

Collect definitions of cryptographic primitives so that it is easy to copy and use while writing papers. I will try as far as possible to stick to the macros defined in cryptocode.

Contents

1	Notation	5	
2	Probability 2.1 Computational Indistinguishability	7 7 7	
3	Symmetric Key Primitives 3.1 One-way Function 3.2 Pseudorandom Generators 3.3 Non-interactive Commitment Schemes 3.4 Signature Scheme	9	
4	Public Key Primitives 1		
5	Proofs5.1 Non-interactive Witness Indistinguishability (NIWI)5.2 Interactive Proof5.3 Zero-Knowledge	13	
6	Secure Computation	15	
7	Obfuscation 7.1 Indistinguishability Obfuscator for Turing Machines		

Notation

We shall denote by $\operatorname{Out}_A\langle A(a),B(b)\rangle$ the output of party A on execution of the protocol between A with input a, and B with input b. By $\operatorname{View}_A\langle A(a),B(b)\rangle$, we denote the view of party A consisting of the protocol transcript along with its random tape.

Probability

2.1 Computational Indistinguishability

Definition 1 (Computational Indistinguishability). Two ensembles $X = \{X_{\alpha}\}_{\alpha \in S}$ and $Y = \{Y_{\alpha}\}_{\alpha \in S}$ are said to be computationally indistinguishable, denoted by $X \approx_c Y$, if for every non-uniform PPT distinguisher \mathcal{D} , every polynomial p, all sufficiently large λ and every $\alpha \in \{0,1\}^{\mathsf{poly}(\lambda)} \cap S$

$$\Big|\Pr\big[\mathcal{D}(1^{\lambda},X_{\alpha})=1\big]-\Pr\big[\mathcal{D}(1^{\lambda},Y_{\alpha})=1\big]\Big|<\frac{1}{\mathsf{p}(\lambda)}\ ,$$

where the probability are taken over the samples of X_{α} , Y_{α} and coin tosses of \mathcal{D} .

2.2 Statistical Indistinguishability

Definition 2 (Statistical Indistinguishability). Two ensembles $X = \{X_{\alpha}\}_{\alpha \in S}$ and $Y = \{Y_{\alpha}\}_{\alpha \in S}$ are said to be statistically indistinguishable, denoted by $X \approx_s Y$, if for every polynomial p, all sufficiently large λ and every $\alpha \in \{0,1\}^{\mathsf{poly}(\lambda)} \cap S$

$$\Delta(X_{\alpha}, Y_{\alpha}) < \frac{1}{\mathsf{p}(\lambda)} \ ,$$

where $\Delta(X_{\alpha}, Y_{\alpha})$ corresponds to the statistical distance between X_{α} and Y_{α} .

Symmetric Key Primitives

3.1 One-way Function

Definition 3 (One-way Function). A function $f: \{0,1\}^* \mapsto \{0,1\}^*$ is a one way function if it satisfies the following two conditions:

1. Easy to compute: There is a PPT algorithm C s.t. $\forall x \in \{0,1\}^*$,

$$\Pr[r \leftarrow \$ \{0,1\}^m : C(x;r) = f(x)] = 1.$$

2. Hard to invert: For every non-uniform PPT adversary A,

$$\Pr \big[f(\widetilde{x}) = f(x) \, : \, x \leftarrow \$ \, \{0,1\}^{\lambda}, \widetilde{x} \leftarrow \mathcal{A}(1^{\lambda}, f(x)) \big] \leq \mathsf{negl}(\lambda)$$

3.2 Pseudorandom Generators

Definition 4 (Psedudorandom Generators). A deterministic function $PRG : \{0,1\}^{\lambda} \to \{0,1\}^{p(\lambda)}$ is called a pseudorandom generator (PRG) if:

- 1. (efficiency): PRG can be computed in polynomial time,
- 2. (expansion): $p(\lambda) > \lambda$,
- 3. $\{x \leftarrow \$\{0,1\}^{\lambda} : \mathsf{PRG}(x)\} \approx_c \{U_{p(\lambda)}\}\$, where $U_{p(\lambda)}$ is the uniform distribution over $p(\lambda)$ bits.

3.3 Non-interactive Commitment Schemes

We define below bit commitment schemes

Definition 5 (Non-interactive Bit Commitment Schemes). A polynomial time computable function: com : $\{0,1\} \times \{0,1\}^{\lambda} \mapsto \{0,1\}^{\ell(\lambda)}$ is a bit commitment if it satisfies the properties below:

Binding: For any $r, r' \in \{0, 1\}^{\lambda}, b, b' \in \{0, 1\}$, if com(b; r) = com(b'; r') then b = b'.

