

Государственный комитет
СССР
по делам изобретений
и открытий

О П И С А Н И Е ИЗОБРЕТЕНИЯ

864481

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид. зу -

(22) Заявлено 021279 (21) 2848710/24-07

(51) М. Кл.³

с присоединением заявки № -

Н 02 Р 8/00

(23) Приоритет -

Опубликовано 15.09.81 Бюллетень № 34

(53) УДК 621.313.13
-133.3; 62-83
(088.8)

Дата опубликования описания 15.09.81

(72) Авторы
изобретения

Б.Г. Терехин и В.И. Селедцов

(71) Заявитель

РП03-	0371-00ЕР-А2
04.8.30	

(54) УСТРОЙСТВО ДЛЯ УПРАВЛЕНИЯ ЧЕТЫРЕХФАЗНЫМ
РЕВЕРСИВНЫМ ШАГОВЫМ ЭЛЕКТРОДВИГАТЕЛЕМ

Изобретение относится к электро-
технике и может быть использовано
для управления шаговым двигателем
в системах автоматического управления.

Известно устройство для управления
шаговым электродвигателем, содержа-
щее реверсивный распределитель им-
пульсов, входы которого связаны с
шиной тактовых импульсов и шинами
направления движения, а выходы - с
входами усилителей мощности, комму-
тирующих фазы двигателя [1].

Недостатком данного устройства
является сложность, слабая помехо-
устойчивость и низкая надежность.

Наиболее близким по технической
сущности к предлагаемому является
устройство для управления четырех-
фазным реверсивным шаговым электро-
двигателем, содержащее нереверсив-
ный распределитель импульсов, вход
которого связан сшиной тактовых
импульсов, а выходы - с входами уси-
лителей мощности, коммутирующих
фазы двигателя и блок реверсирова-
ния [2].

Недостатком этого устройства яв-
ляется его сложность, обусловлен-
ная большим количеством элементов и
связей в блоке реверсирования и не-

обходимостью иметь две потенциаль-
ные шины для управления прямым и об-
ратным ходом шагового двигателя.

Цель изобретения - упрощение уст-
ройства.

Указанная цель достигается тем,
что блок реверсирования содержит два
логических элемента ИСКЛЮЧАЮЩЕЕ ИЛИ,
первые входы которых соединены с
выходами распределителя, взятыми
через один, вторые - с входом блока
реверсирования, а выходы - с входами
соответствующих усилителей мощнос-
ти.

На чертеже приведена функциональ-
ная схема устройства.

Устройство включает тактовую шину
1, соединенную с распределителем 2 им-
пульсов к выходам которого по поряд-
ку к первому и третьему подключены
входы X₂ логических элементов ИСКЛЮ-
ЧАЮЩЕЕ ИЛИ 3 и 4 связанных входа-
ми X₁ с потенциальной шиной прямо-
го и обратного хода 5. Выходы у ло-
гических элементов подсоединенны к
входам усилителей мощности 6 и 7
которые вместе с аналогичными усили-
телями 8 и 9 коммутируют фазы шаго-
вого двигателя 10.

Устройство работает следующим образом.

При управлении шаговым двигателем на шину 1 подаются тактовые импульсы. При этом распределитель импульсов 2 вырабатывает последовательность импульсов для работы шагового двигателя всегда в одном направлении, например, соответствующем прямому ходу. Для движения двигателя в прямом направлении на шину 5 необходимо подать сигнал логического нуля. Предположим, что последовательность состояний на выходах распределителя импульсов 2 в двоичном коде соответствует 0011, 0110, 1100, 1001, и далее повторяется сначала. Эта последовательность импульсов, попадая на фазы шагового двигателя, обеспечивает его работу в режиме прямого хода. Учитывая, что с шины 5 на входы X_1 логических элементов 3 и 4 поступает сигнал логического нуля, то значения сигналов, поступающих на входы X_2 элементов 3 и 4 без изменений на их выходы Y :

X_1	X_2	Y
0	0	0
0	1	1
1	0	1
1	1	0

При этом на фазы шагового двигателя 10 через усилители 6-9 поступает та же последовательность состояний, что и на выходах распределителя импульсов 2, т.е. 0011, 0110, 1100, 1001 и т.д. Эта последовательность обеспечивает работу шагового двигателя в режиме прямого хода.

Для работы шагового двигателя в режиме обратного хода на шину 5 подают сигнал логической единицы, который поступает на входы X_1 элементов 3 и 4. В соответствии с вышеописанным

веденной таблицей истинности, при этом логические элементы 3 и 4 будут инвертировать поступающие на их входы X_2 сигналы с первого и третьего выходов распределителя импульсов. Полученная в этом случае последовательность состояний на фазах двигателя равна 1001, 1100, 0110, 0011 и т.д.

Полученная последовательность обеспечивает работу шагового двигателя в режиме обратного хода. При этом на выходе распределителя импульсов независимо от режима работы шагового двигателя для прямого и обратного хода последовательность состояний одна и та же, т.е. 0011, 0110, 1100, 1001.

Формула изобретения

Устройство для управления реверсивным четырехфазным шаговым электродвигателем, содержащее нереверсивный распределитель импульсов, вход которого связан с шиной тактовых импульсов, а выходы - с входами усилителей мощности, коммутирующих фазы двигателя, и блок реверсирования, отличающееся тем, что, с целью упрощения, блок реверсирования содержит два логических элемента ИСКЛЮЧАЮЩЕЕ ИЛИ, первые входы которых соединены с выходами распределителя, взятыми через один, вторые - с входом блока реверсирования, а выходы - с выходами соответствующих усилителей мощности.

Источники информации, принятые во внимание при экспертизе

1. Авторское свидетельство СССР № 455440, кл. Н 02 Р 8/00, 1972.

2. Авторское свидетельство СССР № 476651, кл. Н 02 Р 8/00, 1972 (прототип).

ВНИИПИ Заказ 7824/81 Тираж 733 Подписанное

Филиал ППП "Патент", г.Ужгород, ул.Проектная, 4