

- 1.用归纳定义法给出下列集合。
- (1) 不允许有前0的被 5 整除的二进制无符号整数的集合
- (2) 集合{0,1,4,9,16,25,...}

习题1.2

10. 设
$$A_n = \{x \mid x \in R \perp x > n\}$$
, $n \in N$, 试求 $\bigcup_{n=0}^{\infty} A_n$ 和 $\bigcap_{n=0}^{\infty} A_n$

习题1.4

2、证明或用反例推翻下列命题:

c)
$$(A-B)\times(C-D)=(A\times C)-(B\times D)$$

d)
$$(A \oplus B) \times (C \oplus D) = (A \times C) \oplus (B \times D)$$

习题1.4.

7、为了给出序偶的另一定义,选取两个不同集合 A 和 B(例如取 $A=\emptyset$, $B=\{\emptyset\}$),并定义 $A=\emptyset$ 0 $A=\emptyset$ 1 $A=\emptyset$ 3 。证明这个定义的合理性。 $A=\emptyset$ 3 $A=\emptyset$ 4 $A=\emptyset$ 5 $B=\{\emptyset\}$ 6 $A=\emptyset$ 7 $A=\emptyset$ 6 $A=\emptyset$ 7 $A=\emptyset$ 7 $A=\emptyset$ 7 $A=\emptyset$ 8 $A=\emptyset$ 9 $A=\emptyset$ 9

习题2.1

- 1.列出从A到B的关系R中的所有序偶。
- b) $A=\{1, 2, 3, 4, 5\}$, $B=\{1, 2, 3\}$, $R=\{\langle x, y \rangle | x \in A, y \in B \perp x = y^2\}$.
- 8、设n, m∈I₊。若集合A恰有n个元素,则在A上能有多少个不同的m元关系?证明你的结论。

习题2.2

- 4. 设A为恰有n个元素的有限集。
- b) 共有多少个A上的不相同的反自反关系?
- d) 共有多少个A上的不相同的反对称关系?
- e) 共有多少个A上的不相同的既是对称又反对称的关系?

习题2.3

3. 设 I_A 为集合A上的恒等关系,即 I_A ={<x, x>|x \in A}。则对A上的任意二元关系R,A上的二元关系 I_A \cup R \cup R $^{-1}$ 必是自反的和对称的。

习题2.4

- 5. 设 R_1 和 R_2 都是集合A上的二元关系。证明或用反例推翻以下的论断:
- b) 如果 R_1 和 R_2 都是反自反的,则 R_1 o R_2 也是反自反的;
- d) 如果 R_1 和 R_2 都是反对称的,则 R_1 0 R_2 也是反对称的;

6、设 $A=\{0,1,2,3\}$ 上的二元关系 R_1 和 R_2 为 $R_1=\{<\underline{i},\underline{j}>|\underline{j}=i+1$ 或 $\underline{j}=i/2\}$; $R_2=\{<\underline{i},\underline{j}>|\underline{i}=\underline{j}+2\}$ 试求 M_{R_1} , M_{R_2} , $M_{R_1\bullet R_2}$, $M_{R_1\bullet R_2\bullet R_1}$ 及 $M_{R_1^3}$ 。

10. 如果集合A上的二元关系R既是自反的,又是传递的,则 $R^2=R$

м

习题2.4

- 12、设 R 为从集合 A 到集合 B 的二元关系,且对每个 $X \subseteq A$,皆令 R (X)={ $y \in B$ |有 $x \in X$ 使 < x, $y > \in R$ }。若 $X_1 \subseteq A$ 且 $X_2 \subseteq A$,则有。
- i) $R(X_1 \cup X_2) = R(X_1) \cup R(X_2);$
- ii) $R(X_1 \cap X_2) \subseteq R(X_1) \cap R(X_2)$;
- *iii*) $R(X_1 \setminus X_2) \supseteq R(X_1) \setminus R(X_2)$;

