MIT OpenCourseWare http://ocw.mit.edu

18.02 Multivariable Calculus Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

18.02 Lecture 1. – Thu, Sept 6, 2007

Handouts: syllabus; PS1; flashcards.

Goal of multivariable calculus: tools to handle problems with several parameters – functions of several variables.

Vectors. A vector (notation: \vec{A}) has a direction, and a length $(|\vec{A}|)$. It is represented by a directed line segment. In a coordinate system it's expressed by components: in space, $\vec{A} = \langle a_1, a_2, a_3 \rangle = a_1 \hat{\imath} + a_2 \hat{\jmath} + a_3 \hat{k}$. (Recall in space x-axis points to the lower-left, y to the right, z up).

Scalar multiplication

Formula for length? Showed picture of $\langle 3, 2, 1 \rangle$ and used flashcards to ask for its length. Most students got the right answer ($\sqrt{14}$).

You can explain why $|\vec{A}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$ by reducing to the Pythagorean theorem in the plane (Draw a picture, showing \vec{A} and its projection to the xy-plane, then derived $|\vec{A}|$ from length of projection + Pythagorean theorem).

Vector addition: $\vec{A} + \vec{B}$ by head-to-tail addition: Draw a picture in a parallelogram (showed how the diagonals are $\vec{A} + \vec{B}$ and $\vec{B} - \vec{A}$); addition works componentwise, and it is true that

 $\vec{A} = 3\hat{\imath} + 2\hat{\jmath} + \hat{k}$ on the displayed example.

Dot product.

Definition: $\vec{A} \cdot \vec{B} = a_1b_1 + a_2b_2 + a_3b_3$ (a scalar, not a vector).

Theorem: geometrically, $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$.

Explained the theorem as follows: first, $\vec{A} \cdot \vec{A} = |\vec{A}|^2 \cos 0 = |\vec{A}|^2$ is consistent with the definition. Next, consider a triangle with sides \vec{A} , \vec{B} , $\vec{C} = \vec{A} - \vec{B}$. Then the law of cosines gives $|\vec{C}|^2 = |\vec{A}|^2 + |\vec{B}|^2 - 2|\vec{A}||\vec{B}|\cos\theta$, while we get

$$|\vec{C}|^2 = \vec{C} \cdot \vec{C} = (\vec{A} - \vec{B}) \cdot (\vec{A} - \vec{B}) = |\vec{A}|^2 + |\vec{B}|^2 - 2\vec{A} \cdot \vec{B}$$

Hence the theorem is a vector formulation of the law of cosines.

Applications. 1) computing lengths and angles: $\cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|}$.

Example: triangle in space with vertices P = (1,0,0), Q = (0,1,0), R = (0,0,2), find angle at P:

$$\cos \theta = \frac{\overrightarrow{PQ} \cdot \overrightarrow{PR}}{|\overrightarrow{PQ}||\overrightarrow{PR}|} = \frac{\langle -1, 1, 0 \rangle \cdot \langle -1, 0, 2 \rangle}{\sqrt{2}\sqrt{5}} = \frac{1}{\sqrt{10}}, \quad \theta \approx 71.5^{\circ}.$$

Note the sign of dot product: positive if angle less than 90° , negative if angle more than 90° , zero if perpendicular.

2) detecting orthogonality. dot product

Example: what is the set of points where x + 2y + 3z = 0? (possible answers: empty set, a point, a line, a plane, a sphere, none of the above, I don't know).

Answer: plane; can see "by hand", but more geometrically use dot product: call $\vec{A} = \langle 1, 2, 3 \rangle$, P = (x, y, z), then $\vec{A} \cdot \overrightarrow{OP} = x + 2y + 3z = 0 \Leftrightarrow |\vec{A}||\overrightarrow{OP}|\cos\theta = 0 \Leftrightarrow \theta = \pi/2 \Leftrightarrow \vec{A} \perp \overrightarrow{OP}$. So we get the plane through O with normal vector \vec{A} .

