Lógica Computacional 1

Cláudia Nalon

 $\rm http://nalon.org$

nalon@unb.br

Universidade de Brasília Instituto de Ciências Exatas Departamento de Ciência da Computação

2024/2

1 Lógica Proposicional

1.1 Sintaxe

Definição 1. O conjunto de *símbolos lógicos* da linguagem proposicional é dado pela união dos seguintes conjuntos:

- 1. $\mathcal{P} = \{p, q, r, \dots, p_1, q_1, r_1, \dots\}$, um conjunto enumerável de símbolos;
- 2. $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\};$
- $3. \{(,)\}.$

Definição 2. Os elementos do conjunto \mathcal{P} são chamados de *símbolos proposicionais* ou *variáveis proposicionais*.

Definição 3. Os elementos do conjunto $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$ são chamados de *conectivos lógicos* ou *operadores lógicos*.

Definição 4. O símbolo "¬" é chamado de *conectivo unário*.

Definição 5. Os símbolos contidos no conjunto $\{\land, \lor, \rightarrow, \leftrightarrow\}$ são chamados de *conectivos binários*.

Definição 6. Os elementos do conjunto $\{(,)\}$ são chamados de *símbolos de pontuação*.

Definição 7. Os símbolos lógicos definem o alfabeto da linguagem proposicional.

Definição 8. Uma fórmula é qualquer sequência finita de símbolos lógicos.

Definição 9. A Linguagem Lógica Proposicional, denotada por \mathcal{L}_P , é equivalente ao seu conjunto de fórmulas bem-formadas, denotado por $\mathsf{FBF}_{\mathcal{L}_P}$, que é definido indutivamente, como se segue:

- 1. se $p \in \mathcal{P}$, então $p \in \mathsf{FBF}_{\mathcal{L}_P}$;
- 2. se $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$, então $\neg \varphi \in \mathsf{FBF}_{\mathcal{L}_P}$;
- 3. se $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$ e $\psi \in \mathsf{FBF}_{\mathcal{L}_P}$, então $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$ e $(\varphi \leftrightarrow \psi) \in \mathsf{FBF}_{\mathcal{L}_P}$.

Definição 10. Fórmulas que não são bem-formadas, isto é, que não pertencem a $\mathsf{FBF}_{\mathcal{L}_P}$, são chamadas de fórmulas mal-formadas.

Definição 11. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Se $\varphi \in \mathcal{P}$, então φ é chamada de fórmula atômica.

Definição 12. Seja $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$. Se $\varphi \not\in \mathcal{P}$, isto é, se φ não é uma fórmula atômica, então φ é chamada de fórmula molecular.

Definição 13. Sejam φ , ψ e $\chi \in \mathsf{FBF}_{\mathcal{L}_P}$. Seja $Sub : \mathsf{FBF}_{\mathcal{L}_P} \longrightarrow 2^{\mathsf{FBF}_{\mathcal{L}_P}}$ uma função. O conjunto de subfórmulas de φ , $Sub(\varphi)$, é dado por:

- 1. se $\varphi \in \mathcal{P}$, então $Sub(\varphi) = {\varphi}$;
- 2. se φ é da forma $\neg \psi$, então $Sub(\varphi) = \{\varphi\} \cup Sub(\psi)$;
- 3. se φ é da forma $(\psi * \chi)$, onde $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, então $Sub(\varphi) = \{\varphi\} \cup Sub(\psi) \cup Sub(\chi)$.

Definição 14. Operador Principal – Exercício

Definição 15. Subfórmulas Imediatas – Exercício

Definição 16. Comprimento - Exercício

Definição 17. Uma árvore sintática para φ , onde $\varphi \in \mathsf{FBF}_{\mathcal{L}_P}$, é constituída de uma raiz com zero ou mais filhos, dependendo da estrutura (ou seja, da forma) de φ :

- 1. se $\varphi \in \mathcal{P}$, então a raiz é rotulada por φ e tem zero filhos;
- 2. se φ é da forma $\neg \psi$, então a raiz é rotulada por \neg e tem um único filho, que é a raiz da árvore sintática de ψ :
- 3. se φ é da forma $(\psi * \chi)$, onde $* \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, então a raiz é rotulada por * e tem dois filhos, onde o da esquerda é a raiz da árvore sintática de ψ e o da direita é a raiz da árvore sintática de χ .

1.2 Semântica

Definição 18. O conjunto $\mathcal{V} = \{V, F\}$ é chamado de conjunto de valores de verdade e cada um de seus elementos é chamado de valor de verdade.

Definição 19. Uma função booleana é aquela que tem apenas dois elementos em sua imagem.

Definição 20. Uma valoração booleana v_0 para os símbolos proposicionais de \mathcal{L}_P , \mathcal{P} , é uma função booleana $v_0 : \mathcal{P} \longrightarrow \mathcal{V}$.