CS 321 HW2 - Lyell Read

Submit a pdf in Canvas. Use a word processor and/or JFLAP. (30 pts)

1) (4 pts) Convert the following NFA into an equivalent DFA

2) (3 pts) Show that the language L = { vwv : v, w $\{a,b\}^*$, |v| = 2} is a regular language.

To prove L is a regular language, we must create an NFA or DFA that accepts L. Here is an acceptor for L:

Based on the assumption that this NFA properly accepts L, L can be concluded to be a regular language.

3) (4 pts) Prove that if L is a regular language then L^R is a regular language.

If Language L is regular, we have an NFA or DFA for language L, which accepts the language. Taking this DFA, and creating DFA^R by

- 1. Convert the DFA into an NFA or modify the NFA such that there is only one terminal state, which can be achieved with the lambda arrows.
- 2. Swapping the initial and final nodes
- 3. Reversing the direction of the arrows

This will create a DFA^R that will accept the reverse of language L, language L^R, proving language L^R is regular.

4) (9 pts) Give regular expressions for the following languages on $\Sigma = \{a, b\}$

a)
$$L_1 = \{ w : n_a(w) \mod 3 = 1 \}.$$

$$R = ((("b")*("a")("b")*("a")("b")*("a")("b")*))*(("b")*("a")("b")*)) + (("b")*("a")("b")*)$$

Explanation: Any number of sets of any string with three a's, with one extra string containing exactly one a added to the end, making sure that each produced string is n*3*'a' + 'a' (excluding 'b's) to create something that is guaranteed to leave 1 when the count of a's is taken modulo 3. Single string included as it too will generate num as % 3 = 1.

b) $L_2 = \{ w : w \text{ ends in aa } \}.$

$$R = ("a" + "b")*"aa"$$

c) L₂ = all strings containing no more than three a's.

$$R = (("b")*("a")("b")*("a")("b")*("a")("b")*) + (("b")*("a")("b")*("a")("b")*) + (("b")*("a")("b")*) + (("b")*("a")("b")*)$$

Explanation: strings with <= 3 * 'a' can either be [b]a[b]a[b]a[b] (where [b] is optional & any quantity), [b]a[b]a[b] or [b]a[b], so these are '+'d together.

- 5) (4 pts) Consider a type of scientific notation for real numbers with the following rules:
- a. A number can be preceded by a "+" or "-" sign or the sign may be absent.

$$R = ("+" + "-" + \lambda)(0+1+2+3+4+5+6+7+8+9)^*$$

b. Numeric values must be of the form $cb_1b_2...b_n$ where b_i is any digit, but c must be nonzero.

$$R = (1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)^*$$

c. The number may be followed by an exponent field of the form $e^n + y_1 + y_2$ or $e^n - y_1 + y_2$, where y_1 can be any digit $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$.

$$R = ("+" + "-" + \lambda)(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)*(("e"("+" + "-")(1+2+3+4+5+6+7+8+9))*) + \lambda)$$

For example the strings -123e+10 and 257 represent real number in this scientific format. Give a regular expression for this scientific notation. Let $= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, "+", "-", e\}$. (Note: With this convention "+" is the sign associated with the scientific number and + the operator of the regular expression.)

- 6) (6 pts) Find a regular grammars for the following languages on = {a, b}:
- a) L₀ is all strings with exactly one a

S	\rightarrow	bS
S	\rightarrow	aA
A	\rightarrow	λ
A	\rightarrow	bA
A	\rightarrow	aA

b) $L_1 = \{ w : n_a(w) \mod 3 = 1 \}.$

S	\rightarrow	bS
S	\rightarrow	aD
D	\rightarrow	C
C	\rightarrow	λ
D	\rightarrow	aA
A	\rightarrow	aB
В	\rightarrow	aD
A	\rightarrow	bA
В	\rightarrow	bB
D	\rightarrow	bD