DEPARTMENT OF MATHEMATICS & STATISTICS MM102 APPLICATIONS OF CALCULUS

Complex Numbers: Exercise Sheet for Week 6 – Solutions

1.
$$z_1 = 2 - 2i$$
, $r = \sqrt{2^2 + 2^2} = 2\sqrt{2}$; $\arctan\left(\frac{2}{2}\right) = \arctan(1) = \frac{\pi}{4}$.

$$\theta$$
 lies in 4th quadrant, therefore $\operatorname{Arg}(z_1) = -\frac{\pi}{4}$ and $z_1 = 2\sqrt{2}\operatorname{cis}\left(-\frac{\pi}{4}\right)$

$$z_2 = -1 + \sqrt{3}i$$
, $r = \sqrt{1^2 + 3} = 2$; $\arctan(\sqrt{3}) = \frac{\pi}{3}$.

$$\theta$$
 lies in 2nd quadrant, therefore $\operatorname{Arg}(z_2) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}$ and $z_2 = 2\operatorname{cis}\left(\frac{2\pi}{3}\right)$.

(a)
$$z_1 z_2 = 2 \times (2\sqrt{2}) \operatorname{cis} \left(-\frac{\pi}{4} + \frac{2\pi}{3} \right) = 4\sqrt{2} \operatorname{cis} \left(\frac{5\pi}{12} \right).$$

(b)
$$z_1^5 = (2\sqrt{2})^5 \operatorname{cis}\left(-\frac{5\pi}{4}\right) = 2^5(\sqrt{2})^5 \operatorname{cis}\left(-\frac{5\pi}{4} + 2\pi\right) = 128\sqrt{2} \operatorname{cis}\left(\frac{3\pi}{4}\right) = 128.$$

(c)
$$\frac{1}{z_2^3} = z_2^{-3} = \frac{1}{8} \left[\operatorname{cis} \left(\frac{2\pi}{3} \right) \right]^{-3} = \frac{1}{8} \operatorname{cis} (-2\pi) = \frac{1}{8}.$$

(d)
$$z_1^6 z_2^4 = (2\sqrt{2})^6 2^4 \operatorname{cis}\left(-\frac{6\pi}{4} + \frac{8\pi}{3}\right) = 2^{13} \operatorname{cis}\left(\frac{(-18+32)\pi}{12}\right) = 8192 \operatorname{cis}\left(\frac{7\pi}{6}\right)$$

= $8192 \operatorname{cis}\left(-\frac{5\pi}{6}\right)$.

(e)
$$\frac{z_1^9}{z_2^7} = \frac{(2\sqrt{2})^9}{2^7} \operatorname{cis}\left(-\frac{9\pi}{4} - \frac{14\pi}{3}\right) = 64\sqrt{2}\operatorname{cis}\left(\frac{(-27 - 56)\pi}{12}\right) = 64\sqrt{2}\operatorname{cis}\left(-\frac{83\pi}{12}\right)$$

= $64\sqrt{2}\operatorname{cis}\left(-\frac{11\pi}{12}\right)$.

2. In each example find the polar form of the given complex number, then raise it to the appropriate power using de Moivre's theorem: $|z^n| = |z|^n$, $\arg(z^n) = n \arg(z)$.

The following answers give the principal value of the argument, Arg(z).

The argument of z can be found via $\arg(z) = \operatorname{Arg}(z) + 2k\pi \quad (k \in \mathbb{Z}).$

(a) $|(1-3i)^4| = |1-3i|^4 = (\sqrt{1+9})^4 = (\sqrt{10})^4 = 100;$

1-3i lies on the fourth quadrant, so $Arg(1-3i) = -\arctan(3) \approx -1.2490$.

$$\arg \left[(1 - 3i)^4 \right] = \left[4 \times \operatorname{Arg}(1 - 3i) \right] + 2k\pi = -4.9962 + 2k\pi \quad (k \in \mathbb{Z}).$$

Since -4.9962 does not lie in the interval $(-\pi, \pi]$, it cannot be the principal value of the argument. To find the principal value, consider the case k = 1:

Arg
$$[(1-3i)^4] \approx -4.9962 + (2 \times \pi) \approx 1.2870.$$

(b) In polar form using the principal value, $-1 + \sqrt{3}i = 2\operatorname{cis}\left(\frac{2\pi}{3}\right)$.

$$\left| (-1 + \sqrt{3}i)^5 \right| = \left| -1 + \sqrt{3}i \right|^5 = 2^5 = 32;$$

$$\arg\left[(-1+\sqrt{3}i)^{5}\right] = 5 \times \arg(-1+\sqrt{3}i) = \left(5 \times \frac{2\pi}{3}\right) + 2k\pi = \frac{10\pi}{3} + 2k\pi \quad (k \in \mathbb{Z});$$

Arg
$$\left[(-1 + \sqrt{3}i)^5 \right] = \frac{10\pi}{3} - 2\pi = -\frac{2\pi}{3}$$

(c) $\left| (-12 - 5i)^{-3} \right| = \left| -12 - 5i \right|^{-3} = 13^{-3} = \frac{1}{2197}$;

$$-12-5i$$
 lies in the third quadrant, so $Arg(-12-5i) = -\left(\pi - \arctan(\frac{5}{12})\right) \approx -2.7468$.

$$\arg\left[(-12-5i)^{-3}\right] = \left[-3 \times \operatorname{Arg}(-12-5i)\right] + 2k\pi = 8.2404 + 2k\pi \quad (k \in \mathbb{Z}).$$

Since 8.2404 does not lie in the interval $(-\pi, \pi]$, it cannot be be principal value of the argument. To find the principal value consider the case k = -1:

Arg
$$[(-12 - 5i)^{-3}] \approx 8.2404 - (2 \times \pi) \approx 1.9572.$$

(d) In polar form using the principal value, $-12 - 12i = 12\sqrt{2}\operatorname{cis}\left(-\frac{3\pi}{4}\right)$.

$$\left| (-12 - 12i)^5 \right| = \left| -12 - 12i \right|^5 = (12\sqrt{2})^5 = 995328\sqrt{2}$$

$$\arg\left[(-12-12i)^{5}\right] = 5 \times \arg(-12-12i) = (-5 \times \frac{3\pi}{4}) + 2k\pi = -\frac{15\pi}{4} + 2k\pi \quad (k \in \mathbb{Z});$$

Arg
$$[(-12 - 12i)^5] = -\frac{15\pi}{4} + 4\pi = \frac{\pi}{4}$$
.

3. Express each complex number in polar form and simplify using de Moivre's theorem:

$$|z^n| = |z|^n$$
, $\arg(z^n) = n \arg(z)$, $|z_1 z_2| = |z_1| |z_2|$, $\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$.

(a)
$$\frac{(1+i)^5}{1-i} = \frac{\left[\sqrt{2}\operatorname{cis}(\frac{\pi}{4})\right]^5}{\sqrt{2}\operatorname{cis}(-\frac{\pi}{4})} = 2^2\operatorname{cis}(5\times\frac{\pi}{4}+\frac{\pi}{4}) = 4\operatorname{cis}(\frac{3\pi}{2}) = -4i.$$

(b)
$$\frac{(1+\sqrt{3}i)^2}{(1+i)^3} = \frac{\left[2\operatorname{cis}(\frac{\pi}{3})\right]^2}{\left[\sqrt{2}\operatorname{cis}(\frac{\pi}{4})\right]^3} = \sqrt{2}\operatorname{cis}(\frac{2\pi}{3} - \frac{3\pi}{4}) = \sqrt{2}\operatorname{cis}(-\frac{\pi}{12}).$$

Note that:

$$cis(-\frac{\pi}{12}) = cis(\frac{\pi}{4} - \frac{\pi}{3}) = cis(\frac{\pi}{4}) cis(-\frac{\pi}{3})
= \frac{1}{\sqrt{2}}(1+i) \times \frac{1}{2}(1-\sqrt{3}i) = \frac{1}{2\sqrt{2}} \left[1+\sqrt{3}+i(1-\sqrt{3})\right]
\implies \frac{(1+\sqrt{3}i)^2}{(1+i)^3} = \frac{1}{2}(1+\sqrt{3}) + \frac{1}{2}i(1-\sqrt{3}).$$

