UC San Diego

Credit Card Fraud Detection

Using Neo4j and PostgreSQL

Team: Aryan, Jude, Tarun and David

Introduction

Credit Card Fraud - A Growing Threat

\$33bn

2024

60%

of consumers experience a fraud attempt

\$443bn

projected loss by 2032

Financial fraud is increasing for banks, fintechs and credit unions

35%

of banks and fintechs experienced 1000+ fraud attempts last year*

1 in 10

report 10,000+ fraud attempts

Data Sources

- Synthetically generated dataset with 1.8 million rows *
- 1000 customers
- 800 merchants
- 1st Jan 2019 31st Dec 2020

Data Sources

Transaction details

transaction timestamp, transaction amount, merchant, UUID, category

Location Data

cardholder geocodes merchant geocodes

Cardholder Information

credit card number transaction amt, merchant, UUID, category

Label

is_fraud

Database Architecture

- PostgreSQL for transactional data storage and basic analytics
- Neo4j for graph-based fraud pattern detection
- Connection between databases (e.g., how data flows between systems)

Data Analysis

- Time-based features (transaction velocity, time between transactions)
- Location-based features (distance between transactions)
- Amount-based Outliers (unusual transaction amounts)
- Merchant category Outliers (unusual merchant categories for a customer)

Model Development

- Graph-based pattern detection for fraud rings
- Anomaly detection for individual account fraud

System Architecture

Databases used

- Postgres used for structured transaction data
- Neo4j stores and queries relationships between transactions for fraud detection

SQL Schema Design

Why not store everything in one table?

- creates redundancies
- difficult to update
- slower queries

Demonstration

Use Case Scenarios

- Example 1: Identifying Transaction Anomalies
 - > 3 standard deviations from average spending
 - Late-night fraud
- Example 2: Geolocation Anomaly Detection
 - Compromised cards in unlikely locations
 - Improbable travel patterns
- Example 3: Flagging suspicious velocity patterns
 - Multiple transactions within 5 minutes
 - identifies cloning operations

29%

26%

54%

Postgres

VS

Neo4j

5

Endpoint-Centric

Analysis of users and their end-points

Navigation Centric

Analysis of navigation behavior and suspect patterns

Account-Centric

Analysis of anomaly behavior by channel

Cross Channel

Analysis of anomaly behavior correlated across channels

Entity Linking

Analysis of relationships to detect organized crime and collusion

DISCRETE ANALYSIS

CONNECTED ANALYSIS

Neo4j

Graph Relationships

Attributes

```
MERGE (p:Person {first: row.first, last: row.last,
                 gender: row.gender, job: row.job})
MERGE (m:Merchant {merchantName: row.merchant})
MERGE (c:Category {categoryType: row.category})
MERGE (txn:Transaction {txnID: row.trans num,
                        amount: toFloat(row.amt),
                        timestamp: row.trans date trans time,
                        isFraud: row.txn is fraud})
MERGE (cc:CreditCard {ccNum: row.cc num})
MERGE (personLoc:Geocode {latitude: toFloat(row.lat),
                          longitude: toFloat(row.long)})
MERGE (zip:Zipcode {code: row.zip})
MERGE (city:City {name: row.city, pop: toInteger(row.city pop)})
MERGE (state:State {name: row.state})
MERGE (merchantLoc:Geocode {latitude: toFloat(row.merch lat),
                            longitude: toFloat(row.merch long)})
MERGE (merch zip:Zipcode {code: row.merch zip code})
MERGE (merch city:City {name: row.merch po name})
MERGE (merch state:State {name: row.merch state})
```


Graphical Representation of Fraudulent Connections

Initial Exploration

- Transaction Paths: Person → Credit Card → Transaction → Merchant → Category
- Merchant Fraud Networks
- Geographic Fraud Clusters
- Credit Card Multi-Hop Fraud Risk
- Circular Fraud Patterns
- Common Fraud Path Analysis

Advanced Exploration

Shortest Path Between Fraudulent Transactions

Connect seemingly unrelated fraud events:

- Detect hidden intermediaries.
- Reveal coordinated attacks.

