Министерство высшего и среднего специального образования Российской Федерации Пензенский Государственный Университет

Изучение микропроцессорного комплекса К1804 и микроЭВМ на его основе

Описание лабораторных работ

УДК 681.325.5:621.382.049.77 И 38

Приводится описание лабораторных по изучению секционированных микропроцессорных БИС комплекта К1804 и принципов построения и микропрограммирования микроЭВМ на его основе. Выполнение работ предполагается на серийно выпускаемом микротренажере МТ-1804.

Описание подготовлено на кафедре вычислительной техники и предназначено для студентов специальности 22.01, изучающих дисциплину «Теория и проектирование ЭВМ и систем».

Составители: Н.Н. Коннов, канд. тех. наук, доц.,

Е.И. Гурин, канд. тех. наук, и.о. доц.

Рецензент: Н.М. Бутаев, канд. тех. наук, начальник отдела НИИ.

Цель лабораторных работ: изучение структуры, принципов работы БИС секционированных микропроцессоров комплекта К1804 и микроЭВМ на их основе.

Описание лабораторной установки

Общая характеристика микропроцессорного комплекта К1804

Комплект относится к классу так называемых секционированных микропроцессоров, которые не имеют заранее фиксированной системы команд и разрядности обрабатываемых слов, чем отличаются от однокристальных микропроцессоров (например, комплекта К-580). БИС, входящие в состав комплекта, реализуют не целиком процессор универсальной ЭВМ, а лишь его отдельные части(секции): арифметико-логическое устройство, блок микропрограммного управления, интерфейсные схемы и др.; кроме того, программирование ведется на микропрограммном уровне, что обеспечивает большую гибкость логической организации систем, построенных на основе комплекта К1804. Высокое быстродействие БИС комплекта, выполненных на схемотехнической базе стандартной транзисторно-транзисторной логики с диодами Шотки(ТТЛШ), обеспечивают широкое применение комплекта К1804 для построения высокопроизводительных управляющих и вычислительных систем (до нескольких млн. оп/с). Состав основные технические характеристики комплекта приведены в таблице 1.Изучение архитектуры, основ микропрограммирования и принципов применения комплекта К1804 ведется на микротренажере МТ-1804, который представляет собой простую 4-разрядную микроЭВМ с типовой структурной организацией.

Таблица 1.

Обозначение	Функциональное назначение	Количество выводов микро-
микросхем	микросхем	схем
K1804BC1	МП-секция	40
K1804BP1	Схема ускоренного переноса	16
К1804ВУ1	Схема управления адресом	28
	микрокоманд	
К1804ВУ3	Схема управления следую-	16
	щим адресом	
К1804ИР1	Регистр	16

Операционный узел микротренажера

Структурная схема микротренажера приведена на рис.1. Функционально микротренажер делится на два узла: операционный и узел управления.

В операционном узле выполняется обработка данных. Операционный узел содержит: БИС процессорной секции К1804ВС1; 4-разрядный регистр состояний и мультиплексор признаков (флагов) состояний; мультиплексор сдвига, регистр выходных данных.

Структура процессорной секции K1804BC1 приведена на рис.2. Секция представляет собой четырехразрядную обрабатывающую часть универсального процессора и содержит: регистровое 3У емкостью в 16 четырехразрядных чисел (ячейки ЗУ в дальнейшем будем называть регистрами общего назначения РОН); комбинационное арифметическо-логическое устройство (АЛУ); дополнительный регистр РQ; комбинационные схемы сдвигов РОН (СДРОН) и регистра Q (СДQ); мультиплексор источника операнда АЛУ (МS1); мультиплексор выходных данных (МS2); дешифраторы ДС1, ДС2, ДС3.

Входные и выходные сигналы микросхемы K1804BC1 имеют следующее назначение: A[3/0], B[3/0], - сигналы адресов A и B. Служат для выбора одного из 16 регистров POH; I[8/0] — сигналы режима работы микросхемы, D[3/0] — входные данные; Y[3/0] — выходные данные; \overline{OE} — разрешение выдачи результата; C0, C4 — вход и выход цепи последовательного переноса; \overline{P} и \overline{G} — сигналы пропускания и генерации переноса для схем ускоренного переноса; F3 — старший разряд результата AЛУ (знаковый); OVR — переполнение; Z — признак нулевого результата (F[3/0] =

0000); PR0, PR3, PQ0, PQ3 – сигналы, необходимые для организации сдвига информации, записываемой в POH и PQ.

Рис1. Структурная схема микротренажера

АЛУ служит для выполнения арифметических операций над кодами R и S, поступающими на его входы. На выходе АЛУ формируется код результата F[3/0], а также сигналы признаков и переносов (см. рис.2).

Рис2. Структурная схема БИС К1804ВС1

Шестнадцать РОН и PQ необходимы для временного хранения промежуточных результатов. Адресация регистров общего назначения РОН производится четырехразрядными сигналами A[3/0] и B[3/0] по двум каналам A и B. По каналу B может производиться запись и чтение данных, а по каналу A – только чтение.

