专题 1-5 正方形基本型 (母题溯源)

01

题型•解读

模型解读	1
【模型一】中点+折叠	2
【模型二】双中点(十字架模型拓展)	4
【模型三】对角线模型	11
【模型四】半角模型	11
题型一 中点+折叠模型	15
题型二 双中点模型 (十字架拓展)	19
2023·东营·中考真题	19
2203·绥化·中考真题	22
题型三 对角线模型	27
2023·攀枝花·中考真题	34
2023·四川宜宾·统考中考真题	35
题型四 半角模型 (七个性质)	37
2023·重庆·中考真题	37
2023·眉山·中考真题	38
2022 计川 山本古版	40

模型解读

【模型一】中点+折叠

性质一: $AA' \perp A'D$; 性质二: F, G 为中点; 性质三: $A'G \perp CG$;性质四: $\angle EBG = 45^{\circ}$;

性质五: DG = 2CG; 性质六: $tan \angle DCN = \frac{1}{3}$

性质一证明: $AA^{'} \perp A^{'}D$

性质二证明:G是BC中点

性质三, 四证明: HL 全等

性质五证明: 勾股,或"12345"模型

【12345 模型说明】 易知
$$\alpha+\beta=45^{\circ}$$
, $\tan\alpha=\frac{1}{2}$,故 $\tan\beta=\frac{1}{3}$,记 $\mathbf{AB}=\mathbf{12}\Rightarrow CG=4, DG=8$

性质六证明: 12345 模型

【模型二】双中点(十字架模型拓展)

(1)知 2 推 1: ①M 中点; ②N 是中点; ③AM L DN

(2)已知: M 是中点, N 是中点, 连接 CE 并延长, 交 AD 于 F

① $\vec{x} EM : ED : EN : AE = \underline{\hspace{1cm}}$

② 证明: EC 平分∠NEM

③ 求
$$\frac{DF}{AF}$$

【解析】

① ED:EN:AE=1:2:3:4

证明: 法一: 角平分线逆定理

法三: 四点共圆

② 法一: 角平分线定理

法二: 旋转相似(手拉手模型)

法二: 12345 模型 (正切和角公式)

 $\angle DEF=45^{\circ}$, $\angle EDC=\frac{1}{2}\Rightarrow \tan \angle DCF=\frac{1}{3}$

(3) 己知: M, N 是中点, O 是中心, 连接 OE, ①求 DE:EG:GN ;②证∠OEC=90°

【解析】第一问

$$\frac{DE}{NE} = \frac{2}{3}, \frac{NG}{DG} = \frac{1}{2} \text{ ro } 12345$$
模型

【解析】第二问

法一:由(2)可知∠NEC=45°,故构造手拉手模型可得△黄≌△黄(SAS),从而可得∠NEO=45°,得证

或者换个方向也可以, 像这种方方正正的图形也可以试试建系

法二: 四点共圆

法三: 补成玄图 易知 ∠OEG=45°

(4) 己知: M, N 是中点,连接 BE, 证 BE=CD

【解析】法一 斜边上的中线等于斜边一般

【淘宝店铺: 向阳百分百】

法二: 过 AD 的中点 P 作 AE 垂线,交 AM 于 Q,可得 Q 是 AE 中点,则 BQ 垂直平分 AE,故 AB=BE

法三: 对角互补得四点共圆, 导角得等腰

法四: 勾股定理,由(2)可知 DE: NE=2:3,设值求值即可

(5) 已知: M, N是中点,连接 BE, AH LBE 于 H, 交 DN 于 K, 证 AK=CD

【解析】法一: 构造玄图导等腰

法二:四点共圆

法三: 建系求坐标(略)

【模型三】对角线模型

【模型四】半角模型

如图,已知 ABCD 为正方形,∠FAE=45°,对角线 BD 交 AE 于 M,交 AF 与 N, AG⊥EF

5个条件知1推4

- ∠EAF=45°
- ② BE + DF = EF
- ③ $AG \perp EF$, AG=AB
- ④ AE 平分∠BEF
- ⑤ AF 平分∠DFE

【性质一】5个条件知1推4(全等)

【性质二】 $BM^2+ND^2=MN^2$ (勾股证)

【性质三】∠MGN=90°

【性质四】 $①AM^2 = MN \cdot MD$; $②AN^2 = NM \cdot NB$; $③S_{ABCD} = BN \cdot DM$ (2 组子母, 1 共享型相似)

【性质五】 \triangle ANE, \triangle AMF,是 2 个隐藏的等腰直角三角形(反 8 字相似或四点共圆)

【性质六】 $\triangle AMN \hookrightarrow \triangle AFE$,且相似比为 $\frac{\sqrt{2}}{2}$ (用全等导角)

【性质七】 $\frac{ND}{EC} = \frac{BM}{FC} = \frac{\sqrt{2}}{2}$ (旋转相似)

【性质一】DF+BE=EF

易证△ABE≌△AGE,易证△AGF≌△ADF

【性质二】 $BM^2+ND^2=MN^2$ 简证,如图

【性质三】∠MGN=90°简证,如图:两组全等

【性质四】 ① $AM^2 = MN \cdot MD$; ② $AN^2 = NM \cdot NB$; ③ $S_{ABCD} = BN \cdot DM$ (2 组子母,1 共享型相似)简证③,如图

 $S_{ABCD} = BN \cdot DM$ (共享型相似)

 $\angle 1=45^{\circ}+\angle 2=\angle BAN\Rightarrow\triangle BAN$ $\triangle DMA\RightarrowBN\bullet DM=AB\bullet AD$

【性质五】△ANE, △AMF, 是2个隐藏的等腰直角三角形

简证,以△ANE 为例,△AMF 方法相同

法一: 两次相似 \triangle AMN \backsim \triangle BME $\Rightarrow \frac{AM}{BM} = \frac{NM}{EM} \mid \triangle$ BMA \backsim \triangle EMN $\mid \angle$ ABM= \angle NEM=45°

法二: ABEN 四点共圆,对角互补∠ABE+∠ANE=180°或∠ABN=∠AEN

【性质六】 \triangle AMN \sim \triangle AFE,且相似比为 $\frac{\sqrt{2}}{2}$

先证相似, 易知∠1=∠2=∠3, 故相似成立

相似比为: $\frac{AH}{AG} = \frac{AH}{AB} = \frac{\sqrt{2}}{2}$

【性质七】
$$\frac{ND}{EC} = \frac{BM}{FC} = \frac{\sqrt{2}}{2}$$

核心•题型

题型一 中点+折叠模型

1. 如图,在边长 4 的正方形 ABCD 中, E 是边 BC 的中点,将 ΔCDE 沿直线 DE 折叠后,点 C 落在点 F 处, 再将其打开、展平,得折痕 DE. 连接 CF、 BF 、 EF , 延长 BF 交 AD 于点 G. 则下列结论: ① BG = DE;

② $CF \perp BG$; ③ $\sin \angle DFG = \frac{1}{2}$; ④ $S_{\Delta DFG} = \frac{12}{5}$, 其中正确的有(

A. 1个

B. 2 个 C. 3 个 D. 4 个

【解答】解: :四边形 ABCD 是正方形,

- $\therefore AB = BC = AD = CD = 4$, $\angle ABC = \angle BCD = 90^{\circ}$,
- :: E 是边 BC 的中点,
- $\therefore BE = CE = 2$,
- ∵将 ΔCDE 沿直线 DE 折叠得到 ΔDFE,
- $\therefore DF = CD = 4$, EF = CE = 2, $\angle DFE = \angle DCE = 90^{\circ}$, $\angle DEF = \angle DEC$,
- $\therefore EF = EB$,
- $\therefore \angle EBF = \angle BFE$,
- $\therefore \angle EBF = \angle BFE = \frac{1}{2}(180^{\circ} \angle BEF), \quad \angle CED = \angle FED = \frac{1}{2}(180^{\circ} \angle BEF),$
- $\therefore \angle GBE = \angle DEC$,
- $\therefore BG / /DE$,

: BE / /DG,

:.四边形 BEDG 是平行四边形,

 $\therefore BG = DE$, 故①正确;

:: EF = CE,

 $\therefore \angle EFC = \angle ECF$,

 $\therefore \angle FBE + \angle BCF = \angle BFE + \angle CFE = \frac{1}{2} \times 180^{\circ} = 90^{\circ},$

 $\therefore \angle BFC = 90^{\circ}$,

 $\therefore CF \perp BG$, 故②正确;

 $\therefore \angle ABG + \angle CBG = \angle BFE + \angle DFG = 90^{\circ}$,

 $\therefore \angle ABG = \angle DFG$,

AB = 4, DG = BE = 2,

AG = 2

 $\therefore BG = 2\sqrt{5} ,$

 $\therefore \sin \angle DFG = \sin \angle ABG = \frac{AG}{BG} = \frac{2}{2\sqrt{5}} = \frac{\sqrt{5}}{5}, 故③错误;$

过G作 $GH \perp DF \oplus H$,

$$\because \tan \angle GFH = \tan \angle ABG = \frac{1}{2},$$

$$\therefore DH = \sqrt{DG^2 - x^2} ,$$

$$\therefore DF = FH + DH = 2x + \sqrt{DG^2 - x^2} = 4$$

解得: x=1.2, x=2 (舍去),

 $\therefore GH = 1.2$,

$$\therefore S_{\Delta DFG} = \frac{1}{2} \times 4 \times 1.2 = \frac{12}{5}, 故④正确;$$

2. 如图,正方形 ABCD 中, AB=12 ,点 E 在边 BC 上, BE=EC ,将 ΔDCE 沿 DE 对折至 ΔDFE ,延长 EF 交边 AB 于点 G ,连接 DG , BF ,给出以下结论:① $\Delta DAG\cong \Delta DFG$;② BG=2AG ;③ BF//DE ;④ $S_{\Delta BEF}=\frac{72}{5}$. 其中所有正确结论的个数是(

A. 1

B. 2

C. 3

D. 4

【解答】解:如图,由折叠可知,DF = DC = DA, $\angle DFE = \angle C = 90^{\circ}$,

 $\therefore \angle DFG = \angle A = 90^{\circ}$,

在 RtΔADG 和 RtΔFDG 中,

$$\begin{cases} AD = DF \\ DG = DG \end{cases}$$

∴ RtΔADG ≅ RtΔFDG(HL), 故①正确;

:正方形边长是 12,

$$\therefore BE = EC = EF = 6$$
,

设
$$AG = FG = x$$
, 则 $EG = x + 6$, $BG = 12 - x$,

由勾股定理得: $EG^2 = BE^2 + BG^2$,

$$\mathbb{H}: (x+6)^2 = 6^2 + (12-x)^2,$$

解得: x=4

$$\therefore AG = GF = 4$$
, $BG = 8$, $BG = 2AG$, 故②正确,

$$:: EF = EC = EB$$
,

$$\therefore \angle EFB = \angle EBF$$
,

$$\therefore \angle DEC = \angle DEF$$
, $\angle CEF = \angle EFB + \angle EBF$,

$$\therefore \angle DEC = \angle EBF$$
,

:. BF / /DE , 故③正确;

$$S_{\Delta GBE}=rac{1}{2} imes 6 imes 8=24$$
 , $S_{\Delta BEF}=rac{EF}{EG}\cdot S_{\Delta GBE}=rac{6}{10} imes 24=rac{72}{5}$,故④正确.

