Stanford University

Double Double (DD)

Opening the frontiers between manufacturing, materials and optimum design of composite structures

Stanford University

Double Double (DD)

Opening the frontiers between manufacturing, materials and optimum design of composite structures

Steve Tsai¹ - Thierry Massard¹ - Michel Cognet - Naresh Sharma² - Albertino Arteiro³ Surajit Roy¹⁰ - R. Rainsberger¹ - Antonio Miravete⁸ - Waruna Seneviratne⁴ - Brúnó Vermes⁵ - Jose Daniel Diniz Melo⁹ - Carlos Cimini¹¹ - Tay Tong Earn⁶ - Sangwook Sihn⁷

- 1 Stanford Department of Aeronautics and Astronautics
- 2 Nashero
- 3 Univ Porto
- 4 Niar Wichita
- 5 Univ. Budapest
- 6 Nus Singapore

- 7 Univ. Dayton
- 8- Whycomposites.com
- 9- Federal University of Rio Grande do Norte
- 10 CSU Long Beach
- 11 Universidade Federal de Minas Gerais

What are the current Composites Development Limitations? Stanford

Time to market for new material introduction

• Large number of coupons to be tested for new material qualification

Design

- Use of 0, 45, -45 90, orientations only in Aerospace
- No rational basis to optimize ply stacking permutation
- Weight penalty linked to minimum gage and mid-plane symmetry

Manufacturing cost

- Complex design with many material definition for the same part
- Low deposition rate
- Autoclave process

Mechanical properties after impact

Mechanical Fasteners (Bearing Strength)

•••

Summary

Stanford

What is Double Double (DD)

Design Tools for Double Double (DD)

Homogenization & Ply Drop Strategy

Testing & Material Qualification

Manufacturing

Conclusion & next Steps

What is Double Double (DD)

What is Double Double (DD)

Stanford

Angle Plies (Double)

Sub Laminate **Double Double** ±Φ ±Ψ

Double Double Performance Adjustment vs Quad

Quad performance is managed by adding 0°, 90° or ± 45° plies. Quad is discrete.

Increased number of plies: 4 to 6, 8, 10...

Double Double performance is managed by tuning $\Phi \& \Psi$. DD is continuous, adjustible.

DD is always 4 plies, easier Homogenization Ply drop strategy simple and flexible

Double Double (DD) Key Benefits

DD leads to lighter parts

- DD **optimization is continuous** (quad is discrete)
- 4 plies minimum gage allows fine thickness tuning

DD laminate is homogeneous if sufficient repeat is achieved, requiring no mid-plane symmetry

Simple Ply drop strategy thanks to minimum gage and mid-plane symmetry free design

DD optimization by large zone is achieved by thickness variation with a unique DD as with metal

Efficient manufacturing and easier repair

- Always the same simple 4-ply sub laminate ±Φ/±Ψ
- DD can be tapered either by additive lay up or subtractive ply drop or machining
- ±Ф and ±Ψ can be prebuilt to speed up deposition rate using Non Crimp Fabrics ie C-Ply™

Design Tools for Double Double (DD)

Design Tools for Direct Conversion to Double Double

Excel Lamsearch

- Loading case in strength → Best Double Double
- Up to 49 possible loads
- For a given Quad Lamsearch provides an equivalent DD in stiffness

Matlab Lamsearch

- Loading case in strength → Best Double Double
- Up to 5 possible loads
- Matlab allows many repeat if necessary, to achieve larger loading case.
- Buckling optimization

DD Efficient Optimization Tool: LamSearch

Stanford

Homogenization & Ply Drop Strategy

Homogenized Laminate

DD reaches homogenization at lower thickness thanks to its constant 4-ply minimum gage

Homogenization eliminate the need for mid-plane symmetry

Single Ply 0.125 mm	Single	#	Minimum (mm)		
	Ply (mm)	Repeat	Gage Laminate thickne		
QI [0/+-45/90]ns	0.125	Sym	1.00	2.00	
Hard [0 ₅ /+-45/90]ns	0.125	Sym	2.00	4.00	
DD Homogenized	0.125	8	0.50	4.00	
DD Homogenized Thin Ply	0.062	8	0.25	2.00	

Homogenized DD the ultimate ply drop solution, unique lightening

DD Homogenization easier to achieve

DD reaches homogenization at lower thickness

Tapering is possible for low minimum-gage laminates

Single ply drop possible and can be positioned inside or outer surfaces of laminate

Tapered DD is not sensitive to delamination in fatigue

DD does not have to be mid-plane symmetric

DD is not stacking dependent

 $[\pm \Phi/\pm \Psi]$ / $[+\Phi/+\Psi/-\Phi/-\Psi]$ / $[+\Phi/-\Psi/-\Phi/+\Psi]$ are equivalent

DD Simple Ply Drop Strategy

Performance by zone is achieved by thickness variation with a unique DD

DD High Performance tapering demonstrated

3 points bending test ASTM D7264 @NIAR (Waruna Seneviratne) Static and Fatigue

Results

- Failure: symmetric delamination appeared from both sides in the coupons (3rd to 5th layer)
- Coupons retain full strength after 500 000 cycles at 60% of the failure strength

Testing & Material Qualification

DD vs Legacy Quad

Sub Laminate	# Possible Laminates	# of possible Permutations		
Quad 4	1	24		
Quad 5	2	≃ 100		
Quad 6	4	> 1 000		
Quad 8	10	> 25 000		
DOUBLE DOUBLE	All	4		

Testing Pyramid for Quads

Stanford

High number of tests – Change in the material comes with huge cost

Proposed DD Testing

Stanford

Using DD requires far less characterization tests

Proposed DD Material Qualification

Stiffness

- Only ONE stiffness measurement is necessary
- All the other components of the stiffness matrix can be deducted using TRACE (see previous Steve Tsai Works)

