

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Veröffentlichungsnummer: 0 268 897
A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 87116296.2

(51) Int. Cl.4: C09B 29/42 , D06P 1/18

(22) Anmeldetag: 05.11.87

Ein Antrag gemäss Regel 88 EPÜ auf Berichtigung eines Fehlers in den Beispielen nr. 66 und 155 der ursprünglich eingereichten beschreibung liegt vor. Über diesen Antrag wird im Laufe des Verfahrens vor der Prüfungsabteilung eine Entscheidung getroffen werden (Richtlinien für die Prüfung im EPA, A-V, 2.2).

(23) Priorität: 15.11.86 DE 3639155
24.03.87 DE 3709567

(43) Veröffentlichungstag der Anmeldung:
01.06.88 Patentblatt 88/22

(84) Benannte Vertragsstaaten:
CH DE FR GB IT LI

(71) Anmelder: BASF Aktiengesellschaft
Carl-Bosch-Strasse 38
D-6700 Ludwigshafen(DE)

(72) Erfinder: Loeffler, Hermann
Haydnstrasse 23
D-6720 Speyer(DE)
Erfinder: Lamm, Gunther, Dr.
Heinrich-Heine-Strasse 7
D-6733 Hassloch(DE)

(54) Pyridonazofarbstoffe.

(57) Pyridonazofarbstoffe der Formel

in der D den Rest einer Diazokomponente bedeutet, die sich von der Dichlor-, Trichlor-oder Cyanoanilinreihe oder von Aminobenzoësäure-esterderivaten ableitet, und n und R die in der Beschreibung genannte Bedeutung besitzen.

EP 0 268 897 A1

Pyridonazofarbstoffe

Die vorliegende Erfindung betrifft neue Pyridonazofarbstoffe, deren Diazokomponenten sich von der Dichlor-, Trichlor- oder Cyanoanilinreihe oder von Aminobenzoesäureesterderivaten ableiten.

Aus der DE-A-2 951 403 sind Pyridonazofarbstoffe bekannt, die als Diazokomponente Anthranilsäureester aufweisen. Die dort beschriebenen Farbstoffe zeigen jedoch Mängel in ihren anwendungstechnischen Eigenschaften.

Aufgabe der vorliegenden Erfindung war es nun, neue Pyridonazofarbstoffe bereitzustellen, die vorteilhafte färberische Eigneschaften besitzen.

Es wurden Pyridonazofarbstoffe der Formel I

70:

15

gefunden, in der

n für die Zahl 2 oder 3,

20

D für 2,3-Dichlorphenyl, 3,4-Dichlorphenyl, 2,5-Dichlorphenyl, 2,4,5-Trichlorphenyl, 4-Cyanophenyl oder einen Rest der Formel

25

30

in der X¹ C₁-C₄-Alkyl oder C₁-C₁₀-Alkoxy, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, Y Wasserstoff, Chlor oder den Rest COX², in dem X² die Bedeutung von C₁-C₁₀-Alkoxy, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, besitzt und Z Wasserstoff oder Chlor bedeuten und für einen Rest der Formel

35

40

wobei L gegebenenfalls verzweigtes C₁-C₄-Alkylen, T C₁-C₄-Alkyl oder

45

und R¹ Wasserstoff oder C₁-C₇-Alkyl bedeuten und der Ring A jeweils durch Methyl oder Chlor substituiert sein kann, oder für den Fall, daß D den Rest

50

bedeutet, auch für Cyclohexyl stehen, mit der Maßgabe, daß wenn D den Rest

5

bedeutet und wenn dabei Y und Z gleichzeitig Wasserstoff bedeuten, der Rest COX¹ nicht in ortho-Position zur Azobrücke steht.

Alle in den obengenannten Resten auftretenden Alkylgruppen können sowohl geradkettig als auch verzweigt sein.

10 X¹ steht beispielsweise für Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl oder sec-Butyl.

X¹ steht weiterhin, wie auch X², beispielsweise für Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobutoxy, sec-Butoxy, tert-Butoxy, Pentyloxy, Isopentyloxy, sec-Pentyloxy, tert-Pentyloxy, Hexyloxy, Heptyloxy, Octyloxy, 2-Ethylhexyloxy, Nonyloxy, Decyloxy, 2-Methoxyethoxy, 2-Ethoxyethoxy, 2-Propoxyethoxy, 2-Butoxyethoxy, 2-oder 3-Methoxypropoxy, 2-oder 3-Ethoxypropoxy, 2-Methoxybutoxy, 4-Ethoxybutoxy, 3,6-Dioxaheptyloxy, 3, 6-Dioxyoctyloxy, 5,8-Dioxanonyloxy, 3,6-Dioxadecyloxy oder 5,8-Dioxadecyloxy.

L steht beispielsweise für Methylen, Ethylen, Ethylen, Trimethylen, Isopropyliden Methylethylen, Tetramethylen, 1,2-Dimethylethylen oder 2-Methyltrimethylen.

20 T steht beispielsweise für Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl; Phenyl, 2-Methylphenyl, 3-Methylphenyl, 4-Methylphenyl, 2-Chorphenyl, 3-Chlorphenyl oder 4-Chlorphenyl.

R¹ steht beispielsweise für Methyl, Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sec-Butyl, tert-Butyl, Pentyl, 2-Methylbutyl, Hexyl, 2-Methyl-hexyl oder Heptyl.

R steht beispielsweise für Benzyl, 2-Phenylethyl, 3-Phenylpropyl, 4-Phenylbutyl, 4-Chlorbenzyl, 4-Methylbenzyl, Phenoxyethyl, 2-Phenoxy-ethyl, 3-Phenoxypropyl, 4-Phenoxybutyl, Cyclohexyloxymethyl, 2-Cyclohexyl-oxyethyl, 3-Cyclohexyloxypropyl, 4-Cyclohexyloxybutyl, 2-(2-Methoxy-ethoxy)ethyl, 2-(2-Ethoxyethoxy)ethyl, 2-(2-Butoxyethoxy)ethyl, 2-(2-Phenoxyethoxy)ethyl, 4-(2-Methoxyethoxy)butyl, 4-(4-Ethoxybutoxybutyl, 2-Hydroxyethyl, 3-Hydroxypropyl, Formyloxymethyl, Acetyloxymethyl, Propionyloxymethyl, 2-Formyloxyethyl, 2-Acetyloxyethyl, 2-Buturoxyethyl, 2-Hexanoyloxyethyl, 2-Heptanoyloxyethyl, 2-Octanoyloxyethyl, 2-oder 3-Acetyloxypropyl, 2-oder 3-Isobutyryloxypropyl, 4-Formyloxybutyl, 4-Acetyloxybutyl oder 4-(2-Methylbutyryloxy)butyl.

