

Úvod do WAN

M2 CCNA4, v5
Pavel Segeč
Katedra informačných sietí
Fakulta riadenia a informatiky, ŽU

Poskytovanie integrovaných služieb pre podniky

Účel WAN Prečo potrebujeme WAN?

- LAN poskytuje vysokú rýchlosť a cenovo efektívne riešenie -> ale obmedzená na geografický malé územie -> prepájanie medzi nimi = WAN (Wide Area Network)
- Typicky poskytované telco alebo service poskytovateľmi

Účel WAN Sú WAN siete potrebné?

Spoločnosti potrebujú komunikovať medzi územne vzdialenými oblasťami. Príklad:

- Regionálne pobočky musia byť schopné komunikovať s centrálou a zdieľať data.
- Organizácie potrebujú zdieľať informácie so zákazníkmi v iných organizáciách.
- Mobilný zamestnanci potrebujú komunikovať s materskou podnikovou sieťou (dáta, služby, aps. a pod.).

Domáci používatelia posielajú a prijímajú dáta bez ohľadu na vzdialenosť. Príklad:

- Prístup k banke, nákupy, obchody.
- Prístup k informáciám, databázam, webom, apod.
- Hry, sociálny kontakt

Účel WAN

Sú WAN siete potrebné? Príklad (curriculum)

Ako firmy rastú, menia sa aj ich požiadavky na sieť a jej služby

Technológie WAN sietí

WAN na ISO OSI

WAN sú definované a pracujú ma L1 a L2.

L3 => L2 enkapsulácia

WAN Data Link Layer štandardy a typy sietí (L2)

Protocol	Usage
Link Access Procedure Balanced (LAPB)	X.25
Link Access Procedure D Channel (LAPD)	ISDN D channel
Link Access Procedure Frame (LAPF)	Frame Relay
High-Level Data Link Control (HDLC)	Cisco default
Point-to-Point Protocol (PPP)	Serial WAN switched connections

Terminológia WAN fyzickej vrstvy

prenos vhodný na prenos cez WAN

10

WAN zariadenia

- ■CSU/DSU Channel Service Unit/Data service Unit (WAN modemy, napr. T1/E1)
- ■DSU konvertuje LAN dáta do formy vhodnej pre WAN prenos (T1 TDM)

Štandardy L1 vrstvy (medzi DCE a DTE)

Tvorené:

- International Organization for Standardization (ISO)
- Electronics Industry Association (EIA)
- International Telecommunication Union Telecommunications Standardization Sector (ITU-T)
- L1 štandardy definujú:
 - Mechanical/physical
 - Počet pinov a typ konektoru
 - Electrical
 - Definuje napäťové úrovne (0 a 1)
 - Functional
 - Špecifikuje funkcie, ktoré sú vykonávané pri manažovaní linky
 - Procedural
 - Špecifikuje sekvencie udalostí potrebných pri prenose dát

Štandardy L1 vrstvy (medzi DCE a DTE)

EIA/TIA-232

 This protocol allows signal speeds of up to 64 kb/s on a 25-pin D-connector over short distances. It was formerly known as RS-232. The ITU-T V.24 specification is effectively the same.

EIA/TIA-449/530

This protocol is a faster (up to 2 Mb/s) version of EIA/TIA-232. It uses a 36-pin D-connector and is capable of longer cable runs. There are several versions. This standard is also known as RS422 and RS-423.

EIA/TIA-612/613

 This standard describes the High-Speed Serial Interface (HSSI) protocol, which provides access to services up to 52 Mb/s on a 60-pin D-connector.

V.35

 This is the ITU-T standard for synchronous communications between a network access device and a packet network. Originally specified to support data rates of 48 kb/s, it now supports speeds of up to 2.048 Mb/s using a 34pin rectangular connector.

X.21

 This protocol is an ITU-T standard for synchronous digital communications. It uses a 15-pin D-connector.

