SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH THUẬN

ĐỀ CHÍNH THỰC (Đề này có 01 trang)

KỲ THI THÀNH LẬP ĐỘI TUYỂN HSG LỚP 12 THPT DỰ THI QUỐC GIA NĂM HỌC 2016 – 2017

Môn: Toán Thời gian: 180 phút (không kể thời gian giao đề)

Bài 1. (5 điểm)

Giải phương trình: $\frac{1}{3x-1} + \frac{1}{x^2 + 2x - 1} + 3x^3 + 4x^2 - 10x + 3 = \frac{1}{3x^3 + 5x^2 - 5x + 1}.$

Bài 2. (5 điểm)

Cho các số nguyên dương x, y, z thỏa $x^2y^2z^2 + xyz(x+y+z) + xy + yz + zx + 1$ là số chính phương. Chứng minh rằng $x^2 + y^2 + z^2 - 2(xy + yz + zx)$ là số chính phương.

Bài 3. (5 điểm)

Cho tứ giác ABCD nội tiếp đường tròn (O). Gọi M,N,P lần lượt là giao điểm của AB và CD, AD và BC, AC và BD. Lấy K là trung điểm của đoạn MN; đoạn PK cắt (O) tại H, MH cắt (O) tại I khác H, NH cắt (O) tại J khác H. Hãy phân tích \overrightarrow{PK} theo hai vecto $\overrightarrow{MI}, \overrightarrow{NJ}$.

Bài 4. (5 điểm)

Trên mặt phẳng có 2016 điểm phân biệt là $A_1, A_2, ..., A_{2016}$. Từ các điểm trên, bạn An muốn vẽ các vectơ khác vectơ không, thỏa 2 điều kiện sau:

- 1. Với mọi $i, j \in \{1; 2; 3; ...; 2016\}$, nếu đã vẽ $\overrightarrow{A_i A_j}$ thì không vẽ $\overrightarrow{A_j A_i}$.
- 2. Với mọi $i, j, k \in \{1; 2; 3; ...; 2016\}$, nếu đã vẽ $\overrightarrow{A_i A_j}$ và $\overrightarrow{A_j A_k}$ thì không vẽ $\overrightarrow{A_i A_k}$.

Hỏi An có thể vẽ nhiều nhất bao nhiều vecto?

Giám thị không giải thích gì thêm.	
Họ và tên thí sinh:	Số báo danh:

ĐÁP ÁN KỲ THI THÀNH LẬP ĐỘI TUYỂN HSG LỚP 12 THPT DỰ THI QUỐC GIA – Năm học 2016 – 2017

LỜI GIẢI TÓM TẮT	
Bài 1.	
Điều kiện: $\begin{cases} x \neq \frac{1}{3} \\ x \neq -1 \pm \sqrt{2} \end{cases}$	0,25x3
Đặt $a = 3x - 1, b = x^2 + 2x - 1, c = \frac{1}{3x^3 + 5x^2 - 5x + 1} = \frac{1}{ab}$. Phương trình trở thành $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = a + b + c$	0,25x4
$a = 1$ $\Leftrightarrow \begin{bmatrix} a = 1 \\ b = 1 \\ c = 1 \end{bmatrix}$	0,5x3
$V \acute{o}i \ a = 1 \text{ ta } \acute{o} \ x = \frac{2}{3}(n)$	0,25
Với $b=1$ ta có $x=-1\pm\sqrt{3}(n)$	0,5
Với $c=1$ ta có $x=0(n)$ hoặc $x=\frac{-5\pm\sqrt{85}}{6}(n)$.	0,75
Vậy phương trình đã cho có 6 nghiệm $x = \frac{2}{3}$, $x = -1 \pm \sqrt{5}$, $x = 0$, $x = \frac{-5 \pm \sqrt{85}}{6}$.	0,25
Bài 2.	
Trong các bộ số (x, y, z) thỏa điều kiện bài toán, xét bộ (x, y, z) có $x + y + z$ nhỏ	
nhất. Không mất tính tổng quát giả sử $z = max\{x, y, z\}$.	0,5x2
Xét phương trình bậc 2 ẩn t là: $t^2 + x^2 + y^2 + z^2 - 2(xy + xz + xt + yz + yt + zt) - 4xyzt - 4 = 0 (1)$	
$\Leftrightarrow t^2 - 2t(x + y + z + 2xyz) + x^2 + y^2 + z^2 - 2(xy + yz + zx) - 4 = 0$	0,5
Ta có: $\Delta' = 4\left[x^2y^2z^2 + xyz(x+y+z) + xy + yz + zx + 1\right]$ là số chính phương nên	
phương trình có 2 nghiệm nguyên t_1, t_2 .	
Ta có (1) có thể viết lại thành 3 phương trình sau:	
$(x+y-z-t)^{2} = 4(xy+1)(zt+1)$	
$(x+z-y-t)^{2} = 4(xz+1)(yt+1)$	
$(x+t-y-z)^2 = 4(xt+1)(yz+1)$	0,75
Nên $xt+1 \ge 0$, $yt+1 \ge 0$, $zt+1 \ge 0$ mà bộ số (1;1;1) không thỏa điều kiện bài toán	

