УДК 517.956 **МРНТИ 27.31.15**

Б.Х.ТУРМЕТОВ 1 , И.Г. САЛИХАНОВА 2

доктор физико-математических наук, профессор, E-mail: batirkhan.turmetov@ayu.edu.kz ²магистрант, E-mail: indi.salikhanova@mail.ru Международный казахско-турецкий университет им. Ходжа Ахмеда Ясави

О РАЗРЕШИМОСТИ ДРОБНЫХ АНАЛОГОВ ЗАДАЧИ НЕЙМАНА ДЛЯ НЕЛОКАЛЬНОГО БИГАРМОНИЧЕСКОГО УРАВНЕНИЯ

Абстракт. В данной статье мы изучаем вопросы разрешимости некоторых краевых задач для нелокального бигармонического уравнения. В качестве граничных операторов рассматриваются дифференциальные операторы дробного порядка в смысле Миллера-Росса. Рассматриваемые задачи являются обобшениями известных задач Неймана.

Ключевые слова. нелокальное уравнение, задача Неймана, бигармоническое уравнение, краевая задача, дробная производная, оператор Миллера-Росса.

\mathbf{F} .Х.ТУРМЕТОВ 1 , И.Г. САЛИХАНОВА 2

¹ физика-математика ғылымдарының кандидаты, профессор, E-mail: batirkhan.turmetov@avu.edu.kz ²магистрант, E-mail: indi.salikhanova@mail.ru Қожа Ахмет Ясауи атындағы Халықаралық қазақ-түрік университеті

БЕЙЛОКАЛ БИГАРМОНИЯЛЫҚ ТЕҢДЕУ ҮШІН НЕЙМАН ЕСЕБІНІҢ БӨЛШЕК РЕТТІ АНАЛОГТАРЫНЫҢ ШЕШІЛІМДІЛІГІ ТУРАЛЫ

Андатпа. Бұл мақалада біз бейлокал бигармониялық теңдеу үшін кейбір шеттік есептердің шешімділігі мәселелерін зерттейміз. Шекаралық операторлар есебінде Миллер-Росс мағнасындағы бөлшек ретті дифференциалдық операторлар қарастырылады. Қарастырылатын есептер белгілі Нейман есебінің жалпыламасы болып табылады.

Кілт сөздер. бейлокал теңдеу, Нейман есебі, бигармониялық теңдеу, шеттік есеп, бөлшек ретті туынды, Миллер-Росс операторы.

 $\textbf{B.KH.TURMETOV}^1 \text{ , I.G.SALIKHANOVA}^2 \\ ^1 \text{doctor of physical and mathematical sciences, professor,E-mail:batirkhan.turmetov@ayu.edu.kz}$ ² master student, E-mail: indi.salikhanova@mail.ru Khoja Akhmet Yassawi International Kazakh-Turkish University

SOLVABILITY OF FRACTIONAL ANALOGUES OF THE NEUMANN PROBLEM FOR A NONLOCAL BIHARMONIC EQUATION

Abstract. In this article we study the solvability of some boundary value problems for nonlocal biharmonic equations. As a boundary operator we consider the differentiation operator of fractional order in the Miller-Ross sense. This problem is a generalization of the well-known Neumann problems.

Keywords. nonlocal equation, biharmonic equation, boundary value problems, fractional derivative, Miller-Ross operator.

Введение

Уравнения, в которые входят неизвестная функция и ее производные, вообще говоря, для разных значений аргументов называются нелокальными дифференциальными уравнениями. Примером нелокальных уравнений являются дифференциальные уравнения с инволюцией [1]. Отметим, что краевые и начально-краевые задачи для дифференциальных уравнений с инволюцией исследовались в работах [2–8].

Если $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, то простейшим примером инволюции является отображение вида $Ix = (-x_1, -x_2, ..., -x_n)$. Пусть S — действительная ортогональная матрица, т.е. $S \cdot S^T = E$. Предположим также, что существует такое натуральное $I \in \mathbb{N}$ что $S^I = E$. Используя отображения такого типа в работе [9] был введен нелокальный аналог оператора Лапласа и для соответствующего нелокального уравнения Пуассона исследованы вопросы разрешимости основных краевых задач. Далее, в работах [10,11] для нелокального бигармонического уравнения с отображениями типа S были исследованы вопросы разрешимости краевых задач с граничными операторами дробного порядка с производными Адамара и Капуто.

Настоящая работа является продолжением этих исследований, где в качестве граничных операторов будут рассмотрены производные типа Росс-Миллера.

Переходим к постановке задач. Пусть $\Omega = \left\{x \in R^n : |x| < 1\right\}$ — единичный шар, а $\partial \Omega$ — единичная сфера и $n \ge 2$. Предположим, что u(x) — гладкая функция в области Ω , r = |x|, $\theta = x/|x|$. Для любого $\alpha > 0$ выражение

$$J^{\alpha}[u](x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{r} (r - \tau)^{\alpha - 1} u(\tau \theta) d\tau$$

называется оператором интегрирования порядка α в смысле Римана-Лиувилля [12]. В дальнейшем будем считать $J^0[u](x)=u(x)$.

Пусть $m-1 < \alpha \le m, m=1,2,...$, $\frac{\partial}{\partial r} = \frac{1}{r} \sum_{j=1}^n x_j \frac{\partial}{\partial x_j}$, $\frac{\partial^k u}{\partial r^k} = \frac{\partial}{\partial r} \left(\frac{\partial^{k-1} u}{\partial r^{k-1}} \right), k=1,2,...$ Следующие выражения

$${}_{RL}D^{\alpha}[u](x) = \frac{\partial^{m}}{\partial r^{m}}J^{m-\alpha}[u](x) \quad {}_{C}D^{\alpha}[u](x) = J^{m-\alpha}\left[\frac{\partial^{m}u}{\partial r^{m}}\right](x)$$

называются производными порядка α в смысле Римана–Лиувилля и Капуто. В дальнейщем мы будем рассматривать оператор следующего вида

$$D_p^{\alpha}[u](x) = \frac{\partial^{m-p}}{\partial r^{m-p}} J^{m-\alpha} \frac{\partial^p}{\partial r^p} u(x), p = 0, 1, ..., m$$

Данный оператор называется производной порядка α в смысле Росс-Миллера [12]. При значении p=0 мы получаем $D_0^\alpha[u](x)=_{\mathit{RL}} D^\alpha[u](x)$ и соответственно при p=m получаем $D_m^\alpha[u](x)=_{\mathit{C}} D^\alpha[u](x)$.

Пусть $a_{j}, j=1,2,...,l$ - действительные числа. Введем оператор

$$Lu(x) \equiv \sum_{j=1}^{l} a_j \Delta^2 u\left(S^{j-1}x\right)$$

Рассмотрим в области Ω следующие задачи.

Задача 1. Пусть $0<\alpha<2$. Найти функцию u(x) из класса $C^4(\Omega)\cap C(\overline{\Omega})$, для которой $r^{\alpha+k}D_1^{\alpha+k}\left[u\right](x)\in C(\overline{\Omega}), k=0,1$, удовлетворяющее условиям

$$Lu(x) = f(x), x \in \Omega, \tag{1}$$

$$D_1^{\alpha}[u](x) = \varphi_1(x), \ x \in \partial\Omega,$$
(2)

$$D_1^{\alpha+1}[u](x) = \varphi_2(x), \ x \in \partial\Omega.$$
(3)

Задача 2. Пусть $0<\alpha\leq 2$. Найти функцию u(x) из класса $C^4(\Omega)\cap C(\overline{\Omega})$, для которой $r^{\alpha+k}D_2^{\alpha+k}\left[u\right](x)\in C(\overline{\Omega}), k=0,1$, удовлетворяющее уравнению (1) и условиям

$$D_2^{\alpha}[u](x) = \varphi_1(x), \ x \in \partial\Omega, \tag{4}$$

$$D_2^{\alpha+1}[u](x) = \varphi_2(x), \ x \in \partial\Omega \ . \tag{5}$$

Если $x \in \partial \Omega$, то для оператора $r \frac{\partial}{\partial r}$ имеет место следующее равенство

$$r\frac{\partial u}{\partial r} = \frac{\partial u}{\partial r} = \frac{\partial u}{\partial v}$$

где $^{\mathcal{V}}$ вектор внешней нормали к $^{\partial\Omega}.$ Кроме того, для всех $x\in\partial\Omega$ имеет место равенство

$$r\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}-1\right)...\left(r\frac{\partial}{\partial r}-k+1\right) = \frac{\partial^k}{\partial v^k}, k=1,2,...$$

Поэтому в случае $\alpha = 1$ для всех $x \in \partial \Omega$ получаем

$$D_{j}^{1}u(x) = \frac{\partial^{1-j}}{\partial r^{1-j}}J^{0}\frac{\partial^{j}}{\partial r^{j}}u(x) = \frac{\partial u(x)}{\partial r} = \frac{\partial u}{\partial v}, j = 0,1$$

$$r^{2}D_{j}^{2}u(x) = r^{2}\frac{\partial^{2}u(x)}{\partial r^{2}} = r\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r} - 1\right)u(x) = \frac{\partial^{2}u(x)}{\partial v^{2}}, j = 0,1$$

Следовательно, при значениях $\alpha = 1$ или $\alpha = 2$ задача (1) - (3) представляет собой аналог задачи Неймана для уравнения (1).

Отметим, что задача 1 в случае $\alpha = 0$ (задача Дирихле) и в случае $\alpha = 1$ (задача Неймана) изучена в работе [10].

