Training a Convolutional Neural Network to Classify Images

Pratheerth Padman
Freelance Data Scientist

Module Overview

What are convolutional neural networks (CNNs)?

Convolutions, activation, and pooling

Classification using a CNN

Demo: Creating the CNN architecture

Demo: Training the model

Demo: Performance metrics - how well did

our model do?

What Are Convolutional Neural Networks?

Convolutional Neural Network (CNN)

A Convolutional Neural Network is a type of deep learning algorithm that can take images as inputs, assign importance to various parts or aspects of these, and then differentiate one image from the others.

Convolutional Neural Network - Layout

Feature extraction

Classification

What Does a CNN "See"?

Feature Extraction

Convolutions Activation Pooling

CNN: Convolutions

Input image Filter Feature maps

Input Image

Width: 5 units

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	1
1	0	1

Input image

Filter

1	0	1
0	1	1
1	0	1

Input

Filter

Sliding (Stride = 1)

Feature map

Calculations - (1x1 + 0x1 + 1x1) + (0x0 + 1x1 + 1x0) + (0x1 + 0x0 + 1x1) = 4

Input

1	0	1
0	1	1
1	0	1

Filter

1	1x1	1x0	0x1	0
0	1x0	1x1	1x0	0
0	0x1	1x0	1x1	1
0	0	1	1	0
0	1	1	0	0

Sliding 2 (Stride = 1)

Stride

1x1	1x0	1x1	0	0
0x0	1x1	1x0	1	0
0x1	0x0	1x1	1	1
0	0	1	1	0
0	1	1	0	9

1	1	1x1	0x0	0x1
0	1	1x0	1x1	0x0
0	0	1x1	1x0	1x1
0	0	1	1	9
0	1	1	0	0

Sliding (Stride = 2)

1	0	1
0	1	0
1	0	1

Input

Filter

Sliding 2 (Stride = 1) Feature map

Calculations - (1x1 + 1x0 + 0x1) + (1x0 + 1x1 + 1x0) + (0x1 + 1x0 + 1x1) = 3

1	1	1	0	0
0	1	1	1	0
0	0	1	1	1
0	0	1	1	0
0	1	1	0	0

1	0	1
0	1	0
1	0	1

Input

Filter

Final feature map

Image in 3D (height, weight, depth), then filter also in 3D

Multiple convolutions = multiple filters = multiple feature maps

All feature maps stacked together forms the output of the convolution layer

Filter

1	0	1
0	1	0
1	0	1

1	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

1	0	0	1	1
0	1	1	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

3x3 Filter

4x4 Filter

5x5 Filter

Filter

1	0	1
0	1	0
1	9	1

3x3 Filter

1	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

4x4 Filter

1	0	0	1	1
0	1	1	0	0
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

5x5 Filter

Occurs in various sizes

They are feature identifiers

Feature maps produce high value when portion of image containing feature is multiplied by filter

Start with random initialization

Values change on training through backpropagation

CNN: Activation

Data Separability

Linearly separable

Non-linearly separable

Activation Functions

Activation function decides whether a neuron or node in a neural network should fire or not

Activation functions help introduce non-linearity to the network

Many activation functions - Sigmoid, Tanh, ReLU etc.

Non-linear Activation Function

Sigmoid Activation Function

Tanh Activation Function

Non-linear Activation Function

ReLU Activation Function

Leaky ReLU Activation Function

Factors for Choosing an Activation Function

Type of prediction we want

Current layer in the neural network

Type and architecture of the neural network

CNN: Pooling

Pooling

1	0	2	3
4	6	6	8
3	1	1	0
1	2	2	4

Max Pooling (Stride = 2)

1	0	2	3
4	6	6	8
3	1	1	0
1	2	2	4

6	8
3	4

Pooling

Performed after convolution and activation

There are different types of pooling

Max pooling is most popular

Why Is Pooling Done?

Reduces dimensionality – keeps depth, reduces height and width

Preserves important information

Reduces network training time

CNN: Classification

Classification

N - dimensional vector

Classification

$$N = 2$$

N = 10

Convolutional Neural Network: Layout

Demo

Creating the CNN architecture

Demo

Training the model

Demo

Performance metrics – how well did our model do?

Summary

CNN is a deep learning algorithm that can differentiate one image from another

A CNN gradually builds up its understanding of input images

Convolutional layer performs a dot product of two matrices

Activation function introduces nonlinearity to the network

Pooling layer helps in dimensionality reduction preserving important information

Learned how to create, train and test a CNN

Up Next:

Improving Performance of the Convolutional Neural Network