Validation of Bioequivalence Test Performed by BE R package

Sungpil Han shan@acp.kr 2018-10-23

Contents

1	Introduction	1
2	Methods 2.1 Datasets 2.2 Calculation BE 2.3 Calculation SAS	2
3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 3
4	Conclusion	4
\mathbf{A}	Raw data	5
В	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 7 8
\mathbf{C}	Session Information	10
Re	eferences	11

1 Introduction

BE R package (Bae 2018) can analyze bioequivalence study data with industrial strength. The current version BE performs bioequivalency tests for several variables of a 2x2 crossover study in a data file. To establish BE, the calculated confidence interval should fall within a BE limit, usually 80-125% for the ratio of the product averages. (Drug Evaluation et al. 2001; Chow and Liu 2008; Hauschke, Steinijans, and Pigeot 2007) In this document, the author performed validation of bioequivalence test performed by BE R package.

2 Methods

2.1 Datasets

A simulated dataset, NCAResult4BE is shown in Appendix A.

2.2 Calculation BE

The required R packages are following.

```
library(BE)  # install.packages("BE", repos="http://r.acr.kr")
library(tidyverse)  # install.packages("tidyverse")

tab_r_be_results function uses BE::test2x2() to calculate the 90% confidence interval.

tab_r_be_results <- function(parameter){
    BE::test2x2(NCAResult4BE, parameter)[[4]] %>%
    as.data.frame() %>%
    mutate(Analysis = 'R: BE package') %>%
    select(Analysis, `Lower Limit`, `Point Estimate`, `Upper Limit`)
```

2.3 Calculation SAS

}

SAS PROC GLM and SAS PROC MIXED in SAS version 9.0 with SEQ (sequence), TRT (treatment), SUBJ (subject), PRD (period) variables, and LNAUCL or LNCMAX denoting the response measure.

A part of examplary SAS program statement is following and the full SAS scripts are appended in Appendix B.

```
PROC GLM DATA=BE OUTSTAT=STATRES; /* GLM use only complete subjects. */
CLASS SEQ PRD TRT SUBJ;
MODEL LNAUCL = SEQ SUBJ(SEQ) PRD TRT;
RANDOM SUBJ(SEQ)/TEST;
LSMEANS TRT /PDIFF=CONTROL('R') CL ALPHA=0.1 COV OUT=LSOUT;

PROC MIXED DATA=BE; /* MIXED uses all data. */
CLASS SEQ TRT SUBJ PRD;
MODEL LNAUCL = SEQ PRD TRT;
RANDOM SUBJ(SEQ);
ESTIMATE 'T VS R' TRT -1 1 /CL ALPHA=0.1;
ODS OUTPUT ESTIMATES=ESTIM COVPARMS=COVPAR;
```

A function, tab_sas_proc_results() reads SAS analysis results exported to Microsoft Excel files (.xls) and converted to comma separated version file (.csv). It returns a data frame of 90% confidence interval calculated either PROC GLM or PROC MIXED in SAS version 9.0.

```
tab_sas_proc_results <- function(filename, skip_no, analysis_name){
  read_lines(filename, skip = skip_no, n_max = 2) %>%
  paste(collapse='\n') %>%  read_csv() %>%
  mutate(Analysis = analysis_name) %>%
  select(Analysis, `Lower Limit` = LL, `Point Estimate` = PE, `Upper Limit` = UL)
}
```

3 Results

3.1 AUC_{last}

Comparison between BE and SAS is shown in Table 1.

Table 1: AUClast

Analysis	Lower Limit	Point Estimate	Upper Limit
R: BE package	0.88944	0.95408	1.02341
SAS: PROC GLM	0.88944	0.95408	1.02341
SAS: PROC MIXED	0.88944	0.95408	1.02341

3.2 C_{max}

Comparison between BE and SAS is shown in Table 2.

Table 2: Cmax

Analysis	Lower Limit	Point Estimate	Upper Limit
R: BE package SAS: PROC GLM SAS: PROC MIXED	0.90136 0.90136 0.90136	0.97984 0.97984 0.97984	$1.06515 \\ 1.06515 \\ 1.06515$

4 Conclusion

There is no discrepancy between results from BE and SAS. We also performed multiple analyses with the actual clinical trial datasets and have found no differences (data not shown: confidential). Noncompartmental analysis performed by the open-source R package, NonCompart can be **qualified and validated** enough to acquire the identical results of the commercial statistical software, SAS.

