RNA-Seq Lab

BCB 5200 Introduction Bioinformatics I

Fall 2017

Tae-Hyuk (Ted) Ahn

Department of Computer Science Program of Bioinformatics and Computational Biology Saint Louis University

EST. 1818

How tophat works

Two Steps

- 1. Uses unspliced aligner Bowtie to map reads to reference genome
- 2. For unmapped reads in step 1
 - 1. It detects potential splice sites for introns
 - 2. It uses these candidate splice sites to correctly align multiexon-spanning reads

Tophat 2

BCB 5200 Intro Bioinfo

How tophat works: junctions

- From supplied annotation file (GFF) or list of junction coordinates
- Find splice junctions <u>without a reference</u> annotation:
 - By first mapping RNA-Seq reads to the genome, TopHat identifies potential exons
 - Using this initial mapping information, TopHat builds a database of possible splice junctions
 - then maps the reads against these junctions to confirm them

https://ccb.jhu.edu/software/tophat/manual.shtml

Tophat 1 vs Tophat 2

- TopHat2 can align <u>longer</u> reads (optimized for reads 75bp or longer)
- TopHat2 allowing for <u>variable-length indels</u> with respect to the reference genome.
- TopHat2 can align reads <u>across fusion breaks</u>

Kim et al. Genome Biology 2013, 14:R36

Gene fusion

Fusion genes are chimeric genes formed by two previously separated genes. They may be the products of chromosome structure changes such as insertion, deletion, inversion and translocation.

http://donglab.ecnu.edu.cn/databases/FusionCancer/

Tophat2 usage: input files

- Required input files
 - read file (fastq)
 - genome_index_base: indexed genome sequence
 - Download genome sequence
 - Generate genome index
- Optional input file
 - Genome annotation file (gff or gtf format)

Genome sequence file: where to get?

- Illumina iGenomes (recommended)
 - http://support.illumina.com/sequencing/sequencing_software/ igenome.html
- Ensemble
 - http://ensemblgenomes.org/info/access/ft

- NCBI genome
 - http://www.ncbi.nlm.nih.gov/genome/
- Organism specific databases/websites.

Genome annotation file

GFF/GTF File Format - Definition

- The GFF (General Feature Format) format
 - one line per feature
 - each containing 9 columns of data
 - plus optional track definition lines.
- GFF has many versions (GFF, GFF2, GFF3)
- GTF (General Transfer Format) identical to GFF2.
- Tophat supports both GTF and GFF3 (mostly GTF)

GFF/GTF File Format - Definition

- The GFF (General Feature Format) format
 - one line per feature
 - each containing 9 columns of data
 - plus optional track definition lines.
- GFF has many versions (GFF, GFF2, GFF3)
- GTF (General Transfer Format) identical to GFF2.
- Tophat supports both GTF and GFF3

GTF/GTF2 format

9 columns:

```
<seqname> <source> <feature> <start> <end> <score> <strand>
<frame> [attributes] [comments]
```

- seqname name of the chromosome or scaffold
- source program or database that generated this feature.
- feature Examples: "CDS", "gene", "transcript", and "exon".
- start The starting position of the feature in the sequence.
- end The ending position of the feature (inclusive).
- score A score between 0 and 1000.
- strand '+ '(forward) or '-' (reverse) or '.' (don't know/don't care).
- Frame reading frame '0', '1' or '2'
- attribute A semicolon-separated list of tag-value pairs, providing additional information about each feature.

Example of GTF2 format

```
AB000381 Twinscan
                               380
                                     401
                                                      gene id "001"; transcript id "001.1";
                  CDS
                                                   2 gene id "001"; transcript id "001.1";
AB000381 Twinscan
                  CDS
                               501
                                     650
                                                   2 gene id "001"; transcript id "001.1";
                                     707
AB000381 Twinscan CDS
                               700
                                                   0 gene id "001"; transcript id "001.1";
AB000381 Twinscan
                  start codon
                               380
                                     382
AB000381 Twinscan
                  stop codon
                               708
                                     710
                                                   0 gene id "001"; transcript id "001.1";
```

A simple example with 3 translated exons. Order of rows is not important.

