# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/017849

International filing date: 01 December 2004 (01.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-405359

Filing date: 04 December 2003 (04.12.2003)

Date of receipt at the International Bureau: 27 January 2005 (27.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)



### 日本国特許庁 JAPAN PATENT OFFICE

02.12.2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月 4日

出 願 番 号

特願2003-405359

Application Number: [ST. 10/C]:

[JP2003-405359]

出 願 人 Applicant(s): 独立行政法人産業技術総合研究所

シャープ株式会社

TDK株式会社

2005年 1月13日

特許庁長官 Commissioner, Japan Patent Office





特許願 【書類名】 99P06199 【整理番号】 平成15年12月 4日 【提出日】 特許庁長官殿 【あて先】 【国際特許分類】 G11B 7/00 【発明者】 茨城県つくば市東1丁目1番1 独立行政法人産業技術総合研究 【住所又は居所】 所つくばセンター内 【氏名】 島 隆之 【発明者】 茨城県つくば市東1丁目1番1 独立行政法人産業技術総合研究 【住所又は居所】 所つくばセンター内 富永 淳二 【氏名】 【発明者】 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 【住所又は居所】 藤寛 【氏名】 【発明者】 東京都中央区日本橋一丁目13番1号 TDK株式会社内 【住所又は居所】 【氏名】 菊川 隆 【特許出願人】 【識別番号】 301021533 独立行政法人産業技術総合研究所 【氏名又は名称】 【特許出願人】 000005049 【識別番号】 シャープ株式会社 【氏名又は名称】 【特許出願人】 000003067 【識別番号】 【氏名又は名称】 TDK株式会社 【代理人】 100078031 【識別番号】 大石 皓一 【氏名又は名称】 【選任した代理人】 100126468 【識別番号】 【氏名又は名称】 田久保 泰夫 60/100 【持分の割合】 【手数料の表示】 【予納台帳番号】 074148 12,600円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】 要約書 1 【物件名】



#### 【書類名】特許請求の範囲

#### 【請求項1】

#### 【請求項2】

前記白金酸化物 P t O x における <math>x が、1. 5 以上であることを特徴とする請求項 1 に記載の光記録ディスク。

#### 【請求項3】

レーザビームが照射されて、データが記録され、再生されるように構成された光記録ディスクであって、白金酸化物を主成分として含む分解反応層と、光吸収層とが、少なくとも誘電体層を挟んで形成された積層体を含み、前記分解反応層が2.0以下の光吸収係数kを有していることを特徴とする光記録ディスク。

#### 【請求項4】

前記分解反応層が、1.0以下の光吸収係数kを有することを特徴とする請求項3に記載の光記録ディスク。

#### 【請求項5】

前記レーザビームが照射されたときに、前記分解反応層に空洞が形成されるとともに、白金の微粒子が前記空洞内に析出することによって、前記分解反応層に記録マークが形成されるように構成されたことを特徴とする請求項1ないし4のいずれか1項に記載の光記録ディスク。

#### 【請求項6】

前記分解反応層が、前記レーザビームが照射されたときに、前記分解反応層に主成分として含まれている前記白金酸化物が、白金と酸素に分解されることを特徴とする請求項1ないし5のいずれか1項に記載の光記録ディスク。

#### 【請求項7】

前記光吸収層が、SbおよびTeの少なくとも一方を含んでいることを特徴とする請求項1ないし6のいずれか1項に記載の光記録ディスク。

#### 【請求項8】

前記誘電体層および前記光吸収層が、前記分解反応層に前記空洞が形成されるのに伴って、変形するように構成されていることを特徴とする請求項1ないし7のいずれか1項に記載の光記録ディスク。

