UNCLASSIFIED

AD NUMBER AD830583 LIMITATION CHANGES TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; MAR 1959. Other requests shall be referred to Space and Missile Systems Oganization, Los Angeles, CA 90045. AUTHORITY SAMSO ltr 20 Mar 1972

AD830583

Best Available Copy

BATE March, 1959
NO. OF PARES 40

A12113

CONVAIR ASTRONAUTICS

CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION

AD830583

ORBITAL AND DYNAMIC ELEMENTS FOR

SIMPLIFIED TWO BODY PROBLEMS
CONVAIRANTES

APR 14 1959

LIBRARY

PREPARED BY W. Zampelman
Wayne Tempelman

CHECKED BY & G. Tylus

F. A. Zylius

APPROVED BY WK Broke

* APPROVED BY

REVISIONS

NO.	DATE	BY	CHANGE	PAGES AFFECTED
			This document is subject	
			to srecial export controls and each transmittal to foreign	
	Ì		gonaents or foreign	

with prior approval of: hq.sas30, LA., Ca. 90045 Attn: SMSD

CONVAIR	ASTRONAUTICS
CONVAIR	ASTRONAUTICS

REPORT	OB-56
PAGE	1

I. SUMMARY

The solution to the simplified two body problem is presented based on the parameters of the radial and normal components of velocity made dimensionless by division by the circular velocity at injection. The orbital and dynamic elements are presented in graphical form for velocities up to ten times the circular velocity at injection.

REPORT_	OR-56	-
PAGE	2	

TABLE OF CONTENTS

	Page	
I.	SUMMARY	
II.	TABLE OF CONTENTS	
III.	LIST OF FIGURES	
IV.	NOMENCLATURE	
٧.	INTRODUCTION	
	A. ASSUMPTIONS	
	B. NECESSARY INITIAL CONDITIONS	
	C. SELECTION AND DEFINITION OF PARAMETERS 8	
	D. EQUATIONS OF MOTION	
VI.	BASIC ANALYSIS	
	A. NORMAL VELOCITY	
	B. RADIAL VELOCITY	
	C. PERIOR ANGLE	
	D. RADIUS AS A FUNCTION OF TRUE ANOMALY 15	
	E. DYNAMIC AND ORBITAL ELEMENTS 16	
VII.	TABLE 1: ORBITAL ELEMENTS	
VIII.	TABLE 2: DYNAMIC ELEMENTS	
IX.	FIGURES	40

REPORT_	OR-56
2249	3

III. LIST OF FIGURES

Pigu		Page
1.	Dimensionless Velocity for Earth	19
2.	Velocity Parameter as a Function of The	
	Dimensionless Velocity Vo	20
3.	Velocity Parameter as a Function of α, β	21
4.	Perigee Angle	22 (
5.	Semilatus Rectum	23
6.	Eccentricity for Elliptical Orbits	24
7.	Eccentricity for Hyperbolic Orbits	25
8.	Semimajor Axis of an Elliptical Orbit	26
9.	Semitransverse Axis of a Hyperbolic Orbit	27
10.	Semiminor Axis of an Elliptical Orbit	28
u.	Semiconjugate Axis of a Hyperbolic Orbit	29
12.	Linear Eccentricity of an Elliptical Orbit	30
13.	Linear Eccentricity of a Hyperbolic Orbit	31
14.	Directrix Distance for an Elliptical Orbit	32
15.	Directrix Distance for a Hyperbolic Orbit	33
16.	Asymptotes of a Hyperbolic Orbit	34
17.	Distance at Perispe	35

Figure		Page
18.	DISTANCE AT AP GLE	36
19.	VALOCITY AS A FUNCTION OF DISTANCE	37
20.	NORMAL VELOCITY	38
21.	APOGEE VELOCITY	39
22.	PERIGEE VELUCITY	40

