Image Processing and Computer Graphics

Image Processing

Class 1
Introduction

Organizational issues

- Language: English (older German recordings available)
- Type of lecture:
 - 3 hours classroom lecture, 1 hours tutorial (6 ECTS = 180h)
 - Course gives you an overview on computer vision and graphics
 - Required for a specialization in our groups (e.g. Bachelor thesis, projects)
- Prerequisites
 - Solid undergraduate mathematics
 - Programming experience in C/C++ (for the programming assignments)

Organizational issues

Tutorials

- every second Tuesday in the computer pools (see webpage for dates)
- Advisors: Mostafa Morsy, Benjamin Ummenhofer, Nima Sedaghat
- Consists of programming assignments
- Online forum with link on the course webpage (access with your RZ-account)

Exam

- Written exam
- Make sure you are registered for the exam in time
- These slides are made available at:

http://lmb.informatik.uni-freiburg.de/lectures (user: open, passwd: thebox)

On the purpose of studying

- Aim primarily for education, not just expert knowledge or the next exam
- Your not in school anymore:
 It is <u>your</u> responsibility to make good use of what we offer
- This course provides you with opportunities to:
 - Improve your understanding of math and abstract concepts
 - Train your programming and debugging skills
 - Challenge your ability to solve problems independently
 - Efficiently search for missing information (asking the right questions)
 - Exploit the advantages of team work
 - Improve your English skills
- Not all of this will be tested and graded in the exam, but in life
- Improve your abilities, not just your CV

Author: Daniel Cremers

- Digital image: regular grid I_{ij} of intensity values
- Continuous function $I:(\Omega\subset\mathbb{R}^2)\to\mathbb{R}$ $(x,y)\mapsto I(x,y)$

- Imaging (e.g. photography, ultrasound, magnetic resonance, microscopy)
- Image enhancement and modification (e.g. Adobe Photoshop)
- Image and video compression
- Computer graphics (model → image)
- Computer vision (image → model)

Focus of our group: computer vision

Magnetic resonance image of a human head

Confocal microscope image of a fruit fly embryo

Mast cell image from an electron microscope

Welk et al. 2005: variational deblurring

Image compression - JPEG

Computer vision - segmentation

Wedel et al. 2007: obstacle detection and segmentation

Computer vision – motion segmentation

Brox-Malik ECCV 2010: motion segmentation from point trajectories

© 2007-2016 Thomas Brox

Citywall Data Set

Input: 256 million points

P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbas, V. Golkov P. v.d. Smagt, D. Cremers, T. Brox

FlowNet: Learning Optical Flow with Convolutional Networks

Depth estimation with a deep network

DispNet result on KITTI 2015

© 2007-2016 Thomas Brox

Deep learning can help with (almost) everything in computer vision

Generating images

3D morphing of cars

© 2007-2016 Thomas Brox

Artistic style transfer for videos

Manuel Ruder Alexey Dosovitskiy Thomas Brox

University of Freiburg
Chair of Pattern Recognition and Image Processing

Master project of Manuel Ruder (Ruder et al. 2016)
Won a GCPR Best Paper Honorable Mention
Featured in the ARD Nachtmagazin

Computer vision – object class recognition and segmentation

Carreira et al. ECCV 2012

Image caption generation

"girl in pink dress is jumping in air."

"black and white dog jumps over bar."

"young girl in pink shirt is swinging on swing."

""little girl is eating piece of cake."

"baseball player is throwing ball in game."

"woman is holding bunch of bananas."

Karpathy-Li 2014

Difference between image processing and computer vision

- The term "image processing" is used for the general subject of processing images with a computer
- Computer vision signifies the specific task to have the computer interpret the content of images
- Requires pattern recognition and machine learning techniques
- Computer vision has similar motivations as artificial intelligence and cognitive neuroscience (biological vision)

Why is computer vision difficult?

- Vision is a natural and easy task for humans (and many animals)
- This is not for free: ~50% of the primate's cortex deals with the processing of visual information (Felleman-van Essen 1991)
- Matching human visual capabilities means to solve a large part of the AI problem

Images are only a structured grid of numbers

What's this?

Author: Daniel Cremers

- This is how the computer sees Einstein
- Demonstrates what our brain achieves at the unconscious level

- Image content is defined by the spatial arrangement of intensities
- It is not sufficient to treat images as vectors and to analyze these vectors

Zebra image

Same image with a different row length

Ambiguities resolved by context

© 2007-2016 Thomas Brox 25

Importance of image processing and computer vision

- Computer vision is a quite "young" research field
 - Main computer vision conference (ICCV) founded in 1987
 - Main computer vision journal (IJCV) founded in 1988
- Today one of the most influential fields in computer science
- Playground for new machine learning techniques
- Computer vision applications are sky rocketing due to progress in deep learning

