Digitales Rechenwerk

Dominik Eisele

Werner-Siemens-Schule

25. Juni 2015

Inhalt

Rechnen mit dualen Zahlen

Rechenwerk

Quellen

Rechnen mit Dualzahlen

Das Rechnen mit Dualzahlen verläuft nach den selben Rechenregeln wie das Rechnen mit Dezimalzahlen.

Addition von Dualzahlen

Rechenbeispiel für eine Addition mit Dual-Zahlen.

Subtraktion von Dualzahlen

Rechenbeispiel für eine Subtraktion mit Dual-Zahlen.

Da, in der Digitaltechnik, für die Subtraktion von Dualzahlen keine logische Verknüpfung existiert, ist man gezwungen eine Subtraktion in eine Addition umwandeln.

$$2 - 6 = (-4)$$

Da, in der Digitaltechnik, für die Subtraktion von Dualzahlen keine logische Verknüpfung existiert, ist man gezwungen eine Subtraktion in eine Addition umwandeln.

$$2 - 6 = (-4)$$
$$2 + (-6) = (-4)$$

Da, in der Digitaltechnik, für die Subtraktion von Dualzahlen keine logische Verknüpfung existiert, ist man gezwungen eine Subtraktion in eine Addition umwandeln.

$$2 - 6 = (-4)$$
$$2 + (-6) = (-4)$$

$$2 - 6 = ?$$

1. Schritt: In eine Dualzahl wandeln:

$$2-6 \Rightarrow 10-110$$

$$2 - 6 = ?$$

1. Schritt: In eine Dualzahl wandeln:

$$2-6 \Rightarrow 10-110$$

2. Schritt: Stellen auffüllen:

$$0010 - 0110 = ?$$

$$2 - 6 = ?$$

1. Schritt: In eine Dualzahl wandeln:

$$2 - 6 \Rightarrow 10 - 110$$

2. Schritt: Stellen auffüllen:

$$0010 - 0110 = ?$$

3. Schritt: Bits negieren:

$$2 - 6 = ?$$

1. Schritt: In eine Dualzahl wandeln:

$$2 - 6 \Rightarrow 10 - 110$$

2. Schritt: Stellen auffüllen:

$$0010 - 0110 = ?$$

3. Schritt: Bits negieren:

$$0110 \Rightarrow 1001$$

4. Schritt: Hinzuaddieren von 1:

$$1001 + 0001 = 1010$$

$$2 - 6 = ?$$

1. Schritt: In eine Dualzahl wandeln:

$$2 - 6 \Rightarrow 10 - 110$$

2. Schritt: Stellen auffüllen:

$$0010 - 0110 = ?$$

3. Schritt: Bits negieren:

$$0110 \Rightarrow 1001$$

4. Schritt: Hinzuaddieren von 1:

$$1001 + 0001 = 1010$$

5. Schritt: Minuend und Zweierkomplement addieren:

$$0010 + 1010 = 1100$$

$$2 - 6 = ?$$

1. Schritt: In eine Dualzahl wandeln:

$$2-6 \Rightarrow 10-110$$

2. Schritt: Stellen auffüllen:

$$0010 - 0110 = ?$$

3. Schritt: Bits negieren:

$$0110 \Rightarrow 1001$$

4. Schritt: Hinzuaddieren von 1:

$$1001 + 0001 = 1010$$

5. Schritt: Minuend und Zweierkomplement addieren:

$$0010 + 1010 = 1100$$

6. Schritt: Ergebnis negieren:

$$100 \Rightarrow 011$$

$$2 - 6 = ?$$

1. Schritt: In eine Dualzahl wandeln:

$$2-6 \Rightarrow 10-110$$

2. Schritt: Stellen auffüllen:

$$0010 - 0110 = ?$$

3. Schritt: Bits negieren:

$$0110 \Rightarrow 1001$$

4. Schritt: Hinzuaddieren von 1:

$$1001 + 0001 = 1010$$

5. Schritt: Minuend und Zweierkomplement addieren:

$$0010 + 1010 = 1100$$

6. Schritt: Ergebnis negieren:

$$100 \Rightarrow 011$$

7. Schritt: Hinzuaddieren von 1:

011 + 001 = 100

8. Schritt: In eine Dezimalzahl wandeln:

 $100 \Rightarrow 4$; da das höchstwertigste Bit 1 ist:

Endergebnis = -4

7. Schritt: Hinzuaddieren von 1:

$$011 + 001 = 100$$

8. Schritt: In eine Dezimalzahl wandeln:

 $100 \Rightarrow 4$; da das höchstwertigste Bit 1 ist:

Endergebnis = -4

9. Schritt: Ergebnis:

$$2 - 6 = (-4)$$

7. Schritt: Hinzuaddieren von 1:

$$011 + 001 = 100$$

8. Schritt: In eine Dezimalzahl wandeln:

 $100 \Rightarrow 4$; da das höchstwertigste Bit 1 ist:

Endergebnis = -4

9. Schritt: Ergebnis:

$$2-6=(-4)$$

- Es werden Produkte mit den einzelnen Stellen des Multiplikators gebildet,sie werden anschließend Stellenrichtig addiert.
- Die Stellen des Multiplikators können nur Zahlenwerte zwischen Null und Eins annehmen

- Es werden Produkte mit den einzelnen Stellen des Multiplikators gebildet,sie werden anschließend Stellenrichtig addiert.
- Die Stellen des Multiplikators können nur Zahlenwerte zwischen Null und Eins annehmen
- $\bullet\,\to$ Dies kann mit einer einfachen UND-Verknüpfung gelöst werden.

- Es werden Produkte mit den einzelnen Stellen des Multiplikators gebildet,sie werden anschließend Stellenrichtig addiert.
- Die Stellen des Multiplikators können nur Zahlenwerte zwischen Null und Eins annehmen
- $\bullet \to {\rm Dies}$ kann mit einer einfachen UND-Verknüpfung gelöst werden.

Rechenbeispiel für eine Multiplikation mit Dual-Zahlen.

	$1\ 0\ 1\ 1\times 1\ 0\ 1\ 0$
	1011000
	000000
	10110
+	0000
	1101110

Halbaddierer

Ein Halbaddierer besitzt zwei Ein-, und zwei Ausgänge. An die Eingänge x und ywerden jeweils die Ziffern angelegt die man addieren möchte. An dem ersten Ausgang liegt die Summe s der Addition an, am zweiten Ausgang der Übertrag c.

\mathbf{x}	\mathbf{y}	Übertrag c	$\mathbf{Summe\ s}$
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Schaltbild Halbaddierer

In Schaltungen wird der Halbaddierer aus zwei Bauteilen zusammengesetzt, ein Exklusiv-ODER (XOR) und ein UND (AND).

Volladdierer

- Der Volladdierer besteht aus zwei Halbaddierern und einem ODER.
- Der Volladdierer hat einen zusätzlichen Eingang (c_{in}) , man kann den Übertrag aus einer vorhergegangenen Addition mit einbeziehen.

Volladdierer

- Der Volladdierer besteht aus zwei Halbaddierern und einem ODER.
- Der Volladdierer hat einen zusätzlichen Eingang (c_{in}) , man kann den Übertrag aus einer vorhergegangenen Addition mit einbeziehen.
- Man kann mehrere Volladdierer kaskadieren um größere Zahlen miteinander zu addieren.

\mathbf{x}	У	c_{in}	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Volladdierer

- Der Volladdierer besteht aus zwei Halbaddierern und einem ODER.
- Der Volladdierer hat einen zusätzlichen Eingang (c_{in}) , man kann den Übertrag aus einer vorhergegangenen Addition mit einbeziehen.
- Man kann mehrere Volladdierer kaskadieren um größere Zahlen miteinander zu addieren.

	1			
\mathbf{x}	\mathbf{y}	$\mathbf{c_{in}}$	$\mathbf{c_{out}}$	\mathbf{s}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Schaltbild Volladdierer

In Schaltungen wird der Halbaddierer aus zwei Bauteilen zusammengesetzt, ein Exklusiv-ODER (XOR) und ein UND (AND).

Subtrahierer

Beim Subtrahierer wird der Volladdierer durch einen Steuereingang erweitert. An diesem legt man für eine Addition eine 0, und für eine Subtraktion eine 1 an. Durch diesen Steuereingang wird das Zweierkomplement gebildet.

- Der Multiplizierer kann zwei acht Bit Zahlen miteinander multiplizieren.
- Dazu wird die Zahl an ein Schieberegister angelegt, sodass sie bei jedem Takt um eine Stelle verschoben werden kann.

- Der Multiplizierer kann zwei acht Bit Zahlen miteinander multiplizieren.
- Dazu wird die Zahl an ein Schieberegister angelegt, sodass sie bei jedem Takt um eine Stelle verschoben werden kann.
- Die höchstwertigste Ziffer des Multiplikators wird abgegriffen, und mit dem Multiplikant multipliziert.

- Der Multiplizierer kann zwei acht Bit Zahlen miteinander multiplizieren.
- Dazu wird die Zahl an ein Schieberegister angelegt, sodass sie bei jedem Takt um eine Stelle verschoben werden kann.
- Die höchstwertigste Ziffer des Multiplikators wird abgegriffen, und mit dem Multiplikant multipliziert.
- Um die Produkte Stellenrichtig zu addieren werden die Zwischenergebnisse ebenfalls verschoben.

