

NP-HARD GRAPH PROBLEMS

How to show a problem is NP-hard

- The strategy we adopt to show that a problem L₂ is NP-hard is:
 - 1. Pick a problem L₁ already known to be NP-hard.
 - 2. Show how to obtain (in polynomial deterministic time) an instance I' of L_2 from any instance I of L_1 such that from the solution of I' we can determine (in polynomial deterministic time) the solution to instance I of L_1 .
 - 3. Conclude from step (2) that $L_1 \le L_2$
 - 4. Conclude from steps (1) and (3) and the transitivity of \leq that L₂ is NP-hard.

The strategy to show that a problem L₂ is NP-hard is

- (i) Pick a problem L_1 already known to be NP-hard.
- (ii) Show how to obtain an instance I^1 of L_2 from any instance I of L_1 such that from the solution of I^1
 - We can determine (in polynomial deterministic time) the solution to instance I of L_1 .
- (iii) Conclude from (ii) that $L_1 \alpha L_2$.
- (iv) Conclude from (i),(ii), and the transitivity of α that satisfiability α L_1 L_1 α L_2
 - \therefore Satisfiability αL_2
 - ∴ L₂ is NP-hard

Clique Decision Problem(CDP)

- Clique Problem:
 - Undirected graph G = (V, E)
 - Clique: a subset of vertices in V all connected to each other by edges in E (i.e., forming a complete graph)
 - Size of a clique: number of vertices it contains
- Optimization problem:
 - Find a clique of maximum size
- Decision problem:
 - Does G have a clique of size k?

Clique Decision Problem(CDP):

Clique:

Clique is a maximal complete sub graph of a graph G = (V,E)

- Size of a clique is the number of vertices in it

Clique Decision Problem(CDP)

- Theorem: CNF-satidfiability ≤ CDP
- Proof: Let $F = \wedge_{1 \le i \le k} C_i$ be a propositional formula in CNF. Let x_i , $1 \le i \le n$, be the variables in F.
 - We show how to construct from F a graph G = (V, E) such that G has a clique of size at least k if and only if F is satisfiable.
 - If the length of F is m, then G is obtainable from F in o(m) time.
 - Hence, if we have a polynomial time algorithm for CDP, then we can obtain a polynomial time algorithm for CNF-satisfiability using this construction.

Clique Decision Problem(CDP)

- For any F, $G = \{V,E\}$ is defined as follows:
 - $^{\square}$ V = { $\langle \sigma, i \rangle \mid \sigma \text{ is a literal in clause } C_i$ }
 - $^{\Box}$ E = {(< σ ,i>, < δ ,j>) | i≠j and σ ≠δ(bar)}.

$$F = (x_1 \lor x_2 \lor x_3) \land (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$$

Example:

Consider $F = (x_1 \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3}).$

The construction of Theorem yields the graph:

This graph contains six cliques of size two.

Consider the clique with vertices $\{\langle x_1, 1 \rangle, \langle \overline{x_2}, 2 \rangle\}$.

By setting x_1 = true and x_2 = true (i.e. x_2 = false)

F is satisfied.

 x_3 may be set either to true or false.

Figure: A sample graph and satisfiability

Theorem: CNF- satisfiability a Clique Decision Problem

Proof:

Let $F = \bigwedge_{1 \le i \le k} C_i$ be a propositional formula in CNF. Let x_i , $1 \le i \le n$ be the variables in F.

We shall show how to construct from F a graph G = (V, E) such that G will have a clique of size at least k if F is satisfiable.

If the length of F is m, then G will be obtainable from F in O(m) time.

Hence, if we have a polynomial time algorithm for CDP, then we can obtain a polynomial time algorithm for CNF-satisfiability using this construction.

For any F, G = (V, E) is defined as follows: $V = \{\langle \sigma, i \rangle | \sigma \text{ is a literal in clause Ci}\}$; $E = \{(\langle \sigma, i \rangle, \langle \delta, j \rangle) | i \neq j \text{ and } \sigma \neq \delta\}$.

A sample construction is given in Example.

Questions:

- 1. Discuss in detail about Clique Decision Problem
- 2. Reduce CNF-Satisfiability problem into CDP and Solve

THANK YOU

