

《中山大学授予学士学位工作细则》第六条 考试作弊不授予学士学位

计算机科学系 2012 第一学期

《高等数学 I》期末考试试题(A 卷)
任课教师:李绿周,陈伟能 考试形式:闭卷 考试时间: 2 小时
年级: 12 级 专业: 计算机 1、2、3 班 姓名: 学号: 成绩:
一、 单项选择题(共 10 小题,每小题 2 分,共 20 分) 1. 下列极限等于 1 的是 ()。
(A) $\lim_{x \to \infty} \frac{\sin x}{x}$ (B) $\lim_{x \to 1} x^{\frac{1}{x-1}}$ (C) $\lim_{x \to \pi} \frac{\sin x}{\pi - x}$ (D) $\lim_{x \to 0} \frac{\sin (x-2)}{x-2}$
2. 设 $f(x) = \begin{cases} 2\sqrt{x}, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$, 则在 $x = 1$ 处 () 。 $1 + x, & x > 1$
(A) 左连续, 但不右连续 (B) 右连续, 但不左连续
(C) 不连续,且1 为可去间断点 (D) 不连续,且1 为跳跃间断点
3. 若 $\lim_{x\to 3} \frac{ax^2 - 9}{x - 3} = A$,则有()。
(A) $a = -1, A = 6$ (B) $a = 1, A = 6$
(C) $a = -1, A = -6$ (D) $a=1, A=-6$
4. 设 $f(x)$ 可导,且 $\lim_{x\to 0} \frac{f(1+2x)-f(1)}{3x} = 1$,则曲线 $y = f(x)$ 在点 $(1,f(1))$ 处的切线斜率
是 ()。 (A) $\frac{2}{3}$ (B) 0 (C) $\frac{3}{2}$ (D) 1
5. 设 $f(x) = \begin{cases} \frac{x^3}{2}, & x < 1 \\ \frac{x^2}{3}, & x \ge 1 \end{cases}$, 则 $f(x)$ 在 $x = 1$ 处 () 。
(A) 左导数不存在、右导数存在 (B) 左、右导数存在

(C) 左导数存在、右导数不存在 (D) 左、右导数都不存在

- 6. 设 $f(x) = 2^x + 5^x 2$, g(x) = 2x , 则当 $x \to 0$ 时,有 () 。
 - (A) f(x)和 g(x)是等价无穷小
 - (B) f(x)是比 g(x)更高阶的无穷小
 - (C) f(x)和 g(x)是同阶但不等价的无穷小
 - (D) f(x)是比 g(x)更低阶的无穷小
- 7. 设函数 $y = \int_{0}^{0} f(x)f(t)dt$, 那么 y' = () 。

 - (A) $f^2(x)$ (B) $f'(x) \int_{-\infty}^{0} f(t)dt + f^2(x)$

 - (C) $-f^2(x)$ (D) $-\left[f'(x)\int_0^x f(t)dt + f^2(x)\right]$
- 8. 设 $f'(x_0) = f''(x_0) = 0$, $f'''(x_0) > 0$, 则有 ()。
 - (A) $f'(x_0)$ 是 f'(x) 的极大值 (B) $f(x_0)$ 是 f(x) 的极大值

 - (C) $f(x_0)$ 是 f(x) 的极小值 (D) $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点
- 9. 曲线 $y = x^2$ 与 y = x 所围成的图形绕 x 轴旋转而成的旋转体的体积是()。
 - (A) $\pi \int_{0}^{1} (x-x^{2}) dx$ (B) $\pi \int_{0}^{1} (x^{2}-x^{4})^{2} dx$
 - (C) $\pi \int_{a}^{1} (x^2 x^4) dx$ (D) $\pi^2 \int_{a}^{1} (x^4 x^2)^2 dx$
- 10. 设一阶非齐次线性微分方程 y'+P(x)y = Q(x) 有三个不同的解 $y_1(x), y_2(x), y_3(x), y_4(x)$

C 为任意常数,则该方程的通解是()。

- (A) $y_3(x) + [y_1(x) y_2(x)]$ (B) $C[y_1(x) y_2(x)]$
- (C) $y_3(x) + C[y_1(x) y_2(x)]$ (D) $Cy_3(x) + [y_1(x) y_2(x)]$
- (E) 以上都不正确
- 二、解答与证明题(共11题,共80分)
- 1. 求极限 $\lim_{x\to 0} \frac{2\ln(1+x^3)}{\sin x(\sec x \cos x)}$ 。 (5分)
- 2. 求极限 $\lim_{x\to\infty} (\frac{3+x}{2+x})^{2x}$ 。 (5分)

3. 己知
$$y = e^{\sin \frac{1}{x}} + x^{\sin x} (x > 0)$$
, 求 $\frac{dy}{dx}$ 。 (7分)

4. 设
$$\begin{cases} e^{y} + (t+1)y + t^{2} = 2 \\ x = \int_{1}^{-t} e^{u} du \end{cases}$$
 确定函数 $y=f(x)$, 求 $\frac{dy}{dx}\Big|_{t=-1}$ 。 (8分)

- 5. 求不定积分 $\int e^x \cos x dx$ 。(6分)
- 6. 求定积分 $\int_{-1}^{1} \frac{2x^2 + x\cos x}{1 + \sqrt{1 x^2}} dx$ 。 (7分)
- 7. 曲线 $y = x^2$ 与直线 y = x + 2 围成一平面图形,解以下问题: (8分)
 - 1) 求该平面图形的面积。
 - 2) 求该图形被 y 轴划分所得的右半部分图形绕 y 轴旋转所得旋转体的体积。
- 8. 已知函数 $f(x) = \int_0^{-x} e^{-\frac{1}{4}t^4} dt$,试讨论:
 - 1) 该函数的奇偶性
 - 2) 该函数的单调性;
 - 3) 该函数的凹凸性和拐点。(8分)
- 9. 求微分方程 $(y^2-2xy)dx+x^2dy=0$ 的通解。(8分)
- 10. 求微分方程 $(2 + x^2)y' + 2xy = x^2, y|_{x=0} = 1$ 的特解. (8分)
- 11. 设函数 f(x) 在区间 [0,2] 上连续,在 (0,2) 上可导,且 f(0) = f(2) = 0, f(1) = -3。 试证明:
 - 1)在区间(1,2)内至少存在一点 η ,使得 $f(\eta) = -2\eta$;
 - 2) 在区间(0,2) 内至少存在一点 ξ , 使得 $f'(\xi) = -2$ 。(10分)