Определение $\{f_n\},\ f_n:\{0,1\}^{l(n)}\to\{0,1\}^{m(n)}$ - семейство односторонних функций, если:

- $\{f_n\}$ полиномиально вычислимо относительно n;
- ullet $\forall \{C_n\}$ последовательности схем полиномиального размера

$$P[C_n(f_n(x)) \in f_n^{-1}(f_n(x))] \sim 0$$

• \mapsto Dom f_n - доступно.

Определение
$$d(\alpha_n, \beta_n) = \sum_{x \in Dom} \frac{|\alpha_n(x) - \beta_n(x)|}{2}$$

Определение Последовательность $\{\alpha_n\}$ называется пренебрежимо малой, если $\forall poly(n) \ \exists N: \ \forall n>N \ |\alpha_n|<\frac{1}{poly(n)}.$

Определение Распределение μ_n называется полиномиально моделируемым, если существует (вероятностный) алгоритм A, получающий на вход $Un\ p(n)$ и $\forall x \in Dom\ \mu_n\ P[A=x] = \mu_n(x)$.

Определение Распределение μ_n называется доступным, если существует полиномиально моделируемое распределение η_n такое, что $d(\mu_n, \eta_n) \sim 0$.

Свойства

- 1) $\alpha_n \sim \beta_n, \beta_n \sim \gamma_n \Rightarrow \alpha_n \sim \gamma_n$
- 2) $\alpha_n \sim \beta_n$, и γ_n независима от α_n и β_n . Тогда $\alpha_n \gamma_n \sim \beta_n \gamma_n$ (конкатенация). \triangle Пусть это не так. Тогда существует $\{C_n\}$ полиномиального размера, такие, что $|P[C_n(\alpha_n \gamma_n) = 1] - P[C_n(\beta_n \gamma_n) = 1]|$ - не пренебрежимо малая последовательность. Заметим, что $|P[C_n(\alpha_n \gamma_n) = 1] - P[C_n(\beta_n \gamma_n) = 1]| \le |E_{\gamma_n}(P[C_n(\alpha_n \gamma_n) = 1] - P[C_n(\beta_n \gamma_n) = 1]|) \le |P[C_n(\alpha_n \gamma_n) = 1] - P[C_n(\beta_n \gamma_{max}) = 1]|$, то есть $\alpha_n \ncong \beta_n$. Противоречие. \square
- 3) Пусть $\{T_n\}$ последовательность схем полиномиального размера, и $\alpha_n \sim \beta_n$. Тогда $T_n(\alpha_n) \sim T_n(\beta_n)$

Определение $h_n(x)$ называется трудным битом для односторонней $f_n(x)$, если $h_n(x)$ полиномиально вычислима, и $\forall \{C_n\}$ - схем полиномиального размера $P[C_n(f_n(x)) = h_n(x)] \sim \frac{1}{2}$.

Определение Две последовательности α_n , β_n называются вычислимыми и неотличимыми, если $\forall \{C_n\}$ - схем полиномиального размера $P[C_n(\alpha_n) = 1] \sim P[C_n(\beta_n) = 1]$.

Лемма Пусть $\{f_n\}$ - семейство односторонних функций, являющихся перестановками, а $\{h_n\}$ - ее трудный бит. Тогда

$$h_n(x)f_n(x) \sim r_n f_n(x) \sim r_n x$$

где r_n - чистый случайный бит.

 \triangle Докажем правую эквивалентность. Поскольку $P[C_n(x)=1]=P[C_n(f_n(x))=1],$ и используем свойство III.

Докажем левую эквивалентность. От противного. Пусть $\exists \{C_n\}$ - схем полиномиального размера таких, что $\exists s(n) = poly(n)$, и $\forall N \ \exists n > N$:

$$|P[C_n(h_n(x)f_n(x)) = 1] - P[C_n(r_nf_n(x)) = 1]| > \frac{1}{s(n)}$$

Построим $\{R_n\}$:

I
$$R_n(r_n, f_n(x)) = r_n$$
, если $C_n(0f_n(x)) = C_n(1f_n(x))$;

II
$$R_n(r_n, f_n(x)) = 0$$
, если $C_n(0f_n(x)) = 1$, $C_n(1f_n(x)) = 0$;

III
$$R_n(r_n, f_n(x)) = 1$$
, если $C_n(1f_n(x)) = 1$, $C_n(0f_n(x)) = 0$;

Тогда легко проверить, что

$$|R_n(r_n, x)| = |P[C_n(h_n(x)f_n(x)) = 1] - P[C_n(r_nf_n(x)) = 1]| > \frac{1}{s(n)}$$

Это значит, что $\{R_n\}$ обращает функцию f_n . Противоречие. \square

Лемма (о сглаживании) Пусть H - универсальное семейство хэш-функций с параметрами $(m,s),\ h=Un\ (H),\ x$ - случайная велечина в $\{0,1\}^m,\ H_1(x)\geq k,\ r=Un\ (\{0,1\}^s)$ (!!!! почему и там и там s), $L_1(\alpha,\beta)=\sum\limits_{n}|P[\alpha=y]-P[\beta=y]|.$

Тогда

$$(h(x),h) \sim_{2^{\frac{s-k}{2}}} (r,h)$$

(h(x), h) 7546 (r, h)где \sim понимается в смысле L_1 расстояния.

 \triangle Пусть $|H|=2^l$. Одно из неравенств далее следует из того, что $E\xi^2\geq (E\xi)^2$.

$$L_1 = \sum_{h,a} |2^{-l} P_x[h(x) = a] - 2^{-l-s}| \le$$

$$\begin{split} & E_{h,a}|P_x[h(x)=a]2^s-1| \leq \sqrt{E_{h,a}(P_x[h(x)=a]2^s-1)^2} \leq \\ & \sqrt{E_{h,a}(2^s\sum_x P(x)\mathbb{I}[h(x)=a]-1)^2} \leq \\ & \sqrt{E_{h,a}(2^s\sum_x P(x_1)\mathbb{I}[h(x_1)=a]-1)} \sqrt{E_{h,a}(2^s\sum_{x_2} P(x_2)\mathbb{I}[h(x_2)=a]-1)} = \\ & \sqrt{E_{h,a}(\sum_{x_1,x_2} 2^{2s}P(x_1)P(x_2)\mathbb{I}[h(x_1)=h(x_2)=a]) + Q} = (*) \\ & Q \text{- остаток, и } Q = E_{h,a}(1-2^{s+1}\sum_x P(x)\mathbb{I}[h(x)=a]) = 1 + (-2) = -1. \end{split}$$

 $E_h(\mathbb{I}[h(x_1)=h(x_2)=a])=2^{-2s},$ если $x_1\neq x_2,$ и 2^{-s} в другом случае. Для того, чтобы посчитать сумму в (*), прибавим и вычтем этот член.

Из условия $H_1(x) \geq k$ вытекает, что $\sum_x P^2(x) \leq 2^{-k}$ (используется в последнем неравенстве).

неравенстве).
$$(*) = \sqrt{1 - (\sum_{(x,x)} P^2(x) - \sum_{(x,x)} 2^s P^2(x)) - 1} = \sqrt{\sum_x (2^s - 1) P^2(x)} = \sqrt{(2^s - 1) \sum_x P^2(x)} \le \sqrt{2^s 2^{-k}} = 2^{\frac{s-k}{2}}$$