Date:16-07-2019

Entrance Challenge: When Will the Sakura Bloom?

0. Basics of the Sakura Bloom-cycle (5pts total)

In a year, sakura trees basically go through 4 phases: energy production, hibernation, growth, and of course flowering. These phases roughly follow the seasons, but not exactly.

Production phase: Initial development of the buds (Summer-Fall)

Hibernation phase: Bud growth stops while the tree goes into hibernation (Late Fall-Winter)

Growth phase: Buds once again continue to grow when the tree comes out of its winter hibernation (Late Winter-Spring) Flowering phase: The buds finally bloom in spring (as climate conditions allow), once they have been able to fully develop. (Spring)

Each year, near the end of winter but before the trees finally bloom, the hibernation period ends. The sakura that rested through the winter once gain become metabolically active, and the buds continue to grow (though we may not immediately notice when this happens.) However, the cycle is not simply clockwork- for example, in places where the temperature is above 20°C year-round, the trees are unable to hibernate sufficiently, and thus cannot blossom.

In this challenge, we have outlined the basic mechanism by which the sakura reach their eventual bloom-date. We consider building a bloom-date prediction model for the case of sakura in Tokyo, with the data split as follows:

Test years: 1966, 1971, 1985, 1994, and 2008

Training years: 1961 to 2017 (Excluding the test years)

You should fit the model to the data from the training years, then use the model to predict the bloom-date for each of the test years. The 3 models to be applied to the data are described below.

Problem 0-1: (5pts)

Acquire data of sakura blooming date (桜の開花日) for Tokyo from 1961 to 2018 using the Japanese Meteorological Agency website (気象庁).

```
In [35]: # http://www.data.jma.go.jp/sakura/data/sakura003_06.html
    import pandas as pd
    data= pd.read_csv('sakura.csv')
    data.head()
```

Out[35]:

	serial	year	month	day		sea pressure									su hour
0	0	1961	1	1	1011.7	1012.4	0.0	0.0	0.0	2.1	7.9	-3.9	41	15	8.
1	1	1961	1	2	1020.2	1021.0	0.0	0.0	0.0	1.5	9.2	-3.3	51	26	8.
2	2	1961	1	3	1021.3	1022.1	0.1	0.8	0.0	2.5	7.3	-2.4	58	37	5.
3	3	1961	1	4	1004.6	1005.3	20.2	13.9	3.2	4.7	11.5	0.6	60	38	1.
4	4	1961	1	5	1016.3	1017.0	0.0	0.0	0.0	3.8	7.7	1.4	33	19	8.

1. Prediction using the "600 Degree Rule" (15pts total)

For a rough approximaton of the bloom-date, we start with a simple "rule-based" prediction model, called the "600 Degree Rule". The rule consists of logging the maximum temperature of each day, starting on February 1st, and sum these temperatures until the sum surpasses 600° C. The day that this happens is the predicted bloom-date. This 600° C threshold is used to easily predict bloom-date in various locations varies by location. However, for more precise predictions, it should be set differently for every location. In this challenge, we verify the accuracy of the "600 Degree Rule" in the case of Tokyo.

Problem 1-1: (5pts)

From here-on, we refer to the bloom-date in a given year j as BD_j . For each year in the training data, calculate the accumulated daily maximum temperature from February 1st to the actual bloom-date BD_j , and plot this accumulated value over the training period. Then, average this accumulated value as T_{mean} , and verify whether we should use 600° C as a rule for Tokyo.

```
In [36]: years = list(range(1961, 2018))
        test years = [1966, 1971, 1985, 1994, 2008]
        train = data.loc[~data['year'].isin(['1966', '1971', '1985', '1994','2008'])].reset
         index(drop=True)
        ndex (drop=True)
        train years=train['year'].unique()
        print("Train years :")
        print(*train_years, sep=", ")
        print("Test years :")
        print(*test years, sep=", ")
        Train years :
        1961, 1962, 1963, 1964, 1965, 1967, 1968, 1969, 1970, 1972, 1973, 1974, 1975, 19
        76, 1977, 1978, 1979, 1980, 1981, 1982, 1983, 1984, 1986, 1987, 1988, 1989, 199
        0, 1991, 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
        2005, 2006, 2007, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017
        Test years:
        1966, 1971, 1985, 1994, 2008
```

Training and testing years are separated first in the above cell. Three functions are defined in the following sections. First one is 'Accumulated_temperature', which takes training years and counts total max temperature needed from end of hibernation to first bloom date for every years. It returns average total temperature needed for sakura blooming and also individual totals of each training years.

```
In [37]: import numpy as np
    def Accumulated_temperature(t_years):
        sums = []
        for year in t_years:
            temps = data[data['year'] == year]
            temps.reset_index(drop = True, inplace = True)
        sam = 0
        for i in range(31, temps[temps.bloom == 1].index[0] + 1):
            sam += temps['max temp'][i]
        sums.append(sam)
    return np.sum(sums)/len(sums),sums
```

