

Project Industrial chemistry:

Separate two component and design of heat exchanger

Contents

I.	G	iven:	3
II.	Pa	art A: Vapor-Liquid Equilibrium diagram:	3
1		Diagram for X alone: (19 bar)	5
2		Diagram for Y alone: (19 bar)	5
3		Equilibrium diagram at P=19 bar:	6
4		Txy diagram on aspen: (19 bar)	6
III.		Part B: Distillation column:	7
1		The distillate and residue flow rates: (19 bar)	7
2	1	Temperature of the top of the distillation column: (19 bar)	7
3	1	Temperature of the bottom of the distillation column: (19 bar)	8
4	1	The equilibrium curve equation Y = f(x): (19 bar)	9
5		The rectifying, stripping and feed sections operation lines equations: (19 bar)	12
	a)	The operating line for the rectifying section:	12
	b)) The feed section line equation:	12
	c)	The stripping section operating line equation:	14
	d)) Plot of rectifying, stripping and feed lines:	14
6		The minimum number of stages and the actual number of stages: (19 bar)	16
	a)	Minimum number of stages:	16
	b)) Actual number of stages:	17
IV.		Part C: Design of the condenser and reboiler:	18
1		Condenser :(19 bar)	18
2		Reboiler :(19 bar)	27

I. Given:

Group	Student	Binary mixture	Working pressure (bar)	Temperature (°C)	Light component molar concentration (%)	flow rate (kmol/s)	Distillate light component molar concentration(%)	Residue light component molar concentration(%)	Reflux ratio R/Rmin
-	Maria-Rita Abboud	Eshana /Eshana	16	18	32	1	92	10	1.4
5	Safaa Moubayed	Ethane/Ethene	19	32	35	1	96	5	1.5

II. Part A: Vapor-Liquid Equilibrium diagram:

The normal boiling point of ethane is -88.598 °C and -103.771 °C for the ethene. So, ethene is the light component because its boiling temperature is smaller than the other component.

Working pressure: 19 bar

Feed:
$$\begin{cases} T_F = 32^{\circ}C \\ light\ comp.\ molar\ concentration:\ ethene:\ 35\% \\ molar\ concentration\ for\ ethane:\ 65\% \\ flow\ rate:\ 1Kmol/s \end{cases}$$

 $\label{eq:Distillate:bound} \textit{Distillate:} \begin{cases} \textit{light comp.molar concentration: ethene: } 96\% \\ \textit{molar concentration for ethane: } 4\% \end{cases}$

 $Residue: \begin{cases} light\ comp.\ molar\ concentration:\ ethene:\ 5\%\\ molar\ concentration\ for\ ethane:\ 95\% \end{cases}$

Reflux ratio:
$$\frac{R}{R_{min}} = 1.5$$

To draw the vapor-liquid equilibrium diagram we need first to find the equation of curves and to know the saturation temperature of ethane and ethene.

At P=19 bar (working pressure)

$$\begin{cases} T_{sat,ethane} = -9.1653 \text{ °C} \\ T_{sat,ethene} = -30.687 \text{ °C} \end{cases}$$

By using Raoult and Dalton laws:

$$\frac{y}{x} = \frac{P_A^{\circ}}{P}$$

and

$$\frac{1-y}{1-x} = \frac{P_B^{\circ}}{P}$$

So, we obtain the equation of x and y:

$$x = \frac{1 - \frac{P_B^{\circ}}{P}}{\frac{P_A^{\circ}}{P} - \frac{P_B^{\circ}}{P}}$$
$$y = \frac{\frac{P_B^{\circ}}{P} - 1}{\frac{P_A^{\circ}}{P_B^{\circ}} - 1}$$

We obtain:

Temperature °C ↓	P° ethane bar	P° ethene bar	P° ethane/P	P° ethene/P	P° ethane/P° ethene	X_ethene	Y_ethene
-30.687	10.4312	19	0.549010526	1	0.549010526	1	1
-30	10.649	19.366	0.560473684	1.019263158	0.549881235	0.958013078	0.976467435
-29	10.973	19.907	0.577526316	1.047736842	0.551213141	0.898477726	0.941368215
-28	11.304	20.459	0.594947368	1.076789474	0.552519673	0.840633534	0.90518534
-27	11.643	21.022	0.612789474	1.106421053	0.553848349	0.784411984	0.867889933
-26	11.988	21.596	0.630947368	1.136631579	0.555102797	0.729808493	0.82952338
-25	12.341	22.182	0.649526316	1.167473684	0.556351997	0.676658876	0.789981431
-24	12.702	22.779	0.668526316	1.198894737	0.557618859	0.624987596	0.749294339
-23	13.07	23.388	0.687894737	1.230947368	0.55883359	0.574723784	0.707454729
-22	13.446	24.008	0.707684211	1.263578947	0.560063312	0.525847377	0.664449676
-21	13.83	24.64	0.727894737	1.296842105	0.561282468	0.47826087	0.620228833
-20	14.222	25.284	0.748526316	1.330736842	0.562490112	0.431929127	0.574784002
-19	14.622	25.941	0.769578947	1.365315789	0.563663698	0.386783285	0.528081326
-18	15.029	26.61	0.791	1.400526316	0.564787674	0.342889215	0.480225369
-17	15.445	27.291	0.812894737	1.436368421	0.565937489	0.3001013	0.43105603
-16	15.87	27.985	0.835263158	1.472894737	0.567089512	0.258357408	0.380533267
-15	16.302	28.692	0.858	1.510105263	0.568172313	0.217756255	0.328834867
-14	16.744	29.412	0.881263158	1.548	0.569291446	0.178086517	0.275677929
-13	17.193	30.146	0.904894737	1.586631579	0.570324421	0.139504362	0.221342026
-12	17.652	30.893	0.929052632	1.625947368	0.571391577	0.101805	0.165529571
-11	18.119	31.653	0.953631579	1.665947368	0.572425994	0.065095316	0.10844537
-10	18.596	32.428	0.978736842	1.706736842	0.573455039	0.029207634	0.049849746
-9.1653	19	33.086	1	1.741368421	0.574261017	0	0

1. Diagram for X alone: (19 bar)

2. Diagram for Y alone: (19 bar)

3. Equilibrium diagram at P=19 bar:

4. Txy diagram on aspen: (19 bar)

III. Part B: Distillation column:

1. The distillate and residue flow rates: (19 bar)

Mass conservation: D + W = F

So; $Dx_D + Wx_W = Fz_F$

For the Ethane:

$$D * 0.04 + W0.95 = 0.65$$
 (1)

For the Ethene:

$$D * 0.96 + W0.05 = 0.35$$
 (2)

So; D= 0.329 W= 0.67

	Z_F	$F. Z_F$	X_D	$D. X_D$	X_{W}	$W. X_W$
Ethane	0.65	0.65	0.04	0.0132	0.95	0.6365
Ethene	0.35	0.35	0.96	0.3158	0.05	0.0335
	1	1	1	0.329	1	0.67

2. Temperature of the top of the distillation column: (19 bar)

For T_{top}=-25 °C

$$\sum \frac{y_i}{k_i} = 1$$

$$\frac{0.04}{0.71} + \frac{0.96}{1.1} = 0.929 < 1$$

For T_{top}=-26 °C

$$K_{ethane}=0.7$$
 $K_{ethene}=1.05$

$$\sum \frac{y_i}{k_i} = 1$$

$$\frac{0.04}{0.7} + \frac{0.96}{1.05} = 0.97 < 1$$

For T_{top}=-27 °C

Kethene=1

$$\sum \frac{y_i}{k_i} = 1$$
$$\frac{0.04}{0.69} + \frac{0.96}{1} = 1.018 > 1$$

So the temperature at the top is between -26°C and -27°C:

By interpolation: $\frac{T_{top}+26}{1-0.97} = \frac{-27+26}{1.018-0.97} \Rightarrow T_{top} = -26.625$ °C

3. Temperature of the bottom of the distillation column: (19 bar)

For T_{bott}=-8 °C

$$\sum K_i x_i = 1$$

$$1 * 0.95 + 1.5 * 0.05 = 1.025$$

For T_{bott}=-10 °C

$$K_{ethene} = 1.45$$

$$\sum K_i x_i = 1$$

$$0.99 * 0.95 + 1.45 * 0.05 = 1.013$$

For T_{bott}=-12 °C

Kethane=0.947

Kethene=1.4

$$\sum K_i x_i = 1$$

$$0.947 * 0.95 + 1.4 * 0.05 = 0.96965$$

So the temperature at the bottom is between -10°C and -12°C :

By interpolation:
$$\frac{T_{bott}+12}{1-0.96965} = \frac{-10+12}{1.013-0.96965} \Rightarrow T_{bott} = -10.6$$
°C

