Project 5 - Quantifying the Maximum Expected Loss

Aliaksandr Panko

February 6, 2018

Contents

1	Task 1	1
	1.1 VaR	1
	1.2 Implementation	2
2	Task 2	3
	2.1 GARCH model	3

1 Task 1

1.1 VaR

Value-at-Risk is a measure of risk of loss for a particular asset or portfolio over a given time period. VaR requires 3 components:

- 1. Timeframe
- 2. Confidence level
- 3. Loss amount

VaR answers the question: "What is the maximum amount(or percentage) that can be expected to be lost with probability of confidence level during the specified period of time.

There are 3 calculation methods:

- 1. Historical
- 2. Variance method
- 3. Monte Carlo method

1.2 Implementation

Quantify the Maximum Expected Loss for the next day using a Value-at-Risk (VaR) model. We are given:

 \bullet Confidence level: 95%

• Volatility: 2.5%

• Current stock price: \$126

We need to calculate the VaR. Our assumptions:

- The returns from the asset/portfolio is normally distributed.
- The returns are assumed to be serially independent so no prior return should influence the current return.

VaR can be calculated using next formula:

 $Var = Z_score * Standard_deviation * Investment_Amount$

Standard Normal Distribution

The results are represented in the table below:

Calculate VaR:			
Confidence level:	95.00%		
Volatility:	2.50%		
Current stock price:	\$126		
Number of stocks:	100,000		
Total Amount:	\$12,600,000		
Z score:	-1.64485		
VaR:	\$518,128.89		

In Python I use the same formula which, obviously, gives us the same results.

2 Task 2

To calculate VaR with forecasted volatility the next algorithm is used:

- 1. Calculate daily returns
- 2. Implement GARCH(1,1) model
- 3. Forecast volatility using the model
- 4. Calculate VaR using the calculated volatility

2.1 GARCH model

- The GARCH model is an extension of the autoregressive conditional heteroscedasticity (ARCH) model developed by Engle in 1982. The acronym "GARCH" means "generalized autoregressive condition heteroscedasticity" model.
- The model helps to estimate volatility in financial markets.
- GARCH models are used by financial professionals in several areas including trading, investing, hedging and dealing.
- In general, if the process depends on the past p days' squared returns and the past q days' variances, the process is called a GARCH(p,q) process

• The model is implemented in python using **arch_model** function from **arch** package

The results are represented below:

```
VaR task 1: 518128.892490
Iteration:
                     Func. Count:
                                             Neg. LLF: 379.973658183
                1,
                                        6,
Iteration:
                     Func. Count:
                                             Neg. LLF: 379.031856167
                2,
                                       19,
Iteration:
                     Func. Count:
                                       28,
                                             Neg. LLF: 378.913600221
                3,
Iteration:
                     Func. Count:
                                             Neg. LLF: 378.236634018
                4,
                                       35,
Iteration:
                     Func. Count:
                                             Neg. LLF: 378.048846648
                5,
                                       42,
Iteration:
                     Func. Count:
                                             Neg. LLF: 377.644817579
                6,
                                       49,
Iteration:
                     Func. Count:
                                             Neg. LLF: 377.258639413
                7,
                                       55,
Iteration:
                     Func. Count:
                                             Neg. LLF: 377.165451711
                8,
                                       61,
Iteration:
                     Func. Count:
                                             Neg. LLF: 377.15989473
                9,
                                       68,
Iteration:
                     Func. Count:
                                             Neg. LLF: 377.157092984
               10,
                                       74,
Iteration:
                                             Neg. LLF: 377.1570368
                     Func. Count:
               11,
                                       80.
Optimization terminated successfully.
                                           (Exit mode 0)
            Current function value: 377.157036804
            Iterations: 11
            Function evaluations: 80
            Gradient evaluations: 11
```