EE364a Review Session 7

session outline:

- derivatives and chain rule (Appendix A.4)
- numerical linear algebra (Appendix C)
 - factor and solve method
 - exploiting structure and sparsity

Derivative and gradient

When f is real-valued (i.e., $f : \mathbf{R}^n \to \mathbf{R}$), the derivative Df(x) is a $1 \times n$ matrix, i.e., it is a row vector.

• its transpose is called the *gradient* of the function:

$$\nabla f(x) = Df(x)^T,$$

which is a (column) vector, i.e., in \mathbb{R}^n

 \bullet its components are the partial derivatives of f:

$$\nabla f(x)_i = \frac{\partial f(x)}{\partial x_i}, \quad i = 1, \dots, n$$

• the first-order approximation of f at a point x can be expressed as (the affine function of z)

$$f(x) + \nabla f(x)^T (z - x)$$

example: Find the gradient of $g: \mathbb{R}^m \to \mathbb{R}$,

$$g(y) = \log \sum_{i=1}^{m} \exp(y_i).$$

solution.

$$\nabla g(y) = \frac{1}{\sum_{i=1}^{m} \exp y_i} \begin{bmatrix} \exp y_1 \\ \vdots \\ \exp y_m \end{bmatrix}$$

Chain rule

Suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ and $g: \mathbf{R}^m \to \mathbf{R}^p$ are differentiable. Define $h: \mathbf{R}^n \to \mathbf{R}^p$ by h(x) = g(f(x)). Then

$$Dh(x) = Dg(f(x))Df(x).$$

Composition with an affine function:

Suppose $g: \mathbf{R}^m \to \mathbf{R}^p$ is differentiable, $A \in \mathbf{R}^{m \times n}$, and $b \in \mathbf{R}^m$. Define $h: \mathbf{R}^n \to \mathbf{R}^p$ as h(x) = g(Ax + b).

The derivative of h is Dh(x) = Dg(Ax + b)A.

When g is real-valued (i.e., p = 1),

$$\nabla h(x) = A^T \nabla g(Ax + b).$$

example A.2: Find the gradient of $h: \mathbb{R}^n \to \mathbb{R}$,

$$h(x) = \log \sum_{i=1}^{m} \exp(a_i^T x + b_i),$$

where $a_1, \ldots, a_m \in \mathbf{R}^n$, and $b_1, \ldots, b_m \in \mathbf{R}$.

Hint: h is the composition of the affine function Ax + b, where $A \in \mathbf{R}^{m \times n}$ has rows a_1^T, \dots, a_m^T , and the function $g(y) = \log(\sum_{i=1}^m \exp y_i)$.

solution.

$$\nabla g(y) = \frac{1}{\sum_{i=1}^{m} \exp y_i} \begin{bmatrix} \exp y_1 \\ \vdots \\ \exp y_m \end{bmatrix}$$

then by the composition formula we have

$$\nabla h(x) = \frac{1}{\mathbf{1}^T z} A^T z$$

where $z_i = \exp(a_i^T x + b_i)$, $i = 1, \ldots, m$

Second derivative

When f is real-valued (i.e., $f: \mathbf{R}^n \to \mathbf{R}$), the second derivative or Hessian matrix $\nabla^2 f(x)$ is a $n \times n$ matrix, with components

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \qquad i = 1, \dots, n, \quad j = 1, \dots, n,$$

ullet the second-order approximation of f, at or near x, is the quadratic function of z defined by

$$\widehat{f}(z) = f(x) + \nabla f(x)^T (z - x) + (1/2)(z - x)^T \nabla^2 f(x)(z - x).$$

Chain rule for second derivative

Composition with scalar function

Suppose
$$f: \mathbb{R}^n \to \mathbb{R}$$
, $g: \mathbb{R} \to \mathbb{R}$, and $h(x) = g(f(x))$.

The second derivative of h is

$$\nabla^2 h(x) = g'(f(x))\nabla^2 f(x) + g''(f(x))\nabla f(x)\nabla f(x)^T.$$

Composition with affine function

Suppose $g: \mathbf{R}^m \to \mathbf{R}$, $A \in \mathbf{R}^{m \times n}$, and $b \in \mathbf{R}^m$. Define $h: \mathbf{R}^n \to \mathbf{R}$ by h(x) = g(Ax + b).

The second derivative of h is

$$\nabla^2 h(x) = A^T \nabla^2 g(Ax + b) A.$$

example A.4: Find the Hessian of $h: \mathbb{R}^n \to \mathbb{R}$,

$$h(x) = \log \sum_{i=1}^{m} \exp(a_i^T x + b_i),$$

where $a_1, \ldots, a_m \in \mathbf{R}^n$, and $b_1, \ldots, b_m \in \mathbf{R}$.

