

SEQUENCE LISTING

<110> Novozymes Biotech
Royer, John C
Moyer, Donna L
Yoder, Wendy T
Shuster, Jeffrey R

<120> Non-Toxic, Non-Pathogenic, Non-Pathogenic Fusarium Expression System

<130> 4216.260-US

<140> 09/461,537

<141> 1999-12-15

<150> 08/816,915

<151> 1997-03-13

<150> 08/726,105

<151> 1996-10-04

<150> 08/404,678

<151> 1995-03-15

<150> 08/269,449

<151> 1994-06-30

<160> 16

<170> PatentIn version 3.2

<210> 1

<211> 30

<212> DNA

<213> Fusarium oxysporum

<400> 1

tgcggatcca tggtaagtt cgcttccgtc

30

<210> 2

<211> 30

<212> DNA

<213> Fusarium oxysporum

<400> 2

gacctcgagt taagcatagg tgtcaatgaa

30

<210> 3

<211> 998

<212> DNA

<213> Fusarium oxysporum

<400> 3

atcatcaacc	actcttcact	cttcaactct	cctctcttgg	atatctatct	cttcaccatg	60
gtcaagttcg	cttccgtcgt	tgcacttgtt	gctcccctgg	ctgctgccgc	tcctcaggag	120
atccccaaaca	ttgttgttgg	cacttctgcc	agcgctggcg	actttccctt	catcggtgac	180
attagccgca	acgggtggccc	ctgggtgtgga	ggttctctcc	tcaacgcca	caccgtcttg	240
actgctgccc	actgcgtttc	cggatacgt	cagagcggtt	tccagattcg	tgctggcagt	300
ctgtctcgca	cttcttgttgg	tattacctcc	tcgcttcct	ccgtcagagt	tcaccctagc	360
tacagcggaa	acaacaacga	tcttgctatt	ctgaagctct	ctactccat	ccccctccggc	420
ggaaacatcg	gctatgctcg	cctggctgct	tccggctctg	accctgtcgc	tggatcttct	480
gccactgttg	ctggctgggg	cgctacact	gagggcggca	gctctactcc	cgtcaacacctt	540
ctgaaggta	ctgtccctat	cgtctctcg	gctacactg	gagctcagta	cggcacctcc	600
ccatcacca	accagatgtt	ctgtgctgg	gtttcttccg	gtggcaagga	ctcttgccag	660
ggtgacagcg	cgcccccatt	cgtcgacagc	tccaacactc	ttatcggtgc	tgtctttgg	720
ggtaacggat	gtgcccgacc	caactactct	ggtgtctatg	ccagcggtgg	tgctctccgc	780
tcttcattt	acacctatgc	ttaaatacct	tgttggaaagc	gtcgagatgt	tccttgaata	840
ttctcttagct	tgagtcttgg	atacgaaacc	tgtttgagaa	ataggtttca	acgagttaag	900
aagatatgag	ttgatttcag	ttggatctta	gtcctgggtt	ctcgtaatag	agcaatctag	960
atagccaaa	ttgaatatga	aatttgatga	aaatattc			998

<210> 4
 <211> 248
 <212> PRT
 <213> *Fusarium oxysporum*

<220>
 <221> PROPEP
 <222> (1)..(24)

<220>
 <221> mat_peptide
 <222> (25)..(248)

<400> 4

Met Val Lys Phe Ala Ser Val Val Ala Leu Val Ala Pro Leu Ala Ala
 -20 -15 -10

Ala Ala Pro Gln Glu Ile Pro Asn Ile Val Gly Gly Thr Ser Ala Ser

-5

-1 1

5

Ala Gly Asp Phe Pro Phe Ile Val Ser Ile Ser Arg Asn Gly Gly Pro
10 15 20

Trp Cys Gly Gly Ser Leu Leu Asn Ala Asn Thr Val Leu Thr Ala Ala
25 30 35 40

His Cys Val Ser Gly Tyr Ala Gln Ser Gly Phe Gln Ile Arg Ala Gly
45 50 55

Ser Leu Ser Arg Thr Ser Gly Gly Ile Thr Ser Ser Leu Ser Ser Val
60 65 70

Arg Val His Pro Ser Tyr Ser Gly Asn Asn Asn Asp Leu Ala Ile Leu
75 80 85

Lys Leu Ser Thr Ser Ile Pro Ser Gly Gly Asn Ile Gly Tyr Ala Arg
90 95 100

Leu Ala Ala Ser Gly Ser Asp Pro Val Ala Gly Ser Ser Ala Thr Val
105 110 115 120

Ala Gly Trp Gly Ala Thr Ser Glu Gly Gly Ser Ser Thr Pro Val Asn
125 130 135

Leu Leu Lys Val Thr Val Pro Ile Val Ser Arg Ala Thr Cys Arg Ala
140 145 150

Gln Tyr Gly Thr Ser Ala Ile Thr Asn Gln Met Phe Cys Ala Gly Val
155 160 165

Ser Ser Gly Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Ile
170 175 180

Val Asp Ser Ser Asn Thr Leu Ile Gly Ala Val Ser Trp Gly Asn Gly
185 190 195 200

Cys Ala Arg Pro Asn Tyr Ser Gly Val Tyr Ala Ser Val Gly Ala Leu
205 210 215

Arg Ser Phe Ile Asp Thr Tyr Ala

<210> 5
<211> 1206
<212> DNA
<213> *Fusarium oxysporum*

<400> 5
gaattcttac aaaccttcaa cagtggagac ttccgacacg acatatcgat cctttgaaga 60
tacggtgagc gtcagatcat gaatttcata catcctcacg tccttcctct ttcaaaactat 120
gcaaagtccct tctagtagct cccaaaacctt gatttacgcg ctctccaatc aaaagtacct 180
tccaaaagtg atctacctca gctctagatc agggcaccta ttgc当地aaaga tctacaagct 240
gaactagtaa gcatagcggg agaatatccc acatcattcg agaaggcctt cgtattagac 300
ctagtggtt cgacagaaaaa gataagacgg agatagatgc tatgtttgga aggttagggga 360
tggaaatagga tgcaacaggt attggcataa gcgatgcaat aggtgcatac agaaactagg 420
tgacagactg gccacagagg tgttatcctat gcaggtcgat gcgtgcgtta tcgcagggct 480
gctattgcgt ggtggtggct acaaaaagttc tatgtggttt ccagttcag aatattggc 540
cattgtgatt gatggcgcatt gaccgaatta tagcagtgaa ccccgccccag agtagtagtg 600
cagatgcgct ttgatgcttg gcgattcctc gggctaaata actccggttg gtctgtagaa 660
tgctgacgcg atgatccttc ggcattaatc gtatgtttt gggggggata agccgatcaa 720
agacacactg tagatcagct cttcgatgac tcttaccagc tttataataa cattcatctt 780
gaacgtcttt ttgcgtccagt gtttacctt cgtccttattt atccgtcata tccacagtg 840
tattggcgat agagttatcg actttcctca tcgggatact ggcccccgt gccaaggggcc 900
ttatatgccg atcactttca cgggagcatg ataaggtaa tgcttcttctt gaatgccgaa 960
ctagactacg gaacaacggg gcttagtacc agaaaggcag gtacgcctat tcgc当地aaactc 1020
cgaagataca accaagcaag cttatcgccg gatagtaacc agagaggcag gtaagaagac 1080
acaacaacat ccatacgat gtagattctc gaatataaaa ggaccaagat ggactattcg 1140
aagtagtcta tcatcaaccca ctcttcactc ttcaactctc ctctcttggaa tatctatctc 1200
ttcacc 1206

```
<210> 6
<211> 2148
<212> DNA
<213> Fusarium oxysporum
```

<400> 6
 gaattcttac aaaccttcaa cagtggagac ttccgacacg acatatcgat cctttgaaga 60
 tacggtgagc gtcagatcat gaatttcata catcctcactg tccttcctct ttcaaaactat 120
 gcaaagtccct tcttagtacct cccaaaactt gatttacgcg ctctccaatc aaaagtacct 180
 tccaaaagtgt atctacctca gctctagatc agggcaccta ttgcacaaga tctacaagct 240
 gaactagtaa gcatacgccc agaatatccc acatcattcg agaaggcctt cgtattagac 300
 ctagtggat cgacagaaaa gataagacgg agatagatgc tatgtttgga aggtagggga 360
 tggaaatagga tgcaacaggt attggcataa gcgatgcaat aggtgcacatc agaaaactagg 420
 tgacagactg gccacagagg tgtatcctat gcaggtcgat gcgtgcgtta tcgcaggcgt 480
 gctattgcgt ggtgggtggct acaaaaagttc tatgtggttt ccagttcag aatattgggc 540
 cattgtgatt gatggcgcatt gaccgaatta tagcagtgaa ccccgccccag agtagtagtg 600
 cagatgcgcct ttgatgcttg gcgattcctc gggctaaata actccggttg gtctgttagaa 660
 tgctgacgcg atgatccttc ggcattaatc gttagatctt gggggggata agccgatcaa 720
 agacacactg tagatcagct cttcgatgac tcttaccagc tttataataa cattcatctt 780
 gaacgtcttt ttcgtccagt gtttaccttt cgtccttattt atccgtcata tccacagtgt 840
 tattggcgat agagttatcg actttcctca tcgggataact ggccccctgct gccaaggggcc 900
 ttatatgcgg atcactttca cgggagcatg ataaggtaa tgcttcttctt gaatgccgaa 960
 taaaatacctt gtttggaaagcg tcgagatgtt ctttgaatat tctctagctt gagtcttgaa 1020
 tacgaaacctt gtttggaaa taggtttcaaa cgagttaaga agatatgagt tgatttcagt 1080
 tggatcttag tcctgggttgc tcgtaataga gcaatctaga tagccccaaat tgaatatgaa 1140
 atttgcgtt aatattcatt tcgatagaag caacgtgaaa tgtctagcag gacgaaaagt 1200
 agatcaaggc tgttatgttc cccgaccaac ctaccttgcgt gtcagtctgc gagtcgtgtg 1260
 cagtgaccca gaatgtatggc ttgacttgga cattttctgt ctatgaagta ttatgaacat 1320
 gaatatcggtt tcctcattat ctatgttggc agcctaaagt tttaccatat agcttagcaat 1380
 cagtcaagta tctgcgtatg aagggttgtt aagccaggac ggtatcagcg ttgaatattt 1440
 aaagaatgtt atgagataat caacattgac atgataaaag aaaaggggaa acaaattgtg 1500
 catatagtaa agacttcagg tcgacccctc aatagacata tgcgaaccga aaaccaacag 1560
 gatacaattt atagataagt ataactacag ttatctgtct gccgaacaaa tactcttttg 1620

tgaaacaaat	gaagagtaca	taagctacag	ttcctcagta	ggaacatcct	ttacaataac	1680
tcccttgact	tccttcagct	tctcaatagc	ctccaaagtc	atcggtctgc	catcaaggca	1740
cgtcagctct	ggttagcat	acagcagtgc	catacttacg	gaggatagga	agtgggagga	1800
atcgttcgtg	tctgcctcca	aaaatcgaca	ccagtgctt	tttgacgat	actgatatgg	1860
tggtaaagctt	gggagtcstat	tgttgacgtt	gcatcactta	cttaaggcacg	gtttcattcc	1920
tctgctgata	gtcctccaac	ttctcgaagt	cgtaaacgat	ggcctatagt	atcttattga	1980
gaaatatgtc	ttctcagaaa	attatatctt	gtttacctt	cggtccgcca	tggctgctaa	2040
aactgctggg	aaattcaaaa	gcmcagcaca	agcagcaaga	gtgatgggca	caacgtgata	2100
tgttgataaa	agcatcagta	tcgataagtt	ccactcagaa	acctgcag		2148

<210> 7
<211> 1060
<212> DNA
<213> Humicola insolens

<220>
<221> CDS
<222> (10)..(924)

<220>
<221> sig_peptide
<222> (10)..(72)

<220>
<221> mat_peptide
<222> (73)..(924)

