

planetmath.org

Math for the people, by the people.

alternating group is a normal subgroup of the symmetric group

 ${\bf Canonical\ name} \quad {\bf Alternating Group Is A Normal Subgroup Of The Symmetric Group}$

Date of creation 2013-03-22 13:42:32 Last modified on 2013-03-22 13:42:32

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771) Entry type Theorem Classification msc 20-00 **Theorem 1.** The alternating group A_n is a normal subgroup of the symmetric group S_n

Proof. Define the epimorphism $f: S_n \to \mathbb{Z}_2$ by $: \sigma \mapsto 0$ if σ is an even permutation and $: \sigma \mapsto 1$ if σ is an odd permutation. Hence, A_n is the kernel of f and so it is a normal subgroup of the domain S_n . Furthermore $S_n/A_n \cong \mathbb{Z}_2$ by the first isomorphism theorem. So by Lagrange's theorem

$$|S_n| = |A_n||S_n/A_n|.$$

Therefore, $|A_n| = n!/2$. That is, there are n!/2 many elements in A_n

Remark. What we have shown in the theorem is that, in fact, A_n has index 2 in S_n . In general, if a subgroup H of G has index 2, then H is normal in G. (Since [G:H]=2, there is an element $g\in G-H$, so that $gH\cap H=\varnothing$ and thus gH=Hg).