On algebraic automorphisms and their rational invariants

Philippe Bonnet

Mathematisches Institut, Universität Basel Rheinsprung 21, 4051 Basel, Switzerland e-mail: Philippe.bonnet@unibas.ch

Abstract

Let X be an affine irreducible variety over an algebraically closed field k of characteristic zero. Given an automorphism Φ , we denote by $k(X)^{\Phi}$ its field of invariants, i.e the set of rational functions f on X such that $f \circ \Phi = f$. Let $n(\Phi)$ be the transcendence degree of $k(X)^{\Phi}$ over k. In this paper, we study the class of automorphisms Φ of X for which $n(\Phi) = \dim X - 1$. More precisely, we show that under some conditions on X, every such automorphism is of the form $\Phi = \varphi_g$, where φ is an algebraic action of a linear algebraic group G of dimension 1 on X, and where g belongs to G. As an application, we determine the conjugacy classes of automorphisms of the plane for which $n(\Phi) = 1$.

1 Introduction

Let k be an algebraically closed field of characteristic zero. Let X be an affine irreducible variety of dimension n over k. We denote by $\mathcal{O}(X)$ its ring of regular functions, and by k(X) its field of rational functions. Given an algebraic automorphism Φ of X, denote by Φ^* the field automorphism induced by Φ on k(X), i.e. $\Phi^*(f) = f \circ \Phi$ for any $f \in k(X)$. An element f of k(X) is invariant for Φ (or simply invariant) if $\Phi^*(f) = f$. Invariant rational functions form a field denoted $k(X)^{\Phi}$, and we set:

$$n(\Phi) = trdeg_k \ k(X)^{\Phi}$$

In this paper, we are going to study the class of automorphisms of X for which $n(\Phi) = n - 1$. There are natural candidates for such automorphisms, such as exponentials of locally nilpotent derivations (see [M] or [Da]). More generally, one can construct such automorphisms by means of algebraic group actions as follows. Let G be a linear algebraic group over k. An algebraic action of G on X is a regular map:

$$\varphi:G\times X\longrightarrow X$$

of affine varieties, such that $\varphi(g.g',x) = \varphi(g,\varphi(g',x))$ for any (g,g',x) in $G \times G \times X$. Given an element g of G, denote by φ_g the map $x \mapsto \varphi(g,x)$. Then φ_g clearly defines an automorphism of X. Let $k(X)^G$ be the field of invariants of G, i.e. the set of rational functions f on X such that $f \circ \varphi_g = f$ for any $g \in G$. If G is an algebraic group of dimension 1, acting faithfully on X, and if g is an element of G of infinite order, then one can prove by Rosenlicht's Theorem (see [Ro]) that:

$$n(\varphi_q) = trdeg_k \ k(X)^G = n - 1$$

We are going to see that, under some mild conditions on X, there are no other automorphisms with $n(\Phi) = n-1$ than those constructed above. In what follows, denote by $\mathcal{O}(X)^{\nu}$ the normalization of $\mathcal{O}(X)$, and by G(X) the group of invertible elements of $\mathcal{O}(X)^{\nu}$.

Theorem 1.1 Let X be an affine irreducible variety of dimension n over k, such that char(k) = 0 and $G(X)^* = k^*$. Let Φ be an algebraic automorphism of X such that $n(\Phi) = n - 1$. Then there exist an abelian linear algebraic group G of dimension 1, and an algebraic action φ of G on X such that $\Phi = \varphi_g$ for some $g \in G$ of infinite order.

Note that the structure of G is fairly simple. Since every connected linear algebraic group of dimension 1 is either isomorphic to $G_a(k) = (k, +)$ or $G_m(k) = (k^*, \times)$ (see [Hum], p. 131), there exists a finite abelian group H such that G is either equal to $H \times G_a(k)$ or $H \times G_m(k)$. Moreover, the assumption on the group G(X) is essential. Indeed, consider the automorphism Φ of $k^* \times k$ given by $\Phi(x, y) = (x, xy)$. Obviously, its field of invariants is equal to k(x). However, it is easy to check that Φ cannot have the form given in the conclusion of Theorem 1.1.

This theorem is analogous to a result given by Van den Essen and Peretz (see [V-P]). More precisely, they establish a criterion to decide if an automorphism Φ is the exponential of a locally nilpotent derivation, based on the invariants and on the form of Φ . A similar result has been developed by Daigle (see [Da]).

We apply these results to the group of automorphisms of the plane. First, we obtain a classification of the automorphisms Φ of k^2 for which $n(\Phi) = 1$. Second, we derive a criterion on automorphisms of k^2 to have no nonconstant rational invariants.

Corollary 1.2 Let Φ be an algebraic automorphism of k^2 . If $n(\Phi) = 1$, then Φ is conjugate to one of the following forms:

- $\Phi_1(x,y) = (a^n x, a^m by)$, where $(n,m) \neq (0,0)$, $a,b \in k$, b is a root of unity but a is not.
- $\Phi_2(x,y) = (ax, by + P(x))$, where P belongs to $k[t] \{0\}$, $a, b \in k$ are roots of unity.

Corollary 1.3 Let Φ be an algebraic automorphism of k^2 . Assume that Φ has a unique fixpoint p and that $d\Phi_p$ is unipotent. Then $n(\Phi) = 0$.

We then apply Corollary 1.3 to an automorphism of \mathbb{C}^3 recently discovered by Pierre-Marie Poloni and Lucy Moser (see [M-P]).

We may wonder whether Theorem 1.1 still holds if the ground field k is not algebraically closed or has positive characteristic. The answer is not known for the moment. In fact, two obstructions appear in the proof of Theorem 1.1 when k is arbitrary. First, the group $G_m(k)$ needs to be divisible (see Lemma 4.2), which is not always the case if k is not algebraically closed. Second, the proof uses the fact that every $G_a(k)$ -action on X can be reconstructed from a locally nilpotent derivation on $\mathcal{O}(X)$ (see subsection 4.1), which is no longer true if k has positive characteristic. This phenomenom is due to the existence of differents forms for the affine line (see [Ru]). Note that, in case Theorem 1.1 holds and k is not algebraically closed, the algebraic group G needs not be isomorphic to $H \times G_a(k)$ or $H \times G_m(k)$, where H is finite. Indeed consider the unit circle X in the plane \mathbb{R}^2 , given by the equation $x^2 + y^2 = 1$. Let Φ be a rotation in \mathbb{R}^2 with center at the origin and angle $\theta \notin 2\pi\mathbb{Q}$. Then Φ defines an algebraic automorphism of X with $n(\Phi) = 0$, and the subgroup spanned by Φ is dense in $SO_2(\mathbb{R})$. But $SO_2(\mathbb{R})$ is not isomorphic to either $G_a(\mathbb{R})$ or $G_m(\mathbb{R})$, even though it is a connected linear algebraic group of dimension 1.

We may also wonder what happens to the automorphisms Φ of X for which $n(\Phi) = dim X - 2$. More precisely, does there exist an action φ of a linear algebraic group G on X, of dimension 2, such that $\Phi = \varphi_g$ for a given $g \in G$? The answer is no. Indeed consider the automorphism Φ of k^2 given by $\Phi = f \circ g$, where $f(x,y) = (x+y^2,y)$ and $g(x,y) = (x,y+x^2)$. Let d(n) denote the maximum of the homogeneous degrees of the coordinate functions of the iterate Φ^n . If there existed an action φ of a linear algebraic group G such that $\Phi = \varphi_g$, then the function d would be bounded, which is impossible since $d(n) = 4^n$. A similar argument on the length of the iterates also yields the result. But if we restrict to some specific varieties X, for instance $X = k^3$, one may ask the following question: If $n(\Phi) = 1$, is Φ birationally conjugate to an automorphism that leaves the first coordinate of k^3 invariant? The answer is still unknown.

2 Reduction to an affine curve $\mathcal C$

Let X be an affine irreducible variety of dimension n over k. Let Φ be an algebraic automorphism of X such that $n(\Phi) = n - 1$. In this section, we are going to construct an irreducible affine curve on which Φ acts naturally. This will allow us to use some well-known results on automorphisms of curves. We set:

$$K = \{ f \in k(X) | \exists m > 0, \ f \circ \Phi^m = f \circ \Phi \circ \dots \circ \Phi = f \}$$

It is straightforward that K is a subfield of k(X) containing both k and $k(X)^{\Phi}$. We begin with some properties of this field.

Lemma 2.1 K has transcendence degree (n-1) over k, and is algebraically closed in k(X). In particular, the automorphism Φ of X has infinite order.

Proof: First we show that K has transcendence degree (n-1) over k. Since K contains the field $k(X)^{\Phi}$, whose transcendence degree is (n-1), we only need to show that the extension $K/k(X)^{\Phi}$ is algebraic, or in other words that every element of K is algebraic over $k(X)^{\Phi}$. Let f be any element of K. By definition, there exists an integer m > 0 such that $f \circ \Phi^m = f$. Let P(t) be the polynomial of k(X)[t] defined as:

$$P(t) = \prod_{i=0}^{m-1} (t - f \circ \Phi^i)$$

By construction, the coefficients of this polynomial are all invariant for Φ , and P(t) belongs to $k(X)^{\Phi}[t]$. Moreover P(f) = 0, f is algebraic over $k(X)^{\Phi}$ and the first assertion follows.

Second we show that K is algebraically closed in k(X). Let f be an element of k(X) that is algebraic over K. We need to prove that f belongs to K. By the first assertion of the lemma, f is algebraic over $k(X)^{\Phi}$. Let $P(t) = a_0 + a_1t + ... + a_pt^p$ be a nonzero minimal polynomial of f over $k(X)^{\Phi}$. Since P(f) = 0 and all a_i are invariant, we have $P(f \circ \Phi) = P(f) \circ \Phi = 0$. In particular, all elements of the form $f \circ \Phi^i$, with $i \in \mathbb{N}$, are roots of P. Since P has finitely many roots, there exist two distinct integers m' < m'' such that $f \circ \Phi^{m'} = f \circ \Phi^{m''}$. In particular, $f \circ \Phi^{m''-m'} = f$ and f belongs to K.

Now if Φ were an automorphism of finite order, then K would be equal to k(X). But this is impossible since K and k(X) have different transcendence degrees.

