BUNDESREPUBLIK DEUTSCHLAND

BIEBER Q79410
METHOD AND DEVICE FOR DISPLAYING
INFORMATION PERTAINING TO AN
INSTALLATION PART OF AN INDUSTRIAL
INSTALLATION ON A MOBILE DISPLAY
Filed: March 1, 2004
SUGHRUE MION 202-293-7060
1 of 1

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 17 139.8

Anmeldetag:

14. April 2003

Anmelder/Inhaber:

Siemens Aktiengesellschaft, 80333 München/DE

Bezeichnung:

Verfahren und Vorrichtung zur Anzeige von ein Anlagenteil einer Industrieanlage betreffenden Informationen auf einem mobilen Display

IPC:

G 05 B, G 06 F

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 12. Januar 2004 Deutsches Patent- und Markenamt

Der-Präsident

Wallner

Beschreibung

Verfahren und Vorrichtung zur Anzeige von ein Anlagenteil einer Industrieanlage betreffenden Informationen auf einem mobilen Display

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Anzeige von ein Anlagenteil einer Industrieanlage betreffenden Informationen auf einem mobilen Display.

10

15

20

5

Im Zusammenhang mit industriellen Produktions- und Fertigungsanlagen, deren Anlagenteile örtlich weit voneinander entfernt angeordnet sein können, ist es bereits bekannt, mobile Anzeigegeräte zu verwenden. Diese Anzeigegeräte weisen ein Display auf, auf welchem Informationen über das jeweilige Anlagenteil in Form von Bildern und alphanumerischen Daten angezeigt werden. Diese angezeigten Informationen können eine Detailansicht des Anlagenteils, alphanumerische Informationen wie Prozessdaten, Anweisungen an den Bediener und Alarminformationen und den Anlagenteil betreffende Kurven enthalten.

25

30

Um zu diesen Informationen zu gelangen, muss der Bediener die Daten, die zum jeweiligen Anlagenteil gehören, manuell von einer zugehörigen zentralen Auswertestation abrufen. Dazu benötigt er Kenntnisse über den Aufbau der gesamten Industrieanlage, die unter anderem mehrere zentrale Auswertestationen aufweisen kann. Anhand dieser Kenntnisse muss er in der in der Auswertestation hinterlegten Datenbank navigieren, um an die dem gewünschten Anlagenteil zugehörigen Daten zu gelangen. Dies ist umständlich und zeitaufwendig. Weiterhin ist dabei nachteilig, dass der Bediener Kenntnisse über den Aufbau der Industrieanlage benötigt, insbesondere auch Kenntnisse von der Projektierung und einer visualisierten Anlagenführung.

35

Ein derartiges Szenario ist beispielsweise in der WO 02/075466 A2 beschrieben. Gegenstand der dortigen Ausführun-

10

15

20

35

gen ist eine Bedienung und/oder Beobachtung der eine Anlagen-Steuerung überwachenden Einrichtung. Diese weist ein mit einer Anlage gekoppeltes Steuergerät an wenigstens einem abgesetzten, mit der Überwachungseinrichtung kommunizierenden Bediengerät auf. Im Rahmen der Überwachungseinrichtung oder eines an diese angeschlossenen Gerätes ist ein zusätzlicher Funktionsblock vorgesehen, insbesondere in Form eines zusätzlichen Programmes. Der zusätzliche Funktionsblock schaltet sich nach Art eines Schnittstellenbausteins in die Kommunikation zwischen der Überwachungseinrichtung oder einem Überwachungs-Funktionsblock einerseits und den angeschlossenen Bediengeräten andererseits ein, wertet die an ein angeschlossenes Bediengerät gerichteten Informationen aus und bereitet sie derart auf, dass die sodann weitergeleiteten Informationen von dem betreffenden Bediengerät nach Art eines Terminal direkt angezeigt werden können. Die Verbindung zwischen einem zentralen Bedienungs- und Überwachungsgerät bzw. einem Server und einem dezentral angeordneten Bediengerät bzw. Client-Rechner kann über sternförmig beim Server zusammenlaufende Datenleitungen, über ein Netzwerk mit einer Ringstruktur, wobei jeder angeschlossene Client-Rechner eine individuelle Adresse besitzt, über Infrarot- oder Funksschnittstellen, über ein nationales Datennetz oder über ein internationales Datennetz erfolgen, wobei die Kommunikation bei Bedarf auch mittels Satelliten über Ozeane hinweg geführt werden kann.

Der Erfindung liegt die Aufgabe zugrunde, die oben angegebenen Nachteile bekannter Anlagen zu vermeiden.

Diese Aufgabe wird durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen und eine Vorrichtung mit den im Anspruch 7 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung ergeben sich aus den abhängigen Ansprüchen.

