EEE 3342C: Digital Systems

Chapter 9: Multiplexers, Decoders and Programmable Logic Devices

Instructor: Suboh A Suboh

Department of Electrical Engineering and Computer Science University of Central Florida

Multiplexer

- Multiplexer, abbreviated as MUX
- Also called data selector
- Has 2^n or more inputs $(n \ge 1)$
- Has 1 output
- Has n selectors
- The output is equal to one of the inputs
 - Based on the value of the selector(s)

This is a 2-to-1 multiplexer (or 2-to-1 MUX)

This is a 4-to-1 multiplexer It has 4 data inputs and 1 output

If
$$S_1=0$$
 and $S_0=0$, then $Z=I_0$
If $S_1=0$ and $S_0=1$, then $Z=I_1$
If $S_1=1$ and $S_0=0$, then $Z=I_2$
If $S_1=1$ and $S_0=1$, then $Z=I_3$

This is an 8-to-1 multiplexer It has 8 data inputs and 1 output

If
$$S_2=0$$
, $S_1=0$, $S_0=0$, then $Z = I_0$
If $S_2=0$, $S_1=0$, $S_0=1$, then $Z = I_1$
...
If $S_2=1$, $S_1=1$, $S_0=1$, then $Z = I_7$

16-to-1 MUX has 4 selectors 32-to-1 MUX has 5 selectors 2ⁿ-to-1 MUX has n selectors...

Boolean Expression for the Multiplexer

• For 2-to-1 multiplexer

1 1

$$Z = S'.I_0 + S.I_1$$

Boolean Expression for the Multiplexer

• For 2-to-1 multiplexer:

$$Z = S'.I_0 + S.I_1$$

For 4-to-1 multiplexer:

$$Z = S_1'S_0'I_0 + S_1'S_0I_1 + S_1S_0'I_2 + S_1S_0I_3$$

For 8-to-1 multiplexer:

$$Z = S_2'S_1'S_0'I_0 + S_2'S_1'S_0I_1 + S_2'S_1S_0'I_2 + S_2'S_1S_0I_3 + S_2S_1'S_0'I_4 + S_2S_1'S_0I_5 + S_2S_1S_0'I_6 + S_2S_1S_0I_7$$

Circuit for 8-to-1 Multiplexer

The Boolean expression is:

$$Z = A'B'C'I_0 + A'B'CI_1 + A'BC'I_2 + A'BCI_3 + AB'C'I_4 + AB'CI_5 + ABC'I_6 + ABCI_7$$

$$Z = \sum_{k=0}^{2^n - 1} m_k I_k$$

It is a Sum-Of-Products (SOP) circuit

4-to-1 MUX using 2-to-1 MUXes

- We need to build a 4-to-1 mux using several 2-to-1 MUXes
- The configuration is shown in the block diagram on the right side

Multiplexer Input (multiple bits)

- In a multiplexer, the inputs and the output have the same number of bits
- It could be 1 bit, or it could be higher

- In this 2-to-1 multiplexer,
 - Each input is 4 bits
 - The output is 4 bits

If A=1,
$$Z = X_3 X_2 X_1 X_0$$

If A=0, $Z = Y_3 Y_2 Y_1 Y_0$

2-to-1 Multiplexer (with 4-bit inputs)

- We need to build a 2-to-1 mux with 4-bit inputs and output
- We have 2-to-1 muxes with 1-bit input
- The configuration is shown in the block diagram on the right side

Example of Multiplexer Use

Classroom projector display

If AB=00, the projector shows the display of the desktop computer (slides)

If AB=01, the projector shows the display of the laptop that's connected via the cable

If AB=10, the projector shows the image from the DVD player

If AB=11, the projector shows the image from the over head camera

Logic Circuit for a 4-to-1 Multiplexer

Logic Circuit for a 4-to-1 Multiplexer

Let's consider the case when $S_1=0$ and $S_0=0$

Lo

Build an 8-to-1 MUX using 2-to-1 MUXes

Truth table

L ₂	L_1	L_0	F
0	0	0	I _o
0	0	1	I ₁
0	1	0	l ₂
0	1	1	l ₃
1	0	0	I_4
1	0	1	l ₅
1	1	0	I ₆
1	1	1	l ₇

The selectors are L_2 , L_1 , L_0 The inputs are Y_7 ,..., Y_1 , Y_0

Implementing a Function Using a Multiplexer

- We have the function: F(A,B,C) = A'B'C' + A'BC + ABC' + ABC
- This function is $F(A,B,C) = \Sigma m(0, 3, 6, 7)$
- This function has 8 minterms; we need an 8-to-1 multiplexer

The '1' and '0' values are hardwired.

