COLD ROLLED STEEL SHEET EXCELLENT IN BALANCE AMONG BAKING HARDENABILITY, DUCTILITY, AND NATURAL AGING CHARACTERISTIC AND ITS PRODUCTION

Publication number: JP9249936
Publication date: 1997-09-22

Inventor:

KITANO FUSATO; NAGATAKI YASUNOBU; HOSOYA

YOSHIHIRO; HORIUCHI YUTAKA; BABA YUTAKA

Applicant:

NIPPON KOKAN KK

Classification:

- international:

C21D8/02; C21D9/46; C22C38/00; C22C38/12;

C21D8/02; C21D9/46; C22C38/00; C22C38/12; (IPC1-7): C22C38/00; C21D8/02; C21D9/46; C22C38/12

- European:

Application number: JP19960057554 19960314 Priority number(s): JP19960057554 19960314

Report a data error here

Abstract of JP9249936

PROBLEM TO BE SOLVED: To provide a cold rolled steel sheet free from problems of deteriora tion in surface characteristic and shape, surface roughing, etc., and excellent in a balance among baking hardenability, ductility, and natural aging characteris tic and its production. SOLUTION: This cold rolled steel sheet has a composition consisting of, by weight, 0.001-<0.008% C, <=0.3% Si, <=1.5% Mn, <=0.1% P, <=0.015% S, <=0.1% AI, <=0.005% N, 0.003-0.06% Nb, 0.004-0.14% V, and the balance essentially Fe and satisfying inequalities 0.0002<=C-(12/93)Nb<=0.002(wt.%) and V>=0.55Nb+ 0.001 (wt.%).

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

識別記号

(51) Int.Cl.⁶

(12) 公開特許公報(A)

FΙ

庁内整理番号

(11)特許出願公開番号

特開平9-249936

技術表示箇所

(43)公開日 平成9年(1997)9月22日

C 2 2 C 38/00	301	C 2 2 C 38/00 3 0 1 R
C 2 1 D 8/02	9270-4K	C 2 1 D 8/02 A
9/46		9/46 M
C 2 2 C 38/12		C 2 2 C 38/12
		審査請求 未請求 請求項の数2 OL (全 13 頁
(21)出願番号	特顯平8-57554	(71) 出願人 000004123
		日本網管株式会社
(22)出願日	平成8年(1996)3月14日	東京都千代田区丸の内一丁目1番2号
		(72)発明者 北野 総人
		東京都千代田区丸の内一丁目1番2号 日
		本鋼管株式会社内
		(72)発明者 長滝 康伸
		東京都千代田区丸の内一丁目1番2号 目
		本鋼管株式会社内
		(72)発明者 細谷 佳弘
		東京都千代田区丸の内一丁目1番2号 日
		本鋼管株式会社内
		(74)代理人 弁理士 鈴江 武彦
		最終頁に続く
	0.4500000000000000000000000000000000000	

(54)【発明の名称】 焼付硬化性と延性および常温時効性とのパランスに優れた冷延鋼板ならびにその製造方法

(57)【要約】

【課題】表面性状および形状の劣化、肌荒れ等の問題が 発生せず、かつ焼付硬化性と延性および常温時効性との バランスに優れた冷延鋼板、およびその製造方法を提供 すること。

【解決手段】C:0.001~0.008wt%未満、Si:0.3wt%以下、Mn:1.5wt%以下、

P:0.1wt%以下、S:0.015wt%以下、A 1:0.1wt%以下、N:0.005wt%以下、N b:0.003~0.06wt%、V:0.004~ 0.14wt%を含有し、残部実質的にFeからなり、 以下に示す(1)式および(2)式を満足する冷延鋼 板。

0. $0002 \le C - (12/93) \text{ Nb} \le 0. 002 (wt\%) \cdots (1)$ $V \ge 0. 55 \text{ Nb} + 0. 001 (wt\%) \cdots (2)$

【特許請求の範囲】

【請求項1】 C:0.001~0.008wt%未 満、Si:0.3wt%以下、Mn:1.5wt%以 下、P:0.1wt%以下、S:0.015wt%以 下、Al:0.1wt%以下、N:0.005wt%以 下、Nb: $0.003\sim0.06$ wt%、 $V:0.004\sim0.14$ wt%を含有し、残部実質的にFe からなり、さらに以下に示す(1)式および(2)式を満足することを特徴とする焼付硬化性と延性および常温時効性とのバランスに優れた冷延鋼板。

0. $0002 \le C - (12/93) \text{ Nb} \le 0. 002 \text{ (wt%)} \cdots (1)$

 $V \ge 0.55 \text{Nb} + 0.001 \text{ (wt\%)} \cdots (2)$

【請求項2】 C:0.001~0.008wt%未満、Si:0.3wt%以下、Mn:1.5wt%以下、P:0.1wt%以下、S:0.015wt%以下、Al:0.1wt%以下、N:0.005wt%以下、Nb:0.003~0.06wt%、V:0.004~0.14wt%を含有し、残部実質的にFeからな

り、さらに以下に示す(1)式および(2)式を満足する鋼を溶製した後、熱間圧延し、その後600℃超え750℃以下の温度で巻取り、引き続き冷間圧延および連続焼鈍を施すことを特徴とする焼付硬化性と延性および常温時効性とのバランスに優れた冷延鋼板の製造方法。

