CSE 473: Artificial Intelligence Particle Filters

Dieter Fox --- University of Washington

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
 - |X|² may be too big to do updates
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

.	

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particles:

(3,3)

(2,3)

(3,3)

(3,2)

(3,3) (3,2)

(1,2)

(3,3)

(3,3)

(2,3)

Particle Filtering: Elapse Time

 Each particle is moved by sampling its next position from the transition model

$$x' = \text{sample}(P(X'|x))$$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$w(x) = P(e|x)$$

$$B(X) \propto P(e|X)B'(X)$$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particles: (3,2) (2,3) (3,2) (3,1) (3,3) (3,2) (1,3) (2,3) (3,2)

Particles:

(2,2)

(3,2) w=.9 (2,3) w=.2

(3,2) w=.9 (3,1) w=.4

(3,3) w=.4

(3,2) w=.9

(1,3) w=.1

(2,3) w=.2

(3.2) w=.9

(2,2) w=.4

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles:

- (3.2) w=.9
- (2,3) w=.2
- (3,2) w=.9
- (3.1) w=.4
- (3,3) w=.4
- (3,2) w=.9
- (1,3) w=.1
- (2.3) w=.2
- (3,2) w=.9
- (2,2) w=.4

(New) Particles:

- (3,2)
- (2,2)
- (3,2)
- (2,3)
- (3,3)
- (3,2)
- (1,3)
- (2,3)
- (3,2)
- (3,2)

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

Particle Filters in Robotics

Particle Filters

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

$$p(s)$$

$$p(s)$$

$$p(s)$$

$$p(s)$$

$$p(s)$$

Robot Motion

$$Bel(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

Sensor Information: Importance Sampling

$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$

$$p(s)$$

$$p(s)$$

$$p(s)$$

Robot Motion

Particle Filter Algorithm

$$Bel (x_t) = \eta \ p(z_t \mid x_t) \ \int p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1}) \ dx_{t-1}$$

$$draw \ x_{t-1}^i \ from \ Bel(x_{t-1})$$

$$draw \ x_t^i \ from \ p(x_t \mid x_{t-1}^i, u_{t-1})$$

$$lmportance \ factor \ for \ x_t^i:$$

$$w_t^i = \frac{target \ distribution}{proposal \ distribution}$$

$$= \frac{\eta \ p(z_t \mid x_t) \ p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}{p(x_t \mid x_{t-1}, u_{t-1}) \ Bel \ (x_{t-1})}$$

$$\propto \ p(z_t \mid x_t)$$

Sampled Motion Model

Particle Filter Localization (Sonar)

Aibo Sensor Model

Distributions

for P(z|x)

Localization for AIBO robots

WiFi-Based People Tracking

WiFi Sensor Model

Tracking Example

Adaptive Sampling

KLD-Sampling Sonar

Adapt number of particles on the fly based on statistical approximation measure

KLD-Sampling Laser

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Mapping with a Laser Scanner

Rao-Blackwellized Mapping with Scan-Matching

Map: Intel Research Lab Seattle

Loop Closure Example

map of particle 1

map of particle 3

Rao-Blackwellized Mapping with Scan-Matching

Map: Intel Research Lab Seattle

Rao-Blackwellized Mapping with Scan-Matching

Map: Intel Research Lab Seattle

Example (Intel Lab)

- 15 particles
- four times faster than real-timeP4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

Outdoor Campus Map

30 particles

- 250x250m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map