General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

SA-NCDOMNELL DOVG

(NASA-CR-173985) ADVANCED COMFOSITE VERTICAL STABILIZER FOR DC-10 TRANSPORT AIRCRAFT Quarterly Technical Progress Report, 27 Mar. - 25 Jun. 1978 (Douglas Aircraft Co., Inc.) 99 p Bc A05/MF A01

N84-34573

G3/24 Unclas G3/24 24035

ADVANCED COMPOSITE VERTICAL STABILIZER FOR DC-10 TRANSPORT AIRCRAFT

CONTRACT NAS1-14869

FIFTH QUARTERLY TECHNICAL PROGRESS REPORT 27 MARCH 1978 THROUGH 25 JUNE 1978

DOUGLAS AIRCRAFT COMPANY

MCDONNELL DOUGLA

CORPORATION

ACEE-03-PR-8484 26 JULY 1978

DRL ITEM NUMBER 005

FIFTH QUARTERLY TECHNICAL PROGRESS REPORT 27 MARCH THROUGH 25 JUNE 1978

ADVANCED COMPOSITE VERTICAL STABILIZER FOR DC-10 TRANSPORT AIRCRAFT

PREPARED FOR LANGLEY RESEARCH CENTER CONTRACT NAS1-14869

ACDONNELL DOUGLAS

DRL Item Number 005

FIFTH QUARTERLY TECHNICAL PROGRESS REPORT

27 March through 25 June 1978

Prepared by:

C. O. Stephens

Engineering Supervisor

DC-10 Composite Vertical Stabilizer

Approved by:

G. M. Lehman

Project Manager

DC-10 Composite Vertical Stabilizer

Approved by:

D. G. Smillie

Project Manager

Composite Primary Structures

Approved by:

M. Stone, Director

Design Engineering

Structures

Approved by:

M. Klotzsche

Program Manager, ACEE

PRECEDING PAGE BLANK NOT FILMED

PRECEDING PAGE GLANK NOT FLOOR

FOREWORD

This report was prepared by the Douglas Aircraft Company, McDonnell Douglas Corporation, Long Beach, California, under Contract NAS1-14869. It is the fifth quarterly technical progress report covering work performed between 27 March 1978 and 25 June 1978. The program is sponsored by the National Aeronautics and Space Administration, Langley Research Center (NASA-LRC). Mr. Marvin B. Dow is the Project Manager for NASA-LRC.

The following Douglas personnel were the principal contributors to the program during the reporting period: G. M. Lehman, Project Manager; C. O. Stephens, Engineering Supervisor; A. V. Hawley, Structural Development Supervisor; J. O. Sutton, Stress and Loads Analysis; P. W. Scott, Weight Analysis; H. M. Toellner, Material and Producibility Engineering; B. Lyon and A. T. Tucci, Manufacturing Engineering; and R. B. Anderson, Engineering Test Supervisor.

PRECEDING PAGE BLANK NOT FILMED

٧

SUMMARY

The structural design, fabrication, and test activities performed during the fifth quarterly report period are documented in this report. The structural design configuration for the Composite Vertical Stabilizer is described and the structural design, analysis, and weight activities are presented. The status of fabrication and test activities for the development test portion of the program is described. Test results are presented for the skin panels, spar web, spar cap to cover, and laminate properties specimens. Engineering drawings of verification test panels and root fittings, rudder support specimens, titanium fittings, and the rear spar specimen analysis model are included in Appendix A.

PRECEDING PAGE BLANK NOT FILMED

TABLE OF CONTENTS

SECTION		PAGI
1	INTRODUCTION	1
2	DETAIL DESIGN	5
	DESIGN DEVELOPMENT	5
	SKIN PANELS	7
	RIBS	7
	SPARS	8
	STRUCTURAL ANALYSIS	8
	WEIGHT STATUS	10
3	CONCEPT DEVELOPMENT TEST COMPONENTS	19
	SKIN PANEL COMPONENTS	19
	SPAR WEB COMPONENTS	22
	GALVANIC CORROSION SPECIMENS	26
	LIGHTNING EVALUATION PANEL	26
4	JOINT DEVELOPMENT TEST COMPONENTS	27
	RUDDER FITTING DESIGN	27
	SPAR CAP TO COVER SPECIMENS	27
5	MECHANICAL PROPERTIES SPECIMENS	31
	LAMINATE PROPERTIES DESIGN DATA	31
	FRACTURE MECHANICS DESIGN DATA	50
6	DESIGN VERIFICATION TEST COMPONENTS	51
	COVER PANEL VERIFICATION SUBCOMPONENT	51
	REAR SPAR BEAM	51
	SPAR ROOT BONDLINE FITTINGS	52
	REAR SPAR SPECIMEN ANALYSIS	52
7	QUALITY ASSURANCE	55
8	REFERENCES	57
	APPENDIX A - ENGINEERING DRAWINGS	59
	APPENDIX B (SUPPLEMENTARY ANALYSES)	73
	BUCKLING OF SINE-WAVE WEBS	74
	ALLOWABLE SHEAR BASED ON STRAIN	76

PRECEDING PAGE BLANK NOT FILMED

PRECEDING PAGE GLANK NOT FERMIN.

LIST OF FIGURES

FIGURE		PAGE
1	SUMMARY SCHEDULE	3
2	WAVEFORM FOR SPAR AND RIB	
	WEB STIFFENING	6
3	COMPOSITE STABILIZER ANALYSIS MODEL	9
4	TYPICAL WEIGHT BOUNDARY FOR A PARTICULAR	
	LAMINATE AND PANEL SIZE	11
5	MINIMUM WEIGHT BOUNDARY FOR A PARTICULAR	
	PANEL SIZE	12
6	ALLOWABLE SHEAR FOR A PARTICULAR LAMINATE	
	AND WAVE FORM	1.3
7	COMPOSITE VERTICAL STABILIZER WEIGHT TREND	17
8	FIRST Z5943428-501, PANEL SHEAR TEST SPECIMEN	20
9	SECOND Z5943428-501 PANEL SHEAR TEST SPECIMEN	21
10	TEST SETUP FOR HONEYCOMB SPAR WEB COMPONENT	23
11	FAILURE OF HONEYCOMB SPAR WEB COMPONENT	24
12	CURED SINEWAVE SPAR WEB COMPONENT PLM	25
13	FAILURE OF THE SINE-WAVE BOLTED SPECIMEN	29
14	SANDWICH BEAM STATIC TENSION SPECIMEN	42
15	CLOSEUP OF STATIC TENSION FAILURE IN	
	25/50/25 LAMINATE	43
16	CLOSEUP OF STATIC COMPRESSION FAILURE IN	
	25/50/25 LAMINATE	44
17	CLOSEUP OF STATIC COMPRESSION FAILURE IN	
	65/35/0 LAMINATE	45
18	BEARING AND SHEAROUT SPECIMEN	46
19	CLOSEUP OF FAILURE IN 25/50/25 LAMINATE (219°K)	47
20	CLOSEUP OF FAILURE IN 25/50/25 LAMINATE (AMBIENT)	48
21	CLOSEUP OF FAILURE IN 25/50/25 LAMINATE (350°K)	49
22	REAR SPAR ACTUATOR CUTOUT ANALYSIS MODEL	53
23	LIMIT CIRCUMFERENTIAL STRESS AT ACTUATOR CUTOUT	54
A1	DRAWING Z5943423-501 TITANIUM FITTING	61
A2	DRAWING Z5943445 SPECIMEN ASSEMBLY, COVER PANEL	62
A3	DRAWING Z5943452 SPECIMEN ASSEMBLY, SPAR ROOT FITTING	69
.A4	DRAWING Z5943453 SPECIMEN ASSEMBLY, HINGE SUPPORT RIB	70
A5	REAR SPAR TEST SPECIMEN ANALYSIS MODEL	72

PRECEDING PAGE BLANK NOT FILMED

LIST OF TABLES

TABLE	
1	PRELIMINARY WEIGHT COMPARISONS
2	WEIGHT CHANGE SUMMARY
3	WEIGHT DISTRIBUTION BY MATERIAL
4	SANDWICH BEAM TEST SPECIMENS
5	SANDWICH BEAM STATIC TENSION TESTS, Z3943432-1
6	SANDWICH BEAM STATIC TENSION TESTS, Z3943432-501
7	SANDWICH BEAM STATIC TENSION TESTS, Z3943432-503
8	SANDWICH BEAM STATIC COMPRESSION TESTS, Z3943432-1,
9	SANDWICH BEAM STATIC COMPRESSION TESTS, Z3943432-501
10	SANDWICH BEAM STATIC COMPRESSION TESTS, Z3943432-503
11	SANDWICH BEAM FATIGUE TESTS, $23943432-509$, $R = -1.0$
12	SANDWICH BEAM FATIGUE TESTS, Z3943432-509, R = 0.05
1.3	BEARING AND SHEAR-OUT TEST SPECIMENS
14	SHEAR-OUT TEST RESULTS, Z3943433-1
15	SHEAR-OUT TEST RESULTS, Z3943433-501
16	SHEAR-OUT TEST RESULTS, Z3943433-503
17	QUALITY CONTROL RECEIVING INSPECTION TEST RESULTS, BATCH 154, BI-DIRECTIONAL WOVEN MATERIAL

PRECEDING PAGE BLANK NOT FILMED

SECTION 1

INTRODUCTION

Advanced composite materials, if used extensively in airframe components, offer a high potential for reducing the structural weight and thus the direct operating costs of commercial transport aircraft. To achieve the goal of production commitments, advanced composite structures must convincingly demonstrate the potential weight reduction while maintaining equivalent durability and competitive costs with conventional metal structures.