They will not change.

We put the column of F from the truth table at the inputs of the multiplexer.

When ABC varies from 000 to 111, the result will be the column F from the truth table.

So, the multiplexer will give the correct value.

Truth table of F

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexer with Enable Signal

- When the enable signal is active, the multiplexer will operate as usual
- When the enable signal is inactive, the output is always 0

Active high enable:

If E=1, operates as usual If E=0, output is always zero

E S I ₁ I ₀	F
0000	0
0001	0
0010	0
0011	0
0100	0
0101	0
0110	0
0111	0
1000	0
1001	1
1010	0
1011	1
1100	0
1101	0
1110	1
1111	1

Active low enable:

If E=0, operates as usual
If E=1, output is always zero

E S I ₁ I ₀	F
0000	0
0001	1
0010	0
0011	1
0100	0
0101	0
0110	1
0111	1
1000	0
1001	0
1010	0
1011	0
1100	0
1101	0
1110	0
1111	0

Multiplexer with Enable Signal

4-to-1 multiplexer with enable signal

Active high enable:

If E=1, operates as usual If E=0, output is always zero

Active low enable:

If E=0, operates as usual If E=1, output is always zero

Decoder

- A decoder has n inputs and 2ⁿ outputs
- It generates the 2ⁿ minterms; the variables are the inputs
- For a given input, only one output is 1, the others are 0

 $Y_3 = I_1.I_0 = m_3$ (minterm 3) $Y_2 = I_1.I_0' = m_2$ (minterm 2) $Y_1 = I_1'.I_0 = m_1$ (minterm 1) $Y_0 = I_1'.I_0' = m_0$ (minterm 0) Truth table for the 2-to-4 encoder

	l ₁	I ₀	Y ₃	Y ₂	Y ₁	Y_0	
•	0	0	0 0 0 1	0	0	1	
	0	1	0	0	1	0	•
	1	0	0	1	0	0	•
	1	1	1	0	0	0	

Only 1 output is equal to 1 in a line

The outputs of the decoder are the minterms of the inputs

Decoder

The 3-to-8 decoder

Each output has the Boolean expression of a minterm.

Truth table for the 3-to-8 encoder

a b c	У	o <i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇
0 0 0		0	0	0	0	0	0	0
0 0 1	C	1	0	0	0	0	0	0
0 1 0	C	0	1	0	0	0	0	0
0 1 1	(0 (0	1	0	0	0	0
100	(0 (0	0	1	0	0	0
1 0 1	C	0 (0	0	0	1	0	0
1 1 0	C	0 (0	0	0	0	1	0
1 1 1	C	0 (0	0	0	0	0	1

Only 1 output is equal to 1 in a line

Decoder

The 3-to-8 decoder

Each output has the Boolean expression of a minterm.

Truth table for the 3-to-8 encoder

a b c	<i>y</i> ₀	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	<i>y</i> ₅	<i>y</i> ₆	<i>y</i> ₇
0 0 0	1.	0	0	0	0	0	0	0
0 0 1	0	**	**.		0			0
0 1 0	0	0	.1	0	0	0	0	0
0 1 1	0	0	0	**.	0			0
1 0 0	0	0	0	0	·.1·	**		0
1 0 1	0	0	0	0	0	.1		0
1 1 0	0	0	0	0			.1.	0
1 1 1	0	0	0	0	0	0	0	1.

Only 1 output is equal to 1 in a line

Decoder with Enable Signal

- When the enable signal is active, the decoder will operate as usual
- When the enable signal is inactive, all the outputs are 0

Active high enable:

If E=1, operate as usual If E=0, all outputs are zero

Active low enable:

If E=0, operate as usual If E=1, all outputs are zero

Build a 4-to-16 decoder using 2-to-4 decoders

Only one of the 4 decoders on the right side is enabled.

The ones that are not enabled will give zero in all outputs.