Далее, введем обозначения

$$B_j^{\alpha}[u](x) = r^{\alpha} D_j^{\alpha}[u](x), 0 < \alpha \le 1$$

$$B^{-\alpha}[u](x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{1} (1-s)^{\alpha-1} s^{-\alpha} u(sx) ds, 0 < \alpha \le 1$$

Отметим, что некоторые свойства и применение операторов B^{α} и $B^{-\alpha}$ при $0<\alpha<1$ изучены в работе [13]. Доказано, что в классе гармонических функций эти операторы являются взаимно обратными. Очевидно, что эти свойства остаются верными и в классе бигармонических функций.

2. Свойства инволютивных преобразований

Сначала приведем некоторые вспомогательные утверждения.

Рассмотрим следующую матрицу A, зависящую от чисел $a_1, a_2, ..., a_l$

$$A = \begin{pmatrix} a_1 & a_2 & \dots & a_l \\ a_l & a_1 & \dots & a_{l-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \dots & a_l \end{pmatrix}$$

В работе [9] доказаны следующие утверждения

Лемма 1. Пусть $\lambda_1 = e^{i\frac{2\pi}{l}}$ - примитивный корень степени l из единицы. Тогда $\det A = \prod_{k=1}^l \mu_k \prod_{\substack{l \in I \\ l = 1}} \mu_k = a_1 \lambda_0^k + \ldots + a_l \lambda_{l-1}^k, \ \lambda_k = e^{i\frac{2\pi k}{l}}, \ k = 1, \ldots, l \ .$

Лемма 2. Пусть $\mu_k = a_1 \lambda_0^k + ... + a_l \lambda_{l-1}^k \neq 0$, k = 1, ..., l, где $\left\{ \lambda_k \right\}$ - корни степени l из единицы, тогда решение системы алгебраических уравнений Ab = g можно записать в виде

$$b = (b)_{i=1,...,l} = \frac{1}{l} \left(\sum_{k=1}^{l} \frac{1}{\mu_k} \sum_{j=1}^{l} \lambda_k^{i-j} g_j \right)_{i=1,...,l}$$

Лемма 3. Матрица A^{-1} имеет структуру матрицы A

$$\begin{pmatrix} a_1 & a_2 & \dots & a_l \\ a_l & a_1 & \dots & a_{l-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \dots & a_l \end{pmatrix}^{-1} = \begin{pmatrix} b_1 & b_2 & \dots & b_l \\ b_l & b_1 & \dots & b_{l-1} \\ \vdots & \vdots & \ddots & \vdots \\ b_2 & b_3 & \dots & b_l \end{pmatrix}$$

где коэффициенты $b_{j}, j=1,2,...,l$ определяются из равенства

$$b_{j} = \frac{1}{l} \sum_{k=1}^{l} \frac{1}{\lambda_{k}^{j-1} \mu_{k}}$$

Лемма 4. Оператор $I_S u(x) = u(Sx)$ и оператор Лапласа Δ коммутируют.

Следствие 1. Если функция u(x) - бигармоническая в Ω , то функция $u(Sx) = I_S u(x)$ также является бигармонической в Ω .

Следствие 2. Если функция u(x) - бигармоническая в Ω , то она удовлетворяет однородному уравнению (1) в Ω .

Лемма 5. Если функция $u \in C^4(\Omega)$ удовлетворяет однородному уравнению (1), то при выполнении условий $\mu_k = a_1 \lambda_0^k + ... + a_l \lambda_{l-1}^k \neq 0$, k = 1, ..., l она является бигармонической в области Ω .

Доказательство. Предположим, что функция u(x) принадлежит классу $C^4(\Omega)$ и удовлетворяет однородному уравнению (1). Рассмотрим функцию

$$v(x) = \sum_{k=1}^{l} a_k u(S^{k-1}x)$$
(6)

Так как $u\in C^4(\Omega)$, то функция v(x) также принадлежит классу $C^4(\Omega)$ и для всех $x\in\Omega$ выполняется равенство $\Delta^2v(x)=0$. Следовательно, функция v(x) является бигармонической в области Ω . Тогда по утверждению следствия 1 функции $v(S^kx), k=0,1,...,l-1$ также являются бигармоническими в области Ω .

Далее, если в равенстве (6) меняем точку x на $S^k x, k=1,2,...,l$, то в силу условия $S^l=E$, для функций $u(x),u(Sx),...,u(S^{l-1}x)$ получаем систему алгебраических уравнений вида

$$\begin{pmatrix} v(x) \\ v(Sx) \\ \vdots \\ v(S^{l-1}x) \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & \dots & a_l \\ a_l & a_1 & \dots & a_{l-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_2 & a_3 & \dots & a_l \end{pmatrix} \begin{pmatrix} u(x) \\ u(Sx) \\ \vdots \\ u(S^{l-1}x) \end{pmatrix}.$$
 (7)

По условию леммы выполняются неравенства $\mu_k = a_1 \lambda_0^k + ... + a_l \lambda_{l-1}^k \neq 0$, k=1,...,l. Тогда $\det(A) \neq 0$ и система (7) имеет единственное решение. Далее, воспользуемся утверждениями лемм 2 и 3 при $b = \left(u(x), u(Sx), ..., u(S^{l-1}x)\right)^T$ и $g = \left(v(x), v(Sx), ..., v(S^{l-1}x)\right)^T$. Из этих лемм следует, что

$$u(x) = \sum_{j=1}^{l} b_j v(S^{j-1}x) = b_1 v(x) + b_2 v(Sx) + \dots + b_l v(S^{l-1}x)$$
(8)

Так как функции $v(S^kx)$ при k=0,1,...,l-1 являются бигармоническими в Ω , то функция u(x) из (8) также является бигармонической в области Ω . Лемма доказана.

