การพัฒนาแอปพลิเคชันและตัวควบคุมตามสถาปัตยกรรม เอสดีเอ็น เพื่อควบคุมการกระจายแทรฟฟิกแบบผู้ใช้ กำหนดได้บนเครือข่ายที่อุปกรณ์ไม่รองรับมาตรฐานเอสดี เอ็น

พงศ์พณิช อรัญรัตน์โสภณ¹ และ ภูริณัฐ จิตมนัส²

¹คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง กรุงเทพฯ
²คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง กรุงเทพฯ

Emails: 61070124@it.kmitl.ac.th, 61070171@it.kmitl.ac.th

บทคัดย่อ

สถาปัตยกรรมที่ใช้ในการบริหารจัดการอุปกรณ์เครือข่ายแบบรวมศูนย์ หรือ สถาปัตยกรรมแบบ Software Defined Network (SDN) ในปัจจุบันไม่สามารถใช้งานร่วมกับอุปกรณ์เครือข่ายแบบดั้งเดิม (Legacy Network Device) ซึ่งไม่รองรับการทำงานตามสถาปัตยกรรมแบบเอสดีเอ็นได้ ในการพัฒนาครั้งนี้คณะผู้จัดทำได้ทำการพัฒนาระบบควบคุม อุปกรณ์เครือข่ายตามสถาปัตยกรรมแบบเอสดีเอ็นที่สามารถจัดการควบคุมอุปกรณ์เครือข่ายแบบดั้งเดิมได้ รวมถึงพัฒนา แอปพลิเคชันที่ใช้งานระบบควบคุมเครือข่ายนี้ในการบริหารจัดการแทรฟฟิกในระบบเครือข่าย

คำสำคัญ - ตัวควบคุม; เอสดีเอ็น; การกระจายแทรฟฟิก;

1. บทน้ำ

ในปัจจุบันระบบเครือข่ายมีการเติบโต และ มีการใช้งานเพิ่มขึ้นเป็นจำนวนมากทำให้ข้อมูลต่างๆ ในระบบเครือข่ายมีจำนวนเพิ่มมากขึ้นเป็นทวีคูณ ส่งผลให้เกิดปัญหาความคับคั่งของการจราจร เครือข่าย (เน็ตเวิร์กแทรฟฟิก) ในบางเส้นทางได้ การ จัดการแทรฟฟิกจึงมีความสำคัญที่ทำให้ระบบ เครือข่ายสามารถใช้งานได้อย่างมีประสิทธิภาพ สถาปัตยกรรมแบบเอสดีเอ็นถูกคิดค้นขึ้นมาเพื่อช่วย บริหารจัดการอุปกรณ์เครือข่ายที่มีความซับซ้อน อย่างไรก็ตามสถาปัตยกรรมดังกล่าวสามารถใช้ได้กับ อุปกรณ์เครือข่ายที่รองรับมาตรฐานเอสดีเอ็นเท่านั้น แอปพลิเคชันและคอนโทรลเลอร์ตามสถาปัตยกรรม แบบเอสดีเอ็นระบบนี้ เป็นระบบที่พัฒนาขึ้นเพื่อที่จะ ช่วยให้อุปกรณ์เครือข่ายแบบดั้งเดิมสามารถบริหาร จัดการเก็บข้อมูลต่างๆของระบบเครือข่ายแสดงผลให้ ผู้ใช้งานเข้าใจง่าย และสามารถตั้งค่าจัดการแทรฟฟิก แบบที่ผู้ใช้ต้องการได้

2. วัตถุประสงค์โครงงาน

- 1. เพื่อศึกษาพัฒนาตัวควบคุมเอสดีเอ็นบน อุปกรณ์เครือข่ายที่ไม่รองรับการทำงาน เอสดีเอ็น
- 2. เพื่อศึกษาพัฒนากลไกการกระจายแทรฟฟิก ตามที่ผู้ใช้กำหนดผ่านส่วนติดต่อผู้ใช้งาน

3. เพื่อศึกษาวิธีการทดสอบประสิทธิภาพของ ระบบที่พัฒนาที้น

3. ขอบเขตโครงงาน

พัฒนาระบบจัดการเครือข่ายสำหรับ อุปกรณ์ที่ไม่รองรับมาตรฐานเอสดีเอ็นเท่าที่สามารถ หาได้จากการที่คณะจัดสรรให้ เพื่อให้สามารถควบคุม อุปกรณ์เหล่านั้นให้ทำงานตามนโยบายที่กำหนดผ่าน ทางส่วนติดต่อผู้ใช้งานที่เป็นเว็บแอปพลิเคชันได้

4. ขั้นตอนการดำเนินงาน

- 1. ศึกษาโครงสร้างการจัดการระบบเครือข่าย ตามสถาปัตยกรรมเอสดีเอ็น
- 2. ติดตั้งเซิร์ฟเวอร์และจัดหาอุปกรณ์ทดลอง
- 3. พัฒนาติดตั้งแอปพลิเคชันสำหรับจัดการ อุปกรณ์เครือข่าย
- 4. ศึกษาแนวคิดการเก็บข้อมูลเครือข่าย
- ศึกษาการกระจายแทรฟฟิกตามที่ผู้ใช้ กำหนดได้ผ่านส่วนติดต่อผู้ใช้งาน
- 6. ปรับปรุงตัวควบคุมต้นแบบ
- 7 พัฒนากลไกการกระจายแทรฟฟิก
- 8 พัฒนาแลงไพลิเคชันสำหรับแสดงผล
- 9. ทดสอบและสรุปผล

5. สถาปัตยกรรมเอสดีเอ็น

เป็นเทคโนโลยีที่เกี่ยวข้องกับการบริหาร จัดการระบบเครือข่ายแบบรวมศูนย์เพื่อให้ง่ายแก่การ จัดการ แบ่งลับดับชั้นการทำงานเป็น 3 ชั้น ได้แก่ [1]

- Application Layer ส่วนติดต่อผู้ใช้งานทำ หน้าที่รับ ส่งข้อมูลตามผู้ใช้ต้องการ
- 2. Control Layer ชั้นควบคุมทำหน้าที่เป็น ตัวกลางระหว่างชั้นแอปพลิเคชันและ อุปกรณ์ผ่าน API [2] ใช้สำหรับส่งคำสั่ง และจัดเก็บค่าสถานะเครือข่าย

3. Infrastructure Layer ชั้นโครงสร้าง ประกอบไปด้วยอุปกรณ์เครือข่ายเป็น พื้นฐานในการรับส่งข้อมูล

6. การเก็บข้อมูลเครือข่าย

โครงงานนี้ได้ใช้เทคโนโลยีที่ทำให้ได้มาซึ่ง ข้อมูลของอุปกรณ์เครือข่ายดังต่อไปนี้

- 1. SNMP เป็นโปรโตคอลเก็บข้อมูลเครือข่าย ซึ่งจะจัดเก็บข้อมูล และจัดการโดย Management Information Base หรือ MIB ซึ่งเป็นฐานข้อมูลสำหรับจัดการ อุปกรณ์ โดยการจัดเก็บจะประกอบไปด้วย Object ID (OID) โดยเป็นชื่อเฉพาะที่เป็น เอกลักษณ์ของอุปกรณ์แต่ละตัว และถูก จัดเรียงในรูปแบบของแผนภาพต้นไม้ [7]
- 2. NetFlow เป็นเทคโนโลยีที่อยู่ในอุปกรณ์ เครือข่ายรวมถึง Cisco IOS เป็นเครื่องมือ สำหรับใช้ในการตรวจสอบการรับส่งข้อมูล และเก็บสถิติข้อมูลในเครือข่ายเหล่านั้น ผู้ดูแลระบบสามารถใช้ข้อมูลเหล่านั้นใน การวิเคราะห์ นำไปสู่การพัฒนาระบบ เครือข่ายให้มีประสิทธิภาพมากยิ่งขึ้น [8]
- CDP เป็นโปรโตคอลของ Cisco เป็น
 เครื่องมือที่ช่วยให้อุปกรณ์เครือข่าย
 สามารถแลกเปลี่ยนข้อมูลระหว่างอุปกรณ์
 เครือข่าย Cisco ที่อยู่ติดกัน ทำให้สามารถ
 เก็บข้อมูลสถานะของของอุปกรณ์เครือข่าย
 ได้ [9]

7. ระบบต้นแบบ และงานวิจัยที่เกี่ยวข้อง

โครงงานนี้ได้นำระบบต้นแบบทำหน้าที่ เชื่อมต่อและเก็บข้อมูลอุปกรณ์เครือข่ายลงฐานข้อมูล พร้อมจัดเตรียมระบบ API สำหรับผู้ใช้ให้สามารถดึง ข้อมูลที่ระบบบันทึกในฐานข้อมูลนำมาใช้งานต่อได้

อย่างสะดวก ผู้จัดทำได้เล็งเห็นถึงประโยชน์จึงนำ ระบบดังกล่าวมาปรับปรุงและพัฒนาต่อ [14]

รูปที่ 1 องค์ประกอบภาพรวมระบบตันแบบ

ในด้านวิศวกรรมจราจรเครือข่ายได้นำ
แนวคิดการจัดการโฟลว์ข้อง Hedera [3] โดยแนวคิด
การจัดการโฟลว์นี้มีขั้นตอน 2 ขั้น คือ (1) เมื่อพบ
โฟลว์ขนาดใหญ่ (Large Flows) จะเลือกส่งตาม
เส้นทาง ตามค่า Hash ของโฟลว์เหล่านั้น ทำไปเรื่อย
ๆ จนเกิดเส้นทางที่ถูกใช้งานสูงกว่า Threshold ที่
กำหนด (2) นำโฟลว์ขนาดใหญ่นั้น คำนวณหา
เส้นทางที่เหมาะสมอื่น เมื่อย้ายโฟลว์ดังกล่าวไป
แล้วต้องไม่เกินค่า Threshold ของเส้นทางใหม่
เช่นกัน [4] ส่วนของการจัดการโฟลว์จะใช้ PolicyBased Routing ซึ่งเป็นวิธีการเลือกเส้นทางโดยอาศัย
นโยบายตามคุณลักษณะของโฟลว์ เพื่อใช้ในการ
กำหนดเส้นทาง สามารถจัดการโฟลว์ได้อย่างยิด
หยุ่น และมีประสิทธิภาพ [5]

8. ภาพรวมระบบที่พัฒนาใหม่

ในระบบจะมีตัวควบคุมทำหน้าที่เก็บข้อมูล เครือข่ายผ่านและจัดเก็บข้อมูลที่จำเป็นลงฐานข้อมูล MongoDB [12] โดยจัดดเตรียม API ที่สามารถนำ ข้อมูลเหล่านั้นมาใช้ในการกระจายแทรฟฟิก และ แสดงผล ในโครงงานนี้แบ่งงานเป็น 3 ส่วน คือ ตัว ควบคุม แอปพลิเคชันสำหรับการกระจายแทรฟฟิก และเว็บแอปพลิเคชันสำหรับแสดงผลและรับคำสั่ง จากผู้ใช้

รูปที่ 2 องค์ประกอบภาพรวมระบบที่พัฒนาขึ้นใหม่

9. เว็บแอปพลิเคชันสำหรับแสดงผลและ รับคำสั่งจากผู้ใช้

เว็บแอปพลิเคชัน ถูกสร้างขึ้นมาเพื่อ จุดประสงค์ให้ผู้ใช้งานทั่วไปสามารถใช้ตัวควบคุม และ ดูภาพรวมของระบบเครือข่ายได้ง่ายยิ่งขึ้น ซึ่งผู้ใช้ สามารถเพิ่ม-ลบอุปกรณ์ ส่งคำสั่งให้อุปกรณ์ส่งข้อมูล มายังตัวควบคุม ดูโทโพโลยีภาพรวมของระบบ เครือข่ายซึ่งประกอบไปด้วยอุปกรณ์ที่เชื่อมต่อกัน ดู โฟลว์ที่วิ่งอยู่ในลิงก์ ตั้งค่า Threshold สำหรับการ กระจายแทรฟฟิก และตั้ง Routing Policy สำหรับ กำหนดนโยบายในการปรับเปลี่ยนเส้นทางของโฟลว์

รูปที่ 3 แผนภาพยูสเคสเว็บแอปพลิเคชัน

รูปที่ 4 หน้าเว็บแอปพลิเคชัน

10. ตัวควบคุม

ตัวควบคุมทำหน้าที่เป็นเชิร์ฟเวอร์พัฒนา โดยภาษา Python [11] ซึ่งเชื่อมต่ออุปกรณ์เครือข่าย ทั้งหมด ผู้ใช้ต้องส่งคำสั่งเพิ่มอุปกรณ์ และตั้งค่าการ เก็บข้อมูลเครือข่ายผ่านหน้าเว็บแอปพลิเคชัน เพื่อทำ ให้ตัวควบคุมพร้อมรับค่าข้อมูลเครือข่ายและบันทึกลง ฐานข้อมูล

รูปที่ 5 แผนภาพยูสเคสของตัวควบคุม

การเพิ่มอุปกรณ์ผู้ใช้จำเป็นต้องส่งข้อมูล เกี่ยวกับ SSH [10] ให้ตัวควบคุมก่อนเพื่อเปิดช่องจาก การติดต่อระหว่าง เมื่อเพิ่มอุปกรณ์เข้าสู่ระบบครบ แล้วผู้ใช้ต้องส่งคำสั่งให้ตัวควบคุมเข้าไปตั้งค่าอุปกรณ์ เครือข่ายทุกตัวในระบบโดยใช้ Netmiko [13] เพื่อ เปิดช่องทางการรับข้อมูลเครือข่ายผ่าน SNMP และ NetFlow [7][8]

ร**ูปที่ 6** ขั้นตอน Initialize เพื่อให้อุปกรณ์ส่งข้อมูลมายัง ตัวควบคุม

รูปที่ 7 ขั้นตอนกระบวนการเพิ่มอุปกรณ์

11. แอปพลิเคชันสำหรับการกระจาย แทรฟฟิก

แอปพลิเคชันทำหน้าที่ ตรวจจับลิงก์ใน เครือข่าย ถ้ามีลิงก์ใดใช้งานสูงกว่าค่าที่กำหนดไว้จะมี การเลือกเส้นทางที่เหมาะสมให้โฟลว์ที่มีขนาดใหญ่ ที่สุด และสร้างนโยบายไปให้อุปกรณ์เครือข่ายใน เส้นทางเพื่อย้ายโฟลว์ดังกล่าวไปในเส้นทางใหม่ โดย จะมีการคิด Aging Time สำหรับลบนโยบายที่ไม่มี โฟลว์ถูกใช้มาระยะเวลาหนึ่งเพื่อทำให้การทำงาน เครือข่ายมีความเป็นปัจจุบันที่สุด

รูปที่ 8 ขั้นตอนการกระจายแทรฟฟิก

12. ผลการทบสอบระบบ

ทดลองเชื่อมต่ออุปกรณ์เครือข่าย เปิด ช่องทางการรับข้อมูลเครือข่าย และทดสอบยิงโฟลว์ เข้าไปในระบบ สังเกตการใช้งานโฟลว์ที่เปลี่ยนแปลง จากโปรแกรมวิเคราะห์แพ็คเก็ต Wireshark และ นโยบายที่ถูกสร้างขึ้นเพื่อปรับเปลี่ยนเส้นทาง รูปที่ 8 9 12 และ 13 แสดงหน้าโทโพโลยีที่ใช้ในการทดสอบ เส้นสี แดง เขียว ม่วงแสดงถึงเส้นทางการเคลื่อนที่ ของโฟลว์ และรูปที่ 11 ถึง 18 แสดงให้เห็นว่าแอป พลิเคชันสำหรับกระจายแทรฟฟิกสามารถลดการใช้ งานลิงก์ที่ถูกใช้งานหนัก ให้กระจายโฟลว์บางส่วนไป ยังลิงก์อื่นที่เหมาะสม และมีอัตราการใช้งานที่ต่ำได้

รูปที่ 9 แสดงโครงสร้างเครือข่ายที่ใช้ในการทดสอบ

รูปที่ 10 แสดงโครงสร้างเครือข่ายหลังจากนำระบบ จัดการเครือข่ายมาใช้

รูปที่ 11 แสดงค่าการใช้งานลิงก์ที่ถูกย้ายโฟลว์เข้ามา

รูปที่ 12 แสดงค่าการใช้งานลิงก์ที่ถูกย้ายโฟลว์ออกไป

รูปที่ 13 แสดงโครงสร้างเครือข่ายที่ใช้ในการทดสอบ

รูปที่ 14 แสดงโครงสร้างเครือข่ายหลังจากนำระบบ จัดการเครือข่ายมาใช้

รูปที่ 15 แสดงค่าการใช้งานลิงก์ที่ถูกย้ายโฟลว์เข้ามา

รูปที่ 16 แสดงค่าการใช้งานลิงก์ที่ถูกย้ายโฟลว์ออกไป

ร**ูปที่ 17** เปรียบเทียบระหว่างมีและไม่มีการกระจาย แทรฟฟิกในลิงก์ที่ถูกย้ายโฟลว์ออกไป

ร**ูปที่ 18** เปรียบเทียบระหว่างมีและไม่มีการกระจาย แทรฟฟิกในลิงก์ที่ถูกย้ายโฟลว์เข้ามา