(c)
$$(1+i)^{20} + (1-i)^{20} = \left[\sqrt{2}\operatorname{cis}(\frac{\pi}{4})\right]^{20} + \left[\sqrt{2}\operatorname{cis}(-\frac{\pi}{4})\right]^{20}$$

 $= 2^{10}\left[\operatorname{cis}(5\pi) + \operatorname{cis}(-5\pi)\right] = 2^{10} \times 2\operatorname{cos}(5\pi) = 2^{11}\operatorname{cos}(\pi) = -2048.$

(d)
$$\frac{(\sqrt{3}+i)^{10}}{(1-i)^7} = \frac{\left[2\operatorname{cis}(\frac{\pi}{6})\right]^{10}}{\left[\sqrt{2}\operatorname{cis}(-\frac{\pi}{4})\right]^7}$$

$$= 2^{13/2}\operatorname{cis}(\frac{10\pi}{6} + \frac{7\pi}{4}) = 2^{13/2}\operatorname{cis}(\frac{41\pi}{12}) = 2^{13/2}\operatorname{cis}(-\frac{7\pi}{12}).$$

Note that:

$$cis(-\frac{7\pi}{12}) = cis(-\frac{\pi}{4} - \frac{\pi}{3}) = cis(-\frac{\pi}{4}) cis(-\frac{\pi}{3})
= \frac{1}{\sqrt{2}}(1-i) \times \frac{1}{2}(1-\sqrt{3}i) = \frac{1}{2\sqrt{2}} \left[1-\sqrt{3}-i(1+\sqrt{3})\right]
\implies \frac{(\sqrt{3}+i)^{10}}{(1-i)^7} = 32(1-\sqrt{3}) - 32i(1+\sqrt{3}).$$

(e)
$$(\sqrt{2} + i\sqrt{2})^{-4} = \left[2\operatorname{cis}(\frac{\pi}{4})\right]^{-4} = 2^{-4}\operatorname{cis}(-4 \times \frac{\pi}{4}) = \frac{1}{16}\operatorname{cis}(-\pi) = -\frac{1}{16}$$
.

(f)
$$(\sqrt{2} + i\sqrt{2})^8 = \left[2\operatorname{cis}(\frac{\pi}{4})\right]^8 = 2^8\operatorname{cis}(8 \times \frac{\pi}{4}) = 256\operatorname{cis}(2\pi) = 256.$$

(g)
$$\frac{(\cos\theta + i\sin\theta)^3}{(\sin\theta + i\cos\theta)^2} = \frac{(\cos\theta + i\sin\theta)^3}{\left[i(\cos\theta - i\sin\theta)\right]^2} = \frac{\left[\operatorname{cis}(\theta)\right]^3}{i^2\left[\operatorname{cis}(-\theta)\right]^2} = -\operatorname{cis}(3\theta + 2\theta) = -\operatorname{cis}(5\theta).$$

4. $\cos(2\theta) + i\sin(2\theta) = [\cos(\theta) + i\sin(\theta)]^2 = \cos^2(\theta) - \sin^2(\theta) + 2i\cos(\theta)\sin(\theta)$.

By equating real and imaginary parts,

$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta), \qquad \sin(2\theta) = 2\sin(\theta)\cos(\theta).$$

5. Let
$$z = \operatorname{cis} \theta$$
, then $\operatorname{cos} \theta = \frac{1}{2} \left(z + \frac{1}{z} \right)$ and $\operatorname{cos}^2 \theta = \left[\frac{1}{2} \left(z + \frac{1}{z} \right) \right]^2 = \frac{1}{4} \left(z^2 + \frac{1}{z^2} + 2 \right) = \frac{1}{2} \left(\operatorname{cos}(2\theta) + 1 \right).$

6. Let
$$z = \operatorname{cis} \theta$$
, then $\sin \theta = \frac{1}{2i} \left(z - \frac{1}{z} \right)$ and
$$\sin^3 \theta = \left[\frac{1}{2i} \left(z - \frac{1}{z} \right) \right]^3 = -\frac{1}{8i} \left(z^3 - \frac{1}{z^3} - 3z + \frac{3}{z} \right)$$
$$= -\frac{1}{4} \sin(3\theta) + \frac{3}{4} \sin \theta. \qquad a = -\frac{1}{4}, \ b = \frac{3}{4}$$
$$\int \sin^3 \theta \, d\theta = \int \left(-\frac{1}{4} \sin(3\theta) + \frac{3}{4} \sin \theta \right) d\theta = \frac{1}{12} \cos(3\theta) - \frac{3}{4} \cos \theta + c.$$

7.
$$\cos(4\theta) + i\sin(4\theta) = (\cos\theta + i\sin\theta)^4$$

 $= \cos^4\theta + 4\cos^3\theta i\sin\theta + 6\cos^2\theta i^2\sin^2\theta + 4\cos\theta i^3\sin^3\theta + i^4\sin^4\theta$
 $= \cos^4\theta - 6\cos^2\theta \sin^2\theta + \sin^4\theta + i\Big(4\cos^3\theta \sin\theta - 4\cos\theta \sin^3\theta\Big).$
Equating real parts, $\cos(4\theta) = \cos^4\theta - 6\cos^2\theta \sin^2\theta + \sin^4\theta$
 $= \cos^4\theta - 6\cos^2\theta (1 - \cos^2\theta) + (1 - \cos^2\theta)^2$
 $= 8\cos^4\theta - 8\cos^2\theta + 1.$ $a = 8, b = -8, c = 1$

8.
$$\cos^5 \theta = \left[\frac{1}{2}\left(z + \frac{1}{z}\right)\right]^5$$

 $= \frac{1}{32}\left(z + \frac{1}{z}\right)^5$
 $= \frac{1}{32}\left[z^5 + 5z^4\left(\frac{1}{z}\right) + 10z^3\left(\frac{1}{z}\right)^2 + 10z^2\left(\frac{1}{z}\right)^3 + 5z\left(\frac{1}{z}\right)^4 + \left(\frac{1}{z}\right)^5\right]$
 $= \frac{1}{32}\left(z^5 + \frac{1}{z^5}\right) + \frac{5}{32}\left(z^3 + \frac{1}{z^3}\right) + \frac{10}{32}\left(z + \frac{1}{z}\right) = \frac{1}{16}\cos(5\theta) + \frac{5}{16}\cos(3\theta) + \frac{5}{8}\cos\theta.$
 $\int \cos^5 \theta \, d\theta = \int \left(\frac{1}{16}\cos(5\theta) + \frac{5}{16}\cos(3\theta) + \frac{5}{8}\cos\theta\right) d\theta = \frac{1}{80}\sin(5\theta) + \frac{5}{48}\sin(3\theta) + \frac{5}{8}\sin\theta + c$

9. With
$$c = \cos \theta$$
, $s = \sin \theta$ (so that $c^2 + s^2 = 1$), de Moivre's theorem gives
$$\cos(5\theta) + i \sin(5\theta) = (\cos \theta + i \sin \theta)^5$$

$$= (c + is)^5$$

$$= c^5 + 5c^4(is) + 10c^3(is)^2 + 10c^2(is)^3 + 5c(is)^4 + (is)^5$$

$$= c^5 + 5c^4s i + 10c^3s^2i^2 + 10c^2s^3i^3 + 5cs^4i^4 + s^5i^5$$

$$= c^5 + 5c^4s i - 10c^3s^2 - 10c^2s^3i + 5cs^4 + s^5i$$

$$= (c^5 - 10c^3s^2 + 5cs^4) + (5c^4s - 10c^2s^3 + s^5)i \qquad (**)$$
(Recall that $i^2 = -1$, $i^3 = i^2 \times i = -i$, $i^4 = i^2 \times i^2 = 1$, $i^5 = i^4 \times i = i$.)

