A few notes about the tensor product.

- a. If $v \otimes w = 0$ in $V \otimes_R W$, this means that B(v, w) = 0 for every bilinear map $B: V \times W \to P$ (otherwise, the universal property would fail!). So if you can find a bilinear map such that $B(v, w) \neq 0$, then $v \otimes w \neq 0$.
- b. If $\sum_i a_i v_i \otimes w_i = 0$, then this means that $\sum_i a_i B(v_i, w_i) = 0$ for every bilinear maps $B: V \times W \to P$ (otherwise, the universal property would fail!). So if you can find a bilinear map such that $\sum_i a_i B(v_i, w_i) \neq 0$, then the sum of the tensors cannot be zero.
- c. If $V \otimes W = 0$, then this means that there are no bilinear maps $B: V \times W \to P$ for any R module P.
- 1. Let R be a commutative ring and I, J be ideals in R. Prove that $R/I \otimes_R R/J \cong R/(I+J)$. Consider the function $B: R/I \times R/J \to R/(I+J)$ defined by $B(r_1+I, r_2+J) = r_1r_2 + (I+J)$.
 - (a) B is well-defined: let $r_1' + I = r_1 + I$. Then $r_1' = r_1 + i$ for some $i \in I$. Thus, $B(r_1' + I, r_2 + J) = r_1'r_2 + (I + J) = (r_1 + i)r_2 + (I + J) = r_1r_2 + (ir_2 + I + J)$ but $r_1r_2 + ir_2 r_1r_2 = ir_2 \in I \subset I + J$, so $B(r_1' + I, r_2 + J) = B(r_1 + I, r_2 + J)$. The other side is similar.
 - (b) B is bilinear: $B((r_1+r_1')+I, r_2+J) = (r_1+r_1')r_2+(I+J) = r_1r_2+r_1'r_2+(I+J) = B(r_1+I, r_2+J) + B(r_1'+I, r_2+J)$. Also, $B(\lambda r_1+I, r_2+J) = \lambda r_1r_2 + (I+J) = \lambda (r_1r_2+(I+J)) = \lambda B(r_1+I, r_2+J)$.
 - (c) Thus, we have a homomorphism $\Phi: R/I \otimes_R R/J \to R/(I+J)$ with $\Phi((r_1+I)\otimes (r_2+J)) = r_1r_2 + (I+J)...$
 - (d) To show that Φ is onto, it's enough to show that 1+(I+J) is in the image of Φ . This is true, for example, because $\Phi(1+I,1+J)=1+(I+J)$.
 - (e) Now consider $x = \sum_i c_i(r_i + I) \otimes (r'_i + J) \in R/I \otimes R/J$. Using linearity in the first component, we can factor out r_i and similarly, we factor out r'_i from the second. Hence, $x = \sum_i c_i r_i r'_i (1 + I) \otimes (1 + J)$. Then we'll reabsorb the sum and the coefficients into the second component, say, so $x = (1+I) \otimes (\sum_i c_i r_i r'_i) + J$. Assume that $\Phi(x) = 0$. Then $\sum_i c_i r_i r'_i \in I + J$, so $\sum_i c_i r_i r'_i = z + z'$ where $z \in I$ and $z' \in J$. So $x = (1+I) \otimes (z+z'+J) = (1+I) \otimes (z+J) = z(1+I) \otimes (1+J) = (z+I) \otimes (1+J) = 0 \otimes (1+J) = 0$. Hence, $\ker \Phi = 0$, so Φ is injective.
- 2. Let $V = F^n$, $W = F^m$ be two finite-dimensional vector spaces over a field F. Let A be a matrix in $\operatorname{Mat}_{n \times m}(F)$. Prove that the function $B: V \times W \to F$ defined by $B(v,w) = v^T A w$ is a bilinear map. $B(v+v',w) = (v+v')^T A w = v^T A w + v'^T A w$, which holds on the other side as well. Further,

¹Hint: Use multiplication as your bilinear map, but you must show it is well-defined.

²If n = m and A is the identity matrix, B(v, w) is simply the dot product. So this is a generalization of that idea.

 $B(\lambda v, w) = (\lambda v)^T A w = \lambda v^T A w = \lambda B(v, w)$, and similarly on the other side. Hence, B is bilinear. (This means that every inner product on $V \times W$ gives a homomorphism $V \otimes W \to F$, and vise-versa.)

- 3. Suppose that V and W are vector spaces over a field F with bases $\mathcal{B} = \{e_i\}_{i \in I}$ and $\mathcal{C} = \{f_j\}_{j \in J}$. Our goal is to prove that the set $\mathcal{B} \otimes \mathcal{C} := \{e_i \otimes f_j\}_{\substack{i \in I \\ j \in J}}$ is a basis for $V \otimes W$.
 - i. Prove that $\mathcal{B} \otimes \mathcal{C}$ spans $V \otimes W$. We know already that $V \otimes W$ is spanned by tensors $v \otimes w$, so if we can show that every tensor of this form is a linear combination of the elements of $\mathcal{B} \otimes \mathcal{C}$, we're done. Since the e_i form a basis for V, and similarly with f_i , write

$$v = \sum_{i} \lambda_{i} e_{i}$$
$$w = \sum_{j} \mu_{j} f_{j}$$

Then using the multilinearity

$$v \otimes w = (\sum_{i} \lambda_{i} e_{i}) \otimes (\sum_{j} \mu_{j} f_{j})$$
$$= \sum_{i,j} \lambda_{i} \mu_{j} (e_{i} \otimes f_{j})$$

so indeed, $v \otimes w$ is a linear combination of the elements in $\mathcal{B} \otimes \mathcal{C}$.

ii. For any pair of integers $k \in I$ and $l \in J$, define the function

$$B_{kl}: V \times W \to F$$

$$B_{kl}(v, w) = [v]_k[w_l]$$

the product of the k-coordinate of v and the l coordinate of w. (This can also be realized as $v^T(e_k e_l^T)w$.) Prove that $B_{kl}(v, w)$ is bilinear (see problem 2). For each k, l, $e_k e_l^T$ is a matrix, so $B_{kl}(v, w) = v^T A w$. By problem 2, then, B is bilinear.

iii. Utilize the map from part (ii) to prove that $\mathcal{B} \otimes \mathcal{C}$ is a linearly independent set. (Hint: use remark (b) from the notes at the top of the page!) Suppose that there is a linear dependence:

$$\sum_{i,j} a_{ij} e_i \otimes f_j = 0.$$

By the note at the top, then,

$$\star \sum_{i,j} a_{ij} B_{kl}(e_i, f_j) = 0$$

for any choice of integers k, l. However, $[e_i]_k = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$ and similarly with j and l. Hence, \star really says that $a_{kl}(1) = 0$ for each k, l, so $\mathcal{B} \otimes \mathcal{C}$ is linearly independent.

- 4. Complete the work we started in class: Prove that if V and W are finite-dimensional vector spaces over a field F, then $V^* \otimes W \cong \operatorname{Hom}_F(V, W)$ where $V^* := \operatorname{Hom}_F(V, F)$. Define $B: V^* \times W \to \operatorname{Hom}_F(V, W)$ by $B(\varphi, w) = g_{\varphi, w}$ where $g_{\varphi, w}$ is the function defined by $g_{\varphi, w}(v) = \varphi(v)w$.
 - (a) B is bilinear (this is pretty easy). So we get a homomorphism $\Phi: V^* \otimes W \to \operatorname{Hom}_F(V, W)$.
 - (b) Φ is onto: Let $L_{ij}: V \to W$ be the linear transformation defined by $L_{ij}(e_k) = \begin{cases} f_i & j=k \\ 0 & j \neq k \end{cases}$. It can be easily verified that these are linear transformations that form a basis for $\operatorname{Hom}_F(V,W)$ (they are the matrices with a 1 in the ij entry and zeroes everywhere else). We will show that $L_{ij} = \Phi(\varphi \otimes w)$. Indeed, consider $\varphi_j: V \to F$ defined by $\varphi_j(e_k) = \begin{cases} 1 & j=k \\ 0 & j \neq k \end{cases}$. When extended linearly, this is a linear transformation. Consider $\Phi(\varphi_j \otimes f_i) = g_{\varphi_j,f_i}$ which has the property that $g_{\varphi_j,f_i}(e_k) = \varphi_j(e_k)f_i = \begin{cases} f_i & j=k \\ 0 & j \neq k \end{cases}$. Since L_{ij} and g agree on a basis, they are the same transformation. Hence, Φ is onto.
 - (c) We showed in class that $\dim F^n \otimes F^m = n \cdot m$ when F is a field, and $\dim \operatorname{Hom}_F(V,W) = nm$ since it is identified with $\operatorname{Mat}_{m\times n}(F)$. Since Φ is an onto linear map between two spaces of equal dimension, it is bijective, so an isomorphism.

Given an R module M, we can think of $\operatorname{Hom}_R(M, -)$ as a function. It takes an R-module N as an input, and produces the abelian group $\operatorname{Hom}_R(M, N)$.

$$\operatorname{Hom}_R(M,-):\operatorname{Mod}(R)\to\mathcal{AB}$$

 $\operatorname{Hom}_R(M,-)(N)=\operatorname{Hom}_R(M,N).$

More can be said. If $f: N \to N'$ is a homomorphism, then we can define $\operatorname{Hom}_R(M, f)$ to be a function which takes a homomorphism from $\operatorname{Hom}_R(M, N)$ and outputs a homomorphism in $\operatorname{Hom}_R(M, N')$ by composition:

$$\operatorname{Hom}_R(M, f) : \operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M, N')$$

 $\operatorname{Hom}_R(M, f)(\varphi) = f \circ \varphi$

A creature like $\operatorname{Hom}_R(M, -)$, which associates objects in a target category to objects in a source category in such a way that it also takes homomorphisms to homomorphisms is called a *functor*. Think of these as function whose domains and codomains are categories.

