МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине "Алгоритмы и структуры данных" Тема: "Рекурсия"

Студентка гр. 7381	 Алясова А.Н
Преполаватель	Фирсов М.А.

Санкт-Петербург 2018

Задание.

3. Имеется n городов, пронумерованных от 1 до n. Некоторые пары городов соединены дорогами. Определить, можно ли попасть по этим дорогам из одного заданного города в другой заданный город. Входная информация о дорогах задаётся в виде последовательности пар чисел i и j (i < j и i, $j \in 1..n$), указывающих, что i-й и j-й города соединены дорогами.

Пояснение задания.

На вход программе подается сначала количество городов, потом количество последовательностей пар чисел (дорог), затем сами последовательности пар чисел i и j (i < j и $i, j \in 1..n$), которые указывают, что i-й и j-й города соединены дорогами, в конце подается два города, между которыми или существует путь или нет.

Описание алгоритма.

Для определения существования пути между заданными городами мы создаем матрицу смежности и работаем по ней. Предположим, что нам нужно найти путь из города 1, начальный город, в город 2, конечный. Если прямого пути из города 1 в город 2 не существует, мы берем город 1 и просматриваем города, в которые можно попасть из этого города. Когда выбирали город, называем его текущим и рекурсивно идем дальше, принимая текущий город за начальный, а конечный остается прежним. Как только появиться прямой путь из начального города в конечный, завершаем программу и выводим YES. Если же, просмотрев все возможные пути, прямого пути с конечным так и не получилось обнаружить, завершаем программу и выводим NO.

Описание функций.

- int find_way(int deep, int first, int second, bool **matr, int city_count); рекурсивная функция, которая на вход принимает следующие аргументы:
 - 1) int deep требуется для оформления вывода, контролирует количество отступов;
 - 2) int first первый город;
 - 3) int second второй город;
 - 4) bool **matr двумерный массив булевого типа, представляет собой матрицу смежности, которая содержит в себе информацию о известных нам дорогах;
 - 5) int city_count количество городов;
- int main(); главная функция, в ней содержится основной код программы, функция не принимает аргументов.

Тестирование.

На вход программе подается количество городов, количество дорог, дороги, два города, между которыми нужно определить существует ли путь или нет, на выход — информация о проверке со всеми рекурсивными вызовами и краткий результат: YES, если путь существует и NO в противном случае. Приведем примеры в табл. 1. Для автоматизации тестирования, был написан bash-скрипт.

Таблица 1 - Тестирование

Входные	Результат
данные	
5	
4	YES
1 2	

Продолжение таблицы 1

2 3 2 4 4 5 1 5 8 7 1 3 1 4 2 3 5 8 5 6 6 7 7 8 4 5 1 0 YES 1 1 0 YES 1 1 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => matr[2][3 или 4] = false => возвращаемся в 1, смотрим			
YES 4 5 1 5 8 7 1 3 1 4 2 3 5 8 5 6 6 7 7 8 4 5 1 0 YES 1 1 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	2 3		
4 5 1 5 8 7 1 3 1 4 2 3 5 8 5 6 6 7 7 8 4 5 1 0 YES 1 1 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	2 4	YES	
8 7 13 14 23 58 56 67 78 45 1 0 YES 11 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 12 того,чтобы избежать зацикливания, идем дальше => 13 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	4 5	T EIS	
7 13 14 23 58 56 67 78 45 1 0 YES 11 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 12 того,чтобы избежать зацикливания, идем дальше => 13 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	1 5		
1 3 1 4 2 3 5 8 5 6 6 7 7 8 4 5 1 0 YES 1 1 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	8		
1 4 2 3 5 8 5 6 6 7 7 8 4 5 1 1 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	7		
2 3	1 3		
5 8 NO 5 6 67 7 8 45 1 YES 1 1 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	1 4		
5 8 5 6 6 7 7 8 4 5 1 1 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	2 3	NO	
6 7 7 8 4 5 1 0 YES 1 1 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	5 8	NU	
7 8 4 5 1 0 YES 1 1 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	5 6		
1 0 YES 1 1 4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => matr[2][3 или 4] = false => возвращаемся в 1, смотрим	67		
1 2	7 8		
0 YES 1 1 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	4 5		
1 1 4	1		
4 NO 2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	0	YES	
2 Matr[1][2] = true => matr[1][2]=false, делаем это для 1 2 того,чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	1 1		
1 2 того, чтобы избежать зацикливания, идем дальше => 1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	4	NO	
1 3 matr[2][3 или 4] = false => возвращаемся в 1, смотрим	2	Matr[1][2] = true => matr[1][2]=false, делаем это для	
	1 2	того,чтобы избежать зацикливания, идем дальше =>	
$1.4 \qquad motr[1][2] = true = \sum_{i=1}^{n} motr[1][2] = folso, motr[1][2]$	1 3	matr[2][3 или 4] = false => возвращаемся в 1, смотрим	
1 4	1 4	matr[1][3] = true => меняем matr[1][3] = false, дальше	
рассматриваем matr[3][2 или 4] = false => дороги не		рассматриваем matr[3][2 или 4] = false => дороги не	
существует => return 0;		существует => return 0;	

Вывод.

