



#### Chris Velden and Derrick Herndon

University of Wisconsin - Madison Cooperative Institute for Meteorological Satellite Studies (CIMSS)

Meteorological Satellite (METSAT) Conference Ford Island Conference Center Pearl Harbor, HI 27-28 April 2009

Research supported by the ONR Marine Meteorology and Atmospheric Effects Program





#### WNP

#### **Objectives and Motivation**

Satellite-based recon is the workhorse for TC monitoring in the WNP, yet the intensity estimation methods have not been carefully validated since a/c recon left the WNP 23 years ago

Newly-developed automated methods have become operationally available and show promise, but have only been validated in the Atlantic

The TCS-08/TPARC campaigns in 2008 offered a rare opportunity for in situ observations of WNP TC core intensities, and validation of satellite-based





#### WNP

# Assets brought to the WNP for the TCS-08/TPARC field campaigns

USAF C-130 from the 53<sup>rd</sup> WRS, with Dropsondes and SFMR

NRL P-3, with Dropsondes and Eldora radar

**Drifting buoys deployed by the C-130** 





#### WNP

# Satellite-based Methods to be Validated

**Dvorak Technique** -- IR/VIS, Primary operational tool, Manual

**Advanced Dvorak Technique (ADT) - Objective/Automated** 

Advanced Microwave Sounding Unit (AMSU) - Obj/Auto, Method based on polar-orbiter 54GHz microwave data





#### WNP Validation Experiment Set-up

Automated ADT, AMSU and SATCON all run and documented at CIMSS in real time (CIRA-based AMSU estimates also made available to CIMSS in real time)

Real time operational Dvorak estimates collected from JTWC, NESDIS-SAB, and JMA

Independently-derived Dvorak estimates by 5 experienced satellite analysts 'blind' to the real time recon data and operational Dvorak estimates were made available to CIMSS following the field





### Validation Experiment Setup - Additional Notes

**ADT** run in two modes: With and w/o microwave input

AMSU estimates from two methods: CIMSS and CIRA (CIRA occasionally unavailable due to method constraints)

SATCON reflects availability of 2 or 3 consensus members

Dvorak results from JMA include 10min. > 1min. conversion to Vmax. and Koba et al. Tnum > Vmax







#### WNP

#### Validation Cases during TCS-08/TPARC

**TC Nuri (13W)** 

TC Sinlaku (15W)

TC Jangmi (19W)













### WC-130J storm center fixes within +/- ~4 hours of corresponding AMSU overpasses

|  | Storm             | yyyymmddhhmi | m lat    | lon    | mslp | msw       |        |  |  |  |
|--|-------------------|--------------|----------|--------|------|-----------|--------|--|--|--|
|  | amsu pass(ddhhmm) |              |          |        |      |           |        |  |  |  |
|  |                   |              |          |        |      |           |        |  |  |  |
|  | 13W               | 200808172300 | 15.77N 1 | 33.62E | 994  | 45        | 172008 |  |  |  |
|  | 13W               | 200808182200 | 16.95N 1 | 27.25E | 977  | 78        | 182034 |  |  |  |
|  | 15W               | 200809090600 | 17.87N 1 | 25.25E | 986  | <b>62</b> | 090511 |  |  |  |
|  | 15W               | 200809100600 | 20.24N 1 | 24.33E | 954  | 90        | 100501 |  |  |  |
|  | 15W               | 200809100800 | 20.42N 1 | 24.37E | 946  | 100       | 100807 |  |  |  |
|  | 15W               | 200809111300 | 21.80N 1 | 24.75E | 940  | 90        | 110819 |  |  |  |
|  | 15W               | 200809121700 | 23.83N 1 | 23.22E | 953  | 90        | 121713 |  |  |  |
|  | 15W               | 200809180400 | 30.33N 1 | 30.24E | 981  | 65        | 180818 |  |  |  |
|  | 15W               | 200809190400 | 33.02N 1 | 35.09E | 975  | <b>75</b> | 190755 |  |  |  |
|  | 15W               | 200809191800 | 34.18N 1 | 39.22E | 978  | 65        | 192014 |  |  |  |
|  | 19W               | 200809242100 | 13.50N 1 | 34.18E | 991  | 55        | 242001 |  |  |  |
|  | 19W               | 200809260000 | 15.77N 1 | 29.65E | 973  | <b>75</b> | 251640 |  |  |  |
|  | 19W               | 200809260200 | 16.10N 1 | 29.35E | 967  | 80        | 260506 |  |  |  |
|  | 19W               | 200809270900 | 21.09N 1 | 24.78E | 904  | 135       | 270832 |  |  |  |
|  |                   |              |          |        |      |           |        |  |  |  |

TCS-08 satellite validation cases were

limitadl





#### WNP

The final values for Max Sustained Wind (MSW or Vmax) used for validation of the satellite-based estimates were derived from multiple recon sources for each eye penetration by a selected team of analysts headed by Prof. R. Elsberry (NPS)





#### WNP

#### **Preliminary Findings**

None of the results are statistically significant due to the very limited number of validation cases





#### Comparison of Dvorak-Based Estimates - Vmax

| N=15         | 'Blind' Dvorak Consensus | Oper Dvorak Consensus | Dvorak Consensus (w/JMA Koba adj) | ADT  | ADT<br>w/MW |
|--------------|--------------------------|-----------------------|-----------------------------------|------|-------------|
| Bias         | 5.0                      | 4.1                   | 3.6                               | 0.0  | -1.1        |
| Abs<br>Error | 10.9                     | 15.0                  | 13.0                              | 16.1 | 14.1        |
| RMSE         | 14.0                     | 18.0                  | 15.2                              | 19.4 | 17.6        |

Positive Bias indicates method estimates are too strong





#### Comparison of "Blind" Dvorak Analyst Estimates -

| N=15         | Analyst  1 | Analyst 2 | Analyst 3 | Analyst 4 | Analyst 5 |  |
|--------------|------------|-----------|-----------|-----------|-----------|--|
| Bias         | 1.7        | 8.1       | 9.9       | 2.0       | 1.2       |  |
| Abs<br>Error | 7.9        | 11.9      | 16.9      | 12.7      | 12.6      |  |
| RMSE         | 9.6        | 15.8      | 19.9      | 15.7      | 15.0      |  |

Positive Bias indicates method estimates are too strong



Abs

9.1

#### Analysis of Sat-Based TC Intensity Estimation in the



9.1

Comparison of All Satell And Saged Estimates - Vmay

| (Kts) |         |      |     |       |  |  |  |
|-------|---------|------|-----|-------|--|--|--|
|       | 'Blind' | Oper | ADT | CIMSS |  |  |  |

| (Kts) |                   |                |     |       |        |  |
|-------|-------------------|----------------|-----|-------|--------|--|
| N=13  | 'Blind'<br>Dvorak | Oper<br>Dvorak | ADT | CIMSS | SATCON |  |

| N=13 | 'Blind' Dvorak Consensus | Dvorak Consensus (w/Koba) | ADT<br>w/MW | CIMSS<br>AMSU | SATCON |
|------|--------------------------|---------------------------|-------------|---------------|--------|
|      |                          |                           |             |               |        |

-5.8 **Bias** 2.9 1.4 3.1 0.2

**Error** 14.8 **RMSE** 11.8 16.6 10.7 11.1

Positive Bias indicates method estimates are too strong

12.3

12.8

9.2







#### WNP Recon vs Dvorak for 15W (







#### Recon vs DWAR for 15W



















### Summary of Preliminary Findings

(Based on limited sample of 15 recon validation points)

- Ave. Vmax estimate errors (kts): Dvorak: ~11 (blind), ~13 (oper),
   ~14 (ADT)
- Subj Dvorak ave error spread (kts): 8-17 ('blind' analysts), 11-15 (oper agencies)
   [JMA (incl their Koba et al. Tnum>Vmax adjustment) superior to
- other 2 agencies]
- AMSU (CIMSS) and SATCON ave errors (kts): Both ~ 9 (subset of 13 val. pts)

#### **General Preliminary Conclusions**

Objective satellite- based methods are very competitive with Dvorak





### **WNP Acknowledgements**

ONR Marine Meteorology and Atmospheric Effects Program under the direction of R. Ferek and D. Eleuterio for supporting TCS-08 and aircraft assets

USAF 17 OWS/CC (Lt. Col. K. Brueske) for help in getting the C-130 to the WNP theater

USAF 53<sup>rd</sup> WRS and the NRL P-3 crews for providing the critical validation observations

JTWC (R. Falvey and K. Payne) and NRL-MRY (J. Hawkins) for their support of this exercise and the satellite R&D effort





#### WNP Acknowledgements

#### **Independent Dvorak Analysts**

J. Beven and D. Roberts (NHC)

A. Burton (Australian BoM)

P. McCrone (FNMOC)

K. Viault (JTWC)

S. Nishimura (JMA)

#### **Vmax Validation Point Analysts**

J. Hawkins (NRL-MRY)

P. Black (NRL-MRY)

E. Sanabia (NPS)

J. Beven (NHC)





#### WNP

"Mai Tai's taste a lot better than Miller Lites ....wish I was there!!"

#### **Chris Velden**

(from his post-op recovery pad in Madison)