Better Anchoring and Ambiguity Measurement with Mixture Models

Juraj Medzihorsky

31 March 2020

The Problem

Differential item functioning

How crunchy do you like your toast?

- 1. Very crunchy
- 2. Crunchy
- 3. Neither crunchy nor soft
- 4. Soft
- 5. Very soft

Anchoring items

Source: Wikimedia Commons

How crunchy is this toast?

- 1. Very crunchy
- 2. Crunchy
- 3. Neither crunchy nor soft
- 4. Soft
- 5. Very soft

Anchoring batteries

Source: Wikimedia Commons

How crunchy is this toast?

- 1. Very crunchy
- 2. Crunchy
- 3. Neither crunchy nor soft
- 4. Soft
- 5. Very soft

How is this toast?

- 1. Very
- 2.
- 3. Neither nor
- 4.
- 5. Very

How crunchy **hot** is this toast?

- 1. Very crunchy hot
- 2. Crunchy Hot
- 3. Neither crunchy hot nor soft cold
- 4. Soft Cold
- 5. Very soft cold

Howenundhwisthistoast??

- 11. Verycrumably
- 22. Crumabby
- 33. Neitilbler crumabhyynon softt
- 44. Søftft
- 55. Verysoftt

Source: telegraph.co.uk

EES Left-Right batteries

Low-quality responses

Low-quality responses

Low-quality responses

A Solution

A mixture framework

$$O = \pi M + (1 - \pi)C$$

- O observed responses
- M informative responses
- *C* uninformative responses
- π mixing weight, $\pi \in [0, 1]$

Modeling Informative Responses

Aldrich-McKelvey Scaling

Classical AMS

$$y_{ro} \sim \text{Normal}(\alpha_r + \beta_r \theta_o, \sigma)$$

Bayesian AMS (Hare at al. 2015)

$$y_{ro} \sim \text{Normal}(\alpha_r + \beta_r \theta_o, \sigma_r \sigma_o)$$

Scaling self-placements

$$\zeta_r = \frac{Z_r - \alpha_r}{\beta_r}$$

Fitting complex latent variable models

 $Peter Fischli \ and \ David \ Weiss's \ The First Blush \ of Morning, 1984.$ Source: https://www.wmagazine.com/story/peter-fischli-david-weiss-merry-pranksters

Measurement model

$$y_{ro} \sim \text{Categorical}(\mathbf{p}_{ro})$$
 $p_{rok} = \text{OrdLogit}((\tau_{rk} - \gamma_r \theta_o) \beta_o)$
 $\boldsymbol{\tau_r} \sim \text{Logistic}(0, 1), \ \tau_{rk} < \tau_{r,k+1}$
 $P(\gamma_r = -1) \sim \text{Beta}(0.5, 0.5), \ \gamma_r \in \{-1, +1\}$
 $\ln \beta_o \sim \text{Normal}(0, 1)$
 $\theta_o \sim \text{Normal}(0, \sigma)$
 $\zeta_r \sim \text{Normal}(0, \sqrt{R}\sigma)$
 $\sigma \sim \text{HalfNormal}^+(0, 1)$

Modeling Uninformative

Responses

Contamination models

iv. Between-respondent multidimensionality

Building Mixture Models

10 mixture models

	Scale flipping	Midpoint inflation	Pseudo- guessing	Item slope
1.A 2.A	Y			
3.A	Y	battery		
4.A	Y	item		
5.A	Y	battery	item	
6.A	Υ	item	item	
1.B				Υ
2.B	Y			Υ
3.B	Y	battery		Υ
4.B	Υ	item		Υ

EES: Model fit

EES: Best fit

Model 4.B

- Respondent thresholds
- Scale flipping by respondent, population rate
- Midpoint inflation by response, item rate
- Item discrimination

EES: Midpoint inflation estimated by model 4.B

Ambiguity and dispersion

Ambiguity and agreement

Conclusion

Conclusion

Developing the paper

- Two-step version
- Bayesian model validation
- Replicate causal analyses

Future research

- Modeling rationalization bias (Bølstad 2020)
- Nonresponse and ambiguity (Rozenas 2013)
- More structured component memberships

II. Research Agenda

Research agenda outline

- O. Current ongoing work
- 1. Heterogeneous attitudinal structures
- 2. Minimum mixture estimation

