HERIOT-WATT UNIVERSITY

Masters Thesis

Bayesian Reconstruction and Regression over Networks

Author:
John Smith

Supervisor:

Dr. James Smith

A thesis submitted in fulfilment of the requirements for the degree of MSc.

in the

School of Mathematical and Computer Sciences

February 2023

Declaration of Authorship

I, John Smith, declare that this thesis titled, 'Bayesian Reconstruction and Regression over Networks' and the work presented in it is my own. I confirm that this work submitted for assessment is my own and is expressed in my own words. Any uses made within it of the works of other authors in any form (e.g., ideas, equations, figures, text, tables, programs) are properly acknowledged at any point of their use. A list of the references employed is included.

Signed:			
Date:			

"Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism."

Dave Barry

Abstract

The Thesis Abstract is written here (and usually kept to just this page).

Acknowledgements

The acknowledgements and the people to thank go here, don't forget to include your project advisor :)

Contents

D	eclar	tion of Authorship	j
A	bstra	rt	iii
A	ckno	rledgements	iv
C	ontei	ts	v
Li	st of	Figures	viii
Li	st of	$\Gamma_{ m ables}$	ix
A	bbre	iations	х
Sy	mbo	s	xi
Id	lentit	es	xiv
1	Intr 1.1	oduction Background and Definitions	. 1
	1.1	Thesis overview	
2	Out	ine and Fundamentals	3
	2.1	Graph Signal Processing	. 3
		2.1.1 A broad overview of the field	
		2.1.2 The graph Laplacian	
		2.1.3 Graph filters	
	2.2	Regression and Reconstruction	
		2.2.1 Graph Signal Reconstruction	. 3
		2.2.2 Kernel Graph Regression	. 4
		2.2.3 Regression with Network Cohesion	. 4
3		nel Generalized Least Squares Regression for Network Data	5
	3.1	Kernel Graph Regression with Missing Values	
	3.2	GLS Kernel Graph Regression	
		3.2.1 A Gauss-Markov estimator	5

Contents vi

		3.2.2	AR(1) processes	5
		3.2.3	Experiments	5
4	Roo	rossion	and Reconstruction on Cartesian Product Graphs	6
4	4.1		Products	6
	7.1	4.1.1	Basic definitions	6
		4.1.2	The spectral properties of graph products	
		4.1.3	GSP with Cartesian product graphs	9
	4.2		Signal Reconstruction on Cartesian Product Graphs	
	1.2	4.2.1	Problem statement	
		4.2.2	A stationary iterative method	
		4.2.3	A conjugate gradient method	
		4.2.4	Convergence properties	
		4.2.5	Image processing experiments	25
	4.3		Graph Regression with Unrestricted Missing Data Patterns	25
	1.0	4.3.1	Cartesian product graphs and KGR	25
		4.3.2	Convergence properties	$\frac{-5}{25}$
	4.4		sion with Network Cohesion	
		4.4.1	Regression with node-level covariates	26
		4.4.2	Convergence properties	
	4.5	Multi-	Dimensional Cartesian Product Graphs	
		4.5.1	Fast computation with d -dimensional Kronecker products	26
		4.5.2	Signal reconstruction	26
		4.5.3	Kernel Graph Regression	26
		4.5.4	Regression with Network Cohesion	26
5	Sign	nal Un	certainty: Estimation and Sampling	27
	5.1		uction	
	5.2		ior Estimation	
		5.2.1	Log-variance prediction	
		5.2.2	Estimation models	
		5.2.3	Query strategies	27
		5.2.4	Comparison and analysis	27
	5.3	Poster	ior Sampling	27
		5.3.1	Perturbation optimization	27
	5.4	Estima	ation vs Sampling	27
		5.4.1	Experiments	27
6	Wo	rking v	vith Binary-Valued Graph Signals	28
	6.1		ic Graph Signal Reconstruction	28
	6.2	Logisti	ic Kernel Graph Regression	28
	6.3	Logisti	ic Regression with Network Cohesion	28
	6.4	Appro	ximate Sampling via the Laplace Approximation	28
7	Cor	nclusion	ns	29
	7.1	Main S	Section 1	29

	••
Contents	V11
Contection	V 11

A Appendix Title Here

30

List of Figures

1.1	A graphical depiction of a graph signal. Here, the nodes are represented by circles, the edges as dotted lines, and the value of the signal at each	
	node is represented by the height of its associated bar	2
4.1	Graphical depiction of the standard graph products	8
4.2	A time-vertex Cartesian product graph	12
43	A time-vertex Cartesian product graph	13

List of Tables

2.1	Isotropic graph filter functions	
4.1	The adjacency and Laplacian matrices for the standard graph products .	7
4.2	Spectral decomposition of product graphs	Ć
4.3	Anisotropic graph filter functions	12

Abbreviations

GLS

GSP Graph Signal Processing
GFT Graph Fourier Transform
IGFT Inverse Graph Fourier Transform
GSR Graph Signal Reconstruction
KGR Kernel Graph Regression
RNC Regression with Network Cohesion

Generalised Least Squares

Symbols

Unless otherwise specified, the following naming conventions apply.

Integer constants

N	The number of nodes in a graph
T	The number of time points considered
M	The number of explanatory variables
Q	The number of queries

Integer variables

n	The index of a specific node in a graph
t	The index of a specific time point
m	The index of a specific explanatory variable
q	The index of a specific query
i, j, k	Generic indexing variables

Scalar variables

α	An autocorrelation regularisation parameter
β	A hyperparameter characterising a graph filter
γ	A precision parameter
λ	An eigenvalue or ridge regression penalty parameter
μ	The mean of a random variable
θ	AR(1) autocorrelation parameter
σ^2	The variance of a random variable

Symbols xii

Matrices

A The graph adjacency matrix

D A diagonal matrix

E The prediction residuals

F A predicted graph signal

G A spectral scaling matrix

H A graph filter or Hessian matrix

 \mathbf{I}_N The $(N \times N)$ identity matrix

 \mathbf{J}_N An $(N \times N)$ matrix of ones

K A kernel (Gram) matrix

L The graph Laplacian

S A binary selection matrix

U Laplacian eigenvector matrix

V Kernel eigenvector matrix

X Data matrix of explanatory variables

Y (Partially) observed graph signal

Λ A diagonal eigenvalue matrix

 Σ A covariance matrix

 Φ, Ψ Generic eigenvector matrices

 Ω Log marginal variance matrix

Vectors/tensors

 $\mathbf{1}_N$ A length-N vector of ones

e The prediction residuals

 \mathbf{e}_i The *i*-th unit basis vector

f The predicted graph signal

s A binary selection vector/tensor

x A vector of explanatory variables

y The observed graph signal

 α A flexible intercept vector/tensor

 β A graph filter parameter vector or vector of regression coefficients

 θ A aggregated coefficient vector $[\boldsymbol{\alpha}^{\top}, \boldsymbol{\beta}^{\top}]^{\top}$

Symbols xiii

Functions

 $g(\cdot)$ A graph filter function

p(statement) The probability that a statement is true

 $\pi(\cdot)$ A probability density function $\xi(\cdot)$ Optimisation target function

 $\kappa(\cdot, \cdot)$ A kernel function

Operations

 $(\cdot)^{\top}$ Transpose of a matrix/vector

 $||\cdot||_{\mathrm{F}}$ The Frobenius norm

 $\operatorname{tr}(\cdot)$ The trace of a square matrix

 $\operatorname{vec}(\cdot)$ Convert a matrix to a vector in column-major order

 $\operatorname{vec}_{\mathrm{RM}}(\cdot)$ Convert a matrix to a vector in row-major order

mat(·) Convert a vector to a matrix in column-major order

 $\operatorname{mat}_{\mathrm{RM}}(\cdot)$ Convert a vector to a matrix in row-major order

 $\operatorname{diag}(\cdot)$ Convert a vector to a diagonal matrix

 $\operatorname{diag}^{-1}(\cdot)$ Convert the diagonal of a matrix into a vector

 \otimes The Kronecker product

 \oplus The Kronecker sum

• The Hadamard product

Graphs

 \mathcal{G} A graph

 \mathcal{V} A vertex/node set

 \mathcal{E} An edge set

Miscellaneous

 $(\hat{\cdot})$ The estimator of a matrix/vector/tensor

 $O(\cdot)$ The runtime complexity

 x_i A vector element \mathbf{X}_i A matrix column \mathbf{X}_{ij} A matrix element

Identities

```
(\mathbf{B}^{\top} \otimes \mathbf{A}) \operatorname{vec}(\mathbf{X})
                              \mathrm{vec}(\mathbf{AXB})
 1
                                 \operatorname{tr}(\mathbf{A}^{\top}\mathbf{B})
                                                                                                                  \operatorname{vec}(\mathbf{A})^{\top}\operatorname{vec}(\mathbf{B})
2
                               \mathbf{AC} \otimes \mathbf{BD}
                                                                                                                (\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D})
3
                                                                                                                          \mathbf{A}^{-1}\otimes\mathbf{B}^{-1}
                              (\mathbf{A}\otimes\mathbf{B})^{-1}
4
                           \operatorname{tr}(\mathbf{X}^{\top}\mathbf{A}\mathbf{Y}\mathbf{B})
                                                                                                 \mathrm{vec}(\mathbf{X})^\top (\mathbf{B}^\top \otimes \mathbf{A}) \, \mathrm{vec}(\mathbf{Y})
5
                               \mathrm{vec}(\mathbf{J} \circ \mathbf{Y})
                                                                                                            \operatorname{diag}\!\big(\mathrm{vec}(\mathbf{J})\big)\mathrm{vec}(\mathbf{Y})
6
           \operatorname{diag}^{-1} \left( \mathbf{A} \operatorname{diag}(\mathbf{x}) \mathbf{B} \right)
                                                                                                                           (\mathbf{B}^{\top} \circ \mathbf{A})\,\mathbf{x}
9
```

For/Dedicated to/To my...

Chapter 1

Introduction

1.1 Background and Definitions

Graph Signal Processing (GSP) is a rapidly evolving field that sits at the intersection between spectral graph theory, statistics and data science [Shuman et al., 2013]. In this context, a graph is an abstract collection of objects in which any pair may be, in some sense, "related". These objects are referred to as vertices (or nodes) and their connections as edges [Newman, 2018]. GSP is concerned with the mathematical analysis of signals that are defined over the nodes of a graph, referred to simply as graph signals.

A graph signal can be thought of as a value that is measured simultaneously at each node in a graph. In practice, it is represented as a vector where each element corresponds to a single node. For example, consider a social network where each node represents an individual and presence of an edge between two nodes indicates that the two individuals have met. An example of a graph signal in this context could be the age of each person in the network. Figure 1.1 shows a graphical depiction of a signal defined over a network.

Graphs and graph signals have proven a useful way to describe data across a broad range of applications owing to their flexibility and relative simplicity. They are able to summarise the of properties large, complex systems within a single easily-digestible structure. Much of the data

The GSP community, in particular, is focused on generalising tools designed for traditional signal processing tasks to irregular graph-structured domains.

[Ortega et al., 2018]

Figure 1.1: A graphical depiction of a graph signal. Here, the nodes are represented by circles, the edges as dotted lines, and the value of the signal at each node is represented by the height of its associated bar.

1.2 Thesis overview

Chapter 2

Outline and Fundamentals

- 2.1 Graph Signal Processing
- 2.1.1 A broad overview of the field
- 2.1.2 The graph Laplacian
- 2.1.3 Graph filters

2.2 Regression and Reconstruction

2.2.1 Graph Signal Reconstruction

Introduce the known work on GSR

Filter	$g(\lambda;eta)$	
1-hop random walk	$(1+\beta\lambda)^{-1}$	
Diffusion	$\exp(-\beta\lambda)$	
ReLu	$\max(1-\beta\lambda,0)$	
Sigmoid	$2(1+\exp(\beta\lambda))^{-1}$	
Bandlimited	1, if $\beta \lambda \le 1$ else 0	

Table 2.1: Isotropic graph filter functions

2.2.2 Kernel Graph Regression

Introduce the known work on KGR and GPoG

2.2.3 Regression with Network Cohesion

Introduce the known work on RNC

Chapter 3

Kernel Generalized Least Squares Regression for Network Data

- 3.1 Kernel Graph Regression with Missing Values
- 3.2 GLS Kernel Graph Regression
- 3.2.1 A Gauss-Markov estimator
- 3.2.2 AR(1) processes
- 3.2.3 Experiments

Chapter 4

Regression and Reconstruction on Cartesian Product Graphs

4.1 Graph Products

In this chapter, we turn our attention to the topic of signal processing on *Cartesian product graphs*. This special class of graph finds applications in numerous areas, such as video, hyper-spectral image processing and network time series problems. However, the Cartesian product is not the only way to consistently define a product between two graphs. In this section we formally introduce the concept of a graph product, examine some prominent examples, and explain why we choose to look specifically at the Cartesian graph product.

4.1.1 Basic definitions

In the general case, consider two undirected graphs $\mathcal{G}_A = (\mathcal{V}_A, \mathcal{E}_A)$ and $\mathcal{G}_B = (\mathcal{V}_B, \mathcal{E}_B)$ with vertex sets given by $\mathcal{V}_A = \{a \in \mathbb{N} \mid a \leq A\}$ and $\mathcal{V}_B = \{b \in \mathbb{N} \mid b \leq B\}$ respectively. (In this context we do not regard zero to be an element of the natural numbers). A new graph \mathcal{G} can be constructed by taking the product between \mathcal{G}_A and \mathcal{G}_B . This can be generically written as follows.

$$\mathcal{G} = \mathcal{G}_A \diamond \mathcal{G}_B = (\mathcal{V}, \mathcal{E}) \tag{4.1}$$

For all definitions of a graph product, the new vertex set V is given by the Cartesian product of the vertex sets of the factor graphs, that is

$$\mathcal{V} = \mathcal{V}_A \times \mathcal{V}_B = \{ (a, b) \in \mathbb{N}^2 \mid a \le A \text{ and } b \le B \}$$
 (4.2)

Typically, vertices are arranged in lexicographic order, in the sense that $(a, b) \le (a', b')$ iff a < a' or (a = a') and $a \le b'$ [Harzheim, 2005]. Each consistent rule for constructing the new edge set \mathcal{E} corresponds to a different definition of a graph product. In general, there are eight possible conditions for deciding whether two nodes (a, b) and (a', b') are to be connected in the new graph.

- 1. $[a, a'] \in \mathcal{E}_A$ and b = b'
- 2. $[a, a'] \notin \mathcal{E}_A$ and b = b'
- 3. $[a, a'] \in \mathcal{E}_A$ and $[b, b'] \in \mathcal{E}_B$
- 4. $[a, a'] \notin \mathcal{E}_A$ and $[b, b'] \in \mathcal{E}_B$
- 5. $[a, a'] \in \mathcal{E}_A$ and $[b, b'] \notin \mathcal{E}_B$
- 6. $[a, a'] \notin \mathcal{E}_A$ and $[b, b'] \notin \mathcal{E}_B$
- 7. a = a' and $[b, b'] \in \mathcal{E}_B$,
- 8. a = a' and $[b, b'] \notin \mathcal{E}_B$

Each definition of a graph product corresponds to the union of a specific subset of these conditions, thus, there exist 256 different types of graph product [Barik et al., 2015]. Of these, the Cartesian product (conditions 1 or 7), the direct product (condition 3), the strong product (conditions 1, 3 or 7) and the lexicographic product (conditions 1, 3, 5 or 7) are referred to as the standard products and are well-studied [Imrich and Klavžar, 2000]. A graphical depiction of the standard graph products is shown in figure 4.1. In each of these four cases, the adjacency and Laplacian matrices of the product graph can be described in terms of matrices relating to the factor graphs [Barik et al., 2018, Fiedler, 1973]. This is shown in table 4.1.

	Adjacency matrix	Laplacian
Cartesian	$\mathbf{A}_A \oplus \mathbf{A}_B$	$\mathbf{L}_A \oplus \mathbf{L}_B$
Direct	$\mathbf{A}_A \otimes \mathbf{A}_B$	$\mathbf{D}_A \otimes \mathbf{L}_B + \mathbf{L}_A \otimes \mathbf{D}_B - \mathbf{L}_A \otimes \mathbf{L}_B$
Strong	$\mathbf{A}_A \otimes \mathbf{A}_B + \mathbf{A}_A \oplus \mathbf{A}_B$	$\mathbf{D}_A \otimes \mathbf{L}_B + \mathbf{L}_A \otimes \mathbf{D}_B - \mathbf{L}_A \otimes \mathbf{L}_B + \mathbf{L}_A \oplus \mathbf{L}_B$
Lexicographic	$\mathbf{I}_A \otimes \mathbf{A}_B + \mathbf{A}_A \otimes \mathbf{J}_A$	$\mathbf{I}_A \otimes \mathbf{L}_B + \mathbf{L}_A \otimes \mathbf{J}_B + \mathbf{D}_A \otimes (\mathcal{V}_B \mathbf{I}_B - \mathbf{J}_B)$

TABLE 4.1: The adjacency and Laplacian matrices for the standard graph products. Here, \mathbf{D}_A and \mathbf{D}_B are the diagonal degree matrices, i.e $\mathbf{D}_A = \operatorname{diag}(\mathbf{A}_A \mathbf{1})$. \mathbf{I}_A and \mathbf{J}_A are the $(A \times A)$ identity matrix and matrix of ones respectively.

FIGURE 4.1: A graphical depiction of the four standard graph products

Given these definitions, it may seem that all the standard graph products are noncommutative in the sense that $\mathbf{A}_A \oplus \mathbf{A}_B \neq \mathbf{A}_B \oplus \mathbf{A}_A$ etc. However, the graphs $\mathcal{G}_A \diamond \mathcal{G}_B$ and $\mathcal{G}_B \diamond \mathcal{G}_A$ are in fact isomorphically identical in the case of the Cartesian, direct and strong products. This is not the case for the Lexicographic product [Imrich and Klavžar, 2000].

4.1.2 The spectral properties of graph products

In the field of graph signal processing, we are often concerned with analysing the properties of graphs via eigendecomposition of the graph Laplacian [Mieghem, 2010]. In the case of product graphs, it is greatly preferable if we are able to fully describe the spectrum of $\mathcal{G}_A \diamond \mathcal{G}_B$ in terms of the spectra of \mathcal{G}_A and \mathcal{G}_B alone. This is because direct decomposition of a dense **L** has time-complexity $O(A^3B^3)$, whereas decomposition of the factor Laplacians individually has complexity $O(A^3+B^3)$. As the graphs under considerations become medium to large, this fact quickly makes direct decomposition of the product graph Laplacian intractable. However, in the general case, only the spectra of the Cartesian and lexicographic graph products can be described in this way [Barik et al., 2018]. In the case of the direct and strong product, it is possible to estimate

the spectra without performing the full decomposition (see [Sayama, 2016]). However, in general, the full eigendecomposition of the product graph Laplacian can only be described in terms of the factor eigendecompositions when both factor graphs are regular.

Consider the eigendecompositions of \mathbf{L}_A and \mathbf{L}_B .

$$\mathbf{L}_A = \mathbf{U}_A \mathbf{\Lambda}_A \mathbf{U}_A^{\mathsf{T}}, \quad \text{and} \quad \mathbf{L}_B = \mathbf{U}_B \mathbf{\Lambda}_B \mathbf{U}_B^{\mathsf{T}}$$
 (4.3)

where \mathbf{U}_A and \mathbf{U}_B are the respective orthonormal eigenvector matrices, and $\mathbf{\Lambda}_A$ and $\mathbf{\Lambda}_B$ are the diagonal eigenvalue matrices given by

$$\mathbf{\Lambda}_{A} = \begin{bmatrix}
\lambda_{1}^{(A)}, & & & \\
& \lambda_{2}^{(A)} & & \\
& & \ddots & \\
& & & \lambda_{A}^{(A)}
\end{bmatrix} \quad \text{and} \quad \mathbf{\Lambda}_{B} = \begin{bmatrix}
\lambda_{1}^{(B)}, & & & \\
& \lambda_{2}^{(B)} & & \\
& & \ddots & \\
& & & \lambda_{B}^{(B)}
\end{bmatrix}$$

$$(4.4)$$

Given these definitions, table 4.2 gives information about the spectral decomposition of the standard graph products.

	Eigenvalues	Eigenvectors
Cartesian	$\lambda_a^{(A)} + \lambda_b^{(B)}$	$(\mathbf{U}_A)_a\otimes (\mathbf{U}_B)_b$
Direct*	$r_A \lambda_b^{(B)} + r_B \lambda_a^{(A)} - \lambda_a^{(A)} \lambda_b^{(B)}$	$(\mathbf{U}_A)_a\otimes (\mathbf{U}_B)_b$
Strong*	$(1+r_A)\lambda_b^{(B)} + (1+r_B)\lambda_a^{(A)} - \lambda_a^{(A)}\lambda_b^{(B)}$	$(\mathbf{U}_A)_a\otimes (\mathbf{U}_B)_b$
Lexicographic [†]	$B\lambda_a^{(A)}$	$(\mathbf{U}_A)_a\otimes 1_B$
Lexicographic	$\lambda_b^{(B)} + B \deg(a)$	$\mathbf{e}_a\otimes (\mathbf{U}_B)_b$

Table 4.2: Eigendecomposition of the Laplacian of the standard graph products. Here, a and b are understood to run from 1 to A and 1 to B respectively. \star only for r_A and r_B -regular factor graphs. \dagger note that the b runs from 2 to B in the lower row.

4.1.3 GSP with Cartesian product graphs

While both the direct and strong products do find uses in certain applications (for example, see [Kaveh and Alinejad, 2011]), they are both less common and more challenging to work with in a graph signal processing context due to their spectral properties described in the previous subsection. In practice, being limited to regular factor graphs means the majority of practical GSP applications are ruled out. The lexicographic product does

not share this drawback, however it is also significantly less common than the Cartesian product in real-world applications. For this reason, in the following, we focus primarily on the Cartesian product.

Given the spectral decomposition of the Cartesian graph product stated in table 4.2, we can write the Laplacian eigendecomposition in matrix form as follows.

$$\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{T}}, \text{ where } \mathbf{U} = \mathbf{U}_A \otimes \mathbf{U}_B \text{ and } \mathbf{\Lambda} = \mathbf{\Lambda}_A \oplus \mathbf{\Lambda}_B$$
 (4.5)

This motivates the following definitions for the Graph Fourier Transform (GFT) and its inverse (IGFT). Consider a signal defined over the nodes of a Cartesian product graph expressed as a matrix $\mathbf{Y} \in \mathbb{R}^{B \times A}$. We can perform the GFT as follows.

$$GFT(\mathbf{Y}) = \operatorname{mat}\left(\left(\mathbf{U}_{A}^{\top} \otimes \mathbf{U}_{B}^{\top}\right) \operatorname{vec}(\mathbf{Y})\right) = \mathbf{U}_{B}^{\top} \mathbf{Y} \mathbf{U}_{A}$$
(4.6)

Correspondingly, we can define the IGFT acting on a matrix of spectral components $\mathbf{Z} \in \mathbb{R}^{B \times A}$ as follows.

$$IGFT(\mathbf{Z}) = mat((\mathbf{U}_A \otimes \mathbf{U}_B) \operatorname{vec}(\mathbf{Z})) = \mathbf{U}_B \mathbf{Z} \mathbf{U}_A^{\top}$$
(4.7)

Product graph signals: repseprentation and vectorisation

It is natural to assume that signals defined on the nodes of a Cartesian product graph $\mathcal{G}_A \square \mathcal{G}_B$ could be represented by matrices (order two tensors) of shape $(A \times B)$. Since product graph operators, such as the Laplacian $\mathbf{L}_A \oplus \mathbf{L}_B$, act on vectors of length AB, we must define a consistent function to map matrix graph signals $\in \mathbb{R}^{A \times B}$ to vector graph signals $\in \mathbb{R}^{AB}$. The standard mathematical operator for this purpose is the vec(·) function, along with its reverse operator $\mathrm{mat}(\cdot)$. However, this is somewhat problematic since $\mathrm{vec}(\cdot)$ is defined to act in $\mathrm{column\text{-}major}$ order, that is

$$\operatorname{vec} \left(\begin{bmatrix} \mathbf{Y}_{(1,1)} & \mathbf{Y}_{(1,2)} & \dots & \mathbf{Y}_{(1,B)} \\ \mathbf{Y}_{(2,1)} & \mathbf{Y}_{(2,2)} & \dots & \mathbf{Y}_{(2,B)} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{Y}_{(A,1)} & \mathbf{Y}_{(A,2)} & \dots & \mathbf{Y}_{(A,B)} \end{bmatrix} \right) = \begin{bmatrix} \mathbf{Y}_{(1,1)} \\ \mathbf{Y}_{(2,1)} \\ \vdots \\ \mathbf{Y}_{(A-1,B)} \\ \mathbf{Y}_{(A,B)} \end{bmatrix}$$

As is visible, this does not result in a lexicographic ordering of the matrix elements

when the graph signal has shape $(A \times B)$. Therefore, to avoid this issue and to be consistent with standard mathematical notation, we will assume that graph signals are represented by matrices of shape $(B \times A)$ when considering the product between two graphs $\mathcal{G}_A \square \mathcal{G}_B$. For graph signals of this shape, the first index represents traversal of the nodes in \mathcal{G}_B , and the second index represents traversal of the nodes in \mathcal{G}_A . This ensures that matrix elements are correctly mapped to vector elements when using the column-major $\operatorname{vec}(\cdot)$ function.

Given these definitions, we can define a spectral operator (usually a low-pass filter) \mathbf{H} which acts on graph signals according to a spectral scaling function $g(\lambda; \beta)$ such as one of those defined in table 2.1. As with regular non-product graphs, the action of this operator can be understood as first transforming a signal into the frequency domain via the GFT, then scaling the spectral components according to some function, and finally transforming back into the vertex domain via the IGFT.

$$\mathbf{H} = g(\mathbf{L}_A \oplus \mathbf{L}_B)$$

$$= (\mathbf{U}_A \otimes \mathbf{U}_B) g(\mathbf{\Lambda}_A \oplus \mathbf{\Lambda}_B) (\mathbf{U}_A^{\top} \otimes \mathbf{U}_B^{\top})$$

$$= (\mathbf{U}_A \otimes \mathbf{U}_B) \operatorname{diag}(\operatorname{vec}(\mathbf{G})) (\mathbf{U}_A^{\top} \otimes \mathbf{U}_B^{\top})$$
(4.8)

The matrix $\mathbf{G} \in \mathbb{R}^{B \times A}$, which we refer to as the spectral scaling matrix, holds the value of the scaling function applied to the sum of pairs of eigenvalues, such that

$$\mathbf{G}_{ba} = g(\lambda_a^{(A)} + \lambda_b^{(B)}; \beta) \tag{4.9}$$

We observe that defining the filtering operation in this manner implies that the intensity is equal across both \mathcal{G}_A and \mathcal{G}_B . We refer to filters of this type as *isotropic*. This can be further generalised by considering an *anisotropic* graph filter, which offers independent control over the filter intensity in each of the two dimensions. In this case, we define \mathbf{G} as follows.

$$\mathbf{G}_{ba} = g\left(\begin{bmatrix} \lambda_a^{(A)} \\ \lambda_b^{(B)} \end{bmatrix}, \begin{bmatrix} \beta_a \\ \beta_b \end{bmatrix}\right) \tag{4.10}$$

where now $g(\lambda; \beta)$ is chosen to be an anisotropic graph filter such as one of those listed in table 4.3. Note that the original parameter β is now replaced by a vector of parameters β which control the filter intensity in each dimension.

Filter	$g(\boldsymbol{\lambda};\boldsymbol{eta})$
1-hop random walk	$(1+\boldsymbol{eta}^{ op} oldsymbol{\lambda})^{-1}$
Diffusion	$\exp(-oldsymbol{eta}^{ op}oldsymbol{\lambda})$
ReLu	$\max(1 - \boldsymbol{\beta}^{\top} \boldsymbol{\lambda}, 0)$
Sigmoid	$2(1 + \exp(\boldsymbol{\beta}^{\top} \boldsymbol{\lambda}))^{-1}$
Bandlimited	1, if $\boldsymbol{\beta}^{\top} \boldsymbol{\lambda} \leq 1$ else 0

Table 4.3: Anisotropic graph filter functions

4.2 Graph Signal Reconstruction on Cartesian Product Graphs

We now turn our attention to the task of signal reconstruction on Cartesian product graphs. In the following, we will replace the factor graph labels A and B with T and N respectively. The reason for this is that one application of particular interest is graph time-series problems, where we seek to model a network of N nodes across a series of T discrete time points. These so called "time-vertex" (T-V) problems have garnered significant interest recently in the context of GSP [Grassi et al., 2018, Isufi et al., 2017, Loukas and Foucard, 2016]. T-V signals can be understood as existing on the nodes of a Cartesian product graph $\mathcal{G}_T \square \mathcal{G}_N$. In particular, we can conceptualise T repeated measurements of a signal defined across the nodes of a N-node graph as a

FIGURE 4.2: A graphical depiction of a time-vertex Cartesian product graph

single measurement of a signal defined on the nodes of $\mathcal{G}_T \square \mathcal{G}_N$, where \mathcal{G}_T is a simple path graph.

On the Laplacian spectrum of the path graph

When considering time-vertex problems, \mathcal{G}_T will generally be described by a path graph. This special case of a graph has vertices given by $\mathcal{V}_T = \{t \in \mathbb{N} \mid t \leq T\}$ and edges given by $\mathcal{E}_T = \{[t, t+1] \mid t < T\}$. The Laplacian matrix of the path graph is therefore given by

$$\mathbf{L}_T = \begin{bmatrix} 1 & -1 & & & \\ -1 & 2 & -1 & & & \\ & & \ddots & & & \\ & & -1 & 2 & -1 \\ & & & -1 & 1 \end{bmatrix}$$

The eigenvalues and eigenvectors of this Laplacian are well-known and can be expressed in closed-form [Jiang, 2012]. In particular,

$$\lambda_t^{(T)} = 2 - 2\cos\left(\frac{t-1}{T}\pi\right)$$

and

$$(\mathbf{U}_T)_{ij} = \cos\left(\frac{j-1}{T}(i-0.5)\pi\right)$$

(\mathbf{U}_T should be appropriately normalised after this computation to ensure each column is orthonormal). Computing the eigendecomposition directly in this fashion reduces the complexity from $O(T^3)$ to $O(T^2)$ which can be significant for large time-series problems.

FIGURE 4.3: A graphical depiction of a time-vertex Cartesian product graph

Note that, despite the observation that \mathcal{G}_T is often a path graph in the context of T-V problems, the methods introduced in this section are valid for the Cartesian product between arbitrary undirected factor graphs.

4.2.1 Problem statement

The goal of Graph Signal Reconstruction (GSR) is to estimate the value of a partially observed graph signal at nodes where no data was collected. In the context of GSR on a Cartesian product graph, the available data is an observed signal $\mathbf{Y} \in \mathbb{R}^{N \times T}$ where only a partial set $\mathcal{S} = \{(n_1, t_1), (n_2, t_2), \dots\}$ of the signal elements were recorded. All other missing elements of \mathbf{Y} are set to zero. Our model is based on the assumption that \mathbf{Y} is a noisy partial observation of an underlying signal $\mathbf{F} \in \mathbb{R}^{N \times T}$, which is itself assumed to be smooth with respect to the graph topology.

We define the statistical model for the generation of an observation matrix \mathbf{Y} as

$$\mathbf{Y} = \mathbf{S} \circ \left(\mathbf{F} + \mathbf{E} \right) \tag{4.11}$$

where $\mathbf{S} \in [0, 1]^{N \times T}$ is referred to as the sensing matrix, and has entries given by

$$\mathbf{S}_{nt} = \begin{cases} 1 & \text{if } (n,t) \in \mathcal{S} \\ 0 & \text{otherwise} \end{cases}$$
 (4.12)

The matrix \mathbf{E} represents the model error and is assumed to have an independent normal distribution with unit variance. Therefore, the probability distribution of \mathbf{Y} given the latent signal \mathbf{F} is

$$\operatorname{vec}(\mathbf{Y}) \mid \mathbf{F} \sim \mathcal{N} \Big(\operatorname{vec}(\mathbf{S} \circ \mathbf{F}), \operatorname{diag}(\operatorname{vec}(\mathbf{S})) \Big)$$
 (4.13)

Note that the covariance matrix $\operatorname{diag}(\operatorname{vec}(\mathbf{S}))$ is semi-positive definite by construction. This naturally reflects the constraint that some elements of \mathbf{Y} are zero with probability 1. In order to estimate the latent signal \mathbf{F} , we must provide a prior distribution describing our belief about its likely profile ahead of time. In general, we expect \mathbf{F} to be smooth with respect to the topology of the graph. This can be expressed by setting the covariance matrix in its prior to be proportional to \mathbf{H}^2 , where \mathbf{H} is a graph filter as defined in equation (4.8). For now, in the absence of any further information, we assume that the prior mean for \mathbf{F} is zero across all elements.

$$\operatorname{vec}(\mathbf{F}) \sim \mathcal{N}(\mathbf{0}, \, \gamma^{-1}\mathbf{H}^2)$$
 (4.14)

Next, given an observation \mathbf{Y} , we use Bayes' rule to find the posterior distribution over \mathbf{F} . This is given by

$$\pi(\operatorname{vec}(\mathbf{F}) \mid \mathbf{Y}) = \frac{\pi(\operatorname{vec}(\mathbf{Y}) \mid \mathbf{F})\pi(\mathbf{F})}{\pi(\mathbf{Y})}.$$
(4.15)

where we use the notation $\pi(\cdot)$ to denote a probability density function.

Theorem 4.1. The posterior distribution for F is given by

$$\operatorname{vec}(\mathbf{F}) \mid \mathbf{Y} \sim \mathcal{N}(\mathbf{\Sigma} \operatorname{vec}(\mathbf{Y}), \ \mathbf{\Sigma})$$
 (4.16)

where

$$\Sigma = \left(\operatorname{diag}(\operatorname{vec}(\mathbf{S})) + \gamma \mathbf{H}^{-2}\right)^{-1}$$
(4.17)

Proof. Consider the matrix \mathbf{S}_{ϵ} defined in the following manner.

$$(\mathbf{S}_{\epsilon})_{nt} = \begin{cases} 1 & \text{if } (n,t) \in \mathcal{S} \\ \epsilon & \text{otherwise} \end{cases}$$
 (4.18)

We can use this definition to rewrite equation 4.13 for the probability distribution of $\mathbf{Y}|\mathbf{F}$.

$$\operatorname{vec}(\mathbf{Y}) \mid \mathbf{F} \sim \lim_{\epsilon \to 0} \left[\mathcal{N}\left(\operatorname{vec}(\mathbf{S}_{\epsilon} \circ \mathbf{F}), \operatorname{diag}\left(\operatorname{vec}(\mathbf{S}_{\epsilon})\right)\right) \right]$$
 (4.19)

In this way, the negative log-likelihood of an observation $\mathbf{Y}|\mathbf{F}$ is given by

$$-\log \pi(\mathbf{Y}|\mathbf{F}) = \lim_{\epsilon \to 0} \left[\frac{1}{2} \operatorname{vec}(\mathbf{S}_{\epsilon} \circ \mathbf{F} - \mathbf{Y})^{\top} \operatorname{diag}(\operatorname{vec}(\mathbf{S}_{\epsilon}))^{-1} \operatorname{vec}(\mathbf{S}_{\epsilon} \circ \mathbf{F} - \mathbf{Y}) \right]$$
(4.20)

up to an additive constant which does not depend on \mathbf{F} . Note that, since $\mathbf{Y} = \mathbf{S}_{\epsilon} \circ \mathbf{Y}$, we can rewrite $\text{vec}(\mathbf{S}_{\epsilon} \circ \mathbf{F} - \mathbf{Y})$ as

$$\operatorname{vec}(\mathbf{S}_{\epsilon} \circ \mathbf{F} - \mathbf{Y}) = \operatorname{vec}(\mathbf{S}_{\epsilon} \circ (\mathbf{F} - \mathbf{Y}))$$
$$= \operatorname{diag}(\operatorname{vec}(\mathbf{S}_{\epsilon}))\operatorname{vec}(\mathbf{F} - \mathbf{Y}) \tag{4.21}$$

Therefore, equation 4.20 can be rewritten as

$$-\log \pi(\mathbf{Y}|\mathbf{F}) = \lim_{\epsilon \to 0} \left[\frac{1}{2} \operatorname{vec}(\mathbf{F} - \mathbf{Y})^{\top} \operatorname{diag}(\operatorname{vec}(\mathbf{S}_{\epsilon})) \operatorname{vec}(\mathbf{F} - \mathbf{Y}) \right]$$
$$= \frac{1}{2} \operatorname{vec}(\mathbf{F} - \mathbf{Y})^{\top} \operatorname{diag}(\operatorname{vec}(\mathbf{S})) \operatorname{vec}(\mathbf{F} - \mathbf{Y})$$
(4.22)

Now consider the full log-posterior. Using Bayes rule, this can be written as

$$-\log \pi \left(\operatorname{vec}(\mathbf{F}) \mid \mathbf{Y}\right) = \frac{1}{2}\operatorname{vec}(\mathbf{F} - \mathbf{Y})^{\top}\operatorname{diag}\left(\operatorname{vec}(\mathbf{S})\right)\operatorname{vec}(\mathbf{F} - \mathbf{Y}) + \frac{\gamma}{2}\operatorname{vec}(\mathbf{F})^{\top}\mathbf{H}^{-2}\operatorname{vec}(\mathbf{F}) \quad (4.23)$$

Up to an additive constant not dependent F, this can be written as

$$-\log \pi \left(\operatorname{vec}(\mathbf{F}) \mid \mathbf{Y}\right) = \frac{1}{2} \left(\operatorname{vec}(\mathbf{F})^{\top} \left(\operatorname{diag}\left(\operatorname{vec}(\mathbf{S})\right) + \gamma \mathbf{H}^{-2}\right) \operatorname{vec}(\mathbf{F}) - 2\operatorname{vec}(\mathbf{Y})^{\top} \mathbf{F}\right)$$
(4.24)

Using the conjugacy of the normal distribution, by direct inspection we can conclude that the posterior covariance is given by

$$\Sigma = \left(\operatorname{diag}(\operatorname{vec}(\mathbf{S})) + \gamma \mathbf{H}^{-2}\right)^{-1}$$
(4.25)

and that the posterior mean is given by $\Sigma \operatorname{vec}(\mathbf{Y})$.

In this chapter, we are primarily interested in computing the posterior mean, which is the solution to the following linear system.

$$\left(\operatorname{diag}\left(\operatorname{vec}(\mathbf{S})\right) + \gamma \mathbf{H}^{-2}\right)\operatorname{vec}(\mathbf{F}) = \operatorname{vec}(\mathbf{Y})$$
(4.26)

We return to the question of sampling from the posterior and estimating the posterior covariance directly in chapter 5.

Two significant computational challenges arise when working with non-trivial graph signal reconstruction problems, where the number of vertices in the product graph is large. First, although the posterior mean point estimator given in eq. (4.26) has an exact closed-form solution, its evaluation requires solving an $NT \times NT$ system of equations, which is impractical for all but the smallest of problems. Second, since the eigenvalues of \mathbf{H} can be close to or exactly zero, \mathbf{H}^{-2} may be severely ill-conditioned and even undefined. This means the condition number of the coefficient matrix may not be finite, making basic iterative methods to numerically solve the linear system, such as steepest descent, slow or impossible. The models proposed in this paper aim to overcome these problems.

Since the coefficient matrix defining the system is of size $NT \times NT$, direct methods such as Gaussian elimination are assumed to be out of the question. In such cases, one often resorts to one of three possible solution approaches: stationary iterative methods; Krylov methods; and multigrid methods. In the following, we propose a stationary iterative method and a Krylov method and compare their relative behaviour. In both cases, we show that each step of the iterative process can be completed in $O(N^2T + NT^2)$ operations, making a solution feasible. First, we present each of the methods in isolation. Then, the convergence behaviour of each is derived theoretically and verified numerically.

4.2.2 A stationary iterative method

In this section, we demonstrate a technique for obtaining the posterior mean by adopting a classic approach to solving linear systems, known as $matrix\ splitting$, which sits within the family of Stationary Iterative Methods (SIMs) [Saad, 2003]. The general splitting strategy is to break the coefficient matrix into the form $\mathbf{M} - \mathbf{N}$, where \mathbf{M} is a non-singular matrix that is easy to solve in the context of a linear system. Commonly used examples of this are the Jacobi, Gauss-Seidel and successive over-relaxation methods, each of which represent a different strategy for splitting the coefficient matrix [Saad, 2003]. However, whilst these techniques are well-studied, they are not appropriate for use in this case. This is because, for each of these methods, the coefficient matrix must be split according to its diagonal and off-diagonal elements. Consequently, this would

require the evaluation of \mathbf{H}^{-2} directly which, as we have discussed, may be severely ill-conditioned or undefined.

Instead, we must construct a custom splitting that avoids direct evaluation of \mathbf{H}^{-2} , and such that \mathbf{M}^{-1} can be computed easily by taking advantage of the properties of the Kronecker product. The main novelty of this subsection is the selection of an appropriate splitting and an investigation of the consequences of that choice. For the system defined in equation (4.26), the coefficient matrix can be split up in the following way:

$$\operatorname{diag}(\operatorname{vec}(\mathbf{S})) + \gamma \mathbf{H}^{-2} = \mathbf{M} - \mathbf{N}$$
(4.27)

where

$$\mathbf{M} = \gamma \mathbf{H}^{-2} + \mathbf{I}_{NT}, \text{ and } \mathbf{N} = \operatorname{diag}(\operatorname{vec}(\mathbf{S}')).$$
 (4.28)

Here, S' denotes a binary matrix representing the complement to the set of selected nodes.

$$\mathbf{S}'_{nt} = \begin{cases} 1 & \text{if } (n,t) \notin \mathcal{S} \\ 0 & \text{otherwise} \end{cases}$$
 (4.29)

This gives a valid splitting since \mathbf{M}^{-1} is guaranteed to exist. This can also easily be computed since we already have the eigendecomposition of \mathbf{H} . Noting the decomposed definition of \mathbf{H} given in eq. (4.8), this can be written as

$$\mathbf{M}^{-1} = \left(\mathbf{H}^{-2} + \mathbf{I}_{NT}\right)^{-1}$$

$$= \left(\left(\mathbf{U}_{T} \otimes \mathbf{U}_{N}\right) \operatorname{diag}\left(\operatorname{vec}(\mathbf{G})\right)^{-1} \left(\mathbf{U}_{T}^{\top} \otimes \mathbf{U}_{N}^{\top}\right) + \mathbf{I}_{NT}\right)^{-1}$$

$$= \left(\mathbf{U}_{T} \otimes \mathbf{U}_{N}\right) \left(\operatorname{diag}\left(\operatorname{vec}(\mathbf{G})\right)^{-1} + \mathbf{I}_{NT}\right)^{-1} \left(\mathbf{U}_{T}^{\top} \otimes \mathbf{U}_{N}^{\top}\right)$$

$$= \left(\mathbf{U}_{T} \otimes \mathbf{U}_{N}\right) \operatorname{diag}\left(\operatorname{vec}(\mathbf{J})\right) \left(\mathbf{U}_{T}^{\top} \otimes \mathbf{U}_{N}^{\top}\right)$$

$$(4.30)$$

where $\mathbf{J} \in \mathbb{R}^{N \times T}$ has elements defined by

$$\mathbf{J}_{nt} = \frac{\mathbf{G}_{nt}^2}{\mathbf{G}_{nt}^2 + \gamma}.\tag{4.31}$$

Therefore, the above splitting leads to a consistent linear stationary iterative method of first degree, with an update equation given by

$$\operatorname{vec}(\mathbf{F}_{k+1}) = \mathbf{M}^{-1} \mathbf{N} \operatorname{vec}(\mathbf{F}_k) + \mathbf{M}^{-1} \operatorname{vec}(\mathbf{Y})$$
(4.32)

One calls a given splitting of the coefficient matrix convergent if the iteration matrix has a spectral radius satisfying $\rho\left(\mathbf{M}^{-1}\mathbf{N}\right) < 1$. Furthermore, the error propagation can be defined as follows, where this contraction condition can be explicitly shown to achieve convergence. Denoting the difference between the estimate at the k-th iteration and the true solution as \mathbf{E}_k , we can see that the error is updated according to the following equation.

$$\operatorname{vec}(\mathbf{E}_{k+1}) = \operatorname{vec}(\mathbf{F}_{k+1}) - \operatorname{vec}(\mathbf{F}_{k})$$

$$= \mathbf{M}^{-1} \mathbf{N} \operatorname{vec}(\mathbf{F}_{k}) + \mathbf{M}^{-1} \operatorname{vec}(\mathbf{Y}) - (\mathbf{M}^{-1} \mathbf{N} \operatorname{vec}(\mathbf{F}_{k-1}) + \mathbf{M}^{-1} \operatorname{vec}(\mathbf{Y}))$$

$$= \mathbf{M}^{-1} \mathbf{N} \left(\operatorname{vec}(\mathbf{F}_{k}) - \operatorname{vec}(\mathbf{F}_{k-1}) \right)$$

$$= \mathbf{M}^{-1} \mathbf{N} \operatorname{vec}(\mathbf{E}_{k})$$

$$(4.33)$$

From this it is clear to see that convergence will be achieved so long as the maximum eigenvalue of $\mathbf{M}^{-1}\mathbf{N}$ is less than 1, since, if this condition holds then,

$$\lim_{k \to \infty} \operatorname{vec}(\mathbf{E}_k) = \lim_{k \to \infty} (\mathbf{M}^{-1} \mathbf{N})^k \operatorname{vec}(\mathbf{E}_0) = \mathbf{0}.$$
(4.34)

By directly inspecting equation (4.30), it is clear that the spectral radius of \mathbf{M}^{-1} will be the maximum entry in the matrix \mathbf{J} . By definition, $g(\cdot)$ has a maximum value of one on the non-negative reals, achieved when its argument is zero. Since the graph Laplacian is guaranteed to have at least one zero eigenvalue, the maximum entry in the matrix \mathbf{J} , and therefore the spectral radius of \mathbf{M}^{-1} , is surely given by

$$\rho(\mathbf{M}^{-1}) = \frac{1}{1+\gamma} \tag{4.35}$$

The spectral radius of \mathbf{N} can be extracted directly as 1, since it is a diagonal binary matrix. Since both \mathbf{M}^{-1} and \mathbf{N} are positive semi-definite, we can apply the theorem

$$\rho(\mathbf{AB}) \le \rho(\mathbf{A}) \,\rho(\mathbf{B}) \tag{4.36}$$

[Bhatia, 1997]. Therefore, the spectral radius of $\mathbf{M}^{-1}\mathbf{N}$ is guaranteed to be less than or equal to $1/(1+\gamma)$. Since γ is strictly positive, this is less than one and, as such, convergence is guaranteed.

Finally, we can leverage properties of the Kronecker product to write an efficient matrixupdate equation. By substituting in the expression for \mathbf{M}^{-1} given in equation (4.30), and applying it to the update formula given in equation (4.32), an update procedure with per-step time complexity is $O(N^2T + NT^2)$ is generated. This is given by

$$\mathbf{F}_{0} = \mathbf{U}_{N} \left(\mathbf{J} \circ \left(\mathbf{U}_{N}^{\top} \mathbf{Y} \mathbf{U}_{T} \right) \right) \mathbf{U}_{T}^{\top}$$

$$\mathbf{F}_{k+1} = \mathbf{U}_{N} \left(\mathbf{J} \circ \left(\mathbf{U}_{N}^{\top} \left(\mathbf{S}' \circ \mathbf{F}_{k} \right) \mathbf{U}_{T} \right) \right) \mathbf{U}_{T}^{\top} + \mathbf{F}_{0}$$

$$(4.37)$$

or, equivalently,

$$\Delta \mathbf{F}_{0} = \mathbf{U}_{N} \left(\mathbf{J} \circ \left(\mathbf{U}_{N}^{\top} \mathbf{Y} \mathbf{U}_{T} \right) \right) \mathbf{U}_{T}^{\top}$$

$$\Delta \mathbf{F}_{k+1} = \mathbf{U}_{N} \left(\mathbf{J} \circ \left(\mathbf{U}_{N}^{\top} \left(\mathbf{S}' \circ \Delta \mathbf{F}_{k} \right) \mathbf{U}_{T} \right) \right) \mathbf{U}_{T}^{\top}$$

$$(4.38)$$

The complete procedure is given in **algorithm 1**.

4.2.3 A conjugate gradient method

The second approach we consider for computing the posterior mean is to use the Conjugate Gradient Method (CGM). First proposed in 1952, the CGM is part of the Krylov subspace family, and is perhaps the most prominent iterative algorithm for solving linear systems [Hestenes and Stiefel, 1952, Kelley, 1995]. The CGM works best when the coefficient matrix has a low condition number (that is, the ratio between the largest and smallest eigenvalue is small) and, as such, a preconditioning step is often necessary. In our case, preconditioning will be essential for convergence. To see why, consider the matrix \mathbf{H}^{-2} within the linear system of equation (4.26), along with the definition of \mathbf{H} in equation (4.8). A low-pass filter function $g(\cdot)$ may be close to zero when applied to the high-frequency eigenvalues of the graph Laplacian, which can result in a severely ill-conditioned system. In the worst case, for example with a band-limited filter, the matrix \mathbf{H} will be singular, no matrix \mathbf{H}^{-2} will exist, and the condition number of the coefficient matrix will be, in effect, infinite.

Algorithm 1 Stationary iterative method with matrix splitting

```
Input: Observation matrix \mathbf{Y} \in \mathbb{R}^{N \times T}
Input: Sensing matrix \mathbf{S} \in [0, 1]^{N \times T}
Input: Space-like graph Laplacian \mathbf{L}_N \in \mathbb{R}^{N \times N}
Input: Time-like graph Laplacian \mathbf{L}_T \in \mathbb{R}^{T \times T}
Input: Regularisation parameter \gamma \in \mathbb{R}^+
Input: Graph filter function g(\cdot; \beta \in \mathbb{R}^2)
     Decompose \mathbf{L}_N into \mathbf{U}_N \mathbf{\Lambda}_L \mathbf{U}_N^{\top} and \mathbf{L}_T into \mathbf{U}_T \mathbf{\Lambda}_T \mathbf{U}_T^{\top}
    Compute \mathbf{G} \in \mathbb{R}^{N \times T} as \mathbf{G}_{nt} = g\left(\begin{bmatrix} \lambda_t^{(T)} \\ \lambda_n^{(N)} \end{bmatrix}, \boldsymbol{\beta}\right)
     Compute \mathbf{J} \in \mathbb{R}^{N \times T} as \mathbf{J}_{nt} = \mathbf{G}_{nt}^2/(\mathbf{G}_{nt}^2 + \gamma)
     \mathbf{S}' \leftarrow \mathbf{1} \in \mathbb{R}^{N \times T} - \mathbf{S}
      \Delta \mathbf{F} \leftarrow \mathbf{U}_N (\mathbf{J} \circ (\mathbf{U}_N^\top \mathbf{Y} \mathbf{U}_T)) \mathbf{U}_T^\top
     \mathbf{F} \leftarrow \Delta \mathbf{F}
     while |\Delta \mathbf{F}| > \text{tol do}
             \Delta \mathbf{F} \leftarrow \mathbf{U}_{N} \Big( \mathbf{J} \circ \left( \mathbf{U}_{N}^{\top} \left( \mathbf{S}' \circ \Delta \mathbf{F} \right) \mathbf{U}_{T} \right) \Big) \mathbf{U}_{T}^{\top}
             \mathbf{F} \leftarrow \mathbf{F} + \Delta \mathbf{F}
     end while
Output: F
```

Therefore, the primary contribution of this subsection is to find a preconditioner that is both efficient to compute and effective at reducing the condition number of the coefficient matrix. References such as [Saad, 2003] give a broad overview of the known approaches to finding a preconditioner. Standard methods include the Jacobi preconditioner which is given by the inverse of the coefficient matrix diagonal and is effective for diagonally dominant matrices, and the Sparse Approximate Inverse preconditioner [Grote and Huckle, 1997]. However, such preconditioners generally require direct evaluation of parts of the coefficient matrix or are computationally intensive to calculate.

In order to derive an effective preconditioner, first consider the transformed variable \mathbf{Z} , related to \mathbf{F} in the following way.

$$\mathbf{F} = \mathbf{U}_N \left(\mathbf{G} \circ \mathbf{Z} \right) \mathbf{U}_T^{\top} \tag{4.39}$$

Here, \mathbf{Z} can be interpreted as set of frequency coefficients, which are subsequently scaled according to the graph filter function, and then reverse Fourier transformed back into the node domain. Matrices \mathbf{Z} which are distributed according to a spherically symmetric distribution, result in signals \mathbf{F} which are smooth with respect to the graph topology.

Since this transform filters out the problematic high-frequency Fourier components, the system defined by this transformed variable \mathbf{Z} is naturally far better conditioned.

By substituting this expression for \mathbf{F} back into the likelihood in equation (4.13), and the prior of equation (4.14), one can derive a new expression for the posterior mean of \mathbf{Z} . This is given by the solution to the following linear system

$$(\mathbf{C} + \gamma \mathbf{I}_T \otimes \mathbf{I}_N) \operatorname{vec}(\mathbf{Z}) = \operatorname{vec}(\mathbf{G} \circ (\mathbf{U}_N^\top \mathbf{Y} \mathbf{U}_T))$$
(4.40)

where C is the symmetric PSD matrix

$$\mathbf{C} = \mathbf{D}_{\mathbf{G}} \left(\mathbf{U}_{T}^{\top} \otimes \mathbf{U}_{N}^{\top} \right) \mathbf{D}_{\mathbf{S}} \left(\mathbf{U}_{T} \otimes \mathbf{U}_{N} \right) \mathbf{D}_{\mathbf{G}}$$

$$(4.41)$$

where we have abbreviated diag(vec(\mathbf{G})) and diag(vec(\mathbf{S})) as $\mathbf{D}_{\mathbf{G}}$ and $\mathbf{D}_{\mathbf{S}}$ respectively. For a full derivation of this, consult the supplementary materials. The conditioning of the matrix $\mathbf{C} + \gamma \mathbf{I}$ is greatly improved from the untransformed problem.

Another way of interpreting the effect of the transformation defined in equation (4.39) is as a two-sided symmetric preconditioner to the original linear system. The transformed problem defined in equation (4.40) can be recovered by preconditioning the system in equation (4.26) in the following way.

$$\left(\mathbf{\Phi}^{\top} \left(\mathbf{D}_{\mathbf{S}} + \gamma \mathbf{H}^{-2}\right) \mathbf{\Phi}\right) \left(\mathbf{\Phi}^{-1} \operatorname{vec}(\mathbf{F})\right) = \mathbf{\Phi}^{\top} \operatorname{vec}(\mathbf{Y}), \tag{4.42}$$

where

$$\mathbf{\Phi} = (\mathbf{U}_T \otimes \mathbf{U}_N) \mathbf{D_G}. \tag{4.43}$$

Since preconditioning of the coefficient matrix on the left is achieved with Φ^{\top} and on the right with Φ , symmetry is preserved. This ensures that one can continue to utilise algorithms tailored to work with PSD matrices. In **algorithm 2**, we outline a conjugate gradient method based on this new formulation. Just as in section 4.2.2, this process takes advantage of several identities involving Kronecker products and vectorization, to give $O(N^2T + NT^2)$ complexity per iteration.

Algorithm 2 Conjugate gradient method with graph-spectral preconditioner

```
Input: Observation matrix \mathbf{Y} \in \mathbb{R}^{N \times T}
Input: Sensing matrix \mathbf{S} \in [0, 1]^{N \times T}
Input: Space-like graph Laplacian \mathbf{L}_N \in \mathbb{R}^{N \times N}
Input: Time-like graph Laplacian \mathbf{L}_T \in \mathbb{R}^{T \times T}
Input: Regularisation parameter \gamma \in \mathbb{R}
Input: Graph filter function g(\cdot; \beta)
      Decompose \mathbf{L}_N into \mathbf{U}_N \Lambda_L \mathbf{U}_N^{\top} and \mathbf{L}_T into \mathbf{U}_T \Lambda_T \mathbf{U}_T^{\top}
      Compute \mathbf{G} \in \mathbb{R}^{N \times T} as \mathbf{G}_{nt} = g\left(\begin{bmatrix} \lambda_t^{(T)} \\ \lambda_n^{(N)} \end{bmatrix}, \boldsymbol{\beta}\right)
      Initialise \mathbf{Z} \in \mathbb{R}^{N \times T} randomly
     \mathbf{R} \leftarrow \mathbf{G} \circ \left(\mathbf{U}_{N}^{\top} \mathbf{Y} \mathbf{U}_{T}\right) - \gamma \mathbf{Z} - \mathbf{G} \circ \left(\mathbf{U}_{N}^{\top} \left(\mathbf{S} \circ \left(\mathbf{U}_{N} \left(\mathbf{G} \circ \mathbf{Z}\right) \mathbf{U}_{T}^{\top}\right)\right) \mathbf{U}_{T}\right)\right)
      \mathbf{D} \leftarrow \mathbf{R}
      while |\Delta \mathbf{R}| > \text{tol do}
               \mathbf{A}_D \leftarrow \gamma \mathbf{D} + \mathbf{G} \circ \left( \mathbf{U}_N^\top \left( \mathbf{S} \circ \left( \mathbf{U}_N \left( \mathbf{G} \circ \mathbf{D} \right) \mathbf{U}_T^\top \right) \right) \mathbf{U}_T \right) \right)
               \alpha \leftarrow \operatorname{tr}(\mathbf{R}^{\top}\mathbf{R}) / \operatorname{tr}(\mathbf{R}^{\top}\mathbf{A}_D\mathbf{R})
               \mathbf{Z} \leftarrow \mathbf{Z} + \alpha \mathbf{D}
               \mathbf{R} \leftarrow \mathbf{R} - \alpha \mathbf{A}_D
                \delta \leftarrow \operatorname{tr}(\mathbf{R}^{\top}\mathbf{R}) / \operatorname{tr}((\mathbf{R} + \alpha \mathbf{A}_D)^{\top}(\mathbf{R} + \alpha \mathbf{A}_D))
               \mathbf{D} \leftarrow \mathbf{R} + \delta \mathbf{D}
      end while
```

4.2.4 Convergence properties

Output: $\mathbf{U}_{N}\left(\mathbf{G}\circ\mathbf{Z}\right)\mathbf{U}_{T}^{\top}$

In this section, we contribute theoretical upper bounds for the time-complexity of both methods, and then analyse their practical performance in numerical case studies.

For the stationary iterative method, equation (4.33) demonstrates that the magnitude of the error $\text{vec}(\mathbf{E}_k)$ is reduced at each iteration. In particular, the smallest possible rate of error reduction occurs when $\text{vec}(\mathbf{E}_0) = k\mathbf{1}$, i.e. it is proportional to the first eigenvector of the graph Laplacian, which is constant over all nodes. In this scenario, the worst-case error reduction follows

$$\operatorname{vec}(\mathbf{E}_k) = \frac{1}{(1+\gamma)^k} \operatorname{vec}(\mathbf{E}_0)$$
(4.44)

This implies that the number of iterations, n, required to reduce the error to a fraction ϵ follows

$$\epsilon = \frac{1}{(1+\gamma)^n} \rightarrow n = \frac{-\log \epsilon}{\log (1+\gamma)}$$

Therefore, for a given requirement in error reduction, the complexity of **algorithm 1** is bounded by

$$\frac{m}{\log(1+\gamma)} = m\left(\frac{1}{\gamma} + \frac{1}{2} - \frac{\gamma}{12} + \frac{\gamma^2}{24} - \ldots\right)$$

where m is the number of multiplications required to complete each iteration. From the Taylor series expansion, we can see that the dominant behaviour for small γ is $O(\gamma^{-1})$. Therefore, for small γ , the overall run-time complexity of the SIM is given by

$$O\left(\frac{N^2T + NT^2}{\log(1+\gamma)}\right) \approx O\left(\frac{N^2T + NT^2}{\gamma}\right)$$
 (4.45)

The conjugate gradient method, by contrast, is known to have a theoretical time complexity of $O(\sqrt{\kappa})$, where κ is the condition number of the coefficient matrix Kelley [1995]. In our case, the coefficient matrix is given in equation (4.40) as $\mathbf{C} + \gamma \mathbf{I}$, and its associated condition number can be bounded.

Consider the definition for \mathbf{C} given in equation (4.41). Note that it can be described as the product of matrices, $\mathbf{C} = \mathbf{C}_1 \mathbf{C}_2 \mathbf{C}_1$ where

$$\mathbf{C}_1 = \mathbf{D}_{\mathbf{G}}, \quad \mathbf{C}_2 = \left(\mathbf{U}_T^{\top} \otimes \mathbf{U}_N^{\top}\right) \mathbf{D}_{\mathbf{S}} \left(\mathbf{U}_T \otimes \mathbf{U}_N\right)$$

The spectral radius $\rho(\mathbf{C}_1)$, is clearly 1, since the maximum output of $g(\cdot)$ on the domain \mathbb{R}^+ , and correspondingly the maximum element contained in the matrix \mathbf{G} , is 1. Similarly, $\rho(\mathbf{C}_2)$ is also 1. This is clear to see since it is already diagonalised in the basis $\mathbf{U}_T \otimes \mathbf{U}_N$, with the matrix \mathbf{S} being binary. Taking these facts together, and making use of equation (4.36), we see that the maximum eigenvalue of the matrix \mathbf{C} is 1. On the other hand, the minimum possible eigenvalue of \mathbf{C} is zero. This could occur if, say, \mathbf{G} represented a band-limited frequency response, i.e. \mathbf{G} contains zero elements. Clearly, this means \mathbf{C} transforms non-trivial vectors to zero.

We know that the maximum possible eigenvalue of the matrix \mathbf{C} is 1, and the minimum possible eigenvalue is 0. Accordingly, the maximum eigenvalue of the coefficient matrix $\mathbf{C} + \gamma \mathbf{I}$ is $1 + \gamma$ and the minimum is γ . This gives an upper bound for the condition number.

$$\kappa \le \frac{1+\gamma}{\gamma} \tag{4.46}$$

This limits the time complexity of the whole procedure stated in **algorithm 2** to an upper bound of

$$m\sqrt{\frac{1+\gamma}{\gamma}} = m\Big(\frac{1}{\sqrt{\gamma}} + \frac{\gamma}{2\sqrt{\gamma}} - \frac{\gamma^3}{8\sqrt{\gamma}} + \ldots\Big)$$

From this expansion, we can see that the dominant behaviour for small γ is $O(\gamma^{-1/2})$. Therefore, for small γ , the overall run-time complexity of the CGM is given by

$$O\left(\sqrt{\frac{1+\gamma}{\gamma}}\left(N^2T+NT^2\right)\right) \approx O\left(\frac{N^2T+NT^2}{\sqrt{\gamma}}\right)$$
 (4.47)

4.2.5 Image processing experiments

Hello

4.3 Kernel Graph Regression with Unrestricted Missing Data Patterns

Hello

4.3.1 Cartesian product graphs and KGR

Hello

4.3.2 Convergence properties

Hello

4.4 Regression with Network Cohesion

Hello

4.4.1	Regression with node-level covariates
Hello	
4.4.2	Convergence properties
Hello	
4.5	Multi-Dimensional Cartesian Product Graphs
Hello	
4.5.1	Fast computation with d -dimensional Kronecker products
Hello	
4.5.2	Signal reconstruction
Hello	
4.5.3	Kernel Graph Regression
Hello	

4.5.4 Regression with Network Cohesion

Chapter 5

Signal Uncertainty: Estimation and Sampling

- 5.1 Introduction
- 5.2 Posterior Estimation
- 5.2.1 Log-variance prediction
- 5.2.2 Estimation models
- 5.2.3 Query strategies
- 5.2.4 Comparison and analysis
- 5.3 Posterior Sampling
- 5.3.1 Perturbation optimization
- 5.4 Estimation vs Sampling
- 5.4.1 Experiments

Chapter 6

Working with Binary-Valued Graph Signals

- 6.1 Logistic Graph Signal Reconstruction
- 6.2 Logistic Kernel Graph Regression
- 6.3 Logistic Regression with Network Cohesion
- 6.4 Approximate Sampling via the Laplace Approximation

Chapter 7

Conclusions

7.1 Main Section 1

Appendix A

Appendix Title Here

Write your Appendix content here.

Bibliography

- Barik, S., Bapat, R. B., and Pati, S. (2015). On the laplacian spectra of product graphs. Applicable Analysis and Discrete Mathematics, 9:39–58.
- Barik, S., Kalita, D., Pati, S., and Sahoo, G. (2018). Spectra of graphs resulting from various graph operations and products: a survey. *Special Matrices*, 6:323 342.
- Bhatia, R. (1997). *Matrix analysis*. Number 169 in Graduate texts in mathematics. Springer, New York.
- Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23:298–305.
- Grassi, F., Loukas, A., Perraudin, N., and Ricaud, B. (2018). A time-vertex signal processing framework: Scalable processing and meaningful representations for time-series on graphs. *IEEE Transactions on Signal Processing*, 66(3):817–829.
- Grote, M. J. and Huckle, T. (1997). Parallel preconditioning with sparse approximate inverses. SIAM Journal on Scientific Computing, 18(3):838–853.
- Harzheim, E. (2005). Chapter 4 products of orders. In *Ordered Sets*, volume 7 of *Advances in Mathematics*. Springer-Verlag, New York.
- Hestenes, M. R. and Stiefel, E. (1952). Methods of conjugate gradients for solving linear systems. *Journal of research of the National Bureau of Standards*, 49:409–435.
- Imrich, W. and Klavžar, S. (2000). *Product Graphs: Structure and Recognition*. A Wiley-Interscience publication. Wiley.
- Isufi, E., Loukas, A., Simonetto, A., and Leus, G. (2017). Autoregressive moving average graph filtering. *IEEE Transactions on Signal Processing*, 65(2):274–288.
- Jiang, J. (2012). Introduction to spectral graph theory.
- Kaveh, A. and Alinejad, B. (2011). Laplacian matrices of product graphs: applications in structural mechanics. *Acta Mechanica*, 222:331–350.

Bibliography 32

Kelley, C. T. (1995). *Iterative Methods for Linear and Nonlinear Equations*. Society for Industrial and Applied Mathematics.

- Loukas, A. and Foucard, D. (2016). Frequency analysis of time-varying graph signals. In 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pages 346–350.
- Mieghem, P. v. (2010). *Graph Spectra for Complex Networks*. Cambridge University Press.
- Newman, M. (2018). Networks. Oxford University Press.
- Ortega, A., Frossard, P., Kovačević, J., Moura, J. M. F., and Vandergheynst, P. (2018). Graph signal processing: Overview, challenges, and applications. *Proceedings of the IEEE*, 106(5):808–828.
- Saad, Y. (2003). *Iterative Methods for Sparse Linear Systems*. Society for Industrial and Applied Mathematics, second edition.
- Sayama, H. (2016). Estimation of laplacian spectra of direct and strong product graphs. Discrete Applied Mathematics, 205:160–170.
- Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst, P. (2013). The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. *IEEE Signal Processing Magazine*, 30(3):83–98.