

Test report No. : 12434230Y-B
Page : 1 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

EMI TEST REPORT

Test Report No.: 12434230Y-B

Applicant: Hitachi, Ltd. Service Platform Business Division Group

Type of Equipment: Portable Biometric Reader

Model No.: PC-KCM50

FCC ID ZQDPCKCM50

Test regulation: FCC Part 15 Subpart B:2018 Class B

ICES-003 Issue 6 + Amendment 1 Class B (SMSE-015-16)

Test result: Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report covers EMC technical requirements. It does not cover administrative issues such as Manual or non-EMC test related Requirements. (if applicable)
- 6. The all test items in this test report are conducted by UL Japan, Inc. Yokowa EMC Lab.
- 7. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.

Date of test:	
	July 30 and 31, 2018
Representative test engineer:	L Chan
	Kosuke Yamagishi
	Engineer
	Consumer Technology Division
Approved by:	Am A
	Makoto Toyoda
	Leader
	Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 12434230Y-B
Page : 2 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

REVISION HISTORY

Original Test Report No.: 12434230Y-B

Revision	Test report No.	Date	Page revised	Contents
-	12434230Y-B	August 9, 2018	-	-
(Original)	12 1 312301-D	August 7, 2016	_	_
(Oliginal)				

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 12434230Y-B
Page : 3 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

CONTENTS

		PAGE
Section 1: (Customer information	4
Section 2: I	Equipment under test (E.U.T.)	4
Section 3: 7	Test specification, procedures and results	5
Section 4: (Operation of E.U.T. during testing	8
Section 5: (Conducted emission	9
Section 6: I	Radiated emission	10
Appendix 1:	Data of EMI test Conducted emission Radiated emission	12
Appendix 2:	Test Instruments	24
Appendix 3:	Photographs of test setup	27

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 12434230Y-B
Page : 4 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

Section 1: Customer information

Company Name : Hitachi, Ltd. Service Platform Business Division Group

Address : Hitachi Omori 2nd Bldg., 27-18 Minami-Oi 6-Chome, Shinagawa-ku,

Tokyo, 140-8572 Japan

Telephone Number : +81 3 5471 2265

Facsimile Number : +81 3 5471 2582

Contact Person : Keiji Kitane

Section 2: Equipment under test (E.U.T.)

2. 1 Identification of E.U.T.

Type of equipment : Portable Biometric Reader

Model No. : PC-KCM50

Serial No. : Refer to Clause 4.2

Rating : DC 5 V, 500 mA

Country of Mass-production : Japan

Condition of EUT : Engineering prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Size : 55 x 91 x 18 (Width x Depth x Height (mm))

Modification of EUT : No modification by the test lab.

Receipt Date of Sample : July 30, 2018

2. 2 Product description

Model: PC-KCM50 (referred to as the EUT in this report) is a Portable Biometric Reader.

Feature of EUT:

Clock frequency(ies) in the system : 168 MHz, 24 MHz

Radio Type : Transceiver

Frequency of Operation : 2402 MHz - 2480 MHz

Modulation : GFSK

Power Supply (radio part input) : DC 3.3 V / 1.35 V

Antenna type : Internal Antenna

Antenna Gain : 1.7 dBi

Antenna Gain : + 1.7 dBi Clock frequency (Maximum) : 26 MHz

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 12434230Y-B
Page : 5 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

Section 3: Test specification, procedures and results

3. 1 Test Specification

Test Specification : FCC Part 15 Subpart B

FCC Part 15 final revised on March 12, 2018 and effective April 11, 2018

Title : FCC 47CFR Part15 Radio Frequency Device

Subpart B Unintentional Radiators

Test Specification : ICES-003 Issue 6 + Amendment 1 (SMSE-015-16)
Title : Spectrum Management and Telecommunications

Interference-Causing Equipment Standard

Information Technology Equipment (Including Digital Apparatus) –

Limits and Methods of Measurement

3. 2 Procedures & results

Item	Test Procedure	Limits	Deviation	Worst margin	Result	Remarks
Conducted emission	ANSI C63.4: 2014	Class B	N/A	18.7 dB	Complied	-
	7. AC powerline			(0.15184 MHz, QP, N,		
	conducted emission			1.USB Communication)		
	measurements					
Radiated emission	ANSI C63.4: 2014	Class B	N/A	7.8 dB	Complied	*1)
	8. Radiated			(372.003 MHz,		
	emission measurements			Horizontal, QP		
				1.USB Communication)		

^{*1)} Measurements were limited up to 12.5 GHz since the EUT has a Bluetooth module of highest operation frequency of 2.48 GHz. Test was performed consider this frequency.

Note: UL Japan's EMI Work Procedures No. 13-EM-W0420

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

3.4 Confirmation

UL Japan, Inc. hereby confirms that E.U.T., in the configuration tested, complies with the specifications FCC Part 15 Subpart B:2018 Class B and ICES-003 Issue 6 + Amendment 1 Class B (SMSE-015-16).

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 12434230Y-B
Page : 6 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

3.5 Uncertainty

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

\mathbf{EMI}

EMII		Open area test site Shielded room						Ucispr (±)		
	F	No.1		No.2	No.3	No.1	No.2	No.3	No.7	(±)
		(±) (±) (±) (±) (±) (±)				(±)				
Conducted disturbance	-					•				
LISN (AMN) 9 kHz	: - 150 kHz	3.8 dB								
150 kF	iz - 30 MHz			3	.4 dB					3.4 dB
ISN (LCL= 55 dB - 40 dB) 150 kF	Iz - 30 MHz			4	.2 dB					5.0 dB
ISN (LCL= 65 dB - 50 dB) 150 kF				4	.6 dB					5.0 dB
ISN (LCL= 75 dB - 60 dB) 150 kF	iz - 30 MHz			5	.0 dB					5.0 dB
ISN (Screened)	Iz - 30 MHz			3	.4 dB					5.0 dB
ISN (75 ohm) 150 kF	Iz - 30 MHz			3	.4 dB					5.0 dB
Current probe 150 kF	Iz - 30 MHz			2	9 dB					2.9 dB
Capacitive Voltage Probe 150 kF	Iz - 30 MHz			3	.8 dB					3.9 dB
Voltage probe	Iz - 30 MHz			2	.9 dB					2.9 dB
Radiated disturbance										
3 m 9 kHz - 30	MHz	3.3 dI	3	3.4 dB	3.4 dB	-	-	-	-	Not Defined
30 MHz - 200 (Horiz		4.6 dI	3	4.5 dB	4.7 dB	-	-	-	-	6.3 dB
30 MHz - 200 (Ve	MHz rtical)	4.7 dI	3	4.7 dB	4.9 dB	-	-	-	-	6.3 dB
200 MHz - 1000 (Horiz		4.9 dI	3	5.2 dB	5.2 dB	-	-	-	-	6.3 dB
200 MHz - 1000 (Ve	MHz rtical)	6.1 dI	3	6.2 dB	6.2 dB	-	-	-	-	6.3 dB
1 GHz -	6 GHz		4.9 dl	В		-	-	-	-	5.2 dB
6 GHz - 1	8 GHz		5.2 dl	В		-	-	-	-	5.5 dB
10 m 9 kHz - 30		3.1 dB	3.3	dB	3.2 dB	-	-	-	-	Not Defined
30 MHz - 200 (Horiz	ontal)	4.6 dB	4.5	dB	4.7 dB	-	-	-	-	6.3 dB
	rtical)	4.5 dB	4.5 dB		4.8 dB	-	-	-	-	6.3 dB
200 MHz - 1000 (Horiz	ontal)	4.7 dB	4.9	dB	4.9 dB	-	-	-	-	6.3 dB
	rtical)	4.7 dB	5.0	dB	5.0 dB	-	-	-	-	6.3 dB
1 GHz - 1	8 GHz		5.1 dl	В		-	-	-	-	Not Defined
Antenna terminal voltage	-									
30 MHz - 1000 MHz	\perp				.8 dB					Not Defined
1 GHz - 2.15 GHz				3	.9 dB					Not Defined

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 12434230Y-B
Page : 7 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

3. 6 Test Location

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Telephone : +81 596 24 8750 Facsimile : +81 596 39 0232

FCC Test Firm Registration Number: 788329

	IC Registration	Width x Depth x	Size of	Other
	Number	Height (m)	reference ground plane (m) /	rooms
			horizontal conducting plane	
No.1 open area test site	2973A-1	-	40 x 20	-
No.2 open area test site	2973A-2	-	20 x 18	-
No.3 open area test site	2973A-3	-	20 x 18	-
No.1 shielded room	-	5.5 x 6.4 x 2.7	5.5 x 6.4	-
No.2 shielded room	-	4.5 x 3.6 x 2.7	4.5 x 3.6	-
No.3 shielded room	-	3.6 x 7.2 x 2.4	3.6 x 7.2	-
No.4 shielded room	-	5.5 x 5.0 x 2.4	4.35 x 3.35	-
No.5 shielded room	-	5.5 x 4.3 x 2.5	5.54 x 3.0	-
No.6 shielded room	-	5.2 x 3.2 x 2.9	5.2 x 3.2	-
No.7 shielded room	-	9.3 x 3.4 x 2.7	9.3 x 3.4	-
No.1 EMS lab.	-	5.0 x 8.0 x 3.5	-	-
(Full-anechoic chamber)				
No.2 EMS lab.	-	4.0 x 7.0 x 3.5	-	-
(Full-anechoic chamber)				

3.7 Test setup, Data of EMI & Test instruments

Refer to Appendix 1 to 3.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 12434230Y-B
Page : 8 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

Section 4: Operation of E.U.T. during testing

4. 1 Operating modes

The EUT exercise program used during testing was designed to exercise the various system components in a manner similar to typical use.

Test sequence is used: 1. USB Communication

2. Standby

Justification: The system was configured in typical fashion (as a customer would normally use it) for testing.

4. 2 Configuration and peripherals

^{*}Cabling and setup were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	FCC ID	Remark
A	Portable Biometric	PC-KCM50	42	Hitachi, Ltd. Service	ZQDPCKCM50	EUT
	Reader			Platform Business		
				Division Group		
В	Scan Jig	-	-	Hitachi, Ltd. Service	N/A	-
				Platform Business		
				Division Group		
C	Laptop PC	3168NGW	CND8210W7D	Hewlett Packard	N/A	-
D	AC Adapter	854054-002	1805	Hewlett Packard	N/A	-
E	Mouse	MODGO	PSA1047008394	Hewlett Packard	DoC	-

List of cables used

No.	Name	Length (m)	Cable Shield	Connector Shield	Remark
1	USB Cable	1.8	Shielded	Shielded	-
2	DC Power Cable	1.8	Unshielded	Unshielded	-
3	AC Power Cable	1.0	Unshielded	Unshielded	3 wire
4	USB Cable	1.8	Shielded	Shielded	-
5	Earth Cable	0.1	Unshielded	Unshielded	-

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 12434230Y-B
Page : 9 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

Section 5: Conducted emission

5. 1 Operating environment

The test was carried out in shielded room.

Temperature : See data

Humidity : See data

5. 2 Test configuration

EUT was placed on a wooden platform of nominal size, 1 m by 1.8 m raised 80 cm above the conducting ground plane. The rear of tabletop was located 40cm to the vertical conducting plane. The rear of EUT and its peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80 cm from any other grounded conducting surface.

EUT was located 80 cm from the LISN and excess AC cable was bundled in center. I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle and were hanged at a 40 cm height to the ground plane. Each EUT current-carrying power lead, except the ground (safety) lead, was individually connected through a LISN to the input power source. All unused 50 ohm connectors of the LISN were resistively terminated in 50 ohm when not connected to the measuring equipment.

Photographs of the set up are shown in Appendix 1.

5. 3 Test conditions

Frequency range : 0.15 MHz - 30 MHz

EUT position : Table top

5. 4 Test procedure

The AC Mains Terminal Continuous disturbance Voltage had been measured with the EUT in shielded room. The EUT was connected to a Line Impedance Stabilization Network (LISN).

An overview sweep with peak detection has been performed.

The measurements had been performed with a quasi-peak detector and if required, with an average detector. The conducted emission measurements were made with the following detector function of the test receiver.

Detector Type : QP / CAV IF Band width : 9 kHz / 9 kHz

5. 5 Results

Summary of the test results: Pass

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 12434230Y-B
Page : 10 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

Section 6: Radiated emission

6. 1 Operating environment

This test was carried out in open area test site.

Temperature : See data Humidity : See data

6. 2 Test configuration

EUT was placed on a table which was consisted by polystyrene foam, polypropylene foam and polycarbonate of nominal size, 1 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of EUT and its peripherals was aligned and flushed with rear of tabletop.

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle and were hanged 40 cm height to the ground plane. The measurements were performed for vertical or horizontal antenna polarization or both as necessary. The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength.

Photographs of the set up are shown in Appendix 1.

6. 3 Test conditions

Frequency range : 30 MHz - 12500 MHz

Test distance : 3 m EUT position : Table top

6.4 Test procedure

The Radiated Electric Field Strength intensity has been measured on an open test site with a ground plane at a distance of
3 m*. (30 MHz - 1000 MHz)
* Measuring distance
The boundary of the EUT is defined by an imaginary straight-line periphery describing a

simple geometric configuration encompassing the EUT.

The boundary of the EUT is defined by an imaginary circular periphery.

This test repot use worse case for the setup.

Pre check measurements were performed in shielded room with a search coil at 30 MHz - 12500 MHz to distinguish

Measurements were performed with quasi-peak detector, average detector and peak detector.

The measuring antenna height was varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical or horizontal antenna polarization or both as necessary.

The radiated emission measurements were made with the following detector function of the test receiver and spectrum analyzer.

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

disturbances of EUT from the ambient noise.

