Week 7

1) Which of the following graphs are not complete graphs? (MSQ)

A.

B.

C.

D.

E.

F.

G.

Correct Answer: B E

Solution: In a complete graph having n vertices, all vertices must be connected to every other vertex, i.e., every vertex must have n-1 edges.

Lecture 252: Degree and degree sequence.

2) What is the degree sequence of the given graph?

- A. (4,3,3,3,3,5,2)
- B. (4,4,3,3,3,4,2)
- C. (4,4,3,3,3,5,2)
- D. (4,3,3,3,3,4,2)

Correct Answer: C

Solution: Degree sequence is the sequence of the number of edges of every vertex.

Lecture 252: Degree and degree sequence.

3) What are the cut edge and the cut vertex respectively, in the following graph?

- A. (B, D) and B
- B. (E,F) and F
- C. (B, E) and E
- D. (A,B) and A

Correct Answer: C

Solution: Cut vertex is that vertex that disconnects the graph, while the cut edge is that edge that disconnects the graph. Here removal of the edge (B, E) leads to a disconnected graph, also removal of vertex E leads to a disconnected graph.

Lecture 281, 282: Cut vertex, Cut edge.

- 4) The number of components in a K_n and C_n respectively are?
 - A. 2,2
 - B. 2,1
 - C. 1,2
 - D. 1,1

Correct Answer: D

Solution: K_n is a complete graph, C_n is a graph with cycle and all the vertices are connected, hence they both have only one component.

Lecture 277, 252: Degree and degree sequence, Property of a cycle.

- 5) Which of the following is a graphic sequence?
 - A. 5,3,3,2,2,1
 - B. 2,1,1,1,1,1
 - C. 6,5,4,3,2,1
 - D. 5,5,2,2,1,1

Correct Answer: A

Solution: Using Havel Hakimi theorem.

Lecture 261: Havel Hakimi theorem Part 5

6) Which of the following is not a path from A to H? (MSQ)

A.
$$\{A - B - E - F - G - H\}$$

B.
$$\{A - B - C - H\}$$

C.
$$\{A - F - E - B - C - H\}$$

D.
$$\{A - F - C - B - E - D - C - H\}$$

E.
$$\{A - F - E - D - C - H\}$$

F.
$$\{A - H\}$$

G.
$$\{A - F - E - H\}$$

H.
$$\{A - B - C - D - E - H\}$$

Correct Answer: A D F

Solution: In a path, neither the repetition of vertices is allowed nor the repetition of edges.

Lecture 265: Path and closed path

- 7) If an edge is removed from a cycle in a graph, then the graph becomes disconnected. State whether true/false.
 - A. True
 - B. False

Correct Answer: B

Solution: In a graph, if there is a cycle and if an edge is removed from the cycle, the graph remains connected.

Lecture 277: Property of a cycle

- 8) For a simple graph with vertices, how many subgraphs can be constructed, such that the subgraph is an induced subgraph as well as a spanning subgraph?
 - A. 1
 - B. More than 1
 - C. 0
 - D. n 1

Correct Answer: A

Solution: A subgraph which is induced as well as spanning, is the graph itself.

Lecture 274: Spanning and induced subgraph A result.

9) Observe the following graph. (MSQ)

Choose the correct option(s) from below.

- A. $\{D-E-F-G-C-D\}$ is a cycle
- B. $\{H-B-D-C-G-F-D-A\}$ is a trail
- C. $\{A B D A\}$ is a not cycle
- D. $\{A-B-D-C-D-F\}$ is a trail
- E. $\{A-B-D-C-G-F-D-A\}$ is a circuit.

Correct Answer: A B E

Solution: In a trail, repetition of vertices is allowed but repetition of edges is allowed.

8

Lecture 264, 268: Trail, Cycle and circuit.

10) Which of the following statements is/are true?

- I) If there is a walk from P to Q then, there must be a path from P to Q.
- II) The number of edges in a tree is equal to one less than the number of vertices.
- III) Every graph has an odd number of odd-degree vertices.
 - A. Only I
 - B. Only II
 - C. Only III
 - D. I and II
 - E. I and III
 - F. I, II and III

Correct Answer: D

Solution: Every graph has an even number of even degree vertices OR an even number of odd degree vertices, hence statement III is incorrect.

Lecture 255, 270, 275: Hand shaking lemma Corollary, Relation between walk and path, Introduction to Tree.