习题2.5

- $4、设<math>R_1$ 和 R_2 都是集合A上的二元关系,试证明:
- a) $r(R_1 \cap R_2) = r(R_1) \cap r(R_2);$
- b) $s(R_1 \cap R_2) \subseteq s(R_1) \cap s(R_2);$
- c) $t(R_1 \cap R_2) \subseteq t(R_1) \cap t(R_2)$.
- 并分别给出使 $s(R_1) \cap s(R_2) \subseteq s(R_1 \cap R_2)$ 和 $t(R_1) \cap t(R_2) \subseteq t(R_1 \cap R_2)$ 不成立的 $R_1 \cap R_2$ 的具体实例。

M

习题2.7

- 1、试判断下列/L上的二元关系是不是I上的等价关系,并说明理由。
- a) {< i, j >| i, j∈ I 且 i· j >0};
- **■** c) {< *i*, *j* > | *i*, *j* ∈ **I**且 *i*≤0 };
- e) {< i, j > | i, j∈ I 且 i | j };
- **■** g) {< i, j>| i, j∈ **I**且| i−j |≤10 };
- i) {< i, j > | i, j ∈ I 且有 x ∈ I 使 10x < i < 10(x + 1)}。
- 3、 设集合 A 上的二元关系 R 是自反的。证明 R 为等价关系的充要条件是: 若 $\langle a,b \rangle$, $\langle a,c \rangle \in \mathbb{R}$,则 $\langle b,c \rangle \in \mathbb{R}$.

- 6. 设C₁和C₂都是集合A的划分。试判断下列 集类是不是A的划分,为什么?
- b) $C_1 \cap C_2$;
- d) $(C_1 \cap (C_2 C_1)) \cup C_1$;

例. 设<A, $\le>$ 为偏序结构,证明A的每个非空有限子集都至少有一个极小元和极大元。

证: (反证法)设S 为A的任意一个非空有限子集,且S没有极小元。

则对任意的 $\mathbf{a}_0 \in \mathbf{S}$, 存在 $\mathbf{a}_1 \in \mathbf{S}$, 使得 $\mathbf{a}_1 \leq \mathbf{a}_0$ 。

可以证明,对任意的 $n \in I_+$,若存在 a_0 , a_1 ,…, $a_n \in S$,满足 $a_n \le a_{n-1} \le \dots \le a_1 \le a_0$,由于S没有极小元,则一定存在 a_{n+1} ,使得 $a_{n+1} \le a_n$ 。

由归纳法知,S中一定存在一个无限递减序列 a_0 , a_1 , ..., a_n ,....,矛盾。因此S一定有一个极小元。

同理可证S一定有一个极大元。

例: 设<A,≤>为全序结构,证明A的每个非空有限子 集都至少有一个最小元和最大元。

- 例:设A为恰有n个元素的有限集。
- (2) 共有多少个A上的不相同的反对称关系?

解: (2) 设R是A上的反对称关系,则对任意的 $x,y \in A$, $x \neq y$, 当 $\langle x, y \rangle \in R$ 时,一定有 $\langle y, x \rangle \notin R$,即 $\langle x, y \rangle$ 与 $\langle y, x \rangle$ 在R中要么都不出现,要么只出现一个。此时有三种情况:

- (a) $\langle x, y \rangle \in \mathbb{R}, \langle y, x \rangle \notin \mathbb{R}$,
- (b) $\langle y, x \rangle \in \mathbb{R}$, 且 $\langle x, y \rangle \notin \mathbb{R}$, 或
- $(c) \langle x, y \rangle \notin \mathbb{R}, \langle y, x \rangle \notin \mathbb{R}_{\circ}$

成对考虑序偶对<x, y>, <y, x>, x≠y, 一共有n(n-1)/2对。

另外,对任意的 $x \in A$,有< x, $x > \in \mathbb{R}$ 或者< x, $x > \notin \mathbb{R}$,这 样的序偶< x, x > - 共有n个。

