MATH 8301 Homework VIII

David DeMark

6 November 2017

Collaborators: Esther Bannian, Ryan Coopergard, Sarah Brauner

1.)

We let $z_1, \ldots, z_n \in \mathbb{C}$ be pairwise distinct and let $f(z) = (z - z_1) \ldots (z - z_n)$. We let Y be the hyperelliptic curve associated to f. We let $p' : Y \to \mathbb{C}$ be defined by $(z, w) \mapsto z$. We let $X = \mathbb{C} \setminus \{z_1, \ldots, z_n\}$ and let $\overline{X} := Y \setminus p^{-1}(\{z_1, \ldots, z_n\})$. We let $p : \overline{X} \to X$ be the restriction of p' to \overline{X} .

a.)

Proposition 1.1. p is a covering map of X relative to the open cover $R_{\pm} := \{z \in X : \pm \operatorname{re}(f(z)) > 0\}$ with I_{\pm} defined analogously, replacing re with im.

Proof. We first note that $\{R_+, R_-, I_+, I_-\}$ is indeed an open cover as removing $p^{-1}(z_i)$ removed all points with $\operatorname{re}(f(z)) = \operatorname{im}(f(z)) = 0$. Then, $p^{-1}(R_+) = \{(z,w) \in \overline{X} : \frac{-\pi}{4} < \operatorname{arg}(w) < \frac{\pi}{4}\} \sqcup \{(z,w) \in \overline{X} : \frac{3\pi}{4} < \operatorname{arg}(w) < \frac{5\pi}{4}\}$. Then, restricting to one of the two sets in disjoint union, it is clear that p is bijective as each of $(z, \sqrt{f(z)})$ is in a different component having fixed a branch of the square root function. Furthermore, as the square root function is continuous once a branch is chosen, $z \mapsto (z, \pm \sqrt{z})$ is a continuous inverse to p given compatible choices of component of $p^{-1}(R_+)$ and \pm . We give the components of the preimages of the other set of the open cover below; the arguments for p restricting to a homeomorphism are identical.

$$p^{-1}(R_{-}) = \{(z, w) \in \overline{X} : \frac{\pi}{4} < \arg(w) < \frac{3\pi}{4}\} \sqcup \{(z, w) \in \overline{X} : \frac{5\pi}{4} < \arg(w) < \frac{7\pi}{4}\}$$

$$p^{-1}(I_{+}) = \{(z, w) \in \overline{X} : 0 < \arg(w) < \frac{\pi}{2}\} \sqcup \{(z, w) \in \overline{X} : \pi < \arg(w) < \frac{3\pi}{2}\}$$

$$p^{-1}(I_{-}) = \{(z, w) \in \overline{X} : \frac{\pi}{2} < \arg(w) < \pi\} \sqcup \{(z, w) \in \overline{X} : \frac{3\pi}{2} < \arg(w) < 2\pi\}$$

b.)

Proposition. We let $\sigma: \overline{X} \to \overline{X}$ be given by $(z,w) \mapsto (z,-w)$. Then, σ is a homeomorphism with the property $p \circ \sigma = p$

Okay, fine. We note that σ is clearly bijective, as $p^{-1}(z)$ consists of two points (z, w) and (z, -w) where $w = \sqrt{f(z)}$ given some choice of branch of square root function, and σ acts on \overline{X} by permuting these. Furthermore, $\sigma^2(z, w) = (z, w)$, so σ is idempotent and hence a homeomorphism. The other statement of the proposition comes about as a byproduct of our observation that σ permutes elements of $p^{-1}(z)$ for all $z \in X$.

c.)

Proposition. σ and the identity are the only automorphisms of p.

¹For simplicity, my usage of arg is somewhat fast-and-loose—it should be totally clear what I mean and trivial to rephrase it totally correctly, but I just thought I should acknowledge that *technically* what I'm doing is not quite well-defined.

Proof. We suppose for the sake of contradiction that some third automorphsim τ exists which is distinct from σ and id. We recall from our previous argument that as $\#p^{-1}(z)=2$ for all $z\in X$, we have that either $\tau|_{\{y\}}=\sigma|_{\{y\}}$ or $\tau|_{\{y\}}=\operatorname{id}|_{\{y\}}$ for each $y\in \overline{X}$. As τ is distinct from σ and id, we must have that both cases are realized for some y_1,y_2 in \overline{X} respectively—in particular, we choose y_1 such that $\tau|_{\{y_1\}}=\operatorname{id}|_{\{y_1\}}$. We relabel R_{\pm} to U_1,U_2,U_3,U_4 such that $p(y_1)\in U_1$ and $U_i\cap U_{i+1}\neq\emptyset$ where subscripts are taken mod 4. We now break into two cases:

Case 1 $(p(y_2) \in U_1)$: We note that if $\tau(y_2) = \sigma(y_2)$, then $\tau(\sigma(y_2)) = y_2$ as otherwise τ is not a homeomorphism. As such, we may assume that y_2 is in the same connected component W of $p^{-1}(U_1)$ as y_1 . We then let $\gamma: I \to W$ be a path between y_1 and y_2 . Then, $\tau \circ \gamma$ is the composition of continuous functions and hence continuous. However, $\tau \circ \gamma(0)$ and $\tau \circ \gamma(1)$ are in different connected components of the target $p^{-1}(U_1)$ and hence $\tau \circ \gamma$ does not have connected image, contradicting our assumptions and establishing the case.

