First Name:	Last Name:	Student ID:

Trigonometric Functions (2)

Graphing Reciprocal Functions

$$\boxed{ \qquad \qquad \frac{1}{\mathrm{Sin}\mathrm{X}} = \qquad \qquad \frac{1}{\mathrm{Tan}\mathrm{X}} = }$$

RECALL:

General steps for sketching $f(x) = \frac{1}{g(x)}$

- **1.** Sketch the function y=g(x).
- 2. Identify the values of x where g(x) = 1 or g(x) = -1. At these points f(x) = g(x). That is, these points are on both f(x) and g(x). These points are called **fixed points** or **static points**.
- **3.** Identify the x-intercepts of g(x). At these points, f(x) is undefined. There will be vertical asymptotes for these values of x.
- **4.** If required, determine what happens to the reciprocal function as x approaches the vertical asymptotes from the left and from the right.
- **5.** If required, determine the end behaviour of f(x).

1. Below is the graph $y = \sin x$. Recalling that $\csc x = \frac{1}{\sin x}$, sketch the graph of $y = \csc x$.

Domain:

Range:

Period:

- **Equations of Vertical Asymptotes:**
- 2. Below is the graph $y = \cos x$. Recalling that $\sec x = \frac{1}{\cos x}$, sketch the graph of $y = \sec x$.

Domain:

Range:

Period:

Equations of Vertical Asymptotes:

Range:

Domain:

Equations of Vertical Asymptotes: Period:

Example: Sketch the graphs of the following transformations of

a)
$$y = \sec\left(x + \frac{\pi}{4}\right) - 1$$

Advanced Function Class 11 Handout

b)
$$y = 2 \csc(x + \frac{\pi}{2})$$

NOTE:

The sine function, the cosine function and their transformations are referred to as **sinusoidal functions**. Their graphs have the property that they oscillate above and below a central horizontal axis.

For both $y = \sin(x)$ and $y = \cos(x)$, this central horizontal axis is y = 0 (Equation of Axis, **EOA**).

Graphing Trigonometric Functions Using Transformations

$$y = f(x) \rightarrow y = af[b(x - h)] + k$$

Mapping Notation

$$(x,y) \rightarrow (\frac{1}{h}x + h, ay + k)$$

Example: For each of the following equations, state the transformations, period and amplitude of the function.

Equation	Transformations	Period	Amplitude
$y = 3\sin[2(x + \frac{\pi}{4})] - 3$			
$y = \frac{1}{3} \tan \left[\frac{1}{5} \left(x - \frac{\pi}{3} \right) \right] + 10$			
$y = \frac{1}{10}\cos(-3x - \frac{\pi}{2}) - 7$			
$y = -4\sec(\frac{1}{2}x - \pi) + 6$			

Example: Write the equation of y = cos(x) if it has undergone the following transformations:

a) Up 6

Left 2π

Vertical Reflection

Vertical Compression of 8

Horizontal Stretch of 6

b) Down 3

Right π

Vertical Stretch of 6

Horizontal Compression of 5

Horizontal Reflection

Example: Graph one cycle of each of the following functions.

a)
$$y = 3sin[3(x-\frac{\pi}{2})] - 1$$

b)
$$y = -\cos\left[\frac{1}{2}(x + \frac{5\pi}{6})\right] + 3$$

c)
$$y = 4sin \left[-\frac{\pi}{3}(x+1) \right] - 2$$

Example : The piston in an engine moves up and down along a crankshaft in the middle. The height of the piston over time is shown by the graph below.

8. The water level in ocean harbour is 5 m during low tide and 8 m during high tide. If takes 8 hours to complete one full tide cycle.

- a) Sketch two tide cycles starting at high tide.
- b) Determine an equation for the tide function.
- c) If low tide occurs at 8:00 AM, at what time would you expect it to be high tide?

d) If low tide occurs at 8:00 AM, what would you expect the height of the water to be at 6:00 AM the next day?

Example: Find the equation of the following function as both a SINE function and a COSINE function.

Example: Determine the equation for each of the following graphs:

