Modelos de Datos y Diseño de Bases de Datos Relacionales

Tema 5. Modelo Relacional

Tema 5. Modelo Relacional

Objetivos

- Comprender los principios estructurales del modelo de datos relacional formal
- Entender los conceptos de "integridad de entidad" y de "integridad referencial", y apreciar su importancia
- Entender los significados e implicaciones del concepto "nulo" en el modelo relacional

5. Modelo relacional

Contenidos

- □ 5.1 Presentación y orígenes del modelo relacional
- 5.2 Estructura de datos relacional
- 5.3 Características básicas de integridad de datos

- Boletines de ejercicios (exámenes AV)
 - Boletín 6. Modelo Relacional.
 - Boletín 7. Clave Ajena.

5. Modelo relacional

Bibliografía

- [CB 2015] Connolly, T.M.; Begg C.E.: Database
 Systems: A Practical Approach to Design,
 Implementation, and Management, 6th Edition.
 Pearson. (Capítulo 4).
- [EN 2016] Elmasri, R.; Navathe, S.B.: Fundamentals of Database Systems, 7th Edition. Pearson. (Capítulo 5).

5.1 Presentación y orígenes del modelo relacional

Es un Modelo de Datos Lógico (de Representación)

basado en registros

 Creado en 1970 por el matemático Edgar F. 'Ted' Codd en IBM Research

- Es el modelo más utilizado en las aplicaciones comerciales de procesamiento convencional de datos
- Se estudia distinguiendo 3 partes:
 - 1. Estructura de Datos
 - 2. Integridad de Datos (características básicas)
 - 3. Manipulación de Datos

5.2 Estructura de datos relacional

□ Relación

- □ Tiene un **nombre** y representa una **entidad genérica**
- Representada mediante una tabla

- Contiene un conjunto de tuplas (filas)
 - Cada tupla representa una entidad concreta (instancia)
- Compuesta de atributos (columnas)
 - Cada atributo tiene nombre (y dominio)
 - Y representa una propiedad de la entidad genérica

Ejemplo: la relación PELICULA

¿Cuáles son sus raíces?

- □ El modelo Relacional tiene una sólida base formal
 - Basado en la Teoría de conjuntos y en la
 - Lógica de predicados de primer orden
- ... lo que le confiere su principal fortaleza:
 - Un modo sencillo de representar los datos
 - Fácil de utilizar, entender, razonar...
 - Y consultas expresadas con lenguajes cuyo código es fácilmente optimizable y, por tanto, tendrán un alto rendimiento

Términos básicos

	Modelo Relacional						
Formal		ANSI SQL					
Relación		Tabla	Fichero				
Tupla	Si la tupla t está dentro de la relación R, entonces t∈R	Fila	Registro concreto				
Atributo	Debe tener un nombre único dentro de cada relación	cabecera de Columna	Nombre de Campo de registro				
Cardinalidad	n° de tuplas en una relación	Cardinalidad					
Grado	n° de atributos en una relación	Grado					
Dominio	colección de valores permitidos para ciertos atributos (similar a "tipo de datos")	Dominio					

Una tupla se puede representar con una lista de datos separados por comas, encerrada entre paréntesis.

Ejemplo de dos tuplas:

('Amores Perros', 'A. González', 'Drama', 2000, 'México', 145) ('The Matrix', 'A. Wachowsky', 'Ciencia-ficción', 1999, 'EEUU', 138)

Definiciones formales

- Dominio
- □ Relación
- Base de Datos Relacional

Definiciones formales: DOMINIO

- Conjunto de valores atómicos del mismo tipo, donde toman su valor los atributos
 - La definición de dominios forma parte de la definición de la BD
 - Cada atributo está definido sobre UN y sólo UN dominio
 - Si los atributos "a" y "b" representan un concepto de significado análogo, entonces "a" y "b" deben tener el mismo dominio
 - "fecha_prestamo" y "fecha_nacimiento"
 - Un dominio puede contener valores no tomados por ningún atributo

$$\{valores de "a"\} \subseteq Dominio("a")$$

- Comparaciones restringidas a Dominio
 - La comparación de dos atributos sólo tiene sentido si ambos toman valores del mismo dominio o compatibles
 - Si el SGBD soporta dominios, podrá detectar este tipo de errores

- □ Una relación R sobre un conjunto de dominios $D_1, D_2...D_n$ está compuesta por dos partes:
 - **Esquema** o Cabecera
 - Conjunto de pares (Atributo:Dominio)

```
{ (a_1:D_1), (a_2:D_2) \dots (a_n:D_n) }
```

