Midterm Examination

Dec. 1, 2021

Instructor: Chin-Liang Wang

- 1. Please describe and plot the basic configuration of adaptive filters. Also show how to apply it to channel equalization and interference cancellation applications. Explain the operations in detail. (15%)
- 2. Briefly describe the following measures for assessing the quality of an estimator: (a) Bias; (b) efficiency; (c) mean-squared error; (d) consistency; (e) sufficiency. (15%)
- 3. Consider a linear process generated by $x(n) = a_1x(n-1) + b_0w(n) + b_1w(n-1)$, where w(n)is a zero-mean white noise sequence with variance σ_w^2 . Show that each of the following statements holds for the autocorrelation of x(n): (12%)

(a)
$$r(m) = \frac{b_0^2 + b_1^2 + 2a_1b_1b_0}{1 - a_1^2} \sigma_w^2$$
, $m = 0$

(a)
$$r(m) = \frac{b_0^2 + b_1^2 + 2a_1b_1b_0}{1 - a_1^2} \sigma_w^2, \quad m = 0.$$

(b) $r(m) = \frac{a_1^{m-1}\sigma_w^2}{1 - a_1^2} (a_1^2b_1b_0 + a_1b_0^2 + a_1b_1^2 + b_1b_0), \quad m \ge 1.$

(c)
$$r(m)=r(-m), m<0.$$

4. Consider two random variables x and y with the following joint density function:

$$f(x,y) = \begin{cases} 2y, & 0 \le y \le x^2, & 0 \le x \le 1 \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Find the maximum a posteriori (MAP) estimate y_{MAP} . (7%)
- (b) Find the minimum mean-squared error (MMSE) estimate y_{MMSE} . (6%)
- 5. Consider that an independent, identically distributed random signal x(n) (with values ± 1 equally likely for each sample) is transmitted over the finite impulse response (FIR) channel $H(z) = 1 - 0.5z^{-1}$ and the output of the channel is corrupted by a zero-mean additive white Gaussian noise v(n) of unit variance, as shown below. Find the second-order linear MMSE estimator $\hat{x}(n) = f_1 y(n-1) + f_2 y(n)$ to recover the desired signal x(n) under an assumption that x(n) and v(n) are independent. (12%)