#### 【請求項9】

白金酸化物を主成分として含む分解反応層と、光吸収層とが、少なくとも誘電体層を挟んで形成された積層体を含み、レーザビームが照射されて、データが記録され、再生されるように構成された光記録ディスクの製造方法であって、10%以上の酸素の流量比を有するスパッタリングガス雰囲気中で、 $4W/cm^2$ より小さいパワー密度で、白金を主成分として含むターゲットにパワーを投入して、スパッタリング法により、前記分解反応層を形成することを特徴とする光記録ディスクの製造方法。

#### 【請求項10】

前記パワー密度を  $2\,\mathrm{W/c\,m^2}$  より小さくすることを特徴とする請求項  $9\,\mathrm{に記載の光記録}$  ディスクの製造方法。

#### 【請求項11】

前記スパッタリングガスを導入したときのチャンバー内の圧力を 0.5Paより大きくすることを特徴とする請求項 9または 10に記載の光記録ディスクの製造方法。

#### 【請求項12】

前記分解反応層を形成するときの成膜レートが250Å/minより低いことを特徴とする請求項9ないし11のいずれか1項に記載の光記録ディスクの製造方法。



【発明の名称】光記録ディスクおよびその製造方法

#### 【技術分野】

#### [0001]

本発明は、光記録ディスクおよびその製造方法に関するものであり、さらに詳細には、記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満である場合にも、これらの記録マークおよびブランク領域を含む記録マーク列により構成されたデータを、所望のように、記録し、再生することができ、記録容量を大幅に増大させることが可能になる光記録ディスクおよびその製造法に関するものである。

#### 【背景技術】

#### [0002]

従来より、デジタルデータを記録するための記録媒体として、CDやDVDに代表される光記録ディスクが広く利用されているが、近年においては、より大容量で、かつ、高いデータ転送レートを有する光記録ディスクの開発が盛んに行われている。

#### [0003]

こうした光記録ディスクにおいては、データの記録・再生に用いるレーザビームの波長  $\lambda$ を小さくするとともに、対物レンズの開口数NAを大きくして、レーザビームのビームスポット径を小さく絞ることにより、光記録ディスクの記録容量の増大が図られている。

#### 【発明の開示】

【発明が解決しようとする課題】

#### [0004]

光記録ディスクにおいては、光記録ディスクに記録された記録マークの長さ、および、 隣り合う記録マーク間の長さ、すなわち、記録マークが形成されていない領域(以下、「 ブランク領域」という。)の長さが解像限界未満になると、光記録ディスクからデータを 再生することが不可能になる。

#### [0005]

解像限界は、レーザビームの波長 $\lambda$ と、レーザビームを集束するための対物レンズの開口数NAによって決定され、記録マークとブランク領域との繰り返しの周波数、すなわち、空間周波数が2NA $/\lambda$ 以上の場合に、記録マークおよびブランク領域に記録されたデータの読み取りが不可能になる。

#### [0006]

したがって、読み取り可能な空間周波数に対応する記録マークおよびブランクの長さは、それぞれ、 $\lambda/4$  N A 以上となり、波長 $\lambda$  のレーザビームを、開口数 N A の対物レンズによって、光記録ディスクの表面に集光させるときは、 $\lambda/4$  N A の長さの記録マークおよびブランク領域が、読み取ることができる最短の記録マークおよびブランク領域となる

#### [0007]

このように、データを再生する場合には、データの再生が可能な解像限界が存在し、再生することができる記録マークの長さおよびブランク領域の長さに制限がある。したがって、解像限界未満の長さの記録マークおよびブランク領域を形成して、データを記録しても、記録されたデータを再生することができないので、光記録ディスクに、データを記録するときに形成可能な記録マークの長さおよびブランク領域の長さが必然的に制限されるから、通常は、解像限界未満になるような長さの記録マークおよびブランク領域を形成して、光記録ディスクにデータを記録することがない。

#### [0008]

したがって、光記録ディスクの記録容量を増大させるためには、データの再生に用いる レーザビームの波長  $\lambda$  を短くし、あるいは、対物レンズの開口数NAを大きくすることに よって、解像限界を小さくし、より短い記録マークとブランク領域よりなるデータを再生 することができるようにすることが要求される。

