电科院预测模型

1. 预测数据修正模型

使用数据: 供电预测表

方案:通过建模历史上实际观测数据(风电光伏供电)和预测数据(供电预测)之间的关系对预测数

据进行修正。

模型输入 原先预测数据 日期 预测日期 类型

输出 修正后的预测

1.1 光电

蓝线-真实值

红点-预测值

绿点-修正预测值

修正前后的预测值相对于真实值的误差

预测修正	0.019 (-0.034)	0.138 (-0.091)	0.07 (-0.047)
预测数据	0.053	0.23	0.117
误差指标	MSE	RMSE	MAE

1.2 风电

蓝线-真实值

红点-预测值

绿点-修正预测值

? 400epoch-风力-多项式回归-3次.pth _○

修正前后的预测值相对于真实值的误差

误差指标	MSE	RMSE	MAE
预测数据	0.036	0.19	0.143
预测修正	0.025 (-0.011)	0.158 (-0.033)	0.129 (-0.014)

1.3 供电

蓝线-真实值

红点-预测值

绿点-修正预测值

修正前后的预测值相对于真实值的误差

误差指标	MSE	RMSE	MAE
预测数据	0.306	0.553	0.547
预测修正	0.007 (-0.299)	0.082 (-0.471)	0.063 (-0.483)

2. 发电出力预测厂用率模型

使用数据:发电出力检测表

方案:使用回归模型,根据数据特点,使用多项式回归算法。多项式回归易于理解,适合数据量足够多的情况。

对四种发电类型:

- 1. 风电
- 2. 光伏
- 3. 火电燃煤

4. 水电有功

分别预测各发电类型发电出力值对应的厂用率的均值和方差,**输入**该类型发电出力值 **模型输出**对应的均值和置信区间。

如风电:

输入出力值为 x=5297.8105

预测厂用率区间为 -1.5161074% ~ 3.4591386%

对应预测均值的多项式为(y:厂用率,x:发电出力):

```
1 y = 0.1500510275363922 * x^0 + -0.2683112919330597 * x^1 + 0.48644891381263733 * x^2 + -0.25747960805892944 * x^3
```

2.1 风电

厂用率预测覆盖 fd: 96.72%

输入x= [[5297.8105]] 预测均值mean= [[0.97151554]] 预测方差std: [[-15.019588]]

预测区间: [[-1.5161074]] ~ [[3.4591386]]

预测均值的多项式: 0.1500510275363922 * x^0 + $-0.2683112919330597 * <math>x^1$ + $0.48644891381263733 * <math>x^2$ + $-0.25747960805892944 * <math>x^3$ 预测方差的多项式: exp($-2.614785671234131 * x^0$ + $-1.1063677072525024 * x^1$ + $-2.5934770107269287 * x^2$ + $-1.1127482652664185 * x^3$)

2.2 光伏

厂用率预测覆盖 gf: 95.69%

输入x= [[1253.867]] 预测均值mean= [[0.48373446]] 预测方差std: [[1.666812]]

预测区间: [[-1.9716333]] ~ [[4.5760145]]

预测均值的多项式: 0.11611491441726685 * x^0 + -0.6314900517463684 * x^1 + 1.070668339729309 * x^2 + -0.5502572059631348 * x^3 预测方差的多项式: $\exp(-2.8123841285705566 * x^0 + -1.4534473419189453 * x^1 + -1.5708119869232178 * x^2 + -1.2390637397766113 * x^3)$

2.3 火电燃煤

厂用率预测覆盖 hdrm: 99.75%

输入x= [[13109.719]] 预测均值mean= [[10.690131]] 预测方差std: [[9.468965]]

预测区间: [[9.283293]] ~ [[12.09697]]

预测均值的多项式: 0.9674301147460938 * x^0 + -0.9090405702590942 * x^1 + -0.33470386266708374 * x^2 + 0.6924334764480591 * x^3 预测方差的多项式: exp(-1.3111510276794434 * x^0 + 0.3933233618736267 * x^1 + 0.4173588752746582 * x^2 + -2.156473159790039 * x^3)

2.4 水电有功

厂用率预测覆盖 hdswz: 97.51%

输入x= [[607.2283]] 预测均值mean= [[7.105979]] 预测方差std: [[-52.022106]]

预测区间: [[4.6724806]] ~ [[11.97297]]

预测均值的多项式: 0.43699774146080017 * x^0 + $-0.04366454854607582 * <math>x^1$ + $-0.3149361312389374 * <math>x^2$ + $0.34983569383621216 * <math>x^3$ 预测方差的多项式: $exp(-1.4763108491897583 * <math>x^0$ + $-1.1087961196899414 * <math>x^1$ + $-2.4314024448394775 * <math>x^2$ + $1.3271512985229492 * <math>x^3$)

