

2021 Spring: Machine Learning

Linear regression

Lecturer: Min Lu

Email: Lumin.vis@gmail.com

Supervised Learning
"Right Answers" given

Regression: Predict Continuous Value

Training Set Of House Prices

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	

Notation:

m = Number of training examples

x's = "input" variable / features

y's = "output" variable / "target" variable

Linear Regression With One Variable

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Training Dataset:

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	

Hypothesis function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i How to choose ?

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Training Dataset:

Size in feet ² (x)	Price (\$) in 1000's (y)
2104	460
1416	232
1534	315
852	178
•••	

Hypothesis function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Cost function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:

 $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Cracient Decemb

- o Have some function
- $J(\theta_0, \theta_1)$

o Want

 $\min_{\theta_0,\theta_1} J(\theta_0,\theta_1)$

- o Outline:
 - ullet start from $heta_0, heta_1$
 - \bullet keep change θ_0, θ_1 until minimum

