or two classes

- 2×1

CSE 474/574 Introduction to Machine Learning (Spring 2017) Instructor Notes

Date _/_/2017 Part ____ Page ___

Problem: More parameters \Rightarrow More data!

Assume that X_1 and X_2 are independent. $P(X_1 = 0, X_2 = 0) = P(X_1 = 0) P(X_2 = 0)$ $P(X_1 = 0, X_2 = 0) = P(X_1 = 0)$ $P(X_1 = 0, X_2 = 0) = P(X_1 = 0)$ $P(X_1 = 0, X_2 = 0) = P(X_1 = 0)$ $P(X_1 = 0, X_2 = 0) = P(X_1 = 0)$ $P(X_1 = 0, X_2 = 0) = P(X_1 = 0)$ $P(X_1 = 0, X_2 = 0)$

Naîve Bayes Classifier. [NBC] $P(X=x^*|Y=1) = \prod_{j=1}^{\infty} p(x_j^*|Y=1)$ $x_j^* is the jth feature in x^*$

P(x2=x2 | Y=0)

 $\Theta_{11}: P(X_1=1|Y=1): (P(X_1=0|Y=1))=1-\Theta_{11}$

 $\Theta_{21}: P(X_{1}=1|Y=0)$

28 O21 = 1-011 9 NO

MLE:
$$X_{i}$$
, Y_{i}

$$\begin{array}{ccc}
X_{i}, & Y_{i} \\
Y_{i} & X_{i}, & Y_{i}
\end{array}$$

$$\begin{array}{ccc}
X_{i}, & Y_{i} \\
Y_{i} & Y_{i}
\end{array}$$

$$\begin{array}{ccc}
X_{i}, & Y_{i} \\
Y_{i} & Y_{i}
\end{array}$$

$$\begin{array}{cccc}
X_{i}, & Y_{i} = Y_{i}
\end{array}$$

CSE 474/574 Introduction to Machine Learning (Spring 2017) Instructor Notes

Date _/_/2017 Part ____ Page ____

What is
$$P(X_i = x_i, Y_i = y_i)$$

$$= P(Y_i = y_i) P(\underbrace{X_i = x_i} | Y_i = y_i) \rightarrow \text{independent}$$

$$= P(Y_i = y_i) P(X_{ij} = x_{ij} | Y_i = y_i)$$

$$= O^{y_i} (1 - O^{y_i}) P(X_{ij} = x_{ij} | Y_i = y_i)$$

$$= O^{y_i} (1 - O^{y_i}) P(X_{ij} = x_{ij} | Y_i = y_i)$$

0, [oyis]

CSE 474/574 Introduction to Machine Learning (Spring 2017) Instructor Notes

Date _/_/2017 Part ___ Page ______

If we compute $\frac{\partial}{\partial \theta}$ ll(D(θ) $\frac{\partial}{\partial \theta} = \sum_{i \ge 1} \frac{\partial}{\partial \theta} \left[y_i \log \theta + (1-y_i) \log (1-\theta) \right]$ $= \sum_{i \ge 1} \frac{\partial}{\partial \theta} \left[y_i \log \theta - \frac{1-y_i}{1-\theta} \right]$

Setting 2 le (D10)=0

Ni= # times yi is ! in the data set.

 $\theta_{ij} = \frac{N_{ij}}{N_{i}}$ $\theta_{0j} = \frac{N_{0j}}{N_{i}}$

Nije- # times Xije is / when Yis is /

P(x1=1, x2=1, x3=1, x4=1 | Y=1) P(Y=1) + P(x1=1, x2=1, x3=1, x4=1 | Y=0) P(Y=0)

$$0 = \frac{5}{8}$$
 $\frac{9}{1} = \frac{1}{3}$
 $\frac{9}{11} = \frac{3}{5}$
 $\frac{9}{11} = \frac{3}{5}$
 $\frac{9}{12} = \frac{3}{5}$
 $\frac{9}{13} = \frac{3}{5}$
 $\frac{9}{13} = \frac{3}{5}$
 $\frac{9}{14} = \frac{4}{5}$

P(X2=0/4=1)=(1-021)

First Compute:

P(X1=1, X2=1, X3=1, X4=1 | Y=1)

 $= (P(X_1=1|Y=1))P(X_2=1|Y=1)P(X_3=1|Y=1)P(X_4=1|Y=1)$

= O11 * O21 * O31 * O41

P(X121, X221, X321, N421 / Y20)

