一.客观题前3个为判断题,4-8为单选题。
1. <i>n</i> 行列式共有 <i>n</i> ² 个元素,展开后有 <i>n</i> ! 项,可分解为 2 ⁿ 行列式; 2. 极大线性无关组唯一的向量组未必是线性无关的向量组。
$3. 0 \le r(A_{m \times n}) \le \min(m, n) ;$
4. 设矩阵 B=(b _{ij}) _{rxr} , C=(c _{ij}) _{rxn} ,且 BC=0,以下正确的是
(A) 若 r(C) <r,则有 (b)="" b="0</th" c≠0,则必有="" 若=""></r,则有>
(C) 若 r(C)=r,则有 B=O (D) B=O,且 C=O
5. 设A为n阶方阵,且满足 $A^2 = A$,且 $A \neq E$,则有
(A) A 为可逆矩阵 (B) A 为零矩阵
(C) A 为对称矩阵 (D) A 为不可逆矩阵
6. 设 α_1 , α_2 , α_3 , α_4 是线性空间 V 的一组基,则下面也是 V 的基的是
(A) $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_4$, $\alpha_4 + \alpha_1$ (B) $\alpha_1 - \alpha_2$, $\alpha_2 - \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 - \alpha_2$
(C) $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_4$, $\alpha_4 - \alpha_1$ (D) $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 - \alpha_4$, $\alpha_4 - \alpha_1$
7. 设线性方程组 $Ax=b$,其中 $A \not\in m \times n$ 矩阵, $b\neq 0$,则方程组 $Ax=b$
(A) 有唯一解 (B) 有无穷多解 (C) 无解 (D) 可能无解
8. 若矩阵 $A=\begin{bmatrix} 1 & a & -1 & 2 \\ 0 & -1 & a & 2 \\ 1 & 0 & -1 & 2 \end{bmatrix}$ 的秩为 2,则有 a 等于 ()
(A) 0 (B) 0或-1 (C) -1 (D) -1或者 1
二、行列式计算

$$D = \begin{vmatrix} a+1 & 0 & 0 & 0 & a+2 \\ 0 & a+5 & 0 & a+6 & 0 \\ 0 & 0 & a+9 & 0 & 0 \\ 0 & a+7 & 0 & a+8 & 0 \\ a+3 & 0 & 0 & 0 & a+4 \end{vmatrix}$$

1. 计算行列式

三、

已知:
$$\begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 2 \\ 1 & -1 & 0 \end{bmatrix} X = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}, 求矩阵 X.$$

四、已知线性方程组:

$$\begin{cases} x_1 + x_2 &= 1, \\ x_1 & -x_3 &= 1, \\ x_1 + ax_2 + x_3 &= b. \end{cases}$$

- (1) 当 a,b 取何值时, 无解, 有惟一解, 有无穷多解?
- (2) 当方程组有无穷多解时求其通解。

五: 设 R^3 中的两组基分别为:

$$\boldsymbol{\varepsilon}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \, \boldsymbol{\varepsilon}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \, \boldsymbol{\varepsilon}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \mathcal{B} \, \boldsymbol{\eta}_1 = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \, \boldsymbol{\eta}_2 = \begin{bmatrix} 1 \\ 2 \\ -2 \end{bmatrix}, \, \boldsymbol{\eta}_3 = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}.$$

(1) 求由基 ε_1 , ε_2 , ε_3 到基 η_1 , η_2 , η_3 的过渡矩阵C;

(2) 若向量
$$\alpha$$
 在基 η_1 , η_2 , η_3 下的坐标为 $\begin{bmatrix} 2\\2\\-2 \end{bmatrix}$, 求 α 在基 ϵ_1 ,

 ϵ_2 , ϵ_3 下的坐标.

其中 $\lambda \neq 0$ ($i = 1, 2, \dots, s$),证明: β代替 α_i 后的向量组 $\alpha_1, \alpha_2, \dots$, $\alpha_{i-1}, \beta, \alpha_{i+1}, \dots, \alpha_s$ 线性无关.

设
$$X = \begin{bmatrix} O & A \\ C & O \end{bmatrix}$$
, 已知 A^{-1} , C^1 存在,求 X^1