Лекция 1

Реальное явление Математическая модель Выводы в рамках модели

сопоставление

Этапы развития теории вероятностей

- І. Р(А) вероятности некоторых событий
- II. X=X(ω) случайные величины
- III. В математической модели эксперимента введен фактор времени

Из истории теории вероятностей:

1827 Открытие Броуна движения частиц пыльцы в капле воды

... 1900

. . .

1997 Нобелевская премия по экономике вручена Мертону и Шоухсу

. . .

В курсе в основном изучаютя непрерывные, но нигде не дифференцируемые функции. Например, траектория броуновской частицы. Мы находимся в рамках (Ω, \mathcal{F}, P)

Опр.: Случайный элемент - функция X: $\Omega \to S$, которая является $\mathcal{F} \mid \mathcal{B}$ - измеримым. (Т.е. $\forall B \in \mathcal{B} \ x^{-1}(B) = \{ \ \omega : X(\omega) \in B \} \in \mathcal{F}$)

Если M - некоторая система подмножеств S, то $\sigma(M)$ - это наименьшая σ -алгебра (с единицей S), которая содержит M.

S - метрическое пространство. $\mathcal{B}(S) = \sigma\{\text{открыт. мн-ва } S\}$

<u>Упражнение.</u> S - сепарабельное метрическое пространство, тогда $\mathcal{B}(S) = \sigma(\sigma(T))$ шаров) = $\sigma(\sigma(T))$ шаров)

Л Е М М А. Пусть X: $\Omega \to S$. Пусть M - некоторая ситсема подмножеств S. Введем в Ω σ -алгебру $\mathcal{A} = X^{-1}(\sigma\{M\})$. Тогда X является $\mathcal{A}|\sigma\{M\}$ - измеримым отображением.

Доказательство.

$$\circ \mathcal{D}:= \{ D \subset S : X^{-1}(D) \in \mathcal{A} \}$$
 - σ - алгебра. $M \subset \mathcal{D} \bullet$

Следствие.

Пусть X:
$$\Omega \to S$$
, $\mathcal{B} = \sigma\{M\}$, (X: $(\Omega, \mathcal{F}) \to (S, \mathcal{B})$), тогда X $\in \mathcal{F}|\mathcal{B}$, если $X^{-1}(M) \subset \mathcal{F}$, т.е. $X^{-1}(B) \in \mathcal{F} \ \forall B \in M$

То есть достаточно проверить на множествах, порождающих σ -алгебру. (Т.е. на более "скудной"совокупности множеств.

Измеримые отображения позволяют "перекинуть" меру с одного пространства на другое.

Опр.: Распределением случайного элемента $X: \Omega \to S \ (X \in \mathcal{F}|\ \mathcal{B})$ называется мера $P_x(B) := P(X^{-1}(B))$. Т.е. возникает мера на (S, \mathcal{B})

Изучение вероятностных мер на пространстве (S, \mathcal{B}) и изучение распределений случайных элементов по сути одно и тоже.

Л Е М М А. Пусть Q - вероятностная мера на (S, \mathcal{B}). Тогда $\exists (\Omega, \mathcal{F}, P)$ и случайный элемент X: $\Omega \to S$, такой что $P_x = Q$.

Доказательство.

 \circ Возьмем $\Omega=S,\;\mathcal{F}=\;\mathcal{B},\,P=Q,\,X=I$ (тождественное) ullet

Опр.: Пусть $(S_t, \mathcal{B}_t)_{t \in T}$ - семейство измеримых пространств. Случайной функцией [заданной на Ω и T] называется семейство случайных элементов $X = \{X(t,\omega), t \in T, \omega \in \Omega\}$

 $X_t:\Omega o S_t,\, orall t{\in} T$, являются $\left.\mathcal{F}\right|\, \mathcal{B}$ - измеримыми

Наиболее важный случай, когда $S_t = S$, $\mathcal{B}_t = \mathcal{B}$

$$X=X(t,\omega), t\in T, \omega\in\Omega$$

- при каждом фиксированном t X случайная величина
- по традиции аргумент ω в записи случайного процесса опускается, а пишется $\mathbf{X}(\mathbf{t})$ или X_t

Опр.: Функция $X(\cdot,\omega)$ при фиксированном ω называется *траекторией* (реализацией или выборочной функцией).

Если $T \subset \mathbf{R}^d$, то говорят о случайных полях

Опр.: Системы множеств $M_1, \ldots, M_n \subset \mathcal{F}$ называются независимыми (в совокупности), если выполняется $\forall A_1 \in M_1, \ldots, A_n \in M_n$ $P(A_1, \ldots, A_n) = P(A_1), \ldots, P(A_n)$.

Семейство подмножеств M_t , $t \in T$ называется независимым, если $\forall n \ge 2 \ \forall t_1, \dots, t_n \in T, M_1, \dots, M_n$ - независимые системы.

Опр.: Случайные элементы X_1, \ldots, X_n называются независимыми (в совокупности), если независимы σ -алгебры $\sigma\{X_1\}, \ldots, \sigma\{X_n\}$. ($\sigma\{X_1\} = \{X^{-1}(B), B \in B_1\}$)

 X_1, X_2, \dots независимые действительные случайные величины. (Ω, \mathcal{F}, P) .

Опр.: Функциями распределения X_n называется $F_{X_n}(x)=P(\omega:X_n(\omega)\leq x)$. Далее мы будем отождествлять запись P_x и F_x

Возьмем $\Omega=[0,1],\ \mathcal{B}=\mathcal{B}([0,1]),\ P=\mu$ (мера Лебега). $\mu([a,b])=b$ - а. $\omega\in[0,1]$

Рассмотрим $\omega = \sum_{k=1}^{\infty} a_k(\omega) 2^{-k}$, $a_k = 0$ или 1. Если запись неоднозначна, то выбираем бесконечную последовательность нулей.

Легко проверить, что a_1, a_2, \ldots - независимые случайные величины $\mathrm{P}(a_n = 0) = \mathrm{P}(a_n = 1) = 1/2 \ (*)$

Обратно. Если a_1,a_2,\ldots - независимые случайные величины, такие что справедливо (*), то $\xi(\omega)=\sum_{k=1}^{\infty}a_k(\omega)2^{-k}$ является равномерно распределенной величиной на [0,1]. Если F - функция распределения, то введем $F^{inv}(\mathbf{x})=\inf\{y:F(y)>x\}$ $\forall x\in[0,1]$

От слова invert.

Положим $X(\omega) = F^{inv}(\xi(\omega))$, где ξ - равномерно распределена на [0,1] (т.е. \sim R[0,1]). Тогда $P(F^{inv}(\xi) \leq z) = P(\xi \leq F(z)) = F(z)$, т.к. ξ - равномерно распределена $\forall z \in \mathbf{R}$.

Итак, берем разложение $\omega = \sum_{k=1}^{\infty} a_k(\omega) 2^{-k}, \ \omega \in [0,1]$

Записываем a_k в виде матрицы

Обходим бесконечную матрицу от b_{11} к b_{21} , потом к b_{12} по дигонали и т.д., так мы обойдем все элементы матрицы. Введем $\xi_n(\omega) = \sum_{k=1}^{\infty} b_{n_k}(\omega) 2^{-k}$ - независимые равномерно-распределенные случайные величины $X_n(\omega) =$

 $F_n^{inv}(\xi_n(\omega))$

<u>Упражнение</u>. X_t , $t \in T$ на [0,1] нельзя построить континуальное семейсво независимых случайных величин с заданными функциями распределениями

Т Е О Р Е М А. (Ломницкий-Улам)

Пусть $(S_t, \mathcal{B}_t)_{t \in T}$ - любое семейство измеримых пространств. Пусть Q_t - вероятностная мера на (S_t, \mathcal{B}_t) . Тогда $\exists (\Omega, \mathcal{F}, P)$ и семейство независимых случайных элементов $X_t: \Omega \to S_t$ $\mathcal{F}|$ \mathcal{B}_t -измеримо. Без доказательства.

Примеры

1. Случайное блуждание.

 ξ_1,\dots - последовательность независимых одинаково распределенных действительных случайных величин. $S_n=\sum_{k=1}^n \xi_k,\, S_0=0$

2. Процесс восстановления.

 ξ_1, \ldots - н.о.р.с.в. (здесь и далее: независимые одинаково распределенные величины (-a))

 $X_0=0$ и для t>0 положим $X_t(\omega)=\max\{n:\sum_{k=1}^n \xi_k(\omega)\leq t\}$

распределения . Мы видим, что меньше t только две случайные величины, т.е. $X_t(\omega)$. Например, восстановление сгоревших лампочек за время t. Кстати, $X_n(\omega) \leq \infty$ (с вероятностью 1). y_0 - начальный капитал. ct - взносы. $\{\eta_i\}$ - н.о.р. $\{\xi_i\}$ и $X_t(\omega)$ - из прошлого примера

3. Модель Крамера-Лундберта.

$$Y_t = y_0 + ct - \sum_{i=1}^{X_t(\omega)} \eta_j(\omega)$$

 $t \geq 0.\{\xi_j\}$ и $\{\eta_j\}$ - независимы. (Модель страхования)

4. Эмпирические меры

 ξ_1, \ldots - н.о.р. векторы в \mathbf{R}^m .

$$P_n^*(B,\omega) = 1/n \sum_{k=1}^n I_B(\xi_k(\omega))$$

В - борелевское множество в ${\bf R}^m$. $P_n^*(B,\omega)$ - случайный процесс.

5.Пуассоновские случайные меры.

 $(S, \mathcal{B}), \xi_1, \ldots$ - н.о.р. со значениями в S, λ - конечная мера на (S, \mathcal{B}) . Введем случайный процесс $Y \sim Pois(\lambda(s)), Y$ и $\{\xi_k\}$ независимы

Y и ξ_k могут принимать значения в разных пространствах

$$Z(B,\omega) := \sum_{k=1}^{Y(\omega)} I_B(\xi_k(\omega))$$

- пуассоновская случайная мера.

Задачи.

1.Построить график модели Крамера-Лундберта.

2.Пусть
$$B_1, \ldots, B_r \subset \mathbf{R}_m$$
. $B_i \cap B_j = \emptyset$

$$\mathbf{a})Z(B_1),\ldots,Z(B_r)$$
 - независимы

б) $Z(\cdot,\omega)$ - целочисленная мера при ω фиксированном

$$B)Z(B) \sim Pois(\mu(B))$$

$$3.\xi = (\xi_1, \dots, \xi_n) \sim N(aI, C)$$

1

$$\forall c \in \mathbf{R}^n, (\xi,) \sim N(\cdot, \cdot)$$

Лекция 2

На (Ω, \mathcal{F}, P) рассмотрим семейство случайных величин $X = \{X_t, t \in T\}$ $X_t : (\Omega, \mathcal{F}, P) \to (S_t, \mathcal{B}_t)$

Случайный прцесс порождает отображение $\mathbf{X}(\omega): \omega \to X(\cdot, \omega)$ ($\mathbf{X}: \Omega \to S_T$, где $S_T = \otimes_{t \in T} S_t$ - множество траекторий. $X(\cdot, \omega)$ - траектория при фиксированном ω .

 ω - фиксирована \Rightarrow траектория, если фиксируем ω , то другая траектория.

Опр.: $C_T(t,B_t)=\{y\in S_T:y_t\in B_t\}$ - множество называется элементарным иилиндром. Другими словами, мы рассматриваем все функции, в заданный момент T, которые в фиксированный момент времени t проходят через "ворота" B_t .

Расмотрим $\mathcal{B}_T := \sigma$ {элементарных цилиндров}. Легко заметить, что отображение $\mathbf{X}(\omega): \Omega \to S_T$ является $\mathcal{F}|\mathcal{B}_T$ - измеримым. Докажем этот отдельный факт.

Доказательство.

Возьмем элементарный цилиндр $C_T(t, B_t)$.

$$\mathbf{X}(\omega)^{-1}(C_T(t,B_t)) =$$

$$\{\omega: \mathbf{X}(\omega) \in C_T(t, B_t)\} =$$

$$= \{\omega : X_t(\omega) \in B_t\},\$$

но $X_t(\omega)$ - случайная величина при каждом $t \Rightarrow \mathbf{X}(\omega)^{-1}(C_T(t,B_t)) = \{\omega: X_t(\omega) \in B_t\} \in \mathcal{F}$ •

Итак, по следствию (из лекции 1) \Rightarrow $\mathbf{X}(\omega) \in \mathcal{F}|\mathcal{B}_t$ - измеримо

Введем отображение $\pi_{T,t}: \mathcal{S}_T \to S_t$. Т.ч. $\pi_{T,t}y = y(t), \ y \in S_t$. Легко видеть, что $\pi_{T,t} \in \mathcal{B}_T | \mathcal{B}_t$, т.к. прообраз \forall множества из \mathcal{B}_t большого есть элементарный цилиндр. Если $\mathbf{X}(\omega): \Omega \to \mathcal{S}_T;$ $\mathbf{X}(\omega) \in \mathcal{F} | \mathcal{B}_T$, то $\pi_{T,t}\mathbf{X}(\omega) = X_t(\omega)$. Вывод: $\pi_{T,t}X_t(\omega)$ является $\mathcal{F} | \mathcal{B}_t$ - измеримым отображением.

Итак, доказана следующая

 ${\bf T} \to {\bf O} \to {\bf P} \to {\bf M}$ А. $X=\{X_t;\ t\in T\}$ является семейством $\mathcal F|\mathcal B_T$ - измеримых отображений \Leftrightarrow

 $bfX(\omega)$ является $\mathcal{F}|\mathcal{B}_t$ - измеримым. Получили два эквивалентных определения случайного процесса

Мы видели, что если $\xi: \Omega(\Omega, \mathcal{F}, P) \longrightarrow S(S, \mathcal{B}), \ \xi \in \mathcal{F}|\mathcal{B}$, тогда возникает распределение $\xi: P_{\xi}(B) := P(\xi^{-1}(B))$, где $B \in S$

Итак, если $X = \{X_t, t \in T\}$ - случайный процесс, то возникает мера P_x на \mathcal{B}_T (мера порожденная случайным элемнтом \mathbf{X}), т.е. мы можем говорить о вероятностях, которые при этом возникают.

Будем рассматривать зависимые случайные величины.

Пусть S_T - случайный процесс. Для точек $t_1,\ldots,t_n\in T$ рассматриваем "прямоугольник" $C=B_{t_1}\times\ldots\times B_{t_n}$ - это множество в пространстве S_{t_1},\ldots,S_{t_n} . Обозначим $S_{t_1...t_n}=S_{t_1}\times\ldots\times S_{t_n}$. (Сужение траекторий определенных на множестве $\{t_1,\ldots,t_n\}\subset T$)

Имеет смысл рассматривать точки t_1,\ldots,t_n - различные (не совпадают друг с другом). Возьмем $\xi=(X_{t_1},\ldots,X_{t_n})$ и рассмотрим σ - алгебру: $\mathcal{B}_{t_1,\ldots,t_n}=\sigma\{$ "все прямоугольники" $\}$, то $\xi\in\mathcal{F}|\mathcal{B}_{t_1,\ldots,t_n}$, т.к. если взять \forall прямоугольник $C=B_{t_1}\times\ldots\times B_{t_n}$ и рассмотреть $\xi^{-1}(C)$.

$$\xi^{-1}(C) = \bigcap_{k=1}^{n} \{ X_{t_k} \in B_{t_k} \} \quad (\{ X_{t_k} \in B_{t_k} \} \in \mathcal{F})$$

т.к. прямоугольники - это система порождающих для $\mathcal{B}_{t_1,\dots,t_n}$, то $\xi\in\mathcal{F}|\mathcal{B}_{t_1,\dots,t_n}$. На S_{t_1,\dots,t_n} возникают меры $P_{t_1,\dots,t_n}(\mathcal{D})=P((X_{t_1},\dots,X_{t_n})\in\mathcal{D})$

Опр.: Меры $P_{t_1,...,t_n}$ (на $(S_{t_1,...,t_n}, \mathcal{B}_{t_1,...,t_n})$) называются конечномерными распределениями (к.-м.р.) процесса X.

Свойсва этих мер:

1. Возьмем прямоугольник $C = B_{t_1} \times \ldots \times B_{t_n}$. Пусть (i_1, \ldots, i_n) - перестановка набора $(1, \ldots, n)$. Что можно сказать про (*) $P_{t_{i_1}, \ldots, t_{i_n}}(B_{t_{i_1}} \times \ldots \times B_{t_{i_n}})$?

