

Swarm Intelligence Content

1 Swarm Intelligence
1 Swarm Intelligence
2 Particle Swarm Optimization
3 Ant Colony Optimization

Kecerdasan Komputasional | Swarm Intelegence

Algoritma Ant Colony Optimization

Tahapan utama Algoritma ACO:

Pembentukan Kandidat Solusi

Update Konsentrasi Pheromone

Update Konsentrasi Pheromone

Kecerdasan Komputasional | Swarm Intelegence

Pembentukan Kandidat Solusi

Semut akan memilih rute berdasarkan probabilitas masing-masing rute, yang dipengaruhi oleh pheromone rute

$$p_{ij}^k(t) = \frac{\tau_{ij}^\alpha \eta_{ij}^\beta}{\sum_{u \in N_i^k(t)} \tau_{iu}^\alpha \eta_{iu}^\beta}$$

Kecerdasan Komputasional

Swarm Intelegence

9

Pembentukan Kandidat Solusi

 $p_{ij}^k(t)$: probabilitas path ij, dari semut ke-k di iterasi ke-t

 au_{ij}^{lpha} : informasi posterior keefektifan suatu path ij, atau disebut juga

intensitas pheromone pada path ij.

 η_{ij}^{eta} : informasi prior keefektifan suatu path ij , $\eta_{ij}=rac{1}{d_{ij}}$

lpha,eta : derajat pheromone dan derajat informasi prior

 N_i^k : node yang mungkin ditempuh oleh semut ke-k

Kecerdasan Komputasional | Swarm Intelegence

Update Konsentrasi Pheromone

Update Pheromone terdapat proses evaporasi (penguapan), semakin jauh maka pheromone semakin cepat menguap .

Evaporasi Phermone:

$$\tau_{ij}(t) = (1 - \rho)\tau_{ij}(t)$$

Kecerdasan Komputasional | Swarm Intelegence

11

Update Konsentrasi Pheromone

Update Pheromone :

$$\tau_{ij}(t+1) = \tau_{ij}(t) + \sum_{k=1}^{n_k} \Delta_{ij}^k(t)$$

dimana:

$$\Delta_{ij}^k(t) = \frac{Q}{f(x^k(t))}$$
; (i,j) terdapat di rute $x^k(t)$

$$= 0$$
; selainnya

Kecerdasan Komputasional | Swarm Intelegence

Inisialisasi Konsentrasi Pheromone:

$ au_{ij}$	Α	В	С	D	E
Α	$\tau_{a,a} = 0$	$\tau_{a,b} = 0.01$	$\tau_{a,c} = 0.01$	$\tau_{a,d} = 0.01$	$\tau_{a_{.}e} = 0.01$
В	$\tau_{b_a} = 0.01$	$\tau_{b,b} = 0$	$\tau_{b,c} = 0.01$	$\tau_{b,d} = 0.01$	$\tau_{b_e} = 0.01$
С	$\tau_{c_a} = 0.01$	$\tau_{c,b} = 0.01$	$\tau_{c,c} = 0$	$\tau_{c,d} = 0.01$	$\tau_{c_e} = 0.01$
D	$\tau_{d,a} = 0.01$	$\tau_{d,b} = 0.01$	$\tau_{d,c} = 0.01$	$\tau_{d,d} = 0$	$\tau_{d,e} = 0.01$
Е	$\tau_{e,a} = 0.01$	$\tau_{e,b} = 0.01$	$\tau_{e,c} = 0.01$	$\tau_{e,d} = 0.01$	$\tau_{d_e} = 0$

1010100010101

101010001010100

Kecerdasan Komputasional |

Swarm Intelegence

15

Traveling Salesman Problem

Hitung Informasi Prior, $\eta_{ij}=rac{1}{d_{ij}}$

n	A	В	С	D	E
η_{ij}					
A	$\eta_{a,a} = 0$	$\eta_{a,b} = 0.25$	$\eta_{a,c} = 0.11$	$\eta_{a,d} = 0.09$	$\eta_{a_e} = 0.5$
В	$\eta_{b,a} = 0.25$	$\eta_{b,b} = 0$	$\eta_{b,c} = 0.33$	$\eta_{b\ d}=0.1$	$\eta_{b,e} = 0.125$
С	$\eta_{c_a} = 0.11$	$\eta_{c,b} = 0.33$	$\eta_{c,c} = 0$	$\eta_{c,d} = 0.2$	$\eta_{c_e} = 0.1$
D	$\eta_{d,a} = 0.09$	$\eta_{d,b} = 0.1$	$\eta_{d,c} = 0.2$	$\eta_{d,d} = 0$	$\eta_{d,e} = 0.14$
E	$\eta_{e,a} = 0.5$	$\eta_{e,b} = 0.125$	$\eta_{e,c} = 0.1$	$\eta_{e,d} = 0.14$	$\eta_{d,e} = 0$

