WHAT IS CLAIMED IS:

1	1. A system for translating medical data, the system comprising:
2	a first interpretation system, wherein the first interpretation system is operable
3	to receive a first encoded data set received from a first implantable medical device and to
4	provide a first decoded data set;
5	a second interpretation system, wherein the second interpretation system is
6	operable to receive a second encoded data set from a second implantable medical device and
7	to provide a second decoded data set;
8	a first data abstraction engine, wherein the first data abstraction engine is
9	operable to receive the first decoded data set from the first interpretation system;
10	a second data abstraction engine, wherein the second data abstraction engine is
11	operable to receive the second decoded data set from the second interpretation system; and
12	wherein the first data abstraction engine and the second data abstraction
13	engine provide a first abstracted data set and a second abstracted data set, respectively, in a
14	common data format.
1	2. The system of claim 1, wherein the system further comprises:
1 2	a first communication link, wherein the encoded data set received from the
	first implantable medical device is received via the first communication link; and
3	a second communication link, wherein the encoded data set received from the
4	
5	second implantable medical device is received via the second communication link.
1	3. The system of claim 2, wherein the first communication link is a server
2	port.
1	4. The system of claim 2, wherein the system further comprises a system
2	server, wherein the system server includes a processor and a computer readable medium, and
3	wherein the computer readable medium includes instructions executable by the processor to:
4	receive the first encoded data set from the one of a plurality of implantable
5	medical device types via a communication network;
6	identify the one of the plurality of medical device types; and
7	communicate the first encoded data set via the first communication link to the
8	first interpretation system.

l	5. The system of claim 4, wherein the computer readable medium further
2	includes instructions executable by the second processor to:
3	store the first encoded data set to a raw database.
1	6. The system of claim 4, wherein the computer readable medium further
2	includes instructions executable by the processor to:
3	receive the first abstracted data set;
4	receive the second abstracted data set; and
	store the first abstracted data set and the second abstracted data set in a
5	
6	comprehensive database.
1	7. The system of claim 4, wherein the computer readable medium further
2	includes instructions executable by the processor to:
3	receive the first abstracted data set;
4	receive the second abstracted data set;
5	distribute at least a portion of the first abstracted data set and the second
6	abstracted data set to a first recipient; and
7	distribute at least a portion of the first abstracted data set and the second
8	abstracted data set to a second recipient.
1	8. The system of claim 7, wherein the first recipient is a first subset
2	database, and the second recipient is a second subset database.
_	database, and the second recipient is a second subset database.
1	9. The system of claim 7, wherein the first recipient is selected from a
2	group consisting of:
3	a gateway server; and
4	a diagnostic server.
1	10. The system of claim 1, wherein the common data format is a
2	standardized format.
1	11 A contain for the relating modical data the contain commissing
1	11. A system for translating medical data, the system comprising:
2	a data translation system, wherein the data translation system comprises a
3	processor and a computer readable medium, and wherein the computer readable medium
4	includes instructions executable by the processor to:

5	receive an encoded data set from one of a plurality of implantable
6	medical device types via one of a plurality of ports, wherein each of the plurality of
7	ports is assigned to one of the implantable medical device types;
8	select a conversion utility, wherein selection of the conversion utility is
9	based at least in part upon the port via which the encoded data set is received from the
10	one of the implantable medical devices;
11	spawn the conversion utility; and
12	translate the encoded data set to a decoded data set.
1	12. The system of claim 11, wherein the processor is a first processor, and
2	wherein the computer readable medium is a first computer readable medium, wherein the
3	system further comprises a system server, wherein the system server includes a second
4	processor and a second computer readable medium, and wherein the second computer
5	readable medium includes instructions executable by the processor to:
6	receive the encoded data set from the one of a plurality of implantable medical
7	device types via a communication network;
8	identify the one of the plurality of medical device types; and
9	direct the encoded data set to the one of the plurality of ports corresponding to
10	the one of the plurality of implantable medical device types.
1	13. The system of claim 12, wherein the second computer readable
2	medium further includes instructions executable by the second processor to:
3	store the encoded data set from the one of the plurality of implantable medical
4	device types to a raw database.
1	14. The system of claim 11, wherein the computer readable medium
2	further includes instructions executable by the processor to:
3	abstract the decoded data set to an abstracted data set with elements common
4	to each of the plurality of implantable medical device types.
1	15. The system of claim 14, wherein the computer readable medium
2	further includes instructions executable by the processor to:
3	communicate the abstracted data set to a recipient selected from a group
4	consisting of: a system server, a gateway server, and a diagnostic server.

