DEVOIR SURVEILLÉ 6 (2 HEURES)

Conseils de rédaction

- Le sujet, constitué de 3 exercices, comporte 4 pages.
- ❖ Les raisonnements doivent être méthodiques, justifiés et s'appuyer éventuellement sur des schémas!
- Soyez attentif à l'énoncé et aux notations utilisées : adaptez-vous !
- La calculatrice est autorisée.

Exercice 1 – Mesure des caractéristiques d'une bobine par équilibrage d'un pont $(\approx 40 \text{ mm})$

Pour déterminer les caractéristiques d'une bobine réelle, modélisée par l'association en série d'une inductance idéale L et d'une résistance r, on place celle-ci dans une structure en pont alimentée par une tension sinusoïdale $e(t) = E_M \cos(\omega t)$. Le voltmètre placé entre les points A et B est supposé idéal.

- 1. Préciser l'expression de l'amplitude complexe E associée à e(t).
- 2. Exprimer l'impédance complexe \underline{Z} équivalente à l'association de r et L.
- 3. Exprimer l'impédance complexe $\underline{Z}_{\acute{e}q}$ équivalente à l'association de R et C.
- 4. Exprimer les amplitudes complexes $\underline{U_{AC}}$ et $\underline{U_{CB}}$ associées aux tensions $u_{AC}(t)$ et $u_{CB}(t)$, en fonction des éléments du circuit et de l'amplitude complexe \underline{E} . En déduire l'expression de l'amplitude complexe $\underline{U_{AB}}$ de la tension aux bornes du voltmètre.
- 5. La capacité C et la résistance R sont ajustables. On choisit leurs valeurs de manière à annuler la tension aux bornes du voltmètre (on dit alors que le pont est équilibré). Déterminer les expressions de l'inductance L et de la résistance r en fonction de R, C, R_1 et R_2 .

On note $i_1(t) = I_{M1}\cos(\omega t + \varphi_1)$ l'intensité du courant circulant dans la résistance R_1 et $i_2(t) = I_{M2}\cos(\omega t + \varphi_2)$ celle du courant circulant dans la résistance R_2 .

- 6. Comment s'écrivent les amplitudes complexes $\underline{I_1}$ et $\underline{I_2}$ associées ?
- 7. En raisonnant sur le circuit en notation complexe, déterminer les expressions $de \underline{I}_1$ et \underline{I}_2 .
- 8. En déduire les expressions temporelles de $i_1(t)$ et $i_2(t)$.

DEVOIR SURVEILLÉ 6

Énergie : Conversions et Transferts – 1/4 Lycée M. Montaigne – MP2I – 2022/2023

Exercice 2 – La combinaison de plongée (d'après CCP TPC

2015) (≈ 30 mn)

Afin d'éviter l'hypothermie, le plongeur utilise une combinaison de plongée qui lui permet de conserver la chaleur qu'il produit. Soit Φ_{th} , la puissance thermique fournie par le corps du plongeur.

On suppose tout d'abord que le plongeur ne porte pas de combinaison. Les échanges thermiques du type conducto-convectif s'effectuant alors de la peau vers le milieu extérieur (ici l'eau à la température $T_e < T$) sont modélisés par un flux thermique vérifiant la loi :

$$\Phi_{p o e} = K_{pe} (T - T_e)$$

où K_{pe} est un coefficient constant positif et T la température du plongeur.

On modélise le plongeur comme une phase condensée de capacité thermique C.

- 2. Exprimer, en fonction de $\Phi_{p\to e}$, la petite quantité de chaleur δQ échangée par le plongeur avec le milieu extérieur, au cours d'une transformation élémentaire de durée dt. Justifier que $\delta Q < 0$.
- 3. À l'aide du premier principe appliqué à une transformation élémentaire, montrer que la température T(t) du plongeur vérifie l'équation différentielle :

$$\tau \frac{dT(t)}{dt} + (T(t) - T_e) = \frac{\tau}{C} \Phi_{th}$$

Exprimer τ en fonction de C et de K_{pe} .

- 4. En déduire l'évolution de la température en fonction du temps T(t), le plongeur possédant une température initiale T_p .
- 5. On donne $K_{pe}=16$ USI et $C=3,0.10^5$ J.K⁻¹. Calculer τ . Commenter la valeur obtenue.
- 6. On donne $\Phi_{th} = 100 \text{ W}$ et $T_e = 20 \text{ °C}$. Quelle est la température T_f atteinte par le plongeur au bout d'un temps suffisamment long? Le plongeur est-il en hypothermie sachant que la température d'hypothermie est de l'ordre de 35 °C?
- 7. Le plongeur s'équipe maintenant d'une combinaison de conductance thermique K_{comb} . Montrer alors par une analogie thermo-électrique que le flux thermique entre le corps et l'extérieur s'écrit :

$$\Phi_{p\to e} = K(T - T_e)$$

où l'on exprimera K en fonction de K_{comb} et de K_{pe} .

