Medical Health Insurance

https://www.kaggle.com/datasets/mirichoi0218/insurance?select=insurance.csv

This dataset is downloaded from Kaggle and is used by many textbooks as standard datasets to perform Predictive Analytics

Importing Libraries

```
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
import sys
import numpy as np
```

Load the Dataset

```
In [2]: insurance_data=pd.read_csv('/home/utk.tennessee.edu/nnaraya2/SanDisk/Endicot
    print('The shape of the Insurance Data is ', insurance_data.shape)
    The shape of the Insurance Data is (1338, 7)
In [3]: insurance_data.head(15)
```

Out[3]: age sex bmi children smoker region charges 27.900 0 0 16884.92400 19 female yes southwest 1 18 male 33.770 1 no southeast 1725.55230 3 2 28 male 33.000 no southeast 4449.46200 3 0 33 male 22.705 northwest 21984.47061 no 4 32 male 28.880 0 northwest 3866.85520 no 0 5 female 25.740 no southeast 3756.62160 1 6 female 33.440 southeast 8240.58960 no 7 female 27.740 3 northwest 7281.50560 37 no 8 37 male 29.830 2 northeast 6406.41070 no 9 60 female 25.840 0 northwest 28923.13692 no 25 male 26.220 0 10 no northeast 2721.32080 11 62 female 26.290 0 southeast 27808.72510 yes 12 23 male 34.400 0 southwest 1826.84300 no 13 female 39.820 0 56 southeast 11090.71780 no 14 27 male 42.130 0 yes southeast 39611.75770

Basic Terminology

Depending on the type of field you study in, rows and columns have different names,

Row=Observation=Records=Entries=Sample=Instance

Column=Variable=Features=Attributes=Fields=Dimensions

For now, we will use "observations" for row and "variables for columns". Therefore, the dataset contains 1338 observations on 7 variables.

Here's an overview of the attributes:

- 1. age: Integer Age of the Primary Beneficiary
- 2. sex: Categorical (object) insurance contractor gender, female, male
- 3. **bmi**: Float Body mass index, providing an understanding of body, weights that are relatively high or low relative to height, objective index of body weight (kg / m ^ 2) using the ratio of height to weight, ideally 18.5 to 24.9
- 4. children: Integer Number of children/dependents covered by insurace
- 5. **smoker**: Categorical (object) Whether the individual is a smoker (yes/no).
- 6. **region**: Categorical (object) the beneficiary's residential area in the US, northeast, southeast, southwest, northwest.

7. **charges**: Float - Individual Medical cost charged by the insurer

Descriptive Analytics

Fact: Per person health insurance premium in Massachusetts is \$8068

As employess of insurance company, if you had access to the historical data, what would you like to know?

```
In [4]: 1. 2. 3. 4.

Out[4]: 4.0

quantitative_variables=['age', 'bmi', 'children', 'charges']

qualitative_varaiables=['sex', 'children', 'smoker', 'region']
```

Notice: 'children' variable appears in both qualitative and quantitative both type of variable

News headlines

"As per the latest data, the average insurance premium per person for Massachussets is approximately \$8800"

```
In [5]: print('the average insurance premium paid according to the data is ', insura the average insurance premium paid according to the data is 13270.422265141 257
```

Bar Plot

"Average Charges vs Gender" & "Average Charges vs Smoking"

```
import seaborn as sns
import matplotlib.pyplot as plt

# Group data for descriptive statistics
avg_charges_by_smoker = insurance_data.groupby('smoker')['charges'].mean().r
avg_charges_by_gender = insurance_data.groupby('sex')['charges'].mean().reserved.
```

```
# Create subplots
fig, axes = plt.subplots(1, 2, figsize=(15, 7), sharey=True)

# Subplot 1: Average charges by smoker status
sns.barplot(data=avg_charges_by_smoker, x='smoker', hue='smoker', y='charges'
axes[0].set_title('Average Charges by Smoking Status', fontsize=14)
axes[0].set_xlabel('Smoking Status', fontsize=12)
axes[0].set_ylabel('Average Charges', fontsize=12)

# Subplot 2: Average charges by gender
sns.barplot(data=avg_charges_by_gender, x='sex', hue='sex', y='charges', pale
axes[1].set_title('Average Charges by Gender', fontsize=14)
axes[1].set_xlabel('Gender', fontsize=12)
axes[1].set_ylabel('')

# Adjust layout
plt.tight_layout()
plt.show()
```


Does smoking affect insurance charges?

