EXERCISES FOR MA8107 - FALL 2014

FRANZ LUEF - NTNU

(1) Let $C^n(\mathbb{T})$ be the space of n-times continuously differentiable functions on the circle \mathbb{T} . Show that $C^n(\mathbb{T})$ is a Banach algebra with respect to pointwise multiplication for the following norm:

$$||f||_{C^n} := \sum_{j=0}^n \frac{||f^{(j)}||_{\infty}}{j!}.$$

- (2) Let v be a submultiplicative weight function on the integers \mathbb{Z} . Show that there exists a constant $a \geq 0$ such that $v(k) \leq e^{a|k|}$ for all $k \in \mathbb{Z}$.
- (3) Show the following: If f is in $C^1(\mathbb{T})$, then f is in the Wiener algebra \mathcal{W} and

$$||f||_{\mathcal{W}} \le ||f||_{\infty} + \frac{\pi^2}{3} \sum_{k \ne 0} k^2 |\widehat{f}(k)|^2.$$

Hint: Use that $\hat{f}'(k) = 2\pi i k \hat{f}(k)$ and Parseval's Theorem for Fourier series.

(4) Let \mathcal{A} be a Banach algebra and we denote by $\sigma(a)$ the spectrum of an element a in \mathcal{A} . Then we have that

$$\sigma(ab) \cup \{0\} = \sigma(ba) \cup \{0\}.$$

- (5) Let $a=(a_n)_{n\geq 0}$ be a sequence in $\ell^2(\mathbb{N})$. Then we define the shift operator $Sa=(a_{n+1})$ on $\ell^2(\mathbb{N})$. Determine S^* and compute the spectrum of SS^* and S^*S .
- (6) Suppose \mathcal{A} is a unital commutative Banach algebra. Show that the spectral radius $r_{\mathcal{A}}$ is subadditive and submultiplicative.
- (7) Show that \mathcal{A} is semisimple if and only if $r_{\mathcal{A}}$ is a norm on \mathcal{A} .
- (8) Let $\mathcal{A} = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} : a, b \in \mathbb{C} \}$ be the subalgebra of the Banach algebra of 2×2 complex matrices. Show that \mathcal{A} is **not** semisimple.
- (9) Let \mathcal{A} be the Banach algebra of absolutely convergent series on \mathbb{Z} , $\ell^1(\mathbb{Z})$, with $||a||_1 = \sum_{k \in \mathbb{Z}} |a_k|$ as its norm and with convolution as multiplication and with $a^* = (\overline{a_{-k}})$ as involution. Show that \mathcal{A} is not a C^* -algebra.
- (10) Show that a positive linear functional on a C^* -algebra is bounded.
- (11) Show that a bounded linear functional φ on a C^* -algebra \mathcal{A} is positive if and only if $\lim \varphi(u_{\lambda}) = \|\varphi\|$ for some bounded approximate unit $(u_{\lambda})_{{\lambda} \in \Lambda}$ in \mathcal{A} .

In particular, if \mathcal{A} is unital, then a bounded linear functional φ on \mathcal{A} is positive if and only if $\varphi(1) = \|\varphi\|$.