Boosting

Lecture 8b

Last time:

- 1. Ensemble Learning
- 2. Hard and soft voting classifiers
- 3. Bagging and Pasting
- 4. Random Forest
- 5. Feature Importance

Today: Learning Objectives

- 1. Teach machine how to recognize apples
- 2. Understand how boosting algorithm works
- 3. Demo and application of boosting
- 4. Go over Stacking method

1. How to teach machine to recognize apples?

Recognizing apples?

- Collect a set of real apples and plastic apples
- Observe some rules to tell them apart based on their characteristics

Real Apples

Plastic Apples

A question for you

Can you think of some simple rules to tell the difference between "real apples" and "plastic apples"?

Boosting Strategies

- 1. Have many rules (base classifiers) to vote on the decision
- Sequentially train rule that corrects mistakes of previous rule → focus on hard examples
- 3. Give higher **weight** to better rules

2. How boosting work: an example

Boosting vs. Bagging

- Similar to bagging, boosting combines a weighted sum of many classifiers, thus it reduces variance.
- One key difference: unlike bagging, boosting fit the tree to the entire training set, and adaptively weight the examples. Boosting tries to do better at each iteration, thus it reduces bias.
- In general: Boosting > Bagging > Decision Tree

Why do Ensemble Learning Work?

Based on one of 2 basic observations:

- Variance reduction: if the training sets are completely independent, it will always help to average an ensemble because this will reduce variance without affecting bias (e.g. bagging)
- **Bias reduction:** for simple models, average of models can reduce bias substantially by increasing capacity, and control variance by fitting one component at a time (e.g. boosting)

Adaboost Algorithm (Proposed by Robert Schapire)

Training Data: $\mathbf{D} = \{(\mathbf{x}_i, y_i) | \mathbf{x}_i \in \mathcal{R}^n, y_i \in \{-1, 1\}, 1 \leq i \leq m\}$

Set uniform example weight $w_i, 1 \leq i \leq m$

For t = 1 to T iterations:

Select a base classifier: $h_t(\mathbf{x}_i) = rg \min(\epsilon_t)$

$$\epsilon_t = \sum\limits_{i=1}^m w_i [y_i
eq h_t(\mathbf{x}_i)]$$

Set classifier weight: $lpha_t = rac{1}{2} \ln rac{1 - \epsilon_t}{\epsilon_t}$

Update example weight: $w_i = w_i e^{-\alpha_t y_i h_t(\mathbf{x}_i)}$

Final Classifier: $\hat{f} = \mathrm{sign}\left(\sum_{t=1}^{L} \alpha_t h_t(\mathbf{x}_i)\right)$

3. Demo and Application

Demo in Python

Real Apple

Plastic Apple

Why use boosting?

- Fast and simple to code
- No hyper-parameter to tune (except for T)
- No prior knowledge needed about base classifier
- Flexible to combine with any learning algorithm

An application in Face Detection

- Viola-Jones Face Detector
- Uses Adaboost algorithm to combine lots of simple rules for face detection

Boosting (visual perspective)

4. Stacking

Stacking

Instead of using a trivial function (such as hard voting) to aggregate the predictions of the ensemble, we train a model to perform the aggregation.

Training the predictors

Training the blender

Prediction in a multilayer stacking ensemble

This resembles a neural network... (more on that later in this course)

Today: Learning Objectives

- 1. Teach machine how to recognize apples
- 2. Understand how boosting works
- 3. Demonstrate boosting on a toy dataset and application
- 4. Go over Stacking

Next is Unsupervised Learning: Clustering and Dimensionality Reduction

Bonus Slides

Adaboost Face Detection Results

Summary: Variance-Bias Tradeoff

We always try to minimize two sets of errors:

Variance: error from sensitivity to small fluctuations in the training set

Bias: error from the assumptions in the model

Variance-bias decomposition is a way of analyzing the generalization error as a sum of 3 terms: variance, bias and irreducible error (resulting from the problem itself)

Various Loss Functions

