CS:4330 Theory of Computation Spring 2018

Context-Free Languages

Deterministic Context-Free Languages

Haniel Barbosa

Readings for this lecture

Chapter 2 of [Sipser 1996], 3rd edition. Section 2.4.

Deterministic CFLs vs CFLs

- Nondeterministic and deterministic PDAs are not equivalent in expressive power
- Deterministic Pushdown Automata (DPDAs) are strictly less expressive than PDAs
- Context-free languages not recognizable by a DPDA are called *Deterministic Context-Free Languages* (DCFLs)
- An example of application is parsing programming languages, as DCFLs are easier to parse than general CFLs

DPDA

Differently from DFAs, DPDAs may have ϵ -transitions

> At any moment, at most *one* transition is possible

For $\mathbf{a} \in \Sigma$, $\mathbf{b} \in \Gamma$, and $c \in \Gamma_{\epsilon}$

$$\overbrace{q_1} \qquad a, b \to c \qquad \bullet \qquad \boxed{q_2}$$

or

$$\overbrace{q_1} \qquad \overbrace{\epsilon, b \to c} \qquad \overbrace{q_2}$$

or

$$q_1$$
 $a, \epsilon \rightarrow c$ q_2

or

$$q_1 \longrightarrow q_2$$

but only one of them is possible

Allowed transitions

Deterministic choices

Disallowed transitions

Nondeterministic choices

Defintion of DPDA

A DPDA is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, in which Q is its set of states, Σ its input alphabet, Γ its stack alphabet, δ its transition function, q_0 the start state, and $F \subseteq Q$ the set of accept states.

$$\triangleright \ \delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to (Q \times \Gamma_{\epsilon}) \cup \varnothing$$

- ightharpoonup In which δ satisfies the following condition:
 - ▶ For every $q \in Q$, $a \in \Sigma$ and $x \in \Gamma$, *exactly one* of the values

$$\delta(q, \mathbf{a}, x), \quad \delta(q, \mathbf{a}, \epsilon), \quad \delta(q, \epsilon, x), \quad \text{ and } \quad \delta(q, \epsilon, \epsilon)$$

is not \varnothing

DPDA example

Consider the language $\{0^n1^n \mid n \ge 0\}$

DPDA example

Consider the language $\{0^n1^n \mid n \ge 0\}$

Deterministic Context-free Languages

Definition

A language L is $deterministic\ context-free\ (DCFL)$ if there exists a DPDA that accepts it.

Example

The language $\{0^n1^n \mid n \ge 0\}$ is deterministic context-free.

There are, however, CFLs that are *not* DCFLs. For example:

$$A = \{a^i b^j c^k \mid i, j, k \ge 0 \land i \ne j \lor j \ne k\}$$

is a CFL but not a DCFL. How can we show this?

CFL but not DCFL

Theorem

The class of DCFLs is closed under complementation.

ightharpoonup We use the above theorem and the fact that CFLs are *not* closed under complementation, i.e. the complement of a CFL may *not* be a CFL, to show that $A = \{a^i b^j c^k \mid i,j,k \geq 0 \land i \neq j \lor j \neq k\}$ is not a DCFL.

ightharpoonup If A were a DCFL, $ar{A}$ would also be a DCFL, which means that $ar{A}$ would also be a CFL.

CFL but not DCFL

Theorem

The class of DCFLs is closed under complementation.

ightharpoonup We use the above theorem and the fact that CFLs are *not* closed under complementation, i.e. the complement of a CFL may *not* be a CFL, to show that $A = \{a^i b^j c^k \mid i,j,k \geq 0 \land i \neq j \lor j \neq k\}$ is not a DCFL.

ightharpoonup If A were a DCFL, $ar{A}$ would also be a DCFL, which means that $ar{A}$ would also be a CFL.

 $ightarrow ar{A} = \{a^n b^n c^n \mid n \geq 0\}$ is *not* a CFL, therefore A is an example of a CFL that is *not* a DCFL.

