Real-time operating systems project

Implementing EDF scheduler based on FREE RTOS

Name: Hady Emad Mohamed

Email: hady_emad@outlook.com

Analytical calculations:

Task	Task period	Task maximum execution time
Button 1	50ms	18us
Button 2	50ms	18us
Periodic Transmitter	100ms	20us
UART	20ms	63us
Load 1	10ms	5ms
Load 2	100ms	12ms

1. System hyper period = 100 ms

2. CPU Load =
$$\frac{\sum Task \ Execution \ Time}{\sum Task \ Period}$$
$$= \frac{18}{50000} + \frac{18}{50000} + \frac{20}{100000} + \frac{63}{20000} + \frac{5}{10} + \frac{12}{100}$$
$$= 62.4\%$$

- 3. System schedulablity
 - URM analysis:

$$URM = n \left[2^{\frac{1}{n}} - 1 \right] = 0.735$$

 $U = 0.624$

Since U < URM

Then system is guaranteed schedulable using URM method

• Time demand analysis

Task	Task priority in case of RM scheduling	Periodicity	Task maximum execution time (ms)
Load 1	4	10	5
UART	3	20	0.063
Button 1	2	50	0.018
Button 2	2	50	0.018
Load 2	1	100	12
Periodic	1	100	0.02
transmitter			

Time demand analysis equation: $W_i(t) = e_i + \sum_{k=1}^{i-1} [\frac{t}{P_k}] e_k$

For Load 1: W(10) = 5, P = 10

Then W < P, Load 1 task is schedulable

For UART:
$$W(20) = 0.063 + \frac{20}{10} \times 5 = 10.063$$
, P = 20

Then W < P, UART task is schedulable

For Button 1:
$$W(50) = 0.018 + ceil(\frac{50}{20}) \times 0.063 + \frac{50}{10} \times 5 = 25.207$$
, P =50

Then W < P, Button 1 task is schedulable

For Button 2:
$$W(50) = 0.018 + 0.018 + ceil(\frac{50}{20}) \times 0.063 + \frac{50}{10} \times 5 = 25.225$$
, P = 50

Then W < P, Button 2 task is schedulable

For Load 2:
$$W(100) = 12 + \frac{100}{50} \times 0.018 + \frac{100}{50} \times 0.018 + \frac{100}{20} \times 0.063 + \frac{100}{10} \times 5 = 62.387$$
, P = 100

Then W < P, Load 2 task is schedulable

For Periodic transmitter:
$$W(100) = 0.02 + 12 + \frac{100}{50} \times 0.018 + \frac{100}{50} \times 0.018 + \frac{100}{50} \times 0.063 + \frac{100}{10} \times 5 = 62.407$$
, P = 100

Then W < P, Periodic transmitter task is schedulable

Then using time demand analysis all tasks are schedulable

Simso offline simulator:

• Fixed priority rate monotonic scheduling

• Another zoomed view so button 1, button 2 and periodic transmitter tasks can be seen

Keil simulation:

1. CPU time and load, and all tasks time

Watch 1					
Name		Value	Туре		
····· 🌳	system_time	3385416	int		
🌳	cpu_load	62	int		
🌳	Button_1_total_time	0x00000378	int		
🌳	Button_2_total_time	0x00000395	int		
🌳	Periodic_total_time	0x00000274	int		
🌳	UART_total_time	0x00000FC2	int		
🌳	Load_1_total_time	0x0019EC58	int		
🌳	Load_2_total_time	0x00064537	int		
<eı< td=""><td>nter expression></td><td></td><td></td></eı<>	nter expression>				

Timer is prescaled so that each tick corresponds to 1 microsecond, so all the shown times are in microseconds

2. Tasks, tick hook and idle task plotted on logic analyzer

- Signal 1: Tick hook
- Signal 2: Button 1 task
- Signal 3: Button 2 task
- Signal 4: Periodic transmitter task

- Signal 5: UART task
- Signal 6: Load 1 task
- Signal 7: Load 2 task
- Signal 8: Idle task

Results of all analysis is as expected and matches the manual analytical calculations