Схемы сдвигов СДРОН и СДQ обеспечивают сдвиг на 1 разряд вправо или влево информации при записи в РОН и PQ, а также запись без сдвига. Мультиплексор MS1 обеспечивает выбор двух операндов R и S на входы АЛУ из четырех сигналов D[3/0], A[3/0], B[3/0], RQ[3/0]. Мультиплексор MS2 пропускает на выход Y[3/0] либо A[3/0], либо F[3/0]. Задание режима работы микропроцессорной секции K1804BC1 производится девятиразрядным кодом I[8/0], который разбивается на три части: I[8/6], I[5/3], I[2/0].

Код I[5/3] задает операцию в АЛУ над операндами R и S в соответствии с таблицей 2, из которой видно, что АЛУ может выполнять три арифметические операции (операции 1-3) и 5 логических операций (операции 4-8). При выполнении арифметических операций числа представляются в дополнительном коде со знаком с учетом значения входного переноса C0. Так, например, если складываются два числа: 1110 (-2₁₀) и 1101 (-3₁₀), и если C0 =0, то получится результат 1011 (-5₁₀). При этом перенос из старшего разряда C3 будет равняться единице. Логические операции выполняются поразрядно. Выходы ускоренных переносов \overline{P} и \overline{G} используются для работы со схемой ускоренного переноса 1804ВР1 (в микротренажере она не используется).

Код I[2/0] управляет работой мультиплексора MS1 и задает источники операндов, которые поступают на входы R и S, в соответствии с таблицей 3. Рассмотрим несколько примеров.

<u>Пример 1.</u> Пуст I[5/3] = 000, I[2/0] = 001. Из таблицы 2 находим, что $I[5/3] = 000 = 0_8$ и задает операцию R+S+C0, а из таблицы 3 находим, что при $I[2/0] = 001 = 1_8$ в качестве R выступает A, а в качестве S-B. Следовательно, на выходе АЛУ будет фиксироваться код F, равный A+B+C0, где A и B- коды, поступающие из регистров общего назначения, адреса которых задаются соответственно сигналами A[3/0], B[3/0] (см. рис. 2).

<u>Пример 2.</u> Пусть I[5/3]=010, что определяет необходимость выполнения операции R-S-1+C0 (см. табл. 2), а I[2/0]=111. В соответствии с последним кодом в качестве R и S выступают D и O; следовательно, на выходе АЛУ будет формироваться код F=D-O-1+C0.

Таблица 2.

Номера операций	Двоичный код 15 14 13	Восьмеричный код	Операция в АЛУ
1	0 0 0	0	R+S+C0
2	0 0 1	1	S-R-1+C0
3	0 1 0	2	R-S-1+C0
4	0 1 1	3	RvS
5	1 0 0	4	R*S
6	1 0 1	5	\overline{R} *S
7	1 1 0	6	R⊕S
8	1 1 1	7	R⊕S

Таблица 3.

Номера операций	Двоичный код Восьмеричный 12 11 10 код		Источники операндов		
			R	S	
1	0 0 0	0	A	Q	
2	0 0 1	1	A	В	
3	0 1 0	2	O	Q	
4	0 1 1	3	O	В	
5	1 0 0	4	O	A	
6	1 0 1	5	D	A	
7	1 1 0	6	D	Q	
8	1 1 1	7	D	О	

Если C0=0, то на выходе АЛУ будет вырабатываться код F=D-1; если C0=1, — то вырабатывается код F=D+0.

Сигналы I[8/6] управляют результатом: выдачей результата на шины Y[3/0], записью в регистры Q и B (со сдвигом или без сдвига), сдвигом информации в регистре Q. Управление результатом осуществляется в соответствии с табл.4. Рассмотрим следующие примеры:

<u>Пример 1.</u> I[8/6]=000. Результат с выхода АЛУ записывается в PQ, на выход Y выдается код с выхода АЛУ.

<u>Пример 2.</u> I[8/6]=010. Результат с выхода АЛУ записывается в РОН, адрес которого указывается сигналами B[3/0]. На выход Y выдается содержимое РОН, адрес которого указан сигналами A[3/0].

<u>Пример 3.</u> I[8/6]=100. Информация с выхода АЛУ записывается в РОН по адресу B[3/0] со сдвигом на 1 разряд вправо, содержимое PQ сдвигается вправо на 1 разряд. На выход Y выдается код с выхода АЛУ.

Таблица 4.

