1. Divide and Conquer: Divide and Conquer is an algorithm design paradigm that works by recursively breaking a problem into smaller sub-problems until the sub-problems are simple enough to solve directly. Then, the solutions of the sub-problems are combined to form a solution to the original problem.

Steps: Divide: Split the problem into smaller sub-problems. **Conquer:** Solve each sub-problem recursively. **Combine:** Merge the solutions of the sub-problems to get the final solution.

Merge Sort Example: Merge sort follows the divide and conquer approach: Divide the array into two halves., Recursively sort each half, Merge the two sorted halves.

Let the array be: [38, 27, 43, 3, 9, 82, 10] • Divide into [38, 27, 43] and [3, 9, 82, 10] • Recursively divide and sort • Merge sorted halves **Time Complexity Derivation**: Let T(n) be the time complexity of merge sort: • Divide: takes O(1) • Conquer: 2 sub-problems of size $n/2 \Rightarrow 2T(n/2)$ • Combine: merging takes O(n)

So, T(n) = 2T(n/2) + O(n), Using the **Master Theorem**, we get: $T(n) = O(n \log n)$

2. Knapsack Problem, Greedy Method: Greedy algorithm for Knapsack problem selects items based on **maximum profit/weight ratio. Example:** Weights = [2, 3, 4, 5], Profits = [1, 2, 5, 6], Capacity = 8 Profit/Weight ratios = [0.5, 0.66, 1.25, 1.2], Pick item $3 \rightarrow$ weight 4, profit 5 Pick item $4 \rightarrow$ weight 5 (exceeds capacity, pick 4 units if fractional allowed)

Greedy Total Profit (Fractional): Item 3: profit 5, Remaining capacity: 4, Take 4/5 of item 4: $(4/5) \times 6 = 4.8$ Total = 9.8 **0/1 Knapsack (Optimal with DP):** Items 2 and 4 \rightarrow total weight = 3 + 5 = 8, Total profit = 2 + 6 = **8** Greedy (fractional) may yield higher profit, but **not valid for 0/1 Knapsack**.

13. 0/1 Knapsack Problem using Dynamic: Given weights = [2, 3, 4, 5], values = [1, 2, 5, 6], W = 8 Use DP table to fill values. **Answer:** Max profit = **8**

3. Longest Common Subsequence (LCS) problem

Let X = "ABCBDAB", Y = "BDCAB", Using DP:

		В	D	С	Α	В
	0	0	0	0	0	0
Α	0	0	0	0	1	1
В	0	1	1	1	1	2
С	0	1	1	2	2	2
В	0	1	1	2	2	3
D	0	1	2	2	2	3
Α	0	1	2	2	3	3
В	0	1	2	2	3	4

(1) By contradiction, assume zk 6= xm, then by appending xm = yn to Z, we get a common subsequence of X and Y of length k + 1, contradicting the supposed optimality of Z. So zk = xm = yn. Thus, the prefix Zk-1 is a common subsequence of Xm-1 and Yn-1. Next we show that it is an LCS. Suppose for the purpose of contradiction that there exists a common subsequence W of Xm-1 and Yn-1 with length greater than x-1. We can append xm = yn to y-1 and y-1 and y-1 whose length is greater than y-1, which contradicting the supposed optimality of y-1. (2) y-1 and y-2 is a common subsequence of y-1 and y-3. By contradiction, suppose that there is a common subsequence y-1 and y-3 with length greater than y-4, then y-3 is a common subsequence of y-1 and y-3 with length greater than y-4, then y-3 is a common subsequence of y-1 and y-3 with length greater than y-4, then y-3 is a common subsequence of y-1.

LCS Length: 4, LCS: BCAB

4. Branch and Bound for TSP • Used to find the **minimum cost** tour. • Works by exploring all permutations but **prunes** unpromising paths. **Example:** Cities = A, B, C, D, Cost Matrix:

Steps ● Start at A • Explore all permutations like A-B-C-D-A • Use cost bound to prune

Optimal Path = A \rightarrow B \rightarrow D \rightarrow C \rightarrow A **Cost** = 10 + 25 + 30 + 15 = **80**

	Α	В	С	D
Α	∞	10	15	20
В	10	∞	35	25
С	15	35	∞	30
D	20	25	30	∞

5. KMP (Knuth-Morris-Pratt): Avoids backtracking in the text by using a prefix table (LPS).

Pattern = "ABABC", Text = "ABABABCAB", LPS = [0, 0, 1, 2, 0]

Matching steps • Matches until mismatch, then uses LPS to skip characters • Time complexity: O(n + m)

Naïve takes O(nm), KMP is more efficient due to reuse of previous comparisons.

