ICT -UNIFESP SJC

PROJETO DE FILTRO Dados 02

Processamentos de Sinais

Integrantes

Aline Andreotti 122035

Bruna Salgado 120683

Felipe Hideki 69558

indice da Apresentação

- Introdução;
- Objetivo;
- Metodologia;
- Resultados obtidos;
- Conclusão;

🔊 Introdução

Filtro FIR

- fase linear;
 - não causa distorção de fase;
 - simetria na resposta; estáveis;

Figura 1: Exemplo de filtro de fase linear Fonte: http://www.dspguide.com/ch19/4.htm

>> Introdução

$$y[n] = \sum_{k=-M_1}^{M_2} a_k x[n-k]$$

Figura 2: Equação e diagrama de blocos de um filtro FIR Fonte: http://www.ece.ufrgs.br/~eng04006/aulas/aula24.pdfc

Introdução

Hamming

Kaiser

Figura 3: Janelas utilizadas

Objetivo

Identificar uma sequência de teclas pressionadas (padrão DTMF) de um sinal de áudio.

Figura 4: Sinal original, no domínio do tempo

PASSO 1

PASSO 2

PASSO 3

PASSO 4

- FFT Análise do
 espectro de energia
 do sinal original
- FILTRO FIR AA Projeto de um filtro
 anti-aliasing com
 Janelamento KAISER
 - Ordem 1000
 - Beta=10

DOWNSAMPLING

 \circ Fator = 13

- FILTROS PASSA-FAIXA
- Frequência DTMF
 - o 697 a 941 Hz
 - o 1209 a 1633 Hz
- JANELAMENTO
 - Hamming
 - Kaiser

- Separar as regiões de cada tecla
- Inserção de zeros
- FFT para cada uma das teclas.
- Encontrar a sequência digitada

PASSO 1

Espectro da energia do sinal original

- Frequência de amostragem >>
 Frequência máxima do sinal
- Além disso: a frequência máxima de interesse é conhecida
 - o Padrão DTMF:

Fmáx = **1633Hz**

Figura 5: Espectro de energia do sinal original

1º Utilizar um Filtro FIR para remover de imediato frequências conhecidas como ruído.

Filtro FIR AA

- FC=1633Hz
- Janela Kaiser
 - Parâmetros

Ordem = 1000

Beta=10

Figura 6: Comparação entre espectro do sinal filtrado vs. original

Filtragem passa-baixa AA, janela Kaiser de ordem 1000, β=10 (fc ~ 1633Hz)

Figura 7-8: Efeito do filtro FIR AA no domínio do tempo

PASSO 2

Downsampling

FNyquist > 2*Fmáx

FNyquist > 3266Hz

• Fator de Downsample

Fds = Fs/Fnyquist

Fds ≃ 13

Figura 9: Sinal downsampled - Domínio do tempo

Obs.: Downsampling é uma reamostragem do sinal com menos pontos, portanto o modifica ligeiramente no domínio do tempo. Se realizado corretamente, a falta destes pontos não afeta o domínio da frequência!

Figura 10: Comparação de espectros de energia, no domínio da frequência (normalização fora de escala)

- Após o filtro, o sinal possui
 frequências no range de 1633Hz
- É tabelado as 2 bandas de frequência do Sinal DTMF
 - Banda 1 697Hz até 941Hz
 - Banda 2 1209Hz até 1633Hz

- 2 Filtros Passa-Banda
- Critério de Qualidade do sinal
 - Atingir -50dB

Janelamento suave é o mais apropriado.

- 1) Janelas
 - a) Hamming
 - b) Kaiser

PASSO 3

Janelamento

a. Hamming, de ordem 1000

Figura 11-12 : Janelamento Hamming e comparação dos espectros de energia

Figura 13 - Comparação do sinal - Janelamento Hamming

Janelamento

b. Kaiser, de ordem 1000, parâmetro $\beta = 10$

Figura 14-15: Janelamento Kaiser e Espectro do Sinal

Figura 16 - Comparação dos sinais, filtragem com janelamento Kaiser

Janelamento e filtragem possibilitaram:

- Visualizar as teclagens no domínio tempo;
- Separar intervalos para a inserção de zeros nas teclas individuais. (Empírico)

Figura 17: Sinal do domínio do tempo, pós-filtragem com janelamento Kaiser

PASSO 4

Separação de trechos do sinal

Inserção de zeros

- Foi utilizado a inserção de zeros de ordem 1;
- Usado para aumentar quantidade de pontos no tempo;
 - Aumenta a resolução na frequência;
- Melhora a identificação de picos próximos.

Inserção de zeros (*zero-padding*)

Após o zero padding

- FFT de cada tecla
- Determinação das frequências
 - Consultando tabelaDTMF

	Ta	abela DT	MF	
Hz	1209	1336	1477	1633
697	1	2	3	Α
770	4	5	6	В
852	7	8	9	С
941	*	0	#	D

Método para determinação das frequências

Resultados - Tecla 1

F.baixa = 701Hz F.Alta = 1341Hz

Resultados - Tecla 2

F.baixa = 850Hz

F.Alta = **????Hz**

Dígito -> ????

Impossível determinar a frequência alta. *Necessário outra abordagem*

Resultados - Tecla 2

F.baixa = 850Hz F.Alta = 1209Hz

Dígito -> 7

Utilizado:

Passa-Faixao fc = 697Hz~1633Hz

F.baixa = 701Hz F.Alta = 1481Hz

F.baixa = 852Hz F.Alta = 1338Hz

F.baixa = 776HzF.Alta = 1481Hz

F.baixa = 701Hz F.Alta = 1481Hz

F.baixa = 851Hz F.Alta = 1336Hz

F.baixa = 851Hz

F.Alta = **????Hz**

Dígito -> ????

Impossível determinar a frequência alta. *Necessário outra abordagem*

Dois picos a partir de 1200, o mais próximo de uma frequência DTMF é o pico 1210

F.baixa = 851Hz F.Alta = 1210Hz

Dígito -> 7

Utilizado:

Passa-Faixao fc = 697Hz~1633Hz

F.baixa = 850Hz

F.Alta = 1338Hz

Resultados

	f-baixa (Hz)	f-alta (Hz)	n° DTMF
Teclagem 1	701	1341	2
Teclagem 2	850	12??/1209	7
Teclagem 3	701	1481	3
Teclagem 4	852	1338	8
Teclagem 5	776	1481	6
Teclagem 6	701	1481	3
Teclagem 7	851	1336	8
Teclagem 8	851	12??/1210	7
Teclagem 9	850	1338	8

O procedimento realizado foi devidamente adequado para a mitigação dos sinais indesejados e coleta das informações relevantes. Janelas com ordens muito altas (>1000) se tornam similares pois se aproximam da janela ideal.

