Achieving Max Flow in Strongly Polynomial Time for Sparse Networks

Beyond the Edmonds-Karp Algorithm

Armando Coppola - 2003964 Relatore - Paul Joseph Wollan Facoltà di Ingegneria dell'Informazione, Informatica e Statistica Corso di Laurea in Informatica Sapienza Università di Roma Anno Accademico 2023/24

Vincolo di capacità

$$f(i,j) \le u(i,j)$$

Conservazione del flusso

$$\sum_{j:(j,i)\in E} f(j,i) = \sum_{j:(i,j)\in E} f(i,j)$$

Vincolo di capacità

$$f(i,j) \le u(i,j)$$

Conservazione del flusso

$$\sum_{j:(j,i)\in E} f(j,i) = \sum_{j:(i,j)\in E} f(i,j)$$

Vincolo di capacità

$$f(i,j) \le u(i,j)$$

Conservazione del flusso

$$\sum_{j:(j,i)\in E} f(j,i) = \sum_{j:(i,j)\in E} f(i,j)$$

Capacità residua

$$r(i,j) = u(i,j) - f(i,j) + f(j,i)$$

Network

Network

u: 21 / f: 20 # r: 1

u: 16 / f: 13 # r: 3

 $u: 14 / f: 10 \neq r: 4$

val(f) = 43

Ford-Fulkerson & Edmonds-Karp

Ford-Fulkerson & Edmonds-Karp

 $O(m \cdot f_{max})$

Ford-Fulkerson & Edmonds-Karp

$$O(m^2 \cdot n)$$

Il grafo *admissible* "A"

 $\forall (i,j) \in E(A)$

$$d(i) = d(j) + l((i, j))$$

Flusso bloccante in O(nm)

Flusso massimo in $O(n^2m)$

Algoritmo di Goldberg-Rao

Idea

Usare l'algoritmo di Dinitz su un grafo contratto

Costo computazionale

 $O(\min\{m^{1/2}, n^{2/3}\} \cdot m \log(n^2/m) \log U)$

Algoritmo di Goldberg-Rao

Idea

Usare l'algoritmo di Dinitz su un grafo contratto

Costo computazionale

 $O(\min\{m^{1/2}, n^{2/3}\} \cdot m \log(n^2/m) \log U)$

Flusso massimo in O(nm): per grafi densi

A Faster Deterministic Maximum Flow Algorithm

V. KING

University of Victoria, Victoria, British Columbia V8W 2Y2, Canada

S. RAO

NEC Research Institute, 4 Independence Way, Princeton, NJ 08540

AND

R. TARJAN

NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, and Princeton University, Princeton, NJ 08544

Received March 20, 1992; revised January 27, 1994

Cheriyan and Hagerup developed a randomized algorithm to compute the maximum flow in a graph with n nodes and m edges in $O(mn + n^2 \log^2 n)$ expected time. The randomization is used to efficiently play a certain combinational game that arises during the computation. We give a version of their algorithm where a general version of their game arises. Then we give a strategy for the game what such gives a description of their game arises. Then we give a strategy for the game that yields a deterministic algorithm for computing the maximum flow in a directed graph with n nodes and m edges that runs in time $O(mn (\log_{m-n+n} n))$. Our algorithm gives an O(mn) deterministic algorithm for all $m/n = R(n^2)$ for any positive constant n, and is currently the fastest deterministic algorithm for computing maximum flow n so n long n as n/n = n oflog n, n or n oflog n as n of n of n and n in n in n and n in n

Autori

V. King, S. Rao, R. Tarjan; 1994

Complessità

$$O(nm\log_{\frac{m}{n\log n}}n),$$

O(nm) se $m/n = \Omega(n^{\varepsilon})$

Flusso massimo in O(nm): per grafi sparsi

Max flows in O(nm) time, or better

James B. Orlin*

Revised: July 25, 2012

Abstract

In this paper, we present improved polynomial time algorithms for the max flow problem defined on a network with n nodes and n arcs. We show how to solve the max flow problem in O(nm) time, improving upon the best previous algorithm due to King, Rao, and Tarjan, who solved the max flow problem in $O(nm)\log_{m/(n\log_n n)}n)$ time. In the case that m = O(n), we improve the running time to $O(n^2/\log n)$, and $O(n^2/\log n)$.