O. Current ongoing work

- R&R with S. I. Lindberg & another invitation at Cell: Patterns
- Software implementing NOCNOC (DiDiD) with A. Glynn & N. Ichino, possibly JSS
- Grant application to RJ as the PI, on developing techniques for better anchoring, with D. Pemstein and K. L. Marquardt

Attitudinal Structures

1.1 Heterogeneous

Theorizing heterogeneous shared mental maps

Spatial theories

- Social spaces & fields
- Ideological & policy spaces
- Mapping between them

Theorizing heterogeneous shared mental maps

- Belief systems and entropy (Martin 1999)
 - ► Constraint = Consensus + Tightness
 - ▶ Tightness = Association
- Association and relational meaning (Goldberg 2011, Boutyline & Vaisey 2017)
- Associations diffuse (Goldberg & Smith 2018)
- Diffusion by imitation (Henrich 2015)

Estimating heterogeneous shared mental maps

Relational & Correlational Class Analysis:

Pathbreaking

Estimating heterogeneous shared mental maps

Relational & Correlational Class Analysis:

- Pathbreaking
- Simple mental maps
- Do not match the theorized DGP
- CCA's theorized model:

$$y_{ro} = \alpha_r + \beta_r \theta_{om[r]} + \epsilon_{ro}$$

- DIF-sensitive
- Uncertainty

Modeling heterogeneous shared mental maps

Mixture IRT unfolding models:

$$y_{ro} \sim f(\lambda_{ro}, \boldsymbol{\tau}_r, \dots)$$

$$\lambda_{ro} = \sum_{j=1}^{M} I(j = m_r) d(\boldsymbol{\zeta}_r, \boldsymbol{\theta}_{oj})$$

$$\boldsymbol{\tau}_r \sim g(\boldsymbol{z}_r, \boldsymbol{\gamma}_1)$$

$$m_r \sim h(\boldsymbol{x}_r, \boldsymbol{\gamma}_2)$$

$$\boldsymbol{\zeta}_r \sim k(\boldsymbol{w}_r, \boldsymbol{\gamma}_3)$$

Realignment and innovation

- Changing parties costs
- New entrants under polarization (Segatti)
- Ambiguity expansions & contractions
- Context and falling levels (Možný)
- Dynamic unfolding models
- ItaNES panel data (F. Vegetti)
- Supply-side

The international stage and attitudes

- With M. Popovic
- From Culture in Power Transitions
- Attitudes towards foreign countries
- Conventionally individual countries or pairs
- Scaling GAP and TTS thermometers
- National spaces and the UN
- Variation in time and over dimensions

Estimation

1.2 Minimum Mixture

Minimum mixture estimation

Minimum mixture estimation

$$\pi^*(O,\mathcal{M}) =$$

```
\inf\{\pi: O = (1-\pi)M + \pi R, M \in \mathcal{M}, \}
```

R residual

MME: Voter transitions and swing

MME: Further applications

Roll call voting

- Cohesion under cross-cutting groups
- Interpreting latent spaces

Political text

- Identifying ideological or policy content
- Programmatic overlap and stability

New minimum mixture estimators

III. Teaching

Detectives, farmers, and

causal questions

Activity:

 Write down a causal question that you find interesting. Try making it a social science question.

Detective	Farmer
Who's done it?	Will the fertilizer help?
Responsibility	Intervention
What caused y_i ?	Does X affect Y?
Backwards	Forwards
Causes of effects	Effects of causes
Most humans	R. A. Fisher

Activity:

• Who had a detective question?

Activity:

- Who had a detective question?
- Who had a farmer question?

Activity:

- Who had a detective question?
- Who had a farmer question?
- Did we get more detective or farmer questions?

Source: Wikimedia Commons

Activity:

 Did anyone have a question that is neither a detective nor a farmer question?

Activity:

- Did anyone have a question that is neither a detective nor a farmer question?
- Is it really neither?
- What would you call it?
- What is it closer to?

The Class Action Detective

"What causes all y_i ?" are the most attractive but also the most difficult causal questions to answer.

Activity:

• Let's take some of your detective questions and find some farmer questions that are related to them.

Homework 7:

- Prepare three causal questions related to your course paper.
- At least one of the questions must be an effects-of-causes question and at least one a causes-of-effects question.
- Briefly describe why each question is theoretically interesting in about 150 words per question, not counting the references.

Thank you!