Vorlesungsmitschrift (kein offizielles Skript)

Funktionalanalysis

Prof. Dr. Harald Garcke

Version vom 17. Oktober 2013

Gesetzt in \LaTeX von Johannes Prem

Inhaltsverzeichnis

1	Einführung: Wovon handelt die Funktionalanalysis?	1
2	Grundlstrukturen der Funktionalanalysis	_

1 Einführung: Wovon handelt die Funktionalanalysis?

Zum Beispiel von der Analysis auf Banachräumen (vollständigen normierten Vektorräumen)

1.1. Auf \mathbb{R}^n definiere

$$\forall x \in \mathbb{R}^n \colon \quad \|x\|_2 \coloneqq |x| = \Big(\sum_{i=0}^n x_i^2\Big)^{\frac{1}{2}}$$

1.2 (Funktionen auf kompakten Teilmengen des \mathbb{R}^n).

Zum Beispiel: $K \subset \mathbb{R}^n$ kompakt, z. B. K = [0, 1].

$$C^0(K) := \{ f \mid f \colon K \to \mathbb{R} \text{ stetig} \}$$

wird Banachraum mit der Norm:

$$||f||_{\infty} \coloneqq \sup_{x \in K} |f(x)| < \infty$$

1.3 (Operatoren auf $C^0([0,1])$).

Definiere

$$L(C^0([0,1]), C^0([0,1])) := \{T : C^0([0,1]) \to C^0([0,1]) \mid T \text{ ist linear und stetig}\}$$

Beispiele:

$$(Tf)(x) := g(x) f(x)$$
 wobei $g \in C^0([0,1])$

$$(Tf)(x) := \sum_{i=0}^{n} f(x_i) L_i(x)$$
 wobei $0 \le x_0 < x_1 < \dots < x_n \le 1$

$$L_i$$
: Lagrange-Basis-Fkt.: $L_i(x) = \prod_{\substack{j=0 \ i \neq i}}^n \frac{x - x_j}{x_i - x_j}$

$$(Tf)(x) := \int_0^1 K(x, y) f(y) dy$$
 wobei $K \in C^0([0, 1]^2)$

Bemerkung: $L(C^0([0,1]), C^0([0,1]))$ wird zu einem Banachraum mit der Operatornorm

$$||T||_{L(C^0,C^0)} \coloneqq \sup_{f \neq 0} \frac{||Tf||_{C^0}}{||f||_{C^0}}$$

- **1.4.** Welche Besonderheiten ergeben sich in unendlich-dimensionalen Räumen?
 - (1) Problem in ∞ -dimensionalen Vektorräumen: Wenig sinnvolle Aussagen ohne Topologie möglich
 - (2) Für $T: \mathbb{R}^n \to \mathbb{R}^n$ linear gilt:

$$T$$
 surjektiv \iff T injektiv

Im ∞ -dim. ist dies i. A. falsch.

Beispiel:

$$C_* := \{ x = (x_k)_{k \in \mathbb{N}} \mid x_k \in \mathbb{R}, \ \exists \, \bar{k} \in \mathbb{N} \ \forall \, \ell > \bar{k} \colon \ x_\ell = 0 \}$$

 C_* modelliert "Folgen, die irgendwann abbrechen". Außerdem enthält C_* den \mathbb{R}^n für $n \in \mathbb{N}$ beliebig groß.

Definiere die sog. Shift-Abbildung wie folgt:

$$T(x_1, x_2, x_3, \dots) := (0, x_1, x_2, x_3, \dots)$$

Dann ist T injektiv, aber nicht surjektiv.

(3) Grundproblem der linearen Algebra: Finde Normalformen für lineare Abbildungen. Ziel: Verallgemeinerung auf ∞-dim. Räume.

(4) Kompaktheit

In ∞ -dim. Banachräumen ist die abgeschlossene Einheitskugel nicht kompakt.

Beispiel C_* : Nutze die Norm

$$||x||_{C_*} \coloneqq \max_{n \in \mathbb{N}} |x_n|$$

und die Einheitsvektoren $e_i = (\delta_{ij})_{j \in \mathbb{N}} = (0, \dots, 0, 1, 0, \dots)$ (wobei die 1 an der *i*-ten Stelle steht). Dann gilt:

$$||e_i||_{C_*} = 1$$
 und $||e_i - e_k||_{C_*} = 1$ für $i \neq k$

Also hat $(e_n)_{n\in\mathbb{N}}$ keine konvergente Teilfolge, woraus folgt, dass die Einheitskugel nicht kompakt ist.