4. The equilibrium curve equation Y = f(x): (19 bar)

$$y = \frac{\alpha x}{1 + (\alpha - 1)x}$$

Where $\alpha = \frac{K_{ethene}}{Kethane}$

It is better to determine an average value of α between T_{top} and $T_{bott}.$ For our case $T_{top}\text{=-}26.625^{\circ}\text{C}$ and $T_{bott}\text{=-}10.6~^{\circ}\text{C}$.

$$\alpha_{top} = \frac{1.47}{0.99} = 1.4848$$

$$\alpha_{bott} = \frac{1.05}{0.6995} = 1.511$$

$$\alpha_{bott} = \frac{1.05}{0.6995} = 1.511$$

$$\alpha_{bott} = \frac{1.4848}{0.600}$$

$$\alpha_{bott} = \frac{1.4848}{0.600} = 1.511$$

$$\alpha = \frac{\alpha_{top} + \alpha_{bott}}{2} = \frac{1.4848 + 1.511}{2} = 1.4979$$

$$y = \frac{1.4979x}{1 + 0.4979x}$$

We plot y=f(x) on Excel:

х	y_equ
0	0
0.05	0.073076
0.1	0.142686
0.15	0.209071
0.2	0.272449
0.25	0.333022
0.3	0.390971
0.35	0.446462
0.4	0.49965
0.45	0.550674
0.5	0.599664
0.55	0.646739
0.6	0.692009
0.65	0.735577
0.7	0.777536
0.75	0.817973
0.8	0.856971
0.85	0.894605
0.9	0.930944
0.95	0.966056
1	1

By using Aspen:

- 5. The rectifying, stripping and feed sections operation lines equations: (19 bar)
- a) The operating line for the rectifying section:

$$y_{rect} = \left(\frac{R}{R+1}\right)x + \left(\frac{1}{R+1}\right)x_D$$

To determine R, we need first to determine R_{min}:

$$R_{min} = \frac{1}{Z_f(\alpha - 1)}$$

We assume, the feed pressure, P_F =20 bar ($P_{distillate}$ < P_F due to the friction in pipes) At T_F =32°C and P_F =20 bar, we have:

$$K_{\text{ethane}} = 2$$
 $K_{\text{ethene}} = 2.99$
$$\alpha = \frac{2.99}{2} = 1.495$$

$$R_{min} = \frac{1}{0.35 * (1.495 - 1)} = 5.772$$

$$\frac{R}{R_{min}} = 1.5 \Rightarrow R = R_{min} * 1.5 = 5.772 * 1.5 \Rightarrow R = 8.658$$

$$y_{rect} = \left(\frac{8.658}{8.658 + 1}\right)x + \left(\frac{1}{8.658 + 1}\right)0.96$$
$$y_{rect} = 0.896x + 0.0994$$

b) The feed section line equation:

$$y_{feed} = \left(\frac{q}{q-1}\right)x - \left(\frac{Z_F}{q-1}\right)$$

q is obtained based on the feed conditions. (Feed \rightarrow superheated vapor)

 T_{bubb} =-19.012°C T_{dew} =-15.94°C

$$q = \frac{(h_F)_{S.V.} - h_F}{(h_F)_{S.V.} - (h_F)_{S.L.}}$$

$$T_F=32^{\circ}\text{C} \quad \Rightarrow \ h_f=-35763.2 \ KJ/Kmol$$

$$T_{bubb}=-19.012^{\circ}\text{C} \quad \Rightarrow \ h_{SL}=-48047.5 \ KJ/Kmol$$

$$T_{dew}=-15.94^{\circ}\text{C} \quad \Rightarrow \ h_{SV}=-40440.6 \ KJ/Kmol$$

$$q = \frac{-40440.6 + 35763.2}{-40440.6 + 48047.5} = -0.6149$$

$$y_{feed} = \left(\frac{-0.6149}{-0.6149 - 1}\right)x - \left(\frac{0.35}{-0.6149 - 1}\right)$$

$$y_{feed} = 0.3807x + 0.2167$$

c) The stripping section operating line equation:

$$y_{str} = \left(\frac{V_B + 1}{V_B}\right) x - \left(\frac{1}{V_B}\right) x_B$$

$$R = \frac{L}{D} \Rightarrow \frac{L}{0.329} = 8.658 \Rightarrow L = 2.848$$

$$\frac{1}{V_B} = \frac{B}{\overline{V}} \qquad \text{we have } \frac{L}{V} = \frac{R}{R+1} = 0.896 \Rightarrow V = 3.1785$$

$$q = \frac{\overline{L} - L}{F} \Rightarrow \overline{L} = L + q = 2.848 - 0.6149 \Rightarrow \overline{L} = 2.2331$$

