Московский государственный университет имени М.В.Ломоносова МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ ПРОГРАММА ГОСУДАРСТВЕННОГО ЭКЗАМЕНА

по специальности «Фундаментальные математика и механика» специализация «Фундаментальная математика» специализация «Математические методы экономики»

- 1. Непрерывность функций одной переменной, свойства непрерывных функций.
- 2. Функции многих переменных, полный дифференциал и его геометрический смысл. Достаточные условия дифференцируемости. Градиент.
- 3. Определенный интеграл. Интегрируемость непрерывной функции. Первообразная непрерывной функции.
- 4. Неявные функции. Существование, непрерывность и дифференцируемость неявных функций.
- 5. Числовые ряды. Сходимость рядов. Критерий сходимости Коши. Достаточные признаки сходимости.
- 6. Абсолютная и условная сходимость ряда. Свойство абсолютно сходящихся рядов. Умножение рядов.
- 7. Ряды функций Равномерная сходимость. Признак Вейерштрасса. Свойства равномерно сходящихся рядов (непрерывность суммы, почленное интегрирование и дифференцирование).
- 8. Степенные ряды в действительной и комплексной области. Радиус сходимости, свойства степенных рядов (почленное интегрирование, дифференцирование). Разложение элементарных функций.
- 9. Несобственные интегралы и их сходимость. Равномерная сходимость интегралов, зависящих от параметра. Свойства равномерно сходящихся интегралов.
- 10. Ряды фурье. Достаточные условия представимости функции рядом Фурье.
- 11. Теоремы Остроградского и Стокса. Дивергенция. Вихрь.
- 12. Линейные пространства, их подпространства. Базис. Размерность. Теорема о ранге матрицы. Система линейных уравнений. Геометрическая интерпретация системы линейных уравнений. Фундаментальная система решений системы однородных линейных уравнений. Теорема Кронекера - Капелли.
- 13. Билинейные и квадратичные функции и формы в линейных пространствах и их матрицы. Приведение к нормальному виду. Закон инерции.
- 14. Линейные преобразования линейного пространства, их задания матрицами. Характеристический многочлен линейного преобразования. Собственные векторы и собственные значения, связь последних с характеристическими корнями.
- 15. Евклидово пространство. Ортонормированные базисы. Ортогональные матрицы. Симметрические преобразования. Приведение квадратичной формы к главным осям.
- 16. Группы, подгруппы, теорема Лагранжа. Порядок элемента. Циклические группы, факторгруппа. Теорема о гомоморфизмах.
- 17. Аффинная и метрическая классификация кривых и поверхностей второго порядка. Проективная классификация кривых.
- 18. Дифференциальное уравнение первого порядка. Теорема о существовании и единственности решения.

- 19. Линейное дифференциальное уравнение второго порядка. Линейное однородное уравнение. Линейная зависимость функций. Фундаментальная система решений. Определитель Вронского. Линейное неоднородное уравнение.
- 20. Линейное дифференциальное уравнение с постоянными коэффициентами: однородное и неоднородное.
- 21. Функции комплексного переменного. Условия Коши Римана. Геометрический смысл аргумента и модуля производной.
- 22. Элементарные функции комплексного переменного и даваемые ими конформные отображения. Простейшие многозначные функции. Дробнолинейные преобразования.
- 23. Теорема Коши об интеграле по замкнутому контуру. Интеграл Коши. Ряд Тейлора.
- 24. Ряд Лорана. Полюс и существенно особая точка. Вычеты.
- 25. Криволинейные координаты на поверхности. Первая квадратичная форма поверхности.
- 26. Вторая квадратичная форма поверхности Нормальная кривизна линии на поверхности. Теорема Менье.
- 27. Главные направления и главные кривизны. Формула Эйлера.

От сдакцих государственный экзамен требуется знание основных этапов развития математики в России и за рубежом.

ЛИТЕРАТУРА:

,	JUILLEALVEA.	
1.	Кострикин А.И.	Введение в алгебру, ч. І. Основы алгебры
2.	Кострикин А.И.	Введение в алгебру, ч. II. Линейная алгебра
3.	Кострикин А.И.	Введение в алгебру, ч. III. Основные структуры
		алгебры
4.	Курош А.Г.	Курс высшей алгебры
5.	Александров П.С.	Курс по аналитической геометрии и линейной алгеб-
		pe
6.	Гельфанд И.И.	Лекции по линейной алгебре
7.	Шилов Г.Е.	Введение в теорию линейных пространств
8.	Кудрявцев Л.Д.	Математический анализ
9.	Фихтенгольц Г.И.	Основы математического анализа, тт. 1,2,3
10.	Рудин У.Л.	Основы математического анализа
11.	Никольский С.М.	Математический анализ
12.	Степанов В.В.	Курс дифференциальных уравнений
13.	Петровский И.Г.	Лекции по обыкновенным дифференциальным уравнени-
		мж
14.	Понтрягин Л.С.	Обыкновенные дифференциальные уравнения
15.	Арнольд В.И.	Обыкновенные дифференциальные уравнения
16.	Привалов Н.Н.	Введение в теорию функции комплексных переменных
17.	Маркушевич А.И.	Теория аналитических функций
18.	Шабат Б.В.	Введение в комплексный анализ
19.	Рашевский П.К.	Дифференциальная геометрия
20.	Дубровин Б.А.,	Современная геометрия
	Новиков С.П.,	
	Фоменко А.Т.	
21.	Гнеденко Б.В.	Очерк по истории математики в России и СССР
22.	Рыбников К.А.	История математики