UNIVERSITE VIRTUELLE DE CÔTE D'IVOIRE

RECHERCHE OPERATIONNELLE ET AIDE A LA DECISION

Session de mars 2023

Nom : KOUAME	NOTE	OBSERVATIONS
Prénom : YAO ARISTIDE		
JULIUS GILDAS	100 100	
	13.0 /20	
Email (UVCI) : yao24.koua		
me@uvci.edu.ci		
Téléphone : 0709919404		

EXERCIE 1

1.a. Le degré d'un sommet est le nombre d'arêtes dont le sommet est une extrémité.

Sommets	В	С	D	F	N	Т
Degré des sommets du graphe	2	4	4	5	3	4

- **1.b.** Ce graphe est connexe car tous les sommets peuvent être reliés entre eux par (au moins) une chaine. Par exemple, la chaîne BCDNTF contient tous les sommets.
- **2.** L'existence d'un parcours permettant au groupe de passer par les six sommets en passant une fois et une seule par chaque chemin est liée à l'existence d'une **chaîne eulérienne**.

Puisque deux sommets exactement sont de degré impair et que les autres sont de degré pair, le **théorème d'euler** nous permet d'affirmer l'existence d'une telle chaîne eulérienne, donc d'un tel parcours. Par exemple, le trajet F-B-C-F-N-T-F-D-C-T-D-N répond au problème.

3.a. n est le nombre chromatique du graphe.

Le graphe admet un sous-graphe complet d'ordre 4 (FCTD est un sous-graphe complet).

Donc $4 \le n$.

 Δ est le degré maximal des sommets.

 $\Delta=5$ et $\Delta+1=6$.

Donc $n \le 6$

Conclusion

4<n<6

3.c. On utilise l'algorithme de coloration dit « algorithme glouton » pour colorier le graphe :

Sommet	Degré	Couleur
F	5	Couleur 1
С	4	Couleur 2
D	4	Couleur 3
T	4	Couleur 4
N	3	Couleur 2
В	2	Couleur 4

Le nombre chromatique de ce graphe est donc égal à 4

EXERCIE 2

NO

Première partie : Etude d'un graphe

1.a. Le graphe est connexe car entre tout couple de sommets, il existe au moins une chaîne.

1.b. Le tableau donnant les degrés de chaque sommet est :

	Sommet	A	В	С	D	Е	F	G	Н	R	S
N	Degré	2	4	4	4	4	4	4	2	3	1

1.c. Puisque seuls les deux sommets R et S sont de degré impair, le théorème d'Euler affirme l'existence d'un cycle Eulérien.

2.a. Notons χ le nombre chromatique de ce graphe

Le degré maximal atteint par les sommets du graphe est 4. Ainsi $\chi \le 4+1$, c'est-à-dire $\chi \le 5$

L'ordre du plus grand sous graphe complet étant de 3 (par exemple le sous-graphe GDE), on aura donc $3 \le \chi$.

Finalement, un encadrement du nombre chromatique de ce graphe est $3 \le \chi \le 5$

2.b. On procède à une coloration du graphe selon l'algorithme Glouton

Sommet(ordre décroissant des degrés)	Degré	Couleur
В	4	Couleur n° 1
C	4	Couleur n° 2
D	4	Couleur n° 3
E	4	Couleur n° 1
F	4	Couleur n° 1
R	3	Couleur n° 3
A	2	Couleur n° 3
H	2	Couleur n° 3
S	1	Couleur n° 3

Ce qui montre que le nombre chromatique est égal à 3.

Deuxième partie : Visite d'un musée

- 1. Si on représente le musée à l'aide d'un graphe dont les sommets sont les salles et les arêtes sont les portes permettant de communiquer entre les salles, on retombe sur le graphe de la partie 1, à condition de désigner par R la réception et par S la Salle VIP.
- **2.a.** Trouver un tel chemin revient à trouver un cycle eulérien parcourant ce graphe. D'après la partie 1, une telle chaine existe.
- **2.b.** Un exemple de tel chemin est la chaine R(réception)-B-C-R-F-C-D-B-A-E-D-G-E-H-G-F-S (salle VIP), qui parcourt une et une seule fois toutes les arêtes du graphe.
- 3. En reprenant la coloration établie dans la partie 1, si on choisit de colorier :
- d'une première couleur les salles F, E et B
- d'une deuxième couleur les salles G et C
- d'une troisième couleur les salles D, H, A, la réception et la salle VIP, deux salles communiquant par une porte seront toujours coloriées à l'aide de deux couleurs distinctes.