

Data sheet acquired from Harris Semiconductor

SCHS129B

January 1998 - Revised May 2003

CD54HC14, CD74HC14, CD54HCT14, CD74HCT14

High-Speed CMOS Logic Hex Inverting Schmitt Trigger

Features

- · Unlimited Input Rise and Fall Times
- Exceptionally High Noise Immunity
- Fanout (Over Temperature Range)
 - Standard Outputs...... 10 LSTTL Loads
 - Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... -55°C to 125°C
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
 - 2V to 6V Operation
 - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at $V_{CC} = 5V$
- HCT Types
 - 4.5V to 5.5V Operation
 - Direct LSTTL Input Logic Compatibility, V_{IL} = 0.8V (Max), V_{IH} = 2V (Min)
 - CMOS Input Compatibility, $I_I \le 1\mu A$ at V_{OL} , V_{OH}

Description

The 'HC14 and 'HCT14 each contain six inverting Schmitt triggers in one package.

Ordering Information

PART NUMBER	TEMP. RANGE (°C)	PACKAGE
CD54HC14F3A	-55 to 125	14 Ld CERDIP
CD54HCT14F3A	-55 to 125	14 Ld CERDIP
CD74HC14E	-55 to 125	14 Ld PDIP
CD74HC14M	-55 to 125	14 Ld SOIC
CD74HC14M96	-55 to 125	14 Ld SOIC
CD74HCT14E	-55 to 125	14 Ld PDIP
CD74HCT14M	-55 to 125	14 Ld SOIC
CD74HCT14M96	-55 to 125	14 Ld SOIC

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel.

Pinout

CD54HC14, CD54HCT14 (CERDIP) **CD74HC14, CD74HCT14** (PDIP, SOIC) TOP VIEW

CD54HC14, CD74HC14, CD54HCT14, CD74HCT14

Functional Diagram

TRUTH TABLE

INPUT (A)	OUTPUT (Y)
L	Н
Н	L

H= High Level L= Low Level

Logic Diagram

FIGURE 3. HYSTERESIS DEFINITION, CHARACTERISTIC, AND TEST SETUP

CD54HC14, CD74HC14, CD54HCT, CD74HCT14

Absolute Maximum Ratings

DC Supply Voltage, V $_{CC}$... -0.5V to 7V DC Input Diode Current, I $_{IK}$ For V $_{I}$ < -0.5V or V $_{I}$ > V $_{CC}$ + 0.5V ... ± 20 mA DC Output Diode Current, I $_{OK}$ For V $_{O}$ < -0.5V or V $_{O}$ > V $_{CC}$ + 0.5V ... ± 20 mA DC Drain Current, per Output, I $_{O}$ For -0.5V < V $_{O}$ < V $_{CC}$ +0.5V ... ± 25 mA DC Output Source or Sink Current per Output Pin, I $_{O}$ For V $_{O}$ > -0.5V or V $_{O}$ < V $_{CC}$ + 0.5V ... ± 25 mA DC V $_{CC}$ or Ground Current, I $_{CC}$... ± 25 mA

Thermal Information

Thermal Resistance (Typical, Note 1)	θ _{JA} (°C/W)
E (PDIP) Package	
M (SOIC) Package	
Maximum Junction Temperature (Hermetic Package or Di	
Maximum Junction Temperature (Plastic Package) Maximum Storage Temperature Range	
Maximum Lead Temperature (Soldering 10s)	
(SOIC - Lead Tips Only)	

Operating Conditions

Temperature Range, T _A 55°C to	125°C
Supply Voltage Range, V _{CC}	
HC Types	2V to 6V
HCT Types	to 5.5V
DC Input or Output Voltage, V _I , V _O	to V _{CC}
Input Rise and Fall Time, t _r , t _f	
2V	ıs (Max)
4.5V100m	ıs (Max)
6V	ıs (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

	TEST CONDITIO		TEST CONDITIONS		25	°c	-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	v _{cc} (v)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES											
Input Switch Points	V _T +	-	-	2	0.7	1.5	0.7	1.5	0.7	1.5	٧
				4.5	1.7	3.15	1.7	3.15	1.7	3.15	٧
				6	2.1	4.2	2.1	4.2	2.1	4.2	٧
	V _T -	-	-	2	0.3	1.0	0.3	1.0	0.3	1.0	٧
				4.5	0.9	2.2	0.9	2.2	0.9	2.2	V
				6	1.2	3.0	1.2	3.0	1.2	3.0	٧
	V _H	-	-	2	0.2	1.0	0.2	1.0	0.2	1.0	٧
				4.5	0.4	1.4	0.4	1.4	0.4	1.4	V
				6	0.6	1.6	0.6	1.6	0.6	1.6	V
High Level Output	V _{OH}	V _T - or	-0.02	2	1.9	-	1.9	-	1.9	-	٧
Voltage CMOS Loads		V _T +	-0.02	4.5	4.4	-	4.4	-	4.4	-	٧
			-0.02	6	5.9	-	5.9	-	5.9	-	٧
High Level Output]		-	-	-	-	-	-	-	-	٧
Voltage TTL Loads			-4	4.5	3.98	-	3.84	-	3.7	-	٧
			-5.2	6	5.48	-	5.34	-	5.2	-	٧