A total material balance around the feed stage gives:

$$F+\bar{V}+L=V+\bar{L}\Rightarrow 1+\bar{V}+2.848=3.1785+2.2331\Rightarrow \bar{V}=1.5636$$

$$\bar{L}=\bar{V}+B\Rightarrow B=0.7$$

$$V_B=\frac{1.5636}{0.7}=2.234$$
 So,
$$y_{str}=\frac{2.234+1}{2.234}x-\frac{1}{2.234}*0.05$$

$$y_{str}=1.447x-0.0224$$

d) Plot of rectifying, stripping and feed lines:

By using Excel, we can plot the rectifying, stripping and feed lines

х	y_equ	X_D	x_w	Y_rect	Y_str	Y_feed_
0	0	0.96	0.05	0.0994	-0.0214	0.2167
0.05	0.07307578	0.96	0.05	0.1442	0.05	0.235735
0.1	0.14268568	0.96	0.05	0.189	0.1214	0.25477
0.15	0.20907056	0.96	0.05	0.2338	0.1928	0.273805
0.2	0.27244948	0.96	0.05	0.2786	0.2642	0.29284
0.25	0.33302208	0.96	0.05	0.3234	0.3356	0.311875
0.3	0.39097071	0.96	0.05	0.3682	0.407	0.33091
0.35	0.44646226	0.96	0.05	0.413	0.4784	0.349945
0.4	0.49964975	0.96	0.05	0.4578	0.5498	0.36898
0.45	0.55067379	0.96	0.05	0.5026	0.6212	0.388015
0.5	0.59966372	0.96	0.05	0.5474	0.6926	0.40705
0.55	0.64673881	0.96	0.05	0.5922	0.764	0.426085
0.6	0.69200918	0.96	0.05	0.637	0.8354	0.44512
0.65	0.73557665	0.96	0.05	0.6818	0.9068	0.464155
0.7	0.77753554	0.96	0.05	0.7266	0.9782	0.48319
0.75	0.81797331	0.96	0.05	0.7714	1.0496	0.502225
0.8	0.85697122	0.96	0.05	0.8162	1.121	0.52126
0.85	0.89460482	0.96	0.05	0.861	1.1924	0.540295
0.9	0.93094447	0.96	0.05	0.9058	1.2638	0.55933
0.95	0.96605578	0.96	0.05	0.9506	1.3352	0.578365
1	1	0.96	0.05	0.9954	1.4066	0.5974

6. The minimum number of stages and the actual number of stages: (19 bar)

Using Excel to determine the minimum number of stages and the actual number of stages.

a) Minimum number of stages:

So, the minimum number of stages is: N_{min}=16 stages.

b) Actual number of stages:

To determine the actual number of stages we need to determine the number of stages in the rectifying and stripping section.

 N_{rect} =21 and N_{str} =10

$$\Rightarrow N_{actual} = 21 + 10 = 31 stages$$

IV. Part C: Design of the condenser and reboiler:

1. Condenser: (19 bar)

$$T_{hi}$$
= T_{Top} =-26.625 °C

The=Tsat, @19bar=-30.687 °C (saturated liquid)

$$T_{Ci}$$
=-35 °C

$$\Delta T_C = 7.5 \, ^{\circ}\text{C}$$

In the shell we have the mixture (ethane/ethene) and in the tubes the waterglycol (because the temperature is very low).

Cp_{water-glycol}=1.005 KJ/Kg. K

$$\dot{m_{mix}} = 0.329 \, kg/s$$

By EES, we determine Δh :

T[1]=-26.625 P[1]=19 P[2]=P[1] x[2]=0 T[2]=-30.687 h[1]=ENTHALPY(Ethylene,T=T[1],P=P[1]) h[2]=ENTHALPY(Ethylene,X=x[2],T=T[2]) x[1]=QUALITY(Ethylene,T=T[1],P=P[1]) h=h[2]-h[1]

	1 h _i [kJ/kg]	² P _i	3 T _i	4 x _i
[1]	-74.99	19	-26.63	100
[2]	-468 2	19	-30 69	0

