Comparaison de systèmes électoraux

Essifi Yassine,14658

2021

T.I.P.E

Table des matières

Introduction

Contextualisation

Systèmes comparées

Procédure de comparaison

Méthode de simulation

Modélisation et Hypothèses

Explication du code

Exploitation de la simulation et résultats

1er Cas d'étude : Candidats a distances égales

2ieme Cas d'étude : Fractionnement des voix

3ieme Cas d'étude : Évincement d'un candidat

4ieme Cas d'étude : Critère de monotonicité

Les failles et les stratégies exploitables

Conclusion

Introduction

Contextualisation:

Dans plusieurs pays autour du monde(ex : États Unis) on remarque la présence de deux parties dominants. Pourquoi?

 \rightarrow Le scrutin uninominal majoritaire à un tour.

- Existe t-il d'autres systèmes de votes?
- Comment peut-on les comparer?

Systèmes comparées:

Les systèmes considérées seront des modes de scrutins uninominaux.

Le scrutin uninominal majoritaire à un tour :

- · Chaque électeur vote pour le candidat qu'il préfère.
- Le candidat ayant rassemblé le plus de voix est élu en toutes circonstances.

Le vote par approbation :

- Chaque électeur vote pour **les** candidats qu'il préfère.
- Le candidat ayant rassemblé le plus de voix est élu en toutes circonstances.

Le vote à second tour instantané:

- 1. Chaque électeur classe les candidats par ordre de préférence.
- 2. On décompte les premières préférences.
- 3. Si un candidats a la majorité absolue, il l'emporte.
- 4. Sinon le candidats à la dernière position, les préférences seront réordonnés, puis on retourne a l'étape 2.

Procédure de comparaison

Théorème d'impossibilité d'Arrow:

Pour au moins trois candidats et deux électeurs, il n'existe pas de système électorale satisfaisant les propriétés suivantes :

- 1. L'Universalité.
- 2. La Non-dictature.
- 3. La Monotonie.
- 4. La Souveraineté.
- 5. L'Indépendance des options non pertinentes.
- ⇒ Comparaison des cas d'échecs et de leurs fréquences.

Méthode de simulation

Modélisation et Hypothèses

Espace Politique:

- L'opinion politique = Point dans un plan.
- $x, y \in [-0.25, 1.25]^2$
- Subdivision de l'espace en 62500 points
- Répartition des électeurs $\sim \mathcal{N}(., 0.5^2)$ suivant chaque axe autour d'un centre d'intérêt.
- Nombre d'électeurs=4000

Modélisation et Hypothèses

Le scrutin majoritaire à un tour :

Les électeurs choisissent le candidat le plus proche idéologiquement.

Vote par approbation:

- Chaque électeur choisit les candidats a une distance acceptable.
- Les distances acceptables $\sim Log \mathcal{N}(-0.5, 0.5^2)$

Le vote à second tour instantané:

Les électeurs classent les candidats par distance.

Fonctions de base:

```
import numpy as np
import math as mt
def dis(A,B):
    return mt.sqrt((A[0]-B[0])**(2)*(A[1]-B[1])**(2)
def pref1(voteur, candidats):
    T=np.zeros((len(candidats),2))
    for i in range(len(candidats)):
        T[i]=(dis(voteur,candidats[i]),i)
    T=T[T[:,0].argsort()]
    return T
```

On définit la notion de distance et de préférence pour un seul électeur.

```
def preftt(voteurs, candidats):
    T=np.zeros((len(voteurs),len(candidats)))
    for i in range(len(voteurs)):
        T[i]=pref1(voteurs[i],candidats)[:,1]
    return T
def nbv1(voteurs, candidats):
    V=[]
    P=preftt(voteurs, candidats)
    for i in range(len(candidats)):
        \mathbf{c} = 0
        for j in range(len(voteurs)):
             if int(P[j][0])==i:
                 c = c + 1
        V.append(c)
    return V
```

On crée une matrice numpy contenant les préférences des électeurs suivant leur ordres, puis on calcul le nombre de première préférence.