(Question 9 continued on next page)

9. (cont'd)

(a) Equate real parts in (**) to give

$$\cos(5\theta) = c^5 - 10c^3s^2 + 5cs^4$$

$$= c^5 - 10c^3(1 - c^2) + 5c(1 - c^2)^2$$

$$= c^5 - 10c^3 + 10c^5 + 5c(1 - 2c^2 + c^4) = c^5 - 10c^3 + 10c^5 + 5c - 10c^3 + 5c^5,$$
i.e.
$$\cos(5\theta) = 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta.$$

(b) Imaginary parts of (**) give

$$\sin(5\theta) = 5c^4s - 10c^2s^3 + s^5$$

$$= 5(1 - s^2)^2s - 10(1 - s^2)s^3 + s^5$$

$$= 5(1 - 2s^2 + s^4)s - 10s^3 + 10s^5 + s^5 = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta.$$

(c) Since
$$\tan \theta$$
 is well defined for $\theta \neq (2n+1)\frac{\pi}{2}$ and $\tan \theta = \frac{s}{c}$, equation (**) gives
$$\tan(5\theta) = \frac{\sin(5\theta)}{\cos(5\theta)} = \frac{5c^4s - 10c^2s^3 + s^5}{c^5 - 10c^3s^2 + 5cs^4}$$
$$= \frac{5\frac{s}{c} - 10\left(\frac{s}{c}\right)^3 + \left(\frac{s}{c}\right)^5}{1 - 10\left(\frac{s}{c}\right)^2 + 5\left(\frac{s}{c}\right)^4}$$
(dividing numerator & denominator by c^5)
$$= \frac{5\tan \theta - 10\tan^3 \theta + \tan^5 \theta}{1 - 10\tan^2 \theta + 5\tan^4 \theta}.$$

10. With $c = \cos \theta$, $s = \sin \theta$, we obtain

$$\cos(6\theta) + i\sin(6\theta) = (\cos\theta + i\sin\theta)^{6}$$

$$= (c + is)^{6}$$

$$= c^{6} + 6c^{5}(is) + 15c^{4}(is)^{2} + 20c^{3}(is)^{3} + 15c^{2}(is)^{4} + 6c(is)^{5} + (is)^{6}$$

$$= c^{6} + 6c^{5}si - 15c^{4}s^{2} - 20c^{3}s^{3}i + 15c^{2}s^{4} + 6cs^{5}i - s^{6}$$

$$= c^{6} - 15c^{4}s^{2} + 15c^{2}s^{4} - s^{6} + (6c^{5}s - 20c^{3}s^{3} + 6cs^{5})i \qquad (\triangle)$$

Real parts of (\triangle) give

$$\cos(6\theta) = c^{6} - 15c^{4}(1 - c^{2}) + 15c^{2}(1 - c^{2})^{2} - (1 - c^{2})^{2} \quad \text{(since } s^{2} = 1 - c^{2})$$

$$= c^{6} - 15c^{4} + 15c^{6} + 15c^{2}(1 - 2c^{2} + c^{4})(1 - 3c^{2} + 3c^{4} - c^{6})$$

$$= c^{6} - 15c^{4} + 15c^{6} + 15c^{2} - 30c^{4} + 15c^{6} - 1 + 3c^{2} - 3c^{4} + c^{6}$$

$$= 32\cos^{6}\theta - 48\cos^{4}\theta + 18\cos^{2}\theta - 1.$$

Similarly, imaginary parts of (\triangle) give

$$\sin(6\theta) = 6c^5 s - 20c^3 s^3 + 6cs^5$$

$$= s \left(6c^5 - 20c^3(1 - c^2) + 6c(1 - c^2)^2\right)$$

$$= s \left(6c^5 - 20c^3 + 20c^5 + 6c(1 - 2c^2 + c^4)\right)$$

$$= s(6c^5 - 20c^3 + 20c^5 + 6c - 12c^3 + 6c^5)$$

$$= \sin\theta(32\cos^5\theta - 32\cos^3\theta + 6\cos\theta). \qquad a = 32, b = -32, c = 6.$$

11. With $z = \cos \theta + i \sin \theta$, we have $2\cos(n\theta) = z^n + \frac{1}{z^n}$, $2i\sin(n\theta) = z^n - \frac{1}{z^n}$.

(a)
$$(2\cos\theta)^4 = \left(z + \frac{1}{z}\right)^4$$

 $\implies 16\cos^4\theta = z^4 + 4z^3 \times \frac{1}{z} + 6z^2 \times \frac{1}{z^3} + 4z \times \frac{1}{z^3} + \frac{1}{z^4}$
 $\implies 16\cos^4\theta = \left(z^4 + \frac{1}{z^4}\right) + 4\left(z^2 + \frac{1}{z^2}\right) + 6 = 2\cos(4\theta) + 4 \times 2\cos(2\theta) + 6$
 $\implies \cos^4\theta = \frac{1}{8}\left(\cos(4\theta) + 4\cos(2\theta) + 3\right).$

(b)
$$(2\cos\theta)^{2}(2i\sin\theta)^{4} = \left(z + \frac{1}{z}\right)^{2}\left(z - \frac{1}{z}\right)^{4} = \left(z + \frac{1}{z}\right)^{2}\left(z - \frac{1}{z}\right)^{2}\left(z - \frac{1}{z}\right)^{2}$$

$$\Rightarrow 2^{2}\cos^{2}\theta \times 2^{4}i^{4}\sin^{4}\theta = \left[\left(z + \frac{1}{z}\right)\left(z - \frac{1}{z}\right)\right]^{2}\left(z - \frac{1}{z}\right)^{2} = \left(z^{2} - \frac{1}{z^{2}}\right)^{2}\left(z^{2} - 2 + \frac{1}{z^{2}}\right)$$

$$\Rightarrow 2^{6}\cos^{2}\theta\sin^{4}\theta = \left(z^{4} - 2 + \frac{1}{z^{4}}\right)\left(z^{2} - 2 + \frac{1}{z^{2}}\right)$$

$$= z^{6} - 2z^{4} + z^{2} - 2z^{2} + 4 - \frac{2}{z^{2}} + \frac{1}{z^{2}} - \frac{2}{z^{4}} + \frac{1}{z^{6}}$$

$$= \left(z^{6} + \frac{1}{z^{6}}\right) - 2\left(z^{4} + \frac{1}{z^{4}}\right) - \left(z^{2} + \frac{1}{z^{2}}\right) + 4$$

$$= 2\cos6\theta - 2(2\cos4\theta) - 2\cos2\theta + 4$$

$$\Rightarrow \cos^{2}\theta\sin^{4}\theta = \frac{1}{32}\left(\cos(6\theta) - 2\cos(4\theta) - \cos(2\theta) + 2\right).$$

12.(a) With the notation of the previous question,

$$(2i\sin\theta)^{5} = \left(z - \frac{1}{z}\right)^{5}$$

$$\implies 2^{5}i^{5}\sin^{5}\theta = z^{5} + 5z^{4}\left(-\frac{1}{z}\right) + 10z^{3}\left(-\frac{1}{z}\right)^{2} + 10z^{2}\left(-\frac{1}{z}\right)^{3} + 5z\left(-\frac{1}{z}\right)^{4} + \left(-\frac{1}{z}\right)^{5}$$

$$\implies 32i\sin^{5}\theta = \left(z^{5} - \frac{1}{z^{5}}\right) - 5\left(z^{3} - \frac{1}{z^{3}}\right) + 10\left(z - \frac{1}{z}\right)$$

$$= 2i\sin 5\theta - 5(2i\sin 3\theta) + 10(2i\sin\theta)$$

$$\implies \sin^{5}\theta = \frac{1}{16}\left(\sin 5\theta - 5\sin 3\theta + 10\sin\theta\right).$$

