Tweedie's Formula and Selection Bias

Bradley Efron

Stanford University

Selection Bias

- Observe $z_i \sim \mathcal{N}(\mu_i, 1)$ for i = 1, 2, ..., N
- Select the *m* biggest ones:

$$z_{(1)} > z_{(2)} > z_{(3)} > \cdots > z_{(m)}$$

- Question: What can we say about their corresponding μ values?
- Selection Bias The μ 's will usually be smaller than the selected z's.

Gamma example: z[i]~N(mu[i],1) i=1,2,...5000; green curve shows true mu values; blue dashes at right are 100 largest z's; red stars indicate the corresponding mu values

Tweedie's Formula

(Robbins, 1956)

- Bayes Model $\mu \sim g(\cdot)$ and $z|\mu \sim \mathcal{N}(\mu, 1)$
- Marginal Density $f(z) = \int_{-\infty}^{\infty} \varphi(z-\mu)g(\mu) d\mu$ $\left[\varphi = \frac{e^{-\frac{1}{2}z^2}}{\sqrt{2\pi}}\right]$
- Tweedie's Formula (Normal version)

$$E\{\mu|z\} = z + l'(z)$$

$$\uparrow \qquad \uparrow$$
MLE Bayes correction

• Advantage Only need f, not g.

Higher Moments

• Cumulant Generating Function of μ given z:

$$cgf(z) = \frac{1}{2}z^2 + l(z)$$
 $[l(z) = log f(z)]$

so
$$var\{\mu|z\} = 1 + l''(z)$$
, $skew\{\mu|z\} = \frac{l'''(z)}{[1 + l''(z)]^{3/2}}$, etc.

$$\mu|z\sim(z+l',1+l'')$$

Bayes Risk (C.-H. Zhang, 1997)

$$\mu^{\dagger} = E\{\mu|z\} : E\{(\mu^{\dagger} - \mu)^2\} = 1 - E\{l'(z)^2\}$$

Tweedie's Formula _

Empirical Bayes Estimates

• Use $z = (z_1, z_2, ..., z_N)$ to get estimate $\hat{f}(z)$, $\hat{l}(z) = \log \hat{f}(z)$; take

$$\mu_i | z_i \sim \left(z_i + \hat{l}'_i, 1 + \hat{l}''_i \right)$$

$$\widehat{\mu}_i \quad \widehat{\text{var}}_i$$

• Idea: Bayes estimates are immune to selection bias — maybe empirical Bayes estimates $\hat{\mu}_i$ are, too!

Maximum Likelihood Estimation of f(z)

• Parametric Model Suppose $l(z) = \log f(z) = \sum_{j=0}^{J} \beta_j z^j$, with MLE

$$\hat{l}(z) = \sum_{j=0}^{J} \hat{\beta}_j z^j.$$

• Lindsey's Method Histogram bins $Z = \bigcup_{k=1}^{K}$, $y_k = \#\{z_i \in Z_k\}$.

 \hat{l} from $glm(\mathbf{y} \sim poly(\mathbf{x}, J), Poisson)$

where **x** is vector of bin centers.

[Slide 2: K = 63 bins of width 0.2]

The James-Stein Estimator

- If $\mu_i \sim \mathcal{N}(0, A)$ and $z_i | \mu_i \sim \mathcal{N}(\mu_i, 1)$, then $z_i \sim \mathcal{N}(0, V = A + 1)$.
- log marginal density $l(z_i) = -z_i^2/2V$ Quadratic (J=2),

$$E\{\mu_i|z_i\}=z_i-\frac{z_i}{V}.$$

- James–Stein $\hat{\mu}_i = z_i \frac{z_i}{\hat{V}}$ where $\hat{V}^{-1} = \frac{(N-2)}{\|\boldsymbol{z}\|^2}$
- Tweedie estimates are a generalization of James-Stein.

Fitted curve lhat(z) for Gamma example, using Lindsey's method, natural spline model with J=5 degrees of freedom; points are log histogram counts

Estimated posterior expectation Ehat{mu|z}=z+lhat'(z); red stars are uhat[i]'s for largest 100 z[i]'s

Does "Tweedie" Cure Selection Bias?