Some annotation sources (e.g. Ensembl) add the gene_name attribute

```
gene_id "ENSBTAG00000020601"; transcript_id "ENSBTAT00000027448"; gene_name "ZNF366";
```

http://mblab.wustl.edu/GTF2.html

Generic Feature Format Version 3 (GFF3)

##gff-version 3.2.1 ##sequence-region ctg123	3 1 14	497228				GFF3 adds parent feature
		9000		+		· · · · · · · · · · · · · · · · · · ·
ctg123 . TF_binding_site 1	1000	1012		+	٠	ID=tfbs00001;Parent=gene00001
ctg123 . mRNA	1050	9000		+		ID=mRNA00001;Parent=gene00001;Name=F
ctg123 . mRNA	1050	9000		+		ID=mRNA00002;Parent=gene00001;Name=E
ctg123 . mRNA 1	1300	9000	٠	+	٠	ID=mRNA00003; Parent=gene00001; Name=E
ctg123 . exon	1300	1500		+		ID=exon00001;Parent=mRNA00003
ctg123 . exon	1050	1500		+		ID=exon00002;Parent=mRNA00001,mRNA00
ctg123 . exon	3000	3902		+		ID=exon00003;Parent=mRNA00001,mRNA00
ctg123 . exon	5000	5500		+		ID=exon00004;Parent=mRNA00001,mRNA00
ctg123 . exon	7000	9000	٠	+	٠	ID=exon00005; Parent=mRNA00001, mRNA00
ctg123 . CDS	1201	1500		+	0	ID=cds00001; Parent=mRNA00001; Name=ec
ctg123 . CDS	3000	3902		+	0	ID=cds00001; Parent=mRNA00001; Name=ec
ctg123 . CDS	5000	5500		+	0	ID=cds00001; Parent=mRNA00001; Name=ec
ctg123 . CDS	7000	7600	٠	+	0	ID=cds00001; Parent=mRNA00001; Name=ed
ctg123 . CDS	1201	1500		+	0	ID=cds00002; Parent=mRNA00002; Name=ec
ctg123 . CDS	5000	5500				ID=cds00002; Parent=mRNA00002; Name=ec
ctg123 . CDS	7000	7600	٠	+	0	ID=cds00002; Parent=mRNA00002; Name=ed
ctg123 . CDS	3301	3902		+	0	ID=cds00003; Parent=mRNA00003; Name=ec
ctg123 . CDS	5000	5500				
ctg123 . CDS	7000	7600	٠	+	1	ID=cds00003; Parent=mRNA00003; Name=ed
2	3391					
ctg123 . CDS	5000	5500		+	1	ID=cds00004; Parent=mRNA00003; Name=ec
ctg123 . CDS	7000	7600		+	1	ID=cds00004; Parent=mRNA00003; Name=ec

http://www.sequenceontology.org/gff3.shtml

GFF2 vs GFF3

- GFF2
 - two-level hierarchies transcript → exon
- GFF3
 - three-level hierarchy of gene → transcript → exon

http://gmod.org/wiki/GFF2

Conversion GFF3 To GTF

- Optional
- Use gffread (comes with the <u>Cufflinks</u> software suite)
 - \$ gffread my.gff3 -T -o my.gtf
- See gffread -h for more information

Download Prepare GTF/GFF file

- Download it from Illumina's iGenomes project (for model species)
 - http://support.illumina.com/sequencing/sequencing_software/ igenome.html

Or

- Download gff3 files from genome database,
 - Ensembl gnome
 - http://ensemblgenomes.org/

Tuxedo Genome Guided Transcriptome Assembly Workshop

- https://github.com/trinityrnaseq/
 RNASeq_Trinity_Tuxedo_Workshop/wiki/Tuxedo-Genome-Guided-Transcriptome-Assembly-Workshop
- The following details the steps involved in:
 - Aligning RNA-Seq reads to a genome using Tophat
 - Assembling transcript structures from read alignments using Cufflinks
 - Visualizing reads and transcript structures using IGV
 - Performing differential expression analysis using Cuffdiff
 - Expression analysis using CummeRbund

Building genome index using bowtie2-build

- Only has to be done once!
- bowtie2-build builds a Bowtie index from a set of DNA sequences.
- Generates 6 output files
 - name.1.bt2, name.2.bt2, name.3.bt2, name.4.bt2
 - name.rev.1.bt2, name.rev.2.bt2.
- First, prepare the 'genome.fa' file for tophat alignment:

Usage:

```
bowtie2-build [options]* <reference in> <bt2 base>
```

```
$ mkdir RNASeq_lab
$ cd RNASeq_lab
$ cp -R /public/ahnt/courses/bcb5200/RNASeq_lab/* .
$ bowtie2-build GENOME_data/genome.fa genome
```

Align reads and assemble transcripts for sample Sp_ds

Align reads using tophat:

```
$ mkdir RNASeq_lab
$ cd RNASeq_lab
$ cp -R /public/ahnt/courses/bcb5200/RNASeq_lab/* .
$ bowtie2-build GENOME_data/genome.fa genome
```

Rename the alignment (bam) output file according to this sample name:

```
$ mv tophat.Sp_ds.dir/accepted_hits.bam tophat.Sp_ds.dir/
Sp_ds.bam
```

Index this bam file for later viewing using IGV:

```
$ samtools index tophat.Sp_ds.dir/Sp_ds.bam
```

Reconstruct transcripts for this sample using Cufflinks:

Rename the cufflinks transcript structure output file according to this sample:

```
$ mv cufflinks.Sp_ds.dir/transcripts.gtf cufflinks.Sp_ds.dir/
Sp_ds.transcripts.gtf
```

Tophat2 options: example

- -p/--num-threads <int>
 - Use this many threads to align reads. The default is 1.
- -o/--output-dir <string>
 - The default is "./tophat out".
- -G/--GTF <GTF/GFF3 file>
 - gene model annotations
- -r/--mate-inner-dist <int>
 - expected (mean) inner distance between mate pairs. The default is 50bp.
- -N/--read-mismatches
 - Final read alignments having more than these many mismatches are discarded. The default is 2.

TopHat output

- accepted hits.bam
 - A list of read alignments in BAM format
- align_summary.txt
- deletions.bed
- insertions.bed
- junctions.bed
- prep reads.info
- unmapped.bam
- Logs folder

Running Cufflinks

Run cufflinks from the command line as follows:

```
cufflinks [options] <aligned_reads.(sam/bam)>
```

Cufflinks Input Files

- Required:
 - SAM/BAM files as input: must be sorted by reference position
- Optional
 - Genome sequence (fasta)
 - Genome annotation (gtf, gff)

Cufflinks General Options

```
-o/--output-dir
                            write all output files to this directory
               [default:
                            . / 1
-p/--num-threads
                            number of threads used during analysis
               [default: 1 ]
-G/--GTF
                            quantitate against reference transcript
              annotations
-g/--GTF-guide
                            use reference transcript annotation to guide
              assembly
-b/--frag-bias-correct
                            use bias correction - reference fasta
                  required
                                  [ default: NULL ]
-u/--multi-read-correct
                            use 'rescue method' for multi-reads (more
                          [ default: FALSE ]
              accurate)
```

Example command

```
$ cufflinks -o cufflinks_out/ -p 8 -u -b ens/genome.fa -G ens/
genome.gff3 tophat out/accepted hits.bam
```

What to use: g or G

- -g
 - does reference guided assembly that will use the GTF as a base, but <u>also look for novel transcripts</u>.
 - output will include <u>all reference transcripts</u> and <u>any novel genes and isoforms</u> that are assembled
- -G
 - make cufflinks <u>use only the annotated transcripts</u> in the GTF
 - It will <u>not</u> assemble novel transcripts

The differences: -g or -G

The differences: -g or -G

With -G

```
Missed exons: 0/12230 ( 0.0%)
Novel exons: 0/12350 ( 0.0%)
Missed introns: 0/5331 ( 0.0%)
Novel introns: 0/5331 ( 0.0%)
Missed loci: 0/6204 ( 0.0%)
Novel loci: 0/6203 ( 0.0%)
```

With -g

```
Missed exons: 0/12230 ( 0.0%)
Novel exons: 118/12976 ( 0.9%)
Missed introns: 0/5331 ( 0.0%)
Novel introns: 77/5455 ( 1.4%)
Missed loci: 0/6204 ( 0.0%)
Novel loci: 84/6212 ( 1.4%)
```

Cufflinks Output Files

- transcripts.gtf
 - This GTF file contains Cufflinks' assembled isoforms.
- genes.fpkm_tracking
 - This file contains the estimated isoform-level expression values (FPKM).
- isoforms.fpkm_tracking
 - This file contains the estimated gene-level expression values (FPKM).