Computational Hiding: The following holds:

$$\left\{\mathsf{com}(0):r \leftarrow \$\left\{0,1\right\}^{\lambda}\right\} \approx_{c} \left\{\mathsf{com}(1;r):r \leftarrow \$\left\{0,1\right\}^{\lambda}\right\} \; .$$

where computational indistinguishability is with respect to arbitrary non-uniform PPT distinguisher.

3.4 Signature Scheme

Definition 6. An signature scheme consists of three polynomial-time algorithms (Gen, Sign, Verify).

- Gen is PPT algorithm that takes as input 1^{λ} and generates a key and verification key. $(sk, vk) \leftarrow Gen(1^{\lambda})$.
- Sign is a PPT algorithm that computes the signature on a message m. $\sigma := \text{Sign}(\mathsf{sk}, m)$.
- Verify is a deterministic algorithm verifies the signature using the verification key. Verify(vk, m, σ) returns 0 or 1.

A signature scheme that is existentially unforgeable against chosen message attacks if the following hold.

Correctness For every message $m \in \mathcal{M}$ (message space),

$$\Pr[\mathsf{Verify}(\mathsf{vk}, m, \sigma) = 1 : (\mathsf{vk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda}), \sigma \leftarrow \mathsf{Sign}(\mathsf{sk}, m)] = 1$$

Security For any PPT adversary A

$$\Pr \left[\begin{array}{l} \mathcal{A} \ \textit{did not query } m \\ \mathsf{Verify}(\mathsf{vk}, m, \sigma) = 1 \end{array} \right. : \quad (\mathsf{vk}, \mathsf{sk}) \leftarrow \mathsf{Gen}(1^{\lambda}) \\ \left. (m, \sigma) \leftarrow \mathcal{A}^{\mathsf{Sign}(\mathsf{sk}, \cdot)}(\mathsf{vk}) \end{array} \right] < \mathsf{negl}(\lambda)$$

where $\mathcal{A}^{Sign(sk,\cdot)}$ indicates that \mathcal{A} has access to an oracle that returns the signature on the queried message m.

Public Key Primitives

Proofs

5.1 Non-interactive Witness Indistinguishability (NIWI)

Definition 7. A non-interactive witness-indistinguishable proof system NIWI = (Prove, Verify) for an NP relation $R_{\mathcal{L}}$ consists of two polynomial-time algorithms:

- a probabilistic prover $\mathsf{Prove}(x, w, 1^{\lambda})$ that given an instance x, witness w, and security parameter 1^{λ} , produces a proof π .
- a deterministic verifier $Verify(x, \pi)$ that verifies the proof.

We make the following requirements:

Completeness for every $\lambda \in \mathbb{N}, (x, w) \in R_{\mathcal{L}}$,

$$\Pr[\mathsf{Verify}(x,\pi) = 1 : \pi \leftarrow \mathsf{Prove}(x,w,1^{\lambda})] = 1$$

Soundness for every $x \notin \mathcal{L}$ and $\pi \in \{0,1\}^*$,

$$Verify(x,\pi) = 0$$
.

Witness Indistinguishability It holds that

$$\left\{\mathsf{Prove}(x,w_0,1^\lambda)\right\}_{\substack{\lambda,x,\\w_0,w_1}} \approx_c \left\{\mathsf{Prove}(x,w_1,1^\lambda)\right\}_{\substack{\lambda,x,\\w_0,w_1}} \; ,$$

where $\lambda \in \mathbb{N}, x \in \{0,1\}^{\lambda}, w_0, w_1 \in R_{\mathcal{L}}(x)$.

5.2 Interactive Proof

Definition 8. An interactive protocol (P,V) between a polynomial time prover P and PPT verifier V, for a language $\mathcal{L} \in NP$ is an interactive proof (resp. argument) if the following holds.

Completeness: For every $x \in \mathcal{L}$,

$$\Pr[\mathsf{Out}_{\mathsf{V}}\langle\mathsf{P}(x,w),\mathsf{V}(x)\rangle=1]=1$$
 .

Soundness (resp. computational soundness): For any non-uniform (resp. PPT) P^* , there exists a negligible function $negl(\cdot)$ such that for all $\lambda \in \mathbb{N}$ and $x \in \{0,1\}^{\lambda} \setminus \mathcal{L}$,

$$\Pr[\mathsf{Out}_{\mathsf{V}}\langle\mathsf{P}^*,\mathsf{V}(x)\rangle=1]\leq \mathsf{negl}(\lambda)$$
.

