Опр. 1. Пусть X — некоторое мн-во. Функция $\rho: X \times X \to \mathbb{R}$ наз-ся **метрикой** в мн-ве X, если:

- 1. $\rho(x,y) \geqslant 0 \forall x,y \in X$ и $\rho(x,y) = 0 \Leftrightarrow x = y$
- 2. $\rho(x,y) = \rho(y,x) \forall x,y \in X$
- 3. $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y) \forall x,y,z \in X$

Множество X с введённой на нём метрикой ρ называется **метрическим пространством** (X, ρ) .

Опр. 2. Мн-во S из метр. пр-ва (X, ρ) наз-ся **всюду плотным** в X, если его замыкание совпадает с X, т. е. $\forall x \in X \forall \varepsilon > 0 \exists y \in S : \rho(x,y) < \varepsilon$.

Опр. 3. МП (X, ρ) наз-ся **сепарабельным**, если в нём существует счётное всюду плотное мн-во.

Опр. 4. П-ть $\{x_n\}_{n=1}^{\infty}$ элементов МП (X, ρ) наз-ся **фундаментальной** (или ρ -фундаментальной), если $\forall \varepsilon > 0 \exists N = N(\varepsilon) : \forall n, m > N \hookrightarrow \rho(x_n, x_m) < \varepsilon$.

Опр. 5. МП (X, ρ) наз-ся **полным**, если любая фундаментальная п-ть из (X, ρ) сх-ся.

Опр. 6. МП (X, ρ) наз-ся **связным**, если X нельзя представить в виде объединения двух непустых непересекающихся открытых множеств.

Опр. 7. Пусть $(X, \rho) - \text{M}\Pi$. Открытым шаром с центром в точке $x \in X$ радиуса R > 0 наз-ся мн-во $B_R(x) = B(x, R) = \{y \in X \mid \rho(x, y) < R\}$. Замкнутым шаром с центром в точке $x \in X$ радиуса R > 0 наз-ся мн-во $\overline{B}_R(x) = \overline{B}(x, R) = \{y \in X \mid \rho(x, y) \leqslant R\}$.

Опр. 8. Мн-во $M \subset X$, где $(X, \rho) - \mathrm{M}\Pi$, наз-ся **открытым**, если $\forall x_0 \in M \exists \varepsilon > 0 : B_{\varepsilon}(x_0) \subset M$.

Опр. 9. Пусть $(X, \rho) - \text{M}\Pi$ и $M \subset X$. Точка $x_0 \in X$ наз-ся **точкой прикосновения** мн-ва M, если $\forall \epsilon > 0 \hookrightarrow B_{\varepsilon}(x_0) \cap M \neq \emptyset$.

Опр. 10. Пусть $(X, \rho) - \text{M}\Pi$ и $M \subset X$. Множество [M](или \overline{M}) наз-ся **замыканием** мн-ва M, если оно получено добавлением к M всех его точек прикосновения.

Опр. 11. Мн-во $M \subset X$, где $(X, \rho) - M\Pi$, наз-ся **замкнутым**, если [M] = M.

Опр. 12. Лебегово пр-во l_p для $1 \le p < +\infty$ состоит из числовых п-тей вида $x = (x_1, x_2, \dots)$

$$l_p = \{x : \mathbb{N} \to \mathbb{R} \mid \sum_{k=1}^{\infty} |x(k)|^p < +\infty \}$$

с нормой $\|x\|_p = \sqrt[p]{\sum\limits_{k=1}^\infty |x(k)|^p}$ и метрикой $\rho_p(x,y) = \|x-y\|_p$.

Полное сепарабельное

Опр. 13. Лебегово пр-во l_{∞} . С нормой $\|x\|_{\infty} = \sup_{k \in \mathbb{N}} |x(k)|$ и метрикой $\rho_{\infty}(x,y) = \|x-y\|_{\infty}$. Полное несепарабельное

Опр. 14. Пр-во $C[a,b]=\{x:[a,b]\to\mathbb{R}\mid x$ непрерывно на $[a,b]\}$ непрерывных на [a,b] функций с нормой $\|x\|_C=\sup_{t\in[a,b]}|x(t)|$ и метрикой $\rho_C(x,y)=\|x-y\|_C.$

Полное сепарабельное связное

Теор. 1 Достаточное условие несепарабельности МП. Пусть в МП (X, ρ) существует несчётное подмножество A_0 и $\exists \varepsilon_0 > 0 : \forall a,b \in A_0, a \neq b, \hookrightarrow \rho(a,b) \geqslant \varepsilon_0$. Тогда МП (X,ρ) является несепарабельным.