1

18.02 Lecture 2. - Fri, Sept 7, 2007

We've seen two applications of dot product: finding lengths/angles, and detecting orthogonality. A third one: finding components of a vector. If $\hat{\boldsymbol{u}}$ is a unit vector, $\vec{A} \cdot \hat{\boldsymbol{u}} = |\vec{A}| \cos \theta$ is the component of \vec{A} along the direction of $\hat{\boldsymbol{u}}$. E.g., $\vec{A} \cdot \hat{\boldsymbol{i}} = \text{component of } \vec{A} \text{ along } x\text{-axis.}$

Example: pendulum making an angle with vertical, force = weight of pendulum \vec{F} pointing downwards: then the physically important quantities are the components of \vec{F} along tangential direction (causes pendulum's motion), and along normal direction (causes string tension).

Area. E.g. of a polygon in plane: break into triangles. Area of triangle $=\frac{1}{2}$ base \times height $=\frac{1}{2}|\vec{A}||\vec{B}|\sin\theta$ (= 1/2 area of parallelogram). Could get $\sin\theta$ using dot product to compute $\cos\theta$ and $\sin^2 + \cos^2 = 1$, but it gives an ugly formula. Instead, reduce to complementary angle $\theta' = \pi/2 - \theta$ by considering $\vec{A}' = \vec{A}$ rotated 90° counterclockwise (drew a picture). Then area of parallelogram $|\vec{A}'| = |\vec{A}||\vec{B}|\sin\theta = |\vec{A}'||\vec{B}|\cos\theta' = \vec{A}' \cdot \vec{B}$.

negative theta plus Pi/2

Q: if $\vec{A} = \langle a_1, a_2 \rangle$, then what is \vec{A}' ? (showed picture, used flashcards). Answer: $\vec{A}' = \langle -a_2, a_1 \rangle$. (explained on picture). So area of parallelogram is $\langle b_1, b_2 \rangle \cdot \langle -a_2, a_1 \rangle = a_1b_2 - a_2b_1$.

Determinant. Definition:
$$\det(\vec{A}, \vec{B}) = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1.$$

Geometrically:
$$\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \pm$$
 area of parallelogram.

The sign of 2D determinant has to do with whether \vec{B} is counterclockwise or clockwise from \vec{A} , without details.

$$\text{Determinant in space: } \det(\vec{A}, \vec{B}, \vec{C}) = \left| \begin{array}{ccc} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{array} \right| = a_1 \left| \begin{array}{ccc} b_2 & b_3 \\ c_2 & c_3 \end{array} \right| - a_2 \left| \begin{array}{ccc} b_1 & b_3 \\ c_1 & c_3 \end{array} \right| + a_3 \left| \begin{array}{ccc} b_1 & b_2 \\ c_1 & c_2 \end{array} \right|.$$

Geometrically: $\det(\vec{A}, \vec{B}, \vec{C}) = \pm$ volume of parallelepiped. Referred to the notes for more about determinants.

Cross-product. (only for 2 vectors in space); gives a vector, not a scalar (unlike dot-product).

Definition:
$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \hat{\imath} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} - \hat{\jmath} \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} + \hat{k} \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}.$$

(the 3x3 determinant is a *symbolic* notation, the actual formula is the expansion).

Geometrically: $|\vec{A} \times \vec{B}| = \text{area of space parallelogram with sides } \vec{A}, \vec{B}$; direction = normal to the plane containing \vec{A} and \vec{B} .

How to decide between the two perpendicular directions = right-hand rule. 1) extend right hand in direction of \vec{A} ; 2) curl fingers towards direction of \vec{B} ; 3) thumb points in same direction as $\vec{A} \times \vec{B}$.

Flashcard Question: $\hat{\imath} \times \hat{\jmath} = ?$ (answer: \hat{k} , checked both by geometric description and by calculation).

Triple product: volume of parallelepiped = area(base) · height = $|\vec{B} \times \vec{C}| (\vec{A} \cdot \hat{n})$, where $\hat{n} = \vec{B} \times \vec{C}/|\vec{B} \times \vec{C}|$. So volume = $\vec{A} \cdot (\vec{B} \times \vec{C}) = \det(\vec{A}, \vec{B}, \vec{C})$. The latter identity can also be checked directly using components.