- 5. Describe the following abelian groups:
 - (a) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z})$ Suppose that $\phi: \mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$ is a homomorphism. Then if $\phi([1]) = a$, $0 = \phi([2]) = \phi([1]) + \phi([1]) = a + a$, so 2a = 0 in \mathbb{Z} . Thus, a = 0. Hence $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}) = 0$
 - (b) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$ Since this function is defined by f([1]), we consider the possible values of f([1]). If f([1]) = 0, then f = 0 is the zero function. Otherwise, $f([1]) = [1]_2$. This is well-defined (since it is really the quotient homomorphism by the submodule $2\mathbb{Z}/4\mathbb{Z}$), and it has the property that $(f+f)([1]) = [1]_2 + [1]_2 = [2]_2 = [0]_2$, so it has order 2. Hence, this group is isomorphic to $\mathbb{Z}/2\mathbb{Z}$.
 - (c) $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/m\mathbb{Z})$ for any integer m Similar to above, if $f([1]) \neq 0$, f([1]) has order 2 in $\mathbb{Z}/m\mathbb{Z}$. Hence m is divisible by 2, and f(1) = m/2. It's clear to show in this case that f has order 2, so $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ if m is even and 0 otherwise.
 - (d) $\operatorname{Hom}_{\mathbb{C}[t]}(N,N)$ where N is the $\mathbb{C}[t]$ -module which, as a vector space, is \mathbb{C}^2 , and on which T acts via the matrix $T = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ Suppose that $f: N \to N$ is a homomorphism of R modules where $R = \mathbb{C}[t]$. This means that f is an abelian group homomorphism, and that f(rn) = rf(n) for all $r \in R$ and $n \in N$
 - i. That f is an abelian group homomorphism menas that f(n+n') = f(n) + f(n') for all $n, n' \in N$.
 - ii. Since the constant polynomials λ are in $\mathbb{C}[t]$, we also require that $f(\lambda n) = \lambda f(n)$ for all $n \in \mathbb{N}$.
 - iii. These two together imply that f is a linear transformation. Since N is 2 dimensional, let's say $f = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

iv. The polynomial $t \in \mathbb{C}[t]$, so we need to also verify that f(tn) = tf(n). But these are both linear transformations, so we need to ensure that

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

This implies that a = d and c = 0, so $f = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix}$.

- v. Finally, we need to ensure that f(p(t)n) = p(t)f(n) for all $n \in N$ and $p(t) \in \mathbb{C}[t]$. Let $p(t) = \sum_{i=0}^{m} a_i t^i$. Then $f \sum_{i=0}^{m} a_i t^i n = \sum_{i=0}^{m} a_i f^i n = \sum_{i=0}^{m} a_i t^i f(n) = p(t)f(n)$ (since above we showed that f and f commute.
- vi. Hence, $\operatorname{Hom}_{\mathbb{C}[t]}(N,N)\cong\left\{egin{bmatrix}a&b\\0&a\end{bmatrix}\mid a,b\in\mathbb{C}\right\}.$
- 6. Prove that if $f: N \to N'$ is injective, then

$$\operatorname{Hom}_R(M,f): \operatorname{Hom}_R(M,N) \to \operatorname{Hom}_R(M,N')$$

is also injective. First note that $\operatorname{Hom}_R(M,f)$ is a homomorphism of abelian groups (indeed, $\operatorname{Hom}_R(M,f)(\varphi+\varphi')=f\circ(\varphi+\varphi')=f\circ\varphi+f\circ\varphi'$ since f is a homomorphism of modules). Thus, it suffices to show that $\ker(\operatorname{Hom}_R(M,f))=0$. So assume that $\operatorname{Hom}_R(M,f)(\varphi)=0$. Then $f\circ\varphi(x)=0$ for all $x\in M$. Then $f(\varphi(x))=0$ for all $x\in M$. But f is injective, so $\ker f=0$, hence $\varphi(x)=0$ for all $x\in M$. This implies $\varphi=0$.

7. On the other hand, it is not always the case that $\operatorname{Hom}_R(M,f)$ is surjective when f is. Here, you'll work out an example. Let $f: \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z}$ be the quotient map $f([x]_4) = [x]_2$ (you probably identified it in problem 4). f is clearly surjective. Show that the map $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},f):\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/4\mathbb{Z}) \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/2\mathbb{Z})$ is not surjective. Suppose that φ is the only non-trivial homomorphism in $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},\mathbb{Z}/4\mathbb{Z})$. I.e., $\varphi([x]_2) = [2x]_4$. Then $f \circ \varphi(x) = f([2x]_4) = [2x]_2 = 0$. Hence, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/2\mathbb{Z},f)$ is the zero map, even though the domain and codomain are not trivial, so it is not surjective.