Utilidad de la estadística en la ingeniería

Jhon Jairo Padilla, Ph.D.

La ingeniería y la solución de problemas

- El Ingeniero resuelve problemas de interés para la sociedad mediante la aplicación eficiente de principios científicos.
- Cómo lo hace? Desarrollando/perfeccionando productos o procesos que satisfagan las necesidades del cliente.
- > Se requiere un método para hacer esto: Método científico.

El método científico

Experimento

Experimento: Proceso o procedimiento que transforma una entrada en una salida.

- Experimento determinístico:
 - Para una misma entrada, se produce siempre la misma salida en cada repetición del experimento.
- Experimento Aleatorio:
 - Para una misma entrada, se obtienen diferentes salidas en cada repetición del experimento

Términos

Espacio de muestreo:

- El conjunto S de las salidas de un experimento aleatorio es llamado espacio de muestreo (o también: espacio de muestras o espacio muestral) del experimento aleatorio.
- ▶ **Resultados:** Los elementos del espacio de muestras se conocen como *resultados*.
 - La característica clave de un resultado es la indivisibilidad. Un resultado no puede ser subdividido en otros resultados más elementales.

Ejemplo: Experimento aleatorio

Población: Todos los posibles resultados,

P={0000,0001,...,9998,9999}

Medida: Combinación elegida

Intento	Combinación
I	0783
2	2615
3	9742
4	3212
5	2086

Muestras: Los resultados obtenidos durante el experimento. En este caso S={0783, 2615, 9742, 3212, 2086}

Por qué las técnicas de la estadística?

- Variabilidad: Las observaciones sucesivas de un experimento aleatorio no ofrecen exactamente el mismo resultado.
- ▶ Fuente de variabilidad: Todo experimento aleatorio tiene factores que introducen variaciones a las observaciones realizadas.
- La estadística permite describir la variabilidad y descubrir cuáles **fuentes de variabilidad** tienen mayor impacto sobre el experimento.

Usos de la estadística

- Inferencia Estadística
- 2. Modelado de procesos aleatorios
- 3. Investigación Experimental
- 4. Control estadístico de procesos

1. Inferencia estadística

Se refiere al proceso que se sigue para obtener unas reglas generales (aplicables a toda la población) acerca de un proceso, a partir de las muestras (unos pocos resultados muestreados)

Tipos de Inferencia Estadística

Estudio Enumerativo: La población existe. Las muestras son tomadas de la población

Estudio Analítico: La población no existe (sólo existen las muestras), pero existirá en un futuro.

2. Modelado de Procesos Aleatorios

2.1. Tipos de Modelos

Modelo Mecanicista:

- Se construye a partir del conocimiento previo del mecanismo físico básico que relaciona las variables del modelo
- <u>Ejemplo</u>: Ley de Ohm
 - Modelo Determinístico:
 - I=E/R ;I:Corriente, E:Voltaje, R:Resistencia
 - Modelo Estocástico:
 - $I=(E/R)+\varepsilon$;I:Corriente, E:Voltaje, R:Resistencia, ε :Efectos de fuentes de variabilidad

2.1. Tipos de Modelos

Modelo Empírico:

- Se aplican los conocimientos científicos y de ingeniería al fenómeno, pero el modelo no se desarrolla directamente de nuestra comprensión teórica o con base en principios fundamentales del mecanismo subyacente.
- Ejemplo: Sabemos que la Resistencia (R) de un material depende del área (A), de la temperatura (T) y de la conductividad (C) del material. Lo que no sabemos es la relación exacta entre estos factores. Por tanto, podemos suponer que existe una función general

$$R=f(A,T,C)$$

Podría hallarse un modelo a partir de ciertas medidas de un experimento diseñado y llegar a la conclusión que

- ▶ Modelo Determinístico: $R = \beta_1 A + (\beta_2/T) + (\beta_3/C)$
- ▶ Modelo Estocástico: $R = \beta_1 A + (\beta_2/T) + (\beta_3/C) + \epsilon$
- Los parámetros β son desconocidos y deben determinarse. Para esto se utiliza un método conocido como **regresión**.
- A estos modelos también se los conoce como modelos de regresión.

2.2. Métodos Estadísticos de Modelado de procesos aleatorios

- Se busca obtener un modelo del proceso. Hay dos tipos:
 - Estudio observacional:
 - Se obtienen datos de un proceso conforme se van presentando.
 - No hay control sobre ningún factor que afecte el proceso.
 - También se pueden observar datos históricos para detectar la causa de ciertos fenómenos en un determinado instante de tiempo.
 - Experimento diseñado:
 - Se realizan cambios deliberados o intencionados en las variables controlables de un sistema o proceso.
 - Se observan los resultados obtenidos en las diferentes repeticiones del experimento.
 - Se saca una conclusión acerca del efecto de las variables sobre los resultados del proceso.

2.2.1. Estudio observacional

225

(a) Proceso Auto-similar

230

225

(b) Proceso no Auto-similar

230

tráfico.

Autosimilar. Esto permite utilizar la

teoría de Fractales en este tipo de

2.2.2. Experimento diseñado

- Objetivo: Sacar conclusiones acerca del efecto de uno o varios factores en los resultados de un experimento
- Se requiere repetir el experimento varias veces con diferentes valores de los factores que se supone afectan.
- Si en una misma repetición se alteran dos o más factores simultáneamente, al experimento se le conoce como experimento factorial.
- ▶ **Importante:** Es necesaria una planeación eficiente y eficaz de los experimentos!

Ejemplo: Experimento Diseñado

flows number, m

 Variación del retardo medio de los paquetes en un dispositivo de encaminamiento al variar: el número de usuarios (m) y el tamaño de una tabla de almacenamiento utilizada (N)

3. Investigación Experimental

- Problema: Procesos en que ninguna teoría matemática tiene una aplicación directa o completa.
- Condición: Se tiene una base de teoría científica subyacente para explicar el fenómeno, pero no se tiene certeza de poder aplicarla.
- Objetivo: Se busca verificar que la teoría científica es operativa en la situación o entorno en que se está aplicando. Se debe realizar una prueba de una hipótesis estadística.
- Por tanto, se requiere diseñar el experimento para después probar la viabilidad de la aplicación de la teoría a partir de los resultados obtenidos (prueba de hipótesis).

Investigación Experimental. Prueba de hipótesis

4. Control estadístico de procesos

- El objetivo es monitorear, controlar y mejorar un proceso.
- Se aplica para determinar cuándo aplicar un ajuste a un proceso y de qué magnitud debe ser el ajuste para que los resultados no se salgan de ciertos límites (límite superior y límite inferior).

