ISEN LILLE – AP3

PHYSIQUE TD 3: MÉCANIQUE

EXERCICE 1: BILAN DES FORCES

Faire le bilan des forces appliquées sur les systèmes suivants. On indiquera le sens et la direction des forces sans calculer leur norme.

EXERCICE 2:

Déterminer les tensions des câbles dans les deux figures suivantes :

EXERCICE 3 : CHUTE DE GRÊLE

Les grêlons sont des particules de glace dont les chutes en très grand nombre depuis certains nuages constituent la grêle. On a mesuré expérimentalement leur vitesse à l'arrivée au sol (v_s). Cette vitesse varie, en fonction de la masse du grêlon, entre v_s =15 et v_s =100 km.h⁻¹.

On cherche à connaître le modèle mécanique permettant d'expliquer ces valeurs. Pour cela, on modélise le grêlon par une boule de glace (densité de la glace : $\rho_{glace} = 917 \, \mathrm{kg \cdot m}^{-3}$) de rayon $R = 5 \, \mathrm{mm}$ qui chute d'un nuage situe à une altitude $h = 1500 \, \mathrm{m}$.

On prendra $g=9.81\,\mathrm{m.s}^{-2}$. On prendra un axe Oz descendant tel qu'à t=0 : z=0 et v=0 . On teste alors trois modèles mécaniques différents :

- 1. On néglige les forces de frottement fluide dues à l'air.
 - 1.a. Déterminer v = f(t) et z = f(t).
 - 1.b. Calculer t_c la durée de la chute et en déduire v_s .
 - 1.c. Conclure sur la validité du modèle.
- 2. On considère une force de frottement fluide due à l'air de la forme $\vec{f} = -\alpha \vec{v}$ avec $\alpha = 6\pi R \eta_{air}$ où R est le rayon du grêlon et $\eta_{air} = 1,8 \cdot 10^{-5} \, \mathrm{kg. m}^{-1} \, . \mathrm{s}^{-1}$ est la viscosité de l'air.
 - 2.a. Etablir l'équation différentielle en v(t).
 - 2.b. Résoudre cette équation et donner v = f(t).
 - 2.c. Montrer que le grêlon ne peut dépasser une vitesse limite v_i que l'on calculera.
 - 2.d. Déterminer l'équation z=f(t).

- 2.e. La fonction z=f(t) est tracée sur le graphique de la figure ci-dessous. Déterminer une valeur approchée de t_c et en déduire v_s .
 - 2.f. Conclure sur la validité du modèle.

- 3. On considère une force de frottement fluide due à l'air de la forme $\vec{f} = -\beta v \vec{v}$ avec $\beta = 0,225 \pi R^2 \rho_{air}$ où R est le rayon du grêlon et $\rho_{air} = 1,6 \, \text{kg.m}^3$ est la densité de l'air.
 - 3.1 Établir l'équation différentielle en v=f(t).
 - 3.2 En posant $w(z)=v^2(z)$, montrer que l'équation précédente v=f(t) peut s'écrire : $\frac{1}{2}\frac{dw}{dz}+\frac{\beta}{m}w=g$

On rappelle ici que pour une fonction u=f(z(t)) : $\frac{du}{dt} = \frac{du}{dz} \frac{dz}{dt}$

- 3.3. Résoudre cette équation différentielle et en déduire l'équation v=f(z).
- 3.4. Montrer que le grêlon ne peut dépasser une vitesse limite v_i que l'on calculera.
- 3.5. Calculer v_s .
- 3.6. Conclusion.

Réponses :1) v_s=171,5m.s^(-1) ; 2) v_s=167m.s^(-1); 3) v_s=12,9m.s^(-1)