Generalized Concomitant Multi-Task Lasso for sparse multimodal regression

Joseph Salmon

http://josephsalmon.eu IMAG, Univ Montpellier, CNRS Montpellier, France

Joint work with:

Mathurin Massias (INRIA, Parietal Team)

Olivier Fercoq (Télécom ParisTech)

Alexandre Gramfort (INRIA, Parietal Team)

M/EEG inverse problem for brain imaging

- sensors: magneto- and electro-encephalogram measurements during a cognitive experiment
- sources: brain locations

MEG elements: magnometers and gradiometers

Device

Sensors

Detail of a sensor

Noise is different for EEG / MEG (magnometers and gradiometers)

 \triangleright 3 Different sensors \Longrightarrow 3 different noise structures

Source modeling

$$\mathbf{B}^* \in \mathbb{R}^{p \times q}$$

Design matrix - Forward operator

Sparsity assumption: cortical sources produce dipolar patterns well modelled by focal sources

ICA : Blind source separation recovers dipolar patterns⁽¹⁾

http://martinos.org/mne/stable/auto_tutorials/plot_visualize_evoked.html http://martinos.org/mne/stable/auto_tutorials/plot_artifacts_correction_ica.html

⁽¹⁾ A. Delorme et al. "Independent EEG sources are dipolar". In: PloS one 7.2 (2012), e30135.

The M/EEG inverse problem: modeling

A multi-task framework

Multi-task regression:

- ightharpoonup n observations (e.g., number of sensors)
- ightharpoonup q tasks (e.g., temporal information)
- p features
- $Y \in \mathbb{R}^{n \times q}$ observation matrix
- $ightharpoonup X \in \mathbb{R}^{n \times p}$ forward matrix

$$Y = XB^* + E$$

where

- $ightharpoonup \mathrm{B}^* \in \mathbb{R}^{p imes q}$: true source activity matrix
- $ightharpoonup E \in \mathbb{R}^{n \times q}$: additive white Gaussian noise (for simplicity)

Notation remark: capital letters refer to matrices

Multi-tasks penalties⁽²⁾

Popular convex penalties considered:

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| Y - X \mathbf{B} \right\|^2 + \lambda \Omega(\mathbf{B}) \right)$$

Sparse support: no structure

Penalty: Lasso type

$$\Omega(\mathbf{B}) = \|\mathbf{B}\|_1 = \sum_{j=1}^p \sum_{k=1}^q |\mathbf{B}_{j,k}|$$

Parameter $\hat{\mathbf{B}} \in \mathbb{R}^{p \times q}$

⁽²⁾G. Obozinski, B. Taskar, and M. I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: *Statistics and Computing* 20.2 (2010), pp. 231–252.

Multi-tasks penalties⁽²⁾

Popular convex penalties considered: Multi-Task Lasso (MTL)

$$\hat{\mathbf{B}} \in \operatorname*{arg\,min}_{\mathbf{B} \in \mathbb{R}^{p \times q}} \left(\frac{1}{2nq} \left\| Y - X \mathbf{B} \right\|^2 + \lambda \Omega(\mathbf{B}) \right)$$

Sparse support: group structure

Penalty: Group-Lasso type

$$\Omega(\mathbf{B}) = \|\mathbf{B}\|_{2,1} = \sum_{j=1}^{p} \|\mathbf{B}_{j,:}\|_{2}$$

where $B_{j,:}$ the j-th row of B

Parameter $\hat{\mathbf{B}} \in \mathbb{R}^{p \times q}$

⁽²⁾G. Obozinski, B. Taskar, and M. I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: *Statistics and Computing* 20.2 (2010), pp. 231–252.

Table of Contents

Calibrating λ and noise level estimation

Multi-task case and noise structure

Block homoscedastic model

Experiments

Step back on the Lasso case (q = 1)

Sparse Gaussian model: $y = X\beta^* + \sigma_*\varepsilon$

- $y \in \mathbb{R}^n$: observation
- $X \in \mathbb{R}^{n \times p}$: design matrix
- $\triangleright \beta^* \in \mathbb{R}^p$: signal to recover; unknown
- $\|\beta^*\|_0 = s^*$: sparsity level (small w.r.t. p); s^* unknown
- $\triangleright \varepsilon \sim \mathcal{N}(0, \sigma_*^2 \operatorname{Id}_n); \sigma_* \text{ unknown}$

$$\text{Lasso reminder}: \quad \left| \hat{\beta}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \frac{\left\| y - X\beta \right\|^2}{2n} + \lambda \left\| \beta \right\|_1 \right|$$