- Simulations $\mu_i \sim \text{Gamma}$, and $z_i \sim \mathcal{N}(\mu_i, 1)$ for i = 1, 2, ..., N = 1000
- 100 Simulations: Select top 20 and bottom 20 z_i 's each time.
- Next histograms show $\hat{\mu}_i \mu_i$.
- Tweedie's formula works well even for N = 200.

Now for Bottom 20 per simulation

Tweedie's Formula _

Bayes Regret

(Muralidharan, 2009; Zhang, 1997)

- Regret $\operatorname{Reg}(z_0) \equiv E \left[\mu \hat{\mu}_z(z_0) \right]^2 E \left[\mu \mu^{\dagger}(z_0) \right]^2$ with $z = (z_i, \dots, z_N)$ and $\mu | z_0$ random, z_0 fixed.
- Reg (z_0) depends on accuracy of $\hat{l}_z'(z_0)$ as estimate of $l'(z_0) = \frac{d}{dz} \log f(z) \bigg|_{z_0}$

Reg
$$(z_0) = E \left[\hat{l}'_z(z_0) - l'(z_0) \right]^2$$

• Asymptotically $\operatorname{Reg}(z_0) \approx \operatorname{var}\left\{\hat{l}_z'(z_0)\right\} \doteq c(z_0)/N$

RMS Regret for Gamma Example

%ile	.9	.95	.99	.999
z-value	2.8	3.5	4.2	7.2
N = 250	.18	.17	.37	6.4
N = 500	.11	.10	.20	3.5
N = 1000	.09	.08	.15	1.5
$c(z_0)/1000$.08	.07	.13	.6

Empirical Bayes Information

- As N increases $\hat{\mu}_i$ goes from MLE z_i (N=1) to Bayes estimate μ_i^{\dagger} $(N=\infty)$
- Posterior Variability

$$E\left[\mu_i - \hat{\mu}_i\right]^2 = \text{var}_i^{\dagger} + \text{Reg}(z_i) \qquad \left(\text{var}_i^{\dagger} \approx 1\right)$$

- $\hat{\mu}_i$ undependable for most extreme few z_i 's
- Empirical Bayes Information (per "other" observation):

$$I(z_0) = \lim_{N \to \infty} \frac{1}{(N \cdot \text{Reg}(z_0))} = \frac{1}{c(z_0)}$$

$$\left[\text{Reg}(z_0) \approx \frac{1}{N \mathcal{I}(z_0)} \right]$$

Empirical Bayes information per observation Ireg(z0) for Gamma model. (Dashed curve for James-Stein)

CNV Data

(Efron and Zhang, 2010)

- Copy Number Variation 150 healthy controls measured at 5000 positions
- \hat{k}_i = estimated number of cnv subjects at position i, i = 1, 2, ..., N = 5000
- Bootstrapping Subjects $\implies \hat{k}_i \sim \mathcal{N}\left(k_i, \sigma_i^2\right)$ with σ_i^2 increasing in k_i
- Selected position i = 1755 with $\hat{k}_i = 35.3$ $\left(\sigma_i^2 \doteq 6.5\right)$
- Empirical Bayes inference for k_i ? (Don't need independence!)

k values vs position, cnv data

Tweedie's Formula

Tweedie's Formula _

log{fhat(k)} = lhat(k), CNV data; ns df=7; stars are log bin proportions

Tweedie's formula for Ehat{k | khat}

Which "Other Cases" are Relevant?

• EB estimate of k_{1755} depends on which other \hat{k}_i 's thought relevant:

Relevant Cases	1:5000	1:2500	1000:2000
$\hat{\mu}_{1755}$	34.6	32.3	29.4

- Large \hat{k} 's in 3000:5000 pull up estimate $\hat{\mu}_{1755}$
- Bayes Problem Relevant prior g(k) may depend on position

Gamma5000 example; solid red points are max values in successive groups of 50, with squares showing corresponding estimates Ehat{mu|z} from combined Empirical Bayes analysis. Upwardly biased!

