DATA SCIENTIST - PROJET 5

Segmentez des clients d'un site e-commerce

Arnaud CHOUX

Formation OPENCLASSROOMS Financement région IdF

Plan		
I	Présentation du projet	
II	Dataset	
III	Clustering	
IV	Maintenance	
V	Conclusions	

Plan Présentation du projet Dataset

III Clustering

IV Maintenance

Conclusions

Objectifs Compétences

abordées

Dataset

I.1. Objectifs

- 1. Établir un clustering raisonnable (3 à 6 clusters de plus de 100 clients chacun et présentant des caractéristiques différentes) d'un dataset de clients d'une pateforme web.
- 2. Identifier les caractéristiques de chaque cluster et proposer une action commerciale adéquate sur chacun.
- 3. Prédire la durée de validité du modèle calculé au bout de laquelle il faut mettre à jour la modélisation.

I.2. Compétences abordées

-	collecter	la da	ıta (s	sans p	ohase	de	rech	erche	car	la	source	est	donnée

- mettre en forme et nettoyer la data (RDBMS
$$\rightarrow$$
 RFM)

- appliquer un clustering et évaluer sa performance

- évaluer la similarité entre deux résultats de clustering

I.3. Dataset

customer_id	customer_unique_id	customer_zip_code_prefix	customer_city	customer_state
ba1a1fbc88172c00ba8bc7 861eff471	1a542e4b93843c6dd7febb0	14409	franca	SP
(99441, 5)				
geolocation_zip_code_prefix g	geolocation_lat geolocation	_Ing geolocation_city ge	olocation_state	
0 1037	-23.545621 -46.63	9292 sao paulo		-
(1000163, 5)				
order id order item id	product id		seller id ship	ping_limit_date
	e06e7ecb4970a6e2683c13e61			
		+0+30dddc10dc0b2bcc005		, 65 15 65.45.55
(112650, 7)	_id payment_sequential			
0 b81ef226f3fe1789b1e8b2acac8396	d17 1	credit_card		99.33
(103886, 5)				
review_id	order_id review_score	review_comment_title	review_commen	t_message revi
80a40eba40 73fc7af87114b39712e6da	a79b0a377eb 4	NaN		NaN 2
(99224, 7)				
order_id co	ustomer_id order_status	order_purchase_timestamp	order_approve	ed_at order_deli
36f2d6af7 9ef432eb6251297304e7618	36b10a928d delivered	2017-10-02 10:56:33	2017-10-02 11:	07:15
(99441, 8)				
product_id product_category_nar	ne product_name_lenght	product_description_lengh	nt product_pho	tos_qty product
.6657ea517e5 perfuma	ria 40.0	287		1.0
(32951, 9)				
* * *	r_id seller_zip_code_prefix	seller city seller state		
0 3442f8959a84dea7ee197c632cb2d		campinas SP		
	13023	campinos sr		
(3095, 4) DDDMC do 0 ogy				

 \rightarrow RDBMS de 9 csv.

Principales keys pour ce problème: customer_unique_id, order_id

Plan			
Ι	Présentation du projet	1.	Merging
II	Dataset	2.	Nettoyage
III	Clustering		
IV	Maintenance	3.	Réorganisation en RFM(S)
V	Conclusions	4.	Visualisation

II.1. Merging

	customer_unique_id	order_purchase_timestamp	payment_value	review_score
0	861eff4711a542e4b93843c6dd7febb0	2017-05-16 15:05:35	146.87	4.0
1	290c77bc529b7ac935b93aa66c333dc3	2018-01-12 20:48:24	335.48	5.0

→ Je forme un dataset ne gardant que les features pertinentes du RDBMS pour mon étude, *via* merging (joining).

II.2. Nettoyage

```
1 df.isna().sum()

customer_unique_id 0

order_purchase_timestamp 0

payment_value 0

review_score 0
```

 \rightarrow Je supprime les doublons (facilement repérables car ils ont une NaN).

