

Algorithmen und Datenstrukturen

- Grundlagen (Begriffe und Beispiele) -

Prof. Dr. Klaus Volbert

Wintersemester 2018/19 Regensburg, 04. Oktober 2018

Zentraler Begriff: Algorithmus

- Persischer Mathematiker und Astronom (~ 825 n. Chr.)
 Abu Ja'far Muhammad Ibn Musa al-Khwarizmi
 - Lehrbuch über die Rechenregeln in dem aus Indien stammenden dezimalen Stellenwertsystem

- Intuitive, informale Definition eines Algorithmus:
 - Ein Algorithmus ist eine Vorschrift zur Lösung eines Problems, die für eine Realisierung in Form eines Programms auf einem Computer geeignet ist (Taschenbuch der Informatik, 2004)
 - Ein Algorithmus ist eine präzise Handlungsvorschrift, um aus vorgegebenen Eingaben in endlich vielen Schritten eine bestimmte Ausgabe zu ermitteln (Eingabe-Verarbeitung-Ausgabe, EVA-Prinzip)

Eigenschaften von Algorithmen

- Die Abfolge der einzelnen Verarbeitungsschritte muss eindeutig aus einem Algorithmus hervorgehen
- Ein Algorithmus ist unabhängig von einer Notation (z.B. natürliche Sprache, Pseudocode, C, C++, Java, C#, ...)
- Es gibt viele Beschreibungen desselben Algorithmus
- Hauptziel beim Entwurf von Algorithmen
 - Korrekte Problemlösung (totale Korrektheit):
 - Terminiertheit: Der Algorithmus endet für jede spezifizierte Eingabe
 - Partielle Korrektheit: Der Algorithmus liefert für jede spezifizierte Eingabe das geforderte Ergebnis
- Nebenziel beim Entwurf von Algorithmen
 - Effiziente Problemlösung hinsichtlich Zeit und Platz
- Algorithmen sollten effektiv sein

Beispiele für Algorithmen

- Addieren, Subtrahieren, Multiplizieren, Dividieren, etc.
- Kochrezepte, Bastel-/Gebrauchsanleitungen, Spielregeln, ...
- Sortieren, Suchen, Effizienter Umgang mit Datenstrukturen, ...
- Vorsicht: Forderung der Eindeutigkeit fordert Präzision!
- Algorithmus zur Bestimmung des größten gemeinsamen Teilers (ggT) zweier natürlicher Zahlen (Euklidischer Algorithmus, ~ 300 v. Chr.):

```
• Eingabe: a, b \in \mathbb{N} (zwei natürliche Zahlen a und b)
```

Ausgabe: a = ggT(a,b) (ggT von a und b)

Algorithmus: Wiederhole

r = Rest der ganzzahligen Division von a/b

a = b

b = r

Bis r = 0 ist

Gib a aus

Nachweis der totalen Korrektheit?

Partielle Korrektheit mittels Hoare Kalkül

```
Vorbedingung: a, b \in \mathbb{N}; sei G größter gemeinsame Teiler von a und b, E = x + y
Nachbedingung: x = G
       { G ist qqT(a, b) \land a \in N<sup>+</sup> \land b \in N<sup>+</sup> }
       x := a; y := b;
       { INV: G ist ggT(x, y) \land x \in \mathbb{N}^+ \land y \in \mathbb{N}^+ \land x + y > 0 }
       solange x \neq y wiederhole
              { INV \land x \neq y \land x + y = k }
               falls x > y:
                      { G ist ggT(x, y) \land x > y \land x \in \mathbb{N}^+ \land y \in \mathbb{N}^+ \land x + y = k } \Rightarrow
                      \{G \text{ ist } qqT(x-y,y) \land x-y \in \mathbb{N}^+ \land y \in \mathbb{N}^+ \land x-y+y=k-y< k\}
                      x := x - y
                      \{ INV \wedge x + y < k \}
               sonst
                      { G ist ggT(x, y) \land y > x \land x \in N<sup>+</sup> \land y \in N<sup>+</sup> \land x + y = k } \Rightarrow
                      { G ist ggT(x, y - x) \land x \in N<sup>+</sup> \land y - x \in N<sup>+</sup> \land x + y - x = k - x < k }
                      y := y - x
                      \{ INV \wedge x + y < k \}
              \{ INV \wedge x + y < k \}
        \{ INV \land x = y \} \Rightarrow \{ x = G \}
```


