Final Exam

Andrew Tindall Algebraic Geometry

April 25, 2020

Problem 1. State the following:

(a) Definitions of a ringed space and abstract variety.

Proof. A ringed space is a pair (X, \mathcal{O}_X) of a topological space X, along with a sheaf of rings \mathcal{O}_X on X. More precisely, a sheaf of rings on a space is a correspondence $U \mapsto \mathcal{O}_X$ of a ring - usually assumed commutative - for each open set U of X, along with, for each inclusion $V \subset U$ of open sets, a (commutative) ring homomorphism $\rho_{U,V} : \mathcal{O}_U \to \mathcal{O}_V$. The maps must satisfy the following property: for any chain $W \subset V \subset U$ of open sets of X,

$$\rho_{W,V} \circ \varphi_{V,U} \equiv \rho_{W,U}$$
.

We usually write $\rho_{U,V}(f) = f|_V$. The above requirements make \mathcal{O}_X a presheaf. Sheafness is accomplished by the following requirement:

Take any open covering $\bigcup_i U_i = U$ of an open set. If we have a family of elements $f_i \in \mathcal{O}_{U_i}$ such that $f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j}$, then there exists a unique $f \in \mathcal{O}_U$ such that $f|_{U_i} = f_i$ for all i.

A morphism of ringed spaces is a continuous map $\varphi: X \to Y$ and, for each open set V of Y, a map $\varphi(V)\mathcal{O}_{Y,V} \to \mathcal{O}_{X,\varphi^{-1}(V)}$, such that, for any $U \subset V$ of Y, the following square commutes:

$$\mathcal{O}_{Y,V} \xrightarrow{\varphi^*(V)} \mathcal{O}_{X,\varphi^{-1}(V)}
\downarrow^{\rho_{V,U}} \qquad \qquad \downarrow^{\rho_{\varphi^{-1}(V),\varphi^{-1}(U)}}
\mathcal{O}_{Y,U} \xrightarrow{\varphi^*(U)} \mathcal{O}_{X,\varphi^{-1}(U)}$$

An isomorphism of ringed spaces is a morphism with a two-sided inverse.

We also need the definition of the spectrum of a ring R, as a ringed space. The topological space $X = \operatorname{Spec}(R)$ is the set of prime ideals of R, with the Zariski topology, which is generated by the distinguished opens D(f); the sheaf of rings \mathcal{O}_X is defined on distinguished opens by $\mathcal{O}_{X,D(f)} = R_f$, the localization of R at f. This behaves well with respect to colimits, so it extends to a definition a generic open set U of X by covering it with distinguished opens $D(f_i)$ and taking the colimit $\lim_{\to} D(f_i)$ of

the cover. The upshot is that this is a ringed space, where the original ring can be recovered by $\Gamma(X, \mathcal{O}_X) = R$.

Now, we define an abstract variety. First, the definition of an abstract prevariety: a ringed space (X, \mathcal{O}_X) is an abstract prevariety if it is quasi-compact - every open cover has a finite subcover - and if, for each $x \in X$, there is some open set U of X containing x, such that $(U, \mathcal{O}_{X,U})$ is isomorphic (as a ringed space) to the spectrum of some ring R.

An abstract variety is an abstract prevariety which satisfies the following separation axiom: For If Z is an affine variety, and φ_1, φ_2 are morphisms $Z \to X$, then the set $\{z \in Z \mid \varphi_1(z) = \varphi_2(z)\}$ (the preimage $(\varphi_1 \times \varphi_2)(\Delta)$ of the diagonal of $X \times X$) is a closed subset of Z.

(b) Hilbert's theorem on Hilbert polynomial and degree, and the BKK theorem on the number of solutions of a system of Laurent polynomial equations.

Proof. First, we state Hilbert's theorem. Let $X \subset \mathbb{P}^N$ be a projective variety with corresponding ideal I, and homogenous coordinate ring $k[X] = k[x_0, \dots, x_N]/I$. Because I is homogeneous, it is graded, and so this is a graded ring:

$$k[X] = \bigoplus_{m \ge 0} k[X]_m$$

Where each component $k[X]_m$ is defined to be $k[x_0, \ldots, x_N]_m$ mod I: the subspace generated by the monomials in the x_i which have degree m, modulo the ideal I. The quantity $H_X(m)$ is defined as the dimension of the component $k[X]_m$ as a k-vector space:

$$H_X(m) = \dim_k(k[X]_m)$$

This is known as the Hilbert polynomial, because it is in fact polynomial in m: the first conclusion of Hilbert's theorem is that there is a unique polynomial $P_X(t)$ such that $P_X(m) = \dim_k k[V]_m$ for all m sufficiently large.

Next, Hilbert's Theorem states that the degree of P_X is equal to the dimension of X:

$$\deg(P_X(m)) = \dim(X)$$

Finally, Hilbert's theorem states that, if a_r is the leading coefficient of $P_X(m)$, then $\deg(X) = r!a_r$, where the degree $\deg(X)$ of the variety X is equal to $|X \cap L|$, for L a generic plane in \mathbb{P}^N whose dimension is equal to the dimension of X.

Next, we state the BKK theorem. Let A be a finite set of elements of \mathbb{Z}^n , so that

$$A = \{\alpha_0, \dots, \alpha_N\} \subset \mathbb{Z}^n$$

We recall that the definition of x^{α} , for $x = \langle x_1, \dots, x_n \rangle$ and $\alpha = \langle \alpha_1, \dots, \alpha_n \rangle$, is that

$$x^{\alpha} := x_1^{\alpha_1} \cdot \dots \cdot x_n^{\alpha_n}.$$

Now, let \mathcal{L}_A be the span $\{x^{\alpha_0}, \dots, x^{\alpha_N}\}$, in the k-algebra of Laurent polynomials in the variables x_1, \dots, x_n . Since each α_i is distinct, the dimension of \mathcal{L}_A as a k-algebra is |A|, which is N+1.

Let (f_1, \ldots, f_n) be a generic element of $\mathcal{L}_A \times \cdots \times \mathcal{L}_A$, the product of n copies of \mathcal{L}_A . then the number of points of $(k \setminus 0)^n$ which satisfy each polynomial f_1, \ldots, f_n simultaneously is *independent* of the (generic) choice of f_1, \ldots, f_n , and is equal to $n! \operatorname{vol}_n(\operatorname{conv}(A))$, where $\operatorname{vol}_n(\operatorname{conv}(A))$ is Euclidean n-volume of the convex hull $\operatorname{conv}(A) \subset \mathbb{R}^n$ containing the points in A.

Problem 2. Let q_0, \ldots, q_N be positive integers with $gcd(q_0, \ldots, q_N) = 1$. Define the weighted projective space $\mathbb{P}(q_0, \ldots, q_N)$ (as a set) by:

$$\mathbb{P}(q_0,\ldots,q_N) = (\mathbb{C}^{N+1} \setminus \{0\}) / \sim,$$

where \sim is the equivalence relation given by:

$$(x_0,\ldots,x_N) \sim (y_0,\ldots,y_N) \iff \exists 0 \neq \lambda \in \mathbf{k}, x_i = \lambda^{q_i}y_i, \forall i = 0,\ldots,N.$$

Similarly to the projective space, we denote the equivalence class of (x_0, \ldots, x_N) by $(x_0 : \cdots : x_N)$.

Consider the weighted projective space $\mathbb{P}(1,1,2)$ and the map $\Phi: \mathbb{P}(1,1,2) \to \mathbb{P}^3$ given by:

$$(x_0: x_1: x_2) \mapsto (x_0^2: x_0x_1: x_1^2: x_2).$$

(a) Show that this map is one-to-one and its image $X = \operatorname{Im}(\Phi)$ is a closed subvariety. Find the defining homogeneous equation of $X \subset \mathbb{P}^3$.

Proof. We note that the usual "rescaling" that one can do in \mathbb{P}^n can be done here as well, with some slight changes. If a coordinate x_i is nonzero, then

$$(x_0:\cdots:x_i:\cdots:x_n)\sim ((x_i)^{-\alpha_0/\alpha_i}x_0:\cdots:1:\cdots:(x_i)^{-\alpha_0/\alpha_i}).$$

Since we are working in the algebraically closed field \mathbb{C} , we do not have trouble with fractional exponents, except that there is not necessarily a unique choice for x_i^{1/α_i} . This is not any trouble in the following proofs, although we have to be careful not to assume that the coordinates of x are unique after renormalizing.

To begin with, we show that the map is one-to-one. Let $(x_0 : x_1 : x_2)$ and $(x'_0 : x'_1 : x'_2)$ be two points which map to the same point (y_0, y_1, y_2, y_3) under Φ . First, assume that $y_3 \neq 0$, and rescale so that $y_3 = x_2 = x'_2 = 1$.

We know that $x_0^2 = x_0'^2$, so $x_0 = \pm x_0'$, and similarly $x_1 = \pm x_1'$. Also, if $x_0 = -x_0$, then $x_0x_1 = x_0'x_1'$ implies that $x_1 = -x_1'$ as well. So either $(x_0, x_1) = (x_0', x_1')$ or $(-x_0', -x_1')$.

But in fact these two cases both correspond to the same point in $\mathbb{P}(1,1,2)$:

$$(-x_0: -x_1: 1) = (-1(-x_0): -1(-x_0): (-1)^2)$$

= $(x_0: x_1: 1)$

So, the two points are equal.

If $y_3 = 0$, then both x_2 and x_2' are zero as well. At least one of y_0, y_2 must be nonzero, since if they were both zero, then so would y_1 . So, say $y_2 \neq 0$. Rescale so that $x_1^2 = x_1'^2 = 1$.

Again, by $x_0^2 = x_0'^2$ and $x_1^2 = x_1'^2$, along with $x_0x_1 = x_0'x_1'$, we can deduce that $(x_0, x_1) = (\pm x_0', \pm x_1')$, and in both cases we have $(x_0 : x_1 : 0) = (x_0' : x_1' : 0)$. By a symmetric argument for $y_1 \neq 0$, we have exhausted all cases. So indeed, any two points in $\mathbb{P}(1, 1, 2)$ that map to the same point under Φ must be equal, and so the map is one-to-one.

Next, we want to see that $Im(\Phi)$ is a closed subvariety. We will see that the homogeneous polynomial

$$f(y_0, y_1, y_2, y_3) = y_0 y_2 - y_1^2$$

is the defining equation of $\text{Im}(\Phi)$. First, we see that the equation is 0 for any point $\Phi(x_0:x_1:x_2)$:

$$f(\Phi(x_0:x_1:x_2)) = f(x_0^2:x_0x_1:x_1^2:x_2)$$
$$= x_0^2x_1^2 - (x_0x_1)^2$$
$$= 0$$

Now, let $y = (y_0 : y_1 : y_2 : y_3) \in \mathbb{P}^3$ be a point such that f(y) = 0. Pick some square root x_0 of y_0 , so that $x_0^2 = y_0$. If $x_0 \neq 0$, then let $x_1 = y_1/x_0$. Otherwise, let x_1 be an arbitrary square root of y_2 and let $x_2 = y_3$. First, we see that $(x_0 : x_1 : x_2)$ is a valid point of $\mathbb{P}(1,1,2)$, because if all three of x_0, x_1, x_2 are zero, then $y_0 = x^2$ is zero, as is $y_2 = x_1^2$, and so is y_1 , by $y_1^2 = y_0^2 y_2^2$, and $y_3 = x_2 = 0$. But at least one coordinate of y_1 must be nonzero, so x_1 must be nonzero as well.

Finally, we see that $\Phi(x_0:x_1:x_2)=(y_0:y_1:y_2:y_3)$, which follows quickly from construction of $(x_0:x_1:x_2)$:

$$x_0^2 = y_0$$

$$x_0 x_1 = y_1$$

$$x_1^2 = y_2$$

$$x_2 = y_3$$

(b) Is X a smooth variety? Prove or disprove your claim. Hint: look at X in different affine charts in \mathbb{P}^3 .

Proof. incomplete

Problem 3. Analogous to the case of projective space \mathbb{P}^3 , write the affine charts in the weighted projective space $\mathbb{P}(1,1,2)$ and the gluing maps between them to show that $\mathbb{P}(1,1,2)$ can be realized as an abstract pre-variety.