Strength

Strength data depends on the failure criteria used for design assessment

• Quadratic as TSAI-WU 5 measurements X , X', Y, Y', S, For certification

Nettles circle
One DD measurement (ε max)
For preliminary design

Damage material properties (as usual)

- Open-hole tension and compression
- Compression after impact
- Tension after impact

Stanford

Manufacturing

Manufacturing Focus

Large areas with different loading case can be designed using the same DD

Faster and less prone to stacking error with no mid-plane symmetry and single ply drop

Much simpler transition from one zone to the other through thickness management

±Φ and ±Ψ can be prebuilt to speed up deposition rate using Non Crimp Fabrics

- Non Crimp Fabric allows Infusion processes even for large parts like aircraft wings.
- Combining DD laminates and Infusion processes offers great manufacturing improvement
- One-axis layup is at least 4X deposition rate

Fuselage Design: 11 different Quads

Stanford

Zon	e#	n [0]	n[+/-45]	n [90]	total
	1	3	8	4	15
	2	4	8	4	16
	3	4	10	3	17
	4	5	8	4	17
	5	9	12	6	27
	6	8	16	8	32
	7	13	16	10	39
	8	8	10	8	26
	9	9	12	7	28
	10	24	24	25	73
	11	8	12	5	25

Patchwork of 11 different Quads Complex continuity between zones

1 single DD matching 11 Quad Stiffness

Stanford

By tapering between 6 zones

.

Fuselage Design

The simple DD design allows large manufacturing cost savings

- High deposition rate with a single DD
- Manufacturing savings with no weight penalty
- Weight savings are possible taking full advantage of DD minimum gage
- Aggressive taper facilitated by single ply drop leading to weight reduction

Using a single Quad definition for the fuselage would increase weight by 20%.

Stanford

Conclusion & Next Steps

Double Double (DD) Next Steps

Software improvement to optimize both strength and stiffness constraints

Failure criteria assessment and data acquisition

Damaged properties assessment and modeling

Buckling and micro buckling

Current case studies:

Nasa cone adapter

Campania University Italy Fuselage

Otto Aviation DD for entire fuselage

Double Double (DD) Key Benefits

DD leads to lighter parts

- DD optimization is continuous (quad is discrete)
- 4 plies minimum gage allows fine thickness tuning

DD laminate is homogeneous if sufficient repeat is achieved, requiring no mid-plane symmetry

Simple Ply drop strategy thanks to minimum gage and mid-plane symmetry free design

DD optimization by large zone is achieved by thickness variation with a unique DD as with metal

Efficient manufacturing and easier repair

- Always the same simple 4-ply sub laminate ±Φ/±Ψ
- DD can be tapered either by additive lay up or subtractive ply drop or machining
- ±Ф and ±Ψ can be prebuilt to speed up deposition rate using Non Crimp Fabrics ie C-Ply™

Stanford

Double Double (DD)

Opening the frontiers between manufacturing, materials and part performance for the optimal design of composite structures

Annex

Stanford

Fuselage design 2/3

		C	1
\ 1	-2 T	\ †/	ord
J	aı	\boldsymbol{J}	ЛU

Quads										
Zone #	n [0] n[+	-/-45] า	[90]	total	% [0]	% [+/- 45]	% [90]	A11	A22	A66
1	3	8	4	15	20%	53%	27%	56,45	22,66	66,23
2	4	8	4	16	25%	50%	25%	62,33	21,67	62,32
3	4	10	3	17	24%	59%	18%	64,26	24,64	54,47
4	5	8	4	17	29%	47%	24%	66,81	20,68	59,82
5	9	12	6	27	33%	44%	22%	71,30	19,70	57,31
6	8	16	8	32	25%	50%	25%	62,33	21,67	62,32
7	13	16	10	39	33%	41%	26%	70,19	18,71	60,40
8	8	10	8	26	31%	38%	31%	66,28	17,72	66,28
9	9	12	7	28	32%	43%	25%	69,53	19,37	59,74
10	24	24	25	73	33%	33%	34%	67,23	16,07	68,62
Average					29%	46%	26%	65,67	20,29	61,75
CV					4%	6%	3%			

DD	Best DD replacement						
Zone #	±Φ	±Ψ	A11	A22	A66	n	n plies
1	26,0	69,0	56,45	22,66	66,23	4,00	16,00
2	22,0	63,0	62,33	21,67	62,32	4,00	16,00
3	22,0	62,0	64,42	24,76	54,07	4,25	18,00
4	19,0	66,0	66,79	20,54	60,13	4,25	18,00
5	20,0	71,0	71,50	19,21	58,07	7,00	28,00
6	22,0	63,0	62,33	21,67	62,32	8,00	32,00
7	19,0	70,0	69,98	19,16	59,69	10,00	40,00
8	18,0	66,0	65,65	17,97	66,40	6,50	26,00
9	19,5	69,5	69,98	19,16	59,69	7,00	28,00
10	16,0	67,0	67,26	16,05	68,65	18,00	72,00
Average	20,4	66,7	65,67	20,29	61,76		
CV	2,12	2,65	3,43	1,97	3,43		

Material T800 / 3900

Matlab Lamsearch optimization tool

Stanford

- Quad (QD) ($[0_m/\pm 45_n/90_p]_{rS}$) vs. double-double (DD) ($[\pm \phi/\pm \psi]_{rT}$)
- Based on classical laminate theory
- MATLAB script
- Strength comparison
- Buckling comparison
- Strength vs. buckling graph

Simple graphical interface

- User defined custom inputs (red)
- Strength and buckling

Results

- Comparing quad and double-double
- Strength vs. buckling for laminate selection