Lasso theory (3), (4)

Theorem

For Gaussian noise model and X satisfying the "Restricted Eigenvalue" property, for $\lambda = 2\sigma_* \sqrt{\frac{2\log{(p/\delta)}}{n}}$, then

$$\frac{1}{n} \left\| X\beta^* - X\hat{\beta}^{(\lambda)} \right\|^2 \le \frac{18}{\kappa_{s^*}^2} \frac{\sigma_*^2 s^*}{n} \log \left(\frac{p}{\delta} \right)$$

with probability $1 - \delta$, where $\hat{\beta}^{(\lambda)}$ is a Lasso solution

Rem: optimal rate in the minimax sense (up to constant/log term)

Rem: $\kappa_{s^*}^2$ controls the conditioning of X when extracting the s^* columns of X associated to the true support

BUT σ_* is <u>unknown</u> in practice!

⁽³⁾ P. J. Bickel, Y. Ritov, and A. B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector". In: Ann. Statist. 37.4 (2009), pp. 1705–1732.

⁽⁴⁾A. S. Dalalyan, M. Hebiri, and J. Lederer. "On the Prediction Performance of the Lasso". In: *Bernoulli* 23.1 (2017), pp. 552–581.

Lasso theory (3), (4)

Theorem

For Gaussian noise model and X satisfying the "Restricted Eigenvalue" property, for $\lambda = 2\sigma_* \sqrt{\frac{2\log{(p/\delta)}}{n}}$, then

$$\frac{1}{n} \left\| X \beta^* - X \hat{\beta}^{(\lambda)} \right\|^2 \le \frac{18}{\kappa_{s^*}^2} \frac{\sigma_*^2 s^*}{n} \log \left(\frac{p}{\delta} \right)$$

with probability $1 - \delta$, where $\hat{\beta}^{(\lambda)}$ is a Lasso solution

Rem: optimal rate in the minimax sense (up to constant/log term)

Rem: $\kappa_{s^*}^2$ controls the conditioning of X when extracting the s^* columns of X associated to the true support

BUT σ_* is <u>unknown</u> in practice!

⁽³⁾ P. J. Bickel, Y. Ritov, and A. B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector". In: Ann. Statist. 37.4 (2009), pp. 1705–1732.

⁽⁴⁾A. S. Dalalyan, M. Hebiri, and J. Lederer. "On the Prediction Performance of the Lasso". In: Bernoulli 23.1 (2017), pp. 552–581.

Joint estimation of β **and** σ

How to calibrate (theoretically) λ when σ_* is unknown?

Intuitive idea: initialize λ

- ightharpoonup run Lasso with λ ; get β
- estimate σ , e.g., with residual $\sigma \leftarrow \frac{\|y X\beta\|}{\sqrt{n}}$
- ightharpoonup re-scale $\lambda \propto \sigma$, and run Lasso with it
- iterate (until convergence)

 $\underline{\textit{N.B.}}$: exactly the Concomitant Lasso⁽⁵⁾ / Scaled-Lasso⁽⁶⁾ implementation

⁽⁵⁾ A. B. Owen. "A robust hybrid of lasso and ridge regression". In: Contemporary Mathematics 443 (2007), pp. 59–72.

⁽⁶⁾ T. Sun and C.-H. Zhang. "Scaled sparse linear regression". In: Biometrika 99.4 (2012), pp. 879–898.

Concomitant Lasso

$$(\beta^{(\lambda)}, \sigma^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p, \sigma > 0} \left(\frac{\|y - X\beta\|^2}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_1 \right)$$

- $ightharpoonup \frac{\sigma}{2}$: penalty on noise level, roots in robust estimation^{(7),(8)}
- ▶ jointly convex program: $(a,b) \mapsto a^2/b$ is convex

⁽⁷⁾ P. J. Huber and R. Dutter. "Numerical solution of robust regression problems". In: Compstat 1974 (Proc. Sympos. Computational Statist., Univ. Vienna, Vienna, 1974). Physica Verlag, Vienna, 1974, pp. 165–172.

