## PELP1 - wykład 3 Elementy zastępcze

Łukasz Maślikowski

Instytut Systemów Elektronicznych Politechnika Warszawska

10 marca 2021

# Spis treści

- 1 Elementy zastępcze
- 2 Zamiana oporów
- 3 Zamiana źródeł
- 4 Źródła Thévenina i Nortona

### Rezystancyjny element zastępczy

W wielu przypadkach możliwe jest uproszczenie układu przez zamianę jego części (wyizolowanego dwójnika oryginalnego) na dwójnik zastępczy o możliwie prostej strukturze i tych samych właściwościach z punktu widzenia zacisków.

Dwójnik zastępczy musi mieć takie same równania zaciskowe (charakterystyki) u(i) oraz i(u) jak dwójnik oryginalny



### Następstwa stosowania zamiany

- struktura wewnętrzna dwójnika zastępczego jest inna niż oryginalnego
  - nawet jeśli wartości elementów w dwójniku zastępczym są takie same jak w oryginalnym, są to inne elementy (inaczej połączone)
- napięcia i prądy zdefiniowane wewnątrz dwójnika oryginalnego nie mają sensu wewnątrz dwójnika zastępczego
  - wewnątrz dwójnika zastępczego nie istnieją węzły bądź gałęzie między którymi je pierwotnie określono
- dwójnik zastępczy może wewnętrznie rozpraszać inną moc niż dwójnik oryginalny
  - ale suma algebraiczna mocy pobranej i rozproszonej jest taka sama jak w oryginalnym



### Reguly stosowania zamiany

- zamianę należy wykonać między dwoma wybranymi węzłami
  - węzły te muszą istnieć zarówno przed jak i po zamianie
- zamianę należy wykonać tak aby, nie "zgubić" wielkości szukanej w zadaniu
  - chyba, że chwilowa zamiana posłuży obliczeniu wielkości zaciskowej dwójnika, a następnie wrócimy do jego oryginalnej struktury



### Reguly stosowania zamiany

- zamiana która obejmuje wielkość sterującą źródłem sterowanym jest możliwa wtedy, gdy obejmuje ona także to źródło
- zamiana nie może doprowadzić do "zgubienia" wielkości sterującej źródłem, które pozostaje poza zamienianym dwójnikiem





# Opór zastępczy bezźródłowego dwójnika

Bezźródłowy liniowy dwójnik rezystancyjny możemy zastąpić równoważnym oporem zastępczym  $R_Z$ .

- do zacisków dwójnika podłączmy zewnętrzne źródło napięcia  $u_x$ , które wywołuje przepływ prądu zaciskowego  $i_x$
- lacksquare stosunek tego napięcia do prądu to szukany opór zastępczy  $R_Z=rac{u_x}{i_x}$
- lacksquare odwrotność  $R_Z$  to przewodność zastępcza  $G_Z=rac{i_x}{u_x}$



$$\begin{array}{c}
A \\
R_z = \frac{u_x}{i_x}
\end{array}$$

## Połączenie szeregowe i równoległe oporów

Opory połączone szeregowo można zastąpić oporem zastępczym

$$R_Z = \sum R_n$$
  $G_Z = rac{G_1 G_2}{G_1 + G_2}$  (dla dwóch oporów)

Opory połączone równolegle można zastąpić przewodnością zastępczą

$$G_Z = \sum G_n$$
  $R_Z = rac{R_1 R_2}{R_1 + R_2}$  (dla dwóch oporów)





### Przekształcenie $Y - \Delta$

Trójnik w konfiguracji gwiazdy można zamienić na równoważny zaciskowo trójnik w konfiguracji trójkąta (i w drugą stronę)

### $Y{ ightarrow}\Delta$

$$R_{xy} = \frac{R_x R_y + R_y R_z + R_z R_x}{R_z}$$



### $\Delta \rightarrow Y$

$$R_x = \frac{R_{xy}R_{zx}}{R_{xy} + R_{yz} + R_{zx}}$$



## Opór zastępczy dwójnika ze źródłem sterowanym

- układ bez źródeł niezależnych ale ze źródłami sterowanymi jest elementem bezźródłowym
- do wyznaczenia oporu zastępczego konieczne jest podłączenie zewnętrznego źródła napięcia  $u_x$ , które wywoła przepływ prądu  $i_x$
- należy ułożyć równania Kirchhoffa względem tych dwóch parametrów i z rozwiązania układu wyznaczyć stosunek  $R_Z=rac{u_x}{i_x}$



### Łączenie źródeł idealnych tego samego rodzaju

Idealne źródła napięciowe połączone szeregowo można zastąpić i.ź.n. o wartości:

$$E_Z = \sum E_n$$
 (z uwzględnieniem zwrotów)

Idealne źródła prądowe połączone równolegle można zastąpić i.ź.p. o wartości:

$$J_Z = \sum J_n$$
 (z uwzględnieniem zwrotów)





### Łączenie źródeł idealnych z innymi elementami

- Idealne źródło napięciowe połączone równolegle z innym elementem można zamienić na to samo źródło.
  - o ile nie jest to inne i.ź.n.
- Idealne źródło prądowe połączone szeregowo z innym elementem można zamienić na to samo źródło.
  - o ile nie jest to inne i.ź.p.





