CHAPITRE 19

applications linéaires

Dans ce chapitre, E et F sont deux espaces vectoriels sur un corps \mathbb{K} .

1. Introduction

1.1. Définitions et premières propriétés.

Définition 1.1

Une application f de E dans F est dite linéaire si

- (1) pour tout $(u, v) \in E^2$, f(u + v) = f(u) + f(v);
- (2) pour tout $\lambda \in \mathbb{K}$ et tout $u \in E$, $f(\lambda u) = \lambda f(u)$.

Remarque 1.2

- (1) L'espace vectoriel E est appelé espace de départ et F l'espace d'arrivée.
- (2) On peut dire qu'une application linéaire est une application entre deux espaces vectoriels qui respecte leur structure d'espace vectoriel.

Exemple 1.3

(1) L'application

$$\begin{array}{cccc} f: & E & \to & F \\ & u & \mapsto & 0_F \end{array}$$

est linéaire.

(2) L'application

$$f: E \rightarrow E$$

est linéaire. Cette application est appelée application identité, et notée Id_E .

(3) L'application

$$\begin{array}{ccc} f: & \mathbb{R}_2[X] & \to & \mathbb{R}_2[X] \\ P & \mapsto & P' \end{array}$$

est linéaire.

Proposition 1.4

Soit $f:E\to F$ une application. Alors f est linéaire ${\bf si}$ et seulement ${\bf si}$

$$\forall u, v \in E, \ \forall \lambda, \mu \in \mathbb{K}, \ f(\lambda u + \mu v) = \lambda f(u) + \mu f(v).$$

Proposition 1.5

Soient $f: E \to F$ une application linéaire. Alors :

- (1) $f(0_E) = 0_F$
- (2) $\forall u \in E, f(-u) = -f(u)$
- (3) $\forall \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{R}, \forall u_1, u_2, \dots, u_n \in E, f\left(\sum_{i=1}^n \lambda_i u_i\right) = \sum_{i=1}^n \lambda_i f(u_i).$

Définition 1.6

Soit $f: E \to F$ une application linéaire. On dit que f est un

- (1) endomorphisme si F = E;
- (2) isomorphisme si f est bijective;
- (3) automorphisme si f est à la fois un endomorphisme et un isomorphisme.

Proposition 1.7

Soit $f: E \to F$ une application linéaire, E' un sous-espace vectoriel de E et F' un sous-espace vectoriel de F. Alors f(E') est un sous-espace vectoriel de E et F' un sous-espace vectoriel de E.

1.2. L'ensemble des applications linéaires.

- (1) L'ensemble des applications linéaires de E dans F est noté $\mathcal{L}(E,F)$.
- (2) L'ensemble des endomorphimes de E est noté $\mathcal{L}(E)$.
- (3) L'ensemble des isomorphismes de E dans F est noté $\mathcal{GL}(E,F)$.
- (4) L'ensemble des automorphismes de E est noté $\mathcal{GL}(E)$.

Rappel 1.8

Soient E et F deux \mathbb{K} -espaces vectoriels. On définit une somme sur F^E et une multiplication scalaire par les formules :

$$\forall f,g \in F^E, \ \forall \lambda \in \mathbb{K}, \ f+g: x \in E \mapsto f(x) + g(x) \in F, \ \lambda f: x \in E \mapsto \lambda f(x) \in F.$$

On sait alors que F^E muni de ces lois est un \mathbb{K} -espace vectoriel.

Proposition 1.9

L'ensemble $\mathcal{L}(E, F)$ est un sous-espace vectoriel de F^E .

Remarque 1.10

En particulier, l'ensemble $\mathcal{L}(E)$ est un espace vectoriel.

Proposition 1.11

Soit $f \in \mathcal{GL}(E, F)$. Alors l'application réciproque f^{-1} appartient à $\mathcal{GL}(F, E)$.

