Zadanie 1. \mathcal{P} vs \mathcal{NPC} w NWP

Podstawy Analizy Algorytmów

Michał Małafiejski

Streszczenie

Celem realizacji zadania jest zbadanie granicy pomiędzy przypadkami łatwymi (\mathcal{P}) i trudnymi (\mathcal{NPH}) na przykładzie wybranego problemu. Dla niektórych szczegółowych wariantów ogólnie sformułowanego problemu należy zaproponować algorytmy o złożoności wielomianowej oraz pokazać \mathcal{NP} -zupełność dla wybranych przypadków szczegółowych.

Zdefiniujemy problem znajdowania najdłuższych wspólnych podciągów dla danego zbioru słów. Niech $u, w \in \Sigma^*$, przez nwp(u, w) będziemy rozumieli max $\{|v|: v \sqsubset u \land v \sqsubset w\}$, czyli długość najdłuższego wspólnego podciągu słów u oraz w. Analogicznie możemy zdefiniować nwp (w_1, \ldots, w_k) dla zbioru słów $\{w_1, \ldots, w_k\}$.

Niech $L \subset \Sigma^+$. Problem NWP zdefiniujemy jako problem znalezienia najdłuższego wspólnego podciągu słów ze zbioru L (wersja optymalizacyjna). Wersja decyzyjna ma na wejściu dodatkowo liczbę $d \geq 0$ i pytamy czy nwp $(L) \geq d$. Wprowadzimy teraz wersję sparametryzowaną liczbami całkowitymi $p,q,r \geq 0$. Przez NWP(p,q,r) będziemy rozumieli problem znajdowania najdłuższego wspólnego podciągu wszystkich słów ze zbioru $L \subset \Sigma^+$, gdzie $|L| \leq p$, $|\Sigma| \leq q$ oraz r oznacza ograniczenie na długość zwartych jednoliterowych ciągów w słowach ze zbioru L. Np. zapisując słowo aabbabcccdaa w postaci skompresowanej z krotnościami $a^2b^2abc^3da^2$ najdłuższy ciąg jednoliterowy to c^3 i ciąg ten należy do instancji dla r=3, ale nie dla r=2. W oznaczeniach przyjmiemy symbol "·" oznaczający brak wybranej restrykcji.

Zadania punktowane (podstawowe 10pkt + dodatkowe 12 pkt)

- A. Pokaż, że $NWP(2,\cdot,\cdot) \in \mathcal{P}$ (algorytm wielomianowy, +4 pkt podstawowe)
- B. Zweryfikuj status problemu $NWP(\cdot,2,1)$ (algorytm wielomianowy lub α -redukcja, +2pkt podstawowe)
- C. Pokaż, że $NWP(\cdot, 2, \cdot) \in \mathcal{NPC}$ (α -redukcja, +4 pkt podstawowe)
- D. Pokaż, że $NWP(\cdot, 3, 1) \in \mathcal{NPC}$ (α -redukcja, +4 pkt dodatkowe)
- E. Pokaż, że $NWP(\cdot, 2, 2) \in \mathcal{NPC}$ (α -redukcja, +8 pkt dodatkowe)

Studenci, którzy sięgną po punkty dodatkowe będą poproszeni o zreferowanie dowodu \mathcal{NPC} przy tablicy (po stwierdzeniu poprawności). Pozostali studenci mogą zostać poproszeni o omówienie algorytmu lub α -redukcji w czasie konsultacji. Proszę nie ryzykować z pracą niesamodzielną (np. przepisując rozwiązanie od innej osoby). Kara będzie dotkliwa: niezaliczenie przedmiotu i ewentualne konsekwencje administracyjne związane ze stwierdzeniem plagiatu. Można natomiast korzystać z literatury, książek i innych zasobów, ale warukiem skorzystania jest podanie stosownej informacji w bibliografii.

Terminy: punkty podstawowe (72h, wtorek 23.01, godz. 12:00), punkty bonusowe (31.01, 24:00)