因此,A上的不相同的反自反关系的个数为 3n(n-1)/2·2n

例:设 Π_1 和 Π_2 都是集合A的划分,若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$ 使 $S_1 \subseteq S_2$,就称 Π_1 是 Π_2 的加细,记为 $\Pi_1 \leq \Pi_2$;若 $\Pi_1 \leq \Pi_2$ 且 $\Pi_1 \neq \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 $\Pi_1 < \Pi_2$ 。设 Π_1 和 Π_2 都是集合A上的等价关系,证明:

- (1) $R_1 \subseteq R_2$ 当且仅当 $A/R_1 \le A/R_2$ 。
- (2)R₁CR₂当且仅当A/R₁<A/R₂。

证: (1) (必要性) 若 $\mathbf{R}_1 \subseteq \mathbf{R}_2$,则对任意 $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbf{R}_1$,则一定有 $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbf{R}_2$ 。

对任意的 $S_1 \in A/R_1$,设 $S_1=[x]_{R1}$,其中 $x \in A$,则对任意 $y \in A$,若 $y \in [x]_{R1}$, 则必有 $y \in [x]_{R2}$, 因此 $[x]_{R1} \subseteq [x]_{R2}$.

显然, $[x]_{R2} \in A/R_2$ 。故 $A/R_1 \le A/R_2$ 。

(充分性) 对任意的 $\langle x, y \rangle \in \mathbb{R}_1$, 则有 $x, y \in [x]_{\mathbb{R}_1}$ 。

由于 $A/R_1 \le A/R_2$, 必存在 $S_2 \in A/R_2$, 使得 $[x]_{R_1} \subseteq S_2$, 得 $x, y \in S_2$. 从而得 $\langle x, y \rangle \in R_2$ 。

因此 $\mathbf{R}_1 \subseteq \mathbf{R}_2$ 。

例:设 Π_1 和 Π_2 都是集合A的划分,若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$ 使 $S_1 \subseteq S_2$,就称 Π_1 是 Π_2 的加细,记为 $\Pi_1 \leq \Pi_2$;若 $\Pi_1 \leq \Pi_2$ 且 $\Pi_1 \neq \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 $\Pi_1 < \Pi_2$ 。设 Π_1 和 Π_2 都是集合A上的等价关系,证明:

(1) R₁ 二 R₂ 当且仅当 A/R₁ ≤ A/R₂。

(2)R₁CR₂当且仅当A/R₁<A/R₂。

证: (2) (必要性) 若 $R_1 \subset R_2$,则由(1) 知 $A/R_1 \le A/R_2$ 。下面证明 $A/R_1 \ne A/R_2$ 。

由于 \mathbf{R}_1 C \mathbf{R}_2 ,则必存在 $\langle \mathbf{x}, \mathbf{y} \rangle \in \mathbf{R}_2$,且 $\langle \mathbf{x}, \mathbf{y} \rangle \notin \mathbf{R}_1$,得 $[\mathbf{x}]_{\mathbf{R}_1} \neq [\mathbf{x}]_{\mathbf{R}_2}$ 。

又因为 $\mathbf{R}_1 \subset \mathbf{R}_2$,因此 $[\mathbf{x}]_{\mathbf{R}_1} \subseteq [\mathbf{x}]_{\mathbf{R}_2}$,得 $[\mathbf{x}]_{\mathbf{R}_1} \subset [\mathbf{x}]_{\mathbf{R}_2}$ 。

