	1.	In a natural setting, these are components of soil, rock, or	
2,		ecosystems that reduce the negative impacts of acid rain:	
a)		atmospheric inversion	
b)		fugitive sources	
c)		photochemical smog	
d)		primary pollutants	
e)		buffers	
		Angula	
		Ans: e Difficulty: Easy	
		Link to: A Closer Look 24.1	
		LITIK to. A Closer Look 24.1	
	2	General class of pollution that characterizes urban area with frequ	ıent
	۷.	strong sunshine	aciic,
a)		atmospheric inversion	
b)		fugitive sources	
c)		photochemical smog	
d)		primary pollutants	
e)		buffers	
<u></u>			
		Ans: c	
		Difficulty: Easy	
		Link to: 24.4, 24.6	
	3.	This class of pollution is produced only at certain times, such as v	vhen
		the wind is blowing	
a)		atmospheric inversion	
b)		fugitive sources	
c)		photochemical smog	
d)		primary pollutants	
e)		buffers	
		Ans: b	
		Difficulty: Medium	
		Link to: 24.2	
	4.	Atmospheric inversion conditions over urban areas pose a probler	n
_		primarily because:	
a)		the conditions are conducive to photochemical smog	
b)		pollutants are trapped and concentrated	
c)		the inhabitants can be cut off from oxygen	
d)		many sensitive plants and animals freeze to death	

e)	CFCs are concentrated and destroy protective ozone	
	Ans: b	
	Difficulty: Medium	
	Link to: 26.6	
5.	Sulfur dioxide emissions are caused by:	
	I. burning coal	
	II. automobile emissions	
	III. photochemical break-down of ozone in the stratosphere	
a)	I only	
b)	II only	
c)	III only	
d)	I and II	
e)	I, II, and III	
	Ans: d	
	Difficulty: Medium	
	Link to: 24.4	
	According to the textbook, the best way to reduce sulfurous smooth	g is:
a)	scrubbers	
b)	coal gasification	
c)	conservation of fossil fuels	
d)	fluidized-bed combustion	
e)	improved education	
	Ans: a	
	Difficulty: Easy	
	Link to: 24.9	
7.	The processes associated with acid rain or acid rain deposition in	clude
	all of the following except:	
a)	emission of sulfur dioxide and nitrogen oxides into the	
	atmosphere via factory and automobile exhausts	
b)	oxidation and complex reactions involving sulfur dioxide and	
	nitrogen oxides in the atmosphere	
c)	a rise in pH levels in lakes and streams	
d)	"dry" deposition of sulfur dioxide or nitrogen oxides on	
	vegetation, soil, etc. can later react with moisture to produce	
	acid	

e)	chemical reaction with limestone that damages buildings and monuments
	Ang
	Ans: c
	Difficulty: Easy Link to: A Closer Look 24.1
	LITIK to. A Closer Look 24.1
5	3. Particulate pollutants introduced into the atmosphere may have which
	of the following effects?
	I. reflect incoming sunlight, lowering the temperature at the surface
	II. absorb incoming sunlight, raising the temperature in the atmosphe
	III. act as condensation nuclei, decreasing precipitation
a)	I only
b)	II only
c)	III only
d)	I and II
e)	I, II, and III
	Ans: a Difficulty: Medium Link to: 24.4
Ç	9. Nitrogen oxides (NO _x) are:
a)	a yellow-brown gas that contributes to photochemical smog
b)	a colorless and odorless gas that binds to hemoglobin in blood
c)	a colorless and odorless gas that damages the lungs
d)	a gas with a "rotten egg" odor that is highly toxic and corrosive
e)	a reactive gas produced, in part, by photochemical reaction of sunlight with various air pollutants
	Ans: a Difficulty: Medium Link to: 24.4
	EIIIX COT 2 II I
10	Ozone is of great benefit in the stratosphere but of great harm to
-	humans in the lower troposphere. Which of the following is not an
	effect on people?
a)	strong eye irritant
b)	aggravates asthma
c)	reduces the ability of the circulatory system to transport
- /	oxygen
d)	injury to cells in the respiratory system

e)	coughing and chest discomfort
	Ans: c
	Difficulty: Medium
	Link to: 24.8
11.	, ,
a)	air pollutants picked up from open areas exposed to wind
b)	minimum mileage (MPG) requirements for new cars in the U.S.
c)	pollutants from one or more controllable sites
<u>d)</u>	maximum levels of carbon monoxide in the air of major cities
e)	a well defined area within which are several sources of air
	pollutants
	Ans: a
	Difficulty: Easy
	Link to: 24.2
12.	Tall smakestacks on newer plants were designed to:
	<u> </u>
a)	allow exhaust to cool before entering the atmosphere
b)	disperse pollutants, so they wouldn't cause harmful effects in the immediate area
6)	trap sulfur emissions
c) d)	'
	augment the chimney effect in the area around the plant inhibit the reactions that form sulfuric acid
e)	Initibile the reactions that form suituric acid
	Ans: b
	Difficulty: Medium
	Link to: A Closer Look 24.1
	EITH CO. A Closer Look 24.1
13	Which of the following is the least significant air pollutant (either
15.	primary or secondary) associated with driving cars and other
	vehicles?
a)	carbon monoxide
b)	nitrous oxides
c)	gaseous hydrocarbons
d)	ozone
e)	hydrogen fluoride
	ingui ogen nuonue
	Ans: e
	Difficulty: easy
	Link to: 24.4
	1

	Sulfur dioxide is:
a)	a yellow-brown gas that contributes to photochemical smog
b)	a colorless and odorless gas that binds to hemoglobin in blood
c)	a colorless and odorless gas that damages the lungs
d)	a gas with a "rotten egg" odor that is highly toxic and corrosive
e)	a reactive gas produced, in part, by photochemical reaction of
	sunlight with various air pollutants
	Ans: c
	Difficulty: Medium
	Link to: 24.4
	A pipe spilling industrial effluent into a river is an example of a(n):
a)	point source
b)	fugitive source
c)	area source
d)	mobile source
e)	polytoxic source
	Ans: a
	Difficulty: Easy
	Link to: 24.2
16	How is photochemical smog produced?
a) b)	depletion of tropospheric ozone + SO _x
	petroleum production in urban areas incineration of toxic waste
c)	
d)	solar radiation + NO _x + organic compounds
e)	burning of coal in urban areas + SO _x
	Ans: d
	Difficulty: Medium
	Link to: 24.6
	Link Cor 2 no
17	During a 15-minute time period, a marathon runner will take in as
-/.	much sulfur dioxide pollution from the as a person at rest will inhale
	in
a)	one hour
b)	two hours
c)	three hours
d)	four hours
e)	five hours
<u> </u>	into nodio

	Ans: d	
	Difficulty: Medium	
	Link to: Case Study	
	Ellik to: Case Study	
18.	The pH of natural rainfall is; the pH of acid rain is	
a)	6-8; greater than 9	
b)	5-6; less than 4.5	
c)	6-8; less than 1.5	
d)	5-6; less than 1.5	
e)	4-5; greater than 7	
	Ans: b	
	Difficulty: Easy	
	Link to: A Closer Look 24.1	
19.	Secondary pollutants differ from primary pollutants in that they are	e
	not:	
a)	as dangerous as primary pollutants	
b)	emitted directly into the air as are primary pollutants	
c)	eliminated from the atmosphere as easily as are primary	
- 13	pollutants	
<u>d)</u>	as abundant as primary pollutants	
e)	natural components of the atmosphere	
	A In	
	Ans: b	
	Difficulty: Medium Link to: 24.4	
	LITIK to. 24.4	
20	Hydrogen sulfide (H ₂ S) is:	
a)	a yellow-brown gas that contributes to photochemical smog	
b)	a colorless and odorless gas that binds to hemoglobin in blood	
c)	a colorless and odorless gas that damages the lungs	
d)	a gas with a "rotten egg" odor that is highly toxic and corrosive	
e)	a reactive gas produced, in part, by photochemical reaction of	
	sunlight with various air pollutants	
	pondento	
	Ans: d	
	Difficulty: Easy	
	Link to: 24.4	
L		

a yellow-brown gas that contributes to photochemical smog

21. Ozone (O₃) is:

a)

b)	a colorless and odorless gas that binds to hemoglobin in blood
c)	a colorless and odorless gas that damages the lungs
d)	a gas with a "rotten egg" odor that is highly toxic and corrosive
e)	a reactive gas produced, in part, by photochemical reaction of
	sunlight with various air pollutants
	Ans: e
	Difficulty: Easy
	Link to: 24.4
	Which of the fellowing and the great significant fine posticulate
22.	Which of the following are the most significant fine particulate
2)	pollutants?
a) b)	fog fly ash
c) d)	sea salt particles sulfates and nitrates
e)	suspended asbestos
e)	Suspended aspestos
	Ans: d
	Difficulty: Easy
	Link to: 24.4
23.	According to the textbook, "Arctic haze" mainly comes from:
a)	North America
b)	the world's oceans
c)	the Arctic
d)	extraterrestrial sources
e)	Western Europe
	Ans: e
	Difficulty: Easy
	Link to: 25.5
24.	Which of the following is a secondary pollutant and a major
	component of photochemical smog:
a)	sulfur dioxide
b)	ozone
c)	particulate matter
<u>d)</u>	asbestos
e)	gaseous hydrocarbons

	Ans: b	
	Difficulty: Easy	
	Link to: 24.4	
25.	Which of the following gases in the atmosphere increase the acid	ity of
	rainfall?	
	I. CO ₂	
	II. SO ₂	
	III. NO ₂	
<u>a)</u>	I only	
b)	II only	
c) d)	III only	
<u>d)</u>	II and III	
e)	I, II, and III	
	Ans: e	
	Difficulty: Easy	
	Link to: A Closer Look 24.1	
26		
26.	Which of the following is a true statement about particulate matter the atmosphere?	er in
a)	it is introduced to the atmosphere only by human activity	
b)	it is primarily an effect of automobile emissions and	
	photochemical reactions	
c) d)	it amplifies incoming solar radiation	
d)	its effects are limited to local atmospheric inversion episodes	
e)	particles function as condensation nuclei, increasing the	
	amount of precipitation	
	Ans: e	
	Difficulty: Medium	
	Link to: 24.4	
27	Asid suggest and passisted with passugation of " depositi	o n //
_	Acid surges are associated with accumulation of " deposition of the deposition	UII .
<u>a)</u>	wet	
b)	moist	
c) d)	dry	
	arid	
e)	acid fog	

	Ans: c
	Difficulty: Easy
	Link to: A Closer Look 24.1
28.	· · · ·
a)	it damages the nervous system
b)	low concentrations affect healthy and sickly people equally
c)	its deleterious effects increase with decreasing altitude
d)	it prevents O ₂ from reaching vital tissues
e)	all of these
	Ans: d
	Difficulty: Medium
	Link to: 24.4
29.	Which of the following would tend to buffer (reduce) the effects of
	acid rain?
a)	granite underlying a lake
b)	thin soils
c)	addition of methyl mercury to lakes
d)	calcium-carbonate-rich soils
e)	replacement of tall smokestacks with short stacks at nearby
	sulfur point sources
	Ans: d
	Difficulty: Easy
	Link to: A Closer Look 24.1
	[- .,
	In the lower atmosphere, ozone is produced by:
	photochemical reactions
b)	emissions from coal plants
c)	ultraviolet-B radiation
d)	oxidation of CO ₂
e)	reduction of natural hydrocarbons
	Ans: a
	Difficulty: Easy
	Link to: 24.4
31.	, , , , , , , , , , , , , , , , , , , ,
	fossil fuels?
a)	chlorophyll

b)	particulate matter	
c)	carbon monoxide	
d)	hydrocarbons	
e)	nitrogen oxides	
	Ans: a Difficulty: Easy Link to: 24.4	

32.	Which of the following was an important factor in producing air	
	pollution during the 2008 Summer Olympics in Beijing, China?	
a)	coal-fired electrical power plants	
b)	air stagnation caused by hills surrounding the city	
c)	southerly winds	
d)	coal used to heat homes in the city	
e)	all of these were important factors	
	Ans: e	
	Difficulty: Easy	
	Link to: Case Study	

33.	Which compound often neutralizes the acid in acid rain that falls i	n
	lakes?	
a)	sulfur dioxide	
b)	bicarbonate ion	
c)	nitrous oxide	
d)	ozone	
e)	carbon dioxide	
	Ans: b	
	Difficulty: Medium	
	Link to: A Closer Look, 24.1	

	Las Vegas has some of the most polluted air in the southwestern	
	United States. Which of the following pollutants is the primary ca	use
	of the polluted air?	
a)	photochemical smog	
b)	ozone	
c)	acid rain	
d)	SO ₂	
e)	particulate matter	

	Ans: e Difficulty: Medium	
	Link to: 24.5	
35.	Which pollutant is most commonly associated with coal-fired elect generation?	rical
a) b)	CO NO _x	
c)	O ₃	
d)	SO ₂	
e)	HC	
	Ans: d Difficulty: Easy Link to: 24.4	
36.	Carbon monoxide (CO) is:	
a)	a yellow-brown gas that contributes to photochemical smog	
b)	a colorless and odorless gas that binds to hemoglobin in blood	
c)	a colorless and odorless gas that damages the lungs	
d)	a gas with a "rotten egg" odor that is highly toxic and corrosive	
e)	a reactive gas produced, in part, by photochemical reaction of sunlight with various air pollutants	
	Ans: b Difficulty: Easy Link to: 24.4	
27	In the figure below, pollution conditions are worst when	
37.	and at locations where	
a)	wind is slow and mixing height is high; distance from the coast to the mountains is large	
b)	wind is slow and mixing height is low; distance from the coast to the mountains is large	
c)	wind is fast and mixing height is high; distance from the coast to the mountains is small	
d)	wind is fast and mixing height is low; distance from the coast to the mountains is large	
e)	wind is slow and mixing height is high; distance from the coast to the mountains is small	

	Ans: e Difficulty: Medium			
	Link to: 24.6			
38.	In the city illustrated in the figure below, the pollution emission rate is 20 kg per m² per second, the wind is blowing onshore at 10 m per second, and the mixing height is 1000 m. Based on this information, what would the pollution concentration be at a point 5 km inland of the coast?			
a)	1 kg per m ²			
b)	10 kg per m ³			
c)	10 kg			
d)	0.001 kg per m ³			
e)	100 kg per m ²			
	Ans: b Difficulty: Difficult Link to: 24.6			
20	The development of photochemical smog is directly related to			
a)	automobile use			
b)	burning of coal in power plants			
c)	burning of oil in power plants			
d)	homes using electricity			
e)	all of these			
	Ans: e Difficulty: Easy Link to: 24.5			
40.	Match the following pH value with the substances in which they may			
	have been measured.			
	pH=1 a) distilled water			
	pH=4 b) strong acid			
	pH=7 c) strong base			
	pH=13 d) acid precipitation			
Ans:	(from top to bottom): b, d, a, c			
	Difficulty: Easy Link to: A Closer Look 24.1			

41. Match each of the major air pollutants listed on the left with its definition or one of its characteristics listed on the right:

Sulfur Dioxide	a. toxic gas with a rotten-egg odor
Nitrogen Oxides	 b. ozone is the main example of this
Carbon	 c. combines with water to form
Monoxide	sulfuric acid
Oxidants	 d. toxic gas released in aluminum
	production
Hydrocarbons	 e. emitted by automobiles as well as
	trees
Hydrogen	 f. toxic gas that is colorless and
Sulfide	odorless
Hydrogen	 g. series of chemicals, including gas
Fluoride	and particulate forms, emitted by
	burning fossil fuels

Ans: | c, f, g, b, e, a, d

Difficulty: Medium Link to: 24.4.