- Cada a_i tiene asociado sólo un D_i
- Los D_i no tienen por qué ser distintos entre sí; por ejemplo a₁ y a₃ pueden tener el mismo dominio
- El esquema puede incluir otras restricciones de integridad (se verá)
- **Estado**, Cuerpo o Instancia
 - Conjunto de tuplas que contiene la relación en un instante concreto
 - Tupla = conjunto de pares (Atributo: Valor)

```
\{ \{(a_1:v_{i1}),(a_2:v_{i2})...(a_n:v_{in})\},...\}  para la tupla i, i=1..m
```

```
Un esquema de relación (notación formal, textual):
PELICULA (idPel:CODIGOS, titulo:TITULOS, director:NOMBRES,
           genero: GENEROS, año_estreno: AÑOS,
            nacionalidad:PAISES, duracion:TIEMPO)
Un estado de la relación (se muestran sólo 2 tuplas):
{ (idPel:'P02'), (titulo:'La trinchera infinita'),
   (director: 'Aitor Arregi'), (genero: 'Drama'), (año_estreno: 2019),
   (nacionalidad: 'España'), (duracion: 147) },
  { (idPel:'P10'), (titulo:'The Matrix'), (director:'A. Wachowski'),
   (genero: 'Ciencia-ficción'), (año_estreno: 1999),
   (nacionalidad: 'EEUU'), (duracion: 138) }
```

- □ Un **esquema** de relación:
 - □ Notación **sencilla** (texto, sin los nombres de dominio):

PELICULA (idPel, titulo, director, genero, estreno, nacionalidad, duracion)

□ Notación de tabla:

PELICULA idPel titulo director genero estreno nacionalidad duracion

Un estado de la relación, en forma de tabla:

P56	Avengers: Endgame	Joe Russo	Ciencia-ficción	2019	EEUU	181
P02	La trinchera infinita	Aitor Arregi	Drama	2019	España	147
P10	The Matrix	A.Wachowski	Ciencia-ficción	1999	EEUU	138
P22	Capitán América	Joe Russo	Ciencia-ficción	2011	EEUU	124
P47	Campeones	Javier Fesser	Comedia dramática	2018	España	124

- □ El estado de una relación es variable en el tiempo
 - Introducción de nuevas tuplas,
 - Modificación y/o borrado de algunas existentes
- El esquema de relación no suele variar
 - Es obtenido tras el diseño conceptual y lógico
 - Ejemplo de cambio: añadir un nuevo atributo 'recaudacion' a la relación PELICULA
 - ⇒ Resulta muy costoso:
 - ¿Qué valores dar a los nuevos atributos para tuplas ya existentes?
 - Modificación de (normalmente) gran cantidad de tuplas
- El esquema de relación suele incluir un conjunto de Reglas de Integridad

(Lo veremos más adelante)

- □ Propiedades de una Relación
 - 1. No existen tuplas repetidas
 - 2. Las tuplas no están ordenadas
 - 3. Los atributos no están ordenados
 - 4. Los valores de atributos son atómicos
- Veamos cada una con más detalle para comprenderlas bien

- 1. No existen tuplas repetidas
- Es imposible que existan dos tuplas con igual valor en todos los atributos
- estado = conjunto matemático de tuplas

PELICULA

idPel	titulo	titulo director genero		estreno	nacionalidad	duracion
P56	Avengers: Endgame	Joe Russo	Acción	2019	EEUU	181
P02	La trinchera infinita	A. Arregi	Drama	2019	España	147
P10	The Matrix	A. Wachowski	Ciencia-ficción	1999	EEUU	138
P56	Avengers: Endgame	Joe Russo	Acción	2019	EEUU	181
P22	Capitán América	Joe Russo	Acción	2011	EEUU	124
P47	Campeones	Javier Fesser	Comedia dramática	2018	España	124

2. Las tuplas no están ordenadas

PELICULA

idPel	titulo	director	genero	estreno	nacionalidad	duracion
P56	Avengers: Endgame	Joe Russo	Acción	2019	EEUU	181
P02	La trinchera infinita	A. Arregi	Drama	2019	España	147
P10	The Matrix	A. Wachowski	Ciencia-ficción	1999	EEUU	138
P22	Capitán América	Joe Russo	Acción	2011	EEUU	124

■ Estas dos en realidad SON la MISMA relación (tabla): el orden de las tuplas (filas) es indiferente

PELICULA

idPel	titulo	director	genero	estreno	nacionalidad	duracion
P10	The Matrix	A. Wachowski	Ciencia-ficción	1999	EEUU	138
P56	Avengers: Endgame	Joe Russo	Acción	2019	EEUU	181
P02	La trinchera infinita	A. Arregi	Drama	2019	España	147
P22	Capitán América	Joe Russo	Acción	2011	EEUU	124

