1 Compactness

Theorem. Naive Characterisation of Compactness.

Let X be a topological space, $C \subseteq X$. Then the following are equivalent:

- 1. C compact.
- 2. For all sequences α in C, there exists $x \in C$ such that x is a limit point of α .
- 3. For all sequences α in C, there exists a sequence β and $x \in C$, such that β is a subsequence of α and β converges to x.

Definition. Limit Point of a Filter.

Let X be a topological space, $F \in Fil(X)$, $x \in X$. Then x is a limit point of F when for all $V \in F$, x is a limit point of V.

Theorem. Characterisation of Limit Points of a Filter.

Let X be a topological space, $F \in Fil(X)$, $x \in X$. Then the following are equivalent:

- 1. x is a limit point of F.
- 2. $\sqcup \{N(x), F\} \neq 2^X$.
- 3. There exists $G \neq 2^X \in Fil(X)$ such that $F \subseteq G$ and G converges to x.

Proof. $(1 \Leftrightarrow 2)$

$$\sqcup \{N(x), F\} \neq 2^X \Leftrightarrow \varnothing \notin \sqcup \{N(x), F\} \Leftrightarrow \forall U \in N(x), \forall V \in F, U \cap V \neq \varnothing.$$

$$\Leftrightarrow \forall V \in F, x \in \overline{V}. \Leftrightarrow \forall V \in F, x \text{ limit point of } V. \Leftrightarrow x \text{ limit point of } F.$$

 $(2 \Leftrightarrow 3)$ Follows from definitions of convergence and join of filters.

 ${\bf Theorem.}\ Characterisation\ of\ Compactness.$

Let X be a topological space, $C \subseteq X$. Then the following are equivalent:

- 1. C compact.
- 2. For all $F \neq 2^C \in Fil(C)$, there exists $x \in C$ such that x is a limit point of F.
- 3. For all $F \neq 2^C \in Fil(C)$, there exists $G \neq 2^C \in Fil(C)$ and $x \in C$ such that $F \subseteq G$ and G converges to x.

Proof. $(2 \Leftrightarrow 3)$ Follows from characterisation of limit points of a filter.

 $(1\Rightarrow 2)$ Let $F\neq 2^C\in Fil(C)$. Define $\overline{F}:=\{\overline{V}\,|\,V\in F\}$, where closure is taken in C. Then $F\neq 2^C$ implies all finite intersections of sets in \overline{F} are non-empty. Since C is compact, we then have $\bigcap_{\overline{V}\in\overline{F}}\overline{V}\neq\varnothing$. Let $x\in\bigcap_{\overline{V}\in\overline{F}}\overline{V}$. Then for all $V\in F$, x is a limit point of V.

 $(2\Rightarrow 1)$ Let I be a set of closed subsets of C such that for all finite $J\subseteq I, \bigcap_{V\in J}V\neq\varnothing$. Let

$$F_I := \left\{ W \subseteq C \mid \exists J \text{ fin } \subseteq I, \bigcap_{V \in J} V \subseteq W \right\}$$

Then $F_I \neq 2^C \in Fil(C)$. So there exists $x \in C$ such that x is a limit point of F_I . Then for all $V \in I \subseteq F_I$, V closed $\Rightarrow x \in V$, i.e. $\cap_{V \in I} V \neq \emptyset$.

Definition. Maximal filters.

Let X be a set and $F \in Fil(X)$. Then F is a maximal when $F \neq 2^X$ and for all $G \in Fil(X)$, $F \subseteq G \Rightarrow F = G$ or $G = 2^X$.

Lemma. Existence of Maximal Filters.

Let X be a set, $F \in Fil(X)$ and $F \neq 2^X$. Then there exists $G \in Fil(X)$ such that $F \subseteq G$ and G is maximal.

Proof. Standard application of Zorn's lemma.

Corollary. Maximal Filters Characterisation of Compactness.