Unit Settings: [kJ]/[C]/[kPa]/[kg]/[degrees]

h = -393.2

$$\dot{m_w} = \frac{\dot{m_{mix}} * \Delta h}{C_n * \Delta T} = 17.16 \ kg/s$$

We consider that the fouling resistance of 0.000176 m². K/W is suggested.

$$R_{Ci} = \frac{1}{h_i A_i} \; ; \; R_{fi} = \frac{R''_f}{A_i} \; ; \; R_{Cond} = \frac{\ln\left(\frac{R_0}{R_i}\right)}{2\pi KL} \; ; \; R_{f0} = \frac{R''_f}{A_0} \; ; \; R_{C0} = \frac{1}{h_0 A_0}$$

In the preliminary analysis we will consider $A_i=A_0$

With fouling:

$$U_{fouling} = \frac{1}{\frac{1}{h_i} + R''_f + R_{cond} * A + R''_f + \frac{1}{h_0}}$$

h_i and h_0 can be evaluated from table 9.4 and 9.5

TABLE 9.4Typical Film Heat Transfer Coefficients for Shell-and-Tube Heat Exchangers

	Fluid Condition	W/(m² ⋅ K)
Sensible heat transfer		
Water	Liquid	5,000-7,500
Ammonia	Liquid	6,000-8,000
Light organics	Liquid	1,500-2,000
Medium organics	Liquid	750-1,500
Heavy organics	Liquid	
	Heating	250-750
	Cooling	150-400
Very heavy organics	Liquid	
	Heating	100-300
	Cooling	60-150
Gas	1–2 bar abs	80-125
Gas	10 bar abs	250-400
Gas	100 bar abs	500-800
Condensing heat transfer		
Steam, ammonia	No noncondensable	8,000-12,00
Light organics	Pure component, 0.1 bar abs, no noncondensable	2,000-5,000
Light organics	0.1 bar, 4% noncondensable	750-1,000
Medium organics	Pure or narrow condensing range, 1 bar abs	1,500-4,000
Heavy organics	Narrow condensing range, 1 bar abs	600-2,000
Light multicomponent mixture, all condensable	Medium condensing range, 1 bar abs	1,000-2,500
Medium multicomponent mixture, all condensable	Medium condensing range, 1 bar abs	600-1,500
Heavy multicomponent mixture, all condensable	Medium condensing range, 1 bar abs	300–600
Vaporizing heat transfer		

$$h_i = \frac{600 + 1500}{2} = 1050 \frac{W}{m^2}.K$$

$$h_0 = \frac{1500 + 4000}{2} = 2750 \frac{W}{m^2}.K$$

$$U_{fouling} = 599.514 \; \frac{W}{m^2}.K$$

For clean surface:

$$U_{clean} = \frac{1}{\frac{1}{h_i} + \frac{1}{h_0}} = 759.87 \frac{W}{m^2}.K$$

$$\Delta T_{LMTD} = \frac{(T_{hi} - T_{ce}) - (T_{he} - T_{ci})}{\ln\left(\frac{T_{hi} - T_{ce}}{T_{he} - T_{ci}}\right)} = 2.67$$

$$q = \dot{m} * C_p * \Delta T = 129.3435 \, KW$$

$$A_{clean} = \frac{q}{F * U_{clean} * \Delta T_{LMTD}} = 63.7 \, m^2$$

With F=1 (condensation)

$$A_{fouling} = \frac{q}{F * U_{fouling} * \Delta T_{LMTD}} = 80.8 \ m^2$$

To determine the shell diameter:

$$D_S = 0.637 \sqrt{\frac{CL}{CTP}} \left[\frac{A_0 (PR)^2 d_0}{L} \right]^{0.5}$$

With CL=1 for 90° and CTP=0.9 for two tube passes

We assume L=2.9 m

$$\Rightarrow D_s = 0.6 m$$

$$\frac{L}{D_s} = 5$$

It is necessary that the ratio $5 < \frac{L}{D_s} < 15$

So, we can take L=2.9 m

Now, we will determine the number of tubes:

$$N_t = 0.785 \left(\frac{CTP}{CL}\right) \frac{D_S^2}{(PR)^2 D_0^2} = 529.3 tubes$$

From table 9.3:

TABLE 9.3 (CONTINUED)

Tube-Shell Layouts (Tube Counts)

