

DUPLICATE COPY

A 100 804

AIR UNIVERSITY
UNITED STATES AIR FORCE

SCHOOL OF ENGINEERING

DTIC
ELECTE
S JUL 1 1981 D
D

WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Best Available Copy

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited

81 6 30 064

AFIT/GNE/PH/81M-5

Accession For	
NTIS GRA&I	<input checked="" type="checkbox"/>
DTIC TAB	<input type="checkbox"/>
Unannounced	<input type="checkbox"/>
Justification _____	
By _____	
Distribution/ _____	
Availability Codes	
Dist	Avail and/or Special
A	

X-RAY FLUENCE AND TRANSMISSION AND
PROMPT RADIATION FLUENCE OR DOSE.

THESIS

AFIT/GNE/PH/81M-5 Donald E. Jones
 Captain USAF

DTIC
ELECTED
S D
JUL 1 1981
D

Approved for public release; distribution unlimited.

X-RAY FLUENCE AND TRANSMISSION AND
PROMPT RADIATION FLUENCE OR DOSE

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of
Master of Science

by

Donald E. Jones, B.S., M.S.
Captain USAF

Graduate Nuclear Engineering

March 1981

Approved for public release, distribution unlimited

Preface

Under the impression that the transmission of x-rays through the atmosphere had been exhaustively studied, I was surprised to find that there is very little written in the literature which deals with the subject. This paper deals with the fluence and transmission of x-rays and the fluence or dose of prompt radiation (neutrons and secondary gamma rays) and compares the results of the former with those results predicted by use of the Horizons Technology, Inc. (HTI) x-ray fluence and transmission program.

This thesis topic was one presented by Dr. Charles Bridgman of the faculty of the School of Engineering, Air Force Institute of Technology with the expressed intent of validating the results obtained using the HTI program by obtaining similar results using mass integral scaling and the build-up factor method.

I wish to thank Dr. Bridgman for his patience and help in getting me through the rough spots in this research. I also wish to express my thanks to my wife, Linda, and my children for the patience they showed me even when I had none for them.

Donald E. Jones

Contents

Preface	ii
List of Figures	v
List of Tables.	vi
Abstract.	vii
I. Introduction.	1
Background.	1
Purpose	2
Method.	2
Assumptions	3
II. Basic Principles.	4
Theory.	4
Transmission Factor for the BU Method	4
Group Probability	6
Mass Attenuation Coefficient.	9
Mass Integral	11
Build-up Factors.	14
Final Form.	15
Baseline Program.	15
Limitations of BU Method.	15
Transmission Factor for the HTI Model	16
III. Solution by BU Method	18
Baseline Program.	18
Program QUICK	19
TI-59 Program	19
IV. Results	21
Comparison of Results	21
Baseline with HTI	21
QUICK and the TI-59 Program with Baseline	26
Area of Concern	26
V. Prompt Effects.	28
Background.	28
Mass Integral Scaling	30
Results	33

Contents

VI. Conclusions and Recommendations	35
Conclusions	35
Recommendations	35
Bibliography	36
Appendix A: Mass Integral Scaling	38
Appendix B: Kalansky's Coefficients	39
Appendix C: Baseline Program Listing and Use.	40
Appendix D: Algorithm	47
Appendix E: Program QUICK Listing	51
Appendix F: TI-59 Programs.	54
Appendix G: Program PROMPT.	68
Vita	74

List of Figures

Figure	Page
1 The Planck Function and Its Integral.	8
2 Mass Attenuation Coefficient for Air.	10
3 Definition of Mass Integral Variables	12
4 Angle Definition.	13
5 Comparison of Baseline Results with HTI Results	22
6 Comparison of Program QUICK Results with Base- line Results.	23
7 Comparison of TI-59 QUICK Results with Base- line Results.	24
8 Sample Graph of Neutron $4\pi R^2$ Fluence	29
9 Comparison of TI-59 Prompt Radiation Program with Results from Kaman Sciences.	34

List of Tables

Table		Page
I.	Fit Coefficients for Polynomial Fit of Mass Attenuation Coefficients.	11
II.	Comparison of Baseline Results for Various Mass Integral Values and Black-body Temperatures.	25
III.	HTI Problem Area.	27
IV.	ANISN Homogeneous Air Data.	31
V.	Baseline Variables.	40
VI.	Data Registers.	66
VII.	Data Register Entries	67
VIII.	Prompt Data Registers	69

Abstract

This report is to validate and evaluate a Horizons Technology, Inc. (HTI) TI-59 program written to calculate the free field x-ray fluence from a nuclear burst. In addition to this validation of an existing program, programs were written to compute mass integral and prompt radiation effects. X-ray transmission is calculated using a build-up factor method and is compared to results from the HTI program. Results are compared for black-body temperatures of 0.1, 1.0, and 10.0 keV and mass integrals from 10^{-6} to 50.0 gm/cm². The results compare well with a maximum error of approximately 21%. HTI's program has a minor problem as the transmission factor approaches zero so a TI-59 program is provided for use in that regime. A quick FORTRAN program is provided to calculate the fluence reaching a receiver. TI-59 and FORTRAN programs are given to calculate the mass penetrated and prompt radiation fluence or dose.

X-RAY FLUENCE AND TRANSMISSION AND PROMPT RADIATION FLUENCE OR DOSE

I. Introduction

Background

The work reported here was motivated by a program written by Horizons Technology, Inc. (HTI) under contract to the Defense Nuclear Agency (contract number DNA 001-78-C-0247). This program, x-ray fluence and transmission (Ref.1), is one of a number of nuclear weapons effects programs developed by HTI. All of these programs use the Texas Instruments TI-59 hand-held programmable calculator (Ref.2). The TI-59 stores and retrieves these programs on/from small magnetic cards.

The original purpose of the project was to evaluate the HTI x-ray fluence and transmission program. The evaluation was to be accomplished by comparing the HTI results to x-ray transmission factors computed using a build-up factor method. The build-up factors were calculated for infinite, homogeneous air using coefficients provided by G. Kalansky (Ref.3). As will be shown, the use of build-up factors amounts to applying the mass integral scaling approximation first described by Zerby (Ref.4) and recently studied by Shulstad (Ref.5). The mass integral scaling approximation has also been used by Murphy (Ref.6) and Eamon (Ref.7) to

calculate free field neutron and secondary gamma fluences and/or doses from a nuclear burst. So, an extension of the project and the mass integral scaling technique led to a new program, not published by HTI, to calculate prompt radiation effects. Since both the existing HTI program and the build-up x-ray and prompt radiation programs require the mass integral as an input, a second new program was written to calculate the mass integral.

Purpose

The purpose of this work became threefold. The first part was to validate the HTI TI-59 x-ray flux and transmission program (Ref.1:9-1,13).

The second part of the purpose was to write a new program to calculate prompt radiation effects. Finally, a second new program was to be written to calculate the mass integral.

Method

The use of build-up factors to compute x-ray fluence and the transmission factor is developed in Chapter II. The build-up factor method (BU) is contrasted to HTI's method of calculation. The programs written for this project are described in Chapter III. Results of both methods are compared in Chapter IV. Chapter V discusses the work of Murphy and Eamon, with respect to neutrons and secondary gammas, and the new program which is provided. Chapter VI states the conclusions

and recommendations of this work.

Assumptions

Two explicit assumptions are made in this work. They are

1. Kalansky's build-up factor coefficients are applicable (Ref.3).
2. The concept of mass integral scaling applies to x-rays and prompt radiation.

The assumptions are discussed later in the text.

II. Basic Principles

Theory

In this work, the HTI program is evaluated by comparing its predictions to results from an alternate prediction, the build-up factor (BU) method. Both methods use the same equation for fluence:

$$F = \frac{SfT}{4\pi r^2} \quad (1)$$

where

F = fluence in calories per square centimeter

S = source yield in calories

T = transmission factor

r = distance from source to receiver in centimeters

f = x-ray fraction of the source yield

The only real difference between the BU method and the HTI model is in the calculation of the transmission factor, T. For this reason, a large portion of this work is devoted to the calculation of the transmission coefficient by each model.

Transmission Factor for the BU Method

The BU method for calculation of the transmission factor, T, is based on mass integral scaling of x-ray transmission in a homogeneous atmosphere. Mass integral scaling, first suggested by Zerby (Ref.4) in 1956, is currently used

for neutron and gamma ray transport in the Air Force Weapons Laboratory computer code SMAUG (Ref.6) and has recently been described by Shulstad (Ref.5). An explanation of mass integral scaling is given in Appendix A.

This work made use of build-up factor coefficients determined by Kalansky (Ref.3) to account for the increased number of x-rays reaching a receiver due to scattering. Kalansky did his x-ray transmission calculations using a moments method solution of the Boltzmann transport equation in an infinite, homogeneous atmosphere. His results are reported in the form of BUF as a function of mean-free-path with x-ray energy as a parameter.

If the build-up factors are known for all energies, they can be used to compute the transmission factor for a spectrum of x-ray energies by

$$T = \int_0^{\infty} P(hv) \text{BUF}(hv) \exp\{-[\mu/\rho]_{\text{air}}(hv) \text{M.I.}\} d(hv) \quad (2)$$

where

$P(hv)$ = probability of an x-ray with energy between $h\nu$ and $h\nu + d(h\nu)$

$[\frac{\mu}{\rho}]_{\text{air}}(h\nu)$ = total mass attenuation coefficient for air for an x-ray with energy between $h\nu$ and $h\nu + d(h\nu)$

M.I. = mass integral = $\int_{\rho}(r) dr$ which is the mass contained in a unit area tunnel of length, r , from source to receiver

$\text{BUF}(\text{hv})$ = build-up factor for an x-ray with energy between hv and $\text{hv} + d(\text{hv})$

Since the integration of Eq.(2) would be difficult, if not impossible, to do analytically, it is usually solved by numerical integration. Eq.(2) can be rewritten in discrete energy space as

$$T = \sum_{g=1}^G P_g \text{BUF}_g \exp[-(\mu/\rho)_{\text{air}}^g \text{M.I.}] \quad (3)$$

where

G = total number of energy groups

P_g = probability of an x-ray energy within the limits of the group, g

$(\mu/\rho)_{\text{air}}^g$ = total mass attenuation coefficient for air for an x-ray energy within the limits of the group, g

BUF_g = BUF for an x-ray of energy within the limits of the group, g

If the groups are sufficiently narrow, one does not have to worry about what value of μ/ρ and BUF are appropriate for each group. Eq.(3) is used by the BU method.

Group Probability. The BU method assumes the source to be a perfect black-body radiator and that the source x-rays can be represented by a single normalized Planckian black-body spectrum. These normalized Planckian functions

are (Ref.8)

$$P(h\nu;T) = \frac{15}{(\pi kT)^4} \left[\frac{(h\nu)^3}{e^{h\nu/kT}-1} \right] \quad (4)$$

where $P(h\nu;T)$ is the probability of an x-ray of energy $h\nu$ with a black-body temperature of kT keV. Determination of P_g in Eq.(3) can be made by integrating Eq.(4) over the energy range of each group (Ref.8)

$$P_g = \int_{h\nu_{g-1}}^{h\nu_g} \left[\frac{15}{(\pi kT)^4} \frac{(h\nu)^3}{e^{h\nu/kT}-1} \right] d(h\nu) \quad (5)$$

This integration allows the computation of a probability for each energy group being used. Equation (5) can be put in normalized form by first defining the dimensionless quantity, u , to be $u = h\nu/kT$. Then Eq.(5) can be rewritten as

$$P_g = \int_{u_{g-1}}^u \frac{15}{\pi^4} \left(\frac{u^3}{e^u - 1} \right) du \quad (6)$$

Evaluation of Eq.(6) can be accomplished by integration, reading values from a graph such as Figure 1 (Ref.8), or reading tables of the Planck function and its integral (Ref.9). In this work, the probability for each group is found by numerical integration over u using a box approximation to numerically calculate the integral. Note that due to the nature

Figure 1. The Planck Function and Its Integral. (Ref. 8)

of the Planckian function and u , one computation of the probability for each group is all that is required since the probability of energy group u_i is the same regardless of the temperature of the radiating body.

The computation of the probabilities for each group for the baseline program is accomplished in Subroutine PLANCK (Appendix C) using equal Δu .

Mass Attenuation Coefficient. The mass attenuation coefficients for air can be obtained from several sources (Refs 8; 10; 11). The primary source used in this work is UCRL 50174, Compilation of X-ray Cross Sections (Ref. 10). The data points which were used to generate the polynomial fit to the mass attenuation coefficients are plotted as circles on Figure 2. The line in Figure 2 was generated using the fit coefficients given in Table I.

The mass attenuation coefficients were fit using a Laurent series polynomial fit in powers of $1/E$, where E is the x-ray energy. Fit coefficients, root-mean-square errors and plots of the fits were generated for powers of $1/E$ from two through six. The best fit is of fifth degree. The coefficients for the fifth degree fit are shown in Table I. This polynomial fit is plotted in Figure 2 along with the data points used to generate the fit.

The results of the mass attenuation coefficient fit are written into Subroutine MURHO for the baseline program (Appendix C).

Figure 2. Mass attenuation coefficient for air.

TABLE I

Fit Coefficients for Polynomial Fit
of Mass Attenuation Coefficients

Degree	Coefficient
constant	-.001354
$1/E$	19.7541
$1/E^2$	-461.7632
$1/E^3$	6680.0229
$1/E^4$	-3497.3643
$1/E^5$	907.3575

Mass Integral. The mass integral is the mass of air contained in a unit area tunnel between the source and the receiver. Mathematically, this is stated as

$$M.I. = \int_0^r \rho(r') dr' \quad (7)$$

where r is the slant range as defined in Figure 3. If the air is assumed to be exponentially varying in density according to the local pressure scale height, then

$$M.I. = \frac{1}{\sin \theta} \int_0^{z'} \rho(z_B) \exp[-z/H_B] dz' \quad (8)$$

Figure 3. Definition of Mass Integral Variables. z_B is the source height. z_T is the receiver height, θ is the inclination of the receiver with respect to the source, and r is the slant range.

where

M.I. = mass integral

θ = as defined in Figure 4

$z = z_B - z_T$

$\rho(z_B)$ = density of air at the source height

H_B = scale height of atmosphere

z_B = source height

z_T = receiver height

The density and scale height can be obtained from U.S. Standard Atmosphere 1976 (Ref. 12). Since z_B , z_T , and H_B are all in units of kilometers and ρ is usually in units of

Figure 4. Angle Definition.

gm/m^3 , a conversion factor must be used to get the mass integral in units of gm/cm^2 .

Eq.(8) is directly integrable,

$$\text{M.I.} = \frac{-H_B}{\sin\theta} \rho(z_B) [\exp(-z'/H_B) - 1] \quad (9)$$

Examination of Eq.(9) shows that the mass integral will always be positive since z' is negative whenever $\sin\theta$ is negative and positive when $\sin\theta$ is positive.

There is one area where Eqs.(8) and (9) cannot be applied. That is when the source and receiver are co-altitude which implies that $\sin\theta$ is zero and $1/\sin\theta$ is infinite. For the

co-altitude case, another form of the mass integral must be used (Ref.8).

$$M.I. = \rho(Z_B)r \quad (10)$$

where r is the range from the source to the receiver.

Equations (9) and (10), with conversion factors to obtain the correct units for the mass integral, are written into Subroutine MASSI for the baseline program (Appendix C).

Build-up Factors. As previously stated, the BUF used in this paper are obtained from Kalansky (Ref.3). As Kalansky points out, Taylor (Ref.13) suggested the following equation for describing build-up factors:

$$B = A_1 \exp(C_1y) + A_2 \exp(C_2y) \quad (11)$$

where

B = build-up factor to account for the arrival of scattered x-rays at the receiver

y = number of mean-free-paths of source energy

$$A_2 = 1 - A_1$$

A_1, C_1, C_2 = constants determined from calculated BUF

Kalansky determined the constants A_1 , C_1 , and C_2 by fitting his moments calculated results (Ref.3). The coefficients Kalansky derived are tabulated in Appendix B which is a table extracted from Kalansky's work. When using this data

to calculate BUF, interpolation of BUF, not Kalansky's coefficients, should be made when coefficients are not given for the exact energy of interest.

Final Form. With the previous factors in mind, Eq.(3) can be written in the final form used in the baseline program

$$T = \sum_{g=1}^{150} p_g \text{BUF}_g \exp\left[-(\mu/\rho)_{\text{air}}^g M.I.\right] \quad (12)$$

Baseline Program. All of the pieces described to this point are consolidated into the baseline program described and listed in Appendix C. Additionally, the baseline program is set-up to calculate the $4\pi R^2$ fluence. The program can be modified to calculate the fluence at a particular spatial position.

Limitations of BU Method. There are two factors which must be considered before applying the BU method to a particular problem. They are:

1. Kalansky's BUF consider mean-free-paths of up to 15. His fitted results did not converge to his calculated moments results beyond 15 mfp.
2. The BUF are based on infinite homogenous air and are then assumed valid in exponentially varying air by use of mass integral scaling. This assumption is only valid as long as the assumption of mass integral

scaling is valid. A literature search did not reveal that any research has been done to determine the applicability of mass integral scaling to the x-ray transmission problem. Therefore, at this point, little can be said about the applicability of the BU method.

Transmission Factor for the HTI Model

The HTI model used in its TI-59 program is an empirical fit to data extracted from another source (Ref.1). The HTI transmission factor equation is

$$T = f(x) B(x, \theta) \quad (13)$$

and

$$f(x) = [1 + 81.4 \exp(1.86x)]^{-1} \quad (14)$$

$$B(x, \theta) = [A(x_0 - x) - 1] \exp[-\alpha(x_0 - x)^2] + 1 \quad (15)$$

$$x = \log_{10} \frac{M}{\theta^3} \quad (16)$$

where

M = mass integral

θ = black-body temperature

A, x_0 , α = constants determined from the empirical fit (Ref.1:
9-5)

The exact origin of the above equations is not clear. The functions f and B are not defined other than by Eqs.(14) through (16). It appears that $f(x)$ is the result of a fit applied to a family of curves in Ref.1 which were the transmission factor excluding build-up. Then $B(x,\theta)$ is the fit to the difference between $f(x)$ and another family of curves in Ref.1 which do include build-up. Ref.1 is not completely clear on this either. If this surmise is correct, HTI is also using a form of build-up factor from an undefined original source. Thus, we may be merely comparing build-up factors in this validation, but there is no way of knowing that.

HTI's method allows a complicated program to be put into 479 program steps for the TI-59. That was no small feat as can be seen by comparing their program with the TI-59 program written for this report and covered later. However, there is a problem with the HTI program as the transmission coefficient approaches zero, say less than (0.01). The problem is that the empirical fit generated does not smoothly approach zero as would be expected but, instead, reaches zero earlier than predicted by the BU method and then returns to significant values which are higher than the values predicted by the BU method. This problem area will be discussed further in Chapter IV.

III. Solution by BU Method

Baseline Program

The baseline program developed in this work uses 150 normalized energy groups based on .1 increments of u . As previously pointed out, the Planckian probability need only be calculated once in the program since u does not change with changing black-body temperature. However, the average energy per group does change. For the baseline program, the average energy for each group is taken as the endpoint energy of each .1 increment of u . This usage would not be appropriate for a coarser grouping, but is suitable for the fine grouping.

The baseline program is written in the FORTRAN 5 computer programming language (Ref.14). The algorithms of Appendix D can be used to program into another computer language if desired.

The baseline program was written in a modular style to facilitate changing subroutines (Ref.15). For instance, if it is decided that the assumption of a Planckian spectrum for the source is inaccurate and another function better describes what is happening, then a subroutine employing the new function can be written to replace the subroutine, PLANCK, currently in use (Appendix C).

Program QUICK

In addition to the 150 group baseline program a program using ten energy groups rather than 150 groups was also written. This program was written to provide a fast, easy-to-use program for future users and to determine if the 150 group fine structure of the baseline program was really necessary. Each group is constructed to be of equal number density. A program listing for program QUICK is provided in Appendix E. The average energy for each group is taken as the energy at the mid-point probability for each group rather than the mid-point energy of each group. In reality, this is of importance only in the first and last energy groups. In those cases, using the mid-point of the probability group tends to weight the group towards those events of higher probability.

The program is set up so that both the mass integral and the black-body temperature are read in as data. The program can be modified to make use of the mass integral subroutine (MASSI) used in the baseline program (Appendix C). Appendix E describes how the data is to be input.

The results of program QUICK are compared to those of the baseline program and the HTI program in Chapter IV.

TI-59 Program

The TI-59 program written to calculate the x-ray fluence and transmission is similar to the FORTRAN QUICK program.

It is considerably longer and more difficult to use than the HTI TI-59 program. A program listing is given in Appendix F as well as instructions for its use. The program is actually two subprograms. The first is to calculate the mass integral. The second sub-program takes the output of the first and

1. computes the transmission coefficient for various groups excluding build-up,
2. then includes build-up in each group,
3. then computes the total transmission coefficient,
4. then calculates the $4\pi r^2$ fluence,
5. and, finally, calculates the fluence at a particular spatial distance.

Steps four and five are optional depending on what results the user desires.

One problem with the sub-programs is their length. To execute through step three requires 826 program steps. With a required partitioning of 639.39 (Ref.2), the length necessitates reading in four card sides and executing through step two, then reading in another card side and executing step three. To execute the entire program, excluding the mass integral calculation, requires 978 program steps and six sides of magnetic cards to be read in. This makes the program somewhat unwieldy, but the results compare well. See Chapter IV for the comparison.

IV. Results

Comparison of Results

The results to be compared are those obtained from

1. HTI TI-59 program
2. Baseline FORTRAN program
3. FORTRAN program QUICK
4. TI-59 QUICK program.

The results are best described by referring to the graphs in Figures 5, 6, and 7. The plots were generated using DISSPLA (Ref.16), which is a computer graphics package. For each plot, nine points were used for the 0.1 and 1.0 keV curves and 16 points were used for the 10.0 keV curve.

Subroutine SPLINE (Ref.16) was used to smooth the curve. The curves all were generated with the mass integral on the x-axis, the transmission coefficient on the y-axis, and three black-body temperatures: 0.1, 1.0, and 10.0 keV. Other black-body temperatures were examined but not included to avoid cluttering the plots. The other temperatures examined followed the pattern shown in Figure 5.

The data used for comparison can be found in Table II.

Baseline with HTI. Figure 5 compares the results obtained using the BU method with those obtained from the HTI model. As can be seen, the results are comparable. The largest difference between the two is approximately 21% which occurs at a mass integral value of 10.0 gm/cm^2 and a black-body temperature of 10.0 keV.

Figure 5. Comparison of baseline results with HTI results.

Figure 6. Comparison of program QUICK results with baseline results.

Figure 7. Comparison of TI-59 Q'ICK results with baseline results.

TABLE II

Comparison of Results for Various Mass Integral
Values and Black-body Temperatures

Mass Integral (gm/cm ²)	Black-body Temperature (keV)	Transmission Factor			
		Baseline	HTI	QUICK	TI-59
1E-6 a	.1	.7127	.7824	.7110	.7110
1E-5	.1	.4101	.3585	.4096	.4096
1E-4	.1	.0825	.0483	.0807	.0807
1E-3	.1	.9E-4	0.	7E-5	7E-5
1E-2	.1	9E-10	.0006	0.	0.
.1	.1	0.	.0003	0.	0.
1.	.1	0.	.5E-5	0.	0.
10.	.1	0.	.7E-6	0.	0.
50	.1	0.	.2E-7	0.	0.
1E-6	1.	.9984	.9988	.9996	.9996
1E-5	1.	.9918	.9926	.9956	.9956
1E-4	1.	.9522	.9552	.9598	.9598
1E-3	1.	.7809	.7796	.7760	.7760
1E-2	1.	.3921	.3573	.3920	.3920
.1	1.	.0633	.0436	.0606	.0606
1.	1.	1E-4	0.	2E-5	2E-5
10.	1.	1E-9	.0006	0.	0.
50.	1.	0.	.0004	0.	0.
1E-6	10.	.9998	1.	1.	1.
1E-5	10.	.9998	1.	1.	1.
1E-4	10.	.9997	.9998	1.	1.
1E-3	10.	.9988	.9988	.9998	.9998
1E-2	10.	.9937	.9926	.9981	.9981
.1	10.	.9750	.9600	.9833	.9833
.2	10.	.9662	.9431	.9712	.9712
.3	10.	.9610	.9348	.9621	.9621
.4	10.	.9572	.9308	.9556	.9556
.5	10.	.9541	.9288	.9505	.9505
1.	10.	.9390	.9245	.9333	.9334
10.	10.	.3346	.4220	.3336	.3293
20.	10.	.0774	.1572	.0748	.0727
30.	10.	.0188	.0484	.0168	.0160
40.	10.	.0049	0.	.0038	.0036
50.	10.	.0014	0.	.0009	.0008

a $1E-6 = 1 \times 10^{-6}$

QUICK and the TI-59 Program with Baseline. Figures 6 and 7 compare the results of program QUICK FORTRAN and the TI-59 program written for this work, respectively, with the baseline FORTRAN program. The results are very close with a maximum error of less than 1%. The comparison shows that little is gained by using 150 energy groups rather than 10 energy groups as long as the groups are carefully chosen. This agreement was the reason QUICK was programmed for the TI-59 to see if it would be a better method than the existing algorithm.

Area of Concern

As mentioned in Chapter II, there is one potential problem with the original HTI program. The problem occurs as the transmission coefficient approaches zero and cannot be seen by reference to Figure 5. The data given in Table II shows the problem, namely that HTI's transmission factor reaches zero prematurely and then jumps back up to a value believed to be a little too high. The result of this is that the HTI program can show the fluence at a point to be zero when it actually may be a significant value. Also, just beyond this mass integral value, the program may give too high a value for the fluence. Table III shows one such sequence compared with the TI-59 results of this work.

Considering a x-ray source strength of 10^{12} calories (1 kiloton) and a black-body temperature of .1 keV, the HTI

TABLE III

HTI Problem Area (kT = .1)		
Mass Integral	Transmission Factor	
	HTI	TI-59
1E-4 a	.0483	.0807
1E-3	0.	7E-5
1E-2	.0006	0.
.1	.0003	0.

a $1E-4 = 1 \times 10^{-4}$

program would predict a $4\pi r^2$ fluence of zero for a mass integral of 10^{-3} gm/cm^2 (receiver roughly 0.01 kilometers from the source at 50.0 kilometers altitude) while the BU method would predict a $4\pi r^2$ fluence of 6.9×10^7 calories. Roughly the opposite is true for a mass integral of 10^{-2} gm/cm^2 . This example was for illustrative purposes only since, in this case, the receiver would be inside the fireball; however, it does demonstrate the problem area.

The problem is almost certainly the result of the empirical fit used by HTI to fit its curves. Again, there is no problem as long as the transmission coefficient is not close to zero, say not less than (0.01).

V. Prompt Effects

Background

Because of the greater number of interactions between source and receiver when neutrons and secondary gamma rays are considered, the method of build-up factors cannot be used for these radiations. However, the method of mass integral scaling has been used for prompt radiation using a one dimensional numerical solution of the Boltzmann transport equation in a homogeneous atmosphere as a starting point. That is, equation (2) is replaced by this solution. The method used was an anisotropic S-N calculation of the transport of a single source neutron with the energy distribution of a fission or fusion source. The calculation was done by Straker and Gritzner and first reported in ORNL 4464 (Ref.17). The results are presented as $4\pi r^2$ fluence or $4\pi r^2$ dose as a function of mass integral. A graphical example of these results is shown as Figure 8. This figure was extracted from Eamon's work (Ref.7).

Thus, in parallel with the x-ray treatment we have

$$4\pi r^2 F = ST \quad (17)$$

except that the $4\pi r^2$ fluence is given by a result like Figure 8 instead of by equation (1) through use of equation (2).

Murphy has provided a fit of the ANISN results of the form (Ref.6):

Figure 8. Sample Graph Extracted from Ref. 7
TN is thermonuclear; FSN is fission.

$$F(x) = \exp(C_1 + C_2 X + C_3 X^2 + C_4 X^{3/2} + C_5 X^{1/2} + C_6 X^{1/3}) \quad (18)$$

where

$F(x) = 4\pi r^2$ dose or fluence

X = mass integral

C_i = empiric constants obtained through least squares fitting techniques

Eamon added one further coefficient of the form $C_7 \ln X$ inside the brackets (Ref.7) and provided the coefficients of fit to the neutron and secondary gamma transport ANISN code results (Ref.7). The coefficients of fit for differing doses and sources are in Table IV.

This method was programmed in both TI-59 logic and in FORTRAN 5. The TI-59 program and the FORTRAN 5 program appear in Appendix G.

Mass Integral Scaling

The applicability of mass integral scaling to the prompt radiation problem has been investigated by Shulstad (Ref.5). It was found that mass integral scaling was good for source altitudes between 1 and 10 kilometers (Ref.5); however, at higher altitudes, the results obtained could be as much as twice what is obtained using Shulstad's two-dimensional calculation. In a later study for the Air Force Weapons Laboratory, Kaman Sciences calculated the errors generated from 5 to 80 kilometers (Ref.7).

TABLE IV						
ANISN HOMOGENEOUS AIR DATA						
NEUTRONS						
DOSE	SOURCE	A	B	C		
Silicon Thermonuclear	- .20795E+02	- .97296E-01	- .17913E-04			
Tissue Thermonuclear	- .19711E+02	- .98348E-01	- .22342E-04			
Fluence Thermonuclear	- .67751E+01	.52690E-02	- .54364E-05			
D	E	F	G			
.15771E-02	.17924E+01	- .32101E+01	.23746E+00			
.18226E-02	.13159E+01	- .15135E+01	- .84022E-02			
- .21468E-03	- .39214E+01	.10875E+02	- .13975E+01			
SECONDARY GAMMAS						
DOSE	SOURCE	A	B	C		
Silicon Thermonuclear	- .25281E+02	- .90163E-01	- .27961E-04			
Tissue Thermonuclear	- .25566E+02	- .79950E-01	- .24566E-04			
Fluence Thermonuclear	- .48600E+01	- .11511E+00	- .372675E-04			
D	E	F	G			
.23939E-02	.95659E+00	- .11394E+01	.98116E+00			
.21001E-02	.65711E+00	- .57599E+00	.93271E+00			
.31732E-02	.13350E+01	- .13011E+01	.95495E+00			

TABLE IV Continued

ANISN HOMOGENEOUS AIR DATA				
NEUTRONS				
DOSE	SOURCE	A	B	C
Silicon Fission		-.21780E+02	-.16126E+00	-.46917E-04
Tissue Fission		-.18463E+02	-.17636E+00	-.53973E-04
Fluence Fission		.79627E+00	-.22572E+00	-.73701E-04
		D	E	F
		.38861E-02	.27024E+01	-.41190E+01
		.44464E-02	.28502E+01	-.40883E+01
		.61127E-02	.33426E+01	-.37018E+01
		G		
				.21249E+00
				.17644E+00
				-.30794E-01
SECONDARY GAMMAS				
DOSE		A	B	C
Silicon Fission		-.26416E+02	-.16697E+00	-.56993E-04
Tissue Fission		-.26313E+02	-.16462E+00	-.55756E-04
Fluence Fission		-.57438E+01	-.16896E+00	-.55243E-04
		D	E	F
		.48224E-02	.26366E+01	-.35154E+01
		.47309E-02	.26300E+01	-.36007E+01
		.47643E-02	.25725E+01	-.33967E+01
		G		
				.10916E+01
				.11093E+01
				.11089E+01

Results

Results of the TI-59 program written for this project are compared with results from Kaman Sciences (Ref.7) in Fig. 9. Plotted on Figure 9 is the $4\pi R^2$ fluence per source neutron as a function of mass integral. The circles are the points obtained from Kaman Sciences work (Ref.7) and, in this case, can also be read from the TN curve of Figure 8. The line is the fit to the points calculated using the TI-59 program. The differences are negligible.