Second function is called 'Pred_T_mean_helper', which is a helper for predicting bloom date in a year using T_mean. Third function is called 'Pred_T_mean' cause I call this function to calculate the testing years' bloom date according to rules explained above. It takes our approximated or calculated T_mean and returns lists of actual and predicted bloom date.

```
In [38]: def Pred T mean helper(frame, T mean = 600):
             sum = 0
             for i in range(31, len(frame)):
                 sum += frame['max temp'][i]
                 if sum >= T_mean: break
             return i
In [39]: def Pred T mean(T mean):
             prediction = []
             actual = []
             for year in test_years:
                 temps = data[data['year'] == year]
                 temps.reset index(drop = True, inplace = True)
                 i = Pred T mean helper(temps, T_mean = T_mean)
                 prediction.append(i+1)
                 actual.append(temps[temps.bloom == 1].index[0] + 1)
             return actual, prediction
```

```
In [40]: Bloom_dates=[]
def return_bloom_dates():
    for y in years:
        temps = data[data['year'] == y]
        temps.reset_index(drop = True, inplace = True)
        Bloom_dates.append(temps[temps.bloom == 1].index[0] + 1)
return_bloom_dates()

print(Bloom_dates)

[91, 91, 91, 93, 92, 79, 89, 89, 96, 97, 89, 88, 90, 92, 88, 82, 81, 90, 82, 91, 85, 82, 90, 102, 93, 93, 82, 93, 79, 79, 89, 84, 83, 90, 90, 91, 80, 86, 83, 90, 82, 75, 86, 78, 90, 80, 79, 82, 80, 81, 87, 91, 75, 84, 82, 81, 80]
```

Now, I take T_mean, approximated to 600° C and predicted bloom dates. These predictions are evaluated using coefficient of determination (R^2)

plt.show()

print('r2 score:\t',score_600)

We can see the result is not so promising. To understand why, we have to analyze whether our approximation was correct or not. We can consider the training years to find out T mean for Needed for that region (Tokyo).

```
In [43]: T_mean, sums = Accumulated_temperature(train_years)

plt.figure(figsize=(10,5))
plt.stem(train_years,sums)
plt.plot(train_years,T_mean*np.ones(len(train_years)), color = 'g', label = 'T_mean')
plt.plot(train_years,600*np.ones(len(train_years)), color = 'r', label = '600 degre e')
plt.xlabel('Years')
plt.ylabel('Total maximum temperature from end of hibernation to bloom date')
plt.legend()
plt.show()

print('Average total maximum temperature needed:\t',T_mean)
```


Average total maximum temperature needed:

638.3557692307693

It is clear from the graph that applying 600 degree rule is a fairly good approximation but not the best. Standard deviation will be quite low if we use T_mean instead (638.356° C), which is measured from the training years. So, we should not use 600° C as a rule for tokyo. Instead we should use 638. This will give less error.

Problem 1-2: (10pts)

Use the average accumulated value T_{mean} calculated in 1-1 to predict BD_j for each test year, and show the error from the actual BD_j . Compare to the prediction results when 600°C is used a threshold value, and evaluate both models using the coefficient of determination (R^2 score).

```
In [44]: actual, prediction_T = Pred_T_mean(T_mean)
score_T = r2_score(actual, prediction_T)
```

Bloom date of test years are predicted here again using new T_{mean} obtained from training years. R^2 score is also calculated. The results are compared in the following section.

```
In [45]: plt.plot(test_years, actual, '--y',label='Actual')
    plt.plot(test_years, prediction_600,'--g', label='600 degree')
    plt.plot(test_years, prediction_T,'--r', label='T_mean')
    plt.legend()
    plt.xlabel('Test years')
    plt.ylabel('Bloom day of the year')
    plt.show()
    print('r2_score:\n')
    print('for 600 degree\t',score_600)
    print('for T_mean\t',score_T)
```


0.8323615160349854

for T mean

2. Linear Regression Model: Transform to Standard Temperature (30pts total)

The year to year fluctuation of the bloom-date depends heavily upon the actual temperature fluctuation (not just the accumulated maximum). In order to get to a more physiologically realistic metric, Sugihara et al. (1986) considered the actual effect of temperature on biochemical activity. They introduced a method of "standardizing" the temperatures measured, according to the fluctuation relative to a standard temperature.

In order to make such a standardization, we apply two major assumptions, outlined below.

1) The Arrhenius equation:

The first assumption, also known in thermodynamics as the "Arrhenius equation", deals with chemical reaction rates and can be written as follows:

$$k = A \exp\left(-rac{E_a}{RT}
ight)$$

Basically, it says that each reaction has an activation energy, E_a and a pre-exponential factor A. Knowing these values for the particular equation, we can find the rate constant k if we know the temperature, T, and applying the universal gas constant, $R = 8.314 [\mathrm{J/K \cdot mol}]$.

2) Constant output at constant temperature:

The second assumption, is simply that the output of a reaction is a simple product of the duration and the rate constant k, and that product is constant even at different temperatures.

$$tk = t'k' = t''k'' = \cdots = \text{const}$$

Making the assumptions above, we can determine a "standard reaction time", t_s required for the bloom-date to occur. We can do so in the following way:

$$t_s = \exp\Bigl(rac{E_a(T_{i,j}-T_s)}{RT_{i,j}T_s}\Bigr)$$

We define $T_{i,j}$ as the daily average temperature, and use a standard temperature of $T_s=17^{\circ}\mathrm{C}$. For a given year j, with the last day of the hibernation phase set as D_j , we define the number of "transformed temperature days", DTS_J , needed to reach from D_j to the bloom-date BD_j with the following equation:

$$DTS_j = \sum_{i=D_j}^{BD_j} t_s = \sum_{i=D_j}^{BD_j} \exp\Bigl(rac{E_a(T_{i,j}-T_s)}{RT_{i,j}T_s}\Bigr)$$

From that equation, we can find the average DTS for x number of years (DTS_{mean}) as follows:

$$egin{align} DTS_{ ext{mean}} &= rac{1}{x} \sum_{j}^{x} DTS_{j} \ &= rac{1}{x} \sum_{j}^{x} \sum_{i=D_{i}}^{BD_{j}} \exp\Bigl(rac{E_{a}(T_{i,j} - T_{s})}{RT_{i,j}T_{s}}\Bigr) \end{aligned}$$

