ESP-WROOM-S2

技术规格书

版本 2.6 乐鑫信息科技 版权所有 © 2022

关于本手册

本文介绍了 ESP-WROOM-S2 的产品规格。

发布说明

日期	版本	发布说明
2016.06	V1.0	首次发布。
2016.08	V1.1	修订工作温度范围; 增加 NCC 标准认证; 更新 3.4 接口说明。
2016.11	V1.2	 增加附录—学习资源; 第 5 章增加了"ESP-WROOM-S2 模组外围设计原理图"。
2017.02	V1.3	将 ESP-WROOM-S2 工作电压的最小值由 3.0V 改为 2.5V; 将 Deep-sleep 模式的功耗由 10 μA 改为 20 μA。
2017.02	V1.4	更新章节 3.3。
2017.09	V1.5	 增加文档变更通知和产品证书下载链接; 将工作电压改为 2.7V ~ 3.6V; 更新图 2-1 并增加说明; 更新第 4 章: 将电气特性相关参数合并为表 4-1; 将 Wi-Fi 射频相关参数合并为表 4-2, 并更新输出功率参数; 更新温度回流曲线; 更新表 4-3 功耗的说明; 更新第 5 章原理图,并增加说明。
2017.10	V1.6	 更新表 1-1 中的 RF 认证; 将表 4-2 中芯片输出阻抗值改为 39+j6Ω; 更新外设原理图的说明。
2018.04	V1.7	更新第 5 章外围设计原理图的说明;更新附录 A 中 ESP8266 硬件资源和 ESP8266 App 链接。
2018.09	V1.8	 更新温度回流曲线; 更新模组尺寸信息; 增加模组尺寸图; 增加模组 PCB 封装图形。
2019.03	V1.9	 表 1 - 2 增加有关环保认证和潮湿敏感度 (MSL) 等级的信息; 图 4-1 删除重复信息; 图 5-1 中增加说明。

日期	版本	发布说明
2019.08	V2.0	更新第6章外围原理图。
2019.12	V2.1	 增加温度回流说明; 增加用户反馈链接。
2021.02	V2.2	删除第 1 章有关定制版本的说明。
2020.07	V2.3	更新第6章的说明;更新附录里的链接。
2020.10	V2.4	更新原理图。
2021.08	V2.5	增加"不推荐用于新设计 (NRND)"水印与页脚。
2022.03	V2.6	表 1-1 中增加 RF 认证链接。

文档变更通知

用户可通过乐鑫官网订阅页面 https://www.espressif.com/zh-hans/subscribe 订阅技术文档变更的电子邮件通知。

证书下载

用户可通过乐鑫官网证书下载页面 https://www.espressif.com/zh-hans/certificates 下载产品证书。

目录

1.	产品植	既述	1
2.	管脚	描述	3
3.	功能	描述	6
	3.1.	MCU	6
	3.2.	存储描述	6
		3.2.1. 内置 SRAM 与 ROM	6
		3.2.2. SPI Flash	6
	3.3.	晶振	7
	3.4.	接口说明	7
4.	电气	参数	8
	4.1.	电气特性	8
	4.2.	Wi-Fi 射频	8
	4.3.	功耗	9
	4.4.	温度回流曲线	10
5.	原理	图	11
6.	外围	原理图	12
7.	模组	尺寸图	13
8.	РСВ	封装图形	14
A.	附录·	-学习资源	15
	A.1.	必读资料	15
	A.2.	必备资源	15
	A.3.	视频资源	16

产品概述

乐鑫为客户提供加载 ESP8266EX 的贴片式模组 ESP-WROOM-S2。该模组的 RF 性能已调试到最佳状态。建议用户在初期使用 ESP8266EX 进行测试或二次开发时,采购我司提供的模组。

业 说明:

更多关于 ESP8266EX 的信息,请参考《ESP8266EX 技术规格表》。

目前该模组配置 2 MB, 封装为 SOP 8-150 mil 的 SPI Flash, Flash 接在 HSPI 上。模组使用 2 dBi 的 PCB 板载天线。