综上可知正确的结论的是4个

3. 如图,矩形 ABCD中, $AB = 3\sqrt{6}$, BC = 12 , E 为 AD 中点, F 为 AB 上一点,将 ΔAEF 沿 EF 折叠后,点 A 恰好落到 CF 上的点 G 处,则折痕 EF 的长是___2 $\sqrt{15}$ __.

【解答】解:如图,连接EC,

:四边形 ABCD 为矩形,

$$\therefore \angle A = \angle D = 90^{\circ}$$
, $BC = AD = 12$, $DC = AB = 3\sqrt{6}$,

:: E 为 AD 中点,

$$\therefore AE = DE = \frac{1}{2}AD = 6$$

由翻折知, $\Delta AEF \cong \Delta GEF$,

$$\therefore AE = GE = 6$$
, $\angle AEF = \angle GEF$, $\angle EGF = \angle EAF = 90^{\circ} = \angle D$,

$$\therefore GE = DE$$
,

$$∴ EC + ∆ ∠DCG$$
,

$$\therefore \angle DCE = \angle GCE$$
,

$$\therefore \angle GEC = 90^{\circ} - \angle GCE$$
, $\angle DEC = 90^{\circ} - \angle DCE$,

$$\therefore \angle GEC = \angle DEC$$

$$\therefore \angle FEC = \angle FEG + \angle GEC = \frac{1}{2} \times 180^{\circ} = 90^{\circ},$$

$$\therefore \angle FEC = \angle D = 90^{\circ}$$
,

$$\mathbf{X} :: \angle DCE = \angle GCE$$
,

$$\therefore \Delta FEC \hookrightarrow \Delta EDC$$
,

$$\therefore \frac{FE}{DE} = \frac{EC}{DC} \,,$$

$$:: EC = \sqrt{DE^2 + DC^2} = \sqrt{6^2 + (3\sqrt{6})^2} = 3\sqrt{10},$$

$$\therefore \frac{FE}{6} = \frac{3\sqrt{10}}{3\sqrt{6}},$$

$$\therefore FE = 2\sqrt{15}$$

题型二 双中点模型 (十字架拓展)

2023.东营.中考真题

1. 如图,正方形 ABCD 的边长为 4,点 E , F 分别在边 DC , BC 上,且 BF = CE , AE 平分 $\angle CAD$,连接 DF ,分别交 AE , AC 于点 G , M , P 是线段 AG 上的一个动点,过点 P 作 $PN \perp AC$ 垂足为 N ,连接 PM , 有下列四个结论: ① AE 垂直平分 DM ;② PM + PN 的最小值为 $3\sqrt{2}$;③ CF^2 = $GE \cdot AE$;④ $S_{\Delta ADM}$ = $6\sqrt{2}$. 其中正确的是(

- A. 112
- B. 234
- C. 134
- D. (1)(3)

【答案】D

【详解】解: :: ABCD 为正方形,

 $\therefore BC = CD = AD$, $\angle ADE = \angle DCF = 90^{\circ}$,

:: BF = CE.

 $\therefore DE = FC$,

 $\therefore \triangle ADE \cong \triangle DCF(SAS)$.

 $\therefore \angle DAE = \angle FDC$

 $\therefore \angle ADE = 90^{\circ}$

 $\therefore \angle ADG + \angle FDC = 90^{\circ}$,

 $\therefore \angle ADG + \angle DAE = 90^{\circ}$,

 $\therefore \angle AGD = \angle AGM = 90^{\circ}$.

 $:: AE \xrightarrow{\mathbf{P}} \angle CAD$,

 $\therefore \angle DAG = \angle MAG$.

AG = AG,

 $\therefore \triangle ADG \cong \triangle AMG(ASA)$.

 $\therefore DG = GM$

 $\therefore \angle AGD = \angle AGM = 90^{\circ}$

:: AE 垂直平分 DM,

故①正确.

由①可知, $\angle ADE = \angle DGE = 90^{\circ}$, $\angle DAE = \angle GDE$,

 $\triangle ADE \sim \triangle DGE$,

$$\therefore \frac{DE}{GE} = \frac{AE}{DE},$$

 $\therefore DE^2 = GE \cdot AE,$

由①可知DE = CF,

 $\therefore CF^2 = GE \cdot AE$.

故③正确.

:: ABCD 为正方形, 且边长为 4,

 $\therefore AB = BC = AD = 4$

 \therefore \triangle Rt $\triangle ABC + , AC = \sqrt{2}AB = 4\sqrt{2}$.

由①可知, △ADG≌△AMG(ASA),

AM = AD = 4,

 $\therefore CM = AC - AM = 4\sqrt{2} - 4.$

由图可知, $\triangle DMC$ 和 $\triangle ADM$ 等高, 设高为 h,

 $\therefore S_{\Delta ADM} = S_{\Delta ADC} - S_{\Delta DMC},$

$$\therefore \frac{4 \times h}{2} = \frac{4 \times 4}{2} - \frac{\left(4\sqrt{2} - 4\right) \cdot h}{2},$$

 $\therefore h = 2\sqrt{2}$.

$$\therefore S_{\Delta ADM} = \frac{1}{2} \cdot AM \cdot h = \frac{1}{2} \times 4 \times 2\sqrt{2} = 4\sqrt{2}.$$

故4不正确.

由①可知, △ADG≌△AMG(ASA),

 $\therefore DG = GM$.

::M 关于线段 AG 的对称点为 D , 过点 D 作 $DN' \perp AC$, 交 $AC \vdash N'$, 交 $AE \vdash P'$,

 $\therefore PM + PN$ 最小即为 DN', 如图所示,

由④可知 $\triangle ADM$ 的高 $h=2\sqrt{2}$ 即为图中的 DN',

 $\therefore DN' = 2\sqrt{2}.$

故②不正确.

综上所述, 正确的是①③

2. 如图,正方形 ABCD 中,点 E 、 F 、 G 分别为边 AB 、 BC 、 AD 上的中点,连接 AF 、 DE 交于点 M ,连接 GM 、 CG , CG 与 DE 交于点 N ,则结论① $GM \perp CM$;② CD = DM ;③四边形 AGCF 是平行四边形;④ $\angle CMD = \angle AGM$ 中,正确的有()个.

A. 1

B. 2

C. 3

D. 4

【答案】B

【解答】解: $:: AG / /FC \perp AG = FC$,

:四边形 AGCF 为平行四边形,故③正确;

 $\therefore \angle GAF = \angle FCG = \angle DGC$, $\angle AMN = \angle GND$

在 ΔADE 和 ΔBAF 中,

$$\therefore \begin{cases} AE = BF \\ \angle DAE = \angle ABF \\ AD = AB \end{cases}$$

 $\therefore \Delta ADE \cong \Delta BAF(SAS),$

 $\therefore \angle ADE = \angle BAF$,

 $\therefore \angle ADE + \angle AEM = 90^{\circ}$

 $\therefore \angle EAM + \angle AEM = 90^{\circ}$

 $\therefore \angle AME = 90^{\circ}$

 $\therefore \angle GND = 90^{\circ}$

 $\therefore \angle DE \perp AF$, $DE \perp CG$.

:: G 点为 AD 中点,

∴GN 为 ΔADM 的中位线,

即CG为DM的垂直平分线,

 $\therefore GM = GD$, CD = CM, 故②错误;

 $\underline{\epsilon} \Delta GDC \, \overline{n} \, \Delta GMC \, \underline{+}$

$$\therefore \begin{cases}
DG = MG \\
CD = CM \\
CG = CG
\end{cases}$$

 $\therefore \Delta GDC \cong \Delta GMC(SSS),$

 $\therefore \angle CDG = \angle CMG = 90^{\circ}$,

 $\angle MGC = \angle DGC$,

 $\therefore GM \perp CM$, 故①正确;

 $\therefore \angle CDG = \angle CMG = 90^{\circ}$

 $::G \setminus D \setminus C \setminus M$ 四点共圆,

 $\therefore \angle AGM = \angle DCM$,

:: CD = CM,

 $\therefore \angle CMD = \angle CDM$,

 \pm RtΔAMD \pm , $\angle AMD = 90^{\circ}$,

 $\therefore DM < AD$,

 $\therefore DM < CD$,

 $\therefore \angle DMC \neq \angle DCM$,

∴ ∠*CMD* ≠ ∠*AGM* , 故**④**错误.

