CSE4203: Computer Graphics
Chapter – 6 (part - B)
Transformation Matrices

Mohammad Imrul Jubair

Outline

- 3D Linear Transformation
- 3D Scaling
- 3D Rotation
- Translation
- Affine Transformation

Credit

CS4620: Introduction to Computer Graphics

Cornell University

Instructor: Steve Marschner

http://www.cs.cornell.edu/courses/cs46

20/2019fa/

3D Transformation (1/1)

- The linear 3D transforms are an extension of the 2D transforms.
 - For 2D:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_{11}x + a_{12}y \\ a_{21}x + a_{22}y \end{bmatrix}$$

– For 3D:

4

3D Scaling (1/1)

scale
$$(s_x, s_y, s_z) = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & s_z \end{bmatrix}$$

M. I. Jubair

5

3D Rotation (1/5)

- Rotation around axis
 - Counter-clockwise, w.r.t rotation axis.

Image Source: https://slideplayer.com/slide/4889962/

3D Rotation (2/5)

$$rotate-z(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

3D Rotation (3/5)

$$rotate-\mathbf{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

M. I. Jubair

8

3D Rotation (4/5)

$$rotate-z(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$rotate-\mathbf{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix}$$

rotate-y(
$$\phi$$
) =
$$\begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix}$$

3D Rotation (5/5)

$$rotate-z(\phi) = \begin{bmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$rotate-\mathbf{x}(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix}$$

$$\text{rotate-y}(\phi) = \begin{bmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{bmatrix} \quad \begin{array}{c} \text{Q: Why is it different?*} \\ \end{array}$$

10

^{*} https://robotics.stackexchange.com/questions/10702/rotation-matrix-sign-convention-confusion

Translation in 2D (1/8)

Move or Translate to another position.

Translation in 2D (3/8)

translation

$$x' = x + t_x$$
$$y' = y + t_y$$

$$v' = v + t$$

Translation in 2D (4/8)

- But, for others cases, i.e. scaling, rotation, we changed vectors v using a matrix M.
 - In 2D, these transforms have the form: -

$$\begin{array}{rclcrcl}
 x' & = & m_{11}x & + & m_{12}y, \\
 y' & = & m_{21}x & + & m_{22}y.
 \end{array}$$
 $\mathbf{v'} = \mathbf{M} \mathbf{v}$

Translation in 2D (5/8)

 We cannot use such transforms to translate, only to scale and rotate them.

Translation in 2D (6/8)

- There is just no way to do that by multiplying (x, y) by a 2×2 matrix.
 - adding translation to our system of linear transformations:

$= m_{11}x + m_{12}y, = m_{21}x + m_{22}y.$	v' = M v
$ \begin{array}{rcl} x' & = & x & + & x_t, \\ y' & = & y & + & y_t. \end{array} $	v' = v + t

Translation in 2D (7/8)

This is perfectly feasible –

Source: https://www.pling.org.uk/cs/cgv.html

Translation in 2D (8/8)

- This is perfectly feasible
 - But, the rule for composing transformations is not as simple and clean as with linear transformations.

$$T = T_n . T_{n-1} T_1 . T_0$$

$= m_{11}x + m_{12}y, = m_{21}x + m_{22}y.$	v' = M v
$ \begin{array}{rcl} x' & = & x & + & x_t, \\ y' & = & y & + & y_t. \end{array} $	v' = v + t

Homogeneous Coordinates (1/9)

 Instead, we can use a clever trick to get a single matrix multiplication to do both.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} & & \\ & 2 \times 2 & \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Homogeneous Coordinates (2/9)

- Instead, we can use a clever trick to get a single matrix multiplication to do both.
- The idea is simple: represent the point (x, y) by a 3D vector $[x y 1]^T$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} & & \\ & 3 \times 3 & \\ & & \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates (3/9)

- Instead, we can use a clever trick to get a single matrix multiplication to do both.
- The idea is simple: represent the point (x, y) by a 3D vector [x y
 1]^T
- Use 3 × 3 matrices of the form.