In this exercise, we assume that DTS_{mean} and E_a are constant values, and we use the data from the training years to fit these 2 constants. The exercise consists of 4 steps:

- 1. Calculate the last day of the hibernation phase D_i for every year j.
- 2. For every year j, calculate DTS_j as a function of E_a , then calculate the average (over training years) DTS_{mean} also as a function of E_a .
- 3. For every year j, and for every value of E_a , accumulate t_s from D_j and predict the bloom date $BD_j^{\rm pred}$ as the day the accumulated value surpasses DTS_{mean} . Calculate the bloom date prediction error as a function of E_a , and find the optimal E_a value that minimizes that error.
- 4. Use the previously calculated values of D_j , DTS_{mean} , and E_a to predict bloom-day on years from the test set.

Problem 2-1: (5pts)

According to Hayashi et al. (2012), the day on which the sakura will awaken from their hibernation phase, D_j , for a given location, can be approximated by the following equation:

$$D_i = 136.75 - 7.689\phi + 0.133\phi^2 - 1.307 \ln L + 0.144T_F + 0.285T_F^2$$

where ϕ is the latitude [°N], L is the distance from the nearest coastline [km], and T_F is that location's average temperature [°C] over the first 3 months of a given year. In the case of Tokyo, $\phi = 35^{\circ}40'$ and $L = 4 \mathrm{km}$.

Find the D_j value for every year j from 1961 to 2017 (including the test years), and plot this value on a graph.

(In Problem 1, we had assumed a D_i of February 1st.)

In the cell above, two small functions are defined which will be called frequently. 'frame_handler' creates a sub dataframe of a specific year from complete dataset and 'cal' standard reaction time' does exactly the name suggests.

```
In [49]: list_end_hiber_date = []
print(' End of hibernation by Years ')
for year in years:
    frame = frame_handler(year)
    phi = 35.667
    L = 4

    no_of_days = frame[frame.month==3].index[-1] +1
    Tf = np.sum(frame['avg temp'][0:no_of_days])/no_of_days

    Dj = 136.75 - 7.689*phi + 0.133*(phi**2) - 1.307*np.log(L) + 0.144*Tf + 0.285*Tf**2
    list_end_hiber_date.append(Dj)
    print(' Year ', year,' days taken ', int(round(Dj)))
```

9 of 31

End of	hiber	natio	n by Ye	ars
Year	1961	days	taken	39
Year	1962	days	taken	42
Year	1963	days	taken	38
Year	1964	days	taken	40
Year	1965	days	taken	39
Year	1966	days	taken	45
Year	1967	days	taken	42
Year	1968	days	taken	44
Year	1969	days	taken	43
Year	1970	days	taken	39
Year	1971	days	taken	43
Year	1972	days	taken	46
Year	1973	days	taken	45
Year	1974	days	taken	40
Year	1975	days	taken	41
Year	1976	days	taken	45
Year	1977	days	taken	41
Year	1978	days	taken	42
Year	1979	days	taken	51
Year	1980	days	taken	42
Year	1981	days	taken	42
Year	1982	days	taken	45
Year	1983	days	taken	45
Year	1984	days	taken	36
Year	1985	days	taken	41
Year	1986	days	taken	39
Year	1987	days	taken	46
Year	1988	days	taken	45
Year	1989	days	taken	51
Year	1990	days	taken	48
Year	1991	days	taken	47
Year	1992	days	taken	48
Year	1993	days	taken	47
Year	1994	days	taken	44
Year	1995	days	taken	46
Year	1996	days	taken	45
Year	1997	days	taken	50
Year	1998	days	taken	47
Year	1999	days	taken	49
Year	2000	days	taken	48
Year	2001	days	taken	45
Year	2002	days	taken	56
Year	2003	days	taken	44
Year	2004	days	taken	50
Year	2005	days	taken	45
Year	2006	days	taken	46
Year	2007	days	taken	55
Year	2008	days	taken	47
Year	2009	days	taken	50
Year	2010	days	taken	47
Year	2011	days	taken	44
Year	2012	days	taken	42
Year	2013	days	taken	49
Year	2014	days	taken	47
Year	2015	days	taken	46
Year	2016	days	taken	48
Year	2017	days	taken	45

Here, D_j (End of hibernation) is calculated for each years given in our dataset and stored in a list (end_hiber_date). In previous method it was approximated that hibernation of Sakura tree ends in 1st of february. Now we are going to see the results and find out how accurate we were. This comparision is given in the below graph.

```
In [50]: plt.figure(figsize=(10,5))
    plt.plot(years, list_end_hiber_date)
    plt.plot(years,np.mean(list_end_hiber_date)*np.ones(len(years)), '--g', label = 'Dj
        _mean')
    plt.plot(years,32*np.ones(len(years)), color = 'r', label = '1st February')
    plt.legend()
    plt.xlabel('Years')
    plt.ylabel('No. of days needed to end hibernation period')
    plt.show()
    print('Dj_mean: ', np.mean(list_end_hiber_date))
    print('minimum days taken to reach end of hibernation: ',np.ceil(min(list_end_hiber_date)))
```


Dj_mean: 44.97215235455093 minimum days taken to reach end of hibernation: 36.0

We can see that hibernation period usually ends in middle of february. So, approximation of 1st february was not a good choice. Even the earliest hibernation end period is also 4 days after the approximated date.

