EMB-Lab, Fak. N

Convolutional Neural Networks

DLM – Deep Learning Methoden

Piotr Bialecki

Carla Gil, Benjamin Kraus, Prof. Dr. Marcus Vetter

Mannheim, 27.11.2017

- (Deep) Neural Networks
 - Layer connectivity
 - Nonlinearities
 - Vanishing / Exploding Gradient
- Hyperparamters
 - Learning rate

• ...

- Loop:
 - Sample a batch of data
 - Forward prop it through the network, get loss
 - Backprop to calculate the gradients
 - **Update** the parameters (weights) using the gradient

Can we use Fully-connected nets for image classification?

Is a simple reshaping of the image working?

Images are (often) large

- MNIST: 28 x 28 x 1 (width x height x channels)
 - = 784 input dimensions

- 200 x 200 x 3
 - = 120,000 input dimensions

- 512 x 512 x 3
 - = 786,432 input dimensions

Feeding the reshaped image into a fully connected net yields a huge amount of parameters (weights)

- Weight matrix: $W = w_{ij} \in \mathbb{R}^{m \times n}$
- With *m* pixels (input) and *n* neurons in the 1st hidden layer

[Yoshi Komiri]

- Huge amount of weights leads to large network capacity
- Each image can be understood as a single point in a high-dimensional feature space
- Remember the curse of dimensionality
 - The volume of the feature space increases so fast that the available data become sparse
 - Amount of data to "fill" the space grows exponentially

[Bishop, Patern Recognition and Machine Learning]

- Human intuition is mostly wrong in high dimensions!
- E.g.: Where do you think is the most probability mass of a high dimensional multivariate normal distribution?

- Human intuition is mostly wrong in high dimensions!
- E.g.: Where do you think is the most probability mass of a high dimensional multivariate normal distribution?
- -> It's concentrated in a thin shell some distance away from the origin!

- Human intuition is mostly wrong in high dimensions!
- E.g.: Where do you think is the most probability mass of a high dimensional multivariate normal distribution?
- -> It's concentrated in a thin shell some distance away from the origin!
- Volume of a sphere in d dimensions is proportional to r^d.
 - For delta radius: vol_shell = delta_r * d * r^(d-1)
- Probability density: prob_dens = exp(-r^(2) / 2)
- Therefore: Probability mass: vol_shell * prob_dens
- --> Leads to Chi distribution

Images have (often) a local structure

- Not every pixel contains new "information"
 - Neighboring pixels are correlated
 - Using every pixel is wasteful
- Image data can be seen as a composition of semantic elements
 - e.g. we only need to learn the leopard pattern once

The nature as a role model

- Hubel & Wiesel
 - 1959: Receptive Fields of Single Neurones in the Cat's Striate Cortex
 - 1962: Receptive Fields, Binocular Interaction and Functional Architecture in the Cat's Visual Cortex
 - 1968: ...

The nature as a role model

- Hubel & Wiesel's main findings are that the visual cortex is organized hierarchically
- Low level features (edges, ...)
- To high level "concepts"

[Yann LeCun 1980, LeNet-5]

ConvNets imitate the "mammalian" vision

- Early layers learn "simple" features
- Later layers stack these features together and produce more complex features

[Lee et al.,
Convolutional deep
belief networks for
scalable
unsupervised
learning of
hierarchical
representations]

ConvNets imitate the "mammalian" vision

And perform very well

ILSVRC top-5 error on ImageNet

[NVIDIA]

ConvNets consist of

- Convolution Layers
- Subsampling/Pooling Layers
- Detector Layer: Rectified Linear Units (Nonlinearities)
- Fully-Connected Layers

- Are the core building blocks of ConvNets
- Consist of a set of learnable fiters
- Each filter is small spatially (width and height) but extends through the full depth of the input volume

- Filters slide through the input activation and compute a dot product of its filter weights and the input at any position
- Same as convolution of input and filter

Convolution layers

A second filter creates another feature map!

Convolution layers

6 5x5 filters create 6 separate feature maps.

