\bigcirc ving 1 IFYKJT1001 - Fysikk/Kjemi

Gunnar Myhre, BIELEKTRO

19. januar 2022

Oppgåve 1

 $\mathbf{a})$

Ved addisjon og subtraksjon er det talet med færrast gjeldande siffer etter komma som bestemmer mengda gjeldande siffer bak komma i svaret.

$$1,53+2,786+3,3=7,6 \tag{1}$$

b)

$$400nm = x \cdot cm \to x = \frac{400 \cdot 10^{-9}}{10^{-2}} \to 400 \cdot 10^{-7} cm \to 0,0000004 cm$$
 (2)

c)

- $Mb = \frac{10^6}{9} ord$
- $CD = 6 \cdot 10^{2} \frac{10^{6}}{9} ord = 3 \cdot 10^{7} ord$

Det er plass til ca 30 millionar ord på CDen

Oppgåve 2

a) 1)

Gjennomsnittsakselerasjonen for ballen er gitt ved

$$\bar{a} = \frac{\Delta V}{\Delta t} = \frac{73,14m/s}{30,0 \cdot 10^{-3}s} \to 2,44 \cdot 10^3 m/s^2$$
 (3)

a) 2)

Strekningen ballen beveger seg frå t = 0ms til t = 30,0ms er gitt ved

$$s = v_0 t + \frac{1}{2} a t^2 \to s = \frac{2,44 \cdot 10^3 m/s^2}{2} (30, 0 \cdot 10^{-3} s)^2 = 1,10m = 110cm$$
 (4)

b)

Bilen vil ha tilbakelagt distansen 211m etter

$$s = vt \to 211m = 32, 4m/s \to 6, 51s$$
 (5)

om vi antar at politibilen har konstant akselerasjon mellom t=0,74s og t=6,51s vil akselerasjonen vere gitt ved

$$s = v_0 t + \frac{1}{2} a t^2 \to a = 2 \frac{s}{t^2} \to a = 2 \frac{211m}{(6, 51s - 0, 74s)^2} = 12, 7m/s^2$$
 (6)

Oppgåve 3

- C: Akselerasjonen hittil har vore positiv og farta var 0 ved t = 0, derfor er farta størst ved t_3
- E: Oppbremsing \Leftrightarrow negativ akselerasjon
- **H**: Akselerasjonen er den deriverte av farta v'(t) = a(t), så om vi integrerer a(t) på området $[t_1, t_2]$ får vi fartsendringa i løpet av dette intervallet

Oppgåve 4

 \mathbf{a}

Farta v_0 horisontalt er uavhengig av farta i vertikal retning, og sidan vi ikkje tar omsyn til luftmotstand er farta i horisontal retning konstant. Vi finner tida det tar før svømmaren har falt 9,00m i vertikal retning

$$s = v_0 t + \frac{1}{2} a t^2 \to t = \sqrt{2 \frac{-9,00m}{-9,81m/s^2}} \to t = 1,35s$$
 (7)

Svømmaren må bruke maksimalt 1,35s på å traversere utstpringets lengde i horisontal retning, og må derfor minst ha ein fart på

$$v_0 = \frac{\Delta s}{\Delta t} = \frac{1,75m}{1,35s} = 1,30m/s \tag{8}$$

for å kunne unngå å treffe utspringet med null margin.

b)

Sidan vi reknar med ein enkel modell m.a. utan luftmotstand er det kun tyngdekrafta som verker på kanonkula. Derfor vil fallet vere uavhengig av farta i horisontal retning, og kula vil treffe bakken etter

$$s = v_0 t + \frac{1}{2}at^2 \to t = \sqrt{2\frac{-0.80m}{-9.81m/s^2}} \to t = 0.40s$$
 (9)

 $\mathbf{c})$

Banen til kule **B** treffer bakken først sidan den reiser kortast vei i y-retning, og den einaste krafta som verker på kulene er tyngdekrafta. Dette kan vi også demonstrere matematisk ved å sjå på ein bevegelseslikning:

$$s = v_0 t + \frac{1}{2} a t^2 \tag{10}$$

For begge banane er v_0 lik, og akselerasjonen a = -g. Strekninga er dermed proporsjonal med tida. Sidan fart i horisontal og vertikal retning er uavhengige vil dette gjere at A bruker lengre tid i sin bane enn B.

