Def I.1, σ -Algebra, messbarer Raum

Menge X, Potenzmenge $\mathcal{P}(X)$, eine Teilmenge von $\mathcal{P}(X)$ heißt Mengensystem

Ein Mengensystem $A \subseteq \mathcal{P}(X)$ heißt σ -Algebra, falls:

- (i) $X \in \mathcal{A}$
- (ii) $A \in \mathcal{A} \implies X \setminus A \in \mathcal{A}$
- (iii) $A_i \in \mathcal{A}, \forall i \in \mathbb{N} \implies \bigcup_{i \in \mathbb{N}} A_i \in \mathcal{A}$

Das Paar (X, A) heißt dann **messbarer Raum**.

Satz I.2

Jeder Durchschnitt von (endlich oder unendlich vielen) σ -Algebren auf der selben Menge X ist wieder eine σ -Algebra.

Def. I.3

Für ein Mengensystem $\mathcal{E} \subseteq \mathcal{P}(X)$ heißt $\sigma(\mathcal{E}) := \bigcap \{\mathcal{A} | \mathcal{A} \text{ ist } \sigma\text{-Algebra in } X \text{ mit } \mathcal{E} \subseteq \mathcal{A} \}$ die von \mathcal{E} erzeugte $\sigma\text{-Algebra}$. Man nennt \mathcal{E} das erzeugende System von $\sigma(\mathcal{E})$.

Dieser Durchschnitt ist nicht-trivial, denn $\mathcal{P}(X)$ ist σ -Algebra mit $\mathcal{E} \subseteq \mathcal{P}(X)$.

Def. I.4

Eine Folge $(s_k) \subseteq \overline{\mathbb{R}}$ $(k \in \mathbb{N})$ konvergiert gegen $s \in \overline{\mathbb{R}}$, falls eine der folgenden Alternativen gilt:

- (i) $s \in \mathbb{R}$ und $\forall \epsilon > 0$ gilt: $s_k \in (s \epsilon, s + \epsilon) \subseteq \mathbb{R}$ für k hinreichend groß
- (ii) $s=\infty$ und $\forall r\in\mathbb{R}:s_k\in(r,\infty]$ für k hinreichend groß
- (iii) $s=-\infty$ und $orall r\in\mathbb{R}:s_k\in[-\infty,r)$ für k hinreichend groß
- $(s_k)\subseteq\mathbb{R}$ ist genau dann in $\mathbb{\bar{R}}$ konvergent, wenn sie entweder in \mathbb{R} konvergiert, oder bestimmt gegen $\pm\infty$ divergiert.

Def. I.5, Maßraum

Sei $\mathcal{A} \subseteq \mathcal{P}(X)$ eine σ -Algebra, eine nicht-negative Mengenfunktion $\mu: \mathcal{A} \to [0, \infty]$ heißt **Maß** auf \mathcal{A} , falls:

- (i) $\mu(\emptyset) = 0$
- (ii) für beliebige paarweiße disjunkte $A_i \in \mathcal{A}$, $i \in \mathbb{N}$, gilt: $\mu(\bigcup_{i \in \mathbb{N}} A_i) = \sum_{i \in \mathbb{N}} \mu(A_i) \qquad \qquad (\sigma\text{-Additivität})$

Das Tripel (X, A, μ) heißt **Maßraum**.

Bem.:

(i) Für endlich viele paarweiße disjunkte $A_i \in \mathcal{A}, i = 1, ..., n$, folgt aus (ii) indem man $A_i = \emptyset$ für i = n + 1, ... setzt: $\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$

(ii) Monotonie des Maßes: $A, B \in \mathcal{A}$ mit $A \subseteq B \implies \mu(A) \le \mu(B) = \mu(A \cup (B \setminus A)) = \mu(A) + \mu(B \setminus A)$

Def. I.6

Sei (X, \mathcal{A}, μ) ein Maßraum. Das Maß μ heißt **endlich**, wenn $\mu(A) < \infty \ \forall A \in \mathcal{A}$ und σ -**endlich**, wenn es eine Folge $(X_i) \in \mathcal{A}$ mit $\mu(X_i) < \infty$ gibt, sodass $X = \bigcup_{i \in \mathbb{N}} X_i$. Falls $\mu(X) = 1$, so wird μ Wahrscheinlichkeits-Maß genannt.

