Die Internet-Protokollwelt

5. DIE TRANSPORTSCHICHT IM INTERNET

166

Übersicht

Transmission Control Protocol

User Datagram Protocol

Stream Control Transmission Protocol

Domain Name System

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

16

167

Die Internet-Protokollfamilie: Einordnung

TCP/IP häufig Synonym für die gesamte Protokollfamilie im Internet Einordnung der Protokolle in das Schichtenmodell:

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

168

168

Transmission Control Protocol, TCP [RFC 793]

Verbindungsverwaltung

- Verbindungsaufbau zwischen zwei "Sockets" (entspricht CEP im T-SAP)
- Datentransfer über virtuelle Transportschichtverbindung (über verbindungslosen Vermittlungsdienst)
- Gesicherter Verbindungsabbau (alle Daten müssen quittiert sein)

Multiplexen

• Mehrere Prozesse können gleichzeitig eine TCP-Instanz benutzen

Datenübertragung

- Vollduplex
- Reihenfolgetreue
- Flusskontrolle mit Fenstermechanismus
- Fehlerkontrolle durch Folgenummern (Sequenznummern), Prüfsumme, Quittung, Übertragungswiederholung, Rücksetzen

Fehleranzeige

IE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

69

169

TCP: Adressierung

- Identifikation von Anwendungen/Diensten über Ports
- Portnummern bis 1024 für häufig benutzte Dienste reserviert ("well-known ports",
 z. B. 20, 21 für FTP, 25 für SMTP, 80 für HTTP)
- Socket = IP-Adresse eines Rechners + Portnummer
- Notation: (IP-Adresse:Portnummer)
 → Internet-weit eindeutig
- Beispiel FTP-Server der TU Ilmenau über Socket 141.24.191.41:21 erreichbar

IE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNET

170

170

TCP: fest vereinbarte Port-Nummern ("well-known ports")

```
> telnet walapai(13)
Festgelegte Ports für viele
                                                 Trying 129.13.3.121...
Anwendungen:
                                                 Connected to walapai.
                                                 Escape character is '^]'.

    13: Tageszeit-

                                                 Mon Aug 4 16:57:19 1997
                                                 Connection closed by foreign host

    20: FTP Daten

                                                 > telnet mailhost 25
 • 25: SMTP
                                                 Trying 129.13.3.161..
                                                  Connected to mailhost
  (Simple Mail Transfer Protocol)
                                                 Escape character is '^]'.
                                                 220 mailhost ESMTP Sendmail 8.8.5/8.8.5;
• 53: DNS
                                                 Mon, 4 Aug 1997 17:02:51 +0200
  (Domain Name Server)
                                                 214-This is Sendmail version 8.8.5
 • 80: HTTP
                                                  214-Topics:
  (HyperText Transfer Protocol)
                                                 214- HELO
                                                              EHLO
                                                                     MAIL
                                                                             RCPT
                                                 214- RSET
                                                              NOOP
                                                                     QUIT
                                                                                    VRFY
                                                                             HELP
• 119: NNTP
                                                                   ETRN
                                                 214- EXPN VERB
                                                                            DSN
  (Network News Transfer Protocol)
                                                 214-For more info use "HELP <topic>".
                                                 214 End of HELP info
```

171

TCP: Verbindungsaufbau

Aufbau einer TCP-Verbindung

- aktiv (connect) oder
- passiv (listen/accept)

Aktiver Modus: Anforderung einer TCP-Verbindung mit dem spezifizierten Socket

Passiver Modus: Warten eines TCP-Benutzers auf eine eingehende Verbindung

- Spezifikation eines speziellen Sockets, von dem eine eingehende Verbindung erwartet wird (fully specified passive open) oder
- alle Verbindungen annehmen (unspecified passive open)
- Geht ein Verbindungsaufbauwunsch ein, wird ein neuer Socket erzeugt, der dann als Verbindungsendpunkt dient

Anmerkung: Die Verbindung wird von den TCP-Instanzen ohne weiteres Eingreifen der Dienstbenutzer aufgebaut (es existiert z. B. kein Primitiv, das T-CONNECT.Rsp entspricht)

DIE INTERNET-PROTOKOLI WELT - 5. TRANSPORTSCHICHT IM INTERNET

172

172

TCP: Verbindungsmanagement Nach RFC 0793

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNET

173

173

TCP-Paketformat: Aufbau

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNET

174

174

TCP-Paketformat

Source und **Destination Port** – Endpunkte der TCP-Verbindung: well-known oder beliebige freie Portnummen **Sequence Number** – *Byte*-Folgenummer

Piggyback Acknowledgement – Huckepackquittierung: nächste erwartete Folgenummer

TCP Header Length - Anzahl der 32-bit-Wörter im Paketkopf

URG – auf 1 gesetzt, falls der Urgent Pointer verwendet wird

SYN – ausschließlich beim Verbindungsaufbau verwendet

ACK – Gültigkeit des Acknowledgement-Feldes

FIN – Verbindungsabbau: gibt an, dass der Sender keine Daten mehr senden möchte

RST – zum Rücksetzen einer Verbindung (z. B. bei unerwarteten Paketnummern)

