Ch5: Phase Plane Analysis

Amin Fakhari, Fall 2022

Phase Plane Concept

Phase Plane & Phase Portrait

- A two-dimensional state space plane is called the Phase Plane.
- Given a set of initial conditions x(0), the solution x(t) of a second-order autonomous system, when t varied from 0 to ∞, can be represented geometrically as a curve (trajectory) in the phase plane (arrows denote the direction of motion).

$$\dot{\boldsymbol{x}}(t) = \mathbf{f}(\boldsymbol{x}(t)) \implies \dot{x}_1 = f_1(x_1, x_2)$$

 $\dot{x}_2 = f_2(x_1, x_2)$

Slope of trajectory:
$$\frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)}$$

A **family** of phase plane trajectories corresponding to **various initial conditions** is called a **phase portrait** of a system.

Example: Phase portrait of a linear system

A mass-spring system:

Phase Plane Concept

 x_0 : Initial position

 \dot{x}_0 : Initial velocity

$$x_1 = x \qquad \dot{x}_1 = x_2 x_2 = \dot{x} \qquad \dot{x}_2 = -x_1$$

$$x_1 = x_0 \cos t + \dot{x}_0 \sin t$$

$$x_2 = -x_0 \sin t + \dot{x}_0 \cos t$$

$$x_1^2 + x_2^2 = x_0^2 + \dot{x}_0^2$$

Equation of the trajectories

Singular Point

An equilibrium point of a second-order system is called a Singular Point.

$$\dot{\boldsymbol{x}}(t) = \mathbf{f}(\boldsymbol{x}(t)) = 0 \implies f_1(x_1, x_2) = 0$$

$$f_2(x_1, x_2) = 0$$

Slope of trajectory at singular points:
$$\frac{dx_2}{dx_1} = \frac{f_2\left(x_1, x_2\right)}{f_1\left(x_1, x_2\right)} = \frac{0}{0}$$

(undefined!)

Phase portrait of a nonlinear 2nd order system:

$$\ddot{x} + 0.6\dot{x} + 3x + x^2 = 0$$

The system has two singular points: (0, 0), (-3, 0)

$$x_1 = x$$

$$x_2 = \dot{x}$$

Singular Point

Note: The motion patterns of the system trajectories in the vicinity of the two singular points may have different natures!

Note: With the functions f_1 and f_2 assumed to be single valued, a phase trajectory cannot intersect itself!

Note: Singular points are very important features in the phase plane, e.g., for linear systems, the stability of the systems is uniquely characterized by the **nature of their** singular points.

Note: For **nonlinear systems**, besides singular points, there may be more complex features, such as **limit cycles**.

Phase Plane for First-order Systems

Although the phase plane method is developed primarily for second-order systems, it can also be applied to the analysis of **first-order** systems of the form

$$\dot{x} + f(x) = 0$$

The difference now is that the phase portrait is composed of a **single trajectory**.

Example: Consider the first-order system $\dot{x} = -4x + x^3$

There are three singular points ($\dot{x} = -4x + x^3 = 0$):

$$x = 0, -2, 2$$

The arrows denote the direction of motion, and it is determined by the sign of \dot{x} at that point.

Phase Plane Concept

00000

Phase Plane Analysis

Phase Plane Analysis

Phase plane analysis is a graphical method to visually examine the global behavior of second-order autonomous systems, i.e., stability and motion patterns.

Although the phase plane analysis is applicable only to second-order systems, it can provide **intuitive insights** about **nonlinear effects**.

Phase Plane Analysis of Linear Systems

General form of a linear second-order system:

$$\ddot{x} + a\dot{x} + bx = 0 \qquad \text{(or)}$$

$$\dot{x}_1 = a_{11}x_1 + a_{12}x_2 \\ \dot{x}_2 = a_{21}x_1 + a_{22}x_2 \Rightarrow \dot{x} = \mathbf{A}x$$

Solution:

$$x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t} \qquad \lambda_1 \neq \lambda_2$$

$$x(t) = k_1 e^{\lambda_1 t} + k_2 t e^{\lambda_1 t} \qquad \lambda_1 = \lambda_2$$

$$\lambda_{1,2} = (-a \pm \sqrt{a^2 - 4b})/2$$

(solutions of the characteristic equations $[\lambda^2 + a\lambda + b = 0]$ or eigenvalues of matrix **A** $[\mathbf{A}\mathbf{x} = \lambda \mathbf{x}]$

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0)$$

There is only one isolated singular point at origin x=0, assuming $b\neq 0$ or **A** is nonsingular $(\det(A) \neq 0)$. However, the trajectories in the vicinity of this singularity point can display quite different characteristics, depending on the values of a and b.

