INTRODUCTION

In 1963, the powerful radio source 3C 273 was identified with a star-like, thirteenth magnitude object with a strongly redshifted (z=0.158) optical spectrum (Schmidt, 1963). Assuming this redshift was due to the Hubble expansion of the Universe, 3C 273 was at an enormous distance (500 megaparsecs) and was 10 times brighter than the most luminous galaxies. Variability on time-scales of weeks suggested that the source was very compact (i.e. smaller than a light-week). It was quickly realised that quasars, and other lower-luminosity classes of active galactic nuclei (AGN)¹, are powered by the release of gravitational potential energy as mass is accreted onto a super-massive black hole (BH) at the centre of a galaxy (e.g. Hoyle and Fowler, 1963; Salpeter, 1964; Lynden-Bell, 1969; Lynden-Bell and Rees, 1971).

Begining in the early 1990s, inactive super-massive BHs were found in the centres of many nearby massive galaxies (e.g. Kormendy and Richstone, 1995; Ferrarese and Ford, 2005; Kormendy and Ho, 2013). This proved that quasar activity is a stage in the life of all massive galaxies (e.g. Lynden-Bell, 1969). Shortly after, it was discovered that the BH mass and the properties of the host-galaxy bulge were strongly correlated (e.g. the M_{BH} - σ relation Ferrarese and Merritt, 2000; Gebhardt et al., 2000; Graham et al., 2001; Tremaine et al., 2002; Marconi and Hunt, 2003; Aller and Richstone, 2007; Gültekin et al., 2009). This was an unexpected finding, given that the sphere-ofinfluence of a BH, 1-100 parcsecs (Kormendy and Ho, 2013), is many orders of magnitude smaller than a typical galactic bulge. It suggested that the BH and the host galaxy bulge grow synchronously, with the energetic output of the rapidly-accreting BH coupling with the gas in the host galaxy and regulating star formation and the growth of the BH itself (e.g. Silk and Rees, 1998; King, 2003; Di Matteo, Springel, and Hernquist, 2005; King and Pounds, 2015).

Super-massive: $10^{6-9} M_{\odot}$

σ: stellar velocity dispersion of host galaxy bulge Sphere-of-influence: where the gravity of the BH dominates over the other mass components (stars, gas etc.)

 $z = \frac{\Delta \lambda}{\lambda_0}$

¹ Throughout this thesis we use the terms 'quasar' and 'Active Galactic Nucleus (AGN)' interchangeably to describe active super-massive black holes, although the term quasar is generally reserved for the luminous ($L_{Bol} > 10^{12} L_{\odot}$) subset of AGNs.

Figure 1.1: Cartoon picture of the inner regions on an AGN. Credit: Urry and Padovani, (1995).

The number density of quasars, which evolves strongly with redshift, peaks at redshifts $2 \lesssim z \lesssim 3$ (e.g. Brandt and Hasinger, 2005; Richards et al., 2006) and the most massive ($M_{BH} \gtrsim 10^9 M_{\odot}$) present-day BHs experienced much of their growth during this epoch. The cosmic star formation rate history closely follows the cosmological evolution of the quasar luminosity function (e.g. Boyle and Terlevich, 1998), which establishes a further connection between BH and galaxy properties. Quasar feedback has also been invoked to reproduce the high-mass end of the galaxy luminosity function in cosmological simulations (e.g. Kauffmann and Haehnelt, 2000). The insight that quasars could play a crucial role in the evolution of galaxies has led to an explosion of interest in their properties.

1.1 AGN: CURRENT PARADIGM

The current AGN paradigm is widely accepted, although many of the details are unknown. The basic features are: a hot accretion disc surrounding a super-massive BH, rapidly orbiting clouds of ionised gas, and a dusty, obscuring structure (generally referred to as the 'torus'). Collimated jets of relativistic plasma and/or associated lobes are also seen in the 10 per cent of quasars that are radio-loud (e.g. Peterson, 1997). A cartoon picture illustrating the basic structure of an AGN is shown in Figure 1.1.

1.1.1 Accretion disc

Material is pulled towards a super-massive BH and sheds angular momentum through viscous and turbulent processes in a hot accretion disc (e.g. Begelman, 1985). The accretion disc reaches temperatures of $\sim 10^6$ K, and radiates primarily at ultraviolet (UV) to soft-X-ray wavelengths.

1.1.2 The broad line region

One of the pre-eminent features of many AGN spectra are broad optical and UV emission lines produced in the broad line region (BLR). The BLR consists of gas clouds at distances from several light-days to several light-months that are photoionised by the ultraviolet continuum emission emanating from the accretion disc. Because of the close proximity to the central super-massive BH, bulk motions are dominated by gravity and radiation pressure from the accretion disc. The very broad emission line widths are assumed to Doppler-broadened, and imply line-of-sight velocities of many thousands of km s⁻¹.

1.1.3 *The dusty torus*

Further out are dusty, molecular clouds which are co-planar with the accretion disc. These dusty clouds are generally referred to as the 'torus'. In a Type II AGN, the accretion disc is observed in an edge-on configuration and, as a result, emission from the accretion and BLR is obscured by the dusty torus (e.g. Antonucci, 1993). Although this simple picture (shown in Figure 1.1 as well as in countless other publications) is a useful staring point, the idea of a torus as a static, doughnut-like structure is almost certainly incorrect. For example, the problem of maintaining the large scale height required to explain the observed fraction of Type 1/2 AGN has long been recognized (e.g. Krolik and Begelman, 1988). In one set of models the torus is the dusty part of an accretion disc wind that extends beyond the dust-sublimation radius (e.g. Konigl and Kartje, 1994; Everett, Gallagher, and Keating, 2009; Gallagher et al., 2012; Everett, 2005; Keating et al., 2012; Elitzur and Shlosman, 2006).

1.1.4 The narrow line region

Further away from the central BH and beyond the dusty torus is the narrow emission line region (NLR). Like the BLR, the NLR is ionised by radiation from the accretion disc. Unlike the BLR, densities in the NLR are low enough that forbidden transitions are not collisionally suppressed. Emission line widths are typically hundreds of km s⁻¹in the NLR.

1.2 WINDS AND OUTFLOWS IN AGN

Quasars are very powerful sources of radiation, and are embedded in matter-rich environments at the centres of galaxies. Strong winds, driven by some combination of gas pressure, radiation pressure, and magnetic forces, are to be expected under these conditions (e.g. Blandford and Payne, 1982; Proga, Stone, and Kallman, 2000; Everett, 2005). In line with these expectations, evidence for outflowing gas is common in the spectra of quasars.

Perhaps the most dramatic evidence of outflows is seen in broad absorption line quasars (BALQSOs; Weymann et al., 1991). BALQSOs are characterised by broad absorption features in the ultra-violet resonance lines of highly ionised Nv, Civ and Si IV. The absorption is generally interpreted as evidence for outflows with velocities reaching $60\,000 \text{ km s}^{-1}$ (e.g. Turnshek, 1988). The far-side of the outflow will be obscured by the accretion disc, and so only the near-side, which is moving towards the observer, is detected. Therefore, the absorption lines that are detected are always blueshifted. The observed C IV BALQSO fraction in radio-quiet quasars is ~ 15 per cent (e.g. Hewett and Foltz, 2003; Reichard et al., 2003) and the intrinsic fraction in the quasar population has been estimated at ~ 40 per cent (Allen et al., 2011). Outflows can also explain narrow UV and X-ray absorption lines (NALs) which are seen in ~ 60 per cent of Seyfert 1 galaxies (Crenshaw et al., 1999) and some quasars (e.g. Hamann et al., 1997).

Seyfert 1: Class of AGN with broad emission lines and clearly detectable host galaxies

The blueshifting of high-ionisation lines in the BLR (including CIV) can be understood if the lines are produced in outflowing clouds (although see Gaskell and Goosmann 2016 for an alternative explanation). The blueshifting of CIV appears to be nearly ubiquitous in the quasar population (e.g. Richards et al., 2002; Richards et al., 2011), suggesting that outflows are very common in the vicinity of quasars.

Accretion-disc wind models have been developed to explain the wide range of emission and absorption line phenomena described above (e.g. Murray et al., 1995; Elvis, 2000; Proga, Stone, and Kallman, 2000; Everett, 2005). UV photons excite the partially-ionised material surrounding the accretion disc. This exerts a pressure on the atoms - a phonemonon known as radiation line-driving - and a wind is blown from the accretion disc. Observations of blueshifted absorption and emission lines suggest that the energy released by quasars can have a dramatic effect on their immediate surroundings. However, can the energy quasars release have an impact on galactic scales?

In recent years, a huge amount of resources have been devoted to searching for observational evidence of galaxy-wide, quasar-driven outflows (for recent reviews, see Alexander and Hickox, 2012; Fabian, 2012; Heckman and Best, 2014). This has resulted in recent detections of outflows in AGN-host galaxies using tracers of atomic, molecular, and ionised gas with enough power to sweep their host galaxies clear of gas (e.g. Nesvadba et al., 2006; Arav et al., 2008; Nesvadba et al., 2008; Moe et al., 2009; Dunn et al., 2010; Alexander et al., 2010; Harrison et al., 2012; Harrison et al., 2014; Nesvadba et al., 2010; Rupke and Veilleux, 2013; Veilleux et al., 2013; Nardini et al., 2015; Feruglio et al., 2010; Alatalo et al., 2011; Cimatti et al., 2013; Cicone et al., 2014).

1.3 MEASURING BLACK HOLE MASSES

The BH mass is one of the most important physical parameters of a quasar and considerable resources have been devoted to measuring the masses of BHs in active galaxies. Large-scale studies of AGN and quasar demographics have become possible through the calibration of single-epoch virial-mass estimators using reverberation-mapping BH masses.

1.3.1 Dynamical modelling

The mass of a BH, or indeed any object, can be measured from the velocity and characteristic scale of test particles in orbit around it. The masses of BHs in many local, inactive galaxies have been measured by dynamical modelling spatially resolved kinematics of gas and stars. However, this requires the sphere-of-influence of the BH, $R_{\rm BH}$, to be resolved. With BH masses only ~ 0.1 per cent of the stellar mass of the host galaxies,

$$R_{BH} = \frac{GM_{BH}}{\sigma^2}$$

 $R_{\rm BH} \sim 1-100$ parsec (Kormendy and Ho, 2013). With current instrumentation, resolving this region is only possible in very close by galaxies.

1.3.2 Reverberation mapping

Under the assumptions that the BLR dynamics are virialised and the gravitational potential is dominated by the BH, the BH mass is given by:

Virial theorem: average kinetic energy equals half of the average negative potential energy

$$M_{\rm BH} = \frac{V_{\rm Virial}^2 R_{\rm BLR}}{G} \tag{1.1}$$

where $V_{\rm virial}$ is the virial velocity in the BLR and $R_{\rm BLR}$ the characteristic BLR radius. The problem of measuring the mass therefore reduces to the problem of measuring the velocity and orbital radius of the line-emitting clouds in the BLR.

Continuum variability is a common characteristic of quasars, owing to the stochastic nature of the accretion process. Because the BLR is photo-ionized by the continuum, the broad emission lines also vary with some characteristic lag, which is related to the light travel time across the BLR. The reverberation mapping method, first proposed by Blandford and McKee, (1982), uses the time lag between variations in the continuum emission and correlated variations in the broad line emission to measure the typical size of the BLR (e.g. Peterson, 1993; Netzer and Peterson, 1997; Peterson, 2014).

The typical velocity in the BLR is measured from the Doppler-broadened width of an emission line produced in the BLR. Since the structure and geometry of the BLR is unknown, a virial coefficient, f, is introduced to transform the observed line-of-sight velocity inferred from the line width in to a virial velocity. Unfortunately, f is unknown and likely varies from object to object. In practice, the value of f is empirically determined by requiring that the reverberation-mapping masses are consistent with those predicted from the M_{BH} - σ relation for local inactive galaxies.

Because reverberation mapping depends on temporal resolution rather than spatial resolution, this technique can be applied out to much greater distances than direct dynamical modelling. However, because reverberation mapping relies on dense spectrophotometric monitoring campaigns which span many years, lags have been measured for only ~ 50 AGN (e.g. Kaspi et al.,

2000; Peterson et al., 2004; Kaspi et al., 2007; Bentz et al., 2009; Denney et al., 2010; Barth et al., 2011; Grier et al., 2012). This sample is strongly biased to low luminosity Seyfert 1 galaxies, and the maximum redshift is just $z \sim 0.3$. Comprehensive statistical studies of active BHs, particularly during the epoch of peak galaxy formation ($z \gtrsim 2$), therefore require a different approach to measuring BH masses.

1.3.3 Single-epoch virial estimates

Reverberation mapping campaigns have also revealed a tight relationship between the radius of the BLR and the quasar optical (or ultraviolet) luminosity (the R-L relation; e.g. Kaspi et al., 2000; Kaspi et al., 2007). A slope of \simeq 0.5 is found, which consistent with naive predictions (e.g. Peterson, 1997). This relation provides a much less expensive method of measuring the BLR radius, and large-scale studies of AGN and quasar demographics have thus become possible through the calibration of single-epoch virial-mass estimators (e.g. Greene and Ho, 2005; Vestergaard and Peterson, 2006; Vestergaard and Osmer, 2009; Shen et al., 2011; Shen and Liu, 2012; Trakhtenbrot and Netzer, 2012). Single-epoch virial BH mass estimates normally take the form

$$M_{BH} = 10^{\alpha} \left(\frac{\Delta V}{1000 \text{ km s}^{-1}} \right)^{b} \left(\frac{L_{\lambda}}{10^{44} \text{ erg s}^{-1}} \right)^{c} \tag{1.2}$$

where ΔV is a measure of the line width (from either the FWHM or dispersion), L_{λ} is the monochromatic continuum luminosity at wavelength λ , and α , b, and c are coefficients, determined via calibration against a sample of AGN with reverberation-mapping BH mass estimates. Several calibrations have been derived using different lines (e.g. H β , Mg II, C IV) and different measures of the line width (FWHM or dispersion) (e.g. Vestergaard, 2002; McLure and Jarvis, 2002; Vestergaard and Peterson, 2006; McGill et al., 2008; Wang et al., 2009; Rafiee and Hall, 2011; Park et al., 2013). The uncertainties in reverberation mapped BH masses are estimated to be \sim 0.4 dex (e.g. Peterson, 2010), and the uncertainties in virial masses are similar (e.g. Vestergaard and Peterson, 2006).

With virial estimates we can now do all these awesome things. Quantifying the growth-rate of massive BHs at $2 \lesssim z \lesssim 3$ is crucially important in understanding the role quasars play in

galaxy evolution. For example, the processes responsible for the M_{BH} - σ relation can be understood by measuring the evolution of this relation over time (e.g. Bennert et al., 2011). Quasardriven outflows are thought to play a critical role in forging the M_{BH} - σ , and the power of these outflows is directly proportional to the BH mass. The distribution of quasars in the BH mass-quasar luminosity plane also conveys important information about the accretion processes occuring in active BHs (e.g. Kollmeier et al., 2006).

For example, single epoch estimates have been used to calculate black hole masses in the highest redshift quasars to study the growth of SMBHs. These studies show that massive, 10^9 BHs are probably already in place by $z \sim 7$, when the age of the Universe is less than 1 Gyr. The fact that a SMBH exists in a quasar at such high redshift is of great importance in physics. The high redshift means that it was already there when our universe was very young, only about 800 million years old. And the fact that a SMBH was able to grow up in such a short time put some very tight constraints upon both the cosmological parameters and the accretion history of the SMBH itself (Willott et al. 2003). Clustering (Shen & Ho 2014; Timins et al.?).

Quasar black hole masses: Shen, (2013), Peterson, (2010), Peterson, (2011), Vestergaard et al., (2011), Marziani and Sulentic, (2012).

The vast majority of reverberation-mapping lag measurements have been done using H β , and the R – L relation has been established using H β . Almost all of these use the broad H β emission-line. The full width at half maximum (FWHM) or dispersion (σ ; derived from the second moment) velocity of the prominent broad emission line of H β (4862.7Å) is used as an indicator of the virial velocity, with extensions to other low-ionization emission lines such as H α (6564.6Å) and Mg II $\lambda\lambda$ 2796.4,2803.5 (e.g. Vestergaard, 2002; McLure and Jarvis, 2002; Wu et al., 2004; Kollmeier et al., 2006; Onken and Kollmeier, 2008; Wang et al., 2009; Rafiee and Hall, 2011).

FWHM: Full width
of the line profile at
half of maximum
intensity

Kollmeier
The ma
of the met
longer ava

The main concern and the biggest unknown is the extension of the method to high redshifts where H β measurements are no longer available. We emphasize that application of single-epoch spectroscopy to quasars rests on the untested assumption that machinery which is calibrated for sub-Eddington BHs with M \sim 10⁷ still works for BHs with masses up to 10¹⁰ that radiate near the Eddington limit. Something we will explore in Chapter ??.

1.4 LOTS OF DATA IS NOW AVAILABLE

Palomar-Green (PG) Bright Quasar Survey (BQS; Schmidt & Green 1983), the first large-area quasar survey, identificed 114 quasars via their UV excess. Boroson & Green (1992) were among the first to analyse quasar spectroscopic properties in a systematic way.

With the advent of CCD technology came a new generation of surveys, most notably the Sloan Digital Sky Survey (SDSS). SDSS, and the next generation Baryon Oscillation Spectroscopic Survey (BOSS), now contain spectra of ~ 200 000 quasars.

AGN emit strongly over many decades in frequency of the electromagnetic frequency. This makes studying them a challenge. However, we are also able to take advantage of a number of recent, sensitive, wide-field photometric surveys, including SDSS (in the UV/optical), UKIDSS (in the NIR) and WISE (in the mid-infrared) providing good multi-wavelength coverage and large dynamic range in luminosity and redshift.

1.5 OVERVIEW OF THESIS

1.5.1 Chapter 1: A near-infrared spectroscopic database of highredshift quasars

With spectra from SDSS we can derive BH masses and outflow properties from optical lines. But these are shifted to infrared wavelengths at redshifts > 1, when things get interesting. Increasing availability of near-infrared spectra.

1.5.2 Chapter 2: Black Hole Masses

Black-hole masses are crucial to understanding the physics of the connection between quasars and their host galaxies and measuring cosmic black hole-growth. At high redshift, $z \gtrsim 2.1$, black hole masses are normally derived using the velocity-width of the C IV $\lambda\lambda$ 1548,1550 broad emission line, based on the assumption that the observed velocity-widths arise from virial-induced motions. In many quasars, the C IV-emission line exhibits significant blue asymmetries ('blueshifts') with the line centroid displaced by up to thousands of km s⁻¹ to the blue. These blueshifts almost certainly signal the presence of strong outflows, most likely originating in a disc wind. We have obtained near-infrared spectra, including the H α λ 6565 emission

line, for 19 luminous ($L_{Bol} = 46.5 - 47.5 \text{ erg s}^{-1}$) Sloan Digital Sky Survey guasars, at redshifts 2 < z < 2.7, with C IV emission lines spanning the full-range of blueshifts present in the population. A strong correlation between C IV-velocity width and blueshift is found and, at large blueshifts, $>2000 \,\mathrm{km}\,\mathrm{s}^{-1}$, the velocity-widths appear to be dominated by non-virial motions. Black-hole masses, based on the full width at half maximum of the C_{IV}-emission line, can be overestimated by a factor of five at large blueshifts. A larger sample of quasar spectra with both C IV and H β , or H α , emission lines will allow quantitative corrections to C_{IV}-based black-hole masses as a function of blueshift to be derived. We find that quasars with large C IV blueshifts possess high Eddington luminosity ratios and that the fraction of high-blueshift quasars in a flux-limited sample is enhanced by a factor of approximately four relative to a sample limited by black hole mass.

The C IVλλ1498,1501 broad emission line is visible in optical spectra to redshifts exceeding $z \sim 5$. C IV has long been known to exhibit significant displacements to the blue and these 'blueshifts' almost certainly signal the presence of strong outflows. As a consequence, single-epoch virial black hole (BH) mass estimates derived from C_{IV} velocity-widths are known to be systematically biased compared to masses from the hydrogen Balmer lines. Using a large sample of 230 highluminosity ($L_{Bol} = 10^{45.5} - 10^{48} \text{ erg s}^{-1}$), redshift 1.5 < z < 4.0quasars with both C IV and Balmer line spectra, we have quantified the bias in CIV BH masses as a function of the CIV blueshift. C IV BH masses are shown to be a factor of five larger than the corresponding Balmer-line masses at CIV blueshifts of 3000km s⁻¹ and are over-estimated by almost an order of magnitude at the most extreme blueshifts, $\gtrsim 5000 \mathrm{km \, s^{-1}}$. Using the monotonically increasing relationship between the C_{IV} blueshift and the mass ratio $BH(C_{IV})/BH(H\alpha)$ we derive an empirical correction to all C IV BH-masses. The scatter between the corrected C_{IV} masses and the Balmer masses is 0.24 dex at low C IV blueshifts ($\sim 0 \text{km s}^{-1}$) and just 0.10 dex at high blueshifts ($\sim 3000 \text{km s}^{-1}$), compared to 0.40 dex before the correction. The correction depends only on the C IV line properties - i.e. full-width at half maximum and blueshift - and can therefore be applied to all quasars where C IV emission line properties have been measured, enabling the derivation of un-biased virial BH mass estimates for the majority of high-luminosity, high-redshift, spectroscopically confirmed quasars in the literature.

1.5.3 Chapter 3: Narrow line region properties

Outflows, feedback?

1.5.4 Chapter 4: SED Properties

AGN emit strongly over many decades in frequency. To first order SEDs are remarkably similar over many decades in luminosity and redshift. Significant diversity is observed in the SEDs of individual objects. However, the systematic study of the dependence of the SED shape on physical parameters has, until very recently, been limited by the difficulty in obtaining a large sample of quasars with good multi-wavelength coverage and large dynamic range in luminosity and redshift. However, we are able to take advantage of a number of recent, sensitive, wide-field photometric surveys, including SDSS (in the UV/optical), UKIDSS (in the NIR) and WISE (in the mid-infrared).

Dusty winds?

Throughout this thesis we adopt a Λ CDM cosmology with $h_0=0.71$, $\Omega_{\rm M}=0.27$, and $\Omega_{\Lambda}=0.73$. All wavelengths and equivalent width measurements are given in the quasar restframe, and all emission line wavelengths are given as measured in vacuum.

- Alatalo, K. et al. (2011). "Discovery of an Active Galactic Nucleus Driven Molecular Outflow in the Local Early-type Galaxy NGC 1266." In: *ApJ* 735, 88, p. 88. arXiv: 1104.2326.
- Alexander, D. M. and R. C. Hickox (2012). "What drives the growth of black holes?" In: *New Astron. Rev.* 56, pp. 93–121. arXiv: 1112.1949.
- Alexander, D. M., A. M. Swinbank, I. Smail, R. McDermid, and N. P. H. Nesvadba (2010). "Searching for evidence of energetic feedback in distant galaxies: a galaxy wide outflow in a z ~ 2 ultraluminous infrared galaxy." In: *MNRAS* 402, pp. 2211–2220. arXiv: 0911.0014.
- Allen, J. T., P. C. Hewett, N. Maddox, G. T. Richards, and V. Belokurov (2011). "A strong redshift dependence of the broad absorption line quasar fraction." In: *MNRAS* 410, pp. 860–884. arXiv: 1007.3991.
- Aller, M. C. and D. O. Richstone (2007). "Host Galaxy Bulge Predictors of Supermassive Black Hole Mass." In: *ApJ* 665, pp. 120–156. arXiv: 0705.1165.
- Antonucci, R. (1993). "Unified models for active galactic nuclei and quasars." In: *ARA&A* 31, pp. 473–521.
- Arav, N., M. Moe, E. Costantini, K. T. Korista, C. Benn, and S. Ellison (2008). "Measuring Column Densities in Quasar Outflows: VLT Observations of QSO 2359-1241." In: *ApJ* 681, 954-964, pp. 954–964. arXiv: 0807.0228.
- Barth, A. J. et al. (2011). "The Lick AGN Monitoring Project 2011: Reverberation Mapping of Markarian 50." In: *ApJ* 743, L4, p. L4. arXiv: 1111.0061.
- Begelman, M. C. (1985). "Accretion disks in active galactic nuclei." In: *Astrophysics of Active Galaxies and Quasi-Stellar Objects*. Ed. by J. S. Miller, pp. 411–452.
- Bennert, V. N., M. W. Auger, T. Treu, J.-H. Woo, and M. A. Malkan (2011). "The Relation between Black Hole Mass and Host Spheroid Stellar Mass Out to z ~ 2." In: *ApJ* 742, 107, p. 107. arXiv: 1102.1975.
- Bentz, M. C. et al. (2009). "The Lick AGN Monitoring Project: Broad-line Region Radii and Black Hole Masses from Reverberation Mapping of Hβ." In: *ApJ* 705, pp. 199–217. arXiv: 0908.0003.

- Blandford, R. D. and C. F. McKee (1982). "Reverberation mapping of the emission line regions of Seyfert galaxies and quasars." In: *ApJ* 255, pp. 419–439.
- Blandford, R. D. and D. G. Payne (1982). "Hydromagnetic flows from accretion discs and the production of radio jets." In: *MNRAS* 199, pp. 883–903.
- Boyle, B. J. and R. J. Terlevich (1998). "The cosmological evolution of the QSO luminosity density and of the star formation rate." In: *MNRAS* 293, pp. L49–L51. arXiv: astro-ph/9710134.
- Brandt, W. N. and G. Hasinger (2005). "Deep Extragalactic X-Ray Surveys." In: *ARA&A* 43, pp. 827–859. arXiv: astro-ph/0501058.
- Cicone, C. et al. (2014). "Massive molecular outflows and evidence for AGN feedback from CO observations." In: *A&A* 562, A21, A21. arXiv: 1311.2595.
- Cimatti, A., M. Brusa, M. Talia, M. Mignoli, G. Rodighiero, J. Kurk, P. Cassata, C. Halliday, A. Renzini, and E. Daddi (2013). "Active Galactic Nucleus Feedback at z ~ 2 and the Mutual Evolution of Active and Inactive Galaxies." In: *ApJ* 779, L13, p. L13. arXiv: 1311.4401.
- Crenshaw, D. M., S. B. Kraemer, A. Boggess, S. P. Maran, R. F. Mushotzky, and C.-C. Wu (1999). "Intrinsic Absorption Lines in Seyfert 1 Galaxies. I. Ultraviolet Spectra from the Hubble Space Telescope." In: *ApJ* 516, pp. 750–768. arXiv: astro-ph/9812265.
- Denney, K. D. et al. (2010). "Reverberation Mapping Measurements of Black Hole Masses in Six Local Seyfert Galaxies." In: *ApJ* 721, pp. 715–737. arXiv: 1006.4160.
- Di Matteo, T., V. Springel, and L. Hernquist (2005). "Energy input from quasars regulates the growth and activity of black holes and their host galaxies." In: *Nature* 433, pp. 604–607. arXiv: astro-ph/0502199.
- Dunn, J. P., M. Bautista, N. Arav, M. Moe, K. Korista, E. Costantini, C. Benn, S. Ellison, and D. Edmonds (2010). "The Quasar Outflow Contribution to AGN Feedback: VLT Measurements of SDSS Jo318-0600." In: *ApJ* 709, pp. 611–631. arXiv: 0911.3896.
- Elitzur, M. and I. Shlosman (2006). "The AGN-obscuring Torus: The End of the "Doughnut" Paradigm?" In: *ApJ* 648, pp. L101–L104. arXiv: astro-ph/0605686.
- Elvis, M. (2000). "A Structure for Quasars." In: *ApJ* 545, pp. 63–76. arXiv: astro-ph/0008064.

- Everett, J. E. (2005). "Radiative Transfer and Acceleration in Magnetocentrifugal Winds." In: *ApJ* 631, pp. 689–706. arXiv: astro-ph/0506321.
- Everett, J., S. Gallagher, and S. Keating (2009). "Blowing Away the "Torus": Dusty Winds in AGN." In: *American Institute of Physics Conference Series*. Ed. by S. Heinz and E. Wilcots. Vol. 1201. American Institute of Physics Conference Series, pp. 56–59.
- Fabian, A. C. (2012). "Observational Evidence of Active Galactic Nuclei Feedback." In: *ARA&A* 50, pp. 455–489. arXiv: 1204. 4114.
- Ferrarese, L. and H. Ford (2005). "Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research." In: *Space Sci. Rev.* 116, pp. 523–624. arXiv: astro-ph/0411247.
- Ferrarese, L. and D. Merritt (2000). "A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies." In: *ApJ* 539, pp. L9–L12. arXiv: astro-ph/0006053.
- Feruglio, C., R. Maiolino, E. Piconcelli, N. Menci, H. Aussel, A. Lamastra, and F. Fiore (2010). "Quasar feedback revealed by giant molecular outflows." In: *A&A* 518, L155, p. L155. arXiv: 1006.1655.
- Gallagher, S. C., J. E. Everett, S. K. Keating, A. R. Hill, and R. P. Deo (2012). "Looking for the Wind in the Dust." In: *AGN Winds in Charleston*. Ed. by G. Chartas, F. Hamann, and K. M. Leighly. Vol. 460. Astronomical Society of the Pacific Conference Series, p. 199. arXiv: 1201.5018.
- Gaskell, C. M. and R. W. Goosmann (2016). "The case for inflow of the broad-line region of active galactic nuclei." In: *Ap&SS* 361, 67, p. 67. DOI: 10 . 1007 / s10509 015 2648 1. arXiv: 1512.08900.
- Gebhardt, K. et al. (2000). "A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion." In: *ApJ* 539, pp. L13–L16. arXiv: astro-ph/0006289.
- Graham, A. W., P. Erwin, N. Caon, and I. Trujillo (2001). "A Correlation between Galaxy Light Concentration and Supermassive Black Hole Mass." In: *ApJ* 563, pp. L11–L14. arXiv: astro-ph/0111152.
- Greene, J. E. and L. C. Ho (2005). "Estimating Black Hole Masses in Active Galaxies Using the H α Emission Line." In: *ApJ* 630, pp. 122–129. arXiv: astro-ph/0508335.
- Grier, C. J. et al. (2012). "Reverberation Mapping Results for Five Seyfert 1 Galaxies." In: *ApJ* 755, 60, p. 60. arXiv: 1206. 6523.

- Gültekin, K. et al. (2009). "The M-σ and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter." In: *ApJ* 698, pp. 198–221. arXiv: 0903.4897.
- Hamann, F., T. A. Barlow, V. Junkkarinen, and E. M. Burbidge (1997). "High-Resolution Spectra of Intrinsic Absorption Lines in the Quasi-stellar Object UM 675." In: *ApJ* 478, pp. 80–86.
- Harrison, C. M. et al. (2012). "Energetic galaxy-wide outflows in high-redshift ultraluminous infrared galaxies hosting AGN activity." In: *MNRAS* 426, pp. 1073–1096. arXiv: 1205.1801.
- Harrison, C. M., D. M. Alexander, J. R. Mullaney, and A. M. Swinbank (2014). "Kiloparsec-scale outflows are prevalent among luminous AGN: outflows and feedback in the context of the overall AGN population." In: *MNRAS* 441, pp. 3306–3347. arXiv: 1403.3086.
- Heckman, T. M. and P. N. Best (2014). "The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe." In: *ARA&A* 52, pp. 589–660. arXiv: 1403.4620.
- Hewett, P. C. and C. B. Foltz (2003). "The Frequency and Radio Properties of Broad Absorption Line Quasars." In: *AJ* 125, pp. 1784–1794. arXiv: astro-ph/0301191.
- Hoyle, F. and W. A. Fowler (1963). "On the nature of strong radio sources." In: *MNRAS* 125, p. 169.
- Kaspi, S., P. S. Smith, H. Netzer, D. Maoz, B. T. Jannuzi, and U. Giveon (2000). "Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei." In: *ApJ* 533, pp. 631–649. arXiv: astro-ph/9911476.
- Kaspi, S., W. N. Brandt, D. Maoz, H. Netzer, D. P. Schneider, and O. Shemmer (2007). "Reverberation Mapping of High-Luminosity Quasars: First Results." In: *ApJ* 659, pp. 997–1007. arXiv: astro-ph/0612722.
- Kauffmann, G. and M. Haehnelt (2000). "A unified model for the evolution of galaxies and quasars." In: *MNRAS* 311, pp. 576–588. eprint: astro-ph/9906493.
- Keating, S. K., J. E. Everett, S. C. Gallagher, and R. P. Deo (2012). "Sweeping Away the Mysteries of Dusty Continuous Winds in Active Galactic Nuclei." In: *ApJ* 749, 32, p. 32. arXiv: 1202. 4681.
- King, A. (2003). "Black Holes, Galaxy Formation, and the M_{BH} - σ Relation." In: *ApJ* 596, pp. L27–L29. arXiv: astro-ph/0308342.

- King, A. and K. Pounds (2015). "Powerful Outflows and Feedback from Active Galactic Nuclei." In: *ARA&A* 53, pp. 115–154. arXiv: 1503.05206.
- Kollmeier, J. A. et al. (2006). "Black Hole Masses and Eddington Ratios at 0.3 < z < 4." In: *ApJ* 648, pp. 128–139. arXiv: astro-ph/0508657.
- Konigl, A. and J. F. Kartje (1994). "Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes." In: *ApJ* 434, pp. 446–467.
- Kormendy, J. and L. C. Ho (2013). "Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies." In: *ARA&A* 51, pp. 511–653. arXiv: 1304.7762.
- Kormendy, J. and D. Richstone (1995). "Inward Bound—The Search For Supermassive Black Holes In Galactic Nuclei." In: *ARA&A* 33, p. 581.
- Krolik, J. H. and M. C. Begelman (1988). "Molecular tori in Seyfert galaxies Feeding the monster and hiding it." In: *ApJ* 329, pp. 702–711.
- Lynden-Bell, D. (1969). "Galactic Nuclei as Collapsed Old Quasars." In: *Nature* 223, pp. 690–694.
- Lynden-Bell, D. and M. J. Rees (1971). "On quasars, dust and the galactic centre." In: *MNRAS* 152, p. 461.
- Marconi, A. and L. K. Hunt (2003). "The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity." In: *ApJ* 589, pp. L21–L24. arXiv: astro-ph/0304274.
- Marziani, P. and J. W. Sulentic (2012). "Estimating black hole masses in quasars using broad optical and UV emission lines." In: *New Astron. Rev.* 56, pp. 49–63. arXiv: 1108.5102.
- McGill, K. L., J.-H. Woo, T. Treu, and M. A. Malkan (2008). "Comparing and Calibrating Black Hole Mass Estimators for Distant Active Galactic Nuclei." In: *ApJ* 673, pp. 703–714. arXiv: 0710.1839.
- McLure, R. J. and M. J. Jarvis (2002). "Measuring the black hole masses of high-redshift quasars." In: *MNRAS* 337, pp. 109–116. arXiv: astro-ph/0204473.
- Moe, M., N. Arav, M. A. Bautista, and K. T. Korista (2009). "Quasar Outflow Contribution to AGN Feedback: Observations of QSO SDSS Jo838+2955." In: *ApJ* 706, pp. 525–534. arXiv: 0911.3332.
- Murray, N., J. Chiang, S. A. Grossman, and G. M. Voit (1995). "Accretion Disk Winds from Active Galactic Nuclei." In: *ApJ* 451, p. 498.

- Nardini, E. et al. (2015). "Black hole feedback in the luminous quasar PDS 456." In: *Science* 347, pp. 860–863. arXiv: 1502. 06636.
- Nesvadba, N. P. H., M. D. Lehnert, F. Eisenhauer, A. Gilbert, M. Tecza, and R. Abuter (2006). "Extreme Gas Kinematics in the z=2.2 Powerful Radio Galaxy MRC 1138-262: Evidence for Efficient Active Galactic Nucleus Feedback in the Early Universe?" In: *ApJ* 650, pp. 693–705. arXiv: astro-ph/0606530.
- Nesvadba, N. P. H., M. D. Lehnert, C. De Breuck, A. M. Gilbert, and W. van Breugel (2008). "Evidence for powerful AGN winds at high redshift: dynamics of galactic outflows in radio galaxies during the "Quasar Era"." In: *A&A* 491, pp. 407–424. arXiv: 0809.5171.
- Nesvadba, N. P. H., F. Boulanger, P. Salomé, P. Guillard, M. D. Lehnert, P. Ogle, P. Appleton, E. Falgarone, and G. Pineau Des Forets (2010). "Energetics of the molecular gas in the H₂ luminous radio galaxy 3C 326: Evidence for negative AGN feedback." In: *A&A* 521, A65, A65. arXiv: 1003.3449.
- Netzer, H. and B. M. Peterson (1997). "Reverberation Mapping and the Physics of Active Galactic Nuclei." In: *Astronomical Time Series*. Ed. by D. Maoz, A. Sternberg, and E. M. Leibowitz. Vol. 218. Astrophysics and Space Science Library, p. 85. arXiv: astro-ph/9706039.
- Onken, C. A. and J. A. Kollmeier (2008). "An Improved Method for Using Mg II to Estimate Black Hole Masses in Active Galactic Nuclei." In: *ApJ* 689, p. L13. arXiv: 0810.1950.
- Park, D., J.-H. Woo, K. D. Denney, and J. Shin (2013). "Calibrating C-IV-based Black Hole Mass Estimators." In: *ApJ* 770, p. 87. arXiv: 1304.7281.
- Peterson, B. M. (1993). "Reverberation mapping of active galactic nuclei." In: *PASP* 105, pp. 247–268.
- (1997). An Introduction to Active Galactic Nuclei.
- (2010). "Toward Precision Measurement of Central Black Hole Masses." In: Co-Evolution of Central Black Holes and Galaxies. Ed. by B. M. Peterson, R. S. Somerville, and T. Storchi-Bergmann. Vol. 267. IAU Symposium, pp. 151–160. arXiv: 1001.3675.
- (2011). "Masses of Black Holes in Active Galactic Nuclei: Implications for NLS1s." In: *ArXiv e-prints*. arXiv: 1109.4181.
- (2014). "Measuring the Masses of Supermassive Black Holes." In: *Space Sci. Rev.* 183, pp. 253–275.

