

Characteristic table of FFs

$$Q_{n+1} = J\overline{Q}_n + \overline{K}Q_n$$

$$\begin{array}{c|c} D_n & Q_{n+1} \\ \hline 0 & 0 \\ 1 & 1 \\ \end{array}$$

$$Q_{n+1} = D$$

$$Q_{n+1} = T \oplus Q_n$$

ESc201, Lecture 37: Digital counters and counting-ADC

Convert a D FF to JK FF

J	K	Q	Q(t+1)	D
0	X	0	0	0
1	X	0	1	1
X	1	1	0	0
X	0	1	1	1

Q	J	K	D	Q_{n+1}
0	0	0	0	0
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

ESc201, Lecture 37: Digital counters and counting-ADC

Sampling and Quantization-How to represent real-valued (X&Y) signals as bits?

Quantization and Encoding

ANOTHER DESIGNATION OF TECHNOLOGY

ESc201, Lecture 37: Digital counters and counting-ADC

ESc201, Lecture 36: Digital counters and counting-ADC $\mathbf{V_{IN}}$ **Voltage-to-Time** Time-to-Number Sampling and Holding (S/H) Converter Converter V_{IN} Quantizing and ΕN **Encoding (Q/E)** dEN В clk -001clk Accuracy of A/D $V_0 = V(\infty) + (V(0) - V(\infty)) \times e^{-\frac{c}{RC}}$ R **Conversion** is What if V_{IN} and V_{S} are close? obtained by: (1)Decreasing the Non uniform accuracy Quantization error or use more bits 1 to represent the amplitude of the (2) increasing the sampling rate. analog signal. **Sampling rate=2Hz Sampling rate=1Hz** \rightarrow Resolution =2.5V \rightarrow Resolution =1.25V Signal Value Signal Value Time Time

ESc201, Lecture 37: Digital counters and counting-ADC

Digital word corresponding to 1.2V is 0010

Worst case conversion time is 8 clock periods

Count Enable

O
U
N
T
E
R

AnalogInput

Up-Down counting is faster

ESc201, Lecture 37: Digital counters and Dual Slope ADC

Integrates an unknown input voltage (V_{IN}) for a fixed time (T_{INT}) , and then "de-integrates" (T_{DEINT}) using a reference voltage (V_{REF}) for a variable time.

Fundamental components:

At t<0, S1 is set to ground, S2 is closed, and counter=0.

1)Integrator

1)At t=0 a conversion begins and

2)Electronic

S2 is open, and S_1 is set so the input to the integrator is V_{IN} .

Switches

2) S_1 is held for T_{INT} which is a

3)Counter 4)Clock

constant predetermined time

5)Control Logic

interval.

6)Comparator

3) When S_1 is set the counter begins to count clock pulses, the

counter resets to zero after T_{INT} .

4) Vout of integrator at $t=T_{INT}$ is $(V_{IN}T_{INT}/RC) \alpha V_{IN}$ 5) At $t=T_{INT} S_1$ is set so $-V_{REF}$ is the input to the integrator which has the voltage $V_{IN}T_{INT}/RC$ stored

in it.

6) The integrator voltage then drops linearly with a slop $-V_{\rm RFE}/RC$.

7)A comparator is used to determine when the output voltage of the integrator crosses zero

8) When it is zero the digitized output value is the state of the counter

Type	Speed (relative)
Dual Slope	Slow
Flash	Very Fast
Successive	Medium – Fast
Appoximation	
Type	Cost (relative)
Dual Slope	Med
Flash	High
Successive	Low
Appoximation	

