Zauberhafte Normalteiler

Definition (1.1). Sei (G, \circ) eine Gruppe und $U \subset G$ eine Untergruppe.

U heißt Normalteiler von G $\iff \forall g \in G: gUg^{-1} = U$

Bemerkung. Im Allgemeinen ist $U \subset G$ kein Normalteiler Wir suchen größte Untergruppe von G, in der U Normalteiler ist. Wir wollen also V finden sodass

- i) $U \subset V$ (U ist in V enthalten)
- ii) U ist Normalteiler in V
- iii) Ist V' eine weitere Untergruppe von G die i) und ii) erfüllt, so gilt $V' \subset V$. (V ist größtmöglich)

Definition (2.2). Der Normalisator von U in G ist definiert als $N_G(U) := \{g \in G \mid gUg^{-1} = U\}$

Satz (2.3). $N_G(U)$ ist Untergruppe von G und erfüllt die Eigenschaften i) bis iii).

Satz (2.4). Seien G, U und $N_G(U)$ wie gehabt.

Seien ferner $m \in \mathbb{N}$, $x_1, \ldots, x_m \in N_G(U)$ und $u_0, \ldots, u_m \in U$. Dann gilt für ein geeignetes $u \in U$:

$$u_m \circ x_m \circ u_{m-1} \circ x_{m-1} \circ \ldots \circ u_1 \circ x_1 \circ u_0 = x_m \circ \ldots \circ x_1 \circ u.$$

Insbesondere:

 $x_m \circ \ldots \circ x_1 \in U \implies u_m \circ x_m \circ u_{m-1} \circ x_{m-1} \circ \ldots \circ u_1 \circ x_1 \circ u_0 \in U.$