Automatique — Système commandé

Chapitre 2 : Systèmes dynamiques et stabilité

Olivier Cots (rédigé avec Joseph Gergaud)

21 septembre 2023

- 2.1. Introduction
- 2.2. Solutions des équations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

2.1. Introduction

- 2.2. Solutions des équations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

Nous allons étudier l'équation différentielle à valeur initiale suivante :

$$\dot{x}(t)=f(x(t)), \quad x(0)=x_0.$$

Nous nous intéresserons plus particulièrement à la stabilité des équilibres de l'équation différentielle, c'est-à-dire au comportement des solutions au voisinage des points x_e tels que $f(x_e)=0$.

Remarque 2.1.1. Si $x_0 = x_e$ alors on a trivialement comme solution $x(t) = x_e$ pour tout t.

Question: L'équilibre est-il stable ou instable? Lorsqu'on part proche de ce point d'équilibre, on s'en rapproche ou on s'en écarte?

Exemple 2.1.1. Pour le pendule simple non contrôlé, le point (0,0) est un point d'équilibre stable, alors que $(\pi,0)$ est un point d'équilibre instable.

Références.

- J. Demailly, Analyse numérique et équations différentielles, Collection Grenoble Sciences. EDP Sciences (2006).
- F. Jean, Systèmes Dynamiques, Stabilité et Commande. Cours et exercices corrigés, ENSTA, 2017–2018.

- 2.1. Introduction
- 2.2. Solutions des équations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

Soient ${\mathcal I}$ un intervalle ouvert de ${\mathbb R}$, Ω un ouvert de ${\mathbb R}^n$ et une application continue

$$\begin{array}{cccc} f \colon & \mathcal{I} \times \Omega & \longrightarrow & \mathbb{R}^n \\ & (t,x) & \longmapsto & f(t,x). \end{array}$$

On dit que la fonction φ est solution de **l'équation différentielle** (ordinaire) de **second membre** f, si φ est une fonction dérivable définie sur un certain intervalle $I \subset \mathcal{I}$, telle que pour tout $t \in I$, $\varphi(t) \in \Omega$ et

$$\dot{\varphi}(t)=f(t,\varphi(t)),$$

où
$$\dot{\varphi}(t) \coloneqq \varphi'(t)$$
.

Remarque 2.2.1. On parle d'équation différentielle **non autonome** si f dépend explicitement du temps t et **autonome** sinon. Dans le cas autonome, on note f(x) au lieu de f(t,x).

Soient $t_0 \in \mathcal{I}$, $x_0 \in \Omega$, considérons maintenant l'équation différentielle à condition initiale, appelée **problème de Cauchy** :

$$\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0.$$
 (1)

Définition 2.2.1 – Solution d'un problème de Cauchy

On appelle solution du problème de Cauchy (1) tout couple (I,φ) , où I est un intervalle ouvert de $\mathcal I$ contenant t_0 et $\varphi\colon I\to\mathbb R^n$ est une fonction dérivable sur I, tel que $\forall\,t\in I,\, \varphi(t)\in\Omega,\, \dot{\varphi}(t)=f(t,\varphi(t))$ et $\varphi(t_0)=x_0$.

Proposition 2.2.2

Si f est C^k , $k \in [0, +\infty]$ et si (I, φ) est une solution de (1) alors $\varphi \in C^{k+1}$.

L'image de l'application φ s'appelle **orbite** ou **trajectoire** ou parfois **courbe de phase** et le graphe de l'application φ , **courbe intégrale**. Les courbes intégrales sont situées dans le produit direct de l'axe t par l'espace des phases. Ce produit direct s'appelle **espace des phases élargi**.

Définition 2.2.3 – Solution maximale

Une solution (I,φ) est dite **maximale** si, pour toute autre solution (J,ψ) , on a $J\subset I$ et $\varphi=\psi$ sur J. On dit que qu'une solution (I,φ) est un **prolongement** d'une autre solution (J,ψ) , si $J\subset I$ et $\varphi=\psi$ sur J.

Théorème 2.2.4 – Prolongement des solutions

Toute solution se prolonge en une solution maximale (pas nécessairement unique).

Définition 2.2.5 – Solution globale

Une solution **globale** est définie sur tout l'intervalle \mathcal{I} .

Remarque 2.2.2. Tout solution globale est maximale mais pas l'inverse.

