PARTE A

1. Sia y la soluzione di $y'(x) = \cos(\log(y(x)))$ con y(1) = 1, allora y'(1) vale A: N.A. B: 0 C: N.E. D: 1 E: $\sin(\log(y(x)))$

2. Modulo e argomento del numero complesso $z = (3+3i)^{-2}$ sono A: N.A. B: $(1/3, -\pi/2)$ C: $(1/9, \pi/4)$ D: $(1/(2\sqrt{2}), \pi)$ E: $(1/18, \pi/2)$

3. Dire per quali valori di $\beta \in \mathbb{R}$ la seguente equazione ha due soluzioni distinte

$$e^{-x^4 - x^2} = \beta$$

A: Nessun valore di β B: $\beta \in]0,1[$ C: N.A. D: $\beta \in (0,+\infty)$ E: $\beta \in \mathbb{R}$

4. Il raggio di convergenza della serie di potenze

$$\sum_{n=3}^{+\infty} \left(\log(n)\right)^{\log(n)} (x-1)^n$$

vale

A: e B: 1/e C: N.A. D: $+\infty$ E: 0

5. L'integrale

$$\int_{0}^{3} |1 - x^{2}| \, dx$$

vale

A: 2/3 B: N.A. C: 6 D: 22/3 E: 0

6. Dire quanto vale il seguente limite

$$\lim_{x \to +\infty} x(2^{\frac{x}{x-3}} - 2)$$

A: $-\log(64)$ B: N.E. C: 3e D: 0 E: $6\log(2)$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in \mathbb{R} : \log(x^4) > 0\}$$

valgono

A: $\{-1, -1, +\infty., N.E\}$ B: N.A. C: $\{-\infty, N.E., 1, N.E.\}$ D: $\{-\infty, N.E, +\infty, N.E.\}$ E: $\{-1, N.E, 1., N.E\}$

8. Sia data la funzione $g: \mathbb{R} \to \mathbb{R}$ definita da $g(x) = \begin{cases} b & \text{per } x = 2, \ x = 3 \\ 1 & \text{per } x \neq 2, 3. \end{cases}$

Allora i valori di $b \in \mathbb{R}$ per cui $f(x) = \cos(\pi x/8) + \int_0^x \cos(g(t)) dt$ è continua sono

A: $b \in \mathbb{R}$ B: N.A. C: $b \le 1$ D: b = 1 E: $|b| \le 1$

9. La retta tangente al grafico di $y(x) = \sin(\pi \log(x))$ nel punto $x_0 =$ e vale

A:
$$\frac{\sin(\log(x))}{x}$$
 B: N.A. C: $-\frac{\pi(x-e)}{e}$ D: $1+x$ E: x

10. Data $f(x) = |x|^{|\log(x)|}$. Allora f'(e) è uguale a

A: $3e^3$ B: 2 C: log(2e) D: 1 E: N.A.

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

17 luglio 2018

(Cognome)										(Nome)							(Numero di matricola)														

ABCDE

1	0	\bigcirc	\bigcirc	•	0	
2	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0		\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	•	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	•	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	•	
7	0	\bigcirc	\bigcirc	•	\bigcirc	
8	•	\bigcirc	0	0	0	
9	0	\bigcirc	•	\bigcirc	\bigcirc	
10	0		\bigcirc	\bigcirc	\bigcirc	

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

17 luglio 2018

PARTE B

1. Si consideri la funzione

$$f(t) = \frac{1+t^p}{(1+t)^p}$$
 $p > 1$.

Cercare eventuali massimi e minimi di f(t) per $t \ge 0$ e tracciare grafico qualitativo.

Soluzione. Calcolando la derivata prima si ha

$$f'(t) = \frac{p(t^{p-1} - 1)}{(t+1)^{p+1}}$$

e quindi $f'(t) \ge 0$ per $t \ge 1$, dato che p > 1. Pertanto t = 1 risulta punto di minimo relativo e $f(1) = 1/2^{p-1}$. Dato che f(0) = 1 e $\lim_{t \to +\infty} f(t) = 1$ si ha massimo assoluto uguale a 1 per t = 0 e minimo assoluto in t = 1.

Figura 1: Grafico di f(t) per p=4

2. Studiare, al variare di $\alpha \in \mathbb{R}$ la convergenza dell'integrale

$$\int_0^{+\infty} \frac{2 + \cos(x)}{x^{\alpha}} \, dx$$

Soluzione. Osserviamo che la convergenza va studiata sia vicino a zero, dato che la funzione diverge a $+\infty$ per $x\to 0$, sia per il fatto che il dominio non è limitato . Va studiata –separatamente– la convergenza dei due integrali

$$\int_0^1 \frac{2 + \cos(x)}{x^{\alpha}} dx \qquad e \qquad \int_1^{+\infty} \frac{2 + \cos(x)}{x^{\alpha}} dx$$

Si ha subito che $1 \le 2 + \cos(x) \le 3$, quindi

$$\frac{1}{x^{\alpha}} \le \frac{2 + \cos(x)}{x^{\alpha}} \le \frac{3}{x^{\alpha}}$$

e per il criterio del confronto asintotico è sufficiente studiare la convergenza di

$$\int_0^1 \frac{1}{x^{\alpha}} dx \qquad e \qquad \int_1^{+\infty} \frac{1}{x^{\alpha}} dx.$$

Il primo integral converge per $\alpha < 1$, mentre il secondo per $\alpha > 1$, quindi l'integrale di partenza non converge per nessuna scelta di $\alpha \in \mathbb{R}$.

3. Risolvere il problema di Cauchy

$$\begin{cases} y'(x) = y(x) - x(y(x))^2 \\ y(0) = 1 \end{cases}$$

dividendo per y^2 ed effettuando la sostituzione z(x) = 1/y(x)

Soluzione. Dividendo per y^2 otteniamo

$$\frac{y'(x)}{y^2(x)} = \frac{1}{y(x)} - x$$

e osservando che $z'(x) = -\frac{y'(x)}{y^2(x)}$ si ottiene

$$\begin{cases} z'(x) + z(x) = x \\ z(0) = 1 \end{cases}$$

che è lineare e a coefficienti costanti. Risolvendola si ottiene

$$z(x) = 2e^{-x} + x - 1.$$

e quindi

$$y(x) = \frac{1}{2e^{-x} + x - 1}.$$

4. Dimostrare che se $f: \mathbb{R} \to \mathbb{R}$ é una funzione continua tale che

$$\int_{a}^{b} f(x) \, dx = 0$$

con a < b, allora esiste $z \in (a, b)$ tale che f(z) = 0. La stessa affermazione è ancora vera se f è solo integrabile secondo Riemann?

Soluzione. Usando il teorema della media integrale per funzioni continue si ha che esiste almeno uno $z \in [a,b]$ tale che

$$f(z) = \frac{1}{b-a} \int_{a}^{b} f(x) dx = 0,$$

e quindi la tesi.

Nel caso di funzioni solo integrabili l'affermazione non è necessariamente vera, come si vede per esempio considerando la funzione $f(x):[-1,1]\to\mathbb{R}$

$$f(x) = \begin{cases} -1 & \text{per } x \in [-1, 0] \\ 1 & \text{per } x \in]0, 1]. \end{cases}$$

Si ha $\int_{-1}^{1} f(x) dx = 0$, ma $f(x) \neq 0$.