1113 Class Activity

박예영

November 15, 2023

Check that this theorem for cycle C_6 .

Thm) If the eigenvalues of A_G are $(k, \theta_2, \theta_3, \dots, \theta_n)$, then the eigenvalues of $A_{\bar{G}}$ are $(n-1-k, -1-\theta_2, -1-\theta_3, \dots, -1-\theta_n)$.

Proof. C_6 와 \bar{C}_6 의 adjacency matrix $A_{C_6}, A_{\bar{C}_6}$ 는 아래와 같다.

$$A_{C_6} = egin{pmatrix} 0 & 1 & 0 & 0 & 0 & 1 \ 1 & 0 & 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 & 0 & 1 \ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}, A_{ar{C}_6} = egin{pmatrix} 0 & 0 & 1 & 1 & 1 & 0 \ 0 & 0 & 0 & 1 & 1 & 1 \ 1 & 0 & 0 & 0 & 1 & 1 \ 1 & 1 & 0 & 0 & 0 & 1 \ 1 & 1 & 1 & 0 & 0 & 0 \ 0 & 1 & 1 & 1 & 0 & 0 \end{pmatrix}$$

 A_{C_6} 의 eigenvalue들은 (2,1,1,-1,-1,-2)이고, $A_{\bar{C_6}}$ 의 eigenvalue들은 (3,-2,-2,0,0,1)이므로 위의 정리가 잘 성립함을 확인할 수 있다.

$$v = \begin{pmatrix} -1 \\ -1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \text{ eigenvalue } \lambda_1 = 1$$

$$v = \begin{pmatrix} -1 \\ 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \text{ eigenvalue } \lambda_2 = -1$$

$$v = \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \text{ eigenvalue } \lambda_1 = 1$$

$$v = \begin{pmatrix} -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \text{ eigenvalue } \lambda_2 = -1$$

$$v = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \text{ eigenvalue } \lambda_3 = 2$$

$$v = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \text{ eigenvalue } \lambda_4 = -2$$

$$v = \begin{pmatrix} -1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \text{ eigenvalue } \lambda_4 = -2$$

$$\circ v = \begin{pmatrix} -1 \\ 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}, \text{ eigenvalue } \lambda_1 = 0$$

$$\circ v = \begin{pmatrix} -1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \text{ eigenvalue } \lambda_1 = 0$$

$$\circ v = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}, \text{ eigenvalue } \lambda_2 = 1$$

$$\circ v = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \text{ eigenvalue } \lambda_3 = -2$$

$$\circ v = \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \text{ eigenvalue } \lambda_3 = -2$$

$$\circ v = \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \\ 0 \\ 1 \\ 1 \end{pmatrix}, \text{ eigenvalue } \lambda_4 = 3$$

$$\circ v = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \text{ eigenvalue } \lambda_4 = 3$$