

Feature Separation and Recalibration for Adversarial Robustness

CVPR 2023 Highlight

[paper] [code]

Woo Jae Kim, Yoonki Cho, Junsik Jung, Sung-Eui Yoon (KAIST)

2023.09.15

Mijin Koo

- Feature Activation Disruption upon Adversarial Attack
 - Feature-level disruptions lead to model mispredictions

- Feature Activation Disruption upon Adversarial Attack
 - Feature-level disruptions lead to model mispredictions

Limitations of Conventional Defense

- Conventional defense methods *suppressed or deactivated* disrupted activations
- This approach lead to *loss of potentially discriminative cues*

Proposed Approach

- Instead, we propose to *restore useful cues* from these disrupted activations
- This additional useful cues *enrich* model's ability to make *correct predictions*

- Feature Activation Disruption upon Adversarial Attack
 - Adversarial attacks corrupt activations of feature maps
 - Robust feature with activations that help the model make correct predictions
 - **Non-robust feature** with activations that are responsible for model mispredictions upon adversarial attack.

- Deactivating the non-robust feature activations (Previous)
 - Adversarial perturbations on images lead to noise in the features.
 - Previous methods solve this problem by deactivating the non-robust feature activations that cause model mispredictions.
 - Increase adversarial robustness by performing *feature denoising*
 - Our networks contain blocks that denoise the features using *non-local means*

Feature denoising for improving adversarial robustness [2019 CVPR]

- Motivation: non robust feature에도 discriminative cue가 있다!
 - We propose to *restore useful cues from these disrupted activations* that are otherwise neglected.

Contributions

- Novel approach of recalibrating deactivated activations to capture useful cues for correct model predictions
- Easy to plug in Feature and Recalibration(FSR) module
- Small overhead, successful experiments results

- Visualize Explanation from Deep Networks
 - CAM (Class Activation Mapping)
 - the predicted class score is mapped back to the previous convolutional layer to generate the class activation maps
 - CAM highlights the class-specific discriminative regions
 - **Grad-CAM** (Gradient weighted CAM)
 - uses the gradients of any target flowing into the final convolutional layer

Learning Deep Features for Discriminative Localization [2016 CVPR]

Grad CAM: Visual Explanations from Deep Networks via Gradient-based Localization [2017 ICCV]

Feature Separation and Recalibration (FSR)

Separation stage

• Disentangle the feature map into the robust and non-robust features by masking out

Feature Separation

- Separation Net S
- Input: feature map *f*
- Output: robustness map *r*
- Differentiable soft mask $m \in [0, 1]$; approximated by a binary mask $b \in \{0, 1\}$

•
$$m^+ = 1 - m^-$$

- Robust feature $f^+ = m^+ \otimes f$
- Non-robust feature $f^- = m^- \otimes f$

Feature Separation

- Separation Net S learns robustness score
- L_{sep} guides the Separation Net to assign high robustness scores to units that help the auxiliary layer make correct predictions

$$\mathcal{L}_{sep} = -\sum_{i=1}^{N} (y_i \cdot \log(p_i^+) + y_i' \cdot \log(p_i^-)), \qquad (3)$$

$$\mathcal{L}_{sep} = \mathcal{H}(p^+, y) + \mathcal{H}(p^-, y')$$
Cross-entropy loss GT label Pred. logit Wrong label
$$f^+$$
Mask m^+

$$f$$
Mask m^-
Conv-BN-ReLU
$$f^-$$
Aux. layer

- Feature Separation
 - Soft mask M
 - Positive mask emphasizes activations relevant to *correct predictions*
 - Negative mask emphasizes activations relevant to *mispredictions*

- $b \in \{0, 1\}$ with a differentiable soft mask $m \in [0, 1]$
 - By Gumbel softmax Approximate a binary mask
 - *r*: robustness map
 - g_1, g_2 : samples from Gumbel distribution such that $g = -\log(-\log(u))$, $u \sim \text{Uniform}(0, 1)$

$$m = \frac{e^{((\log(\sigma(r)) + g_1)/\tau)}}{e^{((\log(\sigma(r)) + g_1)/\tau)} + e^{((\log(1 - \sigma(r)) + g_2)/\tau)}}, \quad (2)$$

- Feature Separation
 - Gumbel Softmax
 - 이산 확률 분포에서의 샘플링을 연속적으로 다루기 위한 방법 → gradient 계산 가능

$$y_i = \frac{\exp\left(\log(\pi_i) + g_i)/\tau\right)}{\sum_{j=1}^k \exp((\log(\pi_j) + g_j)/\tau)}$$
 $p_i = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$

