

Universidade Federal Fluminense Instituto de Ciência e Tecnologia Departamento de Engenharia Curso de Graduação em Engenharia de Produção

Jean Nery dos Santos Oliveira Silva Pedro Costa Ceciliano

ANÁLISE PREDITIVA DA SEGROB NOTLAD

RIO DAS OSTRAS - RJ

SUMÁRIO

1. Metodologia	3
2. Estudo de Caso	6
2.1 Entendimento do Negócio	6
2.1.1 Objetivo Geral do Negócio	6
2.1.2 Contexto.	7
2.1.3 Definindo o problema em uma pergunta	7
2.1.4 5W2H	8
2.2 Entendimento dos Dados	8
2.3 Preparação dos Dados	10
2.4 Modelagem dos Dados	11
2.4.1 Modelo Naive	11
2.4.2 Modelo Cumulativo	12
2.4.3 Modelo de Média Móvel	13
2.4.4 Modelo de Suavização Exponencial	14
3. Fundamentação Teórica	15
4. Referências	15

1. Metodologia

A metodologia adotada para esse projeto segue os fundamentos do Cross Industry Standard Process for Data Mining (CRISP-DM). O CRISP-DM é uma abordagem estruturada e cíclica composta por seis fases principais, que garantem a organização, rastreabilidade e eficiência na execução de projetos de ciência de dados.

Figura 1: Fases do Modelo CRISP-DM

A primeira fase é o **Entendimento do Negócio**. Nesta fase começa com uma compreensão profunda das necessidades do cliente, incluindo seus objetivos e requisitos do projeto. Essas são algumas tarefas a serem seguidas para essa primeira fase.

- Determinar os objetivos do negócio: Entender completamente de uma uma visão empresarial, o que o cliente deseja realizar e em seguida definir os critérios de sucesso do negócio.
- Avaliar a situação: Determinar a disponibilidade de recursos e requisitos do projeto, avaliar os riscos e contingências e conduzir uma análise de custo-benefício.
- Determinar metas de mineração de dados: Além de definir os objetivos de negócio, deve-se também definir o que significa sucesso em uma visão técnica de mineração de dados

 Produzir plano de projeto: Selecionar tecnologias e ferramentas e definir planos detalhados para cada fase do projeto.

Por ser a primeira fase do projeto, estabelecer uma forte compreensão do negócio vai servir como fundamentação, ou seja, absolutamente essencial para o andamento do projeto.

A próxima fase é o **Entendimento dos Dados**. Somando com a primeira fase de *Entendimento do Negócio*, essa segunda fase vai direcionar o foco para identificar, coletar e analisar os conjuntos de dados que podem ajudar a atingir o objetivo do projeto. Suas tarefas são:

- Coletar dados iniciais: Adquirir os dados necessários e (se necessário) inseri-los na ferramenta de análise.
- Descrever os dados: Examinar os dados e documentar suas prioridades de superfície, como formato dos dados, números de registros ou identidades de campo.
- Explorar os dados: Se aprofundar nos dados. Consultar, visualizar e identificar as correlações entre eles.
- Verificar a quantidade dos dados: Qual nível de veracidade dos dados?
 Documentar qualquer problema de qualidade dos mesmos.

A terceira fase é a **Preparação de Dados**. Normalmente essa fase toma cerca de 70%, ou até mesmo 90% do tempo do projeto. É chamada por alguns de "manipulação de dados", ela serve para preparar os conjuntos de dados finais para modelagem. Ela consiste em cinco tarefas:

- Selecionar dados: Determinar quais conjuntos de dados serão usados e documentar os motivos para inclusão/exclusão.
- Limpar dados: É uma das tarefas mais demoradas. Ela tem o objetivo de corrigir, imputar ou remover valores incorretos.
- Construir dados: Derivar novos atributos que serão úteis. Por exemplo, derivar o índice de massa corporal de alguém a partir dos campos de altura e peso.
- Integrar dados: Criar novos conjuntos de dados combinando dados de várias fontes.

Formatar dados: Reformatar os dados conforme o necessário.
 Exemplo: converter valores de string que armazena números em valores numéricos para poder realizar operações matemáticas.

