

数据科学与工程算法基础

Algorithm Foundations of Data Science and Engineering

第十三章 社团发现

$$(1+x)^n = 1 + \frac{nx}{1!} + \frac{n(n-1)x^2}{2!} + \cdots$$

1 算法引入

2 模块度

3 谱方法

4 Louvain方法

课程提纲

1 算法引入

2 模块度

3 谱方法

4 Louvain方法

网络与社区结构

- 社区是一个子图
- 如果子图内部连接比较紧密,子图与子图之间连接比较 稀疏,则表明图具有社区结构

- 社区发现有助于
 - 图的可视化
 - 异常检测(水军)
 - 用户画像(物以类聚、人以群分)
- 社区发现是一类广义的聚类方法

社区示例

- 在信任网络中,社区类似于"朋友圈"
 - 可视化
 - 用户行为理解
- 社区分类
 - 是否有重叠
 - 无重叠社区
 - 有重叠社区
 - 是否涉及所有顶点
 - 全局社区
 - 局部社区
- 仅探讨无重叠的全局社区结构

问题定义

- ◆社区结构表明网络可以被划分成子图,其内部连接比较紧密,相互间连接比较稀疏
- 然而,实际应用中的图通常都很大
 - •一个拥有 200M 顶点和 2B 边的图,需要 16 GB 内存
 - 由于图太大,运行在图上的算法最多只能是线性复杂度
- 社区发现旨在将子图划分成不相交的子图
 - 基于顶点相似度的聚类
 - 隐空间模型
 - 谱聚类方法
 - 最大化模块度

社区划分

- 给定无向图 G = (V, E)
 - 将其划分为两个不相交的 部分 A 和 $B = V \setminus A$
 - 除此以外,还有很多种划分方法
- 如何划分才能算是一个好的社区?

社区划分标准

- 社区划分标准
 - 最大化社区内部连接数量
 - 最小化社区之间的连接数量
- •割是表达社区好坏的一个标准,定义为 $Cut(A) = \sum_{i \in A, j \notin A} w_{ij}$
- 好的社区划分旨在最小割
 - 解决最小割问题的算法复杂度为 $O(|V| \cdot |E|^2)$
 - 对于大图行不通

课程提 纲

1 算法引入

2 模块度

3 谱方法

4 Louvain方法

图模型 — Power Law

Frequency

- Internet 拓扑结构图
 - Log-log scale
 - 分布在斜率为 -2.15 的直线上
 - $freq \propto deg^{-2.15}$

Power Law

- 又称为"马太效应"、"Pareto规则"、"富人越富"、或者 "二八定律"
 - 80% 意大利的土地被 20% 的人所拥有
 - 世界上最富有的 20% 的人拥有 82.70% 的财富
 - 圣经:词频排序 VS.频率
 - 网页:点击次数 VS. 网页数量
 - 文件: 文件数量 VS. 文件大小
 - 商业领域:
 - 20% 的客户贡献企业 80% 的利润
 - 80% 的投诉来自 20% 的客户
 - 80% 的公司利润来自员工 20% 的时间所创造的
 - 80% 的销售利润来自 20% 的员工

Power Law (II)

Rank: nodes in decreasing outdegree order

- 图中顶点出度的排序
 - 顶点按照出度升序排列
 - $deg \propto rank^{-2.15}$

Power Law (III)

Rank of decreasing eigenvalue

- •特征值排序
 - 邻接矩阵特征值按升序排列
 - eigen. $\propto rank^{-2.15}$

Power Law (IV)

- 顶点涉及Triangle的数量
 - Y轴: 顶点涉及Triangle的数量, X轴: 顶点数量
 - 在 log-log 尺度下,也分布在一条直线上

Erdos-Renyi 模型

- Erdos-Renyi (ER 模型) 是一个随机图模型,用于产生 无向随机图
 - 参数: N (顶点数量) 和 p (生成一条无向边的概率)
 - 对每组顶点配对,ER 模型以概率 p 形成一条无向边
 - 因此,该随机图中边的总数为 $|E| = \frac{n(n-1)}{2} \cdot p$
 - 顶点度的分布

•
$$P(deg = k) = {N-1 \choose k} \cdot p^k \cdot (1-p)^{N-1-k}$$

- 服从二项分布
- 期望为 (N-1)⋅p
- 方差为 $(N-1) \cdot p \cdot (1-p)$
- 不是一个长尾分布

NULL 模型

- 顶点 v_i 和 v_i 间期望边的数量
 - 假设边的起点为 v_i

。定义随机变量
$$X_{ij} = \begin{cases} 1, & \text{目标顶点为 } v_j \\ 0, & \text{otherwise} \end{cases}$$

- 因此, $P[X_{ii} = 1] = P_{ii}$ 为一个伯努利分布
- 进一步,我们有

$$\sum_{i,j} E(X_{ij}) = \sum_{i,j} P_{ij} = 2m$$

$$\sum_{j} E(X_{ij}) = \sum_{j} P_{ij} = k_{i}$$

NULL 模型(续)

- 因为 P_{ij} 和 k_i, k_j 有关,令 $P_{ij} = f(k_i)f(k_j)$
- 由于 $P_{ij} = P_{ji}$, 因此 $\sum_{j} P_{ij} = \sum_{j} f(k_i) f(k_j) = f(k_i) \sum_{j} f(k_j) = k_i$
- •因为 $\sum_{j} f(k_j)$ 与 顶点 v_i 无关,所以 $f(k_i) = ck_i$
- 进一步的 $\sum_{j} f(k_i)f(k_j) = c^2 \sum_{i,j} k_i k_j = 2m$
- 因此, $P_{ij} = c^2 k_i k_j = \frac{k_i k_j}{2m}$

NULL 模型的直观意义

- 令 X_i 为独立同分布的 Bernoulli($\frac{k_i}{2m}$), 其中 $X_i = 1$ 意味着起点为 v_i , 否则取值为 0
- 类似的,令 Y_i 为独立同分布的 Bernoulli($\frac{k_i}{2m}$),其中 $Y_i = 1$ 意味着终点为 v_i ,否则取值为 0
- •对于边 $e_{ij} \in E$
 - 意味着起点和终点分别为 v_i 和 v_j

•
$$\Rightarrow Z_{ij} = \begin{cases} 1, & e_{ij} \in E \\ 0, & \text{otherwise} \end{cases}$$

NULL 模型的直观意义(续)

- 给定一个网络,有 2m 条有向边
 - 每次往图中插入一条边是一个伯努利试验
 - 因此, $\sum Z_{ij} \sim \text{Binomial}(2m, p)$
- 因为 $p = P(Z_{ij} = 1) = \frac{k_i}{2m} \cdot \frac{k_j}{2m}$

• 因此,顶点
$$v_i$$
 和 v_j 之间边的数量的期望为 $E(\sum_{i,j} Z_{ij}) = 2mP(Z_{ij} = 1) = \frac{k_i k_j}{2m}$

Scale-Free 网络

- Preferential Attachment 模型
 - 连接比较多的顶点更可能获得新的连接(富人越富)
 - 价格模型
 - Barabasi-Albert 模型
- 价格模型
 - 以引用网络为例
 - 每篇新论文产生 m 个引用
 - 新论文引用已有论文的概率和它的度成正比
 - 产生的网络满足参数 $\alpha = 2 + \frac{1}{m}$ 的长尾分布

Barabasi-Albert 模型

- Barabasi-Albert 模型
 - 初始化拥有 m_0 个顶点的网络
 - 每个顶点的度不小于 1
 - 对每一个新顶点,连接到 m 个存在顶点中的顶点 i 的概率为 p_i ,其中 $p_i = \frac{k_i}{\sum_i k_i}$
 - 产生具有一个连通分量的 Scale— Free 网络,其中度的分布参数为 $\alpha = 3$

Modularity 定义

- Modularity(模块度)是网络社区结构的一个度量指标
- 给定无向图 G = (V, E), A 为邻接矩阵,其中 $A_{ij} = \begin{cases} 1, & (v_i, v_j) \in E \\ 0, & \text{otherwise} \end{cases}$
- Modularity 定义为 $Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} \frac{k_i k_j}{2m} \right) \delta(C_i, C_j)$,其中 m 和 C_i 表示图中顶点数量和顶点 v_i 所在的社区, k_i 为顶点 v_i 的度,且 $\delta(C_i, C_j) = \begin{cases} 1, & \text{if } C_i = C_j \\ 0, & \text{otherwise} \end{cases}$

