

Projet DOLPHIN

3 octobre 2017

Plan

- 1. Introduction : présentation de JUMP et du projet
- 2. Rappel des bases
 - 1. Qu'est-ce qu'un titre financier?
 - 2. Qu'est ce qu'un portefeuille financier?
 - 3. Qu'est ce qu'un rendement d'actif?
 - 4. Qu'est ce qu'un robo-advisor?
- 3. Notions financières pour le projet Dolphin
 - 1. Le ratio de Sharpe
 - 2. L'optimisation de portefeuille : principe et exemple pour 2 actifs
 - 3. La théorie moderne de la gestion de portefeuille
 - 4. L'optimisation de portefeuille par le ratio de Sharpe Introduction d'un actif sans risque
 - 5. Implémentation d'un algorithme maximisant Sharpe
- 4. Lancement du projet
- 5. Questions & Réponses

1. Introduction: Emmanuel Fougeras - Faouzi Jaouani

- Président-Fondateur de JUMP
- Diplômé d'EPITA, SCIA promotion 2002

- Faouzi Jaouani
- Responsable innovation
- Diplômé d'EPITA, SCIA promotion 2013

1. Introduction: Présentation de JUMP

- JUMP, éditeur de logiciels indépendant et dédié à la gestion d'actifs créé en 2006
- Le progiciel JUMP est une solution Front to Back pour tous les acteurs de la Finance de Marché
- Quelques fonctionnalités couvertes par le progiciel : passage d'ordres, tenue de position, suivi du risque de marché, analyse de la performance, contrôle interne, réalisation de stress test...
- Chiffres clés :
 - 400 utilisateurs depuis 30 sociétés clientes (sociétés de gestion, banques, assureurs...)
 - 350 milliards d'euros d'actifs gérés avec JUMP

- Dolphin est un serious-game compétitif sur le développement d'une fonction d'optimisation de portefeuille à l'image de ce que font les robo-advisors des FinTech
- Ce sujet ne nécessite pas d'importantes connaissances en finance de marché

Objectif du projet Dolphin

- Concevoir un programme créant un portefeuille optimisé selon le ratio de Sharpe (présenté par la suite) comme le ferait un gestionnaire ou un robot advisor
- Pour cela, vous vous appuierez sur un serveur d'application JUMP hébergé sur Internet
- Ce serveur vous exposera des API REST JSON vous donnant tous les services nécessaires pour écrire votre programme
- Vous pouvez développer votre solution dans le langage de votre choix (Java, Kotlin, C#, Swift, Ruby...)
- Dans la suite de cette présentation, des notions financières utiles au projet seront présentées

Objectif du projet Dolphin

- Il vous sera donc remis suite à votre inscription
 - ❖ Le lien vers le serveur d'application proposant les API
 - ❖ Le lien vous permettant de télécharger
 - Une documentation présentant en détail le sujet et les API à utiliser
 - Une documentation des API REST mis à votre disposition
 - Un code exemple Java pour vous inspirer

Lots à gagner

- Les meilleurs seront récompensés par des bons cadeaux !
- 1^{er} de l'école : Bon cadeau d'une valeur de 200 €
- 2^{ème}: Bon cadeau d'une valeur de 125 €
- 3^{ème}: Bon cadeau d'une valeur de 75 €
- Et en général pour tous ceux qui auront réussi le projet une proposition de stage chez JUMP

Dates clés

- 3/10 : démarrage du projet
- A partir du 3/10 :
 - ❖ Chaque groupe d'étudiants communique par mail à dolphin@jump-informatique.com ses 3 membres et le lien du dépôt GitHub public de son projet Dolphin
 - ❖ En retour, JUMP communique les identifiants du groupe concerné au serveur de test Dolphin
- Lundi 27/11 à 10h :
 - ❖ Fermeture du serveur : date limite pour avoir rempli les portefeuilles de réponse
 - ❖ Les commits réalisés après cette date ne seront plus pris en compte
- Mardi 28/11 :
 - ❖ Soutenances par groupes pour que chaque groupe puisse présenter sa solution et le code réalisé