Scrutin Majoritaire à un tour :

```
def plur(voteurs, candidats):
    return nbv1(voteurs, candidats).index(max(nbv1(voteurs, cand
```

Cette fonction retourne l'indice du candidat qui est le plus classé comme première préférence. C'est à dire le vainqueur en cas de scrutin majoritaire à un tour.

Vote à second tour instantanée :

```
def irv(voteurs, candidats):
    cand=np.copy(candidats)
    candn=[]
    for i in range(len(cand)):
        candn.append((cand[i],i))
    V=nbv1(voteurs,cand)
    vm=max(V)
    p=vm/(len(voteurs))
    while p < 0.5:
        i=V.index(min(V))
        print(i)
        cand=np.delete(cand,i,0)
        candn.pop(i)
```

```
^^IV=nbv1(voteurs,cand)
^^Ivm=max(V)
^^Ip=vm/(len(voteurs))
return candn[plur(voteurs,cand)][1]
```

On calcul si un des candidats a une majorité absolue et tant que c'est n'est pas vrai on élimine le dernier candidat et on redistribue les votes, cette fonction retourne l'indice du vainqueur par vote à second tour instantanée.

Fonctions de base:

```
^^T^^I^^IL[i]=1
^^Treturn L
def votecirclett(voteurs, candidats, r):
^^IT=np.zeros((len(voteurs),len(candidats)))
^^Ifor i in range(len(voteurs)):
^^I^^IT[i]=votecircle1(voteurs[i],candidats,r[i])
^^Treturn T
On détermine les candidats inclus dans le cercle de rayon r
autour d'un seul électeur. Puis on crée une matrice numpy
contenant le choix de chaque électeur.
```

14

def votecircle1(voteur,candidats.r):

^^Ifor i in range(len(candidats)):
^^I^^Iif dis(voteur,candidats[i])<=r:</pre>

^^IL=np.zeros(len(candidats))

Vote par approbation:

```
def nbvc(voteurs, candidats, r):
V=[]
P=votecirclett(voteurs,candidats,r)
^^Ifor i in range(len(candidats)):
^^T^^Ic=0
^^I^^Ifor j in range(len(P)):
^^I^^I^^Ic=c+(int(P[j][i]))
^^I^^I^^IV.append(c)
^^Ireturn V
def appr(voteurs, candidats, r):
^^IA=nbvc(voteurs,candidats,r)
^^Ireturn A.index(max(A))
```

On compte le nombre de votes pour chaque candidat puis on retourne l'indice du candidat avec le plus grand nombre de votes.

Exploitation de la simulation et

résultats

1er Cas d'étude : Candidats a distances égales

Figure 1 – Vote de pluralité

Figure 2 – Vote par approbation

Figure 3 – Vote à second tour instantané

2ieme Cas d'étude : Fractionnement des voix

Figure 1 – Vote de pluralité

Figure 2 - Vote par approbation

Figure 3 - Vote à second tour instantané

3ieme Cas d'étude : Évincement d'un candidat

Figure 1 – Vote de pluralité

Figure 2 – Vote par approbation

Figure 3 – Vote à second tour instantané

4ieme Cas d'étude : Critère de monotonicité

Figure 1 – Vote de pluralité

Figure 2 – Vote par approbation

Figure 3 - Vote à second tour instantané

Les failles et les stratégies exploitables :

Vote de pluralité

- Faille :Évincement d'un candidat
- Stratégie : Choisir seulement un des deux candidats les plus populaires

Vote à second tour instantané:

- Faille :Non respect du critère de monotonie (conséquence : effet "center-squeeze").
- Stratégie : Allez parfois contre le favori.

