

Compiladores

Análise sintática ascendente

Artur Pereira <artur@ua.pt>,
Miguel Oliveira e Silva <mos@ua.pt</pre>

DETI, Universidade de Aveiro

Ano letivo de 2022-2023

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 1/39

Sumário

- Introdução
- 2 Conflitos
- 3 Construção de um reconhecedor
- 4 Conjunto de itens
- 5 Tabela de decisão de um reconhecedor ascendente

ACP (DETI/UA) Como 2022/2023 Maio de 2023 2/39

Ilustração por um exemplo

Considere a gramática

$$D \rightarrow T \ L$$
;
 $T \rightarrow i \mid r$
 $L \rightarrow v \mid L$, v

que representa uma declaração de variáveis a la C

- Como reconhecer a palavra " $u = i \vee , \vee ;$ " como pertencente à linguagem definida pela gramática dada?
- Se u pertence à linguagem definida pela gramática, então $D \Rightarrow^+ u$
- Gerando uma derivação à direita, tem-se
 D ⇒ T L; ⇒ T L, v; ⇒ T v, v; ⇒ i v, v;
- Tente-se agora fazer a derivação no sentido contrário, isto é, indo de u para D

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 4/39

Análise sintática ascendente

Ilustração por um exemplo (cont.)

Considere a gramática

e $\mathit{reduza}\text{-}\mathit{se}$ a palavra " $u=\mathtt{i} \ \mathtt{v}$, \mathtt{v} ;" ao símbolo inicial D