The overall objective of this program is to accelerate the use of advanced composite structures by developing technology and processes for early progressive introduction of composite structures into production commercial transport aircraft. Key steps in accomplishing this objective are:

(1) to develop low-cost design and manufacturing approaches which will produce a cost competitive structure, and (2) to initiate commercial airline service of a mid-sized composite primary structure, the DC-10 composite vertical stabilizer (CVS).

The program is being conducted under six major task headings as follows:

- 1. Preliminary Design
- 2. Detail Design
- 3. Manufacturing Process Development
- 4. Verification Tests
- 5. Serial Manufacture
- 6. Program Management and Plans Development

The Tasks 1 through 4, two prototype vertical stabilizers will be developed and ground tested, and one will be developed, flight tested, certified, and introduced into commercial airline service. In Task 5, five additional advanced composite vertical stabilizers will be produced in a serial production mode and introduced into commercial airline service. Task 6 includes program management functions and the formulation of the plans necessary for development, certification by the Federal Aviation Agency (FAA), and in-service inspection and maintenance of the CVS.

الرة قِينَةِ لِينَ سَعْبِ لِي اللهِ لا اللهِ الله

This report describes work accomplished during the fifth quarterly period of the program. Work continued on test component design activities, preliminary structural analysis, preliminary weight studies, and tooling, fabrication, and test of a number of structural development components and specimens. Detail design of skin panel and spar components was continued. Overall schedule status is summarized in Figure 1.

The activities during the quarterly period are described under the headings Detail Design, Concept Development Test Components, Joint Development Test Components, Mechanical Properties Specimens, Design Verification Test Components, and Quality Assurance. Engineering drawings of root fitting specimens, verification test panels, and a rear spar specimen are included in Appendix A. Supplementary analyses are included in Appendix B.

The measurement values in this report are expressed in the International System of Units (SI) and also U.S. Customary Units in some cases. U.S. Customary Units were used for the principal measurements and calculations.

Ġ

(·

SECTION 2 DETAIL DESIGN

Detail design activities on the Composite Vertical Stabilizer were devoted to the development of the sine-wave configuration for the substructure stiffening; detail development of the skin panel design; development of the spar designs; and analysis tasks including detail stress analysis and weight analysis.

Design Development

No significant changes have been made to the basic structural configuration as reported in the last quarterly progress report (Reference 1). This configuration includes one-piece honeycomb sandwich stin panels bolted to a substructure stiffened mainly by sine-wave construction.

Manufacturing considerations indicated that metal tooling would be preferable for fabrication of the sine-wave web elements. With metal tooling, the number of different waveforms would have to be kept to a minimum. With this in mind, an investigation was conducted into the feasibility of using a single waveform throughout the whole substructure. A circular arc wave was selected in preference to an actual sine-wave, because the constant curvature of this form increases the resistance to local buckling and eases the stretching of the layers which has to take place when folding the flanges.

An interactive (FASTBUCK) computer program was prepared to solve for local and general panel instability for any given panel size, laminate and waveform. With the aid of this program, a single waveform was selected for both spar and rib webs (Figure 2). For reasons of simplicity in layup and to keep the number of laminate types to a minimum it was decided to use only bi-weave cloth material. This led to the selection of three basic laminates for the entire substructure. Each rib and spar panel laminate has now been defined and the structural weights associated with the simplified approach are reflected in the latest weight estimates.

- - - - -

ORIGINAL PAGE IS OF POOR QUALITY

Another general study which interacts with the design of the skin panels, ribs, and rear spar, concerned the rudder support brackets and their associated fittings within and external to the box structure. While retaining the basic features of the existing support brackets used on the metal stabilizer, most of these brackets have been redesigned in order to make them compatible with the composite design. Internal bathtub-type fittings have been replaced with shorter aluminum fittings, except in the case of the rudder tie-rod stations where fail-safe considerations dictated that the longer fittings be retained.

Skin Panels

Work is continuing on the detail refinement of the skin panel design. A major change is that the highly directional spar cap material within the skin thickness has been replaced with pseudo-isotropic layup. This enables spar cap and rib cap laminates to cross each other without interruption, although this is achieved only at the cost of a weight penalty due to the reduced modulus of the spar cap material. However, the pseudo-isotropic pattern provides good bolt bearing strengths in both spar and rib directions, and is particularly useful in regions of local input, such as at the attachments for the rudder support firtings.

Uni-directional cloth was selected for the caps to enable the spar/rib continuity to be achieved without incurring the waste which would be experienced if bi-weave material were to be used. The use of bi-weave cloth is still retained for the facing layers.

Ribs

Detail design of the ribs is being held in abeyance pending further development on the skin panel and spar components. Sine-wave webs have been selected for most rib elements, and these will have the standard waveforms for which laminate thicknesses have already been designated. The exceptions to sine-wave webs include the aft bays of ribs at tie-rod stations, where the design of bathtub fittings has dictated that thin honeycomb sandwich webs be used.

Spars

Most of the detail design problems at the root end of the spars have already been resolved for the rear spar beam test specimen (drawing Z5943446). It was originally intended that the titanium end fittings would be essentially similar for all four spars, differing only in sweepback and skin bevel angles. However, the front spar fittings are affected by constraints arising from the leading-edge attachment, which lead to differences in the location of the web flange. These final detail considerations are now being resolved.

Sine-wave web geometries and laminate thicknesses have been tentatively selected, including detail stiffening in the flange regions.

Preparation of detail design drawings for the front and aft center spars is now in progress and the design of the rear spar will follow immediately after completion of the rear spar beam specimen drawing.

Structural Analysis

The main emphasis of the structural analysis tasks on the composite stabilizer is on the expansion and improvement of the original redundant force analysis of the complete structure, incorporating the latest version of the stabilizer structural arrangement, more sophisticated finite analysis elements, and modeling a support system of realistic stiffness. The current analysis model is shown in Figure 3. It consists of four basic substructures: 1) the structural box, 2) the leading edge, 3) the forward and aft rudder systems, and 4) the lower vertical stabilizer/inlet duct structure.

Substructures (3) and (4) are existing aircraft components, and the finite expent models for these structures are complete. Substructure (2) is an existing component and is in the process of being completed at this time. Substructure (1) has been defined geometrically and the physical and material properties will be defined in greater detail as the design effort progresses.

The analysis method presently contemplated is the MACAIR CADD/CGSA (Computer Aided Design Drafting/Computer Graphics Structural Analysis) System, which allows the structure to be modeled, analyzed, interpeted, edited and optimized entirely on an interactive graphics computer terminal. The system enjoys widespread use throughout the McDonnell Douglas Corporation. A parallel study is in progress using the rear spar beam test specimen analytical model (see Section 6) to determine the relative cost/benefit of using Nastran as the

analysis method. The analysis model is amenable to either system and the selection will be made in the near future.

The spar and rib web stiffening configurations were investigated using the FASTBUCK computer program mentioned previously. The derivation of the equations is given in Appendix B together with the assumptions used for limiting the maximum shear loading ($N_{\rm XY}$) to a strain level of 0.003 cm/cm in the 45° direction.

A number of interesting studies were made with this program. For example, by varying wave radius R and amplitude H of a panel loaded only in shear, and for a given panel size and laminate, it is possible to derive a chart of boundary weight conditions as shown in Figure 4. Minimum values of R and H are determined from the required clearances for the installation of nut-plates, and an upper limit is provided when R is equal to H and the circular arc becomes a semi-circle. Maximum strain is another limit and yet another may be provided if it is desired to keep bolt spacing below a certain value.

However the boundary of most interest occurs when local and general buckling become equal since this represents a minimum weight condition. For a given panel size, a minimum weight boundary of the type shown in Figure 5 can be derived for a full range of possible practical laminates. In another study where waveform was kept constant, the effect of panel size was investigated for particular laminates as shown in Figure 6. Local buckling is seen to be only slightly affected by panel width B and completely independent of panel length A. General buckling on the other hand is greatly influenced by B, and to a lesser extent by A.

Weight Status

The composite stabilizer weights were revised to reflect the redesign of the spar caps, spar webs and rib webs as shown in Table 1. The revised weights are based on design curves and estimates since detailed layouts are not complete. The current predicted weight saving is 20,2 percent.

The most significant weight changes occurred in the spar caps as shown in Table 2. This weight increase was a result of changing the spar cap laminate layup from primarily unidirectional with a modulus of 103 gigapascals (15 MSI) to a pseudo-isotropic layup with a modulus of 55 gigapascals (8 MSI).

