Problem 4): Begin by defining \prod to be the encryption scheme $\prod = ($ Gen, Enc, Dec) where

- The security parameter $n \in \mathbb{Z}$ and Gen are used to generate the key k by running Gen $(1^n) = k$
- The key k, message m, and Enc are used to produce cipher-text c by running $\operatorname{Enc}_k(m) = c$
- The key k, cipher-text c, and Dec are used to recover the message m by running $\operatorname{Dec}_k(c) = m$

Additionally, let m_0, m_1 be messages of the same length and c be the cipher-text generated from one of the messages by running $\operatorname{Enc}_k(m_b) = c$, where $b = \{0, 1\}$. The encryption scheme \prod is considered to be **CPA** secure if the probability of a polynomial time-limited adversary \mathcal{A} , with access to m_0, m_1 and c, determining which message was used to compute c is equal to the sum of 1/2 and any value that is negligible on the order of n.

Now denote the experiment above as $\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}(n)$. Let this return 0 except when \mathcal{A} is able to determine which message was used to compute c then let $\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}(n)$ return 1. Using this notation, our definition **CPA** security can be formally stated

$$\Pr\left[\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}\left(n\right)=1\right]\leq\frac{1}{2}+\operatorname{negl}\left(n\right)\tag{4.1}$$

where negl(n) is a negligible function of order n.

Finally, consider the case for the experiment $\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}(n)$ where the messages m_0, m_1 passed to the adversary \mathcal{A} are such that $m_0 = m_1$ and the result of $\operatorname{Enc}_k(m_i) = c_i$ is fixed each m_i in the message space. That is to say, for any fixed k, that each $c_i \in \mathcal{C}$ is determined by the result of $\operatorname{Enc}_k(m_i)$ for only one $m_i \in \mathcal{M}$. In this case the result of $\operatorname{Priv}_{\mathcal{A},\prod}^{\operatorname{CPA}}(n)$ will always be 1 because the cipher-texts $c_0 = \operatorname{Enc}_k(m_0)$ and $c_1 = \operatorname{Enc}_k(m_1)$ are always equal thereby allowing \mathcal{A} always to succeed every time this is case. In this case, \prod does not satisfy the definition given in expression 4.1 and is therefore not **CPA** secure. Thus, we must impose an additional requirement on **CPA** secure encryption schemes.

The problem arises from the case when $m_0 = m_1$ and the when, for each fixed $m_i \in \mathcal{M}$, the function $\operatorname{Enc}_k(m_i)$ always returns the same c_i . That is to say that the operation $\operatorname{Enc}_k(m_i)$ on each $m_i \in \mathcal{M}$ always determines single, unique corresponding $c_i \in \mathcal{C}$. With this in mind, we refine our definition of

CPA security to also include the requirement that, given a fixed key k, the Dec algorithm be non-deterministic on $m \in \mathcal{M}$. This is equivalent to requiring that the Dec algorithm be such that any passed $m_i \in \mathcal{M}$ can return any $c \in \mathcal{C}$ with some non-zero probability, thereby making Dec probabilistic instead of deterministic.