

PENTRAN -CRT Problem Exercises

Colorado School of Mines PENTRAN-CRT Workshop March 2014

Nuclear and Radiological Engineering Program
George W. Woodruff School of Mechanical Engineering

Parallel Job Processing

- Two Modes for Execution: Interactive or Batch
 - Interactive Mode
 - Interesting for debug, poor use of system
 - Batch Mode in IBM Blue Gene
 - "sbatch" Batch Scheduler by IBM
 - Job "squeue" for Queue core use
 - Allocates jobs to least used cores automatically
 - Scripts for pre- and post- parallel PENTRAN
 - mpisub ppencrt prbname pen #n #c, ppen-post prbname pen #n #c
 - Post processing with PENDATA, PENMSH

Sample Reactor Problem: zippy

Zippy reactor problem

6x6 Coarse Mesh problem with control rod /water flux

traps

zippy.pen

Water(m2)

Fuel (m1)

Water or Control Rod (m3)

Reflective

Sample Shielding Problem: pbshield

pbshield shielding problem 10x10x10 cm

~100,000 meshes, S12P1, 2G

- 3x3x3 Coarse Meshes,
 - pbshield.pen
 - · Pb
 - Water
 - 10 Ci CsCl
 - Stainless steel

Nuclear and Radiological Engineering Program
George W. Woodruff Scholluof Mechanical Engineering

Sample Shielding Problem: pbshield

- pbshield shielding problem 10x10x10 cm
- ~100,000 meshes, S12P1, 2G
 - 3x3x3 Coarse Meshes,
 - pbshield.pen
 - 10 Ci CsCl-
 - Water
 - Pb
 - Stainless steel
 - Reflective

Run zippy.pen

- Prepare a 2 Parallel core Script for zippy.pen
 - Prefix: zippy Suffix: pen Nodes 1 Cores: 2
 - mpisub ppencrt zippy pen 12
 - Copies zippy.pen to prb.pen
 - Sets up zippy.scr script
 - Submit to queue: sbatch zippy_2_pbs.scr
 - Note the job number reported back
 - Check queue status: squeue <enter>
 - When in workdir, type "peek" to see parallel feedback of last submitted job
- Post process output: ppen-post zippy pen 1 2

PENDATA Procedure

PENDATA

- Data (to the highest degree possible) is stored in PENTRAN as PARALLEL memory—each processor contains data only LOCALLY
- If requested, outputs will be in a number of files
 - zippy.1, zippy.2 ... run output from proc. 1, 2, etc
 - Contains important run data and metrics
 - zipply.L1, zippy.L2 ... logfile outputs, etc
 - zippy.f1, zippy.f2 ... binary flux data, etc
 - zippy.j1, zippy.j2 ... flux and net current, etc

Run PENDATA, PENMSH-XP Plot

To run PENDATA

- In the local problem directory, type **PENDATA** <enter>
 - Enter the options as desired
 - PENDATA will gather all files from the parallel run in a transparent manner
- To use PENMSH to plot:
 - Go to crit directory
 - Type penmsh –i moddir –f flxdir -msf 4
 - Will reference model and run to plot fluxes

