Daily Assignment 1

Rohan Kapur, Math 117 Summer 2023

April 12, 2024

- 2. Consider the set $\mathbb{Z}_7 = {\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}}$ of residue classes of integers mod 7.
 - (a) Construct the multiplication table for the group $(\mathbb{Z}_7 \setminus \{\overline{0}\}, \cdot)$ where \cdot is defined using representatives: $\overline{m} \cdot \overline{n} = \overline{mn}$.

Answer:							
	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	<u>6</u>
$\overline{0}$	$ \overline{0} $	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
1	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	<u>6</u>
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	<u>6</u>	1	3	$\overline{5}$
3	$\overline{0}$	$\overline{3}$	$\overline{6}$	$\overline{2}$	$\overline{5}$	1	$\overline{4}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{1}$	5	$\overline{2}$	<u>6</u>	3
<u>5</u>	$\overline{0}$	$\overline{5}$	3	1	<u>6</u>	$\overline{4}$	$\overline{2}$
<u></u>	$\overline{0}$	<u>6</u>	5	$\overline{4}$	3	$\overline{2}$	1

(b) Use part (a) to find the multiplicative inverse of every nonzero element of \mathbb{Z}_7 . Answer:

 $(\overline{1})^{-1} = \overline{1}, (\overline{2})^{-1} = \overline{4}, (\overline{3})^{-1} = \overline{5}, (\overline{4})^{-1} = \overline{2}, (\overline{5})^{-1} = \overline{3}, (\overline{6})^{-1} = \overline{6}$

- 3. Let V be a vector space over a field F. Using only the definitions, prove the following for all $v \in V, a \in F$:
 - (a) 0v = 0

Proof: This is saying that 0v maps to the additive identity $\mathbf{0}$ in V. To see this, notice that by distributivity of F over V, 0v + 0v = (0+0)v = 0v. Then by adding -(0v) to both sides, we get $0v = \mathbf{0}$ as desired.

(b) (-a)v = -(av)

Proof: This is saying that (-a)v maps to the unique additive inverse -(av) of av. To see this, notice that by distributivity of V over F, (-a)v + av = (-a + a)v = 0v = 0. Therefore (-a)v is indeed the unique additive inverse of av in V, so (-a)v = -(av).

(c) a0 = 0

Proof: This is saying that $a\mathbf{0}$ is equivalent to the additive identity $\mathbf{0} \in V$. To see this, notice that by distributivity of V over F, $a\mathbf{0} + a\mathbf{0} = a(\mathbf{0} + \mathbf{0}) = a\mathbf{0}$. Then by adding $-(a\mathbf{0})$ to both sides, we get $a\mathbf{0} = \mathbf{0}$.

(d) If $av = \mathbf{0}$, then a = 0 or $v = \mathbf{0}$.

Proof: Suppose that $av = \mathbf{0}$, so av is the additive identity in V, and suppose for

contradiction that $a \neq 0$ and $v \neq \mathbf{0}$. Then there must exist a multiplicative inverse $a^{-1} \in F$ of a such that $aa^{-1} = 1$, so $a^{-1}av = (a^{-1}a)v = 1v = v = a^{-1}\mathbf{0}$, and then by part (b), $v = a^{-1}\mathbf{0} = \mathbf{0}$. However, this contradicts $v \neq \mathbf{0}$, and therefore we must have a = 0 or $v = \mathbf{0}$ to avoid the contradiction.

- 4. Let $C(\mathbb{R})$ be the real vector space of all continuous functions $f : \mathbb{R} \to \mathbb{R}$. Determine which of the following are subspaces of $C(\mathbb{R})$, and justify your reasoning.
 - (a) $A = \{f : f \text{ is twice differentiable and } f''(x) 2f'(x) + 3f(x) = 0 \text{ for all } x \in \mathbb{R}\}$ **Answer:** A is a subspace of $C(\mathbb{R})$ since $\mathbf{0}_{C(\mathbb{R})}$, which is the function f(x) = 0 for all $x \in \mathbb{R}$, is in A since f(x) = 0 is twice-differentiable, and f''(x) - 2f'(x) + 3f(x) = 0. Also, $\forall a, b \in \mathbb{R}$, we have $\forall f_1, f_2 \in A$ that $f_3 = af_1 + bf_2 \in A$ since, by linearity of differentiation,

$$f_3''' - 2f_3' + 3f_3$$

$$= af_1''' + bf_2''' - 2af_1' - 2bf_2' + 3af_1 + 3bf_2$$

$$= a(f_1''' - 2f_1' + 3f_1) + b(f_2''' - 2f_2' + 3f_2)$$

$$= a0 + b0 = \boxed{0}$$

Therefore, both subgroup criteria are satisfied. ■

- (b) $B = \{g : g \text{ is twice differentiable and } g''(x) = g(x) + 1 \text{ for all } x \in \mathbb{R}\}$ **Answer:** $B \text{ is } not \text{ a subspace since } \forall x \in \mathbb{R}, f(x) = 0, \text{ the additive identity of } C(R), \text{ is } not \text{ in } B \text{ since } f''(x) = 0 \neq f''(x) + 1 = 1.$
- (c) $C = \{h : h \text{ is twice differentiable and } h''(0) = 2h(1)\}$ **Answer:** C is a subspace of $C(\mathbb{R})$ since, firstly, the function $\forall x \in \mathbb{R}, f(x) = 0$ is in $C(\mathbb{R})$ as f''(0) = 0 = 2f(1) = 0, and also $\forall a, b \in \mathbb{R}$ and $\forall f_1, f_2 \in C$, we have $af_1 + bf_2 \in C$ since $f_1''(0) = 2f_1(1)$ and $f_2''(0) = 2f_2(1)$, so by linearity of differentiation, $(af_1 + bf_2)'''(0) = af_1'''(0) + bf_2'''(0) = 2af_1(1) + 2bf_2(1) = 2(af_1 + bf_2)(1)$, satisfying both subgroup criteria.