REPORT_	0	-56	 	
PAGE	5			

IV. NOMENCLATURE

- A Dimensionless semi-major/semi-transverse axis
- B Dimensionless semi-minor/semi-conjugate axis
- C Linear eccentricity, constant
- D Directrix distance
- E Eccentricity
- f Velocity parameter (See equation 15)
- Focus, feroe
- g Gravitational constant
- 1 Infinitestimal
- m Mass of revolving body
- M Mass of attracting body
- p Dimensionless semilatus rectum
- r Distance between bodies
- R Dimensionless distance
- 8 System
- t Time
- v Velocity
- V Dimensionless velocity

REPORT_	OR-56
PAGE	6

- □ Dimensionless radial velocity
- β Dimensionless normal velocity
- δ Velecity vector angle with respect to the normal direction
- O Angular pelar coordinate
- of True anomaly

Subscripts

- A Apogee
- c Circular
- o Initial condition
- P Perigee
- r Radial component
- 6 Normal component

Miscellaneous

- # First derivative of x with respect to time
- x Second derivative of x with respect to time
- x Vector x
- x Unit vector is x direction
- E Equality by definition
- ... Consists of

REPORT	CR-56	
PAGE	7	

1

V. INTRODUCTION

A. ASSUMPTIONS

The system defining the simplified two body problem consists of two bodies: one, the attracting body considered as a point mass, M; the other the revolving body considered as a point with infinitesimal mass, m. An attraction force is exerted on each body according to Newton's Inverse Square Iau of Gravity. The assumptions mathematically represented are:

S :: M

such that: m = i

$$\overline{F} = -\frac{GMm}{r^2} \hat{r}$$

B. MEGESSARY DITTIAL CONDITIONS

To obtain a complete solution to a particular two body problem, the following must be specified: the mass of the attracting body, \mathcal{M} ; the distance between the two bodies, r_i ; the angular distance from some reference line, θ_o ; the time, r_o ; the velocity of the revolving body with respect to the attracting body, v_o ; and an angle, taken as the angle the velocity vector makes with a normal to the connecting line between the two bodies, v_o .

CONVAIR ASTRONAUTICS

REPORT CIR-56

To simplify the solution, the following conventions are made:

1. Time is taken as zero for the initial point.

2. All distances are made dimensionless by division by the initial distance.

3. All velocities are made dimensionless by division by the velocity at the initial distance.

C. SELECTION AND DEFINITION OF PARAMETERS

The criteria used in selecting the parameters is the potential to communicate all the orbital information in the most explicit manmer. To universalise the solution, the additional stipulation is made that there cannot be any direct dependency on the magnitude of the attracting body.

The satisfying of the latter requirement is best accomplished by utilizing the circular velocity corresponding to the initial distance, which involves both the magnitude of the attracting body and the initial distance.

For a particular M and ro, any Vo, Yo combination uniquely dotermines the orbit. It is thus seen that two parameters are sufficient if one of them involves the above mentioned circular velocity. The parameter combination V. , where

$$V_o = \frac{v_o}{v_{co}} = \frac{v_o}{\left(\frac{GM}{r_o}\right)^{\frac{1}{2}}}$$

is the obvious choice, but has the disadvantage of different units.

To form a consistently defined combination which is indicative of the initial injection conditions, the above dimensionless velocity is resolved in a radial direction (α) and a normal direction (β).

B = V. cos %

The initial launch angle and velocity become

$$V_o = \tan^{-1} \frac{\alpha}{\beta}$$

$$V_o = (\alpha^2 + \beta^2)^{\frac{1}{2}}$$

4

There are four unique combinations of α, β , which define four orbits characterised by:

Orbit I:
$$+\alpha$$
, $+\beta$, $+\delta$.

Orbit II:
$$-\alpha$$
, $+\beta$, $-\gamma$.

