

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Segundo Examen Parci	al	
Lic. en Ciencias de la Computación – Ing. en Computación	– Ing. en Sistemas o	de Información
Apellido y Nombre:	LU:	Hojas entregadas:
(en ese orden)		(sin enunciado)
Profesor:		
NOTA: Resolver los ejercicios en hojas separadas. Poner r	nombre, LU y núm	ero en cada hoja.

Ejercicio 1. Implementar la siguiente expresión aritmética $B = (A \times (D+C)) + (A \times (D+C)^2)$, siendo A, B, C y D etiquetas que denotan direcciones de memoria, y asumiendo que se cuenta con las instrucciones add y mpy, para las siguientes arquitecturas:

- a) Una arquitectura de **0-direcciones** (tipo pila), contando con la instrucción dup (duplica el tope de la pila). Determinar la profundidad de la pila alcanzada.
- b) Una arquitectura estilo **RISC**, registro a registro, sin restricción en la cantidad de registros, y con instrucciones lda, ld y st. Indicar la cantidad de accesos a memoria realizados.
- c) Una arquitectura de **1**-dirección + registro (tipo Intel), sin restricción en la cantidad de registros y con la instrucción mov. Indicar la cantidad de accesos a memoria requeridos.

Ejercicio 2. En el marco de la norma IEEE 754, considerando la representación en punto flotante simplificada: mantisa fraccionaria en signo magnitud con hidden bit, exponente en exceso y base 2 y la siguiente distribución de bits:

Dados los números $X=(1\ 10000100\ 0011111001)$ e $Y=(0\ 01110101\ 1000111100)$ realizar el producto $X\times Y$ aplicando redondeo por proximidad hacia los pares y hacia $+\infty$, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits \mathbf{G} , \mathbf{R} y \mathbf{S} del resultado y con \mathbf{R} y \mathbf{S} al redondear. El resultado debe ser expresando según la representación enunciada. Finalmente, convierta el número hallado a decimal e indique el error existente entre este valor y el obtenido al operar la multiplicación directamente sobre X e Y en decimal.

(Pista:
$$X = -39,78125, Y = 0.0015220642, X \times Y = -0.0605496164$$
).

Ejercicio 3. Considerando la representación en punto flotante propuesta para el ejercicio anterior, y los números $X=(0\ 01111100\ 0010110101)$ e $Y=(1\ 01111101\ 1101000110)$, realizar la suma X+Y aplicando redondeo por proximidad unbiased (hacia los pares), explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits \mathbf{G} , \mathbf{R} y \mathbf{S} del resultado y con \mathbf{R} y \mathbf{S} al redondear. El resultado debe ser expresando según la representación enunciada. Finalmente, convierta el número hallado a decimal e indique el error existente entre este valor y el obtenido al operar la suma directamente sobre X e Y en decimal.

(Pista: X = 0, 1470947265, Y = -0, 4545898443, X + Y = -0, 3074951178).

Ejercicio 4. Determinar cuál es el contenido final de cada uno de los registros y posiciones de memoria involucrados en la siguiente secuencia de instrucciones. Indicar en cada caso, el número de instrucción que origina cada cambio. Asumir que el primer operando es el destino y el segundo la fuente de información para la operación.

(1) mov $R1, \#0200$	Interpretació	ón
(2) mov (R1), #0100	#xxxx	Inmediato
(3) mov 0100(R1), R1	R	Registro
(4) mov R2, #0500	(R)	Registro indirecto
(5) mov @0100(R1), #0500	XXXX	Absoluto
(6) mov (0200), 0300	xxxx(R)	Indexado
(7) mov R3, 0200	(xxxx)	Memoria indirecto
(8) mov R3, @0100(R3)	@xxxx(R)	Pre-indexado indirecto

Ejercicio 5. Considerando el siguiente programa para la arquitectura OCUNS, en la que toda lectura/escritura sobre la dirección FF es redireccionada a la E/S estándar:

OP.	Descr.	FORM.	Pseudocódigo
0	add	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} + \texttt{R[t]}$
1	sub	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} - \texttt{R[t]}$
2	and	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} \& \texttt{R[t]}$
3	xor	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} \texttt{R[t]}$
4	lsh	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{R[s]} \iff \texttt{R[t]}$
5	rsh	${f I}$	$\texttt{R[d]} \leftarrow \texttt{R[s]} >> \texttt{R[t]}$
6	load	\mathbf{I}	$\texttt{R[d]} \leftarrow \texttt{mem[offset} + \texttt{R[s]]}$
7	store	\mathbf{I}	$\texttt{mem[offset + R[d]]} \leftarrow \texttt{R[s]}$
8	lda	\mathbf{II}	R[d] ← addr
9	jz	\mathbf{II}	if (R[d] == 0) PC \leftarrow PC + addr
\mathbf{A}	jg	\mathbf{II}	if (R[d] > 0) PC \leftarrow PC + addr
В	call	\mathbf{II}	$R[d] \leftarrow PC; PC \leftarrow addr$
\mathbf{C}	jmp	III	PC ← R[d]
D	inc	III	$R[d] \leftarrow R[d] + 1$
\mathbf{E}	dec	III	$R[d] \leftarrow R[d] - 1$
\mathbf{F}	hlt	III	exit
	0 1 2 3 4 5 6 7 8 9 A B C D	0 add 1 sub 2 and 3 xor 4 lsh 5 rsh 6 load 7 store 8 lda 9 jz A jg B call C jmp D inc E dec	0 add I 1 sub I 2 and I 3 xor I 4 lsh I 5 rsh I 6 load I 7 store I 8 lda II 9 jz II A jg II B call II C jmp III D inc III E dec III

FORMATO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
I	0	×	×	×		dest.	d			src	. s		sr	c. t	/ o	ff.		
II	1	0	×	×	dest. d						ad	dres	ss addr					
III	1	1	×	×		dest.	d						-					

- a) Ensamblar el programa a partir de la dirección 00h.
- b) Si se reubicara el código máquina obtenido en el inciso (a) a partir de la dirección 20h, ¿qué referencias a memoria requieren ser ajustadas? Justificar adecuadamente.
- c) Suponiendo que los valores ingresados por teclado son 04h y 02h, realice una traza mostrando la evolución del contenido de cada registro, para luego, describir el propósito del programa en su conjunto.
- d) ¿Qué sucede con el resultado retornado si los valores ingresados fueran 02h y 04h? ¿Cuál es la diferencia? ¿Existe alguna restricción para los datos de entrada en cuanto al correcto funcionamiento del programa?