Package 'MinCompSpinPackage'

January 26, 2022

Type Package

Title Uncover and model community structures in binary data by doing an exhaustive search for the best Minimally Complex Model (MCM)
Version 1.0
Date 2021-11-15
Description An interface for the original C++ based program MinCompSpin. This program allows to uncover AND model community structures in binary data, while taking into account possible high order patterns of data in the detection of the communities (i.e., possible high-order correlations between the variables). The idea of the algorithm is based on performing statistical inference with a family of spin models (maximum entropy models for binary data) that have minimal information theoretic complexity. These models are called Minimally Complex Models (MCM). The selected model can be used as a generative model for data. This package is good for use on small systems, typically with <~15 variables per binary data-point. Note that for ~15 variables, it may take several days to perform the exhaustive search since the number of possible models grows exponentially with the number of variables. License GPL (>= 3)
Encoding UTF-8
SystemRequirements C++11
Depends R (>= 4.1.2)
Imports Rcpp (>= 1.0.7)
LinkingTo Rcpp
RoxygenNote 7.1.2
R topics documented: build_Kset
Create_MCM

build_Kset

	GeomComplexity_SubCM	4
	LogE_MCM	
	LogE_SubCM	5
	LogL_CM	6
	LogL_MCM	6
	LogL_SubCM	7
	MCM_AllRank_SmallerThan_r_nonOrdered	7
	MCM_AllRank_SmallerThan_r_Ordered	8
	MCM_GivenRank_r	9
	MCM_search	10
	Original_Basis	10
	ParamComplexity_SubCM	11
	PrintInfo_All_Indep_Models	11
	PrintInfo_All_SubComplete_Models	12
	PrintTerminal_MCM_Info	12
	PrintTerm_Basis	13
	Read_BasisOp_BinaryRepresentation	13
	Read_BasisOp_IntegerRepresentation	14
	read_datafile	
	Read_MCMParts_BinaryRepresentation	15
	• •	
Index		16
build	d_Kset $Build K_set$	

Description

Build Kset for the states written in the basis of the m-chosen independent operator on which the SC model is based. Changes the basis of the data-set from its original basis to the basis provided as an argument in basis. Print Kset to terminal by setting print_bool to TRUE.

Usage

```
build_Kset(Nset, Basis, n, print_bool = FALSE)
```

Arguments

Nset	A list containing 2 vectors which correspond to a index based mapping of the states in the data set to their occurrence.
Basis	The basis on which the model is based.
n	Number of binary (spin) variables of the data set.
print_bool	print relevant information. Default: FALSE.

Value

Kset Mapping of frequency of occurrence of each state of the data-set in the new basis.

check_partition 3

Description

Check if *Partition* is an actual partition of r basis elements, i.e., that no basis element appears in more than 1 part of the partition. i.e., that each basis element only appears in a single part of the partition.

Usage

```
check_partition(Partition, n)
```

Arguments

Partition Partition of MCM.

n The amount of binary (spin) variables.

Value

Bool_results Returns FALSE if there is an overlap between the parts.

Complexity_MCM	Complexity of an MCM based on the geometric and parametric com-
	plexity.

Description

Complexity of and MCM defined by the addition of the total geometric complexity and total (parametric) first order complexity. Compute separately: – the first order complexity –> stored in C_param – and the geometric complexity -> stored in C_geom

Usage

```
Complexity_MCM(Partition, N, n, C_param, C_geom)
```

Arguments

Partition Partition of MCM.

N The size of the dataset

n The amount of spin variables.

C_param The (parametric) first order complexity.

C_geom The geometric complexity.

Value

Complexity A double containing the complexity of the MCM.

Create_MCM

Define an MCM

Description

Define an MCM. Input is an integer representation of all MCM parts. For example, MCM_Choice = c(384, 64, 32, 16, 8, 4, 2, 1) defines an MCM with 8 independent parts, based on n=9 spins. You can check that the model (i.e., list of parts) that you have provided properly defines an MCM by calling the function check_partition(Partition, n).

Usage

```
Create_MCM(MCM_table)
```

Arguments

MCM_table

List containing the integer representation of the MCM parts.

Value

MCM_partition The defined MCM.

