Аннотация

Данный курс посвящён решению задач школьной планиметрии. Он будет охватывать такие темы как: счёт углов, ортоцентр треугольника, степень точки, движения плоскости, гомотетия и другие. Темы выходят за рамки школьного курса геометрии, поэтому этот курс поможет по-новому взглянуть на знакомые темы и задачи, а при решении новых, покажет "незнакомые" пути решения.

Курс подойдет для школьников, которые уже знакомы с понятие "вписанные углы" или "вписанные четырехугольники".

Содержание

1	Сче	г углов	1
2		щади Площади простых фигур	2
3	Орт	оцентр треугольника	2
4	Популярные уголки Подобие треугольников		6
5			
6	Сим	Симметрии	
7	Степень точки		6
	7.1	Радикальная ось	7
3a	дачи		9
	i	Счёт углов-І	9
	ii	Площади	10
	iii	Счёт углов-II	10
	iv	Подобие	11
	V	Симметрия	11
	vi	Степень точки и радикальная ось	11
Ко	нтро	ольная работа	14

1 Счет углов

Под этим названием скрывается, не побоюсь этого слова, самый (!) используемый метод в решении задач. В каждой он встречается в том или ином виде. Поэтому, если вы хотите решать задачи, вам нужно его знать. В основном "считаются" углы, связанные с окружностями, но бывает и что-то другое.

Для примера, давайте дакажем, что высоты треугольника пересекаются в одной точке. Для этого вспомним «вписанные углы»

Теорема 1.1. Высоты треугольника конкурентны 1 .

Рис. 1: Высоты треугольника пересекаются в одной точке.

Лемма 1.2. Четырехугольник ABCD является вписанным, если $\angle ABC$ равен смежному углу $\angle ADC$.

¹Пересекаются в одной точке.

Рис. 2: Угол между касательной и хордой.

Утверждение 1.3. Пусть AB – хорда окружности, а С – точка касания касательной к окружности. Тогда угол между касательной и хордой равен вписанному углу, операющему на ту же дугу, что и хорда. То есть

$$\angle ACB = \frac{\widehat{AB}}{2}.$$

Доказательство. Пусть O – центр окружности. Тогда отрезки OB и равны как радиусы. При том, угол $∠BOC = 2 \cdot ∠BAC$. Радиус OC перпенидкулярен касательной в точке C. Значит угол между касательной и хордой равен:

$$90^{\circ} - \frac{180^{\circ} - 2 \cdot \angle BAC}{2} = \angle BAC.$$

2 Площади

2.1 Площади простых фигур

3 Ортоцентр треугольника

Ортоцентр – это такая особенная точка: конструкции, в которых используются его **симметрии** относительно чего-либо, **замечательно** связанны с описанной окружностью, и наоборот!

Определение 3.1. Ортоцентр **(H)** – это точка пересечения высот треугольника.

Я всегда буду ортоцентр треугольника *ABC* обозначать **большой зеленой точ-кой** (просто я так решил), а центр описанной окружности как выколотую (так уже более принято).

Теорема 3.2. *Если отразить ортоцентр относительно стороны, то он попадет на описанную окружность.*

Теорема 3.3. Если ортоцентр отразить относительно середины стороны, то он попадет на описанную окружность.

Следствие 3.3.1. Точка из теоремы ?? диаметрально противоположна противолежащей стороне вершине.

Следствие 3.3.2. Расстояние от вершины треугольника до ортоцентра в 2 раза больше расстояния от центра описанной окружности до противолежащей стороны.

Лемма 3.4 (Окружность Джонсона). (ABC) = (ABH), т.е. окружности, описанные вокруг $\triangle ABC$ и $\triangle ABH$ равны.

Определение 3.5 (Изогональное сопряжение¹). Точки P, Q называются изогонально сопряженными, если $\angle PAB = \angle QAC$, $\angle PBC = \angle QBA$, $\angle PCB = \angle QCA$.

Определение 3.7. Инцетр – это центр, вписанной в многоугольник окружности.

Определение 3.8. Ортотреугольник – это треугольник, вершины которого являются основаниями высот исходного треугольник.

Лемма 3.9. Ортоцентр является инцентром для ортотреугольника.

 $^{^{1}}$ Можно думать об изогональном сопряжении, как о симметрии относительно биссектрисы.

Следствие 3.9.1. Радиусы описанной окружности, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.

Лемма 3.10. Сумма квадратов расстояния от вершины треугольника до ортоцентра и длины стороны, противолежащей этой вершине, равна квадрату диаметра описанной окружности.

Лемма 3.11. Если AA_1 и BB_1 – высоты треугольника ABC, то $\triangle ABC$ ~ $\triangle A_1B_1C$, $k=\cos \angle C$.

4 Популярные уголки

5 Подобие треугольников

6 Симметрии

7 Степень точки

Определение 7.1 (Степень точки). Степень точки P, находящейся на расстоянии d от центра окружности ω радиусом r, относительно этой же окружности:

$$pow(P, \omega) = d^2 - r^2.$$

Теорема 7.2. Если прямая $\ell \ni P$ касается окружность в точке K, то

$$pow(P, \omega) = PK^2$$
.

Теорема 7.3. Если прямая $\ell \ni P$ пересекает окружность ω в точках A и B, тогда

$$pow(P, \omega) = \overrightarrow{PA} \cdot \overrightarrow{PB}.$$

Следствие 7.3.1 (Теорема о касательной и секущей). *Если из точки P, проведена касательная PK к окружности \omega и прямая (\ell \ni P) пересекает окружность \omega в точках A и B, тогда*

$$PK^2 = PA \cdot PB.$$

Теорема 7.4 (Главная теорема о степени точки). *Если через точку Р проходят две прямые, которые пересекают окружность* ω *в точках* A_1, A_2 *и* B_1, B_2 соответственно, то

$$pow(P, \omega) = \overrightarrow{PA_1} \cdot \overrightarrow{PA_2} = \overrightarrow{PB_1} \cdot \overrightarrow{PB_2}.$$

7.1 Радикальная ось

Теорема 7.5. Геометрическое место точек (ГМТ), степени которых относительно двух неконцентрических окружностей равны, есть прямая, перпендикулярная линии центров этих окружностей.

Определение 7.6 (Радикальная ось). Прямая, состоящая из точек, степени которых относительно двух данных окружностей равны, называется радикальной осью этих окружностей.

Рис. 3: Радикальная ось двух окружностей.

Теорема 7.7 (Радикальный центр). *Радикальные оси трех окружностей либо конкурентны, либо параллельны.*

Рис. 4: Радикальный центр трех окружностей.

Теорема 7.8. $AC \perp BD^{1}$, если

$$pow(B, \omega_a) - pow(B, \omega_c) = pow(D, \omega_a) - pow(D, \omega_c)$$

 $^{^1}$ Типа крутая ??

Задачи

і Счёт углов-І

- 1. (Лемма Фусса) Окружности ω_1 и ω_2 пересекаются в точках A и B. Через точку A проведена прямая вторично пересекающая окружность ω_1 в точке A_1 и окружность ω_2 в точке A_2 . Точки B_1 и B_2 для прямой через точку B определяются аналогично. Докажите, что $A_1B_1 \parallel A_2B_2$.
- 2. В равнобедренном треугольник ABC (AB = AC) на меньшей дуге AB окружности (ABC) взята точка D. На продолжении отрезка AD за точку D выбрана точка E так, что точки A и E лежат по одну сторону относительно прямой BC. Окружность (BDE) пересекает прямую AB в точке F. Докажите, что $EF \parallel BC$.
- 3. В трапеции ABCD проведена окружность, проходящая через точки A и D. Окружность пересекает боковые стороны AB и CD (или их продолжения) в точках N и M соответственно. Докажите, что если точка пересечения прямых BM и CN равноудалена от точек A и D, то она лежит на окружности.
- 4. В остроугольном треугольнике ABC на высоте, проведённой из вершины A, выбрана точка P. Пусть B_1 и C_1 проекции точки P на прямые AC и AB соответственно.
 - (a) Докажите, что точки B, C, B_1 , C_1 концикличны.
 - (b) Докажите, что отрезок, соединяющий проекции точек B_1 и C_1 , на прямые AB и AC соответственно, параллелен стороне BC.
- 5. В остроугольном треугольнике ABC проведена высота AD. Пусть точки K и L проекции точки D на стороны AB и AC соответственно. Известно, что $\angle BAC = 72^\circ$, $\angle ABL = 30^\circ$. Чему равен угол $\angle DKC$?
- 6. (Окружность Тейлора) Докажите, что шесть точек в виде шести проекций трёх оснований высот треугольника, пересекающих каждую сторону, на две оставшиеся стороны лежат на одной окружности.
- 7. (а) (Точка Микеля треугольника) На сторонах AB, BC и AC треугольника ABC или их продолжениях, выбраны точки C_1 , B_1 и A_1 соответственно. Докажите, что окружности (AB_1C_1) , (A_1BC_1) и (A_1B_1C) пересекаются в одной точке.

