Total No	o. of Questions : 8]	SEAT No. :		
P4178	[4760] - 1146	[Total No. of Pages :		
	M.E. (E & TC - VLSI and Embedo	led Systems)		
	ASIC Design	TTV ((0.1000)		
	(2013 Credit Pattern) (Semester	- 111) (604202)		
Time: 3 Hours]		[Max. Marks : 5		
	ons to the candidates:			
1)	Attempt any five questions out of 8. Neat diagrams must be drawn wherever necessary			
2) 3)	Figures to the right side indicate full marks.			
4)	Use of electronic pocket calculator is allowed.			
5)	Assume suitable data, if necessary.			
Q1) a)	Draw the design flow for an ASIC design pr	ocess and explain each step		
b)	What do you mean by ASIC cell library? W	hat should it contain. [2		
c)	Compare different ASIC technologies.	[3		
Q2) a)	Explain in detail Gate array based ASICS.	[5		
b)	Differentiate static and dynamic lining and why?	alysis. Which is better? and [2		
c)	Explain Logic synthesis with an example.	[3		

- Q3) a) What is crosstalk delay and crosstalk noise in context to ASIC design?Which parameter it will severely affect.[4]
 - b) Explain Gate level mixed node simulation and synthesis. [4]
 - c) Write a note on testing of mixed mode ASIC. [2]
- **Q4)** a) Explain noise coupling and element matching with respect to practical aspects of mixed signal analog digital design. [5]
 - b) Explain signal integrity effects in ASIC design. [5]

Q5)	a)	What are the different objectives of system partitioning and explain algorithm for the same. [4]	
	b)	What are the factors contributes to test floor planning? Explain in detail [3]	
	c)	What is parameter extraction pertaining to ASIC design? [3]
Q6)	a)	Differentiate pre layout and post layout simulation with respect to ASIC [4	
	b)	What are the approaches to global routing? Explain in detail one algorithm to find shortest path. [4	
	c)	Define channel density and Elmore's delay. [2]
Q7)	a)	Explain in detail about ATPG algorithm using test vectors with neadiagram. [4]	
	b)	Explain types features of any two EDA tools. [4]
	c)	Define the term controllability and observability. [2]
Q8)	a)	Briefly describe about Boundary Scan Test with suitable example. [5]
	b)	Explain LFSR and BIST. [5]

Φ Φ Φ