Quiz 3

- (a) _____ Given a basis $\mathcal{B} = \{v_1, \dots, v_n\}$ for a vector space V and U a subspace of V, then there is $C \subseteq \mathcal{B}$ that is a basis for U.
 - FALSE: $\mathcal{B} = \{e_1, e_2\}$ is a basis for \mathbb{R}^2 and $U = \text{span}\{(1,1)\}$ is a subspace, namely, the line with slope 1 through the origin. You cannot throw away one of e_1 or e_2 to get a basis for U.
- (b) _____ Given a basis $\mathcal C$ for a subspace U of a vector space V, $\mathcal C$ can be extended to a basis $\mathcal B$ for V.
 - TRUE: This is one of the theorems that you have, any linearly independent set can be expanded to a basis.
- (c) _____ If $\{v_1, \ldots, v_n\}$ is linearly independent and $v \in \text{span}(\{v_1, \ldots, v_n\})$, then it is possible that there are distinct $c, b \in \mathbb{R}^n$ such that $v = \sum_{i=1}^n c_i v_i = \sum_{i=1}^n b_i v_i$.
 - FALSE: If such \boldsymbol{c} and \boldsymbol{b} exists, then $\boldsymbol{0} = \boldsymbol{v} \boldsymbol{v} = (\sum b_i \boldsymbol{v}_i) (\sum c_i \boldsymbol{v}_i) = \sum (b_i c_i) \boldsymbol{v}_i$. Since \boldsymbol{v}_i 's are independent, $b_i c_i = 0$ for all i, so $\boldsymbol{c} = \boldsymbol{b}$.
- (d) _____ If $\{v_1, \ldots, v_n\}$ is linearly independent and $V = \text{span}(\{v_1, \ldots, v_n\}) = \text{span}(\{u_1, \ldots, u_n\})$, then $\{u_1, \ldots, u_n\}$ is linearly independent.
 - TRUE: This too is a theorem. Since $V = \text{span}\{v_1, \ldots, v_n\}$ and v_i are independent, you know $\{v_1, \ldots, v_n\}$ is a basis for V and so $\dim(V) = n$. since $\text{span}\{u_1, \ldots, u_n\}$ span V you know this set can be reduced to a basis, but any basis must have n elements, so $\{u_1, \ldots, u_n\}$ must already be a basis, and hence is linearly independent.
- (e) _____ Suppose V is a vector space and $U \subseteq V$ is a subspace. For any $\mathbf{v} \in V$, there is a **unique** $\mathbf{u} \in U$ so that $\mathbf{v} = \mathbf{u} + (\mathbf{v} \mathbf{u})$, that is, there is a unique "projection" of V into U.
 - FALSE: Again take $U = \text{span}\{(1,1)\} \subset \mathbb{R}^2 = V$ and let $\mathbf{v} = (2,3)$, then $\mathbf{v} = (1,1) + (1,2) = (2,2) + (0,1)$.
 - Note: If we fixed W so that $V = U \oplus W$, then there would be for every $\mathbf{v} \in V$ a unique $\mathbf{u} \in U, \mathbf{w} \in W$ so that $\mathbf{v} = \mathbf{u} + \mathbf{w}$. For example, take U as above and $W = \text{span}\{(0,1)\}$, then (2,3) = (2,2) + (0,1) is the unique decomposition of (2,3) into something from U and something from W.

Problem 2 (10 pts). Show that the collection, U, of upper triangular 3×3 matrices is a subspace of $\mathbb{R}^{3\times3}$ (the space of all 3×3 matrices). Give a basis \mathcal{B} for U and for $\boldsymbol{v}=\begin{bmatrix}1&2&3\\0&4&6\\0&0&6\end{bmatrix}$, give $[\boldsymbol{v}]_{\mathcal{B}}$.

To show that U is a subspace we need only show that $\alpha \boldsymbol{v} + \boldsymbol{u} \in U$ for $\boldsymbol{v}, \boldsymbol{u} \in U$. So let $\boldsymbol{u} = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$ and let $\boldsymbol{v} = \begin{bmatrix} v_{11} & v_{12} & v_{13} \\ 0 & v_{22} & v_{23} \\ 0 & 0 & v_{33} \end{bmatrix}$, then $\alpha \boldsymbol{u} + \boldsymbol{v} = \begin{bmatrix} \alpha u_{11} + v_{11} & \alpha u_{12} + v_{12} & \alpha u_{13} + v_{13} \\ 0 & \alpha u_{22} + v_{22} & \alpha u_{23} + v_{23} \\ 0 & \alpha u_{33} + v_{33} \end{bmatrix} \in U$.

A basis is clearly given by $E_{lk}^{ij} = 1$ if i = j and l = k and $j \le i$ and 0 otherwise. So $E^{11} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $E^{12} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, etc. This basis has six elements, so $\dim(U) = 6$.

With this basis, clearly $v = E^{11} + 2E^{12} + 3E^{13} + 4E^{22} + 5E^{23} + 6E^{33}$.

Problem 3 (10 pts). Let c_1, c_2, \ldots, c_n be n distinct real numbers. Let $p_i = \prod_{\substack{j=1 \ j \neq i}}^n (x - c_j)/(c_i - c_j)$. Show that $\mathcal{B} = \{p_1, p_2, \ldots, p_n\}$ is a basis for P_{n-1} .

Hint: Compute $p_i(c_j)$ and look at what happens when i = j and when $i \neq j$. Use this to argue the independence of \mathcal{B} .

There are two ways to proceed. We know $\dim(P_{n-1}) = n$ so it would suffice to show either that $\mathcal{B} = \{p_1, \ldots, p_n\}$ spans or is linearly independent, since either implies other for any set of n vectors in P_{n-1} .

Proof 1: (linear independence) It is trivial to see that

$$p_i(c_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

This shows independence since if $p = \sum_{i=1}^{n} \alpha_i p_i$, then $p_i(c_j) = \alpha_j$ so if p = 0, then $\alpha_j = 0$ for all j.

Proof 2: (spanning) Let $q \in P_{n-1}$ and let $\alpha_i = q(c_i)$, then Exactly as above, if $p = \sum_{i=1}^n \alpha_i p_i$ we see that $p(c_i) = \alpha_i = q(c_i)$.

We just need to see that p = q and we have the desired spanning. Note that r = p - q has roots at each c_i , but this is n distinct roots for an n - 1-degree polynomial, thus r = 0 and hence p = q as required.