ESP-WROOM-S2 作为 SDIO 中的 SPI 从机模式工作时,传输速率可达 8 Mbps。

图 1-1. ESP-WROOM-S2 模组外观

表 1-1. ESP-WROOM-S2 参数表

类别	参数	说明
	RF 认证	见 <u>ESP-WROOM-S2</u> 证书
认证	环保认证	RoHS, REACH
无线参数	Wi-Fi 协议	802.11 b/g/n
	频率范围	2.4 GHz ~ 2.5 GHz (2400 MHz ~ 2483.5 MHz)

不推荐用于新设计 (NRND) 2022.03

1/17 反馈文档意见

类别	参数	说明
	数据接口	UART/I2C/GPIO/PWM/SDIO/SPI/IR Remote Control/ ADC
		GPIO/PWM
	工作电压	2.7 V ~ 3.6 V
	工作电流	平均值: 80 mA
硬件参数	供电电流	最小值: 500 mA
	工作温度	-40 °C ~ 85 °C
	封装大小 (mm)	$(16.00 \pm 0.10) \times (23 \pm 0.10) \times (2.8 \pm 0.10)$
	外部接口	-
	潮湿敏感度等级 (MSL)	等级 3
	无线网络模式	Station/SoftAP/SoftAP + Station
	安全机制	WPA/WPA2
	加密类型	WEP/TKIP/AES
软件参数	升级固件	本地串口烧录 / 云端升级 / 主机下载烧录
	软件开发	支持客户自定义服务器,提供二次开发所需的 SDK
	网络协议	IPv4, TCP/UDP/HTTP/FTP
	用户配置	AT+ 指令集,云端服务器,Android/iOS app

管脚描述

ESP-WROOM-S2 贴片式模组的管脚分布如图 2-1 所示。

图 2-1. ESP-WROOM-S2 管脚布局 (俯视图)

ESP-WROOM-S2 共接出 20 个管脚, 管脚定义见表 2-1。

表 2-1. ESP-WROOM-S2 管脚定义

No.	Pin Name	Functional Description
1	GND	接地
		3.3 V 供电 (VDD)
2	3V3	□ 说明:
		外部供电电源的最大输出电流建议在 500 mA 及以上。
3	IO16	GPIO16;接到 RST 管脚时可做 Deep-sleep 的唤醒。
		HSPICS
4	IO15	UART 下载:外部拉低。
		SDIO 启动:悬空(内部有上拉)或外部拉高。
		GPIO2; UART1_TXD
5	IO2	UART 下载:外部拉低。
		SDIO 启动: 无关项。
		GPIO0
6	100	UART 下载:外部拉低。
		SDIO 启动:无关项。
7	IO4	GPIO4
8	SD2/IO9	SD_D2(串联 100 ~ 200 Ω,加 10k 上拉电阻);GPIO9
9	SD3/CS	SD_D3(串联 100 \sim 200 Ω ,加 10k 上拉电阻);SLAVE_SPI_CS
10	CMD/MOSI	SD_CMD(串联 100 \sim 200 Ω ,加 10k 上拉电阻);
		SLAVE_SPI_MOSI
11	GND	接地
12	SCLK	SD_CLK(串联 100 \sim 200 Ω);SLAVE_SPI_CLK
13	SD0/MISO	SD_D0(串联 100 \sim 200 Ω ,加 10k 上拉电阻);SLAVE_SPI_MISO
14	SD1/INT	SD_D1(串联 100 \sim 200 Ω ,加 10k 上拉电阻);SLAVE_SPI_INT
15	RXD	UARTO_RXD,UART 下载的接收端;
		GPIO3
16	TXD	UARTO_TXD,UART 下载的发送端,可悬空(内部有上拉)或外部拉高;
		GPIO1

No.	Pin Name	Functional Description
17	105	GPIO5
18	RST	复位管脚
19	ADC_IN	检测芯片 VDD3P3 电源电压或 TOUT 脚输入电压(二者不可同时使用)
20	EN	芯片使能端(不可悬空),高电平有效