3. Los atributos no están ordenados

PELICULA

idPel	titulo	director	genero	estreno	nacionalidad	duracion
P10	The Matrix	A. Wachowski	Ciencia-ficción	1999	EEUU	138
P56	Avengers: Endgame	Joe Russo	Acción	2019	EEUU	181
P02	La trinchera infinita	A. Arregi	Drama	2019	España	147
P22	Capitán América	Joe Russo	Acción	2011	EEUU	124

■ Estas en realidad SON la MISMA relación (tabla): el orden entre atributos (columnas) también es indiferente

PELICULA

titulo	director	idPel	estreno	nacionalidad	duracion	genero
Avengers: Endgame	Joe Russo	P56	2019	EEUU	181	Acción
La trinchera infinita	A. Arregi	P02	2019	España	147	Drama
The Matrix	A. Wachowski	P10	1999	EEUU	138	Ciencia-ficción
Capitán América	Joe Russo	P22	2011	EEUU	124	Acción

- 4. Los valores de atributos son atómicos
- En una celda o casilla (en cada intersección fila/columna) sólo puede haber un valor (nunca una lista de valores)

idPel	titulo	director	genero	estreno	nacionalidad	duracion
P89	El escuadrón suicida		Acción, Aventura KO!	2021	EEUU	132
P02	La trinchera infinita	A. Arregi, J.M. Goneaga, J. Garaño	Drama	2019	España	147

KO!

Definiciones formales: BASE DE DATOS RELACIONAL

 Percibida por el usuario como una colección de relaciones

con <u>diferentes</u> cabeceras o

esquemas de relació (atributos y restricciones)

y cuyos <u>estados</u>
varían con el
tiempo (tuplas
en cada relación)

<u>ión</u>		DIRECTOR						
		idDir	nombre		• • •	DD		
		D001	Q. Tarantin		ntino	• • •		,
PELICULA	_	•••		• •	•	•••		
idPel		titulo			direct	or	genero	•••
P1234	K	ill Bill:	Vol.	1	D001	-	Acción	• • •
•••		• • •			• • •		• • •	• • •
ACTOR								
idAct	no	mbre_arti	stico	na	cionalid	lad	añonacim	•••
A0508		Uma Thurman			EEUU		1970	
•••		• • •			• • •		• • •	•••

Definiciones formales: BD RELACIONAL

 Toda BD Relacional cumple el Principio de Información:

Todo contenido de información está **representado** en la BD de una y **sólo una forma**: como un **valor** explícito dentro de una posición de columna dentro de una fila dentro de una tabla

- Las conexiones lógicas entre relaciones (vínculos entre los datos) también son representadas mediante valores
 - No existen punteros

Lo veremos más adelante

Definiciones formales: BD RELACIONAL

- □ En una BDR distinguimos...
 - Esquema de la Base de Datos
 - Conjunto de esquemas de relación
 - Es la descripción de la base de datos: el Esquema Lógico

PELICULA (idPel, titulo, director, genero, estreno, nacionalidad, duracion)

ACTOR (idAct, nombre, nombre_artistico, añonacim, nacionalidad, ...)

DIRECTOR (idDir, nombre, nacionalidad, opera_prima)

etc...

- Estado o instancia de la Base de Datos
 - Visión del contenido de la base de datos en cierto instante
 - Conjunto de estados de las relaciones de la base de datos

5.3 Características básicas de integridad de datos

- □ Todo estado de la BD refleja la realidad
 - es un modelo de una porción del mundo real
- Algunas configuraciones de valores no tienen sentido, por no representar ningún estado posible de la realidad
 - Una cuenta sin cliente titular
 - Dos clientes distintos con el mismo DNI
 - Una película sin director
 - Una asignatura sin nombre
 - Un libro sin editorial
 - Un/a estudiante con -19 años
 - **..**
- Por tanto, el esquema de la BD necesita incluir Restricciones de Integridad

No deben permitirse en la Base de Datos

Restricciones de Integridad

- Al incluirlas en el esquema de la BD, el SGBD conoce las restricciones del mundo real
- Así, el SGBD las aplica (obliga a su cumplimiento)
 y evita cualquier configuración de datos imposible
- □ Toda restricción de integridad cumple que:
 - □ Forma parte de la BD (es parte del esquema de la BD)
 - Se satisface para cualquier estado (haya los datos que haya)
 - No varía con el tiempo
- Son específicas de cada BD particular, pero el Modelo Relacional incluye características básicas de integridad importantes y necesarias en toda BD
 - Claves Candidatas: Primarias y Alternativas
 - Claves Ajenas (o foráneas o externas)

Clave de una relación

Es el mismo concepto que en el Modelado Conceptual de Datos

□ Sea R una relación,

- $R(a_1:D_1, a_2:D_2, ..., a_n:D_n)$
- Una clave de R es un subconjunto de sus atributos tal que cumple la restricción de Unicidad
 - No existen dos tuplas distintas con valores iguales para dichos atributos
- y también cumple la restricción de Irreductibilidad
 - no tiene atributos redundantes, es mínima
 - ningún subconjunto cumple la restricción de unicidad
- Una clave es un conjunto de atributos que identifica de forma única cada tupla de la relación
- Clave de PELICULA: idPel