42. List three different types of damage done by acid rain.

Ans: leaching of nutrients in soil mobilization of toxic elements death of trees eutrophication of lakes damage to buildings and monuments

Difficulty: Medium

Link to: A Closer Look, 24.1

43. Name the two principal pollutants that contribute to acid rain, and the main source of each.

Ans: SO_2 – fossil fuel combustion NO_x – automobiles

^

Difficulty: Easy

Link to: A Closer Look, 24.1

44.	Explain under what circumstances an atmospheric inversion occurs	S
	and how it can lead to pollution events.	
Ans:	when warmer air is found above cooler air.	
	where there is restricted circulation this inversion layer can	
	lead to pollution events in the lower atmosphere	
	Difficulty: Medium	
	Link to: 26.6	
45.	List two natural conditions that help buffer (reduce) the effects of a rain.	acid
	List two natural conditions that help buffer (reduce) the effects of a rain.	acid
	List two natural conditions that help buffer (reduce) the effects of a rain.	acid
	List two natural conditions that help buffer (reduce) the effects of a rain. limestone substrate	acid
45. Ans:	List two natural conditions that help buffer (reduce) the effects of a rain. limestone substrate	acid

46.	There are three main types of acid deposition events. One is
	precipitation (rain, snow, and ice). List the other two.
Ans:	dry deposition and fog
	Difficulty: Easy
	Link to: A Closer Look, 24.1

47.	Under normal circumstances, UV penetration is greater nearer the equator than at the poles, however, Antarctica sometimes register higher reading than San Diego. How do you explain this?	
Ans:	Ozone depletion (the ozone hole) over Antarctica allows greater amounts of UV radiation to reach the surface than would otherwise happen.	
	Difficulty: Medium Link to: A Closer Look, 24.2	

48.	Give an example of each of the following pollution sources: point source, fugitive source, area source.
Ans:	e.g., smoke stack, freshly-plowed field, auto exhaust
	Difficulty: Medium Link to: 24.2

49.	Name two of the processes that lead to the accumulation and concentration of "Arctic haze".				
Ans:	the temperature contrast between the equator and the North pole seasonal high and low pressure systems in Eurasia and the North Atlantic				
	once air reaches the arctic, it stratifies and concentrates there				
	Difficulty: Easy Link to: 24.2				
50.	Name the principal effect of acid rain on each of the following: soils trees lakes limestone monuments				
Ans:	soils – leaches out heavy metals and nutrients trees – direct damage lakes – kills fish limestone monuments – weathers limestone				
	Difficulty: Medium Link to: A Closer Look , 24.1				
51.	Explain the term "secondary pollutant" and give an example.				
Ans:	Ozone is a secondary pollutant which is created through reactions among primary pollutants, sunlight, and natural atmospheric gases.				
	Difficulty: Medium Link to: 24.4				
52.	Name the three major types of smog and list the principal cause of each.				
Ans:	photochemical smog – automobile exhaust sulfurous smog – coal or oil burning particulate smog – burning fossil fuels, blown dust				

Difficulty: Medium	
Link to: 24.5	

53.	Natural rainfall is slightly acidic. Explain why.			
Ans:	Water in the atmosphere combines with CO ₂ to form carbonic			
	acid.			
	Difficulty: Medium			
	Link to: A Closer Look, 24.1			

54.	Air pollutants are sometimes classified as either primary or	
	secondary. Explain the difference and give an example of each.	
Ans:	primary – emitted directly into the air, e.g. carbon dioxide secondary – transformed by sunlight, etc. from a preexisting chemical, e.g. NO_x	
	Difficulty: Medium Link to: 24.4	