Bevorzugt sind Pyridonazofarbstoffe der Formel I, in der X¹ und X² C₁-C₆-Alkoxy, das gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, und L unverzweigtes C₁-bis C₆-Alkylen bedeuten und der Ring A unsubstituiert ist.

35 Besonders bevorzugt sind Pyridonazofarbstoffe der Formel I, in der n für die Zahl 3,

D für einen Rest der Formel

40

45 wobei X¹ und X² gleich oder verschieden sind und unabhängig voneinander jeweils C₁-C₆-Alkoxy, das gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, bedeuten und für einen Rest der Formel

50

[(CH₂)₂-O]₂T, [(CH₂)₃-O]₂T oder L-0-COR¹ stehen, wobei L Methylen, Ethylen oder Tetramethylen, T C₁-C₆-Alkyl oder Phenyl und R¹ Methyl oder Ethyl bedeuten.

55 Insbesondere sind solche Farbstoffe bevorzugt, in denen X¹ (und X²) C₁-C₆-Alkoxy, insbesondere Isobutoxy, 2-Methoxyethoxy, 2-Methoxypropoxy oder 1-Methyl-2-methoxyethoxy, n die Zahl 3 und T 2-Phenoxyethyl bedeuten.

Weiterhin sind Pyridonazofarbstoffe der Formel I besonders bevorzugt, in der n für die Zahl 3,

D für 2,3-Dichlorphenyl oder 2,5-Dichlorphenyl und
R für einen Rest der Formel

L-O-COR¹ stehen, wobei L Methylen, Ethylen oder Tetramethylen, T C₁-C₄-Alkyl oder Phenyl und R¹ Methyl oder Ethyl bedeuten.

10 Zur Herstellung der Pyridonazofarbstoffe der Formel I kann man Diazoniumverbindungen von Aminen der Formel II
DNH₂ (II),
in der D die oben genannte Bedeutung besitzt, mit Kupplungskomponenten der Formel III

in der n und R jeweils die oben genannte Bedeutung besitzen, nach an sich bekannten Methoden umsetzen. Einzelheiten der Herstellung können den Beispielen entnommen werden.

25 Die erfindungsgemäßen Farbstoffe der Formel I färben Polyester in stark grünstichig gelben Nuancen und absorbieren bei einer Wellenlänge von ≤ 427 nm. Die Färbungen zeichnen sich durch sehr gute Gebrauchsechtheiten aus. Die Baderschöpfung bei Färbevorgang ist sehr gut, und gleichzeitig ist die Farbtiefe weitgehend unabhängig von der Färbeittemperatur.

30 Die folgenden Beispiele sollen die Erfindung weiter erläutern. Angaben über Prozente beziehen sich dabei, sofern nicht anders vermerkt, auf das Gewicht.

Beispiel 1

35 16,2 g 2,3-Dichloranilin wurden in 40 ml N-Methylpyrrolidon gelöst und durch Austragen auf 200 g Eis, 100 ml Wasser, 30 ml 30 %ige Salzsäure und 3 g eines oxethylierten Oleylamins suspendiert. Dazu tropfte man bei 0 bis 5°C 30 ml einer 3,33 normalen Natriumnitritlösung und rührte eine Stunde bei Überschuß an salpetriger Säure. Dann wurde mit wenig Aminosulfonsäure dieser Überschuß entfernt und die Diazoniumsalzlösung langsam auf ein Gemisch der Kupplungskomponente ausgetragen, das wie folgt bereitet wurde:

40 30,4 g 1-(3-Benzyloxypropyl)-2-hydroxy-3-cyano-4-methylpyrid-6-on wurden mit 12 g Natriumhydrogen-carbonat in 200 ml Wasser bei Raumtemperatur gelöst und filtriert. Das Filtrat wurde mit 300 g Eis gekühlt und mit 30 g Natriumhydrogencarbonat versetzt.

Das Diazoniumsalz war unmittelbar nach der Vereinigung der Komponenten verbraucht. Der gebildete Farbstoff der Formel

wurde durch Absaugen, Waschen mit Wasser und Trocknung bei 80°C gewonnen. Er färbt Polyester nach dem HT-Verfahren bereits bei 125°C in grünstichig gelben Tönen, wobei das wäßrige Färbeband vollständig ausgezogen wird. Die Färbungen besitzen sehr gute Licht-, Wasch- und Bügelechtheiten.

Beispiel 2

19,65 g 2,4,5-Trichloranilin wurden mit Wasser und 1,0 g eines oxethylierten Olylamins gemischt und mit 40 ml 30 %iger Salzsäure verrührt. Das Gemisch brachte man sodann mit Wasser auf ein Volumen von 5 800 ml und eine Temperatur von 10°C und ließ dazu 30 ml einer 3,33 normalen Natriumnitritlösung einfließen. Nach zweistündigem Rühren bei ca. 15°C wurde überschüssige salpetrige Säure mit wenig Aminosulfonsäure zerstört und die Diazoniumsalzlösung filtriert. Dem Filtrat ließ man dann die Lösung von 28,5 g 1-(4-Hydroxy-3-butoxypropyl)-2-hydroxy-3-cyano-4-methylpyrid-6-on in 200 ml Wasser zufüllen und rührte wenige Minuten nach, bis das Diazoniumsalz verbraucht war. Aus dem Reaktionsgemisch wurde der 10 Farbstoff der Formel

abgesaugt, mit Wasser gewaschen und getrocknet. Er färbt Polyester nach dem HT-Verfahren mit sehr hohen Echtheiten.

20

Beispiel 3

19,65 g 2,4,5-Trichloranilin wurden gemäß Beispiel 2 diazotiert und filtriert. Die Diazoniumsalzlösung 25 goß man auf ein Gemisch, das durch Austragen einer Lösung von 33,8 g 1-(4-Acetoxy-3-butoxypropyl)-2-hydroxy-3-cyano-4-methylpyrid-6-on in 300 ml Essigsäure auf 400 g Eis bereitet wurde. Kurz darauf war das Diazoniumsalz aufgebraucht. Man saugte ab, wusch mit Wasser neutral und trocknete bei 60°C.

Das erhaltene gelbe Pulver der Formel

35 färbt Polyester im gleichen Farbton und mit gleichen Echtheiten wie der Farbstoff des Beispiels 2 bei noch etwas besserem Badauszug und somit verbesserter Farbausbeute.

Der gleiche Farbstoff wird erhalten, wenn man den Farbstoff des Beispiels 2 in Essigsäure kocht und das reaktionswasser ausdestilliert. Isoliert wird durch Fällung mit Wasser und Absaugen.

Die in der folgenden Tabelle 1 aufgeführten Farbstoffe der Formel

werden in analoger Weise erhalten werden. Ihre Färbe- und Echtheitseigenschaften sind denen der in den Beispielen 1 bis 3 beschriebenen Farbstoffe ähnlich.

50

55

5

10

15

Tabelle 1

20

25

30

35

40

45

50

55

Beispiel Nr.:	X	R	n	$\lambda_{\text{max.}}$ nm
4	2,3-Cl ₂	(CH ₂) ₂ -O-	3	422
5	2,5-Cl ₂	(CH ₂) ₂ -O-	3	423
6	2,5-Cl ₂	CH ₂ -	3	423
7	2,4,5-Cl ₃	CH ₂ -	3	426
8	2,4,5-Cl ₃	(CH ₂) ₂ -O-	3	426
9	2,4,5-Cl ₃	CH ₂ -	2	426
10	2,4,5-Cl ₃	(CH ₂) ₂ -O-	2	426
11	2,3-Cl ₂	(CH ₂) ₂ -O-	2	422

Tabelle 1 (Forts.)

S	Beispiel Nr.:	X	R	n	$\lambda_{\text{max.}}$ nm
10	12	2,5-Cl ₂	(CH ₂) ₂ -O-	2	423
15	13	3,4-Cl ₂	(CH ₂) ₂ -O-	3	425
20	14	3,4-Cl ₂	CH ₂ -	3	425
25	15	4-CN	CH ₂ -	3	423
30	16	4-CN	(CH ₂) ₂ -O-	3	423
35	17	2,3-Cl ₂	(CH ₂) ₂ -O-(CH ₂) ₂ -O-	3	422
40	18	2,5-Cl ₂	(CH ₂) ₂ -O-(CH ₂) ₂ -O-	3	423
45	19	2,3-Cl ₂	C ₂ H ₄ -	3	422
50	20	2,5-Cl ₂	C ₂ H ₄ -	3	423
55	21	2,3-Cl ₂	(CH ₂) ₂ -O-(CH ₂) ₂ -O-C ₄ H ₉	3	422
	22	2,5-Cl ₂	(CH ₂) ₂ -O-(CH ₂) ₂ -O-C ₄ H ₉	3	423
	23	2,3-Cl ₂	(CH ₂) ₂ -O-(CH ₂) ₂ -O-C ₂ H ₅	3	422
	24	2,5-Cl ₂	(CH ₂) ₂ -O-(CH ₂) ₂ -O-C ₄ H ₉	3	423
	25	2,4,5-Cl ₃	(CH ₂) ₂ -O-(CH ₂) ₂ -O-C ₄ H ₉	3	426
	26	4-CN	(CH ₂) ₂ O-(CH ₂) ₂ -O-	3	423
	27	2,5-Cl ₂	(CH ₂) ₄ -O-COCH ₃	3	423
	28	2,5-Cl ₂	(CH ₂) ₄ -O-COC ₂ H ₅	3	423
	29	2,3-Cl ₂	(CH ₂) ₄ -O-COCH(CH ₃) ₂	3	421
	30	2,3-Cl ₂	(CH ₂) ₄ -O-COC ₂ H ₅	3	421
	31	2,3-Cl ₂	(CH ₂) ₄ -O-COCH ₃	3	421
	32	3,4-Cl ₂	(CH ₂) ₄ -O-COCH ₃	3	425

Tabelle 1 (Forts.)

Beispiel Nr.:	X	R	n	$\lambda_{\text{max.}}$ nm
33	2,4,5-Cl ₃	(CH ₂) ₂ -O-COC ₂ H ₅	2	425
34	2,4,5-Cl ₃	(CH ₂) ₄ -O-COH	3	425
35	2,3-Cl ₂	(CH ₂) ₃ -O-COC ₂ H ₅	3	421
36	2,5-Cl ₂	(CH ₂) ₃ -O-COC ₂ H ₅	3	423
37	4-CN	(CH ₂) ₄ -O-COC ₂ H ₅	3	423

Beispiel 38

Eine Lösung von 19,3 g 3-Aminobenzoësäureisobutylester in 90 ml 10 %iger Salzsäure wurde mit Eis auf -5 bis -8°C abgekühlt. Dazu gab man rasch 31 ml einer wäßrigen, 23 %igen Natriumnitritlösung und rührte das Gemisch 1 Stunde bei 0/5°C. Dann zerstörte man überschüssige salpetrige Säure wie üblich und erhöhte den pH-Wert der Reaktionsmischung mit eiskalter ca. 15 - 20 %iger Natronlauge auf 2,0 bis 2,5. Danach wurde die Diazoniumsalzlösung langsam auf ein Gemisch der Kupplungskomponente ausgetragen, das wie folgt bereitet wurde: 30, 4 g 1-(3-Benzylxypropyl)-2-hydroxy-3-cyano-4-methylpyrid-6-on wurden mit 12 g Natriumhydrogencarbonat in 400 ml Wasser bei Raumtemperatur gelöst und filtriert. Das Filtrat wurde mit 100 g Eis gekühlt und mit 30 g Natriumhydrogencarbonat versetzt. Das Diazoniumsalz war unmittelbar nach der Vereinigung der Komponenten verbraucht. Der gebildete Farbstoff der Formel

wurde durch Absaugen, Waschen mit Wasser und Trocknung bei 80°C gewonnen.

Er färbt Polyester nach dem HT-Verfahren bereits bei 125°C in grünlich gelben Tönen, wobei das wäßrige Färbeband vollständig ausgezogen wird. Die Färbungen besitzen sehr gute Licht-, Wasch- und Bügeleigenschaften.

Beispiel 39

22,8 g 3-Amino-4-chlor-benzoësäureisobutylester wurden mit 150 ml Wasser, 0,5 g eines oxethylierten Oleylamins und 30 ml 30 %iger Salzsäure verrührt. Das Gemisch kühlte man mit Eis auf -5°C ab und ließ dazu 31 ml einer 3,33 normalen Natriumnitritlösung einfließen. Nach zweistündigem Rühren bei ca. 15°C wurde überschüssige salpetrige Säure mit wenig Aminosulfonsäure zerstört. Zur Diazoniumsalzlösung ließ man dann die Lösung von 28,5 g 1-[3-(4-Hydroxybutoxy)propyl]-2-hydroxy-3-cyano-4-methylpyrid-6-on in 400 ml Wasser zufüllen und rührte wenige Minuten nach, bis das Diazoniumsalz verbraucht war. Aus dem Reaktionsgemisch wurde der Farbstoff der Formel

abgesaugt, mit Wasser gewaschen und getrocknet. Er färbt Polyester nach dem HT-Verfahren mit sehr hohen Echtheiten.

10

Beispiel 40

22,8 g 3-Amino-4-chlorbenzoësäureisobutylester wurden gemäß Beispiel 39 diazotiert. Die Diazoniumsalzlösung goss man auf ein Gemisch, das durch Austragen einer Lösung von 33,8 g 1-[3-(4-Acetoxybutoxy)propyl]-2-hydroxy-3-cyano-4-methylpyrid-6-on in 300 ml Essigsäure auf 400 g Eis bereitet wurde. Kurz darauf war das Diazoniumsalz aufgebraucht. Man saugte ab, wusch mit Wasser neutral und trocknete bei 60°C. Das erhaltene gelbe Pulver der Formel

25

färbt Polyester im gleichen Farbton und mit gleichen Echtheiten wie der Farbstoff des Beispiels 39 bei noch etwas besserem Badauszug und somit verbesserter Farbausbeute.

Der gleiche Farbstoff wurde erhalten, als man den Farbstoff des Beispiels 39 in Essigsäure kochte und das Reaktionswasser ausdestillierte. Isoliert wurde durch Fällung mit Wasser und Absaugen.

Beispiel 41

35 Eine Lösung von 19,3 g 3-Aminobenzoëureisobutylester in 90 ml 10 %iger Salzsäure wurde mit Eis auf -5 bis -8°C abgekühlt. Dann gab man rasch 31 ml einer wäßrigen, 23 %igen Natriumnitritlösung hinzu und rührte das Gemisch 1 Stunde bei 0 bis 5°C. Dann zerstörte man überschüssige salpetrige Säure wie üblich und erhöhte den pH-Wert der Reaktionsmischung durch Zugabe eiskalter, ca. 15 - 20 %iger Natronlauge auf 2,5 - 3,5.

40 Danach ließ man unter sehr guter Rührung eine Lösung von 29 g 1-(3-Cyclo-hexyloxypropyl)-2-hydroxy-3-cyano-4-methyl-pyrid-6-on in 460 ml Wasser und 9 g 50 %iger Natronlauge zulaufen. Anschließend stellte man den pH-Wert der Reaktionsmischung mit Natronlauge auf 5 bis 7,5, erhitzte die Farbstoffsuspension mit Dampfdruck auf 80-95°C, temperte und isolierte wie üblich. Man erhielt 49,3 g eines gelben Pulvers das bei 167°C schmilzt und sich in Aceton gelb löst.

45 λ_{max} : 422,5 nm, Schmp.: 167°C.

In analoger Weise werden die in den nachfolgenden Tabellen 2 und 3 aufgeführten Farbstoffe erhalten.

50

55

Tabelle 2

5						
Bsp. Nr.	W	Y	n	λ_{\max} [nm] in Aceton	Farbton auf Polyester	
10	42	C ₂ H ₅	Cl	2	422	grünstichiges Gelb
15	43	C ₂ H ₅	Cl	3	422,5	grünstichiges Gelb
20	44	C ₂ H ₅	H	3	422,2	grünstichiges Gelb
25	45	CH ₃	H	3	422,2	grünstichiges Gelb
30	46	CH ₃	Cl	3	422	grünstichiges Gelb
35	47	C ₃ H ₇ (n)	Cl	3	422	grünstichiges Gelb
40	48	C ₃ H ₇ (n)	H	3	422,5	grünstichiges Gelb
45	49	C ₄ H ₉ (n)	H	3	422,5	grünstichiges Gelb
50	50	C ₄ H ₉ (n)	Cl	3	422	grünstichiges Gelb
55	51	C ₄ H ₉ (i)	Cl	3	422	grünstichiges Gelb
60	52	C ₄ H ₉ (n)	Cl	3	422	grünstichiges Gelb
65	53	C ₄ H ₉ (n)	H	3	422,5	grünstichiges Gelb
70	54	C ₄ H ₉ (i)	H	2	422	grünstichiges Gelb
75	55	C ₅ H ₁₁ (n)	H	3	422,5	grünstichiges Gelb
80	56	C ₃ H ₆ CHCH ₂ CH ₃	H	3	422,5	grünstichiges Gelb
85	57	(CH ₃) ₂ CH(CH ₂) ₂	H	3	422,5	grünstichiges Gelb
90	58	CH ₃ CHCH ₂ OCH ₃	H	3	422,5	grünstichiges Gelb
95	59	CH ₃ OCH ₂ CH CH ₃	H	3	422,5	grünstichiges Gelb

