DS 644: Homework 4

Instructions. Answer the following multiple choice questions by selecting all correct choices.

1.	(4 p	oints) Sh	uffling.
	(a)	What is	shuffling?
			a method for recovering data after hardware failure
			the method used to ensure a random number generator is unbiased
			any movement of data
			moving data from memory to disk, usually caused by insufficient fast memory transferring data between nodes in a cluster, usually in order to complete a computation
	(b)	How can	shuffling sometimes be reduced or avoided using Spark?
			use higher quality, fault-tolerant hardware
			use a pre-shuffled random number generator
			avoid algorithms that process the entire data set in favor of algorithms that only need a small subset of it
			use only fast memory, eliminating all spinning disks from the network
			partition an RDD before applying transformations or actions that cause shuffling
2.	Par	titions a	nd Partitioning
	(a)		pair RDD (of key-value pairs), when we group values with the same key Spark tey-value pairs with the same key on the same machine of our cluster.
		□ True	□ False
	(b)		alt, Spark uses range partitioning to determine which key-value pair should be which machine.
		□ True	□ False
	(c)		we partition an RDD into a number of blocks. From the following statements, e two that are true.
			A single block of the partition may be distributed across multiple machines in the cluster.
			A block of the partition is assigned to at most one machine of the cluster.
			At least one block of the partition is assigned to every machine in the cluster.
			At most one block of the partition is assigned to every machine in the cluster.
			More than one block of the partition may be assigned to the same machine in the cluster.

3.	Consider a data into 4		D, with	keys [8,	23, 39, 4	40, 97], ε	and suppose we want to partition these	е
	-	-	_				() function (n.hashCode() == n), check partition block.	k
	(a) block (): 🗆 8	□ 23	□ 39	□ 40	□ 97	□ none	
	(b) block 1	: □ 8	□ 23	□ 39	□ 40	□ 97	\square none	
	(c) block 2	2: □ 8	□ 23	□ 39	□ 40	□ 97	□ none	
	(d) block 3	3: □ 8	□ 23	□ 39	□ 40	□ 97	\square none	
4.	Consider a data into 4		D, with	keys [8,	23, 39, 4	40, 97], ε	and suppose we want to partition these	e
	Using range to the numb						[41, 60], [61, 100], check the boxes nex	t.
	(a) block (): _□ 8	□ 23	□ 39	□ 40	□ 97	\square none	
	(b) block 1	.: □ 8	□ 23	□ 39	□ 40	□ 97	□ none	
	(c) block 2	2: □ 8	□ 23	□ 39	□ 40	□ 97	□ none	
	(d) block 3	3: □ 8	□ 23	□ 39	□ 40	□ 97	□ none	
5.	Which strat □ hash par	00		in a moi		ed distri	ibution of the data across the partition	?
	inasii par			ige parti				

6.	(a)	Which method can we use to determine whether Spark recognizes that a transformation or action will result in shuffling?									
		$\ \ \Box \ debugDAG \ \ \Box \ isShuffled \ \ \Box \ showSchema \ \ \Box \ showExecutionPlan \ \ \Box \ toDebugString$									
	(b)	How data is initially partitioned and arranged on the cluster doesn't matter, since Spark will always re-arrange your data to avoid shuffling. □ True □ False									
	(c)	reduceByKey running on a pre-partitioned ROD will computed values locally, requiring only the final reduced values to be sent from workers to the driver. \Box True \Box False									
	(d)	join called on two RDDs that are pre-partitioned with the same partitioner and cached on the same node will cause the join to be computed locally, with no shuffling across the network. □ True □ False									
	(e)	Suppose algorithm $\bf A$ joins two RDDs and then performs a filter on the result while algorithm $\bf B$ performs a filter on the two RDDs and then joins the results. Assume the two algorithms obtain the same result. In general, which algorithm do you expect will cause less data shuffling? $\bf B$									
7.	Answer the following parts by typing in the spaces provided. Select from among the following words or phrases: "at most one," "multiple," "fast," "slow," "some," or "none."										
	(a)	In a narrow dependency, each block of the parent RDD may be used byblock(s) of the child RDD.									
		Narrow dependencies are since they require of the data to be shuffled.									
	(b)	In a wide dependency, each block of the parent RDD may be used byblock(s) of the child RDD.									
		Wide dependencies are since they require of the data to be shuffled.									
8.	(a)	The query optimizer of Spark SQL is called									
		$\hfill\Box$ Catalyst $\hfill\Box$ Cobalt $\hfill\Box$ Map Reduce $\hfill\Box$ Platinum $\hfill\Box$ Tungsten									
	(b)	The off-heap serializer of Spark SQL is called									
		□ Catalyst □ Cobalt □ Map Reduce □ Platinum □ Tungsten									