Nodal Domains and Diffusion Processes

Jacob Denson

University of Wisconsin Madison

October 5, 2022

• Georgiev, Mukherjee, *Nodal Geometry, Heat Diffusion,* and Brownian Motion, Anal. PDE. **12** (2017), 133-148.

- Georgiev, Mukherjee, Nodal Geometry, Heat Diffusion, and Brownian Motion, Anal. PDE. 12 (2017), 133-148.
- Steinerberger, Lower Bounds on Nodal Sets of Eigenfunctions via the Heat Flow, Comm. Partial Differential Equations. 39 (2014), 2240-2261.

- Georgiev, Mukherjee, Nodal Geometry, Heat Diffusion, and Brownian Motion, Anal. PDE. 12 (2017), 133-148.
- Steinerberger, Lower Bounds on Nodal Sets of Eigenfunctions via the Heat Flow, Comm. Partial Differential Equations. 39 (2014), 2240-2261.
- Øksendal, Stochastic Differential Equations, Springer, 2003.
- Chung, Green, Brown, and Probability and Brownian Motion, World Scientific Publishing Company, 2002.

Nodal Domains

Goal

Study 'asymptotic geometry' of D_{λ} as $\lambda \to \infty$.

Nodal Domains

Goal

Study 'asymptotic geometry' of D_{λ} as $\lambda \to \infty$.

Credit: Yuri Skiba

Nodal Domains

Credit: Alex Barnett

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

ullet Consider the radius $1/\lambda$ tubular neighborhood

$$T_{1/\lambda}\Sigma = \bigcup_{x \in \Sigma} \{ v \in (T_x\Sigma)^{\perp} : |v|_g \le 1/\lambda \}.$$

The submanifold Σ is 'good' if the geodesic map $T_{1/\lambda}\Sigma \to N(\Sigma, 1/\lambda)$ is an embedding.

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

ullet Consider the radius $1/\lambda$ tubular neighborhood

$$T_{1/\lambda}\Sigma = \bigcup_{x \in \Sigma} \{ v \in (T_x \Sigma)^{\perp} : |v|_g \le 1/\lambda \}.$$

The submanifold Σ is 'good' if the geodesic map $T_{1/\lambda}\Sigma \to N(\Sigma, 1/\lambda)$ is an embedding.

• Local condition: All principal curvatures of Σ are $\lesssim \lambda$.

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

ullet Consider the radius $1/\lambda$ tubular neighborhood

$$T_{1/\lambda}\Sigma = \bigcup_{x \in \Sigma} \{ v \in (T_x \Sigma)^{\perp} : |v|_g \le 1/\lambda \}.$$

The submanifold Σ is 'good' if the geodesic map $T_{1/\lambda}\Sigma \to N(\Sigma, 1/\lambda)$ is an embedding.

- Local condition: All principal curvatures of Σ are $\lesssim \lambda$.
- But no cheating globally!

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

• There is $C_M > 0$ such that $D_{\lambda} \subset N(Z_{\lambda}, C_M/\lambda)$, contrasting this result.

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

- There is $C_M > 0$ such that $D_{\lambda} \subset N(Z_{\lambda}, C_M/\lambda)$, contrasting this result.
- Proof Heuristic: Elliptic methods tend to give $O(1/\lambda)$ localized results. We study stochastic diffusions, which provide cool tools for analyzing eigenfunctions from an elliptic perspective!

• What would an analogous result look like on \mathbb{R}^d ?

- What would an analogous result look like on \mathbb{R}^d ?
- **Theorem**: Let D_{λ} be a nodal domain in \mathbb{R}^d . Then there is $c_d > 0$ such that if Σ is a finite union of $O(1/\lambda)$ -separated k dimensional planes, then D_{λ} is not contained in $N(\Sigma, c_d/\lambda)$.

- What would an analogous result look like on \mathbb{R}^d ?
- **Theorem**: Let D_{λ} be a nodal domain in \mathbb{R}^d . Then there is $c_d > 0$ such that if Σ is a finite union of $O(1/\lambda)$ -separated k dimensional planes, then D_{λ} is not contained in $N(\Sigma, c_d/\lambda)$.
- Stronger Result: D_{λ} should contain a ball of radius $O(1/\lambda)$ by the uncertainty principle.