Zentraler Begriff: Datenstruktur

- Algorithmen verarbeiten Eingaben zu Ausgaben und benutzen dabei ggf. unstrukturierte (skalare) und strukturierte Daten
- Datentyp
 - Menge von Objekten mit darauf definierten Operationen
 - Zwei Varianten:
 - (konkreter) Datentyp (abhängig von Rechner und Implementierung)
 - abstrakter Datentyp (abstrahiert von spezieller Implementierung)
- Datentyp wird durch folgendes Tupel festgelegt:
 - Objektmenge (Werte)
 - Operationen, definiert durch
 - Signatur (Name mit Definitions- und Wertebereich, Syntax)
 - Regeln/Axiome (Wirkung der Operationen, Semantik)
- Datenstruktur (= strukturierte Daten + Operationen)
 - Menge von Datentypen, zwischen denen Beziehungen bestehen

Beispiele für Datentypen in C++ (32-Bit)

Datentyp	Bits	Wertebereich	Typische Operationen
char, signed char	8	−128 127	+,-,*,/,<;>,%
unsigned char	8	0255	+,-,*,/,<;>,%
short, signed short	16	−32768 32767	+,-,*,/,<;>,%
unsigned short	16	065535	+,-,*,/,<;>,%
int, signed int	32	-2.147.483.648 2.147.483.647	+,-,*,/,<;>,%
unsigned, unsigned int	32	0 4.294.967.295	+,-,*,/,<;>,%
long, signed long	32	-2.147.483.648 2.147.483.647	+,-,*,/,<;>,%
unsigned long	32	04.294.967.295	+,-,*,/,<;>,%
float	32	$1,2 \cdot 10^{-38} \dots 3,4 \cdot 10^{38}$	+,-,*,/,<;>
double	64	$2,2 \cdot 10^{-308} \dots 1,8 \cdot 10^{308}$	+,-,*,/,<;>
long double	96	$3,4 \cdot 10^{-4932} \dots 1,1 \cdot 10^{4932}$	+,-,*,/,<;>

Beispiel: Abstrakter Datentyp Boolean (bool)

• Boolean = (Objekte O_B , Funktionen F_B) mit

```
- O_B = \{ w, f \} // oder: {wahr, falsch} = {true, false}

- F_B = \{ \neg, \land, \lor \} // oder: {nicht, und, oder} = {not, and, or}
```

Signaturen

```
\begin{array}{lll} - \ w \colon & \to O_B \\ - \ f \colon & \to O_B \\ - \ \neg \colon & O_B \to O_B & // \ \text{Negation} \\ - \ \Lambda \colon & O_B \times O_B \to O_B & // \ \text{Konjunktion} \\ - \ V \colon & O_B \times O_B \to O_B & // \ \text{Disjunktion} \end{array}
```

• Regeln/Axiome (x, y, z seien vom ADT Boolean)

```
-x \wedge y = y \wedge x \quad , \quad x \vee y = y \vee x  (Kommutativgesetze)

-(x \wedge y) \wedge z = x \wedge (y \wedge z) \quad , \quad (x \vee y) \vee z = x \vee (y \vee z)  (Assoziativgesetze)

-(x \wedge y) \vee z = (x \vee z) \wedge (y \vee z) \quad , \quad (x \vee y) \wedge z = \dots  (Distributivgesetze)

-x \wedge w = x, \quad x \vee f = x, \quad x \wedge \neg x = f, \quad x \vee \neg x = w  (Neutralität, Komplement)

-\neg w = f \quad , \quad \neg f = w  (Dualität)
```


