

Take-Home Problem

DO NOT DISTRIBUTE

1 Introduction

In this problem we explore an alternative to learning the parameters of a model by optimising the log-likelihood; namely, we will assume a prior over them and perform approximate inference.

2 Posterior Inference

Suppose we have a model with parameters θ and likelihood $p(\mathcal{D} | \theta)$. Given data set \mathcal{D} , we could choose θ via optimising the log-likelihood:

$$\theta = \operatorname*{argmax}_{\theta'} \log p(\mathcal{D} \mid \theta'). \tag{1}$$

There are two problems with this approach: we have a prior belief $p(\theta)$ about θ , but this belief is not incorporated in Equation (1); and optimising $p(\mathcal{D} \mid \theta)$ with respect to θ gives us a value for θ , but does not tell us how confident we should be in that estimate. To tackle both issues, we can instead find the posterior distribution $p(\theta \mid \mathcal{D})$, which tells us what we should believe about θ after observing the data \mathcal{D} :

$$p(\theta \mid \mathcal{D}) = \frac{1}{Z} p(\theta) p(\mathcal{D} \mid \theta). \tag{2}$$

Despite its simplicity, Equation (2) is hard to compute: Z requires one to integrate $p(\theta)p(\mathcal{D} \mid \theta)$ over θ , and this integral is often intractible. To compute Equation (2), we must resort to approximate techniques.

3 Stein Variational Gradient Descent

Variational inference¹ is a commonly-used technique to approximate difficult distributions like Equation (2). Specifically, given a family of tractable distributions \mathcal{Q} , variational inference seeks to find the one that approximates $p(\theta \mid \mathcal{D})$ best:

$$q(\theta) = \operatorname*{argmin}_{q' \in \mathcal{Q}} \mathrm{D}_{\mathrm{KL}}(q'(\theta) \parallel p(\theta \mid \mathcal{D}))$$
 (3)

where D_{KL} denotes the Kullback-Leibler divergence. A recently-developed technique, called Stein Variational Gradient Descent (SVGD), attempts to perform the minimisation in Equation (3) in the following iterative manner: Denote the distribution resulting from a bijective, differentiable change of variables T in q by $q_{[T]}$, and denote the identity function by id. Letting T = id—note that $q_{[\text{id}]} = q$ —SVGD slightly pertubs T in the direction that most decreases $D_{KL}(q_{[T]}(\theta) \parallel p(\theta \mid \mathcal{D}))$:

$$T \leftarrow \mathsf{id} - \varepsilon \left. \frac{\delta}{\delta T} \, \mathsf{D}_{\mathsf{KL}}(q_{[T]}(\theta) \, \| \, p(\theta \, | \, \mathcal{D})) \right|_{T = \mathsf{id}}. \tag{4}$$

where the functional derivative should be interpreted in the context of some vector-valued reproducing kernel Hilbert space \mathcal{H} , equipped with kernel k. Then, for small enough ε ,

$$q \leftarrow q_{[T]} \tag{5}$$

should slightly change q and slightly decrease $D_{KL}(q(\theta) || p(\theta | \mathcal{D}))$. SVGD iterates Equation (4) and Equation (5) to solve the minimisation problem in Equation (3), which is most easily implemented in terms of samples of $q(\theta)$: Appendix A shows that a sample $\hat{\theta}$

¹ For an overview of variational inference, please refer to [Mur12]; [Bis06].

from $q(\theta)$ can be transformed to a sample from $q_{[T]}(\theta)$ via

$$\hat{\theta} \leftarrow \hat{\theta} + \varepsilon \mathbb{E}_{q(\theta)}[k(\theta, \hat{\theta}) \nabla_{\theta} \log p(\theta \mid \mathcal{D}) + \nabla_{\theta} k(\theta, \hat{\theta})].$$

Here $k(\theta, \hat{\theta}) \nabla_{\theta} \log p(\theta \mid \mathcal{D})$ pushes a sample $\hat{\theta}$ to high probability regions of p, whilst $\nabla_{\theta} k(\theta, \hat{\theta})$ pushes the sample θ away from other samples.

4 Problems

- P1 Implement SVGD and redo the toy example from [LW16].
- **P2** Consider the following probabilistic model:

$$(a, b, c) := \theta \sim Prior(\theta),$$

$$f = a \cdot x^{c} + b,$$

$$\epsilon \sim N(0, \sigma^{2}),$$

$$y = f + \epsilon$$

Choose a $Prior(\theta)$ and a sensible value for σ^2 ; draw a toy data set \mathcal{D} (20–50 data points) from $y \mid \theta$ given a sample $\theta \sim Prior(\theta)$; and compute $p(\theta \mid \mathcal{D})$ using SVGD.

P3 Also estimate θ via Maximum Likelihood (Equation (1)), yielding $\theta^{\text{(MLE)}}$. Compare $\theta^{\text{(MLE)}}$ to $p(\theta \mid \mathcal{D})$, and compare the prediction of f by the above model $(p(f \mid \mathcal{D}))$ to the prediction of f if one were to fix $\theta = \theta^{\text{(MLE)}}$ instead $(p(f \mid \mathcal{D}, \theta = \theta^{\text{(MLE)}}))$.

A Functional Derivative in Equation (4)

First, compute

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \, \mathrm{D}_{\mathrm{KL}}(q_{[\mathsf{id}+\varepsilon\phi]}(\theta) \, \| \, p(\theta \, | \, \mathcal{D})) \Big|_{\varepsilon=0} \\ &= \left. \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \, \mathrm{D}_{\mathrm{KL}}(q(\theta) \, \| \, p_{[(\mathsf{id}+\varepsilon\phi)^{-1}]}(\theta \, | \, \mathcal{D})) \right|_{\varepsilon=0} \\ &= \left. -\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \mathbb{E}_{q(\theta)}[\log p((\mathsf{id}+\varepsilon\phi)(\theta) \, | \, \mathcal{D}) + \log |\det \nabla_{\theta}(\mathsf{id}+\varepsilon\phi)(\theta)|] \right|_{\varepsilon=0}. \end{split}$$

Here,

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \log p((\mathsf{id} + \varepsilon\phi)(\theta) \,|\, \mathcal{D}) \bigg|_{\varepsilon=0} = \phi^{\mathsf{T}}(\theta) \nabla_{\theta} \log p(\theta \,|\, \mathcal{D}) = \langle \phi, k(\theta, \cdot) \nabla_{\theta} \log p(\theta \,|\, \mathcal{D}) \rangle_{\mathcal{H}},$$

and

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\log|\det\nabla_{\theta}(\mathsf{id}+\varepsilon\phi)(\theta)|\bigg|_{\varepsilon=0}=\mathrm{tr}\,\nabla_{\theta}\phi(\theta)=\nabla_{\theta}^{\mathsf{T}}\phi(\theta)=\langle\phi,\nabla_{\theta}k(\theta,\cdot)\rangle_{\mathcal{H}}.$$

Therefore, plugging in the above equations,

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon} \operatorname{D}_{\mathrm{KL}}(q_{[\mathsf{id}+\varepsilon\phi]}(\theta) \| p(\theta | \mathcal{D})) \Big|_{\varepsilon=0} = -\mathbb{E}_{q(\theta)}[\langle \phi, k(\theta, \cdot) \nabla_{\theta} \log p(\theta | \mathcal{D}) \rangle_{\mathcal{H}} + \langle \phi, \nabla_{\theta} k(\theta, \cdot) \rangle_{\mathcal{H}}]$$

$$= \langle \phi, -\mathbb{E}_{q(\theta)}[k(\theta, \cdot) \nabla_{\theta} \log p(\theta | \mathcal{D}) + \phi, \nabla_{\theta} k(\theta, \cdot)] \rangle_{\mathcal{H}},$$

which shows that

$$\frac{\delta}{\delta T} \operatorname{D}_{\mathrm{KL}}(q_{[T]}(\theta) \| p(\theta \mid \mathcal{D})) \bigg|_{T = \mathrm{id}} = -\mathbb{E}_{q(\theta)}[k(\theta, \cdot) \nabla_{\theta} \log p(\theta \mid \mathcal{D}) + \nabla_{\theta} k(\theta, \cdot)].$$

References

- [Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag New York, 2006 (cit. on p. 2).
- [LW16] Qiang Liu and Dilin Wang. "Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm". In: Advances in Neural Information Processing Systems. 29. Curran Associates, Inc., 2016, pp. 2378–2386 (cit. on p. 3).
- [Mur12] Kevin P. Murphy. *Machine Learning: A Probabilistic Perspective*. MIT Press, 2012 (cit. on p. 2).