1 Overview of implicit ICE 12/14/05

–Compute $\vec{U_m}^{*^f}$ (add Exchange contribution, set boundary conditions on $\vec{U_m}^{*^f}$)

-Form RHS
$$B = -$$
Advection $(\theta_m \vec{U_m}^{*f})$

while |outer residual| < convergence criteria do

-Compute A matrix

$$\begin{split} A_{r} &= \frac{\Delta y \Delta z \Delta t^{2}}{\Delta x} \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \bigg|_{r} \quad A_{l} &= \frac{\Delta y \Delta z \Delta t^{2}}{\Delta x} \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \bigg|_{l} \\ A_{t} &= \frac{\Delta x \Delta z \Delta t^{2}}{\Delta y} \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \bigg|_{t} \quad A_{b} &= \frac{\Delta x \Delta z \Delta t^{2}}{\Delta y} \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \bigg|_{b} \\ A_{f} &= \frac{\Delta x \Delta y \Delta t^{2}}{\Delta z} \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \bigg|_{f} \quad A_{bk} &= \frac{\Delta x \Delta y \Delta t^{2}}{\Delta z} \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \bigg|_{bk} \\ A_{p} &= V \sum_{m=1}^{N} \theta_{m} \kappa_{m} + (A_{r} + A_{l} + A_{t} + A_{b} + A_{f} + A_{bk}) \end{split}$$

–Solve for δP

-Update pressure $\Delta P = \sum_{n=1}^{iter} \delta P$, $P = P^{Old} + \Delta P$, set boundary condition on P and δP

–Recompute $\vec{U_m}^{*f}$ (using δp), add Exchange contribution, set boundary conditions on $\vec{U_m}^{*f}$, compute $\langle \rho_m^o \rangle$)

-Form RHS
$$B = -V \sum_{m=1}^{N} \theta_m \kappa_m \Delta P - \sum_{m=1}^{N} \text{VAdvection} (\theta_m \vec{U_m}^{*f}),$$

where outer residual = Max(RHS), $\kappa_m = \frac{v_m^o}{c_m^2}$

end while

2 Derivation of the matrix stencil

Step 1: Derive the implicit form of the pressure, starting with change equation

$$\frac{dP}{dt} = \frac{\sum_{m=1}^{N} \frac{\dot{m}}{\nabla \rho_m^o} - \sum_{m=1}^{N} \nabla \cdot \widehat{\theta_m} \vec{U_m}^{*f}}{\sum_{m=1}^{N} \frac{\theta_m}{\rho_m^o c_m^2}} \tag{1}$$

and the face-centered velocity

$$\vec{U_m}^{*f} = \left\langle \frac{\rho_m \vec{U}_m}{\rho_m} \right\rangle - \frac{\Delta t}{\langle \rho_m^o \rangle} \nabla^f P^{\text{iter}} + \text{Exchange term} + \Delta t \vec{g}$$

Write eq.1 in terms of $P^{\text{iter}} = P^{\text{iter}-1} + \delta P$, $\Delta P = P^{\text{iter}} - P^{\text{old}}$

$$\sum_{m=1}^{N} \theta_{m} \kappa_{m} (P^{\text{iter}} - P^{old}) = \Delta t \sum_{m=1}^{N} \frac{\dot{m}}{V \rho_{m}^{o}} - \Delta t \nabla \cdot \widehat{\theta_{m}} \left(\left\langle \frac{\rho_{m} \vec{U}_{m}}{\rho_{m}} \right\rangle - \frac{\Delta t}{\langle \rho_{m}^{o} \rangle} \nabla^{f} P^{\text{iter}} + \text{Exch} + \Delta t \vec{g} \right)$$
(2)