Exemple 2.2.1. Considérons le système $\dot{x}(t) = x^2(t)$ sur $\mathbb{R} \times \mathbb{R}$.

- La fonction nulle est une solution globale.
- La fonction

$$\varphi(t) = -\frac{1}{t}$$

définie deux solutions respectivement sur $]-\infty\,,0[$ et $]0\,,-\infty[$. Ces solutions sont maximales mais non globales.

Illustration de solutions maximales, globale (φ_1) et non globale (φ_2) .

Rappelons que nous considérons une équation différentielle de la forme $\dot{x}(t) = f(t, x(t))$, où $f: \mathcal{I} \times \Omega \to \mathbb{R}^n$ est **continue** et où \mathcal{I} est un intervalle ouvert de \mathbb{R} et Ω un ouvert de \mathbb{R}^n .

Proposition 2.2.6

Par tout point de $\mathcal{I} \times \Omega$, il passe au moins une solution maximale.

Exemple 2.2.2. En général, il n'y a pas unicité des solutions maximales comme le montre cet exemple. Considérons le problème de Cauchy : $\dot{x}(t) = \sqrt{|x(t)|}$, x(0) = 0. La fonction nulle est solution, ainsi que

$$\varphi(t) = \begin{cases} 0 & \text{si } t \le 0, \\ t^2/4 & \text{si } t > 0, \end{cases}$$

et toutes deux sont maximales, car définies sur $\mathbb R$ tout entier.

Théorème 2.2.7 – Théorème de Cauchy-Lipschitz

Soit $f: \mathcal{I} \times \Omega \to \mathbb{R}^n$, \mathcal{I} un intervalle ouvert de \mathbb{R} , Ω un ouvert de \mathbb{R}^n , f continue et f de classe \mathcal{C}^1 par rapport à la variable x.

Alors, il existe pour toute condition initiale $(t_0, x_0) \in \mathcal{I} \times \Omega$ une unique solution maximale au problème de Cauchy : $\dot{x}(t) = f(t, x(t)), x(t_0) = x_0$.

Remarque 2.2.3. On peut demander moins de régularité à f. On peut supposer f continue et f localement lipschitzienne par rapport à la variable x.

Voir https://tinyurl.com/application-localement-lipschitzienne.

Proposition 2.2.8

Soient $\mathcal{I} \subset \mathbb{R}$ un intervalle ouvert, $A \colon \mathcal{I} \to \mathbf{M}_n(\mathbb{R})$ et $b \colon \mathcal{I} \to \mathbb{R}^n$. Soit $(t_0, x_0) \in \mathcal{I} \times \mathbb{R}^n$. On considère le problème de Cauchy linéaire

$$\dot{x}(t) = A(t)x(t) + b(t), \quad x(t_0) = x_0.$$

Si A(t) et b(t) sont continus sur \mathcal{I} , alors on a existence et unicité de solution globale.

Exemple 2.2.3 (Contre-exemple). L'équation différentielle $\dot{x}(t)=1+x^2(t)$, avec x(0)=0 admet une solution maximale $t\mapsto \tan(t)$ définie sur l'intervalle ouvert $]-\pi/2$, $\pi/2[$. Cette solution n'est pas globale car elle n'est pas définie sur $\mathbb R$ tout entier.

- 2.1. Introduction
- 2.2. Solutions des éguations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
- 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

On s'intéresse ici à la solution du problème à valeur initiale

$$\dot{x}(t) = Ax(t), \quad x(0) = x_0,$$

Les points d'équilibre sont les éléments de Ker A.

Si A est inversible, il n'y a qu'un seul point d'équilibre $x_e=0$.

- 2.1. Introduction
- 2.2. Solutions des éguations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
- 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

On considère l'équation différentielle ordinaire linéaire scalaire

$$\dot{x}(t) = \lambda x(t), \quad x(0) = x_0,$$

où $\lambda \in \mathbb{R}$ et $x(\cdot) \colon \mathbb{R} \to \mathbb{R}$. On sait que la solution de cette équation, qui est unique, est donnée par

$$x(t)=e^{\lambda t}x_0.$$

Cette solution est définie sur ${\mathbb R}$ et on a le comportement asymptotique suivant :