Depois da *Preparação de Dados*, seguimos para a **Modelagem.** Nessa fase diversos modelos serão construídos e avaliados com base em técnicas de modelagem. Esta fase tem quatro tarefas:

- Selecionar técnicas de modelagem: Determinar quais algoritmos utilizar. (por exemplo: regressão).
- Gerar design de Teste: Dependendo da modelagem, talvez seja necessário dividir os dados em conjuntos de treinamento, teste de validação.
- Construir modelo: Construir um código de programação.
- Avaliar o modelo: Interpretar os resultados do modelo com base no conhecimento do domínio, nos critérios de sucesso predefinidos e no design do teste.

O Crisp-DM sugere iterar a construção e a avaliação dos modelos até que se obtenha os melhores modelos. Porém, na prática as equipes continuam iterando até encontrar um modelo "bom o suficiente", prosseguir pelo ciclo de vida do CRISP-DM e, então, melhorar ainda mais os modelos em iterações futuras.

A fase de **Avaliação** analisa de forma mais ampla qual modelo melhor atende aos requisitos do negócio e o que fazer em seguida. Esta fase tem três tarefas:

- Avaliar os resultados: Os modelos atendem aos critérios de sucesso do negócio? Quais devemos aprovar para o negócio?
- Processo de revisão: Revisar todo o trabalho realizado. Algo foi esquecido? Todas as etapas foram executadas corretamente? Resumir as descobertas e corrigir o que for necessário.
- Determinar as próximas etapas: Determinar se deseja prosseguir com a implantação, iterar mais, ou iniciar novos projetos, com base nas duas tarefas anteriores.

"Dependendo dos requisitos, a fase de **Implantação** pode ser tão simples quanto gerar um relatório ou tão complexa quanto implementar um processo de mineração de dados repetível em toda a empresa." - Guia CRISP-DM. Um modelo não é particularmente útil a menos que o cliente possa acessar seus resultados.

- Planejar a implantação: Desenvolver e documentar um plano paraa implantação do modelo.
- Planejar monitoramento e manutenção: Desenvolver um plano para o monitoramento e manutenção para evitar problemas durante a fase operacional (ou fase pós-projeto) de um modelo.
- Produzir relatório final: A equipe do projeto documenta um resumo do projeto, que pode incluir uma apresentação final dos resultados da mineração de dados.
- Revisar projeto: Realizar uma retrospectiva do projeto sobre o que deu certo, o que poderia ter sido melhor e como melhorar no futuro.

O Trabalho talvez não acabe depois dessas seis tarefas. Como estrutura de projeto, o CRISP-DM não define o que fazer após o projeto (também conhecido como operações).

2. Estudo de Caso

2.1 Entendimento do Negócio

2.1.1 Objetivo Geral do Negócio

A Segrob Notlad, uma das maiores marcas brasileiras de fast fashion, está passando por uma fase estratégica de transformação digital. Um dos pilares dessa nova fase é o uso intensivo de inteligência artificial e análise preditiva para melhorar a eficiência operacional e a assertividade nas decisões de negócio. A Segrob Notlad precisa prever o volume diário de vendas de camisetas no mês de dezembro de 2024, com base no histórico de vendas de janeiro de 2022 a novembro de 2024. Isso permitirá à empresas planejar melhor para um período de alta demanda, evitando falta de estoque ou excesso de produtos.

2.1.2 Contexto

A marca possui mais de 80 lojas no Brasil e presença internacional, com atuação dinâmica no mercado da moda urbana. A gestão de estoque e o planejamento de suprimentos são áreas críticas para a empresa, especialmente em períodos de alta sazonalidade, como o fim de ano. A camiseta básica é um item-chave, e falhas na previsão de demanda podem gerar rupturas de estoque ou sobras onerosas.

2.1.3 Definindo o problema em uma pergunta

Qual será o volume de vendas diárias de camisetas básicas durante o mês de dezembro de 2024, considerando o comportamento histórico da demanda?

Objetivos Específicos do Projeto de Mineração de Dados:

- Desenvolver um modelo preditivo capaz de estimar com precisão as vendas diárias de camisetas básicas em dezembro de 2024.
- Utilizar dados históricos de vendas (jan/2022 a nov/2024) como base de análise.
- Aumentar a agilidade e a assertividade na tomada de decisão da área de abastecimento e cadeia de suprimentos.
- Servir como um piloto para o uso sistemático de IA na previsão de demanda.

Critérios de Sucesso do Projeto:

- Capacidade do modelo de se adaptar a novas variáveis ou mudanças no cenário de negócio.
- Clareza na comunicação dos resultados para as partes interessadas.
- Potencial de escalabilidade da solução para outros produtos da marca.