3. Исследование единственности решения основных задач.

Сначала мы исследуем единственность решение задачи (1)-(3).

На основании леммы 5 можно доказать следующее утверждение.

Теорема 1. Пусть $0 < \alpha \le 2$, $\mu_k = a_1 \lambda_0^k + ... + a_l \lambda_{l-1}^k \ne 0$, при k = 1, ..., l и решение задач 1 и 2 существуют. Тогда

- 1) если $0 < \alpha < 2$ и j = 1, то решение задачи 1 единственно с точностью постоянного слагаемого;
- 2) если $1 < \alpha \le 2$ и j = 2, то решение задачи 2 единственно с точностью до полиномов первого порядка.

Доказательство. Пусть u(x) - решение однородной задачи (1)-(3). Если $\mu_k = a_1 \lambda_0^k + ... + a_l \lambda_{l-1}^k \neq 0$, при k = 1, ..., l, то по лемме 2 $D = \det A \neq 0$. Тогда по лемме 5 функция u(x) является бигармонической в области Ω и удовлетворяет однородным условиям (2) и (3). Следовательно, функция u(x) - решение следующей задачи

$$\Delta^{2}u(x) = 0, x \in \Omega; \ D_{j}^{\alpha}\left[u\right](x)\Big|_{\partial\Omega} = 0, D_{j}^{\alpha+1}\left[u\right](x)\Big|_{\partial\Omega} = 0.$$

$$(9)$$

В работе [14] для однородной задачи (9) доказано следующее утверждение.

Лемма 6. Пусть $0 < \alpha \le 2, j = 1, 2$ и функция u(x) является решением задачи (9).

Тогда

- 1) если $0 < \alpha < 2$ и j=1, то решение задачи (9) единственно с точностью постоянного слагаемого;
- 2) если $1 < \alpha \le 2$ и j = 2, то решение задачи (9) единственно с точностью до полиномов первого порядка.

Из утверждения этой леммы следует доказательство настоящей теоремы. Теорема доказана.

4. Существование решение задачи 1.

В этом пункте мы приведем основное утверждение относительно существования решения задачи 1. В дальнейшем всюду будем считать $n \neq 2$ и $n \neq 4$ Справедливо следующее утверждение.

Теорема 2. Пусть $0 < \alpha < 2$, $\mu_k = a_1 \lambda_0^k + ... + a_l \lambda_{l-1}^k \neq 0, k = 1, ..., l$, $0 < \lambda < 1$, $f(x) \in C^{\lambda+1}(\overline{\Omega})$ $\varphi_l(x) \in C^{\lambda+4}(\partial \Omega)$, $\varphi_l(x) \in C^{\lambda+3}(\partial \Omega)$. Тогда

1) если $0 < \alpha \le 1$, то задача 1 имеет решение тогдо и только тогда когда выполняется условие

$$\left(\sum_{k=1}^{l} a_{k}\right) \int_{\partial\Omega} \left[\varphi_{2}(x) + (\alpha - 2)\varphi_{1}(x)\right] dS_{x} = \frac{1}{2} \int_{\Omega} \left(1 - |x|^{2}\right) f_{1,\alpha}(x) dx + \frac{1 - \alpha}{(n - 2)(n - 4)} \int_{\Omega} \left(|x|^{4 - n} - 1 + \frac{4 - n}{2}(1 - |x|^{2})\right) f_{1,\alpha}(x) dx$$

$$\vdots \qquad (10)$$

2) если $1 < \alpha < 2$, то задача 1 имеет решение тогдо и только тогда когда выполняется условие

где

$$f_{1,\alpha}(x) = \frac{r^{\alpha-5}}{\Gamma(1-\alpha)} \int_{0}^{r} (r-\tau)^{1-\alpha} \tau^{4} g(\tau\theta) d\tau, 0 < \alpha < 1, f_{1,1}(x) = f(x)$$

$$f_{2,\alpha}(x) = \frac{r^{\alpha-6}}{\Gamma(2-\alpha)} \int_{0}^{r} (r-\tau)^{1-\alpha} \tau^{4} f(\tau\theta) d\tau, 1 < \alpha < 2, f_{2,2}(x) = f(x)$$

Если решение задачи существует, то оно единственно с точностью до постоянного слагаемого и принадлежит классу $C^{\lambda+4}(\overline{\Omega})$.