1. Qu'est-ce qu'un titre financier?

- Un titre financier est un titre qui représente une partie du capital d'une société (actions) ou une partie de son endettement (obligation, bons du trésor,...)
- Il donne le droit à son acquéreur (l'investisseur) de bénéficier de flux futurs de trésorerie (dividendes, remboursement avec intérêts,...) en échange d'un investissement initial
- Ces flux futurs sont incertains : ils dépendent de nombreuses variables qui changent en fonction du titre financier
- Dans le cadre du projet Dolphin, les titres financiers comme les portefeuilles sont des "actifs", l'API GET /asset permet de récupérer leurs caractéristiques, l'API GET /asset/{id}/quote leurs cotations et l'API POST /ratio/invoke permet de calculer une liste de ratios sur une liste d'actifs
- La liste précise des requêtes est disponible dans la documentation

2. Qu'est ce qu'un portefeuille financier?

- Un portefeuille financier désigne un ensemble de titres financiers détenus par une société ou un individu
- Un même portefeuille peut contenir différents types de titres financiers

Actif	Type d'actif	Quantité	Cours de valorisation	Montant	% NAV du portefeuille
Air Liquide	Action	60	103,15€	6 189 €	8,01%
Altarea	Action	33	192,35 €	6 347,55 €	8,21%
Bouygues	Action	150	37,38 €	5 607 €	7,25%
Colas	Action	35	174 €	6 090 €	7,88%
MARTIN MAUREL CONVERTIBLES C	Fonds	32	162,01 €	5 184,32 €	6,71%
MARTIN MAUREL SELECTMANAGERS P	Fonds	197	27,59 €	5 435,23 €	7,03%
MARTIN MAUREL SENIOR PLUS P	Fonds	26	212,76€	5 531,76 €	7,16%
Nestle N	Action	60	81,45 SF	4 887 SF	5,56%
RENAULT PFRN 240CT49 (PERP)	Obligation	10	625 €	6 250 €	8,09%

2. Qu'est ce qu'un portefeuille financier?

Zoom sur le cas du mandat privé

- Un portefeuille sous mandat privé appartient à un investisseur, généralement un particulier, qui a confié la gestion du portefeuille à un Gérant sous mandat
- Dans le cadre du projet Dolphin, on utilise :
 - ❖ l'API GET /portfolio/{id}/dyn_amount_compo pour récupérer le contenu (la composition) d'un mandat
 - ❖ l'API PUT /portfolio/{id}/dyn_amount_compo pour modifier son contenu

3. Qu'est ce qu'un rendement d'actif?

 Le rendement / la performance d'un actif est la progression, en pourcentage, de la valeur d'un placement sur cet actif sur une certaine période

■ Rendement =
$$\frac{V_n - Vn_{-1} + Flux de trésorerie perçus}{V_{n_{-1}}}$$

Exemple :

- Le rendement sera de 13% sur un an
- L'API REST permettant d'obtenir le rendement d'un actif sur une période est l'API GET /asset/{id}/quote

4. Qu'est ce qu'un robo-advisor - Présentation

- Un robo-advisor est une plateforme qui fournit des conseils en placements financiers
- Ils offrent une alternative aux gestionnaires de portefeuille traditionnels présentant de nombreux avantages

CGP / Gérant privé

- + Conseil personnalisé
- + Relation humaine
- Frais notables (de 1 à 2% par an)
- Adaptés aux patrimoines importants (> 100 000 euros)
- Intermédiaire supplémentaire pour interagir avec le marché

Robo-advisor

- + Frais bas (entre 0,2 et 0,5% par an)
- + Disponible pour tous
- + Consultable en permanence et immédiatement
- Personnalisation limitée
- Pas de relation humaine

4. Qu'est ce qu'un robo-advisor - Fonctionnement

 L'utilisateur renseigne son profil d'investisseur : horizon d'investissement, son appétence au risque, les types de titres dans lesquels il souhaite investir,...

