

Overview of Model

Electrothermal Integration

- Electrical model
 - Calculates losses per cell in electrical model
 - Losses determine heat generation in thermal model
- Thermal model
 - Heat generated uniformly across cell volume
 - Mean cell temperature determines electrical behavior
- Boundary conditions
 - Battery is surrounded by perfect insulator
 - Heat leaves system only via coolant in coolant channel

Electrothermal Controls

- Keep battery in desired temperature range
 - Derating: Limit battery power
 - Active cooling: Increase coolant flow

Electrical Model

- 14 cells in series
- Temperature dependent behavior
- Losses calculated and passed to thermal model
- Degraded cells can be modeled

Simulation Results

- Mean temperature of cells
 - Cell 6 is degraded

Simulation Results

- Basic control logic
 - Derating: reduces current demand as battery reaches high temperatures
 - Coolant flow rate is increased as battery reaches high temperatures

Battery Dimensions

	Part	Material	rho	λ_{x}	λ_{y}	$\lambda_{_{\!\scriptscriptstyle{Z}}}$	ср
	Casing	Aluminum	2690	238	238	238	901
ı	Cell		2670	12	3	14	500
	Plate	Aluminum	2690	238	238	238	901
	Tabs	Copper	883	397	397	397	448
	Terminal	Copper	883	397	397	397	448

Coolant water glycol

	Т	rho	Ср	λ	nu	mi
	-40	1108	3040	0.416	1.00E-04	1.11E-01
	-20	1100	3110	0.409	2.50E-05	2.75E-02
	0	1092	3190	0.405	9.50E-06	1.04E-02
	20	1082	3260	0.402	4.50E-06	4.87E-03
	40	1069	3340	0.398	2.40E-06	2.57E-03
	60	1057	3410	0.394	1.50E-06	1.59E-03
	80	1045	3490	0.390	1.00E-06	1.05E-03
	100	1032	3560	0.385	7.00E-07	7.22E-04

Learn More

- Simscape™ is used to model the electrical behavior in this example. Simscape enables you to rapidly create models of physical systems within the Simulink® environment and leverages MATLAB® technology.
 - Multidomain Schematics
 - Comprehensive Libraries
 - Intuitive Modeling Language
 - Efficient Simulation
- To learn more:
 - Electrical modelling:
 https://www.mathworks.com/products/simscape-electrical.html
- For a free trial license, visit MathWorks website https://www.mathworks.com/campaigns/products/trials.html

- Q-Bat is a MATLAB-based product for real-time battery thermal simulation in 3D with CFD-like accuracy. Its main features are:
 - Near real-time execution
 - Accurate 3D data of battery temperature distribution
 - The capability of exporting the model to the Simulink
 - Fast model definition via dedicated GUI and TUI.
- To learn more:
 - QuickerSim https://emobility.quickersim.com/
 - Q-Bat product page
 https://www.mathworks.com/products/connections/product_detail/quickersim-q-bat.html
- For a free Q-Bat lite license, visit QuickerSim licensing website https://licensing.quickersim.com/