Rank	Abbreviated Journal Title (linked to journal information)	ISSN	Total Cites	Impact Factor
1	ACM COMPUT SURV	0360-0300	2888	8.000
2	IEEE T PATTERN ANAL	0162-8828	25060	5.308
3	IBM J RES DEV	0018-8646	3049	5.216
4	INT J COMPUT VISION	0920-5691	9898	5.151
5	MIS QUART	0276-7783	7419	5.041
6	SIAM J IMAGING SCI	1936-4954	322	4.500
7	IEEE T EVOLUT COMPUT	1089-778X	4681	4.403
8	MED IMAGE ANAL	1361-8415	2901	4.364
9	INT J NEURAL SYST	0129-0657	816	4.237
10	HUM-COMPUT INTERACT	0737-0024	1175	4.000
11	J CHEM INF MODEL	1549-9596	9556	3.822
12	IEEE COMMUN SURV TUT	1553-877X	576	3.692
13	IEEE T MED IMAGING	0278-0062	11114	3.639
14	ACM T GRAPHIC	0730-0301	5892	3.632
15	J ACM	0004-5411	6116	3.375
16	J COMPUT AID MOL DES	0920-654X	3273	3.374
17	MATCH-COMMUN MATH CO	0340-6253	1677	3.291
18	COMPUT-AIDED CIV INF	1093-9687	856	3.170
19	INT J INF TECH DECIS	0219-6220	534	3.139
20	J AM MED INFORM ASSN	1067-5027	3619	3.088

Impact factors of the top 20 computer science journals

Related sciences

- Computer science
 - Machine learning
 - Robotics
 - Computer graphics
 - Parallel programming
- Mathematics
 - Optimization
 - Numerics
 - Statistics
 - Linear algebra
 - Functional analysis
 - Graph theory

- Electrical engineering
 - Signal processing
 - Systems engineering
 - Embedded systems
- Cognitive neuroscience
 - Psychophysics
 - Neurophysiology
 - Computational neuroscience

Conferences and Journals

Conferences

ICCV: International Conference on Computer Vision

ECCV: European Conference on Computer Vision

CVPR: Int. Conference on Computer Vision and Pattern Recognition

NIPS: Neural Information Processing Systems

ICML: International Conference on Machine Learning

ICLR: International Conference on Learning Representations

GCPR: German Conference on Pattern Recognition

Journals

- IEEE Transactions on Pattern Analysis and Machine Intelligence
- International Journal of Computer Vision
- IEEE Transactions on Image Processing
- SIAM Journal of Imaging Sciences
- Journal of Mathematical Imaging and Vision

Some image processing applications

- Quality control, visual inspection
- Security systems
 - Fingerprint recognition
 - Iris recognition
 - Face recognition
 - Surveillance systems
- Medical and biological tools
 - Image enhancement
 - Routine diagnostics
 - Bioinformatics
- Entertainment industry and consumer products
 - Motion capture
 - Augmented reality
 - Human-machine interaction
 - Smartapps

- Web scale data analysis
 - Image Search
 - Video Search
- Photography and video editing
 - Smart cameras
 - Video editing tools
- Driver assistance systems
 - Collision avoidance
 - Autonomous driving
- Robotics
 - Object recognition
 - Visual SLAM
 - Visual learning
 - Vision based control

No self-driving cars without computer vision

Video from the KITTI dataset

- Class 1: Introduction
- Class 2: Human vision and image basics
- Class 3: Noise, basic operations and filters
- Class 4: Energy minimization
- Class 5: Variational methods
- Class 6: Motion estimation
- Class 7: Segmentation
- Class 8: Local descriptors
- Class 9: Shape from X
- Class 10: Recognition and deep learning
- Class 11: Biomedical image analysis (Dr. Falk)
- Computer Graphics (Prof. Teschner)

Other courses in image processing

3. Semester	4.	5. Semester	6. Semester	7. Semester	8.Semester	9. Semester	10.
	Optimierung	Kursvorlesung Bildverarbeitung u. Computergraphik	Spezialvorlesung Statistische Mustererkennung	Spezialvorlesung Computer Vision			
		Spezialvorlesung Engineering meets Biology					
			Seminar	Seminar	Seminar	Seminar	
				Deep Learning	GPU Programming		
		Deep Learning	Bachelor Thesis		Master project Interdisciplinary	Master project Interdisciplinary	Master Thesis
					Project	Project	

Computer Vision is part of the focus "Cognitive Technical Systems"

Also see courses in

Robotics (Burgard), Machine Learning (Boedecker, Hutter), Optimization (Diehl)

Summary

- Image processing, especially computer vision, is an important research field.
- Thanks to deep learning it is currently growing enormously.
- Image processing makes use of techniques from various other sciences.
- Especially machine learning is closely related.

Literature

- R. Szeliski: Computer Vision: Algorithms and Applications, 2010. Available online for free: http://szeliski.org/Book/
- D. Forsyth, J. Ponce: Computer Vision: A Modern Approach, Prentice Hall, 2nd edition, 2012.
- R. C. Gonzalez, R. E. Woods: Digital Image Processing, Addison-Wesley, Reading, 2nd Edition, 2002.
- CV Online: Online compendium on numerous image processing and computer vision topics, http://homepages.inf.ed.ac.uk/rbf/CVonline/