Data Science Basic 2

September 1, 2019

Logistic Regression [10]: from sklearn.datasets import load_iris iris=load iris() X=iris.data y=iris.target from sklearn.linear_model import LogisticRegression logisticreg=LogisticRegression() logisticreg.fit(X,y) /home/sakil/anaconda/lib/python3.7/sitepackages/sklearn/linear model/logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning) /home/sakil/anaconda/lib/python3.7/sitepackages/sklearn/linear model/logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning. "this warning.", FutureWarning) [10]: LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=100, multi_class='warn', n_jobs=None, penalty='12', random_state=None, solver='warn', tol=0.0001, verbose=0, warm_start=False) [11]: Prediction_lr=logisticreg.predict([[2,4,3,1],[4,6,5,3]]) print(Prediction_lr) [2 2] [12]: print(iris.target_names) ['setosa' 'versicolor' 'virginica'] [14]: Prediction_lr=logisticreg.predict([[5.1,3.5,1.4,0.2],[6.3,3.3,4.7,1.6]]) print(Prediction_lr)

[0 1]