

Chapter 7 Network Flow

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Soviet Rail Network, 1955

Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.

- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more ...

Minimum Cut Problem

Flow network.

- Abstraction for material flowing through the edges.
- G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Capacity = 9 + 15 + 8 + 30 = 62

Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]

- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$ [conservation]
 - e in to v e out of v

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Flows

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$ [capacity]

• For each $v \in V - \{s, t\}$: $\sum f(e) = \sum f(e)$ [conservation]

$$\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

Def. The value of a flow f is: $v(f) = \sum f(e)$. e out of s

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e^{-c})$

Flows and Cuts

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Flows and Cuts

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e) = v(f)$$

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Flows and Cuts

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Flows and Cuts

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Proof?

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum c(e)$

Flows and Cuts

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum f(e) = \sum f(e)$

Def. The value of a flow f is: $v(f) = \sum f(e)$.

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

by flow conservation, all terms
$$= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to A}} f(e).$$

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Flows and Cuts

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$

Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30 \Rightarrow Flow value \leq 30

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e)$

Flows and Cuts

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Proof?.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \sum_{e \text{ out of } A} c(e^{-c})$

Flows and Cuts

Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \le f(e) \le c(e)$
- For each $v \in V \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf.
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c(e)$$

$$= cap(A, B)$$

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

> Value of flow = 28 Cut capacity = 28 \Rightarrow Flow value \leq 28

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Towards a Max Flow Algorithm

Greedy algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

locally optimality ⇒ global optimality

Residual Graph

Original edge: $e = (u, v) \in E$.

Flow f(e), capacity c(e).

Residual edge.

- "Undo" flow sent.
- e = (u, v) and $e^{R} = (v, u)$.
- Residual capacity:

$$c_f(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^R \in E \end{cases}$$

Residual graph: $G_f = (V, E_f)$.

- Residual edges with positive residual capacity.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Consider a network *G*. Let

- f be a flow in G, and Gf the associated residual network. Recall for each edge (u,v) where
- f(u,v) < c(u,v), create edge (u,v) in Gf with capacity cf(u,v)=c(u,v)-f(u,v). [i.e. we can increase flow along this edge by up to cf(u,v) units]
- f(u,v)>0, create edge (v,u) in Gf with capacity cf(v,u)=f(u,v). [i.e. we can decrease the existing flow by up to cf(u,v) units]

Residual network?

(a): A flow f in network G

Consider a network *G*. Let

- *f* be a flow in *G*, and *Gf* the associated residual network. **Recall** for each edge (*u*,*v*) where
- f(u,v) < c(u,v), create edge (u,v) in Gf with capacity cf(u,v)=c(u,v)-f(u,v). [i.e. we can increase flow along this edge by up to cf(u,v) units]
- f(u,v)>0, create edge (v,u) in Gf with capacity cf(v,u)=f(u,v). [i.e. we can decrease the existing flow by up to cf(u,v) units]

(a): A flow f in network G

(b): Residual network G_f

An *augmenting path* is a simple path *P* from *s* to *t* in *Gf* .

The *residual capacity* (also called the bottleneck capacity) *of the path* is the minimum capacity of any edge on the path. Denote this by cf(P).

Exercise: Find augmenting path in the following network.

(a): A flow f in network G

(b): Residual network G_f

Difference from Greedy:

- The greedy algorithm only increases flow on the edges
- An augmenting path may increase flow on a back edge, thus decreasing flow on some edge of the initial network G.

Capacity of each edge in the residual network := its residual capacity.

Observation (informal): if we can push flow through the residual network then we can push this additional amount of flow through the original network.

Sum of flows: Given two flows f and f', define their sum f'' = f + f' by:

• f''(u,v)=f(u,v)+f'(u,v).

Notation. Suppose

- *f* is an existing flow in *G*
- *P* is a simple *s-t* path
- *bottleneck*(*P*, *f*) is the minimum residual capacity of any edge on *P*, with respect to the flow *f*.

Consider the next procedure:

```
\begin{aligned} &\operatorname{augment}(f,P) \\ &\operatorname{Let}\ b = \operatorname{bottleneck}(P,f) \\ &\operatorname{For}\ \operatorname{each}\ \operatorname{edge}\ (u,v) \in P \\ &\operatorname{If}\ e = (u,v)\ \operatorname{is}\ \operatorname{a}\ \operatorname{forward}\ \operatorname{edge}\ \operatorname{then} \\ &\operatorname{increase}\ f(e)\ \operatorname{in}\ G\ \operatorname{by}\ b \end{aligned} &\operatorname{Else}\ ((u,v)\ \operatorname{is}\ \operatorname{a}\ \operatorname{backward}\ \operatorname{edge},\ \operatorname{and}\ \operatorname{let}\ e = (v,u)) \\ &\operatorname{decrease}\ f(e)\ \operatorname{in}\ G\ \operatorname{by}\ b \\ &\operatorname{Endif} \\ &\operatorname{Endfor} \\ &\operatorname{Return}(f) \end{aligned}
```

Augmenting paths demo

Augmenting paths demo

Augmenting paths demo

Lemma: Let f' be the flow resulting from Augment(f,P). Then f is a valid flow in G.

Proof?

Lemma: Let f be the flow resulting from Augment(f,P). Then f is a valid flow in G.

Proof: Flow f differs from f only on the edges of P, so only need to check these. Let e=(u,v) be an edge on P.

- If e is a forward edge, we avoided increasing above the capacity of the edge.
- If it's a backward edge, we avoided decreasing the flow on e below zero.

More formally, if e = (u,v) is a forward edge, then its residual capacity is $c_e - f(e)$

Thus:
$$0 \le f(e) \le f'(e) = f(e) + bottleneck(P, f) \le f(e) + (c_e - f(e)) = c_e$$

If e = (u,v) is a backward edge arising from edge e = (v,u), then its residual capacity is f(e). Thus:

$$c_e \ge f(e) \ge f'(e) = f(e) - \text{bottleneck}(P, f) \ge f(e) - f(e) = 0$$

Ford-Fulkerson Algorithm

Ford-Fulkerson augmenting path algorithm.

- Start with f(e) = 0 for all edge $e \in E$.
- Find an augmenting path P in the residual graph G_f .
- · Augment flow along path P.
- · Repeat until you get stuck.

```
Max-Flow Initially f(e)=0 for all e in G While there is an s-t path in the residual graph G_f Let P be a simple s-t path in G_f f'=\mathrm{augment}(f,P) Update f to be f' Update the residual graph G_f to be G_{f'} Endwhile Return f
```

Lemma 1 At every intermediate stage of the Ford-Fulkerson Algorithm, the flow values $\{f(e)\}$ and the residual capacities in G_f are integers.

Lemma 1 At every intermediate stage of the Ford-Fulkerson Algorithm, the flow values $\{f(e)\}$ and the residual capacities in G_f are integers.

Proof: By induction on the number of iterations.

Basis step: The statement is clearly true before any iterations of the While loop.

IH: Suppose it is true after j iterations.

IS: Since all residual capacities in Gf are integers, the value bottleneck (P, f) for the augmenting path found in iteration j + 1 will be an integer.

Thus the flow f' will have integer values => so will the capacities of the new residual graph.

Lemma 2:

Let f be a flow in G, and let P be a simple s-t path in G_f . Then $\nu(f') = \nu(f) + \mathsf{bottleneck}(P, f)$; and since $\mathsf{bottleneck}(P, f) > 0$, we have $\nu(f') > \nu(f)$.

Lemma 2:

Let f be a flow in G, and let P be a simple s-t path in G_f . Then $\nu(f') = \nu(f) + \mathsf{bottleneck}(P, f)$; and since $\mathsf{bottleneck}(P, f) > 0$, we have $\nu(f') > \nu(f)$.

Proof: The first edge e of P must be an edge out of s in the residual graph Gf.

The path is simple => it does not visit s again.

Since G has no edges entering s, the edge e must be a forward edge.

We increase the flow on this edge by bottleneck(P, f), and do not change the flow on any other edge incident to s. Therefore the value of f exceeds the value of f by bottleneck(P, f).

Let
$$C = \sum_{e \text{ out of } s} c_e$$

Lemma 3: Suppose that all capacities in the flow network G are integers.

Then the Ford-Fulkerson Algorithm terminates in at most C iterations of the While loop.

Let $C = \sum_{e \text{ out of } s} c_e$

Lemma 3: Suppose that all capacities in the flow network G are integers.

Then the Ford-Fulkerson Algorithm terminates in at most C iterations of the While loop.

Proof: No flow in G can have value greater than C, due to the capacity condition on the edges leaving s.

By Lemma 2, the value of the flow maintained by the Ford-Fulkerson Algorithm increases in each iteration.

Then by Lemma 1, it increases by at least 1 in each iteration.

Since it starts with the value 0, and cannot go higher than C, the While loop in the Ford-Fulkerson Algorithm can run for at most C iterations.

• No augmenting path possible, so the algorithm finishes running.

-8/10

Exercise: Can you identify the minimum cut from the result of the algorithm?

network G 3 2/4 0/2 8/8 6/6

9

8/9

18 + 1 = 19

10 / 10 =

- •Run Ford-Fulkerson. Look at the final residual graph and identify the vertices reachable from the source in the residual graph.
- All edges from a reachable vertex to non-reachable vertex are minimum cut edges. (will show this)

Ford-Fulkerson Algorithm:

Exercise: Run the algorithm on the network with the capacities illustrated in the picture.

Note: Labels on the edges are (capacity, flow).

Set f = 10. We get the network:

Set f = 5. We get the network:

