Scallop Growth Density

0.1

Generated by Doxygen 1.9.8

Scallop Population Density

This program is used to compute Scallop Density after a given growth period

1.1 Initialize Simulation Parameters

1.1.1 Read Input

Values are read in from file name given on command line, e.g. ScallopPopDensity.exe Scallop.cfg

- Time steps per Year: number of time steps each year
- · Save By Stratum: Used in GB to make break up region into smoother shapes, i.e. rather than clover leaf.

The following are used to name configuration files used by other modules

- · Mortality Config File
- · Recruit Config File
- · Grid Manager Config File

Additional parameters are placed on the command line to facilitate batch processing

- · Start Year
- · Stop Year
- · Domain Abbreviation
 - MA, or
 - GB

1.1.2 Instantiate Growth Module

The simulation then instantiates parameters that define how growth occurs

1.1.2.1 Load Grid and Initial State

The initial state is defined by a hardcode data file named as follows:

• Data/bin5mmYYYY[MA|GB].csv where the year, YYYY, is defined by the Start Year and MA or GB is specified by the given domain name. The data in each file, Data/bin5mmYYYY[MA|GB].csv has grid information for where each grid is located and its depth. Data in the same row is used for the initial state, in units of scallop count per square for each size classs.

1.1.2.2 For each class: Define shell lengths weight conversion

Shell Length

Starting at 30mm to 150mm inclusive, in 5 mm steps. That is (150 - 30) / 5 + 1, or 25 size classes

Weigth in grams

GB

```
ShellToWeight = exp( - 6.69 + 2.878 * log(shellLengthmm) 
- 0.0073 * depth - 0.073 * latitude 
+ (1.28 - 0.25 * log(shellLengthmm)) * isClosed)
```

MA

$$ShellToWeight = exp(- 9.713394 + 2.62025 * log(shell_length_m m) - 0.004665 * depth + 0.021 * latitude - 0.031 * isClosed)$$

where isClosed is 1 if closed or 0 if open

1.1.2.3 Compute Growth Parameters, given depth, latitude, and isClosed

- $L_{\infty_{\mu}}$
- $L_{\infty_{\sigma}}$
- K_μ
- K_σ

1.1.2.4 Compute G matrix for given growth parameters

From MN18 p. 1312, 1313

$$c = 1.0 - e^{-K_{\mu} * \delta_t}$$
$$\eta = c * L_{\infty_{\mu}}$$

For each size class, k

$$\begin{split} \omega_k &= l_k - l_{k-1} \\ \omega_{k_{avg}} &= \frac{l_k + l_{k-1}}{2} \\ \Omega &= (1-c)\omega_k \\ X(y,k) &= l_y - \eta - (1-c)l_k \\ \Phi(x,\mu,\sigma) &= \frac{1}{2}(1 + Erf(\frac{x-\mu}{\sigma\sqrt{2}})) \\ \phi(x,\mu,\sigma) &= \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \\ H_{MN18}(x,\sigma,\omega) &= \frac{1}{\omega}\left[x\Phi_N(x,0,\sigma^2) + \sigma^2\phi_N(x,0,\sigma^2)\right] \end{split}$$

$$G(y, k, \sigma, \omega_k) = H_{MN18}(X(y, k-1), \sigma, \Omega) - H_{MN18}(X(y, k), \sigma, \Omega)$$

1.1.3 Instantiate Recruitment

The simulation next instantiates how recruitment will be handled.

1.1.3.1 Recruitment data

For years start_year to stop_year

Data is read in from RecruitEstimates/RecruitEstimateDNYYYY.txt

1.1.3.2 This method is effectively setting

For year in start_year to stop_year

- Year_index = year start_year + 1
- for year_index in [1..max]
 - -recruitment(year_index) = RecruitEstimate
 - year(year_index) = year
 - rec_start = Start Period, typically 0/365, or January 1st
 - rec stop = Stop Period, typically 100/365, or April 10

1.1.3.3 It then quantizes recruitment,

For each grid, n

- L30mm = (L_{∞_μ} (n) 30) * exp(- K_μ (n))
- · For each class, j
 - If (length(n) <= L30mm) recruit(n).max_rec_ind = j</pre>

1.1.4 Instantiate Mortality

The simulation next sets mortality values.

Table 1.1 Mortality

Region	Adult	Incidental	Base Length I ₀
MA	25%	5%	65.0
GB	20%	10%	70.0

1.1.4.1 Compute alpha

$$\alpha(l) = 1 - \frac{1}{1 + e^{-(l-l_0)/10.0}}$$

1.1.4.2 Compute Fishing Effort

Compute landings at size for each grid location

Given The number of scallops per square meter:

$$scallops = selectivity_{loc} \cdot state_{loc}$$

and the exploitable biomass in grams per square meter

$$EBMS_{loc} = scallops \cdot weight_{loc}$$

$$landi\vec{ngs}_{size} = (1.0 - e^{(-F_{mort_{loc}}*\delta_{)})} * sta\vec{te}_{loc} * gridArea * selectivity_{loc}$$

Compute landings by weight

$$landi\vec{n}gs_{wgt} = landi\vec{n}gs_{size} \cdot weight = catch$$

This is also considered total_catch

1.2 Main Loop 5

Total catch is used compute fishing effort

$$rms = \sum_{loc=1}^{n} \frac{EBMS(loc)^{2}}{scallops(loc))}$$

$$FishingEffort = \frac{E\vec{BMS}*catch/scallops}{rms*gridArea}$$

CAS Fishing Effort

Fishing effort is defined by year and region from past history *Data/FYrGBcGBoMA.csv*. Otherwise, fishing effort is computed.

Year	GB Closed	GB Open	MA
2005	0.14	0.36	0.55
2006	0.24	0.94	0.25
2007	0.15	0.76	0.5
2008	0.07	0.73	0.57
2009	0.05	0.55	0.61
2010	0.09	0.28	0.53
2011	0.21	0.19	0.54
2012	0.31	0.44	0.43
2013	0.1	0.85	0.26
2014	0.07	0.48	0.33
2015	0	0.75	0.36
2016	0	0.51	0.4
2017	0.11	0.17	0.34

Table 1.2 Fishing Effort (partial)

1.2 Main Loop

1.2.1 For each time step

1.2.1.1 Set Fishing Effort

Here there is defined a fishing effort that is independent of mortality. Whereas the mortality fishing effort is a function of region and historical data, this fishing effort is a function of cost, biomass or as a spatial constant within region.

1.2.1.2 For each grid

Compute natural mortality

Determine the number of scallops in millions, S, given the current state

$$S = state * domainArea$$

This is used to determine the juvenile mortality. Adult mortality was defined at module instantiation.

Mid-Atlantic:

$$M_{juv} = \begin{cases} e^{1.093*log(S) - 9.701}, & \text{if } S > 1400 \text{ million} \\ M_{adult}, & \text{otherwise} \end{cases}$$

Georges Bank:

$$M_{juv} = \begin{cases} e^{(1.226*log(S)-10.49)}, & \text{if } S > 1400 \text{ million} \\ M_{adult}, & \text{otherwise} \end{cases}$$

where M_{adult} is 0.25 if MA or 0.2 if GB Finally

$$M_{nat} = \alpha * M_{juv} + (1 - \alpha)M_{adult}$$

Adjust population state based on von Bertalanffy growth

$$\vec{S} = |G| \times \vec{S}$$

Compute increase in population due to recruitment, R

If within recruitment period, i.e. Jan 1st to April 10th

$$\vec{S} = \vec{S} + \delta_t \frac{\vec{R}}{Recruit Duration}$$

Compute Overall Mortality

$$\vec{M} = \vec{M}_{nat} + Fishing * (\vec{M}_{selectivity} + \vec{M}_{incidental} + \vec{M}_{discard})$$

Compute effect of mortality to arrive at new state

$$\vec{S}_{t+1} = \vec{S}_t * (1 - \delta_t * \vec{M})$$

Growth_Mod

2.1 Growth Class

The scallop state_vector at each node in the domain is a vector of length $N_{sc}=(150-30)/5+1=25$ representing the abundance of scallops in size classes [30-35mm,35-40mm,...145-150mm,150mm+]. Size class transition matrices are generated for each node based on the work of Millar and Nottingham 2018 Appendix C, henceforth MN18 [1], although other methods are present in the code including direct Monte Carlo simulation. including(see subroutine GenTransMat).

Growth in GeoSAMS is based off of von Bertanlffy growth.

$$\delta(u) = (L_{\infty} - u)(1 - e^{-K})$$

Or from HC2009 [2], equation (1)

$$L_t = L_{t-1}e^{-K} + L_{\infty}(1 - e^{-K})$$

We assume normal distribution on L_{∞} and K with all distribution parameters independent.

The shell height of the ith individual at time t+1, $L_{t+1,i}$ depends on the random effects (α_i and β_i) as well as the mean slope and intercept:

$$L_{t+1,i} = (m + \alpha_i)L_{t,i} + (b + \beta_i) + \epsilon,$$

where ϵ is a random error with expected value zero.

The values of the distribution means ($\mu_{L_{\infty}}$ and μ_{K}) are taken from previous work of Hart, HC2009. The distribution of increments by size class as in MN18). Growth increment is given by the von Bertlanaffy growth curve

We begin by determining the scallop time to grow for a given year: Computes the overall growth of the scallop population over a time period of (num_time_steps * delta_time) in units of years, typically one year with delta_time as a decimal year, e.g. one day = 1/365 = 0.00274

For each time step, δ_t

8 Growth Mod

- · Computes mortality based on current state_vector.
- Computes increase in population due to recruitment, \vec{R} , if within recruitment months, i.e. Jan to April 10th

$$\vec{S} = \vec{S} + \delta_t \frac{\vec{R}}{RecruitDuration}$$

· Adjusts population based on von Bertalanffy growth

$$\vec{S} = |G| \times \vec{S}$$

where G is the transition matrix

· Compute overall mortality, M

$$\vec{M} = \vec{M}_{nat} + Fishing * \left(\vec{M}_{selectivity} + \vec{M}_{incidental} + \vec{M}_{discard} \right)$$

· Compute new state vector

$$\vec{S_{t+1}} = \vec{S_t} * \left(1 - \delta_t * \vec{M}\right)$$

- 1. MN18 refers to Miller, R. B. and Nottingham, 2018, "Improved approximations for estimation of size-transition probabilities within size-structured models"
- 2. HC2009 refers to Hart, D. R. and Chute, A. S. 2009, "Estimating von Bertalanffy growth parameters from growth increment data using a linear mixed-effects model, with an application to the sea scallop Placopecten magellanicus."

2.1.1 Transition Matrix

A transition matrix, 25 by 25, is computed under the assumption of von Bertlanaffy growth. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

From MN18 p. 1312, 1313

$$\begin{split} c &= 1.0 - e^{-K_{\mu}*\delta_t} \\ \eta &= c*L_{\infty_{\mu}} \\ \omega_k &= l_k - l_{k-1} \\ \omega_{k_{avg}} &= \frac{l_k + l_{k-1}}{2} \\ \Omega &= (1-c)\omega_k \\ X(y,k) &= l_y - \eta - (1-c)l_k \\ G(y,k,\sigma,\omega_k) &= H_{MN18}(X(y,k-1),\sigma,\Omega) - H_{MN18}(X(y,k),\sigma,\Omega) \end{split}$$

2.1 Growth Class

2.1.1.1 Function H(x, sigma, omega)

Given (MN18 Appendix B)

 Φ_N denotes the normal ${\bf cumulative}$ distribution function.

 ϕ_N denotes the normal **density** function.

$$H_{MN18}(x,\sigma,\omega) = \frac{1}{\omega} \left[x \Phi_N(x,0,\sigma^2) + \sigma^2 \phi_N(x,0,\sigma^2) \right]$$

WAS

$$H_{MN18}(x,\sigma,\omega) = \frac{1}{\omega}(x * f + \sigma^2 * f)$$

where $f=\Phi_N$

2.1.1.2 Normal Cumulative Distribution Function

$$\Phi(x,\mu,\sigma) = \frac{1}{2}(1 + Erf(\frac{x-\mu}{\sigma\sqrt{2}}))$$

2.1.1.3 Normal Density Function

$$\phi(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

10 Growth_Mod

Recruit_Mod

3.1 Recruitment Class

Recruitment is treated as a spatially correlated random variable. Recruit estimates at each node are read in from files stored in directories RecruitEstimates/RecruitEstimateDNYYYY.txt, where DN is ['MA', 'GB'] and YY is the year 1979 - 2019

Within the Population Dynamics portion

3.1.1 Implementation of random recruitment

Spatial fields of recruitment are generated by the software located in directory " \sim /UKsrc". The output files, such as: "KrigingEstimates/SimDNYYYY/RandomFieldxx.txt" contain n_{nodes} vectors of independent random fields conditioned on survey observations from "Data/RecruitsYYYYDN.csv", where xx runs from 1 to N_{rand} and year 1979 to 2018.

3.1.2 Interpolation Algorithm

The interpolation of recruit data is carried out with a Universal Kriging (UK) algorithm allowing for sampling from the posterior distribution.

3.1.2.1 Universal Kriging

Universal Kriging (UK) is a generalization of ordinary kriging in which a set of spatial functions are used to model the trend of a set of point observations. The underlying model is:

$$f(x, y, H(x, y), \lambda) = \sum_{k=1}^{n_f} f_k(x, y, H(x, y), \lambda_k) + \epsilon(x, y)$$

where f_k are the known spatial functions and $\epsilon(x,y)$ is a zero mean, spatially correlated, stationary random process with semi-variogram $\gamma(s)$. For a summary of UK see Cressie 1993, pages 151 -180. The spatially variable x here is taken to include latitude, longitude and, bathymetric depth (x = [lat, lon, z(lat, lon)]).

3.1.2.2 Spatial functions

The spatial functions (SF) used here are a set of one dimensional, bounded, C-infinity functions with two parameters, \Gaussian Bump:

$$f_a(s, \lambda, x_0) = \exp\left(-\left(\frac{s - x_0}{\lambda}\right)^2\right)$$

12 Recruit Mod

Logistic curve:

$$f_b(s, \lambda, x_0) = \frac{1}{1 + \exp(-\frac{s - x_0}{\lambda})}$$

"Sin Exp" curve: \iline 48 \iline 49 _form#79@_fakenl@_fakenl "Cos Exp" curve:

$$f_c(s, \lambda, x_0) = \cos(\frac{s - x_0}{\lambda}) \exp(-\left(\frac{s - x_0}{\lambda}\right)^2)$$

In all of the function form λ controls the width of the transition and x_0 the transition point.

After fitting these to the bathymetric variable (H) we can introduce interaction. Allowing interaction terms for the spatial functions depending on bathymetry only we can define, $g_i(x, H, \lambda^j, x_0{}^j, \lambda_k, x_0{}^k) = f_i(x) f_k(H)$

$$f(x,y,H) = \sum_{i} f_i(H,\lambda^i,z_0^i) + \sum_{j} f_{j_x}(x,\lambda^{j_x},x_0^{j_x}) f_k(z,\lambda^k,x_0^k) + \sum_{j} f_{j_y}(y,\lambda^{j_y},x_0^{j_y}) f_k(z,\lambda^k,x_0^k)$$

Some parametric functions for spatial fitting on the continental shelf. Here z is bathymetric depth. We start by fitting nonlinear parameters $\lambda^{c,s}$ and $x_0^{c,s}$ to log recruitment for "cross shelf" structure.

The non linear fitting is done with standard linear regression. i.e.

$$f(x, y, z) = \beta_0 + \sum_i \beta_i f_i(z) + \sum_j \beta_j g_j(x, z) + \sum_k \beta_k g_k(y, z) + \epsilon$$

where β_i are coefficients for the spatial functions and ϵ is the zero mean noise process associated with UK.

3.1.2.3 Fitting non-linear parameters

A brute force approach is taken to fitting the nonlinear parameters x_0 and λ . A search range is determined based on the geographic range of the observations. The parameters are then fit to minimize the misfit to observations. subroutine $NLSF_Fit_Function$ parameter np). The nonlinear parameters are fit by minimizing RMS misfit to the simple least squares fit with a smoothness penalty,

$$J(x_0, \lambda) = \sqrt{\frac{1}{n} \sum_{i} (d_i - a - bf(x_i | \lambda, x_0))^2} + S(\lambda, x_0)$$

Where $S(\lambda,x_0)=\int_{-\infty}^{\infty}f''(x)^2dx=S(\lambda)$ is a roughness penalty, a and b are temporarily assigned (by least squares) constants fit to minimize J. S is proportional to λ^{-3} for all examples used here (see subroutine NLSFuncPen). Other one dimensional function forms can be added to the software in subroutine $NLSF_eval_semivariance$ and NLSFFuncePen.

A smoothness penalty is imposed for each function based on the analytic

3.1.3 Residual process

After performing an ordinary least squares fit for the SF coeficients, β , we have an estimate of ϵ . An empirical variogram is computed subroutine variogram F, and variogram parameters are fit (again by brute force).

The variogram forms allowed are "spherical", "exponential", and "gaussian". The form is hard-coded in the main program, UniversalKriging.f90.

3.1.3.1 Posterior sampling

With the fitting of the residual we have a covariance for ϵ and the estimation problem becomes one of Generalized Least Squares (LSF_Generalized_Least_Squares). Posterior sampling is then conducted achieved posterior sampling is Treating the

Mortality_Mod

4.1 Mortality Class

The methods in this class are used to determine the selectiviy and discard of the scallops based on shell length and location.

4.1.1 Set_Mortality

Instantiates private members for this class.

- · Reads in its configuration parameters and stores to private members.
- · Loads Fishing Mortalities, if enabled by GridManager
- · Sets up a repository for key values to allow offline analysis
- · Loads historical data for Fishing Effort
- Set selectivity as computed by Ring_Size_Selectivity based on shell length and grid location

4.1.2 Read Configuration

Opens the configuration file specified in the simulation configuration file and as set by Set_Config_File_Name

4.1.3 Load_Fishing_Mortalities

Opens the configuration file specified in the Mortality configuration file and as set by Set Fishing Mortality

4.1.4 Ring_Size_Selectivity

Assign size class fishing selectivity based on increasing logistic function

$$Selectivity = \frac{1}{1 + e^{a - b * length_{shell}}}$$

14 Mortality_Mod

- 4.1.5 Set_Fishing_Effort
- 4.1.6 Dollars_Per_SqM
- 4.1.7 Scallops_To_Counts
- 4.1.8 Set_Fishing_Effort_Weight_USD
- 4.1.9 Set_Fishing_Effort_Weight_BMS
- 4.1.10 Compute_Natural_Mortality
- 4.1.11 Set_Fishing_Mortality
- 4.1.12 Set_Config_File_Name
- 4.1.13 Set_Fishing_Mort_File_Name
- 4.1.14 Mortality_Write_At_Timestep
- 4.1.15 Set_Discard

Grid Manager Mod

5.1 Grid Manager Class

5.1.1 Brief

The Grid Manager is responsible for setting up the grid by reading in each grid's coordinates from the *Initial_Conditions file* named by the *Grid_Manager_Config_File* in Scallop.cfg.

The main program instantiates a Grid Manger by calling Set_Grid_Manager

5.1.2 Set Grid Manager

This routine initializes private variables. Calls *Read_Configuration that* reads in the Grid Manger configuration file as given by the main configuration and set via *Set_Config_File_Name*.

Load_Grid_State loads the grid data from the file defined by the start year and domain.

Data/bin5mmYYYYDN.csv
 This establishes the number of grids, num_grids, and the initial state of the scallop density, @ state.

If a special access area definitions are provided, these are loaded via **Load_Area_Coordinates**. Each grid location if then checked if it is in a special access area and identified as such by setting **special_access_index** to the index of the corresponding access area.

5.1.3 Read_Configuration

Reads given file name and scans each line, input string, for tag and value characters. Also determines if special access areas are desired and if not sets *use spec access data* to false

5.1.4 Load_Area_Coordinates

If use_spec_access_data is true then reads given file name. Scans each input line for an area longitude vector coordinates followed by latitude vector coordinates. The length of each vector must be equal and establishes the number of vertices, or edges i.e. @ n_sides that define the special access area. The number of such vector pairs establishes the num_ares defined

5.1.5 Is_Grid_In_Special_Access

This method uses a grids longitude and latitude coordinates are in a special area. It does so by using a point in polygram algorithm. The data vector representation is used when calling **Point_In_Polygon_Vector** @section p4p3 Grid Manager Support Methods

16 Grid Manager Mod

5.1.6 Set_Config_File_Name

Sets config_file_name for **Read_Configuration** @subsection p4p2p2 Set_Init_Cond_File_Name Sets init_cond_fname for **Load_Grid_State** @subsection p4p2p3 Set_Special_Access_File_Name

5.2 Grid Manager Support Methods

The Point_In_Polygon_Vector method is used to find if a point is in a polygon. The *Grid_Manager* also supports polygon data representation as an array of LonLatPoint points vial *Point_In_Polygon_Points* or as a n by 2, 2-dimensional array, where n is a maximum of *max_sides* edges.

- 5.2.1 Point_In_Polygon_Points
- 5.2.2 Point_In_Polygon_Array
- 5.2.3 Point_In_Polygon_Vector

Common Parameters

18 Common Parameters

Modules Index

7.1 Modules List

Here is a list of all modules with brief descriptions:		
globals	2	2!
grid_manager_mod	3	3
growth_mod	4	Į:
mortality_mod	5	59
recruit mod	7	7

20 Modules Index

Data Type Index

8.1 Data Types List

Here are the data types with brief descriptions:	
mortality_mod::dataforplots	81
mortality_mod::fishingmortality	83
Grid_Data_Class	84
grid_manager_mod::grid_data_class	84
Growth_Class	
Subroutines that determine expected growth of scallops	86
growth_mod::growth_class	86
grid_manager_mod::lonlatpoint	88
grid_manager_mod::lonlatvector	89
Mortality_Class	
Subroutines that determine expected mortality of scallops	89
mortality_mod::mortality_class	91
recruit_mod::recruitment_class	93
Recruitment_Class	
Subroutines that determine expected growth of scallons	aл

22 Data Type Index

File Index

9.1 File List

e is a list of all files with brief descriptions:	
SRC/aaaPageOrder.f90	9
SRC/Globals.f90	9
SRC/GridManager.f90	9
SRC/IORoutines.f90	9
SRC/ScallopGrowth.f90	10
SRC/ScallopMortality.f90	10
SRC/ScallopPopDensity.f90	10
SPC/Spaller Poorruit f00	4.4

24 File Index

Module Documentation

10.1 globals Module Reference

Functions/Subroutines

- elemental real(dp) function logic_to_double (value)
- real(dp) function, dimension(n, n) matrixinv (x, n)

Variables

```
    integer, parameter sp = selected real kind(6, 37)

• integer, parameter dp = selected real kind(15, 307)
• integer, parameter qp = selected real kind(33, 4931)
• integer, parameter ndim = 12000
• integer, parameter shell_len_max = 150
• integer, parameter shell len min = 30
• integer, parameter shell len delta = 5
• integer, parameter num_size_classes = (shell_len_max - shell_len_min) / shell_len_delta + 1
• integer, parameter max num years = 50
• integer, parameter max num areas = 25
• integer, parameter max_sides = 8
• integer, parameter region none =0
• integer, parameter region_n =1
• integer, parameter region s =2
• integer, parameter region_sw =3
• integer, parameter region_w =4
• integer, parameter region ma =5
• integer, parameter tag_len = 40
• integer, parameter value_len = 30
• integer, parameter comment len = 80

    integer, parameter line len = tag len+value len+comment len

• integer, parameter fname_len = 100
• integer, parameter form len = 20
• integer, parameter input str len = 100
• integer, parameter csv_line_len = 2000
• integer, parameter domain_len = 2
• integer, parameter read dev = 69
```

• integer, parameter write dev = 63

26 Module Documentation

- real(dp), parameter zero_threshold = 1.0D-99
- real(dp), parameter pi = 3.14159265358979311599796346854D0
- real(dp), parameter grams_per_pound = 453.592_dp
- real(dp), parameter meters per naut mile = 1852.D0
- real(dp), parameter feet per naut mile = 6076.12
- real(dp), parameter grams_per_metric_ton = 1000000._dp
- real(dp), parameter grid area sgm = meters per naut mile**2
- real(dp), parameter tow area sqm = 4516. dp
- real(dp), parameter one_scallop_per_tow = 1.D0 / tow_area_sqm
- real(dp), parameter ma gb border = -70.5
- character(*), parameter term red = "//achar(27)//'[31m'
- character(*), parameter term_yel = "//achar(27)//'[33m'
- character(*), parameter term_grn = "//achar(27)//'[92m'
- character(*), parameter term_blu = "//achar(27)//'[94m'
- character(*), parameter term_blk = "//achar(27)//"[0m'
- character(*), parameter init cond dir = 'InitialCondition/'
- character(*), parameter growth_out_dir = 'GrowthOutput/'
- character(*), parameter rec input dir = 'RecruitEstimates/'
- character(*), parameter rec output dir = 'RecruitField/'
- character(*), parameter output_dir = 'Results/'
- character(*), parameter config_dir_sim = 'Configuration/Simulation/
- character(*), parameter config_dir_interp = 'Configuration/Interpolation/'
- character(*), parameter config_dir_special = 'Configuration/SpecialAccess/'
- character(*), parameter grid dir = 'Grids/'
- character(*), parameter data_dir = 'Data/'

10.1.1 Function/Subroutine Documentation

10.1.1.1 logic to double()

```
elemental real(dp) function globals::logic_to_double ( logical, intent(in) value )
```

Here is the call graph for this function:

Here is the caller graph for this function:

10.1.1.2 matrixinv()

```
real(dp) function, dimension(n,n) globals::matrixinv ( real(dp), dimension(n,n), intent(in) x, integer, intent(in) n)
```

Here is the call graph for this function:

Here is the caller graph for this function:

10.1.2 Variable Documentation

10.1.2.1 comment_len

integer, parameter globals::comment_len = 80

28 Module Documentation

```
10.1.2.2 config_dir_interp
character(*), parameter globals::config_dir_interp = 'Configuration/Interpolation/'
10.1.2.3 config dir sim
character(*), parameter globals::config_dir_sim = 'Configuration/Simulation/'
10.1.2.4 config_dir_special
character(*), parameter globals::config_dir_special = 'Configuration/SpecialAccess/'
10.1.2.5 csv line len
integer, parameter globals::csv_line_len = 2000
10.1.2.6 data_dir
character(*), parameter globals::data_dir = 'Data/'
10.1.2.7 domain len
integer, parameter globals::domain_len = 2
10.1.2.8 dp
integer, parameter globals::dp = selected_real_kind(15, 307)
10.1.2.9 feet_per_naut_mile
real(dp), parameter globals::feet_per_naut_mile = 6076.12
10.1.2.10 fname len
integer, parameter globals::fname_len = 100
10.1.2.11 form len
integer, parameter globals::form_len = 20
10.1.2.12 grams_per_metric_ton
real(dp), parameter globals::grams_per_metric_ton = 1000000._dp
10.1.2.13 grams_per_pound
real(dp), parameter globals::grams_per_pound = 453.592_dp
10.1.2.14 grid_area_sqm
real(dp), parameter globals::grid_area_sqm = meters_per_naut_mile**2
10.1.2.15 grid dir
character(*), parameter globals::grid_dir = 'Grids/'
```

```
10.1.2.16 growth_out_dir
character(*), parameter globals::growth_out_dir = 'GrowthOutput/'
10.1.2.17 init cond dir
character(*), parameter globals::init_cond_dir = 'InitialCondition/'
10.1.2.18 input_str_len
integer, parameter globals::input_str_len = 100
10.1.2.19 line len
integer, parameter globals::line_len = tag_len+value_len+comment_len
10.1.2.20 ma_gb_border
real(dp), parameter globals::ma_gb_border = -70.5
10.1.2.21 max_num_areas
integer, parameter globals::max_num_areas = 25
10.1.2.22 max_num_years
integer, parameter globals::max_num_years = 50
10.1.2.23 max sides
integer, parameter globals::max_sides = 8
10.1.2.24 meters_per_naut_mile
real(dp), parameter globals::meters_per_naut_mile = 1852.D0
10.1.2.25 ndim
integer, parameter globals::ndim = 12000
10.1.2.26 num_size_classes
integer, parameter globals::num_size_classes = (shell_len_max - shell_len_min) / shell_len_delta +
1
10.1.2.27 one_scallop_per_tow
real(dp), parameter globals::one_scallop_per_tow = 1.D0 / tow_area_sqm
10.1.2.28 output dir
character(*), parameter globals::output_dir = 'Results/'
10.1.2.29 pi
real(dp), parameter globals::pi = 3.14159265358979311599796346854D0
```

30 Module Documentation

```
10.1.2.30 qp
integer, parameter globals::qp = selected_real_kind(33, 4931)
10.1.2.31 read dev
integer, parameter globals::read_dev = 69
10.1.2.32 rec_input_dir
character(*), parameter globals::rec_input_dir = 'RecruitEstimates/'
10.1.2.33 rec output dir
character(*), parameter globals::rec_output_dir = 'RecruitField/'
10.1.2.34 region_ma
integer, parameter globals::region_ma =5
10.1.2.35 region_n
integer, parameter globals::region_n =1
10.1.2.36 region_none
integer, parameter globals::region_none =0
10.1.2.37 region_s
integer, parameter globals::region_s =2
10.1.2.38 region sw
integer, parameter globals::region_sw =3
10.1.2.39 region_w
integer, parameter globals::region_w =4
10.1.2.40 shell_len_delta
integer, parameter globals::shell_len_delta = 5
10.1.2.41 shell len max
integer, parameter globals::shell_len_max = 150
10.1.2.42 shell_len_min
integer, parameter globals::shell_len_min = 30
10.1.2.43 sp
integer, parameter globals::sp = selected_real_kind(6, 37)
```

```
10.1.2.44 tag_len
integer, parameter globals::tag_len = 40
10.1.2.45 term blk
character(*), parameter globals::term_blk = ''/achar(27)//'[0m'
10.1.2.46 term_blu
character(*), parameter globals::term_blu = ''//achar(27)//'[94m'
10.1.2.47 term grn
character(*), parameter globals::term_grn = ''//achar(27)//'[92m'
10.1.2.48 term_red
character(*), parameter globals::term_red = ''//achar(27)//'[31m'
10.1.2.49 term yel
character(*), parameter globals::term_yel = ''//achar(27)//'[33m'
10.1.2.50 tow_area_sqm
real(dp), parameter globals::tow_area_sqm = 4516._dp
10.1.2.51 value_len
integer, parameter globals::value_len = 30
10.1.2.52 write dev
integer, parameter globals::write_dev = 63
10.1.2.53 zero threshold
real(dp), parameter globals::zero_threshold = 1.0D-99
```

10.2 grid_manager_mod Module Reference

Data Types

- · type grid data class
- type lonlatpoint
- type lonlatvector

Functions/Subroutines

- integer function set_num_grids ()
 - Determines the expected number of grids by simply counting the number of lines with text in the initial state file. It does not perform any error checking, only counting the number of lines with text and stopping at the first blank line.
- subroutine set grid manager (state mat, grid, ngrids, dom name)

Initializes growth for startup.

