Klausur zum Modul

Algorithmen in der Bioinformatik

Nachklausur Sommersemester 2018 19.09.2018

Name:	
Matrikelnumn	er:
Studiengang:	

Geben Sie den L sungsweg immer mit an!

Nur mit blauem oder schwarzem Kugelschreiber schreiben.

Schreiben Sie auf jeden Zettel Ihre Matrikelnummer.

Geben Sie f r jede (Teil-)Aufgabe nur eine einzige L sung ab. Bei mehreren, alternativen L sungen zu einer Aufgabe wird die Schlechteste bewertet.

Teilnahme an der Klausur erfolgt unter Vorbehalt einer vorhandenen Zulassung.

Aufgabe Nr.:	Punktzahl:	Davon erreicht:
1	15	
2	15	
3	10	
4	10	
Σ	50	

Es sind keinerlei Hilfsmittel erlaubt. Bitte schreiben Sie deutlich mit einem schwarzen oder blauen Stift.

1. Alignments

a) Geben Sie die Dynamische Programmierungsmatrix mit Backtrackingpointern an, um optimale globale Alignments zwischen den Sequenzen AAAC und AGC zu bestimmen. Ein Match wird mit +1 bewertet, ein Mismatch wird mit -1 bestraft und ein Gap wird mit -2 bestraft.

9

Geben Sie die optimalen Alignments und deren Scores an.

b) Wie muss man den Algorithmus für lokales Sequenzalignment ab ndern, wenn der l ngste gemeinsame Substring der Inputsequenzen berechnet werden soll?

6

2. Sortieren durch Umkehrungen

Gegeben ist die Sequenz 6 1 2 3 4 5.

a) Wenden Sie den gierigen Algorithmus SimpleReversalSort auf diese Sequenz an. Zeigen Sie alle Umkehrungsschritte. Wieviele Schritte werden ausgeführt?

5

5

b) Was ist die maximale Anzahl von Schritten, die SimpleReversalSort ben tigt, um eine Permutation der L nge n zu sortieren.

c) Analysieren Sie die Worst-Case-Laufzeit von SimpleReversalSort.

5

3. Assembly

Gegeben ist der String HOLTERDIPOLTER.

a) Zeichnen Sie den De-Bruijn-Graphen G auf Basis aller 3-mere des Strings.

5

b) Finden Sie einen Eulerweg in G. Wieviele verschiedene Eulerwege gibt es in dem Graphen? Zu welchen Strings korrespondieren diese Wege?

5

4. Clustering

a) Welches Maß soll beim k-Means-Clustering optimiert werden?

5

b) Geben Sie eine Beispielinstanz und Startzentren für k-Means-Clustering mit dem Lloyd-Algorithmus an, für die der Algorithmus keine Optimall sung berechnet.