7. Folytonos együttes eloszlás és konvolúció

A valószínűségi változó fogalmának bevezetésekor először a diszkrét esetet vizsgáltuk meg, majd ezután következtek a folytonos valószínűségi változók. Az együttes eloszlás esetében hasonló utat járunk be: korábban megnéztük, hogy lehet leírni két diszkrét valószínűségi változó együttes viselkedését, függetlenségét: most ugyanezt tesszük folytonos valószínűségi változókkal.

A fejezet végén még egy módszerrel bővítjük eszköztárunkat, amivel meghatározhatjuk két független valószínűségi változó összegének eloszlását. Ezt az eloszlást hívják az eredeti két eloszlás konvolúciójának. Első hangzásra talán nem érződik a feladat komplikáltsága, hiszen összeadni nem lehet olyan nehéz. A harmadik alfejezetben először kiderül, hogy ez miért mégis, majd hogy miért mégsem olyan nehéz.

7.1. Valószínűségi vektorváltozók

Sokszor találkozhatunk olyan esettel, ahol több valószínűségi változóról kell egyszerre beszélnünk. Vagy azért, mert a két véletlen mennyiség viszonyát vizsgáljuk (pl. véletlen program futásideje és memóriahasználata), vagy azért mert a változónk nem írható le egy paraméterrel (pl. egy drón helyzete a térben). Mindkét esetben természetes ötlet vektorként kezelni a valószínűségi változóinkat.

7.1.1. Definíció. Legyenek X_1, \ldots, X_n valószínűségi változók valamilyen n pozitív egész esetén. Ekkor az $\underline{X} \stackrel{\text{def}}{=} (X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ függvényt **valószínűségi vektorváltozó**nak hívjuk. Az \underline{X} (együttes) eloszlásfüggvénye az

$$F_{\underline{X}} : \mathbb{R}^n \to [0, 1]$$
 $F_{\underline{X}}(x_1, \dots, x_n) = \mathbb{P}(X_1 < x_1, \dots, X_n < x_n)$

vektorváltozós, skalárértékű függvény.

7.1.2. Példa. Két ismerősünkkel, Aladárral és Bélával beszélgetünk külön-külön valamilyen csevegő-programmal. Ha épp meccs van, akkor Aladár dupla annyi idő alatt reagál (hiszen nézi a meccset), míg Béla feleannyi idő alatt (mondjuk mert arról panaszkodik, hogy a saját gondolatát sem hallja a szomszédból áthallatszó üvöltés miatt). Tegyük fel, hogy alapesetben, azaz ha nincs meccs, egymástól függetlenül, exponenciális eloszlás szerint válaszolnak, $\lambda=6$ paraméterrel. Annak az esélye, hogy meccs van $\frac{1}{5}$. Mi a válaszadásuk együttes eloszlása?

Jelölje \check{X} Aladár válaszidejét, Y pedig Béláét, továbbá legyen M az az esemény, hogy meccs van. (Itt most X skalár valószínűségi változó, nem vektor, mint korábban.) Legyen Z az alábbi valószínűségi változó:

$$Z = \begin{cases} 2 & \text{ha meccs van,} \\ 1 & \text{egyébként.} \end{cases}$$

A feltételek szerint létezik U és V, amire

$$X = U \cdot Z$$
 és $Y = V/Z$, ahol $U, V \sim \text{Exp}(6)$ függetlenek egymástól és M -től.

Ha x, y > 0, akkor a teljes valószínűség tétele miatt

$$\begin{split} F_{(X,Y)}(x,y) &= \mathbb{P}(X < x, Y < y) = \mathbb{P}(U \cdot Z < x, V/Z < y) = \\ &= \mathbb{P}(U \cdot Z < x, V/Z < y \mid M)\mathbb{P}(M) + \mathbb{P}(U \cdot Z < x, V/Z < y \mid \overline{M})\mathbb{P}(\overline{M}). \end{split}$$

Itt felhasználhatjuk, hogy M, illetve \overline{M} meghatározza Z értékét, továbbá U és V függetlenek, emiatt

$$= \mathbb{P}(U \cdot 2 < x, V/2 < y) \frac{1}{5} + \mathbb{P}(U < x, V < y) \frac{4}{5} = \mathbb{P}(U < \frac{x}{2}) \mathbb{P}(V < 2y) \frac{1}{5} + \mathbb{P}(U < x) \mathbb{P}(V < y) \frac{4}{5} = (1 - e^{-6\frac{x}{2}})(1 - e^{-6\cdot 2y}) \frac{1}{5} + (1 - e^{-6x})(1 - e^{-6y}) \frac{4}{5}.$$

Ha pedig $x \leq 0$ vagy $y \leq 0$, akkor $F_{(X,Y)}(x,y) = 0$.

