final-exam-b3636 #308 Page 1 of 18

UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

April 29, 2023 — **Duration: 150 minutes**First Year, MSE160 MOLECULES AND MATERIALS

Exam Type: B - Closed Book, aid sheets provided. Calculator from Faculty approved list

permitted.

Examiners: J Nogami, SD Ramsay

	l			L	L		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	L	
T b																
Last	name	-		1	T				r	r		1	f	1	1	
	1		<u> </u>	l	L	<u> </u>	<u> </u>	<u> </u>	l	L	<u> </u>		ı	ı	1	
Stud	ent ì	Numbe:	r													
	1	T	- 	ľ	Ι	T	Ī	1	Γ.	1	Γ	Τ	I	r	1	
ł				}									Ì			,

IMPORTANT:

- On this page, write your name and student number clearly.
- On the computer answer form, complete all sections fully.
- Do not open this test booklet until instructed to do so.
- Numerical responses must be expressed in most appropriate units, including appropriate prefixes (ex. GPa rather than 10⁹ Pa), and be written with appropriate significant figures.

#308 Page 2 of 18

1. These questions pertain to the $Fe - Fe_3C$ phase diagram below.

(a)	(2 points)	For an	1 kg	sample	of a	$1.3\mathrm{wt}\%$	C steel	at 728	°C	what	is the	mass	of o	cemen-
	tite presen	t?												

(b) (2 points) For an 1 kg sample of a 0.76 wt%C steel at 728 °C what is the mass of austenite present?

(c) (2 points) For an 1 kg sample of a 5 wt%C cast iron at 1146 °C what is the mass of austenite present?

(d) (2 points) For an 1 kg sample of a $0.5\,\mathrm{wt}\%\mathrm{C}$ steel at 726 °C what is the mass of cementite present?

(e) (2 points) For an 1 kg sample of a 0.3 wt%C steel at 728 °C what is the mass of cementite present?

final-exam-b3636 #308 Page 3 of 18

2. (5 points) Making reference to the figure below, and to Bragg's law, explain why peaks in the x-ray diffraction pattern of a BCC crystal would not be expected for the (001) set of planes while they would be expected for the (001) set of planes in a simple cubic metal. Point form answers are acceptable and all of your answer must be written within the space for this question (read: don't write too much).

3. (5 points) An alumina beam having a cross-section of 15 mm in width and 3 mm in height, and a fracture strength in bending of 500 MPa is used to support a 120 g component in a furnace. What is the maximum span that this beam can support such that it is only loaded to half of its fracture strength?

9AC41896-CCE4-479D-BB27-FBB84E2D5479

final-exam-b3636 #308 Page 4 of 18

4. (10 points) Pure tin (Sn) at temperatures below 13.2 °C exists in the diamond cubic crystal structure and is known as α tin. If the atomic radius of tin is 139 pm, determine the theoretical density of α tin. Note: 1 pm = 1 × 10⁻¹² m

final-exam-b3636 #308 Page 5 of 18

5. (15 points) Consider 2g of NaCl at $25\,^{\circ}$ C added to 98g of ice at $-5\,^{\circ}$ C, within a well insulated flask (assume isolated system). If all of the salt dissolves, and the system is allowed to reach equilibrium, what will the final temperature of the system be? Start by assuming the system remains at the temperature of the ice and use the phase diagram to determine the mass of ice that is melted, then assume the enthalpies of fusion and dissolution act to change the temperature of the brine plus ice mixture. Assume the heat capacity of dilute brine (salt solution) is equal to that of water.

final-exam-b3636 #308 Page 6 of 18

6. Within the unit cells below, sketch the crystallographic directions or planes. In the case of a family of planes or directions, draw all of the members of the family, but don't draw parallel copies of planes.

(a) $(1 \text{ point}) [1\bar{2}0]$

(d) (1 point) [221]

(b) (1 point) $(1\bar{2}0)$

(e) (1 point) (111)

(c) (1 point) $(\bar{1}21)$

(f) (1 point) 011

final-exam-b3636 #308 Page 7 of 18

(g) (1 point) $\langle 011 \rangle$

(i) (1 point) (1<u>2</u>1)

(h) (1 point) [210]

(j) $(1 \text{ point}) (1\bar{1}1)$

#308 Page 8 of 18

7. Refer to the following data in responding to these questions.

Table 1: Selected semiconductor properties at 300 K.

Semiconductor	$E_g(eV)$	$n_i(m^{-1})$	$\mu_e(\frac{m^2}{V \cdot s})$	$\mu_h(\frac{m^2}{V \cdot s})$
Si	1.10	1.45×10^{16}	0.135	0.045
GaAs	1.42	1.8×10^{12}	0.850	0.040
GaAs	0.66	2.4×10^{19}	0.390	0.190

(a) (3 points) Calculate the intrinsic conductivities of Si and GaAs given the data in the table above. Which has the higher intrinsic conductivity at 300 K, Si or GaAs?

(b) (2 points) What is the doping concentration of boron (B) required to raise the conductivity of Si to $10\,\Omega^{-1}\,\mathrm{m}^{-1}$?

(c) (2 points) Express the answer from part b in terms of the number of Si atoms per dopant atom. The lattice constant for Si is 0.543 nm.

final-exam-b3636 #308 Page 9 of 18

- 8. The saturation magnetization for Ni is $M_{sat}=4.70\times 10^5\frac{A}{m}$. Ni is FCC with an atomic radius of 124 pm
 - (a) (3 points) Express the saturation magnetization as the number of Bohr magnetons per atom.

(b) (2 points) What would be the expected value from the electronic configuration of Ni?

final-exam-b3636 #308 Page 10 of 18

Part B: Multiple Choice (1 points per question)

- 1. Which of the following statements is true?
 - (a) Every (002) plane is also an (001) plane, however every (001) plane is not necessarily an (002) plane.
 - (b) Every (001) plane is also an (002) plane, however every (002) plane is not necessarily an (001) plane.
 - (c) Neither of these statements are true.
- 2. A humidifier operates by evaporating liquid water into water vapour in air. Would you expect to pay more to heat your home in the winter if you operate a humidifier?
 - (a) Yes, because 41 kj/mol is consumed to evaporate the water.
 - (b) No, because 41 kj/mol is contributed to the air during evaporation of the water.
 - (c) Yes, but only if the water is boiled with a heating element.
 - (d) None of these are correct.
- 3. A non-metallic material has a band gap of 2.2 eV. In terms of which wavelength of light that passes through the material, which is true?
 - (a) The material passes no wavelengths of visible light (opaque)
 - (b) None of these.
 - (c) The material passes red light but not blue light
 - (d) The material passes all wavelengths of visible light
 - (e) The material passes blue light but not red light
- 4. Which of the following would not result, as a general rule, in an increase in the strength of a polymer?
 - (a) Carefully heating a polymer to encourage increased crystallization
 - (b) Carefully deforming a thermoplastic polymer at temperatures below the T_q .
 - (c) Introducing cross-links between chains.
 - (d) Increasing the molecular weight.
 - (e) Blending more than one mer unit in to the polymer.

#308 Page 11 of 18

- 5. If the anions and cations in the rock salt structure were swapped which of the following statements would be true?
 - (a) The structure would be unchanged.
 - (b) The cations would now occupy tetrahedral interstitial sites.
 - (c) None of these are correct.
 - (d) The stoichiometry of the structure would be changed.
- 6. Which of the following statements are correct?
 - 1. An increase in the average grain diameter of a metal will result in an increase in the yield strength.
 - 2. The yield strength of a pure metal is generally greater than that of a mixture of two metals.
 - 3. Performing cold work on a metal will generally decrease the total strain to fracture.
 - 4. Strain hardening of a metal begins at the ultimate tensile strength and continues until fracture.
 - 5. Porosity is an example of a three dimensional imperfection that can be used to increase the strength of a metal.
 - (a) 4 only
 - (b) 3 and 4
 - (c) 3 only
 - (d) 2, 3, and 4
 - (e) All of these are correct.
- 7. Which of the following statements is most true about silicon doped with Arsenic (As)?
 - (a) Electron excitation results in an electron from a level within the band gap being promoted into the conduction band.
 - (b) Electron excitation results in an electron being promoted from the valence band to the conduction band.
 - (c) Electron excitation results in the generation of a hole within the valence band.
 - (d) None of these.
 - (e) Electron excitation results in the generation of holes in the conduction band.

final-exam-b3636 #308 Page 12 of 18

- 8. Adding a high molar mass element to the mer unit of a polymer would be most likely to result in which of the following?
 - (a) An increase in the strength of the polymer.
 - (b) An increase in the density of the polymer.
 - (c) Neither of these are correct.
- 9. Which of the following statements are true?
 - 1. An increase in Gibbs energy for a system at constant temperature and pressure corresponds with a spontaneous process.
 - 2. The first law of thermodynamics introduces the fundamental property of internal energy.
 - 3. The second law of thermodynamics introduces the fundamental property of the entropy.
 - 4. The absolute value of the internal energy is not of general interest in thermodynamics.
 - 5. The absolute value of the entropy cannot be determined.
 - (a) 1, and 5 only.
 - (b) 2, 3, and 4.
 - (c) 1, 2, and 3.
 - (d) 3, 4, and 5.

#308 Page 13 of 18

- 10. Which of the following statements is correct about an indium (In) doped group IV semiconductor?
 - 1. The band gap of this material would be larger than 4 eV
 - 2. The band gap of this material would be smaller than 4 eV
 - 3. This material has no band gap
 - 4. The conductivity of this material is dominated by the electron mobility
 - 5. The conductivity of this material is dominated by the hole mobility
 - (a) 5
 - (b) 2 and 4
 - (c) 1 and 4
 - (d) 2 and 5
 - (e) 3
- 11. Carbon can dissolve as a point imperfection in BCC iron up a maximum of 0.022 wt%. What happens to carbon added above this composition?
 - (a) None of these are correct.
 - (b) It reacts with iron to form a three dimensional imperfection.
 - (c) It accumulates along dislocation lines.
 - (d) It precipitates out of solution as graphite.
- 12. A mole of ethanol combusted with oxygen within a closed container would be expected to generate more heat than the same reaction proceeding exposed to the atmosphere for which of the following reasons?
 - (a) The enthalpy is higher when performed exposed to the atmosphere.
 - (b) The statement is incorrect. The heat generated would be the same in both cases.
 - (c) Work is used in pushing back the atmosphere.
 - (d) Heat is conducted away.

#308 Page 14 of 18

- 13. Which statements are true for a paramagnetic material?
 - (a) It is possible to have permanent magnetization below the Curie temperature.
 - (b) Adjacent dipoles have a tendency to align in an anti-parallel fashion.
 - (c) All the magnetic dipoles have a tendency to align with an applied field.
 - (d) The magnetic susceptibility is weakly negative.
 - (e) None of these.
- 14. In bungee jumping, an bundle of elastomer strands are secured to a human who then jumps off an elevated platform, allowing the human to bounce (somewhat) safely at the end of the bungee cord, without impacting the ground. If a new company advertises a new bungee cord material with an ultra high Young's modulus, would you be reassured or concerned?
 - (a) Reassured, because the stresses on the bungee cord would be generally less and so would experience less wear and tear.
 - (b) Concerned, because the deceleration may be high and cause injury.
 - (c) Concerned, because the elastic elongation may be so high as to allow the human to strike the ground.
 - (d) Reassured, because the bungee cord will be less likely to fracture.
- 15. A crystal structure formed from atoms occupying FCC positions (but not touching along 011 directions), with the same atoms occupying one half of the tetrahedral interstitial sites would be named which of the following?
 - (a) Diamond cubic
 - (b) Zinc blend
 - (c) Rock salt
 - (d) Calcium fluorite

#308 Page 15 of 18

- 16. Which of the following can be determined by referencing a phase diagram, given an overall composition and temperature?
 - 1. Amount (mass fraction) of phase(s) present.
 - 2. Rate of formation of a phase.
 - 3. Composition of phase(s) present.
 - 4. How many phases are present.
 - 5. Theoretical density of a phase.
 - (a) 1, 3, and 4.
 - (b) 1, 2, and 4.
 - (c) 3, 4, and 5.
 - (d) 2 and 5 only.
- 17. The ultimate tensile strength is to a metal what which of the following is to a polymer.
 - (a) Yield strength
 - (b) End of linear elastic region
 - (c) Fracture strength.
 - (d) Tensile strength
- 18. An increase in the Gibbs energy of a system is equivalent to which of the following?
 - (a) A negative enthalpy change for the system.
 - (b) A positive enthalpy change for the system.
 - (c) A decrease in the entropy of the universe.
 - (d) An increase in the entropy of the universe.
- 19. The Young's modulus of a pure metal is directly proportional to which of the following?
 - (a) The integral of the interatomic force-separation curve from equilibrium spacing to infinity.
 - (b) The second derivative of the interatomic force-separation curve.
 - (c) The first derivative of the interatomic force-separation curve.
 - (d) None of these are correct.

F32956FB-8E1A-45C2-820F-B056AA3F1102

final-exam-b3636 #308 Page 16 of 18

20. What type of bonding is present in GaAs?

- (a) Ionic
- (b) Mixed ionic and covalent
- (c) Metallic
- (d) Covalent

final-exam-b3636 #308 Page 17 of 18

	•
Name:	Student ID Number:

Instructions:

	A	В	С	D	Ε		Α	В	С	D	Е		Α	В	С	D	Ε		Α	В	С	D	E
1	نب	O CET	בסם ו		CED	26	CAI	CED	CCD	دەت	CED	51		CBJ	⊏c⊐	כמם	CED	76	CAJ	CBD	COD		CEJ
2	٢	J CBI	COD		CED	27	CAD	CBI	CCI		CED	52	CAD	CBD	COD		CED	77		CBO	con	CDD	CED
3	<u>[</u>	J CBI	con	כסם	CED	28	CAD	CBD	CCD	CDD	CED	53		CBD	con	con	CED	78	CAJ	CBD	con	בסם	CED
4	<u>_</u> ,0	O CBI	con	בסם	CED	29	<u>_,ů,</u> _	CEJ		כסם	CED	54		CBD	CCD	כסם	CED	79	CAD		COD		CED
5	۵, ۲				CED	30	CAJ	CBD	ccl		CED	55		CBD		כסם	CED	80					CED
6	نب <u>ت</u>	AD CBI	בסם ו	כסם	CEJ	31		CBD	COD	CDD	CED	56	口中口	CBD	COD	כסם	CED	· 81	CAD	CBD	con		CEJ
7	C'n	AJ CBI	cod		CED	32	CAD	CBD	CCI		CED	57	ᄄᄱᄀ	CBO			CED	82	CAD		C03		CED
8		AD CBI				33		CBD		CDO	CED	58	CAD				CED	83	CAD	CBJ			CED
9	C.ú	AD CBI	ncon		CED	34	<u>[#]</u>	CBD			CED	59		CBD		כסם		84		CBD	COD		CED
10	C.t.	J CBI	l Eco		CED	35	<u> </u>	CBD	CCD	CDD	CED	60	CAD	CED	COD	כסם	CED	85	CAD	CBJ	COD		CED
11	[#	MI CEI	con		CED	36		CBD			CED	61	C.43	CED	CCD		CEI	86		CBD			CED
12	C.r.	AJ CBI			CED	37	CAD	CBD	COD		CEJ	62	CAD	CED	Con	CDD	CED	87	CAD	CBD	COD		CED
13	CH	AD CEI	ם בים		CED	38		CBJ	COD		CED	63		CBJ	Cod	COJ	CED	88	CAD		COD		CEJ
14	CA	AD EBS		כסם	CED	39					CED	64		CBD			CEI	89	CAD		COD		CED
15	[.6	AJ CEI		בסםו	CED	40	CA)	CBD	COD	CDD	CEJ	65	口心口		con	כסם		90	<u> </u>	CBD	CCI		
16	Ch	AD CBC		וכסם	CED	41	□, 0,□	CBD	COD		CED	66	C.4.7	Ced			CED	91		CBD			CEI
17	CA	AD CBI	3 600	במםו	CED	42	CAD	CED			CED	67		CED	con	כמם	CED	92	CAD	CBD	con		CED
18	CA	4D CBI	Col		CEJ	43	[بن]	CBJ	Con		CED	68	C.40	CBD	COD	CDD	CED	93	CAD	CED	con		CED
19	C.	AD CBI			CED	44		CBD			CED	69	[,4,]	CED			CED	94	CAD		COD		CED
20	CA	AJ CBI	COL	ומםו		45	CAD	CED		כסם	CED	70	다쓰기		CCD		CED	95	CAD	CBJ	COD		
21	C.	AD CBI	JECT	CDD	CED	46		CBD	COI		CEJ	71				כסם	CED	96	CAD				CED
22	Ct	AD CBI	ם ככ	במם ו		47	CAJ	CEJ			CED	72			CCD	כסם	CED	97	CAD				
23	<u></u>	AD CB:	o con		CED	48	CAD	CBD	Con		CED	73	CAT	CBI	CCI	COD	CED	98		CED	Con		CED
24	C.	AJ CBI] [[0]	1 CD	CED	49	(_A_)	CBD	COD	CDD	CED	74	CAD		CCD	כמם	CED	99	CAD	CBD			
25		4D CB:	COL		CEJ	50		CED	=00	CD3	CED	75					CED	100	CAD	CBD	COD		CED

67DD6E9F-E76C-4149-B6A7-7F20E97093CC

final-exam-b3636

#308 Page 18 of 18

IUPAC Periodic Table of the Elements

1 H hydrogen 1.0080 ± 0.0002	2		Key:									13	14	15	, 16	17	18 2 He helium 4,0026 ± 0.0001
3 Li lithium 6.94 ± 0.06	4 Be beryllium 9.0122 ± 0.0001		atomic num Symbo name abridged stands atomic weigh	ol ard								5 B boron 10.81 ± 0.02	6 C carbon 12.011 ± 0.002	7 N nitrogen 14,007 ± 0.001	8 Oxygen 15.999 ± 0.001	9 F fluorine 18.998 ± 0.001	10 Ne neon 20.180 ± 0.001
11 Na sodium 22.990 ± 0.001	12 Mg magnesium 24.305 ± 0.002	3	4	5	6	7	8	9	10	11	12	13 Al aluminium 26.982 ± 0.001	14 Si silicon 28.085 ± 0.001	15 P phosphorus 30,974 ± 0.001	16 S sulfur 32.06 ± 0.02	17 CI chlorine 35.45 ± 0.01	18 Ar argon 39.95 ± 0.16
19 K potassium 39.098 ± 0.001	20 Ca calcium 40.078 ± 0.004	21 SC scandium 44,956 ± 0.001	22 Ti titanium 47.867 ± 0.001	23 V vanadium 50.942 ± 0.001	24 Cr chromium 51.996 ± 0.001	25 Mn manganese 54.938 ± 0.001	26 Fe iron 55.845 ± 0.002	27 Co cobalt 58.933 ± 0.001	28 Ni nickel 58.693 ± 0.001	29 Cu copper 63.546 ± 0.003	30 Zn zinc 65.38 ± 0.02	31 Ga gallium 69.723 ± 0.001	32 Ge germanium 72.630 ± 0.008	33 As arsenic 74.922 ± 0.001	34 Se selenium 78.971 ± 0.008	35 Br bromine 79.904 ± 0.003	36 Kr krypton 83.798 ± 0.002
37 Rb rubidium 65.468 ± 0.001	38 Sr strontium 87.62 ± 0.01	39 Y yttrium 88.906 ± 0.001	40 Zr zirconium 91.224 ± 0.002	41 Nb niobium 92.906 ± 0.001	42 MO molybdenum 95.95 ± 0.01	43 TC technetium	44 Ru ruthenium 101.07 ± 0.02	45 Rh rhodium 102.91 ± 0.01	46 Pd palladium 106.42 ± 0.01	47 Ag silver 107.87 ± 0.01	48 Cd cadmium 112.41 ± 0.01	49 In indium 114.82 ± 0.01	50 Sn tin 118.71 ± 0.01	51 Sb antimony 121.76 ± 0.01	52 Te tellurium 127.60 ± 0.03	53 iodine 126.90 ± 0.01	54 Xe xenon 131.29 ± 0.01
55 Cs caesium 132.91 ± 0.01	56 Ba barium 137.33 ± 0.01	57-71 fanthanoids	72 Hf hafnium 178.49 ± 0.01	73 Ta tantalum 180.95 ± 0.01	74 W tungsten 183.84 ± 0.01	75 Re rhenium 186.21 ± 0.01	76 Os osmium 190.23 ± 0.03	77 I r iridium 192.22 ± 0.01	78 Pt platinum 195.08 ± 0.02	79 Au gold 196,97 ± 0.01	80 Hg mercury 200.59 ± 0.01	81 TI thallium 204.38 ± 0.01	82 Pb lead 207.2 ± 1.1	83 Bi bismuth 208.98 ± 0.01	PO potonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 activacts	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 HS hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 MC moscovium	116 LV livermorium	117 TS tennessine	118 Og oganesson

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

57	60 61 Pm Nd Pm neodymium promethium 144.24 1 0.01 (145)	62 63 Sm Eu samarium europum 150.92 ± 0.01	64 65 Gd 7b gatosinium 157.25 10.03 10.03	66 67 Dy dysprosium holmium 182.0 184.93 1.001 2.001	68 69 Er Tm erfium 167.26 tillullum 168.93 20.01 20.01	70 7.1 Yb Juleitum 173.05 174.97 ±0.02 ±0.01
AC Th PA protection (227) \$200 \$2104	92 93 ND OFFICIAL STREET STREE	Pu Am	96 97 Cm Bk Carlant Badgallura 12411 2411	OB OB OB CF ES AIRSTAINTAIN (251) (252)	100 181 Fm Md femilian mindalistikari (201) (201)	102. NO Lif nobellian Environmentum

For notes and updates to this table, see www.iupac.org. This version is dated 4 May 2022. Copyright © 2022 IUPAC, the International Union of Pure and Applied Chemistry.

Constants and conversions

$1 \mathrm{atm}$	$= 101.325 \mathrm{kPa} = 1.01325 \mathrm{bar} = 14.696 \mathrm{p}$
N_A	$6.022 \times 10^{23} \mathrm{mol}^{-1}$
e	$1.602 \times 10^{-19} \mathrm{C}$
	$1.602 \times 10^{-19} \mathrm{J}$
ϵ_0	$8.854 \times 10^{-12} \mathrm{F}\mathrm{m}^{-1}$
R .	$8.314\mathrm{J}\mathrm{mol}^{-1}\mathrm{K}^{-1}$
	$0.082067\mathrm{Latmmol^{-1}K^{-1}}$
$0^{\circ}\mathrm{C}$	273.15 K
k	$8.62 \times 10^{-5} \mathrm{eV} \mathrm{atom}^{-1} \mathrm{K}^{-1}$
	$1.38 \times 10^{-23} \mathrm{J atom^{-1} K^{-1}}$
\mathbf{F}	96 486 °C mol ⁻¹
h	$6.626 \times 10^{-34} \mathrm{Js}$
	$4.136 \times 10^{-15} \mathrm{eV}\mathrm{s}$
С	$2.99 \times 10^8 \mathrm{ms^{-1}}$
g	$9.81 \mathrm{ms^{-2}}$
-	

Microstructure

$LPF = \frac{\text{length of atoms}}{\text{length of vector}}$
$PPF = \frac{\text{area of atoms}}{\text{area of plane}}$
$A = \pi r^2$
$ ho = rac{nA}{V_C N_A} \ APF = rac{V_s}{V_C}$
$APF = \frac{V_s}{V_C}$
$N_V = N \exp(-\frac{Q_V}{kT})$
$a = \frac{4}{\sqrt{3}}R$
$n\lambda = 2d_{ m hkl}\sin heta$
$n_w=rac{\overline{M_w}}{\overline{m}}$

Mechanical Behaviour

$\sigma = \frac{F}{A_0}$	$\epsilon = rac{\Delta l}{l_0}$
$\sigma = E\epsilon$	$\sigma_{3\text{-point}} = \frac{3FL}{2wh^2}$
$\sigma_T = \sigma(1 + \epsilon)$	$\epsilon_T = \ln(1+\epsilon)$
$\sigma_T = \frac{F}{A_i}$	$\sigma_T = K \epsilon_T^n$
$E = 2G(1+\nu)$	$\nu = -\frac{\epsilon_x}{\epsilon} = -\frac{\epsilon_y}{\epsilon}$

Magnetic Behaviour

Wiagnetic Behavious
$$H = \frac{NI}{L} \qquad B_0 = \mu_0 H$$

$$M = \chi_m H \qquad B = \mu_0 H + \mu_0 M$$

$$B = (1 + \chi_m)\mu_0 H \qquad \mu_B = \frac{e\hbar}{2m_e} = \beta$$

$$\beta = 9.27 \times 10^{-24} Am^2$$

Electrical Behaviour

$$\sigma = n|e|\mu_e + p|e|\mu_h$$
 $\sigma = n|e|\mu_e$
 $\sigma = p|e|\mu_h$

Electrochemistry

$$E = E^{\circ} - \frac{RT}{nF} \ln Q \qquad I = \frac{nC}{t}$$

$$E_{\text{at 25} \circ \text{C}} = E^{\circ} - \frac{0.0592}{n} \ln Q$$

$$w = nFE^{\circ}$$

Thermodynamics

PV = nRT	$\Delta U = q + w$
$\Delta U = q - P_{\rm ext} \Delta V$	$H \equiv U + PV$
$G \equiv H - TS$	$\Delta S = \frac{q_{\text{rev}}}{T}$
constant T: $\Delta G = \Delta H$	$H - T\Delta S$
$q = mc\Delta T$	$q = nC_P \Delta T$
For $aA + bB \rightarrow cC + c$	$dD, Q = \frac{a_C^c a_D^d}{a_A^a a_B^b}$
$\Delta_{\rm r}G = \Delta G^{\circ} + RT \ln G$?
$\Delta_{\rm r} H^{\circ} = (\Sigma v_i \Delta_{f,i} H^{\circ})_{\rm p}$	$_{\rm orod.} - (\Sigma v_i \Delta_{f,i} H^{\circ})_{\rm react.}$
$\Delta_{\rm r} S^{\circ} = (\Sigma v_i \Delta_{f,i} S^{\circ})_{\rm pro}$	$_{ m od.} - (\Sigma v_i \Delta_{f,i} S^{ m o})_{ m react.}$
$W_{\rm phase} = \frac{\text{length of opp. s}}{\text{total length}}$	side of lever of lever
$E = h\nu = \frac{hc}{\lambda}$	
0 10 1 1 1 1	

Specific heats and heat capacities

Substance	$c\left(\frac{J}{g\cdot K}\right)$	$C_P\left(rac{J}{mol \cdot K} ight)$
$CO_{2(g)}$	0.843	37.1
$\operatorname{Air}_{(g)}$	1.0	-
$H_2O_{(g)}$	2.03	36.4
$H_2O_{(l)}^{(l)}$	4.184	75.3
$H_2O_{(s)}$	2.09	37.7
$CO_{2(g)}$	0.843	37.1
$Na\H{Cl}$	0.853	50.5

Temperatures and enthalpies of phase changes

		 		
Substance	M.P.	$\Delta_{fus}H$	B.P.	$\Delta_{vap}H$
	$(^{\circ}C)$	$\frac{kJ}{mol}$	$(^{\circ}C)$	$rac{k\hat{J}}{mol}$
Al	658	10.6	2467	284
Ca	851	9.33	1487	162
CH_4	-182	0.92	-164	8.18
H_2O	0	6.01	100	40.7
Fe	1530	14.9	2735	354

Standard formation enthalpy, standard entropy and standard formation Gibbs energy at 298.15 K

$ \frac{(\frac{kJ}{mol})}{C} (\frac{J}{mol K}) (\frac{kJ}{mol}) $ $ C 0 5.74 0 $ $ CH_{4(g)} -74.81 186.2 -50.75 $ $ C_2H_{2(g)} -83.9 200.93 - $ $ C_3H_{8(g)} -103.8 269.9 -23.49 $ $ CaC_{2(s)} -59.8 70.3 - $ $ CaF_{2(s)} -1225 68.87 -1162 $ $ CaF_{2(l)} -1186 92.6 - $ $ Ca(OH)_{2(s)} -987.0 83.9 - $ $ CO_{2(g)} -393.5 213.6 -394.4 $ $ Cu_2O_{(s)} -168.6 93.1 - $ $ Cu_2O_{(l)} -154.79 - $ $ Cu_{(s)} - 33.2 - $ $ Fe_{(s)} 0 27.3 0 $ $ Fe_{2}O_{3(s)} -824.2 87.4 - $ $ H_{2(g)} - 130.68 - $ $ H_{2}O_{(g)} -241.8 188.7 -228.6 $ $ H_{2}O_{(l)} -285.8 69 - $				
$ \frac{(\frac{kJ}{mol})}{C} (\frac{J}{mol K}) (\frac{kJ}{mol}) $ $ C 0 5.74 0 $ $ CH_{4(g)} -74.81 186.2 -50.75 $ $ C_2H_{2(g)} -83.9 200.93 - $ $ C_3H_{8(g)} -103.8 269.9 -23.49 $ $ CaC_{2(s)} -59.8 70.3 - $ $ CaF_{2(s)} -1225 68.87 -1162 $ $ CaF_{2(l)} -1186 92.6 - $ $ Ca(OH)_{2(s)} -987.0 83.9 - $ $ CO_{2(g)} -393.5 213.6 -394.4 $ $ Cu_2O_{(s)} -168.6 93.1 - $ $ Cu_2O_{(l)} -154.79 - $ $ Cu_{(s)} - 33.2 - $ $ Fe_{(s)} 0 27.3 0 $ $ Fe_{2}O_{3(s)} -824.2 87.4 - $ $ H_{2(g)} - 130.68 - $ $ H_{2}O_{(g)} -241.8 188.7 -228.6 $ $ H_{2}O_{(l)} -285.8 69 - $	Species	$\Delta_f H^\circ$	S°	$\Delta_f G^\circ$
$CH_{4(g)}$ -74.81 186.2 -50.75 $C_2H_{2(g)}$ -83.9 200.93 - $C_3H_{8(g)}$ -103.8 269.9 -23.49 $C_3H_{8(g)}$ -1225 68.87 -1162 $C_3F_{2(s)}$ -1225 68.87 -1162 $C_3F_{2(l)}$ -1186 92.6 - $C_3F_{2(l)}$ -186 93.1 - $C_3F_{2(l)}$ -393.5 213.6 -394.4 $C_3F_{2(l)}$ -154.79 - $C_3F_{2(l)}$ -130.68 - $F_3F_{2(l)}$ -241.8 188.7 -228.6 $F_3F_{2(l)}$ -241.8 188.7 -228.6 $F_3F_{2(l)}$ -285.8 69 -			$\left(\frac{J}{mol \cdot K}\right)$	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	\overline{C}	0	5.74	0
$egin{array}{cccccccccccccccccccccccccccccccccccc$	$CH_{4(q)}$	-74.81	186.2	-50.75
$C_3H_{8(g)}$ -103.8 269.9 -23.49 $CaC_{2(s)}$ -59.8 70.3 - $CaF_{2(s)}$ -1225 68.87 -1162 $CaF_{2(l)}$ -1186 92.6 - $Ca(OH)_{2(s)}$ -987.0 83.0 - $CO_{2(g)}$ -393.5 213.6 -394.4 $Cu_2O_{(s)}$ -168.6 93.1 - $Cu_2O_{(l)}$ -154.79 $Cu_{(s)}$ - 33.2 - $Cu_{(s)}$ - 33.2 - $Cu_{(s)}$ - 130.68 - $Cu_{(s)}$ - 241.8 188.7 -228.6 $Cu_{(s)}$ -241.8 188.7 -228.6 $Cu_{(s)}$ -285.8 69 -	$C_2H_{2(q)}$	-83.9	200.93	-
$CaC_{2(s)}$ -59.8 70.3 - $CaF_{2(s)}$ -1225 68.87 -1162 $CaF_{2(l)}$ -1186 92.6 - $Ca(OH)_{2(s)}$ -987.0 83.9 - $CO_{2(g)}$ -393.5 213.6 -394.4 $Cu_2O_{(s)}$ -168.6 93.1 - $Cu_2O_{(l)}$ -154.79 $Cu_{(s)}$ - 33.2 - $Fe_{(s)}$ 0 27.3 0 $Fe_2O_{3(s)}$ -824.2 87.4 - $H_{2(g)}$ - 130.68 - $H_{2}O_{(l)}$ -241.8 188.7 -228.6 $H_{2}O_{(l)}$ -285.8 69 -	$C_3H_{8(q)}$	-103.8	269.9	-23.49
