LSTM networks explained easily

Valerio Velardo

Issues with simple RNNs

- No long-term memory
- Network can't use info from the distant past
- Can't learn patterns with long dependencies

Long Short Term Memory (LSTM)

- Special type of RNN
- Can learn long-term patterns
- Detects patterns with 100 steps
- Struggles with 100s/1000s of steps

Simple RNN vs LSTM

Simple RNN vs LSTM

LSTM cell

- Contains a simple RNN cell
- Second state vector = cell state = long-term memory
- Forget gate
- Input gate
- Output gate
- Gates work as filters

LSTM cell

LSTM cell

Simple RNN cell

Short-term memory/hidden state

- Cell state updated twice
- Few computations -> stabilise gradients

- Cell state updated twice
- Few computations -> stabilise gradients

- Cell state updated twice
- Few computations -> stabilise gradients

$$f_t = \sigma(W_f[h_{t-1}, x_t] + b_f)$$

Sigmoid

$$C_t^f = C_{t-1} * f_t$$
 $C_{t-1} = [1, 2, 4]$
 $f_t = [1, 0, 1]$

$$C_t^f = C_{t-1} * f_t$$
 $C_{t-1} = [1, 2, 4]$
 $f_t = [1, 0, 1]$

$$C_t^f = [1, 2, 4] * [1, 0, 1] = [1, 0, 4]$$

$$C_t^f = C_{t-1} * f_t$$

$$C_{t-1} = [1, 2, 4]$$

 $f_t = [1, 0, 1]$

$$C_t^f = [1, 2, 4] * [1, 0, 1] = [1, 0, 4]$$

$$C_t^f = C_{t-1} * f_t$$

$$C_{t-1} = [1, 2, 4]$$

 $f_t = [1, 0, 1]$

$$C_t^f = [1, 2, 4] * [1, 0, 1] = [1, 0, 4]$$

$$C_t^f = C_{t-1} * f_t$$

$$C_{t-1} = [1, 2, 4]$$

 $f_t = [1, 0, 1]$

$$C_t^f = [1, 2, 4] * [1, 0, 1] = [1, 0, 4]$$

$$C_t^f = C_{t-1} * f_t$$

$$C_{t-1} = [1, 2, 4]$$

 $f_t = [1, 0, 1]$

$$C_t^f = [1, 2, 4] * [1, 0, 1] = [1, 0, 4]$$

$$i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$$

$$i_t = \sigma(W_i[h_{t-1}, x_t] + b_i)$$

$$C'_{t} = tanh(W_{c}[h_{t-1}, x_{t}] + b_{C})$$

$$C_t = C_t^f + C_t^i$$

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$

$$o_t = \sigma(W_o[h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * tanh(C_t)$$

LSTM variants

Gated Recurrent Unit - GRU

What's up next?

Preprocess data for RNN