STATISTIQUES DESCRIPTIVES MULTIVARIÉES

SIMON COSTE ET PIERRE MONTAGNON

Exercice 1. Trois enfants de 7, 11 et 12 ans ont pour tailles respectives 117, 143 et 144 centimètres.

- (1) Réaliser la régression linéaire de la variable taille par la variable **âge** sur l'échantillon dont on dispose.
- (2) Calculer le R² de la régression et commenter.

Exercice 2. On cherche à étudier une éventuelle relation entre les bénéfices annuels B_i d'une entreprise i et son chiffre d'affaire C_i . On dispose pour cela des données pour n = 68 entreprises.

	Moy.	Méd.	Écart-type	Asym.	Erreur d'asym.	Min.	Max.
B_i	0,2236	0,2150	3, 07404	-6,726	0,291	-23,30	6,26
C_i	15,7096	10,4950	18,91607	2,619	0,291	0,48	102

Par ailleurs, on a $\frac{1}{n} \sum_{i=1}^{n} C_i B_i = 7,0908$.

- (1) Calculer le coefficient de variation des variables B et C. Que peut-on en déduire sur la dispersion des valeurs de C, puis de B?
- (2) On cherche à étudier le modèle linéaire

$$B_i = \alpha C_i + \beta + \epsilon_i. \tag{1}$$

Écrire et démontrer les formules des estimations $\hat{\alpha}, \hat{\beta}$ des coefficients de régression linéaire, puis donner la valeur de ces estimateurs. En déduire la valeur du coefficient de corrélation linéaire entre ces variables.

(3) Le modèle linéaire est-il acceptable? Effectuer un test au niveau de 5%.

Exercice 3. On souhaite mettre en évidence une corrélation entre le temps passé chaque jour devant la télévision (time_tv, en heures) et le taux de cholestérol (cholesterol, en mmol par litre de sang).

- (1) Rappeler les hypothèses du modèle linéaire gaussien dans le cas d'une variable explicative et d'une variable expliquée.
- (2) Énoncer les propriétés des estimateurs des coefficients du modèle linéaire gaussien par la méthode des moindres carrés.
- (3) Commenter en détail les deux lignes inférieures du tableau de résultats suivant :

Date: 6 Avril 2021.

. regress chol	lesterol time_	tv						
Source	SS	df		MS		Number of obs		100
Model Residual	5.04902329 28.3220135	1 98		1902329 9000137		F(1, 98) Prob > F R-squared	=	17.47 0.0001 0.1513
Total	33.3710367	99	.337	7081179		Adj R-squared Root MSE	=	0.1426 .53759
cholesterol	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
time_tv _cons	.0440691 -2.134777	.010		4.18 -1.18	0.000 0.242	.0231461 -5.732812		0649921

(4) Proposez quelques pistes pour améliorer le R² de la régression.

Exercice 4. On dispose pour 55 États du monde des valeurs pour l'année 2003 des variables suivantes :

- Le budget de l'État Betat
- Le budget militaire Bmilit
- Le budget de la défense DefBud
- Les dépenses d'éducation DepEduc
- Le budget de la santé Bsante
- La population active PA
- Le PNB par habitant pnbpop

La planche ci-dessous recense les résultats d'une analyse en composantes principales et d'une régression linéaire menées sur ces données.

- (1) Commenter le tableau 1 et faire le lien avec le R² de la régression linéaire représentée dans le graphique 4. Que devient le R² de la régression si l'on ajoute toutes les variables dont on dispose parmi les variables explicatives? Pourquoi une telle manœuvre n'est-elle pas nécessairement habile?
- (2) Que sont les variables prin1, prin2 et prin3 données dans le tableau 3? À quoi correspondent les coefficients représentés en première ligne de chaque cellule?
- (3) Donner une interprétation des variables prin1, prin2 et prin3.

ANNEXES: Analyse en composantes principales

I) Matrice des corrélations entre les variables initiales

(TABLEAU 1)

	BEtat	DefBud	Dep. Educ	esante	BHITIE	PA	pnbpop
BETAT	1.0000	2680	0.0593	0.4216	1210	0.2326	0.4324
Defoud	2680	1.0000	0123	0.3131	0615	0.1695	0.4004
DepEduc	0.0593	0123	1.0000	0732	0529	0.1071	0.1219
aSante	0.4216	0.3131	0732	1.0000	1467	0.4029	0.7933
antilit	1210	0615	0529	1467	1.0000	0865	1772
PA	0.2386	0.1695	0.1071	0.4029	0865	1.0000	0.4876
pribpop	0.4324	0.4004	0.1239	0.7933	1772	0.4876	1.0000

II) Valeurs propres et inertie

(TABLEAU 2)

	Eigenvalue	Difference	Proportion	Cumulative
1 2	2.58379066 1.27604048	1.30775018 0.23744373	0.3691 0.1823	0.3691 0.5514
4	1.03859675 0.94623884 0.66807084	0.09235791 0.28016800 0.34360652	0.1352 0.0952	0.#350 0.9301
5	0.32246432	0.15566621	0.0461 0.0238	0.9762 1.0000

III) Matrice des cerrélations entre les variables initiales et les composantes principales : (TABLEAU 3)

	prin1	Prin2	Prin3
SEtat	0.54188	-0.71809	-0.17920
	<.0001	<.0001	0.2281
	47	47	47
pefaud	0.39486	0.83989	0.10698
	0.0060	<.0001	0.4741
	47	47	47
DepEduc	0.10157	-0.19518	0.91727
	0.4969	0.1986	<.0001
	47	47	47
BSante	0.87322	0.04999	-0.23988
	<.0001	0.7386	0.1044
	47	47	47
milit	-0.28018	0.09522	-0.28109
	0.0565	0.5244	0.0556
	47	47	47
PA	0.65313	-0.00998	0.13055
	<.0001	0.9469	0.3818
	47	47	47
pnbpop	0.92539	0.07224	0.00771
	<.0001	0.6294	0.9590
	47	47	47

