【添付書類】 10 207

資料 4

母日本副特許庁(JP)

① 特許出願公告

許 公 報(B2)

平1-57073

@Int. Cl. 4

識別記号

庁内整理番号

❷❸公告 平成1年(1989)12月4日

C 04 B 35/16

A-8924-4G

発明の数 1 (全7頁)

会発明の名称 コージエライトセラミックスの製造法

❷特 顧 昭60-98075

6 第 昭61-256365

頤 昭60(1985) 5月10日

@昭61(1986)11月14日

伊伊 明 竹 原 切出 頭 人 日本码子株式会社 岐阜県各務原市緑苑南 3 丁目90番地 爱知県名古屋市瑞穂区須田町2番56号

四代 理 人 弁理士 杉村 暁秀 外1名

多 査 官 **88 F** 万 里

1

砂特許請求の範囲

1 コージエライト形成原料としてaーアルミナ を含有する原料を調合し、成形し、焼成してなる コージエライトセラミックスの製造法において、 版 a ーアルミナの粒度分布が、粒子径3µm以下が 5 17血量%以下で50重量%粒子係が 4~15µmとな るよう調整することを特徴とするコージェライト セラミツクスの製造法。

2 αーアルミナの一次αーアルミナ平均粒子径 第1項記載のコージエライトセラミックスの製造

3 α一アルミナがサンデータイプである特許請 水の範囲第1項または第2項のいずれかに配銭の コージエライトセラミツクスの製造法。

4 コージエライトセラミツクスが七元ミツクハ ニカム樹造体である特許請求の範囲第1項ないし 第3項のいずれかに配載のコージエライトセラミ ツクスの製造法。

発明の詳細な説明

(座盤上の利用分野)

本発明は耐熱衝撃性に優れたコージェライトセ ラミツクスの製造法に関するもので、より群しく は押出成形法に用いられるセラミック傾斜に関す るものである。

(従来の技術)

コージエライトセラミツクスは熱膨温係数が小 さいこと、耐高温性に優れていること、表面特性 が良好なことから、広く原桑界で用いられてお

り、特にそのハニカム構造体は自動車用排ガス降 化用放煤担体、脱臭用触媒担体、排気ガス停化用 フイルター、熱交換用構造体などに用いられてい ಕ್ಕ

これらの用途に用いられるコージェライトセラ ミックスの製造においては、一般にコージェライ ト(2MgO・2Al₂O₂・5SiO₂)生成原料として、 タルク、カオリン、シリカ、アルミナ、水酸化ア ルミニウム等が用いられている。このうち、タル が1~5μmで二次粒子形状である特許額求の範囲 10 ク等のマグネシア原料については特開昭S3一 82822号公報に記載があり、カオリン原料につい ては特開昭50-75811号公根に記載されている。 また、アルミナ原料として一般的には水酸化アル ミニウムが使用されており、その場合は水酸化ア 15 ルミニウムの脱水現象に伴う焼成時の収縮および 吸熱反応によるクラツクが発生しやすいため、α 一アルミナと水酸化アルミニウムとの混合物ある いはα一アルミナのみで使用されている。

> さらに、これらの原料を使用してハニカム構造 20 体を得る方法として、押出成形法により低熱膨張 係数を得ることが特別昭50-75811号公報におい て闘示されている。

(発明が解決しようとする問題点)

しかしながら上述した従来の技術では、低熱膨 25 设化により外径4.66インチ、長さ4インチの形状 のハニカム構造体で700℃~800℃程度の耐熱衝撃 性は得られているが、その特性にはパラッキがあ りさらに高い耐熱衝撃性を備えたコージェライト セラミツクスの製造法は知られていない。

(2)

特公 平 1-57073

本発明の目的は上述した不具合を解消して、従 米品と同等の低熱膨張係敵を有しかつより高い耐 熱衝撃性を逸成できると共に、特性のパラッキが 小さいコージエライトセラミツクスの製造法を提 供しようとするものである。

(問題点を解決するための手段)

本発明のコージェライトセラミックスの製造法 は、コージエライト形成原料としてαーアルミナ を含有する原料を調合し、成形し、焼成してなる コージエライトセラミックスの製造法において、10 のが望ましい。 被α一アルミナの粒度分布が、粒子径3μm以下が 17 血吸%以下で50 血量%粒子径が 4~15 mm とな るよう調整することを特徴とするものである。 (作用)

ぐれかつ安定した製造法を、上述したようにコー ジエライト生成原料のアルミナ成分を規定するこ とによつて達成するものである。以下本発明にお ける限定理由を辟配する。

