(Gaussian) random fields

statistics and data analysis (chapter 12)

Björn Malte Schäfer

Graduate School for Fundamental Physics
Fakultät für Physik und Astronomie, Universität Heidelberg

June 26, 2016

random fields operations matched filtering deconvolution summary

outline

- 1 random fields
- 2 operations
- 3 matched filtering
- 4 deconvolution
- 5 summary

random fields operations matched filtering deconvolution summary

- consider a randomly fluctuating smooth field where the amplitude φ at position y depends on that at position x
- · description with a probability density

$$p(\varphi(y), \varphi(x)) = p(\varphi(y)|\varphi(x)) \tag{1}$$

- examples
 - noise in an electric circuit
 - · waves on the ocean surface
 - matter distribution in the universe

operations matched filtering deconvolution summary

Gaussian random fields

random fields

Gaussian probability density for the field amplitudes

$$p(\varphi(x), \varphi(y)) = \frac{1}{\sqrt{(2\pi)^2 \det C}} \exp\left(-\frac{1}{2} \begin{pmatrix} \varphi(x) \\ \varphi(y) \end{pmatrix}^t C^{-1} \begin{pmatrix} \varphi(x) \\ \varphi(y) \end{pmatrix}\right) \tag{2}$$

with covariance

$$C = \begin{pmatrix} \langle \varphi(x)^2 \rangle & \langle \varphi(x)\varphi(y) \rangle \\ \langle \varphi(x)\varphi(y) \rangle & \langle \varphi(y)^y \rangle \end{pmatrix}$$
 (3)

- where ⟨...⟩ are ensemble averages with fixed positions x and y
- correlation function

$$\xi(x,y) = \langle \varphi(x)\varphi(y)\rangle \tag{4}$$

- obviously, $\langle \varphi(x)\varphi(y)\rangle \to \langle \varphi(x)^2\rangle$ as $x\to y$
- think of $\langle \varphi(x)\varphi(y)\rangle$ as the memory of the field on its value at x

operations matched filtering deconvolution summary

homogeneity

random fields

· Cauchy-Schwarz bound:

$$|\xi(x,y)| \le \sqrt{\langle \varphi(x)^2 \rangle \langle \varphi(y)^2 \rangle}$$
 (5)

making sure that $\det C \ge 0$

- separation of the Gaussian distribution occurs if $\langle \varphi(x)\varphi(y)\rangle = 0$
- homogeneity of the random field: statistical properties are identical everywhere, i.e. the correlation function does not depend on x, just on r:

$$\langle \varphi(x)\varphi(x+r)\rangle = \xi(r)$$
 (6)

for homogeneous fields, the Cauchy-Schwarz bound becomes:

$$|\xi(r)| \le \langle \varphi(x)^2 \rangle = \sigma^2$$
 (7)

with a universal $\sigma^2 = \langle \varphi(x)^2 \rangle = \langle \varphi(y)^2 \rangle$

(Gaussian) random fields

homogeneity

random fields

- homogeneous fields: $\sigma^2 = \langle \varphi(x)^2 \rangle = \langle \varphi(y)^2 \rangle$ and $\xi(r) = \langle \varphi(x)\varphi(x+r) \rangle$
- probability density

$$p(\varphi(x), \varphi(x+r)) = \frac{1}{\sqrt{(2\pi)^2 \det C}} \exp\left(-\frac{1}{2} \begin{pmatrix} \varphi(x) \\ \varphi(x+r) \end{pmatrix}^t C^{-1} \begin{pmatrix} \varphi(x) \\ \varphi(x+r) \end{pmatrix}\right)$$
(8)

with covariance

$$C = \begin{pmatrix} \sigma^2 & \xi(r) \\ \xi(r) & \sigma^2 \end{pmatrix}$$
 (9)

summary

correlation functions and spectra

- spectrum of a random field: only for homogeneous fields
- Fourier-transform

$$\varphi(k) = \int dx \, \varphi(x) \exp(-ikx) \quad \leftrightarrow \quad \varphi(x) = \int dk \, \varphi(k) \exp(+ikx)$$
 (10)

• is there a correlation between different Fourier-modes?

$$\langle \varphi(k)\varphi(k')^*\rangle = \int dx \int dx' \langle \varphi(x)\varphi(x')\rangle \exp(-ikx + ik'x')$$
 (11)

• assume homogeneity: x' = x + r, dx' = dr at fixed x:

$$= \int dx \int dr \langle \varphi(x)\varphi(x+r)\rangle \exp(-ikx + ik'x + ik'r)$$
 (12)