5.3 Zero-Knowledge

An interactive proof (resp. argument) (P, V) between a polynomial time prover P and PPT verifier V, for a language \mathcal{L} is a zero knowledge proof (resp. argument) if the following holds.

Definition 9 (GMR[GMR85] Zero-knowledge). An interactive proof (resp. argument) (P, V) between a polynomial time prover P and PPT verifier V, for a language \mathcal{L} is a GMR zero knowledge proof (resp. argument) if the following holds. For every PPT verifier V*, there exists a PPT simulator Sim_{V^*} , such that

 $\left\{ \mathsf{View}_{\mathsf{V}^*} \langle \mathsf{P}(x,w), \mathsf{V}^{*(x)} \rangle \right\}_{\substack{\lambda \in \mathbb{N}, \\ x \in \mathcal{L} \cap \{0,1\}^{\lambda}, \\ w \in R_{\mathcal{L}}(x)}} \approx_c \left\{ \mathsf{Sim}_{\mathsf{V}^*}(x) \right\}_{\substack{\lambda \in \mathbb{N}, \\ x \in \mathcal{L} \cap \{0,1\}^{\lambda}, \\ w \in R_{\mathcal{L}}(x)}} \; .$

Definition 10 (Auxiliary-input Zero-knowledge). An interactive proof (resp. argument) (P, V) between a polynomial time prover P and PPT verifier V, for a language $\mathcal L$ is an auxiliary-input zero knowledge proof (resp. argument) if the following holds. For every PPT verifier V^* , there exists a PPT simulator Sim_{V^*} , such that

$$\begin{cases} \mathsf{View}_{\mathsf{V}^*} \langle \mathsf{P}(x,w), \mathsf{V}^*(x,y) \rangle \\ \underset{w \in R_{\mathcal{L}}(x)}{\underset{w \in R_{\mathcal{L}}(x)}{\times}}, & \approx_c \\ \underset{y \in \{0,1\}^*}{\mathsf{Sim}_{\mathsf{V}^*}} (x,y,1^t) \\ \underset{w \in R_{\mathcal{L}}(x)}{\underset{w \in R_{\mathcal{L}}(x)}{\times}}, & \underset{w \in R_{\mathcal{L}}(x)}{\underset{w \in R_{\mathcal{L}}(x)}{\times}}, \end{cases} .$$

Definition 11 (Universal-simulation Zero-knowledge). An interactive proof (resp. argument) (P,V) between a polynomial time prover P and PPT verifier V, for a language \mathcal{L} is a universal-simulation zero knowledge proof (resp. argument) if the following holds. There exists a PPT simulator Sim, such that for every PPT verifier V* of running time at most $t(\lambda)$,

$$\left\{ \mathsf{View}_{\mathsf{V}^*} \langle \mathsf{P}(x,w), \mathsf{V}^*(x) \rangle \right\}_{\substack{\lambda \in \mathbb{N}, \\ x \in \mathcal{L} \cap \{0,1\}^{\lambda}, \\ w \in R_{\mathcal{L}}(x)}} \approx_c \left\{ \mathsf{Sim}(\mathsf{V}^*, 1^t, x) \right\}_{\substack{\lambda \in \mathbb{N}, \\ x \in \mathcal{L} \cap \{0,1\}^{\lambda}, \\ w \in R_{\mathcal{L}}(x)}} .$$

Definition 12 (Black-box-simulation Zero-knowledge). An interactive proof (resp. argument) (P,V) between a polynomial time prover P and PPT verifier V, for a language $\mathcal L$ is a black-box-simulation zero knowledge proof (resp. argument) if the following holds. There exists a PPT simulator Sim, such that for every PPT verifier V^* ,

$$\left\{ \mathsf{View}_{\mathsf{V}^*} \langle \mathsf{P}(x,w), \mathsf{V}^* \rangle \right\}_{\substack{\lambda \in \mathbb{N}, \\ x \in \mathcal{L} \cap \{0,1\}^{\lambda}, \\ w \in R_{\mathcal{L}}(x)}} \approx_c \left\{ \mathsf{Sim}^{\mathsf{V}^*}(x) \right\}_{\substack{\lambda \in \mathbb{N}, \\ x \in \mathcal{L} \cap \{0,1\}^{\lambda}, \\ w \in R_{\mathcal{L}}(x)}} \, .$$

Secure Computation

Obfuscation

7.1 Indistinguishability Obfuscator for Turing Machines

Definition 13 (Indistinguishability Obfuscator for Turing Machines). A succinct indistinguishability obfuscator for Turing machines consists of a PPT machine iOM that works as follows:

- iOM takes as input the security parameter 1^{λ} , the Turing machine M to obfuscate, an input length n, and time bound t.
- iOM outputs a Turing machine \widetilde{M} which is an obfuscation of M corresponding to input length n and time bound t. \widetilde{M} takes as input $x \in \{0,1\}^n$.

