Multiple Choice Questions - Exercise 6.9

- 1. What is the rotation angle θ for the equation $5x^2 6xy + 5y^2 8 = 0$ to eliminate the xy-term?
 - a) 30°
 - b) 45°
 - c) 60°
 - d) 90°
- 2. For the transformation $x = X \cos \theta Y \sin \theta$, if $\theta = 45^{\circ}$, what is the expression for x?
 - a) $\frac{X-Y}{\sqrt{2}}$
 - b) $\frac{X+Y}{\sqrt{2}}$
 - c) X Y
 - d) X + Y
- 3. After rotating the axes for $4x^2 4xy + y^2 6 = 0$ with $\tan \theta = 2$, the transformed equation is $Y^2 = \frac{6}{5}$. What type of conic is this?
 - a) Ellipse
 - b) Parabola
 - c) Hyperbola
 - d) Circle
- 4. For the equation $x^2 2xy + y^2 8x 8y = 0$, the rotation angle θ is 45°. What is the vertex of the resulting parabola?
 - a) (0,0)
 - b) (1,1)
 - c) $(\sqrt{2},0)$
 - d) $(-\sqrt{2},0)$
- 5. What is the slope of the tangent to $3x^2 7y^2 + 2x y 48 = 0$ at the point (4,1)?
 - a) $\frac{26}{15}$
 - b) $\frac{15}{26}$
 - c) $-\frac{1}{3}$
 - d) $\frac{5}{8}$
- 6. For the equation 10xy + 8x 15y 12 = 0, what does the determinant condition indicate?
 - a) Represents a circle
 - b) Represents a pair of straight lines
 - c) Represents an ellipse
 - d) Represents a hyperbola
- 7. The transformed equation of $x^2 + xy + y^2 4 = 0$ after rotation with $\theta = 45^{\circ}$ is $\frac{X^2}{8} + \frac{Y^2}{8} = 3$. What is the center of this conic?
 - a) (0,0)

- b) (1,1)
- c) (2,2)
- d) $(-\sqrt{2}, \sqrt{2})$
- 8. For $x^2 + 5xy 4y^2 + 4 = 0$ at the point (0, -1), what is the equation of the tangent?
 - a) 5x 8y 8 = 0
 - b) 5x + 8y + 8 = 0
 - c) 8x 5y 8 = 0
 - d) 8x + 5y 8 = 0
- 9. In the equation $6x^2 + xy y^2 21x 8y + 9 = 0$, if the determinant is zero, what does it represent?
 - a) Single line
 - b) Pair of straight lines
 - c) Parabola
 - d) Ellipse
- 10. What is the focus of the parabola $Y^2 4\sqrt{2}X = 0$ derived from $x^2 2xy + y^2 8x 8y = 0$?
 - a) $(\sqrt{2},0)$
 - b) $(0, \sqrt{2})$
 - c) $(-\sqrt{2},0)$
 - d) $(0, -\sqrt{2})$