

- Logical Addresses
 - ✓ The hosts and routers are recognized at the network level by their *logical* addresses
 - > A **logical address** is an internet address
 - Called a logical address because it is usually implemented in software
 - > The logical addresses in the TCP/IP are called **IP address** and are 32 bits long

- Physical Address
 - ✓ However, hosts/routers are recognized at the physical layer by their physical address
 - > A **physical address** is an local address
 - Called a physical address because it is usually implemented in hardware
 - Examples
 - 48-bit MAC addresses in Ethernet

- > Translation
- > We need both the physical address and the logical address for packet delivery.
- > Thus, we need to be able to map a logical address to its corresponding physical address and vice versa
- Solutions
 - Static mapping
 - Dynamic mapping

Static Mapping

- Create a table that associates a logical address with a physical address and store in each machine
- > However, physical addresses may change A machine could change its NIC resulting in a new physical address
- In some LANs, such as Local Talk, the physical address changes every time the computer is turned on.
- A mobile station can move from one physical network to another, resulting in a change in its physical address

- Dynamic Mapping
- Use a protocol to find another address
- > ARP: Address Resolution Protocol
 - Map a logical address to a physical address
- RARP: Reverse Address Resolution Protocol
 - Map a physical address to a logical address

ARP and RARP

Position of ARP and RARP in TCP/IP Protocol Suite

ARP Operation

- To find the physical address of another host or router on its network
 - Send an ARP request message
- ARP request message
 - ✓ The physical address of the sender
 - ✓ The IP address of the sender
 - ✓ The physical address of the receiver is *0s*
 - The IP address of the receiver

ARP Operation CONT..

- > Then, ARP request message is broadcast by the physical layer
 - For example: in Ethernet, MAC header's destination address is all *1s* (broadcast address)
 - Received by every station on the physical network
- > The intended recipient send back an ARP reply message
 - ARP reply message packet is unicast

ARP Packet

Hardware Type		Protocol Type
Hardware length	Protocol length	Operation Request 1, Reply 2
Sender hardware address (For example, 6 bytes for Ethernet)		
Sender protocol address (For example, 4 bytes for IP)		
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled in a request)		
Target protocol address (For example, 4 bytes for IP)		

- HTYPE (Hardware type)
 - 16-bit field defining the underlying type of the network
 - Ethernet is given the type 1
 - □ ARP can be used on any physical network
- PTYPE (Protocol type)
 - 16-bit field defining the protocol
 - Pv4 is 0800₁₆
 - □ ARP can be used with any higher-level protocol

- □ HLEN (Hardware length)
 - 8-bit field defining the length of the physical address in bytes
 - □ Ethernet has the value of 6
- □ PLEN (Protocol length)
 - 8-bit field defining the length of the logical address in bytes
 - □ IPv4 has the value of 4
- □ OPER (Operation)
 - 16-bit field defining the type of packet
 - $\blacksquare (1) = ARP \text{ request, } (2) = ARP \text{ reply}$

- □ HLEN (Hardware length)
 - 8-bit field defining the length of the physical address in bytes
 - □ Ethernet has the value of 6
- □ PLEN (Protocol length)
 - 8-bit field defining the length of the logical address in bytes
 - □ IPv4 has the value of 4
- OPER (Operation)
 - 16-bit field defining the type of packet
 - \blacksquare (1) = ARP request, (2) = ARP reply

- □ SHA (Sender hardware address)
 - A variable-length field defining the physical address of the sender
- □ SPA (Sender protocol address)
 - A variable-length field defining the logical address of the sender

- □ THA (Target hardware address)
 - A variable-length field defining the physical address of the target
 - For an ARP request operation packet
 - \square This field is all 0s
- □ TPA (Target protocol address)
 - A variable-length field defining the logical address of the target

Encapsulation of ARP Packet

- □ An ARP packet is encapsulated directly into a data link frame
- □ Type field indicates that the data carried by the frame is an ARP packet

Operations

- The sender knows the target's IP address
- □ IP asks ARP to create an ARP request message
 - The sender physical address & The sender IP address
 - The target physical address field is filled with 0s
 - The target IP address
- □ The message is passed to the data link layer to encapsulate in a data link frame
 - Physical destination address is broadcast address

Operations

- Every host or routers receives the frame and since the destination address is broadcast, pass it to the ARP
 - All machines' ARP except the one targeted drop the packet
- □ The target reply with an ARP reply message that contains its physical address and is unicast
- □ The sender receives the reply message and knows the target's physical address

Four Cases to Use ARP

- □ *Case 1:* The sender is a host and wants to send a packet to another host on the same network
 - Use ARP to find another host's physical address
- □ *Case 2:* The sender is a host and wants to send a packet to another host on another network
 - Sender looks at its routing table
 - Find the IP address of the next hop (router) for this destination
 - Use ARP to find the router's physical address

Four Cases Using ARP: Case 1

Case 1. A host has a packet to send to another host on the same network.

