Compater Arithmetic
We often want to work with the real number system which consists of all integers, rational and irrational numbers
ex f-2, 137, e, TT) CP
In a computer, we have finite Storage for numbers
Clearly non-repeating / non-terminating
Clearly non-repeating / non-terminating de time 15 cannot be represented, but there are lots of others as well.
This can cause problems with arithmetic.
we typically use base 10 de ocimal system
eg 427.325
$= 4 \times 10^{2} + 2 \times 10^{1} + 7 \times 10^{2} + 3 \times 10^{-1} + 2 \times 10^{-2} + 5 \times 10^{-3}$

Consider, of the livery (base 2) by stem

(1001. [1101] =
$$1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + | \times 2^0 + | \times 2^{-2} + | \times 2^{-2$$

Continue
$$\frac{4}{10} = (a_3 . a_3 a_4 ...)_2$$

$$\Rightarrow a_2 = 0$$

$$\frac{1}{10} = (a_3 . a_4 a_5 ...)_2$$

$$\Rightarrow a_3 = 0$$

$$\frac{1}{10} = (a_4 . a_5 a_6 ...)_2$$

$$\Rightarrow a_4 = 1 \quad (taking integer pant)$$
Subtract 1
$$\frac{6}{10} = (.a_5 a_6 a_7 ...)_2$$

$$\Rightarrow a_5 = 1$$
Subtract 1
$$\frac{2}{10} = (.a_6 a_7 a_6 ...)_2$$

$$repeats$$

$$\frac{2}{10} = (.a_6 a_7 a_6 ...)_2$$

We have
$\left(\frac{1}{10}\right)_{13} = \left(0.001\ 1001\ 1001\right)_{2}$
Since computers have a finite storage the number on the right cannot be stored exactly.
The accimal has to be truncated sometow
Hypothetical Storage scheme
Hy pothe trail Storage scheme (32 bit) Sign of exponent [1 1 7 Exponent (E) 23
Juga of (S) Normalized mantissa (F)
Normalized Mantissa (F)

Normalization
Can write all real numbers in namalized Scientific notation
eg 732. 5051 = 0.7325051x/03
$-0.0056/2 = -0.56/2 \times 10^{-2}$
$if x \in \mathbb{R} + 4e_n x = \pm r \times 10^n$
$(\times \neq 0)$
where $\int_{0}^{\infty} \leq r < \int_{0}^{\infty} (if r < i\sigma)$ if is not normalized; $shift$ some $more$
In binary $x = \pm q \times 2^{n}$
where $\frac{1}{2} \leq g < 1$ $(x \neq 0)$
g : mantissa
m: integer exponent written
2 4