は、アルミナ原料の全量が水酸化アルミニウムと すると脱水反応を伴い焼成時に問題が生ずるから である。 αーアルミナはソーアルミナ等のアルミ ナ中間体が結晶相として同定されない完全なαー η、 θーアルミナ等の水酸化アルミニウムと αー アルミナとの間に生成するアルミナ中間体は、反 心活性に富み後述するようにコージエライト反応 過程に悪影響を及ぼすので、これらは混入しない ようにする。

αーアルミナの粒度に関しては、粒子径3μm以 下の微粒子が存在すると、マグネシア原料である タルクとの反応が約1300°C以下の比較的低い温度 で進行し、低熱脚張係数を有するコージエライト ので、3m以下の微粒子の量は限定している。特 に粒子径1µm以下の価徴粒子は反応活性が高いた め、タルクおよびカオリン等のその他の原料と反 応が進行してしまい上記の主反応が阻害され、か 撃性にパラツヰを与えるから好ましくない。ま た、3µm以下が17重量%を纏えると耐熱酶摩性が - 劣化するので好ましくない。50瓜趾%粒子堡が4 ~15μmである理由は、まず4μm未満の場合には

ほとんど微粒子であり、原料製造が極めて困難で あると共に耐熱循路性が劣化するので好ましくな い。また、15µmを絶えるとコージエライト生成 反応温度が高くしかも熱膨張係数が大きくなり、 5 結果として耐熱衝撃性が劣化するので好ましくな い。より好ましい範囲は、粒子径3µm以下の微粒 子が12重量%以下で、50重量%粒子径が4~8μm である。例えば、ハニカム構造体の押出成形時に は、スリツトの大きさに応じて租粒をカツトする

次に、αーアルミナの二次粒子形状を規定する 理由は、タルク、カオリン等と低温での反応を抑 制すると共に、触媒担体、フィルタとして有利な ように気孔率を大きくするためである。また、一 本発明は、低熱膨设係数および耐熱衝撃性がす 15 次粒子の粒子径を l ~5µmと規定する理由は、コ ージェライト化の反応性を良好にするためのもの で、lum未満では上述したようにコージェライト 生成のタルクとカオリンとの主反応が阻害される ので好ましくなく、5µmを越えると耐熱衝撃性が まず、アルミナ原料をαーアルミナとする理由 20 劣化するため好ましくない。なお、二次粒子の確 認方法としては、SEM写真(二次電子像写真) にて表示する以外に、二次粒子形状を示す物性値 として二次粒子をこわさない加圧条件での脚定値 である加圧嵩密度(g/cd)および吸油量(xl/ 、アルミナが好ましい。また、X、x、Y、8、 25 100g) で表示することがある。この表示による ときは、本発明は1t/cdの加圧下において加圧菌 密度が2.25 8 / cd以下、吸油量は18.5 以/100 8 以上が好ましい。

aーアルミナがサンデータイプである理由は以 30 下のようである。 αーアルミナは一般的にパイヤ 一法によつて製造されているが、大きなα--アル ミナー次粒子を得るために弗素を含有する鉱化剤 を混入して、比較的低温でロータリー式焼成炉で 焼成して得られた塊状物を粉砕した、いわゆるフ 生成のタルクとカオリンとの主反応が阻害される 35 ラワリータイプが一般的に使用されている。とこ ろがこのフラワリータイプのα一アルミナは偏平 な結晶構造であり、粉砕等の操作によりかなりの 微粒子あるいは結晶破片が混在しやすい。このよ うなフラワリータイプのローアルミナはコージェ つコージエライト結晶の配向性を劣化させ耐熱衡 40 ライト生成反応に怒影響をおよばす。一方、鉱化 利を使用しないで比較的高い温度で焼成するバイ ヤー法によつて得られたαーアルミナ、即ちサン データイプのものは結晶軸C軸方向に結晶が発達 した粒状であるため、粉砕時に結晶破片が発生し

にくいと共にタルク袋との低温での反応性も小さ く、コージエライトセラミツクスの製造原料とし て特に好適である。

また、原料アルミナ中のNa量については、パ イヤー法によつて得られたアルミナはNaOH溶 5 ヘキサメタリン酸ソーダを使用したC.I.L.A.S.レ 解工程を含むために、可溶性NatO(W-NatO) と不溶性NagOを合わせたトータルNagO(Tー Na₂O) として約0.6wt%までNa₄Oを含有してい る。このNasO成分は、高温でのコージェライト 化反応を阻害するため、安定的に高い耐熱衝撃性 10 の他 Cにおけるαーアルミナ単味でプレート押出 ・を抑るためにはT-NasOが0.3%未満に抑えられ た中ソーダまたはローソーダグレードのものがよ り好ましい。ただし、αーアルミナの粒度等のコ ージエライト反応への寄与が極めて大きいため丁 —Na₄Oが0.4%程度の並ソーダグレードのパイヤ 15 びbに示す。さらに、Mc とMc Pについての粒度 一法アルミナでも良好な特性を得ることができ*

* 5.

