Linear Regression

Portland State University
USP 634 Data Analysis I
Spring 2017

How Correlation Happens

X causes Y

Y causes X

Z causes X and Y

hidden variable causes X and Y

random chance!

Linear Regression and Regression Analysis

- Used to estimate a relationship between a numeric dependent variable & one or more independent variables (numeric or categorical).
- Used to:
 - Build theory: tests hypotheses; controls for other independent variables; rule out spurious relationships
 - Forecast: Can predict outcomes using estimated equations

Read regression output

```
> summary(m <- lm(mpg~wt, data=mtcars))</pre>
Call:
lm(formula = mpg ~ wt, data = mtcars)
Residuals:
   Min 1Q Median 3Q Max
-4.5432 -2.3647 -0.1252 1.4096 6.8727
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) <u>37.2851</u> 1.8776 19.858 < 2e-16 ***
            -5.3445 0.5591 -9.559 1.29e-10 ***
wt
                                        Hypothesis Testing H_0: b = 0
Signif. codes: 0 '***' 0.001 '**' 0.01
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
                                       Hypothesis Testing H_1: r^2 = 0
```

What percent of the variation in mpg can be explained by the variation in wt?

```
Residual standard error: 3.046 on 30 degrees of freedom Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446 F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10
```

Regression line does an 75% better job of predicting mpg than the mean value of mpg

> cor(mtcars\$mpg, mtcars\$wt)
-0.868

Pearson's r for these 2 variable is -0.867, and its squared value, coefficient of determination, is -0.868^2 = 0.753

Two Main Significance Tests in a Linear Regression Model

1. F test of the equation (H_o : $r^2 = 0$) using ANOVA F-test

F statistic =
$$\frac{\sum (\hat{Y}_i - \bar{Y})^2 / df1}{\sum (Y_i - \hat{Y}_i)^2 / df2} = \frac{R^2 (N-2)}{1 - R^2}$$

2. t test of coefficient: H_o : b = 0t statistics = $\frac{b-0}{SE(b)}$

In a bivariate regression (regression with one independent variable) analysis, they're equivalent.

Equivalency between Regression and ANOVA

```
> summary(m <- lm(mpg~vs, data=mtcars))</pre>
Call:
lm(formula = mpg ~ vs, data = mtcars)
Residuals:
  Min
       10 Median
                        30
                              Max
-6.757 -3.082 -1.267 2.828 9.383
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                         1.080 15.390 8.85e-16 ***
(Intercept)
             16.617
              7.940
                         1.632 4.864 3.42e-05 ***
VS
Signif. codes: 0 \*** 0.001 \** 0.01 \*' 0.05 \'.'
0.1 ' ' 1
Residual standard error: 4.581 on 30 degrees of
freedom
Multiple R-squared: 0.4409,
                                 Adjusted R-
squared: 0.4223
F-statistic: 23.66 on 1 and 30 DF, p-value: 3.416e-
0.5
```

"Dummy" variables

- A binomial variable taking values 1 and 0
- The coefficient indicates the effect in being in one category (assigned value "1") in comparison to the effect of being in another category (assigned value "0")
- You can create binomial variables from ordinal variables or from nominal/categorical variables

Regular or "fixed effect" dummy variables

- $Y = b_0 + b_1 X1$ - Y: mpg - X_1 : wt
- Add X₂, which is a dummy variable equal to 1 if a cars has V engine
- $Y = b_0 + b_1 X_1 + b_2 X_2$


```
> summary(lm(mpg~wt+vs, data=mtcars))
Call:
lm(formula = mpg ~ wt + vs, data = mtcars)
Residuals:
   Min 10 Median 30 Max
-3.7071 -2.4415 -0.3129 1.4319 6.0156
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 33.0042 2.3554 14.012 1.92e-14 ***
          -4.4428 0.6134 -7.243 5.63e-08 ***
wt
           3.1544 1.1907 2.649 0.0129 *
VS
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 2.78 on 29 degrees of freedom
Multiple R-squared: 0.801, Adjusted R-squared: 0.7873
F-statistic: 58.36 on 2 and 29 DF, p-value: 6.818e-11
```

Categorical Variable where k categories > 2 → Multiple Dummies

- Create k-1 dummies (where k = # categories)
- gear (k=3): *3; 4; 5*
- **2 Dummies**: G4 = 4 gears (0=no; 1=yes)

$$G5 = 5 \text{ gears } (0=\text{no}; 1=\text{yes})$$

Note: 3 gear is suppressed (as the reference group)

$$Y = b_0 + b_1 X_1 + b_2 G4 + b_3 G5$$
 $Y = mpg; X_1 = wt;$ $G4 = 4 \text{ gears}; G5 = 5 \text{ gears}$

If 3 gear:
$$\hat{Y} = b_0 + b_1 X_1$$

If G4=1: $\hat{Y} = (b_0 + b_2) + b_1 X_1$
If G5=1: $\hat{Y} = (b_0 + b_3) + b_1 X_1$

```
> summary(lm(mpg~wt+as.factor(gear), data=mtcars))
Call:
lm(formula = mpg ~ wt + as.factor(gear), data = mtcars)
Residuals:
  Min 10 Median 30 Max
-3.517 -2.358 -0.355 1.850 5.821
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 35.2156 2.8690 12.274 8.72e-13 ***
               -4.9090 0.7112 -6.902 1.68e-07 ***
wt
as.factor(gear) 4 2.1631 1.4485 1.493 0.147
as.factor(gear) 5 -0.9121 1.7519 -0.521 0.607
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 2.915 on 28 degrees of freedom
Multiple R-squared: 0.7887, Adjusted R-squared: 0.766
F-statistic: 34.83 on 3 and 28 DF, p-value: 1.375e-09
```