Restrições e Riscos:

- Mudanças no escopo do desafio ao longo do tempo (novas variáveis, mudanças na estratégia).
- Qualidade e consistência dos dados históricos.
- Sazonalidade e eventos promocionais (Black Friday, Natal) que podem distorcer padrões históricos.
- Alinhamento entre as equipes de dados e as áreas de negócio.

Recursos e Stakeholders

- Time de análise
- Base de dados de vendas fornecida pela empresa.
- Equipes internas da Segrob Notlad nas áreas de suprimentos, marketing e estratégia digital.

2.1.4 5W2H

Elemento	Resposta
What (O que?)	Prever a demanda diária de camisetas básicas.
Why (Por quê?)	Para otimizar o abastecimento, evitar perdas e melhorar decisões estratégicas.
Who (Quem?)	Time de análise
Where (Onde?)	Todas as lojas que comercializam a camiseta básica, com foco no Brasil.
When (Quando?)	Para o mês de dezembro de 2024 , com base em dados de jan/2022 a nov/2024.
How (Como?)	Através de modelagem preditiva utilizando técnicas de ciência de dados.
How much (Quanto?)	O valor estimado da demanda diária em unidades por dia.

Tabela 1:5W2H

Fonte: Elaboração própria.

2.2 Entendimento dos Dados

A base de dados fornecida pela empresa apresenta o volume de vendas diários para camisetas básicas masculinas entre o período de janeiro de 2022 e novembro de 2024. Com

isso, é possível analisar o comportamento desse volume de vendas ao longo de cada mês, como mostra o gráfico abaixo.

Figura 2: Transformação dos dados fornecidos em gráfico.

Decomposição da Série Temporal - Vendas Diárias de Camisetas

Figura 3: Gráficos para análise de tendência, sazonalidade e nível.

Analisando os gráficos observa-se um comportamento sazonal anual bem definido onde ocorre um aumento das vendas nos meses de novembro e dezembro. Isso pode estar relacionado a datas promocionais em novembro, como a Black Friday, e datas comemorativas em dezembro, como Natal, Ano Novo e recebimento do 13º salário.

Também há indícios de sazonalidade semanal em que há um maior volume de vendas nos finais de semana (sexta e sábado) e uma queda aos domingos e segundas-feiras.

Em relação a linha de tendência, constata-se uma tendência de crescimento gradual ao longo do tempo, possivelmente ligada à expansão da marca.

2.3 Preparação dos Dados

Antes que qualquer modelo de análise ou predição seja aplicado, é necessário que os dados estejam devidamente preparados. A qualidade e a consistência dos dados influenciam diretamente os resultados obtidos, em que qualquer discrepância em relação aos dados originais pode comprometer toda a análise. O processo de preparação de dados inclui limpeza, padronização e verificação de integridade para evitar erros ao longo do projeto e assegurar a confiabilidade das conclusões. Esse processo está alinhado com a engenharia de recursos que o faz acontecer por meio do *machine learning*.

Para dar início à preparação dos dados, foi realizada uma verificação inicial para assegurar que todas as colunas estavam devidamente preenchidas e que não havia falta de informações em nenhuma linha da base de dados original, armazenada em formato Excel. Em seguida, foi feita a checagem para identificar e remover possíveis linhas duplicadas, garantindo assim a integridade e a consistência dos dados analisados.

```
PREPARAÇÃO DOS DADOS

from pandas import read_excel

# Carregando a planilha
path2 = "C:\Usens\Jean Nery\OneDrive\Documentos\Faculdade\9º PERÍDDO\ANÁLISE PREDITIVA\25.04.22.Dados.xlsx"

df2 = read_excel(path2, sheet_name="2025.04.22")

# 1. Verificar se existem linhas com valores faltantes
linhas_faltantes = df2[df2.isnull().any(axis=1)]

if linhas_faltantes.empty:
    print(" Todas as linhas estão completamente preenchidas.")

else:
    print(" Todas as linhas com valores ausentes:")
    print(linhas_faltantes)

# 2. Verificar duplicatas na coluna de data
    coluna_data = 'Timestamp'
duplicatas_data = df2[df2.duplicated(subset=coluna_data, keep=false)]

if duplicatas_data.empty:
    print(" Na ha valores repetidos na coluna de data.")
else:
    print(" A valores repetidos na coluna de data:")
    print(" A valores repetidos na coluna de data:")
    print(" A valores repetidos na coluna de data:")

Todas as linhas estão completamente preenchidas.

Não há valores repetidos na coluna de data.
```

Figura 4: Utilização de um código em python para fazer a verificação de valores inválidos.