Satz I.7 (Stetigkeitseig. von Maßen)

Sei (X, \mathcal{A}, μ) Maßraum. Dann gelten für Mengen $A_i \in \mathcal{A}, i \in \mathbb{N}$ folgende Aussagen:

(i) Aus
$$A_1\subseteq A_2\subseteq A_3\subseteq ...$$
 folgt: $\mu(\bigcup_{i\in\mathbb{N}}A_i)=\lim_{i o\infty}\mu(A_i)$

(ii) Aus
$$A_1 \supseteq A_2 \supseteq A_3 \supseteq ...$$
 mit $\mu(A_1) < \infty$, folgt: $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

(iii)
$$\mu(\bigcup_{i\in\mathbb{N}}A_i)\leq \sum_{i\in\mathbb{N}}\mu(A_i)$$

Bemerkungen zu Satz I.7

- (1) (i) Stetigkeit von unten
 - (ii) Stetigkeit von oben
 - (iii) σ -Subadditivität von μ
- (2) Bedingung $\mu(A_i) \leq \infty$ in (ii) kann durch $\mu(A_k) \leq \infty$ für ein $k \in \mathbb{N}$ ersetzt werden, kann aber nicht weggelassen werden. Begründung:

$$\begin{aligned} &A_k=k, k+1, ... \subseteq \mathbb{N} \\ & \mathit{card}(A_k) = \infty \ \forall k \in \mathbb{N} \\ & \mathsf{Aber:} \ \mathit{card}(\bigcap_{i \in \mathbb{N}} A_i) = \mathit{card}(\emptyset) = 0 \end{aligned}$$

Def. I.8

 (X, \mathcal{A}, μ) Maßraum.

Jede Menge $A\in\mathcal{A}$ mit $\mu(A)=0$ heißt μ -Nullmenge. Das System aller μ -Nullmengen bezeichnen wir mit $\mathcal{N}(\mu)$. Das Maß μ heißt **vollständig**, wenn gilt:

$$N \subseteq A$$
 für ein $H \in \mathcal{A}$ mit $\mu(A) = 0 \implies N \in \mathcal{A}$ und $\mu(N) = 0$

Bem.: Nicht jedes Maß ist vollständig:

$$\mathcal{A} \neq \mathcal{P}(X) \ \mu(A) = 0 \ \forall A \in \mathcal{A}$$

Allerdings lässt sich jedes Maß vervollständigen

Zu Def. I.8: Vervollstandigung

```
\bar{\mu} ist wohldefiniert: A \cup N = B \cup P mit A, B \in \mathcal{A}, \ P, N \in \mathcal{T}_{\mu} \implies \exists C \in \mathcal{A}, \mu(C) = 0 : P \subseteq C \implies A \subseteq B \cup C \implies \mu(A) \leq \mu(B) + \mu(C) = \mu(B) Symm \implies \mu(A) = \mu(B) \bar{\mu} heißt Vervollständigung von \mu
```

Satz I.9

 (X, \mathcal{A}, μ) Maßraum. Dann ist $\bar{\mathcal{A}}_{\mu}$ eine σ -Algebra und $\bar{\mu}$ ein vollständiges Maß auf $\bar{\mathcal{A}}_{\mu}$, welches mit μ auf \mathcal{A} übereinstimmt.

Satz I.10

 (X,\mathcal{A},μ) Maßraum und $(X,\bar{\mathcal{A}}_{\mu},\bar{\mu})$ sei Vervollständigung. Ferner sei (X,\mathcal{B},ν) ein vollständiger Maßraum mit $\mathcal{A}\subseteq\mathcal{B}$ und $\mu=\nu$ auf \mathcal{A} . Dann ist $\bar{\mathcal{A}}_{\mu}\subseteq\mathcal{B}$ und $\bar{\mu}=\nu$ auf $\bar{\mathcal{A}}_{\mu}$.