Gumbel softmax Softmax

- r: robustness map
- σ : sigmoid function
- g: samples from Gumbel distribution such that $g=-\log(-\log(u))$, $u \sim \text{Uniform}(0, 1)$
- τ : temperature that controls the effect of g

$$m = \frac{e^{((\log(\sigma(r)) + g_1)/\tau)}}{e^{((\log(\sigma(r)) + g_1)/\tau)} + e^{((\log(1 - \sigma(r)) + g_2)/\tau)}}, \quad (2)$$

Recalibration Stage

• Adjust the non-robust feature activations to capture the additional useful cues

Feature Recalibration

- Recalibration Net *R*
- Input: non-robust feature map f^-
- Output: recalibrated feature, $\tilde{f}^- = f^- + m^- \otimes R(f^-)$

Feature Recalibration

- Guided network R to restore useful cues relevant to correct prediction
- Input: non-robust feature map f^-
- Output: recalibrated feature, $\tilde{f}^- = f^- + m^- \otimes R(f^-)$

$$\mathcal{L}_{rec} = -\sum_{i=1}^{N} y_i \cdot \log(\tilde{p}_i^-), \tag{4}$$

$$\mathcal{L}_{rec} = \mathcal{H}(\tilde{p}^-, y)$$

Model Training

- Can be attached to any adversarial training(AT) technique with objective L_{cls}
- FSR is highly modularized and easy to plug-in
- Trained in an end-to-end manner

$$\mathcal{L} = \mathcal{L}_{cls} + \frac{1}{|L|} \sum_{l \in L} \left(\lambda_{sep} \cdot \mathcal{L}_{sep}^{l} + \lambda_{rec} \cdot \mathcal{L}_{rec}^{l} \right), \quad (5)$$

- L_{cls} : classification loss for adversarial training
- L_{sep} : feature separation loss
- L_{rec} : feature recalibration loss
- λ_{sep} , λ_{rec} : hyperparameters that control weights

Experimental Setups

- Baselines
 - PGD adversarial training (AT) [1]
 - TRADES [2]
 - MART [3]
- Datasets
 - CIFAR-10/100
 - SVHN
 - Tiny ImageNet
- Models
 - ResNet18
 - VGG16
 - WideResNet-34-10

- [1] Madry et al., Towards deep learning models resistant to adversarial attacks. [ICLR 2018]
- [2] Zhang et al., Theoretically principled trade-off between robustness and accuracy. [ICML 2019]
- [3] Wang et al., Improving adversarial robustness via channel-wise activation suppressing. [ICLR 2021]

Qualitative Results

Application to Adversarial Training

ResNet-18		CIFAR-10						SVHN				
Method	Natural	FGSM	PGD-20	PGD-100	C&W	Ensemble	Natural	FGSM	PGD-20	PGD-100	C&W	Ensemble
AT	85.02	56.21	48.22	46.37	47.38	45.51	91.21	55.55	40.85	37.54	40.61	37.41
AT + FSR	81.46	58.07	52.47	51.02	49.44	48.34	91.28	60.46	43.94	39.01	43.22	38.81
TRADES	86.31	57.21	50.74	49.44	48.66	47.89	90.99	61.31	47.12	43.55	45.48	42.99
TRADES + FSR	84.49	58.29	52.27	51.28	49.92	49.28	91.39	68.85	51.49	47.50	46.70	46.17
MART	82.73	56.65	50.88	49.15	47.21	45.98	90.50	58.21	43.61	40.43	42.20	40.07
MART + FSR	83.28	59.55	54.80	53.69	48.98	48.36	89.87	61.06	46.51	42.94	43.89	42.40

Table 1. Robustness (accuracy (%)) of adversarial training strategies (AT, TRADES, MART) with (+ FSR) and without our FSR module against diverse white-box attacks on ResNet-18. Better results are marked in **bold**.

VGG16		CIFAR-10							SVHN					
Method	Natural	FGSM	PGD-20	PGD-100	C&W	Ensemble	Natural	FGSM	PGD-20	PGD-100	C&W	Ensemble		
AT	80.56	53.47	47.17	45.58	45.82	43.71	89.59	54.88	40.27	36.90	39.46	36.62		
AT + FSR	80.06	54.40	49.82	48.82	47.28	46.24	91.44	65.01	45.99	39.07	43.08	38.15		
TRADES	82.44	53.92	47.39	46.20	44.80	44.20	90.48	61.50	45.99	40.00	42.82	39.27		
TRADES + FSR	80.78	55.48	49.95	49.03	46.28	45.90	91.89	69.25	54.56	47.81	46.66	44.10		
MART	76.11	54.86	51.06	50.16	43.53	43.01	89.95	59.03	42.89	38.73	39.12	37.64		
MART + FSR	79.18	56.41	52.69	52.13	44.49	44.20	90.60	62.28	47.17	42.50	43.44	40.73		

ResNet on CIFAR-10

60.0_T

Table 2. Robustness (accuracy (%)) of adversarial training strategies (AT, TRADES, MART) with (+ FSR) and without our FSR module against diverse white-box attacks on VGG16. Better results are marked in **bold**.