EOM (bzw. **PSH**) – Ende einer Nachricht: Aufforderung zum Ausliefern der Daten an die Anwendungsschichtinstanz **Window** – kreditbasierte Flusskontrolle: Anzahl der Bytes, die nach letztem bestätigten Byte gesendet werden dürfen

Checksum – Prüfsumme über Paketkopf und Daten

Urgent Pointer – Relativer Zeiger auf wichtige Daten

Options-Feld - Optionen variabler Länge

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNI

175

175

TCP-Verbindungsaufbau im Detail

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNET

176

176

TCP-Verbindungsaufbau: Verwaistes SYN

IE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

177

177

TCP-Verbindungsaufbau: Verspätetes SYN/ACK

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNET

178

178

TCP: Duplikaterkennung

Datenpakete zur Duplikaterkennung durchnummeriert

Unter Umständen mehrfache Bestätigung eines Datenpakets (aufgrund von Huckepack-Quittierung)

→ Kein Anzeichen für Duplikate

Ausreichender Sequenznummernbereich, sodass zwei Pakete mit der gleichen Sequenznummer zeitlich genügend weit auseinander liegen

Allerdings:

- Datenpakete können Verbindungsabbau überstehen und irrtümlich einer neuen Verbindung zugeordnet werden
- Durch einen Systemzusammenbruch kann die Paketnummerierung verloren gehen

Problemvermeidung:

- Uhr-unterstützte Sequenznummer (Clock-based initial sequence number)
- Sendeverzögerung (Quiet Time)

IE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

179

179

TCP: Fenstermanagement

Flusskontrolle:

Sender darf nicht mehr Daten schicken, als der Empfänger verarbeiten kann

Regelung des Datenflusses zwischen den Endsystemen Fenstermechanismus mit

- Bestätigung der Daten mit niedriger Bytefolgenummer durch ACK-Feld im Paketkopf
- Kredit = empfangbare Menge an Bytes im Window-Feld

180

TCP: Staukontrolle

[RFC 5681]

Staukontrolle → Umgang mit Stausituationen im Netz, d. h. in den Routern

Problem "Congestion Collapse":

 Stau in Zwischensystemen → Timeout → Paketwiederholungen → Verstärkung der Stausituation

TCP: "Slow Start" und "Multiplicative Decrease"

- Zu Beginn schrittweises Eruieren der Netzkapazität mit Verdopplung der gesendeten Segmentgröße bei erfolgreichem Senden bis zu einem Schwellwert (Slow Start Threshold), danach lineare Steigerung der Senderate (Congestion Avoidance)
- Bei zu spätem ACK Verdacht auf Stau
 - Slow Start Threshold := aktuelle Segmentgröße / 2 (Multiplicative Decrease).
 - Weiter mit Slow Start (TCP Tahoe) oder Congestion Avoidance (TCP Reno)

DIF INTERNET-PROTOKOLI WELT - 5. TRANSPORTSCHICHT IM INTERNE

181

181

TCP: Staukontrolle am Beispiel

Unter Annahme, dass Window-Size des Empfängers immer ausreichend groß

182

TCP: Verbindungsabbau

Bestätigter und nummerierter Verbindungsabbau

- Erkennung noch ausstehender Datenpakete
- Vollzug des Verbindungsabbaus erst mit Eintreffen des letzten Datenpakets

A sendet Verbindungsabbau-Anfrage

B bestätigt und sendet eigenes Verbindungsabbau-Signal

A bestätigt den Verbindungsabbau von B. Ist dieses Signa bei B angekommen, gilt die Verbindung als abgebaut.

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

18

183

User Datagram Protocol, UDP

[RFC 768]

- · Unzuverlässig, verbindungslos, einfacher und schneller als TCP
- Demultiplexing der empfangenen Pakete basierend auf Port-Nummer
- Optionale Prüfsumme

0	16 31	<u> </u>
Source Port	Destination Port Paket	
Message Length	Checksum	kopf
Daten		

- Wiederum "well-known" Ports:
 - 13: Daytime
 - 53: Domain Name Server
 - 123: Network Time Protocol
- UDP vor allem für Multimedia- oder Echtzeit-Anwendungen geeignet

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

184

184

Stream Control Transmission Protocol, SCTP [RFC 4960]

SCTP ist als Kompromiss zwischen TCP und UDP entwickelt worden:

- Verbindungsorientiert: SCTP-Assoziation
- Nachrichtenbasiert
- Ermöglicht Flusssteuerung
- Segmentieren und Blocken

SCTP-Assoziation:

- Zusammengesetzt aus mehreren Streams
- Ein Stream entspricht einer unidirektionalen Verbindung

E INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERN

185

185

SCTP-Paketaufbau

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNET

186

186

Anwendungsnahe Adressierung im Internet

Adressierung über logische Namen

- Einfacher zu merken
- Dienste einfacher auf andere Rechner übertragbar

Aufbau eines logischen Namens

- Weltweit eindeutig
- Hierarchische Struktur
- Gliederung in Domänen

Beispiel

Rechner

Abteilung

Institution

Benötigt:

- \circ Abbildung: logischer Name \to IP-Adresse
- Ursprünglich: Datei (hosts.txt), die jede Nacht vom Server geladen wurde
- Problem: steigende Anzahl der Namen ließ zentrale Datei nicht mehr zu

F INTERNET-PROTOKOLI WELT - 5. TRANSPORTSCHICHT IM INTERN

187

187

Domain Name System, DNS

[RFC 1591]

Namensraum in Zonen aufgeteilt:

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

18

188

DNS - Resource Records

Fünf-Tupel, das einzelne Ressourcen näher beschreibt:

- Domain_name
- Time to live
- Class
- Type
 - A (IP-Adresse des Rechners)
 - MX (Mail Exchange)
 - HINFO (CPU und Betriebssystem des Rechners in ASCII)
 - CNAME (Canonical Name)
 - ...
- Value

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERN

189

189

DNS – Beispieldatenbank

Domain_name	Time_to_live	Class	Туре	Value
cs.vu.nl	86400	IN	TXT	"Faculteit Wiskunde en Informatica"
cs.vu.nl	86400	IN	TXT	"Vrije Universiteit Amsterdam"
cs.vu.nl	86400	IN	MX	1. zephyr.cs.vu.nl
cs.vu.nl	86400	IN	MX	2. top.cs.vu.nl
flits.cs.vu.nl	86400	IN	HINFO	Sun Unix
flits.cs.vu.nl	86400	IN	Α	130.37.16.112
flits.cs.vu.nl	86400	IN	Α	192.31.231.165
flits.cs.vu.nl	86400	IN	MX	1. flits.cs.vu.nl
flits.cs.vu.nl	86400	IN	MX	2. zephyr.cs.vu.nl
www.cs.vu.nl	86400	IN	CNAME	star.cs.vu.nl
ftp.cs.vu.nl	86400	IN	CNAME	zephyr.cs.vu.nl
laserjet		IN	Α	192.31.231.216
		IN	HINFO	"HP Laserjet IIISi" Proprietary

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNET

190

190

DNS - Name Servers

IJE INTERNET-PROTOKOLI WELT - 5. TRANSPORTSCHICHT IM INTERNE

191

191

DNS – Anfragen an Name Server

Je Zone ein primärer und beliebig weitere sekundäre Nameserver

Rekursive oder nicht-rekursive Beantwortung von Anfragen:

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

19

192

DNS - Beispiele

AUFLÖSUNG DER ADRESSE EINES WEB-SERVERS:

AUFLÖSUNG DER ADRESSE EINES MAIL-SERVERS:

IE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

19

193

Die Internet-Protokollwelt Wintersemester 2020/21

Literatur

COMER, Douglas E. (2000): Computernetzwerke und Internets. München: Pearson Studium.

COMER, Douglas E. (2011): TCP/IP - Studienausgabe. Konzepte, Protokolle, Architekturen. Heidelberg: mitp.

Kurose, James F.; Ross, Keith W. (2017): Computer Networking. A Top-Down Approach. Seventh edition. Boston: Pearson.

Peterson, Larry L.; Davie, Bruce S. (2012): Computer Networks – A Systems Approach. 5th edition. Amsterdam, Boston: Morgan Kaufmann.

STEVENS, W. Richard (2004): TCP-IP. Der Klassiker: Protokollanalysen, Aufgaben und Lösungen. 1. Auflage. Bonn: Hüthig.

TANENBAUM, Andrew S.; WETHERALL, David J. (2012): Computernetzwerke. 5., aktualisierte Auflage. München: Pearson (It Informatik).

DIE INTERNET-PROTOKOLI WELT - 5. TRANSPORTSCHICHT IM INTERNET

19

194

Requests for Comments (RFC)

POSTEL, Jon (1980): User Datagram Protocol. Internet Engineering Task Force (IETF) (Request for Comments, 768).

POSTEL, Jon (1981): *Transmission Control Protocol*. DARPA Internet Program Protocol Specification. Internet Engineering Task Force (IETF) (Request for Comments, 793).

POSTEL, Jon (1994): Domain Name System Structure and Delegation. Internet Engineering Task Force (IETF) (Request for Comments, 1591).

STEWART, Randall R. (2007): Stream Control Transmission Protocol. Internet Engineering Task Force (IETF) (Request for Comments, 4960).

ALLMAN, Mark; Paxson, Vern; Blanton, Ethan (2009): *TCP Congestion Control*. Internet Engineering Task Force (IETF) (Request for Comments, 5681).

EASTLAKE, Donald E., 3rd (2013): Domain Name System (DNS) IANA Considerations. Internet Engineering Task Force (IETF) (Request for Comments, 6895).

DIE INTERNET-PROTOKOLLWELT - 5. TRANSPORTSCHICHT IM INTERNE

195

195