Please report issues regarding validation of the R package to https://github.com/asancpt/BEreport/issues.

Affiliation:

Sungpil Han M.D/Ph.D, Resident Department of Clinical Pharmacology and Therapeutics, Asan Medical Center, University of Ulsan, Seoul 05505, Republic of Korea

E-mail: shan@acp.kr

URL: www.github.com/shanmdphd

A Raw data

Table 3: The raw data used for analysis by BE and SAS PROC

SUBJ	GRP	PRD	TRT	AUClast	Cmax	Tmax
1	RT	1	\mathbf{R}	5018.927	1043.13	1.04
1	RT	2	Τ	6737.507	894.21	1.03
2	TR	1	Τ	4373.970	447.26	1.01
2	TR	2	\mathbf{R}	6164.276	783.92	1.98
4	TR	1	Τ	5592.993	824.42	1.97
4	TR	2	R	5958.160	646.31	0.97
5	TR	1	Τ	3902.590	803.70	0.80
5	TR	2	\mathbf{R}	4620.156	955.30	0.74
6	RT	1	\mathbf{R}	3735.274	995.34	1.02
6	RT	2	Τ	4257.802	816.33	1.00
7	RT	1	R	4314.993	608.99	0.95
7	RT	2	Τ	5030.372	806.57	0.74
8	RT	1	\mathbf{R}	6053.098	1283.67	0.72
8	RT	2	Τ	5790.067	822.95	1.03
9	RT	1	R	4602.582	679.39	0.74
9	RT	2	${ m T}$	6042.462	556.55	0.98
10	RT	1	\mathbf{R}	8848.988	1136.91	1.03
10	RT	2	${ m T}$	7349.822	1082.79	0.97
11	TR	1	${ m T}$	3054.096	547.73	2.02
11	TR	2	R	4719.175	984.69	0.54
13	RT	1	R	4828.682	615.17	1.00
13	RT	2	Τ	4175.434	692.26	0.97
14	RT	1	\mathbf{R}	4566.275	864.56	1.03
14	RT	2	${ m T}$	5042.649	1122.75	0.75
15	TR	1	Τ	4950.980	719.40	0.97
15	TR	2	R	4959.554	660.17	0.96
16	RT	1	\mathbf{R}	4577.432	609.64	3.01
16	RT	2	${ m T}$	4773.723	807.65	1.01
17	RT	1	\mathbf{R}	6462.652	861.56	2.02
17	RT	2	Τ	5246.032	1187.75	0.73
18	TR	1	Τ	4754.625	919.87	0.77
18	TR	2	\mathbf{R}	3214.809	1042.84	0.53
19	TR	1	${ m T}$	7619.304	1089.84	3.00
19	TR	2	\mathbf{R}	5210.569	1127.94	2.04
20	TR	1	Τ	5063.471	1191.46	0.71
20	TR	2	R	6406.634	1069.19	1.00
21	RT	1	\mathbf{R}	5580.289	742.67	0.97
21	RT	2	${ m T}$	6304.119	447.85	0.99
22	RT	1	\mathbf{R}	4398.887	682.73	2.02
22	RT	2	${ m T}$	3760.359	669.01	1.04
23	TR	1	${ m T}$	5141.165	937.02	0.51
23	TR	2	\mathbf{R}	5835.275	894.72	1.04
24	TR	1	${ m T}$	4343.439	713.57	1.03
24	TR	2	\mathbf{R}	2848.448	811.83	0.71
25	TR	1	${ m T}$	3983.260	1160.32	0.73

