TESTE 2

Q.1.)

$$\mathcal{K}(t) = \begin{cases} t + 2, & \text{se } -2 < t < 1 \\ t^2, & \text{se } -1 < t < 1 \\ 2 - t, & \text{se } 1 < t < 2 \end{cases}$$

$$= \begin{cases} c + 2, & \text{se } 1 < t < 2 \\ c + 2, & \text{se } 1 < t < 2 \end{cases}$$

· Para obter os colficientes en da dérie de Fourier do sinal x (+) acima insaremos de propriédedes para nos auxiliar:

- propriedade da derivada:

$$\mathcal{R}'(\pm) = \begin{cases} (\pm + \alpha)^2 \\ (\pm^2)^2 \end{cases} => \mathcal{R}'(\pm) = \begin{cases} 1 \\ 2\pm \end{cases}, \text{ se } -2 \leq \pm < -1 \end{cases}$$

$$(2-\pm)^2 \qquad => \mathcal{R}'(\pm) = \begin{cases} 2\pm \end{cases}, \text{ se } -1 \leq \pm \angle 1$$

$$(2-\pm)^2 \qquad => 1 \leq \pm \angle 1$$

- grafico da primeira derivada:

-> propuedade da derivida

"as realizar a derivada segunda de $\kappa(t)$, isto é, $\kappa''(t)$, as descontinuidades do tipo digrau do gráfico de $\kappa'(t)$ serão caracterizadas por impulsos e o trecho em que temos a reta $\kappa'(t) = 2t$ ficaremos eom $\kappa''(t) = (2t)'' = 2t$

4 disso, obtemos o gráfico da deruada segunda r'atilibra

/2/

tilibra

```
4 102 (t):
                                                                                                                                                            2\pi \alpha_{K2} (coeficiente \alpha_{K} de \kappa_{2}(t)):

\alpha_{K2} = -3 e j_{K}(113)\pi
                                                                                                                                                       \mathcal{C}_3(\pm):

\mathcal{C}_3(\pm) = -3 \mathcal{C}_{e} 
                                                                                                                                                          Lo ax3 (coeficientes ax de x3(±)):
                                                                                                                                                       \mathcal{K}_{4}(\pm) = 1 \cdot \mathcal{K}_{2}(2\pi/6) \cdot 2 - j \kappa (2\pi/3) \cdot \pm 2 \cdot \mathcal{K}_{3}(2\pi/3) \cdot + \mathcal{K}_{3}(2
                                                                                                                                                         La ak4 (coeficientes 9x de X4(t)):
- cálculo da série para a onda quadrada
                                                      Lo Kg (t):
                                                                                                                   Le centrada na origem e possui amplitude 2, entao:

\mathcal{R}_q(t) = 2 Ch. e & (21/6) t
                                                                                                      20 and (coeficientes an de Kq(+)):

AKq = \begin{cases} 1 \\ 2 \end{cases} sem (KTI/2), K \neq 0
                 - entre temos, a partir de calculado:
```

4 x" (t):

/4/

```
\chi''(\pm) = \kappa_{1}(\pm) + \kappa_{2}(\pm) + \kappa_{3}(\pm) + \kappa_{4}(\pm) +
```

mas, em K=0, Co equivale ao valor medio do si-

mal $\kappa(t)$, entago: $C_0 = \frac{1}{T} \cdot \int_{-T/2}^{T/2} \kappa(t) dt = \frac{1}{6} \cdot \int_{-3}^{3} \kappa(t) dt = >$

=> co = 1 [$\int_{-2}^{1} t + 2 dt + \int_{1}^{1} t^{2} dt + \int_{1}^{2} a^{2} + t dt$ =>

 $= \frac{1}{6} \left(\frac{t^2 + 2t}{2} \right)^{-1} + \frac{t^3}{3} + \left(2t - t^2 \right)^{-2} =$

 $=> C_0 = 1.5 = 5$ 6.310

então podemos reiscrever Cx;

 $CK = \frac{1}{2} \frac{5/18}{18}, K = 0$ $\frac{-3}{2} \frac{(e^{jKR\pi/3} - 3.e^{jK\pi/3} - jKR\pi/3}{-3.e^{jK\pi/3} - 3.e^{jK\pi/3} - jKR\pi/3} + 12.xen(K\pi/2)$ $2K^2\pi^2$ $K\pi$

