Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Christian Hensel, Matthias Volk

Introduction to Model Checking (Summer Term 2018)

— Exercise Sheet 5 (due 4th June) —

General Remarks

- The exercises are to be solved in groups of three students.
- You may hand in your solutions for the exercises just before the exercise class starts at 12:15 or by dropping them into the "Introduction to Model Checking" box at our chair *before 12:00*. Do *not* hand in your solutions via L2P or via e-mail.

Exercise 1^* (2+2+3 Points)

In the following we have $\Sigma = \{a, b, c\}$.

(a) Consider the following NBA A_1, A_2 .

For each NBA A_i give an ω -regular expression α_i which characterizes the language accepted by the NBA, i.e., $\mathcal{L}_{\omega}(\alpha_i) = \mathcal{L}_{\omega}(A_i)$.

- (b) Consider the following descriptions of ω -regular languages \mathcal{L}_{ω}^{i} .
 - (i) \mathcal{L}^1_{ω} : a occurs infinitely many times. In between two successive a either
 - an odd number of b and no c, or
 - \bullet an even number of c and no b

has to occur.

- (ii) \mathcal{L}^2_{ω} :
 - \bullet If c occurs only finitely many times then a and b occur infinitely many times.
 - If c occurs infinitely many times then a and b occur only finitely many times.

For each language \mathcal{L}_{ω}^{i} give an NBA \mathcal{B}_{i} which accepts the language.

(c) Consider again the languages from (b). For each language \mathcal{L}_{ω}^{i} give a DBA \mathcal{D}_{i} which accepts the language. If you can not find a DBA, justify why there exist no DBA accepting the language.

Exercise 2 (3 Points)

Provide an example for a liveness property P_{live} that is not ω -regular. Show that P_{live} is indeed a liveness property and prove that P_{live} is not ω -regular.

Hint: Think about words of the form $\{a\}\{b\}\{a\}\{a\}\{a\}\{a\}\{a\}\{a\}\{b\}\dots$

Exercise 3 (2+2+2+1 Points)

- (a) Provide NBA A_1 and A_2 for the languages given by the ω -regular expressions $\alpha_1 = (AC + B)^*B^\omega$ and $\alpha_2 = (B^*AC)^\omega$.
- (b) Apply the product construction to obtain a GNBA \mathcal{G} with $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A}_1) \cap \mathcal{L}_{\omega}(\mathcal{A}_2)$.
- (c) Transform the GNBA \mathcal{G} into an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{G})$.
- (d) Justify, why $\mathcal{L}_{\omega}(\mathcal{G}) = \emptyset$ on the level of the GNBA \mathcal{G} .

Hint: For a GNBA $\mathcal{G} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ with at least one element in $\mathcal{F} = \{F_1, \dots, F_k\}$. Let $\mathcal{A} = (Q', \Sigma, \delta', Q'_0, F')$ be an NBA with

- $Q' = Q \times \{1, \dots, k\},$
- $Q'_0 = Q_0 \times \{1\},$
- $F' = F_1 \times \{1\}$, and

for all $A \in \Sigma$, it is

$$\delta'(\langle q, i \rangle, A) = \begin{cases} \{\langle q', i \rangle \mid q' \in \delta(q, A)\} & \text{if } q \notin F_i \\ \{\langle q', (i \mod k) + 1 \rangle \mid q' \in \delta(q, A)\} & \text{if } q \in F_i. \end{cases}$$

Then $\mathcal{L}_{\omega}(\mathcal{G}) = \mathcal{L}_{\omega}(\mathcal{A})$.

Exercise 4 (1+2 Points)

A nondeterministic Muller automaton is a quintuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, \mathcal{F})$ where Q, Σ, δ and Q_0 are as for NBA and $\mathcal{F} \subseteq 2^Q$. For an infinite run $\rho = q_0 q_1 q_2 \ldots$ of \mathcal{A} , let

$$inf(\rho) := \{ q \in Q \mid \exists^{\infty} i \geq 0. \ q_i = q \}.$$

Let $\alpha \in \Sigma^{\omega}$.

 \mathcal{A} accepts $\alpha \iff$ exists infinite run ρ of \mathcal{A} on α s.t. $inf(\rho) \in \mathcal{F}$.

(a) Consider the following Muller automaton \mathcal{A} with $\mathcal{F} = \{\{q_2, q_3\}, \{q_1, q_3\}, \{q_0, q_2\}\}:$

Give the language accepted by A by means of an ω -regular expression.

(b) Show that every GNBA \mathcal{G} can be transformed into a nondeterministic Muller automaton \mathcal{A} such that $\mathcal{L}_{\omega}(\mathcal{A}) = \mathcal{L}_{\omega}(\mathcal{G})$ by defining the corresponding transformation.