Lemma 2.2 There exists an integer m > 0 such that $K = k(X)^{\Phi^m}$.

Proof: By definition, k(X) is a field of finite type over k. Since K is contained in k(X), K has also finite type over k. Let $f_1, ..., f_r$ be some elements of k(X) such that $K = k(f_1, ..., f_r)$. Let $m_1, ..., m_r$ be some positive integers such that $f_i \circ \Phi^{m_i} = f_i$, and set $m = m_1...m_r$. By construction, all f_i are invariant for Φ^m . In particular, K is invariant for Φ^m and $K \subseteq k(X)^{\Phi^m}$. Since $k(X)^{\Phi^m} \subseteq K$, the result follows.

Let L be the algebraic closure of k(X), and let A be the K-subalgebra of L spanned by $\mathcal{O}(X)$. By construction, A is an integral K-algebra of finite type of dimension 1. Let m be an integer satisfying the conditions of lemma 2.2. The automorphism $\Psi^* = (\Phi^m)^*$ of $\mathcal{O}(X)$ stabilizes A, hence it defines a K-automorphism of A, of infinite order (see lemma 2.1). Let B be the integral closure of A. Then B is also an integral K-algebra of finite type, of dimension 1, and the K-automorphism Ψ^* extends uniquely to B. If \overline{K} stands for the algebraic closure of K, we set:

$$C = B \otimes_K \overline{K}$$

By construction, C = Spec(C) is an affine curve over the algebraically closed field \overline{K} . Moreover the automorphism Ψ^* acts on C via the operation:

$$\Psi^* : C \longrightarrow C, \quad x \otimes y \longmapsto \Psi^*(x) \otimes y$$

This makes sense since Ψ^* fixes the field K. Therefore Ψ^* induces an algebraic automorphism of the curve \mathcal{C} . Since K is algebraically closed in k(X) by lemma 2.1, C is integral (see [Z-S], Chap. VII, §11, Theorem 38). But by construction, B and \overline{K} are normal rings. Since C is a domain and char(K) = 0, C is also integrally closed by a result of Bourbaki (see [Bou], p. 29). So C is a normal domain and C is a smooth irreducible curve.

Lemma 2.3 Let C be the \overline{K} -algebra constructed above. Then either $C = \overline{K}[t]$ or $C = \overline{K}[t, 1/t]$.

Proof: By lemma 2.1, the automorphism Φ of X has infinite order. Since the fraction field of B is equal to k(X), Ψ^* has infinite order on B. But $B\otimes 1\subset C$, so Ψ^* has infinite order on C. In particular, Ψ acts like an automorphism of infinite order on C. Since C is affine, it has genus zero (see [Ro2]). Since \overline{K} is algebraically closed, the curve C is rational (see [Che], p. 23). Since C is smooth, it is isomorphic to $\mathbb{P}^1(\overline{K}) - E$, where E is a finite set. Moreover, Ψ acts like an automorphism of $\mathbb{P}^1(\overline{K})$ that stabilizes $\mathbb{P}^1(\overline{K}) - E$. Up to replacing Ψ by one of its iterates, we may assume that Ψ fixes every point of E. But an automorphism of $\mathbb{P}^1(\overline{K})$ that fixes at least three points is the identity, which is impossible. Therefore E consists of at most two points, and C is either isomorphic to \overline{K} or to \overline{K}^* . In particular, either $C = \overline{K}[t]$ or $C = \overline{K}[t, 1/t]$.

3 Normal forms for the automorphism Ψ

Let C and Ψ^* be the \overline{K} -algebra and the \overline{K} -automorphism constructed in the previous section. In this section, we are going to give normal forms for the couple (C, Ψ^*) , in case the group G(X) is trivial, i.e. $G(X) = k^*$. We begin with a few lemmas.

Lemma 3.1 Let X be an irreducible affine variety over k. Let Ψ be an automorphism of X. Let α , f be some elements of $k(X)^*$ such that $(\Psi^*)^n(f) = \alpha^n f$ for any $n \in \mathbb{Z}$. Then α belongs to G(X).

Proof: Given an element h of $k(X)^*$ and a prime divisor D on the normalization X^{ν} , we consider h as a rational function on X^{ν} , and denote by $\operatorname{ord}_D(h)$ the multiplicity of h along D. This makes sense since the variety X^{ν} is normal. Fix any prime divisor D on X. Since $(\Psi^*)^n(f) = \alpha^n f$ for any $n \in \mathbb{Z}$, we obtain:

$$\operatorname{ord}_D((\Psi^*)^n(f)) = n\operatorname{ord}_D(\alpha) + \operatorname{ord}_D(f)$$

Since Ψ is an algebraic automorphism of X, it extends uniquely to an algebraic automorphism of X^{ν} , which is still denoted Ψ . Moreover, this extension maps every prime divisor to another prime divisor, does not change the multiplicity and maps distinct prime divisors into distinct ones. If $div(f) = \sum_i n_i D_i$, where all D_i are prime, then we have:

$$div((\Psi^*)^n(f)) = \sum_i n_i (\Psi^*)^n(D_i)$$

where all $(\Psi^*)^n(D_i)$ are prime and distinct. So the multiplicity of $(\Psi^*)^n(f)$ along D is equal to zero if D is none of the $(\Psi^*)^n(D_i)$, and equal to n_i if $D = (\Psi^*)^n(D_i)$. In all cases, if $R = max\{|n_i|\}$, then we find that $|\operatorname{ord}_D((\Psi^*)^n(f))| \leq R$ and $|\operatorname{ord}_D(f)| \leq R$, and this implies for any integer n:

$$|nord_D(\alpha)| \leq 2R$$

In particular we find $\operatorname{ord}_D(\alpha) = 0$. Since this holds for any prime divisor D, the support of $\operatorname{div}(\alpha)$ in X^{ν} is empty and $\operatorname{div}(\alpha) = 0$. Since X^{ν} is normal, α is an invertible element of $\mathcal{O}(X)^{\nu}$, hence it belongs to G(X).

Lemma 3.2 Let K be a field of characteristic zero and \overline{K} its algebraic closure. Let C be either equal to $\overline{K}[t]$ or to $\overline{K}[t,1/t]$. Let Ψ^* be a \overline{K} -automorphism of C such that $\Psi^*(t)=at$, where a belongs to \overline{K} . Let σ_1 be a K-automorphism of C, commuting with Ψ^* , such that $\sigma_1(\overline{K})=\overline{K}$. Then $\sigma_1(a)$ is either equal to a or to 1/a.

Proof: We distinguish two cases depending on the ring C. First assume that $C = \overline{K}[t]$. Since σ_1 is a K-automorphism of C that maps \overline{K} to itself, we have $\overline{K}[t] = \overline{K}[\sigma_1(t)]$. In particular $\sigma_1(t) = \lambda t + \mu$, where λ, μ belong to \overline{K} and $\lambda \neq 0$. Since Ψ^* and σ_1 commute, we obtain:

$$\Psi^* \circ \sigma_1(t) = \lambda at + \mu = \sigma_1 \circ \Psi^*(t) = \sigma_1(a)(\lambda t + \mu)$$

In particular, we have $\sigma_1(a) = a$ and the lemma follows in this case. Second assume that $C = \overline{K}[t, 1/t]$. Since σ_1 is a K-automorphism of C, we find:

$$\sigma_1(t)\sigma_1(1/t) = \sigma_1(t.1/t) = \sigma_1(1) = 1$$

Therefore $\sigma_1(t)$ is an invertible element of C, and has the form $\sigma_1(t) = a_1 t^{n_1}$, where $a_1 \in \overline{K}^*$ and n_1 is an integer. Since σ_1 is a K-automorphism of C that maps \overline{K} to \overline{K} , we have $\overline{K}[t,1/t] = \overline{K}[\sigma_1(t),1/\sigma_1(t)]$. In particular $|n_1| = 1$ and either $\sigma_1(t) = a_1 t$ or $\sigma_1(t) = a_1/t$. If $\sigma_1(t) = a_1 t$, the relation $\Psi^* \circ \sigma_1(t) = \sigma_1 \circ \Psi^*(t)$ yields $\sigma(a) = a$. If $\sigma_1(t) = a_1/t$, then the same relation yields $\sigma(a) = 1/a$.

Lemma 3.3 Let X be an irreducible affine variety of dimension n over k, such that $G(X) = k^*$. Let Φ be an automorphism of X such that $n(\Phi) = (n-1)$. Let Ψ^* be the automorphism of C constructed in the previous section. If either $C = \overline{K}[t]$ or $C = \overline{K}[t, 1/t]$, and if $\Psi^*(t) = at$, then a belongs to k^* .

Proof: We are going to prove by contradiction that a belongs to k^* . So assume that $a \notin k^*$. Let σ be any element of $Gal(\overline{K}/K)$, and denote by σ_1 the K-automorphism of C defined as follows:

$$\forall (x,y) \in B \times \overline{K}, \ \sigma_1(x \otimes y) = x \otimes \sigma_1(y)$$

Since $\Psi^* \circ \sigma_1(x \otimes y) = \Psi^*(x) \otimes \sigma_1(y) = \sigma_1 \circ \Psi^*(x \otimes y)$ for any element $x \otimes y$ of $B \otimes_K \overline{K}$, Ψ^* and σ_1 commute. Moreover if we identify \overline{K} with $1 \otimes \overline{K}$, then $\sigma_1(\overline{K}) = \overline{K}$ by construction. By lemma 3.2, we obtain:

$$\forall \sigma \in Gal(\overline{K}/K), \quad \sigma(a) = a \quad \text{or} \quad \sigma(a) = \frac{1}{a}$$

In particular, the element $(a^i + a^{-i})$ is invariant under the action of $Gal(\overline{K}/K)$ for any i, and so it belongs to K because char(K) = 0. Now let f be an element of B - K. Since f belongs to C, we can express f as follows:

$$f = \sum_{i=r}^{s} f_i t^i$$

Choose an $f \in B-K$ such that the difference (s-r) is minimal. We claim that (s-r)=0, i.e. $f=f_st^s$. Indeed, assume that s>r. Since f is an element of B, the following expressions:

$$\begin{array}{rcl} \Psi^*(f) + (\Psi^*)^{-1}(f) - (a^s + a^{-s})f & = & \sum_{i=r}^{s-1} f_i(a^i + a^{-i} - a^s - a^{-s})t^i \\ \Psi^*(f) + (\Psi^*)^{-1}(f) - (a^r + a^{-r})f & = & \sum_{i=r+1}^{s} f_i(a^i + a^{-i} - a^r - a^{-r})t^i \end{array}$$

also belong to B. By minimality of (s-r), these expressions belong to K. In other words, $f_i(a^i+a^{-i}-a^s-a^{-s})=0$ (resp. $f_i(a^i+a^{-i}-a^r-a^{-r})=0$) for any $i\neq 0,s$ (resp. for any $i\neq 0,r$). Since k is algebraically closed and $a\not\in k^*$ by assumption, $(a^i+a^{-i}-a^s-a^{-s})$ (resp. $(a^i+a^{-i}-a^r-a^{-r})$) is nonzero for any $i\neq s$ (resp. for any $i\neq r$). Therefore $f_i=0$ for any $i\neq 0$, and f belongs to K, a contradiction. Therefore s=r and $f=f_st^s$. Since f belongs to g, it also belongs to g, is an automorphism of g, the element $g^s=\Psi^*(f)/f$ belongs to g. Moreover g is an automorphism of g. By lemma 3.1, g belongs to g. Since g is algebraically closed, g belongs to g, hence a contradiction, and the result follows.

Proposition 3.4 Let X be an irreducible affine variety of dimension n over k, such that $G(X) = k^*$. Let Φ be an automorphism of X such that $n(\Phi) = (n-1)$. Let C and Ψ^* be the \overline{K} -algebra and the \overline{K} -automorphism constructed in the previous section. Then up to conjugation, one of the following three cases occurs:

- $C = \overline{K}[t]$ and $\Psi^*(t) = t + 1$,
- $C = \overline{K}[t]$ and $\Psi^*(t) = at$, where $a \in k^*$ is not a root of unity,
- $C = \overline{K}[t, 1/t]$ and $\Psi^*(t) = at$, where $a \in k^*$ is not a root of unity.

Proof: By lemma 2.3, we know that either $C = \overline{K}[t]$ or $C = \overline{K}[t, 1/t]$. We are going to study both cases.

<u>First case</u>: $C = \overline{K}[t]$.

The automorphism Ψ^* maps t to at+b, where $a \in \overline{K}^*$ and $b \in \overline{K}$. If a=1, then $b \neq 0$ and up to replacing t with t/b, we may assume that $\Psi^*(t) = t+1$. If $a \neq 1$, then up to replacing t with t-c for a suitable c, we may assume that $\Psi^*(t) = at$. But then lemma 3.3 implies that a belongs to k^* . Since Ψ^* has infinite order, a cannot be a root of unity.

Second case: $C = \overline{K}[t, 1/t]$.

Since $\Psi^*(t)\Psi^*(1/t) = \Psi^*(1) = 1$, $\Psi^*(t)$ is an invertible element of C. So $\Psi^*(t) = at^n$, where $a \in \overline{K}^*$ and $n \neq 0$. Since Ψ^* is an automorphism, n is either equal to 1 or to -1. But if n were equal to -1, then a simple computation shows that $(\Psi^*)^2$ would be the identity, which is impossible. So $\Psi^*(t) = at$, where $a \in \overline{K}^*$. By lemma 3.3, a belongs to k^* . As before, a cannot be a root of unity.

4 Proof of the main theorem

In this section, we are going to establish Theorem 1.1. We will split its proof in two steps depending on the form of the automorphism Ψ^* given in Proposition 3.4. But before, we begin with a few lemmas.

Lemma 4.1 Let Φ be an automorphism of an affine irreducible variety X. Let G be a linear algebraic group and ψ be an algebraic G-action on X. Let h be an element of G such that the group < h > spanned by h is Zariski dense in G. If Φ and ψ_h commute, then Φ and ψ_g commute for any g in G.

Proof: It suffices to check that Φ^* and ψ_g^* commute for any $g \in G$. For any k-algebra automorphisms α, β of $\mathcal{O}(X)$, denote by $[\alpha, \beta]$ their commutator, i.e. $[\alpha, \beta] = \alpha \circ \beta \circ \alpha^{-1} \circ \beta^{-1}$. For any $f \in \mathcal{O}(X)$, set:

$$\lambda(g,f)(x) = [\Phi^*,\psi_g^*](f)(x) - f(x)$$

Since G is a linear algebraic group acting algebraically on the affine variety X, $\lambda(g,f)(x)$ is a regular function on $G \times X$. Since Φ^* and ψ_h^* commute, the automorphisms Φ^* and $\psi_{h^n}^*$ commute for any integer n. So the regular function $\lambda(g,f)(x)$ vanishes on $< h > \times X$. Since < h > is dense in G by assumption, $< h > \times X$ is dense in $G \times X$ and $\lambda(g,f)(x)$ vanishes identically on $G \times X$. In particular, $[\Phi^*, \psi_g^*](f) = f$ for any $g \in G$. Since this holds for any element f of $\mathcal{O}(X)$, the bracket $[\Phi^*, \psi_g^*]$ coincides with the identity on $\mathcal{O}(X)$ for any $g \in G$, and the result follows.

Lemma 4.2 Let Φ be an automorphism of an affine irreducible variety X. Let G be a linear algebraic group and ψ be an algebraic G-action on X. Let h be an element of G such that the group < h > spanned by h is Zariski dense in G. Assume there exists a nonzero integer r such that $\Phi^r = \psi_h$, and that G is divisible. Then there exists an algebraic action φ of $G' = \mathbb{Z}/r\mathbb{Z} \times G$ such that $\Phi = \varphi_{g'}$ for some g' in G'.

Proof: Fix an element b in G such that $b^r = h$, and set $\Delta = \Phi \circ \psi_{b^{-1}}$. This is possible since G is divisible. By construction, Δ is an automorphism of X. Since $\Phi^r = \psi_h$, Φ and ψ_h commute. By lemma 4.1, Φ and ψ_g commute for any $g \in G$. In particular, we have:

$$\Delta^r = (\Phi^r) \circ \psi_{b^{-r}} = (\Phi^r) \circ \psi_{h^{-1}} = \operatorname{Id}$$

So Δ is finite, $\Phi = \Delta \circ \psi_b$ and Δ commutes with ψ_g for any $g \in G$. The group G' then acts on X via the map φ defined by:

$$\varphi_{(i,g)}(x) = \Delta^i \circ \psi_g(x)$$

Moreover we have $\Phi = \varphi_{g'}$ for g' = (1, b).

The proof of Theorem 1.1 will then go as follows. In the following subsections, we are going to exhibit an algebraic action ψ of $G_a(k)$ (resp. $G_m(k)$) on X, such that $\Psi = \Phi^m = \psi_h$ for some h. In both cases, the group G we will consider will be linear algebraic of dimension 1, and divisible. Moreover the element h will span a Zariski dense set because $h \neq 0$ (resp. h is not a root of unity). With these conditions, Theorem 1.1 will become a direct application of Lemma 4.2.

4.1 The case $\Psi^*(t) = t + 1$

Assume that $C = \overline{K}[t]$ and $\Psi^*(t) = t + 1$. We are going to construct a nontrivial algebraic $G_a(k)$ -action ψ on X such that $\Psi = \psi_1$. Since $\mathcal{O}(X) \subset C$, every element f of $\mathcal{O}(X)$ can be written as f = P(t), where P belongs to $\overline{K}[t]$. We set $r = \deg_t P(t)$. Since Ψ^* stabilizes $\mathcal{O}(X)$, the expression:

$$(\Psi^i)^*(f) = P(t+i) = \sum_{j=0}^r P^{(j)}(t) \frac{i^j}{j!}$$

belongs to $\mathcal{O}(X)$ for any integer i. Since the matrix $M=(i^j/j!)_{0\leq i,j\leq r}$ is invertible in $\mathcal{M}_{r+1}(\mathbb{Q})$, the polynomial $P^{(j)}(t)$ belongs to $\mathcal{O}(X)$ for any $j\leq r$. So the \overline{K} -derivation $D=\partial/\partial t$ on C stabilizes the k-algebra $\mathcal{O}(X)$. Since $D^{r+1}(f)=0$, the operator D, considered as a k-derivation on $\mathcal{O}(X)$, is locally nilpotent (see [Van]). Therefore the exponential map:

$$\exp uD : \mathcal{O}(X) \longrightarrow \mathcal{O}(X)[u], \quad f \longmapsto \sum_{j>0} D^j(f) \frac{u^j}{j!}$$

is a well-defined k-algebra morphism. But $\exp uD$ defines also a K-algebra morphism from C to C[u]. Since $\exp uD(t) = t + u$, $\exp D$ coincides with Ψ^* on C. Since C contains the ring $\mathcal{O}(X)$, we have $\exp D = \Psi^*$ on $\mathcal{O}(X)$. So the exponential map induces an algebraic $G_a(k)$ -action ψ on X such that $\Psi = \psi_1$ (see [Van]).

4.2 The case $\Psi^*(t) = at$

Assume that $\Psi^*(t) = at$ and a is not a root of unity. We are going to construct a nontrivial algebraic $G_m(k)$ -action ψ on X such that $\Psi = \psi_a$. First note that either $C = \overline{K}[t]$ or $C = \overline{K}[t, 1/t]$. Let f be any element of $\mathcal{O}(X)$. Since $\mathcal{O}(X) \subset C$, we can write f as:

$$f = P(t) = \sum_{i=r}^{s} f_i t^i$$

where the $f_i t^i$ belong a priori to C. Since Ψ^* stabilizes $\mathcal{O}(X)$, the expression:

$$(\Psi^{j})^{*}(f) = P(a^{j}t) = \sum_{i=r}^{s} a^{ji} f_{i} t^{i}$$

belongs to $\mathcal{O}(X)$ for any integer j. Since a belongs to k^* and is not a root of unity, the Vandermonde matrix $M = (a^{ij})_{0 \leq i,j \leq s-r}$ is invertible in $\mathcal{M}_{s-r+1}(k)$. So the elements $f_i t^i$ all belong to $\mathcal{O}(X)$ for any integer i. Consider the map:

$$\psi^* : \mathcal{O}(X) \longrightarrow \mathcal{O}(X)[v, 1/v], \quad f \longmapsto \sum_{i=r}^s f_i t^i v^i$$

Then ψ^* is a well-defined k-algebra morphism, which induces a regular map ψ from $k^* \times X$ to X. Moreover we have $\psi_v \circ \psi_{v'} = \psi_{vv'}$ on X for any $v, v' \in k^*$. So ψ defines an algebraic $G_m(k)$ -action on X such that $\Psi = \psi_a$.

