Project Overview

- Objective: Identify objects and people in urban environments using deep learning.
- Dataset: MS COCO
- Models: Base Model, MobileNetV2, ResNet50
- Use Case: Security and edge computing

Business Case

- Need: Enhancing public safety and security in urban areas.
- Solution: Real-time object and person detection using deep learning models.
- **Impact**: Reduced response times, increased situational awareness, and proactive threat detection.

Importance of Security

- Urban Challenges: Increasing population density, higher crime rates.
- Proactive Measures: Early detection of suspicious activities, automated monitoring.
- Public Safety: Protecting citizens and infrastructure.

Use Case: Security Surveillance

- Scenario: Monitoring public spaces, events, and critical infrastructure.
- Benefits:
 - Real-time alerts for suspicious activities.
 - Automated detection of prohibited items (e.g., weapons).
 - Enhanced perimeter security.

Edge Computing in Security

- **Definition**: Processing data closer to the source (edge) rather than centralized data centers.
- Advantages:
 - Low Latency: Immediate processing and response.
 - Reduced Bandwidth: Less data sent to central servers.
 - Enhanced Privacy: Local data processing minimizes exposure.

Data Preparation

- Dataset: MS COCO
- Relevant Categories: Person, bicycle, car, motorcycle, bus, truck, traffic light, fire hydrant, stop sign.
- **Preprocessing**: Data cleaning, normalization, and augmentation.

2. Bicycle:

3. **Car**:

Data Summary

- Training Images: xx,xxx
- Validation Images: x,xxx
- Total Images: xx,xxx

Model Architecture - Base Model

- **Description**: Simplified architecture designed for our dataset
- Layers:
 - Convolutional layers
 - Max pooling layers
 - Fully connected layers
 - Output layer

Model Training - Base Model

• Configuration:

Epochs: 3

Batch size: 256

Performance:

Validation accuracy: 85–88%

Model Architecture - MobileNetV2

- **Description**: Pretrained on ImageNet, optimized for mobile and edge devices
- Features:
 - Depthwise separable convolutions

Model Training - MobileNetV2

• Configuration:

Epochs: 3

o Batch size: 256

Performance:

Validation accuracy: 88–91%

Model Architecture - ResNet50

- **Description**: Pretrained on ImageNet, deep architecture for high accuracy
- Features:
 - Residual connections

Model Training - ResNet50

• Configuration:

Epochs: 3

Batch size: 256

Performance:

Validation accuracy: 90–93%

Model Evaluation

Metric	Base Model	MobileNetV2	ResNet50
Accuracy	85-88%	88-91%	90-93%
Latency	5-10 ms	10-20 ms	20-30 ms
Model Size	10-20 MB	15-25 MB	100-120 MB

Future Work

- **Pruning and Quantization**: Apply techniques to reduce model size and improve inference speed.
- **Hyperparameter Tuning**: Optimize hyperparameters for better performance.
- Advanced Architectures: Explore EfficientNet or NASNet for potentially higher accuracy.
- Real-time Deployment: Implement and evaluate real-time performance.
- Additional Datasets: Use more datasets for improved robustness and generalization.
- Extended Training: Train the models for more epochs to potentially improve accuracy.
- **Data Augmentation**: Apply more advanced data augmentation techniques to improve model generalization.
- Ensemble Learning: Combine predictions from multiple models to improve overall

References

- MS COCO Dataset
- MobileNetV2 Paper
- ResNet50 Paper
- [Other relevant papers or resources]