Protocol

Nicolas Heimann

nicolas.heimann@studium.uni-hamburg.de

Jesse Hinrichsen

jesse.hinrichsen@studium.uni-hamburg.de

Universität Hamburg

07.03. - 12.03.2016

Zusammenfassung

An abstract...

Inhaltsverzeichnis

1	Introcution	2				
2 Identifying events						
3	Statistical analysis of Z^0 decay channels					
	3.1 Decay width and cross-section					
	3.2 Estimating change of Z^0 decay width for additional channels	2				
	3.3 Differential cross-section	3				
	3.4 Forward-Backward Asymmetry	3				
4	Analyzing Data	3				
	4.1 Pure Events	3				
	4.1.1 $Z \rightarrow e^+, e^- \dots \dots$	3				
	4.1.2 $Z \rightarrow \mu^+, \mu^-$					
	4.1.3 $Z \rightarrow \tau^+, \tau^-$					
	4.2 Separating t-channel for e^+e^-	4				
	4.3	4				

1 Introcution

2 Identifying events

Quantities for events:

Ctrk(Sump): Energy of charged traces Ctrk(N): Number of charged traces

Ecal(SumE): Energy in electronic-kalorimeter Hcal(SumE): Energy in hadronic-kalorimeter

Quantities							
Run	Event	Ctrk(Sump)	$\operatorname{Ctrk}(N)$	Ecal(SumE)	Hcal(SumE)		
00	ELECTRONS	AF	AFG	004	00		
00	MUONS	AF	AFG	004	00		
00	TAUS	AF	AFG	004	00		
00	HADRONS	AF	AFG	004	00		

3 Statistical analysis of Z^0 decay channels

3.1 Decay width and cross-section

Using equation (2.12) we calculate following decay width of the Z-boson into fermions and (2.14) for cross-section at peak.

Deak.				
Decay width for different channels				
Channel	Decay width			
$\Gamma_l = \Gamma_e = \Gamma_\mu = \Gamma \tau$	85.9 MeV			
$\Gamma_{ u}$	165.9 MeV			
$\Gamma_u = \Gamma_c$	301.5 MeV			
$\Gamma_d = \Gamma_s = \Gamma_b$	381.4 MeV			
Γ_Z	2502.7 MeV			
Γ_{hadr}	1747.3 MeV			
Γ_{lept}^{1}	257.8 MeV			
Γ_{neutr}	497.6 MeV			
Partial cross-section at peak				
σ_{lept}	$5.35 \; KeV^{-2}$			
σ_{neutr}	$10.32 \ KeV^{-2}$			
$\sigma_{u,c}$	$18.76~KeV^{-2}$			
$\sigma_{d,s,c}$	$23.73~KeV^{-2}$			

3.2 Estimating change of Z^0 decay width for additional channels

Decay width of Z^0 for additional channels				
Added channel	Z^0 width	relative increase		
Lepton	2.589 GeV	3.5 %		
Neutrino	2.669 GeV	6.6 %		
u-Quark	2.804 GeV	12 %		
d-Quark	2.884 GeV	15.2 %		

3.3 Differential cross-section

Abbildung 1: Differential cross-section on Θ qualitatively. Red: t-channel, violet: s-channel, blue: s-channel + t-channel

For s-channel: $\frac{d\sigma}{d\Omega} \propto 1 + \cos^2\Theta$ (for big Theta) For t-channel: $\frac{d\sigma}{d\Omega} \propto (1 - \cos\Theta)^{-2}$ (for small Theta)

3.4 Forward-Backward Asymmetry

Based on equation (2.18)

Forward-Bckward asymmetry				
$\sqrt{s} / \sin^2(\theta_W)$	0.21	0.23	0.25	
89.225 GeV	0.547	0.321	0.285	
91.225 GeV	0.530	0.407	0.284	
93.225 GeV	0.515	0.480	0.284	

Abbildung 2: Forward-Bckward asymmetry

4 Analyzing Data

4.1 Pure Events

For the e^+, e^- detection we have to apply a cut for the $-0.71 \le \cos(\theta) \le 0.65$ and $-0.925 \le \cos(\theta) \le -0.85$ due to a problem in the detector.

4.1.1 Z-> e^+, e^-

- All energy in Ecal
- None in Hcal
- 2 charged traces
- ullet Momentum of charged traces around Z_M

4.1.2 Z-> μ^+, μ^-

- None in Ecal
- Very little in Hcal
- 2 charged traces
- Momentum of charged traces around Z_M
- For $\cos(\theta) leq 0.7$ and $\cos(\theta) geq 0.7$ the slope for differential cross-section is not as expected. Thus cut it.

4.1.3 Z-> τ^+, τ^-

asd

4.2 Separating t-channel for e^+e^-

We are looking for a cut to remove all t-channel events. Therefore we define

$$\frac{T}{T+S} \le 0.05 \tag{1}$$

where $T = a(1 - \cos \theta)^{-2}$ and $S = b(1 + \cos^2 \theta)$. And write

$$\frac{dN}{d\cos\theta} = \frac{a}{(1-\cos\theta)^2} + b(1+\cos^2\theta) \tag{2}$$

Integrate $\cos \theta$

$$\int dN = \frac{a}{1 - \cos \theta} + b \left(\cos \theta + \frac{1}{3} \cos^3 \theta \right) \tag{3}$$

We obtain detector errors outside $\cos\theta \in [-0.7, 0.7]$. To solve the equation for a and b we create 2 equations by split around $\cos\theta = 0$.

$$11786 = a(\frac{1}{1 - 0.7} - 1) + b(0, 7 + \frac{1}{3}0.7^{3})$$

$$9620 = a(1 - \frac{1}{1 + 0.7}) + b(0, 7 + \frac{1}{3}0.7^{3})$$
(4)

So we get

$$11786 = (2 + \frac{1}{3})a + 0,813433b$$

$$9620 = 0,4117647a + 0,813433b$$
(5)

So a=1127,2 and b=9155,857. We want $\frac{T}{T+S}\leq 0.05$ so we need to solve

$$\frac{a}{(1-\cos\theta)^2} \frac{1}{\frac{a}{(1-\cos\theta)^2} + b(1+\cos^2\theta)} \le 0.05 \iff \cos\theta \le -0.188342 \tag{6}$$

To get true number of s-channel events we now integrate over the whole interval

$$N_s = b \int_{-1}^{1} d\cos\theta (1 + \cos^2\theta) = \frac{8}{3}b = 24413 \tag{7}$$

4.3