

Programação em Sistemas Distribuídos MEI-MI-MSI 2018/19

4. Advanced Distributed Systems Services

Prof. António Casimiro

Distributed Systems Services

- Distributed File Services
 - (NFS,AFS,CODA,GFS)
- Name and Directory Services
 - -(X.500)
- Time Services
 - (NTP)

Name and Directory Services

Name and directory services

- Name and directory services:
 - To identify services and users independently from their localization: dynamically establish a binding between name and localization (address)
 - Directory services more information than just names: they allow imprecise and/or functional queries (e.g., find all laser printers, find PCs running Linux)

Internet DNS

- Name service, which maps domain and sub-domain names in IP addresses; hierarchical service
- Example: gcc.alunos.di.fc.ul.pt resolves to an address by iteratively querying the involved domain and sub-domain servers:
 .pt →.ul → .fc → .di → gcc

X.500 names

- A name serves to refer to services and users
- A name must be composable and unique
- X.500 name:
 - Distinguished Name (DN)
 - Ordered sequence of Relative Distinguished Names (RDN)
 - Relative Distinguished Name (RDN)
 - Non-ordered set of attributes, with well-defined types
 - Names with context (e.g., countries) chosen from normalized codes whenever possible (e.g., country codes with two digits ISO 3166)
- Name construction:
 - Attribute definition
 - Example: C (country); O (organis.); U (org. unit); CN (name)
 - RDNs are defined by giving values to each attribute
 - Example: C=PT; O=ULFacCien; U=DpInf; CN=Beto
 - Then DNs can be constructed
 - Example: DN Beto na FCUL → C=PT/O=ULFacCien/U=DpInf/CN=Beto

Name organization in X.500

- DNs can be organized in a global tree:
 - RDNs are assigned by hierarchically organized agents
 - Each agent ensures that assigned names are not ambiguous and are unique in its area
 - Then, the name is composed and thus scalable, and unique in the entire system (because it is composed by locally unique names)
- DNs usually represented in a friendly way, hiding attributes
 - Example: C=PT/O=ULFacCien/U=DpInf/CN=Beto → PT.ULFacCien.DpInf.Beto
- This organization builds on the X.500 directory service
 - The tree is the Directory Information Tree (DIT)
 - The agents in each node are Directory Service Agents (DSA)
 - DSAs act over a Directory Information Base (DIB)

X.500 directory service Directory information tree

X.500 directory service Directory information tree

X.500 directory service DNs tree

X.500 directory service Mapping of DNs on DSAs

X.509 authentication service

- Part of the X.500 CCITT standard
- Defines a framework for authentication services
- A Certificate Authority (CA) issues certificates binding a public key to a DN (X.500)
- A directory may contain public key certificates
 - Containing user's public keys
 - Signed by a certifying entity
- Also defines authentication protocols
- Uses public key cryptography and digital signatures
 - Normalized algorithms, but RSA is recommended
 - May be used in many contexts: email security, IP security, Web security

Structure of a X.509 certificate

X.509 certificate Example


```
Certificate:
   Data:
      Version: 1 (0x0)
       Serial Number: 7829 (0x1e95)
       Signature Algorithm: md5WithRSAEncryption
       Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
               OU=Certification Services Division,
               CN=Thawte Server CA/emailAddress=server-certs@thawte.com
       Validity
           Not Before: Jul 9 16:04:02 1998 GMT
           Not After: Jul 9 16:04:02 1999 GMT
       Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,
                OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org
       Subject Public Key Info:
           Public Key Algorithm: rsaEncryption
           RSA Public Key: (1024 bit)
               Modulus (1024 bit):
                   00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
                   (...)
               Exponent: 65537 (0x10001)
   Signature Algorithm: md5WithRSAEncryption
       93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
       (...)
```

Distributed Systems Services

- Distributed File Services
 - (NFS,AFS,CODA,GFS)
- Name and Directory Services
 - -(X.500)
- Time Services
 - **(NTP)**

Global Time Services

Global Time Services

Case study: Network Time Protocol

Ciências ULisboa

- Network Time Protocol (NTP):
 - Standard Internet time service
- Some characteristics:
 - Provides UTC time
 - Resilient to connectivity problems
 - Some protection against attacks (e.g., spoofing) by authentication
 - Average accuracies in the order of the tens of milliseconds

Global Time Services Case study: Network Time Protocol

- NTP Time Synchronization Service:
 - Hybrid hierarchical tree structure
 - Different layers (strata) use different synchronization schemes
 - Clock servers organized in descending order of intrinsic accuracy in the hierarchy (degrades from top to bottom)
- Strata hierarchy:
 - Stratum 1 (top) primary servers: directly synchronized to external UTC-compliant time references (e.g., GPS, atomic time sources)
 - Stratum 2 to n e.g. stratum 2, secondary servers: directly synchronized to n-1 stratum server time references

Global Time Services Case study: Network Time Protocol

Several synchronization modes

– Multicast:

 Simplest and least effective, works acceptably inside high-speed (low-delay) LAN networks with multicast (e.g. datacentres): one more or more servers, sync'd from stratum above, simply multicast their time to servers inside infrastructure LANs

– Round-trip:

 Most generic, used at the edges (lower strata): inspired by Cristian's master-slave round-trip clock synchronization protocol, probabilistically achieves better synchronization

– Symmetric:

 Used at upper strata, whenever it is desired to improve the accuracy: by symmetric message exchanges, whereby servers of the same stratum or adjoining strata improve their synchronization through agreement-based adjustments

NTP

NTP clock synchronization Round-trip synchronization

- External synchronization:
 - Round-trip: based on reading from a master clock

Problem:

- When the response (T) arrives from the server, the time at S "was T"
- How to adjust P's clock @ts, with the best estimate of the time it is at S, @ts ?!

NTP clock synchronization Round-trip synchronization

- Adjusting clocks:
 - T_f and T_b not known
 - Measure round-trip T_{rd} at P: $T_{rd} = C_p(t_s) C_p(t_q)$
 - Estimate t_r to be at midpoint, so estimate T_b,T_f ≈T_{rd}/2
 - Adjust local clock C_P to received timestamp plus T_b:

$$C_p(t_s) = C_Q(t_r) + T_b = C_Q(t_r) + T_{rd}/2$$

 But round-trips are seldom symmetric, which causes an error when estimating C_p(t_s)

- Can we bound the error?
- Is it possible to minimize it?

NTP clock synchronization Estimating accuracy error

Ciências ULisboa

- Error depends on the symmetry of the roundtrip transmission
- Symmetric round-trip: excellent accuracy
- But we don't know when, except when
 T_{rd}=2T_{Dmin} (minimum tx delay, known)
- We use an indirect technique

Foundation:

- Boundaries of arrival of P time request at Q, and departure of Q reply:
- t_{min1} : $t_q + T_{Dmin}$
- t_{min2} : t_s T_{Dmin}
- When the timing msg arrives (@t_s), C_Q(t)
 contained therein marks an instant between:
- $\quad \mathbf{T_{early}} = \mathbf{t_q} + \mathbf{T_{Dmin}}$
- $\quad \mathbf{T_{late}} = \mathbf{t_q} + \mathbf{T_{rd}} \mathbf{T_{Dmin}}$
- Accuracy error when C_P adjusted to the midpoint of the round-trip interval:

$$\varepsilon \le \pm (T_{late} - T_{early})/2 = \pm (T_{rd}/2 - T_{Dmin})$$

NTP clock synchronization Minimizing accuracy error

- At the end of each roundtrip pair of msgs exchanged, A knows its own timestamps (T_{i-3}, T_i) and B's timestamps (T_{i-2}, T_{i-1})
- A computes <0,d>: an estimate of the offset of A and B clocks, and of the total transmission delay
- Several tries are performed, and from the last n <0,d> pairs, the offset o_i of the pair having the minimum delay d_i is chosen for the clock adjustment
- Also, A talks to more than one server B and performs peer-selection based on: lower filter dispersion; lower stratum n_r

Global time services

Case study: CesiumSpray

Ciências ULisboa

- Large-scale
- Based on GPS
- Highly precise
- Highly accurate
- Scalability due to hierarchical structure:
 - Wireless on global part
 - LAN on local part

CesiumSpray Hybrid *a posteriori* clock synchronization

Hybrid:

- Internal/external
- a posteriori/GPS

Precision:

- Candidate virtual clocks started simultaneously
- Agreement on clock made a posteriori (residual interference on precision)

Accuracy:

- Vector with clock readings
- Selection of best clock:
 - Mean value (internal sync)
 - GPS-clock (external sync)

