CÁLCULO DE INVERSOS MULTIPLICATIVOS

Com a construção:

		a_0	a_1	a_2	 a_{n-1}	a_n	$a_{n+1} = r_{n-1}$
D	r	r_0	r_1	r_2	 r_{n-1}	$r_n = 1$	$r_{n+1}=0$

Analisemos n par e n ímpar separadamente.

Para n par, o inverso multiplicativo é da forma (para n = 6):

$$r^{-1} = a_0 a_1 a_2 a_3 a_4 a_5 a_6 + a_0 a_1 a_2 a_3 a_4 + \dots + a_0 a_1 a_2 + \dots + a_0 + a_2 + a_4 + a_6$$

Vamos dividir tal expressão em agrupamentos:

Agrupamento 1: $a_0a_1a_2a_3a_4a_5a_6$

Agrupamento 2: $a_0a_1a_2a_3a_4$

Agrupamento 3: $a_0a_1a_2$

Agrupamento 4: $a_0 + a_2 + a_4 + a_6$

Vamos especificar alguns nomes para facilitar a exposição do método; podemos, depois, altera-los: cada agrupamento possui termos e cada termo possui elementos.

Dado um n, seja $N_{ag}(n)$ o número de agrupamentos, onde $N_{ag}(n) = \frac{n+2}{2}$.

Dado um m, que indica um agrupamento, seja $E_t(m)$ o número de elementos dos termos de cada agrupamento, onde $E_t(m,n) = n - 2m + 3$.

O número de termos por agrupamento será apresentado num momento posterior do texto.

Vamos representar cada agrupamento por $g_1, g_2, ..., g_{N_{ag}(n)}$. Os agrupamentos podem ser de três tipos:

$$g_1 = \prod_{i=0}^n a_i$$

$$g_{N_{ag}(n)} = \sum_{i=0}^{n/2} a_{2i}$$

Antes de definirmos o terceiro tipo de agrupamento, façamos algumas considerações:

Definamos $N_{ag}(n)-2$ funções bijetivas $f_2,f_3,\ldots,f_m,\ldots,f_{N_{ag}(n)-2},f_{N_{ag}(n)-1}$, onde f_m tem domínio $\{1, 2, 3, ..., S_m\}$ (onde S_m é o número de termos por agrupamento) e seu contradomínio possui todas as permutações de α para o agrupamento m, onde $2 \le m \le N_{aq}(n) - 1$: é: para $\{a_{\alpha_{1}^{(1)}}^{(2)}a_{\alpha_{2}^{(1)}}^{(2)}\dots a_{\alpha_{E_{t}(2,n)}}^{(2)},a_{\alpha_{1}^{(2)}}^{(2)}a_{\alpha_{2}^{(2)}}^{(2)}\dots a_{\alpha_{E_{t}(2,n)}}^{(2)},\dots,a_{\alpha_{1}^{(S_{2})}}^{(2)}a_{\alpha_{1}^{(S_{2})}}^{(2)}\dots a_{\alpha_{1}^{(S_{2})}}^{(2)}\}. \quad \text{ Para } \quad f_{m},$ contradomínio é:

$$\{a_{\alpha_{1}^{(1)}}^{(m)}a_{\alpha_{2}^{(1)}}^{(m)}\dots a_{\alpha_{E_{t}(m,n)}^{(n)}}^{(m)},a_{\alpha_{1}^{(2)}}^{(m)}a_{\alpha_{2}^{(2)}}^{(m)}\dots a_{\alpha_{E_{t}(m,n)}^{(n)}}^{(m)},\dots,a_{\alpha_{1}^{(S_{m})}}^{(m)}a_{\alpha_{1}^{(S_{m})}}^{(m)}\dots a_{\alpha_{1}^{(S_{m})}}^{(m)}\}.$$

O terceiro termo é, portanto:

$$g_m = \sum_{x=1}^{S_m} f_m(x)$$

O número de termos para cada agrupamento é igual a algum termo de alguma das somas sucessivas ímpares dos naturais. Utilizando a ideia do triângulo gama, seja S_m o número de termos por agrupamento e seja $\gamma = E_t(m, n)$, então:

$$S_m = \frac{1}{\gamma!} \sum_{i=1}^{\gamma} a_i m^i$$

O inverso multiplicativo para n par fica:

$$r^{-1} = D - \sum_{m=1}^{N_{ag}(n)} g_m = D - \sum_{m=1}^{N_{ag}(n)} \sum_{x=1}^{S_m} f_m(x)$$

Para n ímpar, o inverso multiplicativo é da forma (para n = 5):

$$r^{-1} = a_0 a_1 a_2 a_3 a_4 a_5 + a_0 a_1 a_2 a_3 + \dots + a_0 a_1 + \dots + 1$$

Vamos dividir tal expressão em agrupamentos:

Agrupamento 1: $a_0a_1a_2a_3a_4a_5$

Agrupamento 2: $a_0a_1a_2a_3$

Agrupamento 3: a_0a_1

Agrupamento 4: 1

Dado um n, seja $N_{ag}(n)$ o número de agrupamentos, onde $N_{ag}(n) = \frac{n+3}{2}$.