- Le robot récupère ces données et celles des marchés
- Calcul des meilleures possibilités d'investissement

- Proposition d'une solution d'investissement plus ou moins personnalisée suivant le raffinement de l'automate
- ➤ La qualité d'un robo-advisor dépend notamment de l'algorithme d'optimisation de portefeuille → cœur du projet Dolphin

La volatilité, la mesure du risque

 Le risque se mesure ici par la volatilité (noté σ) d'un actif. Elle est égale à la racine carré de la moyenne des écarts à la moyenne

 σ_a : écart-type de l'actif a

x_i: cours de a en i

n : nombre de périodes observées

x_m: moyenne des cours de a

La volatilité, la mesure du risque

- Ci-dessous, on montre les performances historiques de différents titres financiers
- Ceux dont la volatilité est faible sont également ceux dont la performance est faible

Exemples de titres à faible volatilité / faible rendement

Exemples de titres à forte volatilité / fort rendement

1. Le ratio de Sharpe – Formule

- Calcul du rendement d'un actif ou d'un portefeuille par unité de risque
- Le rendement est noté R (ou R_p pour un portefeuille p) auquel on soustrait le rendement du « taux sans risque » (ex : EONIA)
 - ❖ Rendement d'un portefeuille = $R_p = \sum_i w_i * R_i$
- Plusieurs Sharpe existent : celui présenté ici est égale à $S_p = \frac{R_p rf}{\sigma_n}$

Question : que peut-on déduire de ce graphique ?

1. Le ratio de Sharpe – Exercice

- On considère un portefeuille A et un portefeuille B avec les paramètres suivants :
 - ❖ A a un rendement de 9% et une volatilité de 8%
 - ❖ B a un rendement de 7% et une volatilité de 5%
- Le taux sans risque est de 2%
- Quel portefeuille a la meilleure performance par rapport à son risque ?

2. L'optimisation de portefeuille

- L'optimisation de portefeuille montre qu'il est possible, grâce à un choix des actifs, de réduire le risque et de maximiser le rendement
- Ceci est possible par la réduction du risque « spécifique », c'est-à-dire le risque qui n'affecte qu'un seul titre (ou un petit groupe)
- Une partie du risque n'est pas diversifiable : le risque de marché (ou systématique)

2. L'optimisation de portefeuille – Exemple : portefeuille à 2 actifs

On considère 2 actions : Carrefour et Michelin. Grâce aux informations suivantes, peut-on déduire des compositions de portefeuille optimales ?

	Carrefour	Michelin	
Rendement	10%	11%	
Volatilité	29,7%	33,9%	
Corrélation entre les 2	0,335		

Rendement d'un portefeuille a n actifs :

$$\rightarrow$$
 R_p = $\sum_{i=1}^{n} w_i * R_i$

Volatilité d'un portefeuille a n actifs :

$$\rightarrow \sigma_{p}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} * wj * Cov(i,j)$$

w_i: poids de l'actif dans le portefeuille

Cov(i,j) =
$$\frac{1}{n} * \sum_{i=1}^{n} (xi - xm)(yi - ym)$$

2. L'optimisation de portefeuille – Exemple : portefeuille à 2 actifs

- La courbe représente toutes les combinaisons possibles de compositions de portefeuille avec les 2 actifs précédents et les points bleu marquent les dizaines
- Que peut-on conclure ?

3. La théorie moderne de la gestion de portefeuille

- Théorie développée par Harry Markowitz dans les années 1950, notamment avec l'article "Portfolio Selection", *Journal of Finance*, 1952
- Avant Markowitz : le choix des compositions de portefeuille se faisait en sélectionnant des titres individuellement selon leur rendement ou leur volatilité
- Après Markowitz : le choix des compositions se fait également en prenant en compte la corrélation des variations des rendements des titres afin de minimiser le risque pour un même rendement

3. La théorie moderne de la gestion de portefeuille

■ Formule de la variance (mesure de la volatilité) du rendement d'un portefeuille :

$$\sigma_p^2 = \sum_{i=1}^n \sum_{j=1}^n w_i w_j Cov(ri, rj)$$

■ Formule du rendement d'un portefeuille :

$$r_{p} = \sum_{i=1}^{n} w_{i} r_{i}$$

w_i: poids de l'actif dans le portefeuille

3. La théorie moderne de la gestion de portefeuille – La frontière efficiente

- On dispose de 5 actions pour composer notre portefeuille
- Chaque point noir représente une composition possible de portefeuille
- L'ensemble des points noirs représente toutes les compositions possibles

3. La théorie moderne de la gestion de portefeuille – La frontière efficiente

- On peut comparer ici les portefeuilles en fonction de leurs risques et de leurs performances
- Pour un couple rendement / risque donné, une combinaisons des 5 valeurs est (presque) toujours préférable à une seule valeur

3. La théorie moderne de la gestion de portefeuille – La frontière efficiente

- Graphiquement, on remarque qu'il existe toujours un unique portefeuille présentant le meilleur ratio rendement / risque pour chaque niveau de risque
- L'ensemble de ces portefeuilles forme la frontière efficiente

5. Implémentation d'un algorithme maximisant Sharpe – Problème NP-complet

- Le projet Dolphin est un problème NP-complet : problème pour lequel il est impossible de garantir de trouver dans un temps déterminé la solution parfaite quel que soit la taille de l'échantillon de données
- En effet, le nombre de compositions possibles est potentiellement infini. Il convient donc de réduire l'espace des solutions envisagées et de s'orienter vers une solution tendant vers un minimum local satisfaisant

5. Implémentation d'un algorithme maximisant Sharpe – Problématique

- Il faut trouver le portefeuille avec le meilleur ratio de Sharpe
- Les rendements entre les actifs s'ajoutent (formule : $R_p = \sum_i w_i * R_i$), le rendement d'un portefeuille est donc facile à calculer et à améliorer
- Par contre, le risque présente une difficulté particulière car il dépend de la corrélation entre les actifs du portefeuille
- Sur l'illustration ci-contre, la combinaison des 2 actifs très volatiles (vert et bleu) peut permettre de réduire la volatilité du portefeuille tout en conservant un bon rendement

5. Implémentation d'un algorithme maximisant Sharpe – Choix des actifs et des pondérations

- Comment choisir les actifs qui vont constituer le portefeuille ? On peut avoir par exemple 3 stratégies :
 - ❖ Choisir les actifs avec le plus fort rendement (sans prise en compte du risque)
 - ❖ Choisir les actifs avec le plus faible risque (sans prise en compte du rendement)
 - Choisir les actifs avec le plus fort Sharpe
- Le choix des pondérations dans la composition peut par exemple se faire :
 - ❖ Par itération : on teste un nombre défini de pondération différente pour garder la meilleure
 - En pondérant les actifs selon leurs caractéristiques (rendement important,...)

5. Implémentation d'un algorithme maximisant Sharpe – Parcours en profondeur et parcours en largeur

- On peut représenter l'ensemble des possibilités de compositions de portefeuille avec un arbre
- Dès lors, on peut suivre un parcours en largeur ou un en profondeur
- Quelle stratégie de parcours suivre ? Prioriser les actifs en fonction de leur Sharpe, de leurs corrélations, élaborer une heuristique combinant plusieurs critères... ?

Exemple d'arbre pour obtenir un portefeuille à 3 actifs parmi un univers de 4 actifs

5. Implémentation d'un algorithme maximisant Sharpe – Parcours en profondeur avec élagage de branche

- Cet algorithme fonctionne de manière récursive pour chaque actif (le chiffre de chaque nœud correspond à son Sharpe)
- Il permet divers "élagages" pour réduire le nombre de compositions à tester. Exemples d'algorithmes simples :
 - Élagage des doublons (en noir) : ABC par exemple correspond à la même composition que ACB
 - Élagage des sous-arbres peu prometteurs (en gris) : correspondant aux nœuds pour lesquels le Sharpe donne un résultat beaucoup plus faible que le meilleur trouvé jusque là : par exemple, la composition AC obtient un Sharpe de 0,2 et on l'exclut donc
 - En bleu les nœuds qui ne sont pas parcourus du fait d'un nœud père déjà élagué

5. Implémentation d'un algorithme maximisant Sharpe – Zoom sur la pondération

- Une composition étant une liste de [poids ; actif], les possibilités sont infinies vu que poids est un nombre réel entre]0;1]
- On peut réduire l'espace de possibilités en introduisant un "pas" minimal (exemple : 0,1%)
- Avec l'espace de possibilités réduit, rechercher la meilleure solution revient à nouveau à un parcours d'arbre
- On obtient ainsi un 2^{ème} algorithme sous forme d'arbre à l'intérieur du premier

