Problem 4:

Boolean algebra operations can be expressed as arithmetic operations mod 2. Let 1 represent true, and 0 false.

(a) Show that $A \wedge B = (A \bullet B \mod 2)$.

A	В	$A \wedge B$
T	T	T
Т	F	F
F	T	F
F	F	F

A	В	A • B mod 2
1	1	1
1	0	0
0	1	0
0	0	0

(b) What is \sim A?

A	\sim A	A+1	A+1 mod 2
1	0	2	0
1	0	2	0
0	1	1	1
0	1	1	1

(c) What is A \vee B? (Use De Morgan's laws.)

- 1. $A \lor B$
- 2. \sim (\sim A $\wedge \sim$ B) [by De Morgan's Laws]
- 3. \sim (\sim A \sim B)mod2 [by Problem 4a]
- 4. ((A + 1) $mod2 \bullet$ (B + 1) mod2 + 1) mod2 [by Problem 4b]