Design and Analysis of Algorithms

L44: LC Branch and Bound 0-1 Knapsack Problem

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - Sec <u>8.2</u>
- Text book 1: Levitin
 - -Sec 12.1, **12.2**
- R1: Introduction to Algorithms
 - Cormen et al.
- Youtube link for lecture recording
 - https://www.youtube.com/watch?v=j556E7Lgvbl
- Youtube (other)
 - https://www.youtube.com/watch?v=yVId-b_NeK8

BB Search: State Space Tree

```
Algo BBSearch (node t) // search tree with root at t.
if t is an answer node
   output t and return
E←t // make t an E-node
Initialize the list \bot of live nodes to empty list.
do
   for each child \times of \to
      if x is an answer node
         output the path from x to E and <u>return</u>
      Add(x) to list L of live nodes
      parent(x)←E
   if \bot is empty // there are no more live nodes
      output "No answer nodes" and return
   E←Next (L) // take the next live node from to search
while True
```

BB Search: State Space Tree

- Three possible implementation of search space
 - Depends upon how the list L is implemented
 - and how the Next(L) is taken out
- L is Queue i.e. FIFO (First In First Out)
 - E-nodes are removed in the order they are added
 - Also called BFS (Breadth First search)
- L is Stack i.e. LIFO (Last in First Out)
 - E-nodes are removed in the reverse order it is added
 - Also called D-search (Depth First search)
- L is Heap (can be min or max heap)
 - E-nodes are removed as min (or max) value
 - Called Least Cost (LC) Search

0-1 Knapsack Problem

- Knapsack problem:
 - Given n items of known weights $w_1, ..., w_n$, and
 - Values $v_1, ..., v_n$ and knapsack capacity m
 - Find the most valuable subset of items that fit into the knapsack.
 - i.e.maximize the value of knapsack
 - An item has to be included in full (0-1 knapsack problem)
 - Note: All the weights w_{i} 's and knapsack capacity m are integers, but values v_{i} 's can be real numbers.
- 0−1 knapsack is a maximization problem
 - Branch and Bound solves minimization problem.
 - So convert knapsack to minimization problem

0-1 Knapsack Problem

- 0-1 Knapsack problem (maximization problem)
 - maximize $\Sigma_{1 \leq i \leq n}$ $\forall_i x_i$,
 - subject to $\Sigma_{1 \leq i \leq n} w_i x_i \leq m$
 - x_i is 0 or 1, and $1 \le i \le n$
- Problems of TSP and Job Assignment were minimization problem solved using Branch-n-Bound
- Convert knapsack maximization to minimization minimize $-\Sigma_{1 \le i \le n} \ v_i x_i$, (call it cost)
 - -it maximizes $\Sigma_{1 \leq i \leq n} \ v_i x_i$ (values)
 - subject to $\Sigma_{1 \le i \le n}$ $w_i x_i \le m$ (knapsack constraint)
- State space tree formation
 - Using fixed tuple size, one variable for each weight
 - Using variable tuple size, uses the index of weight

0-1 Knapsack Problem

- State space tree formation
 - Using fixed tuple size, one variable for each weight
 - Each variable has two values 0 or 1
 - Thus, Each node has two children
 - Using variable tuple size, uses the index of weight
 - Can be easily built from fixed tuple size case
- Implementation: define two terms:
 - cost per node (what can be reached theoreically)
 - upper bound per node (what can be achieved)
 - Define $c(x) = -\sum_{1 \le i \le n} v_i x_i$ for each answer node x
 - $C(x) = \infty$ for infeasible leaf nodes
 - For non-leaf nodes, define c(x) recursively as
 - min{c(Lchild(x), Rchild(x))
 - Thus, computation recursively becomes exponential

0-1 Knapsack Implementation

- Define $\hat{c}(x)$: a heuristic value for c(x)
 - cost till the first node which doesn't fit the knapsack
 - Thus, include its partial value to max the knapsack
- Define u(x): an upper bound for node x.
 - the cost till the first node which doesn't fit the knapsack, but without including the partial value.
- Thus, two functions follows the constraints for node x $\hat{c}(x) \leq c(x) \leq u(x)$
- Maintain single upper variable.
 - This indicates the best value i.e. minimum cost solution achieved so far.
- Thus, for any node when ĉ(x) >upper
 - Discard that path (i.e. kill that node), prune the tree

Example: LCBB 0-1 Knapsack

- Consider knapsack instance with n=4, m=15, and
 - values (v_1, v_2, v_3, v_4) =(10, 10, 12, 18), and
 - weights $(w_1, w_2, w_3, w_4)=(2, 4, 6, 9)$
- Using fixed tuple implementation, trace LCBB
 - Fixed implementation implies 4 tuple varaibles
 - x_1 , x_2 , x_3 , x_4 and each can take value 0 or 1.
- We need to compute following values for each node $\hat{c}(x)$, u(x), upper
- Consider root node i.e. start node at level 1.
 - Least Cost (LC) approach
 - Among all live nodes, choose the node with lowest cost to explore (i.e. it becomes E-node)
 - List L of live nodes is implemented as Heap

	1	2	3	4
V	10	10	12	18
W	2	4	6	9

n=4, m=15

• start node 1:

```
\hat{c}(x): w_1, w_2, \text{ and } w_3 \text{ contributes fully, } w_4 \text{ exceeds knapsack} \hat{c}=-(10+10+12+((15-12)/9)*18))=-38 u(x): w_1, w_2, \text{ and } w_3 \text{ contributes fully, } w_4 \text{ exceeds knapsack} u=-(10+10+12+0)=-32] upper=-32
```

- This node is live node (ĉ≤upper) and only node so far,
- Explore this node, two children
 - $x_1=1$ (include w_1), $x_1=0$ (exclude w_1)

n=4, m=15

- node $2: x_1=1$
 - $\hat{c}(x): w_1, w_2, \text{ and } w_3 \text{ contributes fully, } w_4 \text{ exceeds knapsack}$ $\hat{c}=-(10+10+12+((15-12)/9)*18))=-38$
 - u (x): w_1 , w_2 , and w_3 contributes fully, w_4 exceeds knapsack u=-(10+10+12+0)=-32
 - $\hat{c}(x)$, u(x), upper don't change
- node $3: x_1=0$ (partial weight of w_4 becomes 5)

$$\hat{c}=-(0+10+12+((15-10)/9)*18))=-32$$

 $u=-(0+10+12+0)=-22$
upper remains -32 (doesn't change)

• Alives nodes are: 2 and 3 ($\hat{c}(x) \leq upper$)

n=4, m=15

- Least Cost (-38) among live nodes is for node 2.
- Explore node 2.
 - $x_2=1$ (node 4), and $x_2=0$ (node 5)
- Node 4:

$$\hat{c}=-(10+10+12+((15-12)/9)*18))=-38$$

 $u=-(10+10+12+0)=-32$

upper remains same and doesn't change

n=4, m=15

Node 5 (partial weight of W4 changes)

$$\hat{c}=-(10+0+12+((15-8)/9)*18))=-36$$

 $u=-(10+0+12+0)=-22$

upper remains same and doesn't change

- Lives nodes now: 3, 4, 5 (c(x) ≤upper)
- Least Cost node is 4. Explore it
 - $x_3=1$ (node 6), and $x_3=0$ (node 7)

$$n=4, m=15$$

Node 6 $(x_3=1)$

$$\hat{c} = -(10+10+12+((15-12)/9)*18)) = -38$$

$$u=-(10+10+12+0)=-32$$

upper remains same and doesn't change

n=4, m=15

Node 7
$$(x_3=0)$$

 $\hat{c} = -38$ u = -32

$$\hat{c}=-(10+10+0+18))=-38$$

$$u=-(10+10+0+18)=-38$$

upper becomes less and hence changes to -38

n=4, m=15

start

- Live node are 6 and 7. (\hat{c} (6) ≤ -38 , \hat{c} (7) ≤ -38)
- Nodes 3 and 5 are killed, $\hat{c}(3)$ >upper, $\hat{c}(5)$ >upper
- Least Cost live node: can be taken either 6 or 7, both are equal
- Take 6 as least cost node.

start

n=4, m=15

Nodes 6

 $x_4=1$ makes knapsack weight 21, can't consider $x_4=0$ decreases \hat{c} to -32Thus, kill the node 6.

• Explore node 7 $x_4=1$ (node 8),

 $x_4 = 0$ (node 9)

8

start

$$n=4, m=15$$

• **Node** 8

$$\hat{C} = -(10+10+0+18) = -38$$

 $u = -(10+10+0+18) = -38$
upper does not change

• **Node** 9

$$\hat{c}=-(10+10+0+0)=-20$$

 $u=-(10+10+0+0)=-20$
upper does not change

 $\hat{c} = -38$ u = -38

n=4, m=15

- Live Nodes 8, 9
- Reached the leaf nodes
- Least Cost: node 8
- Thus, answer node is 8
 - Knapsack value=38
 - Tuple=(1,1,0,1)

0-1 Knapsack Implementation

- State space tree is a binary tree with depth n+1
 - Define two functions Bound(), UBound() as shown in next slide,
 - Bound () is used to compute cost
 - Bound () is used to compute upper value

```
u(x)=UBound(-\Sigma_{1\leq i < j}V_{i}X_{i}, \Sigma_{1\leq i < j}W_{i}X_{i}, j-1, m)
c(x)\geq Bound(\Sigma_{1\leq i < j}V_{i}X_{i}, \Sigma_{1\leq i < j}W_{i}X_{i}, j-1)
```

Bound()

```
Proc Bound(float cv, float cw, int k)
// provides an upper bound (partial knapsack) on best
solution obtainable (by expanding any node \mathbb{Z} at level k+1)
// includes the partial value of node which exceeds knapsack
//cp: current total value, cw: current total weight
// k is the index of last removed item of knapsack
  float b=cp; float c=cw;
  .....B2
      C = C + M^{\dagger}
      else
      return b
```

UBound()

```
Proc UBound (float cv, float cw, int k, float m)
// provides an upper bound (0-1 knapsack) on best solution
obtainable by expanding any node \mathbb{Z} at level k+1
// does not include the cost last node that exceeds knapsack
//cp: current total value, cw: current total weight
// k is the index of last removed item of knapsack
  float b=cp;
  float C=CW;
  .....U5
  return b
```

Summary:

- Least Cost Branch and Bound for
 - − 0 − 1 Knapsack problem
- Next to explore
 - FIFO Branch and Bound