# Applied Statistical Methods II

Chapter #14

Logistic Regression, Poisson Regression, and Generalized Linear Models

Part IV



## Prediction with logistic regression:

- In linear regression, we encountered two types of problems: inference for mean function/parameters and prediction of a new observation.
- Same issues hold in logistic regression:
  - Thus far we have focused on inference for mean function/parameters.
  - Today: prediction of a new observation.
- For binary responses, prediction takes the form of classification.
  - Given some covariates values, classify the predicted response into one of two categories
  - There is an entire subfield for classification analysis.
  - A fitted logistic regression model provides one simple approach to the problem.



## Idea Behind Classification

- Formulate some rule so that, based on some covariates  $\mathbf{X}$ , we predict either  $\hat{Y} = 1$  or  $\hat{Y} = 0$ .
- Using logistic regression: fit a model from some test data and use the predicted probabilities to determine a prediction rule.
  - Exact prediction rule depends on loss function
  - Predict  $\hat{Y}_i = 1$  if  $\hat{\pi}_i > C$  for some cut-off-value 0 < C < 1.
- Then evaluate the classification performance with some criterions.

### "Good" Prediction

|      | Classified |          |
|------|------------|----------|
| True | G0         | G1       |
| G0   | $n_{00}$   | $n_{01}$ |
| G1   | $n_{10}$   | $n_{11}$ |

- Consider two aspects of prediction.
  - Sensitivity =  $P(\hat{Y} = 1|Y = 1) \approx n_{11}/(n_{10} + n_{11})$  (maximize true positives)
  - Specificity =  $P(\hat{Y} = 0 | Y = 0) \approx n_{00}/(n_{00} + n_{01})$  (minimize false positives)
- In an ideal world, you want both of these to be big.
- But big values of one leads to small values of the other.
  - $C \rightarrow 0$  means that sensitivity  $\rightarrow 1$  but specificity  $\rightarrow 0$ .
  - $C \rightarrow$  1 means that sensitivity  $\rightarrow$  0 but specificity  $\rightarrow$  1.



### "Good" Prediction Cont.

- Misclassification rate for  $G_1$  $P(\hat{Y} = 0 | Y = 1) \approx n_{10}/(n_{10} + n_{11})$  (i.e. type II errors)
- Misclassification rate for  $G_0$  $P(\hat{Y}=1|Y=0)\approx n_{01}/(n_{00}+n_{01})$  (i.e. type I errors)
- Overall misclassification rate, let  $n = n_{10} + n_{11} + n_{00} + n_{01}$

$$P(\hat{Y} \neq Y)$$

$$=P(\hat{Y} = 0|Y = 1)P(Y = 1) + P(\hat{Y} = 1|Y = 0)P(Y = 0)$$

$$\approx \frac{n_{10}}{n_{10} + n_{11}} \frac{n_{10} + n_{11}}{n} + \frac{n_{01}}{n_{00} + n_{01}} \frac{n_{00} + n_{01}}{n}$$

$$= \frac{n_{10} + n_{01}}{n}$$

## Minimize the overall misclassification rate

- If the criterion is to minimize the overall misclassification rate, the optimal solution only depends on the ratio of the conditional probabilities.
- The optimal classification rule is: If  $\frac{\hat{P}(Y=1|X)}{\hat{P}(Y=0|X)} > 1$ , classify as  $G_1$ , otherwise  $G_0$ .
- In logistic regression, predict that  $Y_h = 1$  if  $\hat{\pi}_h > .5$ , or equivalently,  $\log \frac{\hat{\pi}_h}{1 \hat{\pi}_h} > 0$ , or equivalently  $X_h^T \beta > 0$ .

## Other Classification Rules

- Is the C = 0.5 always good?
- Theoretically C=0.5 is the optimal solution to **minimize** overall misclassification error rate, if we assume that 1) We have a simple random sample 2) and the logistic regression model for the conditional probability is correct.
- In practice, it also makes sense to calibrate C using the empirically estimated misclassification rate. Implicitly, this serves as a model adjustment.

### Other Classification Rules Cont.

- Overall misclassification rate might not be the best criterion to use in some applications.
- In some rare event studies,  $\pi_1 = P(Y = 1)$  could be small. The approaches targeted at overall misclassification criterion tends to ignore the minority class and have low sensitivity.
- In some applications, we want to have high sensitivity
  - Cancer screening: willing to accept some false positives
- In some applications, we want to have high specificity.
  - Fraudulent sellers on eBay: eBay does not want to falsely accuse someone of nefarious activity.
- Minimize a loss function:  $P(\hat{Y} = 1|Y = 0)P(Y = 0)C(1|0) + P(\hat{Y} = 0|Y = 1)P(Y = 1)C(0|1)$ , where C(1|0) and C(0|1) are the cost functions for misclassification in  $G_0$  and  $G_1$ .



### Other Classification Rules Cont.

- Overall misclassification rate might not be the best criterion to use in some applications.
- In some rare event studies,  $\pi_1 = P(Y = 1)$  could be small. The approaches targeted at overall misclassification criterion tends to ignore the minority class and have low sensitivity.
- In some applications, we want to have high sensitivity
  - Cancer screening: willing to accept some false positives
- In some applications, we want to have high specificity.
  - Fraudulent sellers on eBay: eBay does not want to falsely accuse someone of nefarious activity.
- Minimize a loss function:  $P(\hat{Y} = 1|Y = 0)P(Y = 0)C(1|0) + P(\hat{Y} = 0|Y = 1)P(Y = 1)C(0|1)$ , where C(1|0) and C(0|1) are the cost functions for misclassification in  $G_0$  and  $G_1$ .



### Other Classification Rules Cont.

- Overall misclassification rate might not be the best criterion to use in some applications.
- In some rare event studies,  $\pi_1 = P(Y = 1)$  could be small. The approaches targeted at overall misclassification criterion tends to ignore the minority class and have low sensitivity.
- In some applications, we want to have high sensitivity
  - Cancer screening: willing to accept some false positives
- In some applications, we want to have high specificity.
  - Fraudulent sellers on eBay: eBay does not want to falsely accuse someone of nefarious activity.
- Minimize a loss function:  $P(\hat{Y} = 1|Y = 0)P(Y = 0)C(1|0) + P(\hat{Y} = 0|Y = 1)P(Y = 1)C(0|1)$ , where C(1|0) and C(0|1) are the cost functions for misclassification in  $G_0$  and  $G_1$ .



## **ROC Curves**

- ROC = Receiver Operating Characteristic
- ROC curve plots estimated Sensitivity (y-axis) vs. 1 -Specificity (x-axis)
- ROC curve plots true positive rate vs. false positive rate
- Each point on the ROC curve corresponds to one cut-off value C
  - If C = 0, then we always set  $\hat{Y} = 1$ . Perfect sensitivity, poor specificity
  - If C = 1, then we always set  $\hat{Y} = 0$ . Perfect specificity, poor sensitivity
- The point (0,1) corresponds to a perfect classification.



## ROC-based selection of the cut-off C

- If you care for sensitivity more at the cost of sacrificing specificity, you can choose a small value of C to achieve the level of sensitivity.
- If you care for specificity more, a larger value of C may be a good choice.
- If you do not have any strong preference, you can choose the point on the ROC curve that is closest to (0, 1).

### Areas under ROC curves

- The non-discriminant line: the diagonal line. The Area under is 0.5. Basically X has no discriminant power for the value of Y.
- Area under the curve describes predictive power
  - Area can be interpreted as the concordant probability:  $P(\hat{\pi}_i > \hat{\pi}_j | Y_i = 1, Y_j = 0)$
  - A one number summary for ROC curves. Interpretation needs to be very careful.
  - A coin flip has oncordant probability 0.5.
- The graph of ROC is often more useful. It reflects the trade-off between sensitivity and specificity.



## Validation and Evaluation of Performance

- Assume that you fit a model to determine a classification rule from Data Set A.
- You then receive Data Set B which is sampled from the same population.
- In practice, you will have worse classification on Dataset B.
  - The logistic model was trained on Data Set A, and the cut-off value C might also be calibrated by the empirical performance on data set A.
  - Especially if the dimension of covariates is high, we could have over fitting problem.
- Often would like to have a separate validation data set to determine the predictive power.
- To compare different classification methods, it has to be on a testing data set or use cross-validation at least.



## Multinomial Regression

- What if  $Y_i$  is polytomous (i.e. > 2 categories)?
- $Y_i$  can take on  $1, \ldots, J$ .
- The distribution for  $Y_i$  is now a multinomial:
  - $P(Y_i = j) = \pi_j \text{ for } j = 1, \dots, J.$
  - $\sum_{i=1}^{J} \pi_i = 1$
- Can think of two types of polytomous data: nominal and ordinal.
- Nominal: No metric for possible values of Y. Is a car a American, European, or Asian?
- Ordinal: values of Y have an ordering.
   Severity of head injury on a scale from 1-4.



# Categorical Data: baseline odds model

- Given some covariates, let  $\pi_{ij} = P(Y_i = j | X_i)$
- Will choose a reference group (lets say J), and model for j=1,...,J-1

$$\log(\frac{\pi_{ij}}{\pi_{iJ}}) = X\beta_j$$

- From these J-1 log odds, you can get any log odds.
- Note that there are J-1 different parameter estimates for each covariate.
- Estimate through maximum likelihood.



## Interpretation of the parameters

- Let  $\beta_{jk}$  be kth element of  $\beta_j$ .
- If all other covariates are held fixed, an increase in  $X_{ik}$  by one unit will result in an increase in the log odds of  $Y_i = j$  vs  $Y_i = J$  by  $\beta_{jk}$ .
  - aka the  $\log \frac{P(Y_i=j)}{P(Y_i=J)}$ .
- If all other covariates are held fixed, an increase in  $X_{ik}$  by one unit will result in an increase in the log odds of  $Y_i = j$  vs  $Y_i = \ell \neq J$  by  $\beta_{jk} \beta_{\ell k}$ .
- How do you think we can do inference?



### **Ordinal Data**

- The previous categorical regression did not take into account that Y=1 might be closer to Y=2 than to Y=3.
- For ordinal data, we can fit a proportional odds model.
- Remove the intercept from the design matrix and fit:

$$\log \left\{ \frac{P(Y_i \le j | X_i)}{P(Y_i > j | X_i)} \right\} = \alpha_j + X_i^T \beta$$

- Each j=1,...,J-1 has a different intercept. In order for this model to make sense, what is the condition on the intercepts?
- There is one estimate for each covariate effect.
  - $\beta_k$  is the log of the odds ratio of Y less than or equal to a value for  $X_k = x$  vs.  $X_k = x 1$
- Link is know as the cumulative logit.



## Example

- We will use the crab example with the variable mates:
  - mates = 0 if there are no satellites
  - mates =1 if there are 1-5 satellites
  - mates =2 if there are >5 satellites