Conclusion

```
import concurrent.futures
import matplotlib.pyplot as plt
import numpy as np
import math as mt
#def distance:
def dis(A,B):
    return mt.sqrt((A[0]-B[0])**(2)+(A[1]-B[1])**(2))
#Classement pref 1 voteur:
def pref1(voteur, candidats):
    T=np.zeros((len(candidats),2))
    for i in range(len(candidats)):
        T[i]=(dis(voteur,candidats[i]),i)
    T=T[T[:,0].argsort()]
    return T
#Classement pref tt les voteurs:
def preftt(voteurs, candidats):
    T=np.zeros((len(voteurs),len(candidats)))
    for i in range(len(voteurs)):
        T[i]=pref1(voteurs[i],candidats)[:,1]
    return T
```

```
#nbr de premiere pref
def nbv1(voteurs, candidats):
    V=[]
    P=preftt(voteurs,candidats)
    for i in range(len(candidats)):
        c = 0
        for j in range(len(voteurs)):
            if int(P[j][0])==i:
                 c = c + 1
        V.append(c)
    return V
#Plur
def plur(voteurs, candidats):
    A=nbv1(voteurs, candidats)
    return A.index(max(A))
#VASTI
def irv(voteurs, candidats):
    cand=np.copv(candidats)
    candn=[]
    for i in range(len(cand)):
        candn.append((cand[i],i))
    V=nbv1(voteurs, cand)
```

```
vm=max(V)
    p=vm/(len(voteurs))
    while p<0.5:
        i=V.index(min(V))
        print(i)
        cand=np.delete(cand,i,0)
        candn.pop(i)
        V=nbv1(voteurs.cand)
        vm=max(V)
        p=vm/(len(voteurs))
    return candn[plur(voteurs, cand)][1]
#Cercle d'approbation 1 voteur:
def votecircle1(voteur, candidats, r):
    L=np.zeros(len(candidats))
    for i in range(len(candidats)):
        if dis(voteur,candidats[i])<=r:</pre>
            L[i]=1
    return L
#Cercle d'approbation 1 voteur:
def votecirclett(voteurs.candidats.r):
    T=np.zeros((len(voteurs),len(candidats)))
    for i in range(len(voteurs)):
```

```
T[i]=votecircle1(voteurs[i],candidats,r[i])
    return T
#nbr de vote
def nbvc(voteurs, candidats, r):
    V=[]
    P=votecirclett(voteurs, candidats, r)
    for i in range(len(candidats)):
        \mathbf{C} = \mathbf{0}
        for j in range(len(P)):
            c=c+(int(P[j][i]))
        V.append(c)
    return V
#approbation:
def appr(voteurs, candidats, r):
    A=nbvc(voteurs, candidats, r)
    return A.index(max(A))
#simulation:
d= np.mgrid[-0.25:1.25:250j, -0.25:1.25:250j].reshape(2,-1).T
candidats1=np.array([[0.5,0.99],[0.07,0.25],[0.93,0.25]])
candidats2=np.array([[0.93,0.49],[0.79,0.42],[0.27,0.45]])
candidats3=np.array([[0.07,0.17],[0.49,0.01],[0.41,0.02]])
candidats4=np.array([[0.54,0.47],[0.77,0.64],[0.13,0.10]])
```

```
L=[candidats1,candidats2,candidats3,candidats4]
C=['#ff0000','#0000ff','#00ff00']
def color(c):
    #pour appr : r=np.random.lognormal(-0.5,0.5,10000)
    voters=np.random.multivariate normal(c,[[0.25,0],[0,0.25]],10000)
    return C[irv(voters,L[3])]
d1=d.tolist()
X,Y=d.T
x,y=L[3].T
#utilisation de plusieurs coeurs par subdivision du calcul des couleur
#chaque point
if name == ' main ':
   with concurrent.futures.ProcessPoolExecutor() as executor:
        r=executor.map(color,d1)
        C1=list(r)
        plt.scatter(X,Y,c=C1)
        plt.scatter(x,y,s=200,c=C,marker="P",edgecolors='black')
        plt.show()
```