Def. I.11

 $(X,\mathcal{A}),(Y,\mathcal{C})$ messbare Räume. Eine Abbildung $f:X\to Y$ heißt $\mathcal{A}-\mathcal{C}$ —messbar, falls $f^{-1}(\mathcal{C})\subseteq\mathcal{A}$ Falls \mathcal{A},\mathcal{C} klar sind, bezeichnen wir f einfach als messbar

Lemma I.12

 $(X, \mathcal{A}), (Y, \mathcal{C})$ messbare Räume und $\mathcal{C} := \sigma(\mathcal{E})$. Jede Abbildung $f: X \to Y$ mit $f^{-1}(\mathcal{E}) \subseteq \mathcal{A}$ ist \mathcal{A} - \mathcal{C} -messbar

borel-messbar (Zu Lemma I.12)

```
Jede stetige Abbildung f: \mathbb{R}^n \to \mathbb{R}^n ist \mathbb{B}^n-messbar (man sagt: f ist borel-messbar). Denn \mathbb{B}^n = \sigma(\{\text{offene Teilmengen des } \mathbb{R}^n\}) und Urbilder offener Mengen sind offen für f stetig (siehe. Ana 1)
```

Def. I.13

(X, A) messbarer Raum und $D \in A$.

Eine Funktion $f:D\to \bar{\mathbb{R}}$ heißt numerische Funktion.

Lemma I.14

- (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$ und $f : D \to \mathbb{R}$. Dann sind folgende Aussagen äquivalent:
 - (i) f ist \mathcal{A} - \mathbb{B}^1 -messbar
- (ii) $\forall \ \mathcal{U} \subseteq \mathbb{R}$ offen ist $f^{-1}(\mathcal{U}) \in \mathcal{A}$ und $f^{-1}(\{\infty\}), f^{-1}(\{-\infty\}) \in \mathcal{A}$
- (iii) $\{f \leq s\} := \{x \in D \mid f(x) \in [-\infty, s]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- (iv) $\{f < s\} := \{x \in D \mid f(x) \in [-\infty, s)\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- (v) $\{f \geq s\} := \{x \in D \mid f(x) \in [s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- (vi) $\{f > s\} := \{x \in D \mid f(x) \in (s, \infty]\} \in \mathcal{A} \ \forall s \in \mathbb{R}$
- In (iii) (vi) reicht es aus, $s \in \mathbb{Q}$, statt $s \in \mathbb{R}$ zu haben, denn es gilt z.B.:

$$\{f \geq s\} = \bigcap_{\substack{q \in \mathbb{Q} \\ s > q}} \{f > q\}$$

Lemma I.15

```
Sei (X, \mathcal{A}) ein messbarer Raum, D \in \mathcal{A} und f, g : D \to \mathbb{R} \mathcal{A}-messbar. Dann sind die Mengen \{f < g\} := \{x \in D : f(x) < g(x)\} und \{f \leq g\} := \{x \in D : f(x) \leq g(x)\} Elemente aus \mathcal{A}.
```

Satz I.16

 (X,\mathcal{A}) messbarer Raum, $D\in\mathcal{A}$ und $f_k:D\to\bar{\mathbb{R}}$ Folge von \mathcal{A} -messbaren Funktionen.

Dann sind auch folgende Funktionen \mathcal{A} -messbar:

 $\inf_{k\in\mathbb{N}} f_k, \ \sup_{k\in\mathbb{N}} f_k, \ \liminf_{k\to\infty} f_k, \ \limsup_{k\to\infty} f_k$

Satz I.17

 (X, \mathcal{A}) messbarer Raum, $D \in \mathcal{A}$, $f, g : D \to \mathbb{R}$ \mathcal{A} -messbar, $\alpha \in \mathbb{R}$. Dann sind die Funktionen

$$f+g, \ \alpha f, \ f^{\pm}, \ \max(f,g), \ \min(f,g), \ |f|, \ fg, \ rac{f}{g}$$

auf ihren Definitionsbereichen, die in ${\mathcal A}$ liegen ${\mathcal A}$ -messbar.

