

Faculty of Science

Greedy Learning of Causal Structures in Additive

Noise Models

Master thesis defense

Phillip Bredahl Mogensen Department of Mathematics

Agenda

- Causal discovery and Additive Noise Models
- Entropy scores and the Greedy entropy-search
- 3 A few simulations and real data
- 4 Conclusion

Causal discovery and Additive Noise Models

Source: Peters et al. 2017, Page 6.

• Population case, i.e. known distribution \mathbb{P} .

- Population case, i.e. known distribution \mathbb{P} .
- We want to recover the graph of the causal model that generated \mathbb{P} .

- Population case, i.e. known distribution \mathbb{P} .
- We want to recover the graph of the causal model that generated \mathbb{P} . Two main problems:

- Population case, i.e. known distribution \mathbb{P} .
- We want to recover the graph of the causal model that generated $\mathbb{P}.$ Two main problems:
 - Identifiability.

- \bullet Population case, i.e. known distribution $\mathbb{P}.$
- We want to recover the graph of the causal model that generated \mathbb{P} . Two main problems:
 - Identifiability.
 - Computability.

- Population case, i.e. known distribution \mathbb{P} .
- We want to recover the graph of the causal model that generated P. Two main problems:
 - Identifiability.
 - Computability.
- Additive Noise Models.

- Population case, i.e. known distribution \mathbb{P} .
- We want to recover the graph of the causal model that generated \mathbb{P} . Two main problems:
 - Identifiability.
 - Computability.
- Additive Noise Models.
- A score-based Greedy search.

Definition 1

An Additive Noise Model (ANM), \mathscr{C} , is a collection of assignments, **S**, and mutually independent noise distributions. An ANM has an associated Directed Acyclic Graph (DAG).

Definition 1

An Additive Noise Model (ANM), \mathscr{C} , is a collection of assignments, S, and mutually independent noise distributions. An ANM has an associated Directed Acyclic Graph (DAG).

$$S_
u \coloneqq \left\{ X_
u \coloneqq \sum_{\gamma \in \mathbf{PA}_\mathcal{G}(X_
u)} f^0_{
u,\gamma}(X_\gamma) + N_
u
ight\}$$

Definition 1

An Additive Noise Model (ANM), &, is a collection of -assignments, S, and mutually independent noise distributions. An ANM has an associated Directed Acyclic Graph (DAG).

$$S_
u \coloneqq \left\{ X_
u := \sum_{\gamma \in \mathsf{PA}_\mathcal{G}(X_
u)} f^0_{
u,\gamma}(X_\gamma) + \mathsf{N}_
u
ight\}^{-1}$$

• The functions $f^0_{\cdot,\cdot}$ belong to a class called \mathcal{F} .

Definition 1

An Additive Noise Model (ANM), \mathscr{C} , is a collection of assignments, S, and mutually independent noise distributions. An ANM has an associated Directed Acyclic Graph (DAG).

$$S_
u \coloneqq \left\{ X_
u := \sum_{\gamma \in \mathsf{PA}_\mathcal{G}(X_
u)} f^0_{
u,\gamma}(X_\gamma) + \mathsf{N}_
u
ight\}^{-1}$$

- The functions $f^0_{\cdot,\cdot}$ belong to a class called \mathcal{F} .
- The ANM $\mathscr C$ implies a unique, joint distribution, $\mathbb P$.

Definition 1

An Additive Noise Model (ANM), \mathscr{C} , is a collection of assignments, S, and mutually independent noise distributions. An ANM has an associated Directed Acyclic Graph (DAG).

$$S_
u \coloneqq \left\{ X_
u := \sum_{\gamma \in \mathsf{PA}_\mathcal{G}(X_
u)} f^0_{
u,\gamma}(X_\gamma) + \mathsf{N}_
u
ight\}.$$

- The functions $f^0_{\cdot,\cdot}$ belong to a class called \mathcal{F} .
- The ANM ℰ implies a unique, joint distribution, ℙ.
- We call $\mathscr C$ identifiable when $\mathbb P$ can *only* be implied by $\mathscr C$.

Definition 1

An Additive Noise Model (ANM), \mathscr{C} , is a collection of -assignments, S, and mutually independent noise distributions. An ANM has an associated Directed Acyclic Graph (DAG).

$$oldsymbol{S}_
u \coloneqq \left\{ X_
u := \sum_{\gamma \in \mathsf{PA}_\mathcal{G}(X_
u)} f^0_{
u,\gamma}(X_\gamma) + \mathsf{N}_
u
ight\}.$$

- The functions $f^0_{\cdot,\cdot}$ belong to a class called \mathcal{F} .
- The ANM & implies a unique, joint distribution, P.
- We call $\mathscr C$ identifiable when $\mathbb P$ can *only* be implied by $\mathscr C$.
- To get identifiability, we lean on existing results

We assume that:

We assume that:

- (A1,2) \mathcal{F} consists of non-linear C^3 functions + some regularity conditions.
 - (A3) The densities of the noise variables have only discretely many solutions to the differential equation $(\log f)'' = 0$.
 - (A4) The noise variables have full support and their densities are in C^3 and strictly positive.
- (A5,6) All noise variables and all \mathcal{F} -transformations of them have second moment.

We assume that:

- (A1,2) \mathcal{F} consists of non-linear C^3 functions + some regularity conditions.
 - (A3) The densities of the noise variables have only discretely many solutions to the differential equation $(\log f)'' = 0$.
 - (A4) The noise variables have full support and their densities are in C^3 and strictly positive.
- (A5,6) All noise variables and all \mathcal{F} -transformations of them have second moment.

In short: 'Nice', nonlinear functions + 'nice' noise variables give identifiability.

We assume that:

- (A1,2) \mathcal{F} consists of non-linear C^3 functions + some regularity conditions.
 - (A3) The densities of the noise variables have only discretely many solutions to the differential equation $(\log f)'' = 0$.
 - (A4) The noise variables have full support and their densities are in C^3 and strictly positive.
- (A5,6) All noise variables and all F-transformations of them have second moment.

In short: 'Nice', nonlinear functions + 'nice' noise variables give identifiability.

Entropy scores and the Greedy entropy-search

Suppose we know the distribution of an identifiable model, \mathscr{C} , with true graph \mathcal{G}^0 .

Suppose we know the distribution of an identifiable model, \mathscr{C} , with true graph \mathcal{G}^0 .

Q: How do we rank candidate graphs?

Suppose we know the distribution of an identifiable model, \mathscr{C} , with true graph \mathcal{G}^0 .

 $\mathbf{Q} \colon \mathsf{How} \ \mathsf{do} \ \mathsf{we} \ \mathsf{rank} \ \mathsf{candidate} \ \mathsf{graphs} ?$

A: Entropy scores:

Suppose we know the distribution of an identifiable model, \mathscr{C} , with true graph \mathcal{G}^0 .

Q: How do we rank candidate graphs?

A: Entropy scores:

Definition 2

$$\ell(\mathcal{G}) \coloneqq -\sum_{
u \in V(\mathcal{G})} \mathbb{H} \left(X_
u - \sum_{\gamma \in \mathsf{PA}_\mathcal{G}(
u)} \hat{f}_{
u,\gamma}(X_\gamma)
ight).$$

Suppose we know the distribution of an identifiable model, \mathscr{C} , with true graph \mathcal{G}^0 .

Q: How do we rank candidate graphs?

A: Entropy scores:

Definition 2

$$\ell(\mathcal{G}) \coloneqq -\sum_{
u \in V(\mathcal{G})} \mathbb{H}\left(X_{
u} - \sum_{\gamma \in \mathsf{PA}_{\mathcal{G}}(
u)} \hat{f}_{
u,\gamma}(X_{\gamma})\right).$$

$$= rg \min_{\mathcal{F} \cup \mathcal{C}} \mathbb{E} \left(X_{
u} - \sum_{\gamma \in \mathsf{PA}_{\mathcal{G}}(
u)} f_{
u,\gamma}(X_{\gamma})
ight)^2$$

Suppose we know the distribution of an identifiable model, \mathscr{C} , with true graph \mathcal{G}^0 .

Q: How do we rank candidate graphs?

A: Entropy scores:

Definition 2

$$\ell(\mathcal{G}) := -\sum_{
u \in V(\mathcal{G})} \mathbb{H} \left(X_{
u} - \sum_{\gamma \in \mathsf{PA}_{\mathcal{G}}(
u)} \hat{f}_{
u,\gamma}(X_{\gamma}) \right).$$

$$= \underset{\mathcal{F} \cup \mathcal{C}}{\mathsf{arg \, min \, MSE}}$$

Suppose we know the distribution of an identifiable model, \mathscr{C} , with true graph \mathcal{G}^0 .

Q: How do we rank candidate graphs?

A: Entropy scores:

Definition 2

$$\ell(\mathcal{G}) \coloneqq -\sum_{
u \in V(\mathcal{G})} \mathbb{H} \left(\mathsf{residuals of} \ X_
u
ight).$$

Suppose we know the distribution of an identifiable model, \mathscr{C} , with true graph \mathcal{G}^0 .

Q: How do we rank candidate graphs?

A: Entropy scores:

Definition 2

The entropy score of a graph ${\mathcal G}$ under ${\mathscr C}$ is

$$\ell(\mathcal{G})\coloneqq -\sum_{
u\in V(\mathcal{G})}\mathbb{H}\left(ext{residuals of }X_
u
ight).$$

Q: Why this score function?

Theorem 3

If \mathcal{G}^0 is the true graph of an ANM that satisfies (A1)–(A6), then

$$\mathcal{G}^0 = \underset{\mathcal{G}}{\operatorname{arg\,max}} \, \ell(\mathcal{G}).$$

Theorem 3

If G^0 is the true graph of an ANM that satisfies (A1)–(A6), then

$$\mathcal{G}^0 = \arg\max_{\mathcal{G}} \ell(\mathcal{G}).$$

• Implication: To find \mathcal{G}^0 , just maximize ℓ .

Theorem 3

If G^0 is the true graph of an ANM that satisfies (A1)–(A6), then

$$\mathcal{G}^0 = \operatorname*{arg\,max}_{\mathcal{G}} \ell(\mathcal{G}).$$

- Implication: To find \mathcal{G}^0 , just maximize ℓ .
- We just check every possible graph!

The problem

How many graphs do we need to check if we have *p* variables?

¹Calculations based on McKay et al. [2003]
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 10/40

The problem

How many graphs do we need to check if we have *p* variables?

Number of graphs ¹	р
1	1

¹Calculations based on McKay et al. [2003]
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 10/40

The problem

How many graphs do we need to check if we have p variables?

Number of graphs ¹	р
1	1
3	2

¹Calculations based on McKay et al. [2003]
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 10/40

Number of graphs ¹	p
1	1
3	2
25	3

¹Calculations based on McKay et al. [2003]
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 10/40

Number of graphs ¹	р
1	1
3	2
25	3
543	4

¹Calculations based on McKay et al. [2003]
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 10/40

Number of graphs ¹	р
1	1
3	2
25	3
543	4
:	:

¹Calculations based on McKay et al. [2003]
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 10/40

Number of graphs ¹	p
1	1
3	2
25	3
543	4
<u>:</u>	:
237725265553410438426046268268222688862026	15

¹Calculations based on McKay et al. [2003]
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 10/40

How many graphs do we need to check if we have p variables?

Number of graphs ¹	р
1	1
3	2
25	3
543	4
:	:
237725265553410438426046268268222688862026	15

Too many! Computationally an impossible task.

¹Calculations based on McKay et al. [2003]
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 10/40

How many graphs do we need to check if we have p variables?

Number of graphs ¹	p
1	1
3	2
25	3
543	4
:	:
237725265553410438426046268268222688862026	15

Too many! Computationally an impossible task. Instead, we do a Greedy search.

¹Calculations based on McKay et al. [2003]
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 10/40

• Introduce the Gaussian score:

$$\ell^{oldsymbol{g}}(\mathcal{G}) := -\sum_{
u \in V(\mathcal{G})} \log \mathbb{V} \left(ext{residuals of } X_
u
ight)$$

• Introduce the Gaussian score:

$$\ell^{oldsymbol{g}}(\mathcal{G}) := -\sum_{
u \in V(\mathcal{G})} \log \mathbb{V} \left(ext{residuals of } X_
u
ight)$$

• Intuition: A worst-case-scenario entropy score.

• Introduce the Gaussian score:

$$\ell^{oldsymbol{g}}(\mathcal{G}) := -\sum_{
u \in V(\mathcal{G})} \log \mathbb{V} \left(ext{residuals of } X_
u
ight)$$

- Intuition: A worst-case-scenario entropy score.
- Restrict attention to unrelated graphs.

• Introduce the Gaussian score:

$$\ell^{oldsymbol{g}}(\mathcal{G}) := -\sum_{
u \in V(\mathcal{G})} \log \mathbb{V} \left(ext{residuals of } X_
u
ight)$$

- Intuition: A worst-case-scenario entropy score.
- Restrict attention to unrelated graphs.

All parents are mutually independent

• Introduce the Gaussian score:

$$\ell^{oldsymbol{g}}(\mathcal{G}) := -\sum_{
u \in V(\mathcal{G})} \log \mathbb{V} \left(\mathsf{residuals} \,\, \mathsf{of} \,\, X_
u
ight)$$

- Intuition: A worst-case-scenario entropy score.
- Restrict attention to unrelated graphs.

All cycles have at least three colliders

Input: Graph \mathcal{G} , distribution \mathbb{P}

Input: Graph \mathcal{G} , distribution \mathbb{P} Select $(\alpha - \beta)$ that maximizes $\Delta \ell^{g}$


```
Input: Graph \mathcal{G}, distribution \mathbb{P} Select (\alpha - \beta) that maximizes \Delta \ell^g if \Delta \ell^g is negative then \mid return \mathcal{G} end
```



```
Input: Graph \mathcal{G}, distribution \mathbb{P} Select (\alpha - \beta) that maximizes \Delta \ell^g if \Delta \ell^g is negative then \mid return \mathcal{G} end else \mid Direct (\alpha - \beta) by maximizing \Delta \ell. end
```



```
Input: Graph \mathcal{G}, distribution \mathbb{P} Select (\alpha - \beta) that maximizes \Delta \ell^g if \Delta \ell^g is negative then \mid return \mathcal{G} end else \mid Direct (\alpha - \beta) by maximizing \Delta \ell. end Add directed edge to \mathcal{G}
```



```
Input: Graph \mathcal{G}, distribution \mathbb{P} Select (\alpha - \beta) that maximizes \Delta \ell^g if \Delta \ell^g is negative then \mid return \mathcal{G} end else \mid Direct (\alpha - \beta) by maximizing \Delta \ell. end Add directed edge to \mathcal{G} Repeat until \Delta \ell^g does not increase anymore
```



```
Input: Graph \mathcal{G}, distribution \mathbb{P}
Select (\alpha - \beta) that maximizes \Delta \ell^g
if \Delta \ell^g is negative then
    return G
end
else
    Direct (\alpha - \beta) by maximizing \Delta \ell.
end
Add directed edge to \mathcal{G}
Repeat until \Delta \ell^g does not increase anymore
return G
```



```
Input: Graph \mathcal{G}, distribution \mathbb{P}
Select (\alpha - \beta) that maximizes \Delta \ell^g
if \Delta \ell^g is negative then
    return G
end
else
    Direct (\alpha - \beta) by maximizing \Delta \ell.
end
Add directed edge to \mathcal{G}
Repeat until \Delta \ell^g does not increase anymore
return G
```

• Greedy search makes locally optimal choices.


```
Input: Graph \mathcal{G}, distribution \mathbb{P}
Select (\alpha - \beta) that maximizes \Delta \ell^g
if \Delta \ell^g is negative then
     return \mathcal{G}
end
else
     Direct (\alpha - \beta) by maximizing \Delta \ell.
end
Add directed edge to \mathcal{G}
Repeat until \Delta \ell^g does not increase anymore
return G
```

- Greedy search makes locally optimal choices.
- Q: Can we be sure it gives a global optimum?


```
Input: Graph \mathcal{G}, distribution \mathbb{P}
Select (\alpha - \beta) that maximizes \Delta \ell^g
if \Delta \ell^g is negative then
    return G
end
else
    Direct (\alpha - \beta) by maximizing \Delta \ell.
end
Add directed edge to \mathcal{G}
Repeat until \Delta \ell^g does not increase anymore
return G
```

- Greedy search makes locally optimal choices.
- Q: Can we be sure it gives a global optimum?
- A: Yes!


```
Input: Graph \mathcal{G}, distribution \mathbb{P}
Select (\alpha - \beta) that maximizes \Delta \ell^g
if \Delta \ell^g is negative then
     return \mathcal{G}
end
else
     Direct (\alpha - \beta) by maximizing \Delta \ell.
end
Add directed edge to \mathcal{G}
Repeat until \Delta \ell^g does not increase anymore
return G
```

- Greedy search makes locally optimal choices.
- Q: Can we be sure it gives a global optimum?
- A: Yes! But it requires a bit of work.

Theorem 4

Let $\mathscr C$ be an ANM with unrelated graph, $\mathcal G^0$. Under regularity conditions, $\mathcal G^0$ can be recovered from the distribution of $\mathscr C$ by the Greedy entropy-search.

Theorem 4

Let $\mathscr C$ be an ANM with unrelated graph, $\mathcal G^0$. Under regularity conditions, $\mathcal G^0$ can be recovered from the distribution of $\mathscr C$ by the Greedy entropy-search.

To prove: Show that we never

Theorem 4

Let $\mathscr C$ be an ANM with unrelated graph, $\mathcal G^0$. Under regularity conditions, $\mathcal G^0$ can be recovered from the distribution of $\mathscr C$ by the Greedy entropy-search.

- To prove: Show that we never
 - **1** add edges not in the skeleton of \mathcal{G}^0 ,

Theorem 4

Let $\mathscr C$ be an ANM with unrelated graph, $\mathcal G^0$. Under regularity conditions, $\mathcal G^0$ can be recovered from the distribution of $\mathscr C$ by the Greedy entropy-search.

- To prove: Show that we never
 - **1** add edges not in the skeleton of \mathcal{G}^0 ,
 - 2 misdirect edges.

Theorem 4

Let $\mathscr C$ be an ANM with unrelated graph, $\mathcal G^0$. Under regularity conditions, $\mathcal G^0$ can be recovered from the distribution of $\mathscr C$ by the Greedy entropy-search.

- To prove: Show that we never
 - **1** add edges not in the skeleton of \mathcal{G}^0 ,
 - 2 misdirect edges.

Includes (A1)–(A6). The rest we find during the proof

• Let $(\alpha - \beta)$ be the edge chosen by the GEnS at step s.

- Let $(\alpha \beta)$ be the edge chosen by the GEnS at step s.
- Strategy:

- Let $(\alpha \beta)$ be the edge chosen by the GEnS at step s.
- Strategy:
 - Assume for contradiction that $(\alpha \beta) \not\in \text{ske}(\mathcal{G}^0)$.

- Let $(\alpha \beta)$ be the edge chosen by the GEnS at step s.
- Strategy:
 - Assume for contradiction that $(\alpha \beta) \notin \text{ske}(\mathcal{G}^0)$.
 - Divide into cases.

- Let $(\alpha \beta)$ be the edge chosen by the GEnS at step s.
- Strategy:
 - Assume for contradiction that $(\alpha \beta) \notin \text{ske}(\mathcal{G}^0)$.
 - Divide into cases.
 - Find edges that have a higher score than $(\alpha \beta)$.

- Let $(\alpha \beta)$ be the edge chosen by the GEnS at step s.
- Strategy:
 - Assume for contradiction that $(\alpha \beta) \notin \text{ske}(\mathcal{G}^0)$.
 - Divide into cases.
 - Find edges that have a higher score than $(\alpha \beta)$.
 - Contradiction. ©

- Let $(\alpha \beta)$ be the edge chosen by the GEnS at step s.
- Strategy:
 - Assume for contradiction that $(\alpha \beta) \notin \text{ske}(\mathcal{G}^0)$.
 - Divide into cases.
 - Find edges that have a higher score than $(\alpha \beta)$.
 - Contradiction. ©
- To get there, we rely on three results.

Proving optimality – part one Prerequisites

Proposition 5

Let $\mathscr C$ be an ANM with graph $\mathcal G^0$ and let $\mathcal G$ be a subgraph. If $\alpha \perp_d \beta \mid \mathbf{PA}_{\mathcal G}(\beta)$, then

$$\Delta \ell^{\mathsf{g}}(\mathcal{G}, \alpha \to \beta) = 0.$$

Proving optimality – part one Prerequisites

Proposition 5

Let $\mathscr C$ be an ANM with graph $\mathcal G^0$ and let $\mathcal G$ be a subgraph. If $\alpha \perp_d \beta \mid \mathbf{PA}_{\mathcal G}(\beta)$, then

$$\Delta \ell^{\mathsf{g}} (\mathcal{G}, \alpha \to \beta) = 0.$$

Proposition 6

Same set-up as above. If $\alpha \to \beta$ is in \mathcal{G}^0 but not in \mathcal{G} , then

$$\Delta \ell^{g}(\mathcal{G}, \alpha \to \beta) > 0.$$

Prerequisites continued

Lemma 7

Let
$$(X, Y) \sim \mathbb{P}_{(X,Y)}$$
 and $N \sim \mathbb{P}_N$ with $N \perp Y$.

Prerequisites continued

Lemma 7

Let $(X, Y) \sim \mathbb{P}_{(X,Y)}$ and $N \sim \mathbb{P}_N$ with $N \perp Y$. Assume that $x \mapsto \mathbb{E}_N f(g(x) + N)$ is in \mathcal{F} whenever $f, g \in \mathcal{F}$.

Prerequisites continued

Lemma 7

Let $(X,Y) \sim \mathbb{P}_{(X,Y)}$ and $N \sim \mathbb{P}_N$ with $N \perp Y$. Assume that $x \mapsto \mathbb{E}_N f(g(x) + N)$ is in \mathcal{F} whenever $f,g \in \mathcal{F}$. Then

$$\min_{f \in \mathcal{F}} \mathbb{E}_{(X,Y)} \left(Y - f(X) \right)^2 < \min_{f \in \mathcal{F}} \mathbb{E}_{(X,Y,N)} \left(Y - f(g(X) + N) \right)^2$$

Prerequisites continued

Lemma 7

Let $(X,Y) \sim \mathbb{P}_{(X,Y)}$ and $N \sim \mathbb{P}_N$ with $N \perp Y$. Assume that $x \mapsto \mathbb{E}_N f(g(x) + N)$ is in \mathcal{F} whenever $f,g \in \mathcal{F}$. Then

$$\min_{f \in \mathcal{F}} \mathbb{E}_{(X,Y)} (Y - f(X))^2 < \min_{f \in \mathcal{F}} \mathbb{E}_{(X,Y,N)} (Y - f(g(X) + N))^2$$

Intuition:

MSE of regressing Y onto X < MSE of regressing Y onto noisy version of X.

• We are now ready to prove part one.

- We are now ready to prove part one.
- Divide into three cases.

- We are now ready to prove part one.
- Divide into three cases.
 - **1** α and β are not *d*-connected in \mathcal{G}^0 .

- We are now ready to prove part one.
- Divide into three cases.
 - **1** α and β are not *d*-connected in \mathcal{G}^0 .
 - **2** α and β are *d*-connected in \mathcal{G}^0 through $\mathsf{PA}_{\mathcal{G}^0}(\alpha)$.

- We are now ready to prove part one.
- Divide into three cases.
 - **1** α and β are not *d*-connected in \mathcal{G}^0 .
 - **2** α and β are *d*-connected in \mathcal{G}^0 through $\mathbf{PA}_{\mathcal{G}^0}(\alpha)$.
 - **3** α and β are *d*-connected in \mathcal{G}^0 through $\mathbf{CH}_{\mathcal{G}^0}(\alpha)$.

- We are now ready to prove part one.
- Divide into three cases.
 - **1** α and β are not *d*-connected in \mathcal{G}^0 .
 - **2** α and β are *d*-connected in \mathcal{G}^0 through $\mathsf{PA}_{\mathcal{G}^0}(\alpha)$.
 - **3** α and β are *d*-connected in \mathcal{G}^0 through $\mathbf{CH}_{\mathcal{G}^0}(\alpha)$.
- We briefly go through case 2.

- We are now ready to prove part one.
- Divide into three cases.
 - **1** α and β are not d-connected in \mathcal{G}^0 .
 - **2** α and β are *d*-connected in \mathcal{G}^0 through $\mathsf{PA}_{\mathcal{G}^0}(\alpha)$.
 - **3** α and β are *d*-connected in \mathcal{G}^0 through $\mathbf{CH}_{\mathcal{G}^0}(\alpha)$.
- We briefly go through case 2.
- Case 3 turns out to follow from case 2.

Proving optimality – part one Case 2:

• Observe: There is only one *d*-connection, ϵ , between α and β .

Proving optimality – part one Case 2:

- Observe: There is only one *d*-connection, ϵ , between α and β .
 - Otherwise, there would be a cycle with < 3 colliders.

Proving optimality – part one Case 2:

- Observe: There is only one *d*-connection, ϵ , between α and β .
 - Otherwise, there would be a cycle with < 3 colliders.
- We let π be the parent of α on ϵ and ρ be the neighbor of β along ϵ .

Proving optimality – part one Case 2 continued:

Case 2 continued:

Case 2 continued:

Suppose first that ρ is a parent of β .

• If π is in \mathcal{G}^s : $\Delta \ell^g (\mathcal{G}^s, \beta \to \alpha) = 0$ by Proposition 5.

Case 2 continued:

- If π is in \mathcal{G}^s : $\Delta \ell^g (\mathcal{G}^s, \beta \to \alpha) = 0$ by Proposition 5.
- If ρ is in \mathcal{G}^s : $\Delta \ell^g (\mathcal{G}^s, \alpha \to \beta) = 0$ by Proposition 5.

Case 2 continued:

- If π is <u>not</u> in \mathcal{G}^s : $\Delta \ell^g (\mathcal{G}^s, \rho \to \alpha) > \Delta \ell^g (\mathcal{G}^s, \beta \to \alpha)$ by Lemma 7.
- If ρ is in \mathcal{G}^s : $\Delta \ell^g (\mathcal{G}^s, \alpha \to \beta) = 0$ by Proposition 5.

Proving optimality – part one Case 2 continued:

- If π is <u>not</u> in \mathcal{G}^s : $\Delta \ell^{\mathsf{g}} (\mathcal{G}^s, \rho \to \alpha) > \Delta \ell^{\mathsf{g}} (\mathcal{G}^s, \beta \to \alpha)$ by Lemma 7.
- If ρ is <u>not</u> in \mathcal{G}^s : $\Delta \ell^g (\mathcal{G}^s, \pi \to \beta) > \Delta \ell^g (\mathcal{G}^s, \alpha \to \beta)$ by Lemma 7.

Proving optimality – part one Case 2 continued:

Suppose now ρ is a <u>child</u> of β .

Case 2 continued:

Suppose now ρ is a <u>child</u> of β .

Proving optimality – part one Case 2 continued:

Suppose now ρ is a <u>child</u> of β .

• As before, $(\pi \to \beta)$ is better than $(\alpha \to \beta)$.

Proving optimality – part one Case 2 continued:

Suppose now ρ is a <u>child</u> of β .

- As before, $(\pi \to \beta)$ is better than $(\alpha \to \beta)$.
- New argument for not including $(\beta \to \alpha)$.

Case 2 continued:

Suppose now ρ is a <u>child</u> of β .

- As before, $(\pi \to \beta)$ is better than $(\alpha \to \beta)$.
- New argument for not including $(\beta \to \alpha)$.

In summary:

- In summary:
 - If $(\alpha \beta)$ is not in ske (\mathcal{G}^0) , we can always find a better alternative.

- In summary:
 - If $(\alpha \beta)$ is not in ske (\mathcal{G}^0) , we can always find a better alternative.
 - This contradicts that we selected $(\alpha \beta)$.

- In summary:
 - If $(\alpha \beta)$ is not in ske (\mathcal{G}^0) , we can always find a better alternative.
 - This contradicts that we selected $(\alpha \beta)$.
 - \Rightarrow $(\alpha \beta)$ must be in $ske(\mathcal{G}^0)$.

- In summary:
 - If $(\alpha \beta)$ is not in ske (\mathcal{G}^0) , we can always find a better alternative.
 - This contradicts that we selected $(\alpha \beta)$.
 - \Rightarrow $(\alpha \beta)$ must be in ske (\mathcal{G}^0) .
- We then move on to part 2.

• Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:
 - Assume for contradiction that $(\alpha \to \beta)$ is <u>not</u> in \mathcal{G}^0 .

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:
 - Assume for contradiction that $(\alpha \to \beta)$ is <u>not</u> in \mathcal{G}^0 .
 - This implies that $(\beta \to \alpha)$ is.

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:
 - Assume for contradiction that $(\alpha \to \beta)$ is <u>not</u> in \mathcal{G}^0 .
 - This implies that $(\beta \to \alpha)$ is.
 - We look a subgraph of \mathcal{G}^s , $\tilde{\mathcal{G}}$.

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:
 - Assume for contradiction that $(\alpha \to \beta)$ is <u>not</u> in \mathcal{G}^0 .
 - This implies that $(\beta \to \alpha)$ is.
 - We look a subgraph of \mathcal{G}^s , $\tilde{\mathcal{G}}$.

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:
 - Assume for contradiction that $(\alpha \to \beta)$ is <u>not</u> in \mathcal{G}^0 .
 - This implies that $(\beta \to \alpha)$ is.
 - We look a subgraph of \mathcal{G}^s , $\tilde{\mathcal{G}}$.
 - Consists of α , β and their \mathcal{G}^s parents.

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:
 - Assume for contradiction that $(\alpha \to \beta)$ is <u>not</u> in \mathcal{G}^0 .
 - This implies that $(\beta \to \alpha)$ is.
 - We look a subgraph of \mathcal{G}^s , $\tilde{\mathcal{G}}$.
 - Consists of α , β and their \mathcal{G}^s parents.

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:
 - Assume for contradiction that $(\alpha \to \beta)$ is <u>not</u> in \mathcal{G}^0 .
 - This implies that $(\beta \to \alpha)$ is.
 - We look a subgraph of \mathcal{G}^s , $\tilde{\mathcal{G}}$.
 - Consists of α , β and their \mathcal{G}^s parents.
 - Add $(\beta \to \alpha)$ to $\tilde{\mathcal{G}}$

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:
 - Assume for contradiction that $(\alpha \to \beta)$ is <u>not</u> in \mathcal{G}^0 .
 - This implies that $(\beta \to \alpha)$ is.
 - We look a subgraph of \mathcal{G}^s , $\tilde{\mathcal{G}}$.
 - Consists of α , β and their \mathcal{G}^s parents.
 - Add $(\beta \to \alpha)$ to $\tilde{\mathcal{G}}$

- Assume w.l.o.g. that $\Delta \ell$ is highest in $(\alpha \to \beta)$.
- Proof strategy:
 - Assume for contradiction that $(\alpha \to \beta)$ is <u>not</u> in \mathcal{G}^0 .
 - This implies that $(\beta \to \alpha)$ is.
 - We look a subgraph of \mathcal{G}^s , $\tilde{\mathcal{G}}$.
 - Consists of α , β and their \mathcal{G}^s parents.
 - Add $(\beta \to \alpha)$ to $\tilde{\mathcal{G}}$
 - We then apply Theorem 3 to reach a contradiction.

Theorem 3

If \mathcal{G}^0 is the true graph of an ANM that satisfies (A1)–(A6), then

$$\mathcal{G}^0 = \underset{\mathcal{G}}{\text{arg max}} \, \ell(\mathcal{G}).$$

Difficulties in proving part two

• To apply Theorem 3, we need $\tilde{\mathcal{G}}$ to be the graph of an identifiable ANM, $\tilde{\mathscr{C}}$.

- To apply Theorem 3, we need $\tilde{\mathcal{G}}$ to be the graph of an identifiable ANM, $\tilde{\mathscr{C}}$.
- \Leftrightarrow $\tilde{\mathscr{C}}$ needs to satisfy assumptions (A1)–(A6)

- To apply Theorem 3, we need $\tilde{\mathcal{G}}$ to be the graph of an identifiable ANM, $\tilde{\mathscr{C}}$.
- \Leftrightarrow $\tilde{\mathscr{C}}$ needs to satisfy assumptions (A1)–(A6)
- What does $\tilde{\mathscr{C}}$ look like?

- To apply Theorem 3, we need $\tilde{\mathcal{G}}$ to be the graph of an identifiable ANM, $\tilde{\mathscr{C}}$.
- \Leftrightarrow $\tilde{\mathscr{C}}$ needs to satisfy assumptions (A1)–(A6)
- What does $\tilde{\mathscr{C}}$ look like?

- To apply Theorem 3, we need $\tilde{\mathcal{G}}$ to be the graph of an identifiable ANM, $\tilde{\mathscr{C}}$.
- \Leftrightarrow $\tilde{\mathscr{C}}$ needs to satisfy assumptions (A1)–(A6)
- \bullet What does $\tilde{\mathscr{C}}$ look like? We can write the assignments as

$$X_
u := \sum_{\gamma \in \mathsf{PA}_{ ilde{\mathcal{G}}}(
u)} f^0_{
u,\gamma}(X_\gamma) + ilde{N}_
u$$

Difficulties in proving part two

- To apply Theorem 3, we need $\tilde{\mathcal{G}}$ to be the graph of an identifiable ANM, $\tilde{\mathscr{E}}$.
- \Leftrightarrow $\tilde{\mathscr{C}}$ needs to satisfy assumptions (A1)–(A6)
- \bullet What does $\tilde{\mathscr{C}}$ look like? We can write the assignments as

$$X_
u \coloneqq \sum_{\gamma \in \mathsf{PA}_{ ilde{\mathcal{G}}}(
u)} f^0_{
u,\gamma}(X_\gamma) + ilde{N}_
u$$

where

$$ilde{ extstyle extstyle N}_
u = \sum_{\gamma \in extstyle extstyle extstyle extstyle extstyle extstyle PA_{ ilde{G}}(X_
u)} f_{
u,\gamma}^0(X_\gamma) + extstyle ext$$

Difficulties in proving part two

- To apply Theorem 3, we need $\tilde{\mathcal{G}}$ to be the graph of an identifiable ANM, $\tilde{\mathscr{C}}$.
- \Leftrightarrow $\tilde{\mathscr{C}}$ needs to satisfy assumptions (A1)–(A6)
- \bullet What does $\tilde{\mathscr{C}}$ look like? We can write the assignments as

$$X_
u \coloneqq \sum_{\gamma \in \mathsf{PA}_{ ilde{\mathcal{G}}}(
u)} f^0_{
u,\gamma}(X_\gamma) + ilde{\mathcal{N}}_
u$$

where

$$ilde{ extstyle N}_
u = \sum_{\gamma \in extstyle \mathsf{PA}_{ ilde{\mathcal{G}}^0}(
u) ackslash \mathsf{PA}_{ ilde{\mathcal{G}}}(X_
u)} f^0_{
u,\gamma}(X_\gamma) + extstyle N_
u.$$

• Notice that the \tilde{N} variables are mutually independent.

- (A1,2) \mathcal{F} consists of non-linear C^3 functions + some regularity conditions.
 - (A3) The densities of the noise variables have only discretely many solutions to the differential equation $(\log f)'' = 0$.
 - (A4) The noise variables have full support and their densities are in C^3 and strictly positive.
- (A5,6) All noise variables and all \mathcal{F} -transformations of them have second moment.

- (A1,2) \mathcal{F} consists of non-linear C^3 functions + some regularity conditions.
 - (A3) The densities of the noise variables have only discretely many solutions to the differential equation $(\log f)'' = 0$.
 - (A4) The noise variables have full support and their densities are in C^3 and strictly positive.
- (A5,6) All noise variables and all \mathcal{F} -transformations of them have second moment.

Proving optimality – part two Difficulties in proving part two continued

• Then, for $\tilde{\mathscr{C}}$ to satisfy (A3):

- Then, for $\tilde{\mathscr{C}}$ to satisfy (A3):
 - Convolutions of N_ν and ν-parents must have at most discretely many solutions to (log f)" = 0.

- Then, for $\tilde{\mathscr{C}}$ to satisfy (A3):
 - Convolutions of N_{ν} and ν -parents must have at most discretely many solutions to $(\log f)'' = 0$.
- How do we ensure this holds?

- Then, for $\tilde{\mathscr{C}}$ to satisfy (A3):
 - Convolutions of N_ν and ν-parents must have at most discretely many solutions to (log f)" = 0.
- How do we ensure this holds?
- Start by solving the equation.

- Then, for $\tilde{\mathscr{C}}$ to satisfy (A3):
 - Convolutions of N_{ν} and ν -parents must have at most discretely many solutions to $(\log f)'' = 0$.
- How do we ensure this holds?
- Start by solving the equation.
- $(\log f)'' = 0 \Leftrightarrow f(x) = \exp(c_1 \cdot x + c_2).$

- Then, for $\tilde{\mathscr{C}}$ to satisfy (A3):
 - Convolutions of N_{ν} and ν -parents must have at most discretely many solutions to $(\log f)'' = 0$.
- How do we ensure this holds?
- Start by solving the equation.
- $(\log f)'' = 0 \Leftrightarrow f(x) = exp(c_1 \cdot x + c_2).$
- We call these functions log-linear.

Proving optimality – part two Solving the convolution problem

Lemma 8

Let f be a real analytic function.

Solving the convolution problem

Lemma 8

Let f be a real analytic function.

 C^{∞} and has a convergent power series representation in a neighborhood of every point. Symbol: C^{ω} .

Proving optimality – part two Solving the convolution problem

Lemma 8

Let f be a real analytic function. If f is log-linear on [a,b], then f is log-linear on all of \mathbb{R} .

Solving the convolution problem

Lemma 8

Let f be a real analytic function. If f is log-linear on [a, b], then f is log-linear on all of \mathbb{R} .

Theorem 9

Let $f \in C^{\omega} \cap \mathcal{L}^{\infty}$ and $g \in \mathcal{L}^1$.

Solving the convolution problem

Lemma 8

Let f be a real analytic function. If f is log-linear on [a, b], then f is log-linear on all of \mathbb{R} .

Theorem 9

Let $f \in C^{\omega} \cap \mathcal{L}^{\infty}$ and $g \in \mathcal{L}^1$. Then $f * g \in C^{\omega}$.

Proving optimality – part two Solving the convolution problem continued

Corollary 10

Let $f \in C_+^\omega$ and $g \in \mathcal{L}^\infty$ be densities.

Solving the convolution problem continued

Corollary 10

Let $f \in C^{\omega}_+$ and $g \in \mathcal{L}^{\infty}$ be densities. The convolution f * g is not log-linear on any interval.

Solving the convolution problem continued

Corollary 10

Let $f \in C_+^{\omega}$ and $g \in \mathcal{L}^{\infty}$ be densities. The convolution f * g is not log-linear on any interval.

Proof.

1 Observe that f * g is integrable and real analytic.

Solving the convolution problem continued

Corollary 10

Let $f \in C_+^{\omega}$ and $g \in \mathcal{L}^{\infty}$ be densities. The convolution f * g is not log-linear on any interval.

Proof.

- **①** Observe that f * g is integrable and real analytic.
- **2** All integrable functions that are log-linear on all of \mathbb{R} are on the form $h(x) = \exp(c_1 \cdot |x| + c_2)$, $c_1 < 0$.

Solving the convolution problem continued

Corollary 10

Let $f \in C^{\omega}_{+}$ and $g \in \mathcal{L}^{\infty}$ be densities. The convolution f * gis not log-linear on any interval.

Proof.

- **1** Observe that f * g is integrable and real analytic.
- **2** All integrable functions that are log-linear on all of \mathbb{R} are on the form $h(x) = \exp(c_1 \cdot |x| + c_2), c_1 < 0.$
- 3 h(x) is not real analytic $\Rightarrow f * g$ is not log-linear on all of \mathbb{R}

Solving the convolution problem continued

Corollary 10

Let $f \in C_+^{\omega}$ and $g \in \mathcal{L}^{\infty}$ be densities. The convolution f * g is not log-linear on any interval.

Proof.

- **①** Observe that f * g is integrable and real analytic.
- **2** All integrable functions that are log-linear on all of \mathbb{R} are on the form $h(x) = \exp(c_1 \cdot |x| + c_2)$, $c_1 < 0$.
- 3 h(x) is <u>not</u> real analytic $\Rightarrow f * g$ is not log-linear on all of \mathbb{R} .
- $\mathbf{4} \Rightarrow f * g$ is not log-linear on any interval.

Solving the convolution problem continued

Corollary 10

Let $f \in C_+^{\omega}$ and $g \in \mathcal{L}^{\infty}$ be densities. The convolution f * g is not log-linear on any interval.

Implication: All N's have real analytic densities ⇒ all N's satisfy (A3).

Solving the convolution problem continued

Corollary 10

Let $f \in C_+^{\omega}$ and $g \in \mathcal{L}^{\infty}$ be densities. The convolution f * g is not log-linear on any interval.

- Implication: All N's have real analytic densities ⇒ all Ñ's satisfy (A3).
- Includes Gaussian variables, among others.

Solving the convolution problem continued

Corollary 10

Let $f \in C^{\omega}_+$ and $g \in \mathcal{L}^{\infty}$ be densities. The convolution f * g is not log-linear on any interval.

- Implication: All N's have real analytic densities ⇒ all Ñ's satisfy (A3).
- Includes Gaussian variables, among others.
- Assume all noises have real analytic density

Solving the convolution problem continued

Corollary 10

Let $f \in C_+^{\omega}$ and $g \in \mathcal{L}^{\infty}$ be densities. The convolution f * g is not log-linear on any interval.

- Implication: All N's have real analytic densities ⇒ all N's satisfy (A3).
- Includes Gaussian variables, among others.
- Assume all noises have real analytic density
- $\tilde{\mathscr{C}}$ is now identifiable!

• From here, it's easy:

- From here, it's easy:
- Let $\tilde{\mathcal{G}}_{\alpha \to \beta}$ be a version of $\tilde{\mathcal{G}}$ where we flip $(\beta \to \alpha)$.

- From here, it's easy:
- Let $\tilde{\mathcal{G}}_{\alpha \to \beta}$ be a version of $\tilde{\mathcal{G}}$ where we flip $(\beta \to \alpha)$.

Slide 29/40

- From here, it's easy:
- Let $\tilde{\mathcal{G}}_{\alpha \to \beta}$ be a version of $\tilde{\mathcal{G}}$ where we flip $(\beta \to \alpha)$.
- By Theorem 3

$$\ell(ilde{\mathcal{G}}) > \ell(ilde{\mathcal{G}}_{lpha
ightarrow eta})$$

Slide 29/40

- From here, it's easy:
- Let $\tilde{\mathcal{G}}_{\alpha \to \beta}$ be a version of $\tilde{\mathcal{G}}$ where we flip $(\beta \to \alpha)$.
- By Theorem 3

$$\ell(ilde{\mathcal{G}}) > \ell(ilde{\mathcal{G}}_{lpha
ightarrow eta})$$

Write out and rearrange...

- From here, it's easy:
- Let $\tilde{\mathcal{G}}_{\alpha \to \beta}$ be a version of $\tilde{\mathcal{G}}$ where we flip $(\beta \to \alpha)$.
- By Theorem 3

$$\ell(ilde{\mathcal{G}}) > \ell(ilde{\mathcal{G}}_{lpha
ightarrow eta})$$

- Write out and rearrange...
- We get

$$\Delta \ell \left(\mathcal{G}^{s}, \beta \to \alpha \right) > \Delta \ell \left(\mathcal{G}^{s}, \alpha \to \beta \right)$$

which is a contradiction.

- From here, it's easy:
- Let $\tilde{\mathcal{G}}_{\alpha \to \beta}$ be a version of $\tilde{\mathcal{G}}$ where we flip $(\beta \to \alpha)$.
- By Theorem 3

$$\ell(ilde{\mathcal{G}}) > \ell(ilde{\mathcal{G}}_{lpha
ightarrow eta})$$

- Write out and rearrange...
- We get

$$\Delta \ell \left(\mathcal{G}^{s}, \beta \to \alpha \right) > \Delta \ell \left(\mathcal{G}^{s}, \alpha \to \beta \right)$$

which is a contradiction.

Which completes the proof!

- From here, it's easy:
- Let $\tilde{\mathcal{G}}_{\alpha \to \beta}$ be a version of $\tilde{\mathcal{G}}$ where we flip $(\beta \to \alpha)$.
- By Theorem 3

$$\ell(ilde{\mathcal{G}}) > \ell(ilde{\mathcal{G}}_{lpha
ightarrow eta})$$

- Write out and rearrange...
- We get

$$\Delta \ell \left(\mathcal{G}^{s}, \beta \to \alpha \right) > \Delta \ell \left(\mathcal{G}^{s}, \alpha \to \beta \right)$$

which is a contradiction.

- Which completes the proof!
- Remark: Proof can be made to work with linear assignments.

A few simulations and real data

• Non-parametric regression with gam from mgcv package.

- Non-parametric regression with gam from mgcv package.
- Entropy estimation with a resubstitution estimator:

$$\hat{\mathbb{H}}_n(\hat{\boldsymbol{N}}_{\nu}) := -\frac{1}{n} \sum_{i=1}^n \log \hat{\rho}_{\hat{N}_{\nu}}(\hat{N}_{\nu}^i).$$

- Non-parametric regression with gam from mgcv package.
- Entropy estimation with a resubstitution estimator:

- Non-parametric regression with gam from mgcv package.
- Entropy estimation with a resubstitution estimator:

- Non-parametric regression with gam from mgcv package.
- Entropy estimation with a resubstitution estimator:

Modified exit condition:

- Non-parametric regression with gam from mgcv package.
- Entropy estimation with a resubstitution estimator:

- Modified exit condition:
 - Test for significance of marginal entropy.

- Non-parametric regression with gam from mgcv package.
- Entropy estimation with a resubstitution estimator:

- Modified exit condition:
 - Test for significance of marginal entropy.
 - Exit after a set number of attempts at adding non-significant edges.

- Non-parametric regression with gam from mgcv package.
- Entropy estimation with a resubstitution estimator:

- Modified exit condition:
 - Test for significance of marginal entropy.
 - Exit after a set number of attempts at adding non-significant edges.
- We compare methods using SHD and SID.

- Non-parametric regression with gam from mgcv package.
- Entropy estimation with a resubstitution estimator:

- Modified exit condition:
 - Test for significance of marginal entropy.
 - Exit after a set number of attempts at adding non-significant edges.
- We compare methods using SHD and SID.
- We try it on random DAGs with random edge functions.

Non-linear, Gaussian case Comparison to CAM

Non-linear, Gaussian case Comparison to CAM – computation time

Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models Slide 33/40

Linear, non-Gaussian

Comparison to other other methods

100 repetitions, N=1000. p is number of nodes. Noise is Hyperbolic Secant Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models Slide 34/40

Non-Gaussian, no assumption on linearity Comparison to other other methods – only SID

100 repetitions, N=1000. p is number of nodes. Noise is Hyperbolic Secant Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models Slide 35/40

Real data

• 96 cause-effect pairs² with known ground truth.

²http://webdav.tuebingen.mpg.de/cause-effect/ Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models Slide 36/40

Real data

- 96 cause-effect pairs² with known ground truth.
- Correctly identified 58 (60.4%) of cases.

²http://webdav.tuebingen.mpg.de/cause-effect/
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 36/40

Real data

- 96 cause-effect pairs² with known ground truth.
- Correctly identified 58 (60.4%) of cases.
- Weighted accuracy: 65.2%.

²http://webdav.tuebingen.mpg.de/cause-effect/
Phillip Bredahl Mogensen — Greedy Learning of Causal Structures in Additive Noise Models
Slide 36/40

• Proven optimality in Population case.

- Proven optimality in Population case.
- Simulations:

- Proven optimality in Population case.
- Simulations:
 - Non-linear, Gaussian: Similar to CAM; runs faster than, but achieves slightly worse SID.

- Proven optimality in Population case.
- Simulations:
 - Non-linear, Gaussian: Similar to CAM; runs faster than, but achieves slightly worse SID.
 - Linear, non-Gaussian: Slightly outperformed by LiNGAM on SID, similar in terms of SHD. Outperforms both CAM and PC.

- Proven optimality in Population case.
- Simulations:
 - Non-linear, Gaussian: Similar to CAM; runs faster than, but achieves slightly worse SID.
 - Linear, non-Gaussian: Slightly outperformed by LiNGAM on SID, similar in terms of SHD. Outperforms both CAM and PC.
 - Greedy entropy-search perhaps more stable to linear functions/non-Gaussian noise?

- Proven optimality in Population case.
- Simulations:
 - Non-linear, Gaussian: Similar to CAM; runs faster than, but achieves slightly worse SID.
 - Linear, non-Gaussian: Slightly outperformed by LiNGAM on SID, similar in terms of SHD. Outperforms both CAM and PC.
 - Greedy entropy-search perhaps more stable to linear functions/non-Gaussian noise?
- Method appears comparable to others on real data.

- Proven optimality in Population case.
- Simulations:
 - Non-linear, Gaussian: Similar to CAM; runs faster than, but achieves slightly worse SID.
 - Linear, non-Gaussian: Slightly outperformed by LiNGAM on SID, similar in terms of SHD. Outperforms both CAM and PC.
 - Greedy entropy-search perhaps more stable to linear functions/non-Gaussian noise?
- Method appears comparable to others on real data.
- Simulations were small-scale.

- Proven optimality in Population case.
- Simulations:
 - Non-linear, Gaussian: Similar to CAM; runs faster than, but achieves slightly worse SID.
 - Linear, non-Gaussian: Slightly outperformed by LiNGAM on SID, similar in terms of SHD. Outperforms both CAM and PC.
 - Greedy entropy-search perhaps more stable to linear functions/non-Gaussian noise?
- Method appears comparable to others on real data.
- Simulations were small-scale.
- We did not attempt to optimize runtimes with CAM could possibly be sped up.

Future work

• Find consistent estimators.

Future work

- Find consistent estimators.
- Test in simulations on larger scale.

Future work

- Find consistent estimators.
- Test in simulations on larger scale.
 - Could be interesting to try with no assumptions on linearity and random distributions.

Future work

- Find consistent estimators.
- Test in simulations on larger scale.
 - Could be interesting to try with no assumptions on linearity and random distributions.
- Relax assumptions of main proof.

Thanks for listening ©

Proof of Lemma 7

Proof.

Choose any $f, g \in \mathcal{F}$. By Jensen's inequality

$$(Y - \mathbb{E}_N f(g(X) + N))^2 < \mathbb{E}_N (Y - f(g(X) + N))^2.$$

Take $\mathbb{E}_{(X,Y)}$ on both sides and use Tonelli:

$$\mathbb{E}_{(X,Y)}(Y - \mathbb{E}_N f(g(X) + N))^2 < \mathbb{E}_{(X,Y,N)}(Y - f(g(X) + N))^2.$$

By assumption, this implies:

$$\min_{f\in\mathcal{F}}\mathbb{E}_{(X,Y)}(Y-f(X))^2 < \min_{f\in\mathcal{F}}\mathbb{E}_{(X,Y,N)}(Y-f(g(X)+N))^2.$$

Proof of Lemma 8

Proof.

Assume for contradiction that f does not solve $(\log f)'' = 0$ on $\mathbb{R} \setminus [a, b]$. By assumption

$$\forall n \in \mathbb{N}_0$$
: $f^{(n)}(a) = \exp(c_2) \cdot c_1^n \cdot \exp(c_1 \cdot a) =: \tilde{k} \cdot c_1^n$.

Taylor-expand f around a:

$$f(x) = \cdots = \tilde{k} \sum_{i=0}^{\infty} \frac{c_1^i}{i!} (x-a)^i = \tilde{k} \exp(c_1 \cdot (x-a)).$$

This holds in an open neighborhood of a, which gives us a contradiction.

Bivariate case

KL vs. logspline estimation

Asymptotics of entropy estimator

Asymptotics of entropy estimator, n = 250

Linear assignments

Examples of random functions

References I

Brendan D. McKay, Frederique E. Oggier, Gordon F. Royle, N. J. A. Sloane, Ian M. Wanless, and Herbert S. Wilf. Acyclic digraphs and eigenvalues of (0,1)-matrices. 2003.

Jonas Martin Peters, Dominik Janzing, and Bernhard Schölkopf. *Elements of causal inference, foundations and learning algorithms.* Adaptive computation and machine learning series. MIT Press, Cambridge, MA, 2017. ISBN 9780262037310.