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE 4. TYPICAL WEIGHT BOUNDARY FOR A PARTICULAR LAMINATE AND PANEL SIZE

FIGURE 5. MINIMUM WEIGHT BOUNDARY FOR A PARTICULAR PANEL SIZE

FIGURE 6. ALLOWABLE SHEAR FOR A PARTICULAR LAMINATE AND WAVE FORM

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 1

PRELIMINARY WEIGHT COMPARISONS
COMPOSITE VERTICAL STABILIZER

	COMPOSITE STABILIZER					
	PREVIOUS E	STIMATE	LATEST ES	TIMATE	METAL STABILIZER	
ITEM:	KILOGRAMS	POUNDS	KILOGRAMS	POUNDS	KILOGRAMS	POUNDS
SPAR CAPS	107.3	236.6	150.0	330.6	158,4	349,2
INTERSPAR SKIN PANELS	78.5	173.1	61.7	136.1	87.5	192.8
SPAR WEBS	50,5	111.3	40.6	89.5	62,4	137,6
INTERSPAR RIBS	58.6	129,2	51.8	114.2	67,9	149.6
ACCESS DOORS	16.6	36.6	16.6	36.6	18,5	40.7
MISCELLANEOUS STRUCTURE	15.5	34.2	13.4	29.5	28.7	63.3
GROWTH/CONTINGENCY	10.7	23,5	4,5	10.0		
BOX STRUCTURE	337.7	744.5	338.6	746.5	423.3	933,2
TRAILING EDGE SKIN AND RIBS	25.3	55.7	25.3	55,7	32.7	72.1
TOTAL - BOX AND TRAILING EDGE	363,0	800.2	363.9	802,2	456.0	1005,3
WEIGHT REDUCTION	93.0	205,1	92.1	203,1		
PERCENT REDUCTION	20.4	20,4	20.2	20,2	_	

TABLE 2
WEIGHT CHANGE SUMMARY
COMPOSITE VERTICAL STABILIZER

	WEIGHT CHANGE		
ITEM	KILOGRAMS	POUNDS	
SPAR CAPS	+42.6	+94.0	
 CHANGE SPAR CAP MATERIAL TO PSEUDO-ISOTROPIC LAYUP 			
 REALLOCATE FASTENERS TO SPAR CAPS 			
SKIN PANELS	16.8	-37.0	
REALLOCATE FASTENERS TO SPAR CAPS			
SPAR WEBS	9,9	-21.8	
CHANGE SPAR WEB DESIGN FROM SANDWICH TO SINE-WAVE			
RIBS	6.8	-15.0	
CHANGE RIB WEB DESIGN FROM SANDWICH TO SINE-WAVE			
MISCELLANEOUS STRUCTURE	-2,1	-4.7	
CHANGE TO SMALLER STEEL BUSHINGS FOR ATTACH FITTINGS			
GROWTH/CONTINGENCY ALLOWANCE	-6.1	-13.5	
TOTAL WEIGHT CHANGE	+0.9	+2,0	

The sine-wave spar webs and rib webs resulted in a weight savings of 16.7 kilograms (36.8 pounds). The steel bushings in the titanium attach fittings are smaller than those previously required for the composite attach fittings resulting in a 2.1 kilogram (4.7 pound) weight saving that was not reported in the last quarterly progress report (Reference 1).

The growth and contingency allowance was partially absorbed reflecting the weight growth that has occurred. A 4.5 kilogram (10 pound) contingency allowance remains.

The weight distribution by material is summarized in Table 3. A weight-time history of the predicted weight and target weight is shown in Figure 7.

ORIGINAL PAGE IS OF POOR QUALITY

TABLE 3
WEIGHT DISTRIBUTION BY MATERIAL
COMPOSITE VERTICAL STABILIZER

									MA	MATERIAL WEIGHT	WEIGH									
	GRAF	GRAPHITE- EPOXY	TITA	TITANIUM	ADHE	ADHESIVE 1	NOMEX HONEYCOMB		SYNTACTIC FOAM	CTIC	ALUMINUM	NOM	STEEL	-	FASTENERS	IERS	EXTERIOR	RIOR	TOTAL	AL.
ITEM	kg	EB	¥в	87	kg	8	kg	9	ž.	9	kg	9	kg	87	kg	9	kg	9	kg	LB
SPAR CAPS	96.6	213.0	46.1	101.6											7.3	16.0			155.0	330.6
SKIN PANELS	32.7	72.1			13.0	28.7	6.2	13.7	1.7	3.7	•8.9	15.1*		······	1.3	2.8	********		61.7	136.1
SPAR WEBS	37.5	82.6			1.5	3,4	1.0	2.2	9.0	1.3						***************************************			40.6	89.5
RIBS	45.5	100.3			0.4	6.0	0.2	0.5	0.2	0.5	2.8	6.1			2.7	5.9		****	51.8	114.2
ACCESS DOORS	10.5	23.1			77	2.5	0.5	1.2	0.4	6.0	1.6*	3.5		···	2.4	5.4			16.6	36.6
MISCELLANEOUS STRUCTURE	4.6	10.1			9.0	<u></u>					4.2	6.3	1.	3.2	0.2	0.4	2.4	5.2	13.4	29.5
GROWTH/CONTINGENCY																			;	•
BOX SUBTOTAL	227.3	501.2	46.1	101.6	16.7	36.8	8.0	17.6	2.9	6.4	15.4	34.0	1.5	3.2	13.8	30.5	2.4	5.2	334.1	736.5
TRAILING EDGE	13.8	30.4			0.4	0.8	0.1	0.3	0.3	0.6	8.2	18.0	0.7	1.6	1.5	3.3	0.3	0.7	25.3	55.7
TOTAL WEIGHT	241.1	531.6	46.1	101.6	17.1	37.6	8.1	17.9	32	7.0	23.6	52.0	22	4.8	15.3	33.8	2.7	5.9	359.4	732.2

*ALUMINUM SPRAY COATING **GROWTH/CONTINGENCY ALLOWANCE OF 10 POUNDS NOT INCLUDED

FIGURE 7. COMPOSITE VERTICAL STABILIZER WEIGHT TREND

SECTION 3

CONCEPT DEVELOPMENT TEST COMPONENTS

The candidate structural design concepts are being evaluated through a program of design, fabrication, and test of a series of development components representing critical elements of the structure. The current status of these activities is described in this section.

Skin Panel Components

Tests at ambient temperatures were completed on two of the remaining six honeycomb shear panels (P/N Z5943428-501). Both test panels exhibited failure loads well in excess of the maximum design ultimate shear loading of 132746 n/m (758 pounds per inch) based on the latest internal load analysis.

The first specimen was tested under in-plane shear with no pre-test moisture conditioning. Failure occurred at a load of 166808 Newtons (37,500 pounds) corresponding to a distributed shear loading of 255160 n/m (1457 pounds per inch). Failure apparently initiated near one corner of the panel adjacent to the support angle (Figure 8). The failure proceeded along the panel edge and then across the short side of the specimen. The failure was somewhat premature in that the predicted failure load in the basic sandwich was 257787 n/m (1472 pounds per inch) for the test panel size.

The second specimen was tested under in-plane shear after pre-test conditioning to approximately 1.2 percent moisture level. Failure occurred at a load of 182377 Newtons (41,000 pounds) corresponding to a distributed shear loading of 278977 n/m (1593 pounds per inch). Failure occurred across the specimen through the basic sandwich (Figure 9). The predicted failing load (disregarding moisture effects) was 257787 n/m (1472 pounds per inch) as before. This failure is considered to be typical of the level expected from the sandwich skin panels.

Testing of the remaining cover panels requires loading with the test panel under controlled temperature and humidity conditions. Tests will be conducted in the 733957 Newton (165,000-1b) Schenck Universal Test Machine utilizing the special

environmental chamber procured for tests in the 1.78 meganewton (400,000-1b)

Baldwin Test Machine. Extenders were designed and fabricated to extend the upper and lower loading heads thru the chamber walls with provisions on the inside for applying load to the test panel. These extenders are of heat treated, corrosion resistant steel and were fabricated by a specialty machine shop having the capability to trepan core (hole-saw) the heavy steel billets. Delivery was made on 27 June, and the entire setup is currently being assembled in the test facility. A portable thermal conditioner is available for circulating the required hot/humid or cold air thru the chamber during the testing.

Spar Web Components

The Z5943435 honeycomb spar web component was tested during the report reriod. The component was tested at ambient temperatures with no pre-test moisture conditioning. Loads were applied to the component as a simply supported beam as shown in Figure 10. Failure occurred when the jack load reached 102487 Newtons (23,040 pounds) corresponding to a shear load in the sandwich web of 112081 n/m (640 pounds per inch). Failure occurred when the lower composite angle attaching the web to the spar cap separated from the web (Figure 11). The design ultimate load for the sandwich web portion of the specimen was 105076 n/m (600 pounds per inch).

