Aula 28: Programação dinâmica

David Déharbe
Programa de Pós-graduação em Sistemas e Computação
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra
Departamento de Informática e Matemática Aplicada

Download me from http://DavidDeharbe.github.io

Plano

Introdução

Princípios gerais

Exemplo introdutório

Exemplo intermediário

Exemplo avançado

Exercícios

Referência: Cormen, cap 16.

Introdução

- ▶ qual forma ótima de escolher N objetos, cada um com peso w_1, \ldots, w_n , e valores $v_1, \ldots v_n$, para levar em uma mala de até K kilogramas?
- qual a maior subsequência comum a duas sequências?
- qual a quantidade mínima de edições (adição/remoção/troca) para passar de uma palavra à outra?
- ▶ qual a ordem ótima para multiplicar N matrizes $A_1, ... A_N$?
- como escolher valores dentre de um conjunto de tal forma que a soma deles seja nula?

Introdução

- ▶ qual forma ótima de escolher N objetos, cada um com peso w_1, \ldots, w_n , e valores $v_1, \ldots v_n$, para levar em uma mala de até K kilogramas?
- qual a maior subsequência comum a duas sequências?
- qual a quantidade mínima de edições (adição/remoção/troca) para passar de uma palavra à outra?
- ▶ qual a ordem ótima para multiplicar N matrizes $A_1, ... A_N$?
- como escolher valores dentre de um conjunto de tal forma que a soma deles seja nula?

programação dinâmica!

Origem

- ▶ 1940–1950 Richard Bellman
 - o mesmo do algoritmo de Bellman-Ford
- contexto: resolução de problemas envolvendo tomadas de decisões sucessivas
- dynamic programming: construção dinâmica de uma programação.

Princípios

- decomposição: a solução para uma instância I pode ser expressa a partir das soluções para instâncias menores I₁,...I_n derivadas de I
- aplicar sucessivamente esta decomposição leva a ter que solucionar várias vezes o mesmo sub-problema. sub-problemas sobrepostos
- ▶ a melhor solução para I pode ser obtida a partir das melhores soluções para $I_1, \ldots I_n$. sub-estrutura ótima

Exemplo 1

$$fib(0) = 0$$

 $fib(1) = 1$
 $fib(n) = fib(n-1) + fib(n-2)$ para $n \ge 2$

- 1. sub-estrutura ótima: não há otimização
- sub-problemas sobrepostos: não calcular duas vezes o mesmo resultado
- recursão + memorização das soluções dos sub-problemas

Exemplo 1

Resolução computational

- abordagem ascendente
 - iniciar dos sub-problemas mais simples possíveis
 - calcular sub-problemas cada vez maiores
 - $fib(0), fib(1), fib(2), \ldots, fib(n)$.
- abordagem descendente
 - quebrar o problema em sub-problemas mais simples
 - solucionar os sub-problemas gerados
 - fib(n), fib(n-1), fib(n-2), fib(n-3)..., fib(0).
 - memorizar as soluções já calculadas

Exercício

- Escrever um algoritmo para calcular fib(n) utilizando a abordagem ascendente
- Escrever um algoritmo para calcular fib(n) utilizando a abordagem descendente

Exemplo: um problema de tabuleiro

- ▶ É dado um tabuleiro $N \times M$ tal que há um custo $C_{i,j}$ associado à sub-divisão da linha i e da coluna j.
- ▶ Projetar um algoritmo que determina o menor custo para atravessar o tabuleiro da primeira até a última linha?

Análise do problema

- ▶ Se M = 1, há um único caminho possível
- ▶ Se $M \ge 2$, quantos caminhos são possíveis?

1	1	1	1	1	1	1	1	1
2	3	3	3	3	3	3	3	2
5	8	9	9	9	9	9	8	2
13	22	26	27	27	27	26	22	13

- ▶ para cada sub-divisão: $\Omega(2^{N-1})$ e $O(3^{N-1})$ caminhos
- ▶ total: $\Omega(M \cdot 2^{N-1})$ e $O(M \cdot 3^{N-1})$ caminhos
- exponencial
- muitos caminhos possuem trechos comuns
 - sub-problemas sobrepostos

Análise do problema

- Como calcular o menor custo para uma sub-divisão?
- \triangleright $P_{i,j}$: custo da sub-divisão (i,j)
- $ightharpoonup C_{i,j}$: menor custo para chegar à divisão (i,j)
- ightharpoonup i > 1, sub-divisão fora da borda:

$$\begin{array}{c|cccc} C_{i-1,j-1} & C_{i-1,j} & C_{i-1,j+1} \\ \hline & P_{i,j} & \end{array}$$

