Opis funkcji:

randomFirst - zwraca liste n punktów o współrzędnych typu double z przedziału [-1000, 1000]

randomSecond - zwraca liste n punktów o współrzędnych typu double z przedziału [-10¹4, 10¹4]

random Third - zwraca liste n punktów leżących na okręgu o środku (0,0) i promieniu R=100

randomFourth - zwraca liste n punktów o współrzędnych typu double z przedziału [-1000, 1000] leżących na prostej wyznaczonej przez wektor (\mathbf{a}, \mathbf{b}) , gdzie $\mathbf{a} = [-1.0, 0.0], \mathbf{b} = [1.0, 0.1]$

divide Points
First - podaje informacje o ilości punktów po lewej, prawej stronie prostej oraz ilości leżących na prostej wyznaczonej przez punkty ${\bf a}$
i ${\bf b}$. Rysuje również położenie tych punktów w kolorach odpowiednio zielonym,
niebieskim, czerwonym. Wyznacznik jest tutaj liczony używając macierzy 3×3 . Nazwana przeze mnie metodą 1

divide PointsSecond - podaje informacje o ilości punktów po lewej, prawej stronie prostej oraz ilości leżących na prostej wyznaczonej przez punkty ${\bf a}$ i ${\bf b}$. Rysuje również położenie tych punktów w kolorach odpowiednio zielonym, niebieskim, czerwonym. Wyznacznik jest tutaj liczony używając macierzy 2×2 . Nazwana przeze mnie metodą 2

divide Points
Third - podaje informacje o ilości punktów po lewej, prawej stronie prostej oraz ilości leżących na prostej wyznaczonej przez punkty
 ${\bf a}$ i ${\bf b}$. Rysuje również położenie tych punktów w kolorach odpowiednio zielonym,
niebieskim, czerwonym. Wyznacznik jest tutaj liczony używając macierzy 3×3 oraz biblioteki Numpy. Nazwana przeze mnie metodą 3

divide Points Fourth - podaje informacje o ilości punktów po lewej, prawej stronie prostej oraz ilości leżących na prostej wyznaczonej przez punkty ${\bf a}$ i ${\bf b}$. Rysuje również położenie tych punktów w kolorach odpowiednio zielonym, niebieskim, czerwonym. Wyznacznik jest tutaj liczony używając macierzy 2×2 oraz biblioteki Numpy. Nazwana przeze mnie metodą 4

calculateDiff - oblicza liczbe punktów inaczej dopasowanych przez dwie różne metody

Na samym początku stworzyłem 4 zbiory punktów oraz pokazałem je na wykresie, każdy osobno. Następnie dla trzech różnych wartości epsilon, w moim przypadku $0,10^{-13},10^{-20}$, pokazałem na wykresie punkty podzielone na trzy zbiory, tak jak opisałem w opisie funkcji. Wypisałem również moc każdego zbioru. Każdy zbiór punktów podzieliłem używając każdej z 4 metód. Dla każdej wartości epsilon wypisałem również różnice w dopasowaniu punktów dla każdej pary metod używając funkcji calculateDiff. Wyniki obliczeń:

Zbiór 1	eps = 0			eps = 1e-13			eps = 1e-20		
	Lewo	Środek	Prawo	Lewo	Środek	Prawo	Lewo	Środek	Prawo
Metoda 1	50099	0	49901	50099	0	49901	50099	0	49901
Metoda 2	50099	0	49901	50099	0	49901	50099	0	49901
Metoda 3	50099	0	49901	50099	0	49901	50099	0	49901
Metoda 4	50099	0	49901	50099	0	49901	50099	0	49901

Zbiór 2	eps = 0			eps = 1e-13			eps = 1e-20		
	Lewo	Środek	Prawo	Lewo	Środek	Prawo	Lewo	Środek	Prawo
Metoda 1	50103	0	49897	50103	0	49897	50103	0	49897
Metoda 2	50101	7	49892	50101	7	49892	50101	7	49892
Metoda 3	50103	0	49897	50103	0	49897	50103	0	49897
Metoda 4	50102	0	49898	50102	0	49898	50102	0	49898

Zbiór 3	eps = 0			eps = 1e-13			eps = 1e-20		
	Lewo	Środek	Prawo	Lewo	Środek	Prawo	Lewo	Środek	Prawo
Metoda 1	476	0	524	476	0	524	476	0	524
Metoda 2	476	0	524	476	0	524	476	0	524
Metoda 3	476	0	524	476	0	524	476	0	524
Metoda 4	476	0	524	476	0	524	476	0	524

Zbiór 4	eps = 0			eps = 1e-13			eps = 1e-20		
	Lewo	Środek	Prawo	Lewo	Środek	Prawo	Lewo	Środek	Prawo
Metoda 1	171	427	402	0	1000	0	171	427	402
Metoda 2	149	693	158	130	729	141	149	158	693
Metoda 3	464	2	534	0	1000	0	464	2	534
Metoda 4	481	0	519	326	291	383	481	0	519

Dla zbioru punktów numer 1 wyniki były dokładnie takie same niezależnie od wybranej metody i wartości epsilona. Każdy punkt został dopasowany tak samo dla każdej z metód.

Dla zbioru punktów numer 2 wyniki były dokładnie takie same w każdej metodzie, niezależnie od wartości epsilona. Wyniki różniły się nieznacznie między metodami.

Dla zbioru punktów numer 3 wyniki były dokładnie takie same niezależnie od wybranej metody i wartości epsilona. Każdy punkt został dopasowany tak samo dla każdej z metód.

Dla zbioru punktów numer 4 wyniki okazały się skrajnie różne dla każdej z metód i każdej wartości epsilona.

Wyniki dla zbioru punktów numer 4 pozwoliły stwierdzić, że przy wybieraniu wartości epsilon warto wybrać małą liczbę, ale nie za małą. Wyniki pokazały, że dla eps = 1e-20 podział był nawet gorszy niż dla zera. Wyniki dla eps = 1e-13 pozwoliły stwierdzić, że metoda 1 i 3 są najlepsze, później metoda 2 a na końcu metoda 4. Warto zatem stosować wzór (1) na wartość wyznacznika, podany w instrukcji do ćwiczenia.