d) $\frac{AB+AC}{}$

QUESTIONS FROM COMPETITIVE EXAMS

1.1 Introduction

		(MHT-C	ET 2002)				
1.	A car is moving with speed 30 m/s on a circular path of radius 500 m. Its speed is increasing at the rate of 2 m/s ² . The acceleration of the car is						
	a) 9.8 m/s^2	b) 1.8 m/s ²	c) 2 m/s ²	d) 2.7 m/s ²			
2.	The ratio of angula	r speeds of minute h					
30.00	a) 6:1	b) 1:6	c) 1:12	d) 12:1			
	100 1 00	(MHT-C	ET 2003)	teary associate rate			
3.	When particle revolves with uniform speed on a circular path						
	a) no force acts on		b) no accelerat				
	c) no work is done	by it	d) its velocity				
		(MHT-C	CET 2004)				
4.		nally moves with ve		oves with velocity 4 m/s for xt 20 s. What is the average			
	a) 3 m/s	b) 4 m/s	c) 5 m/s	d) zero			
		(MAH-EN	I-CET 2004)				
5.	A wheel of diameter 20 cm is rotating at 600 rpm. The linear velocity of particle at its rim is						
	a) 6.28 cm/s	b) 62.8 cm/s	c) 0.628 cm/s	d) 628.4 cm/s			
		(MHT-C	CET 2005)				
6.	Angular velocity of an hour hand of a watch is						
	a) $\frac{\pi}{43200}$ rad/s	b) $\frac{\pi}{21600}$ rad/s	c) $\frac{\pi}{30}$ rad/s	d) $\frac{\pi}{1800}$ rad/s			
		, (МНТ-С	CET 2008)	*			
7.	If a particle moves	with uniform speed	l its tangential acce	eleration will be			
	a) v^2/r	b) $r \omega^2$	c) zero	d) infinite			
			CET 2012)				
8.	If a particle is mov angle described by	ing in a circular path it in one second wil	n of radius 'r' with I be	a uniform speed v, then the			
	a) v r	b) 1/vr	c) v/r	d) v/r^2			
9.	A particle is perfor angular displaceme	rming circular motion ent of the particle in	on with its diamete time t is	er d and velocity v. Then the			
	a) vt	b) $\frac{2vt}{d}$	c) $\frac{\text{vt}}{2\text{d}}$	d) $\frac{d}{vt}$			
	$\frac{a}{d}$	The same of the sa		vt			
			CET 2014)				
10.	centres in a straigh	neres each of mass 1 t line. Their centres a f the system from A	ire marked as A, B,	ching one another with their C respectively. The distance			

c) $\frac{AC-AB}{3}$

AB + BC

b)

AB + AC

2

a)

(MHT-CET 2022)

In non uniform circular motion, the ratio of tangential to radial acceleration is 19.

a)
$$\frac{\alpha^2 r^2}{v}$$

b)
$$\frac{\alpha^2 r}{v}$$

c)
$$\frac{\alpha r^2}{v^2}$$

d)
$$\frac{v^2}{r^2 \alpha}$$

The relative angular speed of hour hand and second hand of a clock is 20.

a)
$$\frac{311\pi}{578}$$

b)
$$\frac{719\pi}{21600}$$

c)
$$\frac{421\pi}{11600}$$

d)
$$\frac{119\pi}{15600}$$

1.2 Dynamics of Circular Motion (Centripetal Force and Centrifugal Force)

(MAH-EN-CET 2004)

Centripetal force in vector form can be expressed as 21.

a)
$$\vec{F} = \frac{mv^2}{r}$$

b)
$$\vec{F} = -\frac{m\dot{v}^2}{r^2} \vec{r}$$

c)
$$\vec{F} = -m\omega^2 \vec{r}$$

a)
$$\vec{F} = \frac{mv^2}{r}$$
 b) $\vec{F} = -\frac{mv^2}{r^2} \vec{r}$ c) $\vec{F} = -m\omega^2 \vec{r}$ d) $\vec{F} = -\frac{mv^2 \vec{r}}{r^2}$

(MHT-CET 2006)

When a vehicle is moving along a horizontal curved road, centripetal force is provided 22.

- a) vertical component of normal reaction
- b) horizontal component of normal reaction
- c) frictional force between road surface and tyres
- d) all of these

A body of mass m is performing UCM with frequency n along the circumference of 23. circle having radius r, force is given by

a) 4π n m²

b) $4 \pi^2 n^2 mr$

c) π^2 n² mr

d) $1/2 \pi n m^2$

(MHT-CET 2008)

Tension of a string is 6.4 N and load applied to it at its lower end is 0.1 kg. If the length 24. of string is 6 m, then its angular velocity will be

a) 3 rad/s

b) 4 rad/s

c) 2 rad/s

d) 1 rad/s

(MH-CET 2015)

