C2G Goes Al

Idea

It requires a **personal assistant** who knows C2G like the back of his hand. That assistant should help you **connect** with other innovative and creative minds and **support** you in operating the platform.

Share lessons learned and motivation from recent trades

No more scams - Wannabe guru failures are transparent

Publish blog posts on relevant crypto topics

Connect with a network of crypto enthusiasts & specialists

Be **rewarded** with **followers** for **smart thoughts** and **content**

Become wealthy through the expert **knowledge** of the **community**

Coin2Gether
in
78
Seconds

WHO ARE WE?

CHATBOTS!!!

WHAT DO WE DO?

Sorry, I don't understand what you are trying to say.

Hello

Sorry, I don't understand what you are trying to say.

Question Answering vs. Chatbots

Question Answering

QA models have question pool

Related to a subject area

Low interactivity

Chatbots

Able to answer more questions

It is not limited to one subject area

High interactivity

BERT

Bidirectional Encoder Representations from Transformers

Based on Transformer language models

Inputs are processed bidirectionally

Texts are analyzed from both sides

BERT models consist of DNN's

Intent Classification

 objective is defined
 chatbot leads dialog to the defined objective

Question Answering

Existing text

Classified according to the user's goal

Dialogue Policy

Structure of the conversation

Rules for dialogue

Procedure

Structure of the chatbot

Results of the chatbot

Vector

BoW

Stacked

BERT

	Sentence	Tag	Tag_parent	predicted_tags	matches	probas*	predicted_tags_if_not_fallback
10	supercalifragilistic expialidocious	fallback	fallback	greeting	False	0.254159	greeting
11	Get me to the homepage.	navigate_homepage	navigate	find_homepage	False	0.479911	find_homepage
17	Expose the page where I can make a post.	navigate_create_post	navigate	find_create_trade	False	0.964732	find_create_trade
18	Display the page for creating a trade.	navigate_create_trade	navigate	action_logout	False	0.498036	action_logout
21	Hello bot.	greeting	greeting	about_bot_background	False	0.380586	about_bot_background
29	Alexa is better than you.	about_bot_other_bots	about_bot_other_bots	joke	False	0.341779	joke

^{*}Fallback-Threshold = 25%

Results of the chatbot

Vector BoW Stacked BERT

```
1  # wrong prediction
2  text = 'Create a post.'
3  explain_choice(ig, text)

navigate_create_post
[(0.8853112790963429, 'post'), (0.22318878729466662, 'create'), (0.118740701145351, 'a')]

1  # correct prediction
2  text = 'Create a post for me.'
3  explain_choice(ig, text)

action_create_post
[(0.6527565482046565, 'post'), (0.2666675698634774, 'create'), (0.1877163463185576, 'for'), (0.1419184454426143, '-PRON-'), (0.01056351783490079, 'a')]
```

Backend

Outlook for chatbot development

What is the goal of a recommendation system?

Principles

- Customers who bought this item also bought
- Generate the top N most matching items

Method

Collaborative Filtering

 Similarity of the products based on the common appearance

Challenges

Evaluations

- Recommendation systems belong to the category of unsupervised learning
- Different evaluation options with advantages & disadvantages

Combination of different data sources

 How can empirical recommendations be generated based on diverse and varied information?

Further methods:

Collaborative Filtering – Deep Dive

<u>Source</u>

Procedure for the memory-based method

- 1. Matrix in "user item" format is given
- Calculate the similarity matrix for the users by e.g. Cosine correlation:

$$ext{simil}(x,y) = \cos(ec{x},ec{y}) = rac{ec{x}\cdotec{y}}{||ec{x}|| imes|||ec{y}||} = rac{\sum\limits_{i\in I_{xy}}r_{x,i}r_{y,i}}{\sqrt{\sum\limits_{i\in I_x}r_{x,i}^2}\sqrt{\sum\limits_{i\in I_y}r_{y,i}^2}}$$

- 3. Using the cosine similarity matrix now identify the most similar users.
- 4. From the identified users, the associated user-item interactions can be taken into account for product recommendations

How to find relevant users?

- PageRank algorithm is a method to determine the link popularity of a node
- The more links pointing to a page, the higher is the weight of this node
- The higher the weight of the referring accounts is, the greater the effect is

Famous for:

Stanford

PageRank – Deep Dive

Iteratives Vorgehen

- 1. t = 0
 - 1. $PR(p_i; 0) = \frac{1}{N}$
- 2. For **t** = **1** until the termination condition is fulfilled:
 - 1. Update PageRank for all nodes:

$$PR(p_i; t+1) = \frac{1-d}{N} + d \sum_{j=1}^{N} \frac{PR(p_j; t+1)}{L(p_j)}$$

- 2. Termination Condition:
 - 1. Achievement of the defined iterations
 - 2. Konvergenzbedingung

In practice:

- More efficient calculation through representation with matrices
- Network is mapped via an adjacency matrix

Proposed solution

2 Collaborative filtering for identifying similar portfolios:

	втс	ETHER	EURO	DOLLAR
1	0.500000	0.000000	0.000000	0.500000
2	0.000000	0.333333	0.333333	0.333333
3	0.333333	0.333333	0.000000	0.333333
4	0.250000	0.250000	0.250000	0.250000
5	1.000000	0.0000000	0.0000000	0.0000000

Personalized PageRank

2

1 1.000000 0.408248 0.816497 0.707107 0.707107

2 0.408248 1.000000 0.666667 0.866025 0.000000

3 0.816497 0.666667 1.000000 0.866025 0.577350

4 0.707107 0.866025 0.866025 1.000000 0.500000

5 0.707107 0.000000 0.577350 0.500000 1.000000

Graph G

Personalization

Recommended Users;

1: 0.25

2: 0.14

3: 0.07

Which user should be recommended to user 5?

	1	2	3	4	5
1	1.000000	0.408248	0.816497	0.707107	0.707107
2	0.408248	1.000000	0.666667	0.866025	0.000000
3	0.816497	0.666667	1.000000	0.866025	0.577350
4	0.707107	0.866025	0.866025	1.000000	0.500000
5	0.707107	0.0000000	0.577350	0.500000	1.000000

Personalization

Graph G

Recommended Users:

1: 0.25

2: 0.14

3: 0.07