•

```
\begin{array}{lll} \verb"i" v" , \verb"v" ; & & & & \\ \Leftarrow T \verb"v" , \verb"v" ; & & & & \\ \Leftarrow T L , \verb"v" ; & & & & \\ \Leftrightarrow T L ; & & & & \\ \Leftarrow T L ; & & & & \\ \Leftrightarrow D & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

· Colocando ao contrário, tem-se

$$D \Rightarrow TL; \Rightarrow TL, v; \Rightarrow Tv, v; \Rightarrow iv, v;$$

que corresponde à derivação à direita da palavra " $u=\mathrm{i}\,\mathrm{v}$, v ; "

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 5/39

Ilustração por um exemplo (cont.)

 A tabela seguinte mostra como, na prática, se realiza esta (retro)derivação

ıtrada	próxima ação
v, v; \$	deslocamento
, v;\$	redução por $T o \mathtt{i}$
, v;\$	deslocamento
v ; \$	redução por $L o { t v}$
v ; \$	deslocamento
; \$	deslocamento
\$	redução por $L o L$, $ v$
\$	deslocamento
	redução por $D o TL$;
	deslocamento / aceitação
	aceitação
	v, v; \$, v; \$, v; \$ v; \$ v; \$; \$

- A palavra à entrada foi reduzida ao símbolo inicial pelo que é aceite como pertencendo à linguagem
- A aceitação pode ser feita antes de consumir o \$ ou depois

ACP (DETI/UA) Comp 2022/2023

Análise sintática ascendente

Ilustração de um erro sintático

 Veja-se a reação deste procedimento a uma entrada errada, por exemplo a palavra i v v;

D	\rightarrow	T	L ;
T	\rightarrow	i	r
L	\rightarrow	V	L_{\odot} v
			Δ

Maio de 2023

pilha	entrada	próxima ação
	ivv;\$	deslocamento
i	vv;\$	redução por $T o \mathtt{i}$
T	vv;\$	deslocamento
T \vee	v;\$	redução por $L o { t v}$
TL	v;\$	deslocamento
TLv	; \$	rejeição

- Rejeita porque $L \lor n$ ão corresponde ao prefixo de uma produção da gramática
- Na realidade, o erro poderia ter sido detetado dois passos antes, aquando da segunda redução, porque $v \notin follow(L)$
 - v corresponde ao símbolo à entrada
 - L é o símbolo que iria aparecer no topo da pilha se se fizesse a redução por $L \to \mathbf{v}$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 7/39

Ilustração de conflito entre deslocamento e redução

Considere a gramática

e aplique-se o procedimento anterior à palavra i cicaea

pilha	entrada	próxima ação
	icicaea\$	deslocamento
i	cicaea\$	deslocamento
ic	icaea\$	deslocamento
ici	caea\$	deslocamento
icic	aea\$	deslocamento
icica	ea\$	redução por $S o ext{a}$
icic S	e a \$	conflito: - Ours opcos
		– redução por $S ightarrow \mathtt{i} \circ S$
		– deslocamento para tentar $S ightarrow \mathtt{i} \circ S \circ S$

Esta gramática representa uma estrutura típica em linguagens de programação.
 Qual?

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 9/39

Análise sintática ascendente

Ilustração de conflito entre reduções

Considere a gramática

e aplique-se o procedimento anterior à palavra c

pilha	entrada	próxima ação
	С\$	deslocamento
С	\$ conflito:	
		– redução usando $A ightarrow { m c}$
		– redução usando $B ightarrow { m c}$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 10/39

Ilustração de falso conflito

Considere a gramática

e aplique-se o procedimento de reconhecimento à palavra "a < a > a"

pilha	entrada	próxima ação
	a <a>a\$	deslocamento
a	<a>a\$	falso conflito:
		– redução usando $S o ext{a}$
		– deslocamento para tentar $S ightarrow$ a P

• Deslocamento, porque se se optasse pela redução no topo da pilha ficaria um S e $< \notin \mathbf{follow}(S)$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 11/38

Análise sintática ascendente

Ilustração de falso conflito (cont.)

• Optando pelo deslocamento e continuando...

pilha	entrada	próxima ação
	a <a>a\$	deslocamento
a	<a>a\$	$deslocamento,porque < \not\in \mathbf{follow}\left(S\right)$
a <	a>a\$	deslocamento
a < a	> a \$	redução por $S o$ a
a < S	> a \$	deslocamento
a < S >	a \$	deslocamento, porque a $\not\in$ follow (P)
a < S > a	\$	redução por $S o$ a
a < S > S	\$	redução por $P o < S > S$
a P	\$	redução por $S o$ a P
S	\$	deslocamento
S\$		aceitação

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 12/39

Eliminação de conflito

- Pode ser possível alterar uma gramática de modo a eliminar a fonte de conflito
- Considerando que se pretendia optar pelo deslocamento, a gramática da esquerda gera a mesma linguagem que a da direita e está isenta de conflitos.

$$S
ightarrow ext{a} \ | ext{ic} ext{S} \ | ext{ic} ext{S}' ext{e} ext{S} \ | ext{ic} ext{S}' ext{e} ext{S} \ | ext{ic} ext{S}' ext{e} ext{S}'$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 13/39

Análise sintática ascendente

if..then..else sem conflitos

• Considere a gramática seguinte e processe-se a palavra "i c i c a e a"

$$S
ightarrow$$
 a | i c S | i c S' e S $S'
ightarrow$ a | i c S' e S'

pilha	entrada	próxima ação	
	icicaea\$	deslocamento	
i	cicaea\$	deslocamento	
ic	icaea\$	deslocamento	
ici	caea\$	deslocamento	
icic	aea\$	deslocamento	
icica	ea\$	redução por $S' o$ a $\ \ \ \ \ \ \ \ \ \ \ \ \ $	
$\mathtt{icic}S'$	ea\$	deslocamento	
$\mathtt{icic}S'$ e	a \$	deslocamento	
icicS'ea	\$	redução por $S o $ a // $\$ \in \mathbf{follow}(S), \$ \not\in \mathbf{follow}(S')$	
