Geography Markup Language (GML) An introduction

Exam appointment

aktuelle(s) LV/Fach gleiche(s) LV/Fach									
	Nr. ▲ 🏲	Sem. ▲ 🖺	Art ▲ 🖈		Prüfer*in ▲ ▼	Datum ▼ ▼	Ort	Universität 🝸	Anmelde- fenster
>	856.161	23W	VO	Design of Geospatial Data Models	Belina G (P)	22.03.2024 15:00 - 17:00	Bauteil 14, GI-Lecture (SC30OG1.107)	PLUSonline	24.01.2024 00:00 20.03.2024 12:00
>	856.161	23W	VO	Design of Geospatial Data Models	Belina G (P)	01.03.2024 14:00 - 16:00	Bauteil 14, GI-Lecture (SC30OG1.107)	PLUSonline	22.01.2024 00:00 28.02.2024 12:00
>	856.161	23W	VO	Design of Geospatial Data Models	Belina G (P)	02.02.2024 14:00 - 16:00	HS T02 (JAK2OG2.01)	PLUSonline	22.01.2024 00:00 31.01.2024 12:00

- Be on time we start right at time (i.e. punctual)
- Bring paper and pencil
- Closed book

What is GML? – Scope

- The Geography Markup Language is
 - a markup language for geographic information based on XML
 - designed for the web and web-based services
 - To transport and store spatial data in an non proprietary fashion
 - Originally defined by OGC to facilitate data exchange between GI services and applications

What is GML? – The status

- > GML is an OpenGIS® Implementation Specification
 - The current version is 3.2.1 (with corrigendum 3.2.2)
 - Version 3.3 supplements version 3.2.1 by extended schema and encoding rules
 - See: https://www.ogc.org/standards/gml
- ➤ GML is also a work item of ISO/TC 211 and is published as ISO 19136 (also: GML 3.2.1)
- ➤ The work is carried out by a Joint Working Team of OGC and ISO/TC 211

What is GML? – Characteristics

GML

- is based on XML technologies (W3C)
 - XML, XML Namespaces, XML Schema, Xlinks
 - Extensible
- Describe features in XML (see also the UML class before Christmas)
 - Describes and supports spatial and non-spatial properties of objects
 - is open and vendor-neutral
- implements concepts of the ISO 19100
- supports the definition of profiles (proper subsets) of the full GML capabilities
 - Can be adopted according to specific needs

What is GML? – Characteristics

GML

- supports the description of geospatial application schemas for information communities
- enables the creation and maintenance of *linked* geographic application schemas and datasets
- supports the transport and storage of application schemas and data sets
- increases the ability of organizations to share geographic application schemas and the information they describe
- leaves it to implementers to decide whether application schemas and datasets are stored in native GML or whether GML is used only for schema and data transport

GML vision: a vendor-neutral exchange of spatial data

GML - A simple example

```
Feature
<Bridge>
     <span>100</span>
                           Feature properties
     <height 200</height>
      <qml:centerLineOf>
           <gml:LineString>
                 <qml:pos>100 200
                 <gml:pos>200 200
           </gml:LineString>
     </gml:centerLineOf>
</Bridge>
                   Geometry (spatial feature property)
```

Modelling Feature Types

The core concept of GML is the feature (see also the class materials related to the UML Application schema).

A feature is the abstraction of the phenomenon in the real world.

Every feature has a feature type. A feature type in GML is a named classification of a fact of

the real world.

GML Base Schemas, Application Schemas and Documents

Use a schema language to model geographic information in a UML Application Schema and define rules for such schemas

GML Base Schemas

- GML Base Schemas are horizontal and not focused on a specific application domain
- But they can provide common constructs and concepts which may be used by all the different application domains
- It tailors XML to the GML vocabulary

You find the gml base schema under:

https://schemas.opengis.net/gml/

GML Base Schemas

- Base schemas, general syntax, feature model, metadata mechanisms
- Basic geometry (0d, 1d, 2d)
- Additional geometric primitives (0d, 1d, 2d, 3d)
- Geometric composites
- Geometric aggregates
- Coordinate reference systems

- Topology
- Temporal information and dynamic features
- Definitions and dictionaries
- Units, measures and values
- Directions
- Observations
- Coverages
- Default styling

You find the gml base schema under: https://schemas.opengis.net/gml/

GML Technology Stack

Complexity of GML

- GML can be very complex support the full spectrum of the GFM
- Complexity can cause a problem for the data exchange
- 2 Dynamic feature support
- 2 Inclusion of time dimension
- Complex geometries
- The complex aspects are not always supported by COTS solutions (COTS = commercial off the shelf)

•

GML - Profiles

- GML Profiles help to limit complexity of GML
- Profiles do select only those aspects of GML which are required (based on the GML standard schemas)
- Creation of GML application schema is based on the profile(s) OGC defines profiles for GML like:
 - The "Simple Feature Profile" (3 levels: SFP0, SFP1, SFP2)
 - Be aware that most GIS COTS do support only the Simple Feature Profile Level 0!!!
- > You can define your own GML profile (e.g. for your organization)
- The profile is defined as part you your GML application schema definition

GML Technology Stack with GML Profiles

GML Key Concepts

- The state of a **feature** is described by a set of properties, in which every property is in principle represented by a triple {name, type, value}.
- Spatial properties are those properties that have a geometric object as their value (e.g. a point, a linestring, ...).
- Properties may be local values or references to remote objects (stored in other GML documents on other web servers)
- The GML Schema specifies a number of pre-defined types (for example a number of geometry types).

GML Key Concepts

Features with a similar characteristic are grouped to feature types, those features will share a similar set of properties. This structure is specified in a GML Application Schema.

Person

- + name : GenericName
- + age : Integer
- + sex : MaleOrFemale
- <<Enumeration>>
 Male Or Female
- + male
- + female

```
<Person gml:id = "p1">
    <gml:name>Bob</gml:name>
    <age>10</age>
    <sex>male</sex>
</Person>
```

GML Key Concepts

Three ways to represent a relationship between two features:

```
<Person gml:id="b1">
    <owns xlink:href="http://www.someserver.com/cars.xml#c1"/>
    </Person>
```

- The feature is either a child element of the property or referenced by an xlink:href attribute in the property element
- The xlink:href attribute is interpreted in the way that the value of the property is the feature referenced in the link
- The referenced feature can be part of the same GML document or anywhere in the internet/intranet

GML Example

- The feature "poi" as defined by the Tiger Census data is described by the following properties:
 - the_geom
 - Described as a GML Point based on WGS84 coordinates.
 - NAME
 - Name of the poi feature

GML Application schema - example

```
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"</pre>
          xmlns:gml="http://www.opengis.net/gml/3.2"
          xmlns:app="http://example.com/application"
          targetNamespace="http://example.com/application"
                                                                           Import GML schema
          elementFormDefault="qualified">
  <!-- Import GML and specify its namespace -->
  <xs:import namespace="http://www.opengis.net/gml/3.2" schemaLocation="http://schemas.opengis.net/gml/3.2.1/gml.xsd"/>
  <!-- Define the Building type -->
                                                                       Feature Type definition
  <xs:element name="Building" type="app:BuildingType"/>
  <xs:complexType name="BuildingType">
   <xs:complexContent>
     <xs:extension base="qml:AbstractFeatureType">
       <xs:sequence>
         <xs:element name="geometry" type="gml:PolygonPropertyType" minOccurs="0"/>
         <xs:element name="height" type="xs:double"/>
         <!-- Add other properties specific to buildings -->
       </xs:sequence>
     </xs:extension>
   </xs:complexContent>
  </xs:complexType>
</xs:schema>
```

GML instance document

```
Referncing the GML application schema
<?xml version="1.0" encoding="UTF-8"?>
                                                          (definition: see previous slide)
<app:Building xmlns:gml="http://www.opengis.net/gml/3.2"</pre>
              xmlns:app="http://example.com/application"
              qml:id="building1">
                                               Unique ID
 <!-- Geometry of the building -->
  <app:geometry>
    <qml:Polygon>
      <qml:exterior>
        <qml:LinearRing>
          <qml:posList>0 0 0 10 10 10 10 0 0 0/qml:posList>
        </gml:LinearRing>
      </gml:exterior>
    </gml:Polygon>
 </app:geometry>
 <!-- Height of the building -->
  <app:height>20.0</app:height>
  <!-- Other properties specific to buildings can be added here -->
</app:Building>
```

