CED: Circuitos Electrónicos Digitales

Universidad de Sevilla

Tema 2 Circuitos y dispositivos electrónicos

Usted es libre de copiar, distribuir y comunicar públicamente la obra y de hacer obras derivadas siempre que se cite la fuente y se respeten las condiciones de la licencia Attribution-Share alike de Creative Commons.

Texto completo de la licencia: http://creativecommons.org/licenses/by-nc-sa/3.0/es/

Guión

Señales y circuitos eléctricos

- Señales eléctricas. Leyes de Kirchhoff
- Componentes básicas (R, C y Fuente)
- Análisis de circuitos eléctricos

Semiconductores

- Dispositivos semiconductores: Clasificación.
- Diodos.
- Transistores MOS.

Modelos simples de gran señal

- Circuitos electrónicos: Ejemplos
 - Circuito con diodo
 - Circuito con transistores

•Unidades básicas del sistema internacional usadas en este tema

	Símbolo Nombre	
Carga	С	Culombio
Intensidad	А	Amperio
Voltaje o tensión	V	Voltio
Potencia	W	Watio

•Prefijos del SI para cuantificar las diversas potencias de 10 de la unidad fundamental

Factor	Nombre	Símbolo	Factor	Nombre	Símbolo
10 ⁻¹⁵	femto	f	10 ¹⁵	peta	Р
10 ⁻¹²	pico	р	10 ¹²	tera	Т
10-9	nano	n	10 ⁹	giga	G
10 ⁻⁶	micro	μ	10 ⁶	mega	М
10 ⁻³	mili	m	10 ³	kilo	k

Ejemplos: 5nW 3MV 3mV 100pC 10µA

Carga (Q)

- Propiedad intrínseca de la materia que se manifiesta en dos tipos: positiva negativa.
- Existen interacciones entre ellas que se mediante atracciones manifiesta repulsiones.
 - La carga del electrón es de -1.6 10⁻⁴ fC

Corriente o intensidad (I)

- Representa la carga en movimiento.
- La cantidad de carga que pasa por una superficie arbitraria durante un segundo se denomina Amperio (A).
- Tiene signo (para denotar el sentido del flujo)

$$\overline{I} = \frac{\Delta Q}{\Delta t}$$

$$I = \lim_{\Delta t \to 0} \frac{\Delta Q}{\Delta t} = \frac{dQ}{dt}$$

Voltaje (V)

- También se denomina tensión eléctrica o diferencia de potencial.
- Es una magnitud física que cuantifica la diferencia de potencial eléctrico entre dos puntos [ab].
- Cuando una carga electrica q se introduce en un campo de potencial eléctrico, ésta sigue el movimiento hacia las posiciones de menor potencial eléctrico.
- Ejemplo: El potencial eléctrico creado por una carga Q inmóvil es:

$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{R}$$

Una carga positiva, q, en el interior de dicho campo se mueve hacia regiones de menor potencial eléctrico.

Voltaje (V)

- Existen dispositivos que generan voltaje: **fuentes de tensión**
- Disponen de dos terminales con diferentes potenciales eléctricos: Terminal +, Terminal -
- La conexión de los terminales de una fuente de tensión a un elemento o dispositivo que permita el paso de portadores de corriente, crea un circuito cerrado por el que circula corriente.

La intensidad de corriente sale del terminal positivo, atraviesa el circuito y vuelve al terminal negativo.

Potencia (P)

- Cantidad de energia por unidad de tiempo para transferir un culombio de carga a través de un dispositivo

$$P = V \times I$$

- Convención de signos: potencia absorbida p=vi (a), potencia generada p=- vi (b)

En el tiempo las señales de tensión pueden ser:

- Constantes o de corriente continua, cc, (en inglés, dc, direct current): V_{dc} = 5 V
- Variables o de corriente alterna, ca, (en inglés, ac, alternating current):
 - Periódicas:
 - Forma senoidal, cuadrada, ...

 No periódicas: Más difíciles de tratar, se estudian por su respuesta frecuencial (espectro)

Parámetros típicos de señales periódicas

- Periodo (T) expresado en segundos (s) o múltiplos. De forma equivalente, frecuencia (f) donde f=1/T, expresado en Hercios (Hz) o ciclos por segundo, o múltiplos
- Amplitud (A) expresado en voltios (V) o valor pico-pico (App, Vpp) expresado también en voltiosV
- Valor de continua (dc offset, Vdc), expresado en voltios

Circuito

- Es una red que interconecta dos o más elementos que contiene al menos una trayectoria cerrada

Partes del circuito

- Componentes.

Elementos con dos terminales y por el que puede pasar carga (Ej.: I, E1, E2, R1, R2, R3, R4, R5, R6)

- Nodo.

Punto en el cual dos o más componentes tienen una conexión común (EJ. A,B,C,D, E)

- Rama.

Conjunto de todos los elementos de un circuito comprendidos entre dos nodos consecutivos (Ej.: BC, CD, BD, etc.)

- Malla.

Un grupo de ramas que están unidas en una red y que a su vez forman un lazo cerrado. Ej, (ABC)

- Conductor o cable.

Une los componentes (Resistencia nula)

Masa o tierra (GND: ground):

- •La masa es un nudo del circuito que se toma como **referencia**.
- •Convenio: La tensión o potencial eléctrico en la masa tiene un valor nulo: $V_{GND} = 0$
- •Así, en los otros nodos puede hablarse de "la tensión o potencial en ese nodo":

$$V_{a} = V_{a} - V_{GND} = V_{a} - 0$$

•La masa de todos los circuitos e instrumental **se conectan** entre sí.

En el análisis de circuitos caben distinguir dos intervalos:

- •Estacionario: Intervalo de tiempo que ocurre cuando el comportamiento es estable
- •**Transitorio**: Intervalo que ocupa pasar de una situación estacionaria a la siguiente

Ejemplos:

Señal digital

Estacionario Transitorio

Salida simplificada de conmutador:

Ley de corrientes de Kirchhoff

"En cualquier nodo, la suma de la corriente que entra en ese nodo es igual a la suma de la corriente que sale.

De igual forma, la suma algebraica de todas las corrientes que

pasan por el nodo es igual a cero."

$$\sum_{k=1}^{n} I_k = I_1 + I_2 + I_3 \dots + I_n = 0$$

La corriente que pasa por un nodo es igual a la corriente que sale del mismo: i1 + i4 = i2 + i3.

Ley de tensiones de Kirchhoff

"En toda malla la suma de todas las caídas de tensión es igual a la suma de todas las subidas de tensión.

De forma equivalente, en toda malla la suma algebraica de las diferencias de potencial eléctrico es igual a 0."

$$\sum_{k=1}^{n} V_k = V_1 + V_2 + V_3 \dots + V_n = 0$$

Por ejemplo

$$\sum_{k=1}^{4} V_{k} = V_{1} + V_{2} + V_{3} + V_{4}$$

$$V_{ab} + V_{bc} + V_{cd} + V_{da} = 0$$

$$V_{ab} + V_{bc} + V_{cd} - E = 0$$

$$V_{ab} + V_{bc} + V_{cd} = E$$

Donde E=v4

Las principales componentes de circuito son:

•Resistencia (Ω , ohmio):

Cumple la ley de Ohm, $Vab = i \cdot R$

•Conductancia (G, S siemens):

$$G = 1/R$$

Vab

Condensador: Componente que almacena carga, q.

 Capacidad (F, Faradio): Es el parámetro que caracteriza a los condensadores y cumple:

$$q = CV_{ab}$$
$$i = C \frac{dV_{ab}}{dt}$$

 En continua o en el estado estacionario no circula corriente por C:

$$cc: q(t) = cte.$$

cc:
$$q(t) = cte$$
. $i = dq/dt = 0 \rightarrow V_{ab} = cte$

- •Fuentes de tensión: Son las componentes de circuito que generan señales de voltaje.
 - –Fuentes de continua: Generan V_{dc}
 - •Se usan como alimentación
 - •Representaciones diferentes
 - -Fuentes de alterna: Generan Vac
 - •Se usan como excitación

Ejemplo: Encontrar las tensiones de cada nodo e intensidades en cada rama del siguiente circuito

Paso 1: Asignamos etiquetas a todos los nodos

Paso 2: Identificamos todas las intensidades que circulan por cada rama del circuito. No es importante el sentido que se le asigne a la intensidad.

Paso 3: Ley de corrientes de Kirchoff aplicadas a todos los nodos. En este caso sólo el nodo b.

Ejemplo: Encontrar las tensiones de cada nodo e intensidades en cada rama del siguiente circuito

Paso 4: Ley de tensión de Kirchoff a cada malla Malla abd Malla bcd

$$V_{ad} = V_{ab} + V_{bd}$$
$$E_1 = V_{ab} + V_{bd}$$

$$V_{bd} = V_{bc} + V_{cd}$$
 $V_{bd} = V_{bc} + E_2$

$$i_{1}+i_{3}-i_{2}=0$$
 $E_{1}=V_{ab}+V_{bd}$
 $V_{bd}=V_{bc}+E_{2}$

Leyes de Kirchoff

Ejemplo: Encontrar las tensiones de cada nodo e intensidades en cada rama del siguiente circuito

Paso 5: Relacionar la caída de tensión o potencial eléctrico de cada componente con la intensidad que lo circula. Ley de Ohm.

Ejemplo: Encontrar las tensiones de cada nodo e intensidades en cada rama del siguiente circuito

Paso 6: Resolución del sistema de ecuaciones para obtener las intensidades en cada rama.

iComprobar que se verifica la ley de intensidades!

Ejemplo: Encontrar las tensiones de cada nodo e intensidades en cada rama del siguiente circuito

Paso Final: Obtención de las tensiones en cada nodo.

Nodos con voltajes fijados por las fuentes de tensión
$$V_a = 5V$$
 $V_c = 10V$ $V_d = 0$

$$V_b = R_2 i_2 = 1 k \frac{60}{21} mA = \frac{60}{21} V \approx 3V$$

$$V_b = E_1 - V_{ab} = E_1 - R_1 i_1 = 5 - 1 k \frac{45}{21} mA = \frac{60}{21} V$$

$$V_b = E_2 + V_{bc} = E_2 + R_3 i_3 = 10 - 10 k \frac{15}{21} mA = \frac{60}{21} V$$

Varias posibilidades para Vb

- Los componentes de un circuito se pueden distribuir o conexionar de dos formas básicas:
 - -SERIE: Misma intensidad, suma tensiones
 - **–PARALELO**: Misma tensión, suma intensidades
- Los componentes (R, C, E) de la misma naturaleza distribuidos de las formas básicas se pueden asociar para simplificar la complejidad del circuito.

Asociación serie

$$R_{eq} = R_1 + R_2$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

$$\begin{aligned} V_{ab} = R_{eq}i \\ V_{ab} = V_{ac} + V_{cd} + V_{db} = R_1i + R_2i + R_3i = (R_1 + R_2 + R_3)i \\ R_{eq} = R_1 + R_2 + R_3 \end{aligned}$$

$$V_{ab} = \frac{Q}{C_{eq}}$$

$$V_{ab} = V_{ac} + V_{cb} = \frac{Q}{C_1} + \frac{Q}{C_2} = (\frac{1}{C_1} + \frac{1}{C_2})Q$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2}$$

Asociación paralelo

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$C_{eq} = C_1 + C_2$$

$$Q_T = C_{eq} V_{ab}$$

$$Q_T = Q_1 + Q_2 = C_1 V_{ab} + C_2 V_{ab} = (C_1 + C_2) V_{ab}$$

$$C_{eq} = C_1 + C_2$$

$$Ceq$$

$$Ceq$$

$$Ceq$$

C1

Divisor de tensión

$$V_1 = V_s \cdot R_1 / (R_1 + R_2)$$

$$V_2 = V_s \cdot R_2 / (R_1 + R_2)$$

•Estas expresiones valen para todo valor de Vs y toda frecuencia

Demostración:

La intensidad del circuito es I. R1 y R2 están en serie.

$$i = \frac{V_s}{R_{eq}} = \frac{V_s}{R_1 + R_2}$$

La caída de tensión en la resistencia R1 y R2 vienen dadas por la ley de Ohm

$$V_1 = R_1 i = \frac{R_1}{R_1 + R_2} V_s$$

$$V_2 = R_2 i = \frac{R_2}{R_1 + R_2} V_s$$

Ejemplo: Resuelva el siguiente circuito

Inicio(I)	Q =0, Vc=0, i=Vs/R	Q=C Vc, i=Vc/R	
Intermedio (M)	Q↑, Vc↑, i↓	Q↓, Vc↓, i↓	
Final (F)	I=0, Vc = Vs, Q = C Vc	I=0, Vc=0, Q=0	
	M F	I M F	

Guión

Señales y circuitos eléctricos

- Señales eléctricas. Leyes de Kirchhoff
- Componentes básicas (R, C y Fuente)
- Análisis de circuitos eléctricos

Semiconductores

- Dispositivos semiconductores: Clasificación.
- Diodos.
- Transistores MOS.
- Modelos simples de gran señal
- Circuitos electrónicos: Ejemplos
 - Circuito con diodo
 - Circuito con transistores

Conducción eléctrica: Los materiales son:

- Conductores: Tienen muchos electrones (e-) libres
- Aislantes (dieléctricos): Pocos e- libres
- Semiconductores: En estado puro conducen 'regular' la corriente eléctrica, pero con impurezas son la base de la electrónica actual (el más utilizado es el Silicio).

Conducción del Si: El Si tiene 4 e- en la última capa

- Semiconductor intrínseco: Estado puro cristalino en el que comparten e- mediante enlaces covalentes. La única conducción es por e- libres generados por efecto térmico y causan una concentración baja.
- Semiconductor extrínseco: Tienen impurezas (V: P, As; III: Al, In, Ga)
 - Tipo n: dan e-
 - Tipo p: dan h+ (h: huecos, actúan como carga +)

Clasificación dispositivos semiconductores basados en Si:

- Diodo:
 - Unión PN
 - Otros: diodos ópticos (fotodiodos, diodos LED), de barrera¹ (Schottky), de ruptura² (Zener).
- Transistor (procede de 'transfer resistor'):
 - BJT (Bipolar Junction Transistor): Son los dispositivos de familias lógicas muy populares (TTL y subfamilias).
 - MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor):
 Son los dispositivos de la mayoría de circuitos integrados actuales (CMOS).

¹ Es especialmente rápido (se usa en alta frecuencia).

² Suele usarse como rectificador ya que al polarizarse inversamente mantiene entre sus terminales una tensión constante.

Diodo de unión:

Se trata de una unión de semiconductores P y N.

- Se forma una barrera de potencial asociada a una región de vaciamiento de portadores situada alrededor de la unión de los dos semiconductores.
 - Electrones del material n fluyen hacia el p por la diferencia de concentración, dejando una porción del material n con carga positiva.
 - Por el mismo motivo, huecos del material p fluyen al n, dejando una porción del material p con carga negativa.

Anodo

El campo eléctrico resultante frena el progreso de portadores

#http://www.youtube.com/watch?v=gfmeTxqLeX0

Cátodo

Diodo de unión:

- El diodo pn se puede polarizar en inversa.
- En esta situación, los electrones del material n se mueven hacia el polo positivo de la fuente, mientras que los huecos del material p hacia el negativo:
 - Se incrementa la región de vaciamiento
 - Se impide la circulación de portadores.

Diodo de unión:

- El diodo pn se puede polarizar en directa.
- En esta situación, la región de vaciamiento disminuye permitiendo que los electrones circulen del material n hacia el polos positivo de la fuente y los huecos del material p hacia el polo negativo.
- Se permite la circulación de portadores.

Diodo de unión:

 Macroscópicamente: Dispositivo que deja pasar la corriente para voltajes positivos (portándose como una resistencia variable) y la corta para los opuestos (rectificador).

