

Álgebra Linear

Espaços Vetoriais – Parte 3

Profa. Elba O. Bravo Asenjo eoba@uenf.br

Referências Bibliográficas

Espaço Linha, Espaço Coluna e Espaço Nulo

Definição.

Para uma matriz A, $m \times n$,

$$A = egin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

os vetores

$$\mathbf{r}_1 = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \end{bmatrix}$$

$$\mathbf{r}_2 = \begin{bmatrix} a_{21} & a_{22} & \cdots & a_{2n} \end{bmatrix}$$

$$\vdots & \vdots & \vdots$$

$$\mathbf{r}_m = \begin{bmatrix} a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

em R^n formados pelas linhas de A são denominados *vetores linha* de A, e os vetores

$$\mathbf{c}_1 = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix}, \ldots, \quad \mathbf{c}_n = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

em R^m formados pelas colunas de A são denominados vetores coluna de A.

<u>Definição</u>. Se A for uma matriz m x n, então o subespaço de \mathbb{R}^n gerado pelos vetores linha de A é denominado **espaço linha** de A, e o subespaço de \mathbb{R}^m gerado pelos vetores coluna de A é denominado **espaço coluna** de A. O espaço solução do sistema homogêneo de equações $A\mathbf{x} = \mathbf{0}$, que é um subespaço de \mathbb{R}^n , é denominado **espaço nulo** de A.

Sejam

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \quad \mathbf{e} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Então

$$A\mathbf{x} = \begin{bmatrix} a_{11}x_1 & + & a_{11}x_2 & + \cdots + & a_{1n}x_n \\ a_{21}x_1 & + & a_{22}x_2 & + \cdots + & a_{2n}x_n \\ \vdots & & \vdots & & & \vdots \\ a_{m1}x_1 & + & a_{m2}x_2 & + \cdots + & a_{mn}x_2 \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}$$

Se c_1, c_2, \ldots, c_n denotam os vetores coluna de A, então o produto $A\mathbf{x}$ pode ser expresso como uma combinação linear desses vetores com coeficientes de \mathbf{x} , ou seja,

$$A\mathbf{x} = x_1 \mathbf{c}_1 + x_2 \mathbf{c}_2 + \dots + x_n \mathbf{c}_n \tag{1}$$

Assim, um sistema linear $A\mathbf{x} = \mathbf{b}$ de m equações em n incógnitas pode ser escrito como

$$x_1\mathbf{c}_1 + x_2\mathbf{c}_2 + \dots + x_n\mathbf{c}_n = \mathbf{b}$$

do que podemos concluir que $A\mathbf{x} = \mathbf{b}$ é consistente se, e só se, **b** pode ser expresso como uma combinação linear dos vetores coluna de A.

Teorema. Um sistema $A\mathbf{x} = \mathbf{b}$ de equações lineares é consistente se, e só se, \mathbf{b} está no espaço coluna de A.

Exemplo 1. Seja $A\mathbf{x} = \mathbf{b}$ o sistema linear

$$\begin{bmatrix} -1 & 3 & 2 \\ 1 & 2 & -3 \\ 2 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -9 \\ -3 \end{bmatrix}$$

Mostre que \mathbf{b} está no espaço coluna de \mathbf{A} expressando \mathbf{b} como uma combinação linear dos vetores coluna de \mathbf{A} .

Vamos resolver utilizando o método de Eliminação de Gauss-Jordan

$$\begin{bmatrix} -1 & 3 & 2 & 1 \\ 1 & 2 & -3 & -9 \\ 2 & 1 & -2 & -3 \end{bmatrix} L_1 \leftrightarrow L_2 \begin{bmatrix} 1 & 2 & -3 & -9 \\ -1 & 3 & 2 & 1 \\ 2 & 1 & -2 & -3 \end{bmatrix} L_2 \leftarrow L_2 + L_1 \begin{bmatrix} 1 & 2 & -3 & -9 \\ 0 & 5 & -1 & -8 \\ 1 & 2 & -3 & 4 & 15 \end{bmatrix}$$

$$L_{2} \leftarrow \frac{1}{5}L_{2} \begin{bmatrix} 1 & 2 & -3 & -9 \\ 0 & 1 & -1/5 & -8/5 \\ 0 & -3 & 4 & 15 \end{bmatrix} L_{1} \leftarrow L_{1} - 2L_{2} \begin{bmatrix} 1 & 0 & -13/5 & -29/5 \\ 0 & 1 & -1/5 & -8/5 \\ 0 & 0 & 17/5 & 51/5 \end{bmatrix} L_{3} \leftarrow \frac{5}{17}L_{3}$$

$$\begin{bmatrix} 1 & 0 & -13/5 & -29/5 \\ 0 & 1 & -1/5 & -8/5 \\ 0 & 0 & 1 & 3 \end{bmatrix} \begin{array}{c} L_1 \leftarrow L_1 + \frac{13}{5}L_3 \\ L_2 \leftarrow L_2 + \frac{1}{5}L_3 \end{array} \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Segue que $x_1 = 2$, $x_2 = -1$, $x_3 = 3$

Disso e da Fórmula (2) segue que

$$2\begin{bmatrix} -1\\1\\2\\1\end{bmatrix} - \begin{bmatrix} 3\\2\\1\\1\end{bmatrix} + 3\begin{bmatrix} 2\\-3\\-2\end{bmatrix} = \begin{bmatrix} 1\\-9\\-3\\-3\end{bmatrix}$$

Teorema. Se x_0 denotar uma solução qualquer de um sistema linear consistente Ax = b e se $S = \{v_1, v_2, \ldots, v_k\}$ for uma base do espaço nulo de A, então cada solução de Ax = b pode ser expressa na forma

$$\mathbf{x} = \mathbf{x}_0 + c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k \tag{3}$$

Reciprocamente, com qualquer escolha dos escalares c_1, c_2, \ldots, c_k , o vetor **X** dessa fórmula é uma solução de A**x** = **b**.

Observação 1. A Equação (3) dá uma fórmula para a solução geral de $A\mathbf{x} = \mathbf{b}$. O vetor X_0 nessa fórmula é denominado solução particular de $A\mathbf{x} = \mathbf{b}$, e a parte restante da fórmula é denominada solução geral de $A\mathbf{x} = \mathbf{0}$.

Em palavras, podemos reescrever essa fórmula como segue.

A solução geral de um sistema linear consistente pode ser expressa como a soma de uma solução particular daquele sistema com a solução geral do sistema homogêneo correspondente.

Exemplo 2. Seja o sistema linear não homogêneo Ax = b

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 5 \\ 6 \end{bmatrix}$$

a solução geral desse sistema linear pode ser escrita de forma paramétrica como

$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = \frac{1}{3}$

que podemos reescrever em forma vetorial como

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (-3r - 4s - 2t, r, -2s, s, t, 1/3)$$
 (4)

Considere o sistema linear homogêneo Ax = 0, associado ao problema anterior

$$\begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

a solução geral desse sistema linear homogêneo pode ser escrita de forma paramétrica como

$$x_1 = -3r - 4s - 2t$$
, $x_2 = r$, $x_3 = -2s$, $x_4 = s$, $x_5 = t$, $x_6 = 0$

que podemos reescrever em forma vetorial como

$$(x_1, x_2, x_3, x_4, x_5, x_6) = (-3r - 4s - 2t, r, -2s, s, t, 0)$$
 (5)

As equações (4) e (5) podem ser reescritas como segue

não homogêneo
$$\rightarrow (x_1, x_2, x_3, x_4, x_5, x_6) = r(-3, 1, 0, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0) + (0, 0, 0, 0, 1/3)$$

homogêneo
$$\rightarrow (x_1, x_2, x_3, x_4, x_5, x_6) = r(-3, 1, 0, 0, 0, 0) + s(-4, 0, -2, 1, 0, 0) + t(-2, 0, 0, 0, 1, 0)$$

Deduzimos que a solução geral \mathbf{X} do sistema não homogêneo e a solução geral \mathbf{x}_h do sistema homogêneo correspondente (quando escrita como vetor coluna) estão relacionadas por

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} -3r - 4s - 2t \\ r \\ -2s \\ s \\ t \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{3} \end{bmatrix} + r \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -4 \\ 0 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Os vetores em \mathbf{x}_h formam uma base do espaço solução de $A\mathbf{x} = \mathbf{0}$.

Teorema. As operações elementares com linhas não alteram o espaço nulo de uma matriz.

<u>Teorema</u>. As operações elementares com linhas não alteram o espaço linha de uma matriz.

<u>Teorema</u>. Se uma matriz R está em forma escalonada por linhas, então os vetores linha com os pivôs (ou seja, os vetores linha não nulos) formam uma base do espaço linha de R, e os vetores coluna com os pivôs vetores linha formam uma base do espaço coluna de R.

Bases para os Espaços Linha e Coluna

Exemplo 3. A matriz
$$R = \begin{bmatrix} 1 & -2 & 5 & 0 & 3 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

está em forma escalonada por linhas. Logo os vetores

$$\mathbf{r}_1 = [1 \quad -2 \quad 5 \quad 0 \quad 3]$$
 $\mathbf{r}_2 = [0 \quad 1 \quad 3 \quad 0 \quad 0]$
 $\mathbf{r}_3 = [0 \quad 0 \quad 0 \quad 1 \quad 0]$

formam uma base do espaço linha de *R* e os vetores

$$\mathbf{c}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{c}_2 = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{c}_4 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

formam uma base do espaço coluna de R

Teorema. Sejam A e B matrizes equivalentes por linhas.

- (a) Um conjunto qualquer de vetores coluna de A é linearmente independente se, e só se, o conjunto de vetores coluna correspondente de B é linearmente independente.
- (b) Um conjunto qualquer de vetores coluna de A forma uma base do espaço coluna de A se, e só se, o conjunto de vetores coluna correspondente de B forma uma base do espaço coluna de B.

Exemplo 4. Seja a matriz

$$A = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 2 & -6 & 9 & -1 & 8 & 2 \\ 2 & -6 & 9 & -1 & 9 & 7 \\ -1 & 3 & -4 & 2 & -5 & -4 \end{bmatrix}$$

Reduzindo A à forma escalonada por linhas, obtemos

$$R = \begin{bmatrix} 1 & -3 & 4 & -2 & 5 & 4 \\ 0 & 0 & 1 & 3 & -2 & -6 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Como as primeira, terceira e quinta colunas de R contêm os pivôs dos vetores linha, temos que os vetores

$$\mathbf{c}_1' = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{c}_3' = \begin{bmatrix} 4 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{c}_5' = \begin{bmatrix} 5 \\ -2 \\ 1 \\ 0 \end{bmatrix}$$

formam uma base do espaço coluna de R. Assim, os vetores coluna de A correspondentes, a saber,

$$\mathbf{c}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{c}_3 = \begin{bmatrix} 4 \\ 9 \\ 9 \\ -4 \end{bmatrix}, \quad \mathbf{c}_5 = \begin{bmatrix} 5 \\ 8 \\ 9 \\ -5 \end{bmatrix}$$

formam uma base do espaço coluna de A.

O espaço nulo de A é o espaço solução do sistema linear homogêneo A**x** = **0** que, conforme vimos no Exemplo 2,

tem a base

$$\mathbf{v}_{1} = \begin{bmatrix} -3\\1\\0\\0\\0\\0 \end{bmatrix}, \quad \mathbf{v}_{2} = \begin{bmatrix} -4\\0\\-2\\1\\0\\0 \end{bmatrix}, \quad \mathbf{v}_{3} = \begin{bmatrix} -2\\0\\0\\0\\1\\0 \end{bmatrix}$$

Posto e Nulidade de uma Matriz

<u>Definição</u>. A dimensão comum do espaço linha e do espaço coluna de uma matriz A é denominada *posto* de A e denotada por pos(A). A dimensão do espaço nulo de A é denominada *nulidade* de A e denotada por pos(A).

Exemplo. Encontre o posto e a nulidade da matriz

$$A = \begin{bmatrix} -1 & 2 & 0 & 4 & 5 & -3 \\ 3 & -7 & 2 & 0 & 1 & 4 \\ 2 & -5 & 2 & 4 & 6 & 1 \\ 4 & -9 & 2 & -4 & -4 & 7 \end{bmatrix}$$

Solução. A forma escalonada reduzida por linhas de A é

Γ1	0	- 4	-28	— 37	13
0	1	- 2	-12	- 16	5
0	0	0	0	0	0
0	0	0	0	0	0

Como essa matriz tem dois pivôs, então pos(A) = 2.

Para encontrar a nulidade de A, devemos encontrar a dimensão do espaço solução do sistema linear $A\mathbf{x} = \mathbf{0}$.

A solução geral do sistema homogêneo Ax = 0 associado à matriz dada é como segue,

$$x_1 = 4r + 28s + 37t - 13u$$

 $x_2 = 2r + 12s + 16t - 5u$
 $x_3 = r$
 $x_4 = s$
 $x_5 = t$
 $x_6 = u$

ou em formato de vetor coluna,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = r \begin{bmatrix} 4 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} 28 \\ 12 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 37 \\ 16 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} + u \begin{bmatrix} -13 \\ -5 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Como os quatro vetores do lado direito formam uma base do espaço solução, temos que nul(A) = 4.

Teorema. O teorema da dimensão para matrizes

Se A for uma matriz com n colunas, então

$$pos(A) + nul(A) = n$$

Teorema. Se A for uma matriz m x n, então

- (a) pos(A) = número de variáveis líderes na solução geral de <math>Ax = 0.
- (b) nul(A) = número de parâmetros (ou variáveis livres) na solução geral de Ax = 0.

Base de um espaço gerado

Exemplo 5. Base de um espaço vetorial usando operações com linhas

Encontre uma base do subespaço de \mathbb{R}^5 gerado pelos vetores

$$\mathbf{v}_1 = (1, -2, 0, 0, 3), \quad \mathbf{v}_2 = (2, -5, -3, -2, 6),$$

 $\mathbf{v}_3 = (0, 5, 15, 10, 0), \quad \mathbf{v}_4 = (2, 6, 18, 8, 6)$

Solução. O espaço gerado por esses vetores é o espaço linha da matriz

$$\begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 6 & 18 & 8 & 6 \end{bmatrix}$$

Reduzindo essa matriz a uma forma escalonada por linhas, obtemos

$$\begin{bmatrix} 1 & -2 & 0 & 0 & 3 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Os vetores linha não nulos nessa matriz são

$$\mathbf{w}_1 = (1, -2, 0, 0, 3), \quad \mathbf{w}_2 = (0, 1, 3, 2, 0), \quad \mathbf{w}_3 = (0, 0, 1, 1, 0)$$

Esses vetores formam uma base do espaço linha e, consequentemente, formam uma base do subespaço de \mathbb{R}^5 gerado por $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$, $\mathbf{v_4}$.

Exemplo 6. Encontrar o subespaço de \mathbb{R}^3 gerado pelos vetores

$$v_1 = (1, -2, -1)$$
 e $v_2 = (2, 1, 1)$.

Solução.

Seja W = $G(v_1, v_2)$. Tomemos v = (x, y, z) em \mathbb{R}^3 . Temos que $v \in W$ se, e somente se, existem números reais a_1 e a_2 tais que

$$v = a_1 v_1 + a_2 v_2$$
, isto é, $(x, y, z) = a_1(1, -2, -1) + a_2(2, 1, 1)$

ou equivalentemente, se, e somente se, o sistema linear

$$a_1 + 2 a_2 = x$$

- $2 a_1 + a_2 = y$
- $a_1 + a_2 = z$ (*)

tem solução.

Resolvendo o sistema (*):

$$\begin{bmatrix} 1 & 2 & x \\ -2 & 1 & y \\ -1 & 1 & z \end{bmatrix} \begin{array}{c} L_2 \leftarrow L_2 + 2L_1 \\ L_3 \leftarrow L_3 + L_1 \end{array} \begin{bmatrix} 1 & 2 & x \\ 0 & 5 & y + 2x \\ 0 & 3 & x + z \end{bmatrix} L_2 \leftarrow \frac{1}{5}L_2 \begin{bmatrix} 1 & 2 & x \\ 0 & 1 & \frac{y+2x}{5} \\ 0 & 3 & x + z \end{bmatrix} L_3 \leftarrow L_3 - 3L_2$$

$$\begin{bmatrix} 1 & 2 & x \\ 0 & 1 & \frac{2x+y}{5} \\ 0 & 0 & \frac{-x-3y+5z}{5} \end{bmatrix}$$

Portanto, o sistema (*) tem solução se, e somente se, -x - 3y + 5z = 0, ou x + 3y - 5z = 0. Assim,

W = {
$$(x, y, z) \in \mathbb{R}^3$$
; $x + 3y - 5z = 0$ }

Para determinar uma base para o subespaço W, isolamos uma variável na equação x + 3y - 5z = 0,

por exemplo, x = -3y + 5z. Logo,

$$(x, y, z) = (-3y + 5z, y, z) = (-3y, y, 0) + (5z, 0, z) = y(-3, 1, 0) + z(5, 0, 1)$$

Assim uma base para W é dada por

$$B = \{v_1 = (-3, 1, 0), v_2 = (5, 0, 1)\}$$

W pode ser escrito também como segue

$$W = \{y(-3, 1, 0) + z(5, 0, 1); y, z \in \mathbb{R} \}$$