1) Determinar la eficiencia de	cado una de la das
be sobe que un biazo vobotico	mush and the same
realizando los siguientes mo	vi mientos
- Vertical: 3m en 45	
- Harizontal: 2 m en 35	
- Euriza horizontal estimade	0. 101. 12/ 02.2
- La potentia de entada al si	
- Eficiencia del amplificador	0 Q
- Eticion C. S. Dei Symphilisador C	9. 1
- Eficiencia del motor: 0.85	1 1 1
Hor zontal	Veitical
M= (200 MK) (107)	M- 300 Kg
m= 20 KQ	M=
F- (22 BK) (0.81 m/s)	
F= (20 13 kg) (9,81 m/s)	F- 1962N
T- Teel IV	1 - 196211
0 /00 \ / 0	a allacast (a t
Pn-(196.2N) (2m)	Pr-11967N) (3m)
3	4
PH- 130.8 W	P.V. 1471,5 W
1 2 1 2 2 2 2	
n= (10	- 0. \ \ (1 \)
	50,8W) + (1471,5v)
977	1602.3 W
10,000 \ (20) - 0000	Cl. Pu
(2600 m) (0.9) - 2340	El. (16) (10)
2340 (0.85) - 1989	PP
	P+ 1 16 77 7 7 7 7 7 1
1602,3W _ 0.905, La	a eficiention de la tions man
10.0	
10/ 10	0.805

2) Encontrar la eficiencia del motor
1 1 alatica mileve una caro a de los ha con dos movimientos
- Marianto vertical, 2,5 metros en 55
- Fyerza havizontal estimada: 12.1. del peso
-Potencia (1) tolal P 1050 W
- Potencia de entrada al siste me. Pr = 1800W
Transmisson: nfe = 0,78
85,0:08
Hor Zontal Vert cal
M= (150 Kg) (0.12) M= 150 Kg
M= 18 kg
F= (18kg) (9.81 m/s²) F= (150 kg) (9.81 m/s²)
F: 176,58N F: 1471.5 N
PH - [176.58N] (3m)-132.435W PV= [1471.5N] (25m)-735.75
45 55
PT = 868.185
- Calcula la potencia de la tiansmigion pm
Pu- 1050 w Pm-Pu - 1050 w - 1346.15 w
7. Je - 0.78
- Lalcyla, la potencia et el mo tor Pa
Pa-Pm - 1346,15 W - 1585,57 W
76 - 0.849
- Determino, la eficiencia del motor
(1800 W) (0.88) - Py - 1346.15W- 0.849
= 1584 W PP 1584 W - V
Encuentia printa la éticiencia
del motor pola luego calcular la Potencia en el motor
in id al Wolds

3) Calcula la altura que puese olianzon la raiga
-Un braco voboti lo tiene una potentia util de 950 m
- Dehe levantar una mara de 180 49 con estos condiciones
- Tiempo de elevación 4.5 segundos
- Eficiencia de la tiansmison mode : 0.82
- Ef: lizhlia del notor mds = 0.87
- Et. (znig del amplificador mda= 0.91
1/2 (uál 25 la altura maxima la que el sistema puede alcantar
en esel tiempo?
Withdraja realizada W-Putt
WMX9Xh
h= Puxt
m x g
h= 960 w x 4.55 - 2.42my
(180kg) (9.81 m/s2)
h=2.42 m/
1) Calcula la potencia de entrada al sistema
Pur P. Ami and Amily of Sigleing
Pu=Pc X ndq x nds X ndt > Pc-Pa
mdo, x mds x rode
0.97 0.87 0.82
PG= 950 W - 1463.35 W,
(0.91) (0.87) (0.82)
3) la ué por centaje de la potencia se onvierte realmente en
tigoajo út:17
- (ndo x nds indt) x 100% - (0.94) (0.87) (0.82) - 0.649
:0.649 × 100 - 64.91.1
-0.099 2100 - 64. 41.7.1

45 Elevación vertical con unidades en KW y minutos Un actuador lineal levanta una carga de 125kg una distance de 2.8m en 2.5 minutos. La potencia eléctrica suministrada al sistema ro de 0.75 kW, y la eféciencia del sistema completo es de 65%.
15 Convierte la potencia a W y él tiempo a segundos
Pc = (0.75 KW)(1000) - 750 W/ t = (2.5 minutos)(60) = 1505/
25 Calcula la potencia util disponible
Pu = ef. (en (ia = 0,68 = 487.5 W) Pu = 750 W = 750 W
3) ¿ Puedo el sistema completar el movimiento? M = 125 Kg
F= (125 kg) (9.81 m/z) F= 1226.25 N
P-(1226.25N)(2.8m) - 22.89 W/, 1505
RISI, el sistema quede completar el movimiento va que la potencia vitil disponible es major de la que requiere el movimiento

5) May mento horizontal con fuerza dada en libras y distancia en Pies "Un cilindro no umoi tico empaja una carga horizontal apliando una filerra de 160 lb a lo largo de 6 pies, en 4 saguados Los eficiencia del sistema es de 75%. 1) Conviente la fuerza a Newtons y la distanción a metros 716- 4.498N F= (150) (4,448N) = 667.2 Ng Pie a netw - Ple: 3.291 d= 6 piz - 1.828m, 3.181 2) Cal cula la potencia util necesaria Pu= (667.2N) (1.828m) 45 Pu- 304.91W/ 3) Si el sistemo, tiene una potencia de entrada de 250 W les suficients para mover la corga? PC= 304,91W - 406.54 W 0.75 R1 250 W no es suf cente para mover la corga

Se necesitar 406.54