19. Trójkat równoramienny

19.1. Podstawa trójkąta równoramiennego ma długość 4, a pole tego trójkąta jest równe $8\sqrt{2}$. Obwód tego trójkąta jest równy:

B.
$$4(1+\sqrt{3})$$

C.
$$4(1+\sqrt{5})$$

19.2. Pole trójkąta równoramiennego ABC o podstawie |AB| = 8, jest równe 12. Ramię BCtrójkąta ABC ma długość:

B.
$$4\sqrt{2}$$

C.
$$4\sqrt{5}$$

D.
$$\sqrt{73}$$

19.3. Dany jest trójkąt KLM o polu P=16, w którym $|KL|=8\sqrt{2}$ oraz |KM|=|LM|. Obwód trójkąta KLM jest równy:

A.
$$2(\sqrt{10} + 4\sqrt{2})$$
 B. $4(\sqrt{10} + 2\sqrt{2})$

B.
$$4(\sqrt{10} + 2\sqrt{2})$$

C.
$$12\sqrt{2}$$

D.
$$20\sqrt{2}$$

19.4. W trójkącie ABC odcinki AB i AC są równej długości, zaś |BC| = 2. Pole trójkąta ABC wynosi $2\sqrt{2}$. Wtedy

A.
$$|AB| = \sqrt{3}$$
 B. $|AB| = 3$

B.
$$|AB| = 3$$

C.
$$|AB| = 2\sqrt{3}$$
 D. $|AB| = 2$

D.
$$|AB| = 2$$

19.5. Pole trójkąta RST jest równe 3, ponadto |RS| = 3 oraz |RT| = |ST| (zobacz rysunek):

Zatem:

A.
$$|RT| = 1.5$$

B.
$$|RT| = 2$$

C.
$$|RT| = 2.5$$

D.
$$|RT| = 3$$

19.6. Odcinek |AD| = 3 jest jedną z wysokości trójkąta równoramiennego ABC, w którym $|AB| = |AC| = 3\sqrt{3}$. Wtedy

A.
$$4 < |BC| < 5$$

A.
$$4 < |BC| < 5$$
 B. $5 < |BC| < 6$ C. $8 < |BC| < 9$

C.
$$8 < |BC| < 9$$

D.
$$9 < |BC| < 10$$

Informacja do zadań 19.7. i 19.8.

W trójkącie równoramiennym ABC dane są: $|AB| = |BC| = 4\sqrt{3}$ oraz |BS| = 4, gdzie S jest środkiem odcinka AC.

19.7. Długość podstawy AC trójkąta ABC spełnia warunek:

A.
$$\frac{11}{2} < |AC| < \frac{13}{2}$$

B.
$$\frac{13}{2} < |AC| < \frac{15}{2}$$

A.
$$\frac{11}{2} < |AC| < \frac{13}{2}$$
 B. $\frac{13}{2} < |AC| < \frac{15}{2}$ C. $\frac{19}{2} < |AC| < \frac{21}{2}$ D. $\frac{21}{2} < |AC| < \frac{23}{2}$

D.
$$\frac{21}{2} < |AC| < \frac{23}{2}$$

19.8. Pole trójkąta ABC jest równe:

A.
$$4\sqrt{2}$$

B.
$$8\sqrt{2}$$

C.
$$16\sqrt{2}$$

D.
$$32\sqrt{2}$$