Test report No. : 12434230Y-B
Page : 11 of 28
Issued date : August 9, 2018
FCC ID : ZQDPCKCM50

Frequency : 30 MHz-1000 MHz 1000 MHz-12500 MHz *1)

Instrument used : Test Receiver Test Receiver

Detector Type : QP AV PK
IF Band width : 120 kHz 1 MHz 1 MHz

*1) The measurement data was adjusted to a 3 m distance using the following Distance Factor.

Distance factor: 20 log (Actual distance/3 m)

Distance factor and actual distance are shown in Appendix 2.

6.5 Results

Summary of the test results: Pass

Figure. Absorber arrangement

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. 12434230Y-B Page 12 of 28 Issued date August 9, 2018

DATA OF CONDUCTED DISTURBANCE

Yokowa EMC Lab. No.2 Shielded room Date: 07/30/2018

Frequency [Hz]

FCC ID ZQDPCKCM50

12434230Y-B Report No.

DC 5 V /Adapter In (AC 120 V/ 60 Hz) 26 deg.C / 59 % RH Kosuke Yamagishi Power

Temp./Humi. Engineer

Mode / Remarks : 1. USB Communication / LS-12 LISN N Phase with Adapter_HP OFF(2017-10-10)

LIMIT : FCC Part 15 B CLASS B (QP) FCC Part 15 B CLASS B (AV)

Test report No. 12434230Y-B Page 13 of 28 Issued date August 9, 2018 FCC ID ZQDPCKCM50

DATA OF CONDUCTED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No.2 Shielded room Date: 07/30/2018

Report No.

: 12434230Y-B : DC 5 V /Adapter In (AC 120 V/ 60 Hz) : 26 deg. C / 59 % RH : Kosuke Yamagishi Power

Temp./Humi. Engineer

Mode / Remarks : 1. USB Communication / LS-12 LISN N Phase with Adapter_HP OFF(2017-10-10)

LIMIT : FCC Part 15 B CLASS B (QP) FCC Part 15 B CLASS B (AV)

Frequency	Reading		Corr.	Resu		Lim			gin	
[MHz]	QP [dBuV]	AV [dBuV]	Factor [dB]	QP [dBuV]	AV [dBuV]	QP	AV [dBuV]	QP [dp]	AV [dB]	Phase
0. 15184	37. 3	17. 2	9.9	47. 2	27. 1	[dBuV] 65. 9	55. 9	[dB] 18. 7	28.8	N
0. 15245	37. 0	17. 5	9. 9	46.9	27. 4	65. 9	55. 9	19. 0	28. 5	Ë
0. 17096	34. 1		9. 9	44. 0		64. 9		20. 9		N
0. 17261	34. 4		9.9	44. 3		64. 8		20. 5		L
0. 23332	24. 0		9. 9	33.9		62. 3		28. 4		N
0. 23437	24. 0		9. 9	33. 9		62. 3		28. 4		L
0. 72916	18. 3		9. 9	28. 2		56. 0		27. 8		N
0. 72926	17. 3		9. 9	27. 2		56. 0		28. 8		L
4. 31730	13. 1		10. 1	23. 2		56. 0		32. 8		N
4. 32458	15. 1		10. 1	25. 2		56. 0		30.8		L
22. 30064 22. 38378	15. 7 15. 2		10.9	26.6		60. 0 60. 0		33. 4		L N
22. 303 / 6	15. 2		10. 9	26. 1		00.0		33. 9		IN
						1				
				İ	İ	j	İ			
					[ļ				

Test report No. 12434230Y-B Page 14 of 28 Issued date August 9, 2018 FCC ID ZQDPCKCM50

DATA OF CONDUCTED DISTURBANCE

Yokowa EMC Lab. No.2 Shielded room Date: 07/30/2018

12434230Y-B Report No.

DC 5 V /Adapter In (AC 120 V/ 60 Hz) 26 deg.C / 59 % RH Kosuke Yamagishi Power

Temp./Humi. Engineer

Mode / Remarks : 2. Standby / LS-12 LISN N Phase with Adapter_HP OFF (2017-10-10)

LIMIT : FCC Part 15 B CLASS B (QP) FCC Part 15 B CLASS B (AV)

Test report No. 12434230Y-B Page 15 of 28 Issued date August 9, 2018 FCC ID ZQDPCKCM50

DATA OF CONDUCTED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Shielded room Date: 07/30/2018

Report No.

: 12434230Y-B : DC 5 V /Adapter In (AC 120 V/ 60 Hz) : 26 deg. C / 59 % RH : Kosuke Yamagishi Power

Temp./Humi. Engineer

Mode / Remarks : 2. Standby / LS-12 LISN N Phase with Adapter_HP OFF (2017-10-10)

LIMIT : FCC Part 15 B CLASS B (QP) FCC Part 15 B CLASS B (AV)

Frequency	Reading		Corr.	Resu		Lim		Mar	gin	
	QP [dBuV]	AV [ADuV]	Factor	QP [dBuV]	AV [dPuV]	QP [dpuV]	AV [dPuV]	QP [dP]	AV [db]	Phase
[MHz] 0.15303	[dBuV] 34. 7	[dBuV]	[dB] 9.9	44. 6	[dBuV]	[dBuV] 65. 8	[dBuV]	[dB] 21. 2	[dB]	N
0. 15350	34. 8		9. 9	44. 7		65. 8		21. 2		Ľ
0. 17158	31. 5		9. 9	41.4		64. 9		23. 5		N
0. 17160	31. 9		9. 9	41.8		64. 9		23. 1		Ľ
0. 72846	18. 0		9. 9	27. 9		56. 0		28. 1		L
0. 72983	18. 0		9.9	27. 9		56.0		28. 1		N
4. 12056	13. 2		10. 1	23. 3		56.0		32. 7		N
4. 18421	14. 8		10.1	24. 9		56.0		31. 1		L
6. 14850	13. 0		10. 3	23. 3		60.0		36. 7		L
6. 29664	12. 4		10. 3	22. 7		60. 0		37. 3		N
22. 58595	12. 4		10. 9	23. 3		60. 0		36. 7		L
22. 95423	13. 5		10. 9	24. 4		60. 0		35. 6		N
			•							

Yokowa EMC Lab. No.2 Open area test site Date : 07/31/2018

: 12434230Y-B : DC 5 V : 26 deg. C / 7 Report No.

Power Temp./Humi. : 26 deg.C / 70 % RH : Kosuke Yamagishi Engineer

Mode / Remarks : 1. USB Communication LIMIT: FCC Part 15B CLASS B (3m)

Test report No. 12434230Y-B Page 17 of 28 Issued date August 9, 2018 FCC ID ZQDPCKCM50

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No.2 Open area test site Date: 07/31/2018

Report No.