Beispiel: Datenstruktur Stapel (Keller, Stack)

 Ein Stapel ist eine Datenstruktur, die eine begrenzte Menge von Objekten eines Datentyps aufnehmen kann und folgende Operationen unterstützt (Last-In-First-Out, LIFO-Prinzip):

create: Erzeugt einen leeren Keller

- push: Legt ein Objekt auf den Stapel

pop: Holt u. entfernt das oberste Objekt vom Stapel

top: Holt das oberste Objekt vom Stapel (ohne entfernen)

- empty: Liefert wahr, wenn der Stapel leer ist, sonst falsch

· Ein Stapel kann mit Hilfe eines Feldes implementiert werden

Implementierung eines Stapels in C++ (I)

```
typedef int object; // O.B.d.A. seien die Objekte vom Typ int
class stack1 {
      private:
             object *o; // Zeiger auf ein dynamisches Feld
             int size; // Groesse des Stapels
             int tp; // Oberstes Element
      public:
             stack1(int n); // Erzeugt leeren Stapel, n Objekte
             ~stack1(); // Gibt einen Stapel wieder frei
             void push (object o); // Legt Objekt auf den Stapel
             object pop(); // Holt u. entfernt oberstes Objekt
             object top(); // Liefert das oberste Objekt
             bool IsEmpty(); // Liefert, ob der Stapel leer ist
             bool IsFull(); // Liefert, ob der Stapel voll ist
};
```


Implementierung eines Stapels in C++ (II)

```
stack1::stack1(int n) {
                                            stack1::~stack1() {
    size=n;
                                                delete[] o; }
    tp=-1; •
                                   Was ändert sich, wenn
    o=new object[size]; }
                                       hier tp=0 steht?
                                            object stack1::pop() {
void stack1::push(object o) {
    if (!IsFull()) this->o[++tp]=o; }
                                                if (!IsEmpty()) return(o[tp--]);
                                                else ... Fehlerbehandlung ... }
object stack1::top() {
    if (!IsEmpty()) return(o[tp]);
                                                 Welchen Aufwand haben
    else ... Fehlerbehandlung ... }
                                                      die Operationen?
                                            bool stack1::IsFull() {
bool stack1::IsEmpty() {
                                                return (tp \geq size-1 ? true : false);
    return (tp > -1 ? false : true); }
```


Analyse und Design von Algorithmen

- Algorithmen stehen im Mittelpunkt der Informatik
- Hauptziel beim Entwurf von Algorithmen
 - Korrekte Problemlösung (totale Korrektheit)
 - · Terminiertheit: Der Algorithmus endet für jede spezifizierte Eingabe
 - Partielle Korrektheit: Der Algorithmus liefert für jede spezifizierte Eingabe das geforderte Ergebnis
- Nebenziel beim Entwurf von Algorithmen
 - Effiziente Problemlösung hinsichtlich Zeit und Platz
- Interessant sind meist nur effiziente Algorithmen
- Wesentliche Effizienzmaße
 - Rechenzeitbedarf
 - · Zeitkomplexität: Zählen der atomaren Schritte
 - Speicherplatzbedarf
 - · Platzkomplexität: Zählen der verwendeten Speicherzellen

Komplexität von Algorithmen

- Es gibt unendlich viele Algorithmen zur Lösung von Problemen (in Wissenschaft, Technik, Wirtschaft, ...)
- Funktional gleichwertige Algorithmen können sich erheblich in der Effizienz/Komplexität unterscheiden
- Ein Algorithmus ist umso effizienter, je weniger er von den beiden Ressourcen Rechenzeit und Speicherplatz verwendet
- · Komplexität hängt u.a. von der Eingabe für das Programm ab
- Faktoren zur Bestimmung der Komplexität
 - Messungen auf einer konkreten Maschine
 - Aufwandsermittlung in einem idealisierten Rechnermodell (z.B. RAM)
 - Asymptotische Komplexitätsabschätzung durch ein abstraktes Komplexitätsmaß in Abhängigkeit der Problem-/Eingabegröße

