Esercizio 1

Una sferetta di massa 2.00 g è lasciata cadere, da fermo, in un lungo cilindro riempito di olio, dove è sottoposta ad una forza di trascinamento viscoso proporzionale alla velocità. La sfera raggiunge una velocità limite di 5.00 $\frac{cm}{s}$. Determinare la costante di tempo \mathbf{t} e l'istance in cui la sfera raggiunge il 90.0 della sua velocità limite

Esercizio 2

Perchè la seguente situazione è impossibile? Un oggetto di massa m=4.00kg nella figura P5.18 è collegato ad un'asta verticale da 2 corde di lunghezza l=2.00m. Le corde sono collegate all'asta a punti distanti d=3.00m l'uno dall'altro.

L'oggetto ruota lungo una traiettoria circolare orizzontale a velocità costante in modulo $v=3.00~\frac{m}{s}$ mentre la corda rimane tesa. L'asta ruota insieme all'oggetto in modo da impedire alle corse di avvolgersi su essa.

E se? Questa situazione potrebbe verificarsi su di un altro pianeta?

Esercizio 3

Si assuma che la forza di attrito che agisce su un pattinatore sia proporzionale al quadrato della velocità \mathbf{v} del pattinatore e sia data da $f = -k m v^2$, dove \mathbf{k} è una costante e \mathbf{m} è la massa del pattinatore.

Il pattinatore taglia la linea del traguardo di una gara su un tratto rettilineo con velocità V_i e quindi rallenta procedendo per inerzia sui pattini.

Dimostrare che la velocità del pattinatore in ogni istante di tempo successivo al taglio del traguardo è data da $v(t) = \frac{V_i}{1+k t \cdot v}$

Esercizio 4

Un divertimento da luna-park consiste in un grande cilindro verticale che ruota attorno al suo asse, tanto velocemente che una persona, al suo interno, è bloccata contro la parete quando il pavimento viene aperto (Fig. P5.60). Il coefficiente di attrito statico tra la persona e la parete è μ_s , e il raggio del cilindro è R.

- (a) mostrare che il massimo periodo di rotazione necessario per evitare che la persona cada è $T = \left(\frac{4 \pi^2 R \mu_s}{g}\right)$
- (b) Se la frequenza di rotazione viene fatta aumentare un po', cosa accade alle forze che agiscono sulla persona? Cosa accade al moto della persona?
- (c) Se, al contrario, la frequenza di rotazione viene leggermente diminuita, cosa accade alle forze che agiscono sulla persona? Cosa accade al moto della persona?

Un disco di massa m_1 è tenuto da una fune che gli permette di ruotare lungo una circonferenza di raggio $\bf R$ su un tavolo orizzontale privo di attrito. L'altro estremod ella fune passa attraverso un buco nel centro del tavolo, e tiene sospeso un oggetto di massa m_2 . L'oggetto sospeso rimane in equilibrio mentre il disco ruota sul tavolo. Determinare delle relazioni per

- (a) la tensione della fune,
- (b) la forza radiale agente sul disco,
- (c) la velocità del disco.
- (d) Descrivere in modo qualitativo cosa succederebbe al moto del disco se la massa m_2 fosse aumentata ponendo un piccolo carico addizionale.
- (e) Descrivere in modo qualitativo cosa succederebbe al moto del disco se la massa m_2 fosse ridotta

Esercizio 6

Due blocchi collegati da una fune di massa trascurabile sono trascinati da una forza orizzontale.

Supponiamo che $F=68.0\ N$, $m_1=12.0\ kg$, $m_2=18.0\ kg$ e il coefficiente d'attrito dinamico fra ciascun blocco e la superficie sia 0.100

- (a) Disegnare un diagramma di corpo libero per ciascun blocco
- (b) Determinare la tensione T e il modulo dell'accellerazione del sistema

Esercizio 7

Un blocco di massa 3.00 kg è spinto in su contro una parete da una forza \vec{P} che forma un angolo $\Theta=50.0 \circ$ con l'orizzontale così com'è mostrato in figura. Il coefficiente d'attrito fra blocco e parete è 0.250

- (a) Determinare i valori possibiili per il modulo di $|\vec{P}|$ capaci di permette al blocco di rimanere fermo
- (b) Descrivere cosa succede se $|\vec{P}|$ ha un valore maggiore oppure uno minore
- (c) Rispondere ai punti (a) e (b) nel caso in cui la forza formi un angolo $\Theta = 13.0 \circ$ con l'orizzontale

Esercizio 8

Una particella si muove secondo l'equazione $x = 10 t^2$ dove x è espresso in metri e t in secondi

- (a) Trovare la velocità media nell'intervallo di tempo tra 2.00 s a 3.00 s
- (b) Trovare la velocità media per l'intervallo di tempo tra 2.0 s a 2.10 s

Una lepre e una tartaruga competono in una gara di corsa lunga 1.00 km. La tartaruga avanza in linea retta e mantiene la sua velocità massima di 0.200 $\frac{m}{s}$ verso la linea di arrivo. La lepre corre alla sua massima velocità di 8.00 $\frac{m}{s}$ verso l'arrivo per 0.800 km e poi si ferma per canzonare la tartaruga. La lepre attende un attimo che la tartaruga superi la sua posizione, quindi parte nuovamente verso la linea d'arrivo alla velocitò di 8.00 $\frac{m}{s}$

Lepre e tartaruga raggiungono il traguardo esattamente allo stesso istante. Si assuma che entrambi gli animali, nel muoversi, mantengano costante la loro rispettiva velocità.

