5. Orientabilité, operateur de Weingarten

Étant données deux cartes $F_1: \Omega_1 \to \mathbb{R}^{nel}, F_2: \Omega_2 \to \mathbb{R}^{nel}$ on a deux champs vecteurs N1; F(12) -> 1R"+1 N2; F(12) -> 1R"+1 Leune $N_1 = N_2$ sur $F(\Omega_1) \cap F_2(\Omega_2)$

€ det(d(F2.F1-1))>0 sur F1-1(F(Ω1) nF2(Ω2))

F: 50 -, 12" On dit qu'un différencerphisme bocal préserve l'orientation si tres, det dEx > 0.

Preuve: La motivie de changement de base entre (dF₁(E₁), --, dF₁(E₁), N₁) et (dF₂(E₁), --, dF₂(E₁), N₂) est de la forme M= (Mo O avec 1= ±1, N,=1N2. $\left(\begin{array}{c|c} \hline \\ \hline \\ \hline \\ \hline \\ \end{array}\right) \qquad \text{det } M = \lambda \text{ det } M_o > 0.$ NIENZ = det Mo>0 => (dF(E1),--, dF(En)) et (dF(E1),--, dF2(En)) ont la nême orientation (=) dFz·dF, (En),..., dFz·dF, (En) est positive.

Proporition Soit S un hypersurface. Il existe in champ recteurs normal unitaire N:S -> R" (définit globalement) 🖨 il estête une collection de coutes locales { F:: N: - IR " | i \in I } telles que; · U F; (SL;) = 5 $\forall \lambda, j \in I$ si $F_i(\Omega_i) \cap F_j(\Omega_i) \neq \emptyset$ alors $F_i \cdot F_i^{-1} : F_i(F_i(\Omega_i) \cap F_i(\Omega_i)) \rightarrow F_i(F_i(\Omega_i) \cap F_i(\Omega_i))$ préserve l'ovientation. On dit alors que S est orientable.

Exemple: Si Z est définie globalement conne

$$Z = \frac{3}{9} \in \mathbb{R}^{N+1} \mid G(9) = 03$$

over $dG \neq 0 \quad \forall g \in Z \quad alors T \quad est orientable.$

avec
$$dG_q \neq 0$$
 $\forall q \in \mathbb{Z}$, alors \mathbb{Z} est orientable.

An fait, $N_q = \frac{\left(\frac{2G}{Ox_i}(q), -\frac{2G}{Ox_n}(q)\right)}{\left\|\left(\frac{2G}{Ox_i}(q), -\frac{2G}{Ox_n}(q)\right)\right\|}$ est défining to plobalement.

e.g. 5² est orientable.

Exemple:

le vuban de Möbius est une surface non orientable

Preuve; ← Pour dagne carte F:: Σ: → Rⁿ⁻¹, on a défini un damp veeteur normal unitaire N:: F:(Σ:) → Rⁿ⁻¹. Pour le Leune, si F; (Si) nF; (Si) +0, alors N; = N; our l'intersection Danc N est défini globalement par $N|_{F_i(\Omega_i)} := N_i$.

N'est donc un champ vecteur normal unitaire global.

=> Soit N in champ veeteur normal unitaire global. Par déf. de suiface, il existe une collection \F:\SL:\R^n+'\|i\illis] telle que UF: (Di) = S. Fixons ie I, On a donc un N; sur F, (si), et N; = fN|F;(si) Si N; =-N|F; (D;), on remplace F. par F. R; R(D;) _ R"1

où R: |R'' - sR''| est un differ qui reverce l'orientation. Manntement $N_i = N|_{F_i(\Omega_i)}$ pour tout is I. Par le benne, $F_i \circ F_i^{-2}$ préserve l'orientation pour tout $i,j \in I$ $\lesssim F_i(\Omega_i) \cap F_j(\Omega_j) \neq \emptyset$.

Operateur de Wedingarten

Soit SCIR nel orientable, et soit N:5 - 1R "in dramp vecteur normal.

l'application N: S - 5" est appellée application de Gauss.
On définit l'operateur de Weingarten on shape operator, en pes,
qui est une application linéaire

$$B_{\rho}: T_{\rho}S \longrightarrow T_{\rho}S$$

Pour le définir, soit $v \in T_pS$ et soit $f:(-2, E) \longrightarrow S \subset \mathbb{R}^{n+1}$ telle que g(o) = p et g'(o) = v.