: 12434230Y-B : DC 5 V : 26 deg.C / 70 % RH : Kosuke Yamagishi Power Temp./Humi. Engineer

Mode / Remarks : 1.USB Communication LIMIT: FCC Part 15B CLASS B (3m)

Number Name [MHz] 37. 815 38. 617 60. 004 60. 060 120. 002 138. 000 144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	[dBuV] 30.6 36.6 36.4 44.1 33.0 38.0 34.0 39.6 37.9 31.4 45.6 36.7 32.6	9P 9P 9P 9P 9P 9P 9P 9P 9P	Factor [dB/m] 12. 1 11. 9 9. 4 9. 4 10. 7 11. 8 12. 0 12. 0 13. 7 13. 7 15. 0	Gain [dB] -22.7 -22.7 -22.5 -21.5 -21.4 -21.2 -21.2 -22.7	[dBuV/m] 20.0 25.8 23.3 31.0 22.2 28.4 24.8 30.4	Hori. Vert. Hori. Vert. Vert. Hori.	[dBuV/m] 40.0 40.0 40.0 40.0 43.5 43.5 43.5	[dB] 20. 0 14. 2 16. 7 9. 0 21. 3 15. 1	
[MHz] [dBuV] [dB/m] [dB] [dBuV/m] [dBuV/m] [dB] 37. 815 30. 6 QP 12. 1 -22. 7 20. 0 Hori. 40. 0 20. 0 38. 617 36. 6 QP 11. 9 -22. 7 25. 8 Vert. 40. 0 14. 2 60. 004 36. 4 QP 9. 4 -22. 5 23. 3 Hori. 40. 0 16. 7 60. 060 44. 1 QP 9. 4 -22. 5 31. 0 Vert. 40. 0 9. 0 120. 002 33. 0 QP 10. 7 -21. 5 22. 2 Vert. 43. 5 21. 3 138. 000 38. 0 QP 11. 8 -21. 4 28. 4 Vert. 43. 5 15. 1 144. 000 34. 0 QP 12. 0 -21. 2 24. 8 Hori. 43. 5 18. 7 144. 000 39. 6 QP 12. 0 -21. 2 30. 4 Vert. 43. 5 13. 1 299. 998 37	37. 815 38. 617 60. 004 60. 060 120. 002 138. 000 144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	30. 6 36. 6 36. 4 44. 1 33. 0 38. 0 34. 0 39. 6 37. 9 31. 4 35. 1 45. 6 36. 7 32. 6	9P 9P 9P 9P 9P 9P 9P 9P 9P	[dB/m] 12. 1 11. 9 9. 4 9. 4 10. 7 11. 8 12. 0 12. 0 13. 7 13. 7 15. 0	[dB] -22.7 -22.7 -22.5 -22.5 -21.5 -21.4 -21.2 -21.2	20. 0 25. 8 23. 3 31. 0 22. 2 28. 4 24. 8 30. 4	Hori. Vert. Hori. Vert. Vert. Hori.	40. 0 40. 0 40. 0 43. 5 43. 5 43. 5	20. 0 14. 2 16. 7 9. 0 21. 3 15. 1
38.617 36.6 QP 11.9 -22.7 25.8 Vert. 40.0 14.2 60.004 36.4 QP 9.4 -22.5 23.3 Hori. 40.0 16.7 60.060 44.1 QP 9.4 -22.5 31.0 Vert. 40.0 9.0 120.002 33.0 QP 10.7 -21.5 22.2 Vert. 43.5 21.3 138.000 38.0 QP 11.8 -21.4 28.4 Vert. 43.5 15.1 144.000 34.0 QP 12.0 -21.2 24.8 Hori. 43.5 18.7 144.000 39.6 QP 12.0 -21.2 30.4 Vert. 43.5 13.1 299.998 37.9 QP 13.7 -22.7 28.9 Hori. 46.0 17.1 300.066 31.4 QP 13.7 -22.7 22.4 Vert. 46.0 23.6 372.001 35.1 QP	38. 617 60. 004 60. 060 120. 002 138. 000 144. 000 144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	36. 6 36. 4 44. 1 33. 0 38. 0 39. 6 37. 9 31. 4 35. 1 45. 6 36. 7 32. 6	GP GP GP GP GP GP GP GP	11. 9 9. 4 9. 4 10. 7 11. 8 12. 0 12. 0 13. 7 13. 7 15. 0	-22. 7 -22. 5 -22. 5 -21. 5 -21. 4 -21. 2 -21. 2 -22. 7	25. 8 23. 3 31. 0 22. 2 28. 4 24. 8 30. 4	Vert. Hori. Vert. Vert. Vert. Hori.	40. 0 40. 0 40. 0 43. 5 43. 5 43. 5	14. 2 16. 7 9. 0 21. 3 15. 1
60.004 36.4 QP 9.4 -22.5 23.3 Hori. 40.0 16.7 60.060 44.1 QP 9.4 -22.5 31.0 Vert. 40.0 9.0 120.002 33.0 QP 10.7 -21.5 22.2 Vert. 43.5 21.3 138.000 38.0 QP 11.8 -21.4 28.4 Vert. 43.5 15.1 144.000 34.0 QP 12.0 -21.2 24.8 Hori. 43.5 18.7 144.000 39.6 QP 12.0 -21.2 30.4 Vert. 43.5 13.1 299.998 37.9 QP 13.7 -22.7 28.9 Hori. 46.0 17.1 300.006 31.4 QP 13.7 -22.7 22.4 Vert. 46.0 23.6 372.001 35.1 QP 15.0 -22.4 27.7 Vert. 46.0 18.3 372.003 45.6 Q	60. 004 60. 060 120. 002 138. 000 144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	36. 4 44. 1 33. 0 38. 0 34. 0 39. 6 37. 9 31. 4 35. 1 45. 6 36. 7 32. 6	QP QP QP QP QP QP QP QP	9. 4 9. 4 10. 7 11. 8 12. 0 12. 0 13. 7 13. 7 15. 0	-22. 5 -22. 5 -21. 5 -21. 4 -21. 2 -21. 2 -22. 7	23. 3 31. 0 22. 2 28. 4 24. 8 30. 4	Hori. Vert. Vert. Vert. Hori.	40. 0 40. 0 43. 5 43. 5 43. 5	16. 7 9. 0 21. 3 15. 1
