- 1. Understand Figure 3.6 Page 103 from the book.
- 2. A sufficient condition to prove convergence of an iterative method $x_n = g(x_{n-1}), n = 1,2,...$ is to show that the error at the n^{th} step is less than the error at n-1 step, i.e. $|x_n-p|=|x_{n-1}-p|M_n, \quad M_n<1$, in some interval that contains the root p. However this condition is not necessary since convergence might also occur outside that interval as long as the sequence x_n monotonically winds up in the interval(see HW-2). Answer the following questions: The quadratic equation has two roots $2x^2-x-1=0$
 - i. Find the roots using the quadratic equation
 - ii. The equation can be rewritten as $x=2x^2-1=g(x)$. Will this iteration converge to any of the two roots?[Since you know the roots you can use the QUICK test to answer this question |g'(p)| < 1]
 - iii. Another way of rewriting the equation is $x=\sqrt{\frac{x+1}{2}}=g(x)$. Will this iteration converge to a root? Which root? What is the interval of convergence?
 - iv. Derive Newton's method for this equation. Will newton's method converge for all initial starting points?
- 3. The function $f(x) = x^2 + x 2$ has two roots in the intervals [0,3] and [-3,0].
 - i. What are the roots?
 - ii. Perform 3 steps of the bisection method for the root in [0,3]. How many steps will you need so that the error in the n^{th} iteration of the bisection method is less than 0.0001?
 - iii. Perform 3 steps of the Regula Falsi iteration.
 - iv. Perform 2 steps of Newton's method for both roots staring with $x_0=2$ and $x_0=-2$. How many steps will you need to get to 0.0001 error in Newton's method.
 - v. A fixed point iteration can be derived by re-writing $x^2 + x 2 = 0$ into its equivalent form $x = 2 x^2 = g(x)$. Will this iteration converge to any of the two roots? Explain.
 - vi. Another fixed point iteration can be derived by re-writing the equation as $x = \sqrt{2 x}$. Will this iteration converge to any of the roots?
- 4. Given the iteration $x_{n+1} = \frac{x_n(x_n^2+3)}{3x_n^2+1} = g(x_n)$.
 - i. What is the original equation that we are trying to solve?
 - ii. Can you two propose alternatives to the above method that converge to the root?
 - iii. What is Newton's method for this equation.
 - iv. We know that for Newton's method the convergence is quadratic, i.e. g'(p) = 0. What is the order of convergence for the iteration above.