Lab0 稀疏矩阵的乘法

在本实验中,你需要通过某些更高效的数据结构存储稀疏矩阵,并正确实现稀疏矩阵的乘法运算。

Lab0 稀疏矩阵的乘法

稀疏矩阵的存储

稀疏矩阵的乘法

稀疏矩阵的输出

原始的矩阵乘法

实验数据

测试数据的生成代码

实验数据表

时间对比:

最终结论和感想

稀疏矩阵的存储

实验给出的是通过文件读写一个矩阵的数据,那么就很好说了。我们只需要按照格式读取稀疏矩阵的信息,然后再进行转换即可。

- 首先,必要存储矩阵的行、列信息
- 然后我们需要存那些地方是非0的信息,比如一个 100×100 的矩阵,但是只有 $a_{1,2}=4$,其余元素全部是0,那我们就没有必要存储那么多信息,我们只需要存储1,2,4,即可。这时,我选择 map 这种数据结构很好的解决了问题。
- 显然数组是二维的,肯定不能用一维的 map 来处理问题,我们需要一个二维的 map 来解决。我画了一个示意图,如下所示(使用阿里/语雀绘制)

我们来解释一下这个图:

- 假如我们要存储一个 $a_{i,j}$,只需要先根据i行数找到对应的行容器(没有的话就创建一个),然后再在列容器 里面存储对应的值。
- 假如我们要查询一个 $a_{3,4}$,只需要根据3找到行容器,再在列容器里面找到对应 key==4 的值。
- 假如我们要获取某一行的所有值,那很简单,把对应的行容器取出来即可
- 假如我要获取某一列的呢? 那就不好办了,我的做法是牺牲空间换时间,再开辟一个完全一样的二维 map 容器,只不过这次是先列、后行。

有了解释,我下面的代码也不难看懂了,两个 map 刚刚已经解释过了。补充一个 elementAddNum 函数的用途:他的作用是接收(X,Y,value),然后 $a_{x,y}=a_{x,y}+value$,待会再来解释这个的意义。

```
1
   class SparseMatrix {
2
     private:
      int _row;
3
      int _col;
5
6
       /* TODO: Add any necessary data structure here. */
7
       /* Map from row to col to Matrix Value */
       std::map<int, std::map<int, int> > rowColMap;
8
       /* Map from col to row to Matrix Value */
9
       std::map<int, std::map<int, int> > colRowMap;
10
11
     public:
12
       SparseMatrix() = default;
13
14
15
       SparseMatrix(const std::string input file);
16
```

```
17
       void to file(const std::string output file);
18
19
       SparseMatrix operator*(const SparseMatrix &right);
20
2.1
       // x is row, y is col, num means array[x][y] += num;
22
       void elementAddNum(int rowIndex, int colIndex, int num);
23
24
       void setRowNum(int rowNum);
25
       void setColNum(int colNum);
26
```

稀疏矩阵的乘法

直接解释我的思路可能不好理解,那我们举个例子 $(A_{m\times n}, B_{n\times n})$ 。

$$result = A \times B$$
 (1)

还是我上面放的那张图,不难看出,图里面可以推断出:

$$a_{0,2} = 3, a_{0,4} = 5 (2)$$

也就是说,我们知道第0行只有两个元素不为0,其余的都是0,OK,那我们去看 B 矩阵的什么呢,第2行,第4行。假如 B 矩阵的 $b_{2,K}=4$,那我们需要: $result_{0,K}=result_{0,K}+a_{0,2}\times b_{2,K}$ (初始化的时候全部为0)你可能有些懵,那我还是从矩阵乘法的本质入手,假设我要计算result[0][K],K是个常数:

$$result[0][K] = \sum_{i=0}^{n-1} a[0][i] \times b[i][K]$$
(3)

