# Implementation-of-Simple-Linear-Regression-Model-for-Predicting-the-Marks-Scored

#### AIM:

To write a program to predict the marks scored by a student using the simple linear regression model.

## **Equipments Required:**

- 1. Hardware PCs
- 2. Anaconda Python 3.7 Installation / Jupyter notebook

## **Algorithm**

- 1.
- 2.
- 3.
- 4.

#### Program:

```
Program to implement the simple linear regression model for predicting the marks scored.
Developed by: Dharshni V M
RegisterNumber: 212223240029
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean absolute error, mean squared error
df=pd.read_csv('student_scores.csv')
print(df)
df.head(2)
df.tail(4)
print(df.head())
print(df.tail())
x = df.iloc[:,:-1].values
print(x)
y = df.iloc[:,1].values
print(y)
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=1/3,random_state=0)
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x_train,y_train)
y_pred = regressor.predict(x_test)
print(y_pred)
print(y test)
plt.scatter(x train,y train,color='violet')
plt.plot(x_train,regressor.predict(x_train),color='black')
plt.title("Hours vs Scores(Training set)")
plt.xlabel("Hours")
plt.ylabel("Scores")
plt.show()
plt.scatter(x_test,y_test,color='black')
plt.plot(x train, regressor.predict(x train), color='green')
plt.title("Hours vs Scores(Testing set)")
plt.xlabel("Hours")
plt.ylabel("Scores")
plt.show()
mse=mean_absolute_error(y_test,y_pred)
print('MSE = ',mse)
mae=mean_absolute_error(y_test,y_pred)
print('MAE = ',mae)
rmse=np.sqrt(mse)
```

```
print("RMSE= ",rmse)
/*
```

# Output:

## DATA SET

| _ |    | 24/1  |        |  |
|---|----|-------|--------|--|
| ₹ |    | Hours | Scores |  |
|   | 0  | 2.5   | 21     |  |
|   | 1  | 5.1   | 47     |  |
|   | 2  | 3.2   | 27     |  |
|   | 3  | 8.5   | 75     |  |
|   | 4  | 3.5   | 30     |  |
|   | 5  | 1.5   | 20     |  |
|   | 6  | 9.2   | 88     |  |
|   | 7  | 5.5   | 60     |  |
|   | 8  | 8.3   | 81     |  |
|   | 9  | 2.7   | 25     |  |
|   | 10 | 7.7   | 85     |  |
|   | 11 | 5.9   | 62     |  |
|   | 12 | 4.5   | 41     |  |
|   | 13 | 3.3   | 42     |  |
|   | 14 | 1.1   | 17     |  |
|   | 15 | 8.9   | 95     |  |
|   | 16 | 2.5   | 30     |  |
|   | 17 | 1.9   | 24     |  |
|   | 18 | 6.1   | 67     |  |
|   | 19 | 7.4   | 69     |  |
|   | 20 | 2.7   | 30     |  |
|   | 21 | 4.8   | 54     |  |
|   | 22 | 3.8   | 35     |  |
|   | 23 | 6.9   | 76     |  |
|   | 24 | 7.8   | 86     |  |
|   |    |       |        |  |

**HEAD VALUES** 

|   | Hours | Scores |
|---|-------|--------|
| 0 | 2.5   | 21     |
| 1 | 5.1   | 47     |

## **TAIL VALUES**

|    | Hours | Scores |
|----|-------|--------|
| 21 | 4.8   | 54     |
| 22 | 3.8   | 35     |
| 23 | 6.9   | 76     |
| 24 | 7.8   | 86     |

X VALUES

```
[[2.5]
 [5.1]
 [3.2]
 [8.5]
 [3.5]
 [1.5]
 [9.2]
 [5.5]
 [8.3]
 [2.7]
 [7.7]
 [5.9]
 [4.5]
 [3.3]
 [1.1]
 [8.9]
 [2.5]
 [1.9]
 [6.1]
 [7.4]
 [2.7]
 [4.8]
 [3.8]
 [6.9]
[7.8]]
```

#### **Y VALUES**

[21 47 27 75 30 20 88 60 81 25 85 62 41 42 17 95 30 24 67 69 30 54 35 76 86]

#### PREDICTION VALUES

[17.04289179 33.51695377 74.21757747 26.73351648 59.68164043 39.33132858 20.91914167 78.09382734 69.37226512]

[20 27 69 30 62 35 24 86 76]

#### MSE, MAE and RMSE

```
MSE = 4.691397441397446
MAE = 4.691397441397446
RMSE= 2.165963397981934
```

## TRAINING SET



**TESTING TEST** 



# Result:

Thus the program to implement the simple linear regression model for predicting the marks scored is written and verified using python programming.