GeomComplexity_SubCM

Description

Geometric Complexity of a Sub-Complete Model based on m basis operators. for $1 \le m \le n$. Rem C(m=1) = log(pi)

Usage

```
GeomComplexity_SubCM(m)
```

Arguments

m

The number of basis elements/operators.

Value

GeomComplexity The complexity.

LogE_MCM 5

LogE_MCM	Compute the log-evidence of of an MCM.

Description

Compute the log-evidence of of an MCM.

Usage

```
LogE_MCM(Kset, Partition, N, n, print_bool = FALSE)
```

Arguments

Kset Mapping of frequency of occurrence of each state of the data-set in the new

basis.

Partition Partition of MCM.

N The size of the data-set.

n The amount of binary (spin) variables.

print_bool Boolean to print related information to terminal. Default: FALSE.

Value

LogE The log-evidence of an MCM as a double.

LogE_SubCM	Compute the log-evidence of the sub-complete part (of an MCM).

Description

Compute the log-evidence of the sub-complete part (of an MCM) defined by Ai. This function could be also used directly by the user to compute the log-likelihood of a sub-complete model

Usage

```
LogE_SubCM(Kset, Ai, N, n, print_bool = FALSE)
```

Arguments

print_bool

Kset	Mapping of frequency of occurrence of each state of the data-set in the new basis.
Ai	The binary representation of the sub-complete part (of an MCM).
N	The size of the data-set.
n	The amount of binary (spin) variables.

Boolean to print related information to terminal. Default: FALSE.

6 LogL_MCM

Value

LogE The log-evidence of the sub-complete part (of an MCM) as a double.

LogL_CM

Compute the log-likelihood of a complete model on Kset.

Description

Compute the log-likelihood of a complete model on Kset: This function is mainly used for call by 'LogL_SC_PartMCM', but can also be used to compute the log-likelihood of a complete model

Usage

```
LogL_CM(Kset, N)
```

Arguments

Kset Mapping of frequency of occurrence of each state of the data-set in the new

basis.

N The size of the data-set.

Value

LogL The log-likelihood of a complete model on Kset as a double.

LogL_MCM

Compute log-likelihood of an MCM.

Description

Compute the log-likelihood of an MCM. This function could be also used directly by the user to compute the log-likelihood of a model.

Usage

```
LogL_MCM(Kset, Partition, N, n, print_bool = FALSE)
```

Arguments

Kset Mapping of frequency of occurrence of each state of the data-set in the new

basis.

Partition Partition of MCM.

N The size of the data-set.

Number of binary (spin) variables of the data set.

print_bool Boolean to print related information to terminal. Default: FALSE.

LogL_SubCM 7

Value

LogL The log-likelihood of a complete model on Kset as a double.

LogL_SubCM	Compute log-likelihood of the sub-complete part (SC-part) of an MCM.
------------	--

Description

Compute the log-likelihood of the sub-complete part (of an MCM) defined by Ai. This function could be also used directly by the user to compute the log-likelihood of a sub-complete model

Usage

```
LogL_SubCM(Kset, Ai, N, n, print_bool = FALSE)
```

Arguments

Kset	Mapping of frequency of occurrence of each state of the data-set in the new basis.
Ai	The binary representation of the SC-part.
N	The size of the data-set.
n	Number of binary (spin) variables of the data set.

Boolean to print related information to terminal. Default: FALSE.

Value

print_bool

LogL The log-likelihood of a sub-complete part (of an MCM) defined by Ai.

```
\label{lem:mcm_all_rank_smaller} MCM\_AllRank\_SmallerThan\_r\_Ordered \\ MCM\_AllRank\_SmallerThan\_r\_Ordered
```

Description

Compare all the MCMs based on any subset of k elements of the of r first elements of the basis used to build Kset for all k=1 to r, where $r \le basis.size()$ By default: -r=n - the function doesn't print the logE-values for all the tested MCMs. To activate \rightarrow print_bool = true

Usage

```
MCM_AllRank_SmallerThan_r_nonOrdered(
   Kset,
   N,
   LogE_best,
   r,
   n,
   OUTPUT_directory,
   print_bool
)
```

Arguments

Kset Mapping of frequency of occurrence of each state of the data-set in the new

basis.

N The size of the dataset

LogE_best The double which will contain the maximized Log-evidence.

r The rank r which is the r first elements of the basis.

n The amount of binary (spin) variables.

OUTPUT_directory

The name of the output directory (and path to it) in which to save the output

data.

print_bool Boolean to print related information to terminal. Default: FALSE.

Value

Partition The best MCM.

```
\label{local_mank_smaller} $$ MCM\_AllRank\_SmallerThan\_r\_Ordered$$ MCM\_AllRank\_SmallerThan\_r\_Ordered$$
```

Description

Compare all the MCM based on the k first elements of the basis used to build Kset for all k=1 to r, where $r \le basis.size()$. By default: -r=n - the function doesn't print the logE-values for all the tested MCMs. To activate \rightarrow print_bool = true

Usage

```
MCM_AllRank_SmallerThan_r_Ordered(
  Kset,
  N,
  LogE_best,
  r,
```

MCM_GivenRank_r 9

```
n,
OUTPUT_directory,
print_bool
)
```

Arguments

Kset Mapping of frequency of occurrence of each state of the data-set in the new

basis.

N The size of the data-set.

LogE_best The double which will contain the maximized Log-evidence.

The rank r which is the r first elements of the basis.

n The amount of binary (spin) variables.

OUTPUT_directory

The name of the output directory (and path to it) in which to save the output

data.

print_bool Boolean to print related information to terminal. Default: FALSE.

Value

Partition The best MCM.

MCM_GivenRank_r	MCM_GivenRank_r
-----------------	-----------------

Description

Compare all the MCM of rank r, based on the r first elements of the basis used to build Kset:

Usage

```
\label{local_model} \mbox{MCM\_GivenRank\_r(Kset, N, LogE\_best, r, n, OUTPUT\_directory, print\_bool)}
```

Arguments

Kset Mapping of frequency of occurrence of each state of the data-set in the new

basis.

N The size of the data-set.

LogE_best The double which will contain the maximized Log-evidence.

r The rank r which is the r first elements of the basis.

n The amount of binary (spin) variables.

OUTPUT_directory

The name of the output directory (and path to it) in which to save the output

data.

print_bool Boolean to print related information to terminal. Default: FALSE.

10 Original_Basis

Value

Partition The best MCM.

MCM_search

Perform the exhaustive search for the best MCM at once.

Description

Performs the community detection on the data given in datafilename with the given basis Basis_li and returns the best fitting MCM for the data. Optional: set the comparison variable to TRUE to test what happens when the model is compared to 3 different cases. For general use set to FAISE. Output is stored in the (newly created) OUTPUT directory in the same working directory.

Usage

```
MCM_search(n, datafilename, Basis_li, OUTPUT_directory, comparison)
```

Arguments

n Number of binary (spin) variables of the data set.

datafilename The name of input file including path containing the binary data.

Basis_li The basis on which the model is based.

OUTPUT_directory

The name of the output directory (and path to it) in which to save the output

data.

comparison Boolean indicating whether to run 2 other versions of the exhaustive search. For

comparison purposes. Default: FALSE.

Original_Basis

Original Basis

Description

Return the original basis, i.e., s1, s2, ..., sn

Usage

```
Original_Basis(n)
```

Arguments

n Number of bir

Number of binary (spin) variables of the data set.

Value

Basis_li List of the original basis i.e. s1, s2, ..., sn.

ParamComplexity_SubCM Parametric Complexity of a sub-complete model

Description

Parametric Complexity of a Sub-Complete Model based on m basis operators. for $1 \le m \le n$. Rem C(m=1) = log(pi).

Usage

```
ParamComplexity_SubCM(m, N)
```

Arguments

m The number of basis elements/operators.

N The size of the data-set.

Value

ParamComplexity The complexity.

PrintInfo_All_Indep_Models

PRINT INFO ON SUCCESSIVE INDEPENDENT MODELS IN THE NEW BASIS.

Description

The function prints the integer and binary representation of the part, as well as the the log-likelihood (LogL) and the log-evidence (LogE).

Usage

```
PrintInfo_All_Indep_Models(Kset, N, n)
```

Arguments

Kset Mapping of frequency of occurrence of each state of the data-set in the new

basis.

N The size of the data-set.

n The amount of binary (spin) variables.

PrintInfo_All_SubComplete_Models

PrintInfo_All_Indep_Models

Description

PRINT INFO ON SUCCESSIVE SUB_COMPLETE MODELS IN THE NEW BASIS.