$CaF_{2(s)}$ -1225 68.87 -1162 $CaF_{2(l)}$ -1186 92.6 - $Ca(OH)_{2(s)}$ -987.0 83.0 - $CO_{2(g)}$ -393.5 213.6 -394.4 $Cu_2O_{(s)}$ -168.6 93.1 - $Cu_2O_{(l)}$ -154.79 $Cu_{(s)}$ - 33.2 - $Fe_{(s)}$ 0 27.3 0 $Fe_2O_{3(s)}$ -824.2 87.4 - $H_{2(g)}$ - 130.68 - $H_2O_{(g)}$ -241.8 188.7 -228.6 $H_2O_{(l)}$ -285.8 69 -	$CaC_{2(s)}$	-59.8	70:3	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$CaF_{2(s)}$	-1225	68.87	-1162
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-1186	92.6	-
$CO_{2(g)}$ -393.5 213.6 -394.4 $Cu_2O_{(s)}$ -168.6 93.1 - $Cu_2O_{(l)}$ -154.79 $Cu_{(s)}$ - 33.2 - $Fe_{(s)}$ 0 27.3 0 $Fe_2O_{3(s)}$ -824.2 87.4 - $H_{2(g)}$ - 130.68 - $H_2O_{(g)}$ -241.8 188.7 -228.6 $H_2O_{(l)}$ -285.8 69 -		-987.0	83.9	<u>-</u>
$Cu_2O_{(s)}$ -168.6 93.1 - $Cu_2O_{(l)}$ -154.79 $Cu_{(s)}$ - 33.2 - $Fe_{(s)}$ 0 27.3 0 $Fe_2O_{3(s)}$ -824.2 87.4 - $H_{2(g)}$ - 130.68 - $H_2O_{(g)}$ -241.8 188.7 -228.6 $H_2O_{(l)}$ -285.8 69 -	$CO_{2(q)}$	-393.5	213.6	- 394.4
$Cu_2O_{(l)}$ -154.79 $Cu_{(s)}$ - 33.2 - $Fe_{(s)}$ 0 27.3 0 $Fe_2O_{3(s)}$ -824.2 87.4 - $H_{2(g)}$ - 130.68 - $H_2O_{(g)}$ -241.8 188.7 -228.6 $H_2O_{(l)}$ -285.8 69 -	$Cu_2\widetilde{O}_{(s)}$	-168.6	93.1	-
$Fe_{(s)}$ 0 27.3 0 $Fe_2O_{3(s)}$ -824.2 87.4 - $H_{2(g)}$ - 130.68 - $H_2O_{(g)}$ -241.8 188.7 -228.6 $H_2O_{(l)}$ -285.8 69 -		-154.79	-	-
$Fe_{(s)}$ 0 27.3 0 $Fe_2O_{3(s)}$ -824.2 87.4 - $H_{2(g)}$ - 130.68 - $H_2O_{(g)}$ -241.8 188.7 -228.6 $H_2O_{(l)}$ -285.8 69 -	$Cu_{(s)}$	-	33.2	-
$Fe_2O_{3(s)}$ -824.2 87.4 - $H_{2(g)}$ - 130.68 - $H_2O_{(g)}$ -241.8 188.7 -228.6 $H_2O_{(l)}$ -285.8 69 -	$Fe_{(s)}$	0	27.3	0
$H_{2(g)}$ - 130.68 - $H_{2}O_{(g)}$ -241.8 188.7 -228.6 $H_{2}O_{(l)}$ -285.8 69 -	$Fe_2O_{3(s)}$	-824.2	87.4	-
$H_2O_{(g)}$ -241.8 188.7 -228.6 $H_2O_{(l)}$ -285.8 69 -	$H_{2(g)}$		130.68	-
$H_2O_{(l)}$ -285.8 69 -	$H_2O_{(g)}$	-241.8	188.7	-228.6
	$H_2O_{(l)}$	-285.8	69	-
	$O_{2(g)}$	0	205.0	0

Miscellaneous enthalpies

Substance	Reaction	$\Delta H(rac{kJ}{mol})$
F-F	Bond dissociation	157
\mathbf{F}	$F_{(g)} \rightarrow F_{(g)}^-$	-328
•	Electron affinity	
Ca	$Ca_{(g)} \to Ca_{(g)}^{2+}$ 2^{nd} ionization energy	1734
	2^{nd} ionization energy	
NaCl	$NaCl_{(s)} \rightarrow$	
	$Na_{(aq)}^+ + Cl_{(aq)}^-$	3.9
	Dissolution enthalpy	