4° . Потенциал поля тяготения. Ньютоно-

$$u(x, y, z) = \iiint_V \rho(\xi, \eta, \zeta) \frac{d\xi d\eta d\zeta}{r},$$

где V — объем тела, $\rho = \rho (\xi, \eta, \zeta)$ — плотность тела, и $r = \sqrt{(\xi - x)^2 + (\eta - y)^2 + (\zeta - z)^2}$.

Материальная точка массы m притягивается телом с силой F = (X, Y, Z), проекции которой X, Y, Z на оси координат Ox, Oy, Oz равны:

$$X = km \frac{\partial u}{\partial x} = km \iint_{V} \int \rho \frac{\xi - x}{r^{3}} d\xi d\eta d\zeta,$$

$$Y = km \frac{\partial u}{\partial y} = km \iint_{V} \rho \frac{\eta - y}{r^{3}} d\xi d\eta d\zeta,$$

$$Z = km \frac{\partial u}{\partial z} = km \iint_{V} \rho \frac{\xi - z}{r^{3}} d\xi d\eta d\zeta,$$

где k - постоянная закона тяготения.

a>0, b>0, c>0)

4131. Найти массу тела, занимающего единичный объем $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$, если плотность тела в точке M(x, y, z) дается формулой $\rho = x + y + z$.

4132. Найти массу тела, заполняющего бесконечную область $x^2+y^2+z^2\geqslant 1$, если плотность тела меняется по закону $\rho=\rho_0e^{-k\sqrt{x^2+y^2+z^2}}$, где $\rho_0>0$ и k>0 постоянны.

Найти координаты центра тяжести однородных тел, ограниченных следующими поверхностями:

4133.
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z^2}{c^2}$$
, $z = c$.
4134. $z = x^2 + y^2$, $x + y = a$, $x = 0$, $y = 0$, $z = 0$.
4135. $x^2 = 2pz$, $y^2 = 2px$, $x = \frac{p}{2}$, $z = 0$.
4136. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, $x = 0$, $y = 0$, $z = 0$.
4137. $x^2 + z^2 = a^2$, $y^2 + z^2 = a^2$ ($z > 0$).
4138. $x^2 + y^2 = 2z$, $x + y = z$.
4139. $\left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}\right)^2 = \frac{xyz}{abc}$ ($x > 0$, $y > 0$, $z > 0$;