Logik und diskrete Stukturen

Felix (2807144) & Philipp (2583572) Müller

WS 14/15

Blatt 3

Aufgabe 1

a) Ohne vollständige Induktion:

$$T(n) = T(n-1) + n$$

$$T(n-1) = T(n-2) + n - 1$$

$$T(n-2) = T(n-3) + 2n - 2$$

Substituiere:

$$T(n) = T(n-3) + n - 2 + n - 1 + n$$
$$T(n) = T(n-k) + kn - \frac{k(k-1)}{2}$$

Mit
$$n - k = 1 \implies k = n - 1$$
 folgt:

$$T(n) = T(1) + n(n-1) + \frac{(n-1)(n-2)}{2}$$
$$n^2 - n - \left[\frac{n^2 - n - 2}{2}\right] \iff n^2 - 3n - 2 \le n^2$$

Mittel vollständiger Induktion:

Induktionsannahme:

$$T(1) = 1 \implies 1 \le 1^2$$

 $T(2) = 1 + 2 \implies 3 \le 2^2$

Induktionsschritt:

$$T(n+1) = T(n) + n + 1$$

$$T(n+1) = T(n-1) + 2n + 1$$

$$\leq (n+1)^{2}$$

$$\leq n^{2} + 2n + 1$$

$$T(n) = T(n-1) + n$$

$$\leq n^{2} - n$$

$$\leq n^{2}$$

b) Zu zeigen:

$$\left[\sum_{i=1}^n i\right]^2 = \sum_{i=1}^n i^3 \ \forall n \in \mathbb{N}$$

Induktionsanfang mit n = 1: $1^3 = 1^2 \checkmark$

Induktionschritt $(n \to n+1)$:

$$\sum_{i=1}^{n+1} i^3 = 1^3 + 2^3 + 3^3 + \dots + (n+1)^3$$

$$= (1+2+3+\dots+n)^2 + (n+1)^3$$

$$= \left[\sum_{i=1}^n i\right]^2 + (n+1)^3$$

$$= \left[\frac{n(n+1)}{2}\right]^2 + (n+1)^3$$

$$= \frac{n^2(n+1)^2}{4} + (n+1)^3$$

$$= \frac{n^4 + 2n^3 + n^2}{4} + \frac{4n^3 + 12n^2 + 12n + 4}{4}$$

$$= \frac{(n+1)^2}{4}(n^2 + 4n + 4)$$

$$= \frac{(n+1)^2(n+2)^2}{4}$$

$$= \left[\frac{(n+1)(n+2)}{2}\right]^2$$

$$= (1+2+3+\dots+(n+1))^2$$

$$= \left[\sum_{i=1}^{n+1} i\right]^2 \blacksquare$$

Aufgabe 2

a)
$$R_1 = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid |a| = |b|\}$$

(a) reflexiv: $\forall a \in M : aRa \implies |a| = |a| \checkmark$

(b) symmetrisch: $\forall a,b \in M: (aRb \implies bRa) \implies |a| = |b| \iff |b| = |a| \checkmark$

(c) antisymmetrisch: $\forall a, b \in M : ((aRb \land bRa) \implies a = b).$ $(|a| = |b|) \land (|b| = |a|) \implies a = b \quad (-2 \neq 2)$

(d) transitiv: $\forall a, b, c \in M : ((aRb \land bRc) \implies aRc)$: $(|a| = |b|) \land (|b| = |c|) \implies |a| = |c| \checkmark$

