MICHIGAN STATE

AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Wrap-up of Hypothesis Testing & Intro to Stata November 21, 2017

> Nicole Mason Michigan State University Fall 2017

> > MICHIGAN STATE

Announcement

- SIRS (Student Instruction Rating System)
 evaluation forms will be available starting Monday
 (Nov. 27)
- I value your comments and feedback, and take them seriously, so please fill out the SIRS!
- There is an option to submit open-ended comments at the end >> a great place for you to write specific feedback on what I've done well or suggestions on how to improve the course
- All feedback is completely anonymous
- Thanks in advance! I've enjoyed working with you!

MICHIGAN STATE

Reminder

• Ch. 10 HW due next Tuesday (Nov. 28)

2

MICHIGAN STATE

GAME PLAN

- Return graded in-class exercise
- Review
- Wrap-up hypothesis testing (esp. finding type II error and sample size)
- Answer questions on Ch. 10 HW or class material
- Intro to Stata

3

Review MICHIGAN STATE UNIVERSITY

Type I vs. Type II error

		REALITY	
		NULL HYPOTHESIS	
		TRUE	FALSE
STUDY FINDINGS	TRUE		Type II error (β) 'False negative'
	FALSE	Type I error (α) 'False positive'	

- Type I error: reject H₀ when H₀ is true
 - Probability: α (significance level)
- Type II error: fail to reject H_0 when H_0 is false (& H_1 is true)
 - Probability: β
 - When computing β , need to do so for particular values of α and the target parameter under H_1

Calculating the probability of Type II error (β)

<u>General approach</u> for H_0 : $\theta = \theta_0$ vs. H_1 : $\theta > \theta_0$ for a specific value of the target parameter under H_1 (call it θ_1 , where $\theta_1 > \theta_0$) and α

Steps

- 1. Find the cutoff for the RR in terms of Z (**under H**₀ and for the **given** α), then express it in terms of the estimator, $\hat{\theta}$. Let k be this cutoff value for $\hat{\theta}$, i.e.: RR = $[k,\infty)$
- 2. $P(\text{Type II error}) = P(\text{fail to reject H}_0 \text{ in favor of H}_1 \text{ when H}_0 \text{ is false and H}_1 \text{ is true})$ = $P(\hat{\theta} \text{ is not in the rejection region when H}_0 \text{ is false and H}_1 \text{ is true})$ = $P(\hat{\theta} \le k \text{ when H}_0 \text{ is false and H}_1 \text{ is true, i.e., when } \theta = \theta_1)$

Find this probability by converting k to a Z-statistic **under H**₁, i.e.:

$$P(z \le Z = \frac{k - \theta_1}{\sigma_{\hat{\theta}}})$$

Note: Will need to reverse signs in steps if H_1 : $\theta < \theta_0$

Finding the sample size for Z-tests

- In Example 10.8, with N=36 and α=0.05, we calculated that β=0.36 → high P(Type II error)
- A key way to reduce β is to increase the sample size
- The flip side of determining β given N and α is to determine N given desired values of α and β
- Suppose you want to test H_0 : $\mu = \mu_0$ vs. H_1 : $\mu > \mu_0$ for given values of α and β (and where β is evaluated at specific value $\mu_1 > \mu_0$ under H_1). Then:

Sample size for a one-tailed Z-test for μ for given levels of α , β , μ_0 (value of μ under H_0) and μ_I (value of μ under H_I): $N = \frac{(z_\alpha + z_\beta)^2 \sigma^2}{(\mu_I - \mu_0)^2}$ rounded up to the nearest whole number

Same formula works for H_1 : $\mu < \mu_0$. See WMS p. 509 for proof.

Finding the sample size for Z-tests - example

Example 10.9 in WMS

Find the sample size, N, for testing H_0 : μ =15 vs. H_1 : μ =16 with α = β =0.05. Assume a variance of 9. (Context is the average # of calls/week made by salespeople at a large corporation.)

Sample size for a one-tailed Z-test for μ for given levels of α , β , μ_0 (value of μ under H_0) and μ_1 (value of μ under H_1): $N = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu - \mu_1)^2}$ rounded up to the nearest whole number

8

MICHIGAN STATE

The "power" of statistical tests

- We have discussed β=P(Type II Error)
 =P(fail to reject H₀ when H₀ is false and H₁ is true)
- The "power" of a statistical test is 1-β, i.e., the probability that we do reject H₀ when H₀ is false and H₁ is true. More power is better than less power!
 - As with β , the power of a test depends on the parameter value specified under $H_1\left(\theta_1\right)$
- How does β change as N increases?
- So how does power change as N increases?

The "power" of statistical tests (cont'd)

- Final note on power:
 - Do you think statistical tests have more power for parameter values under $H_1(\theta_1)$ that are close to or farther away from the value under the $H_0(\theta_0)$? Why?
 - It is easier to detect that H_0 is false (more power) when θ_1 is **farther** from θ_0

Figure: A typical power curve for the test of H_0 : $\theta=\theta_0$ vs. H_1 : $\theta=\theta_1$ for various values of θ_1

Summary

- In Chapters 8 and 9, we talked about how to estimate numerical values of target parameter θ
 - Point estimates & confidence intervals (CIs)
 - Desirable properties of estimators (consistency, unbiasedness, efficiency, low MSE)
 - Methods of estimation (MOM, MLE, least squares)
- In Chapter 10, we talked about:
 - Testing hypotheses related to θ for large samples, and for μ for small samples
 - The relationship between hypothesis testing and CIs
 - p-values
 - Probabilities of Type I (α) and Type II (β) errors, and the power of a statistical test (1-β) → these probabilities tell us how 'good' our inferences are (i.e., how much faith we can put in the results of our hypothesis tests)
 - · Computing the sample size for Z tests

12

MICHIGAN STATE UNIVERSITY

After Thanksgiving: Simple Linear Regression

- Theory and Stata implementation
- Hurray!!!

MICHIGAN STATE

Questions on Ch. 10 HW or class material?

14

MICHIGAN STATE

Getting Started with Stata

- Do-file and dataset are on D2L >>
 "Stata data- and do-files, and other resources" >>
 Lecture 1 frequencies, histograms, & summary stats
 (We didn't have time for this the 1st day of class.)
- · Go through do-file

other resources" on D2L

 (Time-permitting) Go through some topics in "Wooldridge – Rudiments of Stata" document. PDF & data file (WAGE1.DTA) are in "Stata data- and do-files, and

Homework:

• **All Ch. 10 HW is due on Tuesday, Nov. 28

Remaining lectures – only 4 left – time flies!

 4 classes after Thanksgiving break: introduction to OLS (hurray!) and course wrap-up

Reading for Tuesday after break

- Optional: WMS Ch. 11 (sections 11.1-11.3)
- Required: Wooldridge Introductory Econometrics (2003) pp. 22-37 – on D2L

16