

Spatial Data Quality in the IoT Era Management and Exploitation

Huan Li, Bo Tang, Hua Lu, Muhammad Aamir Cheema, Christian S. Jensen

2. SID QUALITY Framework

By Hua Lu

Outline

- Quality dimensions
- Quality issues

Quality Dimensions

- ▶ Data quality: How well data satisfies the consumption purpose?
- DQ dimensions: Criteria from consumers' perspective
- SID: observations of realities via IoT devices.
- ▷ SID quality dimensions:
 - Reliability aspect
 - Precision, Accuracy, Consistency
 - Comprehensiveness aspect
 - Sparsity, Space Coverage, Completeness, Redundancy
 - Usability aspect
 - Latency, Staleness, Data Volume, Truth Volume, Resolution, Interpretability

Quality Issues

SID Characteristic	Quality Issues (↓: low; ↑: high)
[omnipresent in IoT setting]	
Noisy and erroneous	↓ precision, ↓ accuracy, ↓ consistency
Temporally discrete	↑ time sparsity, ↓ completeness, ↑ staleness
Decentralized and heterogeneous	↓ consistency, ↑ latency, ↓ interpretability
Dynamic	↓ precision
Voluminous and duplicated	↑ redundancy, ↑ latency, ↑ data volume
Isolated and conflicting	↓ consistency, ↓ interpretability
[specific in spatial data domain]	
Unverifiable	↓ truth volume
Hierarchical and multi-scaled	↓ consistency, ↓ resolution, ↓ interpretability
Spatially discrete	↓ space coverage

Means to Resolve DQ Issues: Task Perspective

Localization Layer

- - Location Refinement
- ▶ Main goals
 - ↑ precision
 - ↑ accuracy
 - ↑ resolution

Pre-processing Layer

Key tasks

- Uncertainty Elimination
 - □ ↑ precision, ↑ completeness, ↑ resolution, ↓ time sparsity
- Outlier Removal
 - □ ↑ precision, ↑ accuracy, ↑ consistency
- Fault Correction
 - □ ↑ accuracy, ↑ consistency, ↑ completeness
- Data Integration
 - □ ↑ accuracy, ↑ completeness, ↑ data volume, ↑ resolution, ↑ interpretability
- Data Reduction
 - □ ↓ data volume, ↓ latency, ↓ redundancy

Business Layer

- - Querying
 - **Analysis**
 - **Decision-making**
- ▷ NB: All over low quality SID

Means to Resolve DQ Issues: Technique Perspective

- ➤ They apply to all layers
 - Business
 - Pre-processing
 - Localization
- They may be combined

References

- [Karkouch et al., 2016] Data quality in Internet of Things: A state-of-theart survey. Journal of Network and Computer Applications.
- [Li et al., 2018] Spatiotemporal distribution of indoor particulate matter concentration with a low-cost sensor network. Building and Environment.

