Locality Sensitive Hashing

Vinay Setty (vinay.j.setty@uis.no)

Slides credit: http://mmds.org

Finding Similar Items Problem

- ▶ Similar Items
- Finding similar web pages and news articles
- Finding near duplicate images
- Plagiarism detection
- Duplications in Web crawls
- ▶ Find nearest-neighbors in high-dimensional space
 - ▶ Nearest neighbors are points that are a small distance

Very similar news articles

Iceland finance minister says won't resign over Panama Papers leaks

000000

TIMESOF MALTA.com

Near duplicate images

The Big Picture

The Big Picture

The Big Picture

The Big Picture

Three Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
- Candidate pairs!

The Big Picture

The Big Picture

Candidate pairs: those pairs Localityof signatures Hashing that we need to test for similarity The set Signatures: of strings of length **k** short integer vectors that that appear in the docrepresent the sets, and ument reflect their similarity

Documents as High-Dim. Data

Documents as High-Dim. Data

► Step 1: Shingling: Convert documents to sets

Documents as High-Dim. Data

- ► Step 1: Shingling: Convert documents to sets
- ► Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?

Documents as High-Dim. Data

- ► Step 1: Shingling: Convert documents to sets
- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- ► Need to account for ordering of words!

Documents as High-Dim. Data

- ► Step 1: Shingling: Convert documents to sets
- ► Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- ► Need to account for ordering of words!
- A different way: Shingles!

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- **Example: k=2**; document **D**₁ = abcab Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - Option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Similarity Metric for Shingles

- ▶ Document D₁ is a set of its k-shingles C₁=S(D₁)
- Fquivalently, each document is a 0/I vector in the space of *k*-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

 $sim(D_1, D_2) = |C_1 \cap C_2|/|C_1 \cup C_2|$

Working Assumption

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- ► Caveat: You must pick k large enough, or most documents will have most shingles
 - k = 5 is OK for short documents
 - k = 10 is better for long documents

Motivation for Minhash/LSH

- Suppose we need to find near-duplicate documents among N = 1 million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
- $N(N-1)/2 \approx 5*10^{11}$ comparisons
 - At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- For N = 10 million, it takes more than a year...

The Big Picture

Encoding Sets as Bit Vectors

- Many similarity problems can be formalized as finding subsets that have significant intersection
- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise **OR**

- ► Example: C₁ = 10111; C₂ = 10011
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

- ► Rows = elements (shingles)
- Columns = sets (documents)
 - I in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!

From Sets to Boolean Matrices

- ► Rows = elements (shingles)
- Columns = sets (documents)
 - I in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: sim(C₁,C₂) = ?
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - $d(C_1, C_2) = 1 (Jaccard similarity) = 3/6$

Documents (N) 1

Hashing Columns (Signatures)

- ► Key idea: "hash" each column C to a small signature h(C), such that:
 - (1) h(C) is small enough that the signature fits in RAM
 - (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Hashing Columns (Signatures)

- ► Key idea: "hash" each column C to a small signature h(C), such that:
- (1) h(C) is small enough that the signature fits in RAM
- (2) sim(C₁, C₂) is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- ► Goal: Find a hash function h(·) such that:
 - If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- ► Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- ▶ Goal: Find a hash function $h(\cdot)$ such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- ▶ Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- > There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- ▶ Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column \boldsymbol{C} has value **'1**':

$$h_{\pi}(C) = min_{\pi} \pi(C)$$

▶ Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Example

Example

nput matrix (Shingles x Documents)
Permutation π

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

nput matrix (Shingles x Documents) Permutation π

3

Example

0

1

1

1

0

0 1

> 1 0

nput matrix (Shingles x Documents) Permutation π

1 0

0

0

0 1 0 1

1 0 1

0

1

Signature matrix M

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions why?
 - ▶ Permuting rows is expensive for large number of rows

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions why?
 - ▶ Permuting rows is expensive for large number of rows
 - Instead we want to simulate the effect of a random permutation using hash functions

21

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions why?
 - ▶ Permuting rows is expensive for large number of rows
 - Instead we want to simulate the effect of a random permutation using hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions why?
 - ▶ Permuting rows is expensive for large number of rows
 - Instead we want to simulate the effect of a random permutation using hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree

21

Similarity for Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions why?
 - ▶ Permuting rows is expensive for large number of rows
 - Instead we want to simulate the effect of a random permutation using hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Input matrix (Shingles x Documents) 0 1 0 1 7 1 1 0 2 3 6 0 1 1 6 6 1 0 1 0 0 1 1

5 5 1 0 1 0 Col/Col 0.75 nutation π Sig/Sig 0.67

1-3 2-4 1-0.75 0.75 0

3-4

22

Min-Hash Signatures

- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document *C* is small ~100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Min-Hash Signatures Example

- Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Min-Hash Signatures Example

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Min-Hash Signatures Example

Rou	י	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x+1 \mod 5$
0		1	0	0	1	1	1
1		0	0	1	0	2	4
2		0	1	0	1	3	2
3		1	0	1	1	4	0
4		0	0	1	0	0	3

24

Min-Hash Signatures Example

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

Min-Hash Signatures Example

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

24

Min-Hash Signatures Example

Row	S_1	S_2	S_3	S_4	$x+1 \mod 5$	$3x + 1 \mod 5$
0	1	0	0	1	1	1
1	0	0	1	0	2	4
2	0	1	0	1	3	2
3	1	0	1	1	4	0
4	0	0	1	0	0	3

The Big Picture

24

LSH: First Cut

2 1 4 1 1 2 1 2 2 1 2 1

- Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated

For Min-Hash matrices:

- ▶ Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a **candidate pair**

Candidates from Min-Hash

▶ Pick a similarity threshold s (0 < s < 1)</p>

 2
 1
 4
 1

 1
 2
 1
 2

 2
 1
 2
 1

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 M (i, x) = M (i, y) for at least frac. s values of i
 - We expect documents x and y to have the same (Jaccard) similarity as their signatures

26

Partition M into b Bands

Hashing Bands

Hashing Bands

Hashing Bands

Partition M into Bands

- ▶ Divide matrix M into b bands of r rows
- ► For each band, hash its portion of each column to a hash table with *k* buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for ≥ I band
- ➤ Tune **b** and **r** to catch most similar pairs, but few non-similar pairs

Simplifying Assumption

- There are enough buckets that columns are unlikely to hash to the same bucket unless they are identical in a particular band
- Hereafter, we assume that "same bucket" means "identical in that band"
- Assumption needed only to simplify analysis, not for correctness of algorithm

b bands, r rows/band

- Columns C₁ and C₂ have similarity s
- ▶ Pick any band (r rows)
 - Prob. that all rows in band equal = sr
 - Prob. that some row in band unequal = I sr
- ▶ Prob. that no band identical = $(1 s^r)^b$
- ▶ Prob. that at least one band is identical = I (I sr)^b

Example of Bands

Assume the following case:

- ► Suppose 100,000 columns of M (100k docs)
- ▶ Signatures of 100 integers (rows)
- ▶ Therefore, signatures take 40Mb
- ▶ Choose b = 20 bands of r = 5 integers/band
- ► Goal: Find pairs of documents that are at least s = 0.8 similar

33

C_1 , C_2 are 80% Similar

- ▶ Find pairs of \geq s=0.8 similarity, set b=20, r=5
- Assume: $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair: We want them to hash to at least I common bucket (at least one band

C_1 , C_2 are 80% Similar

- ▶ Find pairs of \geq s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair: We want them to hash to at least I common bucket (at least one band
- ▶ Probability C₁, C₂ identical in one particular band: $(0.8)^5 = 0.328$

C_1 , C_2 are 80% Similar

- ▶ Find pairs of \geq s=0.8 similarity, set b=20, r=5
- Assume: $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair: We want them to hash to at least I common bucket (at least one band
- ▶ Probability C₁, C₂ identical in one particular band: $(0.8)^5 = 0.328$
- ▶ Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find $1-(1-0.328)^{20} = 99.965\%$ pairs of truly similar

C_1 , C_2 are 30% Similar

- ▶ Find pairs of \geq s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)

C₁, C₂ are 30% Similar

- ▶ Find pairs of \geq s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)
- ▶ Probability C₁, C₂ identical in one particular band: (0.3)⁵ = 0.00243

C₁, C₂ are 30% Similar

- ▶ Find pairs of \geq s=0.8 similarity, set b=20, r=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since $sim(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)
- ▶ Probability C₁, C₂ identical in one particular band: (0.3)⁵ = 0.00243
- ▶ Probability C₁, C₂ identical in at least 1 of 20 bands: 1 (1 - $0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below

LSH Involves a Tradeoff

Pick:

- The number of Min-Hashes (rows of M)
- The number of bands b, and
- The number of rows r per band

to balance false positives/negatives

Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH – What We Want

Similarity $s = sim(C_1, C_2)$ of two sets -

Analysis of LSH – What We Want

Analysis of LSH – What We Want

What One Band of One Row Gives You

What One Band of One Row Gives You

What One Band of One Row Gives You

What One Band of One Row Gives You

What One Band of One Row Gives You

What One Band of One Row Gives You

Similarity $s = sim(C_1, C_2)$ of two sets -

What b Bands of r Rows Gives You

Example: b = 20; r = 5

- Similarity threshold s
- Prob. that at least 1 band is identical:

s	1-(1-s ^r) ^b
.2	.006
.3	.047
.4	.186
.5	.470
.6	.802
.7	.975
.8	.9996

39

LSH Summary

- ▶ Tune *M*, *b*, *r* to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

References

For LSH refer to the Mining of Massive Datasets Chapter 3 $\frac{http://infolab.stanford.edu/}{\simeq ullman/mmds/book.pdf}$

LSH slides are borrowed from $\underline{\text{http://i.stanford.edu/}} \sim \underline{\text{ullman/cs246slides/LSH-1.pdf}}$

41