### Unidad I: Computabilidad

# Más indecidibilidad

Clase 09 - Lógica para Ciencia de la Computación/Teoría de la Computación

Prof. Miguel Romero

#### Problemas indecidibles

- Hemos visto varios problemas sobre MTs que son indecidibles.
- Existen muchos problemas indecidibles que no hablan de MTs:
  - Resolver cierto tipo de ecuaciones.
  - Problemas sobre matrices.
  - Problemas sobre lenguajes formales y gramáticas.
  - Optimizar consultas en bases de datos.
  - Problemas en inteligencia artificial.
  - •

### Recordatorio: configuraciones

### Una configuración de una MT está dada por:

- El estado actual de la MT.
- La posición actual de la cabeza lectora.
- El contenido de la cinta (ignorando B irrelevantes hacia la derecha).

#### Definición:

Sea  $M = (Q, \Sigma, \Gamma, q_0, q_f, \delta)$  una MT. Una configuración de M es representada por una palabra de la forma uqv, con  $u, v \in \Gamma^*$  y  $q \in Q$ , donde:

- $\blacksquare$  q es el estado actual de M.
- |u| es la posición actual de la cabeza lectora.
- uv es el contenido de la cinta.

Recordatorio: tipos de configuraciones

### Definición:

Decimos que una configuración uqv es:

- de aceptación si  $q = q_f$ .
- de detención si  $\delta(q, a)$  no está definido, donde v = av'.
- de rechazo si es de detención y  $q \neq q_f$ .

Recordatorio: relación siguiente configuración

#### Definición:

Sea  $M = (Q, \Sigma, \Gamma, q_0, q_f, \delta)$  una MT. Se define la relación siguiente configuración  $\stackrel{M}{\longmapsto}$  entre configuraciones de M como:

 $C \stackrel{M}{\longmapsto} C'$  si y sólo si

■ Existe transición  $\delta(q, a) = (q', b, \triangleleft)$ ,  $u, v \in \Gamma^*$  y  $d \in \Gamma$  tal que:

$$C = u d q a v$$
  $C' = u q' d b v$ 

■ O existe transición  $\delta(q, a) = (q', b, \triangleright)$  y  $u, v \in \Gamma^*$  tal que:

$$C = u q a v$$
  $C' = u b q' v$ 

## Recordatorio: ejecución de una MT

Sea  $M = (Q, \Sigma, \Gamma, q_0, q_f, \delta)$  una MT y  $w \in \Sigma^*$ .

#### Definición:

■ Una ejecución  $\rho$  de M es una secuencia de configuraciones

$$\rho = C_0, C_1, C_2, \dots$$
 (no necesariamente finita)

tal que  $C_i \stackrel{M}{\longmapsto} C_{i+1}$  para todo  $i \ge 0$ .

- Decimos que  $\rho$  =  $C_0, C_1, C_2, \ldots$  es la ejecución de M sobre w si:
  - $\rho$  es una ejecución de M.
  - $C_0 = \vdash q_0 w$ . (configuración inicial de M sobre w)
  - Si  $\rho = C_0, \dots, C_m$  es finito, entonces  $C_m$  es de detención.

Recordatorio: aceptación de una palabra

Sea 
$$M = (Q, \Sigma, \Gamma, q_0, q_f, \delta)$$
 una MT y  $w \in \Sigma^*$ .

#### Definición:

- M acepta w si la ejecución  $\rho$  de M sobre w cumple que:
  - $\rho = C_0, \dots, C_m$  es finita. (M se detiene con w)
  - C<sub>m</sub> es una configuración de aceptación.
  - $\rho$  es una ejecución de aceptación para M y w.
- El lenguaje aceptado por *M* se define como:

$$L(M) = \{ w \in \Sigma^* \mid M \text{ acepta } w \}.$$

### Historial de cómputo

Sea  $M = (Q, \Sigma, \Gamma, q_0, q_f, \delta)$  una MT y  $w \in \Sigma^*$ . Sea # un nuevo símbolo tal que  $\# \notin \Gamma$ .

