Microcontroladores

Interfaces Seriais e RTC

Prof. Guilherme Peron Prof. Ronnier Rohrich Prof. Rubão

Interfaces seriais

Motivação: paralelo x serial

- Interfaces <u>paralelas</u> consomem muitos recursos:
 - Barramentos
 - Maior número de pinos físicos
 - Maior área de PCI
- Interfaces <u>seriais</u>
 - Grande evolução tecnológica
 - Altas velocidades de comunicação
 - Padronização de protocolos de HW e SW
 - As mais utilizadas: I2C, SPI, 1-wire

Barramento I²C

- I²C (Inter-Integrated Circuit) é um barramento de comunicação que foi desenvolvido pela Philips em 1980
- Velocidades de operação:
 - Low-speed mode: DC-10 kbps
 - Standard: 100 kbps
 - Fast mode: 400 kbps
 - Fast mode plus: 1 Mbps
 - High-speed mode: 3,4 Mbps

• O I²C utiliza apenas dois fios (saídas com coletor aberto)

Barramento I²C

- Pinos de comunicação:
 - Serial Data (SDA) e Serial Clock (SCL)
 - Ambos devem ter pull-up de 2K2
- Há dois tipos de nós: Master e Slave

SCL = Serial Clock SDA = Serial Data

Topologias de conexão

Master-Slave

Multi-Master Multi-Slave

Protocolo de comunicação

- O master começa a comunicação enviando:
- SDA Um start bit (transição descendente de SDA com SCL=1)
 - O endereço de 7-bits do *slave* (MSbit primeiro)
 - O slave responde com um bit ACK (acknowledge)
 - Para escrita:
 - O master envia bytes de dados (escreve no slave) intercalados por bits ACK do slave
 - o Para <u>leitura</u>:
 - O master recebe bytes de dados (lê do slave) intercalando bits ACK do master, exceto após o último byte recebido
 - Para finalizar a comunicação o master pode enviar:
 - Um stop bit (transição ascendente de SDA com SCL=1)
 - Um novo start bit (para recomeçar outra transferência)

SDA __/

SCL

Protocolo de comunicação

S	SLAVE ADDRESS	R/W	Α	DATA	Α	DATA	A/Ā	Р
---	---------------	-----	---	------	---	------	-----	---

from master to slave

from slave to master

A = acknowledge (SDA LOW)

 \overline{A} = not acknowledge (SDA HIGH)

S = START condition

P = STOP condition

Temporização

Leitura do slave:

Escrita no slave:

Aplicações

 Sensor de temperatura LM75A

 Sensor digital de pressão BMP180

Aplicações

EEPROM serial 24C01A, 02, 04, 08

Pin Name	Function
A0 - A2	Address Inputs
SDA	Serial Data
SCL	Serial Clock Input
WP	Write Protect
NC	No Connect

SERIAL CLOCK (SCL): The SCL input is used to positive edge clock data into each EEPROM device and negative edge clock data out of each device.

SERIAL DATA (SDA): The SDA pin is bidirectional for serial data transfer. This pin is open-drain driven and may be wire-ORed with any number of other open-drain or open collector devices.

DEVICE/PAGE ADDRESSES (A2, A1, A0): The A2, A1 and A0 pins are device address inputs that are hard wired for the AT24C01A and the AT24C02. As many as eight 1K/2K devices may be addressed on a single bus system

- Operação de Escrita
 - Após o procedimento de START e do endereçamento.
 - Se o master deseja escrever no slave então ele envia os bytes e a cada byte recebido o slave responde enviando um bit de ACK

- Operação de Leitura
 - Para ler, como é uma linha bidirecional de dados (SDA), após o primeiro ACK é enviada uma sequência para o master, com os respectivos ACKs subsequentes

Obs: Caso deseje enviar um novo byte ou comando, o master repete a operação a partir de um novo START e a devida sequência.

Byte Write

Sequential Read

Random Read

(* = DON'T CARE bit for 1K)

SPI e Microwire

Já estudados.

1-wire

- Desenvolvido pela Dallas Semiconductor
- Provê alimentação, sinalização e transmissão de dados por um único fio (mais ground)
- Conceitualmente é semelhante a l²C
- Tem baixa velocidade e curto alcance
- Cada dispositivo 1-wire tem um código interno único de 64 bits
- Muito útil para identificação e segurança, tais como os iButton

Transmissão 1-wire

1 Wire reset, write and read example with DS2432

Aplicações do 1-wire

- DS18B20: termômetro digital de resolução programável (9-12 bits)
- MAX31820: sensor de temperatura ambiente de -55°C a 125°C de 9-12 bits
- DS24L65: autenticador de chave simétrica bidirecional SHA-256
- DS2433: 4Kbits EEPROM
- DS9481R-3C7: USB-1-Wire/iButton adapter provê conectividade PC/Win com iButton

Real-Time Clock

RTC

- Para que serve um RTC?
 - Real-Time Clock
 - o DS1307

Características do DS1307

- Conta segundos, minutos, horas, dia do mês, mês, dia da semana e ano
- Correção automática para ano bissexto
- Baixíssimo consumo com bateria: 500nA
- Contém uma memória RAM de 56 bytes
- Contém um gerador de onda quadrada programável (1 Hz, 4 KHz, 8 KHz, 32 KHz)
- Utiliza a interface 2-wire (I2C) com frequência máxima do clock SCL de 100 KHz (modo standard)
- Utiliza um cristal oscilador de 32,768KHz

Mapas de endereços e registradores

ADDRESS	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	FUNCTION	RANGE
00h	CH	1	0 Second	S	Seconds			Seconds	00-59	
01h	0	8	10 Minutes	3	Minutes			9	Minutes	00-59
02h 0	12	10 Hour	10		Ца	uro		Hours	1–12 +AM/PM	
UZII	0	24	PM/ AM	Hour		Hours		Hours	00–23	
03h	0	0	0	0	0		DAY		Day	01-07
04h	0	0	10 [Date	11	Da	ate		Date	01-31
05h	0	0	0	10 Month	Month		Month	01–12		
06h		10 Year Year		10 Year			Year	00-99		
07h	OUT	0	0	SQWE	0	0	RS1	RS0	Control	_
08h-3Fh									RAM 56 x 8	00h–FFh

0 = Always reads back as 0.

Características

- O conteúdo dos dados está em BCD
- Bit 7 do registrador 0 (CH) liga (0)/desliga
 (1) o clock
- Ao ligar o chip, o conteúdo dos registradores é indeterminado
- Bit 6 do registrador de horas seleciona o modo 12/24
- No modo 12 horas, o bit 5 é AM/PM

Gerador de onda quadrada

Registrador de controle

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
07h	OUT	0	0	SQWE	0	0	RS1	RS0

- SQWE: habilita o gerador (em 1)
- OUT: nível lógico de SQW/OUT quando SQWE=0
- RS1/RS0: seleção da frequência gerada:

RS1	RS0	SQW/OUT OUTPUT	SQWE	OUT
0	0	1Hz	1	X
0	1	4.096kHz	1	X
1	0	8.192kHz	1	X
1	1	32.768kHz	1	X
X	X	0	0	0
X	X	1	0	1

Transferência de dados (I2C)

Slave Address: 1101000

Ligação do DS1307 no kit

TWI no AT89C5131

• Equivalente à 12c

Registrador SSCON (93h)

Synchronous Serial Control Register:

CR0, CR1 e CR2 selecionam velocidade - ver

datasheet 7 6

CR2	SSIE	STA	STO	SI	AA	CR1	CR0				
Bit Number	Bit Mnemonic	Description									
7	CR2	Control Rate See .	Control Rate bit 2 See .								
6	SSIE	Clear to disal	Synchronous Serial Interface Enable bit Clear to disable SSLC. Set to enable SSLC.								
5	STA	Start flag Set to send a	Start flag Set to send a START condition on the bus.								
4	ST0	Stop flag Set to send a	Stop flag Set to send a STOP condition on the bus.								
3	SI	Set by hardw	Synchronous Serial Interrupt flag Set by hardware when a serial interrupt is requested. Must be cleared by software to acknowledge interrupt.								
2	AA	Clear in mast SDA). Clear to disal Set to recogn modes. Set in master	Clear to disable SLA or GCA recognition. Set to recognise SLA or GCA (if GC set) for entering slave receiver or transmitter								
1	CR1		Control Rate bit 1 See Table 20-4								
0	CRo	Control Rate bit 0 See Table 20-4									

Registrador SSDAT (95h)

Synchronous Serial Data Register (R/W):

SD7	SD6	SD5	SD4	SD3	SD2	SD1	SD0				
7	6	5	4	3	2	1	0				
Bit Number	Bit Mnemonic	Description									
7	SD7	Address bit 7	ddress bit 7 or Data bit 7.								
6	SD6	Address bit 6	Address bit 6 or Data bit 6.								
5	SD5	Address bit 5	Address bit 5 or Data bit 5.								
4	SD4	Address bit 4	or Data bit 4.								
3	SD3	Address bit 3	or Data bit 3.								
2	SD2	Address bit 2	Address bit 2 or Data bit 2.								
1	SD1	Address bit 1	Address bit 1 or Data bit 1.								
0	SD0	Address bit 0	Address bit 0 (R/W) or Data bit 0.								

Registrador SSCS (94h)

Read-Synchronous Serial Control and Status Register
 Códigos de status - ver datasheet

1	6	5	4	3	2	1	0					
SC4	SC3	SC2	SC1	SC0	0	0	0					
Bit Number	Bit Mnemonic	Description										
0	0	Always zero	Always zero									
1	0	Always zero										
2	0	Always zero										
3	SC0		Status Code bit 0 See Table 20-5 to Table 20-9									
4	SC1	950 T S. D. T. C. T. S. D. T. S. D.	Status Code bit 1 See Table 20-5 to Table 20-9									
5	SC2	Status Code See Table 20-	bit 2 5 to Table 20-9)								
6	SC3	AND A CONTRACT OF STREET	Status Code bit 3 See Table 20-5 to Table 20-9									
7	SC4	Status Code bit 4 See Table 20-5 to Table 20-9										

Registrador SSADR (96h)

Synchronous Serial Address Register (R/W)

7	6	5	4	3	2	1	0				
A 7	A 6	A 5	A4	Аз	A2	A1	A 0				
Bit Number	Bit Mnemonic	Description									
7	A7	Slave address	lave address bit 7.								
6	A6	Slave address	Slave address bit 6.								
5	A5	Slave address	Slave address bit 5.								
4	A4	Slave address	Slave address bit 4.								
3	АЗ	Slave address	s bit 3.								
2	A2	Slave address	s bit 2.								
1	A1	Slave address	s bit 1.								
0	GC	Clear to disab	eneral call bit lear to disable the general call address recognition. et to enable the general call address recognition.								