1. 实验名称及目的

动力系统设计实验:多旋翼飞行评估网站 <u>https://flyeval.com/paper/</u>。熟悉多旋翼无人机动力系统设计流程和各项参数对性能的影响分析。

2. 实验原理

实验原理包括多旋翼动力系统的组成,以及多旋翼机体半径与最大旋翼半径关系,螺旋桨模型、电机模型、电调模型、电池模型的实现。详细原理可以参考文献[4]第05讲_实验-_动力系统设计实验.pdf。

3. 实验效果

得到不同环境参数对多旋翼动力学系统的性能影响。

4. 文件目录

文件夹/文件名称	说明
第 05 讲_实验一_动力系统设计 实验.pdf	实验配套课件。

5. 运行环境

序号	软件要求	硬件要求	
17, 4	水川 女本	名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版		

①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

6. 实验步骤

本实验为理论讲解型实验,具体请见"第 05 讲_实验一_动力系统设计实验.pdf"文件。

7. 参考资料

- [1]. Quan Quan. Introduction to Multicopter Design and Control. Springer, Singapore, 2017.
- [2]. 全权,杜光勋,赵峙尧,戴训华,任锦瑞,邓恒译.多旋翼飞行器设计与控制[M],电子工业出版社,2018.
- [3]. 全权,戴训华,王帅.多旋翼飞行器设计与控制实践[M],电子工业出版社,2020.
- [4]. 第 05 讲_实验一_动力系统设计实验.pdf

8. 常见问题

Q1: 无

A1: 无