Align reads and assemble transcripts for sample Sp_hs

```
$ tophat2 -I 1000 -i 20 --library-type fr-firststrand \
          -o tophat.Sp hs.dir genome \
          RNASEQ data/Sp hs.left.fq.gz RNASEQ data/Sp_hs.right.fq.gz
$ mv tophat.Sp hs.dir/accepted hits.bam tophat.Sp hs.dir/Sp hs.bam
$ samtools index tophat.Sp hs.dir/Sp hs.bam
$ cufflinks --no-update-check --overlap-radius 1 \
            --library-type fr-firststrand \
            -o cufflinks.Sp hs.dir tophat.Sp_hs.dir/Sp_hs.bam
$ mv cufflinks.Sp hs.dir/transcripts.gtf cufflinks.Sp hs.dir/
Sp hs.transcripts.gtf
```

Align reads and assemble transcripts for sample Sp_log

```
$ tophat2 -I 1000 -i 20 --library-type fr-firststrand \
           -o tophat.Sp log.dir genome \
          RNASEQ data/Sp log.left.fq.gz RNASEQ data/Sp_log.right.fq.gz
 $ mv tophat.Sp log.dir/accepted hits.bam tophat.Sp log.dir/Sp log.bam
 $ samtools index tophat.Sp log.dir/Sp log.bam
 $ cufflinks --no-update-check --overlap-radius 1 \
             --library-type fr-firststrand \
             -o cufflinks.Sp log.dir tophat.Sp_log.dir/Sp_log.bam
 $ mv cufflinks.Sp log.dir/transcripts.gtf cufflinks.Sp log.dir/
Sp log.transcripts.gtf
```

Align reads and assemble transcripts for sample Sp_log

```
$ tophat2 -I 1000 -i 20 --library-type fr-firststrand \
           -o tophat.Sp plat.dir genome \
          RNASEQ data/Sp plat.left.fq.qz RNASEQ data/
Sp plat.right.fq.qz
 $ mv tophat.Sp plat.dir/accepted hits.bam tophat.Sp plat.dir/
Sp plat.bam
 $ samtools index tophat.Sp plat.dir/Sp plat.bam
 $ cufflinks --no-update-check --overlap-radius 1 \
             --library-type fr-firststrand \
             -o cufflinks.Sp plat.dir tophat.Sp plat.dir/Sp plat.bam
 $ mv cufflinks.Sp plat.dir/transcripts.gtf cufflinks.Sp plat.dir/
Sp plat.transcripts.qtf
```

Merge separately assembled transcript structures into a cohesive set:

cuffmerge

```
$ echo cufflinks.Sp_ds.dir/Sp_ds.transcripts.gtf > assemblies.txt
$ echo cufflinks.Sp_hs.dir/Sp_hs.transcripts.gtf >> assemblies.txt
$ echo cufflinks.Sp_log.dir/Sp_log.transcripts.gtf >> assemblies.txt
$ echo cufflinks.Sp_plat.dir/Sp_plat.transcripts.gtf >> assemblies.txt
$ cuffmerge -s GENOME_data/genome.fa assemblies.txt
```

The merged set of transcripts should now exist as file 'merged_asm/merged.gtf'.