		_	_			
25	TR	2	R	3476.389	769.63	0.78
27	TR	1	Τ	5772.972	1219.56	0.99
27	TR	2	R	7673.260	1063.29	1.03
28	RT	1	\mathbf{R}	5679.039	650.24	1.00
28	RT	$\overline{2}$	T	5160.875	891.63	1.05
20	101	_	1	0100.010	031.00	1.00
29	TR	1	${ m T}$	4800.455	770.63	2.02
29	TR	2	\mathbf{R}	5772.925	738.17	1.04
30	RT	1	\mathbf{R}	4722.324	1034.11	0.77
30	RT	2	Τ	2896.939	569.22	1.03
31	RT	1	\mathbf{R}	8032.393	1043.82	1.98
	-		-			
31	RT	2	${ m T}$	6076.359	1141.43	0.96
32	TR	1	Τ	4245.372	608.93	2.97
32	TR	2	\mathbf{R}	4745.770	539.66	2.04
33	TR	1	Τ	3648.195	856.18	0.76
33	TR	2	\mathbf{R}	3356.777	647.95	0.98
0.4	mp.	4	TD.	F01F 400	700.40	0.00
34	TR	1	${ m T}$	5015.499	739.42	0.96
34	TR	2	R	6325.746	682.41	1.99
35	RT	1	\mathbf{R}	6259.347	1020.55	1.96
35	RT	2	${ m T}$	5802.468	835.87	2.04
36	RT	1	\mathbf{R}	4669.384	682.87	3.01
36	RT	2	T	3783.584	729.63	1.00

B SAS Scripts and results

To run these scripts, the dataset NCAResult4BE should be exported from R by write.csv().

B.1 C_{max}

```
DATA BE; /* It will load 91 records. */
  INFILE 'c:\Users\mdlhs\asancpt\BEreport\sas\NCAResult4BE.csv' FIRSTOBS=2 DLM=",";
  INPUT SUBJ $ SEQ $ PRD $ TRT $ AUClast Cmax Tmax;
  IF CMAX =< 0 THEN DELETE;
 LNCMAX = LOG(Cmax);
 LNAUCL = LOG(AUClast );
PROC PRINT; RUN;
PROC GLM DATA=BE OUTSTAT=STATRES; /* GLM use only complete subjects. */
  CLASS SEQ PRD TRT SUBJ;
  MODEL LNCMAX = SEQ SUBJ(SEQ) PRD TRT;
  RANDOM SUBJ(SEQ)/TEST;
  LSMEANS TRT /PDIFF=CONTROL('R') CL ALPHA=0.1 COV OUT=LSOUT;
RUN;
PROC PRINT DATA=STATRES; RUN;
PROC PRINT DATA=LSOUT; RUN;
DATA STATRES;
 SET STATRES;
  IF _TYPE_='ERROR' THEN CALL SYMPUT('DF', DF);
DATA LSOUT;
  SET LSOUT;
  IF TRT='R' THEN CALL SYMPUT('GMR_R', LSMEAN);
  IF TRT='T' THEN CALL SYMPUT('GMR_T', LSMEAN);
  IF TRT='R' THEN CALL SYMPUT('V_R', COV1);
  IF TRT='T' THEN CALL SYMPUT('V_T', COV2);
  IF TRT='T' THEN CALL SYMPUT('COV', COV1);
DATA LSOUT2;
  LNPE = &GMR T - &GMR R;
  DF = \&DF;
  SE = SQRT(\&V R + \&V T - 2*\&COV);
  LNLM = TINV(0.95, DF)*SE;
  LNLL = LNPE - LNLM ;
  LNUL = LNPE + LNLM;
  PE = EXP(LNPE);
  LL = EXP(LNLL);
  UL = EXP(LNUL);
  WD = UL - LL;
PROC PRINT DATA=LSOUT2; RUN;
PROC MIXED DATA=BE; /* MIXED uses all data. */
```

```
CLASS SEQ TRT SUBJ PRD;
  MODEL LNCMAX = SEQ PRD TRT;
  RANDOM SUBJ(SEQ);
  ESTIMATE 'T VS R' TRT -1 1 /CL ALPHA=0.1;
  ODS OUTPUT ESTIMATES=ESTIM COVPARMS=COVPAR;
RUN;
DATA COVPAR;
  SET COVPAR;
  IF CovParm = 'Residual' THEN CALL SYMPUT('MSE', Estimate);
DATA ESTIM;
  SET ESTIM;
  MSE = &MSE;
 LNLM = (Upper - Lower)/2;
 PE = EXP(Estimate);
  LL = EXP(Lower);
  UL = EXP(Upper);
  WD = UL - LL;
PROC PRINT Data=ESTIM; RUN;
read_csv('sas/SAS_results_Cmax.csv') %>%
 knitr::kable(longtable = TRUE, booktabs = TRUE, caption = 'Cmax')
```