Substitute in for $P^{\text{iter}} = P^{\text{iter}-1} + \delta P$

$$\sum_{m=1}^{N} \theta_{m} \kappa_{m} ((P^{\text{iter}-1} + \delta P) - P^{old}) = \Delta t \sum_{m=1}^{N} \frac{\dot{m}}{V \rho_{m}^{o}} - \Delta t \nabla \cdot \widehat{\theta_{m}} \left(\left\langle \frac{\rho_{m} \vec{U}_{m}}{\rho_{m}} \right\rangle - \frac{\Delta t}{\langle \rho_{m}^{o} \rangle} \nabla^{f} (P^{\text{iter}-1} + \delta P) + \text{Exch} + \Delta t \vec{g} \right)$$

Now factor out δP

$$\begin{split} \sum_{m=1}^{N} \theta_{m} \kappa_{m} \delta P - \Delta t^{2} \nabla \cdot \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \nabla \delta P &= \sum_{m=1}^{N} \theta_{m} \kappa_{m} (P^{\text{iter}} - P^{old}) + \Delta t \sum_{m=1}^{N} \frac{\dot{m}}{V \rho_{m}^{o}} \\ &- \Delta t \nabla \cdot \sum_{m=1}^{N} \widehat{\theta_{m}} \overbrace{\left(\left\langle \frac{\rho_{m} \vec{U}_{m}}{\rho_{m}} \right\rangle - \frac{\Delta t}{\langle \rho_{m}^{o} \rangle} \nabla^{f} P^{\text{iter}} + \text{Exch} + \Delta t \vec{g} \right)} \end{split}$$

The ODE we have to solve is

$$\sum_{m=1}^{N} \theta_{m} \kappa_{m} \delta P - \Delta t^{2} \nabla \cdot \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \nabla \delta P = -\sum_{m=1}^{N} \theta_{m} \kappa_{m} (P^{\text{iter}} - P^{old}) + \Delta t \sum_{m=1}^{N} \frac{\dot{m}}{V \rho_{m}^{o}} - \Delta t \nabla \cdot \left(\sum_{m=1}^{N} \widehat{\theta_{m}} \overrightarrow{U_{m}}^{*f} \right)^{\text{iter}}$$
(3)

Step 2: Integrate eq. 3 over a cell volume

$$\int_{V} \sum_{m=1}^{N} \theta_{m} \kappa_{m} \delta P dV - \Delta t^{2} \int_{V} \nabla \cdot \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \nabla \delta P dV = -\int_{V} \sum_{m=1}^{N} \theta_{m} \kappa_{m} (P^{\text{iter}} - P^{old}) dV
+ \int_{V} \Delta t \sum_{m=1}^{N} \frac{\dot{m}}{V \rho_{m}^{o}}
- \Delta t \int_{V} \nabla \cdot \left(\sum_{m=1}^{N} \widehat{\theta_{m}} \overrightarrow{U_{m}}^{*f} \right)^{\text{iter}} dV$$

Invoke the divergence theorem $\int_V \nabla \cdot \vec{f} dV = \int_S \vec{f} \cdot d\vec{s}$ to convert the volume to surface integrals.

$$\begin{split} V \sum_{m=1}^{N} \theta_{m} \kappa_{m} \delta P - \Delta t^{2} \int_{S} \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \nabla \delta P \cdot d\vec{s} &= -V \sum_{m=1}^{N} \theta_{m} \kappa_{m} (P^{\text{iter}} - P^{old}) + \Delta t \sum_{m=1}^{N} \frac{\dot{m}}{\rho_{m}^{o}} \\ - \Delta t \int_{S} \left(\sum_{m=1}^{N} \widehat{\theta_{m}} \overrightarrow{U_{m}}^{*f} \right)^{\text{iter}} \cdot d\vec{S} \end{split}$$

Step 3: Write out the contributions for each face of the computational cell

$$\Delta t^{2} \int_{S} \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \nabla \delta P \cdot d\vec{s} = \Delta t^{2} \left[\sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \Big|_{R} \Delta y \Delta z \frac{(\delta P_{R} - \delta P)}{\Delta x} - \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \Big|_{L} \Delta y \Delta z \frac{(\delta P - \delta P_{L})}{\Delta x} \right]$$

$$+ \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \Big|_{T} \Delta x \Delta z \frac{(\delta P_{T} - \delta P)}{\Delta y} - \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \Big|_{B} \Delta x \Delta z \frac{(\delta P - \delta P_{B})}{\Delta y}$$

$$+ \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \Big|_{F} \Delta x \Delta y \frac{(\delta P_{F} - \delta P)}{\Delta z} - \sum_{m=1}^{N} \frac{\widehat{\theta_{m}}}{\langle \rho_{m}^{o} \rangle} \Big|_{BK} \Delta x \Delta y \frac{(\delta P - \delta P_{BK})}{\Delta z} \Big]$$

$$(4)$$

Form the stencil of Matrix A from eq. 4

$$A_{R/L} = \frac{\Delta y \Delta z \Delta t^2}{\Delta x} \sum_{m=1}^{N} \frac{\widehat{\Theta_m}}{\langle \rho_m^o \rangle} \bigg|_{R/L} \quad A_{T/B} = \frac{\Delta x \Delta z \Delta t^2}{\Delta y} \sum_{m=1}^{N} \frac{\widehat{\Theta_m}}{\langle \rho_m^o \rangle} \bigg|_{T/B} \quad A_{F/BK} = \frac{\Delta y \Delta x \Delta t^2}{\Delta z} \sum_{m=1}^{N} \frac{\widehat{\Theta_m}}{\langle \rho_m^o \rangle} \bigg|_{F/BK}$$

$$V \sum_{m=1}^{N} \theta_{m} \kappa_{m} \delta P - \left[A_{R} (\delta P_{R} - \delta P) - A_{L} (\delta P - \delta P_{L}) \right]$$

$$+ A_{T} (\delta P_{T} - \delta P) - A_{B} (\delta P - \delta P_{B})$$

$$A_{F} (\delta P_{F} - \delta P) - A_{BK} (\delta P - \delta P_{BK}) = -V \sum_{m=1}^{N} \theta_{m} \kappa_{m} (P^{\text{iter}} - P^{old}) + \Delta t \sum_{m=1}^{N} \frac{\dot{m}}{\rho_{m}^{o}} - \Delta t \text{Advection} \left(\sum_{m=1}^{N} \widehat{\theta_{m}} \vec{U_{m}}^{*f} \right)^{\text{iter}}$$

$$(5)$$

Factor out δP the equation (In impICE.cc we don't normalize by V to make it non-dimensional. We need to keep it dimensional for implicit AMRICE)

$$V \sum_{m=1}^{N} \Theta_{m} \kappa_{m} - \left[A_{R} + A_{L} + A_{T} + A_{B} + A_{F} + A_{BK} \right] \delta p - \left[A_{R} \delta P_{R} + A_{L} \delta P_{L} + A_{T} \delta P_{T} + A_{B} \delta P_{B} + A_{F} \delta P_{F} + A_{BK} \delta P_{BK} \right] = -V \sum_{m=1}^{N} \Theta_{m} \kappa_{m} (P^{\text{iter}} - P^{old}) + \Delta t \sum_{m=1}^{N} \frac{\dot{m}}{\rho_{m}^{o}} - \Delta t V \text{Advection} \left(\sum_{m=1}^{N} \widehat{\Theta_{m}} \overrightarrow{U_{m}}^{*f} \right)^{\text{iter}}$$

3 Nomenclature

<u>Variable</u>	Dimensions	Description
Δt	[t]	Timestep
ρ	$[M/L^3]$	Density of material
$\langle ho_m^o angle$	$[M/L^3]$	Microscopic density at the face center
$ec{U}$	[L/t]	Velocity vector
V	$[L^3]$	Cell Volume
P	$[M/L^2]$	Pressure
Θ_m		volume fraction of material m
$\widehat{\Theta_m}$		upwinded volume fraction
Superscript		
old		Previous timestep
n		Current timestep
iter		outer iteration number
Subscript		
m		Material index
0		Pure material
l, r, t, b, f, bk		Left, right, top and bottom, front and back cell faces
Misc		
$\langle \rangle$		value averaged to the face