$ nen t \ge \frac{-1}{2} > -1 \text{ hay } t \ge 0.$	0,75
$X \text{\'et } t > 0,$	
coi (1) là phương trình bậc 2 theo z thì ta có	
$x^2y^2t^2 + xyt(x+y+t) + xy + yt + tx + 1$ là số chính phương hay (x, y, t) cũng là	
một bộ số thỏa điều kiện bài toán nên $x + y + t \ge x + y + z \Leftrightarrow t \ge z \Rightarrow t_1 t_2 \ge z^2$.	
Mặt khác,	
$t_1t_2 = x^2 + y^2 + z^2 - 2(xy + yz + zx) - 4 = z^2 - x(2z - x) - y(2z - y) - 2xy - 4 < z^2$ Mâu thuẫn	0,5
Vậy $t = 0$ hay $x^2 + y^2 + z^2 - 2(xy + yz + zx) = 4$ là số chính phương. (Đpcm)	0,5
Bài 3.	
M K	
	1,0
Kẻ đường thẳng qua P vuông góc OP cắt O tại I,J như hình vẽ. Gọi H là	1,0
Kẻ đường thẳng qua P vuông góc OP cắt O tại I,J như hình vẽ. Gọi H là giao điểm của MI và O,H không trùng I . Ta sẽ chứng minh N,H,J thẳng	1,0
	1,0
giao điểm của MI và (O) , H không trùng I . Ta sẽ chứng minh N , H , J thẳng	1,0
giao điểm của MI và (O) , H không trùng I . Ta sẽ chứng minh N , H , J thẳng hàng và P , H , K thẳng hàng.	·
giao điểm của MI và (O) , H không trùng I . Ta sẽ chứng minh N,H,J thẳng hàng và P,H,K thẳng hàng. Gọi X là giao điểm của AI,CJ . Ta chứng minh được M,N,X thẳng hàng. Áp dụng định lý Pascal cho 6 điểm H,I,A,D,C,J . Ta có: $HI \cap DC = M,IA \cap CJ = X$ và giả sử $AD \cap JH = N_1$ thì M,X,N_1 thẳng hàng	1,0
giao điểm của MI và (O) , H không trùng I . Ta sẽ chứng minh N,H,J thẳng hàng và P,H,K thẳng hàng. Gọi X là giao điểm của AI,CJ . Ta chứng minh được M,N,X thẳng hàng. Áp dụng định lý Pascal cho 6 điểm H,I,A,D,C,J . Ta có: $HI \cap DC = M,IA \cap CJ = X$ và giả sử $AD \cap JH = N_1$ thì M,X,N_1 thẳng hàng $\Rightarrow AD \cap MX = N_1$ nên $N_1 \equiv N$ hay N,H,J thẳng hàng.	1,0
giao điểm của MI và (O) , H không trùng I . Ta sẽ chứng minh N,H,J thẳng hàng và P,H,K thẳng hàng. Gọi X là giao điểm của AI,CJ . Ta chứng minh được M,N,X thẳng hàng. Áp dụng định lý Pascal cho 6 điểm H,I,A,D,C,J . Ta có: $HI \cap DC = M,IA \cap CJ = X$ và giả sử $AD \cap JH = N_1$ thì M,X,N_1 thẳng hàng $\Rightarrow AD \cap MX = N_1$ nên $N_1 \equiv N$ hay N,H,J thẳng hàng. Mặt khác, theo định lý Brokard thì $OP \perp MN$ nên $IJ //MN$.	1,0
giao điểm của MI và (O) , H không trùng I . Ta sẽ chứng minh N,H,J thẳng hàng và P,H,K thẳng hàng. Gọi X là giao điểm của AI,CJ . Ta chứng minh được M,N,X thẳng hàng. Áp dụng định lý Pascal cho 6 điểm H,I,A,D,C,J . Ta có: $HI \cap DC = M,IA \cap CJ = X$ và giả sử $AD \cap JH = N_1$ thì M,X,N_1 thẳng hàng $\Rightarrow AD \cap MX = N_1$ nên $N_1 \equiv N$ hay N,H,J thẳng hàng. Mặt khác, theo định lý Brokard thì $OP \perp MN$ nên $IJ //MN$. Lại do P là trung điểm IJ nên P,H,K thẳng hàng.	1,0
giao điểm của MI và (O) , H không trùng I . Ta sẽ chứng minh N,H,J thẳng hàng và P,H,K thẳng hàng. Gọi X là giao điểm của AI,CJ . Ta chứng minh được M,N,X thẳng hàng. Áp dụng định lý Pascal cho 6 điểm H,I,A,D,C,J . Ta có: $HI \cap DC = M,IA \cap CJ = X$ và giả sử $AD \cap JH = N_1$ thì M,X,N_1 thẳng hàng $\Rightarrow AD \cap MX = N_1$ nên $N_1 \equiv N$ hay N,H,J thẳng hàng. Mặt khác, theo định lý Brokard thì $OP \perp MN$ nên $IJ //MN$. Lại do P là trung điểm IJ nên P,H,K thẳng hàng. Suy ra cách xác định I,J như trên là hợp lý.	1,0 1,0 1,0 0,5

Với mỗi điểm A_i ($i \in \{1; 2;; 2016\}$) ta chia các điểm còn lại thành 3 loại:	1,0
Loại 1: Có nối với A_1 và A_1 là điểm đầu.	
Loại 2: Có nối với A_1 và A_1 là điểm cuối.	
Loại 3: Không nối với A_1 .	
Giả sử có m điểm loại 1, n điểm loại 2, p điểm loại 3.	0,5
Chú ý rằng:	0,5x2
Giữa các điểm loại 1 không có 2 điểm nào nối lại.	
Giữa các điểm loại 2 không có 2 điểm nào nối lại.	
Giữa A_1 và các điểm loại 1, loại 2 có tối đa $m + n + mn$ vecto.	
Số vecto liên quan đến các điểm loại 3 tối đa là $p(m+n)$.	0,5
Vậy tổng số vectơ tối đa là	0,5
$m+n+mn+p(m+n)=mn+m(p+1)+n(p+1)\leq \frac{(m+n+p+1)^2}{3}=\frac{2016^2}{3}$.	
Đẳng thức xảy ra khi và chỉ khi $m = n = p + 1 = 672$.	0,5
Đưa ra mô hình.	0,5