Problem 2-2: (10pts)

Calcluate DTS_j for each year j in the training set for discrete values of E_a , varying from 5 to 40kcal ($E_a=5,6,7,\cdots,40\,\mathrm{kcal}$), and plot this DTS_j against E_a . Also calculate the average of DTS_j over the training period, and indicate it on the plot as DTS_{mean} . Pay attention to the units of **every parameter** ($T_{i,j},E_a,\ldots$) in the equation for t_s .

```
In [51]: Ea = list(range(5,40))
DTSj = {}
```

```
In [52]: for year in train_years:

Dj = int(round(list_end_hiber_date[years.index(year)]))
    frame = frame_handler(year)
    BDj = frame[(frame.year == year) & (frame.bloom == 1)].index[0]+1
    dtss = []
    for ea in Ea:
        sam = 0
        for i in range(Dj-1,BDj):
            sam += cal_standard_reaction_time(frame['avg temp'][i], ea)
        dtss.append(sam)
    DTSj['mean'] = [sum(DTSj[key][i] for key in DTSj.keys())/len(DTSj) for i in range(len(Ea))]
```

Transformed temperature days (DTS_j) is calculated here for every training years for different value of E_a . All DTS_j values of a single year are stored in a dictionary as a list. After calculating for all training years, mean DTS_j is also calculated for different value of E_a and stored in the dictionary as well. Next I have plotted the measured data for visual aid. The black dotted line is the mean over all years.

```
In [53]: plt.figure(figsize=(10,5))
    for year in train_years:
        plt.plot(Ea, DTSj[year], alpha=0.7)
    plt.plot(Ea, DTSj['mean'], '--b', label='DTS_mean')
    plt.xlabel('Ea')
    plt.ylabel('DTSj')
    plt.legend()
    plt.show()
```


Problem 2-3: (11pts)

Using the same E_a values and calculated DTS_{mean} from 2-2, predict the bloom date BD_j for each of the training years. Find the mean squared error relative to the actual BD and plot it against E_a . Find the optimal E_a^* that minimizes that error on the training data.

```
In [54]: mse = []
         list_pred_bloom=[]
In [55]: for i in range(len(Ea)):
             threshold = DTSj['mean'][i]
             err sum = 0
             for year in train years:
                  Dj = int(round(list_end_hiber_date[years.index(year)]))
                  BDp = Dj - 1
                  frame = frame handler(year)
                  BDa = frame[(frame.year == year) & (frame.bloom == 1)].index[0]+1
                  while(dts<threshold):</pre>
                      ts = cal standard_reaction_time(frame['avg temp'][BDp], Ea[i])
                      BDp += 1
                  err sum += (BDp - BDa) **2
             mse.append(err sum/len(train years))
         DTSj['mse'] = mse
```

This is a constrained optimization. The constrain is $5 \le E_a \ge 40$ or different value of E_a bloom date of training years is predicted here. DTS_{mean} correspond to each value of E_a is used as threshold and hibernation end point is taken from 2-1. Mean squared error of actual and predicted date is calculated and stored in the dictionary as well mentioned above. We have to find an optimum value of E_a that has minimum error. In the following plot, this minimum error point is been highlighted.

Optimum value of Ea: 28
Target DTS_mean correspond to the value of Ea: 10.159650290382409

Problem 2-4: (4pts)

Using the D_j dates from problem 2-1, the average DTS_{mean} from 2-2, and the best-fit E_a^* from 2-3, predict the bloom-dates BD_j for the years in the test set. Determine the error between your predicted BD_j values and the actual values, and evaluate this model using the coefficient of determination (R^2 score).

```
In [57]: predicted using DTS= []
         Facts = []
         list Dj=[]
In [58]: print('Actual blooming d and predicted blooming days taken by DTS in each year')
         for year in test years:
             Dj = int(round(list end hiber date[years.index(year)]))
             BDp = Dj - 1
             list Dj.append(Dj)
             frame = frame handler(year)
             BDa = frame[(frame.year == year) & (frame.bloom == 1)].index[0]+1
             dt.s = 0
             while(dts<optimal DTS mean):</pre>
                 ts = cal standard reaction time(frame['avg temp'][BDp], Ea optimal)
                 dts += ts
                 BDp += 1
             predicted_using_DTS.append(BDp)
             Facts.append(BDa)
             monthp, datep=day_month_calculator(year, BDp)
             monthp=int(monthp)
             datep=int(datep)
             print('Year ', year,' Predicted days taken' ,BDp, 'month pred', monthp,' Date pred
         ', datep, ' Actual days taken ', BDa)
         Actual blooming d and predicted blooming days taken by DTS in each year
         Year 1966 Predicted days taken 79 month pred 3 Date pred 21 Actual days take
         n 79
         Year 1971 Predicted days taken 88 month pred 3 Date pred 30 Actual days take
         n 89
         Year 1985 Predicted days taken 91 month pred 4 Date pred 2 Actual days taken
         93
         Year 1994 Predicted days taken 91 month pred 4 Date pred 2 Actual days taken
         Year 2008 Predicted days taken 83 month pred 3 Date pred 24 Actual days take
         n 82
```

Here, I predicted bloom date for testing years using E_a^* and corresponding DTS_{mean} . Predictions are listed in 'prediction_DTS'. Then I calculate the R^2 score as well and compare with other methods.

```
In [59]: score_DTS = r2_score(Facts, predicted_using_DTS)

plt.plot(test_years, actual,'--h', label='Actual')
plt.plot(test_years, prediction_600,'--y', label='600 degree')
plt.plot(test_years, prediction_T,'--r', label='T_mean')
plt.plot(test_years, predicted_using_DTS,'--k',label='DTS')
plt.legend()
plt.xlabel('Test years')
plt.ylabel('Bloom day of the year')
plt.show()

print('r2_score:\n')
print('for 600 degree\t',score_600)
print('for T_mean\t',score_T)
print('for DTS_mean:\t', score_DTS)
```



```
for 600 degree 0.6793002915451896 for T_mean 0.8323615160349854 for DTS_mean: 0.9489795918367347
```

Problem 2-5: (extra 10pts)

r2 score:

Discuss any improvements you could make to the model outlined above. If you have a suggestion in particular, describe it. How much do you think the accuracy would be improved?

- 1. According to the mentioned model and datasets, there is an assumption that the average temperature of a single day is sustained throughout the day. This is not the case in real life as the temperature can flactuate even from hour to hour. So if the fluctuations of the temperature could be added, the accuracy and could possibly be improved.
- There are different species of cherry trees from the Prunus genus. Different species of trees might have different type if implecations to different changes of variables. We did not take that into account. If we can take those things into consideration, accuracy might be improved.
- 3. The dataset is too small and there are few features, we need to increase the data.
- 4. "Quantitative description of the effect of stratification on dormancy release of grape seeds in response to various temperatures and water contents" (WQ Wang -2009). These approach can be used since more popularity. This work should be considered. It uses humidity as consideration.
- 5. Hibernation and DTS should be calculated from each and every molicular activity in order to get accuary to day. This method is accurate upto week. (equation of Hayashi et al. (2012))
- 6. Humidity and precipitation are also very important factors for tree's growth but they are not linearly related. Proper interpretation of these factors can lead to better performance which I tried to implement in the following section.
- 7. Including D_j or DTS_j in the weather data and training an ANN can be another good approach (for example, take 0 for daily attribute before hibernation ends) which may improve the accuracy.

3. Predicting Bloom-date via Neural Network (30pts total)

Problem 3-1: (20pts)

Build a neural network and train it on the data from the training years. Use this model to predict the bloom-dates for each year in the test set. Evaluate the error between predicted dates and actual dates using the coefficient of determination (R2 score). Only use the weather data given in tokyo.csv and the sakura data acquired in problem 0-1.</br>

Building an Artificial Neural Network is not just designing a model and training it. There are some pre works which are required too. For this specific problem I divided these works into following categories.

- 1. Understanding the problem in ML language
- 2. Prediscussion on data manupulation
- 3. Data redefining and scaling
- 4. Network design
- 5. Evaluation & Prediction(Answer 3.1)

Understanding the problem in ML language

It is clear that we have neither missing nor categorical data to manage before using it for our model. The main challenge is we have input data of shape (365days, 11 features) concerning one bloom date. We need to convert this 2-dimensional input to a 1-dimensional feature vector. Since the previous methods are concentrated in the gradual change in the days of spring, hence a similar approach is taken here as well. So the target is to compress daily weather features into one attribute for the day. I took first 90 days of a year into consideration. There are two reason behind this choice. One, 90th day of a year is at the last of march. The bloom date is always around this date. The second reason is we have data upto 31 march, 2017 and there are some leap years. But first let's check the correlation of other feature with targe. Then check for missing value.

```
In [60]: data['bloom'].describe()
Out[60]: count 20544.000000
                0.002775
        mean
                   0.052602
        std
        min
                    0.000000
                    0.000000
        25%
                   0.000000
        50%
        75%
                   0.000000
                   1.000000
        Name: bloom, dtype: float64
```

Let's find out the correlation with other attributes.

```
In [61]: print("most important features relative to target")
          corr = data.corr()
          corr.sort values(["bloom"], ascending = False, inplace = True)
         print(corr.bloom)
         most important features relative to target
         bloom 1.000000
         day
                            0.028652
         sun hours 0.013993
sea pressure 0.010691
         local pressure 0.010214
                           0.001215
         vear
                           0.000359
         serial
         hr1 preci
                          -0.010680
         total preci
                           -0.010947
                           -0.012401
                           -0.023753
         max temp
         avg temp
                           -0.028042
         avg humid
                          -0.029792
         min humid
                          -0.029957
         \begin{array}{ll} \text{min temp} & -0.032791 \\ \text{month} & -0.050275 \end{array}
         Name: bloom, dtype: float64
```

```
In [62]: import seaborn as sns
         import matplotlib
         import matplotlib.pyplot as plt
         sns.set_style('darkgrid')
         f, ax = plt.subplots(figsize=(7, 7))
         sns.heatmap(corr, vmax=.9, square=True);
```


Check for missing data

```
In [63]: concated_null = (data.isnull().sum() / len(data)) * 100
         concated_null = concated_null.drop(concated_null[concated_null == 0].index).sort_va
         lues(ascending=False)[:20]
         missing_data = pd.DataFrame({'Missing Ratio':concated_null})
         missing_data
Out[63]:
```

Missing Ratio

So there is no missing data.

Prediscussion on data manupulation

```
In [64]: data_length = 90
```

Among the daily weather informations, I focused on the major factors of weather.

```
In [65]: features = ['total preci','avg humid','avg temp','max temp','sun hours']
```

Bud burst of a tree solely depends on the growth of the tree. If the tree is properly matured, flowering phase will occur. Growth can be measured by calculating energy absorbed by the tree or by calculating the amount of photosynthesis happened in cumulative days. Photosynthesis process largely depends on the climate factors; temperature, water, humidity, day length etc. These factors are discussed here briefly.

