## 03. Simple Genetic Algorithm (GA)

Saturday, September 13, 2025 3:53 Pf

► Initialize the Population

► Calculate the Fitness of each individual in population

Driving force of Evolutionary Algorithms
just like, driving force for Neural networks (error),
driving force of reinforcement learning (rewards, and
punishment)

► While stopping criterion not satisfied

Select parents

Perform crossover ---> offsprings

o Apply mutation

Calculate fitness

#### ? What are the shortcomings of GAs?

They are slow (test many solutions over many generations, which takes

Fitness function may not be easily designed

# What is the population size? (or how many chromosomes in one generation/iteration.)

1. Too many: GA extremely sluggish (becomes **slow** because it has to test a huge number of solutions.)

2. Too few: not many possibilities for mating (crossover)

#### Population size is like the number of students in a class.

If the class is too big → teaching is slow and inefficient.

If the class is too small 

there's little diversity of ideas when students work together.

The best learning happens with a **balanced class size** — just like GA works best with a balanced population.

• Small population = fast but may miss good answers.

Large population = thorough but very slow.

• Balanced size gives the best trade-off.

100% (always crossover): Every child is made by mixing pare

NO

 100% (always crossover): Every child is made by mixing parents → lots of new solutions, but risk of losing good ones.

Crossover

Mutate

Replace

 0% (never crossover): Just copy parents → no new ideas, population may get stuck.

What about crossover frequency? (how often we mix parents to

 Middle ground (60–90%): Most children are new (from crossover), but some good parents are kept unchanged → balance between exploring new solutions and keeping the best ones.

That's why many use around 80–90% crossover rate.

#### ? What about mutation frequency? (how often we should apply mutation)

- Too often (50%): Every solution keeps changing randomly → it becomes almost random search, evolution can't "learn" properly. (Imagine you have a candidate solution that is almost perfect, but every time you try to improve it, you randomly change 50% of it. That's like trying to solve a puzzle but shuffling half of the pieces randomly every time you lose the progress you had made.)
- 0% (never): no change in offsprings
- Rarely (1%): just enough to explore new possibilities without destroying the good solution.

For instance, ---> Probability of mutation = P\_mutation = 1 / 1000, ...... typically [0.5% - 1%]

#### How to select parents?

#### ★► Roulette Wheel Selection

- Roulette Wheel Selection
- Tournament Selection
- Rank-Based Selection
   Random Selection

The idea is that individuals with **higher fitness** should have a **greater chance of being selected as parents**, but every individual still has **some chance**.

Simple GA

create new offspring.)

---

**Mathematical Formulation** 

Suppose we have a population of N individuals.

• Fitness of individual i:  $oldsymbol{f_i}$ 

• Total fitness of population:  $F = \sum_{i=1}^{N} f_i$ 

• Selection probability of individual i:  $p_i = \frac{f_i}{r}$ 

This means the probability of selecting an individual is proportional to its fitness relative to the whole population.

Cumulative probability distribution (for the "roulette wheel"):

$$C_i = \sum_{k=1}^i p_i$$

#### To select one parent:

1. Generate a random number  $\mathbf{r} \ \mathbf{2} \ \mathbf{[0,1]}$ .

2. Select the first individual iii such that  $Ci \ge r$ .

#### **Example**

Suppose we have **5 individuals**:

Individual Fitness ( $f_i$ )

20

A 10

B 30

Step 2: Compute probabilities

$$p_i = \frac{f_i}{F}$$

**Step 1: Compute total fitness**  $F = \sum_{i=1}^{N} f_i = 10 + 30 + 20 + 25 + 15 = 100$ 

 $p_A = \frac{10}{100} = 0.10, \quad p_B = \frac{30}{100} = 0.30, \quad p_C = \frac{20}{100} = 0.20, \quad p_D = \frac{25}{100} = 0.25, \quad p_E = \frac{15}{100} = 0.15$ 

| Α | 10 |  |
|---|----|--|
| В | 30 |  |
| С | 20 |  |
| D | 25 |  |
| E | 15 |  |



$$p_A = \frac{10}{100} = 0.10$$
,  $p_B = \frac{30}{100} = 0.30$ ,  $p_C = \frac{20}{100} = 0.20$ ,  $p_D = \frac{25}{100} = 0.25$ ,  $p_E = \frac{15}{100} = 0.15$ 

• E: [0.85, 1.00]

So the probabilities are: A: 10%, B: 30%, C: 20%, D: 25%, E: 15%

.

## Step 3: Build cumulative distribution $\;\; \mathcal{C}_i = \; \sum_{k=1}^i p_i \;\;$





#### **Pros**

#### 1. Simple and intuitive

- Oust proportional to fitness
   → easy to understand.
- Example: In our case, B (fitness 30) has 3× more chance to be selected than A (fitness 10).

#### 2. Every individual has a chance

- Even the weakest (A with 10 fitness) still has 10% chance.
- This helps keep diversity alive.

#### Step 4: Simulate a spin

Suppose we generate random number r = 0.73.

• 0.73 falls in interval [0.60, 0.85], so **D** is selected.

If r = 0.05, we'd select **A**. If r = 0.37, we'd select **B**.

#### Cons

#### 1. Premature convergence if one fitness dominates

- o Suppose one individual has fitness 95 and others share the remaining 5.
- Then:

• 
$$p_{elite} = \frac{95}{100} = 0.95$$

Almost always selects the same parent → loss of diversity → GA may get stuck in a local optimum.

#### 2. Scaling issues

- o If fitness values are very large, selection becomes biased.
- $\circ~$  Example: With values [1000, 2, 1, 3], almost always select 1000  $\Rightarrow$  weak exploration.

#### **★** Tournament Selection

Instead of using probabilities directly (like roulette), tournament selection works by **competition**:

- Pick k individuals at random from the population.
- The fittest among those k wins and becomes a parent.
- Repeat as many times as needed (for multiple parents).

The parameter k controls selection pressure:

- Small k (e.g., 2)  $\rightarrow$  more randomness, more diversity.

| Fitness | Chromosome    | Random<br>Selection | Competition | Selected Individual |
|---------|---------------|---------------------|-------------|---------------------|
| 20      | 0 0 0 1 0 1 0 | )                   |             |                     |
| 35      | 0 0 1 0 0 0 1 | 0 0                 | 1 0 0 0 1 1 |                     |
| 25      | 0 0 0 1 1 0 0 |                     |             |                     |
| 14      | 0 0 0 0 1 1 1 |                     |             | 0 0 1 0 1 0 1 0     |
| 18      | 0 0 0 1 0 0 1 |                     |             |                     |
| 22      | 0 0 0 1 0 1 1 |                     |             |                     |
| 42      | 0 0 1 0 1 0 1 | 0 0                 | 1 0 1 0 1 0 |                     |
| 51      | 0 0 1 1 0 0 1 | ı                   |             |                     |

# Example: Tournament Selection with N = 8 individuals Step 1. Define Population & Fitness

Let's take 8 individuals with these fitness values:

# IndividualFitnessA12B25C7D30

| ,  |
|----|
| 30 |
| 18 |
| 40 |
| 22 |
|    |

## Step 3. Tournament Selection Process

Suppose tournament size k = 3.

15

- Pick 3 individuals randomly from the population.
- Select the one with **highest fitness** among them.
- Repeat for second parent.

#### Step 4. Mathematical Probability of Winning

The **probability** that an individual of rank r wins is:

#### where:

- N = 8
- k = 3
- r=1...8 (1 = worst, 8 = best)

#### Step 2. Rank Individuals

Sort by fitness (worst  $\rightarrow$  best):

| Rank      | Individual | Fitness |
|-----------|------------|---------|
| 1 (worst) | С          | 7       |
| 2         | Α          | 12      |
| 3         | Н          | 15      |
| 4         | E          | 18      |
| 5         | G          | 22      |
| 6         | В          | 25      |
| 7         | D          | 30      |
| 8 (best)  | F          | 40      |
|           |            |         |



$$P(r) = \left(\frac{r}{N}\right)^k - \left(\frac{r-1}{N}\right)^k - \frac{r-1}{N}$$

• 
$$P(1) = \left(\frac{1}{8}\right)^3 - \left(\frac{0}{8}\right)^3 = 0.002$$

• 
$$P(2) = \left(\frac{2}{8}\right)^3 - \left(\frac{1}{8}\right)^3 = 0.015$$
  
•  $P(3) = \left(\frac{3}{8}\right)^3 - \left(\frac{2}{8}\right)^3 = 0.037$ 

• 
$$P(3) = \left(\frac{1}{8}\right)^3 - \left(\frac{1}{8}\right)^3 = 0.037$$

• 
$$P(4) = \left(\frac{4}{8}\right)^3 - \left(\frac{3}{8}\right)^3 = 0.059$$

• 
$$P(5) = \left(\frac{5}{8}\right)^3 - \left(\frac{4}{8}\right)^3 = 0.084$$

• 
$$P(6) = \left(\frac{6}{8}\right)^3 - \left(\frac{5}{8}\right)^3 = 0.103$$
  
•  $P(7) = \left(\frac{7}{8}\right)^3 - \left(\frac{6}{8}\right)^3 = 0.114$ 

• 
$$P(8) = \left(\frac{8}{8}\right)^3 - \left(\frac{7}{8}\right)^3 = 0.118$$

- Easy to implement: just pick k at random, choose max.
   Adjustable pressure: larger k → stronger bias toward best.

- If k is too small (e.g., k=2), weak individuals win too often → randomness.
  If k is too large (close to N), best always wins → loss of diversity.
- The best individual (F, rank 8) has ~11.8% chance of winning any
- Even weaker individuals still have a chance e.g., rank 4 (E) has ~5.9%.
- This balances **selection pressure**: fitter individuals are more likely to win, but weaker ones are not completely excluded.