- (b) (Точка Микеля четырехсторонника) На плоскости даны четыре прямые общего положения. Эти прямые образуют 4 треугольника. Докажите, что описанные окружности этих треугольников пересекаются в одной точке.
- 8. В треугольнике ABC точки B_1 и C_1 основания высот, проведенных из вершин B и C соответственно. Точка D проекция точки B_1 на сторону AB, точка E пересечения перпендикуляра, опущенного из точки D на сторону BC, с отрезком BB_1 . Докажите, что $EC_1 \perp BB_1$.
- 9. На гипотенузе AC прямоугольного треугольника ABC во внешнюю сторону построен квадрат с центром в точке O. Докажите, что BO биссектриса угла ABC.
- 10. В треугольнике ABC угол A равен 60°. Биссектрисы треугольника BB_1 и CC_1 пересекаются в точке I. Докажите, что $IB_1 = IC_1$.
- 11. Прямая ℓ касается описанной окружности треугольника ABC в точке B. Точки A_1 и C_1 проекции точки $P \in \ell$ на прямые AB и BC соответственно. Докажите, что $A_1C_1 \perp AC$.
- 12. Окружности ω_1 и ω_2 пересекаются в точках A и B. Прямая ℓ касается окружностей ω_1 и ω_2 в точках P и Q соответственно (точка B^1 лежит внутри треугольника APQ). Прямая BP вторично пересекает ω_2 в точке T. Докажите, что AQ биссектриса угла $\angle PAT$.
- 13. Пусть AA_1 , BB_1 и CC_1 высоты остроугольного треугольника ABC. Докажите, что проекции точки A_1 на прямые AB, AC, BB_1 , CC_1 коллинеарны.
- 14. В треугольнике ABC точки D и E основания биссектрис из углов A и C соответственно, а точка I центр вписанной в треугольник ABC окружности. Точки P и Q пересечения прямой DE с (AIE) и (CID) соответственно, причем $P \neq E, Q \neq D$. Докажите, что $\angle EIP = \angle DIQ$.

іі Площади

ііі Счёт углов-II

1. В треугольнике ABC проведены высоты BB_1 и CC_1 , а также отмечена точка M – середина стороны BC. Точка H – его ортоцентр, а точка P –

 $^{^{1}}$ Точка B называется точкой Шалтая треугольника APQ.

- пересечения луча (!) MH с окружностью (ABC). Докажите, что точки P,A,B_1,C_1 концикличны.
- 2. Во вписанном четырехугольнике ABCD точка P точка пересечения диагоналей AC и BD. Точка O центр окружности (ABP). Докажите, что $OP \perp CD$.
- 3. (Муниципальный этап ВСОШ (Москва), 2020, 9.4) Пусть точки B и C лежат на полуокружности с диаметром AD. Точка M середина отрезка BC. Точка N такова, что точка M середина отрезка AN, докажите что $BC \perp ND$.
- 4. В треугольнике ABC проведена высота AD и отмечен центр описанной окружности O. Пусть точки E и F проекции точек B и C на прямую AO. N точка пересечения прямых AC и DE, а M точка пересечения прямых AB и DF. Докажите, что точки A, D, N, M концикличны.
- 5. (Baltic Way, 2019, problem 12) Let ABC be a triangle and H its orthocenter. Let D be a point lying on the segment AC and let E be the point on the line BC such that $BC \perp DE$. Prove that $EH \perp BD$ if and only if BD bisects AE.

