МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ им. А.И. ГЕРЦЕНА»

Направление подготовки

09.03.01 – Информатика и вычислительная техника

Профиль «Технологии разработки программного обеспечения»

Лабораторная работа №1

«Классификация погрешностей измерения»

Работу выполнили студенты 2 курса 2-1 группы:

Зухир Амира

Крючкова Анастасия

Стецук Максим

Максимова Ангелина

СОДЕРЖАНИЕ

Отчет Зухир Амиры	2
Отчет Крючковой Анастасии	10
Отчет Стецук Максима	17
Отчет Максимовой Ангелины	24

Зухир Амира ИВТ 2.1

Лабораторная работа №1

Классификация погрешностей измерения

Цель лабораторной работы: вычислить погрешности

Инструменты: Excel, PyCharm.

В рамках данной лабораторной работы, был использовал язык программирования Python 3.10

Использованные формулы:

1- Среднее значение:

$$\bar{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

2- Среднеквадратичная погрешность (дисперсия):

$$\Delta S^{2} = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_{i} - x_{0})^{2} - n(\bar{x} - x_{0})^{2} \right)$$

3- Стандартное отклонение:

$$\Delta S = \sqrt{\Delta S^2}$$

4- Абсолютная погрешность:

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_{\alpha} \cdot \Delta S$$

5- Относительная погрешность:

$$\frac{\Delta x}{x} \cdot 100\%$$

Залание 1:

В таблице представлены результаты измерений диаметра цилиндра. Вычислить погрешность эксперимента средствами Excel. В качестве d_0 выбрать удобное для вычисления значение, например 14.80. Результаты оформить в виде таблицы.

В качестве d₀, было взято значение 14.80.

Таблица:

n	d, mm	di - do	(di - do)^2	Среднее d	Средне-	Станд.	Абсол.	Относит.
					квадратическая	отклонение	погреш.	погреш.
					погрешность			
1	14,85	0,05	0,0025					
2	14,80	0	0					
3	14,79	-0,01	0,0001	14,818	0,000134	0,011576	0,0297	0,201%
4	14,84	0,04	0,0016					
5	14,81	0,01	0,0001					
do	14,8							

Программа:

```
from math import sqrt
dMas = [14.85, 14.80, 14.79, 14.84, 14.81]
d0 = 14.8
print('Значения:', dMas,'\n')
print('d0 =', d0 ,'\n')
summa = 0
for i in range(5):
   summa += (dMas[i]-d0)
sred = d\theta + (1/5)*summa
print('Среднее d: %.3f\n' % sred)
summa2 = 0
for i in range(5):
    summa2 += (dMas[i]-d0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-d0)**2)
print('Средне-квадратическая погрешность: %.6f\n' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f\n' % sOtkl)
absPog = s0tk1 * 2.57
print('A6солютная погрешность: %.6f\n' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

Значения: [14.85, 14.8, 14.79, 14.84, 14.81]

d0 = 14.8

Среднее d: 14.818

Средне-квадратическая погрешность: 0.000134

Стандартное отклонение: 0.011576

Абсолютная погрешность: 0.029750

Относительная погрешность: 0.201 %

Задание 2:

В результате определения содержания алюминия в сплаве получены следующие значения (в % масс): 7.48, 7.49, 7.52, 7.47, 7.50. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве m₀ выбрать 7.48.

Таблица:

n	m, %	mi - mo	(mi - mo)^2	Среднее	Средне-	Станд.	Абсол.	Относит.
	масс			m	квадратическая	отклонение	погреш.	погреш.
					погрешность			
1	7,48	0,00	0,0000					
2	7,49	0,01	0,0001					
3	7,52	0,04	0,0016	7,492	0,000074	0,008602	0,0221	0,295%
4	7,47	-0,01	0,0001					
5	7,50	0,02	0,0004					
mo	7,48							

```
from math import sqrt
mMas = [7.48, 7.49, 7.52, 7.47, 7.5]
m0 = 7.48
print('Значения:', mMas)
print('m0 =', m0)
summa = 0
for i in range(5):
    summa += (mMas[i]-m0)
sred = m0 + (1/5)*summa
print('Cpeднee m: %.3f' % sred)
summa2 = 0
for i in range(5):
    summa2 += (mMas[i]-m0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-m0)**2)
print('Средне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tkl * 2.57
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [7.48, 7.49, 7.52, 7.47, 7.5] m0 = 7.48
Среднее m: 7.492
Средне-квадратическая погрешность: 0.000074
Стандартное отклонение: 0.008602
Абсолютная погрешность: 0.022108
Относительная погрешность: 0.295 %
```

Задание 3:

При взвешивании образца анализируемого вещества получены следующие результаты: 47,12; 47,08; 47,13 г. Оценить истинную массу образца и определить точность этой оценки для доверительной вероятности 0,95.

n	т, г	m i - m 0	(mi - mo)^2	Среднее	Средне-	Станд.	Абсол.	Относит.
				m	квадратическая	отклонение	погреш.	погреш.
					погрешность			
1	47,12	0,01	0,0001					
2	47,08	-0,03	0,0009	47,110	0,000233	0,015275	0,0486	0,103%
3	47,13	0,02	0,0004					
do	47,11							
do	47,11							

```
from math import sqrt
mMas = [47.12, 47.08, 47.13]
m0 = 47.11
print('Значения:', mMas)
print('m0 =', m0)
summa = 0
for i in range(3):
    summa += (mMas[i]-m0)
sred = m0 + (1/3)*summa
print('Cpeднее m: %.3f' % sred)
summa2 = 0
for i in range(3):
    summa2 += (mMas[i]-m0)**2
sred2 = (1/(3*2))*(summa2 - 5*(sred-m0)**2)
print('Cpeдне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tkl * 3.182
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [47.12, 47.08, 47.13]

m0 = 47.11

Среднее m: 47.110

Средне-квадратическая погрешность: 0.000233

Стандартное отклонение: 0.015275

Абсолютная погрешность: 0.048606

Относительная погрешность: 0.103 %
```

Задание 4:

Самостоятельно подобрать задачу, реализовать ее и оформить в лабораторной работе.

Условие задачи: при проведении лабораторной работы по физике были записаны результаты измерений силы тока в цепи разными амперметрами. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве I_0 выбрать 10.6.

	n	I, A	ıi - lo	(li - lo)^2	Среднее I	Средне- квадратическая погрешность	Станд. отклонен ие	Абсол. погреш.	Относит. погреш.
	1	10,58	-0,02	0,0004					
	2	10,64	0,04	0,0016					
	3	10,60	0,00	0,0000	10,610	0,000100	0,010000	0,0257	0,242%
	4	10,61	0,01	0,0001					
	5	10,62	0,02	0,0004					
10	0	10,6							

Программа:

```
from math import sqrt
IMas = [10.58, 10.64, 10.60, 10.61, 10.62]
I0 = 10.6
print('Значения:', IMas)
print('I0 =', I0)
summa = 0
for i in range(5):
    summa += (IMas[i]-I0)
sred = I0 + (1/5)*summa
print('Cpeднее I: %.3f' % sred)
summa2 = 0
for i in range(5):
    summa2 += (IMas[i]-I0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-I0)**2)
print('Средне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [10.58, 10.64, 10.6, 10.61, 10.62]
I0 = 10.6
Среднее I: 10.610
Средне-квадратическая погрешность: 0.000100
Стандартное отклонение: 0.010000
Абсолютная погрешность: 0.025700
Относительная погрешность: 0.242 %
```

Вывод:

В данной лабораторной работы, мы посчитали погрешности для различных задач, а также написали для каждой задачки программу. В итоге, результаты вычислений в Excel полностью совпали с вычислениями наших программ.

Лабораторная работа №1

Классификация погрешностей измерения

Цель лабораторной работы: вычислить погрешности

Инструменты: Excel, PyCharm.

В рамках данной лабораторной работы, был использовал язык программирования Python 3.10

Использованные формулы:

1- Среднее значение:

$$\bar{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

2- Среднеквадратичная погрешность (дисперсия):

$$\Delta S^{2} = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_{i} - x_{0})^{2} - n(\bar{x} - x_{0})^{2} \right)$$

3- Стандартное отклонение:

$$\Delta S = \sqrt{\Delta S^2}$$

4- Абсолютная погрешность:

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_{\alpha} \cdot \Delta S$$

5- Относительная погрешность:

$$\frac{\Delta x}{x} \cdot 100\%$$

Задание 1:

В таблице представлены результаты измерений диаметра цилиндра. Вычислить погрешность эксперимента средствами Excel. В качестве d₀ выбрать удобное для вычисления значение, например 14.80. Результаты оформить в виде таблицы.

В качестве d₀, было взято значение 14.80.

Таблица:

n	d, mm	d i - d 0	(di - do)^2	Среднее d	Средне-	Станд.	Абсол.	Относит.
					квадратическая	отклонение	погреш.	погреш.
					погрешность			
1	14,85	0,05	0,0025					
2	14,80	0	0					
3	14,79	-0,01	0,0001	14,818	0,000134	0,011576	0,0297	0,201%
4	14,84	0,04	0,0016					
5	14,81	0,01	0,0001					
do	14,8							

Программа:

```
from math import sqrt
dMas = [14.85, 14.80, 14.79, 14.84, 14.81]
d0 = 14.8
print('Значения:', dMas,'\n')
print('d0 =', d0 ,'\n')
summa = 0
for i in range(5):
    summa += (dMas[i]-d0)
sred = d\theta + (1/5)*summa
print('Среднее d: %.3f\n' % sred)
summa2 = 0
for i in range(5):
    summa2 += (dMas[i]-d0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-d0)**2)
print('Cpeдне-квадратическая погрешность: %.6f\n' % sred2)
s0tkl = sqrt(sred2)
print('Cтандартное отклонение: %.6f\n' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f\n' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

Значения: [14.85, 14.8, 14.79, 14.84, 14.81]

d0 = 14.8

Среднее d: 14.818

Средне-квадратическая погрешность: 0.000134

Стандартное отклонение: 0.011576

Абсолютная погрешность: 0.029750

Относительная погрешность: 0.201 %

Задание 2:

В результате определения содержания алюминия в сплаве получены следующие значения (в % масс): 7.48, 7.49, 7.52, 7.47, 7.50. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве m₀ выбрать 7.48.

Таблица:

ее Средне- Станд. Абсол. Относит.	Среднее	(mi - mo)^2	m i - m 0	m, %	n
квадратическая отклонение погреш. погреш.	m			масс	
погрешность					
		0,0000	0,00	7,48	1
		0,0001	0,01	7,49	2
0,000074 0,008602 0,0221 0,295%	7,492	0,0016	0,04	7,52	3
		0,0001	-0,01	7,47	4
		0,0004	0,02	7,50	5
				7,48	mo
0,000074 0,008602 0,022	7,492	0,0016 0,0001	0,04 -0,01 0,02	7,52 7,47 7,50	3 4 5

```
from math import sqrt
mMas = [7.48, 7.49, 7.52, 7.47, 7.5]
m0 = 7.48
print('Значения:', mMas)
print('m0 =', m0)
summa = 0
for i in range(5):
    summa += (mMas[i]-m0)
sred = m0 + (1/5)*summa
print('Cpeднee m: %.3f' % sred)
summa2 = 0
for i in range(5):
    summa2 += (mMas[i]-m0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-m0)**2)
print('Cpeдне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [7.48, 7.49, 7.52, 7.47, 7.5]

m0 = 7.48

Среднее m: 7.492

Средне-квадратическая погрешность: 0.000074

Стандартное отклонение: 0.008602

Абсолютная погрешность: 0.022108

Относительная погрешность: 0.295 %
```

Задание 3:

При взвешивании образца анализируемого вещества получены следующие результаты: 47,12; 47,08; 47,13 г. Оценить истинную массу образца и определить точность этой оценки для доверительной вероятности 0,95.

n	т, г	m i - m 0	(mi - mo)^2	Среднее	Средне-	Станд.	Абсол.	Относит.
				m	квадратическая	отклонение	погреш.	погреш.
					погрешность			
1	47,12	0,01	0,0001					
2	47,08	-0,03	0,0009	47,110	0,000233	0,015275	0,0486	0,103%
3	47,13	0,02	0,0004					
do	47,11							

```
from math import sqrt
mMas = [47.12, 47.08, 47.13]
m0 = 47.11
print('Значения:', mMas)
print('m0 =', m0)
summa = 0
for i in range(3):
    summa += (mMas[i]-m0)
sred = m0 + (1/3)*summa
print('Cpeднее m: %.3f' % sred)
summa2 = 0
for i in range(3):
    summa2 += (mMas[i]-m0)**2
sred2 = (1/(3*2))*(summa2 - 5*(sred-m0)**2)
print('Cpeдне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tkl * 3.182
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [47.12, 47.08, 47.13]

m0 = 47.11

Среднее m: 47.110

Средне-квадратическая погрешность: 0.000233

Стандартное отклонение: 0.015275

Абсолютная погрешность: 0.048606

Относительная погрешность: 0.103 %
```

Задание 4:

Самостоятельно подобрать задачу, реализовать ее и оформить в лабораторной работе.

Условие задачи: при проведении лабораторной работы по физике были записаны результаты измерений силы тока в цепи разными амперметрами. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве I_0 выбрать 10.6.

	n	I, A	ıi - l o	(li - lo)^2	Среднее I	Средне-	Станд.	Абсол.	Относит.
						квадратическая	отклонен	погреш.	погреш.
						погрешность	ие		
	1	10,58	-0,02	0,0004					
	2	10,64	0,04	0,0016					
	3	10,60	0,00	0,0000	10,610	0,000100	0,010000	0,0257	0,242%
	4	10,61	0,01	0,0001					
	5	10,62	0,02	0,0004					
	10	10,6							
Ī									

Программа:

```
from math import sqrt
IMas = [10.58, 10.64, 10.60, 10.61, 10.62]
I0 = 10.6
print('Значения:', IMas)
print('I0 =', I0)
summa = 0
for i in range(5):
    summa += (IMas[i]-I0)
sred = I0 + (1/5)*summa
print('Cpeднее I: %.3f' % sred)
summa2 = 0
for i in range(5):
    summa2 += (IMas[i]-I0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-I0)**2)
print('Средне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [10.58, 10.64, 10.6, 10.61, 10.62]
I0 = 10.6
Среднее I: 10.610
Средне-квадратическая погрешность: 0.000100
Стандартное отклонение: 0.010000
Абсолютная погрешность: 0.025700
Относительная погрешность: 0.242 %
```

Вывод:

В данной лабораторной работы, мы посчитали погрешности для различных задач, а также написали для каждой задачки программу. В итоге, результаты вычислений в Excel полностью совпали с вычислениями наших программ.

Лабораторная работа №1

Классификация погрешностей измерения

Цель лабораторной работы: вычислить погрешности

Инструменты: Excel, PyCharm.

В рамках данной лабораторной работы, был использовал язык программирования Python 3.10

Использованные формулы:

1- Среднее значение:

$$\bar{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

2- Среднеквадратичная погрешность (дисперсия):

$$\Delta S^{2} = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_{i} - x_{0})^{2} - n(\bar{x} - x_{0})^{2} \right)$$

3- Стандартное отклонение:

$$\Delta S = \sqrt{\Delta S^2}$$

4- Абсолютная погрешность:

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_{\alpha} \cdot \Delta S$$

5- Относительная погрешность:

$$\frac{\Delta x}{x} \cdot 100\%$$

Задание 1:

В таблице представлены результаты измерений диаметра цилиндра. Вычислить погрешность эксперимента средствами Excel. В качестве d₀ выбрать удобное для вычисления значение, например 14.80. Результаты оформить в виде таблицы.

В качестве d₀, было взято значение 14.80.

Таблица:

n	d, mm	di - do	(di - do)^2	Среднее d	Средне-	Станд.	Абсол.	Относит.
					квадратическая	отклонение	погреш.	погреш.
					погрешность			
1	14,85	0,05	0,0025					
2	14,80	0	0					
3	14,79	-0,01	0,0001	14,818	0,000134	0,011576	0,0297	0,201%
4	14,84	0,04	0,0016					
5	14,81	0,01	0,0001					
do	14,8							

Программа:

```
from math import sqrt
dMas = [14.85, 14.80, 14.79, 14.84, 14.81]
d0 = 14.8
print('Значения:', dMas,'\n')
print('d0 =', d0 ,'\n')
summa = 0
for i in range(5):
    summa += (dMas[i]-d0)
sred = d\theta + (1/5)*summa
print('Среднее d: %.3f\n' % sred)
summa2 = 0
for i in range(5):
    summa2 += (dMas[i]-d0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-d0)**2)
print('Cpeдне-квадратическая погрешность: %.6f\n' % sred2)
s0tkl = sqrt(sred2)
print('Cтандартное отклонение: %.6f\n' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f\n' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

Значения: [14.85, 14.8, 14.79, 14.84, 14.81]

d0 = 14.8

Среднее d: 14.818

Средне-квадратическая погрешность: 0.000134

Стандартное отклонение: 0.011576

Абсолютная погрешность: 0.029750

Относительная погрешность: 0.201 %

Задание 2:

В результате определения содержания алюминия в сплаве получены следующие значения (в % масс): 7.48, 7.49, 7.52, 7.47, 7.50. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве m₀ выбрать 7.48.

Таблица:

1	n	m, %	m i - m 0	(mi - mo)^2	Среднее	Средне-	Станд.	Абсол.	Относит.
		масс			m	квадратическая	отклонение	погреш.	погреш.
						погрешность			
	1	7,48	0,00	0,0000					
2	2	7,49	0,01	0,0001					
3	3	7,52	0,04	0,0016	7,492	0,000074	0,008602	0,0221	0,295%
4	4	7,47	-0,01	0,0001					
į	5	7,50	0,02	0,0004					
m	10	7,48							

```
from math import sqrt
mMas = [7.48, 7.49, 7.52, 7.47, 7.5]
m0 = 7.48
print('Значения:', mMas)
print('m0 =', m0)
summa = 0
for i in range(5):
    summa += (mMas[i]-m0)
sred = m0 + (1/5)*summa
print('Cpeднee m: %.3f' % sred)
summa2 = 0
for i in range(5):
    summa2 += (mMas[i]-m0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-m0)**2)
print('Cpeдне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [7.48, 7.49, 7.52, 7.47, 7.5] m0 = 7.48
Среднее m: 7.492
Средне-квадратическая погрешность: 0.000074
Стандартное отклонение: 0.008602
Абсолютная погрешность: 0.022108
Относительная погрешность: 0.295 %
```

Задание 3:

При взвешивании образца анализируемого вещества получены следующие результаты: 47,12; 47,08; 47,13 г. Оценить истинную массу образца и определить точность этой оценки для доверительной вероятности 0,95.

n	т, г	m i - m 0	(mi - mo)^2	Среднее	Средне-	Станд.	Абсол.	Относит.
				m	квадратическая	отклонение	погреш.	погреш.
					погрешность			
1	47,12	0,01	0,0001					
2	47,08	-0,03	0,0009	47,110	0,000233	0,015275	0,0486	0,103%
3	47,13	0,02	0,0004					
do	47,11							

```
from math import sqrt
mMas = [47.12, 47.08, 47.13]
m0 = 47.11
print('Значения:', mMas)
print('m0 =', m0)
summa = 0
for i in range(3):
    summa += (mMas[i]-m0)
sred = m0 + (1/3)*summa
print('Cpeднее m: %.3f' % sred)
summa2 = 0
for i in range(3):
    summa2 += (mMas[i]-m0)**2
sred2 = (1/(3*2))*(summa2 - 5*(sred-m0)**2)
print('Cpeдне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tkl * 3.182
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [47.12, 47.08, 47.13]

m0 = 47.11

Среднее m: 47.110

Средне-квадратическая погрешность: 0.000233

Стандартное отклонение: 0.015275

Абсолютная погрешность: 0.048606

Относительная погрешность: 0.103 %
```

Задание 4:

Самостоятельно подобрать задачу, реализовать ее и оформить в лабораторной работе.

Условие задачи: при проведении лабораторной работы по физике были записаны результаты измерений силы тока в цепи разными амперметрами. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве I_0 выбрать 10.6.

	n	I, A	ıi - lo	(li - lo)^2	Среднее I	Средне- квадратическая погрешность	Станд. отклонен ие	Абсол. погреш.	Относит. погреш.
	1	10,58	-0,02	0,0004					
	2	10,64	0,04	0,0016					
	3	10,60	0,00	0,0000	10,610	0,000100	0,010000	0,0257	0,242%
	4	10,61	0,01	0,0001					
	5	10,62	0,02	0,0004					
10)	10,6							

Программа:

```
from math import sqrt
IMas = [10.58, 10.64, 10.60, 10.61, 10.62]
I0 = 10.6
print('Значения:', IMas)
print('I0 =', I0)
summa = 0
for i in range(5):
    summa += (IMas[i]-I0)
sred = I0 + (1/5)*summa
print('Cpeднее I: %.3f' % sred)
summa2 = 0
for i in range(5):
    summa2 += (IMas[i]-I0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-I0)**2)
print('Средне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [10.58, 10.64, 10.6, 10.61, 10.62]
I0 = 10.6
Среднее I: 10.610
Средне-квадратическая погрешность: 0.000100
Стандартное отклонение: 0.010000
Абсолютная погрешность: 0.025700
Относительная погрешность: 0.242 %
```

Вывод:

В данной лабораторной работы, мы посчитали погрешности для различных задач, а также написали для каждой задачки программу. В итоге, результаты вычислений в Excel полностью совпали с вычислениями наших программ.

Лабораторная работа №1

Классификация погрешностей измерения

Цель лабораторной работы: вычислить погрешности

Инструменты: Excel, PyCharm.

В рамках данной лабораторной работы, был использовал язык программирования Python 3.10

Использованные формулы:

1- Среднее значение:

$$\bar{x} = x_0 + \frac{1}{n} \cdot \sum_{i=1}^{n} (x_i - x_0)$$

2- Среднеквадратичная погрешность (дисперсия):

$$\Delta S^{2} = \frac{1}{n(n-1)} \left(\sum_{i=1}^{n} (x_{i} - x_{0})^{2} - n(\bar{x} - x_{0})^{2} \right)$$

3- Стандартное отклонение:

$$\Delta S = \sqrt{\Delta S^2}$$

4- Абсолютная погрешность:

$$X = \overline{x} \pm \Delta x$$

$$\Delta x = t_{\alpha} \cdot \Delta S$$

5- Относительная погрешность:

$$\frac{\Delta x}{x} \cdot 100\%$$

Задание 1:

В таблице представлены результаты измерений диаметра цилиндра. Вычислить погрешность эксперимента средствами Excel. В качестве d₀ выбрать удобное для вычисления значение, например 14.80. Результаты оформить в виде таблицы.

В качестве d₀, было взято значение 14.80.

Таблица:

n	d, mm	di - do	(di - do)^2	Среднее d	Средне-	Станд.	Абсол.	Относит.
					квадратическая	отклонение	погреш.	погреш.
					погрешность			
1	14,85	0,05	0,0025					
2	14,80	0	0					
3	14,79	-0,01	0,0001	14,818	0,000134	0,011576	0,0297	0,201%
4	14,84	0,04	0,0016					
5	14,81	0,01	0,0001					
do	14,8							

Программа:

```
from math import sqrt
dMas = [14.85, 14.80, 14.79, 14.84, 14.81]
d0 = 14.8
print('Значения:', dMas,'\n')
print('d0 =', d0 ,'\n')
summa = 0
for i in range(5):
    summa += (dMas[i]-d0)
sred = d\theta + (1/5)*summa
print('Среднее d: %.3f\n' % sred)
summa2 = 0
for i in range(5):
    summa2 += (dMas[i]-d0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-d0)**2)
print('Cpeдне-квадратическая погрешность: %.6f\n' % sred2)
s0tkl = sqrt(sred2)
print('Cтандартное отклонение: %.6f\n' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f\n' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

Значения: [14.85, 14.8, 14.79, 14.84, 14.81]

d0 = 14.8

Среднее d: 14.818

Средне-квадратическая погрешность: 0.000134

Стандартное отклонение: 0.011576

Абсолютная погрешность: 0.029750

Относительная погрешность: 0.201 %

Задание 2:

В результате определения содержания алюминия в сплаве получены следующие значения (в % масс): 7.48, 7.49, 7.52, 7.47, 7.50. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве m₀ выбрать 7.48.

Таблица:

1	n	m, %	m i - m 0	(mi - mo)^2	Среднее	Средне-	Станд.	Абсол.	Относит.
		масс			m	квадратическая	отклонение	погреш.	погреш.
						погрешность			
	1	7,48	0,00	0,0000					
2	2	7,49	0,01	0,0001					
3	3	7,52	0,04	0,0016	7,492	0,000074	0,008602	0,0221	0,295%
4	4	7,47	-0,01	0,0001					
į	5	7,50	0,02	0,0004					
m	10	7,48							

```
from math import sqrt
mMas = [7.48, 7.49, 7.52, 7.47, 7.5]
m0 = 7.48
print('Значения:', mMas)
print('m0 =', m0)
summa = 0
for i in range(5):
    summa += (mMas[i]-m0)
sred = m0 + (1/5)*summa
print('Cpeднee m: %.3f' % sred)
summa2 = 0
for i in range(5):
    summa2 += (mMas[i]-m0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-m0)**2)
print('Cpeдне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [7.48, 7.49, 7.52, 7.47, 7.5]

m0 = 7.48

Среднее m: 7.492

Средне-квадратическая погрешность: 0.000074

Стандартное отклонение: 0.008602

Абсолютная погрешность: 0.022108

Относительная погрешность: 0.295 %
```