- What would an analogous result look like on \mathbb{R}^d ?
- **Theorem**: Let D_{λ} be a nodal domain in \mathbb{R}^d . Then there is $c_d > 0$ such that if Σ is a finite union of $O(1/\lambda)$ -separated k dimensional planes, then D_{λ} is not contained in $N(\Sigma, c_d/\lambda)$.
- Stronger Result: D_{λ} should contain a ball of radius $O(1/\lambda)$ by the uncertainty principle.
- Version on Manifolds: Paper also proves that D_{λ} contains 'a large percentage' of a ball of radius $O(1/\lambda)$ using similar techniques.

- What would an analogous result look like on \mathbb{R}^d ?
- **Theorem**: Let D_{λ} be a nodal domain in \mathbb{R}^d . Then there is $c_d > 0$ such that if Σ is a finite union of $O(1/\lambda)$ -separated k dimensional planes, then D_{λ} is not contained in $N(\Sigma, c_d/\lambda)$.
- Stronger Result: D_{λ} should contain a ball of radius $O(1/\lambda)$ by the uncertainty principle.
- Version on Manifolds: Paper also proves that D_{λ} contains 'a large percentage' of a ball of radius $O(1/\lambda)$ using similar techniques.
- Related Methods: D_{λ} satisfies an 'interior cone condition' with angle $O(1/\lambda)$.

• Three ways to view continuous stochastic processes:

- Three ways to view continuous stochastic processes:
 - As Borel-measurable functions

$$X:\Omega\to C([0,\infty),M).$$

- Three ways to view continuous stochastic processes:
 - As Borel-measurable functions

$$X:\Omega\to C([0,\infty),M).$$

As a family of correlated random variables

$${X_t:\Omega\to M:t\in[0,\infty)}.$$

- Three ways to view continuous stochastic processes:
 - As Borel-measurable functions

$$X:\Omega\to C([0,\infty),M).$$

As a family of correlated random variables

$${X_t:\Omega\to M:t\in[0,\infty)}.$$

 As a law predicting future behaviour from present behaviour, i.e. by defining quantities such as

$$\mathbb{E}^{x}[f(X)] = \mathbb{E}[f(X)|X_0 = x].$$

Brownian Motion on \mathbb{R}^d

• Brownian motion is a stochastic process $\{B_t\}$ such that:

Brownian Motion on \mathbb{R}^d

- Brownian motion is a stochastic process $\{B_t\}$ such that:
 - For any I = [t, s], given $B_t = x$, the random variable $\Delta_I B = B_s B_t$ is normally distributed with mean x and variance s t.

Brownian Motion on \mathbb{R}^d

- Brownian motion is a stochastic process $\{B_t\}$ such that:
 - For any I = [t, s], given $B_t = x$, the random variable $\Delta_I B = B_s B_t$ is normally distributed with mean x and variance s t.
 - For any family of disjoint intervals $I_1, \ldots, I_N \subset [0, \infty)$, with $I_k = [t_k, s_k]$, the random variables $\Delta_{I_k} B$ are independent from one another.

 An Itô Diffusion is like Brownian Motion, but diffusion is not radially symmetric.

- An Itô Diffusion is like Brownian Motion, but diffusion is not radially symmetric.
- For each $x \in \mathbb{R}^d$, let A(x) be a $d \times d$ positive semidefinite matrix. Then we have an Itô diffusion $\{X_t\}$ given in law by the 'Stochastic differential equation' dX = A(X)dB.

- An Itô Diffusion is like Brownian Motion, but diffusion is not radially symmetric.
- For each $x \in \mathbb{R}^d$, let A(x) be a $d \times d$ positive semidefinite matrix. Then we have an Itô diffusion $\{X_t\}$ given in law by the 'Stochastic differential equation' dX = A(X)dB.
- For practical purposes, we have

$$X_{t+\delta} - X_t \approx A(X_t)[B_{t+\delta} - B_t]$$

where the difference between the LHS and RHS is a random variable with mean $o(\delta)$, and variance $O(\delta)$.

- An Itô Diffusion is like Brownian Motion, but diffusion is not radially symmetric.
- For each $x \in \mathbb{R}^d$, let A(x) be a $d \times d$ positive semidefinite matrix. Then we have an Itô diffusion $\{X_t\}$ given in law by the 'Stochastic differential equation' dX = A(X)dB.
- For practical purposes, we have

$$X_{t+\delta} - X_t \approx A(X_t)[B_{t+\delta} - B_t]$$

where the difference between the LHS and RHS is a random variable with mean $o(\delta)$, and variance $O(\delta)$.

• Diffuses locally near x faster in directions where A(x) has large eigenvalues.