- Si $\lambda < 0$ alors $\lim_{t \to +\infty} x(t) = 0$;
- Si $\lambda = 0$ alors $x(t) = x_0$;

$$\begin{tabular}{ll} \bullet & {\sf Si} \ \lambda > 0 \ {\sf alors} \ \begin{cases} & {\sf Si} \ x_0 < 0 \ {\sf alors} \ \lim_{t \to +\infty} x(t) = -\infty; \\ & {\sf Si} \ x_0 = 0 \ {\sf alors} \ x(t) = 0; \\ & {\sf Si} \ x_0 > 0 \ {\sf alors} \ \lim_{t \to +\infty} x(t) = +\infty. \end{cases}$$

- 2.1. Introduction
- 2.2. Solutions des éguations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

Considérons l'espace vectoriel des matrices de taille $n \times n$ muni d'une norme (matricielle) vérifiant $||AB|| \le ||A|| ||B||$ pour toutes matrices A et B. Notons $(\mathbf{M}_n(\mathbb{R}), ||\cdot||)$ cet espace. Alors, cet espace est un espace de Banach et on peut montrer que la série $\sum_{k=0}^{+\infty} \frac{A^k}{k!}$ est absolument convergente 1 puisque

$$\sum_{k=0}^{+\infty} \frac{\|A^k\|}{k!} \le \sum_{k=0}^{+\infty} \frac{\|A\|^k}{k!} = e^{\|A\|} < +\infty.$$

Définition 2.3.1 – Exponentielle de matrice

On appelle exponentielle de matrice l'application

$$\begin{array}{ccc} \exp\colon & \textbf{M}_n(\mathbb{R}) & \longrightarrow & \mathrm{GL}_n(\mathbb{R}) \\ & A & \longmapsto & \exp(A) = e^A = \sum_{k=0}^{+\infty} \frac{A^k}{k!}. \end{array}$$

^{1.} Or dans un Banach, toute série absolument convergente est convergente, cf. Proposition 3.19.5, Wagschal, topologie et analyse fonctionnelle.

L'exponentielle de matrice

$$\exp(A) = e^A = \sum_{k=0}^{+\infty} \frac{A^k}{k!}$$

vérifie les propriétés suivantes.

Théorème 2.3.2

- $i) e^0 = I$
- ii) si $A = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$ alors $\exp(A) = \operatorname{diag}(e^{\lambda_1}, \ldots, e^{\lambda_n})$
- iii) si P est inversible on a $\exp(PAP^{-1}) = P \exp(A)P^{-1}$
- iv) si A et B sont deux matrices qui commutent alors $e^{A+B} = e^A e^B$
- v) pour tous α et β scalaires, $e^{(\alpha+\beta)A} = e^{\alpha A}e^{\beta A}$
- vi) pour toute matrice A, e^A est inversible et $(\exp(A))^{-1} = \exp(-A)$
- vii) pour toute matrice A, l'application $t \mapsto e^{tA}$ est C^{∞} et

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{tA} = Ae^{tA} = e^{tA}A$$

Propriétés de l'exponentielle de matrice

- ightharpoonup i) $e^0 = I$: évident.
 - ii) évident.
 - iii) P inversible : $e^{PAP^{-1}} = \sum_{k} \frac{(PAP^{-1})^k}{k!} = \sum_{k} \frac{PA^kP^{-1}}{k!} = Pe^AP^{-1}$
 - iv) Si A, B commutent, alors 2

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}.$$

Ainsi, 3

$$e^{A}e^{B} = \sum_{n=0}^{+\infty} c_{n} = \sum_{n=0}^{+\infty} \frac{(A+B)^{n}}{n!} = e^{A+B}, \quad c_{n} = \sum_{k=0}^{n} \frac{A^{k}}{k!} \frac{B^{n-k}}{(n-k)!}.$$

- v) $e^{(\alpha+\beta)A} = e^{\alpha A}e^{\beta A}$ car αA et αB commutent.
- vi) A et -A commutent donc $e^{A}e^{-A} = e^{A-A} = e^{0} = I$. Ainsi, $(e^{A})^{-1} = e^{-A}$.
- vii) $\frac{d}{dt}e^{tA} = Ae^{tA} = e^{tA}A$: on dérive sous le signe somme.

^{2.} Ceci est la formule du binôme de Newton.

^{3.} c_n est donné par le produit de Cauchy.