CD54HC14, CD74HC14, CD54HCT14, CD74HCT14

DC Electrical Specifications (Continued)

		TEST CONDITIONS		-		-		°C	-40°C T	O 85°C	-55°C TO 125°C		
PARAMETER	SYMBOL	V _I (V)	I _O (mA)	V _{CC} (V)	MIN	MAX	MIN	MAX	MIN	MAX	UNITS		
Low Level Output Voltage	V _{OL}	V _{IH} or	0.02	2	-	0.1	-	0.1	-	0.1	V		
CMOS Loads		V_{IL}	0.02	4.5	-	0.1	-	0.1	-	0.1	V		
			0.02	6	-	0.1	-	0.1	-	0.1	٧		
Low Level Output Voltage			-	-	-	-	-	-	-	-	V		
TTL Loads			4	4.5	-	0.26	-	0.33	-	0.4	V		
			5.2	6	-	0.26	-	0.33	-	0.4	V		
Input Leakage Current	IĮ	V _{CC} or GND	-	6	-	±0.1	-	±1	-	±1	μА		
Quiescent Device Current	Icc	V _{CC} or GND	0	6	-	2	-	20	-	40	μА		
HCT TYPES							•		•	•			
Input Switch Points	V _T +	-	-	4.5	1.2	1.9	1.2	1.9	1.2	1.9	V		
				5.5	1.4	2.1	1.4	2.1	1.4	2.1	V		
	V _T -			4.5	0.5	1.2	0.5	1.2	0.5	1.2	V		
				5.5	0.6	1.4	0.6	1.4	0.6	1.4	V		
	V _H			4.5	0.4	1.4	0.4	1.4	0.4	1.4	٧		
				5.5	0.4	1.5	0.4	1.5	0.4	1.5	V		
High Level Output Voltage CMOS Loads	V _{OH}	V _{IH} or V _{IL}	-0.02	4.5	4.4	-	4.4	-	4.4	-	V		
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	3.84	-	3.7	-	V		
Low Level Output Voltage CMOS Loads	V _{OL}	V _{IH} or V _{IL}	0.02	4.5	-	0.1	-	0.1	-	0.1	V		
Low Level Output Voltage TTL Loads			4	4.5	-	0.26	-	0.33	-	0.4	V		
Input Leakage Current	I _I	V _{CC} and GND	-	5.5	-	±0.1	-	±1	-	±1	μА		
Quiescent Device Current	Icc	V _{CC} or GND	0	5.5	-	2	-	20	-	40	μА		
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	ΔI _{CC} (Note 2)	V _{CC} - 2.1	-	4.5 to 5.5	-	360	-	450	-	490	μА		

NOTE:

HCT Input Loading Table

INPUT	UNIT LOADS
nA	0.6

NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Specifications table, e.g., $360\mu A$ max at $25^{\circ}C$.

^{2.} For dual-supply systems theoretical worst case (V_I = 2.4V, V_{CC} = 5.5V) specification is 1.8mA.

Switching Specifications Input t_r , t_f = 6ns

		TEST	vcc	25°C			-40°C TO 85°C		-55°C TO 125°C		
PARAMETER	SYMBOL	CONDITIONS	(V)	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNITS
HC TYPES											
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	2	-	-	135	-	170	-	205	ns
A to Y		C _L = 50pF	4.5	-	-	27	-	34	-	41	ns
		C _L = 15pF	5	-	11	-	-	-	-	-	ns
		C _L = 50pF	6	-	-	23	-	29	-	35	ns
Output Transition Times	t _{TLH} , t _{THL}	C _L = 50pF	2	-	-	75	-	95	18	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Input Capacitance	C _I	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	-	20	-	-	-	-	-	pF
HCT TYPES											
Propagation Delay,	t _{PLH} , t _{PHL}	C _L = 50pF	4.5	-	-	38	-	48	-	57	ns
A to Y		C _L = 15pF	5	-	16	-	-	-	-	-	ns
Output Transition Times	t _{TLH} , t _{THL}	C _L = 50pF	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	C _I	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	C _{PD}	-	5	-	20	-	-	-	-	-	pF

NOTES:

- 3. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per inverter.
- 4. $P_D = V_{CC}^2 f_i (C_{PD} + C_L)$ where f_i = input frequency, C_L = output load capacitance, V_{CC} = supply voltage.

Test Circuits and Waveforms

FIGURE 4. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 5. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated