

Date of Issue: 2010-03-26 Page: 1/79

SAR TEST REPORT

Equipment Under Test : MID (MOBILE INTERNET DEVICE)

Model No. : S10

Applicant : YUKYUNG TECHNOLOGIES INC.

Address of Applicant : 200-11, Anyang-Dong, Manan-Ku, Anyang-Si,

Kyunggi-Do, Korea

FCC ID : XBQ-S10

Device Category : Portable Device

Exposure Category : General Population/Uncontrolled Exposure

Date of Receipt : 2010-03-18

Date of Test(s) : $2010-03-23 \sim 2009-03-25$

Date of Issue : 2010-03-26

Max. SAR : 0.154 W/kg (WCDMA V), 0.182 W/kg (WCDMA II)

Standards:

FCC OET Bulletin 65 supplement C IEEE 1528, 2003 ANSI/IEEE C95.1, C95.3

In the configuration tested, the EUT complied with the standards specified above.

Remarks:

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS Testing Korea Co., Ltd. or testing done by SGS Testing Korea Co., Ltd. in connection with distribution or use of the product described in this report must be approved by SGS Testing Korea Co., Ltd. in writing.

Tested by : Fred Jeong 2010-03-26

Approved by : Denny Ham 2010-03-26

Report File No.:

Page:

F690501/RF-SAR001859

2 / 79

Date of Issue: 2010-03-26

Contents

1. General Information

	1.1	Testing Laboratory	3		
	1.2	Details of Applicant.	3		
	1.3	Version of Report.	3		
	1.4	Description of EUT(s).	3		
	1.5	Test Environment.	4		
	1.6	Operation description.	4		
	1.7	Evaluation procedures.	5		
	1.8	The SAR Measurement System.	6		
	1.9	System Components.	8		
	1.10	SAR System Verification.	9		
	1.11	Tissue Simulant Fluid for the Frequency Band.	11		
	1.12	Test Standards and Limits.	12		
2. Instruments List					
3. S	umma	ry of Results	15		

APPENDIX

- A. Photographs of EUT & EUT's Test Setup
- B. DASY4 SAR Report
- C. Uncertainty Analysis
- D. Calibration certificate

Date of Issue : 2010-03-26 Page : 3 / 79

1. General Information

1.1 Testing Laboratory

SGS Testing Korea Co., Ltd.

Wireless Div. 2FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

Telephone : +82 +31 428 5700 FAX : +82 +31 427 2371 Homepage : www.kr.sgs.com/ee

1.2 Details of Manufacturer

Manufacturer : YUKYUNG TECHNOLOGIES INC.

Address : 200-11, Anyang-Dong, Manan-Ku, Anyang-Si,

Kyunggi-Do, Korea

Contact Person : DAVID SEO
Phone No. : 82-31-463-6906
Fax No. : 82-31-445-5995

1.3 Version of Report

Version Number	Date	Revision	
00	2010-03-26	Initial issue	

1.4 Description of EUT(s)

EUT Type	: MID (MOBILE INTERNET DEVICE)			
Model	: S10			
Serial Number	: N/A			
Mode of Operation	: WCDMA V, WCDMA II			
Duty Cycle	: WCDMA 100%			
Body worn Accessory	: None			
Tx Frequency Range	: 826.4 MHz ~ 846.6 MHz (WCDMA V), 1852.4 MHz ~ 1907.6 MHz (WCDMA II)			
Conducted Max Power	: 22.0 dBm(WCDMA V), 22.1 dBm(WCDMA II)			
Battery Type	: DC 7.4 V(Li-Ion Polymer Battery)			

Date of Issue : 2010-03-26 Page : 4 / 79

1.5 Test Environment

Ambient temperature	: 21 ~ 22 ° C
Tissue Simulating Liquid	: 21 ~ 22 ° C
Relative Humidity	: 40 ~ 60 %

1.6 Operation Configuration

The device in WCDMA mode was controlled by using a Communication tester(CMU 200). Communication between the device and the tester was established by air link. Measurements were performed at the lowest, middle and highest channels of the operating band. The EUT was set to maximum power level during all tests and at the beginning of each test the battery was fully charged.

The DASY4 system measures power drift during SAR testing by comparing e-field in the same location at the beginning and at the end of measurement.

Date of Issue : 2010-03-26 Page : 5 / 79

1.7 EVALUATION PROCEDURES

- Power Reference Measurement Procedures

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 4 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 2.7 mm for an ET3DV6 probe type).

- The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:
- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- 3. The generation of a high-resolution mesh within the measured volume
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within –2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a

Date of Issue : 2010-03-26 Page : 6/79

position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

1.8 The SAR Measurement System

A photograph of the SAR measurement System is given in Fig. a. This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (Speag Dasy 4 professional system). A Model ET3DV6 1782 E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR= σ (|Ei|2)/ ρ where σ and ρ are the conductivity and mass density of the tissue-simulant. The DASY4 system for performing compliance tests consists of the following items:

- •A standard high precision 6-axis robot (Staubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- •A dosimeter probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- •A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

Date of Issue : 2010-03-26 Page : 7/79

Fig a. The microwave circuit arrangement used for SAR system verification

- The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to the DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing body usage.
- The device holder for flat phantom.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

Date of Issue : 2010-03-26
Page : 8/79

1.9 System Components

ET3DV6 E-Field Probe

Construction: Symmetrical design with triangular core Built-in shielding

against static charges PEEK enclosure material (resistant to

organic solvents, e.g. glycol).

Calibration: In air from 10 MHz to 2.5 GHz In brain simulating tissue

 $(accuracy \pm 8\%)$

Frequency: 10 MHz to > 6 GHz; Linearity: $\pm 0.2 \text{ dB}$ (30 MHz to 3 GHz)

Directivity : ± 0.2 dB in brain tissue (rotation around probe axis) ± 0.4 dB in brain tissue (rotation normal to probe axis)

±0.4 dD in orani tissue (rotation normal to pr

Dynamic Range : $5 \mu \text{W/g to} > 100 \text{ mW/g}$; Linearity: $\pm 0.2 \text{ dB}$

Since Street ± 0.2 mm repeatability in air and clear liquids over diffuse

reflecting surfaces

Dimensions: Overall length: 330 mm

Tip length: 16 mm Body diameter: 12 mm Tip diameter: 6.8 mm

Distance from probe tip to dipole centers: 2.7 mm

Application: General dosimetry up to 3 GHz Compliance tests of mobile

phone

ET3DV6 E-Field Probe

NOTE:

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.

Date of Issue : 2010-03-26 Page : 9/79

SAM Phantom

Construction: The SAM Phantom is constructed of a

fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually

teaching three points in the robot

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 25 liters

SAM Phantom

DEVICE HOLDER

Construction

In combination with the Twin SAM PhantomV4.0/V4.0C or Twin SAM, the Mounting Device (made from POM) enables the rotation of the mounted transmitter in spherical coordinates, whereby the rotation point is the ear opening. The devices can be easily and accurately positioned according to IEC, IEEE, CENELEC, FCC or other specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device Holder

1.10 SAR System Verification

The microwave circuit arrangement for system verification is sketched in Fig. b. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. These tests were done at 835 MHz and 1900 MHz. The tests for EUT were conducted within 24 hours after each validation. The obtained results from the system accuracy verification are displayed in the table 1. During the tests, the ambient temperature of the laboratory was in the range 20 °C \sim 23 °C, the relative humidity was in the range 40 % \sim 60 % and the liquid depth above the ear reference points was above 15 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.

Date of Issue : 2010-03-26 Page : 10 / 79

Fig b. The microwave circuit arrangement used for SAR system verification

- A. Agilent Model E4421B Signal Generator
- B. EMPOWER Model 2001-BBS3Q7ECK Amplifier
- C. Agilent Model E4419B Power Meter
- D. Agilent Model 9300H Power Sensor
- E. Agilent Model 777D/778D Dual directional coupling
- F. Reference dipole Antenna

Photo of the dipole Antenna

System Validation Results

Validation Kit	Tissue	Target SAR 1 g from Calibration Certificate (Input Power : 250 mW)	Measured SAR 1 g (Input Power : 250 mW)	Deviation (%)	Date	Liquid Temp. (°C)
D835V2 S/N: 490	835 MHz Brain	2.41 W/kg	2.34 W/kg	-2.90	2010-03-23	22.0
D1900V2 S/N: 5d033	1900 MHz Brain	10.0 W/kg	9.67 W/kg	-3.30	2010-03-24	22.0

Table 1. Results system validation

Date of Issue : 2010-03-26 Page : 11 / 79

1.12 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this simulant fluid were measured by using the Agilent Model 85070D Dielectric Probe (rates frequence band 200 MHz to 20 GHz) in conjunction with Agilent E5070B Network Analyzer(300 KHz-3000 MHz) by using a procedure detailed in Section V.

	Tissue		Dielectric Parameters				
f (MHz)	type	Limits / Measured	Permittivity	Conductivity	Simulated Tissue Temp()		
Measured, 2010-6		Measured, 2010-03-23	41.3	0.88	22.0		
	Head	Recommended Limits	41.5	0.90	22.0 ~ 23.0		
835		Deviation(%)	-0.48	-2.22	-		
833		Measured, 2010-03-23	53.9	0.97	22.0		
	Body	Recommended Limits	55.2	0.97	22.0 ~ 23.0		
		Deviation(%)	-2.36	0.00	-		
		Measured, 2010-03-24	39.6	1.44	22.0		
	Head	Recommended Limits	40.0	1.40	22.0 ~ 23.0		
1900		Deviation(%)	-1.00	2.86	-		
1900		Measured, 2010-03-24	51.4	1.51	22.0		
	Body	Recommended Limits	53.3	1.52	22.0 ~ 23.0		
		Deviation(%)	-3.56	-0.66	-		

Date of Issue : 2010-03-26 Page : 12 / 79

The composition of the brain tissue simulating liquid

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)									
(% by weight)	4:	50	83	35	9	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: $99^{+}\%$ Pure Sodium Chloride Sugar: $98^{+}\%$ Pure Sucrose Water: De-ionized, $16 \text{ M}\Omega^{+}$ resistivity HEC: Hydroxyethyl Cellulose DGBE: $99^{+}\%$ Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

1.13 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.3–2003, Copyright 2003 by the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017. These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the

Date of Issue : 2010-03-26 Page : 13 / 79

frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter. Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

(1) Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over an 10 grams of tissue (defined as a tissue volume in the shape of a cube). Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

(2) Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube). General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure. Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section.(Table .4)

Human Exposure	Uncontrolled Environment General Population	Controlled Environment Occupational
Partial Peak SAR (Partial)	1.60 m W/g	8.00 m W/g
Partial Average SAR (Whole Body)	0.08 m W/g	0.40 m W/g
Partial Peak SAR (Hands/Feet/Ankle/Wrist)	4.00 m W/g	20.00 m W/g

Table .4 RF exposure limits

Date of Issue : 2010-03-26 Page : 14 / 79

2. Instruments List

Maunfacturer	Device	Туре	Serial Number	Due date of Calibration
Stäubli	Robot	RX90BL	F03/5W05A1/A/01	N/A
Schmid& Partner Engineering AG	Dosimetric E-Field Probe	ET3DV6	1782	April 30, 2010
Schmid& Partner Engineering AG	835 MHz System Validation Dipole	D835V2	490	August 24, 2010
Schmid& Partner Engineering AG	1900 MHz System Validation Dipole	D1900V2	5d033	August 25, 2010
Schmid& Partner Engineering AG	Data acquisition Electronics	DAE3	567	December 09, 2010
Schmid& Partner Engineering AG	Software	DASY 4 V4.7	-	N/A
Schmid& Partner Engineering AG	Phantom	SAM Phantom V4.0	TP-1299 TP-1300	N/A
Agilent	Network Analyzer	E5070B	MY42100282	April 1, 2010
Agilent	Dielectric Probe Kit	85070D	2184	N/A
Agilent	Power Meter	E4419B	GB43311126	September 28, 2010
Agilent	Power Sensor	Е9300Н	MY41495307 MY41495308	September 29, 2010 September 29, 2010
Agilent	Signal Generator	E4421B	MY43350132	September 29, 2010
Empower RF Systems	Power Amplifier	2001- BBS3Q7ECK	1032 D/C 0336	April 1, 2010
Agilent	Dual Directional Coupler	777D 778D	50128 50454	September 28, 2010
Microlab	LP Filter	LA-15N LA-30N	N/A	September 28, 2010
R&S	Mobile Test Unit	CMU 200	107279	April 1, 2010

Date of Issue : 2010-03-26 Page : 15 / 79

3. Summary of Results

FCC 3G Measurement Procedures

Maximum output power is verified on the Low, Middle and High channels according to the section 5.2 of 3GPP TS 34.121 and the KDB 941225 procedure.

Band	Mode	Channe	l Free	quency(MHz)	Condu	icted Pow	rer(dBm)
WCDMAN	RMC	4132		826.4		21.8	
WCDMA V (RMC)	RMC	4182		836.4		22.0	
(KIVIC)	RMC	4233		846.6		21.7	
		4132		826.4		21.7	
	Sub-test 1	4182		836.4		21.9	
		4233		846.6		21.6	
		4132		826.4		21.7	
	Sub-test 2	4182		836.4		21.9	
		4233		846.6		21.6	
		4132		826.4		21.6	
WCDMAN	Sub-test 3	4182		836.4		21.8	
WCDMA V		4233		846.6		21.6	
(HSDPA Active)		4132		826.4		21.6	
	Sub-test 4	4182		836.4		21.8	
		4233		846.6		21.5	
		С	d	ACK,	NACK,	CQI	MPR
	Sub-test 1	2	15		8		0
	Sub-test 2	12	15		8		0
	Sub-test 3	15	8	8			0.5
	Sub-test 4	15	4		8		0.5

Band	Mode	Channel	Frequ	uency(MHz)	Condu	cted Pow	rer(dBm)
WCDMA II	RMC	9262		1852.4		21.6	
WCDMA II (RMC)	RMC	9400		1880.0		21.9	
(KIVIC)	RMC	9538		1907.6		22.1	
		9262		1852.4		21.5	
	Sub-test 1	9400		1880.0		21.8	
		9538		1907.6		22.0	
		9262		1852.4		21.5	
	Sub-test 2	9400		1880.0	21.8		
		9538		1907.6	21.9		
	Sub-test 3	9262		1852.4	21.4		
HIGDIA H		9400		1880.0		21.7	
WCDMA II		9538		1907.6		21.9	
(HSDPA Active)		9262		1852.4		21.4	
	Sub-test 4	9400		1880.0		21.7	
		9538		1907.6		21.9	
		С	d	ACK,	NACK,	CQI	MPR
	Sub-test 1	2	15		8		0
	Sub-test 2	12	15		8		0
	Sub-test 3	15	8	8			0.5
	Sub-test 4	15	4		8		0.5

Date of Issue : 2010-03-26 Page : 16 / 79

KDB 447498 & KDB616217 RF Exposure Assessments

Bluetooth-to-User = 18 mm, WLAN-to-User = 43 mm, 3G Antenna-to-User = 25 mm

WLAN-to-3G Antenna = 25 mm, WLAN-to-Bluetooth = 50 mm, 3G Antenna-to-Bluetooth = 30 mm

- A. Individual SAR evaluation (Max)
 - 802.11b at WLAN = 0.195 W/kg
 - WCDMA V at 3G Antenna = 0.154 W/kg
 - WCDMA II at 3G Antenna = 0.182 W/kg
 - Individual SAR for Bluetooth is not required.
- B. Individual output power
 - Bluetooth output power = 0.94 mW
 - WLAN output power = 121.06 mW
 - WCDMA V output power = 22.00 mW
 - WCDMA II output power = 22.07 mW
- C. Simultaneously SAR consideration
 - All of antennas in this device is not operated simultaneously

Date of Issue : 2010-03-26 Page : 17 / 79

Ambient Temperature (°C)	22.0
Liquid Temperature (°C)	22.0
Date	2010-03-23

WCDMA V Body SAR

Test Mode	EUT Position	Traffic Channel		Power	1 g SAR	1 g SAR
		Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
RMC	Normal Antenna (a)	826.4	4132	-0.030	0.154	1.6
	Normal Antenna	836.4	4182	-0.081	0.146	
	Normal Antenna	846.6	4233	0.173	0.056	
	Antenna 1 step (b)	836.4	4182	-0.186	0.012	
	Antenna 2 step (c)	836.4	4182	-0.004	0.043	
	Folded Antenna 90 ° (d)	836.4	4182	0.127	0.019	
	Antenna Side 180 ° (e)	836.4	4182	-0.060	0.108	
	Tablet Mode_Antenna Horizontal (f)	836.4	4182	0.179	0.122	
	Tablet Mode_Antenna Vertical (g)	836.4	4182	-0.186	0.031	

<Note>

- 1. WCDMA RMC mode was tested under RMC 12.2 kbps configured in Test Loop Mode 1.
- 2. Body SAR is not measured in HSDPA mode because the maximum average output of each RF channel with HSDPA active is not at least 1/4 dB higher than that measured without HSDPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is not above 75 % of the SAR limit.
- 3. (a), (b), (c), (d), (e), (f), (g): These test positions are shown the below set up pictures. Please refer to the pictures.

Date of Issue : 2010-03-26 Page : 18 / 79

Ambient Temperature (°C)	22.0		
Liquid Temperature (°C)	22.0		
Date	2010-03-24		

WCDMA II Body SAR

Test Mode	EUT Position	Traffic Channel		Power	1 g SAR	1 g SAR
		Frequency (MHz)	Channel	Drift(dB)	(W/kg)	Limits (W/kg)
RMC	Normal Antenna (a)	1880.0	9400	-0.083	0.065	
	Antenna 1 step (b)	1880.0	9400	0.022	0.099	
	Antenna 2 step (c)	1880.0	9400	-0.009	0.041	
	Folded Antenna 90 ° (d)	1880.0	9400	-0.034	0.072	
	Antenna Side 180 ° (e)	1880.0	9400	0.200	0.055	
	Tablet Mode_Antenna Horizontal (f)	1852.4	9262	-0.032	0.182	1.6
	Tablet Mode_Antenna Horizontal	1880.0	9400	0.034	0.160	
	Tablet Mode_Antenna Horizontal	1907.6	9538	-0.021	0.114	
	Tablet Mode_Antenna Vertical (g)	1880.0	9400	0.125	0.082	

<Note>

- 1. WCDMA RMC mode was tested under RMC 12.2 kbps configured in Test Loop Mode 1.
- 2. Body SAR is not measured in HSDPA mode because the maximum average output of each RF channel with HSDPA active is not at least 1/4 dB higher than that measured without HSDPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is not above 75 % of the SAR limit.
- 3. (a), (b), (c), (d), (e), (f), (g): These test positions are shown the below set up pictures. Please refer to the pictures.

Date of Issue : 2010-03-26 Page : 19 / 79

Appendix

List

Appendix A	Photographs	- EUT - Test Setup
Appendix B	DASY4 Report (Plots of the SAR Measurements)	- 850 MHz, 1900 MHzValidation Test- WCDMA V Test- WCDMA II Test
Appendix C	Uncertainty Analysis	
Appendix D	Calibration Certificate	- PROBE - DAE - DIPOLE

Appendix A

EUT Photographs

Report File No.: F690501/RF-SAR001859

Date of Issue : 2010-03-26 Page : 20 / 79

Top View of EUT

Bottom View of EUT

Date of Issue : 2010-03-26 Page : 21 / 79

Right Side View of EUT

Left Side View of EUT

Date of Issue : 2010-03-26 Page : 22 / 79

Display open View of EUT

Folded Tablet Mode View (Slate)

Test Setup Photographs

Report File No.: F690501/RF-SAR001859

Date of Issue : 2010-03-26 Page : 23 / 79

(a) Normal Antenna

(b) Antenna 1 step

Date of Issue : 2010-03-26 Page : 24 / 79

(c) Antenna 2 step

(d) Folded Antenna 90°

Date of Issue : 2010-03-26 Page : 25 / 79

(e) Antenna Side 180°

$(f) \ Tablet \ Mode_Antenna \ Horizontal$

Date of Issue : 2010-03-26 Page : 26 / 79

(f) Tablet Mode_Antenna Vertical

Appendix B

Test Plot - DASY4 Report

Report File No.: F690501/RF-SAR001859

Date of Issue : 2010-03-26 Page : 27 / 79

Date of Issue : 2010-03-26 Page : 28 / 79

835 MHz Validation Test

Test Laboratory: SGS Testing Korea File Name: <u>Validation 835 MHz.da4</u>

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490

Program Name: Validation 835 MHz

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; $\sigma = 0.883 \text{ mho/m}$; $\varepsilon_r = 41.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.18, 6.18, 6.18); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 835 MHz/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 2.54 mW/g

Validation 835 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.5 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 3.34 W/kg

SAR(1 g) = 2.34 mW/g; SAR(10 g) = 1.56 mW/g

Maximum value of SAR (measured) = 2.55 mW/g

Date of Issue : 2010-03-26 Page : 29 / 79

Z Scan

Date of Issue : 2010-03-26 Page : 30 / 79

1900 MHz Validation Test

Test Laboratory: SGS Testing Korea File Name: Validation 1900 MHz.da4

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033

Program Name: Validation 1900 MHz

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; $\sigma = 1.44 \text{ mho/m}$; $\varepsilon_r = 39.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(5, 5, 5); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Validation 1900 MHz/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 11.8 mW/g

Validation 1900 MHz/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

Reference Value = 88.9 V/m; Power Drift = -0.012 dB

Peak SAR (extrapolated) = 17.0 W/kg

SAR(1 g) = 9.67 mW/g; SAR(10 g) = 5.06 mW/g

Maximum value of SAR (measured) = 10.9 mW/g

Date of Issue : 2010-03-26 Page : 31 / 79

Z Scan

Date of Issue: 2010-03-26 32 / 79 Page:

WCDMA V Body SAR Test

Test Laboratory: SGS Testing Korea File Name: WCDMA V Nomal da4

DUT: S10; Type: Tablet PC_Normal; Serial: N/A Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 826.4 MHz; Duty Cycle: 1:1 Medium parameters used: f = 826.5 MHz; $\sigma = 0.963 \text{ mho/m}$; $\varepsilon_p = 54$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V Low Normal Ant/Area Scan (61x81x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.166 mW/g

WCDMA V Low Normal Ant/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = -0.030 dB

Peak SAR (extrapolated) = 0.198 W/kg

SAR(1 g) = 0.154 mW/g; SAR(10 g) = 0.112 mW/g

Maximum value of SAR (measured) = 0.164 mW/g

Date of Issue : 2010-03-26 Page : 33 / 79

Z Scan

Date of Issue : 2010-03-26 Page : 34 / 79

Test Laboratory: SGS Testing Korea File Name: WCDMA V_Nomal.da4

DUT: S10; Type: Tablet PC_Normal; Serial: N/A

Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; $\sigma = 0.973$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Normal Ant/Area Scan (61x81x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.156 mW/g

WCDMA V_Mid_Normal Ant/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 11.5 V/m; Power Drift = -0.081 dB

Peak SAR (extrapolated) = 0.188 W/kg

SAR(1 g) = 0.146 mW/g; SAR(10 g) = 0.106 mW/g

Maximum value of SAR (measured) = 0.155 mW/g

Date of Issue : 2010-03-26 Page : 35 / 79

Test Laboratory: SGS Testing Korea File Name: WCDMA V_Nomal.da4

DUT: S10; Type: Tablet PC_Normal; Serial: N/A

Program Name: WCDMA V Body

Communication System: WCDMA V; Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f= 846.6 MHz; σ = 0.983 mho/m; ϵ_{r} = 53.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_High_Normal Ant/Area Scan (61x81x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.060 mW/g

WCDMA V_High_Normal Ant/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 7.16 V/m; Power Drift = 0.173 dB

Peak SAR (extrapolated) = 0.074 W/kg

SAR(1 g) = 0.056 mW/g; SAR(10 g) = 0.041 mW/g

Maximum value of SAR (measured) = 0.060 mW/g

Date of Issue : 2010-03-26 Page : 36 / 79

Test Laboratory: SGS Testing Korea File Name: WCDMA V Ant 1step.da4

DUT: S10; Type: Tablet PC_Ant 1step; Serial: N/A Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; $\sigma = 0.973$ mho/m; $\epsilon_r = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Antenna 1step/Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.013 mW/g

WCDMA V Mid Antenna 1step/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.50 V/m; Power Drift = -0.186 dB

Peak SAR (extrapolated) = 0.016 W/kg

SAR(1 g) = 0.012 mW/g; SAR(10 g) = 0.00836 mW/g Maximum value of SAR (measured) = 0.013 mW/g

Date of Issue: 2010-03-26 37 / 79 Page:

Test Laboratory: SGS Testing Korea File Name: WCDMA V Ant 2step.da4

DUT: S10; Type: Tablet PC_Ant 2step; Serial: N/A Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.4 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.5 MHz; $\sigma = 0.973 \text{ mho/m}$; $\varepsilon_p = 53.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP_900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V Mid Antenna 2step/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.048 mW/g

WCDMA V Mid Antenna 2step/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.63 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 0.059 W/kg

SAR(1 g) = 0.043 mW/g; SAR(10 g) = 0.030 mW/gMaximum value of SAR (measured) = 0.046 mW/g

Date of Issue : 2010-03-26 Page : 38 / 79

Test Laboratory: SGS Testing Korea
File Name: WCDMAV Ant 90 degree.da4

DUT: S10; Type: Tablet PC_Ant 90 degree; Serial: N/A

Program Name: WCDMA V Body

Communication System: WCDMA V; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium parameters used: f=836.5 MHz; $\sigma=0.973$ mho/m; $\epsilon_{\rm r}=53.9$; $\rho=1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Antenna 90 degree/Area Scan (61x71x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.022 mW/g

WCDMA V Mid Antenna 90 degree/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.73 V/m; Power Drift = 0.127 dB

Peak SAR (extrapolated) = 0.029 W/kg

SAR(1 g) = 0.019 mW/g; SAR(10 g) = 0.013 mW/g Maximum value of SAR (measured) = 0.021 mW/g

Date of Issue : 2010-03-26 Page : 39 / 79

Test Laboratory: SGS Testing Korea File Name: WCDMA V_Ant Side.da4

DUT: S10; Type: Tablet PC_Ant Side; Serial: N/A

Program Name: WCDMA V Body

Communication System: WCDMA V; Frequency: 836.4 MHz;Duty Cycle: 1:1 Medium parameters used: f=836.5 MHz; $\sigma=0.973$ mho/m; $\epsilon_{\rm r}=53.9$; $\rho=1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Antenna Side/Area Scan (61x71x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.123 mW/g

WCDMA V Mid Antenna Side/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.02 V/m; Power Drift = -0.060 dB

Peak SAR (extrapolated) = 0.149 W/kg

SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.073 mW/g Maximum value of SAR (measured) = 0.115 mW/g

Date of Issue : 2010-03-26 Page : 40 / 79

Test Laboratory: SGS Testing Korea

File Name: WCDMA V tablet mode Ant Hor.da4

DUT: S10; Type: Tablet PC edge hor; Serial: N/A

Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium parameters used: f = 836.5 MHz; $\sigma = 0.973$ mho/m; $\epsilon_p = 53.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Tablet Mode_Antenna Hor/Area Scan (61x81x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.152 mW/g

WCDMA V Mid Tablet Mode Antenna Hor/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.8 V/m; Power Drift = 0.179 dB

Peak SAR (extrapolated) = 0.167 W/kg

SAR(1 g) = 0.122 mW/g; SAR(10 g) = 0.082 mW/g Maximum value of SAR (measured) = 0.131 mW/g