Доказательство. Пусть решение задачи 1 существует. Предполагая, что функция u(x) является решением задачи 1 построим по формуле (6) функцию v(x). Находим условия которым удовлетворяет данная функция. Если применим к равенству (6) оператор Δ^2 , то в силу выполнения уравнения (1), получаем

$$\Delta^{2}v(x) = \sum_{k=1}^{l} a_{k} \Delta^{2}u(S^{k-1}x) = f(x), x \in \Omega$$

Кроме того, в силу условий (2) и (3) имеем

$$r^{\alpha}D_{1}^{\alpha}[v](x)\Big|_{\partial\Omega} = \sum_{k=1}^{l} a_{k} r^{\alpha}D_{1}^{\alpha}[u](S^{k-1}x)\Big|_{\partial\Omega} = \sum_{k=1}^{l} a_{k} \varphi_{1}(S^{k-1}x)\Big|_{\partial\Omega} \equiv g_{1}(x)$$

$$r^{\alpha+1}D_{1}^{\alpha+1}[v](x)\Big|_{\partial\Omega} = \sum_{k=1}^{l} a_{k} r^{\alpha+1}D_{1}^{\alpha+1}[u](S^{k-1}x)\Big|_{\partial\Omega} = \sum_{k=1}^{l} a_{k} \varphi_{2}(S^{k-1}x)\Big|_{\partial\Omega} \equiv g_{2}(x)$$

Таким образом, если функция u(x) является решением задачи 1, то функция v(x) построенная через u(x) по формуле (6) является решением следующей задачи

$$\Delta^{2}v(x) = f(x), x \in \Omega; D_{1}^{\alpha} \left[v\right](x)\Big|_{\partial\Omega} = g_{1}(x), D_{1}^{\alpha+1} \left[v\right](x)\Big|_{\partial\Omega} = g_{2}(x),$$

$$(12)$$

 $_{\Gamma \text{де}} \; g_1(x) \;_{\text{и}} \; g_2(x) \;_{\text{определяются из равенств}}$

$$g_1(x) = \sum_{k=1}^{l} a_k \varphi_1(S^{k-1}x), g_2(x) = \sum_{k=1}^{l} a_k \varphi_2(S^{k-1}x)$$
(13)

В работе [14] найдены условия разрешимости задачи (12).

Лемма 7. Пусть $0 < \alpha < 2$, функции $f(x), g_1(x)$ и $g_2(x)$ достаточно гладкие. Тогда

1) если $0 < \alpha \le 1$, то для разрешимости задачи (12) необходимо и достаточно выполнения условий

$$\frac{1}{2} \int_{\Omega} (1-|x|^{2}) f_{1,\alpha}(y) dy + \frac{1-\alpha}{(n-2)(n-4)} \int_{\Omega} (|y|^{4-n} - 1 + \frac{4-n}{2} (1-|y|^{2})) f_{1,\alpha}(y) dy = \int_{\partial\Omega} [g_{2}(y) + (\alpha - 2)g_{1}(y)] dS_{y}, \qquad (14)$$

где

$$f_{1,\alpha}(y) = \frac{r^{\alpha-5}}{\Gamma(1-\alpha)} \int_{0}^{r} (r-\tau)^{1-\alpha} \tau^{4} f(\tau\theta) d\tau, 0 < \alpha < 1, f_{1,1}(y) = f(y)$$

2) если $1 < \alpha < 2$, то для разрешимости задачи (10) необходимо и достаточно выполнения условий

$$\frac{1}{2} \int_{\Omega} (1-|x|^{2}) f_{1,\alpha}(y) dy + \frac{1-\alpha}{(n-2)(n-4)} \int_{\Omega} (|y|^{4-n} - 1 + \frac{4-n}{2} (1-|y|^{2})) f_{1,\alpha}(y) dy = \int_{\partial\Omega} [g_{2}(y) + (\alpha - 2)g_{1}(y)] dS_{y}, \qquad (15)$$

Если решение задачи (12) существует, то оно представима в виде

$$v(x) = C + B^{-\alpha} [w](x)$$

где функция w(x) является решением следующей задачи Дирихле

$$\Delta^2 w(x) = |x|^{-4} B_1^{\alpha} \left[|x|^4 f \right](x), x \in \Omega; w(x) \Big|_{\partial \Omega} = g_1(x), \frac{\partial w(x)}{\partial \nu} \Big|_{\partial \Omega} = g_2(x) + \alpha g_1(x)$$

Далее, для функции $\varphi(Sx)$ справедливо равенство (см., например [15])

$$\int_{\partial\Omega} \varphi(Sx)dS_x = \int_{\partial\Omega} \varphi(x)dS_x$$

Отсюда используя представление функции $g_1(x)$ и $g_2(x)$ имеем

$$\begin{split} & \int_{\partial\Omega} \left[g_{2}(y) + (\alpha - 2)g_{1}(y) \right] dS_{y} = \int_{\partial\Omega} \left[\sum_{k=1}^{l} a_{k} \varphi_{1}(S^{k-1}y) + (\alpha - 2) \sum_{k=1}^{l} a_{k} \varphi_{2}(S^{k-1}y) \right] dS_{y} = \\ & = \sum_{k=1}^{l} a_{k} \int_{\partial\Omega} \left[\varphi_{2}(S^{k-1}y) + (\alpha - 2)\varphi_{1}(S^{k-1}y) \right] dS_{y} = \sum_{k=1}^{l} a_{k} \int_{\partial\Omega} \left[\varphi_{2}(y) + (\alpha - 2)\varphi_{1}(y) \right] dS_{y} = \\ & = \left(\sum_{k=1}^{l} a_{k} \right) \int_{\partial\Omega} \left[\varphi_{2}(y) + (\alpha - 2)\varphi_{1}(y) \right] dS_{y} \end{split}$$

Из этого равенства следует, что условия (14) и (15) можно переписать в виде (10) и (11) соответственно. Таким образом, мы доказали, что если решение задачи 1 существует, то необходимо выполнения условий (10) и (11). Далее, мы покажем, что эти условия являются и достаточным для существования решение задачи 1. Действительно, предположим, что выполняются условия (10) и (11). Если функции $g_1(x)$ и $g_2(x)$ определяются по формуле (13), то для них выполняются условия (14) и (15). Тогда решение задачи (12) с граничными функциями $g_1(x)$ и $g_2(x)$ существует. Покажем, что функция

$$u(x) = \sum_{j=1}^{l} b_j v(S^{j-1}x)$$
(16)

удовлетворяет всем условиям задачи 1. Действительно, применяя к функции (17) оператор Δ^2 получаем

$$\Delta^{2}u(x) = \sum_{j=1}^{l} b_{j} \Delta^{2}v(S^{j-1}x) = \sum_{j=1}^{l} b_{j} f(S^{j-1}x)$$

Отсюда

$$Lu(x) = \sum_{k=1}^{l} a_k \Delta^2 u(S^{k-1}x) = \sum_{k=1}^{l} a_k \sum_{j=1}^{l} b_j f(S^{k+j-2}x) = \sum_{k=1}^{l} a_k \sum_{j=1}^{l} b_{j-k+1} f(S^{j-1}x) =$$

$$= \sum_{j=1}^{l} f(S^{j-1}x) \sum_{k=1}^{l} a_k b_{j-k+1} = f(x)$$

Таким образом мы показали, что функция u(x) из равенства (16) удовлетворяет условию (1). Проверим выполнение граничных условий задачи 1. Сначала заметим, что для функции v(x) справедливо равенство

$$\begin{split} D_1^{\alpha}[v](x)\Big|_{\partial\Omega} &= g_1(x), D_1^{\alpha+1}[v](x)\Big|_{\partial\Omega} = g_2(x) \\ \\ &= r^{\alpha}D_1^{\alpha}\left[C\right]\Big|_{\partial\Omega} + r^{\alpha}D_1^{\alpha}\left[B^{-\alpha}[w]\right](x)\Big|_{\partial\Omega} = w(x)\Big|_{\partial\Omega} = g_1(x) \end{split}$$

Тогда

$$\begin{split} D_{1}^{\alpha}[u](x)\Big|_{\partial\Omega} &= \sum_{j=1}^{l} b_{j} D_{1}^{\alpha} v(S^{j-1}x) \Big|_{\partial\Omega} = \sum_{j=1}^{l} b_{j} g_{1}(S^{j-1}x) = \sum_{j=1}^{l} b_{j} \sum_{k=1}^{l} a_{k} \varphi_{1}(S^{k+j-2}x) = \\ &= \sum_{k=1}^{l} a_{k} \sum_{j=1}^{l} b_{j-k+1} \varphi_{1}(S^{j-1}x) = \sum_{j=1}^{l} \varphi_{1}(S^{j-1}x) \sum_{k=1}^{l} a_{k} b_{j-k+1} = \varphi_{1}(x) \end{split}$$

Аналогично можно показать выполнение равенства

$$D_1^{\alpha+1}[u](x)\Big|_{\partial\Omega} = \varphi_2(x)$$

Теорема доказана.

Следствие 3. Если $\alpha = 1$, то условие разрешимости задачи 1 имеет вид

$$\left(\sum_{k=1}^{l} a_k\right) \int_{\partial\Omega} \left[\varphi_2(x) - \varphi_1(x)\right] dS_x = \frac{1}{2} \int_{\Omega} \left(1 - |x|^2\right) f(x) dx$$

5. Существование решение задачи 2.

Далее, исследуем существования решения задачи 2. Пусть функция u(x) является решением задачи 2. Как и в случае задачи 1 построим по формуле (6) функцию v(x). В этом случае функция v(x) будет удовлетворят условием следующей задачи

$$\Delta^{2}v(x) = f(x), x \in \Omega; D_{2}^{\alpha} [v](x) \Big|_{\partial\Omega} = g_{1}(x), D_{2}^{\alpha+1} [v](x) \Big|_{\partial\Omega} = g_{2}(x)$$
(18)

где $g_1(x)$ и $g_2(x)$ определяются из равенств (13) В работе [14] доказана следующее утверждение.