- 2.1. Introduction
- 2.2. Solutions des éguations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

Théorème 2.3.3

L'unique solution globale de

$$\dot{x}(t) = Ax(t), \quad x(t_0) = x_0,$$

s'écrit

$$x(t)=e^{(t-t_0)A}x_0.$$

▶ Soit $y(t) = e^{(t-t_0)A}x_0$. Il suffit de montrer que y vérifie l'équation différentielle à valeur initiale $\dot{x}(t) = Ax(t)$, $x(t_0) = x_0$. Or

$$y(t_0) = e^{(t_0 - t_0)A} x_0 = e^0 x_0 = I x_0 = x_0$$

et

$$\dot{y}(t) = A e^{(t-t_0)A} x_0 = A y(t).$$

Remarque 2.3.1. On peut fixer $t_0 = 0$.

- 2.1. Introduction
- 2.2. Solutions des éguations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

Si nous considérons le cas du système différentiel

$$\dot{x}(t) = \Lambda x(t), \quad x(0) = x_0,$$

avec

$$\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n) = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}.$$

La solution est alors

$$x(t) = \begin{pmatrix} e^{t\lambda_1} x_{0,1} \\ \vdots \\ e^{t\lambda_n} x_{0,n} \end{pmatrix} = \begin{pmatrix} e^{t\lambda_1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{t\lambda_n} \end{pmatrix} x_0 = e^{t\Lambda} x_0$$

Le comportement asymptotique est alors

- si tous les λ_i sont strictement négatifs alors $\lim_{t\to+\infty} x(t) = 0 = x_e$;
- si tous les λ_i sont négatifs ou nuls alors la solution est bornée quand $t o +\infty$;
- si au moins un λ_i est strictement positif et que $x_{0,i} \neq 0$ alors $||x(t)|| \to +\infty$, quand $t \to +\infty$.

Soit $A \in M_n(\mathbb{R})$.

On note $P(X) = \det(XI_n - A)$ le polynôme caractéristique de A et Sp(A) le spectre de A, *i.e.* l'ensemble des valeurs propres de A.

On introduit:

- la multiplicité algébrique m_{λ} de $\lambda \in \operatorname{Sp}(A)$ est son ordre de multiplicité en tant que racine de P(X);
- la multiplicité géométrique d_{λ} de $\lambda \in \operatorname{Sp}(A)$ est la dimension du sous-espace propre associé $E_{\lambda} = \operatorname{Ker}(\lambda I_n A)$.

On rappelle qu'une matrice $A \in M_n(\mathbb{R})$ est diagonalisable ssi $\forall \lambda \in \operatorname{Sp}(A)$, $d_\lambda = m_\lambda$ et si P(X) est scindé, *i.e.* de la forme $P(X) = \prod (X - \lambda)^{m_\lambda}$.

Exemple 2.3.1. Soit $A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. On a $P(X) = (X - \lambda)^2$ donc $m_{\lambda} = 2$ mais

$$\operatorname{\mathsf{Ker}}(\lambda I_2 - A) = \operatorname{\mathsf{Ker}}\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \mathbb{R}\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

donc $d_{\lambda} = 1$. Au final, A est non diagonalisable.

Supposons A diagonalisable dans \mathbb{R} . Alors $\exists P \in GL_n(\mathbb{R})$ t.q.

$$A = P\Lambda P^{-1}$$

avec $\Lambda \in \mathbf{M}_n(\mathbb{R})$ une matrice diagonale.

Posons $z(t) = P^{-1}x(t)$, alors z(t) est solution de

$$\begin{cases} \dot{z}(t) = P^{-1}\dot{x}(t) = P^{-1}P\Lambda P^{-1}x(t) = \Lambda z(t) \\ z(0) = P^{-1}x_0. \end{cases}$$

On a donc $z(t) = e^{t\Lambda} P^{-1} x_0$ et

$$x(t) = P z(t) = (P e^{t\Lambda} P^{-1})x_0.$$

Par suite le comportement asymptotique est caractérisé par les valeurs propres de la matrice A.

$$x(t) = (P e^{t\Lambda} P^{-1})x_0, \quad \Lambda = \operatorname{diag}(\lambda_1, \lambda_2).$$

Figure 1 – (Gauche) $\lambda_1<0,~\lambda_2<0.$ (Milieu) $\lambda_1>0,~\lambda_2>0.$ (Droite) $\lambda_1~\lambda_2<0.$

Remarque 2.3.2. Si $x_0 \in \text{Ker}(\lambda_1 I_2 - A)$, alors $x(t) = e^{t\lambda_1} x_0 \in \text{Ker}(\lambda_1 I_2 - A)$.

Supposons A diagonalisable dans \mathbb{C} , mais non dans \mathbb{R} .

• Il existe alors une valeur propre $\lambda = \alpha + i\beta$, $\beta \neq 0$:

$$\exists P \in \mathsf{GL}_2(\mathbb{R}), \quad \mathsf{tel que } A = PBP^{-1} \quad \mathsf{avec} \quad B = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}.$$

- Dans cette base le système $\dot{x}(t) = Ax(t)$ s'écrit $\dot{z}(t) = Bz(t)$.
- La solution en z est donc

$$z(t) = \exp(\alpha t) \begin{pmatrix} \cos(\beta t) & \sin(\beta t) \\ -\sin(\beta t) & \cos(\beta t) \end{pmatrix} z_0 = \exp(\alpha t) R(-\beta t) z_0.$$

- Comportement asymptotique
 - Si $\alpha < 0$ alors $z(t) \rightarrow 0$ quand $t \rightarrow +\infty$;
 - Si $\alpha = 0$ z(t) est borné;
 - Si $\alpha > 0$ et $z_0 \neq 0$ alors $||z(t)|| \to +\infty$ quand $t \to +\infty$.

$$x(t) = \exp(\alpha t) \left(PR(-\beta t) P^{-1} \right) x_0, \quad R(\theta) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Figure 2 – (Gauche) α < 0. (Milieu) α = 0. (Droite) α > 0.

Supposons A non diagonalisable dans \mathbb{C} .

 L'unique valeur propre λ est réel et le sous espace propre est de dimension 1 et A est semblable à la matrice

$$J = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.$$

• Dans cette base le système différentielle s'écrit $\dot{z}(t) = J z(t)$

$$J = \lambda I + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \lambda I + N.$$

• Les matrices comutent et la matrice $N^2 = 0$, donc

$$z(t) = e^{\lambda t} \left(I + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \right) z_0.$$

• Une nouvelle fois donc, si $\lambda < 0$ alors $z(t) \to 0$ quand $t \to +\infty$.

$$x(t) = e^{\lambda t} \left(P \left(I + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} \right) P^{-1} \right) x_0.$$

Figure 3 – (Gauche) $\lambda < 0$. (Milieu) $\lambda = 0$. (Droite) $\lambda > 0$.

L'objectif du TD1 est de comprendre / construire le diagramme suivant :

Diagramme de bifurcation dans le plan (tr(A), det(A)), $\Delta = tr^2(A) - 4 det(A)$.

- 2.1. Introduction
- 2.2. Solutions des équations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

On s'intéresse maintenant aux équations différentielles linéaires à condition initiale de la forme

$$\begin{cases} \dot{x}(t) = Ax(t) + b(t) \\ x(t_0) = x_0. \end{cases}$$
 (2)

La matrice $A \in \mathbf{M}_n(\mathbb{R})$ est constante et la fonction $b \colon \mathbb{R} \to \mathbb{R}^n$ est supposée de classe \mathcal{C}^k , $k \ge 0$. On ne considère pas le cas où A dépend du temps.

Théorème 2.4.1

L'unique solution globale du problème de Cauchy (2) (ou problème à valeur initiale) s'écrit

$$x(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-s)A}b(s) ds.$$

Vérifions que $x(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-s)A}b(s) ds$ est solution de

$$\begin{cases} \dot{x}(t) = Ax(t) + b(t) \\ x(t_0) = x_0. \end{cases}$$

La condition initiale est vérifiée car :

$$x(t_0) = e^{(t_0-t_0)A}x_0 + \int_{t_0}^{t_0} e^{(t-s)A}b(s) ds = x_0.$$

L'équation différentielle est elle aussi vérifiée car :

$$\dot{x}(t) = \frac{\mathrm{d}}{\mathrm{d}t} (e^{(t-t_0)A}) x_0 + \frac{\mathrm{d}}{\mathrm{d}t} \left(e^{tA} \int_{t_0}^t e^{-sA} b(s) \, \mathrm{d}s \right)$$

$$= A e^{(t-t_0)A} x_0 + A e^{tA} \int_{t_0}^t e^{-sA} b(s) \, \mathrm{d}s + e^{tA} e^{-tA} b(t)$$

$$= A x(t) + b(t).$$

Retrouvons la solution de $\dot{x}(t) = Ax(t) + b(t)$, $x(t_0) = x_0$.