Relevance

- Let $\rho_0(i)$ be relevance of case i to target case i_0
- Examples
 - (1) $\rho_0(i) = 1$ if $i \in i_0 \pm 500$; 0 otherwise
 - (2) $\rho_0(i) = \exp\{-|i i_0|/500\}$
- Extended Tweedie Formula

$$\hat{\mu}_{i_0} = z_{i_0} + \hat{l}'(z_{i_0}) + \frac{d}{dz} \log \hat{R}_0(z) \Big|_{z_{i_0}}$$

where $R_0(z) = E\{\rho_0(i)|z\}$ [Regress $\rho_0(i)$ on z_i to get $\hat{R}_0(z)$.]

• Using (1) or (2) cures bias on previous panel.

Non-Constant Variance

- If $z \sim \mathcal{N}(\mu, \sigma_0^2)$ then $E\{\mu|z\} = z + \sigma_0^2 l'(z)$ (took $\sigma_0 = 6.5$ for cnv)
- Suppose $z \sim \mathcal{N}(\mu, \sigma_{\mu}^2)$

Theorem
$$\frac{g(\mu|z_0)}{g_0(\mu|z_0)} = c_0 \lambda_{\mu} e^{-\frac{1}{2}(\lambda_{\mu}^2 - 1)\Delta_{\mu}^2} \begin{cases} \lambda_{\mu} = \sigma_0/\sigma_{\mu} \\ \Delta_{\mu} = (\mu - z_0)/\sigma_0 \end{cases}$$

where $\sigma_0 = \sigma_{\mu=z_0}$ and $g_0(\mu|z_0)$ is distribution assuming constant $\sigma = \sigma_0$.

Tweedie's Formula

False Discovery Rates

- $\mu \sim g(\cdot) = \pi_0 \delta_0(\cdot) + \pi_1 g_1(\cdot)$ and $z | \mu \sim \mathcal{N}(\mu, 1)$
- $\pi_0 = \text{prior } \Pr\{\text{null}\}\$
- Then $fdr(z) = Pr\{null|z\} = \pi_0 \varphi(z) / f(z)$ ("local false discovery rate")

$$-\frac{d}{dz}\log f d\mathbf{r}(z) = z + l'(z) = E\{\mu|z\}$$

• Tail Area Fdr $\operatorname{Fdr}(z_0) = \operatorname{Pr}\{\operatorname{null}|z \leq z_0\} = \pi_0 \Phi(z_0) / F(z)$ where F(z) is cdf of mixture density f(z)

Prostate data z-values. N=6033 genes measured for each of 102 subjects; z-vals from two-sample t-stats comparing 52 prostate cancer patients with 50 healthy controls.

Empirical Bayes estimate Ehat{mu|z}

p-Value Selection Bias

- Observe z_1, z_2, \dots, z_N and select smallest values of $p_i = \Phi(z_i)$
- Significance?
- Benjamini–Hochberg Reject small values of $\widehat{\mathrm{Fdr}}_i = \pi_0 p_i / \widehat{F}(z_i)$, or large values of

$$-\log(\widehat{\operatorname{Fdr}}_i) = -\log(p_i) + \log(\widehat{F}(z_i)/\widehat{\pi}_0) \quad \text{(usually } \widehat{\pi}_0 = 1)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

EB estimate frequentist EB correction estimate

-log{pvalue} (dashed) and -log{Fdr} (solid) for prostate data, right-sided

References

- Efron, B. and Zhang, N. (2010). False discovery rates and copy number variation, http://stat.stanford.edu/~brad/.
- Muralidharan, O. (2009). High dimensional exponential family estimation via empirical Bayes, under review.
- Robbins, H. (1956). An empirical Bayes approach to statistics. In *Proc. 3rd Berkeley Symposium*. Berkeley: UC Press, 157–163.
- Zhang, C.-H. (1997). Empirical Bayes and compound estimation of normal means. *Statist. Sinica* 7: 181–193.