Cuffmerge output files

Cuffmerge produces a GTF file, merged.gtf that merges together the input assemblies.

```
Cufflinks
                                7619
                                        9274
                                                                         gene_id "XLOC_000006"; transcript_id "TCONS_00000006"; exon_number "1"; oId "CUFF.8.1"; tss id "TSS6";
                        exon
                                                                         gene id "XLOC 000007"; transcript id "TCONS 00000007"; exon number "1"; oId "CUFF.10.1"; tss id
        Cufflinks
                                11784
                                        12994
        Cufflinks
                                        14555
                                                                         gene id "XLOC 000008"; transcript id "TCONS 00000008"; exon number "1"; oId "CUFF.11.1"; tss id "TSS8";
                                13665
                        exon
                                                                         gene_id "XLOC_000009"; transcript_id "TCONS_00000009"; exon_number "1"; oId "CUFF.12.1"; tss_id "TSS9";
Ι
        Cufflinks
                                15855
                                        16226
                        exon
        Cufflinks
                                                                         gene_id "XLOC_000010"; transcript_id "TCONS_00000010"; exon_number "1"; oId "CUFF.13.1"; tss_id
                        exon
                                18042
                                        18306
                                                                         gene id "XLOC 000010"; transcript id "TCONS 00000010"; exon number "2"; oId "CUFF.13.1"; tss id "TSS10";
Ι
        Cufflinks
                        exon
                                18349
                                        18974
                                                                         gene id "XLOC 000011"; transcript id "TCONS 00000011"; exon number "1"; oId "CUFF.14.1"; tss id "TSS11";
Ι
        Cufflinks
                                20824
                                        21015
                        exon
        Cufflinks
                                21381
                                        22076
                                                                         gene id "XLOC 000012"; transcript id "TCONS 00000012"; exon number "1"; oId "CUFF.15.1"; tss id
                        exon
        Cufflinks
                                                                         gene id "XLOC 000012"; transcript id "TCONS 00000012"; exon number "2"; oId "CUFF.15.1"; tss id
                        exon
                                22132
                                        23050
                                                                         gene id "XLOC 000013"; transcript id "TCONS 00000013"; exon number "1"; oId "CUFF.18.1"; tss id "TSS13";
Ι
        Cufflinks
                        exon
                                28738
                                        29227
                                                                         gene id "XLOC 000013"; transcript id "TCONS 00000013"; exon number "2"; oId "CUFF.18.1"; tss id "TSS13";
Ι
        Cufflinks
                                29286
                                        29657
                        exon
                                                                         gene id "XLOC 000014"; transcript id "TCONS 00000014"; exon number "1"; oId "CUFF.19.1"; tss id
        Cufflinks
                        exon
                                29764
                                        31069
        Cufflinks
                                32034
                                        33012
                                                                         gene id "XLOC 000015"; transcript id "TCONS 00000015"; exon number "1"; oId "CUFF.21.1"; tss id
                        exon
        Cufflinks
                        exon
                                33835
                                        34978
                                                                         gene_id "XLOC_000016"; transcript_id "TCONS_00000016"; exon_number "1"; oId "CUFF.22.1"; tss_id "TSS16";
                                                                         gene id "XLOC 000017"; transcript id "TCONS 00000017"; exon number "1"; oId "CUFF.24.1"; tss id "TSS17";
        Cufflinks
                                39416
                                        39848
                        exon
                                                                         gene id "XLOC 000017"; transcript id "TCONS 00000017"; exon number "2"; oId "CUFF.24.1"; tss id "TSS17";
        Cufflinks
                        exon
                                39899
                                        40072
                                                                         gene id "XLOC 000018"; transcript id "TCONS 00000018"; exon number "1"; oId "CUFF.25.1"; tss id
        Cufflinks
                                40795
                                        41489
Ι
        Cufflinks
                                44644
                                        45468
                                                                         gene id "XLOC 000019"; transcript id "TCONS 00000019"; exon number "1"; oId "CUFF.28.1"; tss id "TSS19";
                        exon
        Cufflinks
                                50946
                                        52240
                                                                         gene_id "XLOC_000020"; transcript_id "TCONS_00000020"; exon_number "1"; oId "CUFF.31.1"; tss_id "TSS20";
                        exon
                                                                         gene id "XLOC 000020"; transcript id "TCONS 00000020"; exon number "2"; oId "CUFF.31.1"; tss id "TSS20";
        Cufflinks
                                52318
                                        53858
                        exon
                                                                         gene id "XLOC 000021"; transcript id "TCONS 00000021"; exon number "1"; oId "CUFF.32.1"; tss id
        Cufflinks
                                55059
                                        56308
        Cufflinks
                                56373
                                        57736
                                                                         gene id "XLOC 000022"; transcript id "TCONS 00000022"; exon number "1"; oId "CUFF.33.1"; tss id
                        exon
        Cufflinks
                                62961
                                        63862
                                                                         gene_id "XLOC_000023"; transcript_id "TCONS_00000023"; exon_number "1"; oId "CUFF.36.1"; tss_id
                        exon
        Cufflinks
                                        69821
                                                                              id "XLOC 000024"; transcript id "TCONS 00000024"; exon number "1"; oId "CUFF.38.1"; tss id
                        exon
```

How do you find novel transcripts or transcripts that are different from reference annotation from the assembled transcript file?

Cuffcompare

cuffcompare

```
$ cuffcompare merged_asm/merged.gtf -r GENOME_data/genes.gff3 -o
cuffcmp
$ mkdir cuffcompare
$ mv cuffcmp.* ./cuffcompare/
```

The merged set of transcripts should now exist as file 'merged_asm/merged.gtf'.

