Activation Functions Role and Comparison.

Ans 1:

Role of Activation Functions:

Activation functions determine the output of a neural network node given an input or set of inputs. They introduce non-linearity into the network, enabling it to learn complex patterns and perform more sophisticated computations than simple linear models.

Comparison of Linear and Nonlinear Activation Functions:

Features	Linear Activation Functions	Nonlinear Activation Fuctions	
Output	Proportional to Input	Non linear transformation of	
		input	
Decision Boundary	Can only learn linear	Can learn complex , nonliner,	
	boundaries	boundaries.	
Stacking Layers	Mulitple Layers equivalent of single layer	Each Layer adds complexity	
Examples	F(x)=x	RelU,Sigmoid,Tanh	

Why nonlinear functions are preferred in hidden layers:

Nonlinear activation functions allow neural networks to approximate any continuous function (universal approximation theorem). Without them, no matter how many layers we add, the network would behave like a single-layer perceptron because the composition of linear functions is still linear. Nonlinearity enables the network to learn complex patterns in data.

Ans:2

Sigmoid Activation Function:

- Formula: $\sigma(x) = 1 / (1 + e^{-x})$
- Characteristics:
 - Outputs values between 0 and 1 (squashes input to (0,1) range)
 - Smooth gradient (differentiable everywhere)
 - Historically popular for binary classification
- Commonly used in:
 - Output layer for binary classification problems
 - Earlier neural networks (now largely replaced by ReLU in hidden layers)

Rectified Linear Unit (ReLU):

- Formula: f(x) = max(0, x)
- Advantages:
 - Computationally efficient (simple operation)

- Avoids vanishing gradient problem for positive inputs
- Leads to sparse activations (many outputs become zero)
- o Accelerates convergence compared to sigmoid/tanh
- Challenges:
 - o "Dying ReLU" problem (neurons can get stuck in inactive state)
 - Not differentiable at zero (though this is rarely an issue in practice)

Tanh Activation Function:

- Formula: $tanh(x) = (e^x e^{-x})/(e^x + e^{-x})$
- Purpose:
 - Outputs values between -1 and 1 (zero-centered)
 - Often performs better than sigmoid for hidden layers
- Differences from Sigmoid:
 - Output range (-1,1) vs (0,1)
 - Stronger gradients (derivative is steeper)
 - o Zero-centered outputs help with learning in deep networks

Ans:3

Activation functions in hidden layers are crucial because:

- 1. They introduce nonlinearity, enabling the network to learn complex patterns and relationships in data.
- 2. They determine whether and how strongly a neuron should be activated based on inputs.
- 3. They affect the gradient flow during backpropagation, impacting learning dynamics.
- 4. Different functions can lead to different learning behaviors (e.g., ReLU avoids vanishing gradients for positive inputs).
- 5. They enable hierarchical feature learning early layers learn simple features while deeper layers combine them into more complex representations.

Without activation functions in hidden layers, the network would simply be a linear transformation, no matter how many layers it has, severely limiting its representational power.

Ans:4

Choice depends on problem type:

Binary Classification:

- Sigmoid (outputs probability between 0 and 1)
- Example: Spam detection (spam/not spam)

Multi-class Classification:

- Softmax (outputs probability distribution over classes summing to 1)
- Example: Handwritten digit recognition (10 classes)

Multi-label Classification:

- Sigmoid for each output node (independent probabilities)
- Example: Image tagging (multiple possible tags)

Regression:

- Linear (unbounded output) for predicting continuous values
- Example: House price prediction
- ReLU if output should be non-negative
- Example: Predicting product demand (can't be negative)

Bounded Regression:

- Sigmoid or Tanh if output needs to be within specific range
- Example: Predicting normalized ratings between 0-1

Ans:5

Experimental Setup:

- Simple neural network (e.g., 2 hidden layers with 32 units each)
- Dataset: MNIST or similar benchmark
- Compare ReLU, Sigmoid, and Tanh in hidden layers
- Metrics: Training/validation accuracy, loss convergence, training time

Expected Observations:

Activation	Convergence Speed	Final Performance	Potential issues
ReLu	Fastest	Good	Dying RelU possible
Tanh	Moderate	Good	Vanishing Gradients in deep nets
Sigmoid	Slowest	Lower	Severe vanishing gradients