

Características das Operações de Máquina As operações da CPU são determinadas pelas instruções que ele próprio executa Estas operações são referidas como instruções de máquina ou instruções do computador A coleção de diferentes instruções que a CPU e' capaz de executar e' conhecida como conjunto de instruções

da CPU

Características das Operações

de Máquina
Elementos de uma instrução máquina:

° Código de operação (OPCODE) - especifica a operação a ser executada através de código binário;

Referência de operando fonte - a operação pode envolver um ou mais operandos que são os inputs da operação;

Referência ao resultado do operando -a operação pode produzir um resultado

Referência à própria instrução -indica a CPU onde fazer a busca da próxima instrução, quando a execução tiver sido completa

Características das Operações

de Máquina
Os dados requeridos pelas instruções, como
fonte ou resultado de operandos pode ser lida
ou escrita em uma das seguinte áreas:

Memória principal
registradores da CPU
Dispositivos de I/O

Características das Operações

de Máquina

Representação das Instruções

Cada instrução é representada como uma sequência de bits

A instrução é dividida em pequenos campos, cada um deles é um elemento da instrução

Durante a sucessão de uma instrução, a instrução é colocada no IR (Instruction Register) da CPU.A CPU encarrega-se da interpretação dos bits

Abits

Obits

Odigo de operação Referência do operando Referência do operando

Características das Operações

de Máquina

E' difícil para o programador lidar com representações binárias de instruções máquina

Por isso, tornou-se prática comum usar uma representação simbólica para instruções de máquina

Mnemônicas

ADD - adição

SUB - subtração

MUL - multiplicação

LOAD - Carregar dados da memória

STORE - Armazenar dados da memória

EX ADD R, Y #Addicionar o valor contido na posição Y com o conteúdo do registrador R

Características das Operações de Máquina Considere uma instrução de alto nível: X = X + Y Suponha que as variáveis X e Y correspondem as posições de memória de endereços 513 e 514 Se consideraremos um conjunto simples de instruções de máquina, esse comando pode ser implementado com três instruções: Carregar um registrador com o conteúdo da posição 513 Adicionar o conteúdo da posição 514 ao registrador Armazenar o conteúdo do registrador na posição de memória 513

Tipos de instruções Um computador deve ter um conjunto de instruções que permita ao usuário formular qualquer tarefa de processamento de dados Podemos catalogar os tipos de instruções de máquina: Processamento de dados -Instruções aritméticas e lógicas Armazenamento de dados -Instruções de memória Movimento -Instruções de I/O Controle -Teste e instruções de salto

Projeto do conjunto de instruções Repertório de operações -quantas e quais as operações que são necessárias e como quão complexas elas podem ser Tipos de dados - quais os tipos de dados sobre os quais as operações são efetuadas Formato das instruções -comprimento das instruções em bits, número de endereços, tamanho dos vários campos Registradores -nº de registradores da CPU que podem ser usados e o propósito de cada um Modos de endereçamento - de que modo o endereço de um operando pode ser especificado

Tipos de Operações O Operações de Transferência de Dados Operações Aritméticas Operações Lógicas Operações de Conversões Operações de I/O Operações de controle do sistema Operações de Transferência de Controle

Operações de Transferência de dados O tipo mais fundamental de instrução de máquina é a instrução de transferência de dados Deve especificar os endereços dos operandos fonte e de destino da operação. Cada endereço pode indicar uma posição de memória, um registrador ou o topo da pilha.

transferidos.

o Como em todas as instruções com operandos, deve especificar o modo de endereçamento de cada troperando

o Deve indicar o tamanho dos dados a serem

sele SCraveiro EACH – USP OCD – Organização de Computadores Digitais - 2005

Operações de Transferência de dados o As operações de transferência de dados são o tipo mais simples de operação, em termos da ação tomada pela CPU o Se o operando fonte e de destino são registradores, a CPU simplesmente transfere dados de um registrador para outro; essa é

uma operação interna da CPU

Operações de Transferência de

0 0 0

dados

- Se um ou ambos os operandos estão na memória, a CPU tem de efetuar algumas ou todas as ações a seguir:
- 1. Calcule o endereço de memória, com base no modo de endereçamento especificado
- 2. Se o endereço se refere à memória virtual, traduza esse endereço para um endereço de memória real
- 3. Determine se o item endereçado está na memória cache
- 4. Se não estiver, emita um comando para o módulo de

19

Gisele SCraveiro FACH - USP

00

Operações Aritméticas

- A maioria das máquinas fornece operações aritméticas básicas para soma, subtração, multiplicação e divisão
- Essas operações são oferecidas para números inteiros com sinal (de ponto fixo)
- o Muitas vezes, elas são também oferecidas
- para números na representação decimal empacotada e números de ponto flutuante