Build a 4-to-16 decoder using 2-to-4 decoders

Implementing a Function Using a Decoder

- We have the function: F(A,B,C) = A'B'C' + A'BC + ABC' + ABC
- This function is $F(A,B,C) = \Sigma m(0, 3, 6, 7)$
- This function has 8 minterms; we need a 3-to-8 decoder

Truth table of F

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	
1	1	1	

Implementing a Function Using a Decoder

- Decoder 7442 4-10 decoder. Inverted outputs. Decimal digits in BCD
- We have the function: f1(a,b,c,d) = m1+m2+m4, f2(a,b,c,d)=m4+m7+m9
- This function is f1=(m1'.m2'.m4')', and f2=(m4'.m7'.m9')'
- This function has 8 minterms; we need a 4-to-16(or less) decoder

Build a 4-to-16 decoder using 3-to-8 decoders

Truth table

$l_3 l_2 l_1 l_0$	$Y_{15}Y_{14}Y_{13}Y_{12}Y_{11}Y_{10}Y_{9}Y_{8}Y_{7}Y_{6}Y_{5}Y_{4}Y_{3}Y_{2}Y_{1}Y_{0}$
0000	0000000000000001
0001	0000000000000010
<mark>0</mark> 010	0000000000000100
<mark>0</mark> 011	0000000000001000
<mark>0</mark> 100	000000000010000
<mark>0</mark> 101	000000000100000
<mark>0</mark> 110	000000000100000
0111	000000001000000
1 000	000000100000000
1 001	0000001000000000
1 010	0000010000000000
1 011	0000100000000000
1 100	0001000000000000
1 101	0010000000000000
1 110	0100000000000000
1 111	1000000000000000

Encoder

- An encoder is the inverse function of the decoder
- It has n outputs and 2ⁿ inputs
- Only 1 input should be 1, the others should be 0
- The output indicates which input is 1
 - If $y_0=1$, then $x_2x_1x_0=000$; if $y_1=1$, then $x_2x_1x_0=001$; etc.

Truth table

$y_0 y_1 y_2$	$y_3 y_4 y_5 y_6 y_7$	$X_2 X_1 X_0$
1 0 0	0 0 0 0 0	0 0 0
0 1 0	0 0 0 0 0	0 0 1
0 0 1	0 0 0 0 0	0 1 0
0 0 0	1 0 0 0 0	0 1 1
0 0 0	0 1 0 0 0	1 0 0
0 0 0	0 0 1 0 0	1 0 1
0 0 0	0 0 0 1 0	1 1 0
0 0 0	0 0 0 0 1	1 1 1

Priority Encoder

- It is similar to an encoder
- If more than one input is 1; the output is based on the priority
- We can give priority (1) to the larger number, or (2) to the smaller number
- It has a signal (v) that indicates if all the inputs are zero

This encoder gives priority to the signal with the highest number

Truth table

$y_0 y_1 y_2 y_3 y_4 y_5 y_6 y_7$	$X_2 X_1 X_0 V$
00000000	0 0 0 0
100000000	0 0 0 1
X 1 0 0 0 0 0 0	0 0 1 1
X X 1 0 0 0 0 0	0 1 0 1
X X X 1 0 0 0 0	0 1 1 1
X X X X 1 0 0 0	1 0 0 1
X X X X X 1 0 0	1 0 1 1
X X X X X X 1 0	1 1 0 1
X	1 1 1 1

Read-Only Memory (ROM)

- ROM is a type of memory; data is stored in it
- It can be read only; the data in it cannot be changed
- Below is the diagram of a ROM
- There are 8 words in it (a word is a data element; here, each word is 4 bits)
- The address is 3 bits; valid addresses are from 0 (000) to 7 (111)
- Write the address at 'ABC'; the word at address ABC goes on the output at " $F_0F_1F_2F_3$ "

Note: In contrast, the memory in computers is called Random Access Memory (RAM). It can be read and written. Any program or file that is loaded goes into the RAM

Implementing Multiple Functions Using ROM

- We have a ROM that stores 8 words; each word is 4 bits
- The address has 3 bits; so the function could have 3 variables
- The word has 4 bits; so we can implement 4 functions

The variables of the functions go in the address bits

The output of the functions are on the output lines of the ROM

Truth table for ROM

AB C	F_0	F_1	F_2	F_3
0 0 0	1	0	1	0
0 0 1	1	0	1	0
0 1 0	0	1	1	1
0 1 1	0	1	0	1
100	1	1	0	0
1 0 1	0	0	0	1
1 1 0	1	1	1	1
1 1 1	0	1	0	1)

How to implement 4 functions in the ROM?

