Comparison Tables: BBOB 2015 Testbed in 10-D

The BBOBies

July 16, 2015

Abstract

This document provides tabular results of the workshop on Black-Box Optimization Benchmarking held at GECCO 2015, see http://coco.gforge.inria.fr/doku.php?id=bbob-2015. Overall, 18 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 20. Only three of them have been tested on the optional instances in dimension 40. A description of the used objective functions can be found in [7, 5]. The experimental set-up is described in [6].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm in BBOB-2009 (see [2]) if an algorithm from BBOB-2009 reached the given target function value. The ERT value is given otherwise (ERT_{best} is noted as infinite). See [6] for details on how ERT is obtained. Bold entries in the table correspond to values below 3 or the top-three best values. Table 1 gives an overview on all algorithms submitted to the noise-free testbed at GECCO 2015.

Table 1: Names and references of all algorithms submitted for the noise-free testbed

testbed algorithm short	paper	reference
name	pupor	rotoronoo
BSifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	
BSqi	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
- 20	Box Optimization of Separable Continuous Functions	[0]
BSrr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-	[9]
	Box Optimization of Separable Continuous Functions	5.3
CMA-CSA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-MSR	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
CMA-TPA	Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB Noiseless Testbed	[1]
GP1-CMAES	SBenchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
GP5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
IPOPCMAv3p61	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
LHD-10xDefault- MATSuMoT	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
LHD-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RAND-2xDefault- MATSuMoTo	The Impact of Initial Designs on the Performance of MATSuMoTo on the Noiseless BBOB-2015 Testbed: A Preliminary Study	[4]
RF1-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
RF5-CMAES	Benchmarking Gaussian Processes and Random Forests Surrogate Models on the BBOB Noiseless Testbed	[3]
Sifeg	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Sif	Dimension Selection in Axis-Parallel Brent-STEP Method for Black- Box Optimization of Separable Continuous Functions	[9]
Srr	Dimension Selection in Axis-Parallel Brent-STEP Method for Black-Box Optimization of Separable Continuous Functions	[9]

Table 2: 10-D, running time excess ERT/ERT_{best 2009} on f_1 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0 °	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f1	22	23	23	23	23	23	23	15/15
BSifeg	1.8(0.1)	2.2 (0.1)	2.3 (0.2)	2.3 (0.1)	2.3 (0.3)	2.3 (0.2)	2.4 (0.2)	15/15
BSif	1.8(0.1)	2.2 (0.1)	2.3 (0.2)	2.3 (0.2)	2.3 (0.3)	2.3 (0.2)	2.4 (0.2)	15/15
BSqi	1.8(0.1)	2.2 (0.1)	2.3 (0.1)	2.3 (0.2)	2.3 (0.2)	2.3 (0.2)	2.4 (0.2)	15/15
BSrr	1.8(0.1)	2.2 (0.1)	2.3 (0.1)	2.3 (0.3)	2.3 (0.3)	2.3 (0.3)	2.4 (0.3)	15/15
CMA-CSA	6.4(2)	12(3)	18(4)	25(4)	31(4)	44(4)	56(4)	15/15
CMA-MSR	7.0(2)	15(2)	24(3)	34(2)	42(3)	60(5)	78(6)	15/15
CMA-TPA	6.2(2)	11(2)	16(2)	21(3)	26(4)	36(4)	46(2)	15/15
GP1-CMAES	3.7(1)	7.0(2)	10(1)	13(2)	16(1)	24(3)	34(2)	15/15
GP5-CMAES	2.3 (0.3)	3.3(0.2)	4.4(0.3)	5.6(0.4)	6.7(0.6)	9.0(0.7)	39(21)	14/15
IPOPCMAv3p	6.5(1)	13(4)	19(4)	26(4)	32(4)	45(5)	59(4)	15/15
LHD-10xDef	10(0.1)	11(0.3)	12(0.7)	14(0.8)	15(0.8)	∞	$\infty 500$	0/15
LHD-2xDefa	2.9(0.5)	6.5(0.9)	9.0(5)	27(46)	101(134)	∞	$\infty 500$	0/15
RAND-2xDef	3.1(0.3)	5.4(0.9)	7.7(5)	22(17)	74(106)	∞	$\infty 500$	0/15
RF1-CMAES	5.1(1)	11(2)	18(4)	28(18)	41(12)	81(75)	246(232)	6/15
RF5-CMAES	3.8(1)	29(26)	221(379)	∞	∞	∞	∞ 2514	0/15
Sifeg	1.9(0.2)	2.5 (0.1)	3.3(0.1)	4.5(0.7)	5.5(0.5)	7.3(0.8)	8.8(0.4)	15/15
Sif	1.9(0.1)	2.5 (0.1)	3.3(0.2)	5.1(0.8)	6.2(0.6)	7.6(0.6)	8.7(0.3)	15/15
Srr	1.9 (0.1)	2.5 (0.2)	3.2(0.2)	3.9(0.1)	4.7(0.1)	6.1(0.1)	7.5(0.2)	15/15