Опр. 15. Пусть (X, ρ) — МП. Отображение $f: X \to X$ наз-ся **сжимающим**, если $\exists \alpha \in (0, 1): \forall x, y \in X \hookrightarrow \rho(f(x), f(y)) \leqslant \alpha \rho(x, y)$.

Опр. 16. Пусть X — некоторое мн-во, $f: X \to X$ — отображение. Точка $x_o \in X$ наз-ся **неподвижной** для отображения f, если $f(x_0) = x_0$.

Теор. 2 Банаха о сжимающих отображениях. Пусть $(X, \rho) - \Pi M \Pi, f : X \to X$ — сжимающее отображение. Тогда f имеет единственную неподвижную точку.

Опр. 17. Пусть (X_1, ρ_1) и (X_2, ρ_2) — МП. Отображение $\varphi: X_1 \to X_2$ называется **изометрией**, если φ — биекция и $\forall x_1, y_1 \in X_1 \hookrightarrow \rho_1(x_1, y_1) = \rho_2(\varphi(x_1), \varphi(y_1))$. Если между МП X_1 и X_2 существует изометрия, они называются **изометричными**.

Опр. 18. Пусть $(X, \rho) - \text{M}\Pi$. Мн-во $A \subset X$ наз-ся всюду плотным в мн-ве $B \subset X$, если $\forall b \in B \forall \varepsilon > 0 \exists a \in A : \rho(a, b) < \varepsilon$.

Опр. 19. ПМП (Y,d) наз-ся пополнением МП (X,ρ) , если $\exists Z \subset Y, Z$ — всюду плотное в Y, т. ч. МП (X,ρ) и (Z,d) изометричны.

Опр. 20. Пусть X — некоторое сем-во множеств. Семейство au подмножеств мн-ва X наз-ся **топологией**, если:

- 1. $X \in \tau$ и $\emptyset \in \tau$
- 2. \forall семейства подмн-в $\{U_\alpha \mid \alpha \in A\} \subset \tau \hookrightarrow \bigcup_{\alpha \in A} U_\alpha \in \tau$
- 3. \forall конечного семейства подмн-в $U_k \mid k \in \overline{1,N} \subset \tau \hookrightarrow \bigcup_{k=1}^N U_k \in \tau$

Мн-во X со введённой на нём топологией τ наз-ся **топологическим пр-вом (ТП)** (X,τ) .

- **Опр. 21.** Пусть (X, τ) ТП. Любое мн-во $U \in \tau$ наз-ся **открытым** $(\tau$ -открытым) в ТП (X, τ) . Топология τ называется **семейством открытых подмн-в** мн-ва X.
- **Опр. 22.** Пусть (X,τ) ТП. Для любого $x \in X$ **окрестностью** x называется произвольное τ -открытое множество, содержащее x.
- Опр. 23. Пусть (X,τ) ТП, $S\subset X$. Открытым покрытием мн-ва S наз-ся сем-во τ -открытых мн-в $\{U_{\alpha}\mid \alpha\in A\}$, т. ч. $S\subset\bigcup_{\alpha\in A}U_{\alpha}$.
- **Опр. 24.** Пусть (X,τ) ТП. Мн-во $S\subset X$ наз-ся:
- 1. компактным (бикомпактным), если любое открытое покрытие мн-ва S содержит конечное подпокрытие
- 2. **счётно-компактным**, если любое счётное открытое покрытие мн-ва S содержит конечное подпокрытие
- 3. **секвенциально компактным**, если любая п-пть эл-тов мн-ва S содержит п-ть, сходящуюся по топологии au к некоторому эл-ту S
- **Опр. 25.** Пусть (X, τ) ТП. Говорят, что п-ть $\{x_n\}_{n=1}^{\infty} \subset X$ **сх-ся по топологии** τ к элементу $x \in X$, если $\forall U(x) \exists N : \forall n > N \hookrightarrow x_n \in U(x)$. Обозначается $x_n \to_{n \to \infty}^{\tau} x$.
- Теор. 3. Бикомпактность Счётная компактность Секвенциальная компактность
- **Опр. 26.** Пусть $(X, \rho) \text{МП}$. Мн-во $S \subset X$ наз-ся **вполне ограниченным**, если $\forall \varepsilon > 0 \exists$ конечный набор точек $x_1, \dots, x_N \in S : S \subset \bigcup_{k=1}^N B_{\varepsilon}(x_k)$. Указанный набор точек называется **конечной** ε -сетью мн-ва S.

Теор. 4 Критерий компактности. Пусть $(X, \rho) - \text{M}\Pi, S \subset X$. Тогда СУЭ:

- 1. S компакт
- 2. МП (S, ρ) полное и ВО (если (X, ρ) полное, то достаточно замкнутости S)
- 3. мн-во S явл. секвенциально компактным
- Теор. 5 Критерий компактности. МП компактно ⇔ любая п-ть его точек не содержит сходящуюся п-пть.
- Опр. 27. Пусть $(X, \rho) \text{МП}$. Мн-во $M \subset X$ наз-ся ограниченным, если $\exists x_0 \in X : \exists r > 0 : M \subset B_r(x_0)$.
- Опр. 28. Мн-во метрического пространства наз-ся предкомпактом, если его замыкание компактно.
- **Опр. 29.** Сем-во функций $S\subset C[a,b]$ наз-ся равномерно ограниченным, если $\exists c: \forall f\in S\max_{x\in[a,b]}|f(x)|\leqslant c.$
- **Опр. 30.** Сем-во функций $S \subset C[a,b]$ наз-ся **равностепенно непрерывным**, если $\forall \varepsilon > 0 \exists \delta > 0 : \forall f \in S \forall x, x' \in [a,b] \hookrightarrow |x-x'|, \delta \Rightarrow |f(x)-f(x')| < \varepsilon$.
- **Теор. 6 Теорема Арцела-Асколи.** Сем-во ф-ий $S \subset C[a,b]$ предкомпактна в пр-ве $C[a,b] \Leftrightarrow$ она равномерно ограничена и равностепенно непрерывна.
- **Опр. 31.** Пр-во $C^k[a,b]$ k раз непр. дифф. ф-ий $x:[a,b]\to\mathbb{R}$ с нормой $\|x\|_{C^k}=\sum\limits_{i=0}^k\max\limits_{x\in[a,b]}|x^{(i)}(t)|.$
- **Опр. 32.** Непустое мн-во L наз-ся **линейным** (или **векторным**) пр-вом, если оно удовлетворяет: TODO
- Опр. 33. Пусть X комплексное ЛП. Ф-ия $\|\cdot\|: X \to \mathbb{R}$ наз-ся нормой в X, если: ТООО

Любое пр-во с фиксированной в нём нормой будем называть ЛНП.

- **Опр. 34.** Полное НП наз-ся **банаховым** (**БП**)(обычно обозначается B).
- Опр. 35. ЛП наз-ся замкнутым, если оно содержит все свои предельные точки.
- **Опр. 36.** ЛП L' наз-ся **подпространством** ЛП L, если $L' \subset L$ и операции сложения векторов и умножения вектора на число определены так же, как в L.
- Опр. 37. Линейной комбинацией (ЛК) в-ров x_1, \ldots, x_n наз-ся любой в-р вида $\alpha_1 x_1 + \cdots + \alpha_n x_n$, где $\alpha_1, \ldots, \alpha_n$ числовые множители.
- **Опр. 38.** ЛК наз. **нетривиальной**, если хотя бы один из коэф. $\alpha_1, \ldots, \alpha_n$ отличен от нуля.
- **Опр. 39.** В-ры x_1, \ldots, x_n наз-ся **линейно зависимыми** (ЛЗ), если \exists нетрив. ЛК, равная 0. Иначе они называются **линейно независимыми** (ЛНЗ).

Опр. 40. ЛП наз-ся **n-мерным**, если в нём \exists n ЛНЗ в-ров, а любые n+1 в-ров ЛЗ. В таком случае эти n в-ров наз-ся базисом.

Опр. 41. ЛП наз-ся **бесконечномерным**, если $\forall n \in \mathbb{N}$ в нём $\exists n$ ЛНЗ в-ров.

Опр. 42. Пусть задана некоторая система эл-тов $Л\Pi$ L. Совокупность всех ЛК этой системы наз-ся её **линейной** оболочкой.