Four Cases Using ARP: Case 2

Case 2. A host wants to send a packet to another host on another network.

It must first be delivered to a router.

Four Cases to Use ARP

- □ *Case 3:* the sender is a router and received a datagram destined for a host on another network
 - Router check its routing table & find the IP address of the next router
 - Use ARP to find the next router's physical address
- □ *Case 4:* the sender is a router that has received a datagram destined for a host in the same network
 - Use ARP to find this host's physical address

Four Cases Using ARP: Case 3

Case 3. A router receives a packet to be sent to a host on another network.

It must first be delivered to the appropriate router.

Four Cases Using ARP: Case 4

Case 4. A router receives a packet to be sent to a host on the same network.

An ARP request is broadcast;

an ARP reply is unicast

- □ A host with IP address 130.23.43.20 and physical address 0xB23455102210
- □ Another host with IP address 130.23.43.25 and physical address 0xA46EF45983AB.
- □ The two hosts are on the same Ethernet network
- Show the ARP request and reply packets encapsulated in Ethernet frames

Proxy ARP

- Used to create a subnetting effect
- A router running a proxy ARP
 - Its ARP acts on behalf of a set of hosts
 - If it receives an ARP request message looking for the address of one of these host
 - Router sends an ARP reply announcing its own hardware (physical) address
 - After the router receives the actual IP packet, It sends the packet to the appropriate host or router 58

- □ Administrator need to create a subnet without changing the whole system
- □ Add a router running a proxy ARP

Proxy ARP

ARP-Package

- □ Five components in an ARP package
 - A cache table
 - Queues
 - An output module
 - An input module
 - A cache-control module

ARP-Package

ARP COMPONENTS

ARP-Package

- CACHE TABLE
- □ Inefficient to use ARP to each datagram destined for the same host or router
 - Introduce the cache table
- Cache table: an array of entries that contains the following's entries

- □ Content of a Cache Table Entry State:
- FREE: the lime-to-live for this entry has expired
- PENDING: a request for this entry has been sent, but the reply has not yet been received
- RESOLVED: the entry is complete and valid
- □ Hardware type
- Protocol type
- □ Hardware length
- □ Protocol length
 - Above fields are all the same as in the ARP packet

- Content of a Cache Table Entry State:
- □ Interface number
- Queue number: ARP uses numbered queues to enqueuer the packet waiting for address resolution
- □ Attempts: the number of times an ARP request is sent out for this entry
- □ Time-out: the lifetime of an entry in seconds
- Hardware address: the destination hardware address
- Protocol address: the destination IP address

- □ Content of a Cache Table Entry State:
- □ Interface number
- Queue number: ARP uses numbered queues to enqueuer the packet waiting for address resolution
- □ Attempts: the number of times an ARP request is sent out for this entry
- □ Time-out: the lifetime of an entry in seconds
- □ Hardware address: the destination hardware address
- □ Protocol address: the destination IP address

QUEUS

- □ ARP package maintains a set of queues to hold the IP packets while ARP tries to resolve the hardware address
- □ Packets for the same destination are usually enqueued in the same queue
- □ The output module sends unsolved packets into the queue
- □ The input module removes a packet from the queue and sends it, with the resolved physical address, to data link layer for transmission

Output Module

- □ Wait until an IP packet from the IP software
- □ Check the cache table if receiving a IP packet
 - If found and state = RESOLVED
 - Passed to the data link layer for transmission
 - If found and state = PENDING
 - Send packet to this queue and wait
 - If not found
 - Create an entry with state = PENDING
 - Create a queue and enqueue this packet
 - Send an ARP request

Input Module

- □ Wait until an ARP packet (request or reply) arrives and check the cache table
 - If found state = PENDING
 - □ Copy the target hardware address in the packet
 - □ Change the state to RESOLVED
 - □ Set the value of TIME-OUT for this entry
 - □ Dequeue the packets from the corresponding queue and set them to the data link layer

Input Module (Conti...)

- If found and state = RESOLVED
 - □ Copy the target hardware address in the packet
 - □ Set the value of TIME-OUT for this entry
 - □ This is because the target hardware address could have been changed
- If not found
 - Create a new entry and adds it to the table
- □ If the packet is a request
 - Send an ARP reply

Cache Control Module

- □ Maintain the cache table by periodically check the cache table, entry by entry
- If state is PENDING
 - Increment the value of attempts by 1
 - If (attempts greater than maximum)
 - □ Change the state to FREE and Destroy the corresponding queue
 - Else
 - □ Send an ARP request

Cache Control Module

- ☐ If state is RESOLVED
 - Decrement the value of time-out by the value of elapsed time
 - If (time-out <= 0)
 - □ Change the state to FREE
 - □ Destroy the corresponding queue
- ☐ If state is FREE
 - Continue to the next entry

ARP & RARP

Original Cache Table

State	Queue	Attem	pt Time-oi	ut Protocol Addr.	Hardware Addr.
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
P	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
P	12	1		220.55.5.7	
F					
R	9		60	19.1.7.82	4573E3242ACA
P	18	3		188.11.8.71	

Example 2

- □ The ARP output module receives an IP datagram from the IP layer with the destination address 114.5.7.89
- □ It checks the cache table and finds that an entry exists for this destination with the RESOLVED state
- ☐ It extracts the hardware address, which is 457342ACAE32, and sends the packet and the address to the data link layer

Example 3

- □ Twenty seconds later, the ARP output module receives an IP datagram from the IP layer with the destination address 116.1.7.22.
- □ It checks the cache table and does not find this destination in the table
- The module adds an entry to the table with the state PENDING and the Attempt value 1
- □ It also creates a new queue for this destination and enqueues the packet
- □ It then sends an ARP request to the data link layer for this destination

ARP & RARP

Cache table for Example 3

State	State Queue Attempt Time-out Protocol Addr. Hardware Addr.				
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
P	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
P	12	1		220.55.5.7	
P	23	1		116.1.7.22	
R	9		60	19.1.7.82	4573E3242ACA
P	18	3		188.11.8.71	

Example 4

- □ Fifteen seconds later, the ARP input module receives an ARP packet with target protocol (IP) address 188.11.8.71
- □ The module checks the table and finds this address
- □ It changes the state of the entry to RESOLVED and sets the time-out value to 900
- □ The module then adds the target hardware address (E34573242ACA) to the entry
- □ Now it accesses queue 18 and sends all the packets in this queue, one by one, to the data link layer

ARP & RARP

Cache table for Example 4

State Queue Attempt Time-out Protocol Addr. Hardware Addr.					
R	5		900	180.3.6.1	ACAE32457342
P	2	2		129.34.4.8	
P	14	5		201.11.56.7	
R	8		450	114.5.7.89	457342ACAE32
P	12	1		220.55.5.7	
P	23	1		116.1.7.22	
R	9		60	19.1.7.82	4573E3242ACA
P	18	3		188.11.8.71	

Example 5

- □ Twenty-five seconds later, the cache-control module waits up
- □ The time-out values for the first three resolved entries are decremented by 60
- □ The time-out value for the last resolved entry is decremented by 25
- The state of the next-to-the last entry is changed to FREE because the time-out is zero

Example 5 (Conti...)

- For each of the three pending entries, the value of the attempts field is incremented by one
- □ Then, the attempts value for one entry (the one with IP protocol address 201.11.56.7) is more than the maximum
 - the state is changed to FREE, the queue is deleted
 - An ICMP message is sent to the original destination

ARP & RARP

Cache table for Example 5

State	e Queue	Attem	pt Time-oi	ut Protocol Addr.	Hardware Addr.
R	5		840	180.3.6.1	ACAE32457342
P	2	3		129.34.4.8	
F					
R	8		390	114.5.7.89	457342ACAE32
P	12	2		220.55.5.7	
P	23	2		116.1.7.22	
F					
R	18		875	188.11.8.71	E34573242ACA

- □ A diskless machine is usually booted from ROM
- □ It cannot include the IP address
 - IP address are assigned by the network administrator
- □ Obtain its logical address by the physical address using the RARP protocol

RARP

RARP Operation

Note

The RARP request packets are broadcast;
the RARP reply packets are unicast.

Packet Format

- □ The format of the RARP packet is the same as the ARP packet
- Except that the operation field is
 - Three for RARP request message
 - Four for RARP reply message

RARP Packet

Hardwa	are type	Protocol type			
Hardware length	Protocol length	Operation Request 3, Reply 4			
Sender hardware address (For example, 6 bytes for Ethernet)					
Sender protocol address (For example, 4 bytes for IP) (It is not filled for request)					
Target hardware address (For example, 6 bytes for Ethernet) (It is not filled for request)					
Target protocol address (For example, 4 bytes for IP) (It is not filled for request)					

RARP

Alternative Solutions to RARP

- When a diskless computer is booted, it needs more information in addition to its IP address
 - The subnet mask
 - The IP address of a router
 - The IP address of a name server
- RARP cannot provide this extra information
- □ Two protocols, BOOTP and DHCP, can be used instead of RARP