Ruiz, Mark Anthony M. COM231

Student	Hours Studied (x)	Exam Score (y)	xy	x^2
1	1	52	52	1
2	2	57	114	4
3	3	61	183	9
4	4	65	260	16
5	5	70	350	25
	Σx = 15	Σx = 305	Σxy = 959	Σx^2 = 55

Part 2

2. Compute the Slope m (5 points)

$$m = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$
$$m = ?$$

3: Compute the Intercept *b* (5 points)

$$b = \frac{\sum y - m \sum x}{n}$$
$$b = ?$$

4. Regression Equation (5 points)

Write the regression line:

$$y = mx + b$$
$$y = ?$$

5. Draw the regression line using a scatter plot (10 points)

- $\bullet \;\;$ Calculate $\mathcal{Y}_{predict}$ for each data points
- $\bullet~$ Draw a regression line using $\mathcal{Y}_{predict}$
- Use a circle **o** for all data points
- Use a red line for the regression line

Student	Hours Studied (x)	Exam Score (y)	Predicted Exam Score ($y_{predict}$)
1	1	52	?
2	2	57	?
3	3	61	?
4	4	65	?
5	5	70	?

6. Calculate the Sum of Squared Errors (20 points)

 $SSE = \sum (yi - y\{predict\})^2$

Student	Hours Studied (x)	Exam Score (y)	Predicted Exam Score ($y_{predict}$)	$y_i - y_{predict}$	$(y_i - y_{predict})^2$
1	1	52	?	?	?
2	2	57	?	?	?
3	3	61	?	?	?
4	4	65	?	?	?
5	5	70	?	?	?
					SSE = ?

7. Calculate the Sum of Squared Total (20 points)

• Get \bar{y} using this formula :

$$\bar{y} = \frac{\sum y_i}{n}$$

• Get SST using this formula:

$$SST = \sum (y_i - \bar{y})^2$$

Student	Hours Studied (x)	Exam Score (y)	Mean (\bar{y})	$y_i - \bar{y}$	$(y_i - \bar{y})^2$
1	1	52	?	?	?
2	2	57	?	?	?
3	3	61	?	?	?
4	4	65	?	?	?
5	5	70	?	?	?
					SST = ?

\mathscr{P} 8. Compute \mathbb{R}^2 (20 points)

• Get R^2 using this formula:

$$R^2 = 1 - \frac{SSE}{SST}$$

$$R^2 = ?$$

9. Prediction (1 point)

Use your equation to predict the exam score for a student who studied 6 hours.

$$y = m(6) + b$$

$$y = ?$$