DCFL in practice

- ▷ LR(k) grammar: it generates a DCFL, with 'L' meaning "the input is read from Left to right" and 'R(k)' meaning "Right most derivation decided by the first k input symbols"
- Backtracking and guessing is avoided by the parser being allowed to lookahead at k input symbols before deciding how to parse earlier symbols.
- $\,\rhd\,$ Most programming languages are specified by LR(k) grammars, with $k \le 2$
- $ightharpoonup \operatorname{LR}(k)$ parser: an efficient algorithm to *decide*, in linear time, if a word is in $\mathscr{L}(G)$, in which G is an $\operatorname{LR}(k)$ grammar.

Example: an LR(1) grammar

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T \times F \mid F$$

$$F \rightarrow (E) \mid a$$

Rightmost derivation

$$E \Rightarrow E+T$$

$$\Rightarrow E+F$$

$$\Rightarrow E+a$$

$$\Rightarrow T+a$$

$$\Rightarrow T \times F + a$$

$$\Rightarrow T \times a + a$$

$$\Rightarrow F \times a + a$$

$$\Rightarrow a \times a + a$$

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

The actions of an LR(1) parser for the previous derivation

stack input action $a \times a + a$ \$

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	reduce by $F o a$
F	$\times a + a$ \$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
\boldsymbol{F}	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	$reduce$ by $F \rightarrow a$
$T \times F$	+a\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
\boldsymbol{F}	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	<i>reduce</i> by $F \rightarrow a$
$T \times F$	+a\$	<i>reduce</i> by $T \rightarrow T \times F$
T	+a\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	$reduce$ by $F \rightarrow a$
$T \times F$	+a\$	<i>reduce</i> by $T \rightarrow T \times F$
T	+a\$	reduce by $E \rightarrow T$
E	+a\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	<i>reduce</i> by $F \rightarrow a$
$T \times F$	+a\$	$reduce$ by $T \rightarrow T \times F$
T	+a\$	$reduce$ by $E \rightarrow T$
E	+a\$	shift
E+	a\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	$reduce$ by $F \rightarrow a$
$T \times F$	+a\$	$reduce$ by $T \rightarrow T \times F$
T	+a\$	$reduce$ by $E \rightarrow T$
\boldsymbol{E}	+a\$	shift
E+	a\$	shift
E + a	\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce \ by \ F \to a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	$reduce$ by $F \rightarrow a$
$T \times F$	+a\$	$reduce$ by $T \rightarrow T \times F$
T	+a\$	$reduce$ by $E \rightarrow T$
E	+a\$	shift
E+	a\$	shift
E + a	\$	<i>reduce</i> by $F \rightarrow a$
E + F	\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	<i>reduce</i> by $F \rightarrow a$
$T \times F$	+a\$	<i>reduce</i> by $T \rightarrow T \times F$
T	+a\$	$reduce$ by $E \rightarrow T$
E	+a\$	shift
E+	a\$	shift
E + a	\$	$reduce$ by $F \rightarrow a$
E + F	\$	$reduce$ by $T \rightarrow F$
E + T	\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

		.•
stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	$reduce$ by $F \rightarrow a$
$T \times F$	+a\$	$reduce$ by $T \rightarrow T \times F$
T	+a\$	$reduce \ by \ E o T$
E	+a\$	shift
E+	a\$	shift
E + a	\$	$reduce$ by $F \rightarrow a$
E + F	\$	$reduce$ by $T \rightarrow F$
E + T	\$	<i>reduce</i> by $E \rightarrow E + T$
E	\$	

A stack is used to store the derivation steps backward. Two actions on stack:

- 1. shift: move a symbol from input to the stack;
- 2. reduce: replace the rhs of a rule in the top of the stack by its lhs

stack	input	action
	$a \times a + a$ \$	shift
a	$\times a + a$ \$	$reduce$ by $F \rightarrow a$
F	$\times a + a$ \$	$reduce$ by $T \rightarrow F$
T	$\times a + a$ \$	shift
$T \times$	a + a\$	shift
$T \times a$	+a\$	$reduce$ by $F \rightarrow a$
$T \times F$	+a\$	<i>reduce</i> by $T \rightarrow T \times F$
T	+a\$	$reduce ext{ by } E ightarrow T$
E	+a\$	shift
E+	a\$	shift
E + a	\$	$reduce$ by $F \rightarrow a$
E + F	\$	$reduce$ by $T \rightarrow F$
E + T	\$	$reduce$ by $E \rightarrow E + T$
E	\$	accept

A hierachy of languages