icicS'eS	\$	redução por $S o \mathtt{i} \circ S' \in S$	
$\mathtt{i} \mathtt{c} S$	\$	redução por $S o \mathtt{i} \circ S$	
S	\$	deslocamento e aceitação	

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 14/39

Construção de um reconhecedor ascendente Abordagem

 Como determinar de forma sistemática a ação a realizar (deslocamento, redução, aceitação, rejeição)?

pilha	entrada	próxima ação
	ivv;\$	deslocamento
i	vv;\$	redução por $T o exttt{i}$
T	vv;\$	deslocamento
$T { m v}$	v ; \$	rejeição

- A ação a realizar em cada passo do procedimento de reconhecimento deslocamento, redução, aceitação ou rejeição – depende da configuração em cada momento
- Uma configuração é formada pelo conteúdo da pilha mais a parte da entrada ainda não processada
- A pilha é conhecida na realidade, é preenchida pelo procedimento de reconhecimento
- Da entrada, em cada momento, apenas se conhece o lookahead

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 16/39

Construção de um reconhecedor ascendente Abordagem (cont.)

pilha	entrada	próxima ação
	ivv;\$	deslocamento
i	vv;\$	redução por $T o exttt{i}$
T	vv;\$	deslocamento
$T \mathbf{v}$	v ; \$	rejeição

- Quantos símbolos da pilha usar?
- Poder-se-á usar apenas um?
- Se se quiser e puder construir um reconhecedor que apenas use o símbolo no topo, uma pilha onde se guardam os símbolos terminais e não terminais tem pouco interesse
- Mas pode definir-se um alfabeto adequado para a pilha
- Os símbolos a colocar na pilha devem representar estados no processo de deslocamento/redução/aceitação
- Por exemplo, um dado símbolo pode significar que, na produção " $D \to TL$;", já se processou algo que corresponde ao "TL", faltando o ";"

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 17/39

Construção de um reconhecedor ascendente Itens de uma gramática

- O alfabeto da pilha representa assim o conjunto de possíveis estados nesse processo de reconhecimento
- Cada estado representa um conjunto de itens
- Cada item representa o quanto de uma produção já foi processado e o quanto ainda falta processar
 - Usa-se um ponto (⋅) ao longo dos símbolos de uma produção para o representar
- A produção $A \rightarrow B_1 \ B_2 \ B_3$ produz 4 itens:

$$A \rightarrow \cdot B_1 \ B_2 \ B_3$$

$$A \rightarrow B_1 \cdot B_2 \ B_3$$

$$A \rightarrow B_1 \ B_2 \cdot B_3$$

$$A \rightarrow B_1 \ B_2 \ B_3 \cdot$$

• A produção $A \rightarrow \varepsilon$ produz um único item:

$$A \rightarrow \cdot$$

• Um item com um ponto (·) à direita representa uma ação de redução

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 18/39

Conjunto dos conjuntos de itens

Ilustração com um exemplo

• Considere a gramática

$$\begin{array}{c} S \to E \\ E \to \mathbf{a} \mid (E) \end{array}$$

• Reconhecer a palavra $u=u_1u_2\cdots u_n$, significa reduzir u\$ a S\$, então, o estado inicial no processo de reconhecimento pode ser definido por

$$Z_0 = \{S \to \cdot E \,\$\}$$

- O facto de o ponto (·) se encontrar imediatamente à esquerda de um símbolo significa que para se avançar no processo de reconhecimento é preciso obter esse símbolo
 - Se o símbolo é terminal, isso corresponde a uma ação de deslocamento
 - Se o símbolo é não terminal, é preciso dar-se a redução de uma produção que o produza
 - Isso é considerado juntando ao conjunto os itens iniciais das produções cuja cabeça é o símbolo pretendido

$$Z_0 = \{ S \rightarrow \cdot E \, \} \cup \{ E \rightarrow \cdot a, E \rightarrow \cdot (E) \}$$

 Se aparecerem novos símbolos n\u00e3o terminais imediatamente \u00e0 direita de um ponto (\u00b1), repete-se o processo. Faz-se o fecho (closure)

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 20/39

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

• Evolução de Z_0 :

$$Z_0 = \{ S \rightarrow \cdot E \$ \} \cup \{ E \rightarrow \cdot \mathsf{a}, E \rightarrow \cdot (E) \}$$

• O estado Z_0 pode evoluir por ocorrência de um E, um a ou um (, que correspondem aos símbolos que aparecem imediatamente à direita do ponto (•)

$$\delta(Z_0,E)=\set{S o E\cdot\$}=Z_1$$
 um estado novo $\delta(Z_0,\mathtt{a})=\set{E o \mathtt{a}\cdot}=Z_2$ um estado novo $\delta(Z_0,\mathtt{()}=\set{E o (\cdot E)}=Z_3$ um estado novo

• Z_3 tem de ser estendido pela função de fecho, uma vez que o ponto (•) ficou imediatamente à esquerda de um símbolo não terminal (E)

$$Z_3 = \delta(Z_0, \cdot) = \{ E \rightarrow \cdot \cdot \cdot E \mid \} \cup \{ E \rightarrow \cdot \cdot a, E \rightarrow \cdot \cdot (E) \}$$

• Z_2 , apenas possui um item terminal (com o ponto (•) à direita), que representa uma situação passível de redução, neste caso pela produção $E \to a$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 21/39

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

• Evolução de Z_1 :

$$Z_1 = \{ S \to E \cdot \$ \}$$

Apenas evolui por ocorrência de um \$

$$\delta(Z_1,\$) \,=\, \{\,S \to E\,\$\, \cdot\,\} \qquad \Longrightarrow \mathsf{ACCEPT}$$

que corresponde à situação de aceitação

