Ejercicios de Ecobici

En esta notebook se llevan acabo los 3 incisos del primer ejercicio

```
library(readr)

library(dplyr)
library(lubridate) #Fechas y horas
library(tidyr) #spread
#graficas
library(ggplot2)
library(gridExtra)

library(tseries)

#cluster
library(animation)
library(factoextra)

#test
library(funtimes)
```

Funciones

```
#Prueba para tendencia en series de tiempo.
test_tend_lin<-function(dataset){</pre>
  p_values<-NULL</pre>
  ar_order<-NULL
  ar_coef<-NULL
  for(i in 1:ncol(dataset)){
    #print(i)
    dat_ts<-ts(dataset[,i]) #seleccionar serie</pre>
    aux<-notrend_test(dat_ts) #Prueba tendencia</pre>
    p_values<-c(p_values,aux$p.value) #Obtener valor p</pre>
    ar_order<-c(ar_order,aux[["estimate"]][["AR_order"]]) #Obtener AR_order</pre>
    ar_coef<-c(ar_coef,mean(aux[["estimate"]][["AR_coefficients"]])) #Obtener phi
  final_v<-list(p_values,ar_order,ar_coef) #lista con todos los valores obtenidos</pre>
  final_v<- as.data.frame(final_v) #convertir a df</pre>
  names(final_v)<-c("p_values","AR_order","AR_coef")</pre>
  final_v$Estacion<- colnames(dataset) # Agregar n??mero de estaci??n
  return(final_v)
}
```

Obtener datos

```
dataset <- read_csv("csv_files/dataset.csv")
#cambiar nome de columna, fecha Arribo por facilidad de manejo
names(dataset)[names(dataset) == 'Fecha Arribo'] <-'Fecha_Arribo'</pre>
```

1.1 ??En qu?? horarios hay mayor afluencia y en qu?? estaciones?

Afluencia en retiros(horarios).

```
#Crear variable de hora de retiro como factor y variable de dia de la semana
dataset$Hora_Retiro_fac <- as.factor(hour(dataset$Hora_Retiro))</pre>
dataset$Dia_Retiro <- as.factor(wday(dataset$Fecha_Retiro, label = TRUE))</pre>
#Conteo de retiros por d??a, hora
e1<-dataset %>% dplyr::count(Hora_Retiro_fac,Dia_Retiro)
head(e1 %>% arrange(desc(n)),5)
## # A tibble: 5 x 3
##
    Hora_Retiro_fac Dia_Retiro
##
     <fct>
                     <ord>
                                <int>
## 1 18
                     Wed
                                16730
## 2 18
                                15707
                     Mon
## 3 18
                     Thu
                                15243
## 4 18
                     Tue
                                14847
## 5 8
                     Tue
                                14374
#Conteo de retiros por horas
e2<- dataset %>% dplyr::count(Hora=Hora_Retiro_fac, sort = TRUE)
head(e2,5)
## # A tibble: 5 x 2
    Hora
##
    <fct> <int>
## 1 18
           88774
## 2 14
           88719
## 3 15
           83285
## 4 13
           79166
## 5 17
           75785
e2$variable<-"retiros"
```

Afluencia en arribos(horarios).

```
#Crear variable de hora de arribo como factor y variable de dia de la semana
dataset$HoraArribo_fac <- as.factor(hour(dataset$Hora_Arribo))</pre>
dataset$DiaArribo <- as.factor(wday(dataset$Fecha_Arribo, label = TRUE))</pre>
#Conteo de arribos por d??a, hora
d1<-dataset %>% dplyr::count(HoraArribo_fac,DiaArribo)
head(d1 %>% arrange(desc(n)),5)
## # A tibble: 5 x 3
##
   HoraArribo fac DiaArribo
##
                              <int>
    <fct>
                   <ord>
## 1 18
                    Wed
                              16031
## 2 18
                              14835
                    Mon
## 3 18
                    Thu
                              14769
## 4 19
                    Wed
                              14656
## 5 15
                    Fri
                              14302
#Conteo de retiros por horas
d2<- dataset %>% dplyr::count(Hora=HoraArribo_fac, sort = TRUE)
head(d2,5)
## # A tibble: 5 x 2
##
    Hora
##
     <fct> <int>
## 1 14
           88665
## 2 18
           86563
## 3 15
           85583
## 4 19
           79391
## 5 13
           77394
d2$variable<-"arribo"
```

Gr??ficas de afluencia por horarios

g4

```
#Unir datos de afluencia
horas<-rbind(d2,e2)

#Gr??fica de afluencia por horas
g4<-ggplot(horas, aes(x=as.factor(Hora), y=n, fill=variable)) +geom_bar(stat='identity', position='dodg

#Gr??fica de afluecia de Retiros por d??a/Hora
f1<-ggplot(e1,aes(x=Hora_Retiro_fac, y=n, color=Dia_Retiro))+ geom_point(aes(group= Dia_Retiro)) +geom_

#Gr??fica de afluecia de Arribos por d??a/Hora
g1<-ggplot(d1,aes(x=HoraArribo_fac, y=n, color=DiaArribo))+ geom_point(aes(group= DiaArribo)) +geom_line
```


De la gr??
fica podemos notar que las horas pico de Retiro son a las 18:00,14:00,15:00 y 13:00 horas mientras que para arribos son las 14:00,18:00,15:00 y 19:00 horas. Las horas pico parecen ser horarios de comida o salida de trabajo.

grid.arrange(f1,g1)

Los d??as de lunes a Viernes tienen un comportamiento similar, mientras que para sabado y domingo, las horas pico de retiro son entre 12:00, 14:00 hrs mientras que para arribo son a las 13:00, 14:00 hrs

??En qu?? estaciones hay mayor afluencia de Retiros?