Die Vorteile der Erfindung bestehen insbesondere darin, dass ein Bediener automatisch dem Anlagenteil, in bzw. bei dem er

10

15

30

35

sich momentan aufhält, zugehörige Informationen als Bildsignal auf dem Display des mobilen Anzeigegerätes angezeigt bekommt. Dies erhöht den Komfort von Bedien-, Service- und Diagnosearbeiten in komplexen Industrieanlagen. Insbesondere kann eine Diagnose des Zustands eines Anlagenteils vor Ort schnell und präzise erfolgen. Diese Diagnose kann auch von weniger qualifiziertem Personal vorgenommen werden, da im Unterschied zum Stand der Technik kein umständliches, schrittweise erfolgendes Abrufen von Daten aus einer Zentrale notwendig ist. Vielmehr erlaubt die Erfindung eine mobil vor Ort erfolgende Direkteinsicht in dem jeweiligen Anlagenteil zugehörige Informationen, deren Anzeige automatisch als Folge der Aussendung eines den Anlagenteil spezifizierenden Kennsignals herbeigeführt wird. Werden die Kennsignale in Form von Funksignalen ausgesendet, dann wird die automatische Anzeige der dem Anlagenteil zugehörigen Informationen in die Wege geleitet, sobald der Benutzer mit seinem mobilen Anzeigegerät in die Nähe des Anlagenteils kommt.

20 Gemäß einer Ausführungsform der Erfindung strahlt der Funksender des Anlagenteils das den Anlagenteil spezifizierende Funksignal permanent und pulsierend aus.

Gemäß einer anderen Ausführungsform der Erfindung strahlt der Funksender des Anlagenteils das den Anlagenteil spezifizierende Funksignal nur beim Vorliegen einer Störung im Anlagenteil aus. Dadurch wird in vorteilhafter Weise vermieden, dass innerhalb einer Anlage gleichzeitig unnötig viele Funksignale ausgestrahlt werden.

Eine vorteilhafte Weiterbildung der Erfindung besteht darin, eine erste Betriebsart vorzusehen, bei welcher der Funksender des Anlagenteils das den Anlagenteil spezifizierende Funksignal permanent und pulsierend ausstrahlt, eine zweite Betriebsart vorzusehen, bei welcher der Funksender des Anlagenteils das den Anlagenteil spezifizierende Funksignal nur beim Vorliegen einer Störung des Anlagenteils ausstrahlt, und eine

10

15

20

30

35

Umschaltmöglichkeit zwischen den beiden genannten Betriebsarten vorzusehen.

Kommt es aufgrund einer Ausstrahlung von Funksignalen mehrerer Anlagenteile zu zeitlichen Überlappungen, dann erfolgt in vorteilhafter Weise gemäß dem Anspruch 4 eine automatische Zuordnung unterschiedlicher Prioritäten zu den empfangenen Funksignalen. Diese Zuordnung ist in vorteilhafter Weise vom Bediener konFIG ierbar. Beispielsweise hat er die Möglichkeit, dem das Anlagenteil spezifizierende Funksignal zusätzliche Informationen zuzusetzen, die beispielsweise ein Signalisieren eines Notfalls, ein Signalisieren eines Fehlers oder ein Signalisieren eines störungsfreien Zustandes betreffen, und einem Notfall eine höhere Priorität zuzuordnen als einer einfachen Fehlermeldung und dieser wiederum eine höhere Priorität zuzuordnen als dem störungsfreien Zustand. Treffen gleichzeitig Funksignale unterschiedlicher Prioritäten am mobilen Anzeigegerät ein, dann wird automatisch das Funksignal mit der höchsten Priorität oder ein daraus abgeleitetes Übertragungssignal zuerst an die zentrale Auswertestation weitergeleitet. Diese überträgt daraufhin automatisch Informationen, die den das Funksignal mit der höchsten Priorität ausstrahlenden Anlagenteil betreffen, an das Anzeigegerät zurück, so dass diese auf dem Display angezeigt werden können. Eine Übertragung von Funksignalen mit niedriger Priorität wird vorerst zurückgestellt.

Gemäß den Merkmalen des Anspruchs 5 wird dem Bediener die Möglichkeit eingeräumt, anhand eines auf dem Display angezeigten Auswahl-Bildsignals vor Ort eine Prioritätszuordnung vorzunehmen.

Die Vorteile einer Vorrichtung mit den im Anspruch 6 angegebenen Merkmalen bestehen darin, dass der Bediener bei einem Vorliegen mehrerer Auswertestationen sich nicht darum kümmern muss, von welcher dieser Stationen er die jeweils gewünschten

Informationen abrufen muss. Dies wird automatisch durch eine Auswertung des jeweils übertragenen Funksignals erkannt.

Weitere vorteilhafte Eigenschaften der Erfindung ergeben sich aus der Erläuterung von Ausführungsbeispielen anhand der FIG en. Es zeigt

FIG 1 ein Blockschaltbild einer Vorrichtung gemäß einem ersten Ausführungsbeispiel für die Erfindung,

10

5

FIG 2 ein Blockschaltbild einer Vorrichtung gemäß einem zweiten Ausführungsbeispiel für die Erfindung und

15

20

30

FIG 3 ein Blockschaltbild einer Vorrichtung gemäß einem dritten Ausführungsbeispiel für die Erfindung.

Die FIG 1 zeigt ein Blockschaltbild einer Vorrichtung gemäß einem ersten Ausführungsbeispiel für die Erfindung. Die dargestellte Vorrichtung weist eine zentrale Auswertestation 8 auf, in welcher alle wesentlichen Daten gespeichert sind, die zu einer Industrieanlage A gehören. Zu diesen wesentlichen Daten gehören im Rahmen der Projektierung erstellte Bilder von Anlagenteilen und den Anlagenteilen zugehörige Prozessdaten, wobei diese Prozessdaten der zentralen Auswertestation 25 / im Laufe des Prozesses zugeführt werden. Zu den wesentlichen Daten gehört weiterhin ein den jeweiligen Anlagenteil individuell spezifizierendes Ortskennzeichen, welches den Standort des Anlagenteiles beschreibt. Anlagenteile sind beispielsweise Kessel, Regler und Ventile. Ein Beispiel für ein Ortskennzeichen lautet wie folgt:

"Kessel 22-Bierpulver-Halle 22-Sektor7-Raum 18-Quadrat C9".

Die zentrale Auswertestation 8 ist über eine Übertragungs-35 strecke 7 mit einem mobilen Anzeigegerät 1 verbunden. Bei der Übertragungsstrecke 7 handelt es sich um eine drahtlose Übertagungsstrecke, über welche Signale über große Entfernungen

10

übertragen werden können. Das mobile Anzeigegerät ist ein kleines Handgerät, welches von einer Bedienperson in der Hand getragen und bedient werden kann. Beispielsweise handelt es sich beim Anzeigegerät 1 um einen sogenannten persönlichen digitalen Assistenten (PDA), ein Handy oder einen mobilen Industriekommunikator. Mobile Industriekommunikatoren werden von der Anmelderin unter der Bezeichnung MOBIC® am Markt angeboten und werden üblicherweise zu einer Erfassung von Qualitätsdaten, zu einer Einsicht in Ersatzteillisten, zu einer Sichtbarmachung von Prozesszuständen, zu einer Quittierung von Arbeitsaufträgen oder zu einem Empfangen von detaillierten Einsatzplänen im mobilen Einsatz verwendet.

Das in der FIG 1 gezeigte mobile Anzeigegerät 1 weist ein
Display 2, eine Bedientastatur 3, einen Funkempfänger 4, einen Controller 5 und eine Sende- und Empfangseinheit 6 auf.
Letztere ist zur Ausgabe von Signalen an die Übertragungsstrecke 7 und zum Empfang von Signalen vorgesehen, die von der zentralen Auswertestation 8 über die Übertragungsstrecke 7 an das mobile Anzeigegerät 1 ausgesendet werden. Der Funkempfänger 4 dient zum Empfang von Signalen, die vom Funksender eines Funkmoduls ausgestrahlt werden, welches am oder in einem Anlagenteil einer Industrieanlage A angeordnet ist.

Die dargestellte Industrieanlage A weist Anlagenteile A₁,
..., A_n auf. Dem Anlagenteil A₁ ist ein Funksender S₁, dem Anlagenteil A₂ ein Funksender S₂, dem Anlagenteil A₃ ein Funksender S₃ und dem Anlagenteil A_n ein Funksender S_n zugeordnet.

Jeder dieser Funksender ist Bestandteil eines Funkmoduls. Der Funksender S₁ strahlt Funksignale s1 aus. Der Funksender S₂ strahlt Funksignale s2 aus. Der Funksender S₃ strahlt Funksignale s3 aus und der Funksender S_n strahlt Funksignale sn aus. Die Reichweite der von diesen Funksendern ausgestrahlten Funksignale ist jeweils gering, so dass der Funkempfänger 4 des mobilen Anzeigegerätes 1 die von einem der genannten Funksender ausgestrahlten Signale nur âann empfangen kann,

10

wenn das mobile Anzeigegerät 1 in die Nähe des jeweiligen Anlagenteils gebracht wird.

Möchte eine Bedienperson einen der Anlagenteile vor Ort bedienen, warten oder kontrollieren, dann begibt sie sich mit dem Anzeigegerät 1 in unmittelbare Nähe dieses Anlagenteils. In der FIG 1 ist das Anzeigegerät 1 in unmittelbarer Nähe des Anlagenteils A2 positioniert. In dieser Position ist der Funkempfänger 4 des Anzeigegerätes dazu in der Lage, die vom Funksender S2 ausgestrahlten Funksignale s2 zu empfangen. Diese Funksignale s2 spezifizieren den Anlagenteil A2. Sie enthalten ein Ortskennzeichen, das den Standort des Anlagenteils A2 beschreibt.