Concomitant performance

For Gaussian noise model and X satisfying the "Restricted Eigenvalue" property and $\lambda = 2\sqrt{\frac{2\log{(p/\delta)}}{n}}$, then

$$\frac{1}{n} \left\| X \beta^* - X \hat{\beta}^{(\lambda)} \right\|^2 \le \frac{18}{\kappa_{s^*}^2} \frac{\sigma_*^2 s_*}{n} \log \left(\frac{p}{\delta} \right)$$

with high probability, where $\hat{\beta}^{(\lambda)}$ is a Concomitant Lasso solution

Rem: provide same rate as Lasso, without knowing σ_*

 $\underline{\mathsf{Rem}}$: λ has no dimension, but calibration still needed in practice...

⁽⁹⁾ T. Sun and C.-H. Zhang. "Scaled sparse linear regression". In: Biometrika 99.4 (2012), pp. 879–898.

⁽¹⁰⁾ C. Giraud. Introduction to high-dimensional statistics. Vol. 138. CRC Press, 2014.

Link with $\sqrt{\text{Lasso}}^{(11)}$

▶ Independently, $\sqrt{\text{Lasso}}$ analyzed to get " σ free" choice of λ

$$\hat{\beta}_{\sqrt{\text{Lasso}}}^{(\lambda)} \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}} \left(\frac{1}{\sqrt{n}} \left\| y - X\beta \right\| + \lambda \left\| \beta \right\|_{1} \right)$$

Connections with Concomitant Lasso:

Rem: non-smooth data fitting term with non-smooth regularization

⁽¹¹⁾ A. Belloni, V. Chernozhukov, and L. Wang. "Square-root Lasso: pivotal recovery of sparse signals via conic programming". In: *Biometrika* 98.4 (2011), pp. 791–806.

The Smoothed Concomitant Lasso⁽¹³⁾

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p, \sigma \geq \underline{\sigma}} \frac{\|y - X\beta\|^2}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_1$$

- lacktriangle useful for optimization with small λ
- with prior information on the minimal noise level, one can set $\underline{\sigma}$ as this bound (recovers Concomitant Lasso)
- ▶ setting $\underline{\sigma} = \epsilon$, smoothing theory asserts that $\frac{\epsilon}{2}$ -solutions for the smoothed problem provide ϵ -solutions for the $\sqrt{\mathrm{Lasso}}^{(12)}$

⁽¹²⁾ Y. Nesterov. "Smooth minimization of non-smooth functions". In: *Math. Program.* 103.1 (2005), pp. 127–152.

⁽¹³⁾ E. Ndiaye et al. "Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression". In:

Smoothing aparté^{(14),(15)}

<u>Motivation</u>: smooth a non-smooth function f to ease optimization Smoothing: for $\mu>0$, a "smoothed" version of f is f_μ

$$f_{\mu} = \mu \omega \left(\frac{\cdot}{\mu}\right) \Box f, \quad \text{where} \quad f \Box g(x) = \inf_{u} \{f(u) + g(x-u)\}$$

 \blacktriangleright ω is a predefined smooth function (s.t. $\nabla \omega$ is Lipschitz)

	Fourier: $\mathcal{F}(f)$	Fenchel/Legendre: f^*
	convolution: *	inf-convolution:
Kernel smoothing analogy:	$\mathcal{F}(f\star g)=\mathcal{F}(f)\cdot\mathcal{F}(g)$	$(f\Box g)^* = f^* + g^*$
	$Gaussian:\mathcal{F}(g)=g$	$\omega = \frac{\ \cdot\ ^2}{2} : \omega^* = \omega$
	$f_h = \frac{1}{h}g\left(\frac{\cdot}{h}\right) \star f$	$f_{\mu} = \mu \omega \left(\frac{\cdot}{\mu} \right) \Box f$

⁽¹⁴⁾ Y. Nesterov. "Smooth minimization of non-smooth functions". In: *Math. Program.* 103.1 (2005), pp. 127–152.

⁽¹⁵⁾ A. Beck and M. Teboulle. "Smoothing and first order methods: A unified framework". In: SIAM J. Optim. 22.2 (2012), pp. 557–580.

