

数据分析与R语言 第7周

分类:分类的意义

■ 传统意义下的分类:生物物种

■ 预测:天气预报

■ 决策: yes or no

■ 分类的传统模型

■ 分类(判别分析)与聚类有什么差别?

常见分类模型与算法

- 线性判别法
- 距离判别法
- 贝叶斯分类器
- 决策树
- 支持向量机(SVM)
- 神经网络

线性判别法 (Fisher)

■ 例子:天气预报数据

x1=c(-1.9,-6.9,5.2,5.0,7.3,6.8,0.9,-12.5,1.5,3.8,0.2,-0.1,0.4,2.7,2.1,-4.6,-1.7,-2.6,2.6,-2.8)

x2=c(3.2,0.4,2.0,2.5,0.0,12.7,-5.4,-2.5,1.3,6.8,6.2,7.5,14.6,8.3,0.8,4.3,10.9,13.1,12.8,10.0)

x1,x2的实际意义可以是温度,湿度等等

a = data.frame(G,x1,x2)

plot(x1,x2)

text(x1,x2,G,adj=-0.5)

线性判别法的原理

- 用一条直线来划分学习集(这条直线一定存在吗?)
- 然后根据待测点在直线的哪一边决定它的分类

MASS包与线性判别函数lda()


```
library(MASS)
```

 $Id=Ida(G\sim x1+x2)$

ld

把ld设置成了从这里面提取出的分类方法

```
> ld
Call:
lda(G ~ x1 + x2)
```

```
Prior probabilities of groups:

1 2

0.5 0.5
```

Group means:

x1 x2 1 0.92 2.10 2 -0.38 8.85

Coefficients of linear discriminants:

LD1 x1 -0.1035305 x2 0.2247957

分类判断

z=predict(ld) 用这个分类方法ld去试一下原来的数据集, 发现确实也只错了一个	1	G 1	LD1 1	newG 1
大部分都是刚好原来的分类 newG=z\$class	2		-0.39852439	1
116WG 2461433	3	1	-1.29157053	1
newG	4	1	-1.15846657	1
	5	1	-1.95857603	1
[1] 1 1 1 1 1 2 1 1 1 1 2 2 2 2 1 2 2 2 2	6	1	0.94809469	2
[-]	7	1	-2.50987753	1
Levels: 1 2	8	1	-0.47066104	1
	9	1	-1.06586461	1
cbind=(G,z\$x,newG)	10	1	-0.06760842	1
	11	2	0.17022402	2
y=cbind(G,z\$x,newG)	12	2	0.49351760	2
	13	2	2.03780185	2
У	14	2	0.38346871	2
	15	2	-1.24038077	1
	16	2	0.24005867	2
	17	2	1.42347182	2
	18	2	2.01119984	2
	19	2	1.40540244	2
	20	2	1.33503926	2
	Ę	!有-	一个分类错了,正确率90%	%

2012.6.28 只有一个分类错了,止确率90%

距离判别法

注意:是和类的距离,而不是和点的距离

- 原理:计算待测点与各类的距离,取最短者为其所属分类
- 马氏距离(薛毅书p445,为什么不用欧氏距离?),计算函数mahalanobis()

定义 8.1 设 x,y 是服从均值为 μ , 协方差阵为 Σ 的总体 X 中抽取的样本,则总体 X 内两点 x 与 y 的 Mahalanobis 距离(简称马氏距离)定义为

$$d(x,y) = \sqrt{(x-y)^T \Sigma^{-1}(x-y)}$$
. (8.1)
以前学的都是欧氏距离,此处没有 Σ^{-1}

定义样本 x 与总体 X 的 Mahalanobis 距离为

$$d(x, X) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)}.$$
 (8.2)

算法

■ 情形一(薛毅书p445)

首先考虑两个总体 X_1 和 X_2 的协方差相同的情况,即

$$\mu_1 \neq \mu_2, \quad \Sigma_1 = \Sigma_2 = \Sigma.$$

要判断 x 是属于哪一个总体,需要计算 x 到总体 X_1 和 X_2 的 Mahalanobis 距离 的平方 $d^2(x, X_1)$ 和 $d^2(x, X_2)$,然后进行比较,若 $d^2(x, X_1) \leq d^2(x, X_2)$,则判定 x 属于 X_1 ; 否则判定 x 来自 X_2 . 由此得到如下判别准则:

$$R_1 = \{x \mid d^2(x, X_1) \le d^2(x, X_2)\}, \quad R_2 = \{x \mid d^2(x, X_1) > d^2(x, X_2)\}.$$
 (8.3)

令

$$w(x) = (x - \overline{\mu})^T \Sigma^{-1} (\mu_1 - \mu_2), \tag{8.5}$$

称 w(x) 为两总体距离的判别函数,因此判别准则 (8.3) 变为

$$R_1 = \{x \mid w(x) \ge 0\}, \quad R_2 = \{x \mid w(x) < 0\}.$$
 (8.6)

算法

- 情形二 (薛毅书p447)
- 例子(薛毅书p449)

对于样本 x, 在协方差阵不同的情况下, 判别函数为

$$w(x) = (x - \mu_2)^T \Sigma_2^{-1} (x - \mu_2) - (x - \mu_1)^T \Sigma_1^{-1} (x - \mu_1).$$
 (8.12)

