Algebra: Internal Exam-2 (Total Marks - 16)

PARTA

- 1. Define ideal. Give an example. (2 marks)
- 2. Define prime ideal. Give an example with justification (2 mark)

PART B (Answer any two questions out of 3, 4 and 6. Question 5 is mandatory)

- 3. Show that every ideal of \mathbb{Z} is a principle ideal. (2 mark)
- 4. Show that the field \mathbb{R} and \mathbb{C} are not isomorphic. (2 marks)
- 5. Let R be a ring, and N be the set of nilpotent elements in R
 - a. Prove that N is an ideal. (1.5 marks)
 - b. Prove that N is contained inside every prime ideal of R. (1.5 marks)
 - c. Prove that nthe ring R/N has no nonzero nilpotent element. (1 marks)
- 6. Let R be a commutative ring and $a \in R$. Show that $Ia = \{x \in R : ax = 0\}$ is an ideal of R. (2 mark)

PART C (Write any two)

- 7. If R is a ring with unity and N is an ideal of a ring R containing a unit then show that N = R. (2 marks)
- 8. If R is a ring with unity and characteristic n(>1). Then show that R contains a subring isomorphic to \mathbb{Z}_n . (2 marks)
- 9. Let H be a subring of the ring R. Show that multiplication of additive cosets of H is well defined by the equation (a + H)(b + H) = ab + H if and only if $ah \in H$ and $hb \in H$ for all $a, b \in R$, $h \in H$.