Minimum Wage and Work Accidents

Josep Amer-Mestre
European Commission, JRC

Ismael Moreno-Martinez
European University Institute

April 2024

Motivation

- Minimum wages (MW) aim to improve economic conditions of low-income workers
- ullet MW can have unintended consequences o
 - Employment effects
 - Price adjustments
 - Evasion
- Impact in working conditions/amenities largely overlooked and with mixed results (Hradil, 2018; Phelan, 2019; Merrill-Francis et al., 2022)

This project: MW → Workplace safety (Spain 2016-2019)

Workplace safety is costly...

- Money (e.g. purchasing and renewing protective equipment)
- Labor (e.g. Training new employees, monitoring protocols compliance)
- Foregone production (e.g. Allow for regular breaks, avoid over-work)

MW hike can result in...

- Employer reduces workplace safety provision (Work accidents 1)
- Unemployment (Work accidents ↑)
- Workers better outside options (Work accidents ↓)
- Labor-by-capital substitution (Work accidents ?)

Background

Background: MW in Spain

National minimum wage per month in Spain from 2008 to 2024

Background: MW Timeline

- 2011-15 1st Mariano Rajoy (PP) government: Stable MW (-0.9 real change)
- Dec 2015 General elections: PP wins without majority, fails to form government
- June 2016 Repeat elections: PP wins without majority, forms government in Oct
- Dec 2016 PP agrees 8% MW increase with PSOE in exchange reducing deficit
- Dec 2017 PP agrees with unions and employers a 4% increase, plus €850 by 2020
- May 2018 Court ruling finds PP to have illegally received kickbacks-for-contracts
- June 2018 Vote of no confidence, Pedro Sanchez (PSOE) Prime Minister
- Dec 2018 MW increases 22 percent to 900 euros

Background: MW in Spain

National minimum wage per month in Spain from 2008 to 2024

Suggestive evidence

Work accident shares, by log wage. 2016 vs 2019

Work accident shares change, by log wage. 2016 minus 2019

Data Group 1: "The universal"

- Universe of employer-employee matches for 2016 to 2019
- Basic information
 - Worker: age, gender, occupation
 - Firm: size, economic activity, legal form
 - Contract: part/full-time, temporary/permanent
 - No wage information
- Sick leave register
 - Information on both regular sick leaves and work accident leaves

Data Group 1: "The universal"

- Universe of employer-employee matches for 2016 to 2019
- Basic information
 - Worker: age, gender, occupation
 - Firm: size, economic activity, legal form
 - Contract: part/full-time, temporary/permanent
 - No wage information
- Sick leave register
 - Information on both regular sick leaves and work accident leaves

Pros: Information for all workers, can run analysis at firm/establishment level Cons: No information about wages

Data Group 2: "The four percent"

- Employer-employee matched data for a random 4% sample of individuals who worked at any point in 2016-2019
- Richer information
 - Complete work history
 - Wages
 - Firm size
 - Other fiscal information
- Sick leave register (same as for data group 1)

Data Group 2: "The four percent"

- Employer-employee matched data for a random 4% sample of individuals who worked at any point in 2016-2019
- Richer information
 - Complete work history
 - Wages
 - Firm size
 - Other fiscal information
- Sick leave register (same as for data group 1)

Pros: Wage information, and history prior to 2016

Cons: Only 4 percent sample, cannot observe all workers in firm/establishment

Data strategy

- Cannot merge across data groups (incompatible IDs)
- Could we still leverage the strengths of both datasets?

Empirical Strategy

DiD specification exploiting differential exposure to MW hikes across firms

$$y_{ft} - y_{f2016} = \alpha_f + \beta_t D_f + \gamma_t X_{f2016} + \varepsilon_{ft}$$
 (1)

- y_{ft} : Work accidents per capita/working-hour for firm f in year t
- D_f : measure of exposure to MW hike for firm f
 - Share of 2016 employees affected by year t MW
 - Ratio of wage bill under year t MW over 2016 wage bill
- X_{f2016} control variables: economic activity, firm size, province... (?)

- Focus on the four percent dataset
- Impute firms' accident rates and MW exposure based on observed workers

$$y_{ft} - y_{f2016} = \bar{y}_{ft} - \bar{y}_{f2016} + u_{ft}$$
 (2)

$$D_{ft} = \bar{D}_{ft} + e_{ft} \tag{3}$$

- Focus on the four percent dataset
- Impute firms' accident rates and MW exposure based on observed workers

$$y_{ft} - y_{f2016} = \bar{y}_{ft} - \bar{y}_{f2016} + u_{ft}$$
 (2)

$$D_{ft} = \bar{D}_{ft} + e_{ft} \tag{3}$$

$$\bar{y}_{ft} - \bar{y}_{f2016} = \alpha_f + \bar{D}_{ft} + \gamma_t X_{f2016} + \varepsilon_{ft}$$
(4)

- Focus on the four percent dataset
- Impute firms' accident rates and MW exposure based on observed workers

$$y_{ft} - y_{f2016} = \bar{y}_{ft} - \bar{y}_{f2016} + u_{ft}$$
 (2)

$$D_{ft} = \bar{D}_{ft} + e_{ft} \tag{3}$$

$$\bar{y}_{ft} - \bar{y}_{f2016} = \alpha_f + \bar{D}_{ft} + \gamma_t X_{f2016} + \varepsilon_{ft}$$
(4)

$$y_{ft} - y_{f2016} = \alpha_f + \beta_t D_f + \gamma_t X_{f2016} + \beta_t e_{ft} + u_{ft} + \varepsilon_{ft}$$
 (5)

Imputation can be improved using an additional source of data: Panel de datos de Empresas-Trabajadores (PET)

- Same information as 4pc sample we discussed, but sampling unit is establishment
- Unfortunately, the panel stops in 2016
- We can still train a model on this dataset to predict MW exposure for the establishments based on a subset of the workers
- Then impute MW exposure in the main dataset using this model

$$\hat{D}_{ft} = E(D_{ft}|\bar{D}_{f2016}, X_{f2016}) \tag{6}$$

- Use both the universal and the four percent datasets
- Compute true firms' accident rates using universal dataset
- Impute firms' exposure to MW hikes based on Province×Economic activity exposure to minimum wage (from 4pc sample)

References I

- V. Hradil. Does minimum wage affect workplace safety? *CERGE-EI Working Paper Series*, (615), 2018.
- M. Merrill-Francis, J. S. Vernick, E. E. McGinty, and K. M. P. Porter. Association between fatal occupational injuries and state minimum-wage laws, 2003–2017. *American journal of preventive medicine*, 62(6):878–884, 2022.
- B. J. Phelan. Hedonic-based labor supply substitution and the ripple effect of minimum wages. *Journal of Labor Economics*, 37(3):905–947, 2019.