贝叶斯分类器

■ 原理 (薛毅书p455)

$$R_1 = \left\{ x \mid \frac{f_1(x)}{f_2(x)} \ge \frac{L(1|2)}{L(2|1)} \cdot \frac{p_2}{p_1} \right\}, \quad R_2 = \left\{ x \mid \frac{f_1(x)}{f_2(x)} < \frac{L(1|2)}{L(2|1)} \cdot \frac{p_2}{p_1} \right\}.$$

结果

■ 对于总体协方差矩阵相同的情形

$$R_1 = \{x \mid W(x) \ge \beta\}, \quad R_2 = \{x \mid W(x) < \beta\},$$
 (8.26)

其中

$$W(x) = \frac{1}{2}(x - \mu_2)^T \Sigma^{-1}(x - \mu_2) - \frac{1}{2}(x - \mu_1)^T \Sigma^{-1}(x - \mu_1)$$
$$= \left[x - \frac{1}{2}(\mu_1 + \mu_2)\right]^T \Sigma^{-1}(\mu_1 - \mu_2), \tag{8.27}$$

$$\beta = \ln \frac{L(1|2) \cdot p_2}{L(2|1) \cdot p_1}. \tag{8.28}$$

结果

■ 对于总体协方差矩阵不同的情形

$$R_1 = \{x \mid W(x) \ge \beta\}, \quad R_2 = \{x \mid W(x) < \beta\},$$
 (8.29)

其中

$$W(x) = \frac{1}{2}(x - \mu_2)^T \Sigma_2^{-1}(x - \mu_2) - \frac{1}{2}(x - \mu_1)^T \Sigma_1^{-1}(x - \mu_1), \quad (8.30)$$

$$\beta = \ln \frac{L(1|2) \cdot p_2}{L(2|1) \cdot p_1} + \frac{1}{2} \ln \left(\frac{|\Sigma_1|}{|\Sigma_2|} \right). \tag{8.31}$$

程序与例子

- 薛毅书P457
- 利用贝叶斯分类器判断垃圾邮件

多分类的情况

- 多分类下的距离判别法(薛毅书p452)
- 多分类下的贝叶斯(薛毅书p460)

决策树 decision tree

■ 什么是决策树

■ 输入:学习集

■ 输出:分类规则(决策树)

例子

■ 用SNS社区中不真实账号检测的例子说明如何使用ID3算法构造决策树。为了简单起见 ,我们假设训练集合包含10个元素。其中s、m和l分别表示小、中和大。

日志密度	好友密度	是否使用真 实头像	账号是否真 实
S	S	no	no
S	1	yes	yes
1	m	yes	yes
m	m ASP.I	NES素 2 图	yes
1		1 Zaspx.com	yes
m	1	no	yes
m	S	no	no
1	m	no	yes
m	S	no	yes
s	S	yes	no

信息增益

■ 设L、F、H和R表示日志密度、好友密度、是否使用真实头像和账号是否真实,下面计算各属性的信息增益。

$$\begin{split} \inf o(D) &= -0.7log_2 0.7 - 0.3log_2 0.3 = 0.7*0.51 + 0.3*1.74 = 0.879 \\ \inf o_L(D) &= 0.3*(-\frac{0}{3}log_2\frac{0}{3}\underbrace{\frac{3}{3}}\underbrace{\frac{3}{3}}\underbrace{\frac{3}{4}}\underbrace{\frac{3}{4}log_2\frac{1}{4}} - \frac{3}{4}log_2\frac{3}{4}) + 0.3*\underbrace{(-\frac{1}{3}log_2\frac{1}{3} - \frac{2}{3}log_2\frac{2}{3})}_{\text{www.17aspx.com}} 0.4*(-\frac{1}{4}log_2\frac{1}{4} - \frac{3}{4}log_2\frac{3}{4}) + 0.3*\underbrace{(-\frac{1}{3}log_2\frac{1}{3} - \frac{2}{3}log_2\frac{2}{3})}_{\text{gain}(L)} = 0.879 - 0.603 = 0.276 \end{split}$$

根据信息增益选择分裂属性

因此日志密度的信息增益是0.276。用同样方法得到H和F的信息增益分别为0.033和0.553。因为F具有最大的信息增益,所以第一次分裂选择F为分裂属性,分裂后的结果如下图表示:

递归+分而治之

- 在上图的基础上,再递归使用这个方法计算子节点的分裂属性,最终就可以得到整个决策树。
- 这个方法称为ID3算法,还有其它的算法也可以产生决策树
- 对于特征属性为**连续值**,可以如此使用ID3算法:先将D中元素按照特征属性排序,则 每两个相邻元素的中间点可以看做潜在分裂点,从第一个潜在分裂点开始,分裂D并计 算两个集合的期望信息,具有最小期望信息的点称为这个属性的最佳分裂点,其信息 期望作为此属性的信息期望。

R语言实现决策树:rpart扩展包

■ 以鸢尾花数据集作为算例说明

iris.rp = rpart(Species~., data=iris,
 method="class")

plot(iris.rp, uniform=T, branch=0, margin=0.1, main= "Classification Tree\nIris Species by Petal and Sepal Length")

text(iris.rp, use.n=T, fancy=T, col="blue")

Rule 1: if Petal.Length>=2.45&Petal.Width<1.75, then it is versicolor(0/49/5)

Rule2: if Petal.Length>=2.45&Petal.Width>=1.75, then it is virginica (0/1/45)

Rule 3: if Petal.Length<2.45, then it is setosa (50/0/0)

Thanks

FAQ时间