KMI/VCS1 – Vyčíslitelnost a složitost Paměťová složitost: třídy L a NL

Jan Konečný

21. prosince 2013

Paměťová složitost

Zabýváme náročností výpočetních problémů z hlediska paměti, která je potřeba k jejich řešení.

Připomínka:

Definice

 $Paměťová složitost \ TS \ T$ je funkce $f:N\to N$, kde f(n) je maximální počet políček použitých při výpočtu nad jakýmkoli vstupem délky n.

a pro NTS:

Definice

 $Paměťová složitost \ NTS \ T$ je funkce $f:N\to N$, kde f(n) je maximální počet políček použitých při výpočtu nad jakýmkoli vstupem délky n v jakékoli větvi výpočtu.

Změna

Budeme uvažovat následující variantu TS:

TS s dvěma páskami:

- vstupní čtecí páska je na ní zapsán vstup, nedá se zapisovat (read only)
- pracovní páska lze číst i zapisovat.

Definice

 $Paměťová složitost TS \ T$ je funkce $f:N \to N$, kde f(n) je maximální počet políček **pracovní pásky** použitých při výpočtu nad jakýmkoli vstupem délky n.

a pro NTS:

Definice

 $Paměťová složitost \ NTS \ T$ je funkce $f:N \to N$, kde f(n) je maximální počet políček **pracovní pásky** použitých při výpočtu nad jakýmkoli vstupem délky n v jakékoli větvi výpočtu.

Paměťová složitost

Definice

Jazyk A nazveme $\mathit{rozhodovaný}\ v\ \mathit{paměti}\ f(n)$ pokud existuje TS, který má paměťovou složitost f(n).

Analogicky pro NTS:

Definice

Jazyk A nazveme nedeterministicky rozhodovaný v paměti f(n) pokud existuje NTS, který má paměťovou složitost f(n).

Třídy paměťové složitosti:

Definice

$$\begin{split} & \operatorname{SPACE}(f(n)) = \{A \mid \operatorname{Jazyk} A \text{ je rozhodovaný v paměti } \mathcal{O}(f(n))\}. \\ & \operatorname{NSPACE}(f(n)) = \{A \mid \operatorname{Jazyk} A \text{ je nedet. rozhodovaný paměti } \mathcal{O}(f(n))\}. \end{split}$$

Třídy L a NL

$$\begin{aligned} \mathbf{L} &= \mathrm{SPACE}(\log(n)) \\ \mathrm{NL} &= \mathrm{NSPACE}(\log(n)) \end{aligned}$$

Poznámka

Omezujeme se na logaritmickou paměťovou složitost ze stejného důvodu, jako jsme se předtím omezili na polynomickou časovou složitost: problémy řešitelné v logaritmické paměti považujeme za řešitelné efektivně.

Příklad

$$0^k 1^k \in L$$
:

Sestrojíme TS T, který to řeší v log. paměti.

- Zapiš $n_0 = 0, n_1 = 0$
- ② Na vstupní pásce jeď postupně doleva a za každou 0 zvyš n_0 , dokud nenarazíš na $x \neq 0$.
- 3 Na vstupní pásce jeď postupně doleva a za každou 1 zvyš n_1 , dokud nenarazíš na $x \neq 1$.
- pokud je x = 0 zamítni.
- **5** pokud je $n_0 = n_1$ přijmi.
- o jinak zamítni.

Potřebujeme si pamatovat pouze n_0, n_1 – log. paměť.

Připomínka:

 $PATH = \{[G, s, t] \mid G \text{ je orientovaný graf, který má cestu z } s \text{ do } t\}$

Příklad

 $PATH \in NL$

Sestrojíme T_{PATH} , který řeší PATH v log. paměti:

 $TS T_{\mathrm{PATH}} \ \mathit{pro} \ [G, s, t]$:

- Nastaví m=0, u=s (= počet provedených kroků m, aktuální uzel u)
- 2 pokud u=t přijmi
- **3** pokud m = počet stavů G, zamítni.
- nedeterministicky vyber souseda v, zapiš u = v, m++, opakuj od kroku 2.

Stačí mít zapsáno m, u – logaritmická velikost.

Neví se, zda $PATH \in L$.

NL-úplnost

Definice

Přepisovač v logaritmické paměti je TS s

- vstupní čtecí páskou (read-only),
- pracovní čtecí/zapisovací páskou,
- výstupní zapisovací páskou (write-only),

pracovní páska může obsahovat $\mathcal{O}(\log n)$ symbolů.

Přepisovač v logaritmické paměti M vyčisluje funkci $f: \Sigma^* \to \Sigma^*$, kde f(w) je řetězec, který je na výstupní pásce, jakmile M zastaví.

f nazýváme funkcí vyčislovanou v logaritmické paměti.

Jazyk A je redukovatelný v logaritmické paměti na jazyk B, pokud je redukovatelný na B s použitím funkce vyčislované v logaritmické paměti. Zapisujeme $A \leq_{\mathbf{L}} B$.

Definice

Jazyk B je NL -úplný, pokud

- $B \in NL$,
- každý $A \in NL$ je redukovatelný v logaritmické paměti na B.

Věta

Pokud $A \leq_{\mathbf{L}} B$ a $B \in \mathbf{L}$, pak $A \in \mathbf{L}$.

Důkaz na tabuli.

Důsledek

Pokud je jakýkoli NL-úplný jazyk v L, pak L=NL.

Věta

PATH je NL-úplný jazyk.

Důkaz na tabuli.

Důsledek

 $NL \subseteq P$.

Důkaz na tabuli.