60.060 44.1 QP 9.4 -22.5 31.0 Vert. 40.0 9.0 120.002 33.0 QP 10.7 -21.5 22.2 Vert. 43.5 21.3 138.000 38.0 QP 11.8 -21.4 28.4 Vert. 43.5 15.1 144.000 34.0 QP 12.0 -21.2 24.8 Hori. 43.5 18.7 144.000 39.6 QP 12.0 -21.2 30.4 Vert. 43.5 13.1 299.998 37.9 QP 13.7 -22.7 28.9 Hori. 46.0 17.1 300.006 31.4 QP 13.7 -22.7 22.4 Vert. 46.0 23.6 372.001 35.1 QP 15.0 -22.4 27.7 Vert. 46.0 18.3 372.003 45.6 QP 15.0 -22.4 38.2 Hori. 46.0 13.5 492.000 36.7 <td< td=""><td>60. 060 120. 002 138. 000 144. 000 144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776</td><td>44. 1 33. 0 38. 0 34. 0 39. 6 37. 9 31. 4 35. 1 45. 6 36. 7 32. 6</td><td>GP GP GP GP GP GP GP</td><td>9. 4 10. 7 11. 8 12. 0 12. 0 13. 7 13. 7 15. 0</td><td>-22.5 -21.5 -21.4 -21.2 -21.2 -22.7</td><td>31. 0 22. 2 28. 4 24. 8 30. 4</td><td>Vert. Vert. Vert. Hori.</td><td>40. 0 43. 5 43. 5 43. 5</td><td>9. 0 21. 3 15. 1</td></td<>	60. 060 120. 002 138. 000 144. 000 144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	44. 1 33. 0 38. 0 34. 0 39. 6 37. 9 31. 4 35. 1 45. 6 36. 7 32. 6	GP GP GP GP GP GP GP	9. 4 10. 7 11. 8 12. 0 12. 0 13. 7 13. 7 15. 0	-22.5 -21.5 -21.4 -21.2 -21.2 -22.7	31. 0 22. 2 28. 4 24. 8 30. 4	Vert. Vert. Vert. Hori.	40. 0 43. 5 43. 5 43. 5	9. 0 21. 3 15. 1
120.002 33.0 QP 10.7 -21.5 22.2 Vert. 43.5 21.3 138.000 38.0 QP 11.8 -21.4 28.4 Vert. 43.5 15.1 144.000 34.0 QP 12.0 -21.2 24.8 Hori. 43.5 18.7 144.000 39.6 QP 12.0 -21.2 30.4 Vert. 43.5 13.1 299.998 37.9 QP 13.7 -22.7 28.9 Hori. 46.0 17.1 300.006 31.4 QP 13.7 -22.7 22.4 Vert. 46.0 23.6 372.001 35.1 QP 15.0 -22.4 27.7 Vert. 46.0 18.3 372.003 45.6 QP 15.0 -22.4 38.2 Hori. 46.0 7.8 492.000 36.7 QP 17.4 -21.6 32.5 Hori. 46.0 13.5 564.003 35.5 QP 18.1 -21.3 29.4 Vert. 46.0 16.6	120. 002 138. 000 144. 000 144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	33. 0 38. 0 34. 0 39. 6 37. 9 31. 4 35. 1 45. 6 36. 7 32. 6	QP QP QP QP QP QP QP	10. 7 11. 8 12. 0 12. 0 13. 7 13. 7 15. 0	-21. 5 -21. 4 -21. 2 -21. 2 -22. 7	22. 2 28. 4 24. 8 30. 4	Vert. Vert. Hori.	43. 5 43. 5 43. 5	21. 3 15. 1
138.000 38.0 QP 11.8 -21.4 28.4 Vert. 43.5 15.1 144.000 34.0 QP 12.0 -21.2 24.8 Hori. 43.5 18.7 144.000 39.6 QP 12.0 -21.2 30.4 Vert. 43.5 13.1 299.998 37.9 QP 13.7 -22.7 28.9 Hori. 46.0 17.1 300.006 31.4 QP 13.7 -22.7 22.4 Vert. 46.0 23.6 372.001 35.1 QP 15.0 -22.4 27.7 Vert. 46.0 18.3 372.003 45.6 QP 15.0 -22.4 38.2 Hori. 46.0 7.8 492.000 36.7 QP 17.4 -21.6 32.5 Hori. 46.0 13.5 564.000 32.6 QP 18.1 -21.3 29.4 Vert. 46.0 16.6 564.003 35.5 QP 18.1 -21.3 32.3 Hori. 46.0 13.7	138. 000 144. 000 144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	38. 0 34. 0 39. 6 37. 9 31. 4 35. 1 45. 6 36. 7 32. 6	QP QP QP QP QP QP	11. 8 12. 0 12. 0 13. 7 13. 7 15. 0	-21. 4 -21. 2 -21. 2 -22. 7	28. 4 24. 8 30. 4	Vert. Hori.	43. 5 43. 5	15. 1
144.000 34.0 QP 12.0 -21.2 24.8 Hori. 43.5 18.7 144.000 39.6 QP 12.0 -21.2 30.4 Vert. 43.5 13.1 299.998 37.9 QP 13.7 -22.7 28.9 Hori. 46.0 17.1 300.006 31.4 QP 13.7 -22.7 22.4 Vert. 46.0 23.6 372.001 35.1 QP 15.0 -22.4 27.7 Vert. 46.0 18.3 372.003 45.6 QP 15.0 -22.4 38.2 Hori. 46.0 7.8 492.000 36.7 QP 17.4 -21.6 32.5 Hori. 46.0 13.5 564.000 32.6 QP 18.1 -21.3 29.4 Vert. 46.0 16.6 564.003 35.5 QP 18.1 -21.3 32.3 Hori. 46.0 13.7 684.776 33.7 QP 20.6 -20.7 32.6 Vert. 46.0 13.4	144. 000 144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	34. 0 39. 6 37. 9 31. 4 35. 1 45. 6 36. 7 32. 6	QP QP QP QP QP	12. 0 12. 0 13. 7 13. 7 15. 0	-21.2 -21.2 -22.7	24. 8 30. 4	Hori.	43. 5	
144.000 39.6 QP 12.0 -21.2 30.4 Vert. 43.5 13.1 299.998 37.9 QP 13.7 -22.7 28.9 Hori. 46.0 17.1 300.006 31.4 QP 13.7 -22.7 22.4 Vert. 46.0 23.6 372.001 35.1 QP 15.0 -22.4 27.7 Vert. 46.0 18.3 372.003 45.6 QP 15.0 -22.4 38.2 Hori. 46.0 7.8 492.000 36.7 QP 17.4 -21.6 32.5 Hori. 46.0 13.5 564.000 32.6 QP 18.1 -21.3 29.4 Vert. 46.0 16.6 564.003 35.5 QP 18.1 -21.3 32.3 Hori. 46.0 13.7 684.776 33.7 QP 19.6 -20.7 32.6 Vert. 46.0 13.4 792.002 31.7 QP 20.6 -20.0 36.3 Hori. 46.0 9.7 <	144. 000 299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	39. 6 37. 9 31. 4 35. 1 45. 6 36. 7 32. 6	QP QP QP QP QP	12. 0 13. 7 13. 7 15. 0	-21. 2 -22. 7	30. 4			18. 7
299. 998 37. 9 QP 13. 7 -22. 7 28. 9 Hori. 46. 0 17. 1 300. 006 31. 4 QP 13. 7 -22. 7 22. 4 Vert. 46. 0 23. 6 372. 001 35. 1 QP 15. 0 -22. 4 27. 7 Vert. 46. 0 18. 3 372. 003 45. 6 QP 15. 0 -22. 4 38. 2 Hori. 46. 0 7. 8 492. 000 36. 7 QP 17. 4 -21. 6 32. 5 Hori. 46. 0 13. 5 564. 000 32. 6 QP 18. 1 -21. 3 29. 4 Vert. 46. 0 16. 6 564. 003 35. 5 QP 18. 1 -21. 3 32. 3 Hori. 46. 0 13. 7 684. 776 33. 7 QP 19. 6 -20. 7 32. 6 Vert. 46. 0 13. 4 792. 000 35. 7 QP 20. 6 -20. 0 36. 3 Hori. 46. 0 9. 7 792. 002 31. 7 QP 20. 6 -20. 0 32. 3 Vert. <td>299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776</td> <td>37. 9 31. 4 35. 1 45. 6 36. 7 32. 6</td> <td>QP QP QP QP</td> <td>13. 7 13. 7 15. 0</td> <td>-22. 7</td> <td></td> <td>Vert</td> <td>40 5</td> <td></td>	299. 998 300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	37. 9 31. 4 35. 1 45. 6 36. 7 32. 6	QP QP QP QP	13. 7 13. 7 15. 0	-22. 7		Vert	40 5	
300.006	300. 006 372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	31. 4 35. 1 45. 6 36. 7 32. 6	QP QP QP	13. 7 15. 0		20.0		43. 5	13. 1
372.001 35.1 QP 15.0 -22.4 27.7 Vert. 46.0 18.3 372.003 45.6 QP 15.0 -22.4 38.2 Hori. 46.0 7.8 492.000 36.7 QP 17.4 -21.6 32.5 Hori. 46.0 13.5 564.000 32.6 QP 18.1 -21.3 29.4 Vert. 46.0 16.6 564.003 35.5 QP 18.1 -21.3 32.3 Hori. 46.0 13.7 684.776 33.7 QP 19.6 -20.7 32.6 Vert. 46.0 13.4 792.000 35.7 QP 20.6 -20.0 36.3 Hori. 46.0 9.7 792.002 31.7 QP 20.6 -20.0 32.3 Vert. 46.0 13.7 828.001 32.1 QP 20.9 -19.5 33.5 Vert. 46.0 12.5	372. 001 372. 003 492. 000 564. 000 564. 003 684. 776	35. 1 45. 6 36. 7 32. 6	QP QP	15. 0	_22 7				
372.003 45.6 QP 15.0 -22.4 38.2 Hori. 46.0 7.8 492.000 36.7 QP 17.4 -21.6 32.5 Hori. 46.0 13.5 564.000 32.6 QP 18.1 -21.3 29.4 Vert. 46.0 16.6 564.003 35.5 QP 18.1 -21.3 32.3 Hori. 46.0 13.7 684.776 33.7 QP 19.6 -20.7 32.6 Vert. 46.0 13.4 792.000 35.7 QP 20.6 -20.0 36.3 Hori. 46.0 9.7 792.002 31.7 QP 20.6 -20.0 32.3 Vert. 46.0 13.7 828.001 32.1 QP 20.9 -19.5 33.5 Vert. 46.0 12.5	372. 003 492. 000 564. 000 564. 003 684. 776	45. 6 36. 7 32. 6	QP				Vert.		
492.000 36.7 QP 17.4 -21.6 32.5 Hori. 46.0 13.5 564.000 32.6 QP 18.1 -21.3 29.4 Vert. 46.0 16.6 564.003 35.5 QP 18.1 -21.3 32.3 Hori. 46.0 13.7 684.776 33.7 QP 19.6 -20.7 32.6 Vert. 46.0 13.4 792.000 35.7 QP 20.6 -20.0 36.3 Hori. 46.0 9.7 792.002 31.7 QP 20.6 -20.0 32.3 Vert. 46.0 13.7 828.001 32.1 QP 20.9 -19.5 33.5 Vert. 46.0 12.5	492. 000 564. 000 564. 003 684. 776	36. 7 32. 6							
564.000 32.6 QP 18.1 -21.3 29.4 Vert. 46.0 16.6 564.003 35.5 QP 18.1 -21.3 32.3 Hori. 46.0 13.7 684.776 33.7 QP 19.6 -20.7 32.6 Vert. 46.0 13.4 792.000 35.7 QP 20.6 -20.0 36.3 Hori. 46.0 9.7 792.002 31.7 QP 20.6 -20.0 32.3 Vert. 46.0 13.7 828.001 32.1 QP 20.9 -19.5 33.5 Vert. 46.0 12.5	564. 000 564. 003 684. 776	32. 6	QP		-22. 4		Hori.		
564.003 35.5 QP 18.1 -21.3 32.3 Hori. 46.0 13.7 684.776 33.7 QP 19.6 -20.7 32.6 Vert. 46.0 13.4 792.000 35.7 QP 20.6 -20.0 36.3 Hori. 46.0 9.7 792.002 31.7 QP 20.6 -20.0 32.3 Vert. 46.0 13.7 828.001 32.1 QP 20.9 -19.5 33.5 Vert. 46.0 12.5	564. 003 684. 776								
684. 776 33. 7 QP 19. 6 -20. 7 32. 6 Vert. 46. 0 13. 4 792. 000 35. 7 QP 20. 6 -20. 0 36. 3 Hori. 46. 0 9. 7 792. 002 31. 7 QP 20. 6 -20. 0 32. 3 Vert. 46. 0 13. 7 828. 001 32. 1 QP 20. 9 -19. 5 33. 5 Vert. 46. 0 12. 5	684. 776	35. 5							
792.000 35.7 QP 20.6 -20.0 36.3 Hori. 46.0 9.7 792.002 31.7 QP 20.6 -20.0 32.3 Vert. 46.0 13.7 828.001 32.1 QP 20.9 -19.5 33.5 Vert. 46.0 12.5	1						Hori.		
792.002 31.7 QP 20.6 -20.0 32.3 Vert. 46.0 13.7 828.001 32.1 QP 20.9 -19.5 33.5 Vert. 46.0 12.5									
828.001 32.1 QP 20.9 -19.5 33.5 Vert. 46.0 12.5							Hori.		
936. 000 30. 9 QP 21. 7 -18. 2 34. 4 Hori. 46. 0 11. 6	1								
	936. 000	30. 9	QP	21. 7	-18. 2	34. 4	Hori.	46. 0	11.6
				-					
				1					
				İ					
				i i					
				İ					
								i l	
1 1 1 1 1 1 1 1 1									

