$$X \rightarrow Number of Red balls$$

$$0000 \rightarrow X=3 \rightarrow Random Variab$$

$$0000 \rightarrow X=2$$

_	P				
	furt id	Income	Logs	De pendent	Detavli
	~				yes
	_		_		No
		' — '	/	_	NO
(7	

X=1 =) if defaulted X=0 =) if not defaults

$\chi = 0$	X = 1	X=Z	X=5	X=y
4 Blue	3 Blue	2 Red	18108	OB (Se
O Red	1 Red	2814	3 red	4 Red
0000	0000	00 00	0000	0000
	0 0 0 0	00 00	0000	
	0000	000 8	0000	
	0000	6 600	0000	
		0000		
	\	v 00 00 V		

P (x=4)	2	10
		75

X	Prob
0	0.027
(1	0.16
2	0.34 7
3	0.333
(4 (0.133

3 brop.

$$P(x=1) = 0.16$$

Total Ptayers = 1000
Number of players with 1 red by 11 = 150

Aug # red balls => 2-385

= X= X1, X2, X3, X4, X1, --, XA

EV= $x_1 * P(x=x_1) + x_2 * P(x=x_2) + x_3 * P(x=x_3) + - - - - x_1 * P(x=x_3)$

= 0 ≠ 0.027 + 1 × 0.16 + 2 × 6.347 + 3 × 0.333 + 4 × 0.13 = 2.385

X → +150 , -10

P(x=150) = P(4 red ballr) = 0.133

P(X=-10) = P(00001002003 red ball)= 0.027 + 0.160 + 0.347 + 0.333

= 0.867

EV= $x_1 * P(x=x_1) + x_2 * P(x=x_2) + x_3 * P(x=x_3) + - - - - x_1 * P(x=x_3)$

Without Experimens

P(I Red ball in I trad) =
$$\frac{3}{3}$$
 = 0%
P(E, AND E2) = P(G) $+P(G)$

09 2 Blue 3 red Bill
$$2/5 = B$$

0.4 * 0.6 * 0.6 * 0.6 3/5 = B

$$P(0000) \Rightarrow 0.4 \times 0.6 \times 0.0 \times 0.6 \times 0.6 \times 0.0 \times 0.0 \times 0.6 \times 0.6 \times 0.0 \times$$

Break: 10: 49 PM

	X=0	X = 1	x=2	X=3	X=4
	4 Blue	3 Blue	2 Red	18100	OBÍVE
	O Red	1 Red	2814	3 red	4 Red
1 2	0000	0000	00 00	0000	0000
0000		0 0 0 0	00 00	0000	
0000		0000	Ooo b	0000	
0000		0000	6 60 0	0000	
			0000		
		1	l 00 00 l		

$$P(X=1) = 0000$$

= 0.6 + 0.4 + 0.4 + 0.4

$$= 0.0384$$
 $= 940.0384 = 0.1536$

With Experiment

Bino mial Distribution

$$P(x=3) = \frac{3}{4} \times (b) \times (b) \times (b) \times (1-b)$$

$$= 4 b^{3} \times (1-b)$$

$$P(X=y)$$

$$\begin{array}{c|cccc}
X & P(X=x) \\
\hline
O & CO & CDO & CI-DO & O-DO \\
I & OC, & CDO & CI-DO & O-DO & O-DO$$

Shivank, agrawal_(@ scaler-com

comulative Dist func

EV=
$$x_1 * P(x=x_1) + x_2 * P(x=x_2) + x_3 * P(x=x_3) + - - - - x_1 * P(x=x_3)$$

PMF

$$y = 2x + 3$$
 $() x = 0 \Rightarrow x = 2 + 0 + 3 = 3$ $() x = 0 \Rightarrow x = 2 + 1 + 3 = 5$

$$E \left[2x + b \right] = a E(x) + b$$

$$E \left[2x + 3 \right] = 2 E(x) + 3$$

Properties

Break: 10: 23 PM

X.

W

$$\leq (x_1 - w)^2$$

$$x^2 = \{1, 4, 9\}$$

$$E(x^2) = (1) p_1 + (4) p_2 + (9) p_3$$

$$E[Y] = \frac{1}{1}(-1) + \frac{1}{2}(1) = 0$$

$$E[Y^2] = \frac{1}{2}(-1)^2 + \frac{1}{2}(1)^2 = 1$$

Wasting time for swiggy / 2 anato :

O=) There is a rod of 3 mt. And I hit at that rod

3) 2/3

FC3) = 1

CDF

ECXJ => mean weighted

ECX / Sq = 10007

ECX I rg = 150a]

Alhwag

Dravid

W = SO

$$|X-\mu|^2$$
 rupped

pr = 50

0

45

E[ax +b] = a E[x] +b

E(x-10)2

VarLx) = E Cx-m) 2

= E Cx2) + E [w2] - 2NECx]

$$= E C x^{2} J + \underline{M^{2}} - \underline{2} \underline{M} \cdot \underline{M}$$

$$= E C x^{2} J - \underline{M^{2}}$$

$$Var(x) = E C x^{2} J - (E(x))^{2}$$