6.

- (a) If $x_1, ..., x_n$ are distinct numbers, find a polynomial f_i of degree n-1 which is 1 at some x_i , and 0 at x_j for all $j \neq i$. Consider two cases. Suppose $f_i(x) = 0$. Then $x = x_j$ for any $j \neq i$, so $x x_j = 0$. Thus $0 = \prod_{j=1, i \neq j}^n (x x_j) = \prod_{j=1, i \neq j}^n m(x x_j)$ (for any number m). Suppose now that $f_i(x) = 1$, then $x = x_i$ for some (unique) i, so $1 = \frac{x_i x_j}{x_i x_j} = \frac{x x_j}{x_i x_j}$. Thus $1 = \prod_{j=1, i \neq j}^n \frac{x x_j}{x_i x_j}$. Letting $m = \frac{1}{x_i x_j}$, we combine the results from both cases to obtain $f_i(x) = \prod_{j=1, i \neq j}^n \frac{x x_j}{x_i x_j}$.
- (b) Find a polynomial function f of degree n-1 such that $f(x_i) = a_i$ $(i \le n)$, where $a_1, ..., a_n$ are given numbers. For some unique $i \le n$, note that $a_i = \sum_{j=1, j \ne i}^n a_j * 0 + a_i * 1 = \sum_{j=1, j \ne i}^n a_j * f_j(x_i) + \sum_{j=i}^1 a_j * f_j(x_i)$, thus $f(x) = \sum_{j=1}^n a_j * f_j(x_j)$.