Monitoria em Matemática e Probabilidade

Aula 02 - Conceitos básicos Prof. Stefano Mozart

Programa da aula

- Conteúdo "bônus": breve introdução ao SQL no Python com exemplo em Jupyter notebook;
- □ Funções;
 - □ Relações;
 - Funções;
 - Domínio e Imagem;
 - Composição;
 - Continuidade;
 - Monotonicidade;
 - Cardinalidade.

- Ranques e objetos;
 - Ranques:
 - Escalar;
 - Vetor;
 - Matriz;
 - □ Tensor.
- Matrizes:
 - Identidade;
 - □ Inversão;
 - Transposição;
 - Operações;
 - Determinante.

SQL no Python

- Existem diversas bibliotecas que permitem o acesso a bancos de dados no Python: SQLAlchemy, Records, Django ORM, psycopg2, cx_Oracle, etc.
 - SQLAlchemy é a biblioteca de acesso a BD com melhor integração à biblioteca Pandas, por isso é a mais recomendada para iniciantes.
- As bibliotecas de acesso a bancos de dados geralmente apresentam dois grupos de funcionalidades:
 - Mapeamento do driver do banco (DB-API): permite a execução de instruções SQL, o controle de transações, entre outras funcionalidades.
 - Mapeamento objeto-relacional (ORM): permite que classes Python representem uma tabela no banco, de forma que a um objeto dessa classe corresponda um registro na tabela do BD.

SQLAchemy

Para se conectar a um banco de dados utilizando o SQLAlchemy, utilize o método create_engine :

```
from sqlalchemy import create_engine
engine = create_engine('sqlite:///save_pandas.db', echo=True)
conn = engine.connect()
```

Para executar um script SQL, o método execute :

```
df = engine.execute("SELECT * FROM users").fetchall()
```

SQLAchemy+Pandas

Para salvar um dataframe no banco, utilize o método pandas. DataFrame.to_sql:

```
import pandas as pd

df = pd.read_csv('dados.csv')

df.to_sql(conn) # conn é a conexão SQLAlchemy, do slide anterior
```

Carregar um dataframe a partir de uma consulta no banco:

```
# conn é a conexão SQLAlchemy, do slide anterior
df = pd.read_sql_table('user', con=conn)
```

Funções

Relações

- □ Uma relação é uma correspondência ou associação entre elementos de dois conjuntos não vazios. Utiliza-se a notação R ⊆ X × Y para denotar uma relação entres elementos dos conjuntos X e Y.
 - A relação pode ser determinada por meio de uma propriedade: **R** $\{(x,y): \varphi(x,y)\}$
 - $\phi(x, y)$ pode ser uma fórmula e.g. y = f(x) ou $y = 3x^2$
 - $\phi(x, y)$ também pode ser uma expressão falseável e.g. x > y
 - $\varphi(x, y)$ também é comumente expressa na forma $x \mathbf{R} y$
- Para quaisquer dois conjuntos X e Y não vazios, existe uma relação chamada **produto cartesiano**, que pode ser expressa na forma: $\mathbf{P} = X \times Y := \{(x,y) : x \in X \land y \in Y\}$
 - Logo, qualquer relação entre dois conjuntos é, necessariamente, um subconjunto de seu produto cartesiano.

Relações

- Uma relação pode ser definida entre elementos ou subconjuntos de um mesmo conjunto ($\mathbf{R} \subseteq X \times X$);
- Uma relação também pode ser definida de forma extensiva, ou tabular: $R := \{(x_1, y_1), ..., (x_n, y_n)\}$
- Existem relações de diversa natureza: seriais, funcionais, de ordem, de equivalência, de congruência, de adjacência, de ortogonalidade, etc;
 - Uma relação é dita serial se todos os elementos do primeiro conjunto forem associados a pelo menos um elemento do segundo: $\forall x \in X [\exists y \in Y: x \mathbf{R}y]$
 - Uma relação é dita funcional se a cada elemento do primeiro conjunto for associado um único elemento do segundo:

$$\forall x \in X, \ \forall y \in Y, \ \forall z \in Y [(xRy \land xRz) \rightarrow y=z]$$

As relações podem ter diversas cardinalidades: um-para-um, um-para-muitos, muitos-para-um, muitos-para-muitos;