B.2 AUC_{last}

```
DATA BE; /* It will load 91 records. */
  INFILE 'c:\Users\mdlhs\asancpt\BEreport\sas\NCAResult4BE.csv' FIRSTOBS=2 DLM=",";
  INPUT SUBJ $ SEQ $ PRD $ TRT $ AUClast Cmax Tmax;
  IF CMAX =< O THEN DELETE;
  LNCMAX = LOG(Cmax);
  LNAUCL = LOG(AUClast );
PROC PRINT; RUN;
PROC GLM DATA=BE OUTSTAT=STATRES; /* GLM use only complete subjects. */
  CLASS SEQ PRD TRT SUBJ;
 MODEL LNAUCL = SEQ SUBJ(SEQ) PRD TRT;
 RANDOM SUBJ(SEQ)/TEST;
 LSMEANS TRT /PDIFF=CONTROL('R') CL ALPHA=0.1 COV OUT=LSOUT;
RUN;
PROC PRINT DATA=STATRES; RUN;
PROC PRINT DATA=LSOUT; RUN;
DATA STATRES;
  SET STATRES;
  IF _TYPE_='ERROR' THEN CALL SYMPUT('DF', DF);
DATA LSOUT;
SET LSOUT;
```

```
IF TRT='R' THEN CALL SYMPUT('GMR_R', LSMEAN);
  IF TRT='T' THEN CALL SYMPUT('GMR_T', LSMEAN);
  IF TRT='R' THEN CALL SYMPUT('V_R', COV1);
  IF TRT='T' THEN CALL SYMPUT('V_T', COV2);
  IF TRT='T' THEN CALL SYMPUT('COV', COV1);
DATA LSOUT2;
 LNPE = &GMR_T - &GMR_R;
 DF = \&DF;
  SE = SQRT(\&V_R + \&V_T - 2*\&COV);
 LNLM = TINV(0.95, DF)*SE;
 LNLL = LNPE - LNLM ;
 LNUL = LNPE + LNLM;
 PE = EXP(LNPE);
 LL = EXP(LNLL);
 UL = EXP(LNUL);
 WD = UL - LL;
PROC PRINT DATA=LSOUT2; RUN;
PROC MIXED DATA=BE; /* MIXED uses all data. */
  CLASS SEQ TRT SUBJ PRD;
 MODEL LNAUCL = SEQ PRD TRT;
 RANDOM SUBJ(SEQ);
 ESTIMATE 'T VS R' TRT -1 1 /CL ALPHA=0.1;
 ODS OUTPUT ESTIMATES=ESTIM COVPARMS=COVPAR;
RUN;
DATA COVPAR;
 SET COVPAR;
  IF CovParm = 'Residual' THEN CALL SYMPUT('MSE', Estimate);
DATA ESTIM;
  SET ESTIM;
  MSE = \&MSE;
  LNLM = (Upper - Lower)/2;
 PE = EXP(Estimate);
 LL = EXP(Lower);
 UL = EXP(Upper);
 WD = UL - LL;
PROC PRINT Data=ESTIM; RUN;
```

