目錄

1.	Maximum Likelihood (ML)	2
	1.1 Introduction	
	1.2 Models	
	Model A	
	Model B	
	Model C	3
	1.3 Comparison	4
2.	Maximum a posteriori approach (MAP)	5
3.	Bayesian approach	6
4.	Discussion	7

Maximum Likelihood (ML)

$W_{ML} = (\Phi^T \Phi)^{-1} \Phi^T \cdot t$ $\hat{y} = \Phi \cdot W_{ML}$

Introduction

在這次的作業中,我用「R 語言」,並將 40000 筆 raw data 切成 4 等分,利用 30000 筆作為 Training data,另外 10000 筆作為 Validation data。

我將 1081 * 1081 的「大平面」切成數個「正方形 subspaces」,並在每個 subspace 都建立一個「二元高斯函數」作為我的 basic function (因為我認為 地形圖就像是用高斯函數疊起來的,所以選高斯,公式如作業提示)

此外,我嘗試做了三個不同的 basic function 模型,分別為 Model A、 Model B、Model C,其中的差異(如下表 1-1、圖 1-1 ~ 圖 1-3)。最後會在 comparison 中比較三種模型的 MSE (Mean Square Error)。

	Model A	Model B	Model C	
Subspace 個數	47 * 47	53 * 53	59 * 59	
Subspace 邊長	23	50	50	
Subspace 之間	否	是	是	
是否有 overlap?	台	(邊長重疊 30)	(邊長重疊 30)	
大平面 range	1~1081	1~1090	-59 ~ 1150	
八十回 Talige	(1081 = 47*23)	1~1090	-39 ~ 1130	
	1~23	1~50	−59 ~ −10	
	24~46	21~70	-39 ~ 10	
Subspace range		•••	• • •	
	1059~1081	1041~1090	1101~1150	
	共 47 個	共 53 個	共 59 個	

表 1-1、Model 差異比較

圖 1-1、Model A 示意圖

圖 1-2、Model B 示意圖

圖 1-3、Model C 示意圖

Models

Model A

結果如右圖,雖然看起來與 ground truth data 有點像,但可以發現整個誤差非常大,且 在低海拔更為嚴重,甚至還會出現負值。

$$E(w) = \frac{MSE}{2} = 1088.34$$
,為一個不理想的 Model。後來覺得可以不用把平面完全分割成獨立的子區域,因此在 Model B 中,將嘗試以 overlap 的方式去建立 basic function $\phi(x)$,此外,還會將算出來的高度做一次檢查,若小於零,則令為零,以降低 MSE。

Model B

結果如右圖,透過 overlap 以及檢測高度是否小於零,這兩個步驟改進了整個模型的準確度,E(w) = 140.19,然而,邊界還是有錯誤的高度出現(原本應該為 0),推測如果再超過邊界的地方加入 basic function,應該可以改進這個問題。

Model C

由右圖可知,邊邊的點幾乎都消失了, E(w) 降至60.35。反推回去,誤差大概介於 ±10 之間,應該是個不錯的適配程度。

(MAP、bayesian 出來的 3D 圖都跟他長得差不多,為了節省版面就不放了)

Comparison

	Model A	Model B	Model C
E(w) (Training data)	1088. 34	140. 19	60. 35
E(w) (Validation data)	1638. 44	170.48	81.73

*
$$E(w) = \frac{MSE}{2}$$

Model A 將整個平面直接分割,故每個 subspace 並沒有重疊,因此每塊區域只會有一個小山丘,但與現實生活不同(地形不像金字塔一樣,一座一座分得這麼開,通常都會有交疊),且因為沒有做任何限制,所以高度可能會出現負值,E(w)超過1000,不慎理想。

Model B 改進了以上缺點,將 subspace 加入重疊的部分,並在最後算出 \hat{y} 後,若高度有負值,則直接令為 0,如此一來E(w)可降至 150 左右。然而,在 3D-plot 中可以發現,大平面的邊邊出現高度,這是不合理的(因為 true value = 0),猜想是因為 range 設置在 $1\sim1090$,故超過 range 的話,並沒有其 他 basic function 可以來平衡高度。

Model C 將大平面 range 增廣為 -59 ~ 1150,如此一來邊邊的高度消失了,E(w)也降至100以下,對我來說已經很滿意了,所以就做到這邊,後面的MAP、Bayesian 也會採用此 model。

Maximum a posteriori approach (MAP)

$$W_{MAP} = m_N = \beta \cdot S_N \cdot \Phi^T \cdot t$$
$$\hat{y} = \Phi \cdot W_{MAP}$$

where

$$S_N = (\alpha I + \beta \Phi^T \Phi)^{-1}$$

在這邊沿用 ML 的 $Model\ C$,透過改變 (α,β) 來控制 regularization coefficient λ $(\lambda = \frac{\alpha}{\beta})$,以下比較 (α,β) 不同組合下的 E(w) 。

由下表可知,隨著 λ 的縮小,training data 的 E(w) 會越來越接近 ML 的,但即使把 λ 設定得很小,進步幅度也有限,最後選擇用 $(\alpha,\beta)=(1,1000)$ 來計算 W_{MAP} (這邊 validation data 的 E(w) 已經比 ML 的小了)。

(α, β)	(1,5)	(1,10)	(1,1000)	(1,1000000)
E(w) (Training data)	69. 02	65. 78	61.55	60. 42
E(w) (Validation data)	89. 58	84. 83	79. 47	77. 91

Bayesian approach

$$\label{eq:pt} \mathrm{p}(\mathbf{t}|\mathbf{x},\mathbf{t},\alpha,\beta) = \mathit{N}(t|m_\mathit{N}^\mathit{T}\cdot\phi(x)\ ,\sigma_\mathit{N}^2(x))$$
 where

$$m_N = \beta \cdot S_N \cdot \Phi^T \cdot t \quad (\Leftrightarrow m_0 = 0)$$

$$\sigma_N^2(x) = \frac{1}{\beta} + \phi(x)^T S_N \phi(x)$$

相較於點估計的 ML & MAP, Bayesian 考慮所有的 w,透過對 w 積分得到後驗分配的機率分布,並取其平均值。可避免如右上圖這種情況(MAP會選擇後驗分配中,機率最大的那個,但有時候這個值並不是最佳解)。

在這邊沿用 ML 的 Model C,以下比較 (α,β) 不同組合下的 E(w),基本上與 MAP 的結果差不多,原因是這邊的平均值就是 MAP,只是再加上一些變異量 σ_N^2 ,所以有可能表現會比 MAP 差一點。

(α, β)	(1,5)	(1,10)	(1,1000)	(1,1000000)
E(w) (Training data)	69. 03	65. 78	61.55	60. 42
E(w) (Validation data)	89. 60	84. 83	79. 49	77. 91

Discussion

□ Underfitting:

ex : $y = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_1^2 + w_4 x_2^2$ 作為 model。得到如右圖的圖形,既不 Fit training data,也不 fit validation data,當然 testing data 也不會準。

□ Overfitting:

若將我在 ML 的 model C 繼續切更細,例如切成 300*300,這樣 model 會有 90001 個 $\phi(x)$,比 data 的量還多,可能會造成 overfitting 的 現象(但我電腦效能有限,沒辦法切這麼細)。由於 ML 容易產生 overfitting,所以可以改用 MAP 去避免(因為有 regularization),但要 注意 $\lambda = \frac{\alpha}{\beta}$ 不可太小,否則也可能會發生 overfitting 的現象。

□ 三種方法的比較:

[ML] 找的是讓概似函數最大的那個參數,經過推導後可以得到 $close ext{-}form$ 的解 $W_{ML}=(\Phi^T\Phi)^{-1}\Phi^T\cdot t$ 。

[MAP] 除了概似函數之外,還把 prior 考慮進去,找出讓 posterior 最大的那個參數,在這邊假設 prior 服從N(w|0, α^{-1} I),將均值設成 0,方便計算,經過推導後,一樣可以得到 close-form 的解 $W_{MAP} = m_N = \beta \cdot S_N \cdot \Phi^T \cdot t$ 。在這題,隨著 λ 的減小,trianing data 的E(w)會自然地接近ML的(詳見公式),但 validation data 的E(w)會表現得比 ML 來得好。

然而,不論是 ML 或是 MAP,都是屬於點估計的方式,找到最好的 W。 [Bayesian] 的方法則是透過對 W 積分,找出後驗機率的分布情况 $p(t|x,t,\alpha,\beta) = N(t|m_N^T \cdot \phi(x),\sigma_N^2(x))$,所以他的表現跟 MAP 應該會很接近 (事實上,機率最高的那個就是 MAP),在這題 Bayesian 的表現略遜於 MAP