Informatics Institute of Technology In Collaboration With

The University of Westminster, UK

The University of Westminster, Coat of Arms

GenSum

A Generalized Text Summarization System using Optimized Transformers

A Product Specification & Prototype Design by

Mr. Nazhim Kalam

W1761265 | 2019281

Supervised by Mr. Torin Wirasingha February 2023

This Project Proposal is submitted in partial fulfilment of the requirements for the BSc (Hons) Computer Science degree at the University of Westminster.

ABSTRACT

Abstractive text summarization systems have been integrated with various application in the world to perform text summarization and its nothing new to the field. However, with the prior research it found that in the domain of movies the need for performance improvement is required using latest approaches than the current traditional ML & DL methods, movie review summarization plays a major role in helping users to make better decisions by matching their interest with the reviews of the movie, this saves a lot of time and also improves businesses in their sales.

In 2017 researches from Google Brain introduced NLP Transformers, which is a latest approach to solve NLP problems and its increasingly been known and used nowadays over traditional ML & DL approaches like using basic LSTM, RNN approaches. The author explored ways in which to get an optimal solution using Transformer for abstractive text summarization and yet making a generalized solution which can be adapted with respect to any domain (be it hotels, movies, restaurants) and increase its performance as the system gets used over with time.

The author was able to experiment with few of the top tier transformer architectures to filter out the optimal model and integrated an automated hyperparameter searching mechanism which will find the best set of hyperparameters to train the model, moreover the idea of model retraining applies for domain specific users where repeated model retraining with new set of hyperparameters consistently been searched with respect to new data been fed into the system by the domain users, this allows the system to produce a domain specific optimal solution.

Keywords: Natural Language Processing (NLP), Machine Learning (ML), Deep Learning (DL), Recall-Oriented Understudy for Gisting Evaluation (ROUGE), Inductive logic programming (ILP)

Subject Descriptors:

- Computing methodologies → Artificial intelligence → Natural language processing →
 Natural language generation
- Theory of computation → Theory and algorithms for application domains → Machine learning theory → Semi-supervised learning.
- Information systems → Information systems applications → Management and querying of encrypted data.
- Security and privacy → Database and storage security → Data mining.

Contents

ABSTRACT	i
List of Tables	vii
List of Figures	viii
CHAPTER 01. INTRODUCTION	1
1.1. Chapter Overview	1
1.2. Problem Domain	1
1.2.1 Movie User Reviews	1
1.2.2 Text Summarization	2
1.2.3 Transformers	2
1.3. Problem Definition	2
1.3.1 Problem Statement	3
1.4. Research Questions	3
1.5. Research aim & Objectives	3
1.5.1 Research Aim	3
1.5.2 Research Objectives	3
1.6. Novelty of the Research	6
1.6.1 Problem Novelty	6
1.6.2 Solution Novelty	6
1.7. Research Gap	6
1.8. Contribution to the Body of knowledge	7
1.8.1 Research Domain Contribution	7
1.8.2 Problem Domain Contribution	7
1.9. Research Challenge	8
1.10. Chapter Summary	8

CHAPTER 02. SOFTWARE REQUIREMENTS SPECIFICATION	9
2.1. Chapter Overview	9
2.2. Rich Picture	9
2.3. Stakeholder Analysis	10
2.3.1 Stakeholder Onion Model	10
2.3.2 Stakeholder Viewpoints	10
2.4. Selection of Requirement Elicitation Methodologies	11
2.5. Discussion of Findings	13
2.5.1 Literature Review	13
2.5.2 Brainstorming	14
2.5.3 Survey	14
2.5.4 Interviews	14
2.5.5 Self Evaluation	15
2.5.6 Prototyping	15
2.5.7 Summary of Findings	16
2.6. Context Diagram	17
2.7. Use case Diagram	18
2.8. Use case Descriptions	18
2.9. Requirements	21
2.9.1 Functional Requirements	21
2.9.2 Non-Functional Requirements	22
2.10. Chapter Summary	23
CHAPTER 03. DESIGN	24
3.1. Chapter Overview	24
3.2 Design Goals	24

3.3. High Level Design	25
3.3.1. Architecture Diagram	25
3.3.2. Discussion of Tiers of the Architecture	26
3.4. System Design	27
3.4.1. Choice of Design Paradigm	27
3.5. Design diagrams	28
3.5.1. Data Flow diagrams	28
3.5.1.1. Level 01 Data Flow diagram	28
3.5.1.2. Level 02 Data Flow diagram	28
3.5.2. System Process Activity Diagram	29
3.5.4. UI Design	30
3.6. Chapter Summary	30
CHAPTER 04. INITIAL IMPLEMENTATION	31
4.1. Chapter Overview	31
4.2. Technology selection	31
4,2.1. Technology stack	31
4.2.2. Data selection	32
4.2.3. Programming Language Selection	32
4.2.4. Development Framework Selection	33
4.2.5. Libraries Utilized	34
4.2.6. IDE's Utilized	35
4.2.7. Summary of Technology Selection	35
4.3. Implementation of Core Functionalities	36
4.3.1. Automated Hyperparameter Search & Model Training	36
4.3.2. Model Usage General & Domain Specific Users	39

4.3.3. Model Retraining	41
4.3.4. Data Preprocessing	41
4.3. Chapter Summary	42
CHAPTER 05. CONCLUSION	43
5.1. Chapter Overview	43
5.2. Deviations	43
5.3. Initial Test Results	43
5.4. Required Improvements	45
5.5. Demo of the Prototype	45
5.6. Code Reference	45
5.7. Chapter Summary	45
REFERENCES	I
APPENDIX A – INTRODUCTION	V
A.1. Research Questions	V
APPENDIX B – SRS	V
B.1. Requirement Elicitation Methodologies	V
B.2. Survey Analysis	VI
B.3. Interview Analysis	X
B.4. Self-Evaluation (Competitor Analysis)	XIII
B.5. Use case Descriptions	XIII
B.6. Functional Requirements	XIX
APPENDIX C – DESIGN	XX
C.1. UI Wireframes	XX
APPENDIX D – IMPLEMENTATION	XXIII
D.1. Data Preprocessing	XXIII

A Generalized Text Summarization System using Optimized Transformers	PSPD
APPENDIX E – CONCLUSION	XXVII
E.1. Project Initial Plan	XXVII
E.2. Project Current Progress	XXVIII
E.3. Initial Test Evaluation Results.	XXIX

List of Tables

Table 1: Research Objectives (Self-Composed)	3
Table 2: Stakeholder viewpoints & Requirements (self-Composed)	10
Table 3: Requirement elicitation methodologies (Self-Composed)	12
Table 4: Literature review findings (Self-Composed)	13
Table 12: Design goals of the proposed system (Self-Composed)	24
Table 13: Dataset sources (Self-Composed)	32
Table 14: Development framework utilized (Self-Composed)	33
Table 15: Libraries used with reasonings (Self-Composed)	34
Table 16: IDE's used along with justifications (Self-Composed)	35
Table 17: Summary of Technology selection (Self-Composed)	35
Table 18: Stakeholder groups (Self-Composed)	V
Table 19: Survey analysis (Self-Composed)	VI
Table 20: Survey thematic analysis (Self-Composed)	IX
Table 21: Interview thematic analysis (Self-Composed)	X
Table 22: Interview participant information (Self-Composed)	XII
Table 23: Competitor Analysis (Self-Composed)	XIII
Table 24: Use case description UC:01 (Self-Composed)	XIII
Table 25: Use case description UC:02 (Self-Composed)	XIV
Table 26: Use case description UC:10 (Self-Composed)	XIV
Table 27: Use case description UC:04 (Self-Composed)	XV
Table 28: Use case description UC:05 (Self-Composed)	XVI
Table 29: Use case description UC:06 (Self-Composed)	XVII
Table 30: Use case description UC:08 (Self-Composed)	XVII
Table 31: Use case description UC:09 (Self-Composed)	XVIII
Table 32: 'MoSCoW' priority levels (Self-Composed)	XIX
Table 33: Usecase mannings (Self-Composed)	XIX

List of Figures

Figure 1: Rich picture diagram (Self-Composed)	9
Figure 2: Stakeholder onion model (self-Composed)	10
Figure 3: Context diagram (Self-Composed)	17
Figure 4: Use case diagram (Self-Composed)	18
Figure 5: Three-tiered architecture (Self-Composed)	25
Figure 6: Data flow diagram - level 01 (Self-Composed)	28
Figure 7: Data flow diagram - level 02 (Self-Composed)	29
Figure 8: System process flow chart (Self-Composed)	30
Figure 9: Technology stack (Self-Composed)	31
Figure 10: Hyperparameter Range Initialization (Self-Composed)	36
Figure 11: Hyperparameter search using Optuna (Self-Composed)	37
Figure 12: Hyperparameter results and training arguments (Self-Composed)	38
Figure 13: Model training (Self-Composed)	38
Figure 14: General user review text summarization (Self-Composed)	39
Figure 15: Assigning a specific model for the new domain user (Self-Composed)	39
Figure 16: Domain Specific text review summarization (Self-Composed)	40
Figure 17: Fetching related data for model retraining (Self-Composed)	41
Figure 18: Evaluation result for bart-base model (Self-Composed)	43
Figure 19: Evaluation result for t5-base model (Self-Composed)	44
Figure 20: Evaluation result for pegasus-base model (Self-Composed)	44
Figure 21: UI – Home page (Self-Composed)	XX
Figure 22: UI – Login page (Self-Composed)	XXI
Figure 23: UI – Register page (Self-Composed)	XXI
Figure 24: UI – Review history page (Self-Composed)	XXII
Figure 25: Preprocessing – Remove hyperlinks (Self-Composed)	XXIII
Figure 26: Preprocessing: Remove html tags (Self-Composed)	XXIII
Figure 27: Preprocessing: Char words extension (Self-Composed)	XXIV
Figure 28: Preprocessing: Handling common contractions (Self-Composed)	XXIV
Figure 29: Preprocessing: Removing special characters (Self-Composed)	XXV
Figure 30: Preprocessing: Resolving spelling mistakes (Self-Composed)	XXV

A Generalized Text Summarization System using Optimized Transformers	PSPD
Figure 31: Preprocessing: Removing duplicates (Self-Composed)	XXVI
Figure 32: Preprocessing: Restoring missing punctuations (Self-Composed)	XXVI
Figure 33: Preprocessing: Grammarly correction (Self-Composed)	XXVI
Figure 34: Gantt chart: Initial plan (Self-Composed)	XXVII
Figure 35: Gantt chart: Current plan (Self-Composed)	XXVIII
Figure 36: bert-base validation accuracy graph (Self-Composed)	XXIX
Figure 37: bert-base validation loss graph (Self-Composed)	XXIX

Figure 40: pegasus-base validation accuracy graph (Self-Composed)......XXX

Figure 41: pegasus-base validation accuracy graph (Self-Composed)......XXX

Acronyms

AI Artificial Intelligence.

DL Deep Learning

GUI Graphical User Interface

ML Machine Learning

NLP Natural Language Processing

ROUGE Recall-Oriented Understudy for Gisting Evaluation.

BLEU BiLingual Evaluation Understudy.

Text to Transfer Transformer.

BART Bidirectional Auto-Regressive Transformers.

BERT Bidirectional Encoder Representations from Transformers.

PEGASUS Pre-training with Extracted Gap-sentences for Abstractive Summarization

Sequence-to-sequence

ILP Inductive logic programming.

LSTM Long Short-Term Memory.

RNN Recurrent Neural Network.

CNN Convolutional Neural Network.

SEQ2SEQ Sequence to Sequence

RoBERTa Robustly Optimized BERT Pre-training Approach

GPT-3 Third Generation Generative Pre-Trained Transformer

REST Representational State Transfer

GPU Graphical Processing Unit

API Application Programming Interface

CHAPTER 01. INTRODUCTION

1.1. Chapter Overview

In this chapter, a series of top-tier pretrained transformer designs are optimized using automated search hyperparameter optimization in an effort to improve the performance of abstractive text summarization for movie reviews while developing a generalized solution that may be used in other domains. Along with a review of previous studies and a presentation of the anticipated project timetable, the research problem, gap, challenge, and method will be discussed in the work plan.