Yokowa EMC Lab. No.2 Open area test site Date : 07/31/2018

Report No. Power

: 12434230Y-B : DC 5 V : 27 deg.C / 71 % RH : Kosuke Yamagishi Temp./Humi. Engineer

Mode / Remarks : 1. USB Communication LIMIT : FCC Part 15B CLASS B (PK, 3m) FCC Part 15B CLASS B (AV, 3m)

UL Japan, Inc. Yokowa EMC Lab. No.2 Open area test site Date: 07/31/2018

Report No.

: 12434230Y-B : DC 5 V : 27 deg.C / 71 % RH : Kosuke Yamagishi Power Temp./Humi. Engineer

 ${\sf Mode}\ /\ {\sf Remarks}$: 1.USB Communication LIMIT : FCC Part 15B CLASS B (PK, 3m) FCC Part 15B CLASS B (AV, 3m)

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin
[MHz]	[dBuV]	DEI	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]	Total.	[dBuV/m]	[dB]
1007. 998	62. 8	PK	24. 7	-36.4	51. 1	0	100	Hori.	74. 0	22. 9
1007. 998	42. 7	AV	24. 7	-36.4	31. 0	0	100	Hori.	54. 0	23. 0
1008. 000	59. 7	PK	24. 7	-36. 4	48. 0	0	100	Vert.	74. 0	26. 0
1008. 000	39. 3	AV	24. 7	-36.4	27. 6	0	100	Vert.	54. 0	26. 4
1019. 998	58. 5	PK	24. 3	-36.3	46. 5	0	100	Hori.	74. 0	27. 5
1019. 998	36. 5	AV	24. 3	-36.3	24. 5	0	100	Hori.	54. 0	29. 5
1019. 999	59. 5	PK	24. 3	-36.3	47. 5	0	100	Vert.	74. 0	26. 5
1019. 999	38. 5	AV	24. 3	-36.3	26. 5	0	100	Vert.	54. 0	27. 5
1149. 449	54. 2	PK	24. 5	-35.9	42. 8	0	100	Vert.	74. 0	31. 2
1149. 449	37. 2	AV	24. 5	-35.9	25. 8	0	100	Vert.	54. 0	28. 2
1149. 513	61. 9	PK	24. 5	-35. 9	50. 5	0	100	Hori.	74. 0	23. 5
1149. 513	37. 5	AV	24. 5	-35. 9	26. 1	0	100	Hori.	54. 0	27. 9
1200. 000	53. 9	PK	24. 1	-35.8	42. 2	0	100	Vert.	74. 0	31. 8
1200. 000	38. 9	AV	24. 1	-35.8	27. 2	0	100	Vert.	54. 0	26. 8
1200. 001	54. 2	PK	24. 1	-35.8	42. 5	0	100	Hori.	74. 0	31.5
1200. 001	39. 9	AV	24. 1	-35.8	28. 2	0	100	Hori.	54. 0	25. 8
1224. 000	50. 6	PK	24. 4	-35. 7	39. 3	0	100	Vert.	74. 0	34. 7
1224. 000	37. 9	AV	24. 4	-35. 7	26. 6	0	100	Vert.	54. 0	27. 4
1224. 001	51.0	PK	24. 4	-35.7	39. 7	0	100	Hori.	74. 0	34. 3
1224. 001	37. 8	AV	24. 4	-35. 7	26. 5	0	100	Hori.	54. 0	27. 5
1320. 000	51.8	PK	25. 4	-35. 5	41.7	0	100	Hori.	74. 0	32. 3
1320. 000	38. 5	AV	25. 4	-35. 5	28. 4	0	100	Hori.	54. 0	25. 6
1320. 000	50. 5	PK	25. 4	-35. 5	40. 4	0	100	Vert.	74. 0	33. 6
1320. 000	37. 5	AV	25. 4	-35. 5	27. 4	0	100	Vert.	54. 0	26. 6
1440. 000	52. 0	PK	25. 2	-35. 2	42. 0	0	100	Hori.	74. 0	32. 0
1440. 000	37. 8	AV	25. 2	-35. 2	27. 8	0	100	Hori.	54. 0	26. 2
1440. 000	51.1	PK	25. 2	-35. 2	41. 1	0	100	Vert.	74. 0	32. 9
1440. 000	36. 9	AV	25. 2	-35. 2	26. 9	0	100	Vert.	54. 0	27. 1
1600. 000	54. 0	PK	24. 6	-34. 9	43. 7	0	100	Hori.	74. 0	30. 3
1600. 000	41. 5	AV	24. 6	-34. 9	31. 2	0	100	Hori.	54. 0	22. 8
1600. 000	55. 5	PK	24. 6	-34. 9	45. 2	0	100	Vert.	74. 0	28. 8
1600. 000	42. 5	AV	24. 6	-34. 9	32. 2	0	100	Vert.	54. 0	21. 8

Yokowa EMC Lab. No.2 Open area test site Date : 07/31/2018

: 12434230Y-B : DC 5 V : 26 deg. C / 7 Report No.

Power Temp./Humi. : 26 deg.C / 70 % RH : Kosuke Yamagishi Engineer

Mode / Remarks : 2. Standby

LIMIT: FCC Part 15B CLASS B (3m)

Test report No. 12434230Y-B Page 21 of 28 Issued date August 9, 2018 FCC ID ZQDPCKCM50

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No.2 Open area test site Date: 07/31/2018

Report No.

: 12434230Y-B : DC 5 V : 26 deg.C / 70 % RH : Kosuke Yamagishi Power Temp./Humi. Engineer

Mode / Remarks : 2. Standby

LIMIT: FCC Part 15B CLASS B (3m)

Frequency	Reading	DET	Antenna	Loss&	Level	D. I	Limit	Margin
	[dBuV]	DET	Factor	Gain		Polar.		
[MHz] 60. 001	44. 6	QP	[dB/m] 9.4	[dB] -22. 5	[dBuV/m] 31.5	Vert.	[dBuV/m] 40.0	[dB] 8.5
60. 005	35. 7	QP	9. 4	-22.5	22. 6	Hori.	40.0	17. 4
144. 008		QP	12. 0	-21. 2	26. 4		43. 5	17. 1
144. 030	31. 5	QP	12. 0	-21.2	22. 3	Hori.	43. 5	21. 2
144. 667	37. 1	QP	12. 0	-21.2	27. 9		43. 5	15. 6
300. 001	37. 5	QP	13. 7	-22. 7	28. 5	Hori.	46. 0	17.5
372. 000		QP	15. 0	-22. 4	26. 9	Vert.	46. 0	19.1
372. 000	44. 5	QP	15. 0	-22. 4	37. 1	Hori.	46. 0	8.9
492. 000	36.6	QP	17. 4	-21.6	32. 4	Hori.	46.0	13.6
564. 002		QP QP	18. 1 20. 6	-21. 3 -20. 0	31. 8 36. 3		46. 0 46. 0	14. 2 9. 7
792. 000 828. 001	35. 7	QP	20. 0	-20. 0 -19. 5	36. 4	Hori. Hori.	46. 0	
828. 002	32. 4	QP	20. 9	-19.5	33. 8	Vert.	46. 0	12. 2
936. 000	30. 1	QP	21. 7	-18. 2	33. 6	Hori.	46. 0	12.4
				1				

Yokowa EMC Lab. No.2 Open area test site Date : 07/31/2018

Report No. Power

: 12434230Y-B : DC 5 V : 27 deg.C / 71 % RH : Kosuke Yamagishi Temp./Humi. Engineer

Mode / Remarks : 2. Standby

LIMIT : FCC Part 15B CLASS B (PK, 3m) FCC Part 15B CLASS B (AV, 3m)

UL Japan, Inc. Yokowa EMC Lab. No.2 Open area test site Date: 07/31/2018

Report No.

