Комплекс для измерения количества газа «Ультрамаг» Протокол информационного обмена

1 Основные положения

- 1.1 Настоящий документ распространяется на комплекс измерения количества газа «Ультрамаг» (далее комплекс), работающие в составе системы автоматизированного диспетчерского управления.
- 1.2 Комплекс обеспечивает чтение и запись данных по интерфейсам RS-485 и RS-232. В интерфейсе RS-485 используется четыре провода (2 провода прием/передача данных, 2 провода питание). Интерфейс RS-232 комплекса использует четыре провода: RxD, TxD, RTS, GND. И следующие настроечные данные: один стоповый бит, нет четности и скорость обмена по умолчанию 2400 бит/сек. (для экономии потребления питания) с возможностью поднятия по команде до 19200 бит/сек. Обратно переход на скорость 2400 бит/сек. происходит автоматически спустя 2 минут тишины при обмене.
- 1.3 Общепринятое наименование протокола информационного обмена используемого в комплексе MODBUS RTU.

Протокол информационного обмена это обмен данными между ведущим и ведомым устройствами. Ведущее устройство управляет всей последовательной деятельностью путем избирательного опроса одного или нескольких ведомых устройств. Протокол комплекса допускает одно ведущее устройство и до 15 ведомых устройств на общей линии. Каждому устройству присваивается адрес, чтобы отличать его от других подключенных устройств.

Устройства соединяются, используя технологию — «главный/подчиненный», при которой только одно устройство (главный) может инициировать передачу (сделать запрос). Другие устройства (подчиненные) передают запрашиваемые главным устройством данные или производят запрашиваемые действия. Типичное главное устройство включает в себя ведущий (HOST) процессор и панели программирования. Типичное подчиненное устройство — комплекс.

2 Протокол комплекса MODBUS - RTU

2.1 В протоколе MODBUS – RTU каждый байт сообщения содержит два 4-х битных шестнадцатеричных числа.

Каждое сообщение передается непрерывным потоком.

Система кодировки: 8-ми битная двоичная, шестнадцатеричная 0 - 9, A - F Две шестнадцатеричные цифры содержатся в каждом 8-ми битном байте сообщения. Контрольная сумма: Cyclical Redundancy Check (CRC).

В MODBUS – RTU сообщение начинается с интервала тишины равного времени передачи 3.5 символов при данной скорости передачи в сети. Первым полем передается адрес устройства.

Вслед за последним передаваемым символом также следует интервал тишины продолжительностью не менее 3.5 символов. Новое сообщение должно начинаться не раньше этого интервала.

2.2 В комплексе реализовано две функции протокола MODBUS – RTU: 4 (0x04) — чтение значений из нескольких регистров (Read Input Registers) и 16 (0x10) — запись значений в несколько регистров хранения (Preset Multiple Registers).

4 (0x04) — чтение значений из нескольких регистров (Read Input Registers)

Запрос состоит из адреса первого элемента таблицы, значение которого требуется прочитать, и количества считываемых элементов. Адрес и количество данных задаются 16-битными числами, старший байт каждого из них передается первым.

В ответе передаются запрошенные данные. Количество байт данных зависит от количества запрошенных элементов. Перед данными передается один байт, значение которого равно количеству байт данных.

Значения регистров хранения передаются, начиная с указанного адреса, по два байта на регистр, старший байт каждого регистра передаётся первым.

Типичный фрейм сообщения функции 4 (0х04) показан ниже:

Старт	Адрес прибора	Функция	стартового		регистров		- 16	Стоп	
T1-T2- T3-T4	8 бит	8 бит	16 бит		16 бит	Γ	16 бит	Γ	T1-T2- T3-T4
13-14			CT.	Мл.	CT.	Мл.	Мл.	CT.	

Содержание поля «Адрес прибора»: Адресное поле фрейма содержит 8 бит. Допустимый адрес передачи находится в диапазоне 1 - 15. Каждому подчиненному устройству присваивается адрес в пределах от 1 до 15.

Содержание поля «Функция»: Поле функции фрейма содержит 8 бит (1 байт).

Когда подчиненный отвечает главному, он использует поле кода функции для фиксации ошибки. В случае нормального ответа подчиненный повторяет оригинальный код функции. Если имеет место ошибка, возвращается код функции с установленным в 1 старшим битом.

Например, сообщение от главного подчиненному - прочитать группу регистров, имеет следующий код функции:

0000 0100 (04 hex)

Если подчиненный выполнил затребованное действие без ошибки, он возвращает такой же код. Если имеет место ошибка, то он возвращает:

1000 0100 (84 hex)

В добавление к изменению кода функции, подчиненный размещает в поле данных уникальный код, который говорит главному, какая именно ошибка произошла, или причину ошибки.

Фрейм сообщения об ошибке, с примером:

Адрес прибора	Ошибка	Код ошибки	CRC	C-16
1 байт	1 байт	1 байт	2 ба	йта
0x01	0x84	0x01	Мл. байт	Ст. байт

Коды ошибок:

0x01 (1) – Ошибка CRC или команда комплексом не распознана;

0х02 (2) — Возникает при попытке записи в регистры с установленным переключателем программирования в закрытом положении или при не введенном пароле для разрешения записи (если он установлен на комплексе). А так же при запросе за пределы адресного пространства комплекса.

Содержание поля «Адрес стартового регистра»: Поле данного фрейма содержит 16 бит (2 байта). В нем находится адрес стартового регистра, с которого необходимо начать чтение данных. Старший байт находится на первом месте, младший на втором.

Содержание поля «Количество регистров»: Поле данного фрейма содержит 16 бит (2 байта). Содержит количество регистров, которых надо передать комплексу главному устройству (мастеру) начиная с поля «Адрес стартового регистра».

Содержание поля «CRC-16»: Поле данного фрейма содержит 16 бит (2 байта) контрольной суммы CRC-16. Контрольная сумма вычисляется передающим устройством

и добавляется в конец сообщения. Принимающее устройство вычисляет контрольную сумму в процессе приема и сравнивает ее с полем CRC принятого сообщения.

Алгоритм генерации CRC:

- 1) 16-ти битный регистр загружается числом FFFF hex (все 1), и используется далее как регистр CRC.
- 2) Первый байт сообщения складывается по ИСКЛЮЧАЮЩЕМУ ИЛИ с содержимым регистра CRC. Результат помещается в регистр CRC.
- 3) Регистр CRC сдвигается вправо (в направлении младшего бита) на 1 бит, старший бит заполняется 0.
 - 4) Если младший бит 0: повторяется шаг 3 (сдвиг).

Если младший бит 1: делается операция ИСКЛЮЧАЮЩЕЕ ИЛИ регистра CRC и полиномиального числа A001 hex.

- 5) Шаги 3 и 4 повторяются восемь раз.
- 6) Повторяются шаги со второго по пятый для следующего байта сообщения. Это повторяется до тех пор, пока все байты сообщения не будут обработаны.
 - 7) Финальное содержание регистра CRC и есть контрольная сумма.

Например, чтение регистра нештатных ситуаций:

Фрейм запроса:

				Τ.0			
		Адрес		Количество			
Адрес прибора	Функция	стартового		регистров		CRC-16	
		регистра					
1 байт	1 байт	2 байта		2 байта		2 байта	
		Ct.	Мл.	Ct.	Мл.	Мл.	Ct.
0x01	0x04	0x01	0x1B	0x00	0x04	0x80	0x32

Фрейм ответа:

Адрес прибора	Функция	Количество	Данные	CRC-16	
		байт			
1 байт	1 байт	1 байт	8 байт	2 байта	
0x01	0x04	0x08	0x03 0x02 0x00 0x00 0x00 0x00 0x00 0x00	0x47 0xD8	

Получим: 32000000.

На дисплее прибора будет выглядеть следующим образом:

Er 3200000

Последний байт (восьмой) зарезервирован.

$16\ (0x10)$ - запись значений в несколько регистров хранения (Preset Multiple Registers).

Команда состоит из адреса элемента, количества изменяемых элементов, количества передаваемых байт устанавливаемых значений и самих устанавливаемых значений. Данные упаковываются так же, как в командах чтения данных.

Ответ состоит из начального адреса и количества изменённых элементов.

