NOTES FOR SPRING 2024 TALKS

FORMAT OF THE DOCUMENT

Slide Title

Slide Contents

1. Workshop on Number Theory in Function Fields @ Penn State 3/13/2024

(1) Title

- Thank organizers!
- The plan: since everyone I sent this to said they didn't do stacks, we will focus on stacks
- Intention: invite & challenge everyone to start using the language of stacks
- Warning: You're welcome to interrupt with questions, but this is my first feature-length talk and first talk to experts in my field, and I am not great at doing math "live" so I may say something stupid

(2) Notation

- We focus on the function field of $\mathbb{P}^1/\mathbb{F}_q$ for ease of notation
- We discuss the relevance of the hypothesis that q is odd later; this is not essential, merely convenient

(3) The classical thing we want to analogize

- Well-known classical (modular forms = sections of a line bundle)
- Note: $M(\Gamma) \neq R(\mathscr{X}_{\Gamma})$; need log divisor $M(\Gamma) = R(\mathscr{X}_{\Gamma}; \Delta)$
- Gekeler asks for a description of $M(\Gamma)$ for Drinfeld modular forms, in particular with generators/relations

(4) Why Stacks? What are Stacks?

- Stacks are uniquely suited to *all* modular forms e.g. (stacky RR) - "jumpiness" in dim $M_k(\Gamma)$ corresponds to floors in stacky RR
- Analogy: $(schemes) = \begin{pmatrix} locally \\ ringed spaces \end{pmatrix} \iff (stacks) = \begin{pmatrix} categories \\ fibered in \\ groupoids \end{pmatrix}$
- Yoneda's Functor of Points perspective means "sheaves = stacks'

(5) So, what are stacks?

- Main focus is on stacky curves, but we also discuss closely related gerbes over stacky curves
- Note: Every smooth, projective curve X may be treated as a stacky curve with nothing stacky about it. The stack quotient [X/G] for a finite group $G \leq \operatorname{Aut}(X)$ is a stacky curve, (as in Definition [LRZ16, 2.1])
- [VZB22, Remark 5.2.8] most stacky curves are quotients like above
- **gerbe** smooth, proper, geometrically connected Deligne-Mumford stack of dimension 1, i.e. stacky curve *without* dense open subscheme.
 - gerbe stack ≈ stacky curve, where every single point has a generic/uniform stabilizer

(6) Stacky Curves 101

- signature of \mathscr{X} (genus; orders of stabilizers of stacky points) signature of (\mathscr{X}, Δ) (genus; orders of stabilizers of stacky points; degree of Δ) where Δ is a finite formal sum of distinct points of \mathscr{X} called \log divisor
- Just read the rest of the slide
- Note: $\mathscr{X} \cong \operatorname{sProj}(R(\mathscr{X}))$

(7) Computing the Canonical Ring of a Stacky Curve

- [VZB22]'s inductive result is based on considering covers of stacky curves formed by removing stacky points or changing the orders of stacky points
- [LRZ16] also has such inductive results
- In [VZB22], [LRZ16], [O'D15], [CFO24] computing canonical rings of stacky curves is a lot about the combinatorics of the floors showing up in stacky RR and giving a ground-up description

(8) Old Friends

• Example (the j-line v1.0) - recall our favorite algebras of Drinfeld modular forms (without and with type resp.); the stacky j-line is a projective line with 2 stacky points corresponding to e.g. the denominators in the valence formula: [Gek99, Equation (3.10)]:

$$\sum_{z \in GL_2(A) \setminus \Omega}^* v_z(f) + \frac{v_e(f)}{q+1} + \frac{v_\infty(f)}{q-1} = \frac{k}{q^2 - 1},$$

where Σ^* denotes a sum over non-elliptic classes of $GL_2(A)\backslash\Omega$.

- Note: we return to the matter of stabilizers carefully later, the point of this example is below
- The problem is: the canonical ring of this stacky j-line isn't the algebra of modular forms for $GL_2(A)$. Need a log canonical ring instead, but this is not the main focus.

(9) What goes "Wrong" in Function Fields

- Read the slide.
- The idea is that the proofs have too may Lemmas, so we'll discuss features in the proof instead.
- A big part of this is just phrasing familiar Drinfeld things in stacks terminology.

(10) Drinfeld Modular Forms

- Whip through definition of Drinfeld modular form.
- (Every talk needs one joke & one proof (& you should be able to tell the difference)) The emphasis is that weight and type are *not* independent.

(11) "Fourier series" for Drinfeld Modular Forms

- Read Lemma from "right to left"
- u-series tell us about the log part of the log canonical ring (pole orders @ cusps)
- u-series help us decompose modular forms into differently typed parts

(12) From Florian and Gebhard with Love

- sensitivity of modular forms to determinants: weight-type dependence & u-series coefficients
- Breuer's Γ_2 -modular forms are *easier* to recognize as sections of a log canonical divisor on a log stacky Drinfeld modular curve. In particular Breuer was the inspiration for the comparison of algebras Theorem [Fra24, 6.2]
- Bruer's forms are a special case of Böckle's Γ' -forms since we're taking inverse image under det of subgroups of \mathbb{F}_q^{\times} . Theorem [Fra24, 6.12] was suggested, including a proof technique, by Böckle

(13) Cusps and Elliptic Points

- Quickly recall cusps.
- Note: my elliptic points are not just (j = 0)-classes on X_{Γ}^{an} .
- Cusps correspond to "tails" of the graph quotient $\Gamma \setminus \mathscr{T}$ for \mathscr{T} the Bruhat-Tits tree of $\operatorname{PGL}_2(K_{\infty})$.
- We illustrate with Mihran's example how to form a "ramified cover" of $GL_2(A) \setminus \mathscr{T}$ by $\Gamma \setminus \mathscr{T}$ and the graph of $\Gamma \setminus \mathscr{T}$
- Advert: in joint works with Mihran & Kevin Ho, we aim to generalize [GN95] and [PW16]

(14) Cusps are Elliptic Points

- For us elliptic points are no more than stacky points the essential thing is having nontrivial stabilizers, i.e. extra automorphisms
- Therefore, cusps of Drinfeld modular curves are elliptic points (under this definition)
- Example extra automorphisms of the Carlitz module $\rho = TX + X^q$ vs. no exta automorphisms of singular elliptic curves. This is a purely Drinfeld-setting problem.
- We know $M(\operatorname{SL}_2(\mathbb{Z})) \cong \mathbb{C}[E_4, E_6]$ so why are stabilizers not orders 4 and 6? everything in the moduli has generic μ_2 -stabilizer. Likewise, every Drinfeld module has a generic μ_{q-1} -stabilizer coming from $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ for $a \in \mathbb{F}_q^{\times}$.
- Caution: we're hiding something tricky here. The cusps of a Drinfeld modular curve $X_{\Gamma}^{\rm an}$ have isotropy groups $\{\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}\}$, but if we think of compactifying $\Gamma \backslash \mathscr{F}$, for \mathscr{F} the fundamental domain for Ω , we can use u^{h_s} , where h_s is the width of the cusp, as our chart at the point ∞ that we're adding in the compactification. Since we're compactifying a quotient of the fundamental domain rather than compactifying Ω and then taking a quotient, we've already removed the translations from the isotropy groups of the cusps, leaving a finite cyclic isotropy group. We don't have a moduli interpretation for the required $(q-1)^2$ -automorphisms of the Carlitz module yet though...

(15) Elliptic Points on Stacky Curves

- Claim: cusps are elliptic points under my definition. This is essential for computing algebras of Drinfeld modular forms via log canonical rings
- Question: how stacky of stacky points are cusps? i.e. how elliptic are the elliptic points?
- We need to discuss *gerbes* in order to be sure we're talking about the right space with the right stabilizers.
- Example j-lines

(16) Rigid Stacky GAGA

- Recall intention: become able to work with stacks in Drinfeld setting, i.e. our aim is to introduce the key tools
- We need to generalize rigid analytic GAGA to stacky rigid analytic GAGA via [PY16] to compare Drinfeld modular forms on \mathscr{X}_{Γ} and X_{Γ}^{an}

4

(17) Geometry of Drinfeld Modular Forms (1/3)

- Theorem the algebra of Drinfeld modular forms of Γ_2 is the log canonical ring of $(\mathscr{X}_{\Gamma_2}; 2\Delta)$
- Formally -

Theorem 1.1 ([Fra24, Theorem 6.1]). Let q be an odd prime and let $\Gamma \leq \operatorname{GL}_2(A)$ be a congruence subgroup containing the diagonal matrices of $\operatorname{GL}_2(A)$ and such that $\det(\gamma) \in (\mathbb{F}_q^{\times})^2$ for every $\gamma \in \Gamma$. Let Δ be the divisor supported at the cusps of the modular curve \mathscr{X}_{Γ} with the rigid analytic coarse space $X_{\Gamma}^{an} = \Gamma \setminus (\Omega \cup \mathbb{P}^1(K))$. There is an isomorphism of graded rings

$$M(\Gamma) \cong R(\mathscr{X}_{\Gamma}, \Omega^1_{\mathscr{X}_{\Gamma}}(2\Delta)),$$

where $\Omega^1_{\mathscr{X}_{\Gamma}}$ is the sheaf of differentials on \mathscr{X}_{Γ} . The isomorphism of algebras is given by the isomorphisms of components $M_{k,l}(\Gamma) \to H^0(\mathscr{X}_{\Gamma}, \Omega^1_{\mathscr{X}_{\Gamma}}(2\Delta)^{\otimes k/2})$ given by $f \mapsto f(dz)^{\otimes k/2}$.

- Success of the Theorem is we can answer Gekeler for Γ_2 using [VZB22], [O'D15], [CFO24], [LRZ16]
- Failure of the Theorem is if we can show (cusps of Γ_2) \leftrightarrow (cusps of Γ) then $R(\mathscr{X}_{\Gamma_2}; 2\Delta)$ is the spin log canonical ring of $(\mathscr{X}_{\Gamma}; \Delta)$ in the sense of [LRZ16]
- Key Ingredients dz double pole at ∞ & rigid stacky GAGA

(18) Geometry of Drinfeld Modular Forms (2/3)

- Theorem $M(\Gamma) \cong M(\Gamma_2)$, i.e. we can recover $M(\Gamma)$ from a log canonical ring, fully answering Gekeler
- Formally -

Theorem 1.2 ([Fra24, Theorem 6.2]). Let q be a power of an odd prime. Let $\Gamma \leq \operatorname{GL}_2(A)$ be a congruence subgroup containing the diagonal matrices in $\operatorname{GL}_2(A)$. Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}$. Then $M(\Gamma) \cong M(\Gamma_2)$, with

$$M_{k,l}(\Gamma_2) = M_{k,l_1}(\Gamma) \oplus M_{k,l_2}(\Gamma)$$

on each graded piece, where l_1, l_2 are the two solutions to $k \equiv 2l \pmod{q-1}$.

(19) Geometry of Drinfeld Modular Forms (3/3)

- Theorem $M(\Gamma) \cong M(\Gamma')$, i.e. [Fra24, Theorem 6.2] is a special case of [Fra24, Theorem 6.12].
- Formally -

Theorem 1.3 ([Fra24, Theorem 6.12]). Let q be a power of an odd prime. Let $\Gamma \leq \operatorname{GL}_2(A)$ be a congruence subgroup. Let $\Gamma_1 = \{ \gamma \in \Gamma : \det(\gamma) = 1 \}$. Suppose that Γ' is such that $\Gamma_1 \leq \Gamma' \leq \Gamma$. Then as algebras

$$M(\Gamma) = M(\Gamma')$$
.

and each component $M_{k,l}(\Gamma')$ is some direct sum of components $M_{k,l'}(\Gamma)$ for some nontrivial l'.

- This was suggested by Böckle as was the proof technique.
- Both [Fra24, Theorem 6.2] and [Fra24, Theorem 6.12] have classical analogs which come up in discussion of *nebentypes* for classical modular forms e.g.

2. Thesis Defense

(1) Title

- The plan: Penn state talk with a few more details
- Intention: invite & challenge everyone to start using the language of stacks

(2) Notation

- We focus on the function field of $\mathbb{P}^1/\mathbb{F}_q$ for ease of notation
- \bullet We discuss the relevance of the hypothesis that q is odd later; this is not essential, merely convenient

(3) Elliptic Curves and Drinfeld Modules

- Both elliptic curves and Drinfeld modules have a lattice-quotient (analytic) construction and a "Weierstrass" (algebraic) model
- Let $C\{X^q\} \stackrel{def}{=} \{\sum_{i=0}^n a_i X^{q^i} : a_0, \dots, a_n \in C, n \geq 0\}$ denote the non-commutative polynomial ring of \mathbb{F}_q -linear polynomials/C (i.e. $f(\alpha x) = \alpha f(x)$ for all $\alpha \in \mathbb{F}_q$); multiplication given by composition
- Let $\omega \in \mathbb{C}$ be \mathbb{R} -linearly independent from 1. Let $\Lambda = \mathbb{Z}\omega + \mathbb{Z} \subset \mathbb{C}$ be a lattice. Then the Weierstrass p-function is

$$p(z,\omega,1) = p(z,\Lambda) \stackrel{def}{=} \frac{1}{z^2} + \sum_{z \in \Lambda - \{0\}} \left(\frac{1}{z-\lambda} - \frac{1}{\lambda^2} \right).$$

The p-function satisfies a differential equation

$$(p')^{2}(z) = 4p^{3}(z) - g_{2}p(z) - g_{3},$$

where g_2 and g_3 are values of certain Eisenstein series, i.e. the *p*-function gives a Weierstrass model associated to the lattice Λ .

(4) The classical thing we want to analogize

- Well-known classical (modular forms = sections of a line bundle)
- Note: $M(\Gamma) \neq R(\mathscr{X}_{\Gamma})$; need log divisor $M(\Gamma) = R(\mathscr{X}_{\Gamma}; \Delta)$
- Gekeler asks for a description of $M(\Gamma)$ for Drinfeld modular forms, in particular with generators/relations

(5) Why Stacks? What are Stacks?

- Stacks are uniquely suited to *all* modular forms e.g. (stacky RR) - "jumpiness" in dim $M_k(\Gamma)$ corresponds to floors in stacky RR
- Analogy: $(schemes) = \begin{pmatrix} locally \\ ringed spaces \end{pmatrix} \longleftrightarrow (stacks) = \begin{pmatrix} categories \\ fibered in \\ groupoids \end{pmatrix}$
- Yoneda's Functor of Points perspective means "sheaves = stacks"

(6) So, what are stacks?

- Main focus is on stacky curves, but we also discuss closely related gerbes over stacky curves
- Note: Every smooth, projective curve X may be treated as a stacky curve with nothing stacky about it. The stack quotient [X/G] for a finite group $G \leq \operatorname{Aut}(X)$ is a stacky curve, (as in Definition [LRZ16, 2.1])
- [VZB22, Remark 5.2.8] most stacky curves are quotients like above
- **gerbe** smooth, proper, geometrically connected Deligne-Mumford stack of dimension 1, i.e. stacky curve *without* dense open subscheme.

gerbe - stack ≈ stacky curve, where every single point has a generic/uniform stabilizer

(7) Stacky Curves 101

- signature of \mathcal{X} (genus; orders of stabilizers of stacky points) signature of (\mathcal{X}, Δ) - (genus; orders of stabilizers of stacky points; degree of Δ) where Δ is a finite formal sum of distinct points of \mathscr{X} called log divisor
- Just read the rest of the slide
- Note: $\mathscr{X} \cong \operatorname{sProj}(R(\mathscr{X}))$

(8) Computing the Canonical Ring of a Stacky Curve

- [VZB22]'s inductive result is based on considering covers of stacky curves formed by removing stacky points or changing the orders of stacky points
- [LRZ16] also has such inductive results
- In [VZB22], [LRZ16], [O'D15], [CFO24] computing canonical rings of stacky curves is a lot about the combinatorics of the floors showing up in stacky RR and giving a ground-up description

(9) Example of Section Rings

- $S_{D'}$ generated in degrees 1, 2, 4; $I_{D'}$ has $gin_{\prec}(I_{D'}) = \langle y^2 \rangle \subset \mathbb{k}[u, x_1, x_2^2]$ S_D generated in degrees 1, 2, 2; I_D has $gin_{\prec}(I_D) = \langle x_1^3 \rangle \subset \mathbb{k}[u, x_1, x_2]$

(10) Old Friends

• Example (the *j*-line v1.0) - recall our favorite algebras of Drinfeld modular forms (without and with type resp.); the stacky j-line is a projective line with 2 stacky points corresponding to e.g. the denominators in the valence formula: [Gek99, Equation (3.10)]:

$$\sum_{z \in GL_2(A) \setminus \Omega}^* v_z(f) + \frac{v_e(f)}{q+1} + \frac{v_{\infty}(f)}{q-1} = \frac{k}{q^2 - 1},$$

where \sum^* denotes a sum over non-elliptic classes of $GL_2(A)\backslash\Omega$.

- Note: we return to the matter of stabilizers carefully later, the point of this example is below
- The problem is: the canonical ring of this stacky j-line isn't the algebra of modular forms for $GL_2(A)$. Need a log canonical ring instead, but this is not the main focus.

(11) What goes "Wrong" in Function Fields

- Read the slide.
- The idea is that the proofs have too may Lemmas, so we'll discuss features in the proof instead.
- A big part of this is just phrasing familiar Drinfeld things in stacks terminology.

(12) Drinfeld Modular Forms

- Whip through definition of Drinfeld modular form.
- (Every talk needs one joke & one proof (& you should be able to tell the difference)) The emphasis is that weight and type are *not* independent.

(13) "Fourier series" for Drinfeld Modular Forms

- Read Lemma from "right to left"
- u-series tell us about the log part of the log canonical ring (pole orders @ cusps)
- u-series help us decompose modular forms into differently typed parts

(14) From Florian and Gebhard with Love

- sensitivity of modular forms to determinants: weight-type dependence & u-series coefficients
- Breuer's Γ_2 -modular forms are *easier* to recognize as sections of a log canonical divisor on a log stacky Drinfeld modular curve. In particular Breuer was the inspiration for the comparison of algebras Theorem [Fra24, 6.2]
- Bruer's forms are a special case of Böckle's Γ' -forms since we're taking inverse image under det of subgroups of \mathbb{F}_q^{\times} . Theorem [Fra24, 6.12] was suggested, including a proof technique, by Böckle

(15) Cusps and Elliptic Points

- Quickly recall cusps.
- Note: my elliptic points are not just (j = 0)-classes on X_{Γ}^{an} .
- Cusps correspond to "tails" of the graph quotient $\Gamma \setminus \mathscr{T}$ for \mathscr{T} the Bruhat-Tits tree of $\operatorname{PGL}_2(K_{\infty})$.
- We illustrate with Mihran's example how to form a "ramified cover" of $GL_2(A)\backslash \mathscr{T}$ by $\Gamma\backslash \mathscr{T}$ and the graph of $\Gamma\backslash \mathscr{T}$
- Advert: in joint works with Mihran & Kevin Ho, we aim to generalize [GN95] and [PW16]

(16) Cusps are Elliptic Points

- For us elliptic points are no more than stacky points the essential thing is having nontrivial stabilizers, i.e. *extra automorphisms*
- Therefore, cusps of Drinfeld modular curves are elliptic points (under this definition)
- Example extra automorphisms of the Carlitz module $\rho = TX + X^q$ vs. no exta automorphisms of singular elliptic curves. This is a purely Drinfeld-setting problem.
- We know $M(\operatorname{SL}_2(\mathbb{Z})) \cong \mathbb{C}[E_4, E_6]$ so why are stabilizers not orders 4 and 6? everything in the moduli has generic μ_2 -stabilizer. Likewise, every Drinfeld module has a generic μ_{q-1} -stabilizer coming from $\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$ for $a \in \mathbb{F}_q^{\times}$.
- Caution: we're hiding something tricky here!

(17) **Isotropy** (1/2)

- The "degenerate" Drinfeld modules of rank 2 which are cusps of a Drinfeld modular curve are Drinfeld modules of rank 1.
- Up to homothety there is only one rank 1 Drinfeld module: the Carlitz module:

$$\rho(T) = TX + X^q \longleftrightarrow \overline{\pi}A \subset \Omega,$$

where $\overline{\pi} \in K_{\infty}(\sqrt[q-1]{-T})$ is the **Carlitz period**, defined up to a (q-1)st root of unity.

- $\operatorname{Aut}(\rho) \cong \mathbb{F}_q^{\times}$ since $\overline{\pi}A \sim \alpha \overline{\pi}A$ for any $\alpha \in \mathbb{F}_q^{\times}$.
- "Extra" automorphisms come from specifying a Carlitz period.
- Just read the isotropy groups of cusps side.

(18) **Isotropy** (2/2)

- Classical pictures [DS05, Figures 2.3 and 2.4]
- Drinfeld fundmental domain from Tristan Phillips
- The point here is that the notation $X_{\Gamma}^{\mathrm{an}} = \Gamma \setminus (\Omega \cup \mathbb{P}^1(K))$ is misleading!
- We are really taking
 - 1. a quotient $\Gamma \setminus \mathscr{F}$ for \mathscr{F} the fundamental domain (i.e. building of $\mathscr{T}(\mathbb{R})$) of Ω
 - 2. a quotient $\Gamma \backslash \mathbb{P}^1(K)$ separately
 - 3. then glueing the chart(s) at ∞ (resp. cusps) to the (open/affine) quotient $\Gamma \setminus \mathscr{F}$
- We can use u^{h_s} , where h_s is the width of the cusp s, as our chart at the point ∞ that we're adding in the compactification

(19) Elliptic Points on Stacky Curves

- Claim: cusps are elliptic points under my definition. This is essential for computing algebras of Drinfeld modular forms via log canonical rings
- Question: how stacky of stacky points are cusps? i.e. how elliptic are the elliptic points?
- We need to discuss *gerbes* in order to be sure we're talking about the right space with the right stabilizers.
- \bullet Example j-lines
- What is the j-line? Every elliptic curve (resp. Drinfeld module) has a numerical invariant called its j-invariant $j(E) = \frac{c_4(E)^3}{\Delta(E)} \left(\text{resp. } j(\varphi) = \frac{g(\varphi)^{q+1}}{\Delta(\varphi)}\right)$. This j comes from a **modular**

function - a meromorphic function on the (compactified) upper half-plane with a tranformation rule similar to a modular form's "weak modular condition." That is, the j-function maps from a given modular curve to a projective line \mathbb{P}^1 (base field) and the j-invariant of an elliptic curve (resp. Drinfeld module) is the image of the curve (resp. module) under this map

(20) Rigid Stacky GAGA

- Recall intention: become able to work with stacks in Drinfeld setting, i.e. our aim is to introduce the key tools
- We need to generalize rigid analytic GAGA to stacky rigid analytic GAGA via [PY16] to compare Drinfeld modular forms on \mathscr{X}_{Γ} and X_{Γ}^{an}

(21) Geometry of Drinfeld Modular Forms (1/3)

- Theorem the algebra of Drinfeld modular forms of Γ_2 is the log canonical ring of $(\mathscr{X}_{\Gamma_2}; 2\Delta)$
- Formally -

Theorem 2.1 ([Fra24, Theorem 6.1]). Let q be an odd prime and let $\Gamma \leq \operatorname{GL}_2(A)$ be a congruence subgroup containing the diagonal matrices of $\operatorname{GL}_2(A)$ and such that $\det(\gamma) \in (\mathbb{F}_q^{\times})^2$ for every $\gamma \in \Gamma$. Let Δ be the divisor supported at the cusps of the modular curve \mathscr{X}_{Γ} with the rigid analytic coarse space $X_{\Gamma}^{an} = \Gamma \setminus (\Omega \cup \mathbb{P}^1(K))$. There is an isomorphism of graded rings

$$M(\Gamma) \cong R(\mathscr{X}_{\Gamma}, \Omega^{1}_{\mathscr{X}_{\Gamma}}(2\Delta)),$$

where $\Omega^1_{\mathscr{X}_{\Gamma}}$ is the sheaf of differentials on \mathscr{X}_{Γ} . The isomorphism of algebras is given by the isomorphisms of components $M_{k,l}(\Gamma) \to H^0(\mathscr{X}_{\Gamma}, \Omega^1_{\mathscr{X}_{\Gamma}}(2\Delta)^{\otimes k/2})$ given by $f \mapsto f(dz)^{\otimes k/2}$.

- Success of the Theorem is we can answer Gekeler for Γ_2 using [VZB22], [O'D15], [CFO24], [LRZ16]
- Failure of the Theorem is if we can show (cusps of Γ_2) \leftrightarrow (cusps of Γ) then $R(\mathscr{X}_{\Gamma_2}; 2\Delta)$ is the spin log canonical ring of $(\mathscr{X}_{\Gamma}; \Delta)$ in the sense of [LRZ16]
- Key Ingredients dz double pole at ∞ & rigid stacky GAGA

(22) Geometry of Drinfeld Modular Forms (2/3)

- Theorem $M(\Gamma) \cong M(\Gamma_2)$, i.e. we can recover $M(\Gamma)$ from a log canonical ring, fully answering Gekeler
- Formally -

Theorem 2.2 ([Fra24, Theorem 6.2]). Let q be a power of an odd prime. Let $\Gamma \leq \operatorname{GL}_2(A)$ be a congruence subgroup containing the diagonal matrices in $\operatorname{GL}_2(A)$. Let $\Gamma_2 = \{ \gamma \in \Gamma : \det(\gamma) \in (\mathbb{F}_q^{\times})^2 \}$. Then $M(\Gamma) \cong M(\Gamma_2)$, with

$$M_{k,l}(\Gamma_2) = M_{k,l_1}(\Gamma) \oplus M_{k,l_2}(\Gamma)$$

on each graded piece, where l_1, l_2 are the two solutions to $k \equiv 2l \pmod{q-1}$.

(23) Geometry of Drinfeld Modular Forms (3/3)

- Theorem $M(\Gamma) \cong M(\Gamma')$, i.e. [Fra24, Theorem 6.2] is a special case of [Fra24, Theorem 6.12].
- Formally -

Theorem 2.3 ([Fra24, Theorem 6.12]). Let q be a power of an odd prime. Let $\Gamma \leq \operatorname{GL}_2(A)$ be a congruence subgroup. Let $\Gamma_1 = \{ \gamma \in \Gamma : \det(\gamma) = 1 \}$. Suppose that Γ' is such that $\Gamma_1 \leq \Gamma' \leq \Gamma$. Then as algebras

$$M(\Gamma) = M(\Gamma'),$$

and each component $M_{k,l}(\Gamma')$ is some direct sum of components $M_{k,l'}(\Gamma)$ for some nontrivial l'

- This was suggested by Böckle as was the proof technique.
- Both [Fra24, Theorem 6.2] and [Fra24, Theorem 6.12] have classical analogs which come up in discussion of *nebentypes* for classical modular forms e.g.

References

- [CFO24] Michael Cerchia, Jesse Franklin, and Evan O'Dorney, Section rings of Q-divisors on genus 1 curves, 2024, https://arxiv.org/abs/2312.15128.
- [DS05] Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- [Fra24] Jesse Franklin, The geometry of Drinfeld modular forms, 2024, https://arxiv.org/abs/2310.19623.
- [Gek99] Ernst-Ulrich Gekeler, A survey on Drinfeld modular forms, Turkish J. Math. 23 (1999), no. 4, 485–518.
 MR 1780937
- [GN95] Ernst-Ulrich Gekeler and Udo Nonnengardt, Fundamental domains of some arithmetic groups over function fields, Internat. J. Math. 6 (1995), no. 5, 689–708. MR 1351161
- [LRZ16] Aaron Landesman, Peter Ruhm, and Robin Zhang, Spin canonical rings of log stacky curves, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 6, 2339–2383. MR 3580174
- [O'D15] Evan O'Dorney, Canonical rings of Q-divisors on \mathbb{P}^1 , Annals of Combinatorics 19 (2015), no. 4, 765–784.
- [PW16] Mihran Papikian and Fu-Tsun Wei, On the eisenstein ideal over function fields, Journal of Number Theory 161 (2016), 384–434.
- [PY16] Mauro Porta and Tony Yue Yu, Higher analytic stacks and GAGA theorems, Adv. Math. 302 (2016), 351–409. MR 3545934
- [VZB22] John Voight and David Zureick-Brown, The canonical ring of a stacky curve, Mem. Amer. Math. Soc. 277 (2022), no. 1362, v+144. MR 4403928