

STFC

Polaris House, North Star Avenue, Swindon, Wiltshire, United Kingdom SN2 1SZ

Telephone +44 (0) 1793 442000

Web https://stfc.ukri.org/

Compliance with the UK data protection legislation and the EU General Data Protection Regulations 2016/679 (GDPR)

In accordance with UK data protection legislation and the EU General Data Protection Regulations 2016/679 (GDPR), the personal data provided on this form will be processed by STFC, as part of UKRI, and may be held on computerised databases and/or manual files. Further details can be found in the guidance notes and on the UK Research and Innovation Privacy Notice (https://www.ukri.org/privacy-notice/).

Ernest Rutherford Fellowships Document Status: With Owner **PROPOSAL**

STFC Reference:

Ernest Rutherford Fellowships 2022

Organisation where the Fellowship would be held

Organisation	University	University of Exeter		rganisat	ion	BID123159	
Division or Departm	nent Physics an	Physics and Astronomy					
	Research [up to 150 cl						
Improved magnetod	convection models for	precision astroph	nysics				
Start Date and Dur	ation						
a. Proposed start date	oposed start 01 June 2023		uration of the grant nths)		60		
Applicants							
Role	Name	Organisation	า	Division	n or Depar	tment	
Fellow	Dr Evan Anders	van Anders Private Addr		Private Address			
Years of Post-Doct	toral Experience						
Years of postdoctor	al experience at 1 Sep	tember next yea	ır 3				

If you are returning to research from a career break please tick

Proposal Classifications

Classification Areas:

Research Areas are the subject areas in which the research proposal may fall and you should select at least one of these with a maximum of five allowed. You will need to assign the relative percentage totaling 100% across all areas selected. To add or remove Research Areas use the relevant link below. To set a primary area, click in the corresponding checkbox and then the Set Primary Area button that will appear.

Subject	Topic	Indicator %	Keyword
Astronomy - theory	Computational Methods and Tools	30	
Astronomy - theory	Stellar Astronomy	70	

Qualifiers:

Qualifiers are terms that further describe the area of your research and cover aspects such as approach, time period, and geographical focus. Please ensure you complete this section if relevant. To add or remove Qualifiers use the links below.

> Date Saved: 12/09/2022 16:50:46 Date Printed: 12/09/2022 16:52:37

Keywords:
Free-text keywords may be used to describe the subject area of the proposal in more detail. To add or remove those
previously added use the links below.

Page 2 of 8 Date Saved: 12/09/2022 16:50:46

Objectives

List the main objectives of the proposed research in order of priority [up to 4000 chars]

Modern precision observations have revealed major theoretical shortcomings in models of convection and demand a new state-of-the-art set of convective simulations. The goal of this proposal is to build a next-generation set of global and local 3D numerical simulations, which will answer the following three questions (ranked here by priority):

- (1) How large are convective cores in massive stars?
- (2) How does surface convective blueshift vary across stellar mass?
- (3) How does magnetoconvection affect the radii of low-mass, fully convective stars?

Summary

astrophysics.

Describe the proposed research in simple terms in a way that could be publicised to a general audience [up to 4000 chars]. Note that this summary will be automatically published on STFC's website in the event that a grant is awarded.

Current and next-generation space- and ground-based observatories are revolutionizing precision observations in

Long observations ("lightcurves") from space missions like Kepler, TESS, and (soon) ESA's PLATO have enabled the detection of thousands of planets. Follow-up observations in the search for extrasolar planets measure how much a planet's gravity moves its host star. Since planets are small compared to stars, these signals are faint, and variation from convective turbulence (like storms on Earth) at the surface of the star can drown out any chance of detecting planet-induced motion. The proposed research will improve models of convection at the surface of stars to enable the detection and classification of extrasolar planets.

The lightcurve observations that let us discover planets also let us see waves that provide information about the insides of stars through the field of asteroseismology, just like we use waves to learn about the inside of earth via seismology. These waves provide information about mixing and convection that occurs deep within stars which we cannot observe in any other way. Our current models of convective mixing are at odds with these observations and must be improved. Deep mixing can inject fresh fuel into the core of stars, lengthening the lifetime of the star and determining whether the star will eventually turn into a small white dwarf, a neutron star, or a black hole. The proposed research will improve models for determining which stars will end their lives as black holes.

In summary, our models of convective motions and convective mixing in stars are imprecise. These uncertainties make it difficult to detect small exoplanets, and also make it difficult to understand our observations of the most massive objects in the galaxy (black holes and neutron stars). This research proposal will improve models of convection by creating the first 3D, full-sphere magnetic simulations of massive stars and small stars (M dwarfs). These convective models will be used to improve estimates of how stars age, which will in turn affect predictions of what stars evolve into (e.g., black holes vs. neutron stars). We also propose to create a suite of smaller, "star-in-a-box" simulations which capture convective motions at the surface of stars to help enable the detection of earth-like planets around Sun-like stars.

Page 3 of 8 Date Saved: 12/09/2022 16:50:46

Date Printed: 12/09/2022 16:52:37

Summary of Resources Required for Project

Financial resources

	Total	684288.00	547430.40		
Indirect Costs	Indirect Costs	249465.00	199572.00	80	
	Sub-total	48365.00	38692.00		
	Allocated	3470.00	2776.00	00	
	Other Directly	3470.00	2776.00	80	
	Estates Costs	44895.00	35916.00	80	
Allocated	investigators	0.00	0.00	00	
Directly	Investigators	0.00	0.00	80	
	Sub-total	386458.00	309166.40		
	Other Costs	8000.00	6400.00	80	
	Subsistence	10000.00	8000.00	80	
	Travel &	10000 00	9000 00	90	
Incurred	Stall	368458.00	294766.40	80	
Directly	Staff	269459.00	204766 40	80	
fund heading	Fund neading	Cost	contribution	contribution	
Summary	Fund heading	Full economic	STFC	% STFC	

Summary of staff effort requested

	Months
Investigator	60
Researcher	0
Technician	0
Other	0
Visiting Researcher	0
Student	0
Total	60

Page 4 of 8 Date Saved: 12/09/2022 16:50:46

Other Support

Details of support sought or received from any other source for this or other research in the same field. Other support is not relevant to this application.

Page 5 of 8 Date Saved: 12/09/2022 16:50:46
Date Printed: 12/09/2022 16:52:37

Staff

Directly Incurred Posts

			PROJECT							
Role	Name /Post Identifier	Start Date	Period on Project (months)	% of Full Time	Scale	Increment Date	Basic Starting Salary		Super- annuation and NI (£)	Total cost on grant (£)
Fellow	Dr Evan Anders	01/06/2023	60	100	G42	01/08/2023	50300	0	17316	368458
	·	•	•			•		•	Total	368458

Page 6 of 8

Date Saved: 12/09/2022 16:50:46 Date Printed: 12/09/2022 16:52:37 **Other Directly Allocated Costs**

Description	Total £
Infrastructure Technicians	3470
Total £	3470

Other Directly Incurred Costs

Description	Total £
Consumables	5000
Relocation costs	3000
Total £	8000

Date Saved: 12/09/2022 16:50:46
Date Printed: 12/09/2022 16:52:37

Classification of Proposal

(a) Peer Review Preferences

Tick one of the following boxes to indicate the STFC fellowships peer review panel you consider most appropriate to review this fellowship.

Accelerator Physics	
Astronomy Extragalactic	
Astronomy Near Universe	Х
Particle Physics Experiment	
Particle Physics Theory	
Particle Astrophysics and Cosmology	
Nuclear Physics	

Page 8 of 8 Date Printed: 12/09/2022 16:52:37