Funções

- Uma função é uma relação binária, serial e funcional: isto é, é a relação entre dois conjuntos que associa a cada elemento do primeiro conjunto um único valor no segundo conjunto;
- Funções foram criadas, originalmente, como uma abstração para a correlação entre duas quantidades: por exemplo, a correlação entre posição e tempo expressa pela função de velocidade;
- Funções também podem ser vistas como um mapeamento entre dois conjuntos, um "morfismo", que indica a equivalência entre dois conjuntos;

Funções

- Uma função é geralmente determinada por uma fórmula e.g. $f(x) = 3x^2$
- A função, como qualquer relação, também pode ser determinada na forma extensa ou tabular: $f = \{(x_1, y_1), ..., (x_n, y_n)\};$
- Além da forma $x\mathbf{R}y$, existem várias notações específicas para denotar uma função:
 - $\Box \qquad y = f(x)$

 - \Box $x \mapsto f(x)$
 - \Box f_{λ}

Domínio, contradomínio e imagem

- Usamos a notação $f: D \rightarrow C$ para expressar que uma função f está definida entre os conjuntos D e C.
 - \Box Chamamos o primeiro conjunto, D, de **domínio** da função f;
 - \Box Chamamos o conjunto C, de **contradomínio** de f;
- A imagem de f, geralmente denotada como I, é o subconjunto de C formado pelos elementos que são efetivamente mapeados por f. Assim $I \subseteq C \land \forall y \in I[\exists x \in D : y = f(x)]$
- Por exemplo, seja $f: \mathbb{N} \to \mathbb{N}$ definida por y = 2x, então os naturais são tanto o domínio quanto o contradomínio de f, e a imagem f é o conjunto dos naturais pares;

Domínio e Imagem

- □ Seja $A \subseteq D$ um subconjunto do domínio de f, então $f(A) = \{f(x): x \in A\}$
 - Pela definição de função, podemos afirmar que $A \subseteq D \to f(A) \subseteq f(D)$
 - □ Também podemos afirmar que f(D) = I
 - \Box E, pelo mesmo raciocínio, $f(A) \subseteq I$
- Em estatística, o domínio das funções de densidade probabilidade e de massa de probabilidade também é chamado de **suporte** e a notação mais comum é $X \mapsto f_X$ (onde X é o suporte da função f, e f_X é a densidade ou massa de probabilidade)

Composição

- Dadas duas funções $f: A \rightarrow B e g: B \rightarrow C$, de modo que o contradomínio de f seja equivalente ao domínio de g, a composição, $(g \circ f): A \rightarrow C$, entre elas é definida por: $(g \circ f)(x) = g(f(x))$
- A composição é uma operação não comutativa. Isto é, mesmo quando $f \in g$ compartilham o mesmo domínio e imagem, $f \circ g \in g \circ f$ podem ser diferentes:
 - Ueja por exemplo $f=2x e g=x^2$: $(f \circ g)(3)=18 e (g \circ f)(3)=36$
- A composição é uma operação associativa. Isto é, se f° $(g^{\circ}h)$ é uma composição, então $(f^{\circ}g)^{\circ}h$ também é, e é igual à anterior.

Composição

- Funções também podem ser vistas como vetores ou espaços vetoriais, e portanto, suportam operações internas (ou ponto a ponto). Isto é, sejam f e g funções definidas em um mesmo domínio, então, as seguintes operações lineares estão definidas:
 - $\Box \qquad (g+f)(x) = g(x)+f(x)$
 - $\Box \qquad (g-f)(x) = g(x)-f(x)$
 - $\Box \qquad (g \cdot f)(x) = g(x) \cdot f(x)$
- Quando os elementos do domínio de uma função f são vetores, então dizemos que f é uma função vetorial.
 - □ Para vetores reais, utilizamos a notação $f:\mathbb{R}^n \to \mathbb{R}^n$

Continuidade

Intuitivamente, podemos dizer que uma função é contínua num intervalo se, naquele intervalo, a uma alteração arbitrariamente pequena em sua entrada corresponder uma variação igualmente pequena na saída:

$$\lim_{a\to 0} f(x+a) - f(x) = 0$$

- De maneira um pouco mais formal, podemos dizer que f é contínua em I se $\forall x \in I \ [\exists \lim_{a \to x} f(a)],$
- Funções contínuas permitem os estudo de propriedades importantes tais como tendências, máximos e mínimos locais e absolutos, por meio de derivadas.

Monotonicidade

- Uma função f é dita crescente num intervalo quando, para qualquer par de pontos x_1 e x_2 , com $x_1 < x_2$, tem-se que $f(x_1) \le f(x_2)$;
- Uma função f é dita decrescente num intervalo quando, para qualquer par de pontos x_1 e x_2 , com $x_1 < x_2$, tem-se que $f(x_1) \ge f(x_2)$;
- Uma função é considerada monótona se for crescente ou decrescente em todo o seu domínio.
 - Uma função monótona é uma relação de ordem entre dois conjuntos.

Cardinalidade

- Uma função $\mathbf{f}:D\to C$ é dita injetora, ou injetiva, se para quaisquer pontos x_1 , $x_2 \in D$, com $x_1 \neq x_2$, tem-se que $\mathbf{f}(x_1) \neq \mathbf{f}(x_2)$;
 - □ Isso equivale a uma relação um-para-(zero ou um).
- Uma função $f:D \rightarrow C$ é sobrejetora se a sua imagem for igual ao seu contradomínio. Isto é, $I=C \land \forall y \in C[\exists x \in D : y = f(x)];$
 - Isso equivale a uma relação (zero ou um)-para-um.
- Uma função é considerada bijetora quando for injetora e sobrejetora.
 - Isso equivale a uma relação um-para-um.

Ranques

Ranques

- Objetos algébricos possuem uma propriedade chamada **ranque**, também referenciada como **ordem** ou **grau** em alguns contextos, que especifica a complexidade ou número de dimensões dos objetos:
 - Objetos de ranque 0 (zero) são chamados de escalares. Estes objetos possuem magnitude (seu proprio valor) mas são adimensionais: $x \in \mathbb{R}$
 - Objetos de ranque 1 são chamados de vetores (ou arrays) e possuem uma dimensão, um número natural n que indica o número de escalares internos: $x \in \mathbb{R}^n$
 - Objetos de ranque 2 são chamados de matrizes (ou 2d-arrays) e possuem duas dimensões (n,m) indicam, respectivamente, o número de vetores internos e a dimensão desses vetores: $X \in \mathbb{R}^{n \times m}$
 - Objetos de ranque 3 ou mais são chamados de tensores, ou nd-arrays, onde n corresponde ao número de dimensões: $X \in \mathbb{R}^{\Pi^n}$

Ranques

- Em ciência da computação e estatística é muito comum utilizarmos objetos de ranque 2, ou seja, matrizes, para construir os modelos estudados:
 - De uma forma geral, qualquer construção algébrica válida para um objeto de ranque i, vale para todos os objetos de ranque $j \le i$:
 - Assim, se um modelo matricial recebe uma prova formal, esse modelo também vale para vetores e escalares;
 - Vetores e escalares podem sempre ser vistos como formas particulares de matrizes: vetores são matrizes de forma $\mathbb{R}^{n\times 1}$ ou $\mathbb{R}^{1\times n}$, e os escalares, matrizes em $\mathbb{R}^{1\times 1}$

Vetores

Vetores

- Indexamos os elementos de um vetor $x \in \mathbb{R}^n$ como x_i , onde $1 \le i \le n$. E assim, podemos definir algumas operações com vetores:
 - A soma, entre vetores de mesma dimensão é um vetor cujos elementos correspondem à soma dos elementos de mesmo índice nos operandos:

$$x+y = \langle x_i + y_i \rangle_{i=1..n}$$

- O escalonamento (multiplicação por escalar) corresponde à multiplicação de cada elemento do vetor pelo escalar: $cx = \langle cx_i \rangle_{i=1}^n$
 - \Box Note que a multiplicação por escalar é um caso particular da soma: $cx = \sum_{r=1...c} x$
- O produto interno, que corresponde ao vetor composto pela multiplicação dos elementos dos dois vetores, par à par: $x \cdot y = \langle x \cdot y \rangle_{i=1}^n$

- São objetos que possuem duas dimensões (n,m), as quais indicam o número de vetores internos e a dimensão desses vetores: $A \in \mathbb{R}^{n \times m}$
 - Também é comum usarmos a notação $A_{n \times m}$, e dizemos que $n \times m$ é a ordem da matriz, onde n e m representam, respectivamente, o número de linhas e o número de colunas da matriz A;
- Para simplificar a comunicação, sempre nos referimos aos elementos de uma matriz fazendo referência a uma linha e coluna;
 - Em notação matemática, as linhas e colunas são enumeradas a partir do 1. Na maior parte das linguagens de programação, no entanto, vetores e matrizes são indexados a partir do 0;
 - Usamos os números da linha e da coluna como índices subscritos: e.g. na matriz A, abaixo, o elemento $\begin{bmatrix} A \end{bmatrix}_{1,2} = a_{1,2} = 2\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

Uma matriz é dita quadrada quando suas dimensões (n,m) forem coincidentes - isto é, n=m:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Uma matriz é dita diagonal quando todos os elementos de índices não coincidentes são iguais a zero: $(a_{ij}=0 \ \forall i\neq j)[1\leq i\leq n \ \land \ 1\leq j\leq m]$

$$A = \begin{bmatrix} a_{1,1} & 0 \\ 0 & a_{2,2} \end{bmatrix}$$

A matriz quadrada e diagonal em que todo elemento diagonal é igual a 1 é chamada de matriz identidade I, pois: AI = A;

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Uma matriz transposta de uma matriz $A_{n \times m}$ é a matriz $A_{m \times n}^{\mathsf{T}}$ em que $a_{i,j}^{\mathsf{T}} = a_{j,i}^{\mathsf{T}}$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \qquad A^{\mathsf{T}} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$$

Uma matriz A é dita simétrica se $A = A^{\mathsf{T}}$. Toda matriz diagonal, incluindo a matriz de identidade, é uma matriz simétrica.

$$A = \begin{bmatrix} a_{1,1} & 0 \\ 0 & a_{2,2} \end{bmatrix} \qquad A^{\mathsf{T}} = \begin{bmatrix} a_{1,1} & 0 \\ 0 & a_{2,2} \end{bmatrix} \qquad I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- Uma matriz quadrada é dita invertível (ou não singular) quando existe uma matriz A^{-1} tal que $AA^{-1}=I$ e $A^{-1}A=I$
 - □ A inversa da identidade é, por definição, a própria identidade: *II=I*
- Se uma matriz é invertível, então sua inversa é única;
- A inversa de uma matriz invertível também é invertível, sendo a inversa da inversa igual à original: $(A^{-1})^{-1}=A$;
- A transposta de uma matriz invertível também é invertível, e a inversa da transposta é a transposta da inversa: $(A^T)^{-1} = (A^{-1})^T$;
- A inversa de uma matriz multiplicada por um escalar equivale ao inverso do escalar multiplicado pela inversa da matriz: $(cA)^{-1}=c^{-1}A^{-1}$;

Operações com matrizes

- Matrizes podem representar relações entre conjuntos. Também podem representar transformações lineares (e.g. rotações num espaço vetorial);
 - Dessa forma, assim como no caso das funções, as composições lineares de adição/subtração e multiplicação estão definidas;
 - A validade dessas operações está restrita, no entanto, à coincidência de formatos (o valor atribuído às dimensões) das matrizes assim como a validade das composições de funções está restrita pela coincidência de domínios e contradomínios:
- A soma/subtração entre duas matrizes está definida entre matrizes com os mesmos formatos (mesmos valores para ambas dimensões).
- A multiplicação entre matrizes está definida entre matrizes em que o número de colunas do operando à esquerda corresponda ao número de linhas no operando à direita.

