Datenkommunikation

Transportschicht Grundlagen

Wintersemester 2011/2012

Einordnung

1	Grundlagen von Rechnernetzen, Teil 1
2	Grundlagen von Rechnernetzen, Teil 2
3	Transportzugriff
4	Transportschicht, Grundlagen
5	Transportschicht, TCP (1)
6	Transportschicht, TCP (2) und UDP
7	Vermittlungsschicht, Grundlagen
8	Vermittlungsschicht, Internet
9	Vermittlungsschicht, Routing
10	Vermittlungsschicht, Steuerprotokolle und IPv6
11	Anwendungsschicht, Fallstudien
12	Mobile IP und TCP

Überblick

1. Einführung in grundlegende Aspekte

- 2. Transportorientierte Dienste
 - Überblick und Grundlagen
 - Protokollfunktionen der Transportschicht
 - Verbindungsmanagement
 - Aufbau
 - Abbau
 - Zuverlässiger Datentransfer
 - Quittierung
 - Übertragungswiederholung
 - Flusskontrolle
 - Staukontrolle

ISO/OSI-Referenzmodell

TCP/IP-Referenzmodell

TCP/IP-Referenzmodell, Schichten und Gateways

Allgemeine Protokollmechanismen

Fehlerbehandlung

- Reihenfolgegarantie, Sequenznummern
- Quittierung
- Zeitüberwachung
- Fehlerkennung und -korrektur
- Längenanpassung
- Assemblierung und Deassemblierung
- Systemleistungsanpassung
 - Flusssteuerung
 - Überlaststeuerung
- Übertragungsleistungsanpassung

. . .

TCP/IP-Protokollfamilie

TCP/IP-Referenzmodell, Protokollkapselung

PDU = Protocol Data Unit

Überblick

1. Einführung in grundlegende Aspekte

2. Transportorientierte Dienste

- Überblick und Grundlagen
- Protokollfunktionen der Transportschicht
- Verbindungsmanagement
 - Aufbau
 - Abbau
- Zuverlässiger Datentransfer
 - Quittierung
 - Übertragungswiederholung
 - Flusskontrolle
 - Staukontrolle

Dienste der Transportschicht

Logischer Ende-zu-Ende-Transport

Verbindungen

- Man unterscheidet
 - verbindungsorientierte Transportdienste
 - verbindungslose Transportdienste

Verbindungsorientierte Transportdienste

- Eine Verbindung wird etabliert
- Gemeinsamer Kontext wird aufgebaut
- Geprägt von traditionellen Kommunikationsdiensten wie Telefonieren
- Hohe Zuverlässigkeit
- Fehlerfreie und reihenfolgerichtige Auslieferung der Daten beim Empfänger
- Verbindungsorientierte Protokolle sind komplexer
 - Warum?
- Wann braucht man Verbindungen?

Verbindungslose Transportdienste

- Verlust von Datenpaketen wird nicht bemerkt
- Verfälschung des Nutzdatenteils ist nicht unbedingt nachvollziehbar
- Reihenfolgezerstörung ist möglich
- Kein Zusammenhang bei aufeinanderfolgenden Dienstaufrufen
- T-PDUs enthalten die Adressinformation von Sender und Empfänger

Protokollfunktionen in Transportprotokollen

- Verbindungsmanagement und Adressierung
- Zuverlässiger Datentransfer
- Flusskontrolle
- Staukontrolle
- Multiplexierung (Multiplexing) und Demultiplexing
- Fragmentierung und Defragmentierung

Überblick

- 1. Einführung
- 2. Transportorientierte Dienste
 - Überblick und Grundlagen
 - Protokollfunktionen der Transportschicht
 - Verbindungsmanagement
 - Aufbau
 - Abbau
 - Zuverlässiger Datentransfer
 - Quittierung
 - Übertragungswiederholung
 - Flusskontrolle
 - Staukontrolle

Verbindungsmanagement und Adressierung

- Kommunizierende Anwendungsprozesse m
 üssen sich kennen
 - Schicht 4: Transportadresse
 - T-SAP (Transport Service Access Point)
- Eine Transport-Instanz unterstützt in der Regel mehrere T-SAPs
- Transportadressen sind oft kryptisch, daher symbolische Adressen notwendig
 - Directory Service (Naming Service)

