1 Let $\vec{x} = [1 \ 2 \ 3]^T$, $\mathcal{B} = \{[1 \ 0 \ 0]^T$, $[1 \ 1 \ 0]^T$, $[1 \ 1 \ 1]^T$, and $\mathcal{C} = \{[1 \ 1 \ 0]^T$, $[0 \ 1 \ 1]^T$, $[1 \ 0 \ 1]^T$.

1.a Find $[\vec{x}]_{\mathcal{B}}$

Solution:
$$[\vec{x}]_{\mathcal{B}} = [-1 \ -1 \ 3]^T$$

Proof. By inspection: $\vec{x} = (-1)[\ 1\ 0\ 0\]^T + (-1)[\ 1\ 1\ 0\]^T + (3)[\ 1\ 1\ 1\]^T[\vec{x}]_{\mathcal{B}} = [\ -1\ -1\ 3\]^T$

1.b Find $[\vec{x}]_{\mathcal{C}}$

Solution:
$$[\vec{x}]_{\mathcal{C}} = [0\ 2\ 1]^T$$

Proof. By inspection: $\vec{x} = (0)[1\ 1\ 0]^T + (2)[0\ 1\ 1]^T + (1)[1\ 0\ 1]^T \implies [\vec{x}]_{\mathcal{C}} = [0\ 2\ 1]^T$

1.c Find $P_{\mathcal{C} \leftarrow \mathcal{B}}$ and compute $P_{\mathcal{C} \leftarrow \mathcal{B}}[\vec{x}]_{\mathcal{B}}$

Solutions:
$$P_{\mathcal{C} \leftarrow \mathcal{B}} = \begin{bmatrix} 1/2 & 1 & 1/2 \\ -1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{bmatrix}$$
; $[\vec{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[\vec{x}]_{\mathcal{B}} = [0\ 2\ 1]^T$

Proof.

Partitioned matrix
$$[C \mid B] = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Transition matrix $[I_3 \mid C \leftarrow B] = \begin{bmatrix} 1 & 0 & 0 & 1/2 & 1 & 1/2 \\ 0 & 1 & 0 & -1/2 & 0 & 1/2 \\ 0 & 0 & 1 & 1/2 & 0 & 1/2 \end{bmatrix}$

$$P_{C \leftarrow B} = \begin{bmatrix} 1/2 & 1 & 1/2 \\ -1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{bmatrix}$$

$$[\vec{x}]_{\mathcal{C}} = P_{\mathcal{C} \leftarrow \mathcal{B}}[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 1/2 & 1 & 1/2 \\ -1/2 & 0 & 1/2 \\ 1/2 & 0 & 1/2 \end{bmatrix} [-1 & -1 & 3]^{T}$$

$$= [-1] \begin{bmatrix} 1/2 \\ -1/2 \\ 1/2 \end{bmatrix} + [-1] \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + [3] \begin{bmatrix} 1/2 \\ 1/2 \\ 1/2 \end{bmatrix}$$

$$= [0 & 2 & 1]^{T}$$

1.d Find $P_{\mathcal{B}\leftarrow\mathcal{C}}$ and compute $P_{\mathcal{B}\leftarrow\mathcal{C}}[\vec{x}]_{\mathcal{C}}$

Solutions:
$$P_{\mathcal{B}\leftarrow\mathcal{C}} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}; [\vec{x}]_{\mathcal{B}} = P_{\mathcal{B}\leftarrow\mathcal{C}}[\vec{x}]_{\mathcal{C}} = [-1 \ -1 \ 3]^T$$

Proof.

Partitioned matrix
$$[\mathcal{B} \mid \mathcal{C}] = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

Transition matrix $[I_3 \mid \mathcal{B} \leftarrow \mathcal{C}] = \begin{bmatrix} 1 & 0 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$

$$P_{\mathcal{B}\leftarrow\mathcal{C}} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$[\vec{x}]_{\mathcal{B}} = P_{\mathcal{B} \leftarrow \mathcal{C}} [\vec{x}]_{\mathcal{C}} = \begin{bmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & 1 \end{bmatrix} [0 \ 2 \ 1]^{T}$$

$$= [0] \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + [2] \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} + [1] \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$= [-1 \ -1 \ 3]^{T}$$