Table 3: 10-D, running time excess ERT/ERT_{best 2009} on f_2 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f2	187	190	191	191	193	194	195	15/15
BSifeg	0.63(0.2)	4 0.70(0.2)	3 0.74(0.1)	$_{3}0.82_{(0.1)}_{\downarrow}$	$_{2}0.86$ $_{(0.1)}$	20.96 (0.1)	1.0(0.1)	15/15
BSif				3 0.82(0.1)			1.0(0.1)	15/15
BSqi	0.42(0.0)	4 0.43(0.0)*	$^{3}_{4}$ 0.45 (0.0) $^{\star}_{1}$	4 0.49(0.0)*	4 0.54 (0.0)	4_4 0.69 (0.1) ${}^{\star}_1$	3_4 0.86 (0.2)*	15/15
BSrr				4 0.71(0.1)			1.0(0.2)	15/15
CMA-CSA		16(2)	17(1)	18(1)	19(2)	21(2)	22(2)	15/15
CMA-MSR	16(3)	18(1)	20(2)	21(2)	22(1)	24(1)	25(2)	15/15
CMA-TPA	15(3)	17(4)	19(2)	20(2)	21(1)	22(0.7)	23(2)	15/15
GP1-CMAES	33(17)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	6.1(2)	8.5(4)	12(7)	13(7)	13(13)	14(7)	95(100)	2/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	0.78 (0.2)	0.83(0.2)	1.00(0.3)	1.1(0.2)	1.2(0.2)	1.3(0.2)	1.4(0.1)	15/15
Sif	0.83 (0.3)	0.89(0.2)	1.1(0.2)	1.1(0.3)	1.2(0.3)	1.3(0.1)	1.4(0.1)	15/15
Srr	0.69(0.1)	4 0.76(0.1)	$_{4}0.87$ (0.1) $_{\downarrow}$	20.94 (0.1)	1.0(0.1)	1.2(0.1)	1.4(0.1)	15/15

೮

Table 4: 10-D, running time excess ERT/ERT_{best 2009} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

cacii unis var	ac arvi	aca by ai.	mension.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f3	1739	3600	3609	3636	3642	3646	3651	15/15
BSifeg	0.16(0.	$0)_{\downarrow 4} 0.16 (0.0)$) ₁ 0.19 (0.1	$(0.19)_{\downarrow 4}$ 0.19	0.19(0.0)	$0)_{\downarrow 4} 0.19 (0.0)$	$0)_{\downarrow 4} 0.19 (0.1)$	15/15
BSif	0.15(0.	$0)_{\downarrow 4} 0.16 (0.0$	0.19(0.0)	0.19(0.0)	0.19(0.0)	0.19(0.0)	0.19(0.0)	15/15
BSqi	0.16(0.	$0)_{\downarrow 4} 0.14 (0.0$	0.18(0.0)	0.18(0.0)	0.18(0.0)	0.18(0.0)	0.18(0.0)	15/15
BSrr	0.15(0.	$0)_{\downarrow 4} 0.14 (0.0$	0.17(0.0)	0.17(0.0)	0.17(0.0)	0.18(0.0)	0.19(0.0)	15/15
CMA-CSA	3.9(3)	1132(3000)	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-MSR	4.1(2)	20(9)	35(7)	36(41)	37(7)	39(49)	41(50)	15/15
CMA-TPA	2.7 (1)	278(355)	3905(6326)	3876(2897)	3870(3030)	3866(3990)	3861(3778)	1/15
GP1-CMAES	4.9(8)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2526	0/15
IPOPCMAv3p	4.7(3)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	21(18)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	0.15(0.	$0)\downarrow 4$ 0.15 (0.0	0.16(0.0)	0.17(0.0)	0.18(0.0)	$0)_{\downarrow 4} 0.19 (0.0)$	$0)\downarrow 4$ 0.19 (0.0	1454/15
Sif	0.16 (0.	1) _{\$\psi 4\$} 0.17 (0.0	0.18(5e)	-3) _{\$\psi 4} 0.19 (0.0	0.19(0.0)	$0)_{\downarrow 4} 0.20 (0.0)$	$0)_{\downarrow 4} 0.20 (0.0)$	$\frac{1}{4}$ 54/15
Srr	0.13(0.	$0)_{\downarrow 4} \ 0.14 (0.0)$	0.15(0.0)	0.16(0.0)	0.17(0.0)	$(0.18)_{\downarrow 4} \ 0.18$	0.20	15/15

Table 5: 10-D, running time excess ERT/ERT_{best 2009} on f_4 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

. Cacii tilib var	ac aiviace	i by dillic	JIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f4	2234	3626	3660	3695	3707	3744	28767	12/15
BSifeg	0.14 (0.1) $\downarrow 4$	0.27 (0.1) $\downarrow 4$	$0.35(0.1)_{\downarrow 4}$	$0.35(0.1)_{\downarrow 4}$	$0.35(0.1)_{\downarrow 4}$	$0.35(0.1)_{\downarrow 4}$	0.05(5e-3)	15/15
BSif	$0.14(0.0)_{\downarrow 4}$	$0.28(0.1)_{\downarrow 4}$	0.37(0.1) ₁₄	$0.36(0.1)_{\downarrow 4}$	0.36(0.1) ₁₄	$0.36(0.1)_{\downarrow 4}$	0.05(0.0)	15/15
BSqi	0.16 (0.1) $\downarrow 4$	$0.24(0.1)_{\downarrow 4}$	0.32(0.1) ₁₄	0.32 (0.1) $\downarrow 4$	0.32(0.1) ₁₄	$0.32(0.1)_{\downarrow 4}$	$0.05(0.0)_{\downarrow 4}$	15/15
BSrr	$0.13(0.0)_{\downarrow 4}$	$0.22(0.1)_{\downarrow 4}$	$0.28(0.1)_{\downarrow 4}$	$0.29(0.1)_{\downarrow 4}$	$0.30(0.1)_{\downarrow 4}$	$0.34(0.1)_{\downarrow 4}$	0.06(0.0)	15/15
CMA-CSA	7.7(4)	∞	∞	∞	∞	∞	∞ 1e6	0/15
CMA-MSR	10(12)	∞	∞	∞	∞	∞	∞ 1e6	0/15
CMA-TPA	4.9(3)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	8.0(9)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	0.14 (0.1) $\downarrow 4$	$0.34(0.2)_{\downarrow 4}$	0.46(0.1)	0.59 (0.1)	0.73 (0.1)	0.84(0.1)	0.11(0.0)	15/15
Sif	$0.14(0.0)_{\downarrow 4}$	$0.35(0.1)_{\downarrow 4}$	0.47(0.1)	0.61(0.2)	0.77 (0.1)	0.87(0.0)	0.12(0.0)	15/15
Srr	0.12 (0.0) $\downarrow 4$	0.29 $(0.1)_{\downarrow 4}$	0.42 (0.1)	0.54 (0.1)	0.68 (0.1)	0.82 (0.1)	0.12(1e-2)	15/15

Table 6: 10-D, running time excess ERT/ERT_{best 2009} on f_5 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f5	20	20	20	20	20	20	20	15/15
BSifeg	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSif	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
BSqi	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0)	1.5(0.0)	1.5(0.0)	15/15
BSrr	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
CMA-CSA	4.8(1)	6.0(0.8)	6.1(3)	6.1(2)	6.1(2)	6.1(2)	6.1(2)	15/15
CMA-MSR	3.8(1)	5.2(0.5)	5.4(1)	5.4(0.7)	5.4(2)	5.4(0.8)	5.4(2)	15/15
CMA-TPA	4.2(2)	4.9(2)	4.9(2)	5.0(2)	5.0(2)	5.0(2)	5.0(2)	15/15
GP1-CMAES	5.3(3)	35(31)	41(56)	42(34)	42(31)	42(34)	42(28)	15/15
GP5-CMAES	2.9 (1)	5.1(1)	5.4(4)	5.4(1)	5.4(4)	5.4(3)	5.4(4)	15/15
IPOPCMAv3p	12(4)	23(5)	28(12)	29(11)	29(10)	29(11)	29(11)	15/15
LHD-10xDef	11(0.1)	12(0.2)	12(0.2)	12(0.4)	12(0.2)	12(0.3)	12(0.3)	15/15
LHD-2xDefa	2.6 (0.1)	2.9 (0.2)	3.0(0.2)	3.0 (0.3)	3.0 (0.3)	3.0(0.2)	3.0(0.4)	15/15
RAND-2xDef	2.7 (0.2)	2.9 (0.2)	3.1(0.4)	3.1(0.2)	3.1(0.2)	3.1(0.4)	3.1(0.3)	15/15
RF1-CMAES	17(46)	30(33)	34(47)	34(12)	34(17)	35(44)	35(27)	15/15
RF5-CMAES	18(27)	61(38)	79(90)	105(131)	120(186)	120(68)	120(162)	10/15
Sifeg	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Sif	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15
Srr	1.5 (0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	1.5(0.0)	15/15

~1

Table 7: 10-D, running time excess ERT/ERT_{best 2009} on f_6 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f6	412	623	826	1039	1292	1841	2370	15/15
BSifeg	291(398)	2076(2205)	∞	∞	∞	∞	$\propto 9e4$	0/15
BSif	705(464)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSqi	225(150)	467(413)	∞	∞	∞	∞	$\propto 9e4$	0/15
BSrr	372(372)	890(913)	∞	∞	∞	∞	$\propto 9e4$	0/15
CMA-CSA	1.9(0.5)	1.9(0.3)	1.9(0.3)	1.9(0.3)	1.8(0.3)	1.7(0.2)	1.6(0.1)	15/15
CMA-MSR	1.5(0.3)	1.7(0.4)	1.7(0.2)	1.8(0.4)	1.7(0.3)	1.6(0.4)	1.6(0.2)	15/15
CMA-TPA	1.8(0.5)	1.7(0.4)	1.7(0.4)	1.7(0.5)	1.6(0.3)	1.5(0.4)	1.5(0.2)	15/15
GP1-CMAES	3.0(4)	9.0(12)	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	1.7(0.5)	1.8(0.5)	1.8(0.4)	2.0 (0.9)	2.4 (1)	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	43(39)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2518	0/15
Sifeg	85(115)	477(370)	∞	∞	∞	∞	∞ 9e4	0/15
Sif	199(323)	486(349)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	81(33)	170(119)	692(475)	∞	∞	∞	∞ 8e4	0/15

Table 8: 10-D, running time excess ERT/ERT_{best 2009} on f_7 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f7	172	1611	4195	5099	5141	5141	5389	15/15
BSifeg	1100(1595)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	882(934)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	931(858)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	894(1324)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	2.3 (0.7)	1.2(0.7)	0.68(0.5)	0.78 (0.4)	0.78 (0.5)	0.78 (0.4)	0.76(0.3)	15/15
CMA-MSR	1.9(0.8)	1.6(0.7)	0.88(0.5)	0.86(0.2)	0.86(0.2)	0.86(0.3)	0.83(0.2)	15/15
CMA-TPA	1.7(0.5)	1.2(1)	0.85 (0.4)	0.77 (0.3)	0.78 (0.3)	0.78 (0.4)	0.88(0.3)	15/15
GP1-CMAES	1.6(0.3)	0.99 (0.8)	4.4(7)	7.4(6)	7.3(10)	7.3(9)	∞ 2514	0/15
GP5-CMAES	1.0(0.2)*	1.1 (1)	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	2.6 (3)	1.6 (1)	4.1(3)	∞	∞	∞	∞ 2504	0/15
LHD-10xDef	10(21)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	43(42)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	13(26)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	13(10)	∞	∞	∞	∞	∞	∞ 2516	0/15
RF5-CMAES	31(18)	∞	∞	∞	∞	∞	∞ 2526	0/15
Sifeg	281(100)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	166(85)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	217(169)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15

Table 9: 10-D, running time excess ERT/ERT_{best 2009} on f_8 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f8	326	921	1114	1217	1267	1315	1343	15/15
BSifeg	22(13)	73(116)	355(460)	527(659)	1077(1394)	∞	∞ 9e4	0/15
BSif	75(50)	729(822)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	15(12)	75(84)	239(287)	1084(890)	1046(984)	∞	$\propto 9e4$	0/15
BSrr	21(26)	68(31)	97(120)	1057(678)	∞	∞	$\propto 9e4$	0/15
CMA-CSA	3.1(3)	5.1 (5)	5.0(4)	4.9 (3)	4.9(0.6)	5.0 (3)	5.1 (3)	15/15
CMA-MSR	2.7 (1)	5.4 (5)	5.2 (8)	5.1 (8)	5.1 (4)	5.2(0.4)	5.4(7)	15/15
CMA-TPA	3.4(3)	5.4(1)	5.2 (3)	5.1 (3)	5.1 (2)	5.2 (3)	5.3 (3)	15/15
GP1-CMAES	3.1(1)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	2.1(0.4)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	23(29)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	5.8(10)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	3.6(4)	110(162)	273(233)	∞	∞	∞	∞ 9e4	0/15
Sif	7.4(5)	71(66)	199(170)	1085(398)	∞	∞	$\propto 9e4$	0/15
Srr	2.8 (3)	110(196)	354(360)	503(296)	1019(1098)	∞	$\propto 9e4$	0/15

Table 10: 10-D, running time excess ERT/ERT_{best 2009} on f_9 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f9	200	648	857	993	1065	1138	1185	15/15
BSifeg	47(101)	956(1336)	∞	∞	∞	∞	$\propto 9e4$	0/15
BSif	247(351)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSqi	37(24)	904(1809)	∞	∞	∞	∞	$\propto 9e4$	0/15
BSrr	37(136)	874(690)	∞	∞	∞	∞	$\propto 9e4$	0/15
CMA-CSA	3.3 (2)	5.0 (1.0)	4.7(0.8)	4.4(0.8)	4.4(0.5)	4.4(0.6)	4.5(0.5)	15/15
CMA-MSR	4.0(1)	5.3 (3)	4.9(2)	4.6 (1)	4.5(0.7)	4.6(0.7)	4.8(3)	15/15
CMA-TPA	3.7 (5)	4.7 (2)	4.7 (2)	4.5(2)	4.4(0.8)	4.4 (1)	4.4(1.0)	15/15
GP1-CMAES	4.3(1)	57(87)	44(70)	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	84(142)	∞	∞	∞	∞	∞	∞ 2526	0/15
IPOPCMAv3p	3.5 (0.9)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	16(12)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	46(223)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
Sif	37(40)	2158(1993)	∞	∞	∞	∞	∞ 9e4	0/15
Srr	22(80)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15

Table 11: 10-D, running time excess ERT/ERT_{best 2009} on f_{10} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f10	1835	2172	2455	2728	2802	4543	4739	15/15
BSifeg	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15
BSif	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15
BSqi	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	1.5(0.1)	1.4(0.2)	1.4(0.2)	1.3(0.1)	1.3(0.1)	0.88 (0.1)	0.90 (0.1)	15/15
CMA-MSR	1.5(0.4)	1.6(0.2)	1.5(0.1)	1.4(0.1)	1.5(0.0)	1.00(0.1)	1.0(0.0)	15/15
CMA-TPA	1.5(0.3)	1.5(0.2)	1.5(0.2)	1.4(0.1)	1.4(0.1)	0.93 (0.0)	0.94 (0.1)	15/15
GP1-CMAES	4.0(5)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	0.82(0.7)	0.97 (0.7)	1.0(0.9)	0.96(1)	0.96 (0.9)	0.62 (0.2)	2.6 (2)	3/15
IPOPCMAv3p	20(27)	17(36)	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 4e4	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ 4e4	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 3e4	0/15

Table 12: 10-D, running time excess ERT/ERT_{best 2009} on f_{11} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID FOI	ac arriaco	a 0, am	OIIDIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f11	266	1041	2602	2954	3338	4092	4843	15/15
BSifeg	∞	∞	∞	∞	∞	∞	∞ 7e4	0/15
BSif	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
BSqi	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 4 e 4	0/15
CMA-CSA	6.8 (0.5)	2.0 (0.2)	0.87(0.0)	0.82(0.1)	0.78(0.1)	0.71(0.0)	0.67(0.1)	15/15
CMA-MSR	7.3 (0.9)	2.3 (0.3)	1.0(0.1)	0.97 (0.1)	0.92 (0.1)	0.84(0.1)	0.80(0.1)	15/15
CMA-TPA	6.6 (0.8)	2.1 (0.2)	0.93 (0.1)	0.89(0.1)	0.84(0.1)	0.75 (0.0)	0.69(0.0)	15/15
GP1-CMAES	27(48)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	7.9(3)	6.7(7)	4.6(11)	4.1(4)	3.7(2)	3.0(4)	7.7(5)	1/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 6e4	0/15
Sif	∞	∞	∞	∞	∞	∞	$\infty~6e4$	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 3e4	0/15

Table 13: 10-D, running time excess ERT/ERT_{best 2009} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f12	515	896	1240	1390	1569	3660	5154	15/15
BSifeg	262(247)	∞	∞	∞	∞	∞	∞ 5e4	0/15
BSif	353(528)	∞	∞	∞	∞	∞	∞ $5e4$	0/15
BSqi	42(34)	83(153)	148(147)	634(780)	∞	∞	$\infty~6e4$	0/15
BSrr	62(73)	346(263)	∞	∞	∞	∞	∞ $5e4$	0/15
CMA-CSA	4.2(2)	4.6 (5)	4.9(2)	5.1 (2)	5.1 (2)	2.7 (1.0)	2.2 (1)	15/15
CMA-MSR	4.9(4)	5.4(4)	5.3(2)	5.4 (3)	5.3 (2)	2.7 (1)	2.2 (0.7)	15/15
CMA-TPA	3.6(2)	4.2 (4)	4.6 (3)	4.7 (1)	4.6(2)	2.4 (0.9)	1.9 (0.6)	15/15
GP1-CMAES	2.9 (1)	3.8 (4)	6.6(7)	26(32)	23(30)	∞	∞ 2502	0/15
GP5-CMAES	21(38)	19(20)	29(41)	∞	∞	∞	∞ 2514	0/15
IPOPCMAv3p	2.8 (3)	5.5(11)	5.1 (5)	13(14)	23(40)	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	4.2(0.7)	5.9(5)	10(5)	13(11)	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	74(97)	∞	∞	∞	∞	∞	∞ 2e4	0/15
Sif	99(124)	∞	∞	∞	∞	∞	∞ 2e4	0/15
Srr	20(39)	53(71)	84(76)	∞	∞	∞	∞ 2e4	0/15

Table 14: 10-D, running time excess ERT/ERT_{best 2009} on f_{13} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f13	387	596	797	1014	4587	6208	7779	15/15
BSifeg	59(82)	216(254)	∞	∞	∞	∞	∞ 9e4	0/15
BSif	453(420)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSqi	42(75)	270(411)	1573(1211)	∞	∞	∞	$\propto 9e4$	0/15
BSrr	49(60)	358(474)	1569(2249)	∞	∞	∞	$\propto 9e4$	0/15
CMA-CSA	3.2(2)	3.3 (1)	3.6 (1)	3.7 (2)	1.0(0.6)	1.1(0.5)	1.2(0.4)	15/15
CMA-MSR	2.2(0.4)	2.8 (1)	4.3(2)	4.1 (1)	1.00(0.2)	0.98 (0.1)	1.1(0.2)	15/15
CMA-TPA	2.5 (2)	3.7 (2)	4.4 (1)	4.3 (1)	1.1(0.3)	1.2(0.5)	1.3(0.5)	15/15
GP1-CMAES	2.5 (0.8)	8.1(7)	8.1(9)	12(15)	∞	∞	∞ 2502	0/15
GP5-CMAES	1.9 ₍₁₎	8.0(9)	10(17)	17(13)	∞	∞	∞ 2506	0/15
IPOPCMAv3p	3.1(5)	7.0(4)	46(49)	36(24)	∞	∞	∞ 2502	0/15
LHD-10xDef	2.3 (0.7)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	2.0(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	2.0(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	7.8(8)	29(43)	46(30)	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	23(22)	218(227)	1592(696)	∞	∞	∞	∞ 8e4	0/15
Sif	21(32)	170(116)	∞	∞	∞	∞	∞ 8e4	0/15
Srr	27(30)	120(135)	216(241)	∞	∞	∞	$\propto 9e4$	0/15

Table 15: 10-D, running time excess ERT/ERT_{best 2009} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COLOTT CITIES 1 COL	are arrive		TITOTIOI OII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f14	37	98	133	205	392	687	4305	15/15
BSifeg	1.4 (2)	10(6)	14(11)	39(26)	∞	∞	$\infty~1e5$	0/15
BSif	1.4 (1)	21(55)	90(573)	767(1921)	∞	∞	$\infty~1e5$	0/15
BSqi	1.3(0.2)	5.4(5)	7.9(7)	27(21)	∞	∞	$\infty~1e5$	0/15
BSrr	1.3(0.8)	8.5(10)	12(12)	30(17)	3805(3828)	∞	$\infty~1e5$	0/15
CMA-CSA	2.7 (1)	3.2(0.7)	4.0(0.4)	4.0(0.5)	3.3 (0.2)	3.5(0.2)	0.85 (0.1)	15/15
CMA-MSR	3.1(0.9)	3.4(0.6)	4.3(0.8)	4.2(0.4)	3.4(0.3)	3.5(0.2)	0.90 (0.1)	15/15
CMA-TPA	3.0(1)	3.0(0.4)	3.5(0.7)	3.5(0.4)	3.0 (0.6)	3.5(0.3)	0.92 (0.1)	15/15
GP1-CMAES	2.0 (1)	2.2 (0.8)	3.1(0.6)	3.6 (1)	4.4(1)	∞	∞ 2502	0/15
GP5-CMAES	1.6 (0.4)	1.6(0.4)	3.3(0.8)	4.0 (4)	27(40)	∞	∞ 2526	0/15
IPOPCMAv3p	2.4 (2)	3.2(0.7)	3.9(0.7)	4.2(0.8)	3.8(0.6)	∞	∞ 2502	0/15
LHD-10xDef	5.8(1)	4.1(0.5)	9.0(7)	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	2.1 (1)	4.2(7)	55(60)	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	1.8 (0.3)	4.3(6)	17(13)	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	2.2 (1)	3.4(2)	5.2(3)	8.8(3)	94(117)	∞	∞ 2502	0/15
RF5-CMAES	5.8(4)	33(36)	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	1.3 (0.3)	1.6(0.7)	2.7 (0.5)	19(19)	∞	∞	$\infty~1e5$	0/15
Sif	1.3 (0.3)	1.9(1.0)	3.7(3)	63(64)	∞	∞	$\infty~1e5$	0/15
Srr	1.2(0.1)	1.4(0.4)	2.2 (0.9)	9.3(8)	3734(2680)	∞	$\propto 1e5$	0/15

Table 16: 10-D, running time excess ERT/ERT_{best 2009} on f_{15} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