Задание 3:

При взвешивании образца анализируемого вещества получены следующие результаты: 47,12; 47,08; 47,13 г. Оценить истинную массу образца и определить точность этой оценки для доверительной вероятности 0,95.

n	т, г	m i - m 0	(mi - mo)^2	Среднее	Средне-	Станд.	Абсол.	Относит.
				m	квадратическая	отклонение	погреш.	погреш.
					погрешность			
1	47,12	0,01	0,0001					
2	47,08	-0,03	0,0009	47,110	0,000233	0,015275	0,0486	0,103%
3	47,13	0,02	0,0004					
do	47,11							

```
from math import sqrt
mMas = [47.12, 47.08, 47.13]
m0 = 47.11
print('Значения:', mMas)
print('m0 =', m0)
summa = 0
for i in range(3):
    summa += (mMas[i]-m0)
sred = m0 + (1/3)*summa
print('Cpeднее m: %.3f' % sred)
summa2 = 0
for i in range(3):
    summa2 += (mMas[i]-m0)**2
sred2 = (1/(3*2))*(summa2 - 5*(sred-m0)**2)
print('Cpeдне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tkl * 3.182
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [47.12, 47.08, 47.13]

m0 = 47.11

Среднее m: 47.110

Средне-квадратическая погрешность: 0.000233

Стандартное отклонение: 0.015275

Абсолютная погрешность: 0.048606

Относительная погрешность: 0.103 %
```

Задание 4:

Самостоятельно подобрать задачу, реализовать ее и оформить в лабораторной работе.

Условие задачи: при проведении лабораторной работы по физике были записаны результаты измерений силы тока в цепи разными амперметрами. Вычислить погрешность эксперимента средствами Excel. Результаты оформить в виде таблицы. В качестве I_0 выбрать 10.6.

n	I, A	ıi - lo	(li - lo)^2	Среднее I	Средне- квадратическая погрешность	Станд. отклонен ие	Абсол. погреш.	Относит. погреш.
1	10,58	-0,02	0,0004					
2	10,64	0,04	0,0016					
3	10,60	0,00	0,0000	10,610	0,000100	0,010000	0,0257	0,242%
4	10,61	0,01	0,0001					
5	10,62	0,02	0,0004					
10	10,6							

Программа:

```
from math import sqrt
IMas = [10.58, 10.64, 10.60, 10.61, 10.62]
I0 = 10.6
print('Значения:', IMas)
print('I0 =', I0)
summa = 0
for i in range(5):
    summa += (IMas[i]-I0)
sred = I0 + (1/5)*summa
print('Cpeднее I: %.3f' % sred)
summa2 = 0
for i in range(5):
    summa2 += (IMas[i]-I0)**2
sred2 = (1/(5*4))*(summa2 - 5*(sred-I0)**2)
print('Средне-квадратическая погрешность: %.6f' % sred2)
s0tkl = sqrt(sred2)
print('Стандартное отклонение: %.6f' % sOtkl)
absPog = s0tk1 * 2.57
print('Абсолютная погрешность: %.6f' % absPog)
otnPog = absPog / sred * 100
print('Относительная погрешность: %.3f' % otnPog,'%')
```

Вывод программы:

```
Значения: [10.58, 10.64, 10.6, 10.61, 10.62]
I0 = 10.6
Среднее I: 10.610
Средне-квадратическая погрешность: 0.000100
Стандартное отклонение: 0.010000
Абсолютная погрешность: 0.025700
Относительная погрешность: 0.242 %
```

Вывод:

В данной лабораторной работы, мы посчитали погрешности для различных задач, а также написали для каждой задачки программу. В итоге, результаты вычислений в Excel полностью совпали с вычислениями наших программ.