MA553: Qual Preparation

Carlos Salinas

July 20, 2016

Contents

1	Ulrich												2															
	1.1	Ulrich:	Winter 2002																									2

1 Ulrich

1.1 Ulrich: Winter 2002

Problem 1. Let G be a group and H a subgroup of finite index. Show that there exists a normal subgroup N of G of finite index with $N \subset H$.

Solution. \blacktriangleright Let n=[G:H] and $X=\{H,g_1H,\ldots,g_{n-1}H\}$ the set of left-cosets of H in G with representatives $g_0=e,g_1,\ldots,g_{n-1}$. Let G act on X by left multiplication, i.e., $g\mapsto gg_iH$; this is indeed an action since $e(g_iH)=eg_iH=g_iH$ for all $g_iH\in X$ and for $k_1,k_2\in G$ $k_2(k_1g_iH)=k_2k_1g_iH=(k_2k_1)g_iH$. By Cayley's theorem, this induces a homomorphism $\varphi\colon G\to S_n$. Note that the action is not necessarily faithful. However, by the first isomorphism theorem, the kernel of φ , $N=\operatorname{Ker}\varphi$, is a normal subgroup of G with index $[G:N]\leq |S_n|=n!$ and $N\subset H$ since $g\in N$ if and only if $gg_iH=g_iH$ which, in particular, implies that gH=H. Thus, $N\subset H$ and $[G:N]<\infty$.

Problem 2. Show that every group of order $992 (= 32 \cdot 31)$ is solvable.

Solution. \blacktriangleright Suppose G is a group with order $|G|=992=2^5\cdot 3$. By Sylow's theorem, the number of 2-Sylow subgroups in G is either 1 or 3. If the number of 2-Sylow subgroups is 1, then $P \triangleleft G$ and the quotient G/P has order [G:P]=3, hence, is cyclic. Moreover, since P is a p-group, it is solvable. Since P and G/P are solvable, G is solvable.

Now, suppose the number of 2-Sylow subgroups is 3. Let $\mathrm{Syl}_2(G) = \{P, P_1, P_2\}$. Then, by Sylow's theorem, the three 2-Sylow subgroups are conjugate, i.e., there exists $g_1, g_2 \in G$ such that $P_1 = g_1 P g_1^{-1}$ and $P_2 = g_2 P g_2^{-1}$. Thus, G acts on the set $\mathrm{Syl}_2(P)$ by conjugation. This actions defines a (not necessarily injective) homomorphism $\varphi \colon G \to S_3$. Now, we ask: What is the kernel of this homomorphism? By the first isomorphism theorem, we know that the index of the kernel in G divides the order of G, i.e., $G \colon \mathrm{Ker} \varphi = G$. Since $G \colon \mathrm{Ker} \varphi = G$, we implies that the order of the kernel is one of the following values

$$|Ker \varphi| = 2^4, 2^4 \cdot 3, 2^5, 2^5 \cdot 3.$$

Now, $|\operatorname{Ker} \varphi| \neq 2^5 \cdot 3$ since we know at least one automorphism, namely conjugation by g_1 , which sends $P \mapsto P_1$. Thus, the order of the kernel is either 2^4 , $2^4 \cdot 3$ or 2^5 . If the $|\operatorname{Ker} \varphi| = 2^4$ or 2^5 , we are done for similar reasons to the argument we gave in the previous paragraph, namely, that $\operatorname{Ker} \varphi \lhd G$ and $G/\operatorname{Ker} \varphi$ is solvable (for $|\operatorname{Ker} \varphi| = 2^4$, the quotient $G/\operatorname{Ker} \varphi$ has order 6 so is isomorphic to one of two groups, S_3 or Z_6 , both of which are solvable).

Suppose Ker φ has order $2^4 \cdot 3$. Then the number of 3-Sylow subgroups is either 1, 4 or 16. If this number is 1, we are done as $Q \in \operatorname{Syl}_3(\operatorname{Ker} \varphi)$ is a normal subgroup and the quotient is a p-group. Suppose the number of 3-Sylow subgroups is 16. Then there are $16 \cdot 2 = 32$ elements of order 3 in Ker φ .

Problem 3. Let G be a group of order 56 with a normal 2-Sylow subgroup Q, and let P be a 7-Sylow subgroup of G. Show that either $G \simeq P \times Q$ or $Q \simeq \mathbb{Z}/(2) \times \mathbb{Z}/(2) \times \mathbb{Z}/(2)$.

[Hint: P acts on $Q \setminus \{e\}$ via conjugation. Show that this action is either trivial or transitive.]

Solution. First, note that, by the fundamental theorem of arithmetic, the order of G can be broken down into $56 = 2^3 \cdot 7$. Suppose G has a normal 2-Sylow subgroup Q and let $P \in \operatorname{Syl}_3(G)$. Then $|\operatorname{Syl}_3(G)| = 1, 4$. If $|\operatorname{Syl}_3(G)| = 1$, then P is the unique 3-Sylow subgroup of G, hence it is normal. Thus, |P||Q| = |G| and PQ = G since, if $g \in Q \cap G$, then |g| = 3, but $2 \mid |g|$ so g = e. Thus, $G \simeq P \times Q$.

Now, suppose $|\text{Syl}_3(G)| = 4$. Then G contains 4 3-Sylow subgroups which, by Sylow's theorem, are conjugate, i.e., there exists $g_1, g_2, g_3 \in G$ such that $\text{Syl}_n(G) = \{P, g_1 P g_1^{-1}, g_2 P g_2^{-1}, g_3 P g_3^{-1}\}.$

Problem 4. Let R be a commutative ring and Rad(R) the intersection of all maximal ideals of R.

- (a) Let $a \in R$. Show that $a \in \text{Rad}(R)$ if and only if 1 + ab is a unit for every $b \in R$.
- (b) Let R be a domain and R[X] the polynomial ring over R. Deduce that Rad(R[X]) = 0.

Solution. ▶

Problem 5. Let R be a unique factorization domain and P a prime ideal of R[X] with $P \cap R = 0$.

- (a) Let n be the smallest possible degree of a nonzero polynomial in P. Show that P contains a primitive polynomial f of degree n.
- (b) Show that P is the principal ideal generated by f.

Solution. ▶

Problem 6. Let k be a field of characteristic zero. assume that every polynomial in k[X] of odd degree and every polynomial in k[X] of degree two has a root in k. Show that k is algebraically closed.

Solution. ▶

Problem 7. Let $k \subset K$ be a finite Galois extension with Galois group Gal(K/k), let L be a field with $k \subset L \subset K$, and set $H = \{ \sigma \in Gal(K/k) : \sigma(L) = L \}$.

- (a) Show that H is the normalizer of $\mathrm{Gal}(K/L)$ in $\mathrm{Gal}(K/k)$. (b) Describe the group $H/\mathrm{Gal}(K/L)$ as an automorphism group.

Solution. \blacktriangleright