The Shell Petroleum Development Company of Nigeria Limited

Internal Investment Proposal (Revised)

Summary Information

Directorate	Technical Directorate					
Group equity interest	100% in SPDC, whereas SPDC is the Joint Venture (JV) operator of an unincorporated JV with a 30% interest.					
Other shareholders / partners	Nigeria National Petroleum Company (NNPC: 55%), Total: 10%, Nigeria Agip Oil Company (NAOC: 5%) in SPDC-JV					
Amount	USD \$8.40mln Shell share (MOD),	, 50/50 (USD27.99mln	100% JV)			
Project	SPDC 2010 Flow line replacement	campaign (Revised)				
Main commitments	Activity	Shell Share (US\$mln MOD)	100% SPDC JV (US\$mln MOD)			
	East Asset team flow line replacement	7.58	25.27			
	West Asset team flow line replacement	0.65	2.16			
	SCD	0.17	0.56			
	Total	8.40	27.99			
Source and form of financing	This investment will be financed we expenditure will be met by SPDC's	2	ll share capital			
Summary cash flow	NA					
Summary economics	The project returns an NPV 7% -\$2.1 mln (Shell share) and VIR 7% -0.25 with an associated maximum exposure of \$8.03mln in 2010					

Section 1: The proposal (management summary)

This Investment proposal is a revision to the earlier approved 2010 Flowline replacement proposal (Attachment 1) to include additional flowline replacement for Nembe and Swamp 1 area of SPDC – East which were not in the initial approval.

This revised proposal covers the entire 2010 flow line replacement for SPDC - East and West Division (Land Area) that will assure a 2010 daily oil production of over 75 Mbopd. Some other flowlines in SPDC-West requiring replacement, mainly in the Swamp area, are covered under the West Re-entry project and therefore are not part of this proposal. A total of ca 108km of flowlines is proposed for replacement during the plan period.

The 39 flow lines for replacement in 2010 in the East have been selected based on Asset development advice to enable value realisation from NCTL. The total length of the flow lines to be replaced is ca.97.7km. Opportunities that come up within the year, but not captured in the scope will be ranked and if executed, a list of revisions and actual work done will be captured in the next IP.

For the West, FIMS advice includes 23 flow lines in the Land Area for replacement in 2010. Budget constraints have necessitated consideration of only 9 lines, as the others fall under the OMLs that SPDC is divesting from. Total length of flow lines to be replaced in the West is 10km.

It is of utmost importance that we do everything practicable to ensure that the company's business objectives and promises (in terms of production) are met, in this wise, proactively replacing aged flowlines and others with integrity issues resulting from repeated acts of vandalism will help prevent further loss of production. In the prevailing business atmosphere, the weight of fiscal responsibility and commercial

profitability is almost evenly matched with corporate social responsibility. The import of this is that inasmuch as we drive to deliver on our varied business commitments and objectives, we must be seen to be delivering on HSSE commitments; in this case no damage to the environment being the aspect in focus. Securing our production throughput is one primary means of achieving the above dual objectives. Loss of containment is usually due to vandalisation and flowline integrity issues.

Normally, the selection of lines for replacement is based mainly on a structured replacement plan, as incorporated in the Flowline Integrity Management System (FIMS) and available reserves. In addition, priority is given to producing lines with higher impact on the overall output of the asset teams. However, this proposal addresses mainly the replacement of vandalised lines in the Swamp area of SPDC-East to enable the realisation of the benefits of the completion of the Niger Coastal Trunk Line (NCTL). It is expected that this will also address most of the lines that would have been replaced due to age and integrity based on information from the Flowline Integrity Management System (FIMS).

In order to assure on the integrity and longevity, the new lines or replaced sections will be treated with the standard 3-layer PE coating and cathodically protected to minimise corrosion. Post installation surveillance monitoring and data gathering activities would continue to help improve the FIMS and thus future analysis, projections and proactive response time.

The expenditure under this proposal is for a one-year period as detailed below.

Expenditure Phasing (Shell Share - \$mln)

Description	2010(Shell Share)	100% JV
Flowline replacement	8.23	27.43
SCD	0.17	0.56
Total	8.40	27.99

The details of the location and flowlines to be replaced are presented in tables below.

Section 2: Value proposition and strategic and financial context

Specifically, this project will ensure the integrity of 44 oil plus 4 gas flow lines being proposed for replacement, thus adding to production ca 75 Mbopd of oil in both East & West and 140MMScf of gas in the West.

Replacing these flow lines will minimise the risk of leakages and spills due to flowline integrity issues, thereby enhancing SPDC's reputation as a responsible corporate citizen. These benefits will help the sustenance of SPDC's License to operate (LTO) and will facilitate the continued production from SPDC assets in order to meet its production targets.

EAST FLOWLINE REPLACEMENT

S/ No	Field	Conduit	Fluid	ANSI RATI NG	Pipe Size (INS)	Length of line (Km)	Resvs07 (MMbpd/ Bscf)	Projected 2010 (bopd/MMs cf)	Estimated Conduit Life (years)	COST (\$)
1	AKASO	AKOS003L	oil	600	4	4.7	1.37	917.34	4.08	1473450
2	AKASO	AKOS009S	oil	600	4	4.65	0.82	623.56	3.61	1457775
3	ALAKIRI	ALAK21T	gas	2500	6	2.092	19.36	17177.36	3.09	655842
4	AWOBA	AWOB 3L	oil	600	4	2	1.07	1054.25	2.77	627000
5	AWOBA	AWOB 3S	oil	600	4	2	0.36	307.45	3.23	627000
6	AWOBA	AWOB 7L	oil	600	4	1.4	4.45	3125.54	3.90	438900
7	CAWTHORNE CHANNEL	CAWC23L	oil	600	4	1.74	0.88	633.12	3.80	545490
8	EKULAMA	EKUL026L	oil	600	4	3.833	0.60	244.58	6.74	1201645.5
9	EKULAMA	EKUL031S	oil	600	4	2.907	0.14	61.44	6.37	911344.5

10	EKULAMA	EKUL038L	oil	600	4	2.776	0.63	246.38	7.00	870276
11	EKULAMA	EKUL038S	oil	600	4	2.778	1.16	470.11	6.75	870903
12	EKULAMA	EKUL039L	oil	600	4	2.186	0.55	229.38	6.54	685311
13	SOKU	Soku W14L	oil	600	4	1.8	0.80	375.00	5.84	429642
14	SOKU	Soku W21S	oil	600	4	2.8	0.07	112.00	1.71	668332
15	SOKU	Soku W08T	oil	600	4	2.4	0.40	227.00	4.82	572856
16	AKASO	Akaso 10L/S	oil	600	4	3	0.49	700.00	1.92	716070
17	AKASO	Akaso 13L	oil	600	4	2.44	1.49	400.00	10.20	582403.6
18	CAWTHORNE CHANNEL	CawC W51T	oil	600	4	1.14	2.46	1000.00	6.74	272106.6
19	CAWTHORNE CHANNEL	CawC W18T	oil	600	4	2.44	1.23	500.00	6.74	582403.6
20	AWOBA	Awoba W6L	oil	600	4	3.5	1.37	1669.00	2.25	835415
21	AKASO	Akaso 9S	oil	600	4	3.2	1.60	1600.00	2.74	763808
22	CAWTHORNE CHANNEL	CawC 24T Riser Leak repairs	oil	600	4	0.05	3.84	500.00	21.03	11934.5
		Nembe Creek								
23	NEMBE	63L/S	oil 	600	4	4.68	9.90	6834.00	3.97	1117069.2
24	BELEMA	Belema 01L/S	oil 	600	4	5.36	7.18	6637.00	2.96	1279378.4
25	BELEMA	Belema 02T Nembe Creek	oil	600	4	3.09	17.17	3710.00	12.67	737552.1
26	NEMBE	10T Nembe Creek	oil	600	4	2.47	3.79	3124.00	3.32	589564.3
27	NEMBE	23T	oil	600	4	5.93	5.93	2952.00	5.50	1415431.7
28	BELEMA	Belema 08T	oil	600	4	1.14	0.85	1864.00	1.25	272106.6
29	BELEMA	Belema 05L	oil	600	4	1.85	1.82	563.00	8.85	441576.5
30	BELEMA	Belema 06L	oil	600	4	1.96	0.68	147.00	12.66	467832.4
31	BELEMA	Belema 04T	oil	600	4	4.37	2.60	542.00	13.13	1043075.3
32	NEMBE	Nembe Creek 43L	oil	600	4	1.2	1.96	3145.00	1.71	286428
33	NEMBE	Nembe Creek 43S	oil	600	4	1.2	4.24	2465.00	4.71	286428
34	NEMBE	Nembe Creek 27L	oil	600	4	1.2	2.87	1294.00	6.09	286428
35	NEMBE	Nembe Creek				1.2	0.63	647.00		
		27S Nembe Creek	oil	600	4				2.67	286428
36	NEMBE	19L Nembe Creek	oil	600	4	1.28	2.26	1510.00	4.09	305761.89
37	NEMBE	15S Nembe Creek	oil	600	4	0.98	2.92	1416.00	5.65	232961.44
38	NEMBE	22S	oil	600	4	1.88	2.76	1121.00	6.74	448975.89
39	NEMBE	Nembe Creek 56S	oil	600	4	2.07	1.63	921.00	4.86	494326.99
						97.691	114.33	71065.50		25,791,233.21

WEST FLOWLINE REPLACEMENT

								Projected		
					Size		Resvs07	2010	Estimated	
				ANSI	of	Length	(MMbpd)	(bopd) /	Conduit	
S/N				RATIN	Pipe	of line	/	MMScf/	Life	
О.	Field	Conduit	Fluid	G	(INS)	(Km)	Bscf	d	(years)	COST(\$)
		OLOMW00								
1	OLOMORO	3L	Oil	600	4	2.5	1.8	1265	8368	478,750
		OLOMW00								
2	OLOMORO	5L	Oil	600	4	0.5	2.79	900	170.47	95,750
3	KOKORI	KOKR035T	Oil	600	4	1.95	1.33	680	1099.92	373,425
4	KOKORI	KOKR001L	Oil	600	4	1.95	0.52	420	1780.82	373,425

5	EVWRENI	EVWR001L	Oil	600	4	0.5	0.26	200	747.95	95,750
6	UTOROGU	UTOR029T	Gas	2500	6	0.7	50.11	50	7.69	195,000
7	UTOROGU	UTOR031T	Gas	2500	6	0.7	31.11	45	8.55	195,000
8	UTOROGU	UTOR030T	Gas	2500	6	0.7	30.86	45	8.55	195,000
9	UTOROGU	UTOR025T	Gas	2500	6	0.7	63.81	50	7.69	195,000
					TOT					
					ALS	10.2				2,197,100
	GRAND TOTAL							2,197,100		

Summary Economics

The project base case was evaluated on a cost only basis with aim of assessing SPDC exposure on a forward-looking basis.

Additional economic analysis carried out showed that the total value of the oil & gas production at risk amounts to US\$146.5 mln SS at PSV RV, in the event that these flow lines are not replaced. The value at risk evaluation assumes a 15yr lifespan for the flow lines and that the likelihood of losing production from the wells is solely dependent on the integrity of the flow lines.

See table below for more details.

Table 1: Economics for 2010 Flow lines replacement and Hook-up (Shell share only)

PV Reference Date: 1/7/2010	NPV (S	'S \$ mln)	VIR	RTEP	,	(\$/bbl or n btu)	Payout-Time (RT)	Maximum Exposure (S/S \$ mln)
Cash flow forward from: 1/1/2010	0%	7%	7%	%	0%	7%		AT
Base Case								
SV (\$50/bbl RT10)	-1.3	-2.1	-0.25	NA	NA	NA		
RV (\$60/bbl RT10)	-1.3	-2.1	-0.25	NA	NA	NA	NA	8.03 (2010)
HV (\$80/bbl RT10)	-1.3	-2.1	-0.25	NA	NA	NA		
BEP (RT \$/bbl)					NA	NA		
Sensitivities(Using RV-RT)								
High Capex(+15%)		-2.4	-0.25				NA	9.23 (2010)
Value at Risk		146.5	NA				NA	NA
Value at Risk with license expiry		124.9	NA				NA	NA

Table 2: Key Project Parameter Data (Shell Share)

Parameter	Unit	Bus Plan	Low	Mid	High	Comments
r at atteter	Cilit	(BP09)				
CAPEX (MOD)	US\$ mln	-	NA	8.2	9.5	Provision made in BP10
Investment OPEX (MOD)	US\$ mln	NA	NA	0.2	0.2	Assumed same for mid and high case
Production Volume	mln boe	NA	NA	NA	NA	Cost only Project
Start Up Date	mm/yyyy	NA	NA	NA	NA	
Production in first 12 months	mln boe			NA		

Economics Assumptions:

- 1. For cost-only evaluation, no revenue stream applied.
- 2. For value at risk and cost-benefit analysis, the following assumptions apply:
 - Oil PSV of \$60/bbl RT10
 - SPDC Generic OPEX assumption applied
 - GHV of 1000 btu/scf for gas to Domgas & 1150btu/scf for gas to NLNG

- NDDC levy of 3% total expenditure
- Flow line lifespan of 15 years

Section 3: Risks, opportunities and alternatives

Alternative Considered

Do nothing: This implies leaving the flowlines as is. This option however, will expose the company to the risk of possible spills and production losses resulting from integrity related leakages and its attendant corporate reputation issues.

Shut off High-risk flowlines; this is a commercially unviable option especially for high producers and will impact on our production system capacity and stability.

Opportunity

Opportunity exists to achieve the following:

Reinstate integrity of the affected flowlines.

Ensure continuity in meeting statutory obligations on integrity of the oil and gas flowlines.

Avert possible flowline failures (rupture)

Assure continued oil and gas production in support of the production promise.

Risks

The principal risks associated with this project and key mitigation measures are, but not limited to:

Risks Category	Risk Description	Mitigation/Remedial Effort
Commercial	Delays Internal & External approvals Delays in procurement of materials	partners' approval could delay the project. Prompt, aggressive and continuous engagement of JV partners will be ensured throughout the project execution. The engineering team will finalize discussion with SCM on the procurement of standard
Risks Category	Risk Description	hook up items as stock items. Mitigation/Remedial Effort
Technical / Operational	Limited Indigenous vendor with adequate capacity	The technical evaluation criteria will be robust and stringent enough to screen out incompetent vendors Provision of experienced personnel for the project and rigorous supervision of contractor using all available project management tools.
	Unnecessary replacement of good lines.	The flowlines to be replaced is selected by obtaining and analysing the relevant fluid and static data, UT measurements, followed by a review leak history in last 5years and failure investigation. The result of this checks are kept and updated regularly in the flowlines information management system (FIMS)
HSE Risk	HSE hazards and Interface problems with existing habitation.	Detailed job hazard analysis prior to commencement of work. Proper supervision

	Pollution of environment due to flowline leaks as a result of poor asset, which can lead to loss of ISO14001 certification, and consequently loss of production (LTO) if deteriorated flowlines are not inspected and maintained.	Flowline Integrity Management System (FIMS) has been put in place for better prediction of flowline integrity to eliminate leaks.
Managing community issues	Potential delay due to pressure to use labour from communities.	 Community will be proactively engaged Terms of agreement during FTO engagements (labour employment, sub contracting & community support). FTO will be secured via SPDC community relations officers for the various communities. Vendors to employ community workers to execute non-technical scopes of the projects.
Security	Threat to Personnel & Assets. Disruptions to commencement/ execution/completion of flowline replacement activities.	 Front-end planning of flowline replacement activities includes development of activity-specific security plans, in consonance with relevant Asset security plans. SPDC Security Risk Exposure Matrix (SREM) will be routinely applied for evaluation of real-time risk on flowline replacement projects. Use of government security forces (Joint Task Force – JTF) to provide protection for operational sites. Structured approach to community entry for flowline activities, in close collaboration with SPDC Sustainable Community Development (SCD) Team, to avoid unnecessary tensions. Use of information provided to the asset teams via the Integrated Pipeline Systems Surveillance (IPSS) contracts. Own security arrangements by installation contractors subjected to review / acceptance by SPDC security dept prior to implementation.

Section 4: Corporate structure, and governance

The existing corporate structure and arrangements of SPDC-JV with SPDC as operator will be used as the vehicle for the investment and operations. The project assurance model of the ORP-lite would be implemented.

Section 5: Functional Support and consistency with Group and Business Standards

Conducting our business in a safe and responsible manner is the bedrock upon which SPDC policies and practices are founded. Increasing and sustaining production is the primary commercial aspirations of the company. The safe and efficient execution of this project represents technical directorate's contribution to

this overarching goal. Support from other functional teams will also be secured to ensure a seamless project execution.

SPDC HSE and SDCR policies will be strictly adhered to with a view to minimise the risk of accident and disruptions to work programme. The 3 Golden rules and 12 Life saving rules will be continually emphasised as an essential step in attaining GOAL ZERO.

In addition, a project-specific HSE plan incorporating all the potential hazards relating to these projects will be put in place.

Contractor's HSE plan will be reviewed to ensure it adequately addresses all possible hazards of the project and communicated to contractor staff in kick-off meetings, daily tool box meetings and site inspections.

Social Performance Management

Freedom to operate (FTO) will be secured from all affected communities. For communities covered by operational GMoU's this will be through their respective Cluster Development Board. For those without operational GMoU's individual FTO's will be through the community representatives.

The key benefits that will be offered are: employment opportunities, community support, sub-contracting to community vendors and associated community content initiatives. To manage social performance (SP) in the project, 2% of the total project cost will be used for the engagements and community support. The Asset/SDCR teams will manage social performance in the project.

Section 6: Project management, monitoring and review

A project Engineer will be dedicated to this project to monitor progress on daily and weekly basis.

Project site representatives will also be employed for this project to ensure that vendors' carry out the scope of work as stated in the contract document and that good quality project is delivered to the asset teams.

Post-investment review for this project will be included in the overall scope.

Section 7: Budget provision

There is a budget provision for the proposed commitments in the 2010 business plan. With proper project management, the financial commitments of these projects will not exceed the expenditure limits.

Section 8: Group financial reporting impact

The financial impact of this proposal on Shell Group Financials is as indicated in the table below.

US\$ mln	2010	2011	2012	2013	2014	Post 2014
Total Commitment	8.40					
Cash Flow						
SCD Expenditure	0.17					
Pre-FID Expenditure						
Capital Expenditure	8.23					
Operating Expenditure	0.25					
Cash flow From Operations	0.17	1.52				
Cash Surplus/(Deficit)	(8.06)	1.52				
Profit and Loss						
NIBIAT +/-	0.34					
Balance Sheet						
Avg Capital Employed	4.20	7.64	6.88	6.88	6.88	6.88

Section 9: Disclosure

Media Relations Protocol, Investor Relations Protocol and Market Abuse Directive Guidelines will follow approved SPDC procedures.

Section 10: Financing

The project will be funded from SPDC's JV budgetary provision for 2010 activities to an amount not exceeding USD27.99 Mln.

Section 11: Taxation

The flowline replacement project is taxed with oil fiscal regime. Capital expenditure is tax deductible at the statutory rate of 85% under the Petroleum Profit Tax Act 2004. Fiscal depreciation is given over 5 year's straight line with 1% retention in the fifth year. In addition, a one off investment allowance of 5% is claimable on the capital expenditure.

Section 12: Key Parameters

Consideration is required of the soundness of the expenditure commitments for: The 2010 SPDC flowline replacement for the sum of US\$8.40 mln (Shell share).

Section 13: Signatures

This Proposal is submitted to UIG Directors for approval.

Supported by:		For Business approval:			
Lismont B	art	Bernardus Bos			
UIG/T		FUI/F			
Date/	/	Date/			
Initiator:	Ojo Afolabi				
	Mr Project Manager (UI	G/T/PA)			
	Date/				

Attachment 1:

Appendix I: Table showing Conduit List Planned for Replacement in 2009 including their execution status

S/NO	Field	Tag number	Fluid	LINE SIZE (INS)	LINE LENGTH (KM)	Net Potential (bpd)	Rem Res (mmbl)	Estimated Conduit Life	Cost (\$)	Status
Status o	f 2009 IP									
					EAST					
1	Cawthorne channel	CAWC3FLO43S	OIL	4	2	3862	24.19	17.2	589,678	executed
2	Cawthorne channel	CAWC3FLO41S	OIL	4	2	3155	13.73	11.9	264,162	executed
3	Cawthorne channel	CAWC 37L	OIL	4	0.9				79,501	executed
4	Imo river	IMOR 1FLO22L	OIL	4	0.7	230	0.23	2.7	89,675	executed
5	Imo river	IMOR 1FLO26L	OIL	6	2.9	236	0.73	8.5	120,830	executed
6	Soku	SOKUFLO26T	OIL	4	2.83	743	0.54	2	338,332	executed
7	Awoba	AWOBFLO07S	OIL	4	1.4	4344	5.94	3.7	285,097	executed
8	Agbada	AGBD2FLO46L	OIL	4	1.36	170	0.87	14		Not executed
9	Imo river	IMOR 1FLO19L	OIL	4	0.551	151	0.43	7.8		Not executed
10	Agbada	AGBD2FLO02T	OIL	4	2.1	1238	2.51	5.6		Not executed
11	Imo river	IMOR 1FLO58L	OIL	4	2	597	1.26	5.8		Not executed
12	Imo river	IMOR 2FLO21L	OIL	4	3.7	65	0.17	7.2		Not executed
13	Imo river	IMOR 2FLO25L	OIL	4	3	301	0.5	4.6		Not executed
14	Obigbo North	OGBNFLO25T	OIL	4	2.73	396	2.86	19.8		Not executed
15	Obigbo North	OGBNFLO28S	OIL	4	3.5	245	0.04	0.4		Not executed
16	Akaso	AKOSFLO03L	OIL	4	4.7	2036	2.26	3		Not executed
17	Akaso	AKOSFLO07L	OIL	4	3.95	1625	1.72	2.9		Not executed
18	Akaso	AKOSFLO13L	OIL	4	2.44	888	1.59	4.9		Not executed
19	Awoba	AWOBFLO03S	OIL	4	2	867	0.9	2.8		Not executed
20	Awoba	AWOBFLO05L	OIL	4	2.2	1341	1.87	3.8		Not executed
21	Awoba	AWOBFLO06L	OIL	4	3.5	1023	4.07	10.9		Not executed
22	Awoba	AWOBFLO07S	OIL	4	1.4	4344	5.94	3.7		Not executed
23	Cawthorne channel	CAWC1FLO16L	OIL	4	1.55	97	0.18	5.1		Not executed
24	Cawthorne channel	CAWC1FLO22S	OIL	4	2.5	918	0.57	1.7		Not executed
25	Cawthorne channel	CAWC1FLO23L	OIL	4	6.01	1158	5.47	12.9		Not executed
26	Cawthorne channel	CAWC2FLO16S	OIL	4	1.6	493	0.68	3.8		Not executed
27	Cawthorne channel	CAWC3FLO41L	OIL	4	1.7	625	17.77	77.9		Not executed
					WEST					
28	Escravos Beach	ESCB011S	OIL	4	0.74	383	0.47	3.4	166,344	Not executed
	Sapele	SAPLW006L	OIL	4	2.484	396	0.65	4.5	241,761	executed
	Sapele	SAPLW0012S	OIL	4	2.006	1033	2.48	6.6	201,012	executed
	Sapele	SAPLW023T	OIL	4	4.00	23	0.03	3.6	371,000	executed
	Sapele	SAPLW024T	OIL	4	4.00	558	0.68	3.3	371,000	executed
	Forcados Yokri	52B01 Bulkline to NB	OIL	6	2.00	1785	2.95	4.5	483,000	Not executed
	Forcados Yokri	52B01 Bulkline to NB	OIL	6	2.00	501	0.35	1.9	438,000	Not executed
	Forcados Yokri	95B01 Bulkline to NB	OIL	6	2.00	769	0.89	3.2	483,000	Not executed
	Forcados Yokri	51B01 Bulkline to Yokri FS	OIL	6	2.40	1323	1.26	2.6	570,600	Not executed
		2 : 20 : 20 : and 10 : 10 : an 10	12		ells - WEST	.020	1.20		3,3,000	
37	Utorogu	UTORW026T	GAS	6	0.6		16.43		116,400	Not executed
	Utorogu	UTORW027T	GAS	6	0.6	1	55.25	1	116,400	Not executed
	Utorogu	UTORW029T	GAS	6	0.6	1	67.23	1	116,400	Not executed
	Utorogu	UTORW030T	GAS	6	0.6	1	34.98	1	116,400	executed
	Sapele	SAPLW018T	GAS	6	3		19.42		402,000	Not executed
41	σαροίο	O/11 E110/01	J. 1.0	U	94.91	1	10.42		+0∠,000	0000

Table showing Unplanned Conduit List Replaced in 2009

		ADDITION	IAL FLOWLIN	E WORKS EX	(ECUTED IN	2009 - EAST (UNPLANNED)				
1	Agbada	AGBD007LS & GLL	OIL	4	4.5			223,800	Completed		
2	Alakiri	Alak034T	GAS	6	0.95			453,357	7 Completed		
3	Awoba	Awoba 8T	OIL	4	3.2			403,024	Completed		
4	Awoba	Awoba 2T	OIL	4	1.5			120,120	Completed		
5	Adibawa NE	Biseni-Adibawa BL & TL completion	OIL	6	11			358,139	9 Completed		
6	Belema	BELE009T	OIL	4	4			339,917	7 Completed		
7	Bonny	BONY023T	GAS	6	1.6			353,497	Completed		
8	Bonny	BONY024T	GAS	6				200,570	Completed		
9	Cawthorne channel	CAWC029T	OIL	4	1.6			269,833	Completed		
10	Cawthorne channel	CAWC024T	OIL	4	2.7			328,31	Completed		
11	Cawthorne channel	CAWC 21L/S	OIL	4	2.4			277,859	Completed		
12	Ekulama	EKUL039S & 40T	OIL	4	2.186			735,384	Completed		
13	Imo river	IMOR026S	OIL	6	2.9			120,830	Completed		
14	Imo river	ImoR 26 GLL	GAS LIFT	2	2.9			60,415	Completed		
15	Imo river	IMOR010 GLL	GAS LIFT	2	2.4			120,380			
16	Imo river	IMOR022 GLL	GAS LIFT	2	1.1			35,870	Completed		
17	Kolo creek	Kocr 20T Completion	OIL	6	3			128,109			
18	Kolo creek	Kocr 16T	OIL	4				89,830	Work was aborted		
19	Soku	Soku W21L & 31S	OIL	4	2.6			441,435	Completed		
20	Soku	SOKU W16S, W23S	OIL	4	1.4			455,027	Completed		
21	Soku	SOKU W8T, 48S & 11S	OIL	4	5			683,472	Completed		
	ADDITIONAL FLOWLINE WORKS EXECUTED IN 2009 - WEST (UNPLANNED)										
22	Sapele	SAPLW001S		4"					Completed		
23	Sapele	SAPLW006S		4"					Completed		
24	Sapele	SAPLW025L/S		4"					Completed		
25	Sapele	SAPLW026L/S		4"					Completed		