中国科学技术大学数学科学学院

2022~2023 学年第 1 学期期中考试试卷

Λ	半	D	半
\mathcal{A}	仓	D	包

ì	果程名称	称 数学分析 (B1)		课	课程编号MA		MATH1006			
=	考试时间	2022年11月12日		考	考试形式		闭卷			
ţ	性名	名 学 号 学 院								
	题号	_		三	四	五	六	七	总分	
	得分									
一、填空	· 题 (每 /	、	>, 共 15 ;	 分)						
					k = (). 	o chast			$(\frac{1}{2})$
	思路.	$\left(\frac{x-2}{x}\right)$		$\left(1 + \frac{1}{\frac{x}{-2}}\right)^{\frac{x}{-2}}$	(-2k)). -/ /447 ***********************************	(H x) X	→ O·		
(2) (3) (4) (4) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	设有参	数曲线	$\begin{cases} x = t \mathbf{s} \\ y = \sin \theta \end{cases}$	$\sin t + \cos t$	t, 则 c	$\frac{\mathrm{d}y}{\mathrm{d}x} = ($	$), \frac{\mathrm{d}}{\mathrm{d}}$	$\frac{x^2y}{x^2} = ($). n本佢 ^s	$(rac{1}{t}; -rac{1}{t^3\cos t})$ ひたき
	思路. :	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	$= \frac{1}{t}, \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	$= \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right)$	$=\frac{\frac{\mathrm{d}}{\mathrm{d}t}(1/t)}{\frac{\mathrm{d}x}{\mathrm{d}t}}$	$=\frac{-1/t^2}{t\cot(t)}$	A R	,ht) , y	pho the oli	AB X M
(3)	f(x) =	$\ln(\cos x)$	e)的 Mad	claurin 多	·项式 x^4	项的系数	是(为历	mm o	$ \begin{array}{c} -1 \\ \left(-\frac{1}{12}\right) \\ 0 \\ \end{array} $
it XIX	思路:\		, <	2 737 W	网络名	、达引 X	(RPA)	\nearrow	4	あかめ
Most of the se		$\cos(x)$	$=\ln\left(1\right)$	$-\frac{\dot{x}^2}{2!} + \frac{x^2}{4!}$	$\frac{1}{1} + o(x^4)$)) 据y	足偏多	加纳利	, 图象	流引被O(XK)
	\ 域和	1177	$= \left(-\frac{x^2}{2!}\right)$	$+\frac{x^4}{4!} + c$	$o\left(x^4\right)\bigg)$	$\frac{1}{2} \left(-\frac{x^2}{2!} \right)$	$+\frac{x^4}{4!}+c$	$\left(x^4\right)^2$	$+ o\left(x^4\right)$	极级
+ant-sint			$=$ $-\frac{x^2}{2}$ $-$	$-\frac{x^{2}}{12} + o(x^{2})$	x^4).	岩和	仅为	× 3	<u>~</u> (14)	1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 (4)	若 $\lim_{x\to 0}$	$\frac{\sin x}{x^3}$	$\frac{f(x)}{} = 0$,则 $\lim_{x\to 0} \frac{t}{-}$	$\frac{\sin x + f(x)}{x^3}$	$\frac{\overline{(x)}}{}=($).		一丛	$\frac{1}{10} = 100$
	思路.	由条件中	丁知 $f(x)$	$=-\sin(3)$	$(x) + o(x^3)$	$=-x+\frac{1}{2}$	$\frac{\overline{x^3}}{6} + o(x^3)$,故 tan(a	f(x) + f(x)	- · · · =
	$x + \frac{x^3}{3}$	+o(x) -	$-x + \frac{x^3}{6}$	$+o(x^3) =$	$\frac{x^3}{2} + o(x)$	(x^3) .				
(5)	设函数	$f(x)$ $\stackrel{?}{\not\sim}$	E x ₀ 附i	近有反函数	数,且二四	阶可导, 清	馬足当 x	$\rightarrow x_0$ 时	有 $f(x)$	=
						则 $x = f$	-1(y) 在	$y_0 = f(x_0)$))=1处	的
	二阶导	数等于	(). V	/ J''(X)=	Fo.				$\left(-\frac{3}{4}\right)$
				第	1页,共6	6 页				

思路. 由条件可知, 在 $x = x_0$ 处, y'(x) = 2, y''(x) = 6. 于是

$$\frac{\mathrm{d}^2 x}{\mathrm{d}y^2} = \frac{\mathrm{d}}{\mathrm{d}y} \left(\frac{\mathrm{d}x}{\mathrm{d}y} \right) = \frac{\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}} \right)}{\frac{\mathrm{d}y}{\mathrm{d}x}} = \frac{-\frac{y''(x)}{(y'(x))^2}}{y'(x)} = -\frac{y''(x)}{y'(x)^3}.$$
故所求为 $-\frac{6}{2^3} = -\frac{3}{4}$.