Afluencia en estaciones para retiros

```
scale_fill_gradient(low = "white", high = "steelblue") +
ylab("Dia_Retiro") +
xlab("Ciclo_estacion") +
theme_bw() +
labs(fill = "n") +ggtitle("Afluencia en estaciones de Retiro por hora", subtitle = "Estaciones ordenad")
```

Afluencia en estaciones para arribos

```
#Contar usuarios en estaci??n arribo
Arribo_count<-dplyr::count(dataset, Ciclo_EstacionArribo, sort = TRUE)</pre>
#seleccionamos las 10 estaciones con m??s arribos
Arribo_count<-head(Arribo_count,10)$Ciclo_EstacionArribo
#Obtener datos de esas estaciones
Arribo_popular<-dataset %>% filter(Ciclo_EstacionArribo %in% Arribo_count)
#Conteos por grupos
Arribo_popular <- Arribo_popular %% count(Ciclo_EstacionArribo, HoraArribo_fac)
#Convertir valor a factor, ordenar por estaciones con mayor afluencia
Arribo_popular$Ciclo_EstacionArribo<-factor(Arribo_popular$Ciclo_EstacionArribo, levels =Arribo_count)
#Graficar
g3<-ggplot(Arribo_popular, aes( as.factor(Ciclo_EstacionArribo), HoraArribo_fac)) +
  geom_tile(aes(fill = n), color = "blue") +
  scale_fill_gradient(low = "white", high = "steelblue") +
 ylab("DiaArribo") +
  xlab("Ciclo_estacion") +
  theme_bw() +
  labs(fill = "n") +ggtitle("Afluencia en estaciones de arribo por hora", subtitle = "Estaciones ordenad
```

??En qu?? horarios hay mayor afluencia y en qu?? estaciones?

f3

Afluencia en estaciones de Retiro por hora

Estaciones ordenadas de mayor a menor afluencia

g3

Afluencia en estaciones de arribo por hora

Estaciones ordenadas de mayor a menor afluencia

Se nota una mayor afluencia de arribo por las tardes, recordando la gr??fica de retiros, la estaci??n 271 en particular tiene muchos retiros por las ma??anas y arribos por las tardes. La mayor??a de estaciones consideradas son populares tanto en retiros como en arribos.

1.2. Perfiles de uso de las estaciones.

Empezaremos por un an??lisis exploratorio

```
#Verificar las estaciones que tenemos
dataset%>%
    distinct(Ciclo_Estacion_Retiro) %>%
    count()
## # A tibble: 1 x 1
##
##
     <int>
## 1
       475
dataset%>%
    distinct(Ciclo_EstacionArribo) %>%
    count()
## # A tibble: 1 x 1
##
         n
```

```
## <int>
```

```
# De dond?? retiran las bicis y a dond?? llegan
bike_use_path <- dataset%>%
   group_by(Ciclo_Estacion_Retiro, Ciclo_EstacionArribo) %>%
   count() %>%
   ungroup()
#De que estaciones retiran m??s bicis
bike_use_retiro <- dataset%>%
   group_by(Ciclo_Estacion_Retiro) %>%
    count() %>%
   ungroup() %>%
   arrange(-n)
#A qu?? estaciones arriban m??s bicis
bike_use_arribo <- dataset%>%
   group_by(Ciclo_EstacionArribo) %>%
   count() %>%
   ungroup() %>%
   arrange(-n)
```

Estaciones m??s y menos concurridas retiros

Selecting by n

```
ylab('id de estaci??n') +
    ggtitle('Estaciones menos concurridas (retiro)')

## Selecting by n

grid.arrange(bu2, cu2, ncol = 2)
```


Estaciones m??s y menos concurridas arribos

Selecting by n

Selecting by n

```
grid.arrange(bu1, cu1, ncol = 2)
```



```
hora_retiro_decimal = hms(Hora_Retiro) %>% as.numeric() %>% round(0) / 3600,
           hora_retiro_decimal = hora_retiro_decimal %>% round(0))
bike_tfm$Genero_Usuario[is.na(bike_tfm$Genero_Usuario)] = 'NA_genero'
#Separar arribos de retiros
bike_tfm_arribo <- bike_tfm %>%
    select(Ciclo_EstacionArribo, Genero_Usuario, Edad_Usuario, Fecha_Arribo, DiaArribo, hora_arribo_dec
bike_tfm_retiro <- bike_tfm %>%
    select(Ciclo_Estacion_Retiro, Genero_Usuario, Edad_Usuario, Fecha_Retiro, Dia_Retiro, hora_retiro_d
                seccion arribos
# calculando cantidad total de arribos por estacion
bike_tfm_arribo_total_arribos <- bike_tfm_arribo %>%
    group_by(Ciclo_EstacionArribo) %>%
    summarize(total arribos = n()) %>%
   ungroup()
# calculando la hora promedio de arribos por estacion
bike_tfm_arribo_promedio_hora <- bike_tfm_arribo %>%
    group_by(Ciclo_EstacionArribo) %>%
    summarize(promedio_hora_arribo = mean(hora_arribo_decimal)) %>%
   ungroup()
# caclculando la cantidad de arribos efectuado en fin de semana
bike_tfm_arribo_porcentake_weekend <- bike_tfm_arribo %>%
   mutate(is_weekend = if_else(DiaArribo == 'Sun' |
                                DiaArribo == 'Sat' |
                                DiaArribo == 'Fri',
                                1,
                                0)) %>%
   group_by(Ciclo_EstacionArribo) %>%
    summarize(porcentaje_arribos_weekend = sum(is_weekend) / n()) %>%
   ungroup()
bike_tfm_arribo_porcentake_weekend %>%
    ggplot() +
    geom_histogram(mapping = aes(x=porcentaje_arribos_weekend),
                   fill = 'forestgreen',
                   color = 'black',
                   alpha = 0.8)+ ggtitle("Distribuci??n de porcentaje de arribos en fin de semana")+the
```