Tabelle 3

			<chem>CC(=O)c1c(C#N)c(O)nc2c(C(=O)OC3CCCC3)cc(Y)c2n1[WO2C]</chem>			
	Bsp. Nr.	W	Y	R	λ_{max} [nm] in Aceton	Farbton auf Polyester
5	60	CH ₃	H	CH ₂ C ₆ H ₅	422,7	grünstichig gelb
10	61	CH ₃	Cl	CH ₂ C ₆ H ₅	422	grünstichig gelb
15	62	CH ₃	H	CH ₂ CH ₂ C ₆ H ₅	423	grünstichig gelb
20	63	CH ₃	H	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
25	64	CH ₃	H	CH ₂ CH ₂ O- -CH ₃	423	grünstichig gelb
30	65	C ₂ H ₅	H	CH ₂ C ₆ H ₅	422,5	grünstichig gelb
35	66	(CH ₃) ₂ C ₂ H ₄	H	CH ₂ C ₆ H ₅	422,5	grünstichig gelb
40	67	C ₂ H ₅	Cl	CH ₂ C ₆ H ₅	422,2	grünstichig gelb
45	68	C ₂ H ₅	H	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
50	69	C ₃ H ₇ (n)	H	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
55	70	C ₃ H ₇ (n)	H	CH ₂ C ₆ H ₅	422,5	grünstichig gelb
60	71	C ₃ H ₇ (n)	Cl	CH ₂ C ₆ H ₅	422	grünstichig gelb
65	72	C ₃ H ₇ (n)	Cl	CH ₂ CH ₂ OC ₆ H ₅	422,5	grünstichig gelb
70	73	C ₃ H ₇ (i)	Cl	CH ₂ CH ₂ OC ₆ H ₅	422,5	grünstichig gelb
75	74	C ₃ H ₇ (i)	H	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
80	75	C ₃ H ₇ (i)	H	CH ₂ C ₆ H ₅	422	grünstichig gelb
85	76	C ₄ H ₉ (n)	H	CH ₂ C ₆ H ₅	422	grünstichig gelb
90	77	C ₄ H ₉ (n)	H	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
95	78	CH ₃	H	CHCH ₂ OC ₆ H ₅ CH ₃	423	grünstichig gelb

Tabelle 3 (Forts.)

5

10

	Bsp. Nr.	W	Y	R	λ_{max} [nm] in Aceton	Farbton auf Polyester
15	79	C ₄ H ₉ (i)	H	(CH ₂) ₂ C ₆ H ₅	422	grünstichig gelb
	80	C ₅ H ₁₁ (n)	H	CH ₂ C ₆ H ₅	422	grünstichig gelb
20	81	C ₅ H ₁₁ (n)	Cl	CH ₂ C ₆ H ₅	422	grünstichig gelb
	82	C ₅ H ₁₁ (n)	H	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
25	83	(CH ₃) ₂ CH(CH ₂) ₂	H	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
	84	CH ₃ CHCH ₂ OCH ₃	H	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
30	85	CH ₃ CHCH ₂ OCH ₃	Cl	CH ₂ CH ₂ OC ₆ H ₅	422,5	grünstichig gelb
	86	CH ₃ CHCH ₂ OCH ₃	H	CH ₂ C ₆ H ₅	422	grünstichig gelb
35	87	CH ₃ OCH ₂ CH CH ₃	H	CH ₂ C ₆ H ₅	422	grünstichig gelb
40	88	CH ₃ OCH ₂ CH CH ₃	H	C ₄ H ₈ OCOCH ₃	422	grünstichig gelb
45	89	C ₄ H ₉ (i)	H	C ₄ H ₈ OCOCH ₃	422	grünstichig gelb
	90	C ₄ H ₉ (n)	H	C ₄ H ₈ OCOCH ₃	422	grünstichig gelb
50	91	C ₆ H ₁₃	H	C ₄ H ₈ OH	422	grünstichig gelb
	92	C ₄ H ₉ (i)	H	(C ₂ H ₄ O) ₂ C ₆ H ₅	423	grünstichig gelb
55	93	C ₄ H ₉ (i)	H	(C ₂ H ₄ O) ₂ C ₄ H ₉	422	grünstichig gelb
	94	CH ₃	H	C ₂ H ₄ C ₆ H ₅	423	grünstichig gelb

Die in der folgenden Tabelle 4 aufgeführten Farbstoffe der Formel

10 werden in analoger Weise erhalten. Ihre Färbe- und Echtheitseigenschaften sind denen der in den Beispielen 38 bis 41 beschriebenen Farbstoffe ähnlich.

Tabelle 4

	Bsp. Nr.	W	R	n	λ_{\max} [nm] in Aceton	Farbton auf Polyester
95	CH ₃	(CH ₂) ₂ -O-		3	427	gelb
96	C ₄ H ₉ (i)	(CH ₂) ₂ -O-		3	427	gelb
97	C ₄ H ₉ (i)	CH ₂ -		3	427	gelb
98	CH ₃	CH ₂ -		3	427	gelb
99	CH ₃ OC ₂ H ₄	(CH ₂) ₂ -O-		3	427	gelb
100	CH ₃ OC ₂ H ₄	CH ₂ -		2	427	gelb
101	C ₂ H ₅ OC ₂ H ₄	(CH ₂) ₂ -O-		2	427	gelb
102	C ₂ H ₅	(CH ₂) ₂ -O-		2	427	gelb
103	C ₃ H ₇ (n)	(CH ₂) ₂ -O-		3	432	rotstichig gelb
104	C ₃ H ₇ (i)	(CH ₂) ₂ -O-		3	427	gelb
105	C ₂ H ₅	CH ₂ -CH(O-		3	427	gelb

Die in der folgenden Tabelle 5 aufgeführten Farbstoffe der Formel

- 10 werden in analoger Weise erhalten. Ihre Färbe- und Echtheitseigenschaften sind denen der in den Beispielen 38 bis 41 beschriebenen Farbstoffe ähnlich.

Tabelle 5

	Bsp. Nr.	W	R	n	λ_{max} [nm] in Aceton	Farbton auf Polyester
15	106	CH ₃	(CH ₂) ₂ -O-	3	427	gelb
20	107	C ₄ H ₉ (i)	(CH ₂) ₂ -O-	3	427	gelb
25	108	CH ₃	CH ₂ -	3	426	gelb
30	109	C ₄ H ₉ (i)	CH ₂ -	3	426	gelb
35	110	CH ₃ OC ₂ H ₄	(CH ₂) ₂ -O-	3	427	gelb
40	111	CH ₃ OC ₂ H ₄	CH ₂ -	2	426	gelb
45	112	C ₂ H ₅	(CH ₂) ₂ -O-	2	427	gelb
50	113	C ₂ H ₅	-O-	3	427	gelb
55	114	C ₃ H ₇ (i)	(CH ₂) ₂ -O-	2	427	gelb
60	115	C ₄ H ₉ (n)	(CH ₂) ₂ -O-	3	427	gelb
65	116	CH ₃ OCH ₂ CH ₂ OCH ₃	CH ₂ -	3	426	gelb
70	117	CH ₃		3	426	gelb
75	118	C ₄ H ₉ (i)		3	426	gelb
80	119	CH ₃ OC ₂ H ₄		3	426	gelb

Die in der folgenden Tabelle 6 aufgeführten Farbstoffe der Formel

10 werden in analoger Weise erhalten. Ihre Färbe- und Echtheitseigenschaften sind denen der in den Beispielen 38 bis 41 beschriebenen Farbstoffe ähnlich.

Tabelle 5

	Bsp. Nr.	W	R	n	λ_{max} [nm] in Aceton	Farbton auf Polyester
120	120	CH ₃	(CH ₂) ₂ -O-	3	413	stark grün-stichiges gelb
121	121	CH ₃ O ₂ C ₂ H ₄	(CH ₂) ₂ -O-	3	413	stark grün-stichiges gelb
122	122	CH ₃ O ₂ C ₂ H ₄	CH ₂ -	3	413	stark grün-stichiges gelb
123	123	CH ₃ OCH ₂ CH(CH ₃)	CH ₂ -	3	413	stark grün-stichiges gelb
124	124	CH ₃ OCH ₂ CH(CH ₃)	(CH ₂) ₂ -O-	3	413	stark grün-stichiges gelb
125	125	C ₂ H ₅	CH ₂ -	2	413	stark grün-stichiges gelb
126	126	C ₂ H ₅ O ₂ C ₂ H ₄	(CH ₂) ₂ -O-	2	413	stark grün-stichiges gelb
127	127	CH ₃	-	3	413	stark grün-stichiges gelb
128	128	CH ₃ O ₂ C ₂ H ₄	-	3	413	stark grün-stichiges gelb
129	129	CH ₃	C ₂ H ₄ O ₂ C ₂ H ₄ O ₂ C ₄ H ₉	3	413	stark grün-stichiges gelb
130	130	CH ₃	C ₂ H ₄ O ₂ C ₂ H ₄ O ₂ C ₂ H ₅	3	413	stark grün-stichiges gelb
131	131	CH ₃	C ₄ H ₈ OOCCH ₃	3	413	stark grün-stichiges gelb

55 Die in den folgenden Tabellen 7 bis 10 aufgeführten Farbstoffe werden in analoger Weise erhalten. Ihre Färbe- und Echtheitseigenschaften sind denen der in den Beispielen 38 bis 41 beschriebenen Farbstoffe

ähnlich. Die Farbstoffe der Tabellen 8 bis 10 sind insbesondere für den Ätzdruck geeignet.

5 Tabelle 7

			=					
10								
	Bsp. Nr.	W	Y	Z	R	λ_{max} [nm] in Aceton		
15	132	CH ₃		Cl	H	CH ₂ C ₆ H ₅	423	grünstichig gelb
	133	CH ₃		Cl	H	C ₂ H ₄ OC ₆ H ₅	423	grünstichig gelb
20	134	CH ₃		Cl	H		423	grünstichig gelb
	135	C ₄ H ₉ (i)		Cl	H		423	grünstichig gelb
25	136	C ₄ H ₉ (i)		Cl	H	CH ₂ C ₆ H ₅	423	grünstichig gelb
	137	C ₄ H ₉ (i)		Cl	H	C ₂ H ₄ OC ₆ H ₅	423	grünstichig gelb
30	138	CH ₃ OCH ₂ CH CH ₃		Cl	H	C ₂ H ₄ OC ₆ H ₅	423	grünstichig gelb
	139	CH ₃ OCH ₂ CH CH ₃		Cl	H	CH ₂ C ₆ H ₅	423	grünstichig gelb
35	140	CH ₃ OCH ₂ CH CH ₃	H		Cl	CH ₂ C ₆ H ₅	421	grünstichig gelb
	141	CH ₃		H	Cl	CH ₂ C ₆ H ₅	421	grünstichig gelb
40	142	CH ₃		H	Cl	CH ₂ CH ₂ OC ₆ H ₅	421	grünstichig gelb
	143	CH ₃		H	Cl		421	grünstichig gelb
45	144	C ₄ H ₉ (i)		H	Cl		421	grünstichig gelb
	145	C ₄ H ₉ (i)		H	Cl	CH ₂ C ₆ H ₅	421	grünstichig gelb
50	146	C ₄ H ₉ (i)		H	Cl	C ₂ H ₄ OC ₆ H ₅	421	grünstichig gelb
	147	CH ₃ OCH ₂ CH CH ₃	H		Cl	C ₂ H ₄ OC ₆ H ₅	421	grünstichig gelb
55	148	CH ₃ OCH ₂ CH CH ₃	H		Cl	CH ₂ C ₆ H ₅	421	grünstichig gelb

Tabelle 8

5

10

	Bsp. Nr.	W	R	λ_{max} [nm] in Aceton	Farbton auf Polyester
15	149	CH ₃	CH ₂ C ₆ H ₅	422	grünstichig gelb
	150	CH ₃	CH ₂ C ₆ H ₅	422	grünstichig gelb
20	151	CH ₃	CH ₂ CH ₂ C ₆ H ₅	422	grünstichig gelb
	152	CH ₃	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
25	153	CH ₃	CH ₂ CH ₂ O--CH ₃	423	grünstichig gelb
	154	C ₂ H ₅	CH ₂ C ₆ H ₅	422	grünstichig gelb
30	155	(CH ₃) ₂ C ₂ H ₄	CH ₂ C ₆ H ₅	422	grünstichig gelb
	156	C ₂ H ₅	CH ₂ C ₆ H ₅	422	grünstichig gelb
35	157	C ₂ H ₅	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
	158	C ₃ H ₇ (n)	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
40	159	C ₃ H ₇ (n)	CH ₂ C ₆ H ₅	422	grünstichig gelb
	160	C ₃ H ₇ (n)	CH ₂ C ₆ H ₅	422	grünstichig gelb
45	161	C ₃ H ₇ (n)	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
	162	C ₃ H ₇ (i)	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
50	163	C ₃ H ₇ (i)	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
	164	C ₃ H ₇ (i)	CH ₂ C ₆ H ₅	422	grünstichig gelb
55	165	C ₄ H ₉ (n)	CH ₂ C ₆ H ₅	422	grünstichig gelb
	166	C ₄ H ₉ (n)	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
60	167	C ₄ H ₉ (i)	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb

Tabelle 8 (Forts.)

