Math 104 Worksheet 4 UC Berkeley, Summer 2021 Tuesday, June 29

1. Let (s_n) be a sequence of nonnegative real numbers which converges to s.

(a) Show that $s \ge 0$. (*Hint*: Argue by contradiction.)

There exists NEN such that n=N implies |sn-s|<|s| => sn<0 Contradiction.

(b) Show that $\sqrt{s_n} \to \sqrt{s}$. Annt: Consider the cases of \longrightarrow and s > 0 separately. For the case s > 0, observe tha $|\sqrt{s_n} - \sqrt{s}| = \frac{|s_n - s|}{\sqrt{s_n} + \sqrt{s}} \le \frac{|s_n - s|}{\sqrt{s}}$.

let E>0.

Since s_>s, there exists NEN such that | Sn-S | = Sn & E2 n>N implies

Then n2N implies Isn-0 = Isn < &

S>O: Let E>O. Since 5, there exists NEN Such that $n \ge N$ implies $|S_n - S| < \varepsilon |S|$ $|S_n - S|$ 2. (Theorem 9.9) Let (s_n) and (t_n) be sequences such that $\lim s_n = \infty$ and (t_n) converges

to t > 0. Then $\lim s_n t_n = \infty$.

Proof. Let M > 0. Goal: Show that there exists $N \in \mathbb{N}$ such that ... $n \ge N$ implies $S_n t_n > M$

First, since $t_n \to t > 0$, we can find $N_1 \in \mathbb{N}$ such that $|t_n - t| < \frac{t}{2}$ for all $n \geq N_1$. Then $t_n \geq \frac{t}{2}$ for all $n \geq N_1$. Now since $s_n \to \infty$, there exists $N_2 \in \mathbb{N}$ such that

for all $n \ge N_2$. Set $N = \max(N_1, N_2)$. Then for $n \ge N$, $s_n t_n > \underbrace{\frac{2M}{t}, \frac{t}{2}}_{t} = M$.

$$s_n t_n > \frac{2M}{t} \cdot \frac{t}{2} = M.$$

- 3. Give an example of . . .
 - 1. a sequence (s_n) of rational numbers which converges to an irrational number.

a sequence (s_n) of irrational numbers which converges to a rational number.

$$S_n = \sqrt[n]{n} \frac{(n \ge 2)}{n} t_n = \frac{\pi}{n}$$

3. a divergent sequence (s_n) such that $(|s_n|)$ converges.

4. a sequence (s_n) of nonzero real numbers which converges to 0 such that the sequence $(1/s_n)$ does not have a limit.

S_n =
$$\frac{(-1)^n}{n}$$
 $(-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, \dots)$

(元)=(-1,2,-3,4,...)

5. two divergent sequences (s_n) and (t_n) such that the sequence $(s_n + t_n)$ converges.

$$s_{n}=(-1)^{n}$$
 $(-1,1,-1,1,...)$ $(0,0,...)$.
 $t_{n}=(-1)^{n+1}$ $(1,-1,1,-1,...)$

 a sequence (s_n) of nonzero real numbers and a divergent sequence (t_n) such that the sequence (s_nt_n) converges.

7. two convergent sequences (s_n) and (t_n) such that $s_n < t_n$ for all n and $\lim s_n = \lim t_n$.

8. a divergent sequence (s_n) of positive real numbers such that $\lim |s_{n+1}/s_n| = 1$. (cf. Homework 2 Problem 8)

9. a bounded divergent sequence (s_n) such that $|s_n|$ is strictly increasing.

$$S_n = (-1)^n \frac{n}{n+1}$$

$$\sum_{n=1+\frac{1}{2}}^{n} \frac{1}{n} = 1+\frac{1}{2}$$

10. a divergent sequence (s_n) such that $|s_{n+1} - s_n| < \frac{1}{n}$ for all n.

$$s_{n+1} = \sum_{k=1}^{n} \frac{1}{n}$$
 $s_{n+1} - s_n = \frac{1}{n+1} < \frac{1}{n}$

For a bounded sequence (Sn), defined un = inf & Sm: m > n } Vn = sup & sm: m > n } Define liminf sn = lim Un Imsupsn = lim Vn. \underline{Ex} : $\left(1, -\frac{3}{1}, 2, -\frac{3}{2}, 3, -\frac{4}{3}, 4, -\frac{5}{4}, \ldots\right) = \left(S_{h}\right)$

(det for when (sn) is bounded). $u_1 = -2$, $u_2 = -2$, $u_3 = -\frac{3}{2}$, $u_4 = -\frac{3}{2}$, $u_5 = u_6 = -\frac{4}{3}$, $u_7 = u_8 = -\frac{5}{4}$. $u_n \rightarrow -1$ \Rightarrow liminf $s_n = -1$. (Sn) not bounded above => limsup Sn = 00 (by definition/convention).

nondecreasing

nonincreasing.

Exercise: Prove that for any (Sn), liminf sn \le limsup sn.

un \ Vn for all n.

Theorem: Let (Sn) be a sequence of real numbers. Then lim on exists (in \Re or $\pm \infty$) if and only if liminf $s_n = \limsup s_n$, which case lim sup sn = liminf sn. Proof. (finite case) There exists $N \in \mathbb{N}$ Suppose $\limsup_{n \to \infty} S \in \mathbb{R}$ Let $\varepsilon > 0$ There exists $\sup_{n \to \infty} S \in \mathbb{N}$ Such that $\sum_{n \to \infty} N \in \mathbb{N}$ implies $|S_n - S| < \varepsilon$, i.e. $S-E < S_N < S+E$ for all $n \ge N$.

| imminfsn $\Rightarrow S-E \le U_N \Rightarrow V_N \le S+E$ (Un) is nondecreasing \Rightarrow [im $U_n \ge S-E \Rightarrow$] liminfsn $\ge S$. (Vn) is nonincreasing => (lim Vn ≤ S+E. => lim sup Sn ≤ S Suppose $\liminf_{S_n = \limsup S_n = S \in \mathbb{R}}$ $\Rightarrow S \leq \liminf_{S_n \leq \limsup S_n \leq S}$ => liminf Sn= limsup Sn = 5. Let $\epsilon>0$. There exists $N_1: n\geq N_1$ implies $|u_n-s|<\epsilon \Rightarrow u_n\geq s-\epsilon \Rightarrow s_n\geq s-\epsilon$.

There exists $N_2: n\geq N_2$ implies $|v_n-s|<\epsilon \Rightarrow v_n< s+\epsilon \Rightarrow s_n< s+\epsilon$. Let N=max(N11N2). n≥N implies s-E<Sn<s+E, i.e. |Sn-s|<E.,

Cauchy sequences Def: A sequence (Sn) of real numbers is Cauchy if for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $m, n \ge N$ implies $|S_m - S_n| < \varepsilon$. (intuitively: UN and VN are close to each other). Tinf ? Sn: n≥N? Sup? Sn: n≥N? A sequence (sn) of real numbers converges it and Proof: > Suppose Sn->SER. Let E>O. There exists NEN such that n≥N implies Isn-s/<= Then for $m, n \ge N$, $|S_m - S_n| = |S_m - S + S - S_n| \le |S_m - S| + |S - S_n| < \epsilon$. € Suppose (Sn) is Cauchy. Let ε>0. (Goal: Show limint sn = limsup sn by showing that limsup sn-limint sn \ \ \epsilon) There exists NEN such that m,n > N implies | Sm-Sn | < \frac{\xi}{5}. $\Rightarrow u_{N} \geq S_{N} - \frac{\varepsilon}{2} , \quad V_{N} \leq S_{N} + \frac{\varepsilon}{2} .$ $S_{N} - \frac{\varepsilon}{2} \leq u_{N} \leq \lim_{n \to \infty} \sup_{S_{N}} S_{N} \leq V_{N} \leq S_{N} + \frac{\varepsilon}{2} .$

=> limsupsn-limintsn & E.

"Completeness of R"

Subsequences

Def: Let (Sn) be a sequence of real numbers.

A subsequence of (s_n) is a sequence $(s_{n_k})_{k\in\mathbb{N}}$ where $n_k\in\mathbb{N}$ and $n_1< n_2< n_3<\dots$

(original sequence but throwing away some terms). $= (S_n)$. $= (S_n)$.

(2,4,6,8,...) is a subsequence.

 $n_1=2$, $n_2=4$, $n_3=6$, ... 1^{n_1} term of (S_n)