Write the truth table of the 4 functions.

Take the output of the functions and store it in the ROM.

A ROM of Large Size

- The diagram below shows a ROM of arbitrary size
- The address is *n* bits; so it contains 2ⁿ words
- Each word has m bits (so, there are m output lines)
- How many functions can we implement with this ROM?
 - Answer: m, because there are m output lines
- How many variables can each function have?
 - Answer: n, because the address has n bits

Structure of a ROM

- There is a decoder; it takes the address
- One of the decoder's outputs is 1, the others are 0
- There is a Memory Array; the data is stored in it
- The value of 1 from the decoder selects one word; this word goes to the output

Structure of a ROM (more details)

- Every function is connected to ground; passing by a resistor
- The vertical line of a function is also connected to the minterms of the function
- We have: $F_0 = \Sigma m$ (0, 1, 4, 6); the vertical line of F_0 is connected to minterms 0, 1, 4, 6
- If the input of the decoder is one of the minterms, F₀ will take a value of 1
- Otherwise, F₀ will take a value of 0 from the ground

Structure of a ROM (another way)

 The X sign means the minterm is connected to the output line

 m_0

The ROM in the figure,

$$A_4 = \Sigma m (0,1,2,3,4,5,6,7,8,9)$$

$$A_3 = \Sigma m (8, 9)$$

$$A_2 = \Sigma m (4,5,6,7,13,14,15)$$

$$A_1 = \Sigma m (2,3,6,7,11,12,15)$$

$$A_0 = \Sigma m (1,3,5,7,9,10,12,14)$$

ROM Outputs

Implementing a Function with a ROM

Input W X Y Z				Output A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀								
0	0	0	0		0	1	1	0	0	0	0	
0	0	0	1		0	1	1	0	0	0	1	
0	0	1	0		0	1	1	0	0	1	0	
0	0	1	1		0	1	1	0	0	1	1	
0	1	0	0		0	1	1	0	1	0	0	
0	1	0	1		0	1	1	0	1	0	1	
0	1	1	0		0	1	1	0	1	1	0	
						-	-					
0	1	1	1		0	1	1	0	1	1	1	
1	0	0	0		0	1	1	1	0	0	0	
1	0	0	1		0	1	1	1	0	0	1	
1	0	1	0		1	0	0	0	0	0	1	
1	0	1	1		1	0	0	0	0	1	0	
1	1	0	0		1	0	0	0	0	1	1	
1	1	0	1		1	0	0	0	1	0	0	
1	1	1	0		1	0	0	0	1	0	1	
1	1	1	1		1	0	0	0	1	1	0	

- The ROM has 16 word; each word is 5 bits
- We can use this ROM to implement 5 functions
- Can we implement 7 functions?
- Look at the truth table.
- Observe that A_5 is equivalent to A_4 and A_6 is the inverse of A_4
- So we can duplicate A₄ to obtain A₅ and we can invert A₄ to obtain A₆

Types of ROM

- Mask-programmable ROM
 - When the ROM is manufactured, the data in it is stored
 - The data cannot be changed
- Programmable ROM (PROM), also called Field Programmable ROM (FPROM)
 - When the ROM is manufactured, it is empty
 - It can be programmed only once
- Electrically Erasable Programmable ROM (EEPROM)
 - This ROM can be programmed, erased and reprogrammed
 - It can be erased and rewritten for a limited number of times (between 100 and 1000 times)
- Flash memory
 - There is no limit to how often we can erase it and write to it

Programmable Logic Devices (PLD)

- A PLD is an integrated circuit; a simple PLD can implement from 2 to 10 functions, each having from 4 to 16 variables
- Instead of using a large number of gates, a PLD can be used
- If the functions we are implementing change, we don't need to rewire all the system; we reprogram the PLD
- Types of PLD
 - Programmable Logic Arrays (PLA)
 - Programmable Array Logic (PAL)

