Review of logic design fundamentals

Functions – more than 5 variables –
 simplification using map entered variables.

Α	В	C	D	E	F	G
0	0	0	0	Х	Х	1
0	0	0	1	Χ	Χ	X
0	0	1	0	Χ	Χ	1
0	0	1	1	X	Χ	1
0	1	0	1	1	Χ	1
0	1	1	1	1	Χ	1
1	0	0	1	Χ	1	1
1	0	1	0	Χ	Χ	X
1	0	1	1	Χ	Χ	1
1	1	0	1	Χ	Χ	X
1	1	1	1	X	Χ	1

- Partial truth table for a 6 variable function
- Unspecified
 combinations output =
 0.

- E and F are input variables with greatest number of don't cares.
- K map formed with A, B,C,D remaining two variables entered inside the map.
- E appears in a square E = 1 − corresponding minterm is present in the function G.
- F appears in a square F = 1.

Simplification using map entered variables

$$G = A'B' + ACD + EA'D + FAD$$

$$F = MS_0 + P_1MS_1 + P_2MS_2 + \cdot \cdot \cdot$$

where

- MS_0 is the minimum sum obtained by setting $P_1 = P_2 = \cdots = 0$.
- MS_1 is the minimum sum obtained by setting $P_1 = 1$, $P_j = 0$ ($j \ne 1$), and replacing all 1s on the map with don't cares.
- MS_2 is the minimum sum obtained by setting $P_2 = 1$, $P_j = 0$ $(j \neq 2)$, and replacing all 1s on the map with don't cares.

$$G = A'B' + ACD + EA'D + FAD$$

- Concept of universality: Gates which can implement any Boolean function without the need to use any other types of gates.
- NAND and NOR universal gates.
- Use NAND and NOR alone to implement the basic gates.

NOT or **INV**

$$X \longrightarrow F = \overline{x}.\overline{x} = \overline{x}$$

AND

$$\begin{array}{ccc}
x & & \\
y & & \\
\end{array}
\qquad F = \overline{xy} = xy$$

OR

Implementation of NAND and NOR easier than that of AND and OR gates.

Bubble – complement.

AND – NAND - adding an inversion bubble at the output.

OR – NAND – adding inversion bubble at the inputs.

Inverter output drives inverted input – no further action required.

Non inverted gate output drives an inverted gate input or vice versa – insert an inverter.

Variable drives inverted input - complement the variable.

Conversion of AND-OR circuit to NAND gate

Sequential circuits – flip-flops as storage devices.

Types of flip-flops:

D flip-flops
J-K flip-flops
T flip-flops

Clocked D flip-flop with rising edge trigger

- State change in response to the rising edge of the clock input.
- Q+ next state of the Q output after the active edge of the clock.
- D input before the active edge.

J-K flip-flop and its truth table

\boldsymbol{J}	K	Q	Q^+
0	0	0	0
0	0	1	1
0 0 0	1	0	1 0 0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$Q^+ = JQ' + K'Q.$$

 State change occurs following the falling edge of the clock.

Clocked T flip-flop

$$Q^+ = QT' + Q'T = Q \oplus T$$

 State change occurs following the falling edge of the clock.

$$Q^+ = S + R'Q.$$

S-R latch

- Un-clocked flip-flop SR latch
- Characteristic equation?

Transparent D latch

G	D	Q	Q^+
0 0 0 0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$Q^+ = GD + G'Q.$$

- No response to input changes unless G = 1.
- Level sensitive D flipatilop, NITK