(5) Nicht alle Normen sind zueinander äquivalent.

Beispiel: Betrachte auf $C^0([0,1])$ die Normen

$$||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$$

$$||f||_{L^2} \coloneqq \sqrt{\int_0^1 (f(x))^2 dx}$$

Es gilt $||f||_{L^2} \leq ||f||_{\infty}$. Aber: Es gibt keine Konstante $c \in \mathbb{R}_{>0}$, so dass für alle $f \in C^0([0,1])$ gilt: $||f||_{\infty} \leq c \, ||f||_{L^2}$. Betrachte dazu:

2

$$1 \xrightarrow{f_{\varepsilon}}$$

Es gilt:
$$||f_{\varepsilon}||_{\infty} = 1$$
, $||f_{\varepsilon}||_{L^{2}} \leq \sqrt{\varepsilon}$.

Außerdem gilt:

$$\left(C^0([0,1]), \|\cdot\|_{\infty}\right)$$
 ist Banachraum $\left(C^0([0,1]), \|\cdot\|_{L^2}\right)$ ist normierter Vektorraum (aber nicht vollständig)

Funktionalanalysis lässt sich sinnvoll nur in vollständigen Räumen entwickeln. Deshalb werden wir nicht vollständige Räume vervollständigen.

2 Grundlstrukturen der Funktionalanalysis

- **2.1** (Topologie). Sei X eine Menge, \mathcal{T} ein System von Teilmengen. Dann heißt \mathcal{T} Topologie (auf X), falls gilt:
 - (T1) $\emptyset \in \mathcal{T}, X \in \mathcal{T}$
 - $(T2) \qquad \mathcal{T}' \subset \mathcal{T} \implies \bigcup \mathcal{T}' \in \mathcal{T}$
 - (T3) $T_1, T_2 \in \mathcal{T} \implies T_1 \cap T_2 \in \mathcal{T}$

Ein topologischer Raum (X, \mathcal{T}) heißt Hausdorff-Raum, falls er zusätzlich das Hausdorffsche Trennungsaxiom erfüllt:

(T4)
$$\forall x_1, x_2 \in X, x_1 \neq x_2 \ \exists U_1, U_2 \in \mathcal{T}: \ U_1 \cap U_2 = \emptyset \land x_i \in U_i$$

Mengen in \mathcal{T} heißen offene Mengen. Komplemente offener Mengen heißen abgeschlossene Mengen.

Eine Menge $W \subset X$ mit $x \in W$ für die eine offene Menge U mit $x \in U$ und $U \subset W$ existiert, heißt $Umgebung\ von\ x$.

Seien (X, \mathcal{T}_X) und (Y, \mathcal{T}_Y) topologische Räume, so heißt $f: X \to Y$ stetig, falls die Urbilder offener Mengen stets offen sind. (Formal: $\forall U' \in \mathcal{T}_Y \colon f^{-1}(U') \in \mathcal{T}_X$)

Eine Abbildung $f: X \to Y$ heißt stetig in $x \in X$, falls

$$f(x) \in V \in \mathcal{T}_Y \implies \exists U \in \mathcal{T}_X \colon x \in U \subset f^{-1}(V)$$

(d. h. $f^{-1}(V)$ ist Umgebung von x).

2.2. Ist X ein \mathbb{K} -Vektorraum mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$, so heißt (X, \mathcal{T}) topologischer Vektorraum, falls (X, \mathcal{T}) ein topologischer Raum ist und die Abbildungen

$$X \times X \to X$$
, $(x, y) \mapsto x + y$
 $\mathbb{K} \times X \to X$, $(\alpha, x) \mapsto \alpha x$

stetig sind. ("Algebraische und topologische Struktur sind verträglich")

2.3 (Metrik). Ein Tupel (X, d) heißt metrischer Raum, falls X eine Menge ist und $d: X \times X \to \mathbb{R}$ folgende Bedingungen für alle $x, y, z \in X$ erfüllt:

(M1)
$$d(x,y) \ge 0$$
 und $d(x,y) = 0 \iff x = y$

$$(M2) \quad d(x,y) = d(y,x)$$

(M3)
$$d(x,z) \le d(x,y) + d(y,z)$$

Konvergenz:

 $(x_n)_{n\in\mathbb{N}}$ heißt Cauchy-Folge, falls:

$$d(x_k, x_\ell) \to 0$$
 für $k, \ell \to \infty$

x heißt Grenzwert von $(x_n)_{n\in\mathbb{N}}$ (Notation: $x=\lim_{n\to\infty}x_n$ oder: $x_n\to x$ für $n\to\infty$), falls:

$$d(x_n, x) \to 0$$
 für $n \to \infty$

(X,d) heißt vollständig, falls jede Cauchy-Folge einen Grenzwert in X besitzt.

