Digital Electronics and Microprocessors

Class 13

CHHAYADEVI BHAMARE

Synthesis of a sequential circuits(Design Procedure)

- □ Design Procedure for sequential circuit
 - The word description of the circuit behavior to get a state diagram;
 - State reduction if necessary;
 - Assign binary values to the states;
 - Obtain the binary-coded state table;
 - Choose the type of flip-flops;
 - Derive the simplified flip-flop input equations and output equations;
 - Draw the logic diagram;

SHIFT REGISTER VOCABULARY

- **REGISTER-** group of flip flops capable of storing data.
- SERIAL DATA TRANSMISSION- transfer of data from one place to another one bit at a time.
- PARALLEL DATA TRANSMISSION- simultaneous transfer of all bits of a data word from one place to another.
- SISO- SERIAL IN/SERIAL OUT- type of register that can be loaded with data serially and has only one serial output.
- SIPO- SERIAL IN/PARALLEL OUT- type of register that can be loaded with data serially and has parallel outputs available.
- PISO- PARALLEL IN/SERIAL OUT- type of register that can be loaded with parallel data and has only one serial output.
- PIPO- PARALLEL IN/PARALLEL OUT- type of register that can be loaded with parallel data and has parallel outputs available.

OVERVIEW OF SHIFT REGISTERS

- A shift register is a sequential logic device made up of flip-flops that allows parallel or serial loading and serial or parallel outputs as well as shifting bit by bit.
- Common tasks of shift registers:
 - Serial/parallel data conversion
 - UART (an example)
 - Time delay
 - Ring counter
 - Twisted-ring counter or Johnson counter
 - Memory device

CHARACTERISTICS OF SHIFT REGISTERS

- •Number of bits (4-bit, 8-bit, etc.)
- Loading
 - Serial
 - Parallel (asynchronous or synchronous)
- Common modes of operation.
 - Parallel load
 - Shift right-serial load
 - Shift left-serial load
 - Hold
 - Clear
- Recirculating or non-recirculating

Integrated-Circuit Registers

- □ Registers can be classified by the way data is entered for storage, and by the way data is outputted from the register.
 - Parallel in/parallel out (PIPO)
 - Serial in/serial out (SISO)
 - Parallel in/serial out (PISO)
 - Serial in/parallel out (SIPO)

PIPO – The 74ALS174/74HC174

- □ Refer to Figure 7-47
 - Six bit register
 - Parallel inputs D_5 through D_0
 - Parallel outputs Q_5 through Q_0
- □ Parallel data loaded to the register on the PGT of CP
- □ Master reset can reset all FFs asynchronously

SISO – 74ALS166/74HC166

- □ Refer to Figure 7-49
 - The chip contains an 8-bit shift register
 - The serial input is labeled SER
 - \blacksquare Only the Q_H output is accessible.
 - Clock input responds to PGT
- □ Inputs A-H provide the means for parallel data entry into register FFs

PISO – The 74ALS165/74HC165

- □ Refer to figure 7-51
 - 8 bit register
 - Serial data entry via D_S
 - \blacksquare Asynchronous parallel data entry P_0 through P_7
 - \blacksquare Only the outputs of Q_7 are accessible
- □ CP is clock input for shifting
- □ Clock inhibit input
- □ Shift load input

SIPO – The 74ALS164/74HC164

- □ Refer to Figure 7-53
 - 8 bit shift register
 - Each FF output is externally accessible
- □ Shift occurs on NGT of the clock input.

□ Other similar devices

- 74194/ASL194/HC194
 - □ 4 bit bi-directional universal shift register
 - □ Performs shift left, shift right, parallel in and parallel out.
- 74373/ALS373/HC373/HCT373
 - □ 8 bit PIPO with 8 D latches
 - □ Tristate outputs
- 74374/ALS374/HC374
 - □ 8 bit PIPO with 8 edge triggered D FFs
 - □ Tristate outputs

SERIAL/PARALLEL DATA CONVERSION

Shift registers can be used to convert from serialto-parallel or the reverse from parallel-to-serial.

SERIAL LOAD SHIFT REGISTER

Note the use of D FFs.
Clock (CLK) inputs wired in parallel.
Clear (CLR) inputs can be activated with LOV
or disabled with HIGH.
Preset (PS) inputs deactivated.

QUESTION #7

What is the 4-bit output (bit A on left, D on right) after pulse 6?

A: 1100

PARALLEL LOAD SHIFT REGISTER

RECIRCULATING SHIFT REGISTER

UNIVERSAL SHIFT REGISTER IC

USING THE 74194 SHIFT REGISTER IC

Homework 7-67 of T1(10th edition)

QUEDITON #7

What is the mode of operation during and the output of the shift register after pulse 6?

A: Shift left, 1 0 1 1