- $C_{i,j} = P_{i,j} + \min\{C_{i-1,j-1}, C_{i-1,j}, C_{i-1,j+1}\}$
- i > 1, sub-divisão na borda:

$C_{i-1,1}$	$C_{i-1,2}$
$P_{i,1}$	

ou

$C_{i-1,M-1}$	$C_{i-1,M}$
	$P_{i,M}$

- $C_{i,1} = P_{i,1} + \min\{C_{i-1,1}, C_{i-1,2} \text{ ou } C_{i,M} = P_{i,M-1} + \min\{C_{i-1,1}, C_{i-1,M}\}$
 - sub-estrutura ótima

- ▶ Queremos calcular C[i,j] para cada i,j.
- Concluído este cálculo, basta determinar o menor valor entre os C[N, j].

```
for i = 1 to M
       C[1,j] = P[1,j]
 3 for i = 2 to N
        C[i,1] = P[i,1] + \min\{C[i-1,1], C[i-1,2]\}
        C[i, M] = P[i, M] + \min\{C[i-1, M-1], C[i-1, M]\}
        for i = 2 to M - 1
             C[i,j] = P[i,j] + \min\{C[i-1,j-1], C[i-1,j], C[i-1,j+1]\}
   res = C[N, 1]
    for i = 2 to N
        if C[N, i] < res
10
             res = C[N, j]
11
12
    return res
```

```
for i = 1 to M
        C[1, j] = P[1, j]
   for i = 2 to N
         C[i,1] = P[i,1] + \min\{C[i-1,1], C[i-1,2]\}
         C[i, M] = P[i, M] + \min\{C[i-1, M-1], C[i-1, M]\}
        for i = 2 to M - 1
             C[i, j] = P[i, j] + \min\{C[i-1, j-1], C[i-1, j], C[i-1, j+1]\}
    res = C[N,1]
    for i = 2 to N
        if C[N, j] < res
10
             res = C[N,j]
11
12
    return res
```

Complexidade?


```
for j = 1 to M // \Theta(M)
         C[1,i] = P[1,i]
   for i = 2 to N // \Theta(N) repetições
         C[i, 1] = P[i, 1] + \min\{C[i - 1, 1], C[i - 1, 2]\}
         C[i, M] = P[i, M] + \min\{C[i-1, M-1], C[i-1, M]\}
         for i = 2 to M - 1 // \Theta(M) repeticões
              C[i,j] = P[i,j] + \min\{C[i-1,j-1], C[i-1,j], C[i-1,j+1]\}
    res = C[N, 1]
    for i = 2 to N
         if C[N, j] < res
10
              res = C[N, j]
11
12
    return res
```

Complexidade? $\Theta(NM)$

Exercício

1. Adapte o algoritmo anterior para imprimir o caminho menos custoso para atravessar o tabuleiro.

Exemplo: o problema da multiplicação de matrizes

- ▶ É dada uma sequência de matrizes de tamanho $L_1 \times C_1$, $L_2 \times C_2, \dots L_n \times C_n$, tal que $L_i = C_{i+1}$, para $1 \le i < n$.
 - exemplo: $A_1: 10 \times 100, A_2: 100 \times 5, A_3: 5 \times 50$
 - $(A_1 \cdot A_2) \cdot A_3: \ 10 \cdot 100 \cdot 5 + 10 \cdot 5 \cdot 50 = 7.500$
 - $A_1 \cdot (A_2 \cdot A_3): \ 100 \cdot 5 \cdot 50 + 10 \cdot 100 \cdot 50 = 75.000$
- Projetar um algoritmo que determina a ordem ótima de realizar as multiplicações (aquela que minimiza o número de operações entre elementos de matrizes).
- Notação: A_i tem dimensão $p_{i-1} \times p_i$.