Operações com matrizes: soma

A soma/subtração corresponde à soma/subtração realizada elemento a elemento: $[A \pm B]_{ij} = [A]_{ij} \pm [B]_{ij}$ onde $1 \le i \le n$ e $1 \le j \le m$.

$$\begin{bmatrix} 1 & 3 & 1 \\ 1 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 5 \\ 7 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1+0 & 3+0 & 1+5 \\ 1+7 & 0+5 & 0+0 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 6 \\ 8 & 5 & 0 \end{bmatrix}$$

- O escalonamento, ou multiplicação por um escalar, corresponde à multiplicação de cada elemento da matriz por aquele escalar: $[cA]_{i,j} = ca_{i,j}$
 - Note que a multiplicação de uma matriz por um escalar corresponde a um caso particular de soma: $cA = \sum_{r=1}^{\infty} A^r$

$$2\begin{bmatrix} 1 & 8 & -3 \\ 4 & -2 & 5 \end{bmatrix} = \begin{bmatrix} 2 \times 1 & 2 \times 8 & 2 \times -3 \\ 2 \times 4 & 2 \times -2 & 2 \times 5 \end{bmatrix} = \begin{bmatrix} 2 & 16 & -6 \\ 8 & -4 & 10 \end{bmatrix}$$

Operações com matrizes: multiplicação

Sejam $A_{n \times m}$ e $B_{m \times p}$ matrizes de dimensões (n,m) e (m,p). A multiplicação entre A e B corresponde à matriz de dimensões (n,p) cujos elementos são definidos pelo produto interno de cada linha de A pela coluna de mesmo índice em B.

$$[AB]_{i,j} = a_{i,1}b_{1,j} + \dots + a_{i,m}b_{m,j} = \sum_{r=1\dots m} (a_{i,r}b_{r,j}) \qquad B = b_{11} b_{12} b_{13} b_{21} b_{22} b_{23}$$
Onde $1 \le i \le n$ e $1 \le j \le p$.
$$A = a_{11} a_{12} a_{22} a_{21} a_{22} a_{21} a_{22} a_{31} a_{32} a_{31}b_{13} + a_{32}b_{23}$$

Operações com matrizes: multiplicação

- \Box Por sua definição, a multiplicação de matrizes não é comutativa: $AB \neq BA$
 - \Box A comutatividade está definida apenas entre uma matriz quadrada e sua inversa, quando essa existir: $AA^{-1} = A^{-1}A$
- \blacksquare A multiplicação de matrizes, no entanto, é associativa, assim: A(BC) = (AB)C
- \Box A multiplicação de matrizes também é distributiva, pois: A(B+C)=AB+AC

Determinante

- Determinantes são propriedades de matrizes quadradas Uma função é considerada monótona s;
 - Numa matrix $A_{1\times 1}$, o determinante é definido com o valor de seu único elemento, $|A_{1\times 1}|=a_{1\cdot 1}$
 - $\ \square$ Numa matrix $A_{2\times 2}$, o determinante pode ser calculado como:

$$|A_{2\times 2}| = a_{1,1}a_{2,2} - a_{1,2}a_{2,1}$$

 \Box Numa matrix $A_{3\times3}$,

$$|A_{3\times 3}| = a_{1,1}a_{2,2}a_{3,3} + a_{1,2}a_{2,3}a_{3,1} + a_{1,3}a_{2,1}a_{3,2} - (a_{1,1}a_{2,3}a_{3,2} + a_{1,2}a_{2,1}a_{3,3} + a_{1,3}a_{2,2}a_{3,1})$$

- Para qualquer ordem igual ou superior a 2, para um j fixo qualquer, $|A_{n\times n}| = \sum_{i=1..n} a_{i,j} C_{i,j}$
 - $C_{i,j}$ é o complemento algébrico, ou cofator, do elemento $a_{i,j}$ em A, e é calculado por $C_{i,j}$ =(-1)^{i+j} $|A_{-(i,j)}|$
 - \Box E $A_{-(i,i)}$ é a matriz que se obtém retirando da matriz original A a linha i e a coluna j

Determinante

- \Box O determinante da matriz identidade é igual a 1: |I|=1
- O determinante de uma matriz é sempre igual ao determinante de sua transposta: $|A|=|A^T|$
- \Box Se uma matriz quadrada é invertível, então $|A^{-1}| = 1/|A|$
- Determinantes são utilizado em diversas aplicações: na solução de sistemas de equações lineares, em processos de otimização (determinação de máximo e mínimos locais ou globais), no teste de alinhamento entre pontos em um hiperplano, na determinação de campos elétricos e eletromagnéticos, etc.

Dúvidas?

