CS F364 Design & Analysis of Algorithms

COMPLEXITY — OPTIMIZATION PROBLEMS

Intractable Optimization Problems

- Complexity Classes and Reduction
- Hardness of Optimization Problems
 - Examples
- Pseudo-polynomial time algorithms
- Strongly NP-hard problems

RECALL: REDUCTIONS

- o Recall:
 - We say π_1 (polynomially) reduces to π_2
 - oif there is a polynomial-time computable function $f: I(\pi_1) \longrightarrow I(\pi_2)$ such that
 - for every $x \in I(\pi_1)$,
- We use $\pi_1 \preceq \pi_2$
 - to denote that π_1 (polynomially) reduces to π_2

RECALL: REDUCTIONS AND ORACLES

- Another way of understanding $\pi_1 \preceq \pi_2$
 - If there is an algorithm A_2 to (efficiently) solve π_2 then one can use that construct an (efficient) algorithm A_1 to solve π_1
- Alternatively,
 - If we can use a poly-time algorithm A_2 that solves π_2 to construct a poly-time algorithm A_1 to solve π_1 , then $\pi_1 \preceq \pi_2$
- o Question:
 - Can we quantify "use"?
 - Karp Reduction: Single query to Oracle
 - Turing Reduction: Polynomial Number of queries to Oracle

HARDNESS OF OPTIMIZATION PROBLEMS

- An optimization problem π in NPO is said to be NP-hard if for all problems π' in NP:
 - π' ≾ π
- o Note on reduction:
 - We will typically assume Turing reductions as a Karp reduction is a special case of a Turing reduction.

OPTIMIZATION PROBLEMS - FORMULATIONS

- An optimization problem π = <1, SOL, m, goal> can be formulated in different ways:
 - Construction Version (π_c) :
 - Given an input instance x, find the *optimal solution*OPT(x)
 - Evaluation Version (π_e) :
 - o Given an input instance x, find the optimal measure i.e. measure of the optimal solution $m^*(x) = m(x, OPT(x))$
 - Decision Version (π_d) :
 - o Given an input instance **x**, and a threshold value **k** decide whether **the optimal measure is bounded by k**
 - o i.e. Is $m^*(x) \le k$? (if goal is min)
 - o Is $m^*(x) >= k$? (if goal is max)

OPTIMIZATION PROBLEMS — FORMULATIONS

[2]

- Example: TSP
 - TSP_c:
 - o Given a weighted, complete graph G, find a minimum weight tour.
 - TSP_e:
 - o Given a weighted, complete graph G, find the weight of a minimum weight tour.
 - TSP_d:
 - o Given a weighted, complete graph G, and a number k, find whether the weight of a minimum weight tour is less than k.

OPTIMIZATION PROBLEMS – FORMULATIONS [3]

o Claim:

- Given an optimization problem π
 - o the construction version (π_c) is at least as hard as the evaluation Version (π_e)
 - o which in turn is at least as hard as the decision version $(\pi_{\mbox{\scriptsize d}})$
- i.e.

$$\circ \pi_{d} \preceq \pi_{e} \preceq \pi_{c}$$

Observation:

• If the decision version of a problem is NP-hard, then so is the construction version!

OPTIMIZATION PROBLEMS — FORMULATIONS

[4]

- Given an optimization problem $\pi = \langle I, SOL, m, goal \rangle$ its decision Version (π_d) can be formulated in two ways :
 - Formulation 1:
 - Given an input instance x, and a threshold value k
 decide whether the optimal measure is bounded by k
 - o i.e. Is $m^*(x) \le k$? (if goal is min)
 - Formulation 2:
 - Given an input instance x, and a threshold value k, decide whether there exists a feasible solution whose measure is bounded by k
 - i.e. Is there a y s.t. y ∈ SOL(x) and m(x,y) <= k ?(if goal is min)
- Exercise:
 - Prove that both these formulations are equivalent!

OPTIMIZATION PROBLEMS — FORMULATIONS

[5]

- Example: TSP_d
 - Formulation 1 :
 - o Given a weighted, complete graph G, and a number k, find whether the weight of a minimum weight tour is less than k.
 - Formulation 2:
 - o Given a weighted, complete graph G, a number k, find whether there is a tour of weight less than k.

NP-HARD OPTIMIZATION PROBLEMS - EXAMPLES

- The following optimization problems are NP-hard:
 - Min Vertex Cover
 - TSP
 - 0,1 Knapsack
- o because their decision versions are NP-hard.