1.3. Composition d'applications linéaires. Soient E, F, G des espaces vectoriels de dimension finie.

Proposition 1.12

- (1) Soient f est une application linéaire de E dans F, g une application linéaire de F dans G. Alors l'application $g \circ f$ est une application linéaire de E dans G.
- (2) Soit f est un endomorphisme de E. Alors, pour $k \in \mathbb{N}^*$, l'application $f^k = f \circ f \circ \cdots \circ f$ est un endomorphisme de E.

Corollaire 1.13

 $(\mathcal{GL}(E), \circ)$ est un groupe. On l'appelle le groupe général linéaire de E.

2. Noyau, image

2.1. Noyau d'une application linéaire.

Définition 2.1

Soit $f \in \mathcal{L}(E, F)$. On appelle noyau de f et on note Ker f l'ensemble Ker $f = \{u \in E \mid f(u) = 0_F\}$.

Remarque 2.2

Le noyau de f est donc l'ensemble des antécédents de 0_F par f.

Proposition 2.3

Soit $f \in \mathcal{L}(E, F)$. Ker f est un sous-espace vectoriel de E.

Proposition 2.4: lien avec l'injectivité

Soit $f \in \mathcal{L}(E, F)$. Alors:

f est injective si et seulement si Ker $f = \{0_E\}$.

2.2. Image par une application linéaire.

Définition 2.5

Soit $f \in \mathcal{L}(E, F)$. On appelle image de f et on note Im(f) l'ensemble $\text{Im}(f) = \{f(u) \mid u \in E\} = \{v \in F \mid \exists u \in E, f(u) = v\}$.

Remarque 2.6

 $\operatorname{Im}(f)$ est l'ensemble des éléments de F qui ont un antécédent par f dans E.

Proposition 2.7

Soit $f \in \mathcal{L}(E, F)$. Alors, l'ensemble Im(f) est un sous-espace vectoriel de F.

Proposition 2.8

Soit $f \in \mathcal{L}(E, F)$. Alors:

f est surjective si et seulement si Im(f) = F.

Proposition 2.9: famille génératrice de Im(f)

Soit $f \in \mathcal{L}(E, F)$. On suppose que E est de dimension finie p, et que (e_1, e_2, \dots, e_p) est une famille génératrice de E. Alors $\text{Im}(f) = \text{Vect}(f(e_1), f(e_2), \dots, f(e_p))$.

3. Rang d'une application linéaire

Définition 3.1

- (1) Soit (v_1, v_2, \ldots, v_p) une famille de vecteurs. On appelle rang de cette famille, et l'on note $\operatorname{rg}(v_1, v_2, \ldots, v_p)$ la dimension de $\operatorname{Vect}(v_1, v_2, \ldots, v_p)$.
- (2) Soit $f: E \to F$ une application linéaire. On appelle rang de f la dimension de Im(f).

Remarque 3.2

Si E est de dimension finie alors rg(f) est bien défini.

3.1. Théorème du rang.

On suppose dans ce paragraphe que E est de dimension finie.

Proposition 3.3

Soit $f: E \to F$ une application linéaire, et (e_1, \ldots, e_n) une base de E. Alors f est un isomorphisme si et seulement si $(f(e_1), \ldots, f(e_n))$ est une base de F.

Corollaire 3.4

Soit $f: E \to F$ un isomorphisme. Alors $\dim(E) = \dim(F)$.

Définition 3.5

On dit que deux K espaces vectoriels E et F sont isomorphes s'il existe un isomorphisme $f: E \to F$.

Corollaire 3.6

Soit E un espace vectoriel, F, G deux sous-espaces vectoriels supplémentaires dans E. Alors $\dim(E) = \dim(F) + \dim(G)$.

Théorème 3.7: théorème du rang

Soit $f \in \mathcal{L}(E, F)$, avec E de dimension finie. Alors $\dim(E) = \dim(\operatorname{Ker} f) + \operatorname{rg}(f)$.

Corollaire 3.8: Formule de Grassmann

Soit E un espace vectoriel, F et G deux sous-espaces vectoriels de E. Alors $\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$.

3.2. Caractérisation d'un isomorphisme.

Proposition 3.9

Soit $f \in \mathcal{L}(E, F)$, avec E et F de dimensions finies. Alors :

- (1) f est injective si et seulement si rg(f) = dim(E).
- (2) f est surjective si et seulement si rg(f) = dim(F).

Théorème 3.10

Soit $f:E\to F$ une application linéaire telle que E et F sont de même dimension finie. Alors on a les équivalences :

f est injective \iff f est surjective \iff f est bijective.

4. Projecteurs et symétrie

Dans ce paragraphe, on suppose que $E = E_1 \oplus E_2$.

Définition 4.1

On définit la projection p sur E_1 parallèlement à E_2 de la façon suivante. Soit $x \in E$. Il existe un unique couple $(x_1, x_2) \in E_1 \times E_2$ tel que $x = x_1 + x_2$. On pose alors $p(x) = x_1$.

Proposition 4.2

Soit p la projection sur E_1 parallèlement à E_2 .

- (1) p est un endomorphisme de E.
- (2) $p_{|E_1} = \mathrm{id}_{E_1}$ et $p_{|E_2} = 0$.
- (3) $p \circ p = p$.
- (4) Ker $p = E_2$ et Im $p = E_1$.

Proposition 4.3

Soit f un endomorphisme d'un espace vectoriel E satisfaisant $f \circ f = f$. Alors Ker f et Im f sont supplémentaires et f est la projection sur Im f parallèlement à Ker f.

Définition 4.4

On définit la symétrie s par rapport à E_1 parallèlement à E_2 de la façon suivante. Soit $x \in E$. Il existe un unique couple $(x_1, x_2) \in E_1 \times E_2$ tel que $x = x_1 + x_2$. On pose alors $s(x) = x_1 - x_2$.

Proposition 4.5

Soit s la symétrie par rapport à E_1 parallèlement à E_2 .

- (1) s est un endomorphisme de E.
- (2) $s_{|E_1} = \mathrm{id}_{E_1}$ et $s_{|E_2} = -\mathrm{id}_{E_2}$.
- (3) $s \circ s = \mathrm{id}_E$.
- (4) $\operatorname{Ker}(s \operatorname{id}_E) = E_1 \operatorname{et} \operatorname{Ker}(s + \operatorname{id}_E) = E_2.$

Proposition 4.6

Soit f un endomorphisme d'un espace vectoriel E satisfaisant $f \circ f = \mathrm{id}_E$. Alors $\mathrm{Ker}(f - \mathrm{id}_E)$ et $\mathrm{Ker}(f + \mathrm{id}_E)$ sont supplémentaires et f est la symétrie par rapport à $\mathrm{Ker}(f - \mathrm{id}_E)$ parallèlement à $\mathrm{Ker}(f + \mathrm{id}_E)$.

On peut généraliser les constructions précédentes de la façon suivante.

Théorème 4.7

Soient E et F deux K-espaces vectoriels, E_1, \ldots, E_n des sous-espaces vectoriels de E tels que $E = E_1 \oplus \cdots \oplus E_n$. Soit, pour tout $i \in [1, n]$, $f_i \in L(E_i, F)$. Alors il existe une unique application linéaire de E dans F telle que pour tout i, $f_{|E_i|} = f_i$.

Remarque 4.8

Dans le cas où n=2 et $f_1=\mathrm{id}_{E_1}, f_2=0$, on retrouve la définition de la projection sur E_1 parallèlement à E_2 .

5. Problème linéaire

Définition 5.1

Soit $f: E \to F$ une application linéaire et $y \in F$. Un problème linéaire consiste à résoudre l'équation f(x) = y d'inconnue $x \in E$.

Proposition 5.2

Soit $f: E \to F$ une application linéaire. Le problème linéaire homogène f(x) = 0 admet pour ensemble de solutions l'espace vectoriel Ker f. Si x_0 est une solution particulière du problème linéaire f(x) = y, alors les solutions du problème f(x) = y sont les vecteurs de E de la forme $x + x_0$ avec $x \in \text{Ker } f$.