UNIVERSIDADE DO MINHO

Unidade Curricular: Física Computacional

Curso: Licenciatura em Física e Mestrado Integrado em Engª Física

Nome: Jus Hignel Pereire Silve Teste Data: 1/2/2023 Nº 96534

Duração: 1h30 + 30m (Tol.)

Justifique devidamente as suas respostas usando comentários no código python.

1. Considere o seguinte sistema de osciladores harmónicos acoplados, onde as molas têm constantes de rigidez k_1, k_2, k_3 e comprimentos em repouso L_1 , L_2 , L_3 . As posições dos blocos, de massa m, em relação à parede esquerda são x_1 , x_2 e a distância entre as paredes é L. No estado de equilíbrio estático a resultante das forças em cada bloco é nula.

- a) Escreva as equações das forças resultantes para os restantes blocos e coloque o sistema de equações na forma matricial: F= K x B. Obtenha as posições de repouso dos blocos supondo L=4, L₁=1, L₂=1, L₃=1, e k₁=1, k₂=2, k₃=3.
- b) Calcule o menor valor próprio da matriz K, usando o método da potência.
- 2. Pretende-se desenvolver um novo método de integração numérica de funções, baseado na seguinte regra:

$$\int_{-1}^{1} f(x)dx = A_1 f(-\alpha) + A_2 f(\alpha)$$

- a) Sabendo que o método é exato para polinómios até ao 3º grau determine os coeficientes A₁, A₂, α.
- b) Calcule o integral para f(x)=sin(x)/x, usando o novo método e compare o resultado com regra de Simpson.
- 3. Considere o seguinte circuito elétrico. Considere R=1K Ω e que a curva característica IV do díodo é dada por $I_d=10^{-14}*(e^{40\nu_d}-1)~A$.

- a) Escreva uma função em python para determinar a corrente no \checkmark circuito para uma tensão fixa no gerador. Use o método de Newton Raphson.
- b) Escreva um programa para fazer o plot da tensão na resistência assumindo V_s=5*sin(2π*t).