Одновременно все индексы внизу и вверху переставили \Rightarrow очевидно, что функция не изменится.

$$(*) = P_{t_{i_1}, \dots, t_{i_n}}(B_{t_{i_1}} \times \dots \times B_{t_{i_n}}) = P(\bigcap_{k=1}^n \{X_{t_k} \in B_{t_k}\}). \quad A \cap_{k=1}^n \{X_{t_k} \in B_{t_k}\}$$
$$= = \bigcap_{k=1}^n \{X_{t_k} \in B_{t_k}\} = \bigcap_{k=1}^n \{X_{t_{i_k}} \in B_{t_{i_k}}\}) = \mathcal{B}_{t_1} \times \dots \times \mathcal{B}_{t_n}$$

2. $P_{t_{i_1},\dots,t_{i_n}}(\mathcal{B}_{t_{i_1}} \times \dots \times \mathcal{B}_{t_{i_{n-1}}} \times \mathcal{S}_{t_n}) = P_{t_1,\dots,t_{n-1}}(\mathcal{B}_{t_{i_1}} \times \dots \times \mathcal{B}_{t_{i_{n-1}}})$, т.к. выражение это равно

$$P(\bigcap_{k=1}^{n} \{X_{t_k} \in B_{t_k}\} \bigcap \{X_{t_n} \in \mathcal{S}_{t_n}\})$$

эти условия называются условиями **симметрии** (1) и **согласованности** (2)

Если имеется случайный процесс, то его к.-м.р. обладают свойствами симметрии и согласованности.

Опр.: Измеримые пространства (S,\mathcal{B}) и (V,\mathcal{A}) называются *изоморфными* (\sim) , если \exists взаимно-однозначное отображение $h: \mathcal{S} \to \mathcal{V}$ т,ч $h \in \mathcal{B} \mid \mathcal{A}$ - изм, а $h^{-1} \in \mathcal{A} \mid \mathcal{B}$ - изм.

Опр.: Пространство (S,\mathcal{B}) называется *борелевским*, если оно изоморфно борелевскому подпространству отрезка [0,1]. Хотя что такое борелевское подпространство отрезка [0,1] неясно

 \forall пространство \mathbf{R}^m является борелевским. **Польское** - полное, сепарабельное, метрическое пространство. \forall борелевское подмножество польского пространства является борелевским.

Т Е О Р Е М А.(Колмогоров). Пусть $(S_t, \mathcal{B}_t)_{t \in T}$ - семейство борелевских пространств. Пусть на пространствах $(S_{t_1,\dots,t_n}, \mathcal{B}_{t_1,\dots,t_n})$ $(n \in \mathbf{N}, t_1,\dots,t_n \in T)$ заданы меры P_{t_1,\dots,t_n} , удовлетворяющие условиям **симметрии** и **согласованности** (1 и 2), тогда \exists вероятностное пространство (Ω, \mathcal{F}, P) и случайный процесс: $X = \{X_t, t \in T\}$ (т.е. $X_t \in \mathcal{F} | \mathcal{B}_t$ - измеримы $\forall t \in T$), т.ч. меры P_{t_1,\dots,t_n} являются **к-м.р.**-ми процесса X.

Доказательство.

о его не будет ввиду его сложности (*а зря - зам.*) До этой теоремы Даниэль доказал для Т-счетного эту теорему. •

Вспомним характеристическую функцию случайного вектора. $\xi=(\xi_1,\ldots,\xi_n)$ -случайный вектор со значениями в \mathbf{R}^n

Опр.: Xарактеристической функцией вектора ξ называется функция

$$i\sum\limits_{k=1}^n\lambda_k\xi_k$$
 $\varphi_\xi(\lambda)$:=E $\exp\{i<\lambda,\xi>\}$ = $\mathrm{E}e^{i\sum\limits_{k=1}^n\lambda_k\xi_k}$, где $\lambda=(\lambda_1,\ldots,\lambda_n)\in\mathbf{R}^n,i^2=-1$ - мнимая единица, $<\cdot,\cdot>$ - скалярное произведение.

Вспомним замену переменных в интеграле Лебега. Если есть $(\Omega, \mathcal{F}, P) \stackrel{g \in \mathcal{F} \mid \mathcal{B}}{\to} (S, \mathcal{B}) \stackrel{h \in \mathcal{B} \mid \mathcal{B}(\mathbf{R})}{\to} (\mathbf{R}, \mathcal{B}(\mathbf{R}))$, то $\int\limits_{\Omega} h(g(u)) \mathrm{d} P = \int\limits_{S} h(z) P g^{-1}(dz)$. Как, пользуясь этим свойством, записать х. функцию случайного вектора в виде \int по пространству \mathbf{R} ?

$$= \int_{\mathbf{R}^n} e^{i\langle\lambda,z\rangle} P_{\xi}(dz)$$

-где $P_{\xi}(dz)$ - распределение с.вектора. Т.е. главный вывод такой: х.ф. вектора \equiv х.ф. меры, являющейся его распределением.

Т.о., если Q - мера на $(\mathbf{R}^n, \mathcal{B}(\mathbf{R}^n))$, то $\varphi_Q(\lambda) = \int_{\mathbf{R}^n} e^{i < \lambda, z >} Q(dz)$ - х.ф. меры $Q \Longrightarrow$ вывод: х.ф. сл. вектора ξ совпадает с х.ф. его распределения $P_{\mathcal{E}}$.

Как условия симметрии и согласованности для действительного процесса можно переписать в терминах х.ф.? См. Упажнение ниже. Если есть $\xi =$

 (ξ_1,\ldots,ξ_n) , то $\varphi_\xi(\lambda):=Ee^{i\sum\limits_{k=1}^n\xi_k\lambda_k}$; далее если (j_1,\ldots,j_n) перестановка набора $(1,\ldots,n)$, то

$$(A) \varphi_{P_{t_1,\dots,t_n}}(\lambda_{j_1},\dots,\lambda_{j_n}) = \varphi_{P_{t_{\sigma(1)},\dots,t_{\sigma(n)}}}(\lambda_1,\dots,\lambda_n)$$

$$(B) \varphi_{P_{t_1,\dots,t_n}}(\lambda_1,\dots,\lambda_{n-1},0) = \varphi_{P_{t_1,\dots,t_{n-1}}}(\lambda_1,\dots,\lambda_{n-1})$$

В курсе Т.В. доказывается, что между мерами на евклидовом пространстве и характеристическими функциями есть биекция.

Опр.: Процесс $X=\{X_t,t\geq 0\}$ с действительными значениями называется процессом с независимыми приращениями, если $\forall n\in \mathbf{N}, \forall 0\leq t_0< t_1<\ldots< t_n$ величины $X_{t_0},X_{t_1}-X_{t_0},X_{t_2}-X_{t_1},\ldots,X_{t_n}-X_{t_{n-1}}$ - независимы в совокупности.

Если есть процесс $\{X_t, t \in \mathbf{N}\}$ с независимыми приращениями, то (Запишем величину X_t так: $X_t = X_+(X_1 - X_0) + (X_2 - X_1) + \ldots + (X_t - X_{t-1})$ все слагаемые суммы независимы) тогда $X_t = S_t$ - процесс частных сумм независимых случайных величин. Здесь в качестве t_k взяли $k, t_k = k$.

Т Е О Р Е М А. Пусть $\varphi(s,t,\cdot)$ - хар. функции мер $Q_{s,t}$, где $0 \le s < t < \infty$. Для того, чтобы на некотором вероятностном пространстве (Ω,\mathcal{F},P) \exists -л действительный процесс $X=\{X_t,t\ge 0\}$ с независимыми приращениями, т.ч. х.ф. X_t-X_s есть $\varphi(s,t,\cdot)$; необходимо и достаточно выполнение следующего условия:

$$\varphi(s,t,\cdot)=\varphi(s,u,\cdot)\varphi(u,t,\cdot)$$

-при всех $0 \le s < u < t$. При этом начальное распределение, т.е. распределение величины X_0 могло быть сделано произвольным.

Доказательство.

 \circ необходимость \Rightarrow очевидно, т.к. х.ф. суммы независимых сл. величин \equiv произведение х.ф. слагаемых, т.е. $X_t-X_s=(X_t-X_u)+(X_u-X_s)$ достаточность \Leftarrow Допустим, что уже \exists требуемый процесс $X=\{X_t,t\geq 0\}$. Тогда х.ф. вектора $\xi=(X_{t_0},X_{t_1}-X_{t_0},\ldots,X_{t_n}-X_{t_{n-1}})$ приобретает вид в т. $(\lambda_0,\ldots,\lambda_n)$:

$$\varphi_\xi(\lambda_0,\dots,\lambda_n)=\varphi_{X_{t_0}}(\lambda_0)\varphi_{X_{t_1}-X_{t_0}}(\lambda_1)\cdot\dots\cdot\varphi_{X_{t_1}-X_{t_{n-1}}}(\lambda_n)=$$
Возьмем $t_0=0$, тогда $\varphi_{X_{t_0}}(\lambda_0)=\varphi_{Q}(\lambda_0)$

$$= \varphi_Q(\lambda_0) \cdot \varphi(t_0, t_1, \lambda_1) \dots \varphi(t_{n-1}, t_n, \lambda_n)$$

Тогда
$$\begin{pmatrix} X_{t_0} \\ X_{t_1} \\ \vdots \\ X_{t_n} \end{pmatrix} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & 0 \\ 1 & \dots & \dots & 1 \end{pmatrix} \begin{pmatrix} X_{t_0} \\ X_{t_1} - X_{t_0} \\ \vdots \\ X_{t_n} - X_{t_{n-1}} \end{pmatrix} (y = A\xi)$$

Если имеется ξ и квадратная матрица A, то $\varphi_{A\xi}(\lambda) = Ee^{i < A\xi, \lambda >} = Ee^{i < \xi, A^*\lambda >} = \varphi_{\xi}(A^*\lambda)$. Где A^* - транспонированная к A матрица. Следовательно, х.ф. $\varphi_{X_{t_0},\dots,X_{t_n}}(\lambda_0,\dots,\lambda_n) = \varphi_{\xi}(A^*\lambda)$. \bullet

Если параметрическое множество $T \subset \mathbf{R}$ и имеются меры P_{t_1,\dots,t_n} , где $t_1 < \dots < t_n(t_k \in T \ \forall k)$. И выполнено условие (3) вместо (2), а именно .

(3):
$$P_{t_1,...,t_m,...,t_n}(\dots \mathbf{R} \dots) = P_{t_1,...,t_{m-1},t_{m+1},...,t_n}(\dots \mathbf{R} \dots)$$
 Тогда применима теорема Колмогорова.

(по лекции, здесь идет упражнение, но все подобного рода задачи иногда будут вынесены за пределы лекции - прим.ред.)

Опр.: Процесс **N** = $\{N_t, t \ge 0\}$ называется *пуассоновским*, если

- 1. $N_0 = 0$ п.н.
- 2. Процесс ${\bf N}$ имееет независимые приращения.
- 3. $N_t N_s$ приращение распределено $\sim \pi_\lambda(t-s), \ 0 \le s < t.$ Где π -пуассоновский закон.

Процесс также называется cmandapmным nyacconoвcким uhmencushocmu $\lambda.$

График траектории пуассоновского процесса (процесса восстановления).

Здесь $\xi_1(u), \xi_2(u), \ldots$ - независимые одинаково распределенные по экспоненциальному закону. Докажем, что пуассоновский процесс существует. $\zeta \sim \pi(a)$

$$\varphi_{\zeta}(\lambda) = Ee^{i\zeta\lambda} = \sum_{k=0}^{\infty} e^{ik\lambda} P(\xi = k) = e^{-a} \sum_{k=0}^{\infty} \frac{(ae^{i\lambda})^k}{k!} = e^{-a} e^{aei\lambda} = e^{a(e^{i\lambda} - 1)} - e^{-a} e^{aei\lambda} = e^{a(e^{i\lambda} - 1)} - e^{aei\lambda} = e^{aei\lambda} = e^{a(e^{i\lambda} - 1)} - e^{aei\lambda} = e^$$

х.ф. пуассоновского распределения.

Упражнения.

<u>Упражнение</u> 1. Если для $P_{t_1,...,t_n}$ (мер) их х.ф. обладают условиями (A) И (B) (см.лекцию 2), то имеют место свойства симметрии и согласованности для мер $P_{t_1,...,t_n}$.

Упражнение 2. Проверить, что для х.ф. $\varphi_{X_{t_0,...,t_n}}(\lambda_0,...,\lambda_n)$ выполнено свойство (3)

Указание. Надо подставить 0 в х.ф. на k-ое место и увидеть, что получили х.ф. укороченного ранга. При этом воспользуемся теоремой $(\varphi(s,t,\cdot) = \varphi(s,u,\cdot)\varphi(u,t,\cdot))$, т.к. будет х.ф.

Упражнение 3. Проверить, что выполнено условие теоремы о существовании процесса с независимыми приращениями для пуассоновского процесса.

Задачи.

1. Пусть $X = \{X_t, t \in T\}$ сл. процесс со значениями в польском пространстве S при каждом t. Пусть траектории непрерывны. Тогда X является сл. элементом со значениями в C(T,S), т.е. $\mathcal{F}|\mathcal{B}(C(T,S))$ - изм. (Теперь по-русски, $S = \mathbf{R}$, траектории непрерывны. Тогда X- сл. элемент со значениями в C[0,1]).

2.
$$\eta_n \stackrel{d}{\to} \eta \stackrel{?}{\Leftrightarrow} \varphi_{n_n}(\lambda) \to \varphi_n(\lambda)$$
. $(\varphi_{n_n}(\lambda) = e^{ia_n\lambda - \frac{1}{2}\sigma_n^2\lambda^2})$

Лекция 3

Опр.: Процесс $\mathbf{W} = \{W_t, t \geq 0\}$ называется виннеровским (или броуновским движением), если

- 1. $W_0 = 0$ п.н.
- $2.\ \, {
 m Процесс}\ W$ имеет независимые приращения.
- 3. $W_t W_s$ приращение распределено $\sim N(0, t s), \ t > s \ge 0$
- 4. Траектории непрерывны.

$$\xi\sim N(a,\sigma^2),\; \varphi_\xi(\lambda)=Ee^{i\lambda\xi}=e^{ia\lambda-rac{\sigma^2\lambda^2}{2}}$$
 $\varphi(s,t,\lambda)=\varphi(s,u,\lambda)\varphi(u,t,\lambda)$ - будут выполнены, т.к. $e^{-rac{\lambda^2(t-s)}{2}}=e^{-rac{\lambda^2}{2}(u-s)}e^{-rac{\lambda^2}{2}(t-u)},$ по доказанной теореме процесс со свойствами 1^o-3^o существует.

Опр.: Вектор ζ со значениями в \mathbf{R}^n называется гауссовским (нормальным), если $\varphi_{\zeta}(\lambda) := Ee^{i<\zeta,\lambda>} = \exp\{i < a, \lambda> - \frac{1}{2} < C\lambda, \lambda>\} = [$ по координатно $] = \exp\{i \sum_{k=1}^n a_k \lambda_k - \frac{1}{2} \sum_{k,l=1}^n c_{kl} \lambda_k \lambda_l\}.$ $\zeta \sim N(a,C), a \in \mathbf{R}^n, C = \{c_{kl}\}_{k,l=1}^n$ $a_k = E\zeta_k, c_{kl} = cov(\zeta_k, \zeta_l) = E(\zeta_k - E\zeta_k)E(\zeta_l - E\zeta_l)$ $C = C^*, C \geq 0$, т.е. $< C\lambda, \lambda > \ge 0 \forall \lambda \in \mathbf{R}^n$ (матрица является неотрицательно

определенной). Если C>0, то \exists плотность, которая задается формулой

$$p_{\zeta}(x) = (2\pi)^{-\frac{n}{2}} |C|^{-\frac{1}{2}} exp\{-\frac{1}{2} < C^{-1}(x-a), (x-a) > \}$$

$$\sum_{k,l}^{n} \lambda_k \lambda_n cov(\zeta_k, \zeta_l) = (\geq 0) = cov(\sum_{l=1}^{n} \lambda_l \zeta_l, \sum_{k=1}^{n} \lambda_k \zeta_k) = cov(\eta, \eta) = D\eta \geq 0 - 0$$

Опр.: Функция $r(s,t), s,t \in T$ называется неотрицательно определенной, если $\forall n \geq 1, \forall t_1, \ldots, t_n \in T$ матрица $(r(t_k,t_l))_{k,l=1}^n$ неотрицательно определена.

Т Е О Р Е М А. Пусть a=a(t) любая действительная функция, определенная на множестве Т. Пусть r=r(t,s)= - симметрична, т.е. r(s,t)=r(t,s) и $\forall s,t\in T$ неотрицательно определена на $T\times T$. Тогда на некотором (Ω,\mathcal{F},P) \exists гауссовский прцесс $X=\{X_t,t\in T\}$, т.ч. $a(t)=EX_t,r(s,t)=cov(X_s,X_t)$

Замечание. Выделенные условия являются необходимыми и достаточными. Доказательство.