- Se o símbolo inicial da gramática não aparecer no corpo de qualquer produção (como acontece aqui), Pode-se considerar Z_1 como uma situação de aceitação se o *lookahead* for \$
- Evolução de Z_3 :

$$Z_3 = \{E \rightarrow (\cdot E)\} \cup \{E \rightarrow \cdot a, E \rightarrow \cdot (E)\}$$

• Pode evoluir por ocorrência de um E, um ${\tt a}$ ou um (

$$\delta(Z_3,E)=\{\,E o(\,E\,\cdot\,)\,\,\}=Z_4$$
 um estado novo $\delta(Z_3,{
m a})=\{\,E o{
m a}\,\cdot\,\}=Z_2$ um estado repetido $\delta(Z_3,()=\{\,E o(\,\cdot\,E\,)\,\,\}=Z_3$ um estado repetido

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

Evolução de Z₄

$$Z_4 = \{ E \rightarrow (E \cdot) \}$$

Apenas evolui por ocorrência de)

$$\delta(Z_4,)) = \{E \rightarrow (E) \cdot \} = Z_5$$
 um estado novo

- Z_5 apenas possui um item terminal, que representa uma situação passível de redução pela regra $E \to (E)$
- Pode acontecer que um dado elemento (conjunto de itens) possua itens terminais (associados a reduções) e não terminais

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 23/3

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

Pondo tudo junto

$$\begin{split} Z_0 &= \{\, S \to \cdot E \, \} \, \cup \, \{\, E \to \cdot \, \mathsf{a} \, , \, E \to \cdot \, (E \,) \,\, \} \\ Z_1 &= \delta(Z_0, E) = \{\, S \to E \cdot \, \!\!\! \} \,\, \\ Z_2 &= \delta(Z_0, \, \mathsf{a}) = \{\, E \to \, \mathsf{a} \cdot \, \} \,\, \\ Z_3 &= \delta(Z_0, \, () = \{\, E \to \, (\cdot \, E \,) \,\, \} \, \cup \, \{\, E \to \cdot \, \mathsf{a} \, , \, E \to \cdot \, (E \,) \,\, \} \\ Z_4 &= \delta(Z_3, E) = \{\, E \to \, (E \cdot) \,\, \} \,\, \\ Z_5 &= \delta(Z_4, \,) \,) = \{\, E \to \, (E) \cdot \, \} \end{split}$$

Representando na forma de um autómato, tem-se

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 24/39

Conjunto dos conjuntos de itens

Ilustração com um exemplo (cont.)

- Neste autómato, os estados representam o alfabeto da pilha
- As transições representam operações de push
- As transições etiquetadas com símbolos terminais representam adicionalmente ações de deslocamento (shift)
- As ações de redução provocam operações de pop, em número igual ao número de elementos do corpo da produção
- As transições etiquetadas com símbolos não terminais ocorrem após as ações de redução
- Tudo isto representa o funcionamento de um autómato de pilha que permite fazer o reconhecimento da linguagem

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 25/39

Tabela de decisão de um reconhecedor ascendente Introdução

- O autómato de pilha pode ser implementado usando uma tabela de decisão
- Esta tabela contém duas matrizes, ACTION e GOTO
 - as linhas de ambas s\(\tilde{a}\)o indexadas pelo alfabeto da pilha (conjunto de conjuntos de itens)
- A matriz ACTION representa ações
 - as colunas são indexadas pelos símbolos terminais da gramática, incluindo o marcador de fim de entrada (\$)
 - As células contêm as ações shift, reduce, accept ou error
 - No caso de shift, também inclui o próximo símbolo a colocar na pilha
- A matriz GOTO representa a operação após uma redução
 - as colunas são indexadas pelos símbolos não terminais da gramática
 - As células indicam que valor colocar na stack após uma ação de redução

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 27/38

Tabela de decisão de um reconhecedor ascendente Exemplo

Considere-se o conjunto de conjunto de itens obtido anteriormente

$$\begin{split} Z_0 &= \{\, S \to \cdot E \, \} \, \cup \, \{\, E \to \cdot \, \text{a} \, , \, E \to \cdot \, (E \,) \,\, \} \\ Z_1 &= \delta(Z_0, E) = \{\, S \to E \cdot \, \} \,\, \} \\ Z_2 &= \delta(Z_0, \, \text{a}) = \{\, E \to \, \text{a} \cdot \, \} \\ Z_3 &= \delta(Z_0, \, \text{()} = \{\, E \to \, (\cdot E \,) \,\, \} \, \cup \, \{\, E \to \cdot \, \text{a} \, , \, E \to \cdot \, (E \,) \,\, \} \\ Z_4 &= \delta(Z_3, E) = \{\, E \to \, (E \cdot) \,\, \} \\ Z_5 &= \delta(Z_4, \, \text{)} \,\,) = \{\, E \to \, (E \,) \,\, \} \end{split}$$

• E o correspondente autómato de pilha

ACP (DETI/UA)

Comp 2022/2023

Maio de 2023

20/20

Ĵ

Tabela de decisão de um reconhecedor ascendente Exemplo

A este autómato de pilha

• Corresponde a tabela de decisão

		ACTION			
	a	a () \$			
Z_0	shift, Z_2	shift, Z_3			Z_1
$\overline{Z_1}$				ACCEPT	
Z_2			reduce, $E o$ a	reduce, $E o a$	
$\overline{Z_3}$	shift, Z_2	shift, Z_3			Z_4
Z_4			shift, Z_5		
Z_5			reduce, $E \rightarrow (E)$	reduce, $E ightarrow$ (E)	

 Com lookahead de 1, as reduções apenas são colocadas nas colunas correspondentes aos follow.

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 29/39

Reconhecedor ascendente

Algoritmo de reconhecimento

	ACTION				
	a	a () \$			
Z_0	shift, Z_2	shift, Z_3			Z_1
Z_1				ACCEPT	
Z_2			reduce, $E o a$	reduce, $E o a$	
Z_3	shift, Z_2	shift, Z_3			Z_4
Z_4			shift, Z_5		
Z_5			reduce, $E ightarrow$ (E)	reduce, $E \rightarrow (E)$	

 Com base na tabela de decisão, o procedimento de reconhecimento pode ser implementado pelo seguinte algoritmo