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

De la gr??
fica anterior resaltar??
a el hecho de que hay estaciones para las que el 50% de sus arribos son en fines de semana

Preparar data para modelo

```
## -----
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)

## ------
##
## Attaching package: 'plyr'

## The following objects are masked from 'package:dplyr':
##
## arrange, count, desc, failwith, id, mutate, rename, summarise,
## summarize
```

```
gen<- dataset %>% select("Ciclo_Estacion_Retiro", "Genero_Usuario")
# calculando la cantidad de personas en base a genero que interactuan en cada estacion
M<-as.data.frame(table(gen)) %>% filter(Genero_Usuario == "M")
M<- M %>% select(Ciclo_Estacion_Retiro,Freq)
names(M)<- c("Estaci??n", "Genero M")</pre>
F<- as.data.frame(table(gen)) %>% filter(Genero_Usuario == "F")
F<- F %>% select(Ciclo_Estacion_Retiro,Freq)
names(F)<- c("Estaci??n", "Genero F")</pre>
#calculando la edad promedio de usuarios que interactuan en cada estacion
ed<- ddply(dataset, .(Ciclo_Estacion_Retiro), summarize, <a href="EdadPromedio=mean(Edad_Usuario">EdadPromedio=mean(Edad_Usuario)</a>))</a>
names(ed)<- c("Estaci??n","Edad Promedio")</pre>
#calculando arribos en cada estacion
Ar<-as.data.frame(table(dataset$Ciclo_EstacionArribo))</pre>
names(Ar)<- c("Estaci??n", "Arribos")</pre>
#calculando retiros en cada estacion
Re<-as.data.frame(table(dataset$Ciclo_Estacion_Retiro))</pre>
names(Re)<- c("Estaci??n","Retiros")</pre>
dataf<- Reduce(function(x, y) merge(x, y, all=TRUE), list(Re,Ar,M,F,ed))</pre>
#guardar archivo
#dataf %>% write_csv('csv_files/dataset-features-clusters.csv')
#Quitar columna de estaciones
dataf<-dataf[,-1]</pre>
dataf
```

##		Retiros	Arribos	${\tt Genero}\ {\tt M}$	${\tt Genero}\ {\tt F}$	Edad Promedio
##	1	8448	8804	6095	2284	38.32872
##	2	4117	3477	3050	874	35.86228
##	3	1184	1364	818	323	37.11571
##	4	1205	1298	886	277	37.95187
##	5	4093	4109	3075	1011	34.52016
##	6	1277	1286	905	332	36.01723
##	7	881	894	651	196	37.28490
##	8	3406	3538	2689	684	37.35261
##	9	4207	4206	3242	925	37.65771
##	10	1484	1369	1189	263	35.97709
##	11	1612	1778	1311	291	37.49380
##	12	4061	4219	3114	914	37.82664
##	13	2096	2409	1532	533	37.11880
##	14	4255	3988	2894	1347	34.80588
##	15	2154	2255	1517	595	40.40204
##	16	3411	3336	2788	605	36.24509
##	17	3039	2941	2272	727	37.00329
##	18	3905	3851	2933	873	35.16338

##	19	3417	3975	2459	879	36.39128
##	20	3202		2417	703	34.76296
			3478			
##	21	2433	2644	1700	686	34.93383
##	22	4591	4389	3548	989	36.19408
##	23	2738	2785	2072	626	38.01242
##	24	2880	2812	1915	888	36.11250
##	25	3532	3747	2705	748	36.46546
##	26	1477	1603	1159	301	38.66080
##	27	3954	3675	2920	990	37.38012
##	28	5319	5558	4137	1153	37.40854
##	29	4770	4030	3262	1451	35.42264
##	30	3395	3930	2613	734	35.78468
##	31	2338	2255	1547	710	34.64371
##	32	3194	3221	2270	774	36.82843
##	33	2961	3121	2054	832	35.50253
##	34	1134	1201	744	265	35.98765
##	35	2381	2698	1685	620	35.81772
##	36	3001	3342	1881	948	35.47717
##	37	2240	2329	1385	782	37.80938
##	38	4320	4589	3158	1106	36.15023
##	39	4717	5516	3150	1372	35.62413
##	40	4766	4698	3162	1515	34.81977
##	41	6002	6269	3914	1928	34.64345
##	42	3462	3440	2326	1040	36.78683
##	43	3132	3080	2385	718	34.69508
##	44	3055	3292	2268	715	34.15941
##	45	4899	5072	3374	1103	35.92835
##	46	2876	2857	1781	1042	34.72427
##	47	5295	5731	3707	1406	36.46062
##	48	3821	4184	2783	911	33.66789
##	49	2596	2786	1696	874	35.02773
##	50	3350	3812	2385	922	34.50418
##	51	4582	4775	2991	1497	37.17263
##	52	5615	5759	4021	1510	36.02974
##	53	2220	2344	1488	686	36.56441
##	54	1626	1733	1130	486	34.25830
##	55	4535	4754	3277	1244	34.96957
##	56	3452	3454	2409	847	36.75550
##	57	4465	4901	3050	1326	37.29653
##	58	4441	4510	3101	1290	36.75298
##	59	2389	2445	1631	735	37.54039
##	60	2723	2462	1775	907	36.07051
##	61	4060	3636	2970	1075	34.30665
##	62	1909	1926	1490	402	39.58931
##	63	2415	2387	1575	812	35.68033
##	64	1372	1441	994	369	36.71429
##	65	3396	3480	2401	977	35.33481
##	66	3525	3777	2484	1004	35.31064
##	67	2785	2599	1695	741	35.92316
##	68	1603	1453	1238	355	36.38116
##	69	2433	2165	1560	863	34.99260
##	70	3178	3139	1903	1256	35.53870
##	71	3474	3948	2353	1104	35.79275
##	72	3605	3635	2641	933	36.96893
##	14	3003	3030	Z041	300	50.50053

##	73	3418	3458	2096	1288	34.58689
##	74	2134	2056	1542	584	35.35895
##	75	2769	2257	1909	851	36.72373
##	76	2535	2569	1742	768	36.73846
##	77	3075	3200	2364	687	36.04846
##	78	3388	3814	2182	806	36.54486
##	79	2526	2441	1859	652	36.54671
##	80	2401	2362	1805	575	38.09329
##	81	2672	2656	1858	795	36.46819
##	82	2897	2861	2092	783	34.24094
##	83	5623	5412	4027	1575	36.23777
##	84	1432	1425	1052	356	34.96718
##	85	880	1445	702	177	37.46250
##	86	2298	2252	1667	601	37.12010
##	87	1998	1801	1325	664	37.36837
##	88	3648	3582	2391	1222	34.82155
##	89	5740	5282	3818	1512	35.25052
##	90	3651	3583	2380	1213	34.85237
##	91	3177	3114	2279	858	36.75669
##	92	7114	7103	4708	2334	34.33286
##	93	4544	4275	3006	1523	35.62148
##	94	2020	1987	1413	535	37.44554
##	95	3034	2712	2140	866	35.14766
##	96	2469	2421	1423	978	35.77845
##	97	2903	2883	1969	909	36.77265
##	98	1573	1527	1042	496	35.31151
##	99	1419	1287	902	502	35.50388
##	100	3014	2770	2073	777	35.11878
##	101	1561	1548	1272	262	37.97630
##	102	1701	1595	1152	524	37.09583
##	103	2273	2243	1485	622	36.02244
##	104	570	516	375	134	35.27895
##	105	5192	5212	2968	1514	34.89657
##	106	3335	3306	1502	938	33.95292
##	107	1098	1082	850	218	35.28142
##	108	3839	4144	2716	799	34.57098
##	109	1083	925	788	273	35.75623
##	110	591	465	384	197	39.55668
##	111	2744	2612	1685	1033	36.52515
##	112	3542	3443	2330	936	35.55703
##	113	1318	1176	949	348	33.66995
##	114	1134	1052	883	245	34.13051
## ##	115 116	1027 751	974 585	681 567	317 170	37.10516 36.95473
##	117	1713	1828	1275	414	34.75015
##	118	1961	2114	1416	534	36.78786
##	119	3202	3221	2164	976	35.03966
##	120	1564	1592	1280	272	39.18670
##	121	1758	1626	1257	485	35.36348
##	122	1455	1347	955	476	36.18900
##	123	2915	1667	1827	924	35.46758
##	124	1394	1243	994	378	33.90746
##	125	4073	3816	2885	1145	36.20059
##	126	2034	2096	1360	633	36.16372

##	127	470	164	313	148	36.47234
##	128	806	630	508	270	36.15136
##	129	991	866	772	193	36.66095
##	130	1360	1278	884	423	34.99412
##	131	4039	4376	2964	978	35.93984
##	132	889	827	560	293	37.38245
##	133	1429	1148	1009	408	33.67110
##	134	2116	1654	1312	633	35.37287
##	135	454	311	320	127	37.20925
##	136	1161	1033	861	250	35.39707
##	137	1586	1645	1110	394	34.54414
##	138	2052	1785	1390	552	35.50585
##	139	1150	1096	890	227	39.92957
##	140	1278	1238	876	353	35.49452
##	141	1341	1332	1101	215	36.71439
##	142	1073	855	801	272	37.18546
##	143	1349	1255	948	376	37.46108
##	144	700	621	445	251	36.02857
##	145	3064	2878	2120	741	37.39034
##	146	1289	1173	852	373	38.36540
##	147	1235	1244	864	316	35.93360
##	148	1601	1502	1160	373	36.21736
##	149	2199	2264	1272	661	35.89677
##	150	1363	1281	969	344	36.32282
##	151	964	800	700	253	34.78423
##	152	1485	757	1047	426	35.69158
##	153	2472	2046	1711	654	35.23341
##	154	2313	1844	1560	678	35.27843
##	155	1337	1310	969	358	36.94091
##	156	5569	5688	4096	1103	35.52056
##	157	995	664	696	257	36.99899
##	158	1406	1343	1111	264	32.33428
##	159	2495	2521	1758	675	34.34549
##	160	1066	953	748	303	35.93809
##	161	960	870	764	178	34.94167
##	162	1010	953	813	189	33.13267
##	163	1684	1603	1372	307	35.92162
##	164	876	965	692	152	33.14269
##	165	1990	1691	1501	473	39.78392
##	166	1191	1055	854	280	36.56255
##	167	4594	4772	2974	1065	35.14867
##	168	1480	1415	1102	336	35.41824
##	169	1737	1590	1287	444	35.87968
##	170	1263	1107	908	338	36.30404
##	171	1976	1948	1499	434	37.77227
##	172	3571	3644	2552	1013	37.66172
##	173	2425	2478	1793	607	35.16948
##	174	3669	2848	2747	912	36.43718
##	175	2273	2270	1975	271	39.78795
##	176	2869	2734	1936	842	36.20634
##	177	2134	2261	1606	495	37.95548
##	178	3074	3302	2248	610	37.35426
##	179	2169	2163	1730	338	33.76948
##	180	967	911	557	253	34.95657
				•		'

##	181	1858	2110	1421	352	36.13509
##	182	1992	1632	1639	346	35.82530
##	183	758	595	530	223	36.14380
##	184	1688	1778	1230	398	34.59716
##	185	4727	7761	3912	793	36.91496
##	186	1733	2858	1413	312	38.04443
##	187	967	883	680	287	35.46019
##	188	815	911	577	234	36.11043
##	189	7867	7975	5596	1816	35.41642
##	190	4256	4505	2934	1060	36.14474
##	191	8468	8841	6911	1481	35.71611
##	192	4084	3752	3310	761	36.25833
##	193	1192	1149	897	284	35.18708
##	194	2598	3224	1898	687	36.59315
##	195	436	465	345	86	33.03899
##	196	4528	4931	3570	914	33.34850
##	197	1961	2026	1528	421	35.26211
##	198	1321	1347	998	319	37.26041
##	199	1199	1078	852	341	37.52877
##	200	5393	5739	4085	1200	38.88726
##	201	1945	2726	1475	444	35.35527
##	202	2847	2986	2123	709	36.67299
##	203	1251	1282	960	288	33.95204
##	204	1317	1264	947	363	36.01746
##	205	1604	1639	1059	527	34.40274
##	206	1512	1183	942	562	35.87566
##	207	3343	2980	2287	1033	37.47263
##	208	1628	1395	1181	421	36.88943
##	209	1923	1928	1351	566	34.94488
##	210	849	793	487	356	33.89517
##	211	3567	4352	2298	994	35.35856
##	212	1710	1967	985	699	34.14327
##	213	2939	2923	2002	915	35.01089
##	214	1957	2233	1509	437	35.06336
##	215	1468	1518	1064	396	35.48569
##	216	1049	947	871	175	36.63489
##	217	5181	5823	3853	1308	34.78576
##	218	1748	1707	1476	261	33.60469
##	219	3364	3393	2348	1001	37.80262
##	220	1755	1721	1446	306	34.58063
##	221	2140	2207	1655	479	35.37617
##	222	4028	4108	2961	856	33.95109
##	223	4533	5203	3424	936	36.65453
##	224	1783	1815	1397	369	33.75379
##	225	2059	1961	1339	714	33.77805
##	226	3391	3081	2410	968	34.92510
##	227	2246	2956	1402	828	33.52850
##	228	1357	1440	1076	272	33.18202
##	229	4256	4075	3378	864	35.14497
##	230	2173	2136	1520	626	35.20617
##	231	819	738	642	168	36.81929
##	232	1370	1247	902	462	34.77737
##	233	1293	1171	948	340	36.92266
##	234	3880	4027	2753	1021	35.17964
ırπ	20 T	5000	1021	2100	1021	50.11504

##	235	2817	2778	2149	649	36.62300
##	236	735	716	588	146	35.74558
##	237	1535	1540	1108	425	36.84886
##	238	1376	1315	978	393	34.96076
##	239	1083	1099	761	309	35.56140
##	240	2211	2067	1668	529	33.02081
##	241	3199	3063	2101	1092	33.93654
##	242	1290	1175	1012	266	33.96667
##	243	1219	1070	877	317	35.32486
##	244	4733	4681	3344	1294	36.14536
##	245					34.82041
		1715	1645	1119	591	
##	246	3449	3693	2470	959	36.18759
##	247	969	922	730	236	36.61816
##	248	1523	1533	929	581	34.74721
##	249	1341	1373	1016	315	34.84191
##	250	2046	1976	1462	567	35.19159
##	251	3243	3491	2218	1012	34.77058
##	252	2166	2145	1669	479	33.38827
##	253	1038	922	756	278	34.43545
##	254	1694	1510	1309	380	34.20484
##	255	3718	3998	3191	445	34.27622
##	256	787	478	513	267	36.04574
##	257	2679	1855	1887	787	35.20866
##	258	755	579	606	149	37.47947
##	259	1089	935	720	364	38.29293
##	260	1825	1442	1191	615	34.44986
##	261	939	864	627	309	35.65708
##	262	869	1025	525	338	34.02186
##	263	1443	1456	1006	426	34.68746
##	264	1620	1625	1128	485	36.99877
##	265	833	673	595	230	37.45618
##	266	3371	3593	2498	786	36.06230
##	267	2675	2579	2017	652	33.94131
##	268	2185	2169	1542	622	35.77803
##	269	1198	1255	978	214	38.99249
##	270	742	672	559	178	36.63881
##	271	599	547	447	146	33.94324
##	272	752	777	498	251	35.42287
##	273	554	497	345	208	36.49458
##	274	1700	1710	1296	400	35.91000
##	275	1158	1107	846	311	35.31002
##			719			
	276	915		691	218	33.68197
##	277	3838	3903	2943	787	35.98280
##	278	969	849	658	302	37.75335
##	279	2343	2392	1881	456	35.02902
##	280	1014	860	755	257	34.30966
##	281	659	554	495	160	36.27769
##	282	1362	1347	901	450	35.68282
##	283	1088	1074	722	365	32.78585
##	284	1684	1757	1243	441	37.95665
##	285	1395	1348	1065	328	35.49892
##	286	1027	915	781	238	34.43525
##	287	2485	2470	1902	566	36.34487
##	288	6726	6948	4645	1965	37.47443
"		J. 20	20.10			3 110

##	289	1424	1464	1102	311	36.48806
##	290	930	870		204	34.64301
	291	593		720	204	32.60708
##			534	364		
##	292	1243	1157	835	400	34.46340
##	293	898	731	574	321	33.14254
##	294	1690	1724	1207	470	33.88757
##	295	1125	1079	680	440	35.37600
##	296	889	814	569	312	35.85489
##	297	819	633	477	332	38.12454
##	298	2915	2742	1943	946	34.00034
##	299	4017	3998	2832	1100	36.69828
##	300	1073	1036	705	354	34.22647
##	301	1193	1104	795	392	37.12322
##	302	2215	2537	1656	557	35.65553
##	303	806	880	593	208	35.93424
##	304	1612	1651	1226	379	34.96030
##	305	970	1097	795	153	33.65670
##	306	607	569	417	187	35.17463
##	307	1634	1661	1039	593	37.35006
##	308	660	605	532	128	36.61364
##	309	971	887	567	400	34.41195
##	310	6225	6629	4628	1522	35.84369
##	311	720	607	459	250	37.19722
##	312	1454	1347	1143	301	32.81155
##	313	1144	903	761	375	32.84703
##	314	860	803	569	290	36.43837
##	315	2451	2169	1760	676	35.15300
##	316	2936	2757	2007	910	34.19619
##	317	2184	1907	1553	619	36.07830
##	318	827	822	616	205	34.39541
##	319	631	578	438	192	39.15372
##	320	2145	2533	1429	704	36.17203
##	321	2715	2685	1809	813	36.88214
##	322	4813	4329	3449	1330	34.49470
##	323	3328	3432	2555	754	34.69591
##	324	1834	1833	1340	476	36.47328
##	325	1284	1281	958	316	34.06542
##	326	1476	1387	1141	320	32.97290
##	327	1227	1211	937	289	35.22983
##	328	1534	1506	1123	406	34.62842
##	329	1010	987	691	314	35.48713
##	330	3085	2994	2149	923	35.56759
##	331	1141	1112	754	379	33.93076
##	332	2513	2904	1589	882	36.03741
##	333	3461	3656	2697	708	36.73909
##	334	1246	1294	771	468	36.29213
##	335	961	1040	604	354	37.10302
##	336	1265	1118	953	308	35.47668
##	337	412	336	955 296	114	34.75000
##						
##	338	2466	2486	1824	604 560	36.14274
##	339	2474	2405	1870 356	569 67	34.51455
	340	426 719	433	356 546	67 166	32.75117
##	341	718	703	546	166	37.10167
##	342	1187	1240	825	348	34.00674

	0.40				0.40	0= 00000
##	343	1052	1102	696	349	35.30228
##	344	8685	7641	5879	2331	36.00887
##	345	247	282	178	65	33.25911
##	346	200	292	134	63	35.75000
##	347	1096	1338	748	338	36.98996
##	348	1475	1489	1142	333	32.82712
##	349	1350	1195	1015	323	35.90741
##	350	929	878	593	328	35.99247
##	351	1206	1122	898	299	35.74959
##	352	848	673	630	202	34.34552
##	353	432	421	308	117	37.62731
##	354	712			177	35.32865
			933	527		
##	355	2300	2378	1474	761	36.10087
##	356	2829	2685	2052	758	33.96465
##	357	1129	772	922	186	36.13818
##	358	705	573	545	152	34.12766
##	359	632	500	495	136	34.32911
##	360	629	599	450	177	36.24165
##	361	1447	1575	1082	356	38.96199
##	362	1253	1279	816	430	34.96249
##	363	1452	1407	1139	298	34.41253
##	364	1164	1127	606	545	35.31014
##	365	655	733	534	120	38.50382
##	366	5774	6500	3801	1361	34.46571
##	367	1468	2084	972	471	34.74183
##	368	1264	1363	970	272	38.19304
##	369	1312	1269	884	428	37.23704
##	370	895	862	665	226	37.26927
##	371	617	627	513	102	34.78768
##	372	1473	1504	1136	330	35.64155
##	373					37.80723
		581	491	398	183	
##	374	726	605	479	243	37.10331
##	375	1618	1799	1219	390	36.29728
##	376	2893	2778	1840	915	36.10093
##	377	807	863	667	127	36.86989
##	378	89	115	57	29	35.29213
##	379	811	1080	562	187	34.72873
##	380	791	786	510	259	37.33123
##	381	659	694	469	161	37.77238
##	382	1220	1367	775	406	34.79098
##	383	2772	2754	1812	884	36.81241
##	384	1857	1714	1439	404	41.13840
##	385	2688	2744	2106	530	36.75335
##	386	5447	5366	3787	1534	38.12117
##	387	2191	2204	1760	390	36.58330
##	388	790	499	577	203	35.26835
##	389	1375	1248	1039	335	37.36218
##	390	1337	567	874	441	36.07031
##	391	993	934	784	198	33.52266
##	392	2599	1911	1872	696	36.54713
##	393	922	422	618	297	36.08243
##	394	669	524	520	147	33.12706
##	395	1252	928	863	383	34.96166
##	396	1180	915	909	256	33.25593
	550	1100	010	505	200	33.20000

