Structured Bayesian Pruning via Log-Normal Multiplicative Noise

Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha,
Dmitry Vetrov

Why do we want structured sparsity?

- Acceleration of DNN
- Efficient compression
- Small representations

Unstructured

Structured

Many related papers

- Model selection and estimation in regression with grouped variables (Ming Yuan et al., 2007)
- A sparse-group Lasso (Jerome Friedman et al., 2010)
- Pruning Filters For Efficient Convnets (Hao Li et al., 2016)
- Fast ConvNets Using Group-wise Brain Damage (Vadim Lebedev et al., 2015)
- Learning Structured Sparsity in Deep Neural Networks (Wei Wen et al., 2016)
- Learning the Number of Neurons in Deep Networks (Jose M Alvarez et al., 2016)

One common idea

Group Lasso:

$$\min_{w} \frac{1}{n} \left\| t - \sum_{l} X^{(l)} w^{(l)} \right\|_{2}^{2} + \sum_{l} \lambda_{l} \| w^{(l)} \|_{2} + \dots$$

As always we have

$$p(w|X,t) = \frac{p(t|X,w)p(w)}{\int p(t|X,w)p(w)dw}$$
 intractable

Variational Inference

$$\mathrm{KL}(q_{\varphi}(w)||p(w|X,t)) \to \min_{\varphi}$$

$$\mathrm{KL}(q_{\varphi}(w)||p(w|X,t)) = \int q_{\varphi}(w) \log \frac{q_{\varphi}(w)}{p(w|X,t)} dw = 0$$

$$\mathrm{KL}(q_{\varphi}(w)||p(w)) - \mathbb{E}_{w \sim q_{\varphi}(w)} \log p(t|X,w) + \underbrace{\log p(X,t)}_{\mathrm{const}(\varphi)}$$

Objective

Stochastic Variational Inference

$$\mathbb{E}_{w \sim q_{\varphi}(w)} \log p(t|X, w) \simeq \frac{n}{m} \sum_{k=1}^{m} \log p(t_{i_k}|X_{i_k}, w = f(\varphi, \varepsilon_k))$$

$$-\frac{n}{m} \sum_{k=1}^{m} \log p(t_{i_k}|X_{i_k}, w = f(\varphi, \varepsilon_k)) + \mathrm{KL}(q_{\varphi}(w)||p(w)) \to \min_{\varphi}$$

More general

$$-\frac{n}{m}\sum_{k=1}^{m}\log p(t_{i_k}|X_{i_k},w=f(\varphi,\varepsilon_k),\mathbf{W})+\mathrm{KL}(q_{\varphi}(w)||p(w))\to\min_{\varphi,\mathbf{W}},$$

where W - non-random parameters, e.g. weights of a DNN

Structured Bayesian Pruning Model

Prior

$$p(w) = \prod_{i} p(w_i)$$

$$p(w_i) = \text{LogU}_{\infty}(w_i) \propto \frac{1}{w_i}, \ w_i > 0$$

$$w_i > 0$$

Variational Distribution

$$q_{\varphi}(w) = \prod_{i} q(w_i | \mu_i, \sigma_i) = \prod_{i} \text{LogN}(w_i | \mu_i, \sigma_i^2)$$

$$w_i \sim \text{LogN}(w_i|\mu_i, \sigma_i^2) \iff \log w_i \sim \mathcal{N}(\log w_i|\mu_i, \sigma_i^2)$$

Motivation

No "prior gap"

$$\operatorname{LogN}(x|\mu,\sigma^2) \xrightarrow[\sigma\to\infty]{} \operatorname{LogU}_{\infty}(x)$$

- Only positive multiplications
 - Gaussian dropout: $\theta \sim \mathcal{N}(1, \alpha)$
 - Train: $y = x \cdot \theta$
 - Test: $y = x \cdot \mathbb{E}\theta$
- KL can be computed analytically

$$\mathrm{KL}(\mathrm{LogN}(x|\mu,\sigma^2)||\mathrm{LogU}_{\infty}(x)) = C - \log \sigma$$

Problems with improper prior

$$\mathrm{KL}(\mathrm{LogN}(x|\mu_i,\sigma_i^2)||\mathrm{LogU}_{\infty}(x)) = \mathrm{KL}(\mathcal{N}(x|\mu_i,\sigma_i^2)||\mathrm{U}(x))$$

$$KL(\mathcal{N}(x|\mu_i, \sigma_i^2)||U(x)) = C - \log \sigma, \quad C = +\infty$$

$$\underset{\sigma_i}{\operatorname{arg\,min}\,\mathrm{KL}}(\mathcal{N}(x|\mu_i,\sigma_i^2)||\mathrm{U}(x)) = +\infty$$

Handling improper prior

	Before	After	
$p(w_i)$	$\mathrm{Log}\mathrm{U}_{\infty}(w_i)$	$\text{LogU}_{[a,b]}(w_i)$	
$q_{arphi}(w_i)$	$\text{LogN}(w_i \mu_i,\sigma_i^2)$	$\text{LogN}_{[a,b]}(w_i \mu_i,\sigma_i^2)$	

Signal-to-Noise Ratio

$$\mathrm{SNR} = rac{\mathbb{E}}{\sqrt{\mathbb{D}}}$$

Unfixing mu

Results MNIST

Network	Method	Error %	Neurons per Layer %	CPU	GPU	FLOPs
LeNet-500-300 (ours)	Original SparseVD SSL StructuredBF	1.54 1.57 1.49 1.55	784 - 500 - 300 - 10 $537 - 217 - 130 - 10$ $434 - 174 - 78 - 10$ $245 - 160 - 55 - 10$	$1.00 \times 1.19 \times 2.21 \times 2.33 \times$	$1.00 \times 1.03 \times 1.04 \times 1.08 \times$	$1.00 \times 3.73 \times 6.06 \times 11.23 \times$
LeNet5-Caffe (ours)	Original SparseVD SSL StructuredBF	0.80 0.75 1.00 0.86	20 - 50 - 800 - 500 $17 - 32 - 329 - 75$ $3 - 12 - 800 - 500$ $3 - 18 - 284 - 283$	$1.00 \times 1.48 \times 5.17 \times 5.41 \times$	$1.00 \times 1.41 \times 1.80 \times 1.91 \times$	$1.00 \times 2.19 \times 3.90 \times 10.49 \times$

Lenet500-300 feature importance

Results for VGG on CIFAR-10

Results for VGG on CIFAR-10

	Speed-up (GPU)	Error, %
Initial	x1.0	7,2
Sparse	x1.74	7,5
Sparse (A)	x2.06	9,0

Results for VGGx1.5 on CIFAR-10

Results for VGGx1.5 on CIFAR-10

	Speed-up (GPU)	Error, %
Initial	x1.0	6,8
Sparse	x2.17	7,2
Sparse (A)	x2.47	7,8

Results on Random Labeling

Dataset	Architecture	Train Accuracy	Test Accuracy	Sparsity
MNIST	Lenet5 BDO	1.0	0.1	_
MNIST	Lenet5 (ours)	0.1	0.1	100%
CIFAR10	VGG BDO	1.0	0.1	_
CIFAR10	VGG (ours)	0.1	0.1	100%

Fin

- Structured sparsity is essential for acceleration
- Proper probabilistic model
- Easy to apply
- Our paper https://arxiv.org/pdf/1705.07283.pdf