

Promedios iguales

Hipótesis nula H_o

Variables independientes

Promedios diferentes

Hipótesis alternativa H1

Variables dependientes

Refleja el comportamiento de datos : ej. la distancia entre los promedios

Sabemos cuál es la probabilidad (p) de observar distintos valores (x) del estadístico cuando H_o es verdadera.

Cuando obtenemos un valor del estadístico poco probable rechazamos a H_o

RLadies Cuernavaca, 12 de Noviembre de 2020, Aurora Labastida

		No Paramétrica			Paramétrica
		Nominal: 2 categorías	Nominal: 3 o más categorías	Ordinal	Numérica
	1 Grupo	X² Bondad de ajuste	X² Bondad de ajuste	X² Bondad de ajuste	T de Student para una muestra
Muestras Indepen- dientes	2 Grupos	X ² de homogeneidad + corrección de Yates o test exacto de Fisher	X² de homogeneidad	U Mann-Whitney	T de Student para muestras independientes
	3 o más Grupos	X² de homogeneidad	X² de homogeneidad	H Kruskal-Wallis	ANOVA
Muestras relacionadas	2 Mediciónes	Mc Nemar	Q de Cochran	Wilcoxon	T de Student para muestras no independientes
(ej. Estudio longitudinal)	3 o más Mediciones	Q de Cochran	Q de Cochran	Friedman	ANOVA para muestras no independientes

RLadies Cuernavaca, 12 de Noviembre de 2020, Aurora Labastida Valores observados (o)

H_o: Las variables (aquí enfermedad y toxina) son independientes entre sí

H₁: Las variables son dependientes entre sí

RLadies Cuernavaca, 12 de Noviembre de 2020, Aurora Labastida Valores observados (o) Valores esperados (e)

$$\chi^2 = \stackrel{\circ}{a} \frac{(o-e)^2}{=} \frac{(100-75)^2}{100} + \frac{(100-125)^2}{125} + \frac{(50-75)^2}{75} + \frac{(150-125)^2}{125}$$

Grados de libertad = (Número de filas - 1) + (Número de columnas - 1)

$$\chi^2 = \stackrel{\circ}{a} \frac{(o-e)^2}{=} \frac{(100-75)^2}{=} + \frac{(100-125)^2}{=} + \frac{(50-75)^2}{=} + \frac{(150-125)^2}{=}$$

Grados de libertad (k) = (Número de filas - 1) + (Número de columnas - 1)

RLadies Cuernavaca, 12 de Noviembre de 2020, Aurora Labastida

$$\chi^2 = \stackrel{\circ}{a} \frac{(o-e)^2}{=} \frac{(100-75)^2}{=} + \frac{(100-125)^2}{125} + \frac{(50-75)^2}{=} + \frac{(150-125)^2}{=}$$

Grados de libertad (k) = (Número de filas - 1) + (Número de columnas - 1)

RLadies Cuernavaca, 12 de Noviembre de 2020, Aurora Labastida Valores observados (o) Valores esperados (e)

Residuales de Pearson (r) Enfermedad

NO SI

NO SI

2.9 -2.2 200

Toxina SI

-2.9 2.2 200

150 250 400

$$r^2 = \frac{O - e}{\sqrt{e}}$$

$$X^2 = {a \over b} {(o-e)^2}$$

% contribución del residual= $\frac{r^2}{x^2}$

RLadies Cuernavaca, 12 de Noviembre de 2020, Aurora Labastida

Para un grupo

H_o: El promedio es distinto a mu

$$t = \frac{(\overline{X} - mu)^2}{s / \sqrt{n}}$$

Grados de libertad (k) = n - 1

Para dos grupos

H_o: Los promedios de los grupos A y B son iguales

$$t = \frac{(\overline{X}_{1} - \overline{X}_{2})^{2}}{\sqrt{\frac{s_{1}^{2} + s_{2}^{2}}{n_{1}^{2} + n_{2}^{2}}}}$$

Grados de libertad (k) = $n_{1+} n_2 - 2$

H_o: Los promedios de los grupos son iguales entre si

H₁: Por lo menos un promedio es distinto a los demás

F= Variación explicada por los grupos
Variación no explicada por los grupos

F= <u>Variación entre el promedio de los grupos</u> Variación al interior de los grupos

