4.2

提出假设: H_0 :平均折射率没有显著差别 vs. H_1 :有显著差别 $\alpha = 0.05$ 计算结果:

方差来源	平方和	自由度	均方和	F 值
因素 A	6034.467	2	3017.233	29.168
误差 E	2793.000	27	103.444	
总和 T	8827.467	29		

查表得 $F_{0.05}(2,27)=3.35$,故拒绝原假设,认为折射率有显著差别

4.4

(1)提出假设: H_0 :无显著差别 vs. H_1 :有显著差别 $\alpha=0.05$ 首先有: $\bar{x}=22.935, \bar{x}_1=28.6, \bar{x}_2=31.375, \bar{x}_3=7.825, \bar{x}_4=19.075, \bar{x}_5=27.8$ 方差分析表

方差来源	平方和	自由度	均方和	F值
因素 A	1480.823	4	370.206	40.844
误差E	135.823	15	9.055	
总和 T	1616.646	19		

其中r = 5, n = 20, $\alpha = 0.05$, 查表得 $F_{0.05}(4,15) = 3.06$, 而F > 3.06, 故拒绝 H_0

$$(2)T = \frac{(\bar{x}_i - \mu_i)\sqrt{n_i}}{S^*} \sim t(n_i - 1)$$

由 $P(|T| < t_{\alpha/2}(n_i - 1)) = 1 - \alpha$ 可解得 μ_i 置信区间

$$\left[\bar{x}_{i} - t_{\alpha/2}(n_{i} - 1) \frac{S^{*}}{\sqrt{n_{i}}}, \bar{x}_{i} + t_{\alpha/2}(n_{i} - 1) \frac{S^{*}}{\sqrt{n_{i}}}\right]$$

计算结果:

(23.48,33.72), (26.3291,32.4209), (4.0318,11.6182), (16.2009,21.9491), (21.4510,34.1490) $\mu_i - \mu_k$ 的 $1 - \alpha$ 置信区间为:

$$\left[\bar{x}_i - \bar{x}_k - t_{\frac{\alpha}{2}}(n-r)\sqrt{\left(\frac{1}{n_i} + \frac{1}{n_k}\right)\bar{Q}_E}, \bar{x}_i - \bar{x}_k + t_{\frac{\alpha}{2}}(n-r)\sqrt{\left(\frac{1}{n_i} + \frac{1}{n_k}\right)\bar{Q}_E}\right]$$

计算结果,青霉素链霉素,红霉素氯霉素:

(16.2397,25.3103), (-13.2603, -4.1897)

4.6

解:本题为双因素无重复实验方差分析

提出假设:

H01:不同促进剂对定强无显著差异 H02:不同分量的氧化锌对定强无显著差异

	******		7.77						
方差来源表	平方和	自由度	均方和	F 值					
因素 A	28.29167	2	14.148835	35.73684					
因素 B	66.0625	3	22.02083333	55.63158					
误差	2.375	6	0.395833						
总和	96.72917	11							

查 F 表得: $F_{0.05}(2,6) = 5.14, F_{0.05}(3,6) = 4.76$

因此, $F_A > F_{0.05}(2,6), F_B > F_{0.05}(3,6)$

故拒绝原假设 H01, H02, 认为使用不同的促进剂和不同分量的氧化锌, 对定强有显著影响。

补充: 具体计算过程仅供参考

	b1	b2	b3	b4	si.	ssi.
a1	32	35	35.5	38.5	141	4991.5
a2	33.5	36.5	38	39.5	147.5	5458.75
a3	36	37.5	39.5	43	156	6111.5
s.j	101.5	109	113	121	444.5	
ss.j	3442.25	3963.5	4264.5	4891.5		16561.75
S	444.5					
SS	16561.75					
QA	28.29167	2	14.14583	35.73684		
QB	66.0625	3	22.02083	55.63158		
QT	96.72917	11				
QΕ	2.375	6	0.395833			

4.9

解:提出如下假设

 H_{01} : 收缩率对纤维弹性无显著影响;

 H_{02} : 总拉伸倍数对纤维弹性无显著影响;

H₀₃: 收缩率和总拉伸倍数对纤维弹性无显著交互作用;

由题意,设r = s = 4, l = 2,则方差分析表

方差来源	平方和	自由度	均方和	F 值
因素 A	70.59	3	23.53	17.56
因素 B	8.59	3	2.86	2.13
交互作用	79.54	9	8.84	6.60
误差	21.5	16	1.34	
总和	180.22	31		

其中,由 S_{ij} = $\sum_{k=1}^{l} x_{ijk}$,i = 1,2,3,4,j = 1,2,3,4,分别有

$$S_{11} = \sum_{k=1}^{2} x_{11k} = 144$$
, $S_{21} = \sum_{k=1}^{2} x_{21k} = 148$,

$$S_{12} = \sum_{k=1}^{2} x_{12k} = 145$$
, $S_{22} = \sum_{k=1}^{2} x_{22k} = 150$,

$$S_{13} = \sum_{k=1}^{2} x_{13k} = 148, \ S_{23} = \sum_{k=1}^{2} x_{23k} = 155,$$

$$S_{14\cdot}=\sum_{k=1}^2x_{14k}=152$$
, $S_{24\cdot}=\sum_{k=1}^2x_{24k}=148$, $S_{31\cdot}=\sum_{k=1}^2x_{31k}=149$, $S_{41\cdot}=\sum_{k=1}^2x_{41k}=148$, $S_{32\cdot}=\sum_{k=1}^2x_{32k}=156$, $S_{42\cdot}=\sum_{k=1}^2x_{42k}=145$, $S_{33\cdot}=\sum_{k=1}^2x_{33k}=149$, $S_{43\cdot}=\sum_{k=1}^2x_{43k}=141$, $S_{34\cdot}=\sum_{k=1}^2x_{34k}=147$, $S_{44\cdot}=\sum_{k=1}^2x_{44k}=138$,每行的和为

$$S_{1..} = \sum_{i=1}^{4} \sum_{k=1}^{2} x_{1ik} = 589$$
, $S_{2..} = \sum_{i=1}^{4} \sum_{k=1}^{2} x_{2ik} = 601$,

$$S_{3..} = \sum_{i=1}^{4} \sum_{k=1}^{2} x_{3ik} = 601, \ S_{4..} = \sum_{i=1}^{4} \sum_{k=1}^{2} x_{4ik} = 572,$$

每列的和为

$$\begin{split} S_{\cdot 1\cdot} &= \sum_{i=1}^4 \sum_{k=1}^2 x_{i1k} = 589, \ S_{\cdot 2\cdot} &= \sum_{i=1}^4 \sum_{k=1}^2 x_{i2k} = 596, \\ S_{\cdot 3\cdot} &= \sum_{i=1}^4 \sum_{k=1}^2 x_{i3k} = 593, \ S_{\cdot 4\cdot} &= \sum_{i=1}^4 \sum_{k=1}^2 x_{i4k} = 585, \end{split}$$

则所有数据总和为 $S = \sum_{i=1}^4 \sum_{j=1}^4 \sum_{k=1}^2 x_{ijk} = 2363$,

数据平方总和为SS = $\sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{k=1}^{2} x_{ijk}^2 = 174673$,

故
$$Q_A = \frac{1}{sl} \sum_{i=1}^r S_{i\cdot\cdot}^2 - \frac{1}{rsl} S^2 = \frac{1}{4\times 2} \sum_{i=1}^4 S_{i\cdot\cdot}^2 - \frac{1}{4\times 4\times 2} S^2 = 70.59,$$

$$Q_B = \frac{1}{rl} \sum_{j=1}^{s} S_{\cdot j}^2 - \frac{1}{rsl} S^2 = \frac{1}{4 \times 2} \sum_{j=1}^{4} S_{\cdot j}^2 - \frac{1}{4 \times 4 \times 2} S^2 = 8.59,$$

$$Q_E = SS - \frac{1}{l} \sum_{i=1}^{r} \sum_{j=1}^{s} S_{ij}^2 = SS - \frac{1}{2} \sum_{i=1}^{4} \sum_{j=1}^{4} S_{ij}^2 = 21.5,$$

$$Q_T = SS - \frac{1}{rsl}S^2 = 174673 - \frac{1}{4 \times 4 \times 2} \times 2363^2 = 180.22$$

$$Q_I = Q_T - Q_A - Q_B - Q_E = 79.54,$$

对给定的水平 α =0.05,查表得 $F_{0.05}(3,16)=3.24$, $F_{0.05}(9,16)=2.54$,因为 $F_A=17.56>3.24$, $F_B=2.13<3.24$, $F_I=6.60>2.54$,故接受 H_{02} ,拒绝 H_{01} 和 H_{03} ,即认为总拉伸倍数对纤维弹性无显著影响,收缩率对纤维弹性有显著影响,且收缩率和总拉伸倍数对纤维弹性有显著交互作用。

4.11

解: (1) 直观分析法:

由题意及 $L_8(2^7)$ 的交互作用列表,完成表头设计如下:

因素	A	В	$A \times B$	C	A×C		D
列号	1	2	3	4	5	6	7

按照完成后的表头设计,把正交表 $L_8(2^7)$ 中排有因素 A,B,C,D 的第 1,2,4,7 列取出,逐行看,即得到试验方案,严格按此方案做试验可得相应的试验结果:

列号	A	В	$A \times B$	С	$A \times C$		D	指标	
实验号	1	2	3	4	5	6	7	y_i	
1	1	1	1	1	1	1	1	2.05	
2	1	1	1	2	2	2	2	2.24	
3	1	2	2	1	1	2	2	2.44	
4	1	2	2	2	2	1	1	1.10	
5	2	1	2	1	2	1	2	1.50	
6	2	1	2	2	1	2	1	1.35	
7	2	2	1	1	2	2	1	1.26	
8	2	2	1	2	1	1	2	2.00	
T_{1j}	7.83	7.14	7.55	7.25	7.84	6.65	5.76	5	
T_{2j}	6.11	6.8	6.39	6.69	6.1	7.29	8.18	$\sum y_i = 13.94$	
R_{j}	1.72	0.34	1.16	0.56	1.74	0.64	2.42	13.94	

首先,计算正交表上每一列对应水平 i 的试验指标数据之和。如 A 列对应水平 1 的试验指标数据为 2.05,2.24,2.44,1.10,故 $T_{1A}=2.05+2.24+2.44+1.10=7.83$,依次计算填入上表中。

其次, 计算极差

$$R_i = \max\{T_{1i}, T_{2i}, \dots\} - \min\{T_{1i}, T_{2i}, \dots\}.$$

依次计算填入上表中。

最后,按照 R_j 的大小排出因素间的主次顺序。 R_j 值越大,表明因素 j 对试验指标影响越大,也就越重要。因此,由极差可得各因素(包括虚因素)的重要性依次为: $D\to A\times C\to A\to A\times B\to C\to B$ 。因为在实验中,效价越高越好,这样每个因素应取较大的值,则因素 D 的重要性可以确定取水平 D_2 。对于虚因素 $A\times C$,把 $A\times C$ 的不同组合水平下的试验结果进行比较,其各种情况取值如下:

	C_1	C_2
A_1	2.05+2.44=4.49	2.24+1.10=3.34
A_2	1.50+1.26=2.76	1.35+2.00=3.35

在效价越高越好时,A 取 A_1 ,C 取 C_1 。对于最后一个因素 B,取水平 B_1 。至此,因素 A、B、C、D 的最佳水平均已选定,最佳的搭配方案为 $D_2A_1C_1B_1$ 。(2)方差分析法:

由(1)表格中的数据可得: $\bar{y} = 1.7425$,则可计算下列各式有

$$Q_T = \sum_{i=1}^8 (y_i - \bar{y})^2 = 1.75335, \quad Q_A = \frac{R_1^2}{8} = \frac{1.72^2}{8} = 0.3698,$$

$$Q_B = \frac{R_2^2}{8} = \frac{0.34^2}{8} = 0.01445, Q_C = \frac{R_4^2}{8} = \frac{0.56^2}{8} = 0.0392,$$

$$Q_D = \frac{R_7^2}{8} = \frac{2.42^2}{8} = 0.73205, \quad Q_{A \times B} = \frac{R_3^2}{8} = \frac{1.16^2}{8} = 0.1682,$$

$$Q_{A \times C} = \frac{R_5^2}{8} = \frac{1.74^2}{8} = 0.37845,$$

$$|||||Q_A = Q_T - Q_A - Q_B - Q_C - Q_B - Q_{A \times B} = 0.0512,$$

则
$$Q_e = Q_T - Q_A - Q_B - Q_C - Q_D - Q_{A \times B} - Q_{A \times C} = 0.0512$$

 Q_T 的自由度 $f_T = n - 1 = 8 - 1 = 7$, Q_A , Q_B , Q_C , Q_D , $Q_{A \times B}$, $Q_{A \times C}$ 的自由度都为 1, Q_e 的自由度也为1, 则有:

$$F_A = \frac{Q_A/f_A}{Q_e/f_e} = 7.2227$$
, $F_B = \frac{Q_B/f_B}{Q_e/f_e} = 0.2822$, $F_C = \frac{Q_C/f_C}{Q_e/f_e} = 0.7656$,

$$F_D = \frac{Q_D/f_D}{Q_e/f_e} = 14.2979$$
, $F_{A\times B} = \frac{Q_{A\times B}/f_{A\times B}}{Q_e/f_e} = 3.2852$, $F_{A\times C} = \frac{Q_{A\times C}/f_{A\times C}}{Q_e/f_e} = 7.3916$ 将这些计算结果列成方差分析表,如下:

方差来源	平方和	自由度	均方和	F 值
A	$Q_A = 0.3698$	1	$Q_A/1 = 0.3698$	$F_A = 7.2227$
В	$Q_B = 0.0145$	1	$Q_B/1 = 0.0145$	$F_B = 0.2822$
C	$Q_C = 0.0392$	1	$Q_C/1 = 0.0392$	$F_C = 0.7656$
D	$Q_D = 0.7321$	1	$Q_D/1 = 0.7321$	$F_D = 14.2979$
$A \times B$	$Q_{A\times B}=0.1682$	1	$Q_{A\times B}/1=0.1682$	$F_{A\times B}=3.2852$
$A \times C$	$Q_{A\times C}=0.3785$	1	$Q_{A\times C}/1=0.3785$	$F_{A\times C}=7.3916$
误差 e	$Q_e = 0.0512$	1	$Q_e/1 = 0.0512$	
总和 T	$Q_T = 1.75335$	7		

给定显著水平 $\alpha = 0.01$, 查 F 分布表, 得 $F_{0.01}(1,1) = 4052$ 。结合方差分析表可 知,各因素对试验指标均无显著影响。

4.13 解:由附表,得以下正交表:

列号	A	В	A×B	A×B	С			B×C	D	Е	B×C	F	1.2	指标
试验号	1	2	3	4	5	6	7	8	9	10	11	12	13	y_i
1	1	1	1	1	1	1	1	1	1	1	1	1	1	63
2	1	1	1	1	2	2	2	2	2	2	2	2	2	58
3	1	1	1	1	3	3	3	3	3	3	3	3	3	57
4	1	2	2	2	1	1	1	2	2	2	3	3	3	55
5	1	2	2	2	2	2	2	3	3	3	1	1	1	56
6	1	2	2	2	3	3	3	1	1	1	2	2	2	59
7	1	3	3	3	1	1	1	3	3	3	2	2	2	54
8	1	3	3	3	2	2	2	1	1	1	3	3	3	59
9	1	3	3	3	3	3	3	2	2	2	1	1	1	61
10	2	1	2	3	1	2	3	1	2	3	1	2	3	45
11	2	1	2	3	2	3	1	2	3	1	2	3	1	42
12	2	1	2	3	3	1	2	3	1	2	3	1	2	58
13	2	2	3	1	1	2	3	2	3	1	3	1	2	45
14	2	2	3	1	2	3	1	3	1	2	1	2	3	50
15	2	2	3	1	3	1	2	1	2	3	2	3	1	45
16	2	3	1	2	1	2	3	3	1	2	2	3	1	51
17	2	3	1	2	2	3	1	1	2	3	3	1	2	49
18	2	3	1	2	3	1	2	2	3	1	1	2	3	40
19	3	1	3	2	1	3	2	1	3	2	1	3	2	33
20	3	1	3	2	2	1	3	2	1	3	2	1	3	50
21	3	1	3	2	3	2	1	3	2	1	3	2	1	37
22	3	2	1	3	1	3	2	2	1	3	3	2	1	44
23	3	2	1	3	2	1	3	3	2	1	1	3	2	40
24	3	2	1	3	3	2	1	1	3	2	2	1	3	36
25	3	3	2	1	1	3	2	3	2	1	2	1	3	49
26	3	3	2	1	2	1	3	1	3	2	3	2	1	38
27	3	3	2	1	3	2	1	2	1	3	1	3	2	45
T_{1j}	522	443	438	450	439	443	431	427	479	434	433	467	437	$\sum y_i$
T_{2j}	425	430	447	430	442	432	442	440	439	440	444	425	441	
T_{3j}	372	446	434	439	438	444	446	452	401	445	442	427	441	=
R_j	150	16	13	20	4	12	15	25	78	11	11	42	4	1319

则指标的平均数为: $\bar{y} = 48.85185$.

方差分析表计算如下:

方差来源	平方和	自由度	均方和	F 值
A	$Q_A = 1285.8519$	2	$\frac{Q_A}{2} = 642.9259$	$F_A = \frac{Q_A/2}{Q_e/6} = 157.8091$
В	$Q_B = 16.0741$	2	$\frac{Q_B}{2} = 8.0370$	$F_B = \frac{Q_B/2}{Q_e/6} = 1.9727$
С	$Q_C = 0.9630$	2	$\frac{Q_C}{2} = 0.4815$	$F_C = \frac{Q_C/2}{Q_e/6} = 0.1182$
D	$Q_D = 338.0741$	2	$\frac{Q_D}{2} = 169.0370$	$F_D = \frac{Q_D/2}{Q_e/6} = 41.4909$
Е	$Q_E=6.7407$	2	$\frac{Q_E}{2} = 3.3704$	$F_E = \frac{Q_E/2}{Q_e/6} = 0.8273$
F	$Q_F = 124.7407$	2	$\frac{Q_F}{2} = 62.3704$	$F_F = \frac{Q_F/2}{Q_e/6} = 15.3091$
A×B	$Q_{A\times B}=32.1481$	4	$\frac{Q_{A\times B}}{4} = 8.0370$	$F_{A \times B} = \frac{Q_{A \times B}/4}{Q_e/6} = 1.9727$
B×C	$Q_{B\times C}=42.3704$	4	$\frac{Q_{B\times C}}{4}=10.5926$	$F_{A \times C} = \frac{Q_{B \times C}/4}{Q_e/6} = 2.6$
误差 e	$Q_e = 24.4444$	6	$\frac{Q_e}{6} = 4.074$	
总和 T	$Q_T = \sum_{i=1}^{27} (y_i - \bar{y})^2$ $= 1871.4074$	26		

其中, Q_A 、 Q_B 、 Q_C 、 Q_D 、 Q_E 、 Q_F 根据公式 $Q_j = \frac{s_j}{n} \sum_{i=1}^{s_j} T_{ij}^2 - \frac{1}{n} \left(\sum_{i=1}^{s_j} T_{ij} \right)^2$ 计算, s_j 是第j个因素的水平数, $Q_{A\times B} = Q_3 + Q_4$, $Q_{A\times C} = Q_8 + Q_{11}$, $Q_e = Q_T - Q_A - Q_B - Q_C - Q_D - Q_E - Q_F - Q_{A\times B} - Q_{A\times C}$ 。给定显著水平 α =0.01,查相应 F 分布表可知, $F_{0.01}(2,6) = 10.93$ 。再结合方差分析表,即可知因素 A(补强剂种类)、D(补强剂用量)、F(防老剂)对胶料物理性能有显著影响,其他因素包括交互作用对试验指标的影响均不显著。

4.14

解: 由附表,得以下正交表:

<u>ит•</u> шг	13.54)	NNI	— /C/C	•										
列号	A	В	C	D	Е	6	7	8	9	10	11	12	13	指标
试验号	1	2	3	4	5									y_i
1	1	1	1	1	1	1	1	1	1	1	1	1	1	694
2	1	1	1	1	1	2	2	2	2	2	2	2	2	664
3	1	2	2	2	2	1	1	1	1	2	2	2	2	714
4	1	2	2	2	2	2	2	2	2	1	1	1	1	650
5	2	1	1	2	2	1	1	2	2	1	1	2	2	650
6	2	1	1	2	2	2	2	1	1	2	2	1	1	646
7	2	2	2	1	1	1	1	2	2	2	2	1	1	670
8	2	2	2	1	1	2	2	1	1	1	1	2	2	652
9	3	1	2	1	2	1	2	1	2	1	2	1	2	646
10	3	1	2	1	2	2	1	2	1	2	1	2	1	600
11	3	2	1	2	1	1	2	1	2	2	1	2	1	630
12	3	2	1	2	1	2	1	2	1	1	2	1	2	670
13	4	1	2	2	1	1	2	2	1	1	2	2	1	660
14	4	1	2	2	1	2	1	1	2	2	1	1	2	670
15	4	2	1	1	2	1	2	2	1	2	1	1	2	670
16	4	2	1	1	2	2	1	1	2	1	2	2	1	650
T_{1j}	2722	5230	5274	5246	5310	5334	5318	5302	5306	5272	5216	5316	5200	
T_{2j}	2618	5306	5262	5290	5226	5202	5218	5234	5230	5264	5320	5220	5336	
T_{3j}	2546													_
T_{4j}	2650													$\sum_{i=1, j} y_i$
T_{1j}'	680.5	653.75	659.25	655.75	663.75	666.75	664.75	662.75	663.25	659	652	664.5	650	
T_{2j}'	654.5	663.25	657.75	661.25	653.25	650.25	652.25	654.25	653.75	658	665	652.5	667	0536
T_{3j}'	636.5													
$T_{4j}{}'$	662.5													
R_j	44	9.5	1.5	5.5	10.5	16.5	12.5	8.5	9.5	1	13	12	17	

首先,计算正交表上每一列对应水平 i 的试验指标数据之和,依次填入上表中,因为此正交表中各因素的水平数不等,为消除因素间水平不均的影响,

在计算极差 R_j 时用平均数计算,即 $T'_{1j}=T_{1j}/4$, $T'_{ij}=\frac{T_{ij}}{8}$,i=2,3,4,5。

其次,计算极差 $R_j = \max\{T'_{1j}, T'_{2j}, \ldots\} - \min\{T'_{1j}, T'_{2j}, \ldots\}.$

并也依次计算填入上表中。

最后,按照 R_j 的大小排除因素间的主次顺序, R_j 值越大,表明因素 j 对试验指标影响越大,也就越重要。因此,由极差可得各因素(包括虚因素)的重要性依次为: $A \rightarrow E \rightarrow B \rightarrow D \rightarrow C$ 。即对于晚稻产量影响作用由大到小依次为:品种、追肥量(斤/亩)、栽种规格、追肥量(公斤/亩)和株数/穴。

因为在试验中,产量越高越好,这样每个因素应取较大的值,则因素 A 取水平 A_1 ,E取 E_1 ,B取 B_2 ,D取 D_2 ,C取 C_2 。最佳的搭配方案为: $A_1E_1B_2D_2C_1$ 故可得出最优生产方案,即选择甲品种的晚稻,栽种规格为 4×4,每穴种 7~8 株,追肥量为 15 公斤/亩以及 3 斤/亩。