5. Implémentation d'un algorithme maximisant Sharpe – Critique de l'algorithme proposé

- Cet algorithme permet de fonctionner avec un univers d'actifs très vaste et de fournir un portefeuille satisfaisant, mais sa qualité dépend de la pertinence de plusieurs paramètres : choix des critères d'élagage, du "pas" de l'algorithme de pondération...
 - Il existe des solutions naïves beaucoup plus simples ainsi que des solutions bien plus perfectionnées
- D'autres complexités peuvent être ajoutés au problème :
 - ❖ Ajout d'une notion de coût de déplacement d'un nœud à un autre
 - Contraintes fortes
 - Contraintes faibles

4. Lancement du projet

- Aujourd'hui : venez inscrire vos groupes sur les feuilles d'inscription
- A partir du 3/10 :
 - ❖ Chaque groupe d'étudiants communique par mail à dolphin@jump-informatique.com ses 3 membres et le lien du dépôt GitHub public de son projet Dolphin
 - ❖ En retour, JUMP communique les identifiants du groupe concerné au serveur de test Dolphin
- Il vous sera donc remis suite à votre inscription
 - ❖ Le lien vers le serveur d'application proposant les API
 - ❖ Le lien vous permettant de télécharger
 - Une documentation présentant en détail le sujet et les API à utiliser
 - Une documentation des API REST mis à votre disposition
 - Un code exemple Java pour vous inspirer
- Adresse mail du support JUMP pour le projet Dolphin : dolphin@jump-informatique.com
- Forum mis à votre disposition pour échanger entre vous ou avec JUMP sur le sujet : dolphin-epita-2017.xoo.it

JUMP

L'innovation au service de la finance de marché

Clients JUMP en FRANCE I LUXEMBOURG I SUISSE

Jump-technology.com

3. Annexes - Compléments de notions financières pour le projet Dolphin

4. L'optimisation de portefeuille – Introduction d'un actif sans risque

- Jusqu'ici, on ne considérait dans l'univers des actifs que des actifs risqués et on obtenait une multitude de portefeuilles efficients, pouvant être choisis uniquement selon l'appétence au risque de l'investisseur
- L'actif sans risque est l'actif dont la volatilité se rapproche le plus de zéro (dans ce modèle, elle est nulle)
- En considérant cet actif, on peut construire des portefeuilles efficients hors de la frontière d'efficience, et trouver le portefeuille efficient qui maximise le ratio de Sharpe

4. L'optimisation de portefeuille – Introduction d'un actif sans risque

- Jusqu'ici, on ne considérait dans l'univers des actifs que des actifs risqués et on obtenait une multitude de portefeuilles efficients, pouvant être choisis uniquement selon l'appétence au risque de l'investisseur
- L'actif sans risque est l'actif dont la volatilité se rapproche le plus de zéro (dans ce modèle, elle est nulle)
- En considérant cet actif, on peut construire des portefeuilles efficients hors de la frontière d'efficience, et trouver le portefeuille efficient qui maximise le ratio de Sharpe

4. L'optimisation de portefeuille – Introduction d'un actif sans risque

- On rajoute maintenant la possibilité d'investir dans l'actif sans risque rf
- On peut constituer de nouveaux portefeuilles avec un mélange de l'actif sans risque et d'un portefeuille efficient (exemple ici avec P) représenté par la demidroite rfP
- Par définition, le portefeuille efficient n'est constitué que d'actifs risqués
- Question : grâce à rf, peut-on déduire du graphique un unique portefeuille optimal ?

4. L'optimisation de portefeuille – Le portefeuille tangent

- En construisant la demi-droite la plus pentue passant par l'actif sans risque et un portefeuille efficient, on obtient une nouvelle frontière d'efficience
- Chaque portefeuille sur cette demi-droite est une combinaison de l'actif sans risque et du portefeuille tangent
- Il offre un ratio risque / rendement optimal par rapport aux autres portefeuilles
- → Nouvelle frontière efficiente

4. L'optimisation de portefeuille – Exercices

- Un investisseur est investi dans le portefeuille A
- Quel est le choix optimal s'il souhaite conserver le même niveau de risque et maximiser son rendement ?
- Quel est le choix optimal s'il souhaite conserver le même niveau de rentabilité et minimiser son risque ?
- A quel ratio correspond le coefficient de la nouvelle frontière efficiente ?

