Hoja 6

Geometría Afín I:

Espacio afín. Subespacios afines. Sistema de referencia cartesiano. Ecuaciones

- 1. Sea (A, V, φ) un espacio afín, y sea (L, W, φ) un subespacio afín (o variedad lineal), es decir, $L = p_0 + W$, donde p_0 es un punto en A.
- a) Demuestra que si $p, q \in L$, entonces $\varphi(p, q) \in W$ (con lo cual la aplicación $\varphi : L \times L \to W$ está bien definida).
- **b)** Demuestra que (L, W, φ) es un espacio afín en sí mismo, es decir, satisface los dos axiomas de la definición de espacio afín.
- **2.** Sea (A, V, φ) un espacio afín. Dado un vector $\overrightarrow{v} \in V$ y cuatro puntos p, q, r, s tales que $r = p + \overrightarrow{v}$ y $s = q + \overrightarrow{v}$, demuestra que $\varphi(p, q) = \varphi(r, s)$.
- **3.** Sea S el conjunto de puntos (x, y, z) de $\mathbb{A}^3(\mathbb{R})$ que satisfacen la condición 2x + y z = 3. Demuestra, usando la definición, que S es un subespacio afín de $\mathbb{A}^3(\mathbb{R})$.
- **4.** Demuestra que un subconjunto H del espacio afín $\mathbb{A}^n(\mathbb{R})$ es una variedad lineal si y sólo si para todo par de puntos de H la recta que los une está contenida en H.
- **5.** Sea $T = \bigcup_{n \in \mathbb{N}} \{x + y = n\}$. Decide, de manera razonada, si el conjunto T es una variedad lineal de $\mathbb{A}^2(\mathbb{R})$.
- **6.** Sea $\mathcal{R} = \{O; \overrightarrow{e_1}, \overrightarrow{e_2}\}$ un sistema de referencia cartesiano en el espacio afín $\mathbb{A}^2(\mathbb{R})$ respecto del cual el punto p tiene coordenadas (0, -1). Construye otro sistema de referencia en $\mathbb{A}^2(\mathbb{R})$ respecto del cual el punto p tenga como coordenadas (-1, 0).
- 7. Sean P, Q y R tres puntos de $\mathbb{A}^2(\mathbb{R})$ tales que $\overrightarrow{PQ} y \overrightarrow{PR}$ son linealmente independientes.
- a) Prueba que los vectores \overrightarrow{RP} y \overrightarrow{RQ} son linealmente independientes. Considera las referencias cartesianas $\mathcal{R} = \{P; \overrightarrow{PQ}, \overrightarrow{PR}\}$ y $\mathcal{R}' = \{R; \overrightarrow{RP}, \overrightarrow{RQ}\}$.
- b) Escribe las coordenadas cartesianas de P, Q y R respecto a \mathcal{R} .
- c) Escribe las coordenadas cartesianas de P, Q y R respecto a R'.
- d) Halla las ecuaciones de cambio de coordenadas entre las dos referencias.
- e) Decide, de manera razonada, si existe algún punto en $\mathbb{A}^2(\mathbb{R})$ con las mismas coordenadas respecto a los dos sistemas de referencia.
- 8. Determina unas ecuaciones implícitas de las subespacios afines $L_t = p_t + V$ de $\mathbb{A}^4(\mathbb{R})$, donde $p_t = (1, -2, 3, t)$ y $V = \mathfrak{L}\{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ con $\overrightarrow{u_1} = (1, 1, 0, 0)$, $\overrightarrow{u_2} = (0, 0, 1, 1)$ y $\overrightarrow{u_3} = (1, 2, -1, 0)$ en un sistema de referencia fijado. ¿Para qué valor de t la variedad L_t pasa por el origen?
- 9. Halla unas ecuaciones implícitas de la variedad lineal L de $\mathbb{A}^4(\mathbb{R})$ generada por los puntos $p_1 = (1,0,0,1)$, $p_2 = (0,1,0,1)$ y $p_3 = (0,0,1,1)$, cuyas coordenadas están dadas con respecto a un sistema de referencia fijado. ¿Cuál es la dimension de L?
- **10.** Halla unas ecuaciones implícitas del subespacio afín de $\mathbb{A}^5(\mathbb{R})$ generado por los puntos $P_1 = (-1, 2, -1, 0, 4)$, $P_2 = (0, -1, 3, 5, 1)$, $P_3 = (4, -2, 0, 0, -3)$ y $P_4 = (3, -1, 2, 5, 2)$.

- **11.** En $\mathbb{A}^2(\mathbb{R})$ y con respecto de una referencia dada \mathcal{R} , se dan los puntos $A=(1,1),\ B=(-2,0)$, los vectores $\overrightarrow{u_1}=(1,2)$ y $\overrightarrow{u_2}=(-1,1)$ y el subespacio afín L de ecuaciones $x_1-x_2=1$.
- a) Halla las coordenadas de B respecto al sistema de referencia $\mathcal{R}' = \{A; \overrightarrow{u_1}, \overrightarrow{u_2}\}.$
- b) Halla una ecuación implícita de L con respecto a \mathcal{R}' .
- 12. Sea \mathcal{R}' un sistema de referencia en el plano $\mathbb{A}^2(\mathbb{R})$ que se obtiene girando un ángulo α en sentido positivo los vectores de un sistema de referencia \mathcal{R} . Si $C \subset \mathbb{A}^2(\mathbb{R})$ es la circunferencia cuyos puntos (x_1, x_2) satisfacen $(x_1 1)^2 + x_2^2 = 4$ en el sistema de referencia \mathcal{R} , halla las ecuaciones de C en el sistema de referencia \mathcal{R}' . ¿Cuáles son las coordenadas del centro de la circunferencia respecto de \mathcal{R}' ?
- 13. En $\mathbb{A}^3(\mathbb{R})$ se consideran las referencias cartesianas:

$$\mathcal{R} = \{O; \overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\} \text{ y } \mathcal{R}' = \{O'; \overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}.$$

Sean $O' = (-1, 6, 2)_{\mathcal{R}}$, $\overrightarrow{v_1} = \overrightarrow{u_1} + 3\overrightarrow{u_2} + \overrightarrow{u_3}$, $\overrightarrow{v_2} = -\overrightarrow{u_1}$ y $\overrightarrow{v_3} = 2\overrightarrow{u_1} + 5\overrightarrow{u_2} + 7\overrightarrow{u_3}$. Si un plano π tiene ecuación 2x - y + 3z = 0 en \mathcal{R} , halla su ecuación respecto a \mathcal{R}' .