

背景与研究意义

在大众的精神文化消费比重增加,有关电影的营销、 社交信息积累更多的时代下,我们希望能够使用影片 上映时的信息预测它的最终票房

为影院在上映后期的排片提供数据支持

在电影后期的营销和发行环节:对影片的定档日期选择,营销策略有帮助。尤其是发行公司在保底发行模式中,起到重要作用。

数据来源

- > 猫眼专业版
 - > 分析页面
 - ▶图表数据API
- ▶ Python 爬虫
- > 缺失数据人工补全

数据内容

数据名程	数据解释			
影片类型	科幻、喜剧、动作			
上映天数				
特殊档期	暑期、国庆、春节、五一			
票房(首日,最终)				
想看人数	上映前一周猫眼新增点击想看总人数			
是否为IMAX				
制片地区				
微博话题讨论量				
评分				
物料总播放量	上映前一周各大视频平台预告片/宣传片播放总量			

数据可视化 票房的分布

数据可视化 各变量间的相关性

- ▶ 第一天票房、第 一周票房、上映 天数、想看人数 间有明显相关性
- 科幻、动作、春节档与票房明显相关

K-means

根据screeplot,分为三类

Cluster3:

$$box \in [2.0 \times 10^9, \infty)$$

Cluster2:

$$box \in [0, 5.0 \times 10^8)$$

Cluster1:

$$box \in [5.0 \times 10^8, 2.0 \times 10^9)$$

由于样本量小,第一、三类仅用 Fisher's LDA做粗略的分类预测。

第二类用多维线性回归模型预测。

K-means

组	评分	首日票房	IMAX 比例	想看人数	占比最高地 区	占比最 高类型	占比最 高档期
1	8.509	853336957	0.598	59280	中国大陆	动作	暑期档
2	7.687	57554062	0.085	11034	中国大陆	喜剧	暑期档
3	9.127	301845454 5	0.818	104764	中国大陆	动作	春节档

TPM: 0.02807018

正态性检验 Kolmogorov Smirnov test

 $\blacktriangleright box \rightarrow \log(box)$

Two-sample Kolmogorov-Smirnov test

data: scale(mytablenew\$box) and y
D = 0.26937, p-value < 2.2e-16
alternative hypothesis: two-sided</pre>

Two-sample Kolmogorov-Smirnov test

data: scale(log(mytablenew\$box)) and y
D = 0.04674, p-value = 0.3369
alternative hypothesis: two-sided

变量选择&结果 Step & Cross validation

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                  3.640 0.000296 ***
(Intercept)
             7.826e-01 2.150e-01
            9.323e-01 1.297e-02 71.861 < 2e-16 ***
log(box day)
rating
             2.115e-01 2.030e-02 10.420 < 2e-16 ***
reg_中国大陆 1.241e-01 4.607e-02
                                2.694 0.007261 **
reg_美国
           1.797e-01 5.275e-02 3.407 0.000701 ***
reg 印度
          3.325e-01 1.580e-01 2.105 0.035710 *
week_want
            6.299e-06 1.542e-06 4.084 5.03e-05 ***
gen_爱情
                                -4.597 5.24e-06 ***
           -2.116e-01 4.604e-02
gen_传记
          3.368e-01 1.194e-01 2.822 0.004930 **
gen_悬疑
           -8.555e-02 5.616e-02 -1.523 0.128190
          4.321e-01 9.481e-02
                                 4.557 6.28e-06 ***
gen_恐怖
gen 运动
           -3.331e-01 1.261e-01 -2.642 0.008456 **
gen_纪录片
           1.666e-01 1.086e-01
                                 1.534 0.125660
gen 惊悚
            1.335e-01 7.517e-02
                                1.775 0.076342 .
            3.634e-01 1.231e-01 2.952 0.003282 **
spring
             3.620e-01 1.025e-01
labor
                                3.532 0.000445 ***
```

► Step 采用AIC原则自动选择变量

► K折交叉验证,选取K=10 根据模型的稳健性选择最优模型

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4356 on 600 degrees of freedom Multiple R-squared: 0.9549, Adjusted R-squared: 0.9537 F-statistic: 846.1 on 15 and 600 DF, p-value: < 2.2e-16

模型检验

- ▶ 多重共线性 VIF
- ► 异方差检验 ncvtest & Spread level plot
- ► 强影响点检验

 absolute studentized residual > 3

 & hat value > 0.2

模型检验

- ▶ 多重共线性 VIF
- ▶ 异方差检验 ncvtest & Spread level plot
- ► 强影响点检验

 absolute studentized residual > 3

 & hat value > 0.2

以Log(Y)为因变量预测Y的修正

	预测模型的MAE(未修正)	预测模型的MAE(修正)
box of fice	12.906×10^6	13.59×10^6

- $\hat{y} = e^{\log(y)}$ 会系统地低估 y
- ► 伍德里奇《计量经济学导论》 当u独立于x时 $\log(y) = \beta_0 + \beta_1 x_1 + \dots + \beta_n x_n + \epsilon$ $E(y|x) = a \times e^{\beta_0 + \beta_1 x_1 + \dots + \beta_n x_n}, a = e^{\epsilon}$
- ▶ 可利用 $\hat{a} = \frac{1}{n} \sum_{i=1}^{n} exp\hat{\epsilon}_i$ 得到 $\hat{y} = \hat{a} \times e^{\widehat{\log(y)}}$

模型预测

不足和改进

部分数据无法获取

- ▶ 排片、黄金场占比、上座率
- ▶ 微博指数、微信指数、百度指数
- ▶ 主观数据、营销宣传事件信息
- ▶ 时间序列
 - ▶ 使用时间序列建模,使用上映后的信息实时更新
- ▶ 相对误差
 - ▶ 回归最小化相对误差

谢谢!