15 Das vom Funkempfänger 4 empfangene Funksignal oder ein daraus abgeleitetes Übertragungssignal wird von der Sende- und Empfangseinheit 6 an die Übertragungsstrecke 7 weitergegeben und über diese an die zentrale Auswertestation 8 weitergeleitet. Diese erkennt anhand des übertragenen Signals, dass sich das 20 Anzeigegerät derzeit in der Nähe des Anlagenteils A2 befindet und sendet über die Übertragungsstrecke 7 das Anlagenteil A2 betreffende Informationen an das Anzeigegerät 1 zurück. Zu diesen übertragenen Informationen gehören beispielsweise eine im Rahmen der Projektierung der Industrieanlage erstellte graphische Ansicht des Anlagenteils, dem Anlagenteil zugehörige alphanumerische Daten und dem Anlagenteil zugehörige aktuelle Prozessdaten, die in der zentralen Auswertestation 8 verfügbar sind. Diese über die Übertragungsstrecke 7 zurückgesandten Informationen werden von der Sende- und Empfangs-30 einheit 6 des Anzeigegerätes 1 empfangen und dann entweder direkt oder nach einer ggf. notwendigen Signalaufbereitung

Alle vorstehend beschriebenen Vorgänge laufen automatisch ab, sobald das den Anlagenteil A_2 spezifizierende Funksignal s2 vom Funkempfänger 4 des Anzeigegerätes 1 empfangen wird. Für eine Bedienperson besteht folglich keinerlei Notwendigkeit,

auf dem Display 2 des Anzeigegerätes 1 angezeigt.

die das Anlagenteil A₂ betreffenden Informationen durch Bedienvorgänge an der Tastatur 3 des Anzeigegerätes 1 und ein Navigieren in einer in der zentralen Auswerteeinheit 8 hinterlegten Datenbank Schritt für Schritt abzurufen. Dies stellt im Vergleich zu bisher bekannten Lösungen eine wesentliche Vereinfachung für den jeweiligen Bediener dar. Insbesondere benötigt dieser keine Detailkenntnisse vom Gesamtaufbau der Industrieanlage und keine Detailkenntnisse der erfolgten Projektierung der Anlage. Weiterhin spart er Zeit, da die gewünschten Informationen beim erfindungsgemäßen Vorgehen wesentlich schneller am Display 2 dargestellt werden als beim Stand der Technik.

Gemäß einer ersten Ausführungsform der Erfindung strahlen die Funksender $S_1...S_n$ ihre Funksignale ständig pulsierend aus. Dies hat den Vorteil, dass die Funksignale zu jedem beliebigen Zeitpunkt empfangbar sind. Notwendig ist lediglich, dass das Anzeigegerät 1 in die Nähe des jeweiligen Anlagenteils gebracht wird.

20

30

35

5

10

15

Gemäß einer zweiten Ausführungsform der Erfindung strahlen die Funksender $S_1...S_n$ ihre Funksignale nur dann ab, wenn im jeweiligen Anlagenteil eine Störung vorliegt. Beispielsweise wird der zentralen Auswertestation 8 von einem Sensor eines Anlagenteils eine Störung gemeldet. Aufgrund dieser Störungsmeldung wird ein Servicetechniker, der mit einem Anzeigegerät 1 ausgestattet ist, zu dem Anlagenteil geschickt, in welchem die Störung vorliegt. Sobald sich der Servicetechniker im Empfangsbereich der das gestörte Anlagenteil spezifizierenden Funksignale befindet, werden diese vom Funkempfänger 4 des Anzeigegerätes 1 empfangen. Als Folge davon werden automatisch dem gestörten Anlagenteil zugehörige Informationen auf dem Display 2 des Anzeigegerätes 1 angezeigt. Zu diesen Informationen gehören eine graphische Darstellung des Anlagenteils und alphanumerische und/oder bildliche Anweisungen für das erforderliche Vorgehen bei der Beseitigung der Störung.

Der Vorteil der zweiten Ausführungsform, gemäß welcher die Funksignale nur beim Vorliegen einer Störung eines Anlagenteils ausgestrahlt werden, bestehen insbesondere darin, dass innerhalb der Industrieanlage nicht unnötig viele Funksignale ausgestrahlt werden.

Die FIG 2 zeigt ein Blockschaltbild einer Vorrichtung gemäß einem zweiten Ausführungsbeispiel für die Erfindung.

Die in der FIG 2 dargestellte Vorrichtung unterscheidet sich von der in der FIG 1 dargestellten Vorrichtung dadurch, dass sie außer der Auswertestation 8 weitere Auswertestationen 9 und 10 aufweist, wie es in großen Industrieanlagen aus Kapazitätsgründen vorteilhaft ist. Die Auswertestationen 8, 9 und 10 stehen, wie es in der FIG 2 durch die gestrichelte Linie angedeutet ist, miteinander in Verbindung. Folglich kann zwischen den Auswertestationen bei Bedarf ein Austausch von Daten erfolgen.

In der Auswertestation 8 sind alle wesentlichen Daten gespeichert, die zum Anlagenteil A₁ der Industrieanlage gehören. Zu diesen wesentlichen Daten gehören eine im Rahmen der Projektierung erstellte graphische Ansicht des Anlagenteils A₁ und dem Anlagenteil A₁ zugehörige Prozessdaten, wobei diese Prozessdaten der Auswertestation 8 im Laufe des Prozesses zugeführt werden. Zu den wesentlichen Daten gehört weiterhin ein den Anlagenteil A₁ individuell spezifizierendes Ortskennzeichen, welches den Standort des Anlagenteils A₁ beschreibt.

