

PyTorch Tutorial

05. Linear Regression with PyTorch

Revision

Linear Model

$$\hat{y} = x * \omega$$

Loss Function

$$loss = (\hat{y} - y)^2 = (x \cdot \omega - y)^2$$

Revision

```
print("predict (before training)", 4, forward(4).item())
for epoch in range (100):
    for x, y in zip(x_data, y_data):
        1 = loss(x, y)
        1. backward()
        print('\tgrad:', x, y, w.grad.item())
        w. data = w. data - 0.01 * w. grad. data
        w. grad. data. zero ()
    print("progress:", epoch, l.item())
print ("predict (after training)", 4, forward (4).item())
```

```
predict (before training) 4 4.0
        grad: 1.0 2.0 -2.0
        grad: 2.0 4.0 -7.840000152587891
        grad: 3.0 6.0 -16.228801727294922
progress: 0 7.315943717956543
        grad: 1.0 2.0 -1.478623867034912
        grad: 2.0 4.0 -5.796205520629883
        grad: 3.0 6.0 -11.998146057128906
progress: 1 3.9987640380859375
        grad: 1.0 2.0 -1.0931644439697266
        grad: 2.0 4.0 -4.285204887390137
        grad: 3.0 6.0 -8.870372772216797
progress: 2 2.1856532096862793
        grad: 1.0 2.0 -0.8081896305084229
        grad: 2.0 4.0 -3.1681032180786133
        grad: 3.0 6.0 -6.557973861694336
progress: 3 1.1946394443511963
        grad: 1.0 2.0 -0.5975041389465332
        grad: 2.0 4.0 -2.3422164916992188
        grad: 3.0 6.0 -4.848389625549316
progress: 4 0.6529689431190491
        grad: 1.0 2.0 -0.4417421817779541
        grad: 2.0 4.0 -1.7316293716430664
        grad: 3.0 6.0 -3.58447265625
progress: 5 0.35690122842788696
        grad: 1.0 2.0 -0.3265852928161621
        grad: 2.0 4.0 -1.2802143096923828
        grad: 3.0 6.0 -2.650045394897461
```

PyTorch Fashion

Prepare dataset
we shall talk about this later

Design model using Class inherit from nn.Module

Construct loss and optimizer using PyTorch API

Training cycle forward, backward, update

Linear Regression – 1. Prepare dataset

In PyTorch, the computational graph is in mini-batch fashion, so X and Y are 3×1 Tensors.

$$\begin{bmatrix} y_{pred}^{(1)} \\ y_{pred}^{(2)} \\ y_{pred}^{(3)} \end{bmatrix} = \omega \cdot \begin{bmatrix} x^{(1)} \\ x^{(2)} \\ x^{(3)} \end{bmatrix} + b$$

```
import torch

x_data = torch. Tensor([[1.0], [2.0], [3.0]])
y_data = torch. Tensor([[2.0], [4.0], [6.0]])
```

Revision: Gradient Descent Algorithm

Derivative

$$\frac{\partial cost(\omega)}{\partial \omega} = \frac{\partial}{\partial \omega} \frac{1}{N} \sum_{n=1}^{N} (x_n \cdot \omega - y_n)^2$$

$$= \frac{1}{N} \sum_{n=1}^{N} \frac{\partial}{\partial \omega} (x_n \cdot \omega - y_n)^2$$

$$= \frac{1}{N} \sum_{n=1}^{N} 2 \cdot (x_n \cdot \omega - y_n) \frac{\partial (x_n \cdot \omega - y_n)}{\partial \omega}$$

$$= \frac{1}{N} \sum_{n=1}^{N} 2 \cdot x_n \cdot (x_n \cdot \omega - y_n)$$

Gradient

$$\frac{\partial cost}{\partial \omega}$$

Update

$$\omega = \omega - \alpha \frac{\partial cost}{\partial \omega}$$

Update

$$\omega = \omega - \alpha \frac{1}{N} \sum_{n=1}^{N} 2 \cdot x_n \cdot (x_n \cdot \omega - y_n)$$

Affine Model

$$\hat{y} = x * \omega + b$$

Loss Function

$$loss = (\hat{y} - y)^2 = (x \cdot \omega - y)^2$$


```
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

def forward(self, x):
        y_pred = self.linear(x)
        return y_pred

model = LinearModel()
```

Our model class should be inherit from *nn.Module*, which is Base class for all neural network modules.

```
class LinearModel(torch.nn. Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn. Linear(1, 1)

def forward(self, x):
        y_pred = self.linear(x)
        return y_pred

model = LinearModel()

Member methods __init__() and

forward() have to be implemented.
```

```
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

def forward(self, x):
        y_pred = self.linear(x)
        return y_pred

model = LinearModel()
Just do it.:)
```

```
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

def forward(self, x):
        y_pred = self.linear(x)
        return y_pred

model = LinearModel()
```

