

D. N. Bernshtein, The number of roots of a system of equations, Funktsional. Anal. i Prilozhen., 1975, Volume 9, Issue 3, 1–4

Use of the all-Russian mathematical portal Math-Net.Ru implies that you have read and agreed to these terms of use http://www.mathnet.ru/eng/agreement

Download details: IP: 93.42.65.60

December 3, 2021, 18:25:25

ЧИСЛО КОРНЕЙ СИСТЕМЫ УРАВНЕНИЙ

Д. Н. Бернштейн

Многочленом Лорана называется $f(x_1, x_2, \ldots, x_n) \in \mathbb{C}[x_1, x_1^{-1}, \ldots, x_n, x_n^{-1}]$. Многочлены Лорана рассматриваются как функции на многообразии $T = (\mathbb{C}^*)^n$. Каждый многочлен Лорана есть линейная комбинация мономов $x^q = x_1^{q_1} x_2^{q_2} \ldots x_n^{q_n}$. Множество всех мономов образует решетку $M = \mathbb{Z}^n$. Носителем supp f многочлена $f(x) = \sum c_q x^q$ называется множество тех q, для которых $c_q \neq 0$. Пусть задана система уравнений F: $f_i(x) = 0$ $(i = 1, 2, \ldots, n)$. Мы хотим оценить общее число корней системы через носители supp f_i . Более точно, пусть $\mathfrak{S} = (S_1, S_2, \ldots, S_n)$ — набор n конечных подмножеств решетки M. Рассмотрим всевозможные системы F с условием supp $f_i \subset S_i$. Тогда для систем общего положения (т. е. для всех систем, за исключением некоторого алгебраического подмногообразия в пространстве коэффициентов) корни системы F изолированы, и их число с учетом кратностей L(F) одно и то же, т. е. зависит только от \mathfrak{S} . Обозначим это число через $L(\mathfrak{S})$. Ставятся две задачи: вычисление $L(\mathfrak{S})$ в терминах набора \mathfrak{S} и нахождение дискриминантных условий, при которых нарушается равенство $L(F) = L(\mathfrak{S})$.

Приведем эвристические соображения о функции L ($\mathfrak S$). Прежде всего, ясно, что L ($\mathfrak S$) симметрична; кроме того, сдвиг любого из множеств S_i не меняет числа L ($\mathfrak S$), поскольку он соответствует умножению функции f_i на обратимый моном. Далее, L ($\mathfrak S$) инвариантно относительно автоморфизмов T. Точнее, пусть $U=(u_{ij})$ ($i,j=1,2,\ldots,n$) — целочисленная матрица $\mathfrak S$ det $U=\pm 1$. Рассмотрим замену переменных $x_j=\prod_{y_i^u ij}$, короче, $x=y^U$. Это преобразование индуцирует изоморфизм U^* : $\mathfrak C$ [x,x^{-1}] $\to \mathfrak C$ [y,y^{-1}], переводящий моном x^q в моном y^{Uq} . Тогда $\mathfrak S$ supp (U^*f) = U ($\mathfrak S$), а так как L (F) = L (U^*F), то L ($\mathfrak S$) = L ($U\mathfrak S$), $U\mathfrak S$ = U0, $U\mathfrak S$ 1, U1, U2, U3, U3, U4, формулировки следующего свойства U4, U5, введем на подмножествах решетки операцию сложения, полагая $S_1+S_2=$ S_1+S_1+ $S_1+S_2=$ S_1+S_1+ S_1+ S_1+

$$L(f_1\cdot f_1', f_2, \ldots, f_n) = L(f_1, \ldots, f_n) + L(f_1', \ldots, f_n),$$

то естественно ожидать, что функция L ($\mathfrak S$) полилинейна, т. е.

$$L(S_1 + S_1', S_2, \ldots, S_n) = L(S_1, \ldots, S_n) + L(S_1', \ldots, S_n).$$

Оказывается, что функция, удовлетворяющая всем этим условиям, существует — это так называемый смешанный объем Минковского. Через V_n (S) обозначим объем выпуклой оболочки множества S в \mathbb{R}^n , считая объем единичного параллелепипеда решетки равным единице. Тогда смешанным объемом набора $\mathfrak S$ называется число

$$\begin{split} V\left(\mathfrak{S}\right) &= (-1)^{n-1} \sum V_n(S_i) + (-1)^{n-2} \sum_{i < j} V_n(S_i + S_j) + \dots \\ & \dots + V_n(S_1 + \dots + S_n) \quad (*) \end{split}$$

(эта формула отличается от классической множителем n!). Смешанный объем полилинеен (см. [1]), это также будет видно из нашего доказательства. Кроме того, $V(S,S,\ldots,S)=n!\ V_n(S)$. Отсюда видно, что формула (*) — стандартная поляризация, восстанавливающая значения симметричной полилинейной формы по ее диагональной части (значениям на наборах совпадающих переменных). После вышесказанного не будет звучать неожиданно

Теорема А. $L(S_1, S_2, \ldots, S_n) = V(S_1, S_2, \ldots, S_n).$

Опишем дискриминантные условия. Пусть $\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n)$ — ненулевая рациональная линейная форма на решетке M, S — конечное подмножество решетки. Положим m $(\alpha, S) = \min \{\langle \alpha, q \rangle, q \in S \}$, $S_{\alpha} = \{q \in S \mid \langle \alpha, q \rangle = m \ (\alpha, S) \}$ — пересечение S с опорной плоскостью в направлении α . Если $f = \sum c_q x^q$ — такая функция, что $\sup f \subset S$, то положим $f_{\alpha} = \sum c_q x^q$, где суммирование ведется только по $q \in S_{\alpha}$. Если $F = (f_1, \ldots, f_n)$ — система с условием $\sup f_i \in S_i$, положим $F_{\alpha} = (f_{1\alpha}, \ldots, f_{n\alpha})$. Ясно, что система F_{α} по существу зависит от меньшего числа переменных. Действительно, сделаем замену $x = y^U$ так, чтобы вектор $\beta = U^T \alpha = (\beta_1, \ldots, \beta_n)$ (U^T — транспонированная матрица) имел ненулевой только первую координату. Тогда система $U^*F_{\alpha} = (U^*F)_{\beta}$ фактически не зависит от y_1 . Таким образом, F_{α} — система n уравнений от n-1 переменных и в общем случае не имеет корней.

T е о р е м а B. а) Если F_{α} не имеет корней на T ни при каком $\alpha \neq 0$,

то все корни системы F изолированы и $L(F) = L(\mathfrak{S})$.

б) Если F_{α} имеет корень для некоторого $\alpha \neq 0$, то L'(F) — число изолированных корней системы с учетом кратностей — меньше $L(\mathfrak{S})$ при $L(\mathfrak{S}) \neq 0$ и равно нулю при $L(\mathfrak{S}) = 0$.

Заметим, что из теоремы В вытекает полилинейность функции L (\mathfrak{S}). Ясно также, что условие а) надо проверять лишь для конечного числа векторов α , дающих различные наборы $S_{i\alpha}$, а именно, достаточно брать по одному вектору α на каждую грань выпуклой оболочки $S_1 + S_2 + \ldots + S_n$. При этом необходимо проверять грани всех размерностей, а не только размерности n-1.

Докажем сначала теорему В. а) Если корни не изолированы, выберем на многообразии корней кривую и рассмотрим ее как алгебраическую вектор-функцию параметра t. Разложим ее в дробно-степенной ряд Пюизо $x_i(t) = a_i t^a_i + o(t^a_i) (a_i \neq 0),$ коротко, $x = a t^a (1 + o(1)) (a \in T),$ $\alpha = (\alpha_1, \ldots, \alpha_n)$ — рациональный вектор. Если в качестве t взять одну из координат, получим $\alpha \neq 0$. Подставляя x в f_i и приравнивая к нулю коэффициент при младшей степени t (эта степень равна $\min \{ \langle \alpha, q \rangle, q \in \mathcal{A} \}$ $(\in S_i) = m (\alpha, S_i)$), получим $f_{i\alpha}(a) = 0$. Таким образом, a — корень системы F_{α} . Если корни изолированы, но число их меньше L (S), рассмотрим возмущенную систему F^t , зависящую от параметра t ; $\mathit{f}_i^t = \mathit{f}_i + \mathit{tP}_i$, где система $P = (P_1, \ldots, P_n)$ общего положения. Корни этой системы F^t образуют алгебраическую функцию от t, число ее ветвей равно L ($\mathfrak S$). Разложим каждую ветвь в ряд Пюизо $x\left(t\right)=a\;t^{\alpha}\left(1+o\left(1\right)\right)$. Если бы для каждой ветви α равнялось нулю, т. е. x=a+o (1), то точки a, соответствующие L ($\mathfrak S$) ветвям, давали бы с учетом кратностей L ($\mathfrak S$) корней системы F. А значит, для одной из ветвей $\alpha \neq 0$, и a — корень системы F_{α} .

б) Пусть a — корень системы F_{α} . Сделав замену переменных и разделив уравнения на подходящие мономы, можно считать, что $\alpha=(\alpha_1,0,\ldots,0)$ $(\alpha_1>0)$ и m $(\alpha,S_i)=0$. Положим $a'=(0,a_2,\ldots,a_n)$, тогда f_i $(a')=f_{i\alpha}$ (a)=0. Ограничимся случаем L $(\mathfrak{S})>0$. Тогда можно выбрать

систему P (supp $P_i \subset S_i$) общего положения и корень b этой системы так, что P_i (a') $\neq 0$, f_i (b) $\neq 0$ при любом i. Соединим точки a' и b прямой z (t) так, что z (0) = a', z (1) = b, и рассмотрим систему F^t : f_i^t (x) $= f_i$ (x) P_i (x)

$$L(\mathfrak{S}) = \sum H_{\alpha} L_{\alpha}(\mathfrak{S}),$$
 (**)

где суммирование ведется по всем ориентированным направлениям α . Покажем, как из этой формулы вытекает теорема $A.\ H_{\alpha}$, а значит, и L ($\mathfrak S$) линейно по S_1 , и в силу симметричности L ($\mathfrak S$) полилинейно. Поэтому достаточно рассмотреть случай $S_1 = S_2 = \ldots = S_n = S$. Докажем, что каждое слагаемое $H_{\alpha}L_{\alpha}$ ($\mathfrak S$) в n! раз больше, чем объем пирамиды Π_{α} , натянутой на S_{α} и точку r. Сделав замену, можно считать, что $\alpha = (1,\ 0,\ \ldots,\ 0)$. Тогда H_{α} — высота пирамиды и, по индукции, L_{α} ($\mathfrak S$) = (n-1)! V_{n-1} (S_{α}) (V_{n-1} — (n-1)-мерный объем), а так как замена сохраняет объем, то $H_{\alpha}L_{\alpha}$ ($\mathfrak S$) = n! V_n (Π_{α}). Суммируя по всем направлениям, получим n! V_n (S). Из поляризационной формулы следует, что L ($\mathfrak S$) = V ($\mathfrak S$).

Перейдем к доказательству формулы (**). Пусть F — система общего положения. Рассмотрим семейство возмущенных систем

$$F^t: f_1^t = f_1 + t^{-1}x^r, \quad f_i^t = f_i \ (i = 2, \ldots, n).$$

Корни системы F образуют вектор-функцию от t с L ($\mathfrak S$) ветвями. Каждая ветвь имеет вид x (t) = at^{α} (1 + o (1)) (a \in T). Ясно, что $\alpha \neq 0$, иначе f_1^t (x) = a^rt^{-1} + O (1). Покажем, что для каждого ориентированного направления β число ветвей вида $x \sim at^{\alpha}$ (α положительно пропорционально β) совпадает с числом $H_{\alpha}L_{\alpha}$ ($\mathfrak S$). Отсюда сразу следует (**).

