高级宏观经济学 第一次作业 Life cycle consumption problem

This part involves solving a model of household consumption and savings. Consider a household that lives for periods $t=0,\ldots,T$, and values consumption in each period, c_t , and has income y_t . His initial assets are $a_0>0$, and he can borrow or save, $a_t \geq 0$ for periods $t=0,\ldots,T$. However he cannot leave debt, $a_{T+1}\geq 0$. There is a common real interest rate that applies to savings or loans, and the real interest rate between time t and t+1 is $(1+r_{t+1})$.

The household has time-separable period utility, and his lifetime welfare from a given vector of consumption, $\{c_t\}_{t=0}^T$ is

$$\sum_{t=0}^{T} \beta^{t} u\left(c_{t}\right),\tag{1}$$

where u is twice-continuously differentiable, strictly increasing and concave. In addition, we assume that $\lim_{c\to 0} u'(c) = \infty$ and $\beta \in (0,1)$. The time t budget constraint is

$$c_t + a_{t+1} \le (1 + r_t) a_t + y_t, t = 0, \dots, T.$$
 (2)

Define the real interest factor between period t and t + s as R_{t,t+s} ≡ (1 + r_{t+1})···(1 + r_{t+s})
where t + s > t. Divide each period t budget constraint by R_{0,t} and sum to derive the lifetime
budget constraint,

$$\sum_{t=0}^{T} \frac{c_t}{R_{0,t}} \le \sum_{t=0}^{T} \frac{y_t}{R_{0,t}} + (1+r_0) a_0.$$
(3)

2) The lifetime budget constraint exists because the consumer can borrow or save across periods. It allows for a solution to the household's problem that involves only two constraints, equation (3) and the non-negativity constraint on a_{T+1} (there are no other necessary non-negativity multipliers). Let Λ and μ be the LaGrange multiplier for these two constraints. Derive the first-order conditions for c_t, a_{T+1} and the Euler equation:

$$u'(c_t) = \beta (1 + r_{t+1}) u'(c_{t+1})$$
 (4)

- 3) Assume that the period utility function is iso-elastic, $u(c) = \frac{e^{1-\sigma}}{1-\sigma}$ where $\sigma > 0$. Using (4), solve for consumption in each period, c_t , as a function of $R_{0,t}$ and c_0 . Label your result (A1) and substitute it into (3) to solve for c_0 . Label your result (A2).
- 4) Simplify the problem by assuming that y_t = 0 for all t. When σ > 1, how does a rise in r₁ affect c₀? Explain your result.
- 5) Now assume that y_t > 0 and r_t = r for t = 0,..., T. Consider a temporary tax rebate which increases y₀ but leaves income unchanged in all other periods. If y₀ rises by ε, what is the resultant rise in c₀? This is an illustration of consumption smoothing; convexity of preferences leads the household to spread the rise in consumption over its lifetime.