Номера операций	Двоичный код 18 17 16	Восьмеричный код	Загрузка	Выход
1	0 0 0	0	F→Q	F
2	0 0 1	1	Нет загрузки	F
3	0 1 0	2	F→B	A
4	0 1 1	3	F→B	F
5	1 0 0	4	$F/2 \rightarrow B; Q/2 \rightarrow Q$	F
6	1 0 1	5	F/2→B	F
7	1 1 0	6	2F→B;2Q→Q	F
8	1 1 1	7	2F→B	F

Микрооперации сдвигов выполняются комбинационными схемами СДРОН и СДQ, выполняющими передачу кодов F[3/0] с выхода АЛУ либо без смещения, либо со смещением в сторону младших разрядов (сдвиг вправо). Примеры работы двигателя СДРОН приведены на рис.3. Двигатель СДQ работает аналогично. При формировании значений крайних разрядов результата сдвига (разряда "0" при левом сдвиге и разряда "3" при правом) используются значения внешних сигналов PR0, PR3, PQ0, PQ3. Эти же сигналы могут принимать значения «выталкиваемых» разрядов (рис. 3). На рис. 3, а, б, в показаны соответственно передачи информации без сдвига, со сдвигом влево, со сдвигом вправо.

Для выполнения сдвигов различных типов (арифметических, циклических и др.) с помощью внешних схем организуется коммутация информации на двунаправленных шинах PR и PQ. В

узле обработки коммутация выполняется посредством двух мультиплексоров К555КП12, имеющих трехстабильные выходы.

Мультиплексорами управляют два специальных сигнала S1 и S2 и разряд 17 кода микрокоманды процессорной секции, определяющий направление сдвига (рис. 4). Правила коммутации иллюстрирует рис.5.

Рис5. Реализация сдвига

При выполнении операций в АЛУ формируется 4 признака, которые заносятся на регистр состояния (РСТ) и могут программно опрашиваться с помощью мультиплексора флагов для организации переходов по условию. Значения разрядов РСТ зависят от следующих признаков:

Формирование очередных значений РСТ происходит в каждом такте, за исключением микрокоманд условных переходов, на которых содержимое РСТ не меняется.

УЗЕЛ УПРАВЛЕНИЯ МИКРОТРЕНАЖЕРА

Запись и хранение микропрограмм работы устройства, выработку управляющих сигналов и данных в узел обработки, а также управление использованием последовательности микрокоманд выполняет узел, который включает в себя: БИС управления адресом микрокоманды К1804ВУ1; память микропрограмм емкостью 16 32-разрядных кодов; 32-разрядный регистр микрокоманд; мультиплексор флагов (МSF); схему управления выборкой следующего адреса, представляющую собой ПЗУ емкостью 32х8 бит; схему управления синхронизацией, вырабатывающую синхросигналы; органы управления и контроля за работой микротренажера.

Программирование работы устройства выполняется на микропрограммном уровне. Формат микрокоманд показан в табл. 5, в которой имеются следующие обозначения: D — входные данные; В — адрес РОН по каналу В; А — адрес РОН по каналу А; АЛУ — код управления функцией АЛУ; S1, S2 — биты управления операциями сдвига; С0 — входной перенос в АЛУ; І0, ..., І8 — управление центральной процессорной секцией; Р0, ..., Р3 — управление выборкой следующего адреса. Назначение отдельных разрядов приведено в табл. 6. Как видно из этих таблиц, разряды 0-23 микрокоманды используются для управления операционным узлом (в основном задают сиг-

налы в секцию К1804ВС1), а разряды 24-31 используются для кодирования адреса следующей микрокоманды и используются для секции К1804ВУ1, являющейся ядром узла управления.

Таблина 5.

			Таблица 5.
Положение пере- ключателя мультип- лексора	Номера битов	Назначение битов	Определение полей микрокоманд
7	31 30 29 28	R1 R2 R1 R0	Адрес перехода
6	27 26 25 24	P3 P2 P1 P0	Управление сле- дующим адресом
5	23 22 21 20	S2 I8 I7 I6	S2 Управление при- емником результа- та
4	19 18 17 16	S1 I2 I1 I0	S1 Источник операндов
3	15 14 13 12	C0 I5 I4 I3	С0
2	11 10 9 8	A3 A2 A1 A0	A
1	7 6 5 4	B3 B2 B1 B0	В
0	3 2 1 0	D3 D2 D1 D0	D

Структурная схема секции К1804ВУ1 показана на рис. 6. Эта схема обеспечивает формирование адреса очередной микрокоманды, генерируя 4-разрядный адрес. Схема содержит: регистр адреса РА; мультиплексор адреса МSA; счетчик микрокоманд (СМК), включающий регистр счетчика микрокоманд (РСМК) и инкрементор ИНК; схему маскирования на 4 элементах ИЛИ; буферную схему с трехстабильным выходом БУ; стек емкостью 4 четырехразрядных чисел.

На рис. 6 показаны также входные и выходные сигналы для схемы управления: D[3/0] — сигналы на прямых входах адреса, которые могут использоваться для задания адреса следующей микрокоманды; R[3/0] — сигналы на входах регистра адреса. Данные сигналы имеются только в микросхеме K1804BУ1. В микросхеме K1804BУ2 они отсутствуют: OR[3/0] — сигналы маски

имеются только в микросхеме К1804ВУ1. В микросхеме К1804ВУ2 они отсутствуют: \overline{RE} — сигнал разрешения записи в PA; \overline{ZA} — сигнал установки нулевого адреса; S0, S1 — сигналы управления мультиплексором; \overline{OE} —сигнал разрешения вывода информации из схемы управления адресом микрокоманд (СУАМ); \overline{FE} , PUP — сигналы управления стеком; C0, C4 — сигналы входного и выходного переносов; Т — тактовый сигнал; Y[3/0] — выходные сигналы.

Рис.6 Структурная схема БИС К1804ВУ1

Мультиплексор выбирает источник адреса следующей микрокоманды в зависимости от значения сигналов S0, S1 (табл.7,а). Сигнал с выхода мультиплексора может маскироваться на схеме ИЛИ сигналом OR[3/0]. Эта операция производится только для K1804BУ1, при использовании K1804BУ2 эта возможность отсутствует. Сигнал \overline{ZA} =0 устанавливает нулевой сигнал на выходе схемы И. Выходной сигнал Y[3/0] клапанируется сигналом \overline{OE} . Управление выходными сигналами показано в табл. 7,6.

Регистр адреса РА может использоваться для временного хранения адреса, принятого по шинам R[3/0] (для микросхемы K1804BY2 — по шинам D[3/0]).

Регистр РСМК и инкрементор ИНК в совокупности представляют собой счетчик микрокоманд. При C0=1 содержимое РСМК увеличивается на единицу, при C0=0 оно не изменяется.

Стек имеет глубину 4 слова. Он может использоваться для обращения к подпрограммам, когда необходим переход с возвратом. Управление стеком производится сигналами \overline{FE} и PUP. При это возможны жимы работы стека: увеличение указателя стека и запись (\overline{FE} =0, PUP=1); уменьшение указателя стека и считывание (\overline{FE} =0, PUP=0); считывание без изменения указателя стека (\overline{FE} =0,PUP=0v1).

Таблица 6.

Номера битов	Назначение разрядов
0 - 3	Входные данные в АЛУ
4 – 7	Адрес В
8 – 11	Адрес А
12 - 14	Функция АЛУ
15	Значение входного переноса СО
16 – 18	Определение источника операнда для АЛУ
19	Разряд MS1 управления мультиплексора сдвига
20 - 22	Управление приемников результата операции
23	Разряд MS2 управления мультиплексора сдвига
24 - 27	Управление выборкой следующего адреса микрокоманда
28 - 31	Адрес перехода

Таблица 7.

S1	S0	y						
0	0	РСМК						
0	1	PA						
1	0	СТО						
1	1	D						
a)								

ORi	\bar{z}	ŌE	yi						
X	X	1	-						
X	0	0	0						
1	1	0	1						
0	1	0	*						
	ნ)								

FE	PUP	Операция
1	X	Стек отключен
0	1	PUSH содержимое СМК заталки- вается в стек
1	0	РОР циклический сдвиг содер- жимого стека

* — источник выбирает S1, S0.

Управление работой стека показано в табл. 7, в. Все возможные воздействия сигналов S1, S0, \overline{FE} , PUP приведены в табл. 8.

B)

Основные функции по управлению следующим адресом выполняют сигналы S1, S0, \overline{FE} , PUP. Они определяют адрес и содержимое регистров.

Рассмотрим примеры работы схемы управления адресом при C0=1. Будем считать, что содержимое PCMK=j, PA=k, верхняя ячейка (CT0) содержит слово RA. Остальные ячейки стека обозначены как CT1, CT2, CT3.

Пусть S1=0; S0=1; \overline{FE} =1; PUP=0 или 1. Сигналы S1 и S0 обеспечивают передачу на выход содержимого PA. Так как \overline{FE} =1, то стек отключен, поэтому в следующем такте содержимое стека не изменяется. Содержимое PCMK в следующем такте будет увеличено на единицу.

Пусть S1=0, S0=1, \overline{FE} =0, PUP=1. Так как и в предыдущем примере S1=0, S0=1, следовательно, через мультиплексор будет проходить содержимое PA, т.е. Y=K, а в следующем такте на выходе PCMK будет слово K+1. Так как \overline{FE} =0, то стек включен; причем PUP=1 задает режим записи в стек, при этом все содержимое стека будет сдвинуто на один разряд, а крайнее слово потеряется («вытолкнется» из стека).

Пусть S1=0, S0=0, \overline{FE} =0, PUP=0. Такое сочетание сигналов задает операцию чтения информации из стека. Указатель стека уменьшается на единицу.

Операции с адресом по сигналам S1, S0, \overline{FE} , PUP позволяют реализовать различные варианты вычисления адреса следующей микрокоманды (см. табл. 8).

Для упрощения микропрограммирования в поля кода микрокоманды, отводимой для БИС К1804ВУ1, записывают не значения комбинаций сигналов S1, S0, \overline{FE} , PUP, а код номера P[3/0]

одного из 16 возможных переходов к адресу следующей микрокоманды. Этот код поступает в ПЗУ емкостью 32x8, реализованные на ИС К155PE3, запрограммированной в соответствии с табл. 9, в которой Q0 — сигнал PUP, т.е. сигнал, который управляет стеком БИС К1804ВУ1; Q1 — сигнал \overline{FE} , т.е. сигнал разрешения работы стека БИС К1804ВУ1; Q2 — сигнал S1, т.е. первый разряд управления мультиплексором БИС К1804ВУ1; Q2 — сигнал S0, т.е. нулевой разряд управления мультиплексором БИС К1804ВУ1; Q4, Q5, Q6 — сигналы маски OR0, OR1, OR2 БИС К1804ВУ1; Q7 — управляет регистром состояния; X — произвольный логический уровень. Постоянное запоминающее устройство (ПЗУ) вырабатывает комбинации управляющих сигналов в схему К1804ВУ1 и в другие схемы микротренажера, обеспечивающие выполнение заданного набора функций перехода в соответствии с табл. 10.

Код P[3/0] управляет также мультиплексором флагов MSF, формирующим сигнал признаков условий по значению регистра PCT. Этот сигнал непосредственно подается на младший разряд адреса ПЗУ и управляет адресом перехода.

Таблица 8.

Так-			Co						
ты рабо- ты уст- рой- ства	Управляющие сигналы S1 S0 FE PUP	СМК	PA	СТО	CT1	CT2	СТ3	Y	Выполняемые операции
N N+1	0 0 0 0	ј j+1	K K	RA RB	RB RC	RC RD	RD RA	j _	POP
N N+1	0 0 0 1	ј j+1	K K	RA j	RB RA	RC RB	RD RC	j _	Запись РСМК в стек
N N+1	0 0 1 X	ј ј+1	K K	RA RA	RB RB	RC RC	RD RD	j _	Переход к сле- дующей микро- команде
N N+1	0 1 0 0	j k+1	K K	RA RB	RB RC	RC RD	RD RA	k –	РОР. Переход на адрес из РА
N N+1	0 1 0 1	j k+1	K K	RA j	RB RA	RC RB	RD RC	k -	Запись РСМК в стек. Переход на адрес из РА
N N+1	0 1 1 X	j k+1	K K	RA RA	RB RB	RC RC	RD RD	k _	Переход на ад- рес из РА
N N+1	1 0 0 0	j RA+1	K K	RA RB	RB RC	RC RD	RD RA	RA -	Переход на адрес из СТО, РОР
N N+1	1 0 0 1	j RA+1	K K	RA j	RB RA	RC RB	RD RC	RA -	Переход на адрес из СТ0, запись РСМК в стек
N N+1	1 0 1 X	j RA+1	K K	RA RA	RB RB	RC RC	RD RD	RA -	Переход на ад- рес из СТ0
N N+1	1 1 0 0	j D+1	K K	RA RB	RB RC	RC RD	RD RA	D -	РОР, переход на адрес из D
N N+1	1 1 0 1	ј D+1	K K	RA j	RB RA	RC RB	RD RC	D -	Переход на адрес D. Запись РСМК в стек
N N+1	1 1 1 X	j D+1	K K	RA RA	RB RB	RC RC	RD RD	D -	Переход на ад- рес D

Таблица 9.

Pa	азряды	адрес	ов в П	3У			Е	Выходн	юй код	ц		олица
A4	A3	A2	A1	A0	Q7	Q6	Q5	Q4	Q3	Q2	Q1	Q0
	К	о д	Ы			Разряды						
0	0	0	0	0	1	0	0	0	1	0	1	X
0	0	0	0	1	1	0	0	0	0	0	1	X
0	0	0	1	0	0	0	0	0	1	0	1	X
0	0	0	1	1	0	0	0	0	1	0	1	X
0	0	1	0	0	0	0	0	0	0	0	1	X
0	0	1	0	1	0	0	0	0	0	0	1	X
0	0	1	1	0	0	0	0	0	1	1	1	X
0	0	1	1	1	0	0	0	0	1	1	1	X
0	1	0	0	0	1	0	0	0	1	0	0	1
0	1	0	0	1	1	0	0	0	0	0	1	X
0	1	0	1	0	0	0	0	0	1	0	0	1
0	1	0	1	1	0	0	0	0	1	0	0	1
0	1	1	0	0	0	0	0	0	0	1	0	0
0	1	1	0	1	0	0	0	0	0	1	0	0
0	1	1	1	0	0	0	0	0	0	1	1	X
0	1	1	1	1	0	0	0	0	0	1	1	X
1	0	0	0	0	1	0	0	0	0	1	1	X
1	0	0	0	1	1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	1
1	0	0	1	1	0	0	0	0	0	0	0	1
1	0	1	0	0	0	0	0	0	0	0	0	0
1	0	1	0	1	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	0	0	1	1	X
1	0	1	1	1	1	0	0	0	0	0	0	0
1	1	0	0	0	1	0	0	0	0	0	1	X
1	1	0	0	1	1	0	0	0	1	0	1	X
1	1	0	1	0	1	0	0	0	0	0	1	X
1	1	0	1	1	1	0	0	0	1	0	1	X
1	1	1	0	0	1	0	0	0	0	0	1	X
1	1	1	0	1	0	0	0	0	1	0	1	X
1	1	1	1	0	1	0	0	0	0	0	1	X
1	1	1	1	1	1	0	0	0	1	0	1	X

Таблица 10.