Clave simple o compuesta

- Una clave puede ser Simple (un atributo) o
 Compuesta (estar formada por varios atributos)
- Claves Simples
 - □ idPel en PELICULA
 - DNI en EMPLEADO
 - num_expediente en ESTUDIANTE
 - numero_cuenta en CUENTA
- Claves Compuestas
 - (titulo, año_estreno) en PELICULA
 - (hotel, numero_habitacion) en HABITACION_HOTEL
 - (numero_prestamo, numero_cuota) en CUOTA_PRESTAMO

Las claves de cada relación dependen del dominio de la aplicación, y suelen detectarse en el Diseño Conceptual y Lógico

Relación con varias claves

Una relación puede contener varias claves

EMPLEADO (DNI, NSS, codemp, nombre, fechanacim, direccion, telefono,...) *Claves de* EMPLEADO:

- (DNI)
- (NSS)
- (codemp)
- (nombre, fechanacim)

ESTUDIANTE (DNI, num_expediente, nombre, apellido1, apellido2, fecha_nac, direccion, telefono, email, ...)

Claves de ESTUDIANTE:

- (DNI)
- (num_expediente)
- (email)
- (nombre, apellido1, fecha_nac)

Claves Candidatas: Primaria y Alternativas

De entre todas ellas hay que elegir...

- □ La Clave Primaria (Primary Key, PK) es la clave candidata elegida para identificar las tuplas de R Clave Primaria (EMPLEADO) = (codemp)
- Las Claves Alternativas (Alternative Keys, AK) son el resto de las claves candidatas
 - Siguen cumpliendo que su valor no se puede repetir Claves Alternativas (EMPLEADO)={ (DNI),(NSS), (nombre, fechanacim)}

NULL

También es igual que en el Modelado Conceptual de Datos

- En el mundo real existe...
 - información perdida
 - ausencia de información
 - valor no aplicable a un atributo

direccion desconocida

żtiene teléfono o no tiene?

fechajubilacion de persona activa

Para representar estas situaciones en los sistemas de BD se utiliza el NULL (nulo)

EMPLEADO

DNI	NSS	codemp	nombre	fechanacim	direccion	telefono	fechajubilacion	•••
7777777X	333	1210	García, A.	01/12/1987	Gran Vía, 6	NULL	NULL	
2222222B	111	0300	López, B.	30/12/2004	Ronda Norte, 3	622111222	NULL	
8888888C	444	1003	Azorín, C.	29/08/2002	NULL	688444888	NULL	
4444444D	222	2689	Pérez, D.	20/03/1956	Plaza Mayor, 2	NULL	22/03/2021	
•••	•••			•••	•••			

i Los NSS son números de 12 dígitos, pero hemos incluido sólo 3 para facilitar la comprensión del ejemplo Los atributos "direccion", "telefono" y "fechajubilacion" admiten el NULL como valor

NULL

- □ Es posible especificar (para toda relación) si un atributo puede o no contener nulo (se verá: "Descripción de Relaciones")
- Si en una tupla, un atributo contiene un nulo, significa que el valor real del atributo es desconocido
- NULO no es un valor
 no es un espacio en blanco ni es un 0,
 es un indicador (marca) de ausencia de información
- □ NULL **no** es igual a ninguna cosa, ni siquiera a otro NULL
 - Si se comparan entre sí dos atributos que contienen NULL, el resultado es FALSE: NO son iguales
 - Para el empleado con DNI '7777777X' [relación de la diapositiva anterior] ¿Se cumple que telefono = fechajubilacion?
 - La respuesta es: NO, eso es FALSE, no son iguales ja pesar de que ambos contienen NULL!

Nulos y Claves Primarias

Restricción de Integridad de Entidad:

Ningún atributo componente de una clave primaria puede contener NULL

EMPLEADO

DNI	NSS	codemp	nombre	fechanacim	direccion	telefono	fechajubilacion	•••
7777777X	333	1210	García, A.	01/12/1987	Gran Vía, 6	NULL	NULL	
2222222B	111	NULL	López, B.	30/12/2004	Ronda Norte, 3	622111222	NULL	
8888888C	444	1003	Azorín, C.	29/08/2002	NULL	688444888	NULL	
4444444D	222	2689	Pérez, D.	20/03/1956	Plaza Mayor, 2	NULL	22/03/2021	
•••	•••	•••	•••	•••	•••	•••	•••	

□¿Tendría sentido que codemp pudiera contener NULL?