0. $0002 \le C - (12/93) \text{ Nb} \le 0. 002 \text{ (wt%)} \cdots (1)$ $V \ge 0.55 \text{ Nb} + 0.001 \text{ (wt%)} \cdots (2)$

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、自動車用外板などの使用に適した、焼付硬化性と延性および常温時効性とのバランスに優れた冷延鋼板ならびにその製造方法に関する。

[0002]

【従来の技術】自動車用外板パネルなどに使用される鋼 板は、プレス加工時に成形性が良好なことと、最終製品 時に所定の強度を有していることが要求される。しか し、一般に鋼板自体を強化すると延性が低下する。この 相反する要求性能を兼備した鋼板として、従来から、極 低炭素系をベースとした塗装焼付硬化性鋼板(BH鋼 板)が知られている。この鋼板は極低炭素鋼であるた め、成形時には軟質である。また、固溶Cが残留してい るため、成形、焼付塗装後には硬化する性質すなわち焼 付硬化性(ベークハード性: BH性)を有している。鋼 板のBH性は、鋼中に固溶しているCおよびNのひずみ 時効現象により生じるため、BH性を向上させるために は鋼中の固溶Cおよび固溶Nを増加させる必要がある。 一方、このように鋼中の固溶Cおよび固溶Nが増加する と、BH性は向上するものの、延性および耐常温時効性 が劣化する。したがって、BH性と延性および耐常温時 効性とのバランスに優れた鋼板が望まれている。

【0003】このような要求に対して、例えば特公平2-10855号公報、特開昭57-89437号公報にはNbまたはTiを添加した極低炭素鋼により深絞り性に優れた冷延鋼板を製造する技術が提案されている。

【0004】しかし、この技術は、850℃以上の高温 焼鈍を必要とするため、コスト面で不利であるのみなら ず、板の表面性状および形状の劣化、さらに、結晶粒の 粗大化による肌荒れなどの問題を有している。

【0005】また、特公昭61-45689号公報には、Nb, Tiを複合添加した極低炭素鋼によりBH性に優れた深絞り用冷延鋼板を製造する技術が開示されて

いる。この技術において、TiはNをTiNとして固定して常温時効性および材質の劣化を回避するために添加され、NbはCをNbCとして一部固定し、BH性および常温時効性に寄与する固溶Cを制御するために添加されている。

【0006】しかしながら、この技術においても、BH 性と延性および常温時効性とのバランスが未だ十分とは 言い難い。

[0007]

【発明が解決しようとする課題】本発明はかかる事情に 鑑みてなされたものであって、表面性状および形状の劣 化、肌荒れ等の問題が発生せず、かつ焼付硬化性と延性 および常温時効性とのバランスに優れた冷延鋼板、なら びにその製造方法を提供することを目的とする。

[8000]

【課題を解決するための手段】上述したような極低炭素 系をベースとしたBH鋼板には、BH性の制御、つまり 固溶C量の制御を目的として、Nb, Ti等の炭窒化物 形成元素が添加される。このため、このようなBH鋼板 には、Nb系、Ti系の析出物と固溶Cとが共存してい る。このような析出物は、鋳造凝固、熱間圧延冷間圧 延、焼鈍という一連のプロセスにおいて、溶解、析出を 繰り返すため、鋼板の板厚方向および板幅方向で不均一 に分布しやすくなる。一般に、このようなNb, Ti系 の析出物はAINと同様、フェライトの再結晶および粒 成長に影響を及ぼすことが知られている。このため、フ ェライトが再結晶する前に、これらの析出物が鋼中に不 均一に分布していると、再結晶後のフェライト粒が不均 一になる。極低炭素鋼は粒界が清浄であるため粒界が弱 く、そのためプレス成形時に粒界近傍に応力が集中しや すく、局部的な割れを生じやすい。この場合、上述のよ うにフェライト粒が不均一であると、局部割れを一層助 長し、延性が低下する。

【0009】また、炭窒化物形成元素のように、Cとの 親和力が比較的強い元素が鋼中に固溶状態で存在する と、Cのひずみ時効に次のような影響を及ぼすことが考えられる。すなわち、炭窒化物になり得なかった元素の周囲には、その親和力のために固溶Cが密に分布している。そして、常温時効のようにCの拡散が活性でない雰囲気では、固溶Cはその親和力のためにトラップされる。このため、Cは転位を固着することができない。しかし、塗装焼き付けのように、C拡散が極めて活性な雰囲気では、固溶Cは単窒化物形成元素の親和力に影響を受けることなく運動することが可能となり、転位を固着する。

【0010】本発明者らは、このような炭窒化物がフェライト組織に及ぼす影響、および炭窒化物形成元素がCのひずみ時効に及ぼす影響を考慮したうえで鋭意検討を重ねた結果、Nb、V複合添加極低炭素鋼をベースにすることにより、従来技術で製造された極低炭素鋼では得られなかった焼付硬化性と延性および常温時効性とのバランスに優れた冷延鋼板を安定して製造することができることを知見し、本発明を完成するに至った。

