

Base de données sql

L3 Informatique Semestre 5

Cours donné par Rédigé par Antoine de ROQUEMAUREL

Table des matières

T	Con	cept de base de données et fonction d'un SGBD	3
	1.1	Concepts	3
	1.2	Objectifs d'une base de données	3
	1.3	Avantages	3
	1.4	Le SGBD	4
	1.5	Principale fonction d'un SGBD	4
	1.6	Types d'utilisateurs d'un SGBD	5
2	L'al	gèbre relationnelle	6
	2.1	Les opérations ensemblistes	6
	2.2	Les opérations spécifiques	8
	2.3	Les opérations dérivées	9
	2.4	Expression de l'algèbre relationnelle	10
\mathbf{A}	Exe	rcices	12
	A.1	Algèbres relationnel	12

Concept de base de données et fonction d'un SGBD

1.1 Concepts

Definition 1.1 Un base de données est un ensemble structurée de données enregistrées sur des supports accessibles par l'ordinateur pour satisfaire simultanément plusieurs utilisateurs.

Les utilisateurs n'ont pas la même vue de la donnée, ce qui induit l'administrateur.

On construit une base de données en vue de traiter plusieurs application utilisant plusieurs programmes spécifiques.

1.2 Objectifs d'une base de données

Centralisation de l'information La centralisation de l'information permet de réduire les couts matériels, réduire les couts humains ¹ et augmente la lisibilité.

Assurer l'indépendance données / programmes Lors de la modification de la base de données il faut essayer de conserver les programmes d'application.

Indépendance physique Modifier la représentation physique des données sans changer les programmes.

Indépendance logique Modification du schéma conceptuel sans changer le programme.

Permettre les liaisons entre les données

Intégrité des données Il faut qu'a tout moment les données soient cohérentes

Droits d'accès Offrir les moyens de gérer les conflits. Partage + Concurrence \Rightarrow conflits

1.3 Avantages

- La redondance est réduite.
- Les données peuvent être partagées
- Construction d'application sur des données existantes
- Maintient de l'intégrité
- Amélioration de la sécurité et de la disponibilité des données : Garantir une exploitation continue face aux pannes

^{1.} Saisie qu'une fois de l'information

- Résolution des conflits
- Les données sont relativement indépendantes des programmes

1.4 Le SGBD

Definition 1.2 Le Système de Gestion de Base de Données est un ensemble de programmes permettant à un utilisateur d'interagir avec une base de données

Figure 1.1 – Système de Gestion de Base de Données

R

Le SGBD est un écran entre les usagers et les mémoires secondaires.

Cet ensemble de programmes permet :

- La description des données
- L'accès aux données
- La mise à jour des données (insertions, modifications, destructions)
- La réalisation d'associations entre les données
- Le maintient de l'intégrité
- La sécurité d'exploitation

1.5 Principale fonction d'un SGBD

1.5.1 Fonction de description – Description des données (LDD)

On doit pouvoir définir les entités se rapportant à un monde réel bien précis, préciser les attributs et les liaisons entre les entités. Le LDD est un outil à la disposition de l'administrateur.

1.5.2 Fonction de Manipulation – Manipulation des données (LMD)

La structure de la base de données étant décrite :

- Stocker / Changer les données
- Accéder aux enregistrements pour les mettre à jour
- Interroger la base de données

1.5.3 Autres fonctions

Sécurité, intégrité, ...

1.6 Types d'utilisateurs d'un SGBD

Différents rôles que doivent jouer une personne ou un groupe de personnes pour concevoir, créer, mettre en œuvre et exploiter une base de données :

Administrateur

- Description formelle de la base de données
- Création des schémas externes pour les applications
- Définition des droits d'accès
- Spécifier les organisations physiques et méthodes d'accès utilisées dans l'optique de garantir les meilleures performances
- Définir les procédures de sécurité

Administrateur d'application Il est chargé de décrire la portion de la base de données concernée par une application.

Utilisateur

L'algèbre relationnelle

2.1 Les opérations ensemblistes

Ce sont les opérations qui sont directement issues de la théorie des ensembles.

2.1.1 Union

Definition 2.1 Opération portant sur deux relations de même schéma R_1 et R_2 consistant à construire une relation R_3 de même schéma et ayant pour tuples ceux appartenant à R_1 , R_2 ou aux deux relations

Notation 2.1. $R_3 = Union(R_1, R_2)$

\mathbf{Cru}	Millésime	Région	Couleur
Chablis	2008	Bourgogne	Blanc
Tavel	2010	Rhône	Rosé

Table
$$2.1 - Vins_1$$

\mathbf{Cru}	Millésime	Région	Couleur
Lirac	2009	Rhône	Rouge
Tavel	2010	Rhône	Rosé

Table
$$2.2 - Vins_2$$

$$Vins_3 = Union(Vins_1, Vins_2)$$

Cru Millésime		Région	Couleur			
Chablis	2008	Bourgogne	Blanc			
Tavel	2010	Rhône	Rosé			
Lirac 2009		Rhône	Rouge			
There 2.2 IV:						

Table $2.3 - Vins_3$

2.1.2 Différence

Definition 2.2 Opération portant sur deux relations de même schéma R_1 et R_2 consistant à construire une relation R_3 de même schéma ayant pour tuples ceux appartenant à R_1 et n'appartenant pas à R_2 .