- Der Multiplizierer kann zwei acht Bit Zahlen miteinander multiplizieren.
- Dazu wird die Zahl an ein Schieberegister angelegt, sodass sie bei jedem Takt um eine Stelle verschoben werden kann.
- Die höchstwertigste Ziffer des Multiplikators wird abgegriffen, und mit dem Multiplikant multipliziert.
- Um die Produkte Stellenrichtig zu addieren werden die Zwischenergebnisse ebenfalls verschoben.
- Das Produkt erhält man, nach acht Takten Rechenzeit.

- Der Multiplizierer kann zwei acht Bit Zahlen miteinander multiplizieren.
- Dazu wird die Zahl an ein Schieberegister angelegt, sodass sie bei jedem Takt um eine Stelle verschoben werden kann.
- Die höchstwertigste Ziffer des Multiplikators wird abgegriffen, und mit dem Multiplikant multipliziert.
- Um die Produkte Stellenrichtig zu addieren werden die Zwischenergebnisse ebenfalls verschoben.
- Das Produkt erhält man, nach acht Takten Rechenzeit.

BCD-Eingabe

- Die Eingabe erfolgt über ein ASCII-Feld.
- Bei einer Eingabe von einer Ziffer im Bereich 0 bis 9, liegt die Ziffer BCD codiert an den Ausgänge D_0 bis D_3 an

BCD-Eingabe

- Die Eingabe erfolgt über ein ASCII-Feld.
- Bei einer Eingabe von einer Ziffer im Bereich 0 bis 9, liegt die Ziffer BCD codiert an den Ausgänge D_0 bis D_3 an
- Nach jedem Tastendruck wird die Ziffer in ein Register übernommen, man kann an ihren Ausgängen die Zahl von 0 bis 99 abgreifen.

BCD-Eingabe

- Die Eingabe erfolgt über ein ASCII-Feld.
- Bei einer Eingabe von einer Ziffer im Bereich 0 bis 9, liegt die Ziffer BCD codiert an den Ausgänge D_0 bis D_3 an
- Nach jedem Tastendruck wird die Ziffer in ein Register übernommen, man kann an ihren Ausgängen die Zahl von 0 bis 99 abgreifen.

- Für die Wandlung werden zwei Zähler und ein Wandler benötigt.
- Der erste Zähler ist ein BCD-Zähler, der zweite ein Binär-Zähler.

- Für die Wandlung werden zwei Zähler und ein Wandler benötigt.
- Der erste Zähler ist ein BCD-Zähler, der zweite ein Binär-Zähler.
- Beide Zähler haben den selben Clock.

- Für die Wandlung werden zwei Zähler und ein Wandler benötigt.
- Der erste Zähler ist ein BCD-Zähler, der zweite ein Binär-Zähler.
- Beide Zähler haben den selben Clock.
- Der Vergleicher vergleicht das eingegebene Signal mit dem BCD-Zähler.

- Für die Wandlung werden zwei Zähler und ein Wandler benötigt.
- Der erste Zähler ist ein BCD-Zähler, der zweite ein Binär-Zähler.
- Beide Zähler haben den selben Clock.
- Der Vergleicher vergleicht das eingegebene Signal mit dem BCD-Zähler.
- Sind beide Signale identisch wird der Clock unterbrochen.

- Für die Wandlung werden zwei Zähler und ein Wandler benötigt.
- Der erste Zähler ist ein BCD-Zähler, der zweite ein Binär-Zähler.
- Beide Zähler haben den selben Clock.
- Der Vergleicher vergleicht das eingegebene Signal mit dem BCD-Zähler.
- Sind beide Signale identisch wird der Clock unterbrochen.
- Man kann das Binär-Ergebnis am Ausgang des Binär-Zählers ablesen.

- Für die Wandlung werden zwei Zähler und ein Wandler benötigt.
- Der erste Zähler ist ein BCD-Zähler, der zweite ein Binär-Zähler.
- Beide Zähler haben den selben Clock.
- Der Vergleicher vergleicht das eingegebene Signal mit dem BCD-Zähler.
- Sind beide Signale identisch wird der Clock unterbrochen.
- Man kann das Binär-Ergebnis am Ausgang des Binär-Zählers ablesen.

7-Segment-Anzeige

- Das Endergebnis wird Ziffer für Ziffer auf ein 7-Segment-Decoder gegeben.
- Die Ausgänge des 7-Segment-Decoders werden auf die Eingänge einer 7-Segment-Anzeige gegeben.

7-Segment-Anzeige

- Das Endergebnis wird Ziffer für Ziffer auf ein 7-Segment-Decoder gegeben.
- Die Ausgänge des 7-Segment-Decoders werden auf die Eingänge einer 7-Segment-Anzeige gegeben.

- Junior Computer Der einfache Einstieg in die faszinierende Computertechnik (1980)
- www.elektronik-kompendium.de/sites/dig/1708061.htm (11.04.2015)
- de.wikipedia.org/wiki/Volladdierer (16.05.2015)