实验 3. ALU

算术逻辑单元(ALU)是 CPU 的核心部件,实现算术及逻辑运算。

● 实验目的

熟悉用算术、逻辑的 Verilog 编程,练习多模块自顶向下编程方法。

● 实验内容

1) 设计一个 4 位算术逻辑单元,输入信号为:

两组 4 位数据输入信号(A_3 — A_0 , B_3 — B_0),一个进位输入信号 C_{in} ;数据输出信号为:4 位数据信号(F_3 — F_0),一个进位输出信号 C_{out} 。以上数据均为无符号正整数。

功能控制信号有: S₁、S₀、M。

当 M=0 时为位运算,M=1 时为算术运算, S_1 、 S_0 的功能如表 1 所示。

~	~	M=0 位运算	M=1 算术运算				
S_1	S_0		$C_{in} = 0$	$C_{in} = 1$			
0	0	F = not A	F = A + B + 0	F = A + B + 1			
0	1	F = A and B	F = A - B - 0 $(A > B)$	F = A - B - 1 $(A > B)$			
1	0	F = A or B					
1	1	F = A xor B					

表 1. 算术逻辑单元的功能

2) 在 NEXYS4 开发板上实现上述设计, SW 选择可以自己确定。

例如, SW[15]对应: M,

SW[14:13]对应: S₁和 S₀,

SW[3:0]、SW[7:4]、SW[8]分别对应: A[3:0]、B[3:0]、Cin。

当SW为1时,其上面的LED点亮,否则熄灭。

开发板上的8个七段数码管用于显示十六进制的输入数据和输出数据。

如, S₁=0, S₀=0, M=0, A=1, F=E, 显示为:

•			11	E
A			=	F

如, S₁=0, S₀=1, M=0, A=1, B=0, F=0, 显示为:

1	0		=	0
A	В		=	F

如, S₁=0, S₀=0, M=1, A=1, B=2, C_{in}=0, C_{out}=0, F=3, 显示为:

i	4	2	7	0	•	0	3
A	+	В	+	Cin	II	Cout	\mathbb{F}

● 参考框图、效果图