32 Module Documentation

• subroutine set_config_file_name (fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

subroutine set_init_cond_file_name (fname)

Used during instantiation to set the name of the file to read to for grid locations, state.

subroutine set_special_access_file_name (fname)

Used during instantiation to set the name of the file to special access coordinates.

integer function get_num_of_areas ()

Get'r function for private member num_areas.

subroutine read configuration ()

Read_Configuration.

integer function load_grid_state (grid, state_mat)

This function is used to set the grid parameters and the initial state to start the simulation.

- integer function load_area_coordinates ()
- integer function is_grid_in_special_access (lon, lat)
- logical function point_in_polygon_points (poly, point, nodes)
- logical function point in polygon array (poly, point, nodes)
- logical function point_in_polygon_vector (polyx, polyy, x, y, nodes)

First of all, notice that each iteration considers two adjacent points and the target point. Then the if statement evaluates two conditions:

integer function get region (lat, lon, stratum real)

Returns a region number based on stratum 0: not used 1: region_N North region 2: region_S South region 3: region_SW Southwest region 4: region_W West region 5: region_MA Entire Mid-Atlantic Region Inputs: grid: locations of survey data.

Variables

- type(lonlatvector), dimension(max_num_areas), private area
- · integer, private num areas
- · integer, private num grids
- logical, private use_spec_access_data
- character(domain_len), private domain_name
- character(fname_len), private config_file_name
- character(fname_len), private init_cond_fname
- character(fname_len), private special_accesss_fname

10.2.1 Function/Subroutine Documentation

10.2.1.1 get_num_of_areas()

integer function grid_manager_mod::get_num_of_areas

Get'r function for private member num_areas.

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.2 get_region()

Returns a region number based on stratum 0: not used 1: region_N North region 2: region_S South region 3: region ← _SW Southwest region 4: region_W West region 5: region_MA Entire Mid-Atlantic Region Inputs: grid: locations of survey data.

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.3 is_grid_in_special_access()

```
integer function grid_manager_mod::is_grid_in_special_access (
```

34 Module Documentation

```
real(dp), intent(in) lon,
real(dp), intent(in) lat )
```

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.4 load_area_coordinates()

integer function grid_manager_mod::load_area_coordinates
Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.5 load_grid_state()

This function is used to set the grid parameters and the initial state to start the simulation.

It does so by reading the CSV file at file_name. This file has been generated by the TrawlData5mm.m Matlab script. The format is for each grid in a row, the columns are Decimal Year, UTM X, UTM Y, Latitude, Longitude, UTM Z, Grid Is Closed, Followed by Scallop Density in Count/m^2 sorted by shell length 30 to 150 mm in 5mm increments for 25 columns

Parameters

in, out grid Holds position information		Holds position information	
out	state	Holds the initial state at various location specified by grid	
in	file_name	CSV name to be read in	

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.6 point_in_polygon_array()

Parameters

poly	Array of x,y coordinates that define polygram,
point x,y coordinate of point we wish to determine if inside polyg	
nodes	the number of corners, edges, that define the polygon

Returns

true if point is inside polygram, false if outsied if point is on an edge then is may return true of false

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.7 point_in_polygon_points()

Parameters

poly	Array of LonLatPoint coordinates that define polygram,
point LonLatPoint coordinate of point we wish to determine if inside poly	
nodes	the number of corners, edges, that define the polygon

Returns

true if point is inside polygram, false if outsied if point is on an edge then is may return true of false

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.8 point_in_polygon_vector()

First of all, notice that each iteration considers two adjacent points and the target point. Then the if statement evaluates two conditions:

1.) Y-value of our target point is within the range [verty[j], verty[i]). 2.) X-value of our target point is below the linear line connecting the point j and i. If you're having problems to see this second condition, just write down the linear equation of the line, reorganize the expression a little bit and place testy as the free variable.

Every time the above two conditions are met, we toggle the flag c. So we return true if above conditions are met odd number of times and false otherwise.

```
http://alienryderflex.com/polygon/
```

polyX	Array of horizontal, coordinates of corners
polyY	Array of vertical coordinates of corners
X	horizontal coordinate of point we wish to determine if inside polygram
У	vertical coordinate of point we wish to determine if inside polygram
nodes	the number of corners, edges, that define the polygon

Returns

true if point is inside polygram or if on vert or horiz edge, if point is on rise of falling edge then it may return true or false

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.9 read_configuration()

 $\verb|subroutine| \verb|grid_manager_mod::read_configuration| \\$

Read_Configuration.

Read Input File

Reads a configuration file Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.10 set_config_file_name()

Used during instantiation to set the name of the file to read to for configuration parameters.

Read Input File

Sets file names for initial state data and special access data Here is the caller graph for this function:

10.2.1.11 set_grid_manager()

Initializes growth for startup.

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.12 set_init_cond_file_name()

Used during instantiation to set the name of the file to read to for grid locations, state.

Read Input File

Sets name of a configuration file, typical 'Data/bin5mmYYYY[MA|GB].csv' Here is the caller graph for this function:

10.2.1.13 set_num_grids()

integer function grid_manager_mod::set_num_grids

Determines the expected number of grids by simply counting the number of lines with text in the initial state file. It does not perform any error checking, only counting the number of lines with text and stopping at the first blank line.

Returns

The expected number of grids to process.

Here is the call graph for this function:

Here is the caller graph for this function:

10.2.1.14 set_special_access_file_name()

Used during instantiation to set the name of the file to special access coordinates.

Read Input File

Sets file name for special access coordinates Here is the caller graph for this function:

10.2.2 Variable Documentation

10.2.2.1 area

type(lonlatvector), dimension(max_num_areas), private grid_manager_mod::area [private]

10.2.2.2 config file name

character(fname_len), private grid_manager_mod::config_file_name [private]

10.2.2.3 domain name

character(domain_len), private grid_manager_mod::domain_name [private]

10.2.2.4 init_cond_fname

character(fname_len), private grid_manager_mod::init_cond_fname [private]

10.2.2.5 num areas

integer, private grid_manager_mod::num_areas [private]

10.2.2.6 num grids

integer, private grid_manager_mod::num_grids [private]

10.2.2.7 special accesss fname

character(fname_len), private grid_manager_mod::special_accesss_fname [private]

10.2.2.8 use_spec_access_data

logical, private grid_manager_mod::use_spec_access_data [private]

10.3 growth_mod Module Reference

Data Types

· type growth_class

Functions/Subroutines

• subroutine set_growth (growth, grid, shell_lengths, num_ts, ts_per_year, dom_name, dom_area, state_mat, weight grams, ngrids)

Initializes growth for startup.

real(dp) function, dimension(1:num_size_classes, 1:num_size_classes) gen_size_trans_matrix (l_inf_mu, l_inf←
 _sd, k_mu, k_sd, shell_lengths, method)

Transition matrix used to determine the growth of the scallop. The equations are based on MN18, Appendix C.

- real(dp) function, dimension(num_size_classes) set_shell_lengths (length_min, length_delta) setup shell_lengths intervals
- subroutine get_growth_gb (depth, lat, is_closed, l_inf_mu, k_mu, l_inf_sd, k_sd)

Provides growth parameters L and K parameters for Georges Bank. From R code sent by Dvora July 28th 2021.

• subroutine get_growth_ma (depth, lat, is_closed, l_inf_mu, k_mu, l_inf_sd, k_sd)

Provides growth parameters L and K parameters for Mid Atlantic From R code sent by Dvora July 28th 2021.

• real(dp) function, dimension(num_size_classes, num_size_classes) mn18_appxc_trans_matrix (l_inf_mu, k_mu, l inf sd. k sd. shell lengths)

Purpose: This subroutine computes a sizeclass transition matrix under the assumption of von Bertlanaffy growth. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

subroutine increment mean std (I inf mu, k mu, I inf sd, k sd, size, mu, sigma)

Purpose: This subroutine computes a growth increment distribution parameters under the assumption of von Bertlanaffy growth and normally distributed growth increments. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

real(dp) function h mn18 (x, sigma, w)

Given (MN18 Appendix B)

real(dp) function norm cumul dist fcn (x, mu, sigma)

Computation of normal cumulative distribution function.

• real(dp) function norm density fcn (x, mu, sigma)

Computation of normal density function.

- subroutine enforce_non_negative_growth (g)
- real(dp) function, dimension(num_size_classes) time_to_grow (ts, growth, mortality, recruit, state_vector, fishing_effort, year, longitude)

Computes growth in scallop population.

- elemental real(dp) function shell_to_weight (shell_length_mm, is_closed, depth, latitude, longitude)
 - Computes weight given a shell height.
- subroutine gamma_inc_values (n_data, a, x, fx)

Variables

- integer, parameter growth_param_size = 4
- integer, private num_grids
- character(domain_len), private domain_name
- real(dp), private domain area sqm
- integer, private num_time_steps
- integer, private time_steps_year
- real(dp), private delta_time

10.3.1 Detailed Description

10.3.2 Function/Subroutine Documentation

10.3.2.1 enforce_non_negative_growth()

Parameters

in,c	ut	G	- growth transition matrix with negative growth lumped into 0 growth
------	----	---	--

Here is the caller graph for this function:

10.3.2.2 gamma_inc_values()

```
subroutine growth_mod::gamma_inc_values (
    integer ( kind = 4 ) n_data,
    real ( kind = 8 ) a,
    real ( kind = 8 ) x,
    real ( kind = 8 ) fx )
```

Here is the caller graph for this function:

10.3.2.3 gen_size_trans_matrix()

Transition matrix used to determine the growth of the scallop. The equations are based on MN18, Appendix C.

$$\vec{\textbf{Size}}[Grid] = |\textbf{GrowthMatrix}[Grid]| \times \vec{\textbf{Size}}[Grid]$$

$$\times \left| e^{-(Mort_{nat}[Grid, Height_{shell}] + Mort_{fish}[Grid, Height_{shell}])*timestep} \right|$$

Parameters

in	L_inf_mu	[real 1x1] = mean of von Bertlanaffy asymptotic growth parameter L_inf(see HC09 eqn 1)	
in	L_inf_std	[real 1x1] = standard deviation of von Bertlanaffy asymptotic growth parameter L_inf(see HC09 eqn 1)	
in	K_mu	[real 1x1] = mean of mean of von Bertlanaffy asymptotic growth parameter K(see HC09 eqn 1)	
in	K_sd	[real 1x1] = standard deviation of von Bertlanaffy growth parameter K(see HC09 eqn 1)	
in	shell_lengths	for each size class	

Returns

Transition Matrix

Author

Keston Smith (IBSS corp) June-July 2021

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.4 get_growth_gb()

```
subroutine growth_mod::get_growth_gb (
    real(dp), intent(in) depth,
    real(dp), intent(in) lat,
    logical, intent(in) is_closed,
    real(dp), intent(out) l_inf_mu,
    real(dp), intent(out) k_mu,
    real(dp), intent(out) l_inf_sd,
    real(dp), intent(out) k_sd )
```

Provides growth parameters L and K parameters for Georges Bank. From R code sent by Dvora July 28th 2021.

in	depth in meters		
in	lat	Geospatial coordinate, Latitude	
in	is_closed	Logical that indicates if grid is closed for fishing	
out	L_inf_mu	von Bertlanaffy asymptotic growth parameter	
out <i>K_mu</i> von		von Bertlanaffy asymptotic growth parameter	
out	L_inf_sd	standard deviation von Bertlanaffy asymptotic growth parameter	
out	K_sd	standard deviation von Bertlanaffy asymptotic growth parameter	
in area_index		index to indicate management area	

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.5 get_growth_ma()

```
subroutine growth_mod::get_growth_ma (
    real(dp), intent(in) depth,
    real(dp), intent(in) lat,
    logical, intent(in) is_closed,
    real(dp), intent(out) l_inf_mu,
    real(dp), intent(out) k_mu,
    real(dp), intent(out) l_inf_sd,
    real(dp), intent(out) k_sd)
```

Provides growth parameters L and K parameters for Mid Atlantic From R code sent by Dvora July 28th 2021.

in	depth	in meters	
in lat Geospatial coordinate, Latitude		Geospatial coordinate, Latitude	
in	is_closed	closed Logical that indicates if grid is closed for fishing	
out	out L_inf_mu von Bertlanaffy asymptotic growth parameter		
out			
out			
out	K_sd	standard deviation von Bertlanaffy asymptotic growth parameter	

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.6 h_mn18()

Given (MN18 Appendix B)

 Φ_N denotes the normal **cumulative** distribution function.

 ϕ_N denotes the normal $\ensuremath{\operatorname{\textbf{density}}}$ function.

$$H_{MN18}(x,\sigma,\omega) = \frac{1}{\omega} [x\Phi_N(x,0,\sigma^2) + \sigma^2 \phi_N(x,0,\sigma^2)]$$

WAS

$$H_{MN18}(x,\sigma,\omega) = \frac{1}{\omega}(x*f + \sigma^2*f)$$

where $f = \Phi_N$

in	X	- evaluation point
in	sigma	- paramaters defined within MN18
in	W	- paramaters defined within MN18

Returns

H - variable

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.7 increment_mean_std()

Purpose: This subroutine computes a growth increment distribution parameters under the assumption of von Bertlanaffy growth and normally distributed growth increments. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

in	L_inf_mu	[real 1x1] = mean of von Bertlanaffy asymptotic growth parameterL_inf(see HC09 eqn 1)	
in	K_mu	[real 1x1] = mean of von Bertlanaffy growth parameter K(see HC09 eqn 1)	
in	L_inf_sd	[real 1x1] = standard deviation of von Bertlanaffy asymptoticgrowth parameter L_inf(see HC09	
		eqn 1)	
in	K_sd	[real 1x1] = standard deviation of von Bertlanaffy growth parameter (see HC09 eqn 1)	
in	size	[real 1x1] = size to estimate increment stats	
out	ти	[1x1] = mean of increment at size	
out	sigma	[1x1] = standard deviation of increment at size	

history: Written by keston Smith (IBSS corp) May 2021 Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.8 mn18_appxc_trans_matrix()

Purpose: This subroutine computes a sizeclass transition matrix under the assumption of von Bertlanaffy growth. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

From MN18 p. 1312, 1313

$$c = 1.0 - e^{-K_{\mu}*\delta_t}$$

$$\eta = c * L_{\infty_{\mu}}$$

$$\omega_k = l_k - l_{k-1}$$

$$\omega_{k_{avg}} = \frac{l_k + l_{k-1}}{2}$$

$$\Omega = (1 - c)\omega_k$$

$$X(y, k) = l_y - \eta - (1 - c)l_k$$

$$G(y, k, \sigma, \omega_k) = H_{MN18}(X(y, k - 1), \sigma, \Omega) - H_{MN18}(X(y, k), \sigma, \Omega)$$

in	L_inf_mu	[real 1x1] = mean of von Bertlanaffy asymptotic growth parameter L_inf(see HC09 eqn 1)	
in	K_mu	[real 1x1] = mean of mean of von Bertlanaffy asymptotic growth parameter K(see HC09 eqn	
		1)	
in	L_inf_std	[real 1x1] = standard deviation of von Bertlanaffy asymptotic growth parameter L_inf(see	
		HC09 eqn 1)	
in	K_std	[real 1x1] = standard deviation of von Bertlanaffy growth parameter K(see HC09 eqn 1)	
in	shell_lengths	[real nx1] = shell_lengths for each size class Generated by Doxygen	

Returns

G [real n x n] = size transition matrix estimated under the assumption of uniform size distribution within size interval and growth distribution evaluated at mid point of size interval. Derivation is from MN18 appendix C. Derivation of formula for growth increment mean and variance is in MN18eq7.pdf

history: Written by keston Smith (IBSS corp) May 2021 Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.9 norm_cumul_dist_fcn()

Computation of normal cumulative distribution function.

$$\Phi(x,\mu,\sigma) = \frac{1}{2}(1 + Erf(\frac{x-\mu}{\sigma\sqrt{2}}))$$

in	ти	- mean
in	sigma	- standard deviation
in	X	- evaluation point

Returns

normal cdf value at x, f(x|mu,sigma)

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.10 norm_density_fcn()

Computation of normal density function.

$$\phi(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

in	ти	- mean
in	sigma	- standard deviation
in	X	- evaluation point

Returns

normal density function at x

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.11 set_growth()

Initializes growth for startup.

in,out	growth	Parameters that identify how the scallop should grow
in	grid	Vector that identifies the geospatial locations under simulation
in,out	shell_lengths	Vector of the size, length, of scallops
in	num_ts	number of time steps per year for simulation
in	num_sz_classes	Number of size classes to set private member

Parameters

in	domain_name	Name of domain being simulate, 'MA' or 'GB'
out	domain_area,Size	of domain under consideration in square meters
in	file_name	The name of the file with initial state, i.e. scallops per sq meter
in start_year		Year in which to start simulation
out	state	Initial state as set by initial conditions
in,out	weight_grams	Computed combined scallop weight

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.12 set_shell_lengths()

setup shell shell_lengths intervals

- length_min
- length_min + length_delta
- $length_{shell}(n) = length_{min} + (n-1) * length_{delta}$

Parameters

in	length_min	Size of smallest size class
in	length_delta	amount between size classes

Returns

shell length in millimeters

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.13 shell_to_weight()

Computes weight given a shell height.

For Mid-Atlantic

$$\begin{array}{lll} x & = & -9.48 + 2.51 * log(length_{mm}) \\ & - & 0.1743 - 0.059094 \\ & - & 0.0033 * depth \\ & + & 0.021 * latitude \\ & - & 0.031 * isClosed \\ & + & 0.00525 * log(length_{mm} * 21.0 \\ & - & 0.000065 * 21.0 * depth \end{array}$$

For Georges Bank

$$x = -6.69 + 2.878 * log(length_{mm})$$

$$- 0.0073 * depth$$

$$- 0.073 * latitude$$

$$+ 1.28 * isClosed$$

$$- 0.25 * log(length_{mm}) * isClosed$$

$$weight_q = e^x$$

Parameters

in	shell_length_mm	The shell height, or length, in millimeters
in	is_closed	Logic to indicate if grid is open (F) or closed (T) to fishing
in	depth	The depth of the grid in meters
in	latitude	Geographic coordinate
in	domain	
		MA for Mid-Atlantic
		GB for Georges Bank
in	ispp	Logic to indiate is Peter Pan???

Returns

weight in grams

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.2.14 time_to_grow()

Computes growth in scallop population.

Computes the overall growth of the scallop population over a time period of (num_time_steps * delta_time) in units of years, typically one year with delta_time as a percent of year. For each time step, δ_t

- · Computes mortality based on current state.
- Computes increase in population due to recruitment, \vec{R} , if within recruitment months, i.e. Jan to April 10th

$$\vec{S} = \vec{S} + \delta_t \frac{\vec{R}}{RecruitDuration}$$

· Adjusts population based on von Bertalanffy growth

$$\vec{S} = |G| \times \vec{S}$$

· Compute overall mortality, M

$$ec{M} = ec{M}_{nat} + Fishing * \left(ec{M}_{selectivity} + ec{M}_{incidental} + ec{M}_{discard}
ight)$$

· Compute new state

$$\vec{S_{t+1}} = \vec{S_t} * \left(1 - \delta_t * \vec{M}\right)$$

in	growth	object to hold growth simulation paramters
in,out <i>mortality</i>		object to hold mortality simulation parameters
in,out	recruit	object to hold recruitment simulation parameters
in,out	state	vector of the current state in scallops per square meter
in fishing_effort		vector of fishing effort by location
out Generated by Doxygentime_steps		State at each time step
in	start_year	under considration

Here is the call graph for this function:

Here is the caller graph for this function:

10.3.3 Variable Documentation

10.3.3.1 delta_time

real(dp), private growth_mod::delta_time [private]

10.3.3.2 domain_area_sqm

real(dp), private growth_mod::domain_area_sqm [private]

10.3.3.3 domain_name

character(domain_len), private growth_mod::domain_name [private]

10.3.3.4 growth_param_size

integer, parameter growth_mod::growth_param_size = 4

10.3.3.5 num_grids

integer, private growth_mod::num_grids [private]

10.3.3.6 num_time_steps

integer, private growth_mod::num_time_steps [private]

10.3.3.7 time_steps_year

integer, private growth_mod::time_steps_year [private]

10.4 mortality mod Module Reference

Data Types

- type dataforplots
- · type fishingmortality
- · type mortality_class

Functions/Subroutines

- subroutine set select data (value)
- subroutine destructor ()
- subroutine set_mortality (mortality, grid, shell_lengths, dom_name, dom_area, num_ts, ts_py, ngrids, save_by
 _strat)
- subroutine load fishing mortalities ()

Open file given by fishing_mort_fname. Reads in the year and number of entries in the list. If the number of entries exceeds the number of areas loaded by the GridManager then show the error and stop. Otherwise reads in the vectors for area list indices and for fishing mortality.

elemental real(dp) function ring_size_selectivity (shell_length, is_closed, longitude)

Purpose: Assign size class fishing selectivity based on increasing logistic function.

• real(dp) function, dimension(num_grids) set_fishing_effort (year, ts, state_mat, weight_grams, mortality, grid)

Determines a real value of mortality due to fishing given a fishing type.

real(dp) function dollars_per_sqm (year, meat_weight_grams)

Compute value of scallop population at a specific grid location.

subroutine scallops_to_counts (meat_weight_grams, cnt10, cnt10to20, cnt20to30, cnt30plus)

Purpose: Convert Scallop density by shell height and meat wieght to count data. The count data are divided into cnt10-10 or less scallops per pound. cnt10to20 10-20 scallops per pound. cnt20to30 20-30 scallops per pound. cnt30+ 30 or more scallops per pound.

real(dp) function, dimension(1:num_size_classes) compute_natural_mortality (max_rec_ind, mortality, state_
 vector, longitude)

Computes the total number of scallops, S, in millions. Then recomputes juvenile mortality as a function of S.

elemental real(dp) function set_fishing_mortality (grid, year, use_f_loc, f_loc)

Computes Fishing Mortality.

subroutine set_config_file_name (fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

- subroutine set_fishing_mort_file_name (fname)
- subroutine read configuration ()

Read_Configuration.

• subroutine mortality_write_at_timestep (year, ts, state_mat, weight_grams, mortality, grid)

Initializes growth for startup.

elemental real(dp) function set_discard (length, selectivity, cull_size, discard, is_closed)

Computes element of discard vector.

elemental real(dp) function calc_lpue (expl_biomass, expl_scallops)

Computes catch as pounds per day @parma[in] expl_biomass ! Expl biomass @parma[in] expl_scallops ! Expl Number of Scallops.

Variables

- character(fname len), private config file name
- character(fname len), private fishing mort fname
- type(fishingmortality), dimension(max num years), private fmort list
- · logical, private use_spec_access_data
- integer, private num_in_list
- · integer, private num grids
- · integer, private num areas
- character(domain len), private domain name
- real(dp), private domain area sqm
- · integer, private num time steps
- integer, private ts per year
- real(dp), private delta time
- logical, private save_by_stratum
- real(dp), private fishing mort
- real(dp), private alpha mort
- real(dp), private ma_cull_size_mm
- real(dp), private ma discard
- real(dp), private gb cull size mm
- real(dp), private gb discard
- real(dp), private ma fselect a
- real(dp), private ma fselect b
- real(dp), private gbc_fselect_a
- real(dp), private gbc_fselect_b
- real(dp), private gbo_fselect_a
- real(dp), private gbo_fselect_b
- real(dp), private ma_mort_adult
- real(dp), private ma_incidental
- real(dp), private ma_length_0
- real(dp), private gb mort adult
- real(dp), private gb_incidental
- real(dp), private gb_length_0
- real(dp), private lpue_slope
- real(dp), private lpue slope2
- real(dp), private lpue intercept
- integer, private max_per_day
- real(dp), private max_time_hpd
- real(dp), private dredge width m
- real(dp), private towing speed knots
- real(dp), dimension(:), allocatable, private expl_biomass_gpsqm
- real(dp), dimension(:), allocatable, private usd per sqm
- real(dp), dimension(:), allocatable, private expl scallops psqm
- real(dp), dimension(:), allocatable, private expl_num
- real(dp), dimension(:), allocatable, private f mort
- real(dp), dimension(:), allocatable, private f_mort_raw
- real(dp), dimension(:), allocatable, private landings_by_num
- real(dp), dimension(:), allocatable, private landings_wgt_grams
- real(dp), dimension(:), allocatable, private landings_wgt_grams_open
- real(dp), dimension(:), allocatable, private landings wgt grams closed
- real(dp), dimension(:), allocatable, private lpue

- real(dp), dimension(:), allocatable, private fishing_effort
- real(dp), dimension(num_size_classes), private expl_scallops_psqm_at_size
- real(dp), dimension(num_size_classes), private landings_at_size
- real(dp), dimension(num_size_classes), private landings_at_size_open
- real(dp), dimension(num_size_classes), private landings_at_size_closed
- type(dataforplots), private data_select

10.4.1 Function/Subroutine Documentation

10.4.1.1 calc_lpue()

Computes catch as pounds per day @parma[in] expl_biomass ! Expl biomass @parma[in] expl_scallops ! Expl Number of Scallops.

Parameters

out	dredge_time_hrs	! dredge bottom time
out	dredge_area_sqnm	! area swept per day

EBiomass/ENumber = ESize Total Weight of a Tow / Number of scallops caught = mean weight of individual scallop expl_biomass_gpsqm(grid) * 4516 / expl_scallops_psqm(grid) * 4516 = expl_weight_g xxxx xxxx Here is the call graph for this function:

Here is the caller graph for this function:

10.4.1.2 compute_natural_mortality()

```
type(mortality_class), intent(inout) mortality,
real(dp), dimension(*), intent(in) state_vector,
real(dp), intent(in) longitude)
```

Computes the total number of scallops, S, in millions. Then recomputes juvenile mortality as a function of S.

$$M_{juv} = \begin{cases} e^{1.093*log(S)-9.701}, & \text{if } S>1400 \text{ million (2030?)} \\ M_{adult}, & \text{otherwise} \end{cases}$$

A similar formula for GB Open:

$$M_{juv} = \begin{cases} e^{(1.226*log(S)-10.49)}, & \text{if } S>1400 \text{ million (2030?)} \\ M_{adult}, & \text{otherwise} \end{cases}$$

where M_{adult} is 0.25 if MA or 0.2 if GB

TODO: At present the computation does not use the conditional but rather whichever is greater Decreasing logistic function,

$$\alpha(length) = 1 - \frac{1}{1 + e^{-length_0[length - a]}}$$

TODO, current alpha equation is:

$$\alpha(length) = 1 - \frac{1}{1 + e^{-a*(length/10.0 - length_0)}}$$

where h_0 is 65 if MA or 70 if GB Finally

$$M_{nat} = \alpha * M_{juv} + (1 - \alpha)M_{adult}$$

Parameters

in	recruit	
in,out	mortality	
in	state_vector	Current state_vector of scallop population in scallops/m^2

Returns

natural_mortality and juvenile mortality

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.1.3 destructor()

subroutine mortality_mod::destructor
Here is the caller graph for this function:

10.4.1.4 dollars_per_sqm()

Compute value of scallop population at a specific grid location.

Value is based on population structure. The population is sorted into size count bucket classes U10, 10-20, 20-30, 30+ and the value based on these classes and the year is read from the file "Data/ScallopPrice.csv".

Parameters

in	year	- current year
in	meat_weight_grams	[num_size_classes] - Weight meat per individual scallop in each size class

Returns

dollars per square meter

Author

Keston Smith 2022

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.1.5 load_fishing_mortalities()

 $\verb|subroutine| mortality_mod::load_fishing_mortalities|\\$

Open file given by fishing_mort_fname. Reads in the year and number of entries in the list. If the number of entries exceeds the number of areas loaded by the GridManager then show the error and stop. Otherwise reads in the vectors for area list indices and for fishing mortality.

Here is the caller graph for this function:

10.4.1.6 mortality_write_at_timestep()

```
integer, intent(in) ts,
real(dp), dimension(1:num_grids, 1:num_size_classes), intent(in) state_mat,
real(dp), dimension(1:num_grids, 1:num_size_classes), intent(in) weight_grams,
type(mortality_class), dimension(*), intent(in) mortality,
type(grid_data_class), dimension(*), intent(in) grid)
```

Initializes growth for startup.

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.1.7 read_configuration()

subroutine mortality_mod::read_configuration

Read_Configuration.

Read Input File

Reads a configuration file, 'config_file_name.cfg', to set data parameters for Mortality Here is the call graph for this function:

10.4.1.8 ring_size_selectivity()

```
elemental real(dp) function mortality_mod::ring_size_selectivity (
```

```
real(dp), intent(in) shell_length,
logical, intent(in) is_closed,
real(dp), intent(in) longitude)
```

Purpose: Assign size class fishing selectivity based on increasing logistic function.

$$Selectivity = \frac{1}{1 + exp(a - b*length_{shell})}$$

3.5" rings were used from 1996-2004, 3.25" rings in 1995, and 3" rings through 1994. We don't have curves for the 3 and 3.25" ring dredges. To estimate these selectivity curves, I would simply shift the 3.5" ring curve to the left by 13 (for 3" rings) or 6 mm (for 3.25" rings). The primary purpose of GEOSAMS is for forecasting, where all of this is irrelevant, to do some hindcasting as a way of testing the model, in which case getting the historical selectivity right is important. @param [in] shell_length (real(dp)) length n vector of shell lengths @param [in] a, b (real(dp)) parameters of logistic selectivity curve @param [in] year (integer) Year to determine if this is before 2005 (3.5" rings) or after (4" rings)

Parameters

	in	is_closed	true if grid is closed to fishing
--	----	-----------	-----------------------------------

Author

Keston Smith (IBSS corp) May 2022

Returns

length num_size_classes vector of selectivity

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.1.9 scallops_to_counts()

Purpose: Convert Scallop density by shell height and meat wieght to count data. The count data are divided into cnt10-10 or less scallops per pound. cnt10to20 10-20 scallops per pound. cnt20to30 20-30 scallops per pound. cnt30+ 30 or more scallops per pound.

Parameters

in	meat_weight_grams	(real) length num_size_classes vector of weight of individual scallops by size class
out	cnt10	number of scallops wich get binned into U10
out	cnt10to20	number of scallops wich get binned into U10-20
out	cnt20to30	number of scallops wich get binned into U20-30
out	cnt30	number of scallops wich get binned into U30+

Here is the caller graph for this function:

10.4.1.10 set_config_file_name()

Used during instantiation to set the name of the file to read to for configuration parameters.

Read Input File

Sets name of a configuration file, 'config_file_name.cfg' Here is the caller graph for this function:

10.4.1.11 set discard()

```
real(dp), intent(in) selectivity,
real(dp), intent(in) cull_size,
real(dp), intent(in) discard,
logical, intent(in) is_closed)
```

Computes element of discard vector.

Parameters

in	length,vector	element for shell length @parma[in] cull_size, determins shell length below which are discarded
in	discard,percentage	of selectivity that will be discarded
in	selectivity,vector	element that determines scallops harvested

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.1.12 set_fishing_effort()

Determines a real value of mortality due to fishing given a fishing type.

Parameters

in	year	
in	state	matrix num_grids by num_size classes current state in scallops per square meter
in	weight_grams	matrix num_grids by num_size classes
in	mortality	vector(num_grids) @results fishing mortality

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.1.13 set_fishing_mort_file_name()

Here is the caller graph for this function:

10.4.1.14 set_fishing_mortality()

Computes Fishing Mortality.

There is a year list for each year of interest, up to a total number of years of max_num_years For each list item there are two vectors.

- The first vector is a list of special access by index.
- The second vector is a list of corresponding fishing mortalities for that area Thus, if the current simulation year is in the year list
- · Check if the grids

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.1.15 set_mortality()

Parameters

in,out	mortality	Parameters that identify how the scallop should reaches mortality
in	grid	Vector that identifies the geospatial locations under simulation
in	shell_lengths	Vector of the size, or length, of scallops
in	num_sz_classes	Number of size classes to set private member
in	domain_name	Name of domain being simulate, 'MA' or 'GB'
in	domain_area,Size	of domain under consideration in square meters

72 Module Documentation

Here is the call graph for this function:

Here is the caller graph for this function:

10.4.1.16 set_select_data()

Here is the caller graph for this function:

10.4.2 Variable Documentation

10.4.2.1 alpha_mort

real(dp), private mortality_mod::alpha_mort [private]

10.4.2.2 config_file_name

character(fname_len), private mortality_mod::config_file_name [private]

10.4.2.3 data_select

type(dataforplots), private mortality_mod::data_select [private]

10.4.2.4 delta time

real(dp), private mortality_mod::delta_time [private]

10.4.2.5 domain_area_sqm

real(dp), private mortality_mod::domain_area_sqm [private]

10.4.2.6 domain_name

character(domain_len), private mortality_mod::domain_name [private]

10.4.2.7 dredge_width_m

real(dp), private mortality_mod::dredge_width_m [private]

10.4.2.8 expl_biomass_gpsqm

real(dp), dimension(:), allocatable, private mortality_mod::expl_biomass_gpsqm [private]

10.4.2.9 expl_num

real(dp), dimension(:), allocatable, private mortality_mod::expl_num [private]

10.4.2.10 expl_scallops_psqm

real(dp), dimension(:), allocatable, private mortality_mod::expl_scallops_psqm [private]

10.4.2.11 expl_scallops_psqm_at_size

real(dp), dimension(num_size_classes), private mortality_mod::expl_scallops_psqm_at_size [private]

74 Module Documentation

```
10.4.2.12 f_mort
real(dp), dimension(:), allocatable, private mortality_mod::f_mort [private]
10.4.2.13 f mort raw
real(dp), dimension(:), allocatable, private mortality_mod::f_mort_raw [private]
10.4.2.14 fishing_effort
real(dp), dimension(:), allocatable, private mortality_mod::fishing_effort [private]
10.4.2.15 fishing mort
real(dp), private mortality_mod::fishing_mort [private]
10.4.2.16 fishing_mort_fname
character(fname_len), private mortality_mod::fishing_mort_fname [private]
10.4.2.17 fmort list
type(fishingmortality), dimension(max_num_years), private mortality_mod::fmort_list [private]
10.4.2.18 gb_cull_size_mm
real(dp), private mortality_mod::gb_cull_size_mm [private]
10.4.2.19 gb_discard
real(dp), private mortality_mod::gb_discard [private]
10.4.2.20 gb_incidental
real(dp), private mortality_mod::gb_incidental [private]
10.4.2.21 gb_length_0
real(dp), private mortality_mod::gb_length_0 [private]
10.4.2.22 gb_mort_adult
real(dp), private mortality_mod::gb_mort_adult [private]
10.4.2.23 gbc fselect a
real(dp), private mortality_mod::gbc_fselect_a [private]
10.4.2.24 gbc_fselect_b
real(dp), private mortality_mod::gbc_fselect_b [private]
10.4.2.25 gbo fselect a
real(dp), private mortality_mod::gbo_fselect_a [private]
```

```
10.4.2.26 gbo_fselect_b
real(dp), private mortality_mod::gbo_fselect_b [private]
10.4.2.27 landings at size
real(dp), dimension(num_size_classes), private mortality_mod::landings_at_size [private]
10.4.2.28 landings_at_size_closed
real(dp), dimension(num_size_classes), private mortality_mod::landings_at_size_closed [private]
10.4.2.29 landings at size open
real(dp), dimension(num_size_classes), private mortality_mod::landings_at_size_open [private]
10.4.2.30 landings_by_num
real(dp), dimension(:), allocatable, private mortality_mod::landings_by_num [private]
10.4.2.31 landings_wgt_grams
real(dp), dimension(:), allocatable, private mortality_mod::landings_wgt_grams [private]
10.4.2.32 landings_wgt_grams_closed
real(dp), dimension(:), allocatable, private mortality_mod::landings_wgt_grams_closed [private]
10.4.2.33 landings_wgt_grams_open
real(dp), dimension(:), allocatable, private mortality_mod::landings_wgt_grams_open [private]
10.4.2.34 Ipue
real(dp), dimension(:), allocatable, private mortality_mod::lpue [private]
10.4.2.35 lpue_intercept
real(dp), private mortality_mod::lpue_intercept [private]
10.4.2.36 lpue_slope
real(dp), private mortality_mod::lpue_slope [private]
10.4.2.37 lpue slope2
real(dp), private mortality_mod::lpue_slope2 [private]
10.4.2.38 ma_cull_size_mm
real(dp), private mortality_mod::ma_cull_size_mm [private]
10.4.2.39 ma discard
real(dp), private mortality_mod::ma_discard [private]
```

76 Module Documentation

```
10.4.2.40 ma_fselect_a
real(dp), private mortality_mod::ma_fselect_a [private]
10.4.2.41 ma fselect b
real(dp), private mortality_mod::ma_fselect_b [private]
10.4.2.42 ma_incidental
real(dp), private mortality_mod::ma_incidental [private]
10.4.2.43 ma length 0
real(dp), private mortality_mod::ma_length_0 [private]
10.4.2.44 ma_mort_adult
real(dp), private mortality_mod::ma_mort_adult [private]
10.4.2.45 max_per_day
integer, private mortality_mod::max_per_day [private]
10.4.2.46 max_time_hpd
real(dp), private mortality_mod::max_time_hpd [private]
10.4.2.47 num_areas
integer, private mortality_mod::num_areas [private]
10.4.2.48 num grids
integer, private mortality_mod::num_grids [private]
10.4.2.49 num_in_list
integer, private mortality_mod::num_in_list [private]
10.4.2.50 num_time_steps
integer, private mortality_mod::num_time_steps [private]
10.4.2.51 save_by_stratum
logical, private mortality_mod::save_by_stratum [private]
10.4.2.52 towing_speed_knots
real(dp), private mortality_mod::towing_speed_knots [private]
10.4.2.53 ts per year
integer, private mortality_mod::ts_per_year [private]
```

10.4.2.54 usd_per_sqm

real(dp), dimension(:), allocatable, private mortality_mod::usd_per_sqm [private]

10.4.2.55 use_spec_access_data

logical, private mortality_mod::use_spec_access_data [private]

10.5 recruit mod Module Reference

Data Types

• type recruitment_class

Functions/Subroutines

subroutine set_recruitment (recruit, n_grids, dom_name, dom_area, l_inf_mu, k_mu, shell_length_mm, yr_start, yr stop)

Set_Recruitment.

• subroutine set_config_file_name (fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

• subroutine read_configuration ()

Read Configuration.

Variables

- integer, parameter max_n_year = 50
- character(fname_len), private config_file_name
- integer, private num_grids
- character(domain len), private domain name
- real(dp), private domain area sqm
- · integer, private recr start year
- integer, private recr_stop_year
- real(dp), private recr_period_start
- real(dp), private recr_period_stop

10.5.1 Function/Subroutine Documentation

10.5.1.1 read configuration()

subroutine recruit_mod::read_configuration

 $Read_Configuration.$

Read Input File

Reads a configuration file, 'config_file_name.cfg', to set data parameters for Recruitment Here is the caller graph for this function:

78 Module Documentation

10.5.1.2 set_config_file_name()

Used during instantiation to set the name of the file to read to for configuration parameters.

Read Input File

Sets name of a configuration file, 'config_file_name.cfg'

10.5.1.3 set_recruitment()

Set_Recruitment.

Sets recruitment parameters

Parameters

in,out	recruit	
in	n_grids,The	number of grids under consideration, sets private value num_grids
in	dom_name,The	doomain being simulated, sets private value domain_name. Should be MA MidAtlantic or GB GeorgesBank
in	dom_area	the total area in square meters, sets domain_area_sqm
in	num_sz_classes	
in	L_inf_mu	asymptotic size, average
in	K_mu	Brody growth coefficient K, average
in	shell_length_mm	Shell height in millimeters

Here is the call graph for this function:

Here is the caller graph for this function:

10.5.2 Variable Documentation

10.5.2.1 config_file_name

character(fname_len), private recruit_mod::config_file_name [private]

10.5.2.2 domain_area_sqm

real(dp), private recruit_mod::domain_area_sqm [private]

10.5.2.3 domain name

character(domain_len), private recruit_mod::domain_name [private]

10.5.2.4 max_n_year

integer, parameter recruit_mod::max_n_year = 50

10.5.2.5 num_grids

integer, private recruit_mod::num_grids [private]

10.5.2.6 recr_period_start

real(dp), private recruit_mod::recr_period_start [private]

10.5.2.7 recr_period_stop

real(dp), private recruit_mod::recr_period_stop [private]

10.5.2.8 recr_start_year

integer, private recruit_mod::recr_start_year [private]

10.5.2.9 recr_stop_year

integer, private recruit_mod::recr_stop_year [private]

80 Module Documentation

Chapter 11

Data Type Documentation

11.1 mortality_mod::dataforplots Type Reference

Collaboration diagram for mortality_mod::dataforplots:

mortality_mod::dataforplots + logical plot_abun + logical plot_bmmt + logical plot_ebms + logical plot_feff + logical plot_fmor + logical plot_land + logical plot_lndw + logical plot_lpue + logical plot_recr

Public Attributes

- logical plot_abun
- logical plot_bmmt
- logical plot_ebms
- logical plot_feff
- logical plot_fmor
- logical plot land
- logical plot_Indw
- logical plot_lpue
- logical plot_recr

11.1.1 Member Data Documentation

11.1.1.1 plot_abun

logical mortality_mod::dataforplots::plot_abun

11.1.1.2 plot_bmmt

logical mortality_mod::dataforplots::plot_bmmt

11.1.1.3 plot ebms

logical mortality_mod::dataforplots::plot_ebms

11.1.1.4 plot_feff

logical mortality_mod::dataforplots::plot_feff

11.1.1.5 plot fmor

logical mortality_mod::dataforplots::plot_fmor

11.1.1.6 plot_land

logical mortality_mod::dataforplots::plot_land

11.1.1.7 plot_lndw

logical mortality_mod::dataforplots::plot_lndw

11.1.1.8 plot_lpue

logical mortality_mod::dataforplots::plot_lpue

11.1.1.9 plot_recr

logical mortality_mod::dataforplots::plot_recr

The documentation for this type was generated from the following file:

• SRC/ScallopMortality.f90

11.2 mortality_mod::fishingmortality Type Reference

Collaboration diagram for mortality_mod::fishingmortality:

mortality_mod::fishingmortality

- + integer year
- + integer n areas
- + integer, dimension (max_num_areas) area_list
- + real(dp), dimension (max_num_areas) area _fish_mort

Public Attributes

- · integer year
- integer n_areas
- integer, dimension(max_num_areas) area_list
- real(dp), dimension(max_num_areas) area_fish_mort

11.2.1 Member Data Documentation

11.2.1.1 area_fish_mort

11.2.1.2 area list

 $\verb|integer|, dimension(max_num_areas)| mortality_mod::fishingmortality::area_list|\\$

11.2.1.3 n_areas

integer mortality_mod::fishingmortality::n_areas

11.2.1.4 year

integer mortality_mod::fishingmortality::year

The documentation for this type was generated from the following file:

• SRC/ScallopMortality.f90

11.3 Grid Data Class Module Reference

Collaboration diagram for Grid_Data_Class:

The documentation for this module was generated from the following file:

• SRC/GridManager.f90

11.4 grid_manager_mod::grid_data_class Type Reference

Collaboration diagram for grid_manager_mod::grid_data_class:

Public Attributes

real(dp) year

- real(dp) x
- real(dp) y
- real(dp) lon
- real(dp) lat
- real(dp) z
- · logical is_closed
- real(dp) stratum
- integer special_access_index

11.4.1 Member Data Documentation

11.4.1.1 is_closed

logical grid_manager_mod::grid_data_class::is_closed

11.4.1.2 lat

real(dp) grid_manager_mod::grid_data_class::lat

11.4.1.3 lon

 $\verb"real(dp)" grid_manager_mod::grid_data_class::lon"$

11.4.1.4 special_access_index

integer grid_manager_mod::grid_data_class::special_access_index

11.4.1.5 stratum

real(dp) grid_manager_mod::grid_data_class::stratum

11.4.1.6 x

real(dp) grid_manager_mod::grid_data_class::x

11.4.1.7 y

real(dp) grid_manager_mod::grid_data_class::y

11.4.1.8 year

real(dp) grid_manager_mod::grid_data_class::year

11.4.1.9 z

real(dp) grid_manager_mod::grid_data_class::z

The documentation for this type was generated from the following file:

• SRC/GridManager.f90

11.5 Growth Class Module Reference

Subroutines that determine expected growth of scallops. Collaboration diagram for Growth_Class:

11.5.1 Detailed Description

Subroutines that determine expected growth of scallops.

The documentation for this module was generated from the following file:

• SRC/ScallopGrowth.f90

11.6 growth_mod::growth_class Type Reference

Collaboration diagram for growth_mod::growth_class:

Public Attributes

• real(dp) l_inf_mu

Asymptotic size mean.

real(dp) k_mu

Growth coefficient mean.

real(dp) l_inf_sd

Asymptotic size standard deviation.

real(dp) k_sd

Growth coefficient standard deviation.

real(dp), dimension(num_size_classes, num_size_classes) g

Growth matrix.

11.6.1 Member Data Documentation

11.6.1.1 g

real(dp), dimension(num_size_classes, num_size_classes) growth_mod::growth_class::g
Growth matrix.

11.6.1.2 k_mu

 $\label{local_continuity} real(\texttt{dp}) \ \, \texttt{growth_mod::growth_class::k_mu} \\ \textbf{Growth coefficient mean.}$

11.6.1.3 k sd

 $\label{lem:continuous} \begin{tabular}{ll} real (dp) & growth_mod::growth_class::k_sd \\ \begin{tabular}{ll} Growth coefficient standard deviation. \\ \end{tabular}$

11.6.1.4 | | inf_mu

real(dp) growth_mod::growth_class::l_inf_mu
Asymptotic size mean.

11.6.1.5 | _inf_sd

real(dp) growth_mod::growth_class::l_inf_sd

Asymptotic size standard deviation.