(b)
$$(2i\sin\theta)^{3}(2\cos\theta)^{3} = \left(z - \frac{1}{z}\right)^{3}\left(z + \frac{1}{z}\right)^{3} = \left[\left(z - \frac{1}{z}\right)\left(z + \frac{1}{z}\right)\right]^{3} = \left(z^{2} - \frac{1}{z^{2}}\right)^{3}$$

$$\Rightarrow 2^{3}i^{3}\sin^{3}\theta \times 2^{3}\cos^{3}\theta = z^{6} + 3z^{4}\left(-\frac{1}{z^{2}}\right) + 3z^{2}\left(-\frac{1}{z^{2}}\right)^{2} + \left(-\frac{1}{z^{2}}\right)^{3}$$

$$= z^{6} - 3z^{2} + \frac{3}{z^{2}} - \frac{1}{z^{6}}$$

$$\Rightarrow -2^{6}i\sin^{3}\theta\cos^{3}\theta = \left(z^{6} - \frac{1}{z^{6}}\right) - 3\left(z^{2} - \frac{1}{z^{2}}\right) = 2i\sin(6\theta) - 3\left(2i\sin(2\theta)\right)$$

$$\Rightarrow \sin^{3}\theta\cos^{3}\theta = -\frac{1}{32}\left(\sin(6\theta) - 3\sin(2\theta)\right) = \frac{1}{32}\left(3\sin(2\theta) - \sin(6\theta)\right).$$

13.(a)
$$\int_0^{\pi/4} \cos^4 \theta \, d\theta = \int_0^{\pi/4} \frac{1}{8} \left(\cos(4\theta) + 4\cos(2\theta) + 3 \right) d\theta$$
$$= \left[\frac{1}{8} \left(\frac{1}{4} \sin(4\theta) + 4 \times \frac{1}{2} \sin(2\theta) + 3\theta \right) \right]_0^{\pi/4}$$
$$= \frac{1}{8} \left[\left(0 + 2 + \frac{3\pi}{4} \right) - (0 + 0 + 0) \right] = \frac{1}{4} + \frac{3\pi}{32}.$$

(b)
$$\int_{\pi/2}^{\pi} \sin^3 \theta \cos^3 \theta \, d\theta = \frac{1}{32} \int_{\pi/2}^{\pi} \left(3 \sin(2\theta) - \sin(6\theta) \right) d\theta$$
$$= \frac{1}{32} \left[-\frac{3}{2} \cos(2\theta) + \frac{1}{6} \cos(6\theta) \right]_{\pi/2}^{\pi}$$
$$= \frac{1}{32} \left[\left(-\frac{3}{2} + \frac{1}{6} \right) - \left(\frac{3}{2} - \frac{1}{6} \right) \right] = \frac{1}{32} \left(-\frac{8}{3} \right) = -\frac{1}{2}.$$

14. Clearly 1 itself is a sixth root of 1 because $1^6 = 1$.

So all the sixth roots of 1 must have modulus |1| = 1.

All six roots are, therefore, equally spaced on a unit circle centred at the origin at angle $\frac{2\pi}{6} = \frac{\pi}{3}$.

15.(a) In polar form,

$$i = 1\operatorname{cis}\left(\frac{\pi}{2} + 2k\pi\right) \quad (k \in \mathbb{Z}) \implies w_k = i^{1/2} = \operatorname{cis}\left(\frac{\pi}{4} + k\pi\right) \quad (k = 0, 1).$$

$$\underline{k = 0} \quad \text{gives} \quad w_0 = \operatorname{cis}\left(\frac{\pi}{4}\right) = \operatorname{cos}\left(\frac{\pi}{4}\right) + i\operatorname{sin}\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}},$$

$$\underline{k = 1} \quad \text{gives} \quad w_1 = \operatorname{cis}\left(\frac{5\pi}{4}\right) = \operatorname{cos}\left(\frac{5\pi}{4}\right) + i\operatorname{sin}\left(\frac{5\pi}{4}\right) = -\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i.$$

(b) In polar form,

$$1+\sqrt{3}i = 2\operatorname{cis}\left(\frac{\pi}{3}+2k\pi\right) \quad (k \in \mathbb{Z}) \implies w_k = (1+\sqrt{3}i)^{1/2} = \sqrt{2}\operatorname{cis}\left(\frac{\pi}{6}+k\pi\right) \quad (k = 0, 1).$$

$$\underline{k=0} \quad \text{gives} \quad w_0 = \sqrt{2}\operatorname{cis}\left(\frac{\pi}{6}\right) = \sqrt{2}\left[\cos\left(\frac{\pi}{6}\right)+i\sin\left(\frac{\pi}{6}\right)\right] = \frac{1}{\sqrt{2}}(\sqrt{3}+i),$$

$$\underline{k=1} \quad \text{gives} \quad w_1 = \sqrt{2}\operatorname{cis}\left(\frac{7\pi}{6}\right) = \sqrt{2}\left[\cos\left(\frac{7\pi}{6}\right)+i\sin\left(\frac{7\pi}{6}\right)\right] = -\frac{1}{\sqrt{2}}(\sqrt{3}+i).$$

(c) In polar form,

$$-8 = 8 \operatorname{cis}(\pi + 2k\pi) \qquad (k \in \mathbb{Z}) \implies w_k = (-8)^{1/3} = 2 \operatorname{cis}\left(\frac{(2k+1)\pi}{3}\right) \quad (k = 0, 1, 2).$$

$$\underline{k = 0} \qquad w_0 = 2 \operatorname{cis}\left(\frac{\pi}{3}\right) = 1 + \sqrt{3}i,$$

$$\underline{k = 1} \qquad w_1 = 2 \operatorname{cis}(\pi) = -2,$$

$$\underline{k = 2} \qquad w_2 = 2 \operatorname{cis}\left(\frac{5\pi}{3}\right) = 1 - \sqrt{3}i.$$

(For the third value we could alternatively use k = -1.)

(d) In polar form,
$$27i = 27 \operatorname{cis} \left(\frac{\pi}{2} + 2k\pi \right) \quad (k \in \mathbb{Z})$$

 $\implies w_k = (27i)^{1/3} = 3 \operatorname{cis} \left(\frac{(4k+1)\pi}{6} \right) \quad (k = 0, 1, 2).$
 $\underline{k} = 0 \qquad w_0 = 3 \operatorname{cis} \left(\frac{\pi}{6} \right) = \frac{3}{2} (\sqrt{3} + i),$
 $\underline{k} = 1 \qquad w_1 = 3 \operatorname{cis} \left(\frac{5\pi}{6} \right) = \frac{3}{2} (-\sqrt{3} + i),$
 $\underline{k} = 2 \qquad w_2 = 3 \operatorname{cis} \left(\frac{9\pi}{6} \right) = -3i.$

15.(e) In polar form,
$$-8 - 8\sqrt{3}i = 16\operatorname{cis}\left(\frac{4\pi}{3} + 2k\pi\right) \quad (k \in \mathbb{Z})$$
 $\Longrightarrow \quad w_k = (-8 - 8\sqrt{3}i)^{1/4} = 2\operatorname{cis}\left(\frac{\pi}{3} + \frac{k\pi}{2}\right) \quad (k = 0, 1, 2, 3).$
 $\underline{k = 0} \qquad w_0 = 2\operatorname{cis}\left(\frac{\pi}{3}\right) = 1 + \sqrt{3}i,$
 $\underline{k = 1} \qquad w_1 = 2\operatorname{cis}\left(\frac{5\pi}{6}\right) = -\sqrt{3} + i,$
 $\underline{k = 2} \qquad w_2 = 2\operatorname{cis}\left(\frac{4\pi}{3}\right) = -1 - \sqrt{3}i,$
 $\underline{k = 3} \qquad w_3 = 2\operatorname{cis}\left(\frac{11\pi}{6}\right) = \sqrt{3} - i.$

(f) In polar form,
$$-64 = 64 \operatorname{cis}(\pi + 2k\pi) \quad (k \in \mathbb{Z})$$
 $\implies w_k = (-64)^{1/6} = 2 \operatorname{cis}\left(\frac{(2k+1)\pi}{6}\right) \quad (k = -3, -2, -1, 0, 1, 2).$

$$\frac{k = -3}{6} \qquad w_{-3} = 2 \operatorname{cis}\left(-\frac{5\pi}{6}\right) = -\sqrt{3} - i,$$

$$\frac{k = -2}{6} \qquad w_{-2} = 2 \operatorname{cis}\left(-\frac{3\pi}{6}\right) = -2i,$$

$$\frac{k = -1}{6} \qquad w_{-1} = 2 \operatorname{cis}\left(-\frac{\pi}{6}\right) = \sqrt{3} - i,$$

$$\frac{k = 0}{6} \qquad w_0 = 2 \operatorname{cis}\left(\frac{\pi}{6}\right) = \sqrt{3} + i,$$

$$\frac{k = 1}{6} \qquad w_1 = 2 \operatorname{cis}\left(\frac{3\pi}{6}\right) = 2i,$$

$$\frac{k = 2}{6} \qquad w_2 = 2 \operatorname{cis}\left(\frac{5\pi}{6}\right) = -\sqrt{3} + i.$$

16.(a)
$$z^4 + 81 = 0$$
 \Longrightarrow $z^4 = -81 = 81 \operatorname{cis}(\pi)$ \Longrightarrow $w_k = z = 81^{1/4} \operatorname{cis}\left(\frac{1}{4}(\pi + 2k\pi)\right)$ $= 3\operatorname{cis}\left(\frac{\pi}{4} + \frac{k\pi}{2}\right)$ $(k = 0, 1, 2, 3).$

Therefore, taking principal values of the arguments, the roots are

$$w_{0} = 3\operatorname{cis}\left(\frac{\pi}{4}\right) = \frac{3}{\sqrt{2}}(1+i), \qquad w_{1} = 3\operatorname{cis}\left(\frac{3\pi}{4}\right) = \frac{3}{\sqrt{2}}(-1+i),$$

$$w_{2} = 3\operatorname{cis}\left(\frac{5\pi}{4}\right) = 3\operatorname{cis}\left(-\frac{3\pi}{4}\right) = -\frac{3}{\sqrt{2}}(1+i),$$

$$w_{3} = 3\operatorname{cis}\left(\frac{7\pi}{4}\right) = 3\operatorname{cis}\left(-\frac{\pi}{4}\right) = \frac{3}{\sqrt{2}}(1-i).$$

(b)
$$z^{6} + 1 = \sqrt{3}i$$
 \implies $z^{6} = -1 + \sqrt{3}i = 2\operatorname{cis}\left(\frac{2\pi}{3}\right)$
 $\implies w_{k} = z = 2^{1/6}\operatorname{cis}\left(\frac{1}{6}\left(\frac{2\pi}{3} + 2k\pi\right)\right)$
 $= 2^{1/6}\operatorname{cis}\left(\frac{\pi}{9} + \frac{k\pi}{3}\right)$ $(k = 0, 1, 2, 3, 4, 5).$

Therefore, taking principal values of the arguments in degrees, the roots are

$$w_0 = 2^{1/6} \operatorname{cis}(20^\circ),$$
 $w_1 = 2^{1/6} \operatorname{cis}(80^\circ),$ $w_2 = 2^{1/6} \operatorname{cis}(140^\circ),$ $w_3 = 2^{1/6} \operatorname{cis}(200^\circ) = 2^{1/6} \operatorname{cis}(-160^\circ),$ $w_4 = 2^{1/6} \operatorname{cis}(260^\circ) = 2^{1/6} \operatorname{cis}(-100^\circ),$ $w_5 = 2^{1/6} \operatorname{cis}(320^\circ) = 2^{1/6} \operatorname{cis}(-40^\circ).$

17.
$$|2 - 2\sqrt{3}i| = 2\sqrt{1^2 + (\sqrt{3})^2} = 4$$
, $\operatorname{Arg}(2 - 2\sqrt{3}i) = -\frac{\pi}{3}$

In polar form
$$2-2\sqrt{3}i = 4\operatorname{cis}\left(-\frac{\pi}{3}\right)$$

$$\implies w_k = (2 - 2\sqrt{3}i)^{1/3} = 4^{1/3} \operatorname{cis}\left(\frac{-\pi/3 + 2k\pi}{3}\right),$$

where k = 0, 1, 2 for distinct roots.

where k = 0, 1, 2, 3 for distinct roots.

Roots are:
$$(k=0)$$
 $w_0 = 4^{1/3} \operatorname{cis}\left(\frac{-\pi/3}{3}\right) = 4^{1/3} \operatorname{cis}\left(-\frac{\pi}{9}\right),$ $(k=1)$ $w_1 = 4^{1/3} \operatorname{cis}\left(\frac{-\pi/3 + 2\pi}{3}\right) = 4^{1/3} \operatorname{cis}\left(\frac{5\pi}{9}\right),$ $(k=2)$ $w_2 = 4^{1/3} \operatorname{cis}\left(\frac{-\pi/3 + 4\pi}{3}\right) = 4^{1/3} \operatorname{cis}\left(\frac{11\pi}{9}\right) \equiv 4^{1/3} \operatorname{cis}\left(-\frac{7\pi}{9}\right),$

or equivalently,

$$w_0 = 4^{1/3} \left(\cos\left(-\frac{\pi}{9}\right) + i\sin\left(-\frac{\pi}{9}\right) \right) = 1.5874 \left(\cos\frac{\pi}{9} - i\sin\frac{\pi}{9} \right) = 1.492 - 0.543i,$$

$$w_1 = 1.5874 \left(\cos\frac{5\pi}{9} + i\sin\frac{5\pi}{9} \right) = -0.276 + 1.563i,$$

$$w_2 = 1.5874 \left(\cos\frac{7\pi}{9} - i\sin\frac{7\pi}{9} \right) = -1.216 - 1.020i.$$

18.
$$|-2-2\sqrt{3}i| = 2\sqrt{(-1)^2 + (\sqrt{3})^2} = 4$$
, $Arg(-2-2\sqrt{3}i) = -\frac{2\pi}{3}$
In polar form $-2-2\sqrt{3}i = 4\operatorname{cis}\left(-\frac{2\pi}{3}\right)$
 $\implies w_k = (-2-2\sqrt{3}i)^{1/4} = 4^{1/4}\operatorname{cis}\left(\frac{-2\pi/3 + 2k\pi}{4}\right) = \sqrt{2}\operatorname{cis}\left(-\frac{\pi}{6} + \frac{k\pi}{2}\right)$,

Roots are: (k = 0) $w_0 = 4^{1/4} \operatorname{cis}\left(\frac{-2\pi/3}{4}\right) = \sqrt{2} \operatorname{cis}\left(-\frac{\pi}{6}\right) = \frac{1}{\sqrt{2}}(\sqrt{3} - i),$ (k = 1) $w_1 = 4^{1/4} \operatorname{cis}\left(\frac{-2\pi/3 + 2\pi}{4}\right) = \sqrt{2} \operatorname{cis}\left(\frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}(1 + \sqrt{3}i),$ (k = 2) $w_2 = 4^{1/4} \operatorname{cis}\left(\frac{-2\pi/3 + 4\pi}{4}\right) = \sqrt{2} \operatorname{cis}\left(\frac{5\pi}{6}\right) = -\frac{1}{\sqrt{2}}(\sqrt{3} - i),$ (k = 3) $w_3 = 4^{1/4} \operatorname{cis}\left(\frac{-2\pi/3 + 6\pi}{4}\right)$ $= \sqrt{2} \operatorname{cis}\left(\frac{4\pi}{3}\right) \equiv \sqrt{2} \operatorname{cis}\left(-\frac{2\pi}{3}\right) = -\frac{1}{\sqrt{2}}(1 + \sqrt{3}i).$ 19. Follow the method adopted in the previous questions using the polar form:

$$4 + 4\sqrt{3}i = 8\operatorname{cis}\left(\frac{\pi}{3} + 2k\pi\right) \quad (k \in \mathbb{Z})$$

$$w_k = (4 + 4\sqrt{3}i)^{1/3} = 2\operatorname{cis}\left[\frac{1}{3}(\frac{\pi}{3} + 2k\pi)\right] \quad (k = 0, 1, 2).$$

$$w_0 = 2\operatorname{cis}\left(\frac{\pi}{9}\right), \quad w_1 = 2\operatorname{cis}\left(\frac{7\pi}{9}\right) \quad \text{and} \quad w_2 = 2\operatorname{cis}\left(\frac{13\pi}{9}\right).$$

20. In polar form, $-1 = 1\operatorname{cis}(\pi + 2k\pi)$ $(k \in \mathbb{Z})$. So the fifth roots of -1 are

$$w_k = 1^{1/5} \operatorname{cis}\left(\frac{\pi}{5}(1+2k)\right) = \operatorname{cis}\left(\frac{\pi}{5}(1+2k)\right) \qquad k = 0, 1, 2, 3, 4.$$

(The arguments are odd-multiples of $\frac{\pi}{5}$. Case k=2 corresponds to $w_2=\mathrm{cis}(\pi)=-1$.) $w_0=0.8090-0.5878i, \qquad w_1=0.8090+0.5878i, \qquad w_2=-0.3090+0.9511i,$ $w_3=-1, \qquad w_4=-0.3090-0.9511i.$ Check: $w_0+w_1+w_2+w_3+w_4=0$.

