中国人民公安大学

物理实验报告

实验名称: 验证动量守恒定律

实验日期: 2022年3月27日

专业: 网络安全与执法

学号: 202121450044

年级: 2021 级

姓名: 白浩远

指导教师: 林晨

景目

一、	实验内容	3
_,	实验目的和要求	3
三、	实验设备	3
四、	实验原理	3
	动量守恒定律矢量式	3
	动量守恒定律分量式	4
	动量守恒定律在该实验中的应用	4
五、	实验方法及步骤	4
	气垫导轨示意图	4
	完全非弹性碰撞实验	5
	弹性碰撞实验	5
六、	实验数据记录与处理	5
	完全非弹性碰撞	5
	动量百分误差	5
	动能损耗率	5
	表一: 完全非弹性碰撞实验结果	5
	弹性碰撞	6
	动量百分误差	6
	动能损耗率	6
	表二: 弹性碰撞实验数据	6
七、	实验结果及分析	6
八、	实验总结	7
h .	参 老 文献	7

一、实验内容

- 1. 用完全非弹性碰撞验证动量守恒定律,测量未碰撞前大滑块 1 通过光电门的 挡光时间 Δt_{10} ,发生完全非弹性碰撞后大滑块与小滑块整体挡光时间 Δt_1
- 2. 用弹性碰撞验证动量守恒定律,测量未碰撞前大滑块挡光时间 Δt_{10} ,碰撞后大滑块挡光时间 Δt_{1} ,碰撞后小滑块挡光时间 Δt_{2}
- 3. 计算得出两次实验碰撞前后系统的总动量 P_0/P 与动能 E/E_0 ,求出对应的动量百分误差 $\frac{\Delta P}{P_0}$ 与动能损耗率 $\frac{\Delta E}{E_0}$

二、实验目的和要求

- 1. 用完全非弹性碰撞和弹性碰撞验证动量守恒定律
- 2. 观察并计算碰撞前后动能损耗
- 3. 掌握气垫导轨"单程动态调平"的目的和方法
- 4. 掌握光电门的使用方法

三、实验设备

编号	实验设备名称	数量	主要参数	(型号,	测量范围,	测量精度等
1	气垫导轨	1				
2	光电门	2				
3	大金属滑块	1				
4	小金属滑块	1				
5	气泵	1				

四、实验原理

动量守恒定律矢量式2

当系统所受合外力为零,即 $F^{ex}=0$ 时,系统的总动量的增量为零,这时系统的总动量保持不变,即

¹两次实验均以大滑块碰撞小滑块

²[1]马文蔚,周雨青改编.物理学[M].北京:高等教育出版社,2014:61.

$$\mathbf{p} = \sum_{i=1}^{n} m_i \, \mathbf{v_i} = \, \mathbf{\textit{\texttt{Z}}} \mathbf{\textit{\texttt{X}}} \mathbf{\textit{\texttt{Z}}}$$

动量守恒定律分量式3

若系统所受合外力在某个方向的分量为零,则此物体在此方向的总动量守恒

$$p_{x} = \sum m_{i}v_{ix} = C_{1} \qquad (F_{x}^{ex} = 0)$$

$$p_{y} = \sum m_{i}v_{iy} = C_{2} \qquad (F_{y}^{ex} = 0)$$

$$p_{z} = \sum m_{i}v_{iz} = C_{3} \qquad (F_{z}^{ex} = 0)$$

动量守恒定律在该实验中的应用

在该实验中滑块在碰撞前后满足

$$m_1 \mathbf{v_{10}} + m_2 \mathbf{v_{20}} = m_1 \mathbf{v_1} + m_2 \mathbf{v_2}$$

式中 $m_1.m_2.v_{10}.v_{20}.v_1.v_2$ 分别为大小滑块的质量和碰撞前后的速度,由于测量误差的存在,若两滑块碰撞前后的动量百分误差 \leq 5%,则视为动量守恒

$$\frac{P_0 - P}{P_0} = \frac{(m_1 \mathbf{v_{10}} + m_2 \mathbf{v_{20}}) - (m_1 \mathbf{v_1} + m_2 \mathbf{v_2})}{m_1 \mathbf{v_{10}} - m_1 \mathbf{v_{20}}} \%$$

五、实验方法及步骤

气垫导轨示意图4

^{3[1]}马文蔚,周雨青改编.物理学[M].北京:高等教育出版社,2014:62.

⁴ https://doc.wendoc.com/b840a6199e1e344e5c25f701f.html

完全非弹性碰撞实验

- 1. 实验前对气垫导轨进行动态调平,打开气垫导轨气泵,取大滑块由气垫导轨左侧滑向右侧,读取大滑块经过两个光电门的时间 Δt_0 . Δt (分别对应于显示屏上的示数 P_{11} . P_{21})若 $|\Delta t_0 \Delta t| \leq 0.5ms$,则证明气垫导轨已调平,否则调整单脚螺丝直到满足上述条件
- 2. 将小滑块置于自左至右第二个光电门稍偏左侧,魔术贴朝左,大滑块从气垫导轨左端以速度 v_{10} 滑向右端并与小滑块相撞后以一个整体向右运动,速度 $v_1 = v_2$
- 3. 重复多次实验,读出光电门数据(p_{11}, p_{22})并记录

弹性碰撞实验

- 1. 实验前对气垫导轨进行动态调平,打开气垫导轨气泵,取大滑块由气垫导轨左侧滑向右侧,读取大滑块经过两个光电门的时间 Δt_0 . Δt (分别对应于显示屏上的示数 P_{11} . P_{21})若 $|\Delta t_0 \Delta t| \leq 0.5ms$,则证明气垫导轨已调平,否则调整单脚螺丝直到满足上述条件
- 2. 将小滑块置于自左至右第二个光电门稍偏左侧,弹簧朝左,大滑块无弹簧一段朝右从气垫导轨左端以速度 v_{10} 滑向右端,与小滑块相撞小滑块以速度 v_{2} 大滑块以速度 v_{1} 通过光电门
- 3. 重复多次实验,读出光电门数据(p_{11}, p_{21}, p_{22})并记录

六、实验数据记录与处理

完全非弹性碰撞

$$v_{20} = 0, \frac{m_2}{m_1} = D_1 = \frac{1}{2}, v_1 = v_2, v_{10} = \frac{\Delta x_1}{\Delta t_{10}}, v_1 = v_2 = \frac{\Delta x_1}{\Delta t_1}$$

动量百分误差

$$\frac{P_0 - P}{P_0} = 1 - (1 + D_1) \frac{\Delta t_{10}}{\Delta t_1}$$

动能损耗率

$$\frac{E_0 - E}{E_0} = 1 - (1 + D_1) \left(\frac{\Delta t_{10}}{\Delta t_1}\right)^2$$

表一: 完全非弹性碰撞实验结果

误差(ms)	1	2	3	4	5

误差(ms)	1	2	3	4	5
Δt_{10}	87.85	70.70	73.31	70.08	71.41
Δt_1	129.70	108.04	111.27	106.68	108.88
$\Delta P/P_0$	2%	2%	1%	1%	2%
$\Delta E/E_0$	31%	36%	35%	35%	35%

弹性碰撞

动量百分误差

$$\frac{P_0 - P}{P_0} = 1 - \left(\frac{1}{\Delta t_1} + D_1 D_2 \frac{1}{\Delta t_2}\right) \Delta t_{10}$$

动能损耗率

$$\frac{P_0 - P}{P_0} = 1 - \left[\left(\frac{1}{\Delta t_1} \right)^2 + D_1 D_2^2 \left(\frac{1}{\Delta t_2} \right)^2 \right] \Delta t_{10}^2$$

表二: 弹性碰撞实验数据

误差(ms)	1	2	3	4	5
Δt_{10}	104.12	126.51	110.10	148.49	95.66
Δt_2	26.79	32.49	28.17	37.90	24.81
Δt_1	265.28	302.34	308.57	373.09	272.58
$\Delta P/P_0$	4%	7%	0.8%	5%	0.6%
$\Delta E/E_0$	0.6%	2%	2%	1%	5%

七、实验结果及分析

从实验结果得出完全非弹性碰撞动量守恒,动能损失较大,完全非弹性碰撞动量守恒,动能损失较小,同时由于设备精密度较高,获得了较好的实验效果,基本做到了动量守恒定律的验证

八、实验总结

这次实验开始前林老师对整个实验做了细致入微的讲解,对实验的顺利完成给予了 极大的帮助,总而言之,大学物理实验给了我们机会进入物理实验室,同时对数据 的严谨性有很大的要求,能完整体验物理实验的过程,对今后的学习帮助很大

九、参考文献

[1]马文蔚,周雨青改编.物理学[M].北京:高等教育出版社,2014:61-62.