DMAD - zasada właczania i wyłaczania

Jak przygotować się do rozwiązywania zadań?

Przeczytaj rozdział 2.3, twierdzenie 3.1 oraz przykłady 3.14 i 3.22 z podręcznika.

Szczypta teorii:

Zasada włączania i wyłączania

Dla dowolnych zbiorów skończonych $A_1, A_2, A_3 \dots$

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| - |A_1 \cap A_2| - |A_1 \cap A_3| - |A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$$

$$\left| \bigcup_{i=1}^{n} A_i \right| = |A_1 \cup A_2 \cup \ldots \cup A_n| = \sum_{k=1}^{n} (-1)^{k-1} \left(\sum_{J \subseteq [n], |J| = k} \left| \bigcap_{j \in J} A_j \right| \right)$$

$$= |A_1| + |A_2| + \ldots + |A_n|$$

$$- |A_1 \cap A_2| - |A_1 \cap A_3| - \ldots - |A_{n-1} \cap A_n|$$

$$\vdots$$

$$+ (-1)^{n-1} |A_1 \cap A_2 \cap \ldots \cap A_n|.$$

A Zadania na ćwiczenia

Zadanie na rozgrzewkę. Wejdź na stronę

https://adamski.students.wmi.amu.edu.pl/zasadawlaczeniwylaczen.html i rozwiąż znajdujące się tam zadanie.

Zadanie A.1. Ile jest ciągów binarnych długości 8, które zaczynają się jedynką lub kończą dwoma zerami?

Zadanie A.2. Ile jest dodatnich liczb całkowitych równych co najwyżej 1000 niepodzielnych ani przez 8, ani przez 6, ani przez 15?

Zadanie A.3. 15 osób wsiada do pustego pociągu składającego się z 4 wagonów. Na ile sposobów mogą oni wybrać wagony tak, aby żaden z wagonów nie pozostał pusty (kolejność wsiadania nie ma znaczenia)?

Zadanie A.4. Na ile sposobów można włożyć 30 kul do 20 rozróżnialnych urn tak, aby w każdej urnie była co najmniej jedna kula, jeśli

- a) kule sa nierozróżnialne?
- b) kule są rozróżnialne?

UWAGA: porównaj zadanie z zadaniem A.3. z zestawu o schematach wyboru.

Zadanie A.5. Na ile sposobów można ustawić 2n małżonków z $n, n \ge 2$, par małżeńskich w rzędzie tak, aby

- a) istniała para małżeńska, która stoi obok siebie?
- b) żadna z pań nie stała obok swojego męża?

B Zadania na ćwiczenia - jeśli czas pozwoli

Zadanie B.1. Karty z talii 52 kart rozłożono po 4 do 13 ponumerowanych pudełek. Na ile sposobów można to zrobić (kolejność kart w pudełku jest nieistotna) tak, aby w żadnym z pudełek nie znalazły się jednocześnie wszystkie 4 karty o tej samej wartości (wartości kart to 2,...,10,W,D,K,A)?

Zadanie B.2. Ile jest rozwiązań równania w nieujemnych liczbach całkowitych:

- a) $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 = 70$, $0 \le x_1 \le 9$, $0 \le x_2 \le 9$, $0 \le x_3 \le 9$, $0 \le x_4 \le 9$?
- b) $x_1 + x_2 + \ldots + x_{10} + x_{11} + x_{12} = 300$, przy dodatkowym założeniu, że $0 \le x_i \le 9$ dla $i = 1, \ldots, 10$?

C Zadania do samodzielnej pracy w domu

Zadanie C.1. Ile jest dodatnich liczb całkowitych nie większych niż 100, które są nieparzyste lub są kwadratem liczby całkowitej?

Zadanie C.2. Ile jest 10-elementowych podzbiorów zbioru 52 kart, w których nie występuje żadna dama lub żaden kier lub żadna blotka (blotki to karty o wartości od 2 do 9)?

Zadanie C.3. Ile permutacji 26 liter alfabetu łacińskiego nie zawiera (jako ciągu kolejnych liter w permutacji) żadnego ze słów: ryba, krowa i pies?

Zadanie C.4. Na ile sposobów można utworzyć n-cyfrową liczbę nie zawierającą cyfry "0" tak, aby

- a) nie wystąpiła w niej liczba nieparzysta lub liczba 2 lub liczba 8;
- b) pewna z cyfr 1,2...,9 nie wystąpiła w utworzonej liczbie;
- c) każda z cyfr 1,2...,9 wystąpiła w utworzonej liczbie.

Zadanie C.5. Pewna pani ma w szafie 100 sukienek. Każdego dnia ubiera dokładnie jedną z nich. Na ile sposobów może wybierać sukienki przez cały rok tak, aby każda z sukienek była wybrana co najmniej raz (zakładamy, że rok ma 365 dni)?

Zadanie C.6. Alfabet łaciński ma 21 spółgłosek i 5 samogłosek. Ile jest ciągów długości 100 składających się z liter alfabetu łacińskiego takich, że każda spółgłoska występuje w nich co najmniej raz?

Zadanie C.7. Na ile sposobów możemy wybrać

- a) (na raz) 20 różnych;
- b) kolejno ze zwracaniem 20;

kart z talii 52 kart tak, aby każda wartość blotki (każda z kart o wartości od 2 do 9) była wybrana co najmniej raz?

Zadanie C.8. Ile jest permutacji talii 52 kart takich, że

- a) pewne dwie damy sąsiadują ze sobą;
- b) żadne dwie **czarne** karty o tej samej wartości (wartości to: $2, 3, \ldots, 10, W, D, K, A$) nie sąsiadują ze sobą.

Zadanie C.9. Jak zmieni się odpowiedź w zadaniu A.5, jeśli pary małżeńskie są usadzane przy okrągłym stole oraz istotne jest tylko kto siedzi obok kogo i po której stronie?

Zadanie C.10. Zadania 2.21–2.25 z podręcznika.

Odpowiedzi do niektórych zadań

UWAGA: na teście w poniższych zadaniach w dobrym rozwiązaniu istotne są oznaczenia (nazwy) zbiorów i pełne uzasadnienie a nie tylko poprawny wynik liczbowy!!!

$$\mathbf{C.2} \, \left(\begin{smallmatrix} 48 \\ 10 \end{smallmatrix} \right) + \left(\begin{smallmatrix} 39 \\ 10 \end{smallmatrix} \right) + \left(\begin{smallmatrix} 20 \\ 10 \end{smallmatrix} \right) - \left(\begin{smallmatrix} 36 \\ 10 \end{smallmatrix} \right) - \left(\begin{smallmatrix} 16 \\ 10 \end{smallmatrix} \right) - \left(\begin{smallmatrix} 15 \\ 10 \end{smallmatrix} \right) + \left(\begin{smallmatrix} 12 \\ 10 \end{smallmatrix} \right).$$

C.3
$$26! - 23! - 22! - 23! + 19! + 20!$$

a)
$$8^n + 8^n + 4^n - 3^n - 3^n - 7^n + 2^n$$

b) $\sum_{k=1}^{9} (-1)^{k-1} \binom{9}{k} (9-k)^n$
c) $\sum_{k=0}^{9} (-1)^k \binom{9}{k} (9-k)^n$

b)
$$\sum_{k=1}^{9} (-1)^{k-1} \binom{9}{k} (9-k)^{r}$$

c)
$$\sum_{k=0}^{9} (-1)^k \binom{9}{k} (9-k)^n$$

C.5
$$\sum_{k=0}^{100} (-1)^k {100 \choose k} (100-k)^{365}$$

C.6
$$\sum_{k=0}^{21} (-1)^k {21 \choose k} (26-k)^{100}$$
.

C.7 a)
$$\sum_{k=0}^{8} (-1)^k {8 \choose k} {52-4k \choose 20}$$
 b) $\sum_{k=0}^{8} (-1)^k {8 \choose k} (52-4k)^{20}$

C.8 a)
$$12 * 51! - 36 * 50! + 24 * 49!$$
 (lub sprytnie bez zasady w-w: $52! - 48! \cdot (49)_4$). b) $\sum_{k=0}^{13} (-1)^k \binom{13}{k} 2^k (52 - k)!$

C.9 a)
$$\sum_{k=1}^{n} (-1)^{k+1} {n \choose k} \frac{2^k (2n-k)!}{2n}$$
 b) $\sum_{k=0}^{n} (-1)^k {n \choose k} \frac{2^k (2n-k)!}{2n}$

2.21 30

2.22 2

2.25
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} \frac{(2n-k)!}{2^{n-k}}$$