## СЛ**УЧАЙНЫЕ ВЕЛИЧИНЫ** ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

- 1. Дискретные случайные величины
- 2. Непрерывные случайные величины

## 1. Дискретные случайные величины

Пример 1. В денежной лотерее разыгрывается 1 выигрыш в 1000 у. е., 10 выигрышей по 100 у. е. и 100 выигрышей по 1 у. е. при общем числе билетов 10 000. Найти закон распределения случайного выигрыша ξ для владельца одного лотерейного билета.

Решение. Возможные значения СВ  $\xi$ :  $x_1 = 0$  у. е.,  $x_2 = 1$  у. е.,  $x_3 = 100$  у. е.,  $x_4 = 1000$  у. е.. СВ  $\xi$  принимает значение 1 с вероятностью  $p_2 = P(\xi = x_2) = \frac{100}{10\,000} = 0,01$  (т. к. выигрыш  $x_2 = 1$  у. е. приходится на

100 билетов из 10 000 лотерейных билетов). Аналогично по классическому определению вероятности находим

$$p_3 = P(\xi = x_3) = \frac{10}{10,000} = 0,001, p_4 = P(\xi = x_4) = \frac{1}{10,000} = 0,0001.$$

Поскольку число билетов, на которые выигрыши не выпадают, равно  $10\ 000-100-10-1=9889$ , то

$$p_1 = P(\xi = x_1) = \frac{9889}{10\,000} = 0,9889\,1 - 0,011 - 0,001 - 0,0001 = 0,9889.$$

Следовательно, закон распределения выигрыша  $\xi$  может быть задан таблицей

| ξ | 0      | 1    | 100   | 1000   |
|---|--------|------|-------|--------|
| P | 0,9889 | 0,01 | 0,001 | 0,0001 |

Заметим, что сумма вероятностей различных значений дискретной CB  $\xi$  равна 0.9889 + 0.01 + 0.001 + 0.0001 = 1.

Пример 2. Задан закон распределения СВ ξ:

| ξ | 20  | 30  | 40  | 50  |
|---|-----|-----|-----|-----|
| P | 0,1 | 0,6 | 0,1 | 0,2 |

Найти: **a)** математическое ожидание  $M\xi$ , дисперсию  $D\xi$ , среднее квадратическое отклонение  $\sigma_{\xi}$ ; **b)** вероятности  $P(\xi = 30)$ ,  $P(\xi = 35)$ ,  $P(\xi < M\xi + 3)$ ; **b)** функцию распределения и построить ее график.

Pешение. **a)** Найдем математическое ожидание  $M\xi$ :

$$M\xi = x_1p_1 + x_2p_2 + x_3p_3 + x_4p_4 = 20 \cdot 0, 1 + 30 \cdot 0, 6 + 40 \cdot 0, 1 + 50 \cdot 0, 2 = 2 + 18 + 4 + 10 = 34.$$

Для того чтобы найти дисперсию, запишем закон распределения CB  $\xi^2$ . Эта CB принимает значение  $20^2=400$  в том случае, когда  $\xi$  принимает значение 20, т. е. с вероятностью 0,1; CB  $\xi^2$  принимает значение  $30^2=900$ , если  $\xi$  принимает значение 30, т. е. с вероятностью 0,6, и т. д. Итак, ряд распределения CB  $\xi^2$  имеет вид

| ξ <sup>2</sup> | 400 | 900 | 1600 | 2500 |
|----------------|-----|-----|------|------|
| P              | 0,1 | 0,6 | 0,1  | 0,2  |

Найдем математическое ожидание  $M(\xi^2)$ :

$$M(\xi^2) = x_1^2 p_1 + x_2^2 p_2 + x_3^2 p_3 + x_4^2 p_4 = 400 \cdot 0, 1 + 900 \cdot 0, 6 + 1600 \cdot 0, 1 + 2500 \cdot 0, 2 = 40 + 540 + 160 + 500 = 1240.$$

Искомую дисперсию найдем по формуле:

$$D\xi = M(\xi^2) - (M\xi)^2 = 1240 - 34^2 = 1240 - 1156 = 84.$$

Среднее квадратическое отклонение равно  $\sigma_{\xi} = \sqrt{84} \approx 9,2.$ 

**б)** По таблице (ряду распределения) определяем, что СВ  $\xi$  принимает значение 30 с вероятностью 0,6, т. е.  $P(\xi = 30) = 0,6$ .

Поскольку среди возможных значений CB  $\xi$  нет значения 35, то  $P(\xi=35)=0$ .

Чтобы найти вероятность  $P(\xi < M\xi + 3)$ , посмотрим, какие значения СВ попадают в интервал ( $-\infty$ ;  $M\xi + 3$ ), т. е. в интервал ( $-\infty$ ; 37). Это значения 20 и 30. Поэтому

$$P(\xi < M\xi + 3) = P(\xi < 37) = P(\xi < 20) + P(\xi = 30) = 0.1 + 0.6 = 0.7.$$

в) Найдем значение функции распределения  $F(x) = P(\xi < x)$  для каждого действительного x. Из ряда распределения в таблице видно, что CB  $\xi$  может принимать значения 20, 30, 40, 50. Для вычисления вероятностей  $P(\xi < x)$  нужно определить, какие значения  $x_m$  CB  $\xi$  удовлетворяют неравенству  $x_m < x$ , и просуммировать их вероятности. В зависимости от значения x получим:

при  $x \le 20$  имеем F(x) = 0, т. к. ни одно из значений 20, 30, 40, 50 не удовлетворяет указанному неравенству;

при  $20 < x \le 30$  получим  $F(x) = P(\xi = 20) = 0,1$  (условию  $x_m < x$  удовлетворяет только значение  $x_m = 20$ );

при  $30 < x \le 40$ :  $F(x) = P(\xi = 20) + P(\xi = 30) = 0,1 + 0,6 = 0,7$  (значения 20 и 30 удовлетворяют неравенству  $x_m < x$ );

при 
$$40 < x \le 50$$
:  $F(x) = P(\xi = 20) + P(\xi = 30) + P(\xi = 40) = 0,1 + 0,6 + 0,1 = 0,8$ ;

при 
$$x > 50$$
:  $F(x) = P(\xi = 20) + P(\xi = 30) + P(\xi = 40) + P(\xi = 50) = 0.1 + 0.6 + 0.1 + 0.2 = 1.$ 

Получаем:

$$F(x) = \begin{cases} 0 & \text{при} \quad x \le 20, \\ 0.1 & \text{при} \quad 20 < x \le 30, \\ 0.7 & \text{при} \quad 30 < x \le 40, \\ 0.8 & \text{при} \quad 40 < x \le 50, \\ 1 & \text{при} \quad x > 50. \end{cases}$$

График функции распределения представлен на рис. 1.



Рис. 1. График функции распределения

## 2. Непрерывные случайные величины

Пример 1. Дана плотность распределения

$$p(x) = \begin{cases} 0 & \text{при} \quad x \le -1, \\ 0.2 & \text{при} \quad -1 < x \le 1, \\ 0.5 - 0.1x & \text{при} \quad 1 < x \le 3, \\ 0 & \text{при} \quad x > 3. \end{cases}$$

Найти  $P(-1 < \xi \le 2)$ ,  $P(\xi < 1,5)$ ,  $P(\xi = 1,5)$ .

Решение.

$$P(-1 < \xi \le 2) = \int_{-1}^{2} p(x)dx = \int_{-1}^{1} 0.2dx + \int_{1}^{2} (0.5 - 0.1x)dx =$$

$$= 0.2x \Big|_{-1}^{1} + (0.5x - 0.05x^{2}) \Big|_{1}^{2} = 0.75;$$

$$P(\xi < 1.5) = \int_{-\infty}^{1.5} p(x)dx = \int_{-\infty}^{-1} 0dx + \int_{-1}^{1} 0.2dx + \int_{1}^{1.5} (0.5 - 0.1x)dx =$$

$$= 0 + 0.2x \Big|_{-1}^{1} + (0.5x - 0.05x^{2}) \Big|_{1}^{1.5} = 0.5875.$$

Для непрерывной CB вероятность того, что она примет конкретное значение, равна нулю, т. е.  $P(\xi = 1,5) = 0$ .

*Пример 2.* Найти функцию распределения НСВ, если известна ее плотность распределения

$$p(x) = \begin{cases} 0 & \text{при} \quad x \le -1, \\ 0.2 & \text{при} \quad -1 < x \le 1, \\ 0.5 - 0.1x & \text{при} \quad 1 < x \le 3, \\ 0 & \text{при} \quad x > 3. \end{cases}$$

Решение. Найдем функцию распределения по формуле  $F(x) = \int_{-\infty}^{x} p(x) dx$ . Для этого рассмотрим четыре случая: 1)  $x \le -1$ ; 2)  $-1 < x \le 1$ ; 3)  $1 < x \le 3$ ; 4) x > 3.

При  $x \le -1$  получим  $F(x) = \int_{-\infty}^{x} p(x) dx = \int_{-\infty}^{x} 0 dx = 0$ ;

при  $-1 < x \le 1$  разбиваем интеграл на два:

$$F(x) = \int_{-\infty}^{x} p(x)dx = \int_{-\infty}^{-1} 0dx + \int_{-1}^{x} 0.2dx = 0 + 0.2x\Big|_{-1}^{x} = 0.2x + 0.2;$$
при  $1 < x \le 3$ :  $F(x) = \int_{-\infty}^{x} p(x)dx = \int_{-\infty}^{-1} 0dx + \int_{-1}^{1} 0.2dx + \int_{1}^{x} (0.5 - 0.1x)dx = 0 + 0.2x\Big|_{-1}^{1} + (0.5x - 0.05x^{2})\Big|_{1}^{x} = 0.5x - 0.05x^{2} - 0.05;$ 
при  $x > 3$  получим

$$F(x) = \int_{-\infty}^{x} p(x)dx = \int_{-\infty}^{-1} 0dx + \int_{-1}^{1} 0.2dx + \int_{1}^{3} (0.5 - 0.1x)dx + \int_{3}^{x} 0dx = 0 + 0.2x \Big|_{-1}^{1} + (0.5x - 0.05x^{2}) \Big|_{1}^{3} + 0 = 1.$$

Таким образом,

$$F(x) = \begin{cases} 0 & \text{при } x \le -1, \\ 0.2x + 0.2 & \text{при } -1 < x \le 1, \\ 0.5x - 0.05x^2 - 0.05 & \text{при } 1 < x \le 3, \\ 1 & \text{при } x > 3. \end{cases}$$

*Пример 3.* Найти  $a, p(x), M\xi, D\xi, \sigma_{\xi}, P(-1 < \xi \le 2,5), P(\xi = 3,5),$  если дана функция распределения

$$F(x) = \begin{cases} 0 & \text{при } x \le 1, \\ a(x^2 - 1) & \text{при } 1 < x \le 3, \\ 1 & \text{при } x > 3. \end{cases}$$

Построить графики функции распределения и плотности распределения.

Peшение. Для нахождения коэффициента a можно использовать различные свойства плотности и функции распределения.

<u>І способ.</u> Функция распределения непрерывной СВ непрерывна в любой точке, следовательно,  $F(x_0 + 0) = F(x_0 - 0)$  в любой точке  $x_0$ , в частности в точках, где меняется аналитическое задание функции, т. е. при x = 1 и x = 3:

$$F(1+0) = \lim_{x \to 1+0} F(x) = \lim_{x \to 1+0} a(x^2 - 1) = a \cdot 0 = 0;$$

$$F(1-0) = \lim_{x \to 1-0} F(x) = \lim_{x \to 1-0} 0 = 0 = F(1+0) - \text{Bepho};$$

$$F(3+0) = \lim_{x \to 3+0} F(x) = \lim_{x \to 3+0} 1 = 1;$$

$$F(3-0) = \lim_{x \to 3-0} F(x) = \lim_{x \to 3-0} a(x^2 - 1) = a \cdot 8 = 8a.$$

 $F(3-0) = \lim_{x\to 3-0} F(x) = \lim_{x\to 3-0} a(x^2-1) = a\cdot 8 = 8a.$  Из соображений непрерывности 1=8a, поэтому  $a=\frac{1}{8}$ .

<u>II способ.</u> Используем свойство плотности  $\int_{-\infty}^{+\infty} p(x)dx = 1$ . Найдем плотность вероятности p(x) как производную от функции распределения F(x):

$$p(x) = F'(x) = \begin{cases} 0 & \text{при} \quad x \le 1, \\ 2ax & \text{при} \quad 1 < x \le 3, \\ 0 & \text{при} \quad x > 3. \end{cases}$$

Вычислим  $\int_{-\infty}^{+\infty} p(x)dx = \int_{1}^{3} 2axdx = ax^{2}\Big|_{1}^{3} = 8a$ , т. е. 8a = 1. Следованно,  $a = \frac{1}{8}$ .

Подставляя найденное a, получим следующие выражения для функции распределения и плотности распределения данной СВ:

$$F(x) = \begin{cases} 0 & \text{при } x \le 1, \\ \frac{1}{8}(x^2 - 1) & \text{при } 1 < x \le 3, \\ 1 & \text{при } x > 3; \end{cases} \qquad p(x) = \begin{cases} 0 & \text{при } x \le 1, \\ \frac{1}{4}x & \text{при } 1 < x \le 3, \\ 0 & \text{при } x > 3. \end{cases}$$

Для того чтобы найти числовые характеристики  $M\xi$  и  $D\xi$ , необходимо знать плотность распределения p(x) = F'(x). Вычисляем:

$$M\xi = \int_{-\infty}^{+\infty} xp(x)dx = \int_{1}^{3} x \cdot \frac{x}{4} \cdot dx = \int_{1}^{3} \frac{x^{2}}{4} \cdot dx = \frac{x^{3}}{12} \Big|_{1}^{3} = \frac{27 - 1}{12} = \frac{13}{6};$$

$$M(\xi^{2}) = \int_{-\infty}^{+\infty} x^{2} p(x)dx = \int_{1}^{3} x^{2} \cdot \frac{x}{4} \cdot dx = \int_{1}^{3} \frac{x^{3}}{4} \cdot dx = \frac{x^{4}}{16} \Big|_{1}^{3} = \frac{81 - 1}{16} = 5;$$

$$D\xi = M(\xi^{2}) - (M\xi)^{2} = 5 - \frac{169}{36} = \frac{11}{36};$$

среднее квадратическое отклонение равно  $\sigma_{\xi} = \sqrt{D\xi} = \sqrt{\frac{11}{36}} = \frac{\sqrt{11}}{6}$ .

Вычислим вероятность с помощью функции распределения:

$$P(-1 < \xi \le 2.5) = F(2.5) - F(-1) = \frac{1}{8} \cdot ((2.5)^2 - 1) - 0 = \frac{21}{32}.$$

Для непрерывной СВ вероятность того, что она примет конкретное значение, равна нулю, т. е.  $P(\xi = 3,5) = 0$ .

Графики функции распределения и плотности распределения представлены на рис. 2.



*Пример 4.* Определить, при каком значении параметра a функция

$$p(x) = \begin{cases} 0 & \text{при} & x \le 0, \\ ax & \text{при} & 0 < x \le 3, \\ 0 & \text{при} & x > 3 \end{cases}$$

является плотностью распределения НСВ  $\xi$  и найти числовые характеристики этой СВ.

Решение. Для нахождения коэффициента a используем свойство плотности распределения  $\int_{-\infty}^{+\infty} p(x) dx = 1$ . Вычислим

$$\int_{-\infty}^{+\infty} p(x)dx = \int_{0}^{3} axdx = \frac{ax^{2}}{2} \bigg|_{1}^{3} = \frac{9}{2}a,$$

т. е. 
$$\frac{9}{2}a = 1$$
. Следовательно,  $a = \frac{2}{9}$ .

Подставляя найденное a, получим следующее выражение плотности распределения данной CB:

$$p(x) = \begin{cases} 0 & \text{при} \quad x \le 0, \\ \frac{2}{9}x & \text{при} \quad 0 < x \le 3, \\ 0 & \text{при} \quad x > 3. \end{cases}$$

Найдем математическое ожидание  $M\xi$  и дисперсию  $D\xi$ :

$$M\xi = \int_{-\infty}^{+\infty} xp(x)dx = \int_{0}^{3} x \cdot \frac{2x}{9} \cdot dx = \int_{0}^{3} \frac{2x^{2}}{9} \cdot dx = \frac{2x^{3}}{27} \Big|_{0}^{3} = 2;$$

$$M(\xi^{2}) = \int_{-\infty}^{+\infty} x^{2}p(x)dx = \int_{0}^{3} x^{2} \cdot \frac{2x}{9} \cdot dx = \int_{0}^{3} \frac{2x^{3}}{9} \cdot dx = \frac{x^{4}}{18} \Big|_{0}^{3} = \frac{9}{2};$$

$$D\xi = M(\xi^{2}) - (M\xi)^{2} = \frac{9}{2} - 4 = \frac{1}{2};$$

среднее квадратическое отклонение равно 
$$\sigma_{\xi} = \sqrt{D\xi} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2}$$
.

Пример 5. Цена деления шкалы амперметра равна 0,5A. Показания округляют до ближайшего целого деления. Найти вероятность того, что при отсчете сделана ошибка, превышающая 0,1A.

