- 1. Defina uma função free(A) para retornar o conjunto de variáveis livres de uma fórmula de primeira-ordem qualquer A. Seja B uma fórmula da lógica de primeira-ordem e $free(B) = \{x_1, ..., x_k\}$. O fecho universal de B é dado pela fórmula $\forall x_1 ... \forall x_k \varphi$. Qual o fecho universal de $\forall x \exists y (\forall z p(x, y, w, z) \rightarrow \forall y q(z, y, x, z))$?
- 2. Seja B uma fórmula da lógica de primeira-ordem. Os símbolos livres de B são as variáveis livres, os símbolos de constante e os símbolos de predicado que ocorrem em B.
 - (a) Quais os símbolos livres de $\forall x \exists y (\forall z p(x, y, w, z) \rightarrow \forall y q(z, y, x, z))$?
 - (b) Defina uma função que retorna o conjunto de símbolos livres de uma fórmula qualquer A.
- 3. Considere a fórmula $A = \forall x \forall y q(x, y, z)$.
 - (a) Ache uma interpretação \mathcal{I}_1 e contexto σ_1 tal que $v_{\mathcal{I}_1,\sigma_1}(A) = T$.
 - (b) Ache uma interpretação \mathcal{I}_2 e contexto σ_2 tal que $v_{\mathcal{I}_2,\sigma_2}(A) = F$.
- 4. Seja a fórmula $A = \forall x \forall y \exists z (p(x,y) \rightarrow p(y,z)).$
 - (a) Seja $\mathcal{I}_1 = (D_1, R_p)$ uma interpretação com domínio $D_1 = \{a, b, c, d\}$ e $R_p = \{(b, c), (b, b), (b, a)\}$. Verifique se A é verdade em \mathcal{I}_1 .
 - (b) Seja $\mathcal{I}_2 = (D_2, R'_p)$ com $D_2 = \{a, b, c\}$ e $R'_p = \{(b, c), (a, b), (c, b)\}$. Verifique se A é verdade em \mathcal{I}_2 .
- 5. Considere os seguintes predicados e constantes:
 - occupation(x, y) representando que a pessoa x tem ocupação y.
 - client(x, y) indicando que a pessoa x é cliente de y.
 - \bullet m, c, a constantes representado as ocupações médico, cirurgião e advogado, respectivamente.

Escreva as seguintes sentenças na lógica de primeira-ordem:

- (a) Todos os cirurgiões são médicos.
- (b) Algum advogado possui apenas clientes médicos.
- (c) Todo cirurgião é cliente de um advogado.
- 6. Seja $A = \forall x \exists x q(x)$. Seja \mathcal{I} uma interpretação com domínio $D = \{0, 1, 2\}$ e $R_q = \{a \in A \mid a \text{ \'e par}\}$. Verifique se $\mathcal{I}(A) = T$.
- 7. Seja $A = \forall x(\exists y p(x,y) \land (\exists z p(z,x) \rightarrow \forall y p(x,y)))$. Seja $\mathcal{I} = (D,R_p)$ uma interpretação com $D = \{0,1,2\}$ e $R_p = \{1,2\}$. Seja l um contexto tal que l(x) = l(y) = l(z) = 1. Verifique se $v_{\mathcal{I},l}(A) = T$.
- 8. Seja $A = \forall x \exists y \exists z ((p(x,y) \land p(z,y)) \land (p(x,z) \rightarrow p(z,x))).$
 - (a) Seja a interpretação $\mathcal{I}_1 = (A, R_p)$ com $A = \{0, 1, 2, ...\}$ e $R_p = \{(m, n) \mid m < n\}$. Verifique se $\mathcal{I}_1(A) = T$.

- (b) Seja a interpretação $\mathcal{I}_2 = (B, R'_p)$ com $B = \{0, 1, 2, ...\}$ e $R'_p = \{(m, 2m) \mid m \in B\}$. Verifique se $\mathcal{I}_2(A) = T$.
- 9. Considere os seguintes predicados e constantes:
 - perde(x, y) representando que o time x perde para o time y.
 - empata(x, y) indicando que time x empata com o time y.
 - \bullet f, b constantes representado os times Fortaleza e Barcelona, respectivamente.

Represente, em uma fórmula A da lógica de primeira-ordem, a seguinte sentença: Se o Fortaleza ganha do Barcelona, então o Fortaleza não perde para ninguém".

- (a) Mostre uma interpretação \mathcal{I}_1 tal que $\mathcal{I}_1(A) = T$.
- (b) Mostre uma interpretação \mathcal{I}_2 tal que $\mathcal{I}_2(A) = F$.
- 10. Seja $\mathcal{I} = (V, R_e)$ com $V = \{1, 2, 3, 4\}$ e $R_e = \{(1, 2), (1, 3), (2, 1), (2, 4), (3, 1), (3, 4), (4, 2)\}$. Verifique se $\mathcal{I}(\forall x \forall y (e(x, y) \rightarrow e(y, x))) = T$.
- 11. Seja $A = \forall x \neg r(x, x) \land \forall x \exists y r(x, y) \land \forall x \forall y \forall z (r(x, y) \land r(y, z) \rightarrow r(x, z))$. Mostre uma interpretação \mathcal{I} tal que $\mathcal{I}(A) = T$.
- 12. Escreva as seguintes sentenças na lógica de primeira-ordem. Escolha predicados e constantes apropriados.
 - (a) Todo estudante está matriculado em pelo menos uma matéria.
 - (b) Todo professor ensina pelo menos uma matéria.
 - (c) Toda matéria tem pelo menos um aluno matriculado.
 - (d) Toda matéria é ensinada por pelo menos um professor.
 - (e) O coordenador de uma matéria é um professor que a ensina.
 - (f) Se um estudante está matriculado em uma matéria, então o estudante é ensinado por todos os professores que ensinam a matéria.
 - (g) Programação é uma matéria.
 - (h) José é um estudante matriculado em Programação.
 - (i) Carlos é o coordenador of Programação.