Smoothing aparté^{(14),(15)}

<u>Motivation</u>: smooth a non-smooth function f to ease optimization Smoothing: for $\mu>0$, a "smoothed" version of f is f_μ

$$f_{\mu} = \mu \omega \left(\frac{\cdot}{\mu}\right) \Box f, \quad \text{where} \quad f \Box g(x) = \inf_{u} \{f(u) + g(x-u)\}$$

 \blacktriangleright ω is a predefined smooth function (s.t. $\nabla \omega$ is Lipschitz)

	Fourier: $\mathcal{F}(f)$	Fenchel/Legendre: f^*
	convolution: *	inf-convolution:
Kernel smoothing analogy:	$\mathcal{F}(f\star g)=\mathcal{F}(f)\cdot\mathcal{F}(g)$	$(f\Box g)^* = f^* + g^*$
	$Gaussian: \mathcal{F}(g)=g$	$\omega = \frac{\ \cdot\ ^2}{2}: \omega^* = \omega$
	$f_h = \frac{1}{h}g\left(\frac{\cdot}{h}\right) \star f$	$f_{\mu} = \mu \omega \left(\frac{\cdot}{\mu}\right) \Box f$

⁽¹⁴⁾ Y. Nesterov. "Smooth minimization of non-smooth functions". In: *Math. Program.* 103.1 (2005), pp. 127–152.

⁽¹⁵⁾ A. Beck and M. Teboulle. "Smoothing and first order methods: A unified framework". In: SIAM J. Optim. 22.2 (2012), pp. 557–580.

Huberization of the $\sqrt{\text{Lasso}}$

$$\begin{split} \text{"Huberization": } &f(z) = \frac{\|z\|}{\sqrt{n}}, \ \mu = \underline{\sigma} \,, \ \omega(z) = \frac{\|z\|^2}{2} + \frac{1}{2} \\ &f_{\underline{\sigma}}(z) = \underline{\sigma}\omega\left(\frac{\cdot}{\underline{\sigma}}\right)\Box f(z) = \begin{cases} \frac{\|z\|^2}{2n\underline{\sigma}} + \frac{\underline{\sigma}}{2}, & \text{if } \frac{\|z\|}{\sqrt{n}} \leq \underline{\sigma} \\ \frac{\|z\|}{\sqrt{n}}, & \text{if } \frac{\|z\|}{\sqrt{n}} > \underline{\sigma} \end{cases} \\ &= \min_{\underline{\sigma} \geq \underline{\sigma}}\left(\frac{\|z\|^2}{2n\underline{\sigma}} + \frac{\underline{\sigma}}{2}\right) \end{split}$$

Leads to the Smoothed Concomitant Lasso formulation:

$$\widehat{\left(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}\right)} \in \underset{\beta \in \mathbb{R}^{p}, \sigma \geq \underline{\sigma}}{\arg\min} \left(\frac{\left\|y - X\beta\right\|^{2}}{2n\sigma} + \frac{\sigma}{2} + \lambda \left\|\beta\right\|_{1} \right)$$

Solving the Smooth Concomitant Lasso

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \underset{\beta \in \mathbb{R}^p, \sigma \ge \underline{\sigma}}{\arg \min} \frac{\|y - X\beta\|^2}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_1$$

Jointly convex formulation : can be optimized by alternate minimization w.r.t. β and σ (gradient Lipschitz)

Alternate iteratively:

Solving the Smooth Concomitant Lasso

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \underset{\beta \in \mathbb{R}^p, \sigma \ge \underline{\sigma}}{\arg \min} \frac{\|y - X\beta\|^2}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_1$$

Jointly convex formulation : can be optimized by alternate minimization w.r.t. β and σ (gradient Lipschitz)

Alternate iteratively:

Fix σ : (approximatively) solve a Lasso problem to update β $\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^p} \frac{\|y - X\beta\|^2}{2n} + \lambda \sigma \|\beta\|_1 \quad \text{(Lasso step)}$

Fix
$$\beta$$
: closed form solution to update σ
$$\hat{\sigma} = \max\left(\frac{\|y-X\beta\|}{\sqrt{n}},\underline{\sigma}\right) \quad \text{(Noise estimation step)}$$

Solving the Smooth Concomitant Lasso

$$(\hat{\beta}^{(\lambda)}, \hat{\sigma}^{(\lambda)}) \in \underset{\beta \in \mathbb{R}^p, \sigma \ge \underline{\sigma}}{\operatorname{arg \, min}} \frac{\|y - X\beta\|^2}{2n\sigma} + \frac{\sigma}{2} + \lambda \|\beta\|_1$$