Например, запись рабочего объема равным 1000 куб.м:

Фрейм запроса:

Адрес прибора	Функция	старт	рес ового стра	Колич регис	ество стров	Количество байт	Данные	CRC	C-16
1 байт	1 байт	-	айта	2 ба	ійта	1 байт	8 байт	2 ба	йта
1 Ouiii	1 04111	CT.	Мл.	CT.	Мл.	1 04111	0x40 0x8F	Мл.	Ст.
							0x40 0x00		
0x01	0x10	0x00	0x47	0x00	0x04	0x08	$0x00\ 0x00$	0xD7	0x69
							$0x00\ 0x00$		

Фрейм ответа:

Адрес прибора	Функция	Адрес стартового регистра		Количество регистров		CRC-16	
1 байт	1 байт	2 байта		2 байта		2 ба	айта
		Ст.	Мл.	Ст.	Мл.	Мл.	Ст.
0x01	0x10	0x00	0x47	0x00	0x04	0xF0	0x1D

Если на комплексе установлен пароль или переключатель программирования находится в закрытом положении, то при попытке записи комплекс сгенерирует ошибку.

Перед записью параметров необходимо проверить установлен ли пароль на комплексе. После чего если пароль установлен записать пароль для получения доступа к изменению параметров. Доступ к изменению параметров закрывается автоматически после 60 секунд тишины или при записи неверного пароля.

Список параметров в свободном доступе (т.е. запись доступна в любом положении переключателя программирования и с установленном паролем на комплексе):

«Время индикации» - интервал времени, когда дисплей комплекса находится в активном состоянии;

- «Скорость обмена» скорость обмена по интерфейсу RS-232.
- «Название предприятия» используется, при печати архивов с комплекса;

Список параметров, изменение которых запрещено только при установленном пароле на комплексе:

«Контрактный час», «Время и дата», «Плотность газа», «Содержание углекислого газа», «Содержание азота», «Атмосферное давление».

Все остальные параметры запрещено изменять при установленном переключателе программирование в закрытом положении. Для их изменения необходимо перевести переключатель программирования в открытое положение и ввести пароль, если он был установлен на комплексе.

Чтение всех параметров, кроме пароля разрешено.

2.3 Работа с архивами.

В комплексе имеет пять разновидностей архивов:

- 1) Архив данных за час содержит дату и время, среднее значение за час по давлению (кПа), по температуре (град. С) и общий накопленный рабочий и стандартный объем (куб. м/час).
- 2) Архив данных за сутки содержит дату и время, среднее значение за сутки по давлению (кПа) и температуре (град. С), накопленный рабочий и стандартный объем за сутки (куб. м/час), общий накопленный рабочий и стандартный объем (куб. м/час).
- 3) Архив данных за месяц содержит дату и время, накопленный рабочий и стандартный объем за месяц (куб. м/час), общий накопленный рабочий и стандартный объем (куб. м/час).

- 4) Архив нештатных ситуаций содержит дату и время, код нештатной ситуации, изменение (вход/выход) и значение при котором произошло данное изменение.
- 5) Архив изменений содержит дату и время, измененный параметр (код измененного параметра), старое значение (значение измененного параметра, которое было до его изменения) и новое значение (значение измененного параметра, которое стало после его изменения).

Все архивы ведутся в комплексе циклически, и при заполнении ими всего отведенного объема памяти новая запись начинает затирать самую старую последнюю запись.

2.3.1 Структура архива данных за час:

Каждая запись в данном архиве имеет размер 28 байт и выглядит следующим образом:

Наименование	Размер	Вид
День	1 байт	DEC
Месяц	1 байт	DEC
Год	1 байт	DEC
Час	1 байт	DEC
Среднее давление за час	4 байта	float
Средняя температура за час	4 байта	float
Общий нак. рабочий объем	8 байт	double
Общий нак. стандартный объем	8 байт	double

Общее количество строк (записей) не менее 14400 штук.

2.3.2 Структура архива данных за сутки:

Каждая запись в данном архиве имеет размер 36 байт и выглядит следующим образом:

таждая запись в данном архиве имеет размер 30 осит и выплыдит следующим образом.						
Наименование	Размер	Вид				
День	1 байт	DEC				
Месяц	1 байт	DEC				
Год	1 байт	DEC				
Час	1 байт	DEC				
Среднее давление за сутки	4 байта	float				
Средняя температура за сутки	4 байта	float				
Нак. рабочий объем за сутки	4 байта	float				
Нак. стандартный объем за сутки	4 байта	float				
Общий нак. рабочий объем	8 байт	double				
Общий нак. стандартный объем	8 байт	double				

Общее количество строк в архиве не менее 1800 штук.