Orbit III:
$$-\alpha$$
, $-\beta$, $+\delta$

CONVAIR

ASTRONAUTICS

REPORT	OB-56	 _
PAGE	10	

D. EQUATIONS OF HOTION

The forces acting on the body can be resolved into components consisting of a force in the radial direction and a force in the normal direction. The forces acting on the revolving body can be expressed:

$$F_r = -\frac{GMm}{r^2}$$

$$F_0 = 0$$

where the total force is represented by

$$\vec{F} = F_r \hat{r} + F_\theta \hat{\theta}$$
 6

According to Newton's Second Law, the force is equal to the mass times the acceleration. Using the familiar expression for acceleration in polar coordinates, the force is

$$\overline{F} = m(\dot{r} - r\dot{\theta}^2)\hat{r} + m(r\dot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta}$$

REPORT	CR-96
PAGE	11

VI. BASIC ANALYSIS

A MORNAL VELOCITY

Comparing 5) and 6), the normal force term in 7) can be set equal to zero

$$0 = m(r\ddot{o} + 2\dot{r}\dot{o})$$

The quantity in the parenthesis can also be written

$$\frac{1}{r}\frac{d(r^2\dot{\theta})}{dt}=0$$

As the differential of a constant is zero, 9) reduces to

$$C = r^2 \dot{\theta}$$

Applying the general definition of the normal velocity given in 3) for the initial conditions

In general, the normal dimensionless velocity is

$$V_{\theta} = \frac{r\theta}{V_{\xi_{\alpha}}} = \beta R^{-1}$$

where

B. RADIAL VELOCITY

Setting the radial force term in 7) equal to that found in 5)

$$-\frac{GMm}{r^{A}} = m(\ddot{r} - r\dot{\theta}^{2})$$

Eliminating $\dot{\theta}$ by using 10), and introducing the circular velocity from 2), 13) can be solved for \dot{Y}

ASTRONAUTICS

REPORT OR-56

$$\dot{r} = \frac{r_3^2 V_{c_0}}{r^3} \beta^2 - \frac{r_0 \mathcal{E}_0^2}{r^2}$$

Integrating, eliminating the constant by letting $r=r_0$ when $\dot{r}=\alpha \, k$, the final equation for the radial velocity is

$$V_r = \frac{\dot{r}}{v_c} = \pm \left(-R^2 \rho^2 + 2R^2 - f\right)^{\frac{1}{2}}$$
 15

where, the velocity parameter f is

For the initial radial velocity, the sign is chosen to match the sign of α . For other than the initial condition, a check must be made to determine whether the body is on the side of the orbit where the radius is increasing in the direction of motion, or vice versa.

C. PERIORE ANGLE

In order to obtain r as a function of θ , $\frac{dr}{d\theta}$ is first obtained from

$$\frac{dr}{d\theta} = \frac{\dot{r}}{\dot{\theta}}$$

Velng 12) and 15), and noting that $\frac{dr}{r} = -d(\frac{+}{r})$:

$$d\theta = -\frac{d(R^{-1}\beta)}{\frac{1}{2}(-R^{-2}\beta^{2} + 2R^{-1} - f)^{\frac{1}{2}}}$$
17

The standard integral formula

$$\int \frac{dx}{\left(a^2 - x^2\right)^{\frac{1}{2}}} = -\cos^{-1} \frac{x}{a}$$
 18

applies when 17) is put in the following ferm

$$d\theta = \pm \frac{-d(R'\beta - \beta'')}{\left(\beta^{-1} - \pm -(R'\beta - \beta'')^{\frac{3}{2}}\right)^{\frac{1}{2}}}$$
19

The perigec distance is given below and its use here before it is derived is allowed as the result of this section does not affect the analysis leading to its derivation,

$$R_{p} = \frac{\beta^{2}}{1 + (1 - f \beta^{2})^{4}}$$
 20

Integrating 19) between the limits of the initial point and perigee results in

$$\theta_{p} - \theta_{o} = \pm \left[\cos^{-1} \frac{(1-f_{0}^{2})^{\frac{1}{4}}}{\beta(\beta^{-2}-f)^{\frac{1}{4}}} - \cos^{-1} \frac{\beta^{2}-1}{\beta(\beta^{-2}-f)^{\frac{1}{4}}}\right]$$
 21