→ a portir do gráfico, pademos definir [H(yω)]:

[H(yω)] = \$1, 15 €π< [ω] ≤ 35π com ω em [κ radis]

[O, caso contrário · Vamos exontrar a frequência fundamental de Kg(+): → do enunciado (parte gráfica) temos T = 2.10 % → frequência fundamental Wo: Wo = 2TL => WO = 10TK rad /s · Com o wo e / H (j'w) podemos concluir que o sinal se encontra na faira de parragem do filtro para K=-3, K=-2, K=2 e K=3; para todos os outros valores, o sinal está na faixa de → a partir disso, podemos começar a encontrar y (±):

y (±)=

CK. H(jw). e j**wo*± Greens a faire de paragem re da em K=-3, K=-2, K=2 e K=3: $y(t)=C-3 \cdot 1 \cdot e^{-\frac{1}{3}\omega_0 t} + C-2 \cdot 1 \cdot e^{-\frac{1}{3}\omega_0 t} + C_3 \cdot e^{-\frac{1}{3}\omega_0 t} + C_3 \cdot e^{-\frac{1}{3}\omega_0 t}$ 40, coeficientes en da série de Fourier da orda quadrada de amplitude 2 são: $\frac{0}{2} \cdot (-1)^{(K-1)/2}$, K impar Is no couse de K=2 e K=-2 deste exercicio, teremos $C_{2} = C_{-2} = 0 \Rightarrow y(t)$ rate conterá esses termos. Logo, nono y(t) fica: $y(t) = C_{-3} \cdot 1 \cdot e^{-\frac{1}{3}W_{0}t} + C_{3} \cdot 1 \cdot e^{\frac{1}{3}W_{0}t} \Rightarrow$ $= y(t) = 2 \cdot (-1) \cdot (-3-1)/2 \cdot e^{-\frac{1}{3}W_{0}t} + 2 \cdot (-1)$ (3-1)/2 $e^{\frac{1}{3}W_{0}t} = \frac{1}{3}$

encontramos Wo = 10 K rad/s: (0.3.)a) (* podemos obter y1(t) e y2(t) a $y_1(\pm) = \chi(-\pm + T/4)$ $\Rightarrow y_2(\pm)$ i'um deslocamento de $\chi(\pm)$: ya(t)= x (t+ T/4) - avim, encontramos a representação matemática y (t) em função de x (t): y(t)= nc(-++T/4)+nc(++T/4)A tilibra

tilibra

Q-3-)b)
· Para obter os coeficientes que da série de Fourier de y (±)
a partir dos coeficientes Cu, vamos utilizar 3 propriedades
- propriedade da linearidade
$y_1(t) \leftrightarrow a_{k1} = y_1(t) \leftrightarrow a_{k1} + a_{k2}$
yz (t) ~ akz
\sim propriedade do deslocamento no tempo $\kappa (\pm -\pm 0) \leftrightarrow e^{-j \kappa \cdot \omega_0 \cdot t_0}$. Ch
-> propriedade da reversão no tempo
$\chi(-t) \leftrightarrow C_{-\kappa}$
· Determinando os coeficientes:
$\Rightarrow g_1(t) = \chi \left(-t + T/4\right) \Rightarrow Q_{K1} = C_{-K} \cdot e^{-jK\omega_0} (T/4)$ $\Rightarrow g_1(t) = \chi \left(-t + T/4\right) \Rightarrow Q_{K1} = C_{-K} \cdot e^{-jK\omega_0} (T/4)$
Jacks De 171) - 7 Cora - Ch. E
- entar process definer ak:
$g(t) \leftrightarrow a_{K} = $ $-j_{K}.\omega_{0}(T/4) \qquad j_{K}\omega_{0}(T/4)$ $= \gamma a_{K} = C_{-K}.e \qquad + C_{K}.e$
$= 7 a k = C - k \cdot e + C k \cdot e$
mas, como sabemos, $\omega_0 = 2\pi/T$, entas ficamos com:
$\alpha_{K} = C_{-K} \cdot \ell + C_{K} \cdot \ell + C_{K} \cdot \ell$
CIK = C-K, E + CK. E