Laboratorio #6 – Procesamiento de Audio

M.C. Fernando Hermosillo Reynoso fhermosillo@up.edu.mx

Universidad Panamericana

Sesión #6

28 de Enero del 2020

- Repositorio GitHub del curso: <u>UP_DSP24</u>
 - Documentos
 - Ejemplos
 - Notas rápidas
 - Laboratorios

Prelab

PCA

Procesamiento Digital de Audio

- Aplicaciones
 - Síntesis de Voz
 - Compresión de datos
 - Recuperación de información musical
 - Cancelación de ruido
 - Filtros
 - Reconocimiento de voz

Representación de una Señal de Audio

sample rate

44.1 kHz, 48 kHz, 96 kHz, ...

Representación de una Señal de Audio

El rango de audio es de -1V a 1V

Posterior a este rango se satura el ADC o el DAC! > Distorsión

Hay que garantizar dicho rango en ambos convertidores!

Representación de una Señal de Audio

Usualmente la señal de audio es estéreo, es decir, contiene "dos muestras" por cada muestra:

- > Canal izquierdo
- > Canal derecho

Representación de una Señal de Audio

Las señales de audio se pueden procesar por bloques, es decir, tomando cierta cantidad de muestras denominado bloque, y posteriormente se procesa dicho bloque para enviarlo al DAC

La programación de audio es "hard real-time"

Conceptos Básicos

- Tipo de Procesamiento.
 - Basados en muestras. Cada muestra de entrada se procesa en el tiempo "n"
 - Basados en bloques. Datos se transfieren a un búfer de memoria, después se procesa el búfer.

Buffer *de* 7 muestras

Conceptos Básicos

- Latencia τ .
 - Tiempo total transcurrido que contempla almacenamiento y procesamiento
 - 1. $\tau < 10 \, ms$: Bueno para "en vivos"
 - 2. $10 < \tau < 30 \text{ ms}$: Se percibe el retardo
 - 3. $\tau > 30 \text{ ms}$: No apto para tiempo real

Ejemplo de latencia (almacenamiento)

Buffer size	Buffer length @ sample rate 44.1 kHz	Buffer length @ sample rate 96 kHz			
32 samples	0.73 ms	0.33 ms			
64 samples	1.45 ms	0. 66 ms			
128 samples	2.90 ms	1.33 ms			
1024 samples	23.2 ms	10.7 ms			
$T_s = 22.67 \mu$	is	Si se adquieren 32 muestras			
por muestr	$ au_{storage} = 32 \cdot T_s \approx 0.73 ms$				

Conceptos Básicos

- Latencia τ .
 - Tiempo total transcurrido que contempla almacenamiento y procesamiento

- $\tau < 10 \, ms$: Bueno para "en vivos"
- $10 < \tau < 30 \, ms$: Se nota el retardo
- $\tau > 30 \ ms$: No apto para tiempo real

- Se tiene que garantizar que
 - 1. Procesamiento termina antes del tiempo del próximo búfer
 - 2. Terminará de procesar el búfer (no se estanca)
 - 3. El búfer de salida contendrá datos de audio válidos
 - 4. No habrá error y/o excepción
- De lo contrario

Audio Dropout

Conceptos Básicos

- Calidad del servicio.
 - Calidad de señal aceptable dependiendo de la aplicación
 - Principal consideración al diseñar un sistema de audio

Ejemplos.

Audio Device/Application	Typical Signal Quality
AM Radio	48 dB
Analog Broadcast TV	60 dB
FM Radio	70 dB
Analog Cassette Player	73 dB
Video Camcorder	75 dB
ADI SoundPort Codecs	80 dB
16 Bit Audio Converters	90 to 95 dB
Digital Broadcast TV	85 dB
Mini-Disk Player	90 dB
CD Player	92 to 96 dB
18-bit Audio Converters	104 db
Digital Audio Tape (DAT)	110 dB
20-bit Audio Converters	110 dB
24-bit Audio Converters	110 to 120 dB
Analog Microphone	120 dB

Efectos de Retardos de Línea

•Vibrato.

- Pequeña variación cuasiperiódica en el pitch de un tono
- Retardo variable de línea bajo el control de oscilador de baja frecuencia (LFO) M(n)
 - Función periódica F < 20 Hz
 - $M_{avg} \ge W$: Causal, $M(n) \ge 0$
 - W: Ancho del LFO en muestras

Osciladores de Baja Frecuencia

Efectos de Retardos de Línea

Distorsión

Hard-clipping se caracteriza por una transición abrupta entre las regiones recortadas y no recortadas de la forma de onda, lo que produce esquinas cuadradas en la salida.

$$f(x) = \begin{cases} -1 & Gx \le -1 \\ G \cdot x & -1 < Gx < 1 \\ 1 & Gx \ge 1 \end{cases}$$

Soft-clipping se caracteriza por un enfoque suave del nivel de recorte, creando esquinas redondeadas en los picos de la forma de onda.

