Table S1: MYB-core binding motifs present in the promoter regions of *HcBSMTs* and *HcTPSs*.

Promoter of BSMTs	MYB-Core motif (C/T)NGTT(A/G) Start position & Strand			
<i>Pro-HcBSMT2</i> (1131 bp)	-191(+), -230(-), -294(-), -300(+), -326(+), -557(+), -622(-), -809(+) -879(-), -878(+), -906(+), -968(-), -1028(+)			
Pro-evm.model.scaf_102.154	-8(+), -451(+), -810(+), -897(-), -1828(-)			
Pro-evm.model.scaf_368.25	-488(+)			
Pro-evm.model.scaf_368.54	-50(-), -601(-), -1263(-), -1430(+)			
Pro-evm.model.scaf_397.41	-807(+), -900(-), -1474(₊)			
Pro-evm.model.scaf_397.42	-314(-), -489(-), -545(-), -573(-), -1742(-), -1835(-)			
Pro-evm.model.scaf_462.93	-400(-), -424(+), -1089(+), -1457(+), -1577(-), -1745(+)			
Pro-evm.model.scaf_68.67	-1643(+), -1875(+), -1995(-)			
Pro-evm.model.scaf_68.69	-861(-)			
Pro-evm.model.scaf_72.107	-96(-), -312(+), -1965(-)			
Promoter of TPSs				
<i>Pro-HcTPS5</i> (1555 bp)	-366(+), -1178(+), -1169(+), -1208(+), -1310(+)			
Pro-evm.model.scaf_1065.6	-756(+), -832(+), -1440(+)			
Pro-evm.model.scaf_116.98	-1423(-), -1520(+), -1571(-), -1800(+)			
Pro-evm.model.scaf_1294.1	-1190(-), -1246(+), -1335(-)			
Pro-evm.model.scaf_158.171	-63(+), -309(+), -562(+), -602(-)			
Pro-evm.model.scaf_162.50	-10(-), -144(-), -223(-), -489(-)			
Pro-evm.model.scaf_174.2	-139(-), -461(+), -1052(+), -1061(+), -1091(+), -1193(+)			
Pro-evm.model.scaf_182.35	-950(+), -1010(-), -1423(-), -1767(+)			
Pro-evm.model.scaf_192.73	-474(+), -1286(+), -1495(-), -1911(+)			
Pro-evm.model.scaf_192.74	-58(-), -949(-), -1487(+)			
Pro-evm.model.scaf_206.89	-290(-), -508(+), -1048(+), -1160(+), -1245(+), -1780(+)			

Pro-evm.model.scaf_206.91	-2(-), -1927(+)	
Pro-evm.model.scaf_206.94	-404(+), -609(+), -835(+), -218(+), -1027(-), -1211(-), -1559(+),	
Pro-evm.model.scaf_206.95	-349(-), -106(+), -1989(-)	
Pro-evm.model.scaf_209.2	-678(-), -1341(-), -1802(+)	
Pro-evm.model.scaf_257.59	-983(-), -1598(-)	
Pro-evm.model.scaf_257.61	-560(+), -915(+), -1452(-),	
Pro-evm.model.scaf_285.47	-1476(-), -1764(+)	
Pro-evm.model.scaf_291.36	-68(-), -72(-), -149(-), -661(+), -1318(+), -1837(-)	
Pro-evm.model.scaf_291.37	-812(+), -716(+), -1771(+)	
Pro-evm.model.scaf_291.39.1	-368(+), -1171(+), -1180(+), -1210(+), -1312(+)	
Pro-evm.model.scaf_291.43	-158(+), -190(+), -289(+), -622(+), -1216(+), -1863(+)	
Pro-evm.model.scaf_324.6	-43(-), -296(+), -326(+), -485(+), -518(+), -822(+), -847(-)	
Pro-evm.model.scaf_345.47	-59(+), -444(-), -1044(-), -1890(+)	
Pro-evm.model.scaf_430.18	-324(-), -375(-), -669(+), -1426(+), -1493(-), -1636(-), -1788(-)	
Pro-evm.model.scaf_430.22	-1106(+), -1773(+)	
Pro-evm.model.scaf_457.3	-29(-), -235(-), -449(-), -535(+), -844(+), -1154(+), -1500(-), -	
Pro-evm.model.scaf_48.3	-841(+), -1164(-)	
Pro-evm.model.scaf_509.28	-548(+), -756(-), -1810(-)	
Pro-evm.model.scaf_544.1	-301(-), -809(-), -1239(-), -1569(+)	
Pro-evm.model.scaf_544.13	-445(+), -1570(-), -1653(+), -1689(-), -1718(-), -1793(-)	
Pro-evm.model.scaf_544.15	-225(-), -423(-), -536(+), -1137(+), -1485(+), -1515(+), -1522(+), -	
Pro-evm.model.scaf_544.17	-239(+), -976(-), -1615(+), -1646(-)	
Pro-evm.model.scaf_544.4	-366(+),	
Pro-evm.model.scaf_568.16	-99(+), -709(+)	
Pro-evm.model.scaf_568.17	-273(-), -658(-), -754(+), -956(+), -977(+)	
Pro-evm.model.scaf_568.19	-45(-), -365(-), -437(-), -450(+), -644(-), -692(-), -963(+)	
Pro-evm.model.scaf_568.23	-277(-), -820(+), -1958(+),	
Pro-evm.model.scaf_625.34	-66(-), -225(+), -496(+), -819(-), -1128(+), -1321(+), -1368(-), -	
Pro-evm.model.scaf_625.36	-13(-), -707(+), -1823(-)	
Pro-evm.model.scaf_625.40	-949(-), -1027(-), -1277(+), -1372(-), -1469(-), -1473(-)	
Pro-evm.model.scaf_625.43	-68(+), -644(-), -1648(-), -1820(-)	

Pro-evm.model.scaf_625.47	-187(-), -222(-), -392(-), -783(+), -845(-), -896(+), -1779(+)		
Pro-evm.model.scaf_636.15	-578(+), -762(-), -778(+), -782(+), -1060(-), -1540(+)		
Pro-evm.model.scaf_64.7	-119(+), -212(-), -243(+), -1492(+), -1515(+)		
Pro-evm.model.scaf_64.8	-64(-), -104(-), -295(+), -804(+), -1545(+), -1900(+)		
Pro-evm.model.scaf_666.24	-3(+), -177(-), -295(-), -429(-), -624(-), -895(-), -1536(+)		
Pro- evm.model.scaf_71.94_evm.mo del.scaf_71.95	-771(+), -938(+), -1456(-), -1788(+), -1794(+)		
Pro-evm.model.scaf_74.108	-270(+), -340(-), -780(-), -1284(-)		
Pro-evm.model.scaf_79.34.5	-852(-), -886(-), -1091(-), -1362(+)		
Pro-evm.model.scaf_79.35	-214(-), -1383(-),1581(+), 1880(-)		
Pro-evm.model.scaf_802.2	-51(+), -1952(+)		
Pro-evm.model.scaf_893.1	-161(+), -209(+), -893(+), -1157(+), -1449(+), -1687(-), -1638(+)		
Pro-evm.model.scaf_893.20	-814(+), -181(-), -1019(-), -1948(+),		
Pro-evm.model.scaf_893.21	-346(+), -689(-)		
Pro-evm.model.scaf_9.60	-192(+), -614(-), -806(+), -991(-), -1028(-), -1478(+), -1525(-), -		
Pro-evm.model.scaf_9.62	-1184(-), -1379(-), -1935(+), -1945(+)		
Pro-evm.model.scaf_923.3	-277(-), -311(-), -524(-), -632(+), -805(-), -840(-), -889(+), -1810(-)		
Pro-evm.model.scaf_96.105	-51(+), -668(+), -767(+), -1965(+)		
Pro-evm.model.scaf_96.107	-12(+), -264(-), -270(+)		

