Option Pricing Prediction Model

Group 29 Members:

Liang-Chi Liu Yi-Ching Lin Nattawut Kananusorn Suwara Thianrungrot Hsuan-Ting (Tommy) Wu

Table of contents

- Business Problem
- 2. Data Exploration
- 3. Data Cleaning
- 4. Variables Selection
- 5. Model Selection
 - a. Regression problem
 - b. Classification problem
- 6. Conclusion
- 7. Appendix

1.Business Problem

European Call Option on the S&P 500

Project Objective

Make a predictive model for current option value (Value) and
BS (Over- or Undervalue)

2.Data
Exploration

What does the data look like?

Data Set Shape: 1680 rows, 6 columns

Variable	Description	Data type	
Value (C)	Current option value	Float	
S	Current asset value	Float	
K	Strike price of option	Float	
r	Annual interest rate	Float	
tau	Time to maturity (in years)	Float	
BS	Over / Under based on whether (result of Black-Scholes formula - C) > 0	String	

3.Data
Cleaning

After data cleaning: 1675 rows, 11 columns

Data Cleaning

Drop Missing Values

Remove 2 rows due to missing values

Drop Erroneous Entries

3 rows removed due to outliers

- S = 0
- tau = 146
- tau = 250

Convert BS binary class

1 column created

- Under = 0
- Over = 1

Standardize variables

4 columns created

• Z scores of S, K, r, tau

4.Variables
Selection

We include all four variables in the model.

Why?

5.Model Selection

(Extreme Gradient Boosting Tree)

Leaf-wise tree growth

Steps

Split dataset into training and testing sets (80:20)

Use training set to find the best parameters for each model utilizing GridSearchCV

Validate tuned models with testing set and compare accuracy scores

Final Model (Regression)

Model	Parameters				R2			
Linear Begression					Train	Test		
Linear Regression				91.083%	91.140%			
Decision Tree	Criterion	max_depth	min_leaf	min_split	splitter		Train	Test
Decision Tree	absolute_error	18	1	2	random		98.632%	98.859%
Random Forest	Criterion	max_depth	min_leaf	min_split	n_estimators		Train	Test
Kandom Forest	mse	None	1	2	100		99.460%	99.552%
Gradient	Criterion	max_depth	min_leaf	min_split	n_estimators	learning_rate	Train	Test
Boosting Tree	mse	4	1	10	800	0.1	99.874%	99.902%
XGBoost	learning_rate	max_depth	n_estimators				Train	Test
AGBOOST	0.1	4	800			99.858%	99.898%	
LightCDM	learning_rate	max_depth	n_estimators				Train	Test
LightGBM	0.1	-1	150			99.346%	99.713%	
Neural Network	activation	# of nodes	# of layer	learning_rate			Train	Test
Neural Network	relu	10	2	adaptive			99.102%	98.998%

Final Model (Classification)

Model	Parameters				Accuracy		
Logistic Dograssian	penalty	solver	С			Train	Test
Logistic Regression	12	newton-cg	1	*		91.493%	91.642%
Decision Tree	max_depth	min_leaf	min_split			Train	Test
Decision free	9	2	2			90.746%	92.239%
Random Forest	max_depth	min_leaf	min_split	n_estimators		Train	Test
Kandom Forest	10	2	5	50		92.239%	92.537%
Gradient Boosting	max_depth	min_leaf	min_split	n_estimators	learning_rate	Train	Test
Tree	5	4	2	100	0.1	92.239%	92.537%
XGBoost	colsample_bytree	gamma	max_depth	min_child_weight	subsample	Train	Test
	0.8	1	4	1	0.6	93.284%	93.134%
LightGBM	lambda_l1	lambda_l2	max_depth	n_estimators		Train	Test
	1	1	4	150		92.836%	93.731%
Neural Network	activation	hidden_layer_sizes	learning_rate	4		Train	Test
Neural Network	relu	(100, 3)	constant	*		93.209%	93.134%
SVM	kernel	gamma	С			Train	Test
34141	rbf	0.1	100			92.687%	93.433%
KNN	n_neighbors					Train	Test
KININ	9					92.015%	92.537%

Accuracy vs. Interpretation

Investor or Business Users

Data Analyst or Data Scientist

6. Conclusion

Conclusion

- ★ Black-scholes Model VS Machine Learning?
- ★ Predict option values for Tesla stocks by this model?

Thank You

7. Appendix

Variable: Current Option Value (C)

- 1 row with null value
- Majority of values are around 0-10

Variables: S (Current asset value), K (Option Strike Price)

- K values are more centered, around the (420, 460) range
- S values are more spread open, around the (375, 490) range
- 1 row has null values for both K and S
- 1 row has S value of 0

Variable: r (Annual Interest Rate)

Rates range from 0.029 to 0.032

Variable: tau (Time to Maturity in Years)

- 2 extremely high values (146, 250)
- 1 row with null value
- Majority of values range from 10 days to 4 months

Variable: BS

Value	Count of values	Percentage
Over	946	56%
Uder	734	44%

