Vv256 Lecture 26

Dr Jing Liu

UM-SJTU Joint Institute

December 4, 2017

Definition

A vector ${\bf y}$ in an inner vector space ${\cal V}$ is said to be orthogonal to a subspace ${\cal H}$ of ${\cal V}$ if ${\bf y}$ is orthogonal to all vectors in the subspace ${\cal H}$, meaning that

$$\langle \mathbf{y}, \mathbf{w} \rangle = 0$$
 for all vectors \mathbf{w} in \mathcal{H} .

• If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis of \mathcal{H} , then \mathbf{y} is orthogonal to \mathcal{H} if and only if \mathbf{y} is orthogonal to all the vectors in the basis \mathcal{H} .

Q: Why the above must be true?

Theorem

For a vector \mathbf{y} in an inner space \mathcal{V} and a subspace \mathcal{H} of \mathcal{V} , we can write

y = p + z, where p is some vector in \mathcal{H} and z is orthogonal to \mathcal{H} .

Moreover, this representation or decomposition is unique.

Proof

• We need to show such a decomposition exists and it is unique. Suppose

$$\mathcal{Q} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$$

is an orthonormal basis of \mathcal{H} , and consider a vector \mathbf{p} in \mathcal{H} ,

$$\mathbf{p} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n$$

 \bullet The decomposition will exist if for every ${\bf y}$ in ${\cal V}$ there exists ${\bf p}$ such that

the vector
$$\mathbf{z} = \mathbf{y} - \mathbf{p}$$
 is orthogonal to \mathcal{H} .

• Consider the inner product for arbitrary i = 1, ..., n,

$$\langle \mathbf{u}_{i}, \mathbf{z} \rangle = \langle \mathbf{u}_{i}, \mathbf{y} - \mathbf{p} \rangle = \langle \mathbf{u}_{i}, \mathbf{y} - \alpha_{1} \mathbf{u}_{1} - \alpha_{2} \mathbf{u}_{2} - \dots - \alpha_{n} \mathbf{u}_{n} \rangle$$

$$= \langle \mathbf{u}_{i}, \mathbf{y} \rangle - \alpha_{1} \langle \mathbf{u}_{i}, \mathbf{u}_{1} \rangle - \alpha_{2} \langle \mathbf{u}_{i}, \mathbf{u}_{2} \rangle - \dots - \alpha_{n} \langle \mathbf{u}_{i}, \mathbf{u}_{n} \rangle$$

$$= \langle \mathbf{u}_{i}, \mathbf{y} \rangle - \alpha_{i} \langle \mathbf{u}_{i}, \mathbf{u}_{i} \rangle$$

$$= \langle \mathbf{u}_{i}, \mathbf{v} \rangle - \alpha_{i}$$

Proof

ullet ${f z}$ is orthogonal to the subspace ${\cal H}$ if ${f z}$ is orthogonal to ${f u}_i$ for all i, that is,

$$\langle \mathbf{u}_i, \mathbf{z} \rangle = \langle \mathbf{u}_i, \mathbf{y} \rangle - \alpha_i = 0,$$
 for all i .

• This is achieved if and only if

$$\alpha_i = \langle \mathbf{u}_i, \mathbf{y} \rangle, \quad \text{for all } i.$$

• Therefore if we let

$$\mathbf{p} = \alpha_1 \mathbf{u}_1 + \alpha_2 \mathbf{u}_2 + \dots + \alpha_n \mathbf{u}_n$$
$$= \langle \mathbf{u}_1, \mathbf{y} \rangle \mathbf{u}_1 + \langle \mathbf{u}_2, \mathbf{y} \rangle \mathbf{u}_2 + \dots + \langle \mathbf{u}_n, \mathbf{y} \rangle \mathbf{u}_n,$$

then z = y - p is orthogonal to \mathcal{H} .

• Since there is only one set of α_i for a given y, the decomposition is unique.

Definition

If ${\cal H}$ is a subspace of ${\cal V}$ with an orthonormal basis ${f u}_1,\ldots,{f u}_n$, then the vector ${f p}$

$$\mathbf{p} = \langle \mathbf{u}_1, \mathbf{y} \rangle \mathbf{u}_1 + \langle \mathbf{u}_2, \mathbf{y} \rangle \mathbf{u}_2 + \dots + \langle \mathbf{u}_n, \mathbf{y} \rangle \mathbf{u}_n, \qquad \text{for all } \mathbf{y} \text{ in } \mathcal{V}\text{,}$$

is the vector such that

$$y = p + z$$
, where p is in \mathcal{H} and z is orthogonal to \mathcal{H} .

