```
In [13]:
```

import pandas as pd

In [14]:

from pandas import DataFrame

In [15]:

import numpy as np

In [16]:

import seaborn as sns

In [17]:

import matplotlib.pyplot as plt

%matplotlib inline

In [18]:

IrisDF =pd.read_csv("iris-data.csv")

In [19]:

IrisDF.head()

Out[19]:

	sepal-length	sepal-width	petal-length	petal-width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

In [20]:

IrisDF.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	sepal-length	150 non-null	float64
1	sepal-width	150 non-null	float64
2	petal-length	150 non-null	float64
3	petal-width	150 non-null	float64
4	class	150 non-null	object
	65		

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

In [21]:

IrisDF

Out[21]:

	sepal-length	sepal-width	petal-length	petal-width	class
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa
145	6.7	3.0	5.2	2.3	Iris-virginica
146	6.3	2.5	5.0	1.9	Iris-virginica
147	6.5	3.0	5.2	2.0	Iris-virginica
148	6.2	3.4	5.4	2.3	Iris-virginica
149	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 5 columns

In [22]:

IrisDF.describe()

Out[22]:

	sepal-length	sepal-width	petal-length	petal-width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

In [23]:

IrisDF.columns

Out[23]:

Index(['sepal-length', 'sepal-width', 'petal-length', ' petal-width', 'cla
ss'], dtype='object')

In [27]:

```
x=IrisDF.drop(columns=["class"],axis=1)
x
```

Out[27]:

	sepal-length	sepal-width	petal-length	petal-width
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2
145	6.7	3.0	5.2	2.3
146	6.3	2.5	5.0	1.9
147	6.5	3.0	5.2	2.0
148	6.2	3.4	5.4	2.3
149	5.9	3.0	5.1	1.8

150 rows × 4 columns

In [28]:

sns.pairplot(IrisDF)

C:\Users\DIVYA\AppData\Local\Programs\Python\Python39\lib\site-packages\se
aborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Out[28]:

<seaborn.axisgrid.PairGrid at 0x1e5ec307790>

In [29]:

```
sns.heatmap(x.corr(),annot=True)
```

Out[29]:

<Axes: >

In [55]:

```
X=IrisDF[['sepal-length', 'sepal-width', ' petal-width']]
y=IrisDF['petal-length']
```

In [56]:

from sklearn.model_selection import train_test_split

In [57]:

```
X_train, X_test, y_train, y_test = train_test_split(
... X, y, test_size=0.40, random_state=101)
```

In [58]:

from sklearn.linear_model import LinearRegression

In [59]:

```
lm = LinearRegression()
```

```
In [60]:
```

```
lm.fit (X_train, y_train)
```

Out[60]:

```
LinearRegression
LinearRegression()
```

In [61]:

```
coeff_df = pd.DataFrame (lm.coef_, X.columns, columns=['Coefficient'])
```

In [62]:

```
coeff_df
```

Out[62]:

Coefficient

 sepal-length
 0.712393

 sepal-width
 -0.654431

 petal-width
 1.461103

In [63]:

```
predictions = lm.predict (X_test)
```

In [64]:

plt.scatter (y_test, predictions)

Out[64]:

<matplotlib.collections.PathCollection at 0x1e5f0aab9a0>

In [65]:

sns.distplot((y_test-predictions),bins=50);

C:\Users\DIVYA\AppData\Local\Temp\ipykernel_8336\1326397652.py:1: UserWarn
ing:

`distplot` is a deprecated function and will be removed in seaborn v0.14.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histogram s).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751 (https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751)

sns.distplot((y_test-predictions),bins=50);

In []: