

RECONHECIMENTO INTELIGENTE DE LOCUTORES NA MODALIDADE INDEPENDENTE DO DISCURSO

Matheus Yoshimitsu Tamashiro Pires Lanzo UNESP IBILCE/São José do Rio Preto

INTRODUÇÃO

OBJETIVOS

Identificar diferentes locutores utilizando de algoritmos de análise de sinais, de forma a possibilitar a comparação de características temporais e espectrais e de classificadores diversos, analisando os resultados por meio de validações cruzadas.

MATERIAL E MÉTODOS

RESULTADOS

Tabela 1. Resultados do Método Distância Euclidiana

Distância Euclidiana (Treino vs Teste)	Precisão (Acurácia)
10 vs 1	70,0%
9 vs 2	65,0%
8 vs 3	63,3%
7 vs 4	55,0%

Tabela 2. Resultados do Método SVM

SVM (Treino vs Teste)	Precisão (Acurácia)
10 vs 1	85,0%
9 vs 2	80,3%
8 vs 3	73,3%
7 vs 4	65,0%

CONCLUSÃO

Mesmo sem um alto número de sinais de voz disponíveis para obter um resultado ótimo em *machine learning*, é possível extrair altas porcentagens de precisão na identificação de locutores, mostrando então uma área de pesquisa em expansão e que apresenta grande utilidade em diversos cenários, sejam eles industriais ou acadêmicos, percorrendo desde o uso em assistentes de voz, até mesmo em níveis de segurança, como senhas.

REFERÊNCIAS BIBLIOGRÁFICAS

DENG, L.; O'SHAUGHNESSY, D. Speech processing: a dynamic and optimization-oriented approach. [s.l.] New York Marcel Dekker, 2003.

GUIDO, R.C. ZCR-aided neurocomputing: a study with applications. Knowledge-based Systems, v. 105, pp.248-269, 2016.

RABINER, L. R.; SCHAFER, R. W. Theory and applications of digital speech processing. Upper Saddle River: Pearson, 2011.

AGRADECIMENTOS

