TABLES

TABLE I. LDA calculated (cal) equilibrium zinc-blendelattice constants a (in Å), bulk moduli B (in kbar), and the pressure derivative B' of the bulk modulus. Results are compared with available experimental (exp) data (Ref. [1]). Compounds denoted by an asterisk exist in wurtzite structure, while HgS exist in the cinnabar structure. For these compounds a_{exp} and B_{exp} are estimated from the properties of their wurtzite countpart or from LDA calculations.

Compound	$a_{\it cal}$	a_{exp}	B_{cal}	B_{exp}	B_{cal}^{\prime}
С	3.5393	3.5668	4692	4420	3.8
Si	5.4069	5.4307	966	979	4.4
Ge	5.6540	5.6579	708	689	4.5
Sn	6.5029	6.4890	443	456	4.6
AlN*	4.3641	4.3600	2158	2158	4.2
AlP	5.4461	5.4635	903	860	4.4
AlAs	5.6435	5.6600	754	781	4.4
AlSb	6.1234	6.1355	560	551	4.4
GaN^*	4.4881	4.5000	2063	2054	4.6
GaP	5.4374	5.4505	896	882	4.7
${ m GaAs}$	5.6490	5.6533	742	756	4.8
GaSb	6.0917	6.0959	556	563	4.9
${\rm InN^*}$	4.9753	4.9800	1498	1480	4.7
InP	5.8615	5.8687	716	710	4.8
$\operatorname{In} \operatorname{As}$	6.0512	6.0583	603	579	4.9
InSb	6.4763	6.4794	468	483	4.9
m ZnS	5.3476	5.4102	906	771	5.0
$\mathbf{Z}\mathbf{nSe}$	5.6079	5.6676	740	624	5.0
ZnTe	6.0295	6.0890	559	509	5.1
CdS*	5.7958	5.8180	703	620	4.8
CdSe^*	6.0412	6.0520	592	530	4.8
CdTe	6.4400	6.4820	466	445	4.9
$_{ m HgS}$	5.8476	5.8500	689	685	5.0
HgSe	6.0950	6.0850	589	500	5.0
НgТе	6.4677	6.4603	477	423	5.1

TABLE II. LDA Calculated band gap volume deformation potentials [Eq. (2)] (in eV) and pressure coefficient [Eq. (1)] (in meV/kbar) of the three main transitions, $_{8v} \rightarrow X_{6c}$, $_{8v} \rightarrow L_{6c}$, and , $_{8v} \rightarrow$, $_{6c}$ for group IV, III-V and II-VI semiconductors. Results for $a_p^{\Gamma-\Gamma}$ are compared with available experimental (exp) data (Ref. [1], unless specified otherwise).

Compound	$a_v^{\Gamma-X}$	$a_p^{\Gamma-X}$	$a_v^{\Gamma-L}$	$a_p^{\Gamma-L}$	$a_v^{\Gamma - \Gamma}$	$a_p^{\Gamma-\Gamma}$	$a_p^{\Gamma - \Gamma}(exp)$
C	-2.31	0.49	-13.65	2.91	-23.08	4.9	
Si	1.84	-1.90	-3.60	3.73	-11.39	11.8	
Ge	1.16	-1.64	-3.07	4.34	-9.10	12.9	
Sn	0.97	-2.19	-1.96	4.42	-6.97	15.7	
AlN	-0.42	0.19	-9.04	4.11	-9.04	4.2	
AlP	1.86	-2.06	-3.77	4.17	-8.50	9.4	
AlAs	1.63	-2.16	-3.77	5.00	-7.86	10.4	10.2
AlSb	1.71	-3.05	-2.90	5.18	-7.85	14.0	
$_{ m GaN}$	-0.35	0.17	-6.72	3.26	-6.40	3.1	4.0^a
$_{ m GaP}$	1.97	-2.20	-2.96	3.30	-7.99	8.9	9.7
GaAs	1.81	-2.44	-2.66	3.58	-7.25	9.8	8.5 - 12.6
GaSb	1.80	-3.24	-2.04	3.67	-7.01	12.6	14.0
InN	-0.45	0.30	-3.97	2.65	-2.75	1.8	
InP	1.62	-2.26	-2.25	3.14	-5.30	7.4	$8.0; 7.5-9.3^b$
InAs	1.58	-2.62	-1.98	3.28	-4.93	8.2	$11.4;\ 9.6-11.4^b$
InSb	1.66	-3.55	-1.65	3.53	-5.60	12.0	12.8-15.5
ZnS	2.10	-2.32	-1.97	2.17	-4.28	4.7	$5.8; 6.4^c; 6.7^d$
ZnSe	2.16	-2.92	-1.74	2.35	-3.96	5.4	$7.2\!-\!7.5;\!7.0^{c}$
ZnTe	2.42	-4.33	-1.31	2.34	-4.67	8.4	$11.5; 10.5^e$
CdS	1.62	-2.30	-1.38	1.96	-2.08	3.0	$4.4; 4.6^{c}$
CdSe	1.81	-3.05	-1.17	1.98	-1.96	3.3	5.8
CdTe	2.09	-4.48	-0.98	2.10	-2.95	6.3	$7.6^e; 6.5 - 8.6^f$
HgS	1.91	-2.77	-0.34	0.49	-1.23	1.8	
HgSe	2.20	-3.74	-0.06	0.10	-1.15	2.0	
НgТе	2.49	-5.22	-0.01	0.02	-2.34	4.9	

 $[\]overline{{}^{a} \text{ Ref. [2]}; {}^{b} \text{ Ref. [3]}; {}^{c} \text{ Ref. [4]}; {}^{d} \text{ Ref. [5]}; {}^{e} \text{ Ref. [6]}; {}^{f} \text{ Ref. [7]};}$

TABLE III. LDA Calculated "absolute" volume deformation potentials (in eV) of the VBM (, 8v) and the CBM (, 6c) states at , for group IV, III-V and II-VI semiconductors.

