ΤΕΣΤ 2.5-2.6-2.7

Όνομα:

Επώνυμο:

Βαθμός:

- 1. Να κυκλώσετε το γράμμα της σωστής απάντησης
- α) Αν μία συνάρτηση f είναι συνεχής στο [α,β] και παραγωγίσιμη στο (α,β) τότε σύμφωνα με το Θ.Μ.Τ.
- A. υπάρχει $\xi \in (\alpha, \beta)$ τέτοιο ώστε: $f'(\xi) = 0$

Β. υπάρχει
$$\xi$$
 \in $(\alpha$, β) τέτοιο ώστε: $f(\xi) = \frac{f(\beta) - f(\alpha)}{\beta - \alpha}$

Γ. υπάρχει
$$\xi$$
 \in $(\alpha$, β) τέτοιο ώστε: $f(\beta) - f(\alpha) = f'(\xi) \cdot (\beta - \alpha)$

Δ. υπάρχει
$$\xi \in [\alpha, \beta]$$
 τέτοιο ώστε: $f'(\xi) = \frac{f(\beta) + f(\alpha)}{\beta + \alpha}$

- Ε. Δεν αρκούν οι προϋποθέσεις για την εφαρμογή του Θ.Μ.Τ. στο [α,β]
- β) Αν $f'(x) = \frac{1}{x}$ για $x \neq 0$, τότε:

A.
$$f(x)=lnx$$
 B. $f(x)=\ln|x|+c$ Γ . $f(x)=\begin{cases} \ln(-x), x<0\\ lnx, x>0 \end{cases}$

$$\Delta. \ f(x) = \begin{cases} \ln|x| + c_1 & , x < 0 \\ \ln|x| + c_2 & , x > 0 \end{cases}$$
 E. $f(x) = \ln|x|$

y) H sunárthsh
$$f(x) = \frac{x^3 - 9x}{x^2 - 1}$$

- Α. Είναι γνησίως αύξουσα
- Β. Είναι γνησίως αύξουσα κατά διαστήματα
- Γ. Είναι άρτια

- Δ. Δεν έχει ρίζες
- Ε. Πληροί τις προϋποθέσεις του Θ.Μ.Τ. στο [-1,1]
- δ) Αν για την παραγωγίσιμη συνάρτηση f στο $\mathbb R$ ισχύει: $f^3(x)+f(x)=e^x+x+1$, για κάθε $x\in\mathbb R$ τότε
- A. f(0)<0 Β. Η f είναι γνησίως φθίνουσα Γ. Η $C_{\rm f}$ τέμνει τον άξονα y'y στο σημείο (0,2)
- Δ. Η C_f περνά από την αρχή των αξόνων Ε. Η f δεν έχει τοπικά ακρότατα
- 2. Να γράψετε Σ (Σωστό) ή Λ (Λάθος) για τις παρακάτω προτάσεις
- α) Αν η f είναι παραγωγίσιμη στο [α,β], εφαρμόζεται το Θ.Μ.Τ στο [α,β]
- β) Αν εφαρμόσουμε Θ.Μ.Τ. για την $f(x)=x^2+4x$ στο [0,2], βρίσκουμε ότι στο σημείο M(1,5) η εφαπτομένη της C_f είναι παράλληλη προς την ευθεία AB, με A(0,f(0)) και B(2, f(2))

- γ. Αν f'(x) = 0 για κάθε $x \in \mathbb{R} \setminus \{0\}$, τότε η f είναι σταθερή συνάρτηση στο $\mathbb{R} \setminus \{0\}$
- δ. Αν η f είναι γνησίως φθίνουσα στο $(-00,\alpha]$ και γνησίως αύξουσα στο $[\alpha, +00)$ και $f(\alpha)=0$, τότε η $x=\alpha$, είναι η μοναδική ρίζα της f(x)=0 και το 0 είναι το ελάχιστο της f
- ε. Αν $f^{\,\prime}(x_o){=}0$, τότε το $f(x_o)$ είναι τοπικό ακρότατο της f