2.4 Modelagem dos Dados

Nesta etapa, os dados preparados na fase anterior são analisados com o objetivo de desenvolver modelos preditivos. Essa análise envolve a seleção de algoritmos apropriados, o treinamento dos modelos e a avaliação de seu desempenho, visando à obtenção de resultados confiáveis e relevantes para os objetivos do estudo.

Os modelos foram desenvolvidos com base nos dados coletados no período de janeiro de 2022 a outubro de 2024. Para a etapa subsequente, foi estabelecido que os dados referentes ao mês de novembro serão utilizados na realização dos testes, visando a seleção do modelo mais adequado.

2.4.1 Modelo Naive

O modelo Naive (ou ingênuo) é um dos modelos mais simples de previsão em séries temporais. Ele assume que o valor da próxima observação será igual ao valor mais recente. Ou seja, ele projeta que nada vai mudar.

Item	Descrição
Modelo:	Modelo Naive
Se baseia em:	xt = xt - 1 + et
Onde:	$et \sim iid(\mu = 0, \sigma 2 = V[e])$
Modelo de previsão:	$x^{\wedge} t, t + 1 = xt$

Tabela 2: Descrição do modelo Naive

Fonte: Introdução a Séries Temporais, Dalton Borges

Explicando a tabela:

- O valor atual da série temporal xt é igual ao valor do período anterior xt-1 mais um erro aleatório et. Esse erro representa a variação imprevisível entre um período e outro.
- $et \sim iid(\mu = 0, \sigma 2 = V[e])$

- o iid: erros são independentes e identicamente distribuídos, ou seja, um erro não influencia o outro e todos seguem a mesma distribuição.
- μ=0: o erro tem média zero, o que quer dizer que, em média, ele não puxa a série nem para cima nem para baixo.
- σ2=V[e]: o erro tem uma variância constante, indicando que a dispersão dos erros em torno da média é estável.
- $x^{\wedge}t$, t + 1 = xt
 - A previsão para o próximo período (t+1) é simplesmente o valor atual (xt).
 - Isso significa que esperamos que o próximo valor da série seja igual ao último observado, sem tentar ajustar para tendências, sazonalidades ou padrões.

A implementação do modelo, por meio da linguagem Python, na base de dados da empresa, proporcionou os seguintes resultados para o mês de novembro:

Previsões	para Novembro/2024:
	Naive
2024-11-01	412
2024-11-02	412
2024-11-03	412
2024-11-04	412
2024-11-05	412
2024-11-06	412
2024-11-07	412
2024-11-08	412
2024-11-09	412
2024-11-10	412
2024-11-11	412
2024-11-12	412
2024-11-13	412
2024-11-14	412
2024-11-15	412
2024-11-16	412
2024-11-17	412
2024-11-18	412
2024-11-19	412
2024-11-20	412
2024-11-21	412
2024-11-22	412
2024-11-23	412
2024-11-24	412
2024-11-25	412
2024-11-26	412
2024-11-27	412
2024-11-28	412
2024-11-29	412
2024-11-30	412

Figura 5: Previsão de vendas para novembro seguindo modelo naive.

2.4.2 Modelo Cumulativo

Diferente do modelo Naive, o modelo Cumulativo mostra a soma acumulada desses valores. Isso ajuda a identificar tendências de crescimento ou queda de forma mais clara, suavizando as flutuações pontuais. O modelo Cumulativo dá mais importância ao histórico de demanda do que o modelo Naive, em outras palavras, ele valoriza mais o passado.

Item	Descrição
Modelo:	Modelo Cumulativo
Se baseia em:	xt = a + et
Onde:	$et \sim iid(\mu = 0, \sigma 2 = V[e])$
Modelo de previsão:	$x^{\wedge} t, t + 1 = (\sum tt - 1xi)/t$

Tabela 3: Descrição do modelo Cumulativo Fonte:Introdução a Séries Temporais, Dalton Borges

Explicando a tabela:

- Esse modelo assume que o valor da série temporal no tempo t é uma constante α mais um erro aleatório t. A constante aaa representa um nível médio fixo da série.
- $et \sim iid(\mu = 0, \sigma 2 = V[e])$
 - o iid: erros são independentes e identicamente distribuídos, ou seja, um erro não influencia o outro e todos seguem a mesma distribuição.
 - μ=0: o erro tem média zero, o que quer dizer que, em média, ele não puxa a série nem para cima nem para baixo.
 - σ2=V[e]: o erro tem uma variância constante, indicando que a dispersão dos erros em torno da média é estável.