$$f(x) = sign(x) \cdot \left[1 - e^{-|Gx|}\right]$$

Laboratorio 6. Procesamiento de Audio

Esquema General

AI-Thiker AudioKit V2.2: Descripción de I/O

GPIO	Señal	GPIO	Señal	GPIO	Señal
100	I2S-MCLK	1036	KEY1	IO19	LED5
1025	I2S-WS	IO13	KEY2	IO14	SCK
1026	I2S-DOUT	1019	KEY3	IO15	MOSI
1027	I2S-BCK	1023	KEY4	102	MISO
1035	I2S-DIN	IO18	KEY5	1013	CS
1032	I2CO-SCL	105	KEY6	1034	SD_INTR
1033	I2C0-SDA	1022	LED4		

Actividad #0: Configuración del Proyecto

- Crear nuevo proyecto en PlatformIO "pds24_lab_1"
- Añadir "AudioToolkit HAL"
- Configurar "platform.io"

ReemplazarPATH_TO_AUDIOKIT_LIBPor ubicación de la biblioteca

```
[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino
lib_ldf_mode = deep+
lib_extra_dirs = PATH_TO_AUDIOKIT_LIB
build_flags = -DAUDIOKIT_BOARD=5
monitor_speed = 115200
```

Actividad #0: Configuración del Proyecto

- 1. Configure códec ES8388
 - 1. Entrada y salida
 - 2. ADC Línea 2
 - 3. DAC Línea 1
 - 4. Frec. Muestreo: 48KHz
 - 5. Bits por muestra: 16
 - 6. Tamaño buffer DMA: ?
 - 7. Número buffers DMA: 4

Establecer el tamaño del Buffer DMA de tal forma que se tenga una latencia de:

1.
$$\tau = 1ms$$

2.
$$\tau = 30ms$$

Actividad #1: Implementación de Algoritmos de Procesamiento de Audio

- Diseñar e implementar tres algoritmos de procesamiento de audio en la tarjeta AudioKit
 - 1. Ver los algoritmos en la siguiente diapositiva
 - 2. Para algoritmos de retardo de línea, utilice el búfer circular visto en el laboratorio 3
 - 3. Para algoritmos que empleen osciladores de baja frecuencia LFO senoidales, implementar los LFO con ecuaciones en diferencia

- 1. Puede escribir un programa por cada efecto o combinar los tres en uno solo, seleccionando el efecto a aplicar por medio de los botones
 - Si KEY1 esta presionado, aplicar efecto 1
 - Si KEY2 esta presionado, aplicar efecto 2
 - Si KEY3 esta presionado, aplicar efecto 3
 - 4. Si ningún botón se presiona, no aplicar ningún efecto

Efectos Típicos

ECHO FILTER

$$y(n) = x(n) + \alpha x(n - D)$$

$$D \rightarrow t > 100ms$$

FEEDBACK ECHO FILTER

$$y(n) = x(n) + \alpha y(n - D)$$

 $D \rightarrow t > 100ms$

 $|\alpha| < 1$: Stable

 $|\alpha| = 1$: Critical-Stable

 $|\alpha| > 1$: Unstable

CHORUS FILTER

$$y(n) = x(n) + \sum_{k=1}^{M} \alpha_k x(n - d_k(n))$$

 $d_k(n)$: Variable Delay (10ms < t < 25ms) $d_k(n) = \frac{1}{2}(1 - \cos(\omega_0 n))(D_2 - D_1) + D_1$ $F \le 3Hz$

FLANGER

$$y(n) = x(n) + \alpha x(n - d_k(n))$$

$$d_k(n)$$
: Variable Delay $(1ms < t < 5ms)$
 $d_k(n) = \frac{1}{2}(1 - \cos(\omega_0 n))(D_2 - D_1) + D_1$
 $1 \le F \le 5Hz$

Efectos Típicos

TREMOLO FILTER

$y(n) = (1 - \alpha)x(n) + \alpha x(n)m(n)$ m(n): Modulation signal $m(n) = \cos(\omega_0 n)$ o $\sin(\omega_0 n)$ $1 \le F \le 25Hz$

DISORTION FILTER

$$y(n) = \operatorname{atan}(G \cdot x(n))$$

 $G > 1$

DISORTION FUZZ FILTER

$$y(n) = sign(x(n)) \cdot (1 - e^{-G|x(n)|})$$

 $G > 1$

OVERDRIVEN FILTER

$$y(n) = \begin{cases} 2x(n), & |x(n)| < \frac{1}{\tau} \\ \frac{sign(x(n))(3 - (2 - 3|x(n)|)^2)}{3}, |x(n)| < \frac{2}{\tau} \\ sign(x(n)), & otherwise \end{cases}$$

 τ : Umbral de distorsión

Cuestionario

- Responda a las siguientes preguntas
- 1. De los tres algoritmos implementados
 - 1. Cuales son lineales?
 - 2. Cuales son no lineales?
 - 3. Cuales son invariantes en tiempo?
 - 4. Cuales son variantes en tiempo?

1. Si implemento un sistema LTI, determine su función de transferencia y calcule su respuesta al impulso