Wiederholung Prädikatenlogik Wörter Vollständige Induktion Zusammenfassung

GBI-Tutorium 2

Tristan Schnell

3. November 2011

Inhaltsverzeichnis

- Wiederholung
- 2 Prädikatenlogik
- Wörter
- 4 Vollständige Induktion
- 5 Zusammenfassung

Letztes Übungsblatt

Aufgabe 1.2

Tafel

Aufgabe 1.3

- M kann unendlich sein!
- einfache Lösung: Gegenbeispiel

Aufgabe 1.4a

- oft richtige Antwort
- Begründungen teilweise seeehr fragwürdig

Wiederholung

Alphabet

Ein Alphabet ist eine:

Wiederholung

Alphabet

Ein Alphabet ist eine:

- endliche
- nicht leere
- Menge von Zeichen

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

 $\heartsuit \subseteq S \times W$ beschreibt "Student liebt das Wetter"

• $\neg \exists s \in S : \forall w \in W : s \heartsuit w$

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

 $\heartsuit \subseteq S \times W$ beschreibt "Student liebt das Wetter"

• $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

- $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.
- $\exists w \in W : \forall s \in S : s \heartsuit w$

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

- $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.
- $\exists w \in W : \forall s \in S : s \heartsuit w$ Es existiert eine Wetterform, die jeder Student liebt.

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

- $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.
- $\exists w \in W : \forall s \in S : s \heartsuit w$ Es existiert eine Wetterform, die jeder Student liebt.
- $\forall s \in S : \exists w \in W : s \heartsuit w$

Mit der Prädikatenlogik können wir viele Sachverhalte kurz und präzise darstellen.

Sei W die Menge der möglichen Wetterformen und S die Menge aller Studenten.

- $\neg \exists s \in S : \forall w \in W : s \heartsuit w$ Es existiert kein Student, der alle Wetterformen liebt.
- $\exists w \in W : \forall s \in S : s \heartsuit w$ Es existiert eine Wetterform, die jeder Student liebt.
- ∀s ∈ S : ∃w ∈ W : s♡w
 Für alle Studenten existiert eine Wetterform, die er liebt.

Wörter

Vorbemerkung

Wörter

Vorbemerkung

- $\mathbb{G}_n = \{ i \in \mathbb{N}_0 \mid 0 \leq i \wedge i < n \}$
- $\bullet \ \mathbb{G}_0 =$

Wörter

Vorbemerkung

- $\mathbb{G}_n = \{ i \in \mathbb{N}_0 \mid 0 \le i \land i < n \}$
- $\mathbb{G}_0 = \{\}$

In Worten

Wörter sind eine Surjektive Abbildung mit w: $\mathbb{G}_n \to \mathsf{B} \subset \mathsf{A}$

Example

Das Wort w = hallo ist eine Abbildung

w:
$$\mathbb{G}_5 \to \{ a,h,l,o \}$$
 mit

$$w(0) = h w(1) = a w(2) = l w(3) = l w(4) = o$$

Das leere Wort

Das Wort

- Das leere Wort wird mit dem ϵ dargestellt, und ist eine Abbildung von $\{\} \to \{\}$
- $\{\} \times \{\} = \{\}$
- \bullet ϵ hat die Länge 0 ist aber dennoch ein Element.
- wenn $M = \{\epsilon\}$ dann ist $M \neq \emptyset$
- |M| = 1

Konkatenation von Wörtern

Konkatenation von Wörtern

- eine Konkatenation ist eine Verknüpfung mehrerer
 Zeichen(ketten) und wird als · dargestellt
- ullet z.B. kann man hallo als $h \cdot a \cdot l \cdot l \cdot o$ dargestellt werden.
- der Punkt ist allerding nicht notwendig, er kann wie das Malzeichen bei der Multiplikation weggelassen werden.
- mehrere Wörter können auch zu einem weiteren konkateniert werden.

Ein beliebiger Überblick

Was ist die vollständige Induktion?

Eine oft benutzte sehr mächtige Beweistechnik

Vorgehen?

- Die Behauptung für einen ersten Wert beweisen
- 2 Annehmen dass die Behauptung für "irgendeinen" Wert gilt
- Behauptung ausgehend von dem bliebigen Wert für den nächsten Wert beweisen

So sollte es aussehen

Induktionsanfang

Beweis der Behauptung für einen (manchmal auch mehrere)
 "Startwerte"

So sollte es aussehen

Induktionsanfang

Beweis der Behauptung für einen (manchmal auch mehrere)
 "Startwerte"

Induktionsannahme

- Für ein beliebiges aber festes x/k/n gelte: ...
- Wird im Induktionsschritt benutzt.

So sollte es aussehen

Induktionsanfang

Beweis der Behauptung für einen (manchmal auch mehrere)
 "Startwerte"

Induktionsannahme

- Für ein beliebiges aber festes x/k/n gelte: . . .
- Wird im Induktionsschritt benutzt

Induktionsschritt

• Ausgehend von x die Behauptung für x + 1 beweisen

Ein erstes Beispiel

Die Gaußsche Summenformel

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + 4 + \ldots + n = \frac{n(n+1)}{2}$$

Induktionsanfang

$$n=1$$
:
$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsanfang

$$n=1:$$

$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsanfang

$$n=1$$
:
$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsvorraussetzung

Für ein beliebiges aber festes n gelte:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Induktionsanfang

$$n=1:$$

$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsvorraussetzung

Für ein beliebiges aber festes n gelte:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Induktionsschluss

$$n = 1: \qquad \sum_{k=1}^{n+1} k = (n+1) + \sum_{k=1}^{n} k \stackrel{\text{I.V.}}{=} (n+1) + \frac{n(n+1)}{2}$$
$$= \frac{(n+1)(n+2)}{2}$$

Induktionsanfang

$$n=1:$$

$$\sum_{k=1}^{n} k = \sum_{k=1}^{1} k = 1 = \frac{1(1+1)}{2} = \frac{n(n+1)}{2}$$

Induktionsvorraussetzung

Für ein beliebiges aber festes n gelte:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Induktionsschluss

$$n = 1: \qquad \sum_{k=1}^{n+1} k = (n+1) + \sum_{k=1}^{n} k \stackrel{\text{I.V.}}{=} (n+1) + \frac{n(n+1)}{2}$$
$$= \frac{(n+1)(n+2)}{2} \square$$

Jetzt seid ihr dran

Eine Reihe

•
$$a_0 = 0$$

•
$$a_{n+1} = a_n + 2n + 1$$

Jetzt seid ihr dran

Eine Reihe

- $a_0 = 0$
- $a_{n+1} = a_n + 2n + 1$

Zeige
$$a_n = n^2$$

Weiter gehts

Noch ne Reihe

- $a_0 = 3$
- $a_{n+1} = a_n + 3$

Weiter gehts

Noch ne Reihe

- $a_0 = 3$
- $a_{n+1} = a_n + 3$

Zeige

• Ideen?

Weiter gehts

Noch ne Reihe

- $a_0 = 3$
- $a_{n+1} = a_n + 3$

Zeige

- Ideen?
- $a_n = 3(n+1)$

Und jetzt mal was schweres

Aufgabe

- $x_0 = 0$
- $\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + (n+1)(n+2)$
- Tipp: x_1, x_2, x_3, x_4 ausrechnen

Und jetzt mal was schweres

Aufgabe

- $x_0 = 0$
- $\forall n \in \mathbb{N}_0 : x_{n+1} = x_n + (n+1)(n+2)$
- Tipp: x_1, x_2, x_3, x_4 ausrechnen
- Wenn keine Idee: $\frac{x(x+1)(x+2)}{3}$

Ende

Fragen?!

Unnützes Wissen

Ein Liter Druckertinte von Hewlett Packard kostet mehr als ein Liter Chanel No. 5