

Project Objectives 01 02 **Data Overview** 03 **Project Steps** 04 **Project Achievement** 05 **Future**

Project Objectives

Data Overview

- TPCDS a well-known dataset designed for database testing
- In TPC-DS, fact tables store quantitative data like sales, while dimension tables contain descriptive attributes like customer details.

Fact tables	Dimension tables
Catalog_Sales	Date_Dim
Web_Sales	Customer
Inventory	Item
	Promotion
	Customer_Demographics
	Call_Center
	Customer_Address
	Catalog_Page
	Warehouse
	Time_Dim
	Ship_Mode
	Household_Demographics
	Income_Band
	Web_page
	Web_Site

01 AWS Lambda Function

O2 Airbyte Installation

O3 Data Modeling

etc. ETL and Data Loading

05 Metabase

AWS Lambda Function

- 1. download 'inventory.csv' from a public AWS S3 URL.
- 2. upload the 'inventory.csv' file to the Snowflake table.
- 3. create a schedule for every night 2 am (Riyadh time).

Airbyte Installation

- 1. Install Airbyte on EC2 instance.
- 2. Connect to the Postgres database in AWS RDS.
- 3. Create connections to data sources and set up replication pipelines.

Data Modeling

- 1. Create an analytics schema within the Snowflake database to hold the data model.
- 2. Develop an integrated customer dimension table from multiple related tables.
- 3. Design a weekly fact table containing sales and inventory metrics.

CUST	FOMER_DIM	100K Rows 🔼 •••
<u>A</u>	C_SALUTATION	VARCHAR(16777216)
<u>A</u>	C_PREFERRED_CUST_F	VARCHAR(16777216)
#	C_FIRST_SALES_DATE_SK	NUMBER(38,0)
#	C_CUSTOMER_SK	NUMBER(38,0)
<u>A</u>	C_LOGIN	VARCHAR(16777216)
#	C_CURRENT_CDEMO_SK	NUMBER(38,0)
<u>A</u>	C_FIRST_NAME	VARCHAR(16777216)
#	C_CURRENT_HDEMO_SK	NUMBER(38,0)
#	C_CURRENT_ADDR_SK	NUMBER(38,0)
<u>A</u>	C_LAST_NAME	VARCHAR(16777216)
<u>A</u>	C_CUSTOMER_ID	VARCHAR(16777216)
#	C_LAST_REVIEW_DATE_Sk	NUMBER(38,0)

WEE	KLY_SALES_INVENTORY	1.2M Rows 🔘 •••
#	WAREHOUSE_SK	NUMBER(38,0)
#	ITEM_SK	NUMBER(38,0)
#	SOLD_WK_SK	NUMBER(38,0)
#	SOLD_WK_NUM	NUMBER(38,0)
#	SOLD_YR_NUM	NUMBER(38,0)
#	SUM_QTY_WK	NUMBER(38,0)
#	SUM_AMT_WK	FLOAT
#	SUM_PROFIT_WK	FLOAT
#	AVG_QTY_DY	NUMBER(38,6)
#	INV_QTY_WK	NUMBER(38,0)
#	WKS_SPLY	NUMBER(38,6)
0 1	LOW_STOCK FLG_WK We	BOOLEAN Cloud Data

Data Modeling - (Customer Dimension)

Data Modeling - (weekly_sales_inventory)

ETL and Data Loading

- 1. Implement merge scripts for integrating customer dimension and daily sales records.
- Create SQL queries for joining daily sales and updated inventory tables to generate the weekly sales and inventory fact table.
- in order to realize the requirements from the Metabase BI purpose, we also need the Date_dim, Warehouse, and Item tables in the Prod schema.

ETL and Data Loading

Testing

- Not_null, Unique, Relationship, Accepted Value, Value Range, Length Tests.
- 2. Foreign Key Integrity Test to ensuring foreign key relationships are valid.

	TEST_NAME	RESULT
1	Not Null Test	Pass
2	Unique Test	Pass
3	Relationship Test	Pass
4	Accepted Value Test	Pass
5	Foreign Key Integrity Test	Pass
6	Value Range Test	Pass
7	Length Test	Pass

Automating

- Set up automated processes for daily and weekly data aggregations.
- Create SQL queries for joining daily sales and updated inventory tables to generate the weekly sales and inventory fact table.
- Configure cron jobs using Snowflake Tasks to execute daily and weekly aggregation scripts at specified times.

Metabase (Business Requirements)

- 1. Install and configure Metabase for data visualization and report generation.
- Connect Metabase to the Snowflake database.
- 3. Fix field names, and assign types to the columns to ensure proper visualization.
- 4. Generate reports based on business requirements using dashboards.

Top Selling Items				
CAL_WK ^	· ITEM_SK	~ SUM_AMT_WK	SUM_QTY_WK	~ RANKING
June 12, 2022	12,748	39,543.32	288	1
June 12, 2022	15,976	27,140.85	244	2
June 12, 2022	14,959	26,416.16	172	3
June 12, 2022	13,754	26,333.56	97	4
June 12, 2022	9,700	25,858.86	173	5
June 12, 2022	2,257	25,597.49	221	6
			Rows 1-6 o	f first 2000 >
Bottom Selling Items				
CAL_WK ^	· ITEM_SK	SUM_AMT_WK	~ SUM_QTY_WK	RANKING
September 11, 2022	14,467	0	1	1
September 11, 2022	625	0	3	2
September 11, 2022	9,038	0	5	3
September 11, 2022	17,617	0	5	3
September 11, 2022	4,477	0	6	5
September 11, 2022	9,430	0	9	6
September 11, 2022	7,231	0	13	7
September 11, 2022	9,266	0	15	>>> We
			Rows 1-8 o	f first 2000

Metabase (Additional Requirements)

Challenges

- Data Quality and Consistency: Implement data validation and cleansing routines to ensure data quality before aggregation.
- Complex Transformations:
 Ensuring that the logic for these calculations is robust and handles edge cases properly.
- Deployment and Migration:
 Migrating existing data to the new schema and ensuring that historical data is accurately transformed to include the new metrics.

Project Achievement

- 1. Exploring the data and understanding business requirements.
- 2. Merging data in temporary tables to avoid affecting tables in use.
- 3. Testing tables to validate the results before automating the pipelines.

Future

- Enhanced Data Quality Measures:
 Implementing robust data cleansing and validation techniques to ensure high data quality and accuracy.
- Advanced Analytics Capabilities:
 Incorporating advanced analytics techniques such as predictive modeling or machine learning to derive deeper insights from the data.
- Security Enhancements:
 Implementing additional security measures to protect sensitive data throughout the entire data lifecycle.

Thank you!