Does gender affect insurance charges?

In []:

Box Plots

"Average Charges vs Gender" & "Average Charges vs Smoking"

```
import matplotlib.pyplot as plt
import seaborn as sns

# Create subplots
fig, axes = plt.subplots(1, 2, figsize=(15, 7), sharey=True)
```

```
# Subplot 1: Gender vs. Insurance Charges
sns.boxplot(data=insurance_data, x='sex',hue='sex', y='charges', palette='Se
axes[0].set_title("Insurance Charges by Gender", fontsize=14)
axes[0].set_xlabel("Gender", fontsize=12)
axes[0].set_ylabel("Charges", fontsize=12)

# Subplot 2: Smoking vs. Insurance Charges
sns.boxplot(data=insurance_data, x='smoker',hue='smoker', y='charges', palet
axes[1].set_title("Insurance Charges by Smoking Status", fontsize=14)
axes[1].set_xlabel("Smoking Status", fontsize=12)
axes[1].set_ylabel("") # Remove duplicate y-axis label

# Adjust layout
plt.tight_layout()
plt.show()
```



```
In [8]: # 1. Scatter Plot with Color and Size
    plt.figure(figsize=(10, 6))
    sns.scatterplot(data=insurance_data, x='bmi', y='charges', hue='smoker', siz
    plt.title('Scatter Plot: BMI vs Charges (Colored by Smoker, Sized by Age)',
    plt.xlabel('BMI', fontsize=12)
    plt.ylabel('Charges', fontsize=12)
    plt.legend(title='Smoker', bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.tight_layout()
    plt.show()
```



```
In [10]: # 3. Box Plot with Hue
    plt.figure(figsize=(10, 6))
    sns.boxplot(data=insurance_data, x='smoker', y='charges', hue='sex', palette
    plt.title('Box Plot: Charges by Smoking Status and Gender', fontsize=14)
    plt.xlabel('Smoking Status', fontsize=12)
    plt.ylabel('Charges', fontsize=12)
    plt.legend(title='Gender', bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.tight_layout()
    plt.show()
```



```
In [11]: # 4. Heatmap
    plt.figure(figsize=(10, 6))
    heatmap_data = insurance_data.pivot_table(values='charges', index='region',
    sns.heatmap(heatmap_data, annot=True, fmt='.1f', cmap='coolwarm', cbar_kws={
        plt.title('Heatmap: Average Charges by Region and Smoking Status', fontsize=
        plt.xlabel('Smoker', fontsize=12)
        plt.ylabel('Region', fontsize=12)
        plt.tight_layout()
        plt.show()
```


Predictive Modeling

Simple Linear Regression

Formula:

Simple linear regression models the relationship between a dependent variable (y) and a single independent variable (X): $y = \beta + \beta + \beta + \beta$

Where:

- \$\$\text{y: Dependent variable (the outcome we want to predict) }\$\$
- \$\$\text{X : Independent variable (the predictor) }\$\$
- \$\$\beta_0: \text{Intercept (value of y when X = 0)}\$\$
- \$\$ \beta_1: \text{Slope (change in y for a one-unit change in X) }\$\$
- \$\$ \epsilon: \text{Error term (captures the variation not explained by X) }\$\$

For the Insurance Dataset:

- X: A single independent variable, such as bmi (Body Mass Index).
- y: The dependent variable is charges (Medical insurance charges).

Why is it Simple?

- Simple linear regression uses **only one independent variable** X to predict the dependent variable y.
- In this case, we are trying to predict charges y using bmi X.

Example:

```
$$ \text{charges} = \beta_0 + \beta_1 \cdot \text{bmi} + \epsilon $$
```

In the next cell, we will expand this to **multiple linear regression**, which involves using multiple predictors.