这显然人人都看得懂,因为这是矩阵乘法定义,我就不多说了,但是由于矩阵是个稀疏的,也就是可以说,上面的那个求和的,很多项其实是0。

我们为什么要找第0行的非零元素呢,因为一旦第0行某个元素是0,上面那个求和公式里面对应的项,一定就是0了。所以我们要找非0的,假设非0的的是2,4,那我们就缩小了范围,去B矩阵的第二行找非0的,假如找到了 k_1 ,那我们就可以肯定 $result[0][k_1]$ 中,一定有一份**贡献**来自于: $a[0][2]\times b[2][k_1]$,至于还有没有别的贡献(比如 $a[0][4]\times b[4][k_1]$),要靠**后面的扫描B矩阵第四行才能知道。**

这样就解决了问题,上代码(代码写的时候我用的英文注释hhh):

- iterx 迭代器扫描行容器
- itery 迭代器扫描行容器里面的列元素
- iter 选 选代器扫描 right 矩阵的对应 iter T 行数的列容器, 然后把贡献值来加上去
- 这样 elementAddNum 这个函数也就说得通了
- 当然为了容错,还要检查是否两个矩阵可以相乘
- 设置结果矩阵的行列数,就不多说了

```
// 简要介绍一下我的实现思路,因为我是map存储的
// map rowColMap[X][Y] = value, X is row, Y is col
// map colRowMap[Y][X] = value, X is row, Y is col
// 做乘法的时候首先,遍历行,再在每一行里面遍历不为0的列,然后和要做乘法的right做比较,
```

```
5 // 比如第一行,第三列不为0,那就去找右边right的第三行,去里面看不为0的,然后做乘法,如果发现right的第3行
     第5列
     // 不是0, 那好, 最终的结果第一行、第五列的结果就是【上面两个矩阵对应元素的】乘积
6
     // 写入到对应的矩阵即可
8
     SparseMatrix SparseMatrix::operator*(const SparseMatrix &right) {
       /* TODO: Your code here. */
9
10
       try
11
       {
         /* check if they can be multied */
12
13
         if(this-> col != right. row)
           throw "Can't be muilipled";
14
15
16
         SparseMatrix result;
17
         result.setRowNum( row);
18
         result.setColNum(right._col);
19
         /* continue to do muiliple*/
         /* tranverse by ROW, From Row[0] to Row[END] */
2.0
         for(auto iterX = rowColMap.begin(); iterX != rowColMap.end(); iterX++){
21
22
          /* tranverse by Col */
           // std::cout << "@" << std::endl;
23
           for(auto iterY = iterX->second.begin(); iterY !=iterX->second.end(); iterY++){
24
25
             // Now array[iterX->first][iterY->first] must match rightArray[iterY->first][??]
26
             // ?? is the final result array and we use for to find ??
             if(right.rowColMap.count(iterY -> first) == 1){
2.7
               auto zTarget =right.rowColMap.find(iterY -> first);
28
29
30
              for(auto iterZ = zTarget -> second.begin(); iterZ != zTarget ->second.end();
     iterZ++){
                result.elementAddNum(iterX->first, iterZ->first, (iterZ->second) * (iterY -
31
     >second) );
32
             }
33
34
35
           }
36
37
         return result;
38
       }
       catch(const std::exception& e)
39
40
         std::cout << e.what() << '\n';
41
42
       }
43
44
       return SparseMatrix();
45
```

稀疏矩阵的输出

输出是文件操作,就非常简单了。

```
void SparseMatrix::to_file(const std::string output_file) {
2
       /* TODO: Your code here. */
3
       std::ofstream outfile;
       outfile.open(output_file);
       outfile << row << " " << col << "\n";
 6
      for(auto iterX = rowColMap.begin(); iterX != rowColMap.end(); iterX++){
7
        for(auto iterY = iterX->second.begin(); iterY !=iterX->second.end(); iterY++){
8
           // ensure 0 can't be outPUT
9
          if(iterY ->second !=0)
             outfile << iterX->first << " " << iterY -> first << " " << iterY ->second \,
10
     "\n";
11
12
      }
13
      outfile.close();
14
     }
```