These feature maps are stacked into a 24x24x6 feature volume / image

A ConvNet is a sequence of ConvLayers connected with activation functions

Convolutions affect spatial dimensions

- General formula
- $s(t) = \int x(a)w(t-a)da$

[Goodfellow et al., Deep Learning]

Often denoted as
$$s(t) = (x * w)(t)$$

Discrete formula

$$s(t) = (x * w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t - a)$$

"Valid" 2-D convolution without kernel flipping

[Goodfellow et al., Deep Learning]

321

"Valid" 2-D convolution without kernel flipping

7

7x7 input (spatially) assume 3x3 filter

7

"Valid" 2-D convolution without kernel flipping

7

7x7 input (spatially) assume 3x3 filter

7

"Valid" 2-D convolution without kernel flipping

7

7x7 input (spatially) assume 3x3 filter

1

"Valid" 2-D convolution without kernel flipping

7

7x7 input (spatially) assume 3x3 filter

7

"Valid" 2-D convolution without kernel flipping

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

"Valid" 2-D convolution without kernel flipping, stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

"Valid" 2-D convolution without kernel flipping, stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2

"Valid" 2-D convolution without kernel flipping, stride 2

7x7 input (spatially) assume 3x3 filter applied with stride 2 => 3x3 output!

"Valid" 2-D convolution without kernel flipping

Ν

Ν

Output size:

e.g.
$$N = 7$$
, $F = 3$:
stride $1 \Rightarrow (7 - 3)/1 + 1 = 5$
stride $2 \Rightarrow (7 - 3)/2 + 1 = 3$

stride
$$3 \Rightarrow (7 - 3)/3 + 1 = 2.33 : \$$

Zero pading of border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7 3x3 filter, applied with stride 1 pad with 1 pixel border => what is the output?

7x7 output!

Zero pading of border

0	0	0	0	0	0		
0							
0							
0							
0							

e.g. input 7x7

3x3 filter, applied with stride 1

pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

Zero pading of border might preserve the size

Otherwise the volume shrinks spatialy!

Zero pading of border might preserve the size

Example:

Input image: 28x28x3

10 5x5 filters with stride 1, pad 2

Output volume size:

???

Zero pading of border might preserve the size

Example:

Input image: 28x28x3

10 5x5 filters with stride 1, pad 2

$$(28 + 2*2 - 5) / 1 + 1$$

$$(28 + 4 - 5) / 1 + 1$$

$$27 + 1 = 28 \text{ spatially}$$

Output volume

28x28x10

Output size: (N - F) / stride + 1

Number of parameters

Example:

Input image: 28x28x1

10 5x5 filters with stride 1, pad 2

Number of parameters in layer?

???

Number of parameters

Example:

Input image: 28x28x1

10 5x5 filters with stride 1, pad 2

Number of parameters in layer?

Each filter has 5*5*1+1 = 26 params (+1 for bias)

--> total 26 * 10 = **260**

Number of parameters

Example:

Input image: 28x28x3

10 5x5 filters with stride 1, pad 2

Number of parameters in layer?

Number of parameters

Example:

Input image: 28x28x3

10 5x5 filters with stride 1, pad 2

Number of parameters in layer?

Each filter has 5*5*3+1 = 76 params (+1 for bias)

--> total 76 * 10 = **760**

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_1 imes H_1 imes D_1$
- · Requires four hyperparameters:
 - Number of filters K,
 - their spatial extent F,
 - · the stride S.
 - the amount of zero padding P.
- Produces a volume of size $W_2 imes H_2 imes D_2$ where:
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $\circ \; H_2 = (H_1 F + 2P)/S + 1$ (i.e. width and height are computed equally by symmetry)
 - $D_2 = K$
- With parameter sharing, it introduces $F \cdot F \cdot D_1$ weights per filter, for a total of $(F \cdot F \cdot D_1) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_2 \times H_2$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Keras Conv2D layer

- filters: Integer, the dimensionality of the output space (i.e. the number output of filters in the convolution).
- **kernel_size**: An integer or tuple/list of 2 integers, specifying the width and height of the 2D convolution window. Can be a single integer to specify the same value for all spatial dimensions.
- strides: An integer or tuple/list of 2 integers, specifying the strides of the convolution along the width and height. Can be a single integer to specify the same value for all spatial dimensions. Specifying any stride value != 1 is incompatible with specifying any dilation_rate value != 1.
- padding: one of "valid" or "same" (case-insensitive).
- data_format: A string, one of channels_last (default) or channels_first. The ordering of the dimensions in the inputs.

 channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width). It defaults to the image_data_format value found in your Keras config file at ~/.keras/keras.json. If you never set it, then it will be "channels_last".
- dilation_rate: an integer or tuple/list of 2 integers, specifying the dilation rate to use for dilated convolution. Can be a single integer to specify the same value for all spatial dimensions. Currently, specifying any dilation_rate value!= 1 is incompatible with specifying any stride value!= 1.
- activation: Activation function to use (see activations). If you don't specify anything, no activation is applied (ie. "linear" activation: a(x) = x).
- use_bias: Boolean, whether the layer uses a bias vector.
- kernel_initializer: Initializer for the kernel weights matrix (see initializers).
- bias_initializer: Initializer for the bias vector (see initializers).
- kernel_regularizer: Regularizer function applied to the kernel weights matrix (see regularizer).
- bias_regularizer: Regularizer function applied to the bias vector (see regularizer).
- activity_regularizer: Regularizer function applied to the output of the layer (its "activation"). (see regularizer).
- kernel_constraint: Constraint function applied to the kernel matrix (see constraints).
- bias_constraint: Constraint function applied to the bias vector (see constraints).

Parameter sharing

- In fully-connected net, each weight is used once to compute output
- In ConvNet each weight of the filter is used at every position of the input
- The weights are tied!

[Goodfellow et al., Deep Learning]

Parameter sharing

- Instead of learning a weight set for every location, we learn only one set
- Idea: A certain filter (e.g. edge detector) might be useful for every location in the input volume

[Goodfellow et al., Deep Learning]

Each filter learn a different feature

There will be 5 different neurons / filters looking at the same location in the input volume

[Karpathy, CS231n]

Each filter learn a different feature

- We get 5 **depth slices** of size 28x28
- During backprop, every neuron in the volume will compute gradient for its weights
- Gradients will be added up across each depth slice and only update a single set of weights per slice

Each filter learn a different feature

1st layer features of learned ConvNet

[Zeiler and Fergus]

Gabor filters

- Linear filters used for edge detection
- Gaussian kernel function modulated by a sinusoidal plane wave
- Simple cells in visual cortex of mammalian brains can be modeled by Gabor functions

[Goodfellow et al., Deep Learning]

[Goodfellow et al., Deep Learning]

- The receptive field of the units in the deeper layers of a ConvNet gets larger
- This effect can be increased using strided convolutions or pooling
- Thus units in deeper layers can be connected to all or most of the input image

[Goodfellow et al., Deep Learning]

Pooling layers

- Makes the feature maps smaller and more manageable
- Operates over each feature map independently

[Karpathy, CS231n]

Pooling layers

 Replaces the ConvLayer -> ReLU output with a summary statistic of the nearby outputs

Pooling layers

Max Pooling

Single depth slice

X	•	1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4
					у

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling layers

- Max Pooling
- Eliminates 75% of the feature map

Single depth slice

X	•	1	1	2	4
		5	6	7	8
		3	2	1	0
		1	2	3	4
					у

max pool with 2x2 filters	S
and stride 2	

6	8
3	4

Pooling layers

- Max Pooling
 - Accepts a volume of size $W_1 imes H_1 imes D_1$
 - Requires three hyperparameters:
 - their spatial extent F,
 - the stride S,
 - Produces a volume of size $W_2 imes H_2 imes D_2$ where:

$$W_2 = (W_1 - F)/S + 1$$

$$H_2 = (H_1 - F)/S + 1$$

$$O_2 = D_1$$

- · Introduces zero parameters since it computes a fixed function of the input
- · Note that it is not common to use zero-padding for Pooling layers

Pooling layers

• Pooling helps to make features become approx. invariant to small translations of the input

[Goodfellow et al., Deep Learning]

Pooling layers

 Pooling helps to make features become approx. invariant to small translations of the input

Why is this interesting?

- Can be useful when exact location of a feature is not important
- E.g. in Face detection
- Not necessary to know pixel-perfect location of eyes, nose, mouth, ...
- Better: One eye on left side of face, another on right side

Pooling layers

- Max Pooling
- Average Pooling
- L2-norm Pooling
- --> However, pooling can also be achieved using strided convolutions!
 - You could and should tese both approaches!