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & x_t \\ m_{21} & m_{22} & y_t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates (4/9)

- This kind of transformation is called an affine transformation.
 - this way of implementing affine transformations by adding an extra dimension is called *homogeneous coordinates*

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & x_t \\ m_{21} & m_{22} & y_t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates (5/9)

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & x_t \\ m_{21} & m_{22} & y_t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates (6/9)

• Translation:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_t \\ 0 & 1 & y_t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates (7/9)

• Scaling:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates (8/9)

Rotation:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

3D Transformation with Homogeneous Coordinates (1/1)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

2D/3D Transformations (1/3)

	2D	3D
Т	$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_t \\ 0 & 1 & y_t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	$ \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & p \\ 0 & 1 & 0 & q \\ 0 & 0 & 1 & r \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} $
S	$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} S_{x} & 0 & 0 \\ 0 & S_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & r & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$
R	$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$	$RotX = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta x) & -\sin(\theta x) & 0 \\ 0 & \sin(\theta x) & \cos(\theta x) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $RotY = \begin{bmatrix} \cos(\theta y) & 0 & \sin(\theta y) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(\theta y) & 0 & \cos(\theta y) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
		$Rot Z = \begin{bmatrix} \cos(\Theta z) & -\sin(\Theta z) & 0 & 0 \\ \sin(\Theta z) & \cos(\Theta z) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Inverse Transformations (1/2)

Т	T - 1
$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & p \\ 0 & 1 & 0 & q \\ 0 & 0 & 1 & r \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$	$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -p \\ 0 & 1 & 0 & -q \\ 0 & 0 & 1 & -r \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$
$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} p & 0 & 0 & 0 \\ 0 & q & 0 & 0 \\ 0 & 0 & r & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$	$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1/p & 0 & 0 & 0 \\ 0 & 1/q & 0 & 0 \\ 0 & 0 & 1/r & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix}$
$RotX = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\theta x) & -\sin(\theta x) & 0 \\ 0 & \sin(\theta x) & \cos(\theta x) & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	
$RotY = \begin{bmatrix} \cos(\Theta y) & 0 & \sin(\Theta y) & 0\\ 0 & 1 & 0 & 0\\ -\sin(\Theta y) & 0 & \cos(\Theta y) & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$?
$Rot Z = \begin{bmatrix} \cos(\theta z) & -\sin(\theta z) & 0 & 0 \\ \sin(\theta z) & \cos(\theta z) & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$	

Inverse Transformations (2/2)

	Transformation	Inverse Transformation
Т	T (tx, ty, tz)	$T^{-1}=T(-tx,\;-ty,\;-tz)$
S	S (sx, sy, sz)	S ⁻¹ = S (1/sx, 1/sy, 1/sz)
R	Rx(d) Ry(d) Rz(d)	$R^{-1} = R(-d) = R^{T}$ $Rx^{-1} = Rx^{T}$ $Ry^{-1} = Ry^{T}$ $Rz^{-1} = Rz^{T}$

<u>Task:</u> take any transformation matrix (i.e. scaling matrix *S*) with numerical values, do the matrix inversion and see if it becomes *S*⁻¹

Practice Problem - 1

• Scale w.r.t the center

• Scale w.r.t the center

• Scale w.r.t the center

Scale w.r.t the center

Scale w.r.t the center

Practice Problem - 2

- We need to rotate a pyramid P about point (5, 5) by 90°. You have to
 - Mention the steps to perform the task.
 - Determine the composite transformation matrix M.
 - Multiply M with P and determine the new coordinates P'.
 - Plot P and P' on the same axis to show the rotation.

Additional Reading

- 3D Shearing
- 3D reflection
- Rigid-body transforms
- Windowing transformations

Exercises

• Exercise 1 – 6, 8 and 9