20

Gisele SCraveiro FACH - USS

OCD - Organização de Computadores Digitais - 2006

000

Operações Aritméticas

- Outras possíveis operações incluem uma variedade de instruções com um único operando
- Por exemplo:
 - o Tomar o valor absoluto do operando
 - Negar o operando
 - o Incrementar o operando de 1
 - o Decrementar o operando de 1
- A execução de uma instrução aritmética pode envolver transferência de dados, para fornecer os valores dos operandos como entrada para a ULA e para armazenar na memória o valor obțido como saída da ULA

Gisele SCraveiro EACH – US

OCD – Organização de Computadores Digitais - 2006

0 0

Operações Lógicas

- A maioria das máquinas fornece também uma variedade de operações para manipular bits individuais de uma palavra ou de qualquer unidade endereçável
- Essas operações são baseadas em operações booleanas :
 - o A operação NOT (NÃO) inverte um bit
 - As operações AND (E), OR (OU) e XOR (ou-exclusivo) são as funções lógicas mais comuns com dois operandos
 - A operação EQUAL é um teste de igualdade binária, bastante útil

22

Gisele SCraveiro EACH – U

- Organização de Computadores Digitais - 2006

000

Operações de Conversões

- o 'Instruções de conversão são aquelas que mudam ou operam sobre o formato de dados
- Um exemplo simples é a conversão de um número decimal para binário e um exemplo mais complexo, a instrução Translate (TR) do 5/370
- Essa instrução pode ser usada para converte um código de 8 bits para outro (EBCDIC para ASCII) e tem três operandos: TR R1, R2, L
- O operando R2 contém o endereço do início de uma tabela de códigos de 8 bits Os L bytes a partir do byte especificado em R1 são traduzidos, cada byte sendo substituído pelo conteúdo da:entrada na tabela indexada por esse byte

isele SCraveiro EACH – USP

OCD - Organização de Computadores Digitais - 2006

00

Operações de I/C

- As instruções de entrada/saída (E/S) foram discutidas com algum detalhe anteriormente
- Como vimos, existe uma variedade de abordagens, incluindo E/S programada, E/S mapeada na memória,
 DMA e uso de processadores de E/S
- Muitas implementações fornecem apenas algumas instruções de E/S, com ações específicas determinadas por meio de parâmetros, códigos ou palavras de comando

Gisele SCraveiro EACH - USP

OCD – Organização de Computadores Digitais - 2006

Operações de Controle do Sistema

- o Instruções de controle de sistema são aquelas que apenas podem ser executadas quando o processador está no estado privilegiado ou está executando um programa carregado em uma área especial da memória, que é privilegiada
- o Tipicamente, elas são reservadas para uso pelo sistema operacional

Operações de Transferência de

Controle

- o Para todos os tipos de operação discutidos até agora, a próxima instrução a ser executada é aquela que segue imediatamente, na memória, a instrução corrente
- o No entanto, uma fração significativa das instruções de qualquer programa tem como função alterar a sequência de execução de instruções
- o Nessas instruções, a CPU atualiza o contador de programa com o endereço de alguma outra instrução armazenada na memória

000

Operações de Transferência de

Controle

- o Essas operações são requeridas por diversas razões. Entre as mais importantes estão as seguintes:
- 1. No uso prático de computadores, é essencial poder ${\it executar}$ um conjunto de instruções mais de uma vez e talvez milhares de vezes.
- 2 Quase todos os programas envolvem a tomada de algumas decisões, isto é, o computador deve **executar uma determinada sequência** de operações, se uma determinada condição é satisfeita, e uma outra sequência de operações, se essa condição não se verifica.
- 3 Implementar corretamente um programa de computador de grande porte é uma tarefa complexa. Por isso, é útil dispor de meca para dividir o programa em partes menores, que possam ser programadas separadamente

Operações de Transferência de

Controle

A seguir, discutimos as operações de transferência de controle encontradas mais frequentemente num conjunto de instruções:

- o As operações de desvio,
- o de salto e
- o de chamada de procedimento

o o o la Instrução de Desvio

- o Uma instrução de desvio tem como um de seus operandos oendereço da próxima instrução a ser executada.
- o Com frequência, essa instrução é um desvio. condicional, isto é, o desvio será feito (o contador de programa é atualizado com o endereço especificado no operando) apenas se uma dada condição for satisfeita.
- o Caso contrário, será executada a próxima instrução da sequência de instruções (o contador de programa é incrementado)

Instrução de Desvio

Por exemplo, uma máquina pode ter vários tipos de desvio condicional:

- o BRP X -Desviará para a instrução de endereço X se o resultado for positivo
- o BRN X -Desviará para a instrução de endereço X se o resultado for negativo
- o BRZ X -Desviará para a instrução de endereço X se o resultado for zero
- o BRO X -Desviará para a instrução de endereço X se ocorrer overflow

