Dowest length path between a and it by using leachward lofs from t.

4)	

Abetionary_ in fuy value $0 \rightarrow [4]$ $1 \rightarrow [0,4]$ $2 \rightarrow [0,1,4]$ $3 \rightarrow [1,2]$ $4 \rightarrow [2,3]$

s=1, t=4	×	y	queue : g	visited	dist_olvet	met - diet
únitiali x atio n			<u>= 141 = </u>	145	hy 0 1 2 3 4	key 0 1 2 3 4
citiration 1 citiration 1.1 citiration 1.2	4	2	=1= =12= =12.131=	\2,4} \2,3,4}	hy 0 1 2 3 4 value [11] 0] hy 0 1 2 3 4 value [11 1 0]	Rey 0 1 2 3 4 Value \[\left(\frac{1}{4} \right) \right] Rey 0 1 2 3 4 Value \[\left(\frac{1}{4} \right) \right]
uturation & uturation & 1 uturation & 2	2	0	€13101€ €1310€	40,2,3,45 40,1,2,3,45	hy 0 1 2 3 4 value [2 11 0] hy 0 1 2 3 4 value [2 2 1 1 1 0]	Luy 0 1 2 3 4 value 2 4 7 Luy 0 1 2 3 4 value 2 2 4 4

 $\alpha = A = A \Rightarrow STOF$

The path is built from next_diet $\frac{h_{u_1}}{value} \frac{0.1 \cdot 2 \cdot 3}{2 \cdot 2 \cdot 1 \cdot 1 \cdot 4}$ beginning with s = 1.

A = 1, meet[i] = 2, meet[a] = 4 = t

ypath = $\begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$, length = $\underline{\text{dist}} \begin{bmatrix} 1 \end{bmatrix} = \underline{\text{slist}} \begin{bmatrix} 1 \end{bmatrix} = \underline{\text{2}}$

[Lowest leigth path between a and it by using backward lofs from t.

Attionary_ in fuy value $0 \rightarrow [1,1,3]$ $1 \rightarrow [0]$ $2 \rightarrow [0,1,4]$ $3 \rightarrow [4]$ $4 \rightarrow [0,3]$

s=2, t=4	×	l y	queue : g	virited	dist_olvet	næt - diet
únitiali x ation			<u>= 141 = </u>	1 4 5	hey 0 1 2 3 4 value [0	Ley 0 1 2 3 4
iteration 1 iteration 1.1 iteration 1.2	4	0 3	€10€ €1013€	10,45 10,3,45	hey 0 1 2 3 4 value [1 0] hey 0 1 2 3 4 value [1 1] 0]	Ly 01234 value 4 1 34 Ly 01234 value 4 14
iteration & iteration &.1 iteration &.2	0	1 2	हाउग्रह हाउग्रह हाउग्रह	40,1,3,45 40,1,2,3,45	hey 0 1 2 3 4 value [1 2] 0] hey 0 1 2 3 4 value [1 2 2 1 0]	They 0 1 2 3 4 value [40 4] Aug 0 1 2 3 4 value [40 9]

 $\frac{1}{y} = \lambda = \lambda \implies 570P$

The path is built from next_diet $\frac{h_{u_1}}{value} \frac{0.1 \cdot 2 \cdot 3}{|u| \cdot 0 \cdot |0|}$ beginning with s = 2.

A=2, next [2]=0, next [0]=4=t

y path = $\begin{bmatrix} 2 & 0 & 4 \\ 2 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ = $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$ = $\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$