Both halves of the fiberglass/epoxy tool for fabricating the Z5943434 sine-wave spar web test component have been completed. A rubber facing approximately 0.32 cm (1/8 inch) thick was provided on the tool surfaces to help distribute uniform curing pressure to the thin composite shear web. The surfaces of the tool were lightly sanded, cleaned, and primed with 1-100 silicone rubber primer. Two layers of uncured 0.157 cm (0.062 inch) thick silicone rubber sheet stock were rolled and pressed to the sine wave facing. After removing all air entrapments, a layer of Armalon cloth was applied to the uncured silicone rubber and held in place by cellophane tape. The sheet of silicone rubber was drape formed on the curved tool surfaces and held in place by cellophane tape. The tool was placed in a vacuum bag for the curing cycle. The finished tool is shown in Figure 12.

Once the tool was completed, the test component was laid-up, densified, and placed in the autoclave for cocuring and bonding. During the cure cycle the temperature recorder malfunctioned resulting in loss of the vacuum bag after the test component

had reached 450°K (350°F). Loss of the bag resulted in incomplete bonding over extensive portions of the web making the component unacceptable for test.

A second sine wave spar web component is currently being fabricated and is scheduled for completion on 21 July 1978.

Galvanic Corrosion Specimens

Fabrication activities were completed on six additional specimens. These additional specimens will be used to further evaluate RF bond continuity and to establish whether a fiberglass isolation layer between the aluminum and the graphite will be required.

The six specimens were prepared as follows:

- (1) Abrade graphite surface, spray on aluminum, and apply a faying surface seal.
- (2) Same as (1), except no faying surface seal.
- (3) Abrade, spray, seal, and apply a Dacron scrim isolation layer.
- (4) Same as (3) except no seal.
- (5) Abrade, spray, seal and apply a fiberglass peel ply.
- (6) Same as (5) except no seal.

These specimens will be placed in the salt spray chamber for a thirty day exposure period. This test should be complete early in August 1978.

Lightning Evaluation Panel

The composite portion of the panel has been completed and flame sprayed with aluminum. The metal details are complete and ready for assembly to the panel. Further fabrication activity will be postponed until the galvanic corrosion specimens are completed, tested, and evaluated.

SECTION 4 JOINT DEVELOPMENT TEST COMPONENTS

Structural joint concepts are being evaluated through a program of design, fabrication, and test of selected development components representing critical joints of the composite structure. Current status of these activities is detailed in the following paragraphs.

Rudder Fitting Design

Test specimens for the actuator and tie-rod stations have been redesigned in conformance with the latest design configuration. A copy of the drawing (Z5943453) is included in Appendix A. These specimens contain aluminum fittings which transfer loads from the rudder support brackets into the composite structure. In the case of the tie-rod specimen, where fail-safe requirements prohibit the loss of both tie-rods at any one station, separate bathtub fittings extend between the rear and the aft center spars. Shorter fittings are used at the actuator station, but the moment due to the offset of the bracket load from the skin line is reacted by a fitting which extends from one skin surface to the other. For this reason the specimen for this station includes both skins so that this moment reaction can be simulated.

Spar Cap to Cover Specimens

Tests were completed on the four Z5943444 spar cap-to-cover specimens. The specimens were tested under ambient laboratory conditions after pre-test moisture conditioning at 170°F and 95 percent relative humidity.

The four test results are summarized below.

Z5943444 Spar Cap-to+Cover Specimen Test Results

Specimen	Load at 1	Failure	Moisture Level	Runniı	ng Load
	(Newtons)	(Pounds)	•	(n/m)	(Lb/In)
-1 Sine Wave Bolted	6316	1420	0.6%	41,505	237
-501 Sine Wave Cocured	3790	852	0.9%	24,868	142
-503 Plain Web Bonded	3336	750	1.0%	21,891	125
-505 Plain Web Cocured	4493	1010	1.0%	29,246	168

The stabilizer skin panels are subjected to a maximum joint tensile load from external lifting pressure of approximately 17,237 n/m^2 (2.50 psi) limit or 25,855 n/m^2 (3.75 psi) ultimate, equivalent to a spar cap-to-cover running load of approximately 7180 n/m (41 pounds per inch). This load requirement is well below the test results.

Figure 13 shows the failure of the -1 bolted sine-wave specimen, typical of all failures in this series.

FIGURE 13. FAILURE OF SINE-WAVE BOLTED SPECIMEN

ORIGINAL PAGE IS OF POOR QUALITY

SECTION 5 MECHANICAL PROPERTIES SPECIMENS

Material design allowables and damage tolerance of the composite structure are being verified through a test program involving testing of sandwich beam specimens to determine laminate tension, compression and fatigue properties; testing of tension coupons to determine laminate bearing and shear-out values; testing of tension specimens in fatigue to evaluate flaw growth; and testing of sandwich panels to evaluate crack propogation and damage tolerance.

Laminate Properties Design Data

Testing of 66 of the 102 sandwich beam tension specimens and 42 of the 102 sandwich beam compression specimens (Drawing Z3943432) was completed during the report period.

Four of the fatigue test beams have been tested to cyclic levels greater than predicted values. Residual strengths were determined on three of these beams to help determine stress levels for subsequent tests. The fatigue test was continued on the fourth beam to achieve a fatigue failure if possible, since no additional tests were scheduled on the test machine in the near term. During testing of the fourth beam, the flexural pivots on the test machine failed so the test was suspended until repairs can be completed. Results achieved to date on the sandwich beams are shown in Tables 4 through 12.

Shear-out tests on 24 of the 36 bearing and shear-out coupons were completed and the results are tabulated in Tables 13 through 16.

There are 176 sandwich beam specimens fabricated to date out of a total of 312. The remaining specimens are expected to be complete in July 1978. All of the 36 bearing and shear-out coupons are complete.

Figures 14 through 17 show a sandwich beam specimen and typical laminate failures. Figures 18 through 21 show a bearing and shear-out specimen and laminate failures from the shear-out tests.

PRECEDING PAGE BLANK NOT FLAGS

TABLE 4
SANDWICH BEAM TEST SPECIMENS

DRAWING Z3943432 T300/5208 GRAPHITE-EPOXY

DRAWING	SPECIMEN	LEN	gтн -	LAMINATE	LAMI	INAL NATE (NESS
DASH NO.	TYPE	cm	IN.	PATTERN	cm	IN.
-1	STATIC	55,88	22,00	25/50/25	0,132	0,052
-501	STATIC	65,88	22.00	39/41/20	0.163	0,064
-503	STATIC	55,88	22,00	65/35/0	0.188	0,074
-505	FÄTIGUE	80,65	31.75	25/50/25	0.132	0,052
-507	FATIGUE	80,65	31.75	39/41/20	0.163	0,064
-509	FATIGUE	80,65	31,75	65/35/0	0.188	0,074

TABLE 5
SANDWICH BEAM STATIC TENSION TESTS

Z3943432-1 LAYUP: [25/50/26]

		-	general des la Cigna artist Management							
PERCENT MOISTURE	TEMPE	ST	SPECIMEN		NATE (NESS	NET:	ESS ON SECTION AILURE	STRAIN AT FAILURE	MOD	uLus
CONTENT	°К	o _E	NUMBER	cm	IN.	MPa	PSI	µ cm/cm	GPa	MSI
AMBIENT	219	• 66	BET 267 BET 268 BET 269	0,1455 0,1506 0,1494	0.0573 0.0593 0.0588	321,29 308,89 312,57	46,599 44,800 45,334	4700 4525	57.02 56.95	8,27 8,26 —
AMBIENT	AMBIENT	AMBIENT	BET 270 BET 387 BET 388	0.1435 0.1466 0,1431	0,0565 0,0577 0,0583	345.67 336.44 336.72	50,135 48,797 48,837	4400 4600 —	65,43 61,02	9 49 8,85
AMBIENT	350	170	BET 389 BET 390 BET 391	0,1499 0,1609 0,1473	0,0590 0,0594 0,0580	331,02 321,42 345,33	48,010 46,618 50,086	5250 5000	52,61 53,64 —	7,63 7,78
AMBIENT	394	250	BET 392 BET 393 BET 394	0,1438 0,1443 0,1473	0,0566 0,0568 0,0590	353.49 326.93 344.11	51,270 47,417 49,909	5200 4800 —	56,74 56,81	8,23 8,24 —
1,22	AMBIENT	AMBIENT	BET 249 BET 250 BET 251 BET 252 BET 253 BET 254	0.1476 0.1450 0.1430 0.1417 0.1488 0.1494	0.0581 0.0571 0.0563 0.0558 0.0586 0.0588	333.52 338.11 374.22 369.96 353.98 341.24	48,373 49,039 54,276 53,658 51,341 49,492			
1.69	350	170	BET 255 BET 256 BET 257 BET 258 BET 259 BET 260	0.1486 0.1506 0.1486 0.1400 0.1471 0.1455	0,0585 0,0593 0,0585 0,0567 0,0579 0,0573	322.74 320.47 353.64 348.95 324.13 330.98	46,809 46,480 51,291 50,611 47,011 48,004	4600 4750 	58,54 56,26 - - -	8.49 8.16
1.14	394	250	BET 261 BET 262 BET 263 BET 264 BET 265 BET 266	0.1483 0.1400 0.1392 0.1499 0.1532 0.1481	0,0584 0,0551 0,0548 0,0590 0,0603 0,0583	326.47 341.21 327.62 317.12 312.69 325.89	47,350 49,489 47,517 45,995 45,352 47,267	4700 4900 	57.92 58.05 - - -	8,40 8,42 - - -