 Table S2: Primers used in the experiments

Cloning primers		Upstream / downstream primers (5'-3')				
HcMYB1	F	TGTCTCCTTGCTGCGGCAAC				
	R	CAAGCCCATGCAATGGCAAAATCG				
HcMYB2	F	CTGTCTCACAATCCCTCTAT				
	R	ATTCTCCATCTTAGTCACTTGC				
HcBSMT2	F	GCCTAGGATGCTCATTGAGTGAC				
	R	CTTGCTCCACCTTCAAACCCAT				
qRT-PCR primers						
HcMYB1	F	GTCAGTAGCAGCACCAGC				
	R	GCAGAGACGAAGCCCAAGAT				
HcMYB2	F	GAGGCAGATGCGGTGTGAC				

	R	CTCATCCATCCAGCCGCAA			
HcBSMT2	F	AGGAGAAAGCCAATCACACC			
	R	GGCATGATTCAGTTTGACAAG			
HcTPS5	F	ATTACTTGCGGTGTTCCTGCTG			
	R	AACGAGCCATCCCTCCCATT			
BSMV					
HcMYB1 F		AAGGAAGTTTAAACCGACAACGACATCAAGA			
	R	AACCACCACCGTCAGTCCCATCCAACCCAT			
HcMYB2	F	AAGGAAGTTTAACCCGAGTGCA GAAGCACGC			
	R	AACCACCACCGTCTCATCCAT CCAGCCGCAA			
GAPDH	l l				
-	F	GGTATTGTCGAGGGTTTGATG			
	R	GCTGTTGGCAAAGTTCTCCCT			
GFP primers	1				
HcMYB1	F	CAAATTCGCGACCGGT ATGGGGAGGGCTCCTTG			
	R	TGCTAGTCATACCGGT GAGCTGCTGTTGTAACC			
HcMYB2	F	CAAATTCGCGACCGGT ATGGAGTTCCACGGGAGG			
	R	TGCTAGTCATACCGGT GTTCAAAAGATTCATCG			
Protein-GST					
HcMYB1	F	GAATTCCCGGGTCGAC ATGGGGAGGGCTCCTTG			
	R	GGCCGCTCGAGTCGAC GAGCTGCTGTTGTAACC			
HcMYB2	F	GAATTCCCGGGTCGAC ATGGAGTTCCACGGGAGG			
R GGCCGCTCGAGTCGAC GTTC		GGCCGCTCGAGTCGAC GTTCAAAAGATTCATCG			
pBD					
HcMYB1	F	TCGCCGACCGGTAGGCCT ATGGGGAGGGCTCCTTG			
	R	AACCAGAGTTAAAGGCCT CAGTCGGCAATGGTACA			
HcMYB2	F	TCGCCGACCGGTAGGCCT ATGGAGTTCCACGGGAGG			
	R	AACCAGAGTTAAAGGCCT TTAGAGCTGCTGTTGTAACC			
pGADT7 (AD)				
HcMYB1	F	TCGCCGACCGGTAGGCCT ATGGGGAGGGCTCCTTG			
	R	AACCAGAGTTAAAGGCCT CAGTCGGCAATGGTACA			
HcMYB2	F	TCGCCGACCGGTAGGCCT ATGGAGTTCCACGGGAGG			
	R	AACCAGAGTTAAAGGCCT TTAGAGCTGCTGTTGTAACC			
62SK for dual-I	Luciferase				
HcMYB1	F	TGCAGGAATT CGATATC AAGCTT			
		ATGGGGAGGCTCCTTG			
	R	ATTTCAGCGTACCGAATT GGTACC			
HcMYB2	F	TGCAGGAATT CGATATC AAGCTT			
TICIVI I BZ	Г	TUCAUUAATI CUATATC AAUCTI			

