9.4 习题

张志聪

2024年12月4日

9.4.1

按照定义 9.4.1 可知 (a) 等价于 f 在 x_0 处沿着 X 收敛于 $f(x_0)$ (定义 9.3.6),即: $(a) \Leftrightarrow f$ 在 x_0 处沿着 X 收敛于 $f(x_0)$

- (b) ⇒ f 在 x₀ 处沿着 X 收敛于 f(x₀)
 (b) 满足 9.3.9 (b), 所以 f 在 x₀ 处沿着 X 收敛于 f(x₀)。
- (c) \Rightarrow f 在 x_0 处沿着 X 收敛于 $f(x_0)$ $|f(x) f(x_0)| < \epsilon \text{ 成立,那么 } |f(x) f(x_0)| \le \epsilon \text{ 成立,于是满足定义}$ 9.3.6,所以 f 在 x_0 处沿着 X 收敛于 $f(x_0)$ 。
- (d) ⇒ f 在 x₀ 处沿着 X 收敛于 f(x₀)
 因为 (x₀ δ, x₀ + δ) ⊂ [x₀ δ, x₀ + δ], 所以 |x x₀| ≤ δ 命题成立, 于是 |x x₀| < δ 时命题也成立。
 于是满足定义 9.3.6, 所以 f 在 x₀ 处沿着 X 收敛于 f(x₀)。

9.4.2

例 9.4.2、例 9.4.3 已经说明了证明过程, 唯一的区别是定义域的不同的。

9.4.3

任意 $x_0 \in R$,设序列 $(a_n)_{n=0}^{\infty}$ 是任意一个完全由 R 中元素构成并且收敛于 x_0 的序列。

对任意 $\epsilon > 0$, 我们希望

$$|f(x) - f(x_0)| \le \epsilon$$
$$|a^x - a^{x_0}| \le \epsilon$$
$$a^{x_0}|a^{x - x_0} - 1| \le \epsilon$$
$$|a^{x - x_0} - 1| \le \epsilon/a^{x_0}$$

• 当 $x - x_0 > 0$,由引理 6.5.3 可知,存在正整数 N',使得

$$|a^{x-x_0} - 1| \le \epsilon/a^{x_0}$$

当 $x - x_0 \le 1/N'$ 时成立。

所以当 $\delta' = 1/N'$ 时, $|f(x) - f(x_0)| \le \epsilon$ 对所有满足 $|x - x_0| < \delta'$ 的 $x \in R$ 均成立。

• 当 $x-x_0<0$,由引理 6.5.3 和极限定律可知, $\lim_{n\to\infty}x^{-(1/n)}=1$,类似 地,存在正整数 N'',使得

$$|a^{x-x_0} - 1| \le \epsilon/a^{x_0}$$

当 $x - x_0 \ge -(1/N'')$ 即 $x_0 - x \le 1/N''$ 时成立。

所以当 $\delta''=1/N''$ 时, $|f(x)-f(x_0)|\leq \epsilon$ 对所有满足 $|x-x_0|<\delta''$ 的 $x\in R$ 均成立。

取 $\delta = min(\delta', \delta'')$ 时, $|f(x) - f(x_0)| \le \epsilon$ 对所有满足 $|x - x_0| < \delta$ 的 $x \in R$ 均成立。于是 f 在 x_0 处沿着 R 收敛于 $f(x_0)$ 。