1A – Apprentissage M. Thomassin, E.-H. Djermoune 3 décembre 2021

Examen SICA1

Durée 1h50 • Aide mémoire autorisé • Barème indicatif • Les exercices sont indépendants.

Exercice 1. Série de Fourier (6 points)

On note $\delta(t)$ l'impulsion de Dirac qui possède notamment les propriétés suivantes :

(1)
$$\delta(t) = 0, \forall t \neq 0,$$
 (2) $\int_{-\infty}^{+\infty} \delta(t)dt = 1,$ (3) $\int_{-\infty}^{+\infty} \delta(t)x(t)dt = x(0).$

Soit $\delta_T(t)$ le signal T-périodique, appelé « peigne de Dirac », défini par :

$$\delta_T(t) = \sum_{k=-\infty}^{+\infty} \delta(t - kT),$$

où T > 0 est une constante réelle.

- /1. Représenter graphiquement le signal $\delta_T(t)$ pour $t \in [-3T, 3T]$.
- 2. Calculer les coefficients du développement en série de Fourier réelle de $\delta_T(t)$, i.e. a_0, a_n et b_n pour n > 0.
- \sim 3. En déduire les coefficients de Fourier complexes C_n pour $n \in \mathbb{Z}$.
- \sim 4. Représenter les spectres d'amplitude et de phase de $\delta_T(t)$.
- 5. En utilisant la formule de synthèse de Fourier :

$$\delta_T(t) = \sum_{n=-\infty}^{+\infty} C_n e^{j2\pi nt/T},$$

montrer que la transformée de Fourier de $\delta_T(t)$ que l'on notera $\Delta_T(f)$, est égale à :

$$\Delta_T(f) = \frac{1}{T} \sum_{n=-\infty}^{+\infty} \delta\left(f - \frac{n}{T}\right)$$

Remarque : cela signifie que la transformée de Fourier d'un peigne de dirac est également un peigne de Dirac mais de pas inversement proportionnel et d'amplitude $\frac{1}{T}$: $\Delta_T(f) = \mathcal{F}\left\{\delta_T(t)\right\} = \frac{1}{T} \; \delta_{\frac{1}{T}}(f).$

Exercice 2. Produit de convolution (3 points)

On considère les deux signaux numériques à durées finies suivants :

$$x(k) = \{ \underset{\uparrow}{1}, -2, 3, 0, -1 \}$$

$$y(k) = \{ \underset{\uparrow}{2}, 0, 1, -1 \}$$

où le symbole \uparrow indique l'instant k = 0.

- 1. Représenter x(k) et y(k).
- /2. En utilisant la définition du produit de convolution entre 2 signaux discrets ou avec la méthode du tableau, calculer le produit de convolution z(k) entre x(k) et y(k).
- / 3. Représenter z(k).