2.3.3 Структура архива данных за месяц:

Каждая запись в данном архиве имеет размер 28 байт и выглядит следующим образом:

Наименование	Размер	Вид
День	1 байт	DEC
Месяц	1 байт	DEC
Год	1 байт	DEC
Час	1 байт	DEC
Нак. рабочий объем за месяц	4 байта	float
Нак. стандартный объем за месяц	4 байта	float
Общий нак. рабочий объем	8 байт	double
Общий нак. стандартный объем	8 байт	double

Общее количество строк в архиве не менее 2000 штук.

2.3.4 Структура архива нештатных ситуаций:

Каждая запись в данном архиве имеет размер 16 байт и выглядит следующим образом:

		7.3 . 1
Наименование	Размер	Вид
День	1 байт	DEC
Месяц	1 байт	DEC
Год	1 байт	DEC
Час	1 байт	DEC
Минута	1 байт	DEC
Секунда	1 байт	DEC
Код нештатной ситуации	1 байт	DEC
Изменение (1-вход/ 0-выход)	1 байт	DEC
Значение	8 байт	double

Коды нештатных ситуаций расписаны в руководстве оператора комплекса.

Общее количество строк в архиве не менее 4000 штук.

2.3.5 Структура архива изменений:

Каждая запись (строка) в данном архиве имеет размер 22 байта и выглядит следующим образом:

Наименование	Размер	Вид
День	1 байт	DEC
Месяц	1 байт	DEC
Год	1 байт	DEC
Час	1 байт	DEC
Минута	1 байт	DEC
Код измененного параметра	1 байт	DEC
Старое значение	8 байт	double
Новое значение	8 байт	double

Общее количество строк в архиве не менее 2000 штук.

Коды параметров:

- 1 Время и дата;
- 2 Содержание углекислого газа;
- 3 Содержание азота;
- 4 Плотность газа;
- 5 Подстановочное значение для нижней границы датчика давления;
- 6 Подстановочное значение для верхней границы датчика давления;
- 7 Нижняя граница датчика давления;
- 8 Верхняя граница датчика давления;
- 9 Подстановочное значение для температуры газа;
- 10 Максимальный рабочий расход счетчика;
- 11 Минимальный рабочий расход счетчика;
- 12 Подстановочное значение минимального расхода счетчика;
- 13 Подстановочное значение максимального расхода счетчика;
- 14 Вид подстановочного значения по расходу;
- 15 Зарезервировано;
- 16 Корректировка датчика давления;
- 17 Корректировка датчика температуры газа;
- 18 Зарезервировано;
- 19 Период измерений;

- 20 Атмосферное давление;
- 21 Рабочий объем газа;
- 22 Количество вмешательств в параметры ультразвукового преобразователя расхода. Для чтения любого архива сначала необходимо записать по адресу 303 DEC (0x012F HEX) порядковый номер архива. Если работа происходит с одним архивом, то данную операцию достаточно сделать один раз.

Порядковый номер архива:

- 1 Архив данных за час;
- 2 Архив данных за сутки;
- 3 Архив данных за месяц;
- 4 Архив нештатных ситуаций;
- 5 Архив изменений.

После записи порядкового номера архива, необходимо записать порядковый номер строки архива, которую нужно прочитать. Порядковый номер записи 1 соответствует последней записи в данном архиве на данный момент. Соответственно порядковый номер записи 2 соответствует предпоследней записи в архиве на данный момент и т.д. порядковый номер записи архива находится по адресу 305 DEC (0x0131 HEX). После чего комплекс считает с ПЗУ архивную запись с указанным порядковым номером и переместит её по адресу начиная с 321 DEC (0x0141 HEX). Следующим шагом нужно прочитать данную запись, начиная с адреса 321 DEC (0x0141 HEX) командой чтения регистров. Длина в байтах данной записи будет зависеть от типа запрашиваемого архива. При этом необходимо помнить, что в команде чтения указывается количество регистров, а размер каждого регистра равен 2 байтам.

3. Таблица регистров.

Наименование	Тип	Размер	Адрес DEC	Адрес НЕХ
Дата и время		•	•	
День	unsigned int	2 байта	1	0x0001
Месяц	unsigned int	2 байта	3	0x0003
Год	unsigned int	2 байта	5	0x0005
Часы	unsigned int	2 байта	7	0x0007
Минуты	unsigned int	2 байта	9	0x0009
Секунды	unsigned int	2 байта	11	0x000B
Текущие параметры				
Рабочий расход газа	double	8 байт	15	0x000F
Стандартный расход газа	double	8 байт	23	0x0017
Давление газа	double	8 байт	31	0x001F
Температура газа	double	8 байт	39	0x0027
Коэффициент коррекции	double	8 байт	63	0x003F
Стандартный объем газа	double	8 байт	71	0x0047
Рабочий объем газа	double	8 байт	79	0x004F
Регистр нештатных ситуаций	массив char	8 байт	283	0x011B
Конфигурация				
Плотность газа	double	8 байт	95	0x005F
Содержание углекислого газа	double	8 байт	103	0x0067
Содержание азота	double	8 байт	111	0x006F
Подстановочное значение для	double	8 байт	119	0x0077
температуры газа				

				•
Подстановочное значение максимального расхода счетчика	double	8 байт	127	0x007F
Подстановочное значение минимального расхода	double	8 байт	135	0x0087
счетчика Максимальный рабочий расход счетчика	double	8 байт	143	0x008F
Минимальный рабочий расход счетчика	double	8 байт	151	0x0097
Подстановочное значение для верхней границы датчика давления	double	8 байт	159	0x009F
Подстановочное значение для нижней границы датчика давления	double	8 байт	167	0x00A7
Атмосферное давление	double	8 байт	183	0x00B7
Система				
Контрактный день месяца	unsigned int	2 байта	199	0x00C7
Контрактный час суток	unsigned int	2 байта	197	0x00C5
Подстановочное значение по расходу (0 – по стандартному, 1 – по рабочему)	unsigned int	2 байта	201	0x00C9
Количество вмешательств в параметры ультразвукового преобразователя расхода	unsigned int	2 байта	203	0x00CB
Период измерений (сек.)	unsigned int	2 байта	205	0x00CD
Время индикации (сек.)	unsigned int	2 байта	209	0x00D1
Другие параметры				
Сетевой адрес прибора	unsigned int	2 байта	245	0x00F5
Корректировка хода часов (сек.)	int	2 байта	247	0x00F7
Скорость обмена по интерфейсу RS-232 (2400 – 2400 бит/сек.; 19200 – 19200 бит/сек.)	unsigned long	4 байта	401	0x0191
Название предприятия	массив char, в DOS кодировке	30 байт	601	0x0259
Номер прибора	Maccub char, в DOS кодировке	10 байт	631	0x0277
Номер датчика давления газа	Maccub char, в DOS кодировке	10 байт	641	0x0281
Номер датчика температуры газа	Maccив char, в DOS кодировке	10 байт	651	0x028B
Пароль (для открытия доступа на запись необходимо записать пароль по данному адресу)	unsigned long	4 байта	409	0x0199

Проверка установки пароля: 1 – пароль установлен	unsigned int	2 байта	413	0x019D
0 – пароль не установлен				

Таблица ограничений по вводу данных:

Название параметра	Минимальное значение	Максимальное значение
Рабочий объем газа	0	Не ограничено
Плотность газа	0,5	1,5
Содержание углекислого газа	0	15
Содержание азота	0	15
Подстановочное значение для	-40	60
температуры газа		
Подстановочное значение	0	25000
максимального расхода		
счетчика		
Подстановочное значение	0	10000
минимального расхода		
счетчика		
Максимальный рабочий расход	0	25000
счетчика		
Минимальный рабочий расход	0	10000
счетчика		
Подстановочное значение для	0	500000
верхней границы датчика		
давления		
Подстановочное значение для	0	10000
нижней границы датчика		
давления		
Атмосферное давление	500	900
Контрактный час суток	0	23
Контрактный день месяца	1	28
Период измерений	5	60
Период индикации	5	60
Сетевой адрес прибора	1	16