Naive Bayes

Thursday, April 11, 2024 3:12 PM

Given feature vector $x = (x_1, ..., x_D) \in \mathbb{R}^D$ we attempt a classification problem: $\hat{y} \in \{0, 1, ..., c^3\}$ $P(y = k | x) = \frac{P(x | y = k) P(y = k)}{P(x)}$ Assume features are independent \xrightarrow{n} paive $P(y = k | x) = \frac{P(x_1 | y = k) \cdot ... \cdot P(x_D | y = k) P(y = k)}{P(x)}$

We choose $\hat{y} = \underset{y}{\operatorname{argmax}} P(x_1|y) \cdot ... \cdot P(x_0|y) P(y)$ $= \underset{x}{\operatorname{argmax}} \underbrace{\sum_{i} log P(x_i|y)} + log P(y)$ $P(x_i|y) \text{ we can model by}$ Gaussian distribution