MC448: Projeto e Análise de Algoritmos I

Prof. Cid C. de Souza – 1^a Prova – (14/04/2009)

Nome:	
RA:	Turma:

Observação: o peso das questões será decidido pelo docente da seguinte forma: as duas questões que você responder melhor terão peso 3 e as demais terão peso 2. Portanto, uma mesma questão pode ter peso 2 para um aluno e peso 3 para um outro aluno.

Questão	frac	Peso	Nota
1			
2			
3			
4			
Total		10,0	

Instruções:

- 1. A duração da prova é de 110 minutos.
- 2. Não é permitido usar qualquer material de consulta durante a prova.
- 3. Questões mal justificadas serão consideradas erradas!
- 4. O termo **ordenado** é usado nos enunciados das questões para denotar vetores ou seqüências em **ordenação não decrescente**.
- 5. As provas podem ser feitas a lapis porém, neste caso, ficará a critério do docente aceitar ou não eventuais pedidos de revisão de nota.
- 6. Use o espaço reservado para responder cada questão.
- 7. Use as folhas de papel almaço entregues pelo docente como rascunho.
- 8. Não serão consideradas respostas dadas fora dos espaços indicados.
- 9. Coloque o seu nome, RA e turma em todas as folhas da prova.
- 10. O uso de calculadoras está proibido durante a prova.
- 11. Não desgrampeie o caderno de questões.

MC448: Projeto e Análise de Algoritmos I – Prof. Cid – 1^a Prova – (14/04/2009)

Nome:				Questao	frac	Peso	Nota
RA:	Turma:			1			
1. Considere o problema da in com valores quaisquer) para elementos de A e de B . Zé e Mané são dois alunos de ritmo baseado em comparaçõe em tempo $O(n^k)$ para algum e Mané está com a razão ou não	obter um novo vetor ord MC448 muito aplicados. es entre elementos dos ve $0 < k < 1$. Mané disse qu	enado C Zé disse a tores que : ue isto era	de a M res a in	e tamanho Iané que el solve o prol npossível.	2n cor le enco	ntendo t ontrou u	todos os ım algo-
				1			
		<u> </u>			_		

MC448: Projeto e Análise de Algoritmos I – Prof. Cid – 1^a Prova – (14/04/2009)

Nome:			Questão	frac	Peso	Nota		
RA:	T	Turma:			2			
2. Seja $A[1 \dots n]$ um vetor co dito ser uma inversão . Respo				$i < j$ ϵ	e A[i] > A[i]	$[j] \; \mathrm{ent} \hat{\imath}$	io o pa	$\mathrm{r}\;(i,j)$ é
(a) Encontre uma fórmula f A. Explique cuidadosam do vetor A para o qual e	ente con	no você chegoi	u a essa f			_	_	
(b) Qual a relação entre a (INSERTION SORT) e o nú a sua resposta.	-		_	_		_	-	_
(c) Usando indução mater vetor A e cuja complexio código do algoritmo mas [Dica: pense no algoritm	dade de s deve ex	pior caso sej xplicar com cu	ja $\Theta(n \log n)$	$(\log n)$. Very sargument	⁷ ocê não pr nentos da 1	ecisa o prova p	dar um	pseudo-

MC448: Projeto e Análise de Algoritmos I – Prof. Cid – 1^a Prova – (14/04/2009)

Nome:			Questão	frac	Peso	Nota
RA:	Turma:		3			

3. Abaixo encontra-se um pseudo-código do algoritmo Ajusta Heap vista em sala de aula. Seja T(n) a complexidade de **pior caso** deste algoritmo (n é o tamanho do heap). Uma vez que o algoritmo é recursivo, Ana Saab Tudor, ex-aluna de MC448, descreveu esta complexidade através da recorrência

$$T(n) \le T(\frac{2n}{3}) + d,$$

sendo d uma constante positiva. Responda os itens abaixo:

- (a) Explique detalhadamente o significado de cada um dos termos da fórmula proposta por Ana.
- (b) Resolva esta recorrência usando o Teorema Master para mostrar que $T(n) \in O(g(n))$, sendo g(n) a função vista em aula para a complexidade do AjustaHeap. Deixe claro qual dos casos do Teorema esta recorrência se encaixa e porquê.
- (c) Demonstre o resultado acima usando o método de substituição (indução matemática). Para isto, considere que T(1)=0.

AjustaHeap(A, i, n)

- \triangleright **Entrada:** Vetor A de n números inteiros com estrutura de heap, exceto, talvez, pela subárvore de raiz i.
- \triangleright Saída: Vetor A com estrutura de heap.
- 1. **se** $2i \le n$ e A[2i] > A[i]
- 2. **então** maximo $\leftarrow 2i$ **se não** maximo $\leftarrow i$
- 3. se $2i + 1 \le n$ e A[2i + 1] > A[maximo]
- 4. **então** maximo $\leftarrow 2i + 1$
- 5. se maximo $\neq i$ então
- 6. $t \leftarrow A[\text{maximo}]; A[\text{maximo}] \leftarrow A[i]; A[i] \leftarrow t;$
- 7. Ajusta $\operatorname{Heap}(A, \operatorname{maximo}, n)$

MC448: Projeto e Análise de Algoritmos I – Prof. Cid – 1^a Prova – (14/04/2009)

Nome:]	Questão	frac	Peso	Nota	
RA:		Turma:]	4			
4. Seja A um vetor <u>ordenado</u> projete um algoritmo de com $i \in \{1,, n\}$ tal que $A[i] = i$ Além da prova por indução, se recorrência que descreve a sua de fato $o(n)$. Se usar o Teoren	lpexic (ou se ua res a com	dade $o(n)$ (\underline{o} minúsculo eja, um elemento de A eposta deverá ter um pseplexidade e a resolução	!) que que seja eudo-có desta :	e determina a igual ao s odigo do ala recorrência	a se ex seu índ goritm mostr	ciste un ice). o, a fór cando q	n índice mula de ue ela é