Programmable Logic Array (PLA)

- A PLA with n input and m outputs can implement m functions with n variables each
 - (like a ROM)
- A PLA has an AND array and an OR array, shown in the figure
- We have a function that is written in SOP form
- Each product is realized
 In the AND array
- The products go in the OR array and are ORed together

PLA Structure

• We have the functions:

$$F_0 = A'B' + AC'$$
 $F_1 = AC' + B$
 $F_2 = A'B' + BC'$
 $F_3 = B + AC$

PLA Structure (another way)

- The figure shows another way to represent the structure of a PLA
- The functions are:

$$F_1$$
 = a'bd + abd + ab'c' + b'c
 F_2 = a'bd + c
 F_3 = abd + ab'c' + bc

Programmable Array Logic (PAL)

- It is a special case of PLA
- Similar to PLA, the PAL has an AND array and an OR array
- The AND array is programmable; the OR array is fixed

- The AND gate can take as input any variable or its complement; therefore, any product can be realized
- But, the OR gate takes 4 AND gates; therefore, there can be at most 4 products in the SOP expression

Sum C_out

The PAL in the figure implements a 1-bit full adder

Input Buffer

In the previous figure, this symbol was used

- It is an input buffer
- It keeps the voltage high enough; this is needed because in the PAL, many gates take the same input signal
- If the signal is logic 1 (usually around 5 Volts) and the voltage drops too much, it might be mistaken as logic 0
- The input buffer also provides the complement

Three-State Buffers

- if one gate has 0 output(low voltage) and another has 1 output (high voltage)
 - When gates connected together- output voltage is intermediate value between (0-1)
 - Three-State(tri-state) buffer is the solution
 - Also used in IC :Bidirectional Input-output pins

Three State buffer

В	Α	С	В	Α	C	В	Α	C	В	Α	C
0	0	Z Z 0 1	0	0	Z	0	0	0	0	0	1
0	1	Z	0	1	Z	0	1	1	0	1	0
1	0	0	1	0	1	1	0	Z	1	0	Z
1	1	1	1	1	0	1	1	Z	1	1	Z

Four kinds of Three- State buffer High-Z(High-impedance)

Function Generator

- A function generator gives the output of one function
- A function generator with inputs a,b,c,d has this symbol

Function Generator Implementation

- This is one possible implementation
- Using the truth table of the function F
- The output from the truth table is filled in the programmable part of the AND gate

Shannon's Expansion Theorem

- This theorem splits the function into two part based on one of its variables
- We have the function f(a,b,c,d), we split it here into two parts based on its variable a
 - The two parts we get are: f₀ and f₁

$$f(a, b, c, d) = a'f(0, b, c, d) + af(1, b, c, d)$$

$$= a'f_0 + af_1$$

$$f(a, b, c, d) = c'd' + a'b'c + bcd + ac'$$

$$= a'(c'd' + b'c + bcd) + a(c'd' + bcd + c')$$

$$= a'(c'd' + b'c + cd) + a(c' + bd)$$

$$= a'f_0 + af_1$$

$$f_0 = c'd' + b'c + cd$$

$$f_1 = c' + bd$$

Shannon's Expansion by K-map

Draw the function on a K-map

$$F = c'd' + ac' + a'b'c + bcd$$

Left side =
$$a'c'd' + a'cd + a'b'c$$

= $a' (c'd' + cd + b'c)$
 $f_0 = c'd' + cd + b'c$

Right side =
$$ac' + abd$$

= $a(c' + bd)$
 $f_1 = c' + bd$

Using Shannon's Expansion Theorem

- We have a function with five variables, f(a,b,c,d,e)
- We have function generators that take 4 inputs each
- We can implement f on multiple function generators by doing a Shannon's expansion

$$f(a, b, c, d, e) = a' f(0, b, c, d, e) + a f(1, b, c, d, e)$$

= $a' f_0 + a f_1$

- We got f₀ and f₁
- Multiplex f₀ and f₁

Using Shannon's Expansion

- We have a function with six variables, G(a,b,c,d,e,f)
- We have function generators with 4 inputs each
- First, do a Shannon's expansion on G over a, we get G₀ and G₁
- Then, do a Shannon's expansion on G_0 over b, we get G_{00} and G_{01}
- Then, do a Shannon's expansion on G_1 over b, we get G_{10} and G_{11}

$$G(a, b, c, d, e, f) = a'G_0 + aG_1$$

 $G_0 = b'G_{00} + bG_{01}$
 $G_1 = b'G_{10} + bG_{11}$

- G₀₀ means a=0, b=0
- G_{01} means a=0, b=1
- G_{10} means a=1, b=0
- G_{11} means a=1, b=1
- Do a function generator for each of G₀₀, G₀₁, G₁₀, G₁₁
- Connect them using multiplexers