```
\begin{array}{lll} \operatorname{push}\left(Z_{0}\right) \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

 Note que após os pops o símbolo no top pode mudar e é o novo símbolo que é usado no GOTO

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 30/39

Reconhecedor ascendente

Ilustração com o exemplo anterior

	ACTION				GOTO
	a	()	\$	Е
Z_0	shift, Z_2	shift, Z_3			Z_1
Z_1				ACCEPT	
Z_2			reduce, $E o$ a	reduce, $E \rightarrow a$	
Z_3	shift, Z_2	shift, Z_3			Z_4
Z_4			shift, Z_5		
Z_5			reduce, $E \rightarrow (E)$	reduce, $E o (E)$	

• Aplique-se este algoritmo à palavra ((a))

pilha	entrada	próxima ação
$\overline{Z_0}$	((a))\$	$ACTION(Z_0,\ () = (shift,\ Z_3)$
$Z_0 Z_3$	(a))\$	$ACTION(Z_3,\ () = (shift,\ Z_3)$
$Z_0 Z_3 Z_3$	a))\$	$ACTION(Z_3, a) = (shift, Z_2)$
$Z_0 Z_3 Z_3 Z_2$))\$	$ACTION(Z_2,)) = (reduce\ E o a) (1\ pop)$
$Z_0 Z_3 Z_3$	[E]	$GOTO(Z_3,E) = Z_4 (push Z_4)$
$Z_0 Z_3 Z_3 Z_4$))\$	$ACTION(Z_4,)) = (shift, Z_5)$
$Z_0 Z_3 Z_3 Z_4 Z_5$) \$	$ACTION(Z_5,)) = (reduce\ E o (E)) $ (3 pops)
$Z_0 Z_3$	[E]	$GOTO(Z_3,E) = Z_4 (push Z_4)$
$Z_0 Z_3 Z_4$) \$	$ACTION(Z_4,)) = (shift, Z_5)$
$Z_0 Z_3 Z_4 Z_5$	\$	$ACTION(Z_5,\$) = (reduce\ E \to (E)) (3\ pops)$
Z_0	[E]	$GOTO(Z_0,E) = Z_1 (push Z_1)$
$Z_0 Z_1$	\$	$ACTION(Z_1, \$) = ACCEPT$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 31/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3

