

The INFDEV Team @ HR

Reasoning on programs

The INFDEV Team @ HR

Hogeschool Rotterdam Rotterdam, Netherlands

Introduction

Reasoning on programs

The INFDEV Team @ HR

Lecture topics

- We introduce conditional expressions
- We show how to verify properties on complex expressions

Conditional expressions

Reasoning on programs

The INFDEV Team @ HR

Conditional expressions

- Sometimes we can make decisions within an expression
- ullet The general form is VALUE if CONDITION else VALUE' $(if_{VCV'})$
- If the condition is true, then we return VALUE, otherwise VALUE,

$$\begin{cases} \left(PC,S\right) \overset{if_{V} \subseteq V'}{\to} V & when & \left(PC,S\right) \overset{C}{\to} TRUE \\ \left(PC,S\right) \overset{if_{V} \subseteq V'}{\to} V' & when & \left(PC,S\right) \overset{C}{\to} FALSE \end{cases}$$

Conditional expressions

Reasoning on programs

The INFDEV Team @ HR

Conditional expressions

- "adult" if age >= 18 else "minor" = ?
- Can you guess the results for age = 18 and age = 16?

Conditional expressions

Reasoning on programs

The INFDEV Team @ HR

Conditional expressions

- "adult" if age >= 18 else "minor" = ?
- Can you guess the results for age = 18 and age = 16?
- age = 16: "minor"
- age = 18: "adult"

Reasoning on programs

The INFDEV Team @ HR

- Sometimes we do not know exactly the values of all variables at all times
- The program may be too complex to allow it

The INFDEV Team @ HR Consider a throttle control system.

The throttle may never go under 1000RPM, or the engine stops and everybody dies.

The temperature must be kept under control, or the engine blows up and everybody dies.

```
throttle = throttle - 1000 if (temp > 350.0) & (
throttle > 2500) else throttle
```

The question thus is: **could the code above cause everyone to die?**

The INFDEV Team @ HR

throttle	temp
100010000	-20.0400.0

The INFDEV Team @ HR

throttle	temp
100010000	-20.0400.0

1

throttle	temp
?!?!?	-20.0400.0

Reasoning on programs

The INFDEV Team @ HR

- We cannot list all possible combinations of variable values
- We cannot just "hope it works"

Reasoning on programs

The INFDEV Team @ HR

- We cannot list all possible combinations of variable values
- We cannot just "hope it works"
- We can reason in terms of conditions on variables

Reasoning on programs

The INFDEV Team @ HR

- We partition the state based on the conditional
- (temp > 350.0) & (throttle > 2500) generates four states
 - temp > 350 and throttle > 2500
 - temp <= 350 and throttle > 2500
 - temp > 350 and throttle <= 2500
 - temp <= 350 and throttle <= 2500
- We study the semantics on each of these four states

The INFDEV Team @ HR temp > 350 and throttle > 2500

throttle	temp
>2500.010000	>350.0400.0

The INFDEV Team @ HR temp > 350 and throttle > 2500

throttle	temp
>2500.0 10000	>350.0400.0

throttle	temp
>1500.09000.0	>350.0400.0

The INFDEV Team @ HR

temp
$$\leq$$
 350 and throttle $>$ 2500

throttle	temp
>2500.010000	-20.0350.0

```
throttle = throttle - 1000 if (temp > 350.0) & ( throttle > 2500) else throttle
```


The INFDEV Team @ HR

temp
$$\leq$$
 350 and throttle > 2500

throttle	temp
>2500.010000	-20.0350.0

throttle	temp
>2500.010000.0	-20.0350.0

The INFDEV Team @ HR temp > 350 and throttle <= 2500

throttle	temp
1000>2500.0	>350400.0

Reasoning on programs

The INFDEV

Team @ HR

temp > 350 and throttle <= 2500

throttle	temp
1000>2500.0	>350400.0

throttle	temp
1000>2500.0	>350400.0

The INFDEV Team @ HR

temp <=
$$350$$
 and throttle <= 2500

throttle	temp
1000>2500.0	-20.0350.0

```
throttle = throttle - 1000 if (temp > 350.0) & (
   throttle > 2500) else throttle
```


The INFDEV Team @ HR

temp
$$<=$$
 350 and throttle $<=$ 2500

throttle	temp
1000>2500.0	-20.0350.0

throttle	temp
1000>2500.0	-20.0350.0

Reasoning on programs

The INFDEV Team @ HR

- Each of the four states has a result
- We now merge the results

Reasoning on programs

The INFDEV
Team @ HR

We now merge these states, knowing that each of them may actually happen:

throttle	temp
>1500.09000.0	>350.0400.0
>2500.010000.0	-20.0350.0
1000.0>2500.0	>350400.0
1000.0>2500.0	-20.0350.0

Reasoning on programs

The INFDEV
Team @ HR

We now merge these states, knowing that each of them may actually happen:

throttle	temp
>1500.09000.0	>350.0400.0
>2500.010000.0	-20.0350.0
1000.0>2500.0	>350400.0
1000.0>2500.0	-20.0350.0

throttle	temp
1000.010000.0	-20.0400.0

We know that the throttle will never go below 1500RPM, and we also know that if the temperature is above 350 degrees then maximum throttle is never above 9000RPM.

Conclusion?

Reasoning on programs

The INFDEV Team @ HR

Nobody dies:)

This is it!

Reasoning on programs

The INFDEV Team @ HR

The best of luck, and thanks for the attention!