Plan

- Review of Last Lecture
- Section 18. Rings and Fields (continued)
- Section 19. Integral Domains
- About Quiz on Dec 1.

Yongchang Zhu Short title 2 / 25

Review of Last Lecture

Definition 18.1. A ring $(R, +, \cdot)$ is a set R with two binary operations addition + and multiplication \cdot such that the following axioms are satisfied:

- (1). (R, +) is an abelian group.
- (2). Multiplication · is associative.
- (3). For all $a, b, c \in R$, the left distributive law and the right distributive las hold:

$$a \cdot (b+c) = a \cdot b + a \cdot c, \quad (b+c) \cdot a = b \cdot a + c \cdot a.$$

Yongchang Zhu Short title 3/25

Example. The familiar number systems $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$ are rings.

For every positive integer n, $(\mathbb{Z}_n, +, \cdot)$, where + is the modulo n addition and \cdot is the modulo n multiplication.

 $(C[0,7],+,\cdot)$ is a ring, where C[0,7] is the space of all continuous functions on interval [0,7].

In general for any interval I, the space of continuous functions on I is a ring under the function addition + and function multiplication \cdot .

Yongchang Zhu Short title 4/25

Definition. A ring $(R, +, \cdot)$ is called a **commutative ring** if the multiplication \cdot is commutative, that is,

$$a \cdot b = b \cdot a$$
 for all $a, b \in R$.

 $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$, C[0,7], $(\mathbb{Z}_n,+,\cdot)$ are all commutative rings.

Yongchang Zhu Short title 5 / 25

Example. Let $n \geq 2$ and $M_n(\mathbb{R})$ be the set of all $n \times n$ matrices with real number entries, $(M_n(\mathbb{R}), +, \cdot)$ is a ring. This ring is **not** a commutative ring,

Yongchang Zhu Short title 6 / 25

We will often write a ring $(R, +, \cdot)$ simply as R, with the understanding that it has + and \cdot .

And we write the identity element for + as 0, the additive inverse of $a \in R$ as -a.

Theorem 18.8. If R is a ring with additive identity 0, then for any $a, b \in R$, we have

- (1) 0a = a0 = 0.
- (2) a(-b) = (-a)b = -(ab).
- (3) (-a)(-b) = ab.

Yongchang Zhu Short title 8/25

Definition 18.9. For rings R and R', a map $\phi: R \to R'$ is a (ring) **homomorphism** if the following two conditions are satisfied for all $a, b \in R$:

(1)
$$\phi(a+b) = \phi(a) + \phi(b)$$
.

(2)
$$\phi(ab) = \phi(a)\phi(b)$$
.

Yongchang Zhu Short title 9 / 25

Example. $\phi: \mathbb{R} \to M_2(\mathbb{R})$ given by

$$\phi(a) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$$

is a ring homomorphism.

Example. $\phi: \mathbb{C} \to M_2(\mathbb{R})$ given by

$$\phi(a+bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

is a ring homomorphism.

Yongchang Zhu Short title 10 / 25

Definition 18.12. An **isomorphism** $\phi: R \to R'$ from a ring R to a ring R' is a homomorphism that is one-to-one and onto. The rings R and R' are then said to be isomorphic.

Section 18. Ring and Fields (continued)

Definition 18.14. A ring with a multiplicative identity element is called a **ring with unity**. The multiplicative identity is usually denoted by 1 which is called "**unity**".

Examples. $(\mathbb{Z},+,\cdot)$, $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$, C[0,7], $(\mathbb{Z}_n,+,\cdot)$, and $M_n(\mathbb{R})$ are all rings with unity.

Yongchang Zhu Short title 12 / 25

Example. $(2\mathbb{Z}, +, \cdot)$ is a commutative ring, it has no unity. So it is NOT a ring with unity.

Yongchang Zhu Short title 13/2

Definition 18.16. Let R be a ring with unity $1 \neq 0$. An element $u \in R$ is called a **unit** it has a multiplicative inverse, that is, there exists $u' \in R$ such that

$$uu'=u'u=1.$$

If every non-zero element in R is a unit, then R is called a **division ring**.

Definition 18.16 (continued) A commutative division ring is called a **field**.

Yongchang Zhu Short title 14/25

Example. \mathbb{R} is a field, because

- (1) \mathbb{R} has unity 1, $1 \neq 0$.
- (2) \mathbb{R} is a commutative ring.
- (3) Every $a \in \mathbb{R}$, $a \neq 0$, has the multiplicative inverse $a^{-1} \in \mathbb{R}$.

Example. Similarly, \mathbb{Q} and \mathbb{C} are fields.

Example. \mathbb{Z} is NOT a field, because only two elements 1,-1 are units. Other elements are not units.

Yongchang Zhu Short title 15 / 25

Section 19. Integral Domains.

Integral domains are an important class of commutative rings.

Before introducing the concept, we look at some properties of rings we give earlier.

Let R be any of the commutative rings $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, it is well-known that for $a, b \in R$, $a \neq 0, b \neq 0$, then $ab \neq 0$.

This property doesn't hold for other rings.

Yongchang Zhu Short title 16 / 25

Example. In \mathbb{Z}_{10} , $4 \neq 0, 5 \neq 0$, but $4 \cdot 5 = 0$. 4 and 5 are called 0 divisors.

Definition. Let R be a commutative ring, a is called a 0 **divisor** if (1) $a \neq 0$

- (1) $a \neq 0$,
- (2) there exists $b \in R$, $b \neq 0$ such that ab = 0.

Yongchang Zhu Short title 17 / 25

Example. In \mathbb{Z}_{10} , 2, 4, 6, 8, 5 are 0-divisors. The other five elements in \mathbb{Z}_{10} are not 0-divisors.

Yongchang Zhu Short title 18 / 25

Example. In ring C[0,7], we let $f(x), g(x) \in C[0,7]$ be the functions

$$f(x) = \begin{cases} x - 3 & \text{for } 0 \le x \le 3\\ 0 & \text{for } 3 \le x \le 7 \end{cases}$$

$$g(x) = \begin{cases} 0 & \text{for } 0 \le x \le 3\\ x - 3 & \text{for } 3 \le x \le 7 \end{cases}$$

 $f(x) \neq 0$, $g(x) \neq 0$, but f(x)g(x) = 0 So f(x) and g(x) are 0-divisors.

Yongchang Zhu Short title 19 / 25

Definition 19.6. A ring D is called an **integral domain** if it satisfied the following three conditions

- (1) D is a commutative ring.
- (2) D has a unity 1, $1 \neq 0$.
- (3) D has no 0-divisors. An integral domain D is a commutative ring

Example. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are integral domains.

Example. \mathbb{Z}_{10} and C[0,7] are NOT integrals domains, because they have 0-divisors.

Yongchang Zhu Short title 20 / 25

Theorem 19.9. Every field is an integral domain.

Yongchang Zhu Short title 21/2

Theorem 19.3. In the ring \mathbb{Z}_n , the 0 divisors are precisely those non-zero elements that are not relatively prime to n.

Examples. In \mathbb{Z}_{12} , 2, 3, 4, 6, 8, 9, 10 are 0 divisors. The other five elements are not 0 divisors.

Yongchang Zhu Short title 22 / 25

Corollary 19.3. If p is a prime, then \mathbb{Z}_p has no 0 divisors.

Yongchang Zhu Short title 23/2

The end

Yongchang Zhu Short title