原始的矩阵乘法

传统的就是根据矩阵的定义做加法,这种方法不好使因为做了大量加0的操作。

```
SparseMatrix SparseMatrix::operator*(SparseMatrix &right) {
2
       /* TODO: Your code here. */
 3
       clock t start,end;
       start = clock();
 5
       try
 6
 7
         /* check if they can be multied */
         if(this->_col != right._row)
 8
            throw "Can't be muilipled";
9
10
11
          SparseMatrix result;
         result.setRowNum( row);
12
          result.setColNum(right._col);
13
14
         for(int i = 0; i < _row; i++){
15
           for(int j = 0; j< right._col; j++){</pre>
16
             int sum = 0;
17
              for(int k = 0; k < _{col}; k++){
18
19
                sum += this->rowColMap[i][k] * right.getElementNum(k, j);
20
              result.elementAddNum(i, j, sum);
21
22
            }
23
          }
24
          end = clock();
25
          std::cout << double(end - start) / CLOCKS_PER_SEC << "s" << std::endl;</pre>
         return result;
26
27
28
       catch(const std::exception& e)
```

实验数据

测试数据的生成代码

由于要自己生成数据测试,我就写了下面的生成文件代码。只需要调用 generateFileData 就可以了。这里我要解释一下我的两个定义:

- Scale: 就是规模,矩阵的规模,考虑到乘法的方便,两个矩阵全部都是行、列相同且为Scale的方阵。
- P: 就是稀疏程度,稀疏程度 $p=\frac{\pm 000 \cap \Delta M}{B \cap R \cap R}$,我在生成矩阵数据的时候,采用了一个比较巧妙的方法(说白了我从跳表里面收到了启发,就是用随机数和概率P比较,来决定是否放一个数字)

```
1
     double getRandNum(){
 2
       return rand() * 1.0 / RAND_MAX;
 3
 4
     void generateData(int index, int scale, double p){
 6
       SparseMatrix left;
 7
       SparseMatrix right;
8
       for(int x = 0; x < scale; x++){
9
         for(int y = 0; y < scale; y++){
10
11
           if(getRandNum() < p)</pre>
12
              left.elementAddNum(x,y,rand());
13
           if(getRandNum() < p)</pre>
14
              right.elementAddNum(x,y, rand());
15
         }
16
       }
17
18
       left.setColNum(scale);
19
       left.setRowNum(scale);
20
       right.setColNum(scale);
       right.setRowNum(scale);
21
22
23
       left.to_file("input/" + std::to_string(index) + ".left");
       left.to_file("input/" + std::to_string(index) + ".right");
24
25
     }
26
27
     void generateFileData(){
28
       srand(time(NULL));
29
       int fileID = 0;
30
       int scaleGroup[] = {10, 50, 100, 200, 250};
31
       double pGroup[] = {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9};
       for(int i = 0; i < 5; i++){
32
         for(int j = 0; j < 10; j++){
33
```

实验数据表

实验计算的数据如下表(我并没有找到很好的检测内存的工具,所以我这里给出我在乘法步骤使用的理论的内存值,用 int 倍数来表示。):

fileID	稀疏程度p	scale	common/s	myrealization/s	common内存(int)	myrealization内存(int)
0	0.001	10	0.000951	6.00E-06	200	0.4
1	0.005	10	0.000944	1.00E-06	200	2
2	0.01	10	0.000947	1.00E-06	200	4
3	0.05	10	0.000936	7.00E-06	200	20
4	0.1	10	0.000849	2.20E-05	200	40
5	0.2	10	0.000777	4.60E-05	200	80
6	0.3	10	0.000808	9.30E-05	200	120
7	0.5	10	0.00076	0.000239	200	200
8	0.7	10	0.00074	0.000401	200	280
9	0.9	10	0.000651	0.000508	200	360
10	0.001	50	0.069809	1.00E-06	5000	10
11	0.005	50	0.053045	1.00E-05	5000	50
12	0.01	50	0.051811	3.30E-05	5000	100
13	0.05	50	0.052232	0.000337	5000	500
14	0.1	50	0.053235	0.001348	5000	1000
15	0.2	50	0.054293	0.004974	5000	2000
16	0.3	50	0.05418	0.011284	5000	3000
17	0.5	50	0.054052	0.029372	5000	5000
18	0.7	50	0.054371	0.055488	5000	7000
19	0.9	50	0.053431	0.089939	5000	9000
20	0.001	100	0.492049	2.00E-06	20000	40
21	0.005	100	0.460245	4.60E-05	20000	200
22	0.01	100	0.458518	0.000161	20000	400
23	0.05	100	0.462419	0.003345	20000	2000

24	0.1	100	0.476609	0.013024	20000	4000
25	0.2	100	0.485589	0.046114	20000	8000
26	0.3	100	0.481291	0.097104	20000	12000
27	0.5	100	0.483493	0.256418	20000	20000
28	0.7	100	0.492871	0.494047	20000	28000
29	0.9	100	0.475169	0.816387	20000	36000
30	0.001	200	4.27876	2.40E-05	80000	160
31	0.005	200	4.06853	0.000297	80000	800
32	0.01	200	4.06058	0.001034	80000	1600
33	0.05	200	4.16052	0.028786	80000	8000
34	0.1	200	4.21811	0.112069	80000	16000
35	0.2	200	4.23915	0.397555	80000	32000
36	0.3	200	4.21816	0.853437	80000	48000
37	0.5	200	4.2766	2.3304	80000	80000
38	0.7	200	4.3446	4.56495	80000	112000
39	0.9	200	4.2619	7.46623	80000	144000
40	0.001	250	8.46711	4.90E-05	125000	250
41	0.005	250	8.18418	0.000554	125000	1250
42	0.01	250	8.24046	0.002388	125000	2500
43	0.05	250	8.42231	0.058627	125000	12500
44	0.1	250	8.58265	0.200794	125000	25000
45	0.2	250	8.68672	0.791286	125000	50000
46	0.3	250	8.5226	1.76366	125000	75000
47	0.5	250	8.66974	4.75867	125000	125000
48	0.7	250	8.55923	9.2353	125000	175000
49	0.9	250	8.49001	15.4487	125000	225000

时间对比:

两种实现的时间对比(scale=10)

- 上面两个图给了两个矩阵规模的情况,一个是矩阵规模比较小的,矩阵十行十列的,另外一个规模大一点, 250行250列。
- 可以看到,矩阵250行250列的时候,普通的传统计算方法,没什么大差别。一直时间复杂度都是恒定的。
- 分析原因在于: 我的这种算法,再查找的元素的时候要消耗一定的时间,而传统的矩阵乘法就没有这些问题。

- 综上,如果稀疏程度是真的非常稀疏,就矩阵里面基本全都是0,极少为非0的,我这个算法很有用,但是如果矩阵里面基本很少有0,那就还是不如采用传统的方法。
- 此外,有人可能会问矩阵规模比较小的时候,为什么传统算法的时间复杂度有下降的问题,可能是在生成随机数的时候,出现的比较偶然的情况(因为矩阵太小了,可能出现偶然情况导致时间的变化,而且那个时间本身就非常短,测量的误差偶然性都有可能,我们还是应该看规模比较大的情况)但是大体趋势都是合乎理论的

- 上面的这两个图、一个是非0概率为0.001的、一个是非0概率0.9的。可以看出:
 - 。 矩阵越稀疏, 时间越短, 我的算法优势越明显
 - 矩阵里面非0的元素越多,也就是矩阵里面的有效的数字越多,我的算法优势就不那么明显了。

• 最后一个图是内存消耗的,当输入的数据不变的时候,基本来说传统的算法内存消耗的是维持在稳定不变的,但是随着稀疏程度变化,我的算法使用的内存会逐渐增大,甚至会超过传统的,究其根本我使用了空间换时间的思想,算法需要两个 map 来支持,所以数据存在了一定的重复,所以内存可能会超过传统方法。

最终结论和感想

稀疏矩阵的乘法计算可以很大的优化,这是因为稀疏矩阵里面太多的0元素浪费了计算时间。我们只需要考虑非0的元素之间的位置、值信息,就可以计算出这两个矩阵的乘法结果。

这次Lab让我印象深刻的是文件读写,毕竟好久没用到文件读写的C++库,也帮我复习到了很多。

当然,特别感谢Spass为本报告的数据绘图提供了强大的支持,也特别感谢语雀文档为数据结构的展示绘图提供的支持。