After long hibernation period, air temperature is the most important factor of all. Photosynthesis is mostly affected by its surrounding temperatures during daylight. Although the light dependent reactions of photosynthesis are not affected by changes in temperature, the light independent reactions of photosynthesis are dependent on temperature. The dependency can be visualized as,

Now, let's see where on graph our data is lying.

```
In [66]: max(data[(data['month'] == 1) | (data['month'] == 2) | (data['month'] == 3)]['max t
emp'])
Out[66]: 25.3
```

So, the temperatures of first three months of every year are within 25 °C which region of the graph has the relation like $y=x^2$ (polynomial). Therefore, I took square of temperatures as determination factor of photosynthesis. On the other hand, air temperature is not constant throughout the day.

Approximately taking 12 hours day time, temperature varies from morning till evening. Maximum temperature is got during sun hours. Before sun hours, there may be sunlight with low temperature and after sun hours, there are still some sunlight stays with high temperature. So the temperature can be approximated maximum during sun hours and average during (12-sun hours).

$$r = k*((T_m^2*SH) + T_a^2*(12-SH))$$

Here, r is rate of photosynthesis and k is a proportional constant.

Next, we have to look at humidity and precipitation factor togather. They are closely related to photosynthesis and very much dependent on each other, because both the terms indicate water. Explaining the whole idea will be a mammoth task but I can say few points for necessary realization.

- In low humidity, leaves stomata will be closed most of the time; decreases air absorption and hence photosynthesis.
- Moderate humidity is always good; increases photosynthesis.
- High humidity doesn't let the tree do transpiration; decreases mineral absorption from soil, hence decreases
 photosynthesis.

So, the relation between humidity and photosynthesis is quite like Gaussian distribution.

```
In [67]: x_values = np.linspace(-1, 1, 200)
    plt.plot(x_values,np.exp(-np.power(x_values - 0, 2.) / (2 * np.power(.2, 2.))))
    plt.title('Gaussian Distribution')
```

```
Out[67]: Text(0.5, 1.0, 'Gaussian Distribution')
```


If we try to interpret precipitation,

- When precipitation is low, it is definitely bad for photosynthesis but the effect can be minimized by high humidity.
- Moderate precipitation is good for photosynthesis like humidity.
- If precipitation is too high, it will decrease mineral concentration in soil water. Unless the humidity is low, it will decrease the rate of transpiration as well as photosynthesis.

Here, the effect of precipitation is similar to humidity. So, it can be approximated to Gaussian distribution as well.

Data redefining and scaling

The daily weather features are concentrated into one value by the following procedure as explained in the above section. Two different Gaussian distribution is taken since humidity ranges from 0 to 100 where precipitation have decimal values upto 83.0 (maximum precipitation for first three months of a year upto one decimal point).

These distributions are used to interpret humidity and precipitation. Along with temperature approximation these features can be expressed mathematically,

$$r = k*((T_m^2*SH) + T_a^2*(12-SH))*H_f*P_f$$

Now a model is necessary to fit this approximation.

```
In [70]: def projection to 1D(years):
             length = data length
             list processed data data = []
             labels = []
             for year in years:
                 frame = data[(data['year'] == year)]
                 frame.reset index(drop = True, inplace = True)
                 BD = (frame[frame.bloom == 1].index[0]+1).astype('float32')
                 labels.append(BD)
                 frame = frame.iloc[:length][features]
                 frame['avg humid']=[H_factor[i-1] for i in frame['avg humid']]
                 frame['total preci']=[P_factor[int(i*10)] for i in frame['total preci']]
                 frame = frame.values
                 frame = (((frame[:,2]+1)**2)*(12-frame[:,4]) +
                                                       ((frame[:,3]+1)**2)*frame[:,4])*frame
         [:,1]*frame[:,0]
                 processed data = frame.astype('float32')
                 list processed data data.append(processed data)
             list_processed_data_data = np.reshape(np.array(list processed data data),(len(y
         ears), length))
             labels = np.reshape(np.array(labels), (len(years),1))
             return list processed data data, labels
```

This function to project 2D attribute(365×11) to 1D or 365 iso/scaler value.

```
In [71]: train_x,train_y = projection_to_1D(train_years)
    test_x,test_y = projection_to_1D(test_years)

print(np.shape(train_x))
print(np.shape(train_y))
print(np.shape(test_x))
print(np.shape(test_y))

(52, 90)
(52, 1)
(5, 90)
(5, 1)
```

```
In [72]: from sklearn.preprocessing import MinMaxScaler

prep_y = MinMaxScaler()
prep_y.fit(train_y)

prep_x = MinMaxScaler()
prep_x.fit(train_x)

train_x = prep_x.transform(train_x)
test_x = prep_x.transform(test_x)

train_y = prep_y.transform(train_y)
test_y = prep_y.transform(test_y)
```

