Congratulations! You passed!

received 100%

Latest Submission Grade 100%

To pass 80% or higher

Go to next item

3. Recall this diagram of iterating over different ML ideas. Which of the statements below are true? (Check all that apply.)

1/1 point

	∠ ⁷ Expand	
	○ Correct Yes. Images for cat recognition are examples of "unstructured" data.	
7.	A dataset is composed of age and weight data for several people. This dataset is an example of "structured" data	1/1 point
	because it is represented as an array in a computer. True/False? True	
	○ False	
	∠ [™] Expand	
	○ Correct Yes, the sequences can be represented as arrays in a computer. This is an example of structured data.	
3.	RNNs (Recurrent Neural Networks) are good for data with a temporal component. True/False?	1/1 point
	True False	
	∠ ² Expand	
	Correct Yes, RNN are designed to work with sequences; the elements of a sequence can be sorted by a temporal component.	
).		1/1 point
		,

Scale drives deep learning progress

From the given diagram, we can deduce that Large NN models are always better than traditional learning algorithms. True/False?

False

O True

∠⁷ Expand

Correct

Yes, when the amount of data is not large the performance of traditional learning algorithms is shown to

be the same as NN.

10. Assuming the trends described in the previous question's figure are accurate (and hoping you got the axis label right), which of the following are true? (Check all that apply.)		
Increasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly.		
Correct Yes. According to the trends in the figure above, big networks usually perform better than small networks.		
Increasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.		
 Correct Yes. Bringing more data to a model is almost always beneficial. 		
Decreasing the training set size generally does not hurt an algorithm's performance, and it may help significantly.		
 Decreasing the size of a neural network generally does not hurt an algorithm's performance, and it may help significantly. 		
_ℓ [¬] Expand		
Correct Great, you got all the right answers.		

1/1 point