1 Prostori in preslikave

1.1 Topološki prostori

- 1. Topološki prostori
 - **Definicija.** Topologija. Odprte množice.
 - **Definicija.** Topološki prostor.
 - **Definicija.** Naj bo (X, \mathcal{T}) prostor, $A \subseteq X$. **Okolica** točke x. x je **notranja** točka A. x je **mejna** točka A. Notranjost A. Meja A. Zaprtje A. A je **odprta**. A je **zaprta**. x je **stekališče** A. $x = \lim_{x_n} A$.
 - *Primer.* Naj bo (X, d) metrični prostor. **Porojena (inducirana)** topologija z metriko d. **Metrizabilen** prostor.
 - *Primer*. Trivialna topologija. Diskretna topologija.
 - Primer. Kaj velja za poljubno družino zaprtih množic? Topologija končnih komplementov.
 - *Primer*. Kakšna zvezna med $\overline{A \cup B}$ in $\overline{A} \cup \overline{B}$ ter med $\overline{A \cap B}$ in $\overline{A} \cap \overline{B}$?

$\mathbf{2}$ Topološke lastnosti

Ločljivost 2.1

Naj bo (X, \mathcal{T}) topološki prostor.

- 1. Hausdorffovi in Frechetovi prostori
 - **Definicija.** Kadar pravimo, da \mathcal{T} loči $A \subseteq X$ od $B \subseteq X$?
 - **Definicija.** Kadar pravimo, da \mathcal{T} ostro loči $A \subseteq X$ od $B \subseteq X$?
 - *Primer.* Ali je trivialna topologija loči množice? Kaj pa diskretna?
 - *Primer.* Kaj je zaprtje podmnožice $A \subseteq X$ v jeziku ločljivosti?
 - **Definicija.** Hausdorffov prostor.
 - *Primer.* Ali so Hausdorffovi:
 - Metrični prostori.
 - $-(X,\mathcal{T}_{kk}), X$ je neskončna.
 - Trditev. 3 ekvivalentne trditve o Hausdorffovih prostorih. Diagonala v produktu.
 - **Izrek.** Lastnosti Hausdorffovih prostorov:
 - (a) Kaj lahko povemo o končnih množicah?
 - (b) Koliko limit lahko ima zaporedje v Hausdorffovem prostoru?

 - (c) Naj bosta $f, g: X \to Y^{\text{Haus}}$ preslikavi. Kaj lahko povemo o množici $\{x \in X \mid f(x) = g(x)\}$? (d) Naj bosta $f, g: X \to Y^{\text{Haus}}$ preslikavi. Kaj če se f, g ujemata na kakšne goste podmnožice $A \subseteq X$?
 - (e) Kaj lahko povemo o grafu preslikave $f: X \to Y^{\text{Haus}}$?
 - **Definicija.** Frechetov prostor.
 - *Primer.* Ali so Hausdorffovi prostori Frechetovi? Ali je trivialen prostor Frechetov?
 - **Trditev.** Karakterizacija Frechetova prostora (enojčki).
 - **Definicija.** Multiplikativna lastnost.
 - Trditev. Ali sta Hausdorffova in Frechetova lastnosti dedni in multiplkativni?
- 2. Regularnost in normalnost
 - **Definicija.** Regularen prostor.
 - **Definicija.** Normalen prostor.
 - *Primer.* V kakšni povezavi so normalnost, regularnost, Hausdorff in Frechet?
 - *Primer.* Naj bo (X,\mathcal{T}) Hausdorffov in $\mathcal{T}\subseteq\mathcal{T}'$. Ali je (X,\mathcal{T}') Hausdorffov? Ali je Hausdorffova lastnost implicira regularnost?
 - **Trditev.** Ali je vsak metričen prostor normalen?
 - Trditev. Ali je regularnost dedna?
 - Trditev. Naj bo X normalen. Kaj je zadostni pogoj, da bi bil $A \subseteq X$ normalen?
- 3. Aksiomi ločljivosti
 - **Aksiom.** Aksiomi $T_0 T_4$.
 - *Opomba.* Kako s aksiomi se izraža regularnost in normalnost? Kaj je T_0, T_1, T_2 ?
 - *Primer*. Zapiši, kaj iz česa sledi.
 - **Trditev.** Karakterizacija T_3 .
 - **Trditev.** Karakterizacija T_4 .
 - **Trditev.** Ali je T_3 multiplikativna?
 - Posledica. Ali je regularnost multiplikativna?
 - Izrek. Izrek Tihonova. Zadostni pogoj za normalnost prostora.

Rezultati z vaj

• Ali je T_4 multiplikativna? Ali je normalnost multiplikativna?

2.2 Povezanost

Naj bo (X, \mathcal{T}) topološki prostor.

- 1. Povezanost
 - **Definicija.** Nepovezan prostor.
 - **Definicija.** Povezan prostor.
 - Trditev. 4 ekvivalentne trditve o nepovazanosti.
 - *Opomba*. Kaj pravi trditev o povezanosti?
 - **Izrek.** Karakterizacija povezanosti v R.
 - Izrek. Ali je povezanost topološka lastnost?
 - Izrek. Lastnosti povezanosti:
 - (a) Kaj lahko povemo o uniji družine povezanih podmnožic v X, ki imajo neprazen presek?
 - (b) Ali je povezanost multiplikativna?
 - (c) Pot v X. Zadostni pogoj za povezanost prostora.
 - (d) Recimo, da je A povezan. Kaj lahko povemo o vsake množice B, za katero velja $A \subseteq B \subseteq \overline{A}$?
 - *Primer*. Ali so povezane:
 - Vsaka konveksna podmnožica v \mathbb{R}^n .
 - Komplement končne množice v \mathbb{R}^n , n > 1.
 - Komplement števne množice v \mathbb{R}^n , n > 1.
 - *Primer*. Ali je $\mathbb{R} \approx \mathbb{R}^n$, n > 1?
 - Izrek. Izrek o vmesni vrednosti.
- 2. Povezanost s potmi
 - *Primer*. Kaj je varšavski lok (oz. lok Sierpinskega)?
 - **Definicija.** Kadar rečemo, da je X povezan s potmi?
 - Trditev. Zadostni pogoj za povezanost X.
 - *Opomba*. Ali velja implikacija v nasprotno smer?
- 3. Komponente