Dado um m, que indica um agrupamento, seja $E_t(m,n)$ o número de elementos dos termos de cada agrupamento, onde $E_t(m,n) = n - 2m + 3$.

O número de termos por agrupamento será apresentado num momento posterior do texto.

Vamos representar cada agrupamento por g_1 , g_2 , ..., $g_{N_{ag}(n)}$. Os agrupamentos podem ser de três tipos:

$$g_1 = \prod_{i=0}^n a_i$$

$$g_{N_{ag}(n)} = 1$$

Antes de definirmos o terceiro tipo de agrupamento, façamos algumas considerações:

Definamos $N_{ag}(n)-2$ funções bijetivas $f_2,f_3,\ldots,f_m,\ldots,f_{N_{ag}(n)-2},f_{N_{ag}(n)-1}$, onde f_m tem domínio $\{1,2,3,\ldots,S_m\}$ (onde S_m é o número de termos por agrupamento) e seu contradomínio possui todas as permutações de a para o agrupamento m, onde $2 \le m \le N_{ag}(n)-1$: para f_2 , o contradomínio é: $\{a_{\alpha_1^{(1)}}^{(2)}a_{\alpha_2^{(1)}}^{(2)}\ldots a_{\alpha_{E_t(2,n)}}^{(2)},a_{\alpha_2^{(2)}}^{(2)}\ldots a_{\alpha_{E_t(2,n)}}^{(2)},\ldots,a_{\alpha_1^{(S_2)}}^{(2)}a_{\alpha_1^{(S_2)}}^{(2)}\ldots a_{\alpha_1^{(S_2)}}^{(2)}\}$. Para f_m , o contradomínio é:

$$\{a_{\alpha_{1}^{(1)}}^{(m)}a_{\alpha_{2}^{(1)}}^{(m)}\dots a_{\alpha_{E_{t}(m,n)}^{(n)}}^{(m)}, a_{\alpha_{1}^{(2)}}^{(m)}a_{\alpha_{2}^{(2)}}^{(m)}\dots a_{\alpha_{E_{t}(m,n)}^{(n)}}^{(m)}, \dots, a_{\alpha_{1}^{(S_{m})}}^{(m)}a_{\alpha_{1}^{(S_{m})}}^{(m)}\dots a_{\alpha_{1}^{(S_{m})}}^{(m)}\}.$$

O terceiro termo é, portanto:

$$g_m = \sum_{x=1}^{S_m} f_m(x)$$

Para o terceiro tipo, notemos que o número de termos para cada agrupamento é igual a algum termo de alguma das somas sucessivas pares dos naturais. Utilizando a ideia do triângulo gama, seja S_j o número de termos por agrupamento e seja $\gamma = E_t(m,n)$, então:

$$S_m = \frac{1}{\gamma!} \sum_{i=1}^{\gamma} a_i m^i$$

O inverso multiplicativo para *n* ímpar fica:

$$r^{-1} = \sum_{m=1}^{N_{ag}(n)} g_m = \sum_{m=1}^{N_{ag}(n)} \sum_{x=1}^{S_m} f_m(x)$$

Exemplo. Exemplifiquemos com dois casos já conhecidos: a_6 e a_5 .

Para a_6 :

O número de agrupamentos é $N_{ag}(6) = \frac{6+2}{2} = 4$.

O número de elementos dos termos do agrupamento 1 é:

$$E_t(1,6) = 6 - 2x1 + 3 = 7$$

O número de elementos dos termos do agrupamento 2 é:

$$E_t(2,6) = 6 - 2x^2 + 3 = 5$$

O número de elementos dos termos do agrupamento 3 é:

$$E_t(3,6) = 6 - 2x3 + 3 = 3$$

O número de elementos dos termos do agrupamento 4 é:

$$E_t(4,6) = 6 - 2x4 + 3 = 1$$

Definindo g_1 e $g_{N_{aq}(6)} = g_4$, vem:

$$g_1 = \prod_{i=0}^6 a_i = a_0 a_1 a_2 a_3 a_4 a_5 a_6$$

$$g_4 = \sum_{i=0}^{3} a_{2i} = a_0 + a_2 + a_4 + a_6$$

Vamos definir 2 funções: f_2 , f_3 .

O domínio de f_2 é $\{1, 2, 3, ..., S_2\}$.

O contradomínio de f_2 é { $a_0a_1a_2a_3a_4$; $a_0a_1a_2a_3a_6$;

 $a_0a_1a_2a_3a_6;\ a_0a_1a_2a_5a_6;\ a_0a_3a_4a_5a_6;\ a_2a_3a_4a_5a_6\}$

O domínio de f_3 é {1, 2, 3, ..., S_3 }.

O contradomínio de f_3 é { $a_0a_1a_2$; $a_0a_1a_4$;

 $a_0a_3a_4;\ a_0a_1a_6;\ a_0a_3a_6;\ a_0a_5a_6;\ a_2a_3a_4;\ a_2a_3a_6;\ a_2a_5a_6;\ a_4a_5a_6\}$

Definindo y o segundo agrupamento:

$$\gamma = E_t(2,6) = 6 - 2x^2 + 3 = 5$$

Definindo S_m o segundo agrupamento:

$$S_2 = \frac{1}{5!} \sum_{i=1}^{5} a_i (2)^i = \frac{1}{120} [24 \cdot 2 + 50 \cdot 2^2 + 35 \cdot 2^3 + 10 \cdot 2^4 + 1 \cdot 2^5] = 6$$

Ou seja, há 6 termos no segundo agrupamento, que fica:

$$g_2 = \sum_{x=1}^{6} f_2(x) = a_0 a_1 a_2 a_3 a_4 + a_0 a_1 a_2 a_3 a_6 +$$

$$+a_0a_1a_2a_3a_6 + a_0a_1a_2a_5a_6 + a_0a_3a_4a_5a_6 + a_2a_3a_4a_5a_6$$

Definindo γ para o terceiro agrupamento:

$$\gamma = E_t(3, 6) = 6 - 2x3 + 3 = 3$$

Definindo S_m para o terceiro agrupamento:

$$S_3 = \frac{1}{3!} \sum_{i=1}^{3} a_i (3)^i = \frac{1}{6} [2 \cdot 3 + 3 \cdot 3^2 + 1 \cdot 3^3] = 10$$

Ou seja, há 10 termos no terceiro agrupamento, que fica:

$$g_{4-2} = g_2 = \sum_{x=1}^{6} f_2(x) = a_0 a_1 a_2 + a_0 a_1 a_4 +$$

$$+a_0a_3a_4 + a_0a_1a_6 + a_0a_3a_6 + a_0a_5a_6 + a_2a_3a_4 + a_2a_3a_6 + a_2a_5a_6 + a_4a_5a_6$$

Para a_5 :

O número de agrupamentos é $N_{ag}(5) = \frac{5+3}{2} = 4$.

O número de elementos dos termos do agrupamento 1 é:

$$E_t(1,5) = 5 - 2x1 + 3 = 6$$

O número de elementos dos termos do agrupamento 2 é:

$$E_t(2,5) = 5 - 2x^2 + 3 = 4$$

O número de elementos dos termos do agrupamento 3 é:

$$E_t(3.5) = 5 - 2x3 + 3 = 2$$

O número de elementos dos termos do agrupamento 4 é:

$$E_t(4,5) = 5 - 2x4 + 3 = 0$$

No agrupamento 4, há 1 termos, que é igual a 1, isto é, não possui um a.

Definindo g_1 e $g_{N_{ag}(5)} = g_4$, vem:

$$g_1 = \prod_{i=0}^{5} a_i = a_0 a_1 a_2 a_3 a_4 a_5$$
$$g_4 = 1$$

Vamos definir 2 funções: f_2 , f_3 .

O domínio de f_2 é {1, 2, 3, ..., S_2 }.

O contradomínio de f_2 é { $a_0a_1a_2a_3$; $a_0a_1a_2a_5$;

 $a_0a_1a_4a_5$; $a_0a_3a_4a_5$; $a_0a_3a_4a_5$; $a_2a_3a_4a_5$

O domínio de f_3 é {1, 2, 3, ..., S_3 }.

O contradomínio de f_3 é { a_0a_1 ; a_0a_3 ;

 $a_0a_5; a_2a_3; a_2a_5; a_4a_5$

Definindo γ o segundo agrupamento:

$$\gamma = E_t(2,5) = 5 - 2x^2 + 3 = 4$$

Definindo S_m o segundo agrupamento:

$$S_2 = \frac{1}{4!} \sum_{i=1}^{4} a_i (2)^i = \frac{1}{24} [6 \cdot 2 + 11 \cdot 2^2 + 6 \cdot 2^3 + 1 \cdot 2^4] = 5$$

Ou seja, há 5 termos no segundo agrupamento, que fica:

$$g_2 = \sum_{x=1}^{5} f_2(x) = a_0 a_1 a_2 a_3 + a_0 a_1 a_2 a_5 + a_0 a_1 a_4 a_5 + a_0 a_3 a_4 a_5 + a_2 a_3 a_4 a_5$$

Definindo y para o terceiro agrupamento:

$$\gamma = E_t(3,5) = 5 - 2x3 + 3 = 2$$

Definindo S_m para o terceiro agrupamento:

$$S_3 = \frac{1}{2!} \sum_{i=1}^{2} a_i (3)^i = \frac{1}{2} [1 \cdot 3 + 1 \cdot 3^2] = 6$$

Ou seja, há 10 termos no terceiro agrupamento, que fica:

$$g_2 = \sum_{x=1}^{6} f_2(x) = a_0 a_1 + a_0 a_3 + a_0 a_5 + a_2 a_3 + a_2 a_5 + a_4 a_5$$

Note que $E_t(m,n)$ nos dá em qual soma sucessiva dos naturais devemos trabalhar (primeira soma, segunda soma, terceira soma, etc.) m nos dá o termo dessa soma.

Para termos com um mesmo número de elementos, o trabalho é sempre feito na mesma soma sucessiva dos naturais, isto é, o gama é igual para todos esses termos.