Convolution with Stride

[Goodfellow et al., Deep Learning]

Common architectures

- Stacking of some Conv-ReLU layers
- Followed by a Pooling layer
- Repeat until Feature map has small size
- Add Fully-Connected layer
- Last Fully-connected layer holds outputs (scores)

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: (227-11)/4+1 = 55

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = **35K**

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Q: what is the number of parameters in this layer?

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96

Parameters: 0!

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:

[227x227x3] INPUT

[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0

[27x27x96] MAX POOL1: 3x3 filters at stride 2

[27x27x96] NORM1: Normalization layer

[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2

[13x13x256] MAX POOL2: 3x3 filters at stride 2

[13x13x256] NORM2: Normalization layer

[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1

[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1

[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1

[6x6x256] MAX POOL3: 3x3 filters at stride 2

[4096] FC6: 4096 neurons [4096] FC7: 4096 neurons

[1000] FC8: 1000 neurons (class scores)

Case Study: VGGNet

[Simonyan and Zisserman, 2014]

Only 3x3 CONV stride 1, pad 1 and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013

->

7.3% top 5 error

		ConvNet C	onfiguration		
A	A-LRN	В	С	D	E
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB imag)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
			pool		
			4096		
			4096		
			1000		
		soft	-max		

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	C	D	E
Number of parameters	133	133	134	138	144

hochschule mannheim Case Study

POOL2: [112x112x64] memory: 112*112*64=800K params: 0

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456

POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912

CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448

FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

ConvNet C	onnguration		_
В	C	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	L
out (224×2)			Г
conv3-64	conv3-64	conv3-64	C
conv3-64	conv3-64	conv3-64	С
	pool		
conv3-128	conv3-128	conv3-128	cc
conv3-128	conv3-128	conv3-128	cc
max	pool		Г
conv3-256	conv3-256	conv3-256	CC
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	cc
	50 50 50 50 50 50 50 50 50 50 50 50 50 5	The Committee of the Co	co
max	pool		г
conv3-512	conv3-512	conv3-512	cc
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	cc
			co
max	pool		Г
conv3-512	conv3-512	conv3-512	CC
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			cc
	pool		
	4096		
FC-	4096		
FC-	1000		
soft-	-max		

hochschule mannheim Case Study

INPUT: [224x224x3] memory: 224*224*3=150K params: 0 (not counting biases)
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV/2 420, [440,440,440] manager 440,440,420,4 CM marginar (2,52,564),440, = 72,720

CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728 CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456

POOL2: [56x56x128] memory: 56*56*128=400K params: 0

CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824 CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824

POOL2: [28x28x256] memory: 28*28*256=200K params: 0

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648 CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296

POOL2: [14x14x512] memory: 14*14*512=100K params: 0

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296 CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296

POOL2: [7x7x512] memory: 7*7*512=25K params: 0

FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448 FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)

TOTAL params: 138M parameters

			_
В	C	D	
13 weight	16 weight	16 weight	19
layers	layers	layers	
put (224×2)	24 RGB image		Г
conv3-64	conv3-64	conv3-64	cc
conv3-64	conv3-64	conv3-64	cc
max	pool		
conv3-128	conv3-128	conv3-128	co
conv3-128	conv3-128	conv3-128	co
max	pool		
conv3-256	conv3-256	conv3-256	co
conv3-256	conv3-256	conv3-256	co
	conv1-256	conv3-256	co
		1500000000000	col
	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool		
conv3-512	conv3-512	conv3-512	co
conv3-512	conv3-512	conv3-512	co
	conv1-512	conv3-512	co
			co
	pool		
	4096		
FC-	4096		
EC	1000		
FC-	1000		

**

hochschule mannheim Case Study


```
(not counting biases)
INPUT: [224x224x3]
                     memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
                                                                                         Note:
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
                                                                                         Most memory is in
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
                                                                                         early CONV
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K
                                               params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
                                                                                         Most params are
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
                                                                                         in late FC
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512=2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000
TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters
```


Case Study: GoogLeNet [Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: ResNet

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

2-3 weeks of training on 8 GPU machine

at runtime: faster than a VGGNet! (even though it has 8x more layers)

(slide from Kaiming He's recent presentation)

Thank you! Any questions?