

Models

Kasper Schou Telkamp

Section for Dynamical Systems

DTU Compute

Department of Applied Mathematics and Computer Science

Outline

- Data exploration
 - VTEC / STEC
- Hierachical Poisson-Normal model
 - Formulation
 - Implementation
 - Results
- Hierachical Poisson-Gamma model
 - Formulation
 - ullet Probability function for Y
 - Inference on individual group means
 - Implementation
 - Results

Data exploration VTEC / STEC

Date	ageGroup	y_{it}	x_{it}
2008-01-01	<1 year	2	64137
2008-01-01	1-4 years	2	259910
2008-01-01	5-14 years	2	680529
2008-01-01	15-24 years	1	631724
2022-12-01	55-64 years	2	773073
2022-12-01	65-74 years	5	621965
2022-12-01	75-84 years	4	449423
2022-12-01	85+ years	3	132181

Data exploration

DTU

VTEC / STEC

DTU

Formulation

The count observations are assumed to follow a Poisson distribution with intensities λ_{it} . Also, we shall assume that the count is proportional to the population size, x_{it} , within each age group, i, at a given time point, t. Hence, in terms of the canonical link for the Poisson distribution the model is

$$\log(\lambda_{it}) = \mathbf{X}_i^T \beta_{it} + \log(x_{it}) + u_{it}$$
(1)

Here X_i is a vector of ones, and β_{it} contains the corresponding fixed effect parameter. The random effects u_{it} are assumed to be Gaussian.

$$u_{it} = \epsilon_{it} \tag{2}$$

where $\epsilon_{it} \sim N(0, \sigma^2)$ is a white noise process, and σ is a model parameter.

DTU

Fomulation

Henceforth, the model can be formulated as a two-level hierarchical model

$$Y_{it}|u_{it} \sim \text{Pois}(\lambda_{it})$$
 (3a)

$$u_{it} \sim N(0, \sigma^2)$$
 (3b)

Implementation - Objective function in C++

```
#include <TMB.hpp>
                                // Links in the TMB libraries
template<class Type>
Type objective function Type :: operator() ()
  DATA VECTOR(v):
                                                 // Data vector transmitted from R
  DATA VECTOR(w)
                                        // Data vector transmitted from R
                                        // Data factor transmitted from R
  DATA FACTOR(ageGroup):
  PARAMETER_VECTOR(u);
                                            // Random effects
  // Parameters
  PARAMETER_VECTOR(log_lambda);
                                        // Parameter value transmitted from R
                                        // Parameter value transmitted from R
  PARAMETER(log_sigma_u);
  vector<Type> lambda = exp(log_lambda);
  Type sigma_u = exp(log_sigma_u);
  int nobs = v.size();
  Type mean_ran = Type(0);
  int i:
  Type f = 0:
                                        // Declare the "objective function"
 for(int t=0; t < nobs; t++){</pre>
    i = ageGroup[t];
    f -= dnorm(u[t].mean ran.sigma u.true);
    f -= dpois(y[t],exp(lambda[i]-log(w[t]))*exp(u[t]),true);
                                                                                Automated and Early Detection of Disease Outbreaks
                                                                                                                                 2023-02-09
```


Implementation - Call from R

```
# Import libraries
library(readr)
library(dplyr)
library(TMB)
# Import the data
dat <- read rds(file = "../../data/processed/dat.rds")
# Only consider some of the data
v <- dat %>%
 filter(caseDef == "Shiga- og veratoxin producerende E. coli.") %>%
  group_by(Date, ageGroup) %>%
  reframe(v = sum(cases), n = sum(n))
compile(file = "PoissonLognormal.cpp") # Compile the C++ file
# dyn.unload(dynlib("PoissonLognormal"))
dvn.load(dvnlib("PoissonLognormal")) # Dunamically link the C++ code
# Function and derivative
PoisLN <- MakeADFun(
  data = list(y = y$y, ageGroup = y$ageGroup, w = y$n),
 parameters = list(u = rep(1, length(y$y)),
                    log_lambda = rep(log(1), nlevels(y$ageGroup)),
                    \log \operatorname{sigma} u = \log(1).
 random = "u".
 DLL = "PoissonLognormal"
opt <- nlminb(start = PoisLN$par, PoisLN$fn, PoisLN$gr, lower = c(0.01, 0.01))
```

Hierachical Poisson-Normal model

Results

Parameter	Estimate	Std. Error
$\lambda_{<1year}$	2.38	0.01
$\lambda_{1-4years}$	2.61	0.01
$\lambda_{5-14 years}$	2.63	0.01
$\lambda_{15-24 years}$	2.64	0.01
$\lambda_{25-34years}$	2.62	0.01
$\lambda_{35-44years}$	2.61	0.01
$\lambda_{45-54years}$	2.63	0.01
$\lambda_{55-64years}$	2.62	0.01
$\lambda_{65-74 years}$	2.61	0.01
$\lambda_{75-84 years}$	2.53	0.01
$\lambda_{85+years}$	2.35	0.01
σ	1.01	0.03

Hierachical Poisson-Normal model

DTU

Results

Shiga- og veratoxin producerende E. coli.

DTU

Formulation

$$Y_{it}|u_{it} \sim \text{Pois}(\lambda_i u_{it})$$
 (4a)
 $u_{it} \sim G(1/\beta_i, \beta_i)$ (4b)

Probability function for *Y*

$$P[Y = y] = g_{Y}(y; \lambda, \beta)$$

$$= \frac{\lambda^{y}}{y!\Gamma(1/\beta)\beta^{1/\beta}} \frac{\beta^{y+1/\beta}\Gamma(y+1/\beta)}{(\lambda\beta+1)^{y+1/\beta}}$$

$$= \frac{\Gamma(y+1/\beta)}{\Gamma(1/\beta)y!} \frac{1}{(\lambda\beta+1)^{1/\beta}} \left(\frac{\lambda\beta}{\lambda\beta+1}\right)^{y}$$

$$= \left(\frac{y+1/\beta-1}{y}\right) \frac{1}{(\lambda\beta+1)^{1/\beta}} \left(\frac{\lambda\beta}{\lambda\beta+1}\right)^{y}, \text{ for } y = 0, 1, 2, \dots$$
(5)

where we have used the convention

The marginal distribution of Y is a negative binomial distribution, $Y \sim NB(1/\beta, 1/(\lambda\beta + 1))$

Proof

The probability function for the conditional distribution of \boldsymbol{Y} for given \boldsymbol{u}

$$f_{Y|u}(y;\lambda,u) = \frac{(\lambda u)^y}{y!} \exp(-\lambda u)$$
(7)

and the probability density function for the distribution of \boldsymbol{u} is

$$f_u(u;\beta) = \frac{1}{\beta \Gamma(1/\beta)} \left(\frac{u}{\beta}\right)^{1/\beta - 1} \exp(-u/\beta)$$
 (8)

Proof

Given (7) and (8), the probability function for the marginal distribution of Y is determined from

$$g_{Y}(y;\lambda,\beta) = \int_{u=0}^{\infty} f_{Y|u}(y;\lambda,u) f_{u}(u;\beta) du$$

$$= \int_{u=0}^{\infty} \frac{(\lambda u)^{y}}{y!} \exp(-\lambda u) \frac{1}{\beta \Gamma(1/\beta)} \left(\frac{u}{\beta}\right)^{1/\beta - 1} \exp(-u/\beta) du$$

$$= \frac{\lambda^{y}}{y! \Gamma(1/\beta) \beta^{1/\beta}} \int_{u=0}^{\infty} u^{y+1/\beta} \exp\left(-u(\lambda \beta + 1)/\beta\right) du$$
(9)

In (9) it is noted that the integrand is the *kernel* in the probability density function for a Gamma distribution, $G\left(y+1/\beta,\beta/(\lambda\beta+1)\right)$. As the integral of the density shall equal one, we find by adjusting the norming constant that

$$\int_{u=0}^{\infty} u^{y+1/\beta} \exp\left(-u/\left(\beta/(\lambda\beta+1)\right)\right) du = \frac{\beta^{y+1/\beta}\Gamma(y+1/\beta)}{(\lambda\beta+1)^{y+1/\beta}}$$
(10)

and then (5) follows

Inference on individual group means

Consider the hierarchical Poisson-Gamma model in (4), and assume that a value Y=y has been observed. Then the conditional distribution of u for given Y = y is a Gamma distribution,

$$u|Y = y \sim G(y + 1/\beta, \beta/(\lambda\beta + 1))$$
(11)

with mean

$$E[u|Y=y] = \frac{y\beta + 1}{\lambda\beta + 1} \tag{12}$$

and variance

$$V[u|Y=y] = \frac{(y\beta^2 + \beta)}{(\lambda\beta + 1)^2}$$
(13)

Proof

The conditional distribution is found using Bayes Theorem

$$g_{u}(u|Y=y) = \frac{f_{y,u}(y,u)}{g_{Y}(y;\lambda,\phi)}$$

$$= \frac{f_{y|u}(y;u)g_{u}(u)}{g_{Y}(y;\lambda,\beta)}$$

$$= \frac{1}{g_{Y}(y;\lambda,\beta)} \left(\frac{(\lambda u)^{y}}{y!} \exp(-\lambda u) \frac{1}{\beta \Gamma(1/\beta)} \left(\frac{u}{\beta}\right)^{1/\beta-1} \exp(-u/\beta)\right)$$

$$\propto u^{y+1/\beta-1} \exp\left(-u(\lambda\beta+1)/\beta\right)$$
(14)

We identify the *kernel* of the probability density function

$$u^{y+1/\beta-1}\exp(-u(\lambda\beta+1)/\beta) \tag{15}$$

as the kernel of a Gamma distribution, $G(y+1/\beta,\beta/(\lambda\beta+1))$

Implementation - Define negative likelihood function in R

```
# Define the negative likelihood function for the marginal distribution of Y
nll.age <- function(theta, data){
 # Extract counts
 v <- data$v
 # Extract agegroups
 ageGroup <- data$ageGroup
 # Extract number of agegroups
 n.ageGroup <- n_distinct(data$ageGroup)
 # Define parameters
 lambda <- theta[1:n.ageGroup]</pre>
 beta <- theta[(n.ageGroup+1):(n.ageGroup*2)]
 # Construct the size and probability for the negative binomial distribution
 r <- 1/beta
 p <- 1/(lambda*beta+1)
 # Initilize the log-likelihood
 11 <- 0
 for(i in 1:nrow(data)){
   11 = 11 + dnbinom(x = y[i],
                      size = r[ageGroup[i]],
                      prob = p[ageGroup[i]],
                      log = TRUE)
 # Return the negative log-likelihood
 -11
```

Results

ageGroup	λ	β
<1 year	1.24	0.33
1-4 years	4.57	0.36
5-14 years	2.47	0.42
15-24 years	2.57	0.48
25-34 years	2.08	0.57
35-44 years	1.47	0.20
45-54 years	1.88	0.39
55-64 years	1.77	0.25
65-74 years	1.89	0.40
75-84 years	1.45	1.08
85+ years	0.50	0.97

Hierachical Poisson-Gamma model

DTU

Results

Shiga- og veratoxin producerende E. coli.

