

Objeto transneptuniano

Un **objeto transneptuniano** u **objeto transneptúnico** (a menudo abreviado como **OTN**) es cualquier ente del <u>sistema solar</u> cuya órbita se ubica parcial o totalmente más allá de la órbita del <u>planeta Neptuno</u>. Algunas subdivisiones específicas de ese espacio llevan el nombre de <u>cinturón de Kuiper y nube de Oort</u>. Por una resolución de la <u>Unión Astronómica Internacional</u> del día 11 de junio de 2008, los planetas enanos transneptunianos pasaron a denominarse «plutoides».

Ilustración a escala de los mayores objetos transneptunianos.

Para referirse a un objeto transneptuniano, frecuentemente suele utilizarse la abreviatura TNO (del <u>inglés</u> trans neptunian object). En muchos casos, se usa indistintamente con la abreviatura <u>KBO</u> (del inglés *Kuiper belt object*), lo cual no es del todo correcto. Los TNO comprenden, entre otros, a los cuerpos de la nube de Oort y a los KBO. Estos últimos, a su vez, también se subdividen en plutinos y cubewanos. <u>[cita requerida]</u>

Debido a los cambios en las órbitas de los planetas conocidos a principios de los años 1900, y atribuidos a la acción de la gravedad (la fuerza de atracción entre toda la materia) sobre los propios planetas, se supuso que había uno o más planetas más allá de Neptuno que no se habían identificado (véase planeta X). Una hipótesis similar había conducido al descubrimiento de Neptuno, a partir de distorsiones en la órbita de <u>Urano</u>. La búsqueda de estos cuerpos teóricos llevó al descubrimiento de Plutón y, desde entonces, se han hallado algunos pocos objetos de importancia. No obstante, siguen siendo demasiado pequeños para explicar las perturbaciones, y los cálculos revisados de la masa de Neptuno mostraron que el problema era ficticio. [cita requerida]

Objetos transneptunianos notables

En junio de 2005, el número de estos objetos era superior al millar, de los cuales un centenar poseían una <u>órbita</u> determinada con precisión, y, por tanto, una numeración definitiva del <u>Centro</u> de Planetas Menores.

Cinturón de Kuiper

Los objetos del cinturón de Kuiper suelen subclasificarse según sus características orbitales. Por un lado, están los objetos que orbitan en algún tipo de <u>resonancia</u> con <u>Neptuno</u>, **2:3**, **1:2**, **3:5**, **4:7**, etcétera. Por otro lado, los que no están vinculados orbitalmente a Neptuno, sin resonancia orbital

de ningún tipo, que se denominan $\underline{\text{cubewanos}}$ u objetos clásicos del cinturón de Kuiper. [$cita\ requerida$]

Resonancia 2:3 (plutinos)

Con un periodo de ~250 años, la resonancia 2:3 a 39,4 UA es, con mucho, la categoría dominante entre los objetos resonantes, con 92 confirmados y 104 posibles miembros.¹ Los objetos siguientes que orbitan en esta resonancia se nombran <u>plutinos</u> por Plutón, el primero descubierto. Algunos plutinos importantes son:²

Plutinos relevantes

Nombre	Diámetro (km)	Perihelio (ua)	Afelio (ua)	Descubridor	Año	Imagen
Plutón	2306±20			Clyde William Tombaugh	1930	
Caronte	1207±3			James W. Christy	1978	
<u>Nix</u>	46-137	29,67	48,83		2005	
<u>Hidra</u>	61-167			Telescopio espacial Hubble	2005	Flydra Styx
Cerbero	13-34			Telescopio espaciai i lubble	2011	Charon Charon
Estigia	10-25				2012	40000 km
1993 RO	90	31,462	46,628	David C. Jewitt y Jane X. Luu	1993	
1993 RP	70	34,863	43,795	David C. Jewitt y Jane X. Luu	1993	
1993 SB	130	26,719	51,572	I.P. Williams, A. Fitzsimmons y D. O'Ceallaigh	1993	
1993 SC	363	32,095	46,7	I.P. Williams, A. Fitzsimmons y D. O'Ceallaigh	1993	
<u>lxión</u>	822	30,0009	49,0773	Deep Ecliptic Survey	2001	
Haumea	1300–1900			José L. Ortiz y Michael E. Brown	2003	
Namaka	170	43,339	51,524	Brown, Trujillo, Rabinowitz	2005	
<u>Hiʻiaka</u>	310			Brown, Trujillo, Rabinowitz	2005	
Orcus	917±25	30,53	48,31	Brown, Trujillo, Rabinowitz	2004	