A particle of mass 'm' is moving in circular path of constant radius 'r' such that 25. centripetal acceleration is varying with time 't' as K2rt2 where K is a constant. The power delivered to the particle by the force acting on it is

a) $m^2K^2r^2t^2$

b) mK^2r^2t

c) mK²rt²

d) mKr2t

(MHT-CET 2009)

A particle of mass m is rotating in a plane in circular path of radius r. Its angular 26. momentum is L. The centripetal force acting on the particle is

a) $\frac{L^2}{}$

b) $\frac{L^2m}{r}$ c) $\frac{L^2}{m^2r^2}$

d) $\frac{L^2}{mr^3}$

(MHT-CET 2010)

KE of a particle of mass m performing UCM in a circle of radius r is E. Find the 27. acceleration of the particle.

a)

b) $\left(\frac{2E}{mr}\right)^2$

c) 2 Emr

(MH-CET 2017)

A ceilling fan rotates about its own axis with some angular velocity. When the fan is 36. switched off, the angular velocity becomes $\left(\frac{1}{4}\right)^{th}$ of the original in time 't' and 'n' revolutions are made in that time. The number of revolutions made by the fan during the time interval between switch off and rest are (Angular retardation is uniform)

	4n		
a)	15		

b)
$$\frac{8n}{15}$$

c)
$$\frac{16n}{15}$$

d)
$$\frac{32n}{15}$$

(MH-CET 2018)

The path length of oscillation of simple pendulum of length 1 metre is 16 cm. 37. Its maximum velocity is $(g = \pi^2 \text{ m/s}^2)$

- a) 2π cm/s
- b) 4π cm/s
- c) 8π cm/s
- d) 16π cm/s

(MHT-CET 2020)

A particle rotates in a horizontal circle of radius 'R' in a conical funnel with speed 'v'. 38. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is

a)
$$\frac{v^2}{g}$$

b) $\frac{v}{2g}$ c) $\frac{v}{g}$

d) $\frac{v^2}{2g}$

(MHT-CET 2021)

A bob of simple pendulum has mass 'm' and is oscillating with amplitude 'A'. If the 39. length of pendulum is 'L', then the maximum tension in the string is

a)
$$\frac{\text{mg}}{\left[1 - \left(\frac{A}{L}\right)^2\right]}$$

a) $\frac{mg}{\left[1-\left(\frac{A}{L}\right)^2\right]}$ b) $\frac{mg}{\left[1+\left(\frac{A}{L}\right)^2\right]}$ c) $mg\left[1-\left(\frac{A}{L}\right)^2\right]$ d) $mg\left[1+\left(\frac{A}{L}\right)^2\right]$

(MHT-CET 2022)

A string of length 'L' fixed at one end carries a mass 'm' at the other end. The string 40. makes $3/\pi$ r.p.s. around the vertical axis through fixed end. The tension in the string is c) 36 mL d) 72 mL b) 18 mL a) 9 mL

1.4 Vertical Circular Motion

(MHT-CET 2001)

A fighter aeroplane flying in the sky dives with a speed of 360 km/h in a vertical circle of 41. radius 200 m. Weight of the pilot sitting in it is 75 kg. What will be the value of force with which the pilot presses his seat when the aeroplane is at highest position? ($g = 10 \text{ m/s}^2$)

- a) 3000 N
- b) 4500 N
- c) $(75 \times g) N$
- d) 300 N

A mass of 5 kg tied to a string of length 1.0 m is rotated in vertical circle with a uniform 42. speed of 4 m/s. The tension in the string will be 170 N when the mass is at $(g = 10 \text{ m/s}^2)$

a) highest point

b) midway

c) bottom

d) cannot be predicted

(MHT-CET 2004)

A simple pendulum of mass m and length l stands in equilibrium in vertical position. 43. The maximum horizontal velocity that should be given to the bob at the bottom so that it completes one revolution is

