

Smarter Phone

1. Introduction

TEAM NFET

Participants: Abhishek Sachdeva Amit Manchanda

Junior Year, Bachelor of Technology Electronics & Communication Engineering Indian Institute of Technology, Roorkee

Mentor:

Satish Jammula

Offshore Account Manager
Hitachi Consulting

2. Business Challenges

BUSINESS CHALLENGES

Issues	Our Solution
 Less relevance of ads Extra hardware to detect person's activity No generic API/SDK for the above 	 Smart health assistant Improvements of ads by categorizing ads for different physical activities API/SDK for other developers Improvement of recommendations based on user's activity

3. Approach/ Technology

HOW DID WE DO IT

- Step 1 Data generation
- Step 2 Training our activity prediction model
- Step 3 Using prediction model on smartphones (offline)

STEP 1 - DATA GENERATION

- Android application developed to generate data
- Collected data of each activity for 10-15 mins from seven android phones.

STEP 2 - TRAINING OUR PREDICTION MODEL

- Use of generated data to train our prediction model
 - Using Convolutional Neural Network (Machine Learning concept)
 - Combined 100 samples (at 50 Hz) of accelerometer data for training
 - Performed 1D Convolutional with 60x3 and 20x1 weight matrix, followed by Max Pooling
- Achieved accuracy of more than 90%

STEP 3 - USING PREDICTION MODEL ON SMARTPHONE

Import trained model to phone to predict the activity offline

- 21. Standing
- 22. Standing
- 23. Standing
- 24. Sitting
- 25. Standing 26. Standing
- Used NDK* provided by android to link TensorFlow to JAVA
- Predict activity for 100 readings
- Taking 100 predictions (10/minute) and finding the most occurred activity
- Build Notifications by fetching the data from local database

*NDK - Native Development Kit

TECHNICAL ARCHITECTURE

CURRENT DATA FLOW DIAGRAM

4. Competition

COMPETITION

- Applications such as Google fit
 - No personalization
 - No health tips
- Other hardware devices (e.g. MI Band)
 - High Cost for better accuracy
 - Doesn't allow other applications to use the activity predicted
- Google's adsense
 - Potential of pulling business (quarterly) from the 19.1 billion USD ad market of Google

5. Minor Hurdles

MINOR HURDLES

- Battery consumption
- Need of more data
- Continuous research in development of filters for ads.

6. Prototype Demo

PROTOTYPE DEMO

EXAMPLE OF WALKING PATTERN

7. Revenue Model

REVENUE MODEL

- 1. Direct ads from the companies.
 - a. Product ads from companies
 - b. Recommendation of articles, music etc.
- 2. Providing SDK to the developers
 - a. To use the activity predicted in their applications
- 3. Purchasing pro version of Smart Assistant

Fact: 35 % (avg) spending on digital marketing by companies and close to 100% for e-commerce companies

INVESTMENT COST

Estimated Development cost					
Profession / Post	Number of people required	Duration	Cost per 30 days (in Lakhs)	Total cost (in Lakhs)	
ML engineers	2	50 - 60 days	1.5	5.5	
Android Developer	2	30 days	1.25	2.5	
Web Developer	1	20 - 30 days	1.25	1.25	
Market and Content Research	1	20 - 30 days	1	1	
Tester	1	20 - 30 days	0.8	0.8	
Maintenance	-	6 months	-	3	
Extras	-	-	-	1	
	15.05				

REVENUE GENERATION

Assumptions

- (non-paid) users at the end of 1st month = 10,000
- Paid users of our Smart Health assistant = 10,000
- Ads shown per (non-paid) user per day = 3
- Revenue generated per day = Rs. 1000 = \$14.683
- linear growth in number of users per month= 20%

Revenue generated from

- (non-paid) users
- from paid users = Rs 25*10,000 = Rs 2,50,000
- \circ SDK/API = Rs 1,00,000

Revenue at the end of 1st financial year = Rs. 15,50,000 = \$22759

8. Future vision

COMPLETE FLOW DIAGRAM

FUTURE VISION AND SUPPORT NEEDED

Vision

- Provide easy integrable SDK/API to the developers
- Include more activities by generating data
- Learn user's schedule, likes and dislikes
- Making it a Smarter Personal Fitness Assistant
- Finding more areas where activity detection will be useful.

Support needed

- Initial promotions
- Easy integration into Hitachi products
- Professional developers and market researchers