Function Generator using Truth Table

- Instead of using Shannon's expansion to fill the function generators, we can look at the truth table
- We have the function F(A,B,C,D)
- We have function generators with 3 inputs each
- We split F over A

<u> A B C D</u>

After filling the function generators, they should be connected with multiplexers, like in previous slides.

This will go in the first function generator (F_0)

This will go in the second function generator (F₁)

Using Function Generator using Truth Table

- We have the function F(A,B,C,D)
- We have function generators with 2 inputs each
- We split F over A and B

After filling the function generators, they should be connected with multiplexers, like in previous slides.

This will go in the first function generator (F_{00})

This will go in the second function generator (F_{01})

This will go in the third function generator (F_{10})

This will go in the fourth function generator (F_{11})

- Implement the function F in the function generator
- F = a xor b xor c

- Implement the function F in the function generator
- F = a xor b xor c

F=1 if the number of 1's is odd F=0 if the number of 1's is even

Truth Table

<u>A B C</u>	<u>_</u> F
000	0
001	1
010	1
011	0
100	1
101	0
110	0
111	1

Copy F from the truth table in the corresponding place in the function generator

- We have the function: F(a,b,c,d) = abc + a'bd + bc'd
- Do a Shannon's expansion on a to find F₀ and F₁
 - Do it by algebra
 - Also, do it by K-map
 - Also, do it by truth table

```
F(a,b,c,d) = abc + a'bd + bc'd

= a'. F_0 + a.F_1

= a'. F(0,b,c,d) + a.F(1,b,c,d) So we find:

= a' (bd + bc'd) + a (bc + bc'd)

= a' [bd(1+c')] + a [b (c+c'd)] F_0 = bd

= a' (bd) + a [b (c+c')(c+d)] F_1 = bc + bd

= a' (bd) + a (bc + bd)
```

- We have the function: F(a,b,c,d) = abc + a'bd + bc'd
- Do a Shannon's expansion on a to find F₀ and F₁
 - Do it by algebra
 - Also, do it by K-map
 - Also, do it by truth table

Top part: a'bd = a'(bd)So, $F_0 = bd$

Bottom part: abd + abc = a(bc + bd)So, $F_1 = bc + bd$

- We have the function: F(a,b,c,d) = abc + a'bd + bc'd
- Do a Shannon's expansion on a to find F₀ and F₁
 - Do it by algebra
 - Also, do it by K-map
 - Also, do it by truth table

1

1

1101

The top part is F_0 $F_0 = bd$

The bottom part is F₁ $F_1 = bc + bd$

We have the function: F(a,b,c,d) = abc + a'bd + bc'd

- Same function as previous slide
- We need to implement F with Function Generators (FG)
- We don't have an FG with 4 inputs, we only have FGs with 3 inputs

- We have the function G(a,b,c,d) = a'b'c' + abd' + bc'd + acd
- We need to implement G but we have only 2-input function generators
- We need to do Shannon's expansion over a and then over b

$$G(a,b,c,d) = a'.G(0,b,c,d) + a.G(1,b,c,d)$$

= $a'(b'c' + bc'd) + a(bd' + bc'd + cd)$
= $a'(b'c' + c'd) + a(b + cd)$

$$G_0 = b'c' + c'd$$

 $G_1 = b + cd$

$$G_0(b,c,d) = b'.G_0(0,c,d) + b.G_0(1,c,d)$$

= $b'(c' + c'd) + b(c'd)$
= $b'(c') + b(c'd)$

$$G_{00} = c'$$

 $G_{01} = c'd$

$$G_1(b,c,d) = b'.G_1(0,c,d) + b.G_1(1,c,d)$$

= b'(cd) + b(1)

$$G_{10} = cd$$

 $G_{11} = 1$

- We need to implement a multigate that will do AND, OR, NAND and NOR
- The inputs are A and B (1 bit each)
- The operation selectors are X and Y
- Implement the multigate using 4 gates and a multiplexer