Instruções de Salto

- o Outra forma comum de instrução de transferência de controle é a instrução de salto
- o Instruções desse tipo incluem um endereço de desvio implícito
- o Tipicamente, um salto indica que a execução de uma instrução da sequência de instruções deve ser omitida; portanto, o endereço da próxima instrução a ser executada é obtido somando o endereço da instrução corrente com o tamanho de uma instrução

Instruções de Salto

- o Um exemplo típico é uma instrução para incrementar o valor contidoem um registrador e saltar caso o resultado dessa operação seja igual a zero (ISZ -increment-and-skip-if-zero)
- o Considere o seguinte fragmento de programa:

301

309 **ISZ** R1

310 BR 301

311

Instruções de chamada de

procedimento

- O conceito de procedimento foi talvez uma das mais importantes inovações nodesenvolvimento de linguagens de programação
- o Um procedimento é um subprograma autocontido, que é incorporado em um programa maior
- o Um procedimento pode ser invocado, ou chamado, em qualquer ponto do programa
- o Uma chamada a um procedimento instrui o processador a executar todo o procedimento e, então, retornar ao ponto em que ocorreu a chamada

Instruções de chamada de

procedimento

- o O mecanismo de controle de procedimentos envolve duas instruções básicas:
 - o uma instrução de chamada, que desvia a execução da instrução corrente para o início do procedimento,
 - o e uma instrução de retorno, que provoca o retorno da execução do procedimento para o endereço em que ocorreu a chamada
- o Ambas constituem formas de instrução de desvio

o o o o Instruções de chamada de

procedimento

- o Considere uma instrução CALL X, em linguagem máquina, que representa uma chamada ao procedimento de endereço X
- Se o endereço de retorno for armazenado num registrador, a instrução CALL X causará as seguintes ações:
 - RN<-PC + Delta
 - PCk-X
- o onde RN é o registrador usado para armazenar o endereço de retorno da chamada de procedimento, PC é o contador de programa e Delta é o tamanho de uma instrução
- o O procedimento chamado pode, então, salvar o conteúdo de RN, para que ele seja usado posteriormente, no retomo do procedimento

Modo de Endereçamento

- o Virtualmente todos os computadores possuem mais que um modo de endereçamento
- o A questão está em como é que a unidade de controle vai escolher qual o modo de endereçamento que está sendo usado numa instrução em particular
- o Muitas aproximações podem ser tomadas, geralmente essa distinção é conseguida pela utilização do opcode
- o Do mesmo modo, 1 ou mais bits podem ser usados no formato de instruções para fazer essa distinção

• Esta técnica procura solucionar o problema do espaço de endereçamento da técnica anterior colocando no campo do endereço da instrução uma referência à memória que contém o endereço completo da operação EA = (A)

registrador

• Esta técnica é parecida ao endereçamento indireto variando apenas na referência do campo de endereço ser a de um registrador e não uma posição da memória

• EA = R

• As vantagens e limitações são basicamente as mesmas que o endereçamento indireto

• Uma outra vantagem deste tipo de endereçamento, reside no fato deste usar uma menos uma referência à memória que o endereçamento indireto

Endereçamento por Deslocamento

• Esta técnica muito poderosa combina as técnicas de endereçamento direto e do endereçamento indireto por registrador

EA = A+(R)

• Esta técnica obriga a que a instrução tenha dois campos de endereço

• Sendo pelo menos um explícito (valor A usado diretamente)

• O outro campo de endereçamento, referencia implicitamente um registrador cujo conteúdo é adicionado a A para produzir o endereçamento deslocado

Endereçamento por Deslocamento 1-Endereçamento Relativo 0 Usa-se o PC (Program Counter) 0 O campo de endereço da instrução corrente é um deslocamento em relação ao PC 0 Esta técnica explora o princípio da localidade permitindo poupar bits de endereço na instrução 2-Endereçamento Baseado no registrador 0 O registrador de referência contém a posição da memória e o endereço da instrução contém o deslocamento a partir duma posição de memória

Endereçamento por Deslocamento

3-Endereçamento Indexado

Neste caso o campo do endereço referencia uma memória principal e o registrador de referência contém um deslocamento positivo a partir dessa posição de memória

Esta aproximação é exatamente contrária ao endereçamento baseado em registrador e tem grande utilidade na execução de instruções iterativas através de alterações sucessivas do registrador de referência

EA = A + (R) R = R + 1

Por exemplo suponha-se que se quer adicionar um elemento aos elementos de uma lista O melhor seria começar com a base e somar um elemento a base A A+1 A+2 A+3....

Endereçamento por Pilha

A stack é um conjunto reservado de localizações de memória

A pilha é gerida em filosofia LIFO (Last In First Out)

Associado à pilha existe um apontador que é o endereço do topo da pilha

Coperando esta (implicitamente) no topo da pilha ex ADD remove dois elementos da pilha e adiciona-os e coloca o resulta na pilha

Formato das Instruções

O formato das instruções define a forma como os campos são distribuídos

Cada instrução deve ter um código de operação (OPCODE), e explícita ou implicitamente um ou mais operandos

Cada operando explícito tem de ser referenciado utilizando um dos métodos descritos anteriormente (endereçamento)

É o fator mais básico do desenho do conjunto de instruções e esta decisão afeta e é afetada por: Tamanho da memória Organização da memória Estrutura do bus Velocidade do CPU O compromisso mais obvio é entre o desejo de ter um repertório de instruções mais poderoso, ou seja, mais OPCODES, mais operandos, mais modos de endereçamento, e a necessidade de poupar espaço

Para além deste compromisso existem outras considerações:

O tamanho das instruções deve ser igual ou múltiplo do bus do sistema, caso contrário as instruções não ficariam completas;

O tamanho das instruções deve também ser múltiplo do tamanho dos caracteres (8 bits) e dos números da vírgula fixa para não haver desperdícios de bits nos cálculos a efetuar

o o o Alocação de Bits

Os seguintes fatores determinam a utilização dos bits de endereçamento:

- o Nº de modos de endereçamento
 - o Os modos de endereçamento indicados explicitamente ocupam mais bits que os indicados implicitamente
- o Nº de operandos
 - Menos endereços podem levar os programas mais longos e complexos
- o Registrador vs Memória
 - o Quantos mais registradores poderem ser utilizados
 - 61 para referenciar operandos menos bits são necessários

0 0 0

Alocação de Bits

- o Nº de conjuntos de registradores
 - Atualmente a tendência tem sido para dividir os registradores em bancos especializados (Pe dados e deslocamentos), usando os opcode(s) da instrução para determinar sobre que banco de registradores deve a operação ser realizada
- o Alcance do endereçamento
 - o Está diretamente relacionado com o nº de bits para endereçamento na instrução
- ₆₂ O Quando o acesso é feito à memória principal

le SCraveiro, FACH - LISP OCD - Organização de Computadores Digitals - 20

Conjunto de Instruções: Características e Funções Modos de Endereçamento e Formatos

- As operações da CPU são determinadas pelas instruções que ele próprio executa
- Estas operações são referidas como instruções de máquina ou instruções do computador
- A coleção de diferentes instruções que a CPU e' capaz de executar e' conhecida como conjunto de instruções da CPU

Elementos de uma instrução máquina:

- o Código de operação (OPCODE) especifica a operação a ser executada através de código binário;
- Referência de operando fonte a operação pode envolver um ou mais operandos que são os inputs da operação;
- Referência ao resultado do operando -a operação pode produzir um resultado
- Referência à própria instrução -indica a CPU onde fazer a busca da próxima instrução, quando a execução tiver sido completa

Os dados requeridos pelas instruções, como fonte ou resultado de operandos pode ser lida ou escrita em uma das seguinte áreas:

- Memória principal
- registradores da CPU
- Dispositivos de I/O

Representação das Instruções

- Cada instrução é representada como uma sequência de bits
- A instrução é dividida em pequenos campos, cada um deles é um elemento da instrução
- o Durante a sucessão de uma instrução, a instrução é colocada no IR (Instruction Register) da CPU. A CPU encarrega-se da interpretação dos bits

- o E' difícil para o programador lidar com representações binárias de instruções máquina
- Por isso, tornou-se prática comum usar uma representação simbólica para instruções de máquina
- o Mnemônicas
 - O ADD adição
 - o SUB subtração
 - MUL multiplicação
 - LOAD Carregar dados da memória
 - STORE Armazenar dados da memória
 - Ex ADD R, Y #Addicionar o valor contido na posição Y com o conteúdo do registrador R

- Considere uma instrução de alto nível: X = X + Y
- Suponha que as variáveis X e Y correspondem as posições de memória de endereços 513 e 514
- Se consideraremos um conjunto simples de instruções de máquina, esse comando pode ser implementado com três instruções:
 - Carregar um registrador com o conteúdo da posição 513
 - Adicionar o conteúdo da posição 514 ao registrador
 - Armazenar o conteúdo do registrador na posição de memória 513

0 0 0 Tipos de instruções

- o Um computador deve ter um conjunto de instruções que permita ao usuário formular qualquer tarefa de processamento de dados
- o Podemos catalogar os tipos de instruções de máquina :
 - o Processamento de dados Instruções aritméticas e lógicas
 - Armazenamento de dados -Instruções de memória
 - Movimento -Instruções de I/O
 - o Controle Teste e instruções de salto

o o o O Número de endereços

- Poderíamos dizer que as instruções mais comuns teriam obrigatoriedade de ter 4 endereços de referência:
 - o 2 operandos, 1 resultado e o endereço da instrução seguinte
 - Na prática, 4 endereços é uma situação extremamente rara
 - Muitas CPU possuem 1,2, ou 3 endereços na instrução, com o endereço da próxima instrução estando explícito através do PC

