November 11, 2014

Efficient Numerical Approximation of General Flow Stabilization Problems with Boundary Actuation

Peter Benner and Jan Heiland

Symposium Simulation and Optimization of Extreme Flows - Heidelberg

Introduction

- A general numerical tool for
- optimal control of flows
- by means of a back end that
 - → accounts for general structures
 - → copes with high dimensions
 - → covers typical applications

The General Structure

We consider model equations for approximations ν and p to the velocity and pressure of a flow

$$M\dot{v} - Av - J^{T}p = Bu,$$

 $Jv = 0,$
 $y = Cv,$

- *M* ... mass matrix, invertible
- A . . . convection and diffusion operator
- J . . . discrete divergence
- B, C ... input and output operators

And remark that

- the dynamics are constrained to the kernel of J,
- the dimension of the state spaces of v and p can be very large.

Constrained Riccati Equations

The constraints and structure of the dynamical equations are reflected in the Riccati equations we need solve for the optimization.

Find $X \in \mathbb{R}^{n_v,n_v}$ symmetric negative semi-definite that solves

$$A^{T}XM + M^{T}XA - M^{T}XBB^{T}XM + CC^{T} + MYJ^{T} + JY^{T}M^{T} = 0,$$

with constraints $JXM^T = 0$ and $MXJ^T = 0$, for a suitable $Y \in \mathbb{R}^{n_v, n_p}$.

Constrained Riccati Equations

At the core we need to solve

$$\begin{split} A^TXM + M^TXA - M^TXBB^TXM + CC^T + \\ MYJ^T + JY^TM^T = 0, \end{split}$$

- Nonlinear in $X \in \mathbb{R}^{n_v, n_v}$
 - → Newton iterations are well defined
- High dimensional: n_v is typically large
 - → I ow-rank ADI iterations are a solution
 - \rightarrow We compute but a skinny factor $Z \in \mathbb{R}^{n_v,k}$ so that $ZZ^T \approx -X$

Efficient Solvers for Constrained Riccati Equations

At the core we need to solve linear systems of the form

$$\begin{bmatrix} A - \sigma_i M & J^T \\ J & 0 \end{bmatrix} \begin{bmatrix} z_i \\ * \end{bmatrix} = r.h.s.$$

for column blocks z_i of the factor Z.

This, we can do efficiently by means of

- Optimized ADI parameters $\sigma_i \in \mathbb{C}_-$ (the shifts)
- Update formulas for the residuals
- Performant block preconditioners for shifted saddle point problems in flow simulations

Related Work

Raymond. Feedback boundary stabilization of the two-dimensional Navier-Stokes equations

SIAM J. Cont. Opt. 45:790-828, 2006.

Heinkenschloss, Sorensen, Sun. Balanced truncation model reduction for a class of descriptor systems with applications to the Oseen equations.

SIAM J. Sci. Comput., 30:1038-1063, 2008.

Bänsch, Benner, Saak, Weichelt. Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flow.

Preprint SPP1253-154, DFG-SPP1253, 2013.

Application Example

Simulation Setup

- 2D cylinder wake
- Navier-Stokes
 Equations
- Re = 200
- Taylor-Hood finite elements in FEniCS
- 20000 velocity nodes

- Distributed control and observation with 6 degrees of freedom each
- LQGBT-reduced order observer and controller of state dimension n_k = 27
- Target: stabilization of the steady-state solution

Application Example

Simulation Results

Figure : Measured output y versus time $t \in [0, 12]$ of the closed loop system (left), compared to the response of the uncontrolled system (right).

Below, a snapshot of the magnitude of the velocity solutions at t = 12.

The Basic Assumption

We consider model equations for approximations v and p to the velocity and pressure of a flow

$$M\dot{v} - Av - J^{T}p = Bu,$$

 $Jv = 0,$
 $y = Cv,$

- M, A, J . . . coefficient matrices
- B, C ...input and output operators

And remark that

→ for boundary control, the appearance of the input as *Bu* in the dynamical part is by no means immediate

Definition of B

The input operator is defined by the incorporation of the time dependent Dirichlet boundary conditions in the spatial discretization.

Consider the convection diffusion equation:

$$\dot{v}(t) + \beta \cdot \nabla v(t) - \Delta v(t) = 0,$$

 $v|_{\Gamma}(t) = u(t),$

for a scalar quantity ν with a wind β in the domain Ω . Here, u is the function that prescribes the values of v at the boundary Γ .

