C/O and Snowline Locations in Protoplanetary Disks: The Effect of Radial Drift and Viscous Gas Accretion

Ana-Maria Piso¹

Karin Öberg¹, Til Birnstiel^{1,2}, Ruth Murray-Clay³

¹Harvard-Smithsonian Center for Astrophysics ²MPIA, Heidelberg ³University of California Santa Barbara

Core Accretion Model

The composition of planets is determined by and tightly linked to the disk composition

BASIC IDEA

Understand the disk well enough to:

- Predict what kind of planet compositions result from planet formation in different parts of the disk
- 2. Back-track the planet formation location based on the planet composition

Disk structure is complex!

Volatile compounds have been detected in protoplanetary disks

Snowlines of volatile molecules have been detected in disks

C/O ratio is an important signature of atmospheric chemistry

Some giant planets may have C/O ratios different from the stellar value of 0.54

WHY?

Possible explanation: main carriers of C and O, i.e. H_2O , CO_2 and CO, have different condensation temperatures => variations in the abundances of C and O in solids and gas between the snow lines of these volatiles (Oberg+11)

GOAL

Understand how radial drift and gas accretion affect snowline locations, and thus the C/O ratio in gas and dust throughout the disk

Timescales for desorption, radial drift and gas accretion ARE comparable

Radial drift affects snowline location

We determined upper limits for the C/O ratio across the disk

The desorption distance for transition disks agrees with observations

Summary

- Radial drift and gas accretion affect desorption and move the snowline locations compared to a static disk
- The H₂O, CO₂ and CO snowlines are created by the largest drifting particles in our model, i.e. s ~ 7 m
- Snowlines move inwards as the particle size increases
 - ~60% for H₂O
 - ~60% for CO₂
 - ~50% for CO
- Our results for a transition disk are consistent with observations

TAKEAWAY POINT

Radial drift and viscous gas accretion move the snowline locations inwards. This affects the C/O ratio in gas and dust throughout the disk, and thus has direct implications in shaping the compositions of nascent giant planets.