

Compresión de datos

Block sorting Move to Front Modelo de Shannon Modelo estructurado

Block sorting

Block Sorting

- o También llamada Burrows-Wheeler
- Es una transformación que no comprime, incluso expande la fuente
- Obtiene una permutación de caracteres para mejorar la localidad
- La salida, con más localidad, es apropiada para ingresar al algoritmo Move to Front

Block sorting: transformación

- Se colocan todas las permutaciones de la fuente en una matriz, desplazando un carácter más en cada fila
- Se ordenan alfabéticamente las filas
- Se emiten la última columna y el índice de la fila correspondiente a la fuente original

Block sorting: antitransformación

 Se intenta reconstruir la matriz, primero se escribe la última columna A A A A L L R S S S S

Block sorting: antitransformación

- Se intenta reconstruir la matriz, primero se escribe la última columna
- Se la reordena y se obtiene la primera

s	
L	
L	
S	
L	
R	
Α	
Α	
Α	
Α	
s	
Α	
Α	ı

A
A
A
A
L
L
R
S
S

Block sorting: antitransformación

- Se intenta reconstruir la matriz, primero se escribe la última columna
- Se la reordena y se obtiene la primera
- Se concatena la primera y segunda, se la reordena y se obtiene la tercera

Α	L	
Α	L	
Α	L	
Α	R	
Α	S	
Α	s	
L	Α	
Г	Α	
L	Α	
R	Α	
s	Α	
S	Α	
S	s	

A A A A L L L R S S S

Block sorting: antitransformación

- Se intenta reconstruir la matriz, primero se escribe la última columna
- o Se la reordena y se obtiene la primera
- Se concatena la primera y segunda, se la reordena y se obtiene la tercera
- Se repiten los pasos hasta obtener toda la matriz
- La fila indicada por el índice es la fuente original

Move to Front

Move to Front

- Es una transformación que no comprime
- Reduce la entropía de la fuente aumentando la probabilidad de unos símbolos por sobre la de otros
- Sólo funciona bien si la fuente tiene mucha localidad
- El índice recibido desde el MTF no es transformado

Move to Front

- Si su entrada es apropiada, su salida es mucho más adecuada para ser comprimida por algunos compresores estadísticos, y en algunos casos, por un compresor half coding
- Tiene la propiedad de transformar repeticiones de cualquier carácter en números bajos. Cuanto más cerca la repetición, más bajo el número

Move to Front: transformación

- Se codifica el alfabeto de la forma estándar (sin comprimir), por lo que a cada símbolo le corresponde un número. Se arma un array con los números.
- Se van leyendo símbolos de la fuente según la codificación. Por cada símbolo que se lee, se emite su posición en el array, y se mueve ese símbolo a la posición 0 del array (el frente)

Move to Front: ejemplo

SALALASARAS, luego del BS se transforma en SLLSRAAAASAA-10

Move to Front: antitransformación

- Se vuelve a construir el array con las codificaciones del alfabeto
- Se va leyendo a la entrada, donde cada lectura es una posición. Se emite el símbolo encontrado en la posición leída, y se pasa el símbolo al frente del array.

Move to Front

 Concepto de la compresión con BS y MTF:

| | Modelo de Shannon

Modelo de Shannon

- Es un compresor que utiliza como base el aritmético
- Se comporta muy bien si la fuente es la salida de un BS+MTF
- Utiliza 6 modelos (o contextos) numerados, de los cuales 5 matchean con un solo símbolo
- El único otro símbolo de esos modelos es el ESC

Modelo de Shannon

- Los modelos 0 y 1 matchean con el símbolo 0, es decir, emiten M si el símbolo es 0, ESC si otro
- El modelo 2 matchea con el símbolo 1
- o El modelo 3 matchea con el símbolo 2
- El modelo 4 matchea con el símbolo 3
- El modelo 5 matchea con el resto de los símbolos

\bullet

Modelo de Shannon

- El modelo 0 se utiliza al principio, y cuando recién hubo un match para el símbolo 0
- El modelo 1 se utiliza en el resto de los casos
- Cuando ocurre un ESC en un modelo, se busca en el modelo siguiente
- Los modelos 0 y 1 nunca se utilizan en el mismo paso

Ejemplo: 002003508									
Car	M0	M1	M2	M3	M4	M5	Observaciones		
0	M(1/2)						Al ser el primer caracter, se comienza desde el modelo 0. Este emite un match y se pasa al siguiente caracter. Se actualizan las probabilidades en el modelo 0		
0	M(2/3)						Ahora en el modelo 0 el match se emite con probabilidad de 2/3 por haber aumentado su frecuencia en el paso anterior		
2	E(1/4)		E(1/2)	M(1/2)			Se emite un escape en el modelo 0 y en el modelo 2 (no se pasa por el 1). Luego en el modelo 3 se emite un match. Se actualizan frecuencias en modelos 0, 2 y 3 (solo por los modelos en los que paso)		
0		M(1/2)					Como el ultimo caracter no fue un 0, se comienza del modelo 1, que tiene al match y al escape con frecuencias iniciales 1		
0	M(3/5)						Se vuelve al modelo 0 por ser un caracter 0 el ultimo comprimido		
3	E(2/6)		E(2/3)	E(1/3)	M(1/2)		El caracter 3 se encuentra recién en el modelo 4		
5		E(1/3)	E(3/4)	E(2/4)	E(1/3)	5(1/253)	Se llega al modelo 5, donde hay 253 símbolos con frecuencia 1.		
0		M(2/4)							
8	E(3/7)		E(3/4)	E(2/4)	E(2/3)	8(1/254)	La frecuencia acumulada del modelo 5 es 254 porque el caracter 5 tiene frecuencia 2		
EOF		E(2/5)	E(4/5)	E(3/5)	E(3/4)	EOF(1/255)	Fin del archivo		

| Modelo estructurado

- Es un compresor que utiliza como base el aritmético
- Se comporta muy bien si la fuente es la salida de un BS+MTF
- Utiliza 9 modelos (o contextos) numerados, donde los más altos matchean con más cantidad de símbolos

Modelo estructurado

- o Siempre se empieza del modelo 0
- o Matches:

Modelo	Caracteres
0	0
1	1
2	2, 3
3	4, 5, 6, 7
4	8 al 15
5	16 al 31
6	32 al 63
7	64 al 127
8	128 al 255 y EOF

Modelo estructurado

Ejemplo: 002003508

Car	M0	M1	M2	M3	M4	M5	M6	M7	M8
0	0 (1/2)								
0	0 (2/3)								
2	E (1/4)	E (1/2)	2 (1/3)						
0	0 (3/5)								
0	0 (4/6)								
3	E (2/7)	E (2/3)	3 (1/4)						
5	E (3/8)	E (3/4)	E (1/5)	5 (1/5)					
0	0 (5/9)								
8	E (4/10)	E (4/5)	E (2/6)	E (1/6)	8 (1/8)				
EOF	E (5/11)	E (5/6)	E (3/7)	E (2/7)	E (1/9)	E (1/16)	E (1/32)	E (1/64)	EOF (129)

Comparando

- A la salida de BS+MTF, se pueden aplicar tres compresores que obtienen buenos resultados:
 - Modelo estructurado
 - Modelo de Shannon
 - Half Coding
- Los tres se benefician de las apariciones del carácter 0

\bullet

Comparando

- Half Coding se beneficia más que los otros dos compresores con la abundancia de 0s. Los otros dos se benefician por igual
- Si hay abundancia de caracteres de valores intermedios (por ejemplo 4, 7 o 20) el modelo de Shannon comprime peor que el estructurado