Direct Assignment

Take a standard FE space with a nodal basis and decompose it into subspaces

$$V = V_I \oplus V_\Gamma = \operatorname{span} \left\{\phi_I^k
ight\}_{k=1}^{n_I} \oplus \operatorname{span} \left\{\phi_\Gamma^k
ight\}_{k=1}^{n_\Gamma}$$

of inner and boundary nodes. Then, for the ansatz

$$v(t) = \sum_{k=1,\cdots,n_l} v_l^k(t) \phi_l^k + \sum_{k=1,\cdots,n_\Gamma} v_\Gamma^k(t) \phi_\Gamma^k \leftrightarrow \begin{bmatrix} v_l \\ v_\Gamma \end{bmatrix} (t)$$

and having tested the equations against $\phi \in V_I$, we obtain

$$\begin{bmatrix} M_{II} & M_{I\Gamma} \end{bmatrix} \begin{bmatrix} \dot{v}_I \\ \dot{v}_{\Gamma} \end{bmatrix} = \begin{bmatrix} A_{II} & A_{I\Gamma} \end{bmatrix} \begin{bmatrix} v_I \\ v_{\Gamma} \end{bmatrix}$$
$$v_{\Gamma} = u$$

Direct Assignment and Alternatives

$$\begin{bmatrix} M_{II} & M_{I\Gamma} \end{bmatrix} \begin{bmatrix} \dot{v}_I \\ \dot{v}_{\Gamma} \end{bmatrix} = \begin{bmatrix} A_{II} & A_{I\Gamma} \end{bmatrix} \begin{bmatrix} v_I \\ v_{\Gamma} \end{bmatrix}$$
$$v_{\Gamma} = u$$

A direct elimination of the boundary nodes, thus, leads to

$$M_{II}\dot{v}_I = A_{II}v_I + A_{I\Gamma}u - M_{I\Gamma}\dot{u}$$

which is not like $M\dot{v} = Av + Bu$.

Possible bypasses:

- lift lifting of the boundary conditions
- proj incorporation via Lagrange multiplier and projections
- pero relaxation via approximating Robin conditions

Convection-Diffusion Example

- 2D convection-diffusion, no source term
- Dirichlet condition at upper boarder

$$v\big|_{\Gamma_0} = \frac{1}{2}(\sin(\pi x_0 + \frac{\pi}{2}) + 1)(\cos(t + \pi) + 1)$$

• FE discretization using FEniCS on a uniform triangulation

Convergence for Boundary Forcing

Figure: Discrete L^2 -time-space error for varying space discretizations N_h , for a fixed time discretization and for linear (left) and quadratic (right) shape functions. The dotted lines indicate the slope of a convergence of order 2 or 1.5.

Performance of Penalization Schemes

Figure: Discrete L^2 -time-space error for the Robin relaxation versus the penalization parameter α error for varying space discretizations N_h for direct solves (left) and for iterative solves (right) up to a certain tolerance of the algebraic equations.

- Efficient solution of large scale constrained Riccati equations
 - → General tool for control of flows
- This is a system-theoretical approach
 - → Requires a control of distributed type
 - * which is not immediate for Dirichlet boundary control
- There are various numerical approaches for time-dependent Dirichlet conditions
 - X Implementation differs from methods for steady state problems
 - $\boldsymbol{\mathsf{X}}$ Penalization methods come with extra restrictions on accuracy

Thank you for your attention!

janheiland.de

github.com/highlando

Numerical Example

Convergence with Manufactured Solution

N_h	$\backslash N_{ au}$	30	60	120
	6	1.0000	0.9991	0.9989
	12 24		0.2420	0.2418
			0.0605	0.0604
			0.0153	0.0151
$N_hackslash N_ au$		120		480

6	0.9983	0.9979	0.9978	0.9978
12	0.1127	0.1123	0.9978 0.1123 0.0127 0.0016	0.1123
24	0.0149	0.0128	0.0127	0.0126
48	0.0079	0.0024	0.0016	0.0015

Table: The normalized approximation error for a convection-diffusion problem with a known solution for varying space N_h and time discretizations N_{τ} and for ansatz and test functions of polynomial degree 1 and 2.