5

10

	Bsp. Nr.	W	R	λ_{max} [nm] in Aceton	Farbton auf Polyester
15	168	C ₄ H ₉ (i)	(CH ₂) ₂ C ₆ H ₅	422	grünstichig gelb
	169	C ₅ H ₁₁ (n)	CH ₂ C ₆ H ₅	422	grünstichig gelb
20	170	C ₅ H ₁₁ (n)	CH ₂ C ₆ H ₅	422	grünstichig gelb
	171	C ₅ H ₁₁ (n)	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
25	172	(CH ₃) ₂ CH(CH ₂) ₂	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
	173	CH ₃ CH(CH ₂) OCH ₃	CH ₂ CH ₂ OC ₆ H ₅	423	grünstichig gelb
30	174	CH ₃ CH(CH ₂) OCH ₃	CH ₂ CH ₂ OC ₆ H ₅	422,5	grünstichig gelb
	175	CH ₃ CH(CH ₂) OCH ₃	CH ₂ C ₆ H ₅	422	grünstichig gelb
35	176	CH ₃ OCH ₂ CH CH ₃	CH ₂ C ₆ H ₅	422	grünstichig gelb
40	177	CH ₃ OCH ₂ CH CH ₃	C ₄ H ₈ OCOCH ₃	422	grünstichig gelb
	178	C ₄ H ₉ (i)	C ₄ H ₈ OCOCH ₃	422	grünstichig gelb
	179	C ₄ H ₉ (n)	C ₄ H ₈ OCOCH ₃	422	grünstichig gelb
50	180	C ₆ H ₁₃	C ₄ H ₈ OH	423	grünstichig gelb
	181	C ₄ H ₉ (i)	(C ₂ H ₄ O) ₂ C ₆ H ₅	423	grünstichig gelb
55	182	C ₄ H ₉ (i)	(C ₂ H ₄ O) ₂ C ₄ H ₉	422	grünstichig gelb
	183	CH ₃	C ₂ H ₄ C ₆ H ₅	423	grünstichig gelb

Tabelle 9

		<chem>CC(=O)c1ccc(cc1)N=C2N(C(=O)N(Cc3ccccc3)C)C(=O)N2C</chem>			
	Bsp. Nr.	W	n	λ_{max} [nm] in Aceton	Farbton auf Polyester
10	184	C ₂ H ₅	2	422	grünstichiges Gelb
15	185	C ₂ H ₅	3	423	grünstichiges Gelb
20	186	C ₂ H ₅	3	423	grünstichiges Gelb
25	187	CH ₃	3	423	grünstichiges Gelb
30	188	CH ₃	3	423	grünstichiges Gelb
35	189	C ₃ H ₇ (n)	3	423	grünstichiges Gelb
40	190	C ₃ H ₇ (n)	3	423	grünstichiges Gelb
45	191	C ₄ H ₉ (n)	3	423	grünstichiges Gelb
50	192	C ₄ H ₉ (n)	3	423	grünstichiges Gelb
55	193	C ₄ H ₉ (i)	3	423	grünstichiges Gelb
60	194	C ₄ H ₉ (n)	3	423	grünstichiges Gelb
65	195	C ₄ H ₉ (n)	3	423	grünstichiges Gelb
70	196	C ₄ H ₉ (i)	2	422	grünstichiges Gelb
75	197	C ₅ H ₁₁ (n)	3	423	grünstichiges Gelb
80	198	C ₃ H ₆ CHCH ₂ CH ₃	3	423	grünstichiges Gelb
85	199	(CH ₃) ₂ CH(CH ₂) ₂	3	423	grünstichiges Gelb
90	200	CH ₃ CHCH ₂ OCH ₃	3	423	grünstichiges Gelb
95	201	CH ₃ OCH ₂ CH CH ₃	3	423	grünstichiges Gelb

Tabelle 10

5					λ_{max} [nm] in Aceton	Farbton auf Polyester	
10	Bsp. Nr.	V	Q	W	R		
15	202	CO ₂ CH ₃	H	C ₃ H ₇ (i)	CH ₂ C ₆ H ₅	422	grünstichiges gelb
20	203	CO ₂ CH ₃	H	C ₄ H ₉ (n)	CH ₂ C ₆ H ₅	422	grünstichiges gelb
25	204	CO ₂ CH ₃	H	C ₄ H ₉ (n)	C ₂ H ₄ OC ₆ H ₅	422	grünstichiges gelb
30	205	CO ₂ CH ₃	H	C ₄ H ₉ (n)	-	422	grünstichiges gelb
35	206	CO ₂ CH ₃	H	C ₄ H ₉ (i)	-	422	grünstichiges gelb
40	207	CO ₂ CH ₃	H	C ₄ H ₉ (i)	CH ₂ C ₆ H ₅	422	grünstichiges gelb
45	208	CO ₂ CH ₃	H	C ₄ H ₉ (i)	C ₂ H ₄ OC ₆ H ₅	423	grünstichiges gelb
50	209	CO ₂ CH ₃	H	C ₄ H ₉ (i)	C ₄ H ₈ OOCCH ₃	423	grünstichiges gelb
55	210	CO ₂ CH ₃	H	C ₂ H ₄ OC ₂ H ₅	CH ₂ C ₆ H ₅	422	grünstichiges gelb
	211	CO ₂ CH ₃	H	C ₂ H ₄ OC ₄ H ₉	CH ₂ C ₆ H ₅	422	grünstichiges gelb
	212	CO ₂ CH ₃	H	C ₂ H ₄ OC ₄ H ₉	C ₂ H ₄ OC ₆ H ₅	423	grünstichiges gelb
	213	H	CO ₂ C ₃ H ₇ (i)	C ₃ H ₇ (i)	C ₂ H ₄ OC ₆ H ₅	419	stark grün- stichig gelb
	214	H	CO ₂ C ₃ H ₇ (i)	C ₃ H ₇ (i)	CH ₂ C ₆ H ₅	420	stark grün- stichig gelb
	215	H	CO ₂ C ₃ H ₇ (i)	C ₃ H ₇ (i)	C ₄ H ₈ OOCCH ₃	420	stark grün- stichig gelb
	216	H	CO ₂ C ₃ H ₇ (i)	C ₃ H ₇ (i)	-	419	stark grün- stichig gelb
	217	CO ₂ CH ₃	H	C ₆ H ₁₃ (n)	C ₂ H ₄ OC ₆ H ₅	422	grünstichiges gelb

