1

1.1

- (1) 不能构成映射, 如 $x_1 = 0$, 则 $x_2 = 0, 1, \ldots, 9$ 均满足.
- (2) 能构成映射, $\forall y_1 \in \mathbb{R}, \exists ! y_2 = y_1^2$.
- (3) 不能构成映射, 如 $y_1 = 1$, 则 $y_2 = \pm 1$ 均满足.

1.2

(1)

$$R_f = \{2, -2, 0\}$$

(2)

$$\begin{cases} |A| = 9 \\ |R_f| = 3 \end{cases} \Rightarrow n = 3^9.$$

1.3

(1) 满射

$$\forall y \in \mathbb{Z}^+, \exists x = \pm (y-1) \in \mathbb{Z}, f(x) = y.$$

(2) 既不是单射,又不是满射.值域为 $\{0,1,2\}\subseteq \mathbb{Z}\cup \{0\}$

$$\forall y \in \mathbb{Z} \cup \{0\} \begin{cases} y \in \{0, 1, 2\}, \ \exists \ x = 3k + y(k \in \mathbb{Z}), \ f(x) = y. \\ y \notin \{0, 1, 2\}, \ \forall \ x \in \mathbb{Z}, \ f(x) \neq y. \end{cases}$$

(3) f,g 均是双射.

$$\begin{cases} \forall \ y \in \mathbb{Z}, \ \exists ! \ x = y - 1 \in \mathbb{Z}, f(x) = y. \\ \forall \ y \in \mathbb{Z}, \ \exists ! \ x = y + 1 \in \mathbb{Z}, g(x) = y. \end{cases}$$

(4) 满射.

$$\forall y \in \{0,1\}, \exists x = 2k + y + 1(k \in \mathbb{Z}), f(x) = y.$$

(5) 既不是单射,又不是满射.

$$\begin{cases} \forall \ y \in \mathbb{Z}, \ y < -16, \ \forall \ x \in \mathbb{Z}, \ f(x) > y. \\ \exists \ y = -15, \ f(0) = f(-2) = y. \end{cases}$$

1.4

证明.

$$\begin{cases} f: A \times B \to B \times A, \ (a,b) \mapsto (b,a) \\ g: B \times A \to A \times B, \ (b,a) \mapsto (a,b) \end{cases}$$

则

$$f \circ g = I_{A \times B}, \quad g \circ f = I_{B \times A}, \quad g = f^{-1}.$$

即 f 为双射,即证 $|A \times B| = |B \times A|$.

1.5

证明.

(1)
$$\forall f(x) = \sum_{i=0}^{n} a_i \cdot x^i, \ \exists! \ g(x) = \sum_{i=1}^{n} i \cdot a_i \cdot x^{i-1}, \ \frac{d}{dx} f(x) = g(x). \ (a_i \in \mathbb{R})$$

值域为 R[x], 是满射不是双射.

$$\forall \ g(x) = \sum_{i=0}^{n} a_i \cdot x^i, \ \exists \ f(x) = a + \sum_{i=0}^{n} \frac{a_i}{i+1} \cdot x^{i+1}, \ \frac{d}{dx} f(x) = g(x). \ (a, a_i \in \mathbb{R})$$

(2)
$$\forall f(x) = \sum_{i=0}^{n} a_i \cdot x^i, \ \exists! \ g(x) = \sum_{i=0}^{n} \frac{a_i}{i+1} \cdot x^{i+1}, \ I(f(x)) = g(x). \ (a_i \in \mathbb{R})$$

值域为常数项为0的实系数多项式,既不是满射,也不是双射.

$$\forall g(x) = a \ (0 \neq a \in \mathbb{R}), \$$
若∃ $f(x) \in R[x],$ 满足 $I(f(x)) = g(x) = a \ I(f(x)) = g(x).$

则

$$a = g(x) = \int_0^x f(t) dt \xrightarrow{x=0} g(0) = \int_0^0 f(t) dt = 0 \neq a.$$

矛盾.

En 土土 代数结构答案

妮可

1.6

证明. $\forall (b_{i1}, b_{i2}, \ldots, b_{in}) \in S(B)$,

$$\exists ! \ f \in F, \ f : A \to B, \ a_i \mapsto b_{ij}$$
.满足 $g(f) = (b_{i1}, b_{i2}, \dots, b_{in}).$

即证 g 即是单射,又是满射,即 g 是从 F 到 S(B) 的双射.

$$|F| = |S(B)| = |B|^n = m^n.$$

1.7

证明.