2203.绥化.中考真题

3. 如图,在正方形 ABCD中,点 E 为边 CD 的中点,连接 AE ,过点 B 作 $BF \perp AE$ 于点 F ,连接 BD 交 AE 于点 G , FH 平分 $\angle BFG$ 交 BD 于点 H . 则下列结论中,正确的个数为(

① $AB^2 = BF \cdot AE$; ② $S_{\triangle BGF} : S_{\triangle BAF} = 2:3$; ③ $\stackrel{\text{\tiny \perp}}{=} AB = a \text{ } \text{\tiny $|\tau$}$, $BD^2 - BD \cdot HD = a^2$

A. 0 个

B. 1个

C. 2个

D. 3个

【答案】D

【详解】:'四边形 ABCD是正方形,

 $\angle BAD = \angle ADE = 90^{\circ}$, AB = AD

 $BF \perp AE$

 $\therefore \angle ABF = 90^{\circ} - \angle BAF = \angle DAE$

 $\therefore \cos \angle ABF = \cos \angle EAD$

$$\mathbb{P}\frac{BF}{AB} = \frac{AD}{AE}, \quad \mathbb{Z}AB = AD,$$

∴ $AB^2 = BF \cdot AE$, 故①正确;

设正方形的边长为a,

::点E为边CD的中点,

$$\therefore DE = \frac{a}{2},$$

$$\therefore \tan \angle ABF = \tan \angle EAD = \frac{1}{2},$$

在Rt
$$\triangle ABE$$
中, $AB = \sqrt{AF^2 + BF^2} = \sqrt{5}AF = a$,

$$\therefore AF = \frac{\sqrt{5}}{5}a$$

$$\not = \text{Rt} \triangle ADE + , \quad AE = \sqrt{AD^2 + DE^2} = \frac{\sqrt{5}a}{2}$$

$$EF = AE - AF = \frac{\sqrt{5}}{2}a - \frac{\sqrt{5}}{5}a = \frac{3\sqrt{5}}{10}a$$

∵ AB // DE

 $\therefore \triangle GAB \hookrightarrow \triangle GED$

$$\therefore \frac{AG}{GE} = \frac{AB}{DE} = 2$$

$$\therefore GE = \frac{1}{3}AE = \frac{\sqrt{5}}{6}a$$

:
$$FG = AE - AF - GE = \frac{\sqrt{5}}{2}a - \frac{\sqrt{5}}{5}a - \frac{\sqrt{5}}{6}a = \frac{2\sqrt{5}}{15}a$$

$$\therefore \frac{AF}{FG} = \frac{\frac{\sqrt{5}}{5}a}{\frac{2\sqrt{5}}{15}a} = \frac{3}{2}$$

 $:: S_{\triangle BGF}: S_{\triangle BAF} = 2:3$,故②正确;

$$AB = a$$

$$BD^2 = AB^2 + AD^2 = 2a^2$$
,

如图所示, 过点H分别作BF,AE的垂线, 垂足分别为M,N,

 $\mathbf{X} : BF \perp AE$,

∴四边形 FMHN 是矩形,

∵FH 是∠BFG 的角平分线.

$$\therefore HM = HN$$

∴四边形 FMHN 是正方形,

$$\therefore FN = HM = HN$$

$$\therefore BF = 2AF = \frac{2\sqrt{5}}{5}a, FG = \frac{2\sqrt{5}}{15}a$$

$$\therefore \frac{MH}{BM} = \frac{FG}{BF} = \frac{1}{3}$$

 以
$$MH = b$$
 , 则 $BF = BM + FM = BM + MH = 3b + b = 4b$

在 Rt
$$\triangle BMH$$
 中, $BH = \sqrt{BM^2 + MH^2} = \sqrt{10}b$,

$$\therefore BF = \frac{2\sqrt{5}}{5}a$$

$$\therefore \frac{2\sqrt{5}}{5}a = 4b$$

解得:
$$b = \frac{\sqrt{5}}{10}a$$

$$\therefore BH = \sqrt{10} \times \frac{\sqrt{5}}{10} a = \frac{\sqrt{2}}{2} a,$$

$$\therefore BD^2 - BD \cdot HD = 2a^2 - \sqrt{2}a \times \frac{\sqrt{2}}{2}a = a^2$$
, 故④正确

4. 如图,已知 E , F 分别为正方形 ABCD 的边 AB , BC 的中点, AF 与 DE 交于点 M , O 为 BD 的中点,则下列结论:

① $\angle AME = 90^{\circ}$; ② $\angle BAF = \angle EDB$; ③ $\angle BMO = 90^{\circ}$; ④ MD = 2AM = 4EM; ⑤ $AM = \frac{2}{3}MF$. 其中正确

结论的是(

A. 134

B. 245

C. 1345

D. 135

【解答】解: 在正方形 ABCD 中, AB = BC = AD, $\angle ABC = \angle BAD = 90^{\circ}$,

 $:: E \setminus F$ 分别为边 AB , BC 的中点,

$$\therefore AE = BF = \frac{1}{2}BC,$$

在 ΔABF 和 ΔDAE 中,

$$\begin{cases} AE = BF \\ \angle ABC = \angle BAD \\ AB = AD \end{cases}$$

 $\therefore \triangle ABF \cong \triangle DAE(SAS)$

$$\therefore \angle BAF = \angle ADE$$
.

$$\therefore \angle BAF + \angle DAF = \angle BAD = 90^{\circ}$$
.

$$\therefore \angle ADE + \angle DAF = \angle BAD = 90^{\circ}$$
,

$$\therefore \angle AMD = 180^{\circ} - (\angle ADE + \angle DAF) = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

:: DE 是 ΔABD 的中线,

$$\therefore \angle ADE \neq \angle EDB$$
,

$$\therefore \angle BAD = 90^{\circ}$$
, $AM \perp DE$,

$$\therefore \Delta AED \hookrightarrow \Delta MAD \hookrightarrow \Delta MEA$$

$$\therefore \frac{AM}{FM} = \frac{MD}{AM} = \frac{AD}{AE} = 2,$$

$$AM = 2EM$$
, $MD = 2AM$,

设正方形
$$ABCD$$
 的边长为 $2a$,则 $BF = a$,

在 RtΔABF 中,
$$AF = \sqrt{AB^2 + BF^2} = \sqrt{5}a$$
,

$$\therefore \angle BAF = \angle MAE$$
, $\angle ABC = \angle AME = 90^{\circ}$,

$$\therefore \Delta AME \hookrightarrow \Delta ABF$$
,

$$\therefore \frac{AM}{AB} = \frac{AE}{AF} ,$$

$$\operatorname{gp}\frac{AM}{2a} = \frac{a}{\sqrt{5}a},$$

解得
$$AM = \frac{2\sqrt{5}}{5}a$$
,

:.
$$MF = AF - AM = \sqrt{5}a - \frac{2\sqrt{5}}{5}a = \frac{3\sqrt{5}}{5}a$$
,

$$\therefore AM = \frac{2}{3}MF, 故⑤正确;$$

如图, 过点M作 $MN \perp AB$ 于N,

$$N = \frac{MN}{BF} = \frac{AN}{AB} = \frac{AM}{AF},$$

$$\frac{\text{PP}}{a} \frac{MN}{a} = \frac{AN}{2a} = \frac{2\sqrt{5}}{5} \frac{a}{\sqrt{5}a},$$

解得
$$MN = \frac{2}{5}a$$
 , $AN = \frac{4}{5}a$,

:.
$$NB = AB - AN = 2a - \frac{4}{5}a = \frac{6}{5}a$$
,

根据勾股定理,
$$BM = \sqrt{BN^2 + MN^2} = \frac{2\sqrt{10}}{5}a$$
,

$$N OK = a - \frac{2}{5}a = \frac{3}{5}a , \quad MK = \frac{6}{5}a - a = \frac{1}{5}a ,$$

$$\triangle$$
 RtΔMKO $\stackrel{\bullet}{\mathbf{r}}$, $MO = \sqrt{MK^2 + OK^2} = \frac{\sqrt{10}}{5} a$,

根据正方形的性质,
$$BO = 2a \times \frac{\sqrt{2}}{2} = \sqrt{2}a$$
 ,

:
$$BM^2 + MO^2 = (\frac{2\sqrt{10}}{5}a)^2 + (\frac{\sqrt{10}}{5}a)^2 = 2a^2$$
,

$$BO^2 = (\sqrt{2}a)^2 = 2a^2$$
,

$$\therefore BM^2 + MO^2 = BO^2,$$

 $:: \Delta BMO$ 是直角三角形, $\angle BMO = 90^{\circ}$, 故③正确;

综上所述,正确的结论有①③④⑤共4个

5. 如图,在正方形 ABCD中,E、F 分别在 CD 、AD 边上,且 CE = DF ,连接 BE 、CF 相交于 G 点.则下列结论: ① BE = CF ;② $S_{\triangle BCG} = S_{\square jj \in DFGE}$;③ $CG^2 = BG \cdot GE$;④ 当 E 为 CD 中点时,连接 DG ,则 $\angle FGD = 45°$,

正确的结论是_____.(填序号)

【答案】①②③④

【分析】①由"SAS"可证 △BCE ≌△CDF, 可得 BE = CF;

②由全等三角形的性质可得 $S_{\Delta BCQ} = S_{\Delta CDF}$, 由面积和差关系可得 $S_{\Delta BCG} = S_{\text{mbh DFGE}}$;

③通过证明 $\triangle BCG \hookrightarrow \triangle CEG$, 可得 $\frac{CG}{BG} = \frac{GE}{GC}$, 可得结论;

④通过证明点 D, 点 E, 点 G, 点 F 四点共圆, 可证 $\angle DEF = \angle DGF = 45^{\circ}$.

【详解】解: ∵四边形 ABCD是正方形,

BC = CD, $\angle BCD = \angle CDF = 90^{\circ}$,

 $_{\Delta BCE}$ 和 $_{\Delta CDF}$ 中,

$$\begin{cases} BC = CD \\ \angle BCD = \angle CDF = 90^{\circ}, \\ CE = DF \end{cases}$$

- $\triangle BCE \cong \triangle CDF(SAS)$,
- ∴ BE = CF, 故①正确,
- $BCE \cong \triangle CDF$,
- $\therefore S_{\triangle}BCE = S_{\triangle}CDF$,
- ∴ $S_{\triangle BCG} = S_{\text{凹边形DFGE}}$; 故②正确,
- $BCE \cong_{\triangle}CDF$,
- $\angle DCF = \angle EBC$.
- $\angle DCF + \angle BCG = 90^{\circ}$,

 \therefore $\angle EBC + \angle BCG = 90^{\circ}$,

 $\angle BGC = \angle EGC = 90^{\circ}$.

 $\triangle BCG \hookrightarrow \triangle CEG$.

$$\therefore \frac{CG}{BG} = \frac{GE}{GC} ,$$

∴ $CG^2 = BG \cdot GE$; 故③正确;

如图,连接EF,

:点E是CD中点,

DE = CE.

: CE = DF,

 $\therefore DF = CE = DE$

 $\angle DFE = \angle DEF = 45^{\circ}$.

 $\angle ADC = \angle EGF = 90^{\circ}$,

∴点D, 点E, 点G, 点F四点共圆,

∴ ∠DEF = ∠DGF = 45°, 故④正确;

综上所述: 正确的有①②③④

题型三 对角线模型

1. 如图,在边长为 1 的正方形 ABCD 中,动点 F , E 分别以相同的速度从 D , C 两点同时出发向 C 和 B 运动(任何一个点到达即停止),连接 AE 、 BF 交于点 P ,过点 P 作 PM //CD 交 BC 于 M 点,PN //BC 交 CD 于 N 点,连接 MN ,在运动过程中则下列结论:① $\Delta ABE \cong \Delta BCF$;② AE = BF ;③ $AE \perp BF$;④ $CF^2 = PE \cdot BF$;

⑤线段 MN 的最小值为 $\frac{\sqrt{5}-2}{2}$. 其中正确的结论有()

A. 2个

B. 3 个

C. 4个

D. 5个

【解答】解: : 动点F, E的速度相同,

 $\therefore DF = CE$,

 $\nabla : CD = BC$,

 $\therefore CF = BE$,

在 ΔABE 和 ΔBCF 中,

$$\begin{cases} AB = BC \\ \angle ABE = \angle BCF = 90^{\circ} \\ BE = CF \end{cases}$$

 $:: \Delta ABE \cong \Delta BCF(SAS)$, 故①正确;

∴ $\angle BAE = \angle CBF$, AE = BF, 故②正确;

 $\therefore \angle BAE + \angle BEA = 90^{\circ}$

 $\therefore \angle CBF + \angle BEA = 90^{\circ}$,

∴ ∠*APB* = 90°, 故③正确;

在 ΔBPE 和 ΔBCF 中,

 $\therefore \angle BPE = \angle BCF$, $\angle PBE = \angle CBF$,

 $\therefore \Delta BPE \hookrightarrow \Delta BCF$,

$$\therefore \frac{PE}{CF} = \frac{BE}{BF} ,$$

 $\therefore CF \bullet BE = PE \bullet BF ,$

:: CF = BE

∴ $CF^2 = PE \cdot BF$, 故④正确;

∴ 点 P 在运动中保持 ∠APB = 90°,

:: 点 P 的路径是一段以 AB 为直径的弧,

如图,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,

在 Rt D B C G 中 ,
$$CG = \sqrt{BC^2 + BG^2} = \sqrt{1 + \frac{1}{4}} = \frac{\sqrt{5}}{2}$$
 ,

$$\therefore PG = \frac{1}{2}AB = \frac{1}{2},$$

$$\therefore MN = CP = CG - PG = \frac{\sqrt{5}}{2} - \frac{1}{2} = \frac{\sqrt{5} - 1}{2}$$
,

即线段 MN 的最小值为 $\frac{\sqrt{5}-1}{2}$, 故⑤错误;

综上可知正确的有4个,

故选: C.

2. 如图,正方形 ABCD 中, AB=3,点 E 是对角线 AC 上的一点,连接 DE ,过点 E 作 $EF \perp DE$,交 AB 于点 F ,连接 DF 交 AC 于点 G ,下列结论:

① DE=EF ; ② $\angle ADF=\angle AEF$; ③ $DG^2=GE \cdot GC$; ④若 AF=1 , 则 $EG=\frac{5}{4}\sqrt{2}$,其中结论正确的个数是

()

A. 1

B. 2

C. 3

D. 4

【解答】解:如图,连接BE,

:: 四边形 ABCD 为正方形,

 $\therefore CB = CD$, $\angle BCE = \angle DCE = 45^{\circ}$,

在 ΔBEC 和 ΔDEC 中,

$$\begin{cases} DC = BC \\ \angle DCE = \angle BCE \end{cases},$$

$$CE = CE$$

 $\therefore \Delta DCE \cong \Delta BCE(SAS)$,

 $\therefore DE = BE$, $\angle CDE = \angle CBE$,

 $\therefore \angle ADE = \angle ABE$,

 $\therefore \angle DAB = 90^{\circ}$, $\angle DEF = 90^{\circ}$,

 $\therefore \angle ADE + \angle AFE = 180^{\circ}$,

 $\therefore \angle AFE + \angle EFB = 180^{\circ}$,

 $\therefore \angle ADE = \angle EFB$,

 $\therefore \angle ABE = \angle EFB$,

 $\therefore EF = BE$,

∴ DE = EF, 故①正确;

 $\therefore \angle DEF = 90^{\circ}$, DE = EF,

 $\therefore \angle EDF = \angle DFE = 45^{\circ}$,

 $\therefore \angle DAC = 45^{\circ}$, $\angle AGD = \angle EGF$,

∴ $\angle ADF = \angle AEF$, 故②正确;

 $\therefore \angle GDE = \angle DCG = 45^{\circ}, \ \angle DGE = \angle CGD$

 $\therefore \Delta DGE \hookrightarrow \Delta CGD$,

$$\therefore \frac{DG}{EG} = \frac{CG}{DG},$$

即 $DG^2 = GE \cdot CG$,故③正确;

如图,过点E作 $EN \perp AB$ 于点N,

$$AF = 1$$
, $AB = 3$,

:.
$$BF = 2$$
, $AC = \sqrt{3^2 + 3^2} = 3\sqrt{2}$,

:: BE = EF,

 $\therefore FN = BN = 1$,

AN = 2

$$AE = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$
,

$$\therefore CE = AC - AE = \sqrt{2}$$

将 ΔDEC 绕点 A 逆时针旋转 90° 得到 ΔDMA , 连接 MG,

易证 $\Delta DMG \cong \Delta DEG(SAS)$, ΔAMG 是直角三角形,

$$\therefore MG = GE$$

$$MG^2 = EG^2 = AM^2 + AG^2 = CE^2 + AG^2$$

设
$$EG = x$$
,则 $AG = 2\sqrt{2} - x$,

$$\therefore (\sqrt{2})^2 + (2\sqrt{2} - x)^2 = x^2$$
,

解得: $x = \frac{5}{4}\sqrt{2}$, 即 $EG = \frac{5}{4}\sqrt{2}$, 故④正确.

故选: D.

3. 如图,正方形 ABCD 中,点 E , F 分别为边 BC , CD 上的点,连接 AE , AF ,与对角线 BD 分别交于点 G , H ,连接 EH . 若 $\angle EAF$ = 45° ,则下列判断错误的是()

A.
$$BE + DF = EF$$

$$B. BG^2 + HD^2 = GH^2$$

C. E , F 分别为边 BC , CD 的中点

D. $AH \perp EH$

【解答】解:如图 1,将 $\triangle ADF$ 绕点 A 顺时针旋转 90° 得到 $\triangle ABM$,此时 AB 与 AD 重合,

由旋转可得: AB = AD, BM = DF, $\angle DAF = \angle BAM$, $\angle ABM = \angle D = 90^{\circ}$, AM = AF,

 $\therefore \angle ABM + \angle ABE = 90^{\circ} + 90^{\circ} = 180^{\circ},$

 \therefore 点M, B, E在同一条直线上.

 $\therefore \angle EAF = 45^{\circ}$,

 $\therefore \angle DAF + \angle BAE = \angle BAD - \angle EAE = 90^{\circ} - 45^{\circ} = 45^{\circ}$.

 $\therefore \angle BAE = \angle DAF$,

 $\therefore \angle BAM + \angle BAE = 45^{\circ}$.

 $\square \angle MAE = \angle FAE$.

$$\begin{cases} AM = AF \\ \angle MAE = \angle FAE , \\ AE = AE \end{cases}$$

 $\therefore \triangle AME \cong \triangle AFE(SAS)$,

 $\therefore ME = EF$,

 $\therefore EF = BE + DF$, 故 A 选项不合题意,

如图 2,将 $\triangle ADH$ 绕点 A 顺时针旋转 90° 得到 $\triangle ABN$,此时 AB 与 AD 重合,

图2

 $\therefore \Delta ADH \cong \Delta ABN$,

 $\therefore AN = AH$, $\angle BAN = \angle DAH$, $\angle ADH = \angle ABN = 45^{\circ}$, DH = BN,

 $\therefore \angle NBG = 90^{\circ}$,

 $\therefore BN^2 + BG^2 = NG^2,$

 $\therefore \angle EAF = 45^{\circ}$,

 $\therefore \angle DAF + \angle BAE = 45^{\circ}$,

 $\therefore \angle BAN + \angle BAE = 45^{\circ} = \angle NAE$,

 $\therefore \angle NAE = \angle EAF$,

X :: AN = AH, AG = AG,

 $\therefore \Delta ANG \cong \Delta AHG(SAS)$,

 $\therefore GH = NG$,

 $\therefore BN^2 + BG^2 = NG^2 = GH^2,$

∴ $DH^2 + BG^2 = GH^2$, 故 B 选项不合题意;

 $\therefore \angle EAF = \angle DBC = 45^{\circ}$,

 \therefore 点A,点B,点E,点H四点共圆,

 $\therefore \angle AHE = \angle ABE = 90^{\circ}$,

 $:: AH \perp HE$, 故 D 选项不合题意,

故选: C.

4. 在正方形 ABCD 中,点 E 为 BC 边上一点且 CE=2BE,点 F 为对角线 BD 上一点且 BF=2DF,连接 AE 交 BD 于点 G ,过点 F 作 $FH \perp AE$ 于点 H ,连接 CH 、 CF ,若 HG=2cm ,则 ΔCHF 的面积是 $\frac{56}{5}$ $-cm^2$.

【淘宝店铺:向阳百分百】

【解答】解:如图,过F作 $FI \perp BC$ 于I,连接FE,FA,

 $\therefore FI / /CD$,

:: CE = 2BE, BF = 2DF,

 $\therefore \text{ } \bigvee FE = FC = FA = \sqrt{5}a$

 $\therefore H$ 为 AE 的中点,

$$\therefore HE = \frac{1}{2}AE = \frac{\sqrt{10}a}{2},$$

::四边形 ABCD 是正方形,

 $\therefore BG \stackrel{\mathbf{T}}{\rightarrow} \angle ABC$,

$$\therefore \frac{EG}{AG} = \frac{BE}{AB} = \frac{1}{3} ,$$

$$\therefore HG = \frac{1}{4}AE = \frac{\sqrt{10}}{4}a = 2,$$

$$\therefore a = \frac{4}{5}\sqrt{10} ,$$

$$\therefore S_{\Delta CHF} = S_{\Delta HEF} + S_{\Delta CEF} - S_{\Delta CEH} = \frac{1}{2} (\frac{\sqrt{10}}{2}a)^2 + \frac{1}{2} \cdot 2a \cdot 2a - \frac{1}{2} \cdot 2a \cdot \frac{3}{2}a = \frac{7}{4}a^2 = \frac{56}{5},$$

故答案为: $\frac{56}{5}$.

5.如图,正方形 AFBH,点 T 是边 AF 上一动点,M 是 HT 的中点,MN \bot HT 交 AB 于 N,当点 T 在 AF 上运动时, $\frac{MN}{HT}$ 的值是否发生改变?若改变求出其变化范围:若不改变请求出其值并给出你的证明

【解析】易知 NT=HN,证明 ZTNH=90°即可

TN=HN⇒TN⊥HN

2023.攀枝花.中考真题

6. 如图,已知正方形 ABCD 的边长为 3,点 P 是对角线 BD 上的一点, $PF \perp AD$ 于点 F , $PE \perp AB$ 于点 E , 连接 PC, 当 PE: PF =1:2时,则 PC= ()

A. $\sqrt{3}$

B. 2

C. $\sqrt{5}$ D. $\frac{5}{2}$

【答案】C

【分析】先证四边形 AEPF 是矩形, 可得 PE = AF, $\angle PFD = 90^{\circ}$, 由等腰直角三角形的性质可得 PF = DF, 可求 AF , DF 的长, 由勾股定理可求 AP 的长, 由"SAS"可证 $\triangle ABP \cong \triangle CBP$, 可得 $AP = PC = \sqrt{5}$.

【详解】解:如图:

连接 AP.

:四边形 ABCD 是正方形,

 $\therefore AB = AD = 3$, $\angle ADB = 45^{\circ}$,

 $:: PF \perp AD$, $PE \perp AB$, $\angle BAD = 90^{\circ}$,

:四边形 AEPF 是矩形,

 $\therefore PE = AF$, $\angle PFD = 90^{\circ}$,

∴△PFD 是等腰直角三角形,

 $\therefore PF = DF$,

 $\therefore PE: PF = 1:2$

 $\therefore AF:DF=1:2$,

 $\therefore AF = 1$, DF = 2 = PF,

 $AP = \sqrt{AF^2 + PF^2} = \sqrt{1+4} = \sqrt{5}$

 $\therefore AB = BC$, $\angle ABD = \angle CBD = 45^{\circ}$, BP = BP,

 $\therefore \triangle ABP \cong \triangle CBP(SAS)$.

 $\therefore AP = PC = \sqrt{5}$

2023·四川宜宾·统考中考真题

7. 如图, 边长为 6 的正方形 ABCD中, M 为对角线 BD 上的一点, 连接 AM 并延长交 CD 于点 P. 若 PM = PC,

则 AM 的长为(

A. $3(\sqrt{3}-1)$ B. $3(3\sqrt{3}-2)$ C. $6(\sqrt{3}-1)$ D. $6(3\sqrt{3}-2)$

【答案】C

【详解】解: :四边形 ABCD 是边长为 6 的正方形,

 $\therefore AD = CD = 6, \angle ADC = 90^{\circ}, \angle ADM = \angle CDM = 45^{\circ}$

在
$$\triangle ADM$$
和VCDM中,
$$\begin{cases} DM = DM \\ \angle ADM = \angle CDM = 45^{\circ}, \\ AD = CD \end{cases}$$

$$\therefore \triangle ADM \cong \triangle CDM(SAS)$$
,

$$\therefore \angle DAM = \angle DCM$$
,

$$:: PM = PC$$
,

$$\therefore \angle CMP = \angle DCM$$
,

$$\therefore \angle APD = \angle CMP + \angle DCM = 2\angle DCM = 2\angle DAM$$
,

$$\angle APD + \angle DAM = 180^{\circ} - \angle ADC = 90^{\circ}$$
,

$$\therefore \angle DAM = 30^{\circ}$$
,

设
$$PD = x$$
,则 $AP = 2PD = 2x$, $PM = PC = CD - PD = 6 - x$,

$$\therefore AD = \sqrt{AP^2 - PD^2} = \sqrt{3}x = 6,$$

解得
$$x = 2\sqrt{3}$$
,

$$\therefore PM = 6 - x = 6 - 2\sqrt{3}, AP = 2x = 4\sqrt{3},$$

:.
$$AM = AP - PM = 4\sqrt{3} - (6 - 2\sqrt{3}) = 6(\sqrt{3} - 1)$$

题型四 半角模型 (七个性质)

2023.重庆.中考真题

1. 如图, 在正方形 ABCD中, 点 E , F 分别在 BC , CD 上, 连接 AE , AF , EF , $\angle EAF$ = 45° . 若 $\angle BAE$ = α , 则 $\angle FEC$ 一定等于()

A. 2α

B.
$$90^{\circ} - 2\alpha$$

C.
$$45^{\circ}-\alpha$$

【答案】A

【详解】将ADF绕点A逆时针旋转90°至ABH,

::四边形 ABCD 是正方形,

AB = AD, $\angle ABC = \angle D = \angle BAD = \angle C = 90^{\circ}$,

由旋转性质可知: $\angle DAF = \angle BAH$, $\angle D = \angle ABH = 90^{\circ}$, AF = AH,

 $\therefore \angle ABH + \angle ABC = 180^{\circ}$,

∴点*H*, *B*, *C*三点共线,

 \therefore $\angle BAE = \alpha$, $\angle EAF = 45^{\circ}$, $\angle BAD = \angle HAF = 90^{\circ}$,

 \therefore $\angle DAF = \angle BAH = 45^{\circ} - \alpha$, $\angle EAF = \angle EAH = 45^{\circ}$,

 \therefore $\angle AHB + \angle BAH = 90^{\circ}$,

 \therefore $\angle AHB = 45^{\circ} + \alpha$,

在 AEF 和 AEH 中

$$\begin{cases} AF = AH \\ \angle FAE = \angle HAE , \\ AE = AE \end{cases}$$

 $\triangle AFE \cong \triangle AHE(SAS)$,

 \therefore $\angle AHE = \angle AFE = 45^{\circ} + \alpha$.

 \therefore $\angle AHE = \angle AFD = \angle AFE = 45^{\circ} + \alpha$,

 $\triangle DFE = \angle AFD + \angle AFE = 90^{\circ} + 2\alpha$,

 $\angle DFE = \angle FEC + \angle C = \angle FEC + 90^{\circ}$.

 $\angle FEC = 2\alpha$

2023. 眉山. 中考真题

A. 1个

B. 2个

C. 3 个

D. 4个

【答案】C

【分析】根据正方形 ABCD 的性质可由 SAS 定理证 $\triangle ABF \cong \triangle ADE$,即可判定 $\triangle AEF$ 是等腰直角三角形,进而可得 $HE = HF = AH = \frac{1}{2}EF$,由直角三角形斜边中线等于斜边一半可得 $HC = \frac{1}{2}EF$;由此即可判断①正

确;再根据 $\angle ADH + \angle EAD = \angle DHE + \angle AEH$,可判断③正确,进而证明 $_{\Delta}AFK \sim_{\Delta}HDE$,可得 $\frac{AF}{HD} = \frac{AK}{HE}$,结合 $AF = \sqrt{2}AH = \sqrt{2}HE$,即可得出结论④正确,由 $\angle AED$ 随着 DE 长度变化而变化,不固定,可 判断② HD = CD 不一定成立.

【详解】解: :正方形 ABCD,

AB = AD, $\angle ADC = \angle ABC = \angle BAD = \angle BCD = 90^{\circ}$

 $\angle ABF = \angle ADC = 90^{\circ}$.

BF = DE.

 $\triangle ABF \cong \triangle ADE \text{ (SAS)}$

 $\angle BAF = \angle DAE$, AF = AE,

 \therefore $\angle FAE = \angle BAF + \angle BAE = \angle DAE + \angle BAE = \angle BAD = 90^{\circ}$

∴ △AEF 是等腰直角三角形, ∠AEF = ∠AFE = 45°,

 $AH \perp EF$

 $\therefore HE = HF = AH = \frac{1}{2}EF,$

 $\therefore \angle DCB = 90^{\circ}$,

 $\therefore CH = HE = \frac{1}{2}EF,$

∴ CH = AH, 故①正确;

 \nearrow : AD = CD, HD = HD,

 $\triangle AHD \cong \triangle CHD(SSS)$

$$\therefore \angle ADH = \angle CDH = \frac{1}{2} \angle ADC = 45^{\circ}$$
,

 $\therefore \angle ADH + \angle EAD = \angle DHE + \angle AEH$, $\square : 45^{\circ} + \angle EAD = \angle DHE + 45^{\circ}$,

 $\angle EAD = \angle DHE$

∴ ∠FAB = ∠DHE = ∠EAD, 故③正确,

 \checkmark : $\angle AFE = \angle ADH = 45^{\circ}$.

 $\triangle AFK \sim \triangle HDE$

$$\therefore \frac{AF}{HD} = \frac{AK}{HE}$$

 $AF = \sqrt{2}AH = \sqrt{2}HE$,

∴ $AK \cdot HD = \sqrt{2}HE^2$, 故④正确,

∵若
$$HD = CD$$
 ,则 $\angle DHC = \angle DCH = \frac{180^{\circ} - 45^{\circ}}{2} = 67.5^{\circ}$,

 $\mathbf{X} : \mathbf{C}\mathbf{H} = \mathbf{H}\mathbf{E}$,

 \therefore $\angle HCE = \angle HEC = 67.5^{\circ}$,

而点 $E \neq CD$ 上一动点, $\angle AED$ 随着DE 长度变化而变化, 不固定,

 $60 \times HEC = 180^{\circ} - \angle AED - 45^{\circ} = 135^{\circ} - \angle AED$.

则故 ∠HEC=67.5°不一定成立,故②错误;

综上,正确的有①③④共3个

3. 如图,在正方形 ABCD中,点E,F分别在 BC,CD上,AE = AF,AC与 EF 相交于点G.下列结论: ① AC 垂直平分 EF; ② BE + DF = EF; ③当 $\angle DAF = 15^{\circ}$ 时, $\triangle AEF$ 为等边三角形; ④当 $\angle EAF = 60^{\circ}$ 时, $\angle AEB = \angle AEF$. 其中正确的结论是(

A. (1)(3)

B. (2)(4)

C. (1)(3)(4) D. (2)(3)(4)

【解答】解::四边形 ABCD 是正方形,

 $\therefore AB = AD = BC = CD$, $\angle B = \angle D = 90^{\circ}$, $\angle ACD = \angle ACB = 45^{\circ}$,

AB = AD , AE = AF ,

```
\therefore Rt\triangleABE \cong Rt\triangleADF(HL),
```

- $\therefore BE = DF$,
- $\therefore CE = CF$,
- $\nabla :: \angle ACD = \angle ACB = 45^{\circ}$,
- :: AC 垂直平分 EF, 故①正确;
- $\because CE = CF$, ∠BCD = 90° , AC 垂直平分 EF ,
- $\therefore EG = GF$,

当 AE 平分 $\angle BAC$ 时, BE = EG ,即 BE + DF = EF ,故②错误;

- \therefore Rt \triangle ABE \cong Rt \triangle ADF,
- $\therefore \angle DAF = \angle BAE = 15^{\circ}$
- $\therefore \angle EAF = 60^{\circ}$
- $\nabla : AE = AF$,
- ∴ ΔAEF 是等边三角形,故③正确;
- $\therefore AE = AF$, $\angle EAF = 60^{\circ}$,
- .: ΔAEF 是等边三角形,
- $\therefore \angle AEF = 60^{\circ}$
- $\therefore \angle BAC = 45^{\circ}$, $\angle CAE = 30^{\circ}$,
- $\therefore \angle BAE = 15^{\circ}$.
- ∴ ∠AEB = 75° ≠ ∠AEF , 故④错误.

2022 达州·中考真题

4. 如图,在边长为 2 的正方形 ABCD中,点 E, F 分别为 AD ,CD 边上的动点(不与端点重合),连接 BE , BF ,分别交对角线 AC 于点 P, Q. 点 E, F 在运动过程中,始终保持 $\angle EBF = 45^{\circ}$,连接 EF , PF , PD . 以下结论: ① PB = PD ;② $\angle EFD = 2\angle FBC$;③ PQ = PA + CQ ;④ $\triangle BPF$ 为等腰直角三角形;⑤若过点 B 作 $BH \perp EF$,垂足为 H,连接 DH ,则 DH 的最小值为 $2\sqrt{2}-2$. 其中所有正确结论的序号是

【答案】①②④⑤

【分析】连接 BD,延长 DA 到 M,使 AM=CF,连接 BM,根据正方形的性质及线段垂直平分线的性质定理即可判断①正确;通过证明 $\Delta BCF \cong \Delta BAM(SAS)$, $\Delta EBF \cong \Delta EBM(SAS)$,可证明②正确;作 $\angle CBN = \angle ABP$,交 AC 的延长线于 K,在 BK 上截取 BN=BP,连接 CN,通过证明 $\Delta ABP \cong \Delta CBN$,可判断③错误;通过证明 $\Delta BQP \sim \Delta CQF$, $\Delta BCQ \sim \Delta PFQ$,利用相似三角形的性质即可证明④正确;当点 B、H、D 三点共线时,DH 的值最小,分别求解即可判断⑤正确。

如图 1, 连接 BD, 延长 DA 到 M, 使 AM=CF, 连接 BM,

·四边形 ABCD 是正方形,

∴ $AC \triangleq \underline{1} + \frac{1}{2} +$

∴ PB = PD, $\angle BCF = \angle BAM$, $\angle FBC = 90^{\circ} - \angle BFC$, 故①正确;

 $\therefore \triangle BCF \cong \triangle BAM(SAS)$,

 $\therefore \angle CBF = \angle ABM, BF = BM, \angle M = \angle BFC$

 $\therefore \angle EBF = 45^{\circ}$.

 $\therefore \angle ABE + \angle CBF = 45^{\circ}$.

 $\therefore \angle ABE + \angle ABM = 45^{\circ}$,

 $\mathbb{P} \angle EBM = \angle EBF$,

BE = BE.

 $\therefore \triangle EBF \cong \triangle EBM(SAS)$,

 $\therefore \angle M = \angle EFB, \angle MEB = \angle FEB$

 $\therefore \angle EFB = \angle CFB$,

 $\therefore \angle EFD = 180^{\circ} - (\angle EFB + \angle CFB) = 180^{\circ} - 2\angle BFC$

∴ ∠EFD=2∠FBC, 故②正确;

如图 2, 作 $\angle CBN = \angle ABP$, 交 AC 的延长线于 K, 在 BK 上截取 BN=BP, 连接 CN,

 $\therefore \triangle ABP \cong \triangle CBN$,

 $\therefore \angle BAP = \angle BCN = 45^{\circ}$

 $\therefore \angle ACB = 45^{\circ}$,

 $\therefore \angle NCK = 90^{\circ}$.

 $\therefore \angle CNK \neq \angle K$, $\bowtie CN \neq CK$,

∴ PQ ≠ PA+CQ, 故③错误;

如图 1,

:四边形 ABCD 是正方形,

 $\therefore \angle EBF = \angle BCP = \angle FCP = 45^{\circ}$

 $\therefore \angle BQP = \angle CQF$.

 $\therefore \triangle BQP \sim \triangle CQF$,

$$\therefore \frac{BQ}{CO} = \frac{PQ}{FO},$$

 $\therefore \angle BQC = \angle PQF$.

 $\triangle BCQ \sim \triangle PFQ$.

 $\therefore \angle BCQ = \angle PFQ = 45^{\circ}$

 $\therefore \angle PBF = \angle PFB = 45^{\circ}$,

 $\therefore \angle BPF = 90^{\circ}$.

∴ △BPF 为等腰直角三角形, 故④正确;

如图 1, 当点 B、H、D 三点共线时, DH 的值最小,

$$BD = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$
,

 $\therefore \angle BAE = \angle BHE = 90^{\circ}, BE = BE$

 $\therefore \triangle BAE \cong \triangle BHE(AAS)$,

 $\therefore BA = BH = 2$,

 $\therefore DH = BD - BH = 2\sqrt{2} - 2$, 故⑤正确

5. 如图,点M、N分别是正方形 ABCD的边 BC、CD 上的两个动点,在运动过程中保持 $\angle MAN = 45^{\circ}$, AM 、 AN分别与对角线 BD交于点E、F,连接 EN、FM 相交于点O,以下结论: ① MN = BM + DN; ② $BE^2 + DF^2 = EF^2$; ③ $BC^2 = BF \cdot DE$; ④ $OM = \sqrt{2}OF$,一定成立的是

【答案】①②③

【分析】由旋转的性质可得AM'=AM, BM=DM', $\angle BAM = \angle DAM'$, $\angle MAM' = 90^{\circ}$, $\angle ABM = \angle ADM' = 90^{\circ}$, 由 SAS可证 $\triangle AMN \cong \triangle AM'$ N,可得MN=NM', 可得MN=BM+DN,故①正确; 由 SAS可证 $\triangle AEF \cong \triangle AE$ D¢,可得EF=D¢E,由勾股定理可得BE²+DF²=EF²; 故②正确; 通过证明 $\triangle DAE \hookrightarrow \triangle BFA$,可得 $\overline{AB} = \overline{AB}$,可证 $BC^2 = BF \cdot DE$,故③正确; 通过证明点A,点B,点M,点F四点共圆, $\angle ABM = \angle AFM = 90^{\circ}$, $\angle AMF = \angle ABF = 45^{\circ}$, $\angle BAM = \angle BFM$,可证 $MO = \sqrt{2}$ EO,由 $\angle BAM \neq \angle DAN$,可得OE \neq OF,故④错误,即可求解.

