Deepseek企业级Agent项目开发实战

Part 5. Deepseek V3 和 R1 模型在线API调用

除了本地部署 DeepSeek 模型外,我们还可以通过 DeepSeek 提供的在线 API 接口进行调用。这是一种更加轻量级、灵活的使用方式。本节内容主要介绍如何使用 DeepSeek V3 和 R1 模型进行在线 API 调用满血版 DeepSeek v3 & r1 模型。

一种最简单的理解方法是: 前几节我们通过 ollama 在本地部署的了 DeepSeek R1模型,最终的目的是能够提供一个类似于 http:localhost:11434/v1/chat/completions 的接口,然后我们就可以像调用 OpenAI 的接口一样调用 DeepSeek 的接口了。这个过程需要我们有本地的 GPU 资源,然后通过 ollama 来启动和管理模型。 DeepSeek 的在线API接口,则不需要我们自己用本地的 GPU 资源去部署,而是由服务商部署好模型,然后我们通过注册账号,获取 API Key,然后就也可以像调用 OpenAI 的接口一样调用 DeepSeek 的接口。

1. 注册deepseek账号

如果想访问 DeepSeek 的在线 API 接口,首先我们需要注册一个 deepseek 的账号,然后去获取到一个有效的 API Key 。官方的 DeepSeek 的 API 服务地址是:<u>https://platform.deepseek.com/usage</u>

然后充值,按照如下方式获取 API Key 即可,非常简单。 DeepSeek 的 API 接口是按照 token 来收费的,不过现阶段因为服务器资源紧张, DeepSeek 官方暂时停止了充值服务,大家可以等待服务恢复。

2. DeepSeek v3 调用指南

DeepSeek API 使用与 OpenAI 兼容的 API 格式,如下是 OpenAI 的 API 调用格式:

因此,需要在 OpenAI 的 API 调用格式的基础上,将 OpenAI 的 base_url 替换为 DeepSeek 的 endpoint ,以及将 model 替换为 DeepSeek 的 model 。其中 DeepSeek v3 的 model 名称是: deepseek-chat , 即:

• 非流式输出

大模型(Large Model)通常指的是参数规模庞大、计算能力强大的机器学习模型,尤其是深度学习模型。这类模型在处理复杂任务时表现出色,尤其是在自然语言处理(NLP)、计算机视觉、语音识别等领域。

大模型的特点:

- **1.** **参数规模大**: 大模型的参数量通常在数亿到数千亿之间,甚至更多。参数越多,模型的表达能力越强,能够捕捉更复杂的模式和特征。
- 2. **计算资源需求高**: 训练和运行大模型需要大量的计算资源,包括高性能GPU、TPU等硬件设备,以及大量的存储和内存。
- 3. **数据需求大**: 大模型通常需要海量的训练数据来优化模型参数,避免过拟合并提升泛化能力。
- **4.** **任务泛化能力强**: 大模型经过预训练后,可以通过微调(Fine-tuning)或提示(Prompting)等方式适应多种下游任务,表现出较强的泛化能力。
- **5.** **多模态能力**:一些大模型不仅限于单一模态(如文本),还可以处理多模态数据(如文本、图像、音频等),实现跨模态的理解和生成。

典型的大模型:

- **自然语言处理(NLP) **:

- **GPT系列**(如GPT-3、GPT-4):由OpenAI开发的生成式预训练变换模型,擅长文本生成、问答、翻译等任务。
 - **BERT**: 由Google开发的双向编码器表示模型,擅长文本分类、问答等任务。
 - **T5**: 由Google开发的文本到文本转换模型,适用于多种NLP任务。
- **计算机视觉**:
 - **ResNet**: 深度残差网络,用于图像分类、目标检测等任务。
 - **ViT** (Vision Transformer): 基于Transformer架构的图像处理模型。
- **多模态模型**:
 - **CLIP**: 由OpenAI开发的多模态模型,能够理解图像和文本之间的关系。
 - **DALL·E**: 由OpenAI开发的图像生成模型,能够根据文本描述生成图像。

大模型的应用场景:

- **智能助手**:如ChatGPT、Alexa等,能够进行自然语言对话、问答、任务执行等。
- **内容生成**: 如自动生成文章、新闻、代码、图像等。
- **机器翻译**:如Google Translate等,能够实现高质量的跨语言翻译。
- **医疗诊断**: 通过分析医学图像或文本,辅助医生进行诊断。
- **自动驾驶**: 通过处理多模态数据(如摄像头、雷达等),实现车辆的自主导航和决策。

大模型的挑战:

- 1. **计算成本高**: 训练和部署大模型需要大量的计算资源和能源消耗。
- 2. **数据隐私问题**: 大模型通常需要大量数据,可能涉及用户隐私和数据安全问题。
- 3. **模型解释性差**: 大模型的决策过程通常较为复杂,难以解释其内部机制。
- 4. **伦理问题**: 如模型可能生成有害或偏见内容,需要谨慎处理。

总的来说,大模型是当前人工智能领域的重要进展,尽管面临诸多挑战,但其强大的能力正在推动多个行业的 发展与变革。

• 流式输出

```
from openai import OpenAI
import json
client = OpenAI(api_key="", base_url="")
# 调用聊天接口, 启用流式输出
response = client.chat.completions.create(
   model="deepseek-ai/DeepSeek-V3", #根据实际情况替换模型名称
   messages=[
       {"role": "system", "content": "你是一位乐于助人的AI助手"},
       {"role": "user", "content": "请问什么是大模型?"},
   ],
   temperature=1.0,
   stream=True # 启用流式输出
)
try:
   # 处理流式响应
   for chunk in response:
       if chunk.choices and chunk.choices[0].delta.content:
            print(chunk.choices[0].delta.content, end='', flush=True)
except Exception as e:
   print("发生错误:", e)
```

大模型(Large Model)通常指的是具有**大量参数**的机器学习模型,尤其是在自然语言处理(NLP)和计算机视觉(CV)领域中表现出色的模型。这些模型的参数量可以达到**数十亿甚至数千亿**,能够处理极其复杂的任务。

大模型的几个关键特点:

- 1. **参数量巨大**: 大模型的参数量通常在数亿到数千亿之间,这使得它们能够捕捉和学习非常复杂的模式和关系。
- 2. **训练数据量大**: 大模型通常需要**海量数据**进行训练,这些数据可以来自互联网、书籍、文章等多种来源。
- 3. **计算资源需求高**: 训练和部署大模型需要大量的**计算资源**,包括高性能的GPU、TPU以及大规模的计算集群。
- **4.** **多功能性**: 大模型通常具有**通用性**,可以应用于多种任务,如文本生成、翻译、问答、图像识别等。
- 5. **涌现能力(Emergent Abilities)**:一些大模型显示出在训练数据中未明确训练的**新能力**,例如解决数学问题或生成连贯的长文。

典型的大模型示例:

- 1. **GPT (Generative Pre-trained Transformer) 系列**: 由OpenAI开发,参数量从GPT-3的 1750亿到GPT-4的更大规模。
- 2. **BERT (Bidirectional Encoder Representations from Transformers) **: 由Google开发,用于理解文本的双向表示。
- 3. **PaLM (Pathways Language Model) **: 由Google开发,参数量达到5400亿。
- 4. **LLaMA (Large Language Model Meta AI) **: 由Meta开发,参数量从70亿到650亿不等。

大模型的应用场景:

- **自然语言处理**: 文本生成、机器翻译、情感分析、问答系统等。
- **计算机视觉**: 图像生成、物体检测、图像分类等。
- **多模态任务**:结合文本和图像的处理,例如生成图像描述或从文本生成图像。
- **科学研究**: 辅助药物研发、蛋白质结构预测等。

大模型是人工智能领域的一个重要发展方向,但也面临**数据隐私、能源消耗、训练成本**等挑战。

3. DeepSeek R1 调用指南

DeepSeek R1 的 API 调用与 DeepSeek v3 的 API 调用类似,只需要将 model 替换为 DeepSeek R1 的 model 即可。其中 DeepSeek R1 的 model 名称是: deepseek-reasoner,即:

• 非流式输出

from openai import OpenAI

client = OpenAI(api_key="", base_url="")

response = client.chat.completions.create(

model="deepseek-ai/DeepSeek-R1", # 注意:这里是因为我购买的 deepseek 服务上要求提供的模型名称是 DeepSeek-R1,大家根据自己的情况进行替换

<think>

嗯,用户问什么是大模型。首先,我需要明确大模型的定义,可能涉及参数规模、训练数据、应用场景等。大模型通常指参数数量巨大的深度学习模型,比如GPT-3、BERT这些。参数多意味着模型更复杂,能处理更复杂的任务。然后要说明大模型的特点,比如需要大量计算资源和数据,以及它们在NLP、图像识别等领域的应用。还要提到大模型的优势,比如强大的泛化能力,但也可能涉及计算成本高、部署困难的问题。需要确保解释通俗易懂,适合不同知识背景的读者。同时,可能要区分大模型与传统模型的区别,强调规模和性能的提升。最后,检查是否有遗漏点,比如预训练和微调的概念,或者举例说明常见的大模型,帮助用户更好理解。</think>

大模型(Large Model)通常指参数规模巨大、计算能力要求高的深度学习模型。这类模型通常具备以下特点:

1. **参数规模庞大**

- 参数数量可达**数十亿甚至上万亿**,例如:
 - **GPT-3** (1750亿参数)
 - **PaLM**(谷歌,5400亿参数)
 - **GPT-4**(具体参数未公开,推测在万亿级)。