#### [0009]



#### [0010]

また、何らかの方法で、光記録ディスクの記録容量を増大させる場合にも、本来の再生 特性が低下しないように、光記録ディスクに記録されたデータを再生したときに、良好な 信号特性を有する再生信号を得られることが必要である。

#### [0011]

したがって、本発明の目的は、記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満である場合にも、これらの記録マークおよびブランク領域を含む記録マーク列により構成されたデータを、所望のように、記録し、再生することができ、記録容量を大幅に増大させることが可能になる光記録ディスクおよびその製造方法を提供することにある。

#### 【課題を解決するための手段】

#### [0012]

本発明のかかる目的は、レーザビームが照射されて、データが記録され、再生されるように構成された光記録ディスクであって、白金酸化物 P t O x を主成分として含む分解反応層と、光吸収層とが、少なくとも誘電体層を挟んで形成された積層体を含み、前記白金酸化物 P t O x における x が、 1 . 0 以上であることを特徴とする光記録ディスクによって達成される。

#### [0013]

#### [0014]

こうして、記録マーク列を構成する記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満であるときでも、データの再生が可能になるから、光記録ディスクに、より高密度に、データを記録することができ、したがって、光記録ディスクの記憶容量を大幅に増大させることが可能となる。

#### [0015]

また、本発明においては、白金酸化物 P t O x における x が 1. 0 以上であるように、 分解反応層が構成されており、本発明者の研究によれば、酸素の含有量が調整されて、白金酸化物 P t O x における x が 1. 0 以上となるように、分解反応層が構成された場合には、光記録ディスクに記録されたデータを再生したときの再生信号に含まれるノイズ信号を抑制することができるとともに、再生信号の振幅のバラツキを少なくすることができるのが見出されている。

#### [0016]

白金酸化物 P t O x における x が 1 . 0 以上となるように、分解反応層が構成された場合に、再生信号に含まれるノイズ信号を抑制することができるとともに、再生信号の振幅のバラツキを少なくすることができる理由は、必ずしも明らかではないが、白金酸化物 P t O x における x を 1 . 0 以上にすることにより、分解反応層の光吸収係数 k を低くすることができ、分解反応層がレーザビームに対して高い透明性を有し、この結果、光記録ディスクにデータが記録された後に、白金酸化物 P t O x がそのまま残るブランク領域のレーザビームに対する透明性が高くなり、したがって、分解反応層にレーザビームが照射されて、光記録ディスクからデータが再生されるときに、ブランク領域で、ノイズ信号の要因となる不要な反射光が生じるのが抑制されたためではないかと推測される。

#### [0017]

したがって、本発明によれば、記録マーク列を構成する記録マークの長さや、隣り合う



記録マーク間のブランク領域の長さが、解像限界未満であるときでも、良好な信号特性を 有する再生信号を得ることができる。

#### [0018]

本発明の好ましい実施態様においては、分解反応層は、白金酸化物 P t O x における x が 1 . 5 以上である。

#### [0019]

本発明の好ましい実施態様においては、前記レーザビームが照射されたときに、前記分解反応層に空洞が形成されるとともに、白金の微粒子が前記空洞内に析出することによって、前記分解反応層に記録マークが形成されるように構成されている。

#### [0020]

本発明者の研究によれば、レーザビームが照射されたときに、分解反応層に空洞が形成されるとともに、白金の微粒子が空洞内に析出することによって、分解反応層に記録マークが形成された場合には、記録マーク列を構成する記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満であるときにも、データが再生可能であることが見出されている。

#### [0021]

分解反応層内に空洞が形成されるとともに、貴金属の微粒子が空洞内に析出し、分解反応層に記録マークが形成されて、データが記録された場合に、記録マーク列を構成する記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満であるときでも、データを再生することができるという理由は必ずしも明らかではないが、空洞内に析出した白金の微粒子に、再生用のレーザビームが照射されることにより、近接場光が発生し、解像限界がなくなったためか、あるいは、空洞内に析出した白金の微粒子と照射されたレーザビームとの相互作用によって、解像限界が小さくなったためではないかと推測される。

#### [0022]

したがって、本発明によれば、光記録ディスクの記録容量を大幅に増大させることが可能になる。

#### [0023]

本発明においては、前記分解反応層が、前記レーザビームが照射されたときに、前記分解反応層に主成分として含まれている前記白金酸化物が白金と酸素に分解されるのが好ましい。

#### [0024]

本発明において、光吸収層は、レーザビームの吸収率が高く、熱伝導率の低い材料を含んでいることが好ましく、SbおよびTeの少なくとも一方を含んでいることが好ましい

#### [0025]

本発明において、光吸収層に含まれるSbおよびTeの少なくとも一方を含む合金としては、 $(Sb_a Te_{1-a})_{1-b} M_b$ 、または $\{(GeTe)_c (Sb_2 Te_3)_{1-c}\}_d X_{1-d}$ で表わされる組成を有するものがとくに好ましい。ここに、元素Mは、SbおよびTeを除く元素を表わし、元素Xは、Sb、TeおよびGeを除く元素を表す。

#### [0026]

光吸収層に含まれるSbおよびTeの少なくとも一方を含む合金が、(SbaTe1-a)1-bMbで表される組成を有するもののときは、aおよびbは、 $0 \le a \le 1$ 、かつ、 $0 \le b \le 0$ . 25であることが好ましい。bが0.25を越えているときは、光の吸収係数が光吸収層に要求される値よりも低くなり、また、熱伝導性が光吸収層に要求される値よりも低くなり、好ましくない。

#### [0027]

元素Mは、とくに限定されるものではないが、In、Ag、Au、Bi、Se、Al、Ge、P、H、Si、C、V、W、Ta、Zn、Mn、Ti、Sn、Pb、Pd、N、O および希土類元素 (Sc 、 Yおよびランタノイド)よりなる群から選ばれる少なくとも 1



#### [0028]

一方、光吸収層 7 に含まれる S b および T e の少なくとも一方を含む合金が、  $\{(GeTe)_c(Sb_2Te_3)_{1-c}\}_dX_{1-d}$  で表される組成を有するもののときは、  $1/3 \le c \le 2/3$ 、かつ、  $0.9 \le d$  に設定することが好ましい。

#### [0029]

元素 X は、とくに限定されるものではないが、I n、A g、A u、B i、S e、A l、P、H、S i、C、V、W、T a、Z n、M n、T i、S n、P b、P d、N、O および 希土類元素よりなる群から選ばれる少なくとも 1 種の元素を主成分として含むことが好ましい。

#### [0030]

本発明においては、レーザビームが照射されて、分解反応層が、貴金属と酸素に分解し、空洞が形成される際に、誘電体層および光吸収層が変形することが好ましい。

#### [0031]

誘電体層および光吸収層が変形した領域は、誘電体層および光吸収層が変形しない領域と、光学特性が異なるので、より良好な信号特性を有する再生信号を得ることができる。

#### [0032]

本発明の前記目的はまた、レーザビームが照射されて、データが記録され、再生されるように構成された光記録ディスクであって、白金酸化物を主成分として含む分解反応層と、光吸収層とが、少なくとも誘電体層を挟んで形成された積層体を含み、前記分解反応層が2.0以下の光吸収係数kを有していることを特徴とする光記録ディスクによって達成される。