Notation 2.2. $R = difference(R_1, R_2)$

\mathbf{Cru}	Millésime	Région	Couleur
Chablis	2008	Bourgogne	Blanc
Tavel	2010	Rhône	Rosé

Table $2.4 - Vins_1$

Cru	Millésime	Région	Couleur
Lirac	2009	Rhône	Rouge
Tavel	2010	Rhône	Rosé

Table $2.5 - Vins_2$

 $Vins_3 = difference(Vins_1, Vins_2)$

\mathbf{Cru}	Millésime	Région	Couleur			
Chablis	2008	Bourgogne	Blanc			
T_{1} T_{2} T_{3} T_{4} T_{4}						

Table $2.6 - Vins_3$

2.1.3 Produit

Definition 2.3 Opération portant sur deux relations R_1 et R_2 consistant à construire une relation R_3 ayant pour schéma la concaténation de ceux de R_1 et R_2 et pour tuples les combinaisons des tuples de R_1 et R_2 .

Notation 2.3. $R_3 = pc(R_1, R_2)$

Cru	Millésime	Région	Couleur
Chablis	2008	Bourgogne	Blanc
Tavel	2010	Rhône	Rosé
	Table 2	$2.7-Vins_3$	

	Cru	Millésime	Région	Couleur	
	Lirac	2009	Rhône	Rouge	
	Tavel	2010	Rhône	Rosé	
Table $2.8 - Vins_2$					
	$Vins_6 = produit(Vins_1, Vins_2)$				
	~	3 543 4 4	54.		
	Cru	Millésime	Région	Couleur	
	Chablis	2008	Bourgogn	e Blanc	
	Tavel	2010	Rhône	Rosé	
	Lirac	2009	Rhône	Rouge	
	Tavel	2010	Rhône	Rosé	
	Table $2.9 - Vins_2$				

2.2 Les opérations spécifiques

2.2.1 Projection

Definition 2.4 Opération sur une relation R_1 consistant à construire une relation R_2 en enlevant de R_1 tous les attributs non mentionnés en opérande.

Notation 2.4. $R_2 = \prod_{attr_1, attr_2, \dots, attr_n} (R_1)$

$$vins_7 = \Pi_{cru,region}(vins_6)$$
 $\begin{array}{c|c} \mathbf{Cru} & \mathbf{R\acute{e}gion} \\ \hline \mathbf{Chablis} & \mathbf{Bourgogne} \\ \hline \mathbf{Tavel} & \mathbf{R\acute{h}\^{o}ne} \\ \mathbf{Lirac} & \mathbf{R\acute{h}\^{o}ne} \\ \hline \mathbf{Tavel} & \mathbf{R\acute{h}\^{o}ne} \\ \hline \mathbf{Tavel} & \mathbf{R\acute{h}\^{o}ne} \\ \hline \end{array}$
 $\mathbf{Table} \ 2.10 - Vins_7$

2.2.2 Restriction

Definition 2.5 Opération sur une relation R_1 produisant une relation R_2 de même schéma mais comportant uniquement les tuples vérifiant la condition booléenne précisée en argument.

Notation 2.5. $R_2 = \sigma_{condition}(R_1)$

$Vins_8 = \sigma_{region='Rhone'}(vins_6)$				
	Cru	Millésime	Région	Couleur
	Tavel	2010	Rhône	Rosé
	Lirac	2009	Rhône	Rouge
$\text{TABLE } 2.11 - Vins_8$				

2.3 Les opérations dérivées

2.3.1 Jointure

Definition 2.6 Opération consistant à rapprocher les tuples de deux relations R_1 et R_2 afin de former une relation R_3 dont les attributs sont l'union de attributs de R_1 et R_2 et un tuple de R_2 vérifiant la condition précisée en argument.

Notation 2.6. $R_3 = join(R_1, R_2, cond)$

$$Vins_{10} = join(Vins_7, Vins_9, vins_7, cru = vins_9.cru)$$

$$\begin{array}{c|cccc} \mathbf{Cru} & \mathbf{Mill\acute{e}sime} & \mathbf{R\acute{e}gion} & \mathbf{Couleur} \\ \hline \mathbf{Chablis} & 2008 & \mathbf{Bourgogne} & \mathbf{Blanc} \\ \hline \mathbf{Tavel} & 2010 & \mathbf{Rh\^{o}ne} & \mathbf{Ros\'{e}} \\ \end{array}$$

L'opération de jointure est dérivée de l'opération de multiplication suivie d'une restriction : $join(R_1, R_2, cond)$ $\sigma_{cond}(pc(R_1, R_2))$

2.3.2 Intersection

Definition 2.7 Opération portant sur deux relations R_1 et R_2 de même schéma consistant à construire une relation R_3 de même schéma ayant pour tuples ceux appartenant à R_1 et appartenant à R_2 .

Notation 2.7. $R_3 = intersect(R_1, R_2)$

L'opération d'intersection est dérivée de deux différences : $intersect(R_1, R_2) = difference(R_1, difference(R_1, R_2)).$

2.3.3 Division

Definition 2.8

$$Q = D/d = \{ \langle a_1, a_2, \cdots, a_p \rangle / \forall \langle a_p 1, a_{p_2}, \cdots, a_n \rangle \in d$$

$$\langle a_1, a_2, \cdots, a_p, a_{p+1}, a_{p+2}, \cdots, a_n \rangle \in D \}$$

Notation 2.8.

NumC	nom
1	bdd
2	Archi
2	Graphe

Table 2.13 - cours

numC	numE
1	1
2	1
3	1
1	2
3	2

Table 2.14 - suit

$$T = suit/\Pi_{numC}(cours)$$

Table 2.15 - T

« Quels sont les numéros d'étudiants qui suivent tous les cours? »

2.4 Expression de l'algèbre relationnelle

A partir de l'algèbre relationnelle il est possible de composer un langage algébrique.

2.4.1 Opérateur algébriques

Comment obtenir les couleurs de vins de cru Morgon ou Volnay?

Deux solutions sont possibles:

2.4.1.1 Opérateur algébriques

$$T_1 = \sigma_{cru='morgon'}(vins)$$

$$T_2 = \sigma_{cru='volnay'}(vins)$$

$$T_3 = union(T_1, T_2)$$

$$resultat = \Pi_{couleur}(T3)$$

2.4.1.2 Langage algébrique

Une autre solution, plus performante permettant de ne pas utiliser de variables temporaires en utilisant le langage algébrique :

$$\Pi_{couleur}(union(\sigma_{cru='morgon'}(vins), \sigma_{cru='volvay'}(vins)))$$

2.4.1.3 Arbre algébrique

celui-ci peut aussi être représentée sous forme d'un arbre relationnel. Les nœud correspondent au représentation graphiques des opérations et les arcs aux flots de données entre les opérations.

FIGURE 2.1 – Arbre relationnel

Exercices

A.1 Algèbres relationnel

A.1.1 Opérateurs algébriques

```
vins(numv, cru, mill, region, degré)
buveurs(nums, nom, prenom, ville)
abus(nomv, nomb, date, quantite, place)
```

Avec les opérateurs algébriques et uniquement les opérateurs de base.

A.1.1.1 Donner le degré des vins de cru Morgon et Millésime 2001

$$T_1 = \sigma_{cru='morgon' \ and \ mill=2001}(vins)$$

$$T_2 = \pi_{degr\acute{e}}(T_1)$$

A.1.1.2 Numéro des buveurs de Chenas

$$T_1 = \sigma_{cru='chenas'}$$

 $T_2 = pc(T_1, abus)$
 $T_3 = \sigma_{T_1.numV=abus.numV}(T_2)$
 $Res = \Pi_{numB}(T_3)$

A.1.1.3 Nom et prénom des buveurs de chénon et de Tariquet

Autorisation d'utiliser le join

```
T_1 = \sigma_{cru='chenon'\ ou\ cru='tariquet'}(vins)

T_2 = join(T_1, abus, T_2.numV = abus.numV)

T_3 = join(T_2, buveurs, T_2.numB = buveurs.numB)

Res = \Pi_{nom.prenom}(T_3)
```

A.1.1.4 Noms des buveurs ayant bu uniquement du Tavel

```
T_{1} = \sigma_{cru='Tavel'}(vins)
T_{2} = \sigma_{cru\neq tavel}(vins)
T_{3} = join(abus, T_{1}, t_{1}.numv = abus.numv)
T_{4} = join(abus, T_{2}, T_{2}.numv = abus.numv)
T_{5} = \Pi_{numB}(T_{3})
T_{6} = \Pi_{numB}(T_{4})
T_{7} = difference(T_{5}, T_{6})
T_{8} = join(T_{7}, buveurs, T_{7}.numB = buveurs.num7)
Res = \Pi_{nom}(T_{8})
```

A.1.1.5 Écrire A.1.1.4 en langage algébrique

```
\Pi_{nom}(join(difference(\Pi_{numB}(join(abusa, \sigma_{cru='Tavel'}(vins), abus.numv = vins.numv)),
\Pi_{numB}(join(abus, \sigma_{cru\neq'tavel'(vins)}, abus.numv = vins.numv))),
buveurs, a.numB = buveurs.numB))
```

A.1.2 Arbres algébriques

```
Trafic(nTrain, nLige, gare)
Trains(nTrains, nRegion)
lignes(nLignes, rang, gare)
wagons(nWagon, type, poidsVide, capacie, etat)
```

- A.1.2.1 Types de wagons du train 4001
- A.1.2.2 Numéro et types des wagons des ligne 111 et 112
- A.1.2.3 Numéro des wagons communcs aux lignes 111 e 112
- A.1.2.4 Numéro des trains ayant au moins 2 wagons vides
- A.1.2.5 Liste des gares de dessertes pour le train 4001
- A.1.2.6 Numéro des lignes qui partent de la gare de Toulouse