II.3. Réorganisation de la data en RFM(S)

	customer_unique_id	order_purchase_timestamp	payment_value	review_score
0	861eff4711a542e4b93843c6dd7febb0	2017-05-16 15:05:35	146.87	4.0
1	290c77bc529b7ac935b93aa66c333dc3	2018-01-12 20:48:24	335.48	5.0

```
df["recency 2"] = pd.to numeric(pd.to datetime(df.order purchase timestamp))
df["recency_2"] = (df.recency_2.max() - df.recency_2)*10**-9
dfs["R"] = df.groupby("customer unique id").recency 2.min()
dfs["F"] = df.groupby(
    ["customer_unique_id", "order_purchase_timestamp"]
).agg("count").groupby("customer_unique_id").count().payment value
dfs["M"] = df.groupby("customer unique id").payment value.sum()
dfs["rs"] = df.groupby("customer_unique_id").review_score.min()
dfs.head()
         customer unique id
6f3b9a7992bf8c76cfdf3221e2 13847631.0 1
                                        141.90 5.0
49f77a49e4a4ce2b2a4ca5be3f 14105931.0 1
                                         27.19 4.0
5a3911fa3c0805444483337064 50617515.0 1
                                         86.22 3.0
ccb0745a6a4b88665a16c9f078 31957237.0 1
                                         43.62 4.0
c84e0df4da2b147fca70cf8255 29108676.0 1
                                        196.89 5.0
```

 \rightarrow En groupant les commandes par client je tire les caractéristiques de chacun.

II.4. Visualisation

Hist de R

Hist de M

Hist de F

 \rightarrow Je trouve que seuls 2.8% des clients présents dans cette database ont fait plus d'un achat.

Plan

Ι	Présentation du projet	1.	Optimisation de n_clusters pour KMeans
III	Dataset Clustering	2.	Analyse des clusters obtenus
IV	Maintenance	3.	Reproductibilité du clustering KMeans
V	Conclusions	4.	Comparaison d'algorithmes

III.1.1. KMeans elbow (RFM)

III.1.2.a. KMeans silhouette (RFM, n_clusters=2)

 \rightarrow clustering sur R uniquement

III.1.2.b. KMeans silhouette (RFM, n_clusters=3)

 \rightarrow clustering sur R, et sur (F+M)

III.1.2.c. KMeans silhouette (RFM, n_clusters=4)

 \rightarrow clustering sur R, F et M, c'est parfait.

III.1.2.d. KMeans silhouette (RFM, n_clusters=5)

 \rightarrow cluster 3 négligeable

III.1.2.e. KMeans silhouette (RFM, n_clusters=6)

 \rightarrow cluster '3' négligeable, mais silhouette maximale

III.1.3. KMeans elbow (RFMS)

III.1.4.a. KMeans silhouette (RFM, n_clusters=2)

 \rightarrow clustering sur F uniquement

III.1.4.b. KMeans silhouette (RFM, n_clusters=3)

 \rightarrow clustering sur F et S uniquement

III.1.4.c. KMeans silhouette (RFM, n_clusters=4)

→ clustering sur F, M et S uniquement

III.1.4.d. KMeans silhouette (RFM, n_clusters=5)

→ clustering sur R, F, M et S, c'est parfait

III.1.4.e. KMeans silhouette (RFM, n_clusters=6)

→ clustering sur R, F, M et S, c'est parfait

III.2. Analyse des clusters obtenus

III.3. Stabilité (reproductibilité) du clustering KMeans

```
0.9998779504580605 0.00015252133979941612
```

Excellent résultat! Le KMeans à 5 clusters trouve toujours les mêmes clusters malgré le init="random".

→ Avec n clusters=5, init='random', je répète 5 fois le clustering.

print(pd.Series(ARIs).mean(), pd.Series(ARIs).std())

Spectral Clustering Gaussian Mixture Agglomerative Clustering **KMeans** DBSCAN R R R

III.4.

Plan			
Ι	Présentation du projet	1.	Calcul
II	Dataset		
III	Clustering	2.	Stabilité temporelle du clustering KMeans
IV	Maintenance		
V	Conclusions		

IV.1. Calcul de la stabilité temporelle

Fit_predict n algorithms KMeans (un par dataset).

- 1. Fabriquer des datasets sur une plage temporelle croissante. (t0 (1an + n mois))
- 2. Fit un KMeans sur le dataset 0, l'utiliser pour predict sur chaque dataset.

- 4. Comparer (par calcul d'Ajusted Rand Index score) deux à deux les prédictions.
- 5. Représenter temporellement l'évolution du désaccord entre les prédictions.

IV.2. Stabilité temporelle du clustering KMeans

 \rightarrow Le clustering reste valide (ARI > .8) pendant 2 mois et 12 jours (10 semaines).

CCL

- Un clustering KMeans optimal a été obtenu.
- Gaussian Mixture et Spectral Clustering ont l'air également adéquats ici.
- Le délai de maintenance du clustering délivré a été estimé.

