# Linear-Time Algorithm for Sliding Tokens on Trees

Erik D. Demaine<sup>1</sup>, Martin L. Demaine<sup>1</sup>, Eli Fox-Epstein<sup>2</sup>, Duc A. Hoang<sup>3</sup>, Takehiro Ito<sup>4</sup>, Hirotaka Ono<sup>5</sup>, Yota Otachi<sup>3</sup>, Ryuhei Uehara<sup>3</sup>, and Takeshi Yamada<sup>3</sup>

<sup>1</sup>Massachusetts Institute of Technology, USA. {edemaine, mdemaine}@mit.edu

<sup>2</sup>Brown University, USA. ef@cs.brown.edu

<sup>3</sup>JAIST, Japan. {hoanganhduc, otachi, uehara, tyama}@jaist.ac.jp

<sup>4</sup>Tohoku University, Japan. takehiro@ecei.tohoku.ac.jp

<sup>5</sup>Kyushu University, Japan. hirotaka@econ.kyushu-u.ac.jp



#### Abstract

Suppose that we are given two independent sets  $\mathbf{I}_b$  and  $\mathbf{I}_r$  of a graph such that  $|\mathbf{I}_b| = |\mathbf{I}_r|$ , and imagine that a token is placed on each vertex in  $\mathbf{I}_b$ . Then, the SLID-ING TOKEN problem is to determine whether there exists a sequence of independent sets which transforms  $\mathbf{I}_b$  into  $\mathbf{I}_r$  so that each independent set in the sequence results from the previous one by sliding exactly one token along an edge in the graph. This problem is known to be PSPACE-complete even for planar graphs, and also for bounded treewidth graphs.

In this poster, we show that the problem is solvable for trees in linear time.

## 1. Examples

#### 1.1 A YES-instance



A YES-instance, where  $\mathbf{I}_1 \stackrel{T}{\longleftrightarrow} \mathbf{I}_5$ . Token on w makes detour.

#### 1.2 A NO-instance



A NO-instance for the SLIDING TOKEN problem.

### 2. Sliding tokens on trees (ISAAC 2014)

**Theorem 1.** The SLIDING TOKEN problem can be solved in time O(n) for any tree T with n vertices.

#### 2.1 Rigid tokens

Intuitively, a token on  $v \in \mathbf{I}$  is  $(T, \mathbf{I})$ -rigid if it cannot be slid at all.



An independent set **I** of a tree T, where  $t_1, t_2, t_3, t_4$  are  $(T, \mathbf{I})$ -rigid tokens and  $t_5, t_6, t_7$  are  $(T, \mathbf{I})$ -movable tokens. For the subtree T', tokens  $t_6, t_7$  are  $(T', \mathbf{I} \cap T')$ -rigid.

# 2.2 Determine all rigid tokens



Subtree  $T_v^u$  in the whole tree T.



(a) A  $(T, \mathbf{I})$ -rigid token on u, and (b) a  $(T, \mathbf{I})$ -movable token on u.

**Observation:** If the set of movable tokens is not empty, then there is at least one movable token which can be immediately slid to one of its neighbors.

## 2.3 Instances without rigid tokens



A degree-1 vertex v of a tree T which is safe.



Move the nearest token to v (safe degree-1).

## 3. Discussion

#### 3.1 Extend the concept of "rigid tokens"



A NO-instance for an interval graph. Here all tokens are not rigid, but they are movable in some "restricted area".

# 3.2 An applicable strategy for solving SLIDING TO-KEN problem

- 1. Characterize the set of tokens which are movable in some "restricted area".
- 2. Consider the problem's instances when there are no such tokens.