Examples – 3D Representations

Example 1:

Given:
$$\frac{\overline{r_1} = 1.6772 R_{\oplus} \hat{x} - 1.6772 R_{\oplus} \hat{y} + 2.3719 R_{\oplus} \hat{z} }{\overline{v_1} = 3.1574 \hat{x} + 2.4987 \hat{y} + 0.4658 \hat{z} \text{ km/s} }$$
UNITS!!

$$\underline{\text{Find}}:\ a,e,i,\Omega,\omega,\theta^*$$

Analysis:

Shape
$$\rightarrow r_1 = |\overline{r_1}| \qquad v_1 = |\overline{v_1}|$$

$$\mathcal{E} = -\frac{\mu}{2a} = \frac{v_1^2}{2} - \frac{\mu}{r_1} \qquad \Longrightarrow \qquad \boxed{a = 3 R_{\oplus}}$$

$$\overline{h} = \overline{r_1} \times \overline{v_1} \rightarrow h = \left| \overline{h} \right| = \sqrt{\mu p} = \sqrt{\mu a (1 - e_2)}$$

$$\rightarrow e = 0.2$$

From conic equation \rightarrow

$$\theta_1^* = \pm \cos^{-1} \left\{ \frac{1}{e} \left(\frac{p}{r_1} - 1 \right) \right\}$$

orbit orientations \rightarrow

$$\hat{h} = \frac{\overline{r} \times \overline{v}}{|\overline{r} \times \overline{v}|} = -.5 \hat{x} + .5 \hat{y} + .7071 \hat{z}$$

$$c_i = .7071 \Longrightarrow$$

$$s_{\Omega}s_i = -.5$$

$$-c_{\Omega}s_i = +.5$$

Numerical values

Note that we can also obtain the remaining elements of the direction cosine matrix

$$\hat{r}_1 = \frac{\overline{r}_1}{|\overline{r}_1|} = .5 \,\hat{x} - .5 \,\hat{y} + .7071 \,\hat{z}$$

$$\hat{\theta}_1 = \hat{h} \times \hat{r}_1 = .7071 \,\hat{x} + .7071 \,\hat{y}$$

$$s_i s_{\theta_1} = .7071 \begin{cases} s_i c_{\theta_1} = 0 \end{cases} \qquad \theta_1 = 90^\circ$$

Back to θ_1^* Recall

$$\overline{v}_1 = (\overline{v}_1 \bullet \hat{r}_1) \hat{r}_1 + (\overline{v}_1 \bullet \hat{\theta}_1) \hat{\theta}_1$$

$$\overline{v}_1 \cdot \hat{r}_1 \rightarrow$$

in this case $\dot{r}_1 =$

$$\Rightarrow \theta_1^* = +135^\circ$$

$$\omega = \theta_1 - \theta_1^*$$

Example 2:

Given:
$$\overline{r_1} = 14450.6 \,\hat{x} - 1529.9 \,\hat{y} - 6524.0 \,\hat{z} \text{ km}$$

 $\overline{r_2} = -6199.5 \,\hat{x} + 14699.2 \,\hat{y} + 8531.9 \,\hat{z} \text{ km}$
UNITS!

$$p = 2.88R_{\oplus}$$

Find: $a, e, i, \Omega, \omega, \theta_1^*, \theta_2^*, \overline{v}_1, \overline{v}_2$

Analysis

Available
$$r_1 = |\overline{r_1}|$$
 $r_2 = |\overline{r_2}|$

$$\hat{h} = \frac{\overline{r_1} \times \overline{r_2}}{|\overline{r_1} \times \overline{r}|}$$
 why? Are $\hat{h_1}$, $\hat{h_2}$ both necessary?

$$\hat{r}_1 = \frac{\overline{r}_1}{|\overline{r}_1|}$$

	${}^{I}C^{R}$	\hat{r}_1	$\hat{ heta_{\!\scriptscriptstyle 1}}$	\hat{h}	Can I check
٠	\hat{x} \hat{y} \hat{z}	.9072 0960 4096	.2280 .9305 .2868	.3536 3536 .8660	What condi- satisfied so chance that matrix is co

k ?

litions must be there is a t this DC orrect?

Compare to

${}^{I}C^{R}$	$\hat{r_1}$	$\hat{\theta_{_{1}}}$	\hat{h}
\hat{x}			$\sin \Omega \sin i$
ŷ			$-\cos\Omega\sin i$
\hat{z}	$\sin i \sin \theta_1$	$\sin i \cos \theta_1$	$\cos i$

$$\cos i = .866$$

$$\sin \Omega \sin i = .3536$$

$$\left\{ -\cos \Omega \sin i = -.3536 \right.$$

$$\sin \theta_1 \sin i = -.4096 \qquad \left\{ \cos \theta_1 \sin i = 2868 \qquad \left\{ \right. \right.$$

$$\overline{r}_2 = f \ \overline{r}_1 + g \ \overline{v}_1$$

Use f and g in terms of $\Delta \theta^*$!!

$$f, g = f(r_1, r_2, \Delta\theta^*, p); g(r_1, r_2, \Delta\theta^*, p)$$

How to find $\Delta \theta^*$?

Any assumptions required?

$$\overline{r_1} \bullet \overline{r_2} = r_1 r_2 \cos \Delta \theta^*$$

$$\Delta \theta^* = \pm 125.6^\circ$$

$$\overline{v}_1 = 0.6814 \,\hat{x} + 5.0560 \,\hat{y} + 1.7859 \,\hat{z} \text{ km/s}$$

 θ_1^* ? Is the vehicle ascending or descending?

Recall
$$\overline{v}_1 = (\overline{v}_1 \cdot \hat{r}_1) \hat{r}_1 + (\overline{v}_1 \cdot \hat{\theta}_1) \hat{\theta}_1$$

$$\dot{r}_1 \qquad r_1 \dot{\theta}_1$$

$$\dot{r}_1 = \overline{v}_1 \cdot \overline{r}_1 = r_1$$

Can γ_1 now be determined? How? Would it be + or -?

Now
$$v_1 = |\overline{v_1}|$$
 $r_1 = |\overline{r_1}|$

$$\mathcal{E} = \frac{v_1^2}{2} - \frac{\mu}{r_1} \qquad \Longrightarrow \qquad a = 3R_{\oplus}$$

$$p = a(1 - e^2) \longrightarrow e = .2$$

$$\frac{\text{conic}}{\text{equation}} \quad \theta_1^* = \pm \cos^{-1} \left\{ \frac{1}{e} \left(\frac{p}{r_1} - 1 \right) \right\}$$

$$\theta_2^* = \theta_1^* + \Delta \theta^* \qquad \bullet \qquad \bullet \qquad \bullet \qquad \bullet$$

$$\omega = \theta_1 - \theta_1^*$$

$$\theta_2$$
?

$$\theta_2 = \omega + \theta_2^*$$
 ?

$$\overline{v}_2 = \dot{f} \, \overline{r}_1 + \dot{g} \, \overline{v}_1$$

