MACHINE LEARNING

EXERCISES

Elements of non-parametric techniques: the knn classifier

All the course material is available on the web site

Course web site: https://unica-ml.github.io/#

Exercise 1 Given the following patterns belonging to three different classes A, B, and C

A	1.1	1.7	1.2	1.6
	1.3	1.4	2.0	1.9
В	2.7	2.6	2.2	2.2
	1.4	1.2	2.0	1.3
С	1.4	1.2	1.8	1.5
	2.5	2.4	2.6	2.9

We want to classify the unknown pattern:

$$x_t = (2; 2)$$

but we do not know from which probability distribution the pattern has been generated. Then, we can use a non-parametric method like the *k*-nn pattern classifier.

- A) Classify the pattern x_t with values of k=1, ..., 4 using the *Euclidean* and the *Manhattan* distance. Manhattan distance: $|x_1-x_2|+|y_1-y_2|$.
- B) Use the "leave-one-out" method to select the best value of the "k" parameter between k=1 and k=4, using the Euclidean distance. The "leave-one-out" method works as follows:
- 1) Given the training set D with *n* patterns (12 patterns in this exercise)
- 2) for i=1, ..., n, use the training set $\{D \{x_i\}\}\$ and then classify the pattern x_i left out.
- 3) Repeat the point (2)
- 4) Compute the error probability (number of errors for the classifications of the *n* patterns left out) You should use the above "*leave-one-out*" method for k=1 and k=4 and then select the value of the k parameter that provides the minimum error.

Class A: red points; Class B: blue points; Class C: black points;

A) Classify the pattern x_t with values of k=1, ..., 4 using the *Euclidean* and the *Manhattan* distance.

Squared Euclidean distances

	a1	a2	a3	a4
\mathbf{x}_{t}	1.3000	0.4500	0.6400	0.1700

	b1	b2	b3	b4
Xt	0.8500	1.0000	0.0400	0.5300

	c1	c2	c3	c4
Xt	0.6100	0.8000	0.4000	1.0600

Classification result

k	A	В	С	Classification
1		1		В
2	1	1		A-B*
3	1	1	1	A-B-C*
4	2	1	1	A

^{* -&}gt; you can do a random choice among the classes

Manhattan distances

	a1	a2	a3	a4
Xt	1.60	0.90	0.80	0.50

	b1	b2	b3	b4
$\mathbf{x}_{\mathbf{t}}$	1.30	1.40	0.20	0.90

	c1	c2	c3	c4
Xt	1.10	1.20	0.80	1.40

k	A	В	С	Classification
1		1		В
2	1	1		A-B *
3	2	1		A *
4	2	1	1	A

^{* -&}gt; you can do a random choice among the classes

B) Use the "leave-one-out" method to select the best value of the "k" parameter between k=1 and k=4, using the Euclidean distance.

In order to use the "leave-one-out" method, you should compute the Euclidean distances between each pattern and all the other ones, so that, for each value of k, k=1 or k=4, you can compute the classification of the pattern x_i left out ($\{D - \{x_i\}\}\)$).

Here the Euclidean distances between each pattern and all the other ones:

	b1	b2	b3	b4
a1	2.57	2.26	1.70	1.21
a2	1.0	0.85	0.61	0.26
a3	2.61	2.60	1.0	1.49
a4	1.46	1.49	0.37	0.72

	c1	c2	c3	c4
a1	1.53	1.22	2.18	2.72
a2	1.30	1.25	1.45	2.29
a3	0.29	0.16	0.72	0.90
a4	0.40	0.41	0.53	1.01

	c1	c2	c3	c4
b1	2.90	3.25	2.25	3.69
b2	3.13	3.40	2.60	4.10
b3	0.89	1.16	0.52	1.30
b4	2.08	2.21	1.85	3.05

	a1	a2	a3	a4
a1	0	0.37	0.50	0.61
a2	0.37	0	0.61	0.26
a3	0.50	0.61	0	0.17
a4	0.61	0.26	0.17	0

	b1	b2	b3	b4
b1	0	0.05	0.61	0.26
b2	0.05	0	0.80	0.17
b3	0.61	0.80	0	0.49
b4	0.26	0.17	0.49	0

	c1	c2	c3	c4
c1	0	0.05	0.17	0.17
c2	0.05	0	0.40	0.34
c3	0.17	0.40	0	0.18
c4	0.17	0.34	0.18	0

In the following tables, for each value of k (k=1 or k=4), we compute the classification of the pattern x_i left out ({D -{x_i}}).

-k=1

pattern	a1	a2	a3	a4	b1	b2	b3	b4	c1	c2	c3	c4
One nearest	A	A	C	A	В	В	A	В	C	C	C	C
neighbor												

Error = 2/12

-k=4

pattern	a1	a2	a3	a4	b1	b2	b 3	b4	c1	c2	c3	c4
Classes of the	AA	AA	AA	AA	AB	AB	AB	AB	AC	AC	BC	AC
4 nearest	AB	AB	CC	BC	BB	BB	BC	BB	CC	CC	CC	CC
neighbors												
Classification	A	A	A-C*	A	В	В	В	В	C	C	C	C

Error = between 0/12 and 1/12 depending on the random choice for "tie breaks" highlighted in yellow.

