Tiesinis interpoliavimas

Tiesė, einanti per taškus $(x_1, f(x_1))$ ir $(x_2, f(x_2))$:

$$L_1(x) = b_1 + b_2(x - x_1).$$

Panašūs trikampiai ⇒ tiesės lygtis

$$\frac{L_1(x) - f(x_1)}{x - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Tiesinis interpoliacinis daugianaris

$$L_1(x) = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1).$$

Paklaidos įvertis

1 teorema.

Jei funkcijos f(x) antroji išvestinė intervale $[x_i, x_{i+1}]$ yra aprėžta, t.y.

$$|f''(x)| \leq M_2$$
, kai $x_i < x < x_{i+1}$,

tai tiesinio interpoliavimo paklaida įvertinama nelygybe

$$|f(x) - L_1(x)| \le \frac{1}{2} M_2 |(x - x_i)(x - x_{i+1})| \le \frac{1}{2} M_2 h_i^2,$$

 $h_i = x_{i+1} - x_i, \quad x \in [x_i, x_{i+1}].$

Pirmosios eilės skirtumų santykis

$$f(x_i, x_{i+1}) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i}.$$

Antrosios eilės skirtumų santykis

$$f(x_i, x_{i+1}, x_{i+2}) = \frac{f(x_{i+1}, x_{i+2}) - f(x_i, x_{i+1})}{x_{i+2} - x_i}.$$

n-osios eilės skirtumų santykis

$$f(x_0, x_1, \ldots, x_n) = \frac{f(x_1, \ldots, x_n) - f(x_0, \ldots, x_{n-1})}{x_n - x_0}.$$

Iteracinė procedūra:

- Apskaičiuoti visus pirmosios eilės skirtumų santykius;
- Apskaičiuoti visus antrosios eilės skirtumų santykius;

. . .

Skirtumų santykiai ir išvestinės

• f(x) nėra žinoma \Rightarrow tiksli konstanta M_2 įvertyje

$$|f''(x)| \leqslant M_2$$

irgi nežinoma;

■ ⇒ paklaidos įverčio formulėje -apytikslis antrosios išvestinės rėžis:

$$f''(x) \approx 2f(x_i, x_{i+1}, x_{i+2}).$$

Bendruoju atveju

$$f^{(n)}(x) \approx n! f(x_0, x_1, \cdots, x_n).$$

Kvadratinis interpoliavimas - pavyzdys

$$L_2(x) = f(x_1) + f(x_1, x_2)(x - x_1) + f(x_1, x_2, x_3)(x - x_1)(x - x_2).$$

Apskaičiuokime e^2 žinant e^1 , e^3 ir e^5 :

$$f(x_i) = e^x$$
 2,7183 20,086 148,41

$$1 \qquad 3 \qquad 5$$

$$2,7183 \qquad 20,0855 \qquad 148,4132$$

$$8,6837 \qquad 64,1638$$

$$L_2(2)=2,7183+8,6837(2-1)+13,872-1)(2-3)=-2,4680.$$
 Tiksliai $e^2=7,3891.$

Paklaidos įvertis

2 teorema.

Jei funkcijos f(x) trečiosios eilės išvestinė intervale $[x_i, x_{i+2}]$ yra aprėžta, t.y.

$$|f'''(x)| \leq M_3$$
, kai $x_i < x < x_{i+2}$,

tai kvadratinio interpoliavimo paklaida įvertinama nelygybe

$$|f(x) - L_2(x)| \le \frac{1}{6} M_3 |(x - x_i)(x - x_{i+1})(x - x_{i+2})| \le \frac{\sqrt{3}}{27} M_3 h^3,$$

 $h = x_{i+1} - x_i = x_{i+2} - x_{i+1}, \quad x \in [x_i, x_{i+2}].$

Niutono interpoliacinis daugianaris

Niutono interpoliacinė formulė

$$L_n(x) = f(x_0) + f(x_0, x_1)(x - x_0) + f(x_0, x_1, x_2)(x - x_0)(x - x_1) + \dots + f(x_0, x_1, \dots, x_n)(x - x_0)(x - x_1) \dots (x - x_{n-1})$$

- Jei yra žinoma užtektinai funkcijos f(x) reikšmių, šią formulę lengvai galima papildyti naujais nariais ir kartu padidinti jos "tikslumą".
- Interpoliavimo taškai x_i gali būti pasiskirstę kaip tolygiai, taip ir netolygiai, juos galima sunumeruoti bet kokia tvarka.

