

Schedule

- Biostatistics in general
 - What is it?
 - Why we use it?
 - Applications
- Biostatistics in the context of polygenic risk scores
 - Biological background
 - What is it?
 - Why we use it?
 - Problems

First of all...

Please interrupt me (immediately), if you don't understand something!

Biostatistics in general

Motivation

Our observation / data

Our decision/conclusion

Biostatistics - "measurement of life"

= medical statistics, biometry ...

Definition:

"Biostatistics is the branch of statistics responsible for the proper interpretation of scientific data generated in biology, medicine, public health and other health or natural sciences."

- Or shorter: The **application** of statistics to biological/natural sciences.
- And important: It is much more, than using a t-test.
- (Should be) always interdisciplinary

It's about understanding....

Biological Problem >

Experimental design >

Experimental techniques>

Data structure>

(Transformation >)

Results >

Interpretation

Descriptive statistics

The 3 m's of central tendency

- **Mean** = the sum of observations divided by the number of observations
- Median = the observation in the center when all observations are ordered from smallest to largest
- **Mode** = the most frequently occurring value among all observations

Measures of Spread/Variation

- Range = Max Min
- **Standard deviation** = amount of variability of the observations (range of 68% of the observations around the mean)
- Standard error (of mean) = amount of variability in the population mean
- Interquartile range = range between 25% and 75% quartile (range of 50% of the observations around the median)
- Quartile coefficient of dispersion, coefficient of variation,

•••

Associations

Correlation = measurement of association

- Odds ratios = the odds of exposure in the group with disease divided by the odds of exposure in the control group (Case-Control design)
- Relative risk = the ratio of the incidence of disease in the treated group divided by the corresponding incidence of disease in the placebo group (Cohort design)

Correlation doesn't imply causation!

Number of people who drowned by falling into a pool

correlates with

Films Nicolas Cage appeared in

 $r \approx 0.6660$

US spending on science, space, and technology

correlates with

Suicides by hanging, strangulation and suffocation

 $r \approx 0.9978$

◆ Hanging suicides ◆ US spending on science

tylervigen.com

Inferential and explorative statistics

Measures of Quality

Estimates

 Confidence intervals = a range of values within which there is a high probability (95% by convention) that the true population value can be found.

Tests

• **Sensitivity** = the ability of the test to identify correctly those who have the

disease (true-positives).

 Specificity = the ability of the test to identify correctly those who do not have the disease (true-negatives).

The P-value is not the probability that the null hypothesis is true given the data. Absence of evidence is not evidence of absence.

Classification – Cluster analysis

- Grouping of similar observations by distance in p-dimensional system (p = number of variables)
- Different strategies
 - K-means: partition of n observations in k cluster by choosing centroids

Hierarchicale.g. "Bottom up":

each observation starts in its own cluster, the pair of "closest" clusters are merges

Cluster analysis - example

	Murder	Assault	UrbanPop	Rape
Alabama	1,24256408	0,7828393	-0,5209066	-0,00341647
Alaska	0,50786248	1,1068225	-1,2117642	2,48420294
Arizona	0,07163341	1,4788032	0,9989801	1,04287839
Arkansas	0,23234938	0,230868	-1,0735927	-0,1849166
California	0,27826823	1,2628144	1,7589234	2,06782029
Colorado	0,02571456	0,3988593	0,8608085	1,86496721
		•••		

e.g. euclidian distance

Cluster Dendrogram

Classification – Principal component analysis (PCA)

- Dimension reduction
- Linear orthogonal transformation:
 n possibly correlated variables -> m linearly uncorrelated factors(n > m)
 = orthogonal basis set
- PCA can be thought of as fitting an n-dimensional ellipsoid to the data.
- Largest possible variance explained by first component/factor
- Different strategies to decide how many components are needed:
 - Eigenvalue > 1 (Kaiser rule)
 - variance explained > 90 %
 - Scree-plot "elbow" (Cattell rule)

PCA - Example

The factor with an eigenvalue of 1 accounts for as much variance as a single variable.

A combined approach – HCPC Analysis

Classification - Random Forrest

- Construction of multiple decision trees (up to several thousands)
- To rank the importance of variables
- "Tree bagging" repeatedly fitting trees to random subset
- Output: Mode of classes or mean of prediction
- While the predictions of a single tree are highly sensitive to noise, the average of many (uncorrelated) trees is not.

Classification - Random Forrest

Support vector machines

- Large margin classifier
- Strategy: Find a hyperplane (p-1 dimensional space) which
 - 1) Separates the two classes,
 - 2) Maximizes the margin (distance to closest data points).
- linearly separable or up-transformation

H₂ is the correct solution

Regression / modeling – generalized linear model

- Many subtypes here just an introduction to study relationships.
- $g(y) = X\beta + \epsilon$ observation y and predictor(s) X
- Goal: Prediction of future observations, assessment of effects of predictors on observation or general description of data.
- (Pseudo) coefficient of determination to judge, how well the model fit the data
- In the generalized case, y is continous. What if y is binary (health/disease)?
 - (binary) logistic regression
 - Death/suvival processes

Regression / modeling – overfitting

- We want to explain the data in the simplest way
- Unnecessary predictors will add noise to the estimation of other quantities that we are interested in
- Collinearity is caused by having too many variables trying to do the same job
- Procedures: Backward Elimination/Forward Selection
- Decision to keep / drop variables based on
 - Hypothesis tests
 - Information criteria (AIC, BIC)
- All procedures are heuristics, so try out!

