بسم الله الرحمن الرحيم

Parsing: Context-Free Grammars, Parsing and Programming Languages

Languages and Automata

- Formal languages are very important in CS
 - Especially in programming languages
- Regular languages
 - The weakest formal languages widely used
 - Many applications

We will also study context-free languages

Beyond Regular Languages

- Many languages are not regular
- Strings of balanced parentheses are not regular:

$$\left\{ (i)^i \mid i \geq 0 \right\}$$

What Can Regular Languages Express?

What Can Regular Languages Express?

Languages requiring counting modulo a fixed integer

 Intuition: A finite automaton that runs long enough must repeat states

 Finite automaton can't remember # of times it has visited a particular state

The Functionality of the Parser

· Input: sequence of tokens from lexer

• Output: parse tree of the program (But some parsers never produce a parse tree . . .)

Example

· Cool

if
$$x = y$$
 then 1 else 2 fi

Parser input

Parser output

Comparison with Lexical Analysis

Phase	Input	Output
Lexer	String of characters	String of tokens
Parser	String of tokens	Parse tree (may be implicit)

The Role of the Parser

- Not all strings of tokens are programs . . .
- ... parser must distinguish between valid and invalid strings of tokens

- · We need
 - A language for describing valid strings of tokens
 - A method for distinguishing valid from invalid strings of tokens

Context-Free Grammars

Programming language constructs have recursive structure

An STMT is
 if EXPR then STMT else STMT
 while EXPR do STMT end

 Context-free grammars are a natural notation for this recursive structure

CFGs (Cont.)

- A CFG consists of
 - A set of terminals T
 - A set of non-terminals N
 - A start symbol 5 (a non-terminal)
 - A set of productions

$$X \rightarrow Y_1 Y_2 ... Y_n$$

where $X \in N$ and $Y_i \in T \cup N \cup \{\epsilon\}$

Notational Conventions

- · In these lecture notes
 - Non-terminals are written upper-case
 - Terminals are written lower-case
 - The start symbol is the left-hand side of the first production

Example of CFGs

Simple arithmetic expressions:

$$E \rightarrow E * E$$

$$| E + E$$

$$| (E)$$

$$| id$$

The Language of a CFG

Read productions as replacement rules:

$$X \rightarrow Y_1 \dots Y_n$$

Means X can be replaced by $Y_1...Y_n$

Key Idea

- 1. Begin with a string consisting of the start symbol "5"
- 2. Replace any non-terminal X in the string by a the right-hand side of some production

$$X \rightarrow Y_1 \dots Y_n$$

3. Repeat (2) until there are no non-terminals in the string

The Language of a CFG (Cont.)

More formally, write

$$X_1 \, \ldots \, X_{i-1} \, X_i \, X_{i+1} \, \ldots \, X_n \rightarrow X_1 \, \ldots \, X_{i-1} \, Y_1 \, \ldots \, Y_m \, X_{i+1} \, \ldots \, X_n$$

if there is a production

$$X_i \rightarrow Y_1 ... Y_m$$

The Language of a CFG (Cont.)

Write

$$X_1 \dots X_n \rightarrow^* Y_1 \dots Y_m$$

if

$$X_1 \dots X_n \rightarrow \dots \rightarrow \dots \rightarrow Y_1 \dots Y_m$$

in 0 or more steps

The Language of a CFG

Let G be a context-free grammar with start symbol S. Then the language L(G) of G is:

$$\{a_1 \dots a_n \mid S \rightarrow^* a_1 \dots a_n \text{ and every } a_i \text{ is a terminal}\}$$

The sentential forms SF(G) of G is:

$$\{X_1 ... X_n \mid S \rightarrow *X_1 ... X_n \text{ and every } X_i \text{ is a terminal or non-terminal}\}$$

Therefore: $L(G) \subset SF(G)$

Terminals

 Terminals are so-called because there are no rules for replacing them

Once generated, terminals are permanent

Terminals ought to be tokens of the language

Examples

L(G) is the language of CFG G

Strings of balanced parentheses $\{(i)^i | i \ge 0\}$

Two grammars:

Arithmetic Example

Simple arithmetic expressions:

$$E \rightarrow E+E \mid E*E \mid (E) \mid id$$

Some elements of the language:

Notes

The idea of a CFG is a big step. But:

 Membership in a language is "yes" or "no"; also need parse tree of the input

Must handle errors gracefully

Need an implementation of CFG's (e.g., bison)

Derivations and Parse Trees

A derivation is a sequence of productions

$$S \rightarrow ... \rightarrow ... \rightarrow ... \rightarrow ... \rightarrow ...$$

A derivation can be drawn as a tree

- Start symbol is the tree's root
- For a production $X \to Y_1...Y_n$ add children $Y_1...Y_n$ to node X

Derivation Example

· Grammar

$$E \rightarrow E+E \mid E*E \mid (E) \mid id$$

String

$$id * id + id$$

Derivation Example (Cont.)