<400> 7	ggatccaag	atg	cgt	tcc	ccc	ctc	ctc	ccg	tcc	gcc	gtt	gtg	gcc	gcc	51
	Met	Arg	Ser	Ser	Pro	Leu	Leu	Pro	Ser	Ala	Val	Val	Ala	Ala	
	-20							-15					-10		

ctg	ccg	gtg	ttg	gcc	ctt	gcc	gct	gat	ggc	agg	tcc	acc	cgc	tac	tgg	99
Leu	Pro	Val	Leu	Ala	Leu	Ala	Ala	Asp	Gly	Arg	Ser	Thr	Arg	Tyr	Trp	
-5					-1	1				5						

gac	tgc	tgc	aag	cct	tgc	tgc	ggc	tgg	gcc	aag	aag	gct	ccc	gtg	aac	147
Asp	Cys	Cys	Lys	Pro	Ser	Cys	Gly	Trp	Ala	Lys	Lys	Ala	Pro	Val	Asn	
10				15					20			25				

cag	cct	gtc	ttt	tcc	tgc	aac	gcc	aac	ttc	cag	cgt	atc	acg	gac	ttc	195
Gln	Pro	Val	Phe	Ser	Cys	Asn	Ala	Asn	Phe	Gln	Arg	Ile	Thr	Asp	Phe	
			30						35			40				

gac	gcc	aag	tcc	ggc	tgc	gag	ccg	ggc	ggt	gtc	gcc	tac	tgc	tgc	gcc	243
Asp	Ala	Lys	Ser	Gly	Cys	Glu	Pro	Gly	Gly	Val	Ala	Tyr	Ser	Cys	Ala	

45	50	55	
gac cag acc cca tgg gct gtg aac gac gac ttc gcg ctc ggt ttt gct Asp Gln Thr Pro Trp Ala Val Asn Asp Asp Phe Ala Leu Gly Phe Ala			291
60	65	70	
gcc acc tct att gcc ggc agc aat gag gcg ggc tgg tgc tgc gcc tgc Ala Thr Ser Ile Ala Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys			339
75	80	85	
tac gag ctc acc ttc aca tcc ggt cct gtt gct ggc aag aag atg gtc Tyr Glu Leu Thr Phe Thr Ser Gly Pro Val Ala Gly Lys Lys Met Val			387
90	95	100	105
gtc cag tcc acc agc act ggc ggt gat ctt ggc agc aac cac ttc gat Val Gln Ser Thr Ser Thr Gly Gly Asp Leu Gly Ser Asn His Phe Asp			435
110	115	120	
ctc aac atc ccc ggc ggc gtc ggc atc ttc gac gga tgc act ccc Leu Asn Ile Pro Gly Gly Val Gly Ile Phe Asp Gly Cys Thr Pro			483
125	130	135	
cag ttc ggc ggt ctg ccc ggc cag cgc tac ggc ggc atc tcg tcc cgc Gln Phe Gly Gly Leu Pro Gly Gln Arg Tyr Gly Ile Ser Ser Arg			531
140	145	150	
aac gag tgc gat cgg ttc ccc gac gcc ctc aag ccc ggc tgc tac tgg Asn Glu Cys Asp Arg Phe Pro Asp Ala Leu Lys Pro Gly Cys Tyr Trp			579
155	160	165	
cgc ttc gac tgg ttc aag aac gcc gac aat ccg agc ttc agc ttc cgt Arg Phe Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg			627
170	175	180	185
cag gtc cag tgc cca gcc gag ctc gtc gct cgc acc gga tgc cgc cgc Gln Val Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg			675
190	195	200	
aac gac gac ggc aac ttc cct gcc gtc cag atc ccc tcc agc agc acc Asn Asp Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Thr			723
205	210	215	
agc tct ccg gtc aac cag cct acc agc acc agc acc acg tcc acc tcc Ser Ser Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Ser Thr Ser			771
220	225	230	
acc acc tcg agc ccg cca gtc cag cct acg act ccc agc ggc tgc act Thr Thr Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr			819
235	240	245	
gct gag agg tgg gct cag tgc ggc ggc aat ggc tgg agc ggc tgc acc Ala Glu Arg Trp Ala Gln Cys Gly Gly Asn Gly Trp Ser Gly Cys Thr			867
250	255	260	265
acc tgc gtc gct ggc agc act tgc acg aag att aat gac tgg tac cat Thr Cys Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His			915

270

275

280

cag tgc ctg tagacgcagg gcagcttgag ggccttactg gtggccgcaa 964
Gln Cys Leu

cgaaatgaca ctcccaatca ctgtattagt tcttgcacat aatttcgtca tccctccagg 1024
gattgtcaca taaatgcaat qaggaacaat qaqtac 1060

