Linear regression

Sunday, 10 March 2024 1:05 PM

Independent Variables

The feature of the dataset we known as independent nariables

dependent Variables

The forget variables are known as dependent variables

What is linear Regression?

We have to determine two things

1> Do the independent variable predict the dependable variable with right accuracy

2) which independent variable are bust fitted to predict the dependable variable

Linear Regusaion às a statistical model

Multiple Independent variable

The distance from a line to the data point is called Revidual

Residual Jum of Square (RSS)

$$RSS = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

$$= \sum_{i=1}^{n} (y_i - \widehat{y_i})^2$$

Yi = ith value of nariable to be predicted

Atmin of the contract of the c

f (Iti) is the predicted value

n is the number of terms or variable

Total Sum of Squares

$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

Regussion sum of squares

$$35R = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

Ji = The value estimated by regression line y = mean value of sample

 R^2 score

An R- Squared value shows how well the model predicts the outcome of the dependent variable. R^2 value range from 0 to 1

An R-Squared value of 0 means that the model explains on predicts 0% of the relationship between the dependent and independent variables

A value of I indicates that the model predicts 100% of the relationship between the dependent and independent variables

A value of 0.5 indicates that the model predicts 50% of the relationship between the dependent and independent variables

Root mean square Error

$$RMSE = \sqrt{\frac{1}{n}} \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

Х	У
1 3 10 16 26 36	42075050

$$b = \frac{n \xi x y - \xi x \xi y}{n \xi x^2 - (\xi x)^2}$$

$$\overline{y} = a + b\overline{x}$$
 $A = 33.83$
 $b = 4.51$

R² Calculation

7=3.511

X	4
0.4 1.8 2.4 3.9 4.1 5.6 6.3	1.4 2.6 1.0 3.7 5.5 3.2 3.0 4.9 6.3

9=0:1+0:78x
0.802 1.504 1.972 2.83 3.142 3.532 4.078 4.468 5.814

4-9	(y-9)2
0.598 1.096 0.972 0.87 2.358 0.332 1.078 0.432	0.3576 1-2012 0.9506 0.7569 5.8601 0.1102 1.1620 0.1866
1.286	1.6233
RSS	11.918

4-1	(4-1)5
2. 111 8.9 11 2.511 0.189 1.984 0.311 1.389 2.789	4.4521 0.8299 6.3001 0.03572 3.9561 0.0967 0.2611 1.9293 7.7785
TSS	25.56

$$R^2 = 1 - \frac{RSS}{TSS}$$

$$\frac{1}{x} \rightarrow 0$$

Define an objetime function (also called Error (cost function)

J (wo, w,)

distribution is to find values of Wo & W1, so that J(Wb, W1) becomes optimal

J= hw(x) - Yautual

Sometimes I will be positive of some times I will be regotive
Therefore

7= > (hw (x) - Youtrel)2

$$J(\omega_{0}, \omega_{1}) = (\omega_{0} + \omega_{1}x_{1} - y_{1})^{2} + (\omega_{0} + \omega_{1}x_{2} - y_{2})^{2} + (\omega_{0} + x_{1}x_{3} - y_{3})^{2} - (1)$$

$$+ (\omega_{0} + \omega_{1}x_{m} - y_{m})^{2} - (1)$$

To minimize J(wo, wi) find

$$\frac{\partial J}{\partial w_0} = 2 \left\{ (w_0 + w_1 x_1 - y_1) + (w_0 + w_1 x_2 - y_2) + \dots + (w_0 + w_1 x_m - y_m) \right\}$$

$$\frac{\partial J}{\partial w_1} = 2 \left\{ (w_0 + w_1 x_1 - Y_1) x_1 + (w_0 + w_1 x_2 - Y_2) x_2 + \dots - + (w_0 + w_1 x_m - Y_m) x_m \right\} = 0$$

Rewriting the Equation @ & 3 after substituting

solving 445

$$W_0 = \frac{AB - VM}{A^2 - CM}$$

$$W_0 = \frac{BC - AC}{CM - A^2}$$

$$3(w_0,w_1) = \frac{1}{2m} \sum_{i=1}^{n} (h_i(x) - Y_i)^2$$
Because of two of samples differenciation