(e) Äquivalenzrelation: R ist reflexiv, symmetrisch und transitiv \checkmark

- b) $R_2 = \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid |a b| \le 1\}$
 - (a) reflexiv: $\forall a \in M : aRa \implies |a-a| = 0 \le 1 | \checkmark$
 - (b) symmetrisch: $\forall a, b \in M : (aRb \implies bRa) : (|a-b| \le 1 \implies |b-a| \le 1)$
 - (c) antisymmetrisch: $\forall a, b \in M : ((aRb \land bRa) \implies a = b).$ $(|a-b| \le 1 \land |b-a| \le 1) \implies a = b$ i.e. a = 0.2, b = 0.1
 - (d) transitiv: $\forall a, b, c \in M : ((aRb \land bRc) \implies aRc)$: $(|a-b| \le 1 \land |b-c| \le 1) \implies |a-c| \le 1$ i.e. a = -0.4, b = 0.5, c = 1.
 - (e) Äquivalenzrelation: R ist reflexiv, symmetrisch und transitiv: Keine Äquivalenzrelation.
- c) $R_3^p = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid \exists z \in \mathbb{Z} : a-b=zp\}$ für ein $p \in \mathbb{N}$
 - (a) reflexiv: $\forall a \in M : aRa \implies a a = 0 = zp \text{ falls } 0 \in \mathbb{N} \text{ (also } \mathbb{N}_0)$
 - (b) symmetrisch: $\forall a, b \in M : (aRb \implies bRa) : a b = zp \implies b a = zp$ falls p variabel sein darf. R_3^p ist symmetrisch mit $a b = zp_0$ und $b a = zp_1$ wobei $p_0 \neq p_1$ sein kann. Es gilt $p_0 = -p_1$. Falls p fix gewählt wird, ist R_3^p nicht symmetrisch.
 - (c) antisymmetrisch: $\forall a, b \in M : ((aRb \land bRa) \implies a = b)$. $[(a-b) = zp_0 \land (b-a) = zp_1] \implies (a = b)$ wenn p_0 p_1 wie oben definiert sind. Für fixes p ist R_3^p nicht antisymmetrisch.
 - (d) transitiv: $\forall a, b, c \in M : ((aRb \land bRc) \implies aRc)$: Auch die Transitivität gilt nur, wenn variable p zugelassen werden. Beispielsweise bei der Wahl von a = -1, b = 2, c = 4 kann die Transitivität nur gegeben sein, wenn wir für p positiv und negativ zulassen. Falls p fix ist, ist R_3^p nicht transitiv.
 - (e) Äquivalenz relation: R ist reflexiv, symmetrisch und transitiv: I.A. keine Äquivalenz relation.

Aufgabe 3

- 1. Geben Sie für die folgenden Abbildungen an, ob sie injektiv, surjektiv oder bijektiv sind.
 - (a) $f_{\lambda} : \mathbb{R} \to \mathbb{R}$ mit $f_{\lambda}(x) = \lambda x$ für festes $\lambda \in \mathbb{R}$: Bijektiv.
 - (b) $g: \mathcal{P}(\mathbb{N}) \to \mathbb{N}_0 \cup \{\infty\}$ mit g(M) = |M| für alle endlichen Mengen $M \subset \mathbb{N}$ und $g(M) = \infty$ für alle unendlichen Mengen M:
 Surjektiv.

- (c) $h: \mathbb{R}^2 \to \mathbb{R}$ mit h(x,y) = xy für alle $(x,y) \in \mathbb{R}^2$: Surjektiv.
- 2. Geben Sie eine bijektive Abbildung zwischen $\mathbb N$ und $\mathbb Z$ an.

$$\mathbb{Z} \to \mathbb{N}: \ z \to \begin{cases} 2z+1 & z \ge 0\\ -2z & z < 0 \end{cases}$$

Aufgabe 4

a) Aus http://www.roeglin.org/teaching/WS2012/LuDS/LuDS.pdf Definition 2.12: Eine Relation $f \subseteq A \times B$ heißt Abbildung oder Funktion, wenn jedes $a \in A$ zu genau einem Element $b \in B$ in Relation steht.

Daher sind die Bildmengen von g und f respektive:

$$g(M) = \{ n \in N \mid \exists m \in M : g(m) = n \}$$
$$f(N) = \{ p \in P \mid \exists n \in N : f(n) = p \}$$

Bei der Verknüpfung $(f \circ g)(x) = f(g(x))$ wird zuerst $M \to N$ und dann $N \to P$ abgebildet.

Da f und g Abbildungen sind, existieren $n \in N$ und $p \in P$ auf welche $g \circ f$ durch f(g(x)) und $x \in M$ abbildet. Damit ist $(f \circ g)(x)$ auch eine Abbildung.

b) Die Umkehrabbildung $f^{-1}: N \to M$ existiert, wenn f bijektiv ist. Dann ist f nämlich injektiv und surjektiv, weswegen sowhl $y \in N$ als auch $x \in M$ existieren mit $(f^{-1} \circ f)(x) = x$ und $(f \circ f^{-1})(y)$.