Vi kan også vise at dette stemmer ved å dekomponere fartsvektorane til A og B og sjå på delvektorane (katetane i den rettvinkla trikanten)

- $\vec{v_{0A}} = \vec{v_{0B}} = v_0$
- $\vec{v_A}(t) = (v_0 cos \alpha)\vec{i} + (v_0 sin \alpha gt)\vec{j}$
- $\vec{v_B}(t) = (v_0 cos \beta)\vec{i} + (v_0 sin \beta gt)\vec{j}$

på teikninga ser vi at

$$\frac{\pi}{2} > \alpha > \beta > 0 \tag{11}$$

og dette gjer at

$$\left(t_A = \frac{v_0 sin\alpha}{g}\right) > \left(t_B = \frac{v_0 sin\beta}{g}\right)$$
(12)

d)

Informasjonen som er oppgitt i oppgåva er som følger:

- $s_x = 2, 1m$
- $s_y = -0.21m$
- $v_0 = 5, 3m/s$
- $g = -9.81 m/s^2$

eg dekomponerer bevegelseslikningene for konstant akselerasjon og tar hensyn til at det kun er éi kraft som virker på systemet, nemlig tyngdekrafta i y-retning

generell	X	у
s = vt	$s_x = v_x t$	$s_y = v_y t$
$v = v_0 + at$	$v_x = v_{0x}$	$v_y = v_{0y} + gt$
$s = v_0 t + \frac{1}{2}at^2$	$s_x = v_{0x}t$	$s_y = v_{0y}t + \frac{1}{2}gt^2$
$s = \frac{v + v_0}{2}t$	$s_x = \frac{v_x + v_{0x}}{2}t$	$s_y = \frac{v_y + v_{0y}}{2}t$
$v^2 - v_0^2 = 2as$	$v_x^2 - v_{0x}^2 = 0$	$v_y^2 - v_{0y}^2 = 2gs_y$

ved å dekomponere $\vec{v_0}$ får vi fleire likninger å jobbe med

- $v_0^2 = v_{0x}^2 + v_{0y}^2$
- $v_{0x} = v_0 cos \alpha$
- $v_{0y} = v_0 sin\alpha$

den tredje bevegelseslikninga er eit godt utgongspunkt sidan vi kjenner alle størrelsane der untatt α og t. Eg setter inn for v_{0x}

$$s_x = v_{0x}t \to t = \frac{s_x}{v_{0x}} \to t = \frac{s_x}{v_0 cos\alpha}$$
 (13)

setter inn for v_{0y}

$$s_y = v_{0y}t + \frac{1}{2}gt^2 \to s_y = v_0 \sin\alpha t + \frac{1}{2}gt^2$$
 (14)

setter inn for t. Vi har nå ei likning med kun éin ukjent, α

$$s_y = v_0 sin\alpha \frac{s_x}{v_0 cos\alpha} + \frac{1}{2}g \left(\frac{s_x}{v_0 cos\alpha}\right)^2 \tag{15}$$

forenkler algebraisk

$$s_y = s_x \frac{\sin\alpha}{\cos\alpha} + \frac{s_x^2}{2v_0^2} g \frac{1}{\cos^2\alpha}$$
 (16)

forenkler vha. trigonometriske identitetar $\frac{sinv}{cosv}=tanv$ og $\frac{1}{cos^2v}=(1+tan^2v)$

$$s_y = s_x tan\alpha + \frac{s_x^2}{2v_0^2} g\left(1 + tan^2\alpha\right) \tag{17}$$

forenkler algebraisk, substituerer $u = tan\alpha$

$$\frac{s_x^2}{2v_0^2}gu^2 + s_xu + \frac{s_x^2}{2v_0^2}g - s_y = 0$$
 (18)

løyser vha. abc-formelen

$$u = tan\alpha = 2,427 \lor 0,2996 \tag{19}$$

som gjev oss vinklane

$$\alpha = \arctan(u) = 67.6^{\circ} \lor 16.6^{\circ} \tag{20}$$