

Proyecto: Techo Solar

Miguelangel Molina Marc Baillo Curso 2025 Grupo C

El techo solar es un panel de vidrio o material translúcido ubicado en el techo de un automóvil que permite la entrada de luz y aire al interior del vehículo

OBJETIVOS

- ✓ Diseño integral de un techo solar controlado por microcontrolador.
- Implementación de un motor de apertura con final de carrera.
- ✓ Integración de un motor de la cortina.
- Luz ambiental RGB.
- ✓ Integración de un sensor digital para evitar que atrapamientos.

DIAGRAMA DE BLOQUES

Proyecto: Diseño del Techo Solar del coche Componentes

TIPO	COMPONENTES	DESCRIPCIÓN
POWER	Driver motor Regulador de tensión,	Las redes de potencia se refieren a los sistemas eléctricos que suministran energía eléctrica a los consumidores.
ANALOG	Oscilador, Sensor final de carrera, Botonera	La información se transmite en forma de señales analógicas.
DIGITAL	Led Conectores de comunicación (Transceiver, db9,) Microcontrolador, Sensor de movimiento	Transmiten los datos en forma de bits, típicamente como 0 o 1.

COMPONENTES	UTILIDAD	CARACTERÍSTICAS	MODELO	DATASHEETS
Microcontrolador	Circuito programable que actuará como centro de control de todo el circuito.	Vmin = 2V Vmax = 5,5V I = 250mA	PIC18LF2580	Micro/datasheet
Regulador de tensión	Dispositivo que mantendrá o regulará un nivel de tensión constante.	Vmin = 3,3V Vmàx = 20V I = 1.2A	LM1117CST-3.3	Reg/datasheet
Conector	Conector que sirve para la comunicación entre dispositivos.		DB9	Conn/datasheet
Oscilador	Permite la generación de señales eléctricas de una alta precisión.	Frecuencia = 8 MHz	ECS-80-8-30-JGN-TR	Osc/datasheet
H-Driver	Permitirá el control de los motores.	V=4.3-33V Power supply = -0.5-35V Imax = 0-3.7A	L293DD	<u>Driver/datasheet</u>

COMPONENTES	UTILIDAD	CARACTERÍSTICAS	MODELO	DATASHEETS
Transceiver	Se encarga de recibir datos y transmitirlos.	Vmin = 3V $Vmax = 3.6V$	TCAN 332x	Tran/datasheet
LED RGB	LED que dará luz ambiente	Forward current = 15 mA	LBQ39G	LED/datasheet
Motor cortina	Motor externo encargado de abrir o cerrar la cortina	Voltage=12 V I=2A	D4387-12-ME	Motor/datasheet
Motor final de carrera	Motor externo encargado de abrir o cerrar el techo	Voltage=12 V I=2A	D4387-12-ME	Motor/datasheet

COMPONENTES	UTILIDAD	CARACTERÍSTICAS	MODELO	DATASHEETS
Switch	Para el final de carrera.	0.1A to 10.1A	SS-01GPD	Interr/datasheet
Pulsador cortina	Pulsador para abrir y cerrar la cortina.	14 mA	MPB01-1B33-S- D	Puls/datasheet
Conector	Para programar el microcontrolador.		ICSP	Conn/datasheet
Pulsador cristal	Pulsador para abrir y cerrar el cristal del techo.	14 mA	MPB01-1B33-S- D	Puls/datasheet

Proyecto: Simulación LTSpice Motor DC

Proyecto: Simulación LTSpice Motor DC

Proyecto: Simulación LTSpice Regulador de Tensión

Proyecto: Esquemático

Microcontrolador: PIC18LF2580

Conector bateria

Potencia

Analogico: oscilador y sensor

Analogico: Switch de los 2 motores

Digital: boton reset y conector USART

Digital: LED RGB

Digital (COMUNICACIÓN)

Digital: Conectores motores (DB9)

DRC

LAYOUT (03/04/2025) - v1.

BARCELONA (actualizada) - versión final

Layout: capa TOP

Layout: capa BOTTOM

Vista en 3D (03/04/2025) - v1.

Vista en 3D (actualizada) - versión final

DRC

Reglas de Diseño

Las reglas de diseño las hemos sacado del fabricante: Safe PCB.