HW 5:Radiation from Moving Charges Due: Oct. 1, 9:30AM on D2L ASTR 589, Prof. Youdin

- 1. **Dipole antennas** radiate and receive the radio waves for cell phone use etc. Use the Larmor formula to estimate the current needed to power a 10⁴ watt cell or FM tower.
 - (a) What are the common frequencies and wavelengths, λ of cell communications? Of the community radio station 93.1 KXCI (broadcasting from Hotel Congress)?
 - (b) On physical grounds, justify a simple expression for the electic dipole moment d in an antenna due to a current, I, that varies in time at the relevant radio frequencies $\nu = 2\pi\omega$, in an antenna of length, L. From this result, estimate \ddot{d} .
 - (c) Derive the radiated power $P(I, L, \lambda)$. Assuming $L/\lambda \simeq 1$, what power is required, in Amps. Ignore uncertain order unity factors $(2, \pi, \text{ etc.})$.
 - (d) Justify the best orientation for a dipole antenna (horizontal, vertical, between?).
- 2. Electron scattering opacity This problem first calculates the electron scattering opacity, relevant in many stellar interiors. If you are not confident in your calculation, you can use $\kappa = 1 \text{ cm}^2/\text{g}$ (which is not quite right) to make the estimates that follow.
 - (a) From the electron scattering cross section $\sigma_e = 0.665 \times 10^{-24}$ cm², calculate the scattering opacity, κ_e . Assume a fully ionized mixture of hydrogen, with mass fraction $X_H = X$, and helium, with mass fraction $X_{He} = Y = 1 X$. Approximate $m_p = m_n$ and $m_e = 0$ for protons, neutrons and electrons. Give your answer in terms of X.
 - Hints for your derivation: The average mass per electron is ρ/n_e (mass density over number density of electrons). Consider n_e as the sum over the number density of electrons from each species, n_i , which depends on the atomic number, Z_i , atomic mass number, A_i and the mass density $\rho_i = X_i \rho$ of each species.
 - (b) Estimate the total optical depth, τ , to the center of the Sun roughly, for electron scattering opacity and using the mean density throughout. (This rough estimate is also a lower bound due to other sources of opacity
 - (c) In terms of τ , R_{\odot} , c, what are N, the number of scatterings for a photon to escape, and $t_{\rm esc}$, the time for the photon to escape? Give the numerical values as well. Give some caveats of this estimate and why the timescale is relevant.
 - (d) Make a crude estimate of the central temperature of the Sun, $T_c \sim T_{\rm diff}$ by assuming a constant radiative flux, which gives known solutions for $T(\tau)$. Then make a more robust, but still rough, virial approximation $T_c \sim T_{\rm vir}$, by equating mean thermal energies, kT and mean gravitational energies GMm_p/R (since the average particle mass is $m_p/2 \sim m_p$). Taking $T_{\rm vir}$ as typical, what is the ratio of radiation energy in the Sun to rest mass energy, $M_{\odot}c^2$?
- 3. Classical Scattering Start from the equation of motion of a bound electron with natural frequency ω_0 , which is forced by an oscillating electric field with frequency ω

$$\ddot{x} = -\omega_0^2 x + \tau \, \ddot{x} + \frac{eE_0}{m} \exp(\imath \omega t)$$

- (a) Explain the term with $\tau = 2r_0/(3c)$ in a few sentences. No detailed derivation needed.
- (b) Reproduce the derivation of the frequency dependent cross section, $\sigma(\omega)$. Note that the derivation in Rybicki and Lightman make an unstated approximation involving switching ω and ω_0 . Either explain this approximation or don't make it (it's not necessary).
- (c) Evaluate $\sigma(\omega)$ in the 3 limiting cases $\omega \ll \omega_0$, $\omega \gg \omega_0$ and $\omega \simeq \omega_0$. Give brief descriptions and show that the scattering line shape matches the emission case.
- 4. From classical to quantum For a transition between states 1 and 2, with energy difference $E_2 E_1 = h\nu_0$, the dimensionless (and often order unity) oscillator strength f_{12} gives a simple way to relate the results of classical oscillators to the more accurate results of quantum mechanics. In this exercise we start with the definition of frequency integrated cross section

$$\int \sigma_{\nu} d\nu = \frac{\pi e^2}{me^2} f_{12}$$

- (a) Based on this definition calculate the Einstein coefficients B_{12} , B_{21} and A_{21} .
- (b) Express A_{21} in terms of the classical line width (in frequency) $\Gamma = \omega_0^2 \tau$ with $\tau = 2r_0/(3c)$ the radiation reaction timescale.