#### [0033]

本発明の好ましい実施態様においては、前記分解反応層が、1.0以下の光吸収係数kを有している。

#### [0034]

本発明の前記目的はまた、白金酸化物を主成分として含む分解反応層と、光吸収層とが、少なくとも誘電体層を挟んで形成された積層体を含み、レーザビームが照射されて、データが記録され、再生されるように構成された光記録ディスクの製造方法であって、10 %以上の酸素の流量比を有するスパッタリングガス雰囲気中で、 $4W/cm^2$  より小さいパワー密度で、白金を主成分として含むターゲットにパワーを投入して、スパッタリング法により、前記分解反応層を形成することを特徴とする光記録ディスクの製造方法によって達成される。

#### [0035]

かかる成膜条件で、分解反応層を形成することにより、PtOxにおけるxが1.0以上となる白金酸化物を主成分として含み、2.0以下の光吸収係数kを有する分解反応層を形成することができ、したがって、本発明によれば、記録マーク列を構成する記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満であるときでも、良好な信号特性を有する再生信号を得ることができる光記録ディスクを製造することが可能になる。

#### [0036]

- 本発明の好ましい実施態様においては、前記パワー密度を2W/cm²より小さくして、分解反応層が形成される。

#### [0037]

本発明のさらに好ましい実施態様においては、前記スパッタリングガスを導入したときのチャンバー内の圧力を 0.5 Paより大きくして、分解反応層が形成される。

#### [0038]

本発明のさらに好ましい実施態様においては、前記分解反応層を形成するときの成膜レートが250A/minより低くなるように、分解反応層が形成される。

#### 【発明の効果】

#### [0039]

本発明によれば、記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが 、解像限界未満である場合にも、これらの記録マークおよびブランク領域を含む記録マー ク列により構成されたデータを、所望のように、記録し、再生することができ、記録容量 を大幅に増大させることが可能になる光記録ディスクおよびその製造方法を提供すること が可能となる。

#### 【発明を実施するための最良の形態】

#### [0040]

以下、添付図面に基づいて、本発明の好ましい実施態様につき、詳細に説明を加える。

#### [0041]

図1は、本発明の好ましい実施態様にかかる光記録ディスクの略斜視図であり、図2は 、図1に示された光記録ディスクのトラックに沿った断面のうち、Aで示される部分の略 拡大断面図である。

#### [0042]

図2に示されるように、本実施態様にかかる光記録ディスク1は、光透過性基板2を備 え、光透過性基板2上に、第一の誘電体層4と、分解反応層5と、第二の誘電体層6と、 光吸収層7と、第三の誘電体層8とが、この順に、積層されている。

#### [0043]

本実施態様においては、図2に示されるように、光記録ディスク1は、光透過性基板2 側から、レーザビームLが照射されて、データが記録され、記録されたデータが再生され るように構成されている。レーザビームLは、635nmないし675nmの波長Aを有 し、開口数NAが0.59ないし0.66の対物レンズによって、光記録ディスク1に集 光される。

#### [0044]

光透過性基板2は、後述する分解反応層5に、データが記録され、あるいは、分解反応 層 5 に記録されたデータが再生されるときに、レーザビームLが透過する層であり、光記 録ディスク1に求められる機械的強度を確保するための支持体としての役割を果たす。

#### [0045]

光透過性基板2は、ディスク状に形成され、記録再生に用いられる光学系の設計により 、約0.6mmの厚さを有するように形成されている。

#### $[0\ 0\ 4\ 6]$

また、光透過性基板2は、一方の主面が、レーザビームLが入射する光入射面を構成し 、他方の主面に、中心部近傍から外縁部に向けて、グルーブ(図示せず)およびランド( 図示せず) が螺旋状に形成されている。

#### [0047]

グルーブおよびランドは、分解反応層 5 にデータを記録する場合、および分解反応層 5 に記録されたデータを再生する場合において、レーザビームLのガイドトラックとして、 機能する。