- a) JIg
- b) $\sqrt{2lg}$
- c) $\sqrt{3lg}$
- d) $\sqrt{5lg}$

_							
53.	The moment of ine	The moment of inertia of a disc about a tangent axis in its plane is					
	a) $\frac{MR^2}{4}$. 3MR ²	5	d) $\frac{7MR^2}{4}$			
	a) 4	b) $\frac{3MR^2}{2}$	c) $\frac{1}{4}$ MR ²	d) 4			
		(MHT	-CET 2004)				
54.	The centre of mass	of two particles sy	stem divides, the d	istance between them			
		squares of masses		45			
	b) direct ratio of squares of masses of particles						
	c) inverse ratio of	masses of particles	s -				
	d) direct ratio of n	nasses of particles	 (E)				
	540	(MAH-E	N-CET 2004)	¥			
55.	If radius of solid s	phere is doubled by	y keeping its mass c	onstant, then			
	$I_1 = 1$	$I_1 = 4$	c) $\frac{I_1}{I_2} = \frac{3}{2}$	$I_1 = \frac{2}{2}$			
	a) $\frac{1}{I_2} - \frac{1}{4}$	$I_2 = \frac{1}{1}$	c) $\frac{1}{I_2} = \frac{1}{2}$	$\frac{a_1}{I_2} - \frac{a_2}{3}$			
		(MHT	-CET 2005)	8			
56.	Moment of inertia	of a disc about an a	xis which is tangent	and parallel to its plane is l	[.		
	Then the moment of	of inertia of disc abo	out a tangent, but pe	erpendicular to its plane wil	1		
	be	6					
	a) $\frac{3I}{4}$	b) $\frac{3I}{2}$	c) $\frac{51}{6}$	d) $\frac{6I}{5}$			
	a) 4 ·	2	Ü	5			
**		\$ 3°	-CET 2006)				
57.	Calculate the M.I.	of a thin uniform r	ing about an axis ta	ngent to the ring and in the	e		
	plane of the ring, if its M.I. about an axis passing through the centre and perpendicular						
	to plane is 4 kg m ² .		c) 6 kg m ²	d) 9 kg m ²			
	a) 12 kg m ²		-CET 2008)	u) > Kg III			
-0	T 1: 1			with their densities $ ho_1$ and $ ho$	-		
58.	respectively such t	hat $(o_1 > o_2)$, then t	he relation between	I_1 and I_2 will be	2		
	a) $I_1 < I_2$	b) $I_1 = I_2$	c) $I_1 > I_2$	d) $I_1 = 2I_2$			
	a) 1 ₁ \ 1 ₂		-CET 2011)	,			
•		1.77		disc is minimum?			
59.	About which of the	e following axes in	oment of inertia of a	ite plane			
7			d perpendicular to	ns plane.			
	b) Axis along the o	liameter.	te own plane	5			
	c) Axis along the	tangent and in i	dicular to its plane				
	d) Axis along the t	angent and perpen	dicular to its planeCET 2012)				
	2			If that sphere is recast int			
60.	Moment of inertia	of a solid sphere at	of inertia of such sm	I. If that sphere is recast int nall sphere about its diamete	r		
	8 identical small spheres, then moment of inertia of such small sphere about its diameter is						
	a) I/8	b) I/16	c) I/24	d) I/32			
61.	Two uniform circ	ular discs A and	B of radii R and	IR with thicknesses x an	d		
	x/4 respectively rotate about their axes passing through their centres and						
	perpendicular to th	ere planes. If M.I. o	of first disc is IA and	that of second disc is I _B the	n		
	a) $I_A = I_B$	b) $I_A > I_B$	c) $I_B > I_A$	d) data is insufficier	ıt		

(MHT-CET 2020)

- 68. Two rings of radii R and nR made from the same wire have the ratio of moments of inertia about an axis passing through their centre and perpendicular to the plane of the rings as 1:8. The value of n is
 - a) 2√2
- b) 2

c) 4

d) $\frac{1}{2}$

(MHT-CET 2021)

- 69. Two circular loops A and B are made of the same wire and their radii are in the ratio 1: n. Their moments of inertia about the axis passing through the centre and perpendicular to their plane are in the ratio 1: m. The relation between 'm' and 'n' is
 - a) $m = n^4$
- b) $m = n^2$
- c) m = n
- d) $m = n^3$

(MHT-CET 2022)

70. Match the following columns (R = radius, K = Radius of gyration)

	Column II		
A)	'K' for a solid sphere rotating about its tangent.	p)	√ 2 R
B)	'K' for a ring rotating about its tangent perpendicular to its plane	q)	$\frac{R}{2}$
C)	'K' for a uniform solid right circular cone rotating about its central axis	r)	$\frac{\sqrt{7}}{\sqrt{5}}$ R
D)	'K' for a uniform disc rotating about its diameter	s)	$\frac{\sqrt{3}}{\sqrt{10}}$ R

a) A-q; B-r; C-p; D-s

b) A-r; B-q; C-s; D-p

c) A-p; B-r; C-q; D-s

d) A-r; B-p; C-s; D-q

1.6 Radius of Gyration

(MHT-CET 2003)

- 71. Radius of gyration of disc rotating about an axis perpendicular to its plane passing through its centre is (If R is the radius of disc)
 - a) $\frac{R}{2}$

b) $\frac{R}{\sqrt{2}}$

c) $\frac{R}{\sqrt{3}}$

d) $\frac{R}{3}$

(MHT-CET 2006)

- 72. A uniform disc of mass 2 kg is rotated about an axis perpendicular to the plane of the disc. If radius of gyration is 50 cm, then the M.I. of disc about same axis is
 - a) 0.25 kg m²
- b) 0.5 kg m²
- c) 2 kg m^2
- d) 1 kg m^2

(MH-CET 2016)

- 73. Let 'M' be the mass and 'L' be the length of a thin uniform rod. In first case, axis of rotation is passing through centre and perpendicular to the length of the rod. In second case axis of rotation is passing through one end and perpendicular to the length of the rod. The ratio of radius of gyration in first case to second case is
 - a) 1

b) $\frac{1}{2}$

c) $\frac{1}{4}$

d) $\frac{1}{8}$