1	16. The system of claim 15, wherein the processor is a first processor, and
2	wherein the computer readable medium is a first computer readable medium, wherein the
3	system server includes a second processor and a second computer readable medium, and
4	wherein the second computer readable medium includes instructions executable by the
5	processor to:
6	receive the abstracted data set; and
7	store the abstracted format data set to a comprehensive database.
1	17. The system of claim 15, wherein the processor is a first processor, and
2	wherein the computer readable medium is a first computer readable medium, wherein the
3	system server includes a second processor and a second computer readable medium, and
4	wherein the second computer readable medium includes instructions executable by the
5	processor to:
6	receive the abstracted data set; and
7	distribute at least a portion of the abstracted data set to a recipient.
1	18. The system of claim 15, wherein the processor is a first processor, and
2	wherein the computer readable medium is a first computer readable medium, wherein the
3	system server includes a second processor and a second computer readable medium, and
4	wherein the second computer readable medium includes instructions executable by the
5	processor to:
6	receive the encoded data set from the one of a plurality of implantable medical
7	device types via a communication network;
8	identify the one of the plurality of medical device types; and
9	direct the encoded data set to the one of the plurality of ports corresponding to
10	the one of the plurality of implantable medical device types.
1	19. The system of claim 14, wherein the computer readable medium
2	further includes instructions executable by the processor to:
3	store the abstracted data set to a storage area selected from a group consisting
4	of: a comprehensive database, and a subset database.
1	20. The system of claim 11, wherein the computer readable medium
2	further includes instructions executable by the processor to:

3	translate the abstracted data set to a selected format data set.
1	21. The system of claim 20, wherein the processor is a first processor, and
2	wherein the computer readable medium is a first computer readable medium, wherein the
3	system further comprises a system server, wherein the system server includes a second
4	processor and a second computer readable medium, and wherein the second computer
5	readable medium includes instructions executable by the processor to:
6	receive the selected format data set; and
7	communicate the selected format data set to a recipient.
1	22. A method for utilizing information from implantable medical devices,
2	the method comprising:
3	providing a first communication link;
4	providing a first conversion utility associated with the first communication
5	link;
6	providing a second communication link;
7	providing a second conversion utility associated with the second
8	communication link;
9	assigning a first group of medical devices to the first communication link;
10	assigning a second group of medical devices to the second communication
11	link;
12	receiving a first data set from a first implantable medical device from the first
13	group of medical devices;
14	communicating the first data set to the first conversion utility via the first
15	communication link, wherein a converted data set is created; and
16	receiving the converted data set.
1	23. The method of claim 22, wherein the first communication link includes
2	a first server port, and wherein the second communication link comprises a second server
3	port.
1	24. The method of claim 22, wherein the method further comprises:
2	receiving the first data set via the first communication link;
3	decoding the first data set to create a decoded data set; and
4	abstracting the first data set to create the converted data set.

25. The method of claim 22, wherein the converted data set is an
standardized format data set.
26. The method of claim 22, wherein the method further comprises:
identifying the first data set as originating from an implantable medical device
included within the first group of implantable medical devices.
27. The method of claim 22, wherein the converted data set is a first
converted data set, and wherein the method further comprises:
receiving a second data set from a second implantable medical device from the
second group of medical devices;
communicating the second data set to the second conversion utility via the
second communication link, wherein a second converted data set is created; and
receiving the second converted data set.
28. The method of claim 27, the method further comprising:
storing the first converted data set and the second converted data set to a
comprehensive database.
29. The method of claim 27, the method further comprising:
distributing at least a first portion of the first converted data set and the second
converted data set to a first recipient; and
distributing at least a second portion of the first converted data set and the
second converted data set to a second recipient.