The scheme should satisfy the following requirements:

Correctness For all $\lambda \in \mathbb{N}$, for all $M \in \mathcal{M}_{\lambda}$, for all inputs $x \in \{0,1\}^n$, time bounds t' such that $t' \leq t$, let y be the output of M(x) after at most t steps, then

$$\Pr \Big[\widetilde{\mathsf{M}}(x) = y \, : \, \widetilde{\mathsf{M}} \leftarrow \mathsf{iOM}(1^{\lambda}, 1^{n}, 1^{\log t}, \mathsf{M}) \Big] = 1 \ .$$

Security It holds that

$$\left\{\mathsf{iOM}(1^\lambda, 1^n, 1^{\log t}, \mathsf{M}_0)\right\}_{\substack{\lambda, t, n, \\ \mathsf{M}_0, \mathsf{M}_1}} \approx_c \left\{\mathsf{iOM}(1^\lambda, 1^n, 1^{\log t}, \mathsf{M}_1)\right\}_{\substack{\lambda, t, n, \\ \mathsf{M}_0, \mathsf{M}_1}},$$

where $\lambda \in \mathbb{N}$, $n \leq t \leq 2^{\lambda}$, and M_0, M_1 are any pair of machines of the same size such that for any input $x \in \{0,1\}^n$ both halt after the same number of steps with the same output.

Efficiency and Succinctness We require that the running time of iOM and the length of its output, namely the obfuscated machine $\widetilde{\mathsf{M}}$, is $\mathsf{poly}(|\mathsf{M}|, \log t, n, \lambda)$. We also require that the running time \widetilde{t}_x of $\widetilde{\mathsf{M}}(x)$ is $\mathsf{poly}(t_x, |\mathsf{M}|, n, \lambda)$, where t_x is the running time of $\mathsf{M}(x)$.

7.2 Witness Encryption

Definition 14. A witness encryption scheme WE = (Enc, Dec) for an NP language \mathcal{L} , with corresponding witness relation $R_{\mathcal{L}}$, consists of the following two polynomial-time algorithms:

Encryption. The probabilistic algorithm $\operatorname{Enc}(1^{\lambda}, x, m)$ takes as input a security parameter 1^{λ} , a string $x \in \{0,1\}^*$, and a message $m \in \{0,1\}$. It outputs a ciphertext ct.

Decryption. The algorithm Dec(ct, w) takes as input a ciphertext ct, a string $w \in \{0, 1\}^*$. It outputs either a message $m \in \{0, 1\}$.

The above algorithms satisfy the following conditions:

– Correctness. For any security parameter λ , for any $m \in \{0,1\}$, and for any $(x,w) \in R_{\mathcal{L}}$, we have that

$$\Pr[\mathsf{Dec}(\mathsf{ct},w) = m : \mathsf{ct} \leftarrow \mathsf{Enc}(1^{\lambda},x,m)] = 1$$
.

– **Security.** For any non-uniform PPTadversary A, there exists a negligible function $negl(\cdot)$ such that for any $\lambda \in \mathbb{N}$, and any $x \notin \mathcal{L}$, we have that

$$\left\{\mathsf{Enc}(1^{\lambda},x,0)\right\}_{\lambda\in\mathbb{N},x\notin\mathcal{L}}\approx_{c}\left\{\mathsf{Enc}(1^{\lambda},x,1)\right\}_{\lambda\in\mathbb{N},x\notin\mathcal{L}}\;.$$

Bibliography

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive proof-systems (extended abstract). In *17th Annual ACM Symposium on Theory of Computing*, pages 291–304, Providence, RI, USA, May 6–8, 1985. ACM Press.

Index

Indistinguishability	Pseudorandom Generators (PRG), 9
Computational, 7	
Statistical, 7	Signature Scheme, 10
Indistinguishability Obfuscation	
Turing Machines, 17	Witness Encryption, 17
Interactive Proof, 13	• •
Non-interactive Commitment, 9	Zero Knowledge
Non-interactive Witness Indistinguishability,	Auxiliary input, 14
13	Black-box Simulation, 14
13	GMR, 14
One-way Function, 9	Universal Simulation, 14