Verbindungsmanagement und Adressierung T-SAP

T-SAP = Transport Service Access Point

N-SAP = Network Service Access Point

Verbindungsaufbau

- Einrichten von Connection End Points (CEP)
 - Kontextaufbau auf beiden Seiten
- Zwei-Wege-Handshake-Protokolle
- Drei-Wege-Handshake-Protokolle
- Vorsicht **Duplikate**!
 - Diverse Fehlerszenarien möglich
 - Mechanismus der Folgenummern kombiniert mit einer maximalen Paketlebensdauer
 - Folgennummern sind einfache Zähler

Verbindungsaufbau, Drei-Wege-Handshake

Normaler Protokollverlauf

 Instanz A und B suchen eigene Folgenummern x und y (seq) aus

Seq = Folgenummer T-Instanz = Transportinstanz

Verbindungsaufbau, Drei-Wege-Handshake

Altes CR-Duplikat taucht auf

Seq = Folgenummer T-Instanz = Transportinstanz

Verbindungsaufbau, Drei-Wege-Handshake

Duplikat von Connect-Request und Duplikat von ACK tauchen plötzlich auf

Seq = Folgenummer T-Instanz = Transportinstanz

Verbindungsabbau

- Anforderung:
 - Beim Verbindungsabbau dürfen keine Nachrichten verloren gehen
- Datenverlust kann vorkommen, wenn
 - eine Seite einen Verbindungsabbau initiiert,
 - die andere aber vor Erhalt der Disconnect-Request-PDU noch eine Nachricht sendet
 - Diese Nachricht ist verloren (Datenverlust)
- Anspruchsvolles Verbindungsabbau-Protokoll notwendig:
 - Dreiwege-Handshake-Mechanismus wird auch hier genutzt
 - Beide Seiten bauen ihre "Senderichtung" ab

Verbindungsabbau und das Zwei-Armeen-Problem

- Die Armee der Weißröcke lagert in einem Tal
- Auf beiden Anhöhen lagert ein Teil der Armee der Blauröcke
- Die Blauröcke können nur gemeinsam gewinnen und müssen ihren Angriff synchronisieren
- Unzuverlässiger Kommunikationskanal: Boten, die zu Fuß durch das Tal rennen müssen

Verbindungsabbau, Timerüberwachung

- Kein Protokoll ist absolut zuverlässig
- Es wird immer eine Seite geben, die unsicher ist, ob die letzte Nachricht angekommen ist
- Übertragen auf den Verbindungsabbau:
 - Beim Dreiwege-Handshake kann **immer** ein Disconnect-Request oder **eine Bestätigung verloren gehen**
- Praktische Lösung: Timerüberwachung mit begrenzter Anzahl an Nachrichtenwiederholungen
- Nicht unfehlbar, aber doch ganz zufriedenstellend

Timerüberwachung beim Verbindungsabbau Szenario "Normaler Ablauf"

Timerüberwachung beim Verbindungsabbau Szenario "Timer läuft ab"

Timerüberwachung beim Verbindungsabbau Szenario "Disconnect-Response geht verloren"

Timerüberwachung beim Verbindungsabbau Szenario "Zwei Disconnect-PDUs gehen verloren"

Überblick

1. Einführung

- 2. Transportorientierte Dienste
 - Überblick und Grundlagen
 - Protokollfunktionen der Transportschicht
 - Verbindungsmanagement
 - Aufbau
 - Abbau
 - Zuverlässiger Datentransfer
 - Quittierung
 - Übertragungswiederholung
 - Flusskontrolle
 - Staukontrolle

Zuverlässiger Datentransfer

- Was heißt hier zuverlässige Datenübertragung?
 - Garantierte Ausführung ? → Nein!
 - Transaktionssicherheit → Nein!
 - Sicherstellen der Übertragung durch Quittierung und Übertragungswiederholung → **Ja!**
- Quittierungsvarianten
 - Positiv selektiv
 - Positiv kumulativ
 - Negativ selektiv
 - Kombination der Verfahren möglich
- Varianten der Übertragungswiederholung
 - Selektiv
 - Go-back-N

Zuverlässiger Datentransfer Quittierungsvarianten

Positiv selektives Quittierungsverfahren

- Stop-and-Go (Stop-an-Wait): Eine Quittung pro gesendeter Nachricht
- Hoher Zusatzverkehr (viele ACK-PDUs)