Douglas Aircraft Company Contract NAS1-14869

TABLE 6 SANDWICH BEAM STATIC TENSION TESTS

23943432-501 LAYUP: [39/41/20]

PERCENT MOISTURE		ST RATURE	SPECIMEN	LAMI THICK	NATE NESS	NET:	ESS ON SECTION AILURE	STRAIN AT FAILURE	MODL	ILUS
CONTENT	°K	°F	NUMBER	cm	IN.	MPa	PSI	μ cm/cm	GPa	MSI
1,19	AMBIENT	AMBIENT	BET 307 BET 308 BET 309 BET 310 BET 311	0,1666 0,1689 0,1669 0,1689 0,1742	0.0656 0.0665 0.0657 0.0665 0.0686	427,86 412,40 418,99 471,66 442,44	62,056 59,814 60,769 68,409 64,170	4750 4700 — — —	75,01 73,08 — —	10,88 10,60
1.08	350	170	BET 319 BET 320 BET 321 BET 322 BET 323 BET 324	0,1730 0,1689 0,1676 0,1615 0,1664 0,1694 0,1692	0,0681 0,0665 0,0660 0,0636 0,0655 0,0667 0,0666	435,42 409,92 414,42 464,03 476,54 409,91 430,03	63,152 59,454 60,107 67,302 69,116 59,452 62,370	4800 4725 	71.15 73.08	10,32 10,60
0,67	394	250	BET 325 BET 326 BET 327 BET 328 BET 329 BET 330	0,1697 0,1722 0,1704 0,1750 0,1730 0,1712	0,0668 0,0678 0,0671 0,0689 0,0681 0,0674	424,41 423,77 434,07 438,60 426,88 446,83	61,556 61,462 62,957 63,614 61,914 64,807	4250 4350 	83,15 81,15 — — — —	12.06 11.77 — — —

TABLE 7 SANDWICH BEAM STATIC TENSION TESTS

Z3943432-503 LAYUP: [65/35/0]

PERCENT MOISTURE	TEMPE	ST RATURE	SPECIMEN		NATE (NESS	NET	ESS ON SECTION FAILURE	STRAIN AT FAILURE	MODI	JLUS
CONTENT	°K	°F	NUMBER	sm	IN.	MPa	PSI	μ cm/cm	GPa	MSI
1,10	219	65	BET 361 BET 362 BET 363 BET 364 BET 365 BET 366	0,2014 0,2009 0,2019 0,2019 0,2040 0,1956	0,0793 0,0791 0,0795 0,0795 0,0803 0,0770	595,47 466,55 499,35 552,19 471,37 545,71	86,365 67,668 72,424 80,089 68,367 79,149	4250 4000 	116.52 97.35 — — — —	16.90 14.12 — — —
1.12	AMBIENT	AMBIENT	BET 367 BET 368 BET 369 BET 370 BET 371 BET 372	0.1951 0.1890 0.2060 0.2007 0.2002 0.1938	0,0768 0,0744 0,0811 0,0790 0,0788 0,0763	645.00 607.04 657.63 570,83 700,45 706,77	93,550 88,043 95,381 82,792 101,592 102,508	4850 4350 	110,80 116,45 — — —	16.07 16.89 — — — —
1.12	AMBIENT	AMBIENT	BET 373 BET 374 BET 375 BET 376 BET 377 BET 378	0.1951 0.2007 0.2017 0.1976 0.1999 0.1920	0,0768 0,0790 0,0794 0,0778 0,0787 0,0756	774.49 828.31 690.34 709.84 701.65 741.45	112,330 120,136 100,125 102,954 101,766 107,538			

TABLE 8 SANDWICH BEAM STATIC COMPRESSION TESTS

Z3943432-1 LAYUP: [25/50/25]

PERCENT MOISTURE	TEMPE	ST RATURE	SPECIMEN	LAMI THICK		NETS	ESS ON SECTION AILURE	STRAIN AT FAILURE	MODI	JLUS
CONTENT	^о К	o _F	NUMBER	cm	IN.	MPa	PSI	μ cm/cm	GPa	MSI
AMBIENT	219	≈ 6 5	BET 201 BET 202 BET 203	0,1415 0,1384 0,1377	0,0557 0,0545 0,0542	395,50 388,97 412,30	57,943 56,516 59,799	6450	51,64 =	7,49
AMBIENT	AMBIENT	AMBIENT	BET 204 BET 205 BET 206	0,1440 C,1397 0,1443	0,0567 0,0550 0,0568	366,99 334,81 347,42	53,228 48,560 50,389	5500 	55.64 - -	8.07
AMBIENT	350	170	BET 207 BET 208 BET 209	0,1476 0,1438 0,1443	0.0581 0.0566 0.0568	314,20 322,23 314,51	45,571 46,736 45,616	5400	48.54	7,04
AMBIENT	394	260	BET 210 BET 211 BET 212	0,1461 0,1453 0,1440	0,0575 0,0572 0,0567	306,16 307,91 307,84	44,403 44,659 44,649	5000	51.09 -	7,41 —
1,43	AMBIENT	AMBIENT	BET 225 BET 220 BET 227 BET 228 BET 229 BET 230	0.1488 0.1501 0.1478 0.1488 0.1433 0.1400	0,0586 0,0591 0,0582 0,0586 0,0564 0,0567	382,58 368,47 349,34 388,04 374,35 360,48	55,488 53,442 50,667 56,280 64,295 52,283			

TABLE 9 SANDWICH BEAM STATIC COMPRESSION TESTS

Z3943432-501 LAYUP: [39/41/20]

PERCENT MOISTURE		ST RATURE	SPECIMEN		NATE (NESS	NET	ESS ON SECTION AILURE	STRAIN AT FAILURE	MOD	ULUS
CONTENT	٥K	°F	NUMBER	cm	IN.	MPa	PSI	μ cm/cm	GPa	MSI
1,21	219	65	BET 271	0.1656	0.0652	490,53	71,146	5550	73.70	10.69
			BET 272	0,1684	0,0663	493,13	71,523	5490	74,95	10,87
			BET 273	0,1727	0,0680	476,34	69,087	-	_	_
		-	BET 274	0,1783	0,0702	483,16	70,076			
			BET 275	0,1773	0,0698	511,97	74,255		_	
			BET 276	0.1687	0.0664	516.86	74,964	<u>-</u>	-	-
1,21	AMBIENT	AMBIENT	BET 283 BET 284	0.1735 0.1735	0.0683 0.0683	395.48 407,40	57,360 59,089			
			BET 285	0,1720	0.0677	409,78	59,434		\	\
			BET 286	0,1654	0,0651	416,44	60,400		\	\
			BET 287	0.1707	0.0672	419,33	60,833		\	\
			BET 288	0.1755	0.0691	442,28	64,147	l \] \	

TABLE 10 SANDWICH BEAM STATIC COMPRESSION TESTS

Z3943432.503 LAYUP: [65/35/0]

PERCENT MOISTURE		ST RATURE	SPECIMEN	THICH	NATE (NESS	NET AT F	RESS ON SECTION AILURE*	STRAIN AT FAILURE	MODIL	·
CONTENT	K	ļ*	NUMBER	cm	IN.	MPa	PSI	μ cm/cm	GPa	MSI
1,31	219	~6 5	BET 331 BET 332 BET 333 BET 334 BET 336 BET 336	0.1941 0.1974 0.1933 0.1915 0.1928 0.1905	0,0764 0,0777 0,0761 0,0764 0,0769 0,0760	532.96 526.02 523.62 536.05 569.35	77,299 76,293 (NO DATA) 75,945 77,748 82,577	4500 4300 	98,80 97,15	14,33
1,67	350	170	BET 349 BET 350 BET 361 BET 352 BET 353 BET 354	0.1880 0.1908 0.1902 0.1976 0.1971 0.1935	0,0740 0,0751 0,0749 0,0778 0,0776 0,0762	601.57 616.58 589.65 596.62 571.92 493.61	87,250 89,427 85,622 86,532 82,950 71,578	3800 4100 — — —	131,97 125,35	19.14

^{*}INITIAL LAMINA FAILURE

TABLE 11 SANDWICH BEAM FATIGUE TESTS

Z3943432-509 LAYUP: [65/35/0]

R = -1.0

		PERATURE	PERCENT MOISTURE	SPECIMEN	LAMIN THICK	NESS	NUMBER CYCLES	MAXII CYCLIC	STRESS	RESID STREE	VGTH
1	^о К	o _F	CONTENT	NUMBER	cm	IN.	ACCUMULATED	MPa	PSI	MPa	PSI
	219	≈65									
,	^MBIENT	AMBIENT	0.84 0.98	BET 467 BET 468	0,1872 0,1920	0.0737 0.0756	2,843,000(1) 223,000(1)	224.53 272.97	32,569 39,591	778.46 771.19	1 2,906 111,852
	AMBIENT	AMBIENT			***************************************			· · · · · · · · · · · · · · · · · · ·			
	350	170									

(1) NO FATIGUE FAILURES

TABLE 12

SANDWICH BEAM FATIGUE TESTS

Z3943432-509 LAYUP: [65/35/0]

R = 0.05

	****	Principality of Parishing Statement		n ·	10,05					
	PERATURE	PERCENT MOISTURE	SPECIMEN	LAMI THIC	NATE KNESS	NUMBER CYCLES	MAXI CYCLIC	MUM STRESS	RESID STRE	OUAL NGTH
o _K	°F	CONTENT	NUMBER	cm	IN.	ACCUMULATED	MPa	PSI	MPa	PSI
219	~ 65									
AMBIENT	AMBIENT	1.26	BET 485 BET 486	0.1923 0.1933	0.0757 0.0761	2,597,000 ⁽¹⁾ 1,019,000 ⁽²⁾	345,72 361,48	50,142 52,428	726.30	105,341
AMBIENT	AMBIENT	management of the second second								
350	170				winessing and a second					

⁽¹⁾ NO FATIGUE FAILURE (2) TEST FIXTURE FAILED

TABLE 13
BEARING AND SHEAR-OUT TEST SPECIMENS

T300/5208 GRAPHITE-EPOXY

DRAWING	LAMINATE	LAM	IINAL INATE KNESS
DASH NO.	PATTERN	cm	IN.
-1	25/50/2F	0.264	0.104
-501	39/41/20	0.325	0.128
-503	65/35/0	0.376	0.148

ORIGINAL PAGE IS

TABLE 14

BEARING AND SHEAROUT SPECIMENS SHEAROUT TEST RESULTS

Z3943433-1 LAY⊍P: [25/50/25]

								,			,,,									,					
TION	KSI	14,84	13,04	12.89	13,71	12,96	13.11	13.94	13.21	14.31	13.15	13.83	13,90	13.23	13,27	13.45	13.62	13.79	14.07	12,79	12,83	12.93	12.63	13,29	13.36
NET SECTION TENSILE STRESS	MPa	102.33	89.88	88.89	94.52	89.35	90.40	96.13	91.07	98.64	90.63	95.35	95.84	91.18	91.48	92.75	93.90	95.07	97.00	88.16	88.44	89.14	87.11	91.63	92.11
AR SS	KSI	42.35	40.22	39.68	41.90	39.56	40.57	43.80	41.64	43.10	40.00	42.84	42.96	40.11	40.78	40.68	41,70	43.06	42.67	39.04	39.16	39.40	38.47	40.98	41.20
SHEAR	MPa	292.01	277.33	273.58	288.90	772.77	279.69	302.02	278.11	297.14	275.76	295.37	296.18	276.57	281.14	280.44	287.52	296.87	294.18	269.19	270.03	271.68	265.23	282.57	284.04
SE NNCE	īŊ.	0.516	0.490	0.493	0.496	0.495	0.488	0.483	0.482	0.494	0.489	0.485	0.486	0.493	0.490	0.494	0.491	0.486	0.496	0.494	0.494	0.495	0.495	0.490	0.490
EDGE DISTANCE	cm	1.310	1,244	1,252	1.260	1,256	1.238	1,226	1,223	1.256	1.243	1,232	1.234	1,252	1.244	1.254	1,247	1.234	1.259	1,254	1.254	1,257	1.257	1.244	1.244
HOLE DIAMETER	IN.	0.2495	0.2495	0.2500	0.2500	0.2510	0.2510	0,2495	0.2490	0,2508	0.2488	0.2497	0.2496	0.2497	0.2495	0.2495	0.2497	0,2495	0.2495	0.2497	0.2497	0.2495	0.2497	0.2498	0.2498
HO	cm	0.634	0.634	0.635	0.635	0.633	0.638	0.634	0.632	0.637	0.632	0.634	0.634	0.634	0.634	0.634	0.634	0.634	0.634	0.634	0.634	0.634	0.634	0.634	0.634
NATE NESS	IN.	0.1093	0.1100	0.1130	0.1100	0.1120	0.1110	0.1100	0,1120	0.1091	0.1096	0.1125	0.1093	0.1111	0.1112	0.1116	0.1104	0.1113	0.1115	0,1121	0.1121	0.1118	0.1096	0.1093	0.1094
LAMINATE	шэ	0.278	0.279	0.287	0.279	0.284	0.282	0,279	0.284	0.277	0.278	0.286	0.278	0.282	0.282	0.283	0.280	0.283	0.283	0.285	0.285	0.284	0.278	0.278	0.278
2000	NUMBER	BET 512		BET 513		BET 514		BET 515		BET 516		BET 517		BET 518		BET 519		BET 520		BET 521		BET 522		BET 523	
PERCENT	CONTENT	1.04		1.06		1.12		1.01		1.07		1.08		1.08		1.06		1.10		0.92		0.92		0.93	
TEST TEMPERATURE	чo	-65						AMBIENT												170					
TEST TEM	Уo	219						AMBIENT												350					

BEARING AND SHEAROUT SPECIMENS SHEAROUT TEST RESULTS

Z3943433-501 LAYUP: [39/41/20]

TEST TEMPERATURE	TURE	PERCENT	SPECIMEN	LAMI	LAMINATE THICKNESS	HO DIAM	HOLE DIAMETER	EDGE DISTANCE	GE	SHEAR	AR SS	NET SECTION TENSILE STRESS	TION
	°F	CONTENT	NUMBER	Cu	Z.	шэ	S	шэ	Z.	MPa	KSI	MPa	KSi
AMBIENT AMBIENT	BIENT	1.08	BET 527	0.344	0.1355	0.638	0.2511	1.252	0.493	256.50	37.20	83.05	12.05
				0.348	0.1369	0.636	0.2503	1.250	0.492	256.96	37.27	83.73	12.14
		1.05	BET 528	0.345	0.1357	0.636	0.2503	1.252	0.493	251.97	36.55	82.66	11,99
		W 3 **********************************		0.345	0.1357	0.635	0.2500	1.250	0.492	242.97	35.24	78.98	11.46
•		1.04	BET 529	0.344	0.1355	0.637	0,2508	1,255	0.494	232,01	33.65	76.40	11.08
				0.343	0.1350	0.636	0.2504	1,280	0.504	239.53	34.74	80.60	11.69
		<u>5</u> .	BET 530	0.341	0.1341	0.635	0.2500	1,260	0.496	245.99	35.68	80.76	11.71
				0.343	0.1352	0.634	0.2498	1.262	0.497	236.13	34.25	77.80	11.28
		1.07	BET 531	0,345	0.1360	0.636	0,2504	1.247	0.491	249.33	36.16	81.13	11.77
				0.345	0.1359	0.634	0.2495	1.262	0.497	251,28	35.45	82.85	12,02
		1.06	BET 532	0.342	0.1348	0.638	0.2510	1.257	0.495	257.13	37.29	84.45	12.25
	· ·			0.341	0.1344	0.636	0.2504	1,250	0.492	245.32	35.58	79.79	11.57

TABLE 16 BEARING AND SHEAROUT SPECIMENS SHEAROUT TEST RESULTS

Z3943433-503 LAYUP: [65/35/0]

FST TEM	TEST TEMPERATURE	PERCENT		LAMI	LAMINATE	H C	HOLE	EDGE	EDGE	SHEAR	AR	NET SECTION	STION
y _o	3 ₀	CONTENT	NUMBER	E	Σ	E	Ē	E	Z.	MPa	KSI	MPa	KSI
AMBIENT	AMBIENT AMBIENT	1.14	BET 503	0.375	0.1475	0.635	0.2500	1.247	0.491	259.90	37.70	84.59	1227
				0.373	0.1467	0.635	0.2500	1,260	0.496	274.58	39.82	90.27	13.09
		1,07	BET 504	0.362	0.1424	0.635	0.2500	1.255	0.494	269.97	39.16	88.43	12.83
				0.364	0.1434	0.635	0.2500	1.247	0.491	276.52	40.11	90.00	13.05
		1.13	BET 505	0.359	0.1414	0.635	0.2500	1.257	0.495	251.05	36.41	82.39	11.95
				0.367	0.1446	0.635	0.2500	1.267	0.499	256.26	37.17	84.89	12.31
		1.13	BET 506	0.370	0.1458	0.635	0.2500	1.237	0.487	257,35	37.33	82.74	12.00
				0.371	0.1460	0.634	0.2497	1.252	0.493	242,54	35.18	79.36	11.51
	-	1.17	BET 507	0.374	0.1472	0.634	0.2496	1.257	0.495	240.53	34.89	78.92	11.46
<u></u>				0.378	0.1487	0.635	0,2500	1.245	0.490	239.46	34.73	77.62	11.26
		1.11	BET 508	0.362	0.1427	0.634	0.2497	1.240	0.488	240.25	34.85	77.37	11,22
				0.367	0.1444	0.634	0.2495	1.262	0.497	229.43	33.28	75.58	10.96

FIGURE 14. SANDWICH BEAM STATIC TENSION SPECIMEN

ORIGINAL PAGE IS

FIGURE 15. CLOSEUP OF STATIC TENSION FAILURE IN 25/50/25 LAMINATE (TESTED AT 394°K)

ORIGINAL PAGE IST

FIGURE 16. CLOSEUP OF STATIC COMPRESSION FAILURE IN 25/50/25 LAMINATE (TESTED AT 350°K)

OF POOR OF

OF POOR QUALITY

FIGURE 18. BEARING AND SHEAROUT SPECIMEN

FIGURE 19. CLOSEUP OF FAILURE OF 25/50/25 I.AMINATE (TESTED AT 219 $^{\rm 0}{\rm K}$)

FIGURE 20. CLOSEUP OF FAILURE OF 25/50/25 LAMINATE (TESTED AT AMBIENT TEMPERATURE)

49

Fracture Mechanics Design Data

Fabrication of the Z3943442 Damage and Debond specimens is continuing. Laminating and curing is 70 percent complete.

Fabrication specifications and planning documents are in preparation for the fabrication of the Z3943443 center slit panels and the Z5943428-501 damage tolerance shear panels.

Testing of the fracture mechanics spacimens (except for the shear panels) will be accomplished in a temperature/humidity environment under cyclic loading. These tests will require special test facilities. An environmental chamber designed to fit the 222,400 Newton (50,000 pound) MTS test machine was fabricated by a vendor and delivery made on 23 June 1978. Special extenders were also designed to permit load application to the specimen inside the chamber similar to the extenders for the Schenck test machine. These extenders were fabricated by a specialty machine shop and delivery made on 27 June 1978.

1 12

6.0

SECTION 6

DESIGN VERIFICATION TEST COMPONENTS

Subcomponents selected for design verification testing are the Z5943445 cover panel (Appendix A, Figure A2), the Z5943452 spar root bondline fitting (Appendix A, Figure A3), and the Z5943446 rear spar beam.

Cover Panel Verification Subcomponent

Planning paper has been released to initiate tooling and fabrication orders for the construction of the three test subcomponents. High temperature PLM's are being considered for the sine-wave spar and rib web elements.

Rear Spar Beam

The rear spar beam test specimen represents the lower six feet of the full-size rear spar component. Titanium attach fittings are embedded within the composite web molding at the root end, the drawing for these fittings (Z5943423-501) is shown in Appendix A (Figure A1). Load is transferred from the fittings into the composite spar cap by means of an adhesively bonded scarf joint, with the addition of bolted fasteners as a fail-safe load path. The joint design is being verified by the specimens defined by drawing Z5943452 (Appendix A, Figure A3).

The spar component consists essentially of a web and two skin caps connected by bolts to simulate the attachment of the skin panels to the substructure. All types of web construction are included in the web segment from honeycomb sandwich at the root end, through solid laminate doublers around the actuator cutout, to sine-wave construction at the upper end. Provision is made for the attachment of the test fixture at the end of the beam. The specimen drawing (Z5943446) is in the final stage of completion.

Six titanium forgings for the Z5943423 fittings have been received and four have been released to a subcontractor for machining. The fittings will be completed by 20 August 1978.

Spar Root Bondline Fittings

Fabrication orders have been released for machining the metal details.

A fabrication TAD for the completion of the six test specimens is in preparation.

Rear Spar Specimen Analysis

Previous verification test specimens have suffered failures basically unrelated to the test region or the component design concept. In order to preclude this type of failure, a detailed redundant force model is being prepared of the entire specimen. Analysis of this model will be accomplished sufficiently in advance of the specimen construction to reveal and allow correction of any potential design defects. The definition of the model geometry and physical and material properties is virtually complete, except for the details of the interface between the specimen and the loading fixture which has not been completely defined at present. An arbitrary interim model of this region is being prepared and it is expected that the complete model will be operational by early July. A computer graphics sketch of the model layout is shown in Figure A5 of Appendix A.

In addition to the rear spar specimen model, a fine-grid model was prepared and run to examine the area around the lower runder actuator cut-out (Figure 22). The results indicated an adequate structural margin in all regions of the cut-out panel. A plot of the limit cut-out boundary stresses for the critical design condition is shown in Figure 23.

Analyses using the "FASTBUCK" programs have been performed of the scarf joint splice region and have shown a high margin of safety for the bonded joint for all conditions. An analysis has been made of the back-up bolted joint for failsafe loads and the joint has adequate margins for the critical design conditions.

(

FIGURE 22. REAR SPAR ACTUATOR CUTOUT ANALYSIS MODEL

FIGURE 23. LIMIT CIRCUMFERENTIAL STRESS AT ACTUATOR CUTOUT (PSD CONDITION 207405)

SECTION 7 QUALITY ASSURANCE

Receiving Quality Control

Receiving quality control tests were conducted on 97.9 pounds of bi-woven T300/5208 (Batch 154), 50.4 pounds of which are allocated to the CVS program. All material met specifications as shown in Table 17.

TABLE 17
QUALITY CONTROL RECEIVING INSPECTION TEST RESULTS
T300/5208 GRAPHITE-EPOXY

BI-DIRECTIONAL WOVEN MATERIAL

			n	,												
	THICKNESS PER PLY	(MILS)		13.0	12.9	12.9	12.9	12.9	12.8	12.8	12.8	12.7	12.7	12.7	12.7	12.8
	THICH	(mm)		0.330	0.328	0.328	0.328	0.328	0.325	0 325	0.325	0.323	0.323	0.323	0.323	0.325
	MINAR	(KSI)	10.0 MIN	6.6	11.4	10.1	10.5	8.6	9.4	86	2.6	2.11	8.6	10.9	9'01	10.7
OPERTIES	INTERLAMINAR SHEAR STRENGTH	(MPa)	68.9 MIN	68.3	78.6	9.69	72.4	67.6	64.8	9.79	6.99	77.2	67.6	75.2	73.1	73.8
LAMINATE PROPERTIES	FLEXURAL MODULUS	(MSI)	10.0 MIN	10.9	11.7	12.1	11.6	11.7	11.4	11.8	11.6	11.8	11.8	11.7	11.8	11.7
מ		(GPa)	68.9 MIN	75.2	80.7	83,4	80.0	80.7	78.6	81.4	80.0	81.4	81.4	80.7	81.4	80 7
	FLEXURAL STRENGTH	(KSI)	130.0 MIN	134.4	135.9	143.2	137.8	137.1	152.5	147.1	145.6	151.8	146.6	150.2	149.5	144.3
		(MPa)	896.3 MIN	926.7	937.0	987.3	950.1	945.3	1051.5	1014.2	1003.9	1046.6	10108	1635.6	1030.8	994.9
s	GEL	(MIN)	17 TO 27	18.9				20.2				20.4				
PREPREG PROPERTIES	VOLATILE CONTENT WEIGHT		3.0 MAX	1.36				2.53				1.40				
PREP	RESIN CONTENT WEIGHT		42±3.0	43.3	43.3		43.3	44.7	43.8		44.3	44.5	42.9		43.4	
UNIT			DMS 2163 REQMT	ļ				2				က				AVERAGE
QUANTITY (kg) (LB)			l	6.76												
ATCH NO.			ı	154												

SECTION 8 REFERENCES

- 1. "Advanced Composite Vertical Stabilizer Program for DC-10 Transport Aircraft", Fourth Quarterly Technical Progress Report, Douglas Aircraft Company Report Number ACEE-03-PR-8394, Contract NAS1-14869, 24 April 1978.
- 2. "Optimization of Multirib and Multiweb Box Structures Under Shear and Moments", D.H. Emero, L. Spunt, AIAA 6th Structures and Materials Conference, Palm Springs, California, April 1965.

APPENDIX A

ENGINEERING DRAWINGS

PRECEDING PAGE BLANK NOT FILMED

PRECEDING PAGE GLANK NOT THE MON.

PRECEDIA

PRECEDING PAGE BLANK NOT FILMED PILECEDING PAGE BLANK NOT PHINE

PLY TABLE CONTINUED ZONE 18

OF PAINTS MAY 15 M. D. DONG HOL MAY 1 1876

FIGURE A2. DRAWING Z5943445 - SPECIMEN ASSY -COVER PANEL, COMBINED SHEAR AND **COMPRESSION (SHEET 1)**

PRECEDING PAGE BY AND

25943445

FIGURE A2. DRAWING Z5943445 — SPECIMEN ASSY —
COVER PANEL, COMBINED SHEAR AND
COMPRESSION (SHEET 1 CONCLUDED)

ORIGINAL PAGE 13

FIGURE A2. DRAWING Z5943445 — SPECIMEN ASSY —
COVER PANEL, COMBINED SHEAR AND
COMPRESSION (SHEET 2)

FIGURE A2. DRAWING Z5943445 - SPECIMEN ASSY - COVER PANEL, COMBINED SHEAR AND COMPRESSION (SHEET 2 CONTINUED)

PART OR	NOMENCLATURE		MATERIAL DESCRIPTION	MATERIAL SPECIFICATION		PLANNING COORDINATION
					H	
					H	
					H	
					+	
		-			H	
					H	
		-			-	
	-	-			-	
		-			-	
	-	-				
	-	-				
		-			-	
	-	-		-	-	
	-	-	-	-	-	
	-	-	-	-	+	
	-	-		-	+	
	+	-		-	+	
	-	-		-	+	
	-	1	-	-	+	
					+	
					1	
					1	
					1	
					1	
					T	
					T	
					T	
					T	
					T	
		-			1	
-	-	-			1	
-	-	-	-	-	1	
-	-	+	-	-	+	
-	+	+	-	-	+	
-	+	-	-	-	+	
-	+	+	-	+	+	
-	-	+	+	+	+	
-	+	+-	+	+	+	
	+	+-	+	+	+	
-	+	+	+	+	+	
	+	+-	+	+	+	

0/2		DENTIFYING NO	OR DESCRIPTION	STOCK SIZE	DESCRIPTION	SPECIFICATION	ZOME	PLANNING COORDINATION
9	1	-51	NOMENCLATURE	169	MATERIAL	TEMP TB	160	
+	8	55 52	PAN	9140		30-A-250/s	16	
+	0		CETED NOT		MAKE FROM \$/249328-		-	
+	111	- 67	A 4.5 Y				10	
+	,		WEB	x 19	DARICOMS.	UH13/9/4	5	03-1-1-1
-	+++	-59	SORE	3000	POLYMANDE PARTE PARTE PARTE	DM5/974	5	(9)(8) SEE SHITI GIN'S
11	-		CORE	35:1	POLYTHIOF PRIFE	DMS 914	16	(AVA) - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
+	4	-63	CLIP	09013	AL SHECLAL	00 4-850 KS	160	
+	+++			F USA		TFAP 73	-	
1	21	-27	3W/M	THEY NOW S	BON-73 AL SUFFLAN 2014-73	64-4250/5	/5	
+	2	- 29	5× M	45 M (20)	AL SHIT CLAD	30-A (50) 5 TEMP 73	/5	THE PUBLIC TO SELECTE
+	1	- 7/	WFB 455Y	110	1017/13	TEMP 18	16	-71 WEB ASSI IS INFUNCAL TO SEWEB.
+	//	-73	SAICE	09013	AL SHIFCIAL 2024-F3	00 A 250/5		MISS ENCEPT MAN END W.M75 /s LOWGI
-	1	-75	WEB				100	-75 AFB ASSY 15 13FW TCAL TO -29 N ASST BECKET FOR BUD TOWN -75 15 LOWGE
T	T	- 77	WEB				10	-77 WER ASSY IS IDENTICAL TO-27 WERA ENCENT TIME TWO TEM, -77 IS LONGER.
1	1	= 7.9	PATIE		AT COM 8		S	
4	T	- 8/	COSE	120	HE HAM DE HAMBE HAMBE HAMBE	OMD 914	15	(9)(8) SEE SHT 1 (6/N)'S
2	1	- 83	CORE	12/17	- DE YEM DE	CMB 974	15	(9Y8) HEE SHT I GAN'S
	1	-85	SHM	28x2 1002APSS 40 6730 25x6 02	ALSATCLAD	-		
1	2	- 91	SHM	#CLU(50 #6.88.30	AL SHTCLAD	00-A-250/9	160	
1	20	ANB-IOA	BOLT				-	
T	4	ANS -II A	BOLT				-	
I	40	NA6/252-8/6H	WASHE				1	
T	1						1	
Ħ	AC	NASINGO	LOCKBOLT	De	oreo 51	07 6	T	
Ħ	AL	NA5:010-6	Coure				†	
Ħ	4	NA6/476	LOCK BOLF	000	0110 AV	7410	T	
Ħ	-046	458/059L5	NUTRATE				t	
Ħ	42.4	M52/26/3	NUTRATE	T		1	t	
Ħ	40.4	1/1544037	Sar-	410			T	
Ħ	8	- 89	SHIM	11 15	SOLETS	1842 FB		
2	T	- 9/	CORE	19	PAPER PAPER	DN6 1974	16	36 SEE SHT 1 1/4/5
П	П						T	
							T	
							T	
	Ш						T	
Ц	Ш						Ι	
Ц	Щ						I	
Ц	Щ						I	
Ц	Ш						T	
Ц	Ш							
Ц	Щ							
Ц	Щ			_			L	
Н	Щ	-	-	1	-	-	1	
-	_	_	-	+	-	-	+	

FIGURE A2. DRAWING Z5943445 — SPECIMEN ASSY — COVER PANEL, COMBINED SHEAR AND COMPRESSION (SHEET 2 CONCLUDED)

Douglas Aircraft Company Contract NAS1-14869 POLODUTE ERAME A.D L 21 43 34 35 305 74W - 12 1 3.05 THRU 354 FOR-19 91308 THEU 354 FOR-79 ORIGINAL PAGE 19 OF POOR QUALITY Z5943445 A 3 35 34 36

FIGURE A2. DRAWING Z5943445 - SPECIMEN ASSY - COVER PANEL, COMBINED SHEAR AND COMPRESSION (SHEET 3 CONCLUDED)

SPAR-ROOT FITTING, BONDLINE

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE A4. DRAWING Z5943453 - SPECIMEN ASSEMBLY - HINGE SUPPORT RIB, ACTUATOR AND TIE ROD

ORIGINAL PAGE IS OF POOR QUALITY

FIGURE A4. DRAWING Z5943453 - SPI HINGE SUPPORT RIB, ACT (CONCLUDED)

EGEDOUT FRAME

ORIGINAL PAGE IS OF POOR QUALITY

Douglas Aircraft Company Contract NAS1-14869

ACEE-03-PR-8484

ROLDOUT FRAME

ORIGINAL PAGE IS

OF POOR QUALITY

FIGURE A5 DRAWING Z5943446 - REAR SPAR TEST SPECIMEN, ANALYSIS MODEL

APPENDIX B

SUPPLEMENTARY ANALYSES

- BUCKLING OF SINE-WAVE WEBS
- ALLOWABLE SHEAR BASED ON STRAIN

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX B SUPPLEMENTARY ANALYSES

Buckling of Sine-wave Webs

Amplitude
$$H = R (1 - \cos \phi)$$

$$P = 2 R \sin \phi$$

$$\overline{LMN} = S = 2 R \phi$$

$$L = S/P = \phi/\sin \phi$$

The normal panel stiffness terms are modified as follows:

$$D_{11} = \left(\frac{E_x t^3}{12 \lambda}\right) / L$$

$$D_{12} = \left(\frac{v_{yx} E_{x} t^{2}}{12\lambda}\right)/L$$

$$D_{66} = \left(\frac{G_{xy}t^3}{12}\right)/L$$

$$D_{22} = \frac{Ey}{\lambda} \left\{ tR^2 \left[1/2 - \frac{3 \sin 2\phi}{4\phi} + \cos^2 \phi \right] + \frac{t^3}{8} \left[1 + \frac{\sin 2\phi}{2\phi} \right] \right\} L$$

where the laminate is assumed to be homogeneous throughout the thickness.

Evaluation of local buckling is based on the semi-empirical equation

$$N_{xy} = 1.55 \text{ t } E\left(\frac{t}{2R}\right)^{1.5}$$

given in Reference 2. Since this expression was derived for isotropic material for which ν = 0.3 may be assumed, it has been modified for nonisotropic material as follows

$$N_{xy} = 1.4105 \left(\frac{K_s}{\lambda}\right) \left(E_x E_y^3\right)^{1/4} \left(\frac{t}{2R}\right)^{1.5}$$

where $K_{_{\mathbf{S}}}$ is a function of θ and β

$$\theta = \frac{D_{12} + 2 D_{66}}{(D_{11} D_{22})^{1/2}}$$

$$\beta = \frac{b}{a} \left(\frac{D_{11}}{D_{22}} \right)^{1/4}$$

as is normal practice for nonisotropic panel solution.

Allowable Shear Based on Strain

The adopted policy for the design of the stabilizer is to achieve a damage-tolerant structure by imposing a limit on the allowable strain. If this maximum strain is regarded as being appropriate to any filament direction, shear panels which contain layers at ±45° can be considered as follows:

Consider square element of unit side length Diagonal $\overline{AD} = \sqrt{2}$

For strain on diagonal =
$$\varepsilon$$

$$\frac{AD'}{CD'} = (1 + \varepsilon) \sqrt{2}$$

$$\frac{CD'}{CD'} = [2(1 + \varepsilon)^2 - 1]^{1/2}$$

$$= [2\varepsilon (2 + \varepsilon) + 1]^{1/2}$$

$$\frac{DD'}{DD'} = [2\varepsilon (2 + \varepsilon) + 1]^{1/2} = 1$$

$$\gamma = \tan^{-1} \overline{DD'}$$

Shear Strain

Allowable Shear Stress $F_s = \gamma G_{xy}$

Allowable Shear Loading $N_{xy} = \gamma G_{xy}$ t

For example, if $\varepsilon = 0.003$ $\gamma = 0.005991$ radians

If for 100% ±45°
$$G_{xy} = 5.5 \times 10^6$$

 $F_{s} = 32,950 \text{ psi}$
If for 0% ±45° $G_{xy} = 0.65 \times 10^6$
 $F_{s} = 3894 \text{ psi}$

Linear interpolation may be used between these two values for other percentages of $\pm 45^{\circ}$. For general buckling, the above expressions are substituted into the normal compression and shear buckling equations for nonisotropic panels.