Network Design

```
In [73]: import tensorflow as tf
         sid = 25
         tf.set random seed(2)
         x = tf.placeholder("float", [None, data_length])
         y = tf.placeholder("float", [None, 1])
         weights = {
             'w1': tf.Variable(tf.random normal([data length, 8], mean=0, stddev=1/np.sqrt(d
         ata length), seed=sid)),
             'w2': tf.Variable(tf.random normal([8, 8], mean=0, stddev=1/np.sqrt(data lengt
             'w3': tf.Variable(tf.random normal([8, 8], mean=0, stddev=1/np.sqrt(data lengt
         h), seed=sid)),
             'w4': tf.Variable(tf.random normal([8, 8], mean=0, stddev=1/np.sqrt(data lengt
             'out': tf.Variable(tf.random normal([8, 1], mean=0, stddev=1/np.sqrt(data lengt
         h), seed=sid)),
         biases = {
             'b1': tf.Variable(tf.random normal([8], mean=0, stddev=1/np.sgrt(data length),
             'b2': tf.Variable(tf.random normal([8], mean=0, stddev=1/np.sqrt(data length),
         seed=sid)),
             'b3': tf.Variable(tf.random normal([8], mean=0, stddev=1/np.sqrt(data length),s
         eed=sid)),
             'b4': tf.Variable(tf.random normal([8], mean=0, stddev=1/np.sqrt(data length),s
         eed=sid)),
             'out': tf.Variable(tf.random normal([1], mean=0, stddev=1/np.sqrt(data length),
         seed=sid)),
         }
```

WARNING:tensorflow:From C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\py thon\framework\op_def_library.py:263: colocate_with (from tensorflow.python.fram ework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer.

An artificial neural network is designed using tensorflow low level api. In the above cell input/output placeholders and weights, biases variables are declared. Variables are defined for random normal initialization with zero mean. Both graph level and operation level seed is used for result reproducibility. Then the network is also defined in the next cell.

```
In [74]: def neural net(x):
             #hidden layer 1
             layer 1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])
             layer 1 = tf.nn.relu(layer 1)
              #hideen layer 2
             layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
             layer 2 = tf.nn.relu(layer 2)
              #hideen layer 3
             layer 3 = tf.add(tf.matmul(layer 2, weights['w3']), biases['b3'])
             layer 3 = tf.nn.relu(layer 3)
              #hideen layer 4
             layer_4 = tf.add(tf.matmul(layer_3, weights['w4']), biases['b4'])
             layer 4 = tf.nn.relu(layer 4)
              # output layer
             out layer = tf.matmul(layer 4, weights['out']) + biases['out']
             return (out_layer)
         y \text{ out = neural net}(x)
In [75]: loss_op=tf.losses.mean_squared_error(y,y_out)
         optimizer = tf.train.AdamOptimizer(learning rate=0.001,
                                             beta1=0.9,
                                             beta2=0.99)
         train model = optimizer.minimize(loss op)
         init = tf.global variables initializer()
         WARNING:tensorflow:From C:\ProgramData\Anaconda3\lib\site-packages\tensorflow\py
         thon\ops\losses\losses impl.py:667: to float (from tensorflow.python.ops.math op
         s) is deprecated and will be removed in a future version.
```

Use tf.cast instead.

Finally a session is run for 1000 epochs and test results are taken from the point of optimum loss (min_loss).

Instructions for updating:

```
In [76]: min_loss=1
    epoch=1000

tlos = []
    vlos = []
```

```
In [77]: with tf.Session() as sess:
              sess.run(init)
              for i in range(0,epoch):
                  sess.run(train_model,feed_dict={x:train_x,y:train_y})
                  training_loss=sess.run(loss_op,feed_dict={x:train_x,y:train_y})
                  validation loss=sess.run(loss op,feed dict={x:test x,y:test y})
                  opt loss = validation loss+training loss
                  if opt loss<min loss:</pre>
                      prediction=sess.run(y out, feed dict={x:test x})
                      min loss=opt loss
                  tlos.append(training loss)
                  vlos.append(validation loss)
                  if(i%100==0):
                      print("epoch no "+str(i),
                             " training loss: ",training_loss,
                             "\tvalidation loss: ", validation_loss)
          epoch no 0 training loss: 0.31435627 validation loss: 0.318934
          epoch no 100 training loss: 0.063750446 validation loss: 0.06012565
          epoch no 200 training loss: 0.053186662
                                                           validation loss: 0.04829347
          epoch no 300 training loss: 0.042302683
                                                           validation loss: 0.035905875
         epoch no 400 training loss: 0.0065636165
                                                           validation loss: 0.0017505735
         epoch no 500 training loss: 0.0013057484
                                                           validation loss: 0.017498203
         epoch no 600 training loss: 0.00026192504 epoch no 700 training loss: 2.3400218e-05
                                                            validation loss: 0.023867726
                                                           validation loss: 0.027423162
         epoch no 800 training loss: 1.8118452e-06 validation loss: 0.027724147 epoch no 900 training loss: 6.9425954e-07 validation loss: 0.027750934
```

Evaluation & Prediction (Answer 3.1)

```
In [78]: prediction_ann = prep_y.inverse_transform(np.array(prediction)).reshape(5)
    prediction_ann = list(np.round(prediction_ann).astype('int'))
    print("Predcition of bloom date using ANN ")
    count=0
    for t_year in test_years:
        monthap,datesap=day_month_calculator(t_year,prediction_ann[count])
        print('year: ',t_year, ' month:', monthap,' date: ',datesap,' days taken: ',prediction_ann[count])
        count=count+1

Predcition of bloom date using ANN
    year: 1966 month: 3 date: 21 days taken: 79
    year: 1971 month: 4 date: 2 days taken: 91
    year: 1985 month: 4 date: 6 days taken: 95
    year: 1994 month: 3 date: 31 days taken: 89
    year: 2008 month: 3 date: 22 days taken: 81
```

```
In [79]: plt.figure(figsize=(8,5))
    plt.plot(np.linspace(1,len(tlos),len(tlos)-0),tlos, label='Training curve')
    plt.plot(np.linspace(1,len(vlos),len(vlos)-0),vlos, label='Validation curve')
    plt.xlabel('Epoch')
    plt.ylabel('Mean Squared Error')
    plt.title('Learning curve')
    plt.legend()
    plt.show()
```


From the learning curve we can see that optimum loss region is around 400 epochs. Predicted results are evaluated via \mathbb{R}^2 score.

```
In [80]: score_ann = r2_score(actual, prediction_ann)
    print(score_ann)
    0.9271137026239067
```

Discussion on Network Architecture parameter choice

The choice of four hidden layers with small number of neurons is not intuitive. Different number of layers were put into the design and observed the minimum loss. When the summation of both training and validation mean squared error loss is minimum is defined as minimum loss (min_loss). For this observation, default AdamOptimizer was used and enough epochs were given so that it crosses the overfitting point. Results are in the following table.