Phase Plane Analysis of Linear Systems

Stable/Unstable Node: Both x(t) and $\dot{x}(t)$ converge to/diverge from zero exponentially.

$$x(t)=k_1e^{\lambda_1t}+k_2e^{\lambda_2t}$$
 $\lambda_{1,2}\in\mathbb{R}_{>0}$ Stable Node $\lambda_{1,2}\in\mathbb{R}_{>0}$ Unstable Node

Unstable Node $\lambda_{1,2} \in \mathbb{R}_{>0}$

Saddle Point: Because of the unstable pole λ_1 , almost all of the system trajectories diverge to infinity.

$$x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t}$$
$$\lambda_1 \in \mathbb{R}_{>0}, \lambda_2 \in \mathbb{R}_{<0}$$

Phase Plane Analysis of Linear Systems

Stable/Unstable Focus: The trajectories encircle the origin one or more times before converging to it, unlike the situation for a stable node.

$$x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t} = K e^{\sigma t} \cos(\omega t - \phi)$$

$$\left(\lambda_{1,2} = \sigma \pm j\omega\right)$$

$$\sigma \in \mathbb{R}_{<0} \text{ Stable Focus}$$

$$\sigma \in \mathbb{R}_{>0} \text{ Unstable Focus}$$

Center Point: All trajectories are ellipses and the singularity point is the center of these ellipses. The system trajectories neither converge to the origin nor diverge to infinity (marginal stability).

$$x(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t} = K \cos(\omega t - \phi)$$
$$(\lambda_{1,2} = \pm j\omega)$$

Phase Plane Analysis of Linear Systems (review)

Phase Plane Analysis of Nonlinear Systems: Local Behavior

 Nonlinear systems frequently have more than one equilibrium point, in contrast to linear systems.

• Local behavior of a nonlinear system can be approximated by the behavior of a linear

system in the neighborhood of each equilibrium point.

(0, 0): Stable Focus (-3, 0): Saddle Point

This behavior can be determined via **linearization** of the nonlinear system with respect to each equilibrium point.

Linearization

$$\dot{\boldsymbol{x}} = \mathbf{f}(\boldsymbol{x}) \qquad \qquad \dot{x}_1 = f_1\left(x_1, x_2\right) \qquad \qquad \text{Taylor expansion about} \quad \boldsymbol{x}_e = [x_{e1}, x_{e2}]^{\mathrm{T}} \\ \dot{x}_2 = f_2\left(x_1, x_2\right) \qquad \qquad \boxed{ \left[f(\boldsymbol{x}) = f(\boldsymbol{a}) + \frac{f'(\boldsymbol{a})}{1!}(\boldsymbol{x} - \boldsymbol{a}) + \frac{f''(\boldsymbol{a})}{2!}(\boldsymbol{x} - \boldsymbol{a})^2 + \cdots \right] }$$

(Higher Order Terms)
$$\dot{x}_1 = f_1\left(x_{e1}, x_{e2}\right) + a_{11}\left(x_1 - x_{e1}\right) + a_{12}\left(x_2 - x_{e2}\right) + \text{H.O.T}$$

$$\dot{x}_2 = f_2\left(x_{e1}, x_{e2}\right) + a_{21}\left(x_1 - x_{e1}\right) + a_{22}\left(x_2 - x_{e2}\right) + \text{H.O.T}$$

$$\mathbf{f}(\boldsymbol{x}_e) = \mathbf{0} \qquad \text{Change of } \bar{x}_1 = (x_1 - x_{e2}) \qquad \text{In the vicinity of } \boldsymbol{x}_e$$
 variables:
$$\bar{x}_2 = (x_2 - x_{e2})$$

$$\begin{array}{ll} \textbf{Linearized} \\ \textbf{state equation:} & \quad \dot{\bar{\boldsymbol{x}}} = \boldsymbol{A}\bar{\boldsymbol{x}} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \bar{\boldsymbol{x}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} \end{bmatrix} \bigg|_{\boldsymbol{x} = \boldsymbol{x}} \bar{\boldsymbol{x}} = \frac{\partial \mathbf{f}}{\partial \boldsymbol{x}} \bigg|_{\boldsymbol{x} = \boldsymbol{x}_e} \bar{\boldsymbol{x}}$$

Jacobian of f

Example

$$\ddot{\theta} + \frac{c}{ml^2}\dot{\theta} + \frac{g}{l}\sin\theta = 0 \qquad x_1 = \theta, \ x_2 = \dot{\theta}$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \mathbf{f}(\mathbf{x}) = \begin{bmatrix} x_2 \\ -\frac{c}{ml^2}x_2 - \frac{g}{l}\sin x_1 \end{bmatrix} \qquad x_2 = 0$$

It has an infinite number of isolated singular points: $(n\pi, 0)$

for $n = 0, \pm 1, \pm 2, \dots$

$$\frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1\\ -\cos x_1 & -0.3 \end{bmatrix}$$

$$A_1|_{(0,0)}=\left[egin{array}{cc} 0 & 1 \ -1 & -0.3 \end{array}
ight]$$
 Stable Focus (vertical down position)

$$A_2|_{(\pi,0)}=\left[egin{array}{cc} 0 & 1 \ 1 & -0.3 \end{array}
ight]$$
 Saddle Point (vertical up position)

Limit Cycle

Let's plot phase portrait of the Van der Pol equation:

$$\ddot{x} - \mu (1 - x^2) \dot{x} + x = 0, \quad \mu = 1$$

- An unstable node at the origin.
- A <u>closed curve</u>!

All trajectories inside & outside the curve tend to this curve. A motion started on this curve will stay on it forever, circling periodically around the origin.

This closed curve correspond to oscillations of **fixed** amplitude and **fixed period without external excitation** and **independent of initial conditions**, which is called **Limit Cycle** (LC) or **Self-Excited Oscillations**.

Limit cycles are **unique** features of nonlinear systems.

Limit Cycle

A **Limit Cycle** is defined as an <u>isolated</u> <u>closed</u> curve.

Indicates the limiting nature of the cycle (nearby trajectories converging or diverging from it)

2

Indicates the periodic nature of the motion.

Note: These are not limit cycles, because they are **not isolated** and the amplitude of the oscillations depends on the initial conditions.

-2

-2

Limit Cycles

Depending on the motion patterns of the trajectories in the vicinity of the limit cycle, there are three kinds of limit cycles:

- 1) Stable Limit Cycles: All trajectories in the vicinity of the LC converge to it as $t \to 0$.
- **2) Unstable Limit Cycles**: All trajectories in the vicinity of the LC diverge from it as $t \to 0$.
- **3)** Semi-stable Limit Cycles: Some of the trajectories in the vicinity of the LC converge to it, while the others diverge from it as $t \to 0$.

Example

$$\begin{cases} \dot{x}_1 = x_2 - x_1(x_1^2 + x_2^2 - 1) \\ \dot{x}_2 = -x_1 - x_2(x_1^2 + x_2^2 - 1) \end{cases}$$

By introducing
$$\dot{r} = -r(r^2 - 1)$$
 $r^2 = x_1^2 + x_2^2$
 $\tan \theta = x_2/x_1$
 $\dot{\theta} = -1$

When the state starts on the unit circle r=1, the $\dot{r}=0$. This implies that the state will circle around the origin. When r<1, then $\dot{r}>0$. This implies that the state tends to the circle from inside. When r>1, then $\dot{r}<0$. This implies that the state tends toward the unit circle from outside. Therefore, the unit circle is a stable limit cycle.

Constructing Phase Portraits

Phase Plane Concept

Constructing Phase Portraits

Although phase portraits are routinely computer-generated, it is still practically useful to learn how to roughly sketch phase portraits or quickly verify the plausibility of computer outputs.

MATLAB Code

```
% Phase Trajectory
opts = odeset('RelTol', 1e-6, 'AbsTol', 1e-6);
[t,x] = ode45(@func,[0 10],[0.9; 0.9],opts);
function dxdt = func(t,x)
dxdt = [-x(1) - 2*x(2)*x(1)^2 + x(2); -x(1) - x(2)];
end
```

```
% Phase Portrait
[x1, x2] = meshgrid(-1:0.1:1, -1:0.1:1);
x1dot = -x1 - 2 * x2 .* x1.^2 + x2;
x2dot = -x1 - x2;
quiver (x1, x2, x1dot, x2dot)
```

Two simple methods are **Analytical Method** and **Isoclines Method**.

```
\dot{x}_1 = -x_1 - 2x_2x_1^2 + x_2
\dot{x}_2 = -x_1 - x_2
```


Method 1: Analytical Method

The method is based on finding a functional relation between the two phase variable x_1 and x_2 of the 2nd-order system $\dot{x} = f(x)$ in the form

$$g(x_1, x_2, c) = 0$$

effect of initial conditions

Plotting this relation in the phase plane for different initial **conditions** yields a phase portrait.

Note: This method is useful for some **special** nonlinear systems, particularly **piece-wise** linear systems, whose phase portraits can be constructed by piecing together the phase portraits of the related linear systems.

Phase Plane Concept

Method 1: Analytical Method (cont.)

Technique 1:

$$\dot{x}_1 = f_1(x_1, x_2)$$
 $\dot{x}_2 = f_2(x_1, x_2)$
 $x_1 = g_1(t)$
 $x_2 = g_2(t)$

effect of initial conditions

Example: A mass-spring system

 x_0 : Initial length

 \dot{x}_0 : Initial velocity

$$x_1 = x \qquad \dot{x}_1 = x_2 x_2 = \dot{x} \qquad \dot{x}_2 = -x_1$$

$$x_1 = x_0 \cos t + \dot{x}_0 \sin t$$

$$x_2 = -x_0 \sin t + \dot{x}_0 \cos t$$

$$x_1^2 + x_2^2 = x_0^2 + \dot{x}_0^2$$

Equation of the trajectories

Method 1: Analytical Method (cont.)

Technique 2:

$$\dot{x}_1 = f_1(x_1, x_2) \\
\dot{x}_2 = f_2(x_1, x_2)$$

$$\rightarrow \frac{dx_1}{dx_2} = \frac{f_1(x_1, x_2)}{f_2(x_1, x_2)}$$

$$\Rightarrow g(x_1, x_2, c) = 0$$
effect of initial conditions

Example: A mass-spring system

 x_0 : Initial length \dot{x}_0 : Initial velocity

$$x_1 = x \qquad \dot{x}_1 = x_2 \qquad \text{differ}$$

$$x_2 = \dot{x} \qquad \dot{x}_2 = -x_1 \qquad \text{cor}$$

$$\frac{dx_1}{dx_2} = \frac{x_2}{-x_1} \longrightarrow -x_1 dx_1 = x_2 dx_2$$

Equation of the trajectories

Method 2: Isoclines Method

An **isocline** is defined to be the locus of the points with a given tangent slope α .

$$\frac{dx_2}{dx_1} = \frac{f_2(x_1, x_2)}{f_1(x_1, x_2)} = \alpha \qquad \longrightarrow \qquad f_2(x_1, x_2) = \alpha f_1(x_1, x_2) \quad \text{(isocline equation)}$$

$$f_2(x_1,x_2)=lpha f_1(x_1,x_2)$$
 (isocline equation)

All points on this curve have the same tangent slope α .

Example 1: A mass-spring system

$$\begin{aligned}
x_1 &= x \\
x_2 &= \dot{x}
\end{aligned}
\qquad \dot{x}_1 &= x_2 \\
\dot{x}_2 &= -x_1$$

$$\frac{dx_2}{dx_1} = \frac{-x_1}{x_2} = \alpha$$

$$\alpha x_2 = -x_1$$
isoclines
$$\alpha x_2 = -x_1$$

We assume that the tangent slopes are locally constant. Therefore, a trajectory starting from any point in the field of directions can be found by connecting a sequence of line segments.

Short line segments with slope α to generate a field of directions (same scales should be used for the x_1, x_2 axes)

m = 1

Method 2: Isoclines Method (cont.)

Example 2: Van der Pol Equation

$$\ddot{x} + 0.2(x^2 - 1)\dot{x} + x = 0$$
 \longrightarrow $\frac{dx_2}{dx_1} = -\frac{0.2(x_1^2 - 1)x_2 + x_1}{x_2} = \alpha$

$$0.2(x_1^2 - 1)x_2 + x_1 + \alpha x_2 = 0$$
 (isocline equation)

All points on this curve have the same tangent slope α .

By taking α of different values, different isoclines can be obtained.

The trajectories starting from both outside and inside converge to the limit cycle.

^{*} For connecting the segments, we can first determine the type of the equilibrium points and check if there is a limit cycle.