The documentation for this type was generated from the following file:

• SRC/ScallopGrowth.f90

11.7 grid_manager_mod::lonlatpoint Type Reference

Collaboration diagram for grid_manager_mod::lonlatpoint:

```
grid_manager_mod::lonlatpoint
+ real(dp) lon
+ real(dp) lat
```

Public Attributes

- real(dp) lon
- real(dp) lat

11.7.1 Member Data Documentation

11.7.1.1 lat

real(dp) grid_manager_mod::lonlatpoint::lat

11.7.1.2 lon

real(dp) grid_manager_mod::lonlatpoint::lon

The documentation for this type was generated from the following file:

• SRC/GridManager.f90

11.8 grid_manager_mod::lonlatvector Type Reference

Collaboration diagram for grid_manager_mod::lonlatvector:

grid_manager_mod::lonlatvector

- real(dp), dimension (max_sides) lon
- + real(dp), dimension (max_sides) lat
- + integer n_sides

Public Attributes

- real(dp), dimension(max sides) lon
- real(dp), dimension(max_sides) lat
- integer n_sides

11.8.1 Member Data Documentation

11.8.1.1 lat

```
real(dp), dimension(max_sides) grid_manager_mod::lonlatvector::lat
```

11.8.1.2 lon

 $\verb"real(dp)", dimension(\verb"max_sides") grid_manager_mod::lonlatvector::lon$

11.8.1.3 n_sides

integer grid_manager_mod::lonlatvector::n_sides

The documentation for this type was generated from the following file:

• SRC/GridManager.f90

11.9 Mortality_Class Module Reference

Subroutines that determine expected mortality of scallops.

Collaboration diagram for Mortality_Class:

11.9.1 Detailed Description

Subroutines that determine expected mortality of scallops.

The documentation for this module was generated from the following file:

• SRC/ScallopMortality.f90

11.10 mortality_mod::mortality_class Type Reference

Collaboration diagram for mortality_mod::mortality_class:

mortality_mod::mortality _class + real(dp), dimension (num_size_classes) natural mortality + real(dp) incidental + real(dp), dimension (num_size_classes) discard + real(dp), dimension (num_size_classes) selectivity + real(dp), dimension (num_size_classes) selectivity_open + real(dp), dimension (num_size_classes) selectivity closed + real(dp) natural mort adult + real(dp) natural mort juv + real(dp), dimension (1:num_size_classes) alpha

Public Attributes

- real(dp), dimension(num_size_classes) natural_mortality
- real(dp) incidental
- real(dp), dimension(num_size_classes) discard
- real(dp), dimension(num size classes) selectivity
- real(dp), dimension(num_size_classes) selectivity_open
- real(dp), dimension(num_size_classes) selectivity_closed
- real(dp) natural_mort_adult
- real(dp) natural_mort_juv
- real(dp), dimension(1:num_size_classes) alpha

11.10.1 Member Data Documentation

11.10.1.1 alpha

real(dp), dimension(1:num_size_classes) mortality_mod::mortality_class::alpha

11.10.1.2 discard

real(dp), dimension(num_size_classes) mortality_mod::mortality_class::discard

11.10.1.3 incidental

real(dp) mortality_mod::mortality_class::incidental

11.10.1.4 natural_mort_adult

real(dp) mortality_mod::mortality_class::natural_mort_adult

11.10.1.5 natural mort juv

real(dp) mortality_mod::mortality_class::natural_mort_juv

11.10.1.6 natural_mortality

real(dp), dimension(num_size_classes) mortality_mod::mortality_class::natural_mortality

11.10.1.7 selectivity

real(dp), dimension(num_size_classes) mortality_mod::mortality_class::selectivity

11.10.1.8 selectivity_closed

real(dp), dimension(num_size_classes) mortality_mod::mortality_class::selectivity_closed

11.10.1.9 selectivity_open

real(dp), dimension($num_size_classes$) mortality_mod::mortality_class::selectivity_open The documentation for this type was generated from the following file:

• SRC/ScallopMortality.f90

11.11 recruit mod::recruitment class Type Reference

Collaboration diagram for recruit_mod::recruitment_class:

recruit_mod::recruitment __class + real(dp), dimension (max_n_year) recruitment + real(dp) rec_start + real(dp) rec_stop + integer, dimension (max_n_year) year + integer n_year + integer max_rec_ind

Public Attributes

- real(dp), dimension(max n year) recruitment
- real(dp) rec_start
- real(dp) rec_stop
- integer, dimension(max_n_year) year
- integer n_year
- integer max_rec_ind

11.11.1 Member Data Documentation

11.11.1.1 max_rec_ind

integer recruit_mod::recruitment_class::max_rec_ind

11.11.1.2 n_year

integer recruit_mod::recruitment_class::n_year

11.11.1.3 rec_start

real(dp) recruit_mod::recruitment_class::rec_start

11.11.1.4 rec_stop

real(dp) recruit_mod::recruitment_class::rec_stop

11.11.1.5 recruitment

real(dp), dimension(max_n_year) recruit_mod::recruitment_class::recruitment

11.11.1.6 year

integer, dimension(max_n_year) recruit_mod::recruitment_class::year
The documentation for this type was generated from the following file:

• SRC/ScallopRecruit.f90

11.12 Recruitment_Class Module Reference

Subroutines that determine expected growth of scallops. Collaboration diagram for Recruitment_Class:

11.12.1 Detailed Description

Subroutines that determine expected growth of scallops. The documentation for this module was generated from the following file:

• SRC/ScallopRecruit.f90

Chapter 12

File Documentation

12.1 SRC/aaaPageOrder.f90 File Reference

12.2 SRC/Globals.f90 File Reference

Modules

· module globals

Functions/Subroutines

- elemental real(dp) function globals::logic to double (value)
- real(dp) function, dimension(n, n) globals::matrixinv (x, n)

Variables

- integer, parameter globals::sp = selected_real_kind(6, 37)
- integer, parameter globals::dp = selected real kind(15, 307)
- integer, parameter globals::qp = selected_real_kind(33, 4931)
- integer, parameter globals::ndim = 12000
- integer, parameter globals::shell len max = 150
- integer, parameter globals::shell_len_min = 30
- integer, parameter globals::shell len delta = 5
- integer, parameter globals::num_size_classes = (shell_len_max shell_len_min) / shell_len_delta + 1
- integer, parameter globals::max num years = 50
- integer, parameter globals::max num areas = 25
- integer, parameter globals::max_sides = 8
- integer, parameter globals::region_none =0
- integer, parameter globals::region n =1
- integer, parameter globals::region_s =2
- integer, parameter globals::region_sw =3
- integer, parameter globals::region w =4
- integer, parameter globals::region ma =5
- integer, parameter globals::tag_len = 40
- integer, parameter globals::value_len = 30
- integer, parameter globals::comment_len = 80
- integer, parameter globals::line_len = tag_len+value_len+comment_len
- integer, parameter globals::fname len = 100
- integer, parameter globals::form len = 20

96 File Documentation

- integer, parameter globals::input_str_len = 100
- integer, parameter globals::csv line len = 2000
- integer, parameter globals::domain len = 2
- integer, parameter globals::read_dev = 69
- integer, parameter globals::write dev = 63
- real(dp), parameter globals::zero threshold = 1.0D-99
- real(dp), parameter globals::pi = 3.14159265358979311599796346854D0
- real(dp), parameter globals::grams per pound = 453.592 dp
- real(dp), parameter globals::meters_per_naut_mile = 1852.D0
- real(dp), parameter globals::feet per naut mile = 6076.12
- real(dp), parameter globals::grams_per_metric_ton = 1000000._dp
- real(dp), parameter globals::grid_area_sqm = meters_per_naut_mile**2
- real(dp), parameter globals::tow_area_sqm = 4516._dp
- real(dp), parameter globals::one_scallop_per_tow = 1.D0 / tow_area_sqm
- real(dp), parameter globals::ma gb border = -70.5
- character(*), parameter globals::term_red = "//achar(27)//[31m"
- character(*), parameter globals::term_yel = "//achar(27)//[33m"
- character(*), parameter globals::term_grn = "//achar(27)//[92m]
- character(*), parameter globals::term blu = "//achar(27)//'[94m'
- character(*), parameter globals::term blk = "//achar(27)//'[0m'
- character(*), parameter globals::init_cond_dir = 'InitialCondition/'
- character(*), parameter globals::growth out dir = 'GrowthOutput/'
- character(*), parameter globals::rec_input_dir = 'RecruitEstimates/'
- character(*), parameter globals::rec_output_dir = 'RecruitField/'
- character(*), parameter globals::output dir = 'Results/'
- character(*), parameter globals::config_dir_sim = 'Configuration/Simulation/
- character(*), parameter globals::config dir interp = 'Configuration/Interpolation/'
- character(*), parameter globals::config dir special = 'Configuration/SpecialAccess/'
- character(*), parameter globals::grid dir = 'Grids/'
- character(*), parameter globals::data dir = 'Data/'

12.3 SRC/GridManager.f90 File Reference

Data Types

- type grid manager mod::grid data class
- · type grid manager mod::lonlatpoint
- type grid_manager_mod::lonlatvector

Modules

· module grid manager mod

Functions/Subroutines

integer function grid_manager_mod::set_num_grids ()

Determines the expected number of grids by simply counting the number of lines with text in the initial state file. It does not perform any error checking, only counting the number of lines with text and stopping at the first blank line.

subroutine grid manager mod::set grid manager (state mat, grid, ngrids, dom name)

Initializes growth for startup.

subroutine grid_manager_mod::set_config_file_name (fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

subroutine grid_manager_mod::set_init_cond_file_name (fname)

Used during instantiation to set the name of the file to read to for grid locations, state.

subroutine grid_manager_mod::set_special_access_file_name (fname)

Used during instantiation to set the name of the file to special access coordinates.

integer function grid manager mod::get num of areas ()

Get'r function for private member num areas.

subroutine grid manager mod::read configuration ()

Read Configuration.

integer function grid_manager_mod::load_grid_state (grid, state_mat)

This function is used to set the grid parameters and the initial state to start the simulation.

- integer function grid_manager_mod::load_area_coordinates ()
- integer function grid manager mod::is grid in special access (lon, lat)
- logical function grid manager mod::point in polygon points (poly, point, nodes)
- logical function grid_manager_mod::point_in_polygon_array (poly, point, nodes)
- logical function grid manager mod::point in polygon vector (polyx, polyy, x, y, nodes)

First of all, notice that each iteration considers two adjacent points and the target point. Then the if statement evaluates two conditions:

integer function grid_manager_mod::get_region (lat, lon, stratum_real)

Returns a region number based on stratum 0: not used 1: region_N North region 2: region_S South region 3: region_SW Southwest region 4: region_W West region 5: region_MA Entire Mid-Atlantic Region Inputs: grid: locations of survey data.

Variables

- type(lonlatvector), dimension(max num areas), private grid manager mod::area
- · integer, private grid manager mod::num areas
- · integer, private grid manager mod::num grids
- logical, private grid_manager_mod::use_spec_access_data
- character(domain_len), private grid_manager_mod::domain_name
- character(fname_len), private grid_manager_mod::config_file_name
- character(fname len), private grid manager mod::init cond fname
- character(fname_len), private grid_manager_mod::special_accesss_fname

12.4 SRC/IORoutines.f90 File Reference

Functions/Subroutines

- subroutine read scalar field (file name, m, vector len)
- subroutine write 2d scalar field (nn, nsim, f, flnm, nndim)

Purpose: Write columns of a matrix (f) to a series of text files in exponential format. Inputs:

- subroutine write vector scalar field (vector len, f, file name)
- subroutine write_csv (n, m, f, file_name, nndim, append)

Purpose: Write values of a matrix (f) to a csv file in exponential format. Inputs:

- subroutine write column csv (n, f, header, file name, append)
- subroutine write csv h (n, m, f, file name, nndim, header)
- subroutine read csv (num rows, num cols, file name, m, nndim)

98 File Documentation

12.4.1 Function/Subroutine Documentation

12.4.1.1 read csv()

```
subroutine read_csv (
          integer, intent(out) num_rows,
          integer, intent(in) num_cols,
          character (*), intent(in) file_name,
          real(dp), dimension(nndim,*), intent(out) m,
          integer, intent(in) nndim )
```

Here is the caller graph for this function:

12.4.1.2 read_scalar_field()

Here is the caller graph for this function:

12.4.1.3 write_2d_scalar_field()

```
subroutine write_2d_scalar_field (
    integer, intent(in) nn,
    integer, intent(in) nsim,
    real(dp), dimension(nndim,*), intent(in) f,
    character (*), intent(in) flnm,
    integer, intent(in) nndim)
```

Purpose: Write columns of a matrix (f) to a series of text files in exponential format. Inputs:

- nn (integer) number of rows in f
- nsim(integer) number of columns in f
- f (real(dp)) values to write to text file
- flnm(character(72)) filename to write f to in csv format

• nndim(integer) leading dimension of f

Author

Keston Smith (IBSS corp) June-July 2021

12.4.1.4 write_column_csv()

```
subroutine write_column_csv (
    integer, intent(in) n,
    real(dp), dimension(*), intent(in) f,
    character(*), intent(in) header,
    character(*), intent(in) file_name,
    logical, intent(in) append )
```

Here is the caller graph for this function:

12.4.1.5 write_csv()

```
subroutine write_csv (
    integer, intent(in) n,
    integer, intent(in) m,
    real(dp), dimension(nndim,*), intent(in) f,
    character(*), intent(in) file_name,
    integer, intent(in) nndim,
    logical, intent(in) append)
```

Purpose: Write values of a matrix (f) to a csv file in exponential format. Inputs:

- n (integer) number of rows in f
- m (integer) number of columns in f
- f (real(dp)) values to write to csv file
- flnm (character(72)) filename to write f to in csv format

100 File Documentation

Author

Keston Smith (IBSS corp) June-July 2021

Here is the caller graph for this function:

12.4.1.6 write_csv_h()

```
subroutine write_csv_h (
    integer, intent(in) n,
    integer, intent(in) m,
    real(dp), dimension(nndim,*), intent(in) f,
    character(*), intent(in) file_name,
    integer, intent(in) nndim,
    character(*), intent(in) header )
```

12.4.1.7 write_vector_scalar_field()

```
subroutine write_vector_scalar_field (
    integer, intent(in) vector_len,
    real(dp), dimension(*), intent(in) f,
    character (*), intent(in) file_name)
```

12.5 SRC/ScallopGrowth.f90 File Reference

Data Types

type growth_mod::growth_class

Modules

module growth_mod

Functions/Subroutines

• subroutine growth_mod::set_growth (growth, grid, shell_lengths, num_ts, ts_per_year, dom_name, dom_area, state_mat, weight_grams, ngrids)

Initializes growth for startup.

real(dp) function, dimension(1:num_size_classes, 1:num_size_classes) growth_mod::gen_size_trans_matrix (I
 _inf_mu, I_inf_sd, k_mu, k_sd, shell_lengths, method)

Transition matrix used to determine the growth of the scallop. The equations are based on MN18, Appendix C.

- real(dp) function, dimension(num_size_classes) growth_mod::set_shell_lengths (length_min, length_delta) setup shell_lengths intervals
- subroutine growth_mod::get_growth_gb (depth, lat, is_closed, l_inf_mu, k_mu, l_inf_sd, k_sd)

Provides growth parameters L and K parameters for Georges Bank. From R code sent by Dvora July 28th 2021.

