G Luku 1 Yksinkertainen korrespondenssianalyysi

Jussi Hirvonen

versio 1.5.7, tulostettu 2020-07-06

Sisällys

1	Dat	29	4
_	1.1	Luvun 1 tavoitteet	5
	1.2	Perhe ja muuttuvat sukupuoliroolit - ISSP:n kyselytutkimuksen	0
	1.2	data 2012	5
	1.3	Substanssimuuttujat, taustamuuttujat, muut	7
	1.4	Aineiston rajaaminen	8
	1.5		23
	1.6	v i	25
2		sinkertainen korrespondenssianalyysi - kahden luokittelu-	
		U	59
	2.1	v	62
	2.2	Korrespondenssianalyysin käsitteet	84
3	Tul	kinnan perusteita	34
4	Yks 4.1 4.2	sinkertaisen korrespondenssianalyysin laajennuksia 1 9 Täydentävät muuttujat (supplementary points)	
5	Yks 5.1 5.2	sinkertaisen korrespondenssianalyysin laajennuksia 2 Päällekkäiset matriisit (stacked matices)	35
		t - vanha Galku - 5.6.2019 versio 1.5.1 Uusi Galku - 2.2.202 1.5.5, 4.2.2020 versio 1.5.6, 24.2.2020 versio 1.5.7	20
		an datan käsittelyn koodilohkot, kopiodaan mahdollisesti hyödyllisitkät tiedostoon siivous1.R (30.1.2020).	et
		datan luku- ja muunnosskriptit (treeni2-projektista), korjaillaan virhei vidaan koodia.(31.1.2020)	tä
(2.	(2.20)	Toimii johdattelevaan esimerkkiin asti, myös PDF-tulostus. Kuvio	en

otsikot vähän mitä sattuu, ja 'profiilikuviin asti maa-muuttujan järjestys "väärä", ts. eri kuin vanhemmissa versoissa. Korjattu, lisättiin johdattelevan esimerkin dataan myös maakoodi jossa Saksan ja Belgian jako (V3).

(4.2.20) Versio 1.5.6 - Galku toimii loppuun asti, tarkistettava ja editoitava. Poistetaan tarpeetonta tekstiä, vanha koodi voi jäädä selvästi merkittynä.

(24.2.20) Versio 1.5.7. Pieniä ja isompiakin korjailuja, koodin siistimistä jne. (27.3.20) Muutetaan hieman karttojen koodilohkoja, html-tulosteessa kuvasuhde 1 mutta pdf-tulosteessa ei. (8.4.20)

HISTORIAA

6.8.2018 versio 1.0

Siistitään -> 12.8.2018 versio 1.05

Kommentit ja korjaukset -> 4.9.2018 versio 1.1

puuttuva riviprofiilikuva, siistimmät interaktiomuuttujien koodaukset, ensimmäinen "pinottu taulu" - analyysi -> 19.9.2018 versio 1.2

25.9.2018 siistitään datan käsittelyä; ei huomioida puuttuvan tiedon tarkempaa koodausta (read_spss - funktion user_na = TRUE asetus)

1.10.2018 Versio 1.3

Muutokset tarkemmin Readme.md - tiedostossa.

Uusi jakso yksinkertaisen CA:n laajennuksille, joissa otetaan analyysiin useampia muuttujia "pinoamalla" ja/tai yhdistämällä taulkoita. Tässä jaksossa otetaan myös käyttöön isompi aineisto (enemmän maita ja muuttujia). Siisti koodipätkä täydentävien muuttujien lisäämiseen.

3.10.2018 Versio 1.4

Siistitään pois turhat datan listaukset. Aineiston rajaaminen selkeäksi. Ensin kuusi maata, sitten 27 (Espanja pois). Valitaan myös muuttujat, jotta käsiteltävän datan listaukset ovat järkevämpiä. Aineistossa esim. Espanjan ja muutaman Unkarin poikkeavien vastausvaihtoehtojen vastaukset ovat omina muuttujina, ja niiden arvo muille havainnoille on NAP (Not applicaple). Samoin paljon maakohtaisia muuttujia, esim. koulutustaso. Mukaan otetaan vain kv-vertailuihin kelpaavat muuttujat, muutama sellainen on myös aineistoon rakennettu. Jätetään pois kaikki perhesuhteisiin liittyvät kysymykset (esim. kotitöiden jakaminen) ja taustatiedot (esim. rahankäyttö, puolison eri tiedot jne.), koska muuten jouduttaisiin miettimään miten näiden osalta käsitellään perheettömiä. Muutamia muuttujia otetaan mukaan (lasten lkm jne.).

8.10.2018

Datan valinta. Data-jaksossa aluksi, voi miettiä siirtääkö esimerkki-lukuun ja "pinotut taululut" - luvun alkuun kuvailut. Tavallaan siistiä, jos alussa lyhyesti.

10.10.2018

Maiden ja muuttujien valinta. TOPBOT halutaan mukaan, joten USA ja GB on jätettävä pois. Muuttuja on kuitenkin hankala, usealla maalla puuttuva tieto yli 10 prosentissa, ja muutamalla nolla tai ihan muutamia. Pohditaan aikanaan. 5.112.18Puuttuvat tiedot ovat puuttuvia, ei voi mitään. Jos vähän ja selviä virheitä (ikä, sukupuoli), voidaan pudottaa havainnot. Muuten mukaan, periaatteessa.

Data-jaksosta siirretään aineiston laajentamisen yhteyteen laajemman muuttujajoukon deskriptiiviset tarkastelu. Taulukko muuttujakuvauksesta jää data-lukuun. 5.12.18 Puuttuneisuuden taulukointia on, mutta siisti NA-taulukko puuttu.

11.10.2018 Versio 1.4

- paperitulosteessa v1.3 kommentteja karttoihin ja ca:n numeerisiin tuloksiin, samoin muuttujalistauksiin.
- paperitulosteessa v1.4 samoin, ja puuttuneisuuden taulukointeja

 ${\bf 11.10.2018}$ aloitetaan versio ${\bf 1.5}$ - pieniä muutoksia ja kommentteja, aloitetaan uusi versio $1.51\ 5.12.2018$

6.12.2018 1.5.1 - as_factor - funktio käyttöön; testaillaan miten toimii kun (a) user na - arvoja ei lueta ja (b) puuttuvat ovat mukana.

Muistilista:

- 1. Taulukot ja kuvat luvusta 2. alkaen eivät ole "bookdown-muodossa". CAtulokset on tulostettu siisteinä taulukoina Bookdown-demo dokumentissa. Voi tulostaa myös ca-outputin. Ominaisarvojen taulukko keskeneräinen, samoin "scree plot" kuvana puuttuu.
- 2. Osa kuvista (esim. profiilikuva) pitää varmaan tulostaa pdf-muodossa ja ottaa capaper-dokkariin include_graphics funktiolla.
- 3. Puuttuvia tai mahdollisesti lisättäviä taulukoita (nämä saa ca-funktion tuloksista suoraan)
- khii2 etäisyydet riveille ja sarakkeille on tulostettu ilman muotoiluja (11.10.18)
- massoilla painotetut khii2-etäisyyden keskiarvorivistä/sarakkeesta?
- 4. Kuvissa vielä hiottavaa, pdf-kuvia lisäilty img-hakemistoon.
- 5. Data-tiedostojen nimeäminen (27.12.18)
- **ISSP2012*.data** täysi aineisto
- **ISSP2012*jh1.data** valikoitu aineisto (maat, muuttujat)
- **ISSP2012*esim1.dat** muuttujien muunnoksia ja uusia muuttujia; analyyseissä käytettävä data, tarkenne dat.
 - 6. kasitteet1.rmd taulukko käsitteistä ja tärkeimmistä ISSP-dokumenteista

Historiaa (11.10.18)

Vanhoja kommentteja

- kirjastot/paketit ladataan jokaisessa Rmd-dokumentissa
- bib-formaatin viitetietokantaa tullaan kokeilemaan
- kuvasuhde (aspect ratio) edelleen epäselvä juttu! Mutta näyttää PDFtulosteessa olevan ok.
- Datan käsittely ja hallinta +SPSS:n sallima kolme puuttuvan tiedon koodia saadaan mukaan read_spss-funktion (haven) parametrilla USER_NA = TRUE (mutta tarkistettava!) (25.4.18)
 - faktoreita ei ainakaan toistaiseksi muuteta ordinaaliasteikolle, CA ei tästä välitä
 - pidetään muuttujien ja tiedostojen nimeäminen selkeänä, tarkistetaan aika ajoin
- Taulukot: lisättiin riviprosentti- ja sarakeprosenttitaulut (25.4.18), kuva riviprofiileista puuttu vielä (15.5.2018)
- Datan esittelyssä on turhaa välitulostusta, ja samoin vähän muuallakin. Html on helpompi lukea, kun koodi on oletuksena piilossa
- PDF-tulosteessa koodi pääsääntöisesti näkyy toistaiseksi
- kokeiluja CA-karttojen tulostamiseen (a) suoraan koodilla ja (b) r-grafiikkaikkunasta tallennetun pdf-kuvan avlla. Paras toistaiseksi (a), jätin kokeilu näkyviin. Analyysit R:n grafiikkaikkunassa, jotta asp=1, ja tulkintaa varten voi tallentaa PDF-muodossa.
- rakenteeseen muutoksia (näkyvät sisällysluettelossa), ei erillistä teorialiitettä vaan sopivina annoksina. Lukuun 3 perusasiat, kaavat, määritelmät
- tehdään käsitetaulukko (kirjoittamista varten)
- 20.5.2018 (a) tulkita-osuuteen karttakuvia ja ca-tulokset (b) siistimpi taulukoiden tulostus löytyi (c) kaavaliite laajeni (dispo-haarassa)
- 23.5.2018 lisätään dataan toinen maa-muuttuja maa2, ikäluokkamuuttuja age_cat ja iän ja sukupuolen vuorovaikutusmuuttuja ga.
- 24.5.2018 lisättiin ca-kartta, jossa Saksan ja Belgian ositteet ja summarivit täydentävinä (passiivisina)

1 Data

edit 30.1.20 Siivotaan, luodaan faktori-muuttujat heti alussa koko datalle. Uusi G1_1_data_fct1.Rmd tekee muunnokset.

Historiaa

edit tässä luvussa on paljon siistittävää, mutta data on ok. (13.5.2018). edit capaper - dokumentissa parempi uusi jäsentely (4.9.2018) edit ISSP-datan perustietoa dokumentissa ISSP_data1.docx (4.9.2018) edit 24.9.18 Poistettiin turhaa, uusi versio tiedostosta (G1 1 data1.Rmd -> G1 1 data2.Rmd).

1.1 Luvun 1 tavoitteet

Datan esittely ja kuvailut - tämä luku täysin uusiksi (24.9.18)

10.10.2018 maat ja muuttujat valittu.

- 1. Eksploratiivinen ja graafinen menetelmä tarvitseen aineiston, hankalaa esitellä jollain synteettisellä esimerkkiaineistolla. edit Eksp&graaf menetelmät määriteltävä johdantoluvussa.
- 2. CA (ja MCA) sopivat isojen moniulotteisten ja mutkikkaiden aineistojen analyysiin, siksi iso aineisto. Samalla analyysiä voi laajentaa moneen suuntaan. ${\bf V}$ Benzecri: "kun data menee miljoonaan suuntaan".
- 3. Aineiston esittely, laajan kyselytutkimusaineiston tyypilliset ominaisuudet
- 4. Laadukkaan ja hyvin dokumentoidun aineiston edut
- 5. Huom! CA sopii ja sitä on käytetty myös hyvin toisen tyyppisiin aineistoihin (esim. ekologia ja biologia, arkeologia, kielen tutkimus)

1.2 Perhe ja muuttuvat sukupuoliroolit - ISSP:n kyselytutkimuksen data 2012

luvun pitäisi olla mahdollisimman lyhyt (5.12.18)

Hieman historiaa datasta, sosiaalisesti määräytyneet sukupuoliroolit (gender) tutkimusaiheena neljässä ISSP:n kyselytutkimuksessa. *

Tärkeät linkit - ISSP 2012 data

Toimivat html-tulosteessa, PDFtiedostoissa saa toimimaan (vaati tarkat formatoinnit Rmd-koodissa).

www.issp.org, tutkimushankkeen historiaa. Löytyy myös bibliografia tutkimuksista, joissa aineistoja on käytetty.

www.gesis.org - tutkimuksen "sihteeristö", dokumentaatio ja datat.

data ja dokumentaatio (selattavissa): zacat.gesis.org

edit tässä järkevä viite ISSP - dataan ISSP Research Group (2016): International Social Survey Programme: Family and Changing Gender Roles IV - ISSP 2012. GESIS Data Archive, Cologne. ZA5900 Data file Version 4.0.0, doi:10.4232/1.12661 Alla myös suora linkki

Linkitys dokumentteihin on hankalaa

- monta portaalia, joista pääsee monien organisaationimien taakse
- tärkeimmät linkit ISSP-tutkimuksen "kotisivu" ja selkeät **muuttujakuvaukset ja muut tiedot**

• käytännössä linkittäminen "syvälle" johonkin sivustoon tai www-palveluun ei ole järkevää, parempi antaa selkeät viitetiedot ja tiedot organisaatioista. Ne säilvvät, tai jäljille pääsee.

Edit Refworksiin on kerätty viitteitä, tässä pärjätään kolmen saitin osoitteilla. Alla linkkejä jotka eivät näy PDF-tulosteessa, lisätty tekstinä.

[Muuttujakuvaukset ja muut tiedot] (http://zacat.gesis.org/webview/index.jsp?object=http://zacat.gesis.org/obj/fStudy/ZA5900) http://zacat.gesis.org/webview/index.jsp?object=http://zacat.gesis.org/obj/fStudy/ZA5900

Suomenkielinen lomake (ZA5900_q_fi-fi.pdf) Suomessa yhteiskuntatiete
ellinen tietoarkisto

Data ja dokumentit **vie vain aineiston dokumentoinnin etusivulle** https://dbk.gesis.org/dbksearch/sdesc2.asp?no=5900&db=e

GESIS-palvelun datan yleiset käyttöehdot, viittauskäytännöt Käyttöehdot:

Havaintojen lukumäärät voi tarkistaa täältä http://zacat.gesis.org/webview/in dex.jsp?object=http://zacat.gesis.org/obj/fStudy/ZA5900. **Dokumentointisivusto/katalogi, jossa helppo navigoida** zacat.gesis.org.

Dokumentointi on hyvin tarkka, tiedot löytyvät haastattelumenetelmista (parerilomake, tietokoneavusteinen haastattelu, jne), maakohtaisten taustamuuttujien harmonisoinnista maittain, otantamenetelmistä jne. Esittelen vain aineiston tärkeimmät rajaukset. Monitorointiraportti kertoo puuttuneisuuden määrän, otantamenetlmät jne maittain. "Code book" kertoo muuttujien määritelmät sekä yhteisille että maakohtaisille muuttujille. Kaikista muuttujista on taulukko maittain. Lisätään vielä raportti kyselylomakkeen laadinnasta ja linkki Yhteiskunnalliseen tietoarkistoon.

ISSPdocsT.df <- data_frame(issp_docname, issp_docdesc, issp_docfile)

```
# knitr::kable(ISSPdocsT.df, booktab=TRUE)

# varoituksia data_framen käytöstä, toimisiko tibble()? (21.2.20)
ISSPdocsT.tbl <- tibble(issp_docname, issp_docdesc, issp_docfile)
colnames(ISSPdocsT.tbl) <- col_isspdocs
knitr::kable(ISSPdocsT.tbl, booktab = TRUE)</pre>
```

dokumentti	sisältö	tiedosto
Variable	Perusdokumentti,	ZA5900_cdb.pdf
Report	muuttujien kuvaukset ja taulukot	
Study	tiedokeruun toteutus eri	$ZA5900$ _mr.pdf
Monitoring	maissa	
Report		
Basic	Maittain sovellettava	$ZA5900_bq.pdf$
Questionnaire	kyselylomake	
Contents of	substanssikysymykset	ZA5900_overview.pdf
ISSP 2012	taulukkona	
module		
Questionnaire	kyselylomakkeen	$ssoar-2014-scholz_et_al-$
Development	laatiminen	ISSP_2012_Family_and_Chang

1.3 Substanssimuuttujat, taustamuuttujat, muut

zxy capaper - dokumentissa uusi jäsentely (4.9.2018)

zxy Aineiston luonne: maakohtaisesti eri tavoin kerätty data, jossa pyritään yhtenäisiin käytäntöihin ja tietosisältöihin. Silti myös substanssikysymyksissä eroja, isoja ja pienempiä. Näin vain on, en pohdi miksi. Ei ole mitenkään ainutlaatuista. Aineiston editoinnissa ja tiedonkeruun suunnittelussa on nähty paljon vaivaa vertailukelpoisuuden vuoksi. Tästä esimerkkejä, esim. "mitä puoluetta äänestit".

zxy yksi kappale: Aineitoa on harmonisoitu, kysymyksiä hiottu, vertailukelpoisuuteen on pontevasti pyritty. Silti eroja löytyy, osa ymmärrettäviä (lisäkysymykset jne) ja osa ei (Espanja!). Tällaista on kansainvälisen kyselytutkimuksen data.

Paremipi muotoilu: Varsinaiset substanssimuuttujat eli kyselylomakkeet on koitettu hioa mahdollisimman yhdenmukaisiksi. Silti pieniä eroja löytyy, ja isojakin (Espanja on pudottanut neutraalin "en samaa enkä eri mieltä" - vaihtoehdon pois, ja Unkarissakin on muutamat vastausvaihtoehdot valittu omalla tyylillä). Taustamuuttujissa on pyritty samaan, ja aineistoon on myös rakennettu kansainvälisesti vertailukelpoisia muuttujia kansallisesti kerätyistä tiedoista. Näitä ovat erityisesti tuloihin liittyvät tiedot, ja mone muutkin. Muuttujat jakautuvat

substanssi- ja taustamuuttujiin, ja taustamuuttujista monet tiedot on kerätty kansallisiin ainiestossa maan kirjantunnisteella alkaviin muuttujiin.

zxy HUOM! Dataa ei ole kerätty vain kansainvälisiin vertailuhihin! Sitä voi ja ehkä pitäisikin analysoida maa kerrallaan, ja vertailla näitä tuloksia. (#V Blasiuksen artikkeli, jossa arvioidaan yhden ISSP-tutkimuksen vertailukelpoisuutta. Kysymykset eivät kovin hyvin näytä toimivan samalla tavalla eri maissa.)

1.4 Aineiston rajaaminen

1. Eurooppa ja samankaltaiset maat (25)

Pois 13: Argentiina, Turkki, Venezuela, Etelä-Afrikka, Korea, Intia, Kiina, Taiwan, Filippiinit, Meksiko, Israel, Japani, Chile.

Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Great Britain, Ireland, Latvia, Lithuania, Norway, Poland, Sweden, Slovakia, Slovenia, Spain, Switzerland, Australia, Austria, Canada, Croatia, Iceland, Russia, United States, Belgium, Hungary, Netherlands, Portugal (28) - Espanja, Iso-Britannia, USA pois -> 25 maata (11.10.18)

Espanja jätettiin pois, koska siellä kysymyksissä jätettiin pois neutraali vaihtoehto ("en puolesta enkä vastaan / en osaa sanoa"). USA ja GB pois koska kiinnostava TOPBOT-muuttuja puuttuu (puuttui 11.10.18, sittemmin USA:n ainestoa on täydennetty).

(24.2.20) Aineistosta valittiin ensin joukko suhteellisen samankaltaisia kehittyneitä teollisuusmaita. Sitten valittiin osa kysymyksistä, ja vielä suppeampi valikoima kiinnostavia taustamuuttujia. Muutama maa pudotettiin pois tämän valinnan jälkeen.

3. kaikki havainnot, joissa on puuttuvia tietoja.

Johdattelevassa esimerkissä on kolme muuttujaa, ei ongelma, aika vähän puuuttuvia.

Isomman 25 aineiston osalta tarkistetaan, mitä "listwise deletion" saa aikaan. Aineisto pienenee nopeasti, ja vaikeasti hahmotettavalla tavalla. Tämä erävastauskato ei ole tutkielman ydinaihe, mutta laajemman aineiston käytössä se täytyy ottaa huomioon. Yksikkövastauskatoa ei käsitellä, tutkimuksen toteutuksen raporteissa on kerrottu tarkemmin miten kyselyn toteuttajat ovat tämän huomioineet. Yksikkövastauskato eli otokseen poimitut joita ei ole tavoitettu ollenkaan on kansallisen tason ongelma, joka on ratkaistu vaihtelevin tavoin. Tiedot löytyvät aineiston dokumentaatiosta. Aineistossa on myös mukana maakohtaiset painomuuttujat, mutta ei painoja maiden vertailuun. Vastausprosentit (response rate) vaihtelevat maittain, kts. monitoring report. (edit toistoa! 24.2.20)

CA:n eräs etu on se, että muuttujien oletetaan olevan luokitteluasteikon (nominaaliasteikon) muuttujia, ja puuttuva havainto on yksi luokka lisää. Puuttuvat havainnot otetaan mukaan laajemmassa aineistossa myös siksi, että CA ja MCA

edellyttävt yleensä useamman muuttujan analyyseissä sitä. Jokaisen kahden muuttujan parittaisen ristiintaulukoinnin reunajakaumien pitää olla samoja.

4. Datan hallinta - reproducible research- periaate

edit 24.2.20 Vanhoja perusideoita

Aineistoa käsitellään ja muokataan niin, että jokaisen analyysin voi mahdollisman yksinkertaisesti toistaa suoraan alkuperäisestä datasta.

Aineiston muokkauksen (muuttujien ja havaintojen valikointi, muunnokset ja uusien muuttujien luonti jne.) dokumentoidaan r-koodiin.

zxy 3.10.18

R-spesifiä: R-koodissa tarkemmin, kaikki yksityiskohdat.

Kun SPSS-tiedosto luetaan R:n data frame - tiedostoksi, mukana tulee myös metadata. Uusien muuttujien luonnissa tai data-formaatin vaihtuessa (esim. matriisiksi, taulukoksi jne) metadata katoaa. Siksi muuttujien tyyppimuunnokset (yleensä faktorointi) tallennetaan uusiksi muuttujiksi, metatieto säilyy vanhassa muuttujassa.

Helposti toistettava tutkimus: polku alkuperäisestä datasta analyysien dataan selkeä (ja lyhyt jos mahdollista).

Puuttuva tieto voidaan koodata monella tavalla (ei halua vastata jne), ja SPSS (datan jakelutiedosto) sallii kolme koodia puuttuville tiedoille. Ne voi lukea Rdataan, mutta puuttuneisuutta ei tässä työssä tutkita sen tarkemmin. Detaljit R-koodissa (haven-paketin read spss-funktion user na -optio, ei käytetä tässä).

```
Tiedostonimistä (10.10.18, 30.1.20, 11.2.20)
```

ISSP2012.data - täysi aineisto, luetaan SPSS-tiedostosta ISSP2012jh1.data - valittu osa aineistosta (maat, muuttujat) ISSP2012*.jh1.dat - valittu osa aineistosta, luotu uusia muuttujia ja muunnettu muuttujia. Alkuperäiset muuttujat säilytetään, voi aina tarkistaa ja verrata. ISSP2012esim1, 2 jne, tarkenne .dat rajattuja aineistoja joissa uusia muuttujia ja muuttujien nimiä. Näitä luodaan analyvsin eri vaiheissa.

zxy R-koodiin jätetään myös tarkistuksia yms. joita ei raportoida tässä, samoin niiden tuloksia. Voiko R-koodi olla fingelskaa? Olkoon toistaiseksi.

DATA RAJAAMISTA - maat(5.10.2018)

```
# Aineiston rajaamisen kolme vaihetta (10.2018)
#
# TIEDOSTOJEN NIMEÄMINEN
#
# R-datatiedostot .data - tarkenteella ovat osajoukkoja koko ISSP-datasta ISSP2012.data
# R-datatiedostot .dat - tarkenteella: mukana alkuperäisten muuttujien muunnoksia
# (yleensä as_factor), alkuperäisissä muuttujissa mukana SPSS-tiedoston metadata.
```

```
# Luokittelumuuttujan tyyppi on datan lukemisen jälkeen yleensä merkkijono (char)
# ja haven_labelled.
# Muutetaan R-datassa ordinaali- tai nominaaliasteikon muuttujat haven-paketin
# as_factor - funktiolla faktoreiksi. R:n faktorityypin muuttujille voidaan tarvittaessa
# määritellä järjestys, toistaiseksi niin ei tehdä (25.9.2018).
# Muunnetun muuttujan rinnalla säilytetään SPSS-tiedostosta luettu muuttja, metatiedot säil:
# alkuperäisessä.
# R-datatiedostot joiden nimen loppuosa on muotoa *esim1.dat: käytetään analyyseissä
# 1. VALITAAN MAAT (25) -> ISSP2012jh1a.data. Muuttujat koodilohkossa datasel_vars1
# kolme maa-muuttujaa datassa. V3 erottelee joidenkin maiden alueita, V4 on koko
# maan koodi ja C_ALPHAN on maan kaksimerkkinen tunnus.
# V3 - Country/ Sample ISO 3166 Code (see V4 for codes for whole nation states)
# V3 erot valituissa maissa
# 5601 BE-FLA-Belgium/ Flanders
# 5602 BE-WAL-Belgium/ Wallonia
# 5603 BE-BRU-Belgium/ Brussels
# 27601 DE-W-Germany-West
# 27602 DE-E-Germany-East
# 62001 PT-Portugal 2012: first fieldwork round (main sample)
# 62002 PT-Portugal 2012: second fieldwork round (complementary sample)
# Myös tämä on erikoinen, näyttää olevan vakio kun V4 = 826:
# 82601 GB-GBN-Great Britain
# Portugalissa ainestoa täydennettiin, koska siinä oli puutteita. Jako ei siis ole oleellin
# mutta muuut ovat. Tähdellä merkityt maat valitaan johdattelevaan esimerkkiin.
# Maat (25)
# 36 AU-Australia
# 40 AT-Austria
# 56 BE-Belgium*
# 100 BG-Bulgaria*
# 124 CA-Canada
# 191 HR-Croatia
# 203 CZ-Czech Republic
# 208 DK-Denmark*
# 246 FI-Finland*
# 250 FR-France
# 276 DE-Germany*
```

```
# 348 HU-Hungary*
# 352 IS-Iceland
# 372 IE-Ireland
# 428 LV-Latvia
# 440 LT-Lithuania
# 528 NL-Netherlands
# 578 NO-Norway
# 616 PL-Poland
# 620 PT-Portugal
# 643 RU-Russia
# 703 SK-Slovakia
# 705 SI-Slovenia
# 752 SE-Sweden
# 756 CH-Switzerland
# 826 GB-Great Britain and/or United Kingdom - jätetään pois jotta saadaan TOPBOT
                           -muuttuja mukaan (top-bottom self-placement) .(9.10.18)
# 840 US-United States - jätetään pois, jotta saadaan TOPBOT-muuttuja mukaan.(10.10.18)
# Belgian ja Saksan alueet:
# V3
# 5601
           BE-FLA-Belgium/ Flanders
# 5602
          BE-WAL-Belgium/ Wallonia
          BE-BRU-Belgium/ Brussels
# 5603
# 27601
           DE-W-Germany-West
# 27602
           DE-E-Germany-East
# Unkari (348) toistaiseksi mukana, mutta joissain kysymyksissä myös Unkarilla on
# poikkeavia vastausvaihtoehtoja(HU_V18, HU_V19,HU_V20). Jos näitä muuttujia käytetään,
# Unkari on parempi jättää pois.
# (25.4.2018) user_na
# haven-paketin read_spss - funktiolla voi r-tiedostoon lukea myös SPSS:n sallimat kolme
# (yleensä 7, 8, 9) tarkempaa koodia puuttuvalle tiedolle.
# "If TRUE variables with user defined missing will be read into labelled_spss objects.
# If FALSE, the default, user-defined missings will be converted to NA" \,
# https://www.rdocumentation.org/packages/haven/versions/1.1.0/topics/read_spss
ISSP2012jh.data <- read_spss("data/ZA5900_v4-0-0.sav") #luetaan alkuperäinen data R- dataks
#str(ISSP2012jh.data)
incl_countries25 <- c(36, 40, 56,100, 124, 191, 203, 208, 246, 250, 276, 348, 352,
```

372, 428, 440, 528, 578, 616, 620, 643, 703, 705, 752, 756)

```
#str(ISSP2012jh.data) #61754 obs. of 420 variables - kaikki

ISSP2012jh1a.data <- filter(ISSP2012jh.data, V4 %in% incl_countries25)

#head(ISSP2012jh1a.data)
#str(ISSP2012jh1a.data) #34271 obs. of 420 variables, Espanja ja Iso-Britannia
# pois (9.10.2018)

# str(ISSP2012jh1a.data) # 32969 obs. of 420 variable, Espanja Iso-Britannia,
# USA pois (10.10.2018)

# names() # muuttujen nimet
# Maakohtaiset muuttujat (kun on poikettu ISSP2012 - vastausvaihtoehdoista tms.)
# on aineistossa eroteltu maatunnus-etuliitteellä (esimerkiksi ES_V7).
# Demografisissa ja muissa taustamuuttujissa suuri osa tiedoista on kerätty maa-
# kohtaisilla lomakkeilla. Vertailukelpoiset muuttujat on konstruoitu niistä.
# Muuttujia on 420, vain osa yhteisiä kaikille maille.</pre>
```

DATAN RAJAAMISTA - MUUTTUJAT (5.10.2018)

SPSS-tiedostosta saadaan luettua haven-paketin read_spss-funktiolla paljon metatietoja.

```
# 2. VALITAAN MUUTTUJAT -> ISSP2012jh1b.data. Maat valittu koodilohkossa datasel_country1

#
# Muuttujat on luokiteltu dokumentissa ZA5900_overview.pdf
# https://zacat.gesis.org/webview/index.jsp?object=http://zacat.gesis.org/obj/fStudy/ZA5900
# Study Description -> Other Study Description -> Related Materials

#
# METADATA

metavars1 <- c("V1", "V2", "DOI")

#MAA - maakoodit ja maan kahden merkin tunnus

countryvars1 <- c("V3","V4","C_ALPHAN")

# SUBSTANSSIMUUTTUJAT - Attitudes towards family and gender roles (9)

#
# Yhdeksän kysymystä (lyhennetyt versiot, englanniksi), vastausvaihtoehdot Q1-Q2

# 1 = täysin samaa mieltä, 2 = samaa mieltä, 3 = ei samaa eikä eri mieltä,
# 4 = eri mieltä, 5 = täysin eri mieltä
```

```
# Q1a Working mother can have warm relation with child
# Q1b Pre-school child suffers through working mother
# Q1c Family life suffers through working mother
# Q1d Women's preference: home and children
# Q1e Being housewife is satisfying
# Q2a Both should contribute to household income
# Q2b Men's job is earn money, women's job household
# Q3a Should women work: Child under school age
# Q3b Should women work: Youngest kid at school
# 1= kokopäivätyö, 2 = osa-aikatyö, 3 = pysyä kotona, 8 = en osaa sanoa (can't choose), 9 =
# Kysymysten Q3a ja Q3b eos-vastaus ei ole sama kuin "en samaa enkä eri mieltä" (ns. neutr
# vaihtoehto), mutta kieltäytymisiä jne. (koodi 9) on aika vähän. Kolmessa
# maassa ne on yhdistety:
# (8 Can't choose, CA:can't choose+no answer, KR:don't know+refused, NL:don't know).
# Kun SPSS-tiedostosta ei ole tuotu puuttuvan tiedon tarkempaa luokittelua,
# erottelua ei voi tehdä.
#
substvars1 <- c("V5","V6","V7","V8","V9","V10","V11","V12","V13") # 9 muuttujaa
# Nämä yhteiset muuttujat pois (maaspesifien muuttujien lisäksi) :
# "V14", "V15", "V16", "V17", "V18", "HU_V18", "V19", "HU_V19", "V20", "HU_V20", "V21",
# "V28", "V29", "V30", "V31", "V32", "V33", # "V34", "V35", "V36", "V37", "V38", "V39",
# "V40", "V41", "V42", "V43", "V44", "V45", "V46", "V47", "V48", "V49", "V50",
# "V51", "V52", "V53", "V54", "V55", "V56", "V57", "V58", "V59", "V60", "V61",
# "V62", "V63", "V64", "V65", "V65a", "V66", "V67"
#
# DEMOGRAFISET JA MUUT TAUSTAMUUTTUJAT (8)
# AGE, SEX
# DEGREE - Highest completed degree of education: Categories for international comparison.
# Slightly re-arranged subset of ISCED-97
# O No formal education
# 1 Primary school (elementary school)
# 2 Lower secondary (secondary completed does not allow entry to university: obligatory sch
```

```
# 3 Upper secondary (programs that allow entry to university or programs that allow to entry
   other ISCED level 3 programs - designed to prepare students for direct entry into the b
# 4 Post secondary, non-tertiary (other upper secondary programs toward labour market or te
# 5 Lower level tertiary, first stage (also technical schools at a tertiary level)
# 6 Upper level tertiary (Master, Dr.)
# 9 No answer, CH: don't know
# Yhdistelyt?
# MAINSTAT - main status: Which of the following best describes your current situation?
# 1 In paid work
# 2 Unemployed and looking for a job, HR: incl never had a job
# 3 In education
# 4 Apprentice or trainee
# 5 Permanently sick or disabled
# 6 Retired
# 7 Domestic work
# 8 In compulsory military service or community service
# 99 No answer
# Armeijassa tai yhdyskuntapalvelussa muutamia, muutamissa maissa.Kategoriassa 9
# on hieman väkeä. Yhdistetään 8 ja 9. Huom! Esim Puolassa ei yhtään eläkeläistä
# eikä kategoriaa 9, Saksassa ei ketään kategoriassa 9.
# TOPBOT - Top-Bottom self-placement (10 pt scale)
# "In our society, there are groups which tend to be towards the top and groups
# which tend to be towards the bottom. Below is a scale that runs
# from the top to the bottom. Where would you put yourself on this scale?"
# Eri maissa hieman erilaisia kysymyksiä.
# HHCHILDR - How many children in household: children between [school age] and
# 17 years of age
# O No children
# 1 One child
# 2 2 children
# 21 21 children
# 96 NAP (Code 0 in HOMPOP)
# 97 Refused
# 99 No answer
# Voisi koodata dummymuuttujaksi lapsia (1) - ei lapsia (0).
# Ranskan datassa on erittäin iso osa puuttuvia tietoja ( "99"", n. 20 %), myös
# Austarlialla aika paljon. Sama tilanne myös muissa perheen kokoon liittyvissä
```

```
# kysymyksissä.
# MARITAL - Legal partnership status
# What is your current legal marital status?
# The aim of this variable is to measure the current 'legal' marital status '.
# PARTLIV - muuttujassa on 'de facto' - tilanteen tieto parisuhteesta
# 1 Married
# 2 Civil partnership
# 3 Separated from spouse/ civil partner (still legally married/ still legally
  in a civil partnership)
# 4 Divorced from spouse/ legally separated from civil partner
# 5 Widowed/ civil partner died
# 6 Never married/ never in a civil partnership, single
# 7 Refused
# 8 Don't know
# 9 No answer
# URBRURAL - Place of living: urban - rural
# 1 A big city
# 2 The suburbs or outskirts of a big city
# 3 A town or a small city
# 4 A country village
# 5 A farm or home in the country
# 7 Other answer
# 9 No answer
# 1 ja 2 vaihtelevat aika paljon maittain, parempi laskea yhteen. Unkarista puuttuu
# jostain syystä kokonaan vaihtoehto 5. Vaihotehdon 7 on valinnut vain 4 vastaajaa Ranskas
# Yhdistetään 1 ja 2 = city, 3 = town, rural= 4, 5, 7
bgvars1 <- c( "SEX", "AGE", "DEGREE", "MAINSTAT", "TOPBOT", "HHCHILDR", "MARITAL", "URBRURAL".
#Valitaan muuttujat
jhvars1 <- c(metavars1,countryvars1, substvars1,bgvars1)</pre>
#jhvars1
ISSP2012jh1b.data <- select(ISSP2012jh1a.data, all_of(jhvars1))</pre>
# laaja aineisto - mukana havainnot joissa puuttuvia tietoja
# hauska detalji URBRURAL - muuttujan metatiedoissa viite jonkun työaseman hakemistoon
# str(ISSP2012jh1b.data) #32969 obs. of 23 variables
```

```
# SUBSTANSSIMUUTTUJAT
#
       ..- attr(*, "label")= chr "Q1a Working mom: warm relationship with children as a not wor
  ..- attr(*, "labels")= Named num 0 1 2 3 4 5 8 9
# ISSP2012jh1b.data$V5 näyttää tarkemmin rakenteen
# glimpse(ISSP2012jh1b.data)
# str(ISSP2012jh1b.data) # 32969 obs. of 23 variables
# Poistetaan havainnot, joissa ikä (AGE) tai sukupuolitieto puuttuu (5.7.2019)
ISSP2012jh1c.data <- filter(ISSP2012jh1b.data, (!is.na(SEX) & !is.na(AGE)))
str(ISSP2012jh1c.data) # 32823 obs. of 23 variables, 32969-32823 = 146
## tibble [32,823 x 23] (S3: tbl_df/tbl/data.frame)
            : dbl+lbl [1:32823] 5900, 5900, 5900, 5900, 5900, 5900, 5900, 5900...
                  : chr "GESIS Data Archive Study Number"
##
     ..@ label
     ..@ format.spss: chr "F4.0"
##
                  : Named num 5900
     ..@ labels
     ... - attr(*, "names")= chr "GESIS Data Archive Study Number ZA5900"
            : chr [1:32823] "4.0.0 (2016-11-23)" "4.0.0 (2016-11-23)" "4.0.0 (2016-11-23)"
##
##
    ..- attr(*, "label")= chr "GESIS Archive Version"
    ..- attr(*, "format.spss")= chr "A25"
##
    ..- attr(*, "display_width")= int 26
            : chr [1:32823] "doi:10.4232/1.12661" "doi:10.4232/1.12661" "doi:10.4232/1.126
##
   $ DOI
    ..- attr(*, "label") = chr "Digital Object Identifier"
##
    ..- attr(*, "format.spss")= chr "A50"
##
    ..- attr(*, "display_width")= int 26
            ##
   $ V3
##
                   : chr "Country/ Sample ISO 3166 Code (see V4 for codes for whole nation
     ..@ label
     ..@ format.spss: chr "F5.0"
##
##
                   : Named num [1:45] 32 36 40 100 124 152 156 158 191 203 ...
     ..@ labels
     ....- attr(*, "names")= chr [1:45] "AR-Argentina" "AU-Australia" "AT-Austria" "BG-Bu
##
            ##
   $ V4
##
                  : chr "Country ISO 3166 Code (see V3 for codes for the sample)"
     ..@ label
     ..@ format.spss: chr "F3.0"
##
##
                  : Named num [1:41] 32 36 40 56 100 124 152 156 158 191 ...
     ... - attr(*, "names")= chr [1:41] "AR-Argentina" "AU-Australia" "AT-Austria" "BE-Be
   $ C ALPHAN: chr [1:32823] "AU" "AU" "AU" "AU" ...
##
    ..- attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
    ..- attr(*, "format.spss")= chr "A20"
```

```
..- attr(*, "display_width")= int 22
##
   $ V5
            : dbl+lbl [1:32823] 5, 1, 2, 2, 1, NA, 2, 4, 2, 2, 4, 2, ...
                   : chr "Q1a Working mom: warm relationship with children as a not working
##
     ..@ format.spss: chr "F1.0"
##
     ..@ labels
                  : Named num [1:8] 0 1 2 3 4 5 8 9
     ... - attr(*, "names")= chr [1:8] "NAP: ES" "Strongly agree" "Agree" "Neither agree
##
            : dbl+lbl [1:32823] 1, 5, 4, 4, 4, NA, 4, 3, 4, 3, 5, 4, ...
                   : chr "Q1b Working mom: Preschool child is likely to suffer"
##
     ..@ label
##
     ..@ format.spss: chr "F1.0"
##
                  : Named num [1:8] 0 1 2 3 4 5 8 9
     ... - attr(*, "names")= chr [1:8] "NAP: ES" "Strongly agree" "Agree" "Neither agree i
           : dbl+lbl [1:32823] 3, 5, 2, 4, 4, NA, 4, 2, 4, 2, 2, 3, 4, ...
##
##
                   : chr "Q1c Working woman: Family life suffers when woman has full-time
     ..@ label
##
     ..0 format.spss: chr "F1.0"
##
     ..@ labels
                   : Named num [1:8] 0 1 2 3 4 5 8 9
     ...- attr(*, "names")= chr [1:8] "NAP: ES" "Strongly agree" "Agree" "Neither agree
##
##
   $ V8
            : dbl+lbl [1:32823] 3, 5, 5, 2, 4, NA, 4, 5, 4, 5, 3, 4, 4, ...
##
                   : chr "Q1d Working woman: What women really want is home and kids"
      ..@ format.spss: chr "F1.0"
##
     ..@ labels
                   : Named num [1:8] 0 1 2 3 4 5 8 9
##
     ... - attr(*, "names")= chr [1:8] "NAP: ES" "Strongly agree" "Agree" "Neither agree
   $ V9 : dbl+lbl [1:32823] 3, 1, 2, 3, 4, NA, 2, 4, 4, 1, 4, 2, 2, ...
                   : chr "Q1e Working woman: Being housewife is as fulfilling as working :
##
     ..@ label
##
     ..@ format.spss: chr "F1.0"
##
                  : Named num [1:8] 0 1 2 3 4 5 8 9
     ... - attr(*, "names")= chr [1:8] "NAP: ES" "Strongly agree" "Agree" "Neither agree
            : dbl+lbl [1:32823] 1, 3, 4, 2, 2, NA, 2, 5, 2, 1, 2, 2, ...
##
##
     ..@ label
                   : chr "Q2a Both should contribute to household income"
     ..@ format.spss: chr "F1.0"
                   : Named num [1:8] 0 1 2 3 4 5 8 9
##
     ..@ labels
     ... - attr(*, "names")= chr [1:8] "NAP: ES" "Strongly agree" "Agree" "Neither agree n
##
             : dbl+lbl [1:32823] 3, 5, 4, 4, 4, NA, 2, 5, 4, 1, 4, 4, ...
##
   $ V11
##
                   : chr "Q2b Men's job earn money, women's job look after home"
     ..@ label
      ..@ format.spss: chr "F1.0"
##
                   : Named num [1:8] 0 1 2 3 4 5 8 9
     ... - attr(*, "names")= chr [1:8] "NAP: ES" "Strongly agree" "Agree" "Neither agree
##
           : dbl+lbl [1:32823] 3, NA, NA, 2, 2, NA, 2, NA, 2, 3, 2, NA, ...
                   : chr "Q3a Should women work: Child under school age"
##
      ..@ label
     ..@ format.spss: chr "F1.0"
##
##
                   : Named num [1:6] 1 2 3 6 8 9
     ..@ labels
      ... - attr(*, "names")= chr [1:6] "Work full-time" "Work part-time" "Stay at home" "
            : dbl+lbl [1:32823] 2, NA, 2, 1, 2, NA, 2, NA, 2, 2, 2, 2, NA, ...
##
                   : chr "Q3b Should women work: Youngest kid at school"
##
     ..@ label
     ..@ format.spss: chr "F1.0"
##
                   : Named num [1:6] 1 2 3 6 8 9
      ... - attr(*, "names")= chr [1:6] "Work full-time" "Work part-time" "Stay at home" "
```

```
: dbl+lbl [1:32823] 1, 2, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2...
##
                    : chr "Sex of Respondent"
      ..@ label
      ..@ format.spss: chr "F1.0"
##
      ..@ labels
                    : Named num [1:3] 1 2 9
##
      ....- attr(*, "names")= chr [1:3] "Male" "Female" "No answer"
##
   $ AGE
             : dbl+lbl [1:32823] 58, 59, 40, 20, 72, 68, 64, 57, 45, 71, 19, 41, 68, ...
                    : chr "Age of respondent"
      ..@ label
      ..@ format.spss: chr "F3.0"
##
##
      ..@ labels
                    : Named num [1:6] 15 16 17 18 102 999
      ... - attr(*, "names")= chr [1:6] "15 years" "16 years" "17 years" "18 years" ...
    $ DEGREE : dbl+lbl [1:32823] 2, 5, 5, 3, 2, NA, NA, 6, 5, 6, 3, 5, 2, ...
                    : chr "Highest completed degree of education: Categories for internation
##
##
      ..@ format.spss: chr "F1.0"
##
                    : Named num [1:8] 0 1 2 3 4 5 6 9
##
      ... - attr(*, "names") = chr [1:8] "No formal education" "Primary school (elementary s
    $ MAINSTAT: dbl+lbl [1:32823] 6, 6, 3, 1, 6, 5, 6, 2, 1, 5, 3, 1, 6, 1, 1, 6, 6, 1...
##
      ..@ label
                    : chr "Main status"
##
      ..@ format.spss: chr "F2.0"
##
                    : Named num [1:10] 1 2 3 4 5 6 7 8 9 99
      ..@ labels
      ....- attr(*, "names")= chr [1:10] "In paid work" "Unemployed and looking for a job,
   $ TOPBOT : dbl+lbl [1:32823] 3, 7, 8, NA, 7, 2, 7, NA, 10, 6, 4, 5, NA, ...
                    : chr "Top-Bottom self-placement"
      ..0 format.spss: chr "F2.0"
##
                    : Named num [1:14] 0 1 2 3 4 5 6 7 8 9 ...
##
      ..@ labels
      ... - attr(*, "names")= chr [1:14] "Not available: GB, US" "Lowest, Bottom, 01" "02"
##
   $ HHCHILDR: dbl+lbl [1:32823] NA, NA, 3, 1, 0, NA, 0, 0, 1, NA, 0, 2, 0, ...
                    : chr "How many children in household: children between [school age] as
##
      ..@ label
##
      ..@ format.spss: chr "F2.0"
                    : Named num [1:7] 0 1 2 21 96 97 99
      ... - attr(*, "names")= chr [1:7] "No children" "One child" "2 children" "21 children
    $ MARITAL : dbl+lbl [1:32823] 6, 1, 1, 6, 1, 6, 1, 1, NA, 6, 1, 1, ...
                    : chr "Legal partnership status"
##
      ..@ label
     ..0 format.spss: chr "F1.0"
                    : Named num [1:9] 1 2 3 4 5 6 7 8 9
##
      ..@ labels
      ... - attr(*, "names")= chr [1:9] "Married" "Civil partnership" "Separated from spous
   $ URBRURAL: dbl+lbl [1:32823] 1, 1, 1, NA, 1, 2, NA, 2, 2, NA, 2, 3, ...
                    : chr "Place of living: urban - rural"
##
      ..@ format.spss: chr "F1.0"
                    : Named num [1:7] 1 2 3 4 5 7 9
      ... - attr(*, "names")= chr [1:7] "A big city" "The suburbs or outskirts of a big cit
   - attr(*, "notes") = chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
# TARKISTUS 8.6.20 dplyr 1.0.0 havaintojen ja muuttujien määrä ok.
```

ISSP2012jh1c.data %>% summary() %>% kable()

Metatietojen (3) ja maa-muuttujien (3) lisäksi aineistossa on seitsemäntoista muuttujaa. Yhdeksän muuttujaa ovat ns. substanssikysymysten vastauksia, joilla luodataan asenteita sukupuolirooleihin ja perhearvoihin. Taustamuuttujia on kahdeksan.

Yhdeksän kysymystä (lyhennetyt versiot, englanniksi), vastausvaihtoehdot

Vastausvaihtoehdot:

1=täysin samaa mieltä, 2=samaa mieltä, 3=ei samaa eikä eri mieltä, 4=eri mieltä, 5=täysin eri mieltä

Q1a Working mother can have warm relation with child Q1b Pre-school child suffers through working mother Q1c Family life suffers through working mother Q1d Women's preference: home and children Q1e Being housewife is satisfying Q2a Both should contribute to household income Q2b Men's job is earn money, women's job household

Q3a Should women work: Child under school age Q3b Should women work: Youngest kid at school

Vastausvaihtoehdot: "Work full-time" "Work part-time" "Stay at home", "Can't choose" $1=W,\ 2=w,\ 3=H,\ NA=6,8,9$ ei tässä eriteltynä. 6 on Taiwanin oma vastausvaihtoehto, 8= en osaa sanoa ja 9= no answer.

```
# Muuttuja taulukkona - karkea tapa
tabVarnames <- c(substvars1,bgvars1) # muuttujanimet muuttujille
# Kysymysten lyhyet versiot englanniksi
tabVarDesc <- c("Q1a Working mother can have warm relation with child ",
                "Q1b Pre-school child suffers through working mother",
                "Q1c Family life suffers through working mother",
                "Q1d Women's preference: home and children",
                "Q1e Being housewife is satisfying",
                "Q2a Both should contribute to household income",
                "Q2b Men's job is earn money, women's job household",
                "Q3a Should women work: Child under school age",
                "Q3b Should women work: Youngest kid at school",
                "Respondents age ",
                "Respondents gender",
                "Highest completed degree of education: Categories for international compar
                "Main status: work, unemployed, in education...",
                "Top-Bottom self-placement (10 pt scale)",
                "How many children in household: children between [school age] and 17 years
                "Legal partnership status: married, civil partership...",
                "Place of living: urban - rural"
```

```
#tabVarDesc
# Taulukko
# luodaan df - varoitus: data_frame() is deprecated, use tibble" (4.2.20),
# vaihdetaan tibbleen (21.2.20)
# jhVarTable1.df <- data_frame(tabVarnames, tabVarDesc) OLD</pre>
jhVarTable1.tbl <- tibble(tabVarnames,tabVarDesc)</pre>
cols_jhVarTable1 <- c("muuttuja", "kysymyksen tunnus, lyhennetty kysymys")</pre>
colnames(jhVarTable1.tbl) <- cols_jhVarTable1</pre>
str(jhVarTable1.tbl)
## tibble [17 x 2] (S3: tbl_df/tbl/data.frame)
## $ muuttuja
                                             : chr [1:17] "V5" "V6" "V7" "V8" ...
## $ kysymyksen tunnus, lyhennetty kysymys: chr [1:17] "Q1a Working mother can have warm re
# Suomalaiset pitkät kysymykset
vastf1 <- c("Q1a Työssäkäyvä äiti pystyy luomaan lapsiinsa aivan yhtä lämpimän
            ja turvallisen suhteen kuin äiti, joka ei käy työssä")
vastf2 <- c("Q1b Alle kouluikäinen lapsi todennäköisesti kärsii, jos hänen äitinsä käy työs
vastf3 <- c("Q1c Kaiken kaikkiaan perhe-elämä kärsii, kun naisella on kokopäivätyö.")
vastf4 <- c("Q1d On hyvä käydä töissä mutta tosiasiassa useimmat naiset haluavat
            ensisijaisesti kodin ja lapsia.")
vastf5 <- c("Q1e Kotirouvana oleminen on aivan yhtä antoisaa kuin ansiotyön tekeminen.")
vastf6 <- c("Q2a Sekä miehen että naisen tulee osallistua perheen toimeentulon hankkimiseen
vastf7 <- c("Q2b Miehen tehtävä on ansaita rahaa; naisen tehtävä on huolehtia kodista ja per
vastf8 <- c("Q3a Millä tavoin naisten pitäisi mielestäsi käydä työssä seuraavissa tilanteis
            Kun perheessä on alle kouluikäinen lapsi")
vastf9 <- c("Q3b Millä tavoin naisten pitäisi mielestäsi käydä työssä seuraavissa tilanteis
            Kun nuorin lapsi on aloittanut koulunkäynnin")
tabVarDesc_fi <- c(vastf1, vastf2, vastf3, vastf4, vastf5, vastf6, vastf7, vastf8, vastf9)
#tabVarDesc_fi
tabVarnames_subst <- c(substvars1)</pre>
\# jhVarTable1\_fi.df \leftarrow data\_frame(tabVarnames\_subst,tabVarDesc\_fi) OLD
jhVarTable1_fi.tbl <- tibble(tabVarnames_subst,tabVarDesc_fi)</pre>
cols_jhVarTable1 <- c("muuttuja","Kysymyksen tunnus, suomenkielisen lomakkeen kysymys")</pre>
colnames(jhVarTable1_fi.tbl) <- cols_jhVarTable1</pre>
# TAULUKODEN TULOSTUS
\# kable(booktab = T) \# booktab = T gives us a pretty APA-ish table
# Lyhyet kysymykset englanniksi
```

```
muuttuja kysymyksen tunnus, lyhennetty kysymys
V5
         Q1a Working mother can have warm relation with child
V6
         Q1b Pre-school child suffers through working mother
         Q1c Family life suffers through working mother
V7
V8
         Q1d Women's preference: home and children
V9
         Q1e Being housewife is satisfying
V10
         Q2a Both should contribute to household income
         Q2b Men's job is earn money, women's job household
V11
V12
         Q3a Should women work: Child under school age
V13
         Q3b Should women work: Youngest kid at school
SEX
         Respondents age
AGE
         Respondents gender
DEGREEHighest completed degree of education: Categories for international
         comparison
MAINSTAMain status: work, unemployed, in education...
TOPBOTTop-Bottom self-placement (10 pt scale)
HHCHILDHow many children in household: children between [school age] and
         17 years of age
MARITAILegal partnership status: married, civil partership...
URBRURAlace of living: urban - rural
```

muuttu**k**ysymyksen tunnus, suomenkielisen lomakkeen kysymys

V5 Q1a Työssäkäyvä äiti pystyy luomaan lapsiinsa aivan yhtä lämpimän

muuttu**k**ysymyksen tunnus, suomenkielisen lomakkeen kysymys

Kun
nuorin
lapsi
on
aloittanut
koulunkäynnin

```
# Taulukot voivat olla hankalia eristyisesti PDF-tulostuksessa, jos ne ovat
# monimutkaisia tai solujen "koot" (merkkiä/solu) vaihtelevat paljon.

# Kokeillaan taulukoiden yhdistämistä, jos aikaa jää. Ei luultavasti kannata, kun halutaan j
# html-tulostus samalla koodilla (26.12.18).
```

Tarkemmat kysymysten muotoilut poikkeavat tietysti hieman eri maiden välillä. Suomen lomakkeet täydelliset kysymykset voi tarkista tiedostosta ZA5900_q_fi-fi.pdf, löytyy zcat-sivustolta. Tarkemmat kuvaukset lähes tuhatsivuisessa koodi-kirjassa ZA5900_cdb.pdf (refworks-viite pitäisi löytyä, ja ISSP dokumentit kerrotaan luvun alussa).

Bookdown-versiossa taulukot omiksi koodilohkoiksi, ja fig.caption - optiolla taulukon otsikko.

Kysymyslomakkeen kuva, vai kuva liitteisiin? Liitteisiin.

```
knitr::include_graphics('img/substvar_fi_Q1Q2.png')
```

1.5 Datan valinnan vaiheet ja puuttuvat tiedot

edit 24.2.20 Toistoa

ks Perusasiat havaintojen puuttellisuudesta kyselytutkimusissa. Yksikkövastauskato (unit non-response), eräsvastauskato (item non-response). Mitä on raportoitava, kun käytetään valmista aineistoa? Erävastauskatoa analysoidaan, kun käytetään kaikkia valittuja muuttujia.

Yksikkövastauskato on otettu vaihtelevasti huomioon, kun kyselyn toteuttaja on editoinut ja tarkastanut datan. Eri maiden datassa on (mutta ei aina!) mukana painot mm. vastauskadon oikaiksemiseen **Viittet - tekninen raportti**. Myös selaimella voi zcat-sivustolla tutkailla kysymyksittäin.

Datakatalogi-dokumentista näkee vastausten jakauman jokaisen kysymyksen osalta, myös puuttuvien tietojen tarkemman koodauksen.

1. Valitaan 25 maata ja muuttujat

23.	Mitä mieltä olet seuraavista väittämistä? Rengasta jokaiselliviltä vain yksi vaihtoehto						
		Täysin samaa mieltä	Samaa mieltä	En samaa enkä eri mieltä	Eri mieltä	Täysin eri mieltä	En osa sano
a)	Työssäkäyvä äiti pystyy luomaan lapsiinsa aivan yhtä lämpimän ja turvallisen suhteen kuin äiti, joka ei käy työssä	1	2	3	4	5	8
b)	Alle kouluikäinen lapsi todennäköisesti kärsii, jos hänen äitinsä käy työssä	1	2	3	4	5	8
c)	Kaiken kaikkiaan perhe-elämä kärsii, kun naisella on kokopäivätyö	1	2	3	4	5	8
d)	On hyvä käydä töissä mutta tosiasiassa useimmat naiset haluavat ensisijaisesti kodin ja lapsia	1	2	3	4	5	8
e)	Kotirouvana oleminen on aivan yhtä antoisaa kuin ansiotvön tekeminen	1	2	3			
	·			3	4	5	8
24.	Mitä mieltä olet seuraavista väittämistä? Rengasta kummaltakin riviltä vain yksi vaihtoetito.	Täysin	Samaa	En samaa	Eri	Täysin er	i Enc
	Mitä mieltä olet seuraavista väittämistä? Rengasta kummaltakin riviltä vain yksi valhtoehto.						i Enc
	Mitä mieltä olet seuraavista väittämistä? Rengasta kunmaltekin nolla vain yksi vaihteelto. Sekä miehen että naisen tulee osallistua perheen toimeentulon hankkimiseen	Täysin samaa	Samaa	En samaa enkä eri	Eri	Täysin er	i Enc
a)	Mitä mieltä olet seuraavista väittämistä? Rengasta kummaltakin rivitta vain yksi vaihtoehto. Sekä miehen että naisen tulee osalliistua	Täysin samaa mieltä	Samaa mieltä	En samaa enkä eri mieltä	Eri mielta	Täysin er mieltä	En c sar
24. a) b)	Mittä mieltä olet seuraavista väittämistä? Rengssta kummaltakin rivittä vain yksi vaihtoehto. Sekä miehen että naisen tulee osallistua perheen toimeentulon hankkimiseen Miehen tehtävä on ansatia rahan, naisen tehtävä on huolehtia kodista ja perheesta	Täysin samaa mieltä 1 1	Samaa mletta 2 2 seuraavi	En samaa enka eri mieltä 3	Eri mielta 4 4	Täysin er mieltä	En c sar
a) b)	Mitä mieltä olet seuraavista väittämistä? Rengusta kunmaltakin niittä vain jisa vaihteelto. Sekä miehen että naisen tulee osallistua perheen toimeentulon hankkimiseen Miehen tehtävä on ansaata rahaa, naisen tehtävä on huolehtia kodista ja perheestä.	Täysin samaa mielta 1 1 i työssä	Samaa miettä 2 2	En samaa enka eri mieltä 3	Eri mielta 4 4	Täysin er mieitä 5 5	
a) b)	Mitä mieltä olet seuraavista väittämistä? Rengasta kummalaskin rivilta vain yksi vaihteerko. Sekä miehen että naisen tulee osallistua perheen toimeentulon hankkimiseen. Miehen tehtävä on ansata rahaa, naisen tehtävä on huolehtia kodista ja perheestä. Millä tavoin naisten pitäisi mielestäsi käydi. Rengasta kummalaskin rivilta vain yksi valitoelto.	Täysin samaa mieltä 1 1 i työssä käyd päivä	Samaa mieltä 2 2 seuraavi	En samaa enkä eri mieltä 3 3 ssa tilanteis	Eri mielta 4 4 pys	Täysin er mieitä 5 5 sya Er sona s	i En sa

Kuva 1: Suomen lomake

- 2. Johdattelevissa esimerkeissä valitaan kuusi maata ja kolme muuttujaa. Jätetään pois kaikki havainnot (vastaukset) joissa on puuttuvia tietoja ("listwise deletion")
- 3. Kun laajempi aineisto otetaan käyttöön, joudutaan pohtimaan miten puuttuvia havaintoja käsitellään. Jos kyse on selvistä virheistä (esim. haastateltavan ikä puuttu) havainnot jätetään pois, muuten mietitään.

Miten puuttuvia tietoja (erävastuskato, havainnossa puuttu joku tieto) käsitellään?

edit Tämä on vähän hämärää, ehkä pois? (30.1.20)

1. Miksi tieto puuttuu, mitä "puuttuva tieto" tarkoittaa?

Joissain kysymyksissä (V12, V13) puuttuvaksi tiedoksi kirjautuu vastaus ("en osaa sanoa") "ei vastausta" - vaihtoehdon lisäksi. Nämä mukaan.

Ikä ja sukupuoli: ilmeinen virhe, joten jätetään havainnot pois (näitä ei ole paljon).

2. Puuttuvien tietojen jakauma?

edit 24.2.20) Kun laajempi aineisto ja puuttuvat arvot otetaan mukaan analyysiin loppuluvuissa, vilkaistaa pikaisesti erävastauskadon rakennetta.

- 3. Onko puuttuvia tietoja tasaisesti eri maissa, vai vaihteleeko niiden suhteellinen osuus?
- 4. Onko joissain tai jossain maassa huomattava määrä puuttuvia tietoja?
- 5. Onko puuttuvia tietoja paljon vai vähän?

Tarkemmin puuttuneisuutta ei analysoida. Esimerkkejä löytyy (MG, CAiP ja "vihreä kirja"). Kaksi R-pakettia, joilla pikaisesti vilkaistaan dataa, ei vielä mukana tässä (24.2.20). edit Viite!

Koko aineistossa (valitut 25 maata) kysymyksen Q1b (muuttuja V6) vastauksista puuttuvia tietoja on 3,5 prosenttia (1219/34271). **Huom:** kun pudotetaan havainnot joilta SEX tai AGE puuttuu, N=32823. On oikea määrä (5.7.2019, kts. treeni2- projekti, Data_iso1.R).

edit Vanhoja koodilohkoja, olkoon toistaiseksi mukana (11.2.20)

Puuttuvien tietojen tarkempi koodaus ISSP-datassa:

0: Not applicable (NAP), Not available (NAV) 7: (97,997, 9997,...): Refused 8: (98, 998, 9998,...): Don't know 9: (99, 999, 9999,...): No answer

NAP ja NAV määritellään

"GESIS adds 'Not applicable' (NAP) codes for questions that have filters. NAP indicates that only a subsample and not all of respondents were asked. Also in the case of country spesific variables, all the other countries are coded NAP.

GESIS adds 'Not available' for variables, which in singe countries may not have been conducted for whatever reason."

1.6 Perusmuunnokset ISSP2012 - datalle

Datatiedosto on ISSP2012jh1.data, ja luokittelumuuttujat muunnetaan R:n factor- muuttujaksi.

Jokaisesta muuttujasta on kaksi versiota, toisessa puuttuvat tiedot ovat R:n "NA"- arvoja ja toisessa "NA"-arvo on eksplisiittinen muuttuja ("missing").

Substanssimuuttujien luokkien tunnukset (faktorilabelit, levels?) muutetaan graafisiin analyyseihin sopivan lyhyiksi. Taustamuuttujien luokittelua ja luokkien tunnuksia pohditaan, kun ne otetaan käyttöön.

TODO 30.1.20 Tarkistukset, varmistukset jne. (24.2.20) Lisätty muutama testi, paljon välitulostuksia joita voi tarvittaessa kommentoida koodista pois.

TODO 2.2.20 Muunnetaanko muuttujan maa (C_ALPHAN as_factor) järjestys heti samaksi kuin C_ALPHAN? Nyt tehdään G1_2_johdesim.Rmd:ssä. (24.2.20) tehty, muunnetaan heti alussa. Käytännössä kaikenlaisia korjailuja joutuu tekemään myös analyyseissä käytettävissä R-datoissa.

TODO 3.2.20 Aluejaon maakoodi V3 mukaan, pohditaan järjestykset jne luvussa G1_2_johdesim.Rmd. (24.2.20) tehty, järjesteään myös uusi muuttuja C_ALPHAN-järjestykseen.

1.6.1 Vaihe 1 - muuttujat joissa ei ole puuttuvia tietoja

Aineistosta on jätetty pois ne havainnot, joissa ikä (AGE) tai sukupuoli (SEX) on puuttuva tieto. Aika paljon tarkistuksia, kolmen maa-muuttujaa järjestetään C_ALPHAN - muuttujan järjestykseen. Ikä-muuttuja säilyy numeerisena. Ensimmäiseen faktori-tyypin muuttujaan jää tyhjänä luokkana puuttuva tieto, luokka poistetaan.

```
# VAIHE 1 - muuttujat joissa ei ole puuttuvia tietoja
# vaihe 1.1 haven_labelled ja chr -> as_factor
ISSP2012jh1d.dat <- ISSP2012jh1c.data %>%
    mutate(maa = as_factor(C_ALPHAN), # ei puuttuvia, ei tyhjiä leveleitä
           maa3 = as_factor(V3), # maakoodi, jossa aluejako joillan mailla
           sp1 = as_factor(SEX), # ei puuttuvia, tyhjä level "no answer" 999
         )
# C_ALPHAN - maa - maa3 tarkistuksia
# V3
# "Pulma" on järjestys. C\_ALPHAN ("chr") on aakkosjärjestyksessä, kun luodaan
# maa = as_factor(C_ALPHAN) järjestys muuttuu (esiintymisjärjestys datassa?)
# maa3 muunnetaan maakoodista (haven_labelled' num), jonka
str(ISSP2012jh1d.dat$maa) #Country Prefix ISO 3166 Code - alphanumeric
   Factor w/ 25 levels "AU", "AT", "BG", ...: 1 1 1 1 1 1 1 1 1 1 1 ...
   - attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
# attributes(ISSP2012jh1d.dat$maa) # ei tyhiä levels-arvoja, 25 levels
# ISSP2012jh1d.dat$maa %>% fct_unique()
# ISSP2012jh1d.dat$maa %>% fct_count() # summary kertoo samat tiedot (20.2.20)
# sum(is.na(ISSP2012jh1d.dat$maa)) # ei puuttuvia tietoja
ISSP2012jh1d.dat$maa %>% summary() # mukana vain valitut 25 maata
     AU
          ΑT
##
               BG
                    CA
                         HR
                              CZ
                                   DK
                                        FΙ
                                              FR
                                                   HU
                                                        IS
                                                             ΙE
                                                                  LV
                                                                       LT
                                                                            NL
                                                                                 NΩ
## 1557 1182 1003
                   953
                        997 1804 1403 1171 2409 1012 1172 1166 1000 1187 1315 1444
                                   BE
                                              PT
##
    PL
                    SI
                         SE
                              CH
                                        DE
          RU
               SK
## 1115 1525 1128 1034 1059 1237 2192 1761
                                            997
str(ISSP2012jh1d.dat$maa3) #"Country/ Sample ISO 3166 Code
   Factor w/ 45 levels "AR-Argentina",..: 2 2 2 2 2 2 2 2 2 2 ...
   - attr(*, "label")= chr "Country/ Sample ISO 3166 Code (see V4 for codes for whole nation
                            #(see V4 for codes for whole nation states)"
                            # 29 levels
```

```
str(ISSP2012jh1d.dat$V3)
: chr "Country/ Sample ISO 3166 Code (see V4 for codes for whole nation sta
## @ format.spss: chr "F5.0"
                : Named num [1:45] 32 36 40 100 124 152 156 158 191 203 ...
## @ labels
     ..- attr(*, "names")= chr [1:45] "AR-Argentina" "AU-Australia" "AT-Austria" "BG-Bulgar:
# attributes(ISSP2012jh1d.dat$maa3) # ei tyhiä levels-arvoja, 29 levels
# sum(is.na(ISSP2012jh1d.dat$maa3)) # nolla ei ole puuttuva tieto! (3.2.20)
# ISSP2012jh1d.dat$maa3 %>% fct_unique()
# ISSP2012jh1d.dat$maa3 %>% fct_count()
# Vain näissä on jaettu maan havainnot (3.2.20)
# [38] BE-FLA-Belgium/ Flanders
# [39] BE-WAL-Belgium/ Wallonia
# [40] BE-BRU-Belgium/ Brussels
# [41] DE-W-Germany-West
# [42] DE-E-Germany-East
# [43] PT-Portugal 2012: first fieldwork round (main sample)
# [44] PT-Portugal 2012: second fieldwork round (complementary sample)
# ISSP2012jh1d.dat$maa3 %>% fct_count() #miksi ei tulosta mitään? (3.2.2020)
# ISSP2012jh1d.dat$maa3 %>% summary()
# ISSP2012jh1d.dat$maa3 %>% fct_unique()
# maa3: 25 maata, havaintojen määrä. Poisjätetyissä havaintoja 0.
# glimpse(ISSP2012jh1d.dat$maa3)
# head(ISSP2012jh1d.dat$maa3)
# length(levels(ISSP2012jh1d.dat$maa3))
# C_ALPHAN alkuperäinen järjestys, maa aakkosjärjestyssä (2.2.20)
# Huom1: Myös merkkijonomuuttujaa C_ALPHAN tarvitaan jatkossa.
# Huom2: kun dataa rajataan, on tarkistettava ja tarvittaessa poistettava
# "tyhjät" R-factor - muuttujan "maa" luokat (3.2.2020)
# vaihe 1.2 tyhjät luokat (levels) pois faktoreista
ISSP2012jh1d.dat <- ISSP2012jh1d.dat %>%
   mutate(sp = fct_drop(sp1),
          maa3 = fct_drop(maa3))
# Poistetaan maa3-muuttujan tyhjät luokat (3.2.20)
```

```
# maa3 - tarkistuksia
# str(ISSP2012jh1d.dat$maa3) # 29 levels
attributes(ISSP2012jh1d.dat$maa3) #
## $levels
##
   [1] "AU-Australia"
   [2] "AT-Austria"
   [3] "BG-Bulgaria"
##
   [4] "CA-Canada"
##
##
   [5] "HR-Croatia"
   [6] "CZ-Czech Republic"
   [7] "DK-Denmark"
##
##
   [8] "FI-Finland"
## [9] "FR-France"
## [10] "HU-Hungary"
## [11] "IS-Iceland"
## [12] "IE-Ireland"
## [13] "LV-Latvia"
## [14] "LT-Lithuania"
## [15] "NL-Netherlands"
## [16] "NO-Norway"
## [17] "PL-Poland"
## [18] "RU-Russia"
## [19] "SK-Slovakia"
## [20] "SI-Slovenia"
## [21] "SE-Sweden"
## [22] "CH-Switzerland"
## [23] "BE-FLA-Belgium/ Flanders"
## [24] "BE-WAL-Belgium/ Wallonia"
## [25] "BE-BRU-Belgium/ Brussels"
## [26] "DE-W-Germany-West"
## [27] "DE-E-Germany-East"
## [28] "PT-Portugal 2012: first fieldwork round (main sample)"
## [29] "PT-Portugal 2012: second fieldwork round (complementary sample)"
##
## $label
## [1] "Country/ Sample ISO 3166 Code (see V4 for codes for whole nation states)"
##
## $class
## [1] "factor"
\#sum(is.na(ISSP2012jh1d.dat\$maa3)) \# nolla ei ole puuttuva tieto! (3.2.20)
# ISSP2012jh1d.dat$maa3 %>% summary()
# ISSP2012jh1d.dat$maa3 %>% fct_unique()
```

ISSP2012jh1d.dat\$maa3 %>% fct_count() # miksi ei tulosta? Tulostaa komentoriviltä!

f	n
AU-Australia	1557
AT-Austria	1182
BG-Bulgaria	1003
CA-Canada	953
HR-Croatia	997
CZ-Czech Republic	1804
DK-Denmark	1403
FI-Finland	1171
FR-France	2409
HU-Hungary	1012
IS-Iceland	1172
IE-Ireland	1166
LV-Latvia	1000
LT-Lithuania	1187
NL-Netherlands	1315
NO-Norway	1444
PL-Poland	1115
RU-Russia	1525
SK-Slovakia	1128
SI-Slovenia	1034
SE-Sweden	1059
CH-Switzerland	1237
BE-FLA-Belgium/ Flanders	1090
BE-WAL-Belgium/ Wallonia	543
BE-BRU-Belgium/ Brussels	559
DE-W-Germany-West	1205
DE-E-Germany-East	556
PT-Portugal 2012: first fieldwork round (main sample)	894
PT-Portugal 2012: second fieldwork round (complementary sample)	103

```
str(ISSP2012jh1d.dat$C_ALPHAN)
```

```
## $format.spss
## [1] "A20"
##
## $display_width
## [1] 22
```

ISSP2012jh1d.dat %>% tableX(C_ALPHAN, maa)

C_A	LAPU	TANT,	/1B64	CA	lΗ	RCZ	DK	FI	FR	HU	IS	ΙE	LV	LT	NL	NO	PL	RU	SK	SI	SE	СН	BE	DE	P
AT	0	118	320	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AU	155	570	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	219	20	0
$_{\mathrm{BG}}$	0	0	100	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CA	0	0	0	95	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	123	70	0	0
CZ	0	0	0	0	0	180	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	176	310
DK	0	0	0	0	0	0	140	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FI	0	0	0	0	0	0	0	117	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FR	0	0	0	0	0	0	0	0	240	90	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$_{ m HR}$	0	0	0	0	99	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$_{ m HU}$	0	0	0	0	0	0	0	0	0	1013	20	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$_{ m IE}$	0	0	0	0	0	0	0	0	0	0	0	116	60	0	0	0	0	0	0	0	0	0	0	0	0
$_{\rm IS}$	0	0	0	0	0	0	0	0	0	0	117	20	0	0	0	0	0	0	0	0	0	0	0	0	0
LT	0	0	0	0	0	0	0	0	0	0	0	0	0	118	70	0	0	0	0	0	0	0	0	0	0
LV	0	0	0	0	0	0	0	0	0	0	0	0	100	00	0	0	0	0	0	0	0	0	0	0	0
NL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	131	50	0	0	0	0	0	0	0	0	0
NO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1444	40	0	0	0	0	0	0	0	0
PL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	111	50	0	0	0	0	0	0	0
PT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	96
RU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	152	50	0	0	0	0	0	0
SE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	105	90	0	0	0
SI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	103	40	0	0	0	0
SK	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	112	80	0	0	0	0	0
Tota	l 155	7118	2100	395	399'	7180	4140	3117	1240	9101:	2117	2116	6100	0118	7131	51444	4111	5152	5112	8103	4105	9123	7219	2176	5199

ISSP2012jh1d.dat %>% tableX(C_ALPHAN, maa3)

Po 20: PT- sec Portugad

PΊ

2012: rou first (co

BE-BE-BE-DE-DE-fieldwords
FLAWAIBRUW-E-roundta-

CZ-

C_ A	Læh	a Albai	Agaa	n B c	laRte	i p Dk	əhlirin	ıBu	adHo	arlge	elajaro	dAra	d\vii	thNie	at Ne	nlRna	ķ₩	abSila	avSill	oisSev	risSlv	viitZle	ml alv erd	l Baria	as Vé	esEa	s t am]	olear
$\overline{\text{AT 0}}$	11	8 2 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AU 15	55 7 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BE0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	109	90543	559	0	0	0	0
BG0	0	100	(B (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CA0	0	0	95	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	3 T)	0	0	0	0	0	0
CZ 0	0	0	0	0	18	040	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DE0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0 5 50	60	0
DK0	0	0	0	0	0	14		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FI 0	0	0	0	0	0	0	117	-	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FR0	0	0	0	0	0	0	0	24	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HR0	0	0	0	99	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HU0	0	0	0	0	0	0	0	0	10	1 2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IE 0	0	0	0	0	0	0	0	0	0	0		6 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IS 0	0	0	0	0	0	0	0	0	0	11	7 2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LT 0	0	0	0	0	0	0	0	0	0	0	0	0	11	870	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LV 0	0	0	0	0	0	0	0	0	0	0	0	10	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NL 0	0	0	0	0	0	0	0	0	0	0	0	0	0	13		0	0	0	0	0	0	0	0	0	0	0	0	0
NO0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14		0	0	0	0	0	0	0	0	0	0	0	0
PL 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	15 0	0	0	0	0	0	0	0	0	0	0	0
PT0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	894	103
RU0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	25 0	0	0	0	0	0	0	0	0	0	0
SE 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	59	0	0	0	0	0	0	0
SI 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	3₽	0	0	0	0	0	0	0	0
SK0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		28	0	0	0	0	0	0	0	0	0
Total	5 7 1	8200	O 3 55	399	718	044	0 3 17	72 4	0 9 0	1 2 1	72 1	6 6 0	0 0 1	873	1 5 4	441	1 3 5	25 1	28 0	340	5 9 2	3709	90543	559	12	0 5 56	6894	103

ISSP2012jh1d.dat %>% tableX(maa, maa3)

Po 20: PT- sec

Portugial 2012: rou

first (co

CZ-FLAWAIBRUW- E-round ta-AU-AT-BG-CA-HR-CzeENKFI- FR-HU-IS- IE-LV-LT-NL-NOPL-RU-SK-SI- SE-CH-Belg-Bacig/Gen/Gren/granig-ry

maa Au																							_	4	~	,	stamı Stamı	
		KILIDILCILU	usa	шкан	ROLLIII.	- France r	7111 (311)	CI IICINI	ашс	unge	riani.	Maria	KU YAK	U110K	JULING	THWK	щим	MOOTE	D WOUR	DIKE Y	LLAULV	VIII ZIC	ULI COURTO	D WILL	usion	LOSILLIC	- Soam	J16911
AU 15		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AT 0	11	8 D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BG0	0	100	030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CA0	0	0	95	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HR0	0	0	0	99	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CZ 0	0	0	0	0	18	04	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DK0	0	0	0	0	0	14	030	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FI 0	0	0	0	0	0	0	11'	70	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FR0	0	0	0	0	0	0	0	24	09	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HU0	0	0	0	0	0	0	0	0	10	1 2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IS 0	0	0	0	0	0	0	0	0	0	11	7 D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
IE 0	0	0	0	0	0	0	0	0	0	0	11	6 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LV 0	0	0	0	0	0	0	0	0	0	0	0	10	00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LT 0	0	0	0	0	0	0	0	0	0	0	0	0	11	870	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NL 0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	1 50	0	0	0	0	0	0	0	0	0	0	0	0	0
NO0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14	41	0	0	0	0	0	0	0	0	0	0	0	0
PL 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11	1 50	0	0	0	0	0	0	0	0	0	0	0
RU0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	15	25 0	0	0	0	0	0	0	0	0	0	0
SK0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11:	28	0	0	0	0	0	0	0	0	0
SI 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	3₽	0	0	0	0	0	0	0	0
SE 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10	59	0	0	0	0	0	0	0
CH0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	3 70	0	0	0	0	0	0
BE0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	109	00543	559	0	0	0	0
DE0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	0 5 5	60	0
PT0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	894	10:
Totab:	5 7 1	820	0 3 5	399	718	044	0 3 1′	724	0 9 0	1 2 1	72 1	6 6 0	0 0 1	8 7 3	1 5 4	441	1 5 5	2 5 1	28 0	340	5 9 2	3709	00543	559	12	0 5 5	6894	103

ISSP2012jh1d.dat %>% tableX(V3, maa3)

Portugid 2012: rou

first (co

BE-BE-BE-DE-fieldwonk FLAWAIBRUW-E- roundta-

V3/Anastitat-GarifadaRtepDehlrin Handbertgehland LiethienkraltBurkslevis Slevis Invisiversentit Med Burie Wets Eastample ju 40 0 **D** 543 0 559 0 **0**1 **0**2 0

sp, sp1, SEX - tarkistuksia

ISSP2012jh1d.dat\$sp %>% fct_count()

f	n
Male	14789
Female	18034

ISSP2012jh1d.dat\$sp %>% fct_count()

f	n
Male	14789
Female	18034

ISSP2012jh1d.dat %>% tableX(SEX,sp1)

SEX/sp1	Male	Female	No answer	Total
1	14789	0	0	14789
2	0	18034	0	18034
Total	14789	18034	0	32823

ISSP2012jh1d.dat %>% tableX(SEX,sp)

SEX/sp	Male	Female	Total
1	14789	0	14789
2	0	18034	18034
Total	14789	18034	32823

ISSP2012jh1d.dat %>% tableX(sp1,sp)

${\text{sp1/sp}}$	Male	Female	Total
			1.4700
Male	14789	10024	14789 18034
Female No answer	0	18034	18034
Total	14789	18034	$\frac{0}{32823}$
Total	14/09	10034	52625

vaihe 1.3 uudet "faktorilabelit"
ISSP2012jh1d.dat <- ISSP2012jh1d.dat %>%
 mutate(sp =

```
fct_recode(sp,
                          "m" = "Male",
                           "f" = "Female")
            )
# Tarkistuksia
ISSP2012jh1d.dat$sp %>% fct_unique()
## [1] m f
## Levels: m f
ISSP2012jh1d.dat$sp %>% fct_count()
                                     \mathbf{n}
                                 14789
                             f
                                 18034
ISSP2012jh1d.dat$sp %>% summary()
##
## 14789 18034
# AGE -> ika
# AGE----
ISSP2012jh1d.dat$ika <- ISSP2012jh1d.dat$AGE</pre>
# Tarkistuksia
attributes(ISSP2012jh1d.dat$ika) # tyhjä level "No answer
## $label
## [1] "Age of respondent"
## $format.spss
## [1] "F3.0"
##
## $labels
## 15 years 16 years 17 years 18 years 102 years No answer
##
         15
                    16
                                         18
                                                  102
                                                             999
                             17
##
## $class
## [1] "haven_labelled" "vctrs_vctr"
                                          "double"
ISSP2012jh1d.dat$ika %>% summary()
```

		[1]	[2]
[1]AGE	[1]AGE	1.00	
[2]ika	[2]ika	1.00	1.00

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
15	36	50	49.51607	63	102

```
ISSP2012jh1d.dat %>%
tableC(AGE, ika,cor_type = "pearson", na.rm = FALSE, rounding = 5,
    output = "text", booktabs = TRUE, caption = NULL, align = NULL,
    float = "htb") %>% kable()

## N = 32823
## Note: pearson correlation (p-value).
ISSP2012jh1d.dat$ika %>% hist(main = "ISSP 2012: vastaajan ikä")
```

ISSP 2012: vastaajan ikä

str(ISSP2012jh1d.dat) - tarkistus

1.6.2 Vaihe 2

Vaihessa 2 luodaan samalla samalla periaatteella substanssi- ja taustamuuttujille kaksi R-factor- tyypin muuttujaa. Toisessa (esim. Q1a) puuttuva tieto on R-ohjelmiston sisäinen NA-arvo. Toisessa (Q1am) puuttuva tieto on yksi luokittelumuuttujan arvo("missing").

```
# Substanssi- ja taustamuuttujat R-faktoreiksi
ISSP2012jh1d.dat <- ISSP2012jh1d.dat %>%
    mutate(Q1a1 = as_factor(V5), #labels
            Q1b1 = as_factor(V6),
            Q1c1 = as_factor(V7),
            Q1d1 = as_factor(V8),
            Q1e1 = as_factor(V9),
            Q2a1 = as_factor(V10),
            Q2b1 = as_factor(V11),
            Q3a1 = as_factor(V12), #labels = vastQ3_labels (W,w,H)
            Q3b1 = as_factor(V13), #labels = vastQ3_labels
            edu1 = as_factor(DEGREE),
            msta1 = as_factor(MAINSTAT),
            sosta1 = as_factor(TOPBOT),
            nchild1 = as_factor(HHCHILDR),
            lifsta1 = as_factor(MARITAL),
            urbru1 = as_factor(URBRURAL)
    )
# Muuttujat Q1a1...urbru1 ovat apumuuttujia, joissa on periaatteessa kaikki SPSS-
# tiedostosta siirtyvä metatieto. Poikkeus on SPSS:n kolme tarkentavaa koodia
# puuttuvalle tiedolle, ne saisi mukaan read_spss - parametrin avulla (user_na=TRUE)
# Tarkistusksia
# ISSP2012jh1d.dat %>% summary()
ISSP2012jh1d.dat %>%
    select(Q1a1, Q1b1, Q1c1,Q1d1,Q1e1, Q2a1, Q2b1, Q3a1,Q3b1) %>%
    summary()
```

 Q1a1	Q1b1	Q1c1	Q1d1	Q1e1	Q2a1	Q2b1	Q3a1	Q3b1
Agree	Disagre	eeDisagre	eeDisagre	eeAgree	Agree	Disagre	eeWork	Work
:12352	:9003	:8706	:7863	:8342	:13464	:9210	$\operatorname{full-time}$	$\operatorname{full-time}$
							: 5373	:13722

Q1a1	Q1b1	Q1c1	Q1d1	Q1e1	Q2a1	Q2b1	Q3a1	Q3b1
Strongly	Agree	Agree	Agree	Neither	Strongly	Strongly	yWork	Work
agree	:8389	:8263	:7672	agree	agree	di-	part-	part-
:11116				nor	:11305	sagree	time	time
				disagree	e:7841	:8917	:15655	:13817
Disagree	Neither	Neither	Neither	Disagre	eNeither	Neither	Stay at	Stay at
: 4074	agree	agree	agree	:7267	agree	agree	home:	home:
	nor	nor	nor		nor di-	nor	8367	1762
	disagree	e: 519:49 ree	e: 6190 @ree	e:7403	sagree:	disagree	e:6109	
					5039			
Neither	Strongly	yStrongly	Strongly	Strongly	yDisagree	Agree	TW:	TW:
agree	di-	di-	di-	di-	: 1929	:5164	women	women
nor di-	sagree	sagree	sagree	sagree			should	should
sagree:	:5547	:5960	:5016	:3462			decide :	decide:
3382							0	0
Strongly	Strongly	yStrongly	Strongly	Strongly	yStrongly	Strongly	yCan't	Can't
di-	agree	agree	agree	agree	di-	agree	choose,	choose,
sagree	:2747	:2838	:2818	:3357	sagree	:2704	CA:+NA,	CA:+NA
: 1051					: 403		KR:DK,ref	,KR:DK,
							NL:DK:	NL:DK:
							0	0
(Other)	(Other)	(Other)	(Other)	(Other)	(Other)	(Other)	No	No
: 0	: 0	: 0	: 0	: 0	: 0	: 0	$\ answer:$	answer:
							0	0
NA's:	NA's	NA's	NA's	NA's	NA's:	NA's	NA's:	NA's:
848	:1188	:1056	:2051	:2554	683	: 719	3428	3522

ISSP2012jh1d.dat %>% select(edu1,msta1, sosta1, nchild1, lifsta1, urbru1) %>% summary()

edu1	msta1	sostah child 1 lifsta 1	urbru1
Lower secondary (secondary completed does not allow entry to university: obligatory school) :7811	In paid work:17967	06 No Married :6889childrent 7476 2	A town or a small city :9203
Upper secondary (programs that allows entry to university :7115	Retired: 7999	05 One Never :6798child married/ : never in a 4378 civil partnershi single: 75	• /

edu1	msta1	sostahchild1lifsta1	urbru1
Post secondary, non-tertiary (other upper secondary programs toward labour market or technical	Unemployed and looking for a job, HR: incl never had a job: 1769	07 2 Divorced :5778childrefrom spouse/ : legally 2643 separated from civil partner:	A big city :8442
formation):5658 Lower level tertiary, first stage (also technical schools at a tertiary level) :5147	In education: 1763	2997 08 3: Widowed/ :3477598 civil partner died: 2763	The suburbs or outskirts of a big
Upper level tertiary (Master, Dr.) :4762	Domestic work: 1180	04 4: Civil :3346117 partnership: 1035	city:4386 A farm or home in the country :1902
(Other) :2022	(Other): 1775	(Other): 486 : 45	(Other):
NA's : 308	NA's : 370	NA'sNA's NA's: 434 :1777: 940	NA's: 244

```
# Substanssimuuttujat - ristiintaulukoinnit riittävät (6.2.20)
# ISSP2012jh1d.dat$Q1a1 %>% fct_count()
# ISSP2012jh1d.dat$Q1b1 %>% fct_count()
# ISSP2012jh1d.dat$Q1c1 %>% fct_count()
# ISSP2012jh1d.dat$Q1d1 %>% fct_count()
# ISSP2012jh1d.dat$Q1e1 %>% fct_count()
# ISSP2012jh1d.dat$Q2a1 %>% fct_count()
# ISSP2012jh1d.dat$Q2b1 %>% fct_count()
# ISSP2012jh1d.dat$Q3a1 %>% fct_count()
#ISSP2012jh1d.dat$Q3b1 %>% fct_count()
# Taustamuuttujat - ristiintaulukoinnit riittävät (6.2.20)
# ISSP2012jh1d.dat$edu1 %>% fct_count()
# ISSP2012jh1d.dat$msta1 %>% fct_count()
# ISSP2012jh1d.dat$sosta1 %>% fct_count()
# ISSP2012jh1d.dat$nchild1 %>% fct_count()
# ISSP2012jh1d.dat$lifsta1 %>% fct_count()
```

```
# ISSP2012jh1d.dat$urbru1 %>% fct_count()
```

Taustamuuttujien luokitteluja (esim. luokkien yhdistäminen) pohditaan tarkemmin, kun muuttujat otetaan käyttöön.

Poistetaan muuuttujista luokittelumuuttujien arvot, joissa ei ole havaintoja. Näitä tyhjiä luokkia siirtyy SPSS-tiedostosta haven_labelled -luokan tietohin.

```
# Poistetaan tyhjät luokat muuttujista
ISSP2012jh1d.dat <- ISSP2012jh1d.dat %>%
    mutate(Q1a = fct_drop(Q1a1),
           Q1b = fct_drop(Q1b1),
           Q1c = fct_drop(Q1c1),
           Q1d = fct_drop(Q1d1),
           Q1e = fct_drop(Q1e1),
           Q2a = fct_drop(Q2a1),
           Q2b = fct_drop(Q2b1),
           Q3a = fct_drop(Q3a1),
           Q3b = fct_drop(Q3b1),
           edu = fct drop(edu1),
           msta = fct_drop(msta1),
           sosta = fct_drop(sosta1),
           nchild = fct_drop(nchild1),
           lifsta = fct_drop(lifsta1),
           urbru = fct_drop(urbru1)
    )
# Tarkistuksia 1
ISSP2012jh1d.dat %>% summary()
```

```
:1.000000000000000000000000:0.00.00: :1.00000Fran4789 :123AYXYX8633423424dfulsecope
   36 36.0
                  1.00.0000 2409
                           15.00
                15.00
                                    timtemer-we
                        2409
                                    : :13722:1
                                    5373 (secon
208
                36.00 5.00.0000 2192e-
                                 nor 1130 Friert emda - 79
                           36.001116
                                 disagr.89:118461538:17
                        public:
                        1804
```

dary comp ted does not allow entry to university: obligatory schoo :7811

(programs that allows entry to university :7115

V1V2DOI3V4C_VAIVENTAW8V9V1V1V1Y1SEXCIDENTAUXBIBOARHABBAIARSAF ikaQ1Q11Q11Q11Q11Q12Q2QBQBeduim

:5900aalaaata**2776:ba2:0300500500500200200200200**000:3.00.000: :1.0**80**000Austradier: : agrægrægr*5*2657ægræt at secon 428 50.4074omomor nomonho-ho-da-lo

6.0**0**.0000 1804 0 50.001557

disdisdiscipation of the disdisdistribution of the distribution of sagree: : nonfo

5039 83**67**62rtia

(ot-jo

her H

up-in

perne secome

da- ha ry a

projo

granh towar

labour

market

or tech-

nical

forma

:5900 : :362.1:2.1**321962311299719635231025925**49:3.5**2**.887: :2.824729Russia : agnée di-di-di-: :516/6+wole- ed 49.52 is a gracera gra 4063 49.525.68.3832 1761 di-:55**:59600:36**462 1525 should detel: decdectiia-17 sagree: 3382 de de ry, : : first 0 0 sta-

705 $63.00 \quad 7.00.0000 \quad 1557$ 63.00g:27e28328:1335a7g:27504 se, vel:

> 1444 : CACADAN1

1051 403 KRKIDIKA

> NL**NDK**DK: 0 0 (Master, Dr.)

> > :4762

ge (alsotechnical schoo ata tertiary level)

V1V2DOI3V4C VALVANAV8V9V1V1V1Y1SEXCIDEVIAUXBIBOALHHBBAIARASID ikaQ1Q11Q11Q11Q12Q12Q12Q18Q18cdutn

```
ISSP2012jh1d.dat %>%
    select(Q1a, Q1b, Q1c, Q1d, Q1e,Q2a,Q2b,Q3a, Q3b) %>%
    str()
```

```
## tibble [32,823 x 9] (S3: tbl_df/tbl/data.frame)
   $ Q1a: Factor w/ 5 levels "Strongly agree",..: 5 1 2 2 1 NA 2 4 2 2 ...
    ..- attr(*, "label")= chr "Q1a Working mom: warm relationship with children as a not we
    $ Q1b: Factor w/ 5 levels "Strongly agree",..: 1 5 4 4 4 NA 4 3 4 3 ...
##
    ..- attr(*, "label")= chr "Q1b Working mom: Preschool child is likely to suffer"
    $ Q1c: Factor w/ 5 levels "Strongly agree",..: 3 5 2 4 4 NA 4 2 4 2 ...
    ..- attr(*, "label")= chr "Q1c Working woman: Family life suffers when woman has full-
##
##
   $ Q1d: Factor w/ 5 levels "Strongly agree",..: 3 5 5 2 4 NA 4 5 4 5 ...
    ..- attr(*, "label")= chr "Q1d Working woman: What women really want is home and kids"
##
   $ Q1e: Factor w/ 5 levels "Strongly agree",..: 3 1 2 3 4 NA 2 4 4 1 ...
    ..- attr(*, "label") = chr "Q1e Working woman: Being housewife is as fulfilling as work:
##
##
    $ Q2a: Factor w/ 5 levels "Strongly agree",..: 1 3 4 2 2 NA 2 5 2 1 ...
##
    ..- attr(*, "label")= chr "Q2a Both should contribute to household income"
   $ Q2b: Factor w/ 5 levels "Strongly agree",..: 3 5 4 4 4 NA 2 5 4 1 ...
##
    ..- attr(*, "label")= chr "Q2b Men's job earn money, women's job look after home"
   $ Q3a: Factor w/ 3 levels "Work full-time",..: 3 NA NA 2 2 NA 2 NA 2 2 ...
##
##
    ..- attr(*, "label")= chr "Q3a Should women work: Child under school age"
## $ Q3b: Factor w/ 3 levels "Work full-time",..: 2 NA 2 1 2 NA 2 NA 2 2 ...
    ..- attr(*, "label")= chr "Q3b Should women work: Youngest kid at school"
   - attr(*, "notes") = chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
```

```
ISSP2012jh1d.dat %>%
    select(Q1a1, Q1b1, Q1c1, Q1d1, Q1e1,Q2a1,Q2b1,Q3a1, Q3b1) %>%
## tibble [32,823 x 9] (S3: tbl_df/tbl/data.frame)
   $ Q1a1: Factor w/ 8 levels "NAP: ES", "Strongly agree",..: 6 2 3 3 2 NA 3 5 3 3 ...
    ..- attr(*, "label")= chr "Q1a Working mom: warm relationship with children as a not we
    $ Q1b1: Factor w/ 8 levels "NAP: ES", "Strongly agree",...: 2 6 5 5 5 NA 5 4 5 4 ...
##
##
     ..- attr(*, "label") = chr "Q1b Working mom: Preschool child is likely to suffer"
   $ Q1c1: Factor w/ 8 levels "NAP: ES", "Strongly agree",..: 4 6 3 5 5 NA 5 3 5 3 ...
##
    ..- attr(*, "label")= chr "Q1c Working woman: Family life suffers when woman has full-
##
   $ Q1d1: Factor w/ 8 levels "NAP: ES", "Strongly agree",..: 4 6 6 3 5 NA 5 6 5 6 ...
##
    ..- attr(*, "label")= chr "Q1d Working woman: What women really want is home and kids"
    $ Q1e1: Factor w/ 8 levels "NAP: ES", "Strongly agree", ...: 4 2 3 4 5 NA 3 5 5 2 ...
    ..- attr(*, "label")= chr "Q1e Working woman: Being housewife is as fulfilling as work:
##
    $ Q2a1: Factor w/ 8 levels "NAP: ES", "Strongly agree",...: 2 4 5 3 3 NA 3 6 3 2 ...
    ..- attr(*, "label")= chr "Q2a Both should contribute to household income"
   $ Q2b1: Factor w/ 8 levels "NAP: ES", "Strongly agree", ...: 4 6 5 5 5 NA 3 6 5 2 ...
##
##
    ..- attr(*, "label")= chr "Q2b Men's job earn money, women's job look after home"
   $ Q3a1: Factor w/ 6 levels "Work full-time",..: 3 NA NA 2 2 NA 2 NA 2 2 ...
    ..- attr(*, "label")= chr "Q3a Should women work: Child under school age"
    \ Q3b1: Factor w/ 6 levels "Work full-time",...: 2 NA 2 1 2 NA 2 NA 2 2 ...
##
##
     ..- attr(*, "label")= chr "Q3b Should women work: Youngest kid at school"
   - attr(*, "notes") = chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
ISSP2012jh1d.dat %>%
    select(edu, msta, sosta, nchild,lifsta, urbru) %>%
    str()
## tibble [32,823 x 6] (S3: tbl_df/tbl/data.frame)
            : Factor w/ 7 levels "No formal education",...: 3 6 6 4 3 NA NA 7 6 7 ...
    ..- attr(*, "label") = chr "Highest completed degree of education: Categories for intern
  $ msta : Factor w/ 9 levels "In paid work",..: 6 6 3 1 6 5 6 2 1 5 ...
##
    ..- attr(*, "label")= chr "Main status"
##
   $ sosta : Factor w/ 10 levels "Lowest, Bottom, 01",..: 3 7 8 NA 7 2 7 NA 10 6 ...
##
    ..- attr(*, "label") = chr "Top-Bottom self-placement"
    $ nchild: Factor w/ 11 levels "No children",..: NA NA 4 2 1 NA 1 1 2 NA ...
##
    ..- attr(*, "label")= chr "How many children in household: children between [school ago
   $ lifsta: Factor w/ 6 levels "Married", "Civil partnership",..: 6 1 1 6 1 6 1 1 1 NA ...
     ..- attr(*, "label")= chr "Legal partnership status"
##
   $ urbru : Factor w/ 5 levels "A big city", "The suburbs or outskirts of a big city",...:
    ..- attr(*, "label")= chr "Place of living: urban - rural"
   - attr(*, "notes")= chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
ISSP2012jh1d.dat %>%
    select(edu1, msta1, sosta1, nchild1,lifsta1, urbru1) %>%
```

```
## tibble [32,823 x 6] (S3: tbl_df/tbl/data.frame)
  $ edu1 : Factor w/ 8 levels "No formal education",..: 3 6 6 4 3 NA NA 7 6 7 ...
    ..- attr(*, "label") = chr "Highest completed degree of education: Categories for intern
## $ msta1 : Factor w/ 10 levels "In paid work",..: 6 6 3 1 6 5 6 2 1 5 ...
##
    ..- attr(*, "label")= chr "Main status"
## $ sosta1 : Factor w/ 14 levels "Not available: GB,US",..: 4 8 9 NA 8 3 8 NA 11 7 ...
   ..- attr(*, "label")= chr "Top-Bottom self-placement"
   \ nchild1: Factor w/ 14 levels "No children",...: NA NA 4 2 1 NA 1 1 2 NA ...
    ..- attr(*, "label")= chr "How many children in household: children between [school ago
##
## $ lifsta1: Factor w/ 9 levels "Married", "Civil partnership",..: 6 1 1 6 1 6 1 1 1 NA ..
    ..- attr(*, "label")= chr "Legal partnership status"
\#\# $ urbru1 : Factor \#\# 7 levels "A big city", "The suburbs or outskirts of a big city",...:
    ..- attr(*, "label")= chr "Place of living: urban - rural"
## - attr(*, "notes") = chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
# Tarkistuksia 2 - ristiintaulukointi Q1a/Q1am riittää (6.2.20)
# Substanssimuuttujat
# ISSP2012jh1d.dat %>% tableX(Q1a,Q1a1)
# ISSP2012jh1d.dat %>% tableX(Q1b,Q1b1)
# ISSP2012jh1d.dat %>% tableX(Q1c,Q1c1)
# ISSP2012jh1d.dat %>% tableX(Q1d,Q1d1)
# ISSP2012jh1d.dat %>% tableX(Q1e,Q1e1)
# ISSP2012jh1d.dat %>% tableX(Q2a,Q2a1)
# ISSP2012jh1d.dat %>% tableX(Q2b,Q2b1)
# ISSP2012jh1d.dat %>% tableX(Q3a,Q3a1)
# ISSP2012jh1d.dat %>% tableX(Q3b,Q3b1)
# Taustamuuttujat
# ISSP2012jh1d.dat %>% tableX(edu,edu1)
# ISSP2012jh1d.dat %>% tableX(msta,msta1)
# ISSP2012jh1d.dat %>% tableX(sosta,sosta1)
# ISSP2012jh1d.dat %>% tableX(nchild,nchild1)
# ISSP2012jh1d.dat %>% tableX(lifsta,lifsta1)
# ISSP2012jh1d.dat %>% tableX(urbru,urbru1)
Luodaan uusi muuttuja, jossa puuttuva tieto (NA) on mukana luokittelumuut-
tujan uutena arvona ("missing").
# Uusi muuttuja, jossa NA-arvot ovat mukana muuttujan uutena luokkana. Muuttujat
# nimetään Q1a -> Q1am.
ISSP2012jh1d.dat <- ISSP2012jh1d.dat %>%
    mutate(Q1am = fct_explicit_na(Q1a, na_level = "missing"),
           Q1bm = fct_explicit_na(Q1b, na_level = "missing"),
```

```
Q1cm = fct_explicit_na(Q1c, na_level = "missing"),
           Q1dm = fct_explicit_na(Q1d, na_level = "missing"),
           Q1em = fct_explicit_na(Q1e, na_level = "missing"),
           Q2am = fct_explicit_na(Q2a, na_level = "missing"),
           Q2bm = fct_explicit_na(Q2b, na_level = "missing"),
           Q3am = fct_explicit_na(Q3a, na_level = "missing"),
           Q3bm = fct_explicit_na(Q3b, na_level = "missing"),
           edum = fct_explicit_na(edu, na_level = "missing"),
           mstam = fct_explicit_na(msta, na_level = "missing"),
           sostam = fct_explicit_na(sosta, na_level = "missing"),
           nchildm = fct_explicit_na(nchild, na_level = "missing"),
           lifstam = fct_explicit_na(lifsta, na_level = "missing"),
           urbrum = fct_explicit_na(urbru, na_level = "missing"),
# Tarkistuksia 3
ISSP2012jh1d.dat %>%
    select(Q1am, Q1bm, Q1cm, Q1dm, Q1em, Q2am, Q2bm, Q3am, Q3bm) %>%
    summary()
```

Q1am	Q1bm	Q1cm	Q1dm	Q1em	Q2am	Q2bm	Q3am	Q3bm
Strongly	Strongly	Strongly	Strongly	Strongly	Strongly	Strongly	Work	Work
agree	agree	agree	agree	agree	agree	agree	full-	full-
:11116	:2747	:2838	:2818	:3357	:11305	:2704	time: 5373	time:13722
Agree	Agree	Agree	Agree	Agree	Agree	Agree	Work	Work
:12352	:8389	:8263	:7672	:8342	:13464	:5164	part-	part-
							time:1	5 655 ae:13817
Neither	Neither	Neither	Neither	Neither	Neither	Neither	Stay	Stay
agree	agree	agree	agree	agree	agree	agree	at	at
nor di-	nor	nor	nor	nor	nor di-	nor	ho-	ho-
sagree:	disagree:	5 9149 agree:6	6 00\$ agree:	7 460\$ agree:'	7 84 gree:	disagree:	61 609 :	me:
3382					5039		8367	1762
Disagree	Disagree	Disagree	Disagree	Disagree	Disagree	Disagree	missing	gmissing
: 4074	:9003	:8706	:7863	:7267	: 1929	:9210	:	:
							3428	3522
Strongly	Strongly	Strongly	Strongly	Strongly	Strongly	Strongly	NA	NA
di-	di-	di-	di-	di-	di-	di-		
sagree:	sagree	sagree	sagree	sagree	sagree:	sagree		
1051	:5547	:5960	:5016	:3462	403	:8917		
missing : 848	missing :1188	missing :1056	missing :2051	missing :2554	missing: 683	missing: 719	NA	NA

ISSP2012jh1d.dat %>%
 select(edum,mstam, sostam,nchildm,lifstam, urbrum) %>%
 summary()

edum	mstam	sostamechildlifstam	urbrum
Lower secondary (secondary completed does not allow entry to university: obligatory school) :7811	In paid work :17967	06 No Married :17573 :6889children:24102	A big city :8442
Upper secondary (programs that allows entry to university :7115	Retired : 7999	05 One Civil partnership: :6798child 1035 : 4378	The suburbs or outs kirts of a big city:438
Post secondary, non-tertiary (other upper secondary programs toward labour market or technical formation):5658	Unemployed and looking for a job, HR: incl never had a job: 1769	07 2 Separated from :5778childrespouse/civil : partner (still 2643 legally married/ still legally in a civil partnership): 486	A town or a small city :9203
Lower level tertiary, first stage (also technical schools at a tertiary level) :5147	In education: 1763	08 missinDivorced from :3477: spouse/legally 940 separated from civil partner: 2997	A country village :8646
Upper level tertiary (Master, Dr.) :4762	Domestic work: 1180	04 3: Widowed/civil :3346598 partner died: 2763	A farm or home in the country:1902
Primary school (elementary school) :1531	Permanently sick or disabled: 1093	03 4: Never married/ :2221117 never in a civil partnership, single : 7535	missing : 244
(Other): 799	(Other): 1052	(Oth (Oth Ach) issing: 434 : 45	NA

```
ISSP2012jh1d.dat %>%
    select(Q1am, Q1bm, Q1cm, Q1dm, Q1em, Q2am, Q2bm, Q3am, Q3bm) %>%
## tibble [32,823 x 9] (S3: tbl_df/tbl/data.frame)
    $ Q1am: Factor w/ 6 levels "Strongly agree",..: 5 1 2 2 1 6 2 4 2 2 ...
     ..- attr(*, "label")= chr "Q1a Working mom: warm relationship with children as a not wo
    $ Q1bm: Factor w/ 6 levels "Strongly agree",..: 1 5 4 4 4 6 4 3 4 3 ...
##
##
     ..- attr(*, "label") = chr "Q1b Working mom: Preschool child is likely to suffer"
   $ Q1cm: Factor w/ 6 levels "Strongly agree",..: 3 5 2 4 4 6 4 2 4 2 ...
##
    ..- attr(*, "label")= chr "Q1c Working woman: Family life suffers when woman has full-
##
##
   $ Q1dm: Factor w/ 6 levels "Strongly agree",..: 3 5 5 2 4 6 4 5 4 5 ...
    ..- attr(*, "label")= chr "Q1d Working woman: What women really want is home and kids"
    $ Q1em: Factor w/ 6 levels "Strongly agree",..: 3 1 2 3 4 6 2 4 4 1 ...
##
##
    ..- attr(*, "label")= chr "Q1e Working woman: Being housewife is as fulfilling as work:
    $ Q2am: Factor w/ 6 levels "Strongly agree",..: 1 3 4 2 2 6 2 5 2 1 ...
##
    ..- attr(*, "label")= chr "Q2a Both should contribute to household income"
   $ Q2bm: Factor w/ 6 levels "Strongly agree",..: 3 5 4 4 4 6 2 5 4 1 ...
##
##
    ..- attr(*, "label")= chr "Q2b Men's job earn money, women's job look after home"
   $ Q3am: Factor w/ 4 levels "Work full-time",..: 3 4 4 2 2 4 2 4 2 2 ...
    ..- attr(*, "label")= chr "Q3a Should women work: Child under school age"
    $ Q3bm: Factor w/ 4 levels "Work full-time",..: 2 4 2 1 2 4 2 4 2 2 ...
##
##
     ..- attr(*, "label")= chr "Q3b Should women work: Youngest kid at school"
    - attr(*, "notes") = chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
ISSP2012jh1d.dat %>%
    select(edum,mstam, sostam,nchildm,lifstam, urbrum) %>%
    str()
## tibble [32,823 x 6] (S3: tbl_df/tbl/data.frame)
            : Factor w/ 8 levels "No formal education",..: 3 6 6 4 3 8 8 7 6 7 ...
##
    ..- attr(*, "label") = chr "Highest completed degree of education: Categories for intern
   $ mstam : Factor w/ 10 levels "In paid work",..: 6 6 3 1 6 5 6 2 1 5 ...
##
    ..- attr(*, "label")= chr "Main status"
##
   $ sostam : Factor w/ 11 levels "Lowest, Bottom, 01",..: 3 7 8 11 7 2 7 11 10 6 ...
##
    ..- attr(*, "label") = chr "Top-Bottom self-placement"
    $ nchildm: Factor w/ 12 levels "No children",..: 12 12 4 2 1 12 1 1 2 12 ...
##
    ..- attr(*, "label")= chr "How many children in household: children between [school ago
   $ lifstam: Factor w/ 7 levels "Married", "Civil partnership",..: 6 1 1 6 1 6 1 1 1 7 ...
     ..- attr(*, "label")= chr "Legal partnership status"
##
   $ urbrum : Factor w/ 6 levels "A big city", "The suburbs or outskirts of a big city",...:
     ..- attr(*, "label")= chr "Place of living: urban - rural"
   - attr(*, "notes")= chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
# Taustamuuttuja, puuttuva tieto mukana - ristiintaulkointi riittää (6.2.20)
# ISSP2012jh1d.dat$edum %>% fct_count()
```

```
# ISSP2012jh1d.dat$mstam %>% fct_count()
# ISSP2012jh1d.dat$sostam %>% fct_count()
# ISSP2012jh1d.dat$nchildm %>% fct_count()
# ISSP2012jh1d.dat$lifstam %>% fct_count()
# ISSP2012jh1d.dat$lifstam %>% fct_count()
# ISSP2012jh1d.dat$urbrum %>% fct_count()

# Substanssimuuttujat, puuttuva tieto mukana - ristiintaulkointi riittää (6.2.20)
# ISSP2012jh1d.dat$Q1am %>% fct_count()
# ISSP2012jh1d.dat$Q1bm %>% fct_count()
# ISSP2012jh1d.dat$Q1cm %>% fct_count()
# ISSP2012jh1d.dat$Q1dm %>% fct_count()
# ISSP2012jh1d.dat$Q1dm %>% fct_count()
# ISSP2012jh1d.dat$Q2am %>% fct_count()
# ISSP2012jh1d.dat$Q2am %>% fct_count()
# ISSP2012jh1d.dat$Q2am %>% fct_count()
# ISSP2012jh1d.dat$Q3am %>% fct_count()
# ISSP2012jh1d.dat$Q3am %>% fct_count()
# ISSP2012jh1d.dat$Q3am %>% fct_count()
# ISSP2012jh1d.dat$Q3bm %>% fct_count()
```

Lopuksi luodaan uuden "faktorilabelit" substanssimuuttujille. Graafisessa analyysissä kuviin on saatava mukaan kaikki oleellinen, mutta ei mitään sen lisäksi. Näitä muuttujan arvojen tunnuksia muokataan tarvittaessa.

```
# Vaihe 2.4.1
# Viisi vastausvaihtoehtoa - ei eksplisiittistä NA-tietoa("missing")
# Q3a - Q3b kolme vastausvaihtoehtoa
ISSP2012jh1d.dat <- ISSP2012jh1d.dat %>%
    mutate(Q1a = fct_recode(Q1a,
                        "S" = "Strongly agree",
                        "s" = "Agree",
                        "?" = "Neither agree nor disagree",
                        "e" = "Disagree",
                        "E"= "Strongly disagree"),
            Q1b = fct_recode(Q1b,
                      "S" = "Strongly agree",
                      "s" = "Agree",
                      "?" = "Neither agree nor disagree",
                      "e" = "Disagree",
                      "E" = "Strongly disagree"),
           Q1c = fct_recode(Q1c,
                            "S" = "Strongly agree",
                           "s" = "Agree",
                           "?" = "Neither agree nor disagree",
                           "e" = "Disagree",
                            "E" = "Strongly disagree"),
```

```
Q1d = fct_recode(Q1d,
                           "S" = "Strongly agree",
                           "s" = "Agree",
                           "?" = "Neither agree nor disagree",
                           "e" = "Disagree",
                           "E" = "Strongly disagree"),
           Q1e = fct_recode(Q1e,
                           "S" = "Strongly agree",
                           "s" = "Agree",
                           "?" = "Neither agree nor disagree",
                           "e" = "Disagree",
                           "E" = "Strongly disagree"),
          Q2a = fct_recode(Q2a,
                            "S" = "Strongly agree",
                           "s" = "Agree",
                           "?" = "Neither agree nor disagree",
                           "e" = "Disagree",
                           "E" = "Strongly disagree" ),
          Q2b = fct_recode(Q2b,
                           "S" = "Strongly agree",
                           "s" = "Agree",
                           "?" = "Neither agree nor disagree",
                           "e" = "Disagree",
                           "E" = "Strongly disagree"),
          Q3a = fct_recode(Q3a,
                          "W" = "Work full-time",
                          "w" = "Work part-time",
                          "H" = "Stay at home" ),
          Q3b = fct_recode(Q3b,
                           "W" = "Work full-time",
                           "w" = "Work part-time",
                           "H" = "Stay at home" )
                        )
# Tarkistuksia 1
ISSP2012jh1d.dat %>%
    select(Q1a, Q1b, Q1c, Q1d, Q1e, Q2a, Q2b, Q3a, Q3b) %>%
    summary()
```

_									
	Q1a	Q1b	Q1c	Q1d	Q1e	Q2a	Q2b	Q3a	Q3b
	S :11116	S :2747	S :2838	S :2818	S :3357	S :11305	S :2704	W: 5373	W :
	s:12352	s:8389	s:8263	s:7672	s:8342	s:13464	s: 5164	w:15655	w :1
	?:3382	?:5949	? :6000	? :7403	?:7841	?:5039	?:6109	H: 8367	H:
	e:4074	e:9003	e :8706	e :7863	e :7267	e: 1929	e :9210	NA's: 3428	NA'

Q1a	Q1b	Q1c	Q1d	Q1e	Q2a	Q2b	Q3a	Q3b
E: 1051	E:5547	E:5960	E:5016	E:3462	E:403	E:8917	NA	NA
NA's: 848	NA's:1188	NA's:1056	NA's:2051	NA's:2554	NA's: 683	NA's: 719	NA	NA

```
# Vaihe 2.4.2 - muuttujassa eksplisiittinen NA-tieto
ISSP2012jh1d.dat <- ISSP2012jh1d.dat %>%
   mutate(Q1am = fct_recode(Q1am,
                            "S" = "Strongly agree",
                            "s" = "Agree",
                            "?" = "Neither agree nor disagree",
                            "e" = "Disagree",
                            "E" = "Strongly disagree",
                            "P" = "missing"),
           Q1bm = fct_recode(Q1bm,
                           "S" = "Strongly agree",
                           "s" = "Agree",
                           "?" = "Neither agree nor disagree",
                           "e" = "Disagree",
                           "E" = "Strongly disagree",
                           "P" = "missing"),
           Q1cm = fct_recode(Q1cm,
                           "S" = "Strongly agree",
                           "s" = "Agree",
                           "?" = "Neither agree nor disagree",
                           "e" = "Disagree",
                           "E" = "Strongly disagree",
                           "P" = "missing"),
           Q1dm = fct_recode(Q1dm,
                           "S" = "Strongly agree",
                           "s" = "Agree",
                           "?" = "Neither agree nor disagree",
                           "e" = "Disagree",
                           "E" = "Strongly disagree",
                           "P" = "missing"),
           Q1em = fct_recode(Q1em,
                           "S" = "Strongly agree",
                           "s" = "Agree",
                           "?" = "Neither agree nor disagree",
                           "e" = "Disagree",
                           "E" = "Strongly disagree",
                           "P" = "missing"),
           Q2am = fct_recode(Q2am,
                            "S" = "Strongly agree",
                            "s" = "Agree",
```

```
"?" = "Neither agree nor disagree",
                            "e" = "Disagree",
                            "E" = "Strongly disagree",
                            "P" = "missing"),
           Q2bm = fct_recode(Q2bm,
                            "S" = "Strongly agree",
                            "s" = "Agree",
                            "?" = "Neither agree nor disagree",
                            "e" = "Disagree",
                            "E" = "Strongly disagree",
                            "P" = "missing"),
           Q3am = fct_recode(Q3am,
                            "W" = "Work full-time",
                            "w" = "Work part-time",
                            "H" = "Stay at home",
                            "P" = "missing"),
           Q3bm = fct_recode(Q3bm,
                            "W" = "Work full-time",
                            "w" = "Work part-time",
                            "H" = "Stay at home",
                            "P" = "missing")
               )
# Tarkistuksia 4
ISSP2012jh1d.dat %>%
    select(Q1am, Q1bm, Q1cm, Q1dm, Q1em, Q2am, Q2bm, Q3am, Q3bm) %>%
   summary()
```

Q1am	Q1bm	Q1cm	Q1dm	Q1em	Q2am	Q2bm	Q3am	Q3bm
S:11116	S:2747	S:2838	S:2818	S:3357	S:11305	S:2704	W: 5373	W:13722
s:12352	s:8389	s:8263	s:7672	s:8342	s:13464	s:5164	w:15655	w:13817
?: 3382	?:5949	?:6000	?:7403	?:7841	?: 5039	?:6109	H: 8367	H: 1762
e: 4074	e:9003	e:8706	e:7863	e:7267	e: 1929	e:9210	P: 3428	P: 3522
E: 1051	E:5547	E:5960	E:5016	E:3462	E: 403	E:8917	NA	NA
P: 848	P:1188	P:1056	P:2051	P:2554	P: 683	P: 719	NA	NA

```
# Tarkistuksia 5
# Substanssimuuttuja

ISSP2012jh1d.dat %>%
    tableX(Q1a,Q1am)
```

$\overline{\mathrm{Q1a/Q1am}}$	S	S	?	e	E	Р	Total
1	11116	0	0	0	0	0	11116
2	0	12352	0	0	0	0	12352
3	0	0	3382	0	0	0	3382
4	0	0	0	4074	0	0	4074
5	0	0	0	0	1051	0	1051
Missing	0	0	0	0	0	848	848
Total	11116	12352	3382	4074	1051	848	32823

ISSP2012jh1d.dat %>% tableX(Q1b,Q1bm)

$\overline{\mathrm{Q1b/Q1bm}}$	S	S	?	e	E	Р	Total
1	2747	0	0	0	0	0	2747
2	0	8389	0	0	0	0	8389
3	0	0	5949	0	0	0	5949
4	0	0	0	9003	0	0	9003
5	0	0	0	0	5547	0	5547
Missing	0	0	0	0	0	1188	1188
Total	2747	8389	5949	9003	5547	1188	32823

ISSP2012jh1d.dat %>% tableX(Q1c,Q1cm)

${\rm Q1c/Q1cm}$	\mathbf{S}	\mathbf{s}	?	e	E	Р	Total
1	2838	0	0	0	0	0	2838
2	0	8263	0	0	0	0	8263
3	0	0	6000	0	0	0	6000
4	0	0	0	8706	0	0	8706
5	0	0	0	0	5960	0	5960
Missing	0	0	0	0	0	1056	1056
Total	2838	8263	6000	8706	5960	1056	32823

ISSP2012jh1d.dat %>% tableX(Q1d,Q1dm)

$\overline{\mathrm{Q1d}/\mathrm{Q1dm}}$	S	s	?	e	E	Р	Total
1	2818	0	0	0	0	0	2818
2	0	7672	0	0	0	0	7672
3	0	0	7403	0	0	0	7403
4	0	0	0	7863	0	0	7863

$\overline{\mathrm{Q1d/Q1dm}}$	S	s	?	e	Е	Р	Total
5	0	0	0	0	5016	0	5016
Missing	0	0	0	0	0	2051	2051
Total	2818	7672	7403	7863	5016	2051	32823

ISSP2012jh1d.dat %>%

tableX(Q1e,Q1em)

$\overline{\mathrm{Q1e/Q1em}}$	S	s	?	е	Е	Р	Total
1	3357	0	0	0	0	0	3357
2	0	8342	0	0	0	0	8342
3	0	0	7841	0	0	0	7841
4	0	0	0	7267	0	0	7267
5	0	0	0	0	3462	0	3462
Missing	0	0	0	0	0	2554	2554
Total	3357	8342	7841	7267	3462	2554	32823

ISSP2012jh1d.dat %>% tableX(Q2a,Q2am)

$\overline{\mathrm{Q2a/Q2am}}$	S	S	?	e	E	Р	Total
1	11305	0	0	0	0	0	11305
2	0	13464	0	0	0	0	13464
3	0	0	5039	0	0	0	5039
4	0	0	0	1929	0	0	1929
5	0	0	0	0	403	0	403
Missing	0	0	0	0	0	683	683
Total	11305	13464	5039	1929	403	683	32823

ISSP2012jh1d.dat %>%

tableX(Q2b,Q2bm)

$\overline{\mathrm{Q2b/Q2bm}}$	S	S	?	e	Е	Р	Total
1	2704	0	0	0	0	0	2704
2	0	5164	0	0	0	0	5164
3	0	0	6109	0	0	0	6109
4	0	0	0	9210	0	0	9210
5	0	0	0	0	8917	0	8917
Missing	0	0	0	0	0	719	719
Total	2704	5164	6109	9210	8917	719	32823

ISSP2012jh1d.dat %>% tableX(Q3a,Q3am)

$\overline{\mathrm{Q3a/Q3am}}$	W	W	Н	Р	Total
1	5373	0	0	0	5373
2	0	15655	0	0	15655
3	0	0	8367	0	8367
Missing	0	0	0	3428	3428
Total	5373	15655	8367	3428	32823

ISSP2012jh1d.dat %>% tableX(Q3b,Q3bm)

$\overline{\mathrm{Q3b/Q3bm}}$	W	W	Н	P	Total
1	13722	0	0	0	13722
2	0	13817	0	0	13817
3	0	0	1762	0	1762
Missing	0	0	0	3522	3522
Total	13722	13817	1762	3522	32823

ISSP2012jh1d.dat %>% # tableX muotoilee taulukkoa! tableX(Q3am,Q3a)

$\overline{\mathrm{Q3am/Q3a}}$	1	2	3	Missing	Total
W	5373	0	0	0	5373
W	0	15655	0	0	15655
H	0	0	8367	0	8367
P	0	0	0	3428	3428
Total	5373	15655	8367	3428	32823

```
ISSP2012jh1d.dat$Q3a %>% levels()
```

```
## [1] "W" "w" "H"
```

ISSP2012jh1d.dat\$Q3am %>% levels()

[1] "W" "w" "H" "P"

Taustamuuttujat

ISSP2012jh1d.dat %>%
 tableX(edu, edum)

edi		school (ele- men- tary	Lower secondary (secondary completed cycles not allow entry to university: obligatory school)	Upper secondary (programs that allows entry to university	Post secondary, non-tertiary (other upper secondary programs toward labour market or technical formation)	Lower level tertiary, first stage (also technical schools at a tertiary level)	Upper level ter-tiary (Mas-ter, Dr.)	mi	 ssTogal
1	491	0	0	0	0	0	0	0	491
2	0	1531	0	0	0	0	0	0	1531
3	0	0	7811	0	0	0	0	0	7811
4	0	0	0	7115	0	0	0	0	7115
5	0	0	0	0	5658	0	0	0	5658
6	0	0	0	0	0	5147	0	0	5147
7	0	0	0	0	0	0	4762	0	4762
Mi	soling	0	0	0	0	0	0	308	8308
То	t 4 191	1531	7811	7115	5658	5147	4762	308	832823

ISSP2012jh1d.dat %>% tableX(msta, mstam)

	1	Unemployed and looking for a job, HR: incl never	In	or	offeermane	·	Dom	In compulsory military service or estimmunity	O41	•	1
msta	amosk	amhad a job	eauca	ашанпее	disabled	nei	TIM-MOIL K	service	Ott	lems	silfogtal
1	1796	70	0	0	0	0	0	0	0	0	17967
2	0	1769	0	0	0	0	0	0	0	0	1769
3	0	0	1763	0	0	0	0	0	0	0	1763
4	0	0	0	189	0	0	0	0	0	0	189
5	0	0	0	0	1093	0	0	0	0	0	1093
6	0	0	0	0	0	799	90	0	0	0	7999
7	0	0	0	0	0	0	1180	0	0	0	1180
8	0	0	0	0	0	0	0	9	0	0	9
9	0	0	0	0	0	0	0	0	484	0	484
Miss	si0g	0	0	0	0	0	0	0	0	370	370
Tota	al1796	7 1 7 6 9	1763	189	1093	799	91180	9	484	370	32823

ISSP2012jh1d.dat %>%
 tableX(sosta, sostam)

sosta/sos	Lowest, Bottom, t Oil n	02	03	04	05	06	07	08	09	Highest, Top, 10	missir	ngFotal
1	562	0	0	0	0	0	0	0	0	0	0	562
10	0	0	0	0	0	0	0	0	0	442	0	442
2	0	866	0	0	0	0	0	0	0	0	0	866
3	0	0	2221	0	0	0	0	0	0	0	0	2221
4	0	0	0	3346	0	0	0	0	0	0	0	3346
5	0	0	0	0	6798	0	0	0	0	0	0	6798
6	0	0	0	0	0	6889	0	0	0	0	0	6889
7	0	0	0	0	0	0	5778	0	0	0	0	5778
8	0	0	0	0	0	0	0	3477	0	0	0	3477
9	0	0	0	0	0	0	0	0	667	0	0	667
Missing	0	0	0	0	0	0	0	0	0	0	1777	1777
Total	562	866	2221	3346	6798	6889	5778	3477	667	442	1777	32823

ISSP2012jh1d.dat %>% tableX(nchild,nchildm)

nehild/ne	No h ildild ren	One	2 childre	n ?	4	5	6	7	8	18	21 children	miggi	ndTotal
— Icinia/ nc	mumuren	ciniu	cinidre	11.0	4	<u> </u>	0	-1	- 0	10	cinidien	1111551	iigi otai
1	24102	0	0	0	0	0	0	0	0	0	0	0	24102
10	0	0	0	0	0	0	0	0	0	1	0	0	1
11	0	0	0	0	0	0	0	0	0	0	1	0	1
2	0	4378	0	0	0	0	0	0	0	0	0	0	4378
3	0	0	2643	0	0	0	0	0	0	0	0	0	2643
4	0	0	0	598	0	0	0	0	0	0	0	0	598
5	0	0	0	0	117	0	0	0	0	0	0	0	117
6	0	0	0	0	0	20	0	0	0	0	0	0	20
7	0	0	0	0	0	0	13	0	0	0	0	0	13
8	0	0	0	0	0	0	0	7	0	0	0	0	7
9	0	0	0	0	0	0	0	0	3	0	0	0	3
Missing	0	0	0	0	0	0	0	0	0	0	0	940	940
Total	24102	4378	2643	598	117	20	13	7	3	1	1	940	32823

ISSP2012jh1d.dat %>%
 tableX(lifsta, lifstam)

lifsta	ı/Nfa	Civil tapa dtn	Separated from spouse/civil partner (still legally married/still legally in a civil enshipnership)	Divorced from spouse/ legally separated from civil partner	Widow civil part- ner died	Never edmarried/ never in a civil part- nership, single	mis	<u> </u>
1	175	570	0	0	0	0	0	17573
2	0	1035	0	0	0	0	0	1035
3	0	0	486	0	0	0	0	486
4	0	0	0	2997	0	0	0	2997
5	0	0	0	0	2763	0	0	2763
6	0	0	0	0	0	7535	0	7535
Miss	in@g	0	0	0	0	0	434	434
Tota	1 175	57 B 035	486	2997	2763	7535	434	32823

ISSP2012jh1d.dat %>%
 tableX(urbru, urbrum)

urbru/ı	A big u dity m	The suburbs or outskirts of a big city	A town or a small city	A country village	A farm or home in the country	miss	in g otal
1	8442	0	0	0	0	0	8442
2	0	4386	0	0	0	0	4386
3	0	0	9203	0	0	0	9203
4	0	0	0	8646	0	0	8646
5	0	0	0	0	1902	0	1902
Missing	g 0	0	0	0	0	244	244
Total	8442	4386	9203	8646	1902	244	32823

2 Yksinkertainen korrespondenssianalyysi kahden luokittelumuuttujan taulukko

Vanhaa jäsennystä

Yksinkertainen esimerkki, yksi kysymys (V6/Q1b) ja kuusi maata ristiintaulukoituna. Johdatteluna aiheeseen esitellään ca-käsitteet profiili, massa ja reunajakauma. Havainnollistetaan rivi- ja sarakeprofiilien vertailua vastaaviin keskiarvoprofiileihin.

Taulukoita tarkastella ensin rivien ja sitten sarakkeiden suhteen. Miten ne poik-

keavat keskiarvostaan, miten toisistaan saman kategorian profiilista. Usein taulukoissa muuttujilla on selvästi eri rooli, kuten tässä. Koitan hahmottaa maiden (=aggregoituja yksilöitä) eroja ja yhtäläisyyksiä. Sarakkeiden vertailussa taas näemme, miten muuttujien profiilit poikkeavat keskiarvostaan. Monia riippuvuksia ja poikkeamia näyttäisi olevan. Klassinen ongelma, Pearson ja Fisher. Luokittelumuuttujien yhteys ("korrelaatio") on hankala juttu.

Riippumattomuushypoteesi ja χ^2 - riippumattomuustesti (pieni huomautus - on monta tapaa testata taulukon riippuvuuksia). Riippumattomuushypoteesi ehdollisena todennäköisyytenä reunajakauman suhteen. Riippumattomuustulkinta ei aina päde, jos aggregoidut havainnot/rivi-tai sarakeprofiilit/"samples" MG:n terminologiassa eivät ole riippumattomia. Esimerkki Barentsin merenpohjan lajiston havainnot (lukumäärät, "abundance") öljylauttojen liepeiltä (havainnot ryväksiä).

zxy Tämä puuttuu kaavoista!

Käsitteitä

1. Taulukko

Erityisesti CA, jossa "ranskalaisella terminologialla" käsitellään yksilöiden tai havaintoyksiköiden pilveä ja muuttujien pilveä . Taulukot saadaan yksinkertaisen CA:n tapauksessa aggregoimalla "cloud of individuals".

#V MOOC, LeReoux

2. Kontingenssitaulu (kts. viite, jossa ohje "yhteys aina riviä pitkin"), frekvenssitaulu, ristiintaulukointi

Dataa valitaan, aggregoidaan, ryhmitellään. Aktiivisia valintoja. Blasius emt. "data ei löydy kadulta", ja vaikka siitä ei ole epäilystäkään ISSP-datan tapauksessa, niin siitäkin jatketaan eteenpäin. (edit 24.2.20 Epäselvä muistiinpano?)

Peruskäsitteiden yksinkertaisessa esityksessä tärkein lähde MG:n CAiP #V Siellä tästäkin on sananen: substanssiero usein on.

3. CA:ssa vaikea juttu on (Blasius, "vizualisation - verkkokirja") rivien ja sarakkeiden **tekninen** symmetria. No ei se nyt niin hämäävä ehkä ole, oleellinen juttu (21.2.20). Kts. myös MG:n didaktiset esittelyt, skaalataan "hajontamittarilla" ja painotetaan massoilla.

 χ^2 - etäisyys, yhteys hajontaan eli inertiaan ca-terminologiassa.

Muutama versio tiiviiksi kuvaukseksi - toistoa on (10.4.20)

Dimensioiden vähentäminen tärkein asia ("the essence"), pienessä taulossa ei ihan ilmeinen. Esimerkin pienissä taulukoissa on toisaalta helppo katsoa datasta, mistä on kyse. Toinen tavoite on visualisointi, yleensä kaksiulotteisena kuvana (karttana). Kartta on metaforana hieman hankala. Kartalla esitetään kahden pistejoukon ("pilven") projektiot, jotka säilyttävät maksimimäärän alkuperäisen

n-ulotteisen pistejoukon hajonnasta (inertiasta). Projektiossa lähekkäin olevat saman pilven pisteet voivat kuitenkin olla n-ulotteisessa pilvessä hyvinkin kaukana toisistaan. Tulkinnassa tärkeitä ovat "ääripäät", ja numeeriset tulokset kertovat kuinka hyvin piste on tasossa esitetty. Pisteiden väliset etäisyydet suhteellisia, ja eri pistejoukkojen välisillä etäisyyksillä ei ole suoraan mitään tulkintaa. Tämä ei oikein vastaa mielikuvaa kartasta, josta helposti näkee kuinka kaukana on Uudenmaan raja.

Yksinkertainen korrespondenssianalyysi on kahden luokitteluasteikon muuttujan riippuvuuksien geometrista analyysiä. Lähtökohta on kahden muuttujan ristiintaulukointi, alkuperäinen data voi olla muillakin asteikoilla mitattua. Menetelmän ydin on tarkastella molempien muuttujien – taulukon rivien ja sarakkeiden – riippuvuuksia kaksiulotteisena kuvana. Kuvaa kutsutaan myös kartaksi, ja tulkinnan ensimmäinen askel on kartan "koordinaatiston" tulkinta. Kaikki etäisyydet kuvassa ovat suhteellisia, vain rivi- ja sarakepisteiden etäisyydet kuvan origosta voidaan tulkita tarkasti. Koordinaatiston tulkinta aloitetaan "katsomalla mitä on oikealla ja vasemmalla, ja mitä on ylhäällä ja alhaalla" (viite LeRoux et.al, Bezecri-sitaatti). Vaikka pisteiden etäisyyksiä edes rivi- ja sarakepisteiden välillä ei voi tarkkaan tulkita (approksimaatioita), projektiossa kaukana toisistaan olevat pisteet ovat kaukana toisistaan myös alkuperäisessä "pistepilvessä".

Akseleiden tulkinta "ääripäiden" kautta ("kontrasti"?). Huom "ääripää" ei välttämättä Likert-asteikolla tarkoita "äärimielipidettä", vaan se voi tarkoittaa myös selvää tai varmaa mielipidettä.(3.10.18).

Vanha lista - tehty jo

- 1. Ensimmäinen taulukko: profiilit, massat, keskiarvoprofiilit, khii2 riippumattomuustesti ja etäisyysmitta
- 2. Hyvin tiivis esitys CA:n perusideasta, mutta ilman aivan simppeleitä kolmiulotteisia kuvia (niitä on jo).
- 3. Ensimmäinen symmetrinen kartta, perustulkinta (mitä kuvasta voidaan sanoa, mitä ei)
- 4. Lyhyt viittaus graafisen esityksen tulkintapulmiin, jotka eivät ole kovin pahoja. CA-kartta kaksoiskuvana (ts. informaatio voidaan palauttaa, skalaaritulo)?
- 5. Tulkinnan syventäminen CA-käsitteiden tarkempi esittely

Haaste: käsitteet ja niiden suhteet ovat abstraktien matemaattisten rakenteiden tuloksia (barycentric, sentroidi), ja ne pitää jotenkin johdonmukaisesti pala kerrallaan tuoda esimerkkien kautta tekstiin. Käsittteistä oma Rmd (ja Excel jos osoittautuu kätevämmäksi), kaavaliite Dispo-repossa ja myös Rmd-muodossa.

$\mathrm{edit}(10.4.20)$: kaavaliitteen lisäksi voi tekstiin upottaa muutaman r
koodi-esimerkin

Ensimmäinen symmetrinen kartta

Tulkinnat ja yksinkertaisimmat perussäännöt. Dimensiot ja kuinka paljon alkuperäisen taulukon inertiaa saadaan esitettyä kartalla. Sitten asian ydin, akseleiden tulkinta ("mitä on oikealla ja vasemmalla"). Jos pisteet ovat alkuperäisessä "pilvessä" kaukana toisistaan, ne ovat sitä myös projektiossa. Kartta, mutta etäisyyksillä ei suoraa tulkintaa paitsi eteisyyksinllä origoon. Rivipisteiden suhteelliset etäisyydet, samoin sarakepisteidet. Mitä tarkoittavat prosentit akseleilla?

Varoitus virhetulkinnasta: ryhmien tunnistaminen rivi, myös pelkästään rivi- tai sarakepisteistä koostuvien ryhmien.

zxy Ja silti tavallaan voi. Sarake- ja rivipisteiden etäisyyksille ei ole suoraa tulkintaa, mutta on "vetovoima" (attraktio) ja "työntövoima" (repulsio). Jos profiilissa sarakemuuttujan osuus on suuri (siis suurempi kuin keskiarvopisteessä, suhteellinen ero), se "ajautuu" lähelle sarekepistettä. MG: "loose ends" - paperi, symmetrinen kuva eräs suurin sekaannuksen lähde. Tätä koitetaan selventää myös MG:n JASA-artikkelissa.

zxy(teoria/historia-jaksoon,104.20). Termi korrespondenssi: "neglected multivariate method" - paperissa käännetty näin englanniksi ransk. termi (Benzecri) rivien ja sarakkeiden "correspondence" eli yhteys, "riippuvuus", vastaavuus tms. edit 4.7.20 Kts. myös Funmooc-muistiinpanot, opk! Mitä kartta esittää? Kaikki edellä kuvattu esitetään suhteellisina eroina koko aineiston keskiarvosta, riippumattomuushypoteesi.