Λ. Γ.	14 4	1 0		1 0	1 0	1 -	1 -	11
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f15	4774	39246	73643	74669	75790	77814	79834	12/15
BSifeg	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSif	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSqi	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSrr	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
CMA-CSA	0.95 (0.5)	1.0(0.3)	1.00(0.6)	1.0(0.7)	1.0(0.5)	1.0(0.5)	1.0(0.6)	15/15
CMA-MSR	1.2(0.8)	0.98 (0.4)	0.92 (0.6)	0.94 (0.5)	0.96 (0.5)	0.99 (0.9)	1.0(0.6)	15/15
CMA-TPA	0.82(1)	1.1(0.4)	1.0(0.5)	1.0(0.4)	1.0(0.6)	1.0(0.5)	1.0(0.5)	15/15
GP1-CMAES	3.7(4)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2516	0/15
IPOPCMAv3p	2.4 (3)	∞	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	7.5(7)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
Srr	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15

Table 17: 10-D, running time excess ERT/ERT_{best 2009} on f_{16} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f16	425	7029	15779	45669	51151	65798	71570	15/15
BSifeg	36(39)	201(172)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	38(48)	96(71)	∞	∞	∞	∞	∞ 9e4	0/15
BSqi	60(95)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	18(27)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	1.8(0.5)	0.82 (0.8)	1.0(0.3)	0.61(0.2)	0.59 (0.4)	0.50 (0.2)	0.48(0.4)	15/15
CMA-MSR	1.5(0.5)	1.0(0.7)	1.2(0.8)	1.1(1)	2.6 (5)	2.2(4)	2.1(0.8)	15/15
CMA-TPA	3.1(2)	1.0(0.7)	1.0(0.8)	0.54 (0.2)	0.70(1)	0.58 (0.8)	0.56(0.2)	15/15
GP1-CMAES	1.1(0.6)	2.4 (4)	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	$0.39(0.2)_{\downarrow}$	4 1.6 (2)	∞	∞	∞	∞	∞ 2514	0/15
IPOPCMAv3p	2.4 (0.8)	0.63 (0.4)	2.4 (2)	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	1.6(0.6)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	5.4(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	1.8(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	1.3(0.8)	2.4 (2)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	3.6(3)	∞	∞	∞	∞	∞	∞ 2528	0/15
Sifeg	5.9(12)	206(293)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	4.2(6)	205(275)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	4.5(7)	212(207)	∞	∞	∞	∞	$\propto 1e5$	0/15

Table 18: 10-D, running time excess ERT/ERT_{best 2009} on f_{17} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f17	26	429	2203	6329	9851	20190	26503	15/15
BSifeg	1.4 (1)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	1.4(0.9)	3323(2792)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	1.4 (0.8)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	1.4(0.9)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	3.4(1)	2.1(4)	1.0(0.1)	0.72 (0.6)	0.81(0.7)	0.86(0.2)	1.1(0.4)	15/15
CMA-MSR	2.0 (1)	3.1(0.3)	1.3(1)	1.4 (1)	1.2(0.6)	1.0(0.6)	1.4(0.5)	15/15
CMA-TPA	2.4 (2)	0.93 (0.4)	1.3(3)	1.2(2)	1.1(0.3)	0.99 (0.8)	1.3(0.6)	15/15
GP1-CMAES	1.7 (0.7)	0.84 (0.8)	2.6 (4)	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	1.7 (1)	6.7(7)	∞	∞	∞	∞	∞ 2526	0/15
IPOPCMAv3p	2.4 (2)	1.2(0.5)	0.64(0.4)	0.60(0.6)	1.8(2)	∞	∞ 2502	0/15
LHD-10xDef	3.5(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	1.6 (0.8)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	1.8 (0.9)	17(19)	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	1.7 (0.8)	13(3)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	1.6 (0.8)	21(22)	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	1.3 (1)	1669(1320)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	1.3 (1)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	1.3(0.7)	∞	∞	∞	∞	∞	$\propto 1e5$	0/15

Table 19: 10-D, running time excess ERT/ERT_{best 2009} on f_{18} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID (CII)	ac arraca	~, ~	IOIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f18	238	836	7012	15928	27536	37234	42708	15/15
BSifeg	644(1716)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	1179(1873)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	808(1058)	∞	∞	∞	∞	∞	∞ 9e4	0/15
BSrr	607(1204)	∞	∞	∞	∞	∞	∞ 9e4	0/15
CMA-CSA	1.3(0.4)	1.0(0.3)	0.64(0.5)	0.79 (0.5)	0.70 (0.2)	0.78 (0.3)	0.90 (0.4)	15/15
CMA-MSR	1.1(0.3)	2.1(2)	1.2(0.6)	0.77 (0.4)	0.74 (0.3)	0.76(0.2)	0.81(0.6)	15/15
CMA-TPA	1.1(0.3)	1.9(3)	0.73 (0.4)	0.82 (0.2)	0.66 (0.5)	0.66 (0.3)	0.71(0.3)	15/15
GP1-CMAES	0.97 (0.4)	2.3 (2)	5.2(7)	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	1.2(0.3)	13(15)	∞	∞	∞	∞	∞ 2514	0/15
IPOPCMAv3p	1.3(0.8)	1.7(2)	1.2(1)	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	3.4(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	5.6(3)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	15(15)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	1.1(0.4)	20(13)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	7.5(10)	∞	∞	∞	∞	∞	∞ 2504	0/15
Sifeg	299(410)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	399(898)	∞	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	324(179)	∞	∞	∞	∞	∞	$\propto 9e4$	0/15

Table 20: 10-D, running time excess ERT/ERT_{best 2009} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COLOTT CITIES (CCT.	ac arriac	a 0, aminon	DIOII.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	$\#\mathrm{succ}$
f19	1	1	10609	9.8e5	1.4e6	1.4e6	1.4e6	15/15
BSifeg	35 (13)	1.4e6(1e6)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	35 (21)	6.6e5(5e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	35 (7)	4.5e5(5e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	35 (4)	3.3e5(2e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	85(57)	1.1e4(3695)	12(7)	0.42 (0.2)	0.33 (0.2)	0.33 (0.2)	0.33 (0.2)	15/15
CMA-MSR	87(32)	5820(2971)	21 (51)	∞	∞	∞	$\infty~1e6$	0/15
CMA-TPA	73(50)	1.2e4(6908)	12(7)	0.49 (0.2)	0.51 (0.2)	0.51 (0.4)	0.51 (0.1)	13/15
GP1-CMAES	59(14)	1.8e4(6903)	∞	∞	∞	∞	∞ 2504	0/15
GP5-CMAES	42(11)	∞	∞	∞	∞	∞	∞ 2528	0/15
IPOPCMAv3p	92(32)	3.8e4(9e4)	∞	∞	∞	∞	∞ 2504	0/15
LHD-10xDef	182(106)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	61(25)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	67(8)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	69(20)	6979(6888)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	64(45)	∞	∞	∞	∞	∞	∞ 2516	0/15
Sifeg	45(14)	1.2e5(1e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	44(22)	1.1e5(1e5)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	45(30)	1.1e5(1e5)	∞	∞	∞	∞	$\infty~1e5$	0/15

Table 21: 10-D, running time excess ERT/ERT_{best 2009} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f20	32	15426	5.5e5	5.7e5	5.7e5	5.8e5	5.9e5	15/15
BSifeg	1.9(2)	3.2(5)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	2.0 (1)	3.5(4)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	1.8(0.4)	3.4(7)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	1.9(0.2)	2.8 (4)	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	5.3(0.9)	1.8(1.0)	0.39 (0.2)	0.39 (0.2)	0.39 (0.2)	0.40(0.2)	0.40(0.2)	15/15
CMA-MSR	6.0(2)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-TPA	5.1(2)	18(33)	27 (30)	26 (10)	26 (36)	26 (31)	25 (13)	1/15
GP1-CMAES	4.0(0.6)	∞	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	2.3 (0.4)	∞	∞	∞	∞	∞	∞ 2526	0/15
IPOPCMAv3p	6.5(2)	2.3 (1.0)	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	7.7(0.5)	∞	∞	∞	∞	∞	∞ 500	0/15
LHD-2xDefa	2.9 (0.8)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	3.4(1)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	5.5(2)	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	21(31)	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	2.0 (1)	1.4 (1)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	2.0 (1.0)	0.87(2)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	1.9(0.5)	1.9 (2)	∞	∞	∞	∞	$\infty~1e5$	0/15

Table 22: 10-D, running time excess ERT/ERT_{best 2009} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f21	130	2236	4392	4487	4618	5074	11329	8/15
BSifeg	171(613)	308(369)	337(382)	330(401)	320(363)	293(311)	$\infty~1e5$	0/15
BSif	331(579)	301(145)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	151(394)	188(269)	331(199)	325(619)	316(330)	292(207)	$\infty~1e5$	0/15
$_{\mathrm{BSrr}}$	159(477)	196(237)	161(174)	158(192)	154(179)	282(251)	127(183)	1/15
CMA-CSA	7.7(2)	166(362)	184(567)	181(239)	176(254)	161(182)	73(64)	7/15
CMA-MSR	10(6)	331(371)	219(138)	215(651)	209(271)	190(209)	85(93)	7/15
CMA-TPA	4.8(9)	132(334)	118(199)	116(132)	113(217)	103(201)	46 (104)	8/15
GP1-CMAES	2.4 (5)	2.4(4)	8.1(10)	7.9(12)	7.7(7)	7.1(6)	3.2 (3)	1/15
GP5-CMAES	3.7(5)	4.8(5)	3.9(4)	3.8(6)	3.9(7)	∞	$\infty 2506$	0/15
IPOPCMAv3p	10(6)	4.7(11)	8.1(16)	8.0(15)	7.8 (18)	7.1(9)	3.2 (5)	1/15
LHD-10xDef	2.7 (0.1)	3.3(3)	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	1.3(3)	3.2(5)	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	1.2(2)	1.00(1)	1.7(2)	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	9.1(20)	5.0(5)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	13(11)	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	79(82)	187(157)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	110(0.9)	304(284)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	78(193)	141(149)	104(83)	101(104)	99(120)	91 (63)	63(51)	2/15

Table 23: 10-D, running time excess ERT/ERT_{best 2009} on f_{22} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f22	98	2839	6353	6620	6798	8296	10351	6/15
BSifeg	646(1278)	77(97)	49 (38)	105(105)	210(357)	∞	$\infty~1e5$	0/15
BSif	959(2045)	151(134)	222(398)	∞	∞	∞	$\infty~1e5$	0/15
BSqi	525(811)	76(156)	107(197)	213(219)	209 (265)	∞	$\infty~1e5$	0/15
BSrr	644(1171)	66(59)	105(96)	213(230)	209 (114)	∞	$\infty~1e5$	0/15
CMA-CSA	19(32)	327(267)	1309(706)	1257(2141)	1224(830)	1003(960)	804 (968)	1/15
CMA-MSR	45(113)	583(873)	1826(3089)	1753(2271)	1707(2007)	1399(1122)	1121(811)	1/15
CMA-TPA	454(13)	307(714)	1269(1436)	1218(1049)	1186(1270)	972(953)	779 (948)	1/15
GP1-CMAES	3.7(2)	1.9(1)	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	12(13)	1.6(3)	2.9 (7)	5.7 (4)	5.5 (5)	∞	∞ 2516	0/15
IPOPCMAv3p	16(26)	13(6)	∞	∞	∞	∞	∞ 2502	0/15
LHD-10xDef	4.2(4)	1.3(1)	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	3.0(4)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	3.4(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	13(39)	5.9(6)	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	18(29)	5.9(4)	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	309(292)	38(56)	50(38)	215(336)	∞	∞	$\infty~1e5$	0/15
Sif	633(933)	98(99)	104(107)	∞	∞	∞	$\infty~1e5$	0/15
Srr	553(695)	60(87)	38 (45)	212(249)	∞	∞	$\infty~1e5$	0/15