可证: 不存在[x']_{R1} \in A/R₁使得[x']_{R1}=[x]_{R2}; 否则有[x]_{R1} \subset

[x']_{R1},矛盾。

因此 $A/R_1 \neq A/R_2$ 。

例:设 Π_1 和 Π_2 都是集合A的划分,若对每个 $S_1 \in \Pi_1$,皆有 $S_2 \in \Pi_2$ 使 $S_1 \subseteq S_2$,就称 Π_1 是 Π_2 的加细,记为 $\Pi_1 \leq \Pi_2$;若 $\Pi_1 \leq \Pi_2$ 且 $\Pi_1 \neq \Pi_2$,就称 Π_1 为 Π_2 的真加细,并记为 $\Pi_1 < \Pi_2$ 。设 Π_1 和 Π_2 都是集合A上的等价关系,证明:

- (1) $R_1 \subseteq R_2$ 当且仅当 $A/R_1 \le A/R_2$ 。
- (2)R₁CR₂当且仅当A/R₁<A/R₂。

证: (2) (充分性) 若A/ R_1 <A/ R_2 ,则由(1)知 R_1 ⊆ R_2 。

下面证明存在<x, y> ∈ \mathbb{R}_2 , 但<x, y> \notin \mathbb{R}_1 。

由于A/ $R_1 \neq A/R_2$,则存在 $S_1 \in A/R_1$, $S_2 \in A/R_1$,有 $S_1 \subset S_2$ 。

设 $S_1=[x]_{R1}$,则 S_2 必为 $[x]_{R2}$,因此存在 $y \in S_2$,有 $\langle x, y \rangle \in$

 R_2 但<x, y> $\notin R_1$ 。

所以,得 $\mathbf{R}_1 \subset \mathbf{R}_2$ 。

例:如果 $n,m \in I_+$,则 $I/_{=n}$ 为/ $I_{=m}$ 的加细当且仅当m|n。

证: (必要性) 设 $I/_{m}$ 为/ I_{m} 的加细。

已知 $I/_{=n} = \{ [0]_{=n}, [1]_{=n}, ..., [n-1]_{=n} \}$,其中 $[i]_{=n} = \{kn+i|$

 $k \ge 0$ }, i=0,..., n-1;

 $I/_{=m} = \{ [0]_{=m}, [1]_{=m}, ..., [m-1]_{=m} \}$,其中 $[i]_{=m} = \{km+i|$

 $k \ge 0$, i = 0, ..., m-1.

由于 $I/_{m}$ 为/ I_{m} 的加细,因此存在 $0 \le i \le m-1$,使得

 $[0]_{\equiv_{\mathbf{n}}}$ \subseteq $[i]_{\equiv_{\mathbf{m}}}$, 得 \mathbf{n} , $2\mathbf{n} \in [i]_{\equiv_{\mathbf{m}}}$ 。

设n= km+i, 2n=k'm+i, 则n=(k'-k)m, 得m|n

例:如果 $n,m \in I_+$,则 $I_{=n}$ 为/ $I_{=m}$ 的加细当且仅当m|n。

证: (充分性) 若 m|n,设n=k'm,其中 $k' \in I_+$ 。

已知 $I_{=n} = \{ [0]_{=n}, [1]_{=n}, ..., [n-1]_{=n} \}$,其中 $[i]_{=n} = \{kn+i | k \geq 0\}, i=0,..., n-1;$

 $I_{=m} = \{ [0]_{=m}, [1]_{=m}, ..., [m-1]_{=m} \}$,其中 $[i]_{=m} = \{km+i | k \ge 0\}, i=0,..., m-1$ 。

对任意的[i]_n, $0 \le i \le n$, 有

 $[i]_{=n} = \{kn+i \mid k \in I \perp k \geq 0\} = \{kk'm+i \mid k \in I \perp k \geq 0, k' \in I_{+}\}.$

设i=k"m+q, 其中k, q ∈ I且 $0 \le q \le m$,得

 $[i]_{=n}$ ={(kk'+k'')m+q|k∈I \perp k≥0, k' ∈ I_+ , k, q ∈ I \perp 0 ≤ q ≤m},

因此 [i]_{=n} ⊆[q]_{=m}。

所以, $I/_{m}$ 为/ I_{m} 的加细。