功能描述

3.1. MCU

ESP8266EX 内置 Tensilica L106 超低功耗 32-bit 微型 MCU,带有 16-bit 精简模式,主频支持 80 MHz 和 160 MHz,支持 RTOS。目前 Wi-Fi 协议栈只用了 20% 的处理能力,剩下的处理能力都可以用来做应用开发。MCU 可通过以下接口和芯片其他部分协同工作:

- 连接存储控制器、也可以用来访问外接 Flash 的编码 RAM/ROM 接口 (iBus);
- 连接存储控制器的数据 RAM 接口 (dBus);
- 访问寄存器的 AHB 接口。

3.2. 存储描述

3.2.1. 内置 SRAM 与 ROM

ESP8266EX 芯片自身内置了存储控制器,包含 ROM 和 SRAM。MCU 可以通过 iBus、dBus 和 AHB 接口访问存储控制器。这些接口都可以访问 ROM 或 RAM 单元,存储仲裁器以到达顺序确定运行顺序。

基于目前乐鑫 Demo SDK 的使用 SRAM 情况、用户可用剩余 SRAM 空间为:

- RAM < 50 kB (Station 模式下,连上路由后, Heap + Data 区大致可用 50 kB 左右)。
- 目前 ESP8266EX 片上没有可编程 ROM,用户程序存放在 SPI Flash 中。

3.2.2. SPI Flash

当前 ESP8266EX 芯片支持使用 SPI 接口的外置 Flash, 理论上最大支持 16 MB 的 SPI Flash。

ESP-WROOM-S2 配置了 2 MB 的 SPI Flash, 支持的 SPI 模式包括: Standard SPI、DIO (Dual I/O)、DOUT (Dual Output)、QIO (Quad I/O) 以及 QOUT (Quad Output)。

! 注意:

请使用最新版本的下载工具,并注意在下载工具中选择 SPI MODE 为 DIO 或者 DOUT。

3.3. 晶振

ESP-WROOM-S2 使用 26 MHz 晶振,使用时注意在下载工具中选择对应晶体类型。选用的晶振自身精度需在 ±10 PPM。

晶振输入输出所加的对地调节电容 C1、C2 可不设为固定值,该值范围在 $6~pF\sim 22~pF$,具体值需要通过对系统测试后进行调节确定。基于目前市场中主流晶振的情况,一般 26~MHz 晶振的输入输出所加电容 C1、C2 在 10~pF 以内。

3.4. 接口说明

表 3-1. 接口说明

接口说明	管脚	功能说明
SPI 接口	GPIO12/13/14/15 或者 GPIO6/7/8/11	可以作为主机读写 SPI 从设备。也可以作为从机与外部单片机通信。在 overlap 模式下,可以与 Flash 共用 SPI脚,通过不同的 CS 信号进行切换。
PWM 接口	任意空闲通用 IO(除了GPIO16)	Demo 中提供 4 路 PWM(用户可自行扩展 6 路),可用来控制彩灯、蜂鸣器、继电器及电机等。
IR 接口	任意空闲通用 IO(除了GPIO16)	IR 遥控接口由软件实现,接口使用 NEC 编码及调制解调,采用 38 kHz 的调制载波。
ADC 接口	TOUT	可用于检测 VDD3P3 (Pin3、Pin4) 电源电压和 TOUT (Pin6) 的输入电压(二者不可同时使用)。可用于传感 器等应用。
I2C 接口	任意空闲通用 IO(除了GPIO16)	可外接传感器及显示屏等。
UART 接口	UARTO: TXD(U0TXD), RXD(U0RXD) UART1: IO2(TXD)	可以与 UART 设备通信。 下载: U0TXD + U0RXD 或者 GPIO2 + U0RXD 通信 (UARTO): U0TXD, U0RXD 调试: UART1_TXD (GPIO2) 可作为调试信息的打印。