- $x^t, t + 1 = (\sum tt 1xi)/t$
 - Essa fórmula representa a média aritmética dos valores observados até o tempo t.
 - É uma forma de suavizar a série, considerando todos os valores anteriores igualmente.
 - Serve para prever o próximo valor assumindo que a tendência média se mantém.

A implementação do modelo, por meio da linguagem Python, na base de dados da empresa, proporcionou os seguintes resultados para os mês de novembro:

Previsões p	ara Novembro/2024:
	Cumulativo
2024-11-01	208.289855
2024-11-02	208.289855
2024-11-03	208.289855
2024-11-04	208.289855
2024-11-05	208.289855
2024-11-06	208.289855
2024-11-07	208.289855
2024-11-08	208.289855
2024-11-09	208.289855
2024-11-10	208.289855
2024-11-11	208.289855
2024-11-12	208.289855
2024-11-13	208.289855
2024-11-14	208.289855
2024-11-15	208.289855
2024-11-16	208.289855
2024-11-17	208.289855
2024-11-18	208.289855
2024-11-19	208.289855
2024-11-20	208.289855
2024-11-21	208.289855
2024-11-22	208.289855
2024-11-23	208.289855
2024-11-24	208.289855
2024-11-25	208.289855
2024-11-26	208.289855
2024-11-27	208.289855
2024-11-28	208.289855
2024-11-29	208.289855
2024-11-30	208.289855

Figura 6: Previsão de vendas para novembro seguindo modelo cumulativo.

2.4.3 Modelo de Média Móvel

A Média Móvel é um modelo que procura generalizar os modelos Cumulativos e Naive e possui abordagens que se situam entre os extremos. Parecido com o modelo Cumulativo, porém aos invés de calcular a média de todas as observações passadas, a Média Móvel tira a média das *M* ultimas observações.

Item	Descrição
Modelo:	Média Móvel
Se baseia em:	xt = a + et
Onde:	$et \sim iid(\mu = 0, \sigma 2 = V[e])$
Modelo de previsão:	$x^{t}, t + 1 = (\sum ti = t + 1 - M^{X}i)/M$

Tabela 4: Descrição do modelo Média Móvel

Fonte:Introdução a Séries Temporais, Dalton Borges

Explicando a tabela:

•
$$x^{t}, t + 1 = (\sum ti = t + 1 - M^{x}i)/M$$

- A previsão para o próximo valor (t+1) é a média dos últimos M valores da série.
- Essa média se move ao longo do tempo, descartando o dado mais antigo e incluindo o mais recente.

Esse modelo é muito útil sem séries de tendências fortes,para filtrar ruídos e captar o comportamento recente da série. Caso o valor de M escolhido for muito pequeno, o modelo responderá rapidamente a ruídos, e se for muito grande, perderá mudanças que não resistem por muito tempo. Normalmente utilizam valores práticos, que reflitam a unidade da escala temporal,como 1 semana, 4 meses, etc.

A implementação do modelo, por meio da linguagem Python, na base de dados da empresa, proporcionou os seguintes resultados para o mês de novembro:

```
Previsões para Novembro/2024:
           Média Móvel
2024-11-01 414.533333
2024-11-02 415.251111
2024-11-03 416.059481
2024-11-04 416.761464
2024-11-05
            416.586846
2024-11-06 417.039741
2024-11-07 417.374399
2024-11-08 418.020213
2024-11-09 418.620886
2024-11-10
            419.408249
2024-11-11
            414.455191
2024-11-12 406.237031
2024-11-13
            400.544932
2024-11-14 401.129763
2024-11-15 401.067421
2024-11-16
            401.636335
2024-11-17 402.124213
2024-11-18
            402.295020
2024-11-19
            402.704854
2024-11-20 402.695016
2024-11-21
            403.718183
2024-11-22
            404.675456
2024-11-23 404.897971
2024-11-24
            405.661237
2024-11-25
            406.549945
2024-11-26
            407.001610
2024-11-27
            407.301663
2024-11-28
            407.645052
2024-11-29
            408.566554
2024-11-30
            409.085439
```

Figura 7: Previsão de vendas para novembro seguindo modelo de média móvel.

