التمرين الأول: حدد الشكل المثلثي للأعداد العقدية التالية:

$$z = -2(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}) \quad z = (\sqrt{3} - i)^7 \quad z = (1 + i)^{2009} \quad z = \frac{1 + i\sqrt{3}}{1 + i} \quad z = (1 - i)^2$$

$$z = 1 + \cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9} \quad z = 1 - i\tan\frac{\pi}{9} \quad z = \frac{(1 - i\sqrt{3})^{12}}{(1 + i\sqrt{3})^7} \quad z = -\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}$$

التمرين الثاني:

. $B(\sqrt{3}+i)$ و A(2i) . Big المستوى العقدي النقطتان:

 $\frac{2i}{-\sqrt{3}+i}$ حدد الشكل المثلثي للعدد العقدي (1

استنتج طبيعة المثلث OAB.

2) لتكن I منتصف القطعة [OB].

حدد لحق النقطة I.

3) حدد k لحق النقطة K لكي يكون ABIK متوازي لأضلاع.

.OKA بين أن العدد $\frac{k-2i}{k}$ تخيلي صرف و استنتج طبيعة المثلث (4

التمرين الثالث:

 $z \neq \frac{2}{3}$:حیث: $z = f(z) = \frac{2z-3}{3z-2}$

 $Z = f(z) \Leftrightarrow z = f(Z)$: بين التكافؤ

2) حدد في المستوى العقدي المجموعة \mathbf{F} للنقط $\mathbf{M}(\mathbf{z})$ بحيث يكون \mathbf{Z} عددا حقيقيا .

|z|=1 نفترض أن: 1

|Z| = 1: أبين أن

 \cdot Z عمدة θ و z عمدة α

 $\cos \alpha$ عبر عن $\sin \theta$ و $\sin \theta$

التمرين الرابع:

 $.C(2-3\sqrt{3},3+\sqrt{3})$ و B(3,6) و A(1,0) و A(1,0)

لتكن a و b و c ألحاق النقط A و B و كا على التوالى.

 $\frac{c-a}{b-a}$: اكتب على الشكل الجبري و على الشكل المثلثي العدد العقدي (1

2) استنتج طبيعة المثلث ABC.

|z-c|=1 بحيث يكون: $|\mathbf{M}(\mathbf{z})|=1$ عدد مجموعة النقط