Alore $B_p(w) := -\frac{d}{dt}\Big|_{t=0} N(\chi(t)).$

Il fant vérifier que B est bien défini; B(v) re dépend par du choix de la courbe y An fait, $\frac{d}{dt}$ $N(\chi(t)) = \frac{d}{dt}$ $N \cdot F(m(t)) = d(N \cdot F) \cdot m'(0)$ et N= dFx. (m'(0)) . B(v) € T, S An faut (N,N>=1 => < DrN,N>=0 = DrNENT = TpS=TNp8" Remarques

. Dans une courte F, F(x)=p, B, se réprésente conne VEIR - dFx. B. dFx. (N) ER" Si l'on drange de carte, pour F avec F(x)=p, on obtient l'opérateur dFx. B. dFx. = L. (dFx. B. dFx.). L-1

i.e. B drange par conjugatson.

où L = d(F-1, F) x0

· B est invariant pour isométries;

si
$$\hat{S} = A(\hat{s}) + c$$
, $A \in SO(n+1)$, so it $\hat{p} = Ap + c$ alors
$$T_{\hat{p}} \hat{S} = A(T_{\hat{p}} \hat{S}), \hat{N}(\hat{p}) = AN(\hat{p}), \text{ et danc}$$

Bo(Av) = ABp(v) i.e. $B = ABA^{-1}$

Si
$$n=1$$
, $S=g(I)$ est une courbre dans IR^2
Supposons y paramétrisation peur longueur d'arc.

$$B(\chi'(t_0)) = -\frac{d}{dt}\Big|_{t=0} N(\chi(t)) = -N'(t_0) = kT(t_0) = k\chi'(t_0)$$

$$N' = -kT + 76B$$

Prop Soit SCIP une hypersurface orientable convexe. B=0 (Sest conteme dans un hyperplan affire. Prenve: \leftarrow Si $S \subset P = \frac{1}{2} \times \epsilon |R^{n+1}| < \times, V > = c^{\frac{3}{2}}$ T, S = P = 3 x e R 1 < x, V>=03 donc le vecteur normal N= ± V/1/VII est constant => B=0. => Supposons B=0. Come D, N=0, N est constant.

On considere la fonction $f: S \rightarrow \mathbb{R}$ $f(x) = \langle x, N \rangle$ $\frac{d}{dt} f(x(t)) = \langle x'(t), N \rangle = 0$ para que $\chi'(t) \in T_x \subseteq \mathbb{N}^+$

Donc f est localement constante -> f est constante -> FCCIR SC { x & R N=1 | < x, N>= c }

Prop Soit
$$SCIR^{n+1}$$
 we hypersurface orientable convexe, $\lambda \neq 0$.

 $B = \lambda \cdot id \iff S$ est contemne dans une sphère de rayon $\frac{1}{|\lambda|}$

Preuve: \iff Quitte à une translation, supposons

Done
$$N(x) = (\pm)\lambda x \Rightarrow B(v) = (\pm)\lambda v$$

$$\Rightarrow \text{ a considire } C: S \rightarrow 12^{N-1} \quad C(x) = x + \frac{1}{\lambda} N(x)$$

$$\frac{d}{dt} C(x(t)) = \sqrt{-\frac{1}{\lambda}} B(x) = \sqrt{-\frac{1}{\lambda}} (\lambda x) = 0.$$

Alors
$$S \subset \{x \in \mathbb{R}^{n+1} \mid \langle x - C, x - C \rangle = \frac{1}{\lambda^2} \} = \frac{1}{|\lambda|} S^n + C$$

On verra que B est anto-adjoint par rapport à un produit calaire eur TpS, donc d'agonalisable.

On définit;

On définit; On définit ;

· la courbure moyenne H:5-IR come H(p) = tr B(p) = d.(p)+--- +dn(p)

· la courbure de Gauss-Kronecker K: S-IR come K(p)=det B(p)

(on courbure gaussieure si n=2)

=l.(p)-ln(p)

· un point umbilical est un point pes tel que

B(p) = A rid TPS, LEIR Le sont tons des invariants par isométrie; si F(x) = Ax + N, $A \in SO(n+1)$, alors $H_{F(s)}(F(p)) = H_{S}(p)$, et cetera

Exemple supposons
$$S = graphe (f: S2 - 9|R)$$
, avec $df_{x_0} = 0$,

$$N = \frac{\left(-\frac{\partial f}{\partial x_{A_1}}, ---, -\frac{\partial f}{\partial x_{A_1}}, 1\right)}{\left\|\left(-\frac{\partial f}{\partial x_{A_1}}, ---, -\frac{\partial f}{\partial x_{A_1}}, 1\right)\right\|}$$

Alors B (Ei) =
$$-\frac{\partial N}{\partial x_i}$$
 = $\left(\frac{\partial^2 f}{\partial x_i}\right)$ = $\left(\frac{\partial^2 f}{\partial x_i}\right)$ (S)

Donc