Математический Анализ - 2

Авторы текущего конспекта:

Жуков Андрей | github Мелисов Тимур | github

Версия от 16.09.2025 14:08

Содержание

-	Kpa	атные интегралы. Брусы. интегрируемые функции по Риману
	1.1	Брус. Мера бруса
	1.2	Свойства меры бруса в \mathbb{R}^n
	1.3	Разбиение бруса. Диаметр множества. Масштаб разбиения
	1.4	Интегральная сумма Римана. Интегрируемость по Риману
	1.5	Пример константной функции
	1.6	Неинтегрируемая функция
	1.7	Вычисление многомерного интеграла
2	Сво	ойства кратных интегралов. Условия интегрирования. Лебегова мера
	2.1	Необходимое условие интегрирования
	2.2	Свойства интеграла Римана
	2.3	Множество меры нуль по Лебегу
	2.4	Свойства множества меры нуль по Лебегу

Кратные интегралы. Брусы. Интегрируемые функции по Риману 1

Брус. Мера бруса 1.1

Определение. Замкнутый брус (координатный промежуток) в \mathbb{R}^n — множество, описываемое как

$$I = \{x \in \mathbb{R}^n \mid a_i \leqslant x_i \leqslant q_i, i \in \{1, n\}\}$$
$$= [a_1, b_1] \times \ldots \times [a_n, b_n]$$

Примечание. $I = \{a_1, b_1\} \times \ldots \times \{a_n, b_n\}$, где $\{a_i, b_i\}$ может быть отрезком, интервалом и т.д. Определение. Мера бруса — его объём:

$$\mu(I) = |I| = \prod_{i=1}^{n} (b_i - a_i)$$

Свойства меры бруса в \mathbb{R}^n

- 1. Однородность: $\mu(I_{\lambda a,\lambda b}) = \lambda^n \cdot \mu(I_{a,b})$, где $\lambda \geqslant 0$
- 2. **Аддитивность:** Пусть I, I_1, \ldots, I_k брусы

Тогда, если $\forall i,j \ I_i,I_j$ не имеют общих внтренних точек, и $\overset{\circ}{\bigcup} \ I_i=I,$ то

$$|I| = \sum_{i=1}^{k} |I_i|$$

3. Монотонность: Пусть I- брус, покрытый конечной системой брусов, то есть $I\subset \bigcup^{\kappa}I_i$, тогда

$$|I| < \sum_{i=1}^{k} |I_i|$$

Разбиение бруса. Диаметр множества. Масштаб разбиения

Определение. I — замкнутый, невырожденный брус и $\bigcup_{i=1}^k I_i = I$, где I_i попарно не имеют общих внутренних точек.

Тогда набор $\mathbb{T} = \{\mathbb{T}\}_{i=1}^k$ называется разбиением бруса I

Определение. Диаметр произвольного ограниченного множества $M\subset \mathbb{R}^n$ будем называть

$$d(M) = \sup_{1 \leqslant i \leqslant k} \|x - y\|,$$
 где

$$d(M) = \sup_{1 \leqslant i \leqslant k} \|x - y\|$$
, где $\|x - y\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$

Определение. Масштаб разбиения $\mathbb{T}=\{I_i\}_{i=1}^k$ — число $\lambda(\mathbb{T})=\Delta_{\mathbb{T}}=\max_{1\leq i\leq k}d(I_i)$

Определение. Пусть $\forall \ I_i$ выбрана точка $\xi_i \in I_i$. Тогда, набор $\xi = \{\xi_i\}_{i=1}^k$ будем называть **отмеченными точками Определение.** Размеченное разбиение — пара (\mathbb{T}, ξ)

Интегральная сумма Римана. Интегрируемость по Риману

Пусть I — невырожденный, замкнутый брус, функция $f:I \to \mathbb{R}$ определена на I

