

Prof. Luciano L. Caimi lcaimi@uffs.edu.br

O número é um conceito abstrato que representa a idéia de quantidade.

Um Sistema de Numeração (SN) é o conjunto de símbolos utilizados para a representação de quantidades e as regras que definem a forma de representação. Os SN podem ser:

- Não posicional
- Posicional

▶ Sistema de Numeração Não Posicional

Cada símbolo representa um valor fixo, independente de sua posição relativa ao número.

Exemplo: sistema de algarismos romanos.

Símbolos: I, V, X, L, C, D, M.

Regras:

- Cada símbolo colocado à direita de um maior é adicionado a este.
- Cada símbolo colocado à esquerda de um maior tem o seu valor subtraído do maior.

- Sistema de Numeração Posicional
- O valor de cada símbolo é determinado de acordo com a sua posição no número.
 - Um sistema de numeração é determinado fundamentalmente pela BASE, que indica a quantidade de símbolos e o valor de cada símbolo.
- Todos os sistemas posicionais, independen-te da BASE, possuem as mesmas regras de formação, contagem e operações aritméticas básicas.

▶ Teorema Fundamental da Numeração

O teorema fundamental da numeração expressa a característica principal dos sistemas posicionais:

$$N^{o} = \sum_{i=-d}^{n} (digito)_{i} * (base)^{i}$$

expandindo
... $+a_{3*B^{3}+a_{2*B^{2}+a_{1*B^{1}+a_{0*B^{0}+a_{-1*B^{-1}+...}}}}$

Onde:

i = posição em relação à vírgula, d = nº de dígitos à direita da vírgula, n = nº de dígitos à esquerda da vírgula –1, dígito = cada um símbolos dos que compõem o número.

UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

▶ Teorema Fundamental da Numeração

O valor total do número é a soma dos valores relativos de cada algarismo (decimal).

735=700+30+5

O algarismo 5 representa 5 unidades, o algarismo 3 representa 3 dezenas, e por último que o algarismo 7 representa 7 centenas ...

573=500+70+3

Já no 2º exemplo é diferente

Base Decimal: 10 símbolos

Elementos: 0,1,2,3,4,5,6,7,8,9

Contagem:

```
..00
```

..03

..01 "encheu a casa menos significativa:

..02 réinicia a contagem nesta casa e

usa o próximo símbolo na casa a sua

..04 / esquerda"

..05 /assim: ..10 ..20 / ..100

..06 / ...11 ...21

...07

..08 / ...19 ...99

tiva: e sa a sua

Esta "regra" é válida

independente da

base de numeração

utilizada

...09 UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

Base Decimal

cada casa decimal possui um peso 10 vezes maior do que a casa a sua direita

Considerando um número com N dígitos (ou casas) teremos capacidade de representar

B^N valores diferentes (onde B é a base de numeração).

Para 3 dígitos decimais teremos:

 $10^3 = 1000 \text{ valores}$

Base Decimal

O maior valor a ser representado com N dígitos será:

B^N -1 (onde B é a base de numeração).

Para 3 dígitos decimais teremos:

$$10^3 - 1 = 999$$

Considerando o maior símbolo possível

Base Decimal:

Adição: quando a soma em uma determinada casa excede o maior símbolo da base, devemos deixar o excedente e levar o peso da base para a casa mais a esquerda valendo 1.

UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

Base Decimal:

Subtração: quando uma determinada casa necessita "pedir emprestado" a casa a sua esquerda fica com um a menos e a casa solicitante recebe o peso da base (10).

Exemplo:

Base Binária: 2 símbolos

Elementos: 0,1

Contagem:

```
.000 "encheu a casa menos significativa:
.001 reinicia a contagem nesta casa e
.010 usa o próximo símbolo na casa a sua
.011 esquerda"
.100
.101
.111
```

1000 UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

Base Binária

- Cada casa ou dígito binário é chamado de bit (do inglês Binary Digit)
- Um agrupamento de 8 bits é chamado de Byte
- Pelo T.F.N. cada casa binária possui um peso 2 vezes maior do que a casa a sua direita

Com n bits podemos representar: $B^n \Rightarrow 2^n$

Para 3 casas binárias (ou 3 bits) teremos:

$$2^3 = 8$$
 valores

O maior valor a ser representado com N dígitos será: B^N -1

Para 5 bits teremos:

$$2^5 - 1 = 31$$

Considerando o maior símbolo possível:

1	1	1	1	1

Base Binária:

Adição: quando a soma em uma determinada casa excede o maior símbolo da base, devemos deixar o excedente e levar o peso da base para a casa mais a esquerda valendo 1.

Exemplo:

Base Binária:

Subtração: quando uma determinada casa necessita "pedir emprestado" a casa a sua esquerda fica com um a menos e a casa solicitante recebe o peso da base(2).