2.4.4 Modelo de Suavização Exponencial

O modelo de Suavização Exponencial é uma técnica que prevê valores futuros com base em valores passados, dando mais peso para os dados mais recentes e menos peso para os os antigos, por isso o nome "exponencial", pois a importância dos dados antigos decai exponencialmente.

A suavização exponencial simples implica em:

- Demanda estacionária, sem tendência nem sazonalidade. Considera apenas o nível da demanda.
- O valor das observações diminui com o tempo.
- Utiliza uma constante de suavização α , onde $0 \le \alpha \ge 1$.
- Na pratica $0,1 \le \alpha \ge 0,3$.

Item	Descrição
Modelo:	Suavização Exponencial Simples

Se baseia em:	xt = a + et
Onde:	$et \sim iid(\mu = 0, \sigma 2 = V[e])$
Modelo de previsão:	$x^{\wedge} t + 1, t = \alpha x t + (1 - \alpha) x^{\wedge} t - 1, t com 0 \le \alpha \le 1$

Tabela 4: Descrição do modelo Suavização Exponencial Simples

Fonte: Suavização Exponencial I, Dalton Borges

Explicando a tabela:

- $x^t + 1$, $t = \alpha xt + (1 \alpha)x^t 1$, $t com 0 \le \alpha \le 1$
 - \circ $x^t + 1$, t: previsão do próximo valor (tempo t+1) feita no tempo t.
 - o α: fator de suavização (entre 0 e 1).
 - Se $\alpha \approx 1$: mais peso ao valor atual \rightarrow previsão mais reativa.
 - Se $\alpha \approx 0$: mais peso à previsão passada → previsão mais suave.

A implementação do modelo, por meio da linguagem Python, na base de dados da empresa, proporcionou os seguintes resultados para o mês de novembro:

· ·	Novembro/2024:
	avização Exp.
2024-11-01	398.297011
2024-11-02	395.933658
2024-11-03	397.588005
2024-11-04	396.429962
2024-11-05	397.240592
2024-11-06	396.673151
2024-11-07	397.070360
2024-11-08	396.792314
2024-11-09	396.986946
2024-11-10	396.850704
2024-11-11	396.946073
2024-11-12	396.879315
2024-11-13	396.926046
2024-11-14	396.893334
2024-11-15	396.916232
2024-11-16	396.900203
2024-11-17	396.911424
2024-11-18	396.903569
2024-11-19	396.909067
2024-11-20	396.905219
2024-11-21	396.907913
2024-11-22	396.906027
2024-11-23	396.907347
2024-11-24	396.906423
2024-11-25	396.907070
2024-11-26	396.906617
2024-11-27	396.906934
2024-11-28	396.906712
2024-11-29	396.906867
2024-11-30	396.906759

Figura 8: Previsão de vendas para novembro seguindo modelo de suavização exponencial simples.

2.4.5 Regressão Linear Simples

A regressão linear simples é uma técnica estatística amplamente utilizada na análise de dados para modelar a relação entre duas variáveis quantitativas. Trata-se de um método preditivo que busca estimar o valor de uma variável dependente y a partir de uma variável independente x, assumindo que essa relação pode ser representada por uma equação linear (MONTGOMERY; PECK; VINING, 2012).

O modelo de regressão linear simples pode ser expresso matematicamente pela equação:

$$y = \beta_0 + \beta_1 x + \varepsilon$$

onde:

- y representa a variável dependente (ou resposta);
- xé a variável independente (ou explicativa);
- β0 é o intercepto da reta de regressão;
- β1 é o coeficiente angular, que indica a inclinação da reta e a direção da relação entre as variáveis;
- ε é o termo de erro aleatório, que representa os desvios entre os valores observados e os valores ajustados pelo modelo.

O objetivo principal da regressão linear simples é encontrar os valores dos parâmetros β 0 e β 1 que minimizem a soma dos quadrados dos resíduos, ou seja, as diferenças entre os valores observados e os valores previstos pelo modelo. Esse processo é conhecido como método dos mínimos quadrados ordinários (OLS - *Ordinary Least Squares*).

A aplicação da regressão linear simples permite não apenas realizar previsões, mas também avaliar o grau de associação entre as variáveis envolvidas. Contudo, para que os resultados obtidos por esse modelo sejam confiáveis, é necessário que algumas suposições

sejam atendidas, como a linearidade da relação, a homocedasticidade dos resíduos, a normalidade dos erros e a independência das observações.

