p. 15-31.
- 45. Levine, J. and W. Cort, Borea firest the euls ons and he chemistry of the atmosphere of Jire, Climate Change and Carbon Cycling in the Boreal Forest, E. Kasischke and B. Stocks, Editors. 2000, Springer-Verlag: New York. p. 31-48.
- 46. Marsdon-Smedley, J. and A. Slijepcevic, Fuel characteristics and low intensity burning in Eucalyptus obliqua wet forest at the Warra LTER site. TASFORESTS, 2001. 13(2): p. 261-279.
- 47. Mazurek, M., W. Cofer, in The in Sarbonacous art sols from Poscible by nig of a boreal forest ecosystem, in Global Biomass Burning: Atmospheric, Cimatic, and Biospheric Implications, J. Levine, Editor. 1991, MIT Press: Massechusetts. p. 258-263.
- 48. McNaughton, S., N. Stronach, and N. Georgiadis, *Combustion in natural fires and global emissions budgets*. ECOLOGICAL APPLICATIONS, 1998. 8(2): p. 464-468,
- 49. McRae, D. and B. Stocks. Vage ccite con edited turning in Sut rol it Nint Cine Suce on Fire and Forest Metearology. 1987. San Diego, California: American Meterological Society.
- 50. Moula, M., J. Brustet, H. Eva, J. Lacaux, J. Gregoire, and J. Fontan, Contribution of the Spread-Fire Model in the study of savanna fires, in Biomass Burning and Global Change: Volume 1. Remote Sensing, Modeling and Inventory Development, and Biomass Burning in Africa, J. Levine, Editor. 1996, MIT Press: Cambridge. p. 270-277.
- 51. Neil, R., N. Stronach, and S. McNaughton, *Grassland fire dynamics in the Serengeti ecosystem, and a potential method of retrospectively estimating fire energy.* JOURNAL OF APPLIED ECOLOGY, 1989. **26**: p. 1025-1033.
- 52. Pivello, V. and L. Coutinho, *Transfer of macro-nutrients to the atmosphere during experimental burnings in an open cerrado (Brazilian savanna).* JOURNAL OF TROPICAL ECOLOGY, 1992. **8**: p. 487-497.
- 53. Prasad, V., Y. Kant, P. Gupta, C. Sharma, A. Mitra, and K. Badarinath, *Biomass and combustion characteristics of secondary mixed deciduous forests in Eastern Ghats of India*. ATMOSPHERIC ENVIRONMENT, 2001. **35**(18): p. 3085-3095.
- 54. Raison, R., P. Khana, and P. Woods, *Transfer of elements to the atmosphere during low intensity prescribed fires in three Australian subalpine eucalypt forests.* CANADIAN JOURNAL OF FOREST RESEARCH, 1985. **15**: p. 657-664.
- 55. Robertson, K., Loss of organic matter and carbon during slash burns in New Zealand exotic forests. NEW ZEALAND JOURNAL OF FORESTRY SCIENCE, 1998. 28(2): p. 221-241.
- 56. Robinson, J., On uncertainty in the computation of global emissions from biomass burning. CLIMATIC CHANGE, 1989. 14: p. 243-262.
- 57. Shea, R., B. Shea, J. Kauffman, D. Ward, C. Haskins, and M. Scholes, *Fuel biomass and combustion factors associated with fires in savanna ecosystems of South Africa and Zambia*. JOURNAL OF GEOPHYSICAL RESEARCH, 1996. **101**(D19): p. 23551-23568.
- 58. Slijepcevic, A., Loss of carbon during controlled regeneration burns in Eucalyptus obliqua forest. TASFORESTS, 2001. 13(2): p. 281-289.
- 59. Smith, D. and T. James, Characteristics of prescribed burns andresultant short-term environmental changes in Populus tremuloides woodland in southern Ontario. CANADIAN JOURNAL OF BOTANY, 1978. 56: p. 1782-1791.
- 60. Soares, R. and G. Ribeiro. Fire behaviour and tree stumps sprouting in Eucalyptus prescribed burnings in southern Brazil. in III International Conference on Forest Fire Research / 14th Conference on Fire and Forest Meteorology. 1998. Luso.

- 61. Sorrensen, C., Linking smallholder land use and fire activity: examining biomass burning in the Brazilian Lower Amazon. FOREST ECOLOGY AND MANAGEMENT, 2000. 128(1-2): p. 11-25.
- 62. Stewart, H. and D. Flinn, Nutrient losses from broadcast burning of Eucalyptus debris in north-east Victoria. AUSTRALIAN FOREST RESEARCH, 1985. 15: p. 321-332.
- 63. Stocks, B., Fire behaviour in immature jack pine. CANADIAN JOURNAL OF FOREST RESEARCH, 1987. 17: p. 80-86.
- 64. Stocks, B., Fire behaviour in mature jack pine. CANADIAN JOURNAL OF FOREST RESEARCH, 1989. 19: p. 783-790.
- Stocks, B., B. van Wilgen, W. Trollope, D. McRae, J. Mason, F. Weirich, and A. Potgieter, Fuels and fire behaviour dynamics on large-scale savanna fires in Kruger National Park, South Africa. JOURNAL OF GEOPHYSICAL RESEARCH, 1996. 101(D19): p. 23541-23550.
- 66. Stocks, B. and J. Kauffman, *Biomass consumption and behaviour of wildland fires in boreal, temperate, and tropical ecosystems:* parameters necessary to interpret historic fire regimes and future fire scenarios, in Sediment Records of Biomass Burning and Global Change, J. Clark, et al., Editors. 1997, Springer-Verlag: Berlin. p. 169-188.
- 67. Susott, R., D. Ward, R. Babbitt, and D. Latham, *The measurement of trace emissions and combustion characteristics for a mass fire*, in *Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications*, J. Levine, Editor. 1991, MIT Press: Massechusetts. p. 245-257.
- 68. Turetsky, M. and R. Wieder, A direct approach to quantifying organic matter lost as a result of peatland wildfire. CANADIAN JOURNAL OF FOREST RESEARCH, 2001. 31(2): p. 363-366.
- Van Wagner, C., Duff consumption by fire in eastern pine stands. CANADIAN JOURNAL OF FOREST RESEARCH, 1972. 2: p. 34-39
- 70. van Wilgen, B., D. Le Maitre, and F. Kruger, Fire behaviour in South African fynbos (macchia) vegetation and predictions from Rothermel's fire model. JOURNAL OF APPLIED ECOLOGY, 1985. 22: p. 207-216.
- 71. Vose, J. and W. Swank, Site preparation burning to improve southern Appalachian pine-hardwood stands: aboveground biomass, forest floor mass, and nitrogen and carbon pools. CANADIAN JOURNAL OF FOREST RESEARCH, 1993. 23: p. 2255-2262.
- 72. Walker, J., Fuel dynamics in Australian vegetation, in Fire and the Australian Biota, A. Gill, R. Groves, and I. Noble, Editors. 1981, Australian Academy of Science: Canberra. p. 101-127.
- 73. Ward, D., A Susott, Kauffman, et al., Smoke and file haracteristics for Cerrodo and deforestation luris in Blazil: BASE-E Experiment. ODRSAL OF GEORGE (HDPHYS CAL RISEARCH, 9/2 170113) p. 1601-14601

