

DK/03/260
Rec'd PCT/PTO 19 OCT 2004
10/511728

Kongeriget Danmark

Patent application No.: PA 2002 00589

Date of filing: 19. april 2002

Applicant:
(Name and address)
Linak A/S
Smedevænget 8, Guderup
6430 Nordborg
Denmark

Title: Konstruktion, især møbel med mindst et med en DC-motor indstilleligt element.

IPC: H 02 M 1/14; H 02 J 1/02; H 02 K 7/06

This is to certify that the attached documents are exact copies of the above mentioned patent application as originally filed.

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Patent- og Varemærkestyrelsen
Økonomi- og Erhvervsministeriet

29. April 2003

John Nielsen

Patent- og
Varemærkestyrelsen

19 APR. 2002

Modtaget

Nærværende opfindelse angår en konstruktion, især møbel med mindst et element, som kan indstilles med en DC-motor og af den i indledningen til krav 1 angivne art.

- 5 Til indstillelige møbler, som senge, stole og borde anvendes teleskopiske løftesøjler og aktuatorer drevet af en reversibel lavvolts DC-motor, typisk 24V.

Under indstillingen af møblet forekommer der mekanisk støj, såsom transmissionsstøj, støj i ophænget af det indstillelige element, støj som følge af vibrationer, der forplanter sig i konstruktionen. Når enkeltstående generende støjkilder er afhjulpet, er det et komplekst støjbillede, der tegner sig, hvor det ikke umiddelbart er muligt at lokalisere én generende støjkilde.

Ved møbler er støjniveauet en væsentlig faktor forstået således, at dette skal være så lavt som muligt. Det vare sig ved senge, herunder hospitals- og plejesenge samt 20 lænestole og borde, herunder skriveborde. I konstruktionen træffer man diverse foranstaltninger til at modvirke støjen, men på trods heraf er det stadig ønskeligt, at nedbringe støjniveauet yderligere.

25 Ved opfindelsen har det ved et tilfælde vist sig, at rippelspændingen fra strømforsyningen har en overraskende negative indflydelse på det samlede støjbillede. Strømforsyningen er basret på en transformator med efterfølgende ensretning og udglatning. Der anvendes en relativ lille udglatningskondensator, hvilket forårsager en tilsvarende høj rippelspænding. For billiggørelse er strømforsyningen i øvrigt dimensioneret med baggrund i, at den kun belastes kortvarigt, når møblet indstilles, f.eks. med en intermitten på 10%.

35

Ved opfindelsen er strømforsyningen udformet således, at den er helt fri eller i det væsentlige helt fri for rippelspænding, hvorved det generelle støjniveau af konstruktionen som helhed overraskende reduceres

5 signifikant.

- Til reducering af rippelspændingen, kan der anvendes en overkapacitet af kondensator, dvs. en overkapacitet udelukkende med det formål, at fjerne rippelspændingen.
- 10 Det er en simpel løsning med en høj virkningsgrad, men prisen er høj samtidig med, at man ikke helt slipper for rippel. Yderligere bliver den fysiske størrelse af kondensatoren et problem.
- 15 En anden mulighed er en lineær regulering, der udmærker sig ved lav pris, rippelfri og simpel konstruktion, men effekttabet er ganske stort.

En yderligere mulighed er switch mode, som er gunstig ved, at den er rippelfri og har en høj virkningsgrad. Imidlertid er konstruktionen kompleks og prisen er høj.

En særlig gunstig udførelsesform for opfindelsen er ejendommelig ved, at udglatningen foretages ved følgende

25 to trin, nemlig et forwardtrin og et effekttrin, hvor forwardtrinnet kan beskrives ved indgangsspændingen V_{in} fra ensretningen og en konstant, der er givet af den aktuelle udformning af kredsløbene for de to trin. Effekttrinnet kan beskrives ved sin udgangsspænding V_{out} og indgangsspændingen V_{in} og dutycyclen, der er den forholdsmaessige tid, som strømforsyningen kan belastes i i et givet tidsrum. Resultatet af de to trin giver $V_{out}=k$, altså at den udgattede spænding er konstant. Denne konstruktion er helt eller som godt som helt fri for

3

rippelspænding og har samtidig en høj virkningsgrad og er tillige simpel og billig.

I det følgende er der under henvisning til medfølgende tegning angivet nærmere eksempler på sidstnævnte udførelsesform. På tegningen viser:

Fig. 1, viser tre forskellige eksempler på effektrinnet,

10 Fig. 2, viser et eksempel på et forwardtrin

Det første eksempel er et Buck kredsløb, der kan udtrykkes ved $V_{out} = V_{in} \cdot \text{dutycycle}$. Det modsvarer 15 forwardtrin skal være Dutycycle = k/V_{in} . Resultatet bliver da $V_{out} = k$.

Det næste eksempel er et Boost kredsløb, der kan udtrykkes ved $V_{out} = V_{in} / \text{dutycycle}$. Det modsvarer 20 forwardtrin skal være Dutycycle = V_{in}/k . Herved bliver resultatet igen, at $V_{out} = k$.

Det tredje eksempel er et FlyBack kredsløb, der ligner det foregående blot med modsat fortegn $V_{out} = -V_{in} / \text{dutycycle}$. Der kan benyttes samme forwardtrin som før, 25 nemlig Dutycycle = V_{in}/k , hvilket giver $V_{out} = -k$.

På fig. 2 er der vist et forwardtrin, som kan benyttes i forbindelse med alle de tre foregående eksempler på effekttrin, blot skal der foretages en dimensionerings- 30 mæssig tilpasning til viste eksempler.

4
Patent- og
Varemærkestyrelsen

19 APR. 2002

Patentkrav:

Modtaget

1. Konstruktion, især møbel med mindst et element, som kan indstilles med en DC-motor, fortrinsvis via en mekanisk udveksling og hvor DC-motoren er forbundet til en strømforsyning omfattende en transformator med en primær side for tilslutning til nedspænding og en sekundær side med ensretning og udglatning før tilslutning til DC motoren, kendtegnet ved, at strømforsyningen er udformet således, at den er helt fri eller i det væsentlige helt fri for rippelspænding.
2. Konstruktion ifølge krav 1, kendtegnet ved, at der er anvendt en overkapacitet af kondensator, til fjernelse rippelspænding.
3. Konstruktion ifølge krav 1, kendtegnet ved, at den omfatter en lineær regulering.
4. Konstruktion ifølge krav 1, kendtegnet ved, at den omfatter en switch mode.
5. Konstruktion ifølge krav 1, kendtegnet ved, at udglatningen foretages ved følgende to trin, nemlig
 - ct forwardtrin hvor duty cyclen kan udtrykkes ved k og V_{in} , og
 - et effekttrin hvor V_{out} kan udtrykkes ved V_{in} og duty cyclen,og hvor resultatet af forwardtrin og effekttrin bliver $V_{out} = k$, og hvor V_{in} er indgangsspændingen fra ensretningen, V_{out} er udgangsspændingen fra effekttrinnet, k en konstant

givet af de aktuelle kredsløb for forwardtrin og effekttrin og hvor dutycyclen er den forholdsmaessige tid, som strømforsyningen kan belastes i et givet tidsrum.

5. 6. Strømforsyning ifølge krav 5, kendte givet ved, at forwardtrinnet er givet ved: $Dutycycle = k/V_{in}$, og effekttrinnet ved: $V_{out} = V_{in} \cdot dutycycle$.

- 10 7. Strømforsyning ifølge krav 5, kendte givet ved, at forwardtrinnet er givet ved: $Dutycycle = V_{in}/k$ effekttrinnet ved: $V_{out} = V_{in} / dutycycle$.

- 15 8. Strømforsyning ifølge krav 5, kendte givet ved, at forwardtrinnet er givet ved: $V_{out} = V_{in} \cdot dutycycle/l-dutycycle$, og effekttrinnet er givet ved: $dutycycle=l/l+V_{in}/k$.

6

Patent- og
Varemærkestyrelsen

19 APR. 2002

Modtaget

SAMMENDRAG

- Især ved møbler med mindst et element, som kan indstilles
5 med en DC-motor, fortrinsvis via en mekanisk udveksling
er det ønskeligt med et så lavt mekanisk støjniveau som
muligt. Strømforsyningen til DC-motøren er baseret på en
transformator med ensretning og udglatning.
- 10 Ved opfindelsen har det overraskende vist sig, det
mekaniske støjniveau kan reduceres markant ved at
strømforsyningen er udformet således, at den er helt fri
eller i det væsentlige helt fri for rippelspænding.

15

4/4

19 APR. 2002

Modtaget

Buck $V_{out} = V_{in} \cdot \text{duty cycle}$

Fig. 1a

Boost $V_{out} = V_{in} \frac{1}{\text{duty cycle}}$

Fig. 1b

Fly Back $V_{out} = -V_{in} \frac{1}{\text{duty cycle}}$

Fig. 1c

Fig. 2