The best value of the parameter "k" is therefore k=4 (minimum error).

Exercise 2

Given the patterns:

Class	ω_1			ω 2				ω 3				
	p1	p2	р3	p4	p5	p6	p 7	p8	p9	p10	p11	p12
	0.0	1	2	1	1	2	1	2	0	-1	-2	-1
	1.0	1	1	2	0	0	-1	-1	-1	-1	-1	0

- 1) Classify the unknown pattern $X_t = (0.5, 0.4)^t$ using the K-nn classifier and the Euclidean distance for k=1 and k=3.
- 2) Estimate the optimal value of k, between k=1 and k=3, using the Manhattan metric. Explain the used method.

[In the case the unknown pattern is equidistant from different training patterns, suppose that the used algorithm choose first those patterns with a lower index.]

Below, the Voronoi Diagram

Solution:

Question (1):

Evaluate the euclidean distance between the unknown pattern and the training patterns

Class	ω_1			ω_2				ω 3				
	p1	p2	р3	p4	p5	р6	p7	p8	p9	p10	p11	p12
X	0.61	0.61	2.61	2.81	0.41	2.41	2.21	4.21	2.21	4.21	8.21	2.41
	W1	W1			W2							

- K=1 $x \rightarrow \omega_2$
- K=3 $x \rightarrow \omega_1$

Question (2):

The optimal value of K can be estimated using the leave-one-out approach. According to this method it is possible classify each training pattern using all the remaining ones (a sort of N-fold Cross Validation).

Evaluate the distances between all the training patterns using the given metric: $d(\ p_a, p_b) = |a_1 - b_1| + |\ a_2 - b_2|$

	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12
P1	0	1	2	2	2	3	3	4	2	3	4	2
P2		0	1	1	1	2	2	3	3	4	5	3
Р3			0	2	2	1	3	2	4	5	6	4
P4				0	2	3	3	4	4	5	6	4
P5					0	1	1	2	2	3	4	2
P6						0	2	1	3	4	5	3
P7							0	1	1	2	3	3
P8								0	2	3	4	5
P9									0	1	2	2
P10										0	1	1
P11											0	2
P12												0

Supposing that, in the case of equal distances or equal number of votes, the used algorithm chooses first the training patterns with a lower index, the result is:

True	Pattern	K=1	K=1	K=3	K=3
Class		Nearest pattern	Assigned	Nearest pattern	Assigned
		_	Class	_	Class
ω_1	P1	$P2(\omega_1)$	ω_1	$P2(\omega_1), P3(\omega_1), P4(\omega_1)$	ω_1
ω_1	P2	$P1(\omega_1)$	ω_1	$P1(\omega_1), P4(\omega_1), P5(\omega_2)$	ω_1
ω_1	P3	$P2(\omega_1)$	ω_1	$P2(\omega_1) P6(\omega_2) P1(\omega_1)$	ω_1
ω_1	P4	$P2(\omega_1)$	ω_1	$P2(\omega_1) P1(\omega_1), P3(\omega_1)$	ω_1
ω_2	P5	$P2(\omega_1)$	ω_1	$P2(\omega_1) P6(\omega_2) P7(\omega_2)$	ω_2
ω_2	P6	P3(ω ₁)	ω_1	$P3(\omega_1) P5(\omega_2) P8(\omega_2),$	ω_2
ω_2	P7	$P5(\omega_2)$	ω_2	$P5(\omega_2) P8(\omega_2) P9(\omega_3)$	ω_2
ω_2	P8	$P6(\omega_2)$	ω_2	$P6(\omega_2) P7(\omega_2) P3(\omega_1),$	ω_2
ω3	P9	$P7(\omega_2)$	ω_2	$P7(\omega_2) P10(\omega_3) P1(\omega_1)$	ω_1
ω3	P10	Ρ9(ω ₃)	ω3	$P9(\omega_3) P11(\omega_3) P12(\omega_3)$	ω3
ω_3	P11	P10(ω ₃)	ω3	$P10(\omega_3) P9(\omega_3) P12(\omega_3)$	ω_3
ω3	P12	P10(ω ₃)	ω3	$P10(\omega_3) P1(\omega_1), P5(\omega_2)$	ω_1
	ERR		3/12		2/12

The 'leave-one-out' method suggests to choose k=3

TABLES EXERCISE 3

$$X_{A1} = (0.4 \ 0.5 \ 12 \ 10)^T$$
; $X_{A2} = (5\ 11\ 10\ 10)^T$

$$X_{B1}\!\!=\!\!(1\ 1\ 0\ 6\)^{\,T}\;;\;\;X_{B2}\!\!=\!\!(5\ 2\ 0.6\ 0.6\)^{\,T}$$

$$X_t = (0.4, 0.5, 0.4, 0.5)^T$$

Distances between X_t and all the other patterns.

	d(xa1,xt)^2	d(xa2,xt)^2	d(xb1,xt)^2	d(xb2,xt)^2
Feature = 1	0	21.16	0.36	21.16
Feature = 1,2	0	131.41	0.61	23.41
Feature = 1,2,3	134.56	223.57	0.77	23.45
Feature = $1,2,3,4$	224.81	313.82	31.02	23.46