 $\mathbf p$ is known as the orthogonal projection of $\mathbf y$ onto the subspace $\mathcal H,$ denoted by

$$\mathbf{p} = \operatorname{proj}_{\mathcal{H}} \mathbf{y}$$

Exercise

Given
$$\mathcal{S} = \{\mathbf{v}_1, \mathbf{v}_2\}$$
, where $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$, find $\operatorname{proj}_{\mathcal{H}}(\mathbf{y})$

where \mathcal{H} is the subspace of \mathbb{R}^3 generated by the set \mathcal{S} .

Solution

- Assume the usual addition, scalar multiplication and inner product for \mathbb{R}^3 .
- Notice that

$$\mathbf{v}_1 \cdot \mathbf{v}_2 = 1 - 1 + 0 = 0$$

which means $\mathcal{Q} = \{\frac{\mathbf{v}_1}{|\mathbf{v}_1|}, \frac{\mathbf{v}_2}{|\mathbf{v}_2|}\}$ forms an orthonormal basis for $\mathcal{H} = \mathrm{span}\,(\mathcal{S})$.

Thus

$$\operatorname{proj}_{\mathcal{H}} = \langle \frac{\mathbf{v}_{1}}{|\mathbf{v}_{1}|}, \mathbf{y} \rangle \frac{\mathbf{v}_{1}}{|\mathbf{v}_{1}|} + \langle \frac{\mathbf{v}_{2}}{|\mathbf{v}_{2}|}, \mathbf{y} \rangle \frac{\mathbf{v}_{2}}{|\mathbf{v}_{2}|}$$

$$= \frac{1}{|\mathbf{v}_{1}|^{2}} \langle \mathbf{v}_{1}, \mathbf{y} \rangle \mathbf{v}_{1} + \frac{1}{|\mathbf{v}_{2}|^{2}} \langle \mathbf{v}_{2}, \mathbf{y} \rangle \mathbf{v}_{2} = \frac{\langle \mathbf{v}_{1}, \mathbf{y} \rangle}{\langle \mathbf{v}_{1}, \mathbf{v}_{1} \rangle} \mathbf{v}_{1} + \frac{\langle \mathbf{v}_{2}, \mathbf{y} \rangle}{\langle \mathbf{v}_{2}, \mathbf{v}_{2} \rangle} \mathbf{v}_{2}$$

$$= \frac{5}{3} \begin{bmatrix} 1\\1\\1 \end{bmatrix} + \frac{-2}{2} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2\\8\\5 \end{bmatrix}$$

Exercise

For function space C[0,1] with the inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_0^1 f(x)g(x) \, dx$$

Find $\operatorname{proj}_{\mathcal{W}}(\mathbf{v})$ for $\mathbf{v}=e^x$ and \mathcal{W} is the subspace of $\mathcal{C}[0,1]$ spanned by $\{1,x\}$.

Solution

ullet We need an orthonormal basis, but ${\mathcal S}$ is orthogonal since

$$\int_0^1 1 \cdot x \, dx = \left[\frac{x^2}{2} \right]_0^1 = \frac{1}{2} \neq 0$$

• To construct an orthogonal set, we use theorem on 2 on y = x,

$$\mathbf{y} = \mathbf{p} + \mathbf{z} \implies \mathbf{z} = \mathbf{y} - \mathbf{p} \implies \mathbf{z} = x - \operatorname{proj}_{\mathcal{H}} x,$$
 where $\mathcal{H} = \operatorname{span}(1)$

$$= x - \langle 1, x \rangle 1 = x - \left(\int_0^1 x \, dx \right) 1 = x - \frac{1}{2}$$

Solution

- Thus $Q = \left\{ \frac{1}{\sqrt{\langle 1, 1 \rangle}}, \frac{x \frac{1}{2}}{\sqrt{\langle x \frac{1}{2}, x \frac{1}{2} \rangle}} \right\}$ is an orthonormal basis for $\text{span}(\mathcal{S})$.
- Use the definition of a orthogonal projection of a vector onto a subspace,

$$\begin{aligned} \operatorname{proj}_{\mathcal{W}}(\mathbf{v}) &= \left\langle \frac{1}{\sqrt{\langle 1, 1 \rangle}}, e^x \right\rangle \frac{1}{\sqrt{\langle 1, 1 \rangle}} \\ &+ \left\langle \frac{x - \frac{1}{2}}{\sqrt{\langle x - \frac{1}{2}, x - \frac{1}{2} \rangle}}, e^x \right\rangle \frac{x - \frac{1}{2}}{\sqrt{\langle x - \frac{1}{2}, x - \frac{1}{2} \rangle}} \\ &= \frac{\langle 1, e^x \rangle}{\langle 1, 1 \rangle} 1 + \frac{\langle x - \frac{1}{2}, e^x \rangle}{\langle x - \frac{1}{2}, x - \frac{1}{2} \rangle} (x - \frac{1}{2}) \\ &= \frac{\int_0^1 e^x \, dx}{\int_0^1 1 \, dx} + \frac{\int_0^1 (x - \frac{1}{2}) e^x \, dx}{\int_0^1 (x - \frac{1}{2})^2 \, dx} (x - \frac{1}{2}) = e - 1 + (18 - 6e)(x - \frac{1}{2}) \end{aligned}$$

Definition

For a subspace $\mathcal H$ of an inner product space $\mathcal V$, the orthogonal complement $\mathcal H^\perp$ of $\mathcal H$ is the set of all vectors $\mathbf y$ in $\mathcal V$ that are orthogonal to $\mathcal H$:

$$\mathcal{H}^{\perp} = \{ \mathbf{y} \text{ in } \mathcal{V} : \langle \mathbf{v}, \mathbf{y} \rangle = 0, \text{ for all } \mathbf{v} \text{ in } \mathcal{H} \}$$

• Clearly, combine this notion with previous theorems, we have the following,

Theorem

Let $\mathcal H$ is a subspace of an inner product space $\mathcal V$, if $\mathbf p$ is the orthogonal projection of any vector $\mathbf y$ in $\mathcal V$ onto $\mathcal H$, then

$$\mathbf{p} - \mathbf{y}$$
 is in the orthogonal complement \mathcal{H}^{\perp}

Moreover, p is the vector in \mathcal{H} that is closest to y, that is,

$$|\mathbf{w} - \mathbf{y}| > |\mathbf{p} - \mathbf{y}|$$

for any other vector \mathbf{w} in \mathcal{H} that is distinct from \mathbf{p} .

Proof

 \bullet Since ${\bf w}$ and ${\bf p}$ are both in ${\cal H},$ then

$$\mathbf{w} - \mathbf{p} \in \mathcal{H}$$

and by theorem on page $\boxed{2}$,

$$\mathbf{p}-\mathbf{y}\in\mathcal{H}^\perp$$

• Thus the Pythagoras' theorem states,

$$\left|\mathbf{w} - \mathbf{y}\right|^2 = \left|\mathbf{w} - \mathbf{p}\right|^2 + \left|\mathbf{p} - \mathbf{y}\right|^2$$

• Since \mathbf{w} and \mathbf{p} are distinct, it must be true that $|\mathbf{w} - \mathbf{p}|^2 > 0$

$$\left|\mathbf{w} - \mathbf{y}\right|^2 > \left|\mathbf{p} - \mathbf{y}\right|^2$$

• Hence \mathbf{p} is the closest vector to \mathbf{y} in \mathcal{H} .

The last theorem provided a way of solving the following problem

Minimum distance problem for functions

Suppose that $\mathcal{C}[a,b]$ has the integral inner product,

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{a}^{b} f(x)g(x) dx$$

Given a subspace $\mathcal H$ of $\mathcal C[a,b]$ and a function f that is continuous on the interval [a,b], find a function $\hat f$ in $\mathcal H$ that is closest to f in the sense that

$$|\hat{f} - f| < |g - f|$$

for every function g in $\mathcal H$ that is distinct from $\hat f$.

• Such a function \hat{f} is known as a best approximation to f from \mathcal{H} .

Theorem

If $\mathcal H$ is a finite-dimensional subspace of $\mathcal C[a,b]$, and if

$$\{f_1, f_2, \ldots, f_n\}$$

is an orthonormal basis for \mathcal{H} , then

each function f in $\mathcal{C}[a,b]$ has a unique best approximation \hat{f} in \mathcal{H} ,

and that approximation is given by

$$\hat{f} = \langle f, f_1 \rangle f_1 + \langle f, f_2 \rangle f_2 + \dots + \langle f, f_n \rangle f_n$$
, where $\langle f, f_k \rangle = \int_a^b f(x) f_k(x) dx$.

• We have an orthonormal basis for the subspace \mathcal{T}_n ,

$$S = \left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\cos 2x}{\sqrt{\pi}}, \dots, \frac{\cos nx}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\sin 2x}{\sqrt{\pi}}, \dots, \frac{\sin nx}{\sqrt{\pi}} \right\}$$

ullet Therefore we can easily compute the best approximation to some f from \mathcal{T}_n .