

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЁТ

По лабораторной работе № 5

По курсу: «Моделирование»

Тема: «Моделирование информационного центра»

Студент: Керимов А. Ш.

Группа: ИУ7-74Б

Оценка (баллы): _____

Преподаватель: Рудаков И. В.

Оглавление

1	Формализация		3
	1.1	Задание	3
	1.2	Концептульная модель	3
	1.3	Переменные и уравнения имитационной модели	4
	1.4	Вероятность отказа в обслуживании	4
2 Результат работы		5	
Bı	Вывод		6

1 Формализация

1.1 Задание

В информационный центр приходят клиенты через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечивать обслуживание среднего запроса пользователя за 20 ± 5 ; 40 ± 10 ; 40 ± 20 . Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель. Откуда выбираются на обработку. На первый компьютер запросы от 1 и 2-ого операторов, на второй – запросы от 3-его. Время обработки запросов первым и 2-м компьютером равны соответственно 15 и 30 мин. Промоделировать процесс обработки 300 запросов.

1.2 Концептульная модель

Рис. 1.1: Концептуальная модель

В процессе взаимодействия клиентов с информационным центром возможно:

- Режим нормального обслуживания, т.е. клиент выбирает одного из свободных операторов, отдавая предпочтение тому у которого меньше номер.
- Режим отказа в обслуживании клиента, когда все операторы заняты.

1.3 Переменные и уравнения имитационной модели

- Эндогенные переменные: время обработки задания i-ым оператором, время решения этого задания j-ым компьютером.
- Экзогенные переменные: число обслуженных клиентов и число клиентов получивших отказ.

1.4 Вероятность отказа в обслуживании

$$P_{\text{otk}} = \frac{C_{\text{otk}}}{C_{\text{otk}} + C_{\text{o6c}}},\tag{1.1}$$

2 Результат работы

Моделирование информационного центра производилось событийным принципом. Результаты работы программы представлены на рисунке 2.1.

Рис. 2.1: Результаты работы программы

Вывод

Промоделирован процесс обработки запросов в информационном центре. Представлена концептульная схема в терминах СМО. Определены эндогенные и экзогенные переменные и уравнения модели. Разработана программа, позволяющая определить количество потерянных заявок и вероятность отказа в обслуживании.