If XY=00, F=A.B

If XY=01, F=A+B

If XY=10, F=A nand B

If XY=11, F=A nor B

- Design a circuit that will either subtract X-Y or Y-X depending on the value of A (each of X and Y is 4 bits)
- If A=1, the output should be X-Y; if A=0, the output should be Y-X
- Use one 4-bit subtracter and two 2-to-1 MUXes with bus input

- We have the function F(A, B, C)
- If we had an 8-to-1 multiplexer, we can put the truth table result of F (8 lines) in the 8 inputs of the multiplexer
- However, we have a 4-to-1 multiplexer

Truth table ABC F ABC F 00011AB=01; F=0 0100AB=10; F=C 1000AB=11; F=C 1100AB=11; F=C 1100

Example of Implementing Boolean Functions Using a 4:1 MUX

Implement $F(A,B,C) = \sum_{(,,,)} \text{ using one 4:1 MUX, use } \underline{\hspace{1cm}}$ and $\underline{\hspace{1cm}}$ for select lines.

Truth table

Α	В	F	
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Implementation table

	I ₀	I ₁	l ₂	l ₃
C' (0	2	4	6
С	1	3	5	7
	1	0	С	C'

Demultiplexer

- Also abbreviated as DMUX or DEMUX
- It does the inverse function of a multiplexer
- There is 1 input, n selectors and 2ⁿ outputs
- The input will go to the output designated by the selectors
- The other outputs are zero

Truth table

$s_1 s_0 I$	O_3	O_2	O_1	O_0
0 0 0	0	0	0	0
0 0 1	0	0	0	1
0 1 0	0	0	0	0
0 1 1	0	0	1	0
1 0 0	0	0	0	0
1 0 1	0	1	0	0
1 1 0	0	0	0	0
1 1 1	1	0	0	0

- The data stored in this ROM implements the four functions
- If A=0, B=1, C=1, what will be the value of F_1 , F_2 , F_3 , F_4 ?
- Give the minterm expressions of F₁ and F₂

- We have the ROM in the figure below
- It has 3 bits for the address
- It's able to store 8 words
- Each word is 4 bits
- What is the total number of bits that can be stored in this ROM?

Total number of bits:

8 word * 4 bits/word = 32 bits

- What size ROM is required to implement 4 functions of 5 variables?
- What is the total number of bits in this ROM?

There are 5 variables, we need 2⁵ words = 32 words

Each word should be 4 bits

The total number of bits is: 32 words * 4 bits/word = 128 bits

- What size ROM is required to implement 8 functions of 10 variables?
- What is the total number of bits in this ROM?

There are 10 variables, we need 2^{10} words = 1024 words

Each word should be 8 bits

The total number of bits is: 1024 * 8 bits = 1 KiloByte

8 bits = 1 byte
$$2^{10} = 1$$
 kilo

Implement the following functions in a ROM

•
$$F_2 = A'B'C' + ABC$$

•
$$F_3 = C$$

• F₄ = BC'

Truth Table

Take all the values from the truth table and copy them into the ROM

Implement the following functions in a ROM using the ROM structure diagram

•
$$F_1 = A' + BC$$

•
$$F_2 = A'B'C' + ABC$$

•
$$F_3 = C$$

F₄ = BC'

Place an X on the line intersection to select a minterm

Truth Table

<u>A B C</u>	<u>F</u> ₁	<u>F</u> ₂	<u>F</u> ₃	<u>F</u> ₄
000		1		
001	1	0	1	0
010	1	0	0	1
011	1	0	1	0
100	0	0	0	0
101	0	0	1	0
110	0	0	0	1
111	1	1	1	0

- Implement the following functions by drawing the lines in the Programmable Logic Array (PLA)
- $F_0 = A'B + BC$
- $F_1 = B + AB$
- $F_2 = AB + B'C'$
- $F_3 = B'C' + A'B$

- Implement the following functions by drawing the lines in the PLA
- $F_0 = A'B + BC$
- $F_1 = B$
- $F_2 = AB + B'C'$
- $F_3 = B'C' + A'B$

The AND gates make the products that we need

We can reuse the products

Or the products together

- Implement the following functions in the PLA by selecting the needed intersections
- $F_1 = A'B + BC$
- $F_2 = AB + B'C'$
- $F_3 = B'C' + A'B$

- Implement the following functions by selecting the needed intersections
- $F_1 = a'b + bc$
- $F_2 = ab + b'c'$
- $F_3 = b'c' + a'd$

The horizontal line makes a product

One or more product are selected by the vertical line of the function

 Implement these functions on the Programmable Array Logic (PAL)

•
$$F_1 = ab' + a'b + bc' + b'c$$

• $F_2 = ab + bc + a'b'$

- Implement these functions on the PAL
- $F_1 = ab' + a'b + bc' + b'c$
- $F_2 = ab + bc + a'b'$

The horizontal line makes a product

One or more product are selected by the vertical line of the function

Boolean function Implementation

Using 2ⁿ-to-1 multiplexer

The n variables are connected to the n selection lines. Each input of the multiplexer is set to 0 or 1, depending on which minterm of the function is present.

Example: Implement $F(x,y,z) = \Sigma(1,2,6,7)$ using 8-to-1 multiplexer.

Solution: Connect the variables x, y, z to the selection inputs S_2 , S_1 , and S_0 . Then set $I_0 = I_3 = I_4 = I_5 = 0$ and $I_1 = I_2 = I_6 = I_7 = 1$.

Boolean function Implementation

Using 2⁽ⁿ⁻¹⁾ -to-1 multiplexer

- Assume Boolean function has n variables;
- Choose n-1 variables to be the selection lines for the n:1MUX;
- The remaining single variable (let us say, the least Significant bit, z) is used for data input.
- Data input lines (MUX inputs) can take on one of the following values

- Construct "the implementation table to find out which value should be assigned to each input of the MUX.
- Another way of determining the values.
 - From truth table we have to find the relation of F and z to be able to design input lines. For example : $f(x,y,z) = \sum (1,2,6,7)$

Example of Implementing Boolean Functions Using a 4:1 MUX

Implement $F(x,y,z) = \sum (1,2,6,7)$ using one 4:1 MUX, use x and y for select lines.

Implementation table

	I ₀	l ₁	l ₂	l ₃
z'	0	2	4	6
z	1	3	5 (7
	Z	z'	0	1

Truth table

	F	z	y	х
-	0	0	0	0
F = z	1	1	0	0
E -/	1	0	1	0
F = z'	0	1	1	0
E = 0	0	0	0	1
F = 0	0	1	0	1
E _ 1	1	0	1	1
F = 1	1	1	1	1

Example of Implementing Boolean Functions Using MUX

Implement $F(A,B,C,D) = \sum (1,3,4,11,12,13,14,15)$ using one 8:1 MUX Choose A, B, and C for select lines.

Implementation table

	I_0	I ₁	I_2	I_3	I_4	I_5	I_6	I ₇
D'	0	2	4	6	8	10	12	(14)
D	1	3	5	7	9 (11)	13	15
	D	D	D'	0	0	D	1	1

\boldsymbol{A}	B	\boldsymbol{C}	D	F	
O	О	O	O	O	E D
O	O	O	1	1	F = D
O	O	1	O	О	F = D
O	O	1	1	1	F - D
O	1	O	O	1	E = D'
O	1	O	1	О	F = D'
O	1	1	0	О	<i>E</i> 0
O	1	1	1	О	F = 0
1	O	O	O	O	F = 0
1	O	O	1	O	F = 0
1	O	1	O	О	E - D
1	O	1	1	1	F = D
1	1	O	O	1	E = 1
1	1	O	1	1	F = 1
1	1	1	O	1	E = 1
1	1	1	1	1	F = 1

Problem 1:

 Realize a full adder using a 3-to-8 line decoder WITH INVERTED OUTPUT.

Problem 2:

 Use 2-to-1 multiplexers with active high output and active high enable to implement a 4-to-1 multiplexer with active high output and no enable line.

Problem 3:

 Use an 8-to-1 MUX and minimum number of external gates to realize the function

$$F(w, x, y, z) = \sum (3, 4, 5, 7, 10, 14)$$