9I Construct the Burrows-Wheeler Transform of a String

Burrows-Wheeler Transform Construction Problem

Construct the Burrows-Wheeler transform of a string.

Input: A string *Text*.Output: BWT(*Text*).

\$BANANAS ANANAS\$B ANAS\$BAN AS\$BANAN BANANAS\$ NANAS\$BA NAS\$BANA S\$BANANA

Formatting

Input: A string *Text*.

Output: A string *Transform* representing BWT(*Text*).

Constraints

• The length of *Text* will be between 1 and 10^3 .

Test Cases

Case 1

Description: The sample dataset is not actually run on your code.

Input:

panamabananas

Output:

smnpbnnaaaaa\$a

Figure:

Shown above is a general (and inefficient) construction process for the Burrows-Wheeler Transform for the string panamabananas. We first generate all cyclic rotations of *Text* before sorting them lexicographically to build a Burrows-Wheeler matrix. Lastly, we output the last column of the Burrows-Wheeler matrix as the Burrows-Wheeler Transform of *Text*. This process is very similar to the process of generating a suffix array.

		_
l a	ISE	"

Description: There are repeats in *Text*.

Input:

AATCAATC

Output:

CC\$AATTAA

Case 3

Description: *Text* is made up of only one character.

Input:

AAAAAAAAA\$

Output:

AAAAAAAAA\$

Case 4

Description: *Text* is palindromic or has substrings that are palindromic.

Input:

GAGCAT\$

Output:

TGCG\$AA

Case 5

Description: A larger dataset of the same size as that provided by the randomized autograder. Check input/output folders for this dataset.