Investigating the result for the four possible orbits, using

$$\cos^2(-x) = \pi - \cos^2 x$$

it is found that Orbits I and III and Orbits II, IV have the same perigee angles. By introducing the arbitrary convention of measuring the perigee angle in the epposite direction from which the body is traveling, the periges angles become

Orbit I:
$$\theta_p = -\cos^{-1} \frac{\beta^2 - 1}{(1 - f_p^2)^{n_2}} + \theta_o$$

Qubit II:
$$\theta_{\rho} = -2\pi + \cos^{-1} \frac{\beta^{2} - 1}{(1 - 4\beta^{2})^{1/2}} + \theta_{o}$$

Orbit III:
$$\theta_{\rho} = 2\pi - \cos^{-1} \frac{\beta^{\frac{\alpha}{2}}}{(1 - f \beta^{\frac{\alpha}{2}})^{V_2}} + \theta_{\sigma}$$

Qubit IV:
$$\theta_{p} = \cos^{-1} \frac{p^{2}-1}{(1-4p^{2})^{2}} + \theta_{0}$$

For Orbits I and II, θ is always measured in the plus direction; for Orbits III and IV, θ is measured in the minus direction.

ASTRONAUTICS

PAGE 15

25

26

27

D. RADIUS AS A FUNCTION OF TRUE ANOMALY

Integrating 19) between the limits of the initial point and a general point

$$\theta - \theta_0 = \frac{\pi}{2} \left[\cos^{-1} \frac{R^2 R^2 - 1}{\beta(\beta^2 + 1)^{\frac{1}{12}}} - \cos^{-1} \frac{R^2 - 1}{\beta(\beta^2 + 1)^{\frac{1}{12}}} \right]$$
 24

Considering the four possible orbits and the corresponding initial perigee angles, 24) can be reduced to

OF

$$R = \frac{\beta^2}{1 + (1 - \beta^2)^{\frac{1}{2}} \cos \phi}$$

for all four orbits. The true anomaly ϕ is given for the four Orbits by

Orbit I
$$\phi = \theta - \theta \rho$$

Orbit II
$$\phi = \theta - \theta \rho$$

Orbit III $\phi = -\theta + \theta_0$

Orbit IV $\phi = -\theta + \theta \rho$

The true anomaly determines whether or not the body is on the side of the orbit where the radius is increasing in the direction of motion, or vice versa. For positive $\hat{\mathbf{r}}$

$$2\pi n < \phi < \pi + 2\pi n$$

REPORT	OR-56
PAGE	16

For negative f

 $\pi + 2\pi n < \phi < 2\pi + 2\pi n$

28

where n is the number of times the body has passed perigee.

E. DYNAMIC AND ORBITAL ELEMENTS

Equation 25) can be compared with the standard equation of the conic section in polar coordinates in order to determine the elements of the conic section. The results are shown in Table I.

The calculation of the dynamic elements is straight ferward and summarised in Table 2.

It should be noted that each α, β figure is also a plot of V_{α} , χ_{α} , as can be seen from Figure 6.

е	$\left[\alpha^{2} \beta^{2} + (\beta^{2} - 1)^{2} \right]^{\frac{1}{2}}$
P	. 6 2
A	/2 - x 2 - \beta^2/
B	$\frac{\beta}{\left[/2-\alpha^2-\beta^2/\right]^{\frac{1}{2}}}$
С	$\frac{\left[\alpha^{2}\beta^{2} + (\beta^{2} - 1)^{2}\right]^{\frac{1}{2}}}{\left[2 - \alpha^{2} - \beta^{2}\right]}$
D	β ² [α*β* + (β*-1)*]*
<u>B</u> A	/B/[a2+B2-2] =
Rp	β^{2} $1 + \left[\alpha^{2} \beta^{2} + (\beta^{2} - 1)^{2} \right]^{\frac{1}{2}}$
R_A	$\frac{\beta^{2}}{1-\left[\alpha^{2}\beta^{2}+(\beta^{2}-1)^{2}\right]^{\frac{1}{2}}}$