Jointly convex formulation : can be optimized by alternate minimization w.r.t. β and σ (gradient Lipschitz)

Alternate iteratively:

Fix σ : (approximatively) solve a Lasso problem to update β $\hat{\beta} \in \arg\min_{\beta \in \mathbb{R}^p} \frac{\|y - X\beta\|^2}{2n} + \lambda \sigma \|\beta\|_1 \quad \text{(Lasso step)}$

Fix β : closed form solution to update σ $\hat{\sigma} = \max\left(\frac{\|y-X\beta\|}{\sqrt{n}},\underline{\sigma}\right) \quad \text{(Noise estimation step)}$

Table of Contents

Calibrating λ and noise level estimation

Multi-task case and noise structure

Block homoscedastic model

Experiments

Back to multi-task : $Y = XB^* + E$

<u>General case</u>: $Y \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E \in \mathbb{R}^{n \times q}$ might have some structure evolving along the n samples (sensors)

⁽¹⁰⁾ S. van de Geer. Estimation and testifig under sparsity. Vol. 2159. Lecture Notes in Mathematics. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, École d'Été de Probabilités de Saint-Flour. Springer, 2016, pp. xiii+274.

Back to multi-task : $Y = XB^* + E$

<u>General case</u>: $Y \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E \in \mathbb{R}^{n \times q}$ might have some structure evolving along the n samples (sensors)

Smoothed Generalized Concomitant Lasso (SGCL):

$$(\hat{\mathbf{B}}, \hat{\Sigma}) \in \underset{\Sigma \in \mathbb{S}_{++}^n, \Sigma \succeq \underline{\sigma} \, \mathrm{Id}_n}{\mathrm{arg \, min}} \, \frac{\|Y - X\mathbf{B}\|_{\Sigma^{-1}}^2}{2nq} + \frac{\mathrm{Tr}(\Sigma)}{2n} + \lambda \, \|\mathbf{B}\|_{2,1}$$

with $||R||_{\Sigma^{-1}}^2 := \operatorname{Tr}(R^{\top}\Sigma^{-1}R)$ (Mahalanobis distance)

⁽¹⁶⁾ S. van de Geer. Estimation and testing under sparsity. Vol. 2159. Lecture Notes in Mathematics. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, École d'Été de Probabilités de Saint-Flour. Springer, 2016, pp. xiii+274.

Back to multi-task : $Y = XB^* + E$

<u>General case</u>: $Y \in \mathbb{R}^{n \times q}$, $B \in \mathbb{R}^{p \times q}$, and the noise $E \in \mathbb{R}^{n \times q}$ might have some structure evolving along the n samples (sensors)

Smoothed Generalized Concomitant Lasso (SGCL):

$$(\hat{\mathbf{B}}, \hat{\Sigma}) \in \underset{\Sigma \in \mathbb{S}_{++}^n, \Sigma \succeq \underline{\sigma} \, \mathrm{Id}_n}{\mathrm{arg \, min}} \, \frac{\|Y - X\mathbf{B}\|_{\Sigma^{-1}}^2}{2nq} + \frac{\mathrm{Tr}(\Sigma)}{2n} + \lambda \, \|\mathbf{B}\|_{2,1}$$

with $\|R\|_{\Sigma^{-1}}^2 := \operatorname{Tr}(R^{\top}\Sigma^{-1}R)$ (Mahalanobis distance)

- ▶ jointly convex formulation (=nuclear norm smoothing (16))
- lacktriangle noise penalty on the sum of the eigenvalues of Σ

Beware: Σ not a covariance (co-standard deviation?)

⁽¹⁶⁾ S. van de Geer. Estimation and testing under sparsity. Vol. 2159. Lecture Notes in Mathematics. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, École d'Été de Probabilités de Saint-Flour. Springer, 2016, pp. xiii+274.

SGCL and computation: B update

Jointly convex formulation: alternate minimization still converging

B Update - Σ fixed:

"smooth + non-smooth" optimization; use Block Coordinate Descent (Iterative Block Soft-Thresholding) to update B row-wise

Possible refinements:

- ► (Gap) safe screening rules (17), (18)
- ► Stong rules⁽¹⁹⁾
- ► Active sets methods⁽²⁰⁾ etc.