Q Determine-se a tabela de decisão para um reconhecedor ascendente com lookahead 1 da gramática seguinte

$$S \rightarrow a \mid (S) \mid aP \mid (S) S$$

 $P \rightarrow (S) \mid (S) S$

 O primeiro passo corresponde a alterar a gramática de modo ao símbolo inicial não aparecer do lado direito

$$S_0 \rightarrow S$$

 $S \rightarrow a \mid (S) \mid aP \mid (S) S$
 $P \rightarrow (S) \mid (S) S$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 32/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

O passo seguinte corresponde a calcular o conjunto de conjunto de itens

$$Z_0 = \{S_0 \to \cdot S \}$$

$$\cup \{S \to \cdot \mathbf{a}, S \to \cdot (S), S \to \cdot \mathbf{a} P, S \to \cdot (S) S \}$$
 fecho
$$\overline{\delta(Z_0, S)} = \{S_0 \to S \cdot \$\} = Z_1$$
 um estado novo
$$\cup \{P \to \cdot (S), P \to \cdot (S) S\} = Z_2$$
 fecho
$$\overline{\delta(Z_0, \mathbf{a})} = \{S \to \mathbf{a} \cdot \mathbf{a}, S \to \mathbf{a} \cdot P\}$$
 um estado novo
$$\cup \{P \to \cdot (S), P \to \cdot (S) S\} = Z_2$$
 fecho
$$\overline{\delta(Z_0, \mathbf{a})} = \{S \to (\cdot S), S \to (\cdot S) S\}$$
 um estado novo
$$\cup \{S \to \cdot \mathbf{a}, S \to \cdot (S), S \to \cdot \mathbf{a} P, S \to \cdot (S) S\} = Z_3$$
 fecho
$$\overline{\delta(Z_2, P)} = \{S \to \mathbf{a} P \cdot \} = Z_4$$
 um estado novo
$$\overline{\delta(Z_2, \mathbf{a})} = \{P \to (\cdot S), P \to (\cdot S) S\}$$
 um estado novo
$$\cup \{S \to \cdot \mathbf{a}, S \to \cdot (S), S \to \cdot \mathbf{a} P, S \to \cdot (S) S\} = Z_5$$
 fecho
$$\overline{\delta(Z_3, S)} = \{S \to (S \to \cdot), S \to (S \to \cdot) S\} = Z_6$$
 um estado novo
$$\overline{\delta(Z_3, \mathbf{a})} = \{S \to \mathbf{a} \cdot S, S \to \mathbf{a} \cdot P\} = Z_2$$
 um estado repetido
$$\overline{\delta(Z_3, \mathbf{a})} = \{S \to (\cdot S), S \to (\cdot S) S\} = Z_3$$
 um estado repetido
$$\overline{\delta(Z_3, \mathbf{a})} = \{S \to (\cdot S), S \to (\cdot S) S\} = Z_3$$
 um estado repetido

$$\begin{array}{l} S_0 \, \rightarrow \, S \\ \\ S \, \rightarrow \, \mathrm{a} \mid \, (\, S\,) \, \mid \, \mathrm{a} \, P \mid \, (\, S\,) \, \, S \\ \\ P \, \rightarrow \, (\, S\,) \, \mid \, (\, S\,) \, \, S \end{array}$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 33/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

 continuando, apenas mostrando os elementos envolvidos em processamento

$$Z_2 = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} \cup \cdots$$

$$Z_3 = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} \cup \cdots$$

$$Z_5 = \{P \rightarrow (\cdot S), P \rightarrow (\cdot S) S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\}$$

$$Z_6 = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\}$$

$$\delta(Z_5, S) = \{P \rightarrow (S \cdot), P \rightarrow (S \cdot) S\} = Z_7$$

$$\delta(Z_5, a) = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} = Z_2$$

$$\delta(Z_5, a) = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\} = Z_3$$

$$\delta(Z_5, b) = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\} = Z_3$$

$$Um \text{ estado repetido}$$

$$\delta(Z_6, b) = \{S \rightarrow (S \cdot), S \rightarrow (S \cdot) S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S \cdot), S \rightarrow \cdot a P, S \rightarrow \cdot (S \cdot) S\} = Z_8$$

$$\delta(Z_7, b) = \{P \rightarrow (S \cdot), P \rightarrow (S \cdot) S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S \cdot), S \rightarrow \cdot a P, S \rightarrow \cdot (S \cdot) S\} = Z_9$$

$$Um \text{ estado novo}$$

ACP (DETI/UA)

