1

AI1103: Assignment 1

Javaji Manoj Bhargav - CS20BTECH11022

Download all python codes from

https://github.com/Manojbhargav1305/AI1103/tree/main/Assignment1/codes

and latex codes from

https://github.com/Manojbhargav1305/AI1103/blob/main/Assignment1/Assignment1.tex

PROBLEM(2.8)

Two groups are competing for the position on the board of directors of a corporation. The probabilities that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins, the probability of introducing a new product is 0.7 and the corresponding probability is 0.3 if the second group wins. Find the probability that the new product introduced was by the second group.

SOLUTION

Let $H \in \{0,1\}$ be the random variable denoting which the group A wins, with H = 0 representing group A wins. Let $H \in \{0,1\}$ be the random variable denoting whether the product being introduced, with M = 0 representing that the product is not introduced by A. We are given that:

$$Pr(H = 0) = 0.6$$

 $Pr(M = 1|H = 0) = 0.42$
 $Pr(M = 1|H = 1) = 0.12$

, by Bayes Theorem, we say that:

TABLE 0

	H = 0	H = 1
M = 0	0.18	0.12
M = 1	0.42	0.28

$$Pr(H = 1|M = 1) = \frac{Pr(M = 1|H = 1) \cdot Pr(H = 1)}{\sum_{i=0}^{1} Pr(M = 1|H = i) \cdot Pr(H = i)}$$

$$= \frac{Pr(()M = 1|H = 1) \cdot Pr(H = 1)}{Pr(M = 1|H = 1) \cdot Pr(H = 1)}$$

$$+ Pr(M = 1|H = 0) \cdot Pr(H = 0)$$

$$= \frac{0.3 \cdot 0.4}{0.3 \cdot 0.4 + 0.6 \cdot 0.7}$$

$$= \frac{12}{54}$$

$$= 0.23$$

The probability that the new product introduced by the second group B is 0.23.