機器學習 Kernel SVM

授課老師:林彦廷

SVM separates well these points

Why?

Because the data points are not LINEARLY SEPARABLE

Linear Separability

A Higher-Dimensional Space

f = x - 5

f = x - 5

f = x - 5

$$f = (x - 5)^2$$

Projecting back to 2D Space

Projecting back to 2D Space

 \mathbf{X}_1

But there is a catch...

Mapping to a Higher Dimensional Space can be highly compute-intensive

The Kernel Trick

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

Types of Kernel Functions

Types of Kernel Functions

Gaussian RBF Kernel

$$K(\vec{x}, \vec{l}^i) = e^{-\frac{\|\vec{x} - \vec{l}^i\|^2}{2\sigma^2}}$$

Sigmoid Kernel

$$K(X,Y) = \tanh(\gamma \cdot X^T Y + r)$$

Polynomial Kernel

$$K(X,Y) = (\gamma \cdot X^T Y + r)^d, \gamma > 0$$

Kernel Functions for Machine Learning Applications

http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/

THE END

ytlin@mail.nptu.edu.tw