Interactive dummy variables

- Take a dummy variable and multiply it by some other variable (sometimes a continuous variable, sometimes another dummy variable) to create a new variable;
- The "interaction" is the marginal difference in slope or effect for the subgroup represented by dummy value "1"

Interactive dummy variables

- Perhaps the effect of wt on mpg is different in V engine cars vs S engine cars
- Create new variable
 - $X_2 * X_1$ (let's call that X_3)
- $Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3$


```
> summary(lm(mpg~wt*vs, data=mtcars))
Call:
lm(formula = mpg ~ wt * vs, data = mtcars)
Residuals:
   Min 10 Median 30 Max
-3.9950 -1.7881 -0.3423 1.2935 5.2061
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 29.5314 2.6221 11.263 6.55e-12 ***
         -3.5013 0.6915 -5.063 2.33e-05 ***
wt
         11.7667 3.7638 3.126 0.0041 **
VS
wt:vs -2.9097 1.2157 -2.393 0.0236 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 2.578 on 28 degrees of freedom
Multiple R-squared: 0.8348, Adjusted R-squared: 0.8171
F-statistic: 47.16 on 3 and 28 DF, p-value: 4.497e-11
```

"Art & Science" of Model Building

- Model Building: What variables to include & in what form; match, refine, modify, build theories.
 - High explanatory power (high R²)
 - Adhere to principle of parsimony
 - Pass "reasonableness" test

Steps of Model Building

- 1) Formulate Research Question: Draw path diagram representing theory
- 2) Plot scatterplots (check for non-linearity; violation of assumptions); generate correlation matrices.
- 3) Decide variables to include into model: Exploratory technique: Stepwise regression
- 4) Diagnostics: generate residual plots of final model
- 5) Conduct "reasonableness" test (signs intuitive?)
- 6) How do results match with initial theories/ postulates? Revise theories?
- 7) What are planning/policy implications of study findings? Forecasts? Sensitivity Tests?

Path Diagram

Hedonic Price Model: Impact of Light Rail on

Impacts of MAX stations on property value

Variable

Coefficient

T-score

FIGURE 2 The study area.

 $[\]frac{1}{2}$ 1 meter = 3.28 feet.

¹ sq. meter = 10.76 sq. feet.
* Significant at the 0.05 level (two-tailed test).
** Significant at the .005 level (two-tailed test).

Diagnose Ordinary Least Squares (OLS) Estimate

- OLS is the linear regression procedure for estimating a and b (aka α and β)
- OLS produces **b**est (efficient) linear **u**nbiased **e**stimates (BLUE) of a and b under the following assumptions of the error term (residual, $e_i = Y_i \hat{Y}_i$):
 - Equal variance (shape)
 - Uncorrelated to predicted values and ind. variable
 - Normally distributed

Diagnostic Plots

- Used as visual diagnostics to examine whether error term assumptions are met
 - Residual Plots:
 - e_i versus \hat{Y}_i
 - e_i versus X_i
 - To examine residuals, take out measurement units by standardizing
 - Normal Q-Q plot

Residual plot

Want a Random Pattern: Suggests error term assumptions are met

Regression Standardized Predicted Value

Suggests violation of assumption of Equal Error Variance (homoscedasticity)

Problem: heteroscedasticity...

→ use alternative estimation approach

Identifies Potential Outliers

Standardized Residuals vs Fitted Values

24

Sign of an under-specified model: needs multiple regression

Fitted Value

Residual Plot

Dependent Variable: Wage in \$ per hour

Regression Standardized Predicted Value

Normal Quantile-Quantile Plot

Beta Weight (Coefficient)

 Regression coefficients when variables are standardized

$$\hat{Z}_{Y} = a + b_{1} * Z_{X1} + b_{2} * Z_{X2}$$

 b_1^* & b_2^* are beta weights (sometimes also notated β_1 & β_2). They reflect the relative strength of independent variables (X1 & X2) in predicting the dependent variable (Y). If b_1^* is 3 times larger (in absolute terms) than b_2^* , then can say X1 has 3 times the explanatory power of X2.

Can also compute as:

$$b_1^* = b_1(S_{X1}/S_Y)$$
 for $\hat{Y} = b_0 + b_1X_1 + b_2X_2$

Table 6. Regression model predicting vehicle miles of travel, with and without neighborhood walkability index (N = 5,710).

Independent variables	Unstandardized coefficients		Standardized coefficients				
	В	SE	Beta	t	Sig.	Partial corr.	Variance explained (%)
Constant	.988	.029		33.621	.000		
Gender	043	.011	050	-3.985	.000	050	0.25
Education	.057	.003	.253	19.787	.000	.248	6.13
Household income	.018	.003	.072	5.327	.000	.067	0.44
Vehicles per household	.022	.006	.054	3.906	.000	.049	0.24
Miles to nearest bus stop	.029	.009	.045	3.164	.002	.040	
Walkability index	019	.002	 157	-10.740	.000	134	1.81

Source: Lawrence D. Frank, James F. Sallis, Terry L. Conway, James E. Chapman, Brian E. Saelens & William Bachman (2006): Many Pathways from Land Use to Health: Associations between Neighborhood Walkability and Active Transportation, Body Mass Index, and Air Quality, Journal of the American Planning Association, 72:1, 75-87