Б. І	B ' I
	Previsao_vendas
2024-11-01	372.620637
2024-11-02	372.935672
2024-11-03	373.250708
2024-11-04	373.565744
2024-11-05	373.880779
2024-11-06	374.195815
2024-11-07	374.510850
2024-11-08	374.825886
2024-11-09	375.140921
2024-11-10	375.455957
2024-11-11	375.770993
2024-11-12	376.086028
2024-11-13	376.401064
2024-11-14	376.716099
2024-11-15	377.031135
2024-11-16	377.346170
2024-11-17	377.661206
2024-11-18	377.976242
2024-11-19	378.291277
2024-11-20	378.606313
2024-11-21	378.921348
2024-11-22	379.236384
2024-11-23	379.551419
2024-11-24	379.866455
2024-11-25	380.181491
2024-11-26	380.496526
2024-11-27	380.811562
2024-11-28	381.126597
2024-11-29	381.441633
2024-11-30	381.756668

Figura 9: Previsão de vendas para novembro seguindo modelo de regressão linear simples.

3. Fundamentação Teórica

Nessa etapa do projeto, a análise e avaliação de modelos preditivos é essencial para compreender as métricas utilizadas para mensurar a precisão das previsões, bem como os métodos de validação empregados para garantir sua confiabilidade.

A qualidade das previsões de um modelo pode ser mensurada por meio de diversas métricas estatísticas, tais como o MAPE (Mean Absolute Percentage Error – Erro Percentual Médio Absoluto), o RMSE (Root Mean Squared Error – Raiz do Erro Quadrático Médio) e o MAD (Mean Absolute Deviation – Desvio Absoluto Médio). > Para a aplicação dessas métricas, serão comparados os valores referentes ao mês de novembro, tomando como base os valores reais e os valores previstos, possibilitando uma análise precisa do desempenho do modelo.

3.1 MAPE

Essa métrica faz o cálculo da média dos erros absolutos expressos em termos percentuais em relação aos valores reais. Quanto menor o MAPE, melhor a precisão do modelo.

$$MAPE = \frac{\sum (\frac{|y_i - \widehat{y_i}|}{y_i})}{n}$$

- y_i valor real;
- \hat{y}_i valor previsto;
- n total de observações.

3.2 RMSE

Essa métrica avalia a magnitude dos erros elevando ao quadrado as diferenças entre os valores reais e previstos.

$$RMSE = \sqrt{\frac{1}{n}\Sigma(y_i - \widehat{y_i})^2}$$

3.3 MAD

Essa métrica mede a dispersão dos erros, calculando a média das diferenças absolutas entre os valores reais e os valores previstos.

$$MAD = \frac{1}{n} \Sigma |y_i - \widehat{y_i}|$$

3.4 Validação

A validação dos modelos de previsão é uma etapa essencial para garantir a confiabilidade das estimativas realizadas. Para isso, foram calculadas métricas estatísticas por meio da linguagem de programação Python, que avaliam o desempenho de cada abordagem utilizada para prever os valores referentes ao mês de novembro de 2024.

```
### Erros de Previsão - Novembro 2024 ###
Modelo: Naive
MAD: 15.40
RMSE: 31.07
MAPE (%): 3.38
Modelo: Cumulativo
MAD: 208.31
RMSE: 210.56
MAPE (%): 49.78
Modelo: Média Móvel
MAD: 16.71
RMSE: 32.22
MAPE (%): 3.68
Modelo: Suavização Exp.
MAD: 21.07
RMSE: 36.58
MAPE (%): 4.65
```

Figura 9: Erros das previsões dos modelos.

- O modelo Naive apresentou os menores valores de erro, indicando previsões mais próximas dos valores reais.
- O modelo Cumulativo teve os maiores erros, demonstrando baixa precisão nas previsões.
- A Média Móvel obteve resultados similares ao modelo Naive, sugerindo que pode ser uma alternativa viável.
- A Suavização Exponencial apresentou erros superiores aos modelos Naive e Média Móvel, mas ainda inferiores ao Cumulativo.

Portanto, a validação dos modelos indica que o Naive e a Média Móvel são as abordagens mais precisas para estimar os valores de novembro de 2024. Com base nesses resultados, foram escolhidos os modelos que melhor equilibram a precisão e estabilidade para a próxima etapa do processo.

