Package 'arm'

August 1, 2007

Version 1.0-25

Date 2007-08-01

2 balanceplot

Index																					37
	triangleplot				•					•		•	•		•	•		•			35
	terms.bayes																				34
	standardize																				32
	sim																				31

balanceplot

Plot of Balance Statistics

Description

This function plots the balance statistics before and after matching.

Usage

```
balanceplot(matched, pscore.fit,
  longcovnames = NULL,
  main = "Standardized Difference in Means",
  cex.main = 1, cex.vars = 0.8, cex.pts = 0.8,
  mar = c(0, 5, 4, 2), mgp = c(2, 0.25, 0),
  oma = c(0, 0, 0, 0), tcl = -0.2, ...)
```

Arguments

matched	matched data using matching function, see the example below.
pscore.fit	glm.fit object to get propensity scores.
longcovnames	long covariate names. If not provided, plot will use covariate variable name by default
main	title of the plot
cex.main	font size of main title
cex.vars	font size of variabel names
cex.pts	point size of the estimates
mar	margin of the plot, see ?par for details
mgp	axis margin of the plot, see ?par for details
oma	outer margin of the plot, see ?par for details
tcl	length of ticks, see ?par for details
	other plot options may be passed to this function

Details

This function plots the balance statistics before and after matching. The open circle dots represent the unmatched balance statistics. The solid dots represent the matched balance statistics. The closer the value of the estimates to the zero, the better the treated and control groups are balanced after matching.

Note

The function does not work with predictors that contain factor(x), log(x) or all other data transformation. Create new objects for these variables. Attach them into the original dataset before doing the matching procedure.

Author(s)

Jennifer Hill (jh1030@columbia.edu); Yu-Sung Su (ys463@columbia.edu)

References

Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006. (Chater 10)

See Also

```
matching, par
```

Examples

bayesglm

Bayesian generalized linear models.

Description

Bayesian functions for generalized linear modeling with independent normal, t, or Cauchy prior distribution for the coefficients.

Usage

```
bayesglm (formula, family = gaussian, data,
   weights, subset, na.action,
   start = NULL, etastart, mustart,
   offset, control = glm.control(...),
   model = TRUE, method = "glm.fit",
   x = FALSE, y = TRUE, contrasts = NULL,
   prior.mean = 0, prior.scale = 2.5,
   prior.scale.for.intercept = 10,
   prior.df = 1, min.prior.scale=1e-12,
   scaled = TRUE, drop.baseline=TRUE, n.iter = 100, ...)
bayesglm.fit (x, y, weights = rep(1, nobs),
```

```
start = NULL, etastart = NULL,
mustart = NULL, offset = rep(0, nobs), family = gaussian(),
control = glm.control(), intercept = TRUE,
prior.mean = 0, prior.scale = 2.5,
prior.scale.for.intercept = 10,
prior.df = 1, min.prior.scale=1e-12, scaled = TRUE)
```

Arguments

formula a symbolic description of the model to be fit. The details of model specification are given below. a description of the error distribution and link function to be used in the model. family This can be a character string naming a family function, a family function or the result of a call to a family function. (See family for details of family functions.) data an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from environment (formula), typically the environment from which glm is called. an optional vector of weights to be used in the fitting process. Should be NULL weights or a numeric vector. an optional vector specifying a subset of observations to be used in the fitting subset process. a function which indicates what should happen when the data contain NAs. The na.action default is set by the na.action setting of options, and is na.fail if that is unset. The "factory-fresh" default is na.omit. Another possible value is NULL, no action. Value na.exclude can be useful. start starting values for the parameters in the linear predictor. etastart starting values for the linear predictor. starting values for the vector of means. mustart offset this can be used to specify an a priori known component to be included in the linear predictor during fitting. This should be NULL or a numeric vector of length either one or equal to the number of cases. One or more offset terms can be included in the formula instead or as well, and if both are specified their sum is used. See model.offset. a list of parameters for controlling the fitting process. See the documentation for control glm.control for details. a logical value indicating whether model frame should be included as a compomodel nent of the returned value. method the method to be used in fitting the model. The default method "glm.fit" uses iteratively reweighted least squares (IWLS). The only current alternative is "model.frame" which returns the model frame and does no fitting. For glm: logical values indicating whether the response vector and model max, y trix used in the fitting process should be returned as components of the returned For glm. fit: x is a design matrix of dimension n * p, and y is a vector of observations of length n. an optional list. See the contrasts.arg of model.matrix.default. contrasts

intercept	logical. Should an intercept be included in the <i>null</i> model?				
prior.mean	prior mean for the coefficients: default is 0. Can be a vector of length equal to the number of predictors (including the intercept, if any). If it is a scalar, it is expanded to the length of this vector.				
prior.scale	prior scale for the coefficients: default is 2.5. Can be a vector of length equal to the number of predictors (including the intercept, if any). If it is a scalar, it is expanded to the length of this vector.				
prior.scale.	for.intercept				
	prior scale for the intercept: default is 10.				
prior.df	for t distribution: default is 1 (Cauchy). Set to Inf to get normal prior distributions. Can be a vector of length equal to the number of predictors (including the intercept, if any). If it is a scalar, it is expanded to the length of this vector.				
min.prior.scale					
	Minimum prior scale for the coefficients: default is 1e-12.				
scaled	if scaled = TRUE, then the prior distribution is rescaled: default is TRUE				
drop.baseline					
	Drop the base level of categorical x's, default is TRUE.				
n.iter	default is 100.				
	further arguments passed to or from other methods.				

Details

The program is a simple alteration of glm () that uses an approximate EM algorithm to update the betas at each step using an augmented regression to represent the prior information.

We use Student-t prior distributions for the coefficients. The prior distribution for the constant term is set so it applies to the value when all predictors are set to their mean values.

If scaled=TRUE, the scales for the prior distributions of the coefficients are determined as follows: For a predictor with only one value, we just use prior.scale. For a predictor with two values, we use prior.scale/range(x). For a predictor with more than two values, we use prior.scale/(2*sd(x)).

We include all the glm() arguments but we haven't tested that all the options (e.g., offests, contrasts, deviance for the null model) all work.

The new arguments here are: prior.mean, prior.scale, prior.scale.for.intercept, prior.df, and scaled.

Value

See glm for details.

