computations

authors

2017

Let $b(\ell)$ be a bounded continuous function on \mathbb{R} , consider the multiplier operator M_b defined through

$$\widehat{M_b u}(\ell) = b(\ell)\widehat{u}(\ell),$$

for $u \in L^2$.

Let b^{ε} denote the function $b(\varepsilon \ell)$. Take for example $b(\ell) = \frac{\ell^2}{\ell^2 + 1}$.

Given $\delta > 0$, we have

$$||M_{b^{\varepsilon}}u - M_{b(0)}u||_{L^{2}} = ||(b(\varepsilon\ell) - b(0))\widehat{u}(\ell)||_{L^{2}} = \int |b(\varepsilon\ell) - b(0)|^{2} |\widehat{u}(\ell)|^{2} d\ell$$
$$= \int_{|\ell| \le R} (\cdots) + \int_{|\ell| > R} (\cdots) := I + II$$

where R is chosen so that $\int_{|\ell|>R} |\widehat{u}|^2 < \delta$.

Now we can take ε small so that $|b(\varepsilon\ell) - b(0)| < \delta$ for all $|\ell| \le R$ as b is continuous at 0. As a result, we have $I \le \delta^2 \int |\widehat{u}|^2$ and $II \le 2 \max_{\ell \in \mathbb{R}} b(\ell) \delta$. Therefore we conclude that $M_{b^\varepsilon} u \to b(0) u$ in L^2 .

But $\sup_{\ell \in \mathbb{R}} |b(\varepsilon \ell) - b(0)|$ does not converge to 0.