

PES University, Bengaluru

UE21MA141B

Max Marks: 100

(Established under Karnataka Act No. 16 of 2013)

JULY 2022: END SEMESTER ASSESSMENT (ESA) B TECH II SEMESTER (Chemistry Cycle)

UE21MA141B - ENGINEERING MATHEMATICS 2

T	ime:	3 Hrs Answer All Questions Max Marks: 10	00		
1	a)	Find the moments of inertia of the planar region bounded by the curves $y = x^2$ and $y = x + 2$, given that the density $\rho(x, y) = k$, a constant.	1		
	b)	Find the volume of the tetrahedron bounded by the coordinate planes and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ using the substitution $x = au$, $y = bv$ and $z = cw$.	7		
	c)	Evaluate $\int_0^3 \int_0^{\sqrt{4-y}} (x+y) dx dy$ by changing the order of integration.	6		
2	a)	Show that the force field given by $\vec{F} = (y^2 \cos x + z^3)\hat{\imath} + (2y \sin x - 4)$ (3 x z ² + 2) \hat{k} is conservative and hence find its scalar potential ϕ .			
	b) Calculate the flux of $\vec{F} = x \hat{\imath} + y \hat{\jmath} + (1 - 2z)\hat{k}$ across the surface S using the normal, given that S is the portion of the surface that lies between $z - x^2 - y^2$ below the plane $z = 1$ and above the x-y plane.		7		
	c)	Evaluate $\int \int_{S} \vec{F} \cdot \hat{n} ds$ over the sphere $x^2 + y^2 + z^2 = k^2$, using the divergence theorem where $\vec{F} = k [a x\hat{i} + b y \hat{j} + c z \hat{k}]$. Is \vec{F} irrotational?	6		
3	a)	i) If $L[t f(t)] = \frac{1}{s(s+1)}$, then find $L[f(3t)]$. ii) Find $L\left[\int_0^t u \sin 4u \ du\right]$	7		
	b)	Find the Laplace transform of $\frac{1-\cos t}{t^2}$	7		
	c)	Determine the Laplace transform of the triangular wave function $f(t) = \begin{cases} t, & 0 < t < c \\ 2c - t, & c < t < 2c \end{cases}, f(t + 2c) = f(t)$. Express the solution in terms of a hyperbolic function.	6		
4	4 a)	Solve the differential equation $\frac{d^2i}{dt^2} + 4i(t) = \begin{cases} 4t, & 0 < t < 1 \\ 4, & t > 1 \end{cases}$, $i(0) = 1$, $i'(0) = 0$ using the Laplace transform technique.	7		
	b)		7		
	(c)	3+2	6		

						SR					
Obtain the half range Fourier cosine series of $f(x) = x$ in $0 < x < 2$. He the sum of the series $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$											
-	b)	the parameter 'a' is not an integer.									
1		Find the Fourier series expansion and the amplitude of the first harmonic for the function $f(x)$ described by the following table:									
- Marie Control	c)	Find the For	irier serie	s expansion ed by the fo	and the an	ole:	the first na	illionic for	tne		
	c)	Find the For	rier serie () describ	ed by the fo	and the an ollowing ta	ole:	the first na	5	6		