 \circ Для $\forall n \geq 1 \forall t_1, \ldots, t_n \in T$ рассмотрим вектор $(a(t_1), \ldots, a(t_n))$ и матрицу $(r(t_k, t_l))_{k,l=1}^n$, в силу выделенных условий мы можем ввести х.ф.

$$\varphi_{t_1,\dots,t_n}(\lambda_1,\dots,\lambda_n) := exp\{i\sum_{k=1}^n \lambda_k a(t_k) - \frac{1}{2}\sum_{k,l=1}^n \lambda_k \lambda_l r(t_k,t_l)\}$$

. Теперь проверим согласованность мер (это означает, что, если подставить 0 вместо λ_n , например, мы получим "укороченную"х.ф. - прим.ред.) •

Опр.:* Процесс $\mathbf{W} = \{W_t, t \geq 0\}$ называется виннеровским (или броуновским движением), если

- 1. $EW_t = 0 \ \forall t$
- 2. $cov(W_t, W_s) = min(s, t) \ \forall t, s > 0$
- 3. W гауссовский процесс
- 4. Траектории непрерывны.

Напомним, гауссовость означает, что $\forall n \geq 0 \forall t_1, \ldots, t_n - (W_{t_1}, \ldots, W_{t_n})$ -гауссовский вектор.

Упражнение Д-ть, что определения эквивалентны

Докажем, что процесс существует. Достаточно проверить r(s,t) = min(s,t) - является симметричной и неотрицательно определенной (по Замечанию к теореме). Мы уже видели, что существует процесс в смысле исходного

определения (процесс с независимыми приращениями) $cov(W_s,W_t)=cov(W_s,W_t-W_s+W_s)=cov(W_s,W_t-W_s)+cov(W_s,W_s)=D(W_s-W_0)=s,$ т.к. вопервых, процесс с незавимсимыми приращениями, а во-вторых, $W_0=0$. Итак, функция r(s,t) - является неотрицательна определена, как ковариационная функция процесса с независимыми приращениями. Будем строить броуновское движение на [0,1]. Рассмотрим последовательность независимых гауссовских величин на (Ω,\mathcal{F},P) , распределенные по N(0,1) ξ_k^ω . Введем неслучайные функции Шаудера $S_k(t)=\int\limits_0^t H_k(u)du\,k=1,2,\ldots$ Пусть $W_T(\omega):=\sum\limits_{k=a}^\infty \xi_k(\omega)S_k(t),t\in[0,1]$ - явная конструкция броуновского движения

$$H_1(t) \equiv 1, t \in [0, 1]$$

$$H_2(t)$$

$$...$$

$$H_k(t)$$

 $\begin{array}{c|c} & & & H_2(t) \\ & & and \ so \ on \\ \hline & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \end{array}$

$$H_{2^n+k}(t) = 2^{n/2} \mathbf{I}_{[\frac{k-1}{2^n}, \frac{k-1}{2^n} + \frac{1}{2^{n+1}}]}(t) - 2^{n/2} \mathbf{I}_{(\frac{k-1}{2^n} + \frac{1}{2^{n+1}}, \frac{k}{2^n}]}, \ 1 \leq k \leq 2^n$$
 Дирическое отступление. Молодой архитектор сдает проект, ну и понятно,

Лирическое отступление. Молодой архитектор сдает проект, ну и понятно, волнуется. Более опытный советует ему установить на фасаде собачку...и все обсуждения сведуться к тому, чтобы убрать собачку. Так вот можно было определить и не через функции Шаудера

 $\{H_k\}_{k=1}^\infty$ образуют полную ортонормированную систему в пространстве $L^2[0,1]$

<u>Упражнение</u>. Проверить ортонормированность и полноту (д-ть, что индикаторы промежутков могут быть аппроксимированы в метрике функциями Хаара).

Вспомним следствие из равенства Парсеваля:

$$\langle f, g \rangle = \sum_{k=1}^{\infty} \langle f, H_k \rangle \langle g, H_k \rangle$$

Л Е М М А 1. Пусть $a_k = O(k^{\varepsilon})$, где $\varepsilon < \frac{1}{2}$. Тогда $\sum_{k=1}^{\infty} a_k S_k(t)$, $t \in [0,1]$ является непрерывной функцией на отрезке [0,1].

Доказательство.

 \circ Достаточно убедиться, что $\sup_{t \in [0,1]} \sum_{k>2^n} |a_k| S_k(t) \stackrel{n \to \infty}{\longrightarrow} 0$. Оценим: $(*) = \sum_{2^n < k \leq 2^{n+1}} |a_k| S_k(t) \leq 2^{(n+1)\varepsilon} 2^{-\frac{n}{2}-1} = c' 2^{-n(\frac{1}{2}-\varepsilon)}, \varepsilon < \frac{1}{2}$.

 $S_k(t) \leq 2^{-\frac{n}{2}-1}$, носители этих функций: $2^n < k \leq 2^{n+1}$, носители не пересекаются. $(*) \leq \sum_{n \leq m} 2^{-m(\frac{1}{2}-\varepsilon)} \stackrel{n \to \infty}{\longrightarrow} 0$. По теореме Вейерштрасса $\sum_k a_k S_k(t)$ является непрерывной функцией (ряд сходится равномерно), ч.т.д. •

Л Е М М А 2. Пусть $\xi_1, \xi_2, ...$ - последовательность стандарртных гауссовских величин, т.е. $\xi_k \sim N(0,1), k=1,2,...$ (независимость не предполагается). Тогда $\forall c > \sqrt{2}$ и п.в. $\omega \in \Omega \; \exists \; N = N(\omega,c) : |\xi_k(\omega)| \leq a \sqrt{\log k}, \forall k \geq N$, где a=const.

Доказательство.

 \circ Начиная с некоторого $N=N(\omega,c),$ все $\xi_k(w)$ лежат внутри полосы $Y\in [-a\sqrt{logk},a\sqrt{logk}].$ $\bullet.$

Доказательство (леммы 2)

$$\circ \text{ Пусть } \xi \sim N(0,1). \text{ P}(\xi>x) = \frac{1}{\sqrt{2\pi}} \int\limits_x^\infty e^{-\frac{u^2}{2}} \mathrm{d}u = /\text{по частям}/ = \frac{-1}{\sqrt{2\pi}} \int\limits_x^\infty \frac{1}{u} d(e^{-\frac{u^2}{2}}) = \frac{1}{x\sqrt{2\pi}} e^{-\frac{x^2}{2}} - \frac{1}{\sqrt{2\pi}} \int\limits_x^\infty \frac{e^{-u^2/2}}{u^2} \mathrm{d}u \leq \frac{1}{x\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \text{ так как } \int\limits_x^\infty \frac{e^{-u^2/2}}{u^2} \mathrm{d}u \geq 0 \text{ при } x > 0.$$

при $x \to \infty$ функция $\frac{1}{x\sqrt{2\pi}}e^{-\frac{x^2}{2}}$ - является асимптотически эквивалентной исходному интегралу (для проверки надо ещё раз проинтегрировать по частям).

 $P(|\xi_k| > c\sqrt{logk}$ беск. часто по k)

Вспомним 2-ой курс: $\mathrm{P}(A_k.)=0,$ если $\sum_k \mathrm{P}(A_k)<\infty$ по Борелю-Кантелли.

$$P(A_k$$
 беск. часто)= $P(\bigcap_n \bigcup_{k>n} A_n)$.

Таким образом,

$$P(|\xi_k| > c\sqrt{logk}) \le \sum_{k \ge N} \frac{1}{c\sqrt{logk}} \frac{1}{\sqrt{2\pi}} e^{-\frac{c^2 logk}{2}} \le \operatorname{const} \sum_{k \ge N} \frac{1}{\sqrt{logk}} k^{\frac{c^2 u}{2}} < \infty, \text{ если } c > \sqrt{2}$$

Следовательно, по лемме Бореля-Кантелли для п.в. $\omega \in \Omega \ |\xi_k(\omega)| \le c\sqrt{logk}, \ k \ge N(c,\omega).$

Лирическое отступление (еще пара советов). Мы должны привыкнуть, что идей не так много, в интегрировании - две глубких идеи: по частям и сведение кратных к повторным (есть, правда, и третья - перенос меры с одного пространства на другое (замена то бишь - замеч.ред.)). Если нужно иметь оценку хвостов, понятное дело - интегрируем по частям.

Т Е О Р Е М А. Процесс $W_t(\omega) = \sum_{k=1}^{\infty} \xi_k(\omega) S_k(t)$ (*) является виннеровским процессом на [0,1].

Доказательство.

 \circ По лемме 2 $|\xi_k(\omega)| \leq c\sqrt{logk} \leq c'k^{\varepsilon}, \varepsilon \leq \frac{1}{2}, k \geq N \Longrightarrow$ по лемме 1 ряд (*) сходится равномерно на отрезке [0,1] для п.в. $\omega \in \Omega \Longrightarrow$ по теореме Вейерштрасса это непрерывная функция. Следовательно, траектории W

непрерывны с вер 1. Проверим пункты 1-3 из **Опр.***. 1)Ряд $\sum_{k=1}^{\infty} \xi_k(\omega) S_k(t)$ сходится в средне-квадратическом к величине $W_t \ \forall t \in [0,1]$. (Нужно проверить, что ряд сходится, т.е. проверить фундаментальность, т.е. $\sum_{k=1}^{N} |\xi_k S_k|^2 \longrightarrow 0, M, N \longrightarrow 0$) [Потому, что и та и другая сходимости

влекут сходимость по вероятности, а раз поточечно ряд сходится к W(t), то сходится в среднеквадратичном]. Тогда EW(t)=0: $|EW(t)|=|E(W(t)-W_n(t))|$ [т.к. $EW_n(t)=0$] \leq [неравенство Коши-Буняковского] \leq $\leq \sqrt{|E(W(t)-W_n(t))|^2} \to 0$. Т.к. $W_n(t) \to W(t)$ в среднем квадр.

Упражнение. cov(W(s),W(t))=min(s,t) - равенство Парсеваля

<u>Упражнение</u>. $\zeta=(\zeta_1,\ldots,\zeta_n)$ - гауссовский \Leftrightarrow $\forall c_1,\ldots,c_k\in\mathbf{R}$ $\sum\limits_k c_k\zeta_k$ - гауссовский \Rightarrow $\sum\limits_k c_kW_k$ - гауссовская величина •

(В лекциях этот кусок доказательства действительно скомкан - прим.ред.)

Задачи.

1.

 $W_t: \ \sum\limits_k |W(t_{k,n}) - W(t_{k-1,n})|^2 \longrightarrow T$ п.н. - доказать

2. $N=\{N_t,\ t\geq 0\}$ - пуассоновский процесс интенсивности λ

$$\frac{N_t}{t} \stackrel{?}{\longrightarrow} ? \quad t \to \infty$$

Лекция 4

TEOPEMA.

Т Е О Р Е М А. (Виннер-Зигмунд-Пэли). С вероятностью единица траектории броуновского движения. $W=\{W_t, t\geq 0\}$ не дифференцируемы ни в одной точке полуоси $[0,+\infty)$.

Доказательство.

о Рассмотрим промежуток [k,k+1), где $k\in\{0,1,2,\ldots\}$. Если $W_t(\omega)$ дифференцируемы в точке $s\in[k,k+1)$, то $|W_t-W_s|\leq l|t-s|$, для некоторого $l\in\mathbf{N}$ и $t\in[s;s+\frac{1}{q})$ $q\in\mathbf{N}$. Из дифференцируемости следует дифференцируемость справа. А l - зависит от s и ω и q зависит от ω , s и

l. Рассмотрим совокупность $A_{l,n,i}=\{|W(k+\frac{j+1}{n})-W(k+\frac{1}{n})|\leq \frac{7l}{n}\}\ j=i+1,i+2,i+3.$ Пусть n>4q. Найдем i=i(s,n)

Если $W_t(\omega)$ дифференцируема в точке $s \in [k, k+1)$, то

$$\left| W\left(k + \frac{j+1}{n}\right) - W\left(k + \frac{j}{n}\right) \right| = \left| \left(W\left(k + \frac{j+1}{n}\right) - W\left(s\right)\right) - \left(W\left(k + \frac{j}{n}\right) - W\left(s\right)\right) \right| \le \left| W\left(k + \frac{j+1}{n}\right) - W\left(s\right) \right| + \left| W\left(k + \frac{j}{n}\right) - W\left(s\right) \right| \le \frac{4}{n}l + \frac{3}{n}l = \frac{7l}{4}$$

Пусть D_k - множество таких точек на [k;k+1), для которых W_t - дифференцируема Тогда

$$D_k \subset \bigcup_{l=1}^{\infty} \bigcup_{q=1}^{\infty} \bigcap_{n>4} \bigcap_{i=1}^{n} A_{l,n,i}$$

Для каждых $l,q \in \mathbf{N}$ $P(\bigcap_{n>4q}\bigcup_{k=l}^n A_{l,n,i}), P(\bigcap_{n=1}^\infty B_n) \leq \liminf_n P(B_n).$ Следовательно, $P(\bigcap_{n>4q}\bigcup_{i=1}^n A_{l,n,i}) \leq \liminf_n P(\bigcup_{i=1}^n A_{l,n,i}) \leq \liminf_n \sum_{i=1}^n P(A_{l,n,i})$ $P(A_{l,n,i}) = [\text{т.к.}$ приращения независимы $]= = P^3\left(\left|W\left(\frac{1}{n}\right)\right| < \frac{7l}{n}\right) \stackrel{D}{=} \left|W\left(k + \frac{j+1}{n}\right) - W\left(k + \frac{j}{n}\right)\right|$

$$= P^{3}\left(\left|W\left(\frac{1}{n}\right)\right| < \frac{7l}{n}\right) \stackrel{D}{=} \left|W\left(k + \frac{j+1}{n}\right) - W\left(k + \frac{j}{n}\right)\right|$$

$$P\left(\frac{|W\left(\frac{1}{n}\right)|}{\frac{1}{\sqrt{n}}} < \frac{\frac{7l}{\sqrt{n}}}{\frac{1}{\sqrt{n}}}\right) = P(\left(|\xi| < \frac{7l}{\sqrt{n}}\right) = [\xi \sim N(0,1)] = \frac{1}{\sqrt{2\pi}} \int_{-\frac{7l}{\sqrt{n}}}^{\frac{7l}{\sqrt{n}}} e^{-\frac{x^2}{2}} dx \le \frac{1}{\sqrt{n}} \frac{14l}{\sqrt{n}} = c \frac{l}{\sqrt{n}}$$

$$\frac{1}{\sqrt{2\pi}}\frac{14l}{\sqrt{n}}=c\frac{l}{\sqrt{n}}$$

В итоге

$$P(\bigcap_{n>4q} \bigcup_{i=1}^{n} A_{l,n,i}) \le \liminf_{n>4q} n \left(c \frac{l}{\sqrt{n}}\right)^{3} = 0$$

T.e.

$$P\left(\bigcup_{l=1}^{\infty}\bigcup_{q=1}^{\infty}\bigcap_{n>4q}\bigcup_{i=1}^{\infty}A_{l,n,i}\right)=0$$

Всегда можно считать, что вероятностное пространство (Ω, \mathcal{F}, P) пополнено. T.e. если P(A) = 0, а $B \subset A$, то $\overline{P}(B) = 0$, имеем $(\Omega, \overline{\mathcal{F}}, \overline{P})$

Т.о.
$$D_k \subset A, P(A) = 0$$
, т.к. пространство полное $P(D_k) = 0$, т.о. $P(\bigcup_{k=1}^{\infty} P_k) = 0$

0

Следущая теорема называется ТЕОРЕМОЙ Какутани - легко запомнить "как у Тани".

Т Е О Р Е М А. (Марковское свойство). \forall фиксированного a>0 процесс $Y_t=W_{t+a}-W_a, t>0$ является броуновским движением, причем $\{Y_t, t\geq 0\}$ и $\sigma\{W_s, s\in [0;a]\}$ независимы.

Доказательство.

Ясно, что $Y_0=0,\;Y_t$ имеет независимые приращения, $Y_t-Y_s\sim N(0,t-s)$ и траектории непрерывны.

Достаточно убедиться, что $(W_{s_1},...,W_{s_n})$ и $(Y_{t_1},...,Y_{t_n})$ независимы, $0 \le t_1 < ... < t_n$. Вектор $(W_{s_1},...,W_{s_n})$ получается из вектора $(W_{s_1},W_{s_2}-W_{s_1},...,W_{s_n}-W_{s_{n-1}})$ линейным преобразованием (домножением на матрицу). Вектор $(Y_{t_1},...,Y_{t_n})$ получается линейным преобразованием из вектора $(Y_{t_1},Y_{t_2}-Y_{t_1},...,Y_{t_n}-Y_{t_{n-1}})$.

То есть достаточно проверить независимость векторов $(W_{s_1}, W_{s_2} - W_{s_1}, ..., W_{s_n} - W_{s_{n-1}})$ и $(Y_{t_1}, Y_{t_2} - Y_{t_1}, ..., Y_{t_n} - Y_{t_{n-1}})$, что очевидно. \bullet

Мож но ли в утверждении последней теоремы вместо константы a использовать случайную величину τ ? Тогда $X_t = W(t+\tau) - W(\tau), \ t \ge 0$.