Konektory sériových WAN médií

Network connections at the CSU/DSU

CSU/DSU poskytuje voči DTE rozhrania ako V.35 alebo RS-232

WAN prepojovacie systémy

Rýchlosť systému při prenose

16

Synchrónny prenos

- Prenosová cesta sa rozdelí na tzv. časové sloty
- Pozícia slotu je presne určená v čase, obsah rovnomerne obsadzovaný pomocou synchrónneho časového multiplexovania
- Používané napr. v telefónnej sieti

Výhody

- Jeden slot pridelený jednému komunikujúcemu
- Získam garanciu prenosovej šírky pásma
- Prenášajú sa len "užitočné dáta"

Nevýhody

- Plytvanie prenosovými prostriedkami (ak nemám konšt. gener. dáta)
- Pre dátové siete nie veľmi vhodné

Time-Division Multiplexing

- Timeslots are always present even if data is not available for sending.
- Bandwidth is statically allocated to the application.
- Protocol independent (HDLC, PPP).

Super rámce

1. Kanál (spojenie) 64kbps

Štatisticky MUX

Statistical Time Division Multiplexing

Prepojovanie paketov (Packet switching)

- Dáta delené a smerované ako nezávislé dátové bloky
 - Potrebujú doplňujúce informácie => prenos "neužitočných dát
- V každom uzle siete vykonané smerovacie rozhodnutie
 - Vznik oneskorenia
- Nie je garancia prenosového pásma
- Realizácia:
 - Connectionless
 - nie je garancia QoS parametrov (oneskorenie, straty a pod)
 - Príklad: IP
 - Connection oriented
 - potrebný admin. zásah alebo potreba signalizácie [SVC],
 - resp. podpora protokolov s "handshake" mechanizmami [TCP])
 - Príklad: X.25, FR, ATM, VPN

Paketový prenos

- Na prenos informácie dátové bloky (pakety) premenlivej dĺžky
- Každý paket
 - Neżávislý => Potrebujem dodať doplnkové info potrebné k prenosu paketu => Hlavička
- V sieti:
 - Ziadne garancie, nie sú vytvárané kanály
 - Prístup k prenosovým prostriedkom kedý je potrebné
 - Nemusím čakať na "slot"
 - Každý paket spracovávaný samostatne na základe údajov v hlavičke
 - Pakety môžu prísť poprehadzované
 - Dáta sa môžu stratiť
- Nevýhody:
 - Prenášam "neužitočné informácie" (hlavička), potrebné na činnosť siete - protokolu
 - Negarantované prenosové pásmo, zaťaženie každého prenosového uzla
- Výhody:
 - Efektívne a ekonomické využitie prenosového pásma
 - Dáta sú prenášané len vťedy, keď sú nejaké určené k prenosu

Spôsoby riešenia WAN a prístupu do WAN

WAN služby

Spôsoby riešenia WAN a prístupu do WAN

WAN služby

Prístup cez infraštrukúru SP

Private WAN

Leased line (Prenajaté okruhy)

- Point–to–point linka
- Permanentná dedikovaná kapacita
 - kapacita nie je zdieľaná
 - dobré parametre oneskorenia a chvenia
- cena od rýchlosti
- Realizácia ako T1/E1, SONET, SDH/PDH

Nižšia flexibilita

Line Type	Bit Rate Capacity
56	56 kb/s
64	64 kb/s
T1	1.544 Mb/s
E1	2.048 Mb/s
J1	2.048 Mb/s
E3	34.064 Mb/s
Т3	44.736 Mb/s
OC-1	51.84 Mb/s
OC-3	155.54 Mb/s

Line Type	Bit Rate Capacity
OC-9	466.56 Mb/s
OC-12	622.08 Mb/s
OC-18	933.12 Mb/s
OC-24	1244.16 Mb/s
OC-36	1866.24 Mb/s
OC-48	2488.32 Mb/s
OC-96	4976.64 Mb/s
OC-192	9953.28 Mb/s
OC-768	39813.12 Mb/s

Private WAN

Circuit switching options (Prepojovanie okruhov)

- Vyžaduje modemy a na druhej strane módemóvé serverý
- Výhody:
 - Jednoduchosť, dostupnosť, nízka cena implementácie, rovnaké podmienky na linke (oneskorenie, jitter)
- Nevýhody:
 - Nízka rýchlosť, dlhý čas zostavenia spojenia

each

64 kb/s

E1 2.048 Mb/s

(includes sync)

ISDN

- Integrovaná sieť digitálnych služieb (ISDN)
 - BRI prístup (2B+D)
 - PRI prístup (30B+2D)
- Vyššia kapacita, krátky čas zostavenia spojenia, dedikovaná kapacita
- Používa TDM
- Používaná často ako backup primárnej linky
 - Dial on Demand Routing DDR)

PRI

Frame relay (Prepojovanie paketov)

- Frame Relay
 - Náhrada X.25, podporuje PVC aj SVC kanály
 - Kanál identifikovaný DLCI
 - L2 adresovanie
 - Chceš niečo poslať na R2?
 - Pridaj adresu kanála 102
 - Rýchlosť do zhruba 45Mbps

Private WAN

ATM (Asynchronous transfer mode)

Zostavenie spojenia s prepínaním buniek (mini paketov fixnej dĺžky 53B),

Private WAN Metro Ethernet

- Na Slovensku veľmi rozšírené
- Typicky využíva optiku
- Veľmi jednoduché, výkoné, efektívne
 - Ako bežný ethernet
- Obchodné mená
 - Metropolitan Ethernet (MetroE), Ethernet over MPLS (EoMPLS), and Virtual Private LAN Service (VPLS).

Private WAN MPLS

- Multiprotocol Label Switching (MPLS) je vysokovýkonná WAN technológia, ktorá prepína pakety zo smerovača na smerovač na základe Návestia (label),
 - nie na základe IP adresy

Private WAN VSAT

Very small aperture terminal (VSAT) riešenie, ktoré vytvára privátne WAN s použitím satelitnej komunikácie

Private WAN

Digital Subscriber Line (xDSL)

- Veľmi populárna širokopásmová
 Always-on technológia
- Využíva existujúce krútené telefónne páry na širokopásmový vysokorýchlostný prenos dát a poskytnutie IP služby.
 - Do 8Mbps
- DSL modem konvertuje Ethernet na DSL signál, ktorý je prenášaný na DSLAM.

Private WAN Cable

- Prístup do siete cez infraštruktúru káblových TV operátorov.
- Always-on technológia.

Private WAN Wireless

Aktuálne trendy v širokopásmových bezdrôtových technológiách:

- •Municipal Wi-Fi
 - Koncept pokrytia celého mesta voľne dostupným WiFi (univerzálna služba)
- WiMAX Worldwide
 Interoperability for
 Microwave Access (WiMAX)
 - Podľa kurikúl:
 - is a new technology that is just beginning to come into use.
 - Do 72Mbps
- Internet cez Satelit

Sample Wireless Topology

Private WAN 3G/4G Cellular

- •3G/4G Wireless Skratka pre 3 a 4 generáciu mobilných prístupových bezdrôtových sietí.
- Long-Term Evolution (LTE) Novšia a rýchlejšia technológia, ktorá je súčasťou 4G sietí.

Private WAN

VPN Technológia

VPN je zabezpečené šifrované spojenie cez verejný internet medzi privátnymi sieťami

Výhody VPN:

- šetrenie nákladov
 - Teleworking, mobilita, využitie Internetu na bezpečný prástup do korporátnej siete
- Bezpečnosť
 - Vysoká úroveň zabezpečenia komunikácie
- Škálovateľnosť
 - Jednoduché riadenie pridávania používateľov

2 typy VPN prístupu:

- Site-to-site VPNs
- Remote-access

Výber WAN služby Výber WAN riešenia

- Odpoveď na otázky:
 - Aký je účel WAN?
 - Na čo bude WAN slúžiť?
 - Aké je geografické pokrytie?
 - Aké sú požiadavky na prevádzku?

Výber WAN služby

Výber WAN riešenia

KONIEC