In this problem you are going to graph the relation y = f(x). For online reasons, we cannot reveal the formula for f but we will give you all the calculus information you need to make an excellent graph.

- **Domain and Intercepts:** The function f is defined for all $x \neq -2$. It has the following axis intercepts: x = 0 and y = 0. There are no other axis intercepts.
- Asymptotes The graph y = f(x) has a vertical asymptote with equation x = -2, a horizontal asymptote with equation y = 0 as $x \to \infty$ and horizontal asymptote y = 0 as $x \to -\infty$. There is no slant asymptote.
- First derivative information The function has a single critical point at x = 2 where f'(2) = 0. $f(2) = \frac{5}{2}$. The signs of the first derivative are as follows:

range of x	sign of f'
$(-\infty, -2)$	$f' \leq 0$
[-2,2]	$f' \ge 0$
$[2,\infty)$	$f' \leq 0$

• Second derivative information The function f'' has a single root at x = 4. The function value at x = 4 is $f(4) = \frac{10}{9}$. The signs of the second derivative are as follows.

range of x	sign of f''
$(-\infty, -2)$	$f'' \le 0$
[-2, 4]	$f'' \le 0$
$[4,\infty)$	$f'' \ge 0$

- a)[2] Classify the critical point at x = 2 as local max, min or neither. Justify by quoting either the first- or second-derivative test, or other valid method. Draw a number line showing all regions where the graph is increasing or decreasing.
- b)[2] Find all inflection points (x, f(x)) in the graph y = f(x) and draw a number line showing all regions of concave up and concave down for the graph.
- c)[4] On a suitable set of axes, make a neat sketch of y = f(x) that includes ALL information from the discussion above.

Your graph of y = f(x)