Tool for Logistic Regression

Team member: Xuanyi Fu, Qianqi Huang, Shaohua Shen, Shangshang Wang, Rong Yang

Overview

This is a tool built for performing regression analysis on the dataset given with utilization of logistic regression .

It supports automatic logistic regression model generated by scikit_learn library and manual model by user.

User can plot data points with our frontend. Besides, the result of analysis will be stored in file and be presented in frontend graph.

Table of Contents

01

Prerequisite

How to set up environment for running the tool

Manual

How to start an analyzation with the tool

Technology

Technical skills supporting the tool

Prerequisite

Prerequisite

First you need to have python 3 installed on your device, and then use 'pip install' command to install the following libraries and packages.

For creating static, animated, and interactive visualizations

For comprehensive mathematical functions and more

For fast and simpleto-learn GUI programming For built-in ready-touse logistic regression model

After Libraries Installed ...

Use python command run main.py in the root directory of the project. A frontend will show up as below

Import Data Set

Data Points CSV:	Browse
Label CSV:	Browse

Here, user can browse local files to import data points and labels for training and testing. In a standard data points csv file, a row is a piece of data and each column stands for a feature value. A standard label csv should contains rows of 0s and 1s, which represents the logistic label for the associated data.

19	19000	
35	20000	
26	43000	
27	57000	
19	76000	
27	58000	
27	84000	
	35 26 27 19 27	35 20000 26 43000 27 57000 19 76000 27 58000

1	0		
2	0		
3	0		
4	0		
5	0		
6	0		
7	0		
8	1		
9	0		

Data points csv example

Label csv example

Set customized weight

Use Cutomized Weight	
Customized Weight CSV:	Browse
Customized Bias CSV:	Browse

Here, user can click to choose whether he/she would like to use manual logistic regression model. If yes, the user can browse local files to import customized weights and bias values. The dimension of weights and bias should be correct according to the dimension of data points. For example, if data points is a $N \times M$ (row × column) matrix, then weights should be $M \times 1$ and bias should be $N \times 1$.

1	0.01		
2	0.005		
3	0.0006		

Weight csv example

1	0.1
2	0.1
3	0.1
4	0.1
5	0.1
6	0.1
7	0.1
8	0.1
9	0.1
10	0.1
11	0.1

Bias csv example

Here, user can enter the regularization strength of the model and choose the test size, which sets how much data will be used for testing.

Plot data points

By clicking **Plot Data Points**, user can plot the data set in the frontend with labels represented by different colors.

Data points plot example

Get the model

By clicking **Run**, user can get the model generated with logistic regression and results will be stored in metrics.json. Cost value will be shown in the frontend just on the right of **Run** button. If the user chose to use automatic logistic regression, a file contains fitted weights will be generated and stored. The directory of saved files will be shown on right.

Contents of metrics.json

```
"0.0": {
  "precision": 0.725,
  "recall": 1.0,
  "f1-score": 0.8405797101449275,
  "support": 58
"1.0": {
  "precision": 0.0,
  "recall": 0.0,
  "f1-score": 0.0,
  "support": 22
"accuracy": 0.725,
"macro avg": {
 "precision": 0.3625,
  "recall": 0.5,
  "f1-score": 0.42028985507246375,
  "support": 80
"weighted avg": {
  "precision": 0.525625,
  "recall": 0.725,
  "f1-score": 0.6094202898550725,
  "support": 80
```

Technology

Technical Skills

- Cost value calculation can be customized by using manual logistic regression model with user-specified weights and bias values through our frontend UI.
- We use log loss as our cost function. Each time when the user changes input parameters, our tool would recalculate the cost value and output to the frontend.