 $^{^{28}}$ Hogy reális-e feltenni az exponenciális eloszlást, az a körülményektől is függ. Lásd például [article] Estimating response time in Twitter

Folytonos esetben – az egyváltozós esethez hasonlóan – definiáljuk egy valószínűségi vektorváltozó együttes sűrűségfüggvényét is.

7.1.3. Definíció. Legyen $\underline{X} = (X_1, \dots, X_n)$ valószínűségi vektorváltozó. Egy $f_{\underline{X}} : \mathbb{R}^n \to [0, \infty)$ függvény az \underline{X} (együttes) sűrűségfüggvénye, ha $f_{\underline{X}}$ -nek létezik az improprius Riemann-integrálja \mathbb{R}^n -en, és

$$\int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_1} f_{\underline{X}}(z_1, \dots, z_n) dz_1 \dots dz_n = F_{\underline{X}}(x_1, \dots, x_n)$$

tetszőleges $x_1, \ldots, x_n \in \mathbb{R}$ esetén. <u>X</u>-et **folytonos**nak hívjuk, ha létezik együttes sűrűségfüggvénye.

7.1.4. Állítás. Legyen $\underline{X} = (X_1, \dots, X_n)$ valószínűségi vektorváltozó. Ha \underline{X} folytonos, akkor az alábbi függvény az \underline{X} sűrűségfüggvénye:

$$f_{\underline{X}}(x_1,\ldots,x_n) = \begin{cases} \partial_{x_1}\ldots\partial_{x_n}F_{\underline{X}}(x_1,\ldots,x_n) & \text{ha ez létezik,} \\ 0 & \text{egyébként.} \end{cases}$$

(A deriválások tetszőleges sorrendben elvégezhetők.)

Megjegyzés. Az egyváltozós állítással ellentétben az állításnak feltétele, nem pedig következménye, hogy a sűrűségfüggvény létezzen (azaz \underline{X} folytonos legyen). Például, ha $X_1=X_2$, ahol X_1 egyenletes eloszlású a [0,1] intervallumon, akkor $F_{(X_1,X_2)}$ folytonos, és néhány egyenes kivételével 2-szer folytonosan differenciálható, mégis $\partial_{x_1}\partial_{x_2}F_{(X_1,X_2)}(x_1,x_2)=0$, ami nyilván nem lehet sűrűségfüggvény. Vagyis az (X_1,X_2) vektorváltozónak $X_1=X_2$ esetén nincs együttes sűrűségfüggvénye.

Az egyváltozós esethez hasonlóan a többváltozós sűrűségfüggvények is karakterizálhatók.

7.1.5. Állítás. Legyen $f: \mathbb{R}^n \to [0, \infty)$. Ekkor

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) dx_1 \dots dx_n = 1.$$

pontosan akkor teljesül, ha létezik $\underline{X} = (X_1, \dots, X_n)$ valószínűségi vektorváltozó, aminek f sűrűségfüggvénye. ²⁹

Hogy nézett ki az együttes eloszlás diszkrét esetben? Ott nem együttes sűrűségfüggvényről beszéltünk, simán csak a $\mathbb{P}(X=x,Y=y)$ értékekből álló táblázatról, mint együttes eloszlásról. Az előző állítás megfelelője, hogy a táblázatban szereplő számok összege 1.

Mire jó az együttes sűrűségfüggvény? Amikor Z egyváltozós, akkor többek közt a $\mathbb{P}(a < Z < b)$ alakú valószínűségeket lehetett kiszámolni vele. Ez a szerepe többváltozós esetben is megmarad:

7.1.6. Állítás. Legyen $H \subseteq \mathbb{R}^n$ Jordan-mérhető halmaz és $\underline{X} = (X_1, \dots, X_n)$ valószínűségi vektorváltozó. Ekkor

$$\mathbb{P}(\underline{X} \in H) = \int_{H} f_{\underline{X}}(\underline{x}) d\underline{x}.$$