21. In polar form, $-16 = 16 \operatorname{cis} (\pi + 2\pi k)$, where k is any integer.

Taking the fourth root,

$$w_k = (-16)^{1/4} = 16^{1/4} \operatorname{cis}\left(\frac{1}{4}(\pi + 2\pi k)\right) = 2\operatorname{cis}\left(\frac{\pi}{4} + \frac{k\pi}{2}\right) \quad (k \in \mathbb{Z}).$$

To find the four roots, we consider four successive values of k, for example, k = 0, 1, 2, 3:

$$\frac{k=0}{w_0} \qquad w_0 = 2\operatorname{cis}\left(\frac{\pi}{4}\right) = 2\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) = \sqrt{2}(1+i),$$

$$\frac{k=1}{w_1} \qquad w_1 = 2\operatorname{cis}\left(\frac{\pi}{4} + \frac{\pi}{2}\right) = 2\operatorname{cis}\left(\frac{3\pi}{4}\right) = 2\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = \sqrt{2}(1-i),$$

$$\frac{k=2}{w_2} \qquad w_2 = 2\operatorname{cis}\left(\frac{\pi}{4} + \pi\right) = 2\operatorname{cis}\left(\frac{5\pi}{4}\right) = 2\left(-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i\right) = -\sqrt{2}(1+i),$$

$$\frac{k=3}{w_3} \qquad w_3 = 2\operatorname{cis}\left(\frac{\pi}{4} + \frac{3\pi}{PShag}\right) = 2\operatorname{cis}\left(\frac{7\pi}{nqn}\right) = 2\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right) = -\sqrt{2}(1-i).$$

x

y

All four roots lie on a circle centred at $w_3 = -\sqrt{2}(1-i)$ z = 0 with radius $\sqrt{2}$, and are $w_{\overline{\lambda}} = \sqrt{2}(1-i)$ separated by an angular interval of $\overline{2}$. $w_2 = -\sqrt{2}(1+i)$

$$w_0 = \sqrt{2}(1+i)$$

 $\sqrt{2}$

22. All four roots have the same modulus as 0.8 + 0.6i, namely $\sqrt{0.8^2 + 0.6^2} = \sqrt{1} = 1$. So all the roots lie on the circle of radius 1 centred at the origin. There are four roots, so they are separated on the circle by angles $\frac{2\pi}{4} = \frac{\pi}{2}$, i.e. they are separated by right angles.

PSfrag replacements

23. In polar form, $8 = 8\operatorname{cis}(0 + 2k\pi)$ $(k \in \mathbb{Z})$. So the cube roots of 8 are $w_k = 8^{1/3}\operatorname{cis}\left(\frac{2k\pi}{3}\right) = 2\operatorname{cis}\left(\frac{2k\pi}{3}\right), \qquad k = 0, 1, 2.$ $w_0 = 2\operatorname{cis}(0) = 2, \qquad w_1 = 2\operatorname{cis}\left(\frac{2\pi}{3}\right) = 2\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right) = -1 + \sqrt{3}i,$ $w_2 = 2\operatorname{cis}\left(\frac{4\pi}{3}\right) \equiv 2\operatorname{cis}\left(-\frac{2\pi}{3}\right) = 2\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right) = -1 - \sqrt{3}i.$

If $(w-3)^3 = 8$, then $w-3 = 8^{1/3}$. In other words, $w = 3 + 8^{1/3}$. There are three roots, corresponding to the three cube roots of 8:

$$w = 3 + 2 = 5$$
, $w = 3 - 1 + \sqrt{3}i = 2 + \sqrt{3}i$ and $w = 3 - 1 - \sqrt{3}i = 2 - \sqrt{3}i$.

24. It is easy to confirm that z = -2 is a solution of the equation. So (z+2) must be a linear factor of $z^3 + 6z + 20$.

$$\begin{array}{r}
z^2 - 2z + 10 \\
z^3 + 6z + 20 \\
\underline{z^3 + 2z^2} \\
-2z^2 + 6z + 20 \\
\underline{-2z^2 - 4z} \\
10z + 20 \\
\underline{10z + 20} \\
0
\end{array}$$

So $z^3 + 6z + 20 = (z+2)(z^2 - 2z + 10) = (z+2)((z-1)^2 + 9) = 0$ when z = -2, z = 1 + 3i or z = 1 - 3i.

$$\mathbf{25.(a)} \quad (1+iz)^3 = 8 = 2^3 \operatorname{cis} (0+2k\pi) \quad \Longrightarrow \quad 1+iz = 2 \operatorname{cis} \left(\frac{2k\pi}{3}\right) \quad (k=0, 1, 2).$$

$$\underline{k=0} \quad 1+iz = 2 \quad \Longrightarrow \quad iz = 1 \quad \Longrightarrow \quad z = \frac{1}{i} = \frac{i}{i^2} = -i,$$

$$\underline{k=1} \quad 1+iz = 2\operatorname{cis} \left(\frac{2\pi}{3}\right) = -1+i\sqrt{3} \quad \Longrightarrow \quad iz = -2+i\sqrt{3} \quad \Longrightarrow \quad z = 2i+\sqrt{3},$$

$$\underline{k=2} \quad 1+iz = 2\operatorname{cis} \left(\frac{4\pi}{3}\right) = -1-i\sqrt{3} \quad \Longrightarrow \quad iz = -2-i\sqrt{3} \quad \Longrightarrow \quad z = 2i-\sqrt{3}.$$

Hence the roots of the equation are $\sqrt{3} + 2i$, $-\sqrt{3} + 2i$ and -i.

(b)
$$z^4 + 13z^2 + 36 = 0 \implies (z^2)^2 + 13z^2 + 36 \implies (z^2 + 4)(z^2 + 9) = 0$$

(obtained by introducing $w = z^2$ and factorising the quadratic $w^2 + 13w + 36$).
Hence either $z^2 + 4 = 0$ or $z^2 + 9 = 0$.
For $z^2 + 4 = 0$ either use the factorisation $z^2 + 4 = z^2 - 4i^2 = (z + 2i)(z - 2i)$ or find the two square roots of -4 . Both methods produce $z = \pm 2i$.
Similarly, $z^2 + 9 = 0 \implies z = \pm 3i$. So the roots are $\pm 2i$, $\pm 3i$.

26. Since z = 0 is not a solution, the equation is equivalent to

$$\left(\frac{z+1}{z}\right)^4 = 1 \implies 1 + \frac{1}{z} = 1, i, -1, -i \text{ (the fourth roots of unity)}.$$

However there is no complex number z such that $1 + \frac{1}{z} = 1$. That leaves 3 cases.

$$1 + \frac{1}{z} = -i \implies \frac{1}{z} = -1 + i \implies z = \frac{1}{-1 + i}$$

$$= \frac{-1 - i}{(-1 + i)(-1 - i)} = \frac{-1 - i}{2}.$$

$$1 + \frac{1}{z} = -1 \implies \frac{1}{z} = -2 \implies z = -\frac{1}{2}.$$

$$1 + \frac{1}{z} = -i \implies \frac{1}{z} = -1 - i \implies z = \frac{1}{-1 - i}$$

$$= \frac{-1 + i}{(-1 - i)(-1 + i)} = \frac{-1 + i}{2}.$$

Hence we obtain the three solutions: $z = \frac{1}{2}(-1-i), \frac{1}{2}(-1+i)$ and $-\frac{1}{2}$.