Fraud Communities Detection Centrality-Based Fraud Risk

Identify communities of connected entities:

- Common neighbors indicate fraud rings.
- Helps identify networked activity.

Identify key players in the fraud network:

- Centrality measures highlight influential merchants and persons.
- Predict high-risk nodes.

```
MATCH (t1:Transaction), (t2:Transaction)

WHERE t1.isFraud = '1' AND t2.isFraud = '1' AND t1.txnID < t2.txnID

WITH t1, t2

MATCH (t:Transaction)

WHERE t.isFraud = '1'

MATCH (t)-[:PAID]-(m:Merchant)

WITH COLLECT(DISTINCT m) As fraud

WHERE LENGTH(path) > 1

WITH COLLECT(DISTINCT entity)

WATCH (t)-[*1..2]-(entity)

WATCH (fraudMerchant)<-[:PAID]

WITH COLLECT(DISTINCT entity) As fraudConnectedEntities

UNWIND fraudConnectedEntities As e1

UNWIND fraudConnectedEntities As e2

WHERE ID(e1) < ID(e2)

MATCH (e1)-[*1..3]-(commonEntity)-[*1..3]-(e2)
```


Graph Analytics

- PageRank for Key Fraud Entities
- Louvain Community Detection
- Triangle Counting for Fraud Network Analysis

PostgreSQL + Neo4j Combined Analysis

Creating fraud risk scores using transaction and relationship metrics

- Challenges
- Key Insights
- Future Extensions

Challenges

- Data quality issues
 - populating data and zip to city translation
- Data ingestion
 - dealing with memory/time constraints
 - graph structure
- Querying
 - optimization

Key Insights

- Tradeoffs between simpler and complex graph structure, even for same data
- Multiplicity can be dangerous
 - requires consideration when querying (counting distinct paths)
 - or alternative (reduced) graph complexity

Simple Graph

Complex Graph

Criteria	Simple Graph	Complex Graph
Creation Speed	Fast √	Slow X
Query Performance	Fast √	Potentially Slower X
Relationship Coverage	Minimal X	Complete √
Maintenance Effort	Easy √	Challenging X
Data Insights	Basic X	Rich √
Adaptability	Limited X	Highly Flexible √

Multiplicative Effect

Original Data

We have 2 actual transactions

Transaction ID	Amount	Merchant
TX001	\$120.29	Bahringer-Streich
TX002	\$49.52	Smitham-Boehm

Merchant Locations

Bahringer-Streich

• Zipcode: 32321, City: Bristol

• Zipcode: 32321, City: Grand Ridge

• Zipcode: 32440, City: Bristol

This merchant has 3 location combinations

Smitham-Boehm

• Zipcode: 80137, City: Watkins

• Zipcode: 80137, City: Littleton

This merchant has 2 location combinations

Multiplicative Effect Demonstration

When we query paths through the graph, each transaction creates multiple paths:

TX001 → Bahringer-Streich → 3 paths

Path 1: TX001 → Bahringer-Streich → Zipcode:32321 → City:Bristol

Path 2: $TX001 \rightarrow Bahringer$ -Streich \rightarrow Zipcode:32321 \rightarrow City:Grand Ridge Path 3: $TX001 \rightarrow Bahringer$ -Streich \rightarrow Zipcode:32440 \rightarrow City:Bristol

TX002 → Smitham-Boehm → 2 paths

Path 1: TX002 → Smitham-Boehm → Zipcode:80137 → City:Watkins

Path 2: TX002 → Smitham-Boehm → Zipcode:80137 → City:Littleton

Actual Transactions: 2

Counted Paths: 5

Multiplication Factor: 2.5x

Solutions:

- Create direct relationships when appropriate
- Ensure no duplicate nodes through MERGE instead of CREATE
- Use COUNT(DISTINCT) when querying paths

Future Work

- Real-time implementation
 - query caching for quick retrieval
- Additional data sources
 - more data on cc transactions could allow for additional databases, tables, graphs, etc. and more insightful analysis
- Advanced ML integration
 - employ pagerank and community detection for fraud entity identification
 - model fraud detection through combination of tabular and graphical data

THANKYOU