ZARZĄDZANIE RYZYKIEM KREDYTOWYM – ZNACZENIE MODELOWANIA I INFORMACJI

Krzysztof Jajuga

Katedra Inwestycji Finansowych i Zarządzania Ryzykiem Akademia Ekonomiczna we Wrocławiu

MOTYWACJA

Ryzyko kredytowe – ryzyko wynikające z możliwości niedotrzymania warunków przez drugą stronę kontraktu

Zazwyczaj koncepcja negatywna ryzyka – ryzyko jako zagrożenie

Jeden z trzech podstawowych rodzajów ryzyka banku (oprócz rynkowego i operacyjnego) obecny w NUK

DWA WAŻNE ETAPY ZARZĄDZANIA RYZYKIEM KREDYTOWYM

Modelowanie ryzyka kredytowego – prowadzi do oceny poziomu ryzyka kredytowego

Sterowanie ryzykiem kredytowym – prowadzi do zmniejszenia poziomu ryzyka kredytowego

MODELE RYZYKA KREDYTOWEGO

Cechy szczególne:

Dynamiczny rozwój modeli ryzyka kredytowego w ostatniej dekadzie

Różne podstawy teoretyczne

Różny stopień skomplikowania formalnego

MODELE RYZYKA KREDYTOWEGO

Dwa możliwe rodzaje podmiotów (i dwa rodzaje modeli) analizowanych ze względu na ryzyko kredytowe:

- Duża grupa jednorodnych podmiotów o zbliżonych charakterystykach (standardowy model)
- Pojedyncze specyficzne podmioty ("skrojony" model)

Podstawowe charakterystyki

EAD – Exposure At Default – wielkość ekspozycji na ryzyko

PD – Probability of Default – prawdopodobieństwo niedotrzymania warunków

LGD – Loss Given Default – strata (jako procent ekspozycji) w wypadku niedotrzymania warunków

Zwykle zakłada się, że LGD jest dane. Jeśli jest to zmienna losowa, wówczas rozpatruje się SEV – poziom strat w przypadku niedotrzymania, zakłada się niezależność tego poziomu i prawdopodobieństwa niedotrzymania oraz

$$E(SEV) = LGD$$

Zmienna określona jako strata zdefiniowana jest jako

$$Loss = EAD \cdot SEV \cdot L$$

$$L = \begin{cases} 1, & p = PD \\ 0, & p = 1 - PD \end{cases}$$

Oczekiwana strata i nieoczekiwana strata:

$$EL = E(Loss) = EAD \cdot LGD \cdot PD$$

$$UL = \sqrt{V(Loss)} = \sqrt{V(EAD \cdot SEV \cdot L)}$$

Przy założeniu, że zmienne "niedotrzymanie" i "poziom strat w przypadku niedotrzymania" nie są skorelowane, otrzymujemy:

$$UL =$$

$$EAD\sqrt{V(SEV)\cdot PD + LGD^2PD(1-PD)}$$

Portfel złożony z m składników portfela, czyli m kredytów

Strata w odniesieniu do danego składnika:

$$Loss_i = EAD_i \cdot SEV_i \cdot L_i$$

$$L_i = \begin{cases} 1, & p = PD_i \\ 0, & p = 1 - PD_i \end{cases}$$

Oczekiwana strata i nieoczekiwana strata dla portfela:

$$EL_{P} = \sum_{i=1}^{m} EAD_{i} \cdot LGD_{i} \cdot PD_{i}$$

$$UL_{P} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} EAD_{i} \cdot EAD_{j} \cdot COV(SEV_{i} \cdot L_{i}, SEV_{j} \cdot L_{j})}$$

Jeśli poziom strat jest taki sam dla każdego składnika portfela, wówczas nieoczekiwana strata portfela zależy od korelacji niedotrzymania:

$$UL_P =$$

$$\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} EAD_{i} \cdot EAD_{j} \cdot LGD_{i} \cdot LGD_{j} \sqrt{PD_{i}(1 - PD_{i})PD_{j}(1 - PD_{j})} \cdot \rho_{ij}}$$

$$\rho_{ii} = corr(Loss_i, Loss_i)$$

KAPITAŁ EKONOMICZNY DLA ZABEZPIECZENIA W WYPADKU RYZYKA KREDYTOWEGO

Zdefiniowany dla zadanego poziomu ufności, zależy od kwantyla rozkładu strat

$$EC(\alpha) = q_{\alpha} - EL_{p}$$

KAPITAŁ EKONOMICZNY DLA ZABEZPIECZENIA W WYPADKU RYZYKA KREDYTOWEGO

PODSTAWY MODELOWANIA RYZYKA KREDYTOWEGO – ROZKŁAD STRAT PORTFELA

Należy określić rozkład zdefiniowany przez dwa pierwsze momenty, odpowiadający kształtem rozkładom strat spotykanym w praktyce (grube ogony, prawostronnie skośny), mający dwa parametry, np. rozkład beta:

$$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}; \quad x \in [0;1]$$

PODSTAWY MODELOWANIA RYZYKA KREDYTOWEGO – ROZKŁAD STRAT PORTFELA

Wartość oczekiwana i wariancja rozkładu beta dane są jako:

$$E(X) = \frac{a}{a+b}$$

$$V(X) = \frac{ab}{(a+b)^2} (a+b+1)$$

PODSTAWY MODELOWANIA RYZYKA KREDYTOWEGO – ROZKŁAD STRAT PORTFELA

Ponieważ oczekiwana strata to wartość oczekiwana a kwadrat nieoczekiwanej straty to wariancja, można na tej podstawie określić wartości parametrów *a* oraz *b*

Dzięki temu można określić wielkość kapitału ekonomicznego

MODELOWANE CHARAKTERYSTYKI DLA PORTFELA KREDYTOWEGO

Prawdopodobieństwo niedotrzymania – najczęściej otrzymuje się poprzez:

- Zastosowanie jednego z modeli ryzyka kredytowego
- Wykorzystanie danych rynkowych (spread kredytowy)
- Ratingi

MODELOWANE CHARAKTERYSTYKI DLA PORTFELA KREDYTOWEGO

Strata w przypadku niedotrzymania (LGD) – zwykle otrzymywana na podstawie danych historycznych jako:

LGD = 1 - stopa odzyskania

Stopa odzyskania zależy od jakości zabezpieczeń oraz od priorytetu kontraktu

MODELOWANE CHARAKTERYSTYKI DLA PORTFELA KREDYTOWEGO

Korelacja niedotrzymania – zwykle otrzymuje się na podstawie danych historycznych, czasem jest aproksymowana za pomocą korelacji wartości aktywów podmiotu

SYSTEMATYZACJA MODELI RYZYKA KREDYTOWEGO DLA JEDNORODNYCH PORTFELI

Kryteria systematyzacji

- Miara ryzyka: PD lub klasa ryzyka
- Koncepcja teoretyczna: funkcja zależności lub rozkład niedotrzymania
- Dane: wewnętrzne, zewnętrzne

SYSTEMATYZACJA MODELI RYZYKA KREDYTOWEGO DLA JEDNORODNYCH PORTFELI

Rodzaje modeli:

Modele regresji z dyskretną zmienną objaśnianą

Analiza dyskryminacyjna

Sieci neuronowe

Modele umieralności

SYSTEMATYZACJA MODELI RYZYKA KREDYTOWEGO DLA JEDNORODNYCH PORTFELI

Model	Dane	Miara ryzyka	Koncepcja teoretyczna
Modele ze zmienną dyskretną	Wewnętrzne, zewnętrzne	PD	Funkcja zależności
Analiza dyskryminacyjna	Wewnętrzne	Klasa ryzyka	Funkcja zależności
Sieci neuronowe	Wewnętrzne, zewnętrzne	Klasa ryzyka	Funkcja zależności
Modele umieralności	Wewnętrzne	PD	Rozkład niedotrzymania

KREDYTOWE INSTRUMENTY POCHODNE

Kredytowe instrumenty pochodne (credit derivatives) instrumenty finansowe, w których indeksem podstawowym jest indeks zależny od zajścia zdarzenia kredytowego (np. niedotrzymania warunków, pogorszenia się kondycji finansowej, zmiany ratingu). Są to instrumenty pozagiełdowe

KREDYTOWE INSTRUMENTY POCHODNE

Credit Default Swap

Total Return Swap

Credit Spread Option

Credit Linked Note

CREDIT DEFAULT SWAP

Jest to w zasadzie opcja lub polisa ubezpieczeniowa

- A strona ubezpieczająca się płaci premię w regularnych okresach
- B strona ubezpieczająca płaci ustaloną sumę pieniężną w wypadku zajścia zdarzenia kredytowego

CREDIT DEFAULT SWAP

TOTAL RETURN SWAP

Jest to typowy swap

- A strona ubezpieczająca się płaci przepływy pieniężne wynikające z posiadanego instrumentu dłużnego obarczonego ryzykiem kredytowym
- B strona ubezpieczająca płaci zmienną stopę (np. WIBOR) powiększoną o pewien spread

TOTAL RETURN SWAP

CREDIT SPREAD OPTION

Jest to typowa opcja

A – posiadacz opcji – płaci premię przy nabyciu opcji

B – wystawca opcji – płaci ustaloną sumę pieniężną w wypadku zajścia zdarzenia kredytowego

CREDIT SPREAD OPTION

Call credit spread option – indeks zdefiniowany jako różnica między spreadem a ustaloną wielkością (równą np. spodziewanemu spreadowi)

Put credit spread option – indeks zdefiniowany jako różnica między a ustaloną wielkością (równą np. spodziewanemu spreadowi) a spreadem

CREDIT SPREAD OPTION

CREDIT LINKED NOTE

Jest to instrument dłużny z wbudowaną opcją

- A sprzedaje credit linked note płaci przepływy pieniężne (odsetki i wartość nominalna) pomniejszone o straty w przypadku zajścia zdarzenia kredytowego
- B kupuje credit linked note płaci na początku cenę credit linked note

CREDIT LINKED NOTE

RYNEK POCHODNYCH KREDYTOWYCH

Jest to najbardziej dynamicznie rozwijający się segment rynku instrumentów finansowych