7. OPTIMIZATION AS A MODEL FOR FEW-SHOT LEARNING

논문: https://openreview.net/pdf?id=rJY0-Kcll

요약

- · Optimization-based meta learning
- Learner가 모든 Task에서 빠르게 generalization할 수 있는 Initial parameter/optimize 기능을 Meta-Learner가 가지고 있는 형태
 - Meta-Learner : Long-term knowledge common among all the task (Learner의 Inital parameter 설정에 사용)
 - Learner : Shot-term knowledge within a task (Meta-Learner가 주는 parameter를 가지고 N-shot learning)
- Meta-Learner는 LSTM 기반으로 만들어짐
- 논문의 실험결과랑 달리 Matching Network와 성능이 비슷

문제제기

- few-shot learning에서 gradient-based optimization이 실패하는 이유
 - ADAM, Momentum, Adagrad 같은 Optimizer는 지정한 파라미터 업데이트 횟수만에 최적화되도록 설계돼있지 않음
 - Learner는 초기 parameter를 random initialization
 - global optima로 가는데 걸리는 횟수가 랜덤 • pre-train/fine-tuning은 성능이 좋지만 pre-train에 사용한 task와 fine-tuning에 사용한 task가 다른경우 성능이 크게 감소
- 논문의 제안
 - LSTM-based meta-learner를 Optimizer로 사용하자
 - epoch마다 하나의 episode(그림 1)로 구성
 - 같은 episode를 T번 동안 meta-learner로 learner의 parameter update를 진행
 - episode 학습 후 learner의 Evaluation set에 대한 Loss로 Meta-Learner의 parameter update 진행

Figure 1: Example of meta-learning setup. The top represents the meta-training set $\mathcal{D}_{meta-train}$, where inside each gray box is a separate dataset that consists of the training set D_{train} (left side of dashed line) and the test set D_{test} (right side of dashed line). In this illustration, we are considering the 1-shot, 5-class classification task where for each dataset, we have one example from each of 5 classes (each given a label 1-5) in the training set and 2 examples for evaluation in the test set. The meta-test set $\mathcal{D}_{meta-test}$ is defined in the same way, but with a different set of datasets that cover classes not present in any of the datasets in $\mathcal{D}_{meta-train}$ (similarly, we additionally have a meta-validation set that is used to determine hyper-parameters).

Figure 2: Computational graph for the forward pass of the meta-learner. The dashed line divides examples from the training set D_{train} and test set D_{test} . Each $(\mathbf{X}_i, \mathbf{Y}_i)$ is the i^{th} batch from the training set whereas (X, Y) is all the elements from the test set. The dashed arrows indicate that we do not back-propagate through that step when training the meta-learner. We refer to the learner as M, where $M(\mathbf{X}; \theta)$ is the output of learner M using parameters θ for inputs **X**. We also use ∇_t as a shorthand for $\nabla_{\theta_{t-1}} \mathcal{L}_t$.

- 한 Episode에서 같은 데이터셋을 T번 학습하는 과정
- Learner는 meta-learner를 통해 parameter update가 이뤄짐
 일반적인 optimization algorithm은 식 1과 같음

$$\theta_t = \theta_{t-1} - \alpha_t \nabla_{\theta_{t-1}} \mathcal{L}_t, \tag{1}$$

• 시간 t에서의 학습은 이전 시간 t-1의 모델 파라미터 $heta_{t-1}$ 에 gradient of loss $abla_{ heta_{t-1}}\mathcal{L}_{t}$ 만큼 업데이트 하는것 • LSTM의 cell state update는 식 2와 같음

$$c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c}_t, \tag{2}$$

• 기존의 LSTM이 forget gate f_t , input gate i_t , cell input activation vector \widetilde{c}_t 로 cell state를 업데이트할 때, $f_t=1, c_{t-1}= heta_{t-1}, i_t=lpha_t, ext{ and } ilde{c}_t=abla_{ heta_{t-1}}\mathcal{L}_t.$ দু গ্ৰহণ Learner의 파라미터를 업

- - cell state o learner parameter $heta_t$, cell input activation vector o gradient of loss $aims_{ heta_{t-1}} \mathcal{L}_t$
- Meta-Learner가 기억하는것 • input gate, fotget gate 위치의 값을 계산하기 위한 shallow model을 가짐
 - - 현재 파라미터 $heta_{t-1}$ 에 대한 learning rate conrol에 사용됨

$$i_t = \sigma \left(\mathbf{W}_I \cdot \left[\nabla_{\theta_{t-1}} \mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, i_{t-1} \right] + \mathbf{b}_I \right)$$