Niutono interpoliacinės formulės koeficientai

Niutono interpoliacinis daugianaris

$$f(x) = e^x$$

Interpoliavimas žinant funkcijos reikšmes taškuose [0; 1; 4; 3; 1, 5; 2, 5]

Paklaidos įvertis

3 teorema.

Jei (n + 1)-osios eilės funkcijos f(x) išvestinė intervale $[x_0, x_n]$ yra aprėžta, t.y.

$$|f^{(n+1)}(x)| \le M_{n+1}$$
, kai $x_0 < x < x_n$,

tai Niutono interpoliacinės formulės interpoliavimo paklaida įvertinama nelygybe

$$|f(x) - L_n(x)| \le \frac{1}{(n+1)!} M_{n+1} |(x - x_0)(x - x_1) \cdots (x - x_n)|,$$

 $x \in [x_0, x_n].$

Lagranžo interpoliacinis daugianaris

Sutampa su Niutono daugianariu

$$L_1(x) = c_0(x)f(x_0) + \cdots + c_n(x)f(x_n) = \sum_{i=0}^n c_i(x)f(x_i)$$

$$c_i(x) = \prod_{j=0, j \neq i}^{n} \frac{x - x_j}{x_i - x_j} = \frac{P_i(x)}{P_i(x_i)}$$

$$= \frac{(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)}{(x_i - x_1) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n)}$$

$$\left\{\begin{array}{ll} j=i & c_i(x_i)=1\\ j\neq i & c_i(x_j)=0 \end{array}\right\} \Rightarrow c_i(x_j)=\delta_{ij}.$$

2 eilės Lagranžo interpoliacinis daugianaris

$$L_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f(x_0) + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f(x_1) + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f(x_2)$$

Lagranžo interpoliavimas

- Labai patogus, jei skaičiuojama naudojant tuos pačius taškus x, su skirtingais y, (t.y., matavimai visada atliekami tuose pačiuose taškuose). Koeficientus c_k(x) reikia apskaičiuoti tik vieną kartą.
- Bet mažiau patogus, jei atsiranda papildomi duomenys.

patogu

```
pradiniai taškai: (x_1, y_1), \dots, (x_n, y_n)
nauji taškai: (x_1, z_1), \dots, (x_n, z_n)
```

mažiau patogu

```
pradiniai taškai: (x_1, y_1), \dots, (x_n, y_n)
nauji taškai: (x_1, y_1), \dots, (x_n, y_n), (x_{n+1}, y_{n+1})
```

Interpoliavimas daugianariais netinka:

- Duomenys su dideliu gradientu (lygus grafikas su staigiu piku);
- Duomenys su triukšmu;
- Neglodus paviršius (netolydi išvestinė).

Nesutapimas su tikrosios funkcijos grafiku. Osciliacijos.

4-osios eilės ir 14 -osios eilės Niutono interpoliaciniai daugianariai.

Interpoliavimas daugianariais netinka:

2 pavyzdys: duomenys su triukšmu.

Tiesinis dėsnis:

$$y = 2x + 1$$
.

3 pavyzdys: netolydi išvestinė.

$$f(x) = \sqrt{|x|}$$

Interpoliavimas, kai x = -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5

Ekstrapoliavimas

Ekstrapoliavimas – tai funkcijos nežinomų reikšmių nustatymas taške, nepriklausančiame žinomų taškų intervalui.

Ekstrapoliavimo trūkumai

- 7 laipsnio daugianaris sudarytas turint statistinius duomenis apie gyventojų skaičių JAV nuo 1920 iki 1990 (kas 10 metų).
- Taikykime jį JAV gyventojų skaičiui prognozuoti po 1990 metų.
- Ekstrapoliavimas nepagrįstas (skirtingai nuo interpoliavimo).

2006 m. JAV gyventojų skaičius perkopė 300 mln. žmonių.