1-P	2-P	4-P	6-P	8-P
n 1-in. square pit	tch			
32	26	20	20	
52	52	40	36	
81	76	68	68	60
97	90	82	76	70
137	124	116	108	108
177	166	158	150	142
224	220	204	192	188
n 1-in. square pit	tch			
277	270	246	240	234
341	324	308	302	292
413	394	370	356	346
481	460	432	420	408
553	526	480	468	456
657	640	600	580	560
749	718	688	676	648
845	824	780	766	748
934	914	886	866	838
1049	1024	982	968	948
	11-in. square pin 32 52 81 97 137 177 224 11-in. square pin 277 341 413 481 553 657 749 845 934	1 1-in. square pitch 32	1 1-in. square pitch 32	1 1-in. square pitch 32

So, the shell ID=31 in (787.4 mm) and $N_t=640\ tubes$

Thus, the baffle spacing is considered 0.7 $D_{\scriptscriptstyle S} \Rightarrow B = 0.42~m$

The coolant velocity inside tube is limited to 1.5m/s

$$v = \frac{\dot{m_w}}{\rho * N_t * S_{tube}} = \frac{17.16}{996 * 640 * \pi \frac{0.016^2}{4}} = 0.14 m/s < 1.5 m/s$$

By using Aspen:

			1		3	4	5	6
Temperature	°C	+	-26.51	-27.51	-28.51	-29.51	-30.51	
Liquid density	kg/m³	¥	1166.04	1166.91	1167.78	1168.64	1169.51	
Liquid specific heat	kJ/(kg-K)	¥	2.265	2.264	2.264	2.264	2.264	
Liquid viscosity	mPa-s	¥	325.2679	350.1942	377.2584	406.6626	438.6297	
Liquid thermal cond.	W/(m-K)	¥	0.2451	0.2449	0.2447	0.2445	0.2443	
Liquid surface tension	N/m	¥	0.0472	0.0474	0.0475	0.0476	0.0477	
Liquid molecular weight			62.06844	62.06844	62.06844	62.06844	62.06844	
Specific enthalpy	kJ/kg	*	-7452.1	-7454.4	-7456.6	-7458.9	-7461.2	
Vapor mass fraction			0	0	0	0	0	

mm 🔻

mm =

mm 🔻

Type

Tubes in window

Orientation

Cut(%d)

Single segmental

•

•

Yes

Horizontal

Baffles

Number

Spacing (center-center)

Spacing at inlet

Spacing at outlet

			А	В
Shell ID	mm	+	736.6	736.6
Tube length - actual	mm	+	2438.4	2438.4
Tube length - required	mm	4	1103	1103
Pressure drop, SS	bar		0.35496	0.35496
Pressure drop, TS	bar	+	0.21362	0.21362
Baffle spacing	mm	+	596.9	596.9
Number of baffles			2	2
Tube passes			4	4
Tube number			624	624
Number of units in series			2	2
Number of units in parallel			1	1
Total price	Dollar(US)	~	83680	83680
Program mode			Design (Sizing)	Design (Sizing)
Calculation method			Advanced method	Advanced method
Area Ratio (dirty)	-	-	2.21	2,21
Film coef overall, SS	W/(m²-K)	*	211.7	211.7
Film coef overall, TS	W/(m²-K)	+	66.6	66.6
Heat load	kW	4	6.2	6.2
Recap case fully recoverable			Yes	Yes

Design (Sizing)				Shell S	ide	Tube Side					
Total mass flow rate	kg/s	17.16			;		0.329				
Vapor mass flow rate (In/Out)	kg/s		0		0			0		0	
Liquid mass flow rate	kg/s	13	7.16		17.16		0.	329		0.32	9
Vapor mass fraction			0		0			0		0	
Temperatures	°C	-	35		-34.84		-2	6.62		-34.9	94
Bubble / Dew point	°C	/			/			/		/	
Operating Pressures	bar	1			0.7931	6	1	9		18.78638	
Film coefficient	W/(m²-K)			211.7			66.6				
Fouling resistance	m²-K/W			0.0001	8		0.00023				
Velocity (highest)	m/s			0.15			0.01).01			
Pressure drop (allow,/calc.)	bar	0.2	0684	/	0.3549	6	0	.29	/	0.213	62
Total heat exchanged	kW		6.2		Unit	BEM	4	pass	2 S	er 1 p	ar
Overall clean coeff. (plain/finned)	W/(m ² -K)	50.5	/		Shell size	7	37 -	2438.4	mm	H	Hor
Overall dirty coeff. (plain/finned)	W/(m ² -K)	49.5	/		Tubes	Plain					
Effective area (plain/finned)	m²	173.3	/		Insert	None					
Effective MTD	°C		1.6		No.	624	OD	19.05	Tks	2.11	mm
Actual/Required area ratio (dirty/clean)		2.21	/	2.26	Pattern	90		Pitch	23	3.81 mm	
Vibration problem (HTFS)			No		Baffles	Single	segmen	tal	Cut(%d) 39.98	В
RhoV2 problem			<u>No</u>		Total cost			83680) D	ollar(US)	

