STA 5107: Home Assignment # 2

Spring 2021/Due Date: February 2nd

- 1. **Fisher's Discriminant Analysis**: Write a program to perform Fisher's Discriminant Analysis for the given data sets. The dataset is given in form of a large matrix $X = [X_1 X_2 \dots X_C] \in \mathbb{R}^{n \times Ck}$, where $X_c \in \mathbb{R}^{n \times k}$ is the data for each of the classes $c = 1, 2, \dots, C$. C = 5 and k = 100 in all the examples, but n changes.
 - 1. Compute mean μ_c of each class, for $c = 1, 2, \dots, C$.
 - 2. Compute within class scatter matrix S_w and between class scatter matrix S_b
 - 3. Perform generalized eigen-value decomposition using [V,D] = eig(Sb,Sw,'chol');
 - 4. Reorder solution using V = fliplr(V) and D = flipud(fliplr(D)).
 - 5. Set U = V(:,1:d) and project $Z = U^T X$. As part of your solution: (1) generate a plot of the eigenvalues, (2) show a colored 2D scatter plot of the projected data. There are several datasets provided for this problem.
- 2. Write a program to simulate a homogeneous Poisson counting process over the interval [0, 100]. Generate a few (5) sample paths for intensity $\lambda = 0.1$ and display them on the same plot. Remember that the mean of exponential arrival times is $\frac{1}{\lambda}$.
- 3. Using the program in the previous problem, count the number of events occurring in the interval [10, 60]. Plot a histogram of 50 realizations of this random number.
- 4. Write a matlab program to simulate a random walk, for a given value of T and $s = \alpha \sqrt{T}$. Plot the sample paths of the X_t versus the real time $t \in [0, 10]$, for $\alpha = 1.0$ and T = 1, 0.1, 0.01, and 0.001. In each case, choose the total number of steps n to be 10/T, so that you go up to time t = 10 irrespective of T. Use the "stairs" command in matlab to plot the sample paths.