Опр.: Поток σ -алгебр $F = (F_t)_{t \in T}, \ T \subset R^1$, называется фильтрацией, если $F_s \subset F_t \ \forall s < t, \ s, t \in T$.

Пример: $X = X_t, t \in T, \quad \mathbf{F}^X = (F^X_t)_{t \in T}$ - естественная фильтрация, если $F^X_t = \sigma\{X_s, s \leq t\}, s \in T.$

Опр.: $\tau: \Omega \to T \cup \{\infty\}$ называется марковским моментом относительно фильтрации $(F_t)_{t \in T}$, если $\{\tau \leq t\} \in F_t \ \forall t \in T$. Если $\tau < \infty$ п.н., то τ называется моментом остановки.

Пример: $\{X_n, n \in N\}$ - последовательность действительных случайных величин, B - борелевское множество в R^1 , $\tau = \inf\{n : X_n \in B \}$, $(\tau = \infty, \text{если } X_n \in B \ \forall n)$.

В дискретном случае τ - марковский момент $\Leftrightarrow \{\tau=n\} \in F_n, \ \{\tau=n\} = \{X_1\mathrm{B}, X_2\mathrm{B}, ..., X_{n-1}\mathrm{B}, X_n \in \mathrm{B}\} \in F_n.$

Задача на 5+

Пусть $X=\{X_t,t\geq 0\}$ - процесс с п.н. непрерывными траекториями, принимающий $\forall t$ значения в метрическом пространстве (S,ρ) . Определим $\tau=\inf\{t\geq 0:X_t\in F\}$, где F - завкнутое подмножество S. Тогда τ - марковский момент

остановки относительно Г.

В частности для виннеровского процесса $W=\{W_t, t\geq 0\}$ и $\forall a>0$ $\tau_a=\inf\{t\geq 0: W_t=a\}$ - марковский момент, т.к. $\{a\}$ - Замкнуто.

Упражнение: доказать, что τ_a - момент остановки.

Лекция 5

Т Е О Р Е М А. (Строго марковское свойство броуновского движения). Пусть $W = \{W_t, t \geq 0\}$ - броуновское движение. Пусть τ - момент остановки относительно естественной фильтрации $\mathbf{F}^W = (F_t^W)_{t \geq 0}$. Тогда $X_t = W(t+\tau) - W(\tau), \ t>0$ является броуновским движением, причём $X = \{X_t, t \geq 0\}$ и $F_\tau = \{\mathbf{A}: \mathbf{A} \cap \{\tau \leq t\} \in F_t\}$ независимы.

Доказательство.

 \circ Возьмем $\forall A \in \mathcal{F}_{\tau}$ и $\forall 0 \leq t_1 \leq \ldots \leq t_m \ (m \in \mathbf{N})$. Для доказательства независимости \mathcal{F}_{τ} и X достаточно убедиться, что $P(A \cap ((X(t_1), \ldots, X(t_m)) \in B)) = P(A)P(\xi \in B)$ Здесь $\xi = (X(t_1), \ldots, X(t_m))$, а $B \in \mathcal{B}(\mathbf{R}^n)$.

Упражнение. Если \mathcal{A}_1 и \mathcal{A}_2 независимы $\Rightarrow \sigma(\mathcal{A}_1)$ и $\sigma(\mathcal{A}_2)$ независимы.

Если $\mathcal A$ - алгебра, то $\forall \varepsilon>0$ и $\forall A\in\sigma(\mathcal A)\ \exists A_\epsilon\in\mathcal A:\ |P(A)-P(A_\epsilon)|<\varepsilon$

$$X(t,\omega) = W(t+\tau(\omega),\omega) - W(\tau(\omega),\omega)$$

Считаем, что если $\tau(\omega) = \infty$ (с вероятностью 0), то $X(t,\omega) = 0$
Рассмотрим $t_{k,n} = k2^{-n}, \ k = 0, 1, \dots$ Пусть:

$$A_{1,n} = \{ \tau \le 2^{-n} \}$$

$$\vdots$$

$$A_{k,n} = \{ (k-1)2^{-n} < \tau \le k2^{-n} \}$$

Введем $au_n\sum_{k=1}^\infty k2^{-n}\mathbf{I}_{A_{k,n}},\ n=1,2,\ldots$ Очевидно, $au_n o au$ п.н. $n o\infty$

Кроме того, τ_n - марковский момент, т.к. $\{\tau_n \leq t\} = \{\tau \leq k2^{-n}\}$, где $k=max\{l:l2^{-n}\leq\}$.

Потому, что $\{\tau_n \leq t\} \in \mathcal{F}_{k,n}^W \subset \mathcal{F}_t$

 $W(t+ au(\omega),\omega)\stackrel{n\to\infty}{\to} W(t+ au(\omega),\omega)$ п.н. [в силу непрерывности п.н. траекторий W]. $\{W(t+ au_n(\omega),\omega)\leq z\}=\bigcup\limits_{k=1}^\infty\{W(t+k2^{-n},\omega)\leq z, au_n=k2^{-n}\}$. Выражение в скобках принадлежит $\mathcal F$

На втором курсе мы должны были усвоить, если есть последовательность сл.в., будет ли предел их сл.в.? (Ω, \mathcal{F}, P) . $\eta_n \to \eta$ п.н., $\eta_n \in \mathcal{F}|\mathcal{B}(\mathbf{R})$, тогда $\eta \in \overline{\mathcal{F}}|\mathcal{B}(\mathbf{R})$, если пространство пополнено, тогда предел - с.в.

Мы хотим доказать, что $P(A \cap \{\xi \in B\}) = P(A)P(\xi \in B)$, где $\xi = (X(t_1), \dots, X(t_m))$.

$$E(\mathbf{I}_A \mathbf{I}_{\{\xi \in B\}}) = E\mathbf{I}_A E\mathbf{I}_{\{\xi \in B\}} \quad (*)$$

Достаточно рассматривать лишь замкнутые $B \in \mathcal{B}(\mathbf{R}^n)$

Упражнение. (Свойство регулярности) $\forall B$ (борелевского множества) в метрическом пространстве и $\forall \varepsilon > 0$ $\exists F_{\varepsilon}$ (замкнутое), G_{ε} (открытое), т.ч. $F_{\varepsilon} \subset B \subset G_{\varepsilon}$ и $P(G_{\varepsilon} \backslash F_{\varepsilon}) < \varepsilon$.

Для проверки (*) достаточно установить, что

$$E(\mathbf{I}_A f(\xi)) = E\mathbf{I}_A E f(\xi)$$

Где f непрерывна и ограничена: $f: \mathbf{R}^n \to \mathbf{R}$ Почему же можно использовать f вместо $\mathbf{I}_{\{\xi \in B\}}$? Введем $\varphi(t)$:

и рассмотрим $g_k(x)=\varphi(k\rho(x,B))$, где $\rho(x,B)=\inf\{\rho(x,y):y\in B\}$. Расстояние до замкнутого множества есть непрерывная функция. g - является непрерывной и ограниченной, кроме того, очевидно, что $g_k(x) \overset{k\to\infty}{\longrightarrow} \mathbf{I}_A$. (Вспомним, ту самую "шляпку", которую часто рисует лектор). По теореме о мажорируемой сходимости Лебега, из соотношения $E\mathbf{I}_A f(\xi)=E\mathbf{I}_A E f(\xi)$ ("вроде сказки о Кащее: дуб \to сундук ")

 $\mathbf{I}_A f(\xi)$, введем вектор

$$\xi_n = (W(t_1 + \tau_n) - W(\tau_n), \dots, W(t_m + \tau_n) - W(\tau_n))$$

 $\xi_n \to \xi$ п.н. в силу непрерывности бр.дв.

Снова по теореме Лебега:

$$E\mathbf{I}_A f(\xi) = \lim E\mathbf{I}_A f(\xi_n)$$

В силу счетной аддитивности интеграла Лебега:

$$E\mathbf{I}_A f(\xi_n) = \sum_{k=1}^{\infty} E\mathbf{I}_A f(\xi_n) \mathbf{I}_{\{\tau_n = k2^{-n}\}} =$$

$$= \sum_{k=1}^{\infty} E\mathbf{I}_{A \cap \{\tau_n = k2^{-n}\}} f((W(t_1 + k2^{-n}) - W(k2^{-n}) \dots W(t_m + k2^{-n}) - W(k2^{-n}))) =$$

 $A_{k,n} \in \mathcal{F}_{k2^n}$

по марковскому свойству броуновского движения:

$$(W(t_1+k2^{-n})-W(k2^{-n}),\ldots,W(t_m+k2^{-n})-w(k2^{-n}))\stackrel{D}{=} (W(t_1),\ldots,W(t_m))$$

независит от $\mathcal{F}_{k2^{-n}}$ Следовательно

$$E(f(W(t_1),...,W(t_m))) \sum_{k=1}^{\infty} E_{\mathbf{I}_{A \cap \{\tau_k = k2^{-n}\}}} =$$

$$= E(f(W(t_1),...,W(t_m))) E\mathbf{I}_A$$

Таким образом, мы доказали, что $E\mathbf{I}f(\xi) = E\mathbf{I}_A Ef(W(t_1)...W(t_m))$. Независимость: \mathcal{F}_{τ} и X доказана.

Возьмем
$$A = \Omega \Rightarrow \xi \stackrel{D}{=} (W(t_1) \dots W(t_m))$$

 $Ef(\xi) = Ef(W(t_1) \dots W(t_m)) \bullet$

Принцип отражения

Пусть au - м.о. относительно \mathcal{F}^W

Т Е О Р Е М А. "Отраженный процесс" $\{Z=Z_t, t\geq 0\}$ является броуновским движением. Если $\tau=\infty$ (с вер. 0), то полагаем $Z(t,\omega)=W(t,\omega)$ (Т.е. отраженный процесс равен первоначальному)

Доказательство.

$$\circ Z(t,\omega) = W(t,\omega)\mathbf{I}_{\{\tau \ge t\}} + (2W(\tau(\omega),\omega) - W(t))\mathbf{I}_{\{\tau,t\}}$$

Очевидно, что Z(t) при каждом t является случайной величиной. Кроме того, траектории Z лежат в пространтстве $(C_0[0,\infty),\rho)$, являющееся польским пространством.

<u>Упражнение</u>. Доказать, что, поскольку траектории Z непрерывны, то Z является сл. элементом со значениями в $C_0[0,\infty]$

Введем отображение "склеивания" в точке $b \in [0, \infty)$ - h(b, f, g), где $f, g \in C_0[0, \infty)$ $h(b, f, g) = f(b) + g(t - b), t \ge b$

Отображение является непрерывным отображением $[0,+\infty) \times C_0[0,+\infty) \times C_0[0,+\infty) \to C[0,+\infty)$ Определим процесс $U(t) = W(t \wedge \tau) \ (= W(min(t,\tau)))$ $W = h(\tau,U,X)$

$$Z = h(\tau, U, -X)$$

$$(\tau, U, X) \stackrel{D}{=} (\tau, U, -X) \leftarrow$$
нужно доказать

Дело в том, что (τ, U) является (доказать это в качестве $\frac{\text{Упражнения}}{X}$ и \mathcal{F}_{τ} ,—X и \mathcal{F}_{τ} - независимы. Следовательно,

 $Law(\tau,U,X) = Law(\tau,U) \bigotimes Law(X) \ \ (Law(X) = Law(W)).$

Аналогично раскладывается в силу независимости $Law(\tau, U, -X)$.

Т Е О Р Е М А. (Башелье).
$$\forall z>0$$
 $P(\sup_{t\in[0,T]}W(t)>z)=2P(W(T)>z)$

Т Е О Р Е М А. (Хинчин). С вероятностью 1 :

$$\limsup_{t\to\infty}\frac{W(t)}{\sqrt{2tlnlnt}}=1$$

$$\liminf_{t \to \infty} \frac{W(t)}{\sqrt{2t \ln \ln t}} = -1$$

Лирическое отступление. Произошел пожарв больнице, потушили его и начальник расчета докладывает: "4 человека пострадало- 2 откачали". Главврач: "Странно, горело паталогоанатомическое отделение, а сотрудников в нем не было..."

Л Е М М А.
$$\forall t,x,y\geq 0$$
 $P(W(t)< y-x,M(t)\geq y)=P(W(t)>Y+x),$ где $M(t)=\max_{s\in [0,t]}W(s).$

(Доказательство будет в следующей лекции.)

Лекция 6

Следствие. (Башелье)
$$P(M(t) \geq y) = 2P(W(t) \geq y)$$
 Доказательство.
 $\circ P(M(t) \geq y, W(t) < y - x) = P(W(t) > y + x)$ Положим $\mathbf{x} = 0$ $P(M(t) \geq y, W(T) < y) = P(W(t) > y)$ Далее $P(M(t) \leq y) = P(M(t) \geq y, W(T) < y) + P(M(t) \geq y, W(T) \geq y) = P(W(t) > y) + P(W(t) \geq y) + P(W(t) \geq y) = P(W(t) > y) + P(W(t) \geq y)$

Слабая сходимость вероятностных мер.

Опр.: Последовательность мер Q_n , заданных на метрическом пространстве (S,ρ) с борелевской σ -алгеброй $\mathcal{B}(S)$, называется слабо сходящейся к мере Q (на $(S,\mathcal{B}(S))$), если $\int\limits_S f dQ_N \to \int f dQ$ (*)

 $\forall f \in C_b(S, \mathbf{R})$ (можно \mathbf{C}), т.е. для любой непрерывной и ограниченной функции $f: S \to \mathbf{R}$

Часто пишут $\langle f, Q \rangle$ вместо $\int_{\mathbb{R}} f dQ$.

Л Е М М А. Если $Q_n \Rightarrow Q$ и $Q_n \Rightarrow Q'$, то Q = Q'

Доказательство.

о из (*) вытекает, что

$$\int_{S} f dQ = \int_{S} f dQ' \ \forall f \in C_b(S, \mathbf{R})$$

Следовательно,

$$\int\limits_{S} \mathbf{I}_F dQ = \int\limits_{S} \mathbf{I}_F dQ'$$

Для любого замкнутого F. Отсюда вытекает, что $Q(B) = Q'(B) \ \forall B \in \mathbf{B}(S)$.

Т Е О Р Е М А. (А.Д. Александров). $Q_n \Rightarrow Q$ тогда и только тогда, когда выполнено любое из следующих условий:

 $1^o \limsup Q_n(F) \leq Q(F) \ \forall$ замкнутого F

$$2^o \liminf_n Q_n(F) \geq Q(F) \ \forall$$
 открытого G
$$3^o \lim_n Q_n(B) = Q(B) \ \forall B \in \mathcal{B}(S): \ Q(\partial B) = 0$$

Доказательство.

• Заметим, что исходное опредление (*) равносильно следующему

$$\limsup_{n} \langle f, Q_n \rangle \leq \langle f, Q \rangle \quad \forall f \in C_b(S, \mathbf{R})$$

Достаточно взять $(-f) \in C_b(S, \mathbf{R})$. $\limsup \langle -f, Q_n \rangle \leq \langle -f, Q \rangle$

$$\liminf_{n} \langle -f, Q_n \rangle \geq \langle -f, Q \rangle$$

 n Покажем, что (*) \Rightarrow 1 o . Пусть F - замкнутое множество в S. Введем фиксированные $f_F^{arepsilon}(x)=arphi(arepsilon
ho(x,F)).$ $f_F^{arepsilon}(x)$ - непрер. и огр. $\mathbf{I}_F(x)\leq f_F^{arepsilon}(x),\ orall x\in S\ orall arepsilon>0$ Тогда $\langle \mathbf{I}_F, Q_n \rangle \leq \langle f_F^{\varepsilon}(x), Q_n \rangle$. Поэтому $\limsup_n Q_n(F) \leq \limsup_n \langle f_F^{\varepsilon}(x), Q_n \rangle \leq \lim_n \langle f_F^{\varepsilon}(x), Q_n \rangle$

По теореме Лебега $\langle f_F^{\varepsilon}(x),Q\rangle \stackrel{\varepsilon\downarrow 0}{\to} \langle \mathbf{I}_f,Q\rangle = Q(F)$. Итак, $\limsup Q_n(F) \leq Q(F) \ \ \forall$ замкнутых F. Докажем теперь, что $1^o \Rightarrow (*)$.

Достаточно убедиться, что

$$\limsup_{n} \langle f, Q_n \rangle \le \langle f, Q \rangle$$

 \forall непрерывной ф. f, такой что $0 < f(x) < 1 \ \forall x \in S$. Для других f получаем линейным преобразованием af+b.

Введем для $k \in \mathbb{N}$ множества $F_i = \{x : f(x) \geq \frac{i}{k}\}$ $i = 0, 1, \dots, k$.. F_i замкнут как прообраз замкнутого при непрерывном отображении. Положим $C_i = F_{i-1} \setminus F_i \quad i = 1, \dots, k$

Ha множестве C_i $\frac{i-1}{k} \leq f(x) < \frac{i}{k}$

$$\sum_{i=1}^{k} \frac{i-1}{k} Q(c_i) \le \int_{S} f dQ \le \sum_{i=1}^{k} \frac{i}{k} Q(c_i)$$

 $Q(c_i) = Q(F_{i-1}) - Q(F_i)$, тогда

$$\frac{1}{k} \sum_{i=1}^{k} Q(F_i) \le \int_{S} f dQ \le \frac{1}{k} + \frac{1}{k} \sum_{i=1}^{k} i = 1^k Q(F_i)$$

Аналогично можно написать

$$\frac{1}{k} \sum_{i=1}^{k} Q_n(F_i) \le \int_{S} f dQ_n \le \frac{1}{k} + \frac{1}{k} \sum_{i=1}^{k} Q_n(F_i)$$

Следовательно, $\langle f,Q_n\rangle\leq \frac{1}{k}+\frac{1}{k}\sum\limits_{i=1}^kQ_n(F_i)$, т.е. $\limsup\limits_n\langle f,Q_n\rangle\leq \limsup\limits_n(\ldots)$ и

в силу $1^o \le \frac{1}{k} + \frac{1}{k} \sum_{i=1}^k Q(F_i) \le \frac{1}{k} + \langle f, Q \rangle$, т.к. F замкнуто. Осталось устремить k в бесконечность. В итоге

$$\limsup_{n} \langle f, Q_n \rangle \le \langle f, Q \rangle$$

 \forall непрер. $f \in (0,1)$.

Импликация из 1 в 2 и обратно очевидна.

Докажем, что $1^o(2^o) \mapsto 3^o$

Пусть [В] - замыкание В

 B^o - внутренность В

 $B^o \subset B \subset [B]$

B силу 1^o и 2^o имеем для $\forall B \in \mathcal{B}(S)$

$$Q(B^o) \leq \liminf_n Q_n(B^o) \leq \liminf_n Q_n(B) \leq \limsup_n Q_n(B) \leq \limsup_n Q_n([B]) \leq Q([B])$$

Если $Q(\partial B)=0$, то $Q(B^o)=Q([B])$. Следовательно $\exists \lim_n Q_n(B)=Q(B)$.

Итак, 3^o доказано. Покажем $3^o\mapsto 1^o$. Пусть F- замкнутое множество в S. Рассмотрим $F^{(\varepsilon)}=\{x\in S:\ \rho(X,F)<\varepsilon\}.\ \partial F^{(\varepsilon)}\cap\partial F^{(\delta)}=\emptyset\ \varepsilon\neq\delta.$

Следовательно существует не более счетное множество $\varepsilon_n: Q(\partial F^{(\varepsilon_n)})>0$ Возьмем $\{\nu_n\}$ $\nu\downarrow 0$ $Q(\partial F^{(\nu_m)})\neq 0$ По свойству $3^o, Q_n(F^{(\nu_m)}\to Q(F^{(\nu_m)})$

$$\lim \sup_{n} Q_n(F) \le \lim \sup_{n} Q_n(F^{(\nu_m)}) = Q(F^{(\nu_m)})$$

Устремим $m \to \infty$. Тогда $Q(F^{(\nu_m)}) \to Q(F)$. В силу непрерывности меры, т.к. $F^{(\nu_m)} \to F$.

Опр.: $\{Q_{\alpha}\}_{{\alpha}\in\Lambda}$ называется *слабо относительно компактным*, если из любой последовательности $\{Q_n\}$ можно извлечь слабо сходящуюсю подпоследовательность.

Упражнение. $Q_n \Rightarrow Q$ тогда и только тогда, когда

 $\overline{1.} \{Q_n\}$ слабо относительно компактным.

2. сущ. $\mathcal{H} \subset C_b(S, \mathbf{R})$

2.а. $\forall h \in \mathcal{H}$ сущ. $\lim \langle h, Q_n \rangle$

2.b. если $\langle Q, h \rangle = \stackrel{n}{\langle} Q', h \rangle$ $\forall h \in \mathcal{H}$, то Q = Q' на $\mathcal{B}(S)$.

Опр.: Семейство мер $\{Q_{\alpha}\}_{{\alpha}\in\Lambda}$ называется *плотным*, если $\forall {\varepsilon}>0, \exists$ компакт $K_{\varepsilon}\subset S$, такой что $Q_{\alpha}(K_{\varepsilon})>1-{\varepsilon}\ \ \forall {\alpha}\in\Lambda.$

Т Е О Р Е М А. (Прохоров). Если $\{Q_{\alpha}\}_{\alpha\in\Lambda}$ плотно, то $\{Q_{\alpha}\}_{\alpha\in\Lambda}$ является слабым относительно компактным. И наоборот, если семейство мер $\{Q_{\alpha}\}_{\alpha\in\Lambda}$ слабо относительно компактное и пространство (S,ρ) - польское, то $\{Q_{\alpha}\}_{\alpha\in\Lambda}$ - плотно.

Опр.: С.э. X_n $(X_n:\Omega_n\to S)$ называется сх-ся по распределению к сл. элементу X $(X:\Omega\to S)$, если

$$P_n X_n^{-1} \Rightarrow P X^{-1}$$

т.е. распределение X_n слабо сходится к распределению X. Иначе говоря $X_n \stackrel{D}{\to} X$, если $E_n f(X_n) \to E f(x) \; n \to \infty \; \forall f \in C_b(S, \mathbf{R}).$

<u>Упражнение.</u> Пусть $X_n \stackrel{D}{\to} X$ и $h: S \to \mathbf{R}$ - непрерывное отображение. Тогда $h(X_n) \stackrel{D}{\to} h(X)$

Эквивалентная формулировка. $Q_n \Rightarrow Q$, тогда $Q_n h^{-1} \Rightarrow Q h^{-1}$. Об этом говорили на первой лекции: $X = \{X_t, t \in T\} : \omega \mapsto X(\omega)$. Возникает мера P_x на \mathcal{B}_T . Вся теория "стройно" работает, если $\mathcal{B}_T =$ борелевской σ -алгебре в пространстве $(S_T, \mathcal{B}(S_T))$.

Упражнение. В пространстве C[0,1] выполнено $\mathcal{B}_T = \mathcal{B}(S_T)$.

Упражнение. $Q_n \Rightarrow Q$ в пространстве C[0,1] тогда и только тогда, когда 1). $\{Q_n\}$ плотно (по т. Прохорова это равносильно слабой относительной компактности)

2). Слабо сх-ся все конечномерные распределения мер Q_n к к.м.р. Q, т.е. $Q_n\pi_{t_1,\dots,t_k}^{-1}\Rightarrow Q\pi_{t_1,\dots,t_k}^{-1}$, где $\pi_{t_1,\dots,t_k}(x)=(x(t_1),\dots,x(t_k))$ - непрерывное отображение C[0,1] в \mathbf{R}^k , а $x\in C[0,1]$.

Для процессов $X^{(n)} = \{X_t^{(n)}, \ t \in [0,1]\}$ с непрерывными траекториями

$$X^{(n)} \stackrel{D}{\rightarrow} X$$

1. Семейство распределений $X^{(n)}$ плотно.

2.
$$(X_{t_1}^{(n)}, \dots, X_{t_k}^{(n)}) \stackrel{D}{\to} (X_{t_1}, \dots, X_{t_k}) \ \forall t_1, \dots, t_k \in [0, 1] \ \forall k \in \Lambda.$$

У нас есть последовательность ξ_1, ξ_2, \dots - н.о.р.с.в., $\mathbf{E}\xi_1=0, \ \mathbf{E}\xi_1^2=1.$ Разделим отрезок [0,1] на n равных частей. $S_k(w)=\xi_1(w)+\dots+\xi_k(w).$ С помощью линейной интерполяции построим график функции $S_k(w)/\sqrt{n}.$ Получаем случайную ломанную $S^{(n)}(t,w).$

график график график график график график график

 $P_{S^{(n)}}\Rightarrow \mathbf{W},\ S^{(n)}\stackrel{D}{\to} \{W_t,t\in[0,1]\}$ (принцип инвариантности). При каждом t траектория $S^{(n)}$ - непрерыфвные функции $\to S^{(n)}$ является случайным элементом со значениями в пространстве C[0,1] (польское). $\rho(x(t),y(t))=\sup_{t\in[0,1]}|x(t)-y(t)|$, - метрика. Обозначение: $P_n=Law(S^{(n)})$ - распределение на B(C[0,1]).

Лекция 7

Т Е О Р Е М А. (Донскер). $P_n \Rightarrow \mathbf{W}$ при $n \to \infty$, где $\mathbf{W} = Law(\{W_t, t \in [0,1]\})$ - мера Виннера, т.е. распределение броуновского движения.

Напоминание: $P_n \Rightarrow P$ на $(S,\rho),$ если $\int\limits_S f dP_n \to \int\limits_s f dP, \ \forall \ f:S \to R, \ f$ непрер. и огр.

 $\xi_n \stackrel{D}{\to} \xi$ (случайный элемент), если $P_{\xi_n} \Rightarrow P_{\xi}$, т.е. $E_n f(\xi_n) \to E f(\xi), n \to \infty$. Здесь E_n - усреднение по P_n на том вероятностном пространстве, где заданы ξ_n . E - усреднение по P на том вероятностном пространстве, где заданы ξ .

Таким образом, для любого непрерывного функционала $h:C[0,1]\to R$ выполнено $h(S^{(n)})\stackrel{D}{\to} h(\{W_t,t\in[0,1]\}).$

При построении $S^{(n)}$ мы рассматривали X_1, X_2, \dots -н.о.р.; $EX_1 = 0, EX_1^2 = 1$ (*). Закон распределения X_i может быть любым, удовлетворяющим условиям (*). Тогда для любого непрер. функционала h верно $h(S^{(n)}) \xrightarrow{D} h(\{W_t, t \in [0,1]\})$.

В этом и состоит инвариантность.

Этот результат содержит ЦПТ.

Для таких X_i ЦПТ утверждает: $\frac{S_n}{\sqrt{n}} \stackrel{D}{\to} Z \sim N(0,1)$. Почему тогда ЦПТ является следствием принципа инвариантности? Возьмём функционал $h: h(x(\cdot)) = x(1)$, где $x \in C[0,1]$. Очевидно, что h - непрерывный функционал. Итак, если мы рассмотрим $h(S^{(n)}) \stackrel{D}{\to} h(\mathbf{W}) = W(1)$, $\mathbf{W} = \{W_t, t \in [0,1]\}$, $S^{(n)}$

- ломанная. Значит, так как $h(S^{(n)})=rac{S_n}{\sqrt{n}}$ и $W(1)\sim N(0,1)$, то \Longrightarrow ЦПТ.

Этот подход позволяет находить распределение h(W), отправляясь от распределения $h(S^{(n)})$.

Т.е. имеется принцип инвариантности и мы можем рассмотреть любые ломанные, тогда выберем X_1, X_2, \dots - простыми, а именно: $P(X_k = 1) = P(X_k = -1) = 1/2, \ EX_k = 0, \ EX_k^2 = 1.$

По этой схеме можно найти $\sup_{t \in [0,1]} S^{(n)}(t)$, тогда по принципу инвариантности

$$\sup_{t \in [0,1]} S^{(n)}(t) \xrightarrow{D} \sup_{t \in [0,1]} W_t \text{ if } \sup_{t \in [0,1]} S^{(n)}(t) = \frac{\max\limits_{0 \le k \le n} S_k}{\sqrt{n}} \ .$$

<u>Упражнение</u>. Показать, что $\frac{\max\limits_{0 \le k \le n} S_k}{\sqrt{n}} \stackrel{D}{\to} \sup\limits_{t \in [0,1]} W_t$.

Пусть $X_{n,i}$, $i=1,...,m_n$ - независимые случайные величины т.,ч. $EX_{n,i}=0,\ EX_{n,i}^2=\sigma_{n,i}^2>0.$ Пусть $\sum\limits_{i=1}^{m_n}\sigma_{n,i}^2=1$ - условие нормриовки (если это не выполнено, то без ограничения общности можно разделить все с.в. на константу). Определим случайную ломанную более общим способом:

Замечание: если $X_1, X_2, ...$ - последовательность, то $X_{n,i} = \frac{X_i}{\sqrt{n}}, i = 1, ..., n, \Longrightarrow$ это действительно более общая схема.

Т Е О Р Е М А. (Прохоров). Пусть серии независимых случайных величин $X_{n,i}, i=1,2,...$ таковы, что выполнено условие Линдеберга:

$$\forall \varepsilon > 0 \sum_{k=1}^{m_n} E|X_{n,k}|^2 I\{|X_{n,k}| > \varepsilon\} \to 0 \ (n \to \infty),$$
 тогда

$$U_n \stackrel{D}{
ightarrow} W = \{W_t, t \in [0,1]\}$$
 - броуновское движение.

Из этой теоремы также вытекает ЦПТ (опять берём $h(x(\cdot)) = x(1)$).

Эти условия (Линдеберга) оптимальны: они являются необходимыми и достаточными, если слагаемые удовлетворяют условию равномерной малости: $\max_{1 \le k \le m_n} \sigma_{n,k}^2 \to 0, \ n \to \infty. \ ($ Это условие Феллера)

Введём метрику Леви-Прохорова:

 $\pi(P,Q):=\inf\{arepsilon>0: P(B)< Q(B^{arepsilon})+arepsilon$ и $Q(B)< P(B^{arepsilon})+arepsilon,$ $\forall B\in B(S)\},$ где (S,ρ) - польское пространство, а $B^{arepsilon}=\{x\in S: \rho(x,B)< arepsilon\},$ $\rho(x,B)=\inf_{y\in B}\rho(x,y).$

Т Е О Р Е М А. $P_n \Rightarrow P$ тогда и только тогда, когда $\pi(P_N, P) \stackrel{n \to \infty}{\longrightarrow} 0$.

Т Е О Р Е М А (Боровков). Пусть $E|X_{n,i}|^s < \infty$ для некот. $s \in (2,3]$. Для серий $X_{n,i}, \ i=1,...,m_n$ - нез. и $EX_{n,i}=0, \ E|X_{n,i}|^s < \infty$ введём дробь Ляпунова: $L_{n,s}:=\sum_{k=1}^{m_n} E|X_{n,k}|^s$. (Почему дробь? Так как если бы сумма $\sum_{k=1}^{m_n} \sigma_{n,k}^2 = 1$, иначе бы поделили.) Итак, теорема:

$$\pi(Law(U_n), \mathbf{W}) \le CL_{n,s}^{1/(s+1)}$$
.

Оценка скорости сходимости. Улучшение можно получить, только улучшив const, а так скорость правильная, в смысле, что правильный порядок.

Т Е О Р Е М А (Скороход). Пусть X_1, X_2, \ldots - нез. и $EX_i=0, \ E|X_i|^2=1.$ Тогда на некотором вероятностном пространстве (Ω, F, P) можно построить новую последовательность Y_1, Y_2, \ldots такую, что $Law(X_1, X_2, \ldots) = Law(Y_1, Y_2, \ldots)$ и построить броуновское движение $W=\{W_t, t\geq 0\}$ таким образом, что $\sum_{k=1}^n Y_k = S_n = W(\sum_{k=1}^n T_k), \text{ где сл. вел. } T_k \geq 0, \ ET_k = EX_k^2.$ (Суммы независимых случайных величин можно рассматривать как броуновское

Т Е О Р Е М А (Штрассен). $S_n - W(n) = O(\sqrt{n \ln \ln n})$ п.н. при $n \to \infty$. (Сумму независимых случайных величин можно приблизить гауссовским законом, сильный принцип инвариантности.)

движение, остановленное в случайный момент времени.)

Т Е О Р Е М А (Штрассен, функциональный закон повторного логарифма). Пусть X_1, X_2, \dots - нез. и $EX_i = 0, \ E|X_i|^2 = 1.$ РИСУНОК!!!

С вероятностью 1 множество $\{V_n(t)\}$ предкомпактно в C[0,1] и множество предельных точек этого семейства совпадает с "шаром Штрассена", т.е. множеством $\mathbf{K} = \{x(t) = \int\limits_0^t y(s)ds, \int\limits_0^1 y^2(s)ds \leq 1, \ t \in [0,1]\}.$

Из этой теоремы легко вывести обычный закон повторного логарифма.

МАРТИНГАЛЫ.

Пусть есть пространство (Ω, F, P) , ξ — случ. вел. A— σ —алгебра и A \subset F.

Опр.: $\eta = E(\xi|A)$ - условное математическое ожидание, если 1) $\eta \in A/B(R)$ - измерима относительно σ -алгебры A; 2) $\forall G \in A$: $E\eta I\{G\} = E\xi I\{G\}$.

Если $E|\xi|<\infty$, то $\eta=E(\xi|A)$ \exists и определена однозначно с точностью до значений на множестве меры 0.

