CMOS ADC & DAC Principles

Willy Sansen

KULeuven, ESAT-MICAS Leuven, Belgium

willy.sansen@esat.kuleuven.be

Table of contents

- Definitions
- Digital-to-analog converters
 - Resistive
 - Capacitive
 - Current steering
- Analog-to-digital converters
 - Integrating
 - Successive approximation
 - Algorithmic
 - Flash / Two-step
 - Interpolating / Folding
 - Pipeline

ADC & DAC

Output code

Analog input (with respect to V_{ref})

Analog output (wrt V_{ref})

DACs Resolution

Analog output (wrt V_{ref})

$$V_{OUT} = V_{REF} B_{IN}$$

$$= V_{REF} \left(\frac{b_1}{2^1} + \frac{b_2}{2^2} + \frac{b_3}{2^3} + \dots \frac{b_N}{2^N} \right)^{\frac{1}{2}}$$

$$V_{LSB} = \frac{V_{REF}}{2^N}$$

Resolution N
b₁ is Most Significant bit (MSB)
b_N is Least Significant bit (LSB)

The quantisation error of a DAC

$$P_{\text{Noise}} = \frac{1}{\Delta} \int_{-\Delta/2}^{\Delta/2} \epsilon^2 d\epsilon = \frac{\Delta^2}{12}$$

$$V_{ptp} = 2^N \Delta$$

$$P_{Signal} = \frac{V_{ptp}^2}{8}$$

$$SNR = \frac{3}{2} 2^{2N}$$

$$SNR = 6 N + 1.76 dB$$

Static specs : INL & DNL

Differential Nonlinearity : DNL = $Y_{OUT}(B) - Y_{OUT}(B-1) - 1$ LSB

Integral Nonlinearity : INL = $Y_{OUT}(B) - Y_{OUT,id}(B)$

Dynamic specifications

Spectral content: Spurious free dynamic range

Output SNR versus input Signal

Table of contents

- Definitions
- Digital-to-analog converters
 - Resistive
 - Capacitive
 - Current steering
- Analog-to-digital converters
 - Integrating
 - Successive approximation
 - Algorithmic
 - Flash / Two-step
 - Interpolating / Folding
 - Pipeline

Resistor string DAC

Resistive matching!

Binary weighted resistor DAC

One Resistor and Switch per bit No guaranteed monotonicity (glitches!)

R-2R DAC

Smaller area in Resistors!

3-bit charge redistribution DAC

Phase $\Phi1$

4-bit Current steering DAC

Glitches!

The Binary and thermometer codes

Decimal	Binary			Thermometer Code						
	b_1	b_2	<i>b</i> ₃	d_1	d_2	d_3	d_4	d_5	d_6	d_7
0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	1
2	0	1	0	0	0	0	0	0	1	1
3	0	1	1	0	0	0	0	1	1	1
4	1	0	0	0	0	0	1	1	1	1
5	1	0	1	0	0	1	1	1	1	1
6	1	1	0	0	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1

Monotonicity guaranteed!

Thermometer-code Current steering DAC

Binary, unary, segmented DAC

$\sigma(I)/I$ versus resolution

Switching schemes

INL error for different switching schemes

Hierarchical symmetrical scheme (type A)

DAC Design: Static Accuracy

INL_yield = percentage of functional D/A converters with an INL specification smaller than half an LSB.

INL_yield = f (mismatch) = f (
$$\frac{\sigma(I)}{I}$$
)

WL =
$$\frac{1}{2(\frac{\sigma(I)}{I})^2}$$
 [$A_{\beta}^2 + \frac{4A_{VT}^2}{(V_{GS}-V_T)^2}$] High yield $\frac{\sigma(I)}{I}$

Large current source area

$$\frac{\sigma(l)}{l} \le \frac{1}{2C\sqrt{2N}} \quad \Rightarrow \quad \sigma(l_{unit})/l_{unit} = 0.25 \%$$

