

PID Control Analysis & Design

- Overall Performance with PID Control
- PID Design with Zeigler-Nichols Methods
- PID Design in Frequency Domain

Limitations of P, PI & PD

With the design of **P**, **PI** & **PD** controllers, we are in a position to **ensure** a wide range of **tracking and transient responses** for any given plant.

However, the **above assurance** is usually under the condition that either **tracking** or **transient** response features drive the design of **control element**.

In reality, we are likely to **encounter** a combination of steady-state and transient **response** specifications, so that **employing** any one of these would **not be** adequate.

Role of PID Controllers

PID controller aims to achieve both tracking and transient response simultaneously and, hence, is a better option in comparison to either PI or PD.

This is so because it **includes** all three **actions** which help in achieving a **wide range** of performance.

Further, it manages the overall design effort well, while increasing the overall design degrees of freedom.

PID Controller Concept

$$G_{PID}(s) = \frac{K_d s^2 + K_p s + K_i}{s}$$

Most industrial controllers are PID, due to their versatility and least No. of design parameters.

Effect of PID Control on Root Locus

Effect of PID Control on Step Response

Effect of PID Control on Bode Plot

PID Design Strategies

The simplest and most intuitive way is to use PI & PD controllers, in cascade, as shown below.

$$G_{PID}(s) = G_{PI}(s) \times G_{PD}(s) = \left(K_{PI} + \frac{K_I}{s}\right) \times \left(K_{PD} + K_D s\right)$$

$$G_{PID}(s) = \left(K_{PI} K_{PD} + K_I K_D\right) + \frac{K_I K_{PD}}{s} + \left(K_{PI} K_D\right) s$$

We find that **PID action** is coupled to **various gains** that are designed **independently** and hence needs **care**.

PID Design Strategies

In case we have **specifications** in the form a 3^{rd} order characteristic **equation**, we can also determine the **gains** by comparison of **coefficients** of the two **equations**.

However, in **general**, we use a **methodology** proposed by **Zeigler-Nichols** to synthesize the **PID** controller, which is based on plant **step response** features.

PID Control from Zeigler-Nichols

Zeigler-Nichols PID Design

Zeigler – Nichols is a methodology for **designing** PID controllers, based on the **specific** assumptions about the **unit step** response of open / partial closed loop **plants**.

The controller TF is rewritten in terms of the overall gain K_p and time constants $T_i \ \& \ T_d$, as shown below.

$$G_c(s) = K_p \left(1 + \frac{1}{T_i s} + T_d s \right)$$

There are two methods for arriving at the controller.

First Method Concept

In this method, step response of stable plants is mapped to a 1st order TF with delay, as shown alongside.

Here, **response** is a dominant **1**st **order type**, with **inflection point** in transient.

First Method Design Strategy

The way of obtaining 'L' & 'T' is demonstrated in the figure alongside.

Here, while 'L' is like 'dead time', 'T' is an indicator of time constant (i.e. time to reach ~66% of the final output).

First Method Control Formulation

A set of **controllers**, including PID, **is proposed**, based on response **features**, as shown **alongside**.

We can obtain PID **transfer function**, as shown alongside.

We see that **controller** has both the '**zeros**' at '-1/L', while its **gain** is proportional to '**T**'.

Type of Controller	K_{ρ}	T_i	T_d
P	$\frac{T}{L}$	∞	0
PI	$0.9\frac{T}{L}$	$\frac{L}{0.3}$	0
PID	$1.2\frac{T}{L}$	2L	0.5 <i>L</i>

$$G_c(s) = K_\rho \left(1 + \frac{1}{T_i s} + T_d s \right)$$

$$= 1.2 \frac{T}{L} \left(1 + \frac{1}{2Ls} + 0.5 Ls \right)$$

$$= 0.6T \frac{\left(s + \frac{1}{L} \right)^2}{s}$$

Design Example with First Method

PID controller in the present case is given below.

$$G_{PID}(s) = 0.6T \frac{\left(s + \frac{1}{L}\right)^{2}}{s}$$
$$= \frac{1.45(s + 2.88)^{2}}{s}$$

Resulting response is shown alongside.