⁽¹⁷⁾ L. El Ghaoui, V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: J. Pacific Optim. 8.4 (2012), pp. 667–698.

⁽¹⁸⁾ E. Ndiaye et al. "Gap Safe screening rules for sparsity enforcing penalties". In: *J. Mach. Learn. Res.* 18.128 (2017), pp. 1–33.

⁽¹⁹⁾ R. Tibshirani et al. "Strong rules for discarding predictors in lasso-type problems". In: J. R. Stat. Soc. Ser. E Stat. Methodol. 74.2 (2012), pp. 245–266.

V²⁹/T. B. Johnson and C. Guestrin. "BLITZ: A Principled Meta-Algorithm for Scaling Sparse Optimization". In *ICML*, 2015, pp. 1171–1179.

SGCL and computation: B update

Jointly convex formulation: alternate minimization still converging

B Update - Σ fixed:

"smooth + non-smooth" optimization; use Block Coordinate Descent (Iterative Block Soft-Thresholding) to update B row-wise

Possible refinements:

- ► (Gap) safe screening rules^{(17),(18)}
- ► Stong rules⁽¹⁹⁾
- ► Active sets methods⁽²⁰⁾ etc.

⁽¹⁷⁾ L. El Ghaoui, V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: *J. Pacific Optim.* 8.4 (2012), pp. 667–698.

⁽¹⁸⁾ E. Ndiaye et al. "Gap Safe screening rules for sparsity enforcing penalties". In: *J. Mach. Learn. Res.* 18.128 (2017), pp. 1–33.

⁽¹⁹⁾ R. Tibshirani et al. "Strong rules for discarding predictors in lasso-type problems". In: J. R. Stat. Soc. Ser. B Stat. Methodol. 74.2 (2012), pp. 245–266.

⁽²⁰⁾ T. B. Johnson and C. Guestrin. "BLITZ: A Principled Meta-Algorithm for Scaling Sparse Optimization". In: ICML, 2015, pp. 1171–1179.

SGCL and computation: Σ update

Σ Update - B fixed:

with R = Y - XB (residuals), the problem can be reformulated

$$\hat{\Sigma} = \underset{\Sigma \in \mathbb{S}_{++}^n, \Sigma \succeq \underline{\sigma} \text{ Id}_n}{\arg \min} \left(\frac{1}{2nq} \operatorname{Tr}[R^{\top} \Sigma^{-1} R] + \frac{1}{2n} \operatorname{Tr}(\Sigma) \right)$$

SGCL and computation: Σ update

Σ Update - B fixed:

with R = Y - XB (residuals), the problem can be reformulated

$$\hat{\Sigma} = \operatorname*{arg\,min}_{\Sigma \in \mathbb{S}_{++}^n, \Sigma \succeq \underline{\sigma} \, \operatorname{Id}_n} \left(\frac{1}{2nq} \operatorname{Tr}[R^{\top} \Sigma^{-1} R] + \frac{1}{2n} \operatorname{Tr}(\Sigma) \right)$$

<u>Closed-form solution</u> (**Spectral clipping**):

if $U^{\top}\operatorname{diag}(s_1,\ldots,s_n)U$ is the spectral decomposition of $\frac{1}{q}RR^{\top}$:

$$\hat{\Sigma} = U^{\top} \operatorname{diag}(\max(\underline{\sigma}, \sqrt{s_1}), \dots, \max(\underline{\sigma}, \sqrt{s_n}))U$$

Main drawbacks

- ▶ Statistically: $\mathcal{O}(n^2)$ parameters to infer for Σ , with only nq observations (need q large w.r.t. n)
- Computationally: Σ update cost is $\mathcal{O}(n^3)$ too slow in general (SVD computation)

Note: fine for MEG/EEG problems ($n \approx 300$)

Main drawbacks

- ▶ Statistically: $\mathcal{O}(n^2)$ parameters to infer for Σ , with only nqobservations (need q large w.r.t. n)
- \triangleright Computationally: Σ update cost is $\mathcal{O}(n^3)$ too slow in general (SVD computation)

Note: fine for MEG/EEG problems ($n \approx 300$)