 Can define Itô diffusions on compact Riemannian manifolds M given a section A : M → Hom(TM) of positive definite matrices.

- Can define Itô diffusions on compact Riemannian manifolds M given a section A : M → Hom(TM) of positive definite matrices.
- We can define Brownian motion on a Riemannian manifold such that Brownian motion diffuses at a unit speed along geodesics.

Credit: Ma, Matveev, Pavlyukevich

• For any diffusion X, we can associate a semielliptic operator L, the generator of X, such that for $f \in C^{\infty}(M)$,

$$Lf(x) = \partial_t \{\mathbb{E}^x[f(X_t)]\}|_{t=0} = \lim_{t \to 0^+} \frac{\mathbb{E}^x[f(X_t)] - f(x)}{t}.$$

• For any diffusion X, we can associate a semielliptic operator L, the *generator* of X, such that for $f \in C^{\infty}(M)$,

$$Lf(x) = \partial_t \{ \mathbb{E}^x [f(X_t)] \} |_{t=0} = \lim_{t \to 0^+} \frac{\mathbb{E}^x [f(X_t)] - f(x)}{t}.$$

Second order because paths of X are 'half differentiable'.

• For any diffusion X, we can associate a semielliptic operator L, the *generator* of X, such that for $f \in C^{\infty}(M)$,

$$Lf(x) = \partial_t \{ \mathbb{E}^x [f(X_t)] \} |_{t=0} = \lim_{t \to 0^+} \frac{\mathbb{E}^x [f(X_t)] - f(x)}{t}.$$

- Second order because paths of X are 'half differentiable'.
- For Brownian motion (on \mathbb{R}^d or a manifold M), $L = \Delta/2$.

• For any diffusion X, we can associate a semielliptic operator L, the *generator* of X, such that for $f \in C^{\infty}(M)$,

$$Lf(x) = \partial_t \{\mathbb{E}^x[f(X_t)]\}|_{t=0} = \lim_{t\to 0^+} \frac{\mathbb{E}^x[f(X_t)] - f(x)}{t}.$$

- Second order because paths of X are 'half differentiable'.
- For Brownian motion (on \mathbb{R}^d or a manifold M), $L = \Delta/2$.
- 'Morally' apply the Fundamental Theorem of Calculus to get Dynkin's Formula

$$\mathbb{E}^{\times}[f(X_T)] = f(x) + \mathbb{E}^{\times}\left[\int_0^T (Lf)(X_s) ds\right].$$

• In Dynkin's formula, T can be a 'stopping time', i.e. any $[0,\infty)$ valued function of X which doesn't 'predict the future', i.e. if T stops at a time t, it must only stop because of the properties of X on [0,T], and not behaviour on (T,∞) .

- In Dynkin's formula, T can be a 'stopping time', i.e. any $[0,\infty)$ valued function of X which doesn't 'predict the future', i.e. if T stops at a time t, it must only stop because of the properties of X on [0,T], and not behaviour on (T,∞) .
- ullet Given an open, bounded set U, let

$$T_U = \inf\{t : X_t \not\in U\}$$

be the escape time of U.

- In Dynkin's formula, T can be a 'stopping time', i.e. any $[0,\infty)$ valued function of X which doesn't 'predict the future', i.e. if T stops at a time t, it must only stop because of the properties of X on [0,T], and not behaviour on (T,∞) .
- ullet Given an open, bounded set U, let

$$T_U = \inf\{t : X_t \not\in U\}$$

be the *escape time* of *U*.

• If B is Brownian motion on \mathbb{R}^d , and U is the escape time of a ball of radius $R^{1/2}$ centered at x, $\mathbb{E}^x[T_U] = R/n$.

- In Dynkin's formula, T can be a 'stopping time', i.e. any $[0,\infty)$ valued function of X which doesn't 'predict the future', i.e. if T stops at a time t, it must only stop because of the properties of X on [0,T], and not behaviour on (T,∞) .
- ullet Given an open, bounded set U, let

$$T_U = \inf\{t : X_t \not\in U\}$$

be the *escape time* of *U*.

- If B is Brownian motion on \mathbb{R}^d , and U is the escape time of a ball of radius $R^{1/2}$ centered at x, $\mathbb{E}^x[T_U] = R/n$.
- If B is Brownian motion on M, escape time will be slower if volume expands (negative curvature) and faster if volume contracts (positive curvature). This is irrelevant for the values $R = O(1/\lambda)$ that we care about.