电气参数

単 说明:

若无特殊说明,测试条件为: VDD = 3.3 V, 温度为 25 ℃。

4.1. 电气特性

表 4-1. 电气特性

参数	名称	最小值	典型值	最大值	单位
最大焊接温度(焊接条件: IPC/JEDEC J-STD-020)	-	-	-	260	°C
供电电压	VDD	2.7	3.3	3.6	V
输入逻辑电平低	VIL	-0.3	-	0.25 VDD	V
输入逻辑电平高	VIH	0.75 VDD	-	VDD + 0.3	V
输出逻辑电平低	VOL	-	-	0.1 VDD	V
输出逻辑电平高	VOH	0.8 VDD	-	-	V

4.2. Wi-Fi 射频

表 4-2. Wi-Fi 射频参数

描述	最小值	典型值	最大值	单位
输入频率	2400	-	2483.5	MHz
输入反射值	-	-	-10	dB
输出功率				
72.2 Mbps 下, PA 的输出功耗	13	14	15	dBm
11b 模式下 PA 输出功率	19.5	20	20.5	dBm
接收灵敏度				
DSSS, 1 Mbps	-	-98	-	dBm
CCK, 11 Mbps	-	-91	-	dBm

不推荐用于新设计 (NRND) 2022.03

描述	最小值	典型值	最大值	单位
CCK, 11 Mbps	-	-91	-	dBm
6 Mbps (1/2 BPSK)	-	-93	-	dBm
54 Mbps (3/4 64-QAM)	-	-75	-	dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)	-	-72	-	dBm
邻频抑制				
OFDM, 6 Mbps	-	37	-	dB
OFDM, 54 Mbps	-	21	-	dB
HT20, MCS0	-	37	-	dB
HT20, MCS7	-	20	-	dB

4.3. 功耗

功耗数据是基于 3.3 V 的电源、25 °C 的周围温度,并使用内部稳压器测得。所有收发数据是基于 50% 的占空比,在持续发射的模式下测得。

表 4-3. 功耗

模式	最小值	典型值	最大值	单位
传送 802.11b,CCK 11 Mbps,POUT = +17 dBm	-	170	-	mA
传送 802.11g,OFDM 54 Mbps,POUT = +15 dBm	-	140	-	mA
传送 802.11n,MCS7,POUT = +13 dBm	-	120	-	mA
接收 802.11b,包长 1024 字节,-80 dBm	-	50	-	mA
接收 802.11g,包长 1024 字节,-70 dBm	-	56	-	mA
接收 802.11n,包长 1024 字节,-65 dBm	-	56	-	mA
Modem-sleep①	-	15	-	mA
Light-sleep②	-	0.9	-	mA
Deep-sleep③	-	20	-	μΑ
断电	-	0.5	-	μΑ

Ⅲ 说明:

- ① *Modem-sleep* 用于需要 *CPU* 一直处于工作状态的应用,如 *PWM* 或 *I2S* 应用等。在保持 *Wi-Fi* 连接时,如果没有数据传输,可根据 *802.11* 标准(如 *U-APSD*),关闭 *Wi-Fi Modem* 电路来省电。例如,在 *DTIM3* 时,每睡眠 *300 ms*,醒来 *3 ms* 接收 *AP* 的 *Beacon* 包等,则整体平均电流约 *15 mA*。
- ② **Light-sleep** 用于 *CPU* 可暂停的应用,如 *Wi-Fi* 开关。在保持 *Wi-Fi* 连接时,如果没有数据传输,可根据 802.11 标准(如 *U-APSD*),关闭 *Wi-Fi Modem* 电路并暂停 *CPU* 来省电。例如,在 *DTIM3* 时,每睡 眠 300 ms,醒来 3 ms 接收 *AP* 的 *Beacon* 包等,则整体平均电流约 0.9 mA。
- ③ **Deep-sleep** 用于不需一直保持 *Wi-Fi* 连接,很长时间才发送一次数据包的应用,如每 100 s 测量一次温度的传感器。例如,每 300 s 醒来后需 $0.3 \text{ s} \sim 1 \text{ s}$ 连上 *AP* 发送数据,则整体平均电流可远小于 1 mA。电流值 $20 \text{ }\mu\text{A}$ 是在 2.5 V 下测得的。

