Sang Yup Lee

- 분류 문제에 적용되는 알고리즘
- Naïve Bayes 모형은 다음과 같은 베이즈 공식을 사용한 방법으로 이를 이해하기 위해서는 기본적인 확률에 대해서 알아야 함
 - Bayes' Rule

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- 새로운 관측치에 대해서,
 - 해당 관측치의 종속변수가 특정한 값을 갖을 확률을 베이즈 공식을 이용해서 구한다.
 - 그리고, 확률이 제일 큰 값으로 종속변수의 값을 예측한다.
 - Example
 - i번째 관측치에 대해서, $y_i \in \{0,1\}$ 인 경우
 - If $P(y_i = 0) > P(y_i = 1)$, then y_i 값은 0으로 예측, 그렇지 않으면 1로 예측
 - 별도의 비용함수가 존재하지 않는다.

L

Naïve Bayes

i 번째 관측치가 갖는 feature 들의 값

- 종속변수 (Y)가 취할 수 있는 값이 0, 1 두개인 경우, 각 값을 취할 확률은 다음과 같이 표현
 - $P(Y_i = 1 | X_1 = x_1, X_2 = x_2, ..., X_k = x_k)$
 - $X_1, X_2, ..., X_k$ 는 데이터에 존재하는 Feature 들
 - 이는 종속변수의 값이 1일 확률이 Feature 들의 구체적인 값에 따라서 달라진다는 것을 의미

Example

- 종속변수: 폐암여부
- 독립변수: 연령(X₁), 흡연여부(X₂)
- 특정 사람에 대해서, X_1 =60, X_2 =1 인 경우,
- 우리가 궁금한 것은, whether $P(Y_i = 1 | X_1 = 60, X_2 = 1) > P(Y_i = 0 | X_1 = 60, X_2 = 1)$

- 설명을 위해 독립변수의 수 = 2 이라고 가정 (즉, k=2)
 - $P(Y_i = 1 | X_1 = x_1, X_2 = x_2)$ 구하기
 - 베이즈 공식을 사용하면 다음과 같이 표현

$$P(Y_i = 1 | X_1 = x_1, X_2 = x_2) = \frac{P(X_1 = x_1, X_2 = x_2 | Y_i = 1)P(Y_i = 1)}{P(X_1 = x_1, X_2 = x_2)}$$

- $P(Y_i = 0 | X_1 = x_1, X_2 = x_2)$ 구하기
 - 베이즈 공식을 사용하면 다음과 같이 표현

$$P(Y_i = 0 | X_1 = x_1, X_2 = x_2) = \frac{P(X_1 = x_1, X_2 = x_2 | Y_i = 0)P(Y_i = 0)}{P(X_1 = x_1, X_2 = x_2)}$$

■ 둘중 어느것인 더 큰가를 판단 ⇒ 해당 값으로 예측

- 종속변수 값의 예측
 - 확률이 높은 값으로 예측
 - 즉, $P(Y_i = 1 | X_1 = x_1, X_2 = x_2)$ 와 $P(Y_i = 0 | X_1 = x_1, X_2 = x_2)$ 의 대소 비교
 - 구체적인 값은 중요하지 않다.
 - 베이즈 공식에서의 분모값은 계산하지 않는다.

- 분자의 값 구하기
- $P(Y_i = 1 | X_1 = x_1, X_2 = x_2)$ 의 경우

$$P(Y_i = 1 | X_1 = x_1, X_2 = x_2) = \frac{P(X_1 = x_1, X_2 = x_2 | Y_i = 1)P(Y_i = 1)}{P(X_1 = x_1, X_2 = x_2)}$$

• 여기에서 각 Feature 들(즉, X_1, X_2) 은 서로 independent하다고 가정

$$P(X_1 = x_1, X_2 = x_2 | Y_i = 1) = P(X_1 = x_1 | Y_i = 1)P(X_2 = x_2 | Y_i = 1)$$

■ $P(X_j = x_j | Y_i = 1)$ 와 $P(Y_i = 1)$ 는 학습데이터를 사용해서 구함 Naive Bayes

- 분자의 값 구하기 (cont'd)
 - 흡연여부 예제

•
$$P(Y_i = 1 | X_1 = 60, X_2 = 1)$$

$$P(Y_i = 1 | X_1 = 60, X_2 = 1) = \frac{P(X_1 = 60, X_2 = 1 | Y_i = 1)P(Y_i = 1)}{P(X_1 = 60, X_2 = 1)}$$

• 여기에서

$$P(X_1 = 60, X_2 = 1 | Y_i = 1) = P(X_1 = 60 | Y_i = 1)P(X_2 = 1 | Y_i = 1)$$

종속변수: 골프 플레이 여부

Example (학습데이터)

Humidity	Windy	Play
high	false	NO
high	true	NO
high	false	YES
high	false	YES
normal	false	YES
normal	true	NO
normal	true	YES
high	false	NO
normal	false	YES
normal	false	YES
normal	true	YES
high	true	YES
normal	false	YES
high	true	NO

- Example (cont'd)
 - Humidity=normal, Windy=true인 경우, 종속변수는 무엇으로 예측이 되는가?
 - 이를 위해서는 아래 값들을 비교하는 것이 필요

P(Play=Yes|Humidity=normal, Windy=true) vs. P(Play=No|Humidity=normal, Windy=true)

- Example (cont'd)
 - 각 확률의 계산

```
P(Play=Yes|Humidity=normal, Windy=true)
= P(Humidity=normal, Windy=true|Play=Yes)P(Play=Yes)
P(Humidity=normal, Windy=true)
```

VS.

- Example (cont'd)
 - 분자의 첫번째 항

P(Humidity=normal, Windy=true|Play=Yes)

■ 이는 각 feature들이 독립이기 때문에 다음과 같이 표현

P(Humidity=normal|Play=Yes)P(Windy=true|Play=Yes)

- Example (cont'd)
 - P(Humidity=normal|Play=Yes) =
 #normal&Yes/#Yes = 6/9
 - P(Windy=true|Play=Yes) =
 #true&Yes/#Yes = 3/9
 - P(Play=Yes) = #Yes/(#Yes + #No) = 9/14

- Continuous features
 (독립변수가 연속변수인 경우)
 - 1) 독립변수가 취하는 값을 기준으로 몇 개의 그룹으로 구분 => 범주형변수로 취급
 - 예) *X* ∈ [0,100]
 - 2) 특정 확률분포를 사용하여 확률을 계산
 - 예) 정규분포

Old X	New X
$X \le 25$	0
$25 < X \le 50$	1
$50 < X \le 75$	2
$75 < X \le 100$	3

- in Python
 - For categorical features
 - Categorical Naïve Bayes 이용
 - CategoricalNB
 - https://scikitlearn.org/stable/modules/generated/sklearn.naive bayes.Categori calNB.html#sklearn.naive bayes.CategoricalNB
 - See "Naive_Bayes_example.ipynb"
 - https://rstudio-pubsstatic.s3.amazonaws.com/118220 5a7997d6b0aa493c878d66196 8fc1f08.html
 - For continuous features
 - GaussianNB 사용 (정규분포 사용)
 - https://scikitlearn.org/stable/modules/generated/sklearn.naive_bayes.Gaussian NB.html#sklearn.naNaivesBayes.GaussianNB 15