We further improve the running time in the case that $U^* = U_{\max}/U_{\min}$ is not too large, where U_{\max} denotes the largest finite capacity and U_{\min} denotes the smallest non-zero capacity. If $\log(U^*) = O(n^{1/3}\log^{-3}n)$, we show how to solve the max flow problem in $O(nm/\log n)$ as the case that $\log(U^*) = O(\log^k n)$ for some fixed positive integer k, we show how to solve the max flow problem in $O(n^{8/3})$ time. This latter algorithm relies on a subroutine for fast matrix multiplication.

Autore

J. B. Orlin, 2013

Complessità

$$O(nm + m^{31/16}\log^2 n),$$

$$O(nm)$$
 se $m = O(n^{1+\varepsilon})$

L'algoritmo di Orlin: Intuizione

- Complessità del Goldberg-Rao: $O(m^{1/2}m\log\frac{n^2}{m}\log U)$
- $\log U < m^{7/16} \implies \tilde{O}(m^{3/2} \cdot m^{7/16}) = \tilde{O}(m^{31/16})$

$$m = O(n^{16/15 - \varepsilon}) \implies$$

$$\tilde{O}(m \cdot m^{15/16}) = \tilde{O}(m \cdot n^{1 - \varepsilon(15/16)}) = O(nm)$$

L'algoritmo di Orlin: Intuizione

- Complessità del Goldberg-Rao: $O(m^{1/2}m\log\frac{n^2}{m}\log U)$
- $\log U < m^{7/16} \implies \tilde{O}(m^{3/2} \cdot m^{7/16}) = \tilde{O}(m^{31/16})$
- Se il grafo è abbastanza sparso:

$$m = O(n^{16/15 - \varepsilon}) \implies$$

$$\tilde{O}(m \cdot m^{15/16}) = \tilde{O}(m \cdot n^{1 - \varepsilon(15/16)}) = O(nm)$$

$$C = O\left(\frac{m}{\log U}\right) \bullet$$

$$\log U \le m^{7/16} \iff C \ge m^{9/16} \quad \bullet$$

O(m) nodi Δ -critici in tutte le iterazioni

Il parametro Δ

Scegliamo un bound $\Delta = val(f(S, T))$

Il **taglio canonico** minore può essere trovato in O(m)

Il flusso massimo in ogni $\mbox{ fase di incremento } \grave{\rm e} \ \leq \Delta$

Tutti gli archi di capacità $\geq 2\Delta$ vengono definiti **abbondanti**

Il network contratto

Il network contratto

Il network contratto

Strongly Compact

Trasferimento di capacità

Approssimazione

- Bassa capacità se $u_{ij} + u_{ji} < \Delta/(64m^3)$
- Capacità persa durante la compattazione: $\leq \Delta/16m$
- Incremento previsto: $f^* = \Delta/8m$ -optimal flow $f_{max} \Delta/8m \le f^* \le f_{max}$

Approssimazione

- Bassa capacità se $u_{ij} + u_{ji} < \Delta/(64m^3)$
- Capacità persa durante la compattazione: $\leq \Delta/16m$
- Incremento previsto: $f^* = \Delta/8m$ -optimal flow $f_{max} \Delta/8m \le f^* \le f_{max}$

Approssimazione

- Bassa capacità se $u_{ij} + u_{ji} < \Delta/(64m^3)$
- Capacità persa durante la compattazione: $\leq \Delta/16m$
- Incremento previsto: $f^* = \Delta/8m$ -optimal flow $f_{max} \Delta/8m \le f^* \le f_{max}$

- 1. $\Delta = r(S, T)$
- 2. $C = |N^C|$

- 1. $\Delta = r(S, T)$
- 2. $C = |N^C|$
- 3. Se $C \ge m^{9/16}$
 - 1. Goldberg-Rao $\rightarrow \Delta/8m$ -optimal flow

- 1. $\Delta = r(S, T)$
- 2. $C = |N^C|$
- 3. Se $C \ge m^{9/16}$
 - 1. Goldberg-Rao $\rightarrow \Delta/8m$ -optimal flow
- 4. Se $m^{1/3} \le C \le m^{9/16}$
 - 1. Creazione del grafo Δ -compatto
 - 2. Goldberg-Rao $\rightarrow \Delta/8m$ -optimal flow
 - 3. Induzione flusso sul network originale

- 1. $\Delta = r(S, T)$
- 2. $C = |N^C|$
- 3. Se $C \ge m^{9/16}$
 - 1. Goldberg-Rao $\rightarrow \Delta/8m$ -optimal flow
- 4. Se $m^{1/3} \le C \le m^{9/16}$
 - 1. Creazione del grafo Δ -compatto
 - 2. Goldberg-Rao $\rightarrow \Delta/8m$ -optimal flow
 - 3. Induzione flusso sul network originale
- 5. Se $C \le m^{1/3}$
 - 1. Scegliere Γ bilanciato

1.
$$\Delta = r(S, T)$$

2.
$$C = |N^C|$$

3. Se
$$C \ge m^{9/16}$$

1. Goldberg-Rao $\rightarrow \Delta/8m$ -optimal flow

4. Se
$$m^{1/3} \le C \le m^{9/16}$$

- 1. Creazione del grafo Δ -compatto
- 2. Goldberg-Rao $\rightarrow \Delta/8m$ -optimal flow
- 3. Induzione flusso sul network originale

5. Se
$$C \le m^{1/3}$$

- 1. Scegliere Γ bilanciato
- 2. Creazione del grafo Γ -compatto
- 3. Goldberg-Rao \rightarrow optimal flow
- 4. Induzione flusso sul network originale

L'algoritmo 2. $C = |N^C|$

1.
$$\Delta = r(S, T)$$

3. Se
$$C \ge m^{9/16}$$

1. Goldberg-Rao $\rightarrow \Delta/8m$ -optimal flow

4. Se
$$m^{1/3} < C < m^{9/16}$$

- 1. Creazione del grafo Δ -compatto
- 2. Goldberg-Rao $\rightarrow \Delta/8m$ -optimal flow
- 3. Induzione flusso sul network originale

5. Se
$$C < m^{1/3}$$

- 1. Scegliere Γ bilanciato
- 2. Creazione del grafo Γ -compatto
- 3. Goldberg-Rao \rightarrow optimal flow
- 4. Induzione flusso sul network originale

Costo della procedura per tutte le iterazioni: $O(m^{31/16}\log^2 n)$

Bottlenecks e complessità finale

• Adattare il flusso dal grafo contratto a quello originale: $O(nm + m^{5/3} \log n)$

• Mantenere la **chiusura transitiva** degli archi abbondanti: O(nm)

- Complessità finale: $O(nm + m^{31/16} \log^2 n)$
- Se $m = O(n^{1.06})$ allora il **costo finale** è di O(nm)

Bottlenecks e complessità finale

• Adattare il flusso dal grafo contratto a quello originale: $O(nm + m^{5/3} \log n)$

• Mantenere la **chiusura transitiva** degli archi abbondanti: O(nm)

- Complessità finale: $O(nm + m^{31/16} \log^2 n)$
- Se $m = O(n^{1.06})$ allora il **costo finale** è di O(nm)

Ulteriori miglioramenti

- Soluzione di Orlin per m = O(n) raggiunge costo $O(n^2/\log n)$
- Orlin e Xiao-Yue Gong nel 2019, per $m = O(n \log n)$ dominano il King et al. di $\log \log n$

Grazie per l'attenzione!