In der Auswertestation 9 sind alle wesentlichen Daten gespeichert, die zum Anlagenteil A₂ der Industrieanlage gehören. Zu
diesen wesentlichen Daten gehören eine im Rahmen der Projektierung erstellte graphische Ansicht des Anlagenteils A₂ und
dem Anlagenteil A₂ zugehörige Prozessdaten, wobei diese Prozessdaten der Auswertestation 9 im Laufe des Prozesses zugeführt werden. Zu den wesentlichen Daten gehört weiterhin ein

10

35

den Anlagenteil A_2 individuell spezifizierendes Ortskennzeichen, welches den Standort des Anlagenteils A_2 beschreibt.

In der Auswertestation 10 sind alle wesentlichen Daten gespeichert, die zu den Anlagenteilen $A_3...A_n$ gehören. Zu diesen wesentlichen Daten gehören im Rahmen der Projektierung erstellte graphische Ansichten der Anlagenteile $A_3...A_n$ und den Anlagenteilen zugehörige Prozessdaten, wobei diese Prozessdaten der Auswertestation 10 im Laufe des Prozesses zugeführt werden. Zu den wesentlichen Daten gehören weiterhin die Anlagenteile $A_3...A_n$ jeweils individuell spezifizierende Ortskennzeichen, welche die Standorte der Anlagenteile beschreiben.

Die Auswertestationen 8, 9 und 10 sind jeweils über eine 15 Übertragungsstrecke 7 mit einem mobilen Anzeigegerät 1 verbunden. Bei der Übertragungsstrecke 7 handelt es sich um eine drahtlose Übertragungsstrecke, über welche Signale über große Entfernungen übertragen werden können. Das mobile Anzeigege-20 rät 1 ist ebenso wie beim Ausführungsbeispiel gemäß FIG 1 ein kleines Handgerät, welches von einer Bedienperson in der Hand getragen und bedient werden kann. Es weist ein Display 2, eine Bedientastatur 3, einen Funkempfänger 4, einen Controller 5 und eine Sende- und Empfangseinheit 6 auf. Letztere ist zur Ausgabe von Signalen an eine der Übertragungsstrecken 7 und zum Empfang von Signalen vorgesehen, die von einer der Auswertestationen 8, 9, 10 über eine der Übertragungsstrecken 7 an das mobile Anzeigegerät 1 gesendet werden. Der Funkempfänger 4 dient zum Empfang von Signalen, die vom Funksender ei-30 nes Funkmoduls ausgestrahlt werden, welches am oder in einem Anlagenteil einer Industrieanlage A angeordnet ist.

Der Aufbau der Industrieanlage A gemäß FIG 2 stimmt mit dem Aufbau der Industrieanlage A gemäß FIG 1 überein.

Ein Unterschied zwischen der in der FIG 2 dargestellten Vorrichtung und der in der FIG 1 dargestellten Vorrichtung be-

10

15

20

25

30

steht darin, dass der Controller 5 die Funktion einer Auswerteeinheit aufweist, die anhand des jeweils empfangenen Funksignals ermittelt, in welcher der Auswertestationen 8, 9 oder 10 die dem das Funksignal ausstrahlenden Anlagenteil zugehörigen Informationen verfügbar sind. Eine diesbezügliche Information ist beispielsweise im Funksignal enthalten, das vom jeweiligen Anlagenteil ausgestrahlt wird. Hat die Auswerteeinheit 5 die jeweils zuständige Auswertestation ermittelt, dann leitet sie das empfangene Funksignal oder ein daraus abgeleitetes Übertragungssignal über die zugehörige Übertragungsstrecke 7 an die ermittelte Auswerteeinheit weiter. Diese identifiziert anhand des übertragenen Signals den das Funksignal aussendenden Anlagenteil und sendet über die Übertragungsstrecke 7 dem Anlagenteil zugehörige Informationen an das Anzeigegerät 1 zurück, so dass diese Informationen auf dem Display 2 des Anzeigegerätes 1 dargestellt werden können.

Eine Alternative zu der vorstehend beschriebenen Ausführungsform besteht darin, dass das Anzeigegerät 1 das empfangene Funksignal oder ein daraus abgeleitetes Signal an die nächstliegende Auswertestation weiterleitet. Diese ruft in dem Fall, dass die gewünschten Informationen in einer der anderen Auswertestationen verfügbar sind, die gewünschten Informationen aus der jeweiligen anderen Auswertestation ab und überträgt sie dann an das mobile Anzeigegerät 1 zurück, auf dessen Display sie angezeigt werden.

Gemäß diesem Ausführungsbeispiel werden folglich die benötigen Informationen automatisch aus der jeweils zugehörigen Auswertestation abgerufen. Der Bediener benötigt keinerlei Informationen darüber, in welcher Auswertestation die zu einem bestimmten Anlagenteil gehörigen Informationen verfügbar sind.