Опр.: пусть $F = (F_t)_{t \in T}$ - некоторая фильтрация в (Ω, F, P) . Процесс $\{X_t, t \in T\}$ называется мартингалом (относительно фильтрации), если

- 1. $X_t \in F_t/B(R), t \in T$ изм. отн. F_t ;
- 2. $E|X_t| < \infty$ (интегрируемость всех с.в.);
- 3. $E(X_t|F_s) = X_s \text{ п.н.}, \forall s \leq t; s, t \in T.$

Упражнение. Пусть $E\xi^2 < \infty$. Тогда $E(\xi|A) = Proj_{L^2(\Omega,A,P)}\xi$.

Часто пишут $(X_t, F_t)_{t \in T}$, подчёркивая роль фильтрации в определении мартингала.

Опр.: $F_t^X = \sigma\{X_s,\ s \le t,\ s \in T\}$ - порождена течением процесса X до момента времени $t.\ F_t^X$ - естественная фильтрация.

Примеры.

1) Пусть $\{X_t,\ t\leq 0\}$ - процесс с нез. приращениями. Пусть $EX_t=a\ \forall t.$ Тогда $(X_t,F_t^X)_{t\geq 0}$ - мартингал.

Проверка. Первые два условия, очевидно, выполнены. Проверим третье: $E(X_t|F_t^X)=E(X_t-X_s+X_s|F_s^X)=E(X_t-X_s|F_s^X)+E(X_s|F_s^X).$ (*) Вспомним, что $E(\xi|A)=\xi$, если ξ - изм. отн. A; $E(\xi|A)=E\xi$, если ξ не зависит от A, $E|\xi|<\infty$. Таким образом, второе слагаемое в (*) $E(X_s|F_s^X)=\sum_{x\in X_s} E(X_s|F_s^X)$

 X_s , а первое $E(X_t-X_s|F_s^X)=EX_t-X_s=a-a=0$, т.к. процесс - с независимыми приращениями, т.е. X_t-X_s не зависит от F_S^X . Отсюда видно, что броуновское движение - мартингал, а пуассоновский процесс - нет, т.к. E() зависит от t.

Если
$$(X_t, F_t)_{t \in T}$$
 - мартингал, то $EX_t = E(E(X_t|F_s)) = EX_s, \ \forall s, t \in T.$

 $S_n = \xi_1 + ... + \xi_n$ - сумма нез. сл.в.; $F_n = \sigma\{\xi_1, ..., \xi_n\}, \ E|\xi_k| < \infty$. Суммы независимых сл. величин. образуют мартингал \iff центрированы.

- **2)** Пусть P и Q меры на (Ω,F) . Пусть $(F_t)_{t\in T}$ некоторая фильтрация. Предполагаем, что $\exists X_t = \frac{dP_t}{dQ_t}$ производная Радона-Никодима, где $P_t = P|_{F_t}, Q_t = Q|_{F_t}$. Тогда (X_t,F_t) мартингал, т.к. $\forall s \leq t; s,t \in T, \ E(X_t|F_s) = X_s \Longleftrightarrow \int\limits_A X_t dP = \int\limits_A X_s dP.$
- 3) Пусть ξ_1, ξ_2, \dots нез.сл.вел; $E\xi_k=1, k\geq 1$. Положим $X_n=\prod_{k=1}^n \xi_k$. Тогда $(X_n,F_n)_{n\geq 1}$ мартингал, где $F_n=\{\xi_1,...,\xi_n\}$.
- **4)** *Мартингал Леви.* Пусть $(F_t)_{t\in T}$ некоторая фильтрация. Пусть ξ сл. Вел. т., ч. $E|\xi|<\infty$. Положим $X_t=E(\xi|F_t), t\in T$. Тогда (X_t,F_t) мартингал.

Упражнение. Доказать, что не каждый мартингал можно представить в

виде мартингала Леви.

Опр.: Семейство случ. величин $\{\xi_{\alpha}, \ \alpha \in \Lambda\}$ называется равномерно интегрируемым, если $\lim_{c \to \infty} \sup_{\alpha} \{ \ E \ |\xi_{\alpha}|I\{|\xi_{\alpha}| > c\} \ \} = 0.$

В виде мартингала Леви представляются те и только те мартингалы, которые равномерно интегрируются.

Опр.: $(X_t, F_t)_{t \in T}$ - субмартингал, если:

- 1. $X_t \in F_t/B(R), t \in T$ изм. отн. F_t ;
- 2. $E|X_t| < \infty$;
- 3. $E(X_t|F_s) \geq X_s, \forall s \leq t; s, t \in T$.

Опр.: $(X_t, F_t)_{t \in T}$ - супермартингал, если:

- 1. $X_t \in F_t/B(R), t \in T$ изм. отн. F_t ;
- 2. $E|X_t| < \infty$;
- 3. $E(X_t|F_s) \leq X_s, \forall s \leq t; s, t \in T.$

Если (X_s, F_s) - супермартингал, то $(-X_s, F_s)$ - субмартингал.

Пример. Пусть $(X_t, F_t)_{t \in T}$ - мартингал и h - выпуклая функция, тогда $(h(X_t), F_t)_{t \in T}$ - субмартингал.

Опр.: последовательность $(\xi_n, F_n)_{n\geq 0}$ называется мартингал-разностью, если $E(\xi_n|F_{n-1})=0$ п.н.

(Происх. названия. Если $(\xi_n, F_n)_{n\geq 0}$ - мартингал, то $\xi_n = \triangle X_n = X_n - X_{n-1}, \triangle X_0 = 0$. Надо проверить, что $E(X_n|F_m) = X_m \iff E(\triangle X_n|F_{n-1}) = 0$.)

Опр.: процесс $\{A_n, n \geq 0\}$ -называется npedcкaзуемым, если $A_n \in F_{n-1}/B(R)$. (Пишут (A_n, F_{n-1}) .)

Т Е О Р Е М А (Дуб). Пусть (X_n, F_n) - некоторый случ. процесс, $E|X_n|<\infty$. Тогда $X_n=M_n+A_n$, где M_n - мартингал, A_n - предсказуемый процесс и $A_0\equiv 0, F_{-1}=\{\emptyset,\Omega\}$. Такое разложение единственно.

<u>Упражнение</u> $P(\varepsilon_k=1)=P(\varepsilon_k=-1)=1/2\;, S_n=\varepsilon_1+...+\varepsilon_n,\; S_0=0.$ Доказать, что $|S_n|=\sum\limits_{k=1}^n sgn(S_{k-1})\triangle S_k+L_n(0),\;$ где $L_n(0)$ - число нулей, $\{k=\{1,...,n\},\; S_{k-1}=0\}.\;$ Это дискретный вариант формулы Танака.

Лекция 8

Доказательство: (теоремы Дуба) \circ Пусть (*) разложение справедливо. Тогда $\triangle X_n = \triangle M_n + \triangle A_n$. $E(\triangle X_n | \mathcal{F}_{n-1}) = E(\triangle M_n | \mathcal{F}_{n-1}) + E(\triangle A_n | \mathcal{F}_{n-1}) = \triangle A_n$, т.к.

во-первых $E(\triangle M_n | \mathcal{F}_{n-1}) = 0$, т.к. это мартингал-разность.

во-вторых A - предсказуемая, а значит \mathcal{F}_{n-1} -измерима.

Итак, $\triangle A_n = E(\triangle X_n|\mathcal{F}_{n-1})$, т.к. $A_0 = 0$, то $A_n = \sum E(\triangle X_n|\mathcal{F}_{n-1})$. Единственность доказана.

Обратно. Положим $A_0 \equiv 0$

$$A_n = \sum_{k=1}^n E(\triangle X_k | \mathcal{F}_{k-1})$$
 - предсказ. Пусть $M_n = X_n - A_n$, тогда $\triangle M_n =$

$$\triangle X_n - \triangle A_n = \triangle X_n - E(\triangle X_n | \mathcal{F}_{n-1})$$

 $E(\triangle M_n|\mathcal{F}_{n-1})=0, \bullet$

Замечание. Из доказательства видно, что

X -субмартингал $[E(X_{n+1}|\mathcal{F}_n) \geq X_n]$

1

 \mathbf{A} - не убывает $[\triangle A_n \geq 0]$

Пример. Пусть $\varepsilon_1, \varepsilon_2, \ldots$ - н.о.р.с.в. $\varepsilon_k = \pm 1$ с вер. $\frac{1}{2}$ $S_0 = 0, S_n = \varepsilon_1 + \ldots + \varepsilon_n$. Процесс $X_n = |S_n|$ с h(x) = |x| выпукла вниз. А процесс X_n - субмартингал.

$$\triangle A_n = E(\triangle X_n | \mathcal{F}_{n-1}) = E(X_n | \mathcal{F}_{n-1}) - X_{n-1}$$

 $X_n = |S_n|$

 $E(|S_n| \mid \mathcal{F}_{n-1}) = E(|S_{n-1} + \varepsilon_n| \mid \mathcal{F}_{n-1})$

Запишем без модуля $|S_{n-1}+\varepsilon_n|=(S_{n-1}+\varepsilon_n)\mathbf{I}\{S_{n-1}>0\}+|\varepsilon_n|\mathbf{I}\{S_{n-1}=0\}-$

 $-\left(S_{n-1}+\varepsilon_n\right)\mathbf{I}\left\{S_{n-1}<0\right\}.$

 $|\varepsilon_n|=1$

$$E(|S_n| \mid \mathcal{F}_{n-1}) = E(S_{n-1}\mathbf{I}\{S_{n-1} > 0\} \mid \mathcal{F}_{n-1}) +$$

+
$$E(\varepsilon_n \mathbf{I}\{S_{n-1} > 0\} \mid \mathcal{F}_{n-1}) + E(\mathbf{I}\{S_{n-1} = 0\} \mid \mathcal{F}_{n-1} - \mathcal{F}_{n-1})$$

$$-E(S_{n-1}\mathbf{I}\{S_{n-1}<0\} \mid \mathcal{F}_{n-1}) - E(\varepsilon_{n-1}\mathbf{I}\{S_{n-1}<0\} \mid \mathcal{F}_n)$$

В этом выражении $E(\varepsilon_n \mathbf{I}\{S_{n-1}>0\}\mid \mathcal{F}_{n-1})=0$ и $E(\varepsilon_{n-1} \mathbf{I}\{S_{n-1}<0\}\mid \mathcal{F}_n)=0$. Т.к.

 $1.E(\xi\eta|\mathcal{A})=\eta E(\xi|\mathcal{A}),$ если η - измерима относительно \mathcal{A} и $E|\xi\eta|<\infty$ $E|\xi|<\infty$.

2. Если ξ и \mathcal{A} независимы, то $E(\xi|\mathcal{A}) = E\xi$.

По этим свойствам,
$$E(\varepsilon_n \mathbf{I}\{S_{n-1}<0\} \mid \mathcal{F}_{n-1}) =$$

$$= \mathbf{I}\{S_{n-1} > 0\} \quad E(\varepsilon_n | \mathcal{F}_{n-1})$$

 $\varepsilon_n = 1$

$$E(|S_n| \mid \mathcal{F}_{n-1}) = S_{n-1}\mathbf{I}\{S_{n-1} > 0\} + \mathbf{I}\{S_n = 0\} - S_{n-1}\mathbf{I}\{S_{n-1} < 0\}$$

$$|S_n| = (S_{n-1} + \varepsilon_n) \mathbf{I} \{ S_{n-1} > 0 \} + \mathbf{I} \{ S_{n-1} = 0 \} - (S_{n-1} + \varepsilon_n) \mathbf{I} \{ S_{n-1} < 0 \}$$

$$\triangle A_n = |S_n| - E(|S_n| \mid \mathcal{F}_{n-1}) = \varepsilon_n \mathbf{I} \{ S_{n-1} > 0 \} - \varepsilon_n \mathbf{I} \{ S_{n-1} < 0 \} =$$

 $= (\triangle S_n) sgn(S_{n-1})$

$$A_n = \sum_{k=1}^{n} \triangle S_k sgn(S_{k-1}) \ (A_0 = |S_n| = 0)$$

$$M_n = L_n(0) = \sum_{k=1}^n \mathbf{I}\{S_{k-1} = 0\} =$$

=количество $\{k \in \{0; \dots; k-1\}, S_k = 0\}$

Доказана формула (дискретный вариант фурмулы Танака)

$$|S_n| = \sum_{k=1}^n \triangle S_k sgn(S_{k-1}) + L_n(0)$$

$$E|S_n| = EL_n(0) \ EL_n(0) \stackrel{n \to \infty}{\sim} \sqrt{\frac{2}{\pi}n}$$

По ЦПТ $\frac{S_n}{\sqrt{n}} \stackrel{D}{\to} Z \sim N(0,1)$

Вспомним ЛЕММУ $Y_n \stackrel{D}{\to} Y.h$ -непрерывное отображение. Тогда

 $h(Y_n) \stackrel{D}{\to} h(Y)$. Возьмем в качестве $h(x) = |x| \Rightarrow$

$$\frac{|S_n|}{\sqrt{n}} \stackrel{D}{\to} |Z|$$

A что значит $\stackrel{D}{\rightarrow}$:

 $Ef(Y_n) o Ef(Y) \; \forall f$ непрерывной и ограниченной.

Если $\xi_n \stackrel{D}{\to} \xi$ и $\{\xi_n\}$ - равномерно интегрируемы, то

 $E\xi_n o E\xi,$ что же значит равномерная интегрируемость:

 $\limsup E(|\xi_n|\mathbf{I}\{|\xi_n|>c\})=0.$ Рассмотрим еще достаточное условие равномерной

интегрируемости (р.и.): $\sup E|\xi_n|^{1+\delta}<\infty$ для некотрого $\delta>0$, т.к.

 $E(|\xi_n|\mathbf{I}\{|\xi_n|>c\})\leq rac{E|\xi_n|^{1+\delta}}{C^\delta}$ - по неравенству Чебышева.

$$E\left(\frac{|S_n|}{\sqrt{n}}\right)^2 = \frac{ES_n^2}{n} = \frac{DS_n}{n} = \frac{D\varepsilon_1 + \ldots + D\varepsilon_n}{n} = \frac{1 + \ldots + 1}{n} = 1$$

Следовательно, $E\left(\frac{|S_n|}{\sqrt{n}}\right) \to E|Z| = \sqrt{\frac{2}{\pi}}$

Л Е М М А. Пусть $Y=\{Y_t,\ t\geq 0\}$ - процесс с независимыми приращениями, т.ч. $Ee^{\alpha Y_t}<\infty$ и $Ee^{\alpha (Y_t-Y_s)}<\infty$ для некоторой $\alpha\in\mathbf{R}$ и всех $s,t\in[0;+\infty)$ Определим $Z_t=\frac{e^{\alpha Y_t}}{Ee^{\alpha Y_t}},\ t\geq 0.$ Процесс $Z=\{Z_t,\ t\geq 0\}$ является мартингал-разностью тогда и только

тогда, когда

$$E\left(\frac{e^{\alpha Y_t}}{e^{\alpha Y_s}}\right) = \frac{Ee^{\alpha Y_t}}{Ee^{\alpha Y_s}}$$

Доказательство.