UML Application schema GML Example Application Schema


```
--<complexType name="CityModelType">
     <complexContent>
       <extension base="gml:AbstractFeatureCollectionType">
           <element name="dateCreated" type="gYearMonth"/>
         </sequence>
       </extension>
     </complexContent>
   </complexType>
 <complexType name="CityMemberType">
    <complexContent>
       <restriction base="gml:FeaturePropertyType">
         <sequence>
           <element ref="ex: CityFeature" minOccurs="0"/>
         </sequence>
         <attributeGroup ref="qml:AssociationAttributeGroup"/>
       </restriction>
     </complexContent>
</complexType>
--<complexType name="RoadType">
     <complexContent>
       <extension base="qml:AbstractFeatureType">
         <sequence>
           <element name="linearGeometry" type="gml:LineStringPropertyType"/>
           <element name="classification" type="string"/>
           <element name="number" type="string"/>
         </sequence>
       </extension>
     </complexContent>
  </complexType>
                               Data Type Definition
```

Feature Encodings GML Example Application Schema


```
<complexType name="CityModelType">
     <complexContent>
      <extension base="gml:AbstractFeatureCollectionType">
          <element name="dateCreated" type="gYearMonth"/>
        </sequence>
      </extension>
     </complexContent>
   </complexType>
<complexType name="CityMemberType">
    <complexContent>
       <restriction base="gml:FeaturePropertyType">
         <element ref="ex: CityFeature" minOccurs="0"/>
        <attributeGroup ref="gml:AssociationAttributeGroup"/>
       </restriction>
     </complexContent>
-</complexType>
<complexType name="RoadType">
     <complexContent>
      <extension base="gml:AbstractFeatureType">
          <element name="linearGeometry" type="gml:LineStringPropertyType"/>
          <element name="classification" type="string"/>
          <element name="number" type="string"/>
         </sequence>
      </extension>
     </complexContent>
  </complexType>
```

Feature Definition

```
<element name="CityModel" type="ex:CityModelType"/>
<element name="cityMember" type="ex:CityMemberType" substitutionGroup="gml:featureMember"/>
<element name="Road" type="ex:RoadType" substitutionGroup="ex:_CityFeature"/>
<element name="River" type="ex:RiverType" substitutionGroup="ex:_CityFeature"/>
<element name="Mountain" type="ex:MountainType" substitutionGroup="gml:_Feature"/>
<element name="_CityFeature" type="gml:AbstractFeatureType" abstract="true" substitutionGroup="gml:_Feature"/>
```

GML encoding of a data model

- UML defined according to ISO 19109 can be automatically transformed into a GML application schema (an XML Schema encoding).
- GML = Geography Markup Language / ISO 19136
 - GML is an extensive XML-based implementation of the ISO TC211 standards, particularly around spatial types, coordinate reference systems etc.

GML schema — Geometric primitives	GML schema — Topology
General concepts	General concepts
Abstract geometric primitives	
Geometric primitives (0-dimensional)	i opological primitives
Geometric primitives (1-dimensional)	"Topological collections
Geometric primitives (1-dimensional)	Topology complex
Geometric primitives (3-dimensional)	
	General concepts
GML schema — Geometric complex, geometric composites and geometric aggregate	s Temporal schema
Overview	Temporal topology schema
Geometric complex and geometric composites	Temporal reference systems
Geometric aggregates	Donroconting dynamic features
	CMI sehama Definitions and distinuaries
GML schema — Coordinate reference systems schemas	··· Overview
Overview	·· Dictionary schema
Reference systems	
Coordinate reference systems	GML schema — Units, measures and values
Coordinate reference systems	"Introduction
ooordinate systems	"Units schema
Datums	·· Measures schema
Coordinate operations	Value objects schema

GML encoding of a data model (cont.)

Table D.2 — Implementation of types from the ISO 19100 series of International Standards

UML class	GML object element	GML type	GML property type
GM_Object	gml:AbstractGeometry	gml:AbstractGeometryType	gml:GeometryPropertyType
GM_Primitive	gml:AbstractGeometricPrimtive	gml:AbstractGeometricPrimtiveType	gml:GeometricPrimtivePropertyType
DirectPosition	_	_	gml:DirectPositionType
GM_Position	_	_	gml:geometricPositionGroup (group)
GM_PointArray	_	_	gml:geometricPositionListGroup (group)
GM_Point	gml:Point	gml:PointType	gml:PointPropertyType
GM_Curve	gml:Curve	gml:CurveType	gml:CurvePropertyType
GM_Surface	gml:Surface	gml:SurfaceType	gml:SurfacePropertyType
GM_PolyhedralSurface	gml:PolyhedralSurface	gml:PolyhedralSurfaceType	anonymous property type ^a
GM_TriangulatedSurface	gml:TriangulatedSurface	gml:TriangulatedSurfaceType	anonymous property type
GM_Tin	gml:Tin	gml:TinType	anonymous property type
GM_Solid	gml:Solid	gml:SolidType	gml:SolidPropertyType
GM_OrientableCurve	gml:OrientableCurve	gml:OrientableCurveType	gml:CurvePropertyType
GM_OrientableSurface	gml:OrientableSurface	gml:OrientableSurfaceType	gml:SurfacePropertyType

See Annex D of GML 3.2.1 for complete table (several pages long)

Design of application schemas (UML to GML)

```
gml:AbstractCurve
                                                       gml:Ab
           -posList : doubleList
                                                      +descrip
                                                      -name : :
         urveMember

↓ -centreLine

                                    RoadSegment
          tring
                           -surfaceMaterial: SurfaceMaterialType
                           -numLanes : String
-<complexType name="RoadSegmentType">
 -<complexContent>
    -<extension base="app:AbstractFeatureType">
     -<sequence>
         <element name="surfaceMaterial" type="app:SurfaceMaterialType"/>
         <element name="numLanes" type="integer"/>
         <element name="centreLine" type="gml:CurvePropertyType"/>
       </sequence>
     </extension>
   </complexContent>
 </complexType>
```

The geospatial web Linking GML Application Schemas

Enabling the geospatial web

- Information Communities publish their Application Schemas (preferably in some sort of registry) so that it can be found, accessed and understood by others
- This enables that also the features can have properties whose values are maintained by other authorities
 - → a web of geospatial features is created

... and use GML as the lingua franca of the geospatial web

Mapping GML Data

GML is focused on content and not on visualization!

Support for application schema designers

- Rules for Application Schemas
 - Guidelines for the usage of XML Schema
 - GML documents can be interpreted more easily by software (GML parsers)

- > ISO 19109 "Rules for Application Schemas"
 - Framework / meta model for the definition of application schemas in UML and GML
- Tools to map from UML or other modeling languages to GML (e.g. Shape Change of Interactive Instruments))
 - http://www.interactive-instruments.de/shapechange/
- Using a GML Profile in an Application Schema
 - A declaration of the subset of GML used by an application
 - GML itself includes a simple tool that allows to create such a GML profile automatically

Support for software developers

- XML Parsers, XSLT processors, etc. are available (including Open Source ones); as XML is popular in general many developers know how to work with and process XML documents
- GML Parsers (i.e. GML-aware XML parsers understanding the GML model and syntax) are emerging (e.g. FME, Tatuk GIS, GAIA (carbon project), Snowflake, etc.)
- Most major GIS products have in their latest releases built-in support for GML;
- ➤ in addition a significant number of new products providing OGC Web Service interfaces and serving GML via COTS (e.g. Oracle, ArcGIS Sever, etc.)

Summary

- ➤ GML 3.2.1 is an OpenGIS® Specification
- ➤ ISO 19136 is the ISO specification of GML (GML 3.2.1)
- Most recent OGC Implementation Specifications are linked to GML
 - E.g. IndoorGML, LandInfra/InfraGML
- > A number of GML enabled products have been released
- Provides a rich set of predefined types for Application Schemas
- Has an underlying model that makes processing GML documents easier (GML Profiles)
- Separates presentation and content
- Works well in a Web Service environment
- → A building block of the Geospatial Web

Tools & Tutorial

> XML

- XMLSpy from Altova (widely spread)
 - 30 days evaluation license:
 - https://www.altova.com/xmlspy-xml-editor/download
- OXyGEN
 - 30 days evaluation license, cheap academic lincensing
 - http://www.oxygenxml.com/
- XML Tutorial W3Schools:
 - http://www.w3schools.com/xml/
- > GML
 - https://en.wikipedia.org/wiki/Geography_Markup_Language
 - https://inspire.ec.europa.eu/training/basic-concepts-xml-and-gml
- > KML
 - https://developers.google.com/kml/documentation/kmlreference

Mandatory reading assignment

- ➤ Use the w3schoools Homepage and work through the following tutorials (please note that the content of those tutorials will form part of the exam)
 - XML Basics
 - http://www.w3schools.com/xml/default.asp
 - XML Schema
 - http://www.w3schools.com/xml/schema_intro.asp