KMP Matching for T = "ABABABCAB", P = "ABABC", LPS for "ABABC": [0, 0, 1, 2, 0]

Matching Process • Match found at index 2 • Time: O(n + m) = O(9 + 5) = O(14)

Improves over Naïve by avoiding rechecks.

6. Assignment Problem: Cost Matrix:

C

A B

9 2

3 5

8

1

2 6 4

Use **Hungarian Algorithm**: Optimal Assignment: • Task $1 \rightarrow B$ (cost 2)• Task $2 \rightarrow C$ (cost 3)• Task $3 \rightarrow A$ (cost 5)

Total Cost = 10

Quadratic Assignment Problem Given n facilities and n locations.

Cost depends on ● Distance between locations. ● Flow between facilities.

Objective: Assign facilities to minimize cost. **Example:** Facilities: F1, F2

Locations: L1, L2 • Cost = Flow × Distance • Try both assignments and pick the one with

minimum cost.

7. Las Vegas Algorithm • Always gives correct results • Time may vary due to randomness

Quicksort using Random Pivot • Choose pivot randomly to avoid worst-case (O(n²))

Expected Time Complexity: Average case: O(n log n)

Compare Las Vegas and Monte Carlo algorithms

Las Vegas • Always correct • Random • Randomized Quick Sort

Monte Carlo • May be incorrect • Fixed • 2-SAT Monte Carlo algorithm

Monte Carlo algorithm: 2-SAT Example: Clauses: $(x1 \lor x2)$, $(\neg x1 \lor x3)$, $(\neg x2 \lor \neg x3)$

Monte Carlo • Randomly assign truth values • Repeat trials • If satisfied, return; else retry

Probability of success: Increases with number of trials, Each trial: O(n)

Overall: High probability of finding a solution in poly time

9. P, NP, and NP-Complete problems, and prove that the Satisfiability Problem (SAT)

P (Polynomial Time): Class of problems that can be solved in polynomial time. NP (Nondeterministic

Polynomial Time): Class of problems for which a given solution can be **verified** in polynomial time.

NP-Complete: Problems that are: 1. In NP. 2. Every problem in NP can be reduced to it in polynomial time.

SAT Problem: Given a Boolean formula, determine if there is an assignment that satisfies it.

Cook's Theorem (Proof Sketch) • SAT is in NP: given a truth assignment, we can verify in polynomial time.

• Any NP problem can be reduced to SAT using a polynomial-time reduction. .. SAT is NP-Complete.

P, NP, NP-Hard, and NP-Complete + Vertex Cover Vertex Cover Problem: Given graph G(V, E), find the smallest set of vertices covering all edges. • In NP: we can verify a solution in poly time. • Reduce from 3-SAT or CLIQUE problem \rightarrow NP-Complete.

10. Set Cover Problem: Given ● A universe **U** of elements. ● A collection of subsets whose union = U. Goal: Select **the minimum** number of subsets to cover all elements.

Greedy Approximation Algorithm: 1. Pick subset that covers most uncovered elements. 2. Repeat until all elements are covered. **Approximation Ratio:** The greedy algorithm gives an **O(log n)** approximation, where n = size of the universe.

11. Order Notations (Big-O, Ω, and Θ) Big-O (O): Upper bound.

If $f(n) \le c * g(n)$ for large n, then $f(n) \in O(g(n))$

Big-Omega (Ω): Lower bound. If $f(n) \ge c * g(n)$ for large n, then $f(n) \in \Omega(g(n))$

Big-Theta (\Theta): Tight bound. If f(n) is both O(g(n)) and $\Omega(g(n))$, then $f(n) \in \Theta(g(n))$

12. Compare Kruskal's and Prim's Algorithms

Kruskal's This is one of the popular algorithms for finding the minimum spanning tree from a connected, undirected graph. This is a greedy algorithm. The algorithm workflow is as below: • First, it sorts all the edges of the graph by their weights, • Then starts the iterations of finding the spanning tree. • At each iteration, the algorithm adds the next lowest-weight edge one by one, such that the edges picked until now does not form a cycle. • Edge-based • Disjoint Set • O(E log E) • Sparse graphs

Prim's This is also a greedy algorithm. This algorithm has the following workflow: • It starts by selecting an arbitrary vertex and then adding it to the MST. • Then, it repeatedly checks for the minimum edge weight that connects one vertex of MST to another vertex that is not yet in the MST. • This process is continued until all the vertices are included in the MST. • Vertex-based • Priority Queue (Min-Heap) • O(E + V log V) (using Min-Heap) • Dense graphs

14. Solve Weight Capacity = 5, Weights = [2,3,4], Values = [10,20,30] (DP) Using DP:

w\i	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	10	10	10
3	0	10	20	20
4	0	10	20	30
5	0	10	30	30

Max Profit = 30