XXX

AN Other

June 16, 2015

ii Draft

Contents

Version 0.1

1 Introduction

A file system has named files so we introduce file name and file content types.

[Name, File]

Path == seq Name

 $-FS \underline{\hspace{1cm}}$ $fs: Path \rightarrow File$

 $_$ CreateFile $_$

 ΔFS p?:Path f?:File

 $p? \notin \text{dom } fs$ $fs' = fs \cup \{p? \mapsto f?\}$

 $_DeleteFile_$

 ΔFS p?: Path

 $\begin{array}{l} p? \in \mathrm{dom}\, fs \\ fs' = \{p?\} \lessdot fs \end{array}$

2 Draft

2 Z Notation

Numbers:

 \mathbb{N} Natural numbers $\{\texttt{0,1,...}\}$

Propositional logic and the schema calculus:

\	And	$\langle\langle \dots \rangle\rangle$	Free type injection
V	0r	[]	Given sets
$\ldots \Rightarrow \ldots$	Implies	$', ?, !,_0 \dots_9$	Schema decorations
∀ •	For all	⊢	theorem
∃ •	There exists	$ heta\dots$	Binding formation
\	Hiding	$\lambda \dots$	Function definition
≘	Schema definition	$\mu \dots$	Mu-expression
==	Abbreviation	$\Delta \dots$	State change
	Free type definition	Ξ	Invariant state change

Sets and sequences:

$\{\ldots\}$	Set	\	Set difference
$\{\mid\bullet\}$	Set comprehension	[J	Distributed union
$\mathbb{P}\dots$	Set of subsets of	#	Cardinality
Ø	Empty set	⊂	Subset
×	Cartesian product	$\stackrel{-}{\subset}$	Proper subset
$\dots \in \dots$	Set membership	partition	Set partition
∉	Set non-membership	seq	Sequences
∪	Union	<⟩	Sequence
∩	Intersection	disjoint	Disjoint sequence of sets

Functions and relations:

$\ldots \leftrightarrow \ldots$	Relation	*	Reflexive-transitive
$\dots \rightarrow \dots$	Partial function		closure
$\ldots \to \ldots$	Total function	()	Relational image
>↔	Partial injection	$\dots \oplus \dots$	Functional overriding
$\dots \rightarrowtail \dots$	Injection	⊲	Domain restriction
$\operatorname{dom}\dots$	Domain	⊳	Range restriction
ran	Range		Domain subtraction
$\ldots \mapsto \ldots$	maplet	≽	Range subtraction
~	Relational inverse		

Axiomatic descriptions:

Declarations
Predicates

Schema definitions:

SchemaName Declaration			
Predicates			