TOWARDS OMNI-SUPERVISED LEARNING

REFERENCE

Radosavovic, Ilija, et al.
"Data distillation: Towards omni-supervised learning."
Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

- Omni-supervised learning
 - Semi-supervised learning 의 특수한 형태
 - ▶ 학습자(신경망)가 가능한 레이블링 된 데이터들에 대해 모두 학습하고
 - ▶ 추가로 인터넷-스케일 출처의 레이블링 되지 않은 데이터들에 대해 학습

- > Omni-supervised 학습
 - 하한: 가지고 있는 레이블링 된 데이터로부터 나올 수 있는 성능
 - 상한: 모든 데이터가 레이블링 된 상황
 - ▶ 상한에 가까운 SOTA 성능

- Data distillation
 - 에이터 증류
 - Omni-supervised 학습을 위한 방법
- 에이블링 되지 않은 데이터의 다양한 변형을
 - > 하나의 모델로 예측해서
 - 그 결과를 앙상블
 - 에이블을 만듦

INTRODUCTION

- ▶ 데이터로부터의 지식 증류
 - 저자들은 모델 지식 증류로부터 아이디어를 얻음

- Unlabeled 데이터에 주석(레이블)을 생성
 - 많은 양의 labeled 데이터로부터 학습한 모델을 이용해서
- 이렇게 추가로 생성된 주석으로부터
 - 에이터를 가지고 모델을 학습시킴
- ▶ 그러나 자기가 만들어낸 데이터를 가지고 학습하는 것이 과연 유의미한가?

- 저자들은
 - ▶ 서로 다른 변형(뒤집기, 스케일링)을 거친
 - ▶ Unlabeled 이미지를
 - ▶ 하나의 모델을 가지고 결과들을 내고
 - ▶ 앙상블을 거쳐 레이블링
- ▶ 주로 test time에 한 모델의 정확도를 올리기 위해 사용하는 방법

Model Distillationvs.Data Distillation

- ▶ 1. 모델을 (수동으로) 레이블링한 데이터에 대해 학습
- 2. 학습된 모델을 여러 변형이 가해진 레이블링 되지 않은 데이터에 적용
- > 3. 예측 결과들을 앙상블을 이용해 레이블로 변경
- ▶ 4. 수동 레이블된 데이터와 자동 레이블된 데이터의 합집합으로 모델을 다시 학습시킴

- 다양한 예측 결과를 통합하면
 - 하나만 사용할 때 보다 좋은 성능을 낼 가능성이 큼

- 통합된 예측이 새 지식을 생성하고
 - 이 정보를 레이블 생성에 활용하고
 - ▶ 스스로 학습하는 데 쓸 수 있지 않을까?

- 어떻게 통합할 것인가
- ▶ 분류 확률들의 평균
 - ▶ 문제 1: Soft label을 생성하므로 문제가 됨 (레이블이 아님)
 - ▶ 이 경우 Soft label을 다루도록 손실 함수를 수정해야 함
 - ▶ 문제 2: 출력 공간이 object detection이나 human pose 추정 등이면
 - ▶ 평균을 통한 결과가 자연스럽지 못함

- ▶ Hard label을 생성하도록 하고
- 문제에 따른 형태/구조를 따르게 통합해야 함

- ▶ 여러 번 inference 하기 때문에
 - 학습을 여러 번 하는 model distillation 보다
 - 효율적임

- 지식 증류
 - ▶ 새롭게 생성된 레이블링 되지 않은 데이터에 대한 지식(Hard label)으로
 - (같거나 다를 수 있는) 학생 모델이 학습
- 지도 학습에 사용한 데이터와
 - > 자동으로 레이블을 생성한 데이터의 합집합으로 학습

- 합집합으로 학습하는 것은
 - 직관적으로 보임
 - 손실 함수의 수정도 필요 없음

- 각 학습 미니배치는 수동/자동 레이블 데이터의 혼합으로 진행
 - 각 미니배치가 일부 진실된 레이블을 가지게 강제함으로써
 - 기울기 추정을 보다 좋게 만들어 줌

- 기포인트 검출
 - > COCO 데이터셋

- 모델
 - Mask R-CNN 사용
 - ResNet & ResNeXt
 - Feature Pyramid Networks (FPN)
- 선생과 학습 모델에 동일한 구조 사용

- ▶ 데이터 변형
 - 스케일링
 - 수평 뒤집기
- 이측 결과를 통합 가능한 형태로 만들기 위한 변형들

- 재학습
 - 원본:생성 = 6:4 비율로 미니배치

작은 규모의 데이터에 대한 결과

labeled	unlabeled	AP	AP_{50}	AP_{75}	AP_M	AP_L
co-35		54.9	80.5	59.0	50.1	62.8
co-35	co-80	60.2	83.8	65.4	55.2	68.4
co-115		65.1	86.6	70.9	59.9	73.6

- ▶ 숫자는 데이터의 수(k)
- AP: Average Precision

- ▶ 큰 규모, 유사한 분포의 데이터에 대한 결과
- co-115 with labels
- un-120 without labels
- DD: Data Distillation

backbone	DD	AP	AP_{50}	AP_{75}	AP_M	AP_L
ResNet-50		65.1	86.6	70.9	59.9	73.6
ResNet-50	✓	67.1	87.9	73.4	62.2	75.1
ResNet-101		66.1	87.7	71.7	60.5	75.0
ResNet-101	✓	67.8	88.2	73.8	62.8	76.0
ResNeXt-101-32×4		66.8	87.5	73.0	61.6	75.2
ResNeXt-101-32 \times 4	✓	68.7	88.9	75.1	63.9	76.7
ResNeXt-101-64×4		67.3	88.0	73.3	62.2	75.6
ResNeXt-101-64 \times 4	✓	69.1	88.9	75.3	64.1	77.1

- ▶ 큰 규모, 다른 분포의 데이터에 대한 결과
- co-115 with labels
- ▶ slm-120 without labels

backbone	DD	AP	AP_{50}	AP_{75}	AP_M	AP_L
ResNet-50		65.1	86.6	70.9	59.9	73.6
ResNet-50	✓	66.6	87.3	72.6	61.6	75.0
ResNet-101		66.1	87.7	71.7	60.5	75.0
ResNet-101	✓	67.5	87.9	73.9	62.4	75.9
ResNeXt-101-32×4		66.8	87.5	73.0	61.6	75.2
ResNeXt-101-32 \times 4	✓	68.0	88.1	74.2	63.1	76.2
ResNeXt-101-64×4		67.3	88.0	73.3	62.2	75.6
ResNeXt-101-64 \times 4	✓	68.5	88.8	74.9	63.7	76.5

▶ 큰 규모, 다른 분포의 데이터에 대한 결과

CONCLUSION

CONCLUSION

- ▶ Omni-supervised 학습
 - 모든 가능한 지도된 데이터와
 - ▶ 많은 양의 unlabeled 데이터를 이용한 학습
- 에이터 증류를 통해 달성

CONCLUSION

- 수후 더 규모가 크고 실용적인 환경에서 실험할 것
 - Facebook Al Research (FAIR)

TOWARDS OMNI-SUPERVISED LEARNING