1

AI1103-Assignment 2

Name: Asish sashank reddy, Roll Number: CS20BTECH11010

Download latex-tikz codes from

https://github.com/asishcs2011010/demo/blob/main/ Assignment-2/assignment-2(1).tex

OUESTION NO

Gate-EC Q-38

QUESTION

Let $X \in \{0, 1\}$ and $Y \in \{0, 1\}$ be two independent binary random variables. if P(X = 0) = p and P(Y = 0) = q, then $P(X + Y \ge 1)$ is equal to

(A)
$$pq + (1-p)(1-q)$$
 (C) $p(1-q)$
(B) pq (D) $1-pq$

SOLUTION

Given Pr(X=0) = p, Pr(Y=0) = q and X and Y are independent binary random variables.

X	(X = 0	X = 1
P	r	n	1 - n

Y	Y = 0	Y = 1
Pr	\overline{q}	1-q

Let Z be the convolution of X,Y.

Z=X+Y,

$$Pr(Z = z) = \sum Pr(X = k) \times Pr(Y = z - k)$$
 (for independent discrete random variables)

$$\begin{array}{l} \Pr(Z < 1) = \Pr(Z = 0)(Z = 0, 1, 2) \\ \Pr(Z = 0) = \sum \Pr(X = k) \times \Pr(Y = z - k) \\ . \qquad \qquad = \Pr(X = 0) \times \Pr(Y = 0) \\ . \qquad \qquad = pq \end{array}$$

$$Pr(X + Y \ge 1) = 1 - Pr(X + Y < 1)$$

 $Pr(Z \ge 1) = 1 - Pr(Z < 1)$
 $= 1 - pq$