Compound	a_v^{VBM}	a_v^{CBM}
С	2.55	-20.53
Si	2.05	-9.34
Ge	-0.35	-9.45
Sn	-0.92	-7.89
AlN	4.94	-4.10
AlP	2.64	-5.86
AlAs	1.53	-6.33
AlSb	0.73	-7.12
GaN	0.69	-5.71
GaP	-0.58	-8.57
GaAs	-1.21	-8.46
GaSb	-1.32	-8.33
InN	0.73	-2.02
InP	-0.41	-5.71
InAs	-1.00	-5.93
InSb	-1.24	-6.84
ZnS	-1.74	-6.02
ZnSe	-1.97	-5.93
ZnTe	-2.28	-6.95
CdS	-1.51	-3.59
CdSe	-1.81	-3.77
$\mathrm{Cd}\mathrm{Te}$	-2.14	-5.09
HgS	-3.06	-4.29
HgSe	-3.20	-4.35
НgТе	-3.45	-5.79

TABLE IV. LDA corrected band gap volume deformation potentials (in eV) and pressure coefficient (in meV/kbar) of the three main transitions, $_{8v} \rightarrow X_{6c}$, $_{8v} \rightarrow L_{6c}$, and $_{8v} \rightarrow _{6c}$ for group IV, III-V and II-VI semiconductors. The pressure coefficients are obtained using Eq. (1) and experimental bulk moduli of Table II.

Compound	$a_v^{\Gamma-X}$	$a_p^{\Gamma-X}$	$a_v^{\Gamma-L}$	$a_p^{\Gamma-L}$	$a_v^{\Gamma-\Gamma}$	$a_p^{\Gamma-\Gamma}$
C	-3.12	0.7	-14.77	3.3	-24.77	5.6
Si	1.35	-1.4	-4.07	4.2	-12.44	12.7
Ge	0.49	-0.7	-4.00	5.8	-10.06	14.6
Sn	0.46	-1.0	-2.71	5.9	-7.58	16.6
AlN	-1.13	0.5	-9.89	4.6	-10.16	4.7
AlP	1.34	-1.6	-4.38	5.1	-9.52	11.1
AlAs	1.01	-1.3	-4.60	5.9	-8.93	11.4
AlSb	1.18	-2.1	-3.64	6.6	-8.85	16.1
$_{ m GaN}$	-1.21	0.6	-8.15	4.0	-7.37	3.6
$_{\mathrm{GaP}}$	1.27	-1.4	-3.83	4.3	-8.83	10.0
GaAs	1.05	-1.4	-3.70	4.9	-8.15	10.8
GaSb	1.12	-2.0	-3.06	5.4	-8.01	14.2
InN	-1.35	0.9	-5.23	3.5	-3.66	2.5
InP	1.00	-1.4	-3.00	4.2	-5.93	8.4
InAs	0.92	-1.6	-2.89	5.0	-5.66	9.8
InSb	1.10	-2.3	-2.51	5.2	-6.35	13.1
ZnS	1.09	-1.4	-3.09	4.0	-5.16	6.7
ZnSe	1.36	-2.2	-2.92	4.7	-4.99	8.0
ZnTe	1.72	-3.4	-2.40	4.7	-5.60	11.0
CdS	0.88	-1.4	-2.23	3.6	-2.94	4.7
CdSe	1.03	-1.9	-2.19	4.1	-2.90	5.5
CdTe	1.44	-3.2	-1.88	4.2	-3.70	8.3
HgS	1.32	-1.9	-1.10	1.6	-2.16	3.2
HgSe	1.56	-3.1	-0.90	1.8	-2.15	4.3
НgТе	1.97	-4.7	-0.74	1.8	-3.19	7.5

REFERENCES

- Landolt-Bornstein: Numerical Data and Functional Relationships in Science and Technology, Group III, Vol. 22a, edited by O. Madelung and M. Schulz, (Springer-Verlag, Berlin, 1987). See also Vol. 17a,b.
- [2] H. Teisseyre et al., Phys. Stat. Sol. (b) **198**, 235 (1996).
- [3] P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, Phys. Rev. B 41, 1598 (1990), and references therein.
- [4] K. Reimann, M. Haselhoff, St. Rubenacke, and M. Steube, Phys. Stat. Sol. (b) 198, 71 (1996).
- [5] J. Gonzalez, F. V. Perez, E. Moya, and J. C. Chervin, J. Phys. Chem. Solids 56, 335 (1995).
- [6] B. Gil and D. J. Dunstan, Semicon. Sci. Technol. 6, 428 (1991).
- [7] M. Zigone, H. Roux-Buisson, H. Tuffigo, N. Magnea, and H. Mariette, Semicon. Sci. Technol. 6, 454 (1991).