Lecture 10: Tree Data Structure

Linear Lists and Trees

- Linear lists are useful for <u>serially ordered</u> data
 - $e_1, e_2, e_3, \dots, e_n$
 - Days of week
 - Months in a year
 - Students in a class
- Trees are useful for <u>hierarchically ordered</u> data
 - Joe's descendants
 - Corporate structure
 - Government Subdivisions
 - Software structure

Trees

- Compare to linked lists, trees are non-linear data structures
 - In linked list, each node points other node(s)
- In a tree structure, each node may point to several nodes, which may in turn point to several other nodes
 - Flexible and powerful data structure that can be used for a variety of applications

Trees

- > Tree *t* is finite nonempty set of elements
- > One of these elements is called the root node
- The remaining elements, if any, known as child nodes are partitioned into trees, called sub trees of a tree

Tree **ROOT NODE** Owner **Child NODE** LEVEL 0 **LEFT SUBTREE OF ROOT NODE** Chef Manager **LEVEL 1** Helper LEVEL 2 Waitress Waiter Cook LEAF NODES 6

Tree Terminology

- > The element at the top of the hierarchy is the **root**
- Elements next in the hierarchy are the **children** of the root
- Elements next in the hierarchy are the **grandchildren** of the root, and so on

Tree Terminology

Leaves, Parent, Grandparent, Siblings, Ancestors, Descendents

Leaves = {Mike,Al,Sue,Chris}

Parent(Mary) = Joe

Grandparent(Sue) = Mary

Siblings(Mary) = {Ann,John}

Ancestors(Mike) = {Ann,Joe}

Descendents(Mary)={Mark,Sue}

Node & Tree Degree

Node degree is the number of children it has

Tree degree is the maximum of node degrees

Size and Depth

- The size of a binary tree is the number of nodes in it
 - This tree has size 12
- > The depth of a node is its distance from the root
 - a is at depth zero
 - e is at depth 2
- The depth of a binary tree is the depth of its deepest node
 - This tree has depth 4

Size and Depth

Example

Property: (# edges) = (#nodes) - 1

A is the root node
B is the parent of D and E
C is the sibling of B
D and E are the children of B
D, E, F, G, I are external nodes, or leaves
A, B, C, H are internal nodes
The level of E is 3
The height of the tree is 4
The degree of node B is 2
The degree of the tree is 3
The ancestors of node I is A, C, H

The *descendants* of node C is F, G, H, I

Applications of Trees

- Most decision-making processes can be represented as a binary tree. At each node of the tree a yes/no decision is made on some issue.
- > Storing naturally hierarchical data: File system
- Computer chess games build a huge tree (training) which they prune at runtime using heuristics to reach an optimal move.

- > Syntax Trees Constructed by compilers and (implicitly) calculators to parse expressions.
- ➤ Huffman Coding Tree used in compression algorithms, such as those used by the .jpeg and .mp3 file-formats.
- ➤ Telephone exchanges used a tree hierarchy to find the actual target phone when dialing a phone number, for example. It is again not a binary tree, but a "decimal" tree with 10 nodes coming off each individual node.

Binary Tree

- > A binary tree is composed of **zero** or more nodes
- Each node contains:
 - A value (data item)
 - A reference or pointer to a **left child** (may be null), and
 - A reference or pointer to a **right child** (may be null)
- > A binary tree may be *empty* (contain no nodes)
- ➤ If not empty, a binary tree has a root node
 - Every node in the binary tree is reachable from the root node by a *unique* path

Minimum & Maximum Number Of Nodes

- All possible nodes at first h levels are present
- Maximum number of nodes

$$1 + 2 + 4 + 8 + \dots + 2h-1$$

2h - 1

- Minimum number of nodes in a binary tree whose height is h
- At least one node at each of first **h** levels

Numbering Nodes In Binary Tree

- \triangleright Number the nodes 1 through $2^h 1$
- Number by levels from **top to bottom**
- Within a level number from left to right

Types of Binary Trees

17

Binary Tree Representation

- > There are two ways of representing binary tree in memory:
 - 1. Sequential representation using arrays
 - 2. Linked list representation

- An array can be used to store the nodes of a binary tree
- The nodes stored in an array of memory can be accessed sequentially
- Suppose a binary tree T of depth d
- Then at most $2^d 1$ nodes can be there in T (i.e SIZE = 2^d-1), so the array of size "SIZE" to represent the binary tree
- *Consider a binary tree* of depth 3

• Then SIZE = $2^3 - 1 = 7$

To perform any operation often we have to identify the father, the left child and right child of an arbitrary node

21

- 1. The father of a node having index n can be obtained by (n-1)/2
- For example to find the **father of D**, where array index n = 3
- Then the father nodes index can be obtained

$$= (n-1)/2$$

$$= 3 - 1/2$$

$$= 2/2$$

$$= 1$$

i.e., A[1] is the father of D, which is B

- 2. The **left child** of a node having index n can be obtained by (2n+1)
- For example to find the **left child of C**, where array index $\mathbf{n} = \mathbf{2}$. Then it can be obtained by

$$= (2n + 1)$$

= $2*2 + 1$
= $4 + 1$
= 5

• i.e., A[5] is the left child of C, which is NULL. So no left child for C

- **3.** The **right child** of a node having array index n can be obtained by (2n+2)
- For example to find the **right child of B**, where the array index n = 1. Then

$$= (2n + 2)$$

= $2*1 + 2$
= 4

• i.e., A[4] is the right child of B, which is E

4. If the **left child** is at array index n, then its right brother is at (n + 1)

Similarly, if the **right child** is at index n, then its left brother is at (n-1)

Binary Trees

- Binary tree representations (using array)
 - Waste spaces: in the worst case, a skewed tree of depth k requires 2^k-1 spaces. Of these, only k spaces will be occupied

[1]	A
[2]	В
[3]	
[4]	С
[5]	
[6]	
[7]	
[8]	D
[9]	
•	
•	•
[16]	E

[1]	A
[2]	В
[3]	С
[4]	D
[5]	E
[6]	F
[7]	G
[8]	Н
[9]	I

Linked List Representation

- The most popular and practical way of representing a binary tree is using linked list (or pointers)
- In linked list, every element is represented as nodes. A node consists of **three fields** such as:
- 1. Left Child (LChild)
 2. Information of the Node (Info)
 3. Right Child (RChild)

 Info

 int Info;

 struct Node *Lchild;

 struct Node *Rchild;

RChild

LChild

Linked List Representation

Traversing a Binary Tree

- > At a given node, there are **three** things to do in some order:
 - To visit the node itself
 - To traverse its left subtree
 - To traverse its right subtree
- We can traverse the node **before** traversing either subtree
- > Or, we can traverse the node **between** the subtrees
- > Or, we can traverse the node **after** traversing both subtrees
- ➤ If we designate the task of visiting the root as R', traversing the left subtree as L and traversing the right subtree as R, then the three modes of tree traversal would be represented as:
 - R'LR Preorder
 - LRR' Postorder

LR'R – Inorder

1. Pre Order Traversal (Node-left-right)

- > To traverse a non-empty binary tree in pre order :
 - 1. Visit the root node
 - 2. Traverse the left sub tree in preorder
 - 3. Traverse the right sub tree in preorder

The preorder traversal is

A, B, D, E, H, I, C, F, G, J

Preorder Traversal

```
void preorder (p)
struct btreenode *p;
                                          /* Checking for an empty tree */
 if ( p != null)
                                          /* print the value of the root node */
  printf("%d", p->info);
                                          /* traverse its left subtree */
  preorder(p->left);
                                          /* traverse its right subtree */
  preorder(p->right);
                                               32
```

2. Post Order Traversal (Left-right-node)

- > The post order traversal of a non-empty binary tree :
 - 1. Traverse the left sub tree in post order
 - 2. Traverse the right sub tree in post order
 - 3. Visit the root node

The postorder traversal is **D**, **H**, **I**, **E**, **B**, **F**, **J**, **G**, **C**, **A**

Postorder Traversal

```
void postorder(p)
struct btreenode *p;
 if (p!= null)
  postorder(p->left);
  postorder(p->right);
  printf("%d", p->info);
```

```
/* checking for an empty tree */
/* traverse the left subtree */
/* traverse the right subtree */
/* print the value of root node */
```

3. In order Traversal (Left-node-right)

- > The in order traversal of a non-empty binary tree :
- 1. Traverse the left sub tree in order
- 2. Visit the root node
- 3. Traverse the right sub tree in order

The Inorder traversal is

D, B, H, E, I, A, F, C, J, G.

Inorder Traversal

```
void inorder(p)
struct btreenode *p;
                                         /* checking for an empty tree */
 if (p != null)
                                         /* traverse the left subtree inorder */
  inorder(p->left);
                                         /* print the value of the root node */
  printf("%d", p->info);
                                         /*traverse right subtree inorder */
  inorder(p->right);
                                                36
```