7.1.7. Példa. A fenti példára visszatérve, mi az esélye, hogy Aladár előbb ír vissza, mint Béla. Az első állítás szerint x illetve y szerinti deriválással kaphatjuk a sűrűségfüggvényt, ha az létezik:

$$f_{(X,Y)}(x,y) = \begin{cases} 3e^{-3x} \cdot 12e^{-12y} \frac{1}{5} + 6e^{-6x} \cdot 6e^{-6y} \frac{4}{5} & \text{ha } x, y > 0, \\ 0 & \text{egyébként.} \end{cases}$$

Integrálással leellenőrizhető, hogy ez valóban (X,Y) sűrűségfüggvénye, ettől most eltekintünk. Innen a keresett valószínűség:

$$\mathbb{P}(X < Y) = \int_{\{x < y\}} f_{(X,Y)}(x,y) \mathrm{d}x \mathrm{d}y = \int_0^\infty \int_0^y \left(3e^{-3x} \cdot 12e^{-12y} \frac{1}{5} + 6e^{-6x} \cdot 6e^{-6y} \frac{4}{5} \right) \mathrm{d}x \mathrm{d}y,$$

 $^{^{29}}$ Az együttes eloszlásfüggvények is karakterizálhatók, de a leírásuk komplikáltabb szerkezetű, mint az egyváltozós esetben.

amiről némi számolás után kiderül, hogy 0,44 (nem csak kerekítve).

Hiányzó fogalom még a marginális eloszlás.

7.1.8. Definíció. Ha $\underline{X} = (X_1, \dots, X_n)$ valószínűségi vektorváltozó, akkor az X_i valószínűségi változó eloszlását az \underline{X} *i*-edik **marginális eloszlás**ának (vagy peremeloszlásának) hívjuk.

7.1.9. Állítás. Ha $\underline{X} = (X_1, \dots, X_n)$ folytonos valószínűségi vektorváltozó, akkor X_i is folytonos, sűrűségfüggvénye:

$$f_{X_i}(x_i) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_X(x_1, \dots, x_n) dx_1 \dots dx_{i-1} dx_{i+1} \dots dx_n \qquad (\forall x_i \in \mathbb{R}).$$

 $Vagyis\ az\ együttes\ sűrűségfüggvény\ x_i-től\ eltérő\ változói\ szerinti\ integrálja.$

7.1.10. Példa. A fenti példában (X,Y) együttes eloszlának marginálisa például az Y eloszlása, azaz

$$f_Y(y) = \int_{-\infty}^{\infty} f_{(X,Y)}(x,y) dx = \int_{0}^{\infty} \left(3e^{-3x} \cdot 12e^{-12y} \frac{1}{5} + 6e^{-6x} \cdot 6e^{-6y} \frac{4}{5} \right) dx =$$

$$= \frac{12}{5} e^{-12y} \left[-e^{-3x} \right]_{0}^{\infty} + \frac{24}{5} e^{-6y} \left[-e^{-6x} \right]_{0}^{\infty} = \frac{12}{5} e^{-12y} + \frac{24}{5} e^{-6y},$$

ha y > 0, és 0 egyébként. Y eloszlása egy úgynevezett kevert exponenciális eloszlás.

 $Megjegyz\acute{e}s$. Valószínűségi vektorváltozókról és azok együttes eloszlásfüggvényéről akkor is van értelme beszélni, ha a X_1,\ldots,X_n diszkrét. A sűrűségfüggvény esetében nem ez a helyzet. Sőt, ha X_1 és X_2 külön-külön folytonos, akkor sem feltétlenül van együttes sűrűségfüggvényük. Lásd az előző megjegyzésben szereplő példát.

7.2. Vektorváltozók függetlensége

Valószínűségi változók viszonyának szempontjából speciális eset, amikor a változók függetlenek. Két valószínűségi változó függetlenségét a hatodik fejezetben már definiáltuk. Bár ott elsősorban diszkrét eloszlásokról volt szó, a definíció nem feltétlenül diszkrét változókra is értelmes. Ezt általánosítja a következő definíció.

7.2.1. Definíció. Az X_1, \ldots, X_n valószínűségi változók (együttesen) függetlenek, ha az

$$\{X_1 < x_1\}, \dots, \{X_n < x_n\}$$

események függetlenek minden $x_1, \ldots, x_n \in \mathbb{R}$ esetén.

A továbbiakban az "együttesen" kitételt hanyagoljuk. Ha nem együttes függetlenségről beszélünk (hanem mondjuk páronkénti függetlenségről), azt külön jelezzük.

