Secrets of Matrix Factorization:

1. Matrix factorization with missing data

Given a noisy measurement matrix $M \in \mathbb{R}^{m \times n}$, where some of the values are unobserved or weighted by another matrix $W \in \mathbb{R}^{m \times n}$, we are interested in finding a set of low-rank matrices $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ that minimizes the error function

$$f(U,V) = \|\mathbf{\varepsilon}(U,V)\|_{2}^{2} = \|W \odot (UV^{\mathsf{T}} - M)\|_{F}^{2} + \mu(\|U\|_{F}^{2} + \|V\|_{F}^{2})$$
(1.1)

where the operator ① is Hadamard or element-wise product, and the norms are Frobenius.

- This type of low-rank models appears in rigid and non-rigid structure-from-motion (SfM), photometric stereo and recommender systems.
- For computer vision problems, the regularization parameter μ is often set to 0.

(a) Rigid SfM [3] (b) Non-rigid SfM [3]

(c) Photometric Stereo [4]

2. Known strategies in the literature

A. Block coordinate-descent (ALS)

- Fix U and optimize over V, and vice versa.
- Closed form updates for both U and V.

```
inputs: M, W, r, U, \mu\widetilde{W} \leftarrow \text{diag}(\text{vec}(W)) with zero-rows removed.\widetilde{\mathbf{m}} \leftarrow \widetilde{W} \text{ vec}(M)• X^{-\mu} \coloneqq (X^TX + \mu I)^{-1}X^TV \leftarrow \text{unvec}(\widetilde{U}^{-\mu}\widetilde{\mathbf{m}})(When \mu = 0, X^{-\mu} = X^{\dagger}.)repeat• \widetilde{U} \coloneqq \widetilde{W}(I \otimes U)U \leftarrow \text{unvec}(\widetilde{V}^{-\mu}\widetilde{\mathbf{m}})• \widetilde{V} \coloneqq \widetilde{W}(V \otimes I)V \leftarrow \text{unvec}(\widetilde{U}^{-\mu}\widetilde{\mathbf{m}})• V^*(U) = \text{unvec}(\widetilde{U}^{-\mu}\widetilde{\mathbf{m}})
```

B. Joint optimization [3]

- Optimize over U and V simultaneously using a Newton-like solver.
- Bilinear structure \rightarrow sparse Hessian (or JTJ) matrix.

```
inputs: M, W, r, U, V, \mu, \lambda_0
\lambda \leftarrow \lambda_0
\widetilde{W} \leftarrow \text{diag}(\text{vec}(W)) with zero-rows removed.
\widetilde{\mathbf{m}} \leftarrow \widetilde{\mathbf{W}} \operatorname{vec}(\mathbf{M})
repeat
     \mathbf{z} \leftarrow [\text{vec}(\mathbf{U}) \; ; \; \text{vec}(\mathbf{V}^{\mathsf{T}})]
      Compute the gradient \mathbf{g} \coloneqq df(U, V)/d\mathbf{z}.
      Compute the Hessian H := d^2 f(U, V)/dz^2 or its approximation.
      repeat
           \Delta \mathbf{z} \leftarrow (\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{g}
           Retrieve \Delta U and \Delta V from \Delta z.
          \lambda \leftarrow \lambda * 10
      until f(U + \Delta U, V + \Delta V) < f(U, V)
     U \leftarrow U + \Delta U
     V \leftarrow V + \Delta V
     \lambda \leftarrow \lambda/100
until convergence
outputs: U, V
```

C. Variable projection (VarPro) [6]

- Replace V by its closed form minimizer $V^*(U) := \operatorname{argmin}_V f(U, V) = \operatorname{unvec}(\widetilde{U}^{-\mu}\widetilde{\mathbf{m}})$.
- Optimize the reduced problem over U using a Newton-like solver.
- Nonlinear structure \rightarrow denser Hessian (or JTJ) matrix.

```
inputs: M, W, r, U, \mu, \lambda_0
\lambda \leftarrow \lambda_0
\widetilde{W} \leftarrow \text{diag}(\text{vec}(W)) with zero-rows removed.
\widetilde{\mathbf{m}} \leftarrow \widetilde{\mathbf{W}} \operatorname{vec}(\mathbf{M})
repeat
      Compute the gradient \mathbf{g} \coloneqq df(U, V^*(U))/d\text{vec}(U).
      Compute the Hessian H := d^2 f(U, V^*(U))/d \text{vec}(U)^2 or its approximation.
      repeat
           \Delta U \leftarrow \text{unvec}((H + \lambda I)^{-1}\mathbf{g})
           \lambda \leftarrow \lambda * 10
     until f(U + \Delta U, V^*(U + \Delta U)) < f(U, V^*(U)) \bullet X^{-\mu} := (X^TX + \mu I)^{-1}X^T
      U \leftarrow U + \Delta U
                                                                                                  (When \mu = 0, X^{-\mu} = X^{\dagger}.)
      V \leftarrow V^*(U)
                                                                                                  \widetilde{\mathsf{U}}\coloneqq\widetilde{\mathsf{W}}(\mathsf{I}\otimes\mathsf{U})
     \lambda \leftarrow \lambda/100
                                                                                                  \widetilde{V} \coloneqq \widetilde{W}(V \otimes I)
until convergence
                                                                                                  V^*(U) = \operatorname{unvec}(\widetilde{U}^{-\mu}\widetilde{\mathbf{m}})
outputs: U, V
```