More structure needed on $\Sigma!$

Table of Contents

Calibrating λ and noise level estimation

Multi-task case and noise structure

Block homoscedastic model

Experiments

Block Homoscedastic model

In the MEG/EEG case: 3 different types of signals are recorded

- electrodes : measure the electric potentials
- magnetometers : measure the magnetic field
- gradiometers : measure the gradient of the magnetic field

 \neq physical natures \Longrightarrow different noise levels

Key point: observations divided into 3 blocks (known partition)

Block homoscedastic model

K groups of observations (K sensors modalities)

$$X = \begin{pmatrix} X^1 \\ \vdots \\ X^K \end{pmatrix}, Y = \begin{pmatrix} Y^1 \\ \vdots \\ Y^K \end{pmatrix}, E = \begin{pmatrix} E^1 \\ \vdots \\ E^K \end{pmatrix}$$

$$\Sigma^* = \operatorname{diag}(\sigma_1^* \operatorname{Id}_{n_1}, \dots, \sigma_K^* \operatorname{Id}_{n_K})$$
 where $n = n_1 + \dots + n_K$

For each block, the entries $E_{i,j}^k \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$ (homoscedastic):

$$Y^k = X^k B^* + \sigma_k^* E^k$$

MEG/EEG case: K = 3, corresponding to 3 physical signals

- 1. EEG
- 2. MEG magnetometers
- 3. MEG gradiometers

Smoothed Block Homoscedastic Concomitant (SBHCL)

Additional constraints: Σ piecewise constant **diagonal**, *i.e.*,

$$\Sigma = \operatorname{diag}(\sigma_1 \operatorname{Id}_{n_1}, \dots, \sigma_K \operatorname{Id}_{n_K})$$

Block Homoscedastic Concomitant:

k Homoscedastic Concomitant:
$$\underset{\substack{\mathrm{B} \in \mathbb{R}^{p \times q}, \\ \sigma_{1}, \ldots, \sigma_{K} \in \mathbb{R}_{++}^{K} \\ \sigma_{k} > \sigma_{k}, \forall k \in [K]}}{\underset{k=1}{\operatorname{concomitant}}} \sum_{k=1}^{K} \left(\frac{\|Y^{k} - X^{k} \mathbf{B}\|^{2}}{2nq\sigma_{k}} + \frac{n_{k}\sigma_{k}}{2n} \right) + \lambda \left\| \mathbf{B} \right\|_{2,1}$$

Benefit:

- ▶ number of parameters reduced $\frac{n(n+1)}{2} \to K$
- \triangleright Σ update: update/maintain the σ_k 's (storing residuals)

Table of Contents

Calibrating λ and noise level estimation

Multi-task case and noise structure

Block homoscedastic model

Experiments

Simulated scenario

Simulated block homoscedastic design:

- ightharpoonup n=300, with equals block sizes $n_1=n_2=n_3=100$
- p = 1000
- ightharpoonup q = 100
- ▶ X Toeplitz-correlated: $Cov(X_i, X_j) = \rho^{|i-j|}$, $\rho \in]0, 1[$
- ▶ 3 blocks with standard deviation in ratio 1, 2, 5

Rem: Block 1 has smallest standard deviation

Support recovery: ROC curve w.r.t. λ , $\rho = 0.1$

SBHCL: Smoothed Block Homoscedastic Concomitant

MTL: Multi-Task Lasso

SCL: Smooth Concomitant Lasso (single σ for all blocks)

MTL (Block 1): MTL on least noisy block SCL (Block 1): SCL on least noisy block

Support recovery: ROC curve w.r.t. λ , $\rho = 0.9$

SBHCL: Smoothed Block Homoscedastic Concomitant

MTL: Multi-Task Lasso

SCL: Smooth Concomitant Lasso (single σ for all blocks)

MTL (Block 1): MTL on least noisy block SCL (Block 1): SCL on least noisy block

Prediction error: RMSE curve w.r.t. λ , $\rho = 0.7$

RMSE (Root Mean Square Error) normalized by oracle RMSE, per block, for the multi-task SBHCL and SCL on testing set

Conclusion: align best λ 's for all modalities

- ▶ New insights for handling (structured) noise in multi-task
- ► Handling multiple noise levels: improve both prediction and support identification

- ▶ New insights for handling (structured) noise in multi-task
- ► Handling multiple noise levels: improve both prediction and support identification
- ► Numerical cost equivalent to classical Multi-Task Lasso for "simple" noise structure (e.g., block homoscedastic)

- ▶ New insights for handling (structured) noise in multi-task
- ► Handling multiple noise levels: improve both prediction and support identification
- ► Numerical cost equivalent to classical Multi-Task Lasso for "simple" noise structure (e.g., block homoscedastic)
- ► Future work: handling repetitions of neuro tasks, non-convex penalties, etc.