There are only three roots since the equation is a disguised cubic. It is straightforward to show that the quartic terms on either side of the equation cancel out and that

$$(z+1)^4 = z^4 \iff 4z^3 + 6z^2 + 4z + 1 = 0.$$

The left-hand side will factorise as $(2z + 1)(2z^2 + 2z + 1)$, from which the roots can be found. However, the first method is probably as quick and involves no guessing of factors.

27.(a) (i)
$$z^3 - 1 = 0 \implies z^3 = 1 = 1\operatorname{cis}(0 + 2k\pi) \implies z = \operatorname{cis}\left(\frac{2k\pi}{3}\right) \quad (k \in \mathbb{Z}).$$
Taking $k = 0, 1, 2$ (say) gives the values $z = 1, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, -\frac{1}{2} - \frac{\sqrt{3}}{2}i.$
Hence $z^3 - 1 = (z - 1)\left(z + \frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\left(z + \frac{1}{2} + \frac{\sqrt{3}}{2}i\right).$

(ii) The second and third factors combine to give

$$\left(z + \frac{1}{2}\right)^2 - \left(\frac{\sqrt{3}}{2}i\right)^2 = z^2 + z + \frac{1}{4} - \frac{3}{4}i^2 = z^2 + z + 1.$$

Hence $z^3 - 1 = (z - 1)(z^2 + z + 1)$, which is the common factorisation of $z^3 - 1$.

(b) (i)
$$z^4 + 1 = 0 \implies z^4 = -1 = 1 \operatorname{cis}(\pi + 2k\pi) \implies z = \operatorname{cis}\frac{(2k+1)\pi}{4}$$
 $(k \in \mathbb{Z})$

The values k = -2, -1, 0, 1 give, respectively,

$$\operatorname{cis}\left(-\frac{3\pi}{4}\right) = -\frac{1}{\sqrt{2}}(1+i), \qquad \operatorname{cis}\left(-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(1-i),$$

$$\operatorname{cis}\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(1+i), \qquad \operatorname{cis}\left(\frac{3\pi}{4}\right) = \frac{1}{\sqrt{2}}(-1+i).$$

Thus,

$$z^4 + 1 \ = \ \Big(z + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\,i\Big)\!\Big(z - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\,i\Big)\!\Big(z - \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\,i\Big)\!\Big(z + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}\,i\Big).$$

(ii) The linear factors pair off, first with last, second with third (corresponding to conjugate roots). We therefore obtain

$$z^{4} + 1 = \left[\left(z + \frac{1}{\sqrt{2}} \right)^{2} - \left(\frac{1}{\sqrt{2}} i \right)^{2} \right] \left[\left(z - \frac{1}{\sqrt{2}} \right)^{2} - \left(\frac{1}{\sqrt{2}} i \right)^{2} \right]$$

$$= \left[z^{2} + \frac{2}{\sqrt{2}} z + \frac{1}{2} - \frac{1}{2} i^{2} \right] \left[z^{2} - \frac{2}{\sqrt{2}} z + \frac{1}{2} - \frac{1}{2} i^{2} \right]$$

$$= (z^{2} + \sqrt{2}z + 1)(z^{2} - \sqrt{2}z + 1).$$

(c) (i)
$$z^6 + 1 = 0 \implies z^6 = -1 = \operatorname{cis}(2k+1)\pi \implies z = \operatorname{cis}\frac{(2k+1)\pi}{6}$$
 $(k \in \mathbb{Z}).$

From calculations similar to Qu.28(f) we obtain the conjugate pairs of roots

$$i, -i, \frac{1}{2}(\sqrt{3}+i), \frac{1}{2}(\sqrt{3}-i), \frac{1}{2}(-\sqrt{3}+i), \frac{1}{2}(-\sqrt{3}-i).$$

Hence,

$$z^6 + 1 = (z - i)(z + i) \left(z - \frac{\sqrt{3}}{2} - \frac{1}{2}i\right) \left(z - \frac{\sqrt{3}}{2} + \frac{1}{2}i\right) \left(z + \frac{\sqrt{3}}{2} - \frac{1}{2}i\right) \left(z + \frac{\sqrt{3}}{2} + \frac{1}{2}i\right).$$

(ii) Combining consecutive pairs of linear factors (corresponding to conjugate pairs) gives

$$z^{6} + 1 = (z^{2} - i^{2}) \left[\left(z - \frac{\sqrt{3}}{2} \right)^{2} - \left(\frac{1}{2} i \right)^{2} \right] \left[\left(z + \frac{\sqrt{3}}{2} \right)^{2} - \left(\frac{1}{2} i \right)^{2} \right]$$

$$= (z^{2} + 1) \left[z^{2} - \sqrt{3}z + \frac{3}{4} - \frac{1}{4} i^{2} \right] \left[z^{2} + \sqrt{3}z + \frac{3}{4} - \frac{1}{4} i^{2} \right]$$

$$= (z^{2} + 1)(z^{2} - \sqrt{3}z + 1)(z^{2} + \sqrt{3}z + 1).$$
On 27 and 34

Qu. 27 cont'd next sheet

27.(d) (i)
$$z^5 - 1 = 0 \iff z^5 = 1 = 1\operatorname{cis}(0 + 2k\pi) \iff z = \operatorname{cis}\left(\frac{2k\pi}{5}\right)$$
 $(k \in \mathbb{Z})$.

Take k = -2, -1, 0, 1, 2 to give (including two conjugate pairs)

$$\cos\left(\frac{4\pi}{5}\right) - i\sin\left(\frac{4\pi}{5}\right), \qquad \cos\left(\frac{2\pi}{5}\right) - i\sin\left(\frac{2\pi}{5}\right), \qquad 1,$$
$$\cos\left(\frac{2\pi}{5}\right) + i\sin\left(\frac{2\pi}{5}\right), \qquad \cos\left(\frac{4\pi}{5}\right) + i\sin\left(\frac{4\pi}{5}\right).$$

Thus.

$$z^{5} - 1 = (z - 1) \left[\left(z - \cos\left(\frac{2\pi}{5}\right) \right) - i \sin\left(\frac{2\pi}{5}\right) \right] \left[\left(z - \cos\left(\frac{2\pi}{5}\right) \right) + i \sin\left(\frac{2\pi}{5}\right) \right] \times \left[\left(z - \cos\left(\frac{4\pi}{5}\right) \right) - i \sin\left(\frac{4\pi}{5}\right) \right] \left[\left(z - \cos\left(\frac{4\pi}{5}\right) \right) + i \sin\left(\frac{4\pi}{5}\right) \right].$$

(ii) The second and third linear factors combine to give

$$\left[z - \cos\left(\frac{2\pi}{5}\right)\right]^2 - i^2 \sin^2\left(\frac{2\pi}{5}\right)$$

$$= z^2 - 2z \cos\left(\frac{2\pi}{5}\right) + \cos^2\left(\frac{2\pi}{5}\right) + \sin^2\left(\frac{2\pi}{5}\right)$$

$$= z^2 - 2z \cos\left(\frac{2\pi}{5}\right) + 1.$$

The fourth and fifth factors combine similarly to give $z^2 - 2z \cos\left(\frac{4\pi}{5}\right) + 1$. Hence $z^5 - 1 = (z - 1)\left[z^2 - 2z\cos\left(\frac{2\pi}{5}\right) + 1\right]\left[z^2 - 2z\cos\left(\frac{4\pi}{5}\right) + 1\right]$.

28. If
$$z = 3i$$
 then $z^2 = -9$, $z^3 = -27i$, $z^4 = 81$ and $z^5 = 243i$. Hence
$$P(3i) = 243i + 9(-27i) + 8(-9) + 72 = (243 - 243)i - 72 + 72 = 0i + 0 = 0,$$
 so $3i$ is a root of equation $P(z) = 0$.

