Computational Linear Algebra - Problem Set 7

(points: 60)

Problem 1 (points: 5)

Let $\lambda_1,...,\lambda_n\in\mathbb{C}$ be the eigenvalues of $\mathbf{A}\in\mathbb{C}^{n\times n}$. Using the characteristic equation, prove that

$$\operatorname{trace}(\mathbf{A}) = \lambda_1 + \dots + \lambda_n$$
 and $\det(\mathbf{A}) = \lambda_1 \dots \lambda_n$.

Problem 2 (points: 10)

Let $f: \mathbb{M}_n \to \mathbb{R}$ be a functional defined on \mathbb{M}_n , the space of matrices of size $n \times n$. Suppose that

- $f(\mathbf{I}) = 1$, where $\mathbf{I} \in \mathbb{M}_n$ is the identity matrix,
- f(A) is linear in each column of A, if we keep the rest of the columns fixed, and
- f is alternating, i.e., $f(\hat{\mathbf{A}}) = -f(\mathbf{A})$ where $\hat{\mathbf{A}}$ is obtained by switching two columns of \mathbf{A} .

Show that $f(\mathbf{A}) = \det(\mathbf{A})$ for all $\mathbf{A} \in \mathbb{M}_n$.

Problem 3 (points: 2+3=5)

Let λ and μ be two eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$. Suppose the corresponding eigenvectors are $\mathbf{x}_{\lambda}, \mathbf{x}_{\mu} \in \mathbb{C}^{n}$. Prove that if $\lambda \neq \mu$, then \mathbf{x}_{λ} and \mathbf{x}_{μ} must be linearly independent.

Next, show that if the n eigenvalues of $\mathbf{A} \in \mathbb{C}^{n \times n}$ are distinct, then \mathbf{A} can be diagonalized.

Problem 4 (points: 5+2+3 = 10)

The spectral norm of $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined as

$$\|\mathbf{A}\|_* = \max\{\|\mathbf{A}\mathbf{x}\| : \|\mathbf{x}\| = 1\},\$$

where $\|\cdot\|$ is the Euclidean norm on \mathbb{R}^n .

(a) Show that

$$\left\|\mathbf{A}\right\|_* = \left\{ \begin{array}{l} \max \left\{ \left\|\mathbf{A}\boldsymbol{x}\right\| : \left\|\boldsymbol{x}\right\| \leqslant 1 \right\}. \\ \max \left\{ \boldsymbol{y}^{\top}\!\mathbf{A}\boldsymbol{x} : \left\|\boldsymbol{x}\right\| = 1 \text{ and } \left\|\boldsymbol{y}\right\| = 1 \right\}. \\ \text{largest singular value of } \mathbf{A}. \end{array} \right.$$

(b) If $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{B}: \mathbb{R}^m \to \mathbb{R}^k$, then show that

$$\|\mathbf{B}\mathbf{A}\|_{*} \leqslant \|\mathbf{B}\|_{*} \|\mathbf{A}\|_{*}$$
.

(c) If $\mathbf{A} = [\mathbf{A}_{ij}]$, then show that $|\mathbf{A}_{ij}| \leq ||\mathbf{A}||_*$ for all i, j.

Problem 5 (points: 2+4+4 = 10)

Define the shift operator $S: \mathbb{C}^n \to \mathbb{C}^n$ to be

$$S(x_1, x_2, \dots, x_n) = (x_n, x_1, \dots, x_{n-1}).$$

- 1. Prove that S is unitary: ||Sx|| = ||x|| for all $x \in \mathbb{C}^n$.
- 2. Determine the eigenvalues and eigenvectors of S.
- 3. Verify that the eigenvectors are orthogonal.

Problem 6 (points: 5+5 = 10)

Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be Hermitian. Prove that the following are equivalent:

- 1. For all $x \in \mathbb{C}^n$, $x^H A x \ge 0$.
- 2. The eigenvalues of **A** are non-negative.

Show that if the eigenvalues of $\mathbf{A} = [\mathbf{A}_{ij}]$ are non-negative, then $\mathbf{A}_{ii} \geqslant 0$ and $|\mathbf{A}_{ij}| \leqslant \max(\mathbf{A}_{ii}, \mathbf{A}_{jj})$.

Problem 7 (points: 5)

Let σ_{\min} and σ_{\max} be the smallest and largest singular values of $\mathbf{A} \in \mathbb{R}^{m \times n}$. Show that

$$\sigma_{\min} = \min_{oldsymbol{x} \in S} \ \|\mathbf{A}oldsymbol{x}\| \qquad ext{and} \qquad \sigma_{\max} = \max_{oldsymbol{x} \in S} \ \|\mathbf{A}oldsymbol{x}\|,$$

where $S = \{ \boldsymbol{x} \in \mathbb{R}^n : \|\boldsymbol{x}\| = 1 \}$ is the unit sphere in \mathbb{R}^n .

Problem 8 (points: 5)

Let $\mathbf{A} = \sum_{k=1}^{n} \sigma_k \mathbf{u}_k \mathbf{v}_k^{\top}$ be the full SVD of $\mathbf{A} \in \mathbb{R}^{m \times n}$, where $r = \text{rank}(\mathbf{A})$ and $\sigma_1 \geqslant \cdots \geqslant \sigma_n$. Show that

- 1. range(\mathbf{A}) = span($\mathbf{u}_1, \dots, \mathbf{u}_r$).
- 2. $\operatorname{nullspace}(\mathbf{A}^{\top}) = \operatorname{span}(\boldsymbol{u}_{r+1}, \dots, \boldsymbol{u}_m).$
- 3. range(\mathbf{A}^{\top}) = span($\mathbf{v}_1, \dots, \mathbf{v}_r$).
- 4. $\operatorname{nullspace}(\mathbf{A}) = \operatorname{span}(\boldsymbol{v}_{r+1}, \dots, \boldsymbol{v}_n).$
