Using LLM to Generate Code for Classification and Regression Tasks

Shiqi Zhang, Shengyao Chen, Pengrui Lu

Background

Reflexion

CAAFE

Terminologies

Reflexion

Iteratively analyze and refine LLM outputs through self-evaluation. **generator**: LLM that generates code and self-Reflection.

executor: Executes the generated code and provides feedback.

CAAFE

Provides context-sensitive feedback for automated feature engineering. Only used in classification tasks.

Supervised Fine-Tuning

Trains LLMs on specific tasks using labeled datasets.

LoRA

Efficient fine-tuning with low-rank matrices for large models.

LLaMA-Factory

Framework for efficient fine-tuning and deployment of LLMs.

Task

Task Description

Generate code for machine learning tasks, focusing on classification and regression.

Challenges

Code Correctness: LLMs always generate wrong code.

Insufficient GPUs: Deploying or finetuning a large model requires too much computing power.

Limited Data: Few datasets are available for fine-tuning code generation, especially for classification/regression tasks.

Our Approach

Apply Reflexion

- 1. Initial Generation: Model generates code based on the input task.
- 2. **Evaluation**: The executor evaluates the generated code and provides feedback(error, performance, etc.).
- 3. **Self-Reflection Generation**: The generator model generates self-reflection words based on the code generated and the feedback.
- 4. **Code Refinement**: The generator model refines the code based on the self-reflection words.
- 5. **Iterative Process**: These steps are repeated until the generated code meets the

desired quality standards or a preset number of iterations is reached.

Apply CAAFE

prompt engineering: Designing prompts to guide the generator model to generate code using CAAFE.

Supervised Fine-Tuning

LoRA: Low-Rank Adaptation (LoRA) fine-tunes large language models efficiently by introducing low-rank matrices, reducing parameters and computational overhead while maintaining or enhancing performance.

Experiments

Setup

Data Preparation

- 1. **Data Collection**: Datasets were collected from Kaggle, including both simple and complex feature datasets.
- 2. **Data Preprocessing**: Steps included extracting task descriptions, target labels, and several example rows from the datasets.

Datasets

- **Tasks**: House Price Dataset, Spaceship Titanic, Mobile Price Classification, etc.
- Fine-tuning: AlpacaCode

Compared Models

We compared the following models in our experiments:

- Code Llama 7B: A model designed for code generation tasks.
- **Qwen 0.5-1.5B Chat**: A chat-oriented model with varying parameter sizes.
- Qwen 7B Chat: A larger chat-oriented model.
- Llama3 8B Instruct: An instruction-tuned version of the Llama3 model.
- Llama-3-8b-Instruct-bnb-4bit: A quantized version of the Llama3
 8B Instruct model for efficient fine-tuning.

Results

Reflexion

model	Dataset	None	Using Reflexion
Llama3 8B	House Price	error or	0.15(rank 2840)
Instruct	Dataset	0.19(rank 3800+)	
Qwen 7B Chat	Spaceship	cannot correctly	0.787(rank 1736)
	Titanic	generate code	

Table 1: performances of Reflexion

CAAFE

model	Dataset	None	Using CAAFE
Llama3 8B	Spaceship Titanic	0.75(rank 2150+)	0.79(rank 1120)
Instruct			

Table 2: performances of CAAFE