Different no. of Layers	min_loss		
8	0.0226		
8,8	0.0099		
8,8,8	0.0166		
8,8,8,8	0.0081		
8,8,8,8,8	0.0206		

So, I chose 4 layers to design and tried varying neurons in each layer. Some random choice is shown here. It seemed 4 layers with 8 neurons in each layer fits best for training and testing dataset togather

Combination of Neurons	min_loss		
16,16,16,16	0.0178		
8,8,8,8	0.0081		
4,4,4,4	0.0087		
8,16,16,8	0.0145		
8,16,8,16	0.0235		
8,8,16,16	0.0175		
16,16,8,8	0.0192		
4,4,8,8	0.0086		
8,8,4,4	0.0167		

Next, I tried different optimizers available in tensorflow with their default arguments to find out which one of them suits best in this case. Again minimum loss is calculated and compared.

Mean squared error for 'Adagrad' optimizer is also low but learning curve shows unstability at minimum loss region. 'Adam' optimizer is not only gives lowest error but also very stable along the learning curve. Tunable parameters of AdamOptimizer were varied between certain range and a combination was chosen which demonstrate best results in 'min_loss'. Some results are presented in tabular format here.

learning_rate	beta1	beta2	min_loss	learning_rate	beta1	beta2	min_loss
0.01	0.9	0.999	0.01612	0.001	0.9	0.999	0.00810
0.01	0.9	0.99	0.01573	0.001	0.9	0.99	0.00798
0.01	0.9	0.95	0.01467	0.001	0.9	0.95	0.01175
0.01	0.85	0.999	0.01463	0.001	0.85	0.999	0.00983
0.01	0.85	0.99	0.01575	0.001	0.85	0.99	0.00918
0.01	0.85	0.95	0.01479	0.001	0.85	0.95	0.01235
0.0001	0.9	0.999	0.00924				

Problem 3-2: (10pts)

Compare the performance (via \mathbb{R}^2 score) of the 3 implementations above: the 600 Degree Rule, the DTS method, and the neural network approach. For all methods, and each test year, plot the predicted date vs. the actual date. Discuss the accuracy and differences of these 3 models.

So from the result we can say that DTS method is out performing our neural net. It has to be noted that some features are not yet used and perhaps a molicular biologist will be able to better correlate those with the bloom dates.

Comparison with scatter plot

80

75

The following plot is showing clear comparison among these methods.

80

All the methods are tend to work quite well but DTS method and ANN model works equivalently good enough in prediction. From the plot above, we can see that an ensemble between this two process will give a perfect result.

95

85

```
In [83]: prediction_ensemble = list(np.round((np.array(prediction_ann)+np.array(predicted_us ing_DTS))/2).astype('int'))
    score_ensemble = r2_score(actual, prediction_ensemble)

In [84]: plt.figure(figsize=(10,5))
    plt.scatter(actual, prediction_ensemble, color='r', label='Ensemble')
    plt.legend()
    plt.legend()
    plt.show()

    print('r2 score after ensemble:\t',score_ensemble)

Expected prediction
    finsemble

100

Expected prediction
Ensemble

85
```

0.9927113702623906

100

r2 score after ensemble:

75

Looks good for the given years.

Prediction of DTS and ANN Ensemble

```
In [85]: print("Predcition of bloom date using ANN and DTS method ensemble ")

count=0

for t_year in test_years:
    monthap,datesap=day_month_calculator(t_year,prediction_ensemble[count])
    print('year: ',t_year, ' month:', monthap,' date: ',datesap,' days taken: ',pre
    diction_ensemble[count])
    count=count+1

Predcition of bloom date using ANN and DTS method ensemble
    year: 1966 month: 3 date: 21 days taken: 79
    year: 1971 month: 4 date: 1 days taken: 90
    year: 1985 month: 4 date: 4 days taken: 93
    year: 1994 month: 4 date: 1 days taken: 90
    year: 2008 month: 3 date: 23 days taken: 82
```

4. Trends of the Sakura blooming phenomenon (20pts total)

Problem 4-1: (20pts)

Based on the data from the past 60 years, investigate and discuss trends in the sakura hibernation (D_j) and blooming (BD_j) phenomena in Tokyo.

```
In [86]: plt.figure(7)
   plt.plot(years, list_end_hiber_date,label="End of Hibernation")
   plt.plot(years,Bloom_dates,'-b',label='Bloom Days')
   plt.xlabel('Year')
   plt.ylabel('Days')
   plt.title('Bloom Days , Hibernation days vs Year')
   plt.legend()
```

Out[86]: <matplotlib.legend.Legend at 0x2113fb427b8>

Based on this we can say that Cherry trees end of hibernation to bloom got shorter in recent years then past years. This is probably due to decreased maximum temperature over the year. Sea resssure and local pressure might have changed the temparture pattern in recent years. Since the max temparature decressed the hibernation is taking more time now a days.