Дифференцируемый алгоритм поиска архитектуры модели с контролем её сложности

Константин Дмитриевич Яковлев

Московский физико-технический институт

Курс: Автоматизация научных исследований (практика, В.В. Стрижов)/Группа 874

Эксперт: В.В. Стрижов

Консультант: О.С. Гребенькова, О.Ю. Бахтеев

Цель исследования

Цель

Предложить метод поиска архитектуры модели глубокого обучения с контролем сложности модели.

Проблема

Семейство моделей глубокого обучения имеет избытычное число параметров. Использование моделей, работающих с дискретной архитектурой, является вычислительно сложной задачей.

Метод решения

В основе метода лежит дифференцируемый алгоритм поиска архитектуры (DARTS). Гиперсеть выступает в качестве функции релаксации. Гиперсеть – это модель, генерирующая параметры другой модели.

DARTS и линейная гиперсеть

Рис.: Структура ячейки

- ► Значения в узлах: $x^{(j)} = \sum_{i < i} o^{(i,j)}(x^{(i)})$
- ightharpoonup Смешанная операция: $\hat{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} lpha_o^{(i,j)} o(x)$
- ightharpoonup Линейная гиперсеть: $\mathsf{G}_{\mathsf{linear}}(\lambda) = \lambda \mathsf{b}_1 + \mathsf{b}_2$ $\alpha = \mathsf{G}_{\mathsf{linear}}(\lambda)$

Основная литература

- Hanxiao Liu and Karen Simonyan and Yiming Yang. *DARTS:* Differentiable Architecture Search. CoRR, 2018.
- David Ha and Andrew M. Dai and Quoc V. Le. *HyperNetworks*. CoRR, 2016.

Постановка задачи поиска архитектуры ячейки

- ig> **Узлы**: $\{x^{(i)}\}_{i=1}^N$ узлы ориентированного ациклического графа.
- Значение в текущем узле:

$$x^{(j)} = \sum_{i < j} o^{(i,j)}(x^{(i)}) \ o^{(i,j)} \in \mathcal{O}$$

Смешанная операция:

$$\hat{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \alpha_o^{(i,j)} o(x)$$

Вектор параметров архитектуры:

$$\alpha = [\alpha^{(i,j)}]$$

Линейная гиперсеть

Гиперсеть

$$G: \Lambda \times \mathbb{U} \to \mathbb{A}$$

 \mathbb{A} – пространство параметров архитектуры, \mathbb{U} – множество параметров гиперсети.

Вектор параметров архитектуры определяется гиперсетью:

$$\alpha = \lambda b_1 + b_2$$

Задача оптимизации:

$$\min_{\alpha} \mathcal{L}_{\mathsf{val}}(\mathsf{w}^*(\alpha), \alpha),$$

$$s.t. \quad w^* = \arg\min_{w} \mathcal{L}_{train}(w, \alpha)$$

Решение

Алгоритм DARTS:

Algorithm 1 DARTS - Differentiable Architecture Search

- 1: Для каждого узла создадим смешанную операцию $\hat{o}^{(i,j)}$, параметризованную $\alpha^{(i,j)}$
- 2: while алгоритм не сошелся do
- 3: обновить lpha: $\nabla_{lpha} \mathcal{L}_{\mathsf{val}} (\mathsf{w} \xi \nabla_{\mathsf{w}} \mathcal{L}_{\mathsf{train}} (\mathsf{w}, lpha), lpha)$
- 4: обновить веса w: $\nabla_{\mathsf{w}} \mathcal{L}_{\mathsf{train}}(\mathsf{w}, \alpha)$
- 5: end while
- 6: получить окончательную архитектуру из полученного lpha
- ▶ Получение дискретной архитектуры:

$$o^{(i,j)} = \arg\max_{o \in \mathcal{O}} \alpha_o^{(i,j)}$$

Вычислительный эксперимент

Цель

Получение зависимости качества работы предложенного метода от параметра гиперсети $\lambda \in \{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}$

Критерий качества

$$Precision = \frac{TP}{TP + FP}$$

Результаты вычислительного эксперимента

Рис.: Зависимость качества модели от числа прошедших эпох для разных параметров λ гиперсети.

Для $\lambda=0.1$ качество модели заметно хуже, чем для других значениях λ . Также для каждой эпохи и для каждого $\lambda\in\{10^{-4},10^{-3},10^{-2}\}$ качество модели практически не меняется.

Анализ ошибки

Модель	Precision, %			
	эпоха 30	эпоха 50	эпоха 70	эпоха 100
Hypernet, $\lambda = 0.1$	96.3500	95.4800	94.1200	90.6333
Hypernet, $\lambda=0.01$	95.8900	96.7167	91.0633	95.3133
Hypernet, $\lambda = 0.001$	95.9133	96.6200	90.6400	95.6400
Hypernet, $\lambda = 0.0001$	95.9733	96.5367	90.4067	95.7533
DARTS, $\lambda = 0.1$	86.6000	87.3967	89.3433	89.5067
DARTS, $\lambda = 0.01$	84.1333	90.6333	91.9100	92.7333
DARTS, $\lambda = 0.001$	97.6533	97.5800	98.0833	97.9467
DARTS, $\lambda = 0.0001$	98.5800	98.8867	98.9467	99.2400

Таблица: Результаты базового и основного экспериментов. Приведены значения качества моделей на валидации.

Заключение

Перечислите ваши результаты

- Предложен метод, позволяющий контролировать сложность модели в процессе поиска архитектуры.
- Метод обладает тем свойством, что изменение сложности итоговой модели происходит заменой параметра λ гиперсети без дополнительного обучения.
- Также результаты показывают, что данный метод сопоставим по качеству на валидационной выборке с DARTS.