Zuverlässiger Datentransfer Quittierungsvarianten

Positiv kumulatives Quittierungsverfahren

- Eine Quittung für mehrere Nachrichten
- Reduzierung der Netzlast
- Nachteil: Verspätete Information an den Sender über Datenverlust

Zuverlässiger Datentransfer Quittierungsvarianten

Negativ selektives Quittierungsverfahren

- Weitere Reduzierung der Netzlast
- Problem: Verlust von Quittungen und dessen Behandlung

Überblick

- 1. Einführung
- 2. Transportorientierte Dienste
 - Überblick und Grundlagen
 - Protokollfunktionen der Transportschicht
 - Verbindungsmanagement
 - Aufbau
 - Abbau
 - Zuverlässiger Datentransfer
 - Quittierung
 - Übertragungswiederholung
 - Flusskontrolle
 - Staukontrolle

Zuverlässiger Datentransfer Übertragungswiederholung

Generell:

- Sender muss Nachrichten über einen gewissen Zeitraum zur Übertragungswiederholung bereithalten
- Man nennt diese Art von Protokollen auch ARQ-Protokolle
 - Automatic Repeat reQuest, = Automatische Wiederholungsanfrage

selektiv

- Nur die negativ quittierten Nachrichten werden wiederholt
- Empfänger puffert die nachfolgenden Nachrichten, bis die fehlende Nachricht da ist
- Reguläre Übertragung kann während der Wiederholung fortgesetzt werden
- Nachteil: Große Pufferkapazität beim Empfänger

Zuverlässiger Datentransfer Übertragungswiederholung

Go-Back-N

- Übertragungswiederholung der fehlerhaften Nachricht sowie aller nachfolgenden
- Die reguläre Übertragung wird unterbrochen
- Vorteil: Geringe Speicherkapazität beim Empfänger. Warum?

Überblick

- 1. Einführung
- 2. Transportorientierte Dienste
 - Überblick und Grundlagen
 - Protokollfunktionen der Transportschicht
 - Verbindungsmanagement
 - Aufbau
 - Abbau
 - Zuverlässiger Datentransfer
 - Quittierung
 - Übertragungswiederholung
 - Flusskontrolle
 - Staukontrolle

Flusskontrolle

- Steuerung des Datenflusses
- Vermeidet Überlastung des Empfängers
- Traditionelle Verfahren sind:
 - Stop-and-Go (Stop-and-Wait)
 - Einfachstes Verfahren
 - Kopplung von Fluss- und Fehlerkontrolle
 - Nächste Nachricht wird erst nach der Quittierung gesendet
 - Fensterbasierte Flusskontrolle
 - Empfänger vergibt sog. Sendekredit, also eine max. Menge an Nachrichten oder Bytes, die unquittiert an ihn gesendet werden dürfen
 - Empfänger kann den Sendekredit durch positive Quittungen erhöhen
 - Vorteil: Kontinuierlicher Datenfluss und höherer Durchsatz als bei Stop-and-Go möglich

Flusskontrolle

- Sliding-Window-Protokoll: Vier Intervalle
- Bestätigung (ACK) führt zum Weiterrücken des Zeigers base und des Fensters

Quelle: Kurose

Überblick

- 1. Einführung
- 2. Transportorientierte Dienste
 - Überblick und Grundlagen
 - Protokollfunktionen der Transportschicht
 - Verbindungsmanagement
 - Aufbau
 - Abbau
 - Zuverlässiger Datentransfer
 - Quittierung
 - Übertragungswiederholung
 - Flusskontrolle
 - Staukontrolle

Staukontrolle (Überlastkontrolle, Congestion Control)

- Nicht mit Flusskontrolle verwechseln
- Durch Staukontrolle sollen Verstopfungen bzw. Überlastungen im Netz vermieden werden
- Staukontrolle in der Transportschicht durch Endezu-Ende-Steuerung zwischen Endsystemen
- Staukontrolle ist ein Mechanismus mit netzglobalen Auswirkungen
- Beispiel später: Slow-Start-Verfahren bei TCP

Rückblick

- 1. Einführung
- 2. Transportorientierte Dienste
 - Überblick und Grundlagen
 - Protokollfunktionen der Transportschicht
 - Verbindungsmanagement
 - Aufbau
 - Abbau
 - Zuverlässiger Datentransfer
 - Quittierung
 - Übertragungswiederholung
 - Flusskontrolle
 - Staukontrolle