Rotation

1 Rotation et rotation réciproque

1.1 Rotation

Définition

Soit Ω un point du plan orienté dans le sens direct et α un nombre réel. La rotation de centre Ω et d'angle α est la transformation du plan notée r ou $r(\Omega,\alpha)$, qui à tout point M du plan associe le point M' défini par :

$$r(M) = M' \Longleftrightarrow \left\{ \begin{array}{l} \Omega M' = \Omega M \\ \left(\overrightarrow{\overline{\Omega M}}, \overrightarrow{\overline{\Omega M'}} \right) \equiv \alpha[2\pi] \end{array} \right.$$

Exemples

Soient M et Ω deux points du plan. Construire M' l'image de M par la rotation $r(\Omega, \alpha)$ dans les cas suivants :

a)
$$r\left(\Omega, \frac{\pi}{3}\right)$$
.

b)
$$r\left(\Omega, -\frac{\pi}{4}\right)$$
.

c)
$$r\left(\Omega, \frac{2\pi}{3}\right)$$
.

Remarques

- M' appartient au cercle de centre Ω et de rayon ΩM .
- La médiatrice du segment [MM'] passe par Ω .
- Le triangle $M\Omega M'$ est isocèle de sommet Ω .
- On a $r(\Omega) = \Omega$. On dit que Ω est un point invariant par la rotation r.
- Si $\alpha \neq 2k\pi$; $k \in \mathbb{Z}$ alors Ω est le seul point invariant par la rotation r.
- Si $\alpha = 2k\pi$; $k \in \mathbb{Z}$ alors r(M) = M. Tout point du plan est invariant.
- Si $\alpha = \pi$ alors r est la symétrie centrale de centre Ω .

1.2 Rotation réciproque

Définition

La rotation $r(\Omega, -\alpha)$ de centre Ω et d'angle $-\alpha$ est appelé la rotation réciproque de $r(\Omega, \alpha)$ notée r^{-1} et on a : $r(M) = M' \iff r^{-1}(M') = M$.

2 Propriétés de la rotation

Propriétés

Soit r une rotation de centre Ω et d'angle α .

- Si r(A) = A' et r(B) = B' alors $\left(\overrightarrow{AB}, \overrightarrow{A'B'} \right) \equiv \alpha[2\pi]$.
- La rotation conserve la distance. Si r(A) = A' et r(B) = B' alors AB = A'B'.
- La rotation conserve les mesures d'angles orientés. Si A,B,C et D quatre points tels que $A \neq B$ et $C \neq D$ et r(A) = A', r(B) = B', r(C) = C', r(D) = D' alors : $\left(\overline{\overrightarrow{A'B'}}, \overline{\overrightarrow{C'D'}}\right) \equiv \left(\overline{\overrightarrow{AB}}, \overline{\overrightarrow{CD}}\right) [2\pi]$.

- La rotation conserve le barycentre. Soit G le barycentre des points pondérés (A, α) et (B, β) . Si r(A) = A', r(B) = B' et r(G) = G' alors G' est le barycentre des points pondérés (A', α) et (B', β)
- La rotation conserve le milieu d'un segment. Soit I est le milieu du segment [AB] et r(A) = A', r(B) = B' et r(I) = I' alors I' est le milieu du segment [A'B'].
- La rotation conserve le coefficient de colinéarité de deux vecteurs. Soient A,B,C et D' des points du plan tels que $\overrightarrow{AB} = k\overrightarrow{CD}$. Si r(A) = A',r(B) = B', r(C) = C' et r(D) = D' alors $\overrightarrow{A'B'} = k\overrightarrow{C'D'}$.

3 Images de figures par rotation

Propriétés

Soit r une rotation de centre Ω et d'angle $\alpha.A,B,O,A',B'$ et O' des points du plan tels que :r(A)=A',r(B)=B' et r(O)=O'.

- L'image de la droite (AB) par la rotation r est la droite (A'B').
- L'image du segment [AB] par la rotation r est le segment [A'B'].
- L'image de la demi-droite [AB) par la rotation r est la demi-droite [A'B').
- L'image du cercle C(O;R) de centre O et de rayon R par la rotation r est le cercle C'(O',R) de centre O' et de rayon R.
- Les images de deux droites parallèles sont deux droites parallèles.
- Les images de deux droites perpendiculaires sont deux droites perpendiculaires.
- Si r((D)) = (D'), $r((\Delta)) = (\Delta')$, r(M) = M' où $M \in (D) \cap (\Delta)$ alors $M' \in (D') \cap (\Delta')$.