• subroutine growth_mod::get_growth_ma (depth, lat, is_closed, l_inf_mu, k_mu, l_inf_sd, k_sd)

Provides growth parameters L and K parameters for Mid Atlantic From R code sent by Dvora July 28th 2021.

real(dp) function, dimension(num_size_classes, num_size_classes) growth_mod::mn18_appxc_trans_matrix (I
 __inf_mu, k_mu, I_inf_sd, k_sd, shell_lengths)

Purpose: This subroutine computes a sizeclass transition matrix under the assumption of von Bertlanaffy growth. It is assumed that the parameters of von BernBertlanaffy growth K and L_inf have normal distributions.

• subroutine growth_mod::increment_mean_std (l_inf_mu, k_mu, l_inf_sd, k_sd, size, mu, sigma)

Purpose: This subroutine computes a growth increment distribution parameters under the assumption of von Bertlanaffy growth and normally distributed growth increments. It is assumed that the parameters of von BernBertlanaffy growth K and L inf have normal distributions.

• real(dp) function growth_mod::h_mn18 (x, sigma, w)

Given (MN18 Appendix B)

real(dp) function growth_mod::norm_cumul_dist_fcn (x, mu, sigma)

Computation of normal cumulative distribution function.

real(dp) function growth_mod::norm_density_fcn (x, mu, sigma)

Computation of normal density function.

- subroutine growth_mod::enforce_non_negative_growth (g)
- real(dp) function, dimension(num_size_classes) growth_mod::time_to_grow (ts, growth, mortality, recruit, state
 _vector, fishing_effort, year, longitude)

Computes growth in scallop population.

- elemental real(dp) function growth_mod::shell_to_weight (shell_length_mm, is_closed, depth, latitude, longitude)
 Computes weight given a shell height.
- subroutine growth_mod::gamma_inc_values (n_data, a, x, fx)

Variables

- integer, parameter growth_mod::growth_param_size = 4
- integer, private growth mod::num grids
- · character(domain len), private growth mod::domain name
- · real(dp), private growth mod::domain area sgm
- integer, private growth_mod::num_time_steps
- integer, private growth_mod::time_steps_year
- real(dp), private growth mod::delta time

12.6 SRC/ScallopMortality.f90 File Reference

Data Types

- type mortality_mod::mortality_class
- · type mortality_mod::fishingmortality
- type mortality mod::dataforplots

Modules

· module mortality mod

102 File Documentation

Functions/Subroutines

- subroutine mortality_mod::set_select_data (value)
- subroutine mortality_mod::destructor ()
- subroutine mortality_mod::set_mortality (mortality, grid, shell_lengths, dom_name, dom_area, num_ts, ts_py, ngrids, save_by_strat)
- subroutine mortality_mod::load_fishing_mortalities ()

Open file given by fishing_mort_fname. Reads in the year and number of entries in the list. If the number of entries exceeds the number of areas loaded by the GridManager then show the error and stop. Otherwise reads in the vectors for area list indices and for fishing mortality.

elemental real(dp) function mortality_mod::ring_size_selectivity (shell_length, is_closed, longitude)

Purpose: Assign size class fishing selectivity based on increasing logistic function.

• real(dp) function, dimension(num_grids) mortality_mod::set_fishing_effort (year, ts, state_mat, weight_grams, mortality, grid)

Determines a real value of mortality due to fishing given a fishing type.

real(dp) function mortality_mod::dollars_per_sqm (year, meat_weight_grams)

Compute value of scallop population at a specific grid location.

subroutine mortality_mod::scallops_to_counts (meat_weight_grams, cnt10, cnt10to20, cnt20to30, cnt30plus)

Purpose: Convert Scallop density by shell height and meat wieght to count data. The count data are divided into cnt10-10 or less scallops per pound. cnt10to20 10-20 scallops per pound. cnt20to30 20-30 scallops per pound. cnt30+ 30 or more scallops per pound.

real(dp) function, dimension(1:num_size_classes) mortality_mod::compute_natural_mortality (max_rec_ind, mortality, state vector, longitude)

Computes the total number of scallops, S, in millions. Then recomputes juvenile mortality as a function of S.

• elemental real(dp) function mortality_mod::set_fishing_mortality (grid, year, use_f_loc, f_loc)

Computes Fishing Mortality.

subroutine mortality_mod::set_config_file_name (fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

- subroutine mortality_mod::set_fishing_mort_file_name (fname)
- subroutine mortality_mod::read_configuration ()

Computes element of discard vector.

Read_Configuration.

• subroutine mortality_mod::mortality_write_at_timestep (year, ts, state_mat, weight_grams, mortality, grid)

Initializes growth for startup.

• elemental real(dp) function mortality_mod::set_discard (length, selectivity, cull_size, discard, is_closed)

• elemental real(dp) function mortality mod::calc lpue (expl biomass, expl scallops)

Computes catch as pounds per day @parma[in] expl_biomass ! Expl biomass @parma[in] expl_scallops ! Expl Number of Scallops.

Variables

- character(fname_len), private mortality_mod::config_file_name
- character(fname_len), private mortality_mod::fishing_mort_fname
- type(fishingmortality), dimension(max num years), private mortality mod::fmort list
- logical, private mortality mod::use spec access data
- · integer, private mortality_mod::num_in_list
- integer, private mortality_mod::num_grids
- integer, private mortality_mod::num_areas
- character(domain_len), private mortality_mod::domain_name
- real(dp), private mortality mod::domain area sqm
- integer, private mortality mod::num time steps

- · integer, private mortality_mod::ts_per_year
- real(dp), private mortality mod::delta time
- logical, private mortality_mod::save_by_stratum
- real(dp), private mortality_mod::fishing_mort
- real(dp), private mortality mod::alpha mort
- real(dp), private mortality mod::ma cull size mm
- real(dp), private mortality_mod::ma_discard
- real(dp), private mortality mod::gb cull size mm
- real(dp), private mortality_mod::gb_discard
- real(dp), private mortality mod::ma fselect a
- real(dp), private mortality mod::ma fselect b
- real(dp), private mortality_mod::gbc_fselect_a
- real(dp), private mortality mod::gbc fselect b
- · real(dp), private mortality mod::gbo fselect a
- real(dp), private mortality mod::gbo fselect b
- · real(dp), private mortality mod::ma mort adult
- · real(dp), private mortality mod::ma incidental
- real(dp), private mortality_mod::ma_length_0
- real(dp), private mortality_mod::gb_mort_adult
- · real(dp), private mortality_mod::gb_incidental
- real(dp), private mortality_mod::gb_length_0
- real(dp), private mortality_mod::lpue_slope
- real(dp), private mortality_mod::lpue_slope2
- real(dp), private mortality_mod::lpue_intercept
- integer, private mortality_mod::max_per_day
- real(dp), private mortality_mod::max_time_hpd
- real(dp), private mortality mod::dredge width m
- real(dp), private mortality mod::towing speed knots
- real(dp), dimension(:), allocatable, private mortality mod::expl biomass gpsqm
- real(dp), dimension(:), allocatable, private mortality mod::usd per sqm
- real(dp), dimension(:), allocatable, private mortality_mod::expl_scallops_psqm
- real(dp), dimension(:), allocatable, private mortality_mod::expl_num
- real(dp), dimension(:), allocatable, private mortality mod::f mort
- real(dp), dimension(:), allocatable, private mortality_mod::f_mort_raw
- real(dp), dimension(:), allocatable, private mortality_mod::landings_by_num
- real(dp), dimension(:), allocatable, private mortality mod::landings wgt grams
- real(dp), dimension(:), allocatable, private mortality mod::landings wgt grams open
- real(dp), dimension(:), allocatable, private mortality mod::landings wgt grams closed
- real(dp), dimension(:), allocatable, private mortality mod::lpue
- real(dp), dimension(:), allocatable, private mortality_mod::fishing_effort
- real(dp), dimension(num_size_classes), private mortality_mod::expl_scallops_psqm_at_size
- real(dp), dimension(num_size_classes), private mortality_mod::landings_at_size
- real(dp), dimension(num_size_classes), private mortality_mod::landings_at_size_open
- real(dp), dimension(num size classes), private mortality mod::landings at size closed
- type(dataforplots), private mortality_mod::data_select

104 File Documentation

12.7 SRC/ScallopPopDensity.f90 File Reference

Functions/Subroutines

- · program scalloppopdensity
- subroutine read_startup_config (time_steps_per_year, save_by_stratum, start_year, stop_year, domain_name, plot_data_sel)

Read Input File.

• subroutine write_lat_lon_preamble (num_grids, grid, fname)

Writes lat and lon columns with headers to named file.

• subroutine write_x_y_preamble (num_grids, grid, yr_offset, fname, save_by_stratum)

Writes year, UTM-X, UTM-Y, and Depth columns with headers to named file.

• subroutine write_column_csv_by_stratum (n, f, lat, lon, stratum, header, file_name, append)

Inputs: n (integer) number of rows in f m (integer) number of columns in f header string to write as a column header f (real(dp)) values to write to csv file file_name (character(72)) filename to write f to in csv format.

- subroutine setup_data_files (plot_data_sel, num_grids, grid, domain_name, save_by_stratum, start_year, stop
 vear)
- subroutine write_recruit_estimates (ts, ts_per_year, num_grids, grid, domain_name, save_by_stratum, year, start year, recruit)

12.7.1 Function/Subroutine Documentation

12.7.1.1 read_startup_config()

Read Input File.

Reads a configuration file, 'Scallop.inp', to set data parameters for simulation

Parameters

out	domain_name	can be either MA MidAtlantic or GB GeorgesBank
out	init_cond_file_name	File name that contains intial simulation conditions
out	start_year	Starting year for simulation read from config file
out	stop_year	End year for simulation read from config file
out	time_steps_per_year	Number of times steps to evaluate growth
out	num_monte_carlo_iter	Number of iterations for Monte Carlo simulation

Here is the call graph for this function:

Here is the caller graph for this function:

12.7.1.2 scalloppopdensity()

program scalloppopdensity

106 File Documentation

Here is the call graph for this function:

12.7.1.3 setup_data_files()

```
integer, intent(in) num_grids,
type(grid_data_class), dimension(*), intent(in) grid,
character(domain_len), intent(out) domain_name,
logical, intent(in) save_by_stratum,
integer, intent(in) start_year,
integer, intent(in) stop_year)
```

Here is the call graph for this function:

Here is the caller graph for this function:

12.7.1.4 write_column_csv_by_stratum()

```
subroutine write_column_csv_by_stratum (
    integer, intent(in) n,
    real(dp), dimension(*), intent(in) f,
    real(dp), dimension(*), intent(in) lat,
    real(dp), dimension(*), intent(in) lon,
    real(dp), dimension(*), intent(in) stratum,
    character(*), intent(in) header,
    character(*), intent(in) file_name,
    logical, intent(in) append)
```

Inputs: n (integer) number of rows in f m (integer) number of columns in f header string to write as a column header f (real(dp)) values to write to csv file file name (character(72)) filename to write f to in csv format.

108 File Documentation

Here is the call graph for this function:

Here is the caller graph for this function:

12.7.1.5 write_lat_lon_preamble()

```
subroutine write_lat_lon_preamble (
                integer, intent(in) num_grids,
                type(grid_data_class), dimension(*), intent(in) grid,
                 character(*), intent(in) fname )
```

Writes lat and lon columns with headers to named file.

Here is the call graph for this function:

Here is the caller graph for this function:

12.7.1.6 write_recruit_estimates()

```
subroutine write_recruit_estimates (
    integer, intent(in) ts,
    integer, intent(in) ts_per_year,
    integer, intent(in) num_grids,
    type(grid_data_class), dimension(*), intent(in) grid,
    character(domain_len), intent(out) domain_name,
    logical, intent(in) save_by_stratum,
    integer, intent(in) year,
    integer, intent(in) start_year,
    type(recruitment_class), dimension(*), intent(in) recruit )
```

Here is the call graph for this function:

Here is the caller graph for this function:

12.7.1.7 write_x_y_preamble()

110 File Documentation

```
real(dp), intent(in) yr_offset,
character(*), intent(in) fname,
logical, intent(in) save_by_stratum )
```

Writes year, UTM-X, UTM-Y, and Depth columns with headers to named file. Here is the call graph for this function:

Here is the caller graph for this function:

12.8 SRC/ScallopRecruit.f90 File Reference

Data Types

type recruit mod::recruitment class

Modules

· module recruit_mod

Functions/Subroutines

subroutine recruit_mod::set_recruitment (recruit, n_grids, dom_name, dom_area, l_inf_mu, k_mu, shell_length
 _mm, yr_start, yr_stop)

Set_Recruitment.

subroutine recruit_mod::set_config_file_name (fname)

Used during instantiation to set the name of the file to read to for configuration parameters.

subroutine recruit_mod::read_configuration ()

Read_Configuration.

Variables

- integer, parameter recruit_mod::max_n_year = 50
- character(fname_len), private recruit_mod::config_file_name
- · integer, private recruit_mod::num_grids

- character(domain_len), private recruit_mod::domain_name
- real(dp), private recruit_mod::domain_area_sqm
- integer, private recruit_mod::recr_start_year
- integer, private recruit_mod::recr_stop_year
- real(dp), private recruit_mod::recr_period_start
- real(dp), private recruit_mod::recr_period_stop

112 File Documentation

Index

```
alpha
                                                              mortality_mod, 73
    mortality mod::mortality class, 92
                                                              recruit mod, 79
alpha mort
                                                         domain len
     mortality_mod, 73
                                                              globals, 28
area
                                                         domain_name
    grid manager mod, 43
                                                              grid manager mod, 43
                                                              growth mod, 58
area fish mort
     mortality_mod::fishingmortality, 83
                                                              mortality_mod, 73
                                                              recruit mod, 79
area list
     mortality_mod::fishingmortality, 83
                                                         dp
                                                              globals, 28
calc_lpue
                                                         dredge_width_m
     mortality_mod, 61
                                                              mortality mod, 73
comment len
                                                         enforce_non_negative_growth
     globals, 27
                                                              growth_mod, 44
Common Parameters, 17
compute_natural_mortality
                                                         expl_biomass_gpsqm
     mortality_mod, 61
                                                              mortality_mod, 73
config_dir_interp
                                                         expl_num
     globals, 27
                                                              mortality mod, 73
config_dir_sim
                                                         expl_scallops_psqm
     globals, 28
                                                              mortality_mod, 73
                                                         expl_scallops_psqm_at_size
config_dir_special
    globals, 28
                                                              mortality mod, 73
config file name
                                                         f mort
     grid manager mod, 43
                                                              mortality_mod, 73
    mortality_mod, 73
                                                         f mort raw
    recruit mod, 79
                                                              mortality mod, 74
csv_line_len
                                                         feet_per_naut_mile
     globals, 28
                                                              globals, 28
                                                         fishing_effort
data_dir
     globals, 28
                                                              mortality mod, 74
data select
                                                         fishing_mort
    mortality mod, 73
                                                              mortality mod, 74
delta time
                                                         fishing_mort_fname
                                                              mortality_mod, 74
    growth mod, 58
     mortality_mod, 73
                                                         fmort_list
destructor
                                                              mortality mod, 74
                                                         fname_len
    mortality_mod, 63
                                                              globals, 28
discard
     mortality_mod::mortality_class, 92
                                                         form_len
dollars_per_sqm
                                                              globals, 28
     mortality_mod, 63
                                                         g
domain_area_sqm
                                                              growth_mod::growth_class, 87
     growth mod, 58
```