Comparison with only FSR (w/o Adversarial Training)

	Method	Natural	FGSM	PGD-20	PGD-100	C&W	Ensemble	AutoAttack
	AT [1]	85.02	56.21	48.22	46.37	47.38	45.51	44.11
Feature deactivation	FD [2]	85.14	56.81	48.54	46.70	47.72	45.82	44.57
	CAS [3]	85.78	55.57	50.42	49.91	53.47	46.46	44.23
or suppression	CIFS [4]	79.87	56.53	49.80	48.17	49.89	47.26	43.94
	FSR (Ours)	81.46	58.07	52.47	51.02	49.44	48.34	46.41

Table 4. Comparison of robustness (accuracy (%)) between existing methods and our method. All models are trained using AT with ResNet-18 on CIFAR-10. The best results are marked in **bold**, and more comprehensive Ensemble and AutoAttack are highlighted in grey.

Method	FGSM	PGD-20	PGD-100	C&W	Ensemble	AutoAttack
AT	56.21	48.22	46.37	47.38	45.51	44.11
+ FSR	58.07	52.47	51.02	49.44	48.34	46.41
w/o Sep	57.51	50.71	48.98	49.32	47.60	45.47
w/o Rec	57.67	50.06	48.54	49.41	47.32	44.96

Table 6. Comparison of robustness (%) of FSR applied on AT upon removing the Separation or the Recalibration stage. Model and dataset used are ResNet-18 and CIFAR-10, respectively. Best results are marked in **bold**.

^[1] Madry et al., Towards deep learning models resistant to adversarial attacks. [ICLR 2018]

^[2] Xie et al., Feature Denoising for Improving Adversarial Robustness. [CVPR 2019]

^[3] Wang et al., Improving adversarial robustness via channel-wise activation suppressing. [ICLR 2021]

^[4] Zhang et al., CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection [ICML 2021]

Robustness of Recalibrated Feature

	Method	(a) Clas	sification	
		Ensemble	AutoAttack	
Robust	f^+	47.89	45.82	
Non-robust	f^-	33.11	28.39	
Recalibrated	$ ilde{f}^-$	46.93	44.52	
$\tilde{f}^- + f^+$	\tilde{f} (Ours)	48.34	46.41	

(b) Weighted k-NN

20-NN

61.58

53.89

65.64

65.88

5-NN

66.21

54.69

66.34

70.91

Computational Efficiency

Method	VGG	16	ResNet-18			
	# Params (M)	FLOPs (G)	# Params (M)	FLOPs (G)		
Vanilla	15.25	0.6299	11.17	1.1133		
+ FSR	16.52	0.6701	12.43	1.1535		

Table 7. Comparison of computational costs (# params and FLOPs) on a vanilla model and a model with our FSR module.

Position of PSR module

	No attack	FGSM	PGD-20	PGD-100	C&W	Ensemble
Block1	84.58	56.41	48.29	46.28	46.96	44.89
Block2	83.76	56.34	48.86	47.03	47.32	45.28
Block3	82.60	56.62	50.43	49.11	47.84	46.33
Block4	81.46	58.07	52.47	51.02	49.44	48.34
Block3 + Block4	82.18	56.93	50.72	49.32	48.63	46.91

Table A4. Comparison of accuracy (%) as we insert our FSR module after different layers of ResNet-18.

Effects of Gumbel Softmax

	FGSM	PGD-20	PGD-100	C&W	Ensemble	AutoAttack
Binary	55.78	49.21	47.79	48.74	46.91	44.26
Gumbel	58.07	52.47	51.02	49.44	48.34	46.41

Table A6. Comparison of accuracy (%) on using mask generated by discrete binary sampling or through Gumbel softmax.

