Střední průmyslová škola elektrotechnická Ječná

Počítačové systémy a sítě Praha 2, Ječná 30, 120 00

Docházkový systém s RFID a webovým rozhraním

Michal Němec, C3b

Počítačové systémy a sítě

Střední průmyslová škola elektrotechnická Ječná	1
Anotace	3
Úvod	3
Ekonomická rozvaha	3
Vývoj	4
Testování	5
Nasazení a spuštění	6
Nastavení skriptů	6
Problémy a doporučení z vývoje	7
Licence	7
Odkaz na GIT	7
Závěr	7

Anotace

Tato práce se zabývá návrhem a implementací docházkového systému využívajícího RFID technologii a webové rozhraní. Cílem projektu je vytvořit moderní, uživatelsky přívětivý systém pro evidenci příchodů a odchodů uživatelů s možností administrace uživatelů, správy hesel a přehledu docházky.

Úvod

Docházkové systémy jsou nezbytným nástrojem pro sledování docházky zaměstnanců, studentů či členů organizací. Cílem tohoto projektu bylo navrhnout a implementovat docházkový systém, který bude jednoduchý na používání, finančně dostupný a zároveň flexibilní z hlediska rozšiřitelnosti.

Hlavními požadavky na systém bylo:

- Přihlašování pomocí RFID karet
- Správa uživatelů přes webové rozhraní
- Záznam přihlášení, odhlášení a dalších událostí do databáze
- Možnost změny hesla uživatelem
- Filtrace a přehledné zobrazování záznamů

Pro projekt jsem využil programovací jazyk **Python**, framework **Flask**, databázi **MS SQL Server**, RFID čtečku kompatibilní s Raspberry Pi a webové technologie **HTML/CSS**.

Ekonomická rozvaha

Konkurence:

Na trhu existují komerční řešení docházkových systémů (Například: Docházka.cz, Alveno, Idemia), která však bývají drahá a uzavřená.

Výhody mého řešení:

- Nízké pořizovací náklady (použití levného hardware jako Raspberry Pi a opensource softwaru)
- Přizpůsobitelnost a rozšiřitelnost dle konkrétních požadavků
- Bez licenčních poplatků za software

Způsob propagace:

- Osobní prezentace ve školním prostředí
- Publikace na GitHubu

Návratnost investic:

Investice do hardware a vývoje se vrátí snížením nákladů oproti komerčním řešením a možností přizpůsobení systému bez dalších poplatků.

Vývoj

Použité technologie:

- **Python** (verze 3.11.2)
- Flask (webový framework)
- HTML/CSS (front-end)
- pyodbc + FreeTDS (připojení k MS SQL)
- MS SQL Server
- Raspberry Pi 5 https://rpishop.cz/raspberry-pi-5/6498-raspberry-pi-5-8gb-ram.html
- RFID čtečka https://dratek.cz/arduino/954-usb-rfid-ctecka-125khz.html#
- RFID (karty a čipy 125kHz)

Struktura programu:

- app.py hlavní Flask aplikace (funkce, správa webu a DB)
- get_rfid_uid.py skript pro aktualizaci DB a načítání karet/čipů
- HTML šablony přihlašování, správa uživatelů, přehled docházky
- **SQL databáze** tabulky users, logs a attendance

Průběh vývoje:

Vývoj začal návrhem databázové struktury a základního CRUD rozhraní pro uživatele. Postupně byl přidán modul pro čtení RFID UID a jeho propojení s webovou částí. V další fázi jsem implementoval logování událostí, správu uživatelů a možnost změny hesla. Celý projekt byl průběžně testován a iterativně vylepšován.

Schéma databáze:

Testování

Testovací scénáře a výsledky:

- 1. Registrace nového uživatele
 - a. Úspěšné vytvoření účtu s RFID kartou a heslem
- 2. Přihlášení RFID kartou
 - a. Systém správně zaznamenal příchod/odchod
- 3. Změna hesla uživatelem
 - a. Heslo změněno, změna zaznamenána v logu
- 4. Filtrace a zobrazení záznamů
 - a. Filtrace dle jména a příjmení fungovala správně
- 5. Nasazení aplikace
 - a. Aplikace spuštěna na Raspberry Pi s připojením na vzdálený SQL server. Funkční přístup z webového rozhraní

Výsledky testů byly úspěšné, všechny požadavky byly splněny

Nasazení a spuštění

Požadavky:

- Raspberry Pi s připojenou RFID čtečkou
- Připojení k MS SQL databázi
- Nainstalovaný Python a požadované knihovny (Flask, pyodbc)

Postup:

- 1. Spustit get_rfid_uid.py pro čtení karet
- 2. Spustit Flask aplikaci app.py
- 3. Přistoupit k webovému rozhraní přes prohlížeč

(Všechny scripty se spustí po zapojení RaspberryPi do zásuvky)

Nastavení skriptů

Každý uživatel si musí upravit přihlašovací údaje do databáze ve skriptech:

• app.py i get_rfid_uid.py obsahují část kódu pro připojení k databázi. Je třeba změnit:

```
python
ZkopirovatUpravit
DRIVER = '{FreeTDS}'
SERVER = 'adresa_serveru'
DATABASE = 'nazev_databaze'
UID = 'uzivatelske_jmeno'
PWD = 'heslo'
```

• Ujistěte se, že v databázi existují tabulky **users, logs** a **attendance** podle struktury uvedené na GitHubu i v dokumentaci.

Problémy a doporučení z vývoje

Během vývoje jsme narazili na několik problémů, kterým je vhodné se vyhnout:

• Nesprávné kódování databáze

→ Používejte jednotné kódování znaků (např. nvarchar (50)) pro správné zobrazování diakritiky a speciálních znaků.

• Nevhodný typ RFID čtečky

→ Některé levnější USB RFID čtečky se chovají jako klávesnice (HID zařízení) a odesílají data jako běžné stisky kláves.

• Kompatibilita RFID čteček a karet

RFID technologie běží nejčastěji na dvou frekvencích:

125 kHz (nízká frekvence – LF), 13,56 MHz (vysoká frekvence – HF).

Důležité: čtečka i karty používají **stejnou frekvenci**, jinak nebudou správně komunikovat.

Licence

Projekt je distribuován pod licencí **MIT** – umožňuje volné používání, kopírování, úpravy a distribuci

Odkaz na GIT

https://github.com/M1CH4L69/RFIDsys.git

Závěr

Projekt docházkového systému splnil stanovené cíle a poskytuje funkční řešení pro evidenci docházky pomocí RFID technologie. Vývoj probíhal iterativně s důrazem na rozšiřitelnost. Testování potvrdilo správnou funkčnost všech klíčových částí. Systém je připraven pro praktické nasazení a díky open-source licenci může být dále vylepšován a přizpůsobován specifickým potřebám uživatelů.