probability theory

Runi Malladi

March 7, 2023

1 unsorted

Definition 1.1. Let (E, \mathcal{E}) and (F, \mathcal{F}) be measure spaces. A transition probability from E to F is a function

$$\nu: E \times F \to [0,1]$$

such that, for $x \in E$ and $A \in \mathcal{F}$,

- 1. $v_x(-)$ is a probability measure on $(F\mathcal{F})$ for all $x \in E$
- 2. $v_A(-)$ is \mathcal{E} -measurable for all $A \in \mathcal{F}$.

Example 1.2. Let (F, \mathcal{F}, μ) be σ -finite, and $f: E \times F \to \mathbb{R}_+$ be $\mathcal{E} \otimes \mathcal{F}$ -measurable. If

$$\int_{F} f(x, y) \ \mu(dy) = 1$$

for all $x \in E$, then

$$v(x,A) = \int_{A} f(x,y) \ \mu(dy)$$

is a transition probability from E to F. To verify the two conditions:

- 1. follows by assumption
- 2. by Fubini-Tonelli (Theorem 9.6 in *Measure Theory*, strengthed by Remark).

this remark

2 basic definitions

Definition 2.1. Given a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and a measurable space (E, \mathcal{E}) , an E-valued random variable is a measurable function $X : \Omega \to E$.

Definition 2.2. The *law* or *distribution* of X is the pushforward of \mathbb{P} along X, i.e. the measure on (E, \mathcal{E}) characterized by the equality

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B))$$

for all $B \in \mathcal{E}$.

Definition 2.3. The *expectation* of a random variable X is defined as

$$\mathbb{E}[X] = \int_{\Omega} X \ d\mathbb{P},$$

provided this integral makes sense (i.e. either $X \geq 0$ or $\mathbb{E}[|X|] < \infty$).

Proposition 2.4. Let $X: \Omega \to [0, \infty]$ be a random variable. Then

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge x) dx.$$

Let $Y: \Omega \to \mathbb{Z}_+$ be a random variable. Then

$$\mathbb{E}[Y] = \sum_{k=0}^{\infty} k \mathbb{P}(Y = k) = \sum_{k=1}^{\infty} \mathbb{P}(Y \ge k).$$

Proof. Note

$$\int_0^\infty 1_{\{x \le X(\omega)\}} dx = \lambda(\{0 \le x \le X(\omega)\}) = X(\omega),$$

and so

$$\mathbb{E}[X] = E\left[\int_0^\infty 1_{\{x \le X\}} dx\right] = \int_0^\infty \int_\Omega 1_{\{x \le X(\omega)\}} \mathbb{P}(d\omega) dx = \int_0^\infty \mathbb{P}(x \le X) dx.$$

Swapping the integrals above was justified by Tonelli's theorem, since the function we are integrating is nonnegative.

For Y, observe

$$Y = \sum_{k=0}^{\infty} k 1_{\{Y(\omega) = k\}} = \sum_{k=1}^{\infty} 1_{\{Y(\omega) \ge k\}}.$$

Then the result follows by another application of Tonelli's theorem, e.g. by viewing the infinite sum as an integral with respect to counting measure. \Box

3 conditional probability

There are several classes of objects we can take conditional probability with respect to, which can cause some confusion:

- ... of $A \in \mathcal{A}$ with respect to $B \in \mathcal{A}$, written $\mathbb{P}(A \mid B)$. Letting A vary, this is a probability measure on (Ω, \mathcal{A}) (Definition 3.1). Given a random variable X, We can also consider a conditional expectation $\mathbb{E}[X \mid B]$ (Definition 3.2), which is nothing but the expectation of X with respect to the aforementioned conditional probability measure (Proposition 3.3).
- ... of a real random variable X with respect to a random variable Y taking values in a countable space (Definition 3.4).

Definition 3.1. Consider a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. For any $B \in \mathcal{A}$ with nonzero measure, we can define a new probability measure on (Ω, \mathcal{A}) as follows:

$$\mathbb{P}(\cdot \mid B) \coloneqq \frac{\mathbb{P}(\cdot \cap B)}{\mathbb{P}(B)}.$$

This is the *conditional probability* given B.

Proof this is a probability measure. By (Measure Theory, Proposition 8.1), we see that $\mathbb{P}(\cdot \mid B)$ is an unsigned measure, and direct calculation shows

$$\mathbb{P}(\Omega \mid B) = \frac{\mathbb{P}(\Omega \cap B)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B)}{\mathbb{P}(B)} = 1.$$

Definition 3.2. As above, consider a probability space $(\Omega, \mathcal{A}, \mathbb{P})$ and $B \in \mathcal{A}$ with nonzero measure. For a random variable X, we define the *conditional expectation*

$$\mathbb{E}[X \mid B] := \frac{\mathbb{E}[X1_B]}{\mathbb{P}(B)}.$$

Proposition 3.3. $\mathbb{E}[X \mid B]$ is the expectation of X with respect to the probability measure $\mathbb{P}(\cdot \mid B)$.