On pose $x(t) = e^{(t-t_0)A}z(t)$ et on cherche z(t). Tout d'abord,

- $x(t_0) = e^{(t_0-t_0)A}z(t_0) = z(t_0) = x_0.$
- $\dot{x}(t) = Ax(t) + e^{(t-t_0)A}\dot{z}(t)$.

On veut donc que $b(t) = e^{(t-t_0)A}\dot{z}(t)$, ou encore que $\dot{z}(t) = e^{(t_0-t)A}b(t)$.

Finalement

$$z(t) = x_0 + \int_{t_0}^t e^{(t_0-s)A}b(s) ds,$$

d'où

$$x(t) = e^{(t-t_0)A}z(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-s)A}b(s) ds,$$

car
$$e^{(t-t_0)A}e^{(t_0-s)A}=e^{(t-s)A}$$
.

Cette méthode est ce que l'on appelle la méthode de la variation de la constante.

- 2.1. Introduction
- 2.2. Solutions des équations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

- 2.1. Introduction
- 2.2. Solutions des équations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

Définition 2.5.1 – Point d'équilibre

On appelle **point d'équilibre** tout point x_e de \mathbb{R}^n qui vérifie $f(x_e) = 0$.

Définition 2.5.2 - Stabilité

Un équilibre x_e est **stable** si, pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que

$$||x_0 - x_e|| < \delta$$
 et $t > 0$ \Rightarrow $||x(t, x_0) - x_e|| < \varepsilon$.

Remarque 2.5.1. Toute solution proche de x_e stable en reste proche.

Définition 2.5.3 – Stabilité asymptotique

Nous dirons qu'un équilibre x_e est **asymptotiquement stable** (A.S.) si il est stable et si il existe un voisinage V de x_e tel que, pour tout $x_0 \in V$,

$$\lim_{t\to +\infty} x(t,x_0) = x_e.$$

Stabilité et la stabilité asymptotique au voisinage du point d'équilibre x_e .

Illustration : stabilité (gauche) et stabilité asymptotique (droite) dans le plan de phase.

- 2.1. Introduction
- 2.2. Solutions des équations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

Théorème 2.5.4

L'origine est un équilibre asymptotiquement stable de

$$\dot{x}(t) = Ax(t)$$

si et seulement si toutes les valeurs propres de A sont à partie réelle strictement négative.

• Si A a au moins une valeur propre à partie réelle strictement positive, alors l'origine n'est pas un équilibre stable de $\dot{x}(t) = Ax(t)$.

Théorème 2.5.5

L'origine est un équilibre stable de $\dot{x}(t) = Ax(t)$ ssi toutes les valeurs propres de A sont à partie réelle négative ou nulle et si pour toute valeur propre de partie réelle nulle, les multiplicités algébrique et géométrique coïncident.

Théorème 2.5.6

Soit x_e un point d'équilibre de $\dot{x}(t) = f(x(t))$. Si toutes les valeurs propres de

$$f'(x_e)$$

sont à partie réelle strictement négative, alors le point d'équilibre x_e est asymptotiquement stable (AS).

Exemple 2.5.1 (contre-exemple). Soit $\dot{x}(t)=f(x(t))=-x^3(t)$. Alors, $f'(x_e)=0$ et pourtant $x_e=0$ est A.S. car pour $x_0\neq 0$: $x(t,x_0)=\mathrm{sign}(x_0)/\sqrt{2t+\frac{1}{x_0^2}}$.

Théorème 2.5.7

Si $f'(x_e)$ a au moins une valeur propre à partie réelle strictement positive, alors x_e n'est pas un équilibre stable.

Remarque 2.5.2. La réciproque est fausse.

Attention, ce n'est pas parce que toutes les valeurs propres sont à partie réelle négative ou nulle que l'équilibre est stable.

Exemple 2.5.2. On considère les cas $\dot{x}(t) = f(x(t))$ et $\dot{x}(t) = g(x(t))$ avec $x_e = (0,0)$ et

$$f(x) = \begin{pmatrix} x_2 - x_1(x_1^2 + x_2^2) \\ -x_1 - x_2(x_1^2 + x_2^2) \end{pmatrix}, \quad g(x) = \begin{pmatrix} x_2 + x_1(x_1^2 + x_2^2) \\ -x_1 + x_2(x_1^2 + x_2^2) \end{pmatrix}.$$

Alors, x_e est A.S. pour $\dot{x}(t) = f(x(t))$ et instable pour $\dot{x}(t) = g(x(t))$.

