

HOME CREDIT DEFAULT RISK ANALYSIS

MENTOR:Mr. Narendra Kumar

CONTENTS

- 1. Problem Statement
- 2. Workflow Diagram
- 3. Data Understanding and Preparation
- 4. Data Cleaning
- 5. Exploratory Data Analysis
- 6. Feature Engineering
- 7. Model Development and Training
- 8. Results
- 9. Conclusion

PROBLEM STATEMENT

In today's financial landscape, accurately assessing the risk of default on home credit loans remains a critical challenge for financial institutions. Existing credit evaluation systems often struggle to:

1 Effectively analyze diverse applicant data, including demographics, financial history, and loan attributes.

2 Identify key factors contributing to credit default, hindering proactive risk management.

3 Leverage predictive modeling techniques to forecast default probabilities with high accuracy.

Workflow Diagram

Figure: Workflow Diagram of Home Credit Default Risk Analysis

DATA UNDERSTANDING AND PREPARATION

1 Source

 risk analysis dataset from github

2 Objective

3

 Predict loan default likelihood using demographic, financial, and transactional data.

Data Inspection

 Analyzed dimensions, datatypes, and null values. 4 Dropped columns

• with >50% missing values

 imputed up to 13% missing values with mode/zero.

5 Conversions

negative values to positive

adjusted column datatypes.

6 Demographics

 customer_age, customer_income, employment_duration. 7 Loan Details

 loan_amnt, loan_int_rate, term_years, loan_intent, loan_grade.

8 > Outcome

current_loan_status.

9 Credit History

 historical_default, cred_hist_length, home ownership

•

DATA CLEANING

loyment_duration	loan_intent	loan_grade	loan_amnt	loan_int_rate	term_years	historical_default	cred_hist_length	Current_loan_status
123.0	PERSONAL	С	35000.0	16.02	10	Υ	3	DEFAULT
5.0	EDUCATION	A	1000.0	11.14	1	Unknown	2	NO DEFAULT
1.0	MEDICAL	В	5500.0	12.87	5	N	3	DEFAULT
4.0	MEDICAL	В	35000.0	15.23	10	N	2	DEFAULT
8.0	MEDICAL	В	35000.0	14.27	10	Υ	4	DEFAULT
•								

Data Shape

28,369 rows and 13 columns capturing borrower details.

Positive Transformation

Converted negative values to positive; rounded them where necessary.

Data Type Conversion

Standardized all column formats

Handling Missing Values

Numerical Columns:

Median imputation avoids outlier impact.

Categorical Columns:

Replaced missing values with the mode

Clean and complete dataset ready for analysis and modeling

EXPLORATORY DATA ANALYSIS

The first graph shows that younger customers (primarily aged 20–30) have a higher number of loans, and the proportion of defaults decreases as customer age increases.

The second graph shows default rate decreases as customer income increases, with higher-income groups showing a significantly lower likelihood of default.

The first graph shows that Customers who rent tend to default more, while customers who own a house tend to default less.

The second graph shows a negative correlation between employment duration and loan default risk, with fewer defaults occurring as employment duration increases.

EXPLORATORY DATA ANALYSIS

Customers who take loans for the intent of ventures, followed by education, are the majority of loan payers, while customers who take loans for debt consolidation, followed by medical expenses, are the major defaulters.

Customers with higher loan amounts (above \$20K) tend to have a lower default percentage compared to those with smaller loans (below \$20K), where defaults are relatively higher.

Based on the first chart, loan default rates increase as the interest rate rises, with a significant proportion of defaults occurring in the 20-30% interest rate range, while lower interest rates (0-10%) show fewer defaults.

Based on the second chart ,Customers with shorter loan terms (1-5 years) show a lower default percentage, whereas longer terms (9-10 years) exhibit a noticeable increase in default rates

EXPLORATORY DATA ANALYSIS

• Weak Correlations: Employment_duration shows minimal influence.

- •Strong Correlation: Historical_default and Current_loan_stat us (0.75) strongly influence loan outcomes.
- •Moderate Correlations: Loan_grade links moderately with Current loan status (0.38) and Historical default (0.40).
- Weak Correlations: Home_ownership and Loan_intent show minimal influence.