Die FIG 3 zeigt ein Blockschaltbild einer Vorrichtung gemäß einem dritten Ausführungsbeispiel für die Erfindung.

Die in der FIG 3 dargestellte Vorrichtung unterscheidet sich von der in der FIG 1 dargestellten Vorrichtung dadurch, dass die Anlagenteile A_1 , A_2 und A_3 nahe beieinander angeordnet sind. Dies führt dazu, dass der Funkempfänger 4 des mobilen Anzeigegerätes 1 von den Funksendern S_1 , S_2 und S_3 ausgestrahlte Funksignale gleichzeitig empfangen kann.

Um die damit verbundene Problematik zu beseitigen, weist der Controller 5 des Anzeigegerätes 1 eine Kollisionserkennungs-komponente auf, die im Falle eines Empfangs mehrerer verschiedener Funksignale den empfangenen Funksignalen automatisch unterschiedliche Prioritäten zuordnet.

Eine erste Möglichkeit einer Prioritätszuordnung besteht darin, dass den einzelnen Anlagenteilen als solchen unterschiedliche Prioritäten zugeordnet werden. Im Falle einer Kollision
wird denjenigen Funksignalen, die vom Anlagenteil mit der
höchsten Priorität ausgestrahlt werden, ihrerseits die höchste Priorität zugeordnet. Diese Funksignale oder daraus abgeleitete Signale werden zuerst an die zentrale Auswerteeinheit
8 weitergeleitet. Diese sendet daraufhin zugehörige Informationen an das mobile Anzeigegerät 1 zur Darstellung auf dem
Display 2 zurück. Eine Übertragung der Signale niedrigerer
Priorität wird vorerst zurückgestellt und zu einem späteren
Zeitpunkt nachgeholt.

Eine zweite Möglichkeit einer Prioritätszuordnung besteht darin, im jeweils ausgestrahlten Funksignal eine weitere Kennung zu übertragen, welche Auskunft über den Betriebszustand des jeweiligen Anlagenteils gibt. Beispielsweise enthält die Kennung eine Information darüber, ob im Anlagenteil ein Notfall aufgetreten ist, ob im Anlagenteil ein kleinerer Fehler aufgetreten ist, der gelegentlich beseitigt werden sollte, oder ob sich der Anlagenteil im störungsfreien Zustand befindet. Einem Notfall ist die höchste Priorität zugeordnet, einem fehlerhaften Betriebszustand eine mittlere Priorität und dem störungsfreien Zustand eine niedrige Priorität.

10

15

20

Wird beispielsweise vom Anlagenteil A3 ein einen Notfall anzeigendes Funksignal, vom Anlagenteil A2 ein einen Fehler anzeigenden Funksignal und vom Anlagenteil A1 ein Funksignal ausgestrahlt, welches einen störungsfreien Zustand anzeigt, dann sorgt die Kollisionserkennungskomponente 5 dafür, dass das den Notfall anzeigende Funksignal oder ein daraus abgeleitetes Übertragungssignal als Erstes an die zentrale Auswertestation 8 weitergeleitet wird. Diese stellt zuerst dem Anlagenteil A3 zugehörige Informationen zur Verfügung, die über die Übertragungsstrecke 7 an das Anzeigegerät 1 zurückübertragen und auf dessen Display 2 angezeigt werden. Die angezeigten Informationen enthalten ein graphische Darstellung des Anlagenteils A3 sowie alphanumerische Hinweise zur Behebung des Notfalls. Eine Übertragung der Signale niedrigerer Priorität wird vorerst zurückgestellt und zu einem späteren Zeitpunkt nachgeholt.

Gemäß einer vorteilhaften Weiterbildung der Erfindung ist die vorstehend beschriebene Prioritätszuordnung vom Bediener mittels der Bedienelemente 3 des mobilen Anzeigegerätes 1 frei konfigurierbar. Beispielsweise kann er eine ursprünglich vorgenommene Prioritätszuordnung bei Bedarf verändern. Stellt sich im Betrieb der Industrieanlage heraus, dass alle Betriebszustände eines bestimmten Anlagenteils, die vom störungsfreien Betrieb dieses Anlagenteils abweichen, vorrangig zu beobachten sind, dann kann diesem Umstand durch eine geänderte Prioritätszuordnung Rechnung getragen werden.

Eine andere Ausführungsform der Erfindung besteht darin, das
30 Anzeigegerät 1 mit einer Kollisionserkennungskomponente 5
auszustatten, die im Falle eines Empfangs mehrerer verschiedener Funksignale ein Auswahl-Bildsignal bereitstellt, das
auf dem Display 2 angezeigt wird. In dieser Display-Darstellung kann der Bediener mittels der Bedienelemente 3 des
35 Anzeigegerätes einen der Anlagenteile, von dem die kollidierenden Funksignale stammen, auswählen. Hat der Bediener diese
Auswahl vorgenommen, dann wird zuerst das Funksignal des aus-

gewählten Anlagenteils oder ein aus diesem Funksignal abgeleitetes Übertragungssignal an die zentrale Auswerteeinheit 8 weitergeleitet. Diese sendet daraufhin zugehörige Informationen an das mobile Anzeigegerät 1 zur Darstellung auf dem Display 2 zurück. Eine Übertragung der Signale der nicht ausgewählten Anlagenteile wird vorerst zurückgestellt und zu einem späteren Zeitpunkt nachgeholt.

Bei den oben beschriebenen Ausführungsbeispielen wurde die 10 den jeweiligen Anlagenteil spezifizierende Information als Funksignal an das Anzeigegerät 1 übertragen. Diese Übertragung per Funk ist wegen des geringen Aufwands und wegen der hohen Empfangssicherheit bevorzugt. Es ist aber auch möglich, die den jeweiligen Anlagenteil spezifizierenden Informationen auf andere Weise zum Anzeigegerät 1 zu übertragen, beispiels-15 weise als Infrarotsignal oder unter Verwendung eines Kabels. Im Falle einer Infrarotübertragung ist jedoch im Vergleich zu eine Funkübertragung die Empfangssicherheit reduziert. Im Falle einer Kabelübertragung besteht die Notwendigkeit, das 20 Anzeigegerät und den jeweiligen Anlagenteil mittels eines Kabels miteinander zu verbinden.

5

Patentansprüche

- 1. Verfahren zur Darstellung eines Bildsignals auf dem Display eines mobilen Anzeigegerätes, wobei
- 5 von einem Sender eines Anlagenteils (A_1, \ldots, A_n) einer Industrieanlage (A) ein Signal $(s1, \ldots, s6)$ ausgesendet wird, welches den Anlagenteil spezifiziert,
 - das ausgesandte Signal von einem Empfänger (4) des Anzeigegerätes (1) empfangen wird,
- das empfangene Signal oder ein daraus abgeleitetes Übertragungssignal vom Anzeigegerät (1) automatisch an eine Auswertestation (8) weitergeleitet wird,
- die Auswertestation (8) automatisch dem Anlagenteil zugehörige Informationen an das Anzeigegerät (1) überträgt, und
- ein den Informationen entsprechendes Bildsignal automatisch auf dem Display (2) des Anzeigegerätes (1) dargestellt wird.
- 2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n -20 z e i c h n e t , dass das den Anlagenteil spezifizierende Signal ein Funksignal ist und das Funksignal ständig pulsierend ausgestrahlt wird.
- 3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n 25 z e i c h n e t , dass das den Anlagenteil spezifizierende Signal ein Funksignal ist und das Funksignal nur beim Vorliegen einer Störung des Anlagenteils ausgestrahlt wird.
- 4. Verfahren nach einem der vorhergehenden Ansprüche, d a 30 d u r c h g e k e n n z e i c h n e t , dass im Falle eines Empfangs mehrerer verschiedener, von Sendern verschiedener Anlagenteile ausgesandter Signale den empfangenen Signalen automatisch unterschiedliche Prioritäten zugeordnet werden.
 - 5. Verfahren nach einem der Ansprüche 1 3 , d a d u r c h g e k e n n z e i c h n e t , dass im Falle eines Empfangs

leitet wird.

35

mehrerer verschiedener, von Sendern verschiedener Anlagenteile ausgesandter Signale automatisch auf dem Display des Anzeigegerätes ein Auswahl-Bildsignal dargestellt wird, anhand
dessen der Bediener einen der Anlagenteile, von denen die
Signale stammen, auswählen kann, und dass das dem ausgewählten Anlagenteil zugeordnete Signal oder ein daraus abgeleitetes Übertragungssignal zuerst an die zentrale Auswertestation
weitergeleitet wird.

- 10 6. Verfahren nach einem der vorhergehenden Ansprüche, da durch gekennzeichnet, dass im mobilen
 Anzeigegerät anhand des empfangenen Signals eine dem das Signal aussendenden Anlagenteil zugehörige Auswertestation ermittelt wird und das Signal oder ein daraus abgeleitetes Ü15 bertragungssignal an die ermittelte Auswertestation weiterge-
 - 7. Vorrichtung zur Darstellung eines Bildsignals auf dem Display eines mobilen Anzeigegerätes, mit
- einem Sender (S_1, \ldots, S_n) , der an einem Anlagenteil (A_1, \ldots, A_n) einer Industrieanlage (A) angeordnet und zur Aussendung eines das Anlagenteil spezifizierenden Signals $(s1, \ldots, s6)$ vorgesehen ist,
- einem Anzeigegerät (1), welches ein Display (2), einen Empfänger (4) und eine Sende- und Empfangseinheit (6) aufweist, wobei der Empfänger (4) zum Empfang der vom Sender
 (S₁,...,S₆) des Anlagenteils (A₁,...,A_n) ausgesandten Signale (s1,...,sn) und die Sende- und Empfangseinheit (6) zur
 automatischen Weiterleitung des empfangenen Signals oder
 eines daraus abgeleiteten Übertragungssignals an eine Auswertestation (8) vorgesehen ist,
 - die Auswertestation (8) zum Empfang des vom Anzeigegerät
 (1) ausgesendeten Signals und zum automatischen Aussenden von dem Anlagenteil zugehörigen Informationen an das Anzeigegerät (1) vorgesehen ist, wobei
 - die Sende- und Empfangseinheit (6) des Anzeigegerätes (1) zum Empfang der von der Auswertestation gesendeten Informa-

tionen und das Display (2) zur Darstellung eines diesen Informationen entsprechenden Bildsignals vorgesehen ist.

- 8. Vorrichtung nach Anspruch 7, d a d u r c h g e 5 k e n n z e i c h n e t , dass das den Anlagenteil spezifizierende Signal ein Funksignal ist und ein Ortskennzeichen
 enthält, welches Informationen über den Standort des Anlagenteils in der Industrieanlage enthält.
- 9. Vorrichtung nach Anspruch 7 oder 8, d a d u r c h g e k e n n z e i c h n e t , dass der Sender das Signal ständig pulsierend ausstrahlt.
- 10. Vorrichtung nach Anspruch 7 oder 8, d a d u r c h
 15 g e k e n n z e i c h n e t , dass der Sender das Signal nur
 beim Vorliegen einer Störung ausstrahlt.
- 11. Vorrichtung nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass der Sender (S₁,...,S_n) Be20 standteil eines Moduls (M₁,...,M_n) ist und das Modul ein Bedienelement (T₁,...,T_n) aufweist, mittels dessen der Sender in
 verschiedene Betriebsarten umschaltbar ist, wobei eine erste
 der Betriebsarten ein ständiges pulsierendes Aussenden des
 Signals und eine zweite der Betriebsarten eine Aussendung des
 25 Signals nur beim Vorliegen einer Störung ist.
- 12. Vorrichtung nach einem der Ansprüche 7 11, d a d u r c h g e k e n n z e i c h n e t , dass das Anzeige- gerät (1) eine Kollisionserkennungskomponente (5) aufweist,
 30 die im Falle eines Empfangs mehrerer verschiedener Signale den empfangenen Signalen automatisch unterschiedliche Prioritäten zuordnet.
- 13. Vorrichtung nach Anspruch 12, d a d u r c h g e 35 k e n n z e i c h n e t , dass das mobile Anzeigegerät (1) Bedienelemente (3) aufweist, mittels derer die Prioritätszuordnung konfigurierbar ist.

- 14. Vorrichtung nach einem der Ansprüche 7 12, da durch gekennzeichnet, dass
- das Anzeigegerät eine Kollisionserkennungskomponente (5) aufweist, die im Falle eines Empfangs mehrerer verschiedener Signale ein Auswahl-Bildsignal bereitstellt, das auf dem Display (2) dargestellt wird,
- das Anzeigegerät Bedienelemente (3) aufweist, mittels derer anhand des Auswahl-Bildsignals einer der Anlagenteile, von denen die Signale stammen, auswählbar ist, und
- die Sende- und Empfangseinheit (6) des Anzeigegerätes (1) dazu vorgesehen ist, das dem ausgewählten Anlagenteil zuge- ordnete Signal oder ein daraus abgeleitetes Übertragungs- signal zuerst an die Auswertestation (8) weiterzuleiten.
- 15. Vorrichtung nach einem der Ansprüche 7 14, d a d u r c h g e k e n n z e i c h n e t , dass das mobile Anzeigegerät (1) eine Auswerteeinheit (5) aufweist, die anhand des empfangenen Signals eine dem das Signal aussendenden Anlagenteil zugehörige Auswertestation (8,9,10) ermittelt,
- und die Sende- und Empfangseinheit (6) des mobilen Anzeigegerätes (1) dazu vorgesehen ist, das Signal oder ein daraus abgeleitetes Übertragungssignal an die ermittelte Auswertestation weiterzuleiten.

Zusammenfassung

Verfahren und Vorrichtung zur Anzeige von ein Anlagenteil einer Industrieanlage betreffenden Informationen auf einem mobilen Display

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Anzeige von ein Anlagenteil einer Industrieanlage betreffenden Informationen auf einem mobilen Display. Jeder Anlagenteil der Industrieanlage weist einen Sender auf, der ein das Anlagenteil spezifizierendes Signal aussendet. Dieses Signal wird von einem Empfänger des mobilen Anzeigegerätes empfangen und an eine zentrale Auswertestation weitergeleitet. Diese stellt dem Anlagenteil zugehörige Information zur Verfügung und überträgt diese an das Anzeigegerät zurück. Dort werden den zurückgesendeten Informationen entsprechende Bildsignale auf dem Display dargestellt. Vorzugsweise laufen alle vorgenannten Vorgänge automatisch ab, sobald das Anzeigegerät in die Nähe des Anlagenteils gebracht wird.

20

5

10

15

FIG 1