• Reverses Dynkin's Formula: Solves PDEs via Diffusions.

- Reverses Dynkin's Formula: Solves PDEs via Diffusions.
- Physically Intuitive Situations:

- Reverses Dynkin's Formula: Solves PDEs via Diffusions.
- Physically Intuitive Situations:
 - (1) If $\partial_t u = Lu$ on M with $u_0 = f$, then

$$u(x,t) = \mathbb{E}^{x}[f(X_t)].$$

- Reverses Dynkin's Formula: Solves PDEs via Diffusions.
- Physically Intuitive Situations:
 - (1) If $\partial_t u = Lu$ on M with $u_0 = f$, then

$$u(x,t) = \mathbb{E}^{x}[f(X_t)].$$

• (2) $\partial_t u = Lu$ on $D \subset M$ with $u_0 = f$ and u = 0 on ∂M ,

$$u(x,t)=\mathbb{E}^{x}[f(X_{t})\chi_{t}],$$

where $\chi_t = \mathbb{I}(T_D > t)$ kills paths absorbed by ∂D .

- Reverses Dynkin's Formula: Solves PDEs via Diffusions.
- Physically Intuitive Situations:
 - (1) If $\partial_t u = Lu$ on M with $u_0 = f$, then

$$u(x,t) = \mathbb{E}^{x}[f(X_t)].$$

• (2) $\partial_t u = Lu$ on $D \subset M$ with $u_0 = f$ and u = 0 on ∂M ,

$$u(x,t) = \mathbb{E}^{x}[f(X_t)\chi_t],$$

where $\chi_t = \mathbb{I}(T_D > t)$ kills paths absorbed by ∂D .

• (3) If Lv = 0 on $D \subset M$ with $v = \phi$ on ∂D , then

$$v(x) = \mathbb{E}^{x} \left[\phi(X_{T_D}) \right].$$

- Reverses Dynkin's Formula: Solves PDEs via Diffusions.
- Physically Intuitive Situations:
 - (1) If $\partial_t u = Lu$ on M with $u_0 = f$, then

$$u(x,t) = \mathbb{E}^{x}[f(X_t)].$$

• (2) $\partial_t u = Lu$ on $D \subset M$ with $u_0 = f$ and u = 0 on ∂M ,

$$u(x,t) = \mathbb{E}^{x}[f(X_t)\chi_t],$$

where $\chi_t = \mathbb{I}(T_D > t)$ kills paths absorbed by ∂D .

• (3) If Lv = 0 on $D \subset M$ with $v = \phi$ on ∂D , then

$$v(x) = \mathbb{E}^{x} \left[\phi(X_{T_D}) \right].$$

• Can also solve $\partial_t u = Lu$ with $\partial u/\partial \eta = 0$ on ∂D using 'reflection on Brownian motion', but a little more technical with singularities.

And now, back to our regularly scheduled programming

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

And now, back to our regularly scheduled programming

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

• Assume $e_{\lambda} \geq 0$ on D_{λ} . Let $x^* = \operatorname{argmax}\{e_{\lambda}(x)\}$.

And now, back to our regularly scheduled programming

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

- Assume $e_{\lambda} \geq 0$ on D_{λ} . Let $x^* = \operatorname{argmax}\{e_{\lambda}(x)\}$.
- Let p(x, t) and u(x, t) solve $\partial_t = \Delta$ with initial / boundary conditions:
 - $p_0 = 0$ and p = 1 on ∂D_{λ} .
 - $u_0 = e_{\lambda}$, and u = 0 on ∂D_{λ} .

And now, back to our regularly scheduled programming

• **Theorem**: There is $c_M > 0$ such that for any 'good' k-dimensional submanifold Σ of M, then

$$N(\Sigma, c_M/\lambda) = \{x \in M : d(x, \Sigma) < c_M/\lambda\}$$

doesn't contain D_{λ} .

- Assume $e_{\lambda} \geq 0$ on D_{λ} . Let $x^* = \operatorname{argmax}\{e_{\lambda}(x)\}$.
- Let p(x, t) and u(x, t) solve $\partial_t = \Delta$ with initial / boundary conditions:
 - $p_0 = 0$ and p = 1 on ∂D_{λ} .
 - $u_0 = e_{\lambda}$, and u = 0 on ∂D_{λ} .

 - $u(x,t) = \mathbb{E}[e_{\lambda}(B_t)\chi_t].$

Thanks For Listening!