Date of Issue : 2010-03-26 Page : 41 / 79

Test Laboratory: SGS Testing Korea

File Name: WCDMA V tablet mode Ant Ver.da4

DUT: S10; Type: Tablet PC edge ver; Serial: N/A

Program Name: WCDMA V_Body

Communication System: WCDMA V; Frequency: 836.4 MHz; Duty Cycle: 1:1 Medium parameters used: f=836.5 MHz; $\sigma=0.973$ mho/m; $\epsilon_{\rm r}=53.9$; $\rho=1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(6.07, 6.07, 6.07); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP 900MHz; Type: SAM MIC #2000-93; Serial: TP-1300
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA V_Mid_Tablet Mode_Antenna Ver/Area Scan (61x71x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.035 mW/g

WCDMA V Mid_Tablet Mode_Antenna Ver/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 6.30 V/m; Power Drift = -0.186 dB

Peak SAR (extrapolated) = 0.056 W/kg

SAR(1 g) = 0.031 mW/g; SAR(10 g) = 0.020 mW/g

Maximum value of SAR (measured) = 0.034 mW/g

0 dB = 0.034 mW/g

Date of Issue : 2010-03-26 Page : 42 / 79

WCDMA II Body SAR Test

Test Laboratory: SGS Testing Korea File Name: WCDMA II Normal da4

DUT: S10; Type: Tablet PC_Normal; Serial: N/A

Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.49$ mho/m; $\varepsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Mid_Normal Ant/Area Scan (61x81x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.076 mW/g

WCDMA II_Mid_Normal Ant/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 6.82 V/m; Power Drift = -0.083 dB

Peak SAR (extrapolated) = 0.093 W/kg

SAR(1 g) = 0.065 mW/g; SAR(10 g) = 0.041 mW/g

Maximum value of SAR (measured) = 0.072 mW/g

Date of Issue : 2010-03-26 Page : 43 / 79

Test Laboratory: SGS Testing Korea File Name: WCDMA II_Ant 1step.da4

DUT: S10; Type: Tablet PC; Serial: N/A Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Mid_Antenna 1step/Area Scan (61x71x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.115 mW/g

WCDMA II Mid_Antenna 1step/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.80 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 0.152 W/kg

SAR(1 g) = 0.099 mW/g; SAR(10 g) = 0.060 mW/g Maximum value of SAR (measured) = 0.109 mW/g

0 dB = 0.109 mW/g

Date of Issue : 2010-03-26 Page : 44 / 79

Test Laboratory: SGS Testing Korea File Name: WCDMA II Ant 2step.da4

DUT: S10; Type: Tablet PC_Normal; Serial: N/A Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Mid_Antenna 2step/Area Scan (61x81x1): Measurement grid: dx=15mm,

dy=15mm

Maximum value of SAR (interpolated) = 0.047 mW/g

WCDMA II Mid_Antenna 2step/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.01 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 0.058 W/kg

SAR(1 g) = 0.041 mW/g; SAR(10 g) = 0.027 mW/g Maximum value of SAR (measured) = 0.045 mW/g

0 dB = 0.045 mW/g

Date of Issue : 2010-03-26 Page : 45 / 79

Test Laboratory: SGS Testing Korea File Name: WCDMA II Ant 90 degree.da4

DUT: S10; Type: Tablet PC_90 degee; Serial: N/A

Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Mid_Antenna 90 degree/Area Scan (61x71x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.086 mW/g

WCDMA II Mid Antenna 90 degree/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.72 V/m; Power Drift = -0.034 dB

Peak SAR (extrapolated) = 0.112 W/kg

SAR(1 g) = 0.072 mW/g; SAR(10 g) = 0.043 mW/g Maximum value of SAR (measured) = 0.080 mW/g

Date of Issue : 2010-03-26 Page : 46 / 79

Test Laboratory: SGS Testing Korea File Name: WCDMA II_Ant Side.da4

DUT: S10; Type: Tablet PC_Antenna Side; Serial: N/A Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; σ = 1.49 mho/m; ϵ_r = 51.7; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Mid_Antenna Side/Area Scan (71x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.062 mW/g

WCDMA II Mid Antenna Side/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.58 V/m; Power Drift = 0.200 dB

Peak SAR (extrapolated) = 0.086 W/kg

SAR(1 g) = 0.055 mW/g; SAR(10 g) = 0.032 mW/g Maximum value of SAR (measured) = 0.065 mW/g

Date of Issue : 2010-03-26 Page : 47 / 79

Test Laboratory: SGS Testing Korea

File Name: WCDMA II tablet mode Ant Hor.da4

DUT: S10; Type: Tablet PC edge hor; Serial: N/A

Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium parameters used: f=1852.5 MHz; $\sigma=1.47$ mho/m; $\varepsilon_{\rm r}=51.9$; $\rho=1000$ kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Low_Tablet Mode_Antenna Hor/Area Scan (61x91x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.191 mW/g

WCDMA II Low Tablet Mode Antenna Hor/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.4 V/m; Power Drift = -0.032 dB Peak SAR (extrapolated) = 0.301 W/kg

SAR(1 g) = 0.182 mW/g; SAR(10 g) = 0.099 mW/g Maximum value of SAR (measured) = 0.206 mW/g

Date of Issue : 2010-03-26 Page : 48 / 79

Z Scan

Date of Issue : 2010-03-26 Page : 49 / 79

Test Laboratory: SGS Testing Korea

File Name: WCDMA II tablet mode_Ant Hor.da4

DUT: S10; Type: Tablet PC_edge hor; Serial: N/A

Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.49$ mho/m; $\epsilon_r = 51.7$; $\rho = 1000$ kg/m³

DASY4 Configuration:

Phantom section: Flat Section

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Mid_Tablet Mode_Antenna Hor/Area Scan (61x91x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.166 mW/g

WCDMA II Mid Tablet Mode Antenna Hor/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 10.3 V/m; Power Drift = 0.034 dB Peak SAR (extrapolated) = 0.270 W/kg

SAR(1 g) = 0.160 mW/g; SAR(10 g) = 0.086 mW/g Maximum value of SAR (measured) = 0.180 mW/g

Date of Issue : 2010-03-26 Page : 50 / 79

Test Laboratory: SGS Testing Korea

File Name: WCDMA II tablet mode Ant Hor.da4

DUT: S10; Type: Tablet PC edge hor; Serial: N/A

Program Name: WCDMA II_Body

Communication System: W-CDMA II; Frequency: 1907.6 MHz;Duty Cycle: 1:1

Medium parameters used (interpolated): f = 1907.6 MHz; $\sigma = 1.52 \text{ mho/m}$; $\epsilon_p = 51.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_High_Tablet Mode_Antenna Hor/Area Scan (61x91x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.114 mW/g

WCDMA II High Tablet Mode Antenna Hor/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.26 V/m; Power Drift = -0.021 dB

Peak SAR (extrapolated) = 0.207 W/kg

SAR(1 g) = 0.114 mW/g; SAR(10 g) = 0.059 mW/g Maximum value of SAR (measured) = 0.131 mW/g

Date of Issue: 2010-03-26 51 / 79 Page:

Test Laboratory: SGS Testing Korea

File Name: WCDMA II tablet mode Ant Ver.da4

DUT: S10; Type: Tablet PC edge hor; Serial: N/A

Program Name: WCDMA II Body

Communication System: W-CDMA II; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1880 MHz; $\sigma = 1.49 \text{ mho/m}$; $\varepsilon_r = 51.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1782; ConvF(4.45, 4.45, 4.45); Calibrated: 2009-04-30
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn567; Calibrated: 2009-12-09
- Phantom: SAM MIC #2000-93 with CRP; Type: SAM MIC #2000-93; Serial: TP-1299
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

WCDMA II_Mid_Tablet Mode_Antenna Ver/Area Scan (61x71x1): Measurement grid:

dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.090 mW/g

WCDMA II Mid Tablet Mode Antenna Ver/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 7.47 V/m; Power Drift = 0.125 dB

Peak SAR (extrapolated) = 0.140 W/kg

SAR(1 g) = 0.082 mW/g; SAR(10 g) = 0.046 mW/g Maximum value of SAR (measured) = 0.093 mW/g

Date of Issue : 2010-03-26 Page : 52 / 79

Appendix C

Uncertainty Analysis

a	b	С	d	e = f(d,k)	g	i = cxg/e	k
Uncertainty Component	Sectio n in P1528	Tol (%)	Prob . Dist.	Div.	Ci (1g)	1g ui (%)	Vi (Veff)
Probe calibration	E.2.1	6.3	N	1	1	6.30	
Axial isotropy	E.2.2	0.5	R	1.73	0.71	0.20	
hemispherical isotropy	E.2.2	2.6	R	1.73	0.71	1.06	
Boundary effect	E.2.3	0.8	R	1.73	1	0.46	
Linearity	E.2.4	0.6	R	1.73	1	0.35	
System detection limit	E.2.5	0.25	R	1.73	1	0.14	
Readout electronics	E.2.6	0.3	N	1	1	0.30	
Response time	E.2.7	0	R	1.73	1	0.00	
Integration time	E.2.8	2.6	R	1.73	1	1.50	
RF ambient Condition -Noise	E.6.1	3	R	1.73	1	1.73	
RF ambient Condition - reflections	E.6.1	3	R	1.73	1	1.73	
Probe positioning - mechanical tolerance	E.6.2	1.5	R	1.73	1	0.87	
Probe positioning - with respect to phantom	E.6.3	2.9	R	1.73	1	1.67	
Max. SAR evaluation	E.5.2	1	R	1.73	1	0.58	
Test sample positioning	E.4.2	2.3	N	1	1	2.30	9
Device holder uncertainty	E.4.1	3.6	N	1	1	3.60	
Output power variation - SAR drift measurement	6.62	5	R	1.73	1	2.89	
Phantom uncertainty (shape and thickness tolerances)	E.3.1	4	R	1.73	1	2.31	
Liquid conductivity - deviation from target values	E.3.2	5	R	1.73	0.64	1.85	
Liquid conductivity - measurement uncertainty	E.3.2	1.2	N	1	0.64	0.77	5
Liquid permittivity - deviation from target values	E.3.3	5	R	1.73	0.6	1.73	
Liquid permittivity - measurement uncertainty	E.3.3	1.1	N	1	0.6	0.66	5
Combined standard uncertainty				RSS		9.63	2754
Expanded uncertainty (95% CONFIDENCE INTERVAL)				K=2		19.27	

Date of Issue : 2010-03-26 Page : 53 / 79

Appendix D

Calibration Certificate

- PROBE
- DAE
- 835 MHz, 1900 MHz DIPOLE

Date of Issue: 2010-03-26

Page: 54/79

- PROBE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client SGS KES (Dymstec)

Certificate No: ET3-1782 Arp09

Accreditation No.: SCS 108

Object	ET3DV6 - SN:17	782	
Calibration procedure(s)	THE RESERVE OF THE PARTY OF THE	QA CAL-12.v5 and QA CAL-23.v3 edure for dosimetric E-field probes	
Calibration date:	April 30, 2009		
Condition of the calibrated item	In Tolerance		
All calibrations have been condu	THE RESERVE AND ADDRESS OF THE PARTY AND ADDRE		
	TE critical for calibration)	STOCKHOWNESS	
himary Standards		Gal Date (Certificate No.) 1-Apr-09 (No. 217-01030)	Scheduled Calibration Apr-10
rimary Standards lower meter E4419B	ID#	Cal Date (Certificate No.)	Scheduled Calibration
rimary Standards lower meter E4419B ower sensor E4412A	ID# GB41293874	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030)	Scheduled Calibration Apr-10
nimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A	ID # GB41293874 MY41495277	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Scheduled Calibration Apr-10 Apr-10
over moter E4419B over sensor E4412A over sensor E4412A over sensor E4412A reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030)	Scheduled Calibration Apr-10 Apr-10 Apr-10
nimary Standards ower meter E4419B ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b)	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026)	Scheduled Calibration Apr-10 Apr-10 Mar-10
ower meter E4419B ower sensor E4412A ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES30V2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10
ower meter E4419B ower sensor E4412A ower sensor E4412A over sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3OV2	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b)	Gal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10
over meter E44198 over sensor E4412A over sensor E4412A over sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference 30 dB Attenuator eference Probe ES3DV2 AE4 econdary Standards	ID # GB41293874 MY41495277 MY41496087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 960	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-680_Sep08) Check Date (in house)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check
imary Standards over meter E4419B over sensor E4412A over sensor E4412A reference 3 dB Attenuator reference 30 dB Attenuator reference Probe ES30V2 AE4 occondary Standards Figenerator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 960 ID # US3642U01700	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. 217-01027) 2-Jan-09 (No. E53-3013_Jan09) 9-Sep-08 (No. DAE4-680_Sep08) Check Date (in house)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09
ower meter E4419B ower sensor E4412A ower sensor E4412A ower sensor E4412A eference 3 dB Attenuator eference 20 dB Attenuator eference Probe ES30V2 AE4 econdary Standards F generator HP 8848C	ID # GB41293874 MY41495277 MY41496087 SN: \$5054 (3c) SN: \$5086 (20b) SN: \$5129 (30b) SN: 3013 SN: 960	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. ES3-3013_Jan09) 9-Sep-08 (No. DAE4-680_Sep08) Check Date (in house)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Jan-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09
Primary Standards Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 30 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 JAE4 Secondary Standards RF generator HP 8848C Jetwork Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41496877 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 960 ID # US3642U01700 US37390585 Name	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. 217-01027) 2-Jan-09 (No. E63-3013, Jan09) 9-Sep-08 (No. DAE4-860_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Scheduled Calibration Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09
Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2 JAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # GB41293874 MY41495277 MY41498087 SN: \$5054 (3c) SN: \$5086 (2cb) SN: \$5198 (3cb) SN: \$5198 (3cb) SN: \$013 SN: 960 ID # US3642U01700 US37390585	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. 217-01027) 2-Jan-09 (No. E63-3013 Jan09) 9-Sep-08 (No. DAE4-660 Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09
Calibration Equipment used (M& Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 30 dB Attenuator Reference 30 dB Attenuator Reference Probe ES30V2 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by: Approved by:	ID # GB41293874 MY41495277 MY41496877 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 960 ID # US3642U01700 US37390585 Name	Cal Date (Certificate No.) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 1-Apr-09 (No. 217-01030) 31-Mar-09 (No. 217-01026) 31-Mar-09 (No. 217-01027) 2-Jan-09 (No. 217-01027) 2-Jan-09 (No. E63-3013, Jan09) 9-Sep-08 (No. DAE4-860_Sep08) Check Date (in house) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Scheduled Calibration Apr-10 Apr-10 Apr-10 Mar-10 Mar-10 Mar-10 Jan-10 Sep-09 Scheduled Check In house check: Oct-09 In house check: Oct-09