Makemake	1430±14	38,590	52,840	<u>Brown, Trujillo,</u> <u>Rabinowitz</u>	2005	
2003 VS ₂	523 ^{+35,1} 523 ^{+34,4}	36,427	42,104	NEAT	2003	
2003 AZ ₈₄	730	32,309	46,554	Brown, Trujillo	2003	
<u>Huya</u>	458,0±9.2	28,520	50,363	Ignacio Ferrín	2000	

Resonancia 3:5

A octubre de 2008 se habían encontrado 10 de estos objetos. Tienen un periodo de ~275 años. Estos son los tres más importantes:

Nombre Diámetro (km) Perihelio (ua) Afelio (ua) **Descubridor** Año **Imagen** 2001 YH₁₄₀ 345±45 36,368 Brown, Trujillo 2001 48,39 1994 JS 121 33,095 51,954 David C. Jewitt, Jane X. Luu 1994 2003 US₂₉₂ 2003

Resonancia 4:7

Con un período de ~290 años, otro importante grupo (a octubre de 2008 cerca de 20 objetos encontrados) que orbitan al Sol a 43,7 UA (en medio de los objetos clásicos). Los objetos son bastante pequeños (con una sola excepción, H>6) y la mayoría de ellos siguen órbitas cercanas a la eclíptica. Los objetos con órbitas bien conocidas incluyen:

Nombre	Diámetro (km)	Perihelio (ua)	Afelio (ua)	Descubridor	Año	Imagen
1999 CD ₁₅₈	420	37,52	49,88		1999	
2002 PA ₁₄₉					2002	
2001 KP ₇₇	110–240	36,021	52,020	Marc W. Buie	2001	
1999 HT ₁₁	146	38,858	49,231	Observatorio Kitt Peak	1999	
2000 OY ₅₁					2000	

Resonancia 1:2 (twotinos)

Con un período de ~330 años, esta resonancia a 47,8 AU es a menudo considerada como el borde exterior del cinturón de Kuiper, y a los objetos en esta resonancia se les llama a veces *twotinos*. Los twotinos tienen inclinaciones de menos de 15 grados y excentricidades generalmente moderados (0.1 < e < 0.3). Un número desconocido de resonantes 1:2 probablemente no se originó en un disco de planetesimales que fue barrido por la resonancia durante la migración de Neptuno, sino que fueron capturados cuando ya se habían dispersado. $\frac{4}{3}$

Hay muchos menos objetos en esta resonancia (un total de 14 desde octubre de 2008) que plutinos. La integración orbital a largo plazo muestra que la resonancia 1:2 es menos estable que la 2:3; solo el 15% de los objetos en resonancia 1:2 eran estables tras 4000 millones de años, en comparación con un 28 % de plutinos .3 En consecuencia, los twotinos podía haber sido originalmente tan numerosos como los plutinos, pero su población ha caído muy por debajo de la de plutinos desde entonces. $\frac{3}{2}$

Twotinos relevantes

Nombre	Diámetro (km)	Perihelio (ua)	Afelio (ua)	Descubridor	Año	Imagen
2002 WC ₁₉	~440	35,361	60,94	Observatorio Palomar	2002	
1998 SM ₁₆₅	287±36	29,902	65,154	65,154 <u>Nichole M. Danzl⁵</u>		
1999 RB ₂₁₆	153	33,655	61,184	C. A. Trujillo, D. C. Jewitt, y J. X. Luu ⁶	1999	
1996 TR ₆₆					1996	
2000 JG ₈₁	67	34,172	61,546	Observatorio de la Silla	2000	
2000 AF ₂₅₅					2000	
2001 UP ₁₈					2001	
2000 QL ₂₅₁					2000	

Resonancia 2:5

Tienen una órbita de ~410 años. En total, las órbitas de 11 objetos se clasifican en resonancia 2:5 desde octubre de 2008. Los objetos con órbitas bien establecidos en 55,4 UA incluyen:²

Nombre	Diámetro (km)	Perihelio (ua)	Afelio (ua)	Descubridor	Año	Imagen
2002 TC ₃₀₂	584,1 ^{+105,6}	39,199	71,870	Brown, Trujillo, Rabinowitz	2002	
2003 UY ₁₁₇					2003	
2001 KC ₇₇	201	35,418	76,001	Marc Buie	2001	
2002 GG ₃₂					2002	
1998 WA ₃₁	139	31,473	78,179	Marc Buie	1998	

Resonancia 1:1 (troyanos de Neptuno)

Algunos objetos han sido descubiertos con un semieje mayor similar al de Neptuno, cerca de los <u>Puntos de Lagrange Sol-Neptuno</u>. Estos <u>Troyanos de Neptuno</u>, están en una resonancia **1:1** con Neptuno. Han sido descubiertos nueve de estos objetos a octubre de **2012**:

- 2001 QR₃₂₂
- 2004 UP₁₀
- 2005 TN₅₃
- 2005 TO₇₄
- 2006 RJ₁₀₃
- 2007 VL₃₀₅
- 2008 LC₁₈
- 2004 KV₁₈
- 2011 HM₁₀₂

Solo los últimos tres se encuentran cerca del L5 de Neptuno, el resto se encuentran en L4 .⁷

Otras resonancias

Las llamados resonancias de orden superior son conocidas por un número limitado de objetos, incluidos los siguientes:²

- **4:5** (35 UA, ~205 años) (131697) 2001 XH₂₅₅
- **3:4** (36,5 UA, ~220 años) (143685) 2003 SS₃₁₇, (15836) 1995 DA₂
- **5:9** (44,5 UA, ~295 años) 2002 GD₃₂⁸
- **4:9** (52 UA, ~370 años) (42301) 2001 UR₁₆₃, (182397) 2001 QW₂₉₇⁹

- **3:7** (53 UA, ~385 años) (131696) 2001 XT₂₅₄, (95625) 2002 GX₃₂, (183964) 2004 DJ₇₁, (181867) 1999 CV₁₁₈
- **5:12** (55 UA, ~395 años) (79978) 1999 CC₁₅₈, (119878) 2001 CY₂₂₄¹⁰ (84% de probabilidad de acuerdo con Emel'yanenko)
- **3:8** (57 UA, ~440 años) (82075) 2000 YW₁₃₄¹¹ (84% de probabilidad de acuerdo con Emel'yanenko)
- **3:10** (67 UA, ~549 años) (225088) 2007 OR₁₀
- 2:7 (70 UA, ~580 años) (471143) Dziewanna, 2006 HX₁₂₂¹² (La órbita preliminar sugiere una resonancia 2:7 débil. Se requieren más observaciones.)

Algunos objetos se encuentran en resonancias distantes²

- **1:3** (62,5 UA, ~495 años) (136120) 2003 LG₇; (385607) 2005 EO₂₉₇13
- **1:4** (76 UA, ~660 años) 2003 LA₇¹⁴
- **1:5** (88 UA, ~820 años) <u>2003 YQ₁₇₉</u> (aparentemente coincidencial) 15

Algunas notables resonancias *no probadas* (que podrían ser coincidencia) de planetas enanos son:

El libración nominal 7:12 de

<u>Haumea</u> en un diagrama donde

Neptuno se mantiene estático. El
color cambia de rojo a verde donde
cruza la eclíptica.

- 7:12 (43 UA, ~283 años) Haumea¹⁶ (órbita nominal muy probable en resonancia)
- **6:11** (45 UA, ~302 años) Makemake 17 ((182294) 2001 KU₇₆ parece estar también en resonancia 6:11)
- **5:17** (67 UA, ~560 años) Eris¹⁷ (2007 OR₁₀ se encuentra en una órbita similar)

Sin resonancia (cubewanos)

Un **cubewano**, llamado también "objeto clásico del cinturón de Kuiper" o, en inglés, *classical Kuiper belt object* (CKBO), es un objeto transneptuniano que no cumple ningún tipo de resonancia orbital con Neptuno. El nombre tan peculiar se deriva del primer objeto de esta clase, el *1992 QB1*; pronunciado en inglés: /kju:bi wʌn/.

Cubewanos relevantes

Nombre	Diámetro (km)	Perihelio (ua)	Afelio (ua)	Descubridor	Año	Imagen
Albion	160	40,8754	46,5925	David C. Jewitt, Jane X. Luu	1992	
1998 WW ₃₁	133±15			M. W. Buie	1998	
<u>S/(WW31)</u>	110±12	41,045	48,472	Christian Veillet, Alain Doressoundiram	2000	
<u>Varuna</u>	757	40,494	45,313	R. McMillan	2000	
Quaoar	1110	44.005	45 440	Chad Trujillo, Michael Brown	2002	
Weywot	≈ 170	41,695	45,116	Michael Brown, Terry-Ann Suer	2006	
Logos	77±18	39,675	50,50	C. A. Trujillo, J. Chen, D. C. Jewitt, J. X. Luu	1997	•
Zoe	66			varios	2001	
Varda	705 ⁺⁸¹	39.622	52.284	J. A. Larsen	2003	
Chaos	612	40,929	50,269	Deep Ecliptic Survey	1998	
2002 TX ₃₀₀	320	38.1057	48.954	NEAT	2002	
2002 AW ₁₉₇	768	41,066	53,503	varios	2002	
2002 UX ₂₅	650	36,815	48,923	Spacewatch	2002	

Disco disperso

Objetos relevantes del disco disperso

Nombre	Diámetro (km)	Perihelio (ua)	Afelio (ua)	Descubridor	Año	Imagen	
2004 XR ₁₉₀	425–850	51,394	64,032	Lynne Jones, Brett Gladman, John J. Kavelaars, Jean-Marc Petit, Joel Parker, Phil Nicholson.	2004		
Gonggong	1230 ± 50			M. E. Brown, Schwamb, David Lincoln Rabinowitz	2007		
Xiangliu	< 100	33,62	100,79	Gábor Marton, Csaba Kiss, Thomas Müller	2010		
1996 TL ₆₆	339±20	35,010	132,87	David C. Jewitt, Jane X. Luu, Jun Chen, C. A. Trujillo	1996		
Eris	2326			M. E. Brown, C. A. Trujillo, David Lincoln Rabinowitz	2005		
<u>Disnomia</u>	350	35	97	M. E. Brown, M. A. van Dam, A. H. Bouchez, D. Le Mignant	2005		

Objetos separados

A veces considerados como objetos del <u>disco disperso</u> exterior. Esta es una lista de los <u>objetos</u> <u>separados</u> conocidos, que no podrían ser fácilmente dispersados por la órbita de Neptuno y por lo tanto es probable que sean objetos separados, pero que se encuentran dentro de la distancia de perihelio ≈50-75 UA, frontera usada que definiría a los sednoides.

Objetos separados relevantes

Nombre	Diámetro (km)	Perihelio (UA)	Semieje mayor (UA)	Afelio (UA)	Arg. per. (°)	Año	Descubridor	Imagen
2004 XR ₁₉₀ ¹⁸	335–850	51,49 ± 0,10	57,74 ± 0,02	64,00 ± 0,02		2004	Lynne Jones et al.	
2004 VN ₁₁₂ ²⁰ 21	130–300	47,332±0,004	328,8±1,6	610±3	327,22±0,07	2004	CTIO ²²	
2005 TB ₁₉₀	≈500	46,2	76,4	106,5		2005	Becker, A. C. et al.	
2000 CR ₁₀₅ ¹⁸	≈250	44,0	224	403	316,5	2000	Lowell Observatory	
1995 TL ₈	≈350	40,0	52,5	64,5		1995	A. Gleason	
2010 GB ₁₇₄	242 ²³	48,5	361	673	347,3	2010	OCFH	

Nube de Oort interior

La <u>nube de Hills</u>, también llamada nube de Oort interior 24 y Nube Interior 25 es, en astronomía, un vasto y esférico cuerpo hipotético interior en la <u>nube de Oort</u>, cuyo borde exterior se localiza a una distancia de 2 a 3×10^4 <u>UA</u> del <u>Sol</u>, y cuyo borde interior, no tan definido, está hipotéticamente localizado dentro las 100 y las 3000 UA.

Objetos relevantes de la nube interior

Nombre	Diámetro (km)	Perihelio (ua)	Afelio (ua)	Descubridor	Año	Imagen
Sedna	995±80	76,0917	≈936	Michael E. Brown, C. <u>Trujillo,</u> D. Rabinowitz	2003	
2012 VP ₁₁₃	~500	80,5 ± 0,6	446 ± 13	Scott Sheppard, Chad Trujillo	2012	
2015 TG ₃₈₇	≈300	65±1	≈2300	Scott Sheppard, Chad Trujillo	2015	

Nube de Oort

Posibles objetos de la nube de Oort

Nombre	Diámetro (km)	Perihelio (ua)	Afelio (ua)	Año de descubrimiento	Descubridor
2006 SQ ₃₇₂	50 – 100 km	24,17	2.005,38	2006	Sloan Digital Sky Survey
2008 KV ₄₂	58,9	20.217	71.760	2008	Observatorio Canada, Francia, Hawái

La hipotética <u>estrella compañera</u> <u>Némesis</u> entraría en la definición de objeto transneptuniano, aunque no está demostrada su existencia.

Plutino y plutoide

No se deben confundir los términos <u>plutino</u> y <u>plutoide</u>. Cada una de estas categorías agrupan a objetos transneptunianos que, si bien pueden pertenecer a las dos a la vez, cada una tiene como requisito distintas características:

- Los <u>plutinos</u> son objetos transneptunianos que tienen características orbitales similares a Plutón, independientemente de su tamaño.
- Los <u>plutoides</u> son objetos transneptunianos con un tamaño similar al de <u>Plutón</u>, independientemente del grupo orbital al que pertenezcan.

Véase también

- Planetas más allá de Neptuno
- Anexo:Objetos astronómicos

Referencias

- 1. Trans-Neptunian objects (http://www.johnstonsarchive.net/astro/tnos.html)
- 2. List of the classified orbits from MPC (http://cfa-www.harvard.edu/mpec/K08/K08S05.html) October, 2008
- 3. M. Tiscareno, R. Malhotra (April 2008). «Chaotic Diffusion of Resonant Kuiper Belt Objects». *The Astronomical Journal* **194** (3): 827-837. Bibcode:2009AJ....138..827T (http://adsabs.harvard.edu/abs/2009AJ....138..827T). arXiv:0807.2835 (https://arxiv.org/abs/0807.2835). doi:10.1088/0004-6256/138/3/827 (https://dx.doi.org/10.1088%2F0004-6256%2F138%2F3%2F827).
- 4. Lykawka, Patryk Sofia & Mukai, Tadashi (July 2007). «Dynamical classification of transneptunian objects: Probing their origin, evolution, and interrelation» (http://www.researchgate.net/profile/Patryk_Lykawka/publication/223445604_Dynamical_classification_of_trans-neptunian_objects_Probing_their_origin_evolution_and_interrelation/links/543a16ea0cf204cab1d97044.pdf). *Icarus* 189 (1): 213-232. Bibcode:2007lcar..189..213L (http://adsabs.harvard.edu/abs/2007lcar..189..213L). doi:10.1016/j.icarus.2007.01.001 (https://dx.doi.org/10.1016%2Fj.icarus.2007.01.001).
- 5. «List Of Transneptunian Objects» (http://cfa-www.harvard.edu/iau/lists/TNOs.html).
- 6. List Of Transneptunian Objects (http://cfa-www.harvard.edu/iau/lists/TNOs.html)