Цоморо опородий	Номера операций Регистры			Функции БМУ	
помера операции	P3	P2	P1	P0	Функции ым у
1	0	0	0	0	Переход на РМК, если F≠0
2	0	0	0	1	Переход на адрес из РМК
3	0	0	1	0	Продолжить
4	0	0	1	1	Переход на адрес по значению тумблеров «Адрес»
5	0	1	0	0	Переход к подпрограмме, если F≠0
6	0	1	0	1	Переход к подпрограмме
7	0	1	1	0	Возврат из подпрограммы
8	0	1	1	1	Переход к стеку
9	1	0	0	0	Окончить цикл и «вытолкнуть» из стека, если F=0
10	1	0	0	1	Загрузить стек
11	1	0	1	0	«Вытолкнуть» из стека
12	1	0	1	1	Окончить цикл и «вытолкнуть» из стека, если C4
13	1	1	0	0	Переход на адрес из РМК, если F=0
14	1	1	0	1	Переход на адрес из РМК, если F3
15	1	1	1	0	Переход на адрес из РМК, если 0vR
16	1	1	1	1	Переход на адрес из РМК, если С4

Память микрокоманд выполнена на 8 ИС 155РУ2 и может работать как на запись кодов разрядов микрокоманд, выполняемую потетрадно с набирателей пульта управления микротренажера в режиме ЗАГРУЗКА, так и на чтение 32-разрядных кодов микрокоманд с их занесением на регистр РМК. Адрес обращения к памяти устанавливается в режиме ЗАГРУЗКА набирателем АД-РЕС, а в режиме РАБОТА формируется БИС К1804ВУ1.

Схема управления синхронизацией вырабатывает тактовые сигналы, которые поступают в остальные схемы тренажера. Устройство работает в двух режимах: пошаговом и автоматическом.

При первом режиме тактирование осуществляется от генератора одиночных импульсов при нажатии переключателя ПУСК. При втором режиме тактирование выполняет внутренний тактовый генератор с частотой не выше 2 МГц, подключение которого осуществляется через клемму ХР4. Органы управления и контроля за работой микротренажера включают в себя переключатели и набиратели на пульте и плате устройства, используемые для задания режимов его работы и управления программированием и выполнением задач, и 3,4-разрядных индикатора и мультиплексоры: ДАННЫЕ, МИКРОКОМАНДА и ПАМЯТЬ, используемые для контроля за работой микротренажера. Светодиодные индикаторы ПАМЯТЬ и МИКРОКОМАНДА через мультиплексоры осуществляют потетрадную индикацию состояний выхода схем памяти и регистра микрокоманд. Номер выводимых на индикацию тетрад задает трехразрядный набиратель МУЛЬТИПЛЕКСОР. Индикатор ДАННЫЕ может подключатся к различным точкам устройства согласно таблице 11.

Таблица 11

Положение пе-	Разряды индикаторов данных				Контролируемые точки устройства
реключателей	12	11	10	9	
000	Y3	Y2	Y1	Y0	Выход К1804ВУ1
001	Y3	Y2	Y1	Y0	Выход К1804ВС1
010	C_4	OVR	F3	Z	Флаги K1804BC1, C ₄ - выходной пе-
010	C ₄	OVK	ГЭ	L	ренос счетчика МК
					ССЕ – выход коммутатора флагов со-
011	C ₄	CCE	\overline{P}	\overline{G}	стояния;
011					\overline{P} , \overline{G} – сигналы генерации ускорения
					переноса
100	ST_3	ST_2	ST_1	ST_0	Выход регистра состояния
101	PQ3	PQ2	PQ1	PQ0	Входы/выходы сдвига К1804ВС1
110	Y4	Y3	Y2	Y1	Выход регистра выходных данных
110	14	13	1 2	1 1	К1804ИР1
111	04	Q3	Q2	01	Выход стремя состояниями регистра
111	Q4			Q1	выходных данных

Органы управления микротренажера включают в себя 4-разрядные набиратели АДРЕС (SA8 – SA11) и ДАННЫЕ (SA4 – SA7), 3-разрядный набиратель МУЛЬТИПЛЕКСОР (SA1 – SA3), переключатель режимов ЗАГРУЗКА/РАБОТА (SA12) кнопки ЗАГРУЗКА (SB1) и ПУСК (SB2). Кроме того непосредственно на плате микротренажера установлены переключатели режимов работы ШАГ/АВТОМАТ (SA13) и генератора синхросигналов ВНУТРЕННИЙ/ВНЕШНИЙ (SA14). На плате имеются также 3 контрольные точки, позволяющие подключать осциллограф для оценки временных параметров БИС: XP2 – сигнал переноса счетчика микрокоманд БИС К1804ВУ1; XP3 – сигнал сравнения текущего адреса микропрограммы с адресом, задаваемым соответствующим набирателем; ZP5 – сигнал внутренней синхронизации устройства.

Загрузка микропрограмм

Для загрузки микропрограмм в память или контроля содержимого памяти необходимо:

- 1. переключателем АДРЕС набрать нужный адрес;
- 2. переключателем МУЛЬТИПЛЕКСОР установить номер тетрады;
- 3. переключателем ДАННЫЕ набрать нужный код записываемых данных в выбранную тетраду;
- 4. нажать кнопку ЗАГРУЗКА;
- 5. по индикатору ПАМЯТЬ проконтролировать правильность занесения данных;
- 6. повторить выполнение пп. 3 6 для всех тетрад.

Выполнение микропрограмм

В режиме РАБОТА устройство может выполнять микропрограмму либо по шагам, либо автоматически от внутреннего или внешнего генераторов. Пошаговый режим устанавливается переключателем ШАГ/АВТОМАТ. В режиме ШАГ синхронизация устройства осуществляется от кнопки ПУСК: при каждом нажатии выполняется одна микрокоманда.

Для автоматического выполнения программы переключатель ставится в положение AB-TOMAT, затем после нажатия кнопки ПУСК микрокоманды будут выполнятся одна за другой по сигналам, формируемым внешним или внутренним синхрогенераторами. Для запуска микропрограммы произвести начальную установку регистра МК, для чего: после окончания загрузки последней микрокоманды переключателем АДРЕС задать код стартового адреса микропрограммы; нажать один раз на кнопку ПУСК4; переключатель ЗАГРУЗКА/РАБОТА установить в положение РАБОТА; нажимая на кнопку ПУСК, последовательно выполнять микрокоманды, контролируя их выполнение по индикаторам ДАННЫЕ и МИКОКОМАНДА.

Задания и порядок выполнения лабораторных работ

Задания на лабораторную работу студенты получают на предыдущем занятии.

При подготовке к занятию должны составляться: схема алгоритма реализуемой микропрограммы; кодированная таблица (листинг) микропрограммы с необходимыми комментариями; предварительный протокол отладки. Образцы указанных документов представлены на рисунке 7 и таблицах 12 и13. При составлении листинга и протокола отладки следует пользоваться восьмеричной системой записи кодов.

Рис. 7 Схема алгоритма

Таблица12.

Адрес									
памя - ти	7	6	5	4	3	2	1	0	Примечания
0	-	2	3	7	0	-	1	10	10 →R1
1	-	2	3	7	0	-	0	3	3 →R0
2	2	1	3	1	0	1	0		$R1+R0 \rightarrow R0$

Таблица 13.

		Положения набирателя мультиплексора											
_		0	1		2				4				
такта	A whose			Флаги				Регистр состояния					
Номер та	Адрес М	Адрес перехо- да	Х вниШ	C4	OVR	F3	Z	C4	OVR	F3	Z		Примечания
			Результаты решения										
1	0	1	10	0	0	1	0	0	1	0	0		10 →R1
2	1	2	3	0	0	0	0	0	0	1	0		$3 \rightarrow R0$
3	2	2	13	0	0	1	0	0	0	0	0		$R1+R3 \rightarrow R0$

В начале каждого занятия подготовленные к занятиям материалы контролируются преподавателем.

Непосредственно на занятии отлаживаются на микротренажере заданные микропрограммы. Для этого необходимо произвести следующие действия:

- 1) коды микрокоманд микропрограммы загружаются в память микропрограмм в режиме ЗАГРУЗКА, при этом правильность набора микрокоманд контролируется по индикатору ПАМЯТЬ;
- 2) проводится начальная установка, т.е. в регистр МК считывается микрокоманда по стартовому адресу микропрограммы;
- 3) микротренажер переводится в режим РАБОТА и пошагово выполняется микропрограмма, при этом правильность ее работы контролируется по показаниям индикатора ДАННЫЕ в точках, установленных протоколом отладки. В случае несовпадений показаний индикатора и подготовленного заранее протокола выясняется их причина, для этого в первую очередь контролируется код выполняемой микрокоманды по индикатору МИКРОКОМАНДА и содержимое операционных регистров;
- 4) скорректированные протокол отладки и листинг отлаженной микропрограммы предъявляются преподавателю.

По каждой работе составляется отчет, включающий в себя: наименование и цель занятия; задание на лабораторную работу; схему алгоритма или описание микропрограммы, на уровне межрегистровых передач; листинг микропрограммы; протокол отладки.

Отчет по выполняемой работе предъявляется преподавателю на следующем занятии.

Лабораторная работа №1 Выполнение арифметических микропрограмм

При выполнении работы должна быть составлена и отлажена микропрограмма, реализующая такую последовательность действий:

 $X \rightarrow R_i$; $Y \rightarrow R_j$; $R_i * R_j \rightarrow R_i$; $R_i \rightarrow R_k$.

Значения данных и номеров регистров приведены в таблице 14.

Таблина 14

											I uon	ища 17.
Варианты работы	1	2	3	4	5	6	7	8	9	10	11	12
Данные		Числовые значения данных										
X	2	7	3	4	1	6	7	8	9	11	12	14
Y	-3	4	-2	6	5	3	2	3	-	-3	-1	15
i	0	1	0	0	1	2	2	4	5	6	7	8
j	1	10	5	3	2	Q	10	Q	4	1	Q	0
k	2	10	1	2	Q	1	3	7	8	9	2	1
*	+	-	&	V	\oplus	-	+1	-	\oplus	-1	+	&

Лабораторная работа №2

Выполнение ветвлений вычислительного процесса

Заданием на лабораторную работу является составление следующих микропрограмм:

Вариант 1. Записать в R2 наибольшее из чисел, хранящихся в регистрах R0 и R1 (числа целые без знака).

Вариант 2. Записать в R2 наибольшее из чисел, хранящихся в регистрах R0 и R1 (числа целые в дополнительном коде).

Вариант 3. Записать в Q наименьшее из чисел, хранящихся в регистрах R2 и R3 (числа целые без знака).

Вариант 4. Записать в Q наименьшее из чисел, хранящихся в регистрах R0 и R1 (числа целые в дополнительном коде).

Вариант 5. Записать в R1 модуль числа, хранящегося в регистре R0 (число целое в прямом коде).

Вариант 6. В регистрах R0, R1 и R2, R3 записаны два 8-разрядных числа в дополнительном коде. Записать в регистры R4, R5 сумму этих чисел (в регистре с меньшим номером должна храниться младшая часть соответствующего числа).

Вариант 7. В регистрах R2 и R3; R4 и R5 записаны два 8-разрядных числа в дополнительном коде. Записать в регистры R0 и R1 разность этих чисел (в регистре с меньшим номером должна храниться младшая часть соответствующего числа)..

Вариант 8. Вычислить в регистре R2 сумму двоично-десятичных чисел, хранящихся в регистрах R0 и R1.

Вариант 9. В регистрах R1 записано число в дополнительном коде. Записать в регистр R3 его прямой код.

Вариант 10. В регистрах R0 записано число в прямом коде. Записать в регистр R3 его дополнительный код.

Вариант 11. В регистре R0 записан код положительного числа. Записать в регистры R1 и R2 его двоично-десятичное представление.

Вариант 12. В регистрах R0 записано число в дополнительном коде. Записать в регистр R1 его обратный код..

Лабораторная работа №3 Выполнение сдвигов и организация циклов

Заданием на лабораторную работу является разработка и отладка микропрограммы подсчета количества единиц (нулей), содержащихся в кодах в регистрах R0 и R1. Результат необходимо подсчитывать в регистре Q.

Опрос значений разрядов кодов в регистрах R0 и R1 проводить путем умножения на маску 0001 или 1000 с последующим сдвигом вправо или влево (сдвигаться может либо анализируемый код, либо код маски).

Увеличение Q на единицу реализовать как отдельную подпрограмму, вызываемую командой условного перехода к подпрограмме.

В качестве счетчика количества повторений может использоваться либо регистр R2, либо регистр, хранящий код маски.

Для организации цикла необходимо использовать команды условных переходов либо выполнять переход с помощью команд: «окончить цикл и вытолкнуть из стека», если F=0.

Варианты заданий приведены в табл. 14

Таблица 14.

Вариант	Подсчет	Сдвиг	Счетчик количества повто-	Организация цикла
			рений	
1	1	вправо	R2	условный переход
2	0	вправо	R2	условный переход
3	1	влево	R2	условный переход
4	0	влево	R2	условный переход
5	1	вправо	R2	команды «окончить цикл и вы-
				толкнуть из стека»
6	0	вправо	R2	команды «окончить цикл и вы-
				толкнуть из стека»
7	1	влево	R2	команды «окончить цикл и вы-
				толкнуть из стека»
8	0	влево	R2	команды «окончить цикл и вы-
				толкнуть из стека»
9	1	вправо	Маска	условный переход

10	0	вправо	Маска	условный переход
11	1	влево	Маска	условный переход
12	0	влево	Маска	условный переход

Литература

- 1. Проектирование цифровых систем на комплектах микропрограммируемых БИС /под ред. В.Г. Колесникова. М.: Радио и связь, 1984. 240 с.
- 2. Балашов Е.П., Пузанков Д.В. Проектирование микропроцессорных устройств с разрядно модульной организацией. кн. 1. –М.: Мир, 1984. 320 с.