Let X be a topological space. Then X is compact \Leftrightarrow for all $F \in Fil(X)$, F maximal implies the existence of $x \in X$ such that F converges to x.

Proof. (\Rightarrow) Let $F \in Fil(X)$ be maximal. Then by the characterisation of compactness, there exists $G \in Fil(X)$ and $x \in X$ such that $F \subseteq G \neq 2^X$ and G converges to x. By maximality of F, F = G.

 (\Leftarrow) By the characterisation of compactness, it suffices to show that for all $F \in Fil(X)$, $F \neq 2^X$ implies the existence of $G \in Fil(X)$ and $x \in X$ such that $F \subseteq G \neq 2^X$ and G converges to x.

So let $F \in Fil(X)$ and $F \neq 2^X$. Then there exists $G \in Fil(X)$ such that $F \subseteq G$ and G is maximal. There exists $x \in X$ such that G converges to x and $G \neq 2^X$ by definition.

Theorem. Characterisation of Maximal filters.

Let X be a set and $F \in Fil(X)$. Then the following are equivalent:

- 1. F is maximal.
- 2. For all $A \subseteq X$, $A \in F$ or $X \setminus A \in F$.

Proof. $(1 \Rightarrow 2)$ Let $A \subseteq X$, $\iota_A : A \to X$. Consider $\sqcup \{\iota_A \{A\}, F\}$. Note that $F \subseteq \sqcup \{\iota_A \{A\}, F\}$, so by maximality of F, $F = \sqcup \{\iota_A \{A\}, F\}$ or $\sqcup \{\iota_A \{A\}, F\} = 2^X$. In the first case, by definition of join and $\iota_A \{A\}$, $A \in F$. In the second case, $\varnothing \in \sqcup \{\iota_A \{A\}, F\}$, so there exists $U \supseteq A$ and $V \in F$ such that $U \cap V = \varnothing$. In particular, $V \subseteq X \setminus A$, which implies $X \setminus A \in F$.

 $(2\Rightarrow 1)$ Let $G\in Fil(X)$ and $F\subseteq G$. Suppose there exists $V\in G\setminus F$. Then $X\setminus V\in F\subseteq G$, which implies $\varnothing=V\cap (X\setminus V)\in G$, i.e. $G=2^X$.

Lemma. Image of Maximal filters.

Let X, Y be sets, $f: X \to Y$, $F \in Fil(X)$, F maximal filter. Then fF is an maximal filter of Y.

Proof. By the characterisation of maximal filters, it suffices for all $B \subseteq Y$, $B \in fF$ or $Y \setminus B \in fF$. Let $B \subseteq Y$. Then $f^{-1}B \in F$ or $X \setminus f^{-1}B \in F$. For the first case, $ff^{-1}B \subseteq B$ with $ff^{-1}B \in fF$, so $B \in fF$. In the latter case, $f(X \setminus f^{-1}B) \subseteq Y \setminus B$ with $f(X \setminus f^{-1}B) \in fF$, so $Y \setminus B \in fF$.

Theorem. Product of Compact is Compact (Tychonoff).

Let I be a set and for $i \in I$, X_i a topological space. Then $\prod_{i \in I} X_i$ is compact \Leftrightarrow for all $i \in I$, X_i is compact.

Proof. (\Rightarrow) Image of compact is compact under continuous maps.

(\Leftarrow) By the maximal filters characterisation of compactness, it suffices that all maximal filters on $\prod_{i \in I} X_i$ converge. So let $F \in Fil\left(\prod_{i \in I} X_i\right)$ be maximal. Then for all $i \in I$, $\pi_i F \in Fil(X_i)$ is maximal. Since each X_i is compact, there exists $x_i \in X_i$ such that $\pi_i F$ converges to x_i . By the axiom of choice, $x = (x_i)_{i \in I} \in \prod_{i \in I} X_i$. By characterisation of filters on products, F converges to x.