Last Class...

Use the principle of superposition to find the current i.

COLLEGE OF ENGINEERING

Equivalent Circuits

- Learning Objectives:
 - Understand the importance and application of equivalent circuits.

Determine the Thévenin voltage and the Thevenin

resistance of a circuit.

 Determine the Norton current and the Norton resistance of a circuit.

 Given the Thévenin or Norton equivalent circuit, apply source transformation. Today's systems are complex. We use a block diagram approach to represent circuit sections.

Equivalent Circuit

Recall that:

- Simplify analysis.
- Voltage and Current between A and B do not change.

Equivalent Circuit

Recall that:

- Simplify analysis.
- Voltage and Current between A and B do not change.

Our ability to develop equivalent-circuit representations is made possible (in part) by a pair of theorems of fundamental significance known as Thévenin's and Norton's theorems.

Thevenin and Norton Equivalent

 Linear two-terminal circuit can be replaced by an equivalent circuit:

Thévenin equivalent

Norton equivalent

Composed of a voltage source and a series resistor.

Composed of a current source and parallel resistor.

Computation of R_{TH}

1. Remove the load and set all independent sources to zero.

tum off arment and voltage sources

Computation of R_{TH}

- 1. Remove the load and set all independent sources to zero.
- 2. Apply series and parallel equivalent resistance substitutions to find effective equivalent resistance.
 - Sometimes may need to attach independent voltage source to the terminals (e.g., when there is a dependent source).

Thévenin Voltage

1. Remove the load, leaving the load terminals open-circuited.

Thévenin Voltage

- 1. Remove the load, leaving the load terminals open-circuited.
- 2. Define the open-circuit voltage v_{TH} across the open load terminals.

3. Apply any preferred method (e.g., nodal analysis, mesh

1. Replace the load with a short circuit.

Norton Current

- 1. Replace the load with a short circuit.
- 2. Define the short circuit current, i_N , to be the Norton equivalent current.
- 3. Apply any preferred method (e.g., nodal analysis) to solve for

Equivalent Circuits