Regression / modeling – different examples

Regression / modeling – Lasso regrularization

lasso (least absolute shrinkage and selection operator)

$$\min_{\alpha,\beta} \frac{1}{N} \sum_{i=1}^{N} f(x_i, y_i, \alpha, \beta) \text{ to subject } \|\beta\|_1 \le t$$

- Performs both variable selection (can set $\beta_i = 0$) and regularization
- Enhance the prediction accuracy and interpretability

Known problem - Multiple Testing

• Consider a case where you have 1000 hypotheses to test, and a significance level of $\alpha = 0.05$

50 significant hypotheses just by chance

- Different strategies to adjust α (for n hypotheses)
 - Bonferroni: $\alpha_{new} = \alpha/n$
 - Benjamini-Hochberg: control of the false discovery rate
 - Holm
 - **–** ...

Biostatistics in the context of polygenic risk scores

Different languages...

Nevertheless, it is not all about significance – especially for big data.

21st Century – The Century of big data

 90% of the data in the world today has been created in the last two years.

Challenge:

Traditional methods (and data processing software) are inadequate to deal with them

- Where do we find big data?
 e.g. in (epi)genetics...
 - Single nucleotide polymorphisms (SNPs)
 - Next generation sequencing
 - Histone modifications/DNA methylation

The central concept of gene-environment interactions

- It all starts with...peas and a monk (G. Mendel)
- Phenotype = Genotype + Environment

- 100 years later:
 Transcription + Translation and their regulation as key players of geneenvironment interactions
- DNA -> mRNA -> Protein

SNPs – Single nucleotide polymorphisms

Kettunen et al. (2012) Nat. Genet.

SNPs – Example (Sickle-cell anaemia)

Each Disease, another SNP...

Each color is another disease/disorder

What is a risk score?

In mathematical terms: A RS is a classifier!

In <u>statistical learning</u>, we want to infer to unknown relationship $f(\cdot)$ in:

$$\mathbf{y} = f(\mathbf{X}) + \boldsymbol{\epsilon}$$

where \mathbf{y} [sometimes $\mathbf{g}(\mathbf{y})$] is the outcome, \mathbf{X} is your data matrix, and $\mathbf{\varepsilon}$ is the error.

In <u>classification</u>, y is binary → yes/no, 1/0, true/false, healthy/sick

f(X) can have many forms, as we will see in the following

The easiest way of risk prediction

By using the scale shown below, you can correlate your number of points with your diabetes risk. Please note that individuals with a low risk of diabetes may also develop this disease. On the other hand, high-risk individuals may remain healthy.

If it's not diabetes, then it's dementia...

What is a polygenic risk score?

- Adding genetic informations to a risk score.
 "polygenic" = "more than one gene"
- Diseases/disorders (especially their risk) are quantitative traits!
- What does this mean? → additive genetic effects
- Identifying the variants, that are causing the disease.
- GWAS = genome-wide association studies.

Position

Aim of polygenic risk scores

We want to predict patients at high risk for a disease based on clinical **and** genetic data

What is the benefit?

If we are able to identify patients at high risk, we are able to...

- individualize the therapy,
- start therapy quiet early or (in best case) prevent the disease outbreak,
- (maybe) understand the mechanisms behind the disease/disorder,
- reduce the economic burden, e.g

\$174 billion in 2007 only in the U.S. and only Type II Diabetes (source: ADA)

Incidents vs. prevalence

Incidence The number of new events (e.g. death or a particular disease)
that occur during a specified period of time in a population at risk for
developing the events.

 Prevalence The number of persons in the population affected by a disease at a specific time divided by the number of persons in the population at the time.

The easiest way of a PRS

- Sum up the risk allells
- Example: Atrial Fibrillation

• Problem: Quiet different for each outcome/disease and subpopulation (sex/ethnicity/...).

Problems – Overfitting

- Multicolinearity = high intercorrelation between the predictors
 -> the information of one predictor might be contained in another one
- These classical statistical techniques were developed for low dimensional data (n >> p).
- The blue curve fits the data points too well.

Validation

Ideal case:

if the model learned a pattern that does not generalize, the quality on the test set will be low

Cross validation

Main motivation for cross-validation:

In reality, we can often not afford to leave out a substantial part of the data for validation.

Can we perform validation just using the training data?

Example: 3-fold cross-validation

Scheme of risk prediction

Thank you for your attention!