Análise do problema

- Para n matrizes: quantas maneiras existem de calcular o produto delas?
- ▶ *N* matrizes podem ser divididas de n-1 formas diferentes: A_1 e $(A_2 ... A_n)$, (A_1, A_2) e $(A_3 ... A_n)$, etc.
- Seja π(n) o número de maneiras que podemos calcular o produto de N matrizes.

$$\pi(1) = 1
\pi(n) = \pi(1) \cdot \pi(n-1) + \pi(2) \cdot \pi(n-2) + \dots + \pi(n-1) \cdot \pi(1)
= \sum_{k=1}^{n-1} \pi(k) \cdot \pi(n-k)
= \frac{1}{n} {2n-2 \choose n-1}
\in \Omega(4^n/n^{3/2})$$

crescimento exponencial

Análise da estrutura do problema

- ▶ Seja $A_1, ... A_n$ as matrizes a multiplicar.
- lacktriangle Seja $A_{i...j}$ o resultado da multiplicação de $A_i \dots A_j$
- ▶ Um agrupamento ótimo para $A_1 ... A_n$ divide em dois grupos $A_1 ... A_k$ e $A_{k+1} ... A_n$.
- O custo do agrupamento ótimo é o custo de calcular de forma ótima A_{1...k} e A_{k+1...n}, mais o custo de multiplicar essas duas matrizes.
- ▶ Um agrupamento ótimo para calcular $A_{1..n}$ deve incluir agrupamentos ótimos para calcular $A_{1..k}$ e $A_{k+1..n}$.
- e sub-estrutura ótima

Análise dos sub-problemas

- ▶ sub-problemas: qual o custo mínimo para calcular $A_i ... A_j$, onde $1 \le i \le j \le n$?
- ▶ seja m[i,j] este custo
- queremos calcular m[1, n]
- ightharpoonup caso de base: i = j
 - lacktriangle nenhuma operação: m[i,i]=0, para $1\leq i\leq n$
- caso geral:
 - se dividir em k: $m[i,j] = m[i,k] + m[k,j] + p_{i-1}p_kp_j$.
 - ▶ logo $m[i,j] = \min\{m[i,j] = m[i,k] + m[k,j] + p_{i-1}p_kp_j \cdot i \le k < j\}$ se i < j

Análise dos sub-problemas

- ▶ sub-problemas: qual índice k, tal que $i \le k <$, dividir $A_i \dots A_j$, em $A_{i...k}$ e $A_{k+1..j}$, onde $1 \le i \le j \le n$?
- ▶ seja s[i,j] este índice
- ▶ s[i,j] é o índice que minimiza $m[i,k] + m[k,j] + p_{i-1}p_kp_j$.
- há $\Theta(n^2)$ sub-problemas no total
- um cálculo recursivo descendente necessita solucionar repetidas vezes o mesmo problema
- sub-problemas sobrepostos
- ▶ abordagem ascendente: cálculo de m[i,j], s[i,j] após ter calculado os sub-problemas contidos


```
n=p. length-1
2 for i = 1 to n
         m[i, i] = 0
    for l=2 to n
5
         for i = 1 to n - l + 1
6
             i = i + l - 1
              m[i,j] = \infty
8
              for k = 1 to j - 1
                   q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
9
10
                   if q < m[i,j]
11
                       m[i,j] = q
                        s[i, j] = k
12
13
    return m and s
```


llustração

matriz	dimensão
A_1	30 × 35
A_2	35×15
A_3	15 imes 5
A_4	5×10
A_5	10×20
A_6	20×25

Complexidade?

```
n = p. length - 1
2 for i = 1 to n
3
         m[i,i]=0
   for l=2 to n
5
         for i = 1 to n - l + 1
6
             i = i + l - 1
              m[i,j] = \infty
              for k = 1 to j - 1
8
9
                   q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
10
                   if q < m[i,j]
                        m[i,j] = q
11
12
                        s[i,j] = k
13
    return m and s
```

Complexidade?

```
n = p. length - 1
2 for i = 1 to n
3
         m[i,i]=0
   for l=2 to n
5
         for i = 1 to n - l + 1
6
             i = i + l - 1
              m[i,j] = \infty
              for k = 1 to j - 1
8
9
                   q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_i
10
                   if q < m[i,j]
                        m[i,j] = q
11
12
                        s[i,j] = k
13
    return m and s
```

Concluindo: multiplicando matrizes de forma ótima

```
MATRIX-PRODUCT+(A, s, i, j)

1 if j > i

2 X = \text{MATRIX-PRODUCT+}(A, s, i, s[i, j])

3 Y = \text{MATRIX-PRODUCT+}(A, s, s[i, j] + 1, j)

4 return MATRIX-MULTIPLY(X, Y)

5 else return A_i
```

