# CSSE2310/7231 — B.1

Networking continued

# **IP** Headers

# Things from IP header

- ► Packet length
  - ▶ 2<sup>16</sup> bytes including header
- Protocol
  - ▶ Which transport layer protocol should get this message?
- ► TTI
  - ► Reduced each time the packet reaches an interface
  - ► Packet is dropped if TTL reaches 0

# ping

- 1. Send a message to a device
- 2. (hopefully) it sends a copy back
- 3. Calculate travel time

#### traceroute

#### Demo

- ▶ Send out a packet with TTL=1 from N<sub>0</sub>
- Packet reaches N<sub>1</sub>
- Packet is dropped
- $\triangleright$   $N_1$  sends an ICMP message back to  $N_0$ 
  - ► N<sub>1</sub>: "Just thought you should know ..."
  - $ightharpoonup N_0$ : "Oh how surprising"
  - $\triangleright$   $N_0$  now knows  $N_1$ 's address
- ▶ Send out a packet with TTL=2 from  $N_0$
- Packet travels through N<sub>1</sub>
- ► Packet reaches N<sub>2</sub>
- Packet is dropped
- **.**..

# IPv4 structure

- ▶ v4 Addresses = 32 bits
- Divided into network and host parts
  - Network comes part starts with the most significant bit
  - eg: moss is 130.102.72.9
  - ► 130.102 | 72.9
  - ► 10000010.01100100 | 01001000.00001001
- ▶ UQ public addresses look like 130.102.?.?

#### "subnet size"

- Increasing the number of bits in the network part means a "smaller" network.
- eg 16 bits for the network part means 16 bits for host addresses = 65536 possible host addresses.
- ▶ 18 bit network part would allow more networks but each network has "only" 16384 possible host addresses.

# Routing?

When sending a message, the network layer needs to make a decision:

- 1. Send direct to the destination
  - ► Find the MAC of the destination
- 2. Send via another machine
  - ► Find the MAC of the intermediary

Option #1 will only work if the destination is directly reachable at Layer 2.

#### subnets

- An organisation's network can be divided into subnets.
- ► A host can directly communicate with everything on the same subnet.
- Broadcasts will reach all hosts in the subnet.

For the rest of this discussion, we'll use network and subnet interchangably.

To communicate, a host needs to know both its IP address and which (sub)network it belongs to.

Can describe the subnet in two ways:

- ► CIDR<sup>1</sup> notation
- subnet mask

<sup>&</sup>lt;sup>1</sup>Classless Inter-Domain Routing

### Method 1 — CIDR

eg 130.102.0.0 / 16

- ► Set all host bits to 0
- $\blacktriangleright$  The value after / is how many bits are in the network part 130.102.12.0 / 24
  - ▶ Subnet of all addresses starting with 130.102.12.

## **CIDR**

```
/x networks, x does not need to fall on a byte boundary (/8, /16, /24)
```

These describe different networks

- ► 130.102.12.0 / 24 = "roughly" 254 host addresses
- ► 130.102.12.0 / 23 = "roughly" 510 host addresses

```
/24 \Rightarrow 130.102.00001100.????????

/23 \Rightarrow 130.102.0000110?.????????
```

```
So 130.102.00001101.00000110 == 130.102.13.6 belongs to 130.102.12.0 \ / \ 23 but not 130.102.12.0 \ / \ 24
```

"Roughly?"

Each subnet will have two addresses reserved:

- All host bits = zero (minimum host address)
  - "network address"
- ► All host bits = one (maximum host address)
  - "broadcast address"

So subnet A.B.C.D / x has 32 - x host bits and  $2^{32-x} - 2$  usable host addresses<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup>/31 is a special case

### Method 2 — netmask

A netmask = a bit pattern which will map<sup>3</sup> any IP address to the corresponding network address.

- 1. Set all network bits to 1.
- 2. Set all host bits to 0.

For example: / 24

Mask would be 255.255.255.0

- ightharpoonup 130.102.24.17  $\rightarrow$  130.102.24.0
- ightharpoonup 130.102.24.250 ightharpoonup 130.102.24.0
- ightharpoonup 130.102.21.16  $\rightarrow$  130.102.21.0

<sup>&</sup>lt;sup>3</sup>under bitwise AND

# Example

130.102.160.0 / 20 (160 = 128 + 32) 130.102.10100000.00000000 Network bits are:

130.102.1010 0000.00000000

netmask:

255.255.1111 0000.00000000 So netmask is 255.255.240.0

- ►  $130.102.163.19 \rightarrow 130.102.160.0$  yes
- ▶  $130.102.171.99 \rightarrow 130.102.160.0$  yes
- ►  $130.102.176.14 \rightarrow 130.102.176.0$  no

# Valid?

## Which of the following are<sup>4</sup> valid netmasks?

$$192 = 128 + 64$$

$$208 = 128 + 64 + 0 + 16$$

$$224 = 128 + 64 + 32$$



## Exercise

What is the broadcast address for use by: 117.98.141.19 netmask=255.254.0.0?

Netmask tells us that the network is: 117.98.0.0/15 01110101.01100010.00000000.00000000/15

```
Setting the 32-15=17 least significant bits to 1 gives: 01110101.0110001 0.00000000.00000000/15 01110101.0110001 1.111111111.11111111/15 = 117.99.255.255
```

#### Exercise

Give the CIDR form and netmask for the largest network which

- Includes:
  - **1**00.89.19.80
  - ▶ 100.89.19.82
- Does not include:
  - ▶ 100.89.19.97

|     |              | 01100100.01011001.00010011.01 0 10000 |
|-----|--------------|---------------------------------------|
| yes | 100.89.19.82 | 01100100.01011001.00010011.01 0 10010 |
| no  | 100.89.19.97 | 01100100.01011001.00010011.01 1 00001 |

- ► So 100.89.19.80 / 27 is as big as possible without including 97.
- ► Netmask = 255.255.255.224

# Special networks

(From RFC 6890).

### non-routable / "link local" addresses

Addresses from the following networks should not be used on the public internet:

- **▶** 10.0.0.0/8
- ► 172.16.0.0/12
- **▶** 192.168.0.0/16
- **▶** 169.254.0.0/16
  - For auto config when you can't get a real address

# Special networks

All addresses in 127.0.0.0/8 are "loopback" addresses:

- ▶ Including but not limited to 127.0.0.1
- $\triangleright$  Yes, that's  $2^{24} 2$  addresses
- ▶ ... what?

# Request For Comment

RFCs describe critical protocols for the internet and are publically available.

eg: http://tools.ietf.org/html/rfc1178

- ► SSH #4253 (and others)
- ► HTTP/1.1 #7230 (and others)

# Request For Comment

### Not all are of uniform importance:

- ► Chosing a name for your computer #1178
- ▶ IP over Avian carriers #1149
- ▶ ... with Quality of Service #2549
- ▶ ... for IPv6 #6214

## NAT — overview

- ► Host X=10.0.20.15 wants to connect to address G (on the public internet).
  - Address information will be: {src-ip=X, src-port=sp, dest-ip=G, dest-port=80}
- Packet arrives at G.
- ► G tries to reply, with:
  - {src-ip=G, src-port=80, dest-ip=X, dest-port=sp}
- ▶ Reply doesn't go anyhere because nobody knows where X is.

#### NAT

#### NAT = Network Address Translation

- 1.  $X \rightarrow ... \rightarrow R \rightarrow ... \rightarrow G$ {src-ip=X, src-port=sp, dest-ip=G, dest-port=80}
- 2. Packet arrives at R.
- R modifies address information {src-ip=R, src-port=np, dest-ip=G, dest-port=80}
- 4. . . .
- 5. G recieves packet and replies {src-ip=G, src-port=80, dest-ip=R, dest-port=np}
- 6. . . .
- R recieves packet and modifies info: {src-ip=G, src-port=80, dest-ip=X, dest-port=sp}
- 8. X recieves the message

### NAT

- ► This only works because *R* remembers that port *np* corresponds to port *sp* on *X*
- ▶ R does not need to be directly connected to X or G.
  - ► It needs to be somewhere before the packets with local addresses leaks onto the public internet.