Опр. 43. Система эл-тов $\{x_{\alpha}, \alpha \in A\}$ наз-ся **полной** в пр-ве X, если её ЛО плотна в X, т. е. если $\forall x \in X \forall \varepsilon >$

$$0\exists \{x_{alpha_1}, \dots, x_{alpha_n} \subset \{x_\alpha, \alpha \in A\} \exists \lambda_1, \dots, \lambda_n : \left\| x - \sum_{j=1}^n \lambda_j x_{\alpha_j} \right\| < \varepsilon.$$

Опр. 44. П-ть эл-тов e_1, e_2, \ldots ЛНП X наз-ся **базисом** пр-ва X, если каэдый эл-т $x \in X$ имеет единственное разложение по этой системе, т. е. $\exists ! \{\lambda_n\}_{n=1}^\infty : x = \sum_{n=1}^\infty \lambda_n e_n$. Здесь ряд сх-ся к эл-ту x по норме пр-ва X. ТОРО

Опр. 45. Пр-во c сходящихся п-тей $x=(x_1,x_2,\dots)$ с операциями сложения и умножения на число и нормой $\|x\|_C=\sup_{k\in N}|x_k|.$

Опр. 46. Пр-во c_0 сходящихся п-тей, эл-ты которых стремятся к $0, x = (x_1, x_2, \dots)$ с операциями сложения и умножения на число и нормой $||x||_C = \sup_{k \in \mathbb{N}} |x_k|$.

Опр. 47. Пусть X — комплексное ЛП. **Скалярным произведением** в X наз-ся отображение $(\cdot, \cdot): X \times X \to \mathbb{C}$, т. ч.:

- 1. $\forall x \in X \hookrightarrow (x, x) \in \mathbb{R}$ и $(x, x) \geqslant 0$;
- 2. $(x, x) = 0 \Leftrightarrow x = 0$;
- 3. $\forall x, y \in X \hookrightarrow (x, y) = \overline{(y, x)};$
- 4. $\forall x, y, z \in X \forall \alpha, \beta \in \mathbb{C} \hookrightarrow (\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z)$.

Опр. 48. ЛП с фиксированным в нём скалярным произведением наз-ся евклидовым.

Утв. 1. Пусть X — евклидово пр-во. Тогда величина $||x|| = \sqrt{(x,x)}, x \in X$, удовлетворяет определению нормы в X. Такая норма называется **нормой, порождённой скалярным произведением**.

Опр. 49. ЕП, полное относительно нормы, порождённой скалярным произв., наз. **гильбертовым пр-вом** ($\Gamma\Pi$) (обычно обозначается H).

Опр. 50. Пусть L- действительное ЛП, и $x,y\in L$. Назовём замкнутым отрезком в L, соединяющим точки x и y, совокупность $\{\alpha x+\beta y\mid \alpha,\beta\geqslant 0,\alpha+\beta=1\}$. Отрезок без концевых точек x,y называется открытым отрезком. Мн-во $M\subset L$ наз-ся выпуклым, если оно вместе с любыми двумя точками x и y содержит соединяющий их отрезок.

Опр. 51. Пусть $X, Y - \Pi\Pi$. Линейное отображение $A: X \to Y$ наз-ся **линейным оператором**.

Опр. 52. Пусть $X, Y - \Pi\Pi, A: X \to Y$ — линейный оператор. Ядром линейного оператора A наз-ся подпр-во из X вида $\operatorname{Ker} A = \{x \in X \mid Ax = 0\}$. Образом (или мн-вом значений) оператора A наз-ся подпр-во из Y вида $\operatorname{Im} A = \{Ax \mid x \in X\}$

Опр. 53. Пусть $(X, \|\cdot\|_X)$ и $(Y, \|\cdot\|_Y)$ — ЛНП. Лин. опер. $A: X \to Y$ наз. **ограниченным**, если \forall ограниченного мн-ва $S \subset X$ его образ A(S) является ограниченным в Y.

Утв. 2. Пусть $(X, \|\cdot\|_X)$ и $(Y, \|\cdot\|_Y) - \Pi H \Pi, A : X \to Y -$ лин. опер. Тогда СУЭ:

- $1. \ A$ непрерывен в X
- $2. \ A$ непрерывен в нуле
- 3. A ограничен
- 4. $\exists R>0: A(B_1^X(0))\subset B_R^Y(0),$ где $B_r^X(x)=\{z\in X\mid \|z-x\|_X\leqslant r.$

Опр. 54. Пусть $(X,\|\cdot\|_X)$ и $(Y,\|\cdot\|_Y)$ — ЛНП. **Нормой** лин. опер. $A:X\to Y$ наз-ся $\|A\|=\sup_{\|x\|_X\leqslant 1}\|Ax\|_Y$.

Утв. 3. ТООО

Опр. 55. $||A|| < +\infty \Leftrightarrow$ лин. опер. A ограничен.

Опр. 56.