Assignment 3

Chapter 3

0302

0304

22

DDFE AGAIN:

3. In calculating the target address for a jump, a displacement is added to the contents of registerPC			
4. The mnemonic SJMP stands for <u>short jump</u> and it is a <u>2</u> -byte instruction.			
5. The mnemonic LJMP stands for <u>long jump</u> and it is a <u>3</u> -byte instruction.			
7. True or false. The target of a short jump is within -128 to +127 bytes of the current PC.			
Answer: True			
14. Find the number of times the following loop is performed. MOV R6, #200 BACK: MOV R5, #100 HERE: DJNZ R5, HERE DJNZ R6, BACK Answer: LOOP "HERE": 20000 times LOOP "BACK": 200 times			
20. The LCALL target address is limited to 64K bytes form the present PC.			
25. Show the stack for the following code.			
000B 120300 LCALL DELAY			
000E 80F0 SJMP BACK 0010			
; This is the delay subroutine			
0300 ORG 300H			
00 DELAY:			
0300 MOV R5, #0FFH			

DJNZ R5, AGAIN

RET

Answer:

Before LCALL the stack is assumed to point to X

LCALL to RET the stack is: 00

0E

X

After RET the stack is back to X

35. Find the time delay for the delay subroutine shown to the right, if the system frequency is 16 MHZ.

DELAY: MOV R2, #150 AGAIN: MOV R3, #250

HERE: NOP

NOP NOP

DJNZ R3, HERE DJNZ R2, AGAIN

RET

Answer:

 $T=12*1/f=0.75\mu s$

1+150*(1+250*5+2)+1=187952 machine cycles=140964μs

Chapter 6

1. Find the CY and AC flags for each of the following.

(e) MOV A, #0FEH

(f) CLR C

SETB C

MOV A, #0FFH ADDC A, #01

ADDC A, #01

ADDC A, #0

Answer:

(e) CY: 1

AC: 1

(f) CY: 0

AC: 0

3. Write a program to add the following numbers and save the result in R2, R3. The data is stored in on-chip ROM.

ORG 250H

MYDATA: DB 53, 94, 56, 92, 74, 65, 43, 23, 83

Answer:

MOV R2, #00

MOV R3, #00

MOV R1, #09

MOV DPTR, #MYDATA

CLR C

LOOP: CLR A

MOVC A, @A+DPTR
ADD A, R2
DA A
MOV R2, A
MOV A, R3
ADDC A, #00
DA A
MOV R3, A

INC DPTR

DJNZ R1, LOOP

8. True or false. The "DA A" instruction works on register A and it must be used after the ADD and ADDC instructions.

Answer: True

- 16. Show how the following are represented by the assembler.
- (a) -23
- (b) + 12
- (c) -28
- (d) + 6FH
- (e) 128
- (f)+127

Answer:

- (a) 11101001
- (b) 00001100
- (c) 11100100
- (d) 01101111
- (e) 10000000
- (f) 01111111

Chapter 7

1. Assume that these registers contain the following: A=F0, B=56, and R1=90. Perform the following operations. Indicate the result and the register where it is stored.

Note: The operations are independent of each other.

- (a) ANL A, #45H
- (b) ORLA, B
- (c) XRL A, #76H
- (g) ANL A, #0FFH
- (j) XRLA, #0AAH

Answer:

(a) A=40H

F0H 11110000 45H 01000101 40H 01000000

(b) A=F6H

	F0H	11110000
	56H	01010110
	F6H	11110110
(c)	A=86H	
	F0H	11110000
	76H	01110110
	86H	10000110
(d)	A=F0H	
	F0H	11110000
	FFH	11111111
	F0H	11110000
(e)	A=5AH	
	F0H	11110000
	AAH	10101010
	5AH	01011010

COLL

11110000

- 6. Indicate the status of CY after CJNE is executed in each of the following cases.
- (f) MOV R3, #0AAH

ANL R3, #55H

CJNE R3, #00, NEXT

Answer: CY is unchanged.

- 8. Find register A contents after each of the following is executed.
- (d) SETB C

MOV A, #7AH

SWAPA

RLC A

RLC A

Answer:

A=9FH

17. Find the result at points (1), (2), and (3) in the following code?

CJNE A, #50, NOT_EQU

... ;point (1)

NOT_EQU: JC NEXT

... ;point (2)

NEXT: ;point (3)

Answer:

Point(1) A = #50

Point(2) A > #50

Chapter 8

- 1. "SETB A" is a(n) invalid (valid, invalid) instruction.
- 2. "CLR A" is a(n) valid (valid, invalid) instruction.
- 3. "CPL A" is a(n) valid (valid, invalid) instruction.
- 7. Write a program to generate a square wave with 75% duty cycle on bit P1.5.

Answer:

37. Write instructions to save the CY flag bit in bit location 4.

Answer:

MOV 4, C