gamma_inc_values	max_num_years, 29
growth_mod, 45	max_sides, 29
gb_cull_size_mm	meters_per_naut_mile, 29
mortality_mod, 74	ndim, 29
gb_discard	num_size_classes, 29
mortality_mod, 74	one_scallop_per_tow, 29
gb_incidental	output_dir, 29
mortality_mod, 74	pi, 29
gb_length_0	qp, 29
mortality_mod, 74	read_dev, 30
gb_mort_adult	rec_input_dir, 30
mortality_mod, 74	rec_output_dir, 30
gbc_fselect_a	region_ma, 30
mortality_mod, 74	region_n, 30
gbc_fselect_b	region_none, 30
mortality_mod, 74	region_s, 30
gbo_fselect_a	region_sw, 30
mortality_mod, 74	region_w, 30
gbo_fselect_b	shell len delta, 30
mortality_mod, 74	shell_len_max, 30
gen_size_trans_matrix	shell len min, 30
growth_mod, 45	sp, 30
get_growth_gb	tag len, 30
growth_mod, 46	term_blk, 31
get_growth_ma	term_blu, 31
growth_mod, 47	term_grn, 31
get_num_of_areas	term_red, 31
grid_manager_mod, 32	term_yel, 31
get_region	tow_area_sqm, 31
grid_manager_mod, 33	value_len, 31
globals, 25	write_dev, 31
comment_len, 27	zero_threshold, 31
config_dir_interp, 27	grams per metric ton
config_dir_sim, 28	
·	globals, 28
config_dir_special, 28	grams_per_pound
csv_line_len, 28	globals, 28
data_dir, 28	Grid Manager Mod, 15
domain_len, 28	grid_area_sqm
dp, 28	globals, 28
feet_per_naut_mile, 28	Grid_Data_Class, 84
fname_len, 28	grid_dir
form_len, 28	globals, 28
grams_per_metric_ton, 28	grid_manager_mod, 31
grams_per_pound, 28	area, 43
grid_area_sqm, 28	config_file_name, 43
grid_dir, 28	domain_name, 43
growth_out_dir, 28	get_num_of_areas, 32
init_cond_dir, 29	get_region, 33
input_str_len, 29	init_cond_fname, 43
line_len, 29	is_grid_in_special_access, 33
logic_to_double, 26	load_area_coordinates, 34
ma_gb_border, 29	load_grid_state, 35
matrixinv, 27	num_areas, 43
max_num_areas, 29	num_grids, 43

point_in_polygon_array, 36	k_mu, 87
point_in_polygon_points, 37	k_sd, 87
point_in_polygon_vector, 38	I_inf_mu, 87
read_configuration, 39	I_inf_sd, 87
set_config_file_name, 40	growth_out_dir
set_grid_manager, 40	globals, 28
set_init_cond_file_name, 41	growth_param_size
set_num_grids, 41	growth_mod, 58
set_special_access_file_name, 42	-
special_accesss_fname, 43	h_mn18
use_spec_access_data, 43	growth_mod, 48
grid_manager_mod::grid_data_class, 84	
is_closed, 85	incidental
lat, 85	mortality_mod::mortality_class, 92
lon, 85	increment_mean_std
special access index, 85	growth_mod, 49
stratum, 85	init_cond_dir
x, 85	globals, 29
y, <mark>85</mark>	init_cond_fname
year, 85	grid_manager_mod, 43
z, 85	input_str_len
grid_manager_mod::lonlatpoint, 88	globals, 29
lat, 88	IORoutines.f90
lon, 88	read_csv, 98
grid_manager_mod::lonlatvector, 89	read_scalar_field, 98
lat, 89	write_2d_scalar_field, 98
lon, 89	write_column_csv, 99
n_sides, 89	write_csv, 99
Growth_Class, 86	write_csv_h, 100
Growth_Mod, 7	write_vector_scalar_field, 100
growth_mod, 43	is_closed
delta_time, 58	grid_manager_mod::grid_data_class, 85
domain_area_sqm, 58	is_grid_in_special_access
domain name, 58	grid_manager_mod, 33
enforce_non_negative_growth, 44	
	k_mu
gamma_inc_values, 45	growth_mod::growth_class, 87
gen_size_trans_matrix, 45	k_sd
get_growth_gb, 46	growth_mod::growth_class, 87
get_growth_ma, 47	
growth_param_size, 58	l_inf_mu
h_mn18, 48	growth_mod::growth_class, 87
increment_mean_std, 49	I_inf_sd
mn18_appxc_trans_matrix, 50	growth_mod::growth_class, 87
norm_cumul_dist_fcn, 51	landings_at_size
norm_density_fcn, 52	mortality_mod, 75
num_grids, 58	landings_at_size_closed
num_time_steps, 58	mortality_mod, 75
set_growth, 53	landings_at_size_open
set_shell_lengths, 54	mortality_mod, 75
shell_to_weight, 55	landings_by_num
time_steps_year, 58	mortality_mod, 75
time_to_grow, 57	landings_wgt_grams
growth_mod::growth_class, 86	mortality_mod, 75
g, 87	landings_wgt_grams_closed
	0 - 0 - 0 -

mortality_mod, 75	max_per_day
landings_wgt_grams_open	mortality_mod, 76
mortality_mod, 75	max_rec_ind
lat	recruit_mod::recruitment_class, 93
grid_manager_mod::grid_data_class, 85	max_sides
grid_manager_mod::lonlatpoint, 88	globals, 29
grid_manager_mod::lonlatvector, 89	max_time_hpd
line_len	mortality_mod, 76
globals, 29	meters_per_naut_mile
load_area_coordinates	globals, 29
grid_manager_mod, 34	mn18_appxc_trans_matrix
load_fishing_mortalities	growth_mod, 50
mortality_mod, 64	Mortality_Class, 89
load_grid_state	Mortality_Mod, 13
grid_manager_mod, 35	mortality_mod, 59
logic_to_double	alpha_mort, 73
globals, 26	calc_lpue, 61
lon	compute_natural_mortality, 61
grid_manager_mod::grid_data_class, 85	config_file_name, 73
grid_manager_mod::lonlatpoint, 88	data_select, 73
grid_manager_mod::lonlatvector, 89	delta_time, 73
lpue	destructor, 63
mortality_mod, 75	dollars_per_sqm, 63
lpue_intercept	domain_area_sqm, 73
mortality_mod, 75	domain_name, 73
lpue_slope	dredge_width_m, 73
mortality_mod, 75	expl_biomass_gpsqm, 73
lpue_slope2	expl_num, 73
mortality_mod, 75	expl_scallops_psqm, 73
7 -	expl_scallops_psqm_at_size, 73
ma_cull_size_mm	f_mort, 73
mortality_mod, 75	f_mort_raw, 74
ma_discard	fishing_effort, 74
mortality_mod, 75	fishing mort, 74
ma_fselect_a	fishing_mort_fname, 74
mortality_mod, 75	fmort_list, 74
ma_fselect_b	gb_cull_size_mm, 74
mortality_mod, 76	gb_discard, 74
ma_gb_border	gb_incidental, 74
globals, 29	gb_length_0, 74
ma_incidental	gb mort adult, 74
mortality_mod, 76	gbc_fselect_a, 74
ma_length_0	gbc fselect b, 74
mortality_mod, 76	gbo_fselect_a, 74
ma_mort_adult	gbo_fselect_b, 74
mortality_mod, 76	landings_at_size, 75
matrixinv	landings_at_size_closed, 75
globals, 27	landings_at_size_open, 75
max_n_year	landings_by_num, 75
recruit_mod, 79	landings_wgt_grams, 75
max_num_areas	landings_wgt_grams_closed, 75
globals, 29	landings_wgt_grams_open, 75
max_num_years	load_fishing_mortalities, 64
globals, 29	lpue, 75
g	ipue, / J

lpue_intercept, 75	selectivity, 92
lpue_slope, 75	selectivity_closed, 92
lpue_slope2, 75	selectivity_open, 92
ma_cull_size_mm, 75	mortality_write_at_timestep
ma_discard, 75	mortality_mod, 64
ma_fselect_a, 75	
ma_fselect_b, 76	n_areas
ma_incidental, 76	mortality_mod::fishingmortality, 83
ma_length_0, 76	n_sides
ma_mort_adult, 76	grid_manager_mod::lonlatvector, 89
max per day, 76	n_year
max_time_hpd, 76	recruit_mod::recruitment_class, 93
mortality_write_at_timestep, 64	natural_mort_adult
num_areas, 76	mortality_mod::mortality_class, 92
num_grids, 76	natural_mort_juv
num_in_list, 76	mortality_mod::mortality_class, 92
num_time_steps, 76	natural_mortality
read configuration, 65	mortality_mod::mortality_class, 92
_ •	ndim
ring_size_selectivity, 65	globals, 29
save_by_stratum, 76	norm_cumul_dist_fcn
scallops_to_counts, 66	growth_mod, 51
set_config_file_name, 67	-
set_discard, 67	norm_density_fcn
set_fishing_effort, 68	growth_mod, 52
set_fishing_mort_file_name, 69	num_areas
set_fishing_mortality, 70	grid_manager_mod, 43
set_mortality, 71	mortality_mod, 76
set_select_data, 72	num_grids
towing_speed_knots, 76	grid_manager_mod, 43
ts_per_year, 76	growth_mod, 58
usd_per_sqm, 76	mortality_mod, 76
use_spec_access_data, 77	recruit_mod, 79
mortality_mod::dataforplots, 81	num_in_list
plot_abun, 82	mortality_mod, 76
plot_bmmt, 82	num_size_classes
plot_ebms, 82	globals, 29
plot feff, 82	num_time_steps
plot fmor, 82	growth_mod, 58
plot_land, 82	mortality_mod, 76
plot Indw, 82	, —
plot_lpue, 82	one_scallop_per_tow
plot recr, 82	globals, 29
mortality_mod::fishingmortality, 83	output_dir
area_fish_mort, 83	globals, 29
area_list, 83	
	pi
n_areas, 83	globals, 29
year, 83	plot_abun
mortality_mod::mortality_class, 91	mortality_mod::dataforplots, 82
alpha, 92	plot_bmmt
discard, 92	mortality_mod::dataforplots, 82
incidental, 92	plot_ebms
natural_mort_adult, 92	mortality_mod::dataforplots, 82
natural_mort_juv, 92	plot_feff
natural_mortality, 92	mortality_mod::dataforplots, 82
	tanty_mountainorpioto, oz

plot_fmor	read_configuration, 77
mortality_mod::dataforplots, 82	recr_period_start, 79
plot_land	recr_period_stop, 79
mortality_mod::dataforplots, 82	recr_start_year, 79
plot_lndw	recr_stop_year, 79
mortality_mod::dataforplots, 82	set_config_file_name, 77
plot_lpue	set_recruitment, 78
mortality mod::dataforplots, 82	recruit_mod::recruitment_class, 93
plot_recr	max rec ind, 93
mortality mod::dataforplots, 82	n_year, 93
point_in_polygon_array	rec_start, 93
grid_manager_mod, 36	rec_stop, 93
point_in_polygon_points	recruitment, 93
grid_manager_mod, 37	year, 94
	recruitment
point_in_polygon_vector	
grid_manager_mod, 38	recruit_mod::recruitment_class, 93
an	Recruitment_Class, 94
qp globals, 29	region_ma
giobais, 29	globals, 30
read_configuration	region_n
grid_manager_mod, 39	globals, 30
mortality_mod, 65	region_none
recruit mod, 77	globals, 30
- · · ·	region_s
read_csv	globals, 30
IORoutines.f90, 98	region_sw
read_dev	globals, 30
globals, 30	region_w
read_scalar_field	globals, 30
IORoutines.f90, 98	ring_size_selectivity
read_startup_config	mortality_mod, 65
ScallopPopDensity.f90, 104	
rec_input_dir	save_by_stratum
globals, 30	mortality_mod, 76
rec_output_dir	Scallop Population Density, 1
globals, 30	scalloppopdensity
rec_start	ScallopPopDensity.f90, 105
recruit_mod::recruitment_class, 93	ScallopPopDensity.f90
rec_stop	read_startup_config, 104
recruit_mod::recruitment_class, 93	scalloppopdensity, 105
recr_period_start	setup_data_files, 106
recruit_mod, 79	
recr_period_stop	write_column_csv_by_stratum, 107
recruit_mod, 79	write_lat_lon_preamble, 108
recr start year	write_recruit_estimates, 109
recruit_mod, 79	write_x_y_preamble, 109
recr_stop_year	scallops_to_counts
recruit mod, 79	mortality_mod, 66
-	selectivity
Recruit_Mod, 11	mortality_mod::mortality_class, 92
recruit_mod, 77	selectivity_closed
config_file_name, 79	mortality_mod::mortality_class, 92
domain_area_sqm, 79	selectivity_open
domain_name, 79	mortality_mod::mortality_class, 92
max_n_year, 79	set_config_file_name
num_grids, 79	

grid_manager_mod, 40 mortality_mod, 67	grid_manager_mod::grid_data_class, 85
recruit_mod, 77	tag_len
set_discard	globals, 30
mortality_mod, 67	term_blk
set_fishing_effort	globals, 31
mortality_mod, 68	term blu
set_fishing_mort_file_name	globals, 31
mortality_mod, 69	term grn
set_fishing_mortality	globals, 31
mortality_mod, 70	term_red
set grid manager	globals, 31
grid_manager_mod, 40	term yel
set growth	globals, 31
growth_mod, 53	time_steps_year
set_init_cond_file_name	growth_mod, 58
grid_manager_mod, 41	time_to_grow
set mortality	growth_mod, 57
- •	tow_area_sqm
mortality_mod, 71	globals, 31
set_num_grids	towing_speed_knots
grid_manager_mod, 41	mortality_mod, 76
set_recruitment	ts_per_year
recruit_mod, 78	mortality_mod, 76
set_select_data	mortanty_mod, 70
mortality_mod, 72	usd_per_sqm
set_shell_lengths	mortality_mod, 76
growth_mod, 54	use_spec_access_data
set_special_access_file_name	grid_manager_mod, 43
grid_manager_mod, 42	mortality_mod, 77
setup_data_files	mortanty_mod, 77
ScallopPopDensity.f90, 106	value_len
shell_len_delta	globals, 31
globals, 30	g , -
shell_len_max	write_2d_scalar_field
globals, 30	IORoutines.f90, 98
shell_len_min	write_column_csv
globals, 30	IORoutines.f90, 99
shell_to_weight	write_column_csv_by_stratum
growth_mod, 55	ScallopPopDensity.f90, 107
sp	write_csv
globals, 30	IORoutines.f90, 99
special_access_index	write_csv_h
grid_manager_mod::grid_data_class, 85	IORoutines.f90, 100
special_accesss_fname	write dev
grid_manager_mod, 43	globals, 31
SRC/aaaPageOrder.f90, 95	write_lat_lon_preamble
SRC/Globals.f90, 95	ScallopPopDensity.f90, 108
SRC/GridManager.f90, 96	write recruit estimates
SRC/IORoutines.f90, 97	ScallopPopDensity.f90, 109
SRC/ScallopGrowth.f90, 100	write_vector_scalar_field
SRC/ScallopMortality.f90, 101	IORoutines.f90, 100
SRC/ScallopPopDensity.f90, 104	write_x_y_preamble
SRC/ScallopRecruit.f90, 110	ScallopPopDensity.f90, 109
stratum	Country of Society 100

```
x grid_manager_mod::grid_data_class, 85

y grid_manager_mod::grid_data_class, 85

year grid_manager_mod::grid_data_class, 85

mortality_mod::fishingmortality, 83

recruit_mod::recruitment_class, 94

z grid_manager_mod::grid_data_class, 85

zero_threshold
 globals, 31
```