2. **训练数据海量**

- 使用互联网级别的文本、图像等多模态数据进行训练,例如:
 - GPT-3 使用了45TB的文本数据:
 - 某些多模态模型(如DALL·E)融合了文本-图像对数据。

3. **核心能力**

- **涌现能力**: 当模型规模超过临界值(如**100**亿参数)时,会突然获得小模型不具备的能力(如复杂推理、上下文学习)。
 - **多任务统一处理**: 单一模型可同时完成翻译、问答、代码生成等任务。

4. **技术实现**

- **Transformer架构**: 基于自注意力机制, 支持并行计算;
- **混合专家系统**(MoE):如GPT-4可能采用的稀疏激活架构,降低计算成本;
- **分布式训练**: 需数千张GPU(如使用NVIDIA A100集群)进行并行训练。

5. **应用场景**

- **AIGC**: 生成高质量文本(ChatGPT)、图像(Stable Diffusion)、视频(Sora);
- **科学计算**: AlphaFold2预测蛋白质结构, DeepMind天气预测模型;
- **企业服务**: 客服自动化、智能文档处理、代码补全(GitHub Copilot)。

6. **挑战**

- **训练成本**: GPT-3训练成本约460万美元;
- **能耗问题**: 单次训练碳足迹相当于5辆汽车生命周期排放;
- **伦理风险**: 生成虚假信息、深度伪造内容等。

演进趋势

- **稀疏化**: 通过MOE等架构提升计算效率
- **多模态融合**: 如GPT-4V整合视觉-语言能力
- **小型化**: 模型压缩技术(如LORA微调)推动端侧部署

• 流式输出

```
from openai import OpenAI
client = OpenAI(api_key="", base_url="")
response = client.chat.completions.create(
   model="deepseek-ai/DeepSeek-R1", # 注意: 这里是因为我购买的 deepseek 服务上要求提
供的模型名称是 DeepSeek-R1, 大家根据自己的情况进行替换
   messages=[
       {"role": "system", "content": "你是一位乐于助人的AI助手"},
       {"role": "user", "content": "请问什么是大模型?"},
   ],
   stream=True,
   temperature=0.6,
)
try:
   # 处理流式响应
   for chunk in response:
       if chunk.choices and chunk.choices[0].delta.content:
            print(chunk.choices[0].delta.content, end='', flush=True)
except Exception as e:
   print("发生错误:", e)
```

<think>

嗯,用户问"什么是大模型?",我需要先确定用户对这个概念的理解程度。大模型这个词在AI领域比较常见,但可能对于普通用户来说有点抽象。首先,我应该从基础开始解释,比如大模型指的是参数量非常大的机器学习模型,比如GPT-3、BERT这些。然后要说明参数量大带来的优势,比如更强的学习能力和处理复杂任务的能力,比如自然语言理解、生成、图像识别等。同时,也要提到大模型的挑战,比如训练需要大量计算资源和数据,能耗高,可能存在偏见等问题。用户可能还想知道大模型的应用场景,比如聊天机器人、内容生成、自动化客服等。另外,可能需要区分大模型和小模型的不同,比如参数量、适用场景的区别。还要注意用词通俗易懂,避免专业术语过多,必要时举例说明。最后,确认回答是否全面,是否需要补充其他相关信息,比如当前的发展趋势或者常见的大模型例子。

</think>

大模型(Large Model)通常指参数量巨大(数十亿甚至数千亿级别)的机器学习模型,尤其在自然语言处理(NLP)、计算机视觉(CV)等领域表现突出。以下是关键点:

- 1. **核心特征**
 - **参数量大**: 例如GPT-3有1750亿参数,能捕捉复杂数据规律。
 - **训练数据多**: 需海量文本、图像等数据训练。
 - **计算资源密集**: 依赖高性能GPU/TPU集群,训练耗时数周。
- 2. **典型应用**
 - **自然语言处理**: 对话系统(如ChatGPT)、文本生成、翻译
 - **多模态任务**: 图文生成(如DALL-E)、视频理解
 - **决策支持**: 金融预测、药物研发
- 3. **代表模型**
 - GPT系列(OpenAI)
 - BERT (Google)

- PaLM (Google)
 - 文心一言(百度)
 - 通义千问(阿里)

4. **技术挑战**

- 训练成本高(单次训练耗资数百万美元)
- 部署困难(需模型压缩、蒸馏等技术)
- 存在偏见/幻觉问题
- 高能耗争议

5. **发展趋势**

- 多模态融合
- 小型化/专业化(大模型→垂直领域小模型)
- 绿色AI (提升能效)
- 开源与闭源并行发展

大模型推动AI能力边界,但也引发伦理、安全等方面的讨论,是当前人工智能领域的核心技术方向之一。

这里需要注意的是: DeepSeek R1 现在还不支持 Function Calling 和 Json Output 格式化输出,所以目前还无法直接接入 Agent 构建工作流。