計算理論 第10回 第6章: プッシュダウンオートマトン (1/2)

基礎工学部情報科学科中川 博之

本日の概要

- ・ 第6章: プッシュダウンオートマトン
 - テキスト: p.245~
 - 6.1 プッシュダウンオートマトンの定義
 - 6.2 PDAの言語
- 重要概念
 - プッシュダウンオートマトン

6.1 プッシュダウンオートマトンの 定義

直観的な導入

- プッシュダウンオートマトン (PDA):
 - 文脈自由言語を受理するのに適切なオートマトン
 - 「ε-動作可能な非決定性有限オートマトン」に「スタック」を追加したもの
 - スタックにはFILO方式でしかアクセスできない

PDAの特徴

- 文脈自由言語を認識できる
 - 有限オートマトンより強力
- ・ 文脈自由言語より複雑な言語は認識できない
 - 例: L ={0ⁿ1ⁿ2ⁿ | n ≥1}

- PDAが認識する言語のクラス女服白虫言語(CCL)
 - = 文脈自由言語(CFL)

PDAの定義

- PDA P = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$
 - Q: 状態の有限集合
 - Σ: 入力記号の有限集合
 - Г: 有限のスタックアルファベット (スタック記号)
 - スタックに記録できる記号の有限集合
 - δ:遷移関数
 - q₀:初期状態 (∈Q)
 - Z₀: 開始記号
 - ・スタックにこの記号が1つ置かれた状態で動作開始
 - F: 受理状態(最終状態とも呼ぶ)の集合 (⊆Q)

PDAの遷移関数δ

- $(p, \gamma) \in \delta(q, a, X)$
 - PDAの遷移関数は3入力2出力
 - (集合の)要素記述なのは非決定を許しているため

入力

- q∈Q: 現在の状態
- a∈(Σ∪{ε}):入力記号またはε
- X∈Г: スタック上端のスタック記号

出力

- p∈Q:次の状態
- γ ∈Γ*: スタック記号の列

PDAの振舞い

• 初期状態

- 状態: qo

- スタック:Z₀

PDAの振舞い: 状態遷移(1)

- 遷移: (p, γ)∈δ(q, a, X) ただしa ≠ ε
 - 状態: q, 入力: a, スタックの上端X のとき
 - 次の状態をpにする
 - 入力記号をひとつ読み進める
 - スタックからXをpopして, γをpush

PDAの振舞い: 状態遷移(2)

- 遷移: (p, γ)∈δ(q, ε, X)
 - 状態:q,スタックの上端Xのとき
 - 次の状態をpにする
 - 入力記号を読み進めない
 - スタックからXをpopして, γをpush

PDAの図表現

- 各状態を円で表現, 受理状態は2重円
- ・ 状態qからpへの辺のラベルが "a, X/γ"
 - → 遷移 (p, γ) ∈ δ(q, a, X) を表す

PDAの設計例(例6.1,例6.2)

- 言語 L_{wwr} = {ww^R | wは(0+1)*の中の列}
- PDAの設計方針
 - w中の記号を読んでいる間はスタックにプッシュ
 - w^Rの記号を読むたびにスタック上端の記号と比較
 - 一致すればその記号を取り除く
 - 入力記号をすべて読み終えたら受理状態に移動
 - 受理状態を含めて3つの状態を用意
- 気になる点
 - どこからw^Rに移るのかが分からない
 - →非決定性なので気にしなくて良い

PDAの例:詳細設計

- スタック記号Z₀: スタックの下端を表現
 - 入力を読み終えた時点で、何も残っていないと受理状態に移動できないため
- $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$
 - $Q = \{q_0, q_1, q_2\}$
 - q₀:スタックプッシュ, q₁:照合, q₂:受理状態
 - $-\Sigma = \{0, 1\}$
 - $-\Gamma = \{0, 1, Z_0\}$
 - $-F = \{q_2\}$

PDAの例:詳細設計

δは以下の通り

```
-\delta(q_0, 0, Z_0) = \{(q_0, 0Z_0)\}, \delta(q_0, 1, Z_0) = \{(q_0, 1Z_0)\}
```

$$-\delta(q_0, 0, 0) = \{(q_0, \square)\}, \delta(q_0, 0, 1) = \{(q_0, \square)\}, \delta(q_0, 1, 0) = \{(q_0, \square)\}, \delta(q_0, 1, 1) = \{(q_0, \square)\}$$

$$-\delta(q_0, \epsilon, Z_0) = \{(q_1, \square)\}, \delta(q_0, \epsilon, 0) = \{(q_1, \square)\}, \delta(q_0, \epsilon, 1) = \{(q_1, \square)\}$$

$$-\delta(q_1, 0, 0) = \{(q_1, \square)\}, \delta(q_1, 1, 1) = \{(q_1, \square)\}$$

$$-\delta(q_1, \varepsilon, Z_0) = \{(q_2, \square)\}$$

言語 Lwwrを受理するPDA

• 言語 L_{wwr} = {ww^R | wは(0+1)*の中の列}

※受理状態でスタックにZ₀が残るが問題ない

PDAの時点表示

- ・時点表示:現在の状態をもれなく表現したもの
- 3つ組で表現:(q, w, γ)
 - q:現在の状態
 - -w:入力の残り
 - γ: スタックの内容

時点表示の変化の関係

- $(q, aw, X\beta) \vdash_{P} (p, w, \alpha\beta)$
 - (p, α) ∈δ(q, a, X)に対する遷移
 - aはεの場合もある
 - Pが文脈から明らかなとき, ⊢, を⊢と表記する

関係上。*

テキストでは ト*

- ⊢_p*: PDAの0回以上の動作を表現
 - Pが文脈から明らかなとき, ⊢,* を⊢*と表記する
- I, J, Kを時点表示とするとき
- 帰納: I ⊢* K かつ K ⊢* J ならば I ⊢* J

2種類の受理

- PDAには2通りの受理がある
 - 入力を最後まで読み取って受理状態に入る
 - →「最終状態による受理」
 - スタックを空にするような入力列
 - →「空スタックによる受理」
- ・この2通りの受理は同等
 - → 都合の良い方を用いれば良い

最終状態による受理

- PDA P = (Q, Σ , Γ , δ , q_0 , Z_0 , F)
- Pが最終状態で受理する言語 L(P)

$$L(P) = \{ w \mid \exists q \in F, (q_0, w, Z_0) \vdash_P^* (q, \varepsilon, \alpha) \}$$

• 解釈

- 初期状態から0回以上の遷移により、<u>入力をすべ</u> て読み終えた時点で受理状態に至る
- そのときのスタックの内容αは何でも良い

空スタックによる受理

- PDA P = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0)$
- Pが空スタックで受理する言語 N(P)

$$N(P) = \{w \mid \exists q \in Q, (q_0, w, Z_0) \vdash_P^* (q, \varepsilon, \varepsilon)\}$$

- 解釈
 - <u>入力をすべて読み終えた時点でスタックが空</u>になる
 - そのときの<u>状態qは何でも良い</u>
 - 教科書の定義は誤り(Fは不要)

空スタックから最終状態へ

- 空スタック受理PDA ならば 最終状態受理PDA を示す
- 任意の空スタック受理PDA
 P_N = (Q, Σ, Γ, δ, q₀, Z₀)
 - Fは定義していない
- P_Nの動作を模倣する最終状態受理PDA P_Fを 作る
 - 任意のPNに対し N(PN)=L(PF)となるPFが存在
 - 同じ言語を受理

まずPNの動作を観察

- $P_N = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$
 - 動作開始時: 状態 q₀, スタック Z₀
 - 受理時: スタック空

PNからPFへの変換

- 最初にスタックのZ₀の下にX₀を置いておく
 - 空スタックを検知するため
- その後はP_Nの動作を模倣
 - P_Nがスタック内のX₀にアクセスすることはない

PNからPrへの変換

- ・ スタック上端がX₀になると受理状態p_fに遷移
 - 空スタックを検知するため
- $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$

最終状態から空スタックへ

- 最終状態受理PDA ならば 空スタック受理PDA を示す
- 任意の最終状態受理PDA
 P_F = (Q, Σ, Γ, δ, q₀, Z₀, F)
- P_Fの動作を模倣する空スタック受理PDA P_Nを 作る
 - 任意のP₅に対し L(P₅)=N(PN) となるPNが存在
 - 同じ言語を受理

まずPFの動作を観察

- $P_F = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$
 - 動作開始時: 状態 q₀, スタック Z₀
 - 受理時: 状態 q_f∈ F
 - スタックは空とは限らない

P_FからP_Nへの変換

- 最初にスタックのZ₀の下にX₀を置いておく
 - 空スタックを検知するため
- その後はP_Fの動作を模倣
 - P_Fがスタック内のX₀にアクセスすることはない

P_FからP_Nへの変換

- ・ P_Fの受理状態p_fに移ると、特別な状態pに遷移
 - その後スタックをポップし続け、空にして受理
- $P_N = (Q \cup \{p_0, p\}, \Sigma, \Gamma \cup \{X_0\}, \delta_N, p_0, X_0)$

P_FとP_Nの関係

- 空スタック受理PDA ならば 最終状態受理PDA
- 最終状態受理PDA ならば 空スタック受理PDA

より、

空スタック受理PDA ⇔ 最終状態受理PDA

- PDAの定義にどちらを用いても同じ
 - 使いやすい方を選べばよい

ミニレポート

ミニレポート: 10-1

- テキストp.251 図6.2のPDA
 - PDAが入力 0110 を受理する動作を順を追って示せ
 - 各遷移ごとにPDAの図を示せ
 - PDAの図は右下図のように描け

ミニレポート

ミニレポート: 10-2

- テキストp263 問6.2.1 a) (一部変更)
- ・ 次の言語を受理するPDAを設計せよ.
 - ただし空スタック受理のPDAとせよ
- a) $\{0^n1^n | n \ge 1\}$