Author(s)

Andrew Gelman (gelman@stat.columbia.edu); Yu-Sung Su (ys463@columbia.edu); Maria Grazia Pittau (grazia@stat.columbia.edu); Aleks Jakulin (Jakulin@stat.columbia.edu)

References

Andrew Gelman, Aleks Jakulin, Maria Grazia Pittau and Yu-Sung Su, A default prior distribution for logistic and other regression models, unpublished paper available at http://www.stat. columbia.edu/~gelman/standardize/

See Also

```
glm, bayespolr
```

```
n <- 100
 x1 <- rnorm (n)
 x2 < - rbinom (n, 1, .5)
 b0 <- 1
 b1 <- 1.5
 b2 <- 2
 y \leftarrow rbinom (n, 1, invlogit(b0+b1*x1+b2*x2))
 M1 \leftarrow glm (y \sim x1 + x2, family=binomial(link="logit"))
 display (M1)
 M2 \leftarrow bayesglm (y \sim x1 + x2, family=binomial(link="logit"),
  prior.scale=Inf, prior.df=Inf)
 display (M2) \# just a test: this should be identical to classical logit
 M3 \leftarrow bayesglm (y \sim x1 + x2, family=binomial(link="logit"))
   # default Cauchy prior with scale 2.5
 display (M3)
 M4 \leftarrow bayesglm (y \sim x1 + x2, family=binomial(link="logit"),
   prior.scale=2.5, prior.df=1)
    \# Same as M3, explicitly specifying Cauchy prior with scale 2.5
 display (M4)
 M5 \leftarrow bayesglm (y \sim x1 + x2, family=binomial(link="logit"),
   prior.scale=2.5, prior.df=7) # t_7 prior with scale 2.5
 display (M5)
 M6 <- bayesglm (y ~ x1 + x2, family=binomial(link="logit"),
   prior.scale=2.5, prior.df=Inf) # normal prior with scale 2.5
 display (M6)
\# Create separation: set y=1 whenever x2=1
# Now it should blow up without the prior!
 y < - ifelse (x2 == 1, 1, y)
 M1 \leftarrow glm (y \sim x1 + x2, family=binomial(link="logit"))
 display (M1)
 M2 <- bayesglm (y ~ x1 + x2, family=binomial(link="logit"),
   prior.scale=Inf, prior.df=Inf) # Same as M1
 display (M2)
 M3 <- bayesglm (y \sim x1 + x2, family=binomial(link="logit"))
 display (M3)
 M4 <- bayesglm (y \sim x1 + x2, family=binomial(link="logit"),
   prior.scale=2.5, prior.df=1) # Same as M3
 display (M4)
```

bayespolr 7

```
M5 <- bayesglm (y ~ x1 + x2, family=binomial(link="logit"),
  prior.scale=2.5, prior.df=7)
display (M5)
M6 <- bayesglm (y \sim x1 + x2, family=binomial(link="logit"),
  prior.scale=2.5, prior.df=Inf)
display (M6)
# bayesqlm with gaussian family (bayes lm)
sigma <- 5
y2 \leftarrow rnorm (n, b0+b1*x1+b2*x2, sigma)
M7 <- bayesqlm (y2 ~ x1 + x2, prior.scale=Inf, prior.df=Inf)
display (M7)
# bayesglm with categorical variables
z1 \leftarrow trunc(runif(n, 4, 9))
levels(factor(z1))
z2 \leftarrow trunc(runif(n, 15, 19))
levels(factor(z2))
## drop the base level (R default)
M8 \leftarrow bayesglm (y \sim x1 + factor(z1) + factor(z2),
 family=binomial(link="logit"), prior.scale=2.5, prior.df=Inf)
display (M8)
## keep all levels
M9 <- bayesglm (y \sim x1 + factor(z1) + factor(z2),
  family=binomial(link="logit"), prior.scale=2.5, prior.df=Inf,
  drop.baseline=FALSE)
display (M9)
M10 <- bayesglm (y \sim x1 + factor(z1) + factor(z2)-1,
  family=binomial(link="logit"), prior.scale=2.5, prior.df=Inf,
  drop.baseline=FALSE)
display (M10)
```

bayespolr

Bayesian Ordered Logistic or Probit Regression

Description

Bayesian functions for ordered logistic or probit modeling with independent normal, t, or Cauchy prior distribution for the coefficients.

Usage

```
bayespolr(formula, data, weights, start, ...,
    subset, na.action, contrasts = NULL,
    Hess = TRUE, model = TRUE,
    method = c("logistic", "probit", "cloglog", "cauchit"),
    drop.unused.levels=TRUE,
    prior.mean = 0, prior.scale = 2.5, prior.df = 1,
```

8 bayespolr

```
scaled = TRUE, prior.mean.for.cutpoints = 0,
prior.scale.for.cutpoints = 10, prior.df.for.cutpoints = 1,
n.iter = 100)
```

Arguments

a formula expression as for regression models, of the form 'response predicformula tors'. The response should be a factor (preferably an ordered factor), which will be interpreted as an ordinal response, with levels ordered as in the factor. A proportional odds model will be fitted. The model must have an intercept: attempts to remove one will lead to a warning and be ignored. An offset may be used. See the documentation of 'formula' for other details. an optional data frame in which to interpret the variables occurring in 'formula'. data weights optional case weights in fitting. Default to 1. initial values for the parameters. This is in the format 'c(coefficients, zeta)' start additional arguments to be passed to 'optim', most often a 'control' argument. subset expression saying which subset of the rows of the data should be used in the fit. All observations are included by default. a function to filter missing data. na.action a list of contrasts to be used for some or all of the factors appearing as variables contrasts in the model formula. logical for whether the Hessian (the observed information matrix) should be Hess returned. model logical for whether the model matrix should be returned. method logistic or probit or complementary log-log or cauchit (corresponding to a Cauchy latent variable and only available in $R \ge 2.1.0$). drop.unused.levels default TRUE, if FALSE, it interpolates the intermediate values if the data have integer levels. prior mean for the coefficients: default is 0. Can be a vector of length equal prior.mean to the number of predictors (not counting the intercepts). If it is a scalar, it is expanded to the length of this vector. prior scale for the coefficients: default is 2.5. Can be a vector of length equal prior.scale to the number of predictors (not counting the intercepts). If it is a scalar, it is expanded to the length of this vector. for t distribution: default is 1 (Cauchy). Set to Inf to get normal prior distribuprior.df tions. Can be a vector of length equal to the number of predictors (not counting the intercepts). If it is a scalar, it is expanded to the length of this vector. if scaled = TRUE, then the prior distribution is rescaled. Can be a vector of scaled length equal to the number of cutpoints (intercepts). If it is a scalar, it is expanded to the length of this vector. prior.mean.for.cutpoints prior mean for cutpoints: default is 0. Can be a vector of length equal to the

prior mean for cutpoints: default is 0. Can be a vector of length equal to the number of cutpoints (intercepts). If it is a scalar, it is expanded to the length of this vector.

prior.scale.for.cutpoints

prior scale for cutpoints: default is 10. Can be a vector of length equal to the number of cutpoints (intercepts). If it is a scalar, it is expanded to the length of this vector.

bayespolr 9

```
prior.df.for.cutpoints
```

for t distribution: default is 1 (Cauchy). Can be a vector of length equal to the number of cutpoints (intercepts). If it is a scalar, it is expanded to the length of this vector.

n.iter default is 100.

Details

The program is a simple alteration of polr in VR version 7.2-31 that augments the loglikelihood with the log of the t prior distributions for the coefficients.

We use Student-t prior distributions for the coefficients. The prior distributions for the intercepts (the cutpoints) are set so they apply to the value when all predictors are set to their mean values.

If scaled=TRUE, the scales for the prior distributions of the coefficients are determined as follows: For a predictor with only one value, we just use prior.scale. For a predictor with two values, we use prior.scale/range(x). For a predictor with more than two values, we use prior.scale/(2*sd(x)).

Value

See polr for details.

