Formula

1. Least Square

Linear Regression

- Gradient Descendant
- Least Square
- Linear Equation
- SVD
- QR Decomposition
- Monte Carlo Method

Y = mx + c

Least Square

$$\operatorname{var}(x) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

$$cov(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

$$\beta = \frac{\operatorname{cov}(x,y)}{\operatorname{var}(x)}$$

$$\beta = \frac{22.65}{23.2} = 0.9762931034482758$$

$$\alpha = \overline{y} - \beta \overline{x}$$

x bar is the mean of x, xi is the value of x for the ith training instance, and n is the number of training instances.

Linear Equation

$$a = \frac{(\Sigma y)(\Sigma x^2) - (\Sigma x)(\Sigma x y)}{n(\Sigma x^2) - (\Sigma x)^2}$$
$$b = \frac{n(\Sigma xy) - (\Sigma x)(\Sigma y)}{n(\Sigma x^2) - (\Sigma x)^2}$$

Table 1

X	У
1	1
2	3
3	3
4	2
5	5

2. Logistic Regression

Name	Plot	Equation	Derivative
Id≘ntity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TanH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
ArcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Restified Linear Unit (R∋LU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

X1	X2	Υ
2.7810836	2.550537003	0
1.465489372	2.362125076	0
3.396561688	4.400293529	0
1.38807019	1.850220317	0
3.06407232	3.005305973	0
7.627531214	2.759262235	1
5.332441248	2.088626775	1
6.922596716	1.77106367	1
8.675418651	-0.242068655	1
7.673756466	3.508563011	1

3. KNN

Euclidean Distance =
$$\sqrt{(X_H - H_1)^2 + (X_W - W_1)^2}$$

Where

X_H: Observation value of variable Height

H₁: Centroid value of Cluster 1 for variable Height

X_w: Observation Value of variable Weight

W₁: Centroid value of cluster 1 for variable Weight

X1	X2	Υ
3.393533211	2.331273381	0
3.110073483	1.781539638	0
1.343808831	3.368360954	0
3.582294042	4.67917911	0
2.280362439	2.866990263	0
7.423436942	4.696522875	1
5.745051997	3.533989803	1
9.172168622	2.511101045	1
7.792783481	3.424088941	1
7.939820817	0.791637231	1

4. Naive Bayes

$$P(B \mid A) = \frac{P(A \mid B)P(B)}{P(A)}$$

Chills	Runny Nose	Headache	Fever	Flu?
Yes	No	Moderate	Yes	No
Yes	Yes	No	No	Yes
Yes	No	Strong	Yes	Yes
No	Yes	Moderate	Yes	Yes
No	No	No	No	No
No	Yes	Strong	Yes	Yes
No	Yes	Strong	No	No
Yes	Yes	Moderate	Yes	Yes

What about the next patient? Symptoms:

Chills	Runny Nose	Headache	Fever	Flu?
Yes	No	Moderate	No	?

Condition	Probabil ity	Condition	Probability
P(Flu=Yes)	0.625	P(Flu=No)	0.375
P(Chills=Yes Flu=Yes)	0,6	P(Chills=Yes Flu=No)	0.333
P(Chills=No Flu=Yes)	0,4	P(Chills=No Flu=No)	0.666
P(Runny Nose=Yes Flu=Yes)	0,8	P(Runny Nose=Yes Flu=No)	0.333
P(Runny Nose=No Flu=Yes)	0,2	P(Runny Nose=No Flu=No)	0.666
P(Headache=Moderate Flu=Yes)	0,4	P(Headache=Moderate Flu=No)	0.333
P(Headache=No Flu=Yes)	0,2	P(Headache=No Flu=No)	0.333
P(Headache=Strong Flu=Yes)	0,4	P(Headache=Strong Flu=No)	0.333
P(Temperature=Yes Flu=Yes)	0,8	P(Temperature=Yes Flu=No)	0.333
P(Temperature=No Flu=Yes)	0,2	P(Temperature=No Flu=No)	0.666

Chills	Runny Nose	Headache	Fever	Flu?
Yes	No	Moderate	No	?

