AMENDMENT OF THE CLAIMS:

1. (currently amended) A process for the preparation of a compound of formula (IIIA)

or a salt thereof;

wherein;

Z represents is a bond, CO, SO₂, $CR^{10}R^7(CH_2)_n$, $(CH_2)_nCR^{10}R^7$, $CHR^7(CH_2)_nO$, $CHR^7(CH_2)_nCO$, $CHR^7(CH_2)_nCO$, $COCHR^7(CH_2)_n$ or $SO_2CHR^7(CH_2)_n$;

 R^6 represents is C_{1-6} alkyl, C_{2-6} alkenyl, aryl, heteroaryl, aryl- C_{2-6} alkenyl-, -CN or a group of formula $-Y^2-J^3$;

 R^7 represents is hydrogen, C_{1-4} alkyl, $CONR^8R^9$ or $COOC_{1-6}$ alkyl; a and b represent 1 or 2, such that a+b represents 2 or 3;

n represents is an integer from 0 to 4;

M represents \underline{is} a $C_{3\text{--}8}$ cycloalkyl or $C_{3\text{--}8}$ cycloalkenyl group fused to a monocyclic aryl or monocyclic heteroaryl group;

J³ represents is a moiety of formula (K):

$$X^1$$
 X^2
 X^2
 (K)

wherein X¹ represents is oxygen, NR¹¹ or sulphur, X² represents CH₂, oxygen, NR¹² or sulphur, m¹ represents an integer from 1 to 3 and m² represents an integer from 1 to 3, provided that m¹+m² is in the range from 3 to 5, also provided that when both X¹ and X² representare oxygen, NR¹¹, NR¹² or sulphur, m¹ and m² must both not equal less than 2, wherein K is optionally substituted by one or more (eg. 1 or 2) -Y³-aryl, -Y³-heteroaryl, -Y³-CO-aryl, -COC₃₋₈ cycloalkyl, -Y³-CO-heteroaryl, -C₁₋₆ alkyl, -Y³-COOC₁₋₆ alkyl, -Y³-COC₁₋₆ alkyl, -Y³-W, -Y³-CO-W, -Y³-NR¹⁵R¹⁶, -Y³-CONR¹⁵R¹⁶, hydroxy, oxo, -Y³-SO₂NR¹⁵R¹⁶, -Y³-SO₂C₁₋₆ alkyl, -Y³-NR¹³CONR¹⁵R¹⁶, -Y³-NR¹³COOR¹⁴ or -Y³-OCONR¹⁵R¹⁶ groups, and is optionally fused to a monocyclic aryl or heteroaryl ring;

R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³ and R¹⁴ independently representare hydrogen or C₁₋₆ alkyl; R¹⁵ and R¹⁶ independently representare hydrogen or C₁₋₆ alkyl or R¹⁵ and R¹⁶ together with the nitrogen atom to which they are attached may form a morpholine, piperidine or pyrrolidine ring;

R¹⁷ and R¹⁸ independently representare hydrogen or C₁₋₆ alkyl;

W represents is a saturated or unsaturated, non-aromatic 5-7 membered ring containing between 1 and 3 heteroatoms selected from nitrogen, oxygen or sulphur, optionally substituted with one or more C_{1-6} alkyl, halogen or hydroxy groups;

 Y^1 , Y^2 and Y^3 independently representate a bond or a group of formula - $(CH_2)_p CR^c R^d (CH_2)_q$ - wherein R^c and R^d independently representate hydrogen or C_{1-4} alkyl or R^c and R^d may together with the carbon atom to which they are attached form a C_{3-8} cycloalkyl group, and p and q independently representate an integer from 0 to 5 wherein p + q is an integer from 0 to 5;, and;

k is 1 or 2;

which process comprises the reaction of a compound of formula (XX)

$$HO \longrightarrow N Z \nearrow R^6$$
 (XX)

wherein;

b, Z, and R⁶ are as defined for formula (IIIA); with an enantiomer of a compound of formula (XXI)

$$A = \bigcup_{k} \sum_{j=1}^{K} (XXI)$$

wherein;

A is a protected amino group and k is 1 or 2; followed by deprotection of the amino group to give a compound of formula (IIIA).

2. (original) A process according to claim 1 wherein an intermediate compound of formula of formula (IIIB);

wherein;

k, Z, R⁶, and b are as hereinbefore defined for formula (IIIA) in claim 1, and A is a protected amino group; is isolated.

3. (original) A process for the preparation of a compound of formula (IIIB) as defined in claim 2, which process comprises the reaction of a compound of formula (XXII)

with a compound of formula (XX) as defined in claim 1.

4. (original) A process for the separation of a compound of formula (IIIAS);

$$H_2N$$

$$\begin{bmatrix} 1 \\ k \end{bmatrix}$$

wherein;

k, b, Z, and R⁶ are as defined for formula (IIIA) in claim 1; from its antipode, which process comprises reaction of the mixture of a compound of formula (IIIAS) and its antipode with an enzyme and a suitable enzyme donor.

5. (original) A compound of formula (IIIB)

wherein;

 $k,\,Z,\,R^6,$ and B are as defined for formula (IIIA) in claim 1 and A isa protected amino group;

or a salt thereof.