Modularity 示例

$$m = 8, k_1 = 2, k_2 = 2, k_3 = 3$$

 $k_4 = 3, k_5 = 2, k_6 = 2, k_7 = 2$

$$k_4 = 3, k_5 = 2, k_6 = 2, k_7 = 2$$

$$Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(C_i, C_j) = \frac{47}{128}$$

Modularity 示例(续)

$$Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(C_i, C_j) = \frac{1}{8}$$

Modularity 的直观含义

- Modularity 度量了社区结构的好坏
- 给定网络的一个划分 C, 对每个社区 $c \in C$,

$$Q \propto \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(C_i, C_j) = \left(\sum_{i,j} A_{ij} - \sum_{i,j} \frac{k_i k_j}{2m} \right) \delta(C_i, C_j)$$

$$= \sum_{i,j} A_{ij} \delta(C_i, C_j) - \sum_{i,j} \frac{k_i k_j}{2m} \delta(C_i, C_j)$$

- $= \sum_{c \in C} [(\text{num. edges in } c) (\text{expected num. edges in } c)]$
- 给定具有 n 个顶点和 m 条边的真实网络 G,依据 NULL 模型 构建网络 G'
 - G′ 与 G 的顶点具有相同度的分布
 - 网络 G' 是一个多图

Modularity: 社区 VS. NULL 模型

 $Q \propto \sum_{c \in C} [(\text{num. edges in } c) - (\text{expected num. edges in } c)]$

- Modularity 计算了真实网络结构与基于 NULL 模型的网络结构 间的偏差大小
 - NULL 模型是随机连接两个顶点的,没有特别的网络结构
 - 对于给定划分,Modularity 比较了真实网络与随机网络中的社区结构
 - Modularity 的值越大意味着社区结构越强
 - 因此,modularity 可用于评价社区结构的好坏
 - 也可以用于发现社区结构

计算 Modularity

$$Q = \frac{1}{2m} \sum_{c \in C} \sum_{i \in c} \sum_{j \in C} (A_{ij} - \frac{k_i k_j}{2m})$$

- Modularity 的值属于 [-1,1]
- 其值为正,表明网络划分具有社区结构
- 其值大于 0.3, 表明网络划分具有较好的社区结构
- 给定一个划分,利用 modularity 来衡量该划分的好坏

权重图的 Modularity

• 给定一个无向权重图 G = (V, E),其权重矩阵为 $W_{ij} = \begin{cases} w_{ij}, & A_{ij} = 1 \\ 0, & A_{ii} = 0 \end{cases}$

• Modularity 定义为
$$Q = \frac{1}{2m} \sum_{i,j} \left(W_{ij} - \frac{k_i k_j}{2m} \right) \delta(C_i, C_j)$$

• 注意 m, k_i, k_j 的含义变化

有向图的 Modularity

- Modularity(模块度)也可以定义有向图上的社区结构
- 给定有向图 G = (V, E), A 为邻接矩阵

• Modularity 定义为
$$Q = \frac{1}{m} \sum_{i,j} \left(A_{ij} - \frac{k_i^{out} k_j^{in}}{m} \right) \delta(C_i, C_j)$$

课程提 纲

1 算法引入

2 模块度

3 谱方法

4 Louvain方法

Modularity 矩阵

- 给定某网络包含 n 个顶点,假定该网络被划分成 2 个社区,令 $s_i = \begin{cases} 1, & \text{if } v_i \in c_1 \\ -1, & \text{otherwise} \end{cases}$
- 该划分对应的 modularity 可以重写为

$$Q = \frac{1}{4m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) (s_i s_j + 1)$$

$$= \frac{1}{4m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) s_i s_j$$

$$= \frac{1}{4m} \mathbf{s}^{\mathsf{T}} \mathbf{B} \mathbf{s}$$

其中 $B_{ij} = A_{ij} - \frac{k_i k_j}{2m}$ 被称为 Modularity 矩阵

谱方法

- 注意到 Modularity 矩阵行和、列和均为 0
 - 意味着 (1,1,...,1) 为特征值 0 对应的特征向量
 - 将向量 s 表示成 Modularity 矩阵 B 的正交特征向量 \mathbf{u}_i 的线性组合,即 $\mathbf{s} = \sum_{i=1}^n \mathbf{a}_i \mathbf{u}_i$,其中 $\mathbf{a}_i = \mathbf{u}_i^{\mathsf{T}} \cdot \mathbf{s}$
 - 因此, $Q = \frac{1}{4m} \sum_{i} \mathbf{a}_{i} \mathbf{u}_{i}^{\mathsf{T}} \mathbf{B} \sum_{j} \mathbf{a}_{j} \mathbf{u}_{j} = \frac{1}{4m} \sum_{i=1}^{n} (\mathbf{u}_{i}^{\mathsf{T}} \cdot \mathbf{s})^{2} \beta_{i}$,其中 β_{i} 为矩阵 \mathbf{B} 的特征值,其对应的特征向量为 \mathbf{u}_{i}
 - 不妨假设特征值按照降序排列,即 $\beta_1 \geq \beta_2 \geq ... \geq \beta_n$

谱方法 (续)

- 社区发现旨在找到一个划分使得 Modularity 值最大
 - 相当于找到合适的向量 \mathbf{s} 使得 $\frac{1}{4m}\sum_{i=1}^n (\mathbf{u}_i^{\mathsf{T}}\cdot\mathbf{s})^2\beta_i$ 的值最大
 - 仅考虑最大特征值 β_1
 - 如果向量 s 没有任何限制则 $\mathbf{s} = c\mathbf{u}_1$,其中 c 为常数
 - 不幸的是, s 的每个分量取值为 ±1
 - 为了使得 modularity 取得最大值,定义 $s_i = \begin{cases} 1, & \text{if } \mathbf{u}_{1i} > 0 \\ 0, & \text{otherwise} \end{cases}$
 - 换句话说,向量 \mathbf{u}_1 的所有正分量对应的顶点被划分到同一个社区,其他顶点在另外一个社区

多社区划分方法

- 按照谱聚类方法,一个网络仅被划分成两个社区
- 如何利用该方法划分更多社区进一步增加 Modularity 的值呢?
 - 重复运用该方法不断将大的社区划分成小社区
 - 这种方法可行吗?
 - 存在以下问题
 - 最终的 Modularity 可能会改变,因为一些边在后续划分中被删除了
 - 后续每次 Modularity 最大化的划分不一定实现 Modularity 的最大化
 - 最好的方法应该计算 Modularity 的增量

Modularity 增量计算方法

。最大化
$$\Delta Q = \frac{1}{4m} \mathbf{s}^{\mathsf{T}} \mathbf{B}^{(g)} \mathbf{s}$$
,其中 $B_{ij}^{(g)} = B_{ij} - \delta_{ij} \sum_{k \in g} B_{ik}$

- 问题转化为一个新的谱聚类方法
- 重复以上过程,知道 Modularity 不再增加,算法停止

保程 提 纲

1 算法引入

2 模块度

3 谱方法

4 Louvain方法

Louvain 方法

- 一种基于贪心策略的社区发现算法
 - 支持无向图、有向图和权重图
 - 产生层次状的社区结构
 - 社区数量不是一个超参数
 - 可以有效发现大图中的社区结构
 - 运行时间仅为 O(|E|)
 - Modularity 逐渐增加,而且收敛速度快
- 基于贪心策略, Louvain 算法逐渐增加 modularity
 - 每轮迭代由两个阶段组成
 - 不停迭代,直到 modularity 不再增加为止
 - 提供自底向上的社区结构

改写 Modularity

Σ_{in} :

$$Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{k_i k_j}{2m} \right) \delta(C_i, C_j)$$
$$= \sum_{c \in C} \left[\frac{\sum_{in}^c}{2m} - \left(\frac{\sum_{tot}^c}{2m} \right)^2 \right]$$

- Σ_{in}^c 为社区 c 内部边上权重之和
- Σ_{tot}^c 为社区 c 内部顶点连接的边上权重之和

Louvain 算法

• 每轮迭代

- 第一阶段:通过局部调整社 区实现 modularity 最大化 (仅移动一个顶点)
- **第二阶段:** 一个社区看作一个超级顶点,构建一个新的权重图

Louvain 算法第一阶段

- 初始状态
 - 每个顶点属于不同的社区
 - 自底向上的方式构成层次状社区结构
- 第一阶段的局部调整,对每个顶点 v_i,计算
 - 当顶点 v_i 移动到它邻居 v_i 所在社区时,Modularity 增加量 ΔQ
 - 将顶点 v_i 移动到使得 ΔQ 增加最大的那个社区
 - 循环执行,直到移动任何顶点都不会增加 Modularity 为止
- 第一阶段实现了 modularity 的局部最大化
- 虽然顶点访问顺序会影响到算法结果,但是已有研究表明:顶点访问顺序不会对 Modularity 产生大的影响

Modularity 增加量 ΔQ

- Modularity 的增加量体现在 两部分
 - 收益: $\Delta Q(v_i \to C)$ 表示当顶点 v_i 移进社区 C 中时 Modularity 的增加量
 - 损失: $\Delta Q(D \rightarrow v_i)$ 表示当顶点 v_i 从社区 D 中移出 Modularity 的减少量
- 是否移动顶点 v_i 需要综合考虑这两部分

计算 $\Delta Q(v_i \rightarrow C)$

$$\Delta Q(v_i \to C) = Q_{C+v_i} - (Q_C + Q_{v_i})$$

$$= \frac{k_{i,in}^C}{2m} - \frac{\Sigma_{tot}^C k_i}{2m^2}$$

- Σ_{in}^{C} 为社区 C 内部边上权重之和
- Σ_{tot}^c 为社区 C 内部顶点连接的边上权重之和
- $k_{i,in}^C$ 为顶点 v_i 与社区 C 之间的边的权重和
- k_i 为顶点 v_i 的度或者边的权重和

计算 $\Delta Q(D \rightarrow v_i)$

- 令 D' 表示顶点 v_i 从社区 D 中移出后的社区结构
- 因此, $\Delta Q(D \to v_i) = -\Delta Q(v_i \to D')$
- 进一步的, $\Delta Q(D \rightarrow v_i) = \frac{\sum_{tot}^{D'} k_i}{2m^2} \frac{k_{i,in}^{D'}}{2m}$
- 最终 $\Delta Q(v_i, C, D) = \Delta Q(v_i \to C) + \Delta Q(D \to v_i)$
- 顶点 v_i 将被移到使得 ΔQ 增加最大的那个社区

Louvain 算法第二阶段

• 构建新的超图

- 顶点:每个社区抽象成一个顶点
- 边:如果两个社区间存在至少一条边,则两个超级顶点是连通的
- 边的权重:为两个社区间所有连接边的权重之后

• 超图

- 是一个权重图
- 比输入图小很多
- 因此,复杂度最高的操作是在第一轮 迭代中,而且复杂度为 O(|E|)

Louvain 算法示例

1ST PASS

2ND PASS

Louvain 算法优势

层次状社区结构

实验结果

	Karate	Arxiv	Internet	Web nd.edu
Nodes/links	34/77	9k/24k	$70\mathrm{k}/351\mathrm{k}$	$325\mathrm{k}/1\mathrm{M}$
CNM	.38/0s	.772/3.6s	.692/799s	.927/5034s
PL	.42/0s	.757/3.3s	.729/575s	.895/6666s
WT	.42/0s	.761/0.7s	.667/62s	.898/248s
Our algorithm	.42/0s	.813/0s	.781/1s	.935/3s

	Phone	Web uk-2005	Web WebBase 2001
Nodes/links	$2.6\mathrm{M}/6.3\mathrm{M}$	$39\mathrm{M}/783\mathrm{M}$	$118\mathrm{M}/1\mathrm{B}$
CNM	-/-	-/-	-/-
PL	-/-	-/-	-/-
m WT	.56/464s	-/-	-/-
Our algorithm	.769/134s	.979/738s	.984/152 mn

本章小结

- 社区发现是常见的一类图数据挖掘任务
 - 图可视化
 - 异常检测
 - 用户画像
- 社区类型
 - 全局社区结构
 - 局部社区结构(Clique、Biclique、Quasi-clique)
- 全局社区发现
 - 谱聚类方法
 - Louvain 算法