Math 415 - Lecture 33

Diagonalization

Monday November 16th 2015

Textbook reading: Chapter 5.2

Suggested practice exercises: Chapter 5.2: 1, 2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19, 20, 25, 26, 29, 30, 31, 32, 33

Strang lecture: Lecture 22: Diagonalization and powers of A

1 Review

- Eigenvector equation: $A\mathbf{x} = \lambda \mathbf{x} \iff (A \lambda I)\mathbf{x} = \mathbf{0}$ λ is an eigenvalue of $A \iff \det(A \lambda I) = 0$.

 Characteristic polynomial
- An $n \times n$ matrix A has up to n eigenvectors for λ .
 - The **eigenspace** of λ is $Nul(A \lambda I)$.
 - If λ has **multiplicity** m, then A has up to m (independent) eigenvectors for λ . At least one eigenvector is guaranteed (because $\det(A \lambda I) = 0$).
 - An **Eigenbasis** for an $n \times n$ matrix A is a basis $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ of \mathbb{R}^n so that each $\mathbf{v_i}$ is also an eigenvector: $A\mathbf{v_i} = \lambda_i \mathbf{v_i}$.
- Test yourself! What are the eigenvectors and eigenvalues? Is there an eigen basis?
 - $-\begin{bmatrix}1&0\\0&1\end{bmatrix}$, $\lambda=1,1$ (i.e. multiplicity 2), eigenspace is \mathbb{R}^2 . Any basis is eigen basis.
 - $-\begin{bmatrix}0&0\\0&0\end{bmatrix},\,\lambda=0,0,$ eigenspace is $\mathbb{R}^2.$ Again any basis is an eigenbasis.

These are trivial cases. Is there always an eigenbasis?

Example 1. To solve $A\mathbf{x} = \mathbf{b}$ we use row operations. If we want to find eigenvectors, $A\mathbf{x} = \lambda \mathbf{x}$, can we also use row operations? Try $A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$.

- What is the echelon form U of A?
- What are the characteristic polynomials $\det(A \lambda I)$ and $\det(U \lambda I)$? Roots?
- \bullet Do A and U have the same eigenvalues? Eigenvectors?

Solution. • If
$$A = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$$
 then $U = \begin{bmatrix} 1 & 1 \\ 0 & -4 \end{bmatrix}$.

- Then $\det(A \lambda I) = \lambda^2 \operatorname{Tr}(A)\lambda + \det(A) = \lambda^2 0\lambda + (-4) = \lambda^2 4 = (\lambda 2)(\lambda + 2)$, and $\det(U \lambda I) = \lambda^2 \operatorname{Tr}(U)\lambda + \det(U) = \lambda^2 3\lambda + (-4) = (\lambda 1)(\lambda + 4)$.
- So the eigenvalues of A and U are **DIFFERENT!**. Can check that eigenvectors are also different.

Upshot: **Don't use row operations to deal with eigenvalues and eigenvectors!** (Can use row operations to calculate determinants, though.)

Example 2. Find the eigenvectors and eigenvalues of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. What is the trouble?

Solution. •
$$\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{vmatrix} = (1 - \lambda)^2$$
 So: $\lambda = 1$ is the only eigenvalue (it has multiplicity 2).

- $\lambda = 1 : \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} = \mathbf{0} \implies \mathbf{x}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ So the eigenspace is Span $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$. Only dimension 1!
- Trouble: We can not find an **Eigenbasis** for this matrix. This kind of problem cannot really be fixed. We have to lower our expectations and look for generalized eigenvectors. These are solutions to $(A \lambda I)^2 \mathbf{x} = \mathbf{0}, (A \lambda I)^3 \mathbf{x} = \mathbf{0}, \dots$

2 Diagonalization

2.1 Powers of diagonal matrices

Diagonal matrices are very easy to work with.

Example 3. Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
. What is A^2 ? What is A^{100} ?

Solution.
$$A^2 = \begin{bmatrix} 2^2 & 0 & 0 \\ 0 & 3^2 & 0 \\ 0 & 0 & 4^2 \end{bmatrix}$$
 and $A^{100} = \begin{bmatrix} 2^{100} & 0 & 0 \\ 0 & 3^{100} & 0 \\ 0 & 0 & 4^{100} \end{bmatrix}$.

2.2 Powers of generic matrices

Example 4. If
$$A = \begin{bmatrix} 6 & -1 \\ 2 & 3 \end{bmatrix}$$
, then $A^{100} = ?$

Solution. • characteristic polynomial: $\begin{vmatrix} 6 - \lambda & -1 \\ 2 & 3 - \lambda \end{vmatrix} = \cdots = (\lambda - 4)(\lambda - 5)$

$$-\lambda_1 = 4: \begin{bmatrix} 2 & -1 \\ 2 & -1 \end{bmatrix} \mathbf{v} = \mathbf{0} \implies \text{eigenvector } \mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

$$-\lambda_2 = 5: \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \mathbf{v} = \mathbf{0} \implies \text{eigenvector } \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

• Key observation: $A^{100}\mathbf{v}_1 = \lambda_1^{100}\mathbf{v}_1$ and $A^{100}\mathbf{v}_2 = \lambda_2^{100}\mathbf{v}_2$. For A^{100} , we need $A^{100}\begin{bmatrix}1\\0\end{bmatrix}$ and $A^{100}\begin{bmatrix}0\\1\end{bmatrix}$.

