第 9 次作业题

- 1. 比较下列积分的大小:
 - (1) $\int_0^1 x \, dx \, \not = \int_0^1 x^2 \, dx$, (2) $\int_0^{\frac{\pi}{2}} x \, dx \not = \int_0^{\frac{\pi}{2}} \sin x \, dx$.
- 3. 求证: 若 $f, g \in \mathcal{R}[a, b]$, 则 $\min(f, g), \max(f, g) \in \mathcal{R}[a, b]$.
- **4.** 若 $f \in \mathcal{C}[a,b]$ 且 $\forall x \in [a,b]$, 均有 f(x) > 0, 求证:

$$\left(\int_{a}^{b} f(x) \, \mathrm{d}x\right) \left(\int_{a}^{b} \frac{\mathrm{d}x}{f(x)}\right) \geqslant (b-a)^{2}.$$

- 5. \sharp i \mathbb{E} : $\lim_{n \to \infty} \int_{n^2}^{n^2 + n} \frac{\mathrm{d}x}{\sqrt{x}e^{\frac{1}{x}}} = 1$.
- 6. 求下列函数的导函数:

(1)
$$F(x) = \int_{\sqrt{x}}^{x^2} e^{-t^2} dt$$
, (2) $F(x) = \int_{0}^{\arctan x} \tan t dt$.

- 7. 函数 y = y(x) 由方程 $\int_0^y e^{-t^2} dt + \int_0^x \cos t^2 dt = 0$ 确定, 求 y'(x).
- 8. 设曲线 y = y(x) 由方程 $x = \int_1^t \frac{\cos u}{u} du$, $y = \int_1^t \frac{\sin u}{u} du$ 来确定, 求该曲线在 $t = \frac{\pi}{4}$ 时的斜率.
- 9. 若 $f \in \mathcal{C}[0,+\infty)$ 使得 $\forall x \ge 0$, 均有 $\int_0^{\sqrt{x}} f(t) dt = x + \sin x$, 求 f(x).
- 10. $\forall x \in \mathbb{R}$, 定义 $F(x) = \int_0^x t e^{-t^2} dt$ 的极值点与拐点的横坐标.
- 11. 求下列极限:

(1)
$$\lim_{x \to +\infty} \frac{\int_0^x \arctan t^2 dt}{\sqrt{1+x^2}}$$
, (2) $\lim_{x \to 0} \frac{\int_{\sin x}^x \sqrt{1-t^2} dt}{x^3}$.

- **12.** 设 $f(x) = \begin{cases} x+1, \ \exists \ x \in [-1,0) \\ x, \ \exists \ x \in [0,1] \end{cases}$. $\forall x \in [-1,1], \ \diamondsuit \ F(x) = \int_{-1}^{x} f(t) \, \mathrm{d}t.$ 讨论函数 F 的连续性与可导性
- **13.** 若 $f \in \mathcal{C}^{(2)}[a,b]$, 求证: $\exists \xi \in [a,b]$ 使得

$$\int_{a}^{b} f(x) dx = f(\frac{a+b}{2})(b-a) + \frac{(b-a)^{3}}{24}f''(\xi).$$

14. 若 $f \in \mathcal{R}[a,b]$ 在 (a,b) 内连续, 求证: $\exists \xi \in (a,b)$ 使得

$$\int_a^b f(x) \, \mathrm{d}x = f(\xi)(b-a).$$

15. &i \mathbb{E} : $\lim_{n \to \infty} \int_0^1 \frac{dx}{1+x^n} = 1$.

16. 问下列函数在 $(-\infty, +\infty)$ 上是否有原函数?若有, 求出原函数, 若没有, 请说明理由.

$$(1) \ f(x) = \left\{ \begin{array}{ll} x^2 + 1, & \not \exists \ x \leqslant 0 \\ \cos x, & \not \exists \ x > 0 \end{array} \right., \quad (2) \ f(x) = \left\{ \begin{array}{ll} x^2 + 1, & \not \exists \ x \leqslant 0 \\ \cos x + \frac{\pi}{4}, & \not \exists \ x > 0 \end{array} \right..$$

17. 求下列不定积分:

(1)
$$\int (x - x^{-2}) \sqrt{x \sqrt{x}} \, dx$$
, (2) $\int (1 - 2 \cot^2 x) \, dx$,

(3)
$$\int \left(\frac{4}{\sqrt{1-x^2}} + \sin x\right) dx$$
, (4) $\int |(x-1)(3x-2)| dx$,

$$\int \frac{\mathrm{d}x}{(1+x^2)\arctan x}, \qquad (6) \qquad \int \frac{1}{x^2} \operatorname{sh} \frac{1}{x} \, \mathrm{d}x$$

(7)
$$\int \frac{x}{\sqrt{1+x^2}} \sin \sqrt{1+x^2} \, dx$$
, (8) $\int \frac{dx}{e^x + e^{-x}}$,

9)
$$\int \sec x \, dx$$
, (10) $\int \frac{x^2}{\sqrt{a^2 + x^2}} dx \ (a > 0)$

(1)
$$\int (x-x^{2})\sqrt{x}\sqrt{x} dx$$
, (2) $\int (1-2\cot x) dx$,
(3) $\int \left(\frac{4}{\sqrt{1-x^{2}}} + \sin x\right) dx$, (4) $\int |(x-1)(3x-2)| dx$,
(5) $\int \frac{dx}{(1+x^{2})\arctan x}$, (6) $\int \frac{1}{x^{2}} \sinh \frac{1}{x} dx$,
(7) $\int \frac{x}{\sqrt{1+x^{2}}} \sin \sqrt{1+x^{2}} dx$, (8) $\int \frac{dx}{e^{x}+e^{-x}}$,
(9) $\int \sec x dx$, (10) $\int \frac{x^{2}}{\sqrt{a^{2}+x^{2}}} dx$ (a > 0),
(11) $\int \frac{\sqrt{x^{2}-4}}{x} dx$, (12) $\int \frac{dx}{x\sqrt{a^{2}-x^{2}}}$,
(13) $\int \frac{2x-1}{\sqrt{4x^{2}+4x+5}} dx$.

(13)
$$\int \frac{2x-1}{\sqrt{4x^2+4x+5}} dx.$$