Problem Set Template

Claire Goeckner-Wald

November 13, 2016

Validation

- 1) [d] k = 6For k = 6 and N = 25, the validation error is 0.0. See attached code.
- 2) [e] k = 7For k = 7 and N = 25, the out-of-sample error is 0.072. See attached code.
- 3) [d] k = 6For k = 6 and N = 10, the validation error is 0.08. See attached code.
- 4) [d] k = 6For k = 6 and N = 10, the out-of-sample error is 0.192. See attached code.
- 5) [b] 0.1, 0.2 For problems one and three, the chosen model's out-of-sample errors for k = 7, where N = 25 and N = 10, respectively, are 0.084 and 0.192. This is closet in Euclidean distance to 0.1 and 0.2.

Validation Bias

6) [d] 0.5, 0.5, 0.4

The expected values of e_1 and e_2 are 0.5, because their expected value is the average of [0,1], which is $\frac{0+1}{2}$. The expected value of min $e_1, e_2 = \frac{1}{3}$. See attached code for an experimental proof.

$$\frac{1}{1^2} \int_0^1 \int_0^1 \min(x, y) dx dy$$

$$\min(x, y) = \frac{x + y}{2} - |x - y|$$

$$\int_0^1 \int_0^1 \left(\frac{x + y}{2} - |x - y|\right) dx dy = \frac{1}{3}$$

Cross Validation

7)

PLA versus SVM

- 8)
- 9)
- 10)