- Compare the <u>assembled</u> (and merged) transcripts to the <u>reference</u> genome.
- This is not necessary if you only used reference annotations (use –G option for cufflinks) since all samples will share the same transcripts.
- If you use –g option for cufflinks, or did not use annotation file for cufflinks, Cuffcompare help you to find differences in transcripts (for novel transcripts, different transcript boundaries, alternative TSS)

Cuffcompare output files

- <outprefix>.stats
 - Various statistics related to the accuracy of the transcripts in each sample when compared to the reference annotation data
- <outprefix>.combined.gtf
 - The "union" of all transfrags in all assemblies.
- <cuff_in>.refmap
 - This tab-delimited file lists, for each reference transcript, which Cufflinks transcripts either fully or partially match it
- <cuff_in>.tmap
 - This tab-delimited file lists the most closely matching reference transcript for each Cufflinks transcript
- <outprefix>.tracking
 - This file matches transcripts between samples

<outprefix>.stats

```
# Cuffcompare v2.2.1 | Command line was:↓
#cuffcompare -r ens/genome.gff3 cuffmerge out/tophat ens g/merged.gtf -o cuffmerge out/t
#4
#= Summary for dataset: cuffmerge out/tophat ens g/merged.gtf :↓
     Ouerv mRNAs :
                    8088 in 5915 loci (3041 multi-exon transcripts)↓
           (908 multi-transcript loci, ~1.4 transcripts per locus)↓
                    6905 in 6204 loci (2531 multi-exon)↓
# Reference mRNAs :
# Super-loci w/ reference transcripts: 5527↓
 -----| Sn | Sp | fSn | fSp ↓
      Base level: 100.0 96.7 - - ↓
     Exon level: 94.2 83.6 94.6 84.0
     Intron level: 100.0 86.2 100.0 86.8↓
Intron chain level: 81.2 67.5 100.0 94.2
 Transcript level: 95.7 81.7 96.0 81.9\
     Locus level: 94.3 94.7 100.0 97.3↓
    Matching intron chains: 2054↓
                                                   Various statistics related to the
            Matching loci: 5849↓
                                                   accuracy of the transcripts in
                                                   each sample when compared to
        Missed exons: 0/12237 ( 0.0%)\downarrow
        Novel exons: 422/13783 ( 3.1%)\downarrow
                                                   the reference annotation data
      Missed introns: 0/5331 ( 0.0%)\downarrow
       Novel introns: 574/6184 ( 9.3%)↓
         Missed loci: 0/6204 ( 0.0%)↓
          Novel loci: 159/5915 ( 2.7%)↓
Total union super-loci across all input datasets: 5915 \downarrow
```

IGV

 View the reconstructed transcripts and the tophat alignments in IGV

```
$ igv.sh -g `pwd`/GENOME_data/genome.fa \
  `pwd`/merged_asm/merged.gtf,`pwd`/GENOME_data/genes.bed,`pwd`/
tophat.Sp_ds.dir/Sp_ds.bam,`pwd`/tophat.Sp_hs.dir/Sp_hs.bam,`pwd`/
tophat.Sp_log.dir/Sp_log.bam,`pwd`/tophat.Sp_plat.dir/Sp_plat.bam
```


Identify differentially expressed transcripts using Cuffdiff

```
$ cuffdiff --no-update-check --library-type fr-firststrand \
    -o diff_out -b GENOME_data/genome.fa \
    -L Sp_ds,Sp_hs,Sp_log,Sp_plat \
    -u merged_asm/merged.gtf \
    tophat.Sp_ds.dir/Sp_ds.bam \
    tophat.Sp_hs.dir/Sp_hs.bam \
    tophat.Sp_log.dir/Sp_log.bam \
    tophat.Sp_log.dir/Sp_log.bam \
    tophat.Sp plat.dir/Sp plat.bam
```

Examine the output files generated in the diff_out/ directory.

Study transcript expression and analyze DE using CummeRbund

Homework: Follow the CummeRbund part and report the results.

https://github.com/trinityrnaseq/
 RNASeq_Trinity_Tuxedo_Workshop/wiki/Tuxedo-Genome-Guided-Transcriptome-Assembly-Workshop