## Problem 1 (Graph II and Graph III)

## **EXERCISES**

## Section 2.2.3.

 Below are four graphs, each of which is defined by the sets of nodes, initial nodes, final nodes, edges, and defs and uses. Each graph also contains a collection of test paths. Answer the following questions about each graph.

```
 \begin{array}{l} \textbf{Graph L} \\ N=|0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7\} \\ N_0=|\{0\}$ \\ N_f=|\{7\}$ \\ E=|\{0,1\},\ (1,2),\ (1,7),\ (2,3),\ (2,4),\ (3,2),\ (4,5),\ (4,6),\ (5,6),\ (6,1)\} \\ def(0)=def(3)=use(5)=use(7)=\{x\} \end{array}
```

- (a) Draw the graph.
- (b) List all of the du-paths with respect to x. (Note: Include all du-paths, even those that are subpaths of some other du-path).
- (c) For each test path, determine which du-paths that test path tours. For this part of the exercise, you should consider both direct touring and sidetrips. Hint: A table is a convenient format for describing this relationship.
- (d) List a minimal test set that satisfies all-defs coverage with respect to x. (Direct tours only.) Use the given test paths.
- (e) List a minimal test set that satisfies all-uses coverage with respect to x.

(Direct tours only.) Use the given test paths.

(f) List a minimal test set that satisfies all-du-paths coverage with respect to x. (Direct tours only.) Use the given test paths.

```
II a)
G = \langle N, N0, Nf, E \rangle
Nodes (N): {1, 2, 3, 4, 5, 6}
Node 1: Initial node (N0)
Node 6: Final node (Nf)
Edges (E): {(1, 2), (2, 3), (2, 6), (3, 4), (3, 5), (5, 2)}
def (x) = {1, 3}
use (x) = {3, 6}
```



b) All the du-paths with respect to x are [1,2,3], [1,2,6], [3, 4, 5, 2, 6] and [3,5,2,6]

| Direct                   |
|--------------------------|
| [1,2,6] by t1            |
| [1,2,3] by t2, t3 and t4 |
| [3, 4, 5, 2, 6] by t3    |
| [3,5,2,6] by t4          |

| Sidetrip                          |  |
|-----------------------------------|--|
| [1,2,6] and [3, 4, 5, 2, 6] by t2 |  |
| [1,2,6] and [3,5,2,6] by t3       |  |
| [1,2,6] by t4                     |  |

The test path t1 tours the du paths [1, 2, 6] directly because the du- path is the sub path of the test path t1. In the same manner, the test path t2 tours the du-paths [1, 2, 3], the test path t3 tours [1,2,3] and [3, 4, 5, 2, 6] and the test path t4 tours [3, 5, 2, 6] since they are sub paths of the respective test paths.

Test path t2 tours the du-paths [1, 2, 6] and [3, 4, 5, 2, 6], t3 tours [1,2,6] and [3,5,2,6] and t4 tours [1,2,6] with sidetrips because every edge in the du-path is not in the test paths in the same order.

- d) The minimal test set that satisfies all –Defs coverage with respect to x would be t2 = [1, 2, 3, 4, 5, 2, 3, 5, 2, 6] and t3 = [1, 2, 3, 5, 2, 3, 4, 5, 2, 6]. They both tour at least one path to at least one use.
- e) The minimal test set that satisfies all-Uses coverage with respect to x would be {t1 = [1, 2, 6], t2 = [1, 2, 3, 4, 5, 2, 3, 5, 2, 6], t3 = [1, 2, 3, 5, 2, 3, 4, 5, 2, 6] t4 = [1, 2, 3, 5, 2, 6]} the test paths directly tour the du-paths. They tour at least one path for every def-use pair and all the 4 du-paths are toured.
- f) The minimal test set that satisfies all-DU-Paths coverage would be {t1 = [1, 2, 6], t2 = [1, 2, 3, 4, 5, 2, 3, 5, 2, 6], t3 = [1, 2, 3, 5, 2, 3, 4, 5, 2, 6], t4 = [1, 2, 3, 5, 2, 6]}
  This is because there is just one du-path for every du-pair. The test set tours every du-path.

III a)
G = <N, N0, Nf, E>
Nodes (N): {1, 2, 3, 4, 5, 6}
Node 1: Initial node (N0)
Node 6: Final node (Nf)
Edges (E): {(1, 2), (2, 3), (3, 4), (4, 5), (5, 2), (2, 6)}
def (x) = {1, 4}
use (x) = {3, 5, 6}



b) All the du-paths with respect to x are [1,2,3], [1,2,3,5], [1,2,6], [4,5], [4,5,2,3] and [4,5,2,6]

c) 
$$t1 = [1, 2, 3, 5, 2, 6]$$
  
 $t2 = [1, 2, 3, 4, 5, 2, 6]$ 

| Direct                             |
|------------------------------------|
| [1,2,3], [1,2,3,5] by t1           |
| [1,2,3], [4,5] and [4,5,2,6] by t2 |

| Sidetrip            |  |
|---------------------|--|
| [1,2,6] by t1and t2 |  |

The test path t1 tours the du paths [1, 2, 3] and [1, 2, 3, 5] directly because the du-paths are a sub path of the test path t1. In the same manner, the test path t2 tours the du-paths [1, 2, 3], [4, 5] and [4, 5, 2, 6] since they are sub paths of the test path t2.

The test paths t1 and t2 tour the du-path [1, 2, 6] with sidetrips because every edge in the du-path is also in the test paths in the same order.

- d) The minimal test set that satisfies all –Defs coverage with respect to x would be t2 = [1, 2, 3, 4, 5, 2, 6]. It tours at least one path to at least one use.
- e) The minimal test set that satisfies all-Uses coverage with respect to x would be  $\{t1 = [1, 2, 3, 5, 2, 6], t2 = [1, 2, 3, 4, 5, 2, 6], [1, 2, 6], [1, 2, 3, 4, 5, 2, 3, 5, 2, 6]\}$  we added new tests in order to have a path to directly tour [1,2,6] and [4, 5, 2, 3] these tour at least one path for every def-use pair and all the 6 du-paths are toured.
- f) The minimal test set that satisfies all-DU-Paths coverage would be  $\{t1 = [1, 2, 3, 5, 2, 6], t2 = [1, 2, 3, 4, 5, 2, 6], [1, 2, 6], [1, 2, 3, 4, 5, 2, 3, 5, 2, 6] \}$ . This is because there is just one du-path for every du-pair. The test set tours every du-path.