Def I.18

```
(X,\mathcal{A},\mu) Maßraum. Eine auf D\in\mathcal{A} definierte Funktion f:D\to \bar{\mathbb{R}} heißt \mu-messbar (auf X), wenn \mu(X\setminus D)=0 und f \mathcal{A}|_{\mathcal{D}}-messbar ist. (\mathcal{A}|_D:=\{A\cap D|A\in\mathcal{A}\}, siehe Blatt 1)
```

μ -fast überall

Sei (X, \mathcal{A}, μ) Maßraum. Man sagt, die Aussage A[x] ist wahr **für** μ -fast alle $x \in M \in \mathcal{A}$ oder μ -fast überall auf M, falls es eine μ -Nullmenge N gibt mit

$$\{x \in M : A[x] \text{ ist falsch}\} \subseteq N$$

Dabei wird nicht verlangt, dass $\{x \in M : A[x] \text{ ist falsch}\}$ selbst zu \mathcal{A} gehört.

Zum Beispiel bedeutet für Funktionen $f,g:X\to\mathbb{R}$ die Aussage " $f(x)\leq g(x)$ für μ -fast alle $x\in X$ ", dass es eine Nullmenge N gibt, so dass $\forall x\in X\setminus N$ gilt: $f(x)\leq g(x)$.

Eine Funktion h ist " μ -fast überall auf X definiert", wenn h auf $D \in \mathcal{A}$ definiert ist und $\mu(X \setminus D) = 0$.

Ziel: Messbarkeit für Funktionen, die nur μ -fast überall definiert sind.

Lemma I.19

 (X,\mathcal{A},μ) vollständiger Maßraum. f μ -messbar auf X. Dann ist auch jede Funktion \widetilde{f} mit $\widetilde{f}=f$ μ -fast überall μ -messbar.

Satz I.20

 (X,\mathcal{A},μ) vollständiger Maßraum und seien $f_k,k\in\mathbb{N}$, μ -messbar. Falls f_k punktweise μ -fast überall gegen f konvergiert, dann ist f auch μ -messbar.

Satz I.21 (Egorov)

 (X,\mathcal{A},μ) Maßraum, $D\in\mathcal{A}$ Menge mit $\mu(D)<\infty$ und f_n,f μ -messbare, μ -fast überall endliche Funktionen auf D mit $f_n\to f$ μ -fast überall. Dann existiert $\forall \epsilon>0$ eine Menge $B\in\mathcal{A}$ mit $B\subseteq D$ und

- (i) $\mu(D \setminus B) < \epsilon$
- (ii) $f_n \to f$ gleichmäßig auf B

Äußere Maße

Sei X eine Menge. Eine Funktion $\mu: \mathcal{P}(X) \to [0, \infty]$ mit $\mu(\emptyset) = 0$ heißt **äußeres Maß** auf X, falls gilt:

$$A \subseteq \bigcup_{i \in \mathbb{N}} A_i \implies \mu(A) \le \sum_{i \in \mathbb{N}} \mu(A_i)$$

- (i) Die Begriffe σ -additiv, σ -subadditiv, σ -endlich, endlich, monoton sowie Nullmenge und μ -fast überall werden wie für Maße definiert. (Man ersetze überall $\mathcal A$ durch $\mathcal P(X)$)
- (ii) Ein äußeres Maß ist monoton, σ -subadditiv und insbesondere endlich subadditiv

(d.h.
$$A \subseteq \bigcup_{i=1}^n A_i \implies \mu(A) \leq \sum_{i=1}^n \mu(A_i)$$
)

messbare Menge

Sei μ äußeres Maß auf X. Die Menge $A \subseteq X$ heißt μ -messbar, falls $\forall S \subseteq X$ gilt:

$$\mu(S) \ge \mu(S \cap A) + \mu(S \setminus A).$$

Das System aller μ -messbaren Mengen wird mit $\mathcal{M}(\mu)$ bezeichnet.

Da $S = (S \cap A) \cup (S \setminus A)$ folgt aus Def. II.1:

$$\mu(S) \leq \mu(S \cap A) + \mu(S \setminus A)$$

d.h.: A messbar $\Leftrightarrow \mu(S \cap A) + \mu(S \setminus A) \ \forall S \subseteq X$

μ als äußeres Maß

Dann ist μ ein äußeres Maß.

Sei $\mathcal Q$ ein System von Teilmengen einer Menge X, welches die leere Menge enthält, und sei $\lambda:\mathcal Q\to[0,\infty]$ eine Mengenfunktion auf $\mathcal Q$ mit $\lambda(\emptyset)=0$. Definiere die Mengenfunktion $\mu(E):=\inf\{\sum_{i\in\mathbb N}\lambda(P_i)|\ P_i\in\mathcal Q, E\subseteq\bigcup_{i\in\mathbb N}P_i\}.$

4□ > 4♠ > 4 ₺ > 4 ₺ > ₺

(inf $\emptyset = \infty$)

Einschränkung

Sei $\mu:\mathcal{P}(X)\to [0,\infty]$ äußeres Maß auf X. Für $M\subseteq X$ gegeben erhält man durch $\mu\llcorner M:\mathcal{P}(X)\to [0,\infty], \mu\llcorner M(A):=\mu(A\cap M)$ ein äußeres Maß $\mu\llcorner M$ auf X, welches wir **Einschränkung** von μ auf M nennen.

Es gilt:

 $A \mu$ -messbar $\implies A \mu \sqcup M$ -messbar

Satz II.5

 μ äußeres Maß auf X. Dann gilt:

$$\textit{N μ-Nullmenge} \implies \textit{N μ-messbar}$$
 $\textit{N}_k, k \in \mathbb{N}, \mu$ -Nullmengen $\implies \bigcup_{k \in \mathbb{N}} \textit{N}_k \ \mu$ -Nullmenge

 $\mathcal{M}(\mu)$ enthält alle Nullmengen $N\subseteq X$ und damit auch deren Komplemente (siehe Satz II.7). Es kann sein, dass keine anderen Mengen μ -messbar sind.

Lemma II.6

Seien $A_i \in \mathcal{M}(\mu)$, i=1,...,k, paarweiße disjunkt und μ äußeres Maß. Dann gilt $\forall S \subseteq X$:

$$\mu(S \cap \bigcup_{i=1}^k A_i) = \sum_{i=1}^k \mu(S \cap A_i)$$

Satz II.7

Sei $\mu: \mathcal{P}(X) \to [0,\infty]$ ein äußeres Maß. Dann ist $\mathcal{M}(\mu)$ eine σ -Algebra und μ ist ein vollständiges Maß auf $\mathcal{M}(\mu)$.

Lemma II.8

 μ äußeres Maß, $A_i \in \mathcal{M}(\mu), i \in \mathbb{N}$. Dann gelten:

- i) Aus $A_1\subseteq ...\subseteq A_i\subseteq A_{i+1}\subseteq ...$ folgt $\mu(\bigcup_{i\in\mathbb{N}}A_i)=\lim_{i\to\infty}\mu(A_i)$
- ii) Aus $A_1 \supseteq ... \supseteq A_i \supseteq A_{i+1} \supseteq ...$ mit $\mu(A_1) < \infty$ folgt $\mu(\bigcap_{i \in \mathbb{N}} A_i) = \lim_{i \to \infty} \mu(A_i)$

Def. II.9 / X-stabil

Ein Mengensystem $A \subseteq \mathcal{P}(X)$ heißt \bigcup -stabil (bzw. \bigcap -stabil), wenn $A \cup B \in \mathcal{A}$ (bzw. $A \cap B \in \mathcal{A}$, $A \setminus B \in \mathcal{A}$) $\forall A, B \in \mathcal{A}$ gilt.