4.4. 温度回流曲线

图 4-1. ESP-WROOM-S2 回流焊温度曲线图

业 说明:

建议模组只过一次回流焊。如果 PCBA 需要多次回流焊,则在最后一次回流焊时将模组放在 PCB 上方。

不推荐用于新设计 (NRND) 2022.03

10/17 反馈文档意见

5. 原理图

图 5-1. ESP-WROOM-S2 模组原理图

外围原理图

图 6-1. ESP-WROOM-S2 模组外围设计原理图

业 说明:

- 1. 管脚 21 可以不焊接到底板。若用户确实需要将该管脚焊接到底板,请确保使用适量的焊锡膏。
- 2. 为了确保芯片上电时的供电正常,EN 管脚处需要增加 RC 延迟电路。RC 通常建议为 $R=10~k\Omega$,C=0.1~uF,但具体数值仍需根据模组电源的上电时序和 ESP8266EX 芯片的上电复位时序进行调整。 ESP8266EX 芯片的上电复位时序图可见《ESP8266EX 技术规格书》中的电气特性章节。
- 3. 为了增加模组的抗干扰能力,建议在 RST 管脚处预留 RC 延迟电路。RC 通常建议为 $R=10~k\Omega$,C=0.1~uF。

模组尺寸图

图 7-1. ESP-WROOM-S2 模组尺寸图

PCB 封装图形

图 8-1. ESP-WROOM-S2 PCB 封装图形

A.

附录-学习资源

A.1. 必读资料

• ESP8266 快速入门指南

说明:该手册指导用户快速上手使用 ESP8266,包括软硬件准备、编译准备、程序烧录,还提供了 ESP8266 的学习资源、介绍了 RTOS SDK 的框架与调试方法。

• ESP8266 SDK 入门指南

说明:该手册以 ESP-LAUNCHER 和 ESP-WROOM-02 为例,介绍 ESP8266 SDK 相关的使用方法,包括编译前的准备、Flash 布局、硬件和软件的准备、SDK 的编译和固件的下载。

• ESP-WROOM-02 PCB 设计和模组摆放指南

说明:该手册细说了六种天线摆放位置的比较、以及设计 PCB 时的一些注意事项。

• ESP8266 硬件资源

说明:该压缩包的内容主要是硬件原理图,包括板和模组的制造规范,物料清单和原理图。

• ESP8266 AT 指令使用示例

说明:该手册介绍几种常见的 Espressif AT 指令使用示例,包括单链接 TCP Client、UDP 传输、透传、多链接 TCP Service 等。

• ESP8266 AT 指令集

说明:该手册提供了ESP8266_NONOS_SDK的AT指令说明,包括烧录AT固件、自定义AT命令、基本AT指令、Wi-Fi相关的AT指令和TCP/IP相关的AT指令等。

• TCP/UDP UART 透传测试演示指南

本演示指南主要作用: 客户可以快速、直观地体验 ESP8266 物联网平台实现 TCP & UDP吞吐量测试的演示。

• 常见问题

A.2. 必备资源

• ESP8266 SDK

不推荐用于新设计 (NRND) 2022.03

15/17 反馈文档意见

说明:该页面提供了 ESP8266 所有版本 SDK。

• ESP8266 工具

说明:该页面提供了 ESP8266 Flash 下载工具以及 ESP8266 性能评估工具。

- ESP8266 App
- ESP8266 认证测试指南
- ESP8266 官方论坛
- ESP8266 资源合集

A.3. 视频资源

Espressif

- ESP8266 开发板使用教程
- ESP8266 Non-OS SDK 编译教程

乐鑫 IoT 团队 www.espressif.com

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2022 乐鑫所有。保留所有权利。