Klassische Theoretische Physik II Blatt 15

WS 2013/14

57. Relativistisches Teilchen

(0 Punkte)

a) Aus der Hamiltonfunktion $H(\mathbf{p}) = \sqrt{m^2c^4 + \mathbf{p}^2c^2}$ folgt

$$-\dot{p}_{j} = \frac{\partial H}{\partial r_{j}} = 0$$

$$\dot{r}_{j} = \frac{\partial H}{\partial p_{j}} = \frac{c^{2} p_{j}}{\sqrt{m^{2} c^{4} + \mathbf{p}^{2} c^{2}}}.$$

b) Um die Lagrangefunktion herzuleiten, müssen wir den Impuls durch die Geschwindigkeit vausdrücken. Mit $v_j=\dot{r}_j$ kann die zweite Zeile aus der obigen Gleichung zu

$$\mathbf{v}^2 = \frac{\mathbf{p}^2 c^4}{m^2 c^4 + \mathbf{p}^2 c^2}$$

umgeformt werden. Auflösen nach \mathbf{p}^2 ergibt schließlich

$$\mathbf{p}^2 = \frac{\mathbf{v}^2 m^2}{1 - \mathbf{v}^2 / c^2} = \gamma^2 m^2 \mathbf{v}^2$$

wobe
i $\gamma = 1/\sqrt{1-\mathbf{v}^2/c^2}$ und damit

$$m^2c^4 + \mathbf{p}^2c^2 = m^2c^4\gamma^2$$

 $\mathbf{p} = \gamma m\mathbf{v}.$

Die Lagrangefunktion ergibt sich aus

$$\mathcal{L} = \mathbf{v} \cdot \mathbf{p} - H$$
$$= \gamma m \mathbf{v}^2 - \gamma m c^2$$
$$= -\frac{mc^2}{\gamma}$$

58. Poissonklammern

(0 Punkte)

a) Die Poissonklammer $\{F,G\}$ ist durch

$$\{F,G\} = \sum_{i=1}^{f} \left(\frac{\partial F}{\partial q_i} \frac{\partial K}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial K}{\partial q_i} \right)$$

definiert.

b) Die zeitliche Ableitung der Größe F(q, p, t) ist

$$\frac{d}{dt}F(q, p, t) = \sum_{i=1}^{f} \frac{\partial F}{\partial q_i} \dot{q}_i + \sum_{i=1}^{f} \frac{\partial F}{\partial p_i} \dot{p}_i + \frac{\partial F}{\partial t}.$$

Mit $\dot{q}_i = \frac{\partial H}{\partial p_i}$ und $\dot{p}_i = -\frac{\partial H}{\partial q_i}$ folgt:

$$\frac{d}{dt}F(q, p, t) = \{F, H\} + \frac{\partial F}{\partial t}.$$

Für eine Erhaltungsgröße gilt $\frac{d}{dt}F(q,p,t)=0$, damit ist

$$\frac{\partial F}{\partial t} = -\{F, H\}.$$

Falls F nicht explizit von der Zeit t abhängt, gilt dass F genau dann eine Erhaltungsgröße ist, wenn $\{F,H\}=0$.

 $\mathbf{c})$

$$\begin{split} \{FF',G\} &= \sum_{i=1}^f \frac{\partial}{\partial_{q_i}} (FF') \frac{\partial G}{\partial_{p_i}} - \frac{\partial}{\partial_{p_i}} (FF') \frac{\partial G}{\partial_{q_i}} \\ &= \sum_{i=1}^f \left(F' \frac{\partial F}{\partial_{q_i}} + F \frac{\partial F'}{\partial_{q_i}} \right) \frac{\partial G}{\partial_{p_i}} - \left(F' \frac{\partial F}{\partial_{p_i}} + F \frac{\partial F'}{\partial_{p_i}} \right) \frac{\partial G}{\partial_{q_i}} \\ &= \sum_{i=1}^f F' \left(\frac{\partial F}{\partial_{q_i}} \frac{\partial G}{\partial_{p_i}} - \frac{\partial F}{\partial_{p_i}} \frac{\partial G}{\partial_{q_i}} \right) + F \left(\frac{\partial F'}{\partial_{q_i}} \frac{\partial G}{\partial_{p_i}} - \frac{\partial F'}{\partial_{p_i}} \frac{\partial G}{\partial_{q_i}} \right) \\ &= \{F, G\} F' + F \{F', G\} \end{split}$$