U-stabil impliziert Stabilität bzgl. endlicher Vereinigung. Ebenso ∩-stabil.

Def. II.10 / Ring / Algebra

Ein Mengensystem $\mathcal{R} \subset \mathcal{P}(X)$ heißt **Ring** über X, falls:

- i) $\emptyset \in \mathcal{R}$
- ii) $A, B \in \mathcal{R} \implies A \setminus B \in \mathcal{R}$
- iii) $A, B \in \mathcal{R} \implies A \cup B \in \mathcal{R}$

 \mathcal{R} heißt **Algebra**, falls zusätzlich $X \in \mathcal{R}$.

Für $A, B \in \mathcal{R}$ gilt: $A \cap B = A \setminus (A \setminus B) \in \mathcal{R}$ Ringe sind \bigcup -stabil, \bigcap -stabil, \setminus -stabil

Def. II.11 (Im Aufschrieb II.10) / Prämaß

Sei $\mathcal{R}\subseteq\mathcal{P}(X)$ Ring. Eine Funktion $\lambda:\mathcal{R}\to[0,\infty]$ heißt **Prämaß** auf \mathcal{R} , falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{R}, i \in \mathbb{N}$, paarweiße disjunkt mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt:

$$\lambda(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\lambda(A_i)$$

 σ -subadditiv, subadditiv, σ -endlich, endlich, monoton, Nullmenge und fast-überall werden wie für Maße definiert.

Def. II.12 (Im Aufschrieb II.11) / Fortsetzung

 λ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Ein äußeres Maß μ auf X (bzw. ein Maß auf \mathcal{A}) heißt **Fortsetzung** von λ , falls gilt:

- i) $\mu|_{\mathcal{R}} = \lambda$, d.h. $\mu(A) = \lambda(A) \ \forall A \in \mathcal{R}$
- ii) $\mathcal{R} \subseteq \mathcal{M}(\mu)$ (bzw. $\mathcal{R} \subset \mathcal{A}$), d.h. alle $A \in \mathcal{R}$ sind μ -messbar

induziertes äußeres Maß / Caratheodory-Fortsetzung

Lemma II.14 (Im Aufschrieb II.13)

 $\lambda:\mathcal{R} \to [0,\infty]$ Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$. Sei $\mu:\mathcal{P}(X) \to [0,\infty]$ das in Satz II.3 aus \mathcal{R} konstruierte äußere Maß, d.h. $\forall E \subseteq X$:

$$\mu(E) := \inf\{\sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{R}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i\}$$

Dann ist μ eine Fortsetzung von λ . μ heißt induziertes äußeres Maß oder Caratheodory-Fortsetzung von λ .

Sei $\lambda:\mathcal{R}\to[0,\infty]$ Prämaß auf Ring $\mathcal{R}\subseteq\mathcal{P}(X)$. Dann ex. ein Maß μ auf $\sigma(\mathcal{R})$ mit $\mu=\lambda$ auf \mathcal{R} . Diese Fortsetzung ist eindeutig, falls λ σ -endlich ist.

Regularität der Caratheodory-Fortsetzung / i.A. II.15

```
Sei \mu Caratheodory-Fortsetzung des Prämaßes \lambda: \mathcal{R} \to [0,\infty] auf Ring \mathcal{R} über X. Dann ex. \forall D \subseteq X ein E \in \sigma(\mathcal{R}) mit E \supseteq D und \mu(E) = \mu(D). (\mu ist "reguläres "äußeres Maß)
```

Satz II.17 (i.A. II.16)

Sei λ ein σ -endliches Prämaß auf Ring $\mathcal R$ über X und sei $\mu:\mathcal P(X)\to [0,\infty]$ die Caratheodory-Fortsetzung von λ . Dann ist $\mu|_{\mathcal M(\mu)}$ die Vervollständigung von $\mu|_{\sigma(\mathcal R)}$ und $\mathcal M(\mu)$ ist die vervollständigte σ -Algebra von $\overline{\sigma(\mathbb R)}_{\mu|_{\sigma(\mathbb R)}}$.

D.h. $\overline{\sigma(\mathbb{R})}_{\mu|\sigma(\mathbb{R})}=\mathcal{M}(\mu)$. Insbesondere ex. genau eine Fortsetzung von $\lambda:\mathcal{R}\to[0,\infty]$ zu einem vollständigen Maß auf $\mathcal{M}(\mu)$.

Lemma II.18 (i.A. II.17)

 $\lambda: \mathcal{R} \to [0,\infty]$ σ -endliches Prämaß auf Ring $\mathcal{R} \subseteq \mathcal{P}(X)$ mit Caratheodory-Fortsetzung μ . $D \subseteq X$ ist genau dann μ -messbar, wenn eine der folgenden Bedingungen gilt:

- i) $\exists E \in \sigma(\mathcal{R}) \text{ mit } E \supseteq D \text{ und } \mu(E \setminus D) = 0$
- ii) $\exists C \in \sigma(\mathcal{R}) \text{ mit } C \subseteq D \text{ und } \mu(D \setminus C) = 0$

Def. II.19 / Halbring

Ein Mengensystem $Q \subseteq \mathcal{P}(X)$ heißt **Halbring** über X, falls:

- i) $\emptyset \in \mathcal{Q}$
- ii) $P, Q \in \mathcal{Q} \implies P \cap Q \in \mathcal{Q}$
- iii) $P,Q\in\mathcal{Q}\implies P\setminus Q=\bigcup\limits_{i=1}^kP_i$ mit endlich vielen paarweise disjunkten $P_i\in\mathcal{Q}$

Bemerkung: Intervall / Quader

Satz II.20 (i.A. II.19)

 $\ensuremath{\mathcal{I}}$ ist ein Halbring.

Satz II.21 (i.A. II.20)

Für i = 1, ..., n sei Q_i Halbring über X_i . Dann ist $Q := \{P_1 \times ... \times P_n \mid P_i \in Q_i\}$ ein Halbring über $X_1 \times ... \times X_n$.

Satz II.22 (i.A. II.21)

 Q^n ist ein Halbring.

Satz II.23 (i.A. II.22)

 $\mathcal Q$ Halbring über X und $\mathcal F$ sei das System aller endlichen Vereinigungen $F=\bigcup\limits_{i=1}^k P_i$ von Mengen $P_I\in\mathcal Q$. Dann ist $\mathcal F$ der von $\mathcal Q$ erzeugte Ring.

Figuren

$$\mathcal{Q} := \{\emptyset\} \cup \{\{a\} \mid a \in X\}$$

 \implies erzeugter Ring \mathcal{F} : Ring der endlichen Teilmengen von X .

Lemma II.24 (i.A. II.23)

 $\mathcal Q$ Halbring über X, $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. $\Longrightarrow \sigma(\mathcal Q) = \sigma(\mathcal F)$

Lemma II.25 (i.A. II.24)

 $\mathcal Q$ Halbring über X, $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Zu jedem $F\in\mathcal F$ existieren paarweise disjunkte $P_1,...,P_k\in\mathcal Q$ mit $F=\bigcup_{i=1}^k P_i$

Def. II.26 (i.A. II.25) / Inhalt

Sei $Q \subseteq \mathcal{P}(X)$ Halbring. Eine Funktion $\lambda: Q \to [0, \infty]$ heißt Inhalt auf Q, falls:

- i) $\lambda(\emptyset) = 0$
- ii) Für $A_i \in \mathcal{Q}$ paarweiße disjunkt mit $\bigcup\limits_{i=1}^n A_i \in \mathcal{Q}$ gilt:

$$\lambda(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \lambda(A_i)$$

 λ heißt **Prämaß** auf \mathcal{Q} , falls λ σ -additiv auf \mathcal{Q} ist.