- 7. «List Of Neptune Trojans» (http://www.minorplanetcenter.org/iau/lists/NeptuneTrojans.html). Minor Planet Center. Consultado el 8 de enero de 2013.
- 8. Marc W. Buie. "Orbit Fit and Astrometric record for 02GD32" (https://web.archive.org/web/201 00809022621/http://www.boulder.swri.edu/~buie/kbo/astrom/02GD32.html) (2005-04-11 using 20 observations). SwRI (Space Science Department). Archivado desde el original (http://www.boulder.swri.edu/~buie/kbo/astrom/02GD32.html) el 9 de agosto de 2010. Consultado el 5 de febrero de 2009.
- 9. Marc W. Buie. «Orbit Fit and Astrometric record for 182397» (http://www.boulder.swri.edu/~buie/kbo/astrom/182397.html) (2007-11-09 using 23 observations). SwRI (Space Science Department). Consultado el 29 de enero de 2009.
- 10. Marc W. Buie. "Orbit Fit and Astrometric record for 119878" (http://www.boulder.swri.edu/~buie/kbo/astrom/119878.html) (2005-12-06 using 41 observations). SwRI (Space Science Department). Consultado el 29 de enero de 2009.
- 11. Marc W. Buie. «Orbit Fit and Astrometric record for 82075» (http://www.boulder.swri.edu/~buie/kbo/astrom/82075.html) (2004-04-16 using 62 of 63 observations). SwRI (Space Science Department). Consultado el 29 de enero de 2009.
- 12. «MPEC 2008-K28 : 2006 HX122» (http://www.cfa.harvard.edu/mpec/K08/K08K28.html). Minor Planet Center. 23 de mayo de 2008. Consultado el 30 de enero de 2009.
- 13. The Scattered Disk: Origins, Dynamics, and End States (http://www.fisica.edu.uy/~gallardo/scatdisk.pdf). Gomes, R. S.; Fernández, J. A.; Gallardo, T.; Brunini, A.
- 14. Marc W. Buie. «Orbit Fit and Astrometric record for 03LA7» (http://www.boulder.swri.edu/~buie/kbo/astrom/03LA7.html) (2007-04-21 using 13 of 14 observations). SwRI (Space Science Department). Consultado el 29 de enero de 2009.
- 15. Marc W. Buie. "Orbit Fit and Astrometric record for 03YQ179" (https://web.archive.org/web/20 120224182141/http://www.boulder.swri.edu/~buie/kbo/astrom/03YQ179.html) (2008-03-03 using 23 of 24 observations). SwRI (Space Science Department). Archivado desde el original (http://www.boulder.swri.edu/~buie/kbo/astrom/03YQ179.html) el 24 de febrero de 2012. Consultado el 29 de enero de 2009.
- 16. D. Ragozzine; M. E. Brown (4 de septiembre de 2007). «Candidate Members and Age Estimate of the Family of Kuiper Belt Object 2003 EL₆₁». *The Astronomical Journal* **134** (6): 2160-2167. Bibcode:2007AJ....134.2160R (http://adsabs.harvard.edu/abs/2007AJ....134.2160R). arXiv:0709.0328 (https://arxiv.org/abs/0709.0328). doi:10.1086/522334 (https://dx.doi.org/10.1086%2F522334).
- 17. Tony Dunn. «Possible resonances of Eris (2003 UB₃₁₃) and Makemake (2005 FY₉)» (http://www.orbitsimulator.com/gravity/articles/newtno.html). Gravity Simulator. Consultado el 29 de enero de 2009.
- 18. E. L. Schaller and M. E. Brown (2007). «Volatile loss and retention on Kuiper belt objects» (htt p://www.gps.caltech.edu/~mbrown/papers/ps/volatiles.pdf). *Astrophysical Journal* **659**: I.61-I.64. Bibcode:2007ApJ...659L..61S (http://adsabs.harvard.edu/abs/2007ApJ...659L..61S). doi:10.1086/516709 (https://dx.doi.org/10.1086%2F516709). Consultado el 2 de abril de 2008.
- 19. R. L. Allen, B. Gladman (2006). "Discovery of a low-eccentricity, high-inclination Kuiper Belt object at 58 AU". *The Astrophysical Journal* **640**. arXiv:astro-ph/0512430 (https://arxiv.org/abs/astro-ph/0512430). doi:10.1086/503098 (https://dx.doi.org/10.1086%2F503098).
- 20. Marc W. Buie (8 de noviembre de 2007). «Orbit Fit and Astrometric record for 04VN112» (http://web.archive.org/web/20100818145946/http://www.boulder.swri.edu/~buie/kbo/astrom/04VN 112.html). SwRI (Space Science Department). Archivado desde el original (http://www.boulder.swri.edu/~buie/kbo/astrom/04VN112.html) el 18 de agosto de 2010. Consultado el 17 de julio de 2008.
- 21. «JPL Small-Body Database Browser: (2004 VN112)» (http://ssd.jpl.nasa.gov/sbdb.cgi?sstr=20

- 04 VIVI 12/1. OUIISUILAUU EI 24 UE IEDIEIU UE 2013.
- 22. «List Of Centaurs and Scattered-Disk Objects» (http://www.minorplanetcenter.net/iau/lists/Centaurs.html). Consultado el 5 de julio de 2011.
- 23. Michael E. Brown (10 de septiembre de 2013). «How many dwarf planets are there in the outer solar system? (updates daily)» (http://www.gps.caltech.edu/~mbrown/dps.html). California Institute of Technology. Consultado el 27 de mayo de 2013.
- 24. ver nube de Oort
- 25. astronomie, astéroïdes et comètes (http://villemin.gerard.free.fr/Science/Asteroid.htm)

Enlaces externos

- Wikimedia Commons alberga una categoría multimedia sobre Objeto transneptuniano.
- Lista de objetos transneptunianos de la IAU (https://minorplanetcenter.net/iau/lists/TNOs.html)
 (en inglés)
- The Kuiper Belt and The Oort Cloud (https://web.archive.org/web/20000303081140/http://sed s.lpl.arizona.edu/nineplanets/nineplanets/kboc.html) Universidad de Arizona. (en inglés)
- The Kuiper Belt (https://web.archive.org/web/20020607193926/http://www.sciam.com/0596issue/0596jewitt.html) Revista *Scientific American*. (en inglés)

Obtenido de «https://es.wikipedia.org/w/index.php?title=Objeto_transneptuniano&oldid=157777268»