Ανάπτυξη Λογισμικού για Δυσεπίλυτα Αλγοριθμικά Προβλήματα

Evóτητα 1: Nearest neighbors

Γιάννης Εμίρης

Τμήμα Πληροφορικής & Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών

Χειμερινό 2017

Outline

Problem statement

- 2 Locality sensitive hashing
 - Euclidean space
 - Cosine similarity
- 3 Random storage in the binary cube

Nearest Neighbor

Exact NN

Let us consider ambient (*d*-dimensional) space *D*. Given set $P \subset D$, and query point $q \in D$, its NN is point $p_0 \in P$:

$$\operatorname{dist}(p_0,q) \leq \operatorname{dist}(p,q), \quad \forall p \in P.$$

Approximate NN

Given set $P \subset D$, approximation factor $1 > \epsilon > 0$, and query point q, an ϵ -NN, or ANN, is any point $p_0 \in P$:

$$\operatorname{dist}(p_0, q) \leq (1 + \epsilon)\operatorname{dist}(p, q), \quad \forall p \in P.$$

Two (r, c)-neighbor problems

Approximation factor $c = 1 + \epsilon > 1$.

Definition

Input: finite set of strings/points P, approximation factor c > 1, radius r, query q.

Output of (r, c)-Neighbor problem:

- Range search: Report all $p \in P$ s.t. $dist(q, p) \le c \cdot r$. In practice, if c is not given, take c = 1.
- -- Decision problem. If $\exists p_0$ within radius r, output any p: dist $(q,p) \le c \cdot r$; otherwise: output a point p within cr or NULL.

NN in \mathbb{R}

Sort/store the points, use binary search for queries, then:

- Prepreprocessing in $O(n \log n)$ time
- Data structure requiring O(n) space
- Answer the query in $O(\log n)$ time

NN in \mathbb{R}^2

- Preprocessing: Voronoi Diagram in $O(n \log n)$.
- Storage = O(n).
- Given query q, find the cell it belongs (point location) in $O(\log n)$. NN = site of cell containing q.

NN in \mathbb{R}^d

Exact NN:

- Voronoi diagram = $O(n^{\lceil d/2 \rceil})$;
- State of the art: kd-trees: Sp = O(dn), Query $\simeq O(d \cdot n^{1-1/d})$.

Hence the Curse of Dimensionality: Can we solve NN in poly-time in d and faster than linear-time in n?

Approximate ϵ -NN:

- BBD-tree (Arya,Mount et al.'94'98) and kd-tree: optimal Sp = O(dn), $Q \simeq O(\log^d n)$.
- Locality sensitive hashing (LSH): Sp $\simeq dn^{1+1/(1+\epsilon)}$, Q $\simeq dn^{1/(1+\epsilon)}$.
- New projection-based methods: Optimal Sp = O(dn), Q $\simeq dn^{\rho}$, ρ somewhat larger than in LSH (Emiris, Psarros et al.)

Outline

- Problem statement
- 2 Locality sensitive hashing
 - Euclidean space
 - Cosine similarity
- 3 Random storage in the binary cube

LSH definition

Classic hash-tables answer membership. Idea: use hash-table for proximity query by mapping similar strings to same bucket ie. increase collisions of similar strings.

LSH Family

Let $r_1 < r_2$, probabilities $P_1 > P_2$. A family H of functions is (r_1, r_2, P_1, P_2) -sensitive if, for any points $p \neq q$ and any randomly selected function $h \in_R H$,

- if dist $(p, q) \le r_1$, then prob $[h(q) = h(p)] \ge P_1$,
- if $\operatorname{dist}(p,q) \ge r_2$, then $\operatorname{prob}[h(q) = h(p)] \le P_2$.

Notation: $h \in_{\mathbb{R}} H$ means h is randomly chosen (following the uniform distribution) from H.

(symmetric) LSH (Wikipedia)

Amplification

Hash-table

LSH creates every hash-table using an amplified hash function g by combining k functions $h_i \in_R H$, chosen uniformly at random (with repetition) from H.

This implies some h_i may be chosen more than once for a given g, or for different g's (LSH builds several hash-tables).