= 001 * 002 * 003 * 009

P(421)= 0 = 5/8

D(420)= 1-0= 3/8

If X4 takes three values -> (0,1,2)

J 0020 0021 0022

O120 0121 0122

CSE 474/574 Introduction to Machine Learning (Spring 2017) Instructor Notes Date _/_/2017 Part___

Data is generated by a Gaussian Di, (µ, o -) 0.8 leasn 4,0 $\frac{1}{pdf} = \frac{1}{\sqrt{207}} \left[-\frac{1}{202} \left(x - \mu \right)^2 \right]$ 1 Training lik = \(\left(0.8 \right) * \(\left(0.3 \ UNLE - I EX: [Sample] L (4,0) TNLE = I \(\times \(\times \) P(x=0.7)X \$(0.7) What happensif X E R2

X = [0.7, 0.3]

Date _/_/2017 Part Page
Naive Bayes:
$P(X Y=malignant) = P(X_1 Y=m)P(X_2 Y=m)P(X_3)$
are or Abiney?
What happens if we have [07] 03 [0.4] P(x1>0.7 Y=m) P(x2=0.3 Y=m) P(x3=0.4 Y=m)
We cen model each X1, X2, X3 as univariate Gaussian
Yandom variable. $\Rightarrow P(x_1 \ge 0.7 y \ge m) = \int_{27}^{27} \sqrt{m} \exp\left[-\frac{1}{20m} \left(8.7 - \mu_{1m}\right)^2\right]$
$\phi(y x) \propto \phi(y) \prod \phi(x; y)$
$= p(y) \int_{J^{2}} \frac{1}{\sqrt{2J_{0}J_{0}^{2}}} \cdot exp - \frac{1}{2J_{0}^{2}} \cdot $

CSE 474/574 Introduction to Machine Learning (Spring 2017) Instructor Notes

Date _/_/2017 Part ____ Page ___

$$= p(y) \qquad exp \left[-\frac{1}{2} \frac{(x_3 - \mu_3)^2}{2\sigma_0^2} \right]$$

$$|et \sum = |\sigma_2^2 | 0$$

$$|\sigma_1^2 * \sigma_2^2 * \cdots * \sigma_p^2|^2 = |\sum |\sigma_2^2 | 0$$

$$\frac{\sum_{j=1}^{N} (x_j - \mu_j)}{\sum_{j=1}^{N} (x_j - \mu_j)} = (x_j - \mu_j)$$

where hi=

$$p(y|x) = p(y)$$

$$(2\sqrt{y})^{1/2} (2\sqrt{y})^{1/2} (2\sqrt{y})^{1/2$$

 $b(x|y=2) = \frac{1}{(27)^{N_2} |\Sigma_2|^{N_2}} exp\left[-\frac{1}{2}(x-\mu_2)\sum_{1}^{1}(x-\mu_2)\right]$

CSE 474/574 Introduction to Machine Learning (Spring 2017) Instructor Notes Date _/_/2017 Part Page
How to train your QDA? Training Data:
X, Y, Split data into two pasts. X1
Q XMFI Yis 2 -> MLE to get $\mu_2 \mathcal{E}_2$ XN
(y) Compute O for p(Y)
Linear Discriminant Analysis (LDA)
In LDA: \(\Si_1 = \Si_2 = \Si
In training: μ_1 and μ_2 and θ ax estimated in the same way as Q) A five same way as Q) A For Σ : We use the entire data and do MLE for Σ
FW Z: We use the entire data and do MLE for E

LDA:

$$\begin{array}{lll} & \Rightarrow (y=1) \times (x) \times (y=1) \\ & = p(y=1) \times (y=1) \times (y=1) \\ & = p(y=1) \times (y=1) \times (y=1) \\ & = p(y=1) \times (y=1) \times (y=1) \end{array}$$

$$\begin{array}{lll} & = p(y=1) \times (y=1) \times (y=1)$$

What is (x-, µ1) = [(x-µ1)

Mahalanobis distance

(x-\mu_1)^T \geq^-(x-\mu_1)

Euclidean Distance $\begin{array}{c}
\times, \mu_{i} \in \mathbb{R}^{D} \\
\Sigma(x_{i} - \mu_{i})^{2} \\
\vdots \\
\Sigma(x_{i} - \mu_{i})^{T}(x - \mu_{i})
\end{array}$