Лемма 8. Пусть $1 < \alpha \le 2$, функции $f(x), g_1(x)$ и $g_2(x)$ достаточно гладкие. Тогда для разрешимости задачи (18) необходимо и достаточно выполнения условий

$$\int_{\partial\Omega} \left[g_2(x) + (\alpha - 2)g_1(x) \right] dS_x = (2 - \alpha) \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) \left(r \frac{\partial}{\partial r} + 3 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^2 \right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left$$

$$+\frac{(1-\alpha)(2-\alpha)}{(n-2)(n-4)} \int_{\Omega} \left(|x|^{4-n} - 1 + \frac{2-n}{2} (1-|x|^2) \right) f_{2,\alpha}(x) dx$$
(19)

и для всех k = 1, 2, ..., n

$$\int_{\partial\Omega} x_{k} \left[g_{2}(x) + (\alpha - 3)g_{1}(x) \right] dS_{x} = \frac{1}{2} \int_{\Omega} x_{k} \left(1 - |x|^{2} \right) \left(r \frac{\partial}{\partial r} + 4 \right) f_{2,\alpha}(x) dx + \\
+ \frac{2(2 - \alpha)}{n(n - 2)} \int_{\Omega} x_{k} \left(|x|^{2-n} - 1 + \frac{2-n}{2} (1 - |x|^{2}) \right) \left(r \frac{\partial}{\partial r} + 4 \right) f_{2,\alpha}(x) dx + \\
+ \frac{(1 - \alpha)(2 - \alpha)}{n(n - 2)} \int_{\Omega} x_{k} \left(|x|^{2-n} - 1 + \frac{2-n}{2} (1 - |x|^{2}) \right) f_{2,\alpha}(x) dx \\
\cdot (20)$$

Используя представление функции $g_1(x)$ и $g_2(x)$ условия (19) и (20) перепишем относительно функции $\varphi_1(x)$ и $\varphi_2(x)$. Как и в случае задачи 1 получаем

$$\int_{\partial\Omega} \left[g_2(x) + (\alpha - 2)g_1(x) \right] dS_x = \left(\sum_{k=1}^l a_k \right) \int_{\partial\Omega} \left[\varphi_2(x) - \varphi_1(x) \right] dS_x$$

$$\int_{\partial\Omega} \left[g_2(x) + (\alpha - 3)g_1(x) \right] dS_x = \left(\sum_{k=1}^l a_k \right) \int_{\partial\Omega} \left[\varphi_2(x) + (\alpha - 3)\varphi_1(x) \right] dS_x$$

Приведем основное утверждение относительно задачи 2.

Теорема 3. Пусть $1<\alpha\leq 2$, $\mu_k=a_1\lambda_0^k+...+a_l\lambda_{l-1}^k\neq 0, k=1,...,l$, $0<\lambda<1$, $f\left(x\right)\in C^{\lambda+1}\left(\overline{\Omega}\right)$ и $\varphi_l(x)\in C^{\lambda+4}\left(\partial\Omega\right), \, \varphi_l(x)\in C^{\lambda+3}\left(\partial\Omega\right)$. Тогда для разрешимости задачи 2 необходимо и достаточно выполнения условий

$$\left(\sum_{k=1}^{l} a_{k}\right) \int_{\partial\Omega} \left[\varphi_{2}(x) + (\alpha - 2)\varphi_{1}(x)\right] dS_{x} = (2 - \alpha) \int_{\Omega} \left(1 - |x|^{2}\right) f_{2,\alpha}(x) dx + \frac{1}{2} \int_{\Omega} \left(1 - |x|^{2}\right) \left(r \frac{\partial}{\partial r} + 3\right) f_{2,\alpha}(x) dx + \frac{(1 - \alpha)(2 - \alpha)}{(n - 2)(n - 4)} \int_{\Omega} \left(|x|^{4 - n} - 1 + \frac{2 - n}{2}(1 - |x|^{2})\right) f_{2,\alpha}(x) dx$$

 $_{\text{и лля всех}} k = 1, 2, ..., n$

$$\left(\sum_{k=1}^{l} a_{k}\right) \int_{\partial\Omega} x_{k} \left[\varphi_{2}(x) + (\alpha - 2)\varphi_{1}(x)\right] dS_{x} = \frac{1}{2} \int_{\Omega} x_{k} \left(1 - |x|^{2}\right) \left(r \frac{\partial}{\partial r} + 4\right) f_{2,\alpha}(x) dx + \frac{2(2 - \alpha)}{n(n - 2)} \int_{\Omega} x_{k} \left(|x|^{2 - n} - 1 + \frac{2 - n}{2} (1 - |x|^{2})\right) \left(r \frac{\partial}{\partial r} + 4\right) f_{2,\alpha}(x) dx + \frac{(1 - \alpha)(2 - \alpha)}{n(n - 2)} \int_{\Omega} x_{k} \left(|x|^{2 - n} - 1 + \frac{2 - n}{2} (1 - |x|^{2})\right) f_{2,\alpha}(x) dx$$

