Yingzhu (Jacqueline) Zhang

Students I have consulte with for this assignment:

- 1. Diego Lanao
- 2. Liam Bench
- 3. Jake Shor
- 4. Nate Marshalls
- 5. Maurice Hayward
- 6. Tyler Reid
 - 1. 3.3.10 **Solution:**

(See attached paper.)

2. 3.3.11 Solution:

(See attached paper.)

3. 3.4.1

Solution:

key	E	A	S	Y	Q	U	T	I	О	N
value	5	1	19	25	17	21	20	9	15	14
hash	0	1	4	0	2	1	О	4	0	4

^{*} We hash by using hash function 11k%M, where M=5

∴ The table index is:

O	1	2	3	4
Е	A	Q		S
Y	U			I
T				N
Ο				

4. 3.4.6

Solution:

Proposition: For a modular hash function with prime M, two keys that are interger differring by 2^p with $p \in N$ have different hash values.

Proof:

We prove by contradiction.

Suppose the proposition above is false, which is, for a modular hash function with prime M, two keys that are interger differring by 2^p with $p \in N$ have the same hash values

Then,

$$k\%M = (k-2^p)\%M$$

For key a , we have:
 $k = aM + r, a \in \mathbb{N}$
For key b , we have:
 $k - 2^p = bM + r, b \in \mathbb{N}$
 $aM + r = bM + r + 2^p$
 $(a - b)M = 2^p$

If $(a - b)M = 2^p$, both sides would have to contain M. However, this is not possible for the right side of the equation given that $M \neq 2$. This is because 2^p only gives prime factorization with values of 2 without M.

Following that, the contradiction of the proposition is false.

... The proposition "For a modular hash function with prime M, two keys that are interger differring by 2^p with $p \in N$ have different hash values" is *true*.

5. 3.4.7

Solution:

Proposition: Implementing modular hashing for integer keys with the code $(a \times k)\%M$, where a is an arbitrary fixed prime, will not mix up the bits sufficiently well that we can use nonprime M.

Proof:

We prove this by example.

We first randomly select some number, 25, 37, 48, 91, 145; and sets a to be a prime number 2, M to be 4 (or 2^2)

Then, the table index would be:

 \therefore As shown above, implementing modular hashing for integer keys with the code $(a \times k)$ %M, where a is an arbitrary fixed prime, will not mix up the bits sufficiently well that we can use nonprime M.

6. 3.4.13

Solution:

Scenario *a* leads to expected linear running time for a random search hit in a linear-probing hash table.

Explanation:

If all keys hash to the same index, then the *i*th key inserted requires *i* times of loopups to be found.

Because the probability of looking up *i*th key is 1/n, as it is random,

 \therefore All keys hash to the same index results into an expected linear running time.

7. 3.3.15

Solution:

$$\frac{N(N+1)}{2}$$

Proof:

To insert N keys into an initially empty table using linear probing with array resizing, we are increasing the size of the array. For instance, we start with i[0] and add to i[1]. As we keep incrementing the index, we are also incrementing the number of compares required in such a fashion:

item	1	1	1	 , which results 1, 2, 3,, $\frac{N(N+1)}{2}$ compares.
index	О	1	2	 which results $1, 2, 3,, -\frac{1}{2}$ compares.