<210> 8
<211> 305
<212> PRT
<213> *Humicola insolens*

<400> 8

Met Arg Ser Ser Pro Leu Leu Pro Ser Ala Val Val Ala Ala Leu Pro
-20 -15 -10

Val Leu Ala Leu Ala Ala Asp Gly Arg Ser Thr Arg Tyr Trp Asp Cys
 -5 -1 1 5 10

Cys Lys Pro Ser Cys Gly Trp Ala Lys Lys Ala Pro Val Asn Gln Pro
 15 20 25

Val Phe Ser Cys Asn Ala Asn Phe Gln Arg Ile Thr Asp Phe Asp Ala
30 35 40

Lys Ser Gly Cys Glu Pro Gly Gly Val Ala Tyr Ser Cys Ala Asp Gln
45 50 55

Thr Pro Trp Ala Val Asn Asp Asp Phe Ala Leu Gly Phe Ala Ala Thr
 60 65 70 75

Ser Ile Ala Gly Ser Asn Glu Ala Gly Trp Cys Cys Ala Cys Tyr Glu
80 85 90

Leu Thr Phe Thr Ser Gly Pro Val Ala Gly Lys Lys Met Val Val Gln
95 100 105

Ser Thr Ser Thr Gly Gly Asp Leu Gly Ser Asn His Phe Asp Leu Asn
110 115 120

Ile Pro Gly Gly Gly Val Gly Ile Phe Asp Gly Cys Thr Pro Gln Phe
125 130 135

Gly Gly Leu Pro Gly Gln Arg Tyr Gly Gly Ile Ser Ser Arg Asn Glu
140 145 150 155

Cys Asp Arg Phe Pro Asp Ala Leu Lys Pro Gly Cys Tyr Trp Arg Phe
160 165 170

Asp Trp Phe Lys Asn Ala Asp Asn Pro Ser Phe Ser Phe Arg Gln Val
175 180 185

Gln Cys Pro Ala Glu Leu Val Ala Arg Thr Gly Cys Arg Arg Asn Asp
190 195 200

Asp Gly Asn Phe Pro Ala Val Gln Ile Pro Ser Ser Ser Thr Ser Ser
205 210 215

Pro Val Asn Gln Pro Thr Ser Thr Ser Thr Ser Thr Ser Thr Thr
220 225 230 235

Ser Ser Pro Pro Val Gln Pro Thr Thr Pro Ser Gly Cys Thr Ala Glu
240 245 250

Arg Trp Ala Gln Cys Gly Asn Gly Trp Ser Gly Cys Thr Thr Cys
255 260 265

Val Ala Gly Ser Thr Cys Thr Lys Ile Asn Asp Trp Tyr His Gln Cys
270 275 280

Leu

<210> 9
<211> 876
<212> DNA
<213> Thermomyces lanuginosus

<400> 9
atgaggagct cccttgtgct gttctttgtc tctgcgtggc cggccttggc cagtcctatt 60
cgtcgagagg tctcgcagga tctgttaac cagttcaatc tctttgcaca gtattctgca 120
gccgcatact gcggaaaaaa caatgatgcc ccagctggta caaacattac gtgcacggga 180
aatgcctgcc ccgaggtaga gaaggcggat gcaacgttcc tctactcggt tgaagactct 240

ggagtggcg	atgtcacccg	cttccttgc	ctcgacaaca	cgaacaaatt	gatcgctc	300
tcttccgtg	gctctcggtc	catagagaac	tggatcgaa	atcttaactt	cgacttgaaa	360
gaaataaaatg	acatttgctc	cggctgcagg	ggacatgacg	gcttcacttc	gtcctggagg	420
tctgttagccg	atacgtaag	gcagaagggtg	gaggatgctg	tgagggagca	tcccgactat	480
cgcgtgggt	ttaccggaca	tagctgggt	ggtgcattgg	caactgttgc	cggagcagac	540
ctgcgtggaa	atgggtatga	tatcgacgtg	tttcatatg	gcccccccg	agtcggaaac	600
agggctttg	cagaattcct	gaccgtacag	accggcgaa	caacttacccg	cattacccac	660
accaatgata	ttgtccctag	actcccggc	cgcgaattcg	gttacagcca	ttctagccca	720
gagtaactgga	tcaaatctgg	aacccttgc	cccgtcaccc	gaaacgatat	cgtgaagata	780
gaaggcatcg	atgccaccgg	cggcaataac	cagcctaaca	ttccggatat	ccctgcgcac	840
ctatggtaact	tcgggtaat	tgggacatgt	ctttag			876