Previsões p		embro/2024:
	Naive	Média Móvel
2024-12-01	412	408.988287
2024-12-02	412	408.803452
2024-12-03	412	408.588530
2024-12-04	412	408.339499
2024-12-05	412	408.058766
2024-12-06	412	407.774497
2024-12-07	412	407.465656
2024-12-08	412	407.135364
2024-12-09	412	406.772536
2024-12-10	412	406.377591
2024-12-11	412	405.943236
2024-12-12	412	405.659504
2024-12-13	412	405.640253
2024-12-14	412	405.810097
2024-12-15	412	405.966108
2024-12-16	412	406.129398
2024-12-17	412	406.279166
2024-12-18	412	406.417665
2024-12-19	412	406.555086
2024-12-20	412	406.683427
2024-12-21	412	406.816374
2024-12-22	412	406.919647
2024-12-23	412	406.994454
2024-12-24	412	407.064336
2024-12-25	412	407.111106
2024-12-26	412	407.129812
2024-12-27	412	407.134085
2024-12-28	412	407.128499
2024-12-29	412	407.111281
2024-12-30	412	407.062772
2024-12-31	412	406.995349

Figura 10: Previsão de vendas para para o mês de dezembro seguindo os modelos naive e média móvel.

Após esses modelos, foi inserido o modelo de regressão linear para análise cujo os erros estão dispostos na figura 10.

```
### Erros de Previsão - Novembro 2024 ###
Modelo: Regressão Linear Simples
MAD: 39.41135
RMSE: 49.33715
MAPE (%): 9.06917
```

Figura 11: Erros das previsões do modelo de regressão linear.

Com base nas métricas de erro obtidas para os diferentes modelos avaliados (figuras 9 e 11), é possível concluir que o modelo Naive apresentou o melhor desempenho geral. Ele obteve os menores valores em todas as três métricas: MAD de 15,40, RMSE de 31,07 e MAPE de 3,38%, indicando alta precisão e baixo desvio em relação aos valores reais observados no mês de novembro.

O modelo de Média Móvel apresentou resultados próximos ao Naive, mas ainda assim com erros levemente superiores, enquanto os modelos de Suavização Exponencial e Regressão Linear Simples mostraram desempenhos significativamente inferiores, especialmente no que diz respeito ao MAPE, sugerindo maior variação percentual em relação

aos valores reais. O modelo Cumulativo foi o que apresentou os piores resultados, com erros extremamente altos em todas as métricas, o que o torna inadequado para fins preditivos neste contexto. O gráfico presente na figura 12 representa as curvas para cada modelo aplicado comparado aos valores reais.

Figura 12: Previsão de vendas para os modelos vs. os valores reais de novembro.

Dessa forma, considerando a acurácia e a simplicidade, o modelo Naive se mostra como a melhor escolha para previsão de vendas diárias neste cenário. A figura 13 mostra a melhor previsão de vendas para o mês de dezembro seguindo o modelo Naive.

	D 1 (2004
rrevisoes	para Dezembro/2024: Naive
2024 42 04	
2024-12-01	412
2024-12-02	412
2024-12-03	412
2024-12-04	412
2024-12-05	412
2024-12-06	412
2024-12-07	412
2024-12-08	412
2024-12-09	412
2024-12-10	412
2024-12-11	412
2024-12-12	412
2024-12-13	
2024-12-14	412
2024-12-15	412
2024-12-16	412
2024-12-17	412
2024-12-18	412
2024-12-19	412
2024-12-20	412
2024-12-21	412
2024-12-22	412
2024-12-23	412
2024-12-24	412
202. 12 23	412
2024-12-26	412
2024-12-27	412
2024-12-28	412
2024-12-29	412
2024-12-30	
2024-12-31	412

Figura 13: Previsão de vendas para para o mês de dezembro seguindo o modelo naive.

4. Referências

- DATA SCIENCE PM. O que é CRISP DM? Data Science PM, 9 dez. 2024.
 Disponível em: https://www.datascience-pm.com/crisp-dm-2/. Acesso em: 18 maio 2025.
- Zheng, Alice; CASARI, Amanda. Feature engineering for machine learning: principles and techniques for data scientists. 1. ed. Sebastopol: O'Reilly Media, 2018.
- MONTGOMERY, D. C.; PECK, E. A.; VINING, G. G. *Introduction to Linear Regression Analysis*. 5. ed. Hoboken: Wiley, 2012.