iv Подобие

v Симметрия

vi Степень точки и радикальная ось

- 1. Докажите, что высоты треугольника конкурентны. 0_0
- 2. Окружность делит каждую из сторон треугольника на три равные части. Докажите, что этот треугольник равносторонний.
- 3. Окружности ψ и ω вписаны в вертикальный угол $\angle nm$, ψ касается прямой n в точке N, а ω касается прямой m в точке M. Докажите, что ψ и ω высекают на NM равные отрезки.
- 4. (ММО, 2013, 11.3) Четырёхугольник ABCD такой, что AB = BC и AD = DC. Точки K, L и M середины отрезков AB, CD и AC соответственно. Перпендикуляр, проведённый из точки A к прямой BC, пересекается с перпендикуляром, проведённым из точки C к прямой AD, в точке T. Докажите, что прямые $KL \perp TM$.

- 5. Точка D основание биссектрисы из точки A треугольника ABC. Окружность (ABD) повторно пересекает прямую AC в точке E, а окружность (ACD) повторно пересекает прямую BC в точке F. Докажите, что BF = CE.
- 6. Окружность ω проходит через вершины A и D равнобокой трапеции ABCD и пересекает диагональ BD и боковую сторону CD в точках P и Q соответственно. Точки P' и Q' симметричны точкам P и Q относительно середин отрезков BD и CD соответственно. Докажите, что B, C, P' и Q' концикличны.
- 7. (ЈВМО Shortlist, 2022, G6) Пусть Ω описанная окружность треугольника ABC. Взяты точки P и Q, так что P равноудалена от A и B, а Q равноудалена от A и C и углы PBC и QCB равны. Докажите, что касательная к Ω в точке A, прямая PQ и BC пересекаются в одной точке.
- 8. Вневписанные окружности ω_b и ω_c треугольника ABC касаются сторон AC и AB соответственно в точках E и F. Прямая EF повторно пересекает окружности ω_b и ω_c в точках X и Y соответственно. Касательные в точках X и Y проведенные к окружностям ω_b и ω_c пересекают прямые AC и AB в точках K и L соответственно. Докажите, что середина отрезка KL равноудалена от точек E и F.
- 9. (а) Пусть C_1 и B_1 точки на сторонах AB и AC треугольника ABC соответственно. Докажите что, радикальная ось окружностей, построенных на BB_1 и CC_1 как на диаметре, проходит через ортоцентр треугольника ABC.
 - (b) (Ось Обера) Докажите, что четыре ортоцентра четырёх треугольников, образованных четырьмя попарно пересекающимися прямыми, никакие три из которых не проходят через одну точку 1 , коллинеарны.
 - (c) (Теорема Гаусса-Боденмиллера) Докажите, что прямая Гаусса² перпендикулярна оси Обера.
- 10. Чевианы AD, BE и CF треугольника ABC конкурентны. Прямая EF пересекает окружность (ABC) в точках P и Q. Докажите, что P, Q, D и середина отрезка BC концикличны.

 $^{^{1}}$ Такие прямые образуют фигуру, называемую полным четырёхсторонником.

²Прямой Гаусса полного четырёхсторонника называется прямая, проходящая через середины трех его диагоналей.

11. В треугольнике ABC проведены высоты AD, BE, CF. Прямые DE, EF и DF пересекаются прямые AB, BC и AC. В точках C_1 , B_1 , A_1 соответственно. Докажите, что точки A_1 , B_1 , C_1 лежат на прямой 3 перпендикулярной прямой 3 йлера треугольник 3

 $^{^3}$ Такая прямая называется трилинейной полярой ортоцентра, или ортоцентрической осью, или центральной линией центра описанной окружности.

Контрольная работа