### Zamiana źródeł rzeczywistych

Rzeczywiste źródło napięciowe można zamienić na równoważne zaciskowo rzeczywiste źródło prądowe (i w drugą stronę).

- Źródło prądowe równoważne napięciowemu składa się z
  - ullet idealnego źródła prądowego  $J=rac{E}{R_w}.$
  - $\bullet$  równoległej do niego przewodności  $G_w=rac{1}{R_w}.$
- Źródło napięciowe równoważne prądowemu składa się z
  - idealnego źródła napięciowego  $E = JR_w$ .
  - szeregowego z nim oporu  $R_w = \frac{1}{G_w}$ .



#### Twierdzenie Thévenina

Dowolny rezystancyjny dwójnik liniowy (inny niż i.ź.p.) o zaciskach  $A\!-\!B$  można zastąpić rzeczywistym źródłem napięciowym złożonym z szeregowo połączonych:

- idealnego źródła  $E_T$  o wartości równej napięciu na rozwartych zaciskach A-B oryginalnego dwójnika
- lacktriangle oporu  $R_W$  o wartości równej oporowi zastępczemu tego dwójnika po wyłączeniu wszystkich źródeł niezależnych

Ł. Maślikowski (ISE) PELP1 - wykład 3 14 / 18

#### Twierdzenie Nortona

Dowolny rezystancyjny dwójnik liniowy (inny niż i.ź.n.) o zaciskach  $A\!-\!B$  można zastąpić rzeczywistym źródłem prądowym złożonym z równolegle połączonych:

- lacktriangle idealnego źródła  $J_N$  o wartości równej prądowi między zwartymi zaciskami A-B oryginalnego dwójnika
- lacktriangle przewodności  $G_W$  o wartości równej przewodności zastępczej tego dwójnika po wyłączeniu wszystkich źródeł niezależnych

### Uwagi praktyczne

- do wyznaczenia źródła zastępczego wystarczy obliczenie z definicji dwóch z trzech parametrów:  $E_T$ ,  $J_N$ ,  $R_W$ . Zamiana źródła Thévenina na źródło Nortona jest bardzo prosta.
  - ullet jeśli do zacisku dochodzi opór szeregowy, korzystnie jest wyznaczać  $E_T$
  - jeśli miedzy zaciskami mamy opór równoległy, korzystnie jest wyznaczać  ${\cal J}_N$
  - jeśli w układzie występuje wiele źródeł niezależnych, korzystnie jest wyznaczać  ${\cal R}_W$
- do wyznaczania każdego z tych trzech parametrów wykorzystujemy układ w innym stanie, więc w każdym przypadku mamy osobny schemat i inne wartości napięć i prądów
- jeśli wyznaczamy  $R_W$  jako iloraz  $E_T$  i  $J_N$  to wielkości te muszą być zastrzałkowane przeciwnie do siebie w odniesieniu do zacisków  $\mathrm{A-B}$ 
  - oczywiście każda na osobnym schemacie

Ł. Maślikowski (ISE) PELP1 - wykład 3 16 / 18

# Wyznaczanie parametrów $E_T$ i $J_N$ z definicji

- Wyznaczanie  $E_T$  z definicji
  - rysujemy zastępowany dwójnik z rozwartymi zaciskami A-B
  - ullet między nimi zaznaczmy strzałkę napięcia  $E_T$
  - ullet prąd wyjściowy z dwójnika  $A{-}B$  jest zerowy
  - ullet stosowną metodą wyznaczmy wartość  $E_T$
- Wyznaczanie  $J_N$  z definicji
  - ullet rysujemy zastępowany dwójnik ze zwartymi zaciskami A-B
  - ullet między nimi zaznaczmy prąd  $J_N$
  - napięcie między zaciskami A-B dwójnika jest zerowe
  - ullet stosowną metodą wyznaczmy wartość  $J_N$

# Wyznaczanie parametru $R_W$ z definicji

- rysujemy zastępowany dwójnik z wyłączonymi źródłami niezależnymi
  - źródła sterowane zostają
- lacktriangle przykładamy z zewnątrz do zacisków źródło napięcia  $u_x$
- lacksquare wymusza ono prąd zaciskowy  $i_x$  o zwrocie zgodnym z napięciem  $u_x$
- lacktriangle za pomocą równań Kirchhoffa wyznaczamy stosunek  $u_x$  do  $i_x$ 
  - ullet jeśli występują same opory,  $R_W$  można wyznaczyć bez zewnętrznego źródła, odpowiednio przekształcając i łącząc opory składowe
  - ullet jeśli występuje źródło sterowane, należy wykorzystać zewnętrzne pobudzenie  $u_x$  oraz prąd  $i_x$  i ułożyć równania Kirchhoffa