Abstand von Mengen $A, B \subset X$:

$$dist(A, B) := \inf\{d(a, b) \mid a \in A, b \in B\}$$

Für $A \subset X$ und $x \in X$ definieren wir: $dist(x, A) := dist(\{x\}, A)$.

Für $r \in \mathbb{R}_{>0}$ sowie $A \subset X$, $x \in X$ definieren wir:

$$B_r(A) := \{ x \in X \mid \operatorname{dist}(x, A) < r \}$$

$$B_r(x) := B_r(\{x\})$$

$$\operatorname{diam}(A) := \sup \{ d(a_1, a_2) \mid a_1, a_2 \in A \}$$

Wir sagen A ist beschränkt, falls $diam(A) < \infty$.

2.4 (Topologie von Metriken). Sei (X,d) ein metrischer Raum und $A \subset X$.

$$A^{\circ} := \{x \in X \mid \exists r \in \mathbb{R}_{>0} \colon B_r(x) \subset A\}$$
 ist das Innere von A.

$$\overline{A} := \{x \in X \mid \forall r \in \mathbb{R}_{>0} \colon B_r(x) \cap A \neq \emptyset\}$$
 ist der Abschluss von A.

$$\partial A := \overline{A} \setminus A^{\circ}$$
 ist der Rand von A.

Wir sagen, dass A offen ist, falls $A^{\circ} = A$ gilt, und dass A abgeschlossen ist, falls $\overline{A} = A$ gilt.

Durch die Definition $\mathcal{T} := \{A \subset X \mid A \text{ offen}\}$ wird (X, \mathcal{T}) zu einem hausdorffschen topologischen Raum.

2.5 (Fréchet-Metrik). Sei X ein Vektorraum. Eine Abbildung $d: X \to \mathbb{R}$ heißt Fréchet-Metrik, falls für alle $x, y \in X$ gilt:

(F1)
$$d(x) \ge 0$$
 und $d(x) = 0 \iff x = 0$

$$(F2) \quad d(-x) = d(x)$$

(F3)
$$d(x+y) \le d(x) + d(y)$$

Dann ist $(x, y) \mapsto d(x - y)$ eine Metrik auf X.

Beispiel: Fréchet-Metriken auf \mathbb{R} :

$$x \mapsto |x|^{\alpha} \quad \text{mit } 0 < \alpha \le 1$$

$$x \mapsto \frac{|x|}{1 + |x|}$$

2.6 (Norm). X sei ein \mathbb{K} -Vektorraum (mit $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$).

Eine Abbildung $\|\cdot\|: X \to \mathbb{R}$ heißt *Norm*, falls folgende Bedingungen für alle $x, y \in X, \alpha \in \mathbb{K}$ erfüllt sind:

(N1)
$$||x|| \ge 0$$
 und $||x|| = 0 \iff x = 0$

$$(N2) \quad \|\alpha x\| = |\alpha| \|x\|$$

(N3)
$$||x + y|| \le ||x|| + ||y||$$

Dann ist $x \mapsto ||x||$ eine Fréchet-Metrik. Wir nennen X Banachraum, falls X mit einer gegebenen Metrik vollständig ist.

X ist eine Banachalgebra, falls X eine Algebra ist (d. h. es gibt ein Produkt auf X, das dem Assoziativgesetz und Distributivgestz genügt) und $||x \cdot y|| \le ||x|| \cdot ||y||$ für alle $x, y \in X$ gilt.

- **2.7** (Skalarprodukt). Sei X ein \mathbb{K} -Vektorraum.
 - a) $\langle \cdot, \cdot \rangle \colon X \times X \to \mathbb{K}$ heißt Hermitische Form ($\mathbb{K} = \mathbb{R}$ symmetrische Biliniearform, $\mathbb{K} = \mathbb{C}$ symmetrische Sesquilinearform), falls für alle $x, x_1, x_2, y \in X, \alpha \in \mathbb{K}$ gilt:

(S1)
$$\langle x, y \rangle = \overline{\langle y, x \rangle}$$

(S2)
$$\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$$

(S3)
$$\langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$$

(Es folgt: für alle $x \in X$ gilt $\langle x, x \rangle \in \mathbb{R}$.)