On a tout d'abord

$$f'(x_e) = g'(x_e) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = A.$$

Ainsi, $P_A(\lambda) = \det(\lambda I_2 - A) = \lambda^2 + 1 \text{ donc } \lambda = \pm i$.

Remarque 2.5.3. Real($\pm i$) = 0.

Soit $x(\cdot)$ une solution de $\dot{x} = f(x)$. On pose $\rho(t) = ||x(t)||^2$. On a alors $\rho'(t) = -2\rho(t)^2$.

Pour $\dot{x} = g(x)$, on a $\rho'(t) = 2\rho(t)^2$.

On peut alors conclure (voir polycopié) que x_e est AS pour f et instable pour g.

ÉQUILIBRE HYPERBOLIQUE

Définition 2.5.8

Un point d'équilibre est dit **hyperbolique** si toutes les valeurs propres de $f'(x_e)$ sont à partie réelle non nulle.

Définition 2.5.8

Un point d'équilibre est dit **hyperbolique** si toutes les valeurs propres de $f'(x_e)$ sont à partie réelle non nulle.

Corollaire 2.5.9

 $\label{thm:continuous} \textit{Un point d'équilibre hyperbolique est soit asympotiquement stable, soit non stable.}$

Remarque 2.5.4. Pour n = 2 on a en x_e un point d'équilibre :

- Si $\det(f'(x_e)) < 0$ ou $(\det(f'(x_e)) > 0$ et $\operatorname{tr}(f'(x_e)) > 0)$ alors x_e n'est pas stable.
- Si $\det(f'(x_e)) > 0$ et $\operatorname{tr}(f'(x_e)) < 0$ alors x_e est A.S.

Cas linéaire : $\dot{x}(t) = Ax(t)$. On pose $x_e = 0$.

- x_e est un eq. A.S. ssi $\forall \lambda \in Sp(A) : Re(\lambda) < 0$;
- Si $\exists \lambda \in Sp(A)$ t.q. $Re(\lambda) > 0$ alors x_e est un eq. instable;
- x_e est un eq. stable ssi $\forall \lambda \in \operatorname{Sp}(A) : \operatorname{Re}(\lambda) \leq 0$ et si $\forall \lambda \in \operatorname{Sp}(A)$ t.q. $\operatorname{Re}(\lambda) = 0$ on a $m_{\lambda} = d_{\lambda}$.

Cas non linéaire : $\dot{x}(t) = f(x(t))$. Soit x_e t.q. $f(x_e) = 0$ et $A = f'(x_e)$.

- Si $\forall \lambda \in \operatorname{Sp}(A) : \operatorname{Re}(\lambda) < 0 \text{ alors } x_e \text{ A.S.};$
- Si $\exists \lambda \in \mathsf{Sp}(A)$ t.q. $\mathsf{Re}(\lambda) > 0$ alors x_e est un eq. instable.

Cas hyperbolique: x_e eq. hyperbolique ssi $\forall \lambda \in Sp(A)$: $Re(\lambda) \neq 0$.

Un point d'équilibre hyperbolique est soit A.S., soit instable.

- 2.1. Introduction
- 2.2. Solutions des équations différentielles ordinaires
- 2.3. Équations différentielles linéaires autonomes
 - 2.3.1. Approche élémentaire
 - 2.3.2. Exponentielle de matrice
 - 2.3.3. Solution du problème à valeur initiale
 - 2.3.4. Comportement asymptotique des solutions
- 2.4. Équations différentielles linéaires avec second membre
- 2.5. Stabilité des équilibres
 - 2.5.1. Définition
 - 2.5.2. Résultats
 - 2.5.3. Exemples et applications

Figure 4 – Pendule simple.

$$\begin{cases} \dot{x}_1(t) = x_2(t) \\ \dot{x}_2(t) = -\frac{g}{l}\sin(x_1(t)) \\ x_1(0) = x_{0,1} = \alpha_0 \\ x_2(0) = x_{0,2} = \dot{\alpha}_0 \end{cases}$$

La figure ci-dessous montre les trajectoires dans le plan de phase. On a un point d'équilibre stable, mais non asymptotiquement stable et deux points d'équilibre instables. En présence de frottements, le point d'équilibre stable devient alors un point d'équilibre asymptotiquement stable.