Exemplo:

Considerando o peso de cada casa teremos:

2 ⁰ = 1	$2^{10} = 1024 = 1K$	$2^{20} = 1024K = 1M$
$2^1 = 2$	$2^{11} = 2048 = 2K$	$2^{21} = 2048K = 2M$
$2^2 = 4$	$2^{12} = 4096 = 4K$	2 ²² = 4096K = 4M
$2^3 = 8$	$2^{13} = 8192 = 8K$	$2^{23} = 8M$
24 = 16	$2^{14} = 16K$	2 ²⁴ = 16M
$2^5 = 32$	$2^{15} = 32K$	$2^{25} = 32M$
$2^6 = 64$	$2^{16} = 64K$	$2^{26} = 64M$
$2^7 = 128$	$2^{17} = 128K$	$2^{27} = 128M$
$2^8 = 256$	$2^{18} = 256K$	$2^{28} = 256M$
$2^9 = 512$	$2^{19} = 512K$	2 ²⁹ = 512M

Para valores entre 2³⁰ e 2³⁹: Giga

Para valores entre 240 e 249: Tera

Exemplos de conversão

- Considerando que 1 byte é um agrupamento de 8 bits teremos:
- a) 56 bits = ? Bytes \Rightarrow 56/8 Bytes = 7 Bytes
- b)9 Bytes = ? bits \Rightarrow 9 x 8 bits = 72 bits
- c) 32KBytes = ? bits \Rightarrow 32 * 8 Kbits
 - ⇒ 256 * 1024 bits
 - ⇒ 262144 bits
- d) 131072Kbits = ? MBytes \Rightarrow 131072/8 KBytes
 - \Rightarrow 16384 / 1024 KB
 - ⇒ 16 MBytes

Base Octal: 8 símbolos

Elementos: 0,1,2,3,4,5,6,7

Contagem:

```
..00
          "encheu a casa menos significativa:
..01
..02
          réinicia a contagem nesta casa e
            usa o próximo símbolo na casa a sua
..03
..04
            esquerda"
        assim: ..10
..05
                         ..20
                                    ..100
..06
                ..11
..07
```

cada casa octal possui um peso 8 vezes maior do que a casa a sua direita

Considerando um número com N dígitos (ou casas) teremos capacidade de representar

B^N valores diferentes (onde B é a base de numeração).

Para 3 dígitos octais teremos:

 $8^3 = 512 \text{ valores}$

O maior valor a ser representado com N dígitos será:

B^N -1 (onde B é a base de numeração).

Para 4 dígitos octais teremos:

$$8^4 - 1 = 4095$$

Considerando o maior símbolo possível

Base Octal:

Adição: Quando a soma em uma determinada casa excede o maior símbolo da base, devemos deixar o excedente e levar o peso da base para a casa mais a esquerda valendo 1.

Exemplo:

Base Binária:

Subtração: quando uma determinada casa necessita "pedir emprestado" a casa a sua esquerda fica com um a menos e a casa solicitante recebe o peso da base(8).

Exemplo:

Base Hexadecimal: 16 símbolos

Elementos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Contagem:

UFFS – Universidade Federal da Fronteira Sul – Circuitos Digitais

cada casa hexadecimal possui um peso 16 vezes maior do que a casa a sua direita

Considerando um número com N dígitos (ou casas) teremos capacidade de representar

B^N valores diferentes (onde B é a base de numeração).

Para 3 dígitos hexadecimais teremos:

 $16^3 = 4096 \text{ valores}$

O maior valor a ser representado com N dígitos será:

B^N -1 (onde B é a base de numeração).

Para 4 dígitos hexa, teremos:

Considerando o maior símbolo possível

Base Hexadecimal:

Adição: Quando a soma em uma determinada casa excede o maior símbolo da base, devemos deixar o excedente e levar o peso da base para a casa mais a esquerda valendo 1.

Base Hexadecimal:

Subtração: quando uma determinada casa necessita "pedir emprestado" a casa a sua esquerda fica com um a menos e a casa solicitante recebe o peso da base (16).

Exemplo:

Conversão entre Bases

São 4 técnicas básicas

Base Origem	Base Destino	Técnica
Base Qualquer –	→ Decimal	Teorema Fundamental da Numeração
Decimal → I	Base Qualquer	Divisões Sucessivas
Octal/Hexa →	Binário	Substituir de 3 em 3 / 4 em 4
Binário → (Octal/Hexa	Agrupar de 3 em 3 / 4 em 4 e substituir

Conversão entre Bases

São 4 técnicas básicas

UFFS - Universidade Federal da Fronteira Sul - Circuitos Digitais

Codificação de Números Decimais

Código BCD (Binary Coding Decimal)

O código BCD é um sistema de representação dos dígitos decimais desde 0 até 9 com um código binário de 4 bits. Esse código BCD usa o sistema de pesos posicionais 8421 do código binário puro.

Apesar de usar 4 bits existem apenas dez códigos válidos. Os números binários de 4 bits representando os números decimais desde 10 até 15 são inválidos no sistema BCD.

Ex: 238 = 001000111000

Decimal	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Código excesso 3

Características

- valor binário + 3
- mantém faixa central de valores

Ex:

691 = 100111000100

Decimal	Excesso 3
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

Código Johnson

Características

 variação de 1 bit de um código para o seguinte

Ex: 417 = 011110000111100

Johnson
00000
00001
00011
00111
01111
11111
11110
11100
11000
10000

Códigos 2 em 5

Características

- Grupo de códigos onde 2 entre 5 dígitos recebem o valor 1
- Cada posição tem um peso associado
- O zero tem codificação especial

Ex: 804 = 001010110001010

= 100101100001001

Código	2 em 5	
Decimal	01236	74210
0	01100	11000
1	11000	00011
2	10100	00101
3	10010	00110
4	01010	01001
5	00110	01010
6	10001	01100
7	01001	10001
8	00101	10010
9	00011	10100

Código GRAY

Características

- Palavras adjacentes variam apenas 1 bit
- Cíclico
- Refletido
- Bit mais significativo é igual ao código binário natural

Conversão Gray → Binário??

Conversão Binário → Gray???

Decimal	GRAY
0	0000
1	0001
2	0011
3	0010
4	0110
5	0111
6	0101
7	0100
8	1101
9	1001
10	1111
11	1110
•••	