E E+EE*E+E \rightarrow id * E + E \rightarrow id * id + E id id \rightarrow id * id + id

Derivation in Detail (1)

E

F

Derivation in Detail (2)

Derivation in Detail (3)

Derivation in Detail (4)

Derivation in Detail (5)

Derivation in Detail (6)

- E
- \rightarrow E+E
- \rightarrow E * E+E
- \rightarrow id * E + E
- \rightarrow id * id + E
- \rightarrow id * id + id

Notes on Derivations

- A parse tree has
 - Terminals at the leaves
 - Non-terminals at the interior nodes
- An in-order traversal of the leaves is the original input

 The parse tree shows the association of operations, the input string does not

Left-most and Right-most Derivations

- The example was a leftmost derivation
 - At each step, replaced the left-most non-terminal
- There is an equivalent notion of a right-most derivation

$$\rightarrow$$
 E+E

$$\rightarrow$$
 E+id

$$\rightarrow$$
 E * E + id

$$\rightarrow$$
 E * id + id

$$\rightarrow$$
 id * id + id

Right-most Derivation in Detail (1)

E

F

Right-most Derivation in Detail (2)

$$E \rightarrow E + E$$

Right-most Derivation in Detail (3)

Right-most Derivation in Detail (4)

Right-most Derivation in Detail (5)

$$\rightarrow$$
 E+E

$$\rightarrow$$
 E+id

$$\rightarrow$$
 E * E + id

$$\rightarrow$$
 E * id + id

Right-most Derivation in Detail (6)

- E
- \rightarrow E+E
- \rightarrow E+id
- \rightarrow E * E + id
- \rightarrow E * id + id
- \rightarrow id * id + id

Derivations and Parse Trees

 Note that right-most and left-most derivations have the same parse tree

 The difference is the order in which branches are added

Summary of Derivations

- We are not just interested in whether $s \in L(G)$
 - We need a parse tree for s

- A derivation defines a parse tree
 - But one parse tree may have many derivations

 Left-most and right-most derivations are important in parser implementation

Ambiguity

- Grammar $E \rightarrow E + E \mid E * E \mid (E) \mid id$
- · String id * id + id

Ambiguity (Cont.)

This string has two parse trees

Ambiguity (Cont.)

- A grammar is ambiguous if it has more than one parse tree for some string
 - Equivalently, there is more than one right-most or left-most derivation for some string

- Ambiguity is BAD
 - Leaves meaning of some programs ill-defined

Dealing with Ambiguity

- There are several ways to handle ambiguity
- Most direct method is to rewrite grammar unambiguously

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T * F \mid F$
 $F \rightarrow (E) \mid id$

Enforces precedence of * over +

Ambiguity in Arithmetic Expressions

Recall the grammar

$$E \rightarrow E + E \mid E * E \mid (E) \mid id$$

The string id * id + id has two parse trees:

Ambiguity in Arithmetic Expressions

Recall the grammar

$$E \rightarrow E + E \mid E \times E \mid (E) \mid id$$

The string id * id + id has two parse trees:

Ambiguity: The Dangling Else

Consider the grammar

```
S \rightarrow \text{if E then S}
| if E then S else S
| OTHER
```

This grammar is also ambiguous

The Dangling Else: Example

The expression

if
$$E_1$$
 then if E_2 then S else S

has two parse trees

Typically we want the second form

The Dangling Else: A Fix

- else matches the closest unmatched then
- We can describe this in the grammar

```
S → MIF  /* all then are matched */
    | UIF  /* some then is unmatched */
MIF → if E then MIF else MIF
    | OTHER
UIF → if E then S
    | if E then MIF else UIF
```

Describes the same set of strings

The Dangling Else: Example Revisited

The expression if E₁ then if E₂ then S else S

· Not valid because the then expression is not a MIF

 A valid parse tree (for a UIF)