Определение. Интегральная сумма Римана функции f на (\mathbb{T},ξ) — величина

$$\sigma(f, \mathbb{T}, \xi) := \sum_{i=1}^{k} f(\xi_i) \cdot |I_i|$$

Определение. Функция f интегрируема (по Риману) на замкнутом брусе I ($f: I \to \mathbb{R}$), если

$$\exists A \in \mathbb{R} : \forall \varepsilon > 0 \,\exists \delta > 0 : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta :$$
$$|\sigma(f, \mathbb{T}, \xi)| - A| < \varepsilon$$

Тогда

$$A = \int_{I} f(x) dx = \int \dots \int_{I} f(x_1, \dots, x_n) dx_1 \dots dx_n$$

Обозначение: $f \in \mathcal{R}(I)$

1.5 Пример константной функции

Пусть у нас есть функция f = const

$$\forall (\mathbb{T}, \xi) : \ \sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{k} \operatorname{const} \cdot |I_{i}|$$
$$= \operatorname{const} \cdot |I| \Longrightarrow \int_{I} f(x) dx = \operatorname{const} \cdot |I|$$

1.6 Неинтегрируемая функция

Имеется брус $I = [0,1]^n$, а также определена функция, такая что

$$f = \begin{cases} 1, & \forall i = \overline{1, \dots, n} \ x_i \in \mathbb{Q} \\ 0, & \text{иначе} \end{cases}$$

Доказательство. $\forall \mathbb{T}$ можно выбрать $\xi_i \in \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \overline{\xi})$:

$$\sigma(f, \mathbb{T}, \overline{\xi}) = \sum_{i=1}^{k} 1 \cdot |I_i| = |I| = 1$$

В то же время, $\forall \mathbb{T}$ можно выбрать $\xi_i \notin \mathbb{Q}$, тогда для такой пары $(\mathbb{T}, \hat{\xi})$:

$$\sigma(f, \mathbb{T}, \hat{\xi}) = \sum_{i=1}^{k} 0 \cdot |I_i| = 0 \Longrightarrow f \notin \mathcal{R}(I)$$

1.7 Вычисление многомерного интеграла

Вычислите интеграл

$$\iint\limits_{\substack{0 \leqslant x \leqslant 1 \\ 0 \leqslant y \leqslant 1}} xy \mathrm{d}x \mathrm{d}y$$

рассматривая его как представление интегральной суммы при сеточном разбиении квадрата

$$I = [0, 1] \times [0, 1]$$

на ячейки — квадраты со сторонами, длины которых равны $\frac{1}{n}$, выбирая в качестве точек ξ_i нижние правые вершины ячеек

Имеется функция $f=xy,\, |I|=rac{1}{n^2}$

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i=1}^{n} \sum_{j=0}^{n-1} \frac{i}{n} \cdot \frac{j}{n} \cdot \frac{1}{n^2}$$

$$= \frac{1}{n^4} \sum_{i=1}^{n} \sum_{j=0}^{n-1} i \cdot j$$

$$= \frac{1}{n^4} \sum_{i=1}^{n} i \sum_{j=0}^{n-1} j$$

$$= \frac{n(n-1)}{n^4} \sum_{i=1}^{n} i$$

$$= \frac{n^2(n+1)(n-1)}{4n^4}$$

Заметим, что $\lim_{n \to \infty} \frac{n^2(n+1)(n-1)}{4n^4} = \frac{1}{4}$

2 Свойства кратных интегралов. Условия интегрирования. Лебегова мера

2.1 Необходимое условие интегрирования.

Теорема. Пусть I — замкнутый брус.

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

Доказательство. От противного.

1. $f \in \mathcal{R}(I) \implies \exists A \in n \, \mathbb{R}$, такая что $\forall \varepsilon > 0$, а значит для $\varepsilon = 1$ тоже:

$$\exists \delta > 0 \colon \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} \leqslant \omega$$
 верно $|\sigma(f, \mathbb{T}, \xi) - A| < 1$

Отсюда

$$A-1 < \sigma < A+1 \implies \sigma$$
 ограничена

2. С другой стороны, так как предположили, что f — неограничена на I

$$\forall \mathbb{T} = \{I_i\}_{i=1}^k \quad \exists i_0 \colon f$$
 неограничена на I_{i_0}

Тогда рассмотрим интегральную сумму

$$\sigma(f, \mathbb{T}, \xi) = \sum_{i \neq i_0} f(\xi_i) \cdot |I_i| + f(\xi_{i_0}) \cdot |I_{i_0}|$$

Выбором подходящего ξ_{i_0} можно сделать $f(\xi_{i_0})$ сколь угодно большой $\implies \sigma$ тоже.

Из противоречния пунктов 1 и 2 следует, что

$$f \in \mathcal{R}(I) \implies f$$
 ограничена на I

2.2 Свойства интеграла Римана

1. Линейность.

$$f, g \in \mathcal{R}(I) \implies (\alpha f + \beta g) \in \mathcal{R}(I) \ \forall \alpha, \beta \in \mathbb{R}$$

И верно, что:

$$\int_{I} (\alpha f + \beta g) dx = \alpha \int_{I} f dx + \beta \int_{I} g dx$$

Доказательство.

$$f \in \mathcal{R}(I): \exists A_f, \text{что} \quad \forall \varepsilon > 0 \,\exists \delta_1 > 0 \,\, \forall (\mathbb{T}, \xi) \colon \Delta_{\mathbb{T}} < \delta_1 \quad \text{ верно} \, \left| \sigma(f, \mathbb{T}, \xi) - \int_I f \mathrm{d}x \right| =: |\sigma_f - A_f| < \frac{\varepsilon}{|\alpha| + |\beta| + 1}$$

$$g \in \mathcal{R}(I): \exists A_g, \text{что} \quad \forall \varepsilon > 0 \,\exists \delta_2 > 0 \,\, \forall (\mathbb{T}, \xi) \colon \Delta_{\mathbb{T}} < \delta_2 \quad \text{ верно} \, \left| \sigma(g, \mathbb{T}, \xi) - \int_I g \mathrm{d}x \right| =: |\sigma_g - A_g| < \frac{\varepsilon}{|\alpha| + |\beta| + 1}$$

Тогда $\forall (\mathbb{T}, \xi) \colon \Delta_{\mathbb{T}} < min(\delta_f, \delta_g) = \delta :$

$$|\sigma(\alpha f + \beta g, \mathbb{T}, \xi) - \alpha A_f + \beta A_g| = \left| \sum_{i=1}^{n} (\alpha f(\xi_i) + \beta g(\xi_i)) \cdot |I_i| - \alpha A_f - \beta A_g \right| \le$$

$$\le |\alpha| \cdot |\sigma_f - A_f| + |\beta| \cdot |\sigma_g - A_g| < (|\alpha| + |\beta|) \varepsilon$$

Монотонность

$$f,g \in \mathcal{R}(I); \ f \leqslant g$$
 на $I \implies \int_I f \mathrm{d}x \leqslant \int_I g \mathrm{d}x$

Доказательство.

$$f \in \mathcal{R}(I) \implies \exists A_f \in \mathbb{R} \colon \forall \, \varepsilon > 0 \,\, \exists \delta : \forall (\mathbb{T}, \xi) : \Delta_{\mathbb{T}} < \delta, \,\, \text{выполняется} \,\, |\sigma_f - A_f| < \varepsilon$$

Аналогично для $g \in \mathcal{R}(I)$, тогда:

$$\begin{cases} A_f - \varepsilon < \sigma_1 < A_f + \varepsilon \\ A_g - \varepsilon < \sigma_2 < A_g + \varepsilon \\ \sigma_f \leqslant \sigma_g \end{cases}$$

Отсюда

$$A_f - \varepsilon < \sigma_f \leqslant \sigma_g < A_g + \varepsilon \implies A_f - \varepsilon < A_g + \varepsilon \implies A_f < A_g + 2\varepsilon \qquad \forall \varepsilon > 0$$

Оценка интеграла (сверху)

$$f \in \mathcal{R}(I) \implies \left| \int_{I} f dx \right| \leqslant \sup_{I} |f| |I|$$

Доказательство. По необходимому условию для интегрируемости функции (см. ниже)

$$f \in \mathcal{R}(I) \implies f$$
 Ограничена на
$$I$$

$$\implies -\sup_{I} |f| \leqslant f \leqslant \sup_{I} |f|$$

Тогда,

$$\begin{split} -\int_{I} \sup|f| \mathrm{d}x &\leqslant \int_{I} f \mathrm{d}x &\leqslant \int_{I} \sup|f| dx \\ -\sup_{I} |f| |I| &\leqslant \int_{I} f \mathrm{d}x &\leqslant \sup_{I} |f| |I| \end{split}$$

2.3 Множество меры нуль по Лебегу

Определение. Множество $M \subset \mathbb{R}^n$ будем называть **множеством меры 0 по Лебегу**, если $\forall \varepsilon > 0$ существует не более чем счетный набор (замкнутых) брусов $\{I_i\}$ и выполняются:

•
$$M \subset \bigcup_i I_i$$

•
$$\sum_{i} |I_i| < \varepsilon \quad \forall \varepsilon < 0$$

Пример: $a \in \mathbb{R}$ — точка.

$$I=[a-\frac{\varepsilon}{3},a+\frac{\varepsilon}{3}] \implies |I|=\frac{2\varepsilon}{3}<\varepsilon \quad \forall \varepsilon>0 \implies a - \text{множество меры нуль по Лебегу}$$

2.4 Свойства множества меры нуль по Лебегу

- 1. Если в определении $\{I_i\}$ заменить на открытые брусы, то определение останется верным.
- 2. Доказательство. Пусть $\{I_i\}$ открытые брусы, тогда $\forall \varepsilon > 0 \; \exists$ не более чем счетный набор $\{I_i\}$: $M \subset \bigcup_i I_i$ и $\sum |I_i| < \varepsilon$

Пусть $\{ar{I}_i\}$ — открытые брусы + границы = замкнутые брусы I_i , причём объем "добавленных" плоскостей нулевой

$$M \subset \bigcup_{i} I_{i} \subset \bigcup_{i} \bar{I}_{i}, |I_{i}| = |\bar{I}_{i}|$$

Если

$$\forall \varepsilon \; \exists \{I_i\} : M \subset \bigcup_i I_i : \sum_i |I_i| < \varepsilon$$

то

$$\forall \, \varepsilon \,\, \exists \{\bar{I}_i\} : M \subset \bigcup_i \bar{I}_i : \sum_i |\bar{I}_i| < \varepsilon$$

Докажем в обратную сторону. Мы хотим увеличить замкнутый брус в два раза и увеличенный брус взять открытым.

Пусть $\{I_i\}$ — набор замкнутых брусов

$$I_i = [a_i^1, b_i^1] \times \ldots \times [a_i^n, b_i^n], \quad V_i = \sum_i |I_i| < \frac{\varepsilon}{2^n}$$

Так как $\left(\frac{a_i^k}{2},\frac{b_i^k}{2}\right)$ — центр i-го бруса в k-ом измерении, увеличить изначальный брус в два раза по этому измерению можно сдвинувшись от центра не на половину, а на целую сторону, то есть на $b_i^k-a_i^k$

Таким образом:

$$\tilde{I}_{i} = \left(\frac{a_{i}^{1} + b_{i}^{1}}{2} - (b_{i}^{1} - a_{i}^{1}); \frac{a_{i}^{1} + b_{i}^{1}}{2} + (b_{i}^{1} - a_{i}^{1})\right) \times \dots \times \left(\frac{a_{i}^{n} + b_{i}^{n}}{2} - (b_{i}^{n} - a_{i}^{n}); \frac{a_{i}^{n} + b_{i}^{n}}{2} + (b_{i}^{n} - a_{i}^{n})\right)$$

$$\implies V_{2} = \sum_{i} |\tilde{I}_{i}| = 2^{n} \cdot V_{1} < \varepsilon$$