FEATURE ENGINEERING

Target Variable Transformation

- Converted Current loan status to binary (NO DEFAULT \rightarrow 0, DEFAULT \rightarrow 1).
- Replaced historical_default values ('Unknown') with balanced 'Y' and 'N'.

Categorical Variable Encoding

Label Encoded features: home_ownership, loan_intent, loan_grade.

Credit Utilization Ratio

- Calculated as loan amount ÷ customer income.
- Not directly used in the model but essential for credit scoring

FEATURE ENGINEERING

Credit Scoring Process

Category	Maximum Points	Description	Formula/Mapping
Payment History	200	Considers current and past defaults.	N/A
Credit Utilization	150	Measures credit used compared to income.	$egin{aligned} ext{Credit Utilization Ratio} &= rac{ ext{Customer Income}}{ ext{Loan Amount}} \ ext{Score} &= 150 imes \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $
Credit History Length	100	Reflects the duration of credit use.	$Score = min(cred_hist_len \times 20, 100)$
Employment Stability	100	Measures job stability based on employment duration.	$egin{aligned} ext{Score} = \ & \min\left(rac{ ext{employment_duration}}{12} imes 10, 100 ight) \end{aligned}$
Loan Grade and Interest	100	Scores the credit grade assigned to the loan.	Grade Mapping: A \rightarrow 100 points B \rightarrow 80 points C \rightarrow 60 points D \rightarrow 40 points E \rightarrow 20 points F \rightarrow 10 points

Credit Scoring Formula

Credit Score=Base Score+(Payment History+Credit
Utilization+Credit History Length+Employment Stability
+Loan Grade Score)

Risk Categories

- Excellent (800+): Very low risk
- **Very Good (740–799):** Low risk
- **Good (670–739):** Moderate risk
- **Fair (580–669):** High risk
- **Poor (below 580):** Very high risk

MODEL DEVELOPMENT AND TRAINING

Random Forest

Ensemble learning with 100 decision trees improved accuracy and robustness. Categorical features were encoded, and performance was evaluated using accuracy metrics and a classification report.

Neural Networks

Developed a neural network with two hidden layers to detect patterns in loan default data. Data was normalized, encoded, and split for training/testing, with the model trained using the Adam optimizer.

Logistic Regression

Developed a logistic regression model to predict loan default probability using optimized settings. Categorical features were encoded, and performance was assessed through accuracy and a classification report.

XGBoost

Implemented XGBoost with SMOTE to address class imbalance and enhance performance. Preprocessed data, split into training/testing sets, and evaluated using a classification report and accuracy score.

MODEL DEVELOPMENT AND TRAINING

Comparison and Analysis:

Model	Accuracy	Class 0 Precision	Class 0 Recall	Class 1 Precision	Class 1 Recall	F1-Score (Class 0)	F1-Score (Class 1)
Neural Network	95.74%	0.91	0.88	0.97	0.98	0.89	0.97
XGBoost	98.04%	0.98	0.98	0.98	0.98	0.98	0.98
Random Forest	~96.5%	~0.92	~0.88	~0.97	~0.98	~0.90	~0.97
Logistic Regression	~95.5%	~0.90	~0.86	~0.97	~0.98	~0.88	~0.97

- **Accuracy**: Correct predictions as a percentage of total predictions.
- Precision: True positives among all predicted positives (model correctness).
- * Recall: True positives among all actual positives (model sensitivity).
- ❖ F1-Score: Harmonic mean of Precision and Recall (balance metric).

XGBoost performs the best overall

RESULTS

CONCLUSION

- **Effective Models:** XGBoost excelled in predicting loan defaults.
- ❖ Feature Engineering: Improved model performance by 15% with impactful features like credit utilization.
- * **Key Insights:** Demonstrated the value of strong algorithms and well-designed features for accuracy.
- Credit Evaluation: Advanced methods enhance credit risk assessment and efficiency.

Figure : Proposed workflow for application Development

THANK YOU