

predict-Enture sales

Team_KeSemi

정양섭 주혜린 송상민 백혜수 최준섭 박예원

CONTENTS

Summarize Data

Variables and Functions

Model

Code Review

Question

PROJECT	TEAM Ke_Semi						
DESCRIPTION Kaggle_Predict Future Sales	DURATION 15 Days DUE						
	START 7/5 END 7/20						

SUB GOAL 1	SUB GOAL 2	SUB GOAL 3	
Data	Modelling	Result	
Preprocessing		Derivation	

STEPS	DUE
문제이はH(평가지표 파악)	7/5~6
MOIEI 분석 및 전처리	7/7~11
적합한 모델 찾기 적용 및 검증	7/12~17
Hyperparameter Optimization	7/17~20
발표준비	7/18~20

NOTES

정양섭 : 팀장, 데이터전처리 부터 모델링 전반적

인 부분 총괄

박예원 : 부팀장, 데이터 전체리, 이론 공부 및 모델

링파트총괄

송상민 : 데이터 전체리

주혜린: 데이터 전체리, PP+제작

최준섭 : 데이터 전처리, 모델링

백혜수: 데이터 전처리, 모델링, pp+제작

CTION PLAN	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	DAY 9	DAY 10	DAY 11	DAY 12	DAY 13	DAY 14	DAY 1
ASKS	5일	6ଥ	7%	89	9일	10일	11일	12일	13일	14일	15일	16일	17일	18일	19일
일정수립															
문제 이하게															
전체리															
모델링															
성능가서선															
발표자료제작															
코드 리뷰 및 스터디															
10000557															

Summarize

01

02

03

one of the largest Russian software firms - 1C Company

Time Series Dataset

predict total sales for every product and store in the next month

Main Data

Summarize | Variables and Functions |

KeSemi

Main Data

Data Name	Variables
item.csv	items
shops.csv	shops
sales_train.csv	train
item_categories.csv	item_categories
sample_submission.csv	submission

Preprocessed Data

Summarize | Variables and Functions |

KeSemi

Preprocessed Data

Preprocessed Data	Mean
item_high_categories	아이템과 아이템 카테고리, 아이템 상위 카테고리를 가진 데이터 프레임
sales_df	최종적으로 전처리가 종료된 데이터

Added Functions

Added Functions	Mean
reduce_mem_usage	데이터 프레임의 용량을 줄려주는 함수
clean_text	특수문자를 제거하는 함수
price_item_cnt_day_boxplot	item_price, item_cnt_day의 박스 플롯을 만드는 함수
make_high_category	item_category를 분류하여 새로운 열을 만드는 함수
draw_x_group_y_sum_barplot	index는 x, values는 y의 합을 barplot으로 만드는 함수
add_mean_feature	base_feature_name를 기준으로 mean_feature_names의 값들을 한달 평균을 구해서 df에 병합해주는 함수
find high corr location	상과계수가 높은 것들만 축력해주는 항수

```
def add_mean_feature(df ,
                    base_feature_names ,
                    num_feature_name):
   한달 평균을 구해서 df에 병합해주는 함수
   base feature names 기준이 되는 특성이름
   df_temp = df[base_feature_names + [num_feature_name]].copy()
   if len(base_feature_names) not in range(1,4):
   if len(base_feature_names) == 1:
       feature_name = 'date_' +num_feature_name+'_mean'
   elif len(base feature names) == 2:
       feature_name = base_feature_names[1] +'_'+num_feature_name.split('_')[1]+ '_month_mean'
       feature_name = base_feature_names[1] + '_' + base_feature_names[2] +'_'+num_feature_name.split('_')[1]+'_month_mean'
   df_temp = df_temp.rename(columns = {num_feature_name:feature_name})
   print(f'{feature_name}이 생성되었습니다.')
   df_temp = df_temp.groupby(base_feature_names).agg({feature_name : np.mean}).reset_index()
   df = df.merge(df_temp ,
                 on =base feature names,
                 how= 'left')
   return df , feature_name
```

```
def add_lag_data(df ,lag_feature, lag_periods= [1] , drop = True):
   lag period 만큼의 시차 데이터를 생성하는 함수
   lag feature 시차데이터가 생성될 열의 이름
   lag periods= [1] lag periods 시차데이터를 얼마나 생성할지 정함
   drop = True 시차 데이터를 생성 후 원래의 데이터 제거 여부
    base feature names = ['date block num', 'shop id', 'item id']
    for i in lag periods:
       df temp = df[base feature names + [lag feature]].copy()
       feature_name = lag_feature +"_lag_"+str(i)
       df temp.columns = base feature names +[feature name]
       df_temp['date_block_num'] +=i
       df = df.merge(df_temp,
                    on=base feature names,
                    how='left')
       df[feature name] = df[feature name].fillna(0)
       print(f'{feature name}을 생성하였습니다.')
   if drop:
       df = df.drop(columns = [lag feature] ,axis =1)
    return df
```

Added Variables

Added Variables

Added Variables	Mean
diff_train_test_shop_id	test 데이터의 shop_id가 train 데이터에 있는지 확인
diff_test_train_item_id	train 데이터의 item_id가 test 데이터에 있는지 확인
diff_test_items_item_id	items 데이터의 item_id가 test 데이터에 있는지 확인
temp_train	임시로 train값을 저장하기 위한 변수
train_item_cnt_month	한 달간 데이터를 종합할 때 사용한 변수
item_categories_value_counts	아이템 상위 카테고리의 value_counts를 저장하는 변수
base_feature_names	pivot 이나 Groupby를 할때 기준이 되는 열이름

Model

≠ XGBoost

- 💡 분류 및 회귀 문제에 모두 사용 가능
- 🢡 Boosting 기법 + 병렬학습 지원
- 🦞 과적합 규제

LightGBM

- ≫ 빠른속도 & 메모리 사용량이 상대적으로 적은편
- 🚿 XGBoost의 단점 보완
- 🚿 대용량 데이터 처리에 효과적

Reference

Variables and Functions

시계열 데이터 정의와 시계열 자료 분석 방법 - 전통적방법

[Predict Future Sales] playground 커널 리뷰 1

python random모듈 3개 정리 (randint, rand, randn)

민감도(Sensitivity)와 특이도(Specificity)

Ridge regression(릿지 회귀)와 Lasso regression(라쏘 회귀) 쉽게 이해하기

Introduction to ARIMA: nonseasonal models

Feature engineering, xgboost | Kaggle

Summarize

Variables and Functions

Model

Code Review

KeSemi

Code Review

