МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Вятский государственный университет»

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Отчет Лабораторная работа №2 по дисциплине «Исследование операций» Вариант 8

Выполнил студент группы ИВТ-32 _	/Рзаев А. Э./
Проверил преподаватель	/Коржавина А. С./

1 Цель работы

Целью лабораторной работы является получение навыков решения задач линейного программирования (ЗЛП) методом ветвей и границ.

2 Задание

Решить ЗЛП методов ветвей и границ:

$$f(x) = 10x_1 + 2x_2 \rightarrow max$$

 $-x_1 + 0.5x_2 \ge 1$
 $2x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$, целые

3 Теоретическая часть

Постановка задачи: найти максимум функции

$$f(x) = \sum_{j=1}^{n} c_j x_j (1)$$

при ограничениях

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, i = 1, ..., m(2)$$
 $x_{j} \geq 0$, целые, $j = 1, ..., n(3)$

Алгоритм решения:

- а) положить k=0, решить задачу ЗЛП-0 без учета требований на целочисленность переменных. Если решение целочисленное, то расчет закончен. В противном случае включить k=0 в множество J=k номеров задач, подлежащих дальнейшему ветвлению и перейти к п.2;
 - б) выбрать задачу для приоритетного ветвления:
 - 1) если k=0, то выбрать для ветвления задачу ЗЛП-0, исключить k=0 из множества $J=\{k\}$ и перейти к п.3;
 - 2) если $k \neq 0$ и $J \neq \emptyset$ выбрать номер задачи $k \in J$, которому соответствует максимальное значение целевой функции на оптимальном решении, исключить k из множества $J = \{k\}$ и перейти к п.3;
 - 3) если $k \neq 0$ и $J = \emptyset$, перейти к п.7;
 - в) осуществить ветвление задачи ЗЛП-k. Для этого выбрать нецелочисленную координату x_j^{k*} и сформировать:
 - 1) два дополнительных ограничения: $x_j \leq \left[x_i^{k*}\right], x_j \geq \left[x_i^{k*}\right] + 1;$
 - 2) две задачи $3Л\Pi 2k + i, i = 1,2;$
 - г) решить задачу $3Л\Pi 2k + i;$
 - д) проверить решение на целочисленность:

- 1) если решение целочисленное, то занести его в множество X^* оптимальных возможных оптимальных решений исходной задачи;
- е) проверить условие $i \le 2$:
 - 1) если i < 2 положить i = 2 и перейти к п.4;
 - 2) если i = 2 перейти к шагу 2;
- ж) в множестве X^* выбрать решение, которому соответствует наибольшее значение целевой функции

4 Практическая часть

Метод ветвей и границ

Решим симплекс-методом следующую задачу. Будем считать ее ЗЛП-0

$$f(x) = 10x_1 + 2x_2 \rightarrow max$$

-x₁ + 0,5x₂ \ge 1
2x₁ + x₂ \le 6
x₁, x₂ \ge 0

Переход к канонической форме

$$f(x) = 10x_1 + 2x_2 \rightarrow max$$

-x₁ + 0,5x₂ - x₃ = 1
2x₁ + x₂ + x₄ = 6
x_i \ge 0, j = 1..2

Поиск максимума

Найдем начальное БР. x_1 , x_3 — свободные переменные, значит:

$$x_1 = 0$$

 $x_2 = 2$
 $x_3 = 0$
 $x_4 = 4$

Заполним таблицу 1 для отображения хода вычислений и рассчитаем относительные оценки.

Таблица 1 – поиск максимума

Базис	В	x_1	x_2	x_3	x_4	БР/ $\overline{a_{ir}}$
x_2	2	-2	1	-2	0	_
x_4	4	4	0	2	1	1
$f(X_0)$	0	-12	0	-2	0	0

Текущий опорный план не оптимален, так как в индексной строке находятся отрицательные коэффициенты. В качестве разрешающего столбца можем выбрать столбец x_1 . Берем первый столбец и анализируем его коэффициенты, они положительны, значит переменная x_1 вводится в число

базисных. Для определения переменной, выводимой из базиса, находим наименьшее из неотрицательных отношений $\frac{\text{БР}}{a_{ir}}=1$, значит x_4 выводится из базиса.

Новое БР отображено в таблице 2

Таблица 2 – поиск максимума

Базис	В	x_1	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	БР/ $\overline{a_{ir}}$
x_2	4	0	1	-1	1/2	
x_1	1	1	0	1/2	1/4	
$f(X_1)$	12	0	0	4	3	

Среди значений индексной строки нет отрицательных, значит решение $x_1=1,\,x_2=4$ является оптимальным целочисленным для этой задачи.

5 Графический способ

Рисунок 1 – Графическое представление системы