ÁLGEBRA (Grado en Ingeniería Informática)

CURSO 2020/21. Convocatoria Extraordinaria 2.

Apellidos y nombre:	DNI:
---------------------	------

Grupo Teoría: **Grupo Prácticas:**

Evaluación Evaluación Sí. Nota Sí. Nota

Continua Prácticas: Continua Teoría

1. [5 puntos] Dados los polinomios,

$$p(x) = 2x^5 + 16x^4 + 29x^3 - 8x^2 - 15x$$
 y $q(x) = x^2(2x^2 - 1)$.

Utilizar el algoritmo de Euclides en el anillo de polinomios necesario para deducir si un máximo común divisor de p(x) y q(x) en dicho anillo de polinomios es $(6x^3 - 3x)$. Justifica la respuesta.

- **2.** [7.5 puntos] Dada la permutación $\sigma = (1 \ 2 \ 8 \ 5)(2 \ 5) \in S_8$. Consideremos $H = \{ \sigma^k / k \in \mathbb{N} \}$. Comprobar que H es un <u>subgrupo</u> de S_8 y calcular su orden.
- 3. [7.5 puntos] Consideremos los grafos G_1 y G_2 cuya matriz de incidencia y representación gráfica respectivamente son:

$$G_1 \qquad \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}$$

- a) Definir grafo bipartito y bipartito completo. ¿Es G_2 un grafo bipartito? ¿Y bipartito completo?
- b) Definir <u>isomorfismo de grafos</u>. Razonar si G_1 y G_2 son isomorfos.
- **4.** [15 puntos] Sea V el espacio vectorial de las matrices cuadradas de orden 2 con coeficientes en \mathbb{R} y U el subespacio de las matrices simétricas de traza cero. Se pide:
 - a) Calcular una base B de U y comprobar que $\dim(U) = 2$.
 - b) Consideremos en U el producto escalar que con respecto a la base B del apartado a) verifica que los vectores son unitarios y que el ángulo que forman dos a dos es $\frac{\pi}{3}$. Obtener la matriz de Gram.
 - c) Obtener a partir de B una base ortonormal.

[25 puntos] Sea
$$f_{\alpha}: P_3(\mathbb{R}) \to M_2(\mathbb{R})$$
 la aplicación lineal definida por
$$f_{\alpha}(p(x)) = \begin{pmatrix} \alpha p'(0) & p'(1) - p'(0) \\ p(1) - p(0) & -\alpha p(0) \end{pmatrix},$$

donde p'(x) es la derivada de p(x).

- a. Calcular la matriz asociada a f_{α} con respecto a las bases canónicas.
- b. Clasificar f_{α} según el valor del parámetro α .
- c. Para $\alpha = 0$, estudiar si la matriz del apartado a) es diagonalizable y en su caso obtener la base de vectores propios de \mathbb{R}^4 que permite la diagonalización de dicha matriz.

NOTA:

- La puntuación que muestra cada ejercicio es para el caso de mantener la evaluación continua de teoría, y en este caso el valor máximo de este examen es de 6 puntos sobre 10 (en teoría).
- Si no se opta por mantener la evaluación continua, todos los ejercicios, excepto el último que valdría 20 puntos, tienen el mismo valor, 10 puntos, y en este caso el valor máximo de este examen es de 10 puntos sobre 10 (en teoría).

Incluir las definiciones de los conceptos subrayados. Recuerden que se evalúan los procedimientos y por tanto, estos deben explicarse de forma clara (no son válidos los resultados sin razonarlos).