

Frederik Mallmann-Trenn 6CCS3AIN

John Forbes Nash. (princeton.edu, Universal Pictures/DreamWorks)

- In general, we will say that two strategies s_1 and s_2 are in Nash equilibrium (NE) if:
 - 1. under the assumption that agent i plays s_1 , agent j can do no better than play s_2 ; and
 - 2. under the assumption that agent j plays s_2 , agent i can do no better than play s_1 .
- Neither agent has any incentive to deviate from a NE.
- Eh?

■ Let's consider the payoff matrix for the grade game:

	j				
		<u> </u>	Y	7	ζ.
	Y		2		1
i		2		4	
	X		4		3
		1		3	

- \blacksquare Here the Nash equilibrium is (Y, Y).
- If i assumes that j is playing Y, then i's best response is to play Y.
- \blacksquare Similarly for j.

• If two strategies are best responses to each other, then they are in Nash equilibrium.

• In a game like this you can find the NE by cycling through the outcomes, asking if either agent can improve its payoff by switching its strategy.

		j				
		Ţ	Y	X		
	Y		2		1	
i		2		4		
	X		4		3	
		1		3		

■ Thus, for example, (X, Y) is not an NE because i can switch its payoff from 1 to 2 by switching from X to Y.

More formally:

A pair of strategies (i^*, j^*) is a Nash equilibrium solution to the game (A, B) if:

$$\forall i, a_{i*,j*} \geqslant a_{i,j*}$$

$$\forall j, b_{i*,j*} \geqslant b_{i*,j}$$

- That is, (i^*, j^*) is a Nash equilibrium if:
 - If j plays j^* , then i^* gives the best outcome for i.
 - If i plays i^* , then j^* gives the best outcome for i.

Unfortunately:

- 1. Not every interaction scenario has a pure strategy NE.
- 2. Some interaction scenarios have more than one NE.

■ This game has two pure strategy NEs, (C, C) and (D, D):

	j					
		D		(C	
	D		5		1	
i		3		2		
	С		0		3	
		2		3		

■ In both cases, a single agent can't unilaterally improve its payoff.

■ This game has no pure strategy NE:

		j					
		D		C			
	D		2		1		
i		1		2			
	С		0		1		
		2		1			

- For every outcome, one of the agents will improve its utility by switching its strategy.
- We can find a form of NE in such games, but we need to go beyond pure strategies.

Nash equilibria?

Consider this scenario (again):

		j				
		C		D		
	A		1		4	
i		2		3		
	В		2		3	
		3		2		

■ Are there any Nash equilibria?