 $\circ E(Z_t|\mathcal{F}_S) = Z_s \quad s \le t$

$$E(Z_t|\mathcal{F}_s) = \frac{E\left(e^{\alpha Y_t}|\mathcal{F}_s\right)}{Ee^{\alpha Y_t}} = \frac{E\left(e^{\alpha Y_s}e^{\alpha (Y_t - Y_s)}|\mathcal{F}_s\right)}{Ee^{\alpha Y_t}} = \frac{e^{\alpha Y_s}}{Ee^{\alpha Y_t}}E\left(\frac{e^{\alpha Y_t}}{e^{\alpha Y_s}}\right) \stackrel{?}{=} Z_s$$

A так как $Y_t - Y_s$ и \mathcal{F} независимы, то $E\left(\frac{e^{\alpha Y_t}}{e^{\alpha Y_s}}\right) = \frac{Ee^{\alpha Y_t}}{Ee^{\alpha Y_s}}$ •

Здесь опять дается определение модели Крамера-Лундберта.

$$Y_t = y_0 + ct - \sum_{j=1}^{X_t(\omega)} \eta_j(\omega)$$

 $t \geq 0.\{\xi_j\}$ и $\{\eta_j\}$ - независимы. (Модель страхования)

Момент разорения $\tau = \inf\{t : Y_t < 0\}$. Вопрос такой: оценить $P(\tau < \infty) \le ?$

Докажем, что $Y=\{Y_t,\ t\geq 0\}$ - процесс с независимыми приращениями: $Y_{t_1}\quad Y_{t_2}-Y_{t_1}\quad \dots\quad Y_{t_m}-Y_{t_{m-1}}$ \parallel \parallel ξ_1 ξ_2

 ξ_1,\dots,ξ_{m^-} независимы $\Leftrightarrow Ee^{i\nu_1\xi_1+\dots+i\nu_m\xi_m}=\prod_{k=1}^m e^{i\nu_k\xi_k}$

$$\forall \nu_k \in \mathbf{R} \ k = 1, \dots, m$$
$$Ee^{i\xi_k} = Ee^{i\nu_k(Y_{t_k} - Y_{t_{k-1}})} =$$

[без ограничения общности
$$Y_t = \sum\limits_{i=0}^{N_t} \eta_j$$
]

$$= \sum_{r=0}^{\infty} \sum_{i=0}^{\infty} E e^{i\nu_k (N_{t_k} - N_{t_{k-1}})} \mathbf{I} \{ N_{t_{k-1}} = j \} \mathbf{I} \{ Y_{t_k} - Y_{t_{k-1}} = r \} =$$

$$=\sum_{r=0}^{\infty}\sum_{i=0}^{\infty}Ee^{i\nu_{k}\sum_{l=j+1}^{j+r}\eta_{l}}\mathbf{I}\{N_{t_{k-1}}=j\}\mathbf{I}\{Y_{t_{k}}-Y_{t_{k-1}}=r\}=$$

[если η_j и ξ_j независимы]

$$=\sum_{r=o}^{\infty}\sum_{j=o}^{\infty}Ee^{i\nu_k\sum_{l=j+1}^{j+r}\eta_l}\frac{(\lambda t_{k-1})^j}{j!}e^{-\lambda t_{k-1}}\frac{\lambda^r(t_k-t_{k-1})^r}{r!}e^{-\lambda(t_k-t_{k-1})}=\\ =\sum_{r=0}^{\infty}(Ee^{\nu_k\eta_1})^r\frac{(\lambda(t_k-t_{k-1}))^r}{k!}e^{-\lambda(t_k-t_{k-1})}=\\ =e^{-\lambda(t_k-t_{k-1})+\lambda(t_k-t_{k-1})Ee^{i\nu_k\eta_1}}=e^{\lambda(t_k-t_{k-1})(Ee^{i\nu_k\eta_1}-1)}.$$

Но лучше проверить выкладки здесь 🔨

Упражнение. Вычислить

$$E\left(\frac{e^{\alpha Y_t}}{e^{\alpha Y_s}}\right) = Ee^{\alpha(Y_t - Y_s)}$$

$$Z_t = \frac{e^{\alpha Y_t}}{Ee^{\alpha Y_t}}, \ a = const, \ t \ge 0$$

Л Е М М А. $\{X_t, \ t \geq 0\}$ - март., имеющий п.н. непрерывные справа траектории. Тогда для любых ограниченных опциональных моментов (относительно $(\mathcal{F}_t)_{t>0}$) τ и σ :

$$EX_{\tau} = EX_{\sigma}$$

лемма будет еще раз сформулированна и доказанна на следующей лекции.

Упражнение. X - имеет п.н. непрерывные справа траектории, G - открытое. Тогда $\tau_G=\inf\{t\geq 0\ :\ X_t\leq G\}$ - опциональный момент относительно $(\mathcal{F}^X_t)_{t\geq 0}.$

Следствие. $\tau=\inf\{t\geq 0,\ Y_t<0\}=\inf\{t\geq 0,\ Y_t\in(-\infty;0)\}$ - опциональный момент. (См. "Последовательный статистический анализ"Ширяев)

Лекция 9

Предположение. (*) $\psi(v) = Ee^{v\eta_1} < \infty \ \forall v \in \mathbf{R}(\eta_i \ge 0)$. Условие справедливо, если $|\eta_i| < const$

Пропущено немного. Нужно допечатать.

Следовательно, $e^{vY_t} = e^{tg(v)-vy_0}$ $Ee^{-vY_s} = e^{sg(v)-vy_0}$

$$E\left(\frac{e^{-vY_t}}{e^{-vY_s}}\right) = e^{(t-s)g(v)} = \frac{Ee^{-vY_t}}{Ee^{-vY_s}}$$

Итак, $Z_t = \frac{e^{-vY_t}}{Ee^{-vY_T}} = e^{-vY_t - tg(v) + vy_0}$

Если Z_t матрингал, то $constZ_t$ - тоже март. Таким образом, $X_t=e^{-vY_t-tg(v)},\ t\geq 0$ - мартингал.

 $au=\inf\{t>0,\;Y_t<0\}=\inf\{t>0,\;Y_t\in(-\infty;0)\}$. Замети, что Y_t - процесс, имеющий непрерывные справа траектории. Поэтому $\{ au< t\}\in\mathcal{F}_t$ - т.е. опциональный момент.

Л Е М М А. $\{X_t,\ t\geq 0\}$ - март., имеющий п.н. непрерывные справа траектории. Тогда для любых ограниченных опциональных моментов (относительно $(\mathcal{F}_t)_{t\geq 0}$) τ и σ :

$$EX_{\tau} = EX_{\sigma}$$

если $\tau \leq c$ и $\sigma \leq c$ (ограниченные моменты).

Доказательство.

о
$$0 \le \tau \land t \le t$$
. Следовательно, $EX_0 = EX_{\tau \land t}$ $X_t = e^{-vY_t - tg(v)}$ $t \ge 0$

 Y_t -непрер. справа., а tg(v) - непрер.

 $EX_0 = e^{-vy_0}$

$$EX_{\tau \wedge t} = Ee^{-vY_{\tau \wedge t} - (\tau \wedge t)g(v)} >$$

$$EX_{\tau \wedge t} = Ee^{-vY_{\tau \wedge t} - (\tau \wedge t)g(v)} \ge$$

$$\ge Ee^{-vY_{\tau \wedge t} - (\tau \wedge t)g(v)} \mathbf{I}\{\tau \le t\} =$$

$$= Ee^{-vY_{\tau} - \tau g(v)} \mathbf{I}\{\tau \le t\} \ge$$

 $[-vY_{\tau} \ge 0$, т.к. v > 0, $Y_{\tau} < 0$, т.к. τ - момент выхода к отриц. значениям.]

$$\geq E e^{-\tau g(v)} \mathbf{I}\{\tau \leq t\} \geq \inf_{0 \leq s \leq t} e^{-\tau s} E \mathbf{I}\{\tau \leq \}.$$

$$[EI\{\tau \le t\} = P(\{\tau \le t\}) \le e^{-vy_0} \sup_{0 \le s \le t} e^{sg(v)}, \quad e^{-vy_0} = EX_0]$$

Выберем $v=v_0$ так, чтобы $g(v_0)=0$. Вспомним устройство функции $g(v) = \lambda(\psi(v) - 1) - vc$

Что такое $\psi(v) = Ee^{v\eta_1}, \ \psi(0) = 1, \ \psi'(v) = E\eta_1e^{v\eta_1}, \ \psi'(0) = E\eta_1 = a > 0$ предположим, что $g'(v) = \lambda \psi'(v) - c$, $g'(0) = \lambda a - c < 0$

 $E\eta_1$ - мат. ожидание выплат. λ - плотность пуас. потока. $\psi''(v) = E(\eta_1^2 e^{v\eta_1}) >$

 $\exists ! v_0 \text{ Ha } (0; +\infty).$

Итак, существует единственная точка, т.ч. $g(v_0) = 0$. Тогда $P\{\tau \leq t\} \leq$ $e^{-v_0 y_0}$

Витоге

$$P\{\tau \le \infty\} \le e^{-v_0 y_0}$$

-это называется основной теорема страховой математики. Осталась ЛЕММА:

Т Е О Р Е М А (Дуб) Пусть $(X_n)_{n\geq 0}$ - мартингал. Пусть τ и σ марковские моменты, такие что $\sigma \geq \tau \geq const.$ Тогда

$$E(X_{\tau}|\mathcal{F}_{\sigma}) = X_{\sigma}$$

Пусть $\{X_t, t \geq 0\}$ - мартингал, имеющий непрерывные справа траектории. Пусть τ и σ - ограниченные опциональные моменты. Тогда

$$EX_{\sigma} = EX_{\tau}$$

Введем $\tau(n) = 2^{-n}[2^n\tau + 1]$

$$\sigma(n) = 2^{-n} [2^n \sigma + 1]$$

Тогда au и σ - марковские моменты относительно фильтрации $\mathcal{F}_{k2^{-n}},\ k=$

$$\{\tau(n) \le k2^{-n}\} = \{\tau < k2^{-n}\}\ in \mathcal{F}_{k2^{-n}}$$

$$\tau(n) \downarrow \tau \quad \sigma(n) \downarrow \sigma$$

В силу непрерывности справа траекторий $\{X_t, t \geq 0\}$ имеем $X_{\tau(n)} \to X_{\tau}$ и

$$X_{\sigma(n)} o X_{\sigma}$$
. Заметим, что $\sigma(n) < \tau(n)$. По т. Дуба $E(X_{\tau(n)}|\mathcal{F}_{\sigma(N)}) = X_{\sigma(n)}$

В силу сказанного $\{X_{\sigma(n)}\}$ - явл. равн. интегр. Поэтому $X_{\sigma(n)}$ будет измеримо относительно $\mathcal{F}_{\sigma(m)}$ при $n \geq m$. Таким образом, X_{σ} - будет изм. относительно $\mathcal{G}=\bigcap\overline{\mathcal{F}}_{\sigma(n)}$. Если $Y_n\in\mathcal{A}|\mathcal{B}(\mathbf{R})$ и $Y_n o Y$ п.н. и $Y\in\overline{\mathcal{A}}|\mathcal{B}(\mathbf{R})$

$$E(X_{\tau}|\mathcal{G}) = X_{\sigma}$$

 $\Rightarrow EX_{\tau} = EX_{\sigma}$

 X_{σ} является \mathcal{G} -измеримой величиной. Следовательно требуется проверить:

$$EX_{\tau}\mathbf{I}_{A} = EX_{\sigma}\mathbf{I}_{A} \quad \forall A \in \mathcal{G}$$

- это вытекает из того, что $X_{ au(n)} o X_{ au}$ п.н. и в L^1 $X_{\sigma(n)} o X_{\sigma}$ п.н. и в L^1 $E(X_{\tau(n)}|\mathcal{F}_{\sigma(n)}) = X_{\sigma(n)} \quad \bullet$

МАРКОВСКИЕ ПРОЦЕССЫ.

(Андрей Андреевич Марков)

Пусть $X + \{X_t, t \in T\}, T \subset \mathbf{R}$

 $X_t: \Omega \ rightarrow S_t, \ \mathcal{F}_{\geq t} = \sigma\{X_s, \ s \geq t, \ s \in T\}$ Пусть имеется фильтрация $\mathbf{F} = (\mathcal{F}_t)_{t \in T}$, т.ч. $X = \{X_t, \ t \in T\}$ согласована

Опр.: X - марковский процесс, если $\forall c \in \mathcal{F}_{\geq t} \quad P(C|\mathcal{F}_t) = P(C|X_t).$

Упражнение. Если $S_t, t \in T$ - борелевское пространство, то

$$E(h(X)|X_{S_1}...X_{S_m},X_t) = E(h(X)|X_t)(**)$$

 $\forall s_1 < \ldots < s_m < t < u$, где s,t,u $\in T$ и h - произвольная огр. и изм. Обычно $T = \mathbf{R}_+$ или $T = \mathbf{Z}_+$

Опр.: Марковский прцесс называется **цепью Маркова**, если все $S_t = S$ и δ н.б.ч.с. (не более, чем счетно), т.ч. S или $\{0,1,\dots,r\}$, или ${f Z}_+$. Для цепей Маркова определение (**) $\Leftrightarrow P(X_n = j | X_{S_1} = i_1, \dots, X_{S_m} = i_1, \dots, i_m)$ $=P(X_n=j|X_t=i),$ если $P(X_{S_1}=i_1,\ldots,X_{S_m}=i_m,X_t=i)
eq 0$

T E O P E M A. Пусть $\{X_t, t \geq 0\}$ - процесс с независимыми приращениями (со значениями в \mathbf{R}^k). Тогда X - марковский процесс (относительно естетственной фильтрации).

Следствие, Виннеровский процесс является марковским. Пуассоновский процесс - марковский.

Доказательство. (теорема)

о Рассмотрим
$$s_1 < \ldots < s_m < t < u, \ \sigma\{X_{S_1},\ldots,X_{S_m},X_t\} = \sigma\{X_{S_1},X_{S_2}-X_{S_1},\ldots,X_{S_m}-X_{S_{m-1}},X_t-XS_m\}$$

Требуется проверить, что

 $E(h(X_n)|X_{S_1},...,X_{S_n},X_t)=E(h(X_n)|X_t)$, то есть почему выполнено равенство $E(h(X_n)|\xi_1,...,\xi_m,\xi)=E(h(X_n)|X_t)$? Со второго курса нам известно: если ξ,η - независимые случайные вектора в R^k и R^1 и g - ограниченная измеримая функция, $g:R^{k+1}\to R$, то $E(g(\xi,\eta)|\eta=x)=Eg(\xi,x)$. Также

$$E(Z|Y=x) = \phi(x)$$

И

$$E(Z|Y) = \phi(Y),$$

где ϕ - борелевская. Тогда в нашем случае

$$E(h(X_n)|\xi_1 = x_1, ..., \xi_m = x_m, \xi = x) = Eh(X_n - X_t + X_1 + ... + X_{m+1}) =$$

= $\psi(X_1 + ... + X_{m+1}),$

где ψ - борелевская функция, а $\xi_1=X_{s_1},\xi_2=X_{S_2}-X_{S_1},...,\xi_m=X_{S_m}-X_{S_{m-1}},\xi=X_t-X_m;X_n=X_n-X_t+(X_t-X_m)+...+X_{S_1}.$ Это необходимо пояснить: строим аппроксимацию

$$E(h(X_n)|X_t) = E(E(h(X_n)|X_{S_1},...,X_{S_{m+1}},X_t)|X_t)$$

Используя телескопическое свойство, получим: если $A_2 \subset A_1$, то

$$E(E(\xi|A_1)|A_2) = E(\xi|A_2) =$$

$$= E(\psi(\sum_{k=1}^{m+1} \xi_k) | \sum_{k=1}^{m+1} \xi_k) = \psi(\xi_1 + \dots + \xi_{m+1}),$$

ч. т.д. ●

Лекция 10

$$(X_t, \mathcal{F})_{t \in T} X : \Omega \to S_t (S_t, B_t)$$

 $T \subset \mathbf{R}, (\Omega, \mathcal{F}, P)$

$$P(C|\mathcal{F}_t) = P(C|X_t) \quad (*)$$

$$C \in \mathcal{F}_{\geq t} = \sigma\{X_u, \ u \geq t, \ u \in T\}$$
 $E(\mathbf{I}_C | \mathcal{A}) = P(C | \mathcal{A})$ \mathcal{F}_t^X - естетственная фильтрация. Если (S_t, \mathcal{B}_t) - борелевское пространство, то $(*) \Leftrightarrow E(f(X_t) | X_{s_1}, \ldots, X_{s_m}, X_s) = E(f(X_t) | X_s)$, где $s_1 < \ldots < s_M < s \geq t$ f - любая измеримая : $S_t \to \mathbf{R}$.

Пример. Пусть X_0, ξ_1, xi_2, \ldots - независимые сл. величины.

$$X_0: \Omega \to \mathbf{R}^m$$

 $\xi_k: \Omega \to \mathbf{R}^m, k = 1, 2, \dots$

Положим $X_{n+1} = h_{n+1}(X_n, \xi_{n+1}), \ n = 0, 1, ...,$ где h(изм. $): \mathbf{R}^m \times \mathbf{R}^q \to \mathbf{R}^m$ Тогда $\{X_n\}$ - марковский процесс (Верно и для непрерывного времени)

Доказательство.

0

$$E(f(X_{n+1}|X_n = x_n, \dots, X_0 = x_0) =$$

$$E(\xi|\eta) = \phi(\eta), \quad E(\xi|\eta = x) = \phi(x)$$

$$= E(f(h_{n+1}(X_n, \xi_{n+1}))|X_n = x_n, \dots, X_0 = x_0) =$$

 $E(g(\xi,\eta)|\eta=x)=Eg(\xi,x)$ если ξ и eta - независимы.

$$= E(f(h_{n+1}(x_n, \xi_{n+1})) =$$

$$= E(f(X_{n+1})|X_n = x_n)$$

Следовательно, $\{X_n\}$ - Марковский процесс. •

Рассмотрим случай, когда $S_t \subset S_n$. S - конечное и счетное множество S= $\{0,1,\ldots,r\}$ или $S=\{0,1,\ldots\}$. Введем в S метрику:

$$\rho(x,y) = \begin{cases} 0, & x = y; \\ 1, & x \neq y. \end{cases}$$

Тогда S - польское пространство. В этом случае $\{X_t\}_{t\in T}$ - марк. процесс. $\Leftrightarrow P(X_t=j|X_{s_1},\ldots,X_{s_m}=i_m,X_s=i)=P(X_t=j|X_s=i)$ для $\forall s_1 < \ldots < s_m < s \ge t \text{ (Bce } \in T)$ и $\forall i_1, \ldots, i_m, i$, т.ч. $P(\ldots) \ne 0$.