Author(s)

Andrew Gelman (gelman@stat.columbia.edu); Yu-Sung Su (ys463@columbia.edu); Maria Grazia Pittau (grazia@stat.columbia.edu)

See Also

bayesglm, polr

```
M1 <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
display (M1)
M2 <- bayespolr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing,
   prior.scale=Inf, prior.df=Inf) # Same as M1
display (M2)
M3 <- bayespolr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
display (M3)
M4 <- bayespolr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing,
   prior.scale=2.5, prior.df=1) # Same as M3
display (M4)
M5 <- bayespolr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing,
   prior.scale=2.5, prior.df=7)
display (M5)
M6 <- bayespolr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing,
    prior.scale=2.5, prior.df=Inf)
display (M6)
```

10 binnedplot

binnedplot	Binned Residual Plot	

Description

A function that plots averages of y versus averages of x and can be useful to plot residuals for logistic regression.

Usage

```
binnedplot(x ,y, nclass=floor(sqrt(length(x))),
    xlab="Expected Values", ylab="Average residual",
    main="Binned residual plot",
    cex.pts=0.8, col.pts=1, col.int="gray")
```

Arguments

Х	The expected values from the logistic regression.
У	The residuals values from logistic regression (observed values minus expected values).
nclass	Number of categories (bins) based on their fitted values in which the data are divided, default is $floor(sqrt(length(x)))$.
xlab	a label for the x axis, default is "Expected Values".
ylab	a label for the y axis, default is "Average residual".
main	a main title for the plot, default is "Binned residual plot". See also title.
cex.pts	The size of points, default=0.8.
col.pts	color of points, default is black
col.int	color of intervals, default is gray

Details

In logistic regression, as with linear regression, the residuals can be defined as observed minus expected values. The data are discrete and so are the residuals. As a result, plots of raw residuals from logistic regression are generally not useful. The binned residuals plot instead, after dividing the data into categories (bins) based on their fitted values, plots the average residual versus the average fitted value for each bin.

Value

A plot in which the gray lines indicate ± 2 standard-error bounds, within which one would expect about 95% of the binned residuals to fall, if the model were actually true.

Note

There is typically some arbitrariness in choosing the number of bins: each bin should contain enough points so that the averaged residuals are not too noisy, but it helps to have also many bins so as to see more local patterns in the residuals (see Gelman and Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, pag 97).

coefplot 11

Author(s)

M. Grazia Pittau (grazia@stat.columbia.edu); Yu-Sung Su (ys463@columbia.edu)

References

Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.

See Also

```
par, plot
```

Examples

coefplot

Generic Function for Making Coefficient Plot

Description

Functions that plot the coefficients ± 1 and 2 sd from a lm, glm, bugs, and polr fits.

Usage

12 coefplot

Arguments

object	fitted objects-lm, glm, bugs and polr, or a vector of coefficients.
	further arguments passed to or from other methods.
coefs	a vector of coefficients.
sds	a vector of sds of coefficients.
varnames	a vector of variable names, default is NULL, which will use the names of variables.
CI	confidence interval, default is 2, which will plot ± 2 sds or 95% CI. If CI=1, plot ± 1 sds or 50% CI instead.
vertical	orientation of the plot, default is TRUE which will plot variable names in the 2nd axis. If FALSE, plot variable names in the first axis instead.
xlim	the x limits $(x1, x2)$ of the plot. Note that $x1 > x2$ is allowed and leads to a "reversed axis".
ylim	the y limits of the plot.
xlab	a label for the x axis, default is "".
ylab	a label for the y axis, default is "".
main	a main title for the plot, default is "". See also title.
cex.var	The fontsize of the varible names, default=0.8.
cex.pts	The size of data points, default=0.9.
col.pts	color of points and segments, default is black.
var.las	the orientation of variable names against the axis, default is 2. see the usage of las in par.
intercept	If TRUE will plot intercept, default=FALSE to get better presentation.

Details

This function plots coefficients from lm, glm and polr with 1 sd and 2 sd interval bars.

Value

Plot of the coefficients from a lm or glm fit. You can add the intercept, the variable names and the display the result of the fitted model.

Author(s)

Yu-Sung Su (ys463@columbia.edu)

References

Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.

See Also

```
display, par, lm, glm, bayesglm
```

coefplot 13

```
y1 <- rnorm(1000, 50, 23)
y2 <- rbinom(1000, 1, prob=0.72)
x1 <- rnorm(1000, 50, 2)
x2 <- rbinom(1000, 1, prob=0.63)
x3 <- rpois(1000, 2)
x4 <- runif(1000, 40, 100)
x5 <- rbeta(1000,2,2)
longnames <- c("a long name01", "a long name02", "a long name03",</pre>
                 "a long name04","a long name05")
fit1 < -lm(y1 \sim x1 + x2 + x3 + x4 + x5)
fit2 <- glm(y2 \sim x1 + x2 + x3 + x4 + x5)
            family=binomial(link="logit"))
# plot 1
par (mfrow=c(2,2))
coefplot(fit1)
coefplot(fit2, col.pts="blue")
# plot 2
par (mar=c(2,8,2,0.5))
coefplot(fit1, longnames, intercept=TRUE, CI=1)
# plot 3
par (mar=c(2,2,2,2))
coefplot(fit2, vertical=FALSE, var.las=1)
# plot 4: comparison to show bayesglm works better than glm
n <- 100
x1 <- rnorm (n)
x2 < - rbinom (n, 1, .5)
b0 <- 1
b1 < -1.5
b2 <- 2
y \leftarrow rbinom (n, 1, invlogit(b0+b1*x1+b2*x2))
y < - ifelse (x2 == 1, 1, y)
x1 \leftarrow rescale(x1)
x2 <- rescale(x2, "center")</pre>
M1 <- glm (y \sim x1 + x2, family=binomial(link="logit"))
       display (M1)
M2 \leftarrow bayesglm (y \sim x1 + x2, family=binomial(link="logit"))
       display (M2)
   ## stacked plot
   \texttt{par}(\texttt{mar} = \texttt{c}(2, 5, 3, 1), \ \texttt{mgp} = \texttt{c}(2, 0.25, 0), \ \texttt{oma} = \texttt{c}(0, 0, 2, 0), \ \texttt{tcl} = -0.2)
   coefplot(M2, xlim=c(-1,5), intercept=TRUE)
   points(coef(M1), c(3:1)-0.1, col="red", pch=19)
   segments(coef(M1) + se.coef(M1), c(3:1)-0.1,
       coef(M1) - se.coef(M1), c(3:1)-0.1, lwd=2, col="red")
   segments(coef(M1) + 2*se.coef(M1), c(3:1)-0.1,
        coef(M1) - 2*se.coef(M1), c(3:1)-0.1, col="red")
```

14 contrast.bayes.ordered

```
mtext("Coefficients", side=3, at=0.1, outer=TRUE)
   mtext("Estimate", side=3, at=0.6, outer=TRUE)
   ## arrayed plot
   par(mfrow=c(1,2), mar=c(2,5,5,1), mgp=c(2,0.25,0), tcl=-0.2)
   x.scale <- c(0, 7.5) # fix x.scale for comparison
   coefplot(M1, xlim=x.scale, main="glm", intercept=TRUE)
   coefplot(M2, xlim=x.scale, main="bayesglm", intercept=TRUE)
# plot 5: the ordered logit model from polr
M3 <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
par (mar=c(2,8,2,0.5))
coefplot (M3)
M4 <- bayespolr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
par (mar=c(2,8,2,0.5))
coefplot(M4)
# plot 6: plot bugs
M5 <- lmer(Reaction ~ Days + (1|Subject), sleepstudy)
M5.sim <- mcsamp(M5)
coefplot(M5.sim)
# plot 7: plot coefficients & sds vectors
coef.vect <- c(0.2, 1.4, 2.3, 0.5)
sd.vect <- c(0.12, 0.24, 0.23, 0.15)
longnames <- c("var1", "var2", "var3", "var4")</pre>
coefplot (coef.vect, sd.vect, longnames)
coefplot (coef.vect, sd.vect, longnames, vertical=FALSE, var.las=1)
```

contrast.bayes.ordered

Contrast Matrices

Description

Return a matrix of contrasts used in bayesqlm.

Usage

```
contr.bayes.unordered(n, base = 1, contrasts = TRUE)
contr.bayes.ordered (n, scores = 1:n, contrasts = TRUE)
```

Arguments

n	a vector of levels for a factor, or the number of levels.
base	an integer specifying which group is considered the baseline group. Ignored if contrasts is FALSE.
contrasts	a logical indicating whether contrasts should be computed.
scores	the set of values over which orthogonal polynomials are to be computed.

corrplot 15

Details

These functions are adapted from contr.treatment and contr.poly in stats package. The purpose for these functions are to keep the baseline levels of categorical variables and thus to suit the use of bayesqlm.

contr.bayes.unordered is equivalent to contr.treatment whereas contr.bayes.ordered is equivalent to contr.poly.

Author(s)

Yu-Sung Su (ys463@columbia.edu)

See Also

```
C, contr.helmert, contr.poly, contr.sum, contr.treatment; glm, aov, lm, bayesglm.
```

Examples

```
cat.var <- rep(1:3, 5)
dim(contr.bayes.unordered(cat.var))
# 15*15 baseline level kept!
dim(contr.treatment(cat.var))
# 15*14</pre>
```

corrplot

Correlation Plot

Description

Function for making a correlation plot starting from a data matrix

Usage

```
corrplot (data, varnames=NULL, cutpts=NULL,
    abs=TRUE, details=TRUE,
    n.col.legend=5, cex.col=0.7,
    cex.var=0.9, digits=1, color=FALSE)
```

Arguments

data	a data matrix
varnames	variable names of the data matrix, if not provided use default variable names
abs	if TRUE, transform all correlation values into positive values, default=TRUE.
cutpts	a vector of cutting points for color legend, default is NULL. The function will decide the cutting points if cutpts is not assigned.
details	show more than one digits correlaton values. Default is TRUE. FALSE is suggested to get readable output.
n.col.legend	number of legend for the color thermometer.
cex.col	font size of the color thermometer.
cex.var	font size of the variable names.
digits	number of digits shown in the text of the color theromoeter.
color	color of the plot, default is FALSE, which uses gray scale.

16 corrplot

Details

The function adapts the R function for Figure 8 in Tian Zheng, Matthew Salganik, and Andrew Gelman, 2006, "How many people do you know in prison?: using overdispersion in count data to estimate social structure in networks", Journal of the American Statistical Association, Vol.101, No. 474: p.409-23.

Value

A correlation plot.

Note

```
see also: http://www.stat.columbia.edu/~gelman/research/published/
```

Author(s)

Tian Zheng (tzheng@stat.columbia.edu); Yu-Sung Su (ys463@columbia.edu)

References

Tian Zheng, Matthew Salganik, and Andrew Gelman, 2006, "How many people do you know in prison?: using overdispersion in count data to estimate social structure in networks", Journal of the American Statistical Association, Vol.101, No. 474: p.409-23

See Also

```
cor, par
```

```
x1 <- rnorm(1000, 50, 2)
x2 <- rbinom(1000, 1, prob=0.63)
x3 <- rpois(1000, 2)
x4 <- runif(1000, 40, 100)
x5 <- rnorm(1000, 100, 30)
x6 < - rbeta(1000, 2, 2)
x7 <- rpois(1000,10)
x8 < - rbinom(1000, 1, prob=0.4)
x9 < - rbeta(1000, 5, 4)
x10 <- runif(1000, -10, -1)
test.data <- data.matrix(cbind(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10))
test.names <- c("a short name01", "a short name02", "a short name03",
                 "a short name04", "a short name05", "a short name06",
                 "a short name07", "a short name08", "a short name09",
                 "a short name10")
# example 1
corrplot (test.data)
# example 2
corrplot(test.data,test.names, abs=FALSE, n.col.legend=7)
corrplot(test.data,test.names, abs=TRUE, n.col.legend=7)
# example 3
```

display 17

```
data(lalonde)
corrplot(lalonde, details=FALSE, color=TRUE)
corrplot(lalonde, cutpts=c(0,0.25,0.5,0.75), color=TRUE, digits=2)
```

display

Functions for Processing lm, glm, mer and polr Output

Description

This generic function gives a clean printout of lm, glm, mer and polr objects.

Usage

```
display (object, ...)
# methods for display()
    display.lm (object, digits=2)
    display.glm (object, digits=2)
    display.mer (object, digits=2)
    display.mer2 (object, digits=2)
    display.polr (object, digits=2)
```

Arguments

object The output of a call to lm, glm, mer, polr, or related regressions function with n data points and k predictors.

... further arguments passed to or from other methods.

number of significant digits to display.

Details

This generic function gives a clean printout of lm, glm, mer and polr objects, focusing on the most pertinent pieces of information: the coefficients and their standard errors, the sample size, number of predictors, residual standard deviation, and R-squared. Note: R-squared is automatically displayed to 2 digits, and deviances are automatically displayed to 1 digit, no matter what.

Value

Coefficients and their standard errors, the sample size, number of predictors, residual standard deviation, and R-squared

Note

Output are the model, the regression coefficients and standard errors, and the residual sd and R-squared (for a linear model), or the null deviance and residual deviance (for a generalized linear model).

Author(s)

Andrew Gelman (gelman@stat.columbia.edu); Yu-Sung Su (ys463@columbia.edu); Maria Grazia Pittau (grazia@stat.columbia.edu)

18 display

References

Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.

