Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Primeira Prova Nível Beta - 2021

Resolução comentada

Questão 01: Determine o maior valor de

$$Q = \frac{a}{ad + bc}$$

sabendo que $a^2 + b^2 = 1$, $c^2 + d^2 = 4$ e ac - bd = 0.

Solução: Vamos apresentar duas soluções para a questão.

1ª Solução: Do enunciado temos que (a, b) pertence ao círculo de centro (0, 0) e raio 1 e portanto podemos escrever $(a, b) = (\cos \alpha, \sin \alpha)$, para algum $\alpha \in [0, 2\pi)$. Além disso, temos que (c, d) pertence ao círculo de centro (0, 0) e raio 2 e portanto podemos escrever $(c, d) = (2\cos \beta, 2\sin \beta)$, para algum $\beta \in [0, 2\pi)$. Logo,

$$Q = \frac{a}{ad + bc} = \frac{\cos \alpha}{\cos \alpha \cdot 2\sin \beta + \sin \alpha \cdot 2\cos \beta} = \frac{\cos \alpha}{2\sin(\alpha + \beta)}$$

onde na última igualdade utilizamos a fórmula do seno da soma de dois arcos.

Por outro lado, da hipótese ac-bd=0 obtemos $\cos\alpha\cdot 2\cos\beta-\sin\alpha\cdot 2\sin\beta=0$. Utilizando a fórmula do cosseno da soma de dois arcos concluímos que $2\cos(\alpha+\beta)=0$ o que implica em $\alpha+\beta=\frac{\pi}{2}$ ou $\frac{3\pi}{2}$. Disso segue que $\sin(\alpha+\beta)=1$ ou -1. Portanto,

$$|Q| = \frac{\cos \alpha}{2\sin(\alpha + \beta)} = \frac{|\cos \alpha|}{2} \le \frac{1}{2},$$

ou seja, $Q \in \left[-\frac{1}{2}, \frac{1}{2}\right]$. Com isso, obtemos que o maior valor possível de $Q \notin \frac{1}{2}$. Para verificar que este valor é de fato assumido basta tomar, por exemplo, a = 1, b = 0, c = 0 e d = 2.

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

2ª Solução: Considere a expressão dada no enunciado, isto é:

$$Q = \frac{a}{ad + bc}$$

Podemos elevá-la ao quadrado, obtendo:

$$Q^{2} = \left(\frac{a}{ad + bc}\right)^{2} = \frac{a^{2}}{a^{2}d^{2} + b^{2}c^{2} + 2abcd}$$
 (1)

Do enunciado, temos que $ac - bd = 0 \implies ac = bd$. Substituindo em (1):

$$Q^2 = \frac{a^2}{a^2d^2 + b^2c^2 + 2a^2c^2}$$

Vamos reescrever a expressão acima da seguinte forma:

$$Q^{2} = \frac{a^{2}}{a^{2}d^{2} + a^{2}c^{2} + b^{2}c^{2} + a^{2}c^{2}} = \frac{a^{2}}{a^{2}(d^{2} + c^{2}) + c^{2}(b^{2} + a^{2})}$$

onde podemos substituir as informações do enunciado de que $a^2+b^2=1$ e $c^2+d^2=4$, transformando a expressão para:

$$Q^2 = \frac{a^2}{4a^2 + c^2} \tag{2}$$

Daqui, analisaremos duas possibilidades:

- 1. a = 0
- 2. $a \neq 0$

De (1), a equação (2) se torna $Q^2 = 0$.

De (2), a equação (2) será com certeza positiva ($Q^2 > 0$) e menor ou igual a $\frac{1}{4}$:

$$0 < Q^2 = \frac{a^2}{4a^2 + c^2} \le \frac{a^2}{4a^2} = \frac{1}{4}$$

Essas restrições ocorrem pois Q^2 é um número ao quadrado e, portanto, positivo. Além disso, tomando o caso em que c=0 com $a\neq 0$ qualquer, $Q^2=\frac{1}{4}$. Desse modo, sendo este o maior valor de

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

 $Q^2,\,Q\in\left[\,-\,rac{1}{2},rac{1}{2}\,
ight],$ o que nos permite concluir que o maior valor de Q é $rac{1}{2}.$

Claramente, devemos verificar que tal valor realmente existe nas hipóteses, considere a 4-upla (a, b, c, d) = (1, 0, 0, 2) que satisfaz $a^2 + b^2 = 1$ e $c^2 + d^2 = 4$ e ac - bd = 0 e

$$Q = \frac{a}{ad + bc} = \frac{1}{2+0} = \frac{1}{2}$$

então o valor máximo assumido por Q é, de fato, $Q = \frac{1}{2}$.

Questão 02: Considere um triângulo equilátero de lado L. Vamos considerar a divisão do triângulo por retas paralelas a um dos lados (fixo). Considere a altura em relação a este lado. Esta altura é dividida pelas retas paralelas em segmentos de altura $a_1 > a_2 > \cdots > a_n$.

- a) Se quisermos dividir o triângulo em 2 pedaços de mesma área, qual seria a altura a_1 ?
- b) Se quisermos dividir o triângulo em 3 pedaços de mesma área, quais seriam as alturas a_1 e a_2 ?
- c) E se dividirmos em N pedaços de mesma área, quais seriam as alturas $a_1, a_2, \cdots, a_{N-1}$?
- d) O que poderíamos falar sobre estas grandezas se o triângulo não for equilátero?

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Solução:

a) Qualquer triângulo equilátero de lado L e altura h satisfaz a proporção $h = \frac{\sqrt{3}}{2}L$ e área $A = \frac{Lh}{2} = \frac{\sqrt{3}L^2}{4}$. Queremos a_1 tal que a área A_1 do triângulo acima da reta de altura a_1 tenha a mesma área do trapézio abaixo de tal reta. Para isso, queremos que $2A_1 = A$.

Mas A_1 é a área de um triângulo equilátero de altura $h-a_1$ e lado l_1 satisfazendo $h-a_1=\frac{\sqrt{3}}{2}l_1$, portanto $A_1=\frac{\sqrt{3}l_1^2}{4}$, logo

$$A = 2A_1 \iff \frac{\sqrt{3}L^2}{4} = \frac{2\sqrt{3}l_1^2}{4} \implies l_1 = \frac{L}{\sqrt{2}}, \text{ pois } l_1, L > 0.$$

Assim, $a_1 = h - \frac{\sqrt{3}}{2}l_1$, o que implica que $a_1 = \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2\sqrt{2}}\right)L$.

b) Queremos a_1 e a_2 tais que as áreas A_1 , A_2 e A_3 da figura (1) sejam iguais. Isso é o mesmo que resolver $A=3A_1$ e $A=3A_3$ onde

$$A_{1} = \frac{\sqrt{3}}{4}l_{1}^{2}$$

$$A_{2} = \frac{\sqrt{3}}{4}l_{2}^{2} - \frac{\sqrt{3}}{4}l_{1}^{2}$$

$$A_{3} = \frac{\sqrt{3}}{4}L^{2} - \frac{\sqrt{3}}{4}l_{2}^{2}$$

$$com a_i = \frac{\sqrt{3}}{2}L - \frac{\sqrt{3}}{2}l_i.$$

Temos que $A=3A_1$ implica $l_1=\frac{L}{\sqrt{3}}$ e, portanto, $a_1=\frac{\sqrt{3}-1}{2}L$.

De $A = 3A_3$ temos

$$L^2 = 3(L^2 - l_2^2) \implies l_2^2 = L^2 \left(1 - \frac{1}{3}\right) \implies l_2 = \frac{\sqrt{2}}{\sqrt{3}}L$$

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

portanto
$$a_2 = \frac{\sqrt{3} - \sqrt{2}}{2}L$$
.

Figura 1: Representação das áreas

c) Assim como no item anterior, queremos $a_1, \ldots a_{n-1}$ tais que $A = nA_i$ para $i \in \{1, \ldots, n-1\}$, onde

$$A_{1} = \frac{\sqrt{3}}{4}l_{1}^{2}$$
...
$$A_{i} = \frac{\sqrt{3}}{4}l_{i}^{2} - \frac{\sqrt{3}}{4}l_{i-1}^{2}$$
...

$$A_n = \frac{\sqrt{3}}{4}L^2 - \frac{\sqrt{3}}{4}l_{n-1}^2,$$

$$e \ a_i = \frac{\sqrt{3}}{2}L - \frac{\sqrt{3}}{2}l_i.$$

De $A = nA_n$, temos que

$$L^{2} = n(L^{2} - l_{n-1}^{2}) \implies l_{n-1}^{2} = L^{2} \left(1 - \frac{1}{n}\right) \implies l_{n-1} = \frac{\sqrt{n-1}}{\sqrt{n}}L,$$

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

portanto
$$a_{n-1} = \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \frac{\sqrt{n-1}}{\sqrt{n}}\right) L.$$

Se queremos $A = nA_{n-1}$, então

$$L^{2} = n(l_{n-1}^{2} - l_{n-2}^{2}) \implies l_{n-2}^{2} = \left(l_{n-1}^{2} - \frac{L^{2}}{n}\right) = \left(\frac{n-1}{n}L^{2} - \frac{1}{n}L^{2}\right),$$

portanto
$$l_{n-2} = \frac{\sqrt{n-2}}{\sqrt{n}}L$$
 e $a_{n-2} = \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}\frac{\sqrt{n-2}}{\sqrt{n}}\right)L$.

Repetindo o mesmo argumento, temos que $a_i = \left(\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} \frac{\sqrt{i}}{\sqrt{n}}\right) L$ para $i \in \{1, \dots, n-1\}$.

d) Para qualquer triângulo, fixado um lado de comprimento L, existe uma constante k tal que a altura com relação a este lado satisfaz h=kL. Além disso, a área do triângulo é $A=\frac{k}{2}L^2$. Retas paralelas ao lado de comprimento L cortando o triângulo definem triângulos semelhantes ao triângulo original, portanto eles tem a mesma razão k entre altura e lado para o lado que passa pela reta paralela. Assim, substituindo $\frac{\sqrt{3}}{2}$ por k no item anterior, todas as contas podem ser repetidas, e temos que

$$a_i = \left(k - k\frac{\sqrt{i}}{\sqrt{n}}\right)L$$

para $i \in \{1, ..., n-1\}.$

Questão 03: Dado um inteiro positivo n, definimos $\sigma(n)$ como sendo a soma dos divisores próprios de n, isto é, a soma de todos os divisores de n exceto o próprio n. Por exemplo, os divisores próprios de 8 são 1, 2, 4, logo $\sigma(8) = 1 + 2 + 4 = 7$.

- a) Seja p um número primo maior do que 2 e $a=2^np$. Mostre que $\sigma(a)=2^{n+1}-1+2^np-p$.
- b) Considerando novamente $a = 2^n p$ e usando o item anterior, conclua que

$$\begin{cases} \sigma(a) = a \text{ se } p = 2^{n+1} - 1; \\ \sigma(a) < a \text{ se } p > 2^{n+1} - 1; \\ \sigma(a) > a \text{ se } p < 2^{n+1} - 1. \end{cases}$$

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

c) Seja $z = 1 + 2 + 2^2 + \dots + 2^n$ e definimos

$$p_1 := z + 2^n;$$

$$p_2 := z - 2^{n-1};$$

$$p_3 := 2^{n+1}(2^{n+1} + 2^{n-2}) - 1;$$

$$a := 2^n p_1 p_2;$$

$$b := 2^n p_3.$$

Mostre que, se p_1, p_2, p_3 são primos distintos maiores do que 2, então $\sigma(a) = b$ e $\sigma(b) = a$.

Solução: Antes de resolver o exercício de fato, observe que a soma

$$\sum_{k=0}^{n} 2^k = 1 + 2 + 2^2 + \dots + 2^n$$

é a soma de uma PG com primeiro termo igual a $a_1=1$, com razão q=2 e com n+1 termos. Assim,

$$\sum_{k=0}^{n} 2^{k} = \frac{a_{1}(q^{n+1} - 1)}{q - 1} = \frac{1 \cdot (2^{n+1} - 1)}{2 - 1} = 2^{n+1} - 1.$$

Agora, vamos aos itens propriamente ditos.

a) Considere a seguinte decomposição de n em fatores primos distintos, onde $\alpha_j \in \mathbb{N}, \forall j \in \{1, \dots, k\}$:

$$n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$$

Um inteiro positivo $m \ge 1$ é divisor de n se, e somente se, a decomposição em fatores primos de m é dada por:

$$m = p_1^{\beta_1} \dots p_k^{\beta_k}$$
 onde $\beta_j \in \{0, \dots, \alpha_j\}, \forall j \in \{1, \dots, k\}$

Assim, sendo p primo, consideremos p > 2 como traz o enunciado. Dessa maneira, $a = 2^n p$ é a decomposição em fatores primos de a.

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

O conjunto dos divisores de a é o conjunto

$$\{2^k p^q \mid k \in \{0, \dots, n\}, q \in \{0, 1\}\}$$

enquanto que o conjunto dos divisores próprios de a é o conjunto

$$\{2^k p^q \mid k \in \{0, \dots, n\}, q \in \{0, 1\} : k + q < n + 1\}$$

Dessa maneira,

$$\sigma(a) = \sum_{\substack{0 \le k \le n \\ 0 \le q \le 1 \\ k+q < n+1}} 2^k p^q \tag{3}$$

Podemos reescrever (3) como:

$$\sigma(a) = \sum_{\substack{0 \le k \le n \\ 0 \le q \le 1 \\ k+q \le n}} 2^k p^q = \sum_{k=0}^n 2^k p^0 + \sum_{k=0}^{n-1} 2^k p^1 = \sum_{k=0}^n 2^k + \sum_{k=0}^{n-1} 2^k p = \sum_{k=0}^n 2^k + p \sum_{k=0}^{n-1} 2^k$$

Utilizando a soma de PG feita no início, a expressão acima se transforma em:

$$\sigma(a) = 2^{n+1} - 1 + p(2^n - 1) \implies \sigma(a) = 2^{n+1} - 1 + 2^n p - p$$

como queríamos demonstrar.

b)
$$-\operatorname{Se} p = 2^{n+1} - 1, \ \sigma(a) = 2^{n+1} - 1 + p(2^n - 1) \text{ se torna:}$$

$$\sigma(a) = 2^{n+1} - 1 + (2^{n+1} - 1)(2^n - 1) = (2^{n+1} - 1)(1 + 2^n - 1) = (2^{n+1} - 1) \cdot 2^n$$

$$\operatorname{Como} p = 2^{n+1} - 1, \ \sigma(a) = 2^n \cdot p = a. \ \operatorname{Ou} \text{ seja, } \sigma(a) = a.$$

$$-\operatorname{Se} p > 2^{n+1} - 1, \ \operatorname{ent\~ao}:$$

$$\sigma(a) = 2^{n+1} - 1 + 2^n p - p$$

Ou seja, $\sigma(a) < a$

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

- Analogamente ao caso anterior, se $p < 2^{n+1} - 1$, então:

$$\sigma(a) = 2^{n+1} - 1 + 2^n p - p > p + 2^n p - p = 2^n p = a$$

Ou seja, $\sigma(a) > a$.

c) Observe que, pela soma de PG que fizemos no início temos:

$$z = 1 + 2 + 2^2 + \dots + 2^n = 2^{n+1} - 1.$$

Assim,

$$p_1 = z + 2^n = 2^{n+1} - 1 + 2^n = 3 \cdot 2^n - 1$$
$$p_2 = z - 2^{n-1} = 3 \cdot 2^{n-1} - 1$$
$$p_3 = 2^{n+1}(2^{n+1} + 2^{n-2}) - 1 = 9 \cdot 2^{2n-1} - 1$$

Sendo $a = 2^n p_1 p_2$ e p_1, p_2, p_3 primos distintos por hipótese, então o conjunto dos divisores próprios de a é dado por:

$$\{2^k p_1^q p_2^r \mid k \in \{0, \dots, n\}, q, r \in \{0, 1\} : k + q + r < n + 1\}$$

Consequentemente, de forma análoga a (3), temos:

$$\sigma(a) = \sum_{\substack{0 \le k \le n \\ 0 \le q, r \le 1 \\ k+q+r < n+1}} 2^k p_1^q p_2^r = \sum_{k=0}^n 2^k + \sum_{k=0}^n 2^k p_1 + \sum_{k=0}^n 2^k p_2 + \sum_{k=0}^{n-1} 2^k p_1 p_2$$

$$\implies \sigma(a) = \sum_{k=0}^{n} 2^k + p_1 \sum_{k=0}^{n} 2^k + p_2 \sum_{k=0}^{n} 2^k + p_1 p_2 \sum_{k=0}^{n-1} 2^k$$

Agora, utilizando novamente a soma de PG feita no início, temos:

$$\sigma(a) = 2^{n+1} - 1 + p_1(2^{n+1} - 1) + p_2(2^{n+1} - 1) + p_1p_2(2^n - 1)$$

$$\implies \sigma(a) = (2^{n+1} - 1)(1 + p_1 + p_2) + p_1p_2(2^n - 1)$$

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

onde podemos substituir os valores de p_1 e p_2 como:

$$\sigma(a) = (2^{n+1} - 1)(1 + 3 \cdot 2^n - 1 + 3 \cdot 2^{n-1} - 1) + (3 \cdot 2^n - 1)(3 \cdot 2^{n-1} - 1)(2^n - 1)$$

$$\sigma(a) = (2^{n+1} - 1)(9 \cdot 2^{n-1} - 1) + (9 \cdot 2^{2n+1} - 9 \cdot 2^{n-1} + 1)(2^n - 1)$$

$$\sigma(a) = 18 \cdot 2^{2n-1} - 2^{n+1} - 9 \cdot 2^{n-1} + 1 + 9 \cdot 2^{3n-1} - 18 \cdot 2^{2n-1} + 9 \cdot 2^{n+1} + 2^n - 1$$

$$\sigma(a) = 9 \cdot 2^{3n-1} - 2^n$$

Além disso, tendo $b = 2^n p_3$, podemos substituir p_3 , obtendo:

$$b = 2^n \cdot (9 \cdot 2^{2n-1} - 1) \implies b = 9 \cdot 2^{3n-1} - 2^n$$

Desse modo, verificamos que $\sigma(a) = b$.

De forma análoga ao que fizemos anteriormente, como $b = 2^n p_3$, o conjunto dos divisores próprios de b é dado por:

$$\{2^k p_3^q \mid k \in \{0, \dots, n\}, q, r \in \{0, 1\} : k + q < n + 1\}$$

e

$$\sigma(b) = \sum_{\substack{0 \le k \le n \\ 0 \le q \le 1 \\ k+q \le n+1}} 2^k p_3^q = \sum_{k=0}^n 2^k + \sum_{k=0}^{n-1} 2^k p_3 = \sum_{k=0}^n 2^k + p_3 \sum_{k=0}^{n-1} 2^k$$

Ou seja:

$$\sigma(b) = 2^{n+1} - 1 + p_3(2^n - 1)$$

onde podemos substituir p_3 como:

$$\sigma(b) = 2^{n+1} - 1 + (9 \cdot 2^{2n-1} - 1)(2^n - 1)$$

$$\sigma(b) = 2^{n+1} - 1 + 9 \cdot 2^{3n-1} - 9 \cdot 2^{2n-1} - 2^n + 1$$

$$\sigma(b) = 9 \cdot 2^{3n-1} - 9 \cdot 2^{2n-1} + 2^n$$

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Além disso, tendo $a = 2^n p_1 p_2$, podemos substituir p_1 e p_2 , obtendo:

$$a = 2^{n} \cdot (3 \cdot 2^{n} - 1) \cdot (3 \cdot 2^{n-1} - 1) \implies a = 9 \cdot 2^{3n-1} - 9 \cdot 2^{2n-1} + 2^{n}$$

Desse modo, verificamos que $\sigma(b) = a$.

OBS: Essa questão trata dos **Números amigáveis**, Teorema de Thabit ibn Qurra. Corresponde a demonstração do Teorema 10 em https://www.sciencedirect.com/science/article/pii/0315086089900840.

Questão 04: Um palíndromo consiste em uma sequência ordenada de símbolos (geralmente letras ou números) que é a mesma se lida de trás para frente. Por exemplo, os nomes "ANA" e o número "12345678987654321" são ambos palíndromos. Apenas como exemplo, o escritor francês Georges Perec escreveu um poema, chamado "Le grand pallindrome", que é um palíndromo de 1.247 palavras (5.566 letras)!

- a) Quantos números de 3 dígitos são palíndromos? E se tivermos 4 dígitos?
- b) Mostre que o número de palíndromos com 2n dígitos e 2n-1 é sempre o mesmo.

Jogo dos palíndromos 1. Este é um jogo solitário, para um único jogador. Consideramos uma sequência de símbolos 0's e 1's, digamos n símbolos. A cada rodada você pode retirar quantos símbolos você desejar, desde que estes símbolos sejam consecutivos e formem sempre um palíndromo. O objetivo é retirar todos os símbolos com o menor número de rodadas.

- c) Mostre que independente da sequência original, é possível retirar todas as peças com um número de jogadas igual à metade do número de peças, mais um.
- d) Qual o jogo mais difícil (que precisa de mais rodadas) que você consegue montar utilizando 7 peças? Diga qual o jogo e mostre as rodadas utilizadas para resolvê-lo.
- e) Qual o número mínimo de peças necessário para montar um jogo que demande 3 rodadas?

Jogo dos palíndromos 2 Acrescentamos agora uma regra adicional ao jogo: as peças só podem ser retiradas se forem começo ou fim da palavra (prefixo ou sufixo).

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

f) Responda as duas perguntas anteriores (itens (d) e (e)) nesta nova versão do jogo.

Solução:

a) Primeiro, vamos analisar o caso onde os números possuem 3 dígitos. Chamemos o número de n = abc, isto é, o número é formado pelos dígitos a, b e c nesta ordem. Analisando as possibilidades de cada um desses dígitos, vemos que temos nove possibilidades para o **primeiro dígito** (a), pois a deve ser um número de 1 a 9, já que n deve ser um número entre 100 e 999. Para o **segundo dígito** (b), temos dez possibilidades (os 10 algarismos de 0 a 9). O **último dígito** (c), para que n seja palíndromo, deve ser igual ao primeiro. Assim, resta apenas uma possibilidade para c.

Desse modo, há $9 \cdot 10 \cdot 1 = 90$ palíndromos de 3 dígitos.

Agora, vamos analisar o caso onde os números possuem 4 dígitos, considerando n = abcd, de forma análoga ao caso anterior. Para que n seja palíndromo, novamente há nove possibilidades para o **primeiro dígito** (a), pois n deve ser um número entre 1000 e 9999. Para o **segundo dígito** (b) há novamente 10 possibilidades. Agora, para os **dois últimos dígitos** (c e d) há apenas uma possibilidade para cada, pois para a = d e b = c.

Portanto, há $9 \cdot 10 \cdot 1 \cdot 1 = 90$ palíndromos de 4 dígitos.

b) Seja o número $N = a_1 a_2 \dots a_n a_{n+1} \dots a_{2n}$ um palíndromo de 2n dígitos, onde a_i $(i = 1, 2, \dots, 2n)$ representa um algarismo. A condição de ser palíndromo nos mostra que os dígitos a_{n+1}, \dots, a_{2n} estão bem definidos quando conhecidos a_1, \dots, a_n , uma vez que dependem destes $(a_{n+1} = a_n)$ e assim por diante até $a_{2n} = a_1$. Para o **primeiro dígito** (a_1) existem nove possibilidades, já que $a_1 \neq 0$. Para os **outros dígitos** (a_2, \dots, a_n) , existem dez possibilidades para cada um. Para os **últimos dígitos** $(a_{n+1}, \dots a_{2n})$, existe uma possibilidade para cada um.

Sendo assim, há
$$9 \cdot \underbrace{10 \cdot 10 \cdot \ldots \cdot 10}_{n-1 \text{ vezes}} \cdot \underbrace{1 \cdot 1 \cdot \ldots \cdot 1}_{n \text{ vezes}} = 9 \cdot 10^{n-1}$$
 palíndromos de $2n$ dígitos.

Agora, seja $N = a_1 a_2 \dots a_n a_{n+1} \dots a_{2n-1}$ um palíndromo onde a_j $(j = 1, 2, \dots, 2n-1)$ representa um algarismo, de 2n-1 dígitos. Assim como anteriormente, os dígitos a_{n+1}, \dots, a_{2n-1} estão definidos quando os primeiros n algarismos são conhecidos, pois $a_{n+1} = a_{n-1}$ e assim por diante até $a_{2n-1} = a_1$. Para o **primeiro dígito** (a_1) existem mais uma vez nove possibilidades de escolha. Para os **outros dígitos** (a_2, \dots, a_n) , existem dez possibilidades para cada um. Para os **últimos dígitos** $(a_{n+1}, \dots a_{2n-1})$, existe uma possibilidade para cada um.

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

Com isso, há
$$9 \cdot \underbrace{10 \cdot 10 \cdot \ldots \cdot 10}_{n-1 \text{ vezes}} \cdot \underbrace{1 \cdot 1 \cdot \ldots \cdot 1}_{n-1 \text{ vezes}} = 9 \cdot 10^{n-1}$$
 palíndromos de $2n-1$ dígitos.

c) Primeiro, vamos definir a função piso (ou função parte inteira), dada por $[\cdot]: \mathbb{R} \to \mathbb{R}$:

$$\lfloor x \rfloor = \max\{z \in \mathbb{Z} : z \le x\}$$

Seu gráfico é dado pela figura (2). Veja que $\lfloor x+k \rfloor = \lfloor x \rfloor + k$ para todo $k \in \mathbb{N}$.

Figura 2: Gráfico da função |x|

Para resolver o exercício, devemos mostrar que com uma sequência n símbolos 0's e 1's, independentemente da sequência original, é possível retirar todas as peças usando no máximo

$$\left\lfloor \frac{n}{2} \right\rfloor + 1$$
 jogadas (4)

Por indução em n, vamos verificar que (4) é válida. Para n=1, a sequência possui um único elemento que é retirado na primeira jogada e são necessárias

$$1 = 0 + 1 = \left| \frac{1}{2} \right| + 1$$
 jogadas

Suponha que (4) é válida par qualquer número menor ou igual a n e considere uma sequência de n+1 símbolos 0's e 1's. Vamos dividir a demonstração em quatro casos listados abaixo.

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

<u>1º Caso:</u> Os dois primeiros símbolos da sequência são iguais.

Sem perda de generalidade, podemos supor que a sequência começa com 00. Esses dois primeiros símbolos podem ser tirados com uma única jogada e os n-1 símbolos restantes, por hipótese de indução podem ser retirados com no máximo $\left\lfloor \frac{n-1}{2} \right\rfloor + 1$ jogadas, totalizando uma quantidade de, no máximo

$$1 + \left\lfloor \frac{n-1}{2} \right\rfloor + 1 = \left\lfloor \frac{n-1}{2} + 1 \right\rfloor + 1 = \left\lfloor \frac{n+1}{2} \right\rfloor + 1$$
 jogadas

Portanto a afirmação vale para n+1.

<u>2º Caso:</u> Os dois primeiros algarismos são diferentes e o terceiro é diferente do segundo.

Sem perda de generalidade podemos supor os três primeiros algarismos são 010, e esses três algarismos podem ser retirados com uma única jogada e os outros n-2 com no máximo $\left\lfloor \frac{n-2}{2} \right\rfloor + 1$ pela hipótese de indução, totalizando no máximo

$$1 + \left\lfloor \frac{n-2}{2} \right\rfloor + 1 = \left\lfloor \frac{n-2}{2} + 1 \right\rfloor + 1 = \left\lfloor \frac{n}{2} \right\rfloor + 1 \le \left\lfloor \frac{n+1}{2} \right\rfloor + 1 \quad \text{jogadas}$$

e portanto (4) vale para n+1.

 $\underline{3^o\ Caso}$: Os dois primeiros algarismos são diferentes entre si, o terceiro é igual ao segundo e o quarto diferente do terceiro, sem perda de generalidade, podemos supor que os quatro primeiros algarismos são 0110 que podem ser retirados com um única jogada e o restante com $\left\lfloor \frac{n-3}{2} \right\rfloor + 1$ jogadas, necessitando de no máximo

$$1 + \left\lfloor \frac{n-3}{2} \right\rfloor + 1 \le \left\lfloor \frac{n+1}{2} \right\rfloor + 1$$
 jogadas

portanto a afirmação vale para n+1.

 $\underline{4^o\ Caso:}$ Os dois primeiros algarismos são diferentes entre si, e os dois próximos iguais ao segundo, sem perda de generalidade supor que os quatro primeiros algarismos são 0111 que são retirados com duas jogadas e o restante com no máximo $\left|\frac{n-3}{2}\right|+1$ jogadas, totalizando no máximo de

$$2 + \left\lfloor \frac{n-4}{2} \right\rfloor + 1 = \left\lfloor \frac{n-4}{2} + 2 \right\rfloor + 1 = \left\lfloor \frac{n}{2} \right\rfloor + 1 \leq \left\lfloor \frac{n+1}{2} \right\rfloor + 1 \quad \text{jogadas}$$

37ª Olimpíada de Matemática da Unicamp Instituto de Matemática, Estatística e Computação Científica

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

e a afirmação (4) vale para n+1.

Assim, a afirmação é válida para qualquer quantidade n de símbolos, como queríamos demonstrar.

d) Para resolver esse item, pensemos da seguinte forma: se queremos analisar qual a quantidade de jogadas que precisamos fazer para retirar todos os n algarismos de uma sequência de 0's e 1's, a princípio devemos considerar todos as 2^n sequências possíveis. Isso se torna muito complicado mesmo para valores de n razoavelmente pequenos.

Perceba que nem todas as possibilidades precisam ser analisadas. Por exemplo considere a sequência de cinco símbolos 11010. Veja que as sequências 00101, 01011, 10100 são obtidas respectivamente, da sequência "original" 11010 trocando os tipos de símbolos, invertendo a ordem, e invertendo a ordem depois de trocado os tipos de símbolos. Como essas operações - bem como suas composições - não alteram a quantidade de jogadas necessárias, podemos analisar as sequências independentemente delas.

Para isso, vamos primeiramente considerar a "proporção" dos tipos de símbolos. Por exemplo, a sequência 11010 tem três 1's e dois 0's, então diremos que tem proporção 3×2 . Veja que a proporção 2×3 é a mesma, pois trocar 1's e 0's não altera a quantidade final de jogadas. Façamos um exemplo para n=4, para o qual existem as seguintes proporções: 4×0 , 3×1 e 2×2 .

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

- Para 4×0 :

A única opção é a sequência 0000, pois a sequência 1111 é resultado da operações de troca de símbolos.

- Para 3×1 :

Sem perda de generalidade, vamos supor que existem um 0 e três 1's. Assim, permutamos o algarismo 0 nas posições possíveis e temos duas possibilidades, que são 0111 e 1011.

O zero nas posições finais não é necessário pois produziria sequências simétricas (invertidas) das sequências já citadas.

- Para 2×2 :

Temos dois 0's e dois 1's, que podem ser divididos em dois casos:

- * 0's juntos: Nesse caso, temos as possibilidades 0011 e 1001 (os dois 0's no final não seriam necessários pois seria uma sequência invertida de 0011.
- * 0's separados por um casa 1: Nesse caso, temos a única possibilidade 0101.
- * 0's separados por duas casas 1: Nesse caso, é gerada a única possibilidade 0110 (que já foi citada, a menos de troca de símbolos).

Dessa maneira, todas as possibilidades que temos de observar são 0000, 0111, 1011, 0011, 1001, 0101, o que nos permite concluir que são necessárias no máximo duas jogadas para retirar todos algarismos de uma sequência de quatro elementos.

Um processo que seria mais simples mas segue a mesma lógica nos permite concluir que para n=3 e n=2 também são necessárias no máximo duas jogadas para retirar todos os símbolos de uma sequência.

Agora, vejamos as sequências para n=7, para o qual temos as seguintes proporções: 7×0 , 6×1 , 5×2 e 4×3 , supondo sem perda de generalidade que o menor número indica a quantidade de 1's:

- -7×0 : Temos a sequência 0000000.
- -6×1 : Permutando 1 nas primeiras casas, temos as sequências 1000000, 0100000, 0010000, 00010000.
- -5×2 : Temos dois 1's e eles podem estar:

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

- * juntos, formando as sequências 1100000, 0110000, 0011000;
- * separados por um 0, formando as sequências 1010000, 0101000, 0010100;
- * separados por dois 0's, formando as sequências 1001000, 0100100;
- * separados por três 0's, formando as sequências 1000100 e 0100010;
- * separados por quatro 0's, formando a sequência 1000010;
- * separados por cinco 0's, formando a sequência 1000001.
- -4×3 : Temos três 1's e eles podem estar:
 - * juntos, formando as sequências 1110000, 0111000, 0011100;
 - * separados de tal maneira que dois estejam juntos, onde temos os seguintes casos: entre o 1 sozinho e a dupla de 1's podem ter um, dois, três ou quatro zeros. Assim, temos as respectivas sequências 1011000, 0101100, 0010110; 1001100, 0100110, 0010011; 1000011.
 - * os três separados, formando as sequências 1010100, 0101010, 1010010, 0101001, 1010000, 1001001.

Analisando essas sequências, vemos que a maioria necessita de no máximo duas jogadas. Entretanto, algumas necessitam de três, como a sequência 1011000, que representa a dificuldade máxima para n=7.

e) Para $n \le 4$, vimos que são necessárias no máximo duas jogadas, e para n = 7 as três jogadas são necessárias. Falta verificarmos para n = 5 e n = 6.

Para n=5, temos as proporções $5\times 0,\, 4\times 1$ e $3\times 2.$

- -5×0 : Tem a sequência 00000.
- -4×1 : Possui as sequências 10000, 01000, 00100.
- -3×2 : Nesse caso, os dois 1's podem ser juntos ou separados por um, dois e três zeros. Temos as seguintes sequências: 11000, 01100; 10100, 01010; 10010; 10001.

Para o caso n = 5, perceba que são necessárias apenas duas jogadas para retirar todos os algarismos de qualquer uma dessas sequências.

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

No caso n=6 considere a sequência 101100. Esta sequência não pode ter todos seus algarismos com apenas duas jogadas, sendo necessárias três. Assim, o menor valor de n tal que precisamos de no máximo três jogadas é n=6.

f) Com a nova regra do jogo, as operações de troca de símbolos e inversão ainda são invariantes no número de jogadas necessárias. Observando as sequências para o caso n = 7, ainda vale que a jogada mais difícil necessita de três jogadas como 1011000.

Além disso, observando as sequências possíveis para n=5, ainda vale que são necessárias apenas duas jogadas para retirar todos os símbolos da sequência. A sequência 101100 ainda necessita de três jogadas nas novas regras.

Questão 05: Seja $A = (a_{ij})_{i,j=1}^n$ uma matriz quadrada $n \times n$. Denotamos por $l_{a_i} = (a_{i1}, a_{i2}, \dots, a_{in})$ a *i*-ésima linha de A e por $c_{a_i} = (a_{1i}, a_{2i}, \dots, a_{ni})$ a *i*-ésima coluna de A. Definimos o produto de duas linhas l_{a_i} e l_{a_j} ou de duas colunas c_{a_i} e c_{a_j} como sendo

$$\langle l_{a_i}, l_{a_j} \rangle = \sum_{k=1}^n \frac{a_{ik}a_{jk}}{a_{ik}a_{jk}}, \quad \langle c_{a_i}, c_{a_j} \rangle = \sum_{k=1}^n \frac{a_{ki}a_{kj}}{a_{kj}}.$$

Dizemos que A é ortogonal se o produto de quaisquer duas linhas distintas for zero e o produto de cada linha por si mesma for 1, ou, de maneira equivalente, se o produto de quaisquer duas colunas distintas for zero e produto de cada coluna por si mesma for 1.

- a) Mostre que uma matriz 2×2 da forma $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$ é ortogonal e que toda matriz ortogonal 2×2 de determinante igual a 1 é desta forma.
- b) Determine todos os pares (A, B) de matrizes ortogonais 2×2 de determinante 1 tais que

$$A \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix} B = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix},$$

onde $d_1 \leq d_2$.

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

c) Determine todos os pares (A, B) de matrizes ortogonais 3×3 de determinante 1 tais que

$$A \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_1 & 0 \\ 0 & 0 & d_2 \end{pmatrix} B = \begin{pmatrix} d_1 & 0 & 0 \\ 0 & d_1 & 0 \\ 0 & 0 & d_2 \end{pmatrix},$$

onde $d_1 \leq d_2$.

Solução:

a) Temos que $\cos^2(\theta) + \sin^2(\theta) = 1$ e $-\cos(\theta)\sin(\theta) + \cos(\theta)\sin(\theta) = 0$. Como essas expressões satisfazem a hipótese para que a matriz seja ortogonal, podemos concluir que toda matriz da forma $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$ é ortogonal.

Precisamos, agora, mostrar que toda matriz ortogonal 2×2 é dessa forma.

Com efeito, seja A uma matriz ortogonal qualquer, escreveremos

$$A = \begin{pmatrix} x & y \\ z & w \end{pmatrix}$$

Fazendo $\langle l_1, l_1 \rangle$, obtemos que $x^2 + y^2 = 1$, logo

$$x = \cos \alpha$$
 $y = \sin \alpha$

para algum α . Analogamente o produto $\langle l_2, l_2 \rangle$, obtemos que

$$z = \cos \beta$$
 $w = \sin \beta$

para algum β . Fazendo a coluna $\langle c_1, c_1 \rangle$, temos que $x^2 + z^2 = 1$, dessa maneira obtemos que $\cos \beta = \pm \sin \alpha$, analogamente obtêm-se que $\sin \beta = \pm \cos \alpha$, assim temos

$$A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \pm \sin \alpha & \pm \cos \alpha \end{pmatrix}$$

Basta mostrar que os sinais não podem se coincidir. De fato, se isso acontece ao fazer o produto

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

 $\langle l_1, l_2 \rangle = \pm \sin^2 \alpha + \pm \cos^2 \alpha = \pm 1$, contradiz o fato de que o valor deveria dar zero.

Por fim, como det A=1 concluímos que $x=\cos\alpha, y=\sin\alpha, z=-\sin\alpha$ e $w=\cos\alpha$.

OBS: É imediato verificar que se A é ortogonal, então A^T é ortogonal, pois apenas transformamos as linhas em colunas e vice-versa, não alterando produto entre linhas ou entre colunas. Além disso, se considerarmos o produto AA^T , temos que as entradas (ij) do resultado corresponde a multiplicação de uma linha i de A por uma coluna j de A^T que é uma linha j de A, assim é claro que as entradas de AA^T são do tipo $\langle l_i, l_j \rangle = \delta_{ij}$ e portanto $AA^T = I_n$, logo $A^{-1} = A^T$.

b) Primeiramente, perceba que se $d_1 = d_2 = 0$, qualquer A e B satisfazem a equação. Portanto, vamos excluir este caso.

Pelo item (a), sabemos que $A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix}$ e $B = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}$ para θ e α até então desconhecidos. Queremos encontrá-los, tais que ADB = D, onde $D = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$.

Se $\alpha = \theta = 0$, então $A = B = I_2$, e vale ADB = D. Se A ou B é igual a I_2 , então ambos devem ser I_2 . Portanto, podemos supor que $\alpha \neq 0$ e $\theta \neq 0$ e precisamos resolver:

$$\begin{pmatrix} d_1 \cos(\alpha) \cos(\theta) - d_2 \sin(\alpha) \sin(\theta) & d_1 \sin(\alpha) \cos(\theta) + d_2 \cos(\alpha) \sin(\theta) \\ -d_1 \cos(\alpha) \sin(\theta) - d_2 \sin(\alpha) \cos(\theta) & -d_1 \sin(\alpha) \sin(\theta) + d_2 \cos(\alpha) \cos(\theta) \end{pmatrix} = \begin{pmatrix} d_1 & 0 \\ 0 & d_2 \end{pmatrix}$$
 (5)

Somando os termos que zeram em (5), temos que

$$0 = d_1[\sin(\alpha)\cos(\theta) - \cos(\alpha)\sin(\theta)] + d_2[\cos(\alpha)\sin(\theta) - \sin(\alpha)\cos(\theta)]$$

= $d_1\sin(\alpha - \theta) - d_2\sin(\alpha - \theta) =$
= $(d_1 - d_2)\sin(\alpha - \theta)$

de onde temos duas possibilidades:

- Se $d_1 = d_2 = d$, podemos escrever a equação como $A \cdot d \cdot I_2 \cdot B = d \cdot I_2$. Como d é uma constante tal que $d \neq 0$, então $A \cdot I_2 \cdot B = I_2 \implies A \cdot B = I_2$. Assim, $A = B^T$ para todo θ . Portanto, basta tomar $\alpha = -\theta$.

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

- Se $d_1 < d_2$, então temos que $\sin(\alpha - \theta) = 0 \implies \alpha - \theta = k\pi$ para algum $k \in \mathbb{Z}$.

Somando os elementos das diagonais dos dois lados da equação (5) e igualando-os obtemos:

$$d_1 + d_2 = d_1 \cos(\alpha) \cos(\theta) - d_2 \sin(\alpha) \sin(\theta) - d_1 \sin(\alpha) \sin(\theta) + d_2 \cos(\alpha) \cos(\theta)$$
$$= (d_1 + d_2) \cos(\alpha + \theta)$$

Temos duas possibilidade: $d_1 = -d_2$ ou $d_1 \neq -d_2$ e $\cos(\alpha + \theta) = 1$. No primeiro caso, ou seja, quando $d_1 = -d_2$, vamos substituir essa informação em (5) e igualando os termos da diagonal obtemos

$$-d_2\cos(\alpha-\theta) = -d_2$$

$$d_2\cos(\alpha-\theta)=d_2.$$

Logo, como d_1 e d_2 são diferentes de zero então $\cos(\alpha - \theta) = 1$, ou seja, $\alpha = \theta + 2l\pi$ para algum $l \in \mathbb{Z}$. Como neste caso $\cos(\alpha) = \cos(\theta)$ e $\sin(\alpha) = \sin(\theta)$ então A = B.

No segundo caso, temos que $\cos(\alpha + \theta) = 1 \implies \alpha + \theta = 2l\pi \text{ com } l \in \mathbb{Z}.$

Com isso, como $\left\{ \begin{array}{ll} \alpha - \theta = k\pi \\ \alpha + \theta = 2l\pi \end{array} \right. \mbox{então:}$

$$\alpha = l\pi + \frac{k}{2}\pi \ e \ \theta = l\pi - \frac{k}{2}\pi.$$

Assim, as únicas soluções α e θ em $[0,2\pi)$ são: $(\alpha,\theta)=(0,0),(\pi,\pi),(3\pi/2,\pi/2)$. Já analisamos o caso trivial e os outros dois outros casos nos fornecem que $A=B=-I_2$ e $A=-B=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, respectivamente.

Em suma, as soluções possíveis são:

- * $A = B = I_2$, independente dos valores de d_1 e d_2 .
- * Se $d_1 = d_2 = 0$ então A e B podem ser quaisquer.
- * Se $d_1 = d_2 \neq 0$ então $B = A^T$, com A sendo qualquer matriz ortogonal 2×2 de determinante 1.
- * Se $d_1 < d_2$ vamos separar em dois casos
 - · se $d_1 = -d_2$ então B = A, com A sendo qualquer matriz ortogonal 2×2 de deter-

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

minante 1,

· se
$$d_1 \neq -d_2$$
 então $A = B = -I_2$ e $A = -B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

c) Queremos ADB=D com $D=\begin{pmatrix} d_1 & 0 & 0\\ 0 & d_1 & 0\\ 0 & 0 & d_2 \end{pmatrix}$ e A e B ortogonais de determinando 1. Como B é

ortogonal $BB^T = I_3$ e, multiplicando por B^T dos dois lados, temos que $AD = DB^T$. Novamente, como no item (b), no caso trivial em que $d_1 = d_2 = 0$ temos que A e B podem ser quaisquer e no caso em que $d_1 = d_2 = d \neq 0$, temos que $B = A^T$ para qualquer A ortogonal.

Vamos então analisar o caso $d_1 < d_2$. Utilizando a notação $A = (a_{ij})_{i,j=1}^3$ e $B^T = (b_{ji})_{i,j=1}^3$, temos de $AD = DB^T$ que

$$\begin{pmatrix} a_{11}d_1 & a_{12}d_1 & a_{13}d_2 \\ a_{21}d_1 & a_{22}d_1 & a_{23}d_2 \\ a_{31}d_1 & a_{32}d_1 & a_{33}d_2 \end{pmatrix} = \begin{pmatrix} b_{11}d_1 & b_{21}d_1 & b_{31}d_1 \\ b_{12}d_1 & b_{22}d_1 & b_{32}d_1 \\ b_{13}d_2 & b_{23}d_2 & b_{33}d_2 \end{pmatrix}$$
(6)

Elevando os termos da primeira linha ao quadrado e somando em ambos os lados da equação acima, obtemos:

$$a_{11}^2d_1^2 + a_{12}^2d_1^2 + a_{13}^2d_2^2 = b_{11}^2d_1^2 + b_{21}^2d_1^2 + b_{31}^2d_1^2 = d_1^2,$$

pois $b_{11}^2 + b_{21}^2 + b_{31}^2 = 1$. Por outro lado,

$$a_{11}^2 d_1^2 + a_{12}^2 d_1^2 + a_{13}^2 d_2^2 = (a_{11}^2 + a_{12}^2 + a_{13}^2) d_1^2 + a_{13}^2 (d_2^2 - d_1^2) = d_1^2 + a_{13}^2 (d_2^2 - d_1^2), \tag{7}$$

o que implica $a_{13}^2(d_2^2 - d_1^2) = 0$. Como estamos sob a hipótese de que $d_1 < d_2$, vamos separar em dois casos: $d_1 = -d_2$ e $d_1 \neq -d_2$ (neste caso, $a_{13} = 0$).

No caso $d_1 = -d_2$, segue de (6) que $b_{ij} = a_{ji}$, para todo $i, j = 1, 2, b_{33} = a_{33}$ e $b_{l3} = -a_{3l}$, $b_{3l} = -a_{l3}$, para todo l = 1, 2. Note que se A é uma matriz 3×3 ortogonal e de determinante 1 então B satisfazendo as relações anteriores também será ortogonal e det $B = \det A = 1$.

No caso $d_1 \neq -d_2$ devemos ter $a_{13} = 0$, e portanto $b_{13} = 0$. Fazendo a conta análoga à (7) com a segunda linha obtemos que $a_{23} = 0$ e $b_{32} = 0$. Fazendo essas mesmas contas com a primeira

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

coluna e com a segunda coluna concluímos que $b_{13} = a_{31} = 0$ e $b_{23} = a_{32} = 0$, respectivamente. Finalmente, fazendo a mesma conta com a terceira linha obtemos algo um pouco diferente

$$d_2^2 = a_{31}^2 d_1^2 + a_{32}^2 d_1^2 + a_{33}^2 d_2^2 = (a_{31}^2 + a_{32}^2 + a_{33}^2) d_1^2 + a_{33}^2 (d_2^2 - d_1^2) = d_1^2 + a_{33}^2 (d_2^2 - d_1^2),$$
 (8)

o que nos leva a $(a_{33}^2 - 1)(d_2^2 - d_1^2) = 0$. Logo, $a_{33} = \pm 1$ e consequentemente $b_{33} = \pm 1$. Também temos que $C := \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ e $D := \begin{pmatrix} b_{11} & b_{21} \\ b_{12} & b_{22} \end{pmatrix}$ devem ser ortogonais para que A e B sejam ortogonais. Note que no caso em que $a_{33} = b_{33} = 1$ então os determinantes de C e D devem ser iguais a 1 e assim, pelo item (a), temos que:

$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} e B = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Note que neste caso recaímos às contas do item b) donde concluímos que se $d_1 \neq 0$ então $D = C^T$, o que implica que $B = A^T$, com

$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

para qualquer $\theta \in [0, 2\pi)$. E se $d_1 = 0$, então C e D são quaisquer matrizes ortogonais 2×2 de determinante 1.

Já no caso em que $a_{33} = b_{33} = -1$ então os determinantes de C e D devem ser iguais a -1. Aqui vamos usar a propriedade de que ao trocar duas linhas de ordem o sinal do determinante muda porém as matrizes continuam ortogonais. Com isso, $C' := \begin{pmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{pmatrix}$ e $D' := \begin{pmatrix} b_{12} & b_{22} \\ b_{11} & b_{21} \end{pmatrix}$ são ortogonais e tem determinando igual a 1. Logo, pelo item (a), temos que:

$$C' = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{pmatrix} e D' = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -\sin(\alpha) & \cos(\alpha) \end{pmatrix}.$$

Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

e, portanto,

$$A = \begin{pmatrix} -\sin(\theta) & \cos(\theta) & 0 \\ \cos(\theta) & \sin(\theta) & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 e
$$B = \begin{pmatrix} -\sin(\alpha) & \cos(\alpha) & 0 \\ \cos(\alpha) & \sin(\alpha) & 0 \\ 0 & 0 & -1 \end{pmatrix} .$$

Substituindo em (6) obtemos que, se $d_1 \neq 0$, então $\sin(\alpha) = \sin(\theta)$ e $\cos(\alpha) = \cos(\theta)$, e portanto, B = A, com

$$A = \begin{pmatrix} -\sin(\theta) & \cos(\theta) & 0\\ \cos(\theta) & \sin(\theta) & 0\\ 0 & 0 & -1 \end{pmatrix},$$

para qualquer $\theta \in [0, 2\pi)$. Se $d_1 = 0$, então C e D podem ser quaisquer matrizes ortogonais 2×2 de determinante -1.

Em suma, as soluções possíveis são:

- Se $d_1 = d_2 = 0$ então A e B podem ser quaisquer.
- Se $d_1 = d_2 \neq 0$ então $B = A^T$, com A sendo qualquer matriz ortogonal 3×3 de determinante 1.
- Se $d_1 < d_2$ vamos separar em três casos
 - * se $d_1 = -d_2$ então $B = (b_{ij})_{i,j=1}^n$ é tal que $b_{ij} = a_{ji}$, para todo $i, j = 1, 2, b_{33} = a_{33}$ e $b_{l3} = -a_{3l}, b_{3l} = -a_{l3}$, para todo l = 1, 2, com A sendo qualquer matriz ortogonal 3×3 de determinante 1.
 - * se $0 = d_1 \neq -d_2$ então

$$A = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} e B = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

para quaisquer $\alpha, \theta \in [0, 2\pi)$, e

$$A = \begin{pmatrix} -\sin(\theta) & \cos(\theta) & 0 \\ \cos(\theta) & \sin(\theta) & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
 e
$$B = \begin{pmatrix} -\sin(\alpha) & \cos(\alpha) & 0 \\ \cos(\alpha) & \sin(\alpha) & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

para quaisquer $\alpha, \theta \in [0, 2\pi)$.

* se
$$d_1 \neq -d_2$$
 e $d_1 \neq 0$ então $B = A^T$, com $A = \begin{pmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix}$, para qualquer $\theta \in [0, 2\pi)$, e $B = A$, com $A = \begin{pmatrix} -\sin(\theta) & \cos(\theta) & 0 \\ \cos(\theta) & \sin(\theta) & 0 \\ 0 & 0 & -1 \end{pmatrix}$, para qualquer $\theta \in [0, 2\pi)$.