Typically g is defined by concatenation:

$$g(p) = [h_1(p)|h_2(p)|\cdots|h_k(p)].$$

Construction

Preprocess

- Having defined H and hash-function g:
- Randomly select L amplified hash functions g_1, \ldots, g_L .
- Initialize L hash-tables, hash all points to all tables using g.

Large $k \Rightarrow$ larger gap between P_1, P_2 . Practical choices are k = 4 to 6, L = 5 (or 6), and HashTable size n/4 (alternatively n/2 or n/8).

Range Search

Range (r, c)-Neighbor search

```
Input: r, c, query q for l from 1 to L do for each item p in bucket g_l(q) do if \mathrm{dist}(q,p) < cr then output p end for end for
```

In practice, if c not given assume c = 1.

Decision problem: "return p" instead of "output p".

At end "return FAIL"; may also FAIL if many examined points.

NN search

Approximate NN

```
Input: query q
Let b \leftarrow \text{Null}; d_b \leftarrow \infty
for i from 1 to L do

for each item p in bucket g_i(q) do

if large number of retrieved items (e.g. > 3L) then return b // trick

end if

if \text{dist}(q,p) < d_b then b \leftarrow p; d_b \leftarrow \text{dist}(q,p)

end if

end for

return b
end for
```

Theoretical bounds for $c(1+\epsilon)$ -NN by reduction to $((1+\epsilon)^i, c)$ -Neighbor decision problems, $i=1,2,\ldots,\log_{1+\epsilon}d$.

Known LSH-able metrics

- Hamming distance,
- ℓ_2 (Euclidean) distance,
- ℓ_1 (Manhattan) distance,
- ℓ_k distance for any $k \in (1,2)$,
- ullet ℓ_2 distance on a sphere,
- Cosine similarity,
- Jaccard coefficient.

Recall
$$\ell_k$$
 norm: $\operatorname{dist}_{\ell_k}(x,y) = \sqrt[k]{\sum_{i=1}^d |x_i - y_i|^k}.$

(Andoni-Indyk: J.ACM'08)

Outline

- Problem statement
- 2 Locality sensitive hashing
 - Euclidean space
 - Cosine similarity
- 3 Random storage in the binary cube

Euclidean Space

Recall:
$$dist_{\ell_2}(x, y)^2 = \sum_{i=1}^d (x_i - y_i)^2$$
.

Definition

Let d-vector $v \sim \mathcal{N}(0,1)^d$ have coordinates identically independently distributed (i.i.d.) by the standard normal (next slide).

Set "window" $w \in \mathbb{N}^*$ for the entire algorithm, pick single-precision real t uniformly $\in_R [0, w)$. For point $p \in \mathbb{R}^d$, define:

$$h(p) = \left| \frac{p \cdot v + t}{w} \right| \in \mathbb{Z}.$$

- -- Essentially project p on the line of v, shift by t, partition into cells of length w.
- In general, w = 4 is good but should increase for range queries with large r.
- -- Also k=4 (but can go up to 10), and L may be 5 (up to 30).

Normal distribution

Vector $v \sim \mathcal{N}(0,1)^d$ has single-precision real coordinates distributed according to the standard normal (Gaussian) distribution:

$$v_i \sim \mathcal{N}(0,1), \ i=1,2,\ldots,d,$$

with mean $\mu = 0$, variance $\sigma^2 = 1$ (σ is the standard deviation).

The bell curve:

Normal from Uniform

Given uniform generator (Wikipedia):

• Marsaglia: Use independent uniform $U, V \in_{\mathbb{R}} (-1, 1)$, $S = U^2 + V^2$. If S > 1 then start over, otherwise:

$$X = U\sqrt{\frac{-2 \ln S}{S}}, \qquad Y = V\sqrt{\frac{-2 \ln S}{S}}$$

are independent and standard normally distributed.

The U, V, X, Y are single-precision reals.

Hash-table

Amplified function $g(p) = [h_1(p)|h_2(p)|\cdots|h_k(p)]$ would yield a k-dimensional hashtable with many empty buckets.

