Ecosphere

Riparian soil nitrogen cycling and isotopic enrichment in response to a long-term salmon carcass manipulation experiment

Megan L. Feddern, Gordon W. Holtgrieve, Steven S. Perakis, Julia Hart, Hyejoo Ro, Thomas P. Quinn

Appendix S1

Equation S1: Mixing model calculation applied to Quinn et al. (2018) data where %MDN is the percentage of MDN in a given sample, TEM is the terrestrial end member (δ^{15} N value representing 0% MDN), MEM is the marine end member (δ^{15} N value representing 100% MDN) which is typically 12.65‰ for sockeye salmon. SAM values were the mean enhanced (10.7‰) and mean depleted (7.65‰) values; TEM was the mean control value from white spruce >50m from Hansen Creek edge (-1.74‰) from Quinn et al. (2018). MEM were the maximum and average δ^{15} N of NH₄⁺ observed in this study.

$$\%MDN = \frac{\text{SAM - TEM}}{\text{MEM - TEM}} * 100$$

Table S1: The candidate model set tested for each response variable using AIC analysis. * denotes models used for all response variables, additional models were used for net mineralization and net nitrification where substrate represents organic nitrogen concentration and NH₄⁺ concentration, respectively. For $\delta^{15}N$ data, GW was not tested as a covariate and total [N] was tested instead. The three tested hypotheses are: 1) a bank and/or distance effect caused by site variability and not salmon; 2) a bank and distance effect as a quadratic interaction indicting a response to salmon manipulation, and 3) no difference caused by distance and bank indicating support for the other covariates tested. Response variables include: $\delta^{15}N$ and $\delta^{13}C$ of bulk soil, $\delta^{15}N$ of NH₄⁺, [NH₄⁺] and [NO₃⁻], net mineralization and net nitrification, [N_{org}], gravimetric water content (GW), and C:N.

Candidate Model Set	Hypothesis
*Response Variable = bank + ε	1
*Response Variable = bank + $GW + \varepsilon$	1
*Response Variable = $ln(distance) + GW + \epsilon$	1
*Response Variable = $ln(distance) + \epsilon$	1
*Response Variable = bank + $ln(distance)$ + bank: $ln(distance)$ + $ln(distance)^2$:bank + GW + ϵ	2
*Response Variable = bank + $ln(distance)$ + bank: $ln(distance)$ + ϵ	1
*Response Variable = bank + $ln(distance)$ + bank: $ln(distance)$ + GW + ϵ	1
*Response Variable = bank + $ln(distance)$ + bank: $ln(distance)$ + $ln(distance)^2$:bank + ϵ	2
*Response Variable = bank + $ln(distance) + bank + \epsilon$	1
*Response Variable = bank + $\ln(\text{distance})$ + bank + GW + ϵ	1
*Response Variable = $GW + \varepsilon$	3
Response Variable = bank + substrate + ε	1
Response Variable = $ln(distance) + substrate + \varepsilon$	1
Response Variable = bank + GW + substrate + ε	1
$Response\ Variable = bank + ln(distance) + bank:ln(distance) + GW + substrate + \epsilon$	2
Response Variable = bank + $ln(distance)$ + bank: $ln(distance)$ + substrate + ϵ	1
Response Variable = bank + $ln(distance)$ + bank: $ln(distance)$ + GW + substrate + ϵ	2
$Response\ Variable = bank + ln(distance) + bank:ln(distance) + ln(distance)^2:bank + GW + substrate + \epsilon$	2
$Response\ Variable = bank + ln(distance) + bank:ln(distance) + ln(distance)^2:bank + substrate + \epsilon$	2
Response Variable = bank + $ln(distance) + GW + substrate + \epsilon$	1
Response Variable = bank + $ln(distance) + substrate + \varepsilon$	1
Response Variable = substrate + ε	3
Response Variable = $GW + substrate + \varepsilon$	3

Table S2: Summary statistics mean (standard deviation) of each response variable

Distance Bank	1 m		3 m		6 m		10 m		20 m	
	Enhanced	Depleted	Enhanced	Depleted	Enhanced	Depleted	Enhanced	Depleted	Enhanced	Depleted
Bulk δ ¹⁵ N (‰)	7.4(2.3)	7.2(1.9)	9.2(1.0)	7.8(2.2)	8.5(1.9)	6.9(1.2)	8.2(1.5)	7.3(1.6)	6.5(1.0)	6.6(1.2)
Bulk δ ¹³ C (‰)	-27.1(0.6)	-27.2(0.4)	-26.9(0.5)	-27.1(0.6)	-26.6(0.5)	-26.7(0.3)	-26.5(0.5)	-26.6(0.3)	-26.4(0.5)	-26.4(0.4)
δ^{15} N of NH ₄ ⁺ (‰)	10.1(1.8)	8.7(2.8)	16.2(10.7)	8.5(2.5)	13.3(10.5)	6.3(2.8)	8.4(2.5)	5.8(2.9)	6.1(2.3)	6.5(3.3)
[NH ₄ ⁺] (μg N g ⁻¹)	47.5 (91.6)	22.3(16.4)	62.9(101.5)	10.6(9.4)	52.5(82.8)	11.0(12.7)	12.3(13.1)	11.5(8.2)	8.6(4.4)	13.2(11.6)
[NO ₃ -] (μg N g-1)	6.0(5.4)	3.4(4.4)	10.8(13.5)	4.3(4.7)	7.6(8.0)	3.3(2.8)	2.4(2.3)	4.0(4.2)	2.8(2.8)	1.7(1.2)
Net Mineralization (µg N g ⁻¹ d ⁻¹)	2.8(2.0)	1.8(1.2)	4.4(5.2)	1.1(1.0)	2.1(3.6)	3.0(3.6)	1.2(1.1)	1.4(1.0)	1.1(1.5)	2.3(1.9)
Net Nitrification (μg N g ⁻¹ d ⁻¹)	1.7(1.6)	1.2(1.4)	3.4(4.5)	0.8(1.2)	2.8(2.9)	1.7(1.9)	1.0(0.9)	1.4(0.8)	0.6(0.7)	1.6(1.9)
[N _{Org}] (mg N g ⁻¹)	22.0(4.7)	19.11(5.8)	18.0(8.2)	19.7(7.6)	17.7(6.6)	19.5(8.5)	13.0(6.3)	18.4(8.9)	9.5(3.3)	13.9(5.5)
GW	2.6(1.1)	3.2(1.6)	2.4(1.5)	2.2(1.1)	2.2(1.5)	2.8(2.2)	1.5(0.9)	2.6(1.8)	1.4(0.6)	1.9(0.8)
C:N	11.9(1.4)	11.2(1.1)	11.7(1.6)	10.9(1.5)	12.8(2.2)	12.1(2.7)	14.2(1.7)	12.1(1.9)	17.0(2.0)	14.1(3.0)
% Nitrification	54.8(44.7)	67.9(43.8)	75.4(35.5)	49.3(39.7)	75.7(36.2)	53.1(39.0)	65.9(36.4)	87.9(15.8)	50.6(33.5)	56.2(39.2)
% C	30.0(5.5)	25.5(8.8)	26.4(10.1)	24.7(9.7)	25.7(8.2)	27.5(13.3)	21.3(8.8)	25.2(11.7)	19.0(6.7)	21.2(6.7)

Figure S1: Predicted verse observed values and predicted verse residuals for the model with the most support (Table 1, Figure 2) for each the response variables