Введем $S_s = \{i \in S: \ P(X_s = i) \neq 0\}$, тогда определены формулы

$$p_{ij}(s,t) := P(X_t = j | X_s = i) \ s \le t, \ s,t \in T. \ i \in S_s, \ j \in S_t$$

Очевидно, функции p_{ij} , называемые переходными вероятностями, обладают следующими свойствами:

1).
$$p_{ij}(s,t) \ge 0 \quad \forall i \in S_s, \ j \in S_t \ s \ge t$$

2).
$$\sum_{i} p_{ij}(s,t) = 1$$

3)
$$n_{i,i}(s,s) = \delta_{i,i}$$

 $3).p_{ij}(s,s)=\delta_{ij}$ $4).p_{ij}(s,t)=\sum_{k\in S_u}p_{ik}(s,u)p_{kj}(u,t)$ $\forall s< u< t$ -ур-е Колмогорова-Чепмена.

Замечание. Легко определить $p_{ij}(s,t) \ \forall i,j \in S \ s \leq t$, так чтобы выполнялись 1)-4). А именно, положим:

$$p_{i,i}(s;t)=0$$
, если $i\in S_s$ и $j\in S_t$

 $p_{ij}(s;t) = p_{i_0(s),j}(s;t), \ j \in S$, где $i_0 = i_0(s) \in S$

Поэтому далее без ограничения общности считаем, что $p_{ij}(s;t)$ заданы для $s \le t \ (s,t \in T)$ и всех $i,j \in S$.

Посчитаем $P(X_{t_1}=j_1,\ldots,X_{t_n}=j_n)=P(X_{t_n}=j_n|X_{t_{n-1}}=j_{n-1})P(X_{t_1}=j_1,\ldots,X_{t_{n-1}}=j_{n-1})=[$ в силу марковости можно выкинуть всю предысторию, получим $]=p_{j_{n-1},j_n}(t_{n-1},t_n)P(X_{t_1}=j_1,\ldots,X_{t_{n-1}}=j_{n-1})=[$ эти формулы верны при вероятности условия не равной нулю, аналогичным образом получаем $]=p_{j_{n-1},j_n}(t_{n-1},t_n)(t_{n-2},t_{n-1})\cdot\ldots\cdot p_{j_1,j_2}(t_1;t_2)P(X_{t_1}=j_1)=$

$$= P(X_{t_1}) \cdot p_{j_1,j_2}(t_1;t_2) \cdot \ldots \cdot p_{j_{n-1},j_n}(t_{n-1};t_n)$$

Рассмотрим $T = [0, \infty)$ или $T = \mathbf{Z}_+$

 $P(X_{t_1}=j_1)=$ [по формуле полной вероятности] $=\sum_i p_i(0)\cdot p_{ij_1}(0;t_1)$, где $p_i(0)=P(X_0=i), i\in S$ - начальное распределение. Тогда

$$P((X_{t_1}, \dots, X_{t_n}) \in B) = \sum_{i} \sum_{(j_1, \dots, j_n) \in B} p_i(0) p_{ij_1}(0; t_1) \cdot \dots \cdot p_{j_{n-1}, j_n}(t_{n-1}; t_n)$$

Т Е О Р Е М А Пусть S - дискретное пространство. Пусть для мн- в $S_t \subset S, t \in T$ (непустых) заданы функции $p_{ij}(s;t), s \leq t, i \in S_s, j \in S_t$, удовлетворяющие условиям 1)-4). Пусть $p_i(0) \geq 0$ и $\sum_i p_i(0) = 1$. Тогда на

некотором пространстве (Ω, \mathcal{F}, P) марковский процесс $\{X_t\}_{t\in T}$ $(t=[0,\infty))$ или $T=\mathbf{Z}_+)$, т.ч. $p_i(0)=P(X_0=i)$, $p_{ij}(s;t)=P(X_t=j|X_s=i)$.

Итак, марковская цепь может быть построена с помощью переходных вероятностей; необходимо только выполнение условий 1)-4).

Примечание. (пуассоновский процесс) Пусть $m(B), B \in \mathcal{B}(\mathbf{R}_+)$ - локально конечная мера, т.е. $m(B) < \infty$ для ограниченных множеств B $S = \{0, 1, 2, \ldots\}$. Определим :

$$p_{ij}(s;t) = \begin{cases} \frac{m((s;t])^{j-i}}{(j-i)!} e^{-m((s;t])}, & j \ge i; \\ 0 & j < i. \end{cases}$$

Пусть $p_{ij}(s;s) = \delta_{ij}$

Легко видеть, что 1),2),3) очевидно выполняются (разложение экспоненты в ряд). Проверим 4):

 $p_{ij}(s;t) = \sum_{k} p_{ik}(s;u) p_{kj}(u;t), \quad s < u < t.$ Что получается:

$$\sum_{i \le k \le j} \frac{m((s;u])^{k-i}}{(k-i)!} e^{-m((s;u])} \cdot \frac{m((u;t])^{j-k}}{(j-k)!} e^{-m((u;t])} =$$

$$= e^{-m((s,t])} \frac{\sum_{i \le k \le j} \frac{(j-i)!}{(k-i)!(j-k)!}}{(j-i)!} m((s;u])^{k-i} m((u;t])^{j-k}$$

Используем : $\sum_{l=0}^{N} C_N^l a^l b^{N-l} = (a+b)^N$

Теперь, если взять $p_i(0)=\delta_{i0}$, то эквивалентное определение пуассоновского

процесса такое: $\{N_t, t \geq 0\}$ - марковский процесс (цепь Маркова со значениями в $S = \{0, 1, \ldots\}$, имеющий $p_i(o) = \delta_{i0}$ и $p_{ij}(s;t) = \{\ldots$ (m называется **ведущей мерой**). В частности, при $m((s;t]) = (t-s)\lambda, \lambda = const > 0$ получается стандартный пуассоновский процесс интенсивности λ .

Упражнение. Доказать эквивалентность определений пуассоновского процесса:

- 1. $N_0 = 0$
- 2. N имеет независимые приращения.
- 3. $N_t N_s \sim \pi(m(s;t]), s \le t$ и того определения, которое было раньше.

Замечание. Предыдущая теорема является следствием теоремы Колмогорова.

Опр.: Функция P(s,x,t,B) называется **переходной функцией**, если выполнены условия $(s,t\in T\subset \mathbf{R},x\in S_s,B\in \mathcal{B}_t,$ т.е. имеется семейство измеримых пространств $(S_t,\mathcal{B}_t)_{t\in T}$

- 1). $P(s,x,t,\cdot)$ является мерой на \mathcal{B}_t
- 2). $P(s,\cdot,t,B) \in \mathcal{B}_s | \mathcal{B}(\mathbf{R})$
- 3). $P(s, x, s, B) = \delta_x(B) = \begin{cases} 1, & x \in B \\ 0, & xnotinB \end{cases}$
- 4). для $\forall s < u < t$:

 $P(s,x,t,B)=\int\limits_{S_u}P(s,x,u,dy)P(u,y,t,B)$ (уравнение Колмогорова-Чепмена, интегрируем по всем промежуточным значениям у)

Опр.: Марковский процесс $\{X_t, t \in T\}$ **обладает переходной функцией**, если:

$$P(s, x, t, B) = P(X_t \in B | X_s = x)$$

или так $P(s, X_s, t, B) = P(X_t \in B|X_s)$

 $\underline{\mathbf{y}}$ пражнение. Найти переходные функции виннеровского процесса со значениями в $\overline{\mathbf{R}}^m$.

В дискретном случае $P(s,i,t,B) = \sum_{j \in B} p_{ij}(s;t)$.

Т Е О Р Е М А. (Эргодическая). Пусть $\exists j_0 \in S$ и $h, \delta > 0$, такие что $p_{ij_0}(h) \geq \delta$ для $\forall i \in S$. Тогда для $\forall i, j \in S$ существует:

$$\lim_{t \to \infty} p_{ij}(t) = \widetilde{p}_j \quad (*)$$

Что такое $p_{ij_0}(h)$ -?

Опр.: Марковская цепь называется однородной, если $p_{ij}(s;t) = p_{ij}(t-s)$ t > s.

Смысл определения состоит в том, что система осуществляет переход из i в j за t-s. Смысл (*) состоит в том, что система, как бы, забывает из какого

Доказательство. (теоремы)

Обозначим $m_j(t)=\inf_i p_{ij}(t), M_j(t)=\sup_i p_{ij}(t)$. Очевидно, что $m_j(t)\leq$ $p_{ij}(t) \leq M_j(t)$. Докажем, что у них общий предел. Заметим, что $m_j(t)$ не убывает и $M_j(t)$ не возрастает с ростом t. Тогда $m_j(s+t) = \inf_i p_{ij}(s+t)$. Для однородной цепи уравнение Колмогорова-Чемпена дает:

$$p_{ij}(s+t) = \sum_{k} p_{ik}(s) P_{kj}(t)$$

поэтому
$$m_j(s+t) = \inf_i \sum_k p_{ik}(s) p_{kj}(t) \ge m_j(t) \inf_i \sum_k p_{ik}(s) = m_j(t)$$

Осталось убедиться, что $M_j(t) - m_j(t) \to 0, t \to \infty$:

$$M_j(t) - m_j(t) = \sup_a p_{aj}(t) - \inf_b p_{bj}(t) = \sup_{a,b} (p_{a,j}(t) - p_{b,j}(t)) =$$

Уравнение Колм.-Чепм. :

$$= \sup_{a,b} \{ \sum_{K} p_{ak}(h) p_{kj}(t-h) - \sum_{k} p_{bk}(h) - p_{kj}(t-h) \} =$$

t > h

$$\sup_{a,b} \sum_{k} (p_{ak}(h) - p_{bk}(h)) p_{kj}(t-h) = \sup_{a,b} (\sum_{k} a^{+} + \sum_{k}) \le 1$$

 $\sum_{k=0}^{+}$ берется по k, т.ч. $p_{ak}(h)-p_{bk}(h)\geq 0$ (это множество индексов зависит от а и b). Заметим, что $\sum_{k}p_{ak}(h)=\sum_{k}p_{bk}(h)=1$, поэтому

$$\sum^{+} (p_{ak}(h) - p_{bk}(h)) + \sum^{-} (p_{ak}(h) - p_{bk}(h)) = 0$$

$$\leq \sup_{a,b} \left(\sum_{a,b}^{+} (p_{ak}(h) - p_{bk}(h)) M_j(t-h) + \sum_{a,b}^{-} (p_{ak}(h) - p_{bk}(h)) m_j(t-h) \right) =$$

По замечанию выше

$$\sup_{a,b} \sum_{a,b}^{+} (p_{ak}(h) - p_{bk}(h))(M_j(t-h) - m_j(t-h))$$

Итак,

$$M_j(t) - m_j(t) \le [M_j(t-h) - m_j(t-h)] \sum_{a,b}^{+} (p_{ak}(h) - p_{bk}(h))$$

Если j_0 не принадлежит $J_{a,b}$ $(\sum^+ = \sum_{I=1}^+)$, то

$$\sum_{k}^{+} p_{ak}(h) - p_{bk}(h) \le \sum_{k}^{+} p_{ak}(h) \le 1 - p_{kj_0} \le 1 - \delta$$

Если
$$j_0 \in J_{a,b}$$
, то $\sum^+ < 1 - \delta$:
$$\sum_k^+ p_{ak}(h) - p_{bk}(h) \le \sum^+ p_{ak}(h) - p_{bj_0} \le 1 - \delta$$
. В итоге

$$M_j(t) - m_j(t) \le (1 - \delta)[M_j(t - h) - m_j(t - h)] \le$$

$$\le (1 - \delta)^{\left[\frac{t}{h}\right]}[M_j(u) - m_j(u)]$$

$$u = t - h \left[\frac{t}{h} \right] \quad 0 < u < t$$

<u>Замечание.</u> В условиях эргодической теоремы: $|p_{ij}(t) - \widetilde{p}_j| \leq (1 - \delta)^{\left[\frac{t}{h}\right]}$. Т.е. скорость сходимости экспоненциально быстрая.

Лекция 11

 $p_{ij}(s,t) = P(X_t = j | X_s = i)$ - переходные вероятности.

Опр.: Цепь *однородная*, если $P_{ij}(s,t) = p_{ij}(t-s)$ Для однородных цепей уравнение Колмогорова-Чепмена записывается просто:

$$p_{ij}(s+t) = \sum_{k} p_{ik}(s) p_{kj}(t) \quad \forall i, js, t \ge 0$$

P(s+t) = P(s)P(t) - полугрупповое свойство. $P(t) = (p_{ij}(t))$ - матрица. $(P(t))_{t\geq 0}$ - полугруппа (стохастическая)

$$[p_{ij}(t) \geq 0, \sum_{i} p_{ij}(t) = 1, p_{ij}(0) = \delta_{ij} \Leftrightarrow P(O) = I]$$

 $p_{ij}(t)$ и $p_i(0)$ - позволяют строить марковскую цепь.

P(t) - стандартная стохастическая полугруппа \Rightarrow $\exists Q=rac{d^+}{dt}|_{t=0}P(t)$ - итератор полугруппы. Т.е. $\exists q_{ij}=rac{d^+}{dt}|_{t=0}p_{ij}(t)$

$$Af = \frac{T^t f - f}{t}$$

Матрица Q называется *инфинитиземальной*.

Т Е О Р Е М А. Если стохастическая полугруппа стандартна (т.е. $p(t) \to I$ при $t \to 0+$), то $\forall i \neq j \; \exists$ конечные $q_{ij} \leq 0$ и $\forall i \; \exists q_i = q_{ii} \in [0, \infty]$ Без доказательства.

Эргодическая теорема: (*) $p_{ij}(t) \to \widetilde{p}_j \ \forall j$ при $t \to \infty \Rightarrow P(X_t=j) \to \widetilde{p}_j \ , t \to \infty,$ т.к. $p_j(t) = \sum_i p_i(0) p_{ij}(t)$

$$|p_j(t) - \widetilde{p}_j| = |\sum_i p_i(0)(p_{ij}(t) - \widetilde{p}_j)| \to 0$$

в силу (*).

Системы массового обслуживания. Поступает поток заявок на обслуживание. n - приборов, "система с отказом", заявки образуют пуас. поток. $\eta \sim exp(\mu)$

$$p_{\eta}(z) = \begin{cases} \mu e^{-\mu z}, & z \ge 0; \\ 0, & z < 0. \end{cases}$$

 X_t -число занятых приборов. $P(X_t = j) \stackrel{?}{\to} \widetilde{p}_j$

Формулы Эрланга. Описывают в этой модели стационарное распределение.

$$\widetilde{p}_j = \frac{\frac{\rho^j}{j!}}{\sum\limits_{k=0}^{n} \frac{\rho^k}{k!}}, \quad j = 0, 1, \dots, n$$

 $\rho = \frac{\lambda}{\mu}$ Докажем крупно-блочно.

<u>Упражнение</u>. $\widetilde{p}=(\widetilde{p}_1,\ldots)$ является собственным вектором матрицы $P^*(t)$ $\forall t$ (отвечающий собств. значению 1). Пусть выполнены условия эргодической теоремы, тогда $\exists \widetilde{p}$

 $\Pi \to M - M$. Пусть выполнено условие эргодической теоремы, тогда $\sum_j \widetilde{p}_j = 0$ или $\sum_j \widetilde{p}_j = 1$

Если $\sum\limits_{j}\widetilde{p}_{j}=1$, то \widetilde{p} называется $\mathit{cmayuohapho}$ распределенным.

Опр.:Процесс $\{X_t, t \in T\}$ называется стационарным (стационарным в узком смысле), если $\forall n, \forall t_1, \dots, t_n \in T \ \forall h \ t_1 + h \dots t_n + h \in T$ $Law(X_{t_1}, dots, X_{t_n}) = Law(X_{t_1+h} \dots X_{t_n+h})$

Т Е О Р Е М А.Если у однородной марковской цепи $\{X_t, t \geq 0\}$ \exists стационарн. распределение \widetilde{p} , то М.Ц. $Y - \{Y_t, t \geq 0\}$ имеющая начальное распределение \widetilde{p} и те же переходные вероятности p_{ij} , что и цепь X, является стационарным процессом.

Мы докажем, что ∃ процесс Ү

Доказательство.

$$P((Y_{t_1} \dots Y_{t_n}) \in B) \stackrel{?}{=} P((Y_{t_1+h} \dots Y_{t_n+h}) \in B)$$

$$\sum_{i} p_i(0) \sum_{(j_1 \dots j_n) \in B} p_{ij_1}(t_1) \dots p_{j_{n-1}j_n}(t_{n-1}, t_n) \stackrel{?}{=} \sum_{i} \sum_{j_1 \dots j_n \in B} P(X_{t_1} = i) \dots$$

Заметим, что $p_{ij}(s,t)=p_{ij}(t-s)=p_{ij}(s+h,t+h)$. Если взять $p_i(0)=\widetilde{p}_j=p_j(t)$. Тогда равенство (первое) верно. \widetilde{p} - собственный вектор $p^*(t)$ •