$$4. \quad \left(\frac{x}{3} + \frac{1}{x}\right)^5$$

5.
$$\left(x + \frac{1}{x}\right)^{6}$$

Using binomial theorem, evaluate each of the following:

6. $(96)^3$

- **7.** (102)⁵
- **8.** (101)⁴

- **9.** (99)⁵
- 10. Using Binomial Theorem, indicate which number is larger $(1.1)^{10000}$ or 1000.
- 11. Find $(a+b)^4 (a-b)^4$. Hence, evaluate $(\sqrt{3} + \sqrt{2})^4 (\sqrt{3} \sqrt{2})^4$.
- 12. Find $(x+1)^6 + (x-1)^6$. Hence or otherwise evaluate $(\sqrt{2} + 1)^6 + (\sqrt{2} 1)^6$.
- 13. Show that $9^{n+1} 8n 9$ is divisible by 64, whenever *n* is a positive integer.
- **14.** Prove that $\sum_{r=0}^{n} 3^{r} {}^{n}C_{r} = 4^{n}$.

8.3 General and Middle Terms

- 1. In the binomial expansion for $(a + b)^n$, we observe that the first term is ${}^nC_0a^n$, the second term is ${}^nC_1a^{n-1}b$, the third term is ${}^nC_2a^{n-2}b^2$, and so on. Looking at the pattern of the successive terms we can say that the $(r + 1)^{th}$ term is ${}^nC_ra^{n-r}b^r$. The $(r + 1)^{th}$ term is also called the *general term* of the expansion $(a + b)^n$. It is denoted by T_{r+1} . Thus $T_{r+1} = {}^nC_ra^{n-r}b^r$.
- 2. Regarding the middle term in the expansion $(a + b)^n$, we have
 - (i) If *n* is even, then the number of terms in the expansion will be n + 1. Since n = n is even so n + 1 is odd. Therefore, the middle term is $\left(\frac{n+1+1}{2}\right)^{th}$, i.e.,

$$\left(\frac{n}{2}+1\right)^{th}$$
 term.

For example, in the expansion of $(x + 2y)^8$, the middle term is $\left(\frac{8}{2} + 1\right)^{th}$ i.e., 5th term.

(ii) If n is odd, then n + 1 is even, so there will be two middle terms in the

expansion, namely, $\left(\frac{n+1}{2}\right)^{th}$ term and $\left(\frac{n+1}{2}+1\right)^{th}$ term. So in the expansion $(2x-y)^7$, the middle terms are $\left(\frac{7+1}{2}\right)^{th}$, i.e., 4^{th} and $\left(\frac{7+1}{2}+1\right)^{th}$, i.e., 5^{th} term.

In the expansion of $\left(x+\frac{1}{x}\right)^{2n}$, where $x \neq 0$, the middle term is $\left(\frac{2n+1+1}{2}\right)^{4n}$ i.e., $(n + 1)^{th}$ term, as 2n is even.

It is given by ${}^{2n}C_n x^n \left(\frac{1}{x}\right)^n = {}^{2n}C_n$ (constant).

This term is called the *term independent* of x or the constant term.

Example 5 Find a if the 17th and 18th terms of the expansion $(2 + a)^{50}$ are equal.

Solution The $(r+1)^{th}$ term of the expansion $(x+y)^n$ is given by $T_{r+1} = {}^{n}C_{r}x^{n-r}y^{r}$.

For the 17th term, we have, r + 1 = 17, i.e., r = 16

Therefore,
$$T_{17} = T_{16+1} = {}^{50}C_{16} (2)^{50-16} a^{16}$$

= ${}^{50}C_{16} 2^{34} a^{16}$.

 $T_{18} = {}^{50}C_{17} 2^{33} a^{17}$ Similarly,

Given that

in that $T_{17} = T_{18}$ $^{50}C_{16}(2)^{34} a^{16} = ^{50}C_{17}(2)^{33} a^{17}$

 $\frac{{}^{50}\mathrm{C}_{16}.2^{34}}{{}^{50}\mathrm{C}_{233}} = \frac{a^{17}}{a^{16}}$ Therefore

i.e., $a = \frac{{}^{50}\text{C}_{16} \times 2}{{}^{50}\text{C}_{15}} = \frac{50!}{{}^{16!}_$

Example 6 Show that the middle term in the expansion of $(1+x)^{2n}$ is $\frac{1.3.5...(2n-1)}{2n} 2n x^n$, where *n* is a positive integer.

Solution As 2n is even, the middle term of the expansion $(1 + x)^{2n}$ is $\left(\frac{2n}{2} + 1\right)^{\ln n}$, i.e., $(n + 1)^{\ln n}$ term which is given by,

$$T_{n+1} = {}^{2n}C_{n}(1)^{2n-n}(x)^{n} = {}^{2n}C_{n}x^{n} = \frac{(2n)!}{n!}x^{n}$$

$$= \frac{2n(2n-1)(2n-2)...4.3.2.1}{n!}x^{n}$$

$$= \frac{1.2.3.4...(2n-2)(2n-1)(2n)}{n!n!}x^{n}$$

$$= \frac{[1.3.5...(2n-1)][2.4.6...(2n)]}{n!n!}x^{n}$$

$$= \frac{[1.3.5...(2n-1)]2^{n}[1.2.3..n]}{n!n!}x^{n}$$

$$= \frac{[1.3.5...(2n-1)]n!}{n!}2^{n}.x^{n}$$

$$= \frac{1.3.5...(2n-1)]n!}{n!}2^{n}.x^{n}$$

Example 7 Find the coefficient of x^6y^3 in the expansion of $(x + 2y)^9$.

Solution Suppose x^6y^3 occurs in the $(r+1)^{th}$ term of the expansion $(x+2y)^9$.

Now
$$T_{r+1} = {}^{9}C_{r} x^{9-r} (2y)^{r} = {}^{9}C_{r} 2^{r} . x^{9-r} . y^{r}$$
.

Comparing the indices of x as well as y in x^6y^3 and in T_{r+1} , we get r=3.

Thus, the coefficient of x^6y^3 is

$${}^{9}C_{3} 2^{3} = \frac{9!}{3!6!} \cdot 2^{3} = \frac{9.8.7}{3.2} \cdot 2^{3} = 672.$$

Example 8 The second, third and fourth terms in the binomial expansion $(x + a)^n$ are 240, 720 and 1080, respectively. Find x, a and n.

Solution Given that second term $T_2 = 240$

We have
$$T_2 = {}^nC_1x^{n-1}$$
. a
So ${}^nC_1x^{n-1}$. $a = 240$... (1)
Similarly ${}^nC_2x^{n-2}a^2 = 720$... (2)
and ${}^nC_3x^{n-3}a^3 = 1080$... (3)

Dividing (2) by (1), we get

$$\frac{{}^{n}C_{2}x^{n-2}a^{2}}{{}^{n}C_{1}x^{n-1}a} = \frac{720}{240} \text{ i.e., } \frac{(n-1)!}{(n-2)!} \cdot \frac{a}{x} = 6$$

$$\frac{a}{x} = \frac{6}{(n-1)} \qquad \dots (4)$$

or

Dividing (3) by (2), we have

$$\frac{a}{x} = \frac{9}{2(n-2)}$$
 ... (5)

From (4) and (5),

$$\frac{6}{n-1} = \frac{9}{2(n-2)}$$
. Thus, $n = 5$

Hence, from (1), $5x^4a = 240$, and from (4), $\frac{a}{x} = \frac{3}{2}$

Solving these equations for a and x, we get x = 2 and a = 3.

Example 9 The coefficients of three consecutive terms in the expansion of $(1 + a)^n$ are in the ratio1: 7:42. Find n.

Solution Suppose the three consecutive terms in the expansion of $(1 + a)^n$ are $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms.

The $(r-1)^{th}$ term is ${}^{n}C_{r-2}a^{r-2}$, and its coefficient is ${}^{n}C_{r-2}$. Similarly, the coefficients of r^{th} and $(r+1)^{th}$ terms are ${}^{n}C_{r-1}$ and ${}^{n}C_{r}$, respectively.

Since the coefficients are in the ratio 1:7:42, so we have,

$$\frac{{}^{n}C_{r-2}}{{}^{n}C_{r-1}} = \frac{1}{7}, \text{ i.e., } n - 8r + 9 = 0 \qquad \dots (1)$$

and

$$\frac{{}^{n}C_{r-1}}{{}^{n}C_{r}} = \frac{7}{42} \text{ , i.e., } n - 7r + 1 = 0 \qquad \dots (2)$$

Solving equations(1) and (2), we get, n = 55.

EXERCISE 8.2

Find the coefficient of

1. $x^5 \text{ in } (x+3)^8$

2. a^5b^7 in $(a-2b)^{12}$.

Write the general term in the expansion of

3. $(x^2 - y)^6$

4. $(x^2 - yx)^{12}$, $x \neq 0$.

5. Find the 4th term in the expansion of $(x-2y)^{12}$.

6. Find the 13th term in the expansion of $\left(9x - \frac{1}{3\sqrt{x}}\right)^{18}$, $x \neq 0$.

Find the middle terms in the expansions of

7. $\left(3 - \frac{x^3}{6}\right)^7$

8. $\left(\frac{x}{3} + 9y\right)^{10}$.

9. In the expansion of $(1 + a)^{m+n}$, prove that coefficients of a^m and a^n are equal.

10. The coefficients of the $(r-1)^{th}$, r^{th} and $(r+1)^{th}$ terms in the expansion of $(x+1)^n$ are in the ratio 1:3:5. Find n and r.

11. Prove that the coefficient of x^n in the expansion of $(1+x)^{2n}$ is twice the coefficient of x^n in the expansion of $(1+x)^{2n-1}$.

12. Find a positive value of m for which the coefficient of x^2 in the expansion $(1+x)^m$ is 6.

Miscellaneous Examples

Example 10 Find the term independent of x in the expansion of $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^6$.

Solution We have $T_{r+1} = {}^{6}C_r \left(\frac{3}{2}x^2\right)^{6-r} \left(-\frac{1}{3x}\right)^r$

$$= {}^{6}C_{r} \left(\frac{3}{2}\right)^{6-r} \left(x^{2}\right)^{6-r} \left(-1\right)^{r} \left(\frac{1}{x}\right)^{r} \left(\frac{1}{3^{r}}\right)$$