- $(1) \ f(A \cup B) = f(A) \cup f(B)$
 - (a) $\forall y \in f(A \cup B), \exists x \in A \cup B, f(x) = y.$

$$\begin{cases} x \in A, y = f(x) \in f(A) \\ x \in B, y = f(x) \in f(B) \end{cases} \Rightarrow y \in f(A) \cup f(B) \Rightarrow f(A \cup B) \subseteq f(A) \cup f(B).$$

(b) $\forall y \in f(A) \cup f(B), y \in f(A)$ $\exists y \in f(B)$.

$$\begin{cases} y \in f(A), \exists \ x \in A, f(x) = y \\ y \in f(B), \exists \ x \in B, f(x) = y \end{cases} \Rightarrow y \in f(A \cup B) \Rightarrow f(A) \cup f(B) \subseteq f(A \cup B).$$

综上,即证

$$f(A \cup B) = f(A) \cup f(B).$$

(2) $f(A \cap B) \subseteq f(A) \cap f(B)$

$$\forall y \in f(A \cap B), \exists x \in A \cap B, f(x) = y.$$

由 $x \in A \cap B$ 有 $x \in A, x \in B$,即

$$\begin{cases} x \in A, \ y = f(x) \in f(A) \\ x \in B, \ y = f(x) \in f(B) \end{cases} \Rightarrow y \in f(A) \cap f(B) \Rightarrow f(A \cap B) \subseteq f(A) \cap f(B).$$

(3)

$$S = \mathbb{Z}, T = \{1\}, A = \{2k+1|k \in \mathbb{Z}\}, B = \{2k|k \in \mathbb{Z}\}$$

取 $f: S \to T, n \mapsto 1$,则

$$\begin{cases} f(A \cap B) = f(\phi) = \phi. \\ f(A) \cap f(B) = \{1\} \end{cases} \Rightarrow f(A \cap B) \neq f(A) \cap f(B).$$

1.8

(1) f 为单射: $f(\widetilde{A}) \subseteq \widetilde{f(A)}$.

$$\forall y \in f(\widetilde{A}) \subseteq S, \ \exists! \ x \in S \coprod x \in \widetilde{A}, \ f(x) = y.$$

有

$$\forall x \in A, \ f(x) \neq y, \ y \notin f(A) \ \Rightarrow \ y \in \widetilde{f(A)}.$$

即

$$\forall \; y \in f(\widetilde{A}) \subseteq S, \; y \in \widetilde{f(A)} \; \Rightarrow \; f(\widetilde{A}) \subseteq \widetilde{f(A)}.$$

(2) f 为满射: $\widetilde{f(A)} \subseteq f(\widetilde{A})$.

$$\forall y \in \widetilde{f(A)}, \ \exists \ x \in S, f(x) = y.$$

若 $x \in A$, $y = f(x) \in f(A)$, 矛盾. 故 $x \in \widetilde{A}$.

$$y = f(x) \in f(\widetilde{A}) \implies \widetilde{f(A)} \subseteq f(\widetilde{A}).$$

1.9

(1)

$$f \circ g = 3(3x+1) = 9x + 3.$$

(2)

$$f \circ q = 3$$

(3)

$$g \circ f = 3(3x) + 1 = 9x + 1.$$

(4)

$$g \circ h = 3(3x+2) + 1 = 9x + 7.$$

(5)

$$f \circ g \circ h = 3(3(3x+2)+1) = 27x+21.$$

1.10

证明.

先证 $g \circ f$ 是从 A 到 C 的映射.

$$\forall x \in A, \exists ! y = f(x) \in B, \exists ! z = g(y) \in C.$$

假设 $g \circ f$ 不是从 A 到 C 的单射,则等价于

$$\exists c \in C, \exists a_1, a_2 \in A, a_1 \neq a_2, g \circ f(a_1) = g \circ f(a_2) = c.$$

即

$$g(f(a_1)) = g(f(a_2)) = c \in C \xrightarrow{g} \exists ! \ b \in B, \ g(b) = c, \ f(a_1) = f(a_2) = b \in B.$$

又

$$f$$
为单射 $\Rightarrow \exists a \in A, f(a) = b.$

即 $a_1 = a_2 = a$, 矛盾, 即证 $g \circ f$ 是从 A 到 C 的单射.

1.11

会发生矛盾.

(1) 先证 g 为满射

若
$$\exists y \in S, \forall x \in S, g(x) \neq y,$$

(2) 再证 g 为单射

1.12

- (1)
- (2)

(3)

(4)

1.13

(1)

(2)

1.14

(1)

(2)

(3)

1.15

(1)

(2)

1.16

证明.

1.17

(1)

(2)

1.18

(1)

(2)

(3)

1.19

(1)

(2)