(英雄例)

第1表に示す試料MA~Sのα一アルミナ原料 を調整した。表中の粒度測定には、分散剤として ーザ粒度分析計を用いた。また吸油型の測定は、 JIS K5421およびK5101に基いて行なった。さら に、一次粒子径については、SEM写真より測定 した。なお、上述した試料のうち本発明の範囲内 した場合と粉体のままの場合の粒子構造をSEM 写真により第1図aおよびbに示し、範囲外のAL Pにおけるプレート押出し時および粉体のままの 場合の粒子樹造をSEM写真により第2図aおよ 分布曲線を第3図に示す。

6

1

簱 麦 T-Na.O量 粒 度 吸油量 卵紧鉱化剂 平均一次 粒子径 (μm) Nh S(サンディー) F(フラワリー) 粒 = 次 子 (wt%) 3 µ叫以下(时%) 50%粒径(µm) (ml/100g)S 0.26 10.5 8.3 0.8 21.1 В # 0.26 11.1 6.4 1.0 20.5 C " 0,24 10.8 6.7 2.0 21,8 D 0,23 10.8 8.5 5.0 21.6 Ε 10.5 0.24 8,8 6,0 21.9 F 0,28 12.0 7, 1 2, 2 20.8 G 0, 23 u 15.0 5.7 2.4 19.3 H 11 0,25 17.0 4,0 2,4 19,0 ı " 0,26 18,5 2.2 3,7 18.3 K 11 0,22 10,7 2,6 8,0 21,9 L .11 0,22 10.0 15.0 2.6 20,5 H # 0,23 8,5 17.0 2,4 24.0 N F 0.26 10.0 2.4 22,0 6,5 Ø 11 0_25 16.8 2, 2 6,5 19.5 P " 0,25 21.4 4,5 2, 2 18.1 Q S 0,45 11.5 6,0 2, 2 21.5 R F 0.37 27. D 3.8 2,0 18.0 S " 0.19 32.7 3,5 2,6 17.8

· 第1数に示す各種のαーアルミナ原料に対し、 第2岁に示すタルク、カオリン等のコージエライ 上組成が少しずつ異なる組み合わせ【~目の寮地

製造条件から1つの条件を選び、調合したコージ エライトを外径4.68インチ、長さ4インチ、セル 密度6mil/400CPI®のハニカム構造体を押し出し

(4)

特公 平 1-57073

成形し、第2次に示す焼成条件で焼成した。な *た。また、第2表に示す使用原料の化学的組成お お、各α-アルミナは調合的105μmで節処理を行 つたが、粒度は第1後に示すものと同じであつ* 2 .

よび粒度を第3表に示す。

费

		M 1	全 割 台	rt%)		
タルク	仮焼タルク	カオリン	仮焼カ オリン	アルミナ	水酸化アル ミニウム	シリカ

焼成条件 1410℃×4H 1 40.2 25, 2 21, 1 13, 5 1395°C×4H П 19.0 19,0 21.4 20,0 4.5 16. 1 11.5 17.8 10.0 1410°C×6H H 39, 2 21,8

> 3 表 箖

	ig • 1088	SIO ₂	AlsOs	MgO	Fe ₂ O ₂	TiO₂	CaO	Na ₃ O	K ₂ O .
タルク	5,2	61.9	0,7	31,8	0,6	-	0, 1	-	-
仮焼タルク	-	66, 1	0.2	33,6	0, 1	-	0, 1	-	-
カオリン	13,8	45, 5	38,9	-	0.3	1.2	0,2	0, 1	-
仮焼カオリン	_	52, 4	44, 9	-	0,5	1.8	_	0, 1	0.1
水酸化アルミニウム	33,7	-	64,8	-	-	 -	-	0,4	-
シリカ	0, 1	99,7	-	_	0, 1	-	-	-	-
アルミナA~S(平均値)	_		99.3	_			_	0, 3	_

評価結果を第4表に示す。第4表において、40 ℃から800℃までの熱脚裂係数 (CTE) の値はハ 25 は極めて良好を、Oは良好を、×は不良をそれぞ ニカム押山方向50㎡での値を示し、電気炉スポー リング強度としては、各温度(700℃より25℃ず つステップアップ) で電気炉中に20分保持した後 室温に取出した時、クラツクが発生し打音がダク

音となつた温度を示している。また、評価欄の♡ れ表わしている。さらに第4図において、第4設 に示す気孔率と第1妻に示す吸油量の関係を示

宏

Na	索地和成 装造条件	使用ア ルミナ	CTE (×10 ⁻¹ /°C, 40~800°C)	質気炉スポーリング 強度 (n=2-5平均値X*C)	5 八孔 率 (%)	降価	偽考
1	I	A	0,72	770	34.7	×	
2	<i>II</i>	В	0.60	850	34, 3	0	
3	#	С	0, 50	910	35.0	₽	
4	"	D	0,63	840	34.9	0	
5	"	E	0,80	780	35,0	×	
В	"	F	0, 57	860	34,4	●	
7	"	C	0, 68	810	33, 1	0	
8	"	н	0, 68	800	32,4	0	
9	"	1	0,81	750	31.2	×	
10	<i>"</i>	l ĸ	0, 62	870	35, 0	0	

(5)

特公 平 1-57073

10

Na	聚地組成 装造条件	使用アルミナ	СТЕ	電気炉スポーリング	気孔	評価	/2-
	2,2,1	. ,	(×10⁻⁴∕℃, 40~800℃)	強度 (n=2−5平均値X℃)	率 (%)	1944	備考
11	"	L	0, 68	820	34, 2	0	
12	"	п	0, 75	780	35, 5	×	ł
13	• #	И	0, 58	840	35, 2	lo	
14	"	0	0.70	810	33, 4	0	
15	"	P	0.84	750	30,9	×	
16	#	Q	0,62	880(830~900)	34.8	lo	パラツキ大
17	"	R	0.92	730	30.7	x	
18	"	S	0.95	700	30,4	×	
19	п	C	0.63	880	_	0	
20	"	F	0.63	870	_	0	
21	11	1	0.83	770	_	×	
22	₫ .	C	0,48	920		6	
23	n	F	0.54	890	_	9	
24	n	t j	0,79	750	-	×	

以上の説明より明らかなように、本発明の範囲 内の粒度を有するαーアルミナを原料として用い 20 法における原料として用いれば、安定した耐熱面 たコージエライトセラミツクスはすべて極めて良 好か良好の評価であるのに対し、本発明の範囲外 の粒度を有するα―アルミナが原料の場合は耐熱 筋撃性において不良な結果となった。

(発明の効果)

以上詳細に説明したところから明らかなよう に、本発明のコージェライトの製造法によれば、 原料となるαーアルミナの粒度分布を特定するこ とにより従来品と同等の低熱彫识係数を有しかつ <u>パラツ中が小さいコージエライトを製造すること</u> ができる。そのため、本発明の粒度を特定した a

となる従来のセラミツクスハニカム構造体の製造 撃性に優れたセラミツクハニカム構造体を得るこ とができる。

図面の簡単な説明

第1図a, bは、本発明のα一アルミナ原料の 25 プレート押出体および粉体の粒子構造を示す SEM写真(二次電子像写真)、第2図 a, bは、 参考例のα―アルミナ原料のブレート押出体およ び粉体の粒子構造を示すSEM写真(二次電子像 写真)、第3図は本発明および参考例のaーアル <u>より高い耐熱衝撃性を進成できると共に、特性の</u> 30 ミナ原料の粒度分布を示すグラフ、第4図は本発 明のαーアルミナ原料の吸油量と気孔率の関係を 示すグラフである。

資料4 別紙

87

資料4 特公平1-57073号公報での図2(b)の粉体粒子の円形度

(1) 円形度の測定方法

測定装置:画像解析装置 Media Cybernetics 社製 Image-Pro Plus ver. 3.0

- 1)画像解析装置で、図2(b)中下記の粒子A、Bの面積S1、周囲長さLを測定する。
- 2)周囲畏さしと等しい長さを有する円の面積S2を算出する。(S2=L $^{2}/4\pi$)
- 3)円形度はS1/S2で算出する。

(2) 円形度の測定値

粒子	面積 S1(μπ²)	周囲長さ L(μm)	周囲長さLの円の 面積 S 2 (= L²/4 π) (μ m²)	円形度 (S1/S2)	
Α	8. 4	11. 97	11. 4	0. 74	
В	3. 34	7. 45	4. 42	0. 76	

以上