Lecture 2-2 Basic relationship between pixels (chapter 2.5)

Yuyao Zhang PhD

zhangyy8@shanghaitech.edu.cn

SIST Building 2 302-F

Outline

- Neighbors of Pixel
- Relationship between Pixels
 - Adjacency
 - Connectivity
 - Regions
 - Boundaries
- Distance measures
 - Euclidean distance
 - City-block distance
 - Chessboard distance

Outline

- Neighbors of Pixel
- Relationship between Pixels
 - Adjacency
 - Connectivity
 - Regions
 - Boundaries
- > Distance measures
 - Euclidean distance
 - City-block distance
 - Chessboard distance

If a pixel p at coordinate (x, y)

 $> N_4(p)$

 $> N_D(p)$

 $> N_8(p)$

If a pixel p at coordinate (x, y)

$$ightharpoonup N_4(p)$$
 (x+1, y), (x-1, y), (x, y+1), (x, y-1)

 $> N_D(p)$

 $> N_8(p)$

	q_1	
q_2	p	q_3
	q_4	

If a pixel p at coordinate (x, y)

$$ightharpoonup N_4(p)$$
 (x+1, y), (x-1, y), (x, y+1), (x, y-1)

 $> N_D(p)$

$$(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)$$

 $> N_8(p)$

\mathbf{r}_1		r_2
	p	
r_3		r ₄

If a pixel p at coordinate (x, y)

$$ightharpoonup N_4(p)$$
 (x+1, y), (x-1, y), (x, y+1), (x, y-1)

 $> N_D(p)$

$$(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)$$

 $> N_8(p) : N_4(p) \cup N_D(p)$

r_1	q_1	r_2
\mathbf{q}_2	p	q_3
r_3	q_4	r_4

Outline

- Neighbors of Pixel
- Relationship between Pixels
 - Adjacency
 - Connectivity
 - Regions
 - Boundaries
- Distance measures
 - Euclidean distance
 - City-block distance
 - Chessboard distance

To define adjacency of pixels, we need identify

> Type of Neighbor

$$N_4(p), N_D(p), N_8(p)$$

- The set of intensity values V
 - Binary image: $V = \{1\}$
 - Gray-scale image: $V = [L_{min}, L_{max}]$

q_1	р	q_2

0	0	0
0	1	1
0	0	0

Adjacency in a binary image

	q_1	
q_2	р	q_3

0	39	0
11	13	16
0	0	0

Adjacency in a gray-scale image

- ➤ 4-adjacency
- **▶** 8-adjacency
- M-adjacency (mixed adjacency)

- > 4-adjacency
 - p, q ∈ V
 - $q \in N_4(p)$
- > 8-adjacency
- M-adjacency (mixed adjacency)

r ₁₁	r ₁₂	r ₁₃
r ₂₁	r ₂₂	r ₂₃
r ₃₁	r ₃₂	r ₃₃

0	1 ····	···· 1
0	1	0
0	0	1

- > 4-adjacency
- ▶ 8-adjacency
 - p, q ∈ V
 - $q \in N_8(p)$
- M-adjacency (mixed adjacency)

- > 4-adjacency
- > 8-adjacency
- M-adjacency (mixed adjacency)
 - p, q ∈ V
 - $q \in N_4(p)$ or $q \in N_D(p)$ and $N_4(p) \cap N_4(q) \notin V$

r ₁₁	r ₁₂	r ₁₃
r ₂₁	r ₂₂	r ₂₃
r ₃₁	r ₃₂	r ₃₃

Connectivity

Important concept used in establishing boundaries of objects and components of regions in an image

- > Path
- > Connected
- > Connected component
- > Connected set

Region

- R: a subset of an image which is also a connected set
- > Adjacent region
- > Disjoint region

Pixels

- Neighbors of Pixel
- Relationship between Pixels
 - Adjacency
 - Connectivity
 - Regions
 - Boundaries
- Distance measures
 - Euclidean distance
 - City-block distance
 - Chessboard distance

For pixels p, q and z, with coordinates (x, y), (s, t) and (v, w), D is a **distance function or metric** if

•
$$D(p, q) \ge 0 \ (D(p, q) = 0 \ \text{only if } p = q)$$

$$\bullet \ \textit{D}(p,q) = \textit{D}(q,p)$$

•
$$D(p, z) \leq D(p, q) + D(q, z)$$

> Euclidean distance:

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

- City-block distance:
- Chessboard distance

> Euclidean distance:

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

> City-block distance:

$$D_4(p, q) = |x-s| + |y-t|$$

Chessboard distance

> Euclidean distance:

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

City-block distance:

$$D_4(p, q) = |x-s| + |y-t|$$

Chessboard distance

$$D_8(p, q) = \max(|x-s|, |y-t|)$$

 D_m distance is defined as the shortest m-path between the point

$$r_{12}$$
 r_{21} r_{22}

$$D_m = ?$$

No m-path between the point

0 1 1 0 ii 1

 D_m distance is different by the values of r_{12} , r_{21} and r_{22}

$$D_{\rm m} = 2$$

$$D_{\rm m} = 3$$

$$D_{\rm m} = 3$$

$$D_{\rm m} = 3$$

$$D_{\rm m}=4$$

Take home message

- 1. Relationship between pixels.
- 2. Core problem: types of adjacency.
- 3. Connection and distance measurements.

