

quote

"It's easy to lie with statistics.

It's hard to tell the truth

without statistics."

Telecom pillars

Telecom KPI-s

Customer journeys

sta·tis·tics

1. The only science wherein two recognized experts, using the same set of data may come to completely opposite conclusions

Churn model | Define the problem

- A churn event is identified when a customer drop the service usage, raises a port-out request or has a valid complain about smth.
- The churn for the last quarter has an increase by 1%.
- The features have different types including continuous and categorical.
- The prediction model is going to be unsupervised learning, binary classification.
- The outcome variable is imbalanced, 85:15.
- The goal is to find the customers (200K) with highest probability to churn.

Customer	Age	Roaming	Payments	Т	enure	ARPU	Activity Date	Churn
	0 6	6	0	1	60	1424	1 28	0
	1 4	6	1	3	71	1066	5 28	0
	2 3	2	1	1	18	839	9 22	0
	3 2	3	0	5	2	1024	1 25	1
	4 3	8	1	2	56	1193	3 24	0
	5 6	0	1	4	9	832	2 10	1
	6 2	1	1	2	63	647	7 17	0
	7 6	6	1	3	65	936	5 11	0
	8 3	4	0	4	7	982	2 25	1
	9 4	3	0	0	24	1102	2 11	0
1	0 4	8	1	4	33	1301	1 20	0
1	1 4	5	1	2	60	1016	5 18	0
1	2 4	9	0	2	69	1462	2 6	0
1	3 3	1	1	2	46	574	11	0
1	4 5	4	1	5	4	1471	1 20	0
1	5 1	8	0	1	15	1136	5 3	0
1	6 6	6	1	1	61	991	l 12	NaN
1	7 5	7	1	2	7	538	3 4	NaN
1	8 5	1	0	1	18	1388	3 0	NaN
1	9 4	7	0	5	32	924	17	NaN

Feature distribution

Machine learning steps

Define the Problem

1st and most important step of the Data Science

Data Preprocessing

Missing values, outliers, combine and join, data mapping, etc.,

Model Building

Different models, hyperparameter tuning, accuracy and error.

Data Gathering

Data can be retrieved from multiple sources: db, files, webpages, text, video and audio, etc.,

Feature Engineering

New features can be created as a combination of original ones. Dimension Reduction, PCA, etc.,

Deploy the Model

Last phase of the journey. It can be anywhere, cloud, app and omni channel

Steps are the same for every Data Science problem, but it can vary by the type of algorithm.

LightGBM | Model results

Decile	Count	Actual	Gains	Customers	True Positive Rate
1	9,757	7,835	29%	9,757	80%
2	9,757	5,717	50%	19,514	59%
3	9,757	4,049	65%	29,271	41%
4	9,756	2,911	76%	39,027	30%
5	9,757	1,938	83%	48,784	20%
ϵ	9,757	1,496	88%	58,541	15%
7	9,756	1,179	93%	68,297	12%
8	9,757	855	96%	78,054	9%
9	9,757	496	98%	87,811	5%
10	9,756	296	99%	97,567	3%
11	9,745	177	99%	107,312	2%
12	9,769	121	100%	117,081	1%
13	9,757	22	100%	126,838	0%
14	9,755	15	100%	136,593	0%
15	9,758	5	100%	146,351	0%
16	9,757	1	100%	156,108	0%
17	9,756	0	100%	165,864	0%
18	9,753	0	100%	175,617	0%
19	9,761	0	100%	185,378	0%
20	9,757	0	100%	195,135	0%

Model results

Decile	Count	Actual	Gains	Customers	True Positive Rate
1	9,757	7,835	29%	9,757	80%
2	9,757	5,717	50%	19,514	59%
3	9,757	4,049	65%	29,271	41%
	9,756	2,911	76%	39,027	30%
5	9,757	' 1,938	83%	48,784	20%
ϵ	5 9,757	' 1,496	88%	58,541	15%
7	9,756	1,179	93%	68,297	12%
8	9,757	' 855	96%	78,054	9%
ç	9,757	' 496	98%	87,811	5%
10	9,756	296	99%	97,567	3%
11	9,745	177	99%	107,312	2%
12	9,769	121	100%	117,081	1%
13	9,757	' 22	100%	126,838	0%
14	9,755	5 15	100%	136,593	0%
15	9,758	5	100%	146,351	0%
16	9,757	' 1	100%	156,108	0%
17	9,756	5 0	100%	165,864	0%
18	9,753	0	100%	175,617	0%
19	9,761	0	100%	185,378	0%
20	9,757	' 0	100%	195,135	0%

Model results

Questions

str.endswith("The End")

Mirjan Miftaraj