Odmerná analýza

 meranie objemu roztoku činidla (s presnou koncentráciou), ktorý sa spotrebuje na kvantitatívny priebeh reakcie medzi činidlom a stanovovanou zložkou presne odváženej vzorky, t.j. do dosiahnutia ekvivalentného bodu

ekvivalentný bod

- nastáva ak sú v stechiometrickom pomere skúmaná látka (analyt) a odmerné činidlo
- o jeho dosiahnutie sa určuje pomocou:
 - objektívna indikácia
 - koniec reakcie sa určí inštrumentálnymi metódami (prístrojom)
 - subjektívna indikácia
 - k roztoku analytu sa pridá indikátor, ktorý pri dosiahnutí ekvivalentného bodu mení sfarbenie

• <u>titrácie podľa typu prebiehajúcej reakcie:</u>

- o *neutralizačné, acidobázické* acidimetria, alkalimetria
- oxidačno-redukčné manganometria, jódometria
- o zrážacie argentometria
- komplexotvorné komplexometria
- odmerný roztok (odmerné činidlo)
 - majú známu koncentráciu (mol.dm–3)
 - o používajú sa na titráciu
 - druh roztoku závisí od typu titrácie

• štandardizácia

stanovenie presnej koncentrácie odmerného roztoku použitím základnej látky

- štandardy (základné látky)
 - majú presne definované zloženie
 - jedná sa o čistú látku (max. 0,01% nečistôt)
 - vysoká molekulová hmotnosť (pre zníženie chyby merania)
 - chemicky stále látky
 - dobre rozpustné vo vode
 - o kvantitatívne definovaný priebeh reakcie s odmerným činidlom
 - cenovo dostupné
 - o príklady:

Základná látka	Na ₂ CO ₃	(COOH) ₂ .2H ₂ O	NaCl	Ďalšie základné látky
Odmerné činidlo	HCI	NaOH	$AgNO_3$	K ₂ Cr ₂ O ₇ , KIO ₃ , MgSO ₄ , CaCO ₃

indikátory

- slúžia na indikáciu ekvivalentného bodu
 - vizuálna (subjektívna)
 - inštrumentálnym meraním (objektívna)
- vhodný indikátor sa vyberá na základe typu titrácie
- detekcia ekvivalentného bodu sa deje pomocou zmeny sfarbenia roztoku v dôsledku zmeny štruktúry indikátora
- o použitie v malom množstve (0,1% roztoku)
- jedná sa väčšinou o organické zlúčeniny

o <u>acidobázické indikát</u>ory

- - rovnovážna konštanta: $K_{HInd}=\frac{[H^+][Ind^-]}{[HInd]}$ $[H^+]=K_{HInd}\frac{[HInd]}{[Ind^-]}$

farba indikátora závisí len od podielu koncentrácií kyslej a zásaditej formy a tento podiel závisí len od koncentrácie H⁺ (t.j. od pH), vzhľadom na to, že K_{HInd} je konštanta charakteristická pre daný indikátor

- oko vníma farebnú zmenu, ak 10% kyslej formy prejde na zásaditú a naopak
 - platí teda:

o začiatok:
$$[HInd] = 10[Ind^-]$$

$$[H^+]_1 = K_{HInd} \frac{[HInd]}{[Ind^-]}$$

$$pH_1 = pK_{HInd} - 1$$
o koniec: $10[HInd] = [Ind^-]$

$$[H^+]_2 = K_{HInd} \frac{[HInd]}{[Ind^-]}$$

$$pH_2 = pK_{HInd} + 1$$

- v tomto rozmedzí sa zvyčajne nachádza funkčná oblasť indikátora
 - o rozsah pH, v ktorom sledujeme farebné zmeny indikátora
- príklad: fenolftaleín kyslá forma (bezfarebná) zásaditá forma (fialová)

o <u>redox indikátory</u>

- 2 typy:
 - vratné (napr. feroín)
 - nevratné (farebný prechod len 1 smerom) (napr. metyloranž)
- $Ind_{ox} + ne^- \rightleftharpoons Ind_{red}$
 - štandardný elektródový potenciál: $E = E_{Ind}^0 + \frac{R.T}{n.F} \ln \frac{[Ind_{ox}]}{[Ind_{red}]}$ zjednodušenie (pri 25°C): $E = E_{Ind}^0 + \frac{0.059}{n} \log \frac{[Ind_{ox}]}{[Ind_{red}]}$
- oko vníma farebnú zmenu, ak 10% oxidovanej formy prejde na redukovanú a naopak
 - platí teda:

$$\begin{array}{ccc} \circ & \underline{\text{začiatok:}} \ [Ind_{ox}] = 10[Ind_{red}] \\ & E_1 = E_{Ind}^0 + \frac{0.59}{n} \log \frac{[Ind_{ox}]}{[Ind_{red}]} \\ & E_1 = E_{Ind}^0 + \frac{0.59}{n} \\ \circ & \underline{\text{koniec:}} & 10[HInd] = [Ind_{red}] \\ & E_2 = E_{Ind}^0 + \frac{0.59}{n} \log \frac{[Ind_{ox}]}{[Ind_{red}]} \\ & E_2 = E_{Ind}^0 - \frac{0.59}{n} \end{array}$$