Hogy lehet n valószínűségi változó együttes függetlenségét ellenőrizni? Diszkrét esetben ehhez az egyes $\{X_i = x_i\}$ események valószínűségét vizsgáltuk. Amikor az $\mathbb{P}(X_i = x_i)$ valószínűségek szorzata minden paraméterválasztásra megegyzett az események metszetének valószínűségével, az bizonyította a változók függetlenségét. Folytonos esetben ez nem járható út. Helyette a következőt mondhatjuk:

7.2.2. Állítás. $Az X_1, \ldots, X_n$ valószínűségi változók pontosan akkor függetlenek, ha

$$F_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n) = F_{X_1}(x_1)\cdot\ldots\cdot F_{X_n}(x_n)$$

 $minden x_1, \ldots, x_n \in \mathbb{R}$ esetén.

A fenti állítás, bár hasznos folytonos valószínűségi változókra, de nem csak rájuk érvényes. Ugyanúgy, ahogy az eloszlásfüggvény sem csak folytonos valószínűségi változókra definiált, a fenti tétel is teljesül tetszőleges X_1, \ldots, X_n valószínűségi változók esetén.

A folytonos esetre visszatérve: vannak feladatok, amikor az eloszlásfüggvény nem áll rögtön rendel-kezésünkre, viszont az együttes sűrűségfüggvény igen. Ilyenkor a következő állítást tudjuk használni.

7.2.3. Állítás. Legyenek X_1, \ldots, X_n folytonos valószínűségi változók. Ezek pontosan akkor függetlenek, ha (X_1, \ldots, X_n) folytonos valószínűségi vektorváltozó, és

$$f_{(X_1,\ldots,X_n)}(x_1,\ldots,x_n) = f_{X_1}(x_1)\cdot\ldots\cdot f_{X_n}(x_n)$$

 $minden x_1, \ldots, x_n \in \mathbb{R} \ eset\'{e}n.$

Röviden, független valószínűségi változók együttes sűrűségfüggvénye szorzattá bomlik. Speciálisan, ilyen esetben létezik az együttes sűrűségfüggvény.

7.2.4. Példa. A korábbi példa feltételei mellett igaz-e, hogy Aladár válaszideje független Béláétól? Ezt az előző állítás segítségével ellenőrizhetjük. Legyen x, y > 0. A korábbiak szerint

$$f_{(X,Y)}(x,y) = 3e^{-3x} \cdot 12e^{-12y} \frac{1}{5} + 6e^{-6x} \cdot 6e^{-6y} \frac{4}{5} \quad \text{és} \quad f_Y(y) = \frac{12}{5}e^{-12y} + \frac{24}{5}e^{-6y},$$

illetve az f_Y -hoz hasonlóan kiszámolható, hogy

$$f_X(x) = \frac{3}{5}e^{-3x} + \frac{24}{5}e^{-6x}.$$

Tehát X és Y nem függetlenek, hiszen

$$f_X(x) \cdot f_Y(y) = \left(\frac{3}{5}e^{-3x} + \frac{24}{5}e^{-6x}\right) \left(\frac{12}{5}e^{-12y} + \frac{24}{5}e^{-6y}\right)$$

nem ugyanaz, mint

$$f_{(X,Y)}(x,y) = 3e^{-3x} \cdot 12e^{-12y} \frac{1}{5} + 6e^{-6x} \cdot 6e^{-6y} \frac{4}{5},$$

csak speciális x, y esetén, pedig a függetlenséghez az $f_X(x) \cdot f_Y(y) = f_{(X,Y)}(x,y)$ egyenlőségnek minden x, y esetén teljesülnie kellene.

7.3. Konvolúció

Amióta bevezettük a várható érték fogalmát, a legsűrűbben használt tulajdonsága, hogy additív, azaz $\mathbb{E}(X+Y)=\mathbb{E}X+\mathbb{E}Y$. Ez teljesült akkor is, ha X és Y függetlenek, de akkor is, ha nem. Ez alapján azt is gondolhatnánk, hogy akkor az X+Y valószínűségi változó eloszlásának meghatározása is magától értetődő feladat. Ha mást nem, legalább akkor, ha X és Y függetlenek. Nézzünk néhány példát, hogy ez mennyire nincs így.

