```
In [5]: %matplotlib inline
   import matplotlib
   from matplotlib import pyplot as plt
   import numpy as np
   import pandas as pd
   import seaborn as sns
```

In [6]: dataset=pd.read_csv("suv_data.csv")

In [7]: dataset.head(10)

Out[7]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
5	15728773	Male	27	58000	0
6	15598044	Female	27	84000	0
7	15694829	Female	32	150000	1
8	15600575	Male	25	33000	0
9	15727311	Female	35	65000	0

Train

In [8]: print(len(dataset.index))

400

#Analyzing

```
In [9]: sns.countplot(x="Purchased", data=dataset)
```

Out[9]: <AxesSubplot:xlabel='Purchased', ylabel='count'>

In [10]: sns.countplot(x="Purchased", hue="Gender", data=dataset)

Out[10]: <AxesSubplot:xlabel='Purchased', ylabel='count'>


```
In [15]: sns.countplot(x="Purchased", hue="Age", data=dataset)
Out[15]: <AxesSubplot:xlabel='Purchased', ylabel='count'>
```


In [16]: dataset["Age"].plot.hist()

Out[16]: <AxesSubplot:ylabel='Frequency'>


```
In [18]: dataset["Purchased"].plot.hist(bins=20, figsize=(10,5))
```

Out[18]: <AxesSubplot:ylabel='Frequency'>

In [19]: dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype	
0	User ID	400 non-null	int64	
1	Gender	400 non-null	object	
2	Age	400 non-null	int64	
3	EstimatedSalary	400 non-null	int64	
4	Purchased	400 non-null	int64	
<pre>dtypes: int64(4), object(1)</pre>				

Data Wrangling

memory usage: 15.8+ KB

In [20]: dataset.isnull()

Out[20]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
395	False	False	False	False	False
396	False	False	False	False	False
397	False	False	False	False	False
398	False	False	False	False	False
399	False	False	False	False	False

400 rows × 5 columns

In [21]: dataset.isnull().sum()

Out[21]: User ID 0 Gender 0 0 Age EstimatedSalary Purchased

dtype: int64

In [22]: sns.heatmap(dataset.isnull(), yticklabels=False, cmap="viridis")

Out[22]: <AxesSubplot:>

In [23]: sns.boxplot(x="Gender", y="Age", data=dataset)

Out[23]: <AxesSubplot:xlabel='Gender', ylabel='Age'>

In [24]: dataset.head(5)

Out[24]:

_		User ID	Gender	Age	EstimatedSalary	Purchased
-	0	15624510	Male	19	19000	0
	1	15810944	Male	35	20000	0
	2	15668575	Female	26	43000	0
	3	15603246	Female	27	57000	0
	4	15804002	Male	19	76000	0

In [25]: sex=pd.get_dummies(dataset['Gender'],drop_first=True)
 sex.head(5)

Out[25]:

	Male
0	1
1	1
2	0
3	0
4	1

In [26]: Purchased=pd.get_dummies(dataset['Purchased'],drop_first=True)
 Purchased.head(5)

Out[26]:

0 0

1 0

2 0

3 0

4 0

```
In [28]: dataset=pd.concat([dataset,sex,Purchased],axis=1)
In [29]: dataset.head(5)
Out[29]:
               User ID Gender Age EstimatedSalary Purchased Male 1
                               19
                                                              1 0
            15624510
                         Male
                                           19000
            15810944
                        Male
                               35
                                           20000
                                                              1 0
          2 15668575
                      Female
                               26
                                           43000
                                                              0 0
          3 15603246
                       Female
                               27
                                           57000
                                                              0 0
           4 15804002
                        Male
                               19
                                           76000
                                                              1 0
In [30]: dataset.drop(['Gender', 'User ID'], axis=1, inplace=True)
         dataset.head(5)
In [31]:
Out[31]:
             Age EstimatedSalary Purchased Male 1
              19
                                        0
                                             1 0
                          19000
              35
                          20000
                                             1 0
              26
                          43000
                                             0 0
              27
                          57000
                                             0 0
              19
                          76000
                                        0
                                             1 0
         Train/Test Data
                                            #independent variable (in this age and salary)
 In [ ]: X=dataset.iloc[:,[2,3]].values
         y=dataset.iloc[:,4].values
                                           #dependent variable (in this purchased)
```

```
In [38]: y
Out[38]: array([0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
             0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
             0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
             0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
             0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1,
             0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0,
             1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0,
             1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
             0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
             1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1,
             0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0,
             1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1,
             0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1,
             1, 1, 0, 1], dtype=int64)
In [39]: from sklearn.model selection import train test split
In [40]: X train, X test, y train, y test = train test split(X, y, test size=0.25, random state=42)
In [41]: from sklearn.preprocessing import StandardScaler
In [42]: sc=StandardScaler()
       X train=sc.fit transform(X train)
       X test=sc.transform(X test)
In [43]: from sklearn.linear model import LogisticRegression
In [56]: | clf= LogisticRegression(random state=0).fit(X train,y train)
```

localhost:8888/notebooks/suv prediction.ipynb

```
In [57]: y_pred=clf.predict(X_test)

In [58]: from sklearn.metrics import accuracy_score

In [60]: accuracy_score(y_test,y_pred)*100

Out[60]: 89.0

In []:
```