b) $\langle \cdot, \cdot \rangle$ heißt positiv-semidefinit, falls

(S4')
$$\langle x, x \rangle \ge 0$$

und positiv definit, falls

(S4)
$$\langle x, x \rangle > 0$$
 und $\langle x, x \rangle = 0 \iff x = 0$

gilt.

c) $\langle \, \cdot \, , \, \cdot \, \rangle$ heißt *Skalarprodukt*, falls (S1)–(S4) erfüllt sind. Dann ist $\|x\| \coloneqq \sqrt{\langle x, x \rangle}$ eine Norm auf X und wir nennen X dann einen $Pr\ddot{a}$ -Hilbertraum. Falls X zusätzlich vollständig ist, so heißt X Hilbertraum

Beispiele:

i)
$$\mathbb{R}^n$$
 mit $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$, $||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$

ii) $X = C^0(K, \mathbb{R})$ für $K \subset \mathbb{R}^n$ kompakt.

$$\langle f, g \rangle \coloneqq \int_K f(x) g(x) dx$$

Dann ist $(C^0(K), \langle \cdot, \cdot \rangle)$ ein Prä-Hilbertraum (aber kein Hilbertraum!)

Satz 2.8. Sei $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf einem Vektorraum X. Dann gelten:

- (1) Cauchy-Schwarz-Ungleichung (CSU): $\forall x, y \in X$: $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$. Gleichheit gilt nur, falls y ein Vielfaches von x ist.
- (2) Dreiecksungleichung: $\forall x, y \in X$: $||x + y|| \le ||x|| + ||y||$
- (3) Parallelogrammidentität: $\forall x, y \in X$: $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$

Bemerkung: Im Fall $\mathbb{K} = \mathbb{R}$ folgt aus der CSU für $x, y \in X \setminus \{0\}$:

$$\left\langle \frac{x}{\|x\|}, \frac{y}{\|y\|} \right\rangle \in [-1, 1] \tag{*}$$

D. h. es gibt genau ein $\theta \in [0, \pi]$, s. d.

$$\left\langle \frac{x}{\|x\|}, \frac{y}{\|y\|} \right\rangle = \cos \theta.$$

Wir interpretieren θ als den Winkel zwischen x und y.

Beweis von Satz 2.8.

(3)

$$||x + y||^2 = \langle x + y, x + y \rangle$$

$$= \langle x, y \rangle + \langle x, y \rangle + \langle y, x \rangle + \langle y, y \rangle$$

$$= ||x||^2 + 2 \operatorname{Re}\langle x, y \rangle + ||y||^2$$

Ersetze y durch -y und addiere beide Gleichungen.

(1) Ersetze in (*) y durch $-\frac{\langle x,y\rangle}{\|y\|^2}$ y (o. E. $y\neq 0$). Dann ergibt sich:

$$0 \le \left\langle x - \frac{\left\langle x, y \right\rangle}{\left\| y \right\|^2} y, x - \frac{\left\langle x, y \right\rangle}{\left\| y \right\|^2} y \right\rangle$$
$$= \left\| x \right\|^2 - 2 \frac{\left| \left\langle x, y \right\rangle \right|^2}{\left\| y \right\|^2} + \frac{\left| \left\langle x, y \right\rangle \right|^2}{\left\| y \right\|^2}$$
$$= \left\| x \right\|^2 - \frac{\left| \left\langle x, y \right\rangle \right|^2}{\left\| y \right\|^2}$$

Es folgt die CSU. In der ersten Zeile gilt bei \leq die Gleichheit genau dann, wenn x ein Vielfaches von y ist.

(3)
$$||x+y||^2 = ||x||^2 + ||y||^2 + 2 \underbrace{\operatorname{Re}\langle x, y \rangle}_{\leq |\langle x, y \rangle| \leq ||x|| \, ||y||}^2$$

2.9 (Vergleich von Topologien). Seien $\mathcal{T}_1, \mathcal{T}_2$ zwei Topologien auf einer Menge X. Wir sagen \mathcal{T}_2 ist *stärker* (oder *feiner*) als \mathcal{T}_1 und \mathcal{T}_1 ist *schwächer* (oder *gröber*) als \mathcal{T}_2 , falls $\mathcal{T}_1 \subset \mathcal{T}_2$ gilt.

Sind d_1, d_2 zwei Metriken auf X und $\mathcal{T}_1, \mathcal{T}_2$ die induzierten Topologien (siehe 2.4), so heißt die Metrik d_1 stärker (bzw. schwächer) als d_2 , falls \mathcal{T}_1 stärker (bzw. schwächer) als \mathcal{T}_2 ist. Die Metriken heißen äquivalent, falls $\mathcal{T}_1 = \mathcal{T}_2$. Entsprechend heißt eine Norm stärker bzw. schwächer als eine zweite, wenn dies für die induzierten Metriken gilt. Analog für Äquivalenz von Normen.

- **2.10** (Vergleich von Normen). Seien $\|\cdot\|_1$ und $\|\cdot\|_2$ zwei Normen auf einem \mathbb{K} -Vektorraum X. Dann gilt:
 - (1) $\|\cdot\|_2$ ist stärker als $\|\cdot\|_1$ genau dann, wenn es ein $c \in \mathbb{R}_{>0}$ gibt mit:

$$\forall x \in X \colon \quad \|x\|_1 \le c \|x\|_2$$

(2) Die beiden Normen sind genau dann äquivalent, wenn es $c, C \in \mathbb{R}_{>0}$ gibt mit:

$$\forall x \in X: c \|x\|_2 \le \|x\|_1 \le C \|x\|_2$$

Beweis. (1) Es sei $B_r^i(x) = \{x' \in X \mid \|x - x'\|_i < r\}$ und \mathcal{T}_i sei die von $\|\cdot\|_i$ induzierte Topologie.

Sei $\mathcal{T}_1 \subset \mathcal{T}_2$. Da $B_1^1(0) \in \mathcal{T}_1$ gilt, ist $B_1^1(0)$ offen bezüglich \mathcal{T}_1 und bezüglich \mathcal{T}_2 . Es liegt 0 im Inneren (bezüglich $\|\cdot\|_2$) von $B_1^1(0)$. Somit gilt $B_{\varepsilon}^2(0) \subset B_1^1(0)$ für ein $\varepsilon \in \mathbb{R}_{>0}$. Daher gilt für $x \in X \setminus \{0\}$:

$$\left\| \frac{\varepsilon x}{2\|x\|_2} \right\|_2 = \frac{\varepsilon}{2} < \varepsilon$$

$$\implies \left\| \frac{\varepsilon x}{2\|x\|_2} \right\|_1 < 1 \implies \|x\|_1 < \frac{2}{\varepsilon} \|x\|_2$$

Gilt umgekehrt die Ungleichung in (1) so ist für alle $x \in X$ und $r \in \mathbb{R}_{>0}$

$$B_r^2(x) \subset B_{cr}^1(x)$$

Sei nun $A \in \mathcal{T}_1$. Dann ist $A = A^{\circ}$ bezüglich \mathcal{T}_1 . D. h. zu $x \in A$ existiert ein $\varepsilon \in \mathbb{R}_{>0}$, so dass $B^1_{\varepsilon}(x) \subset A$. Also gilt:

$$B_{\varepsilon/c}^2(x) \subset A$$

Dies zeigt $A \in \mathcal{T}_2$.

(2) Wende den ersten Teil zweimal an.

Satz 2.11. Auf einem endlich-dimensionalen Vektorraum sind alle Normen äquivalent. Endlich-dimensionale Vektorräume sind Banachräume. Endlich-dimensionale Unterräume normierter Räume sind abgeschlossen.

Beweis. Sei X ein endlich-dimensionaler \mathbb{K} -Vektorraum und $\|\cdot\|$ eine Norm. Sei e_1, \ldots, e_n eine Basis von $(X, \|\cdot\|)$. Jedem $x \in X$ mit $x = \sum_{i=1}^n \alpha_i e_i$ ordnen wir den Vektor $\alpha = (\alpha_1, \ldots, \alpha_n)^{\mathsf{t}} \in \mathbb{K}^n$ zu.

Die Abbildungen

$$\mathbb{K}^n \to X \to \mathbb{R}$$
$$\alpha \mapsto x \mapsto \|x\|$$

sind stetig.

Daher nimmt ||x|| auf der kompakten Menge

$$S \coloneqq \{\alpha \mid \|\alpha\|_2 = 1\}$$

ein Maximum M und ein Minimum m an. (Dabei gilt m>0, da $\|x\|>0$ für alle $x\in S.$) Damit gilt für x mit $\|\alpha(x)\|_2=1$

$$m \le ||x|| \le M$$
.

Für allgemeine $x \neq 0$ gilt

$$\left\| \alpha \left(\frac{x}{\|\alpha(x)\|_2} \right) \right\|_2 = 1$$
 und somit $m \le \left\| \frac{x}{\|\alpha(x)\|_2} \right\| \le M$

Dies zeigt die Äquivalenz einer beliebigen Norm zur Norm $x \mapsto \|\alpha(x)\|_2$. Damit sind zwei beliebige Normen äquivalent.

9