ساختمان داده ها

هرم (Heap)

مدرس: غیاثی شیرازی دانشگاه فردوسی مشهد

Min Tree Definition

Each tree node has a value.

Value in any node is the minimum value in the subtree for which that node is the root.

Equivalently, no descendent has a smaller value.

Min Tree Example

Root has minimum element.

Max Tree Example

Root has maximum element.

Min Heap Definition

- complete binary tree
- min tree

Min Heap With 9 Nodes

Complete binary tree with 9 nodes.

Min Heap With 9 Nodes

Complete binary tree with 9 nodes that is also a min tree.

Max Heap With 9 Nodes

Complete binary tree with 9 nodes that is also a max tree.

Heap Height

Since a heap is a complete binary tree, the height of an n node heap is

• • • • • • • • • • •

Heap Height

Since a heap is a complete binary tree, the height of an n node heap is $\lceil \log_2(n+1) \rceil$.

A Heap Is Efficiently Represented As An Array

Moving Up And Down A Heap

Complete binary tree with 10 nodes.

Complete binary tree with 11 nodes.

New element is 15.

New element is 15.

New element is 15.

Complexity Of Insert

Complexity is O(log n), where n is heap size.

Max element is in the root.

After max element is removed.

Heap with 10 nodes.

Max element is 15.

After max element is removed.

Heap with 9 nodes.

Reinsert 7.

Reinsert 7.

Reinsert 7.

Complexity Of Remove Max Element

Complexity is $O(\log n)$.

Move to next lower array position.

Find a home for 2.

Find a home for 2.

Done, move to next lower array position.

Done.

Time Complexity

Height of heap = h.

Number of subtrees with root at level j is $\leq 2^{j-1}$.

Time for each subtree is O(h-j+1).

Complexity

Time for level j subtrees is $\leq 2^{j-1}(h-j+1) = t(j)$.

Total time is T=t(1) + t(2) + ... + t(h-1) = O(n).

The first section of the first section is
$$T = \sum_{j=1}^{h} (h-j) + t(2) + \dots + t(n-1) = O(n).$$

$$T = \sum_{j=1}^{h} (h-j+1)2^{j-1} = \sum_{j=0}^{h-1} (h-j)2^{j}$$

$$= \sum_{j=0}^{h-1} \sum_{k=1}^{h-j} 2^{j} = \sum_{k=1}^{h} \sum_{j=0}^{h-k} 2^{j} = \sum_{k=1}^{h} (2^{h-k+1} - 1)$$

$$\sum_{k=1}^{h} (2^{k} - 1) = 2^{h+1} - 1 - 1 - h \le 2(2^{h}) \in O(n)$$

$$\sum_{j=0}^{h-1} (h-j)2^{j}$$

$$2^0$$
 2^1 2^2 ... 2^{h-1}

$$2^0$$
 2^1 2^2 ...

$$2^0$$
 2^1 2^2

$$2^0$$
 2^1

Heap Sort

- (O(n)) را با داده هایی که باید مرتب شوند پر می کنیم. (heap)
- در هر مرحله کوچک ترین عنصر را حذف می کنیم و به ترتیب در لیست خروجی قرار می دهیم. (O(logn
 - با n بار تکرار عمل حذف عنصر کمینه، تمام عناصر به ترتیب در لیست خروجی قرار می گیرند.
 - زمان كل: (O(nlogn