Discussion

Limitations

- Assumption that the input images contain malicious perturbations designed to fool the model
- So, FSR module occasionally decreases the natural accuracy by a small amout

ResNet-18		CIFAR-10						SVHN				
Method	Natural	FGSM	PGD-20	PGD-100	C&W	Ensemble	Natural	FGSM	PGD-20	PGD-100	C&W	Ensemble
AT	85.02	56.21	48.22	46.37	47.38	45.51	91.21	55.55	40.85	37.54	40.61	37.41
AT + FSR	81.46	58.07	52.47	51.02	49.44	48.34	91.28	60.46	43.94	39.01	43.22	38.81
TRADES	86.31	57.21	50.74	49.44	48.66	47.89	90.99	61.31	47.12	43.55	45.48	42.99
TRADES + FSR	84.49	58.29	52.27	51.28	49.92	49.28	91.39	68.85	51.49	47.50	46.70	46.17
MART	82.73	56.65	50.88	49.15	47.21	45.98	90.50	58.21	43.61	40.43	42.20	40.07
MART + FSR	83.28	59.55	54.80	53.69	48.98	48.36	89.87	61.06	46.51	42.94	43.89	42.40

Table 1. Robustness (accuracy (%)) of adversarial training strategies (AT, TRADES, MART) with (+ FSR) and without our FSR module against diverse white-box attacks on ResNet-18. Better results are marked in **bold**.

VGG16		CIFAR-10						SVHN				
Method	Natural	FGSM	PGD-20	PGD-100	C&W	Ensemble	Natural	FGSM	PGD-20	PGD-100	C&W	Ensemble
AT	80.56	53.47	47.17	45.58	45.82	43.71	89.59	54.88	40.27	36.90	39.46	36.62
AT + FSR	80.06	54.40	49.82	48.82	47.28	46.24	91.44	65.01	45.99	39.07	43.08	38.15
TRADES	82.44	53.92	47.39	46.20	44.80	44.20	90.48	61.50	45.99	40.00	42.82	39.27
TRADES + FSR	80.78	55.48	49.95	49.03	46.28	45.90	91.89	69.25	54.56	47.81	46.66	44.10
MART	76.11	54.86	51.06	50.16	43.53	43.01	89.95	59.03	42.89	38.73	39.12	37.64
MART + FSR	79.18	56.41	52.69	52.13	44.49	44.20	90.60	62.28	47.17	42.50	43.44	40.73

Table 2. Robustness (accuracy (%)) of adversarial training strategies (AT, TRADES, MART) with (+ FSR) and without our FSR module against diverse white-box attacks on VGG16. Better results are marked in **bold**.

Thank you!

Grad CAM

Gumbel Softmax

Gumbel-Max trick

Let $\pi_1, \pi_2, ..., \pi_n$ be probabilities, i.e., $\sum_k \pi_k = 1$

We define $Z = \arg\max_{k} \{\log \pi_k + G_k\}$ where $G_1, ..., G_n$ i.i.d. $\sim Gumbel(0,1)$

Then, $\mathbb{P}(Z=k)=\pi_k$

Proof. Let
$$u_k = log \pi_k + G_k$$

$$\mathbb{P}(Z = k) = \mathbb{P}(u_k \ge u_j, \forall j \ne k)$$

$$= \int_{-\infty}^{\infty} \mathbb{P}(u_k \ge u_j, \forall j \ne k | u_k) \mathbb{P}(u_k) du_k$$

$$= \int_{-\infty}^{\infty} \mathbb{P}(u_k \ge u_j | u_k) \mathbb{P}(u_k) du_k$$

$$= \int_{-\infty}^{\infty} \prod_{j \ne k} e^{-u_k + log \pi_j} e^{-(u_k - log \pi_k + e^{-(u_k - log \pi_k)})} du_k$$

$$= \int_{-\infty}^{\infty} e^{-\sum_{j \ne k} \pi_j e^{-u_k}} \pi_k e^{-(u_k + \pi_k e^{-u_k})} du_k$$

$$= \pi_k \int_{-\infty}^{\infty} e^{-u_k - (\pi_k + \sum_{j \ne k} \pi_j) e^{-u_k}} du_k = \pi_k$$

Gumbel-Max Trick $\frac{1}{\operatorname{argmax}_i\{x_i\}}$ $\log \alpha_1 \log \alpha_2 \log \alpha_3 \qquad G_1 G_2 G_3$ (a) Discrete(α)

Gumbel-Softmax trick

 $\arg\max_{k} \{\log \pi_k + G_k\} \longrightarrow y_i = \frac{e^{(\log \pi_k + G_k)/\tau}}{\sum_{k=1}^n e^{(\log \pi_k + G_k)/\tau}}$

for i = 1, ..., n where $\tau > 0$ is softmax temperature

Gumbel-Softmax Trick