C Session Information

```
devtools::session_info()
## - Session info -----
   setting value
##
   version R version 3.5.1 (2018-07-02)
##
            macOS High Sierra 10.13.6
##
            x86_64, darwin17.6.0
   system
            unknown
##
   ui
   language (EN)
##
##
   collate en US.UTF-8
##
   ctype
            en US.UTF-8
##
   tz
            Asia/Seoul
            2018-10-23
##
   date
##
package
               * version date
                                   lib source
##
   assertthat
                 0.2.0
                        2017-04-11 [1] CRAN (R 3.5.0)
##
                 1.1.2
                        2017-12-13 [1] CRAN (R 3.5.0)
   backports
                 0.1-3 2015-07-28 [1] CRAN (R 3.5.0)
##
   base64enc
##
   ΒE
               * 0.1.1
                        2018-07-19 [1] CRAN (R 3.5.1)
##
   bindr
                 0.1.1
                        2018-03-13 [1] CRAN (R 3.5.0)
   bindrcpp
                 0.2.2
                        2018-03-29 [1] CRAN (R 3.5.0)
##
   bookdown
                 0.7
                        2018-02-18 [1] CRAN (R 3.5.0)
                 0.5.0
##
   broom
                        2018-07-17 [1] CRAN (R 3.5.1)
   callr
                 3.0.0
                        2018-08-24 [1] CRAN (R 3.5.1)
##
                        2016-07-27 [1] CRAN (R 3.5.0)
##
   cellranger
                 1.1.0
                 1.0.1 2018-09-25 [1] CRAN (R 3.5.1)
   cli
   colorspace
                 1.3-2
                        2016-12-14 [1] CRAN (R 3.5.0)
##
                 1.3.4
##
   crayon
                        2017-09-16 [1] CRAN (R 3.5.0)
##
   debugme
                 1.1.0
                        2017-10-22 [1] CRAN (R 3.5.0)
##
   desc
                 1.2.0
                        2018-05-01 [1] CRAN (R 3.5.0)
                        2018-10-19 [1] CRAN (R 3.5.1)
   devtools
                 2.0.0
##
                 0.6.18 2018-10-10 [1] CRAN (R 3.5.1)
##
   digest
                        2018-10-16 [1] CRAN (R 3.5.1)
##
   dplyr
               * 0.7.7
   evaluate
                 0.12
                        2018-10-09 [1] CRAN (R 3.5.1)
                        2018-02-19 [1] CRAN (R 3.5.0)
##
   forcats
               * 0.3.0
##
   fs
                 1.2.6
                        2018-08-23 [1] CRAN (R 3.5.1)
                        2018-07-03 [1] CRAN (R 3.5.1)
   ggplot2
               * 3.0.0
                        2018-07-17 [1] CRAN (R 3.5.1)
##
                 1.3.0
   glue
                        2016-02-26 [1] CRAN (R 3.5.1)
##
   gtable
                 0.2.0
##
                 1.1.2
                        2018-06-27 [1] CRAN (R 3.5.0)
   haven
##
   hms
                 0.4.2
                        2018-03-10 [1] CRAN (R 3.5.0)
##
   {\tt htmltools}
                 0.3.6
                        2017-04-28 [1] CRAN (R 3.5.0)
                 1.3.1
                        2017-08-20 [1] CRAN (R 3.5.0)
##
   httr
                 1.5
                        2017-06-01 [1] CRAN (R 3.5.0)
##
   jsonlite
               * 1.20
                        2018-02-20 [1] CRAN (R 3.5.0)
##
   knitr
                 0.20-35 2017-03-25 [2] CRAN (R 3.5.1)
##
   lattice
##
   lazyeval
                 0.2.1
                        2017-10-29 [1] CRAN (R 3.5.0)
                 1.7.4
                        2018-04-11 [1] CRAN (R 3.5.0)
## lubridate
                 1.5
                        2014-11-22 [1] CRAN (R 3.5.0)
## magrittr
                 1.1.0
                        2017-04-21 [1] CRAN (R 3.5.0)
   memoise
```

```
##
    modelr
                   0.1.2
                           2018-05-11 [1] CRAN (R 3.5.0)
##
    munsell
                   0.5.0
                           2018-06-12 [1] CRAN (R 3.5.0)
##
    nlme
                  3.1-137 2018-04-07 [2] CRAN (R 3.5.1)
                           2018-07-14 [1] CRAN (R 3.5.1)
    pillar
                   1.3.0
##
##
    pkgbuild
                  1.0.2
                           2018-10-16 [1] CRAN (R 3.5.1)
