Pandas and PostgreSQL

A comparison of dataframes and data stores

Lauren Gulland

Data store

repository for persistently storing and managing collections of data

Data store: PostgreS

repository for persistently storing and managing collections of data

- Customizable open-source RDBMS that extends the SQL language
- Only accepts writes on a single node → CP system
- Row-based storage

Data store: SQLite

repository for persistently storing and managing collections of data

- Small, embeddable RDBMS
- Stores all data in a single transferable file → CA system
- Memory-sqlite: in-memory system, like Pandas

Dataframe

2-dimensional container for labeled data

Dataframe: Pandas

2-dimensional container for labeled data

- Easy-to-use, fast data wrangling library in Python
- Initialized and stored in memory → CA System
- Columnar store

Comparison 1: Storage

How is data stored?

PostgreS: Partitioned Storage

- All tables stored as separate files in a PGDATA directory, indices stored as B-trees
- When a table exceeds 1 GB, it is divided into 1GB segments, to avoid file size limitations
- Rows are stored in pages in heap files

Pandas: Block Storage

	UID	Product	Quantity	Member	Promo	Points	Paid
Timestamp							
2015-07-01 02:50:00	xgy7b	А	3	True	SEA15	30	21.50
2015-07-01 03:30:00	sot5y	С	1	False	NaN	10	15.00
2015-07-02 03:52:00	g8z8l	В	2	False	NaN	30	10.25
2015-07-03 04:01:00	lxzuo	А	2	False	SEA15	15	16.25
2015-07-03 05:30:00	Зреуј	С	4	True	BOB10	10	28.50

			V-				_			
	0	1	2		0	1		0		0
0	xgy7b	Α	SEA15	0	3	30	0	True	0	21.5
1	sot5y	С	NaN	1	1	10	1	False	1	15.0
2	g8z8l	В	NaN	2	2	30	2	False	2	10.2
3	Ixzuo	Α	SEA15	3	2	15	3	False	3	16.2
4	3реуј	С	BOB10	4	4	10	4	True	4	28.5

Efficient at what?

- Operations within dtypes are quite fast
- Appending to the dataframe means copying every block

Comparison 2: Query Syntax

How do we access and manipulate the data?

Query Overview

SQL: Declarative

- Pseudo-English
- Compose the query with what you want (but not how to get it)

Python: Imperative

- Apply operations to the dataset
- Manually chain operations in the logical order they need to appear

Basic Select

SQL

SELECT id

FROM airports

WHERE ident="KLAX"

```
airports[
    airports.ident=="KLAX"
].id
```

Select with 2 Conditions

SQL

```
SELECT *

FROM airports

WHERE iso_region = 'USA-CA'

and type = 'seaplane_base'
```

```
airports[
     (airports.iso_region ==
'USA-CA') &
     (airports.type ==
'seaplane_base')
]
```

GroupBy

SQL

```
SELECT iso_county, type,
    count(*)

FROM airports

GROUPBY iso_country, type
ORDERBY iso_country, type
```

```
airports,groupby([
    'iso_country','type'
]).size()
```

Inner Join

SQL

```
SELECT airport_ident, type,
description

FROM airport_freq join
airports on
airport_freq.airport_ref=airp
orts.id

WHERE airports.ident='KLAX'
```

```
airport_freq.merge(
    airports[airports.ident==
    'KLAX'][['id]],
    left_on='airport_ref',
    right_on='id',
    how='inner'
)[['airport_ident','ident',
'description']]
```

Comparison 3: Benchmarking

What is each framework optimized for?

Test 1: Operations

		PostgreS		Pandas				
Operation	Slowest	Fastest	Median	Slowest	Fastest	Median		
join	21.2	19.8	20.0	27.9	26.4	27.0		
groupby	8.9	8.6	8.6	38.6	35.7	37.8		
filter	10.2	9.5	9.7	27.5	25.0	25.3		
sort	30.9	28.2	28.7	30.1	28.0	28.9		

Test 2: Complex Queries

```
def do_it_in_sql():
    sal1 = """
    with recent_views as (
            select user id, model name
            from car config table
            where created at > current date - interval '2 months'
    popular models as (
            select model name as slug,
                   count(distinct user id) configs
            from recent configurations
            group by 1
            having count(distinct user id) > 3
    popular_configurations as (
            select C.model_name, C.user_id, M.configs
            from recent_configurations C
            join popular models M on M.slug = C.model name
    SELECT
    C1.model name model name,
    C1.configs model configs,
    C2.model name recommended model name,
    C2.configs recommended model configs,
    count(distinct C1.user id) combo configs
    from popular configurations C1
         join popular_configurations C2 on C1.user_id = C2.user_id
    where
    C1.model_name <> C2.model_name
    group by 1,2,3,4
    order by model_name
    df = execute_to_postgres(sql1)
    return df
```

```
def do it in pandas():
    select user_id, model_name
    from car_config_table
    where created_at > current_date - interval '2 months'
    df = query_postgres(sql)
    df['configs'] = df.groupby(['model_name'])
['user id'].transform('nunique')
    df = df[df['configs'] > 3]
    crossdf = df.merge(df, on='user id',how='outer')
    crossdf = crossdf[crossdf.model name v != crossdf.model name x]
    crossdf['combo configs'] = crossdf.groupbv(['model name x',
'model name v'l)['user id'l.transform('nunique')
    crossdf = crossdf[['model_name_x', 'users_x', 'model_name_y',
'users_y','combo_configs']].drop_duplicates().sort_values('model_nam
e_x')
    return crossdf
```

```
with recent_configurations as (
  select user id.
         model_name,
         COUNT(user_id) OVER (PARTITION BY model_name) as configs
  from car config table
  where created at > current date - interval '2 months'
  group by 1,2
SELECT C1.model name model name.
       C1.configs model configs,
       C2.model_name recommended_model_name,
       C2.configs recommended model configs.
       count(distinct C1.user_id) combo_configs
from recent_configurations C1
     ioin recent configurations C2 on C1.user id = C2.user id
where C1.model name <> C2.model name
group by 1,2,3,4
having count(distinct C1.user_id) > 3
```

```
drop table IF EXISTS analytics.mv;
create table analytics.mv as (
  select user id.
         model name.
         COUNT(user_id) OVER (PARTITION BY model_name) as configs
  from car config table
  where created at > current date - interval '2 months'
  group by 1,2);
SELECT C1.model name model name,
      C1.configs model configs.
      C2.model_name recommended_model_name,
      C2.configs recommended model configs,
      count(distinct C1.user_id) combo_configs
from analytics.mv C1
join analytics.mv C2 on C1.user_id = C2.user_id
where C1.model_name <> C2.model_name
group by 1,2,3,4
having count(distinct C1.user id) > 3
```

Test 2: Complex Queries

		PostgreS		Pandas			
	Slowest	Fastest	Median	Slowest	Fastest	Median	
Default	7.5	6.9	7.0	6.7	5.8	6.0	
Optimized (V2)	6.6	6.1	6.2	-	-	-	
Optimized (V3)	7.4	6.4	6.6	-	-	-	

So....why?

- PostgreS is doing a lot more for us behind the scenes.
- SQL isn't made for complex mathematical operations, even with User Defined Functions.
- Benefits of keeping more tasks on SQL can go far beyond execution time.

Conclusions

What's next?

Further Directions:

- Custom benchmarking of queries with SQLite
- Comparisons between Pandas and In-memory SQLite?
- Limitations of the df.to_sql() function in Pandas, and more on Pandas-SQL interfaces