

Tree Distribution Approximation

1 Why

We approximate with tree distributions. These distributions require tabulating fewer numbers in order to express the probability of an outcome, which may save us tabulating many more numbers.

2 Problem

We approximate a distribution by a tree distribution using the relative entropy as a criterion.

2.1 Notation

Let A_1, \ldots, A_n be finite non-empty sets and define $A = \prod_{i=1}^n A_i$. Let $q: A \to [0,1]$ a distribution. Let d denote the relative entropy.

We want to find a distribution p on A and tree T on $\{1, \ldots, n\}$ to

minimize d(q, p)subject to p factors according to the tree T

3 Solution

Proposition 1. Let q be a distribution on A. Let T be a tree on $\{1, \ldots, d\}$. Let p_j be the parent of vertex j for the T rooted at vertex i, $j = 1, \ldots, n$ and

 $j \neq i$. Then the distribution p on A defined by

$$p = q_i \prod_{j \neq i} q_{j|p_j}$$

achieves minimum entropy relative to q among all distributions which factor according to T.

Proposition 2. Let q be a distribution on A. Let T be a tree on $\{1, \ldots, d\}$. Let p_j be the parent of vertex j for the T rooted at vertex i, $j = 1, \ldots, n$ and $j \neq i$. Then the distribution p on A defined by

$$p = q_i \prod_{j \neq i} q_{j|p_j}$$

achieves minimum entropy relative to q among all distributions which factor according to T.

Proposition 3. Let q be a distribution on A. A tree T is a solution to the problem above if and only if it is a minimum spanning tree of the mutual information graph of q.