                  2.0.2
                           2018-08-16 [1] CRAN (R 3.5.1)
##
    pkgconfig
                  1.0.1
                           2018-10-11 [1] CRAN (R 3.5.1)
##
    pkgload
                           2016-06-08 [1] CRAN (R 3.5.0)
##
    plyr
                   1.8.4
                           2015-07-13 [1] CRAN (R 3.5.0)
##
                  1.0.2
    prettyunits
##
    processx
                  3.2.0
                           2018-08-16 [1] CRAN (R 3.5.1)
##
                   1.2.0
                           2018-10-16 [1] CRAN (R 3.5.1)
    ps
                * 0.2.5
                           2018-05-29 [1] CRAN (R 3.5.0)
##
    purrr
##
    R.methodsS3
                   1.7.1
                           2016-02-16 [1] CRAN (R 3.5.0)
                   1.22.0
                           2018-04-22 [1] CRAN (R 3.5.0)
##
    R.oo
##
    R6
                  2.3.0
                           2018-10-04 [1] CRAN (R 3.5.1)
##
    Rcpp
                  0.12.19 2018-10-01 [1] CRAN (R 3.5.1)
##
                           2017-05-16 [1] CRAN (R 3.5.0)
    readr
                * 1.1.1
##
    readxl
                   1.1.0
                           2018-04-20 [1] CRAN (R 3.5.0)
                  2.0.1
                           2018-10-19 [1] CRAN (R 3.5.1)
##
    remotes
##
    rlang
                  0.3.0
                           2018-10-22 [1] CRAN (R 3.5.1)
    rmarkdown
##
                   1.10
                           2018-06-11 [1] CRAN (R 3.5.0)
##
                   1.3-2
                           2018-01-03 [1] CRAN (R 3.5.0)
    rprojroot
                  0.8
                           2018-10-02 [1] CRAN (R 3.5.1)
##
    rstudioapi
                * 0.4-13
                           2018-05-17 [1] CRAN (R 3.5.0)
##
    rtf
##
                           2016-06-17 [1] CRAN (R 3.5.0)
    rvest
                  0.3.2
##
    scales
                   1.0.0
                           2018-08-09 [1] CRAN (R 3.5.1)
##
    sessioninfo
                   1.1.0
                           2018-09-25 [1] CRAN (R 3.5.1)
                   1.2.4
                           2018-07-20 [1] CRAN (R 3.5.1)
##
    stringi
##
                * 1.3.1
                           2018-05-10 [1] CRAN (R 3.5.0)
    stringr
##
    testthat
                   2.0.1
                           2018-10-13 [1] CRAN (R 3.5.1)
                           2018-01-22 [1] CRAN (R 3.5.0)
##
    tibble
                * 1.4.2
##
    tidyr
                * 0.8.1
                           2018-05-18 [1] CRAN (R 3.5.0)
                   0.2.5
##
    tidyselect
                           2018-10-11 [1] CRAN (R 3.5.1)
                * 1.2.1
                           2017-11-14 [1] CRAN (R 3.5.0)
##
    tidyverse
##
    usethis
                   1.4.0
                           2018-08-14 [1] CRAN (R 3.5.1)
##
    withr
                  2.1.2
                           2018-03-15 [1] CRAN (R 3.5.0)
##
    xfun
                  0.3
                           2018-07-06 [1] CRAN (R 3.5.1)
##
    xm12
                   1.2.0
                           2018-01-24 [1] CRAN (R 3.5.0)
##
    yaml
                   2.2.0
                           2018-07-25 [1] CRAN (R 3.5.1)
##
  [1] /Users/Sungpil/Rlib
   [2] /usr/local/Cellar/r/3.5.1/lib/R/library
```

References

 $Bae, \ Kyun-Seop. \ 2018. \ \textit{BE: Bioequivalence Study Data Analysis.} \ \ https://CRAN.R-project.org/package=BE.$

Chow, Shein-Chung, and Jen-pei Liu. 2008. Design and Analysis of Bioavailability and Bioequivalence Studies (Chapman & Hall/Crc Biostatistics Series). Chapman; Hall/CRC.

Drug Evaluation, Center for, Food Research (CDER), U.S. Department of Health Drug Administration, and Human Services. 2001. Guidance for Industry Statistical Approaches to Establishing Bioequivalence.

https://www.fda.gov/downloads/drugs/guidances/ucm070244.pdf.

Hauschke, Dieter, Volker Steinijans, and Iris Pigeot. 2007. Bioequivalence Studies in Drug Development: Methods and Applications. Wiley.