${\bf Zh}-\Phi$ азы и фазовые переходы

При заданном давлении переход из одного агрегатного состояния вещества (фазы) в другое происходит всегда при строго определённой температуре, при этом сам переход называется фазовым. Например, лёд при атмосферном давлении плавиться при 0°С, так что при подводе тепла температура смеси из льда и воды остается неизменной вплоть до того момента, пока весь лёд не превратится в воду. Во всех предлагаемых ниже задачах считайте, что удельный объём жидкой фазы пренебрежимо мал по сравнению с удельным объёмом насыщенного пара, который можно считать идеальным газом. Теплоёмкость жидкой воды считайте независящей от температуры.

Справочные данные

Газовая постоянная $R=8,31\ /(\ \cdot\)$; молярная масса воздуха $\mu_{air}=29.0\ /;$ ускорение свободного падения $g=9,81\ /^2$.

Нормальные условия: давление $P_0=1=760\ldots=101325$, температура $T_0=273.15=0$ °C.

Свойства воды (H₂O) Молярная масса $\mu_w=18.0$ /; плотность воды $\rho_w=1.00$ /³; плотность льда $\rho_i=0.920$ /³; температура плавления льда при нормальном давлении $t_m=0.00$ °C; температура кипения воды при нормальном давлении $t_b=100.0$ °C; удельная теплоёмкость воды $c_w=4.20$ /(·); удельная теплота плавления льда $q_i=334$ /; удельная теплота парообразования воды (при 100 °C) $r_w=2259$ /; показатель адиабаты Пуассона для водяных паров $\gamma=C_P/C_V=4/3$.

Теплота фазового перехода

Если переход вещества из одной фазы в другую связан с выделением или поглощением некоторого количества теплоты, называемой теплотой перехода, то такой переход называется фазовым переходом первого рода. При этом теплота перехода q для единичной массы называется удельной теплотой фазового перехода (плавления, испарения, возгонки). Поскольку фазовый переход происходит при постоянном давлении, то по первому началу термодинамики теплота q расходуется на изменение внутренней энергии u и на работу A против постоянного внешнего давления:

$$q = u_2 - u_1 + A,$$

где u_1, u_2 - удельные внутренние энергии соответственно первой и второй фаз соответственно. При плавлении (кристаллизации) из-за малого различия плотностей жидкой и твёрдой фаз изменение объёма в результате фазового перехода невелико, поэтому работой A можно пренебречь по сравнению с изменением внутренней энергии.

1^{1.00} Рассчитайте, какая часть теплоты испарения воды при $t_b = 100^{\circ}$ С расходуется на измерение внутренней энергии. Ответ выразите в %.

 ${f 2^{1.00}}$ Вычислите удельную теплоту парообразования воды при комнатной температуре $t=20.0^{\circ}{
m C}.$

В дальнейшем удельную теплоту испарения всех жидкостей считайте не зависящими от температуры.

Формула Клапейрона - Клаузиуса

При изменении давления температура фазового перехода первого рода меняется, то есть фазовый переход имеет место при строго определённой зависимости $P\left(T\right)$ между давлением P и температурой T вещества. Эта зависимость, изображённая на координатной TP-плоскости, называется фазовой T-P диаграммой, а сама линия TP - линией фазового равновесия. Формула Клапейрона-Клаузиуса дает наклон линии фазового равновесия P(T) в виде:

$$\frac{dP}{dT} = \frac{q}{T(v_2 - v_1)},$$

где q - удельная теплота перехода из фазы 1 с удельным объёмом v_1 в фазу 2 с удельным объёмом v_2 .

Страница 1 из 2 < ∞</p>

- **3^{0.40}** Считая известным давление насыщенного пара воды при температуре $t_b = 100^{\circ}$ С, получите явную зависимость давления насыщенных паров воды от темпетаруры P(T).
- **41.00** Вычислите температуру кипения воды на самой высокой вершине Казахстана пике Хан-Тенгри. Высота пика Хан-Тенгри над уровнем моря $h \approx 7000$ м. Температуру воздуха на высоте считать постоянной и равной $t_0 = 0$ °C.
- $5^{0.60}$ При каком давлении (в атмосферах) лед будет плавиться при температруру t = -1.00°C?
- $6^{0.60}$ Известно, что кристаллики льда начинают разрушаться, если вдоль какого-либо направления кристалла приложить силу, создающую давление $P>P_{cr}\approx 1000$ атм. Поэтому снег в морозную погоду хрустит при ходьбе. Оцените максимальную температуру воздуха t_{max} , при которой сне все еще хрустит при ходьбе.
- $7^{1.00}$ В сосуде находится один моль насыщенного пара при температуре $t_b = 100$ °C. Пар нагревается и одновременно меняется его объем так, что он все время остается насыщенным. Найдите молярную теплоемкость пара в таком процессе.

Пограничное кипение

Пограничное кипение - это кипение на границе раздела двух несмешивающихся жидкостей. Температура пограничного кипения может существенно отличаться от температур объёмного кипения каждой из жидкостей.

Тетрахлорметан или четырёххлористый водород представляет собой тяжёлую (плотность $\rho=1.60/^3$) прозрачную жидкость с молярной массой $\mu=153.8/$. При нормальном атмосферном давлении тетрахлорметан кипит при температуре $t=76.65^{\circ}\mathrm{C}$, при этом он практически не растворяется в воде. Сосуд объемом V=100 наполовину наполняют тетрахлорметаном, а поверх заливают такое же (по объёму) количество воды. При этом образуется четкая граница вода-тетрахлорметан. При равномерном нагревании сосуда на водяной бане кипение на границе раздела жидкостей начинается при температуре $t^*=66.0^{\circ}\mathrm{C}$, что значительно ниже температуры объёмного кипения каждой из компонент в отдельности.

8^{1.20} Рассчитайте по этим данным удельную теплоту r испарения тетрахлорметана, если известно, что давление насыщенных паров воды при температуре пограничного кипения $P_w(t^*) = 196$ мм. рт. ст.

9^{1.00} Найдите массу остающейся в сосуде жидкости к моменту полного выкипания другой жидкости при таком пограничном кипении.

Рассмотрим ещё одну пару несмешивающихся жидкостей, воду и фторкетон. Жидкость фторкетон, иногда называемая «сухой водой», используется при тушении пожаров в библиотеках, музеях, офисах, поскольку не смачивает бумагу. Это тяжелая (плотность $\rho=1.72/^3$) прозрачная жидкость с молярной массой $\mu=316/$, которая в воде практически не растворяется. Температура кипения фторкетона при атмосферном давлении $t_f=49.2$ °C, удельная теплота парообразования r=95.0/. Если поверх фторкетона в сосуд налить воду, то также образуется чёткая граница вода-фторкетон.

10^{2,20} Оцените температуру t_x закипания жидкостей на границе вода-фторкетон, если известно давление насыщенных паров воды при температуре объемного кипения фторкетона $P_w(t_f) = 89.0$ мм. рт. ст.