We see that **controller** achieves a **response** that needs **adjustments**.

Second Method Concept

In this method, initially, control is only through K_P , which is increased from 0 to a critical value for which the dominant closed loop poles lie on the 'j ω ' axis.

Time period of the sustained oscillations, achieved in this case, P_{cr} , can be obtained from impulse response.

Second Method Design Strategy

We employ the **Routh's** method to obtain, 'P_{cr}', as shown alongside.

Partial closed loop impulse response is as shown alongside.

It is to be noted that K_{cr} is an indicator of GM, while P_{cr} is an indicator of **bandwidth**.

$$G(s) = \frac{1}{(s+1)(s+2)(s+3)}; \quad \frac{C}{R} = \frac{K_{cr}}{s^3 + 6s^2 + 11s + 6 + K_{cr}}$$

$$K_{cr} = 60; \quad P_{cr} = 1.89$$

Second Method Formulation

In this case, **proposed controllers** are shown alongside.

Resulting **transfer function** is shown **alongside.**

We find that similar to first method, we get a **controller** that has both **zeros** at the **same location**, '-4/ P_{cr} '.

Type of Controller	K_{ρ}	T _i	T_d
P	0.5K _{cr}	∞	0
PI	0.45K _{cr}	$\frac{1}{1.2}P_{\rm cr}$	0
PID	0.6K _{cr}	0.5P _{cr}	0.125P _{cr}

$$G_{c}(s) = K_{p} \left(1 + \frac{1}{T_{i}s} + T_{d}s \right)$$

$$= 0.6K_{cr} \left(1 + \frac{1}{0.5P_{cr}s} + 0.125P_{cr}s \right)$$

$$= 0.075K_{cr}P_{cr} \frac{\left(s + \frac{4}{P_{cr}} \right)^{2}}{s}$$

Design Example with Second Method

PID controller TF in the present case is given below.

$$G_{c2}(s) = \frac{8.51(s+2.11)^2}{s}$$

We find that in this case, zeros are 'closer' to origin, while gain is much larger.

A comparison of two controllers in terms of step response, is shown alongside.

Summary

PID controllers can be intuitively synthesized using PI and PD design strategies.

Nichols – Zeigler tuning results in good speed of response but poor transient behaviour in closed loop and are used to get only the initial controllers, which are then tuned.

PID Control from Bode Plots

PID Controller Design with Bode

Zeigler-Nichols method of tuning broadly aims to arrive at a stable closed loop system with acceptable transient response.

However, a **more** focused **design** can be done using **frequency** domain methods, which **take** into account the **design** specifications.

In this method, **following** generic form of the **PID** controller is **assumed**.

$$G_{PID}(s) = \frac{K(as+1)(bs+1)}{s}$$

PID Controller Design with Bode

Design with bode starts with first satisfying the $\mathbf{K}_{\mathbf{V}}$ specification and then the **PM requirement.**

The procedure is **demonstrated** through an **example**. Consider a system as given below.

$$G(s) = \frac{1}{s^2 + 1}$$

Design a PID controller so that K_V is 4, PM is at least 50° and GM is more than 10 dB.

We first find that K_V requirement can be met with K = 4.

Gain – Integral Adjusted Bode Plot

We also **change type**, so that **modified** plant is as given below, and **bode plot** is alongside.

$$G'(s) = \frac{4}{s(s^2 + 1)}$$

We see that we need to add a **large** positive phase at the **GCO**.

PID Controller Design with Bode

This can be done by **first choosing** value of 'a' to be **large** (5) (i.e. zero at -0.2) so that **large** phase lead will be added around **GCO of 1.8.**

This also creates a doublet with pole at origin and acts as the PI controller, as shown below.

$$G''(s) = \frac{(5s+1)}{s} \times \frac{4}{\left(s^2+1\right)}$$

Bode Plot with Pole & First Zero

Given alongside is the **new bode plot**.

We see that, while GCO increases from 1.8 to 4.58; PCO remains unchanged.

However, both gain & phase plots change significantly in low 'ω'range.

PID Controller Design with Bode

We now **choose 'b'** so that PM **requirement is met.** This also will **change PCO** by adding more **positive phase** in **low** frequency regime.