Kecerdasan Komputasional

Misalkan semut ke-1, dimulai dari kota A, sedangkan semut ke-2 dari kota B, dan semut ke-3 dari kota C, maka buat rute untuk masing-masing semut, sehingga semua kota terlewati

Kecerdasan Komputasional

Swarm Intelegence

17

Traveling Salesman Problem

Semut 1, dari kota A

Hitung total probabilitas kota yang mungkin dapat dikunjungi dari kota-A

$$Total = \sum_{u \in N_i^k(t)} \tau_{iu}^{\alpha} \eta_{iu}^{\beta}$$

$$= \tau_{a,b} \eta_{a,b} + \tau_{a,c} \eta_{a,c} + \tau_{a,d} \eta_{a,d} + \tau_{a,e} \eta_{a,e}$$

$$= 0.01 \times 0.25 + 0.01 \times 0.11 + 0.01 \times 0.09 + 0.01 \times 0.5 = 0.00952$$

Kecerdasan Komputasional

Hitung probabilitas masing-masing rute yang mungkin ditempuh dari kota-A

$$p_{ij}^{k}(t) = \frac{\tau_{ij}^{\alpha}\eta_{ij}^{\beta}}{\sum_{u \in N_{i}^{k}(t)} \tau_{iu}^{\alpha}\eta_{iu}^{\beta}} \qquad p_{ad}^{1}(1) = \frac{\tau_{a,d}\eta_{a,d}}{Total}$$

$$p_{ab}^{1}(1) = \frac{\tau_{a,b}\eta_{a,b}}{Total} \qquad = \frac{0.01 \times 0.25}{0.00952} = 0.262599$$

$$p_{ac}^{1}(1) = \frac{\tau_{a,c}\eta_{a,c}}{Total} \qquad = \frac{0.01 \times 0.11}{0.00952} = 0.116711$$

$$p_{ad}^{1}(1) = \frac{\tau_{a,d}\eta_{a,d}}{Total} \qquad = \frac{0.01 \times 0.09}{0.00952} = 0.525199$$

Kecerdasan Komputasional

Swarm Intelegence

19

Traveling Salesman Problem

Hitung probabilitas masing-masing rute yang mungkin ditempuh dari kota-A

$$p_{ad}^{1}(1) = \frac{\frac{t_{a,d}\eta_{a,d}}{Total}}{\frac{0.01 \times 0.09}{0.00952}} = 0.095491$$

$$p_{ae}^{1}(1) = \frac{\frac{\tau_{a,e}\eta_{a,e}}{Total}}{\frac{0.01 \times 0.5}{0.00952}} = 0.525199$$

Kecerdasan Komputasional

Hitung komulatif masing-masing rute:

 k_{ab} 0.262599 0.262599 + 0.116711 = 0.379310.37931 + 0.095491 = 0.4748010.474801 + 0.525199 = 1

Misalkan bilangan acak yang dibangkitkan adalah 0.7, maka rute yang dipilih adalah 'E'

Total =

Kecerdasan Komputasional

Swarm Intelegence

21

Traveling Salesman Problem

Cari kemungkinan kota-kota yang dapat dilalui dari kota

 $\tau_{e,b}\eta_{e,b} + \tau_{e,c}\eta_{e,c} + \tau_{e,d}\eta_{e,d} + \\$ $0.01 \times 0.125 + 0.01 \times 0.1 + 0.01 \times 0.14 = 0.003678$ $au_{ij}^{lpha}\eta_{ij}^{eta}$ $p_{ij}^k(t) =$ $\sum_{u \in N_i^k(t)} \tau_{iu}^{\alpha} \eta_{iu}^{\beta}$ $au_{e,b}\eta_{e,b}$ $p_{eb}^{1}(1) =$ Total $0.01 \times 0.125 = 0.339806$ $\bar{\tau_{e,c}}\eta_{e,c}$ $p_{ec}^{1}(1) =$ Total 0.01×0.1 $\frac{0.003678}{0.003678} = 0.27184$ $\tau_{e,d}\eta_{e,d}$ $p_{ed}^{1}(1) =$ Total $0.01 \times 0.14 = 0.38835$

