Exercices

Exercice 1

Soit $\sum f_n$ où pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+$,

$$f_n(x) = \frac{xe^{-nx}}{n^2}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R}_+ .
- 2. Étudier la convergence normale de $\sum f_n$ sur \mathbb{R}_+ .

Exercice 2

Soit $\sum f_n$ où pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}_+$,

$$f_n(x) = \frac{(-1)^n}{n} e^{-x\sqrt{n}}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R}_+ .
- 2. Étudier la convergence absolue de $\sum f_n$ sur \mathbb{R}_+ .
- 3. Étudier la convergence normale de $\sum f_n$ sur \mathbb{R}_+ .

Exercice 3

Soit $\sum f_n$ où pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$,

$$f_n(x) = \frac{(-1)^n}{n+x^2}$$

- 1. Étudier la convergence simple de $\sum f_n$ sur \mathbb{R} .
- 2. Étudier la convergence absolue de $\sum f_n$ sur \mathbb{R} .
- 3. Étudier la convergence normale de $\sum f_n$ sur \mathbb{R} .