

Evaluating U-Nets for Skull Stripping of Augmented T1-weighted MRI Scans

Anway Pimpalkar¹ Dr. Rashmika Patole¹ Dr. Ketaki Kamble² Dr. Mahesh Shindikar²

COEP Technological University, Pune IN

¹Department of Electronics and Telecommunication, ²Department of Applied Sciences

Neuroimaging Techniques

Computed Tomography

Diffusion Tensor Imaging Magnetic Resonance Spectroscopy Magnetization Transfer Imaging

Cerebral Perfusion Imaging Single Photon Emission Computed Tomography Magnetic Resonance Imaging

Positron Emission Tomography

Electroencephalogram

Ultrasound Imaging Functional Near-Infrared Spectroscopy

Neuroimaging Techniques

Computed Tomography

Diffusion Tensor Imaging Magnetic Resonance Spectroscopy Magnetization Transfer Imaging

Cerebral Perfusion Imaging

Single Photon Emission Computed Tomography Magnetic Resonance Imaging

Positron Emission Tomography

Electroencephalogram

Ultrasound Imaging Functional Near-Infrared Spectroscopy

MRIs and Skull Stripping

- Information of both brain and non-brain tissues.
- Only brain tissue required for most studies of neuroanatomy, neurophysiology, and internal functions such as cognition and control.
- **Skull Stripping** is the separation of brain tissue, including grey and white matter from non-brain voxels such as the skull, scalp, and dura mater.

Fig 1. Adapted from the work by Lee et al. (2011).

Hahn et al. (2000).

Conventional Skull Stripping Methods

4

Disadvantages:

- Require many user-dependent parameters.
- Susceptible to multi-scanner variability.

Kalavathi et al. (2015).

Machine Learning
Based

• Fuzzy Active
Surface Model
• ROBEX

• ROBEX

Deep Learning
Based

• 3D-CNN
• VoxResNet
• U-Nets

Advances in Skull Stripping

• U-Net architectures are encoder-decoder networks for semantic segmentation.

Fig 2. U-Net architecture representation. (Ronneberger et al., 2015)

Advances in Skull Stripping

• U-Net architectures are encoder-decoder networks for semantic segmentation.

Fig 2. U-Net architecture representation. (Ronneberger et al., 2015)

Project Objective

- To evaluate the performance of three flavors of 2D U-Net architectures for Skull Stripping:
 - (a) Vanilla
 - (b) Residual
 - (c) Dense
- Robustness to multi-scanner variance.

U-Net Architectures

To Back College Colleg

- Encoder-decoder
- Two paths:
 - Contractive: Downsampling image to feature representation.
 - Expansive: Upsampling representation to segmentation map.
- 2D or 3D convolutions
- Skip connections

- Based on connection density, we divide them into:
 - Vanilla U-Net
 - Residual U-Net
 - Dense U-Net.

Fig 2. U-Net architecture representation. (Ronneberger et al., 2015)

Fig 3. U-Net input and output.

Ronneberger et al. (2015).

Training Methodology

→ Pre-processing

• Intensity z - normalization

$$I_{Z-norm}(x) = \frac{I(x) - \mu_{brain}}{\sigma_{brain}}$$

- Intensity transforms
- Spatial transforms
- Training dataset grown fivefold, i.e. 550 scans

Data Augmentation

Trained U-Net Model

Hyperparameters

- Optimizer = Adam
- $\beta_1 = 0.9$
- $\beta_2 = 0.999$
- $\varepsilon = 10^{-8}$
- $\alpha = 10^{-5}$
- $\alpha = \text{Decay} = 1.99 \times 10^{-8}$

assisted by BEaSTTotal 125 scans, 110 used for

training, 15 for test

Skull Stripping using U-Nets

Implementation:

- Train/Validation split: 90/10 (Repeated Holdout).
- EarlyStopping callback to prevent overfitting.
- TensorFlow in Python.
- NVIDIA A100 Tensor Core GPU (40GB) Hardware Accelerator.

Results

- Loss Function: Binary Cross Entropy Loss Function
- Metric: Accuracy

Results

• Loss Function: Binary Cross Entropy Loss Function

• Metric: Accuracy

Table 2. 2D U-Net architecture training results.

Architecture	Epochs	Batch Size	Training		Validation		Testing	
			Loss	Accuracy	Loss	Accuracy	Loss	Accuracy
Vanilla	10	32	0.0066	99.72%	0.0093	99.63%	0.0065	99.73%
Residual	9	32	0.0066	99.72%	0.0092	99.63%	0.0067	99.72%
Dense	9	16	0.0053	99.77%	0.0085	99.67%	0.0062	99.75%

Fig 8. (a) A sagittal 3D T1-w MRI slice from the NFBS repository and (b) corresponding Skull Stripped mask superimposed on the MRI scan.

Conclusion and Ongoing Work

- Dense 2D U-Net Architectures:
 - Better performance with same network depth.
 - Strengthen shallower models.
- Almost same output accuracies for all, need to dive deeper.
- Current work:
 - Test multi-variate scanning.
 - Expand number of architectures.

Fig 8. (a) A sagittal 3D T1-w MRI slice from the NFBS repository and (b) corresponding Skull Stripped mask superimposed on the MRI scan.

Acknowledgements

Dr. Rashmika Patole, Dr. Ketaki Kamble, and Dr. Mahesh Shindikar

Supervisors

Center of Excellence in Signal and Image Processing

Department of Electronics and Telecommunication COEP Technological University

Reach out! pimpalkaras19.extc@coep.ac.in