•
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = -\begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2\begin{bmatrix} 1 \\ 1 \end{bmatrix} \implies$$

$$A^{100} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = A^{100} \left(-\begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2\begin{bmatrix} 1 \\ 1 \end{bmatrix} \right) = -4^{100} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2 \cdot 5^{100} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\implies A^{100} = \begin{bmatrix} 2 \cdot 5^{100} - 4^{100} & * \\ 2 \cdot 5^{100} - 2 \cdot 4^{100} & * \end{bmatrix}$$

 \bullet We find the second column of A^{100} likewise. Left as exercise!

The key idea of previous example is to work with respect to an *Eigenbasis*, a basis given by eigenvectors.

• Put the eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ as columns into a matrix P.

$$A\mathbf{x}_{i} = \lambda \mathbf{x}_{i} \implies A \begin{bmatrix} | & & | \\ \mathbf{x}_{1} & \cdots & \mathbf{x}_{n} \\ | & & | \end{bmatrix} = \begin{bmatrix} | & & | \\ \lambda_{1}\mathbf{x}_{1} & \cdots & \lambda_{n}\mathbf{x}_{n} \\ | & & | \end{bmatrix}$$
$$= \begin{bmatrix} | & & | \\ \mathbf{x}_{1} & \cdots & \mathbf{x}_{n} \\ | & & | \end{bmatrix} \begin{bmatrix} \lambda_{1} & & & \\ & \ddots & & \\ & & & \lambda_{n} \end{bmatrix}$$

• In summary AP = PD. Such a diagonalization is possible if and only if A has enough eigenvectors.

So we are going to use eigenvalues and eigenvectors for A to factor A and A^{100} in a useful way. This is called diagonalization.

Definition. A square matrix A is said to be **diagonalizable** if there is a invertible matrix P and a diagonal matrix D such that

$$A = PDP^{-1}$$
.

Theorem 1. An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

We can express the relation between A and D in terms of change of base matrices.

in standard basis

$$\uparrow P \\
\downarrow P^{-1} \\
\downarrow P \\
\downarrow P$$

$$D = P^{-1}AP, A = PDP^{-1}$$

P changes from eigenbasis coordinates to standard coordinates, and P^{-1} goes the other way! Let \mathcal{E} be the standard basis of \mathbb{R}^n and \mathcal{B} the basis of eigenvectors of A, then

$$P = I_{\mathcal{E},\mathcal{B}}$$
 and $P^{-1} = I_{\mathcal{B},\mathcal{E}}$.

3 Application: Large powers

If A has an eigenbasis, then we can raise it to large powers easily!

Theorem 5. If $A = PDP^{-1}$, where D is a diagonal matrix, then for any m,

$$A^m = PD^mP^{-1}$$

Proof.

$$\begin{split} A &= PDP^{-1} \\ A^m &= (PDP^{-1})^m \\ &= (PDP^{-1}) \cdot (PDP^{-1}) \cdot \cdots (PDP^{-1}) \\ &= (PD)(P^{-1} \cdot P)(DP^{-1}) \cdots (PDP^{-1}) \\ &= PD \cdot DP^{-1} \cdots PDP^{-1} \\ &= PD \cdot D \cdots D \cdot P^{-1} \\ &= PD^m P^{-1} \end{split}$$

Only the outside P and P^{-1} remain!

Finding D^m is easy!

$$D^{m} = \begin{bmatrix} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{bmatrix}^{m} = \begin{bmatrix} (\lambda_{1})^{m} & & \\ & \ddots & \\ & & (\lambda_{n})^{m} \end{bmatrix}$$

Why?

Example 6. Let
$$A = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 1 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$
. A has eigenvectors and eigenvalues

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad \text{with} \quad \lambda_1 = \frac{1}{2}$$

$$\mathbf{x}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad \text{with} \quad \lambda_2 = 1$$

$$\mathbf{x}_3 = \begin{bmatrix} 0 \\ 6 \\ 1 \end{bmatrix} \quad \text{with} \quad \lambda_3 = 2$$

Find A^{100} . Hint: Write $A = PDP^{-1}$.

Solution. Eigenvectors of A form an Eigenbasis! So we can write $A = PDP^{-1}$:

Matrix of eigenvectors
$$P = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 6 \\ 0 & 0 & 1 \end{bmatrix}$$

Find P^{-1}

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 6 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R2 \leadsto R2 - R1} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 6 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R2 \leadsto R2 - 6R3} \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -1 & 1 & -6 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$P^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -6 \\ 0 & 0 & 1 \end{bmatrix}$$

Eigenvectors of A form a Eigenbasis! So we can write $A = PDP^{-1}$:

Matrix of eigenvalues:
$$D = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Finally, write $A = PDP^{-1}$:

$$\underbrace{\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 1 & 6 \\ 0 & 0 & 2 \end{bmatrix}}_{A} = \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 6 \\ 0 & 0 & 1 \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}}_{D} \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -6 \\ 0 & 0 & 1 \end{bmatrix}}_{P^{-1}}$$

Take power

$$\begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 1 & 6 \\ 0 & 0 & 2 \end{bmatrix}^{100} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}^{100} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -6 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 6 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2^{100}} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2^{100} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & -6 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2^{100}} & 0 & 0 \\ (\frac{1}{2^{100}} - 1) & 1 & (6 \cdot 2^{100} - 6) \\ 0 & 0 & 2^{100} \end{bmatrix}$$