- 选择题 (每小题 3 分, 共 15 分)
- (1) 已知函数 f(x) 在 x_0 可导, 则 $\lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) f(x_0 \Delta x)}{\Delta x} = ($ C. 0 D. $f''(x_0)$

思路.
$$\frac{f(x_0 + \Delta x) - f(x_0 - \Delta x)}{\Delta x} = \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} + \frac{f(x_0 - \Delta x) - f(x_0)}{-\Delta x}.$$

(C) (2) 设函数
$$f(x) = \begin{cases} x^2 \cos \frac{1}{x}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$
 则其导函数 $f'(x)$ 在 $x = 0$ 处 (). A. 没有定义 B. 连续但不可导 C. 不连续 D. 连续且可导

思路. 易见当 $x \neq 0$ 时, $f'(x) = 2x \cos(1/x) + \sin(1/x)$, 从而 $x \to 0$ 时 f'(x) 不 收敛.

$$(A)$$
 值的一个充分条件是 ().

 $F''(x) = f''(\cos(x))\sin^2(x) - f'(\cos(x))\cos(x)$, & F''(0) = -f'(1). & f'(1) < 0. 则 F''(0) > 0. 由 f'' 的连续性可知, 这说明在 x = 0 附近 F''(x) > 0, 即 F(x)为凸函数. 这说明 x=0 为 F(x) 的极小值点. (这一题里其实 f'' 存在导数 就可以了, 由 $F''(0) = \lim_{x \to 0} \frac{F'(x) - F'(0)}{x} = \lim_{x \to 0} \frac{F'(x)}{x}$ 可知, 在 x < 0 时, 局部地有

$$F'(x) < 0$$
,从而 $F(x)$ 严格单调递减; $x > 0$ 时可类似讨论)

(C) (4) 设函数 $f(x)$ 在 $x = 0$ 处连续,且 $\lim_{x \to 0} \frac{f(x^2)}{x^2} = 1$,则 ().

A. $f(0) = 0$ 且 $f'_{-}(0) = 1$ B. $f(0) = 0$ 且 $f'(0) = 1$

C.
$$f(0) = 0$$
 $\exists f'_{+}(0) = 1$ $f(0) = 1$ $\exists f'(0) = 1$

思路. 若令 $u = x^2$, 若 $x \to 0$, 则 $u \to 0^+$ 由 $\lim_{u \to 0^+} \frac{f(u)}{u} = 1$, 可以推出 $f(0) = \lim_{u \to 0^+} f(u) = \lim_{u \to 0^+} u = 0$, 以及 $f'_+(0) = \lim_{u \to 0^+} \frac{f(u) - f(0)}{u} = \lim_{u \to 0^+} \frac{f(u)}{u} = 1$.

(5) 设函数 y = y(x) 由方程 $xe^{f(y)} \stackrel{\checkmark}{=} e^{y} \ln 2022$ 确定,其中 f(x) 具有二阶导数, $f'(x) \neq 1$,则 dy = (). (A)

A. $\frac{dx}{x(1-f'(y))}$ B. $\frac{1}{x(1-f'(y))}$ C. $\frac{dx}{e^{f(y)}(1-f'(y))}$ D. $\frac{1}{e^{f(y)}(1-f'(y))}$

思路. 化简方程, 我们有
$$x = \ln(2022)e^{y-f(y)}$$
, 对 x 求导后, 有 $1 = \ln(2022)e^{y-f(y)}(1-f'(y))y'$, 即 $1 = x(1-f'(y))y'$.

- 三、 简单计算推理题. (每题 6 分, 共 30 分)
 - (1) 用数列极限定义证明 $\lim_{n\to\infty} \frac{2^n}{n!} = 0$.