Since P(z) has real coefficients, $\overline{3i} = -3i$ is also a zero. Thus P(z) has linear factors (z-3i) and (z-(-3i)), i.e. $P(z) \equiv (z-3i)(z+3i)Q(z) \equiv (z^2+9)Q(z)$, where Q(z) is a polynomial of degree 3 given by $Q(z) = P(z)/(z^2+9)$. The division is as follows:

Therefore $Q(z) = z^3 + 8$.

28. (cont'd)

Note that Q(-2) = 0, so $z^3 + 8$ has a factor (z - (-2)) = z + 2. Hence $z^3 + 8 \equiv (z + 2)R(z)$, where the polynomial $R(z) = (z^3 + 8)/(z + 2)$ can be found by long division as follows:

$$z^{2} - 2z + 4 \qquad \longleftarrow \qquad \underline{R(z)}$$

$$z + 2 \overline{\smash)z^{3} + 0z^{2} + 0z + 8}$$

$$\underline{z^{3} + 2z^{2}}$$

$$-2z^{2} + 0z + 8$$

$$\underline{-2z^{2} - 4z}$$

$$4z + 8$$

$$\underline{4z + 8}$$

$$\underline{0}$$

Finally, the roots of $R(z) = z^2 - 2z + 4 = 0$ are given by

$$z^{2} - 2z + 4 = 0 \implies (z - 1)^{2} - 1 + 4 = 0$$

$$\implies (z - 1)^{2} = -3 = -3i^{2}$$

$$\implies z - 1 = \pm \sqrt{3}i$$

$$\implies z = 1 \pm \sqrt{3}i.$$

Hence the roots of P(z) = 0 are $\pm 3i$, -2 and $1 \pm \sqrt{3}i$.

(i) P(z) may be expressed as a product of linear factors as follows:

$$P(z) \equiv (z-3i)(z+3i)(z+2)(z-1+\sqrt{3}i)(z-1-\sqrt{3}i).$$

(ii) Alternatively, in terms of quadratic and linear factors involving only real coefficients:

$$P(z) \equiv (z^2 + 9)(z+2)(z^2 - 2z + 4).$$

[Note that we could have found the zeros (and hence factors) of Q(z) by solving $z^3+8=0$:

$$z^{3} = -8 = 8 \operatorname{cis}(\pi + 2\pi k)$$
 \Longrightarrow $z = 2 \operatorname{cis}((2k+1)\frac{\pi}{3}), \quad k = 0, 1, 2.$

Hence the zeros of Q(z) = 0 are

$$z = 2\operatorname{cis}\left(\frac{\pi}{3}\right) = 1 + \sqrt{3}i \quad \text{or} \quad 2\operatorname{cis}(\pi) = -2 \quad \text{or} \quad 2\operatorname{cis}\left(\frac{5\pi}{3}\right) = 1 - \sqrt{3}i.$$

29. Let $w = z^2$ (this is a trick we can always use when a polynomial only involves even powers). Then we can rewrite our equations as $w^2 + 2w + 4 = 0$, a quadratic for w. We can find solutions for w by completing the square, then use the formula for square roots to compute z:

 $w^2 + 2w + 4 = (w+1)^2 + 3 = 0 \implies (w+1)^2 = -3 = 3i^2 \implies z^2 = w = -1 \pm \sqrt{3} i.$ In polar form, $-1 + \sqrt{3} i = 2 \operatorname{cis} \left(\frac{2\pi}{3} + 2k\pi\right), \quad -1 - \sqrt{3} i = 2 \operatorname{cis} \left(\frac{-2\pi}{3} + 2k\pi\right) \quad (k \in \mathbb{Z}).$ Therefore, the two square roots of $-1 + \sqrt{3} i$ are

$$(-1+\sqrt{3}i)^{1/2} = \left[2\operatorname{cis}\left(\frac{2\pi}{3}+2k\pi\right)\right]^{1/2} = \sqrt{2}\operatorname{cis}\left(\frac{\pi}{3}+k\pi\right) \quad (k=0,1)$$

$$= \sqrt{2}\operatorname{cis}\left(\frac{\pi}{3}\right) \quad \text{and} \quad \sqrt{2}\operatorname{cis}\left(\frac{4\pi}{3}\right)$$

$$= \frac{\sqrt{2}}{2}(1+3i) \quad \text{and} \quad -\frac{\sqrt{2}}{2}(1+3i)$$

$$= \frac{1}{\sqrt{2}}(1+3i) \quad \text{and} \quad -\frac{1}{\sqrt{2}}(1+3i).$$

In a similar way, we can show that the two square roots of $-1 - \sqrt{3}i$ are

$$(-1 - \sqrt{3}i)^{1/2} = \frac{1}{\sqrt{2}}(1 - 3i)$$
 and $-\frac{1}{\sqrt{2}}(1 - 3i)$.

So the four solutions of the quartic equation can be written (in a concise form) as:

$$z = \pm \frac{1}{\sqrt{2}} (1 \pm 3i)$$
.

30.
$$z = 1 + i$$
 \implies $z^2 = 1 + 2i + i^2 = 2i$ \implies $z^3 = z^2 \times z = 2i + 2i^2 = -2 + 2i, \quad z^4 = z^2 \times z^2 = -4.$

Therefore, when z = 1 + i,

$$z^4 - 6z^3 + 23z^2 - 34z + 26 = -4 + 12 - 12i + 46i - 34 - 34i + 26 = 0.$$

So z = 1 + i is a root. It follows that $z = \overline{1 + i} = 1 - i$ is also a root because the polynomial has real coefficients.

By combining the two linear factors we obtain the real quadratic factor

$$(z-1-i)(z-1+i) = (z-1)^2 - i^2 = z^2 - 2z + 1 - i^2 = z^2 - 2z + 2.$$

Long division now allows us to factorise the quartic polynomial as

$$z^4 - 6z^3 + 23z^2 - 34z + 26 = (z^2 - 2z + 2)(z^2 - 4z + 13).$$

The other roots of the original equation satisfy

$$z^{2} - 4z + 13 = 0 \implies (z - 2)^{2} = -9 \implies z - 2 = \pm 3i \implies z = 2 \pm 3i.$$

Hence the four roots are 1+i, 1-i, 2+3i and 2-3i.

31.(a) In polar form,
$$\sqrt{3} - i = 2 \operatorname{cis} \left(-\frac{\pi}{6} + 2k\pi \right) = 2e^{i(-\frac{\pi}{6} + 2k\pi)}$$

$$\implies \log(\sqrt{3} - i) = \ln(2) + i\left(-\frac{\pi}{6} + 2k\pi \right) \qquad (k \in \mathbb{Z}).$$

(b) In polar form,
$$2 + 2i = \sqrt{8} \operatorname{cis} \left(\frac{\pi}{4} + 2k\pi \right) = 2^{\frac{3}{2}} e^{i(\frac{\pi}{4} + 2k\pi)}$$

 $\implies \log(2 + 2i) = \ln(\sqrt{8}) + i\left(\frac{\pi}{4} + 2k\pi\right) = \frac{3}{2} \ln 2 + i\left(\frac{\pi}{4} + 2k\pi\right) \qquad (k \in \mathbb{Z}).$

(c) In polar form,
$$-i = 1\operatorname{cis}\left(-\frac{\pi}{2} + 2k\pi\right) = 1e^{i(-\frac{\pi}{2} + 2k\pi)}$$

 $\Longrightarrow \log(-i) = \ln 1 + i\left(-\frac{\pi}{2} + 2k\pi\right) = i\left(-\frac{\pi}{2} + 2k\pi\right) \qquad (k \in \mathbb{Z}).$

(d)
$$e^{3-4i} = e^3 e^{-4i} = e^3 (\cos(4) - i\sin(4)) = e^3 \cos(4) - i e^3 \sin(4)$$
.
Real part is $e^3 \cos(4)$, imaginary part is $-e^3 \sin(4)$.