Следствие 4. Если $\alpha = 2$, то условия разрешимости задачи 2 имеют вид

$$\left(\sum_{k=1}^{l} a_k\right) \int_{\partial \Omega} \varphi_2(x) \, dS_x = \frac{1}{2} \int_{\Omega} \left(1 - |x|^2\right) \left(r \frac{\partial}{\partial r} + 3\right) f(x) dx$$

и для всех k = 1, 2, ..., n

$$\left(\sum_{k=1}^{l} a_k\right) \int_{\partial \Omega} x_k \varphi_2(x) \ dS_x = \frac{1}{2} \int_{\Omega} x_k \left(1 - |x|^2\right) \left(r \frac{\partial}{\partial r} + 4\right) f(x) dx$$

Работа выполнено при поддержке грантового финансирования КН МОН РК, грант №AP08855810.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Cabada, A.; Tojo, F.A.F. Differential Equations with Involutions. New York: Atlantis Press, 2015. DOI:https://doi.org/10.2991/978-94-6239-121-5 1.
- 2. Andreev, A.A. Analogs of Classical Boundary Value Problems for a Second-Order Differential Equation with Deviating Argument // Differential Equations. 2004. V. 40. P. 1192 1194. https://doi.org/10.1023/B:DIEQ.0000049836.04104.6f.

- 3. Al-Salti N., Kerbal S., Kirane M. Initial boundary value problems for a time-fractional differential equation with involution perturbation // Mathematical Modelling of Natural Phenomena. 2019. V. 14, No.3, P.1 15. https://doi.org/10.1051/mmnp/2019014.
- 4. Ashyralyev A, Sarsenbi A. Well-posedness of a parabolic equation with involution // Numerical Functional Analysis and Optimization. 2017. V.38. P.1295-1304. https://doi.org/10.1080/01630563.2017.1316997.
- 5. Ashyralyev A, Sarsenbi A.M. Well-posedness of an elliptic equation with involution // Electronic Journal of Differential Equations. 2015. V.2015, No. 284. P.1 8. https://ejde.math.txstate.edu/Volumes/2015/284/ashyralyev.pdf.
- 6. Burlutskaya M.Sh, Khromov A.P. Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution // Computational Mathematics and Mathematical Physics. 2011. V.51. P. 2102 2114. https://doi.org/10.1134/S0965542511120086.
- 7. Линьков А.В. Обоснование метода Фурье для краевых задач с инволютивным отклонением// Вестник СамГУ. 1999. № 2(12). С. 60 66. http://vestniksamgu.ssau.ru/est/1999web2/math/199920004.pdf.
- 8. Turmetov B. Kh., Kadirkulov B.J. An Inverse Problem for a Parabolic Equation with Involution // Lobachevskii Journal of Mathematics. 2021. Vol. 42, No.12. P. 3006 –3015. DOI: 10.1134/S1995080221120350.
- 9. Karachik V.V., Sarsenbi A., Turmetov B.Kh. On solvability of the main boundary value problems for a non-local Poisson equation // Turkish journal of mathematics. -2019.-V.43, $N_{2}3.-P.1604-1625$. doi:10.3906/mat-1901-71.
- 10. Турметов Б.Х. О разрешимости некоторых краевых задач для нелокального бигармонического уравнения // Известия Международного казахско-турецкого университета имени Х.А.Ясави. Серия Математика, Физика, Информатика. 2019. \mathbb{N}_{2} 2(9). С. 81 102.
- 11.. Turmetov B. Kh., Karachik V.V., Muratbekova M. On a boundary value problem for the biharmonic equation with multiple involution // Mathematics. 2021. V. 9, No.17. –P. 1-23. https://doi.org/10.3390/math9172020
- 12. Kilbas A. A., Srivastava H. M., Trujillo J.J. Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam. 2006. 523 p.
- 13. Karachik V. V., Turmetov B.Kh., Torebek B. T. On some integro-differential operators in the class of harmonic functions and their applications // Siberian Advances in Mathematics. 2012. V. 22, No. 2. P.115 134. DOI: 10.3103/s1055134412020046.
- 14. Turmetov B.Kh. Solvability of fractional analogues of the Neumann problem for a nonhomogeneous biharmonic equation // Electronic Journal of Differential Equations. 2015. —V. 2015, No. 82. P. 1–21. https://ejde.math.txstate.edu/Volumes/2015/82/turmetov.pdf
- 15. Karachik V.V., Turmetov B.Kh. On solvability of some nonlocal boundary value problems for biharmonic equation // Mathematica Slovaca. 2020. V. 70, No. 2. P.329 341. DOI: 10.1515/ms-2017-0355.