

DART Tutorial Section 16: Diagnostic Output

©UCAR 2014

DART Diagnostic Output Categories:

State-Space:

Values of models state vector.

Output using netCDF format.

Observation-Space:

Values of the observations.

DART-specific *obs_sequence* format for now.

Regression confidence factor:

Values for state vector / observation pairs.

Output as flat ASCII (soon to be netCDF).

Program diagnostic output:

Identification for source code version and namelist values.

Error, warning, message output from modules.

State-Space Diagnostic Files:

Available in netCDF (a common data format) http://www.unidata.ucar.edu/software/netcdf

```
    Prior state (Prior_Diag.nc) : state before assimilation.
    Posterior state (Posterior_Diag.nc) : state after assimilation.
    Truth (True State.nc) : truth for OSSEs.
```

Contents of prior and posterior controlled by *filter_nml*:

```
    output_state_ens_mean = .true. (include ensemble mean);
    output_state_ens_spread = .true. (include ensemble spread);
    num_output_state_members = ## (include this many of the individual ensemble members)
    output interval = N (only output every N<sup>th</sup> assimilation time)
```

Note: output_interval for True_State.nc is in the *perfect_model_obs_nml* namelist.

DART State-Space Diagnostic functions

See the DART website section titled: "Configuring Matlab to work with DART" www.image.ucar.edu/DAReS/DART/DART_Documentation.php#configure_matlab

ALL the DART Matlab state-space diagnostic functions are in <dart>/matlab This **must** be in your *matlabpath*.

Only focus on the functions/scripts that start with plot_

- plot_bins.m
- plot correl.m
- plot ens err spread.m
- plot_ens_mean_time_series.m
- plot_ens_time_series.m
- plot_phase_space.m
- plot_reg_factor.m
- plot_sawtooth.m
- plot_smoother_err.m
- plot total err.m
- plot var var correl.m
- ...

Some, but not all, described here.
All functions have a 'help' section

available in the standard Matlab way.

Standard DART matlab diagnostics:

a. plot_bins: rank histograms,

- Standard DART matlab diagnostics:
 - b. plot_correl: correlation x(t) with all other state vars at all times,

- Standard DART matlab diagnostics:
 - c. plot_ens_err_spread: rms error and spread,

- 1. Standard DART matlab diagnostics:
 - d. plot_ens_mean_time_series: just like the name says,

- Standard DART matlab diagnostics:
 - e. plot_ens_time_series: plots the ensemble (as available from num_output_state_members),

- 1. Standard DART matlab diagnostics:
 - f. plot_phase_space: 3D phase space time evolution.

- 1. Standard DART matlab diagnostics:
 - g. plot_sawtooth: truth, prior and posterior time series.

- 1. Standard DART matlab diagnostics:
 - h. plot_total_err: total error for different fields,

- Standard DART matlab diagnostics:
 - i. plot_var_var_correl: x(t) correlation to single variable, all times.

Ncview: a quick and surprisingly useful netCDF viewer.

http://meteora.ucsd.edu/~pierce/ncview_home_page.html
Displays spatial slices, animations, time series ...

prior ensemble state

Range of model state or fcopy: -6.18328 to 11.6954 (null)

Range of State Variable ID: 1 to 40 indexical

Range of time: 0 to 1 days since 0000-00-00 00:00:00 Current ensemble member or copy: 1 nondimensional

Frame 1 in File Prior_Diag.nc

- 3. Many other graphical/analysis programs can read netCDF. (Note that we use *udunits* metadata convention.)
- 4. netCDF Operator (NCO) tools allow operations on netCDF files:
 (http://nco.sourceforge.net)
 Selecting hyperslices of fields,
 Differencing netCDF file,
 Averaging, etc.

Observation-space files:

Quick recap of 'standard' observation sequence file names (all names are actually specified in namelists):

- obs_seq.in input to perfect_model_obs
- obs_seq.final output from filter

Observation sequence file output by *filter* has prior, posterior, observed value (and truth for OSSEs). For an overview, check out the DART webpage section: www.image.ucar.edu/DAReS/DART/DART_Observations.php#obs_seq_overview

Contents of *obs_seq.final* controlled by filter_nml:

- obs_sequence_in_name = 'obs_seq.out'
 Name of input observation sequence file.
- obs_sequence_out_name = 'obs_seq.final'
 Name of output observation sequence file.
- 3. num_output_obs_members = ##
 Output this many individual ensemble estimates.

Observation-space diagnostics:

The observation sequence file is not in a particularly user-friendly format.

To aid in the evaluation and interpretation, a program named **obs_diag** must be run to produce a netCDF file with results that can be plotted in a manner of your choosing. DART has Matlab functions/scripts that create high-quality graphics.

See tutorial section 18 for full coverage of viewing / diagnosing obs sequences. Also covered in:

http://www.image.ucar.edu/DAReS/DART/DART_Documentation.php#obs_diagnostics

Here are a few of the Matlab functions available in <dart>/diagnostics/matlab

- plot_rank_histogram.m
- plot evolution.m
- plot rmse xxx evolution.m
- two experiments evolution.m (works with more than two, actually)
- plot profile.m
- plot_bias_xxx_profile.m
- plot rmse xxx profile.m
- two_experiments_profile.m (works with more than two, actually)

Observation-space diagnostics:

SOME of the information in the observation sequence files can be converted to netCDF and easily plotted. A program named *obs_seq_to_netcdf* must be run to produce the netCDF.

Here are a few of the Matlab functions available in <dart>/diagnostics/matlab.

- link_obs.m
- plot_obs_netcdf.m
- plot_obs_netcdf_diffs.m
- plot_coverage.m

Regression confidence factor output:

Reminder: reg_factor α introduced in Tutorial Section 13 – when running the group filter (with more than 1 group!).

Controlled by reg_factor_nml:

- 1. save_reg_diagnostics = .true. Should file be output?
- 2. reg_diagnostcs_file = 'reg_diagnostics' Name of output file.

File size could be (model size) X (number of obs.) X (number of assim times). Very big, even for small models (only first 4 obs output default).

Normally, modify code in reg_factor_mod.f90 to control:

Output is at end of select_regression = 1 code block.

Format is ASCII:

time in days, time in seconds, obs_index, state_index, α

Plot with Matlab *plot_reg_factor*.

Program Diagnostic Output:

File dart_log.out

All DART executables *append* to this file!

Contains:

- registration information
- Program start time,
- version of code for each module used*
- Namelist values for each module**
- Names of output files,
- Diagnostic output for modules (through error_handler()),
- Warnings and fatal errors from DART code.

<u>Fair Warning</u>: This file is **not** cleared by DART. Can get very longgggggg ... You should feel free to delete/rename it before starting the next experiment.

^{*}Hopefully

^{**}may be in a separate file, depending on utilities_nml setting

DART Tutorial Index to Sections

- 1. Filtering For a One Variable System
- 2. The DART Directory Tree
- 3. DART Runtime Control and Documentation
- 4. How should observations of a state variable impact an unobserved state variable? Multivariate assimilation.
- 5. Comprehensive Filtering Theory: Non-Identity Observations and the Joint Phase Space
- 6. Other Updates for An Observed Variable
- 7. Some Additional Low-Order Models
- 8. Dealing with Sampling Error
- 9. More on Dealing with Error; Inflation
- **10.** Regression and Nonlinear Effects
- 11. Creating DART Executables
- 12. Adaptive Inflation
- 13. Hierarchical Group Filters and Localization
- 14. Quality control
- 15. DART Experiments: Control and Design
- 16. Diagnostic Output
- 17. Creating Observation Sequences
- 18. Lost in Phase Space: The Challenge of Not Knowing the Truth
- 19. DART-Compliant Models and Making Models Compliant
- 20. Model Parameter Estimation
- 21. Observation Types and Observing System Design
- 22. Parallel Algorithm Implementation
- 23. Location module design (not available)
- 24. Fixed lag smoother (not available)