Figure 9. Comparison of Ti-59 prompt radiation program results with those of Kaman Science (Ref. 7).

VI. Conclusions and Recommendations

Conclusions

The HTI program compares well with the BU method as shown by Figure 5 with the exception of the problem area mentioned in Chapter IV.

Additional contributions of this project were programs to calculate prompt radiation and the mass integral. Such programs are not included by HTI (Ref.1); instead, the mass integral is left as an input variable with no direction as to how it is to be determined and prompt radiation is not examined.

Recommendations

There are two recommendations to be made. The first applies to future work. It is suggested that a study be undertaken to determine the validity of using mass integral scaling in the x-ray problem.

The second recommendation applies to the use of the HTI TI-59 program versus the use of the program written for this work. Due to the HTI program's ease of use, combined with results which are comparable, it is recommended that the HTI program be used to calculate the transmission coefficient and fluence as long as the transmission coefficient is not less than approximately (0.01). If the transmission coefficient is less than 0.01, then it is felt that the TI-59 program written for this work should be used to avoid the curve fitting problem.

Bibliography

1. Horizons Technology, Inc. Nuclear Weapons Effects Programs Reference Manual. Work done under Defense Nuclear Agency contract number DNA 001-78-C-0247. San Diego, California: Horizons Technology, Inc., 8 December 1978.
2. Texas Instruments Incorporated. Personal Programming. An owners manual for the TI-59 hand-held computer. United States of America: Texas Instruments Incorporated, 1977.
3. Kalansky, G.M. "X-ray Build-up Factors." Unpublished MS thesis. School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio: January 1979.
4. Zerby, C.D. Radiation Flux Transformation as a Function of Density in an Infinite Medium with Anisotropic Point Sources. ORNL 2100. Oak Ridge, Tennessee: December 1956.
5. Shulstad, R.A. "An Evaluation of Mass Integral Scaling as Applied to the Atmospheric Radiation Transport Problem". Unpublished PhD dissertation. School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio: November 1976.
6. Murphy, H.M. Jr. A User's Guide to the SMAUG Computer Code. AFWL-TR-72-3. Kirtland Air Force Base, New Mexico: May 1972.
7. Kaman Sciences Corporation. High Altitude Atmospheric Radiation Transport Calculations. AFWL-TR-76-142. Kirtland Air Force Base, New Mexico: August 1976.
8. Bridgman, C.J. Lecture notes from NEG.31, Prompt Effects. School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio: April 1980.
9. Gilmore, F.R. A Table of the Planck Function and Its Integral. KN-770-70-36. Santa Monica, California: RAND Corporation, 1956.
10. United States Atomic Energy Commission. Compilation of X-ray Cross Sections. UCRL 50174. Oak Ridge, Tennessee: undated.
11. Evans, R.D. The Atomic Nucleus. 689. New York: McGraw-Hill Book Company, 1955.

12. National Oceanic and Atmospheric Administration, et al. U.S. Standard Atmosphere 1976. Washington, D.C.: U.S. Government Printing Office, 1976.
13. Taylor, J.J. Application of Gamma Ray Build-up Data to Shield Design. Report Number WAPD-RM-217. Westinghouse Electric Corporation, Atomic Power Division: January 1954.
14. Control Data Corporation. FORTRAN Version 5 Reference Manual. Sunnyvale, California: 1979.
15. Hardin, D.H. Lecture notes from NE7.05, Methods of Radiation Transport. School of Engineering, Air Force Institute of Technology, Wright-Patterson Air Force Base, Ohio: July 1980.
16. Integrated Software Systems Corporation. DISSPLA. San Diego, California: August 1971.
17. Straker, E.A. and Gritzner, M.L. Neutron and Secondary Gamma-Ray Transport in Infinite Homogeneous Air. ORNL-4464. Oak Ridge National Laboratory, Oak Ridge Tennessee: December 1969.

Appendix A: Mass Integral Scaling

The mass scaling law can be stated in the following manner (Ref.5): In an infinite homogeneous medium with an isotropic point source, the $4\pi r^2$ fluence is a function only of the density and range from source to receiver:

$MI = \rho R$. An assumption must be made to allow the application of the mass scaling law to the actual case. The assumption made is that if the mass range between a source and a receiver in infinite homogeneous air is equal to the mass range in variable density air, then the $4\pi r^2$ fluences will be equal. That is, points from the infinite homogeneous air case will map directly to points in the variable density air case at identical mass integral values. For a derivation of the mass scaling law, see Shulstad (Ref.5:86-89).

While Shulstad (Ref.5) has examined mass integral scaling as it applies to neutrons and gamma rays, no references were found in the literature to the same type work being accomplished for x-rays.

Appendix B: Kalansky's Coefficients (Ref. 3)

Energy in keV	A_1	A_2	c_1	c_2
12	-0.227	1.227	-0.400	0.000
14	-0.370	1.370	-0.400	0.000
16	-0.323	1.323	-0.680	0.020
18	-0.634	1.634	-0.460	0.020
20	-1.072	2.072	-0.360	0.020
22	-1.048	2.048	-0.480	0.040
24	-1.740	2.748	-0.340	0.040
26	-2.673	3.673	-0.260	0.040
28	-2.664	3.664	-0.300	0.060
30	-6.038	7.038	-0.140	0.040
32	-8.805	9.805	-0.100	0.040
34	-8.504	9.504	-0.100	0.060
36	-75.83	76.83	0.000	0.020
38	-20.03	21.03	-0.020	0.060
40	-16.94	17.94	-0.020	0.080
45	14.59	-13.59	0.120	-0.020
50	11.31	-10.31	0.160	-0.040
55	109.2	-108.2	0.120	0.100
60	-11.05	12.05	0.000	0.200
70	-114.1	115.1	0.140	0.160
80	-113.1	114.1	0.160	0.180
100	-10.93	11.93	0.060	0.260
120	-8.153	9.153	0.020	0.280
150	13.14	-12.14	0.260	0.100
200	-88.92	89.92	0.180	0.200
250	-6.308	7.308	0.000	0.260
300	19.89	-18.89	0.200	0.120
350	72.37	-71.37	0.160	0.140
400	-6.063	7.063	0.000	0.220
500	16.29	-15.29	0.100	0.080
600	-57.53	57.58	0.100	0.120
750	-17.20	13.20	0.000	0.120

Appendix C: Baseline Program Listing and Use

The baseline program, with all its subroutines, is listed on the next few pages. The program was written with future users in mind; that is, comments are provided as documentation to make the program easier to use. Additionally, Table V provides a list of the input variables and their units.

TABLE V

Variable	Representing	Units
K, A ₁ , A ₂ , C ₁ , C ₂	Read in of Kalansky's data (Appendix B)	K in keV
N, NN, L	Dummy variables (see comments in program)	--
YLD	Yield of source	Kilotons
XF	X-ray fraction of source	--
XKT	Black-body Temperature	keV
RHO	Density of air at source altitude	gm/m ³
R	Distance from source to receiver	kilometers
ZB	Source height	kilometers
ZT	Receiver height	kilometers
HB	Scale height of atmosphere	kilometers
ANGLE	As defined in Figure 4	degrees
CM	Slant range from source to receiver	centimeters

```

PROGRAM TRANS
DIMENSION PG(0:150), PC(0:150)
DIMENSION HNU(150),Z(0:150),Y(150),X(150),XMU(150)
DIMENSION TG(0:150),BBB(150)
DIMENSION B(150),TY(0:150),YY(0:150),YYY(150),BB(0:150)
DIMENSION V(0:150),A(0:150),AAA(150)
DIMENSION K(32),A1(32),A2(32),C1(32),C2(32)

C
C READ IN BUILD-UP FACTORS FOR LATER USE.
C SOURCE USED IN THIS WORK: UNPUBLISHED
C MASTERS THESIS, 'X-RAY BUILD-UP FACTORS',
C KALANSKY, G.M. AFIT, SCHOOL OF ENG,
C DEC 1978.
C
DO 2 I=1,32
  READ(*,*,END=999) K(I),A1(I),A2(I),C1(I),C2(I)
2 CONTINUE
CALL PLANCK(PG,PC)
KK = 0
10 CONTINUE
  KK = KK + 1
C
C N IS USED TO TELL THE PROGRAM HOW THE
C MASS INTEGRAL IS TO BE HANDLED. N=1
C IMPLIES THAT THE TARGET AND BURST ARE
C CO-ALTITUDE. N=2 IMPLIES THE MASS INT-
C EGRAL VALUES ARE TO BE READ IN. ANY
C OTHER VALUE FOR N IMPLIES THE M.I. IS TO
C BE COMPUTED AND THE TARGET AND BURST ARE
C NOT CO-ALTITUDE.
C
C NN IS USED TO TELL THE PROGRAM WHETHER
C OR NOT TO CALCULATE THE 4 PI R**2 FLUENCE
C (NN=1 IMPLIES CALCULATE).
C
C IF L=0, THEN THE PROGRAM WILL NOT IN-
C CLUDE BUILD-UP IN THE TRANSMISSION CO-
C EFFICIENT CALCULATION.
C
READ(*,*,END=999)N
READ(*,*,END=999) NN
READ(*,*,END=999) L
CALL MASSI(N,XMU)
IF(NN.EQ.1) THEN
  READ(*,*,END=999) YLD,XF
ENDIF
C
C THIS PORTION COMPUTES A MASS ATTENUATION COEFF FOR
C EVERY ENERGY GROUP. U=HNU/RT.
C THIS PROGRAM IS SET UP TO USE
C SEVERAL VALUES FOR BLACK BODY TEMP.
C THE PROGRAM CAN BE MODIFIED TO READ
C IN BLACK BODY TEMPS OF INTEREST.
C
```

```

DO 300 LL=1,1E
IF(LL.EQ.1) THEN
  XKT = .1
ELSE IF(LL.GT.1.AND.LL.LE.10) THEN
  XKT = XKT + .1
ELSE IF(LL.GT.10) THEN
  XKT = LL - 9.
ENDIF
PRINT*, 'BLACK BODY TEMP= ',XKT
PRINT*, ''
U=.1
DO 3 I=1,150
  HNU(I)=U*XKT
  U=U+.1
3 CONTINUE
CALL MURHO(HNU,XMU)
CALL MFP(XMI,XMU,X)
IF(L.NE.0) THEN
  CALL BUF(HNU,B,IEOF,X,K,A1,A2,C1,C2,KK,BB,BBB,PG)
  IF(IEOF.EQ.0) GO TO 999
ENDIF
CALL TRNS(TY,YY,TG,Z,V,X,Y,PG,B,YYY,L)
IF(NN.EQ.1) THEN
  CALL FLUENCE(TG(150),YLD,XF)
ENDIF
PRINT*, ''
PRINT*, ''
300 CONTINUE
GO TO 10
998 PRINT*, 'ERROR: END OF DATA AT IMPROPER TIME'
999 STOP
END

```

```

SUBROUTINE PLANCK(PG,PC)
DIMENSION PG(0:150), PC(0:150)
PG(0)=0.
A=15./((ACOS(-1.))**4)
PC(0)=0.
U=.1
DO 1 I=1,150
  PG(I)=A*(U**3)/(EXP(U)-1)
  PC(I)= ((PG(I)+PG(I-1))/2.)*.1
  U=U+.1
1 CONTINUE
RETURN
END

```

```

SUBROUTINE XMST(N,XMI)
C
C   IF N=1, READ IN THE DENSITY OF AIR AT
C   BURST HEIGHT IN GM/M**3 AND THE DISTANCE
C   FROM BURST TO TARGET IN KILOMETERS.
C
C   IF N=2, READ IN THE MASS INTEGRAL VALUES
C   IN GM/CM**2.
C
C   IF N NOT EQUAL TO 1 OR 2, THEN VALUES
C   MUST BE READ IN (IN ORDER) FOR:
C
C       ZB=HGT OF BURST (KM)
C       ZT=HGT OF TARGET (KM)
C       RHO=DENSITY AT ZB (GM/M**3)
C       HB=SCALE HGT OF ATMOSPHERE (KM)
C           (SOURCE:U.S. STANDARD ATMOSPHERE)
C       ANGLE=ANGLE BETWEEN HORIZONTAL AND
C           STRAIGHT LINE FROM BURST TO TGT
C           (DEGREES). ANGLE IS MINUS IF
C           THE TGT IS LOWER IN ALTITUDE
C           THAN THE BURST.
C
C       IF(N.EQ.2) THEN
C           READ(*,*,END=998) XMI
C           XMI = XMI
C           PRINT*, 'THE MASS INTEGRAL WAS AN INPUT VALUE'
C           GO TO 50
C       ENDIF
C       IF(N.EQ.1) GO TO 40
C       READ(*,*,END=998) ZB ,ZT ,RHO ,HB ,ANGLE
C       PRINT*, 'BURST ALT= ',ZB,' TGT ALT= ',ZT,
C       *' DENSITY= ',RHO,' SCALE HGT AT BURST= ',HB
C       PRINT*, 'ANGLE OF TGT FROM BURST= ',ANGLE
C       ANGLE = ANGLE * .01745
C       GO TO 41
40    READ(*,*,END=998) RHO,R
      XMI=RHO*R/10.
      GO TO 50
41    CONTINUE
      Z1=0.
      Z2=ZT-ZB
      XMI=(-HB)*(RHO)*(1000.)*(1.E-4)*(EXP(-Z2/HB)-1.)/
      *SIN(ANGLE)
50    PRINT*, 'THE MASS INTEGRAL IS ',XMI,' GM/CM**2'
      GO TO 51
998   STOP 'END OF DATA IN MASSI AT WRONG TIME'
51    RETURN
      END

```

```

SUBROUTINE BUF(FNU,B,IEOF,K,K,A1,A2,C1,C2,X,
*B2,BB,PG)
  DIMENSION B(150),HNU(150),BB(0:150),B2(150)
  DIMENSION K(32),A1(32),A2(32),C1(32),C2(32)
  DIMENSION X(150),PG(0:150)
  IF(HNU(150).LT.12) THEN
    DO 31 I=1,150
  31  B(I) = 1.
    GO TO 35
  ENDIF
  N = 12
  DO 1 I=1,150
    IF(HNU(I).LT.12) GO TO 12
  IF(HNU(I).GT.750) GO TO 48
    DO 5 J=1,32
      IF(K(J).GE.HNU(I)) GO TO 3
      IF(K(J).LT.N) GO TO 5
      A11 = A1(J)
      A22 = A2(J)
      C11 = C1(J)
      C22 = C2(J)
      N = K(J)
  5   CONTINUE
  3   A = K(J) - N
  DD = HNU(I) - N
  D = DD / A
  BH = (A1(J)*EXP(X(I)*C1(J)))+(A2(J)*
  * EXP(X(I)*C2(J)))
  BL = (A11*EXP(X(I)*C11)) + (A22*EXP(X(I)*C22))
  B(I) = (BH - BL)*D + BL
    GO TO 10
  12  B(I) = 1.
  10  CONTINUE
  1   CONTINUE
  35  CONTINUE
  BUFF = 0.
  -- BB(0) = -0.
  DO 600 I=1,150
  BB(I) = B(I) * PG(I)
  BBB(I) = ((BB(I)+BB(I-1))/2.)*.1
  BUFF = BBB(I) + BUFF
  600 CONTINUE
  PRINT*, 'TOTAL BUF = ', BUFF
  GO TO 50
  49  IEOF = 0
  PRINT*, 'ERROR: END OF DATA AT IMPROPER
  *TIME IN BUF '
  GO TO 50
  48  PRINT*, 'HNU IS TOO LARGE FOR KALANSKYS
  * BUILD-UP > 750'
  50  RETURN
  END

```

```

SUBROUTINE TRSG(T1,VM,TG,Z,V,PG,L)
*PG,B,YYY,L)
DIMENSION TY(0:150),YY(0:150),TG(0:150),
*Z(0:150),V(0:150),X(150),Y(150)
*,PG(0:150),B(150),YYY(150)
TY(0) = 0.
YY(0) = 0.
TG(0)=0.
Z(0)=0.
V(0) = 0.
DO 5 I=1,150
    Y(I)=EXP(-X(I))
    IF(Y(I).LT.1.E-20) Y(I)=0.
    YY(I) = PG(I) * Y(I)
    YYY(I) = ((YY(I) + YY(I-1))/2.)*.1
    TY(I) = YYY(I) + TY(I-1)
    IF(L.EQ.0) THEN
        Z(I) = Y(I) * PG(I)
    ELSE
        Z(I) = Y(I)*B(I)*PG(I)
    ENDIF
    V(I) = ((Z(I)+Z(I-1))/2.)*.1
    TG(I) = V(I) + TG(I-1)
5 CONTINUE
IF(L.EQ.0) THEN
    PRINT*, 'DIRECT TRANSMISSION COEFFICIENT= ',
*   TG(150)
ELSE
    PRINT*, 'TRANSMISSION COEFFICIENT= ',TG(150)
ENDIF
PRINT*, 'INTEGRATED EXP ATTN= ',TY(150)
RETURN
END

```

```

SUBROUTINE MURHO(HNU,XMU)
DIMENSION HNU(150),XMU(150)
DO 1 I=1,150
E = 1. / HNU(I)
XMU(I) = -.0014+(19.7541*E)-(461.7332*E**2) +
*(6680.0223*E**3)-(3497.3643*E**4)
* +(907.3575*E**5)
1 CONTINUE
RETURN
END

```

```

SUBROUTINE XFP(XMU,XMI)
DIMENSION XMU(150),XMI(150)

C COMPUTES MEAN FREE PATH FOR VARYING
C X-RAY ENERGIES.

C IF X IS > 100, THE NEGATIVE EXPONENTIAL
C OF X RESULTS IN AN UNDERFLOW. THEREFORE,
C X IS JUST SET TO 100 IF IT EXCEEDS 100.

C
DO 6 I=1,150
  X(I)=XMU(I)*XMI(I)
  IF(X(I).GT.100) X(I)=100.
6 CONTINUE
RETURN
END

* SUBROUTINE FLUENCE(TRANS,YLD,XF)
XYLD = YLD * XF
PRINT*, 'X-RAY YIELD IN KILOTONS= ',XYLD
YLDD = XYLD * 1.E12
FL = YLDD * TRANS
PRINT*, '4 PI R**2 FLUENCE= ',FL
RETURN
END

```

Appendix D: Algorithm

The intent of this appendix is to provide the user with an algorithm which can be programmed into any suitable computer language. The algorithm is based on the numerical integration of Eq.(12) with the involved factors properly calculated. Proceed as follows:

1. Decide whether mass integral values are to be input or calculated. If input, proceed to step two. If calculated, use either Eq.(9) or (10) as the case dictates. Density and scale height can be found in Ref.12 and source height, receiver height, and theta or range should be provided by the problem definition.
2. Determine the probability of each group using

$$P_g = (15/\pi^4) \left[\frac{u^3}{e^{u^4} - 1} \right] \quad (19)$$

Store the results. For the baseline program, u was between 0 and 15, inclusive, and was incremented by 0.1 for each group.

3. Input the Planckian black-body temperature. Determine the energy of each group by

$$(hv)_g = u_g * kT \quad (20)$$

Store for future use.

4. Calculate the mass attenuation coefficient for each

group using

$$E_g = 1/(hv)_g \quad (21)$$

$$\begin{aligned} (\mu/\rho)_g = & - .0014 + (19.7541 * E_g) - (461.7632 * E_g^2) \\ & +(6680.0229 * E_g^3) - (3497.3643 * E_g^4) \\ & +(907.3575 * E_g^5) \end{aligned} \quad (22)$$

Store each as it is calculated.

5. Calculate the mean-free-path for each group.

$$(MFP)_g = (\mu/\rho)_g * M.I. \quad (23)$$

Store the results.

6. Input Kalansky's build-up coefficients. Calculate the build-up factor for each group.

a. If $(hv)_g$ is less than 12 keV, then set

$(BUF)_g$ equal to 1.0 .

b. If $(hv)_g$ is greater than 750 keV, stop.

Kalansky's coefficients are not valid above
750 keV.

c. If $(hv)_g$ is greater than 12 keV and less
than 750 keV, interpolate for $(BUF)_g$ be-
tween given energies for which Kalansky pro-
vides coefficients. Note: Interpolate be-
tween BUF not coefficients. As used below,
 h = high and l = low .

$$(BUF)_h = (A_1)_h \exp[(C_1)_h(MFP)_g] + (A_2)_h \exp[(C_2)_h(MFP)_g] \quad (24)$$

and

$$(BUF)_l = (A_1)_l \exp[(C_1)_l(MFP)_g] + (A_2)_l \exp[(C_2)_l(MFP)_g] \quad (25)$$

$$(hv)_T = (hv)_h - (hv)_l \quad (26)$$

$$(hv)_P = (hv)_g - (hv)_l \quad (27)$$

$$(BUF)_g = [(BUF)_h - (BUF)_l] * [(hv)_P / (hv)_T] + (BUF)_l \quad (28)$$

Store the results.

7. Calculate the transmission factor, first for each group, then sum. This step makes use of the previous six steps.

$$Y_g = \exp[-MFP_g] \quad (29)$$

$$(Trans)_g = P_g * Y_g * (BUF)_g \quad (30)$$

Finally, integrate and sum. The baseline program

uses a box approximation to evaluate the integral.

$$\text{Trans} = \sum_{g=1}^G \left\{ \left[(\text{Trans})_g + (\text{Trans})_{g-1} \right] / 2 \right\} * .1 \quad (31)$$

8. The $4\pi r^2$ fluence is found by multiplying Eq.(31) by the x-ray source strength in calories, XS.

$$4\pi r^2 \text{ fluence} = XS * \text{Trans} \quad (32)$$

9. Finally, the fluence is found by

$$\text{Fluence} = \frac{XS * \text{Trans}}{4\pi r^2} \quad (33)$$

where r is the distance from the source to the receiver of interest in centimeters.

Appendix E: Program QUICK Listing

As previously explained, program QUICK is a FORTRAN program which uses 10 equi-probability groups rather than 150 equal energy spacing groups. Program QUICK is designed to be quick running and simple. A program listing is provided on the next two pages. For convenience, Kalansky's coefficients are read in as the first piece of data in the program since an interactive computer system was used to facilitate program modification. The coefficients could be put in DATA (Ref.14) statements if so desired.

All factors should be easily identifiable with the possible exceptions of A, XMI, XKT, YLD, XF, and CM. They are

A - the mid-probability value of u for each group

XMI - the mass integral

XKT - the Planckian black-body temperature

YLD - yield in kilotons

CM - range from source to receiver in centimeters

Program QUICK is written with the mass integral as an input; however, it could be modified to compute the mass integral using subroutine MASSI (Appendix C).

```

1      PROGRAM QLICK
2      DIMENSION A(10),K(32),A1(32),A2(32),C1(32)
3      DIMENSION C2(32),HNU(10),XMU(10),X(10),B(10)
4      DIMENSION Y(0:10),TG(0:10)
5      DO 1 I=1,32
6      READ(*,*,END=999)K(I),A1(I),A2(I),C1(I),C2(I)
7      1 CONTINUE
8      DATA A/1.1,1.8,2.35,2.8,3.25,3.75,4.3,5.,5.9,7.7/
9      READ(*,*,END=998)XMI,XKT,YLD,XF,CM
10     DO 2 I=1,10
11     HNU(I) = A(I) * XKT
12     E = 1. / HNU(I)
13     XMU(I) = -.0014 + (19.7541*E) - (461.7632*
14     * E*E) + (6680.0229*E**3) - (3497.3643
15     * *E**4) + (907.3575*E**5)
16     X(I) = XMU(I) * XMI
17     IF(X(I).GT.100) X(I) = 100.
18     Y(I) = EXP(-X(I))
19     2 CONTINUE
20     IF(HNU(10).LT.12) THEN
21     DO 3 I=1,10
22     3     B(I) = 1.
23     GO TO 10
24     ENDIF
25     N = 12
26     DO 4 I=1,10
27     IF(HNU(I).LT.12) GO TO 11
28     IF(HNU(I).GT.750) GO TO 99
29     DO 5 J=1,32
30     IF(K(J).GE.HNU(I)) GO TO 6
31     IF(K(J).LT.N) GO TO 5
32     A11 = A1(J)
33     A22 = A2(J)
34     C11 = C1(J)
35     C22 = C2(J)
36     N = K(J)
37     5 CONTINUE
38     6     AA = K(J) - N
39     DD = HNU(I) - N
40     D = DD / AA
41     BH = (A1(J)*EXP(X(I)*C1(J))) + (A2(J)
42     * *EXP(X(I)*C2(J)))
43     BL = (A11*EXP(X(I)*C11)) + (A22*EXP(X(I)
44     * *C22))
45     B(I) = (BH - BL)*D + BL
46     GO TO 9
47     11    B(I) = 1.
48     9     CONTINUE
49     4     CONTINUE
50     10    CONTINUE

```

```
51      Y(0) = 0.
52      TG(0) = 0.
53      DO 7 I=1,10
54      IF(Y(I).LT.1.E-20) Y(I) = 0.
55      Y(I) = Y(I) * .1 * B(I)
56      TG(I) = Y(I) + TG(I-1)
57 7    CONTINUE

      .
      .
      .

58      XYLD = YLD * XF
59      YYLD = XYLD * 1.E12
60      FL = YYLD * TG(10) /(4.*ACOS(-1.)*(CM*CM))
61      PRINT*, 'FOR A BLACK BODY TEMPERATURE OF ',XKT,' KEV,
62      * A MASS PENETRATED OF ',XMI,' GM/CM**2, A WEAPON
63      * YIELD OF ',YLD,' KILOTONS, A X-RAY FRACTION OF '
64      *,XF,' AND A DISTANCE FROM BURST TO TARGET OF ',
65      *CM,' CM, THE TRANSMISSION COEFFICIENT IS ',TG(10)
66      *,' AND THE FLUENCE IS ',FL
67      GO TO 1
68 99   PRINT*, 'HNU IS TOO LARGE FOR KALANSKYS BUF- > 750'
69 999  STOP
70      END
```

Appendix F: TI-59 Programs

Comments

The program listings provided on the next nine pages are those written during this research to calculate the transmission factor, $4\pi r^2$ fluence, and fluence at a particular point using the TI-59. For a recommendation on when to use this group of programs, see Chapter VI.

The program listed on page 55 is to calculate the mass integral. Such a program is not provided in HTI's work. The program on pages 56 through 60 is to calculate the transmission factor for each group. The program is not complete by itself. It needs at least a portion of the program (the first 186 steps) on pages 61 through 63 to determine the transmission factor for the situation being investigated. The other portions of the program listed on pages 61 through 63 are to compute the $4\pi r^2$ fluence and the fluence at a particular point.

Because the use of the TI-59 programs provided in this work is somewhat cumbersome, instructions for their use are provided.

Instructions for Use

Note: Partitioning is 639.39 for all TI-59 programs written for this work (Ref.2).

1. If mass integrals are already known, skip to step two. If not, read in the one card side

Mass Integral Program

000	76	LBL	035	42	STO	070	54	>
001	11	A	036	04	04	071	42	STO
002	91	R/S	037	91	R/S	072	03	C
003	42	STO	038	42	STO	073	53	C
004	01	01	039	05	05	074	53	C
005	91	R/S	040	91	R/S	075	53	C
006	42	STO	041	00	0	076	43	RCL
007	02	02	042	42	STO	077	01	01
008	53	<	043	06	06	078	94	+/-
009	53	<	044	53	<	079	55	-
010	43	RCL	045	43	RCL	080	43	RCL
011	01	01	046	02	02	081	04	C
012	65	X	047	75	-	082	22	L
013	43	RCL	048	43	RCL	083	23	L
014	02	02	049	01	01	084	54	+/-
015	54	?	050	54	>	085	75	-
016	55	+	051	42	STO	086	01	C
017	01	1	052	01	01	087	54	+/-
018	00	0	053	53	<	088	42	SIN
019	54	?	054	43	RCL	089	01	01
020	42	STO	055	05	05	090	53	C
021	01	01	056	38	SIN	091	53	C
022	92	RTN	057	65	X	092	43	RCL
023	76	LBL	058	01	1	093	03	01
024	12	B	059	00	0	094	65	+/-
025	91	R/S	060	54	>	095	43	RCL
026	42	STO	061	42	STO	096	01	C
027	01	01	062	05	05	097	54	+/-
028	91	R/S	063	53	<	098	55	+/-
029	42	STO	064	43	RCL	099	43	RCL
030	02	02	065	04	04	100	05	C
031	91	R/S	066	94	+/-	101	54	+/-
032	42	STO	067	65	X	102	42	SIN
033	03	03	068	43	RCL	103	01	C
034	91	R/S	069	03	03	104	92	RTN

Transmission Factor: First Part

000	76	LBL	034	33	X ²	069	54)	104	04	4	-	6)	SBR	
001	12	B	035	42	STD	070	71	X ²	105	93	93	-	6	X ²	STD	
002	43	RCL	036	03	03	071	33	STD	106	03	03	-	6	09	<	RCL
003	37	37	037	53	<	072	42	06	107	54	54	-	6	X ²	STD	
004	69	DP	038	43	RCL	073	06	<	108	71	38	-	6	09	<	RCL
005	04	04	039	02	02	074	53	RCL	109	48	48	-	6	02	X ²	STD
006	43	RCL	040	65	X	075	02	02	110	65	65	-	6	05	54	10
007	01	01	041	01	1	076	65	X	111	71	71	-	6	54	X ²	STD
008	69	DP	042	93	08	077	03	3	112	113	113	-	6	42	10	10
009	06	06	043	54	08	078	93	08	113	114	114	-	6	53	65	53
010	69	DP	044	54	08	079	02	02	114	115	115	-	6	55	54	54
011	00	00	045	71	X ²	080	05)	115	116	116	-	6	43	11	11
012	43	RCL	046	30	STD	081	54	X ²	116	117	117	-	6	53	10	10
013	38	38	047	42	04	082	71	STD	117	118	118	-	6	43	11	11
014	69	DP	048	04	RCL	083	33	X ²	118	119	119	-	6	55	54	54
015	02	02	049	53	04	084	42	STD	119	120	120	-	6	55	54	54
016	43	RCL	050	43	RCL	085	07	<	120	121	121	-	6	54	X ²	STD
017	39	39	051	02	02	086	53	RCL	121	122	122	-	6	54	11	11
018	69	DP	052	65	X	087	43	02	122	123	123	-	6	54	X ²	STD
019	03	03	053	02	02	088	02	02	123	124	124	-	6	55	54	54
020	69	DP	054	93	08	089	65	03	124	125	125	-	6	55	54	54
021	05	05	055	08	08	090	65	03	125	126	126	-	6	55	54	54
022	91	R/S	056	05)	091	03	75	126	127	127	-	6	54	X ²	STD
023	42	STD	057	54	SBR	092	93	07	127	128	128	-	6	54	11	11
024	02	02	058	71	X ²	093	07	05	128	129	129	-	6	54	X ²	STD
025	53	<	059	33	STD	094	05	54	129	130	130	-	6	54	X ²	STD
026	43	RCL	060	42	05	095	54	X ²	130	131	131	-	6	54	11	11
027	02	02	061	05	RCL	096	71	STD	131	132	132	-	6	53	42	42
028	65	X	062	53	02	097	33	08	132	133	133	-	6	53	11	11
029	01	1	063	43	02	098	42	08	133	134	134	-	6	53	43	43
030	93	1	064	65	02	099	08	08	134	135	135	-	6	53	02	02
031	01	1	065	02	02	100	53	43	135	136	136	-	6	53	65	65
032	54	1	066	93	02	101	43	02	136	137	137	-	6	53	07	07
033	71	SBR	067	93	08	102	02	65	137	138	138	-	6	53	02	02
			068	08		103										

139	93	174	43	RCL	209	53	<	RCL	10	X	54	42)	STO	14
140	07	175	06	X	210	43	10	RCL	10	X	43	04	C	RCL	04
141	54	176	65	RCL	211	65	43	RCL	01	>	04	94	+/-	THW	
142	71	177	43	X	212	43	01	RCL	01	>	22	LNX)	STO	15
143	33	178	01	RCL	213	54	42	STO	10	<	23	54	>	STO	C
144	42	179	54	X	214	54	42	STO	10	<	54	42	15	53	RCL
145	53	180	06	RCL	215	54	42	STO	10	<	53	43	05	+/-	05
146	03	181	65	X	216	54	42	STO	10	<	94	+/-	INV		
147	43	182	40	RCL	217	58	43	RCL	11	<	22	LNX)	STO	
148	65	183	07	X	218	58	43	RCL	11	<	54	42	16	53	RCL
149	43	184	65	RCL	219	11	65	X	11	<	42	STO	16	16	C
150	01	185	43	X	220	65	43	RCL	01	>	23	54	42	STO	06
151	54	186	01	RCL	221	65	43	RCL	01	>	53	43	06	+/-	06
152	42	187	54	X	222	43	54	STO	01	<	22	53	42	STO	06
153	03	188	42	RCL	223	54	42	STO	01	<	42	STO	12	12	X
154	03	189	07	X	224	42	54	STO	01	<	11	42	STO	12	RCL
155	53	190	42	RCL	225	42	54	STO	01	<	53	43	42	STO	16
156	43	191	53	X	226	11	42	STO	01	<	53	43	42	STO	C
157	04	192	43	RCL	227	43	42	STO	01	<	43	42	43	STO	
158	65	193	08	X	228	43	42	STO	01	<	43	42	43	STO	
159	43	194	65	RCL	229	12	43	STO	01	<	43	42	43	STO	
160	01	195	43	X	230	65	43	RCL	01	<	43	42	43	STO	
161	54	196	01	RCL	231	43	42	STO	01	<	43	42	43	STO	
162	42	197	54	X	232	43	42	STO	01	<	43	42	43	STO	
163	04	198	42	RCL	233	54	43	STO	01	<	43	42	43	STO	
164	53	199	08	X	234	12	43	STO	01	<	43	42	43	STO	
165	43	200	53	RCL	235	69	43	RCL	09	<	43	42	43	STO	
166	05	201	43	X	236	43	42	STO	09	<	43	42	43	STO	
167	65	202	09	RCL	237	00	43	RCL	09	<	43	42	43	STO	
168	43	203	65	X	238	43	42	STO	09	<	43	42	43	STO	
169	01	204	43	RCL	239	43	42	STO	09	<	43	42	43	STO	
170	54	205	01	X	240	94	43	RCL	09	<	43	42	43	STO	
171	42	206	54	RCL	241	94	43	X	09	<	22	54	42	STO	07
172	05	207	42	STO	242	22	43	RCL	09	<	22	54	42	STO	07
173	53	208	09	X	243	23	43	STO	09	<	22	54	42	STO	07

419	04	04	454	43	RCL	489	24	X	524	65	RCL
420	71	SBR	455	10	10	490	91	R/S	525	43	24
421	45	YX	456	71	SBR	491	42	STO	526	54	54
422	42	STD	457	45	YX	492	25	25	527	85	85
423	04	C4	458	42	STD	493	91	R/S	528	53	53
424	43	RCL	459	10	10	494	42	STD	529	43	43
425	05	05	460	43	RCL	495	26	R/S	530	13	13
426	71	SBR	461	11	11	496	91	STD	531	65	65
427	45	YX	462	71	SBR	497	42	27	532	43	RCL
428	42	STD	463	45	YX	498	27	27	533	27	27
429	05	05	464	42	STD	499	91	R/S	534	54	54
430	43	RCL	465	11	11	500	42	STD	535	22	22
431	06	06	466	43	RCL	501	28	28	536	54	X
432	71	SBR	467	12	12	502	91	R/S	537	65	65
433	45	YX	468	71	SBR	503	42	STD	538	43	43
434	42	STD	469	45	YX	504	29	29	539	54	54
435	06	06	470	42	STD	505	91	R/S	540	25	RCL
436	43	RCL	471	12	12	506	42	STD	541	43	25
437	07	07	472	92	RTN	507	30	30	542	54	54
438	71	SBR	473	76	LBL	508	91	R/S	543	42	42
439	45	YX	474	45	YX	509	42	STD	544	54	54
440	42	STD	475	42	STD	510	31	31	545	54	54
441	07	07	476	13	13	511	53	C	546	54	54
442	43	RCL	477	01	1	512	53	C	547	53	53
443	08	08	478	02	2	513	53	C	548	53	C
444	71	SBR	479	32	XIT	514	53	RCL	549	53	C
445	45	YX	480	91	R/S	515	43	13	550	53	C
446	42	STD	481	42	STD	516	13	X	551	43	RCL
447	09	08	482	34	34	517	65	RCL	552	13	13
448	43	RCL	483	22	INV	518	43	26	553	65	X
449	09	09	484	77	GE	519	26	26	554	43	RCL
450	71	SBR	485	06	06	520	54)	555	30	30
451	45	YX	486	38	38	521	22	INV	556	30	30
452	42	STD	487	91	R/S	522	23	LNK	557	54)
453	09	09	488	42	STD	523	54)	558	22	INV

559	23	LNX	594	75	-	629	36	26
560	54	>	595	43	RCL	630	54	>
561	65	x	596	35	>	631	85	+
562	43	RCL	597	54	35	632	43	RCL
563	28	28	598	42	STD	633	32	>
564	54	>	599	36	36	634	54)
565	85	+	600	53	<	635	61	GTO
566	53	<	601	43	RCL	636	06	06
567	53	<	602	34	>	637	39	39
568	53	<	603	75	34	638	01	1
569	43	RCL	604	43	RCL	639	92	RTN
570	13	13	605	35	35			
571	65	x	606	54	>			
572	43	RCL	607	42	STD			
573	31	31	608	34	34			
574	54	>	609	53	<			
575	28	INV	610	43	RCL			
576	28	LNX	611	34	34			
577	54	>	612	55	+			
578	65	x	613	43	RCL			
579	43	RCL	614	36	36			
580	29	29	615	54	>			
581	54	>	616	42	STD			
582	54	>	617	36	36			
583	42	STD	618	53	<			
584	33	33	619	53	<			
585	91	R/S	620	53	<			
586	42	STD	621	43	RCL			
587	35	35	622	33	33			
588	91	R/S	623	75	-			
589	42	STD	624	43	RCL			
590	36	36	625	32	32			
591	53	<	626	54	>			
592	43	RCL	627	65	x			
593	36	36	628	43	RCL			

Transmission Factor: Second Part Plus

$4\pi r^2$ Fluence and Fluence

281	07	7	0	0	24	7	0	0	24	02	53	<
282	00	0	0	24	02	43	20	33	65	89	RCL	20
283	00	0	0	24	02	317	318	33	65	89	X ^a	X ^a
284	02	0	0	24	02	318	319	65	65	65	#	X ^a
285	04	0	0	24	02	319	320	65	65	65	X	4
286	69	0	0	24	02	320	321	65	65	65)	X
287	02	0	0	24	02	321	322	65	65	65	1	/X
288	03	0	0	24	02	322	323	65	65	65)	X
289	01	0	0	24	02	323	324	65	65	65	RCL	13
290	00	0	0	24	02	324	325	65	65	65)	X
291	00	0	0	24	02	325	326	65	65	65	RCL	13
292	01	0	0	24	02	326	327	65	65	65)	X
293	05	0	0	24	02	327	328	65	65	65	RCL	13
294	01	0	0	24	02	328	329	65	65	65)	X
295	03	0	0	24	02	329	330	65	65	65	STD	13
296	02	0	0	24	02	330	331	65	65	65)	X
297	07	0	0	24	02	331	332	65	65	65	PRT	13
298	69	0	0	24	02	332	333	65	65	65)	X
299	03	0	0	24	02	333	334	65	65	65	DP	00
300	06	0	0	24	02	334	335	65	65	65	DP	00
301	03	0	0	24	02	335	336	65	65	65	ADV	00
302	01	0	0	24	02	336	337	65	65	65	ADV	00
303	05	0	0	24	02	337	338	65	65	65	RTN	00
304	03	0	0	24	02	338	339	65	65	65	RTN	00
305	00	0	0	24	02	339	340	65	65	65	RTN	00
306	07	0	0	24	02	340	341	65	65	65	RTN	00
307	00	0	0	24	02	341	342	65	65	65	RTN	00
308	00	0	0	24	02	342	343	65	65	65	RTN	00
309	00	0	0	24	02	343	344	65	65	65	RTN	00
310	69	0	0	24	02	344	345	65	65	65	RTN	00
311	04	0	0	24	02	345	346	65	65	65	RTN	00
312	69	0	0	24	02	346	347	65	65	65	RTN	00
313	05	0	0	24	02	347	348	65	65	65	RTN	00
314	53	0	0	24	02	348	349	65	65	65	RTN	00
315	53	0	0	24	02	349	350	65	65	65	RTN	00

for the mass integral program (page 55). Then

- a. If the source and receiver are co-altitude:

Press A

Enter density in gm/m³ Press R/S

Enter range in km Press R/S

Read mass integral

- b. If the source and receiver are not co-altitude:

Press B

Enter source in km Press R/S

Enter receiver height
in km Press R/S

Enter density in gm/m³ Press R/S

Enter scale height of
atmosphere in km Press R/S

Enter angle as defined
in Fig.4 in degrees Press R/S

Read mass integral

2. Read in four card sides of program on pages 56
through 60. Then

- a. Store mass integral in data register 01
(Ref.2).

- b. Press B

Enter black-body temper-
ature in keV Press R/S

Read energy of each group

- c. Press C

Do, for j=1 to 10

(i) Enter energy of group

j, from above (b). Press R/S

Note: If the energ; of group j is less than 12 keV, then repeat this step for the next energy group. If the energy is is 12 keV or higher, then continue with (ii).

(ii) Enter Kalansky's coefficients (Appendix B) for the nearest energy BELOW the energy of the group (A_1, A_2, C_1, C_2), pressing R/S after each coefficient. Repeat the process for the nearest energy ABOVE the energy group.

(iii) Enter energy corresponding to the coefficients BELOW the group energy, press R/S. Do the same for the energy corresponding to the HIGHER energy.

(iv) Return to step(i) unless this was group 10 in which case go to three.

Note: Table VI identifies the data registers used for each coefficient in (ii) above. As long as an error in entering a coefficient is detected prior to entering C_2 high, then the correct values can replace the incorrect values by storing the correct value in the applicable storage register.

TABLE VI

Data Registers	
Coefficient	Data Register
A ₁ low	24
A ₂ low	25
C ₁ low	26
C ₂ low	27
A ₁ high	28
A ₂ high	29
C ₁ high	30
C ₂ high	31

However, once C₂ high is entered for each group, the program is irrecoverable. If an error has been made, the program must be re-executed from 2.b. above.

3. Enter card side five. Card side six should also be read in if either the $4\pi r^2$ fluence or fluence calculations are desired. Card sides five and six are composed of the program on pages 61 through 63.

After card read-in .

Press E

Read Transmission Coefficient

TABLE VII

Data Register Entries

Quantity	Data Register
30402440	37
13422200	38
17310000	39

Optional

Press E'

Enter source yield in kilotons

Press R/S

Enter x-ray fraction of source yield

Press R/S

Read $4\pi r^2$ fluence in calories

Press D'

Enter range to receiver in centimeters

Press R/S

Read fluence at range r in calories/cm²

These instructions, while certainly complicated, are hopefully clear enough to enable the reader to use the program.

Programming and Data Registers

Prior to entering the program to be executed, the partitioning of the TI-59 must be adjusted to 639.39. Additionally, the quantities shown in Table VII should be stored in their respective data registers prior to executing the program or recording it on magnetic cards. The other 26 data registers are used as working registers.

Appendix G: Program PROMPT

Program PROMPT is used to calculate the prompt radiation fluences or doses. The applicable coefficients from Table IV must be input. The FORTRAN PROMPT listing is shown on page 71. A TI-59 program listing is shown on pages 72 and 73. The HTI group of programs does not contain a similar program.

FORTRAN PROMPT

The input variables for the FORTRAN version are

I = 1 implies a thermonuclear calculation

2 implies a fission calculation

K = 1 implies a neutron calculation

2 implies a secondary gamma ray calculation

A,B,C,D,E,F,G are taken from Table IV

XMI is the mass integral. The program can be modified to calculate the mass integral.

Note that the output statement says ' $4\pi R^2$ FLUENCE' ; however, the result may be $4\pi R^2$ Dose depending on the particular problem being worked.

TI-59 PROMPT

To use the TI-59 program listed on pages 72 and 73, 15 quantities must be stored prior to execution. The quantities and their storage locations are shown in Table VIII.

TABLE VIII

Prompt Data Registers

Quantity	Data Register
M.I.	1
A	2
B	3
C	4
D	5
E	6
F	7
G	8
Slant Range (cm)	9
576357000	11
2127411731	12
1517003235	13
16323617	14
212741	15
1731151700	16
3235001632	17
3617000000	18

Once these quantities are input, pressing B will cause the program to execute. As in the FORTRAN prompt program, the output will always be titled $4\pi R^2$ FLUENCE; however, the answer may be $4\pi R^2$ DOSE depending on the input

coefficients.

Output

The output from both PROMPT programs is in the form of $4\pi r^2$ fluence or dose per source neutron. Therefore, to find the fluence or dose at some point, the number of source neutrons must be known.

```
PROGRAM PROMPT
10  CONTINUE
    READ(*,*,"END=999") I,K,A,B,C,D,E,F,G,XMI
    PRINT*, ''
    PRINT*, 'THE MASS INTEGRAL IS: ',XMI
    IF(I.EQ.1)THEN
        PRINT*, 'THERMONUCLEAR'
    ELSE IF(I.EQ.2) THEN
        PRINT*, 'FISSION'
    ENDIF
    IF(K.EQ.1) THEN
        PRINT*, 'NEUTRON CALCULATION'
    ELSE IF(K.EQ.2) THEN
        PRINT*, 'SECONDARY GAMMA CALCULATION'
    ENDIF
    H = A + (B*XMI) + (C*XMI*XMI) + (D*(XMI**1.5)) +
    *(E*SQRT(XMI)) + (F*(XMI**1./3.)) + (G* ALOG(XMI))
    HH = EXP(H)
    PRINT*, 'THE 4 PI R**2 FLUENCE IS: ',HH
    GO TO 10
999 STOP
END
```

THIS PAGE IS OF BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

Program PROMPT

000	76	LBL	035	04	04	070	54	>	01	01
001	12	B	036	69	DP	071	65	*	01	LNN
002	00	0	037	05	05	072	43	RCL	01	*
003	00	0	038	69	DP	073	05	05	06	RLL
004	02	3	039	00	00	074	54	>	08	08
005	00	3	040	53	<	075	85	+	09	54
006	04	0	041	53	<	076	53	<	10)
007	00	0	042	43	RCL	077	43	RCL	11	JHV
008	02	2	043	02	02	078	01	01	12	22
009	04	4	044	65	+	079	34	YX	13	LNN
010	04	4	045	53	<	080	65	X	14)
011	00	0	046	43	RCL	081	43	RCL	15	54
012	69	DP	047	03	03	082	06	06	16	STO
013	04	04	048	65	X	083	54	>	17	PRT
014	43	RCL	049	43	RCL	084	85	+	18	ADV
015	01	01	050	01	01	085	53	<	19	EE
016	69	DP	051	54	>	086	53	<	20	RCL
017	06	06	052	85	+	087	43	RCL	21	15
018	69	DP	053	53	<	088	01	01	22	DP
019	00	00	054	43	RCL	089	45	YX	23	01
020	43	RCL	055	01	01	090	93	>	24	RCL
021	11	11	056	33	X ²	091	03	3	25	16
022	69	DP	057	65	X	092	03	3	26	DP
023	01	01	058	43	RCL	093	03	3	27	01
024	43	RCL	059	04	04	094	03	3	28	RCL
025	12	12	060	54	>	095	03	3	29	17
026	69	DP	061	85	+	096	03	3	30	17
027	02	02	062	53	<	097	54	>	31	DP
028	43	RCL	063	53	<	098	65	*	32	03
029	13	13	064	43	RCL	099	43	RCL	33	RCL
030	69	DP	065	01	01	100	07	07	34	18
031	03	03	066	45	YX	101	54	>	35	DP
032	43	RCL	067	01	1	102	85	+	36	04
033	14	14	068	93	>	103	53	<	37	04
034	69	DP	069	05	5	104	43	RCL	38	05
									39	DP

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

140	00	00
141	53	<
142	53	<
143	53	< 4 X
144	04	
145	65	X X
146	89	X X
147	65	<
148	53	RCL
149	43	09
150	09	09
151	33	X
152	54	>
153	54	>
154	35	1/X
155	54	>
156	65	X
157	43	RCL
158	10	10
159	54	>
160	99	PRT
161	92	RTN
162	00	0

THIS PAGE IS BEST QUALITY PRACTICABLY
FROM COPY FURNISHED TO DDC

VITA

Donald Edwin Jones was born 12 January 1950 in Montgomery, Alabama, the son of William Arthur Jones and Jane Dyer Jones. He graduated from Caledonia High School, Caledonia, Mississippi in May 1968 and entered Mississippi State University. He was awarded a Bachelor of Science degree in nuclear engineering in May 1972 and was awarded a commission as a second lieutenant in the United States Air Force the same day. His first assignment was to undergraduate pilot training. Upon graduation, he was transferred to England AFB, Louisiana, where he flew A-7s from October 1973 until January 1976. He was then transferred to Sembach AB, Federal Republic of Germany, where he flew OV-10s from May 1976 until July 1979. In August 1979, he arrived at AFIT and entered the Nuclear Weapons Effects program with a projected graduation date in March 1981.

Captain Jones married his wife, Linda Hollis Jones, on July 4, 1969. They have two children, Tracy Lynn and Tricia Kaye.

Permanent address: Rte 1 Box 274

Steens, Mississippi 39766

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFIT/GNE/PH/81M-5	2. GOVT ACCESSION NO. <i>AD-A100 804</i>	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) X-RAY FLUENCE AND TRANSMISSION AND PROMPT RADIATION FLUENCE OR DOSE		5. TYPE OF REPORT & PERIOD COVERED MS Thesis
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Donald E. Jones, Capt., USAF		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Air Force Institute of Technology (AFIT/EN) Wright-Patterson AFB, Ohio 45433		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE March 1981
		13. NUMBER OF PAGES 83
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Approved for public release: IAW AFR 190-17 <i>FREDERIC C. LYNCH, Major, USAF</i> Div. of Public Affairs Director of Public Affairs <i>21 MAY 1981</i> <i>Fredric C. Lynch</i>		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Photon Fluence X-ray Transmission Prompt Radiation Transport Photon Transport Neutron Fluence Atmospheric Radiation Trans- Photon Transmission Neutron Dose port. X-ray Fluence Gamma-Ray Fluence X-ray Transport Gamma-Ray Dose		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This report is to validate and evaluate a Horizons Technology Inc. (HTI) TI-59 program written to calculate the free field x-ray fluence from a nuclear burst. In addition to this validation of an existing program, programs were written to compute mass integral and prompt radiation effects. X-ray transmission is calculated using a build-up factor method and is compared to results from the HTI program. Results are compared for black-body temperatures of 0.1, 1.0, and 10.0 keV and mass integrals from 10^{-6} to 10.0 gcm^2 . The <i>59. cm</i>		

results compare well with a maximum error of approximately 21%. HTI's program has a minor problem as the transmission factor approaches zero so a TI-59 program is provided for use in that regime. A quick FORTRAN program is provided to calculate the fluence reaching a receiver. TI-59 and FORTRAN programs are given to calculate the mass penetrated and prompt radiation fluence or dose.