Shell Side Flow Fractions	Inlet	Middle	Outlet	Diameter Clearance
				mm
Crossflow (B stream)	0.58	0.57	0.58	
Window (B+C+F stream)	0.99	0.96	0.99	
Baffle hole - tube OD (A stream)	0	0	0	0.4
Baffle OD - shell ID (E stream)	0.01	0.04	0.01	4.76
Shell ID - bundle OTL (C stream)	0.07	0.07	0.07	12.7
Pass lanes (F stream)	0.34	0.32	0.34	

	2/1/	- 1111	7		
		$\sum_{i,j}$	1/2	*	\Rightarrow_{A}
			1,6		
			11/2	= 1	
1-1/2	/		· Im		В
		/-		- = -	· A
		<u> </u>		-	Ε
			··········	mmm	_

Rho*V2 Analysis	Flow Area	Velocity	Density	Rho*V2	TEMA limit
	mm ²	m/s	kg/m³	kg/(m-s²)	kg/(m-s²)
Shell inlet nozzle	18639	0.78	1173.39	722	2232
Shell entrance	24422	0.6	1173.39	421	5953
Bundle entrance	96624	0.15	1173.39	27	5953
Bundle exit	80202	0.18	1173.25	39	5953
Shell exit	24422	0.6	1173.25	421	5953
Shell outlet nozzle	18639	0.78	1173.25	722	
	mm²	m/s	kg/m³	kg/(m-s²)	kg/(m-s²)
Tube inlet nozzle	279	1.01	1166.15	1193	8928
Tube inlet	25577	0.01	1166.15	0	
Tube outlet	29379	0.01	1173.34	0	
Tube outlet nozzle	151	1.86	1173.34	4043	

Fluid Elastic Instability Analysis

Vibration tube number		1	2	4	5	6	8
Vibration tube location	Inlet row, centre	Outer window, top	Baffle overlap	Top row	Inlet row, end	Outer window, bottom	
Vibration		No	No	No	No	No	No
W/Wc for heavy damping (LDec=0.1)		0.02	0.09	0.03	0.02	0.02	0.09
W/Wc for medium damping (LDec=0.03)	W/Wc for medium damping (LDec=0.03)					0.04	0.16
W/Wc for light damping (LDec=0.01)	W/Wc for light damping (LDec=0.01)					0.06	0.28
W/Wc for estimated damping		0.01	0.04	0.02	0.01	0.01	0.04
Estimated log Decrement		0.55	0.55	0.37	0.55	0.55	0.55
Tube natural frequency	cycle/s ₹	36.27	36.27	81.27	36.27	36.27	36.27
Natural frequency method		Exact Solution	Exact Solution	Exact Solution	Exact Solution	Exact Solution	Exact Solution
Dominant span							
Tube effective mass	kg/m ▼	1.59	1.59	1.59	1.59	1.59	1.59

By comparison between manual calculation and aspen results we can deduce that the results are very close.

2. Reboiler:(19 bar)

 $\Delta h = 336.1 \, KJ/Kg. \, K$

 Cp_{water} =4.179 KJ/Kg. K

$$m_w = 0.67 \, kg/s$$

$$m_{mix}^{\cdot} = 0.75 \, kg/s$$

		Hotside	ColdSide		ent	Previous	
			20143142	Hotside	ColdSide	Hotside	ColdSide
alculation mode		Design (Sizing) ▼					
Process Conditions							
Mass flow rate	kg/s	▼ 0.67	0.75	0.67	0.75		
Mass flow rate multiplier		1	1				
Inlet pressure	bar	▼ 1	19	1	19		
Outlet pressure	bar	▼ 0.89	18.71	0.89	18.71		
Pressure at liquid surface in column	bar	▼					
Inlet Temperature	°C	▼ 9.6	-11	9.6	-11		
Outlet Temperature	℃	▼		99.6	-9		
Inlet vapor mass fraction				1	0		
Outlet vapor mass fraction		1		1	1		
Heat exchanged	kW	•					
Heat exchanged multiplier		1					
Process Input							
Allowable pressure drop	bar	▼ 0.11	0.49987	0.11	0.49987		
Fouling resistance	m²-K/W	• 0	0	0	0		
Calculated Results							
Pressure drop	bar	→					

