WEEK 02 EXAM TOPICS LIST

dont know	know a bit	ОК	good!	maste	COMS 311 TOPICS		
1	2	3	4	5	BIG-OH	week2	week1
					Basics		х
					Definitions of big-oh, omega, theta c>0, n>=0 (7 things)		х
					big-omega		х
					big-theta		х
					Intuition/understanding (graph)		х
					tighter and weaker bounds	X	х
					how to prove O/Omega/Theta techniques		х
					for polynomials choose c >sum of coeff or coeff for omega		х
					for same type compare exponents		х
					take log		х
					 Application to Algorithms		
					ram model (vs actual)		X
					instances and runtime graphs	· ·	X
					WCET, BCET, ACET	X	
					Big-oh of code segments	X	X
					problem complexity and algorithmic complexity	X	
					code examples of different Os		X
					code examples of different Os		X
					 Big-oh in real world	X	
					real code times (matrix mult)		
					effect of cache/pipelining etc	X	
					choosing algo in real-world vs big-Oh	X	
					constants might matter more in real world than O		
					easier implementation might make the diff	X	
					easier implementation might make the um	X	
					Dominance Relationships		х
					logs beat constants		х
					poly beats all logs		х
					exp beats all poly		Х
					fact beats all exp		х
					n^n beats fact		х
1	2	3	4	5	DATA STRUCTURES		
					Basic	X	х
					arrays (sorted/unsorted)	X	х
					linked lists (singly/doubly; sorted/unsorted)	X	х
					comparison of arrays and linked lists	X	Х
					 Basic Abstract Data Types	v	
					Stack, Queue (implementations using array/linkedlists)	X	x
					comparison of operations of diff impl of stack/queue		
					prompanson or operations of unit improf stack/queue	X	Х

WEEK 02 EXAM TOPICS LIST

						reasons for differences	X	Ιx
						Dictionaries	X	 ^
						Hash Tables	X	
						Tradit Tables		
					Ot	her ADTs	X	
					-	Binary Search Trees	X	
						Priority Search Queues	X	
						Heap impl	X	
						псар ппрі	^	
					Sto	oring points, graphs, sets etc	X	
						graphs	X	
						sets	X	
					big	g-oh of operations on data structures	X	
						gorithms on data structures (BST, HEAP etc)	X	
					1			
1	2	3	4	5	P-N	NP		
					Int	ro Concepts		х
						the diagram and four classes of problems		х
						informal (solvable, probab intract, provably intract, prov unsolvable)		х
						examples of problems in four classes		х
						Halting Problem		х
						Hamiltonian Cycle Enumeration problem		х
						Hamiltonian Cycle Search problem		х
						Independent Set problem		х
						Search/Sort problems		Х
					Cla	asses of problems		
						Undecidable (prove Halting problem is undecidable)		х
						P		х
						NP		х
						prove P is a subset of NP		
						NP-Complete (probably intractable class)		х
						why if a NP-C problem is in P, then P=NP		
						provably intractable classes		х
						NP-Hard problems		
1	2	3	4	5	PR	OOF TECHNIQUES		
					WI	ny is proving important?		Х
						Job selection problem		х
						solutions to JS problem		Х
						why is proving so important?		Х
					CA	LCULUS		PreRec
						propositional logic rules		PreRec

WEEK 02 EXAM TOPICS LIST

					predicate logic rules		PreRec
					form of deduction proofs		PreRec
					DIFFERENT TECHNIQUES	X	PreRec
					contradiction (and correct form)	X	PreRec
					induction (form)	х	PreRec
					direct proof (see form of deduction proofs)	X	PreRec
					trivial/vacuous	х	PreRed
					contrapositive	х	PreRed
					EXAMPLES IN CLASS		PreRec
					contradiction (and correct form)		PreRec
					induction (form)		PreRed
					direct proof (see form of deduction proofs)		PreRec
					trivial/vacuous		PreRed
					contrapositive		PreRed
					Proofs in class		
					Halting problem is undecidable	Х	PreRec
					VC <=p IS and IS <=p VC		
					select jobs satisfies greedy choice + opt substructuring		
1	2	3	4	5	ALGORITHMIC TECHNIQUES		
					BRUTE FORCE TECHNIQUES		
					search space for different problems	X	х
					recursion tree for brute force approach	X	х
					back track algo from text book	X	х
					iterative way to generate all subsets		
					recursive way to generate all subsets	X	х
					recursive way to generate all perms	X	х
					recursive way to gen size k subsets	X	Х