□¿Tiene sentido que numero_habitación pueda contener NULL?

hotel	numero habitacion	num_camas	precio	•••
H01	10	2	50	
H03	02	1	45	
H01	NULL	1	40	
H02	14	3	50	
•••	•••	•••	•••	

Las claves alternativas sí pueden contener NULL

SOCIO_BIBLIOTECA (codSocio, DNI, nombre, ...)

Clave primaria: codSocio

Clave alternativa: DNI

••

□¿Tiene sentido que DNI pueda contener NULL?

SOCIO BIBLIOTECA

codSocio	DNI	nombre	añonacimiento
S04	4444444C	Salsipuedes, Ludovica	1980
S10/	55555 <mark>555</mark> V	Contracorriente, Musitano	2005
	NULL		2018
S 06	333 <mark>33333</mark> M	Saltoliebre, Juvenalina	1999

Hosta aguin nada nuevo

Permite representar socios que no tengan DNI por ser muy jóvenes, por ejemplo

Clave Ajena (externa o foránea)

 En el Modelo Entidad-Relación, por ejemplo, disponemos de los tipos de relación para expresar vínculos entre entidades

 Pero en el Modelo Relacional sólo tenemos relaciones (tablas), que contienen tuplas (filas) con valores

CLIENTE

<u>codigo</u>	nombre	direccion	ciudad
1210	García, A.	Gran Vía, 6	Murcia
0300	López, B.	Ronda Norte, 3	Murcia
1003	Azorín, C.	Paseo Rosales, 9	Molina
2689	Pérez, D.	Plaza Mayor, 2	Patiño
•••	•••	•••	•••

CUENTA

numero	saldo
200	85.005
505	40.000
821	50.000
426	35.620
005	29.872
315	3.500

Clave Ajena (Externa o Foránea)

- ¿Cómo expresar la conexión entre una tupla de una relación y otra tupla de otra relación?
 Ej. Vínculo entre cuentas y clientes titulares
 - □ Cada cuenta podría indicar quién es su cliente titular ¿Y cómo hacemos eso?
 - Pues añadiendo a CUENTA un atributo que almacene valores de código de cliente (PK)
 - Ese nuevo atributo es una Clave Ajena

CLIENTE

codigo	nombre	direccion	ciudad
1210	García, A.	Gran Vía, 6	Murcia
0300	López, B.	Ronda Norte, 3	Murcia
1003	Azorín, C.	Paseo Rosales, 9	Molina
2689	Pérez, D.	Plaza Mayor, 2	Patiño
•••	•••	•••	•••

CUENTA

numero	saldo	titular
200	85.005	2689
505	40.000	1003
821	50.000	1210
426	35.620	1003
005	29.872	2689
315	3.500	0300

Clave Ajena (Externa o Foránea)

- □ ¿Se podría hacer **al revés**?
 - Es decir, ¿podemos incluir la clave de CUENTA en CLIENTE?
 - Un cliente puede ser titular de muchas cuentas, por lo que habría que almacenar varios valores en el atributo "cuenta"
 - Y eso <u>NO ES POSIBLE</u>, pues incumple las propiedades de una relación (ver <u>"Definiciones formales: RELACIÓN"</u>)

CLIENTE

OLICINIC				
<u>codigo</u>	nombre	direccion	ciudad	cuenta
1210	García, A.	Gran Vía, 6	Murcia	821
0300	López, B.	Ronda Norte, 3	Murcia	315
1003	Azorín, C.	Paseo Rosales, 9	Molina	505,
2689	García, A.	Plaza Mayor, 2	Patiño	426
•••	•••	•••		200,
				005

CUENTA

KO!

numero	saldo
200	85.005
505	40.000
821	50.000
426	35.620
005	29.872
315	3.500

Así, para expresar el vínculo existente entre las tuplas de dos relaciones R1 y R2, es necesario añadir a una de las relaciones R2 "una copia de la clave primaria" de la otra relación R1

PELICULA

idPel titulo ... director

DIRECTOR

idDir nombre nacionalidad ...

□ Ese **nuevo atributo** en R2 se convierte en una **clave ajena** (Foreign Key, FK)

Al nuevo atributo se le

"director" es clave ajena en PELICULA

'Ajena' porque en la otra relación es una clave Al nuevo atributo se le puede dar cualquier nombre

Recomendación: el nombre de la relación de la que proviene

Pero… ¿En qué relación añadimos la clave ajena? →Lo aprenderemos en el tema de Diseño Lógico

PELICULA (<u>idPel</u>, titulo, genero, año_estreno, nacionalidad, duracion, *director*) DIRECTOR (<u>idDir</u>, nombre, nacionalidad, ...)

PELICULA

DIRECTOR

<u>idPel</u>	titulo		director
'P62'	'Capitán América'	•••	502
'P44'	'Tolkien'	•••	003
'P56'	'Avengers: Endgame'		502
'P02'	'La trinchera infinita'	•••	307
•••	•••	•••	•••

<u>idDir</u>	nombre	nacionalidad	•••
502	'Joe Russo'	EEUU	•••
307	'Aitor Arregi'	España	
003	'Dome Karukoski'	Finlandia	
•••	•••	•••	•••

 Una clave ajena siempre contiene valores de <u>clave primaria de otra relación</u> director almacena valores de idDir Cada tupla de PELICULA contiene en "director" el valor de la clave primaria del director que la ha dirigido

Por eso se dice que una clave ajena hace referencia a (la clave primaria de) otra relación director hace referencia a DIRECTOR(idDir)

LIBRO

<u>ISBN</u>	titulo	autor	editorial
9788497404518	La Celestina	E22	Castalia
9788420482767	Momo	E01	Alfaguara
9788497939072	Crimen y Castigo	E24	Debolsillo
9788499083209	Trilogia de la Fundación	E10	Debolsillo
9788493806125	Don Quijote de la Mancha	E45	Plutón Ediciones
9786124346187	Yo, robot	E10	Debolsillo
9788420471549	La historia inteminable	E01	Alfaguara
•••	•••	•••	•••

ESCRITOR

<u>idesc</u> ↓	nombre	
E01	Ende, Michael	
E22	Rojas, Fernando De	
E45	Cervantes, Miguel De	
E10	Asimov, Isaac	
E24	Dostoievski, Fiodor	
•••	•••	•••

EDITORIAL

<u>nombre</u> ▼	direccion	•••
Plutón Ediciones	•••	
Alfaguara	•••	
Debolsillo	•••	
Castalia	•••	
•••	•••	

Diagrama Referencial

Expresión gráfica de la existencia de Claves Ajenas

 LIBRO
 titulo
 ISBN
 autor
 editorial
 ...
 EDITORIAL
 nombre
 direccion
 ...

- Puesto que una clave primaria puede ser simple o compuesta...
- Una clave ajena también puede ser Simple o Compuesta

 Una FK contendrá tantos atributos como tenga la PK a la que referencia

```
CLIENTE ( codigo, nombre, ... ) PK simple

FK (simple)

RESERVA ( cliente, hotel, habitacion, fecha_inicio, fecha_fin, ... )

FK (compuesta, porque lo es la PK de HABITACION_HOTEL)

HABITACION_HOTEL( hotel, numero_habitacion, camas, precio, ...)

PK compuesta
```

Low Hay mas de un It

CLIENTE

codigo	nombre	direccion	•••
1111	Yago, A.	Salsipuedes, 6	
4444	Muñoz, D.	Nomeolvides, 3	
3333	Azorín, C.	Salgopronto, 9	
2222	Palao, B.	Cieloabierto, 2	
•••	•••	•••	

HABITACION_HOTEL

hotel	numero_habitacio	camas	•••
	n		
H01	01	2	
H03	01	1	
H01	02	1	
H02	01	3	
H01	03	2	
H03	02	1	
H01	04	1	
•••	•••	•••	

RESERVA

cliente	hotel	habitacion	fecha_inicio	•••
4444	H01	01	20/06/2021	
2222	H01	02	25/02/2022	
3333	H02	01	17/09/2021	
1111	H03	01	07/07/2023	
2222	H03	01	30/01/2022	
4444	H01	02	28/07/2021	
2222	H02	01	10/12/2019	
1111	H02	02	27/09/2022	
4444	H01	04	17/09/2021	

Una clave ajena puede ser (o formar parte de la)
 clave primaria (o clave alternativa)

RESERVA (cliente, hotel, habitacion, fecha_inicio, fecha_fin, ...)

Clave Primaria: (cliente, hotel, habitacion, fecha_inicio)

Clave Ajena: cliente referencia a CLIENTE (codigo)

Clave Ajena: (hotel, habitacion)

referencia a HABITACION_HOTEL (hotel, numero_habitacion)

Nulos y Claves Ajenas

- □ Una clave ajena **SÍ puede contener NULL**
 - Si una tupla contiene NULL en una clave ajena, significa que esa tupla no participa en el vínculo entre las relaciones
 - No referencia a ninguna otra tupla
 - ☐ En EMPLEADO, dep referencia a DEPARTAMENTO (coddep)
 - Casi todos los empleados en la empresa pertenecen a un departamento, pero hay empleados (personal externo, visitante o temporal) que no están asignados a ningún departamento

EMPLEADO

)	<u>NSS</u>	nombre	dep	•••
	123456789012	García, A.	D03	
	44444444444	Zapata, D.	D02	
	33333333333	Arjona, C.	NULL	
	2222222222	Sancho, B.	D03	
	556644332255	Gómez, H.	NULL	
	998877665544	Bolado, F.	D01	

Empleados sin departamento

Restricción de Integridad Referencial

- □ Una clave ajena es un conjunto de atributos FK de una relación R2, tal que: Foreign Rey
 - 1. Existe otra relación R1 con clave primaria PK, y
 - 2. En todo momento, cada valor de FK en R2
 - a) es idéntico a un valor de PK en alguna tupla de R1,
 - b) o bien es **NULO**
- Es decir, el valor de una clave ajena debe coincidir con el valor de clave primaria de alguna tupla de la relación referenciada, o bien es completamente nulo
- O lo que es lo mismo: no hay valores (no nulos) de clave ajena sin correspondencia

- Así, todo valor de clave ajena debe existir como valor de clave primaria en la relación referenciada
- □ Es **imposible** que se dé esta situación:
 - Una cuenta que tenga un titular 1010, y en CLIENTE no exista una tupla (fila) con dicho valor para 'codigo'
 - Una cuenta con un valor de titular 2020, el cual no se encuentra en la relación CLIENTE

CLIENTE

<u>codigo</u>	nombre	direccion	ciudad
1210	García, A.	Gran Vía, 6	Murcia
0300	Zapata, D.	Ronda Norte, 3	Murcia
1003	Arjona, C.	Paseo Rosales, 9	Molina
2689	Sancho, B.	Plaza Mayor, 2	Patiño

CUENTA

numero	saldo	titular
200	85.005	2689
505	40.000	1003
821	50.000	1210
426	35.620	1003
005	29.872	2689
315	3.500	0300
101	2.500	1010
401	23.500	2020

KO!

- Sin embargo, sí puede existir algún valor de clave primaria NO referenciado por ninguna clave ajena
 - Ejemplo: Clientes que no posean ninguna cuenta (por ser solamente titulares de préstamos) en el banco: ninguna tupla en CUENTA tendrá como valor de titular el código de dicho cliente

CLIENTE

<u>codigo</u>	nombre	direccion	ciudad	
1210	García, A.	Gran Vía, 6	Murcia	
0300	Zapata, D.	Ronda Norte, 3	Murcia	
1003	Arjona, C.	Paseo Rosales, 9	Molina	
2689	Sancho, B.	Plaza Mayor, 2	Patiño	
3679	Burgos, C.	Camino Viejo, 20	Yecla 🔇	OK!
9812	Gil, H.	Cuesta, 41	Blanca	

CUENTA

numero	saldo	titular
200	85005	2689
505	40000	1003
821	50000	1210
426	35620	1003
005	29872	2689
315	3.500	0300

- Una clave ajena puede referenciar a su misma relación: Auto-referencia
- Significa que cierta tupla (fila) de una relación (tabla) puede estar vinculada con otra tupla distinta de la misma relación
 - Un empleado está relacionado con su jefe, que es otro empleado diferente (otra tupla en la relación)
 - En EMPLEADO el atributo nssjefe referencia a EMPLEADO(nss)
 - Una película está vinculada con su precuela, que es otra película distinta
 - En PELICULA el atributo precuela referencia a PELICULA(idPel)
 - Un estudiante está relacionado con su mentor, que es otro estudiante diferente
 - En ESTUDIANTE el atributo mentor referencia a ESTUDIANTE(DNI)

- Ejemplo de la auto-referencia en EMPLEADO para expresar que cada empleado tiene un jefe
 - Cada empleado tiene un solo jefe.
 - Un empleado puede ser el jefe de varios otros empleados.
 - Un empleado puede no tener jefe.

EMPLEADO

<u>NSS</u>	nombre	nssjefe	•••	•••
001	Sara Stark	032	•••	•••
004	Clara Campoestrella	020	•••	•••
010	Martín Martell	032	•••	•••
002	Virgilio Volantis	004	•••	•••
015	Nicanor Nymeria	032	•••	•••
032	Pedro Pentos	NULL	•••	•••
020	Luisa Lannister	032	•••	•••
•••	•••	•••		

(i) Los NSS son números de 12 dígitos, pero hemos incluido sólo 3 para facilitar la comprensión rápida del ejemplo

escritora cuyo nombre es 'Laura Gallego'?

Clave Ajena (Externa o Foránea)

 Camino Referencial: recorrido del diagrama para obtener información relacionada

- Ciclo Referencial
 - Camino que empieza y acaba en la misma relación

□ Caso especial: **Auto-referencia**EMPLEADO NSS ... nssjefe

Resumiendo, el SGBD se encarga de...