3. Random restarts

- Any algorithm started from a random starting point (i.e. random U and/or V) is improved by starting from multiple points.
- To find a strong optimum, just run from many random starting points. Report optimum that is seen twice and is lower than all the others. Hence,

A new meta algorithm, RUSSO-X

RUSSO-X is literally "run algorithm-X until seen second optimum", where this optimum is the best one observed so far. It is a simple meta-algorithm which wraps any existing low-rank matrix factorization algorithm and improves its success rate.

```
inputs: M, W, r, X, N
k \leftarrow 0
f_{best} \leftarrow 0
repeat
   U \leftarrow randn(m,r)
                                    //m is the row size of M.
   f_{current} \leftarrow \min_{U,V} f(U,V) using algorithm-X
   if |f_{current} - f_{best}| < 10^{-6} \text{ do}
                                     // output the RUSSO-X min. value.
        break
    else if f_{current} < f_{best} do
                                     // update the current candidate for RUSSO-X min.
       f_{best} \leftarrow f_{current}
    end
   k \leftarrow k + 1
until k = N
output: f_{best}
```

• An example of 10 runs from random starting points illustrates how RUSSO-X works in practice. (NB: RUSSO-X still returns the best optimum observed so far even when it is not observed twice.)

```
      Run sequence
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      Success rate

      Minimum
      1.42
      1.58
      1.42
      1.14
      1.31
      1.02
      2.04
      1.02
      1.02
      1.28
      3 / 10

      RUSSO-X min.
      1.42
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      1.02
      <
```

A side note: Why do we care about the best optimum?

The reconstruction of point trajectories (GIR in §8) shown below illustrates that a solution with function value just .06% above the optimum can have significantly worse extrapolation properties.

(a) Best known minimum

(0.3228)

(0.3230)

4. Approximations

- All top matrix factorization algorithms in computer vision [5, 7, 9] benefit from the use of the **unregularized** VarPro, which is illustrated in §2.C.
- These just differ in how much approximation each makes in computing the Hessian. We use the RWY convention where Y is the algorithm number mentioned in [10].

The most influential term is $-\tilde{V}^*\tilde{U}\tilde{U}^{\dagger}\tilde{V}^*$, which brings accuracy from O(0) to O(100)%.

5. Manifold optimization

- As noted in [3], the unregularized matrix factorization problem have an innate gauge freedom. $(UV^{T} = (UA^{-1})(VA^{T})^{T}$ for any invertible matrix A.)
- For unregularized VarPro, this translates to U residing in the Grassmann manifold. i.e. U is a solution \rightarrow entire col(U) is a solution space.
- To incorporate the manifold structure, we need to include the following steps in addition to the pseudocode illustrated in §2.C. (Background theory in [1].)

At each iteration,

- g ← P^Tg // project the gradient and the Hessian to the tangent space of U.
 H ← PHP^T // project the Hessian to the tangent space of U.
- 3. $U \leftarrow \text{unvec}(qf(U + \Delta U))$ // retract updated U back to the Grassmann manifold.

NB: For this problem, P can be $I \otimes U_{\perp}^{\top} \in \mathbb{R}^{(m-r)r \times mr}$ or $I \otimes (I - UU^{\top}) \in \mathbb{R}^{mr \times mr}$.

Approximations, Numerics, Manifold Optimization and Random Restarts

 $K_{mr} \text{vec}(U) = \text{vec}(U^{\mathsf{T}})$

 $V^*(U) = \operatorname{unvec}(\widetilde{U}^{\dagger}\widetilde{\mathbf{m}})$

 $\widetilde{V}^*(U) \coloneqq \widetilde{W}(V^*(U) \otimes I)$

 $Z^*(U) := (W \odot W \odot (M - UV^{*T}(U)) \otimes I$

6. Unified analysis of algorithms

A. Alternation and VarPro algorithms for the unregularized problem $(\mu \leftarrow 0)$

STV 1	1 VH PF [8]	2 1 TW_WB [11]	[6] MQ OL 1 2	2 2 2 DRW1	(S)	5 DRW2	(S)	1 2			5 CH LM S RW2	LM_M	LM M	HO 1 2 6 7	(8) (2) 4 (2) (8) (8) (7) (7) (8) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	3: 4: 5: 6:	$\begin{split} \mathbf{H} &\leftarrow \mathbf{H} - \widetilde{\mathbf{V}}^{*T} \widetilde{\mathbf{U}} \widetilde{\mathbf{U}}^{T} \widetilde{\mathbf{V}}^{*} \\ \mathbf{H} &\leftarrow \mathbf{H} + \mathbf{K}_{mr}^{T} \mathbf{Z}^{*} \big(\widetilde{\mathbf{U}}^{T} \widetilde{\mathbf{U}} \big)^{-1} \mathbf{Z}^{*T} \mathbf{K}_{mr} \\ \mathbf{H} &\leftarrow \mathbf{H} - \mathbf{K}_{mr}^{T} \mathbf{Z}^{*} \big(\widetilde{\mathbf{U}}^{T} \widetilde{\mathbf{U}} \big)^{-1} \mathbf{Z}^{*T} \mathbf{K}_{mr} + \mathbf{K}_{mr}^{T} \mathbf{Z}^{*} \widetilde{\mathbf{U}}^{T} \widetilde{\mathbf{V}}^{*} + \widetilde{\mathbf{V}}^{*T} \widetilde{\mathbf{U}}^{T} \mathbf{Z}^{*T} \mathbf{K}_{mr} \\ \mathbf{P} &\leftarrow \mathbf{I} \otimes (\mathbf{I} - \mathbf{U} \mathbf{U}^{T}) \in \mathbb{R}^{mr \times mr} \text{ // (5) is also a no-operation if 7 and 8 are.} \\ \mathbf{P} &\leftarrow \mathbf{I} \otimes \mathbf{U}_{\perp}^{T} \in \mathbb{R}^{(m-r)r \times mr} \\ \mathbf{g} &\leftarrow \mathbf{P} \mathbf{g} \text{ // (7) is a no-operation since } \mathbf{g} = \mathbf{P} \mathbf{g}. \\ \mathbf{H} &\leftarrow \mathbf{P} \mathbf{H} \mathbf{P}^{T} \text{ // (8) is a no-operation since } \mathbf{H} = \mathbf{P} \mathbf{H}. \end{split}$
			9		9		9									9:	$H \leftarrow H + I \otimes UU^{T}$ // relaxed constraint to promote $U^{T}\Delta U = 0$.
1 1	11		10	10	10	10	10	10	10	10	10	10	10	10		10:	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																	
									l							12. 13:	
		14														14:	
15	15						1		l							15:	
	16				16											16:	
17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17	17:	$V \leftarrow \operatorname{unvec}(\widetilde{U}^{\dagger}\widetilde{\mathbf{m}})$
			18	18	18	18	18	18	18	18	18	18	18	18	18	18:	,
	until convergence outputs: U, V																

B. Joint optimization algorithms

```
inputs: M, W, r, U, V, \mu, \lambda_0
            \lambda \leftarrow \lambda_0
            \widetilde{W} \leftarrow \text{diag}(\text{vec}(W)) with zero-rows removed.
            \widetilde{\mathbf{m}} \leftarrow \widetilde{\mathbf{W}} \operatorname{vec}(\mathbf{M})
            repeat
                               \widetilde{\mathbf{V}}^{\mathsf{T}} \operatorname{vec}(\mathbf{U} \mathbf{V}^{\mathsf{T}} - \mathbf{M}) + \mu \operatorname{vec}(\mathbf{U})
                                     \lceil \text{vec}(UV^{\mathsf{T}} - M) + \mu \text{vec}(V^{\mathsf{T}}) \rceil
                  repeat
                      \Delta \mathbf{z} \leftarrow (\mathbf{H} + \lambda \mathbf{I})^{-1} \mathbf{g}
                      Retrieve \Delta U and \Delta V from \Delta z.
                      \lambda \leftarrow \lambda * 10
                  until f(U + \Delta U, V + \Delta V) < f(U, V)
                  U \leftarrow U + \Delta U
                  V \leftarrow V + \Delta V
                 \lambda \leftarrow \lambda/100
             until convergence
            outputs: U, V
K_{mr} \text{vec}(U) = \text{vec}(U^{T})
```

- $\widetilde{U} := \widetilde{W}(I \otimes U)$
- $\widetilde{V} := \widetilde{W}(V \otimes I)$
- $Z := (W \odot W \odot (M UV^{\mathsf{T}}) \otimes I$

7. Numerics

A. Numerical issues

- Mainly, computation of the Hessian (or its approximation) and its inversion.
- Use of the QR factorization $(\widetilde{\mathbf{U}} = \widetilde{\mathbf{U}}_O \widetilde{\mathbf{U}}_R)$ improves accuracy and performance.
- Cholesky decomposition is used for computing ΔU .

B. Profiler-guided optimization

- Standard Matlab tricks for code speedup.
- Mex files for some Kronecker product computations.

Algorithm	Successes (Out o		Runtime on Din (ms / iter)		
	Original	Modified	Original	Modified	
CH_LM_S	4	4	380	140	
CH_LM_M	1	6	369	143	
CH LM M GN	15	19	205	109	

C. Removal of redundant computations

- VarPro JTJ is of the form $A \otimes B$ where A and B are symmetric. i.e. internal symmetry in addition to the ordinary JTJ symmetry. (max. 4 fold speedup.)
- 2. \widetilde{U}_Q is block-diagonal. Each sub-block \widetilde{U}_{jQ} is a function of the respective column of W; $\widetilde{U}_{jQ} = qf(\widetilde{W}_jU)$ where $\widetilde{W}_j = \text{diag}(\text{vec}(W(:,j))$. Hence, if W(:, i) = W(:, j), $\widetilde{U}_{iQ} = \widetilde{U}_{jQ}$. i.e. redundant QR computations can be reduced depending on the dataset. (Up to 5 times faster for DIN)

8. A list of datasets used

ID	Nature	m	n	r	Fill (%)
Scu	Photometric stereo	46	16,301	3	66.5
GIR	Non-rigid SfM	166	240	6	69.8
Din	Rigid SfM	72	319	4	23.1
DIN	Rigid SfM	72	4,983	4	9.2
Fac	Photometric stereo	20	2,596	4	64.9
FAC	Photometric stereo	20	2,944	4	58.3
UB4	Non-rigid SfM	110	1,760	4	14.4
UB5	Non-rigid SfM	110	1,760	5	14.4
UGf	Non-rigid SfM	380	4,885	6	9.1
UGb	Non-rigid SfM	380	6,310	4	6.9
JE1	Recommender	100	24,983	7	72.5
JE2	Recommender	100	23,500	7	72.7
NET	Recommender	2,000	50,000	4	2.7
		-			-

9. Comparison of success rates

When run from 20 to 100 different random starting points, the VarPro-based algorithms (row 2-14) perform best in terms of success rates. RUSSO-X and RUS3O-X improves it further. (RUSkO-X stands for "run algorithm-X until seen k^{th} optimum".)

Conclusions

- Approximations: Recent top matrix factorization algorithms, which have been derived in a multitude of different ways, can be re-derived in a unified way such that similarities and differences are more easily observed.
- Numerics: Exploiting matrix structures and using block-QR decomposition improves the variable projection (VarPro) algorithms both in terms of speed and convergence.
- Manifold optimization: Riemannian The manifold optimization framework can be incorporated to give a slight more improvement.
- Random restarts: A simple meta-algorithm, RUSSO-X can be wrapped around any existing matrix factorization algorithm and improve its success rate.
- Most importantly, VarPro is key to success for matrix factorization, everything else is detail.

10. Mean time and standard deviation for RUSSO-X

References

- [1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2008.
- [2] N. Boumal and P.-A. Absil. RTRMC: A Riemannian trust-region method for low-rank matrix completion. NIPS 2011. [3] A. M. Buchanan and A. W. Fitzgibbon. Damped Newton Algorithms for Matrix Factorization with Missing Data. CVPR, 2005.
- [4] R. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino. Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-rank Matrix
- Decomposition. ICCV, 2013. [5] P. Chen. Optimization Algorithms on Subspaces: Revisiting Missing Data Problem in Low-rank Matrix. IJCV, 2008.
- [7] P. F. Gotardo and A. M. Martinez. Computing Smooth Time Trajectories for Camera and Deformable Shape in Structure from Motion with Occlusion. PAMI, 2011.
- [8] R. Vidal and R. Hartley. Motion Segmentation with Missing Data Using PowerFactorization and GPCA.
- [9] T. Okatani, T. Yoshida, and K. Deguchi. Efficient Algorithm for Low-rank Matrix Factorization with Missing Components and
- Performance Comparison of Latest Algorithms.. ICCV, 2011. [10] A. Ruhe and P.A. Wedin. Algorithms for Separable Nonlinear Least Squares Problems. SIREV, 1980.
- [6] G. H. Golub and V. Pereyra. The Differentiation of Pseudo-Inverses and Nonlinear Least Squares Problems Whose Variables Separate. SINUM, 1973. [11] T. Wiberg. Computation of principal components when data are missing. 1976.