Proof. Let U_i be the set $x_i \neq 0 \subset \mathbb{P}(1,1,2)$. We will first consider the cases i = 0,1, which are similar.

We see that the set U_0 is all those $(x_0: x_1: x_2)$ such that $x_0 \neq 0$. As noted above, we can renormalize by $x_0^{-\alpha_i/\alpha_0}$ to obtain coordinates $(1: x_1: x_2)$. Let $\varphi_0: U_0 \to \mathbb{A}^2$ be defined by

$$\varphi_0(x_1, x_2) = (1 : x_1 : x_2).$$

which has an inverse morphism taking $(1:x_1:x_2)$ to (x_1,x_2) . Similarly, we may define a map $\varphi_1:A^2\to U_1$ by

$$\varphi_1((x_0, x_2)) = (x_0 : 1 : x_2),$$

which has an inverse morphism taking $(x_0:1:x_2)\mapsto (x_0,x_2)$. Both of these cases are effectively the same as in the projective case. However, the same map cannot be used for U_2 , since $(x_0:x_1:1)$ is the same point as $(-x_0:-x_1:1)$, and there is no canonical choice of sign for the coordinates. Instead, let $X\subset\mathbb{A}^3$ be the variety defined by the ideal $(y_0y_2-y_1^2)$ of $k[y_0,y_1,y_2]$. We have a map $\varphi_2:X\to\mathbb{A}^2$ be defined by

$$\varphi_2(y_0:y_1:y_2)=(y_1:y_2:1).$$

This has an inverse morphism defined by taking

$$(x_0:x_1:1) \to (x_0^2:x_0x_1:x_1^2)$$

The sets U_i cover $\mathbb{P}(1,1,2)$, and the charts are all isomorphisms, so it remains to define the gluing maps, for intersections $U_i \cap U_j$.

First, for $U_0 \cap U_1$, we want to map the open subset $(\varphi_0^{-1}(\varphi_1(\mathbb{A}^2)) \subset \mathbb{A}^2$ to the open subset $(\varphi_1^{-1}(\varphi_0(\mathbb{A}^2))) \subset \mathbb{A}^2$. A point is in the first set if it is the image of a point (a, b) which is first mapped to (a:1:b), which then must be an element of U_0 , meaning that $a \neq 0$. Then, φ_0^{-1} takes this point to $(1/a, b/a^2)$. Since a is arbitrary besides being nonzero, and b is totally arbitrary, we see that the points of $(\varphi_0^{-1}(\varphi_1(\mathbb{A}^2)))$ are exactly those (x,y) where $x \neq 0$. Similarly, tracing elements, we see that the points of $(\varphi_1^{-1}(\varphi_0(\mathbb{A}^2)))$ are also those (x,y) where $x \neq 0$. So, the map $f:(x,y) \mapsto (1/x,y/x^2)$ is a well-defined regular map in both directions: we can set our gluing map $g_{ij} = g_{ji} = f$.

We do need to check that these maps give $\varphi_0 \circ g_{1,0} = \varphi_1$, and vice versa. This can be seen by calculation:

$$\varphi_0(g_{1,0}(x,y)) = \varphi_0(x,y)
= (1:1/x:y/x^2)
= (x:1:y)
= \varphi_1(x,y)$$

And, symmetrically, $\varphi_1 \circ g_{0,1} = \varphi_0$. Also, we see that $f \circ f = \text{Id}$.

Now, we want to define the gluing maps g_{2i} and g_{i2} . We will define only the one for i = 0, since the other case is very similar.

The gluing maps should be isomorphisms between the open set $\varphi_2^{-1}(\varphi_0(\mathbb{A}^2))$ and $\varphi_0^{-1}(\varphi_2(X))$. An element of the first set is of the form $(1/y, x/y, x^2/y)$, where y is some nonzero value, and an element of the second set is of the form $(y^2/(xy), 1/(xy)^2)$, for some nonzero xy.

So, we can define the gluing map $g_{2,0}$ on elements as

$$(x^2, xy, y^2) \mapsto (xy/x^2, 1/x^2)$$

and the gluing map $g_{0,2}$ on elements as

$$(a,b) \mapsto (1/(ab), 1/b, a/b).$$

These maps are indeed inverses, and satisfy $\varphi_0 \circ g_{2,0} = \varphi_2$, and $\varphi_2 \circ g_{0,2} = \varphi_0$.

Problem 4. Find the Hilbert polynomial of $X = \mathbb{P}^n \times \mathbb{P}^m$ embedded in $\mathbb{P}^{(n+1)(m+1)-1}$ via the Segre embedding. Find the degree of X in $\mathbb{P}^{(n+1)(m+1)-1}$.

Proof. We recall that the Segre embedding of $\mathbb{P}^n \times \mathbb{P}^n$ in $\mathbb{P}^{(n+1)(m+1)-1}$ is defined by sending

$$(a_0,\ldots,a_n)\times(b_0,\ldots,b_m)\mapsto(a_0b_0,\ldots,a_ibj,\ldots a_nb_m)$$

Where the a_ib_j are arranged in lexographic order on (i,j). The degree-t monomials a_ib_j are exactly determined by a choice of t a_i s and t b_j s, where order does not matter, and repetitions are allowed. The way to choose t elements form a set of k, with repetitions, is exactly equal to $\binom{k+t-1}{t}$. We have two choices of t elements, from a set of n+1 a_i s and m+1 b_j s, so our total number of choices is $\binom{n+t}{t}\binom{m+t}{t}$. Any two of these monomials are unequal in the coordinate ring of $\mathbb{P}^n \times \mathbb{P}^m \subset \mathbb{P}^{(n+1)(m+1)-1}$, so the dimension of the degree t component of the coordinate ring is exactly equal to $\binom{n+t}{t}\binom{m+t}{t}$. So, the Hilbert polynomial is

$$H(t) = \binom{n+t}{t} \binom{m+t}{t}.$$

To clean this up, we first use the identity $\binom{a}{b} = \binom{a}{a-b}$ to rewrite as

$$H(t) = \binom{n+t}{n} \binom{m+t}{m}.$$

We also want to use the identity $\frac{1}{n!m!} = \binom{n+m}{n} \frac{1}{(n+m)!}$. Now, writing $(x)_k = x(x-1)(x-2)\cdots(x-k+1)$, we have

$$H(t) = \binom{n+t}{n} \binom{m+t}{m}$$

$$= \frac{(n+t)_n}{n!} \frac{(m+t)_m}{m!}$$

$$= \binom{n+m}{n} \frac{1}{(n+m)!} (n+t)_n (m+t)_m = \binom{n+m}{n} \frac{1}{(n+m)!} ((t+n)(t+n-1)\cdots(t+1)t)((t+n)(t+n-1)\cdots(t+1)t)$$

$$= \binom{n+m}{n} \frac{1}{(n+m)!} (t^n + \cdots)$$

$$= \binom{n+m}{n} \frac{1}{(n+m)!} (t^{n+m} + \cdots)$$

Since the leading coefficient of H(t) is $\deg(\mathbb{P}^n \times \mathbb{P}^m)/\dim(\mathbb{P}^n \times \mathbb{P}^m)!$, we see that $\deg(\mathbb{P}^n \times \mathbb{P}^m)$, for this embedding of $\mathbb{P}^n \times \mathbb{P}^m$ in $\mathbb{P}^{(n+1)(m+1)-1}$, is equal to $\binom{n+m}{n}$.

Problem 5. Consider the affine plane curve $X = V(y^2 - x^3) \subset \mathbb{A}^2$ with coordinate ring $\mathbf{k}[X] = \mathbf{k}[x,y]/(y^2 - x^3)$.

(a) Show that $f = y/x \in k[X]$ is integral over k[X].

Proof. We want to show that y/x satisfies an integral polynomial in k[X][f]. In fact, it satisfies the equation $f^2 - x = 0$, since

$$f^{2} - x = \frac{y^{2}}{x^{2}} - x$$
$$= \frac{x^{3}}{x^{2}} - x$$
$$= x - x$$
$$= 0$$

Since y/x is not an element of $k[x,y]/(x^2-y^3)=k[X]$, the ring is not normal, and neither is the variety X.

(b) Use f to construct the normalization $\tilde{X} \subset \mathbb{A}^3$ and the normalization map $\pi: \tilde{X} \to X$ (verify that the \tilde{X} you constructed is actually a normal variety.)