Решение. СВ  $\xi$  – разность между показанием амперметра и ближайшим целым его делением – может принимать любые значения между –0,5A и 0,5A. Поскольку все эти значения равновозможны, СВ  $\xi$  имеет равномерное распределение на отрезке [–0,5;0,5]. Плотность распределения СВ  $\xi$  имеет вид

$$p(x) = \begin{cases} \frac{1}{0.5 - (-0.5)} & \text{при} \quad x \in [-0.5; 0.5], \\ 0 & \text{при} \quad x \notin [-0.5; 0.5]. \end{cases}$$

Найдем вероятность

$$P(|\xi| > 0,1) = 1 - P(|\xi| \le 0,1) = 1 - \int_{-0,1}^{0,1} \frac{1}{0,5+0,5} dx = 1 - \int_{-0,1}^{0,1} dx = 0,8.$$

Пример 6. Установлено, что время горения электрической лампочки является случайной величиной, распределенной по показательному закону. Считая, что среднее значение этой величины равно 6 месяцам, найти вероятность того, что лампочка будет исправна более года.

Решение. Так как  $M\xi = 1/\lambda = 6$ , то  $\lambda = 1/6$  и функция распределения случайной величины  $\xi$  имеет вид

$$F(x) = \begin{cases} 1 - e^{(-x/6)}, & x \ge 0 \\ 0, & x < 0 \end{cases}.$$

Поэтому

$$P(\xi > 12) = P(12 < \xi < +\infty) = F(\infty) - F(12) = 1 - (1 - e^{(-12/6)}) = e^{(-2)} \approx 0.135$$
.

Пример 7. СВ  $\xi$  распределена по нормальному закону. Математическое ожидание  $M\xi = 5$ ; дисперсия  $D\xi = 0,64$ . **a)** Найти вероятность попадания этой СВ в интервал (4;7). **б)** Какова вероятность того, что СВ примет значение, большее чем 3? **в)** Определить вероятность того, что СВ примет значение, равное ее математическому ожиданию.

Решение. **a)** Так как 
$$a=M\xi=5$$
;  $\sigma=\sqrt{D\xi}=0.8$ , то 
$$P(4<\xi<7)=\Phi\bigg(\frac{7-5}{0.8}\bigg)-\Phi\bigg(\frac{4-5}{0.8}\bigg)=$$
$$=\Phi(2.5)-\Phi(1.25)\approx 0.4938-(-0.3944)=0.8882.$$

б) Найдем

$$P(\xi > 3) = P(3 < \xi < +\infty) = \Phi\left(\frac{+\infty - 5}{0.8}\right) - \Phi\left(\frac{3 - 5}{0.8}\right) =$$
$$= \Phi\left(+\infty\right) - \Phi\left(-2.5\right) \approx 0.5 - (-0.4938) = 0.9938.$$

**в)** Поскольку нормальное распределение является непрерывным распределением, то вероятность того, что СВ  $\xi$  примет конкретное значение, равна 0, т. е.  $P(\xi = M\xi) = P(\xi = 5) = 0$ .

Пример 8. Текущая цена акции может быть смоделирована с помощью нормального закона распределения с математическим ожиданием 15 ден. ед. и средним квадратическим отклонением 0,2 ден. ед. а) Найти вероятность того, что цена акции не выше 15,3 ден. ед. б) С помощью правила трех сигм найти границы, в которых будет находиться цена акции.

Pешение. Пусть CB  $\xi$  – текущая цена акции. По условию  $\xi$  имеет нормальное распределение с параметрами  $a=M\xi=15$  ден. ед. и  $\sigma=\sigma_{\xi}=0.2$  ден. ед.

а) Найдем вероятность

$$P(\xi \le 15,3) = P(-\infty < \xi \le 15,3) = \Phi\left(\frac{15,3-15}{0,2}\right) - \Phi\left(\frac{-\infty-15}{0,2}\right) =$$
$$= \Phi(1,5) - \Phi(-\infty) \approx 0,4332 - (-0,5) = 0,9332.$$

**б)** По правилу трех сигм CB  $\xi$ , распределенная нормально с параметрами a и  $\sigma$ , с вероятностью 0,9973 попадает в интервал  $(a-3\sigma,a+3\sigma)$ . Следовательно, практически достоверно, что цена акции будет находиться в пределах от  $15-3\cdot0,2=14,4$  ден. ед. до  $15+3\cdot0,2=15,6$  ден. ед.