Simple Linear Regression: Insurance Charges vs BMI

```
In [12]: import pandas as pd
         import numpy as np
         import statsmodels.api as sm
         from sklearn.model selection import train test split
         from sklearn.metrics import mean squared error, r2 score
         # Example: Load your insurance dataset (replace this with actual dataset pat
         insurance data=pd.read csv('/home/utk.tennessee.edu/nnaraya2/SanDisk/Endicot
         # Ensure 'smoker' is encoded numerically
         # insurance data['smoker'] = insurance data['smoker'].map({'yes': 1, 'no': @
         # Selecting 'bmi' and 'smoker' as predictors and 'charges' as the target var
         X = insurance data[['bmi']] # Features must be in a DataFrame
         y = insurance_data['charges'] # Target variable
         # Handle missing values
         X = X.dropna() # Drop rows with missing values in features
         y = y[X.index] # Align target variable with cleaned features
         # Ensure all data is numeric
         X = X.apply(pd.to_numeric, errors='coerce')
         y = pd.to numeric(y, errors='coerce')
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar
         # Add a constant (intercept) to the training data
         X train with const = sm.add constant(X train)
         # Fit the Multiple Linear Regression model
         model = sm.OLS(y_train, X_train_with_const).fit()
         # Print the summary of the regression results
         print(model.summary())
         # Predict charges on the test data
         X_{\text{test\_with\_const}} = \text{sm.add\_constant}(X_{\text{test}}) + Add constant to test set
         y_pred = model.predict(X_test_with_const)
```

```
# Print model coefficients and intercept
print("\nModel Coefficients:")
print(f"Intercept: {model.params['const']}")
print(f"Slope for BMI: {model.params['bmi']}")

# Interpretation of the results
print("\nInterpretation:")
print(f"For every one-unit increase in BMI, the predicted charges increase the print(f"For smokers, the predicted charges increase by approximately {modedunit(f"The intercept {model.params['const']:.2f} represents the predicted constitute the model

mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print("\nModel Evaluation:")
print(f"Mean Squared Error (MSE): {mse:.2f}")
print(f"R-squared: {r2:.2f}")
```

OLS Regression Results

========			====	======	:=======		=======	
== Dep. Varia 39	able:	charges		R-squ	R-squared:			
Model:		0LS		Adj.	Adj. R-squared:			
38 Method:		Least Squares		F-sta	F-statistic:			
27 Date:		Tue, 10 Dec				ic).	7.47e-	
11		-				IC / •		
Time: 8.		06:1	7:03	Log-l	ikelihood:		-1154	
No. Observations:		1070		AIC:			2.310e+	
04 Df Residuals:			1068				2.311e+	
04 Df Model:			1					
		nonro						
=======================================	========		=====	======	-=======	========	=======	
	coe	f std err		t	P> t	[0.025	0.97	
5]								
	1252 072	1050 560		0.720	0.467	2202 700	4000 0	
const 35	1353.0731	l 1858.569		0.728	0.467	-2293.789	4999.9	
bmi 05	392.4365	59.662		6.578	0.000	275.369	509.5	
			=====	======	=======		=======	
== Omnibus:		214	.743	Durbi	in-Watson:		1.9	
30 Prob(Omnibus):		.000	lardı	Jarque-Bera (JB):				
04			·		, •	358.0		
Skew: 78		1	.308	Prob	(JB):		1.82e-	
Kurtosis:		4	.087	Cond.	No.		16	
1.	========		=====		========		=======	
==								

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Model Coefficients:

Intercept: 1353.0730722046726
Slope for BMI: 392.43654416987937

Interpretation:

For every one-unit increase in BMI, the predicted charges increase by approx imately 392.44 units.

The intercept 1353.07 represents the predicted charges when BMI is 0 and the individual is a non-smoker (not realistic in context).

Model Evaluation: Mean Squared Error (MSE): 149085057.04 R-squared: 0.04

```
In [13]: import matplotlib.pyplot as plt
         import numpy as np
         import statsmodels.api as sm
         # Assuming the model is already fitted and the dataset is available
         # `model` is the trained statsmodels OLS model
         # `X` is the DataFrame containing the features, including `bmi`
         # `v` is the target variable
         # Get the regression coefficients
         intercept = model.params['const']
         slope = model.params['bmi']
         # Create the regression line values
         bmi values = np.linspace(X['bmi'].min(), X['bmi'].max(), 100) # Generate 10
         bmi_values_with_const = sm.add_constant(bmi_values) # Add constant term
         predicted_charges = model.predict(bmi_values_with_const) # Predict charges
         # Plot the scatter plot and regression line
         plt.figure(figsize=(12, 8))
         plt.scatter(X['bmi'], y, alpha=0.5, label="Data points") # Scatter plot of
         plt.plot(bmi_values, predicted_charges, color='red', label="Trend line") #
         # Add the equation of the line as a text box
         equation text = f"y = {intercept:.2f} + {slope:.2f} * BMI"
         plt.text(0.05, 0.95, equation_text, transform=plt.gca().transAxes,
                  fontsize=12, verticalalignment='top', bbox=dict(facecolor='white',
         # Add titles and labels
         plt.title("Scatter Plot with Regression Line")
         plt.xlabel("BMI")
         plt.ylabel("Charges")
         plt.legend()
         plt.show()
```