Hint: For $g(y) = \log(\sum_{i=1}^{m} \exp y_i)$, we have

$$\nabla g(y) = \frac{1}{\sum_{i=1}^{m} \exp y_i} \begin{bmatrix} \exp y_1 \\ \vdots \\ \exp y_m \end{bmatrix}$$
$$\nabla^2 g(y) = \operatorname{diag}(\nabla g(y)) - \nabla g(y) \nabla g(y)^T.$$

solution. using the chain rule for composition with affine function,

$$\nabla^2 h(x) = A^T \left(\frac{1}{\mathbf{1}^T z} \operatorname{\mathbf{diag}}(z) - \frac{1}{(\mathbf{1}^T z)^2} z z^T \right) A$$

where $z_i = \exp(a_i^T x + b_i)$, i = 1, ..., m

Numerical linear algebra

factor-solve method for Ax = b

- ullet consider set of n linear equations in n variables, i.e., A is square
- computational cost f + s
 - f is flop count of factorization
 - $-\ s$ is flop count of solve step
- ullet for single factorization and k solves, computational cost is f+ks

LU factorization

- ullet nonsingular matrix A can be decomposed as A=PLU
- $f = (2/3)n^3$ (Gaussian elimination)
- $s = 2n^2$ (forward and back substitution)
- for example, can compute $n \times n$ matrix inverse with cost $f + ns = (8/3)n^3$ (why?)

solution.

- write AX = I as $A[x_1 \cdots x_n] = [e_1 \cdots e_n]$
- then solve $Ax_i = e_i$ for $i = 1, \ldots, n$

Cholesky factorization

- ullet symmetric, positive definite matrix A can be decomposed as $A=LL^T$
- $f = (1/3)n^3$
- $s = 2n^2$
- ullet prob. 9.31a: only factor once every N iterations, but solve every iteration
 - every N steps, computation is $f + s = (1/3)n^3 + 2n^2$ flops
 - all other steps, computation is $s=2n^2$ flops

Exploiting structure

computational costs for solving $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$

structure of A	$\mid f \mid$	S
none	$(2/3)n^3$	$2n^2$
symmetric, positive definite	$(1/3)n^3$	$2n^2$
lower triangular	0	n^2
k -banded ($a_{ij} = 0$ if $ i - j > k$)	$4nk^2$	6nk
block diag with m blocks	$(2/3)n^3/m^2$	$2n^2/m$
DFT (using FFT to solve)	0	$\int 5n \log n$

Block elimination

solve

$$\left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right] = \left[\begin{array}{c} b_1 \\ b_2 \end{array}\right]$$

• first equation $A_{11}x_1 + A_{12}x_2 = b_1$ gives us

$$x_1 = A_{11}^{-1}(b_1 - A_{12}x_2)$$

second equation is then

$$(A_{22} - A_{21}A_{11}^{-1}A_{12})x_2 = b_2 - A_{21}A_{11}^{-1}b_1.$$

ullet speedup if A_{11} and $S=A_{22}-A_{21}A_{11}^{-1}A_{12}$ are easy to invert

example: Solve the set of equations

$$\left[\begin{array}{cc} A & 0 \\ 0 & B \end{array}\right] x = \left[\begin{array}{c} b \\ c \end{array}\right]$$

where $A \in \mathbf{R}^{n \times n}$, $B \in \mathbf{R}^{n \times n}$, $b \in \mathbf{R}^n$, $c \in \mathbf{R}^n$, and matrices A and B are nonsingular

• flop count of brute-force method?

solution.
$$(2/3)(2n)^3 = (16/3)n^3$$

• how can we exploit structure?

solution.

- partition $x = (x_1, x_2)$
- $-x_1 = A^{-1}b$, $x_2 = B^{-1}c$
- flop count: $2(2/3)n^3 = (4/3)n^3$

example: Solve the set of equations

$$\left[\begin{array}{cc} I & B \\ C & I \end{array}\right] x = \left[\begin{array}{c} b_1 \\ b_2 \end{array}\right]$$

where $B \in \mathbf{R}^{m \times n}$, $C \in \mathbf{R}^{n \times m}$, and $m \gg n$; also assume that the whole matrix is nonsingular

- flop count of brute-force method? solution. $(2/3)(m+n)^3$
- how can we exploit structure?

solution.

use block elimination to get equations

$$(I - CB)x_2 = b_2 - Cb_1$$
 and $x_1 = b_1 - Bx_2$

- flop count: forming I-CB costs $2mn^2$, b_2-Cb_1 is 2mn, solving for x_2 is $(2/3)n^3$, and computing x_1 costs 2mn; overall complexity is $2mn^2$