证明. 注意到

$$\left| \frac{2^n}{n!} - 0 \right| = \frac{2 \cdot 2 \cdot \dots \cdot 2}{1 \cdot 2 \cdot \dots \cdot n} < 2 \cdot \frac{2}{n} = \frac{4}{n},$$

于是, 对任意的正数 ε , 若取 $N = \left[\frac{4}{\varepsilon}\right] + 1$, 则当 n > N 时有

$$\left| \frac{2^n}{n!} - 0 \right| = \frac{2^n}{n!} \le \frac{4}{n} < \frac{4}{N} < \varepsilon.$$

由定义, 这说明 $\lim_{n\to\infty}\frac{2^n}{n!}=0.$

(2) 设 $\lim_{n\to\infty} (3a_n + b_n) = 7$, $\lim_{n\to\infty} (a_n + 2b_n) = 4$. 证明数列 $\{a_n\}$ 和 $\{b_n\}$ 的极限存在, 并求出它们的极限值.

证明. 我们有 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{5} \left(2 \left(3a_n + b_n \right) - \left(a_n + 2b_n \right) \right) = \frac{1}{5} (2 \cdot 7 - 4) = 2,$ $\lim_{n\to\infty} b_n = \lim_{n\to\infty} \left(\left(3a_n + b_n \right) - 3a_n \right) = 7 - 3 \cdot 2 = 1.$

特别地, $\{a_n\}_n$ 与 $\{b_n\}_n$ 有极限.

(3) 求出函数 $f(x) = e^{-x^2}$ 的单调性和凹凸性区间.

解. 我们有 $f'(x) = -2xe^{-x^2}$. 故 x < 0 时, f'(x) > 0, 从而 f(x) 是严格单调递增; x > 0 时, f'(x) < 0, 从而 f(x) 是严格单调递减.

同时我们又有 $f''(x) = (4x^2 - 2)e^{-x^2}$. 这说明在 $(-\infty, -1/\sqrt{2})$ 和 $(1/\sqrt{2}, +\infty)$ 这两个区间上,皆有 f''(x) > 0,从而 f(x) 都是凸函数;在区间 $(-1/\sqrt{2}, 1/\sqrt{2})$ 上,有 f''(x) < 0,从而 f(x) 为凹函数.

(4) 已知数列 $\{a_n\}$ 收敛于 a, 求 $\lim_{n\to\infty} \frac{a_1 + 2a_2 + 3a_3 + \dots + na_n}{n^2}$.

解. 注意到 $f(x) = 1 + \frac{1}{1+x}$, 由于 $x_0 = 1$, 用归纳法不难验证, $\{x_n\}_n$ 是一个正数数列. 假定 $\lim_{n \to \infty} x_n = a$. 对于递推公式取极限, 可得 $a = 1 + \frac{1}{1+a}$, 又由于 a > 0, 这说明极限 $a = \sqrt{2}$. 下面证明 $\{x_n\}_n$ 确实以 $\sqrt{2}$ 为极限, 为此, 注意到

| $x_{n+1} - \sqrt{2}| = \left| \left(1 + \frac{1}{1 + x_n} \right) - \left(1 + \frac{1}{1 + \sqrt{2}} \right) \right| = \frac{|x_n - \sqrt{2}|}{\left(1 + \sqrt{2} \right) \left(1 + x_n \right)} < \frac{|x_n - \sqrt{2}|}{\left(1 + \sqrt{2} \right)}$ (本題 10 分) 对于不成地

四、 (本题 10 分) 对于函数

$$f(x) = \begin{cases} \frac{\ln(1 + ax^3)}{x - \arcsin(x)}, & x < 0, \\ 6, & x = 0, \\ \frac{e^{ax} + x^2 - ax - 1}{x \cdot \sin(x/4)}, & x > 0, \end{cases}$$

问参数 a 为何值时, f(x) 在 x=0 处连续; 参数 a 为何值时, x=0 是 f(x) 的可去 间断点?

解. 我们有 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \frac{\ln(1+ax^3)}{x-\arcsin(x)} = \lim_{x\to 0^-} \frac{1}{x-\left(x+\frac{1}{6}x^3+o(x^3)\right)} = -6a$ 另一方面,我们同时有 $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{e^{ax}+x^2-ax-1}{x\cdot\sin(x/4)} = \lim_{x\to 0^+} \frac{(1+ax+\frac{(ax)^2}{2}+o(x^2))+x^2-ax-1}{x^2/4} = 2a^2+4.$ 令 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^+} f(x)$,我们有 $-6a = 2a^2+4$,即 a = -1 或 -2.

