

Cyberbullying

Maestría en Ciencia de Datos Procesamiento y Clasificación de Datos

Profesora: Mayra Cristina Berrones Reyes

José Alberto López Álvarez 1553133

Irving Daniel Estrada López 1739907

América Victoria Ramírez Cámara 1458051

Agenda

- Introducción
 - ¿Qué es el cyberbullying?
 - ¿Por qué es importante detectar el cyberbullying?
 - Consecuencias del cyberbullying
- Planteamiento del Problema
 - Conjunto de Datos
 - Problema a resolver
- Desarrollo
- Resultados
- Conclusión
- Referencias

Introducción

¿Qué es el cyberbullying?

- Acoso con el uso de tecnologías digitales. Puede tener lugar en las redes sociales, plataformas de mensajería, plataformas de juegos y teléfonos móviles. Es un comportamiento repetido, dirigido a asustar, enojar o avergonzar a quienes son blanco.
- Deja una huella digital un registro que puede resultar útil y proporcionar evidencia para ayudar a detener el abuso.

¿Por qué es importante detectar el cyberbullying?

Consecuencias del cyberbullying

Mentalmente

• Sentirse molesto, avergonzado, estúpido, incluso asustado o enojado.

Emocionalmente

• Sentirse avergonzado o perder interés en las cosas que ama.

Físicamente

• Cansado (pérdida de sueño), o experimentar síntomas como dolores de estómago y dolores de cabeza.

Cuando sufres ciberacoso puedes sentirte avergonzado, nervioso, ansioso y tener dudas sobre lo que la gente dice o piensa de ti. Esto puede llevarte a aislarte de tus amigos y familiares, a tener pensamientos negativos y a sentirte culpable por las cosas que has hecho o dejado de hacer, y a creer que te están juzgando negativamente. También es habitual sentirse solo y abrumado, y sufrir dolores de cabeza, náuseas o dolores de estómago frecuentes.

Planteamiento del Problema

Conjunto de Datos

Nuestro dataset "cyberbullying_tweets.csv" se obtuvo de Kaggle y cuenta con 48,000 registros y 2 variables:

Variables	Tipo de Variable		
tweet_text	texto		
cyberbullying_type	texto		

Problema a resolver

- Obtener palabras relevantes de cada uno de los tipos de cyberbullying.
- Predecir si un tweet es cyberbullying.
- Predecir el tipo de cyberbullying.

Desarrollo

tweet_text cyberbullying_type

0	In other words #katandandre, your food was cra	not_cyberbullying
1	Why is #aussietv so white? #MKR #theblock #ImA	not_cyberbullying
2	@XochitlSuckkks a classy whore? Or more red ve	not_cyberbullying
3	@Jason_Gio meh. :P thanks for the heads up, b	not_cyberbullying
4	@RudhoeEnglish This is an ISIS account pretend	not_cyberbullying

Preprocesado de texto

- 1. Remover usuario
- 2. Remover emojis
- 3. Remover URL
- 4. Remover signos de puntuación y números
- 5. Convertir a minúsculas
- 6. Obtener el lemma de cada una de las palabras
- 7. Tokenization
- 8. Remover Stop Words

TF - IDF

TF: se refiere al cálculo de la frecuencia para cada palabra en un determinado texto. $TF_{i,j} = \frac{n_{i,j}}{\sum_{i} n_{i,j}}$

IDF: es el cálculo de la frecuencia inversa y se utiliza para calcular el peso de las palabras "raras".

$$IDF(w) = \log \frac{N}{df_t}$$

Combinando estos 2 parámetros obtenemos el puntaje TF-IDF.

$$W_{i,j} = TF_{i,j} \cdot \log \frac{N}{df_i}$$

En donde:

 $TF_{i,j}$ = Número de ocurrencias de i en j df_i = Número de archivos que contienen i N = Número total de archivos

SMOTE

Random Forest

Multinomial Naïve Bayes

Resultados

En General

Ethnicity

Religion

Age

Gender

Otros

Not Cyberbullying

Cyberbullying

Random Forest

support

Multinomial Naive-Bayes

Comparativa

	F1-S	Лесинов		
Modelo	Si	No	Accuracy	
Naive Bayes	0.79	0.76	0.78	
Random Forest	0.9	0.91	0.9	

Tipo de Cyberbullying

Random Forest

	precision	recall	f1-score	support
age	0.94	0.98	0.96	1557
ethnicity	0.99	0.98	0.98	1627
gender	0.91	0.85	0.88	1626
not_cyberbullying	0.55	0.45	0.50	1572
other_cyberbullying	0.53	0.66	0.59	1519
religion	0.96	0.95	0.96	1638
accuracy			0.81	9539
macro avg	0.81	0.81	0.81	9539
weighted avg	0.82	0.81	0.81	9539

0.8149701226543663

Multinomial Naive-Bayes

	precision	recall	f1-score	support
age	0.71	0.94	0.81	1557
ethnicity	0.85	0.93	0.88	1627
gender	0.87	0.78	0.82	1626
not_cyberbullying	0.62	0.42	0.50	1572
ther_cyberbullying	0.57	0.49	0.53	1519
religion	0.83	0.95	0.89	1638
accuracy			0.75	9539
macro avg	0.74	0.75	0.74	9539
weighted avg	0.74	0.75	0.74	9539
.7541671034699654				

Comparativa

Madala	F1-Score					A	
Modelo	1	2	3	4	5	6	Accuracy
Naive Bayes	0.81	0.88	0.82	0.5	0.53	0.89	0.75
Random Forest	0.96	0.98	0.88	0.5	0.59	0.96	0.81

Conclusión

- Al observar los resultados del preprocesamiento de texto cabe destacar mucho las palabras que sobresalen en cada tipo de cyberbullying entre ellos, por ejemplo, en el tipo de ethnicity: nigger, black y dumb son las más frecuentes; en el tipo de religión: muslim, idiot y christian; en el tipo de age: school, high y girl; y en el tipo de gender: joke, rape y gay. Podemos deducir que hay mucho acoso hacia la gente de color, las personas que practican la religión musulmana y cristiana, las mujeres en edad de preparatoria y los gays.
- Analizando esto mismo de manera general, las palabras más frecuentes son school, nigger y joke, por lo que podemos concluir que existe más acoso hacia la gente de color y en las escuelas.
- En las predicciones realizadas se encontraron mejores resultados en el random forest comparado con el multinomial naive-bayes, arrojando una precisión más alta entre ambos.

Referencias

- LARXEL. (2020). Cyberbullying Classification. Junio del 2022, de Kaggle Sitio web: https://www.kaggle.com/datasets/andrewmvd/cyberbullying-classification?datasetId=1869236&sortBy=voteCount
- Irving Estrada. Github. 2022, Sitio web: https://github.com/Irving-Estrada/Procesamiento
- Thair Nu Phyu. (March 2009). Survey of Classification Techniques in Data Mining. Proceedings of the International MultiConference of Engineers and Computer Scientists, I.

¡Gracias por su atención!