- ▶ New insights for handling (structured) noise in multi-task
- Handling multiple noise levels: improve both prediction and support identification
- ► Numerical cost equivalent to classical Multi-Task Lasso for "simple" noise structure (e.g., block homoscedastic)
- ► Future work: handling repetitions of neuro tasks, non-convex penalties, etc.

Merci!

"All models are wrong but some come with good open source implementation and good documentation so use those."

A. Gramfort

► Paper: arXiv / personnal webpage⁽²¹⁾

Python code online: https://github.com/mathurinm/SHCL

Powered with MooseTeX

References I

- Beck, A. and M. Teboulle. "Smoothing and first order methods: A unified framework". In: SIAM J. Optim. 22.2 (2012), pp. 557–580.
- Belloni, A., V. Chernozhukov, and L. Wang. "Square-root Lasso: pivotal recovery of sparse signals via conic programming". In: Biometrika 98.4 (2011), pp. 791–806.
- Bickel, P. J., Y. Ritov, and A. B. Tsybakov. "Simultaneous analysis of Lasso and Dantzig selector". In: Ann. Statist. 37.4 (2009), pp. 1705–1732.
- Dalalyan, A. S., M. Hebiri, and J. Lederer. "On the Prediction Performance of the Lasso". In: *Bernoulli* 23.1 (2017), pp. 552–581.
- Delorme, A. et al. "Independent EEG sources are dipolar". In: PloS one 7.2 (2012), e30135.

References II

- ► El Ghaoui, L., V. Viallon, and T. Rabbani. "Safe feature elimination in sparse supervised learning". In: *J. Pacific Optim.* 8.4 (2012), pp. 667–698.
- Giraud, C. Introduction to high-dimensional statistics. Vol. 138.
 CRC Press. 2014.
- ▶ Huber, P. J. Robust Statistics. John Wiley & Sons Inc., 1981.
- Huber, P. J. and R. Dutter. "Numerical solution of robust regression problems". In: Compstat 1974 (Proc. Sympos. Computational Statist., Univ. Vienna, Vienna, 1974). Physica Verlag, Vienna, 1974, pp. 165–172.
 - Johnson, T. B. and C. Guestrin. "BLITZ: A Principled Meta-Algorithm for Scaling Sparse Optimization". In: *ICML*. 2015, pp. 1171–1179.
- Massias, M. et al. "Generalized Concomitant Multi-Task Lasso for Sparse Multimodal Regression". In: AISTATS. Vol. 84. 2018, pp. 998–1007.

References III

- Ndiaye, E. et al. "Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression". In: NCMIP. 2017.
- Ndiaye, E. et al. "Gap Safe screening rules for sparsity enforcing penalties". In: J. Mach. Learn. Res. 18.128 (2017), pp. 1–33.
- Nesterov, Y. "Smooth minimization of non-smooth functions". In: *Math. Program.* 103.1 (2005), pp. 127–152.
 - Obozinski, G., B. Taskar, and M. I. Jordan. "Joint covariate selection and joint subspace selection for multiple classification problems". In: *Statistics and Computing* 20.2 (2010), pp. 231–252.
- Owen, A. B. "A robust hybrid of lasso and ridge regression". In: Contemporary Mathematics 443 (2007), pp. 59–72.
- Sun, T. and C.-H. Zhang. "Scaled sparse linear regression". In: *Biometrika* 99.4 (2012), pp. 879–898.

References IV

- Tibshirani, R. et al. "Strong rules for discarding predictors in lasso-type problems". In: *J. R. Stat. Soc. Ser. B Stat. Methodol.* 74.2 (2012), pp. 245–266.
- van de Geer, S. Estimation and testing under sparsity. Vol. 2159. Lecture Notes in Mathematics. Lecture notes from the 45th Probability Summer School held in Saint-Four, 2015, École d'Été de Probabilités de Saint-Flour. Springer, 2016, pp. xiii+274.