Bode Plot Examples

Dashed lines show the individual asymptotes. Add these together (and account for the magnitude of the gain and the starting slope/phase due to any integrators) to get the complete sketch.

1. Draw the Bode asymptote plot for

$$G(s) = \frac{1}{s(s+2)(s+4)}$$

Solution:

- 1 integrator, so start with -20 dB/dec slope with 0dB at $\omega = 1 \text{ rad/s}$ and -90° phase.
- $K = \frac{1}{2 \cdot 4} = -18$ dB, so shift by -18dB (no change to phase plot).
- Pole at s=-2 (blue) add $-20{\rm dbB/dec}$ at $\omega=2$, and a -90° shift from $\omega=0.2$ to $\omega=20$. (Or, adds $-45^{\circ}/{\rm dec}$ at $\omega=0.2$ and $+45^{\circ}/{\rm dec}$ at $\omega=20$.)
- Pole at s=-4 (red) add -20dbB/dec at $\omega=4$, and a -90° shift from $\omega=0.4$ to $\omega=40$. (Or, adds $-45^{\circ}/\text{dec}$ at $\omega=0.4$ and $+45^{\circ}/\text{dec}$ at $\omega=40$.)

2. Draw the Bode asymptote plot for

$$G(s) = \frac{(s+5)}{(s+2)(s+4)}$$

Solution:

 $\bullet\,$ No integrators, so start with a flat line on 0dB and 0° phase.

• $K = \frac{5}{2 \cdot 4} = -4$ dB, so shift by -4dB (no change to phase plot).

• Pole at s=-2 (blue) add -20dbB/dec at $\omega=2$, and a -90° shift from $\omega=0.2$ to $\omega=20$. (Or, adds $-45^\circ/\text{dec}$ at $\omega=0.2$ and $+45^\circ/\text{dec}$ at $\omega=20$.)

• Pole at s=-4 (red) add -20dbB/dec at $\omega=4$, and a -90° shift from $\omega=0.4$ to $\omega=40$. (Or, adds $-45^{\circ}/\text{dec}$ at $\omega=0.4$ and $+45^{\circ}/\text{dec}$ at $\omega=40$.)

• Zero at s=-5 (green) add +20dbB/dec at $\omega=5$, and a +90° shift from $\omega=0.5$ to $\omega=50$. (Or, adds +45°/dec at $\omega=0.5$ and -45°/dec at $\omega=50$.)

3. Draw the Bode asymptote plot for

$$G(s) = \frac{(s+3)(s+5)}{s(s+2)(s+4)}$$

Solution:

- \bullet No integrators, so start with a flat line on 0dB and 0° phase.
- $K = \frac{5}{2 \cdot 4} = -4$ dB, so shift by -4dB (no change to phase plot).
- Pole at s=-2 (blue) add -20 dbB/dec at $\omega=2$, and a -90° shift from $\omega=0.2$ to $\omega=20$. (Or, adds $-45^\circ/\text{dec}$ at $\omega=0.2$ and $+45^\circ/\text{dec}$ at $\omega=20$.)
- Zero at s=-3 (yellow) add +20dbB/dec at $\omega=3$, and a $+90^\circ$ shift from $\omega=0.3$ to $\omega=30$. (Or, adds $+45^\circ/\text{dec}$ at $\omega=0.3$ and $-45^\circ/\text{dec}$ at $\omega=30$.)
- Pole at s=-4 (red) add -20dbB/dec at $\omega=4$, and a -90° shift from $\omega=0.4$ to $\omega=40$. (Or, adds $-45^{\circ}/\text{dec}$ at $\omega=0.4$ and $+45^{\circ}/\text{dec}$ at $\omega=40$.)
- Zero at s=-5 (green) add +20 dbB/dec at $\omega=5$, and a $+90^{\circ}$ shift from $\omega=0.5$ to $\omega=50$. (Or, adds $+45^{\circ}/\text{dec}$ at $\omega=0.5$ and $-45^{\circ}/\text{dec}$ at $\omega=50$.)

4. Draw the Bode asymptote plot for

$$G(s) = \frac{50}{s(0.2s+1)}$$

Solution:

- 1 integrator, so start with -20 dB/dec slope with 0dB at $\omega = 1 \text{ rad/s}$ and -90° phase.
- K = 50 = 34 dB, so shift by 34dB (no change to phase plot).
- Pole at s=-5 (blue) add -20 dbB/dec at $\omega=5$, and a -90° shift from $\omega=0.5$ to $\omega=50$. (Or, adds $-45^\circ/\text{dec}$ at $\omega=0.5$ and $+45^\circ/\text{dec}$ at $\omega=50$.)

5. For the Bode diagram below, determine the transfer function.

- 60dB magnitude as $s \to 0$: K = 60dB = 1000.
- +20 dB/dec slope at $\omega = 1$; $+45^{\circ}/dec$ phase centered on $\omega = 1$. Therefore, there is a zero at $\omega = 1$.
- -20dB/dec slope at $\omega = 10$; -45°/dec phase centered on $\omega = 10$. Therefore, there is a pole at $\omega = 10$.
- -40 dB/dec slope at $\omega = 100$; $-90^{\circ}/\text{dec}$ phase centered on $\omega = 100$ and over 2 decades. Therefore, there are two poles at $\omega = 100$.

$$\Rightarrow L(s) = \frac{1000(s+1)}{\left(\frac{s}{10} + 1\right)\left(\frac{s}{100} + 1\right)^2}$$