Moore's Gesetz

Dr. Gordon E. Moore: Mitgründer der Firma Intel

- Verdoppelung der Prozessorleistung alle ~ 18-24 Monate
- · Computer werden immer kleiner, schneller und billiger

Idealisierter Rechner: Registermaschine

- Registermaschine (engl. Random Access Machine, RAM)
 - Zentrale Recheneinheit inkl. Rechen- und Steuerwerk
 - · Akkumulator (Adresse 0 im Datenspeicher)
 - Befehlsregister
 - · Befehlszähler (Programm Counter, PC)
 - Programmspeicher (Program Memory, PM, Adressen 1, 2, ...)
 - Datenspeicher (Data Memory, DM, Adressen 1, 2, ...)
 - Vereinfachte Ein-/Ausgabe durch direkte Befehle
- · Inhalt des Datenspeichers sei beschrieben durch f: $IN_0 \rightarrow IN_0$
 - f(0) ist der Inhalt des Akkumulators
 - f(adresse) ist der Inhalt des Datenspeichers an der Stelle adresse
- Befehlsstruktur
 - <Adresse PM> <Befehl> <Adresse PM/DM>

8 Bit

8 Bit

Befehle der Registermaschine I

Verarbeitungs-, Transport- und Ein-/Ausgabebefehle:

Codierung	Syntax	Semantik	Beschreibung
0x01	ADD adresse	f(0) = f(0) + f(adresse)	Addieren
0x02	SUB adresse	f(0) = f(0) - f(adresse)	Subtrahieren
0x03	MUL adresse	f(0) = f(0) * f(adresse)	Mutliplizieren
0x04	DIV adresse	f(0) = f(0) / f(adresse)	Dividieren
0x05	LDA adresse	f(0) = f(adresse)	Laden
0x06	LDK zahl	f(0) = zahl	Konstante Laden
0x07	STA adresse	f(adresse) = f(0)	Speichern
80x0	INP adresse	f(adresse) = <eingabe></eingabe>	Eingeben
0x09	OUT adresse	<ausgabe> = f(adresse)</ausgabe>	Ausgeben
0x0A	HLT 99		Programmende

Warum ist hier eine Zahl sinnvoll?

Befehle der Registermaschine II

Sprungbefehle:

Codierung	Syntax	Semantik	Beschreibung
0x0B	JMP adresse	PC = adresse	
0x0C	JEZ adresse	Falls $f(0) = 0$, dann $PC = adresse$	
0x0D	JNE adresse	Falls f(0) ≠ 0, dann PC = adresse	
0x0E	JLZ adresse	Falls f(0) < 0, dann PC = adresse	Verzweigen
0x0F	JLE adresse	Falls $f(0) \le 0$, dann $PC = adresse$	
0x10	JGZ adresse	Falls f(0) > 0, dann PC = adresse	
0x11	JGE adresse	Falls $f(0) \ge 0$, dann $PC = adresse$	

- · Nach jedem Befehl, wenn es keine Verzweigung gab:
 - -PC = PC + 1

Befehlszyklus der Registermaschine

Beispielprogramm

- Was tut folgendes Programm?
 - 06000702080105010C09010207020B0309020A99

01	06	00
02	07	02
03	80	01
04	05	01
05	0C	09
06	01	02
07	07	02
08	0B	03
09	09	02
10	0A	99

01	LDK	00
02	STA	02
03	INP	01
04	LDA	01
05	JEZ	09
06	ADD	02
07	STA	02
08	JMP	03
09	OUT	02
10	HLT	99

Akku auf 0
Akku → Adr. 2
Eingabe → Adr. 1
Adr. 1 → Akku
Akku = 0 ? Ja: 09
Akku + Adr. 2
Akku → Adr. 2
Weiter bei 03
Ausgabe Adr. 2
Programmende

Church'sche These (1936, auch Church-Turing-These)

- These: Die Klasse der Turing-berechenbaren Funktionen ist genau die Klasse der intuitiv berechenbaren Funktionen
- Alternative Formulierungen/Folgerungen
 - Jede Funktion, die überhaupt in irgendeiner Weise berechenbar ist, kann durch eine Turingmaschine berechnet werden
 - Jedes Problem, das überhaupt maschinell lösbar ist, kann von einer Turingmaschine gelöst werden
- Anmerkungen
 - Church'sche These ist nicht beweisbar, da "intuitiv berechenbare Funktionen" nicht formalisiert werden können
 - Anerkanntes Rechenmodell: Von-Neumann-Rechner
 - Idealisierte Von-Neumann-Rechner: Registermaschinen
 - Registermaschinen sind äquivalent zu Turingmaschinen
- · Church'sche These gilt als allgemein akzeptiert

Church'sche These (grafische Interpretation)

Algorithmus-Begriff

- Interpretation der Church-Turing-These:
 - Bisher und in Zukunft vorgenommene "vernünftige" Definitionen von Algorithmus sind gleichwertig und haben die gleiche Bedeutung wie die bisher bekannten Definitionen!
- · Algorithmus = Programm für eine TM
 - Programm für eine RAM
 - Programm für andere Modelle
 (Goto, While, μ-Rekursion)
 - = Programm in C/C++ Pascal Java C#, ...

Komplexität (Zeit/Platz)

- Uniforme Komplexität (Einheitsmaß)
 - Jeder Befehl, der ausgeführt wird, entspricht einem Schritt (konstant)
 - Sei A ein Algorithmus für eine RAM mit Eingabe x
 - $T_A(x)$: Anzahl der Schritte, die A bei Eingabe von x durchführt
 - $S_A(x)$: Anzahl der Speicherzellen, die A bei Eingabe von x benutzt
- Nachteil der uniformen Komplexität
 - Befehle mit unterschiedlicher Bit-Komplexität werden gleich bewertet
- Logarithmische Komplexität (Logarithmisches Maß)
 - Jeder Befehl, der ausgeführt wird, wird mit der Bit-Länge der Operanden des Befehls gewichtet (entspricht der Bit-Komplexität)
 - Anstelle einer Speicherzelle wird die Bit-Länge der in einer Speicherzelle abgespeicherten größten Zahl verwendet
 - Kennzeichnung analog zu oben: $T_A^{\log}(x)$ bzw. $S_A^{\log}(x)$
- \cdot Beispiel: Addition und Multiplikation von zwei n-Bit Zahlen

Worst Case, Average Case, Best Case I

Komplexität wird über alle Eingaben unterschieden nach

 Worst Case: Laufzeit im schlechtesten Fall (Wesentlich!)

 Average Case: Laufzeit im Mittel (Mittelwert)

 Best Case: Laufzeit im besten Fall (Eher uninteressant)

Beispiel: Addition um eins im Binärsystem

- Eingabe: $bin(a) = (a_{n-1}, ..., a_0), a \in IN, a_i \in \{0,1\}$

(Binärdarstellung einer natürlichen Zahl)

Ausgabe: bin(a) + 1

- Algorithmus: Falls $(a_{n-1}, ..., a_0) = (1, ..., 1)$

Gib (1,0 ..., 0) aus

Sonst

Ermittle i mit $a_i = 0$ und $a_j \neq 0$ für alle j < i

Gib $(a_{n-1}, ..., a_{i+1}, 1, 0, ..., 0)$ aus

// i Nullen

// n Nullen

Laufzeit: Worst Case: n+1 Schritte

Best Case: 1 Schritt

// Wann?

// Wann?