See Also

```
summary, lm, glm, lmer, polr
```

```
# Here's a simple example of a model of the form, y = a + bx + error,
# with 10 observations in each of 10 groups, and with both the
# intercept and the slope varying by group. First we set up the model and data.
   group \leftarrow rep(1:10, rep(10,10))
   mu.a <- 0
   sigma.a <- 2
   mu.b <- 3
   sigma.b <- 4
   rho <- 0
   Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b,
                    rho*sigma.a*sigma.b, sigma.b^2), c(2,2))
   sigma.y <- 1
   ab <- mvrnorm (10, c(mu.a, mu.b), Sigma.ab)
   a <- ab[,1]
   b <- ab[,2]
   x <- rnorm (100)
   y1 <- rnorm (100, a[group] + b[group] *x, sigma.y)
   y2 \leftarrow rbinom(100, 1, prob=invlogit(a[group] + b*x))
# display a simple linear model
   M1 \leftarrow lm (y1 \sim x)
   display (M1)
#
 display a simple logit model
   M2 \leftarrow glm (y2 \sim x, family=binomial(link="logit"))
   display (M2)
# Then fit and display a simple varying-intercept model:
   M3 \leftarrow lmer (y1 \sim x + (1|group))
   display (M3)
   M3.sim <- mcsamp (M3)
   print (M3.sim)
   plot (M3.sim)
# Then the full varying-intercept, varying-slope model:
   M4 \leftarrow lmer (y1 \sim x + (1 + x | group))
   display (M4)
   M4.sim <- mcsamp (M4)
```

fround 19

```
print (M4.sim)
  plot (M4.sim)
 Then the full varying-intercept, logit model:
#
  M5 <- lmer (y2 \sim x + (1|group), family=binomial(link="logit"))
  display (M5)
  M5.sim <- mcsamp (M5)
  print (M5.sim)
  plot (M5.sim)
 Then the full varying-intercept, varying-slope logit model:
  M6 <- lmer (y2 \sim x + (1 + x | group), family=binomial(link="logit"))
  display (M6)
  M6.sim <- mcsamp (M6)
  print (M6.sim)
  plot (M6.sim)
#
 Then the ordered logit model from polr
  M7 <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
  display(M7)
  M8 <- bayespolr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)
  display (M8)
```

fround

Formating the Rounding of Numbers

Description

fround rounds the values in its first argument to the specified number of decimal places with surrounding quotes.

pfround rounds the values in its first argument to the specified number of decimal places without surrounding quotes.

Usage

```
fround(x, digits)
pfround(x, digits)
```

Arguments

```
x a numeric vector.

digits integer indicating the precision to be used.
```

Author(s)

Andrew Gelman (gelman@stat.columbia.edu); Yu-Sung Su (ys463@columbia.edu)

20 go

See Also

round

Examples

```
x <- rnorm(1)
fround(x, digits=2)
pfround(x, digits=2)</pre>
```

go

Function to Recall Last Source File

Description

A function that like source() but recalls the last source file names by default.

Usage

```
go(..., add=FALSE, timer=FALSE)
```

Arguments

```
list of filenames as character strings.add these names to the current list? if replace, then FALSE.timer time the execution time of go().
```

Author(s)

Jouni Kerman (jouni@kerman.com) (kerman@stat.columbia.edu)

```
go('myprog')  # will run source('myprog.r')
go()  # will run source('myprog.r') again
go('somelib',add=TRUE)  # will run source('myprog.r') and source('somelib.r')
go('myprog','somelib')  # same as above
go('mytest')  # will run source('mytest') only
go()  # runs source('mytest') again
G  # short cut to call go()
```

invlogit 21

invlogit

Inverse logistic function

Description

Inverse-logit function, transforms continuous values to the range (0, 1)

Usage

```
invlogit(x)
```

Arguments

Х

A vector of continuous values

Details

The Inverse-logit function defined as: $logit^-1(x) = e^x/(1+e^x)$ transforms continuous values to the range (0, 1), which is necessary, since probabilities must be between 0 and 1 and maps from the linear predictor to the probabilities

Value

A vector of estimated probabilities

Author(s)

Andrew Gelman (gelman@stat.columbia.edu), M.Grazia Pittau (grazia@stat.columbia.edu)

References

Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.

```
data(frisk)
n <- 100
x1 <- rnorm (n)
x2 <- rbinom (n, 1, .5)
b0 <- 1
b1 <- 1.5
b2 <- 2
Inv.logit <- invlogit(b0+b1*x1+b2*x2)
plot(b0+b1*x1+b2*x2, Inv.logit)</pre>
```

22 lalonde

lalonde

Lalonde Dataset

Description

Dataset used by Dehejia and Wahba (1999) to evaluate propensity score matching.

Usage

```
data(lalonde)
```

Format

A data frame with 445 observations on the following 12 variables.

age age in years.

educ years of schooling.

black indicator variable for blacks.

hisp indicator variable for Hispanics.

married indicator variable for martial status.

nodegr indicator variable for high school diploma.

re74 real earnings in 1974.

re75 real earnings in 1975.

re78 real earnings in 1978.

u74 indicator variable for earnings in 1974 being zero.

u75 indicator variable for earnings in 1975 being zero.

treat an indicator variable for treatment status.

Details

Two demos are provided which use this dataset. The first, DehejiaWahba, replicates one of the models from Dehejia and Wahba (1999). The second demo, AbadieImbens, replicates the models produced by Abadie and Imbens http://elsa.berkeley.edu/~imbens/matlab/lalonde_exper_04feb2.m. Many of these models are found to produce good balance for the Lalonde data.

Note

This documentation is adapted from Matching package.

References

Dehejia, Rajeev and Sadek Wahba. 1999. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs." *Journal of the American Statistical Association* 94 (448): 1053-1062.

LaLonde, Robert. 1986. "Evaluating the Econometric Evaluations of Training Programs." *American Economic Review* 76:604-620.

matching 23

See Also

```
matching, GenMatch balanceplot
```

Examples

```
data(lalonde)
```

matching

Matching

Description

Function for processing matching with propensity score

Usage

```
matching(z, score)
```

Arguments

z vector of indicators for treatment or control.

score vector of the propensity scores in the same order as z.

Details

Function for matching each treatment unit in turn the control unit (not previously chosen) with the closest propensity score

Value

The function returns a vector of indices that the corresponding unit is matched to. 0 means matched to nothing.

Author(s)

Jeniffer Hill (jh1030@columbia.edu); Yu-Sung Su (ys463@columbia.edu)

References

Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.

See Also

balanceplot

24 mcsamp

Examples

mcsamp

Quick Function to Run mcmcsamp() in lme4

Description

The quick function for MCMC sampling for lmer and glmer objects and convert to Bugs objects for easy display.

Usage

Arguments

```
n.chains number of MCMC chains
n.iter number of iteration for each MCMC chain
n.burnin number of burnin for each MCMC chain
n.thin number of thin for each MCMC chain
saveb if 'TRUE', causes the values of the random effects in each sample to be saved.
make.bugs.object
```

tranform the output into bugs object, default is TRUE

Details

This function generates a sample from the posterior distribution of the parameters of a fitted model using Markov Chain Monte Carlo methods. It automatically simulates multiple sequences and allows convergence to be monitored. The function relies on mcmcsamp in lme4.

Value

An object of (S3) class '"bugs"' suitable for use with the functions in the "R2WinBUGS" package.

Author(s)

Andrew Gelman (gelman@stat.columbia.edu); Yu-Sung Su (ys463@columbia.edu)

mcsamp 25

References

Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.

Douglas Bates and Deepayan Sarkar, lme4: Linear mixed-effects models using S4 classes.

