Análisis Numérico I — **Práctico N°3 - 2022**

Interpolación polinomial:

Método de Newton y de Lagrange, Error del polinomio interpolante, Splines.

- 1. a) Para la función $f(x) = \frac{1}{x}$, construir el polinomio interpolante de Lagrange p y el polinomio interpolante de Newton q. Usar como nodos los puntos $x_0 = 2$, $x_1 = 2.5$, $x_2 = 4$.
 - (i) Comparar los polinomios p y q y dar sus grados.
 - (ii) Calcular p(3).
 - (iii) Graficar f(x) y p(x).
 - (iv) Analizar los resultados.
 - b) Construir los polinomios de Taylor p_n de grado n = 0, 1, 2, 3 de la función $f(x) = \frac{1}{x}$ alrededor de $x_* = 1$.
 - (i) Calcular $p_n(3)$.
 - (ii) Graficar $p_n(x)$.
 - c) Comparar los valores p(3) y $p_n(3)$.
- 2. Demostrar que si f es un polinomio de grado menor o igual que n entonces el polinomio de grado menor o igual que n que interpola a f en x_0, x_1, \ldots, x_n es f.
- 3. Mostrar que si g(x) interpola a f(x) en los puntos $x_0, x_1, \ldots, x_{n-1}$ y h(x) interpola a f(x) en los puntos $x_1, \ldots, x_{n-1}, x_n$, entonces

$$p(x) = g(x) + \frac{x_0 - x}{x_n - x_0} (g(x) - h(x)) \tag{1}$$

interpola a f(x) en x_0, x_1, \ldots, x_n .

4. Dados $x_0, \ldots, x_n \in \mathbb{R}$, se definen los polinomios básicos de Lagrange l_k para $k = 0, \ldots, n$ como

$$l_k(x) = \frac{(x - x_0) \dots (x - x_{k-1})(x - x_{k+1}) \dots (x - x_n)}{(x_k - x_0) \dots (x_k - x_{k-1})(x_k - x_{k+1}) \dots (x_k - x_n)}.$$

- a) Probar que $\sum_{k=0}^{n} l_k(x) = 1$ para todo $x \in \mathbb{R}$.
- b) Probar que $\sum_{k=0}^{n} x_k l_k(x) = x$ para todo $x \in \mathbb{R}$.
- c) Probar que $\sum_{k=0}^{n} x_k^m l_k(x) = x^m$ para todo $x \in \mathbb{R}$, con $m \le n$.
- 5. Considerar los siguientes conjuntos de datos

s	$\mid x \mid$	-1	0	2	3	x	-1	0	1	$\mid 2 \mid$	
	y	-1	3	11	27	y	-3	1	1	3	

- a) Calcular los polinomios interpolantes de grado menor o igual que 3, en la forma de Lagrange.
- b) Construir las tablas de diferencias divididas y los polinomios interpolantes en la forma de Newton.
- c) Agregar a las tablas el punto x = 4, y = 1 y actualizar las tablas de diferencias divididas para recalcular los polinomios interpolantes.
- 6. Sea $f:[0,5] \to \mathbb{R}$, $f(x)=2^x$. Sea P_n un polinomio de grado menor o igual a n que interpola a f en n+1 puntos distintos del intervalo [0,5]. Demostrar que para cualquier x en dicho intervalo vale que

$$|P_n(x) - f(x)| \le \frac{32 \cdot 5^{n+1}}{(n+1)!}.$$

1

- 7. Mostrar que el error obtenido al interpolar la función $f(x) = \cosh(x)$ con un polinomio p(x) de grado menor o igual a 22 en el intervalo [-1,1] es menor o igual a 5×10^{-16} .
- 8. a) Sea a < b, m el punto medio entre a y b, p = m h y q = m + h para $0 \le h \le (b a)/2$. Demostrar que para todo x en [a, b],

$$|(x-p)(x-q)| \le \frac{(b-a)^2}{4}.$$

b) Sean $x_i = a + i\left(\frac{b-a}{n}\right)$, $i = 0, \dots, n, n+1$ puntos equiespaciados en el intervalo [a, b]. Demostrar que para todo x en [a, b],

$$|(x-x_0)\dots(x-x_n)| \le \frac{(b-a)^{n+1}}{2^{n+1}}.$$
 (2)

9. a) Sea $f(x) = \cos(\pi x)$, hallar un polinomio de grado menor o igual a 3 que verifique

$$p(-1) = f(-1), p(0) = f(0), p(1) = f(1), p'(1) = f'(1).$$

- b) Hallar un polinomio de grado menor o igual a 4 que verifique las condiciones del item anterior, más la condición p''(1) = f''(1).
- 10. Se desea aproximar la función $f(x) = \sqrt{x}$ con un error de a lo sumo 5×10^{-8} , usando los siguientes métodos:
 - a) Un spline lineal
 - b) Interpolación cuadrática cada 3 nodos.

Determinar para cada caso el mínimo número necesario n de nodos de la forma $x_i = 1 + \frac{i}{n}$ para $i = 0, \ldots, n$, y la longitud de paso h, para satisfacer la cota del error.

- 11. Dada una tabla de valores igualmente espaciados de la función f(x) = cos(x), determinar el valor del paso h y el mínimo número de nodos cuando f(x) es aproximada por un spline lineal en el intervalo $[0, 2\pi]$ con un error menor o igual a 5×10^{-7} .
- 12. a) Determinar valores de α, β, γ para que S sea una función spline cúbica, siendo

$$S(x) = \begin{cases} \alpha x^3 + \gamma x, & 0 \le x \le 1, \\ -\alpha x^3 + \beta x^2 - 5\alpha x + 1, & 1 \le x \le 2. \end{cases}$$

- b) Con los valores de α, β, γ obtenidos en el ítem anterior, decida si S interpola a la función $f(x) = 2^x + 0.5x^2 0.5x 1$ en el intervalo [0, 2] respecto de los nodos $\{0, 1, 2\}$.
- c) Grafique simultáneamente f y S en el intervalo [0,2].
- 13. Supongamos que

$$s(x) = \begin{cases} 1 + b_1 x + c_1 x^2 + d_1 x^3, & \text{si } 0 \le x \le 1, \\ b_2(x-1) + c_2(x-1)^2 + d_2(x-1)^3, & \text{si } 1 \le x \le 2, \end{cases}$$

es un spline cúbico natural para una función f que satisface

$$f(0) = 1$$
, $f(1) = 0$, $f(2) = 3$.

Encontrar los coeficientes $b_1, c_1, d_1, b_2, c_2 y d_2$.