Multiple Linear Regression using BMI and Smoker

```
In [14]: import pandas as pd
         import numpy as np
         import statsmodels.api as sm
         from sklearn.model selection import train test split
         from sklearn.metrics import mean_squared_error, r2_score
         # Example: Load your insurance dataset (replace this with actual dataset pat
         insurance_data=pd.read_csv('/home/utk.tennessee.edu/nnaraya2/SanDisk/Endicot
         # Ensure 'smoker' is encoded numerically
         insurance_data['smoker'] = insurance_data['smoker'].map({'yes': 1, 'no': 0})
         # Selecting 'bmi' and 'smoker' as predictors and 'charges' as the target var
         X = insurance_data[['bmi', 'smoker']] # Features must be in a DataFrame
         y = insurance_data['charges'] # Target variable
         # Handle missing values
         X = X.dropna() # Drop rows with missing values in features
         y = y[X.index] # Align target variable with cleaned features
         # Ensure all data is numeric
         X = X.apply(pd.to numeric, errors='coerce')
         y = pd.to_numeric(y, errors='coerce')
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar
         # Add a constant (intercept) to the training data
```

```
X_train_with_const = sm.add_constant(X_train)
# Fit the Multiple Linear Regression model
model = sm.OLS(y_train, X_train_with_const).fit()
# Print the summary of the regression results
print(model.summary())
# Predict charges on the test data
X_{\text{test\_with\_const}} = \text{sm.add\_constant}(X_{\text{test}}) + Add constant to test set
y_pred = model.predict(X_test_with_const)
# Print model coefficients and intercept
print("\nModel Coefficients:")
print(f"Intercept: {model.params['const']}")
print(f"Slope for BMI: {model.params['bmi']}")
print(f"Slope for Smoker: {model.params['smoker']}")
# Interpretation of the results
print("\nInterpretation:")
print(f"For every one-unit increase in BMI, the predicted charges increase b
print(f"For smokers, the predicted charges increase by approximately {model.
print(f"The intercept {model.params['const']:.2f} represents the predicted c
# Evaluate the model
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
print("\nModel Evaluation:")
print(f"Mean Squared Error (MSE): {mse:.2f}")
print(f"R-squared: {r2:.2f}")
```

OLS Regression Results

========	========			=====	========		=======
== Dep. Varia	ble:	cha	arges	R-squ	ared:		0.6
49			3				
Model:		0LS		Adj.	0.6		
48							
Method: 4.3		Least Squares		F-sta	98		
Date:		Tue, 10 Dec 2024		Prob	5.63e-2		
43		•					
Time:		06:19:10		Log-L	-1101		
0.			4070	A T.C			2 202
No. Observ	ations:		1070	AIC:			2.203e+
Df Residuals:			1067	BIC:			2.204e+
04			2				
Df Model:	T		2				
Covariance		nonro					
==		========					
	coet	f std err		+	P> +	[0 025	a 97
5]	000	Stu cii		·	17 [6]	[0.023	0.37
	-3582.6389	1130.360	-3	. 169	0.002	-5800.619	-1364.6
59							
bmi	397.7940	36.098	11.	.020	0.000	326.962	468.6
26	2 224 0	1 520 547	42	016	0.000	2 22 0.4	2 42
smoker 04	2.321e+04	539.547	43	.016	0.000	2.22e+04	2.43e+
=======		=========		=====	========	========	
==							
Omnibus:			9.938	Durbin-Watson:			2.0
14		0.000		7			
Prob(Omnibus):		0.000		Jarque-Bera (JB):			205.7
81		0.000		Deck (3D) -			2 07-
Skew:		0.828		Prob(JB):			2.07e-
45 Kurtosis:		4.369		Cond. No.			16
2.		2	+.309	cona.	IAO •		16
۷ ·							
==							
_							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Model Coefficients:

Intercept: -3582.6389129022255
Slope for BMI: 397.79403555337575
Slope for Smoker: 23209.19938583341

Interpretation:

For every one-unit increase in BMI, the predicted charges increase by approx imately 397.79 units.