##	397	3773	4017	2431	1173	35.01378
##	398	2334	1455	1726	600	34.26992
##	399	2006	1410	1606	391	35.33200
##	400	1179	1165	909	242	32.89228
##	401	1660	1627	1046	591	33.25663
##	402	1092	1052	878	202	32.90201
##	403	1644	1569	1210	433	35.46411
##	404	971	844	671	297	34.20391
##	405	1033	1025	765	247	34.81801
##	406	1486	1500	1196	287	37.57268
##	407	497	483	391	100	37.31992
##	408	5257	5553	3417	1521	35.34716
##	409	1380	1469	1002	363	36.75145
##	410	1464	1355	1232	222	34.57582
##	411	873	884	685	185	35.15120
##	412	978	753	826	148	36.77403
##	413	2492	2410	2053	435	36.49238
##	414	1335	1308	1001	322	33.22172
##	415	2673	2675	1954	670	35.86008
##	416	1627	1772	1188	397	31.81438
##	417	1185	1009	910	270	38.79325
##	418	745	769	401	344	39.60134
##	419	3436	3420	2519	827	38.28551
##	420	2237	2256	1565	657	34.58561
##	421	3972	3517	2713	1106	36.53323
##	422	2696	2796	1992	665	37.20920
##	423	2096	1965	1456	596	37.17271
##	424	3399	3895	2456	881	37.73110
##	425	4495	5242	3267	947	36.20378
##	426	5403	5586	4022	1305	36.21544
##	427	4123	4449	2833	1149	35.94106
##	428	2263	2444	1637	460	37.00221
##	429	5513	5758	3909	1418	35.48812
	430	1957	1960	1426	503	37.33470
	431	3306	3265	2262	936	37.21718
##	432	4433	4873	2995	1299	35.58538
##	433	3828	3891	2532	1237	36.09822
##	434	3855	3499	2499	1257	36.44150
##	435	4062	4345	2831	1079	35.85007
##	436	2500	2422	1719	712	38.17200
##	437	3540	3676	2140	1280	34.56130
##	438	7562	8024	5296	2118	35.55700
##	439	2497	2763	1755	610	36.55587
##	440	4402	4248	2916	1402	36.68855
##	441	3380	3304	2342	983	36.83580
##	442	3370	3759	2075	1169	35.75994
##	443	3573	3776	2433	1017	36.35768
##	444	4266	4594	3193	973	38.82489
##	445	4904	5074 3011	3201	1385	34.12582
##	446	3822 3854	3911 3736	2431	1296	36.75170
##	447 448	3854 3785	3736 3639	2442 2699	1294 1024	35.54100 36.24016
##	449	5028	5027	3361	1508	36.40274
##	450	3269	3162	2303	896	35.69960
ππ	100	0200	0102	2000	000	50.03300

```
## 451
          2606
                   2559
                             1608
                                        929
                                                  35.02840
## 452
                   3320
                             2409
                                       1064
                                                  37.10340
          3501
## 453
          2261
                   1826
                             1467
                                        763
                                                  36.58425
## 454
          3662
                   3519
                             2570
                                       1012
                                                  36.14965
## 455
          2044
                   1984
                             1491
                                        439
                                                  36.83317
## 456
                             2236
          3674
                   3285
                                       1371
                                                  36.14616
## 457
                              809
                                        508
                                                  35.46716
          1340
                   1289
## 458
          4323
                   4337
                             3249
                                        973
                                                  39.68031
## 459
          2578
                   2598
                             1752
                                        771
                                                  37.68464
## 460
          4933
                   4896
                             3510
                                       1373
                                                  36.10399
## 461
          3002
                   3033
                             2331
                                        656
                                                  37.02498
## 462
          4038
                   3773
                             2920
                                       1074
                                                  34.88559
## 463
          3961
                   4360
                             2952
                                        869
                                                  40.20121
## 464
                                                  36.05909
          2200
                   2233
                             1458
                                        531
## 465
          3133
                             2343
                                        741
                                                  36.04117
                   3092
## 466
          1208
                   1301
                              868
                                        237
                                                  36.62334
## 467
          1640
                             1105
                                        488
                                                  36.40671
                   1677
## 468
          2511
                   2542
                             2030
                                        421
                                                  37.61689
## 469
                   2198
                             1149
                                        420
                                                  37.65613
          1614
## 470
          1145
                   1174
                              783
                                        302
                                                  35.74410
## 471
          2412
                   2754
                             1634
                                        570
                                                  38.64469
## 472
          5118
                   5756
                             4065
                                        974
                                                  40.86049
## 473
                                                  37.57006
          1884
                   1981
                             1301
                                        539
## 474
          1994
                   2131
                                        338
                                                  37.64594
                             1534
## 475
          2468
                   2504
                             1880
                                        538
                                                  38.89749
```

df <- scale(dataf) head(df)</pre>

nead(di)

```
##
          Retiros
                     Arribos
                               Genero M
                                          Genero F Edad Promedio
## [1,] 4.1609913 4.1622489 4.2355812
                                         4.1027892
                                                      1.63634866
## [2,]
        1.2188996 0.7412945 1.3337376 0.6312741
                                                     -0.01892758
## [3,] -0.7735167 -0.6156562 -0.7933281 -0.7253251
                                                      0.82227512
## [4,] -0.7592512 -0.6580408 -0.7285250 -0.8385802
                                                      1.38343733
       1.2025961 1.1471596 1.3575622 0.9685773
## [5,]
                                                     -0.91965251
## [6,] -0.7103409 -0.6657471 -0.7104183 -0.7031665
                                                      0.08506214
```

```
set.seed(2345)
library(animation)
kmeans.ani(df, 3)
```