000 Número de Endereços

Comment

Comment

	SUB	Y, A, D	$Y \leftarrow A - B$
3	MPY	T, D, E	$T \leftarrow D \times E$
	ADD	T, T, C	$T \leftarrow T + C$
	DIV	Y, Y, T	$Y \leftarrow Y \div T$

Instruction

Instruction

(a) Three-Address Instructions

MOVE	Y, A	$Y \leftarrow A$
SUB	Y, B	$Y \leftarrow Y - B$
MOVE	T, D	$T \leftarrow D$
MPY	T, E	$T \leftarrow T \times E$
ADD	T, C	$T \leftarrow T + C$
DIV	Y, T	$Y \leftarrow Y \div T$

Instruction Comment LOAD $AC \leftarrow D$ MPY $AC \leftarrow AC \times E$ ADD $AC \leftarrow AC \pm C$ STOR $Y \leftarrow AC$ LOAD $AC \leftarrow A$ SUB $AC \leftarrow AC - B$ DIV $AC \leftarrow AC \div Y$ STOR $Y \leftarrow AC$

(c) One-Address Instructions

Figure 9.3 Program to Execute $Y = (A - B) + (C + D \times E)$.

⁽b) Two-Address Instructions

000 Número de endereços

Poucos endereços por instrução resultam em instruções mais primitivas:

- Requerem uma menor complexidade da CPU
- o Instruções de tamanho menor
- o Por outro lado, programas que contêm um maior número de instruções, em geral resultam num maior tempo de execução e programas mais complexos

o o o Projeto do conjunto de instruções

- O projeto de um conjunto de instruções é muito complexo, uma vez que ele afeta muitos aspectos do sistema computacional
- Os elementos mais usados no projeto de instruções são:
 - Repertório de operações
 - Tipos de dados
 - o Formato das instruções
 - Registradores
 - Modos de endereçamento

o o o Projeto do conjunto de instruções

- o Repertório de operações -quantas e quais as operações que são necessárias e como quão complexas elas podem ser
- o Tipos de dados quais os tipos de dados sobre os quais as operações são efetuadas
- o Formato das instruções -comprimento das instruções em bits, número de endereços, tamanho dos vários campos
- Registradores -n° de registradores da CPU que podem ser usados e o propósito de cada um
- o Modos de endereçamento de que modo o endereço de um operando pode ser especificado

Tipos de Operandos o Endereços

- - Diferentes modos de endereçamento
- Números
 - o ponto, fixo, ponto flutuante e decimais
- o Caracteres
 - o ASCII, EBCDIC
- Dados Lógicos
 - bits 1

o o o o Tipos de Operações

- Operações de Transferência de Dados
- o Operações Aritméticas
- o Operações Lógicas
- Operações de Conversões
- Operações de I/O
- Operações de controle do sistema
- Operações de Transferência de Controle

o o o o Tipos de Operações

- o Operações de Transferência de dados
 - Especifica a localização da fonte e destino
 - o O comprimento de dados a transferir tem de ser especificado
 - o E' necessário referir o modo de endereçamento para cada operando

Operações de Transferência de ados

- O tipo mais fundamental de instrução de máquina é a instrução de transferência de dados
- Deve especificar os endereços dos operandos fonte e de destino da operação. Cada endereço pode indicar uma posição de memória, um registrador ou o topo da pilha.
- Deve indicar o tamanho dos dados a serem transferidos.
- o Como em todas as instruções com operandos, deve especificar o modo de endereçamento de cada operando

Operações de Transferência de dados

- dados
 - As operações de transferência de dados são o tipo mais simples de operação, em termos da ação tomada pela CPU
 - Se o operando fonte e de destino são
 registradores, a CPU simplesmente transfere
 dados de um registrador para outro; essa é
 uma operação interna da CPU

Operações de Transferência de dados

- Se um ou ambos os operandos estão na memória, a CPU tem de efetuar algumas ou todas as ações a seguir:
- 1. Calcule o endereço de memória, com base no modo de endereçamento especificado
- 2. Se o endereço se refere à memória virtual, traduza esse endereço para um endereço de memória real
- 3. Determine se o item endereçado está na memória cache
- 4. Se não estiver, emita um comando para o módulo de memória

o o o O Operações Aritméticas

- A maioria das máquinas fornece operações aritméticas básicas para soma, subtração, multiplicação e divisão
- Essas operações são oferecidas para números inteiros com sinal (de ponto fixo)
- Muitas vezes, elas são também oferecidas
- o para números na representação decimal empacotada e números de ponto flutuante

