Algorithmique : Travaux Dirigés 4 ENS S4 Mathématiques 2018-2019

EXERCICE 1 Écrire un algorithme (iteratif) qui renvoye le maximum dans une liste L. Calculer la complexité T(n) de cet algorithme, càd le nombre d'opérations en fonction de la longueur n de L.

Verifier si $T(n) = \Theta(n^2)$ ou $T(n) = \Theta(n \log n)$ ou $T(n) = \Theta(n)$

EXERCICE 2 Écrire un algorithme (cette fois ci récursif) qui renvoye le maximum dans une liste L. Calculer la complexité T(n).

Indication: Trouver une relation de récurrence entre T(n) et T(n-1) (comme avec les tours de Hanoi). En déduire T(n).

EXERCICE 3 Vous pouvez répondre à cette question sans écrire un algorithme.

Donner la formule qui fait la multiplication Z=X.Y de deux matrices $n\times n$ X et Y.

Donner la complexité (càd le nombre d'opérations élémentaires nécessaire) T(n) pour la multiplication des deux matrices en fonction de n.

Verifier si
$$T(n) = \Theta(n)$$
 ou $T(n) = \Theta(n \log n)$ ou $T(n) = \Theta(n^2)$ ou $T(n) = \Theta(n^3)$ ou $T(n) = \Theta(n^4)$.

EXERCICE 4 On assume que L est une liste d'elements dans \mathbb{Z} . Ecrire un algorithme id_id tel que id_id(L) renvoye, si il existe, le premier i avec L[i] = i. Exemples

id_id identique à l'indice

- id id([-4,1,3,7,9]) renvoye 1
- $id_id([-4,0,5,7,9])$ renvoye None

Pour certains algorithmes, la complexité peut varier selon l'argument. Dans quelle situation est-ce qu'on a la complexité minimale pour id id? (Complexité dans le meilleur cas)

Dans quelle situation est-ce qu'on a la complexité maximale pour id_id? (Complexité dans le pire des cas)

EXERCICE 5 On assume que L est une liste d'elements dans \mathbb{Z} , ordonnée croissante. Ecrire un algorithme id_id2 tel que id_id2(L) renvoye, si il existe, le premier i avec L[i] = i. Ecrire l'algorithme le plus rapide possible.