- Peterson, B. M. et al. (2004). "Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database." In: *ApJ* 613, pp. 682–699. arXiv: astro-ph/0407299.
- Proga, D., J. M. Stone, and T. R. Kallman (2000). "Dynamics of Line-driven Disk Winds in Active Galactic Nuclei." In: *ApJ* 543, pp. 686–696. arXiv: astro-ph/0005315.
- Rafiee, A. and P. B. Hall (2011). "Supermassive Black Hole Mass Estimates Using Sloan Digital Sky Survey Quasar Spectra at 0.7 < z < 2." In: *ApJS* 194, 42, p. 42. arXiv: 1104.1828.
- Reichard, T. A., G. T. Richards, P. B. Hall, D. P. Schneider, D. E. Vanden Berk, X. Fan, D. G. York, G. R. Knapp, and J. Brinkmann (2003). "Continuum and Emission-Line Properties of Broad Absorption Line Quasars." In: *AJ* 126, pp. 2594–2607. arXiv: astro-ph/0308508.
- Richards, G. T., D. E. Vanden Berk, T. A. Reichard, P. B. Hall, D. P. Schneider, M. SubbaRao, A. R. Thakar, and D. G. York (2002). "Broad Emission-Line Shifts in Quasars: An Orientation Measure for Radio-Quiet Quasars?" In: *AJ* 124, pp. 1–17. arXiv: astro-ph/0204162.
- Richards, G. T. et al. (2006). "The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3." In: *AJ* 131, pp. 2766–2787. arXiv: astro ph/0601434.
- Richards, G. T., N. E. Kruczek, S. C. Gallagher, P. B. Hall, P. C. Hewett, K. M. Leighly, R. P. Deo, R. M. Kratzer, and Y. Shen (2011). "Unification of Luminous Type 1 Quasars through CIV Emission." In: *AJ* 141, p. 167. arXiv: 1011.2282.
- Rupke, D. S. N. and S. Veilleux (2013). "Breaking the Obscuring Screen: A Resolved Molecular Outflow in a Buried QSO." In: *ApJ* 775, L15, p. L15. arXiv: 1308.4988.
- Salpeter, E. E. (1964). "Accretion of Interstellar Matter by Massive Objects." In: *ApJ* 140, pp. 796–800.
- Schmidt, M. (1963). "3C 273: A Star-Like Object with Large Red-Shift." In: *Nature* 197, p. 1040.
- Shen, Y. (2013). "The mass of quasars." In: *Bulletin of the Astronomical Society of India* 41, pp. 61–115. arXiv: 1302.2643.
- Shen, Y. and X. Liu (2012). "Comparing Single-epoch Virial Black Hole Mass Estimators for Luminous Quasars." In: *ApJ* 753, p. 125. arXiv: 1203.0601.
- Shen, Y. et al. (2011). "A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7." In: *ApJS* 194, p. 45. arXiv: 1006.5178.

- Silk, J. and M. J. Rees (1998). "Quasars and galaxy formation." In: *A&A* 331, pp. L1–L4. arXiv: astro-ph/9801013.
- Trakhtenbrot, B. and H. Netzer (2012). "Black hole growth to z = 2 I. Improved virial methods for measuring M_{BH} and L/L_{Edd} ." In: *MNRAS* 427, pp. 3081–3102. arXiv: 1209.1096.
- Tremaine, S. et al. (2002). "The Slope of the Black Hole Mass versus Velocity Dispersion Correlation." In: *ApJ* 574, pp. 740–753. arXiv: astro-ph/0203468.
- Turnshek, D. A. (1988). "BAL QSOs: Observations, Models and Implications for Narrow Absorption Line Systems." In: *QSO Absorption Lines: Probing the Universe*. Ed. by J. C. Blades, D. A. Turnshek, and C. A. Norman, p. 17.
- Urry, C. M. and P. Padovani (1995). "Unified Schemes for Radio-Loud Active Galactic Nuclei." In: *PASP* 107, p. 803. arXiv: astro-ph/9506063.
- Veilleux, S. et al. (2013). "Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel." In: *ApJ* 776, 27, p. 27. arXiv: 1308.3139.
- Vestergaard, M. (2002). "Determining Central Black Hole Masses in Distant Active Galaxies." In: *ApJ* 571, pp. 733–752. arXiv: astro-ph/0204106.
- Vestergaard, M. and P. S. Osmer (2009). "Mass Functions of the Active Black Holes in Distant Quasars from the Large Bright Quasar Survey, the Bright Quasar Survey, and the Colorselected Sample of the SDSS Fall Equatorial Stripe." In: *ApJ* 699, pp. 800–816. arXiv: 0904.3348.
- Vestergaard, M. and B. M. Peterson (2006). "Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships." In: *ApJ* 641, pp. 689–709. arXiv: astro-ph/0601303.
- Vestergaard, M., K. Denney, X. Fan, J. J. Jensen, B. C. Kelly, P. S. Osmer, B. M. Peterson, and C. A. Tremonti (2011). "Black hole mass estimations: limitations and uncertainties." In: *Narrow-Line Seyfert 1 Galaxies and their Place in the Universe*, p. 38.
- Wang, J.-G., X.-B. Dong, T.-G. Wang, L. C. Ho, W. Yuan, H. Wang, K. Zhang, S. Zhang, and H. Zhou (2009). "Estimating Black Hole Masses in Active Galactic Nuclei Using the Mg II λ2800 Emission Line." In: *ApJ* 707, pp. 1334–1346. arXiv: 0910.2848.
- Weymann, R. J., S. L. Morris, C. B. Foltz, and P. C. Hewett (1991). "Comparisons of the emission-line and continuum proper-

- ties of broad absorption line and normal quasi-stellar objects." In: *ApJ* 373, pp. 23–53.
- Wu, X.-B., R. Wang, M. Z. Kong, F. K. Liu, and J. L. Han (2004). "Black hole mass estimation using a relation between the BLR size and emission line luminosity of AGN." In: *A&A* 424, pp. 793–798. arXiv: astro-ph/0403243.