【0011】本発明は、このような知見に基づいて完成されたものであり、C:0.001~0.008wt%未満、Si:0.3wt%以下、Mn:1.5wt%以

下、P:0.1wt%以下、S:0.015wt%以 下、A1:0.1wt%以下、N:0.005wt%以 下、Nb:0.003~0.06wt%、V:0.00 4~0.14wt%を含有し、残部実質的にFeからな り、さらに以下に示す(1)式および(2)式を満足す ることを特徴とする焼付硬化性と延性および常温時効性 とのバランスに優れた冷延鋼板を提供するものである。 [0012] st. C: 0. 001~0. 008wt% 未満、Si:0.3wt%以下、Mn:1.5wt%以 下、P:0.1wt%以下、S:0.015wt%以 下、A1:0.1wt%以下、N:0.005wt%以 下、Nb:0.003~0.06wt%、V:0.00 4~0.14wt%を含有し、残部実質的にFeからな り、さらに以下に示す(1)式および(2)式を満足す る鋼を溶製した後、熱間圧延し、その後600℃超え7 50℃以下の温度で巻取り、引き続き冷間圧延および連 続焼鈍を施すことを特徴とする焼付硬化性と延性および 常温時効性とのバランスに優れた冷延鋼板の製造方法を 提供するものである。

[0013]

0. $0002 \le C - (12/93) \text{ Nb} \le 0. 002 \text{ (wt\%)} \cdots (1)$ $V \ge 0.55 \text{ Nb} + 0.001 \cdots (2)$

[0014]

【発明の実施の形態】以下、本発明について具体的に説明する。

【0015】本発明の鋼板はC:0.001~0.00 8wt%未満、Si:0.3wt%以下、Mn:1.5 wt%以下、P:0.1wt%以下、S:0.015w t%以下、Al:0.1wt%以下、N:0.005w t%以下、Nb:0.003~0.06wt%、V: 0.004~0.14wt%を含有する。

【0016】各成分をこのように規定した理由は以下のとおりである。

【0017】C:0.001~0.008wt%未満 Cは、焼付硬化性を確保する上で、有効な元素である。しかし、0.001wt%未満では所望の焼付硬化性が 得られない。また、0.008wt%以上では、後述するようなNb,V添加による焼付硬化性-延性および常温時効性バランスの向上がみられない。したがって、C 含有量を0.001~0.008wt%未満の範囲とする。

【0018】Si:0.3wt%以下

Siは鋼の強化元素であり、強度確保のために添加される。しかし、その含有量が0.3wt%を超えると、著しい延性の劣化や表面性状の悪化を招く。したがって、Si含有量を0.3wt%以下とする。

【0019】Mn:1.5wt%以下

Mnは、鋼の強度を確保するため、およびSによる熱間 脆性回避のために添加される。しかし、その含有量が 1.5wt%を超えると、著しい延性の劣化を引き起こす。したがって、Mn含有量を1.5wt%以下とする。

【0020】P:0.1wt%以下

Pは鋼の強化に有効な元素である。しかし、その含有量が0.1wt%を超えると、延性が著しく劣化する。したがって、P含有量を0.1wt%以下とする。

【0021】S:0.015wt%以下

Sは、その含有量が0.015wt%を超えると、著しい赤熱脆性を引き起こすため、0.015wt%以下とする。

【0022】A1:0.1wt%以下

A1は鋼の脱酸のために添加される。しかし、0.1w t%を超えると、延性および表面性状の悪化を招く。したがって、A1含有量を0.1wt%以下とする。なお、本発明では、NはNb, V系の炭壁化物として固定されるため、A1Nは実質的に形成されない。

【0023】N:0.005wt%以下

Nは、Nb, V系の炭窒化物として固定される。しかし、N量が0.005wt%を超えると、常温時効性の劣化が懸念されるため、0.005wt%以下とする。【0024】Nb:0.003~0.06wt%Nbは、Cとの結合力が強い元素であり、Cを一部固定し、焼付硬化性を確保するために添加される。この場合、Vと共存することにより、熱間圧延後、巻取処理および焼鈍加熱の段階で均一にNb, V系の析出物が形成される。この析出物が焼鈍段階でフェライト粒の再結晶

および粒成長に影響を及ぼし、再結晶後のフェライト粒を均一にする。その結果、フェライト粒が不均一な場合において生じるフェライト粒界への局部的な応力集中が緩和され、延性が改善される。しかし、Nbの含有量が0.003wt%未満ではこのような効果が得られず、また、0.06%を超えると析出物が過剰となるため逆に延性は劣化する。したがって、このような効果を安定して得るために、Nbの含有量を0.003~0.06wt%の範囲とする。

【0025】V:0.004~0.14wt% Vは、Nbと共存することで、上述したように、焼付硬化性と延性とのバランスを著しく向上させる。また、Vは、Nbに比較してCとの結合力が弱いため、VのみでCを一部固定して焼付硬化性を確保することは好ましくない。そこで安定して焼付硬化性を確保するためには、Cとの結合力がVよりも強い元素であるNbの添加が必要となる。ところで、VはCとの結合力が弱いため、多くは固溶状態で存在するが、Cとの間に結合力を有しているため、固溶Vの周囲に炭化物になり得なかったCが 分布している。この固溶Cは、塗装焼付のようなCの拡散が活性な雰囲気においては、Vとの結合力を振り切って移動し、転位を固着する。したがって、焼付硬化性が得られる。これに対して常温時効のように比較的C拡散が活性でない雰囲気においては、CはVにトラップされる。このようにVを添加することにより、耐常温時効性は劣化せず、焼付硬化性が得られるという効果が得られるのである。しかし、このような効果はVが0.004wt%未満では得られず、また0.14wt%を超えるとこのような効果が得られないばかりか、析出物が過剰となるため、延性も改善されない。したがって、Vの含有量を0.004~0.14wt%の範囲とする。

【0026】その他は実質的にFeであるが、不可避的不純物およびその他の少量添加物は許容される。

【0027】本発明では、上記個々の成分範囲の他、以下の(1)式および(2)式を満足することも要件とする。

[0028]

0. $0002 \le C - (12/93) \text{ Nb} \le 0. 002 (wt\%) \cdots (1)$ $V \ge 0. 55 \text{ Nb} + 0. 001 (wt\%) \cdots (2)$

図1は、横軸にC含有量をとり、縦軸にNb含有量をと って、これらの含有量と、焼付硬化性と延性および常温 時効性とのバランスとの関係を示す図である。この図 は、V:0.01~0.1wt%の範囲のものと、V: tr. のものについて、後述する焼付硬化性と延性との バランス B H + E 1、および焼付硬化性と常温時効性と のバランスBH-AIを求めた結果を示すものである。 なお、他の成分については、本発明の範囲内とした。図 中〇は、V:0.01~0.1wt%の範囲でBH+E 1が90~120、BH-AIが30~50と両バラン スが優れていたもの、 \triangle は $V:0.01\sim0.1wt\%$ であるが、BH+E1が60~100、BH-AIが1 0~20と焼付硬化性と延性および常温時効性とのバラ ンスが悪かったもの、×はV:tr.のものである。こ の図から、V:0.01~0.1wt%と本発明の範囲 の場合に、C-(12/93) Nbの値が0.0002 ~0.002wt%であれば焼付硬化性と延性および常 温時効性とのバランスが優れたものとなることが確認さ れる。

【0029】すなわち、C-(12/93) Nbの値が 0.0002wt%未満の場合には、固溶Cが過少であるため、焼付硬化性が得られないばかりか、上述したようなNbおよびVの効果も得られない。また、この値が 0.002wt%を超えると、固溶Cが過剰となるため、やはり上述したようなNbおよびVの効果が得られない。したがって、本発明では上記(1)式を満足することを要件とする。

【0030】なお、図1に示すように、V:tr. の場合には、(1)式を満たしていてもBH-AIの値が1

0~20と低く、良好な焼付硬化性と常温時効性とのバランスが得られない。

【0031】図2は、横軸にNb含有量をとり、縦軸に V含有量をとって、これらの含有量と、焼付硬化性と延性 性および常温時効性とのバランスとの関係を示す図であり、後述する焼付硬化性と延性とのバランス BH+E 1、および焼付硬化性と常温時効性とのバランス BH-AIを示すものである。なお、他の成分については、本発明の範囲内とした。図中〇は、BH+E1が90~120、BH-AIが30~50と両バランスが優れていたもの、 Δ はBH+E1が60~100、BH-AIが10~20であり焼付硬化性と延性および常温時効性とのバランスが悪かったものである。この図から、Vがwt%で0.55Nb+0.001以上で焼付硬化性と延性および常温時効性とのバランスが優れたものとなることが確認される。

【0032】すなわち、上述したように、VはNbと共存することにより、焼付硬化性と延性および常温時効性とのバランスを良好なものとすることができるが、この効果はVの含有量がwt%で0.55Nb+0.001未満では得られない。したがって、上記(2)式を満足することを要件とする。

【0033】次に、本発明に係る冷延鋼板の製造方法について説明する。

【0034】本発明では、上述のような組成の鋼を溶製した後、熱間圧延し、その後600℃超え750℃以下の温度で巻取り、引き続き冷間圧延および連続焼鈍を施すことにより、焼付硬化性と延性および常温時効性とのバランスに優れた冷延鋼板を製造する。

【0035】この場合、鋼の溶製方法は、通常用いられる転炉法および電気炉法のいずれでもよく、鋼の鋳造は造塊法、連続鋳造法のいずれでもよい。

【0036】続いて、鋳造スラブを熱間圧延するが、この際の熱間圧延は直送圧延および再加熱後の圧延のいずれでもよい。仕上温度は、熱延板の組織を均一とする観点から、Ar。点以上とすることが望ましい。

【0037】その後の巻取りは600℃超え750℃以下の温度で行うことが好ましいが、これはNb, V系析出物を均一に形成させるためであり、750℃を超えると析出物が粗大化しやすく、また600℃以下であると析出物が析出しにくくなるからである。

【0038】このような熱延板に対して、酸洗後、冷間 圧延を行うが、その際の圧下率は60~90%であることが望ましい。この範囲で冷間圧延することにより、そ の後の焼鈍の加熱段階で、Nb, V系析出物を均一にひ ずみ誘起析出させることができる。

【0039】連続焼鈍の際の均熱温度は、再結晶温度以上900℃以下とすることが望ましい。この温度が900℃を超えると、フェライト粒が不均一となるばかりか粗大化し、肌荒れが懸念されるためである。

【0040】本発明では、このようにして製造された鋼板に、さらに電気めっき、化成処理等の表面処理を施す

ことは何等妨げられることはなく、このように表面処理 を施しても本発明の効果が損なわれることはない。

【0041】以上説明したような、焼付硬化性、延性および常温時効性に及ぼすNb、V複合添加の効果は、本発明者らが初めて見出したものであり、Ti、Zr、Mo、Wなどを添加した系では得られないものである。

【0042】また、本発明では、表面性状および形状の 劣化、肌荒れ等の問題が発生せずに焼付硬化性と延性お よび常温時効性とのバランスに優れた冷延鋼板が得られ る。

[0043]

【実施例】

(実施例1)表1および表2に示す組成の鋼を溶製し、連続鋳造によりスラブとした。これらスラブを1250℃に加熱した後、仕上温度890℃で熱間圧延を行い、板厚2.8mmの熱延板を作製した。続いて、650℃で巻取り、酸洗後、板厚0.7mmまで冷間圧延を行った。この冷延板に対して、均熱温度830℃、均熱時間60secで連続焼鈍を行い、その後、1.0%の調質圧延を施した。なお、表1のNo.1~30は本発明例であり、表2のNo.31~58は比較例である。

[0044]

【表1】

							K				米				田田				医												
(Wt%)	0.55Nb+0.001	0,0052	0.0038	0.0098	0.0127	0,0000	0,0184	0.0189	0.0200	0, 0278	0.0076	0.0104	0.0175	0.0230	0.0293	0,0252	0, 0068	0.0062	0,0065	0,0063	0.0120	0,0126	0.0172	0,0175	0.0181	0.0230	0.0236	0.0285	0.0296	0.0313	0.0318
	C-(12/93)Nb	0.0004	0.0015	0.0007	0.0005	0,0017	0.0004	0,0012	0,0017	0.0013	0.0004	0.0018	0,0014	0.0016	0.0005	0,0004	0,0004	0.0005	0.0017	0.0012	0.0005	0.0010	0,0005	0,0017	0,0010	0.0007	0.0018	0.0004	0,0007	0,0004	0.0004
	T 1	tr,	tr,	tr.	tī.	tr.	tr.	tr.	tr.	tr.	Ħ.	tr.	Ħ.	tr.	tr.	tr.	Ħ.	Ħ.	tr.	Ħ	Ħ.	tr.	tr,	T.	tr.	tr.	tr.	tr,	tr.	ţr,	tr.
	٧	080	0.005	0.011	0, 035	090 .0	0.020	0, 100	0.130	0.029	0.120	0.100	0.135	0.024	0,055	0.100	0.020	0,060	0,0795	0, 134	0.0195	0,040	0,042	0.0595	0, 100	0.080	0.122	0.0395	0.098	0.059	0.132
	N b	0,0077	0.0050	0.0160	0.0213	0.0145	0.0317	0.0325	0.0345	0.0487	0.0120	0.0170	0.0300	0.0400	0.0515	0.0440	0.0105	0,0095	0.0100	0.0097	0.0200	0.0210	0.0295	0.0300	0.0310	0.0400	0.0410	0.0500	0.0520	0.0550	0.0560
	Z	0.0025	0.0022	0.0031	0.0024	0.0035	0.0030	0,0029	0.0018	0,0039	0,0032	0.0026	0,0025	0.0031	0,0020	0.0040	0.0031	0,0024	0.0029	0.0023	0.0024	0.0032	0.0038	0.0041	0.0036	0.0022	0.0025	0,0032	0.0030	0.0027	0.0020
	Al	0.048	0.045	0.075	0,055	0.049	0.065	0.071	0,069	0,072	0,068	0.032	0.056	0.044	0,058	0.040	0.061	0.083	0.074	0.066	0.048	0.059	0.064	0.069	0.041	0,082	0.032	0,057	0,053	0.062	0.070
	S	0,008	0.006	0.0045	0,013	0.0084	0.0055	0.0042	0,0100	0.0095	0.0045	0.012	0.0070	0.0055	0, 011	0,0084	0,0063	0.0048	0,0100	0.0078	0.009	0.010	0,005	0.006	0, 0075	0, 014	0.007	0, 0066	0.011	0.00085	0.00055
	Д	0.020	0.080	0.072	0.040	0.044	0.090	0.058	0.010	0,037	0.046	0,013	0.034	0.020	0.010	0.078	0.032	0,059	0.045	0.048	0.053	0.025	0.081	0.038	0.071	0.015	0.039	0,058	0.068		0.036
	Mn	0.75	0.54	0.13	0, 63	0.37	0.44	0.59	1, 45	49	0,71		0,83	1.35	1, 15	0.60	0.92	0, 26	0.67	0.42	1.0	0.62	0.48	1.12	0.44	1.43	0.84	0.54	0.68	1.1	0,46
	S 1	0, 11	0,045	0.041	0.02	0.14	0.061	0.032	0.15	0,06	0.02	0, 25	0,04	0.10	0.00	0, 14	0.008	0,056	0.072	0, 16	0,049	0.067	0, 11	0.029	0.24	0.035	0, 085	0, 16	0.28	0,01	0,009
	ပ	0,0014	0,0021	0.0028	0.0032	0.0036	0.0045	0.0054		0.0076	0.0019	0.0040	0.0053	0.0068	0, 0071	0,0061	0.0018	0,0017	0,0030	0,0025	0.0031	0.0037	0.0043	0,0056	0,0050	0,0059	0.0071	0.0069	0.0074		0,0076
	细No.	1	2	က	4	വ	9	7	∞	6.	10	11	12	13	1.4	12	16	17	T 8	1.9	2 0		22	23	24			27			30

[0045]

								式				松				<u>E</u>		····										
(wt96)	0.0079	0, 0353	0,0398	0,0161	0.0021	0.0219	0.0128	0.0396	0.0219	0.0276	0,0022	0,0023	0.0065	0,0065	0.0142	0.0280	0.0192	0.0120	0.0170	0, 0307					0,0065	0.0131	0.0038	0.0087
C-(12/93)Nh	-0.0010	-0.0059	-0.0050	0,000	0,0038	-0.0002	0.0023	-0.0005	0.0026	0.0025	0.0009	0.0023	0.0018	0,0011	0.0007	0,0004	0.000	0.0009	0,0011	0.0005		***************************************	-		0.0014	0.0007	-	0,0006
<u>+</u>	ţ.	ţŗ.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr.	tr,	#.	tr.	tr.	tr.	Ħ,	tr.	tr.	tr.	ţŗ.	0.02	0.01	0.015	0,02	0.01	0,01	0,005	0,000
>	0.085	0,040	0.120	0.031	0,020	0.029	0,022	0.073	0.048	0.110	0,060	0, 119	0, 146	Ħ,	0,002	ţţ,	0.0031	0,01	0,014	0, 026	tr,	ţŗ.	0.02	0.075	Ħ	tr,	Ħ,	tr.
, Z		0.0624	0.0700	0.0275	0.0020	0.0380	0.0215	0.0702	0.0380	0.0483	0,0021	0.0230	0.0100	0.01	0,024	0.049	0.033	0.02	0.029	0.054	tr,	tr.	ţï.	tr.	0.01	0.022	0.005	0.014
z	0,0038	0,0019	0.0028	0,0039	0.0031	0.0021	0.0025	0.0030	0.0025	0.0029	0,0032	0.0024	0,0021	0,0039	0.0030	0,0021	0.0029	0,0031	0.0037	0.0019	0.0024	0.0035	0.0016	0.0029	0.0026	0.0022	0,0039	0,0030
- Y	0.062	0.051	0.047	0,041	0.080	0,047	0.062	0, 055	0.050	0.074	0.062	0.059	0.071	0.055	0.06	0,065	0.075	0,059	0.048	0.085	0,048	0.055	0.038	0,061	0.055	0.049	0.044	0,066
so:	0.0062	0.0095	0.011	0.0075	0.0065	0.0100	0.004	0.0085	0.012	0,0052	0.0066	0.0060	0.0095	0.0075	0.0056	0.008	0.0065	0.009	0,0075	0,008	0,003	0,007	0.008	0, 01	0.005	0.009	0,01	0.007
Д	0,054	0.057	0,055	0, 030	0.020	0,059	0.065	0.030	0.021	0.056	0.032	0.072	0.020	0.018	0.064	0.055	0.026	0,06	0.061	0.025	0,0008	0,005	0, 011	0.06	0.0016	0.034	0.028	0, 015
Mn	0.44	0, 28	0.77	0.34	0.91	0.24	0.55	1.0	0.82	0.49	0.84	0,31	1.0	1, 2	0.5	0.46	0.93	0.83	0.68	1.1	0.11	1,1	0.2	0, 75	0.09	0.67	0, 53	0.045
Si	0, 046	0,055	0, 20	0, 14	0,042	0,08	0.063	0,04	0, 21	0, 083	0.20	0.03	0.19	0.12	0,039	0.071	0.14	0.034	0.09	0, 07	0, 02	0.08	0, 11	0.04	0,02	0.05	0.03	0, 13
O	0,0006	0.0022	0,0040	0.0035	0.0041	0,0047	0.0051	0.0086	0.0075	0,0087	0.0012	0.0026	0,0031	0.0024	0,0038	0,0067	0.0052	0,0035		0,0075	0, 0039	0,0022	0.002	0.0057	0, 0027	0.0035	_	0.0024
áGNo.	3.1	32	က		3			38		4 0	4.1	4.2	43		45	4 6	47	4 8		20		22	53	54		5	~	28

【0046】このようにして得られた鋼板を引張試験に供した。引張試験は、JIS Z2201に規定されたJIS5号試験片を用い、インストロン型試験機にて行った。

【0047】また焼付硬化性(BH性)および常温時効性(時効指数AI)の評価も行った。前者については、2%予ひずみ付与後、170℃×20分間の熱処理を施し、熱処理後の降伏強度の上昇量で評価し、後者については、8%予ひずみ付与後、100℃×60分間の熱処理を施し、熱処理後の降伏強度の上昇量で評価した。【0048】さらに、フェライト粒の均一性の評価を以

下のようにして行った。まず、焼鈍板の板幅方向および板の長手方向の各々25箇所、合計50箇所から無作為抽出的にサンプルを採取し、板の長手方向断面およびこれに直角な方向の断面の組織観察を行い、フェライト粒径を測定した。粒径の測定は、JIS G 0552に規定された切断法で行い。円相当径で評価した。このようにして得られた100個のデータの度数分布を求め、100個のデータのうち、平均粒径からの偏差が2μm以内のものが90個以上の場合を◎、80~89個の場合を○、70~79個の場合を△、69個以下の場合を×と評価し、◎および○の場合、フェライト粒が均一で

あるとし、△および×の場合、フェライト粒が不均一であるとした。

【0049】これら評価結果を表3および表4に示す。 表中、YPは降伏点、TSは引張強度、E1は伸びを示 し、BH、AIはそれぞれ上述のようにしても求めた焼 付硬化性および常温時効指数である。また、焼付硬化性 と延性、および焼付硬化性と常温時効性のバランスを評 価する値としてBH+E1およびBH-AIの値も求め た。これらの値の意味は以下のとおりである。すなわ ち、BHが高く、E 1 が大きいほど焼付硬化性と延性とのバランスが優れているのであるから、BH+E 1 が大きいほどこれらのバランスに優れていることとなる。また、BHが高く、A I が低いほど焼付硬化性と常温時効性とのバランスが優れているのであるから、BH-A Iの値が大きいほどこれらのバランスに優れていることとなる。

【0050】 【表3】

								₩				谼				田				磨										
フェライト類の均一性	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0		0	0	0	0	0				0
BH+A1	32	41	37	33	40	32	41	39	40	32	38	42	33	37	34	34	40	38	40	37	40	39	37	40	33	37	33	38	32	34
BH+El	95	113	103	105	109	86	113	107	110	97	108	102	108	100	94	97	104	108	109	100	109	103	108	108	106	106	96	110	93	95
A 1 (MPa)		20	15	14	27	10	18	27	20	12	30	22	26	14	11	12	10	30	20	10	17	13	32	19	16	31	11	19	12	11
BH(MPa)	43	61	52	47	67	42	59	99	09	44	89	64	93	걾	45	46	ය	88	99	47	57	25	69	23	22	89	44	21	44	45
EI (%)	52	52	51	58	42	56	54	41	20	53	40	48	43	49	49	51	54	40	49	53	52	51	39	49	51	38	52	53	49	50
T S (MPa)	4		ıω	P	တ		9	တ	Ф			മ	9	മ	∞	പ	rD.	മ	ന	363	4	<u></u>		∞	8		9	378	£-	368
Y P (MPa)	\sim	က	4	က	4	4	က	က	က	-	2	က	က	4	4	4	4	3	4	222	က	ಣ	က	ကြ	4	3	Ť	2	230	က
新聞No.	1	07	က	4	ഗ	9	7	∞	တ	1.0	, -1 ;-1	12	၂	14	15	1.6	1.7	8	1 9	2 0				ı				2 8	29	30

								꾹				松				<u> </u>												
フェライト類の均一性	◁	\triangleleft	abla	abla	×	abla	abla	×	Δ	abla	×	◁	abla	×	×	×	×	□	∇	\ \ 	×	×	×	×	\triangle	×		X
BH+A1	3	0	0	20	17	15	16	10	24	02	18	20	15	14	15	12	17	26	25	24	20	15	. 20	22	50	14	20	15
BH+E1	99	54	25	80	120	8	113	51	111	118	101	103	70	86	36	81	91	100	100	6	100	68	94	95	06	16	95	94
A 1 (MPa)	0	0	0	ħ	89	12	21	L	50	19	37	49	15	38 8	33	33	36	29	28	2.1	37	30	31	30	30	34	34	36
BH(NPa)	3	0	0	24	85	27	70	17	74	87	55	69	30	52	48	45	53	55	54	45	57	45	51	57	50	48	54	51
E I (%)	53	54	52	26	35	53	43	34	37	31	46	34	40	46	44	36	38	45	46	45	43	44	43	38	40	43	41	43
TS (MPa)	S	ഥ	-	4	352	S	9	370	0	9	B	368	വ	356	വ	တ	ဖြ	ယ	357	9	N2		lc ₂	യ	C3	4	╼	က
Y P (IIPa)	⊣	CJ	ന	2	245	co	4	243	က	4	2	m	co	235	m	4	240	က	245	ന	က	က	⇁	☞	235	co.	~	234
· anno	31	32	ც ლ	34	35	36	3.7	3 8	3 3	4 0	41	42	43	44	4 5	46	4.7	4.8	49									58

【0052】表3に示すように、本発明例であるNo. 1~30の鋼板は、BH+E1が90~120、BH-AIが30~50であり、焼付硬化性と延性とのバランス、および焼付硬化性と常温時効性とのバランスがともに良好であることが確認された。また、フェライト粒の均一性の評価は○または◎であり、フェライト粒が均一であることが確認された。

【0053】これに対し、表4に示すように、組成が本発明の範囲から外れている比較例のNo.31~58はこれらのバランスが悪かった。すなわち、No.31~34,36,38,43,46,52はBH+E1が9

0未満、BH-A1が30未満と低く、焼付硬化性と延性とのバランス、および焼付硬化性と常温時効性とのバランスがともに悪かった。また、No.35,37,39~42,44,45,47~51,53~58は、BH-AIが30未満であり、焼付硬化性と常温時効性とのバランスが悪かった。また、これらのフェライト粒の均一性の評価結果はいずれも Δ または \times であり、フェライト粒が不均一であった。

【0054】(実施例2)上記表1および表2のうちN o. 4,44,52,54,58の組成の鋼のスラブを 加熱した後、表5~表7に示す熱延条件で板厚2.8m mの熱延板を作製した。続いて、0.7 mm厚まで冷間 圧延を行い、表5に示す条件で連続焼鈍を施した後、伸 長率1.0%で調質圧延を行った。得られた鋼板の機械 的性質をこれらの表に併せて示す。 【0055】 【表5】