See Also

```
display, lmer, mcmcsamp, sim
```

```
# Here's a simple example of a model of the form, y = a + bx + error,
# with 10 observations in each of 10 groups, and with both the intercept
# and the slope varying by group. First we set up the model and data.
#
  group <- rep(1:10, rep(10,10))
  mu.a <- 0
  sigma.a <- 2
  mu.b <- 3
  sigma.b <- 4
  rho <- 0
  Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b,
           rho*sigma.a*sigma.b, sigma.b^2), c(2,2))
  sigma.y <- 1
  ab <- mvrnorm (10, c(mu.a, mu.b), Sigma.ab)
  a <- ab[,1]
  b <- ab[,2]
  x <- rnorm (100)
  y1 \leftarrow rnorm (100, a[group] + b[group]*x, sigma.y)
  y2 <- rbinom(100, 1, prob=invlogit(a[group] + b*x))
# Then fit and display a simple varying-intercept model:
  M1 \leftarrow lmer (y1 \sim x + (1|group))
  display (M1)
  M1.sim <- mcsamp (M1)
  print (M1.sim)
  plot (M1.sim)
#
# Then the full varying-intercept, varying-slope model:
  M2 <- lmer (y1 ~ x + (1 + x | group))
  display (M2)
  M2.sim <- mcsamp (M2)
  print (M2.sim)
  plot (M2.sim)
#
# Then the full varying-intercept, logit model:
  M3 <- lmer (y2 \sim x + (1|group), family=binomial(link="logit"))
  display (M3)
  M3.sim <- mcsamp (M3)
  print (M3.sim)
  plot (M3.sim)
```

26 model.matrix.bayes

```
# Then the full varying-intercept, varying-slope logit model:
  M4 <- lmer (y2 \sim x + (1 + x | group), family=binomial(link="logit"))
  display (M4)
  M4.sim <- mcsamp (M4)
  print (M4.sim)
  plot (M4.sim)
```

model.matrix.bayes Construct Design Matrices

Description

model.matrix creates a design matrix.

Usage

```
# bayesqlm
model.matrix.bayes(object, data = environment(object),
    contrasts.arg = NULL, xlev = NULL, keep.order = FALSE, ...)
# bayesglm.hiearchical (not implement yet!)
model.matrix.bayes2(object, data = environment(object),
    contrasts.arg = NULL, xlev = NULL, keep.order = FALSE, batch = NULL, ...)
```

Arguments

object

an object of an appropriate class. For the default method, a model formula or terms object. a data frame created with model.frame. If another sort of object, model.frame data is called first. contrasts.arg A list, whose entries are contrasts suitable for input to the contrasts replacement function and whose names are the names of columns of data containing factors. to be used as argument of model.frame if data has no "terms" attribute. xlev a logical value indicating whether the terms should keep their positions. If keep.order FALSE the terms are reordered so that main effects come first, followed by

the interactions, all second-order, all third-order and so on. Effects of a given

order are kept in the order specified. Not implement yet!

further arguments passed to or from other methods. . . .

Details

batch

model.matrix.bayes is adapted from model.matrix in the stats pacakge and is designed for the use of bayesglm and bayesglm.hierachical (not yet implemented!). It is designed to keep baseline levels of all categorical varaibles and keep the variable names unodered in the output. The design matrices created by model.matrix.bayes are unidentifiable using classical regression methods, though; they can be identified using bayesqlm and bayesglm.hierachical.

rescale 27

Author(s)

Yu-Sung Su (ys463@columbia.edu)

References

Andrew Gelman, Aleks Jakulin, Maria Grazia Pittau and Yu-Sung Su, A default prior distribution for logistic and other regression models, unpublished paper available at http://www.stat.columbia.edu/~gelman/standardize/

See Also

```
model.frame, model.extract, terms, terms.bayes, bayesglm.
```

Examples

```
ff <- log(Volume) ~ log(Height) + log(Girth)
str(m <- model.frame(ff, trees))
(model.matrix.bayes(ff, m))
(model.matrix.bayes2(ff, m))
(model.matrix(ff, m))</pre>
```

rescale

Function for Standardizing by Centering and Dividing by 2 sd's

Description

This function standardizes a variable by centering and dividing by 2 sd's with exceptions for binary variables.

Usage

```
rescale(x, binary.inputs)
```

Arguments

Value

the standardized vector

Author(s)

Andrew Gelman $\langle gelman@stat.columbia.edu \rangle$; Yu-Sung Su $\langle ys463@columbia.edu \rangle$

References

Andrew Gelman, Scaling regression inputs by dividing by two standard deviations. http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf

28 se.coef

See Also

```
standardize
```

Examples

```
# Set up the fake data
n <- 100
x <- rnorm (n, 2, 1)
x1 <- rnorm (n)
x1 <- (x1-mean(x1))/(2*sd(x1))  # standardization
x2 <- rbinom (n, 1, .5)
b0 <- 1
b1 <- 1.5
b2 <- 2
y <- rbinom (n, 1, invlogit(b0+b1*x1+b2*x2))
rescale(x, "full2")
rescale(y, "center")</pre>
```

se.coef

Extract Standard Errors of Model Coefficients

Description

These functions extract standard errors of model coefficients from objects returned by modeling functions.

Usage

```
se.coef (object)
se.fixef (object)
se.ranef (object)

# methods for se.coef()
se.coef.lm (object)
se.coef.glm (object)
se.coef.mer (object)
```

Arguments

object of lm, glm, lmer and glmer fit

Details

se.coef extracts standard errors from objects returned by modeling functions. se.fixef extracts standard errors of the fixed effects from objects returned by lmer and glmer functions. se.ranef extracts standard errors of the random effects from objects returned by lmer and glmer functions.

Value

se.coef gives lists of standard errors for coef, se.fixef gives a vector of standard errors for fixef and se.ranef gives a list of standard errors for ranef.

se.coef 29

Author(s)

Andrew Gelman (gelman@stat.columbia.edu); Yu-Sung Su (ys463@columbia.edu)

References

Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.

See Also

```
display, coef, sigma.hat,
```

```
\# Here's a simple example of a model of the form, y = a + bx + error,
# with 10 observations in each of 10 groups, and with both the
# intercept and the slope varying by group. First we set up the model and data.
  group \leftarrow rep(1:10, rep(10,10))
  mu.a <- 0
  sigma.a <- 2
  mu.b <- 3
  sigma.b <- 4
  rho <- 0
  Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b,
                     rho*sigma.a*sigma.b, sigma.b^2), c(2,2))
  sigma.y <- 1
  ab <- mvrnorm (10, c(mu.a, mu.b), Sigma.ab)
   a <- ab[,1]
  b < -ab[, 2]
  x <- rnorm (100)
   y1 <- rnorm (100, a[group] + b[group] *x, sigma.y)
  y2 <- rbinom(100, 1, prob=invlogit(a[group] + b*x))
 lm fit
  M1 \leftarrow lm (y1 \sim x)
  se.coef (M1)
# glm fit
  M2 \leftarrow glm (y2 \sim x)
  se.coef (M2)
 lmer fit
  M3 \leftarrow lmer (y1 \sim x + (1 + x | group))
  se.coef (M3)
  se.fixef (M3)
  se.ranef (M3)
# glmer fit
  M4 <- lmer (y2 \sim 1 + (0 + x | group), family=binomial(link="logit"))
  se.coef (M4)
  se.fixef (M4)
  se.ranef (M4)
```

30 sigma.hat

sigma.hat

Extract Residual Errors

Description

This generic function extracts residual errors from a fitted model.