D.h. für $A_i \in \mathcal{Q}$ paarweiße disjunkt $(i \in \mathbb{N})$ mit

$$\bigcup_{i\in\mathbb{N}}A_i\in\mathcal{Q}:\lambda(\bigcup_{i\in\mathbb{N}}A_i)=\sum_{i\in\mathbb{N}}\lambda(A_i)$$

Satz II.27 (i.A. II.26)

 λ Inhalt auf Halbring $\mathcal Q$ und $\mathcal F$ der von $\mathcal Q$ erzeugte Ring. Dann ex. genau ein Inhalt $\bar\lambda:\mathcal F\to[0,\infty]$ mit $\bar\lambda(\mathcal Q)=\lambda(\mathcal Q)\ \forall \mathcal Q\in\mathcal Q.$

Lemma II.28 (i.A. II.27)

 λ Inhalt auf Halbring \mathcal{Q} über X $\implies \lambda$ ist monoton und subadditiv

Satz II.29 (i.A. II.28)

 $vol^n(.)$ ist ein Inhalt auf Q^n

Satz II.30 (i.A. II.29)

 $\lambda:\mathcal{Q} \to [0,\infty]$ Prämaß auf Halbring $\mathcal{Q} \subseteq \mathcal{P}(X)$, \mathcal{R} der von \mathcal{Q} erzeugte Ring und $\bar{\lambda}:\mathcal{R} \to [0,\infty]$ der eindeutig bestimmte Inhalt auf \mathcal{R} mit $\bar{\lambda}|_{\mathcal{Q}} = \lambda$ (Satz II.27 / i.A. II.26), so ist $\bar{\lambda}$ ein Prämaß auf \mathcal{R} .

Satz II.31 ((i.A. II.30))

 $\lambda:\mathcal{Q}\to[0,\infty]$ Prämaß auf Halbring $\mathcal{Q}\subseteq\mathcal{P}(X)$. Sei $\mu:\mathcal{P}(X)\to[0,\infty]$ das in Satz II.3 aus \mathcal{Q} konstruierte äußere Maß, d.h. $\forall E\subseteq X$ ist:

$$\mu(E) = \inf \{ \sum_{i \in \mathbb{N}} \lambda(A_i) \mid A_i \in \mathcal{Q}, E \subseteq \bigcup_{i \in \mathbb{N}} A_i \}$$

Dann ist μ eine Fortsetzung von λ .

Satz II.32 ((i.A. II.31))

Für einen Inhalt λ auf Ring \mathcal{R} und $A_i \in \mathcal{R}, i \in \mathbb{N}$, betrachte:

- i) λ ist Prämaß auf ${\cal R}$
- ii) Für $A_i \subseteq A_{i+1} \subseteq ...$ mit $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{R}$ gilt: $\lambda(\bigcup_{i \in \mathbb{N}} A_i) = \lim_{n \to \infty} \lambda(A_n)$
- iii) Für $A_i\supseteq A_{i+1}\supseteq ...$ mit $\lambda(A_1)<\infty$ und $\bigcap_{i\in\mathbb{N}}A_i\in\mathcal{R}$ gilt:

$$\lambda(\bigcap_{i\in\mathbb{N}}A_i)=\lim_{n\to\infty}\lambda(A_n)$$

iv) Für $A_i \supseteq A_{i+1} \supseteq ...$ mit $\lambda(A_1) < \infty$ und $\bigcap_{i \in \mathbb{N}} A_i = \emptyset$ gilt: $\lim_{i \to \infty} \lambda(A_i) = 0$

Dann gilt: i) \Leftrightarrow ii) \Longrightarrow iv) lst λ endlich, d.h. $\lambda(A) < \infty \ \forall A \in \mathcal{R}$, dann sind i) - iv) äquivalent.