MDI343 - Cours 5: Support Vector Machines

Florence d'Alché—Buc Institut Mines-Télécom, Télécom ParisTech, LTCI florence.dalche@telecom-paristech.fr

Outline

- Rappels
- SVM linéaires
- Passage au cas non linéaire et noyaux
- Support Vector Regression
- 6 References

Classification binaire supervisée

Cadre probabiliste et statistique 1/2

- Soit *X* un vecteur aléatoire de $\mathcal{X} = \mathbb{R}^p$
- Exemple: X décrit les caractéristiques ("features") d'un message ou document
- Y une variable aléatoire discrète $\mathcal{Y} = \{-1, 1\}$
- Soit ℙ la loi de probabilité jointe de (X,Y)
- Soit $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$, i.i.d. sample from \mathbb{P} .

Classification binaire supervisée

Cadre probabiliste et statistique 2/2

- Soit $h: \mathbb{R}^p \to \{-1, +1\}$ une fonction de classification binaire
- Soit $\ell: \{\mathbb{R}^p, -1, +1\} \times \{-1, +1\} \to \mathbb{R}$ une fonction de perte ou coût
- Risque empirique $R_n(h) = \frac{1}{n} \sum_i \ell(y_i, h(x_i))$ et un terme régularisateur $\Omega(h)$ qui mesure la *complexité* de h.
- On cherche : $\hat{h} = \arg\min_{h \in \mathcal{H}} R_n(h) + \lambda \Omega(h)$

- Définir
 - l'espace de représentation des entrées

- Définir
 - l'espace de représentation des entrées
 - la classe des fonctions de classification binaire considérées

- Définir
 - l'espace de représentation des entrées
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe

- Définir
 - l'espace de représentation des entrées
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe
 - l'algorithme de minimisation de cette fonction de coût

- Définir
 - l'espace de représentation des entrées
 - la classe des fonctions de classification binaire considérées
 - la fonction de coût à minimiser pour obtenir le meilleur classifieur dans cette classe
 - l'algorithme de minimisation de cette fonction de coût
 - une méthode de sélection de modèle pour définir les hyperparamètres

Outline

- Rappels
- SVM linéaires
- Passage au cas non linéaire et noyaux
- Support Vector Regression
- 6 References

Séparateur linéaire

Définition

Soit $\mathbf{x} \in \mathbb{R}^p$

$$h(\mathbf{x}) = \text{signe}(\mathbf{w}^T \mathbf{x} + b)$$

L'équation : $\mathbf{w}^T \mathbf{x} + b = 0$ définit un hyperplan dans l'espace euclidien \mathbb{R}^p

Exemple: données d'apprentissage en 3D et séparateur linéaire

Cas de données linéairement séparables

Exemple en 2D: quelle droite choisir?

Critère de marge

Critère de marge

Notion de marge géométrique

- Pour séparer les données, on considère un triplet d'hyperplans:
 - \blacksquare H: $\mathbf{w}^T \mathbf{x} + b = 0$, H_1 : $\mathbf{w}^T \mathbf{x} + b = 1$, H_{-1} : $\mathbf{w}^T \mathbf{x} + b = -1$
- On appelle *marge géométrique*, $\rho(\mathbf{w})$ la plus petite distance entre les données et l'hyperplan H, ici donc la moitié de la distance entre H_1 et H_{-1}
- Un calcul simple donne : $\rho(\mathbf{w}) = \frac{1}{||\mathbf{w}||}$.

Nouvelle fonction de coût à optimiser

Comment déterminer w et b?

- Maximiser la marge ρ(w) tout en séparant les données de part et d'autre de H₁ et H₋₁
- Séparer les données bleues $(y_i = 1)$: $\mathbf{w}^T \mathbf{x}_i + b \ge 1$
- Séparer les données rouges $(y_i = -1)$: $\mathbf{w}^T \mathbf{x}_i + b \le -1$

SVM linéaire: cas séparable

Optimisation dans l'espace primal

```
minimiser \frac{1}{\mathbf{w},b} \|\mathbf{w}\|^2 sous la contrainte y_i(\mathbf{w}^T\mathbf{x}_i + \mathbf{b}) \ge 1, \ i = 1, \dots, n.
```

Référence

Boser, B. E.; Guyon, I. M.; Vapnik, V. N. (1992). "A training algorithm for optimal margin classifiers". Proceedings of the fifth annual workshop on Computational learning theory - COLT '92. p. 144.

Programmation quadratique sous contraintes inégalités

Problème du type (attention les notations changent!)

 \blacksquare un problème d'optimisation (\mathcal{P}) est défini par

minimiser sur
$$\mathbb{R}^n$$
 $J(\mathbf{x})$ avec $h_i(\mathbf{x}) = 0, 1 \le i \le p$ $g_j(\mathbf{x}) \le 0, 1 \le j \le q$

- rappel de vocabulaire :
 - les h_i sont les **contraintes d'égalité** (notées h(x) = 0)
 - les q_i sont les contraintes d'inégalité (notées $\mathbf{g}(\mathbf{x}) < 0$)
 - l'ensemble des contraintes est

$$\mathcal{C} = \{ \mathbf{x} \in \mathbb{R}^n | h_i(\mathbf{x}) = 0, 1 \le i \le p \text{ et } g_i(\mathbf{x}) \le 0, 1 \le j \le q \}$$

ensemble des points admissibles ou réalisables

Programming under inequality constraints

Problem of the following kind:

 $\min_{x} f(x)$

s.c. $g(x) \le 0$

- Here: g(x): linear constraints
- f is strictly convex
- **1** Lagrangian: $J(x, \lambda) = f(x) + \lambda g(x), \lambda \ge 0$

Programmation quadratique sous contraintes inégalités

minimiser
$$\frac{1}{2} \|\mathbf{w}\|^2$$
 sous la contrainte $1 - y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \le 0, \ i = 1, ..., n.$

Lagrangien

$$\mathcal{L}(\mathbf{w}, b, \alpha) = \frac{1}{2} ||\mathbf{w}||^2 + \sum_{i} \alpha_i (1 - y_i (\mathbf{w}^T \mathbf{x}_i + \mathbf{b}))$$
$$\forall i, \alpha_i \ge 0$$

Conditions de Karush-Kunh-Tucker

En l'extremum, on a

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \mathbf{w} - \sum_{i=1}^{n} \alpha_{i} y_{i} \mathbf{x}_{i} = 0$$

$$\nabla_{b} \mathcal{L}(b) = -\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\forall i, \alpha_{i} \geq 0$$

$$\forall i, \alpha_{i} [1 - y_{i} (\mathbf{w}^{T} \mathbf{x}_{i} + b)] = 0$$

Obtention des α_i : résolution dans l'espace dual

$$\mathcal{L}(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{x}_{j})$$

- Maximiser \mathcal{L} sous les contraintes $\alpha_i \geq 0$ et $\sum_i \alpha_i y_i = 0, \forall i = 1, \dots, n$
- Faire appel à un solveur quadratique

SVM linéaires ou Optimal Margin Hyperplan

Supposons que les multiplicateurs de Lagrange α_i soient déterminés :

Equation d'un SVM linéaire

$$f(\mathbf{x}) = \text{signe}(\sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i^T \mathbf{x} + b)$$

Pour classer une donnée \mathbf{x} , ce classifier combine linéairement les valeurs de classe y_i des données support avec des poids du type $\alpha_i \mathbf{x}_i^T \mathbf{x}$ dépendant de la ressemblance entre \mathbf{x} et les données support au sens du produit scalaire.

Vecteurs "supports"

Les données d'apprentissage \mathbf{x}_i telles que $\alpha_i \neq 0$ sont sur l'un ou l'autre des hyperplans H_1 ou H_{-1} . Seules ces données dites *vecteur de support* comptent dans la définition de $\mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$

NB : b est obtenu en choisissant une donnée support ($\alpha_i \neq 0$)

Introduire une variable d'écart ξ_i pour chaque donnée:

Problème dans le primal

$$\min_{\mathbf{w},b,\xi} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^n \xi_i$$
 sous les contraintes $y_i(\mathbf{w}^T \mathbf{x}_i + \mathbf{b}) \ge 1 - \xi_i \ i = 1, \dots, n$. $\xi_i \ge 0 \ i = 1, \dots, n$.

Problème dans le dual

$$\max_{\alpha} \qquad \qquad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$$
 sous les contraintes
$$0 \leq \alpha_{i} \leq C \ i = 1, \dots, n.$$

$$\sum_{i} \alpha_{i} y_{i} \ i = 1, \dots, n.$$

Conditions de Karush-Kuhn-Tucker (KKT)

Soit α^* la solution du problème dual:

$$\forall i, [y_{i}f_{w^{*},b^{*}}(x_{i}) - 1 + \xi_{i}^{*}] \leq 0$$

$$\forall i, \alpha_{i}^{*} \geq 0$$

$$\forall i, \alpha_{i}^{*}[y_{i}f_{w^{*},b^{*}}(x_{i}) - 1 + \xi_{i}^{*}] = 0$$

$$\forall i, \mu_{i}^{*} \geq 0$$

$$\forall i, \mu_{i}^{*} \leq 0$$

$$\forall i, \mu_{i}^{*} \xi_{i}^{*} = 0$$
(5)

$$\forall i, \mu_i^* \xi_i^* = 0$$

$$\forall i, \alpha_i^* + \mu_i^* = C$$

$$\forall i, \xi_i^* \geq 0$$

$$\mathbf{w}^* = \sum_{i} \alpha_i^* y_i \mathbf{x}_i$$
$$\sum_{i} \alpha_i^* y_i = 0$$

$$\sum_i \alpha_i^* y_i = 0$$

(9)(10)

(6)

(7)

(8)

Différents cas de figure

Soit α^* la solution du problème dual:

- si $\alpha_i^* = 0$, alors $\mu_i^* = C > 0$ et donc, $\xi_i^* = 0$: x_i est bien classé
- si $0 < \alpha_i^* < C$ alors $\mu_i^* > 0$ et donc, $\xi_i^* = 0$: x_i est tel que : $y_i f(x_i) = 1$
- si $\alpha_i^* = C$, alors $\mu_i^* = 0$, $\xi_i^* = 1 y_i f_{w^*,b^*}(x_i)$

NB : on calcule b^* en utilisant un i tel que $0 < \alpha_i^* < C$

Quelques remarques

- certaines données support peuvent donc être de l'autre côté des hyperplans H₁ ou H₋₁
- C est un hyperparamètre qui contrôle le compromis entre la complexité du modèle et le nombre d'erreurs de classification du modèle.

SVM: approche par régularisation

Optimisation dans l'espace primal

$$\min_{\mathbf{w},b} \quad \sum_{i=1}^{n} (1 - y_i(\mathbf{w}^T \mathbf{x}_i + b))_+ + \lambda \frac{1}{2} \|\mathbf{w}\|^2$$

Avec: $(z)_+ = max(0, z)$ $f(\mathbf{x}) = \text{signe}(h(\mathbf{x}))$ Fonction de coût: $L(\mathbf{x}, y, h(\mathbf{x})) = (1 - yh(\mathbf{x}))_+$ $yh(\mathbf{x})$ est appelée marge du classifieur

Outline

- Rappels
- SVM linéaires
- Passage au cas non linéaire et noyaux
- Support Vector Regression
- 6 References

Support Vector Machine : le cas non linéaire

Remarque

Le problème de l'hyperplan de marge optimale ne fait intervenir les données d'apprentissage qu'à travers de produits scalaires.

Remarque 1: apprentissage

Si je transforme les données à l'aide d'une fonction ϕ (non linéaire) et si je sais calculer les produits scalaires $\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$, je peux apprendre une fonction de séparation non linéaire.

$$\max_{\alpha} \qquad \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$$
sous les contraintes $0 \leq \alpha_{i} \leq C \ i = 1, \dots, n$.
$$\sum_{i} \alpha_{i} y_{i} \ i = 1, \dots, n$$
.

Pour classer une nouvelle donné \mathbf{x} , je n'ai besoin que de savoir calculer $\phi(\mathbf{x})^T \phi(\mathbf{x}_i)$.

Astuce du noyau

Si je remplace $\mathbf{x}_i^T \mathbf{x}_j$ par l'image par une fonction $k: k(\mathbf{x}_i, \mathbf{x}_j)$ telle qu'il existe un espace de caractérisques \mathcal{F} et une fonction de caractéristique (feature map) $\phi: \mathcal{X} \to \mathcal{F}$ et $\forall (\mathbf{x}, \mathbf{x}') \in \mathcal{X}, k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}')$, alors je peux appliquer le même algorithme d'optimisation (résolution dans le dual) et j'obtiens : $f(\mathbf{x}) = \operatorname{signe}(\sum_{i=1}^n \alpha_i y_i k(\mathbf{x}_i, \mathbf{x}) + b)$ Des telles fonctions existent et sont appelées *noyaux*.

Astuce du noyau et fonction de redescription 1/2

Astuce et fonction de redescription 2/2

Astuce et fonction de redescription 2/2

Fonction h du type: $h(\mathbf{x}) = \sum_{i=1}^{n} \beta_{i} \phi(x)^{T} \phi(x_{i}) = \sum_{i=1}^{n} \beta_{i} k(x, x_{i}),$ avec $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ un noyau positif défini.

Noyaux

Définition

Soit $\mathcal X$ un ensemble. Soit $k:\mathcal X\times\mathcal X\to\mathbb R$, une fonction symétrique. La fonction k est appelée *noyau* positif défini si et seulement si quel que soit le sous-ensemble fini $\{\mathbf x_1,\dots,\mathbf x_m\}$ de $\mathcal X$ et le vecteur colonne $\mathbf c$ de $\mathbb R^m$,

$$\mathbf{c}^T K \mathbf{c} = \sum_{i,j=1}^m c_i c_j k(x_i, x_j) \geq 0$$

N.B.: on impose donc que toute matrice construite à partir d'un nombre fini d'éléments de $\mathcal X$ soit semi-définie positive.

Propriété des noyaux

Théorème de Moore-Aronzajn (simplifié)

Soit K un noyau positif défini. Alors, il existe un espace de Hilbert \mathcal{F} , appelé *espace de redescription* et une fonction $\phi: \mathcal{X} \to \mathcal{F}$, appelée fonction de redescription (en anglais, feature map) telle que:

$$\langle \phi(\mathbf{x}), \phi(\mathbf{x}') \rangle_{\mathcal{F}} = k(\mathbf{x}, \mathbf{x}').$$

N.B.: pour un noyau k, il peut exister plusieurs couples (\mathcal{F}, ϕ) .

Propriété des noyaux

Théorème de Moore-Aronzajn 2 (plus précis)

Il existe une unique fonction de redescription et un unique espace de Hilbert tels que: $\langle \phi(x), f \rangle_{\mathcal{F}} = f(x)$. Il s'agit de la fonction définie par $\phi(x) = k(\cdot, x)$ et de l'espace de Hilbert à noyau autoreproduisant qui est l'espace fonctionnel engendré par $\{\sum_{\ell} k(\cdot, z_{\ell})\beta_{\ell}, z_{\ell} \in \mathcal{X}\}$ et completé par les limites des suites de Cauchy de ces fonctions.

Noyaux

Noyaux entre vecteurs

 $\forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^p$

- Noyau linéaire : $k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$
- Noyau polynomial : $k(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^d$
- Noyau gaussien : $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} \mathbf{x}'||^2)$

Support Vector Machine : séparateur non linéaire par noyau gaussien

Exemple: noyau polynomial

Exemple: noyau polynomial

Astuce du noyau

On remarque que $\phi(\mathbf{x}_1)^T \phi(\mathbf{x}')$ peut se calculer sans travailler dans \mathbb{R}^3 Je peux définir $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^T \phi(\mathbf{x}') = (\mathbf{x}^T \mathbf{x}')^2$

Autre usage des noyaux

On peut construire des noyaux pour des données structurées : grpahes, séquences, arbres et appliquer les SVM!

- Classifier des molécules
- Classifier des documents structurés
- Traiter des séquences biologiques
- ...

Kernel Design

- Use closure properties to build new kernels from existing ones
- Kernels can be defined for various objects:
 - Structured objects: (sets), graphs, trees, sequences, ...
 - Unstructured data with underlying structure: texts, images, documents, signal, biological objects

• Kernel learning:

- Hyperparameter learning: see Chapelle et al. 2002
- ▶ Multiple Kernel Learning: given k_1, \ldots, k_m , learn a convex combination $\sum_i \beta_i k_i$ of kernels (see SimpleMKL Rakotomamonjy et al. 2008, unifying view in Kloft et al. 2010)

Quel noyau pour notre détecteur de spams?

