Parallel Programming Exercise 7

Author:	林子傑 (r10525069@ntu.edu.tw)				
Student ID	R10525069				
Department	Engineering Science and Ocean Engineering				

(If you and your team member contribute equally, you can use (co-first author), after each name.)

1.
$$\Psi(n,p) < \Psi(n,p_0)$$

$$\sigma(n) + \phi(n)/(\sigma(n) + \phi(n)/p + \kappa(n,p)) < \sigma(n) + \phi(n)/(\sigma(n) + \phi(n)/p_0 + \kappa(n,p_0))$$

$$\sigma(n) + \phi(n)/p_0 + \kappa(n,p_0) < \sigma(n) + \phi(n)/p + \kappa(n,p)$$

$$\phi(n)/p_0 + \kappa(n,p_0) < \phi(n)/p + \kappa(n,p)$$

$$\phi(n)/p_0 + \text{Clog}(p_0) < \phi(n)/p + \text{Clog}(p)$$
 let $p_0 = 0.5p$, $\phi(n) = p$, $C = 2$,滿足 $\phi(n)/p_0 + \text{Clog}(p_0) < \phi(n)/p_0 + \text{Clog}(p)$ 。

$$\delta(n,p') < \epsilon(n,p)$$

$$\sigma(n) + \phi(n)/(p'\sigma(n) + \phi(n) + p'\kappa(n,p')) < = \sigma(n) + \phi(n)/(p\sigma(n) + \phi(n) + p\kappa(n,p))$$

$$p\sigma(n) + \phi(n) + p\kappa(n,p) < = p'\sigma(n) + \phi(n) + p'\kappa(n,p')$$
 let $p' = 2p$, $\kappa(n,p) = p$,滿足 $\sigma(n) + p\kappa(n,p) < = p'\sigma(n) + p'\kappa(n,p')$ 故得證。

3. Overall execution time: $(\lceil n/p \rceil - 1)\chi + \lceil \log p \rceil (\lambda + \chi)$

Processor	Time	Speedup		
1	0.001			
2	0.0006	1.66665		
3	0.000492	2.033194		
4	0.00045	2.222151		
5	0.000432	2.313688		
6	0.000425	2.351965		
7	0.000424	2.360674		
8	0.000425	2.352807		

9	0.000428	2.335747
10	0.000432	2.313635
11	0.000437	2.288999
12	0.000442	2.263178
13	0.000447	2.237159
14	0.000452	2.211469
15	0.000457	2.186353
16	0.000463	2.162

$$\Psi \le 1/(0.05+0.95/10) = 1/(0.05+0.095) = 1/0.145=6.896...$$

 Ψ =10<= 1/(0.06+0.94/p)

 $0.06+0.94/p \le 1/10=0.1$

0.94/p <= 0.04

p >= 0.94/0.04 = 23.5

最小滿足的 p=24

6.

50 <= 1/(f+(1-f)/p)

f+(1-f)/p <=1/50=0.02

如果 p 無限大, f 趨近於 0.02

最大 sequential operations 的比例為 0.02

7.

9 <= 1/(f+(1-f)/10)

f+(1-f)/10 <=1/9

(9/10)f+1/10<=1/9

(9/10)f<=1/90

81f<=1

f <= 1/81

8.

(9+233*16)/242=15.44...

9. 40+(1-40)0.01=39.61

10.

對於每個 program,推算出 16 個 processor 的 speedup (是 8 個 processor 的 1.4 倍) 並計算 Karp-Flatt Metric, 依據 Karp-Flatt Metric 將 Program 分類。

Program I

processor	1	2	3	4	5	6	7	8	16
speedUp	1	1.67	2.14	2.5	2.78	3	3.18	3.33	4.662
e		0.19761	0.20094	0.20000	0.19964	0.20000	0.20021	0.20034	0.16213
Program II									
processor	1	2	3	4	5	6	7	8	16
speedUp	1	1.89	2.63	3.23	3.68	4	4.22	4.35	6.09
e		0.05820	0.07034	0.07946	0.08967	0.10000	0.10980	0.11987	0.10848
Program II	Ι								
processor	1	2	3	4	5	6	7	8	16
speedUp	1	1.89	2.68	3.39	4.03	4.62	5.15	5.63	7.882
e		0.05820	0.05970	0.05998	0.06017	0.05974	0.05987	0.06014	0.06866
Program I	V								
processor	1	2	3	4	5	6	7	8	16
speedUp	1	1.96	2.88	3.67	4.46	5.22	5.93	6.25	8.75
e		0.02041	0.02083	0.02997	0.03027	0.02989	0.03007	0.04000	0.05524
Program V	•								_
processor	1	2	3	4	5	6	7	8	16
speedUp	1	1.74	2.3	2.74	3.09	3.38	3.62	3.81	5.334
e		0.14943	0.15217	0.15329	0.15453	0.15503	0.15562	0.15711	0.13331
Program V	Ί								
processor	1	2	3	4	5	6	7	8	16
speedUp	1	1.94	2.82	3.65	4.42	5.15	5.84	6.5	9.1
e		0.03093	0.03192	0.03196	0.03281	0.03301	0.03311	0.03297	0.05055
		•	•	•					

符合 A 的有: Program III IV VI, 因為 16 個 processor 的 Karp-Flatt Metric 大於 8 個 processor 的, 因此 16 個 processor 的 speedup 可能是 8 個 processor 的 1.4 倍。

符合 B 的有: Program I, 因為 16 個 processor 的 Karp-Flatt Metric 小於 8 個 processor 的, 因此 16 個 processor 的 speedup 不可能是 8 個 processor 的 1.4 倍,且 1 到 8 個 processor 的 Karp-Flatt Metric 為常數, 因此原因在於 large

serial component of the computation •

符合 C 的有: Program II V,因為 16 個 processor 的 Karp-Flatt Metric 小於 8 個 processor 的,因此 16 個 processor 的 speedup 不可能是 8 個 processor 的 1.4 倍,且 1 到 8 個 processor 的 Karp-Flatt Metric 漸漸地增加,因此原因在於 the increase in overhead as processors are added。

11.

Amdahl's Law 視題目大小為常數,當中的 f 是從序列化程式得出的比例,當 p 趨近於無限大,1/f+(1-f)/p 趨近於 1/f。

Gustafson-Barsis's Law 當中的 s 是根據平行化程式得出的,視 s 為常數,題目大小可隨 p 增大而上升,當 p 趨近於無限大,p+(1-p)s 也趨近於無限大。 12.

不行,程式中不可平行化的時間加上 processor 之間溝通的時間,有可能大於所規定的時限。

13.

The scalability function: M(f(p))/p

 $A: C^2p$

B: $C^2 log^2 p$

 $C: C^2$

D: C²plog² p

E: C

F: $p^{c-1}(1 < c < 2) => 1 < p^{c-1} < p$

G: $p^{c-1}(c>2) => p^{c-1}>p$

Scalability function from most scalable to least scalable: E>C>B>F>A>D>G