VII. TABLE 1. ORBITAL ELEMENTS

V + (R)	$[2R^{-1}-2+\alpha^{2}+\beta^{2}]^{\frac{1}{2}}$
V f(\$)	$ \begin{cases} 2(1+[\alpha^{2}\beta^{2}+(\beta^{2}-1)^{2}]^{\frac{1}{2}}\cos\phi) - 2+\alpha^{2}+\beta^{2} \end{cases}^{\frac{1}{2}} $
Vr f (R")	$\left[-R^{-2}\beta^{2}+2R^{-1}-2+\alpha^{2}+\beta^{2}\right]^{\frac{1}{2}}$
Vr f(q)	$\int_{\mathbb{R}^2} \beta^2 + (\beta^2 - 1)^2 \int_{\mathbb{R}^2} \sin \phi$
Ve f(R')	R-' B
Ve f(\$)	$\frac{1 + \left[\alpha^{2}\beta^{2} + (\beta^{2} - 1)^{2}\right]^{\frac{1}{2}} \cos \phi}{\beta}$
Vep	$\frac{1 + \left[\alpha^{2} \beta^{2} + (\beta^{2} - 1)^{2} \right]^{\frac{1}{2}}}{\beta}$
Vea	1-[~2] = + (B2-1)2] = = = = = = = = = = = = = = = = = = =
8 f(R-')	tan [-R-2B2+2R-1-2+x2+B2]*
f(\$)	$tan^{-1} \frac{\left[\alpha^{2}\beta^{2} + (\beta^{2} - 1)^{2}\right]^{\frac{1}{2}}}{1 + \left[\alpha^{2}\beta^{2} + (\beta^{2} - 1)^{2}\right] \cos \phi}$

1

(6)

359-14

111	ir									111					ii										Œ.	56	1
		111													ij			1					P	20	23		
						i;		in:						; ; ;										-11		n.	
						H																			iri.		I
												133	33														
	:,1																1:3	EĞ I			1 1 1 -1						
						11.7												ndi		,							1
										12								1		19	1						
																											-
: :					2.34						-		14.10				1:-::						1				İ
																				1			13.	: 1 =			1
				14:		112		11	1	H													121			100	-
																					11						-
	1		00			h						1				H.					:			1. 1			-
4					ļi.																		1/				1
			1						71												1 1		/			0 -1	
de desirence		711	1			111	1-27						.::	1								1			.,,		-
* *			90									111										/_				= :	-
																	1:				1				•		
4 4 .																				1							-
					1::::				1,4					. 1	115					/		1					-
			60		1::::					1			111		.1				/		1						1
. 1					112:							1 1			1111	1 1 4-1	- 1	,	/								1
		P						1				H		1 := 1				/		-			· · · :				-
												: 1 . 1					1					1	111		11	: 55	-
			10	1344												1		.111			ii:						+
		11.7	1	, - · ·											/							- 1				1	
				11.		11		ifii			111			,	/			12.11	12			1.4		.:1			-
									:::::	1.1																	1
1.	· · · ·		20			1.0						7				1								- ; ; ;			+
						:		1111			المراجع		1,1														-
						1				-								14			11.	1 1 .					
	11-1	<u> </u>	1				-	-					lite	111			: -!-					10 F					
		- 4	1			-				1111			1111 1711							1	1111		11				
		1 2				11:11																	_/	2			
		111	1111	17.11	:	: : : :							- 6		111.			1		1::1							L
				111				P'A							Rec	ter			118						1111		
	.111			11:																	Ш.,	117					
			::. ::.1		1111			1.1.								44											1:
7		1111								17.17										1 . 4 .		::::					

Report OR-56 Page 24 50° 400 30 20 00 i j.

1

ESSER CO. MADE IN U. B. A.

KAZ 10 X 10 TO THE CM.

P

**

2

warein U. S.A.

KEUFFEL & ESSER CO.

į

10 X 10 TO THE CM. 359-14 REUFFEL & ESSER CO. HATTING B.

Ť.

C

~

FULL A FRAPA CO

i