Usage

```
PrintInfo_All_SubComplete_Models(Kset, N, n)
```

Arguments

Kset Mapping of frequency of occurrence of each state of the data-set in the new

basis.

N The size of the data-set.

n The amount of binary (spin) variables.

PrintTerminal_MCM_Info

PRINT INFO on each PART of an MCM (= a partition)

Description

The function prints the number of Independent Components of the MCM (i.e., the number of partitions – or communities – of the MCM), as well as the log-likelihood (LogL), the parameter complexity (C_param), the geometric complexity (C_geom), the total complexity (C_tot), the Minimum Description Length (MDL) and the log-evidence (LogE).

Usage

```
PrintTerminal_MCM_Info(Kset, N, n, MCM_Partition)
```

Arguments

Kset Mapping of frequency of occurrence of each state of the data-set in the new

basis.

N The size of the data-set.

n The amount of binary (spin) variables.

MCM_Partition Partition of MCM.

PrintTerm_Basis 13

PrintTerm_Basis

Print Basis

Description

Print the basis info in the terminal.

Usage

```
PrintTerm_Basis(Basis_li, n)
```

Arguments

Basis_li A list containing the basis.

n Number of binary (spin) variables of the data set.

Read_BasisOp_BinaryRepresentation

Read basis operators in binary representation from input file.

Description

Reads the Basis operators in binary representation from the given input file. The operators should be written in one single column and as binary representation of the spin involved in the Operator. Returns a list of the basis with the integer value of that binary representation

Usage

```
Read_BasisOp_BinaryRepresentation(Basis_binary_filename, n)
```

Arguments

```
Basis_binary_filename
```

The name of input file including path.

n Number of binary (spin) variables of the data set.

Value

Basis_li List of the basis with the integer value of that binary representation.

14 read_datafile

Read_BasisOp_IntegerRepresentation

Read basis operators in integer representation from input file.

Description

Reads the Basis operators in integer representation from the given input file. The operators should be written in one single column and as the integer value of that binary representation. Returns a list of the given input file.

Usage

Read_BasisOp_IntegerRepresentation(Basis_integer_filename)

Arguments

```
Basis_integer_filename
```

The name of input file including path.

Value

Basis_li List of the given input file.

read_datafile

Read data and store in Nset.

Description

Reads the binary data set (with location and name provided in argument filename) as binary integers and returns a mapping of each observed state to the number of times they occur in the data set. Note that each state of the system is encoded as an n-bit integer.

Usage

```
read_datafile(N, n, filename)
```

Arguments

N Integer that will contain the data set size.

n Number of binary (spin) variables of the data set.

filename The string containing the path to the data file and the name.

Value

Nset The first row contains the observed state and the second row contains their occurrence (matching column-wise).

 ${\tt Read_MCMParts_BinaryRepresentation}$

Read_MCMParts_BinaryRepresentation

Description

Define MCM from a file in which the operators are written as the binary representation of the interactions.

Usage

```
Read_MCMParts_BinaryRepresentation(MCM_binary_filename, n)
```

Arguments

MCM_binary_filename

The file name (incl. the path to it from the current directory).

n The amount of binary (spin) variables.

Value

MCM_partition The defined MCM.

Index

```
build_Kset, 2
check_partition, 3
Complexity_MCM, 3
Create_MCM, 4
{\tt GeomComplexity\_SubCM, 4}
LogE_MCM, 5
LogE_SubCM, 5
LogL_CM, 6
LogL_MCM, 6
LogL_SubCM, 7
MCM_AllRank_SmallerThan_r_nonOrdered,
MCM_AllRank_SmallerThan_r_Ordered, 8
MCM_GivenRank_r, 9
MCM_search, 10
Original_Basis, 10
ParamComplexity_SubCM, 11
PrintInfo_All_Indep_Models, 11
PrintInfo_All_SubComplete_Models, 12
PrintTerm_Basis, 13
PrintTerminal_MCM_Info, 12
{\tt Read\_BasisOp\_BinaryRepresentation}, 13
Read_BasisOp_IntegerRepresentation, 14
read_datafile, 14
{\tt Read\_MCMParts\_BinaryRepresentation}, 15
```