程序2位,另此加格REASI編程辅导

Fall 2023

Homework 4 Sunday, December 10

- (a) (7pts) What is the classification function given X = 1, Y = 1? In general, what is the form of the classification function given X = 1, Y = 1? In general, what is the
- (b) (15pts) Draw a reduced OBDD representing the decision function of the classifier, using variable order X, Y, Z.
- (c) (3pts) If an interesting in the light of the light of

Email: tutorcs@163.com						
	\overline{A}	B	$\theta_{B A}$	A	C	$\theta_{C A}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\overline{a_0}$	b_0	0.3	$\overline{a_0}$	c_0	0.1
70082	Q a	b_1	$\bigcirc 0.7$	a_0	c_1	0.9
	$O_{\omega_1}^2$	b_0	\mathbf{Q} .7	a_1	c_0	0.9
	a_1	b_1	0.3	a_1	c_1	0.1

https://tutorcs.com

- 2. (22pt) Consider the Bayesian network in Figure 1 and suppose we want to compute the most probable explanation (MPE) for this network.
 - (a) (12pt) Show the weighted CNF which can be used to compute MPE using weighted MaxSAT.
 - (b) (3pt) Modify this weighted CNF so it can be used to compute MPE under evidence $B=b_0$.
 - (c) (7pt) What is the MPE instantiation under $B = b_0$, what is the corresponding instantiation of indicator variables, and what is the weight and penalty of this indicator instantiation?
- 3. (14pt) Consider the following DNF:

$$\Delta = \bar{w}\bar{x}\bar{y}\bar{z} + \bar{w}\bar{x}\bar{y}z + \bar{w}\bar{x}y\bar{z} + w\bar{x}\bar{y}\bar{z} + w\bar{x}y\bar{z} + w\bar{x}yz + wxyz + wxyz + wxyz.$$

(a) (9pt) Compute the prime implicants of Δ using the *consensus* method. That is, close the DNF under consensus and remove subsumed terms.

1

- (b) (5pt) Suppose Δ is a classifier. What are the sufficient reasons for the instance wxyz?
- 4. (20pt) Consider the following classifier and suppose that R is a protected feature.

(a) (5pt) Wha

no) on instance $E, \neg F, G, W, R$?

(b) (10pt) Wh

e sufficient reasons (PI-explanations) for this decision?

 $(E, W), (E, G, R, \neg F), (E, G, W).$

- (c) (5pt) Is the
- 5. (10pt) Consider the following class formula $\Delta = (x_{12} + y_1) \cdot (x_1 + y_1 + z_1) + (x_3 \cdot y_2 \cdot z_2)$ and the instance $I = \{x_1, y_1, z_1\}$. Suppose X has states $\{x_1, x_2, x_3\}$, Y has states $\{y_1, y_2, y_3\}$, and Z has states $\{z_1, z_1\}$.
 - (a) (5pt) Compute the complete reason $\forall I \cdot \Delta$.
 - (b) (5pt) Compute the general reason $\overline{\forall}I$ Δ Project Exam Help
- 6. (9pt) True or False (no need to explain)?
 - (a) (3pt) We can compute marginals on an arithmetic circuit in linear time if it satisfies the decomposa high product of the first transfer of transfer
 - (b) (3pt) We can compute MPE on an arithmetic circuit in linear time if it satisfies the decomposability and smoothness properties.
 - that satisfies the properties of decomposability and determinism.

https://tutorcs.com