1.2. Problem Domain

1.2.1 Movie User Reviews

A growing number of websites, like Amazon and the Internet Movie Database (IMBD), a website for movie reviews, allow users to publish reviews for things they are interested in, along with the growth of Web 2.0, where user interaction is prioritized. (Khan, Gul, Zareei, et al., 2020)

Online movie reviews are evolving into an important information source for users, with the continuous increase in data on the web (M and Mehla, 2019). However, online users post a significant number of movies reviews every day, hence making it difficult for them to manually summarize the reviews and determine their interest in the film. One of the challenging problems in natural language processing is mining and summarizing movie reviews. (Khan, Gul, Uddin, et al., 2020).

Text summary assist users or business decision-makers by compiling and analyzing a significant number of online reviews. (Alsaqer and Sasi, 2017).

These days, the majority of people research a film's reviews before selecting or watching it on any platform, such Netflix or Amazon Prime, but we also come across conflicting reviews that can be either good or bad. While most reviews are detailed and require a significant amount of time to review, this develops a problem where users aren't able to make quicker decisions. Therefore, by summarizing the review makes it easier and faster for users to make decisions. This can also help streaming services like Netflix quickly discover the viewing habits or preferences of their users (Dashtipour et al., 2021)

1.2.2 Text Summarization

Today, there is a lot of textual material available, including news stories and reviews. Text summarizing helps us quickly find the key elements of the full piece by minimizing the quantity of text. (Mahajan et al., 2021).

Extractive summarization and abstractive summarization are typically the two methods of text summarization. When extractive summarizing, the most important lines from the context or article are plucked out without being altered in any way. Meanwhile, abstractive summarizing aims to create the sentences on its own and creates the summary; this is superior than extractive summarization since it is more meaningful to generate our own phrases inside the context rather than to utilize selected sentences from the context without any change. (Etemad, Abidi and Chhabra, 2021).

1.2.3 Transformers

Transformers in NLP is a novel architecture that aims to solve sequence-to-sequence tasks while handling long range dependencies with ease. It has surpassed competing neural models like CNN (Convolutional Neural Nets) and RNN (Recurrent Neural Nets) in terms of performance to appear as the dominant architecture for natural language processing (Wolf et al., 2020).

Transformers uses self-attention mechanism to target on selected areas of the input sentence followed by the encoder and decoder architecture (Etemad, Abidi and Chhabra, 2021).

1.3. Problem Definition

In the domain of movie review summarization, currently there are no researches done using the latest deep learning approaches (*such as Transformers*) to solve this problem, standard machine & deep learning algorithms such as Naïve Bayes, RNN have been used, the usage of advanced deep learning approaches can be utilized in order to enhance the quality/accuracy of the text summarization.

Deep learning models take longer to train but they provide greater accuracy since they can simultaneously automate feature extraction and classification, whereas machine learning algorithms require feature selection at first. Therefore, applying deep learning techniques will help to improve the quality of text summarization and help the user in making better decisions (Etemad, Abidi and Chhabra, 2021).

1.3.1 Problem Statement

No prior research has looked into applying cutting-edge deep learning methods like Transformers to produce abstractive summaries from movie reviews, which can improve text summarization. This solution aims to be generic and accessible to any sector. (Khan, Gul, Zareei, et al., 2020).

1.4. Research Questions

The research questions proposed are available in **APPENDIX A.1**.

1.5. Research aim & Objectives

1.5.1 Research Aim

The aim of this research is to design, develop and evaluate an optimal adaptive generalized transformer architecture from a range of popularly used architectures by fine-tuning via automated hyperparameter optimization, therefore obtaining the recommended architecture's optimum performance

To further explain the objective, a fully working system that can be utilized to perform abstractive text summarization based on the user input from any domain (movie, hotel, ecommerce etc....) will be created by this research project. The quality of the resulting text summary or performance optimization will be the main points of emphasis. To get the best result, the usage of data preparation, data analysis, conducting hyperparameter tuning, and evaluating the models will be investigated.

To confirm or disprove the selected hypothesis, the necessary information will be obtained and investigated, components will be built, and performance will be evaluated. Both a hosted server and a local browser will be able to execute the system for private or public usage. The data science models and their source code will be made accessible for future study and usage in a public repository. The information gleaned from the literature review will be published in a review paper.

1.5.2 Research Objectives

For the research to be considered successful, its goals must be fulfilled.

Table 1: Research Objectives (Self-Composed)

Objective Description LO RQ

Review RO1: Make a preliminary investigation on existing abstractive text summarization using deep learning	
approaches.	
RO2: Make a preliminary investigation on why transformers	
architecture was the chosen deep learning choice for this	R Q1,
research. LO1,	RQ2,
RO3: Analyze the top tier transformer architectures widely LO4,	RQ3,
used. LO8	R Q4
RO4: Analyzing how the models can be fine-tuned via	
hyperparameter optimization.	
RO5: Analyzing the different approaches used for model	
evaluation.	
RO6: Analyze how the model can be generalized for every	
other domain.	
Methodology This defines the outline structure for the requirement analysis	
Selection and and the design process followed by the social legal ethical and	
SLEP professional issues.	
Framework RO1: Analyzing the Research Methodology approaches.	RQ4,
RO2: Analyzing the Development Methodology approaches. LO2,	RQ2,
RO3: Analyzing the Project Management Methodology LO6	R Q1
approaches.	
RO4: Analyzing the Solution Methodology approaches.	
RO5: Analyzing the Social, Legal Ethical and Professional	
Issues which could develop during the phase of the project.	
Requirement Defining the project's needs utilizing relevant approaches and	
Elicitation tools in order to solve the projected research gaps and LO1,	R Q4,
obstacles based on prior related research. LO3,	RQ2,
RO1: Gathering information related to the expected metadata LO5	R Q1
required for the dataset to contain for the model training.	

	RO2: Gathering the requirements of transformer		
	architectures for fine-tuning and understand the end to end		
	user expectations.		
	RO3: Getting insights from domain experts to build a suitable		
	system.		
	RO4: Gathering the requirements for handling		
	generalization.		
Design	Considering the following when developing the suggested		
	system:		
	RO1: Design a component to preprocess the dataset for the		
	respective model inputs.	LO1,	
	RO2: Design a component to store the top tier transformer	LO1,	RQ2
	models with their respective metadata, to use throughout.	LOS	102
	RO3: Design a hyperparameter tuning component that can		
	improve accuracy of the transformer model.		
	RO4 : Design high-level architecture for the system.		
Implementation	Setting up a mechanism capable of addressing the gaps that		
	were intended to be covered.		
	RO1 : To develop data preprocessing component.		
	RO2 : To develop a component that handles and stores the top	LO1,	
	tier transformer architectures for fine-tuning.	LO5,	RQ2,
	RO3: To develop the automated hyperparameter search	LO7	R Q3
	component that handles all the top tier architectures assigned.		
	RO4 : To develop a component for the model evaluations for		
	the measured hyperparameters		
Evaluation	Testing and evaluating the developed system (including the		
	data science models with the suitable metrices)	LO1,	DO2
	RO1: Performing unit test, integration and performance	LO5	RQ3
	testing along with a test plan created.		

	RO2 : Evaluating all the transformer architectures used for			
	fine-tune experimentations, using recommended scores such			
	as (ROUGE, BERT SCORE).			
Documentation	Keeping track of and documenting the study project's ongoing	LO6,	-	
	progress and any challenges encountered.	LO8		
Publication	Ensure that the documentation, reports, and papers are well-			
	structured and include a critical analysis of the research.			
	RO1 : To publish a research paper on the related work done.			
	RO2 : To publish the testing & evaluation results of the work	LO4,		
	done.	LO8	-	
	RO3 : To publish the code implementation repository as			
	public to be access by future research investigations, along			
	with the models and datasets			

1.6. Novelty of the Research

1.6.1 Problem Novelty

The problem novelty of this research is, the lack of attempt to increase transformer performance in order to get better textual summarizing outcomes.

1.6.2 Solution Novelty

The solution novelty for this problem has several approaches few of which performing automated hyperparameter tuning, creating a retraining mechanism with newly exposed data and exploring any changes in the model architecture to enhance its performance further.

1.7. Research Gap

Based on previous work done (Khan, Gul, Zareei, et al., 2020) related to abstractive text summarization on movie reviews, the literature identify for the need of using advanced deep learning approaches to improve the performance of text summarization for this movie domain over traditional machine learning approach.

This project focuses on Empirical gap in the Movie Domain, as well as Theoretical and Performance gaps in the area of transformer optimization. Transformers plays a major role in the field of deep learning especially at problems related to Natural Language Processing, by performing hyperparameter optimization on several transformer architectures we can contribute to the enhanced quality of abstractive text summarization and create a generalized model which can be adapted with the respective domains usage and improve the performance.

1.8. Contribution to the Body of knowledge

Improving the performance of an existing solution is very common in the field of data science, as we can explore new algorithms or fine-tuning existing algorithms to get better results. The contributions for this project can be classified as theoretical contributions and domain contributions.

The following is a summarization of the authors contribution:

- Abstractive Text Summarization: Automated Hyperparameter optimization + Model

 Retraining + Transformers + Deep Learning
- Movie User Review & Generalization: Research domain target is for Movie reviews, in addition the author makes the system generalized to adapt to any domain area.

1.8.1 Research Domain Contribution

There are various deep learning techniques that can be used to handle abstractive text summarization, however with respect to previous researches done, (Zhang, Xu and Wang, 2019) it is found that *transformers* outperform most of the other deep learning approaches as of today but there was no much research on optimizing them for a much better performance.

This research will be focused on creating a *generalized solution* by achieving the optimized transformer architecture from a couple of the top tier existing architectures, via fine-tuning and performing hyperparameter optimization along with handling abstractive text summarization (Liu and Wang, 2021), therefore we are able to maximize the performance of the recommended architecture. The author plans out to make use of generalization where any domain when used the model will be optimizing and adapting towards their respective domain.

1.8.2 Problem Domain Contribution

Neural Networks makes up the backbone of deep learning algorithms which enables them to process complex unstructured data over normal means of machine learning algorithms (Mahajan

et al., 2021). It is found that, the need for using advanced deep learning approaches has not been explored in the domain of movie review summarization.

Given that transformers perform well in this field, the proposed solution for this domain will be finding the recommended architecture along with hyper-parameter optimization, to reach its best performance. An additional contribution will be that, the proposed solution will be generalized to any other domain linked with the field of NLP text summarization.

1.9. Research Challenge

The main objective of this research is to achieve the generalized optimal transformer architecture for the field of NLP abstractive text summarization. Transformers were introduced in 2017 by a team at Google Brain and are the most used choice for NLP problems replacing RNN models, given that this architecture was introduced not much longer back brings to a point where there is a lack of research done in the area of transformer optimization for the purpose of abstractive text summarization. (Wolf et al., 2020).

Therefore, creating and finding the recommended transformer architecture along with the optimal parameters which also handles generalization becomes a challenge with very fewer resources to look up to.

Additionally, identifying suitable datasets for this domain (Movie Reviews Summarization) and Generalization is challenging and necessitates a substantial amount of effort in data preprocessing where it is important since we are dealing with NLP and performance optimization related domain.

1.10. Chapter Summary

In this chapter, the author gave an outline of the research project that was carried, the reasons why the research and problem were innovative, and the difficulties that could arise while trying to solve them. In addition, the essential objectives that must be pursued for the study to be considered effective were put out and linked to the degree's required learning outcomes.

CHAPTER 02. SOFTWARE REQUIREMENTS SPECIFICATION

2.1. Chapter Overview

In this chapter, the author describes how to identify the essential needs and how to gather them. To carefully record the engagement of possible stakeholders, their interaction points, and their separate responsibilities, a rich picture diagram and stakeholder onion model are used. The chapter also discusses the methods used for requirement gathering and the results that were used to create functional and non-functional requirements, use case diagrams, and prototypes.

2.2. Rich Picture

Figure 1: Rich picture diagram (Self-Composed)

The diagram above depicts a bird's-eye view of the surrounding region, as well as how certain stakeholders might interact with the system and profit from it. Along with the knowledge gained

by the researcher to improve the system, the potential negative impacts on the design and prospective critical analyses are also identified.

2.3. Stakeholder Analysis

The section that follows acknowledges significant stakeholders involved with the system, their relationships, and their individual roles. The stakeholder onion model represents this information, and stakeholder perspectives elaborate on it.

2.3.1 Stakeholder Onion Model

Figure 2: Stakeholder onion model (*self-Composed*)

2.3.2 Stakeholder Viewpoints

Table 2: Stakeholder viewpoints & Requirements (self-Composed)

Stakeholder	Role	Benefits/Description
-------------	------	----------------------

Developer	Functional	Works on developing the system			
Investors	beneficiary	Profit is generated through system investment and			
		money from marketing and user subscriptions.			
Data Scientists	Quality Control	Provides performance enhancements for the models and			
	Regulator	algorithms used in data science.			
Data Engineers		Gives guidance on potential data that may be used to			
		generate the best suggestions possible.			
AI Researchers		Conduct research in the specified area to enhance and			
		implement reliable text summarizing models.			
NLP Experts		Offers specialized guidance and insights on the field			
		knowledge, to enhance the functionality of the system.			
Domain Specific	Operational	Text reviews are used as inputs for abstractive			
Manager	Beneficiary	summarization, and the model is retrained with prior			
		inputs as new data to increase performance.			
General Users		Unless specifically assigned or retrained, typical users			
		will utilize a general abstractive summarization model.			
Operational Staff		Ensures that the system is up and functioning while			
		responding to user requests and problems.			
DevOps	Product	Makes ensuring the system is up and running in the			
Engineers	Deployment &	cloud and is serving users without being throttled			
	Maintenance				
Hackers	Negative	May manipulate the review data stored in the databas			
	Stakeholder	which will affect the retraining process.			
Competitors		May build competing systems that may outperform the			
		existing system.			
Evaluators	Quality	Checks to see if the system is ready for production use			
	Inspector	and puts it through its paces.			

2.4. Selection of Requirement Elicitation Methodologies

There were several requirement elicitation approaches used to collect needs for the creation of the research project. The approaches selected for this were literature review, survey, interviews,

prototyping, brainstorming and self-evaluation. The following is a discussion of the rationales behind selecting the mentioned requirement elicitation approaches.

Table 3: Requirement elicitation methodologies (Self-Composed)

Method	Description			
Literature Review	To determine research gaps in the chosen domain of interest and the			
	intended topic of study at the project's outset, the author conducted a			
	thorough literature analysis. Current systems were researched together with			
	comparable technologies that might be applied to the existing systems that			
	were referenced in literature in order to discover research gaps available in			
	technologies that can be used.			
Survey	A questionnaire was utilized as a survey instrument to obtain requirements			
	and opinions from possible users of the suggested system. The author will			
	benefit from this sort of poll in understanding people's thought processes			
	and expectations for the prototype. It will also enable the author to explain			
	whether or not the targeted users will benefit from the suggested solution.			
Interviews	Interviews were performed to gain expert insight into domain-specifi			
	requirements and to determine the best method to address the issue at hand			
	while adding to the body of knowledge through research. Interviews were			
	determined to be the greatest source of information because the field is new			
	and the technical expertise needed is very precise. Additionally, this			
	technique allowed for the qualitative evaluation of the suggested system,			
	allowing for the identification of any shortcomings or difficulties that could			
	need to be resolved during prototyping.			
Prototyping	The project was chosen to follow the Agile Software Development Life-			
	cycle, thus prototyping would allow the author to test and evaluate the			
	prototype while iteratively trying out several alternative implementations			
	to find any potential areas for improvement.			
Brainstorming	Whether you're attempting to come up with a broad subject before you start			
	your research, you're trying to focus more specifically, or you're			
	determining what evidence to use for a particular paragraph, brainstorming			

	is a useful technique to produce ideas at every step of the process. In order			
	to assess the system for personally, the author has a number of			
	brainstorming sessions with his colleagues at various project stages.			
Self-Evaluation	Self-evaluation is done in order to examine the currently available			
	applications, do competitor analyses on the current systems, and get insight			
	into how negative stakeholders, such as hackers, can breach the system and			
	find a way around to protect the data and the system.			

2.5. Discussion of Findings

The relevant key stakeholders are split up into groups where the chosen best methodology was used for each group. **APPENDIX B.1** contains a complete breakdown of these stakeholders.

2.5.1 Literature Review

Table 4: Literature review findings (Self-Composed)

Discussion of Findings	Citation
In the completion of the literature review on the existing work done, it was	(Boorugu,
identified that abstractive text summarization systems for customer reviews	Ramesh and
helps users to make better and quicker decisions on their actions let it be on	Madhavi,
buying products or watching a movie, user review summarization proves to save	2019)
time for customers.	
When exploring technologies that can be applied to achieve the required	(Khan et al.,
outcome, it was clear that traditional machine learning and deep learning	2020)
approaches were only used for abstractive text summarization in the domain of	
movie reviews. Leaving the usage of advanced deep learning approaches such as	
Transformers untouched for this domain.	
It was identified that transformer optimization has not been looked into when	(Gupta et al.,
working with transformers in abstractive text summarization domain in general	2021)
and not specific to the movie domain.	
Dataset related to working with model generalized has been used previously and	(Kouris,
is recommended to be used if researchers are willing to work with the idea of	Alexandridis
generalization for the domain of abstractive text summarization.	and

	Stafylopatis,
	2019)

2.5.2 Brainstorming

The author engaged in brainstorming across various project phases. These were carried out both with the authors' colleagues and supervisors as well as through a self-analysis process.

Table 5: Observations findings (Self-Composed)

Criteria	Discussion of Findings				
Able to figure out several	Multiple ideas were brought up as the result of the				
other research gaps/	brainstorming session. The concept of creating a performance				
limitations which can be fit	adaptive generalization model was brought up by the authors				
into the current project domain	supervisor, along with several other approaches to increase the				
in order to increase the	order to increase the performance of the system exponentially such like making use				
magnitude of research effort.	of the new data from the domain users for retraining and				
	combine all data with the common domain for retraining since				
	the data count increases with respect to the common domain				
	user.				

2.5.3 Survey

In-order to gather requirements from the target audience to list the functionalities needed for the project develop, a survey was conducted. The result analysis is available at **APPENDIX B.2**.

2.5.4 Interviews

Interviews with experts and researchers in the relevant domains were performed to obtain insights on the technical domain competence. To determine the project requirements, experts and researchers in ML and abstractive text summarizing systems were chosen. 2 PhD candidate in ML and Computational Linguistics, 1 NLP Researcher, 2 Software Architects, 1 Software Engineer and 1 Lecturer with MSc completion were interviewed. The interview outcomes were processed to a **thematic analysis** based on the following themes and is available at **APPENDIX B.3**..

2.5.5 Self Evaluation

Comparing similar products from competitors and existing products gives the author an idea of making the project more unique and distinguish new approaches to solve the problem (**Competitor Analysis**). The author will also self-evaluate as to what data needs to be protected and how from the hackers. Few of the abstractive text summarization tools which are out there are listed and is available at **APPENDIX B.4**.

In the case of hackers stealing data from the database, **data encryption** can be applied therefore database will only contain the encrypted text data which will be then later decrypted from the decryption key when need, this will be most needed when performing the model retraining.

2.5.6 Prototyping

Table 6: Prototyping findings (Self-Composed)

Criteria	Discussion of Findings
In-order to	Numerous requirements and obstacles were made clear during the iterative
look into the	prototype process. Especially in the area of movies, finding a good dataset
feasibility of	with the desired metadata was a significant challenge. The author was able to
continuing the	uncover a significant dataset with around 8 million entries after completing an
project	intensive evaluation of research papers. The dataset has to be split into smaller
research a	segments for usage, nevertheless, due to its size. Preprocessing the data was
prototype was	difficult since it was not just enormous but also noisy text data, which required
planned to be	a lot of cleaning. The author experimented with automatic hyperparameter
worked on.	search approaches because manual hyperparameter tweaking required a
	significant amount of time and is not practical when working with
	automated model retraining process. He discovered that a framework named
"Optuna" was useful for automatically improving and retraining	
	order to retrain the system, new data entered by the domain user will be
	incorporated. The author has to study at least three top-tier transformer designs
	in order to choose the optimal one.

2.5.7 Summary of Findings

Table 7: Summary of findings (Self-Composed)

Id	Finding	LR	Survey	Self-Evaluation	Interview	Brainstorming	Prototyping
1	The proposed system would benefit businesses (domain specific users) and general users (not domain specific)		✓			✓	
2	For the movie domain the limit of abstractive text	✓			√	√	
2		·			·	•	
	summarization can be further pushed using optimized						
	transformers to increase performance this being the						
2	existing limitation	✓	✓			./	
3	It's clear that customer/user reviews are valued and	•	•		V	V	
	reviewed mostly by a vast majority of the audience before						
	they consume or use any product or service (applies to any						
	domain)		-				
4	It's clear that users spend lot of time review long reviews	√	√			√	
	and they would like it being short to save time and make						
	quicker decisions.						
5	Hyperparameter tuning is one way to increase the	√			√		✓
	performance of the system and it can be done both						
	manually or by automated tools like Raytune, Optuna						
	etc						
6	Data preprocessing for the domain of Movies and	✓					✓
	Generalization is requires a lot of effort since the datasets						
	are mostly raw data difficult to find specially in the case						
	of movie reviews (with expected metadata)						
7	Additional features such as sentimental and sentimental		✓				
	score of the review summary is mostly expected from the						
	users.						

8	Creating a hybrid transformer model to further increase the performance is a suggested improved.			✓	✓	
9	It's clear on what are the suitable evaluation metrics to be used for abstractive text summarization.	√		√		
10	It's clear on what the top tier transformer architecture that could be explored.	√		✓		
11	Making use of larger new data for retraining for a specific domain, from companies/businesses who uses data which are of the same domain. (e.g.: - 50 different restaurants data can be combined for retraining give that the domain is "Restaurants")			√	√	
12	Making use of data encryption to protect the data from hackers breaking into the database to steal data.		✓		√	

2.6. Context Diagram

The boundaries and interactions of the system should be established before development. The graphic below shows how the system is situated.

Figure 3: Context diagram (Self-Composed)

2.7. Use case Diagram

Figure 4: Use case diagram (Self-Composed)

2.8. Use case Descriptions

Usecase diagrams with the highest importance are given below, the rest of the Usecase descriptors are available at **APPENDIX B.5**.

Table 8: Use case description UC:07 (Self-Composed)

Use Case Name	View Summary
Use Case Id	UC:07
Description	Displays a summarized version of the uploaded review text from the domain user's end.
	domain user's end.

Primary Actor	General User, Domain Specific User						
Pre-Conditions	The text review data must go through specific text preparation techniques						
	before the summary can be produced.						
Extended use cases	None						
Included use cases	UC10, UC02						
Trigger	A user selects to summarize a given	customer/user review text.					
Main flow	Actor	System					
	1. The user enters the review	3. The system does the data					
	text on the text field from	preprocessing for the input					
	the GUI.	review text.					
	2. Clicks on "Generate	4. Loads the generalized					
	Summary" from the GUI	transformer model.					
		5. Generates the summary					
	using the model.						
		6. (If Domain Specific User)					
		stores the input review and					
		summary into the database.					
		7. Returns the summary					
	response back to the GUI						
Alternative flows	None						
Expectational flows	Displays an error message if the network request fails (server is down, or						
	internet issues from client).						
Post Conditions	Success end condition: The user is presented with the summarized review						
	text.						

Table 9: Use case description UC:03 (Self-Composed)

Use Case Name	Retrain Model
Use Case Id	UC:03
Description	Performs model retraining with the new data from the database, to find
	the new best set of hyperparameters.

Primary Actor	Domain Specific User			
Pre-Conditions	The actor should be a Domain Specific User and have an account created.			
Extended use cases	None			
Included use cases	UC05, UC06, UC07			
Trigger	The Domain Specific User clicks on the "Perform model retraining"			
	button			
Main flow	Actor	Actor System		
	1. Domain Specific logs into	3. The system pulls all the		
	their account	data with respect to the user		
	2. Clicks on "Perform model	id from the database.		
	retraining" from the GUI	4. Combines data of the		
		common domains (only if		
		user consent is given to use		
		their data)		
		5. Finds new set of		
		hyperparameters for the		
		model with respect to new		
		data.		
		6. Trains the model using the		
		new hyperparameters.		
		7. Saves the model with the		
		user Id		
		8. Updates the status in the		
		database if succeed/fails		
Alternative flows	None			
Expectational flows	Displays an error message if the network request fails (server is down, or			
	internet issues from client).			
Post Conditions	Success end condition: The user will be able to see the recent status of			
	the model if the retraining is successful or failed			

2.9. Requirements

2.9.1 Functional Requirements

Based on the significance of the system demands, the 'MoSCoW' approach was utilized to identify their priority levels. The details related to the priority levels are detailed at **APPENDIX B.6**.

