

Astroinformatics school - "Rise of the machines"

4 to 6 February 2019 Presented by Rebecca Lange and Dan Marrable

Convolutional Neural Networks

•••

Curtin Institute for Computation

What is a convolutional neural network (CNN)

Most commonly used for analyzing visual imagery

Image classification

Object detection

Image segmentation

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

LeNET-5 One of the first ever CNNs

What is a convolution?

A convolution is an integral that expresses the amount of overlap of one function as it is shifted over another function. It therefore "blends" one function with another.

$$(fst g)(t) \stackrel{ ext{def}}{=} \int_{-\infty}^{\infty} f(au)g(t- au)\,d au \ = \int_{-\infty}^{\infty} f(t- au)g(au)\,d au.$$

Descretised Convolution in 2D

\mathbf{f}_1	f_2	f_3
f_4	f_5	f_6
f_7	f ₈	f_9

h ₉	h ₈	h ₇
h ₆	h ₅	h ₄
h ₃	h ₂	h ₁

$*h = f_1 h_9 + f_2 h_8 + f_3 h_7$
$+ f_4 h_6 + f_5 h_5 + f_6 h_4$
$+ f_7 h_3 + f_8 h_2 + f_9 h_1$

Image filters

Features

Learning Features

Alexnet Filters

What Do the Layers See?

Feature Visualization

How neural networks build up their understanding of images

Feature visualization allows us to see how GoogLeNet[1], trained on the ImageNet[2] dataset, builds up its understanding of images over many layers. Visualizations of all channels are available in the appendix.

Convolutions on the hidden layers

Strides

Max Pooling

Reduces the dimensionality without losing too much information

Reduces the number of parameters to train

Makes the network invariant to small transformations, distortions and translations

Max Pooling

Padding

Fully connected layer

Piecing it all together

Data Augmentation

Artificially increases data size

Prevents overfitting

Dropout

Used for regularisation

Prevents overfitting

Can be applied to input and hidden layers - not final layer

Example

Online Demo

Object Detection

You Only Look Once - YOLO

Examples: Transfer Learning - object detection

Examples: Image segmentation

Examples: Counting craters to estimate the age of planetary surfaces

Research Team: A/Prof. Gretchen Benedix, A/Prof. Jonathan Paxman, Dr. Martin Towner, Dr. Anthony Lagain, Mr. Chris Norman, Prof. Tele Tan, Prof. Phil Bland

CIC Specialists: Dr. Kevin Chai, Shiv Meka

Examples Rooftop segmentation to estimate urban sprawl

Research Team: Peiyu Li, Kexiang Xu, Dr. Mohammad Swapan, Dr. Cecilia Xia

CIC Specialist: Shiv Meka

Examples: Benthic Habitat Mapping

Detecting faults in Fin Fans from acoustic sensors

Team: Dr. Kristofer McKee, Dr. Amir Amin, Prof. Ian Howard, Jack Wiltshire (Cisco), Nathan Jombwe (Cisco)

CIC specialist: Shiv Meka

Web links

- https://towardsdatascience.com/convolutional-neural-networks-for-all-part-i-cdd282ee7947
- https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f4035931
 8721
- https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
- http://neuralnetworksanddeeplearning.com/chap5.html
- http://mathworld.wolfram.com/Convolution.html
- https://distill.pub/2017/feature-visualization/