A simple **trial** suggests that $\mathbf{b} = \mathbf{0.25}$, results in 2^{nd} zero to be **placed at -4**, and is adequate for achieving the required **PM**. Resultant **compensated** system is as shown below.

$$\tan^{-1}(4.58b) = 50^{\circ}; \quad G'''(s) = \frac{4(5s+1)(0.25s+1)}{s(s^2+1)}$$

Final Compensated Bode Plot

Final **compensated** bode **plot** is given alongside.

We see that, as **GCO** increases to 6.14, **PM** is more than required.

Further, as there is **no PCO**, GM becomes **infinite.**

Summary

PID Controllers in frequency domain are designed for ramp error constant and phase margin.

The 1^{st} zero is placed to achieve the gain crossover frequency and the 2^{nd} zero adds the required phase margin.

Lag-Lead Compensator Concept

Lag – Lead Compensators

Lag – Lead compensators have the same action as PID controllers and are normally employed when plant type & relative degree (n-m) are to be preserved.

However, these require **five** parameters to be **adjusted**, as against **three** in case of **PID**, as shown below.

$$G_c(s) = K_c \left(\frac{s + \frac{1}{T_1}}{s + \frac{\gamma}{T_1}} \right) \left(\frac{s + \frac{1}{T_2}}{s + \frac{1}{\beta T_2}} \right); \quad \gamma = \frac{1}{\alpha}; \quad \beta, \quad \gamma > 1$$

Lag – Lead compensators can be tuned better as there are more parameters for adjustment.

Lag - Lead Design with Root Locus

Case – 1: $\beta \neq \gamma$

$$G_c(s) = K_c \left(\frac{s + \frac{1}{T_1}}{s + \frac{\gamma}{T_1}} \right) \left(\frac{s + \frac{1}{T_2}}{s + \frac{1}{\beta T_2}} \right)$$

Determine dominant closed loop poles.

Determine ϕ_c from G(s) and use it to **determine** $T_1 \& \gamma$ (Choice is **non-unique**) and K_c from |G'| = 1.

Determine β from K_v .

Choose T_2 such that lag magnitude is ~ 1 and its angle contribution is between 0° to -5° at dominant poles.

Lag – Lead Design from Root Locus

Case – 2:
$$\beta = \gamma$$

$$G_c(s) = K_c \left(\frac{s + \frac{1}{T_1}}{s + \frac{\beta}{T_1}} \right) \left(\frac{s + \frac{1}{T_2}}{s + \frac{1}{\beta T_2}} \right); \quad \beta > 1$$

Determine closed loop poles from transient specifications.

Determine K_c from error constant specification.

Determine ϕ_c from G(s) and use it, along with **magnitude** condition, to determine $T_1 & \beta$.

Determine T_2 using β such that lag magnitude is ~1 and its angle contribution is between 0° to -5°.

Lag – Lead Design from Bode

Design of Lag-Lead compensator in frequency domain is a broad extension of lag and lead design strategies.

This is possible as **role of lead** part is to increase the **phase** margin and bandwidth, while that of **lag part** is to maintain **low frequency** gain.

In this context, it should be **noted** that it is a good **design philosophy** to keep additional **phase margin** from the compensator $\sim 50^{\circ}$.

Lag - Lead Compensator Bode Plot

Given **alongside** is the typical **bode plot** of a **lag-lead** compensator.

We see that it behaves like a lag compensator in low frequency range & as a lead compensator in high frequency range.

Lag – Lead Bode Design Steps

Case-2: $\beta = \gamma$

Set gain from K_v requirements.

Locate new **GCO**, around existing **PCO**, and obtain T_2 from lag **corner frequency** (1-decade lower than **GCO**).

Determine β from **phase lead** to be added at **new GCO**, which also **fixes the pole** of lag part.

Determine attenuation required at **GCO** from lead part and **obtain** the lead **corner frequencies**.

Summary

Lag-lead compensator is counterpart of PID controller that preserves both type and relative degree.

While design **effort** is significantly **higher**, additional degrees-of-freedom **help** achieve a better **design**.