8. Expliquer alors l'impact de la combinaison sur le temps caractéristique τ et sur la température finale T_f .

DEVOIR SURVEILLÉ 6

Énergie : Conversions et Transferts – 2/4 Lycée M. Montaign

Exercice 3 – Gaz dans deux cylindres (d'après ICNA 2017) (≈ 45 mn)

Du diazote N_2 , assimilé à un gaz parfait, est enfermé dans deux compartiments cylindriques (I) et (II) séparés par une paroi fixe \mathcal{P} . Chaque compartiment contient $n=4,0.10^{-1}$ mol de gaz. Les gaz communiquent avec un pressostat extérieur (système imposant la pression à la frontière du système) à pression p_0 par l'intermédiaire de deux pistons mobiles \mathcal{P}_1 et \mathcal{P}_2 de masses négligeables qui coulissent sans frotter. Les parois des cylindres sont calorifugées. On note γ le coefficient de ce gaz parfait, rapport de la capacité thermique à pression constante CP sur la capacité thermique à volume constant CV.

Initialement, le compartiment (I), de volume V_1 , est à la température T_1 et le compartiment (II), de volume V_2 , est à la température T_2 . La pression est p_0 dans chaque compartiment.

<u>Données</u>:

- Nombre d'Avogadro : $N_A = 6.02.10^{23} \text{ mol}^{-1}$
- Constante des gaz parfaits : $R = 8,31 \text{ J.K}^{-1}.\text{mol}^{-1}$
- Masse molaire du diazote : $M(N_2) = 28 \text{ g.mol}^{-1}$
- 1. Déterminer le nombre N de molécules de diazote dans un compartiment ainsi que la masse m d'une molécule de diazote.
- 2. On donne la relation de Mayer : $C_P C_V = nR$. Exprimer la capacité thermique à pression constante C_P et la capacité thermique à volume constant C_V en fonction de n, R et γ .
- 3. Déterminer les expressions des volumes initiaux V_1 et V_2 en fonction des données de l'énoncé. Effectuer les applications numériques pour $p_0=1,0$ bar, $T_1=100$ °C et $T_2=30$ °C.
- 4. Calculer les densités moléculaires initiales n_1^* et n_2^* dans chaque compartiment.

Dans un premier temps, on suppose que les deux pistons mobiles \mathcal{P}_1 et \mathcal{P}_2 sont calorifugés et que la paroi fixe \mathcal{P} est diatherme (permet les échanges d'énergie thermique). On note T_f la température finale du système lorsqu'il n'évolue plus.

5. Pour le sous-système Σ_1 (diazote dans le compartiment (I)), exprimer la variation d'énergie interne ΔU_1 entre l'état initial et l'état final.

DEVOIR SURVEILLÉ 6

- 6. Exprimer le travail W_1 des forces de pression échangé par Σ_1 pendant la transformation, en fonction de T_1 , T_f , n, R.
- 7. À l'aide du premier principe, en déduire l'expression du transfert thermique Q_1 , échangé par Σ_1 pendant la transformation, en fonction de T_1 , T_f , n, R et C_V .
- 8. Pour le sous-système Σ_2 (diazote dans le compartiment (II)), procéder comme précédemment et exprimer ΔU_2 , W_2 et Q_2 (en fonction de T_2 , T_f , n, R et C_V).
- 9. Quelle relation existe-t-il entre Q_1 et Q_2 ? En déduire l'expression de la température T_f en fonction de T_1 et T_2 . Calculer T_f .
- 10. Quels sont les signes de Q_1 , Q_2 , W_1 et W_2 ? Expliquer la nature et le sens des échanges ainsi réalisés.
- 11. Montrer que la transformation subie par le système fermé $\Sigma = \Sigma_1 + \Sigma_2$ est isochore.
- 12. Quelles sont les autres caractéristiques de la transformation subie par Σ ?
- 13. Par application du premier principe au système Σ , déterminer sa variation d'énergie interne ΔU .

Désormais, on suppose que \mathcal{P}_1 et \mathcal{P}_2 sont diathermes et que \mathcal{P}_1 est calorifugée. Le milieu extérieur, qui est toujours un pressostat de pression p_0 , devient également un thermostat de température T_e . Les conditions initiales sont inchangées : le compartiment (I), de volume V_1 , est à la température T_1 et le compartiment (II), de volume V_2 , est à la température T_2 . La pression est p_0 dans chaque compartiment. L'état final est l'état du système lorsqu'il n'évolue plus.

- 14. Caractériser la transformation subie par le système $\Sigma = \Sigma_1 + \Sigma_2$.
- 15. Déterminer l'expression du transfert thermique Q' échangé par le système Σ avec le milieu extérieur, entre l'état initial et l'état final, en fonction de T_1 , T_2 , T_e et C_P .

DEVOIR SURVEILLÉ 6

Énergie : Conversions et Transferts – 4/4 Lycée M. Montaigne – MP2I – 2022/2023