59. Freies Teilchen

(0 Punkte)

a)

$$\begin{split} \mathcal{L}(r,\phi,z,\dot{r},\dot{\phi},\dot{z},t) &= \frac{m}{2}(\dot{r}^2 + r^2\dot{\phi}^2 + \dot{z}^2) \\ p_r &= \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r} \\ p_{\phi} &= \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = mr^2\dot{\phi} \\ p_z &= \frac{\partial \mathcal{L}}{\partial \dot{z}} = m\dot{z} \\ \mathcal{H}(r,\phi,z,p_r,p_{\phi},p_z,t) &= p_r\dot{r} + p_{\phi}\dot{\phi} + p_z\dot{z} - \mathcal{L} \\ &= \frac{p_r^2}{2m} + \frac{p_{\phi}^2}{2mr^2} + \frac{p_z^2}{2m} \;. \end{split}$$

b) Eine Koordinate q_i ist zyklisch, wenn diese nicht explizit in der Lagrangefunktion auftaucht, d.h.:

$$\frac{\partial \mathcal{L}(q, \dot{q}, t)}{\partial q_i} = 0.$$

Die oben gegebene Lagrangefunktion hängt nicht von ϕ oder z ab. Beides sind deshalb zyklische Koordinaten.

c) Wenn q_i eine zyklische Koordinate ist, dann folgt dass der zugehörige Impuls $p_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}$ eine Erhaltungsgröße ist:

$$\frac{d}{dt}p_i = 0$$

Aus der zyklischen Koordinate ϕ folgt die Drehimpulserhaltung, dh.

$$\frac{d}{dt}p_{\phi} = 0.$$

Aus der zyklischen Koordinate z folgt die Impulserhaltung in z-Richtung, dh.

$$\frac{d}{dt}p_z = 0.$$

60. Harmonischer Oszillator

(0 Punkte)

Die Lagrangefunktion eines harmonischen Oszillators ist

$$\mathcal{L}(\mathbf{r}, \dot{\mathbf{r}}, t) = \frac{m}{2}\dot{\mathbf{r}}^2 - \frac{m\omega^2}{2}\mathbf{r}^2.$$

a) Der Impuls ist durch

$$p_j = \frac{\partial \mathcal{L}}{\partial \dot{r}_j} = m\dot{r}_j$$

gegeben.

$$H(\mathbf{r}, \mathbf{p}, t) = \mathbf{p} \cdot \dot{\mathbf{r}} - \mathcal{L}(\mathbf{r}, \dot{\mathbf{r}}(\mathbf{p}), t)$$
$$= \frac{1}{m} \mathbf{p}^2 - \frac{m\mathbf{p}^2}{2m^2} + \frac{m\omega^2}{2} \mathbf{r}^2$$
$$= \frac{\mathbf{p}^2}{2m} + \frac{m\omega^2}{2} \mathbf{r}^2.$$

Die kanonischen Gleichungen ergeben sich zu

$$-\dot{p}_{j} = \frac{\partial H}{\partial r_{j}} = m\omega^{2}r_{j}$$
$$\dot{r}_{j} = \frac{\partial H}{\partial p_{j}} = \frac{p_{j}}{m}$$

b) Da der Hamiltonian nicht explizit von der Zeit abhängt, ist die Energie eine Erhaltungsgröße. Außerdem ist das Potential (und natürlich die kinetische Energie) rotationsinvariant. Damit ist auch der Drehimpuls eine Erhaltungsgröße.

61. Perle auf rotierendem Draht

(0 Punkte)

Die Ortskoordinaten der Perle sind durch $\vec{r}(t) = r(t)(\cos(\omega t), \sin(\omega t))$ gegeben. Die potentielle Energie V = 0 und das System hat nur kinetische Energie:

$$\mathcal{L}(r, \dot{r}, t) = T = \frac{m}{2} (\dot{r}^2 + r^2 \omega^2)$$

$$p = \frac{\partial \mathcal{L}}{\partial \dot{r}} = m\dot{r}$$

$$\mathcal{H} = p\dot{r} - \mathcal{L}$$

$$= \frac{p^2}{2m} - \frac{m}{2}r^2 \omega^2$$

$$\neq E$$

Im allgemeinen gilt, dass $\mathcal{H} = T + V = E$ für Systeme mit zeitunabhängigen, holonomen Zwangsbedingungen, ruhenden Koordinaten und konservativen Kräften. Im obrigen Beispiel ist die Zwangsbedingung, nämlich die Beziehung zwischen der x und der y Koordinate der Perle, zeitabhängig.