- (a) A che distanza si trova la tartaruga rispetto alla linea finale quando la lepre riprende la sua corsa?
- (b) Per quanto tempo è rimasta ferma la lepre?

Esercizio 10

Un oggetto si muove lungo l'asse \mathbf{x} secondo l'equazione $x(t) = (3.00 \, t^2 - 2.00 \, t + 3.00) \, m$ dove \mathbf{t} è in secondi. Determinare

- (a) la velocità scalare media fra t = 2.00 se t = 3.00 s,
- (b) la velocità istantanea per t = 2.00 set = 3.00 s,
- (c) l'accelerazione media fra t = 2.00 se t = 3.00 s
- (d) l'accelerazione media per t = 2.00 se t = 3.00 s

In quale istante l'oggetto è a riposo?

Esercizio 11

Un camion parte da fermo su una strada rettilinea, accellera a 2.0 $\frac{m}{s^2}$ fino a raggiungere una velocità di 20.0 $\frac{m}{s}$. Poi viagga per 20.0 s a velocità costante fino a quando agiscono i freni, che fermano il camion in modo uniforme in ulteriori 5.00 s

- (a) Per quanto tempo il camio rimane in movimento?
- (b) Qual è la velocità media del camion nel moto descritto?

Esercizio 12

Il conducente di un'automobile schiaccia i freno quando vede un albero che blocca la strada. La macchina rallenta uniformemente con una accelerazione di - 5.60 $\frac{m}{s^2}$ per 4.20 s, lasciando dei segni di slittamento lunghi 62.4 m. Con quale velocità la macchina urterà l'albero?

Esercizio 13

Una studentessa lancia verticalmente un mazzo di chiavi alla compagna di studi, affacciata ad una finestra, situata 4.00 m più in alto. Le chiavi vengono afferrate dall'amica dopo 1.50 s. Determinare la velocità del mazzo di chiavi

- (a) al momento del lancio e
- (b) all'istante prima di essere afferrato dall'amica.

Un motociclista viaggia verso sud per 3.00 min con una velocità di 20.0 $\frac{m}{s}$, successivamente si sposta per 2.00 min verso ovest con una velocità di 25.0 $\frac{m}{s}$ ed infine viaggia a 30.0 $\frac{m}{s}$, per 1.00 min, verso nord-ovest. Per questo viaggio di 6.00 min calcolare

- (a) Il vettore spostamebnto del motociclista,
- (b) La velocità scalare media e
- (c) Il vettore velocità media.
- Si orienti l'asse x verso est.

Esercizio 15

Consideriamo un corpo collegato ad una molla. Se il corpo nella posizione di equilibrio ha velocità \mathbf{v} ed elongazione massima Δx , quale sarà l'elongazione massima se la velocità iniziale è $2\mathbf{v}$. Scegli un'alternativa:

- $\blacktriangleright \sqrt{2} \Delta x$
- ► 4 \(\Delta \) x
- ▶ 2 ∆ x
- ▶ I dati non sono sufficienti

Esercizio 16

Un cannone spara con velocità iniziale di modulo $v_0 = 150$ ed angolo $\Theta = 30$ o.

- (a) A che distanza arriva il proiettile? Nota: Tutte le quantità sono nelle unità di misura MKS. Risposta con 3 cifre significative
 - ▶ 2000
 - ▶ 2500
 - ▶ 1700
 - ► Tutti gli altri valori sono incorretti
- (b) Ripetiamo ora il calcolo assumendo che il cannone spari dall'altezza di h=50:
 - ▶ 2070
 - ▶ 2300
 - ▶ 1750
 - ► Tutti gli altri valori sono incorretti

Un cannoncino a molla è posto su una pedana girevole, puntato radialmente verso l'esterno. La pedana gira in senso antiorario e quando il cannoncino si trova sul punto in cui la pedana interseca l'asse positivo delle $\mathbf x$ spara. Il proiettile: Scegli un'alternativa:

- ► Si muove di moto rettilineo uniforme nel primo quadrante (x e y positivi)
- ► Si muove di moto rettilineo uniforme lungo l'asse x
- ► Segue una traiettoria a spirale allontanandosi dalla pedana
- ► I dati sono insufficienti

Esercizio 17

Un oggetto si muove con la seguente legge oraria:

$$x(t) = 3 \sin(4\pi t^2)$$

- (a) Dopo quanto tempo l'oggetto ripassa per il punto x = 0 per la prima volta?
 - $t = \frac{1}{2}$
 - $\blacktriangleright t = \frac{1}{4}$
 - $\rightarrow t = 1$
 - ightharpoonup L'oggetto non ripassa per x = 0
- (b) Quale è la velocità del corpo per $t = \frac{1}{2\sqrt{2}}$?
 - V = 0
 - ightharpoonup vert = $\frac{1}{2}$
 - ▶ $V = -\frac{1}{2}$
 - ► I dati sono insufficienti