鋼No.	熱 延 仕上温度	条件 卷取温度	焼鈍温度	Y P	TS	E I (%)	BH (MPa)	A. 1 (MPa)	BH + El	BH + Al	フェライト類 の均一性	
4 — a	910	620	850	220	340	52	55	15	107	40	0	
4 — b	900	650	840	235	340	57	58	17	115	41	0	
4 - c	890	680	880	240	345	50	60	13	110	47	0	
4 – d	900	700	800	240	340	57	56	16	113	40	0	本
4-e	915	650	850	235	345	55	55	12	110	43	0	4
4 – f	920	660	750	240	340	55	55	8	110	47	0	発
4 – g	895	720	800	225	345	59	56	11	115	45	0	315
4-h	890	730	850	230	335	56	57	11	113	46	0	明
4 — i	880	700	870	240	345	57	57	10	114	47	0	193
4 — j	920	680	830	240	345	58	57	9	115	48	0	例
4 – k	910	780	800	230	340	47	50	13	97	37	0	ניע
4-1	910	560	850	230	340	48	52	12	100	40	0	
4-m	910	530	850	231	341	44	50	14	94	36	0	
4-n	900	480	840	235	340	43	50	17	93	33	0	

[0056]

【表6】

鋼No.	熱 延 仕上温度	条件 卷取温度	焼鈍温度 (℃)	YP (MPa)	TS (MPa)	E (%)	BH (MPa)	A 1 (MPa)	BH + El	BH + Al	フェライト類 の均一性	
44-a	910	650	850	220	350	45	52	33	97	19	х	
44 b	890	680	810	240	355	47	53	28	100	25	Δ	
44— с	870	700	800	230	350	44	51	25	95	26	Δ	
44- d	900	730	840	220	355	43	50	30	93	20	×	比
44-е	900	830	800	235	357	42	45	30	87	15	×	н.
44- f	900	620	830	24D	352	41	45	28	86	17	х	較
44- g	920	550	850	230	350	41	46	29	87	17	×	-2X
52— a	900	650	830	230	325	52	53	28	105	25	×	(5)
52— ъ	910	680	810	230	335	43	52	34	95	18	×	Va
52- c	915	700	810	240	339	41	49	29	90	20	Δ	
52- d	890	730	850	235	343	42	53	30	95	23	×	}
52— е	900	550	810	230	345	38	42	27	80	15	×	

鋼No.	熱 延 仕上温度	条件 卷取温度	焼鈍温度 (°°)	YP (MPa)	TS (MPa)	E I (%)	BH (MPa)	Al (MPa)	BH + El	BH + Al	フェライト類 の均一性	
54-a	900	650	860	240	355	46	54	29	100	25	Δ	
54-b	910	680	830	245	351	46	48	25	94	23	Ą	
54 — c	920	640	800	240	355	45	50	33	95	17	Δ	比
54 – d	870	730	810	235	360	41	49	31	90	18	×	14
54— е	900	570	830	240	360	39	46	30	85	16	Δ	較
58-a	900	650	830	240	338	44	55	35	99	20	×	収
58-b	890	680	820	230	342	39	56	38	95	18	×	例・
58— с	915	700	790	240	335	44	53	31	97	22	Δ	174
58— d	910	620	830	240	345	36	49	33	85	16	×	
58— e	915	580	810	230	339	37	48	32	85	16	×	

【0058】本発明の範囲内の組成を有するNo.4の 鋼板は、製造条件にかかわらず、BH+E1が90~1 20、BH-AIが30~50であり、焼付硬化性と延 性とのバランス、および焼付硬化性と常温時効性とのバ ランスがともに良好であることが確認された。その中で も、No.4a~jは、巻取温度が600℃超~750 ℃の範囲にあるため、両バランスが特に優れていた。また、いずれもフェライト粒の均一性の評価は○または◎ であり、フェライト粒が均一であることが確認された。 【0059】一方、本発明の範囲から外れる組成を有するNo.44,52,54,58の鋼板は、製造条件にかかわらず、BH-AIの値が30未満であり、焼付硬 化性と常温時効性とのバランスが悪かった。また、これ らのフェライト粒の均一性の評価結果はいずれも△また は×であり、フェライト粒が不均一であった。

【0060】実施例1および実施例2の結果を図3および図4にまとめて示す。すなわち、図3は各サンプルのBHとE1との関係を示す図であり、図4はAIとBHとの関係を示す図である。これらの図から、本発明例の場合にはBH+E1の値が90~120、BH-AIの値が30~50と優れており、特に巻取温度600℃超

~720℃以下でこれらの値が良好となるが、比較例の場合にはこれらの値、特にBH-AIの値が低いことが明確に示されている。

[0061]

【発明の効果】以上説明したように、本発明によれば、表面性状および形状の劣化、肌荒れ等の問題が発生せず、かつ焼付硬化性と延性および常温時効性とのバランスに優れた冷延鋼板、およびこのような冷延鋼板を安定して製造することができる製造方法が提供される。このため、本発明の冷延鋼板は自動車外板などの用途に好適である。

【図面の簡単な説明】

【図1】C, Nb含有量と、焼付硬化性と延性および常温時効性とのバランスとの関係を示す図。

【図2】Nb, V含有量と、焼付硬化性と延性および常温時効性とのバランスとの関係を示す図。

【図3】実施例1,2における焼付硬化性と延性とのバランスを示す図。

【図4】実施例1,2における焼付硬化性と常温時効性 とのバランスを示す図。

フロントページの続き

(72)発明者 堀内 豊

東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内

(72) 発明者 馬場 裕

東京都千代田区丸の内一丁目1番2号 日

本鋼管株式会社内