Part E

1. Consider the following processes with arrival times and burst times:

| Process | Arrival Time | Burst Time |

|-----|

|P1|0|5|

|P2|1|3|

|P3|2|6|

Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling.

Q1 . Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling.

Process	Arrival	Burst time
P1	0	5
P2	1	3
P3	2	6

Solution:-

					lotal I	urn around
Process	Arrival	Burst time	Response time	Wait time	time	
P1	0	5		0	0	5
P2	1	3		4	4	7
P3	2	6		6	6	12
			~0.	3.3333333	333	
			Solution	→ 33	333	
Gantt Char	t P1	P2	P3			
	Λ	5	Q	1./		

2. Consider the following processes with arrival times and burst times:

| Process | Arrival Time | Burst Time |

|-----|

|P1|0|3|

| P2 | 1 | 5 |

|P3|2|1|

|P4|3|4|

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

Q2 .Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

Process	Arrival	Burst time
P1	0	3
P2	1	5

P3	2	1
P4	3	4

Solution:-

					Total Turn around	
Process	Arrival	Burst time	Response time	Wait time	time	
P1	0	3	0		3	
P2	1	5	8		12	
P3	2	1	3		2	
P4	3	4	4		5	
				Solution →	5.5	,
Gantt Cha	rt P1	P3	P4	P2		
		0 3	3	4 8	13)
		0 3	3	4 8	13	;

3. Consider the following processes with arrival times, burst times, and priorities (lower number indicates higher priority):

Process Arrival Time Bu	urst Time Priority
P1 0 6 3	
P2 1 4 1	
P3 2 7 4	
P4 3 2 2	

Calculate the average waiting time using Priority Scheduling.

Q3 Calculate the average waiting time using Priority Scheduling.

Process	Arrival	Burst time	Priori	ity Respons	e time Wait tin	ne Total T	Turn around time
P1	0	6	3	0	0	6	
P2	1	4	1	6	5	9	
P3	2	7	4	12	10	17	
P4	3	2	2	10	7	9	
				Solution \rightarrow	5	5.5	
Gantt Char	t P1	P2	P4	P3			
		0	6	10	12	19	

4. Consider the following processes with arrival times and burst times, and the time quantum for Round Robin scheduling is 2 units:

|P2|1|5| |P3|2|2|

|P4|3|3|

Calculate the average turnaround time using Round Robin scheduling.

Q4 Calculate the average turnaround time using Round Robin scheduling.

					Total Turn arou	und
Process	Arrival	Burst time	Response time	Wait time	time	
P1	0	4	0	6	10	
P2	1	5	2	1+6+1=8	_ 13	
P3	2	2	4	2	4	
P4	3	3	6	7	10	
u=2units				Solution \rightarrow		9.25

Q4 Calcula	ate the av	erage turna	round time using F	Round Robin so	heduling.		4			
Process	Arrival	Burst time	Response time	Wait time	Total Turn around time	+X				
P1	0	4	0	6	10		\ /			
P2	1	5	2	1+6+1=8	13					
P3	2	2	4	2	4					
P4	3	3	6	7	10					
u=2units				Solution →	9.25					
Gantt Chart	P1	P2	P3	P4	P1	P2	P4		P2	
		0	2	4 6	8	}	10	12	1	3

5. Consider a program that uses the fork() system call to create a child process. Initially, the parent process has a variable x with a value of 5. After forking, both the parent and child processes increment the value of x by 1.

What will be the final values of x in the parent and child processes after the fork() call?

Solution → Main=5 | fork()

child=6 main =6

Because child and main will have separate memories hence, both will contain the value 6.