Optimal number of clusters

A partir de 3 clusters se comienza a estabilizar la Suma De Cuadrados Interna Aplico k medias

```
k3 <- kmeans(df, centers = 3, nstart = 25)
str(k3)
## List of 9
##
    $ cluster
                  : int [1:475] 2 1 3 3 1 3 3 1 1 3 ...
                  : num [1:3, 1:5] 0.535 2.095 -0.716 0.513 2.114 ...
     ..- attr(*, "dimnames")=List of 2
##
     .. ..$ : chr [1:3] "1" "2" "3"
##
     ....$ : chr [1:5] "Retiros" "Arribos" "Genero M" "Genero F" ...
##
    $ totss
                   : num 2370
                   : num [1:3] 256 163 418
##
    $ withinss
##
    $ tot.withinss: num 838
##
    $ betweenss
                  : num 1532
##
                   : int [1:3] 164 48 263
    $ size
                   : int 3
##
    $ iter
    $ ifault
                  : int 0
    - attr(*, "class")= chr "kmeans"
fviz_cluster(k3, data = df)
```


Estos 3 perfiles ya cuenta con carateristicas diferentes de otro grupo pero similares dentro del mismo grupo. Esta segmentaci??n basicamente define perfiles en base a arribos y retiros, por lo que puede ser util para determinar la cantidad de bicicletas que deben tener en esas estaciones. Otra posible interesante agrupacion se puede hacer tomando en cuenta la variable de tiempos de uso, proporci??n de uso en fines de semana.

1.3. Tendencia en estaciones

??En qu?? estaciones puedes observar una tendencia de uso a la alta?

```
#Vamos a considerar el uso total(arribos/retiros) de cada estaci??n por d??a
#contar arribos
a1<- dataset %>% select("Ciclo_EstacionArribo", "Fecha_Arribo")
a1<-as.data.frame(table(a1))
names(a1)<- c("Estacion", "t", "n")

#contar retiros
a2<- dataset %>% select("Ciclo_Estacion_Retiro", "Fecha_Arribo")
a2<-as.data.frame(table(a2))
names(a2)<- c("Estacion", "t", "n")

#Unir arribos y retiros
uso_df<-merge(x=a1,y=a2,by=c("Estacion", "t"),all=TRUE)
#Replace nan's with 0'
uso_df[is.na(uso_df)] <- 0
#print(sum(is.na(a)))</pre>
```

```
uso_df$n.- uso_df$n.x+uso_df$n.y
uso_df<-uso_df[,c("t","Estacion", "n")]

#regresar t a date
uso_df$t<-as.Date(uso_df$t, format= "%Y-%m-%d")

#Dejar solo datos despu??s de Agosto, podr??amos tener retiros en fechas anteriores
uso_df<-uso_df %>% filter(t>=as_date("2021-08-01") & t<=as_date("2021-10-31"))</pre>
```

Recordando que: El modelo de un proceso autorregresivo dice que en el momento t el valor Y_t , consiste de una, δ (delta), m??s un coeficiente autorregresivo, ϕ (phi), por el valor del dato anterior (Y_t - 1), m??s el ruido aleatorio, ??tc. La idea es tomar ϕ , medida de cambio, para verificar que tanto aumenta o disminuye la tendencia.

Primero haremos pruebas de existencia de tendencia

```
#Convertir cada estaci??n en una columna
uso_df_sp<-spread(uso_df,key = Estacion,value = n)
uso_df_sp[is.na(uso_df_sp)]<-0

#HO: No existe tendecia
#H1: Tendencia lineal
#Asumiendo que las series temporales pueden estar autocorrelacionadas, aplicamos la versi??n sieve-boot

#Prueba de tendencia en series de tiempo
uso_df_ten<-test_tend_lin(uso_df_sp[,2:ncol(uso_df_sp)])

#agregar varible de estaciones
uso_df_ten$Estacion<-colnames(uso_df_sp[,2:ncol(uso_df_sp)])</pre>
```

Vamos a seleccionar solo las variables para las que podemos rechazar la hip??
tesis nula de ausencia de tendencia a un nivel de confianza de
l95%

```
uso_df_ten_sig<-uso_df_ten %>% filter(p_values<=.05)

#Obtenemos las 10 con mayor proporci??n de cambio
tend_alta<-uso_df_ten %>% arrange(desc(AR_coef)) %>% head(10)
cat("Estaciones con tendencia a la alta:",tend_alta$Estacion)
```

Estaciones con tendencia a la alta: 292 55 159 29 52 43 130 121 337 57

```
#Obtenemos las 10 con menor proporci??n de cambio
tend_baja<-uso_df_ten%>% arrange(AR_coef) %>% head(10)
cat("Estaciones con tendencia a la baja:",tend_baja$Estacion)
```

Estaciones con tendencia a la baja: 273 176 274 439 255 13 455 371 442 334

Gr??ficas variables finales

#Gr??fica de estaciones con tendencia a la alta uso_ten_alta<-uso_df %>% filter(Estacion %in% tend_alta\$Estacion) ggplot(uso_ten_alta,aes(x=t,y=n,group=Estacion)) + geom_line()+ facet_wrap(~ Estacion)

#Gr??fica de estaciones con tendencia a la baja
uso_ten_baja<-uso_df %>% filter(Estacion %in% tend_baja\$Estacion)
ggplot(uso_ten_baja,aes(x=t,y=n,group=Estacion)) + geom_line()+ facet_wrap(~ Estacion)

