Assignment no 4

```
In [ ]: AIM:To learn about
             1. Linear Regression : Univariate and Multivariate
             2. Least Square Method for Linear Regression
             3. Measuring Performance of Linear Regression
             4. Example of Linear Regression
             5. Training data set and Testing data set:
In [68]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
 In [2]: x=np.array([95,85,80,70,60])
         y=np.array([85,95,70,65,70])
 In [4]: model= np.polyfit(x, y, 1)
         model
 Out[4]: array([ 0.64383562, 26.78082192])
 In [5]: predict = np.poly1d(model)
         predict(65)
 Out[5]: 68.63013698630135
 In [6]: y_pred= predict(x)
         y_pred
 Out[6]: array([87.94520548, 81.50684932, 78.28767123, 71.84931507, 65.4109589])
 In [7]: from sklearn.metrics import r2_score
         r2_score(y, y_pred)
 Out[7]: 0.4803218090889323
In [16]: y_{line} = model[1] + model[0]* x
         plt.plot(x, y_line, c = 'r')
         plt.scatter(x, y_pred)
         plt.scatter(x,y,c='r')
```

Out[16]: <matplotlib.collections.PathCollection at 0x27ac8e811f0>

In [13]: from sklearn.datasets import fetch_openml
housing = fetch_openml(name="house_prices", as_frame=True)

In [14]: data=pd.DataFrame(housing.data)

In [15]: data.columns = housing.feature_names
 data.head()

Out[15]:		ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandCon
	0	1	60	RL	65.0	8450	Pave	NaN	Reg	
	1	2	20	RL	80.0	9600	Pave	NaN	Reg	
	2	3	60	RL	68.0	11250	Pave	NaN	IR1	
	3	4	70	RL	60.0	9550	Pave	NaN	IR1	
	4	5	60	RL	84.0	14260	Pave	NaN	IR1	

5 rows × 80 columns

In [1]: from sklearn.datasets import fetch_openml
 from sklearn.datasets import fetch_california_housing
 housing = fetch_california_housing()
 housing

```
Out[1]: {'data': array([[
                                           41.
                            8.3252
                                                           6.98412698, ...,
                                                                               2.555555
        6,
                    37.88
                               , -122.23
                                              1,
                    8.3014
                                   21.
                                                   6.23813708, ...,
                                                                        2.10984183,
                               , -122.22
                    37.86
                                              ],
                    7.2574
                                   52.
                                                   8.28813559, ...,
                                                                        2.80225989,
                               , -122.24
                   37.85
                                              ],
                   1.7
                                   17.
                                                   5.20554273, ...,
                                                                       2.3256351,
                 39.43
                               , -121.22
                                              ],
                    1.8672
                                                   5.32951289, ...,
                                                                        2.12320917,
                                   18.
                   39.43
                                -121.32
                                              ],
                     2.3886
                                                   5.25471698, ...,
                                   16.
                                                                        2.61698113,
                               , -121.24
                    39.37
                                              ]]),
         'target': array([4.526, 3.585, 3.521, ..., 0.923, 0.847, 0.894]),
         'frame': None.
          'target_names': ['MedHouseVal'],
          'feature names': ['MedInc',
          'HouseAge',
          'AveRooms',
          'AveBedrms',
          'Population',
          'AveOccup',
          'Latitude',
          'Longitude'],
          'DESCR': '.. _california_housing_dataset:\n\nCalifornia Housing dataset\n----
        -----\n\n**Data Set Characteristics:**\n\n:Number of Instances:
        20640\n\n:Number of Attributes: 8 numeric, predictive attributes and the target
        \n\n:Attribute Information:\n

    MedInc

                                                          median income in block group\n
                        median house age in block group\n

    AveRooms

        - HouseAge
                                                                              average nu
        mber of rooms per household\n - AveBedrms
                                                         average number of bedrooms per
        household\n
                        - Population
                                       block group population\n
                                                                    - AveOccup
                                                                                     aver
        age number of household members\n
                                             - Latitude
                                                              block group latitude\n
                         block group longitude\n\n:Missing Attribute Values: None\n\nThi
        s dataset was obtained from the StatLib repository.\nhttps://www.dcc.fc.up.pt/~
        ltorgo/Regression/cal_housing.html\n\nThe target variable is the median house v
        alue for California districts,\nexpressed in hundreds of thousands of dollars
        ($100,000).\n\nThis dataset was derived from the 1990 U.S. census, using one ro
        w per census\nblock group. A block group is the smallest geographical unit for
        which the U.S.\nCensus Bureau publishes sample data (a block group typically ha
        s a population\nof 600 to 3,000 people).\nA household is a group of people re
        siding within a home. Since the average\nnumber of rooms and bedrooms in this d
        ataset are provided per household, these\ncolumns may take surprisingly large v
        alues for block groups with few households\nand many empty houses, such as vaca
        tion resorts.\n\nIt can be downloaded/loaded using the\n:func:`sklearn.dataset
        s.fetch_california_housing` function.\n\n.. rubric:: References\n\n- Pace, R. K
        elley and Ronald Barry, Sparse Spatial Autoregressions,\n Statistics and Proba
        bility Letters, 33 (1997) 291-297\n'}
        import pandas as pd
```

```
In [13]: import pandas as pd
    df=pd.DataFrame(housing.data,columns=housing.feature_names)
    df
```

10.217 W							dobe	ич							
Out[13]:		MedI	nc House	Age	AveRoc	oms	AveBed	rms	Populat	ion	AveOc	cup L	atitud	e L	
		8.32	252	41.0	6.984	1127	1.023	8810	3	22.0	2.555	556	37.8	38	
		8.30)14	21.0	6.238	3137	0.971	1880	24	01.0	2.109	842	37.8	36	
	2	7.25	574	52.0	8.288	3136	1.073	3446	4	96.0	2.802	260	37.8	35	
	3	3 5.64	131	52.0	5.817	352	1.073	3059	5	58.0	2.547	945	37.8	35	
		4 3.84	162	52.0	6.281	853	1.081	1081	5	65.0	2.181	467	37.8	35	
	••	•													
	2063	1.56	503	25.0	5.045	455	1.133	3333	8	45.0	2.560	606	39.4	18	
	20636	2.55	568	18.0	6.114	1035	1.315	789	3	56.0	3.122	807	39.4	19	
	20637	7 1.70	000	17.0	5.205	543	1.120	0092	10	07.0	2.325	635	39.4	13	
	20638	1.86	572	18.0	5.329	9513	1.171	1920	7.	41.0	2.123	209	39.4	13	
	20639	2.38	386	16.0	5.254	1717	1.162	2264	13	87.0	2.616	981	39.3	37	
	20640	rows ×	8 columns												
	C													С	
In [15]:	df.he	ad()													
Out[15]:		edInc	HouseAge	Δνα	Pooms	Δνο	Bedrms	Pon	ulation	Δνο	Occup	Latitu	do I	ongit.	
040[15].		.3252	41.0		.984127		.023810	гор	322.0		555556	37.		-12	
		.3014	21.0		.238137		0.971880		2401.0		09842	37.		-12	
		.2574	52.0		.288136		.073446		496.0		302260			-12	
		.6431	52.0		.817352		.073059		558.0		547945			-12	
		.8462	52.0		.281853		.081081		565.0		81467	37.		-12	
		.5.02	32.0	J	0.000		.55 155 1		333.0		31101	37.			
	С													С	

In [19]: df['PRICE'] = housing.target

df

Out[19]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	L
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	
	•••								
	20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	
	20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	
	20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	
	20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	
	20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	

20640 rows × 9 columns

```
In [21]: df.isnull().sum()
Out[21]: MedInc
                        0
          HouseAge
                        0
          AveRooms
                        0
          AveBedrms
                        0
          Population
                        0
          AveOccup
                        0
          Latitude
                        0
          Longitude
                        0
          PRICE
          dtype: int64
In [23]: x = df.drop(['PRICE'], axis = 1)
          y = df['PRICE']
In [25]: x
```

Out[25]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude L
	0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88
	1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86
	2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85
	3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85
	4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85
	•••							
	20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48
	20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49
	20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43
	20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43
	20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37

20640 rows × 8 columns

	C
In [27]:	у
Out[27]:	0 4.526 1 3.585 2 3.521 3 3.413 4 3.422 20635 0.781 20636 0.771 20637 0.923 20638 0.847 20639 0.894 Name: PRICE, Length: 20640, dtype: float64
In [31]:	<pre>from sklearn.model_selection import train_test_split xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size =0.2,random_stat</pre>
In [33]:	xtrain

Out[33]:		MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude
	12069	4.2386	6.0	7.723077	1.169231	228.0	3.507692	33.83
	15925	4.3898	52.0	5.326622	1.100671	1485.0	3.322148	37.73
	11162	3.9333	26.0	4.668478	1.046196	1022.0	2.777174	33.83
	4904	1.4653	38.0	3.383495	1.009709	749.0	3.635922	34.01
	4683	3.1765	52.0	4.119792	1.043403	1135.0	1.970486	34.08
	•••							
	13123	4.4125	20.0	6.000000	1.045662	712.0	3.251142	38.27
	19648	2.9135	27.0	5.349282	0.933014	647.0	3.095694	37.48
	9845	3.1977	31.0	3.641221	0.941476	704.0	1.791349	36.58
	10799	5.6315	34.0	4.540598	1.064103	1052.0	2.247863	33.62
	2732	1.3882	15.0	3.929530	1.100671	1024.0	3.436242	32.80
	16512 r	ows × 8 co	olumns					
	С							С
In [35]:								
F 1 -								
Out[35]:		Medino	ΗουςοΔαο	AveRooms	AveRedrms	Population	ΑνεΩσσιια	l atitude
Out[35]:	14740	MedInc	HouseAge		AveBedrms	Population		Latitude
Out[35]:	14740	4.1518	22.0	5.663073	1.075472	1551.0	4.180593	32.58
Out[35]:	10101	4.1518 5.7796	22.0	5.663073 6.107226	1.075472 0.927739	1551.0 1296.0	4.180593 3.020979	32.58 33.92
Out[35]:	10101 20566	4.1518 5.7796 4.3487	22.0 32.0 29.0	5.663073 6.107226 5.930712	1.075472 0.927739 1.026217	1551.0 1296.0 1554.0	4.180593 3.020979 2.910112	32.58 33.92 38.65
Out[35]:	10101 20566 2670	4.1518 5.7796 4.3487 2.4511	22.0 32.0 29.0 37.0	5.663073 6.107226 5.930712 4.992958	1.075472 0.927739 1.026217 1.316901	1551.0 1296.0 1554.0 390.0	4.180593 3.020979 2.910112 2.746479	32.58 33.92 38.65 33.20
Out[35]:	10101 20566 2670 15709	4.1518 5.7796 4.3487 2.4511 5.0049	22.0 32.0 29.0 37.0 25.0	5.663073 6.107226 5.930712 4.992958 4.319261	1.075472 0.927739 1.026217 1.316901 1.039578	1551.0 1296.0 1554.0 390.0 649.0	4.180593 3.020979 2.910112 2.746479 1.712401	32.58 33.92 38.65 33.20 37.79
Out[35]:	10101 20566 2670 15709	4.1518 5.7796 4.3487 2.4511 5.0049	22.0 32.0 29.0 37.0 25.0	5.663073 6.107226 5.930712 4.992958 4.319261	1.075472 0.927739 1.026217 1.316901 1.039578	1551.0 1296.0 1554.0 390.0 649.0	4.180593 3.020979 2.910112 2.746479 1.712401	32.58 33.92 38.65 33.20 37.79
Out[35]:	10101 20566 2670 15709	4.1518 5.7796 4.3487 2.4511 5.0049	22.0 32.0 29.0 37.0 25.0	5.663073 6.107226 5.930712 4.992958 4.319261	1.075472 0.927739 1.026217 1.316901 1.039578	1551.0 1296.0 1554.0 390.0 649.0	4.180593 3.020979 2.910112 2.746479 1.712401	32.58 33.92 38.65 33.20 37.79
Out[35]:	10101 20566 2670 15709 6655	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817	22.0 32.0 29.0 37.0 25.0 	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682	1551.0 1296.0 1554.0 390.0 649.0 2050.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428	32.58 33.92 38.65 33.20 37.79
Out[35]:	10101 20566 2670 15709 6655 3505	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817 4.3839	22.0 32.0 29.0 37.0 25.0 33.0 36.0	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723 5.283636	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682 0.981818	1551.0 1296.0 1554.0 390.0 649.0 2050.0 808.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428 2.938182	32.58 33.92 38.65 33.20 37.79 34.16 34.25
Out[35]:	10101 20566 2670 15709 6655 3505 1919	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817 4.3839 3.2027	22.0 32.0 29.0 37.0 25.0 33.0 36.0 11.0	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723 5.283636 5.276074	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682 0.981818 1.058282	1551.0 1296.0 1554.0 390.0 649.0 2050.0 808.0 850.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428 2.938182 2.607362	32.58 33.92 38.65 33.20 37.79 34.16 34.25 38.86
Out[35]:	10101 20566 2670 15709 6655 3505 1919 1450 4148	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817 4.3839 3.2027 6.1436 3.3326	22.0 32.0 29.0 37.0 25.0 33.0 36.0 11.0 18.0 52.0	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723 5.283636 5.276074 7.323529	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682 0.981818 1.058282 1.050802	1551.0 1296.0 1554.0 390.0 649.0 2050.0 808.0 850.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428 2.938182 2.607362 2.866310	32.58 33.92 38.65 33.20 37.79 34.16 34.25 38.86 37.96
Out[35]:	10101 20566 2670 15709 6655 3505 1919 1450 4148	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817 4.3839 3.2027 6.1436	22.0 32.0 29.0 37.0 25.0 33.0 36.0 11.0 18.0 52.0	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723 5.283636 5.276074 7.323529	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682 0.981818 1.058282 1.050802	1551.0 1296.0 1554.0 390.0 649.0 2050.0 808.0 850.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428 2.938182 2.607362 2.866310	32.58 33.92 38.65 33.20 37.79 34.16 34.25 38.86 37.96
Out[35]:	10101 20566 2670 15709 6655 3505 1919 1450 4148	4.1518 5.7796 4.3487 2.4511 5.0049 2.4817 4.3839 3.2027 6.1436 3.3326	22.0 32.0 29.0 37.0 25.0 33.0 36.0 11.0 18.0 52.0	5.663073 6.107226 5.930712 4.992958 4.319261 3.875723 5.283636 5.276074 7.323529	1.075472 0.927739 1.026217 1.316901 1.039578 1.034682 0.981818 1.058282 1.050802	1551.0 1296.0 1554.0 390.0 649.0 2050.0 808.0 850.0	4.180593 3.020979 2.910112 2.746479 1.712401 2.962428 2.938182 2.607362 2.866310	32.58 33.92 38.65 33.20 37.79 34.16 34.25 38.86 37.96

```
Out[37]: 12069
                   5.00001
          15925
                   2.70000
          11162
                   1.96100
          4904
                   1.18800
          4683
                   2.25000
          13123
                   1.44600
          19648
                   1.59400
          9845
                   2.89300
                   4.84600
          10799
          2732
                   0.69400
          Name: PRICE, Length: 16512, dtype: float64
In [39]: ytest
Out[39]:
          14740
                   1.369
          10101
                   2.413
          20566
                   2.007
          2670
                   0.725
          15709
                   4.600
                   ...
                   1.695
          6655
          3505
                   2.046
          1919
                   1.286
                   2.595
          1450
          4148
                   1.676
          Name: PRICE, Length: 4128, dtype: float64
In [41]:
         import sklearn
         from sklearn.linear_model import LinearRegression
         lm = LinearRegression()
         model=lm.fit(xtrain, ytrain)
In [50]:
         ytrain_pred = lm.predict(xtrain)
         ytest_pred = lm.predict(xtest)
In [52]:
         ytrain_pred
Out[52]: array([1.7259112 , 2.88543882, 2.20064594, ..., 2.50890725, 3.0945134 ,
                 0.47233661])
In [54]:
         ytest pred
          array([2.28110738, 2.79009128, 1.90332794, ..., 0.8418697, 2.7984953,
Out[54]:
                 2.21779325])
         df=pd.DataFrame(ytrain_pred,ytrain)
In [56]:
         df
```

```
Out[56]: 0
```

```
      PRICE

      5.00001
      1.725911

      2.70000
      2.885439

      1.96100
      2.200646

      1.18800
      1.382820

      2.25000
      2.220702

      ...
      ...

      1.44600
      1.765119

      1.59400
      1.351502

      2.89300
      2.508907

      4.84600
      3.094513

      0.69400
      0.472337
```

