Активное обучение

Понизова Вероника Сергеевна Федяев Игорь Павлович

Санкт-Петербургский Государственный Университет Прикладная математика и информатика Статистическое моделирование.

Санкт-Петербург 2019г.

<u>Пост</u>ановка задачи

Пусть $\mathcal{X}-$ множество объектов, $\mathcal{Y}-$ множество ответов, $y:\mathcal{X}\to\mathcal{Y}-$ неизвестная зависимость.

Задача: найти функцию $a:\mathcal{X}\to\mathcal{Y}$, приближающую y на всем множестве \mathcal{X} (обучить предсказательную модель), когда в выборке есть неразмеченные объекты, при условии, что получение ответов y_i стоит дорого.

Примеры:

- сбор асессорских данных для информационного поиска структурно сложных объектов;
- планирование экспериментов в естественных науках (комбинаторная химия);
- оптимизация трудновычислимых функций (поиск в пространстве гиперпараметров);
- управление ценами и ассортиментами в торговых сетях.

<u>Пост</u>ановка задачи

Вход: начальная размеченная выборка $X^l = (x_i, y_i)_{i=1}^l$; Выход: модель a и размеченная выборка $(x_i, y_i)_{i=1}^{l+k} = X^k \cup X^l$; Схема: обучить модель a по начальной выборке $(x_i, y_i)_{i=1}^l$; пока остаются неразмеченные объекты x_{l+1}, \ldots, x_{l+k} :

- lacktriangle выбрать неразмеченный объект x_i ;
- **②** узнать для него ответ y_i (спросить у «оракула»);
- lacksquare дообучить модель a ещё на одном примере $(x_i,y_i).$

Цель: за фиксированное число запрошенных у оракула ответов k достичь как можно лучшего качества модели.

Примеры ситуаций, где применимо активное обучения:

- \bullet Отбор объектов из пула: какой следующий x_i выбрать из множества X^k ?
- ullet Синтез объектов: на каждой i-м шаге строить оптимальный объект $x_i;$
- ullet Отбор объектов из потока: для каждого приходящего x_i решать, стоит ли узнавать y_i .

Постановка задачи

Функционал качества модели $a(x,\theta)$ с параметром θ :

$$\sum_{i=1}^{l+k} C_i \mathcal{L}(\theta; x_i, y_i) \to \min_{\theta},$$

где $\mathscr{L}-$ функция потерь, C_i- стоимость информации $y_i.$

Пример: в планировании эксперимента в естественных науках для получения ответа оракула необходимо провести ту или иную реакцию, реакции имеют разные сложности \Rightarrow величина C_i непосредственно зависит от этой сложности

Почему активное обучение быстрее пассивного: пример

Рассмотрим задачу с пороговым классификатором: $x_i \sim U(-1,1), \quad y_i = [x_i > 0], \quad a(x,\theta) = [x > \theta].$

Оценим число шагов для определения θ с точностью 1/k:

- наивная стратегия: на каждом шаге выбирать $x_i \sim U(X^k)$, трудоемкость — O(k)
- ullet бинарный поиск: выбирать x_i , ближайший к середине зазора между классами $\frac{1}{k}\left(\max_{u_i=0}(x_j)+\min_{u_i=1}(x_j)\right)$, трудоемкость $O(\log k)$.

Сэмплирование по неуверенности (uncertainty sampling)

Задача многоклассовой классификации:

$$a(x) = \arg \max_{y \in Y} P(y|x).$$

Идея: выбирать x_i с наибольшей неопределенностью $a(x_i)$. Для всех $x\in X^k$ обозначим $p_j(x),\ j=1,\ldots,|Y|$ — ранжированные по убыванию вероятности $P(y|x),\ y\in Y$.