#### Definición:

Un historial de cómputo de aceptación para M y w es una palabra de la forma:

$$C_0 \# C_1 \# \cdots \# C_m$$

donde la secuencia  $C_0, \ldots, C_m$  es una ejecución de aceptación para M y w.

#### Comentarios:

- Un hist. de cómputo de acept. es una representación como palabra de una ejecución de aceptación para M y w.
- Notar que:

M acepta  $w \iff$  existe un hist. de cómputo de acept. para M y w.

### Reducciones basadas en historiales de cómputo

#### Tenemos un problema L de la forma:

Dada una instancia al problema, ¿existe una solución de cierto tipo?

Estrategia para probar que *L* es indecidible:

■ Demostrar que Accept  $\leq_m L$  via una reducción f.

Accept = 
$$\{\langle M, w \rangle \mid M \text{ es una MT, } w \in \{0,1\}^* \text{ y } M \text{ acepta } w\}.$$

Las soluciones de f((M, w)) codifican historiales de cómputo de aceptación para M y w.

```
M acepta w\iff existe un hist. de cómputo de acept. para M y w\iff existe una solución para f(\langle M,w\rangle) \iff f(\langle M,w\rangle)\in L
```

Un domino se ve de la forma:

$$\left[\frac{\mathsf{a}}{\mathsf{a}\mathsf{b}}\right]$$

Una colección de dominos es de la forma:

$$\bigg\{ \left[ \frac{b}{ca} \right], \ \left[ \frac{a}{ab} \right], \ \left[ \frac{ca}{a} \right], \ \left[ \frac{abc}{c} \right] \bigg\}$$

Un match para una colección de dominos es una secuencia:

$$\left[\frac{a}{ab}\right] \left[\frac{b}{ca}\right] \left[\frac{ca}{a}\right] \left[\frac{a}{ab}\right] \left[\frac{abc}{c}\right]$$

tal que la palabra superior es equivalente a la palabra inferior:

### Problema de correspondencia de Post (PCP)

Dada una colección de dominos, ¿existe un match para los dominos?

# Ejemplo 1

Dada la siguiente colección de dominos:

$$\left\{ \ \left[\frac{\mathsf{a}}{\mathsf{a}\mathsf{a}\mathsf{a}}\right], \ \left[\frac{\mathsf{a}\mathsf{b}\mathsf{a}\mathsf{a}\mathsf{a}}{\mathsf{a}\mathsf{b}}\right], \ \left[\frac{\mathsf{a}\mathsf{b}}{\mathsf{b}}\right] \ \right\}$$

¿existe un match para los dominos?

# Ejemplo 2

Dada la siguiente colección de dominos:

$$\bigg\{ \, \left[ \frac{\mathsf{abc}}{\mathsf{ab}} \right], \, \left[ \frac{\mathsf{ca}}{\mathsf{a}} \right], \, \left[ \frac{\mathsf{acc}}{\mathsf{ba}} \right] \, \, \bigg\}$$

¿existe un match para los dominos?

# Ejemplo 3

Dada la siguiente colección de dominos:

$$\bigg\{ \, \left[ \frac{ab}{abab} \right], \, \left[ \frac{b}{a} \right], \, \left[ \frac{aba}{b} \right], \, \left[ \frac{aa}{a} \right] \, \, \bigg\}$$

¿existe un match para los dominos?

# Problema de correspondencia de Post (PCP): definición

#### Definición:

■ Una colección de dominos P sobre alfabeto  $\Sigma$  es un conjunto de pares ordenados  $(t_i, b_i)$ , donde  $t_i, b_i \in \Sigma^*$ . Escribimos P como:

$$P \; = \; \left\{ \; \; \left[\frac{t_1}{b_1}\right], \; \left[\frac{t_2}{b_2}\right], \; \cdots \; , \; \left[\frac{t_k}{b_k}\right] \; \; \right\}$$

■ Un match para P es una sequencia  $i_1, i_2, \ldots, i_\ell \in \{1, \ldots, k\}$  tal que:

$$t_{i_1} t_{i_2} \cdots t_{i_\ell} = b_{i_1} b_{i_2} \cdots b_{i_\ell}$$

### Problema de correspondencia de Post (PCP)

 $PCP = \{\langle P \rangle \mid P \text{ colección de dominos con un match}\}$ 

# Problema de correspondencia de Post modificado (MPCP)

#### Definición:

■ Una colección de dominos P sobre alfabeto  $\Sigma$  es un conjunto de pares ordenados  $(t_i, b_i)$ , donde  $t_i, b_i \in \Sigma^*$ . Escribimos P como:

$$P \; = \; \left\{ \; \; \left[\frac{t_1}{b_1}\right], \; \left[\frac{t_2}{b_2}\right], \; \cdots \; , \; \left[\frac{t_k}{b_k}\right] \; \; \right\}$$

■ Un match para P es una sequencia  $i_1, i_2, ..., i_\ell \in \{1, ..., k\}$  tal que:

$$t_{i_1} t_{i_2} \cdots t_{i_\ell} = b_{i_1} b_{i_2} \cdots b_{i_\ell}$$

### Problema de correspondencia de Post modificado (MPCP)

 $\mathsf{MPCP} = \big\{ \langle P \rangle \mid P \text{ colección de dominos con un match que parte en } \Big[ \tfrac{t_1}{b_1} \Big] \big\}$ 

#### PCP es indecidible

#### Teorema:

PCP es indecidible.

#### Demostración:

Probaremos que Accept  $\leq_m$  MPCP y MPCP  $\leq_m$  PCP.

Para  $Accept \le_m MPCP$  usamos una reducción basada en hist. de cómputo.

Para cada MT M y  $w \in \{0,1\}^*$ ,

construiremos una colección de dominos  $P_{M,w}$  tal que:

 $P_{M,w} \in MPCP \iff M \text{ y } w \text{ tienen un hist. de computo de acept.}$ 

### Idea principal:

La palabra inferior construirá un hist. de cómputo de acept. para M y w y la palabra superior verificará que el historial de cómputo es correcto.

Sea una MT  $M = (Q, \{0,1\}, \Gamma, q_0, q_f, \delta)$  y  $w = a_1 a_2 \dots a_n \in \{0,1\}^*$ .

Construiremos una colección de dominos  $P_{M,w}$ .

Queremos que los matches de  $P_{M,w}$  codifiquen historiales de cómputo de acept. de M y w.

Definimos  $P_{M,w}$  por partes, cada parte fuerza alguna propiedad.

### Parte 1: Configuración inicial

El primer domino de  $P_{M,w}$  lo definimos como:

$$\left[\frac{t_1}{b_1}\right] = \left[\frac{\#}{\# \vdash q_0 a_1 a_2 \dots a_n \#}\right]$$

Por lo tanto, la palabra inferior comienza con la configuración inicial:

$$\#$$
 $\#$ 
 $\vdash$ 
 $q_0$ 
 $\downarrow a_1$ 
 $\downarrow a_2$ 
 $\cdots$ 
 $\downarrow a_n$ 
 $\downarrow \#$ 

Parte 2: Transición a la derecha

Para todo  $a, b \in \Gamma$  y para todo  $q, r \in Q$ :

Si 
$$\delta(q, a) = (r, b, \triangleright)$$
, agregamos  $\left\lceil \frac{qa}{br} \right\rceil$  a la colección  $P_{M,w}$ .

Parte 3: Transición a la izquierda

Para todo  $a, b, c \in \Gamma$  y para todo  $q, r \in Q$ :

Si 
$$\delta(q, a) = (r, b, \triangleleft)$$
, agregamos  $\left[\frac{\text{cqa}}{\text{rcb}}\right]$  a la colección  $P_{M,w}$ .

Parte 4: Letras que NO estan siendo leídas no se modifican

Para todo  $a \in \Gamma$ :

Agregamos el domino 
$$\left[\frac{a}{a}\right]$$
 a la colección  $P_{M,w}$ .

### Ejemplo:

Supongamos una MT M con  $\Gamma = \{0, 1, \vdash, B\}$  y w = 0100.

Primer domino que debemos colocar es:

Si 
$$\delta(q_0,0)=(q_7,1,\triangleright)$$
, entonces tenemos que  $\left\lceil \frac{q_00}{1q_7} \right\rceil \in P_{M,w}$ .

Además tenemos  $\left\lceil \frac{\mathsf{a}}{\mathsf{a}} \right\rceil$  en  $P_{M,w}$ , para cada  $\mathsf{a} \in \Gamma$ .

Parte 5: Delimitador #

Para el simbolo delimitador  $\# \notin \Gamma$ :

Agregamos los dominos  $\left[\frac{\#}{\#}\right]$  y  $\left[\frac{\#}{{\sf B}\,\#}\right]$  a la colección  $P_{M,w}$ .





Vamos tratando de "pillar" la palabra inferior!

Parte 5: Estado final

Para todo  $a \in \Gamma$ :

Agregamos los dominos  $\left[\frac{\operatorname{a} \operatorname{q_f}}{\operatorname{q_f}}\right]$  y  $\left[\frac{\operatorname{q_f} \operatorname{a}}{\operatorname{q_f}}\right]$  a la colección  $P_{M,w}$ .

# Ejemplo (continuación):

Supongamos que encontramos un estado final en la palabra inferior:

$$\mbox{Reducimos usando} \left[ \frac{1q_f}{q_f} \right] \ \, \mbox{o} \ \, \left[ \frac{q_f0}{q_f} \right] \! ;$$

Ejemplo (continuación):

Reducimos hasta que:

# 
$$q_f$$
 0 #  $q_f$  #

#  $q_f$  0 #  $q_f$  #

Parte 6: Domino de cierre Finalmente agregamos el domino  $\left[\frac{\mathsf{q}_{\mathsf{f}} \# \#}{\#}\right]$  a la colección  $P_{M,w}$ .

De la construcción (y la explicación) concluimos que:

 $P_{M,w} \in \mathsf{MPCP} \iff \mathcal{M} \text{ acepta } w.$ 

### PCP es indecidible: MPCP $\leq_m$ PCP

Para un string  $u = a_1 a_2 \dots a_n$  se define:

$$\begin{array}{rclcrcl} \star \, u & = & * \, a_1 \, * \, a_2 \, * \, \cdots \, * \, a_n \\ & u \, * & = & a_1 \, * \, a_2 \, * \, \cdots \, * \, a_n \, * \\ \star \, u \, * & = & * \, a_1 \, * \, a_2 \, * \, \cdots \, * \, a_n \, * \end{array}$$

Para una colección de dominos (con un domino inicial  $\left[\frac{t_1}{b_1}\right]$ ):

$$P \; = \; \left\{ \; \; \left[\frac{t_1}{b_1}\right], \; \left[\frac{t_2}{b_2}\right], \; \cdots \; , \; \left[\frac{t_k}{b_k}\right] \; \; \right\}$$

definimos la nueva colección de domino (sin domino inicial):

$$P' \; = \; \left\{ \; \; \left[\frac{\star t_1}{\star b_1 \star}\right], \; \left[\frac{\star t_1}{b_1 \star}\right], \; \left[\frac{\star t_2}{b_2 \star}\right], \; \cdots \; , \; \left[\frac{\star t_k}{b_k \star}\right], \; \left[\frac{\star \square}{\square}\right] \; \; \right\}$$

Demuestre que  $P \in MPCP$  si y sólo si  $P' \in PCP$ .