So we define ϕ as random combination of the h_i 's as follows:

Classic hash-function

We build a 1-dim hash-table with classic index:

$$\phi(p) = [(r_1h_1(p) + r_2h_2(p) + \cdots + r_kh_k(p)) \bmod M] \bmod TableSize,$$

s.t. int
$$r_i \in_{R} \mathbb{Z}$$
, prime $M=2^{32}-5$ if $h_i(p)$ are int, TableSize= $n/2$ (or $n/4$)

Notice ϕ computed in intarithmetic, if all $h_i(p)$, r_i are int (\leq 32 bits).

Can have smaller TableSize= n/8 or n/16 (heuristic choice).

Recall $(a \square b) \mod m = ((a \mod m) \square (b \mod m)) \mod m$.

Outline

- Problem statement
- 2 Locality sensitive hashing
 - Euclidean space
 - Cosine similarity

3 Random storage in the binary cube

LSH for Cosine similarity

Consider \mathbb{R}^d , equipped with cosine similarity of two vectors:

$$\cos(x,y) = \frac{x \cdot y}{\|x\| \cdot \|y\|},$$

which expresses the angle between vectors x, y. Notice similarity is opposite of distance: dist(x, y) = 1 - cos(x, y).

For comparing documents or, generally, long vectors based on direction only, not length.

Shall be approximated by random projections (next slide).

Random projection

Definition

Let $r_i \sim \mathcal{N}(0,1)^d$, with each real coordinate iid $\mathcal{N}(0,1)^d$. Define

$$h_i(x) = \left\{ \begin{array}{ll} 1, & \text{if } r_i \cdot x \geq 0 \\ 0, & \text{if } r_i \cdot x < 0 \end{array} \right..$$

Then $H = \{h_i(x) \mid \text{ for every } r_i \}$ is a locality sensitive family.

Hyperplane LSH

Intuition

Each r_i is normal to a hyperplane. Two vectors lying on same side of many hyperplanes are very likely similar.

Lemma

Two vectors match with probability proportional to their cosine.

Amplification: Given parameter k, define new family G by concatenation:

$$G = \{g : \mathbb{R}^d \to \{0,1\}^k \mid g(x) = [h_1(x), h_2(x), \cdots, h_k(x)]\}.$$

Hyperplane LSH

Observation

Cosine dissimilarity pprox Euclidean distance on the sphere

Heuristic for the Euclidean distance

Bring the pointset to an *isotropic* position: find a point T s.t. all points are at a similar distance from T; make T the new origin. Use Hyperplane LSH to solve ANN for the Euclidean distance.

Computationally cheap: compute the mean T of a randomly sampled subset; make T the new origin.

Outline

Problem statement

- 2 Locality sensitive hashing
 - Euclidean space
 - Cosine similarity

3 Random storage in the binary cube

Binary (0/1) hypercube

Projection

- Input: Metric space admitting family of LSH functions h_i.
- For each h_i , $f_i(h_i)$ maps buckets to $\{0, 1\}$ uniformly. If h_i maps points to $\{0, 1\}$, f_i is the identity.
- Define $f: x \mapsto [f_1(h_1(x)), \dots, f_{d'}(h_{d'}(x))] \in \{0, 1\}^{d'}$.
- Preprocess: Store data in vertices of cube, dimension $d' = \lg n$.

Search

- Project query
- 2 Check points in same vertex
- **Solution** Explore nearby vertices (Hamming distance) until x found: $\operatorname{dist}(x,q) \leq (1+\epsilon)r$, threshold#points checked, or threshold#vertices probed.

Important topologies

Theorem

For ℓ_1 and ℓ_2 metrics, this solves the ANN decision problem efficiently, thus yielding a solution for the ϵ -ANN optimization problem with space and preprocessing in $O^*(dn)$, and query time in $O^*(dn^\rho)$, $\rho=1-\Theta(\epsilon^2)$.

Project

Main parameters:

d': new (projection) dimension,
 probes = max #buckets searched,
 M: max #candidate points examined.

- Compare to exhaustive search.
- Print query time, storage, multiplicative error, #exact-answers.