• Принцип наименьшей достоверности (least confidence):

$$x_i = \arg\min_{u \in X^k} p_1(u).$$

• Принцип наименьшей разности отступов (margin sampling):

$$x_i = \arg\min_{u \in X^k} (p_1(u) - p_2(u)).$$

• Принцип максимума энтропии (maximum entropy):

$$x_i = \arg\min_{u \in X^k} \sum_{j=1}^{|Y|} p_j(u) \ln p_j(u).$$

Сэмплирование по несогласию в комитете (query by committee)

Идея: выбирать x_i с наибольшей несогласованностью комитета моделей $a_t(x_i) = \arg\max_{y \in Y} P_t(y|x), \ t = 1, \dots, T.$

• Принцип максимума энтропии: выбираем x_i , на котором $a_t(x_i)$ дают максимально различные ответы:

$$x_i = \arg\min_{u \in X^k} \sum_{y \in Y} \hat{p}(y|u) \ln \hat{p}(y|u),$$

где
$$\hat{p}(y|u) = \frac{1}{T} \sum_{t=1}^{T} [a_t(u) = y].$$

• Принцип максимума средней KL-дивергенции: выбираем x_i , на котором $P_t(y|x_i)$ максимально различны:

$$x_i = \arg \max_{u \in X^k} \sum_{t=1}^T \mathsf{KL}(P_t(y|u)||\bar{P}(y|u)),$$

где $ar{P}(y|u) = rac{1}{T} \sum_{t=1}^T P_t(y|u)$ — консенсус комитета.

Напоминание: $\mathsf{KL}(q||p) = -\int q(x)\log\frac{p(x)}{q(x)}dx.$

Ожидаемое изменение модели (expected model change)

Параметрическая модель многоклассовой классификации:

$$a(x,\theta) = \arg\max_{y \in Y} P(y|x,\theta).$$

Идея: выбирать x_i , который в методе стохастического градиента привёл бы к наибольшему изменению модели.

Для каждого $u\in X^k$ и $y\in Y$ оценим длину градиентного шага в пространстве параметра θ при дообучении модели на (u,y). Обозначим $\nabla_{\theta}\mathcal{L}(\theta;u,y)$ — вектор градиента функции потерь.

• Принцип максимума ожидаемой длины градиента:

$$x_i = \arg \max_{u \in X^k} \sum_{y \in Y} P(y|u, \theta) || \nabla_{\theta} \mathcal{L}(\theta; u, y)||.$$

Ожидаемое сокращение ошибки (expected error reduction)

Идея: выбирать x_i , который после дообучения даст выборке наиболее уверенную классификацию неразмеченной выборки X^k .

Для каждого $u \in X^k$ и $y \in Y$ обучим модель, добавив к размеченной обучающей выборке X^l пример (u,y) :

$$a_{uy}(x) = \arg \max_{z \in Y} P_{uy}(z|x).$$

Всего таких моделей: $|X^k||Y|$.

• Принцип максимума уверенности на неразмеченных данных:

$$x_i = \arg \max_{u \in X^k} \sum_{y \in Y} P(y|u) \sum_{j=l+1}^{l+k} P_{uy}(a_{uy}(x_j)|x_j).$$

• Принцип минимума энтропии неразмеченных данных:

$$x_i = \arg\max_{u \in X^k} \sum_{y \in Y} P(y|u) \sum_{j=l+1}^{l+k} \sum_{z \in Y} P_{uy}(z|x_j) \log P_{uy}(z|x_j).$$

Сокращение дисперсии (Variance reduction)

Идея: выбирать x_i , который после дообучения модели даст наименьшую оценку дисперсии предсказания.

Для примера рассмотрим линейную регрессию: $Y = XB + \mathcal{E}$, $Y \in \mathbb{R}^n$, $B \in \mathbb{R}^m$, $X \in \mathbb{R}^{n \times m}$, $\mathcal{E} = (\epsilon_1, \dots, \epsilon_n)^\mathrm{T} \in \mathbb{R}^n$, $\forall i \ \mathbb{E} \epsilon_i = 0, \ \mathbb{D} \epsilon_i = \sigma^2$, ϵ_i — независимы.

Знаем: $\mathbb{D}\hat{Y}_j = \mathbb{D}(X_j^{\mathrm{T}}\hat{B} + \mathcal{E}) = \sigma^2 + \frac{\sigma^2}{n} + \frac{\sigma^2}{n}(Z - \bar{X})^{\mathrm{T}}\mathrm{S}_{xx}^{-1}(Z_j - \bar{X})$, где $X_j = (1, Z_j)$, — вектор j—го индивида, S_{xx} — «выборочная ковариационная матрица» центрированных данных, \bar{X} — вектор средних. Тогда:

$$x_i = \arg\min_{u \in X^k} \mathbb{D}\hat{Y}_j.$$