Proof. By (Measure Theory, Proposition 8.1),

$$\int_{\Omega} X \ d\mathbb{P}(\cdot \mid B) = \frac{1}{\mathbb{P}(B)} \int_{B} X \ d\mu = \frac{\mathbb{E}[X1_{B}]}{\mathbb{P}(B)}.$$

Definition 3.4. Let $(E, \mathcal{P}(E))$ be a countable space, and $Y : \Omega \to E$ a random variable. Let $X \in L^1(\Omega, \mathcal{A}, \mathbb{P})$ be a real-valued random variable. Define

$$E' = \{y \in E : \mathbb{P}(Y = y) > 0\}$$

be the set of outcomes with nonzero probability. In particular, for all $y \in E'$, we can define the conditional expectation (Definition 3.2)

$$\mathbb{E}[X \mid Y = y] = \frac{\mathbb{E}[X1_{Y=y}]}{\mathbb{P}(Y = y)}.$$

This induces a function $\phi_X: E \to \mathbb{R}$ by

$$\phi_X(y) = \begin{cases} \mathbb{E}[X \mid Y = y] & y \in E' \\ 0 & \text{otherwise} \end{cases}.$$

Finally, we define the *conditional expectation* of X with respect to Y to be the random variable $\Omega \to \mathbb{R}$

$$\mathbb{E}[X \mid Y](-) = \phi_X(Y(-)).$$

Remark 3.5. The countability of E makes this definition canonical up to a set of measure zero. In particular, we can choose any value of $\phi_X(y)$ for $y \notin E'$, since

$$\mathbb{P}(Y \not\in E') = \mathbb{P}\left(\bigcup_{y \notin E'} \{Y = y\}\right) = \sum_{y \notin E'} \mathbb{P}(Y = y) = 0,$$

where we have used the countable additivity of measure.

Remark 3.6. We may visualize Definition 3.4 as follows:

The question now becomes how the random variables $\mathbb{E}[X \mid Y]$ and X are related to each other.

Definition 3.7. Let $\mathcal{B} \subset \mathcal{A}$ be a sub- σ -algebra, and let $X \in L^1(\Omega, \mathcal{A}, \mathbb{P})$ (i.e. X is an absolutely integrable real random variable). Then the *conditional expectation* $\mathbb{E}[X|\mathcal{B}] \in L^1(\Omega, \mathcal{B}, \mathbb{P})$ is the unique random variable such that

$$\mathbb{E}[XZ] = \mathbb{E}[\mathbb{E}[X|\mathcal{B}]Z]$$

for all \mathcal{B} -measurable real random variables Z.

Theorem 3.8. $\mathbb{E}[X|\mathcal{B}]$ exists and is unique.

Proof. _____prove

4 stochastic processes

Definition 4.1. A discrete random process is a sequence $(X_n)_{n\in\mathbb{Z}_+}$ of random variables on $(\Omega, \mathcal{A}, \mathbb{P})$ taking values on the same measurable space.

Definition 4.2. A filtration on $(\Omega, \mathcal{A}, \mathbb{P})$ is an increasing sequence of sub- σ -algebras $(\mathcal{F}_n)_{n \in \mathbb{Z}_+}$, i.e.

$$\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{A}$$
.

The probability space together with a filtration is called a *filtered probability space*.

Definition 4.3. A random process $(X_n)_{n\in\mathbb{Z}_+}$ is adapted to the filtration $(\mathcal{F}_n)_{n\in\mathbb{Z}_+}$ if X_n is \mathcal{F}_n measurable for all n.

Definition 4.4. Let $(X_n)_{n\in\mathbb{Z}_+}\subset L^1$ be a real-valued random process adapted to the filtration $(\mathcal{F}_n)_{n\in\mathbb{Z}_+}$. We say (X_n) is martingale if $\mathbb{E}[X_{n+1}\mid\mathcal{F}_n]=X_n$ for all n.

Definition 4.5. A (continuous) random variable $T: \Omega \to [0, \infty]$ is a *stopping time* (of the filtration $(\mathcal{F}_t)_{t>0}$) if

$$\{T \le t\} = \{\omega \in \Omega : T(\omega) \le t\} \in \mathcal{F}_t$$

for all $t \geq 0$.

Remark 4.6. For intuition, consider the probability space to be the possible paths/evolution of a casino game. The time at which the player decides to leave is a stopping time, since it will only be influenced by events that occurred up to the moment they decide to leave, and not on future events.

5 Brownian motion

Definition 5.1. An \mathbb{R}^d -valued continuous random process $(B_t)_{t\geq 0}$ is called (*d*-dimensional) *Brownian motion* or a *Wiener process* if the following conditions hold:

- BR1) $B_0 = 0$ almost surely.
- BR2) (independent increments) future increments are independent of past increments, i.e. for all u, t > 0, it is the case that $B_{t+u} B_t$ is independent of B_s for t > s.
- BR3) (Gaussian increments) $B_{t+u} B_t \sim \mathcal{N}(0, u)$.
- BR4) (continuous paths) B_t is continuous in t.

Theorem 5.2. Brownian motion exists.

Proof	prove

References

- [1] Jean-François LeGall. Measure theory, probability, and stochastic processes. Springer International Publishing, 2022.
- [2] Wiener process. Feb. 2023. URL: https://en.wikipedia.org/wiki/Wiener_process.