	Shell		Tube Length			Pressur	e Drop		Baffle		Tu	be	Un	its	Total	С	perational Issue		
Item		Actual	Reqd.	Area ratio	Shell	Dp Ratio	Tube	Dp Ratio	Pitch		Tube Pass	No.	Р	5	Price	Vibration	Rho-V-Sq	Unsupported tube length	Design
	mm 🔻	mm *	mm *		bar ▼		bar *		mm +						Dollar(US) ▼				
1	438.15	6096	6451.2	0.94 *	0.04102	0.37	0.04014	0.08	596.9	8	1	211	1	1	25513	Possible	No	No	Near
2	488.95	5486.4	5314.9	1.03	0.03587	0.33	0.04011	0.08	539.75	8	1	278	1	1	28584	Possible	No	No	(OK)
3	539.75	6096	5151.1	1.18	0.03059	0.28	0.04011	0.08	596.9	8	1	342	1	1	33241	Possible	No	No	(OK)
4	307.09	6096	5500.4	1.11	0.16304	1.48 *	0.08952	0.18	609.6	8	1	88	1	2	35020	Possible	Yes	No	Near
5	307.09	6096	6575.4	0.93 *	0.15773	1.43 *	0.09625	0.19	609.6	8	2	82	1	2	34826	Possible	Yes	No	Near
2	488.95	5486.4	5314.9	1.03	0.03587	0.33	0.04011	0.08	539.75	8	1	278	1	1	28584	Possible	No	No	(OK)

			А	В
Shell ID	mm	Ŧ	488.95	488.95
Tube length - actual	mm	Ŧ	5486.4	5486.4
Tube length - required	mm	Ŧ	5314.9	5314.9
Pressure drop, SS	bar	Ŧ	0.03587	0.03587
Pressure drop, TS	bar	Ŧ	0.04011	0.04011
Baffle spacing	mm	Ŧ	539.75	539.75
Number of baffles			8	8
Tube passes	1	1		
Tube number			278	278
Number of units in series			1	1
Number of units in parallel			1	1
Total price	Dollar(US)	~	28584	28584
Program mode			Design (Sizing)	Design (Sizing)
Calculation method			Advanced method	Advanced method
Area Ratio (dirty)	-	Ŧ	1.03	1.03
Film coef overall, SS	W/(m²-K)	÷	113.8	113.8
Film coef overall, TS	W/(m²-K)	Ŧ	162.3	162.3
Heat load	kW	Ŧ	25.6	25.6
Recap case fully recoverable			Yes	Yes

Exchanger type			BE	M Tube number			27
Position			Н	or Tube length a	ectual	mm	5486
Arrangement		1	parallel 1 ser	ries Tube passes			1
Baffle type			Single segmen	tal Tube type			Plai
Baffle number			8	Tube O.D.		mm	19.0
Spacing (center-center)		mm	539.	75 Tube pitch		mm	23.8
Spacing at inlet		mm	806.	45 Tube pattern			90
			Shell	Kettle	Front I	head Rea	r Head
Outside diameter		mm	508		500	8 5	508
Inside diameter		mm	488.95		488.	95 48	88.95
				Shell Side		Tube	Side
Nozzle type			Inlet	Outlet		Inlet	Outlet
Number of nozzles			1	1		1	1
Actual outside diameter	mm	*	168.28	168.28		33.4	42.16
Inside diameter	mm	*	154.05	154.05		24.31	35.05
Height under nozzle	mm	*	44.45	44.45			
Dome inside diameter	mm	*					
Vapor belt inside diameter	mm	*					
Vapor belt inside width	mm	+					
Vapor belt slot area	mm²	+					
Impingement protection					No impingement		
Distance to tubesheet	mm	_	5276.85	203,2			

Weights	kg	Cost data	Dollar(US)
Shell	749.2	Labor cost	20112
Front head	77.5	Tube material cost	3665
Rear head	82.8	Material cost (except tubes)	4807
Shell cover			
Bundle	1554.3		
Total weight - empty	2463.8	Total cost (1 shell)	28584
Total weight - filled with water	3328.8	Total cost (all shells)	28584