Usage

```
# methods for sigma.hat()
sigma.hat.lm (object)
sigma.hat.glm (object)
sigma.hat.mer (object)
```

Arguments

object

any fitted model object of lm, glm and mer class

Author(s)

Andrew Gelman (gelman@stat.columbia.edu); Yu-Sung Su (ys463@columbia.edu)

See Also

```
display, summary, lm, glm, lmer
```

```
group \leftarrow rep(1:10, rep(10,10))
mu.a <- 0
sigma.a <- 2
mu.b <- 3
sigma.b <- 4
rho <- 0
Sigma.ab <- array (c(sigma.a^2, rho*sigma.a*sigma.b,</pre>
                  rho*sigma.a*sigma.b, sigma.b^2), c(2,2))
sigma.y <- 1
ab <- mvrnorm (10, c(mu.a, mu.b), Sigma.ab)
a <- ab[,1]
b <- ab[,2]
x <- rnorm (100)
y1 \leftarrow rnorm (100, a[group] + b[group]*x, sigma.y)
y2 \leftarrow rbinom(100, 1, prob=invlogit(a[group] + b*x))
M1 \leftarrow lm (y1 \sim x)
sigma.hat(M1)
M2 <- bayesglm (y1 \sim x, prior.scale=Inf, prior.df=Inf)
sigma.hat(M2) # should be same to sigma.hat(M1)
M3 <- glm (y2 \sim x, family=binomial(link="logit"))
```

sim 31

```
sigma.hat(M3)

M4 <- lmer (y1 ~ (1+x|group))
sigma.hat(M4)

M5 <- lmer (y2 ~ (1+x|group), family=binomial(link="logit"))
sigma.hat(M5)</pre>
```

sim

Functions to Get Posterior Distributions

Description

This generic function gets posterior simulations of sigma and beta from a lm object, or simulations of beta from a glm object, or simulations of beta from a mer object

Usage

```
sim(object, ...)
# methods for sim()
sim.lm (object, n.sims = 100)
sim.glm (object, n.sims = 100)
sim.mer (object, n.sims = 100)
```

Arguments

object the output of a call to "lm" with n data points and k predictors.
... further arguments passed to or from other methods.
n.sims number of independent simulation draws to create.

Value

vector of n.sims random draws of sigma (for glm's, this just returns a vector of 1's or else of the square root of the overdispersion parameter if that is in the model)

beta.sim matrix (dimensions n.sims x k) of n.sims random draws of beta

Author(s)

Andrew Gelman $\langle gelman@stat.columbia.edu \rangle$; Yu-Sung Su $\langle ys463@columbia.edu \rangle$; M.Grazia Pittau $\langle grazia@stat.columbia.edu \rangle$

References

Andrew Gelman and Jennifer Hill, Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge University Press, 2006.

See Also

```
display, mcsamp, lm, glm, lmer
```

32 standardize

Examples

```
#Examples of "sim"
set.seed (1)
J <- 15
n < -J*(J+1)/2
group <- rep (1:J, 1:J)
mu.a <- 5
sigma.a <- 2
a <- rnorm (J, mu.a, sigma.a)
b <- -3
x \leftarrow rnorm (n, 2, 1)
sigma.y <- 6
y \leftarrow rnorm (n, a[group] + b*x, sigma.y)
u \leftarrow runif (J, 0, 3)
y123.dat <- as.data.frame (round (cbind (y, x, group), 2))
# Linear regression
x1 \leftarrow y123.dat$y
y1 \leftarrow y123.dat$x
M1 \leftarrow lm (y1 \sim x1)
display(M1)
M1.sim <- sim(M1)
# Logistic regression
u.data <- cbind (1:J, u)
dimnames(u.data)[[2]] <- c("group", "u")</pre>
u.dat <- as.data.frame (round (u.data, 2))</pre>
y \leftarrow rbinom (n, 1, invlogit (a[group] + b*x))
M2 \leftarrow glm (y \sim x, family=binomial(link="logit"))
display(M2)
M2.sim <- sim (M2)
# Using lmer:
# Example 1
E1 \leftarrow lmer (y \sim x + (1 \mid group))
display(E1)
E1.sim <- sim (E1)
# Example 2
u.full <- u[group]</pre>
E2 \leftarrow lmer (y \sim x + u.full + (1 | group))
display(E2)
E2.sim <- sim (E2)
# Example 3
y \leftarrow rbinom (n, 1, invlogit (a[group] + b*x))
E3 <- lmer (y \sim x + (1 | group), family=binomial(link="logit"),
    control=list(usePQL=TRUE))
display(E3)
E3.sim <- sim (E3)
```

Function for Standardizing Regression Predictors by Centering and Dividing by 2 sd's

standardize 33

Description

Numeric variables that take on more than two values are each rescaled to have a mean of 0 and a sd of 0.5; Binary variables are rescaled to have a mean of 0 and a difference of 1 between their two categories; Non-numeric variables that take on more than two values are unchanged; Variables that take on only one value are unchanged

Usage

```
standardize(object, unchanged = NULL,
    standardize.y = FALSE, binary.inputs = "center")
```

Arguments

```
object an object of class "lm" or "glm"
unchanged vector of names of parameters to leave unstandardized
standardize.y
if TRUE, the outcome variable is standardized also
binary.inputs
options for standardizing binary variables
```

Details

"0/1" (rescale so that the lower value is 0 and the upper is 1) "-0.5/0.5" (rescale so that the lower value is -0.5 and upper is 0.5) "center" (rescale so that the mean of the data is 0 and the difference between the two categories is 1) "full" (rescale by subtracting the mean and dividing by 2 sd's) "leave.alone" (do nothing)

Author(s)

Andrew Gelman (gelman@stat.columbia.edu) Yu-Sung Su (ys463@columbia.edu)

References

Andrew Gelman, Scaling regression inputs by dividing by two standard deviations http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf

See Also

```
rescale
```

```
# Set up the fake data
n <- 100
x <- rnorm (n, 2, 1)
x1 <- rnorm (n)
x1 <- (x1-mean(x1))/(2*sd(x1))  # standardization
x2 <- rbinom (n, 1, .5)
b0 <- 1
b1 <- 1.5
b2 <- 2
y <- rbinom (n, 1, invlogit(b0+b1*x1+b2*x2))
M1 <- glm (y ~ x, family=binomial(link="logit"))
display(M1)</pre>
```

34 terms.bayes

```
M2 <-standardize(M1)
display(M2)</pre>
```

terms.bayes

Construct a terms Object from a Formula

Description

This function takes a formula and some optional arguments and constructs a terms object. The terms object can then be used to construct a model.matrix.bayes.

Usage

```
terms.bayes(x, specials = NULL, abb = NULL, data = NULL,
    neg.out = TRUE, keep.order = FALSE, simplify = FALSE,
    allowDotAsName = FALSE, ...)
```

Arguments

X	a formula.					
specials	which functions in the formula should be marked as special in the ${\tt terms}$ object.					
abb	Not implemented in R.					
data	a data frame from which the meaning of the special symbol . can be inferred. It is unused if there is no . in the formula.					
neg.out	Not implemented in R.					
keep.order	a logical value indicating whether the terms should keep their positions. If FALSE the terms are reordered so that main effects come first, followed by the interactions, all second-order, all third-order and so on. Effects of a given order are kept in the order specified. Default is FALSE.					
simplify	should the formula be expanded and simplified, the pre-1.7.0 behaviour?					
	further arguments passed to or from other methods.					
allowDotAsNa	allowDotAsName					
	normally . in a formula refers to the remaining variables contained in data.					

Details

This function is adapted from terms.formula in stats package and is designed for the use of bayesglm and bayesglm.hierachical. Unlike terms.formula, terms.bayes keeps all terms unordered.

Exceptionally, . can be treated as a name for non-standard uses of formulae.

Author(s)

Yu-Sung Su (ys463@columbia.edu)

See Also

```
terms, terms.object, model.matrix.bayes, bayesglm.
```

triangleplot 35

triangleplot	Triangle Plot	

Description

Function for making a triangle plot from a square matrix

Usage

Arguments

X	a square matrix.
У	a vector of names that corresponds to each element of the square matrix x.
cutpts	a vector of cutting points for color legend, default is NULL. The function will decide the cutting points if cutpts is not assigned.
details	show more than one digits correlaton values. Default is TRUE. FALSE is suggested to get readable output.
n.col.legend	number of legend for the color thermometer
cex.col	font size of the color thermometer.
cex.var	font size of the variable names.
digits	number of digits shown in the text of the color theromoeter.
color	color of the plot, default is FALSE, which uses gray scale.

Details

The function makes a triangle plot from a square matrix, e.g., the correlation plot, see corrplot. If a square matrix contains missing values, the cells of missing values will be marked "x".

Author(s)

```
Yu-Sung Su (ys463@columbia.edu)
```

See Also

```
corrplot
```

```
# create a square matrix
x <- matrix(runif(1600, 0, 1), 40, 40)
# fig 1
triangleplot(x)
# fig 2 assign cutting points
triangleplot(x, cutpts=c(0,0.25,0.5,0.75,1), digits=2)</pre>
```

36 triangleplot

```
# fig 3 if x contains missing value x[12,13] <- x[13,12] <- NA \\ x[25,27] <- x[27,25] <- NA triangleplot(x)
```

Index

*Topic arith	bayespolr, 7
fround, 18	contrast.bayes.ordered, 13
*Topic array	
contrast.bayes.ordered, 13 aov	v, 14
	.data.frame, 3
lalonde, 21	
. Topic acbigit	lanceplot, 1, 22
concrast sayes or acrea, is	yesglm, 3, 8, 12-14, 25, 26, 33
*Topic upiot	yespolr, 5, 7
balanceplot, 1 bir	nnedplot,9
binnedplot,9	1.4
coefplot, 10 C, 1	
Corrolot, 14	ef, 28
rriangiepioi. 34	efplot, 10
*Topic methods	efplot,bugs-method(coefplot),
balanceplot, 1	
	efplot, glm-method (coefplot), 10 efplot, lm-method (coefplot), 10
navesnoir /	efplot, numeric-method
coefplot, 10	(coefplot), 10
display, 16	efplot, polr-method (coefplot),
go, 19	10
matching, 22	efplot.bugs (coefplot), 10
maaama 14	efplot.default (coefplot), 10
se coef 27	efplot.glm(coefplot), 10
ciama hat 70	efplot.lm(coefplot), 10
sim, 30	efplot.polr(coefplot), 10
standardize, 31 cor	ntr.bayes.ordered
*Topic models	(contrast.bayes.ordered),
${\tt bayesglm}, 3$	13
bayespolr,7 cor	ntr.bayes.unordered
invlogit, 20	(contrast.bayes.ordered),
matching, 22	13
	ntr.helmert, 14
	ntr.poly, <i>14</i>
	ntr.sum, <i>14</i>
se.coef, 27 cor	ntr.treatment, 14
	ntrast.bayes.ordered,13
	ntrasts,25
• .	r, 15
	rrplot, 14, 34
fround, 18	10.16.04.00.00
- •	splay, 12, 16, 24, 28–30
bayesglm, 3 dis	splay,glm-method(display),16

38 INDEX

<pre>display, glmer-method(display), 16 display, glmer2-method(display),</pre>	<pre>se.coef,glm-method(se.coef), 27 se.coef,glmer-method(se.coef), 27</pre>
16 display, lm-method (display), 16	<pre>se.coef,glmer2-method(se.coef), 27</pre>
display, lmer-method (display), 16	se.coef, lm-method(se.coef), 27
display, lmer2-method (display), 16	se.coef, lmer-method (se.coef), 27
display, polr-method (display), 16	se.coef, lmer2-method(se.coef), 27
display.glm(display), 16	se.coef.glm(se.coef),27
display.lm(display),16	se.coef.lm(se.coef),27
display.mer(display),16	se.coef.mer(se.coef), 27
display.mer2(display),16	se.coef.mer2(se.coef),27
display.polr(display),16	se.fixef(se.coef), 27
5	se.ranef(<i>se.coef</i>), 27
factor, 25	sigma.hat, 28, 29
family, 3	sigma.hat,glm-method(sigma.hat),
fround, 18	29
G (go), 19	sigma.hat,glmer-method
(3)	(sigma.hat), 29
GenMatch, 22	sigma.hat,glmer2-method
glm, 5, 12, 14, 17, 29, 30	(sigma.hat), 29
glm.control,4	sigma.hat,lm-method(sigma.hat),
go, 19	29
invlogit, 20	sigma.hat,lmer-method
111110910, 20	(sigma.hat), 29
lalonde, 21	sigma.hat,lmer2-method
lm, 12, 14, 17, 29, 30	(sigma.hat), 29
lmer, 17, 24, 29, 30	sigma.hat.glm(sigma.hat),29
	sigma.hat.lm(sigma.hat),29
matching, 2, 22, 22	sigma.hat.mer(sigma.hat),29
mcmcsamp, 23, 24	sigma.hat.mer2(<i>sigma.hat</i>), 29
mcsamp, 23, 30	sim, 24, 30
model.extract,26	sim, glm-method(sim), 30
model.frame, 25, 26	sim_{r} glmer-method(sim), 30
model.matrix.bayes, 25, 33	sim_{r} glmer2-method(sim), 30
model.matrix.bayes2	sim, lm-method(sim), 30
(model.matrix.bayes), 25	sim_{l} lmer-method (sim), 30
model.offset,4	sim, lmer2-method(sim), 30
	sim.glm(sim), 30
${\tt na.exclude}, 3$	sim.lm(sim), 30
$\mathtt{na.fail}, 3$	sim.mer(sim), 30
${\tt na.omit}, {\it 3}$	sim.mer2(sim),30
55	standardize, 27, 31
offset,4	stats, 14
options, 3	summary, 17, 29
par, 2, 10–12, 15	
pfround(fround), 18	terms, $26,33$
plot, 10	terms.bayes, $26,33$
polr, 8, 17	terms.object, 33
F, 0, 1,	triangleplot,34
rescale, 26, 32	
round, 19	
se.coef, 27	