The Usecase description along its mapping id is also listed at **APPENDIX B.7**

Table 10: Functional requirements (Self-Composed)

FR ID	Requirement	Priority	Use Case
		Level	
FR1	Both general and domain specific users must be able to enter	M	UC01
	a review text from the GUI considering as the starting point		
	of the summary generation.		
FR2	Only Domain Specific Users should be able to sign up and	S	UC02
	create an account after entering the necessary details		
	required		
FR3	The system could allow the ability to update the account	С	UC02
	details of the domain user after creating the account		
FR4	The system must undergo model retraining with the new	M	UC03
	data stored in the database for the specific domain user,		
	when its triggered from the GUI with the user's consent.		
FR5	The system could be able to perform model retraining	С	UC03
	automatically during off peak hours every day.		
FR6	The system must be able to find the new set of best	M	UC04
	hyperparameters with the usage of the new data.		
FR7	The system must be able to able to retrain the model with	M	UC05
	the new best hyperparameters and create the model		
FR8	The system must be able to pull the new data from the	M	UC06
	database to recreate the new dataset for retraining.		

FR9	The system should be able to combine all the data from a	С	UC06
	common group of domains when creating the dataset only		
	given that the consent is approved to use their data		
FR10	The system must be able to process the review text and	M	UC07
	display the summary output on the GUI		
FR11	The system must be able to use the latest trained model to	M	UC08
	generate the summary for the review text		
FR12	The system could also find the sentiment of the generated	С	UC08
	summary if its positive or negative and return the result.		
FR13	The system could make use of a hybrid model for the text	С	UC08
	summarization.		
FR14	The system must store the entered user review and generated	M	UC09
	summary to be stored in the database for retraining		
	purposes.		
FR15	The system should encrypt the data when saving into the	S	UC09
	database (both the review and summary)		
FR14	The system could allow the domain users to delete the	С	UC10
	reviews from the database.		

2.9.2 Non-Functional Requirements

The non-functional requirements are prioritized into two level of which are "Important" and "Desirable"

Table 11: Non-functional requirements (Self-Composed)

NFR ID	Requirement	Specification	Priority
			Level
NFR1	The system needs to be simple enough for non-technical individuals to utilize without much effort.	Usability	Important
NFR2	Meaningful error messages should be displayed if anything goes wrong	Usability	Desirable
NFR3	Summary generation should be done within 3000ms	Performance	Important

NFR4	Following coding standards and best practices	Maintainability	Important
NFR5	Any domain users are able to use the application and	Generalization	Important
	model performance will adapt with respect to the		
	domain		
NFR6	The system should protect against data corruption by	Security	Desirable
	attackers, and testing can ensure this.		
NFR7	The prototype can be used by several domains and	Scalability	Desirable
	multiple businesses under a single domain, then the		
	system may have to support many concurrent user-		
	requests.		

2.10. Chapter Summary

In this chapter, a Rich Picture Diagram was created to show how the system interacts with society and the system stakeholders. The stakeholders were represented using <u>Saunder's Onion model</u>, which included the flow of influence from each stakeholder. To acquire all the necessary information and the opinions of potential system stakeholders, requirement gathering approaches were used. Lastly, the insights gained from the requirement elicitation approaches were used to specify the system's use cases, functional requirements, and non-functional requirements.

CHAPTER 03. DESIGN

3.1. Chapter Overview

The design choices taken to create a suitable architecture for implementation, depending on the requirements received, are discussed in this chapter. To explain how the design goals are intended to be accomplished while outlining the justification for selected design decisions, high-level design, low-level design, design diagrams, and UI wireframes have been utilized.

3.2. Design Goals

Table 5: Design goals of the proposed system (*Self-Composed*)

Design Goal	Description		
Performance	To find the new set of hyperparameters with the new data, model retraining		
	requires a significant amount of time. As a result, the newly created dataset		
	(with unseen data) should be accurately made, and it is best if it takes the least		
	amount of time to query the data from various businesses within the same		
	domain to create the dataset. Moreover, other core functionalities should be		
	designed effectively to increase overall performance.		
Correctness	The correctness & quality of the output should be of the highest possible level		
	utilizing the optimized transformer architecture. Since several approaches are		
	considered in order to get the optimized solution the expected output should		
	of the best possible form.		
Usability	The system's usability must be straightforward for users of all levels of		
	knowledge because its primary function is to summarize review text for any		
	domain, including movies and general users.		
Adaptability	Adopting new features or components need to be a simple procedure. The		
	system shouldn't be broken if a component is added or removed, and it		
	shouldn't be affected overall.		
Scalability	In a production environment, the system may need to accommodate a large		
	number of concurrent user requests. This should be manageable by the		
	backend. The system should be easily expandable to accommodate new data.		

3.3. High Level Design

3.3.1. Architecture Diagram

The image below depicts the architecture of the system. Three tiers of architecture separate the data, logic, and presentation levels. The system's generalization and domain specific adaptive hyperparameter tuning and data preprocessing represent the research contribution.

Figure 5: Three-tiered architecture (Self-Composed)

3.3.2. Discussion of Tiers of the Architecture

Data Tier

- 1. Model Storage The text summarization models which will be used for both generalized text summarization and domain specific text summarization will be stored here.
 - a) Generalized Model The model which will be used by general users to generated review summarized, this model will be hyperparameter tuned for genialized purpose.
 - b) Domain Specific Model The model will be used by domain specific users for review summarization, this model will be replaced whenever the model retraining is triggered from the domain user.
- 2. Dataset Storage The data which is required for model training will be available.
 - a) Generalized Dataset The data which is used for creating the generalized model will be stored for retraining when it comes to domain specific model retraining.
 - b) New Review Data The data stored here are from the domain users when they use the application, the data will be storage and used for retraining along with the generalized dataset.
- 3. User Profile Data Storage The metadata data related to the domain specific user when creating the user profile will be stored, for updating and profile deletion.

Logic Tier

- 1. User Profile Creation Allowing to create unique user profiles for each domain user, main purpose comes when working with model retraining to figure out the data to be used.
- 2. API Proxy Interface which allows the frontend to communicate with the backend services via HTTP calls/ request.
- 3. Data Preprocessors The text data that will be used as input for the text summarizer must be cleaned using the preprocessing code.
 - a) NLP Text parser Responsible for cleaning the input text review when received from the API endpoint.
- 4. Models The model which will be responsible in generating the summary from the input review and find the sentiment of the summary generated.

- a) Generalized Summarization Transformer This is the summarization model which will be used, an adaptive model depending on the domain and type of user interacting with the model with optimized hyperparameters.
- b) Sentiment Analysis Transformer This model will be used to classify the generated summary into positive or negative sentiment.
- 5. Data Encryption Data encryption is in charge of data protection/safety, keeping domain data extremely secure and leaving it useless even if it is stolen.
- 6. Model Retraining Responsible for retraining the model with new data and finding new set of hyperparameters.
 - a) Dataset Recreation Responsible for recreating the dataset with new data which has been given as input from the domain users
 - b) Hyperparameter tuning Responsible for finding the new best set of hyperparameters using the new data.
 - c) Model Training Responsible for training the new model with the new set of hyperparameters found.

Presentation Tier

- 1. User Profile Creation Wizard The UI that presents the user to create a new profile if they are planning to use the software for their domain business, or a general user to skip the sign up if only a generalized summary is required.
- 2. User Input Wizard for Reviews The UI that will request the user to input the review which needs to be summarized.
- 3. Summarization Feed UI The UI that displayed the summarized text for the input review.
- 4. Hyperparameter tuning UI The UI that triggers model retraining when the domain user performs an action on it.

3.4. System Design

3.4.1. Choice of Design Paradigm

The main reason behind the author going ahead with **SSADM** (**Structured Systems Analysis and Design Method**) over **OOAD** (**Object-Oriented Analysis and Design**) to build the protype was due to the ease of ability to extend the system features when it comes to future developments of the system. Given below are the other factors as to why the choice of SSADM was considered:

- Object Oriented approaches will not make a greater benefit since the main core project research lies towards Data Science.
- Ability to demonstrate the MVP (Minimum Viable Product) prototype implementation for the research application is more convenient.
- More time efficient when concerned with the time constraint of having to complete the documentation research along with the project implementation.

3.5. Design diagrams

3.5.1. Data Flow diagrams

In order to show the relationships between components and provide a clearer understanding of how data flows across the whole system, the context diagram's components have been extensively broken down in the diagram below, which was detailed in the SRS previously.

3.5.1.1. Level 01 Data Flow diagram

Figure 6: Data flow diagram - level 01 (Self-Composed)

3.5.1.2. Level 02 Data Flow diagram

The level 02 data flow diagram given below is a further breakdown of the core hyperparameter tuning and model retraining proposed in the level 01 data flow diagram.

Figure 7: Data flow diagram - level 02 (Self-Composed)

3.5.2. System Process Activity Diagram

The flowchart given below represents the algorithm's flow and the decision structures which explains the flow of the system which is initially expected requirement.

Figure 8: System process flow chart (Self-Composed)

3.5.4. UI Design

Given the specifications acquired from the target audience, the author chose a web application for the simulation of the proof-of-concept application. A wireframe design was created to depict the key user interface aspects in the system and is available in **APPENDIX C.2**

3.6. Chapter Summary

This chapter provides an in-depth examination of the project's design, including its architectural features and explains the core flow via data flow diagrams. The chapter concludes with a preview of the user interface wireframes that will be utilized to facilitate interaction between the end-user and the system.

CHAPTER 04. INITIAL IMPLEMENTATION

4.1. Chapter Overview

This chapter will provide a thorough overview of the technologies, supporting tools, and languages utilized for the project development, as well as the fundamental implementation of the research prototype.

4.2. Technology selection

4,2.1. Technology stack

The technologies utilized to implement the prototype at each tier are given below.

Figure 9: Technology stack (Self-Composed)

In preference to macOS and Linux, Windows will be the operating system used for project development and documentation. This is due to a wider variety of software available, which

ensures that it has more industry-standard tools than Linux and macOS, along with better compatibility and familiarity, which make things simpler to use and manage.

4.2.2. Data selection

Given that the project relies heavily on data science, it is essential to use data from trustworthy sources to train the model. This ensures that the data is accurate and leads to the development of a more accurate model for general text summarization.

The goal of the project was to develop an adaptive generalized text summarization model, so a generalized dataset for text summarization was necessary to establish the base model. **TensorFlow datasets**, being a reputable source of data, offered multiple options for this dataset.

The table below shows the datasets which have been used by previous researchers, therefore this can experiment for the protype development.

DatasetSourceCNN DailymailTensorFlow DatasetsGigawordTensorFlow DatasetsXsumTensorFlow Datasets

Table 6: Dataset sources (Self-Composed)

During the training process, all three of these datasets (CNN Dailymail, Gigaword, and Xsum) were utilized with various transformer architectures to determine which dataset resulted in the best evaluation metrics. Of the three datasets, <u>Xsum</u> performed the best, so it was selected as the final dataset for the project.

4.2.3. Programming Language Selection

In this study, we employed the programming language **Python** for the implementation of our Machine Learning models and Backend APIs. Python is a widely-used language known for its readability, simplicity and versatility, making it an ideal choice for our research project. This language has a broad range of use cases including web development, data analysis, scientific computing and machine learning. Additionally, Python has a large and active community, providing ample resources and support. Furthermore, the availability of various libraries and

frameworks such as NumPy, pandas, and TensorFlow, made Python a powerful tool for our data science and machine learning tasks.

TypeScript (it's a superset of JavsScript) was chosen for the frontend development in order to display dynamic content and create a highly interactive and engaging user experience.

4.2.4. Development Framework Selection

The author has chosen several development frameworks for the project covering all areas, the table given below describes the purpose of choosing each framework and whats it used for in the project.

Table 7: Development framework utilized (Self-Composed)

Framework	Reason for choosing
React	ReactJS provides reusable components for efficient application development,
	and its open-source nature and strong community support enable continuous
	developments and learning tools, making it a handy solution for developers.
Ant Design	Ant Design is a popular React UI framework that offers a large selection of
	pre-built components, encourages consistency and usability, and enables for
	style customization using CSS-in-JS. It also reduces build time by using tree-
	shaking compatibility. Overall, it provides a complete and effective frontend
	development solution.
Flask	Flask is a Python micro web framework that is lightweight, easy to learn, and
	provides for flexibility in developing application structures. It is useful for
	developing backend APIs since it provides a straightforward approach to
	manage routing and request processing, as well as a built-in development server
	and different extensions that can be used to extend an API's capabilities.
Optuna	Optuna is a Python open-source framework for hyperparameter optimization
	that is simple to use, efficient, and has built-in parallelization support. It also
	offers built-in support for popular machine learning libraries, as well as
	automated early halting and distributed parallel optimization. It is a robust and
	adaptable library that can aid in the improvement of machine learning model
	performance.
PyTorch	PyTorch is a Python open-source machine learning framework that is built on
	Torch library and makes use of GPU capability. Because of its straightforward

and easy-to-use API, vast selection of pre-built neural network layers and modules, powerful features such as dynamic computation graphs and automated differentiation, and strong community support, it's a solid choice for developing machine learning models. It is widely used in business and academia for machine learning model research and development.

The data science core employs transformer models from Hugging Face, which have been finetuned with the datasets used in this research project. The purpose of retraining the model is to experiment with various hyperparameter changes.

4.2.5. Libraries Utilized

Table 8: Libraries used with reasonings (Self-Composed)

Library	Reasoning for selection
Firebase	Used for providing backend services for mobile and web application
	development.
Axios	Used for handling HTTP requests in JavaScript.
Redux	Used to control the state of JavaScript applications in a predictable manner
	by the use of actions, reducers, and a central store.
Hugging face	Hugging Face transformers library is a state-of-the-art natural language
Transformers	processing library that provides pre-trained transformer models and tools
	for fine-tuning them on specific tasks.
NLTK	NLTK is a library for natural language processing that provides tools for
	tasks such as tokenization, stemming, and part-of-speech tagging, as well
	as a wide range of corpora and resources for training and evaluating
	language models.
Rouge	A library for evaluating the quality of text summaries, it is used to compare
	an automatically generated summary or a peer summary to one or multiple
	reference summaries.
Pandas	Pandas is a library for data manipulation and analysis, it provides data
	structures and data analysis tools for handling and manipulating numerical

	tables and time series data, it is widely used for data preprocessing and data
	cleaning tasks in data science.
NumPy	NumPy is a library for scientific computing with Python, it provides
	support for large, multi-dimensional arrays and matrices of numerical data,
	as well as a large collection of mathematical functions to operate on these
	arrays
Matplotlib &	Used for creating static, animated, and interactive visualizations in Python
Seaborn	
Gramformer	Used for generating text using GPT-3 model, it's developed by Hugging
	Face. It provides an easy to use API that allows developers to fine-tune
	GPT-3 models on their own data and use them for text generation, it
	supports for various tasks such as text completion, text generation, and text
	classification.
Flask	Used for creating web APIs using Python to communicate with the
	transformer model and handling HTTP requests.

4.2.6. IDE's Utilized

Table 9: IDE's used along with justifications (Self-Composed)

IDE	Justification for selection
VSCode	Best known for its adaptability, usefulness, and performance, it offers a
	wide range of capabilities, such as debugging, Git integration, syntax
	highlighting, and extensions to personalize the environment.
Google Colab	Due to its connection with Google Drive and availability of free GPUs, it's
	helpful for developing machine learning models via a cloud environment.
Jupyter Notebook	Due to their interactive and readable format, making it ideal for local
	experimentation, documentation and collaboration.

4.2.7. Summary of Technology Selection

Table 10: Summary of Technology selection (Self-Composed)

Component	Tools
-----------	-------

Programming Languages	TypeScript, Python
Development Framework	Flask, PyTorch, Optuna
UI Framework	Ant Design, React
Libraries	NLTK, Rouge, React, Pandas, Gramformer, Matplotlib &
	Seaborn, Axios, Transformers (from hugging face)
IDE – Research	Google Colab, Jupyter Notebook
IDE – Product	VSCode
Version Control	Git, GitHub
Data storage	Firebase

4.3. Implementation of Core Functionalities

The project's core functionalities include the experiments of top-tier transformer architectures to determine the optimal one, applying data preprocessing steps, automating hyperparameter searching, retraining the model with new data fetched from the database and new hyperparameters, and having the model be able to summarize reviews from both domain users and general users.

4.3.1. Automated Hyperparameter Search & Model Training

The author did a research on different approaches to automate the hyperparameter searching, because manual hyperparameter tuning is total waste of time. Multiple hyperparameter tuning frameworks were available, however Optuna was chosen due to its flexibility and ease of use.

```
# Specify our parameter range and project variables
LR_MIN = 4e-5
LR CEIL = 0.01
WD MIN = 4e-5
WD_CEIL = 0.01
MIN EPOCHS = 8
MAX_EPOCHS = 15
PER DEVICE EVAL BATCH = 4
PER_DEVICE_TRAIN_BATCH = 4
MIN BATCH SIZE = 4
MAX_BATCH_SIZE = 6
NUM_TRIALS = 1
SAVE_DIR = 'opt-test'
MODEL_NAME = 'facebook/bart-base'
MAX_INPUT = 512
MAX_TARGET = 128
```

Figure 10: Hyperparameter Range Initialization (Self-Composed)

The code snippet above illustrates how the hyperparameters are initialized with a group of values, some of which are within a range based on the setting of the min and max parameters. In order to

determine the optimal parameter values from the initialized range, these parameters will be utilized during hyperparameter search training. If no range is specified, the default will start at zero.

```
print_custom('Performing hyperparameter training....')
def objective(trial: optuna.Trial):

# Specify the training arguments and hyperparameter tune every arguments which are possible to tune
      training_args = Seq2SeqTrainingArguments(
    output_dir=SAVE_DIR,
             save_strategy="epoch",
            save_strategy="epoch",

learning_rate=trial.suggest_float("learning_rate", LR_MIN, LR_CEIL, log=True),

weight_decay=trial.suggest_float("weight_decay", ND_MIN, ND_CEIL, log=True),

num_train_epochs=trial.suggest_int("num_train_epochs", MTML_EPOCHS, MAX_EPOCHS),

warmup_ratio=trial.suggest_float("warmup_ratio", 0.0, 1.0),

per_device_train_batch_size=trial.suggest_int("per_device_train_batch_size", MIN_BATCH_SIZE, MAX_BATCH_SIZE),

per_device_aval_hatrh_size_trial.suggest_int("per_device_eval_batch_size", MIN_BATCH_SIZE, MAX_BATCH_SIZE),
             per_device_eval_batch_size=trial.suggest_int("per_device_eval_batch_size", MIN_BATCH_SIZE, MAX_BATCH_SIZE),
save_total_limit=1,
             load best model at end=True.
             predict_with_generate=True,
run_name=MODEL_NAME,
              report_to="none",
      # Create the trainer
      trainer = Seq2SeqTrainer(
             model=model,
             args=training_args,
data_collator=data_collator,
             train_dataset=tokenize_data["train"],
eval_dataset=tokenize_data["test"],
             tokenizer=tokenizer,
      # Train the model
      trainer.train()
      metrics = trainer.evaluate()
      torch.cuda.emptv cache()
      # Return the loss
```

Figure 11: Hyperparameter search using Optuna (Self-Composed)

The above snippet shows how the Optuna framework is integrated with the model training code to perform automated hyperparameter search. The main performance contributing parameters are considered for the hyperparameter searching this includes learning rate, weight decay, num of training epochs, warmup ratio, batch size.

```
# Hyperparameter results
learning_rate = study.best_params['learning_rate']
weight_decay = study.best_params['weight_decay']
num_train_epochs = study.best_params['num_train_epochs']
warmup_ratio = study.best_params['warmup_ratio']
per_device_train_batch_size = study.best_params['per_device_train_batch_size']
per_device_eval_batch_size = study.best_params['per_device_eval_batch_size']
```

```
args = transformers.Seq2SeqTrainingArguments(
    'generalization-summary',
    learning_rate=learning_rate,
    weight_decay=weight_decay,
    warmup_ratio=warmup_ratio,
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=per_device_train_batch_size,
    per_device_eval_batch_size= per_device_eval_batch_size,
    save_total_limit=2,
    eval_accumulation_steps=1,
    predict_with_generate=True,
    evaluation_strategy='epoch',
    gradient_accumulation_steps=2,
    fp16=True
)
```

Figure 12: Hyperparameter results and training arguments (Self-Composed)

The above snippet demonstrates how to result of the hyperparameter search is used within the training arguments for model training.

```
trainer = transformers.Seq2SeqTrainer(
    model,
    args,
    train_dataset=tokenize_data['train'],
    eval_dataset=tokenize_data['validation'],
    data_collator=data_collator,
    tokenizer=tokenizer,
    compute_metrics=compute_rouge
)
trainer.train()
```

Figure 13: Model training (Self-Composed)

The above code snippet is the model training initiation with the optimal hyperparameters.

4.3.2. Model Usage General & Domain Specific Users.

```
@app.route('/text-summarizer/general', methods=['POST'])

    def getGeneralizedSummary():
     try:
         data = request.get ison()
         review = data['review']
         inputs = generalized_tokenizer.encode(review, return_tensors='pt', max_length=MAX_INPUT, truncation=True)
         outputs = generalized_model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4,
          early_stopping=True)
         summary = generalized_tokenizer.decode(outputs[0], skip_special_tokens=True)
         sentimentAnalysisOutput = query({ "inputs": summary })
         sentiment, score = getOverallSentimentWithScore(sentimentAnalysisOutput)
         return {'summary': summary, 'sentment': {
             'sentiment': sentiment,
             'score': score
         } }, 200
     except Exception as e:
         return {'message': str(e)}, 500
```

Figure 14: General user review text summarization (Self-Composed)

The above code snippet is an API endpoint which handles text (review) summarization for the general users where they don't need to create and account or have specialized model assigned to them instead the general model is utilized.

```
@app.route('/domain-profile-creation', methods=['POST'])

def createDomainUserProfile():

    try:
        data = request.get_json()
        userId = data['userId']

        folder_path = 'model/' + userId
        model_path = folder_path + '/' + MODEL_NAME
        tokenizer_path = folder_path + '/' + TOKENIZER_NAME

    if not os.path.exists(folder_path):
        os.mkdir(folder_path)

        generalized_model.save_pretrained(model_path)
        generalized_tokenizer.save_pretrained(tokenizer_path)

        return {'message': "Successfully created the model"}, 200
    except Exception as e:
        return {'message': str(e)}, 500
```

Figure 15: Assigning a specific model for the new domain user (Self-Composed)

The above code snippet describes an API for assigning a copy of the generalized model for the user id of the domain (given that the domain user signed up for the application), the reason for creating a copy is for retraining purposes with new data.

```
@app.route('/text-summarizer/domain', methods=['POST'])
def getDomainSpecificSummary():
         data = request.get_json()
         review = data['review']
         userId = data['userId']
         folder_path = 'model/' + userId
model_path = folder_path + '/' + MODEL_NAME
tokenizer_path = folder_path + '/' + TOKENIZER_NAME
         if not os.path.exists(folder_path):
         return {'message': "Model not found"}, 404
         model = transformers.AutoModelForSeq2SeqLM.from_pretrained(model_path)
         tokenizer = transformers.AutoTokenizer.from_pretrained(tokenizer_path)
         inputs = tokenizer.encode(review, return_tensors='pt', max_length=MAX_INPUT, truncation=True)
outputs = model.generate(inputs, max_length=150, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
         summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
         sentimentAnalysisOutput = query({ "inputs": summary })
         sentiment, score = getOverallSentimentWithScore(sentimentAnalysisOutput)
         db.collection('domainUsers').document(userId).collection('reviewData').add({
              'review': review.
               'summary': summary,
              'sentiment': sentiment,
              'score': score
         return {'summary': summary, 'sentment': {
    'sentiment': sentiment,
          'score': score
         } }, 200
     except Exception as e:
        return {'message': str(e)}, 500
```

Figure 16: Domain Specific text review summarization (Self-Composed)

The above code snippet describes how the newly assigned domain specific model is used to generate the summary and store the input and outputs into the database along with returning the sentiment of the summary with the sentiment score. The sentiment analysis is done using a pretrained transformer directly from hugging face API.

4.3.3. Model Retraining.

```
@app.route('/domain-profile-retraining', methods=['POST'])
def retrainDomainSpecifcModel():
       data = request.get json()
        newReviewSummaryData = []
        userId = data['userId'] # The user id is only needed to save the model in the respective folder
       domainType = data['domainType'] # Using the domainType, we can get all the data from other users which have been given
        access for retraining
        isUseOtherData = data['isUseOtherData'] # we can have a radio button in the frontend to select if the user wants to
       retrain only with their data or with the other users data as well
        # Steps to be considered for retraining the model and dataset recreation
       # 1. By checking the isAccessible flag, we can decide whether to use the data for model retraining, then we get all the
        data from the database which isAccessible = true for the given domainType
        print('Fetching data from the database...')
        if isUseOtherData == True:
           users = db.collection('domainUsers').where('domainType', '==', domainType).where('isAccessible', '==', True).get()
            for user in users:
               reviewData = db.collection('domainUsers').document(user.id).collection('reviewData').get()
                for review in reviewData:
               newReviewSummaryData.append(review.to_dict())
        else:
           user = db.collection('domainUsers').document(userId).get()
              reviewData = db.collection('domainUsers').document(userId).collection('reviewData').get()
               for review in reviewData:
                   newReviewSummaryData.append(review.to_dict())
              return {'message': "User not found"}, 404
        print('Successfully fetched data from the database')
```

Figure 17: Fetching related data for model retraining (Self-Composed)

The code snippet above describes the necessary data fetched from the database to create the new dataset for model retraining, once the new dataset is created it is passed through a function to perform hyperparameter tuning and then retrain the model. Once completed retraining, the old model will be replaced with the new model in the folder path location.

4.3.4. Data Preprocessing

The raw dataset was contaminated with a lot of noise, numerous data preprocessing steps were required to clean the data before model training. The related preprocessing scripts can be found at **APPENDIX D.1**.

4.3. Chapter Summary

The chapter discusses the tools, technology, and languages utilized to create the research prototype. The fundamental functionality is covered, along with insights and samples of code for the implemented algorithms, moreover the testing and evaluation related code for the models is discussed.

CHAPTER 05. CONCLUSION

5.1. Chapter Overview

This chapter covers the preliminary conclusion of the research project, including the core functionality of its implementation for the MVP. Any deviations taken with in the project scope will be discussed and an initial evaluation test result will be attached. Any additional improvements planned for the project will be discussed. A demo of the project and the code reference for the project will also be included.

5.2. Deviations

The initial goal of the author was to create an optimized solution for movie review summarization using transformers, but after discussions made with supervisors the research gap of the author for the technical contribution being only hyperparameter tuning of transformer felt small in magnitude, therefore the idea of creating a *performance adaptive generalized solution* was considered to continue the research implementation on.

The only project schedule deviation is that the testing scripting like unit, integration and performance testing has not yet been started but will be able to cover up within the timeframe listed. The initial Gantt chart plan can be found at **APPENDIX E.1** and the current progressing one at **APPENDIX E.2**

5.3. Initial Test Results

The Xsum dataset was trained with three top tier transformer architecture which are BART, T5 and PEGASUS. The evaluations for all these architectures where conducted is given below.

Epoch	Training Loss	Validation Loss	Rouge1	Rouge2	Rougel	Rougelsum	Gen Len
1	No log	0.377033	36.339200	16.680800	30.463900	30.470900	18.628000
2	0.973300	0.218723	48.158500	30.368000	43.379800	43.318400	19.164000
3	0.973300	0.124898	58.955100	46.272900	55.868600	55.895700	19.468000
4	0.248100	0.065275	71.579900	64.391400	69.579000	69.735200	19.748000
5	0.248100	0.033817	77.903500	74.465900	77.300500	77.366700	19.836000
6	0.103700	0.017642	80.060400	77.934100	79.934100	79.963800	19.836000
7	0.103700	0.012296	80.552900	78.879600	80.539700	80.581400	19.824000
8	0.048200	0.009251	80.776300	79.422400	80.802700	80.832400	19.828000

Figure 18: Evaluation result for bart-base model (*Self-Composed*)

Epoch	Training Loss	Validation Loss	Rouge1	Rouge2	Rougel	Rougelsum	Gen Len
1	No log	0.022812	75.197600	70.900700	74.367300	74.487300	18.844000
2	0.063800	0.025599	75.297700	71.001800	74.531600	74.534500	18.892000
3	0.063800	0.014508	78.321900	75.546000	77.829600	77.873700	18.836000
4	0.067600	0.008198	78.461300	76.093400	78.239100	78.332400	18.824000
5	0.067600	0.005407	79.957700	78.359400	79.832400	79.902800	18.872000
6	0.032300	0.003742	80.078600	78.585000	79.945600	79.952800	18.864000
7	0.032300	0.003123	80.656400	79.608700	80.672000	80.676800	18.848000
8	0.017100	0.001702	80.661600	79.589900	80.614900	80.655100	18.864000
9	0.017100	0.001026	80.736900	79.734500	80.757600	80.767000	18.864000
10	0.010600	0.000348	80.753600	79.756300	80.771100	80.792700	18.864000
11	0.010600	0.000228	80.753600	79.756300	80.771100	80.792700	18.864000
12	0.006400	0.000341	80.753600	79.756300	80.771100	80.792700	18.864000
13	0.006400	0.000127	80.753600	79.756300	80.771100	80.792700	18.864000
14	0.004900	0.000115	80.753600	79.756300	80.771100	80.792700	18.864000
15	0.004900	0.000107	80.753600	79.756300	80.771100	80.792700	18.864000

Figure 19: Evaluation result for t5-base model (*Self-Composed*)

Epoch	Training Loss	Validation Loss	Rouge1	Rouge2	Rougel	Rougelsum	Gen Len
1	No log	nan	10.069400	1.213700	8.335600	8.334600	32.000000
2	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
3	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
4	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
5	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
6	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
7	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
8	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
9	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
10	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
11	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000
12	0.000000	nan	10.069400	1.213700	8.335600	8.334600	32.000000

Figure 20: Evaluation result for pegasus-base model (Self-Composed)

The bart-base model outperforms the rest of the other two (t5 and pegasus) despite the fact the results of t5 was very closer to bart, it still gets ranked as the second due to evaluation result difference and the difference in the epoch taken to reach the result. However, the result of Pegasus was significantly low bringing it to the last. The validation accuracy and validation loss graphs can be found at **APPENDIX E.3.**

5.4. Required Improvements

A couple of improvements in-order to bring the project to a success are as follows:

- Integrating the developed APIs and models to the frontend UI: the UI has already been developed by the author at this point in time.
- Enhance transformer performance by customizing the architecture of existing transformer architecture algorithm.
- Testing all areas of the project applications, this will include unit, performance and integration testing.
- Encrypting the data which is storing in the database for security purposes.
- Connecting a push notification service to the UI, to indicate when the retraining process is completed to the end user.

5.5. Demo of the Prototype

A functional prototype demo along with project presentation details was recorded and uploaded to YouTube as unlisted. The video for it can be found at https://youtu.be/NdXRkGFG9b8 and the presentation slides used in the demo can be found at https://tinyurl.com/3z3dj9nn

5.6. Code Reference

All related code and documentation material are made available in GitHub by the author at https://github.com/nazhimkalam/gensum/tree/main/Code

5.7. Chapter Summary

This chapter discuses about the core functionality completion of the project for the MVP. All deviations of the project and evaluation results have been discussed. The improvement of the project is also discussed by which the author will be working on. A demo about the project along with the code references is also listed.

REFERENCES

Abolghasemi, M., Dadkhah, C. and Tohidi, N. (2022). HTS-DL: Hybrid Text Summarization System using Deep Learning. 2022 27th International Computer Conference, Computer Society of Iran (CSICC). 23 February 2022. Tehran, Iran, Islamic Republic of: IEEE, 1–5. Available from https://doi.org/10.1109/CSICC55295.2022.9780395 [Accessed 26 October 2022].

Alsaqer, A.F. and Sasi, S. (2017). Movie review summarization and sentiment analysis using rapidminer. 2017 International Conference on Networks & Advances in Computational Technologies (NetACT). July 2017. Thiruvanthapuram, India: IEEE, 329–335. Available from https://doi.org/10.1109/NETACT.2017.8076790 [Accessed 10 October 2022].

Barna, N.H. and Heickal, H. (2022). An Automatic Abstractive Text Summarization System. *Dhaka University Journal of Applied Science and Engineering*, 6 (2), 39–48. Available from https://doi.org/10.3329/dujase.v6i2.59217.

Boorugu, R., Ramesh, G. and Madhavi, K. (2019). Summarizing Product Reviews Using Nlp Based Text Summarization. *International Journal of Scientific & Technology Research Volume*, 8 (10), 1127–1133.

Brasoveanu, A.M.P. and Andonie, R. (2020). Visualizing Transformers for NLP: A Brief Survey. 2020 24th International Conference Information Visualisation (IV). September 2020. Melbourne, Australia: IEEE, 270–279. Available from https://doi.org/10.1109/IV51561.2020.00051 [Accessed 2 November 2022].

Etemad, A.G., Abidi, A.I. and Chhabra, M. (2021). A Review on Abstractive Text Summarization Using Deep Learning. 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). 3 September 2021. Noida, India: IEEE, 1–6. Available from https://doi.org/10.1109/ICRITO51393.2021.9596500 [Accessed 10 October 2022].

Gupta, A. et al. (2021). Automated News Summarization Using Transformers. *ArXiv*, abs/2108.01064.

Gupta, V. and Lehal, G.S. (2010). A Survey of Text Summarization Extractive Techniques. *Journal of Emerging Technologies in Web Intelligence*, 2 (3), 258–268. Available from https://doi.org/10.4304/jetwi.2.3.258-268.

Joy, J. and Selvan, M.P. (2022). A comprehensive study on the performance of different Multiclass Classification Algorithms and Hyperparameter Tuning Techniques using Optuna. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). 23 June 2022. Kochi, India: IEEE, 1–5. Available from https://doi.org/10.1109/IC3SIS54991.2022.9885695 [Accessed 24 October 2022].

Khan, A. et al. (2020). Movie Review Summarization Using Supervised Learning and Graph-Based Ranking Algorithm. *Computational Intelligence and Neuroscience*, 2020, 7526580. Available from https://doi.org/10.1155/2020/7526580.

Kirmani, M. et al. (2019). Hybrid Text Summarization: A Survey. In: Ray, K. Sharma, T.K. Rawat, S. et al. (eds.). *Soft Computing: Theories and Applications*. Advances in Intelligent Systems and Computing. Singapore: Springer Singapore, 63–73. Available from https://doi.org/10.1007/978-981-13-0589-4_7 [Accessed 1 November 2022].

Kouris, P., Alexandridis, G. and Stafylopatis, A. (2019). Abstractive Text Summarization Based on Deep Learning and Semantic Content Generalization. *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*. 2019. Florence, Italy: Association for Computational Linguistics, 5082–5092. Available from https://doi.org/10.18653/v1/P19-1501 [Accessed 24 October 2022].

Lackermair, G., Kailer, D. and Kanmaz, K. (2013). Importance of Online Product Reviews from a Consumer's Perspective. *Advances in Economics and Business*, 1 (1), 1–5. Available from https://doi.org/10.13189/aeb.2013.010101.

Lin, C.-Y. (2004). ROUGE: A Package for Automatic Evaluation of Summaries. 8.

Liu, X. and Wang, C. (2021). An Empirical Study on Hyperparameter Optimization for Fine-Tuning Pre-trained Language Models. Available from http://arxiv.org/abs/2106.09204 [Accessed 24 October 2022].

Mahajan, R. et al. (2021). Text Summarization Using Deep Learning. *International Research Journal of Engineering and Technology (IRJET)*, 08 (05th May 2021), 1737–1740.

McAuley, J.J. and Leskovec, J. (2013). From amateurs to connoisseurs: modeling the evolution of user expertise through online reviews. *Proceedings of the 22nd international conference on World Wide Web - WWW '13*. 2013. Rio de Janeiro, Brazil: ACM Press, 897–908. Available from https://doi.org/10.1145/2488388.2488466 [Accessed 19 November 2022].

Mukherjee, R. et al. (2020). Read what you need: Controllable Aspect-based Opinion Summarization of Tourist Reviews. *Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval*. 25 July 2020. 1825–1828. Available from https://doi.org/10.1145/3397271.3401269 [Accessed 10 October 2022].

Neyshabur, B. et al. (2017). Exploring Generalization in Deep Learning. *undefined*. Available from https://www.semanticscholar.org/reader/d53fb3feeeab07a0d70bf466dd473ec6052ecc07 [Accessed 9 November 2022].

Pai, A. (2014). Summarizer Using Abstractive and Extractive Method. *International Journal of Engineering Research*, 3 (5), 5.

Pizam, A. and Ellis, T. (1999). Customer satisfaction and its measurement in hospitality enterprises. *International Journal of Contemporary Hospitality Management*, 11 (7), 326–339. Available from https://doi.org/10.1108/09596119910293231.

Shi, T. et al. (2020). Neural Abstractive Text Summarization with Sequence-to-Sequence Models. Available from http://arxiv.org/abs/1812.02303 [Accessed 10 October 2022].

Shorten, C. and Khoshgoftaar, T.M. (2019). A survey on Image Data Augmentation for Deep Learning. *Journal of Big Data*, 6 (1), 60. Available from https://doi.org/10.1186/s40537-019-0197-0.

Socher, R., Bengio, Y. and Manning, C.D. (2012). Deep Learning for NLP (without Magic). *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts*. July 2012. Jeju Island, Korea: Association for Computational Linguistics, 5. Available from https://aclanthology.org/P12-4005 [Accessed 2 November 2022].

Steinberger, J. and Jezek, K. (2009). Evaluation Measures for Text Summarization. *Comput. Informatics*, 28 (2), 251–275.

Wolf, T. et al. (2020). Transformers: State-of-the-Art Natural Language Processing. *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations*. 2020. Online: Association for Computational Linguistics, 38–45. Available from https://doi.org/10.18653/v1/2020.emnlp-demos.6 [Accessed 10 October 2022].

Zhang, J. et al. (2020). PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization. Available from http://arxiv.org/abs/1912.08777 [Accessed 18 October 2022].

Zhou, K. et al. (2021). Domain Generalization with MixStyle. *undefined*. Available from https://www.semanticscholar.org/reader/4f6eafafc9563a5b904535078df7e74afe39ef59 [Accessed 5 December 2022].

aws.amazon.com. (2022). *Hyperparameter optimization for fine-tuning pre-trained transformer models from Hugging Face | AWS Machine Learning Blog*. [online] Available at: https://aws.amazon.com/blogs/machine-learning/hyperparameter-optimization-for-fine-tuning-pre-trained-transformer-models-from-hugging-face/ [Accessed 9 Nov. 2022].

APPENDIX A – INTRODUCTION

A.1. Research Questions

RQ1: What are the top tier transformer architectures widely used and know for NLP problems related to text summarization?

RQ2: How can a pretrained transformer architecture be fine-tuned to get the optimal hyper parameters and to automate it for model retraining?

RQ3: What kind of evaluations should we perform after fine-tuning to filter out the best transformer architecture?

RQ4: How can domain generalization be integrated for system?

APPENDIX B - SRS

B.1. Requirement Elicitation Methodologies

Table 11: Stakeholder groups (Self-Composed)

Group	Stakeholders	Reason	Instrument
G1	Domain experts	In order to respond to research questions and	Interview
	(NLP Experts,	discover anything the author may have	
	AI Researchers,	overlooked, gather any insights and information	
	Data Scientists)	especially in the study area.	
G2	Domain and	Gather requirements which will help develop	Survey & LR
	General Users	features expected in the application.	
G3	Competitors	Analyze any existing systems related to the	Self-
		research and understand how the project can be	Evaluations &
		enhanced	Brain
			Storming
G4	Developers	Cross checking if the project is feasible to be	Prototyping
		continued with.	

B.2. Survey Analysis

Table 12: Survey analysis (Self-Composed)

Question	Have you ever realized that reading lengthy reviews takes a significant
	amount of time?
Aim of question	To determine whether the audience as a whole considers reading lengthy
	reviews to be a time-consuming activity.

Findings & Conclusion

It can be concluded that a large part of the audience (more than 90% of the audience) finds that's reading lengthy reviews is a time-consuming hassle which also proves that they would appreciate if there would be a quicker approach for this problem, like a summarization. This also concludes to see a

positive correlation from the results which was expected from the author of the project.

Question	Do you believe that developing a generic system for all domains would be			
	a wise course of action?			
Aim of question	Ensuring that developing a generic system would be beneficial in all			
	domains			

Findings & Conclusion

It can be concluded that most of the participants (more than 90% of the audience) agrees that developing a generalized system which can adapt to the domain as they use, is beneficial and worth the effort to process with the project

research. This also concludes to see a positive correlation from the results which was expected from the author of the project

Question	Who do you think will most benefit from this system?
Aim of question	Getting to know about the thoughts of the participants about to whom the
	system would mostly benefit from?

Findings & Conclusion

It can be concluded that a majority of the participants (more than 60%) finds that this system will benefit the movie, restaurant, tourist, hotel, ecommerce domains (these domains were considered since they

are mostly interacted with the users on a daily bases and uses customer reviews for their domain as a part of their business) as well as the general users.

Question	How much do you think that this system would benefit you?
Aim of question	Getting to know how much the system would benefit the general participants
	which are NOT domain specific

Findings & Conclusion

From the statistics graph, it can be concluded that roughly 75% of the audience finds that the system would benefit them for their general work or needs given that it's

not domain specific to them, which is a positively correlated result from the achieved statistics.

Question	How much do you think that this system would benefit businesses?
Aim of question	Getting to know from the participants as to how much the system would
	benefit businesses/domains in solving this problem.

From the statistics graph, it can be concluded that roughly 84% of the audience finds that the system would benefit the businesses, which is a

positively correlated results from the achieved statistics and that's what the author expected to achieve.

Question	Before making a reservation or booking a movie or a hotel, do you read
	the customer reviews?
Aim of question	Getting an idea from the audience if in general they give importance to
	customer/user reviews to any domain before consuming their product or
	services.

Findings & Conclusion

It can be concluded that a majority of the participants (more than 95% of the audience) agrees that they value and read customer reviews before they consume one's product or service. Therefore, making customer reviews a major contributing factor for business growth.

Question	How much you think customer reviews are important with respect to any	
	domain?	
Aim of question	Getting an idea from the audience to see how much they value customer	
	reviews.	

From the statistics graph, it can be concluded that roughly 90% of the audience finds that customer/user reviews are very important irrelevant to the domain, which is a

positively correlated results from the achieved statistics and that's what the author expected to achieve.

Question	Which additional features would you want to see in this system.
Aim of question	To identify the systems non-functional requirements which could potentially
	improve the system.

Findings & Conclusion

The majority of participant responses were concerned with classifying the review text's sentiment after it had been summarized and with managing a list of review uploads so as to add filtering for the summarized review text based on the sentiment, whether it was positive or negative, along with the sentiment score.

Table 13: Survey thematic analysis (*Self-Composed*)

Code	Theme
Convenience	User-friendly
Adjustability	Flexibility

Theme	Conclusion
Convenience	A group of participants required to upload more than one review and a
	time/bulk at once.
Adjustability	A majority of the participants requested for sentiment of the summary and the
	sentiment score to be also included with the output.

B.3. Interview Analysis

Table 14: Interview thematic analysis (Self-Composed)

Code	Theme
Data handling	Data Collection & Data Preprocessing
Transformer architectures	Best performing transformer architectures
Generalization	Handling adaptive generalization
Research scope	Research gap and scope
Hyperparameter tuning	Automatic hyperparameter tuning & model retraining
Hybrid transformers	Looking into hybrid transformer combinations
Custom transformers	Customizing the transformer architecture
Prototype	Prototype features and suggestions
Business benefits	Understanding which and how businesses would benefit
Evaluations	Understanding the importance and evaluation ways

Theme	Conclusion
Data handling	Since this is a project connected to data science, the availability of data and
	the data preparation methods to be used are the main concerns. PhD
	candidates suggested to make use of verified and well researched datasets for
	the area of generalization since every domain will be using the same model
	initially to start off with, therefore the quality of data should be considered, it
	was recommended to use datasets that have already been studied and utilized
	by other researchers since they have done so and verified their findings. NLP
	researches were concerned on the language of text the project scope is into
	when performing text preprocessing, since text data can also contain other
	language characters unless the project is scoped down to only English
	language supportive.
Transformer	Most of the interviewees pointed out similar transformers architectures which
architectures	they have used and found impressive results, which are mostly BERT, GPT-
	2, Roberta, T5 etc where they have explored not only with text
	summarization but also when other NLP areas such as sentiment analysis,

	proving again that transformers are well known for solving NLP problems.
	They also stated to check up with the daily stats (most downloads and likes)
	about the transformer architectures from Hugging Face, this is because new
	better versions of the transformers are always been produced/updated.
Generalization	The Software Engineers and Architects suggested to make use of document-
	oriented NoSQL database management system to handling data storage for
	the domain specific managers, this is because its easily scalable and provider
	superior performance especially for the idea of adaptative generalization for
	this project. Such services are like MongoDB, Firebase NoSQL DB etc.
Research scope	The technology exports and research experts find that the solution of solving
	this problem using optimized transformers is great but they find that creating
	a generalized adaptive solution would be challenging with the time frame of
	the project but also advised to solve for the domain of movies first and then
	get into the others if time permits.
Hyperparameter	The NLP researchers and Lectures suggested several ways of using tools and
tuning	libraries to help with hyperparameter tuning since doing this manually is very
	time consuming and unnecessary effort.
Hybrid	PhD candidates liked the idea of using hybrid transformer combination by
transformers	using ensemble approaches to combine the top best two transformer
	architecture but it seems the scope of the project for the time frame is
	becoming bigger and riskier.
Custom	The NLP researchers recommended to customize the existing transformer
transformers	architecture instead of Hybrid model creation because of the project scope.
Prototype	The interviewees are interested to see how the generalization system for
	domain specific retraining is going to work together since they haven't seen
	any such approach earlier from their experience. They also suggested if time
	permits to make use of a pretrained model to get the sentiment of the summary
	aswell to be displayed on the GUI.
Business	Most of the interviewees suggested the Movie domain, Tourism, Ecommerce,
benefits	Book, Researchers would find this useful in summarizing their customer
	reviews on their businesses.

Evaluations	The PhD candidates and NLP experts suggested the importance of
	evaluations when it comes to dealing with the adaptive generalization model
	since this can be used in any domain, therefore suggesting the author of the
	project to explore maximum of 3 domains when working with so its easier to
	compare the evaluation results else it will be confusing when demonstrating
	the work to anyone.

Table 15: Interview participant information (Self-Composed)

Participant	Name	Designation/Affiliations	Expertise
ID			
P1	Ms. Kanishka Silva	PhD Research Student in Computational Linguistics	NLP
P2	Mr. Nihal Kodikara	Machine Learning Expertise Lecturer with PhD	ML and Neural Networks
P3	Ms. Rrubaa Panchendrarajan	NLP Researcher	NLP
P4	Mr. Pradeep Sanjaya	Software Architect	Algorithms
P5	Ms. Nelum Weerakoon	Software Architect & ML Researchers	ML & Algorithms
P6	Mr. Dinuka Piyadigama	VP Innovations, Software Engineer	ML & Neural Networks
P7	Ms. Krishna Kripa	Lecturer with MSc	NLP

B.4. Self-Evaluation (Competitor Analysis)

Table 16: Competitor Analysis (Self-Composed)

Competitor Analysis Table					
Tools	Summarize	Resoomer	Smmry	Text	GenSum
Feature	Bot			Compactor	
Summarizing Text	√	√	✓	✓	✓
Domain Specific Generalization	×	×	×	×	✓
Ease of Use via GUI	×	√	✓	✓	√
Summary sentiment and score	*	×	×	*	✓

B.5. Use case Descriptions

Table 17: Use case description UC:01 (Self-Composed)

Use Case Name	Input Review
Use Case Id	UC:01
Description	Requested the user to input a text review
Primary Actor	General User, Domain Specific User
Pre-Conditions	Domain Specific user needs to be login in before this action
Extended use cases	None
Included use cases	None
Trigger	A user selects the text input field to enter text review.
Main flow	The general user clicks on the input field to enter the review text, if it's a
	domain specific user then user needs to login into the application for this
	action
Alternative flows	None

Expectational flows	Displays an error message if the network request fails (server is down, or
	internet issues from client).
Post Conditions	None

Table 18: Use case description UC:02 (Self-Composed)

Use Case Name	Create Profile		
Use Case Id	UC:02		
Description	Domain users will be able to create a unique profile to manage their		
	content		
Primary Actor	Domain Specific User		
Pre-Conditions	None		
Extended use cases	None		
Included use cases	None		
Trigger	The domain user signups an account with in the system		
Main flow	Actor	System	
	1. The domain user navigates	3. Create a new user in the	
	to the sign-in page.	database and notify the	
	2. The domain user clicks on	user.	
	sign in, to register their self		
	or login to the application		
Alternative flows	None		
Expectational flows	Displays an error message if the network request fails (server is down, or		
	internet issues from client).		
Post Conditions	Success message displayed.		

Table 19: Use case description UC:10 (Self-Composed)

Use Case Name	Delete reviews
Use Case Id	UC:10
Description	Domain users will only be able to perform this action to mange their own
	data reviews and delete

Primary Actor	Domain Specific User		
Pre-Conditions	Domain user should be logged into the application		
Extended use cases	None		
Included use cases	None		
Trigger	Clicking on the delete action button on the review card list		
Main flow	Actor	System	
	 The domain user logins into the application Navigates to the manage reviews area Clicks on 'Delete' on the choice of review by the domain user 	4. Searches for the review with the user id and the review id on the database.5. Deletes the review from the database.	
Alternative flows	None		
Expectational flows	Displays an error message if the network request fails (server is down, or internet issues from client).		
Post Conditions	Success message displayed.		

Table 20: Use case description UC:04 (Self-Composed)

Use Case Name	Search new hyperparameters	
Use Case Id	UC:04	
Description	Searching for new set of hyperparameters during model retraining process.	
Primary Actor	Domain Specific User	
Pre-Conditions	Domain user should have entered enough data into the system	
Extended use cases	None	
Included use cases	Retrain Model	
Trigger	Domain user have triggered the model retraining from the UI by clicking on to the "Retrain model" button	

Main flow	1. New unseen data is fetched from the database.
	2. The data is used for automated hyperparameter model training.
	3. New hyperparameter is used for model training
Alternative flows	None
Expectational flows	None
Post Conditions	None

Table 21: Use case description UC:05 (Self-Composed)

Use Case Name	Create model	
Use Case Id	UC:05	
Description	Using the new set of hyperparameters found the model is retrained to	
	create a new updated version	
Primary Actor	Domain Specific User	
Pre-Conditions	Domain user should have entered enough data into the system	
Extended use cases	None	
Included use cases	Retrain Model	
Trigger	Domain user have triggered the model retraining from the UI by clicking	
	on to the "Retrain model" button	
Main flow	Newly found hyperparameters are used to retrain the model.	
	2. Old model is replaced with the new model.	
Alternative flows	None	
Expectational flows	None	
Post Conditions	None	

Table 22: Use case description UC:06 (Self-Composed)

Use Case Name	Prepare dataset
Use Case Id	UC:06
Description	Pulling the new data from the database in order to create a new dataset
	for model retraining
Primary Actor	Domain Specific User
Pre-Conditions	Domain user should have entered enough data into the system
Extended use cases	None
Included use cases	Retrain Model
Trigger	Domain user have triggered the model retraining from the UI by clicking
	on to the "Retrain model" button
Main flow	Gets the parameters sent from the request body.
	2. Fetches data from the database related to the parameters.
	3. Creating new dataset using the data.
Alternative flows	None
Expectational flows	None
Post Conditions	None

Table 23: Use case description UC:08 (Self-Composed)

Use Case Name	Generate Summary
Use Case Id	UC:08
Description	Generating summary for the input review using the latest model saved.
Primary Actor	Domain Specific User, General User
Pre-Conditions	User should have entered a review text from the frontend to generate a
	summary for.
Extended use cases	None
Included use cases	View Summary
Trigger	User clicked on "Generate summary" after using the review text as input.

Main flow	Actor	System
	1. User should have entered a	3. System uses the input
	text from the frontend in the	review to perform data
	input field requested.	preprocessing.
	2. User clicks on "General	4. System uses the
	summary"	preprocessed text review to
		generate the summary
Alternative flows	None	
Expectational flows	Displays an error message if the netv	work request fails (server is down, or
	internet issues from client).	
Post Conditions	Success message displayed.	

Table 24: Use case description UC:09 (Self-Composed)

Use Case Name	Store data	
Use Case Id	UC:09	
Description	Storing the review and summary data	a along with the sentiment.
Primary Actor	Domain Specific User	
Pre-Conditions	Domain user should have entered inp	out review and requested
Extended use cases	None	
Included use cases	View summary	
Trigger	Domain user clicks on 'Generate sur	nmary' after adding a review text
Main flow	Actor	System
	1. User should have entered a	3. The review data is used to
	text from the frontend in the	generate the summary.
	input field requested.	4. Using the generated
	2. User clicks on "General	summary to get the
	summary"	sentiment and sentiment
		score.
		5. The result of all these will
		be written into the database

Alternative flows	None
Expectational flows	None
Post Conditions	None

B.6. Functional Requirements

Table 25: 'MoSCoW' priority levels (Self-Composed)

Priority Level	Description
Must have (M)	The demand at this level is the fundamental functional requirement for a
	prototype, and it must be carried out.
Should have (S)	Although not strictly required for the anticipated prototype to function,
	important criteria do provide a lot of value.
Could have (C)	Optional, non-essential desirable needs are crucial to the project's scope.
Will not have (W)	Requirements that the system might not meet right now and that are not
	given first consideration.

Table 26: Usecase mappings (Self-Composed)

Use case Id	Use case name
UC01	Input Review
UC02	Create Profile
UC03	Retrain Model
UC04	Search New Hyperparameters
UC05	Create Model
UC06	Prepare Dataset
UC07	View Summary
UC08	Generate Summary
UC09	Store Data
UC10	Delete reviews

APPENDIX C - DESIGN

C.1. UI Wireframes

Figure 21: UI – Home page (Self-Composed)

Figure 22: UI – Login page (Self-Composed)

Figure 23: UI – Register page (Self-Composed)

Figure 24: UI – Review history page (Self-Composed)

APPENDIX D – IMPLEMENTATION

D.1. Data Preprocessing

```
def md_links(text: Text) -> Text:
    markdown_link=re.compile(r'\[.*?\]\(.*?\)')
    return markdown_link.sub(r'',text)

df['text'] = df['text'].parallel_apply(lambda sentence: md_links(sentence))
df['summary'] = df['summary'].parallel_apply(lambda sentence: md_links(sentence))
```

Figure 20: Preprocessing: Remove markdown (Self-Composed)

```
def scrape_links(text):
    url = re.compile(r'https?://\S+|www\.\S+')
    return url.sub(r'',text)

df['text'] = df['text'].parallel_apply(lambda sentence: scrape_links(sentence))
df['summary'] = df['summary'].parallel_apply(lambda sentence: scrape_links(sentence))
```

Figure 25: Preprocessing – Remove hyperlinks (*Self-Composed*)

```
def remove_html_tags(text: Text) -> Text:
    html=re.compile(r'<.*?>')
    return html.sub(r'',text)

df['text'] = df['text'].parallel_apply(lambda sentence: remove_html_tags(sentence))
df['summary'] = df['summary'].parallel_apply(lambda sentence: remove_html_tags(sentence))
```

Figure 26: Preprocessing: Remove html tags (Self-Composed)

Figure 27: Preprocessing: Char words extension (Self-Composed)

The above code snippets are used to convert the short key words into longer form, such as e.g.: 'ATM' is converted into 'At the moment'

Figure 28: Preprocessing: Handling common contractions (Self-Composed)

The above code snippets are used to handle/extend common contractions such as e.g.: 'They're' into 'They are'

```
s chars = '¥PĬĬŰŰĎŸæβœŰŇÀèŰĜåŽÖĖříγÿ€ŜĤ₹áŜŮÂæûÌÇŠŘúüëÓďŠčĨŤÆÒœ₩öËäøÍťÌĈòàĥÝ¢ç″žðÙÊčüÈŒĐÉÔĵùÁů"åÄŰĴÓėĝÞĵØòď₿ČÜþñŮ'
 PUNC = '+@```#_\-!$%`^&``¬()£<>?/\\|}\]\[{;\,~:\"\}
def special_char(text: Text) -> Text:
   # first, let's remove any unicode strings
   text = text.encode('ascii', 'ignore').decode()
   # remove printable bachslashes
   text = re.sub(r'[\t\s\n\r\b\a]', ' ', text)
   # Special letters
   text = re.sub(r'[{}]'.format(s_chars), '', text)
   # Punctuation [remove punctuation between spaces only which represent noises]
text = re.sub(r'\s[{}]\s'.format(PUNC), ' ', text)
    # space at the start or the end of the context
   \mathsf{text} = \mathsf{re.sub}(\mathsf{r'(^\s)}|(\s\$)', '', \mathsf{text})
    # Single character
    text = re.sub(r'(\s[^iIaA]\s)', ' ', text)
    return text
df['text'] = df['text'].parallel_apply(lambda sentence: special_char(sentence))
df['summary'] = df['summary'].parallel_apply(lambda sentence: special_char(sentence))
df.head(3)
```

Figure 29: Preprocessing: Removing special characters (Self-Composed)

```
from textblob import TextBlob
def spell_correction(df):
  # creating a new column for the corrected text
   df['corrected text'] = df['text']
   # creating a new column for the corrected summary
   df['corrected_summary'] = df['summary']
    # creating a for loop for the entire dataset
   for i in range(len(df)):
       # Records
       print('Counter: ' + str(i+1) + '/' + str(len(df)+1))
       # creating a variable for the text of the current row
       text = df['corrected_text'][i]
       # creating a variable for the summary of the current row
       summary = df['corrected_summary'][i]
       # creating a variable for the corrected text of the current row
       corrected_text = TextBlob(text).correct()
       # creating a variable for the corrected summary of the current row
       corrected_summary = TextBlob(summary).correct()
       \ensuremath{\text{\#}} updating the corrected text column with the corrected text
       df['corrected_text'][i] = str(corrected_text)
       # updating the corrected summary column with the corrected summary
       df['corrected_summary'][i] = str(corrected_summary)
   # returning the dataset with the new columns
   return df
spell_correction(df)
df_copy_correction = df.copy()
```

Figure 30: Preprocessing: Resolving spelling mistakes (Self-Composed)

Figure 31: Preprocessing: Removing duplicates (Self-Composed)

```
df_copy_correction['punc_corrected_text'] = punct_restoration(df_copy_correction['corrected_text'].values.tolist(), "text")
df_copy_correction['punc_corrected_summary'] = punct_restoration(df_copy_correction['corrected_summary'].values.tolist(), 'summary')
```

Figure 32: Preprocessing: Restoring missing punctuations (Self-Composed)

```
def grammely_correction(list_text: List[Text], name: Text) -> List[Text]:
    list_of_correction = []
    for text in tqdm(list_text, desc=f'Grammerly Correction for {name}'):
        if len(text.split()) < 50:
        list_of_correction.append(list(gf.correct(text, max_candidates=1))[0])
        else:
        list_of_correction.append(" ".join([list(gf.correct(sentence, max_candidates=1))[0])
        list_of_correction</pre>
```

```
\label{thm:copy_correction} $$ df_copy_correction['gram_corrected_text'] = grammely_correction(df_copy_correction['punc_corrected_text'].values.tolist(), "text") $$ df_copy_correction['gram_corrected_summary'] = grammely_correction(df_copy_correction['punc_corrected_summary'].values.tolist(), 'summary') $$ df_copy_correction['punc_corrected_summary'].values.tolist(), 'summary') $$ df_copy_correction['punc_corrected_summary']. $$ df_copy_correction['punc_corrected_summary'].values.tolist(), 'summary') $$ df_copy_correction['punc_corrected_summary']. $$ df_copy_correcti
```

Figure 33: Preprocessing: Grammarly correction (Self-Composed)

APPENDIX E – CONCLUSION

E.1. Project Initial Plan

Figure 34: Gantt chart: Initial plan (Self-Composed)

E.2. Project Current Progress

Figure 35: Gantt chart: Current plan (Self-Composed)

E.3. Initial Test Evaluation Results.

Figure 36: bert-base validation accuracy graph (*Self-Composed*)

Figure 37: bert-base validation loss graph (*Self-Composed*)

Figure 38: t5-base validation accuracy graph (*Self-Composed*)

Figure 39: t5-base validation loss graph (*Self-Composed*)

Figure 40: pegasus-base validation accuracy graph (Self-Composed)

Figure 41: pegasus-base validation accuracy graph (Self-Composed)

PSPD

END