7.3.1. Példa.

- (1) Legyen $X \sim B(n;p)$ binomiális eloszlású. Tudjuk, hogy ekkor X független indikátor valószínűségi változók összege, azaz olyan valószínűségi változóké, amik csak 1 vagy 0 értéket vehetnek fel. Látható, hogy hiába a lehető legegyszerűbb a kiindulási változók eloszlása, amik még függetlenek is, X eloszlása náluk lényegesen összetettebb. 30
- (2) Legyenek X és Y független, Geo(p) eloszlású valószínűségi változók, és Z = X + Y (ami például egy központba beérkező második telefonhívásig eltelt másodpercek számát jelöli). Ekkor X + Y nem geometriai, hanem úgynevezett negatív binomiális eloszlású, r = 2 rend-paraméterrel.
- (3) Legyenek U és V független, egyenletes eloszlású valószínűségi változók a [0,1] intervallumon. Mi U+V eloszlása? Elsőre talán rámondanánk, hogy egyenletes a [0,2] intervallumon. Ez viszont nem igaz, mégpedig ugyanazon okból nem, amiért két kockadobás összege sokkal gyakrabban lesz 7, mint 12. Az eredmény neve Irwin–Hall-eloszlás, n=2 paraméterrel.
- **7.3.2. Definíció.** Legyenek X és Y független valószínűségi változók. Ekkor X+Y eloszlását az X és Y eloszlásai **konvolúció**jának hívjuk.

³⁰ Aki úgy gondolná, hogy a binomiális eloszlás nem túl összetett, az megpróbálhatja meggyőzni magát az előző fejezetben szereplő de Moivre–Laplace-tétel segítségével.

7.3.3. Állítás. Legyenek X és Y független, diszkrét valószínűségi változók, amik értékei nemnegatív egész számok. Ekkor

$$\mathbb{P}(X+Y=k) = \sum_{i=0}^{k} \mathbb{P}(X=i)\mathbb{P}(Y=k-i)$$

 $minden \ k \in \mathbb{N} \ eset\'{e}n.$

Bizonyítás. A bizonyításhoz csak a valószínűség additivitását kell felhasználjuk:

$$\begin{split} \mathbb{P}(X+Y=k) &= \mathbb{P}\Big(\bigcup_{i+j=k} \{X=i\} \cap \{Y=j\}\Big) = \\ &= \sum_{i=0}^k \mathbb{P}\Big(\{X=i\} \cap \{Y=k-i\}\Big) = \sum_{i=0}^k \mathbb{P}(X=i)\mathbb{P}(Y=k-i). \end{split}$$

7.3.4. Példa. Legyenek X és Y független valószínűségi változók, amire $X \sim \text{Pois}(\lambda)$ és $Y \sim \text{Pois}(\mu)$. Mi X + Y eloszlása? A fenti állítás szerint

$$\begin{split} \mathbb{P}(X+Y=k) &= \sum_{i=0}^k \mathbb{P}(X=i) \mathbb{P}(Y=k-i) = \sum_{i=0}^k \frac{\lambda^i}{i!} e^{-\lambda} \frac{\mu^{k-i}}{(k-i)!} e^{-\mu} = \\ &= e^{-(\lambda+\mu)} \sum_{i=0}^k \frac{k!}{k! \cdot i! \cdot (k-i)!} \lambda^i \mu^{k-i} = e^{-(\lambda+\mu)} \frac{1}{k!} (\lambda+\mu)^k, \end{split}$$

felhasználva a binomiális tételt. Vegyük észre, hogy az eredmény $Pois(\lambda + \mu)$ eloszlású.

A konvolúció kiszámolása folytonos esetben valamivel komolyabb feladat. Itt a fentebb összegzett i és k-i párok kontinuum sokan vannak, így a szummát integrál, a valószínűségi változó eloszlását pedig a sűrűségfüggvény helyettesíti.

7.3.5. Állítás. Legyenek X és Y független, folytonos valószínűségi változók. Ekkor a

$$z \mapsto \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx$$

függvény az X + Y sűrűségfüggvénye.

7.3.6. Példa. Legyenek X és Y független, $\operatorname{Exp}(\lambda)$ eloszlású valószínűségi változók. Az előző állítás szerint

$$f_{X+Y}(z) = \int_{-\infty}^{\infty} f_X(x) f_Y(z-x) dx =$$

$$= \int_0^z \lambda e^{-\lambda x} \lambda e^{-\lambda (z-x)} dx = \lambda^2 e^{-\lambda z} \int_0^z 1 dx = \lambda^2 e^{-\lambda z} z$$

minden z > 0 esetén. Az így kapott eloszlás neve gamma-eloszlás.