Comp 2022/202

Maio de 2023

34/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

continuando...

$$Z_2 = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} \cup \cdots$$

$$Z_3 = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} \cup \cdots$$

$$Z_8 = \{S \rightarrow (S) \cdot, S \rightarrow (S) \cdot S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\}$$

$$Z_9 = \{P \rightarrow (S) \cdot, P \rightarrow (S) \cdot S\}$$

$$\cup \{S \rightarrow \cdot a, S \rightarrow \cdot (S), S \rightarrow \cdot a P, S \rightarrow \cdot (S) S\}$$

$$\delta(Z_8, S) = S \rightarrow (S) S \cdot \} = Z_{10} \qquad \text{um estado novo}$$

$$\delta(Z_8, a) = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} = Z_2 \qquad \text{um estado repetido}$$

$$\delta(Z_8, C) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} = Z_3 \qquad \text{um estado repetido}$$

$$\delta(Z_9, S) = \{P \rightarrow (S) S \cdot\} = Z_{11} \qquad \text{um estado novo}$$

$$\delta(Z_9, a) = \{S \rightarrow a \cdot, S \rightarrow a \cdot P\} = Z_2 \qquad \text{um estado repetido}$$

$$\delta(Z_9, C) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} = Z_3 \qquad \text{um estado repetido}$$

$$\delta(Z_9, C) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} = Z_3 \qquad \text{um estado repetido}$$

$$\delta(Z_9, C) = \{S \rightarrow (\cdot S), S \rightarrow (\cdot S) S\} = Z_3 \qquad \text{um estado repetido}$$

$$\begin{array}{l} S_0 \,\rightarrow\, S \\ S \,\rightarrow\, \mathrm{a} \mid\, (\,S\,)\,\mid\, \mathrm{a}\,P\,\mid\, (\,S\,)\,\, S \\ P \,\rightarrow\, (\,S\,)\,\mid\, (\,S\,)\,\, S \end{array}$$

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 35/3

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

O que resulta em

$$\begin{array}{l} S_0 \,\rightarrow\, S \\ S \,\rightarrow\, \mathrm{a} \mid\, (\,S\,)\,\mid\, \mathrm{a}\,P\,\mid\, (\,S\,)\,\,S \\ P \,\rightarrow\, (\,S\,)\,\mid\, (\,S\,)\,\,S \end{array}$$

ACP (DETI/UA)

Comp 2022/202

Maio de 2023

36/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

O que resulta em

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 37/39

Tabela de decisão de um reconhecedor ascendente Exemplo #3 (cont.)

• E finalmente a tabela de decisão

	a	()	\$	S	P
Z_0	shift, Z_2	shift, Z_3			Z_1	
$\overline{Z_1}$				ACCEPT		
$\overline{Z_2}$		shift, Z_5	$\mathit{reduce}S o \mathtt{a}$	$\mathit{reduce}S o a$		Z_4
$\overline{Z_3}$	shift, Z_2	shift, Z_3			Z_6	
$\overline{Z_4}$			$\mathit{reduce}S o \mathtt{a}P$	$\operatorname{\mathit{reduce}} S o \operatorname{a} P$		
$\overline{Z_5}$	shift, Z_2	shift, Z_3			Z_7	
Z_6			shift, Z_8			
$\overline{Z_7}$			shift, Z_{9}			
$\overline{Z_8}$	shift, Z_2	shift, Z_3	$\mathit{reduce}S o (S)$	$\mathit{reduce}S o (S)$	Z_{10}	
Z_9	shift, Z_2	shift, Z_3	reduce $P ightarrow$ (S)	reduce $P ightarrow$ (S)	Z_{11}	
$\overline{Z_{10}}$			$\mathit{reduce}S o (S) S$	reduce $S ightarrow$ (S) S		
Z_{11}			reduce $P ightarrow$ (S) S	reduce $P ightarrow$ (S) S		

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 38/38

Tabela de decisão de um reconhecedor ascendente Exercício

Q Determine-se a tabela de decisão para um reconhecedor ascendente com lookahead 1 da gramática seguinte

$$S
ightarrow arepsilon \mid S \ B$$
 a $\mid S \ A$ b
$$A
ightarrow$$
 a $\mid A \ A$ b
$$B
ightarrow B \ B$$
 a \mid b

ACP (DETI/UA) Comp 2022/2023 Maio de 2023 39/39