Pendule simple : $\dot{x}(t) = f(x(t)) = (x_2(t), -\frac{g}{l}\sin(x_1(t))).$

On a

$$f'(x) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l}\cos(x_1) & 0 \end{pmatrix}.$$

Donc en $x_e = (0,0)$, on a

$$f'(x_e) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{l} & 0 \end{pmatrix} \quad \Rightarrow \quad \det(f'(x_e)) > 0 \text{ et } \operatorname{tr}(f'(x_e)) = 0$$
$$\Rightarrow \quad \text{on ne peut pas conclure.}$$

En revanche, en $x_e = (\pi, 0)$, on a

$$f'(x_e) = \begin{pmatrix} 0 & 1 \\ \frac{g}{l} & 0 \end{pmatrix} \Rightarrow \det(f'(x_e)) < 0 \text{ et } \operatorname{tr}(f'(x_e)) = 0$$

 $\Rightarrow x_e \text{ est instable}.$

L'énergie mécanique du pendule s'écrit $E(x_1,x_2)=T(x_2)+V(x_1)$, avec $T(x_2)=\frac{1}{2}ml^2x_2^2\geq 0$ l'énergie cinétique et $V(x_1)=-mgl\cos x_1$ l'énergie potentielle de pesanteur. On a :

$$\forall t : E(x(t)) = E(x(0)),$$

c-à-d l'énergie mécanique est conservée. On peut alors montrer que (0,0) est stable, cf. la figure ci-dessous :

Pendule simple amorti : $\dot{x}(t) = f(x(t)) = (x_2(t), -\frac{k}{m}x_2(t) - \frac{g}{l}\sin(x_1(t))).$

En $x_e = (0,0)$, on a

$$f'(x_e) = \begin{pmatrix} 0 & 1 \\ -\frac{g}{I} & -\frac{k}{m} \end{pmatrix} \quad \Rightarrow \quad \det(f'(x_e)) > 0 \text{ et } \operatorname{tr}(f'(x_e)) < 0$$
$$\Rightarrow \quad x_e \text{ est A.S.}$$

On a de plus : $\Delta = \text{tr}(f'(x_e))^2 - 4 \det(f'(x_e)) = \frac{k^2}{m^2} - 4 \frac{g}{l}$.

Ainsi :

- Si $\Delta > 0$, alors $\lambda_{1,2} = \frac{1}{2} \left(-\frac{k}{m} \pm \sqrt{\Delta} \right) < 0$: cas P1, Fig. 1, slide 27.
- Si $\Delta < 0$, alors $\lambda_{1,2} = \frac{1}{2} \left(-\frac{k}{m} \pm i \sqrt{|\Delta|} \right) = \alpha \pm i \beta$, $\alpha < 0$: cas P7, Fig. 2, slide 29.
- Si $\Delta=0$, alors $\lambda=\lambda_{1,2}=-\frac{k}{2m}<0$ et dim(Ker($f'(x_e)-\lambda l_2$)) = 1 : cas P11, Fig. 3, slide 31.

Exemple du pendule amorti (non contrôlé) — Remarque

Question: Dans le cas du pendule simple amorti, a-t-on montré que pour $\alpha_0=\frac{\pi}{2}$, $\dot{\alpha}_0=0$, le système allait converger vers l'équilibre A.S. (0,0)?

Question : Dans le cas du pendule simple amorti, a-t-on montré que pour $\alpha_0 = \frac{\pi}{2}$, $\dot{\alpha}_0 = 0$, le système allait converger vers l'équilibre A.S. (0,0)?

Réponse : Non, on ne l'a pas montré!

On a montré que $\exists \, \bar{\alpha}_0 > 0, \, \exists \, \dot{\bar{\alpha}}_0 > 0 \,$ t.q.

$$\forall (\alpha_0,\dot{\alpha}_0) \in V_0 =] - \bar{\alpha}_0, \bar{\alpha}_0[\times] - \dot{\bar{\alpha}}_0, \dot{\bar{\alpha}}_0[\in \mathcal{V}(0,0), \ (\alpha(t),\dot{\alpha}(t)) \to (0,0),$$

avec $(\alpha(0), \dot{\alpha}(0)) = (\alpha_0, \dot{\alpha}_0)$. Mais on ne connait pas $\bar{\alpha}_0$, $\dot{\bar{\alpha}}_0$! Pour aller plus loin, il faut utiliser la théorie de Lyapunov.

Attention : dans le cas non linéaire, la notion de stabilité est locale!