2.1 Äiti työssä

zxy Perustellaan aineiston valinnan vaiheet. Esimerkiksi otetaan yksi kysymys.

zxy Suhde data-lukuun, siellä pitäisi esitellä aineisto sisällöllisesti. Tässä vain valitan esimerkkiä varten yksi kysymys ja kuusi maata.

Aineisto muuttujat Q1a-Q1e (arvot 1-5, täysin samaa mieltä - täysin eri mieltä) ovat vastauksia ensimmäiseen kysymyspatteriin (kts. lomake).

edit 10.4.20 Muuttujien "suunta" samaksi, jos monta. Laajemman aineiston käsittelyyn tästä huomautus.

(V6/Q1b) Alle kouluikäinen lapsi todennäköisesti kärsii, jos hänen äitinsä käy työssä. V6 muunnetaan uudeksi luokittelumuuttujaksi (R:ssä factor) Q1b. Tämä ei vielä tee kuvista ahtaita kun sarakkeita ja rivejä on vähän. Pudotetaan tarvittaessa turha Q-kirjain pois. Alkuperäisessä muuttujassa metatieto säilyy varmemmin, ja tarkistuksia on helpompi tehdä.

Valitaan esimerkin data edellisessä luvussa luodusta R-datasta ISSP2012jh1d.dat). Ihan yhtä hyvin voisi aina lukea suoraan alkuperäisestä spss-tiedostosta, mutta pidemmässä raportissa tämä on siistimpi tapa (23.3.2019). Kun havaintoja ja maita jätetään pois, uuteen dataan jää tyhjiä luokittelumuuttujien luokkia, ne poistetaan.

```
# UUSI DATA 30.1.20
\# LUETAAN DATA G1_1_data2.Rmd - tiedostossa, luodaan faktorimuuttujat
\# G1\_1\_data\_fct1.Rmd-tiedostossa \rightarrow ISSP2012jh1d.dat (df)
# 23 muuttujaa (9 substanssimuuttujaa, 8 taustamuuttujaa, 3 maa-muuttujaa, 3 metadatamuuttu
# 25 maata.
# Poistettu 146 havaintoa, joilla SEX tai AGE puuttuu
# Johdattelevassa esimerkissä kuusi maata, kaksi taustamuuttujaa ja yksi kysymys
# (V6/Q1b)
# Kuusi maata
countries_esim1 <- c(56, 100, 208, 246, 276, 348) #BE,BG,DK,FI,DE,HU
ISSP2012esim3.dat <- filter(ISSP2012jh1d.dat, V4 %in% countries_esim1)</pre>
# str(ISSP2012esim3.dat) - pitkä listaus pois (24.2.20)
#neljä maamuuttujaa, kysymys Q1b, ikä ja sukupuoli
vars_esim1 <- c("C_ALPHAN", "V3", "maa", "maa3", "Q1b", "sp", "ika")</pre>
ISSP2012esim2.dat <- select(ISSP2012esim3.dat, all_of(vars_esim1))</pre>
str(ISSP2012esim2.dat) # 8542 obs. of 7 variables, ja sama 8.6.2020
## tibble [8,542 x 7] (S3: tbl_df/tbl/data.frame)
  $ C_ALPHAN: chr [1:8542] "BG" "BG" "BG" "BG" ...
    ..- attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
    ..- attr(*, "format.spss")= chr "A20"
##
    ..- attr(*, "display_width")= int 22
##
   $ V3
              ..@ label
##
                    : chr "Country/ Sample ISO 3166 Code (see V4 for codes for whole nation
     ..@ format.spss: chr "F5.0"
##
                    : Named num [1:45] 32 36 40 100 124 152 156 158 191 203 ...
     ... - attr(*, "names")= chr [1:45] "AR-Argentina" "AU-Australia" "AT-Austria" "BG-Bu
##
## $ maa
             : Factor w/ 25 levels "AU", "AT", "BG", ...: 3 3 3 3 3 3 3 3 3 ...
    ..- attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
##
   $ maa3
             : Factor w/ 29 levels "AU-Australia",..: 3 3 3 3 3 3 3 3 3 ...
##
    ..- attr(*, "label")= chr "Country/ Sample ISO 3166 Code (see V4 for codes for whole na
             : Factor w/ 5 levels "S", "s", "?", "e", ...: 3 2 3 4 3 3 4 3 2 3 ...
##
   $ Q1b
##
    ..- attr(*, "label")= chr "Q1b Working mom: Preschool child is likely to suffer"
             : Factor w/ 2 levels "m", "f": 2 2 1 2 2 2 1 1 2 1 ...
##
   $ sp
##
    ..- attr(*, "label") = chr "Sex of Respondent"
## $ ika
             : dbl+lbl [1:8542] 64, 43, 63, 31, 52, 46, 51, 40, 57, 64, 41, 60, 21, 4...
     ..@ label
                    : chr "Age of respondent"
##
      ..@ format.spss: chr "F3.0"
                    : Named num [1:6] 15 16 17 18 102 999
      ..@ labels
```

```
...- attr(*, "names")= chr [1:6] "15 years" "16 years" "17 years" "18 years" ...
## - attr(*, "notes") = chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
# C_ALPHAN: chr, maa: Factor w/ 25
# Poistetaan havainnot, joilla Q1b - muuttujassa puuttuva tieto 'NA'
ISSP2012esim1.dat <- filter(ISSP2012esim2.dat, !is.na(Q1b))</pre>
str(ISSP2012esim1.dat) # 8143 obs. of 6 variable
## tibble [8,143 x 7] (S3: tbl_df/tbl/data.frame)
  $ C ALPHAN: chr [1:8143] "BG" "BG" "BG" "BG" ...
     ..- attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
##
     ..- attr(*, "format.spss")= chr "A20"
##
    ..- attr(*, "display_width")= int 22
##
             ##
                    : chr "Country/ Sample ISO 3166 Code (see V4 for codes for whole nation
      ..@ label
     ..@ format.spss: chr "F5.0"
##
     ..@ labels
                    : Named num [1:45] 32 36 40 100 124 152 156 158 191 203 ...
     ...- attr(*, "names")= chr [1:45] "AR-Argentina" "AU-Australia" "AT-Austria" "BG-Bu
            : Factor w/ 25 levels "AU", "AT", "BG",..: 3 3 3 3 3 3 3 3 3 ...
##
    ..- attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
##
             : Factor w/ 29 levels "AU-Australia",..: 3 3 3 3 3 3 3 3 3 ...
##
    ..- attr(*, "label")= chr "Country/ Sample ISO 3166 Code (see V4 for codes for whole na
            : Factor w/ 5 levels "S", "s", "?", "e", ...: 3 2 3 4 3 3 4 3 2 3 ...
## $ Q1b
    ..- attr(*, "label")= chr "Q1b Working mom: Preschool child is likely to suffer"
##
             : Factor w/ 2 levels "m", "f": 2 2 1 2 2 2 1 1 2 1 ...
    ..- attr(*, "label")= chr "Sex of Respondent"
##
             : dbl+lbl [1:8143] 64, 43, 63, 31, 52, 46, 51, 40, 57, 64, 41, 60, 21, 4...
   $ ika
                    : chr "Age of respondent"
##
     ..@ label
     ..@ format.spss: chr "F3.0"
##
      ..@ labels
                   : Named num [1:6] 15 16 17 18 102 999
     ....- attr(*, "names")= chr [1:6] "15 years" "16 years" "17 years" "18 years" ...
## - attr(*, "notes") = chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
# Tarkistuksia - miksi nämä eivät tulosta mitään? (3.2.20)
fct_count(ISSP2012esim1.dat$sp) %>% table1()
##
## ----
##
        Mean/Count (SD/%)
        n = 2
##
```

##

m 1 (50%)

f 1 (50%)

```
## n
## 4071.5 (385.4)
## -----
```

fct_count(ISSP2012esim1.dat\$Q1b)

f	n
\overline{S}	810
\mathbf{S}	1935
?	1367
e	2125
\mathbf{E}	1906

fct_count(ISSP2012esim1.dat\$maa)

f	r
AU	(
AT	(
$_{\mathrm{BG}}$	921
CA	(
HR	(
CZ	(
DK	1388
FI	1110
FR	(
HU	997
IS	(
IE	(
LV	(
LT	(
NL	(
NO	(
PL	(
RU	(
SK	(
SI	(
SE	(
СН	0016
BE	2013
DE PT	1714
<u>P1</u>	(

fct_count(ISSP2012esim1.dat\$maa3)

```
n
\operatorname{AU-Australia}
                                                                       0
AT-Austria
                                                                       0
BG-Bulgaria
                                                                    921
CA-Canada
                                                                       0
HR-Croatia
                                                                       0
CZ-Czech Republic
                                                                       0
DK\text{-}Denmark
                                                                   1388
FI-Finland
                                                                   1110
FR-France
                                                                       0
HU-Hungary
                                                                    997
IS-Iceland
                                                                       0
\hbox{IE-Ireland}
                                                                       0
LV-Latvia
                                                                       0
                                                                       0
LT-Lithuania
NL-Netherlands
                                                                       0
NO-Norway
                                                                       0
PL-Poland
                                                                       0
RU-Russia
                                                                       0
SK-Slovakia
                                                                       0
SI-Slovenia
                                                                       0
SE-Sweden
                                                                       0
CH-Switzerland
                                                                       0
BE-FLA-Belgium/Flanders
                                                                   1012
BE-WAL-Belgium/ Wallonia
                                                                    490
BE-BRU-Belgium/ Brussels
                                                                    511
DE-W-Germany-West
                                                                   1167
DE-E-Germany-East
                                                                    547
PT-Portugal 2012: first fieldwork round (main sample)
                                                                       0
PT-Portugal 2012: second fieldwork round (complementary sample)
                                                                       0
```

```
\#S s ? e E
# 810 + 1935 + 1367 + 2125 + 1906 = 8143
# EDELLINEN DATA - havaintojen määrät samat kuin uudella datalla (31.1.20)
#
# 8557 obs. ennen kuin sexagemissing poistettiin, nyt 8542, 8557-8542 = 15
# Poistetaan havainnot joissa puuttuva tieto muuttujassa V6 (Q1b) n = 399
# 8542-399 = 8143
# Tyhjät "faktorilabelit" on poistettava
 ISSP2012esim1.dat <- ISSP2012esim1.dat %>%
    mutate(maa = fct_drop(maa),
            maa3 = fct_drop(maa3)
summary(ISSP2012esim1.dat$maa)
##
    BG
          DK
              FI
                    HU
                         BE
## 921 1388 1110 997 2013 1714
summary(ISSP2012esim1.dat$maa3)
##
                BG-Bulgaria
                                          DK-Denmark
                                                                    FI-Finland
##
                                                1388
##
                 HU-Hungary BE-FLA-Belgium/ Flanders BE-WAL-Belgium/ Wallonia
##
                                                 1012
## BE-BRU-Belgium/ Brussels
                                   DE-W-Germany-West
                                                             DE-E-Germany-East
##
                                                 1167
                                                                           547
# str(ISSP2012esim1.dat$maa)
# attributes(ISSP2012esim1.dat$maa)
# str(ISSP2012esim1.dat$maa3)
# attributes(ISSP2012esim1.dat$maa3)
ISSP2012esim1.dat %>% tableX(maa, Q1b, type = "count")
                                ?
                     \mathbf{S}
                                             \mathbf{E}
                                                   Total
           maa/Q1b
                                       e
          BG
                     118
                          395
                                205
                                       190
                                             13
                                                   921
```

maa/Q1b	S	S	?	e	E	Total
BE	191	451	438	552	381	2013
DE	165	375	198	538	438	1714
Total	810	1935	1367	2125	1906	8143

fct_count(ISSP2012esim1.dat\$Q1b)

f	n
\overline{S}	810
\mathbf{S}	1935
?	1367
e	2125
\mathbf{E}	1906

```
# fct_count(ISSP2012esim1.dat$sp)
# fct_unique(ISSP2012esim1.dat$maa)
# fct_count(ISSP2012esim1.dat$maa)
ISSP2012esim1.dat %>% tableX(maa, C_ALPHAN, type = "count")
```

maa/C_ALPHAN	BE	$_{\mathrm{BG}}$	DE	DK	FI	$_{ m HU}$	Total
BG	0	921	0	0	0	0	921
DK	0	0	0	1388	0	0	1388
FI	0	0	0	0	1110	0	1110
HU	0	0	0	0	0	997	997
BE	2013	0	0	0	0	0	2013
DE	0	0	1714	0	0	0	1714
Total	2013	921	1714	1388	1110	997	8143

```
## [1] "BG-Bulgaria"
                                  "DK-Denmark"
## [3] "FI-Finland"
                                  "HU-Hungary"
## [5] "BE-FLA-Belgium/ Flanders" "BE-WAL-Belgium/ Wallonia"
## [7] "BE-BRU-Belgium/ Brussels" "DE-W-Germany-West"
## [9] "DE-E-Germany-East"
ISSP2012esim1.dat <- ISSP2012esim1.dat %>%
        mutate(maa3 =
                fct_recode(maa3,
                 "BG" = "BG-Bulgaria",
                 "DK" = "DK-Denmark",
                 "FI" = "FI-Finland",
                 "HU" = "HU-Hungary",
                 "bF" = "BE-FLA-Belgium/ Flanders",
                 "bW" = "BE-WAL-Belgium/ Wallonia",
                 "bB" = "BE-BRU-Belgium/ Brussels",
                 "dW" = "DE-W-Germany-West",
                 "dE" = "DE-E-Germany-East")
# tarkistuksia
levels(ISSP2012esim1.dat$maa3)
## [1] "BG" "DK" "FI" "HU" "bF" "bW" "bB" "dW" "dE"
# str(ISSP2012esim1.dat$maa3) # 9 levels
summary(ISSP2012esim1.dat$maa3)
    BG
          DK
             FΙ
                   HU bF
                                   bB
                                        dW
                                             dE
## 921 1388 1110 997 1012 490 511 1167 547
# TÄSSÄ TOISTOA! (4.2.20)
# Muutetaan muuttujien "maa" ja "maa3" arvojen (levels) järjestys samaksi kuin alkuperäisen
# muuttujan C_ALPHAN. Helpomi verrata aikaisempiin tuloksiin.
# maa samaan järjestukseen kuin C_ALPHAN - olisiko aakkosjärjestys?
# tämä vain siksi, että muuten esimerkin ca-kartta "kääntyy"
# "vanha" maa-muuttuja talteen - ei ehkä tarpeen? (4.2.20)
ISSP2012esim1.dat$maa2 <- ISSP2012esim1.dat$maa # "alkuperäinen" maa talteen
ISSP2012esim1.dat <- ISSP2012esim1.dat %>%
        mutate(maa =
                fct_relevel(maa,
                            "BE",
                            "BG".
                            "DE"
```

```
"DK",
                             "FI",
                             "HU"))
ISSP2012esim1.dat <- ISSP2012esim1.dat %>%
        mutate(maa3 =
                fct_relevel(maa3,
                         "bF",
                         "bW",
                         "bB",
                         "BG",
                         "dW",
                         "dE",
                         "DK",
                         "FI",
                         "HU"))
# Tarkistus
ISSP2012esim1.dat %>% tableX(maa2,maa, type = "count")
```

maa2/maa	BE	$_{\mathrm{BG}}$	DE	DK	FI	HU	Total
BG	0	921	0	0	0	0	921
DK	0	0	0	1388	0	0	1388
FI	0	0	0	0	1110	0	1110
$_{ m HU}$	0	0	0	0	0	997	997
BE	2013	0	0	0	0	0	2013
DE	0	0	1714	0	0	0	1714
Total	2013	921	1714	1388	1110	997	8143

ISSP2012esim1.dat %>% tableX(maa,C_ALPHAN, type = "count")

maa/C_ALPHAN	BE	$_{\mathrm{BG}}$	DE	DK	FI	HU	Total
BE	2013	0	0	0	0	0	2013
BG	0	921	0	0	0	0	921
DE	0	0	1714	0	0	0	1714
DK	0	0	0	1388	0	0	1388
FI	0	0	0	0	1110	0	1110
HU	0	0	0	0	0	997	997
Total	2013	921	1714	1388	1110	997	8143

```
str(ISSP2012esim1.dat)
```

```
## tibble [8,143 x 8] (S3: tbl_df/tbl/data.frame)
```

```
$ C_ALPHAN: chr [1:8143] "BG" "BG" "BG" "BG" ...
     ..- attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
##
     ..- attr(*, "format.spss")= chr "A20"
     ..- attr(*, "display_width")= int 22
##
##
             ##
                    : chr "Country/ Sample ISO 3166 Code (see V4 for codes for whole nation
     ..@ label
      ..@ format.spss: chr "F5.0"
##
                    : Named num [1:45] 32 36 40 100 124 152 156 158 191 203 ...
##
      ..@ labels
     ... - attr(*, "names")= chr [1:45] "AR-Argentina" "AU-Australia" "AT-Austria" "BG-Bu
##
##
             : Factor w/ 6 levels "BE", "BG", "DE", ...: 2 2 2 2 2 2 2 2 2 2 ...
##
    ..- attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
             : Factor w/ 9 levels "bF","bW","bB",...: 4 4 4 4 4 4 4 4 4 4 ...
##
##
    ..- attr(*, "label")= chr "Country/ Sample ISO 3166 Code (see V4 for codes for whole na
             : Factor w/ 5 levels "S", "s", "?", "e", ...: 3 2 3 4 3 3 4 3 2 3 ...
##
    ..- attr(*, "label")= chr "Q1b Working mom: Preschool child is likely to suffer"
             : Factor w/ 2 levels "m", "f": 2 2 1 2 2 2 1 1 2 1 ...
   $ sp
##
    ..- attr(*, "label") = chr "Sex of Respondent"
            : dbl+lbl [1:8143] 64, 43, 63, 31, 52, 46, 51, 40, 57, 64, 41, 60, 21, 4...
##
                    : chr "Age of respondent"
     ..@ label
     ..@ format.spss: chr "F3.0"
##
     ..@ labels
                    : Named num [1:6] 15 16 17 18 102 999
     ... -- attr(*, "names")= chr [1:6] "15 years" "16 years" "17 years" "18 years" ...
            : Factor w/ 6 levels "BG", "DK", "FI", ...: 1 1 1 1 1 1 1 1 1 1 ...
    ..- attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
   - attr(*, "notes") = chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
```

TODO (1) Taulukot erotettava omiksi koodilohkoiksi bookdowniin. (2) Ikä - maa - taulukko vain tarkistuksiin, ihan liian pitkä.

```
# Taulukoita (31.1.2020) ja tarkistuksia
# toinen maa-muuttuja, jossa Saksan ja Belgian jako
# V3
  5601
           BE-FLA-Belgium/ Flanders
# 5602
           BE-WAL-Belgium/ Wallonia
# 5603
           BE-BRU-Belgium/ Brussels
# 27601
           DE-W-Germany-West
# 27602
           DE-E-Germany-East
# Tarkastuksia
# assert_that ehkä tarpeeton - expect_equivalet testaa levelien
# järjestyksen ja määrän (20.2.20)
assert_that(length(levels(ISSP2012esim1.dat$maa)) == 6)
```

[1] TRUE

 $mak / ik6 17\ 18\ 19\ 20\ 21\ 22\ 23\ 24\ 25\ 26\ 27\ 28\ 29\ 30\ 31\ 32\ 33\ 34\ 35\ 36\ 37\ 38\ 39\ 40\ 41\ 42\ 43\ 44\ 45\ 46\ 47\ 48\ 49\ 50\ 51\ 52\ 53$

 $\begin{array}{l} {\rm BED.00.00.00.79.29.24.19.54.49.34.44.19.69.34.39.64.59.04.72.04.89.59.74.49.54.89.84.69.69.54.69.62.68.79.54.89.79.92.1} \\ {\rm BCD.00.00.00.041.09.98.98.76.19.76.19.40.98.98.09.50.98.30.50.98.74.74.30.95.19.06.72.62.50.40.76.87.52.30.41.70.82.17.8} \\ {\rm DED.00.00.00.011.69.23.58.40.98.46.58.17.40.28.46.28.52.40.99.34.28.34.11.28.28.87.52.16.81.98.73.82.39.98.12.16.98.98.5} \\ {\rm DEO.00.00.00.73.30.30.22.52.74.95.15.08.73.37.44.02.09.44.42.59.15.73.73.37.80.02.80.51.80.59.31.80.23.37.16.02.66.87.1} \\ {\rm FI~0.72.80.17.62.08.35.17.68.26.53.35.44.26.17.61.17.62.08.80.35.44.53.98.60.90.71.35.26.08.80.62.89.79.61.98.71.35.53.0} \\ {\rm HU.00.00.00.09.20.00.80.91.91.10.50.00.40.30.91.60.81.50.41.50.72.92.01.60.61.50.40.10.01.42.32.22.31.91.50.30.50.20.1} \\ {\rm All0.10.26.16.22.31.20.38.51.78.40.39.20.46.25.61.36.62.52.60.71.54.73.62.50.52.85.63.78.90.65.77.93.37.83.81.85.61.82.8} \\ {\rm All0.10.26.16.20.31.20.38.51.78.40.39.20.46.25.61.36.62.52.60.71.54.73.62.50.52.85.63.78.90.65.77.93.37.83.81.85.61.82.8} \\ {\rm All0.10.26.16.20.31.20.38.51.78.40.39.20.46.25.61.36.62.52.60.71.54.73.62.50.52.85.63.78.90.65.77.93.37.83.81.85.61.82.8} \\ {\rm All0.10.26.16.20.31.20.38.51.78.40.39.20.46.25.61.36.62.52.60.71.54.73.62.50.52.85.63.78.90.65.77.93.37.83.81.85.61.82.8} \\ {\rm All0.10.26.16.20.31.20.38.51.78.40.39.20.46.25.61.36.62.52.60.71.54.73.62.50.52.85.61.82.8} \\ {\rm All0.10.26.16.20.31.20.38.51.78.40.39.20.46.25.61.36.62.52.60.71.54.78.62.50.52.85.61.82.8} \\ {\rm All0.10.26.16.20.31.20.38.51.78.40.39.20.46.25.61.36.62.52.60.71.54$

```
# Riviprofilit

# ISSP2012esim1.dat %>% tableX(maa,ika,type = "row_perc")
ISSP2012esim1.dat %>% tableX(maa,sp ,type = "row_perc")
```

maa/sp	m	f	Total
BE	47.44	52.56	100.00
$_{\mathrm{BG}}$	40.72	59.28	100.00
DE	48.66	51.34	100.00
DK	49.42	50.58	100.00
FI	42.88	57.12	100.00
HU	47.44	52.56	100.00

maa/sp	m	f	Total
All	46.65	53.35	100.00

Kysymyksen Q1b vastaukset

ISSP2012esim1.dat %>% tableX(maa,Q1b,type = "row_perc")

$\overline{\mathrm{maa/Q1b}}$	S	S	?	e	Е	Total
BE	9.49	22.40	21.76	27.42	18.93	100.00
$_{\mathrm{BG}}$	12.81	42.89	22.26	20.63	1.41	100.00
DE	9.63	21.88	11.55	31.39	25.55	100.00
DK	5.04	17.15	10.95	16.71	50.14	100.00
FI	4.23	16.94	13.42	38.11	27.30	100.00
$_{ m HU}$	21.97	28.89	22.57	19.06	7.52	100.00
All	9.95	23.76	16.79	26.10	23.41	100.00

Kuuluu ehkä vasta seuraavaan jaksoon ? (20.2.20)

ISSP2012esim1.dat %>% tableX(maa3,Q1b,type = "row_perc")

maa3/Q1b	S	S	?	e	Е	Total
bF	5.04	23.81	25.89	30.83	14.43	100.00
bW	10.82	21.02	18.57	24.08	25.51	100.00
bB	17.03	20.94	16.63	23.87	21.53	100.00
$_{\mathrm{BG}}$	12.81	42.89	22.26	20.63	1.41	100.00
dW	11.40	26.82	11.83	32.13	17.82	100.00
dE	5.85	11.33	10.97	29.80	42.05	100.00
DK	5.04	17.15	10.95	16.71	50.14	100.00
FI	4.23	16.94	13.42	38.11	27.30	100.00
HU	21.97	28.89	22.57	19.06	7.52	100.00
All	9.95	23.76	16.79	26.10	23.41	100.00

```
\# str(ISSP2012esim1.dat) \# 8143 obs. of 7 variable, \\ \# sama kuin vanhassa Galku-koodissa.
```

Taulukot ja kuvat omina koodilohkoina bookdown-versioon Frekvenssitaulukko

```
# Esimerkki - siisti tuloste (20.2.20)
taulu2 <- ISSP2012esim1.dat %>% tableX(maa, Q1b, type = "count")
```

Taulukko 51: Kysymyksen Q1b vastaukset maittain

	S	S	?	e	Е	Total
BE	191	451	438	552	381	2013
$_{\mathrm{BG}}$	118	395	205	190	13	921
DE	165	375	198	538	438	1714
DK	70	238	152	232	696	1388
FI	47	188	149	423	303	1110
HU	219	288	225	190	75	997
Total	810	1935	1367	2125	1906	8143

Riviprosentit

Taulukko 52: Kysymyksen Q1b vastaukset, riviprosentit

	S	s	?	e	E	Total
$\overline{\mathrm{BE}}$	9.49	22.40	21.76	27.42	18.93	100.00
$_{\mathrm{BG}}$	12.81	42.89	22.26	20.63	1.41	100.00
DE	9.63	21.88	11.55	31.39	25.55	100.00
DK	5.04	17.15	10.95	16.71	50.14	100.00
FI	4.23	16.94	13.42	38.11	27.30	100.00
HU	21.97	28.89	22.57	19.06	7.52	100.00
All	9.95	23.76	16.79	26.10	23.41	100.00

Sarakeprosentit

Taulukko 53: Kysymyksen Q1b vastaukset, sarakeprosentit

	S	\mathbf{s}	?	e	E	All
$\overline{\mathrm{BE}}$	23.58	23.31	32.04	25.98	19.99	24.72
$_{\mathrm{BG}}$	14.57	20.41	15.00	8.94	0.68	11.31
DE	20.37	19.38	14.48	25.32	22.98	21.05
DK	8.64	12.30	11.12	10.92	36.52	17.05
FI	5.80	9.72	10.90	19.91	15.90	13.63
HU	27.04	14.88	16.46	8.94	3.93	12.24
Total	100.00	100.00	100.00	100.00	100.00	100.00

Taulukoissa on kuuden maan vastausten jakauma kysymykseen "Alle kouluikäinen lapsi todennäköisesti kärsii, jos hänen äitinsä käy työssä". Taulukko on pieni, mutta havaintoja 8143. Alemman suhteellisten frekvenssien taulukon rivejä voi verrata toisiinsa ja alimpaan ("Total"") keskimääräiseen riviin, sarakemuuttujien eli vastausvaihtoehtojen reunajakaumaan. Vastavasti sarakkeita voi verrata rivimuuttujien reunajakaumasarakkeeseen ("Total2). Eniten vastaajia on Belgiasta (25 %) ja Saksasta (21 %), vähiten Unkarista (12 %). edit 24.2.20 Lisätty ca-karttoihin versio, jossa maiden painot samat (= 1). Esimerkkilaskelmia CAcalc 1.R.

```
# CA tässä, jotta saadaan rivi- ja sarakeprofiilikuvat
simpleCA1 <- ca(~maa + Q1b,ISSP2012esim1.dat)</pre>
# Maiden järjestys kääntää kuvan (1.2.20) - esimerkki on
# vähän kuriositeetti. Kartta voi tietysti "flipata" koordintaattien suhteen ainakin
# neljällä tavalla (? 180 astetta molempien akseleiden ympäri molempiin suuntiin?)
# (18.2.20). Tämän maa2-muuttujaa käyttävän kuvan voi jättää pois (8.4.20)
# simpleCA2 <- ca(~maa2 + Q1b, ISSP2012esim1.dat)
# Oikeastaan maiden vertailussa pitäisi niiden massat skaalata yhtä suuriksi, tässä
# pikainen kokeilu (20.2.20)
# Riviprosentit taulukoksi, nimet sarakkeille ja riveille (ei kovin robustia...)
johdesim1_rowproc.tab <- simpleCA1$N / rowSums(simpleCA1$N)</pre>
colnames(johdesim1_rowproc.tab) <- c("S" ,"s" ,"?","e", "E")</pre>
rownames(johdesim1_rowproc.tab) <- c("BE", "BG", "DE", "DK", "FI", "HU")</pre>
# Miten tibblenä? Ei toimi, ei maa-muuttujaa ollenkaan
# johdesim1_rowproc.tbl <- as_tibble(johdesim1_rowproc.tab)</pre>
# str(johdesim1_rowproc.tbl)
```

```
# TARKISTUKSIA (20.2.20)
# johdesim1 rowproc.tab
# rowSums(johdesim1_rowproc.tab)
# str(johdesim1_rowproc.tab)
simpleCA3 <- ca(johdesim1_rowproc.tab)</pre>
# Kartta piirretään koodilohkossa simpleCAmap1, r. 773 noin.
# Riviprosentit tarkistusta varten
* S S ? e E
#BE 9.49 22.40 21.76 27.42 18.93
#BG 12.81 42.89 22.26 20.63 1.41
#DE 9.63 21.88 11.55 31.39 25.55
#DK 5.04 17.15 10.95 16.71 50.14
#FI 4.23 16.94 13.42 38.11 27.30
#HU 21.97 28.89 22.57 19.06 7.52
# Ja datan saa leikepöydän kautta, jos on tarve pikatarkistuksiin
# read <- read.table("clipboard")</pre>
# 9.4.2020 CAcalc_1.R - laskentoa ca-funktion tuloksilla (16 objektin lista)
```

TODO 2.2.20

Onko tämä kuva tallennettava kuvatiedostoksi, vai onnistuuko sen tuottaminen Bookdownissa. Ei taida onnistua? (4.9.18)

Sarakeprofiilit, oikea järjestys maa-muuttujan tasoilla. Faktoreiden järjestys voi tuottaa yllätyksiä, kun dataa muokataan ggplot - grafiikaksi.

```
#mutkikas kuvan piirto - sarakeprofiilit vertailussa
#ggplot vaatii df-rakenteen ja 'long data' - muotoon
##https://stackoverflow.com/questions/9563368/create-stacked-barplot-where-each-stack-is-sc
#
# käytetään ca - tuloksia
apu1 <- (simpleCA1$N)
colnames(apu1) <- c("S", "s", "?", "e", "E")
rownames(apu1) <- c("BE", "BG", "DE", "DK", "FI", "HU")
apu1_df <- as.data.frame(apu1)
#lasketan rivien reunajakauma
apu1_df$ka_sarake <- rowSums(apu1_df)
#muokataan 'long data' - muotoon
apu1b_df <- melt(cbind(apu1_df, ind = rownames(apu1_df)), id.vars = c('ind'))</pre>
```


Kuva 2: Q1b:Sarakeprofiilit ja keskiarvoprofiili

```
\# apu1\_df
\# apu1b\_df
```

Edit 28.5.20 Idea: ca havainnollistaa rivien ja sarakkaeiden riippuvuuksia eroina keskiarvosta, yksinkertainen khii2-tulkinta riippumattomuushypoteesina. Rivi-ja sarakeprofiilit standardoidaan (tulkintaa!) PCA-tyyliin (poikkeama keskiarvosta jaetaan hajonnalla, lukumäärädata ja POisson-jakaumassa hajonta=odotusarvo). Rivi- ja sarakeratkaisuiden symmetria ja sidos esitetään tässä.

Sarakkeuvassa näkyy E-sarakkeenselvästi ero (DK), muut erot eivät niinkään. S-sarakkeessa HU erottuu, samoin eos(?)-sarakkeessa BE.

Testaus: maa2, eri järjestys kuin C_ALPHAN (joka oli käytössä vanhemmissa Galku-versioissa) edit pois tulosteesta 30.3.20.

TODO 2.2.20 Voisi harkita taulukoiden (rivi- ja sarakeprosentit) sijoittamista kuvien viereen?

```
# riviprofiilit ja keskiarvorivi - 18.9.2018
apu2_df <- as.data.frame(apu1)</pre>
apu2_df <- rbind(apu2_df, ka_rivi = colSums(apu2_df))</pre>
\#apu2_df
#str(apu2_df)
## typeof(apu2_df) # what is it?
## class(apu2_df) # what is it? (sorry)
## storage.mode(apu2_df) # what is it? (very sorry)
## length(apu2\_df) # how long is it? What about two dimensional
## objects?
# attributes(apu2_df)
# temp1 <- cbind(apu2_df, ind = rownames(apu2_df))</pre>
# temp1
##muokataan 'long data' - muotoon
apu2b_df <- melt(cbind(apu2_df, ind = rownames(apu2_df)), id.vars = c('ind'))</pre>
# str(apu2b_df)
# glimpse(apu2b_df)
\#ggplot(apu2b_df, aes(x = value, y = ind, fill = variable)) +
        qeom_bar(position = "fill", stat ="identity") +
        #coord_flip() +
         scale_x_continuous(labels = percent_format())
#versio2 toimii (18.9.2018)
ggplot(apu2b_df, aes(x = ind, y = value, fill = variable)) +
       geom_bar(position = "fill", stat = "identity") +
       coord flip() +
        scale_y_continuous(labels = percent_format())
```


edit 28.5.20 Tanska ja Unkari erottuvat ka-rivistä E-vaihtoehdon ("modaliteetin") osuuksissa selvimmin. Bulgarialla S+s on hieman suurempi kuin Unkarilla, mutta s-osuus on suurempi. "Ääripäitä" S- ja E-osuuksissa edustavat HU - FI, DK ja BG-HU - DK.

edit Pois tulosteesta 30.3.20Sama testaus kuin sarakeprofiilikuvilla (maiden järjestys, tekninen juttu).

Graafinen analyysi ja R

Käytänön neuvoja data-analyysiin, kuulunee tekstiin vai meneekö "ohjelmisto-ympäristö" -liitteeseen? Tärkeä juttu!

Kuvasuhteen saa oikeaksi, kun avaa g-ikkunan (X11()) ja sitten plot. Voi tallentaa pdf-muodossa grafiikkaikkunasta, ja ladata outputiin knitr-vaiheessa. Parempi tulostaa kuvatdsto pdf-ajurilla, jos lopulliseen versioon joutuu näin tekemään (13.5.2018). Tämä voi olla järkevä tapa analyysivaiheessa? Teksti kopsattu alla olevasta koodilohkosta.

Ensimmäinen korrespondenssianalyysi - kokeiluja kuvasuhteen säätämiseksi output- dokumentissa. RStudiossa voi avata komentokehoitteessa grafiikkaikkunan. Siitä käsin tallennettu pdf-kuva on ladattu alla Rmarkdownin omalla komennolla, kohdistus keskelle. Parhaiten näyttäisi toimivan knitrin funktio, mutta oletuskuvakoolla saa ca-kuvasta näköjään aika lähelle oikeanlaisen ilman mitään temppuja.

zxy Selventäisikö vielä khii2-etäisyyksien taulukko, tai ehkä seuraavassa luvussa?

#V MG&Blasius, "vihreän kirja", johdanto.

Rivien (1) ja sarakkeiden (2) khii2-etäisyydet keskiarvosta. TODO 19.2.20 Siistiksi taulukoksi. as_tibble antaa varoituksen, mutta toimii (11.4.20).

```
# khii2 - etäisyyksien taulukko
#str(simpleCA1)
#simpleCA1$rowdist
#str(simpleCA1$rowdist)
simpleCA1$rowdist
## [1] 0.1579735 0.6309909 0.1750128 0.6340627 0.3477331 0.5504040
rowdist.tbl <- as tibble(rbind(simpleCA1$rowdist))</pre>
## Warning: The `x` argument of `as_tibble.matrix()` must have column names if `.name_repair
## Using compatibility `.name_repair`.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_warnings()` to see where this warning was generated.
colnames(rowdist.tbl) <- simpleCA1$rownames</pre>
# rowdist.tbl <- table(simpleCA1$rowdist)</pre>
# rowdist.tbl <- names(simpleCA1$rownames)</pre>
# str(rowdist.tbl)
# print(rowdist.tbl)
simpleCA1$coldist
## [1] 0.5246525 0.3248840 0.3078230 0.2721699 0.6271108
coldist.tbl <- as_tibble(rbind(simpleCA1$coldist))</pre>
colnames(coldist.tbl) <- simpleCA1$colnames</pre>
# print(coldist.tbl)
knitr::kable(rowdist.tbl,digits = 3, booktabs = TRUE,
             caption = "Rivietäisyydet keskiarvosta (khii2)")
```

Taulukko 54: Rivietäisyydet keskiarvosta (khii2)

BI	E BG	DE	DK	FI	HU
0.158	8 0.631	0.175	0.634	0.348	0.55

Taulukko 55: Sarake-etäisyydet keskiarvosta (khii2)

S	s	?	e	Е
0.525	0.325	0.308	0.272	0.627

Edit 28.5.20 Pois tulosteesta. Tarkistus, khii2-etäisyydet eivät muutu vaikka maiden järjestys muuttuu. Järjestys vaikuttaa kuviin.

CA-ratkaisun lähtötieto: suhteelliset frekvenssit (korrespondenssimatriisi P) edit Algoritmin lähtötieto (30.3.20)

Taulukko 56: Kysymyksen V6 vastaukset maittain (%)

	S	s	?	e	Ε	Total
$\overline{\mathrm{BE}}$	2.35	5.54	5.38	6.78	4.68	24.72
$_{\mathrm{BG}}$	1.45	4.85	2.52	2.33	0.16	11.31
DE	2.03	4.61	2.43	6.61	5.38	21.05
DK	0.86	2.92	1.87	2.85	8.55	17.05
$_{\mathrm{FI}}$	0.58	2.31	1.83	5.19	3.72	13.63
HU	2.69	3.54	2.76	2.33	0.92	12.24
Total	9.95	23.76	16.79	26.10	23.41	100.00

zxy Tätä ensimmäistä kuvaa on muistiinpanoissa kommentoitu (löytyy printattuna) Kolme karttaa. Kartan kääntyminen ei ole ongelma, mutta vähän kiusallista. Tässä se on seurausmaiden järjestyksestä. Maiden vertailussa on järkevää vakioida niiden massat (kolmas kartta). Massan käsite on CA:n ydinasioita, siksi maiden massat ovat jatkossa mukana. Kartta määräytyy maiden otoskokojen suuruisilla painoilla, mutta ero ei ole kovin suuri.

```
#simpleCA1 <- ca(~maa + V6,ISSP2012esim1.dat) suoritetaan ennen värikuvaa, tuloksia tarvita
#siinä.

# TODO(11.4.20) fig.cap koodilohkossa tekee kuvasta "kelluvan", ja kuvat numeroidaan.
# Miten plot-komennon kuvaotsikot vaikuttavat?
# Pitäiskö (a) jokaiselle kuvalle oma koodilohko (b) esittää nämä kaksi yhdessä vierekkäin
# Pohditaan kun koodataan capaper-projektia.
# Symmetrinen kartta</pre>
```

Akselien tekstit "käsityönä" - esimerkki (3.5.2020)

```
plot(simpleCA1, map = "symmetric", mass = c(TRUE, TRUE),
     main = "Lapsi kärsii jos äiti on töissä -symmetrinen kartta",
     xlab = "Dimensio 1: moderni/liberaali - perinteinen/konservatiivinen (76%)",
     ylab = "Dimensio 2: maltillinen/epävarma - radikaali/jyrkkä/varma (15.1%)",
     sub = "maa-muuttuja järjestys C_ALPHAN")
```

Lapsi kärsii jos äiti on töissä -symmetrinen kartta

Dimensio 1: moderni/liberaali - perinteinen/konservatiivinen (76%) maa-muuttuja järjestys C_ALPHAN

Kuva 3: Q1b: lapsi kärsii jos äiti on töissä

```
# plot(simpleCA2, map = "symmetric", mass = c(TRUE, TRUE),
      main = "Lapsi kärsii jos äiti on töissä -symmetrinen kartta ",
      sub = "maa-muuttuja maa2, järjestys as_factor(C_ALPHAN)")
# Kartta kääntyy x-akselin ympäri – esimerkki faktoroinnin arvaamattomista
# seurauksista (30.3.20)
# par(cex = 0.3) pisteen koko
plot(simpleCA3, map = "symmetric", mass = c(TRUE, TRUE),
main = "Lapsi kärsii jos äiti on töissä -symmetrinen kartta ",
sub = "massat kaikilla mailla sama vakio (riviprofiilidata)")
```

Lapsi kärsii jos äiti on töissä –symmetrinen kartta

Kuva 4: Q1b: lapsi kärsii jos äiti on töissä

```
#str(simpleCA1)
# 13.5.2018
# kuvasuhteen saa oikeaksi, kun avaa g-ikkunan (X11()) ja sitten plot. Voi tallentaa pdf-mu
# grafiikkaikkunasta, ja ladata outputiin knitr-vaiheessa. Parempi tulostaa kuvatdsto pdf-a
# jos lopulliseen versioon joutuu
# näin tekemään.
# näitä kokeiln chunk-optioissa mutta ei toimineet (out.width = "6", out.hight = "6")
# (13.5.2018), vaan pdf-konversiossa pandoc failed with error 43
```

edit 2.5.2020 Riviprofiilitaulukossa rivimassat ovat vakioita (=1), mutta caratkaisussa skaalautuvat eri arvoksi (vakio).

Näitä karttoja vertaillaan seuraavassa luvussa tarkemmin.

Toinen tapa - kuvatiedoston lataaminen include_graphics - funktiolla. Pitää miettiä mikä on järkevää, dataa tutkaillessa piirretään useita kuvia. PDF-muodossa ne ovat skaalautuvia, kommentteja voi lisätä jne.

Grafiikan hienosäätö on hieman haastavaa: analyysivaiheessa kannattaa tallentaa kuvia RStudion grafiikkaikkunasta pdf-muodossa talteen, graafisessa data-analyysissä niitä tietenkin syntyy aika paljon. HTML- ja pdf- formaatin kuvat viimeistellään bookdown-ympäristössä.

2.2 Korrespondenssianalyysin käsitteet

- 1. Profiilit
- 2. Massat
- 3. Profiilien etäisyydet (khii2)

zxy Ja tätä "triplettiä" täydentää neljä siitä johdettua käsitettä, viite muistiinpanoissa. **#V** Tässäkin CAiP ja MG2017HY-luentokalvot.

3 Tulkinnan perusteita

Luvussa syvennetään esimerkin tulkinnan perusteita. Miksi symmetrinen kartta on yleensä paras vaihtoehto, siksi se oletusarvoisesti esitetäänkin. Milloin voi käyttää vaihtoehtoisia esitystapoja? **Ydinluku**.

Esimerkkiaineistossa tulee jo pohdittavaa, Guttman (arc, horseshoe) - efekti, ratkaisun dimensiot jne.

Asymmetrinen kartta, jossa riviprofiilit ovat pääkomponentti-koordinaateissa ja sarakeprofiilit standardikoordinaateissa.

(1) Sarakkeet ideaalipisteinä, edustavat kuvittellisia maita joissa kaikki ovat vastanneet vain yhdellä tavalla.

- (2) Sarakepisteet kaukana origosta, koska skaalattu
- (3) Rivipisteet kasautuneet keskiarvopisteen ympärille
- (4) Rivi-ja sarakepisteiden suhteelliset sijannit samat kuin symmetrisessä kuvassa
- (5) Tässäkin kuvassa pisteen koko kuvaa sen massaa. Sarakkeista "täysin samaa mieltä" (ts) ja "ei samaa eikä eri mieltä" ovat massoiltaan pienimmät.
- (6) Pisteiden koko kuvaa rivin tai sarakkeen massaa.

Tarinaa voi tarvittaessa jatkaa, tämä on CA:n hankalin asia. Kaksi koordinaatistoa, ja niiden yhteys.

(7) Asymmetrinen kuva ja akseleiden / dimensioiden tulkinta

Piirretään sama asymmetrinen kartta uudelleen, mutta yhdistetään sarakepisteet keskiarvopisteeseen (sentroidiin) suorilla. Mitä terävämpi on sarakesuoran (vektorin?) ja akselin kulma, sitä enemmän sarake määrittää tätä ulottuvuutta. Jos vektori on lähettä 45 asteen kulmaa, sarake määrittää yhtä paljon molempia ulottuvuuksia.

Standardikooridaateissa esitety sarakepisteet ovat fiktiivisiä "maapisteitä", joissa kaikki vastaukset ovat yhdessä luokittelumuuttujan arvossa. Alkuperäisessä täydessä avaruudessa ne ovat simpleksin kärkipisteet, simpleksin sisällä ovat riviprofiilit.

Sarakkeen "Eri mieltä" (e) määrittää toisen ulottuvuuden, jonka voisi tulkita erottelevan "maltilliset" mielipiteen tiukemmista. Sarake "täysin samaa mieltä" (S) määrittää toista ulottuvuutta lähes yhtä paljon kuin ensimmäistä, mutta "täysin eri mieltä" (E) on vasemmalla ja kolme vastausvaihtoehtoa oikealla. Kovin terävästi dimensiot eivät eroa toisistaan?

Asymmetrinen kartta - rivipisteet (profiilit) sarakepisteiden standardikoordinaattien keskiarvopisteinä (ns. barysentrinen keskiarvo).

Lapsi kärsii jos äiti on töissä -asymmetrinen kartta 1

Kuva 5: Q1b: lapsi kärsii jos äiti on töissä

```
# Barysentrisen keskiarvon "viivakuviota" kehitelty CA_calc1.R - skriptissä
# simpleCA1-objektista saa std-koordinaatit, muunnoksella rivien pääkoordinaatit
# rpc.
# Jos plot-komennotoon "MapObj1 <- ", saadaan pisteiden koordinaatit
# plot-funktiolla ensin "raamit" ja pisteet talteen, sitten pisteet Suomen
# pisteestä lines(x,y) sarakevektoreihin? (29.5.20)
# asymmetrinen kartta - rivit pc ja sarakkeet sc
# sarakkeet vektorikuvina
# HUOM! simpleCA1 luodaan G1 2 johdesim.Rmd - tiedostossa
# Kuva tiedostoon - ennen plot-komentoa avataan tiedosto
# pdf("img/sCA1asymm1.pdf")
# Piirretään Suomen riviprofiilista janat sarakepisteisiin - barysentinen keskiarvo
# Rivipisteet pääkoordinaatteina (principal coordinates)
simpleCA1.rpc <- simpleCA1$rowcoord %*% diag(simpleCA1$sv)</pre>
# ei toimi - onpa hankalaa! segments antaa virheilmoituksen "plot.new has not
# been called yet" (11.6.20)
# X11()
plot(simpleCA1, map = "rowprincipal",
     arrows = c(FALSE, FALSE),
     main = "Lapsi kärsii jos äiti on töissä -asymmetrinen kartta 2",
     sub = "Suomen profiili sarakkeiden barysentrisenä keskiarvona")
     segments(simpleCA1.rpc[5,1],simpleCA1.rpc[5,2],simpleCA1$colcoord[, 1],
         simpleCA1$colcoord[, 2], col = "pink")
# Kuva tiedostoon - suljetaan
# dev.off()
```

Edit 3.5.20 Selvennä: sarakevektroit ovat standardikoordinaateissa, ideaalipisteitä ("maa jossa kaikki samaa mieltä"). Miksi ne ovat kartalla "reilusti" ykköstä suurempia? Vastaus: ideaalipisteet esitetään rivipisteiden koordinaatistossa - > skaalaus.

Edit 11.6.20 - tulkinta ja data?TARKISTA Origo on koko aineiston barysentrinen keskipiste. Janan pituus on kääntäen verrannollinen sarakkeen ("ideaalipisteen") suhteelliseen osuuteen. Maapiste (profiilipiste) on saravektoreiden barysentrinen keskiarvo, ja etäisyydet kertovat kyseisen sarakkeen suhteellisen osuuden maaprofiliisissa.(? 11.6.20) . "In an asymmetric map where the rows, for example, are in principal co- ordinates (i.e. the row analysis), distances between displayed row points are approximate khii2-distances between row profiles; and

Lapsi kärsii jos äiti on töissä -asymmetrinen kartta 2

Kuva 6: Q1b: lapsi kärsii jos äiti on töissä

distances from the row profile points to a column vertex point are, as a general rule, inversely related to the row profile elements for that column." CAiP, s. 72., tarkemmin s.62-. Pisteiden väliset etäisyydet voidaan optimaalisessa tilanteessa (symm. kuva sama pistejoukko, asymm. kuva myös sarake- ja rivipisteet) tulkita vain approksimaatioina.

Verifying the profile-vertex interpretation (emt., s 68): Each row profile point (staff group) is at a weighted average position of the column vertex points (smoking categories), where the weights are the elements of the respective row profile. As a general rule, assuming that the display is of good quality, which is true in this case, the closer a profile is to that vertex, the higher its profie value is for that category.

Verifiointi verteksi kerrallaan, kaikki on suhteellista! Suomi on kaikkein lähimpänä e-verteksiä. Niinpä Suomen profiilissa e-vastausten suhteellinen osuus on suurempi kuin muilla mailla. Tanska vastaavasti lähimpänä E-verteksiä.

Perusidea: kartta antaa yleiskuvan riippuvuudesta, approksimaation tarkkuuden ja laadun rajoissa. Yksityiskohtien etsiskely ei ole oleellista, väärien johtopäätösten välttäminen on. Erityisesti symmetrisessä kartassa ei voi tulkita mitenkään (tiukasti ottaen) eri pistejoukkojen etäisyyksiä. Ei voi tunnistaa klustereita!

Greenacre (2006, "loose ends -artikkeli") ehdotti asymmetrisessä kuvassa standardikoordinaattien skaalaamista niin, että ne kerrotaan massan neliöjuurella. Tämä skaalaus toimii hyvin pienen ja suuren inertian tapauksessa. Kartoissa pätee sama sääntö kuin muussakin graafisessa data-analyyisissä, kuvien on esitettävä oleelliset yhteydet, mutta mielellään vain ne.

Sama kuva, kontribuutiot "relative". edit 24.2.20 Ero selitettävä!

Tulkinta: rivipisteiden ortogonaalinen projektio "sarakevektorille"

Asymmetrisessä kartassa 2 pisteiden koko on suhteessa niiden massaan, ja

Lapsi kärsii jos äiti on töissä – asymmetrinen kartta 2a (rowgree

sarakevektorin ja rivipisteiden värin tummuus = kontribuutio(absolute)

Kuva 7: Q1b: lapsi kärsii jos äiti on töissä

Lapsi kärsii jos äiti on töissä – asymmetrinen kartta 2b (rowgree

Kuva 8: Q1b: lapsi kärsii jos äiti on töissä

värisävy absoluuttiseen tai suhteelliseen kontribuutioon.

```
# CA:n numeeriset tulokset
# (11.4.20) yhdistä koodilohkoon khii2dist1 (G1_2_johdesim.Rmd, r. 665)
# CA:n numeeristen tulosten käsittelyä myös CAcalc_1.R -skriptissä.
summary(simpleCA1)
##
## Principal inertias (eigenvalues):
##
##
   dim
           value
                      %
                           cum%
                                  scree plot
##
   1
           0.136619
                     76.0
                          76.0
                                  ********
                     15.1
                            91.1
##
           0.027089
##
    3
           0.010054
                      5.6
                           96.7
##
           0.005988
                      3.3 100.0
##
   Total: 0.179751 100.0
##
##
##
## Rows:
##
                    qlt
                          inr
                                 k=1 cor ctr
                                                 k=2 cor ctr
       name
              {\tt mass}
         BE |
               247
                    465
                           34 l
                                  93 347
                                          16 |
                                                 -54 118
                                                          27 I
## 2 |
         BG |
               113
                    874
                          251 |
                                 586 862 284 |
                                                  70
                                                     12
                                                          21 |
## 3 |
         DE |
               210
                    584
                           36
                                 -94 291
                                           14 |
                                                 -95 293
## 4 |
                    996
                          381 | -586 853 428 |
                                                240 143 362 |
         DK I
               170
## 5 l
         FI |
               136 1000
                           92 | -214 380
                                          46 | -274 620 377
## 6 I
         HU I
               122
                    889
                          206 I
                                487 783 213 | 179 105 144 |
##
## Columns:
##
       name
              mass
                    qlt
                         inr
                                 k=1 cor ctr
                                                 k=2 cor ctr
## 1 |
          SI
                99
                    784
                          152 |
                                 424 653 131
                                                190 131 132
## 2 l
               238
                    788
                          140
                              1
                                 278 731 134 |
                                                  78
                                                      57
                                                          53 I
          s l
## 3 |
                    720
                                 259 707
               168
                           88
                              82
                                                  34
                                                      12
                                                           7 |
## 4 |
          e l
               261
                    982
                         108 |
                                 -28
                                      11
                                           2 | -268 <mark>971 693</mark> |
                         512 | -616 <mark>966 651</mark> |
## 5 |
          Εl
               234 1000
                                                115
                                                     34 114 |
# vertailun vuoksi numeeriset tulokset, kun maiden massat vakiot
summary(simpleCA3)
##
## Principal inertias (eigenvalues):
##
##
   dim
           value
                      %
                           cum%
                                  scree plot
                     77.9 77.9
##
   1
           0.167678
                                  *******
##
   2
           0.030095
                     14.0 91.9
                                  ***
##
           0.013206
                      6.1 98.0
   3
```

```
##
           0.004296
                      2.0 100.0
##
## Total: 0.215275 100.0
##
##
## Rows:
##
             mass qlt
                        inr
                                k=1 cor ctr
                                               k=2 cor ctr
       name
## 1 |
        BE | 167
                   295
                         17 |
                                46 97
                                          2 | -66 199
                                                        24 |
## 2 |
              167 884
                        270 | 554 882 306 |
                                                22
                                                         3 |
        BG |
                                                     1
## 3 |
        DE I
              167 718
                         33 | -144 489
                                         21 |
                                              -98 229
                                                        54 I
## 4 |
        DK I
              167
                   993
                        367 | -635 849 400 |
                                              261 144 377 |
## 5 |
        FI |
              167
                        114 | -270 494
                                        72 | -272 505 411 |
                   999
                         200 | 448 778 199 | 154
## 6 I
        HU |
              167
                   870
                                                   92 132 l
##
## Columns:
##
       name
             mass qlt
                        inr
                                k=1 cor ctr
                                               k=2 cor ctr
## 1 |
         S | 105 785
                        153 |
                               450 649 127 | 206 135 148 |
## 2 |
          s |
              250
                   792
                        148 |
                               311 762 145 |
                                                62
                                                   30
                                                        32 |
## 3 |
              171
                   792
                         73 l
                               267 780
                                        73 l
                                                33
                                                         6 I
           1
                                                   12
          e l
              256
## 4 |
                   976
                        103 |
                               -66 51
                                          7 | -283 925 681 |
                        524 | -706 964 649 |
## 5 |
          Εl
              218 1000
                                              136 36 133 |
# Rivi- ja sarake-etäisyydet (keskiarvosta/sentroidista)
# HUOM! Edellisessä jaksossa taulukko rivi- ja sarake-etäisyyksistä. Tuskin
# kannattaa tässä toistaa. Muuta analyysiä numeerisista tuloksista. (10.4.20)
simpleCA1$rownames
## [1] "BE" "BG" "DE" "DK" "FI" "HU"
simpleCA1$rowdist
## [1] 0.1579735 0.6309909 0.1750128 0.6340627 0.3477331 0.5504040
simpleCA3$rowdist
## [1] 0.1474052 0.5902700 0.2059132 0.6885400 0.3835387 0.5078504
simpleCA1$colnames
## [1] "S" "s" "?" "e" "E"
simpleCA1$coldist
## [1] 0.5246525 0.3248840 0.3078230 0.2721699 0.6271108
simpleCA3$coldist
```

[1] 0.5587368 0.3567818 0.3025459 0.2944703 0.7190317

Ensimmäinen tuloste on CA maapainoilla, ja toisessa maapainot on vakioitu. CA-funktiolle on siinä annettu dataksi riviprofiilit, rivisummat ovat ykkösiä. Rivimassat skaalautuvat niin, että niiden summa on 1.

Edellisessä jaksossa esimerkki siistimmästä taulukosta.

TODO (21.2.20)

- (8) Tätä voisi käyttää esimerkkinä numeeristen tulosten vertailussa?
- Kokonaisinertia kasvaa (0,18 -> 0,26), koordinaatisto muuttuu mutta ei kovin radikaalisti.
- (10) Kvaliteetti, kontribuutiot? Miten vertailla oleellisia asioita?

Belgian laatu putoavat merkittävästi, ja kontribuutiot pienenevät entisestään.

Saksan laatu paranee aika paljon, ja kontribuutiotkin jonkin verran. Aika outoa,että suurimman massan maiden (DE,BE lähes puolet datasta) kontribuutiot ovat niin pieniä (24.2.20)

(11) Miksi sarakemassat muuttuvat? Joku skaalaus, massojen "kaksoisrooli" painoina ja normalisoivina ("varianssin tapaan") muunnoksina. Hieman on hämärä, edelleen! Teknisiä tuloksia ei ehkä pidä käyttää mihinkään muuhun kuin kartan laadulliseen arviointiin ja kuvan tulkintojen varmistamiseen?(24.2.20)

zxy Taulukon käsitteiden läpikäynti ja pureskelu kuulunee seuraavaan lukuun?

MG & Blasius, "vihreä kirja": kontribuutiot inertiaan

4 Yksinkertaisen korrespondenssianalyysin laajennuksia 1

Korrespondenssianalyysi sallii rivien tai sarakkeiden yhdistelyn tai "jakamisen". Tämä onnistuu esimerkkiaineistossa lisäämällä rivejä eli jakamalla eri maiden vastausksia useampaan ryhmään.

Sen avulla voi myös tarkastella ja vertailla erilaisia ryhmien välisiä tai ryhmien sisäisiä (within groups - between groups) eroja hieman. Teknisesti yksinkertaista korrespondenssianalyysiä sovelletaan muokattuun matriisiin. Datamatriisi rakennetaan useammasta alimatriisista, joko "pinoamalla" osamatriiseja (stacked matrices) tai muodostamalla symmetrinen lohkomatriisi (ABBA).

Nyt käytetään johdattelevan esimerkin dataa, johon muunnokset on jo alustavasti tehtv.

Vanhaa koodia kolme koodilohkoa

4.1 Täydentävät muuttujat (supplementary points)

zxy Piste sinne piirretään, mutta muuttujassa on se tieto. "Täydentävät piste" kuulostaa huonolta. Lisämuuttujat, havainnot, lisäpisteet?

Viite:CAip ss 89, HY2017_MCA.

Aineistossa on havaintoja (rivejä) tai muuttujia (sarakkeita), joista voi olla hyötyä tulosten tulkinnassa. Nämä lisäpisteet voidaan sijoittaa kartalle, jos niitä voidaan jotenkin järkevästi vertailla kartan luomisessa käytettyihin profiileihin (riveihin ja sarakkeisiin).

EDIT Lisätään Belgian ja Saksan aluejako täydentäviksi riveiksi. Sopii tarinaan, dimensioiden tulkinta ei ollut esimerkissä kovin kirkas. Viite CAip:n lukuun, jossa vain todetaan että maita ei ole järkevää painottaa (massa) otoskoolla, vaan vakioidaan (jotenkin) sama (suhteellinen) massa kaikille. Samalla oikaistaan myös naisten yliedustus aineistossa.

Käsitteitä: (@) Active point, aktiivinen piste (aktiivinen havainto tai muuttuja). (@) Supplementary pointtäydentävä piste (täydentävä havainto).

Täydentävien muuttujien kolme käyttötapaa:

- 1. Sisällöllisesti tutkimusongelman kannalta poikkeava tai erilainen rivi tai sarake
- 2. Outlayerit, poikkeava havainto jolla pieni massa (esimerkissä uusi sarakemuuttuja, jossa kovin vähän havaintoja)
- 3. osaryhmät **EDIT** capaper- jäsentelyssä ja bookdown-dokumentissa selitetetty täydentävät/lisäpisteet tarkemmin (18.9.2018).

Belgian ja Saksan ositteet 9.0 0.4 Dimension 2 (15.5%) 0.2 0.0 dE dW -0.2 -0.4 0.0 -0.6 -0.4 -0.2 0.2 0.4 0.6 Dimension 1 (73.4%) symmetrinen kartta

Kuva 9: Belgian ja Saksan aluejako

```
# suppointCA1b <- suppointCA1</pre>
# suppointCA1b$rowcoord <- suppointCA1b$rowcoord[,] * (-1)</pre>
# suppointCA1b$colcoord <- suppointCA1b$colcoord[,] * (-1)</pre>
# suppointCA1b$rowcoord
# suppointCA1b$colcoord
# plot(suppointCA1b, main = "Belgian ja Saksan - käännetty kartta")
# Miten lisärivit? (24.5.2018)
# Luetaan data tauluksi - ei toimi, char-table. Toimisiko nyt, ei chr? (4.2.20)
# yritetään uudestaan table-funktiolla
# data maa3-muuttujassa
# str(ISSP2012esim1.dat$maa3)
# attributes(ISSP2012esim1.dat$maa3)
suppoint1_df1 <- select(ISSP2012esim1.dat, maa3,Q1b)</pre>
# tarkistuksiin jos koodi suoritetaan rivi kerrallaan
# str(suppoint1_tab1)
suppoint1_tab1 <- table(suppoint1_df1$maa3, suppoint1_df1$Q1b)</pre>
suppoint1_tab1
```

/	S	s	?	е	Е
bF	51	241	262	312	146
bW	53	103	91	118	125
bB	87	107	85	122	110
$_{\mathrm{BG}}$	118	395	205	190	13
dW	133	313	138	375	208
dE	32	62	60	163	230
DK	70	238	152	232	696
FI	47	188	149	423	303
$_{ m HU}$	219	288	225	190	75

```
#plot(ca(~maa2 + V6, suppoint1_df1)) #toimii
#
# Saksan ja Belgian summarivit
#
suppoint2_df <- filter(ISSP2012esim1.dat, (maa == "BE" | maa == "DE"))
suppoint2_df <- select(suppoint2_df, maa, Q1b)
#head(suppoint2_df)
#tail(suppoint2_df)
str(suppoint2_df)</pre>
```

```
## tibble [3,727 x 2] (S3: tbl_df/tbl/data.frame)
   $ maa: Factor w/ 6 levels "BE","BG","DE",...: 1 1 1 1 1 1 1 1 1 1 1 ...
    ..- attr(*, "label")= chr "Country Prefix ISO 3166 Code - alphanumeric"
## $ Q1b: Factor w/ 5 levels "S", "s", "?", "e",...: 4 5 1 4 2 2 2 2 1 1 ...
    ..- attr(*, "label")= chr "Q1b Working mom: Preschool child is likely to suffer"
   - attr(*, "notes")= chr [1:45] "document Plan File: /Users/marcic/Desktop/old/GPS2011 sa
# attributes(suppoint2_df) # korvaa attr(x, which) tms. liian pitkä tulostus
# attr(suppoint2_df, which = "class")
# attr(suppoint2_df, which = "name")
# summary(suppoint2_df)
suppoint2_df %>% table1() # miksi ei tulosta mitään konsolille? (4.2.20)
##
##
##
          Mean/Count (SD/%)
##
          n = 3727
##
    maa
       BE 2013 (54%)
##
       BG 0 (0%)
##
##
       DE 1714 (46%)
##
       DK 0 (0%)
       FI 0 (0%)
##
       HU 0 (0%)
##
##
    Q1b
##
       S 356 (9.6%)
       s 826 (22.2%)
##
##
       ? 636 (17.1%)
          1090 (29.2%)
##
       е
##
       E 819 (22%)
suppoint2_tab1 <- table(suppoint2_df$maa, suppoint2_df$Q1b)</pre>
suppoint2_tab1 # tarkistus
                           S
                                      ?
                                                 \mathbf{E}
                                 \mathbf{S}
                                            e
                    BE
                         191
                                    438
                                          552
                                               381
                               451
                    BG
                           0
                                 0
                                      0
                                            0
                                                 0
                    DE
                               375
                                          538
                                               438
                         165
                                    198
                    DK
                           0
                                 0
                                      0
                                            0
                                                 0
                    _{\mathrm{FI}}
                           0
                                 0
                                      0
                                            0
                                                 0
                    HU
                           0
                                      0
                                                 0
```

```
suppoint2_tab1 <- suppoint2_tab1[-2,]
# kömpelösti kolme kertaa</pre>
```

```
suppoint2_tab1 <- suppoint2_tab1[-3,]
suppoint2_tab1 <- suppoint2_tab1[-3,]
suppoint2_tab1 <- suppoint2_tab1[-3,]
suppoint2_tab1 # Belgian ja Saksan summat yli ositteiden</pre>
```

/	S	s	?	e	Е
	-	-		552 538	

```
#lisätään rivit maa3-muuttujan taulukkoon

suppoint1_tab1 <- rbind(suppoint1_tab1, suppoint2_tab1)
suppoint1_tab1
```

	\mathbf{S}	s	?	e	E
$\overline{\mathrm{bF}}$	51	241	262	312	146
bW	53	103	91	118	125
bB	87	107	85	122	110
BG	118	395	205	190	13
dW	133	313	138	375	208
dE	32	62	60	163	230
DK	70	238	152	232	696
FI	47	188	149	423	303
HU	219	288	225	190	75
BE	191	451	438	552	381
DE	165	375	198	538	438

Symmetrinen kartta: Saksan(2) Belgian(3) aluejako

Kuva 10: Belgian ja Saksan aluejako

```
#str(suppointCA2b)
#str(suppointCA2b$rowcoord)
#suppointCA2b
#suppointCA2b$rowcoord
#apply(suppointCA2b$rowcoord, 2, sum)
#suppointCA2b$rowdist
#suppointCA2b$coldist
# summary(suppointCA2)
```

Kääntöä ei tarvita, kun maiden järjestys on sama myös muuttujassa maa3 (mukana maiden jaot)

Saksan ja Belgian summarivit ovat ositteiden painotettuja keskiarvoja (sentroideja), läntisen ja itäisen Saksan rivipisteiden välisellä janalla on koko maan summapiste DE.

Piirretään vertailun vuoksi vielä asymmettrinen kartta ("kontribuutio-kartta, kontribuutio-kaksoiskuva"). edit 3.5.20 Minne katoavat pisteet?

Kaksi konrtibuutio-karttaa (MG:n keksintö) osoittavat, että tulkinnan hankaluuksista huolimatta symmetrinen kartta on usein selkeämpi. Molemmissa ideaalipisteet sijatsevat kaukana (vaikka ne on skaalattu hieman lähemmäs origoa), ja maapisteiden hajontaa on aika vaikeaa nähdä. Belgian täydentävä maapiste (BE) peittyy läntisen Saksan (dW) alle.