13. สรุปผลการทดลอง

แอปพลิเคชันและตัวควบคุมตาม
สถาปัตยกรรมเอสดีเอ็น เพื่อควบคุมการกระจาย
แทรฟฟิกแบบที่ผู้ใช้กำหนดเองได้ บนเครือข่ายที่
อุปกรณ์ไม่รองรับมาตรฐานเอสดีเอ็น จัดเป็น
แอปพลิเคชันที่พัฒนาต่อยอดมาจากระบบต้นแบบ
โดยระบบที่พัฒนาขึ้นมาใหม่ ประกอบไปด้วยหน้าเว็บ
แอปพลิเคชันสำหรับใช้งานตัวควบคุมพร้อมแสดงผล
ข้อมูลเครือข่าย และแอปพลิเคชันสำหรับการทำการ
กระจายแทรฟฟิกที่ทำงานตามเงื่อนไขเปอร์เซ็นต์การ
ใช้งานแบนด์วิดท์ที่ผู้ใช้สามารถกำหนดได้

จากการทดลองในส่วนเว็บแอปพลิเคชัน
พบว่าระบบสามารถจัดการอุปกรณ์เครือข่าย และ
แสดงข้อมูลโทโพโลยีออกมาได้อย่างถูกต้อง และ
ข้อมูลโฟลว์ในระบบก็สอดคล้องกับข้อมูลที่ได้จาก
โปรแกรม Wireshark เช่นกัน ในส่วนของแอปพลิเค
ชันสำหรับการกระจายแทรฟฟิกสามารถเลือกเส้นทาง
และสร้างนโยบายสำหรับปรับเปลี่ยนเส้นทางได้ตาม
เงื่อนไขที่วางแผนไว้

เอกสารอ้างอิง

[1] Ciena. "Networking Insights What is SDN." [Online]. Available: www.ciena.com/insights/what-is/What-Is-SDN.html

- [2] Kamal Benzekki. "Software-defined networking (SDN): A survey" Security and Communication Networks, vol.1, no. 1, Febuary2017.pp5805-5805
- [3] Ian F. Akyildiz. A roadmap for traffic engineering in SDN-OpenFlow networks, vol.1, no. 1, June2014.pp1-30
- [4] Konstantin Avrachenkov. "Differentiation Between Short and Long TCP Flows"[Online].Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.5.6517&rep=rep1&type=pdf
- [5] Cisco. "Manipulating Routing Updates
 Supplement" [Online]. Available:
 https://ptgmedia.pearsoncmg.com/imprint_d
 ownloads/cisco/bookreg/2237xxd.pdf?fbclid=I
 wAR22pchWECvs2dGmci8D4nmXYm_EF5Kqq
 yUeDCAAuf-KISHseaEBoocDzfU
- [6] Juniper. "what-is-policy-based-routing" [Online]. Available: www.juniper.net/us/en/research-topics/what-is-policy-based-routing.html
- [7] Saixiii. **"SNMP คืออะไร โปรโตรคอลสำหรับ มอนิเตอร์อุปกรณ์ในระบบ**"[Online].Available: www.saixiii.com/what-is-snmp/
- [8] Solarwinds, "What is NetFlow?" [Online]. Available:

www.solarwinds.com/netflow-trafficanalyzer/use-cases/what-is-netflow

- [9] Cisco. "Cisco Discovery Protocol (CDP)"[Online].Available: www.learningnetwork.cisco.com/s/article/cisc o-discovery-protocol-cdp-x
- [10] TechTarget. "What is SSH (Secure Shell) and How Does it Work?" [Online]. Available: https://www.techtarget.com/searchsecurity/definition/Secure-Shell
- [11] Python. "What is Python? Executive Summary" [Online]. Available: www.python.org/doc/essays/blurb/
- [12] Chai Phonbopit "MongoDB คืออะไร? + สอนวิธีใช้งานเบื้องต้น"[Online].Available: https://devahoy.com/blog/2015/08/getting-started-with-mongodb/
- [13] Packet Coders "What is Netmiko?"[Online].Available: https://www.packetcoders.io/netmiko-thewhat-and-the-why/
- [14] ชยุตม์ สว่าง และอนุชิต มัชฌิมา. (2019). ระบบ จัดการเครือข่ายเพื่อกระจายการจราจรบนเครือข่าย โดยใช้โครงสร้างตามสถาปัตยกรรมเอสดีเอ็น (ปริญญานิพนธ์) กรุงเทพฯ: สถาบันเทคโนโลยีพระ จอมเกล้าเจ้าคุณทหารลาดกระบัง