0.003678

Kecerdasan Komputasional

Hitung komulatif

$$k_{eb} = 0.339806$$

 $k_{ec} = 0.339806 + 0.27184 = 0.61165$
 $k_{ed} = 0.61165 + 0.38835 = 1$

Misalkan bilangan acak yang dibangkitkan adalah 0.2, maka kota berikutnya a dalah **B**.

Oleh karena itu rute yang sudah ditempuh semut 1, adalah A-E-B

Kecerdasan Komputasional | Swarm Intelegence

23

Traveling Salesman Problem

Cari kota yang dapat ditempuh dari kota 'B'

Total = $\tau_{b,c}\eta_{b,c} + \tau_{b,d}\eta_{b,d} + \\$ $= 0.01 \times 0.33 + 0.01 \times 0.1 = 0.00433$ $\tau_{ij}^{\alpha} \eta_{ij}^{\beta}$ $p_{ij}^k(t)$ $\sum_{u \in N_i^k(t)} \tau_{iu}^{\alpha} \overline{\eta_{iu}^{\beta}}$ $\tau_{b,c}\eta_{b,c}$ $p_{bc}^{1}(1) =$ Total 0.01×0.33 = 0.769231 0.00433 $\tau_{b,d}\eta_{b,d}$ $p_{bd}^1(1) =$ Total 0.01×0.1 = 0.2307690.00433

Kecerdasan Komputasional

Hitung komulatif:

$$k_{bc} = 0.769231$$

 $k_{bd} = 0.769231 + 0.230769 = 1$

Misalkan bilangan yang dibangkitkan adalah 0.9, maka kota yang dipilih adalah D.

Oleh karena itu rute yang dipilih adalah:

A-E-B-D

Kota terakhir yang belum dikunjungi adalah C, oleh karena itu path yang ditempuh oleh semut-1, adalah :

A-E-B-D-C

Kecerdasan Komputasional Sw

Swarm Intelegence

25

Traveling Salesman Problem

Hitung Δ_{ij} untuk update konsentrasi pheromone

Karena Jarak AEBDC = AE+EB+BD+DC =25

Maka $\Delta_{AEBDC} = \frac{1}{25} = 0.04$

Kecerdasan Komputasional

Cari rute untuk semut ke-2 dan semut ke-3

Misalkan rute dari semut ke-2 adalah:

B-C-D-E-A

sehingga $\Delta_{BCDEA} = \frac{1}{17} = 0.058824$

Misalkan rute dari semut ke-3 adalah:

C-B-E-A-D

sehingga $\Delta_{CBEAD} = \frac{1}{16} = 0.0625$

Kecerdasan Komputasional

Swarm Intelegence

27

Traveling Salesman Problem

Update konsentrasi pheromone, untuk digunakan pada iterasi berikutnya:

$ au_{ij}$	A	В	С	D	E
Α	$\tau_{a,a} = 0$	$\tau_{a,b} = 0.005$	$\tau_{a,c} = 0.005$	$\tau_{a,d} = 0.005$	$\tau_{a,e} = 0.10751$
В	$\tau_{b,a} = 0.0675$	$\tau_{b,b} = 0$	$\tau_{b,c} = 0.0638$	$\tau_{b,d} = 0.045$	$\tau_{b,e} = 0.005$
C	$\tau_{c_a} = 0.005$	$\tau_{c,b} = 0.068$	$\tau_{c,c} = 0$	$\tau_{c_{.}d} = 0.0638$	$\tau_{c_{.}e} = 0.005$
D	$\tau_{d,a} = 0.005$	$\tau_{d,b} = 0.005$	$\tau_{d,c} = 0.045$	$\tau_{d,d} = 0$	$\tau_{d,e} = 0.063824$
E 1	$\tau_{e,a} = 0.06382$	$\tau_{e_{ b}} = 0.045$	$\tau_{e_{.}c} = 0.005$	$\tau_{e,d} = 0.0675$	$\tau_{d_e} = 0$

Kecerdasan Komputasional