16512 rows × 1 columns

```
In [58]: df=pd.DataFrame(ytest_pred,ytest)
df
```

```
Out[58]:
```

PRICE	
1.369	2.281107
2.413	2.790091
2.007	1.903328
0.725	1.017603
4.600	2.948524
•••	
1.695	1.616753
1.695	1.616753
1.695 2.046	1.616753 2.409188

4128 rows × 1 columns

```
In [60]: from sklearn.metrics import mean_squared_error, r2_score
    mse = mean_squared_error(ytest, ytest_pred)
    print(mse)
```

```
mse = mean_squared_error(ytrain_pred,ytrain)
print(mse)
```

0.5289841670367224

0.5234413607125449

```
In [62]: mse = mean_squared_error(ytest, ytest_pred)
    print(mse)
```

0.5289841670367224

```
In [70]: plt.scatter(ytrain ,ytrain_pred,c='blue',marker='o',label='Training data')
    plt.scatter(ytest,ytest_pred ,c='lightgreen',marker='s',label='Test data')
    plt.xlabel('True values')
    plt.ylabel('Predicted')
    plt.title("True value vs Predicted value")
    plt.legend(loc= 'upper left')
    #plt.hlines(y=0,xmin=0,xmax=50)
    plt.plot()
    plt.show()
```

True value vs Predicted value

NAME: NEHA AJAY JADHAV ROLLNO:13247