For smokers, the predicted charges increase by approximately 23209.20 units compared to non-smokers.

The intercept -3582.64 represents the predicted charges when BMI is 0 and the individual is a non-smoker (not realistic in context).

Model Evaluation: Mean Squared Error (MSE): 47887940.86 R-squared: 0.69

```
In [15]: import matplotlib.pyplot as plt
         import numpy as np
         # Rearession coefficients
         intercept = model.params['const']
         slope_bmi = model.params['bmi']
         slope smoker = model.params['smoker']
         # Create BMI range for plotting
         bmi values = np.linspace(X['bmi'].min(), X['bmi'].max(), 100)
         # Regression lines for smokers and non-smokers
         charges non smoker = intercept + slope bmi * bmi values # Non-smokers: smok
         charges smoker = intercept + slope bmi * bmi values + slope smoker # Smoker
         # Plot scatter points
         plt.figure(figsize=(12, 8))
         plt.scatter(X[X['smoker'] == 0]['bmi'], y[X['smoker'] == 0], alpha=0.5, labe
         plt.scatter(X[X['smoker'] == 1]['bmi'], y[X['smoker'] == 1], alpha=0.5, labe
         # Plot regression lines
         plt.plot(bmi values, charges non smoker, color='blue', label=f"Non-smoker: y
         plt.plot(bmi values, charges smoker, color='orange', label=f"Smoker: y = ({i
         # Add plot details
         plt.title("Scatter Plot with Regression Lines (BMI & Smoking)", fontsize=14)
         plt.xlabel("BMI", fontsize=12)
         plt.ylabel("Charges", fontsize=12)
         plt.legend(fontsize=10)
         plt.grid(alpha=0.3)
         plt.show()
```


Decision Tree

```
In [ ]: insurance data
In [16]: import pandas as pd
         import numpy as np
         from sklearn.tree import DecisionTreeRegressor, export text
         from sklearn.model selection import train test split
         from sklearn.metrics import mean_squared_error
         from sklearn import tree
         import matplotlib.pyplot as plt
         # Example: Load your insurance dataset (replace this with actual dataset pat
         insurance_data=pd.read_csv('/home/utk.tennessee.edu/nnaraya2/SanDisk/Endicot
         # Encode categorical variables (sex, smoker)
         insurance_data['sex'] = insurance_data['sex'].map({'male': 0, 'female': 1})
         insurance_data['smoker'] = insurance_data['smoker'].map({'no': 0, 'yes': 1})
         # Define features and target variable
         X = insurance_data[['smoker', 'sex']] # Features: smoker and sex
         y = insurance_data['charges'] # Target variable
         # Handle missing values
         X = X.dropna() # Drop rows with missing values in features
         y = y[X.index] # Align target variable with cleaned features
         # Split the data into training and testing sets
```

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rar
# Train a Decision Tree Regressor
dt_model = DecisionTreeRegressor(max_depth=3, random_state=42) # Adjust max
dt_model.fit(X_train, y_train)
# Predict charges on the test set
y_pred = dt_model.predict(X_test)
# Compute MSE
mse = mean_squared_error(y_test, y_pred)
# Print MSE
print(f"Mean Squared Error (MSE): {mse:.2f}")
# Visualize the Decision Tree
plt.figure(figsize=(15, 8))
tree.plot_tree(
    dt model,
    feature names=X.columns,
    filled=True,
    rounded=True,
    fontsize=12
plt.title("Decision Tree for Insurance Charges Prediction (Smoker & Gender)"
plt.show()
# Print the textual representation of the tree
tree_text = export_text(dt_model, feature_names=list(X.columns))
print("\nDecision Tree Structure:")
print(tree text)
```

Mean Squared Error (MSE): 53225281.16

Decision Tree for Insurance Charges Prediction (Smoker & Gender)


```
In []:

In []:
```