TP flocon de von Koch

Terminale - NSI

1 Présentation

Le flocon de Koch est l'une des premières courbes fractales à avoir été décrites (bien avant l'invention du terme fractal). Elle a été inventée en 1904 par le mathématicien suédois Helge von Koch. On peut la créer à partir d'un segment de droite, en modifiant récursivement chaque segment de droite de la façon suivante :

- Diviser le segment en trois segments de longueurs égales.
- Construire un triangle équilatéral ayant pour base le segment médian de la première étape.
- Supprimer le segment qui était la base du triangle de la deuxième étape.

2 Module Turtle

La bibliothèque *Turtle* permet de dessiner des figures géométriques simplement. La documentation se trouve ici :

https://docs.python.org/fr/3.8/library/turtle.html

Activité 1 : Découverte de la bibliothèque Turtle.

- 1. Importer la bibliothèque turtle.
- 2. Dessiner un carré de 100 de côté.
- 3. Dessiner la figure 1 composée de 10 carrés.
- 4. Écrire une fonction $hex_couleur() \rightarrow str$ qui renvoie une couleur aléatoire en écriture hexadécimal. Rappel : une couleur s'écrit sous la forme #RRGGBB (#23A45F) où chaque paire est l'équivalent héxadécimal d'un nombre décimal compris entre 0 et 255.
- 5. Utiliser la fonction précédente pour colorer chaque carré.

FIGURE 1 - 10 carrés

TP flocon de von Koch

Terminale - NSI

3 Flocon de von Koch

3.1 Courbe de von Koch

Avec le module *Turtle* il est possible d'adapter les quatre premières étapes de la courbe de von Koch et tracer directement la figure 2.

FIGURE $2 - \cos n = 1$

Activité 2:

- 1. Écrire une fonction $courbe_koch() \rightarrow None$ qui trace la figure 2.
- 2. Chaque segment de la figure 2 peut être vu comme le cas où n=0. Adapter la fonction précédente en une fonction récursive **courbe_koch(n:int,mesure:int)** \rightarrow **None** qui dessine une courbe de von Koch de profondeur n.
- 3. Tester la fonction pour plusieurs valeurs de n (ne pas dépasser 5).

FIGURE $3 - \cos n = 3$

3.2 Flocon

Activité 3 : Écrire une fonction $flocon(n : int, mesure : int) \rightarrow None$ qui utilise la fonction $courbe_koch$ pour tracer le flocon entier.

FIGURE 4 – Flocon de von Koch

3.3 Variantes

Activité 4 : Adapter le programme précédent pour utiliser la courbe de la figure 5.

FIGURE 5 – Variante

