Countability and diagonalization proof

Countable / non-countable

Definition a non-empty set C is countable if there exists a function $f: \mathbb{N} \to C$ surjective. An empty set is countable

Theorem Every non-empty finite set is countable $C = \{c_0, c_1, c_2, ... c_n\}$, $f: \mathbb{N} \to C := f(i) = c_i$ **Example** \mathbb{Z} is countable. Let $f: \mathbb{N} \to \mathbb{Z}$ be defined as $\begin{cases} f(0) = 0 \\ f(2i - 1) = i \text{ for } i = 1,2,3,... \\ f(2i) = -i \end{cases}$

Theorem

- 1) $\mathbb{N} \times \mathbb{N}$ countable $0 \to (0,0), 1 \to (0,1), 2 \to (1,0), 3 \to (0,2), ...$
- 2) A, B countable IMPLIES (A \cup B countable AND A \times B countable)
- 3) (A countable AND B \subseteq A) IMPLIES B countable
- 4) (A $\neq \emptyset$ AND A countable AND $\exists f: A \rightarrow B \text{ surj}$) IMPLIES B countable
- 5) $\mathbb{Q}^+ \cup \{0\}$ is countable

Proof Let
$$f: \mathbb{N} \times \mathbb{N} \to \mathbb{Q}^+ := f(a, b) = \begin{cases} \frac{a}{b} & (b \neq 0) \\ 0 & (b = 0) \end{cases}$$
 f surj (notice f is not necessarily injective)

6) Binary string is countable

Proof Let
$$f: \mathbb{N} \times \mathbb{N} \to \{0,1\}^* := g(i,j) =$$

(jth lexicgraphically smallest string of length i if $1 \le i \le i$ empty string otherwise

7) S be a finite set IMPLIES $\mathcal{P}(S)$ is countable

Theorem $\mathcal{P}(\mathbb{N})$ is uncountable

Method 1: construct contradiction

Proof Suppose $\mathcal{P}(\mathbb{N})$ is countable

By definition, take f: $\mathbb{N} \to \mathcal{P}(\mathbb{N})$ be surjective

Let
$$D = \{i \in \mathbb{N} \mid i \notin f(i)\} \in \mathcal{P}(\mathbb{N})$$

Since
$$D \subseteq \mathbb{N}, \exists j \in \mathbb{N}, f(j) = D$$

Then, $\forall i \in \mathbb{N}. i \in f(j)$ IFF $i \in D$ since f(j) = D

 $\forall i \in \mathbb{N}. i \in f(j)$ IFF $i \notin f(i)$ by definition of D

Since $j \in \mathbb{N}$, by specialization

$$(j \in f(j))$$
 AND $(j \notin f(j))$ contradiction

Method 2: construct diagonalization

Proof for any subset $S \in \mathbb{N}$, we can represent it by an infinite binary sequence where $s_i =$ $1 (i \in S) OR 0 (i \notin S)$

For example, $\{0\} = 1000 \dots, \{x \in \mathbb{N} \mid odd(x)\} = 0101010101\dots$

Suppose $\mathcal{P}(\mathbb{N})$ is countable, take f: $\mathbb{N} \to \mathcal{P}(\mathbb{N})$ be surjective

Characteristic vector→ ↓Subset of N	s_0	S ₁	s_2	
f(0)	$f(0)_0$	f(0) ₁	f(0) ₂	
f(1)	$f(1)_0$	f(1) ₁	f(1) ₂	
f(2)	$f(2)_0$	f(2) ₁	f(2) ₂	

Let M:
$$\mathbb{N} \times \mathbb{N} \to \{0,1\}$$
 M(i,j) := $f(i)_j = \begin{cases} 1 \ (j \in f(i)) \\ 0 \ (j \notin f(i)) \end{cases}$

Consider set $D = \{i \in \mathbb{N} \mid i \notin f(i)\}$, then $\forall i \in D$. M(i, i) = 0. $f(i)_i = 0$

Consider the characteristic vector of D: $i \in f(i)$ IMPLIES $f(i)_i = 1$, $D_i = 0$, $i \notin f(i)$

f(i) IMPLIES $f(i)_i = 0$, $D_i = 1$

Therefore, D is the complement of the diagonal of M, D can't be any of characteristic

vectors of $f(\mathbb{N})$ since there is always one bit in chatacteristic vector $\left(f(i)_i\right)$ is different, contradiction.

```
Theorem There is no function H: ASCII × ASCII → {0,1} such that H(p,x) = \begin{cases} 1 \ p \ is \ syntactically \ correct \\ and \ returns \ given \ x \\ 0 \ otherwise \end{cases}
Method 1: Contradiction
Proof Suppose there is such a H and assume all inputs of H are syntactically correct Consider program D: ASCII, D(x) \coloneqq if \ H(x,x) \ returns \ 1, then goes into an infinite loop, else return 1
Then, if H(D,D) return 0, D(D) return 1, if H(D,D) return 0, D(D) return 1
However, by the definition of H
If H(D,D) return 0, D(D) runs into infinite loop, if H(D,D) return 1, D(D) returns something Contradiction
```

Method 2: diagonalization

H(p,x)	λ	a	b
\rightarrow X			
↓ p			
λ	$H(\lambda,\lambda)$	•••	•••
a			
b			

D is the complement of the diagonal, hence D \notin p, hence such H does not exists.