В процессе выполнения лабораторной работы были получены навыки по написанию рекурсивных функций, bash-скриптов и автоматизации тестирования. Работа была написана на языке программирования C++.

ПРИЛОЖЕНИЕ А

Содержимое файла main.cpp

```
#include <iostream>
using namespace std;
int find way(int deep, int first, int second, bool **matr, int
city count) {
     for(int i = 0; i < deep; i++)</pre>
           cout << "\t";</pre>
      cout << "->rec with " << first << " " << second << endl;</pre>
      if(matr[first-1][second-1] || first == second) {
           for(int i = 0; i < deep; i++)</pre>
                  cout << "\t";</pre>
                  return 1;
      }
     for(int i = 0; i < city_count; i++) {</pre>
            if(matr[first-1][i-1]) {
                  matr[first-1][i-1] = false;
                  if(find_way(deep+1, i, second, matr, city_count)) {
                        for(int i = 0; i < deep; i++)</pre>
                             cout << "\t";</pre>
                        cout << "<-rec" << endl;</pre>
                        return 1;
                  }
           }
      }
     for(int i = 0; i < deep; i++)
           cout << "\t";
      cout << "<-rec" << endl;</pre>
      return 0;
}
int main(){
      cout << "Введите количество городов: ";
```

```
int city count;
cin >> city_count;
           try {
                   if (city_count == 0)
                           throw "Пустой список.";
           }
           catch (const char * string){
           cout << string << endl;</pre>
           return 0;
           }
bool **matr = new bool *[city_count];
for (int i = 0; i < city_count; i++)</pre>
     matr[i] = new bool [city_count];
cout << "Введите количество дорог: ";
int road count;
cin >> road count;
cout << "Введите дороги:\n";
for (int k = 0; k < road count; k++) {
     int i, j;
     cin >> i >> j;
     try {
         if (i > city_count || i < 1 || j > city_count || j < 1)</pre>
                 throw "Не существует указаного города.";
     }
     catch (const char * string){
           cout << string << endl << "Повторите ввод: ";
           k--;
           continue;
     }
           matr[i-1][j-1] = true;
           matr[j-1][i-1] = true;
}
cout << "Введите начальный и конечный города: " << endl;
```

```
int start, finish;
cin >> start >> finish;

if (find_way(0, start, finish, matr, city_count))
        cout << "YES" << endl;
else
        cout << "NO" << endl;
for(int i = 0; i < city_count; i++)
        free(matr[i]);
free(matr);
return 0;
}</pre>
```

приложение в

Содержимое файла Exec.sh

```
g++ ./Sourse/lab1.cpp -o Lab1
echo -e '____\nTest 1:'
cat ./Tests/Test1.txt
echo -e '____\nTesting:\n'
./Lab1 < ./Tests/Test1.txt
echo -e ''
echo -e '____\nTest 2:'
cat ./Tests/Test2.txt
echo -e '____\nTesting:\n'
./Lab1 < ./Tests/Test2.txt</pre>
echo -e ''
echo -e ' \nTest 3:'
cat ./Tests/Test3.txt
echo -e '\nTesting:\n'
./Lab1 < ./Tests/Test3.txt</pre>
echo -e ''
echo -e '____\nTest 4:'
cat ./Tests/Test4.txt
echo -e '\nTesting:\n'
./Lab1 < ./Tests/Test4.txt
echo -e ''
echo -e '\nTest 5:'
cat ./Tests/Test5.txt
echo -e '____\nTesting:\n'
./Lab1 < ./Tests/Test5.txt</pre>
echo -e ''
echo -e '\nTest 6:'
cat ./Tests/Test6.txt
echo -e ' \nTesting:\n'
./Lab1 < ./Tests/Test6.txt</pre>
echo -e ''
```

```
echo -e '\nTest 7:'
cat ./Tests/Test7.txt
echo -e '____\nTesting:\n'
./Lab1 < ./Tests/Test7.txt
echo -e ''
echo -e '\nTest 8:'
cat ./Tests/Test8.txt
echo -e '____\nTesting:\n'
./Lab1 < ./Tests/Test8.txt</pre>
echo -e ''
echo -e '____\nTest 9:'
cat ./Tests/Test9.txt
echo -e '____\nTesting:\n'
./Lab1 < ./Tests/Test9.txt</pre>
echo -e ''
echo -e '\nTest 10:'
cat ./Tests/Test10.txt
echo -e ' ____\nTesting:\n'
./Lab1 < ./Tests/Test10.txt</pre>
echo -e ''
echo -e '____\nTest 11:'
cat ./Tests/Test11.txt
echo -e '____\nTesting:\n'
./Lab1 < ./Tests/Test11.txt</pre>
```