Class *nn.Linear* contain two

member **Tensors**: weight and bias.


```
class torch.nn.Linear(in_features, out_features, bias=True)
                                                              [source]
  Applies a linear transformation to the incoming data: y = Ax + b
     Parameters:
                      • in_features – size of each input sample
                      • out_features - size of each output sample
                      • bias – If set to False, the layer will not learn an additive bias. Default: True
    Shape:
       • Input: (N, *, in\_features) where * means any number of additional dimensions
       • Output: (N,*,out\_features) where all but the last dimension are the same shape as
          the input.
     Variables:

    weight – the learnable weights of the module of shape (out_features x in_features)

                    • bias – the learnable bias of the module of shape (out features)
```

class torch.nn.Linear(in_features, out_features, bias=True) [source] Applies a linear transformation to the incoming data: y = Ax + bOutput $y_{pred}^{(1)}$ $= \omega \cdot \begin{bmatrix} \chi^{(1)} \\ \chi^{(2)} \end{bmatrix} + b$ Parameters: tive bias. Default: True Shape: • Input: $(N,*,in_features)$ where * means any number of additional dimensions • Output: $(N, *, out_features)$ where all but the last dimension are the same shape as the input. Variables: weight – the learnable weights of the module of shape (out_features x in_features) • bias – the learnable bias of the module of shape (out features)

```
class LinearModel(torch.nn.Module):
    def __init__(self):
        super(LinearModel, self).__init__()
        self.linear = torch.nn.Linear(1, 1)

def forward(self, x):
        y_pred = self.linear(x)
        return y_pred

model = LinearModel()
```

Class <u>nn.Linear</u> has implemented the magic method <u>call</u>(), which enable the instance of the class can be called just like a function. Normally the *forward()* will be called.

Pythonic!!!

Linear Regression – 3. Construct Loss and Optimizer

```
criterion = torch.nn.MSELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
```

class torch.nn.MSELoss(size_average=True, reduce=True) [so

[source]

Creates a criterion that measures the mean squared error betwee target y.

Also inherit from nn.Module.

The loss can be described as:

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = (x_n-y_n)^2,$$

where N is the batch size.

Linear Regression – 3. Construct Loss and Optimizer

Linear Regression – 3. Construct Loss and Optimizer

```
for epoch in range(100):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
Forward: Loss
```

```
for epoch in range(100):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

NOTICE:

The grad computed by .backward() will be accumulated.

So before backward, remember set the grad to **ZERO**!!!

```
for epoch in range(100):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
Backward: Autograd
```

```
for epoch in range(100):
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

for x, y in zip(x_data, y_data):
    w. data = w. data - 0.01 * w. grad. data

Update
```

Linear Regression – Test Model

```
# Output weight and bias
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())

# Test Model
x_test = torch.Tensor([[4.0]])
y_test = model(x_test)
print('y_pred = ', y_test.data)
```

```
86 0. 3036523759365082
87 0. 2992883026599884
88 0. 29498720169067383
89 0. 2907477021217346
90 0. 28656935691833496
91 0. 28245046734809875
92 0 27839142084121704
93 0. 27439042925834656
94 0. 2704470157623291
95 0. 2665606141090393
96 0. 262729674577713
97 0. 25895369052886963
98 0. 2552322745323181
99 0. 2515641450881958
w = 1.666100263595581
b = 0.7590328454971313
y_pred = tensor([[ 7.4234]])
```

```
986 3.594939812501252e-07
987 3.5411068211033125e-07
988 3.4917979974125046e-07
989 3.4428359185767476e-07
990 3.392528924450744e-07
991 3.3442694302721065e-07
992 3.294019847999152e-07
993 3.247135396122758e-07
994 3.199925231456291e-07
995 3.1540417921860353e-07
996 3.1097857799977646e-07
997 3.0668098816022393e-07
998 3.020934400410624e-07
999 2.977626536448952e-07
w = 1.9996366500854492
b = 0.0008257834706455469
y pred = tensor([[ 7.9994]])
```

100 Iterations

1000 Iterations

Linear Regression

```
import torch
x data = torch. Tensor([[1.0], [2.0], [3.0]])
y data = torch. Tensor([[2.0], [4.0], [6.0]])
class LinearModel (torch. nn. Module):
    def init (self):
        super(LinearModel, self). init ()
        self. linear = torch. nn. Linear (1, 1)
    def forward(self, x):
        y \text{ pred} = \text{self.linear}(x)
        return y pred
model = LinearModel()
criterion = torch.nn. MSELoss(size average=False)
optimizer = torch. optim. SGD (model. parameters (), 1r=0.01)
for epoch in range (1000):
    y pred = model(x data)
    loss = criterion(y pred, y data)
    print(epoch, loss.item())
    optimizer.zero grad()
    loss. backward()
    optimizer.step()
print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())
x test = torch. Tensor ([4.0])
y \text{ test} = \text{model}(x \text{ test})
print('y pred = ', y test.data)
```

Prepare dataset

we shall talk about this later

Design model using Class inherit from nn.Module

Construct loss and optimizer using PyTorch API

Training cycle forward, backward, update

Exercise 5-1: Try Different Optimizer in Linear Regression

- torch.optim.Adagrad
- torch.optim.Adam
- torch.optim.Adamax
- torch.optim.ASGD
- torch.optim.LBFGS
- torch.optim.RMSprop
- torch.optim.Rprop
- torch.optim.SGD

Exercise 5-2: Read more example from official tutorial

Table of Contents

- Tensors
 - Warm-up: numpy
 - PyTorch: Tensors
- Autograd
 - PyTorch: Tensors and autograd
 - PyTorch: Defining new autograd functions
 - TensorFlow: Static Graphs
- nn module
 - PyTorch: nn
 - PyTorch: optim
 - PyTorch: Custom nn Modules
 - PyTorch: Control Flow + Weight Sharing
- Examples
 - Tensors
 - Autograd
 - o nn module

https://pytorch.org/tutorials/beginner/pytorch_with_examples.html

PyTorch Tutorial

05. Linear Regression with PyTorch