Case 2: $p(y_2) \notin U_1$ We label the maximal connected components of the sets $p^{-1}(U_i)$ W_1, \ldots, W_8 , again such that $W_i \cap W_j \neq \emptyset$ and $(W_i = W_j \iff i = j)$ where subscripts are taken mod 8. We let $y_1 \in W_1$ and let k be such that $y_2 \in W_k$. We then let $x_0 = y_1$, $x_k = y_2$ and $x_i \in W_i \cap W_{i+1}$ for 0 < i < k. We let $\gamma_i : I \to W_i$ be a path between x_{i-1} and x_i . Then, at least one of the paths γ_i falls into the situation of case 1.

d.)

Prompt. For $z_1 = 0, z_2 = 2$ and $x_0 = 1$, compute $p^{-1}(x_0)$.

Response. We note that $f(x_0) = -1$. Then, $p^{-1}(x_0) = \{(1, i), (1, -i)\}.$

e.)

Prompt. f may be seen as the action of an element of $S_{p^{-1}(x_0)}$. Compute that permutation.

Proof. As f is a non-trivial permutation on a two-element set, it must be the unique possibility: that corresponding to (12) in the group isomorphism $S_2 \to S_{p^{-1}(x_0)}$.

f.)

Prompt. Let $\gamma: I \to X$ based at x_0 be given by $t \mapsto e^{2\pi i t}$. Find the two lifts of this path.

Response. We fix the branch of the square root function which returns values in the upper half-plane and returns postive real values given positive real input. Then, we claim our two lifts are

$$L_{\pm}(t) = \begin{cases} \left(e^{2i\pi t}, \pm \sqrt{f(e^{2i\pi t})}\right) & t < \frac{1}{2} \\ \left(e^{2i\pi t}, \mp \sqrt{f(e^{2i\pi t})}\right) & t \ge \frac{1}{2} \end{cases}$$

Where L_+ is the path which lifts $\gamma(0)$ to (1,i) and L_- is the path which lifts $\gamma(0)$ to (1,-i). Indeed, to check our answer, we note that having chosen $L_\pm(0)$, we have chosen a pre-image of R_- which our path starts in. Then, when first $\operatorname{re}(f(\gamma(t)))=0$ at $t_0\approx .309$, we see that $f(\gamma(t_0))\approx -2.542i$, so we must have that $L_\pm(t_0)$ is in the component of $p^{-1}(I_-)$ intersecting with the already-determined pre-image component of R_- —that is, the one residing to the same side of $\operatorname{im}(z)=0$ as our lifted basepoint. Then, when next $\operatorname{im}(f(\gamma(t)))=0$ at t=.5, we have that $f(\gamma(.5))=3$, so we must have that $L_\pm(.5)$ is in the component of $p^{-1}(R_+)$ intersecting with the previously-determined component of $p^{-1}(I_-)$. Then, for any $t\geq \frac{1}{2}$, we have that $\operatorname{im}(f(z))>1$, so our lifted path must reside in the component of $p^{-1}(I_+)$ which intersects with our previous component of $p^{-1}(R_+)$ —indeed, at this point we pass from the upper to the lower half plane or vice versa in the w-coordinate, hence the piecewise function given. That we remain in our choice of $p^{-1}(I_+)$ for $t\in (.5,1)$ shows that we remain in that half plane for $t\in (.5,1]$

Remark 1.1. After having written that, I feel completely dirty and deeply ashamed.

g.)

Prompt. Compute the permutation $\tilde{\sigma} \mapsto \gamma_x(1)$ on $p^{-1}(x_0)$

Response. We see immediately from our formula that $\tilde{\sigma}: x \mapsto -x$. Hence, $\tilde{\sigma}$ coincides with σ from earlier!

2.)

Proposition. We let L_1, \ldots, L_n be n > 0 lines through the origin in \mathbb{R}^3 and let $X = \mathbb{R}^3 \setminus \bigcup_{i=1}^n L_i$. Then, for any $* \in X$, $\pi_1(X,*) = F_N$, the free group on N := 2n - 1 elements.

Proof. We note that as n > 0, $\mathbf{0} \notin X \subset \mathbb{R}^3$. Hence, we may restrict the standard homotopy equivalence projection to the unit sphere $\mathbb{R}^3 \setminus \{\mathbf{0}\} \to \S^2$ to X. We then have that X is homotopic to $X' = \S^2 \setminus \left(S^2 \bigcup_{i=1}^n L_i\right)$. We note that any

line through the origin has precisely two points of norm one, and hence we have that $\#S^2 \setminus X' = 2n$. We choose some point $z \in \#S^2 \setminus X'$ and recall the stereography homeomorphism $S^2 \setminus \{z\} \to D^2$. Restricting that homeomorphism to X', we now have that $X' \cong \operatorname{int} D^2 \setminus \{z_1, \dots, z_{2n-1}\}$ where each z_i, z_j are pairwise distinct and identify X' with that space. We note that if n = 1, X' then deformation-retracts to S^1 , which has fundamental group $\mathbb{Z} = F_N$. We then proceed by strong induction for n > 1. We fix some sufficiently small epsilon so that we may use the finiteness of the z_i 's to find some $-1 < y_0 < 1$ such that $d(y_0, \pi_y(z_i)\}$) > where π_y is the projection map to the y-axis on D^2 and there exists some z_i, z_j such that $\pi_y(z_i) < y_0 < \pi_y(z_j)$. We then let $U_1 = \{(x,y) \in \operatorname{int} D^2 : y < y_0 + \epsilon\}$ and $U_2 = \{(x,y) \in \operatorname{int} D^2 : y > y_0 - \epsilon\}$. Then, $\{U_1,U_2\}$ is an open cover of X' with both components path-connected and with simply-connected intersection, so letting $* \in U_1 \cap U_2$, we have $\pi_1(X,*) \cong \pi_1(U_1,*) \star \pi_1(U_2,*)$. We note that our sets U_i are both homeomorphic to $\operatorname{int} D^2$ with some $0 < m_i < N$ points deleted, so by strong induction our claim is proven.

3.)

Proposition. We let $Z = X * Y := X \times Y \times I / \sim$ where $(x, y, 0) \sim (x', y, 0)$ and $(x, y, 1) \sim (x, y', 1)$ for any $x, x' \in X$ and $y, y' \in Y$. Then, Z is simply-connected.

Proof. We begin by considering the case that Y is path-connected. We let $U = \{[(x,y,t)] \in Z : t < .6\}$ and $V = \{[(x,y,t)] \in Z : t > .4\}$. We note that as $U \cong \operatorname{cone}(X) \times Y$ and $V \cong X \times \operatorname{cone}(Y)$, both U and V are path-connected, and as the functor $\pi_1(-,*)$ respects products and cones are simply-connected, we have that $\pi_1(U,*) \cong \pi_1(Y,*)$ and $\pi_1(V,*) \cong \pi_1(X,*)$. We note that the intersection $U \cap V = \{[(x,y,t)] \in Z : .4 < t < .6\}$ is the product of three path connected spaces and deformation-retracts to $X \times Y$. Hence, $\pi_1(U \cap V,*) \cong \pi_1(X,*) \times \pi_1(Y,*)$ and we identify the two groups as such with the maps to U and V by inclusion inducing the projection maps $\rho_V : ([\gamma], [\zeta]) \mapsto [\gamma] \in \pi_1(V,*) \cong \pi_1(X,*)$, and $\rho_U : ([\gamma], [\zeta]) \mapsto [\zeta] \in \pi_1(U,*) \cong \pi_1(Y,*)$. Then, by Seifert-von Kampen, we have that $\pi_1(Z,*) = \pi_1(U,*) \star_{\pi_1(U \cap V,*)} \pi_1(V,*) \cong \pi_1(Y,*) \star_{\pi_1(X \times Y,*)} \pi_1(X,*)$. We claim that this is indeed the trivial group; indeed, we let $[\zeta] \in \pi_1(Y,*)$. Then, $[\zeta] = \rho_U([\zeta], [1])$, and as $\rho_V([\zeta], [1]) = [1]$, we have that in $\pi_1(Z,*)$, $[\zeta] = \rho_U([\zeta], [1])\rho_V([\zeta], [1])^{-1} = [1]$, with a similar statement holding for any $[\gamma] \in \pi_1(X,*)$. Thus, as each of the generators of $\pi_1(Z,*)$ are the identity, we are left with the trivial group.

We now move on to the case that Y is not necessarily path-connected. We let $Y = \bigsqcup_{i \in I} Y_i$ over some indexing set I where the subspaces Y_i are the distinct maximally path-connected components of Y. We let $U_i \subset Y_i$ be some open contractible² subset of Y_i . We then let $V = (\bigcup_i U_i) \times X \times (.9, 1]/$ and let $Z_i = V \cup (Y_i \times X \times I)/$. We note that each of V, Z_i are open under the product topology, that they form an open cover, and they have intersection V which is homeomorphic to cone $(\bigcup_i U_i) \times X$ and hence path-connected with fundamental group $\pi_1(V, *) \cong \pi_1(X, *)$. Furthermore, we note that each Z_i deformation retracts to $(Y_i \times X \times I)/$ as V is contractible by construction, and hence each Z_i falls into the case of the previous paragraph and has trivial fundamental group. Then, Seifert-von Kampen tells us that $\pi_1(Z, *) = \star_{\pi_1(V, *)} \pi_1(Z_i, *)$ with the product ranging over I. As this is isomorphic to a quotient group of the free group of a number of copies of the trivial group, it is trivial, proving our proposition.

 $^{^{2}}$ I don't know how to make this proof work without the assumption some subset exists, but Y would have to be such a deeply pathological space for it not to hold that I don't feel all that guilty about it.