- Comprobar las claves candidatas (primaria y alternativas):
 - No existen dos tuplas distintas con igual valor para una clave
 - Definición de BD : indica los atributos componentes de las Claves Candidatas
- Comprobar la restricción de Integridad de Entidad
 - Ningún atributo componente de una clave primaria es nulo
 - Definición de BD: indica los atributos componentes de la Clave Primaria
- Comprobar la restricción de Integridad Referencial...
 - El valor de la clave ajena en cualquier tupla, o es nulo, o coincide con un valor de clave primaria de alguna tupla en la relación referenciada
 - Definición de BD : indica los atributos componentes de las Claves Ajenas
- ... y debe mantenerla frente operaciones que puedan romperla
 - Definición de BD : incluye Acciones de Mantenimiento de la Integridad Referencial para cada una de las Claves Ajenas

Cada relación podría describirse utilizando esta plantilla:

```
TABLA (atributo 1, atributo 2, atributo 3, atributo 4, atributo 5, atributo 6, atributo 7)
Admiten NULL: atributo3, atributo6
Clave Primaria: atributo2
Claves Alternativas (UNIQUE): 1. atributo3; 2. (atributo4, atributo5);
Claves Ajenas (FOREIGN KEY):
 1. (atributo7)
                               Referencia a UNATABLA(clave)
 2. (atributo4, atributo5)
                               Referencia_a OTRATABLA(clave1,clave2)
Derivados:
 1. atributo6 = atributo2*20/100
Comprobar:
 1. atributo 1 IN ('SI', 'NO')
 2. atributo 6 > 0
 3. atributo7 >= atributo3
```

52 EMPLEADO

nombre	apellido	<u>nss</u>	dni	fechanacim	ciudad	est_civil	salario	nssjefe	dep	cuantos _familiares
JONÁS	SOLANO	123	11A	10/10/1945	MURCIA	Р	1100	111	D1	1
RIGOBERTA	CALAVERA	321	21C	12/11/1974	YECLA	С	900	333	D3	3
EUSEBIO	MULETAS	222	22B	01/01/1969	TOTANA	D	2100	123	D2	1
MACARENO	SOSO	111	23D	06/04/1944	JUMILLA	S	1100	NULL	D1	2
CASIANA	FABERGÉ	333	33B	15/06/1943	MURCIA	V	920	123	D3	0
FILOMENA	RASCAS	234	34E	18/07/1970	MURCIA	С	1100	111	D1	0
GUMERSINDA	MIMOS	543	45F	10/02/1980	PINOSO	Р	850	NULL	NULL	0

FAMILIAR

nssemp	numero	nombre	fechanacim	parentesco	
123	1	JONÁS	17/05/1992	HIJO	
321	2	RÓMULA	23/09/1923	ABUELA	
222	1	ELEUTERIO	30/10/2002	HIJO	
321	1	RENATA	10/03/2002	HIJA	
111	2	JULIANA	10/10/1936	MADRE	
321	3	TORCUATA	17/05/1938	ABUELA	
111	3	SINFOROSA	23/09/1947	ABUELA	

DEPARTAMENTO

nombre	<u>coddep</u>	nssdire
INVESTIGACION	D2	222
ADMINISTRACION	D1	111
PERSONAL	D3	333
TRAINING	D4	NULL

□ Ejemplo: ficha que describe la relación EMPLEADO

```
EMPLEADO (nombre, apellido, nss, dni, fechanacim, ciudad, est_civil, salario,
             nssjefe, dep, cuantos familiares)
Admiten NULL: fechanacim, ciudad, est_civil, nssjefe, dep
Clave Primaria: (nss)
Claves Alternativas (UNIQUE): 1. (dni); 2. (nombre, apellido, fechanacim);
Claves Ajenas (FOREIGN KEY):
 1. (nssjefe) Referencia_a EMPLEADO(nss)
 2. (dep) Referencia_a DEPARTAMENTO(coddep)
Derivados:
 1. cuantos_familiares = contar las tuplas de FAMILIAR tales que nssemp=nss
Comprobar:
 1. est civil IN ('S', 'C', 'V', 'D', 'P')
 2. \text{ salario} > 0
 3. nss <> nssjefe
```

□ Ejemplo: fichas que describen las relaciones FAMILIAR y DEPARTAMENTO

```
FAMILIAR (nssemp, numero, nombre, fechanacim, parentesco)
```

Admiten NULL: --

Clave Primaria: (nssemp, numero)

Claves Alternativas (UNIQUE): <ninguna>

Claves Ajenas (FOREIGN KEY):

1. (nssemp) Referencia_a EMPLEADO(nss)

Derivados:

__

Comprobar:

1. numero > 0

DEPARTAMENTO (coddep, nombre, nssdire)

Admiten NULL: nssdire /*si el departamento es de reciente creación*/

Clave Primaria: (coddep)

Claves Alternativas (UNIQUE): (nssdire)

Claves Ajenas (FOREIGN KEY):

1. (nssdire) Referencia_a EMPLEADO(nss)

Derivados:

_

Comprobar:

--