

The Incorporation and Uses of Eye Tracking in a Large-Scale Pipeline for the Allen

Brain Observatory

147.09 / GG14

ericl@allleninstitute.org

Summary and Motivations

experiments Eye tracking camera precise context to investigating the visual cortex, it is necessary to delineate the particular sub-image of the stimulus incident on the retina - this is accomplished by the incorporation of eye position information. Here we present the eye tracking package iTracker which we combine with our hardware to create an integrated platform to collect eye tracking data across multiple modalities in a standardized and scalable manner. We further demonstrate the importance of eye tracking Diagram of standardized eye tracking incorporation as pertains to receptive fields.

iTracker Software and Starburst Algorithm

For our pipeline, we adapted the *Starburst Algorithm* originally described by Li D., Winfield D., Parkhurst D.J. (2005) and a previously published eye tracking system for the rat by Zoccolan, Graham, and Cox (2010).

pointed at an IR-pass dichroic viewing. mirror that is coplanar with the mouse's eye. Each frame is extracted from the video and a bounding box is created around the eye and is used for all other frames.

The frame is then smoothed with a median filter and convolved with a black circle and white circle to find the pupil and corneal reflection (CR) respectively; the max convolution responses are the **seed points** for the *Starburst* Algorithm (red and blue dots for the pupil and CR respectively).

At each seed point, the Starburst Algorithm creates rays. Along each ray (from origin to radially outwards), a running average is calculated – when the pixel value exceeds some product of the running average pixel value μ_{pix} and a user supplied a parameter θ , a candidate point (small green cross) is marked (see equation below).

Candidate points are passed to a random sample consensus (RANSAC) which fits knowing geometry of our experimental rigs, we can determine pupil position and radius.

2-Photon Hardware Set-up

SULLIVAN, D. WILLIAMS, D. MILLMAN, G. K. OCKER, P. LEDOCHOWITSCH, A. STEGER, R. VALENZA, K. MACE, S. WHITESIDE, E. LIANG, L. NG, C. FARRELL, M. A. BUICE, J. LECOQ

set-up on the 2-photon platform

The eye tracking set-up has identical geometry across all five in vivo imaging rigs (and other modalities such as widefield and in vivo electrophysiology) of the Allen Brain Observatory pipeline enabling the collection of comparable data. It consists of an eye from an IR-LED and directed at an IR-pass Figure 1: A visual flowchart of the iTracker processing pipeline dichroic mirror. This mirror is positioned Images of the eye are obtained by perpendicularly to the eye to allow for eye the use of an IR-camera and IR-LED tracking while not impeding stimulus

Mapping pupil position to the center of gaze on the stimulus screen

The eye position of the mouse is inferred by taking the center of the pupil ellipse and finding its projection 5000 (using the spherical mirror equation) from the 34000 spherical eye onto the flat screen assuming an eye \$3 diameter of 0.17 cm. From this calculation, a grid can ' be created which can be used to calculate the position tracking IR-camera positioned 15° away of gaze from the pupil position. The LED corneal reflection is used as a fiducial mark to align the center and orientation of the grid given the known angular offset between the LED and camera. From this, the Eye position kernel density estimate (n = 224 mice) center of the pupil can be used to estimate the position of gaze.

Sample plots of single-experiment eye tracking data plots with the AllenSDK

Using the specimen discussed in the previous section (ID: 573261515), we targeted the higher visual area (HVA) LM (lateral-medial) at its eccentricity center (A and B) using GCaMP6f Ca²+ imaging (maximum-intensity projection shown in C). Eye position remains well-centered through entire experiment (D). AllenSDK tools give access to both the eye position (on the eye) and the pupil area (E and F respectively).

Eye tracking performance before and after LED angular offset

Previous hardware implementations contained an LED to camera offset of 5.5° (A) which resulted in failures in eye tracking due to the *bright pupil effect* (**B**) – the pupil color shifts from black to gray as incident light rays reflect into the camera at certain angles. This throws off the eye tracking algorithm which then detects spurious "pupil" candidates such as shadows or the eyelid. At the 5.5° offset, only 76/234 (32%) experiments have greater than 95% of frames correctly annotated (C).

Increasing the angular offset of the LED to the camera from 5.5° to 15° (**D**) almost completely eliminates the bright pupil effect and consistently elicits the dark pupil effect (E) and the pupil is consistently identified (F) - at the 15° angular offset, 32/40 (80%) of experiments have greater than 95% of frames correctly annotated (H).

Averaged eye tracking data

Averaged eye position and RF plots for all mice

A) A KDE plot of the gaze position across all mice shows that the screen position well-captures the range of eye gaze positions.

B) Averaged On and Off RF KDE plots across all mice mapped using both a 4 and 8 degree sparse noise stimulus.

Receptive field changes before and after including eye tracking

Receptive field changes when including eye tracking data

A) KDE plots of both the On and before and after including eye tracking. This correction reduces the overall RF coverage of all cells. This is most noticeably present for Off RF's. B) Scatter plots of both On and Off RF's individually before and after including eye tracking with

brain-map.org

regards to the height and width of a Gaussian fit. Not only does the overall RF coverage shrink (see A), the coverage of each cell's RF also shrinks in area.

Conclusions/Discussions and Acknowledgments

With iTracker and our standardized cross-modality eye tracking setup, we are able to obtain the gaze position for experiments in the pipeline for the Allen Brain Observatory. We have shown further how our algorithm works, that a significant angular offset is necessary for good eye tracking contrast conditions, examples of the data we can output, and the uses of such data in determining precise receptive fields which becomes important for stimuli such as static gratings with moderate to large spatial frequencies and any natural images or movies. With eye tracking, we can determine the distribution of cell linearity responses to a static grating (see poster 312.18 by De Vries et al). The algorithm also allows for assessments of pupil diameter which is useful in the pupillometric assessment of animal engagement. Because of this tools potential utility in the neuroscientific community, we intend to release it in the near future. We wish to acknowledge all the work and countless hours put into this project by our teams and people whose names are too numerous to fit on a single poster. Most importantly, we also wish to thank Paul G. Allen and Jody Allen for their generosity, vision, and support.

We wish to thank the Allen Institute for Brain Science founders, Paul G. Allen and Jody Allen, for their vision, encouragement, and support.