Подалгебры, порождающие элементы, вложения

Определение 1.1. Подалгебра - алгебра $\mathcal{B}=(B,J)$ является подалдгеброй $\mathcal{A}=(A,I),$ если $B\subseteq A$ и J(f) - ограничение на B для всякого f

Определение 1.2. Ограничение операции - n-местная операция g на B является ограничением операции f множеством B если

$$g(b_1, ..., b_n) = f(b_1, ..., b_n)$$

для любых $b_1, ..., b_n$ из B

Пример 1.1. Пример подалгебры:

$$(\mathbb{C},+,\cdot)\supseteq (\mathbb{R},+,\cdot)\supseteq (\mathbb{Q},+,\cdot)$$

Следствие 1.1.

$$A \subseteq B, B \subseteq C \Rightarrow A \subseteq C$$

Теорема 1.1. Если $\mathcal{A} = (A, I)$ - алгебра, то B ($B \subseteq A; B \neq \emptyset$) является носителем некоторой подалгебры тогда и только тогда, когда B замкнута относительно сигнатурной операции в алгебре \mathcal{A}

Доказательство. 1. \Rightarrow

B - носитель подалгебры $\mathcal{B} = (B, J)$ и $B \subseteq A$, тогда

$$f^{\mathcal{A}}(b_1, ..., b_n) = f^{\mathcal{B}}(b_1, ..., b_n) \in B$$

B замкнута относительно сигнатурной операции в алгебре $\mathcal A$

 $2. \Leftarrow B$ замкнута относительно сигнатурной операции в алгебре $\mathcal{A},$ тогда

J(f) - функция на B

$$J(f)(b_1,...,b_n) = f^{\mathcal{A}}(b_1,...,b_n) \in B$$

J(f) - ограниение $f^{\mathcal{A}}$ на B

следовательно $\mathcal{B}=(B,J)$ - подалгебра и B - её носитель

Пример 1.2. Пример на теорему:

Теорема 1.2. Доказательство.