【详解】解: $将 \triangle ABM$ 绕点 A 逆时针旋转 90° , 得到 $\triangle ADM'$, 将 $\triangle ADF$ 绕点 A 顺时针旋转 90° , 得到 $\triangle ABD^{\circ}$,

$$D'$$
 B
 M
 C

$$\therefore A M' = AM$$
, $BM = D M'$, $\angle BAM = \angle DA M'$, $\angle MA M' = 90^{\circ}$, $\angle ABM = \angle AD M' = 90^{\circ}$,

$$\therefore \angle ADM' + \angle ADC = 180^{\circ}$$
.

$$\therefore \angle MAN = 45^{\circ}$$
.

$$\therefore \angle DAN + \angle MAB = 45^{\circ} = \angle DAN + \angle DAM' = \angle M'AN$$

$$\therefore \angle M'AN = \angle MAN = 45^{\circ}$$
,

$$\mathbf{X} :: AN = AN$$
, $AM = AM'$,

$$\therefore \triangle AMN \cong \triangle A M' N (SAS),$$

$$\therefore MN = N M'$$

$$\therefore M'N = M'D + DN = BM + DN$$
,

$$\therefore AF = A D^{\sharp}$$
, $DF = D^{\sharp}B$, $\angle ADF = \angle AB D^{\sharp} = 45^{\circ}$, $\angle DAF = \angle BA D^{\sharp}$,

$$\therefore \angle D^{\phi} BE = 90^{\circ}$$
,

$$\therefore \angle MAN = 45^{\circ}$$
,

$$\therefore \angle BAE + \angle DAF = 45^{\circ} = \angle BA \ D^{\phi} + \angle BAE = \angle D^{\phi} AE$$

$$\therefore \angle D^{\phi} AE = \angle EAF = 45^{\circ}$$

$$\mathbf{X} :: AE = AE$$
, $AF = AD^{\phi}$,

$$\therefore \triangle AEF \cong \triangle AE \ D^{\notin} \ (SAS),$$

$$\therefore EF = D'E$$
,

$$\therefore D'E^2 = BE^2 + D'B^2$$

$$\therefore BE^2 + DF^2 = EF^2; 故②正确;$$

$$\therefore \angle BAF = \angle BAE + \angle EAF = \angle BAE + 45^{\circ}$$
, $\angle AEF = \angle BAE + \angle ABE = 45^{\circ} + \angle BAE$,

$$\therefore \angle BAF = \angle AEF$$
,

$$\mathbf{X} :: \angle ABF = \angle ADE = 45^{\circ}$$
.

$$\triangle DAE \hookrightarrow \triangle BFA$$
,

$$\therefore \frac{DE}{AB} = \frac{AD}{BE},$$

$$\mathbf{X} :: AB = AD = BC$$
,

$$\therefore BC^2 = DE \cdot BF$$
, 故③正确;

$$\therefore \angle FBM = \angle FAM = 45^{\circ}$$
,

 \therefore 点A,点B,点M,点F四点共圆,

 $\therefore \angle ABM = \angle AFM = 90^{\circ}$, $\angle AMF = \angle ABF = 45^{\circ}$, $\angle BAM = \angle BFM$,

同理可求 $\angle AEN = 90^{\circ}$, $\angle DAN = \angle DEN$,

- $\therefore \angle EOM = 45^{\circ} = \angle EMO$,
- $\therefore EO = EM$.
- $\therefore MO = \sqrt{2} EO$
- $\therefore \angle BAM \neq \angle DAN$.
- $\therefore \angle BFM \neq \angle DEN$,
- $\therefore EO \neq FO$.
- $\therefore OM \neq \sqrt{2}FO$, 故④错误
- 6. 如图,点M、N分别是正方形 ABCD 的边 BC、CD 上的两个动点,在运动过程中保持 $\angle MAN = 45^{\circ}$,AM、 AN 分别与对角线 BD 交于点 E、F,连接 EN、FM 相交于点 O,以下结论:① MN = BM + DN;② $BE^2 + DF^2 = EF^2$;③ $BC^2 = BF \cdot DE$;④ $OM = \sqrt{2}OF$,一定成立的是(

- A. 123
- B. (1)(2)(4)
- C. 234
- D. 1234

【解答】解: 将 $\triangle ABM$ 绕点 A 逆时针旋转 90° ,得到 $\triangle ADM'$,将 $\triangle ADF$ 绕点 A 顺时针旋转 90° ,得到 $\triangle ABD'$,

- $\therefore AM' = AM$, BM = DM', $\angle BAM = \angle DAM'$, $\angle MAM' = 90^{\circ}$, $\angle ABM = \angle ADM' = 90^{\circ}$,
- $\therefore \angle ADM' + \angle ADC = 180^{\circ}$,
- :. 点 M' 在直线 CD 上,
- $\therefore \angle MAN = 45^{\circ}$
- $\therefore \angle DAN + \angle MAB = 45^{\circ} = \angle DAN + \angle DAM' = \angle M'AN$,
- $\therefore \angle M'AN = \angle MAN = 45^{\circ}$,
- $\nabla :: AN = AN$, AM = AM',

```
\therefore \triangle AMN \cong \triangle AM'N(SAS),
\therefore MN = NM'
\therefore M'N = M'D + DN = BM + DN,
\therefore MN = BM + DN; 故①正确;
: 将 ΔADF 绕点 A 顺时针旋转 90°, 得到 ΔABD',
\therefore AF = AD', DF = D'B, \angle ADF = \angle ABD' = 45^{\circ}, \angle DAF = \angle BAD',
\therefore \angle D'BE = 90^{\circ}
\therefore \angle MAN = 45^{\circ},
\therefore \angle BAE + \angle DAF = 45^{\circ} = \angle BAD' + \angle BAE = \angle D'AE
\therefore \angle D'AE = \angle EAF = 45^{\circ}
\nabla : AE = AE, AF = AD',
\therefore \triangle AEF \cong \triangle AED'(SAS),
\therefore EF = D'E,
:: D'E^2 = BE^2 + D'B^2,
\therefore BE^2 + DF^2 = EF^2; 故②正确;
\therefore \angle BAF = \angle BAE + \angle EAF = \angle BAE + 45^{\circ}, \angle AEF = \angle BAE + \angle ABE = 45^{\circ} + \angle BAE,
\therefore \angle BAF = \angle AEF,
\mathbf{Z} :: \angle ABF = \angle ADE = 45^{\circ},
\Delta DAE \sim \Delta BFA,
\therefore \frac{DE}{AB} = \frac{AD}{BF} ,
\mathbf{X} :: AB = AD = BC
\therefore BC^2 = DE \cdot DF, 故③正确;
\therefore \angle FBM = \angle FAM = 45^{\circ},
\therefore点A,点B,点M,点F四点共圆,
\therefore \angle ABM = \angle AFM = 90^{\circ}, \angle AMF = \angle ABF = 45^{\circ}, \angle BAM = \angle BFM,
同理可求 \angle AEN = 90^{\circ} , \angle DAN = \angle DEN ,
\therefore \angle EOM = 45^{\circ} = \angle EMO,
\therefore EO = EM.
\therefore MO = \sqrt{2}EO
\therefore \angle BAM \neq \angle DAN,
\therefore \angle BFM \neq \angle DEN,
\therefore EO \neq FO,
\therefore OM \neq \sqrt{2}FO, 故④错误
7. 如图,正方形 ABCD 的对角线相交于点 O ,点 M , N 分别是边 BC , CD 上的动点(不与点 B , C , D
重合), AM , AN 分别交 BD 于 E , F 两点, 且 \angle MAN = 45^{\circ} , 则下列结论: ① MN = BM + DN ; ②
\triangle AEF \sim \triangle BEM; ③ \frac{AF}{4M} = \frac{\sqrt{2}}{2}; ④ \triangle FMC 是等腰三角形. 其中正确的有(
```


A. 1个

B. 2个

C. 3 个

D. 4个

【解答】解: $将 \triangle ABM$ 绕点 A 逆时针旋转 $90^{\circ} \cong \triangle ADM'$,

$$\therefore \angle M'AN = \angle DAN + \angle MAB = 45^{\circ}$$
, $AM' = AM$, $BM = DM'$,

$$\therefore \angle M'AN = \angle MAN = 45^{\circ}$$
, $AN = AN$,

$$\therefore \Delta AMN \cong \triangle AM'N'(SAS),$$

$$\therefore MN = NM'$$

$$\therefore M'N = M'D + DN = BM + DN,$$

∴
$$MN = BM + DN$$
; 故①正确;

$$\therefore \angle FDM' = 135^{\circ}$$
, $\angle M'AN = 45^{\circ}$,

$$\therefore \angle M' + \angle AFD = 180^{\circ}$$
,

$$\therefore \angle AFE + \angle AFD = 180^{\circ}$$
,

$$\therefore \angle AFE = \angle M'$$
,

$$\therefore \angle AMB = \angle M'$$

$$\therefore \angle AMB = \angle AFE$$
,

$$\therefore \angle EAF = \angle EBM = 45^{\circ}$$
,

$$\therefore \frac{AE}{BE} = \frac{EF}{EM} , \quad \Pr{\frac{AE}{EF}} = \frac{BE}{EM} ,$$

$$\therefore \angle AEB = \angle MEF$$
,

$$\therefore \Delta AEB \hookrightarrow \Delta FEM$$
.

$$\therefore \angle EMF = \angle ABE = 45^{\circ}$$
,

$$\therefore \frac{AF}{AM} = \frac{\sqrt{2}}{2} ; 故③正确;$$

在 $\triangle ADF$ 与 $\triangle CDF$ 中 , $\begin{cases} AD = CD \\ \angle ADF = \angle CDF = 45^{\circ}, \\ DF = DF \end{cases}$

$$\therefore \triangle ADF \cong \triangle CDF(SAS)$$
.

$$\therefore AF = CF$$
,

$$:: AF = MF$$
,

$$\therefore FM = FC$$

8. 如图,在正方形 ABCD中,对角线 AC , BD 相交于点 O , F 是线段 OD 上的动点(点 F 不与点 O , D 重合)连接 CF ,过点 F 作 FG \bot CF 分别交 AC , AB 于点 H , G ,连接 CG 交 BD 于点 M ,作 OE \parallel CD 交 CG 于点 E , EF 交 E 不分点 E 。 有下列结论:①当 E E 的 E 。 其中正确的是 (填序号).

【答案】①②③

【分析】①正确. 利用面积法证明 $\frac{AG}{BG} = \frac{AC}{BC} = \sqrt{2}$ 即可;

②正确. 如图 3 中,将 $\triangle CBM$ 绕点 C顺时针旋转 90° 得到 $\triangle CDW$,连接 FW . 则 CM = CW , BM = DW , $\triangle MCW = 90°$, $\triangle CBM = \triangle CDW = 45°$,证明 FM = FW ,利用勾股定理,即可解决问题;

③正确. 如图 2 中,过点 M 作 $MP \perp BC \mp P$, $MQ \perp AB \mp Q$,连接 AF . 想办法证明 CM = CF ,再利用相似三角形的性质,解决问题即可;

④错误. 假设成立,推出 $\angle OFH = \angle OCM$,显然不符合条件.

【详解】解:如图1中,过点G作 $GT \perp AC$ 于T.

【淘宝店铺: 向阳百分百】

:: BG = BM,

 $\therefore \angle BGM = \angle BMG$,

 $\therefore \angle BGM = \angle GAC + \angle ACG$, $\angle BMG = \angle MBC + \angle BCM$,

·· 四边形 ABCD 是正方形,

$$\therefore \angle GAC = \angle MBC = 45^{\circ}, \quad AC = \sqrt{2}BC,$$

 $\therefore \angle ACG = \angle BCG$,

 $:: GB \perp CB$, $GT \perp AC$,

 $\therefore GB = GT,$

$$\therefore \frac{S_{\triangle BCG}}{S_{\triangle ACG}} = \frac{BG}{AG} = \frac{\frac{1}{2} \cdot BC \cdot GB}{\frac{1}{2} \cdot AC \cdot GT} = \frac{BC}{AC} = \frac{1}{\sqrt{2}},$$

 $\therefore AG = \sqrt{2}BG$, 故①正确,

过点F作ST // AD, 如图所示:

∴四边形 ASTD 是矩形,

 $\angle BDC = 45^{\circ}$,

 $\therefore DT = FT$,

在正方形 ABCD中, AD = CD=ST,

$$\therefore ST - FT = CD - DT$$
, $P SF = CT$,

 $\angle SFG + \angle TFC = \angle TFC + \angle TCF = 90^{\circ}$,

 $\angle SFG = \angle TCF$,

 $\angle GSF = \angle FTC = 90^{\circ}$,

∴ △SFG≌△TCF,

 $\therefore FG = FC$,

 $\angle FCG = 45^{\circ}$,

如图 3 中,将 $\triangle CBM$ 绕点 C顺时针旋转 90° 得到 $\triangle CDW$,连接 FW. 则 CM = CW, BM = DW, $\angle MCW = 90°$, $\angle CBM = \angle CDW = 45°$,

图3

$$\therefore$$
 $\angle FCW = \angle MCW - \angle FCG = 90^{\circ} - 45^{\circ} = 45^{\circ}$,

$$\therefore \angle FCG = \angle FCW = 45^{\circ}$$
,

$$CM = CW$$
, $CF = CF$,

$$\therefore \triangle CFM \cong \triangle CFW(SAS)$$
,

$$\therefore FM = FW$$
,

$$\therefore \angle FDW = \angle FDC + \angle CDW = 45^{\circ} + 45^{\circ} = 90^{\circ}$$
,

$$\therefore FW^2 = DF^2 + DW^2,$$

$$\therefore FM^2 = BM^2 + DF^2,$$

$$:: BD \perp AC$$
, $FG \perp CF$,

$$\therefore \angle COF = 90^{\circ}, \angle CFG = 90^{\circ},$$

$$\therefore \angle FCN + \angle OFC = 90^{\circ}, \quad \angle OFC + \angle GFM = 90^{\circ},$$

$$\therefore \angle FCN = \angle GFM$$
,

$$\therefore \frac{CE}{GE} = \frac{OC}{OA} = 1, \quad \Box CE = GE,$$

$$\therefore$$
 FE \perp CG,

$$FC = FG$$
,

$$\angle EFC = \angle EFG = 45^{\circ}$$
;

$$\therefore \angle NFC = \angle FGM = 45^{\circ}$$
, $FG = CF$,

$$\therefore \triangle CFN \cong \triangle FGM(ASA)$$
,

$$\therefore CN = FM$$
,

$$\therefore CN^2 = BM^2 + DF^2$$
, 故②正确,

如图 2 中,过点M作 $MP \perp BC \mp P$, $MQ \perp AB \mp Q$,连接AF.

 $\therefore \angle OFH + \angle FHO = 90^{\circ}, \quad \angle FHO + \angle FCO = 90^{\circ},$

$$\therefore \angle OFH = \angle FCO$$
,

```
\therefore AB = CB, \angle ABF = \angle CBF, BF = BF,
∴∆ABF≌∆CBF(SAS),
\therefore AF = CF, \angle BAF = \angle BCF,
\therefore \angle CFG = \angle CBG = 90^{\circ}
\therefore \angle BCF + \angle BGF = 180^{\circ},
\therefore \angle BGF + \angle AGF = 180^{\circ}
\therefore \angle AGF = \angle BCF = \angle GAF,
\therefore AF = FG
\therefore FG = FC,
\therefore \angle FCG = \angle BCA = 45^{\circ},
\therefore \angle ACF = \angle BCG,
: MQ//CB,
\therefore \angle GMQ = \angle BCG = \angle ACF = \angle OFH,
\therefore \angle MQG = \angle FOH = 90^{\circ}, FH = MG
\therefore \triangle FOH \cong \triangle MQG(AAS),
\therefore MQ = OF,
\therefore \angle BMP = \angle MBQ, MQ \perp AB, MP \perp BC,
\backslash MQ = MP
\therefore MP = OF,
\therefore \angle CPM = \angle COF = 90^{\circ}, \angle PCM = \angle OCF,
\therefore \triangle CPM \cong \triangle COF(AAS),
\therefore CM = CF,
:: OE//AG, OA = OC,
\therefore EG = EC,
∵△FCG是等腰直角三角形,
\therefore \angle GCF = 45^{\circ},
\therefore \angle CFN = \angle CBM,
:: \angle FCN = \angle BCM,
\therefore \triangle BCM \hookrightarrow \triangle FCN.
\therefore \frac{CM}{CN} = \frac{CB}{CF}, \quad \mathbb{R} \supset CM \cdot CF = CN \cdot CB,
\therefore CF^2 = CB \cdot CN, 故③正确,
假设\frac{OH}{OM} = \frac{OF}{OC}成立,
\therefore \angle FOH = \angle COM,
\therefore \triangle FOH \hookrightarrow \triangle COM,
∴∠OFH = ∠OCM , 显然这个条件不成立, 故④错误
```

9. (2023·广东深圳·校联考模拟预测) 如图,等腰直角 $\triangle AMP$ 中, $\angle PAM$ = 90°,顶点 M,P 在正方形 ABCD 的 BC 边及 CD 边的延长线上动点。 BD 交 MP 于点 F,连接 AF 并延长,交 CD 于 N, AM 交 BD 于点 E. 以

下结论: ① MN = MB + DN ② $BE^2 + DF^2 = EF^2$ ③ $BC^2 = EB \cdot DB$ ④若 $\tan \angle PMN = \frac{1}{3}$,则 $\frac{BM}{CM} = 1$,其中正确的是 . (填写正确的序号)

【答案】①②③④

【分析】由正方形及等腰直角三角形的性质,可证得 $\triangle ABM \cong \triangle ADP$, $\angle ABD = \angle CBD = \angle AMF = 45^\circ$,可证得BM = DP,点 $A \setminus B \setminus M \setminus F$ 四点共圆, $\angle MAN = \angle PAN = 45^\circ$,由 SAS 可证 $\triangle AMN \cong \triangle APN$,可得MN = PN,可得MN = BM + DN,故①正确;由 SAS 可证 $\triangle AEF \cong \triangle AED'$,可得EF = D'E,由勾股定理可得 $BE^2 + DF^2 = EF^2$;故②正确;通过证明 $\triangle DAE \bowtie \triangle BFA$,可得 $BE = \frac{AD}{BA}$,故③正确;由BE = PN 可得 $BE = \frac{AD}{BA}$,故③正确;由BE = PN 可得 $BE = \frac{AD}{BA}$,故③正确;由BE = PN 可得

【详解】解: :四边形 ABCD 是正方形, △AMP 是等腰直角三角形,

 $\therefore \angle ABD = \angle CBD = \angle AMF = 45^{\circ}$, AB = AD, AM = AP,

∴ △ABM ≌ △ADP(HL), 点 A、B、M、F 四点共圆,

 $\therefore BM = DP$, $\angle MAN = \angle FBM = 45^{\circ}$,

 $\therefore \angle PAM = 90^{\circ}$

 $\therefore \angle PAN = \angle MAN = 45^{\circ}$,

 $\mathbf{X} :: AN = AN$, AM = AP,

 $\therefore \triangle AMN \cong \triangle APN(SAS)$,

 $\therefore MN = PN$.

 $\therefore PN = PD + DN = BM + DN$

 $\therefore MN = BM + DN$, 故①正确;

如图: 将 $\triangle ADF$ 绕点A|顺时针旋转90°,得到 $\triangle ABD'$,连接D'E,

 $\therefore AF = AD'$, DF = D'B, $\angle ADF = \angle ABD' = 45^{\circ}$, $\angle DAF = \angle BAD'$,

$$\therefore \angle D'BE = 90^{\circ}$$
,

$$\therefore \angle MAN = 45^{\circ}$$
.

$$\therefore \angle BAE + \angle DAF = 45^{\circ} = \angle BAD' + \angle BAE = \angle D'AE$$

$$\therefore \angle D'AE = \angle EAF = 45^{\circ}$$
,

$$\mathbf{X} :: AE = AE$$
, $AF = AD'$

$$\therefore \triangle AEF \cong \triangle AED'(SAS)$$

$$\therefore EF = D'E$$
.

$$:: D'E^2 = BE^2 + D'B^2$$

$$\therefore BE^2 + DF^2 = EF^2$$
; 故②正确;

$$\therefore \angle BAF = \angle BAE + \angle EAF = \angle BAE + 45^{\circ}$$
, $\angle AEF = \angle BAE + \angle ABE = 45^{\circ} + \angle BAE$,

$$\therefore \angle BAF = \angle AEF$$
,

$$\mathbf{X} :: \angle ABF = \angle ADE = 45^{\circ}$$
,

$$\triangle DAE \hookrightarrow \triangle BFA$$
,

$$\therefore \frac{DE}{BA} = \frac{AD}{BF},$$

$$\mathbf{X} :: AB = AD = BC$$

∴
$$BC^2 = DE \cdot BF$$
, 故③正确;

$$:: MN = PN$$
,

$$\therefore \angle PMN = \angle MPC$$
,

$$\therefore \tan \angle PMN = \frac{1}{3}$$

$$\therefore \tan \angle PMN = \tan \angle MPC = \frac{MC}{PC} = \frac{1}{3},$$

设正方形的边长为 a,

$$\therefore \frac{MC}{PC} = \frac{MC}{a+BM} = \frac{MC}{a+a-MC} = \frac{1}{3},$$

解得
$$MC = \frac{1}{2}a$$
,

$$\therefore MB = MC,$$

$$\therefore \frac{BM}{CM} = 1$$
,故④正确