Équivalence des langages rationnels et reconnaissables

Quentin Fortier

January 30, 2023

Équivalence des langages rationnels et reconnaissables

L'objectif de ce cours est de montrer :

Théorème

Soit L un langage. Alors :

L est rationnel

 \iff

L est reconnaissable

Rationnel \implies reconnaissable

Preuve de « rationnel \Longrightarrow reconnaissable » :

- lacktriangle Un langage rationnel L peut être linéarisé (chaque lettre n'est alors utilisée qu'une seule fois)
- Un langage linéaire est local
- Un langage local est reconnu par un automate local
- lacktriangle Cet automate local peut être « délinéarisé » pour reconnaître L

Rationnel ⇒ reconnaissable : Langage linéaire

Définition

Une expression rationnelle est **linéaire** si chaque lettre y apparaît au plus une fois.

Définition

Soit e une expression rationnelle sur un alphabet $\Sigma.$

Soit k le nombre de lettres (avec multiplicité) apparaissant dans e.

Soit Σ' un alphabet de taille k.

Linéariser e consiste à remplacer chaque occurrence de lettre apparaissant dans e par une lettre différente de Σ' .

Exemple : soit $e = \varepsilon + b(a+bb)^*b$. En prenant $\Sigma' = \{c_0, c_1, c_2, c_3, c_4\}$, on peut linéariser e en $e' = \varepsilon + c_0(c_1 + c_2c_3)^*c_4$.

Rationnel \implies reconnaissable : Langage local

Définition

Soit L un langage. On définit :

- $P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset\}$ (premières lettres des mots de L)
- $S(L) = \{a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset\}$ (dernières lettres des mots de L)
- $F(L)=\{u\in \Sigma^2\mid \Sigma^*u\Sigma^*\cap L\neq\emptyset\}$ (facteurs de longueur 2 des mots de L)

Question

Donner P(L), S(L), F(L) pour $L = a^*b(ab)^*c$.

Rationnel \implies reconnaissable : Langage local

Définition

Soit L un langage. On définit :

- $P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset\}$ (premières lettres des mots de L)
- $S(L) = \{a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset\}$ (dernières lettres des mots de L)
- $F(L)=\{u\in \Sigma^2\mid \Sigma^*u\Sigma^*\cap L\neq\emptyset\}$ (facteurs de longueur 2 des mots de L)

Question

Écrire des fonctions prefixe, suffixe, facteur de type 'a regexp \rightarrow 'a list pour déterminer P(L), S(L), F(L).

Rationnel \implies reconnaissable : Langage local

Définition

Soit L un langage. On définit :

- $P(L) = \{a \in \Sigma \mid a\Sigma^* \cap L \neq \emptyset\}$ (premières lettres des mots de L)
- $S(L) = \{a \in \Sigma \mid \Sigma^* a \cap L \neq \emptyset\}$ (dernières lettres des mots de L)
- $F(L)=\{u\in \Sigma^2\mid \Sigma^*u\Sigma^*\cap L\neq\emptyset\}$ (facteurs de longueur 2 des mots de L)

Définition

Un langage L est **local** si, pour tout mot $u = u_1 u_2 ... u_n \neq \varepsilon$:

$$u \in L \iff u_1 \in P(L) \land u_n \in S(L) \land \forall k, u_k u_{k+1} \in F(L)$$

Exercice

Dire si les langages suivants sont locaux : $L_1 = a^*$, $L_2 = (ab)^*$, $L_3 = a^* + (ab)^*$, $L_4 = a^*(ab)^*$.

Rationnel ⇒ reconnaissable : Linéaire ⇒ local

Lemme

Soient L_1 et L_2 des langages locaux sur des alphabets disjoints Σ_1 et Σ_2 . Alors :

- $L_1 \cup L_2$ est local sur $\Sigma_1 \cup \Sigma_2$
- L_1L_2 est local sur $\Sigma_1 \cup \Sigma_2$
- L_1^* est local sur Σ_1

Théorème

Tout langage linéaire est local.

Preuve: en TD.

$Rationnel \implies reconnaissable : Automate local$

Définition

Un automate déterministe $(\Sigma,\,Q,\,q_0,F,E)$ est **local** si toutes les transitions étiquetées par la même lettre aboutissent au même état :

$$(q_1, a, q_2) \in E \land (q_3, a, q_4) \in E \implies q_2 = q_4$$

Théorème

Tout langage local ${\cal L}$ est reconnu par un automate local.

Preuve:

Si L ne contient pas ε , il est reconnu par (Σ, Q, q_0, F, E) où :

- $Q = \Sigma \cup \{q_0\}$: un état correspond à la dernière lettre lue
- \bullet F = S(L)
- $E = \{(q_0, a, a) \mid a \in P(L)\} \cup \{(a, b, b) \mid ab \in F(L)\}$

Exemple : construire un automate local reconnaissant $a(b^* + c)$.

Rationnel ⇒ reconnaissable : Algorithme de Berry-Sethi

Soit e une expression rationnelle.

- ① On linéarise e en e'. On note φ la fonction qui à chaque lettre de e' associe la lettre correspondante de e.
- ② On construit un automate local A reconnaissant L(e'). Pour cela il faut calculer P(L(e')), S(L(e')), F(L(e')).
- **③** On remplace chaque étiquette a de A par $\varphi(a)$. On obtient alors un automate (de Glushkov) reconnaissant L(e).

On en déduit :

Théorème

L est un langage rationnel $\implies L$ est reconnaissable.

Rationnel ⇒ reconnaissable : Algorithme de Berry-Sethi

Soit e une expression rationnelle.

- On linéarise e en e'. On note φ la fonction qui à chaque lettre de e' associe la lettre correspondante de e.
- ② On construit un automate local A reconnaissant L(e'). Pour cela il faut calculer P(L(e')), S(L(e')), F(L(e')).
- $\textbf{ On remplace chaque étiquette } a \text{ de } A \text{ par } \varphi(a). \text{ On obtient alors } \\ \text{un automate (de Glushkov) reconnaissant } L(e).$

Exercice

Construire l'automate de Glushkov reconnaissant $L(a(a+b)^*)$.