MOSFET:

- La estructura física tiene 3 terminales:
 - G (Gate): Por donde se aplica la tensión del efecto campo. No conduce i.
 - D (Drain) y S (Source, fuente de e-).

#http://www.youtube.com/watch?v=9JKj-wIEPMY

MOSFET:

- SI $V_G = 0$, no hay corriente ente D y S (material n-p-n)
- Si $\mathbf{V_G}$ sube, se origina un campo eléctrico que atrae e- hacia el canal, el cual se transforma en un buen conductor entre \mathbf{D} y \mathbf{S} . Hay conducción de portadores entre \mathbf{D} y \mathbf{S}

MOSFET:

- Tipos de Mosfet: nMos, pMos
- En el transistor pMos, el canal se forma cuando la tensión de la puerta es negativa respecto de la fuente y drenador. De esta forma se atraen huecos que forman el canal que permite la conducción entre S y D

Guión

Señales y circuitos eléctricos

- Señales eléctricas. Leyes de Kirchhoff
- Componentes básicas (R, C y Fuente)
- Análisis de circuitos eléctricos

Semiconductores

- Dispositivos semiconductores: Clasificación.
- Diodos.
- Transistores MOS.

Modelos simples de gran señal

- Circuitos electrónicos: Ejemplos
 - Circuitos con diodo
 - Circuitos con transistores

Modelos de pequeña y de gran señal

- •Todos los circuitos electrónicos deben estar *alimentados* por una fuente de energía. Por ejemplo, en digital, Vcc es de 5V (respecto a GND).
- Con los circuitos complejos se trabaja con gran señal o con pequeña señal
 - -Gran señal: Los valores de las señales pivotan entre los valores extremos (o cerca de ellos). Por ejemplo, en digital, una señal normal cambia entre 0 y 5V.
 - Pequeña señal: El dispositivo trabaja con valores pequeños de señal que oscilan alrededor de un punto de operación.

Modelo simple de gran señal para el diodo:

CUIDADO
El diodo sólo
permite el paso de
corriente desde el
ánodo al cátodo

Modelo simple de gran señal para el n-MOSFET:

Modelo simple de gran señal para el p-MOSFET:

Modelo con resistencia para el MOSFET:

Guión

Señales y circuitos eléctricos

- Señales eléctricas. Leyes de Kirchhoff
- Componentes básicas (R, C y Fuente)
- Análisis de circuitos eléctricos

Semiconductores

- Dispositivos semiconductores: Clasificación.
- Diodos.
- Transistores MOS.
- Modelos simples de gran señal
- · Circuitos electrónicos: Ejemplos
 - Circuito con diodo
 - Circuito con transistoresCircuito

Ejercicio 1: Circuito con diodo

Determine si el diodo del siguiente circuito conduce:

Ejercicio 1: Circuito con diodo

Supongamos, inicialmente que el diodo está en contacto, es decir:

La corriente circulante por el diodo será

$$v_D \geq 0$$

$$i_D = 1.5/1,000 = 1.5 \text{ mA}$$

Ejercicio 1: Circuito con diodo

Asumamos ahora que el diodo está abierto. La II Ley de Kirchoff será, para este caso:

$$1.5 = v_D + 1,000i_D = v_D$$

Pero no circula corriente por la resistencia, por lo que:

$$v_D = 1.5 \text{ V}$$

Lo que **contradice** la condición:

$$v_D < 0$$

Para el diodo abierto. Por lo tanto, conduce.

Ejercicio 2: Circuito con transistores

Analice el siguiente circuito y complete la tabla:

X	Z
0 V	5 V
5 V	0 V

Ejercicio 3 Analice el siguiente circuito para el estado estacionario

Ley de Kirchoff de intensidades

$$i_1 = i_2 + i_3$$
 $i_2 = i_4 + i_5$
 $i_4 = i_3 = 0$
 $i_1 = i_2 = i_5 = i$

Ejercicio 3 El sentido de la corriente, i2, hace que D1 esté en ON.

i3=0 siempre por tanto q = 0. De esta forma Vfd = 0

