Machine Learning models - Probabilistic model

Machine Learning models

Machine learning models can be distinguished according to their main intuition:

- Geometric models use intuitions from geometry such as separating (hyper-)planes, linear transformations and distance metrics.
- Probabilistic models view learning as a process of reducing uncertainty.
- Logical models are defined in terms of logical expressions.

Alternatively, they can be characterised by their *modus operandi*:

- Grouping models divide the instance space into segments; in each segment a very simple (e.g., constant) model is learned.
- Grading models learning a single, global model over the instance space.

Things We'd Like to Do

- **# Spam Classification**
 - □ Given an email, predict whether it is spam or not
- **# Medical Diagnosis**
 - □Given a list of symptoms, predict whether a patient has cancer or not
- **#** Weather
 - □ Based on temperature, humidity, etc... predict if it will rain tomorrow

Probabilistic Model

- ➤ Uncertainty & Probability
- ➤Baye's rule
- ➤ Choosing Hypotheses- Maximum a posteriori
- ➤ Maximum Likelihood Baye's concept learning
- ➤ Maximum Likelihood of real valued function

Uncertainty

Cur main tool is the probability theory, which assigns to each sentence numerical degree of belief between 0 and 1

It provides a way of summarizing the uncertainty

Variable

- # Boolean random variables: cavity might be true or false
- # Discrete random variables: weather might be sunny, rainy, cloudy, snow
 - $\triangle P(Weather=sunny)$
 - $\triangle P(Weather=rainy)$
 - $\triangle P(Weather=cloudy)$
 - $\triangle P(Weather=snow)$
- **Continuous random variables: the temperature has continuous values**

Where do probabilities come from?

Frequents:

From experiments: form any finite sample, we can estimate the true fraction and also calculate how accurate our estimation is likely to be

% Subjective:

△ Agent's believe

Objectivist:

True nature of the universe, that the probability up heads with probability 0.5 is a probability of the coin

Contd...

- **#** Before the evidence is obtained; prior probability
 - $\triangle P(a)$ the prior probability that the proposition is true
 - $\triangle P(cavity) = 0.1$
- **X** After the evidence is obtained; posterior probability
 - $\triangle P(a/b)$
 - The probability of a given that all we know is b
 - $\triangle P(cavity/toothache) = 0.8$

Axioms of Probability

Zur Anzeige wird der QuickTime Dekompressor "TIFF (Unkomprimier benötigt.

(Kolmogorov's axioms, first published in German 1933)

 \divideontimes All probabilities are between 0 and 1. For any proposition a $0 \le P(a) \le 1$

$$\Re P(true)=1, P(false)=0$$

#The probability of disjunction is given by

$$P(a \lor b) = P(a) + P(b) - P(a \land b)$$

Contd...

#Product rule

$$P(a \wedge b) = P(a \mid b)P(b)$$

$$P(a \wedge b) = P(b \mid a)P(a)$$

Theorem of total probability

If events A_1, \ldots, A_n are mutually

exclusive with

then

$$\sum_{i=1}^{n} P(A_i) = 1$$

$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$

$$P(B) = \sum_{i=1}^{n} P(B, A_i)$$

Bayes Theorem

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

- $\Re P(h)$ = prior probability of hypothesis h
- $\Re P(D)$ = prior probability of training data D
- $\Re P(h/D)$ = probability of h given D
- $\Re P(D/h) = \text{probability of } D \text{ given } h$

Choosing Hypotheses

#Generally want the most probable hypothesis given the training data

\mathbb{H} Maximum a posteriori hypothesis h_{MAP} :

$$h_{MAP} = \arg\max_{h \in H} P(h|D)$$

Contd...

$$h_{MAP} = \arg \max_{h \in H} P(h|D)$$

$$= \arg \max_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \arg \max_{h \in H} P(D|h)P(h)$$

Contd...

#If assume $P(h_i)=P(h_j)$ for all h_i and h_{ji} then can further simplify, and choose the

Maximum likelihood (ML) hypothesis

$$h_{ML} = \arg\max_{h_i \in H} P(D|h_i)$$

Naïve Bayesian Classification

- \Re If i-th attribute is categorical: $P(d_i|C)$ is estimated as the relative freq of samples having value d_i as i-th attribute in class C
- If i-th attribute is continuous:

 P(d_i|C) is estimated thru a Gaussian density function
- **#Computationally easy in both cases**

Play-tennis example: estimating

 $P(x_i|C)$

Outlook	Temperature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	Р
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	Р
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

$$P(p) = 9/14$$

 $P(n) = 5/14$

outlook	
P(sunny p) = 2/9	P(sunny n) = 3/5
P(overcast p) = 4/9	P(overcast n) = 0
P(rain p) = 3/9	P(rain n) = 2/5
temperature	
P(hot p) = 2/9	P(hot n) = 2/5
P(mild p) = 4/9	P(mild n) = 2/5
$P(\mathbf{cool} \mathbf{p}) = 3/9$	$P(\mathbf{cool} \mathbf{n}) = 1/5$
humidity	
P(high p) = 3/9	P(high n) = 4/5
P(normal p) = 6/9	P(normal n) = 2/5
windy	
P(true p) = 3/9	P(true n) = 3/5
P(false p) = 6/9	P(false n) = 2/5

Naive Bayesian Classifier (II)

Given a training set, we can compute the probabilities

Outlook	Р	N	Humidity	Р	N
sunny	2/9	3/5	high	3/9	4/5
overcast	4/9	0	normal	6/9	1/5
rain	3/9	2/5			
Tempreature			W indy		
hot	2/9	2/5	true	3/9	3/5
mild	4/9	2/5	false	6/9	2/5
cool	3/9	1/5			

Play-tennis example: classifying X

 \Re An unseen sample $X = \langle rain, hot, high, false \rangle$

```
#P(X|p) P(p) =
P(rain|p) P(hot|p) P(high|p) P(false|p) P(p) =
3/9 2/9 3/9 6/9 9/14 = 0.010582
#P(X|n) P(n) =
P(rain|n) P(hot|n) P(high|n) P(false|n) P(n) =
2/5 2/5 4/5 2/5 5/14 = 0.018286
```

Sample X is classified in class n (don't play)

The independence hypothesis...

- # ... makes computation possible
- # ... yields optimal classifiers when satisfied
- # ... but is seldom satisfied in practice, as attributes (variables) are often correlated.
- **X** Attempts to overcome this limitation:
 - □ Bayesian networks, that combine Bayesian reasoning with causal relationships between attributes

Training dataset

Class:

C1:buys_computer='yes' C2:buys_computer='no'

Data sample:

X =
(age<=30,
Income=medium,
Student=yes
Credit_rating=Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3040	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Naïve Bayesian Classifier: Example

 \mathbb{H} Compute $P(X|C_i)$ for each class

```
P(buys_computer=,,yes")=9/14
P(age="<30" | buys_computer="yes") = 2/9=0.222
P(age="<30" | buys_computer="no") = 3/5 = 0.6
P(income="medium" | buys_computer="yes")= 4/9 = 0.444
P(income="medium" | buys_computer="no") = 2/5 = 0.4
P(student="yes" | buys_computer="yes) = 6/9 = 0.667
P(student="yes" | buys_computer="no") = 1/5=0.2
P(credit_rating="fair" | buys_computer="yes")=6/9=0.667
P(credit_rating="fair" | buys_computer="no")=2/5=0.4

X=(age<=30 ,income =medium, student=yes,credit_rating=fair)

P(X|C;):
0.0.667 = 0.044

P(X|buys_computer="no")= 0.6 x 0.4 x 0.2 x 0.4 = 0.019
```

 $P(X|C_i)*P(C_i):$ $P(X|buys_computer="yes")*P(buys_computer="yes")=0.028$ $P(X|buys_computer="no")*P(buys_computer="no")=0.007$

X belongs to class "buys computer=ves"