Berufliche Schule der Hansestadt Lübeck

EMIL
POSSEHL
SCHULE
SCHULE

Thema: Lernfeld 5: Sicherheitscheck einer PNG-Datei in Python

Auf diesem Blatt wollen wir uns wieder mit dem Sicherheitscheck für PNG-Bilder

beschäftigen. Eine Möglichkeit dies zu erkennen, ist die Dateigröße mit deiner geschätzten Größe des

Bildes zu vergleichen. Auf einem vorherigen Blatt konnten wir sehen, wo wir die entscheidenden

Daten zur Analyse des Bildes im Byte-Strom finden können. Auf diesem Blatt wollen wir diese Analyse

automatisieren. Im Anhang befinden sich wieder die bereits bekannten Informationen zum Format

des Streams sowie zu neuen Funktionen in Python, die dafür genutzt werden könnten.

Anforderungen an das Programm: (Herausforderungsstufe 3)

- Das Programm soll durch einen Check der ersten acht Byte überprüfen, ob es sich um ein PNG handelt. Ist dies nicht der Fall, wird das Programm abgebrochen.
- Die Größe des unkomprimierten Bildes soll anhand der Daten des Image Headers (IHDR) bestimmt werden. Es kann davon ausgegangen werden, dass als Farbtyp nur die unten angegebenen vier Fälle auftreten.
- Die berechnete Größe des unkomprimierten Bildes soll mit der Dateigröße verglichen werden. Ist die Dateigröße größer als die berechnete Größe, soll das Programm eine Warnung ausgeben.
- Um eine eventuelle Gefahrenquelle genauer zu identifizieren, sollen alle Chunks auf ihre Größe überprüft werden. Ist ein Chunk größer als das Datenchunk, soll eine Warnung ausgegeben werden.

Aufgabe 1: (Struktogramm)

Erstelle ein Struktogramm zur Berechnung der unkomprimierten Bildgröße.

Aufgabe 2: (Implementierung)

Implementiere die Erweiterung des Programms in Python.

Aufgabe 3: (Tests)

Überlege dir wie du dein Programm testen kannst. Führe dann die Tests durch und protokolliere diese.

Thema: Lernfeld 5: Sicherheitscheck einer PNG-Datei in Python

Der PNG-Datenstrom

Bezeichnung	PNG-Signatur	Image-Header				Image Trailer
		IHDR				IEND
		Chunk 1	Chunk 2	Chunk 3		Chunk n
Länge	8 Byte	25 Byte	12 -	12 -	12 -	
Fixer Inhalt	Dezimal: 137, 80, 78, 71, 13, 10, 26, 10					

Aufbau eines Chunks

Bezeichnung	Länge	Chunk-Typ	Chunk-Daten	CRC
Länge	4 Byte	4 Byte	0 – (2 ³¹ -1) Byte	4 Byte
Beschreibung	Eine vorzeichenlose Ganzzahl,	Eine Folge von vier Bytes, die	Die zum Chunk-Typ	Ein 4-Byte-CRC (Cyclic
	die die Anzahl der Bytes im	den Chunk-Typ definiert.	passenden Datenbytes, falls	Redundancy Code), der auf
	Datenfeld des Chunks angibt.	Jedes Byte eines Chunk-Typs	vorhanden. Dieses Feld kann	den vorangehenden Bytes
	Die Länge zählt nur das	ist auf die Dezimalwerte 65	die Länge Null haben.	im Chunk berechnet wird,
	Datenfeld, nicht sich selbst,	bis 90 und 97 bis 122		einschließlich des Chunk-
	den Chunk-Typ oder die CRC.	beschränkt. Diese		Typ-Feldes und der Chunk-
	Null ist eine gültige Länge.	entsprechen den Groß- und		Datenfelder, aber ohne das
	Obwohl Kodierer und	Kleinbuchstaben nach ISO		Längenfeld. Der CRC kann
	Dekodierer die Länge als	646 (A-Z und a-z), um die		verwendet werden, um zu
	vorzeichenlos behandeln	Beschreibung und		prüfen, ob die Daten
	sollten, darf ihr Wert 2 ³¹ -1	Untersuchung von PNG-		beschädigt sind. Der CRC ist
	Bytes nicht überschreiten	Datenströmen zu erleichtern.		immer vorhanden, auch bei
				Chunks, die keine Daten
				enthalten.

Thema: Lernfeld 5: Sicherheitscheck einer PNG-Datei in Python

Image Header

Bez.	Länge	Тур	Daten					CRC		
			Breite	Höhe	Bittiefe	Farbtyp	Kompressions-	Filter-	Interlace-	
							Methode	Methode	Methode	
Länge	4	4 Byte	4 Byte	4 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	4 Byte
	Byte									
Fixer Inhalt		Dezimal: 73, 72, 68, 82								

Für uns interessante Farbtypen

PNG Bildtyp	Farbtyp	Erlaubte Bittiefen	Interpretation
Greyscale	0	1, 2, 4, 8, 16	Jeder Pixel ist ein Grauwert
Truecolour	2	8, 16	Jeder Pixel besteht aus 3 Werten (R,G,B)
Greyscale with alpha	4	8, 16	Jeder Pixel ist ein Grauwert gefolgt von einem Alpha-Wert
Truecolour with alpha	6	8, 16	Jeder Pixel besteht aus 3 Werten (R,G,B) gefolgt von einem Alpha-Wert

EMIL
POSSEHL
SCHULE
SCHULE

Thema: Lernfeld 5: Sicherheitscheck einer PNG-Datei in Python

Das Bild zur Aufgabe:

Angaben zum Bild:

• Dateigröße: 3,2 MB

Dazugehöriger PNG-Datenstrom (Hex-Darstellung)

Legende: PNG-Signatur, IHDR, Chunk 2, Chunk 3