Part I: Multiple-choice questions

- **1.** Answer: **(f)**
- **2.** Answer: **(c)**
- **3.** Answer: **(b)**
- **4.** Answer: **(c)**
- **5.** Answer: (d)
- **6.** Answer: **(f)**

Part II: Short-answer questions

- 7. **a.** 3×3
 - **b.** Matrices cannot be added
 - c. Vector cannot be multiplied by these matrices
 - **d.** 1×1 (or scalar)
- 8. a. Rank is 3 because total = body + tail

$$\mathbf{b.} \ \hat{\boldsymbol{\beta}} = (X^{\top}X)^{-1}X^{\top}\mathbf{y}_{\mathrm{ttx}}$$

c.
$$P = X(X^{T}X)^{-1}X^{T}$$

- **9. a.** $A ext{ is } 4 imes 5$ and $A^{\top}A ext{ is } 5 imes 5$
 - **b.** rank(A) = 3
 - $c. \{25, 16, 1, 0\}$ (0 has multiplicity 2)
 - $\mathbf{d}.\ U,V$ are orthogonal matrices
- **10. a.** $\det(A) = 2$
 - **b.** rank(A) = 3
 - **c.** det(X) = -10

Part III: Long-answer questions

11. The equation is solved following these steps:

$$AX^{\top}B + C = I_n$$

$$AX^{\top}B = I_n - C$$

$$X^{\top} = A^{-1}(I_n - C)B^{-1}$$

$$X = (A^{-1}(I_n - C)B^{-1})^{\top}$$

12. a. From the output we deduce that:

$$x_{1} - 2x_{2} + x_{4} = 1$$

$$x_{3} + 3x_{4} = 2$$

$$x_{5} = -1$$

$$x_{6} = 0$$

The free variables are x_2 and x_4 . We choose parameters $s = x_2$ and $t = x_4$, and write all variables in terms of these.

$$x_1 = 1 + 2s - t$$

$$x_2 = s$$

$$x_3 = 2 - 3t$$

$$x_4 = t$$

$$x_5 = -1$$

$$x_6 = 0$$

The easiest choice (but others are also valid) is s = t = 0, which gives $\mathbf{x} = \begin{bmatrix} 1 & 0 & 2 & 0 & -1 & 0 \end{bmatrix}^{\mathsf{T}}$. If you want, you can verify your answer by multiplying $A\mathbf{x}$ and checking you do get \mathbf{b} .

- **b.** There are four leading-ones in the output, so rank(A) = 4. The nullity is 6 4 = 2.
- **c.** A basis is given by those columns of A with a leading-one in the echelon form. Thus, columns number 1, 3, 5 and 6 form a basis.
- **d.** In the output of gaussianElimination(A, b), the first six columns are the reduced row-echelon form of A. From it, we solve the homogeneous system $A\mathbf{x} = \mathbf{0}$. A similar approach to the one used in part \mathbf{a} , gives:

$$x_1 = 2s - t$$

$$x_2 = s$$

$$x_3 = 3t$$

$$x_4 = t$$

$$x_5 = 0$$

$$x_6 = 0$$

The first basic solution (s = 1, t = 0) is: $\mathbf{n}_1 = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \end{bmatrix}^{\top}$. The second basic solution (s = 0, t = 1) is: $\mathbf{n}_2 = \begin{bmatrix} -1 & 0 & -3 & 1 & 0 & 0 \end{bmatrix}^{\top}$. You can easily check you work by verifying that $A\mathbf{n}_1 = A\mathbf{n}_2 = \mathbf{0}$. A basis for null(A) is thus $\{\mathbf{n}_1, \mathbf{n}_2\}$.

13. a. Computing $M\mathbf{u}_1$ gives:

$$\begin{bmatrix} 9 & 1 & 0 \\ 1 & 6 & 1 \\ 0 & 3 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 10 \\ 10 \\ 30 \end{bmatrix} = 10 \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}.$$

This means that \mathbf{u}_1 is indeed an eigenvector with eigenvalue $\lambda = 10$.

b. Solving the system $(M - \lambda I_3)\mathbf{x} = \mathbf{0}$ for $\lambda = 9$ and $\lambda = 5$ gives the following (or a multiple of the following):

$$\mathbf{u}_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}, \quad \text{and} \quad \mathbf{u}_3 = \begin{bmatrix} 1/3\\-4/3\\1 \end{bmatrix}.$$

You can check your answer by computing $M\mathbf{u}_2$ and verifying you get $9\mathbf{u}_2$. Similar for \mathbf{u}_3 .

- $\mathbf{c.} \ P = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}.$
- d. FALSE. Only a symmetric matrix could be diagonalized by an orthogonal matrix.
- 14. a. $\|\mathbf{a}\| = \sqrt{6}$.
 - **b.** $\mathbf{a}^{\top}\mathbf{b} = 3 \neq 0$, therefore they are not orthogonal.

$$\mathbf{c.} \ \operatorname{proj}_{\mathbf{a}}(\mathbf{b}) = \frac{\mathbf{a}^{\top} \mathbf{b}}{\|\mathbf{a}\|^{2}} \mathbf{a} = \frac{3}{6} \begin{bmatrix} -1 & 1 & 2 & 0 \end{bmatrix}^{\top}.$$

- **d.** We see leading-ones only in columns number 1 and 2. Therefore a basis is {a, b}.
- **e.** Let $A = [\mathbf{a} \ \mathbf{b}]$. The projection is $\mathbf{p} = A\boldsymbol{\alpha}$, for the vector $\boldsymbol{\alpha}$ which satisfies the normal equation: $A^{\top}A\boldsymbol{\alpha} = A^{\top}\mathbf{y}$.

$$A^{\top}A = \begin{bmatrix} -1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 1 & 1 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 3 & 3 \end{bmatrix}, \quad A^{\top}\mathbf{y} = \begin{bmatrix} -1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 1 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}.$$

Therefore, we need to solve the 2×2 system:

$$\begin{bmatrix} 6 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}.$$

This can be done either by Gaussian elimination, or by computing $(A^{\top}A)^{-1}$. The (unique) solutions is $\alpha_1 = -4/3$, $\alpha_2 = 7/3$.

Finally, we get
$$\mathbf{p} = -\frac{4}{3}\mathbf{a} + \frac{7}{3}\mathbf{b} = \frac{1}{3} \begin{bmatrix} 4\\3\\-1\\7 \end{bmatrix}$$
.

- **15. a.** A (symmetric) matrix is positive definite if all its eigenvalues are positive. Equivalently, Σ satisfies: $\mathbf{x}^{\top} \Sigma \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$.
 - **b.** It is enough to compute ΣQ and check what we get.

$$\begin{bmatrix} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 0.6 & -0.4 & 0 \\ -0.4 & 0.6 & 0 \\ 0 & 0 & 0.25 \end{bmatrix} = \begin{bmatrix} 1.0 & 0 & 0 \\ 0 & 1.0 & 0 \\ 0 & 0 & 1.0 \end{bmatrix}.$$

This means $\Sigma Q = I_3$, and so $Q = \Sigma^{-1}$.

- **c.** Each eigenvalue λ of Σ becomes $\lambda^{-\frac{1}{2}}$. Thus, $\widetilde{D} = \begin{bmatrix} \frac{1}{\sqrt{5}} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- **d.** Because the columns are orthonormal, we can use the simplest version of the expansion theorem:

$$\mathbf{x} = (\mathbf{x}^{\top} \mathbf{p}_1) \, \mathbf{p}_1 + (\mathbf{x}^{\top} \mathbf{p}_2) \, \mathbf{p}_2 + (\mathbf{x}^{\top} \mathbf{p}_3) \, \mathbf{p}_3$$

= $(0.7071) \mathbf{p}_1 + (8) \mathbf{p}_2 + (2.1213) \mathbf{p}_3$.