000

Operações Aritméticas

- Outras possíveis operações incluem uma variedade de instruções com um único operando
- o Por exemplo:
 - Tomar o valor absoluto do operando
 - Negar o operando
 - Incrementar o operando de 1
 - o Decrementar o operando de 1
- A execução de uma instrução aritmética pode envolver transferência de dados, para fornecer os valores dos operandos como entrada para a ULA e para armazenar na memória o valor obtido como saída da ULA

o o o O Operações Lógicas

- A maioria das máquinas fornece também uma variedade de operações para manipular bits individuais de uma palavra ou de qualquer unidade endereçável
- Essas operações são baseadas em operações booleanas:
 - o A operação NOT (NÃO) inverte um bit
 - As operações AND (E), OR (OU) e XOR (ou-exclusivo) são as funções lógicas mais comuns com dois operandos
 - A operação EQUAL é um teste de igualdade binária, bastante útil

o o o Operações de Conversões

- Instruções de conversão são aquelas que mudam ou operam sobre o formato de dados
- Um exemplo simples é a conversão de um número decimal para binário e um exemplo mais complexo, a instrução Translate (TR) do 5/370
- Essa instrução pode ser usada para converte um código de 8 bits para outro (EBCDIC para ASCII) e tem três operandos: TR R1, R2, L
- O operando R2 contém o endereço do início de uma tabela de códigos de 8 bits Os L bytes a partir do byte especificado em R1 são traduzidos, cada byte sendo substituído pelo conteúdo da entrada na tabela indexada por esse byte

o o o O Operações de I/O

- As instruções de entrada/saída (E/S) foram discutidas com algum detalhe anteriormente
- Como vimos, existe uma variedade de abordagens, incluindo E/S programada, E/S mapeada na memória, DMA e uso de processadores de E/S
- Muitas implementações fornecem apenas algumas instruções de E/S, com ações específicas determinadas por meio de parâmetros, códigos ou palavras de comando

0 0 0

Operações de Controle do Sistema

- Instruções de controle de sistema são aquelas que apenas podem ser executadas quando o processador está no estado privilegiado ou está executando um programa carregado em uma área especial da memória, que é privilegiada
- Tipicamente, elas são reservadas para uso pelo sistema operacional

Operações de Transferência de Controle

- Para todos os tipos de operação discutidos até agora, a próxima instrução a ser executada é aquela que segue imediatamente, na memória, a instrução corrente
- No entanto, uma fração significativa das instruções de qualquer programa tem como função alterar a sequência de execução de instruções
- Nessas instruções, a CPU atualiza o contador de programa com o endereço de alguma outra instrução armazenada na memória

Operações de Transferência de Controle

- o Essas operações são requeridas por diversas razões. Entre as mais importantes estão as seguintes:
- 1. No uso prático de computadores, é essencial poder executar um conjunto de instruções mais de uma vez e talvez milhares de vezes.
- 2 Quase todos os programas envolvem a tomada de algumas decisões, isto é, o computador deve executar uma determinada sequência de operações, se uma determinada condição é satisfeita, e uma outra sequência de operações, se essa condição não se verifica.
- 3 Implementar corretamente um programa de computador de grande porte é uma tarefa complexa. Por isso, é útil dispor de mecanismos para dividir o programa em partes menores, que possam ser programadas separadamente

O perações de Transferência de Controle

A seguir, discutimos as operações de transferência de controle encontradas mais frequentemente num conjunto de instruções:

- o As operações de desvio,
- o de salto e
- o de chamada de procedimento

o o o o Instrução de Desvio

- o Uma instrução de desvio tem como um de seus operandos oendereço da próxima instrução a ser executada.
- o Com frequência, essa instrução é um desvio. condicional, isto é, o desvio será feito (o contador de programa é atualizado com o endereço especificado no operando) apenas se uma dada condição for satisfeita.
- o Caso contrário, será executada a próxima instrução da sequência de instruções (o contador de programa é incrementado)

o o o o Instrução de Desvio

Por exemplo, uma máquina pode ter vários tipos de desvio condicional:

- BRP X -Desviará para a instrução de endereço X se o resultado for positivo
- o BRN X Desviará para a instrução de endereço X se o resultado for negativo
- BRZ X Desviará para a instrução de endereço X se o resultado for zero
- BRO X Desviará para a instrução de endereço X se ocorrer overflow

o o o o Instruções de Salto

- Outra forma comum de instrução de transferência de controle é a instrução de salto
- o Instruções desse tipo incluem um endereço de desvio implícito
- Tipicamente, um salto indica que a execução de uma instrução da sequência de instruções deve ser omitida; portanto, o endereço da próxima instrução a ser executada é obtido somando o endereço da instrução corrente com o tamanho de uma instrução

o o o o Instruções de Salto

- Um exemplo típico é uma instrução para incrementar o valor contidoem um registrador e saltar caso o resultado dessa operação seja igual a zero (ISZ -increment-and-skip-if-zero)
- Considere o seguinte fragmento de programa:

301

309 **ISZ** R1

310 BR 301

311

Instruções de chamada de procedimento

- o O conceito de procedimento foi talvez uma das mais importantes inovações nodesenvolvimento de linguagens de programação
- Um procedimento é um subprograma autocontido, que é incorporado em um programa maior
- Um procedimento pode ser invocado, ou chamado, em qualquer ponto do programa
- o Uma chamada a um procedimento instrui o processador a executar todo o procedimento e, então, retornar ao ponto em que ocorreu a chamada

Instruções de chamada de procedimento

- O mecanismo de controle de procedimentos envolve duas instruções básicas:
 - uma instrução de chamada, que desvia a execução da instrução corrente para o início do procedimento,
 - o e uma instrução de retorno, que provoca o retorno da execução do procedimento para o endereço em que ocorreu a chamada
- o Ambas constituem formas de instrução de desvio

o o o o Instruções de chamada de procedimento

- Considere uma instrução CALL X, em linguagem máquina, que representa uma chamada ao procedimento de endereço X
- Se o endereço de retorno for armazenado num registrador, a instrução CALL X causará as seguintes ações:
 - RN<-PC + Delta
 - \circ PC \leftarrow X
- onde RN é o registrador usado para armazenar o endereço de retorno da chamada de procedimento, PC é o contador de programa e Delta é o tamanho de uma instrução
- O procedimento chamado pode, então, salvar o conteúdo de RN, para que ele seja usado posteriormente, no retomo do procedimento

000 Modo de Endereçamento

- Virtualmente todos os computadores possuem mais que um modo de endereçamento
- A questão está em como é que a unidade de controle vai escolher qual o modo de endereçamento que está sendo usado numa instrução em particular
- Muitas aproximações podem ser tomadas, geralmente essa distinção é conseguida pela utilização do opcode
- Do mesmo modo, 1 ou mais bits podem ser usados no formato de instruções para fazer essa distinção

o o o o As Técnicas de Endereçamento

- Imediato
- Direto
- o Indireto
- Registrador
- Indireto por Registrador
- Deslocamento (Indexado)
- Pilha

000 A Técnicas de Endereçamento

Gisele SCraveiro EACH - USP

OCD - Organização de Computadores Digitais - 2006

o o o As Técnicas de Endereçamento

- - Conteúdo do campo de endereço na instrução
- o EA
 - Endereço efetivo (effective address) da localização
- - Conteúdo da localização X

o o o o Endereçamento Imediato

- É a forma mais simples de endereçamento em que o operando está presente na instrução (operando -a)
- o Este modo de endereçamento pode ser utilizado para definir e utilizar constantes e inicializar variáveis
- Vantagem
 - Não e' necessário adicionar memória para obter os operandos, salvando ciclo de acesso à memória

Desvantagem

 O número (representado em CPL2) referindo o operando, esta' restrito ao tamanho do campo de endereço, o que em muitos casos é inferior comparado com o comprimento da palavra

o o o Endereçamento Imediato

- O operando faz parte da instrução
- Operando = campo de endereço
- exemplo ADD 5
 - Adiciona 5 ao conteúdo do acumulador
 - o 5 e' o operando
- Não existe referencia a memória para identificar dados
- Rápido
- Leque limitado

o o o Endereçamento Imediato

Exemplo ADD 5

- Adiciona 5 ao conteúdo do acumulador
- o 5 e' o operando

Instrução Operando Opcode

o o o Endereçamento Direto

o O campo de endereçamento contém o endereço efetivo do operando

$$EA = A$$

- Esta técnica, muito utilizada nas primeiras gerações de computadores
- Implica um acesso à memória
- Limita o espaço de endereçamento

o o o Endereçamento Direto

Exemplo, ADD A

Instrução Opcode Endereço A Memória

- o Adiciona o conteúdo da célula Aao acumulador
- o Procura no endereço de memória A pelo operando

o o o Endereçamento Indireto

Esta técnica procura solucionar o problema do espaço de endereçamento da técnica anterior colocando no campo do endereço da instrução uma referência à memória que contém o endereço completo da operação

$$EA = (A)$$

o o o Endereçamento Indireto

- Vantagem
 - Para um campo da palavra n está disponível um espaço de endereçamento 2^N
- Desvantagem
 - São necessários 2 acessos para buscar o operando, um para o endereço, outro para o valor do operando

000

Endereçamento Indireto

o o o Endereçamento por Registrador

- o Esta técnica é semelhante ao endereçamento direto, a única diferença é que o campo refere um registrador em vez de uma posição de memória
- o Tipicamente o campo de endereço que referênciaregistradores tem 3 a 4 bits para referenciar um conjunto de 8a 16 dígitos
- Vantagens
 - O Apenas um pequeno campo de endereço é necessário e não são necessárias referências à memória
 - Execução muito rápida
- Desvantagens
 - Nu'mero limitado de registradores

o o o Endereçamento por registrador

o o o Endereçamento Indireto por registrador

• Esta técnica é parecida ao endereçamento indireto variando apenas na referência do campo de endereço ser a de um registrador e não uma posição da memória

EA = R

- As vantagens e limitações são basicamente as mesmas que o endereçamento indireto
- Uma outra vantagem deste tipo de endereçamento, reside no fato deste usar uma menos uma referência à memória que o endereçamento indireto

Endereçamento Indireto por Registrador

000

Endereçamento por Deslocamento

 Esta técnica muito poderosa combina as técnicas de endereçamento direto e do endereçamento indireto por registrador

$$EA = A+(R)$$

- Esta técnica obriga a que a instrução tenha dois campos de endereço
 - Sendo pelo menos um explícito (valor A usado diretamente)
 - O outro campo de endereçamento, referencia implicitamente um registrador cujo conteúdo é adicionado a A para produzir o endereçamento deslocado

0 0 0

Endereçamento por Deslocamento

- 1-Endereçamento Relativo
- Usa-se o PC (Program Counter)
- O campo de endereço da instrução corrente é um deslocamento em relação ao PC
- Esta técnica explora o princípio da localidade permitindo poupar bits de endereço na instrução
- 2-Endereçamento Baseado no registrador
- O registrador de referência contém a posição da memória e o endereço da instrução contém o deslocamento a partir duma posição de memória

Endereçamento por Deslocamento 3-Endereçamento Indexado

- Neste caso o campo do endereço referencia uma memória principal e o registrador de referência contém um deslocamento positivo a partir dessa posição de memória
- Esta aproximação é exatamente contrária ao endereçamento baseado em registrador e tem grande utilidade na execução de instruções iterativas através de alterações sucessivas do registrador de referência

$$EA = A + (R)$$
 $R = R + 1$

 Por exemplo suponha-se que se quer adicionar um elemento aos elementos de uma lista O melhor seria começar com a base e somar um elemento a base A A+1 A+2 A+3...

O O O Endereçamento por Deslocamento

000

Endereçamento por Pilha

- A stack é um conjunto reservado de localizações de memória
- A pilha é gerida em filosofia LIFO (Last In First Out)
- Associado à pilha existe um apontador que é o endereço do topo da pilha
- O apontador para o topo da pilha é mantido Gisele SCraveiro EACH USP

o o o o Endereçamento por Pilha

- o O operando esta (implicitamente) no topo da pilha
- o ex ADD
- o remove dois elementos da pilha e adiciona-os e coloca o resulta na pilha

o o o o Formato das Instruções

- o O formato das instruções define a forma como os campos são distribuídos
- o Cada instrução deve ter um código de operação (OPCODE), e explícita ou implicitamente um ou mais operandos
- o Cada operando explícito tem de ser referenciado utilizando um dos métodos descritos anteriormente (endereçamento)

0 0 0

Tamanho das Instruções

- É o fator mais básico do desenho do conjunto de instruções e esta decisão afeta e é afetada por:
 - Tamanho da memória
 - Organização da memória
 - o Estrutura do bus
 - Velocidade do CPU
- O compromisso mais obvio é entre o desejo de ter um repertório de instruções mais poderoso, ou seja, mais OPCODES, mais operandos, mais modos de endereçamento, e a necessidade de poupar espaço

o o o o Tamanho das Instruções

Para além deste compromisso existem outras considerações:

- O tamanho das instruções deve ser igual ou múltiplo do bus do sistema, caso contrário as instruções não ficariam completas;
- O tamanho das instruções deve também ser múltiplo do tamanho dos caracteres (8 bits) e dos números da virgula fixa para não haver desperdícios de bits nos cálculos a efetuar

o o o Alocação de Bits

Os seguintes fatores determinam a utilização dos bits de endereçamento:

- o N° de modos de endereçamento
 - Os modos de endereçamento indicados explicitamente ocupam mais bits que os indicados implicitamente
- N° de operandos
 - Menos endereços podem levar os programas mais longos e complexos
- Registrador vs Memória
 - Quantos mais registradores poderem ser utilizados para referenciar operandos menos bits são necessários

o o o o Alocação de Bits

- N° de conjuntos de registradores
 - Atualmente a tendência tem sido para dividir os registradores em bancos especializados (Pe dados e deslocamentos), usando os opcode(s) da instrução para determinar sobre que banco de registradores deve a operação ser realizada
- Alcance do endereçamento
 - Está diretamente relacionado com o nº de bits para endereçamento na instrução
 - Quando o acesso é feito à memória principal