Menor caminho entre duas arestas

- 1. sub-estrutura ótima: em um grafo conectado com pesos, a menor distância de *u* até *v* pode ser calculada a partir da menor distância dos vértices adjacentes a *u* até *v*.
- 2. sub-problemas sobrepostos: não calcular duas vezes o mesmo resultado
- recursão + memorização das soluções dos sub-problemas

Exercício

- 1. Escrever um algoritmo para calcular o menor caminho de u até v utilizando a abordagem ascendente
- 2. Escrever um algoritmo para calcular o menor caminho de u até v utilizando a abordagem descendente

Sub-conjunto de soma nula

- É dada um conjunto de inteiros $\{v_1, v_2, \dots v_n\}$.
- ▶ Projetar um algoritmo que determina se existe um sub-conjunto tal que a soma dos elementos é nula.

- Quantos sub-conjuntos de $S = \{v_1, v_2, \dots v_n\}$?
- Seja N a soma dos números negativos de S
- Seja P a soma dos números positivos de S
- ▶ Seja Q(i, s) verdadeiro sse existe um sub-conjunto de $\{v_1, v_2, \dots v_i\}$ de soma s.
- ▶ Representar Q por uma matriz $N + P + 1 \times n$
- ightharpoonup Calcular Q(n,0) soluciona o problema desejado
- Temos que
 - $ightharpoonup Q(1,s) \leftrightarrow v_1 = s$
 - ▶ para *i* > 1:

$$Q(i,s)\Leftrightarrow Q(i-1,s)$$
 v_i não é somado V $Q(i-1,s-v_i)$ v_i é somado V v_i é somado v_i a soma é apenas v_i

Exercício

▶ Projetar um algoritmo para solucionar este problema usando programação dinâmica.

O problema da mochila 0-1

- É dada um conjunto de N itens, cada um com seu valor v_i e seu peso w_i, e uma mochila, que tem uma capacidade máxima K.
- Projetar um algoritmo que determinar o valor máximo que pode ser transportado na mochila.

- Quantas possibilidades temos?
- ▶ Porque o problema tem uma sub-estrutura ótima?
- Porque este problema tem sub-problemas sobrepostos?

- Quantas possibilidades temos?
- Porque o problema tem uma sub-estrutura ótima?
- Porque este problema tem sub-problemas sobrepostos?
- Seja C(i, m) o valor máximo carregável considerando
 - 1. apenas os *i* primeiros itens
 - 2. uma capacidade máxima de *m*
- ► Casos de base: C(0, m) = C(i, 0) = C(i, 0)
- ▶ Caso geral: se $w_i > m$, então C(i, m) =
- ▶ Caso geral: se $w_i \le m$, então C(i, m) =

- Quantas possibilidades temos?
- Porque o problema tem uma sub-estrutura ótima?
- Porque este problema tem sub-problemas sobrepostos?
- Seja C(i, m) o valor máximo carregável considerando
 - 1. apenas os *i* primeiros itens
 - 2. uma capacidade máxima de *m*
- Casos de base: C(0, m) = 0, C(i, 0) = 0
- ▶ Caso geral: se $w_i > m$, então C(i, m) =
- ▶ Caso geral: se $w_i \le m$, então C(i, m) =

- Quantas possibilidades temos?
- Porque o problema tem uma sub-estrutura ótima?
- Porque este problema tem sub-problemas sobrepostos?
- Seja C(i, m) o valor máximo carregável considerando
 - 1. apenas os i primeiros itens
 - 2. uma capacidade máxima de *m*
- ► Casos de base: C(0, m) = C(i, 0) = C(i, 0)
- ▶ Caso geral: se $w_i > m$, então C(i, m) = C(i 1, m)
- ▶ Caso geral: se $w_i \le m$, então C(i, m) =

- Quantas possibilidades temos?
- Porque o problema tem uma sub-estrutura ótima?
- Porque este problema tem sub-problemas sobrepostos?
- ▶ Seja C(i, m) o valor máximo carregável considerando
 - 1. apenas os i primeiros itens
 - 2. uma capacidade máxima de m
- ► Casos de base: C(0, m) = C(i, 0) = C(i, 0)
- ▶ Caso geral: se $w_i > m$, então C(i, m) =
- ▶ Caso geral: se $w_i \le m$, então $C(i, m) = \max\{C(i-1, m), v_i + C(i-1, m-w_i)\}$

Exercício

- ▶ Utilizando programação dinâmica, projetar um algoritmo que soluciona o problema da mochila 0,1.
- Adapte o algoritmo para imprimir os itens selecionados para compor a solução ótima.