- v tomto rozmedzí sa zvyčajne nachádza funkčná oblasť indikátora
- príklad: feroín oxidovaná forma (svetlomodrá) redukovaná (červená)

používané sklo

o odmerné valce, odmerné banky, byrety, titračné banky, kadičky

• titračná krivka

- o grafická závislosť zmeny koncentrácie reagujúcej látky od objemu odmerného činidla
- o na x-ovej osi
 - objem odmerného činidla
- o na y-ovej osi
 - hodnoty merateľných veličín
 - lineárne závislých od zmeny koncentrácie (napr. vodivosť)
 - logaritmicky závislých od zmeny koncentrácie (pH, E)
- o prvá a druhá derivácia titračnej krivky slúžia na presnejšie určenie ekvivalentného bodu

Acidobázické titrácie

- typy:
 - o titrácia silnej kyseliny silnou zásadou
 - o titrácia slabej kyseliny silnou zásadou
 - o titrácia slabej zásady silnou kyselinou
 - o titrácia slabej zásady slabou kyselinou
 - o titrácia zmesi kyselín
 - titrácia viacsýtnych kyselín
- titrácia silnej kyseliny (HCl) silnou zásadou (NaOH)
 - indikátor
 - akýkoľvek neutralizačný indikátor s funkčnou oblasťou v rozmedzí pH 3 11
 - o priebeh:
 - pH na začiatku (1) ovplyvnené len koncentráciou silnej kyseliny

•
$$[H^+] = c_A$$

 $a_{H^+} = [H^+].\gamma_{\pm}$ $c < 10^{-3} mol. dm^{-3}$ \Rightarrow $\gamma_{\pm} = 1$

- $pa_{H^+} = -\log a_{H^+}$
- pH pred ekvivalentným bodom (2)
 - v roztoku
 - zbytok HCl
 - NaCl (nie je protolyt) soľ silnej kyseliny a silnej zásady

•
$$c_A = \frac{(c.V)_0 - (c.V)_{NaOH}}{V_0 + V_{NaOH}}$$

 $[H^+] = c_A$
 $a_{H^+} = [H^+].\gamma_{\pm}$

•
$$pa_{H^+} = -\log a_{H^+}$$

- pH v ekvivalentnom bode (3) (pT titračný exponent)
 - v roztoku
 - o NaCl
 - o protolytom je H₂O
 - pH = 7
- pH za ekvivalentným bodom (4)
 - v roztoku
 - o NaCl
 - nadbytok NaOH

$$\bullet \quad c_{OH} = \frac{(c.V)_{NaOH} - (c.V)_0}{V_0 + V_{NaOH}}$$

$$pOH = -\log c_{OH}$$

$$pH = 14 - pOH$$

o titračná krivka:

• titrácia slabej kyseliny (CH3COOH) silno zásadou (NaOH)

- o soľ podlieha hydrolýze roztok sa zalkalizuje
 - $CH_3COONa \rightleftharpoons CH_3COO^- + Na^+$
 - pH v ekvivalentnom bode bude teda v alkalickej oblasti (pH > 7)
- o priebeh:
 - pH na začiatku (1) ovplyvnené len slabou kyselinou

$$\bullet \qquad pH = \frac{1}{2}(pK_A - \log c)$$

- pH pred ekvivalentným bodom (2)
 - v roztoku
 - o zmes CH₃COOH a CH₃COONa *tlmivý roztok*

•
$$c_A = \frac{(c.V)_0 - (c.V)_{NaOH}}{V_0 + V_{NaOH}}$$
 $c_S = \frac{(c.V)_{NaOH}}{V_0 + V_{NaOH}}$

$$\bullet \quad pH = pK_A + \log \frac{c_S}{c_A}$$

- pH v ekvivalentnom bode (3)
 - v roztoku
 - o len soľ (CH₃COONa) hydrolyzuje
 - $c = \frac{(c.V)_{NaOH}}{V_0 + V_{NaOH}}$
 - $\bullet \quad pH = 7 + \frac{1}{2}(pK_A + \log c)$
- pH za ekvivalentným bodom (4)
 - v roztoku
 - o CH₃COONa (pre výpočet pH môžeme zanedbať)
 - o NaOH
 - $\bullet \quad c_{OH} = \frac{(c.V)_{NaOH} (c.V)_0}{V_0 + V_{NaOH}}$
 - $pOH = -\log c_{OH}$ pH = 14 - pOH
- o titračná krivka:

- titrácia slabej bázy (NH4OH) silnou kyselinou (HCl)
 - o soľ podlieha hydrolýze roztok sa okyslí
 - $NH_4Cl \rightleftharpoons NH_4^+ + Cl^-$
 - pH v ekvivalentnom bode bude teda v kyslej oblasti (pH < 7)
 - o priebeh:
 - pH na začiatku (1) ovplyvnené len slabou zásadou
 - $\bullet \quad pOH = \frac{1}{2}(pK_B \log c)$
 - pH pred ekvivalentným bodom (2)
 - v roztoku
 - zmes NH₄OH a NH₄Cl tlmivý roztok
 - $c_B = \frac{(c.V)_0 (c.V)_{HCl}}{V_0 + V_{HCl}}$ $c_S = \frac{(c.V)_{HCl}}{V_0 + V_{HCl}}$
 - $pOH = pK_B + \log \frac{c_S}{c_B}$

- pH v ekvivalentnom bode (3)
 - v roztoku

$$\bullet \quad c = \frac{(c.V)_{HCl}}{V_0 + V_{HCl}}$$

$$\bullet \quad pOH = 7 + \frac{1}{2}(pK_B + \log c)$$

- pH za ekvivalentným bodom (4)
 - v roztoku
 - o NH₄Cl (pre výpočet pH môžeme zanedbať)
 - o HCl

$$\bullet \quad c_{H^+} = \frac{(c.V)_{HCl} - (c.V)_0}{V_0 + V_{HCl}}$$

- $pH = -\log c_{H^+}$
- o <u>titračná krivka:</u> (s porovnaním s titráciou slabá kyselina silná zásada)

- titrácia slabej kyseliny (CH₃COOH) slabou bázou (NH₄OH)
 - o plochá titračná krivka v ekvivalentnom bode veľmi malý skok, tzn. nepresná
 - o v praxi sa nepoužíva
 - o priebeh:
 - pH na začiatku (1) (ovplyvnené len slabou kyselinou)

$$\bullet \quad pH = \frac{1}{2}(pK_A - \log c)$$

- pH pred ekvivalentným bodom (2)
 - v roztoku
 - zmes CH₃COOH a CH₃COONH₄
- pH v ekvivalentnom bode (3)
 - v roztoku

$$\bullet \quad pH = \frac{1}{2}(14 + pK_A - pK_B)$$

pH za ekvivalentným bodom (4)

- v roztoku
 - CH₃COONH₄
 - NH₄OH
- o titračná krivka:

• titrácia zmesi kyselín

$$O HA_1 \rightleftharpoons H^+ + A_1^- K_{A_1} = \frac{[A_1^-][H^+]}{[HA_1]}$$

$$HA_2 \rightleftharpoons H^+ + A_2^- K_{A_2} = \frac{[A_2^-][H^+]}{[HA_2]}$$

- o pH na začiatku:
 - ak sú koncentrácie rovnaké: $pH = \frac{1}{2} \left(pK_{A_1} + pK_{A_2} \right)$
 - ak nie sú koncentrácie rovnaké: $pH = \frac{1}{2} \Big(pK_{A_1} + pK_{A_2} + \log \frac{c_1}{c_2} \Big)$
- o možnosť stanoviť silnejšiu kyselinu pri slabšej, ak: $rac{K_{A_1}}{K_{A_2}}=10^4$

• titrácia viacsýtnych kyselín

- o priebeh:
 - na začiatku (1)

$$\bullet \quad pH = \frac{1}{2} \left(pK_{A_1} - \log c \right)$$

- pred 1.ekvivalentným bodom (2)
 - H₃PO₄ a H₂PO₄ (tlmivý roztok)
 - $pH = pK_{A_1} + \log \frac{c_S}{c_A}$
- v 1.ekvivalentnom bode (3)
 - H₂PO₄⁻
 - $\bullet \quad pH = \frac{1}{2} \left(pK_{A_1} + pK_{A_2} \right)$
- medzi 1. a 2. ekvivalentným bodom (4)
 - H₂PO₄ a HPO₄ (tlmivý roztok)
 - $\bullet \quad pH = pK_{A_2} + \log \frac{c_S}{c_A}$
- v 2.ekvivalentnom bode (5)
 - HPO₄²⁻

рКа	
1	H ₃ PO ₄
2	$H_2PO_4^-$
3	HPO ₄ 2-

•
$$pH = \frac{1}{2} (pK_{A_2} + pK_{A_3})$$
 (pre H₂PO₄⁻ a HPO₄²⁻)

- medzi 2. a 3. ekvivalentným bodom (6)
 - HPO₄²⁻ a PO₄³⁻ (tlmivý roztok)
 - $\bullet \quad pH = pK_{A_3} + \log \frac{c_S}{c_A}$
- v 3. ekvivalentnom bode (7)
 - PO₄³⁻
 - $\bullet \quad pH = 7 + \frac{1}{2} \left(pK_{A_3} + \log c \right)$
- za 3. ekvivalentným bodom
 - ako by sme pridávali NaOH do vody

o titračná krivka:

