EXERCICES — CHAPITRE 8

Exercice 1 – Sur le graphique ci-dessous, on a tracé la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur **R**. Certaines tangentes à la courbe ont aussi été représentées.

Partie A: On note f' la dérivée de la fonction f. À partir du graphique,

- 1. déterminer f'(-2), f'(0) et f'(2),
- 2. donner une estimation des solutions de l'équation f'(x) = 0.

Partie B: La fonction f est définie pour tout réel x par $f(x) = 3x^3 - 20x + 16$.

- 1. Calculer f'(x).
- 2. Calculer f'(-2), f'(0) et f'(1,5), puis comparer ces résultats avec les valeurs obtenues dans la partie A.
- 3. Déterminer les abscisses des points en lesquels la tangente à la courbe \mathscr{C}_f est parallèle à l'axe des abscisses.
- 4. Donner le tableau de variation de la fonction f.

Exercice 2 -

Partie A : Sur le graphique ci-contre, on a tracé la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur \mathbf{R} . On sait que

• la tangente au point $A\left(-1; \frac{9}{2}\right)$ à la courbe \mathscr{C}_f est parallèle à l'axe des abscisses,

• la tangente au point B(2;0) à la courbe \mathcal{C}_f passe par le point de coordonnées (0;2).

On note f' la dérivée de la fonction f. À partir du graphique et des renseignements fournis,

1. Déterminer f'(-1) et f'(2).

La tangente à la courbe \mathscr{C}_f au point d'abscisse 1 a pour équation $y = -2x + \frac{7}{2}$.

- 2. Déterminer f(1) et f'(1).
- 3. Pour chacune des affirmations ci-dessous, dire si elle est vraie ou si elle est fausse en justifiant votre choix.

(a)
$$f'(0) \times f'(3) \leq 0$$

(a)
$$f'(0) \times f'(3) \le 0$$
.
 (b) $f'(-3) \times f'(1) \le 0$.

Partie B : La fonction f est définie pour tout réel x par $f(x) = \frac{18 - 9x}{x^2 + 5}$.

- 1. Montrer que pour tout réel x, $f'(x) = \frac{9(x^2 4x 5)}{(x^2 + 5)^2}$.
- 2. (a) Étudier le signe de f'(x).
 - (b) Donner le tableau de variation de la fonction f.
- 3. Déterminer une équation de la tangente (T) à la courbe \mathscr{C}_f au point d'abscisse (-2).

Exercice 3 – Calculer les dérivées des fonctions suivantes (sans donner de justification concernant l'existence de cette dérivée).

1.
$$a(x) = 8x^3 + 4x^2 - 12x + 5$$

2.
$$b(x) = (2x^2 + x - 2)(3x + 2)$$

3.
$$c(x) = \frac{1}{3x-2}$$

4.
$$d(x) = \frac{2x^2 + x - 2}{3x + 2}$$

5.
$$e(x) = \sqrt{3x^2 - x - 1}$$

6.
$$f(x) = (x^2 + 1) \times \frac{1}{x}$$

$$7. \ \ g(x) = x\sqrt{x} + x$$

$$8. \ h(x) = \left(\frac{x+1}{x-1}\right)$$

9.
$$i(x) = (\sqrt{x} + 1)^2$$

10.
$$i(x) = (2x^2 - 4x + 3)^7$$

Exercice 4 – Étudier les fonctions suivantes.

1.
$$a(x) = x^3 - 3x^2 + x + 1$$

2.
$$b(x) = \frac{x}{x^2 + 3x + 2}$$

3.
$$c(x) = \frac{x^4 + 2x - 3}{x^3 - 1}$$

4. $d(x) = \sqrt{x^2 + 3x - 4}$

4.
$$d(x) = \sqrt{x^2 + 3x - 4}$$

Exercice 5 – Soit f la fonction définie sur \mathbf{R} par $f(x) = \frac{15x + 60}{x^2 + 9}$. On note f' la dérivée de la fonction *f* .

- 1. Calculer f'(x).
- 2. Étudier le signe de f'(x).
- 3. Donner le tableau des variation de *f* .
- 4. Déterminer une équation de la tangente T à la courbe C_f au point d'abscisse -4.

Exercice 6 – La courbe C_f ci-contre représente une fonction f définie et dérivable sur **R**. On note f' la fonction dérivée de la fonction f. On sait que

- la courbe coupe l'axe des abscisses au point A et la tangente à la courbe au point A passe par le point de coordonnées (0; -2),
- la courbe admet au point *B* d'abscisse 1 une tangente parallèle à l'axe des abscisses.
- 1. À partir du graphique et des renseignements fournis, déterminer f'(-1) et f'(1).

2. Une des trois courbes ci-dessous est la représentation graphique de la fonction f' . Déterminer laquelle.

ECT1

Exercice 7 – Soit f la fonction définie sur l'intervalle $\left[-\frac{3}{2};+\infty\right]$ par $f(x)=8x^2-2x-\frac{9}{2x+3}$.

- 1. On note f' la dérivée de la fonction f. Montrer que $f'(x) = \frac{8x(8x^2 + 23x + 15)}{(2x + 3)^2}$.
- 2. Étudier les variations de la fonction f.

Exercice 8 – Soit f la fonction définie sur \mathbf{R} par $f(x) = \frac{x^2 - x + 4}{x^2 + 3}$. On note C_f sa courbe représentative dans le plan muni d'un repère.

- 1. Calculer la dérivée de la fonction f.
- 2. Étudier les variations de *f* .
- 3. Donner une équation de la tangente T à la courbe C_f au point d'abscisse 1.

Exercice 9 – Étudier la convexité des fonctions définies par

1. $f(x) = 6x^5 - 15x^4 + 10x^3 + 1$

3. $h(x) = 2x^3 - 3x^2 - 12x + 4$

2. $g(x) = \frac{x^2}{x+1}$

Exercice 10 – Sur le graphique ci-dessous, on a tracé la courbe représentative \mathscr{C}_f d'une fonction f définie et dérivable sur \mathbf{R} .

On note f' la dérivée de la fonction f et f'' la dérivée seconde de la fonction f. À partir du graphique, déterminer dans chacun des cas, lequel des trois symboles <, = ou > est approprié.

$$f(-6)...0$$
 $f'(-6)...0$ $f(-1)...f(3)$ $f'(-1)...f'(3)$
 $f'(-6)...f'(-1)$ $f'(-3)...0$ $f'(2)...0$ $f'(-7)...f'(3)$
 $f''(-6)...f''(-1)$ $f''(-3)...0$ $f''(2)...0$ $f''(-1)...f''(1)$

Exercice 11 – Soit f la fonction définie pour tout réel x appartenant à l'intervalle $]0; +\infty[$ par

$$f(x) = \frac{2x^2 + x - 1}{x^2}.$$

On note \mathcal{C}_f sa courbe représentative dans le plan muni d'un repère.

- 1. Déterminer les coordonnées des points d'intersection éventuels de la courbe \mathscr{C}_f avec l'axe des abscisses.
- 2. On note f' la dérivée de la fonction f.
 - (a) Montrer que pour tout réel x appartenant à l'intervalle $]0; +\infty[$, $f'(x) = \frac{2-x}{x^3}$.
 - (b) Donner le tableau de variation de la fonction f.
- 3. (a) Étudier la convexité de la fonction f.
 - (b) La courbe représentative de la fonction f a-t-elle un point d'inflexion?

Exercice 12 – Soit f la fonction définie pour tout réel x par $f(x) = -x^3 + 16$, $5x^2 - 30x + 110$. On note f' la dérivée de la fonction f et f'' la dérivée seconde.

- 1. (a) Déterminer f'(x).
 - (b) Étudier les variations de la fonction f.
- 2. (a) Déterminer f''(x).
 - (b) Étudier la convexité de la fonction f.