(Gaussian) random fields

random fields operations matched filtering deconvolution summary

correlation functions and spectra

• correlation function $\xi(r) = \langle \varphi(x)\varphi(x+r) \rangle$:

$$= \int dr \, \xi(r) \exp(ik'r) \int dx \, \exp(-i(k-k')x) \tag{13}$$

if the correlation function does not depend on position x

• dx-integration yields the Dirac- δ function

$$= \int dr \, \xi(r) \exp(ikr) \times 2\pi \delta_D(k - k') \tag{14}$$

define spectrum:

$$C(k) = \int dr \, \xi(r) \exp(ikr) \tag{15}$$

as the Fourier-transform of the correlation function

 no correlation between Fourier-modes of a homogeneous random field:

$$\langle \varphi(k)\varphi(k')\rangle = 2\pi C(k)\,\delta_D(k-k')$$
 (16)

(Gaussian) random fields

operations matched filtering deconvolution summary

random fields in more dimensions: isotropy

• derivation of the spectrum is identical in *n* dimensions:

$$C(k_i) = \int d^n r \, \xi(r_i) \exp(ik_j r_j)$$
 (17)

yields an identical orthogonality relation

random fields

$$\langle \varphi(k_i)\varphi(k_i')\rangle = (2\pi)^n C(k_i) \,\delta_D(k_i - k_i')) \tag{18}$$

• if the field is isotropic, the spectra for different k_i are identical, so C depends only on the modulus $\sqrt{k_i k_i}$

operations matched filtering deconvolution summary

units of spectra and correlation functions

- assume that φ has the unit A, which is some combination of length, time, mass and temperature
- correlation function

$$\xi(r) = \langle \varphi(x)\varphi(x+r)\rangle \tag{19}$$

as units of A^2

random fields

- then, $\varphi(k)$ has units of AL^n in n dimensions
- the Dirac- δ function has units of L^n , because $\int d^n x \, \delta_D(x) = 1$
- collect all results:

$$\langle \underbrace{\varphi(k)}_{AI^n} \underbrace{\varphi(k')}_{AI^n} \rangle \propto C(k) \underbrace{\delta_D(k-k')}_{L^n}$$
 (20)

such that C(k) needs to have units of A^2L^n

operations on random fields: smoothing

smoothing: by convolution with a convolution kernel p:

$$\varphi(\bar{x}) = \int dy \, \varphi(y) p(x - y) = \int dy \, \varphi(x - y) p(y) = \varphi * p$$
 (21)

- slide p over the field φ and average around x weighted by p
- p(x) is normalised, $\int dx p(x) = 1$
- the property

$$\int dy \, \varphi(y) \delta_D(x - y) = \varphi(x) \tag{22}$$

is defined through convolution, in particular with $\int dy \, \delta_D(y) = 1$

- properties of convolutions
 - $\varphi * p = p * \varphi$
 - $\bullet \quad \varphi * (p * q) = (\varphi * p) * q$
 - $\varphi * (\alpha p + \beta q) = \alpha \varphi * p + \beta \varphi * q$

convolutions in Fourier-space

random fields

• convolutions in real space are products in Fourier-space:

$$\varphi * p = \int dy \varphi(x - y)p(y)$$

$$= \int dy \int dk \varphi(k) \exp(ik(x - y)) \int dk' p(k') \exp(ik'y)$$

$$= \int dy \int dk \varphi(k)p(k') \int dk' \exp(ikx) \exp(i(k - k')y)$$

$$= \int dk \int dk' \varphi(k)p(k') \exp(ikx)\delta_D(k - k')$$

$$= \int dk \varphi(k)p(k') \exp(ikx)$$
(25)

deconvolution

 Fourier-transform is symmetric: convolutions in Fourier-space are products in real space

correlation

correlationn with lag y:

$$\varphi \times \varphi = \int dx \, \varphi(x) \varphi(x+y) \tag{28}$$

• estimate for an ergodic process:

$$\varphi \times \varphi \simeq \lim_{y \to \infty} \frac{1}{y} \int_0^y \mathrm{d}x \, \varphi(x) \varphi(x+y)$$
 (29)

correlations in Fourier-space

$$\varphi \times \varphi = \int dx \, \varphi(x)\varphi(x+y) \tag{30}$$

$$= \int dx \, \int dk \, \varphi(k) \exp(ikx) \int dk' \, \varphi(k') \exp(ik'(x+y)) \tag{31}$$

$$= \int dk \, \int dk' \, \varphi(k)\varphi(k')^* \exp(i(k-k')x) \exp(-ik'y) \tag{32}$$

$$= \int dk \, \varphi(k)\varphi(k)^* \exp(iky) \tag{33}$$

generation of a (homogeneous) random field

- use the fact that Fourier-modes of homogeneous random fields are independent
- and that the variance in Fourier-space is the spectrum C(k)
- algorithm:

- draw Gaussian random numbers for $\varphi(k)$ on a grid in Fourier-space
- from a distribution with $\langle \varphi(k) \rangle = 0$ and $\langle \varphi(k)^2 \rangle = C(k)$
- impose hermiticity: $\varphi(k)^* = \varphi(-k)$ for a real-valued field
- · Fourier-transform into real space

$$\varphi(x) = \int \frac{\mathrm{d}k}{2\pi} \, \varphi(k) \exp(+\mathrm{i}kx) \tag{34}$$

examples of Gaussian random fields

10 realisations of Gaussian random fields (different phases)

random fields operations (matched filtering) deconvolution summary

matched filtering: idea

- matched filtering: find weak signal with known shape in noisy data:
 - high-frequency noise on top of a slowly varying signal: low-pass
 - small-scale signal on top of a slowly varying background: high-pass

• should be possible if signal and noise look differently in Fourier-space, two competiting effects: lowering of the noise φ vs. dispersing the signal a

construction of a matched filter

 filter p should operate by convolution on a field φ(x) where the signal is hidden

$$\varphi'(x) = \int dy \, \varphi(y) p(x - y) \quad \leftrightarrow \quad \varphi'(k) = p(k) \varphi(k)$$
 (35)

require

random fields

 the convolved field should on average conserve the amplitude of the signal:

$$\langle \varphi' \rangle = A \int dk \, a(k)p(k)$$
 (36)

with the signal strength A and the signal profile a(x)

• noise fluctuations σ^2 are minimised

$$\langle (\varphi' - \langle \varphi' \rangle)^2 \rangle = \sigma^2 = \int dk \, p^2(k) C(k)$$
 (37)

derivation by variation

random fields

- $\sigma^2[p]$ is a functional which maps the function p onto a number
- it's possible to optimise $\sigma^2[p]$ for being as small as possible, because then, the signal stands out
- one needs an additional assumption: clearly, the smallest σ^2 is obtained by setting p=0, but then the signal is lost as well
- require unbiasedness

$$\langle \varphi' \rangle = A \int dk \, a(k)p(k) = \mu$$
 (38)

when performing the variation for minimising the noise

introduce unbiasedness with a Lagrange-multiplier:

$$\sigma^2[p] \to \sigma^2[p] + \lambda G[p]$$
 with $G[p] = A \int dk \, a(k)p(k) - \mu$ (39)

derivation by variation

variation:

random fields

$$\frac{d\sigma^2}{dp} + \lambda \frac{dG}{dp} = 0 = \int dk \, (2pC(k) + \lambda Aa) \quad \to \quad p = -\frac{\lambda}{2} \frac{a(k)}{C(k)} \quad (40)$$

if one assumes a signal profile a(k) and a noise spectrum C(k)

- λ is determined by the boundary conditions
- if the true profile or the noise spectrum are different, the signal is not enhanced

(Gaussian) random fields Björn Malte Schäfer

summary

random fields operations matched filtering (deconvolution) summary

deconvolution

- convolution is an averaging process, so it is not possible to recover the orginial field φ from the convolved field φ' = φ * p
- it is not possible to divide out the filter in the Fourier-expression
 φ' = φp → φ = φ'/p because the Fourier-transform of the filter is
 zero somewhere
- deconvolution can only be done approximatively

van Cittert deconvolution

- idea: control noise by iterative partial deconvolution, and stop at the right moment
- $\varphi = \varphi' p^{-1}$ inverts $\varphi' = \varphi p$
- introduce $\bar{p} = 1 p$,
- · use the geometric series:

$$\varphi = \frac{\varphi'}{p} = \frac{\varphi'}{1 - \bar{p}} \simeq \varphi' \left(1 + \bar{p} + \bar{p}^2 + \ldots \right) = \varphi' \left(1 + \bar{p}(1 + \bar{p}(\ldots)) \right) \tag{41}$$

and rewrite it as a "telescopic" sums

- then, define an iterative procedure:
 - $\varphi_0 = \varphi'$ starting point is the noisy signal
 - $\bullet \quad \varphi_{n+1} = \varphi' + (1-p)\varphi_n$

(Gaussian) random fields

random fields operations matched filtering (deconvolution) summary

van Cittert deconvolution

Van-Cittert-Iterationen:

van Cittert deconvolution (source: wikipedia)

picks up artefacts if n is too large

random fields operations matched filtering deconvolution (summary)

summary

- random fields are a generalisation to random variables, they're indexed by position
- correlation of field amplitudes given by correlation function
- homogeneous random fields have uncorrelated Fourier-modes
- convolutions and correlations can be carried out in Fourier-space
- filtering lets you search for a signal of known shape
- deconvolution is possible in an approximate way