Amendments to the Specification

Please replace paragraph [0005] of the specification with the following amended paragraph:

[0005] In one approach, dynamic binary instrumentation is performed in an in-line manner. That is, probe code is inserted into a code stream of interest. As a result, existing code must be relocated to new memory space because of increase in size of the original code stream due to the addition of probe code instructions. As compared to out-of-line approaches, an in-line approach leads to more compact code, less intrusion, and better performance. That is, in a typical out-of-line approach, a function's entry point is instrumented with a long branch to a trampoline that executes the instruction plus additional code related to the instrumentation taking place. In the in-line approach, such long branching to the trampoline is avoided. However, an in-line strategy does have drawbacks. For example, the insertion of probe code changes the relative offsets in a code stream and requires lookup of indirect branches (e.g. in a translation table) whose target cannot be determined by the instrumentor. Also, combining different instrumentations and probe code is not as easy as it is in certain out-ofline approaches. One drawback associated with in-line instrumented processes is problem is particularly troublesome. Namely, in some instances it is desirable or necessary to reverse the dynamic binary in-line instrumentation operation, i.e., to undo the instrumentation and revert back to executing the original code. For example, "undoing" the instrumentation (i.e. uninstrumenting a process) is useful when an application is to be measured for only a part of its total runtime.

10019981-1 -2- S Examiner: Nguyen, H.

Serial No.: 10/016,953

Art Unit: 2122