- 현재 gradient $abla_{t-1}\mathcal{L}_{t}$, loss \mathcal{L}_{t} , 시간 t-1에서의 learner parameter $heta_{t-1}$ 와 input gate i_{t-1} 를
- - 현재 파라미터 $heta_{t-1}$ 에 대한 $ext{decay contol}$ 에 사용됨 $f_t = \sigma \left(\mathbf{W}_F \cdot \left[\nabla_{\theta_{t-1}} \mathcal{L}_t, \mathcal{L}_t, \theta_{t-1}, f_{t-1} \right] + \mathbf{b}_F \right)$
- input gate와 forget gate의 파라미터는 small random weight로 초기화할 것
 small learning rate를 갖고 normal gradient descent에 가깝게 시작하기 위함
 fotget gate의 bias는 큰 값을 지정해서 forget gate값이 1에 가깝게 설정해서 decay를 하지 않는 형태로 학습

Algorithm 1 Train Meta-Learner

Input: Meta-training set $\mathscr{D}_{meta-train}$, Learner M with parameters θ , Meta-Learner R with parameters Θ .

```
1: \Theta_0 \leftarrow random initialization
 2:
 3: for d = 1, n do
           D_{train}, D_{test} \leftarrow \text{random dataset from } \mathcal{D}_{meta-train}
 4:
           \theta_0 \leftarrow c_0
                                                                                                      5:
 6:
           for t = 1, T do
 7:
                 \mathbf{X}_t, \mathbf{Y}_t \leftarrow \text{random batch from } D_{train}
 8:
                \mathcal{L}_t \leftarrow \mathcal{L}(M(\mathbf{X}_t; \theta_{t-1}), \mathbf{Y}_t)
                                                                                              ⊳ Get loss of learner on train batch
 9:
10:
                c_t \leftarrow R((\nabla_{\theta_{t-1}} \mathcal{L}_t, \mathcal{L}_t); \Theta_{d-1})
                                                                             ▶ Get output of meta-learner using Equation 2
11:
                \theta_t \leftarrow c_t
                                                                                                        ▶ Update learner parameters
           end for
12:
13:
           \mathbf{X}, \mathbf{Y} \leftarrow D_{test}
14:
           \mathcal{L}_{test} \leftarrow \mathcal{L}(M(\mathbf{X}; \theta_T), \mathbf{Y})
                                                                                                15:
           Update \Theta_d using \nabla_{\Theta_{d-1}} \mathcal{L}_{test}
                                                                                               ▶ Update meta-learner parameters
16:
17:
18: end for
```

실험

minilmageNet 데이터셋으로 기존 기법과 성능 비교 (표 1)
 성능이 더 좋다고 하나 Matching Network 논문에서의 성능과 본 논문의 실험결과와 차이가 있음

Model	5-class		
	1-shot	5-shot	
Baseline-finetune	$28.86 \pm 0.54\%$	$49.79 \pm 0.79\%$	
Baseline-nearest-neighbor	$41.08 \pm 0.70\%$	$51.04 \pm 0.65\%$	
Matching Network	${\bf 43.40 \pm 0.78\%}$	$51.09 \pm 0.71\%$	
Matching Network FCE	${\bf 43.56 \pm 0.84\%}$	$55.31 \pm 0.73\%$	
Meta-Learner LSTM (OURS)	${\bf 43.44 \pm 0.77\%}$	$\bf 60.60 \pm 0.71\%$	

Table 1: Average classification accuracies on Mini-ImageNet with 95% confidence intervals. Marked in bold are the best results for each scenario, as well as other results with an overlapping confidence interval.

Table 2: Results on miniImageNet.

Model	Matching Fn	Fine Tune	5-way Acc 1-shot 5-shot
PIXELS	Cosine	N	23.0% 26.6%
BASELINE CLASSIFIER	Cosine	N	36.6% 46.0%
BASELINE CLASSIFIER	Cosine	Y	36.2% 52.2%
BASELINE CLASSIFIER	Softmax	Y	38.4% 51.2%
MATCHING NETS (OURS)	Cosine	N	41.2% 56.2%
MATCHING NETS (OURS)	Cosine	Y	42.4% 58.0%
MATCHING NETS (OURS)	Cosine (FCE)	N	44.2% 57.0%
MATCHING NETS (OURS)	Cosine (FCE)	Y	46.6% 60.0%