Solving almost separable linear equations

Consider the following system of 2n + m equations

$$Ax + By = c$$

$$Dx + Ey + Fz = g$$

$$Hy + Jz = k$$

where $A,J\in\mathbf{R}^{n\times n}$, $B,H\in\mathbf{R}^{n\times m}$, $D,F\in\mathbf{R}^{m\times n}$, $E\in\mathbf{R}^{m\times m}$, $c,k\in\mathbf{R}^n$, $g\in\mathbf{R}^m$ and n>m

need to solve the following system

$$\begin{bmatrix} A & B & 0 \\ D & E & F \\ 0 & H & J \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} c \\ g \\ k \end{bmatrix}$$

- naive way: treat as dense
- can take advantage of the structure by first reordering the equations and variables

$$\begin{bmatrix} A & 0 & B \\ 0 & J & H \\ D & F & E \end{bmatrix} \begin{bmatrix} x \\ z \\ y \end{bmatrix} = \begin{bmatrix} c \\ k \\ g \end{bmatrix}$$

the system now looks like an "arrow" system, which we can efficiently solve by block elimination.

since

$$\left[\begin{array}{cc} A & 0 \\ 0 & J \end{array}\right] \left[\begin{array}{c} x \\ z \end{array}\right] + \left[\begin{array}{c} B \\ H \end{array}\right] y = \left[\begin{array}{c} c \\ k \end{array}\right]$$

then

$$\left[\begin{array}{c} x \\ z \end{array}\right] = \left[\begin{array}{c} A^{-1}c \\ J^{-1}k \end{array}\right] - \left[\begin{array}{c} A^{-1}B \\ J^{-1}H \end{array}\right] y$$

we know that

$$\left[\begin{array}{cc} D & F \end{array}\right] \left[\begin{array}{c} x \\ z \end{array}\right] + Ey = g$$

• then plugging into the expression derived above

$$\begin{bmatrix} D & F \end{bmatrix} \begin{pmatrix} \begin{bmatrix} A^{-1}c \\ J^{-1}k \end{bmatrix} - \begin{bmatrix} A^{-1}B \\ J^{-1}H \end{bmatrix} y + Ey = g$$

therefore

$$(E - DA^{-1}B - FJ^{-1}H)y = g - DA^{-1}c - FJ^{-1}k$$

We can therefore solve the system of equations efficiently by taking advantage of structure in the following way

• form

$$M = A^{-1}B,$$
 $n = A^{-1}c,$
 $P = J^{-1}H,$ $q = J^{-1}k.$

- compute r = g Dn Fq.
- compute S = E DM FP.
- find

$$y = S^{-1}r, \qquad x = n - My, \qquad z = q - Py.$$

Using sparsity in Matlab

- construct using sparse, spalloc, speye, spdiags, spones
- visualize and analyze using spy, nnz
- also have sprand, sprandn, eigs, svds
- be careful not to accidentally make sparse matrices dense

using sparsity in additional problem 2

ullet the (sparse) tridiagonal matrix $\Delta \in \mathbf{R}^{n \times n}$

$$\Delta = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 & 0 & 0 \\ -1 & 2 & -1 & \cdots & 0 & 0 & 0 \\ 0 & -1 & 2 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 2 & -1 \\ 0 & 0 & 0 & \cdots & 0 & -1 & 1 \end{bmatrix}.$$

can be built in Matlab as follows:

```
e = ones(n,1);
D = spdiags([-e 2*e -e],[-1 0 1], n,n);
D(1,1) = 1; D(n,n) = 1;
```

• the sparse identity matrix can be built using speye

Sparse Cholesky factorization with permutations

consider factorizing downward arrow matrix $A_d = L_d L_d^T$, with n = 3000

- $nnz(A_d) = 8998$
- call using L_d=chol(A_d, 'lower')
 (use L_d=chol(A_d)' in older versions of Matlab)

- nnz(L_d)=5999; factorization takes tf_d=0.0022 seconds
- to solve $A_dx = b$, call x=L_d'\(L_d\b), which takes ts_d=0.0020 seconds to run

now look at factorizing upward arrow matrix $A_u = L_u L_u^T$

- again, nnz(A_u)=8998
- call using L_u=chol(A_u,'lower')

- nnz(L_u)=4501500, and takes tf_u=3.7288 seconds to compute
- calling x=L_u'\(L_u\b) no longer efficient; takes ts_u=0.5673 seconds to run

instead factorize A_u with permutations, $A_u = PL_pL_p^TP^T$

• call using [L_p,pp,P]=chol(A_u,'lower')

- P is Toeplitz matrix with 1's on the sub-diagonal and in upper right corner, i.e., $P_{1,n}=1$, $P_{k+1,k}=1$ for $k=1,\ldots,n$, all other entries 0
- factorization only takes tf_p=0.0028 seconds to compute
- solve $A_u x = b$ using x=P'\(L_p'\(L_p\(P\b))); solve takes ts_p=0.0042 seconds