5 Proof of Corollary 1.2

Let Φ be an automorphism of the affine plane k^2 , such that $n(\Phi) = 1$. By Theorem 1.1, there exists an algebraic action φ of an abelian linear algebraic group G of dimension 1 such that $\Phi = \varphi_q$. We will distinguish the cases $G = \mathbb{Z}/r\mathbb{Z} \times G_m(k)$ and $G = \mathbb{Z}/r\mathbb{Z} \times G_a(k)$.

<u>First case</u>: $G = \mathbb{Z}/r\mathbb{Z} \times G_m(k)$.

Then G is linearly reductive and φ is conjugate to a representation in $Gl_2(k)$ (see [Ka] or [Kr]). Since G consists solely of semisimple elements, φ is even diagonalizable. In particular, there exists a system (x, y) of polynomial coordinates, some integers n, m and some r-roots of unity a, b such that:

$$\varphi_{(i,u)}(x,y) = (a^i u^n x, b^i u^m y)$$

Note that, since the action is faithful, the couple (n, m) is distinct from (0, 0). Since k is algebraically closed, we can even reduce $\Phi = \varphi_g$ to the first form given in Corollary 1.2.

Second case: $G = \mathbb{Z}/r\mathbb{Z} \times G_a(k)$.

Let ψ and Δ be respectively the $G_a(k)$ -action and finite automorphism constructed in Lemma 4.2. By Rentschler's theorem (see [Re]), there exists a system (x, y) of polynomial coordinates and an element P of k[t] such that:

$$\psi_u(x,y) = (x, y + uP(x))$$

For any $f \in k[x,y]$, set $\deg_{\psi}(f) = \deg_{u} \exp uD(f)$. It is well-known that this defines a degree function on k[x,y] (see [Da]). Since ψ and Δ commute, Δ^* preserves the space E_n of polynomials of degree $\leq n$ with respect to \deg_{ψ} . In particular, Δ^* preserves $E_0 = k[x]$. So Δ^* induces a finite automorphism of k[x], hence $\Delta^*(x) = ax + b$, where a is a root of unity. Since Δ is finite, either $a \neq 1$ or a = 1 and b = 0. In any case, up to replacing x by $x - \mu$ for a suitable constant μ , we may assume that $\Delta^*(x) = ax$. Moreover Δ^* preserves the space $E_1 = k[x]\{1,y\}$. With the same arguments as before, we obtain that $\Delta^*(y) = cy + d(x)$, where c is a root of unity and d(x) belongs to k[x]. Composing Δ with $\psi_{1/m}$ then yields the second form given in Corollary 1.2.

6 Proof of Corollary 1.3

Let Φ be an algebraic automorphism of k^2 . We assume that Φ has a unique fixpoint p and that $d\Phi_p$ is unipotent. We are going to prove that $n(\Phi) = 0$.

First we check that $n(\Phi)$ cannot be equal to 2. Assume that $n(\Phi) = 2$. Then $k(x,y)^{\Phi}$ has transcendence degree 2, and the extension $k(x,y)/k(x,y)^{\Phi}$ is algebraic, hence finite. Moreover Φ^* acts like an element of the Galois group of this extension. In particular, Φ^* is finite. By a result of Kambayashi (see [Ka]), Φ can be written as $h \circ A \circ h^{-1}$, where A is an element of $Gl_2(k)$ of finite order and h belongs to $Aut(k^2)$. Since Φ has a unique fixpoint p, we have h(0,0) = p. In particular, $d\Phi_p$ is conjugate to A in $Gl_2(k)$. Since $d\Phi_p$ is unipotent and A is finite, A is the identity. Therefore Φ is also the identity, which contradicts the fact that it has a unique fixpoint.

Second we check that $n(\Phi)$ cannot be equal to 1. Assume that $n(\Phi) = 1$. By the previous corollary, up to conjugacy, we may assume that Φ has one of the following forms:

- $\Phi_1(x,y) = (a^n x, a^m b y)$, where $(n,m) \neq (0,0)$, b is a root of unity but a is not,
- $\Phi_2(x,y) = (ax,by + P(x))$, where P belongs to $k[t] \{0\}$ and a,b are roots of unity.

Assume that Φ is an automorphism of type Φ_1 . Then $d\Phi_p$ is a diagonal matrix of $Gl_2(k)$, distinct from the identity. But this is impossible since $d\Phi_p$ is unipotent. So assume that Φ is an automorphism of type Φ_2 . Then $d\Phi_p$ is a linear map of the form $(u, v) \mapsto (au, bv + du)$, with $d \in k$. Since $d\Phi_p$ is unipotent, we have a = b = 1. So (α, β) is a fixpoint if and only

if $P(\alpha) = 0$. In particular, the set of fixpoints is either empty or a finite union of parallel lines. But this is impossible since there is only one fixpoint by assumption. Therefore $n(\Phi) = 0$.