P(Flu=Yes)P(Chills=Yes|Flu=Yes)P(Runny Nose=Nol Flu=Yes)P(Headache=Moderate|Flu=Yes)P(Temperature =Nol Flu=Yes) = 0.006

P(Flu=No)P(Chills=YeslFlu=No)P(Runny Nose=Nol Flu=No)P(Headache=ModeratelFlu=No)P(Temperature= Nol Flu=No) = 0.0185

Table 1

Weather	Car	Class
sunny	working	go-out
rainy	broken	go-out
sunny	working	go-out
sunny	working	go-out
sunny	working	go-out
rainy	broken	stay-home
rainy	broken	stay-home
sunny	working	stay-home
sunny	broken	stay-home
rainy	broken	stay-home

Table 1

Chills	Runny Nose	Headache	Fever	Flu?
Yes	No	Moderate	Yes	No
Yes	Yes	No	No	Yes
Yes	No	Strong	Yes	Yes
No	Yes	Moderate	Yes	Yes
No	No	No	No	No
No	Yes	Strong	Yes	Yes
No	Yes	Strong	No	No
Yes	Yes	Moderate	Yes	Yes

5. K Means

Table 1

Height	Weight
185	72
170	56
168	60
179	68
182	72
188	77
180	71
180	70
183	84
180	88
180	67
177	76

6. Decision Tree

Decision Tree

L : Left child node for the root node

R : Right child node for the root node

$$P_R = \frac{\text{Number of records in right child node}}{\text{Total number of records}}$$

$$P_R = \frac{\text{Number of records in right child node}}{\text{Total number of records}}$$

$$P(k|L) = \frac{\text{Number of class k records in left child node}}{\text{Number of records in left child node}}$$

$$P(k|R) = \frac{\text{Number of class k records in right child node}}{\text{Number of records in right child node}}$$

Activity in the	Campaign Results by in the		Cusasas Data	
Last Quarter	Solicited Customers	Responded (r)	Not Responded (<i>nr</i>)	Success Rate
low	40000	720	39280	1.8%
medium	30000	1380	28620	4.6%
high	30000	2100	27900	7.0%

As you know, CART decision tree algorithm splits the root node into just two child nodes. Hence for this data, CART can form three combinations of binary trees as shown in the table below.

Left Node	Right Node	PL	PR	P(k L) = a	P(k R) = b	Ψ(Large Piece)	Ψ(Pick Cherries)	Goodness of Split
						2PLPR	Σ(a-b)	
Low	Medium+High	0.4	0.6	r: 0.018	r: 0.058	0.48	0.080	0.0384
				nr: 0.982	nr: 0.942			
Low+Medium	High	0.7	0.3	r: 0.030	r: 0.070	0.42	0.080	0.0336
				nr: 0.970	nr: 0.930			
Low+high	Medium	0.7	0.3	r: 0.040	r: 0.046	0.42	0.011	0.0048
				nr: 0.960	nr: 0.954			

$$P_L = \frac{\text{\# customers in Low}}{\text{All the customers}} = \frac{40000}{100000} = 0.4$$

$$P_R = \frac{\text{\# customers in Medium + High}}{\text{All the customers}} = \frac{60000}{100000} = 0.6$$

$$\Psi(\text{Large Piece}) = 2P_L P_R = 2 \times 0.4 \times 0.6 = 0.48$$

Remember, r represents responded and nr represents not-responded customers for our campaign's example.

r:
$$P(k|L) = \frac{\text{\# customers responded in Low}}{\text{Total number of customers in Low}} = \frac{720}{40000} = 0.018$$

nr:
$$P(k|L) = \frac{\text{\# customers not responded in Low}}{\text{Total number of customers in Low}} = \frac{39280}{40000} = 0.982$$

$$\Psi(\text{Pick Cherries}) = |P(r|L) - P(r|R)| + |P(nr|L) - P(nr|R)|$$

$$\Psi(\text{Pick Cherries}) = |0.018 - 0.058| + |0.982 - 0.942| = 0.080$$

Goodness of split = $\Psi(\text{Large Piece}) \times \Psi(\text{Pick Cherries}) = 0.48 \times 0.080$

 \therefore Goodness of split = 0.0384

Table 1

X1	X2	Υ
2.771244718	1.784783929	0
1.728571309	1.169761413	0
3.678319846	2.81281357	0
3.961043357	2.61995032	0
2.999208922	2.209014212	0
7.497545867	3.162953546	1
9.00220326	3.339047188	1
7.444542326	0.476683375	1
10.12493903	3.234550982	1
6.642287351	3.319983761	1

7. Random Forest

Outlook	Temp.	Humidity	Windy	Play Golf
Rainy	Mild	High	False	?