Tulostetaan numeeriset taulukot.

```
# CA - numeeriset tulokset
summary(suppointCA2)
##
## Principal inertias (eigenvalues):
```

Saksan ja Belgian alueet – asymmetrinen kartta 1

Kuva 11: Belgian ja Saksan aluejako

Saksan ja Belgian alueet – asymmetrinen kartta 2

Kuva 12: Belgian ja Saksan aluejako

```
##
##
    \dim
            value
                         %
                              cum%
                                      scree plot
##
    1
             0.154101
                        73.4
                               73.4
##
    2
             0.032489
                        15.5
                               88.9
##
    3
             0.014294
                         6.8
                               95.7
             0.008944
                         4.3 100.0
##
    4
##
    Total: 0.209828 100.0
##
##
##
## Rows:
##
          name
                         qlt
                               inr
                                       k=1 cor
                                                          k=2
                                                               cor
                                                                     ctr
                  mass
##
            bF
                   124
                         650
                                69
                                       157
                                            212
                                                   20
                                                         -226
                                                              438
                                                                     195
   1
   2
                                  3
                                                           48 252
##
            bW
                     60
                         388
                                        -36 137
                                                    0
                                                                       4
                                            127
##
   3
            bB
                     63
                         481
                                17 I
                                        85
                                                    3
                                                          142 354
                                                                      39
##
   4
            BG
                   113
                         878
                               215
                                       590
                                            874
                                                  255
                                                           43
                                                                 5
                                                                       6
                                                                      29
##
   5
             dW
                   143
                         345
                                33
                                       100
                                            208
                                                    9
                                                          -81
                                                               138
##
   6
             dΕ
                     67
                         966
                                82
                                      -495
                                            960
                                                  107
                                                          -41
                                                                 7
                                                                       3
##
   7
            DK
                   170
                         971
                               327
                                      -591
                                                  387
                                                          202
                                            869
                                                               102
                                                                     214
##
   8
            FI
                   136
                         957
                                79
                                      -206
                                            352
                                                   38
                                                         -271
                                                               605
                                                                     307
##
   9
            HU
                   122
                         927
                               177
                                       477
                                            751
                                                  181
                                                          231
                                                               176
                                                                     201
         (*)BE |
                  <NA>
                         512
                              <NA>
                                        92
                                            338
                                                 <NA>
                                                          -66 173
                                                                   <NA>
   11 |
         (*)DE |
                  <NA>
                         418 <NA> |
                                       -90 265 <NA> |
                                                          -68 153 <NA> |
##
##
##
   Columns:
##
        name
                       qlt
                             inr
                                     k=1 cor ctr
                                                       k=2 cor ctr
                mass
##
           S
                  99
                       816
                             167
                                     421
                                         505
                                                       331 311
                                                                335
   1
                                              115
   2
                                     309
##
           s
                 238
                       781
                             143
                                          759
                                              147
                                                        52
                                                            22
                                                                 20
##
   3 |
                       594
                              88
                                     255
                                         589
                                               71
                                                       -22
                                                              4
                                                                   2
                 168
                                                     -262 870 550
## 4 |
                 261
                       871
                              98
                                     -12
                                            2
                                                 0
                                                   \perp
           e
## 5 |
           Ε
                 234
                       999
                             505
                                 -663 971 667
                                                   -
                                                       113
                                                            28
                                                                 93
```

Kolmiulotteisesta kuvasta voi tulostaa molempien akseleiden ja uuden kolmannen akselin kartat. R-ohjelmistossa voi tulostaa näytölle kolmiulotteisen kuvan, siitä voisi ehkä ottaa kuvakaappauksena esimerkin raporttiin? edit Kommentti 3d-ratkaisusta: tuo esiin Belgian ("belgioiden") erilaisuuden. "Belgiat ovat 2-3 - dimension kartassa diagonaalilla, ja 1-3 kartassa hieman samoin kuin 2-d - ratkaisun kartassa. Tarvittaessa voi liittää myös 3-d - kuvia, pitäsi saada myös dynaamisen pdf-tiedostoon? (8.6.2020). Mutta 2d-approksimaatio on aika hyvä, 89 % kokonaisinertiasta. Miten pitäisi jatkaa? Analysoida maiden sisäisiä eroja? Siinä erilaiset aluejaot ovat aika herkästi korvikemuuttujia joillekin muille vaikuttaville tekijöile. Entäs kaupungit - isot ja pienet - ja maaseutu? Elinkeinorakenne, tulot jne...

```
# Näkyisikö Belgian aluejako kolmannessa dimensiossa? (19.2.20)
# Toimii, mutta siistittävä, samoin koko maajakoskripti!
```

Belgian ja Saksan ositteet - kolme dimensiota

Kuva 13: Belgian ja Saksan aluejako - 3D

Belgian ja Saksan ositteet – kolme dimensiota

Kuva 14: Belgian ja Saksan aluejako - 3D

Belgian ja Saksan ositteet – kolme dimensiota

Kuva 15: Belgian ja Saksan aluejako - 3D

```
# summary(suppointCA3) - virheilmoitus (21.2.20)
# Virheilmoitus "Error in rsc %*\% diag(sv) : non-conformable arguments" ?!
# onko vika täydentävissä pisteissä? Ei ole, eivät ole mukana
# ISSP2012esim1.dat %>% tableX(maa3, Q1b)
suppoint CA3
##
##
   Principal inertias (eigenvalues):
##
              1
                       2
                                3
              0.154101 0.032489 0.014294 0.008944
## Percentage 73.44%
                                6.81%
                       15.48%
                                         4.26%
##
##
##
   Rows:
##
                  bF
                                                                   dΕ
                                                                              DK
                            bW
                                     bΒ
                                               BG
                                                         dW
## Mass
            0.124279
                     0.060174 0.062753
                                        0.113103
                                                   0.143313
                                                             0.067174
                                                                       0.170453
## ChiDist 0.341469
                     0.096258 0.239034 0.630991
                                                   0.219094
                                                             0.505720
                                                                       0.634063
## Inertia 0.014491
                     0.000558 0.003586 0.045032
                                                   0.006879
                                                             0.017180
                                                                       0.068528
## Dim. 1
            0.400065 -0.090631 0.216912
                                        1.502458
                                                   0.254323 -1.262007 -1.506022
## Dim. 2
          -1.254042 0.267998 0.789358 0.236498 -0.451124 -0.226595
                                                                       1.121468
                     0.076188 1.369786 -1.564654 0.875735 0.744856 -0.889187
## Dim. 3
          -1.118212
##
                  FI
## Mass
            0.136313 0.122436
## ChiDist 0.347733 0.550404
## Inertia 0.016483 0.037091
## Dim. 1 -0.525222 1.215462
## Dim. 2
          -1.500986 1.280342
## Dim. 3
           0.584116 0.994772
##
##
##
   Columns:
##
                  S
                                                          F.
                            S
           0.099472
                    0.237627
                               0.167874
                                         0.260960
                                                   0.234066
## ChiDist 0.592824
                     0.354761
                               0.332288
                                         0.280549
                                                   0.672594
## Inertia 0.034959
                     0.029907
                               0.018536 0.020540 0.105887
## Dim. 1 1.073310
                              0.649789 -0.029859 -1.688108
                     0.787257
## Dim. 2 1.835133 0.290929 -0.119934 -1.451548 0.629110
## Dim. 3 2.116048 -0.986156 -0.912379 0.824777 -0.163282
# Virheilmoituksen selvittelyä (24.2.20)
# str(suppointCA3)
# diag(suppointCA3$sv)
# Kolmiulottein kuva grafiikkaikkunaan
```

```
# plot3d(suppointCA3, c(1,2,3))
# Hyödyllinen, mutta aika vaikea
```

4.2 Lisämuuttujat: ikäluokka ja sukupuoli

zxy Otsikkoa pitää harkita, CAip - kirjassa tämä on ensimmäinen esimerkki yksinkertaisen CA:n laajennuksesta. Otsikkona on "multiway tables", ja tästä yhteisvaikutusmuuttujan (interactive coding) luominen on ensimmäinen esimerkki. Menetelmää taivutetaan sen jälkeen moneen suuntaan.

Luodaan luokiteltu ikämuuttua age_cat, ja sen avulla iän ja sukupuolen interaktiomuuttuja ga. Maiden välillä on hieman eroja siinä, kuinka nuoria vastaajia on otettu tutkimuksen kohteeksi. Suomessa alaikäraja on 15 vuotta, monessa maassa se on hieman korkeampi. Ikäluokat ovat (1=15-25, 2=26-35, 3=36-45, 4=46-55, 5=56-65, 6=66 tai vanhempi). Vuorovaikutusmuuttuja ga koodataan $f1, \ldots, f6$ ja $m1, \ldots, m6$. Muuttujien nimet kannattaa pitää mahdollisimman lyhyinä.

```
# Iän ja sukupuolen vuorovaikutusmuuttujia 1

# 
# Uusi R-data: ISSP2012esim2.dat - MIKSI, TARVITAANKO? *esim1.dat kelpaisi?(4.2.20)

# 
#age_cat

#AGE 1=15-25, 2 =26-35, 3=36-45, 4=46-55, 5=56-65, 6= 66 and older

# 
#summary(ISSP2012esim1.dat$AGE)

hist(ISSP2012esim1.dat$ika)
```

Histogram of ISSP2012esim1.dat\$ika

ISSP2012esim2.dat <- mutate(ISSP2012esim1.dat, age_cat = ifelse(ika %in% 15:25, "1",</pre> ifelse(ika %in% 26:35, "2", ifelse(ika %in% 36:45, "3", ifelse(ika %in% 46:55, "4", ifelse(ika %in% 56:65, "5", "6"))))) ISSP2012esim2.dat <- ISSP2012esim2.dat %>% # uusi (4.2.20) mutate(age_cat = as_factor(age_cat)) # järjestys omituinen! (4.2.20) # Tarkistuksia # str(ISSP2012esim2.dat\$age_cat) # levels(ISSP2012esim2.dat\$age_cat) # ISSP2012esim2.dat\$age_cat %>% summary() # Järjestetään ikäluokat uudelleen ISSP2012esim2.dat <- ISSP2012esim2.dat %>% mutate(age_cat = fct_relevel(age_cat, "1", "2",

"3",

```
"4",
"5",
"6")

# Tarkistuksia

# Iso taulukko, voi tarkistaa että muunnos ok.
# test6 %>% tableX(AGE, age_cat, type = "count")
# taulu42 <- ISSP2012esim2.dat %>% tableX(maa,age_cat,type = "count")
# kable(taulu42,digits = 2, caption = "Ikäluokka age_cat")

# UUdet taulukot (4.2.20)

ISSP2012esim2.dat %>%
tableX(maa,age_cat,type = "count") %>%
kable(digits = 2, caption = "Ikäluokka age_cat")
```

Taulukko 61: Ikäluokka age_cat

	1	2	3	4	5	6	Total
BE	208	333	336	375	368	393	2013
$_{\mathrm{BG}}$	77	115	159	148	198	224	921
DE	205	223	274	358	288	366	1714
DK	207	213	245	271	234	218	1388
FI	152	166	165	223	238	166	1110
HU	103	161	198	171	196	168	997
Total	952	1211	1377	1546	1522	1535	8143

```
ISSP2012esim2.dat %>%
   tableX(maa,age_cat,type = "row_perc") %>%
   kable(digits = 2, caption = "age_cat: suhteelliset frekvenssit")
```

Taulukko 62: age_cat: suhteelliset frekvenssit

	1	2	3	4	5	6	Total
$\overline{\mathrm{BE}}$	10.33	16.54	16.69	18.63	18.28	19.52	100.00
$_{\mathrm{BG}}$	8.36	12.49	17.26	16.07	21.50	24.32	100.00
DE	11.96	13.01	15.99	20.89	16.80	21.35	100.00
DK	14.91	15.35	17.65	19.52	16.86	15.71	100.00
FI	13.69	14.95	14.86	20.09	21.44	14.95	100.00
HU	10.33	16.15	19.86	17.15	19.66	16.85	100.00

	1	2	3	4	5	6	Total
All	11.69	14.87	16.91	18.99	18.69	18.85	100.00

Ikäjäkauma painottuu kaikissa maissa jonkinverran vanhempiin ikäluokkiin. Nuorempien ikäluokkien osuus on (alle 26-vuotiaan ja alle 26-35 - vuotiaat) varsinkin Bulgariassa (BG) ja Unkarissa (HU) pieni.

zxy Siistimmät versioit muuttujien luonnista (case_when - rakenne) (19.9.2018).

```
# qa - ikäluokka ja sukupuoli
# case_when: ikä ja sukupuoli
ISSP2012esim2.dat <- mutate(ISSP2012esim2.dat, ga = case_when((age_cat == "1")&(sp == "m")
                                        (age_cat == "2")&(sp == "m") ~ "m2",
                                        (age_cat == "3")&(sp == "m") \sim "m3",
                                        (age_cat == "4")&(sp == "m") \sim "m4",
                                        (age cat == "5")&(sp == "m") ~ "m5",
                                        (age_cat == "6")&(sp == "m") \sim "m6",
                                        (age cat == "1")&(sp == "f") ~ "f1",
                                        (age_cat == "2")&(sp == "f") ~ "f2",
                                        (age_cat == "3")&(sp == "f") \sim "f3".
                                        (age_cat == "4")&(sp == "f") ~ "f4",
                                        (age_cat == "4")&(sp == "f") \sim "f4".
                                        (age_cat == "5")&(sp == "f") ~ "f5",
                                        (age_cat == "6")&(sp == "f") ~ "f6",
                                        TRUE ~ "missing"
                                   ))
#ISSP2012esim1.dat %>% tableX(ga,ga2) # tarkistus uudelle muuttujan luontikoodille
# muuttujien tarkistuksia 19.9.2018
str(ISSP2012esim2.dat$ga) # chr-muuttuja, mutta toimii (4.2.20)
   chr [1:8143] "f5" "f3" "m5" "f2" "f4" "f4" "m4" "m3" "f5" "m5" "m3" "f5" ...
# str(ISSP2012esim2.dat)
\# str(ISSP2012esim1.dat\$qa2)
# ga on merkkijono, samoin ga2, pitäisikö muuttaa faktoriksi?
# str(ISSP2012esim1.dat)
#Tulostetaan taulukkoina ga2 - muuttuja.
ISSP2012esim2.dat %>% tableX(maa,ga,type = "count") %>%
kable(digits = 2, caption = "Ikäluokka ja sukupuoli ga")
```

Taulukko 63: Ikäluokka ja sukupuoli ga

	f1	f2	f3	f4	f5	f6	m1	m2	m3	m4	m5	m6	Total
$\overline{\mathrm{BE}}$	116	198	174	199	186	185	92	135	162	176	182	208	2013
$_{\mathrm{BG}}$	40	64	94	85	114	149	37	51	65	63	84	75	921
DE	102	120	152	186	135	185	103	103	122	172	153	181	1714
DK	83	110	136	146	128	99	124	103	109	125	106	119	1388
$_{\mathrm{FI}}$	94	95	94	118	142	91	58	71	71	105	96	75	1110
HU	54	86	95	91	94	104	49	75	103	80	102	64	997
Total	489	673	745	825	799	813	463	538	632	721	723	722	8143

```
ISSP2012esim2.dat %>% tableX(maa,ga,type = "row_perc") %>%
kable(digits = 2, caption = "ga: subteelliset frekvenssit")
```

Taulukko 64: ga: suhteelliset frekvenssit

	f1	f2	f3	f4	f5	f6	m1	m2	m3	m4	m5	m6	Total
$\overline{\mathrm{BE}}$	5.76	9.84	8.64	9.89	9.24	9.19	4.57	6.71	8.05	8.74	9.04	10.33	100.00
$_{\mathrm{BG}}$	4.34	6.95	10.21	9.23	12.38	16.18	4.02	5.54	7.06	6.84	9.12	8.14	100.00
DE	5.95	7.00	8.87	10.85	7.88	10.79	6.01	6.01	7.12	10.04	8.93	10.56	100.00
DK	5.98	7.93	9.80	10.52	9.22	7.13	8.93	7.42	7.85	9.01	7.64	8.57	100.00
FI	8.47	8.56	8.47	10.63	12.79	8.20	5.23	6.40	6.40	9.46	8.65	6.76	100.00
HU	5.42	8.63	9.53	9.13	9.43	10.43	4.91	7.52	10.33	8.02	10.23	6.42	100.00
All	6.01	8.26	9.15	10.13	9.81	9.98	5.69	6.61	7.76	8.85	8.88	8.87	100.00

edit Vain tarkistuksiin, toisen voi poistaa (19.9.2018)!

CAiP, ch16, täällä myös maa- ja sukupuoli- uudelleenpainotus.

Äiti töissä: ikäluokka ja sukupuoli 0.2 0.1 Dimension 2 (9.2%) 0.0 -0.1 -0.2 -0.3 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 Dimension 1 (87%) symmetrinen kartta

Kuva 16: Iän ja sukupuolen yhdistetty muuttuja

```
#
#
           gaTestCA1.rpc[4,1], gaTestCA1.rpc[4,2]
#
\#segments(gaTestCA1.rpc[4,1],gaTestCA1.rpc[4,2],
           gaTestCA1.rpc[3,1], gaTestCA1.rpc[3,2]
summary(gaTestCA1)
##
## Principal inertias (eigenvalues):
##
##
                        %
    dim
            value
                             cum%
                                    scree plot
##
    1
            0.037448
                       87.0
                             87.0
                             96.2
##
    2
            0.003977
                        9.2
##
    3
            0.001041
                        2.4
                             98.6
            0.000590
##
                        1.4 100.0
##
##
    Total: 0.043055 100.0
##
##
## Rows:
##
                       qlt
                            inr
                                    k=1 cor ctr
                                                     k=2 cor ctr
         name
                mass
##
           f1
                   60
                       990
                              36
                                 | -125 614
                                              25
                                                     -98 376
                                                              145
  1
                             163 | -289 983
## 2
           f2
                   83
                       997
                                             185
                                                      35
                                                           14
                                                               25
##
   3
           f3
                   91
                       984
                              47 | -146 958
                                              52
                                                      24
                                                           26
                                                               13
## 4
           f4
                                              93
                  101
                      1000
                              97 | -186 836
                                                      82 164 172
## 5
           f5 |
                   98
                       879
                               4 |
                                    -35
                                         658
                                                3 |
                                                      20 221
                                                               10
## 6
                                    256
           f6
                  100
                       951
                             176
                                         866
                                             175
                                                      80
                                                           85 162
## 7
                       659
                                      42
                                          72
                                                3 | -120 587 205
           m1
                   57
                              32 I
## 8
           m2
                   66
                       977
                              57 | -187
                                         946
                                              62
                                                     -34
                                                           30
                                                               19
## 9
           mЗ
                   78
                       457
                               5 |
                                    -31 318
                                                2
                                                     -20 139
                                                                8
## 10
           m4
                   89
                       674
                              14
                                      58
                                         482
                                                8
                                                     -37 192
                                                               30
## 11
           m5
                   89
                       988
                              90 I
                                    189 818
                                              85
                                                     -86 170 166
                            277 |
## 12 |
           m6 I
                   89
                       978
                                    360 963 307 |
                                                      45
                                                           15
                                                               45 I
##
## Columns:
##
       name
                      qlt
                            inr
                                   k=1 cor ctr
                                                    k=2 cor ctr
               {\tt mass}
## 1 |
           S
                 99
                      915
                            128
                                   196 695
                                            102
                                                    110 220 304
## 2 |
                238
                                   230 961 336
                                                     21
                                                              27
                      969
                            304
                                                           8
           s
## 3 |
                168
                      777
                             46
                                    62 330
                                             17
                                                    -73 447 223
## 4 |
                261
                      897
                            58
                                   -68 473
                                             32 I
                                                    -64 424 268
           e l
                            464 | -286 962 513 |
## 5 |
           E |
                234
                      997
                                                     55
                                                         35 177 |
```

zxy Aika yksiuloitteinen (87 prosenttia ensimmäisellä dimensiolla!). Data on "as it is", ei ole vakioitu ga-luokkien kokoja.

zxy miten pitäisi tulkita "oikealle kaatunut U - muoto" miehillä ja naisilla? Järjestys ei toimi, S s-sarakkeen vasemmalla puolella. Miehet konservatiivisempia, mutta maltillisempia? Nuorin ikäluokka on poikkeava. Epävarmoja tai maltillisesti e, sitten loikka vasemmalle ja sieltä konservatiiviseen suuntaa oikealle. Naisilla poikkeama f3 - f4. VAnhimmat ikäluokat tiukemmin konservatiivisa (f6, m6). Jos vertaa sukupuolten eroja samassa ikäluokassa, on aika samanlainen (miehet konservatiivisia, naiset liberaaleja). Naisista vain vanhin ikäluokka oikealla, miehistä nuorin ja kolme vanhinta.

zxy Tulkinnassa muistettava, että ikäluokat yli maiden. Voi verrata sekä edellisiin maa-vertailuihin että maan, ikäluokan ja sukupuolen yhteisvaikutusmuuttujan tuloksiin. MG tutkailee eri kysymyksellä tätä samaa asiaa, ja havaitsee että (a) maiden erot suuria ja sukupuolten pieniä (b) naiset liberaalimpia kuin miehet.

```
# Luodaan aineistoon kolmen muuttujan yhdysvaikutusmuuttuja maaga, maa, ikäluokka ja sukupu
# Yleensä ei yhdysvaikuksissa mennä yli kolmen luokittelumuuttujan, ja tässäkin vain maiden
# tekee tarkastelun aika helpoksi.

ISSP2012esim2.dat <- mutate(ISSP2012esim2.dat, maaga = paste(maa, ga, sep = ""))
# tarkistus, muunnos ok
# ISSP2012esim2.dat %>% tableX(maa, maaga)
# head(ISSP2012esim2.dat)
# str(ISSP2012esim2.dat)
```

Maa - ikäluokka - sukupuoli - interaktiomuuttuja maaga

Tehty jo 26.9.2018!

Kuva 17: Ikä, sukupuoli ja maa

Ratkaisun numeerisia tuloksia voi katsoa, löytyykö profiileja joilla on pieni massa mutta suuri vaikutus akseleihin.

```
# (24.2.20) Miten voisi kätevästi tarkistaa, että mikään pienen massa piste ei # vaikuta (kontribuutiot) liikaa karttaan? #str(maagaTestCA1)
```

ISSP2012esim2.dat %>% tableX(maaga, Q1b) # aika pieniä frekvenssejä soluissa!

$\rm maaga/Q1b$	\mathbf{S}	\mathbf{s}	?	e	\mathbf{E}	Total
BEf1	5	15	28	43	25	116
BEf2	10	26	34	66	62	198
BEf3	19	27	33	53	42	174
BEf4	21	34	40	55	49	199
BEf5	21	38	46	48	33	186
BEf6	25	58	50	30	22	185
BEm1	9	19	30	24	10	92
BEm2	10	19	31	40	35	135
BEm3	18	33	31	44	36	162
BEm4	19	46	37	51	23	176
BEm5	15	61	34	49	23	182
BEm6	19	75	44	49	21	208
BGf1	2	21	7	9	1	40
BGf2	7	28	17	12	0	64
BGf3	10	44	21	18	1	94
BGf4	14	30	15	24	2	85
BGf5	16	51	21	25	1	114
BGf6	27	66	26	27	3	149
BGm1	8	12	9	7	1	37
BGm2	4	21	12	14	0	51
BGm3	5	33	16	11	0	65
BGm4	7	19	21	15	1	63
BGm5	12	29	21	19	3	84
BGm6	6	41	19	9	0	75
DEf1	5	28	13	33	23	102
DEf2	9	14	14	37	46	120
DEf3	10	22	12	59	49	152
DEf4	11	31	20	53	71	186
DEf5	8	27	12	43	45	135
DEf6	31	40	15	50	49	185
DEm1	6	26	20	36	15	103

${\text{maaga/Q1b}}$	S	S	?	e	E	Total
DEm2	7	26	13	39	18	103
DEm3	11	24	15	45	27	122
DEm4	22	39	17	57	37	172
DEm5	11	43	19	54	26	153
DEm6	34	55	28	32	32	181
DKf1	7	11	9	15	41	83
DKf2	4	15	7	13	71	110
DKf3	3	20	15	14	84	136
DKf4	5	24	8	19	90	146
DKf5	6	16	11	22	73	128
DKf6	5	26	11	17	40	99
DKm1	10	21	18	28	47	124
DKm2	2	11	9	16	65	103
DKm3	2	13	12	23	59	109
DKm4	4	24	14	24	59	125
DKm5	11	14	23	18	40	106
DKm6	11	43	15	23	27	119
FIf1	3	9	13	36	33	94
FIf2	5	6	3	34	47	95
FIf3	2	8	13	39	32	94
FIf4	3	15	13	47	40	118
FIf5	6	26	17	52	41	142
FIf6	3	22	21	34	11	91
FIm1	1	9	13	22	13	58
FIm2	2	5	6	28	30	71
FIm3	2	10	9	27	23	71
FIm4	8	23	13	43	18	105
FIm5	5	31	15	35	10	96
FIm6	7	24	13	26	5	75
HUf1	11	13	16	11	3	54
HUf2	15	19	25	22	5	86
HUf3	22	26	26	12	9	95
HUf4	24	25	20	14	8	91
HUf5	21	28	19	19	7	94
HUf6	33	30	18	21	2	104
HUm1	9	15	12	8	5	49
HUm2	18	13	15	22	7	75
HUm3	15	38	24	16	10	103
HUm4	14	29	17	13	7	80
HUm5	19	31	24	21	7	102
HUm6	18	21	9	11	5	64
Total	810	1935	1367	2125	1906	8143

```
maagaCA1num <- summary(maagaCA1)
# maagaCA1num
# str(maagaCA1num) numeeriset tulokset tibbleksi - rivit
maagaCAnum2 <- as_tibble(maagaCA1num$rows, .name_repair = c("unique"))
## New names:
## * cor -> cor...6
## * ctr -> ctr...7
## * cor -> cor...9
## * ctr -> ctr...10
# maagaCAnum2
# str(maagaCAnum2)
summary(maagaCAnum2)
```

1.7 k=2 $1.7 cor$
. Min. :- Min. Min.
0 347.000 : 0.00 : 0.00
1st $1st$ $1st$
Qu.:- Qu.: Qu.:
$156.000 \ 42.75 \ 2.75$
ian Median Median Median
00 : - :141.50 :10.00
13.500
n Mean Mean Mean
92 : :199.28 :13.86
1.653
3rd $3rd$ $3rd$
17.0 Q u.: Qu.:265. 50 u.:21.25
173.500
a. Max.: Max. Max.
00 389.000 :834.00 :61.00
NA NA NA

BGfI 5 531 11 547 531 8 -9 0 0 BGm1 5 940 7 596 878 9 159 62 3 BGm2 6 830 9 557 788 11 -130 43 3 HUm1 6 935 5 426 766 6 201 1170 6 Flm1 7 787 5 -115 78 1 -347 710 22 HUf1 7 723 9 499 698 9 93 25 1 BGR2 8 60 14 640 853 17 59 7 1 15 50 698 19 83 11 1 1 1 1 1 1 1 1 1 1 1 2 1 3 1 1 1 3 1 1	name	mass	qlt	inr	k=1	cor6	$\operatorname{ctr7}$	k=2	cor9	ctr10
BGm2 6 830 9 557 788 11 -130 43 3 HUm1 6 935 5 426 766 6 201 170 6 FIm1 7 787 5 -115 78 1 -347 710 22 HUf1 7 787 5 -115 78 1 -347 710 22 BGm2 8 860 14 640 853 17 59 7 1 BGm3 8 709 19 655 698 19 83 11 1 BGm4 8 771 11 540 754 12 -81 17 1 BGm4 8 771 11 540 754 12 -81 17 1 BGm6 9 692 27 701 647 24 184 45 8 Flm6	BGf1	5	531	11	547	531	8	-9	0	0
HUm1 6 935 5 426 766 6 201 170 6 FIm1 7 787 5 -115 78 1 -347 710 22 HUf1 7 723 9 499 698 9 93 25 1 BGf2 8 860 14 640 853 17 59 7 1 BGm3 8 709 19 655 698 19 83 11 1 HUm6 8 771 11 540 754 12 -81 17 1 HUm6 8 726 15 517 529 11 315 197 20 BGm6 9 692 27 701 647 24 184 45 8 FIm6 9 917 14 -598 832 17 -250 146 14 FIm3	BGm1	5	940	7	596	878	9	159	62	3
FIm1	BGm2	6	830	9	557	788	11	-130	43	3
HUf1 7 723 9 499 698 9 93 25 1 BGP2 8 860 14 640 853 17 59 7 1 BGm3 8 709 19 655 698 19 83 11 1 HUm6 8 7726 15 517 529 11 315 197 20 BGm6 9 692 27 701 647 24 184 45 8 FIm2 9 977 14 -598 832 17 -250 146 14 FIm3 9 998 6 -345 629 6 -265 369 16 FIm6 9 911 6 336 637 6 -220 20 0 BGf4 10 932 12 519 927 15 -39 5 0 BGf4	HUm1	6	935	5	426	766	6	201	170	6
BGf2 8 860 14 640 853 17 59 7 1 BGm3 8 709 19 655 698 19 83 11 1 BGm4 8 771 11 540 754 12 -81 17 20 BGm6 9 692 27 701 647 24 184 45 8 FIm2 9 977 14 -598 832 17 -250 146 14 FIm3 9 998 6 -345 629 6 -265 369 16 FIm6 9 911 6 336 637 6 -220 274 12 HUm2 9 381 11 344 381 6 -2 0 0 BGf4 10 932 12 519 927 15 -39 5 0 BGf3	FIm1	7	787	5	-115	78	1	-347	710	22
BGm3 8 709 19 655 698 19 83 11 1 BGm4 8 771 11 540 754 12 -81 17 1 HUm6 8 726 15 517 529 11 315 197 20 BGm6 9 692 27 701 647 24 184 45 8 FIm2 9 997 14 -598 832 17 -250 146 14 FIm3 9 998 6 -345 629 6 -265 369 16 FIm6 9 911 6 336 637 6 -220 274 12 HUm2 9 381 11 344 381 6 -2 0 0 BGf4 10 932 12 519 927 15 -39 5 0 0		7	723	9	499	698	9	93	25	1
BGm4 8 771 11 540 754 12 -81 17 1 HUm6 8 726 15 517 529 11 315 197 20 BGm6 9 692 27 701 647 24 184 45 8 FIm2 9 977 14 -598 832 17 -250 146 14 FIm3 9 998 6 -345 629 6 -265 369 16 FIm6 9 911 6 336 637 6 -220 274 12 HUm2 9 381 11 344 381 6 -2 0 0 BGf4 10 932 12 519 927 15 -39 5 0 BCf1 10 991 15 -567 839 18 241 152 1 BCm1 <td>BGf2</td> <td>8</td> <td>860</td> <td>14</td> <td>640</td> <td>853</td> <td>17</td> <td>59</td> <td>7</td> <td>1</td>	BGf2	8	860	14	640	853	17	59	7	1
HUm6 8 726 15 517 529 11 315 197 20 BGm6 9 692 27 701 647 24 184 45 8 FIm2 9 977 14 -598 832 17 -250 146 14 FIm3 9 998 6 -345 629 6 -265 369 16 FIm6 9 911 6 336 637 6 -220 274 12 HUm2 9 381 11 344 381 6 -2 0 0 BGf4 10 932 12 519 927 15 -39 5 0 BGm5 10 979 11 524 977 15 21 2 0 DKf1 10 991 10 468 830 12 211 169 11 BEm1 <td>BGm3</td> <td>8</td> <td>709</td> <td>19</td> <td>655</td> <td>698</td> <td>19</td> <td>83</td> <td>11</td> <td>1</td>	BGm3	8	709	19	655	698	19	83	11	1
BGm6 9 692 27 701 647 24 184 45 8 FIm2 9 977 14 -598 832 17 -250 146 14 FIm3 9 998 6 -345 629 6 -265 369 16 FIm6 9 911 6 336 637 6 -220 274 12 HUm2 9 381 11 344 381 6 -2 0 0 BGM5 10 979 11 524 977 15 -39 5 0 BKf1 10 991 15 -567 839 18 241 152 15 HUm4 10 999 10 468 830 12 211 169 11 BEm1 11 429 9 284 367 5 -117 62 4 FIf6<	BGm4	8	771	11	540	754	12	-81	17	1
FIm2 9 977 14 -598 832 17 -250 146 14 FIm3 9 998 6 -345 629 6 -265 369 16 FIm6 9 911 6 336 637 6 -220 274 12 HUm2 9 381 11 344 381 6 -2 0 0 BGf4 10 932 12 519 927 15 -39 5 0 BGm5 10 979 11 524 977 15 21 2 0 0 DKf1 10 991 15 -567 839 18 241 152 15 HUm4 10 999 10 468 830 12 211 169 11 BEm1 11 429 9 284 367 5 -117 62 4 FIf6 11 835 7 151 134 1 -347 701 35 HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 2 DKf6 12 808 9 -340 579 8 214 229 14 FIf1 12 980 11 -417 693 11 -269 287 21 FIf1 12 980 11 -417 693 11 -269 287 21 FIf1 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22 DKm2 13 989 43 -895 900 55 282 89 26 DKm3 13 989 43 -895 900 55 282 89 26 DKm3 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm3 13 957 12 441 803 13 193 154 12 HUm3 13 957 12 441 803 13 193 154 12 HUm3 13 942 12 472 891 15 113 51 14 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10	HUm6	8	726	15	517	529	11	315	197	20
FIm3 9 998 6 -345 629 6 -265 369 16 FIm6 9 911 6 336 637 6 -220 274 12 HUm2 9 381 11 344 381 6 -2 0 0 BGf4 10 932 12 519 927 15 -39 5 0 BGm5 10 979 11 524 977 15 21 2 0 DKf1 10 991 15 -567 839 18 241 152 15 HUm4 10 999 10 468 830 12 211 169 11 BEm1 11 429 9 284 367 5 -117 62 4 FIf6 11 835 7 151 134 1 -347 701 35 HUf2 11 689 11 438 685 11 -35 4 0 HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 2 DKf6 12 808 9 -340 579 8 214 229 14 FIf1 12 980 11 -417 693 11 -269 287 21 FIf2 12 927 26 -730 907 34 -110 21 4 FIf3 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 18 484 586 15 298 222 27 HUf5 12 808 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22 DKm3 13 982 28 -728 950 38 134 32 6 DKm3 13 982 28 -728 950 38 134 32 6 DKm5 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm3 13 957 12 441 803 13 193 154 12 HUm3 13 957 12 441 803 13 193 154 12 HUm3 13 957 12 441 803 13 193 154 12 HUm3 13 957 12 441 803 13 193 154 12 HUm3 13 957 12 441 803 13 193 154 12 HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10	BGm6	9	692	27	701	647	24	184	45	8
FIm6 9 911 6 336 637 6 -220 274 12 HUm2 9 381 11 344 381 6 -2 0 0 BGf4 10 932 12 519 927 15 -39 5 0 BGm5 10 979 11 524 977 15 21 2 0 DKf1 10 991 15 -567 839 18 241 152 15 HUm4 10 999 10 468 830 12 211 169 11 BEm1 11 429 9 284 367 5 -117 62 4 FIf6 11 835 7 151 134 1 -347 701 35 HUf2 11 689 11 438 685 11 -35 4 0 HUf4	FIm2	9	977	14	-598	832	17	-250	146	14
HUm2 9 381 11 344 381 6 -2 0 0 BGf4 10 932 12 519 927 15 -39 5 0 BGm5 10 979 11 524 977 15 21 2 0 DKf1 10 991 15 -567 839 18 241 152 15 HUm4 10 999 10 468 830 12 211 169 11 BEm1 11 429 9 284 367 5 -117 62 4 FIf6 11 835 7 151 134 1 -347 701 35 HUf2 11 689 11 438 685 11 -347 701 35 HUf4 11 768 18 491 564 15 296 204 25 BGf3	FIm3	9	998	6	-345	629	6	-265	369	16
BGf4 10 932 12 519 927 15 -39 5 0 BGm5 10 979 11 524 977 15 21 2 0 DKf1 10 991 15 -567 839 18 241 152 15 HUm4 10 999 10 468 830 12 211 169 11 BEm1 11 429 9 284 367 5 -117 62 4 FIf6 11 835 7 151 134 1 -347 701 35 HUf2 11 689 11 438 685 11 -35 4 0 HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 22 BGf5	FIm6	9	911	6	336	637	6	-220	274	12
BGm5 10 979 11 524 977 15 21 2 0 DKf1 10 991 15 -567 839 18 241 152 15 HUm4 10 999 10 468 830 12 211 169 11 BEm1 11 429 9 284 367 5 -117 62 4 FIf6 11 835 7 151 134 1 -347 701 35 HUf2 11 689 11 438 685 11 -35 4 0 HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 2 2 DKf6 12 808 9 -340 579 8 214 229 14 529	HUm2	9	381	11	344	381	6	-2	0	0
DKf1 10 991 15 -567 839 18 241 152 15 HUm4 10 999 10 468 830 12 211 169 11 BEm1 11 429 9 284 367 5 -117 62 4 Flf6 11 835 7 151 134 1 -347 701 35 HUf2 11 689 11 438 685 11 -35 4 0 HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 2 2 DKf6 12 808 9 -340 579 8 214 229 14 Flf1 12 980 11 -417 693 11 -269 287 21	BGf4	10	932	12	519	927	15			0
HUm4 10 999 10 468 830 12 211 169 11 BEm1 11 429 9 284 367 5 -117 62 4 Flf6 11 835 7 151 134 1 -347 701 35 HUf2 11 689 11 438 685 11 -35 4 0 HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 2 2 DKf6 12 808 9 -340 579 8 214 229 14 Flf1 12 980 11 -417 693 11 -269 287 21 Flf2 12 927 26 -730 907 34 -110 21 4	BGm5	10	979	11	524	977	15	21	2	0
BEm1 11 429 9 284 367 5 -117 62 4 FIf6 11 835 7 151 134 1 -347 701 35 HUf2 11 689 11 438 685 11 -35 4 0 HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 2 DKf6 12 808 9 -340 579 8 214 229 14 FIf1 12 980 11 -417 693 11 -269 287 21 FIf2 12 927 26 -730 907 34 -110 21 4 FIf3 12 984 13 -423 590 11 -346 394 36	DKf1	10	991	15		839	18	241	152	15
FIf6 11 835 7 151 134 1 -347 701 35 HUf2 11 689 11 438 685 11 -35 4 0 HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 2 DKf6 12 808 9 -340 579 8 214 229 14 FIf1 12 980 11 -417 693 11 -269 287 21 FIf2 12 927 26 -730 907 34 -110 21 4 FIf3 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23	HUm4			10						11
HUf2 11 689 11 438 685 11 -35 4 0 HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 2 DKf6 12 808 9 -340 579 8 214 229 14 Fif1 12 980 11 -417 693 11 -269 287 21 Fif2 12 927 26 -730 907 34 -110 21 4 Fif3 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27	BEm1	11	429	9	284	367	5		62	4
HUf4 11 768 18 491 564 15 296 204 25 BGf3 12 815 21 617 804 24 75 12 2 DKf6 12 808 9 -340 579 8 214 229 14 Fif1 12 980 11 -417 693 11 -269 287 21 Fif2 12 927 26 -730 907 34 -110 21 4 Fif3 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 <										35
BGf3 12 815 21 617 804 24 75 12 2 DKf6 12 808 9 -340 579 8 214 229 14 FIf1 12 980 11 -417 693 11 -269 287 21 FIf2 12 927 26 -730 907 34 -110 21 4 FIf3 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7										
DKf6 12 808 9 -340 579 8 214 229 14 FIf1 12 980 11 -417 693 11 -269 287 21 FIf2 12 927 26 -730 907 34 -110 21 4 FIf3 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20										
Fif1 12 980 11 -417 693 11 -269 287 21 Fif2 12 927 26 -730 907 34 -110 21 4 Fif3 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22										
Fif2 12 927 26 -730 907 34 -110 21 4 Fif3 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22 DKm2 13 989 43 -895 900 55 282 89 26 <										
FIf3 12 984 13 -423 590 11 -346 394 36 FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22 DKm2 13 989 43 -895 900 55 282 89 26 DKm3 13 982 28 -728 950 38 134 32 6 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>21</td></t<>										21
FIm5 12 734 7 220 289 3 -273 446 23 HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22 DKm2 13 989 43 -895 900 55 282 89 26 DKm3 13 982 28 -728 950 38 134 32 6 DKm5 13 643 9 -281 435 6 194 208 13 F										
HUf3 12 808 18 484 586 15 298 222 27 HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22 DKm2 13 989 43 -895 900 55 282 89 26 DKm3 13 982 28 -728 950 38 134 32 6 DKm5 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21										
HUf5 12 850 13 474 753 14 170 97 9 DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22 DKm2 13 989 43 -895 900 55 282 89 26 DKm3 13 982 28 -728 950 38 134 32 6 DKm5 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12										
DEf1 13 425 3 -41 29 0 -149 395 7 DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22 DKm2 13 989 43 -895 900 55 282 89 26 DKm3 13 982 28 -728 950 38 134 32 6 DKm5 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm										
DEm1 13 912 4 124 180 1 -250 732 20 DEm2 13 766 4 38 16 0 -259 749 22 DKm2 13 989 43 -895 900 55 282 89 26 DKm3 13 982 28 -728 950 38 134 32 6 DKm5 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38										
DEm2 13 766 4 38 16 0 -259 749 22 DKm2 13 989 43 -895 900 55 282 89 26 DKm3 13 982 28 -728 950 38 134 32 6 DKm5 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10 2										
DKm2 13 989 43 -895 900 55 282 89 26 DKm3 13 982 28 -728 950 38 134 32 6 DKm5 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10 2										
DKm3 13 982 28 -728 950 38 134 32 6 DKm5 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10 2										
DKm5 13 643 9 -281 435 6 194 208 13 FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10 2										
FIm4 13 837 6 19 3 0 -316 834 33 HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10 2										
HUf6 13 671 34 637 581 28 251 90 21 HUm3 13 957 12 441 803 13 193 154 12 HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10 2										
HUm3 13 957 12 441 803 13 193 154 12 HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10 2										
HUm5 13 942 12 472 891 15 113 51 4 BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10 2										
BEf1 14 678 9 -83 43 1 -320 635 38 BGf5 14 880 23 609 870 28 66 10 2										
BGf5 14 880 23 609 870 28 66 10 2										
DKf2 14 991 49 -888 831 58 389 160 53										
	DKf2	14	991	49	-888	831	58	389	160	53

name	mass	qlt	inr	k=1	cor6	${\rm ctr.} \ldots 7$	k=2	cor9	$\operatorname{ctr10}$
FIf4	14	991	14	-398	644	12	-292	347	32
DEf2	15	938	10	-415	919	14	-60	19	1
DEm3	15	737	4	-64	63	0	-210	674	17
DKm1	15	981	7	-329	898	9	100	83	4
DKm4	15	941	19	-534	855	24	170	86	11
DKm6	15	355	5	89	85	1	158	270	9
DKf5	16	998	38	-753	894	48	258	105	27
BEm2	17	372	5	-113	169	1	-125	203	7
DEf5	17	839	7	-297	772	8	-87	67	3
DKf3	17	963	53	-816	793	60	377	170	61
FIf5	17	952	8	-240	502	5	-227	450	23
BGf6	18	921	32	627	846	39	186	74	16
DKf4	18	977	57	-826	820	66	362	157	61
DEf3	19	846	13	-333	582	11	-224	264	24
DEm5	19	603	5	76	75	1	-202	529	20
BEm3	20	108	1	17	29	0	-29	79	0
BEf3	21	320	3	-62	96	0	-95	224	5
DEm4	21	137	5	-1	0	0	-89	137	4
BEm4	22	966	5	225	812	6	-98	154	5
BEm5	22	728	8	255	686	8	-63	42	2
DEm6	22	849	12	244	427	7	242	422	34
BEf5	23	332	5	133	304	2	-40	28	1
BEf6	23	832	17	371	710	17	153	121	14
DEf4	23	985	13	-390	982	19	-18	2	0
DEf6	23	116	8	-56	32	0	90	84	5
BEf2	24	914	11	-278	650	10	-177	264	20
BEf4	24	164	3	-50	92	0	-44	71	1
BEm6	26	788	15	348	788	17	-5	0	0

```
# maagaCAnum2 # plot(maagaCAnum2, x = c("mass"), y = c("ctr...7"), xlim = c(0,30), ylim = c(0,1000)) with(maagaCAnum2, plot(mass, ctr...7))
```


tail(arrange(maagaCAnum2 ,ctr...7))

name	mass	qlt	$_{ m inr}$	k=1	cor6	${\rm ctr.} \ldots 7$	k=2	cor9	ctr10
BGf6	18	921	32	627	846	39	186	74	16
DKf5	16	998	38	-753	894	48	258	105	27
DKm2	13	989	43	-895	900	55	282	89	26
DKf2	14	991	49	-888	831	58	389	160	53
DKf3	17	963	53	-816	793	60	377	170	61
DKf4	18	977	57	-826	820	66	362	157	61

with(maagaCAnum2, plot(mass, ctr...10))

tail(arrange(maagaCAnum2 ,ctr...10))

name	mass	qlt	inr	k=1	cor6	${\rm ctr7}$	k=2	cor9	${\rm ctr10}$
FIf6	11	835	7	151	134	1	-347	701	35
FIf3	12	984	13	-423	590	11	-346	394	36
BEf1	14	678	9	-83	43	1	-320	635	38
DKf2	14	991	49	-888	831	58	389	160	53
DKf3	17	963	53	-816	793	60	377	170	61
DKf4	18	977	57	-826	820	66	362	157	61
DKf4	18	977	57	-826	820	66	362	157	61

str(maagaCAnum2)

```
## tibble [72 x 10] (S3: tbl_df/tbl/data.frame)
    $ name
              : Factor w/ 72 levels "BEf1", "BEf2",...: 1 2 3 4 5 6 7 8 9 10 ...
    $ mass
              : num [1:72] 14 24 21 24 23 23 11 17 20 22 ...
     qlt
              : num [1:72] 678 914 320 164 332 832 429 372 108 966 ...
              : num [1:72] 9 11 3 3 5 17 9 5 1 5 ...
##
       inr
##
       k=1
              : num [1:72] -83 -278 -62 -50 133 371 284 -113 17 225 ...
##
    $ cor...6 : num [1:72] 43 650 96 92 304 710 367 169 29 812 ...
    $ ctr...7 : num [1:72] 1 10 0 0 2 17 5 1 0 6 ...
              : num [1:72] -320 -177 -95 -44 -40 153 -117 -125 -29 -98 ...
##
   $ cor...9 : num [1:72] 635 264 224 71 28 121 62 203 79 154 ...
```

\$ ctr...10: num [1:72] 38 20 5 1 1 14 4 7 0 5 ...

arrange(maagaCAnum2, qlt)

name	mass	qlt	inr	k=1	cor6	ctr7	k=2	cor9	ctr10
BEm3	20	108	1	17	29	0	-29	79	0
DEf6	23	116	8	-56	32	0	90	84	5
DEm4	21	137	5	-1	0	0	-89	137	4
BEf4	24	164	3	-50	92	0	-44	71	1
BEf3	21	320	3	-62	96	0	-95	224	5
BEf5	23	332	5	133	304	2	-40	28	1
DKm6	15	355	5	89	85	1	158	270	9
BEm2	17	372	5	-113	169	1	-125	203	7
HUm2	9	381	11	344	381	6	-2	0	0
DEf1	13	425	3	-41	29	0	-149	395	7
BEm1	11	429	9	284	367	5	-117	62	4
BGf1	5	531	11	547	531	8	-9	0	0
DEm5	19	603	5	76	75	1	-202	529	20
DKm5	13	643	9	-281	435	6	194	208	13
HUf6	13	671	34	637	581	28	251	90	21
BEf1	14	678	9	-83	43	1	-320	635	38
HUf2	11	689	11	438	685	11	-35	4	0
BGm6	9	692	27	701	647	24	184	45	8
BGm3	8	709	19	655	698	19	83	11	1
HUf1	7	723	9	499	698	9	93	25	1
HUm6	8	726	15	517	529	11	315	197	20
BEm5	22	728	8	255	686	8	-63	42	2
FIm5	12	734	7	220	289	3	-273	446	23
DEm3	15	737	4	-64	63	0	-210	674	17
DEm2	13	766	4	38	16	0	-259	749	22
HUf4	11	768	18	491	564	15	296	204	25
BGm4	8	771	11	540	754	12	-81	17	1
FIm1	7	787	5	-115	78	1	-347	710	22
BEm6	26	788	15	348	788	17	-5	0	0
DKf6	12	808	9	-340	579	8	214	229	14
HUf3	12	808	18	484	586	15	298	222	27
BGf3	12	815	21	617	804	24	75	12	2
BGm2	6	830	9	557	788	11	-130	43	3
BEf6	23	832	17	371	710	17	153	121	14
FIf6	11	835	7	151	134	1	-347	701	35
FIm4	13	837	6	19	3	0	-316	834	33
DEf5	17	839	7	-297	772	8	-87	67	3
DEf3	19	846	13	-333	582	11	-224	264	24
DEm6	22	849	12	244	427	7	242	422	34
HUf5	12	850	13	474	753	14	170	97	9
BGf2	8	860	14	640	853	17	59	7	1

name	mass	qlt	inr	k=1	cor6	ctr7	k=2	cor9	ctr10
BGf5	14	880	23	609	870	28	66	10	2
FIm6	9	911	6	336	637	6	-220	274	12
DEm1	13	912	4	124	180	1	-250	732	20
BEf2	24	914	11	-278	650	10	-177	264	20
BGf6	18	921	32	627	846	39	186	74	16
FIf2	12	927	26	-730	907	34	-110	21	4
BGf4	10	932	12	519	927	15	-39	5	0
HUm1	6	935	5	426	766	6	201	170	6
DEf2	15	938	10	-415	919	14	-60	19	1
BGm1	5	940	7	596	878	9	159	62	3
DKm4	15	941	19	-534	855	24	170	86	11
HUm5	13	942	12	472	891	15	113	51	4
FIf5	17	952	8	-240	502	5	-227	450	23
HUm3	13	957	12	441	803	13	193	154	12
DKf3	17	963	53	-816	793	60	377	170	61
BEm4	22	966	5	225	812	6	-98	154	5
DKf4	18	977	57	-826	820	66	362	157	61
FIm2	9	977	14	-598	832	17	-250	146	14
BGm5	10	979	11	524	977	15	21	2	0
FIf1	12	980	11	-417	693	11	-269	287	21
DKm1	15	981	7	-329	898	9	100	83	4
DKm3	13	982	28	-728	950	38	134	32	6
FIf3	12	984	13	-423	590	11	-346	394	36
DEf4	23	985	13	-390	982	19	-18	2	0
DKm2	13	989	43	-895	900	55	282	89	26
DKf1	10	991	15	-567	839	18	18 241	152	15
DKf2	14	991	49	-888	831	58	389	160	53
FIf4	14	991	14	-398	644	12	-292	347	32
DKf5	16	998	38	-753	894	48	258	105	27
FIm3	9	998	6	-345	629	6	-265	369	16
HUm4	10	999	10	468	830	12	211	169	11

head(arrange(maagaCAnum2, qlt))

name	mass	qlt	inr	k=1	cor6	${\rm ctr.} \dots 7$	k=2	cor9	$\mathrm{ctr10}$
BEm3	20	108	1	17	29	0	-29	79	0
DEf6	23	116	8	-56	32	0	90	84	5
DEm4	21	137	5	-1	0	0	-89	137	4
BEf4	24	164	3	-50	92	0	-44	71	1
BEf3	21	320	3	-62	96	0	-95	224	5
BEf5	23	332	5	133	304	2	-40	28	1

```
# Hieman hankalaa kätevästi järjestää numeerisia tuloksia massan mukaan

#str(maagaCA1num)

#maagaCA1num$rows

#maagaRows.df <- maagaCA1num$rows

# sarakenimet eivät yksikäsitteisiä

#maagaRows.df

#str(maagaRows.df)

#names(maagaRows.df)

#str(maagaRows.df$mass)

# ei toimi AscmaagaRows.df <- maagaRows.df[order(mass),]
```

Massa ja kontribuutiot akseleille 1 ja 2: epäilyttäviä havaintoja joilla pieni massa ja suuri kontribuutio ei näytä olevan.

Huonosti esitetettyjä pisteitä on erityisesti Belgiasta, myös Saksan (DEf6,DEf1 ja DEm4), Tanskan vanhat miehet (DKm6) ja Unkarin nuorehkot miehet (HUm2) kuuluvat tähän joukkon.

Maapisteet täydentäviksi pisteiksi - tarkistuksia.

```
# Miten maa-rivit täydentäviksi riveiksi - alla siisti ratkaisu
# Miten labelit hieman lähemmäkis pistettä? offset-jotenkin toimii...
# rakennetaan taulukko, jossa alimpina riveinä "maa-rivit"
# otetaan karttaan mukaan täydentävinä pisteinä
# karttaa on helpompi tulkita, kun nähdään miten ikä-sukupuoli-ryhmät sijatsevat keskiarvon
#ikäluokka - sukupuoli ja maa - maaga-muuttuja
maagaTab1 <- table(ISSP2012esim2.dat$maaga, ISSP2012esim2.dat$Q1b)</pre>
#dim(testTab1) #72 riviä, 5 saraketta
# maa-rivit
maagaTab_sr <- table(ISSP2012esim2.dat$maa, ISSP2012esim2.dat$Q1b)
#maagaTab_sr
maagaTab1 <- rbind(maagaTab1,maagaTab_sr)</pre>
# str(maaqaTab1)
# maaqaTab1
# dim(maaqaTab1) #78 riviä, 5 saraketta, 1-72 data ja 73-78 täydentävät rivit
spCAmaaga1 <- ca(maagaTab1[,1:5], suprow = 73:78)</pre>
#X11()
# Plot toimii (4.2.20), ja par() (4.5.20)
par(cex = 0.5)
```

Äiti töissä: ikäluokka ja sukupuoli maittain 2

Kuva 18: Ikä-sukupuoli-maa

Kuva 19: Ikä-sukupuoli-maa

Äiti töissä: ikäluokka ja sukupuoli maittain 2

Kuva 20: Ikä-sukupuoli-maa

```
# TÄTÄ KEHITELLÄÄ CAcalc_1.R - skriptissä (15.6.20)

# ei toimi ihan toivotulla tavalla - tarkoitettu komentoriviltä

# grafiikkaikkunaan tulostukseen ?

# Vai pitääkö ensin piirtää kuvan "kehys" ilman pisteitä xlim- ja ylim- parametreilla

# ja sitten vasta pisteet?

# Kuvasuhde oikein, kun xlim = ylim, miten turhat pisteet pois? (29.5.20).Menevät

# näköjään kuva-alueen ja ulomman marginaalin väliin.

# Voisiko valita objektista vain osan pisteistä? Tai plot ilman tulostusta, tulos

# objektiin ja sieltä pisteet kuvaan? (29.5.20)

# str(spCAmaaga1)
```

Kuvissa on aika ahdasta. Kuvan voisi rajata johonkin alueeseen erityisesti oikea yläosa on täynnä pisteitä. Maiden täydentävät pisteet ovat ikäluokka-sukupuoli -luokkien keskiarvopisteitä. Maiden väliset erot dominoivat, mutta maiden välillä on isoja eroja.

Kartan herkkyyttä joillekin pienen massan rivipisteille on tutkittu. Ei ilmeistä syytä huoleen, mutta (a) joidenkin pisteiden huono kvaliteetti ja (b) pienet solufrekvenssit ovat huono juttu. Jälkimmäisen voisi korjata yhdistelemättä luokkia, hyöty olisi kuvan selkeytyminen ja haitta kiinnostavien piirteiden peittymine. Erityisesti nuorimman ja toiseksi nuorimman ikäluokan ero.

Vertailu voi tehdä

1.Maiden sisällä, ikä-sukupuoli - luokkien välillä. Ovatko naiset kaikissa ikäluokissa mies-ikäluokkien oikealla vai vasemmalla puolella?

2. Maiden välillä

- a. miten ikä-sukupuoliluokat sijaitsevat suhteessa maiden keskiarvopisteisiin
- b. mikä on niiden järjestys

5 Yksinkertaisen korrespondenssianalyysin laajennuksia 2

TODO Vielä kuuden maan aineistolla ilman puuttuvia havaintoja? Helpompi havainnollistaa taulukoiden pinoamista / liittämistä (concate, stack). Ja voisi jatkaa ehkä pari pointtia pienellä aineistolla?

```
# str(ISSP2012jh1d.dat)
# Yksinkertaisuuden vuoksi muuttujat tähän

isodatVars1 <- ISSP2012jh1d.dat %>% names()
isodatVars1 <- isodatVars1[24:73]</pre>
```

```
demogrVars1 <- c("maa", "maa3", "sp", "ika")</pre>
isodatVars1 <- isodatVars1[21:50]</pre>
isodatVars1 <- c(demogrVars1, isodatVars1)</pre>
isodatVars1
                               "sp"
                                                     "Q1a"
                                                                 "Q1b"
                                                                            "Q1c"
    [1] "maa"
                    "maa3"
                                          "ika"
                                          "Q2b"
    [8] "Q1d"
                    "Q1e"
                                                     "Q3a"
                                                                 "Q3b"
                                                                            "edu"
##
                               "Q2a"
                    "sosta"
                                                                 "Q1am"
                                                                            "Q1bm"
## [15] "msta"
                               "nchild"
                                          "lifsta"
                                                     "urbru"
## [22] "Q1cm"
                    "Q1dm"
                               "Q1em"
                                          "Q2am"
                                                     "Q2bm"
                                                                 "Q3am"
                                                                            "Q3bm"
## [29] "edum"
                    "mstam"
                               "sostam"
                                          "nchildm" "lifstam"
                                                                 "urbrum"
ISSP2012jh1d.dat %>% select(all_of(isodatVars1)) %>%
    summary()
```

$\hbox{mazmaza} \hbox{ ika Q1Q1Q1Q1Q1Q2Q2Q3Q3cdu} \quad \hbox{mstasosmachlids} \hbox{ta urbrQ1Q1Q1Q1Q1Q1Q2Q2Q3Q3cdnum mstasosmachlids} \\ \hbox{mstasosmachlids} \hbox{ta urbrQ1Q1Q1Q1Q1Q2Q2Q3Q3cdnum mstasosmachlids} \\ \hbox{mstasosmachlids} \hbox{mstasosmachlids} \hbox{ta urbrQ1Q1Q1Q1Q1Q1Q1Q2Q2Q3Q3cdnum mstasosmachlids} \\ \hbox{mstasosmachlids} \hbox{mstasosmachlids} \hbox{mstasosmachlids} \hbox{mstasosmachlids} \hbox{mstasosmachlids} \hbox{mstasosmachlids} \hbox{mstasosmachlids} \\ \hbox{mstasosmachlids} \hbox{$

```
FR FR-m: M7889 S S S S S S W W LowerIn 06 No Marriell S:18:2252838:13852832004V:1.37222In 06 No M
   France: :11:27628328:133571327504:1352220n-paid:6889ildlr25724192
                                                                                      5373 secon-paid:6889ild
2409
         15.00
                                 5373 da-
                                             work
                                                              ci-
                                                                                            da-
                                                                                                  work
   2409
                                             :17967
                                       ry
                                                                                                  :17967
                                                              ty
                                                                                            ry
                                       (secon-
                                                              :8442
                                                                                            (secon-
                                       da-
                                                                                            da-
                                       ry
                                                                                            ry
                                       comple-
                                                                                            comple-
                                       ted
                                                                                            ted
                                       does
                                                                                            does
                                       not
                                                                                            not
                                       al-
                                                                                            al-
                                       low
                                                                                            low
                                       ent-
                                                                                            ent-
                                       ry
                                                                                            ry
                                       to
                                                                                            to
                                       uni-
                                                                                            uni-
                                                                                            ver-
                                       ver-
                                       si-
                                                                                            si-
                                       tv:
                                                                                            tv:
                                       obli-
                                                                                            obli-
                                       ga-
                                                                                            ga-
                                       to-
                                                                                            to-
                                       ry
                                                                                            ry
                                       school)
                                                                                            school)
                                       :7811
                                                                                            :7811
```

BECZ-f:18084s s s s s s s w w	Uppe	erRetife	5dOn	eCivil	The s:12:333326765	788:4128:456k64k5	6 1533 8157	rRetif	FilO1
: Czech Qu.:12353392673578342345445456				l ø art-			secon		67018
219 R e- 36.00	da-	7999	:	-	burbs		da-	7999	:
public:	ry		437	%aip	or		ry		43
1804	(pro-			:	outs-		(pro-		
	gram	.S		1035	kirts		gram	s	
	that				of		that		
	al-				a		al-		
	lows				big		lows		
	ent-				city:4386		ent-		
	ry						ry		
	to						to		
	uni-						uni-		
	ver-						ver-		
	si-						si-		
	$_{\mathrm{ty}}$						ty		
	:7115						:7115		
CZAU-NAMediani?????HH									
Australia: :59490000407841:6109:			7 718 i	lebreenn	town 3382	5039 8367	62econ	-and:	577
804 50.03882 5039 8367	6 2 a-	loo-	:	spous	see/r		da-	loo-	:
1557	ry,	king	264	l ∂ i−	a		ry,	king	20
	non-			vil	small		non-		
	tertia			part-	ci-		tertia		
	(ot-	job,		ner	ty		(ot-	job,	
	her	HR:		`	:9203		her	HR:	
	up-	incl		le-			up-	incl	
	per	ne-		gal-			per	ne-	
	secon			ly			secon		
	da-	had		mar-			da-	had	
	ry	a		ried/			ry	a	
	pro-			still			pro-	-	
	_	s1769		le-			gram		
	towa	rd		gal-			towai	rd	
	la-			ly			la-		
	bour			in			bour		
	mar-			a .			mar-		
	ket			ci-			ket		
	or			vil			or		
	tech-			part-			tech-		
	nical		CEC	ners-			nical		F 0 F
	iorma	ation):5	8600	hip): 486			Iorma	ation):	9099
				486					

 $maamaas \hspace{-0.5em} \hspace{-0.5em} \text{ika Q1Q1Q1Q1Q2Q2Q3Q3e} \hspace{-0.5em} \text{dum mstasosmathlids} \hspace{-0.5em} \text{urbrQ1QidQ1QidQ1Q2Q2Q3Q3e} \hspace{-0.5em} \text{dum mstasosmathlids} \hspace{-0.5em} \text{urbrQ1QidQ1QidQ1Q2Q2Q3Q3e} \hspace{-0.5em} \text{dum mstasosmathlids} \hspace{-0.5em} \text{dum mstasosmathlids}$

Mamamass ika Q1Q1Q1Q1Q1Q1Q1Q2Q2Q3Q38ddu mstasosmehildsta urbrQ1Q4Q1Q4Q4Q3Q3Q38ddu mstasosmehildsta urbrQ1Q4Q1Q4Q4Q3Q3Q38ddu mstasosmehildsta urbrQ1Q4Q4Q4Q3Q3Q38ddu mstasosmehildsta urbrQ1Q4Q4Q4Q67e; LowerIn 08 clucase cl																	
Russia: : :9068707667267:923628529- educa3477 from count074 1929 3428528- educa3477 from count074 cduca34 from	mamaa p	ika Q1 Q	1 Q 1Q1 Q 1	Q 2 Q 2	2 Q3Q3e d	u	mstæc	ostnæh	ill dsta	urbr	Q1 Q 11Q)11Q11Q1	1020	2 Q 3Q	3deoba m	. msta	sostæhi
1761	DERU-NA											08F07686					
1525	: Russia:	: :9	003707086732	267:92	3423522		educ&	4.77	from	coun	t 974		1929	3428	522-	educ	& 477 f
Tia	1761	49.542074		1929	ve	l	tion	598	Spous	ser/y					vel	tion	940s
ry, ly ge	1525				te	-	:		le-	vil-					ter-	:	1
first se- :8646 first sta- sta- ge ra- ge (al- ted (al- so from so tech- nical vil nical schools part- schools at ner at ter- tia- ry le- vel :5147					tia	,-	1763		gal-	la-					tia-	1763	9
Sta-					ry				ly	ge					ry,		1
ge ra- ge ra- ge ra- ge (al- so from so so tech- nical vil nical schools part- schools at ner at ter- 2997 ter- tia- ry ry le- vel) :5147 AUNONASTAE E E E E E NANAUpperDomostic NorwaQu:: :55:57 63.0051					fir	st			se-	:8646	5				first		s
(al- ted (al- so from so so tech- ci- tech- nical vil nical schools part- schools at ner at a ter- 2997 ter- tia- ry ry le- le- vel :5147 S147 S147 S147 S147 S147 S157 63.00051 403 vel : 117 vil or vel : 1180 part- ho- ter- 1180 part- ho- ter- 1180 part- ho- ter- 1180 tia- ry died in ry so so so so so so so s					sta	1 -			pa-						sta-		I
So					ge				ra-						ge		r
tech-nical vil nical schools part- schools schools part- schools s					(al	-			ted						(al-		t
nical vil nical schools part schools schools at ner at at at at at at at a					so				${\rm from}$								f
Schools Scho					te	ch-			ci-								C
at ner at a ter- a a ter- tia- ry ry ry le- vel) vel) :5147 AUNONARTE E E E E E NANAUpperDomostic Widowaed/E: E:554596503662:8917 le- work3346 ci- farml051 403 le- work3346 ci- farml051 403 le- work3346 ter- 1180 tia- ry died in ry									vil								7
a : 2997 ter- tia- tia- ry ry le- vel) vel) :5147 AUNONARdE E E E E E NANAUpperDomostac Widoward/E: E:55:55:55:55:55:55:55:55:55:55:55:55:55					sc	ıool	S		part-							$_{ m ols}$	I
ter- tia- ry le- vel) :5147 AUNONA3rd E E E E E E NANAUpperDomostuc Widoward/E: E:55:59500:5662:8917 le- work3346 ci- farml051 403 le- work3: 1557 63.00051 403 vel : 117 vil or vel : 1444 ter- 1180 part- ner me tia- ry died in ry					at				ner						at		r
tia-ry ry le-le-vel) vel) :5147 AUNONARdE E E E E E NANAUpperDomostuc Widoward/E: E:55:59500:56162:8917 le-work3346 ci-farm1051 403 le-work33:1557 63.00051 403 vel : 117 vil or vel : 1444 ter- 1180 part-ho-ter- 1180 tia-ry died in ry																	:
ry									2997								2
le-vel vel v					tia	J-									tia-		
vel																	
:5147 AUNONArd E E E E E E NANAUpperDomestac Widoward/E: E:55:49640:540:894NAUpperDomestac Widoward/E: E:55:49640:540:540:540:540:540:540:540:540:540:5																	
AUNONArd E E E E E E NANAUpperDomostac Widoward/E: E:55:49600:36162:8917 le- work3346 ci- farm1051 403 le- work346 ci- farm10						/											
: NorwaQu.: :5545965036462:8917 le- work3346 ci- farm1051 403 le- work346 ci- f							_										
1557 63.00051 403 vel : 117 vil or vel : 1444 ter- 1180 part- ho- ter- 1180 tia- ner me tia- ry died in ry												5: 519 6110:		89 AX			
1444 ter- 1180 part- ho- ter- 1180 tia- ner me tia- ry died in ry	,										1051		403				
tia- ner me tia- ry died in ry		63.00051		403			-									-	598 v
ry died in ry	1444						1180									1180	I
ů v						J-											1
(Mas- : the : (Mas-																	C
0700															(•	:
ter, 2763 count- ter,									2763		t-						2
Dr.) ry Dr.)						,									,		
:4762 $:1902$ $:4762$:4'	62				:1902	2				:4762		

RUDKNAMaxNANANAN	DANDANISAT YLAN	AOthe	n(Oth(ea)(10e	nl)Notiÿ 61	8NA	'sP: P:1	R 8180 5210 5213 5	P: NAN	P rim	a P ern0	3m2en	ίŅ
: Denma 1102848	683719	:2022	:	:	mar-	:	848	683	7 19	schoo	olsick :2	2221	n
1525			1775	45	ried/	244				(ele-	or	117	r
1403					ne-					men-	di-		n
					ver					ta-	sabled	l	V
					in					ry	:		iı
					a					schoo	ol) 093		a
					ci-					:1531			\mathbf{c}
					vil								V
					part-								p
					ners-								n
					hip,								h
					single	9							\mathbf{S}
					:								:
					7535								7
(Othor) MANANANANANANANANANANANANANANANANANANAN	AN AN AN AN	ANA's	NA'sN	ANSA	MA's	NA	NANA	NANANANA	NANANA	(Othe	en(Oth(e	D)(10e	dh
:22681		:	: :1	7:77	:					:	:	:	:
		308	370	940	0434					799	1052	45	4

maanaaspi ka Q1Q1Q1Q1Q1Q2Q2Q3Q3bdu mstasosmahildsta urbrQ1Q1Q1Q1Q1Q1Q1Q2Q2Q3Q3bduum mstasosmahildsta urbrQ1Q1Q1Q1Q1Q1Q2Q2Q3Q3bduum mstasosmahildsta

Data on valmiina, edellisen luvun ikäluokka, ikä-sukupuoli- muuttuja ja ikä-sukupuoli- maa muuttujien luontia voi harkita.

edit Tässä keskityttävä data-analyysin tutkimusongelmiin, johdantoa MCA-lukuun.

5.1 Päällekkäiset matriisit (stacked matices)

Ref:CAip, CA Week2.pdf (kalvot MCA-kurssilta 2017)

Concatenated tables (yhdistetyt taulut tai matriisit): (a) kaksi luokittelumuuttuja (b) useita muuttujia stacked ("pinotaan").

MCA 2017 laskareissa ja kalvoissa esitetään, miten nämä saadaan kätevästi CA-paketin MJCA-funktion BURT-optiolla.

5.2 Matched matrices

Ref:CAip ss. 177, HY2017_MCA, Greenacre JAS 2013 (sovellus ISSP 1989, 4 kysymystä 'pitäisikö äidin olla kotona', 8 maata), tässä artikkelissa "SVD-based methods", joista yksi CA (muut biplots, PCA, compositional data/log ratios).

Edellisen menetelmän variantti, jossa ryhmien väliset ja sisäiset erot saadaan esiin. Inertian jakaminen. Samanlaisten rivien ja sarakkeiden kaksi samankokoista taulua, esimerkiksi sukupuolivaikutusten arviointi. Alkuperäinen taulukko

jaetaan kahdeksi tauluksi sukupuolen mukaan. Matriisien yhdistäminen (concatenation) riveittäin tai sarakkeittain ei näytä optimaalisesti mm - matriisien eroja.

Ryhmien välisen ja ryhmien sisäinen inertian erottaminen, **ABBA** on yksi ratkaisu (ABBA matrix, teknisesti block circulanMat matrix).

Luokittelu voi olla myös kahden indikaattorimuuttujan avulla jako neljään taulukkoon (esim. miehet vs. naiset länsieuroopassa verratuna samaan asetelmaan itä-Euroopassa). Samaa ideaa laajennetaan.

Esimerkkinä "Attitudes to women working in 2012".