### https://tutorcs.com

COMBUSTION EFFICIENCY (PROPORTION OF AVAILABLE FUEL ACTUALLY BURNT) RELEVANT TO LAND-CLEARING BURNS, AND BURNS IN HEAVY LOGGING SLASH FOR A RANGE OF VEGETATION TYPES AND BURNING CONDITIONS

(To be used in sections 'torest lands converted to cropland', 'converted to grassland', or 'converted to settlements or other lands')

Wechat. CStleut Ore End Prying time (Months)									
Forest Types	Broa	dcast		drow		w+Stoking			
	<6	>6	<6	>6	<6	>6			
Tropical moist									
- primary ^a	0.15-0.3	~0.30							
- secondary ^b		0.40							
Tropical dry									
- Mixed species ^c		>0.9							
- Acacia ^d			-	0.8	-	~0.95			
Temperate Eucalyptus ^e	0.3	0.5-0.6							
Boreal forest ^f	0	25							

Note: The combustion efficiency or fraction of biomass combusted, is a critical number in the calculation of emissions, that is highly variable depending on fuel arrangement (e.g. broadcast v heaped), vegetation type affecting the (size of fuel components and flammability) and burning conditions (especially fuel moisture).

Sources: ^aFearnside (1990), Wei Min Hao *et. al* (1990); ^bWei Min Hao *et. al* (1990); ^cKauffmann and Uhl; *et. al* (1990); ^dWilliams *et. al* (1970), Cheney (pers. comm. 2002); ^eMcArthur (1969), Harwood & Jackson (1975), Slijepcevic (2001), Stewart & Flinn (1985); and ^fFrench *et. al* (2000)

### TABLE 3A.1.15 Emission ratios for open burning of cleared forests

(To be applied to Equation 3.2.19)

(To be applied to Education 5.2.15)							
Compound	Emission Ratios						
CH ₄	0.012 (0.009-0.015) ^a						
СО	0.06 (0.04-0.08) ^b						
$N_2O$	0.007 (0.005-0.009) ^c						
$NO_x$	0.121 (0.094-0.148) ^c						

Source: ^aDelmas, 1993, ^bLacaux *et al.*, 1993, and Crutzen and Andreae, 1990. Note: Ratios for carbon compounds, i.e. CH₄ and CO, are mass of carbon compound released (in units of C) relative to mass of total carbon released from burning. Those for the nitrogen compounds are expressed as the ratios of emission (in units of N) relative to total nitrogen released from the fuel.

## TABLE 3A.1.16 EMISSION FACTORS (G/KG DRY MATTER COMBUSTED) APPLICABLE TO FUELS COMBUSTED IN VARIOUS TYPES OF VEGETATION FIRES

(To be used in connection with Equation 3.2.20)

	CO ₂	CO	CH ₄	NO _x	N ₂ O*	NMHC ²	Source
Moist/infertil broad leaved savana	gnme	ent I	Pro	eet	Exa	m F	<b>1995)</b>
Arid fertile fine- leaved savanna	1 524	73	2	5	0.11	ı	Scholes (1995)
Moist- infertile grassland	https	/ <i>/</i> 9tu	tor	$CS^4$ .C	Off	1	Scholes (1995)
Arid-fertile grassland	1 540	97	3	7	0.11	ı	Scholes (1995)
Wetland	1 554	58	2	4	0.11	-	Scholes (1995)
All vegetation types ¹	1 107 -1 503	167-120	4-7	0.5.0.8	0.10	-	IPCC (1994)
Forest fires	V 1 594	Пφ.	<i>7</i> ∕10	9.6.0.8	Ø.H	8-12	Kaufman et al. (1992)
Savanna fires	1 612	152	10.8	-	0.11	-	Ward et al. (1992)
Forest fires	1 580	130	9	0.7	0.11	10	Delmas et al. (1995)
Savanna fires	1 640	65	2.4	3.1	0.15	3.1	Delmas et al. (1995)

¹ Assuming 41-45% C content, 85-100% combustion completeness.

² NMHC non methane hydrocarbons.

^{*} Calculated from data of Crutzen and Andreae (1990) assuming an N/C ratio of 0.01, except for savanna fires.

### Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs