2A - Automatique

Chapter 2

Control Science (AUT)

Frequency-domain approach

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

Conclusions

September 2019

Romain Bourdais CentraleSupélec romain.bourdais@centralesupelec.fr

Preamble About this course

Control Science (AUT)

Romain Bourdais

Sensibilities

Stability

Examples

Conclusions

Course outline

- Effect of loop closing
- · Concept of sensitivities
- Stability and the Nyquist Criterion

Preamble Introduction example 1

We want to control the position of a motor to a setpoint y^c , with a position sensor. The model is as follows :

$$y = \frac{G_0}{\rho(1 + \tau_1 \rho)(1 + \tau_2 \rho)}(u - w)$$

- ullet u: supply voltage, w: disturbance input, y: angular position
- G_0 : speed gain, au_1 electrical time constant, au_2 mechanical time constant

What can we tell about this system?

- Unstable (BIBO) in open loop : there is an integrator
- The slightest disturbance causes the motor to deviate infinitely far from its setpoint

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities Stability

Examples

Preamble

Introduction example 1

• We then propose to control the motor, by a control $u=k(y^c-y)$, with k a gain to adjust

What does intuition tell us?

- The higher the *k*, the better the performance will be
- But the higher the k, the greater the control effort will be

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities Stability

Examples

Preamble

Introduction example 1

And why not a small simulation study? Matlab is coming . . .

The code

The model:

- go=5; tau1=0.03; tau2=0.005;
- p=tf('p');
- sys=go/(p*(1+tau1*p)*(1+tau2*p));

Feedback - relationship between output and setpoint :

- k=1;
- sysbf=feedback(k*sys,1);
- step(sysbf,1)

Feedback - relationship between control input and setpoint :

- k=1;
- sysbfcom=feedback(k,sys);
- step(sysbfcom,1)

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability Examples

.

Preamble Introduction example 1

Effect of k

Question

• Steady-State error $\frac{\varepsilon}{V^c}$?

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

Preamble

Introduction example 1

• Effect of k and a disturbance occurs at time t = 2 seconds

Question

• Steady-State error $\frac{\varepsilon}{D}$?

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities Stability

Examples

Preamble Introduction example 1

Effect of k, with k very large

Question

Unstability?

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities Stability

Examples

Preamble

Introduction example 1 - Conclusions

Control Science (AUT) Romain Bourdais

What to remember

- Effect of feedback and proportional action
- The steady-state error is small when k is huge, but the control action is important
- Danger : unstability
- A simple proportional control k is (often) insufficient for the stability-precision trade-off

Skills - supposed to be known

- Definition of a system in Matlab
- The final value theorem! Beware of the area of convergence.
- Stability analysis (Routh criterion)

Introduction

Sensibilities

Stability Examples

Feedback configurations Writing games and Schema

 In a general point of view, we can use 2 transfer functions in the control structure:

$$u = C_c(p)y^c - C(p)y$$

Which can be rewritten into the RST structure :

$$u = \frac{Ty^c - Ry}{S}$$

FIGURE – THE schéma

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

Sensitivities

Disturbance sensitivity

• The transfer between the disturbance d and the error ε :

$$\varepsilon = \frac{-1}{1 + CG}d$$

Sensitivity: definition

$$S = \frac{1}{1 + CG}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

Sensitivities Model uncertainty sensitivity

- We can define the transfer between the reference y^c and the output y: $H = \frac{y}{y^c} = \frac{R_c CG}{1 + CG}$
- What happens if a small variation ΔG is applied on the model. What is ΔH ?

Sensitivity - property

$$\frac{\Delta H}{H} = S \frac{\Delta G}{G}$$

• We want to find C so that S is as small as possible!

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples Conclusions

Sensitivities

Complementary sensitivity

• Making S close to 0 is equivalent to making (1 - S) close to 1

Complementary sensitivity : definition

$$T = 1 - S = \frac{CG}{1 + CG}$$

We have

$$H = \frac{R_c CG}{1 + CG} = TR_c$$

- The R_c pre-compensation is not necessarily required.
- We can therefore choose $R_c=1$ and we get the simplified schema :

Control Science (AUT)

Romain Bourdais

Introduction Sensibilities

Stability Examples

Sensitivities

A major remark : $R_c = 1$

We often reason about

- We have $\varepsilon = S(y^c d)$
- Reference and disturbance play almost the same role on the deviation
- In the exercises: the main specifications are on \(\frac{y}{y^c} \) and therefore \(T \) but \(S \) is hidden! In engineering problems, it is on \(S \) that the main specifications are imposed
- $R_c = 1$ is not absolute law ...

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

Stability

One definition among others

• Given the transfer $G(p) = \frac{B(p)}{A(p)}$

Sensibilities

Introduction

Control Science (AUT)

Romain Bourdais

CentraleSupélec

Examples

Conclusions

Selected definition

A linear system is asymptotically stable if and only if its impulse response is absolutely integrable.

Characterization

G is AS if and only if all its poles have a strictly negative real part.

- A tool already seen: the Routh criterion (see ST2 Modelisation)
- A useful tool... Matlab

Stability

Open Loop - Closed Loop Relationship

Relationship between L and $\frac{1}{1+L}$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

Cauchy's theorem

Back to complex functions

- Let us consider F(p), a meromorph complex function. Let us consider C
 a closed contour.
- Z : number of zeros of F, P : number of poles of F inside the closed contour C

Cauchy's theorem

- When p is moving on the contour C, F(p) describes a closed path
- N : number of rotations of F(p) around 0, counted in the same direction of travel.

$$N = Z - P$$

Control Science (AUT)

Romain Bourdais

CentraleSupélec

Introduction Sensibilities

CHSIDIIIIICC

bility

Examples

Nyquist Criterion

Cauchy's theorem application to stability analysis

- We look at the transfer $\frac{1}{1+L}$
- Stability condition : no zeros with positive real part for (1 + L)

The contour of Bromwich

- The image of the Bromwich's contour by the 1 + L(p) function must therefore do: -P turns around 0!
- How to link this to L(p) and not 1 + L(p)?

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

otability

Examples

Nyquist Criterion

Cauchy's theorem application to stability analysis : From 1 + L to L

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

bility

Examples

Conclusions

- 1st observation :
 - The image of the Bromwich's contour by the 1 + L(p) function must therefore do: -P turns around 0!
 - Consequently, the image of the Bromwich's contour by the L(p) function must therefore do: -P turns around -1! (clockwise direction)

Nyquist plot

The Nyquist plot of L is the image of the Bromwich contour by the L(p) function.

- It is a closed curve.
- · 2nd observation :
 - 1 + L and L have the same poles
 - P is the number of poles of L with a positive real part

Nyquist Criterion

The criterion, finally, we can get it!

• Let us denote with P the number of poles of L(p) with a positive real part.

Nyquist criterion

The transfer $S = \frac{1}{1+L}$ is asymptotically stable if and only if the Nyquist plot of L encircles P times the point -1 counter-clockwisely!

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples Conclusions

Nyquist plot How to draw it?

Control Science (AUT)

Introduction

Sensibilities

tability

Examples

- Part 1 : p = jw : everything is provided by the Bode diagrams!
- Part 2: p = -jw: it is the symmetrical of 1 with respect to the abscissa axis.
- Part 3: p = Re^{iΘ}, with R → ∞: it's a
 point for any proper system. (this point is
 the origin if the system is strictly proper)

Nyquist plot The little subtility ...

Control Science (AUT)

Romain Bourdais

CentraleSupélec

Introduction

Sensibilities

tability

Examples

- We make indentations . . . = we go around!
- The Nyquist plot is still a closed curve
- As a consequence :there are infinite phenomena happening on the Nyquist plot (half-turn, turn, 1 turn and a half, ...)

My first Nyquist To warm up

$$\frac{K}{1+\tau\mu}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

My first Nyquist To warm up, the opposite

$$\frac{-K}{1+ au p}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

My first Nyquist

To warm up, with a little help of Matlab

$$\frac{K}{1+\tau p}, \quad \frac{-K}{1+\tau p}$$

Romain Bourdais CentraleSupélec

Control Science (AUT)

Introduction

Sensibilities

Stability

Examples

Conclusions

The code

Model:

- k=5; tau=1;
- p=tf('p');
- sys=k/(1+tau*p);sys2=-k/(1+tau*p);

Plots:

- figure
- bode(sys,'r',sys2,'b')
- nyquist(sys,'r',sys2,'b')

My first Nyquist

To warm up, with a little help of Matlab

$$\frac{K}{1+\tau p}, \quad \frac{-K}{1+\tau p}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

My first Nyquist To warm up, with a little help of Matlab

$$\frac{K}{1+\tau p}, \quad \frac{-K}{1+\tau p}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Nyquist for system with integral action Indentation ... Bypass! Bypass! Half turn

$$\frac{K}{p(1+\tau p)}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Nyquist for system with integral action Indentation ... Bypass! Bypass! Half turn, the opposite

$$\frac{-K}{p(1+\tau p)}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Nyquist for system with double integral action Indentation ... Bypass! Bypass! Full turn

$$\frac{K}{p^2(1+\tau p)}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

Nyquist - the trap A matter of good direction

$$\frac{K}{(1-p)(2+p)}$$

$$\frac{-K}{(1-p)(2+p)}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Examples

Nyquist - the trap A matter of good direction

$$\frac{K}{(1+p)(2-p)}$$

$$\frac{-K}{(1+p)(2-p)}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

Nyquist - A last one for the road The case of the oscillator

$$\frac{K}{(p+2)(p^2+4)}$$

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability

....

Course report

Control Science (AUT)

Romain Bourdais

Introduction

Sensibilities

Stability Examples

Conclusions

Expected skills

- Impact of the closed loop on sensitivity
- Drawing the Nyquist plot for a given transfer
- Determine its stability in CL using the Nyquist criterion