Discrete Mathematical Structures

UNI	T - I				
1		Explain in detail about the Logical Connectives with Examples?	L2	CO1	[12M]
2	a)	Write a short notes on Well Formed Formula with suitable example.	L3	CO1	[6M]
	b)	Show that $(P \land Q) \rightarrow (P \lor Q)$ is a tautology without using Truth Table	L2	CO1	[6M]
3	a)	Construct the truth table for the following statement.	L3	CO1	[6M]
		$(\sim P \leftrightarrow \sim Q) \leftrightarrow (Q \leftrightarrow R)$			
	b)	Write a short notes on Duality Law with suitable example	L2	CO1	[6M]
4	a)	Show that $(P \rightarrow Q) \vee (P \rightarrow R) \iff P \rightarrow (Q \vee R)$	L2	CO1	[6M]
		i) Using Truth Table. ii) Without using Truth Table			
	b)	Find the PDNF of Negation of $P \lor (\neg P \land \neg Q \land R)$	L2	CO1	[6M]
5	a)	Determine whether the conclusion C follows logically from the premises	L2	CO1	[6M]
		H1 and H2.			
		$H1: P \rightarrow Q, H2:\sim P, C:Q$			
	b)	Obtain the PCNF of the following formula $(\sim P \rightarrow R) \land (Q \leftrightarrow P)$	L2	CO1	[6M]
		i) Using Truth Table. ii) Without using Truth Table			
6	a)	Obtain DNF for $p \rightarrow ((p \rightarrow q) \land \neg (\neg q \lor \neg p))$.	L3	CO1	[6M]
	b)	Check whether the given statement formula is a Tautology or not:	L2	CO1	[6M]
		$(P \rightarrow (Q \rightarrow R)) \rightarrow ((P \rightarrow Q) \rightarrow (P \rightarrow R))$			
7	a)	Construct the truth table for each of these compound statements.	L3	CO1	[6M]
		i) $(P \rightarrow Q) \land (\sim P \rightarrow Q)$			
		ii) $P \rightarrow (\sim QvR)$			
	1,	Obtain the Principal disjunctive normal form of	L2	CO1	[6M]
	b)	$(P \land Q) \lor (\sim P \land R) \lor (Q \land R)$			
8	a)	Define Tautology, Contradiction and Contingency with suitable examples	L1	CO1	[6M]
	b)	Write a short notes on PDNF and PCNF	L2	CO1	[6M]

9	a)	Show that $(P \rightarrow Q) \rightarrow Q \iff (PvQ)$		CO1	[6M]
		Using Truth Table			
	b)	Explain PDNF with suitable example.	L2	CO1	[6M]
10	a)	Construct the truth table for the following statement.	L3	CO1	[6M]
		$(\sim P \leftrightarrow \sim Q) \leftrightarrow (Q \leftrightarrow R)$			
	b)	Explain PCNF with suitable example.	L2	CO1	[6M]

UNI	T – II				
1		Explain about Hassee Diagram. Explain with an example.	L2	CO2	[12M]
2		Explain about Properties of Binary relations.	L2	CO2	[12M]
3	a)	Explain about the following properties of a binary relation in a set. Give	L2	CO2	[6M]
		one example for each			
		i) Reflexive			
		ii) Symmetric			
	b)	Define Function. Explain the types of functions with example.	L2	CO2	[6M]
4		Define Set. Explain the Representation of set. Write about types of sets.	L2	CO2	[12M]
5	a)	Let $X = \{1,2,3,4\}$ be a set and R is a relation on the set X such that $R =$	L4	CO2	[6M]
		$\{(1,1),(1,4),(4,1),(4,4),(2,2),(2,3),(3,2),(3,3)\}$. Draw its matrix and graph.			
		Also prove that R is an equivalence relation.			
	b)	Consider the relation $P = \{(1,2), (2.4), (3,3)\}$ and $Q = \{(1,3), (2,4), (4,2)\}$.	L2	CO1	[6M]
		Find $P \cup Q$, $P \cap Q$, $D(P)$, $D(Q)$, $D(P \cup Q)$, $R(P)$, $R(Q)$, $R(P \cup Q)$.			
6		Explain representation of partially ordered set with suitable example	L2	CO1	[12M]
7	a)	Explain about the following properties of a binary relation in a set.Give	L2	CO1	[6M]
		one example for each			
		i) Symmetric			
		ii) Transitive			
	b)	Write a short notes on Covering & Partition of a Set with an example.	L3	CO1	[6M]

8	a)	Let $X = \{1,2,3\}$ f,g,h and s be functions from X to X given by	L4	CO1	[6M]
		$f = \{(1,2)(2,3)(3,1)\}\ g = \{(1,2)(2,1)(3,3)\}\ h = \{(1,1)(2,2)\}$			
		(3,3)} find fog,gof,sog,gos, fos and fohog.			
	b)	Let $X=\{2,3,6,12,24,36\}$ and the relation \leq be such that $X \leq y$. If $X \leq y$	L4	CO2	[6M]
		divides y . Draw the Hasse diagram.			
9		Explain the operation on sets.	L2	CO1	[12M]
10		Explain about the following relations	L2	CO1	[12M]
		i) Equivalence relations			
		ii) Partial ordering relations			

UNIT – III					
1	Define Graph. Explain the basic concepts of graphs?	L1	CO3	[6M]	
2	Explain Adjacency Matrix with an example.	L3	CO3	[6M]	
3	Explain Incidence Matrix with an example.	L3	CO3	[6M]	
4	Explain any 3 types of graphs with an example.	L3	CO3	[6M]	
5	Differentiate directed and undirected graph with example.	L2	CO3	[6M]	
6	Explain the terms simple graph, wheel graph and weighted graph with suitable examples.	L3	CO3	[6M]	
7	Define Subgraphs.Explain with an example.	L3	CO3	[6M]	
8	Explain the terms complete graph, cycle graph, wheel graph with suitable examples.	L3	CO3	[6M]	