On peut prendre soit:

- le noyau linéaire
- le noyau gaussien ou une de ses variantes
 - Connaissance a priori d'une matrice de similarité sémantique A entre mots
 - Appliquer A au vecteur x revient à faire apparaître des mots proches sémantiquement
 - $k(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||A(\mathbf{x} \mathbf{x}')||^2)$
 - équivalent à: $k(\mathbf{x}, \mathbf{x}') = \exp[-\gamma (A(\mathbf{x} \mathbf{x}'))^T (A(\mathbf{x} \mathbf{x}'))]$
 - ► soit : $k(\mathbf{x}, \mathbf{x}') = \exp[-\gamma(\mathbf{x} \mathbf{x}')^T A^T A(\mathbf{x} \mathbf{x}')]$

Outline

- Rappels
- SVM linéaires
- Passage au cas non linéaire et noyaux
- Support Vector Regression
- 6 References

Régression

Cadre probabiliste et statistique

Soit X un vecteur aléatoire de $\mathcal{X} = \mathbb{R}^p$

Y une variable aléatoire continue $\mathcal{Y} = \mathbb{R}$

Soit P la loi de probabilité jointe de (X,Y), loi fixée mais inconnue

Supposons que $S_{app} = \{(x_i, y_i), i = 1, ..., n\}$ soit un échantillon i.i.d.

tiré de la loi P

Régression

Cadre probabiliste et statistique

- A partir de S_{app} , déterminer la fonction $f \in \mathcal{F}$ qui minimise $R(f) = \mathbb{E}_P[\ell(X, Y, f(X))]$
- ullet étant une fonction de coût local qui mesure à quel point la vraie cible et la prédiction par le classifieur sont différentes

Pb: la loi jointe n'est pas connue : on ne peut pas calculer R(f)

Support Vector Regression

- Extend the idea of maximal soft margin to regression
- Impose an ε -tube : perte ε -insensible $|y'-y|_{\varepsilon}=\max(0,|y'-y|-\varepsilon)$

Support Vector Regression

SVR in the primal space

```
Given C and \varepsilon \min_{w,b,\xi} \frac{1}{2} ||\mathbf{w}||^2 + C \sum_i (\xi_i + \xi_i^*) s.c. \forall i = 1, \dots, y_i - f(x_i) \le \varepsilon + \xi_i \forall i = 1, \dots, f(x_i) - y_i \le \varepsilon + \xi_i^* \forall i = 1, \xi_i \ge 0, \xi_i^* \ge 0 with f(x) = w^T \phi(x) + b
```

General case : ϕ is a feature map associated with a positive definite kernel k.

Solution in the dual

$$\begin{aligned} &\min_{\alpha,\alpha^*} \sum_{i,j} (\alpha_i - \alpha_i^*) (\alpha_j - \alpha_j^*) k(\mathbf{x}_i, \mathbf{x}_j) + \varepsilon \sum_i (\alpha_i + \alpha_i^*) - \sum_i \mathbf{y}_i (\alpha_i - \alpha_i^*) \\ &\text{s.c. } \sum_i (\alpha_i - \alpha_i^*) = 0 \text{ and } 0 \leq \alpha_i \leq C \text{ and } 0 \leq \alpha_i^* \leq C \\ &w = \sum_{i=1}^n (\alpha_i - \alpha_i^*) \phi(\mathbf{x}_i) \end{aligned}$$

Solution

$$f(x) = \sum_{i=1}^{n} (\alpha_i - \alpha_i^*) k(x_i, x) + b$$

Support Vector Regression: example in 1D

Identical machine parameters ($\varepsilon=0.2$), but different amounts of noise in the data.

B. Schölkopf, Canberra, February 2002

Outline

- Rappels
- SVM linéaires
- Passage au cas non linéaire et noyaux
- Support Vector Regression
- References

References

- BOSER, Bernhard E., Isabelle M. GUYON, and Vladimir N.
 VAPNIK, 1992. A training algorithm for optimal margin classifiers.
 In: COLT âĂŹ92: Proceedings of the Fifth Annual Workshop on Computational Learning Theory. New York, NY, USA: ACM Press, pp. 144-152.
- CORTES, Corinna, and Vladimir VAPNIK, 1995. Support-vector networks. Machine Learning, 20(3), 273âĂŞ297.
- Article vraiment sympa, complet (un peu de maths): A tutorial review of RKHS methods in Machine Learning, Hofman, Schoelkopf, Smola, 2005 (https://www.researchgate.net/ publication/228827159_A_Tutorial_Review_of_RKHS_ Methods_in_Machine_Learning)