Tutorial 2 - Complex Functions

1. Suppose that f(z) = u(x,y) + iv(x,y) where z = x + iy. If $z_0 = x_0 + iy_0$ and $w_0 = u_0 + iv_0$, show that $\lim_{z \to z_0} f(z) = w_0$ if and only if

$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 \quad \text{and} \quad \lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0.$$

- 2. Find the limit of $\lim_{z\to-2i}(2z^2+7z+8)$ using definition of limit.
- 3. Evaluate $\lim_{z \to -i} \frac{z^{11} i}{z^7 i}$.
- 4. By using the definition of limit, show that

$$\lim_{z \to z_0} f(z) = w_0 \implies \lim_{z \to z_0} |f(z)| = |w_0|.$$

Hint: Use the relation $|z_1 \pm z_2| \ge ||z_1| - |z_2||$.

- 5. Evaluate $\lim_{z \to \infty} \frac{2z^2}{(z-1)^2}$.
- 6. Evaluate $\lim_{z \to 1} \frac{1}{(z-1)^2}$.
- 7. Evaluate $\lim_{z \to \infty} \frac{z^2 + 1}{z 1}$.
- 8. By using the definition of continuity, show that $f(z) = z^2$ is continuous at z = i.
- 9. Find f'(z) if $f(z) = 3z^2 5z + 14$.
- 10. Find f'(z) if $f(z) = \frac{z-1}{2z+1}$ with $z \neq -1/2$.
- 11. Use definition of derivative to proof that $\frac{d}{dz}\frac{1}{z}=-\frac{1}{z^2}$.
- 12. Show that f(z) = Re(z) is not differentiable at any point z.
- 13. Use Cauchy-Riemann equations to show that f'(z) does not exist at any point if
 - (a) $f(z) = \overline{z} z$
 - $(b) f(z) = 3x + ixy^2$
- 14. Determine where f'(z) exists and find its value if f(z) = 1/z.
- 15. Show that f(z) = |z| is not differentiable everywhere.
- 16. Show that $f(z) = \sqrt{r}e^{i\theta/2}$ is differentiable in the domain: $\{r > 0, \alpha < \theta < \alpha + 2\pi\}$.

- 17. Show that f(z) = 4x + 3y + i(4y 3x) is entire.
- 18. Is f(z) = xy + iy analytic?
- 19. Show that $f(z) = x^2 + y^2 + 2ixy$ is differentiable along real axis but it is not analytic.
- 20. Evaluate $e^{2+3\pi i}$.
- 21. Show that $|e^{z^2}| \le e^{|z|^2}$.
- 22. Evaluate Log(-ei).
- 23. Evaluate $\log(-ei)$.
- 24. Solve for all z such that $e^z = i$.
- 25. Choose a counter-example to show that

$$Log(z_1z_2) \neq Log z_1 + Log z_2.$$

26. Show that for any two nonzero complex numbers z_1 and z_2 ,

$$Log(z_1 z_2) = Log z_1 + Log z_2 + 2N\pi i$$

where N has one of the values $0, \pm 1$.