Сделав замену переменных и разделив уравнения на подходящие мономы, можно считать, что $\beta=(1,0,\ldots,0),\ m\ (\alpha,\ S_i)=0,\ r=(H,0,\ldots,0),\ ...,\ 0),\ H=H_{\alpha}.$ Пусть $x=at^{\alpha}\ (1+o\ (1)),$ тогда $a'=(a_2,\ldots,a_n)$ — корень системы $F_{\alpha}'=(f_{i\alpha}),\ i=2,\ldots,n).$ Так как F общего положения, можно считать, что все точки a' — простые корни системы $F_{\alpha}',$ число их равно L_{α} ($\mathfrak S$) и $f_{1\alpha}$ (a') $\neq 0$. Подставим x в f_1^t . Получим $0=t^{-1+H\alpha_1}a_1^H+1$

 $+f_{1\alpha}(a')+o$ (1). Так как ненулевая константа $f_{1\alpha}(a')$ может сократиться только с $a_1^H t^{-1+H\alpha_1}$, получаем — $1+H\alpha_1=0$ (т. е. $\alpha_1=1/H$) и $a_1^H+f_{1\alpha}$ (a') = 0. Таким образом, для каждого β существует не более одного вектора α, для которого могут быть ветви с асимптотикой α, и число асимптот вида at^{α} равно $H_{\alpha}L_{\alpha}$ (©) (если $H_{\alpha}=0$, то число таких асимптот также равно нулю). Чтобы доказать, что каждой асимптоте соответствует одна и только одна ветвь, сделаем замену $y_1=x_1t^{-\alpha_1},\ y_i=x_i\ (i>1).$ Тогда система F^t примет вид $y_1^H+f_{1lpha}\left(y'
ight)+P_1^t\left(y
ight)=0, f_{ilpha}\left(y'
ight)+P_i^t\left(y
ight)=0$ =0 (i>1), где $P_1^t\left(y
ight)$ — многочлены, все коэффициенты которых суть o (1). При t=0 система имеет $H_{\alpha}L_{\alpha}$ ($\mathfrak S$) простых корней вида $(a_1,\ a')$. По теореме о неявной функции эти корни продолжаются в окрестность точки t = 0. Теорема A доказана.

Все рассуждения, использующие разложения функций в ряды Пюизо, можно интерпретировать следующим образом. Поле констант расширяется до алгебраически замкнутого поля дробно-степенных рядов, выбирается система общего положения над этим полем (F^t в теоремах A и B) и счита-

ется число ее корней.

Эта работа является обобщением одного из результатов А. Г. Кушниренко, разобравшего иным методом случай совпадающих многогранников [2], [3]. Из этого результата и теоремы В нетрудно вывести теорему А. А. Г. Хованский указал автору на связь эмпирически найденной формулы (*) с теорией смешанных объемов Минковского и дал доказательство в двумерном случае при помощи разрешения особенностей. Автор благодарен И. М. Гельфанду, который поручил ему разобраться в результате А. Г. Кушниренко, итогом чего явилась формулировка теоремы А и новое доказательство результата А. Г. Кушниренко, а также Б. Я. Казарновскому и А. Г. Хованскому за сотрудничество.

Институт проблем управления ÁH CCCP

Поступила в редакцию 7 апреля 1975 г.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1. Буземан Г., Выпуклые поверхности, М., «Наука», 1964.

Бушниренко А.Г., Многогранник Ньютона и числа Милнора, Функц. анализ 9, вып. 1 (1975), 74—75.
 Кушниренко А.Г., Многогранник Ньютона и число решений системы к уравнений с к неизвестными, УМН ХХХ, вып 2 (1975), 266—267.