7 An application of Corollary 1.3

In this section, we are going to see how Corollary 1.3 can be applied to the determination of invariants for automorphisms of \mathbb{C}^3 . Set $Q(x,y,z)=x^2y-z^2-xz^3$ and consider the following automorphism (see [M-P]):

$$\Phi: \mathbb{C}^3 \longrightarrow \mathbb{C}^3, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} x \\ y(1-xz) + \frac{Q^2}{4} + z^4 \\ z - \frac{Q}{2}x \end{pmatrix}$$

We are going to show that:

$$\mathbb{C}(x, y, z)^{\Phi} = \mathbb{C}(x)$$
 and $\mathbb{C}[x, y, z]^{\Phi} = \mathbb{C}[x]$

Let k be the algebraic closure of $\mathbb{C}(x)$. Since $\Phi^*(x) = x$, the morphism Φ^* induces an automorphism of k[y,z], which we denote by Ψ^* . The automorphism Ψ has clearly (0,0) as a fixpoint, and its differential at this point is unipotent, distinct from the identity. Indeed, it is given by the matrix:

$$d\Psi_{(0,0)} = \begin{pmatrix} 1 & -x^3/2 \\ 0 & 1 \end{pmatrix}$$

Moreover, the set of fixpoints of Ψ is reduced to the origin. Indeed, if (α, β) is a point of k^2 fixed by Ψ , then xQ = 0 and $4\beta^4 - 4x\alpha\beta + Q^2 = 0$. Since x belongs to k^* , we have:

$$Q = x^2 \alpha - \beta^2 - x\beta^3 = 0 \quad \text{and} \quad \beta^4 - x\alpha\beta = 0$$

If $\beta = 0$, then $\alpha = 0$ and we find the origin. If $\beta \neq 0$, then dividing by β and multiplying by -x yields the relation:

$$x^2\alpha - x\beta^3 = 0$$

This implies $\beta^2 = 0$ and $\beta = 0$, hence a contradiction. By Corollary 1.3, the field of invariants of Ψ has transcendence degree zero. So the field of invariants of Φ has transcendence degree ≤ 1 over \mathbb{C} . Since this field contains $\mathbb{C}(x)$ and that $\mathbb{C}(x)$ is algebraically closed in $\mathbb{C}(x,y,z)$, we obtain that $\mathbb{C}(x,y,z)^{\Phi} = \mathbb{C}(x)$. As a consequence, the ring of invariants of Φ is equal to $\mathbb{C}[x]$.

References

[Bou] N.Bourbaki *Eléments de Mathématiques: Algèbre Commutative*, chapitres 5-6, Hermann Paris 1964.

- [Che] C.Chevalley Introduction to the theory of algebraic functions of one variable, Mathematical Surveys no VI, American Mathematical Society, New York 1951.
- [Da] D.Daigle On some properties of locally nilpotent derivations, J. Pure Appl. Algebra $114 (1997), n^0 3, 221-230.$
- [Hum] J.Humphreys *Linear algebraic groups*, Graduate texts in mathematics 21, Springer Verlag Berlin 1981.
- [Ka] T.Kambayashi Automorphism group of a polynomial ring and algebraic group action on an affine space, J.Algebra 60 (1979), no 2, 439-451.
- [Kr] H.Kraft Challenging problems on affine n-space, Séminaire Bourbaki 802, 1994-95.
- [M] L.Makar-Limanov On the hypersurface $x + x^2y + z^2 + t^3 = 0$ in \mathbb{C}^4 or a \mathbb{C}^3 -like threefold which is not \mathbb{C}^3 , Israel J. Math. 96 (1996), part B, 419-429.
- [M-P] L.Moser-Jauslin, P-M.Poloni Embeddings of a family of Danielewsky hypersurfaces and certain $(\mathbb{C}, +)$ -actions on \mathbb{C}^3 , preprint.
- [Re] R.Rentschler Opérations du groupe additif sur le plan affine, C.R.A.S 267 (1968) 384-387.
- [Ro] M.Rosenlicht A remark on quotient spaces, An. Acad. Brasil. Cienc. 35 (1963), 487-489.
- [Ro2] M.Rosenlicht Automorphisms of function fields, Trans. Amer. Math. Soc. 79 (1955), 1-11.
- [Ru] P.Russell Forms of the affine line and its additive group, Pacific J. Math. 32 (1970) 527-539.
- [S-B] G.Schwarz, M.Brion Théorie des invariants et Géométrie des variétés quotients, Collection Travaux en cours 61, Hermann Paris 2000.
- [Van] A.Van den Essen Polynomial automorphisms and the Jacobian conjecture, Progress in Mathematics $n^{o}190$, Birkhäuser Verlag, Basel 2000.
- [V-P] A.Van den Essen, R. Peretz *Polynomial automorphisms and invariants*, J. Algebra 269 (2003), n^0 1, 317-328.
- [Z-S] O.Zariski, P.Samuel Commutative Algebra, Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New-York 1960.