Stress Testing

Credit Risk Management

Definition

- A stress test is a comprehensive process where statistical tools are used as a guide to assess how adverse macroeconomic scenarios may affect a bank's resilience.
- Federal reserve United States, European National Bank, Bank of England etc. do an annual stress testing assessment and publish the results based on the scenarios provided the authorities,

TOP 25 KEY EVENTS OF THE PAST 25 YEARS The Asian financial crisis of 1997 The dot-com and tech bubbles Huge growth in commodity prices Global financial crisis of 2008 Eurozone debt crisis The superseding of the G7 by the G20 Regulatory reform Fall of the Berlin Wall and communism in Europe Tiananmen Square massacre End of apartheid 11 The return of Hong Kong to China 12 9/11

Types of Stress Tests

- Scenario Analysis
 - Developing Stress Scenarios
 - Identifying and creating adverse scenarios based on historical data and expert judgment.
 - Evaluating Scenarios
 - Assessing the impact of scenarios on different variables.
- Sensitivity Analysis
 - Identifying Key Variables
 - Determining which variables have the most significant impact on outcomes.
 - Analyzing Impact
 - Varying key parameters to observe changes in results.

Different Approaches to Stress Testing

Aspect	Bottom-Up Stress Test	Top-Down Stress Test
Who is carrying out the test?	By the firm itself	By regulatory authorities / central banks
Who's assumptions is it based on?	Firm's own assumptions or scenarios, with possible constrains by authorities	General or systemic (macro-prudential) assumptions or scenarios designed by regulators and applicable to all relevant institutions
What data granularity does it require?	Based on the firms's own data and a high level of data granularity (possible use of external data)	Based mostly on aggregate institution data and less detailed information
How comparable is it across firms?	Little comparability as methodologies may differ substantially	Enables uniform and common framework and comparative assessment of the impact of a given stress testing exercise across institutions

Figure 1. How stress testing works for large banks

The Federal Reserve conducts stress tests to ensure that large banks are sufficiently capitalized and able to lend to households and businesses even in a severe recession. The stress tests evaluate the financial resilience of banks by estimating losses, revenues, expenses, and resulting capital levels under hypothetical economic conditions.

The Federal Reserve develops stress test scenarios

The Federal Reserve develops or selects stress test models

Banks submit detailed bank data

Using the scenario data and bank data as variables in the stress test models, the Federal Reserve projects how banks are likely to perform under hypothetical economic conditions

The Federal Reserve uses the results of a supervisory stress test, in part, to set capital requirements for participating banks

Reforms and Stress/Shock Scenarios

 Regulatory bodies like Bank of England, Federal Reserve, European Banking Authority hand out Stress scenarios to the banks annually

Dodd-Frank Act Stress Tests 2024

Scenarios

- 2024 Stress Test Scenarios (PDF)
- · Federal Reserve Board releases the hypothetical scenarios for its annual
- Scenario Data
 - 2024 Severely Adverse Market Shocks (Excel)
 - 2024 Historic Domestic (CSV)
 - 2024 Historic International (CSV)
 - 2024 Supervisory Baseline Domestic (CSV)
 - 2024 Supervisory Baseline International (CSV)
 - 2024 Supervisory Severely Adverse Domestic (CSV)
 - 2024 Supervisory Severely Adverse International (CSV)
 - Domestic Data Definitions (PDF)
 - International Data Definitions (PDF)

Stress Testing – Example: Loss Estimation for a bank in SAS

#	Variable	Type	Len	Format
3	credit_score	Num	8	
5	debt_to_income_ratio	Num	8	
7	default	Num	8	
9	gdp_growth	Num	8	
4	income	Num	8	
10	interest_rate	Num	8	
6	loan_amount	Num	8	
2	loan_id	Num	8	
1	month	Num	8	YYMMDD10
8	unemployment rate	Num	8	

Analysis of Maximum Likelihood Estimates									
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSe				
Intercept	1	1.4168	0.9438	2.2535	0.1333				
credit_score	1	-0.00633	0.000890	50.6047	<.0001				
income	1	-0.00001	6.798E-6	2.2147	0.1367				
debt_to_income_ratio	1	0.6484	1.1489	0.3185	0.5725				
unemployment_rate	1	0.0876	0.1623	0.2913	0.5894				
loan_amount	1	-2.07E-6	1.772E-6	1.3670	0.2423				
gdp_growth	1	-6.3812	7.7605	0.6761	0.4109				
interest_rate	1	1.9429	10.0051	0.0377	0.8460				

- Simulated a table that contains loan portfolio with a few macro economic indicators
- Logistic Regression model of the simulated variable data

Stress Scenario Simulation

```
data stress_scenario;
  set loan_portfolio;
  unemployment_rate = unemployment_rate + 2;
  gdp_growth = gdp_growth - 3;
  interest_rate = interest_rate + 1;
run;
```

Stress Scenarios shared by regulators: <u>2024-Table_3A_Supervisory_Baseline_Domestic.csv</u>

• Source: https://www.federalreserve.gov/supervisionreg/dfa-stress-tests-2024.htm

Obs	month	loan_id	credit_score	income	debt_to_income_ratio	loan_amount	default	unempl	oyment_rate	gdp_growth	interest_rate	_LI	VEL_	prob_default
1	2020-02-01	31	548	39303	0.21	78770	0		4.9	0.02	0.01		1	0.10377
2	2020-02-01	39	372	26534	0.13	152717	0		4.9	0.02	0.01		1	0.24643
3	2020-02-01	45	661	42595	0.37	229164	0		4.9	0.02	0.01		1	0.04259
4	2020-02-01	82	676	38801	0.14	178868	0		4.9	0.02	0.01		1	0.03864
5	2020-02-01	127	603	36367	0.12	75931	0		4.9	0.02	0.01		1	0.07399

Baseline Scenario

Severe Scenario

Obs	month	loan_id	credit_score	income	debt_to_income_ratio	loan_amount	default	unempl	oyment_rate	gdp_growth	interest_rate	_LI	VEL_	prob_default	
1	2020-02-01	31	548	39303	0.21	78770	0		6.9	-2.98	1.01		0	0.90982	
2	2020-02-01	39	372	26534	0.13	152717	0		6.9	-2.98	1.01		0	0.75225	
3	2020-02-01	45	661	42595	0.37	229164	0		6.9	-2.98	1.01		0	0.95167	
4	2020-02-01	82	676	38801	0.14	178868	0		6.9	-2.98	1.01		0	0.95897	
5	2020-02-01	127	603	36367	0.12	75931	0		6.9	-2.98	1.01		0	0.93555	
	Fu	1.													

Calculating Expected Loss over Loan Portfolio

```
data expected_losses;
  set stressed_pd;
  loss_given_default= 0.60;
  expected_loss = loan_amount * prob_default *loss_given_default;
run;
```

Variable Information Value							
Variable	Information Value						
credit_score	1.29051						
income	0.12312						
debt_to_income_ratio	0.13698						
loan_amount	0.14001						
unemployment_rate	0.25403						
gdp_growth	0.11064						
interest_rate	0.00713						

Assumptions:

- Loss given Default is <u>0.6</u> (Hardcoded)
- Banks expect to lose 60% of the loan amount(exposed amount) considering 40% covered by collateral
- Exposure at default is <u>total loan</u> amount in this case.

Expected loss = PD *LGD *EAD

Other Statistical Concepts in Stress Testing:

- Monte Carlo Simulations
- Statistical Techniques in *Macro Economic Scenario Analysis* VAR and GVAR
 - Vector Autoregressive Model
 - The vector autoregressive (VAR) model is a workhouse multivariate time series model that relates current observations of a variable with past observations of itself and past observations of other variables in the system.
 - Proc VarMax in SAS
 - Global Vector Autoregressive Model
 - The Global Vector Autoregressive (GVAR) approach provides a relatively simple yet effective way of modelling interactions in a complex high-dimensional system such as the global economy.
- Reverse Stress Testing

Benefits of Stress Testing

- Risk Management:
 - Identifying vulnerabilities
 - Enhanced risk awareness
- Regulatory compliance
- Strategic planning
 - Informed decision making
 - Scenario analysis

- Stakeholder confidence
- Quantitative insights
 - Loss estimation
 - Impact assessment
- Credit risk mitigation
 - Portfolio optimization
 - Risk based pricing

Sources

- https://www.openriskmanual.org/wiki/Bottom-Up_versus_Top-Down_Stress_Test
- https://www.imf.org/external/np/seminars/eng/2006/stress/pdf/jh
 .pdf
- https://onlinelibrary.wiley.com/doi/pdf/10.1111/joes.12095

Thank you

- "The key to effective stress testing is not predicting the future but understanding the range of possible outcomes and preparing for them."
- - Mervyn King (Economist, Bank of England)