<210> 10

<211> 291

<212> PRT

<213> Thermomyces lanuginosus

<400> 10

Met	Arg	Ser	Ser	Leu	Val	Leu	Phe	Phe	Val	Ser	Ala	Trp	Thr	Ala	Leu
1				5					10					15	

Ala	Ser	Pro	Ile	Arg	Arg	Glu	Val	Ser	Gln	Asp	Leu	Phe	Asn	Gln	Phe
			20			25						30			

Asn	Leu	Phe	Ala	Gln	Tyr	Ser	Ala	Ala	Ala	Tyr	Cys	Gly	Lys	Asn	Asn
			35			40					45				

Asp	Ala	Pro	Ala	Gly	Thr	Asn	Ile	Thr	Cys	Thr	Gly	Asn	Ala	Cys	Pro
			50			55				60					

Glu	Val	Glu	Lys	Ala	Asp	Ala	Thr	Phe	Leu	Tyr	Ser	Phe	Glu	Asp	Ser
			65			70			75			80			

Gly	Val	Gly	Asp	Val	Thr	Gly	Phe	Leu	Ala	Leu	Asp	Asn	Thr	Asn	Lys
			85			90						95			

Leu	Ile	Val	Leu	Ser	Phe	Arg	Gly	Ser	Arg	Ser	Ile	Glu	Asn	Trp	Ile
			100			105						110			

Gly Asn Leu Asn Phe Asp Leu Lys Glu Ile Asn Asp Ile Cys Ser Gly
115 120 125

Cys Arg Gly His Asp Gly Phe Thr Ser Ser Trp Arg Ser Val Ala Asp
130 135 140

Thr Leu Arg Gln Lys Val Glu Asp Ala Val Arg Glu His Pro Asp Tyr
145 150 155 160

Arg Val Val Phe Thr Gly His Ser Leu Gly Gly Ala Leu Ala Thr Val
165 170 175

Ala Gly Ala Asp Leu Arg Gly Asn Gly Tyr Asp Ile Asp Val Phe Ser
180 185 190

Tyr Gly Ala Pro Arg Val Gly Asn Arg Ala Phe Ala Glu Phe Leu Thr
195 200 205

Val Gln Thr Gly Gly Thr Leu Tyr Arg Ile Thr His Thr Asn Asp Ile
210 215 220

Val Pro Arg Leu Pro Pro Arg Glu Phe Gly Tyr Ser His Ser Ser Pro
225 230 235 240

Glu Tyr Trp Ile Lys Ser Gly Thr Leu Val Pro Val Thr Arg Asn Asp
245 250 255

Ile Val Lys Ile Glu Gly Ile Asp Ala Thr Gly Gly Asn Asn Gln Pro
260 265 270

Asn Ile Pro Asp Ile Pro Ala His Leu Trp Tyr Phe Gly Leu Ile Gly
275 280 285

Thr Cys Leu
290

<210> 11
<211> 42
<212> DNA
<213> Fusarium oxysporum

<400> 11

gcacaccatg gtcgctggat ccatacccttg ttggaagcgt cg 42

<210> 12
<211> 56
<212> DNA
<213> *Fusarium oxysporum*

<400> 12
atcggagcat gcggtagccgt ttaaacgaat tcaggtaaac aagatataat tttctg 56

<210> 13
<211> 44
<212> DNA
<213> *Humicola insolens*

<400> 13
ctcttggata tctatctctt caccatgcgt tcctcccccc tcct 44

<210> 14
<211> 20
<212> DNA
<213> *Humicola insolens*

<400> 14
caatagaggt ggcagcaaaa 20

<210> 15
<211> 25
<212> DNA
<213> *Thermomyces lanuginosus*

<400> 15
atctatctct tcaccatgag gagct 25

<210> 16
<211> 21
<212> DNA
<213> *Thermomyces lanuginosus*

<400> 16
tagatagaga agtggtaactc c 21