

SMART

ISQP1 Analog Input Module

Smart quad-channel 0-20mA current

- 1- 4-channel 0-20mA current input plus 24V excitation
- 2- State-of-the-art electromagnetic noise suppression circuitry
- On board digital signal processing
- 4- Interface to Texmate controller

ISQP1 Specifications

Input channels 4 x 0-20mA inputs

Resolution 100,000 counts

Zero drift 0.05µA/°C typical

Span drift ±25ppm/°C typical

Non-linearity ±0.01% of full scale maximum

Input noise 0.3µAp-p typical at 1Hz output rate

Sampling rate 0.5-40Hz per channel, software selectable

A/D converter Low-noise sigma delta convertor

Noise rejection 50/60Hz noise rejection frequency, software selectable

Excitation voltage 24V, 50mA max

ISQP1 Board Layout

The simplest way to configure your controller is to use the Texmate Configuration Utility program.

Software + configuration macro available at www.texmate.co.nz/downloads

If you have a display, front panel configuration can be performed as shown.

Programming Procedures

Below are instructions for the typical setup of an ISQP1 input module, where setup begins with factory defaults applied.

- 1 Press the P and buttons together to enter the main programming mode.
- 2 Press the P button three times to enter Code 2. Use the ▲ and ▼ buttons to set Code 2 to 177.
- 3 Press the P button to enter smart register 1 code setup menu. Use the ▲ and ▼ buttons to set Smart 1 to XXX, as required.

SMART 1 = X2X

First Digit	Second Digit	Third Digit
Rejection		Output rate
0 -		O 0.5Hz averaged
1 60Hz	2	1 1Hz averaged
2 —	(Signal 1 voltage	2 5Hz averaged
3 50Hz	range: 0-20mA)	3 10Hz averaged
		4 20Hz averaged
		5 40Hz averaged

Press the P button to save your settings. The display returns to (Cod_2) (177). Select the required settings for Channel 1 by using the ▲ and ▼ buttons to set Code 2 to X7X.

First Digit	Second Digit	Third Digit
Processing Rate		Output Register Map
0 —	7	O Averaged signal 1
1 10Hz	(Smart input module)	1 Averaged signal 2
2 —		2 Averaged signal 3
3 100Hz		3 Averaged signal 4

Press the P button to save your settings. The display shows (Cod_3) (000). 000 is the typical setting and *in most cases* does not need to be changed.

However, for 320 controllers and/or controllers requiring square root, inverse or linearisation, Code 3 should be adjusted using the (and buttons as follows:

CODE 3 = XXX

First Digit	Second Digit	Third Digit
CH1 Post Processing	Linearisation For CH1	
O Direct display of	O No linearisation	
input	1 32-pt (using Table 1)	0
1 Square root of CH1	2 32-pt (using Table 2)	(Not used)
2 Inverse of CH1	3 32-pt (using Table 3)	
	4 32-pt (using Table 4)	
	5 125-pt (Tables 1-4	NB: The third digit in
	cascaded)	Code 3 is only used
	6 32-pt (Tables 1-4	for 320 controllers -
	selected from input	please see below

module's rear pins

NB: These further options in the third digit are for *320 controllers only*.

	Third Digit		
	Serial Mode		
0	ASCII mode		
1	Modbus mode		
2	Master mode	—	r
3	Print mode		
4	Ethernet mode		
5	Devicenet mode		

6 Press the P button to save your settings and enter Code 4. Select the required settings for Channel 2 by using the ▲ and ▼ buttons to set Code 4 to OXX.

CODE 4 = OXX

First Digit	Second Digit	Third Digit
	Output Register Map	Linearisation
	0 - 3 not used	O No linearisation
0	4 Averaged signal 1	1 32-pt (using Table 1)
(Voltage current	5 Averaged signal 2	2 32-pt (using Table 2)
(Voltage, current, smart)	6 Averaged signal 3	3 32-pt (using Table 3)
Siliai t)	7 Averaged signal 4	4 32-pt (using Table 4)
		5 125-pt (Tables 1-4
		cascaded)

- 7 Press the P button to save your settings and enter Code 5. Use the and v buttons to set Code 5 to 077.
- 8 Press the P button to enter smart register 2 code setup menu. Use the ▲ and ▼ buttons to set Smart 2 to 222.

SMART 2 = 222

First Digit	Second Digit	Third Digit
2	2	2
(Signal 4 voltage	(Signal 3 voltage	(Signal 2 voltage
range: 0-20mA)	range: 0-20mA)	range: 0-20mA)

9 Press the P button to save your settings. The display shows (Cod_5) (077). Select the required settings for Channel 3 by using the ▲ and ▼ buttons to set Code 5 to X7X, as required.

First Digit	Second Digit	Third Digit
CH3 Post Processing		Output Register Map
O Direct display of		O Averaged signal 1
input	7	1 Averaged signal 2
1 Square root of CH3	(Cmart input madula)	2 Averaged signal 3
2 Inverse of CH3	(Smart input module)	3 Averaged signal 4
3 32-pt linearisation		
of CH3 (Table 3)		

Press the P button to save your settings and enter Code 6. Select the required settings for Channel 4 by using the and v buttons to set Code 6 to X7X, as required. (See overleaf.)

CODE 6 = X7X

First Digit	Second Digit	Third Digit
CH4 Post Processing		Output Register Map
O Direct display of		O Averaged signal 1
input	7 (Smart input module)	1 Averaged signal 2
1 Square root of CH4		2 Averaged signal 3
2 Inverse of CH4		3 Averaged signal 4
3 32-pt linearisation		
of CH4 (Table 4)		

11 Press P again to save your settings. Then press the P and buttons at the same time to exit and return to the operational display.

Final Customer Configuration Settings:

Code 2		7	
Code 3			
Code 4	0		
Code 5		7	

Code 6		7	
Smart 1		2	
Smart 2	2	2	2

2-Point Calibration

- 1 Press the P and A buttons at the same time to enter the main programming mode. (1602 & 1602+K users skip this step.) Press P to enter the calibration mode.
 - 2 The display shows (CAL) (OOO). Use the ▲ and ▼ buttons to set CAL to 11X. Press (P) to confirm.

CAL = 11X

First Digit	Second Digit	Third Digit
	(Calibration) (2-point calibration)	Channel To Calibrate
1		1 Channel 1
(Calibration)		2 Channel 2
(Calibi ation)		3 Channel 3
		4 Channel 4

- 3 The display shows (ZERO). Use the ▲ and ▼ buttons to adjust the display to the desired reading for zero input. Apply the low input signal to the appropriate channel for at least 5 seconds, and then press ₱ to save the zero value.
- The display shows (SPAN). Use the ▲ and ▼ buttons to adjust the display to the desired span reading. Apply the high input signal for at least 5 seconds.
- Press P to save the span value and apply the new calibration values.

 If calibration is unsuccessful, the display will show (ERR_1) for a few seconds before returning to (CAL) (11X). Check your signal inputs and connections.

 Then press P and begin again from Step 3.
- On successful calibration, the display shows (CAL) (11X). Use the ▲ and ▼ buttons to reset CAL back to 000.
- 7 Press P again to confirm. Then press the P and buttons at the same time to exit and return to the operational display.

Unit 2, 10 Canaveral Drive, Albany, 0632, New Zealand

Ph: +64 [9] 835-1550 Email: <u>info@texmate.co.nz</u> Fax: +64 (9) 835-1250 Web: <u>www.texmate.co.nz</u>

DOC. REVISION CODE: ISQP1-S25A-08-V.01

Distributor: