

CENTROIDE Y MOMENTO DE INERCIA DE FIGURAS GEOMETRICAS

Figura	x	Ÿ	Area	Ixc	Iyc	Ix	Iy
a b X	<u>b</u> 2	<u>a</u> 2	ab	<u>ba³</u> 12	<u>ab³</u> 12	<u>ba</u> ³ 3	<u>ab³</u> 3
Y h X	<u>b</u> 3	<u>h</u> 3	<u>b h</u> 2	<u>bh³</u> 36	<u>hb³</u> 36	<u>bh³</u> 12	hb ³ 12
$Y = \sum_{\text{radio} = R} X$	R	R	πR^2	$\frac{\pi R^4}{4}$	$\frac{\pi R^4}{4}$	<u>5πR</u> ⁴ 4	<u>5πR</u> ⁴ 4
Y x radio = R	<u>R</u> 2	<u>4R</u> 3π	$\frac{\pi R^2}{2}$	0.1098 R ⁴	$\frac{\pi R^4}{8}$	<u>π R⁴</u> 8	$\frac{5\pi R^4}{8}$
Y X radio = R	<u>4R</u> 3π	$\frac{4R}{3\pi}$	$\frac{\pi R^2}{4}$	0.0549 R ⁴	0.0549 R ⁴	<u>π R⁴</u> 16	<u>π R⁴</u> 16
Y h h	<u>a+b</u> 3	<u>h</u> 3	<u>b h</u> 2	<u>bh³</u> 36	$\frac{bh}{36}(a^2-ab+b^2)$	<u>bh³</u> 12	$\frac{bh}{12}(a^2+ab+b^2)$

Leyenda

 Ix_c = momento de inercia respecto al centroide del eje X (horizontal)

 $\mathbf{I} \mathbf{y}_c$ = momento de inercia respecto al centroide del eje Y (vertical)

Ix = momento de inercia respecto al eje X

Iy = momento de inercia respecto al eje Y

Ing. Rolando Nateros Porras

	FORMA (ÁREAS)	X	y	ÁREA
ÁREA TIZIANGULAIR		$\left(\frac{1}{3}(a+b)\right)$	h 3	<u>bh</u> 2
UN CUARTO DE ÁREA CIRCULAR		$\frac{4r}{3\pi}$	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{4}$
ÁREA SEMICIRCULAR		0	$\frac{4r}{3\pi}$	$\frac{\pi r^2}{2}$
ÁREA SEMIPARADÓLICA	e+)	3a 8	3h 5	2ah 3
ÁREA PARAVÓLICA		0	3h 5	4ah 3
TÎMPANO Paravólico	g-lx2	3a 4	3h 10	<u>ah</u> 3
SECTOR CIRCULAR	0 10 0	2r senα 3α	0	αr^2

	FORMA (LÎNEAS)	X	9	área
UN CUARTO DE URCO CIRCULAR	X.	$\frac{2r}{\pi}$	$\frac{2r}{\pi}$	$\frac{\pi r}{2}$
ARCO SEMICIRCULAR	0 1 5	0	$\frac{2r}{\pi}$	πг
ARCO DE UN CIRCULO		r sena a	0	2ar
CIRCUIC		e e		

