

DISTRIBUTED RAY TRACING WITH INTEL® OSPRAY & PARAVIEW

Carson Brownlee - Intel

Ray casting

dataset: parachute; simulation: Dr M. Barad, NASA Ames; visualization: Tim Sandstrom, NASA Ames

AMR - Cosmic Strings

Paul Shellard - Amelia Drew - Kacper Kornet Carson Brownlee

Distributed Data

```
// Determine the bounds of this rank's region in world space
const vec3f distribBrickDims = worldBounds.size() / vec3f(distribGrid);
box3f localRegion(distribBrickId * distribBrickDims + worldBounds.lower,
    distribBrickId * distribBrickDims + distribBrickDims
        + worldBounds.lower);
// Special case for the ospray test data: we might have geometry right at
// the region bounding box which will z-fight with the clipping region. If
// we have a region at the edge of the domain, apply some padding
for (int i = 0; i < 3; ++i) {
  if (localRegion.lower[i] == worldBounds.lower[i]) {
    localRegion.lower[i] -= 0.001;
  if (localRegion.upper[i] == worldBounds.upper[i]) {
    localRegion.upper[i] += 0.001;
// Set our region that represents the bounds of the local data we own on
// this rank
world.setParam("region", cpp::CopiedData(localRegion));
world.commit();
```


Intel® Xeon® Platinum 8280L CPU; @ 2.70GHz

Intel® Optane™ DC Persistent Memory

Intel® Omni-Path Edge Switch

Cluster Totals

- 3840GB DDR RAM (10 x 384GB)
- 30TB Optane™ DC NVDIMM (10 x 3TB)
- 20 Intel® Xeon 8280L CPUs
- 560 Cores 1120 Threads
- Total size: 21U

Default ParaView AMR Volume Rendering

AMR Volume is resampled into a regular grid

- Processing time
- Memory
- Grid artifacts

Direct AMR Volume Rendering with OSPRay

Berger-Colella overlapping AMR

Rays directly sample AMR grid

* "CPU Volume Rendering of Adaptive Mesh Refinement Data", Wald and Brownlee '17.

Performance

FPS shown at 1MP resolution.

Older hardware - Two Intel Xeon E5-2699 v4 CPUs. 44 cores (88 threads) running at 2.2 GHz. 256 GB of RAM.

lvl1 - lvl4 refinement levels of landing gear

LandingGear 57GB	lvl0	lvli	lvl2	lvl3	lvl4	knl4
Cells	4	8	52	560	2056	2056
Current	13.12	13.09	8.44	5.35	4.29	2.36
Basis	11.40	11.34	5.79	2.54	1.83	0.99
Blend	12.44	12.12	7.78	4.84	3.88	2.08
Finest	14.65	13.91	9.67	6.31	5.28	2.94
BHM 28GB	lvl0	lvl1	lvl2	lvl3	lvl4	knl4
Cells	4096	4098	4106	4114	-	4114
Current	25.00	24.96	25.26	25.58	-	14.52
Basis	29.57	28.59	28.52	27.49	-	15.86
Blend	24.94	25.64	25.36	24.32	-	14.32
Finest	30.48	29.17	26.36	26.25	-	14.93
Sphere 6GB	lvl0	lvli	lvl2	lv13	lvl4	knl4
Cells	1024	1034	1214	-	-	1214
Current	3.79	3.64	3.57	-	-	2.22
Basis	3.87	3.89	3.76	-	-	2.43
Blend	3.76	3.59	3.47	-	-	2.15
Finest	4.36	4.27	4.19	-	-	2.77
LLNL 8GB	lvl0	lvli	lvl2	lvl3	lvl4	knl4
Cells	31k	56k	29M	-	-	29M
Current	4.89	4.31	3.36	-	-	1.833
Basis	5.51	4.35	2.76	-	-	1.53
Blend	4.77	4.07	3.06	-	-	1.68
Finest	5.74	5.72	4.65	-	-	2.61
DNS 7GB	lvl0	lvl1	lvl2	lvl3	lvl4	knl4
Cells	6144	399k	24M	-	-	24M
Current	44.51	22.55	5.67	-	-	2.88
Basis	50.71	14.08	2.75	-	-	1.12
Blend	45.13	22.31	5.52	-	-	2.78
Finest	52.81	24.71	6.53			3.49

The problem of Parallelism

Resident Data

Remote Data

Wombat (WIP)

"Convexify" the regions

Miren Radia

Wombat

Pros

Parallel AMR

Only minor modifications to host application (ParaView)

* currently implemented in OSPRay

Convexify operation can be done as independent middleware in the future for any application

Cons

"Convexify" overhead

Host Application needs to use OSPRay for rendering **and** compositing

Questions?

