Universidad Carlos III de Madrid

1er curso Grado en Telemática Electrónica Digital (1^{er} parcial)

18 de Mayo de 2009

Apellidos	Nombre	Grupo
11peniuos		Grupo

NOTAS IMPORTANTES:

Cada problema o cuestión se entregan por separado. No mezcle las soluciones en una misma hoja.

En cada hoja que entregue debe figurar el nombre y el grupo al que pertenece

Cuestión 1 (0.75 punto)

Sean $A = 11000001_2$ y $B = 001111110_2$. Se pide:

- a) Represente A en Octal, Hexadecimal y código BCD natural
- b) Suponga que A y B representan números sin signo.
 - 1. Determine los valores decimales de A y B
 - 2. Realice en binario la operación A+B.
 - 3. Indique si se produce desbordamiento al realizar la operación anterior. Razone su respuesta
- c) Suponga ahora que A y B son números representados en complemento a 2
 - 1. Determine los valores enteros de A y B
 - 2. Realice en binario la operación A+B
 - 3. Indique si se produce desbordamiento al realizar la operación anterior. Razone su respuesta

Problema 1 (1.75 punto)

Un circuito tiene 4 entradas (A, B, C y D) de un bit y 1 salida S de un bit. S vale '1' cuando el nº codificado en binario natural con ABCD es 0, 1 o un número primo, en caso contrario es '0'.

- a) Obtenga las dos formas canónicas para la función S
- b) Obtenga expresiones simplificadas de S en forma de suma de productos y de productos de sumas
- c) Implemente la función lógica que expresa S utilizando únicamente puertas NOR de dos entradas.
- d) Implemente la función lógica que expresa S utilizando un decodificador 4:16 con salidas activas a nivel alto.
- e) Implemente la función lógica que expresa S utilizando un MUX4 y lógica adicional.
- f) Implemente la función lógica que expresa S utilizando un MUX8 y lógica adicional

No se permitirá calculadora

Tiempo: 1h15'

Universidad Carlos III de Madrid

1er curso Grado en Telemática Electrónica Digital (2º parcial)

18 de Mayo de 2009

Apellidos	Nombre	Grupo

Cuestión 1.- (1 punto, 20 min)

Dado el circuito de la figura:

- a) Rellenar el cronograma adjunto, utilizando las variables intermedias necesarias.
- b) Razonar si se trata de un circuito de Moore o de Mealy

Cuestión 2- (1,25 puntos, 25 min)

Se quiere diseñar un contador de coches a la entrada de un parking para encender el aviso de "Completo" cuando se ocupan todas las plazas. Para ello de instala un sistema de dos fotodetectores horizontales, A y B situados como se ve en la figura.

Cuando un coche entra al parking se activa el detector A antes que el B. Las señales que se generan en AB son => 10...11...01...00 considerando que el fotodetector genera un '0' lógico cuando no tiene obstáculo, y un '1' cuando tiene un coche delante. Cuando un coche sale, en AB se genera la secuencia => 01...11...10...00, como se ve en la figura.

Asumir que el camino de entrada y de salida del aparcamiento es el mismo, y por tanto no pueden entrar y salir coches a la vez.

Se dispone de un contador síncrono de 4 bits, como el de la figura, con dos entradas de control, C1 y C2. El comportamiento de dicho contador según el valor de las entradas de control es el siguiente:

C1	C2	
0	0	No cuenta
0	1	Cuenta descendente
1	0	Cuenta ascendente
1	1	No cuenta

- a) Dibuje el diagrama de estados de Mealy del circuito de control que controla las señales C1 y
 C2 del contador. Dicho circuito debe detectar las secuencias correctas de las entradas A y B
 del sensor. En caso de que se dé una secuencia incorrecta, se volverá al estado inicial.
- b) Diseñar el circuito que hay que poner a la salida del contador para que se encienda el aviso de "Completo" cuando hayan pasado 5 coches o más.

Cuestión 3- (1,25 puntos, 35 min)

A partir del diagrama de estados de la figura, construir un circuito secuencial síncrono utilizando biestables D y puertas lógicas. Se considerará que el estado de reset del circuito es E1. El circuito tiene una entrada E y salidas A, B y C. Realizar la asignación de estados ordenada en binario natural. Asumir que las los estados no utilizados son imposibles, y por tanto, sus transiciones son indiferentes.

Seguir los siguientes pasos:

- a) Asignación de estados
- b) Tabla de transiciones
- c) Simplificación de funciones de estado y de salida.
- d) Esquema de biestables y puertas, incluyendo las señales de reloj y reset.

auestion 1

- a) A=110000012 = 3019 = C416 = 1936 = 0001,1001,0011eco
- b) A=1100000 1= 124.64+1=193 B=001111102=32+16-8+4+2=62
 - + 00111110 1111111 = 255 Nohan desbordamiento, el nembrado ne puede representar con 8 bits
- C) A=11000001 = -128+64.1 = -63 B=00111110= 32+16+8+4+2=62

El resultado de lasuma es el mismo salvoque re enterpreta en C2:

11111111 = -128+64+32+16+8+4+2+1=-128+12+=-1 No hay desbordamiento. No punde haberlo sumando dos números de destrato signo.

Problems 1

$$\Delta \leq \sum_{q} (0,1,2,3,5,7,41,43)$$

$$\leq \sum_{q} (4,6,8,7,10,12,14,16)$$

* También se puede hacer signiendo el otro convento para maxitérminos

c) Parahacer el circuito con puntas Nor, partimos de la expression 50P.

$$S=(\overline{G}+0)(\overline{A}+0)(\overline{A}+B+C)(\overline{A}+\overline{B}+\overline{C})=$$

$$=(\overline{G}+0)+(\overline{A}+0)+(\overline{A}+B+C)+(\overline{A}+\overline{B}+\overline{C})$$

$$0e Horgen$$

Para los inversores:

Para usar purtos NoR de 2 entradas:

e)	ABCD	5	5(0)	5(0,0)
£)	0000		1	1
	0011	10	10	
	0110	0	D	0
	1000	9	0	<i>C</i> 0
	1010	1	ŋ	
	(10)	1	0	- ZO
	(((0	- 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>

Universidad Carlos III de Madrid

Ter curso - Grado en Telemática

Electrónica Digital (2º parcial)

	<u>18 de May</u> o d <u>e</u> 20 <u>09</u>	
Apellidox	Numbre	Grapa

Cuestión 1.- (1 punto, 20 min)

Dado el circuno de la figura:

- a) Rellegar el cronograma adjunto, util izando las variables intermedias necesarias.
- b) Razonar so se trata de un circuito de Monre o de Mealy.

El circuito es de Healy, y a que la salida depende de la entrada, además del estado.

Cuestion 2

a) El aircuito pededo es un detector de las secuencias 10,11,01,00 y 01.11,10,00. Quando se detecta la primera hay que incrementar el contador (Ca(2=10) y a que ha entrado un esche, y rise detecta la segunda hay que decrementar (Ca(2=01)

b) Hay que diseñar un detector >5

Completo = Qo+ Q2Q0+Q2Q,

Cuartion 3

a) Asignación de estados 3 estados = 2 biestables

Estado	0,00
82	00
EZ	01
£&	10
_	

5) Table de transiciones

,			-3	8 8	P
Estado	۵, ۵,	€	Estado	9, 0	ABC
<i>E1</i>	00	0	ΕI	00	1 1 1
	_ _ _	1	<i>€</i> 2.	01	001
£2	01	٥ ٦	€3 €1	00	001
E3	10	۵	El	00	100
		1	E3	(0	1 1 1
Resto	11	×	×	××	×××
		-	1		

				
<)	300	0001	11 10	
,	0	00	0/	
	1	00	<u> </u>	D1: Q,E+0.E
	0	6 (t)	00	O. = Q, Q, E
	4	00	××	
	۵	10	0(1)	A= Q, + E
	<u>^</u>	<u> </u>	$\propto \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	H- W, TE
	0	Do	_0(I	13= Q.E+Q,E
	<u> </u>	00	_X <u>(X</u>	
	اد	1 4 7		C= Q,+ E
	2	1-:-7	_ <u>_X/X</u> _	1