: 12434230Y-B : DC 5 V : 27 deg.C / 71 % RH : Kosuke Yamagishi Power Temp./Humi. Engineer

Mode / Remarks : 2. Standby

LIMIT : FCC Part 15B CLASS B (PK, 3m) FCC Part 15B CLASS B (AV, 3m)

Frequency	Reading	DET	Antenna Factor	Loss& Gain	Level	Angle	Height	Polar.	Limit	Margin
[MHz]	[dBuV]	DEI	[dB/m]	[dB]	[dBuV/m]	[Deg]	[cm]	TOTAL.	[dBuV/m]	[dB]
1007. 998	51. 6	PK	24. 7	-36. 4	39. 9	0	100	Hori.	74. 0	34. 1
1007. 998	37. 6	AV	24. 7	-36.4	25. 9	0	100	Hori.	54. 0	28. 1
1008.000	51. 4	PK	24. 7	-36.4	39. 7	0	100	Vert.	74. 0	34. 3
1008. 000	37. 9	AV	24. 7	-36.4	26. 2	0	100	Vert.	54. 0	27. 8
1019. 998	57. 7	PK	24. 3	-36.3	45. 7	0	100	Hori.	74. 0	28. 3
1019. 998	36. 1	AV	24. 3	-36.3	24. 1	0	100	Hori.	54. 0	29. 9
1019. 999	57. 0	PK	24. 3	-36.3	45. 0	0	100	Vert.	74. 0	29. 0
1019. 999	36. 2	AV	24. 3	-36.3	24. 2	0	100	Vert.	54. 0	29.8
1149. 449	54. 3	PK	24. 5	-35. 9	42. 9	0	100	Vert.	74. 0	31. 1
1149. 449	35. 4	AV	24. 5	-35. 9	24. 0	0	100	Vert.	54. 0	30.0
1149. 513	59.6	PK	24. 5	-35.9	48. 2	0	100	Hori.	74. 0	25. 8
1149. 513	36. 5	AV	24. 5	-35. 9	25. 1	0	100	Hori.	54. 0	28. 9
1200. 000	53. 7	PK	24. 1	-35.8	42. 0	0	100	Vert.	74. 0	32. 0
1200. 000	38. 0	AV	24. 1	-35.8	26. 3	0	100	Vert.	54. 0	27.7
1200. 001	53. 9	PK	24. 1	-35.8	42. 2	0	100	Hori.	74. 0	31.8
1200. 001	39. 0	AV	24. 1	-35.8	27. 3	0	100	Hori.	54. 0	26. 7
1224. 000	50. 5	PK	24. 4	-35. 7	39. 2	0	100	Vert.	74. 0	34.8
1224. 000	36.8	AV	24. 4	-35. 7	25. 5	0	100	Vert.	54. 0	28. 5
1224. 001	49. 6	PK	24. 4	-35. 7	38. 3	0	100	Hori.	74. 0	35. 7
1224. 001	36.8	AV	24. 4	-35. 7	25. 5	0	100	Hori.	54. 0	28. 5
1320. 000	50. 1	PK	25. 4	-35.5	40. 0	0	100	Hori.	74. 0	34. 0
1320. 000	38. 2	AV	25. 4	-35. 5	28. 1	0	100	Hori.	54. 0	25. 9
1320. 000	49. 6	PK	25. 4	-35. 5	39. 5	0	100	Vert.	74. 0	34. 5
1320. 000	37. 2	AV	25. 4	-35. 5	27. 1	0	100	Vert.	54. 0	26. 9
1440. 000	49. 8	PK	25. 2	-35. 2	39. 8	0	100	Hori.	74. 0	34. 2
1440. 000	36. 6	AV	25. 2	-35. 2	26. 6	0	100	Hori.	54. 0	27. 4
1440. 000	49. 5	PK	25. 2	-35. 2	39. 5	0	100	Vert.	74. 0	34. 5
1440. 000	37. 0	AV	25. 2	-35. 2	27. 0	0	100	Vert.	54. 0	27. 0
1600. 000	53. 5	PK	24. 6	-34. 9	43. 2	0	100	Hori.	74. 0	30. 8
1600. 000	36. 8	AV	24. 6	-34. 9	26. 5	0	100	Hori.	54. 0	27. 5
1600. 000	54. 2	PK	24. 6	-34. 9	43. 9	0	100	Vert.	74. 0	30. 1
1600. 000	37. 8	AV	24. 6	-34. 9	27. 5	0	100	Vert.	54. 0	26. 5

Test report No.: 12434230Y-B

APPENDIX 2

Test Instruments

*Hyphens for Last Calibration Date, Calibration Due Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test item

CE: Conducted disturbance RE: Radiated disturbance

Test report No.: 12434230Y-B

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
CE RE	146893	EMI Test Receiver	Rohde & Schwarz	ESU 26	100413	2018/7/27	2019/7/31	12
CE RE	146923	EMI measurement program	TSJ	TEPTO-DV	-	-	-	-
CE RE	146648	Tester	SANWA	PC500	7019227	2018/6/19	2019/6/30	12
CE RE	147540	Measure	Rubber KOMBE	GW-3H99W	-	-	-	-
CE	146874	Yokowa No.2 shield coaxial(0.01MHz- 1000MHz)	UL Japan	CC-25,CC-27,CC- 28,CC-29,SW- 21,SW-22	YS0201	2018/6/14	2019/6/30	12
СЕ	146991	Digital Humidity Indicator	SATO	PC-5000TRH	B-15	2018/4/17	2019/4/30	12
RE	147517	Search Coil	UL Japan	-	-	-	-	-
RE	146984	Digital Humidity Indicator	SATO	PC-5000TRH	B-10	2018/4/17	2019/4/30	12
CE(EUT)	146973	LISN (AMN)	Rohde & Schwarz	ENV216	101055	2017/10/10	2018/10/31	12
RE	146611	Pre Amplifier	ANRITSU	MH648A	M97457	2018/7/12	2019/7/31	12
RE	146625	Attenuator	ANRITSU	MP721A	6200239014	2018/7/26	2019/7/31	12
RE	146572	Attenuator	ANRITSU	MP721B	6201150481	2017/10/25	2018/10/31	12
RE	146832	Biconical Antenna	Schwarzbeck	VHBB 9124	9124-731	2018/6/4	2019/6/30	12
RE	146964	Logperiodic Antenna	Schwarzbeck	VUSLP9111B	185	2018/5/31	2019/5/31	12
RE	146806	Yokowa No.2 open coaxial(0.01- 1000MHz)	UL Japan	CC-21,CC-22,CC- 23,CC-24,CC- 25,CC-27,SW- 21.SW	YO0201	2017/10/20	2018/10/31	12

Test report No.: 12434230Y-B

Test Item	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Calibration Due Date	Cal Int
RE	146944	Open area test site	JSE	3m、10m	2	2017/10/19	2018/10/31	12
RE	147319	Antenna Tilt Jig	Intelligent System Engineering Co., Ltd	Antenna Tilt Jig	T-0004	-	-	-
RE	146601	Pre Amplifier	AGILENT	HP8449B	3008A01672	2017/12/10	2018/12/31	12
RE	146712	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9120 D	9120D-684	2018/6/5	2019/6/30	12
RE	146820	Open area test site	JSE	3m,10m	2	2018/2/2	2019/2/28	12
RE	146811	Microwave Cable	Junkosha INC.		NOV-27-15- 001/1511-23	2018/1/19	2019/1/31	12