Table 24: 10-D, running time excess ERT/ERT_{best 2009} on f_{23} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

COCCII CIIID FOI	ac arira		.cipioit.					
$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f23	2.8	915	16425	1.8e5	2.0e5	2.1e5	2.1e5	15/15
BSifeg	2.5 (3)	13(12)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSif	2.5(2)	12(25)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSqi	2.5 (3)	13(13)	∞	∞	∞	∞	$\infty~1e5$	0/15
BSrr	2.5(2)	11(19)	∞	∞	∞	∞	$\infty~1e5$	0/15
CMA-CSA	3.0(3)	23(24)	7.0 (3)	7.5 (9)	8.7(9)	8.5 ₍₁₀₎	8.3 (11)	6/15
CMA-MSR	4.7(5)	2.9 (4)	1.4 (1)	0.43 (0.7)	0.41(0.5)	0.44 (0.7)	0.47(0.1)	15/15
CMA-TPA	2.5(2)	12(28)	4.9(7)	3.8 (9)	3.5 (5)	3.4 (2)	3.4 (9)	10/15
GP1-CMAES	2.2(5)	2.7 (3)	∞	∞	∞	∞	∞ 2502	0/15
GP5-CMAES	1.8 (1)	0.92 (0.1)	∞	∞	∞	∞	∞ 2514	0/15
IPOPCMAv3p	2.2 (3)	∞	∞	∞	∞	∞	∞ 2514	0/15
LHD-10xDef	1.6(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
LHD-2xDefa	2.0(2)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RAND-2xDef	1.3 (1)	∞	∞	∞	∞	∞	$\infty 500$	0/15
RF1-CMAES	2.5 (3)	∞	∞	∞	∞	∞	$\infty 2506$	0/15
RF5-CMAES	2.0 (3)	∞	∞	∞	∞	∞	∞ 2548	0/15
Sifeg	2.5(5)	4.6(5)	∞	∞	∞	∞	$\infty~1e5$	0/15
Sif	2.5 (3)	6.4(11)	∞	∞	∞	∞	$\infty~1e5$	0/15
Srr	2.5 (2)	5.7(5)	∞	∞	∞	∞	$\infty~1e5$	0/15

Table 25: 10-D, running time excess ERT/ERT_{best 2009} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension.

$\Delta f_{ m opt}$	1e1	1e0	1e-1	1e-2	1e-3	1e-5	1e-7	#succ
f24	98761	1.0e6	7.5e7	7.5e7	7.5e7	7.5e7	7.5e7	1/15
BSifeg	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
BSif	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
BSqi	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
BSrr	∞	∞	∞	∞	∞	∞	∞ 8e4	0/15
CMA-CSA	20 (13)	∞	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-MSR	42 (23)	6.4(7)	∞	∞	∞	∞	$\infty~1e6$	0/15
CMA-TPA	72 (79)	6.8 (10)	∞	∞	∞	∞	$\infty~1e6$	0/15
GP1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
GP5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2528	0/15
IPOPCMAv3p	∞	∞	∞	∞	∞	∞	∞ 2504	0/15
LHD-10xDef	∞	∞	∞	∞	∞	∞	∞ 500	0/15
LHD-2xDefa	∞	∞	∞	∞	∞	∞	∞ 500	0/15
RAND-2xDef	∞	∞	∞	∞	∞	∞	∞ 500	0/15
RF1-CMAES	∞	∞	∞	∞	∞	∞	∞ 2502	0/15
RF5-CMAES	∞	∞	∞	∞	∞	∞	∞ 2514	0/15
Sifeg	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15
Sif	∞	∞	∞	∞	∞	∞	∞ 9e4	0/15
Srr	∞	∞	∞	∞	∞	∞	$\propto 9e4$	0/15

References

- [1] Asma Atamna. Benchmarking IPOP-CMA-ES-TPA and IPOP-CMA-ES-MSR on the BBOB noiseless testbed. In Laredo et al. [8], pages 1135–1142.
- [2] Anne Auger, Steffen Finck, Nikolaus Hansen, and Raymond Ros. BBOB 2009: Comparison tables of all algorithms on all noiseless functions. Technical Report RT-0383, INRIA, April 2010.
- [3] Lukás Bajer, Zbynek Pitra, and Martin Holena. Benchmarking gaussian processes and random forests surrogate models on the BBOB noiseless testbed. In Laredo et al. [8], pages 1143–1150.
- [4] Dimo Brockhoff, Bernd Bischl, and Tobias Wagner. The impact of initial designs on the performance of matsumoto on the noiseless BBOB-2015 testbed: A preliminary study. In Laredo et al. [8], pages 1159–1166.
- [5] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009. Updated February 2010.
- [6] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2012: Experimental setup. Technical report, INRIA, 2012.
- [7] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009. Updated February 2010.
- [8] Juan Luis Jiménez Laredo, Sara Silva, and Anna Isabel Esparcia-Alcázar, editors. Genetic and Evolutionary Computation Conference, GECCO 2015, Madrid, Spain, July 11-15, 2015, Companion Material Proceedings. ACM, 2015.
- [9] Petr Posík and Petr Baudis. Dimension selection in axis-parallel brent-step method for black-box optimization of separable continuous functions. In Laredo et al. [8], pages 1151–1158.