- (i) $\exists a = -1, \ \text{M} \lim_{x \to 0} f(x) = 6 = f(0), \ \text{th} \ f(x) \ \text{th} \ x = 0 \ \text{M.}$
- (ii) 若 a = -2, 则 $\lim_{x\to 0} f(x) = 12 \neq f(0)$, 故 f(x) 在 x = 0 处有可去间断点.

五、 (本题 12 分) 求方程 $k \cdot \arctan(x) - x = 0$ 的不同实根的个数, 其中 k 为参数.

解. 令 $f(x) = k \arctan(x) - x$. 为了讨论其零点个数, 由于 f 为奇函数, 我们不妨先 考虑 $x \ge 0$ 的情形. 容易看到,

$$f(0) = 0,$$
 $\lim_{x \to +\infty} f(x) = -\infty,$ $\bigvee \mathcal{B}$ $f'(x) = \frac{k}{1 + x^2} - 1.$

- (i) 若 $k \le 1$, 则当 x > 0 时 $\frac{k}{1+x^2} \le \frac{1}{1+x^2} < 1$, 于是 f'(x) < 0, 从而 f(x) 在 $[0, +\infty)$ 上严格单调递减, 仅有 x = 0 为零点. 这说明 f(x) 在实轴上仅有一个根.
- (ii) 若 k > 1, 则 f'(x) = 0 在 x > 0 时仅有一个根 $x_0 = \sqrt{k-1}$. 当 $0 < x < x_0$, f'(x) > 0, 故 f(x) 严格单调递增; 当 $x > x_0$, f'(x) < 0, 故 f(x) 严格单调递减. 由于 f(0) = 0 而 $f(+\infty) = -\infty$, 这说明 f(x) 在 x > 0 时恰有一个实根 x_1 , 并且 $x_1 > x_0$. 综上, 这说明 f(x) 在实轴上恰有三个根: $-x_1, 0, x_1$.

六、 (本题 12 分) 设 y = f(x) 二阶可导且 f''(x) > 0, f(0) = 0, f'(0) = 0. 求

$$\lim_{x \to 0} \frac{x^2 f(u)}{f(x)\sin^2 u},$$

其中 u = u(x) 是曲线 y = f(x) 上点 P = (x, f(x)) 处切线在 x 轴上的截距.

解. 曲线 y = f(x) 在点 P(x, f(x)) 处的切线方程为

$$Y - f(x) = f'(x)(X - x).$$

若令 Y = 0,则 $X = x - \frac{f(x)}{f'(x)}$. 这说明截距 $u = x - \frac{f(x)}{f'(x)}$ 经计算,我们有 以为 证 证 $\lim_{x \to 0} u = \lim_{x \to 0} \left(x - \frac{f(x)}{f'(x)} \right) = -\lim_{x \to 0} \frac{f(x)}{f'(x)} = -\lim_{x \to 0} \frac{\frac{f(x)}{f'(x) - f'(0)}}{\frac{f'(x)}{f'(x)}} = -\frac{f'(0)}{f''(0)} = 0.$

我们没有假设 f'' 连续, 因此上面的计算不能用洛必达法则. 另外, 上面的计算表明, $x \to 0$ 时 u(x) 是一个无穷小量; 我们必须验证这一点, 下面才可以用 $\frac{0}{0}$ 型的洛必达 法则. 函数 f(x) 有麦克劳林公式

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + o(x^2) = \frac{f''(0)}{2}x^2 + o(x^2).$$

于是

$$\underbrace{\lim_{x \to 0} \frac{u}{x}}_{x} \stackrel{\frac{0}{0}}{=} 1 - \lim_{x \to 0} \frac{f(x)}{xf'(x)} = \lim_{x \to 0} \frac{\frac{f''(0)}{2}x^2 + o(x^2)}{xf'(x)} = 1 - \lim_{x \to 0} \frac{\frac{f''(0)}{2} + o(1)}{\frac{f'(x) - f'(0)}{x}}$$

$$= 1 - \frac{1}{2} \cdot \frac{f''(0)}{f''(0)} = \frac{1}{2}.$$

证明. 考虑辅助函数 $F(x) = (f(x) - f'(x))e^x$. 由于 F(x) 在 [0,1] 上可导, 满足 F(0) = F(1), 由 Rolle 定理可知, 存在 $\xi \in (0,1)$ 满足 $F'(\xi) = 0$, 即 $(f(\xi) - f''(\xi))e^{\xi} = 0$. 由于 $e^{\xi} \neq 0$, 这说明 $f(\xi) = f''(\xi)$.

er (fun-film = fran-f"(x))