SIN 251 – Organização de Computadores (2023)

Aula 07 – Circuitos Sequenciais

Prof. João Fernando Mari joaof.mari@ufv.br

Circuitos Sequenciais

- Circuitos combinatórios implementam funções essenciais para um computador digital.
 - A saída do circuito depende apenas da entrada corrente.
 - Com exceção da memória ROM.
 - Não proveem informação de estado ou memória
- Circuitos sequenciais:
 - Uma forma mais complexa de circuito lógico digital
 - A saída do circuito sequencial depende da entrada corrente...
 - E também dos valores anteriores da entrada.
 - Ou seja: A saída do circuito sequencial depende da entrada corrente e do estado do circuito.
- A forma mais simples de circuito sequencial é chamada flip-flop.

Flip-flops

- Existe uma variedade de flip-flops.
- Todos compartilham duas propriedades:
 - O flip-flop é biestável.
 - Ele existe em um de dois estados estáveis e,
 - Na ausência de um sinal de entrada, permanece nesse estado.
 - Pode funcionar como uma memória de 1 bit.

- O flip-flop possui duas saídas
 - Uma tem sempre o valor complementar da outra.
 - Geralmente rotuladas como Q e Q'.

(b) Tabela característica	a simplificada
---------------------------	----------------

S	R	Q _{n+1}
0	0	Qn
0	1	0
1	0	1
1	1	_

(c) Resposta para uma série de entradas

t	0	1	2	3	4	5	6	7	8	9
S	1	0	0	0	0	0	0	0	1	0
R	0	0	0	1	0	0	1	0	0	0
Q_{n+1}	1	1	1	0	0	0	0	0	1	1

((a)	Tabe	la c	arac	cterí	stica
---	-----	------	------	------	-------	-------

Entradas correntes	Estado corrente	Próximo estado
SR	Q_n	Q _{n+1}
00	0	0
00	1	1
01	0	0
01	1	0
10	0	1
10	1	1
11	0	_
11	1	_

(b) Tabela característica simplificada

S	R	Q _{n+1}
0	0	Q_n
0	1	0
1	0	1
1	1	_

(c) Resposta para uma série de entradas

t	0	1	2	3	4	5	6	7	8	9
S	1	0	0	0	0	0	0	0	1	0
R	0	0	0	1	0	0	1	0	0	0
Q_{n+1}	1	1	1	0	0	0	0	0	1	1

Flip-flop S-R com relógio

- A saída do flip-flop S-R muda depois de um breve atraso, em resposta a uma mudança na entrada.
 - Operação assíncrona.
- Eventos em um computador digital são sincronizados por um pulso de relógio (Clock).
 - Operações síncronas.
- No flip-flop S-R com relógio
 - As entradas S e R passam por meio das portas NOR
 - Somente durante o pulso do relógio.

Flip-flop S-R com relógio

Flip-flop tipo D

- No flip-flop tipo S-R a condição R=1, S=1 deve ser evitada.
 - Problema!
- No flip-flop tipo D essa condição é evitada utilizando um inversor
 - Garantindo que as entradas das duas portas AND tenham valor complementar uma da outra.
- Flip-flop tipo D também é chamado de flip-flop de dados:
 - Funciona com uma célula de armazenamento de 1 bit.
 - A saída Q é sempre igual a entrada D mais recente.

Flip-flop tipo D

Flip-flop J-K

- Possui duas entradas, como o flip-flop S-R
 - Porém, todas as combinações de valores de entrada são validas.
- Para as entradas J=0 e K=0
 - A saída permanece estável.
- Para as entradas J=1 e K=0
 - A saída se torna 1 (set).
- Para as entradas J=0 e K=1
 - A saída se torna 0 (reset)
- Para as entradas J=1 e K=1
 - Condição inválida para o flip-flop S-R
 - O valor da saída é invertido (toogle)
 - Se Q=0, Q se torna 1, e vice-versa.

Flip-flop J-K

Flip-flops básicos

Nome	Símbolo gráfico	Tabela	caracte	rística
S-R	S Q	S 0 0 1 1	0 1 0 1	O _{n+1} O _n O 1
J-K	J Q	J 0 0 1 1	0 1 0 1	$\begin{array}{ c c }\hline Q_{n+1}\\\hline Q_n\\0\\\frac{1}{Q_n}\end{array}$
D	D Q		O _{n+1} 0 1	

Exemplos de uso dos flip-flops

- Registradores
- Registradores paralelos
- EXEMPLO: Registrador Paralelo de 8 bits
- Registrador de Deslocamento
- EXEMPLO: Registrador de deslocamento de 5 bits
- Contadores
- Contador Assíncrono
- EXEMPLO: Contador assíncrono de 4 bits
- Contador síncrono
- EXEMPLO: Projeto de um Contador Síncrono

Registradores

- Registradores:
 - São elementos essenciais da CPU (Unidade Central de Processamento).
 - Circuito digital usado para armazenar 1 ou mais bits de dados.
 - Dois tipos básicos:
 - Registradores Paralelos
 - Registradores de Deslocamento

Registradores paralelos

- Registrador paralelo
 - Conjunto de memórias de 1 bit.
 - Podem ser lidas ou escritas simultaneamente.
 - Usado para armazenar dados.

EXEMPLO: Registrador Paralelo de 8 bits

- Construído com flip-flops S-R.
- <u>Sinal de Controle</u>: Habilitação de entrada de dados
 - Controla a escrita no registrador pelas linhas de sinal D11 a D18.
 - Linhas de sinal D11 a D18 podem constituir a saída de um MUX.
 - Dados de várias fontes podem ser carregados no Registrador.
- Sinal de Controle: Habilitação se saída de dados
 - Controla a leitura do registrador pelas linhas de sinal D01 a D08.
- Sinal de controle: Reset
 - Atribui valor zero ao registrador
 - Note que isso n\u00e3o seria f\u00e1cil utilizando flip-flops tipo D.

Registrador Paralelo de 8 bits

Registrador de Deslocamento

- Registrador de deslocamento:
 - Transfere a informação de entrada serialmente.
 - Construído com flip-flops S-R com relógio.
 - A cada pulso do relógio (Clock) os dados são deslocados uma posição para a direita
 - O bit mais à direita é transferido para a saída
- Utilizações:
 - Interface para dispositivos de E/S seriais.
 - Podem ser usados na ULA (Unidade Lógica Aritmética) para operações de deslocamento lógico.
 - Nesse caso podem permitir leitura/escrita paralela também.

Contadores

- Contador
 - É um registrador cujo valor é facilmente incrementado em 1 módulo a capacidade do registrador
 - Um registrador com n *flip-flops* pode contar até $2^n 1$.
 - Quando o contador ultrapassa o seu valor máximo, o seu valor volta para 0.
- <u>Exemplo de Contador</u>: O Contador de Instruções de Programa da CPU.
 - Também denominado Contador de Programa (PC).
- Dois tipos de Contadores:
 - Assíncronos:
 - Relativamente lentos
 - A saída de um flip-flop dispara uma mudança no flip-flop seguinte.
 - Síncronos :
 - Mais rápido do que o síncrono. Por isso utilizado nas CPUs.
 - O estado de todos os flip-flops são atualizados simultaneamente.

Contador Assíncrono

- Exemplo de um contador assíncrono de 4 bits.
 - Implementado usando flip-flops J-K.
 - O diagrama de tempo não mostra os atrasos de propagação do sinal.
 - A saída mais a esquerda (Q0) é o bit menos significativo.
 - Pode ser estendido para número arbitrário de bits.
 - Encadear mais flip-flops.
- O contador é incrementado dentro de cada pulso do relógio.
- As entradas J e K são mantidas igual a 1.
 - Quando ocorre um pulso do relógio, saída Q é invertida (toogle).

EXEMPLO: Contador assíncrono de 4 bits

Contador síncrono

- Contador assíncrono
 - Desvantagem → A atraso na atualização do contador é proporcional ao tamanho do mesmo.
 - Por esse motivo, a CPU utiliza contadores síncronos.
- Contador síncrono
 - O estado de todos os flip-flops do contador são alterados ao mesmo tempo

EXEMPLO: Projeto de um Contador Síncrono

- Para construir um contador síncrono de 3 bits:
 - É necessário três flip-flops J-K.
 - As saídas serão denominadas A, B e C.
 - C é o bit menos significativo.
- Construir a tabela verdade
 - Relaciona as entradas e saídas dos flip-flops J-K.
 - Construída com base nas tabelas verdade de um único flip-flop J-K.
 - As tabelas verdade são mostradas no slide seguinte.

J	K	Q_{n+1}
0	0	Qn
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}}_n$

O efeito das entradas J e K sobre a saída.

Qn	J	K	Q_{n+1}
0	0	d	0
0	1	d	1
1	d	1	0
1	d	0	1

As saídas do flip-flop J-K quando são conhecidas as entradas e a saída corrente (estado)

Α	В	С	Ja	$K_{\rm a}$	$\boldsymbol{J_b}$	K_b	J_c	K _c
0	0	0	0	d	0	d	1	d
0	0	1	0	d	1	d	d	1
0	1	0	0	d	d	0	1_	d
0	1	1	1	d	d	1	d	1
1	0	0	d	0	0	d	1	d
1	0	1	d	0	1	d	d	1
1	1	0	d	0	d	0	1	d
1	1	1	d	1	d	1	d	1

Tabela Verdade

J	K	Q_{n+1}
0	0	Qn
0	1	0
1	0	1
1	1	$\overline{\mathbb{Q}}_n$

O efeito das entradas J e K sobre a saída.

	Qn	J	K	Q_{n+1}
	0	0	d	0
_	0	1	d	1
	1	d	1	0
	1	d	0	1

As saídas do flip-flop J-K quando são conhecidas as entradas e a saída corrente (estado)

Α	В	С	Ja	K_{a}	$J_{\rm b}$	K_b	J_c	K _c
Ō	Ō	Ō	0	d	0	d	1	d
Ŏ	Ò	1	0	d	1	d	d	1
Q	1	Q	0	d	d	0	1	d
Q	1	1	1	d	d	1	d	1
1	Ò	Ò	d	0	0	d	1	d
1	Q	1	d	0	1	d	d	1
1	1	ģ	d	0	d	0	1	d
1	1	1	d	1	d	1	d	1

Tabela Verdade

Mapas de Karnaugh

d

• Ja = BC; Ka = BC; Jb = C; Kb = C; Jc = 1; Kc = 1

Referências

- STALLINGS, W. Arquitetura e Organização de Computadores, 5. Ed., Pearson, 2010.
 - Apêndice A

FIM