		_
		ATGGAGTTCCACGGGAGG
	R	ATTTCAGCGTACCGAATT GGTACC
		TTAGAGCTGCTGTTGTAACC
0800 for dual-Luc	iferase	
HcBSMT2	F	GGTCGAC GGTATCGAT AAGCTT
		GATGCTCATTGAGTGACAAAT
	R	CCGCTCTAGAACTAGT GGATCC
		CTTTCTCCCTCTCTCA
Primers for pAbA	i	
HcBSMT2	F	CCAAGCTT TCAAAGGTTTCACACACAAATC
	R	GGGGTACC CCGGCAAAAAAAAAAAGTTTACAC
Primers for probe	!	•
proHcBSMT2	F	CAAGCGACCACCAACGGTTGAGATCAATTTTTTCTTGATC
		TAACGGTTC
	R	GAACCGTTAGATCAAGAAAAAATTGATCTCAACCGTTGG
		TGGTCGCTTG
ProHcTPS5	F	TTCAACCAGATCAACCAATATATAACTCCTTAGCCCCTAC
		CTAACCAGAC
	R	GTCTGGTTAGGTAGGGGCTAAGGAGTTATATATTGGTTG
		ATCTGGTTGAA

 Table S3: Genes used in phylogenetic tree and their accession numbers.

No.	Gene name	Plant Name	Accession number	
1	FaEOBII	Fragaria x ananassa	KM099230	
2	AmMYB305	Antirrhinum majus	P81391	
3	AmMYB340	Antirrhinum majus	P81396	
4	PsMYB26	Pisum sativum	Y11105	
5	PhEOBII	Petunia hybrida	EU360893	
6	NIMYB305	Nicotiana langsdorffii	EU111679	
7	FaMYB1	Fragaria x ananassa	AF401220	
8	FaMYB10	Fragaria x ananassa	EU155162	
9	AtMYB11	Arabidopsis thaliana	AT3G62610	
10	AtMYB12	Arabidopsis thaliana	AT2G47460	
11	AtMYB123	Arabidopsis thaliana	AT5G35550	
12	AtMYB111	Arabidopsis thaliana	AT5G49330	

13	AtMYB113	Arabidopsis thaliana	AT1G66370	
14	AtMYB114	Arabidopsis thaliana	AT1G66380	
15	AtMYB21	Arabidopsis thaliana	AT3G27810	
16	AtMYB24	Arabidopsis thaliana	AT5G40350	
17	AtMYB2	Arabidopsis thaliana	AT2G47190	
18	AtMYB108	Arabidopsis thaliana	AT3G06490	
19	AtMYB78	Arabidopsis thaliana	AT5G49620	
20	AtMYB122	Arabidopsis thaliana	AT1G74080	
21	AtMYB51	Arabidopsis thaliana	AT1G18570	
22	AtMYB34	Arabidopsis thaliana	AT5G60890	
23	AtMYB29	Arabidopsis thaliana	AT5G07690	
24	AtMYB76	Arabidopsis thaliana	AT5G07700	
25	AtMYB28	Arabidopsis thaliana	AT5G61420	
26	AtMYB38	Arabidopsis thaliana	AT2G36890	
27	AtMYB37	Arabidopsis thaliana	AT5G23000	
28	AtMYB77	AtMYB77 Arabidopsis thaliana AT3		
29	AtMYB44	Arabidopsis thaliana	AT5G67300	

Table S4: The determination of mass spectrometry for measure endogenous hormones in the petals of H. coronarium

Compound name	ESI mode	Parent(m/z)	Daughter	Dwell(s)	Cone(V)	Collision
IAA	ESI+	175.900	102.967	0.029	24	28
JA	ESI-	209.000	59.000	0.082	26	12
ABA	ESI-	263.000	153.000	0.029	25	9

Figure S1: Phylogenetic analysis of six HcMYB proteins with *Arabidopsis* MYB protein family.

Figure S2: Correlation between the expression of HcMYB1 and HcMYB2 with the emission of volatile contents.

Figure S3: A comparative analysis of transcript abundance of six *HcMYB* genes during flower development using RNA-seq data.

Figure S4: The protein expression level of HcMYB1 and HcIAA4 in different tissues.

Figure S5: The expression levels of key structural genes (*HcTPS5* and *HcBSMT2*) in different tissues.

Figure S6: Heatmap showing expression profiles (log₂TPM) of *HcBSMT* genes in different tissues.

Figure S7: Heatmap showing expression profiles (log₂TPM) of *HcTPS* genes in different tissues.