Certificate No: ET3-1782 Apr09

Page 1 of 9

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

55 / 79

Calibration Laboratory of Schmid & Partner

Engineering AG usstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

DCP

TSL NORMx,y,z ConvF

sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point

tissue simulating liquid

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques*, December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E2-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset. The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1782 Apr09

Page 2 of 9

Report File No. : Date of Issue :

F690501/RF-SAR001859

2010-03-26

Page:

56 / 79

ET3DV6 SN:1782

April 30, 2009

Probe ET3DV6

SN:1782

Manufactured:

April 15, 2003

Last calibrated: Recalibrated: April 22, 2008 April 30, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1782_Apr09

Page 3 of 9

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

57 / 79

ET3DV6 SN:1782

April 30, 2009

DASY - Parameters of Probe: ET3DV6 SN:1782

Sensitivity in Fre	e Space ^A		Diode C	Compression ^B
NormX	2.03 ± 10.1%	$\mu V/(V/m)^2$	DCP X	91 mV
NormY	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	91 mV
Norm7	1 92 + 10 1%	$uV/(V/m)^2$	DCP 7	90 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL		835 MHz	Typical SAR gradient: 5 %	per mm	
	Sensor Cent	er to Phanto	om Surface Distance	3.7 mm	4.7 mm
	SAR _{be} [%]	Withou	t Correction Algorithm	10.6	6.3
	SAR. [%]	With C	orrection Algorithm	0.9	0.5

TSL 1750 MHz Typical SAR g	radient: 10 % per mm
----------------------------	----------------------

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR ₅₀ [%]	Without Correction Algorithm	11.5	7.5
SAR _{be} [%]	With Correction Algorithm	0.9	0.6

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1782_Apr09

Page 4 of 9

 $^{^{\}pm}$ The uncertainties of NormX,Y,Z do not affect the E 2 -field uncertainty inside TSL (see Page II).

Numerical linearization parameter: uncertainty not required.

Date of Issue : 2010-03-26 Page : 58 / 79

ET3DV6 SN:1782

April 30, 2009

Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No. ET3-1782_Apr09

Page 5 of 9

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

59 / 79

ET3DV6 SN:1782

April 30, 2009

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

60 / 79

ET3DV6 SN:1782

April 30, 2009

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1782_Apr09

Page 7 of 9

F690501/RF-SAR001859

Date of Issue :

2010-03-26

Page: 61 / 79

ET3DV6 SN:1782

April 30, 2009

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
450	±50/±100	Head	43.5 ± 5%	$0.87 \pm 5\%$	0.29	1.94	6.66 ± 13.3% (k=2)
835	± 50 / ± 100	Head	$41.5\pm5\%$	$0.90 \pm 5\%$	0.51	2.09	6.18 ± 11.0% (k=2)
1750	±50/±100	Head	40.1 ± 5%	1.37 ± 5%	0.50	2.68	5.19 ± 11.0% (k=2)
1900	±50/±100	Head	$40.0\pm5\%$	$1.40\pm5\%$	0.64	2.29	5.00 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.80	1.71	4.45 ± 11.0% (k=2)
450	±50/±100	Body	56.7 ± 5%	0.94 ± 5%	0.21	1.99	7.22 ± 13.3% (k=2)
835	±50/±100	Body	55.2 ± 5%	$0.97 \pm 5\%$	0.40	2.42	5.07 ± 11.0% (k=2)
1750	±50/±100	Body	53.4 ± 5%	1.49 ± 5%	0.63	3.09	4.71 ± 11.0% (k=2)
1900	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.84	2.44	4.45 ± 11.0% (k=2)
2450	±50/±100	Body	$52.7 \pm 5\%$	1.95 ± 5%	0.70	1.40	3.95 ± 11.0% (k=2)

^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Date of Issue : 2010-03-26 Page : 62 / 79

ET3DV6 SN:1782

April 30, 2009

Deviation from Isotropy in HSL

Error (6, 9), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No. ET3-1782_Apr09

Page 9 of 9

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

63 / 79

-DAE Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: DAE3-567_Dec09

Object	DAE3 - SD 000 D0	3 AA - SN: 567	
Calibration procedure(s)	QA CAL-06.v12 Calibration proced	ure for the data acquisition e	lectronics (DAE)
Calibration date:	December 9, 2009	2 2 2 3 3 4 4	
Calibration Equipment used (M&)	TE critical for calibration)	facility: environment temperature (22)	
Calibration Equipment used (M&)		facility: environment temperature (22) Cal Date (Certificate No.) 1-Oct-09 (No. 9055)	Scheduled Calibration Oct-10
Calibration Equipment used (M&) Primary Standards Keithley Multimeter Type 2001	TE critical for calibration) ID # SN: 0810278	Cal Date (Certificate No.) 1-Oct-09 (No. 9055)	Scheduled Calibration Oct-10
Calibration Equipment used (M&)	TE critical for calibration)	Cai Date (Certificate No.)	Scheduled Calibration
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards	TE critical for calibration) ID # SN: 0810278	Cal Date (Certificate No.) 1-Oct-09 (No: 8055) Check Date (in house)	Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10
Calibration Equipment used (M& Primary Standards Keithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check) Function	Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10 Signature
Calibration Equipment used (M&) Primary Standards Keithley Multimeter Type 2001 Secondary Standards	TE critical for calibration) ID # SN: 0810278 ID # SE UMS 006 AB 1004	Cal Date (Certificate No.) 1-Oct-09 (No: 9055) Check Date (in house) 05-Jun-09 (in house check)	Scheduled Calibration Oct-10 Scheduled Check In house check: Jun-10

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

64 / 79

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signetories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

65 / 79

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = 6.1 µV , full range = -100...+300 mV
Low Range: 1LSB = 61nV , full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	404.546 ± 0.1% (k=2)	404.281 ± 0.1% (k=2)	404.334 ± 0.1% (k=2)
Low Range	3.96697 ± 0.7% (k=2)		

Connector Angle

Connector Angle to be used in DASY system	7.5°±1°
Connector Angle to be used in DAS1 system	1100

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

66 / 79

Appendix

1. [

High Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	200002.8	+1.89	-0.00
Channel X + Input	19998.11	-1.59	-0.01
Channel X - Input	-19992.89	7.71	-0.04
Channel Y + Input	199957.5	-46.16	-0.02
Channel Y + Input	19992.42	-7.98	-0.04
Channel Y - Input	-19994.34	4.96	-0.02
Channel Z + Input	199931.6	-61,88	-0.03
Channel Z + Input	19990.70	-8.50	-0.04
Channel Z - Input	-19992.89	-0.04	-0.04

Low Range	Reading (µV)	Difference (µV)	Error (%)
Channel X + Input	2000.7	0.61	0.03
Channel X + Input	199.14	-0.86	-0.43
Channel X - Input	-200.82	-0.72	0.36
Channel Y + Input	2000.0	-0.11	-0.01
Channel Y + Input	198.97	-1.13	-0.56
Channel Y - Input	-201.08	-1.18	0.59
Channel Z + Input	1999.4	-0.87	-0.04
Channel Z + Input	198.62	-1,48	-0.74
Channel Z - Input	-201.26	-1.36	0.68

2. Common mode sensitivity

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	3.98	2.30
	- 200	-0.74	-2.83
Channel Y	200	-0.27	-0.39
	- 200	-0.32	-0.95
Channel Z	200	4,97	4.65
	- 200	-6.07	-6.68

3. Channel separation

neters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200		1.57	-1.52
Channel Y	200	3.06		3.39
Channel Z	200	3.26	-0.28	

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

67 / 79

4. AD-Converter Values with inputs shorted

parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16355	16407
Channel Y	16166	16176
Channel Z	15925	16100

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time; 3 sec; Measuring time; 3 sec Input $10M\Omega$

nput 10MΩ	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.19	-1.19	0.58	0.37
Channel Y	-0.59	-1.52	0.73	0.36
Channel Z	-1.05	-2.18	-0.05	0.34

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <251A

7. Input Resistance

iipat Hoolotailoo	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	203.2
Channel Y	0.1999	202.8
Channel Z	0.1999	201.0

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Date of Issue : 2010-03-26 Page : 68 / 79

- 835 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client SGS KES (Dymstec)

Certificate No: D835V2-490_Aug09

Accreditation No.: SCS 108

Object	D835V2 - SN: 49	0	The street street
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	August 24, 2009		
Condition of the calibrated item	In Tolerance	OF STREET	
ARCHITECTURE AND ADDRESS OF THE PARTY OF THE	All a real part of the college of th	A residence of the second seco	A (b (day or white)
Calibration Equipment used (M&T	TE critical for calibration)	y facility; environment temperature (22 ± 3)*i Cal Date (Certificate No.)	
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3		Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10 Mar-10
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10
All calibrations have been conduct Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10 Mar-10
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09
Calibration Equipment used (M&T Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV3 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3205 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 31-Mar-09 (No. 217-01025) 31-Mar-09 (No. 217-01029) 26-Jun-09 (No. ES3-3205_Jun09) 07-Mar-09 (No. DAE4-801_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Scheduled Calibration Oct-09 Oct-09 Mar-10 Mar-10 Jun-10 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09

Certificate No: D835V2-490_Aug09 Page 1 of 6

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

69 / 79

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

C Service suisse d'etaionna; S Servizio svizzero di taratui S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- EC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-490_Aug09 Page 2 of 6

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

70 / 79

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

XX 240 X 10 X 20 X 10 X 10 X 10 X 10 X 10 X 1	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.2 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature during test	(22.2 ± 0.2) °C	****	1-0 .

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.41 mW/g
SAR normalized	normalized to 1W	9.64 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	9.63 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.58 mW / g
SAR normalized	normalized to 1W	6.32 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	6.31 mW /g ± 16.5 % (k=2)

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

71 / 79

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.6 Ω - 5.6 jΩ
Return Loss	- 25.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.380 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	May 19, 2003

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

72 / 79

DASY5 Validation Report for Head TSL

Date/Time: 24.08.2009 12:36:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:490

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.9$ mho/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

- Probe: ES3DV3 SN3205; ConvF(6.04, 6.04, 6.04); Calibrated: 26.06.2009
- Sensor-Surface: 3mm (Mechanical Surface Detection)
 Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.5 V/m; Power Drift = 0.00948 dB

Peak SAR (extrapolated) = 3.64 W/kg

SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.58 mW/g

Maximum value of SAR (measured) = 2.82 mW/g

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

73 / 79

Impedance Measurement Plot for Head TSL

Date of Issue: 2010-03-26 74 / 79 Page:

- 1900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

SGS KES (Dymstec)

Certificate No: D1900V2-5d033-Aug09

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE D1900V2 - SN: 5d033 Object QA CAL-05.v7 Calibration procedure(s) Calibration procedure for dipole validation kits August 25, 2009 In Tolerance Condition of the calibrated item This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Calibrated by, Certificate No.) Scheduled Calibration Power meter EPM-442A GB37480704 08-Oct-08 (No. 217-00898) Oct-09 Power sensor HP 8481A US37292783 08-Oct-08 (No. 217-00898) Oct-09 Reference 20 dB Attenuator SN: 5086 (20g) 31-Mar-09 (No. 217-01025) Mar-10 Type-N mismatch combination SN: 5047.2 / 06327 31-Mar-09 (No. 217-01029) Mar-10 Reference Probe ES3DV3 SN: 3205 26-Jun-09 (No. ES3-3205 Jun09) Jun-10 DAE4 SN: 601 07-Mar-09 (No. DAE4-601_Mar09) Mar-10 Scheduled Check Secondary Standards Check Date (in house) Power sensor HP 8481A MY41092317 18-Oct-02 (in house check Oct-07) In house check: Oct-09 RF generator R&S SMT-06 4-Aug-99 (in house check Oct-07) 100005 in house check: Oct-09 18-Oct-01 (in house check Oct-08) Network Analyzer HP 8753E US37390585 S4206 In house check: Oct-09 Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Technical Manager Approved by: Katja Pokovic Issued: August 26, 2009 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d033_Aug09

Page 1 of 6

S

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

75 / 79

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

76 / 79

Measurement Conditions

DASY system configuration, as far as not given on page 1.

ASY system configuration, as far as not	given on page 1.	
DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22,0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	1.45 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C	_	

SAR result with Head TSL

SAR averaged over 1 cm ¹ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.0 mW/g
SAR normalized	normalized to 1W	40.0 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.21 mW/g
SAR normalized	normalized to 1W	20.8 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.7 mW / g ± 16.5 % (k=2)

[†] Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

77 / 79

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.3 Ω + 2.7 jΩ	
Return Loss	- 30.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.205 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	March 17, 2003

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

78 / 79

DASY5 Validation Report for Head TSL

Date/Time: 25.08.2009 11:37:38

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d033

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U11 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.45$ mho/m; $\epsilon_r = 40.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 26.06.2009

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 07.03.2009

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm/Zoom Scan (dist=3.0 mm, probe 0deg) (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96 V/m; Power Drift = 0.015 dB

Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 10 mW/g; SAR(10 g) = 5.21 mW/g

Maximum value of SAR (measured) = 12.5 mW/g

0 dB = 12.5 mW/g

F690501/RF-SAR001859

Date of Issue:

2010-03-26

Page:

79 / 79

Impedance Measurement Plot for Head TSL