DAC Design: Calculation W and L

$$\frac{W}{L} = \frac{I_{LSB}}{K' (V_{GS} - V_{T})^{2}}$$

$$WL = \frac{1}{2 (\frac{\sigma(I)}{I})^{2}} [A_{\beta}^{2} + \frac{4A_{VT}^{2}}{(V_{GS} - V_{T})^{2}}]$$

$$\sigma(I)/I = 0.0025$$

$$V_{GS} - V_{T} = 1 V$$
For 0.35 µm CMOS $A_{\beta} \approx 2 \% \mu m$

$$A_{VT} \approx 7 \text{ mV} \mu m$$

Floorplan 10-bit segmented DAC

Required output impedance versus resolution

Van den Bosch,,	Kluwer 2004	
	JSSC March	01, 315-324

A_{VT}	$8.94 mV \mu m$		
A_{eta}	1.9 %μm		
$\sigma(I)/I$	0.5 %		
$(V_{GS}-V_T)_{cs}$	1 V		
I_{FS}	20 mA		
segmentation	5-5		
$(W/L)_{cs}$	$2\mu m/8\mu m$		
$(W/L)_{sw}$	$1\mu m/0.7\mu m$		
$(W/L)_{cas}$	$0.5\mu m/0.35\mu m$		

10 bit 1GB/s

INL = 99.7 %

requires $\sigma(I)/I < 0.5 \%$:

 $W = 2 \mu m \& L = 8 \mu m$

10-bit 1 GS/s Nyquist Current steering CMOS DAC

Current steering DAC 10-bit

1 **GS**/s

0.35 μm CMOS 110 mW

Van den Bosch, .., JSSC, March 01, 315-324

SFDR (dB) versus relative signal frequency

f_{signal} / f_{clock}

FOM (MHz/mW) vs inverse area

Table of contents

- Definitions
- Digital-to-analog converters
 - Resistive
 - Capacitive
 - Current steering
- Analog-to-digital converters
 - Integrating
 - Successive approximation
 - Algorithmic
 - Flash / Two-step
 - Interpolating / Folding
 - Pipeline

Speed Resolution Limits ADC

Dual-slope (integrating) ADC

Time 2 : V_x decreases with constant slope :

$$V_x = \frac{V_{ref}}{R_1 C_1} \quad T_2$$
 $T_2 = T_1 \quad \frac{V_{in}}{V_{ref}}$

Bout = $\frac{V_{in}}{V_{ref}}$

Johns, Martin, Wiley 1997

Operation of integrating ADC

Time 1 :
$$V_x = \frac{V_{in}}{R_1 C_1} T_1$$

Time 2 :
$$V_x = \frac{V_{ref}}{R_1 C_1} T_2$$

$$T_2 = T_1 \frac{V_{in}}{V_{ref}}$$

Integrating ADC

```
Advantages:
High resolution
High linearity
Low circuit complexity
Mainly for voltmeters, ...
Eliminates mains supply 50 Hz if T1 is n x 20 ms
Disadvantages:
Very slow:
Worst case for V_{in} = V_{ref}: 2^{2n+1} clock cycli required!
    Ex. For n = 16 bit (64000) and F_{clock} = 1 \text{ MHz}:
        7.6 s conversion time
Mainly for voltmeters, ...
```

Successive-approximation ADC

0 0.25 0.5 1 V

Divide interval by 2;

Determine bit:

 $< 1 : 0 b_1 = MSB$

< 0.5 : 0 b₂

> 0.25 : 1 b_3

 $> 0.375 : 1 b_4$

< 0.4375 : 0 b₅

. . . .

Johns, Martin, Wiley 1997

5-bit Charge redistribution ADC

Accuracy limited by capacitive matching to 10-12 bit McCreary, JSSC Dec 75, 371-379

Speed limited by R_{switch}C time constants

Johns, Martin, Wiley 1997

5-bit Charge redistribution ADC

5-bit Charge redistribution ADC

if $V_{in} > V_{ref}/2$ SAR \Longrightarrow 1 leave C_{b1} to V_{ref} : try C_{b2} if $V_{in} < V_{ref}/2$ SAR \Longrightarrow 0 leave C_{b1} to Gnd : try C_{b2}

Charge redistribution ADC

Charge redistribution ADC halves V_{ref} in each cycle Algorithmic ADC doubles V_{error} in each cycle

Algorithmic (or cyclic) ADC

Advantage: small amount of analog circuitry

Difficulty: accuracy x2 Gain amplifier

(fully diff.; C_{par} insensitive)

Johns, Martin, Wiley, 2003

Flash converter

3-bit flash ADC:

fastest 2^3 comparators input cap. ~ 2^3

limited to 6 bit (1 ... 2 GS/s)

Evolution in ADC's

Uyttenhove, KULeuven, 2003

Subranging (or two-step) ADC

8-bit two-step ADC: less comparators introduces latency

2⁸ = 256 comp. ⇒ now 32! All circuits: 8b accurate Digital correction required!

Johns, Martin, Wiley 1997

Interpolating saves amplifiers

which saturate

Van de Grift, JSSC Dec. 87, 944-953; Steyaert CICC 1993

Interpolating ADC

Transfer curves

Resistors generate the intermediate outputs
Resistors average out offsets, etc.
Add series resistors to latch inputs to equalize delay times

Averaging with output currents

Relative width sizing shown All lengths same

$$I_{2a} = \frac{2}{3}I_1 + \frac{1}{3}I_2$$

$$I_{2b} = \frac{1}{3} I_1 + \frac{2}{3} I_2$$

Interpolating by 3

between output currents I₁ & I₂

Requires 1/3 input amps.: C_{in}/3

Steyaert CICC 93

Interpolating/Averaging ADC - 1st amp

Current mirror interpolator

Steyaert CICC 93 Roovers JSSC July 96, 938-944

Interpolating: limitations

Folding ADC Analog preprocessing

Folding block realization

Pipelined ADC: n_k and single bit per stage

Johns, Martin, Wiley 1997

Pipelined ADC block diagram

Multiplying DAC

DAC + Gain Are merged In one building block:

Multiplying DAC

Multiplying DAC: Phase 1

Multiplying DAC: Phase 2

Non-idealities versus Cs

 $0.25 \mu m$ CMOS $f_s = 400 \text{ MHz}$

Uyttenhove, Kuleuven, 2003

Comparison ADCs

Impact of device mismatch on resolution/power

Two transistors :
$$\sigma^2(Error) \sim \frac{1}{WL}$$

$$\sigma_{VT} = \frac{A_{VT}}{\sqrt{WL}}$$

(Accuracy) $^2 \sim WL$

By design : increasing W increases I_{DS} and Power decreasing L increases the speed

Ref. Kinget, ... "Analog VLSI .." pp 67, Kluwer 1997.

Power and mismatch/noise

Accuracy $1/\sigma^2(V_{os}) \sim \text{Area } / A_{VT}$ Dynamic range $DR = V_{sRMS} / (3 \sigma (V_{os}))$ Capacitance $C \sim C_{ox} \text{ Area}$ Power $P = 8 \text{ f C } V_{sRMS}^2$

Mismatch : $P = 24 C_{ox} A_{VT}^2 f DR^2$

Noise: $P = 8 kT f DR^2$

Noise vs mismatch for DR

ADC limitations

Ref Walden IEEE Selected Areas Comm. April 1999, 539-550; Uyttenhove 2003

References

- D. Johns & K. Martin, "Analog Integrated Circuit Design", Wiley 1997
- P. Jespers, "Integrated Converters", Oxford Univ. Press, 2001
- B. Razavi, "Principles of Data Conversion System Design", IEEE Press 1995
- K. Uyttenhove, "High-speed CMOS Analog-to-digital converters", PhD KULeuven, 2003
- A. Van den Bosch, ... "High-resolution high-speed CMOS current-steering Digital-to-Analog Converters, Kluwer Ac. Press 2004.
- R. Van de Plassche, "Integrated Analog-to-digital and Digital-to-Analog converters", Kluwer Ac. Press, 1994

Table of contents

- Definitions
- Digital-to-analog converters
 - Resistive
 - Capacitive
 - Current steering
- Analog-to-digital converters
 - Integrating
 - Successive approximation
 - Algorithmic
 - Flash / Two-step
 - Interpolating / Folding
 - Pipeline