Tree 1: No

Tree 2: No

Tree 3: Yes

Yes:1

No: 2

Result: No

Table 1

X1	X2	Υ
2.771244718	1.784783929	0
1.728571309	1.169761413	0
3.678319846	2.81281357	0
3.961043357	2.61995032	0
2.999208922	2.209014212	0
7.497545867	3.162953546	1
9.00220326	3.339047188	1
7.444542326	0.476683375	1
10.12493903	3.234550982	1
6.642287351	3.319983761	1

8. NN

Neural Networks

Color Guided Matrix Multiplication for a Binary Classification Task

Rubens Zimbres

$$net_{h1} = w_1 * i_1 + w_2 * i_2 + b_1 * 1$$

$$net_{h1} = 0.15 * 0.05 + 0.2 * 0.1 + 0.35 * 1 = 0.3775$$

$$out_{h1} = \frac{1}{1+e^{-net_{h1}}} = \frac{1}{1+e^{-0.3775}} = 0.593269992$$

$$out_{h2} = 0.596884378$$

$$net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$$

$$net_{o1} = 0.4 * 0.593269992 + 0.45 * 0.596884378 + 0.6 * 1 = 1.105905967$$

$$out_{o1} = \frac{1}{1+e^{-net_{o1}}} = \frac{1}{1+e^{-1.105905967}} = 0.75136507$$

$$out_{o2} = 0.772928465$$

$$E_{total} = \sum \frac{1}{2} (target - output)^2$$

$$E_{o1} = \frac{1}{2}(target_{o1} - out_{o1})^2 = \frac{1}{2}(0.01 - 0.75136507)^2 = 0.274811083$$

$$E_{o2} = 0.023560026$$

$$E_{total} = E_{o1} + E_{o2} = 0.274811083 + 0.023560026 = 0.298371109$$

$$E_{total} = \frac{1}{2}(target_{o1} - out_{o1})^2 + \frac{1}{2}(target_{o2} - out_{o2})^2$$

 $\frac{\partial E_{total}}{\partial out_{o1}} = 2 * \frac{1}{2}(target_{o1} - out_{o1})^{2-1} * -1 + 0$

$$\frac{\partial E_{total}}{\partial out_{o1}} = -(target_{o1} - out_{o1}) = -(0.01 - 0.75136507) = 0.74136507$$

$$out_{o1} = \frac{1}{1+e^{-net_{o1}}}$$

 $\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1}) = 0.75136507(1 - 0.75136507) = 0.186815602$

 $net_{o1} = w_5 * out_{h1} + w_6 * out_{h2} + b_2 * 1$

$$\frac{\partial net_{o1}}{\partial w_5} = 1 * out_{h1} * w_5^{(1-1)} + 0 + 0 = out_{h1} = 0.593269992$$

$$\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} * \frac{\partial out_{o1}}{\partial net_{o1}} * \frac{\partial net_{o1}}{\partial w_5}$$

$$\frac{\partial E_{total}}{\partial w_5} = 0.74136507 * 0.186815602 * 0.593269992 = 0.082167041$$

9. SVM

$$B0 + (B1 \times X1) + (B2 \times X2) = 0$$

If the output value is greater than 1 it suggests that the training pattern was not a support vector.

$$b = (1 - \frac{1}{t}) \times b$$

If the output is less than 1 then it is assumed that the training instance is a support vector and must be updated to better explain the data.

$$b = (1 - \frac{1}{t}) \times b + \frac{1}{lambda \times t} \times (y \times x)$$

$$B1 = 0.0$$

$$B2 = 0.0$$

$$X1 = 2.327868056$$
, $X2 = 2.458016525$, $Y = 1$

output=
$$Y * (B1*X1) + (B2*X2)$$

output =
$$-1*(0.0 * 2.327868056) + (0.0 * 2.458016525)$$

output = 0.0 //The output is less than 1.0

$$b = (1 - \frac{1}{t}) \times b + \frac{1}{lambda \times t} \times (y \times x)$$

$$B1 = (1-1/1) * 0.0 + 1/(0.45 * 1) * (1 \rightarrow 1)$$

2.327868056)

$$B1 = 5.173040124$$

$$B1 = (1-1/1) * 0.0 + 1/(0.45 * 1) * (1 \rightarrow 1)$$

2.458016525)

$$B2 = 5.462258944$$

B1 = -5.173040124

B2 = -5.462258944

X1 = 2.327868056, X2 = 2.458016525, Y = 1

Table 1

X1	X2	Y
2.327868056	2.458016525	-1
3.032830419	3.170770366	-1
4.485465382	3.696728111	-1
3.684815246	3.846846973	-1
2.283558563	1.853215997	-1
7.807521179	3.290132136	1
6.132998136	2.140563087	1
7.514829366	2.107056961	1
5.502385039	1.404002608	1
7.432932365	4.236232628	1

Microsoft Azure Machine Learning: Algorithm Cheat Sheet

This cheat sheet helps you choose the best Azure Machine Learning Studio algorithm for your predictive analytics solution. Your decision is driven by both the nature of your data and the question you're trying to answer.

ANOMALY DETECTION One-class SVM >100 features PCA-based linear anomaly approximation detection

REGRESSION

TWO-CLASS CLASSIFICATION

Machine Learning Algorithms Cheat Sheet

