KU &

 $m M.Sc~(INFORMATICS)/1^{st}~Semester~2016$ Paper IT-14- Mathematical Foundation for Computer Science

Time: 3hrs

Attempt five questions in all. Question no.1 is compulsory

Q.1(a) Let A,B, and C be the finite sets with |A|=6, |B|=8, |C|=6, $|A\cup B\cup C|=$ $11, |A \cap B| = 3, |A \cap C| = 2,$, and $|B \cap C| = 5$. Find $|A \cap B \cap C|$.

(b) If n fair coins are tossed and the results recorded, how many (i) record sequences are possible? (ii) sequences contain exactly three tails assuming $n \geq 3$? (iii) sequences contain

(c) A genetics experiment classifies fruit flies according to the following two criteria: (3)

Wing span: Short (s), medium(m), long (l)

(i) How many categories are there in this classification scheme?

(ii) List all the categories in this classification scheme.

(d) Let $A = \{a, b, c, d\}$, and R be the relation on A that has the matrix

(3)

1714

$$M = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array} \right]$$

Construct the digraph of R and list in-degrees and out-degrees of all vertices.

(e) If $G = \{(s, A), (a, b), S, P\}$, where P consists of the productions $\{S \to aAS, S \to a, A \to aAS, S \to aAS, S$ $SbA, A \rightarrow SS, A \rightarrow ba\}$, generate the string aabbaa using (i) a left most derivation, (ii) a right most derivation.

Q.2(a) An airline services the five cities c_1, c_2, c_3, c_4 and c_5 . Table:1 gives the cost(in dollars) of oing from c_i to city c_j . WE now define the following relation R on the set of cities A = $\{c_1, c_2, c_3, c_4, c_5\}$: c_iRc_j if and only if the cost of going from c_i to C_j os less than or equal to 180 dollars. Find R.

Table:1

		.31	To		
From	c_1	c_2	c_3	c_4	c_5
c_1	-	140	100	150	200
c_2	190	-	200	160	220
c_3	110	180	_	190	250
c_4	190	200	120	-	150
c_5	200	100	200	150	_

(b) Find the domain, range, matrix and when A = B, the digraph of the relation R wh $A = \{1, 2, 3, 4, 8\}, B = \{1, 4, 6, 9\}; aRb \text{ if and only if } a|b.$ adindes b

Figure 1: Graphs G1 and G2

- (c) Let $A = \{a, b, c, d, e\}$ and $R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}$. Compute (i) R^2 and
- Q.3(a) If $\{\{a,c,e\},\{b,d,f\}\}\$ is a partition of the set $A=\{a,b,c,d,e,f\}$, determine the corresponding equivalence relation R. (5)
- , (b) Let the matrix of relation R and S be:

$$M_R = \begin{bmatrix}
1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \quad \text{and} \quad M_S = \begin{bmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}$$
(1)

Find the composition $S \circ R$.

- (6)(c) Let $A = \{1, 2, 3, 4\}$, and let $R = \{(1, 2), (2, 3), (3, 4), (2, 1)\}$. Find the transitive closure of
 - ${f Q.4}({f a})$ Define simple graph, regular graph, multigraph , pseudograph. Draw $K_{2,3}$ and $K_{3,3}$ graphs.
 - (b) If all the vertices of an undirected graph are each of odd degree k, show that the number of edges of the graph is a multiple of k.
- (c) Establish the isomorphism of the two graphs given in Fig.1 by considering their adjacence matrix. .
- (d) Describe Dijkstra's shortest path algorithm. Use it to find the shortest path between the vertex A and the vertex Z in graph G (Fig.2).
- Q.5(a) Represent the postfix expression ab + cd * ef/ -a* as a binary tree and write the corresponding in fix and prefix forms.
- (b) Use Prim's algorithm to find a minimum spanning tree for the weighted graph G given Fig3.
- (c) Find an Euler path or an Euler circuit, if it exists in graph G1 of Fig.1. Also find Hamiltonian path or a Hamiltonian circuit, if it exists in this graph G1 (Fig.1).

Figure 4: Transition system

(d) Construct an optimal Huffman code for the message "ENGINEERING AND COMPUTER (4) SCIENCE APPLICATION". $\mathbf{Q.6}(\mathbf{a})$ The state table of a finite state machine M is given in Table:2.

(5)

f,g	a	b		
s_0	s_0, b	s_4, b		
s_1	s_0, a	s_3, b		
s_2	s_0, a	s_2,a		
s_3	s_1, b	s_1, b		
s_4	s_1, b	s_0, a		

(i) Find the input set I, the state set S, the output set O and the initial state of M.

(ii) Draw the state diagram of M.

(iii) Find the output of the word $w = a^2bab^2a$.

(b) Find the DFA equivalent to the NDFA for which the state table is given in Table:3 and s_2 is the accepting state. (3)

Table:3

	δ	
S	I=a	I = b
s_0	s_0, s_1	s_2
s_1	s_0	s_1
s_2	s_1	s_0, s_1
s_4	s_1,b	s_0, a
	s_0 s_1 s_2	$egin{array}{c c} s_0 & s_0, s_1 \\ s_1 & s_0 \\ s_2 & s_1 \\ \hline \end{array}$

(c) Find a DFA that accepts precisely the string generated by the regular grammar G = $\{V_N, V_T, S, P\}$, where $V_N = \{S, A, B\}$, $V_T = \{a, b\}$, $P = \{S \rightarrow bS, S \rightarrow a, S \rightarrow aA, A \rightarrow bB$ $bB, A \rightarrow aS, B \rightarrow bA, B \rightarrow aS, B \rightarrow b$ and S is the starting symbol. (3)

(d) Shoe that the transition system given in Fig.4 recognizes the string $(a_1 + a(b + aa)^*b)^*a(b + aa)^*b$ (4) $aa)^*a.$

