1、实验名称及目的

回传提示消息实验:在飞控中,我们时常需要向外发布一些文字消息,来反映系统当前的运行状态,这个功能可以通过发送"mavlink_log"的uORB消息来实现。

2、实验效果

在 CopterSim 中实现回传消息显示。

3、文件目录

文件夹/文件名称	说明
px4demo_mavlink_rc.slx	回传遥控器状态量提示消息模型文件。

4、运行环境

序号		硬件要求	
	()	名称	数量(个)
1	Windows 10 及以上版本	笔记本/台式电脑 [®]	1
2	RflySim 平台免费版及以上	卓翼 H7 飞控 ^②	1
3	MATLAB 2017B 及以上	遥控器 [®]	1
4		遥控器接收器	1
5		数据线、杜邦线等	若干

- ① : 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html
- ②: 须保证平台安装时的编译命令为: droneyee_zyfc-h7_default, 固件版本为: 1.12.1。其他配套飞控请见: http://doc.rflysim.com/hardware.html
- ③: 本实验演示所使用的遥控器为: 福斯 FS-i6S、配套接收器为: FS-iA6B。遥控器相关 配置见: http://doc.rflysim.com/hardware.html

5、实验步骤

Step 1:

打开 MATLAB 软件,在 MATLAB 中打开 px4demo_mavlink_rc.slx 文件,在 Simulink中,点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编 译报告。

Step 3:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或 点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中, 等待上传成功。

Step 4:

打开 QGroundControl 软件。确认无人机机架及遥控器通道设置如下:

Step 5:

上传成功后,双击打开"*\桌面\RflyTools\HITLRun.lnk"或"*\PX4PSP\RflySimAPIs\HITLRun.bat"文件,在弹出的 CMD 对话框中输入插入的飞控 Com 端口号,即可自动启动 RflySim3D、CopterSim、QGroundControl 软件,等待 CopterSim 的状态框中显示: PX4: GPS 3D fixed & EKF initialization finished。

Step 6:

遥控器硬件各通道设置如下图。

Step 7:

在 CopterSim 的状态框中将实时输出遥控的 CH4 通道的状态量,横向拨动遥控器 CH4,可以发现数值在进行变化

6、参考资料

[1]. 无。