For Human Resources Data Base

15. Find the average, max, min and sum of the salary's of REPresentatives.

SELECT MIN(salary), MAX(salary), AVG(salary), SUM(salary)

FROM employees

WHERE job_id LIKE '%REP5';

16. Find the minimum and maximum hire dates of employees. (most recently and the oldest hire dates)

```
SELECT MIN(hire_date), MAX(hire_date)
```

FROM employees;

17. Find the number of employees working in the department 50.

```
SELECT COUNT(*)
FROM employees
```

WHERE department_id=50;

18. Find the number of employees taking commissions in department 50. (Take care of null values)

```
SELECT COUNT(commission_pct)
```

FROM employees

WHERE department_id=50;

SELECT COUNT(*)
FROM employees

WHERE department id=50 AND commission pct IS NOT NULL;

19. Find the number of departments in those some employees working for.

```
SELECT COUNT(distinct department_id)
```

FROM employees;

20. Find names, job_id and salary of employees whose salary is greater than the minimum salary of department 50.

```
SELECT last_name, job_id, salary
```

FROM employees

WHERE salary = (SELECT MIN(salary) FROM employees);

21. Find the department IDS and minimum salaries of those departments which have higher minimum salary than the department 50's minimum salary.

```
SELECT department_id, MIN(salary)
```

FROM employees
GROUP BY department id

HAVING MIN(salary) > (SELECT MIN(salary)

FROM employees

WHERE department id=50);

22. Find the average commission pct of employees. (Real average)

```
SELECT AVG(commission_pct)
```

FROM employees;

23. Find the average commission_pct of all employees. (General average)

SELECT AVG(NVL(commission_pct,0))
FROM employees;

24. Find the average salaries of all departments.

SELECT department_id, AVG(salary)
FROM employees
GROUP BY department id;

25. For every department those have department_id greater than 40, find the sum of the salaries of every job.

SELECT department_id, job_id, SUM(salary)

FROM employees

WHERE department_id >40 GROUP BY department_id, job_id

ORDER BY department id;

26. For every department, find the maximum salaries, if it is greater than 10.000.

SELECT department_id, MAX(salary)

FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000;

27. List the jobs and the sum of the salary's of that job, if it is more than 1300\$ and they are not any kind of representatives.

SELECT job_id, SUM(salary)

FROM employees

WHERE job_id NOT LIKE '%REP%'

GROUP BY job_id

HAVING SUM(salary)>1300 ORDER BY SUM(salary);

28. Display the maximum average salary.

SELECT MAX(AVG(salary)) FROM employees

GROUP BY department_id;

29. Display the details of the employees who are managed by the same manager and work in the same department as employees with the first name of "John".

PAIRWISE SOLUTION:

SELECT employee_id, manager_id, department_id

FROM employees

WHERE (manager id, department id) IN

(SELECT manager_id, department_id

FROM employees

WHERE first_name= 'John')

```
AND first_name <> 'John';
```

NONPAIRWISE SOLUTION:

SELECT employee_id, manager_id, department_id

FROM employees
WHERE manager_id IN

(SELECT manager_id FROM employees

WHERE first name= 'John')

department_id IN

(SELECT department_id FROM employees

WHERE first_name= 'John')

AND first_name <> 'John';

30. List the employee_id, last name and country information such that country is CANADA for location number 1800 and USA otherwise.

SELECT employee id, last name

(CASE WHEN department_id = (SELECT department_id

FROM departments

WHERE location id= 1800)

THEN 'CANADA' ELSE 'USA' END) location

FROM employees;

31. Find all employees who earn more than the average salary in their department.

SELECT last name, salary, department id

FROM employees outer_table
WHERE salary > (SELECT AVG(salary)

FROM employees inner table

WHERE inner table.department id = outer table.department id);

32. Display details of those employees who have changed jobs at least twice.

SELECT e.employee_id, last_name, e.job_id

FROM employees e

WHERE 2 <= (SELECT count(*) FROM job history

WHERE employee_id = e.employee_id);

33. Find the name's, job id's and department id's of the managers.

SELECT employee_id, last_name, job_id, department_id

FROM employees outer WHERE EXISTS (SELECT 'X'

FROM employees

WHERE manager_id = outer.employee_id);

34. List the names of employees, their commission-pct and salaries and new salaries calculated as %10 rise if they have commission, %20 rise if they do not have commission. (use NVL2)

SELECT first_name, last_name, commission_pct, salary, NVL2(commission_pct,salary*1.1,salary*1.2)

"new salary"

FROM employees;

35. Find the names of departments which has higher average salary than the overall average salary of the company.

SELCT department_name, AVG(salary)

FROM departments JOIN employees USING (department_id)

GROUP BY department_name

HAVING AVG(salary) > (SELECT AVG(salary)

FROM employees);