Ansprüche

5

1. Pyridonazofarbstoffe der Formel I

10

15 in der

n für die Zahl 2 oder 3,

D für 2,3-Dichlorphenyl, 3,4-Dichlorphenyl, 2,5-Dichlorphenyl, 2,4,5-Trichlorphenyl, 4-Cyanophenyl oder
einen Rest der Formel

20

25

in der X¹ C₁-C₄-Alkyl oder C₁-C₁₀-Alkoxy, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, Y Wasserstoff, Chlor oder den Rest COX², in dem X² die Bedeutung von C₁-C₁₀-Alkoxy, das gegebenenfalls durch ein oder mehrere Sauerstoffatome unterbrochen ist, besitzt und Z Wasserstoff oder Chlor bedeuten und
für einen Rest der Formel

30

35

[L-O]₂-T, L-OH oder L-O-COR¹, wobei L gegebenenfalls verzweigtes C₁-C₄-Alkylen, T C₁-C₄-Alkyl oder

40

und R¹ Wasserstoff oder C₁-C₇-Alkyl bedeuten und der Ring A jeweils durch Methyl oder Chlor substituiert sein kann, oder für den Fall, daß D den Rest

45

50

bedeutet, auch für Cyclohexyl stehen,
mit der Maßgabe, daß wenn D den Rest

55

bedeutet und wenn dabei Y und Z gleichzeitig Wasserstoff bedeuten, der Rest COX¹ nicht in ortho-Position

zur Azobrücke steht.

2. Pyridonazofarbstoffe gemäß Anspruch 1, dadurch gekennzeichnet, daß
n für die Zahl 3,
D für einen Rest der Formel

5

10

wobei X¹ und X² gleich oder verschieden sind und unabhängig voneinander jeweils C₁-C₄-Alkoxy, das gegebenenfalls durch ein Sauerstoffatom unterbrochen ist, bedeuten und für einen Rest der Formel

15

20 [(CH₂)-O]₂T, [(CH₂)₃-O]₂T oder L-O-COR¹ stehen, wobei L Methylen, Ethylen oder Tetramethylen, T C₁-C₄-Alkyl oder Phenyl und R¹ Methyl oder Ethyl bedeuten.

3. Pyridonazofarbstoffe gemäß Anspruch 1, dadurch gekennzeichnet, daß
n für die Zahl 3,
D für 2,3-Dichlorphenyl oder 2,5-Dichlorphenyl und
R für einen Rest der Formel

25

30 [(CH₂)₂-O]₂T, [(CH₂)₃-O]₂T oder L-O-COR¹ stehen, wobei L Methylen, Ethylen oder Tetramethylen, T C₁-C₄-Alkyl oder Phenyl und R¹ Methyl oder Ethyl bedeuten.

35

40

45

50

55

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 87 11 6296

EINSCHLÄGIGE DOKUMENTE			
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrieb Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
X	EP-A-0 061 667 (BASF) * Anspruch 1; Seite 15, Beispiele 28,30 *	1	C 09 B 29/42 D 06 P 1/18
D,A	DE-A-2 951 403 (BASF) * Anspruch 1 *	1	
A	CH-A- 644 621 (CIBA-GEIGY) * Anspruch 1 *	1	
A	FR-A-2 024 762 (SANDOZ) * Anspruch 1; Beispiele 68,72,105 *	1	
A	FR-A-2 038 227 (BASF) * Anspruch 1; Beispiele 28,29,81 *	1	
			RECHERCHIERTE SACHGEBiete (Int. Cl.4)
			C 09 B
Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt			
Recherchenort	Abschlußdatum der Recherche	Prüfer	
DEN HAAG	24-03-1988	GINESTET M.E.J.	
KATEGORIE DER GENANNTEN DOKUMENTE			
X : von besonderer Bedeutung allein betrachtet	T : der Erfindung zugrunde liegende Theorien oder Grundsätze		
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie	E : älteres Patentdokument, das jedoch erst am oder nach dem Anmelddatum veröffentlicht worden ist		
A : technologischer Hintergrund	D : in der Anmeldung angeführtes Dokument		
O : niederländische Offenbarung	L : aus andern Gründen angeführtes Dokument		
P : Zwischenliteratur	& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument		

BASF Aktiengesellschaft · D-6700 Ludwigshafen

EPA EPO-OEB	
DG 1	
Reyu:	
15 -03- 1988	
01	ANTRAG
50150	

Europäisches Patentamt
Erhardtstraße 27
D-8000 München 2
BRD

E P A - E P O - O E B	
M Ü N C H E N	
Empfang bestätigt	
Receipt acknowledged	
Accuse reception	
SD	

EP-Anmeldung Nr. 87116296.2 - O.Z. 0050/38783
Pyridonazofarbstoffe

4. März 1988

Patentabteilung-C6
ZSP/D - gg5252
Dr. Karg
Tel. 0621/60 43895
Telex 17 62 157 170
Ttx 62 157 170=BASF
Tfx 0621/60 43123

Wie wir leider erst jetzt feststellten, befindet sich auf den Seiten 12 und 18 der obengenannten Anmeldung jeweils ein Fehler.

In den Beispielen Nr. 66 und 155 sollte der Rest W jeweils " $(CH_3)_2CHC_2H_4$ " lauten.

Wir bitten diese Fehler zu entschuldigen und fügen als Anlage die entsprechend korrigierten Seiten 12 und 18 bei.

BASF Aktiengesellschaft

i. A. Karg
i. A. Karg
AV.-Nr. 3224

Anlage 3fach

