به نام خدا

پروژه: درخت تصمیم

محمد حسين ميرزائي 99522158

کد های این پروژه برای پیاده سازی بهتر در colab پیاده شده است .

از کتاب خانه های numpy, pandas, shutil استفاده کرده ایم.

شامل 2 قسمت پیاده سازی برای مطالب جزوه و دیگری برای dataset دیابت می باشد .

از کتاب خانه pandas برای گرفتن دیتا استفاده شده است ، و با دستورات مربوط به data frame داده ها چاپ می شود .

Class node برای پیاده سازی گره استفاده می شود و دارای constructor برای گرفتن اطلاعات گره می باشد .

Class DecisionTreeClassifier بخش اصلی کد ما را شامل می شود که توابع اصلی ما نیز ذر آن تعریف شده است که در ادامه به توضیح آن می پردازیم .

در قسمت اصلی اطلاعات فایل را می گیریم و به 2 بخش test و train تقسیم و درخت تصمیم نظیر را می سازیم .

حال داده های test را برای fit می فرستیم و یک dataset کلی را برای build tree می فرستیم .

حال با توجه به dataset تعداد sample و feature ها را بدست مي آوريم .

یک سری شروط توقف برای درخت در نظر می گیریم که اگر تعداد sample ها از مقداری کمتربود و یا عمق درخت از مقداری بیشتر بود ، رشد درخت متوقف تا پیاده سازی راحت تر شود .

حال از این تابع به تابع split رفته و بهترین تقسیم بندی را انتخاب می کنیم و برای این کار روی اعضای ورودی تابع unique را صدا می زنیم و با استفاده از threshold بازه ای برای تقسیم بندی پیدا می کنیم و درخت را با توجه به threshold جدا سازی می کنیم و این جدا سازی بر اساس threshold جدا سازی می کنیم و این جدا سازی در جزوه را پیاده می شود .

برای قسمت برگ نیز برای پیاده سازی به قسمت calc_leaf_val رفته و مقدار polarity value را برای آن گره بدست می آوریم ، به روش انتخاب بیشترین تعداد برای آن گره در نظر می گیریم .

حال داده های train را در نظر می گیریم و در نهایت نیز با درخت ساخته شده جواب نهایی این ستون را predict می کنیم ، و با توجه به مقدار predict جواب نهایی را به تقریب به دست می آوریم .

C→		Alt	Bar	Fri	Hun	Pat	Price	Rain	res	Туре	Est	Goal
_	0	1	0	0	1	1	2	0	1	0	0	1
	1	1	0	0	1	2	0	0	0	1	2	0
	2	0	1	0	0	1	0	0	0	2	0	1
	3	1	0	1	1	2	0	1	0	1	1	1
	4	1	0	1	0	2	2	0	1	0	3	0
	5	0	1	0	1	1	1	1	1	3	0	1
	6	0	1	0	0	0	0	1	0	2	0	0
	7	0	0	0	1	1	1	1	1	1	0	1
	8	0	1	1	0	2	0	1	0	2	3	0
	9	1	1	1	1	2	2	0	1	3	1	0
	10	0	0	0	0	0	0	0	0	1	0	0
	11	1	1	1	1	2	0	0	0	2	2	1

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	0	1	1	0	0	1	0	1	1
1	0	1	1	0	0	1	0	1	0
2	0	1	1	0	0	0	0	1	1
3	0	1	1	0	0	1	0	0	0
4	0	1	0	0	0	1	1	1	1
5	0	1	1	0	0	1	0	0	0
6	0	1	1	0	0	1	0	0	1
7	1	1	0	0	0	1	0	0	0
8	0	1	1	0	1	1	0	1	1
9	0	1	1	0	0	0	0	1	1
10	0	1	1	0	0	1	0	0	0
11	1	1	1	0	0	1	0	1	1
12	1	1	1	0	0	1	1	1	0
13	0	1	1	0	1	1	0	1	1
14	0	1	1	0	0	1	0	1	1
15	0	1	0	0	0	1	0	1	1
16	0	1	1	1	0	1	0	1	1
17	0	1	1	0	0	1	0	1	1
18	0	1	0	0	0	1	0	1	0
19	0	1	1	0	0	1	0	1	1
20	0	1	1	0	0	1	0	0	0
21	0	1	1	0	0	1	0	1	0
22	0	1	1	0	0	1	0	1	1
23	1	1	1	0	0	1	0	0	1