HW 9: page 203 - 205, #1, 2, 3(a)(c)(e)(g), 7(c), 13, 16, 18, 19

Exercise 1

Let: $f: D \longrightarrow \mathbb{R}$ and $c \in D'$

Mark each statement True or False. Justify each answer.

a. $\lim_{x\to c} f(x) = L$ iff $\forall \epsilon > 0, \exists a \delta > 0$ st $|f(x) - L| < \epsilon$ whenever $x \in D$ and $|x - c| < \delta$

False. Can't figure out why exactly, but I know there's a case where x=c (and thus, $0<\delta$) that makes it not true.

b. $\lim_{\substack{x \to c \\ \subset V}} f(x) = L$ iff for every deleted neighborhood U of c, there exists a neighborhood V of L st $f(U \cap D)$

True, by Theorem 5.1.2 (since it's iff).

- c. $\lim_{x\to c} f(x) = L$ iff for every sequence $\{s_n\}$ in D that converges to c with $s_n \neq c \,\forall n$, the sequence $\{f(s_n)\}$ converges to L.
- d. If f does not have a limit at c, then \exists a sequence $\{s_n\}$ in D with each $s_n \neq c$ st $\{s_n\}$ converges to c, but $\{f(s_n)\}$ is divergent.

Exercise 2

Let: $f: D \longrightarrow \mathbb{R}$ and $c \in D'$

Mark each statement True or False. Justify each answer.

- a. For any polynomial P and any $c\in\mathbb{R}$, $\lim_{x\to c}P(x)=P(c)$
- b. For any polynomials P and Q, and any $c \in \mathbb{R}$,

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$$

- c. In evaluating $\lim_{x\to a^-} f(x)$ we only consider points that are greater than a.
- d. If f is defined in a deleted neighborhood of c, then $\lim_{x\to c} f(x) = L$ iff $\lim_{x\to c+} f(x) = \lim_{x\to c-} f(x) = L$

Exercise 3(a)(c)(e)(g)

Determine the following limits:

a.
$$\lim_{x \to 1} \frac{3x^2 + 5}{x^3 + 1}$$

b.
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

c.
$$\lim_{x \to 0} \frac{x^2 + 5x}{x^2 - 2}$$

d.
$$\lim_{x \to 0-} \frac{4x}{|x|}$$

Exercise 7(c)

Find the following limit and prove your answer.

 $\lim_{x\to c} \sqrt{x}$, where $c \geq 0$

Exercise 13

Let f, g, and h be functions from D into \mathbb{R} , and let $c \in D'$

Assume: $f(x) \le g(x) \le h(x) \ \forall \ x \in D \ with \ x \ne c \ \textbf{Assume:} \lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$

Prove that $\lim_{x\to c} g(x) = L$

Exercise 16

Let: $f: D \longrightarrow \mathbb{R} \text{ and } c \in D'$

Assume: $\lim f(x) > 0$

Prove that \exists a deleted neighborhood U of c st $f(x) > 0 \ \forall \ x \in (U \cap D)$

Exercise 18

Let: $f: D \longrightarrow \mathbb{R}$ and $c \in D'$

Assume: f has a limit at c Prove that f is bounded on a neighborhood of c. That is, prove that \exists a neighborhood U of c and a real number M st $|f(x)| \le M \ \forall \ x \in (U \cap D)$

Exercise 19

Assume: $f: \mathbb{R} \longrightarrow \mathbb{R}$ is a function st $f(x + y) = f(x) + f(y) \ \forall \ x, y \in \mathbb{R}$

Prove that f has a limit at 0 iff f has a limit at every point $c \in \mathbb{R}$