Worst Case, Average Case, Best Case II

- Average Case bei Addition um 1 im Binärsystem:
 - Wie viele mögliche Eingaben für a gibt es? 2^n
 - Wie viele Eingaben gibt es für den Worst Case (1. Fall)? 1
 - Laufzeit in diesem Fall: n + 1 Schritte
 - Wie viele Eingaben gibt es mit $a_i = 0$ und $a_j \neq 0$ für alle j < i? 2^{n-i-1}
 - · Laufzeit in diesen Fällen: (i + 1) Schritte
 - Insgesamt ergibt sich für die durchschnittliche Laufzeit:

$$\frac{\sum_{i=0}^{n-1} \left(2^{n-i-1} \cdot (i+1)\right) + n + 1}{2^n}$$
 Schritte

- Es gilt:

$$\sum_{i=0}^{n-1} 2^{n-i-1} \cdot (i+1) = \sum_{i=1}^{n} 2^{n-i} \cdot i$$

Worst Case, Average Case, Best Case III

Weiter gilt:

$$\sum_{i=1}^{n} 2^{n-i} \cdot i = 2^{n-1} \cdot 1 + 2^{n-2} \cdot 2 + \dots + 2^{0} \cdot n$$

$$= 2^{n-1} + 2^{n-2} + \dots + 2^{0} \quad \text{(Zeile 1)}$$

$$+ 2^{n-2} + \dots + 2^{0} \quad \text{(Zeile 2)}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$+ 2^{0} \quad \text{(Zeile n)}$$
Geometrische Reihe:

Erinnerung Geometrische Reihe:

$$\sum_{k=0}^{m} q^{k} = \frac{q^{m+1} - 1}{q - 1} \text{ für } q \neq 1$$

Damit folgt:

$$\sum_{i=1}^{n} 2^{n-i} \cdot i = \frac{2^{n-1+1}-1}{2-1} + \frac{2^{n-2+1}-1}{2-1} + \dots + \frac{2^{n-n+1}-1}{2-1}$$

Worst Case, Average Case, Best Case IV

Es folgt schließlich:

$$\sum_{i=1}^{n} 2^{n-i} \cdot i = (2^{n} - 1) + (2^{n-1} - 1) + \dots + (2^{1} - 1)$$
$$= \sum_{i=1}^{n} 2^{i} - n = 2^{n+1} - 2 - n$$

Für die durchschnittliche Laufzeit folgt:

$$\frac{(2^{n+1}-2-n)+(n+1)}{2^n}=2-\frac{1}{2^n}$$
 Schritte

Zusammenfassend:

- Worst Case: n+1 Schritte

Average Case: 2 Schritte (asymptotisch)

- Best Case: 1 Schritt

Positiv: Durchschnitt liegt nah am Best Case (nicht immer so!)

Worst Case, Average Case, Best Case V

- · Sei A ein Algorithmus für eine RAM mit Eingabe x über einem Alphabet Σ
- Laufzeit im schlechtesten Fall (Worst Case)

$$T_A^{wc}(n) = \max_{x \in (\Sigma)^n} \{T_A(x)\}\$$

Laufzeit im besten Fall (Best Case)

$$T_A^{bc}(n) = \min_{x \in (\Sigma)^n} \{T_A(x)\}\$$

Laufzeit im Durchschnitt (Average Case)

$$T_A^{ac}(n) = \frac{1}{|\Sigma|^n} \sum_{x \in (\Sigma)^n} T_A(x)$$

Zeitkomplexität von C, C++, C#, Java - Programmen

- Alle ausgeführten Anweisungen werden "mit 1" gezählt
- Anweisungen sind
 - Zuweisungen
 - Auswahl-Anweisungen (if-then-else, switch-case)
 - Iterationen (for, while-do, do-while)
 - Sprünge (break, continue, goto, return)
 - Funktionsaufrufe/Methodenaufrufe
- Bei Iterationen und Funktionsaufrufen/Methodenaufrufen
 - Alle im Rahmen der Iteration oder der Funktion/Methode ausgeführten Anweisungen werden natürlich auch gezählt (iterativ oder rekursiv)
- Vorsicht:
 - Funktions-/Methodenaufrufe in höheren Programmiersprachen sind nicht sofort ersichtlich (Beispiele: Konstruktor, Destruktor, Boolesche Abfragen, ...)
- · Einfache und komplexe Zuweisungen werden nicht unterschieden
 - Ziel: Ermittlung des asymptotischen Laufzeitverhaltens