Proof. We want to extend our variety into a third dimension, by adjoining t: \tilde{X} is the subset of \mathbb{A}^3 consisting of points (x,y,t) which satisfy $x^3=y^2$ and $t^2=x$. First, we see that the variety is normal: its coordinate ring $k[\tilde{X}]$ is $k[x,y,t]/(x^3-y^2,t^2-x)$. This is isomorphic to k[t], since we can write any element of $k[\tilde{X}]$ in terms of t alone by the identities $y=t^3$ and $x=t^2$. We know that k[t] is normal, since it is a principal ideal domain, so \tilde{X} is normal.

Now, we show that the map $\pi: \tilde{X} \to X$ defined by taking (x,y,t) to (x,y) is a normalization - that is, it is a morphism which is finite and birational. It is birational by the map $X \setminus \{0\} \to \tilde{X}$ defined by taking (x,y) to (x,y,x/y). The set $X \setminus \{0\}$ is open and dense in X, so π is a birational equivalence.

Next, we want to show that π is finite, i.e. that the induced map $k[X] \to k[\tilde{X}]$ makes $k[\tilde{X}]$ into a finitely generated k[X] module. Since $k[\tilde{X}]$ is generated by $\{t^i\}_{i\geq 0}$, it suffices to show that a finite number of these monomials generate the whole set. And in fact they do: for any $i\neq 1$, we can write i as 2a+3b for some nonnegative a,b, and so

$$t^i = (t^{2a})(t^{3b})$$
$$= x^a y^b$$

By replacing each t^i , for $i \neq 1$, with a monomial in x and y, any $f \in k[\tilde{X}]$ can be written as g(x,y)+kt for some $g(x,y)\in k[X]$. Thus the coordinate ring of \tilde{X} is finitely genrated over the coordinate ring of X, and the map π must be finite. As a finite birational morphism from a normal variety to X, it is the normalization of X.

Problem 6. Assume we know the following fact: intersection of a projective variety $X \subset \mathbb{P}^N$ with a hyperplane H in general position has dimension $\dim(X) - 1$ (this is a corollary of the well-known Krull's principal ideal theorem of Hauptidealsatz). Prove the following:

(a) Suppose $L \subset \mathbb{P}^N$ is a plane in general position with $\operatorname{codim}(L) > \dim(X)$. Show that $X \cap L$ is empty.

Proof. We recall that an arbitrary plane $L \subset \mathbb{P}^N$ can be written as the intersection of $\operatorname{codim}(L)$ -many hyperplanes H, or equivalently as $L' \cap H$, for L' a plane with $\operatorname{codim}(L') = \operatorname{codim}(L) - 1$, and H a hyperplane.

We proceed by induction on X: if X has dimension 0, then $\operatorname{codim}(L) > 1$, and $L = L' \cap H$ for some hyperplane H. But if $L \cap X$ is nonempty, we can make the following calculation:

$$\dim(L \cap X) = \dim(L' \cap (H \cap X))$$

$$\leq \dim(H \cap X)$$

$$= \dim(X) - 1$$

$$= -1$$

So in fact the set $L \cap X$ must be empty.

Now, we make the inductive hypothesis that $L \cap X = \emptyset$ for all $\dim(X) = n - 1$ and $\operatorname{codim}(L) > \dim(X)$. Let X be a space of dimension n, and let L be a plane in general position with $\operatorname{codim}(L) > \dim(X)$. Then $L = L' \cap H$ for some plane L' with $\operatorname{codim}(L') = \operatorname{codim}(L) - 1$ and some hyperplane H in general position. Rewriting $L \cap X$ as $L' \cap (H \cap X)$, we see that $\dim(H \cap X)$ has dimension $\dim(X) - 1$, and $\operatorname{codim}(L) = \operatorname{codim}(L) - 1 > \dim(X) - 1$. So, by the inductive hypothesis, the set $L \cap X$ is empty. By induction, the theorem holds for any projective variety $X \subset \mathbb{P}^N$.

(b) If $U \subset X$ is a nonempty open subset then $\deg(U) = \deg(X)$. Recall that degree is the number of intersection points with a plane of complementary dimension.

Proof. incomplete