#### [0048]

光透過性基板2を形成するための材料は、635nmないし675nmの波長Aを有す るレーザビームしに対して光透過性を有し、光記録ディスク1の支持体として機能するこ とができれば、とくに限定されるものではなく、たとえば、ガラス、セラミックス、樹脂 などによって、形成することができる。このような樹脂としては、ポリカーボネート樹脂 、オレフィン樹脂、アクリル樹脂、エポキシ樹脂、ポリスチレン樹脂、ポリエチレン樹脂 ,ポリプロピレン樹脂、シリコーン樹脂、フッ素系樹脂、ABS樹脂、ウレタン樹脂など が挙げられる。これらの中でも、加工性、光学特性などの点から、ポリカーボネート樹脂 、オレフィン樹脂がとくに好ましい。

#### [0049]

図2に示されるように、光透過性基板2の表面には、第一の誘電体層4が形成されてい る。

#### [0050]

本実施態様においては、第一の誘電体層 4 は、後述する分解反応層 5 および光透過性基 板2を、物理的、化学的に保護する機能を有している。

#### [0051]

第一の誘電体層4を形成するための誘電体材料は、とくに限定されるものではなく、た とえば、酸化物、硫化物、窒化物またはこれらの組み合わせを主成分とする誘電体材料に よって、第一の誘電体層4を形成することができ、第一の誘電体層4は、好ましくは、S i, Zn, Al, Ta, Ti, Co, Zr, Pb, Ag, Sn, Ca, Ce, V, Cu, Fe、Mgよりなる群から選ばれる少なくとも一種の金属を含む酸化物、窒化物、硫化物 、フッ化物、あるいは、これらの複合物によって形成される。

#### [0052]

第一の誘電体層4の厚さは、とくに限定されるものではないが、第一の誘電体層4は、 5 n m ないし300 n m の厚さを有するように形成されることが好ましい。

#### [0053]

図2に示されるように、第一の誘電体層4の表面上には、分解反応層5が形成されてい る。

#### [0054]

本実施態様においては、分解反応層 5 は、記録層の一部として用いられ、光記録ディス ク1にデータが記録される際に、分解反応層5に、記録マークが形成される。

#### [0055]

本実施態様において、分解反応層5は、白金酸化物PtOxを主成分として含んでいる

#### [0056]

本実施態様において、分解反応層5は、記録マークの長さや、隣り合う記録マーク間の ブランク領域の長さが、解像限界未満である場合にも、良好な信号特性を有する再生信号 を得ることができるように、白金酸化物 P t O x における x が 1. 0 以上となるように、 酸素の含有量が調整されて、形成されており、635nmないし675nmの波長 λ を有 するレーザビームLに対して、2.0以下の光吸収係数 k を有している。

#### [0057]

本実施態様において、より良好な信号特性を有する再生信号を得るためには、白金酸化 物PtOxにおけるxは、1.5以上であることが好ましく、分解反応層5の光吸収係数 kは、1.0以下であることが好ましい。

#### [0058]

分解反応層 5 は、2 n m ないし20 n m の厚さを有するように形成され、4 n m ないし 20 nmの厚さを有するように形成されるのが好ましく、この範囲内であれば、分解反応 層5の厚さは格別限定されるものではない。

#### [0059]

分解反応層5の厚さが薄すぎる場合には、分解反応層5を連続膜として形成できないこ とがあり、逆に、分解反応層5の厚さが厚すぎる場合には、分解反応層5が変形し難くな り、形成すべき記録マークの長さが短くなるほど、所望の形状の空洞が形成され難くなる と考えられるので、これらを考慮すると、分解反応層5の厚さは、2 nmないし20 nm の厚さを有するのが、好ましく、4nmないし20nmの厚さを有するのが、より好まし

#### [0060]

図2に示されるように、分解反応層5の表面上には、第二の誘電体層6が形成されてい

#### [0061]

本実施態様において、第二の誘電体層6は、分解反応層5および後述する光吸収層7を 物理的、化学的に保護する機能を有している。

#### [0062]



#### [0063]

第二の誘電体層6は、5ないし100nmを有するように形成されることが好ましい。

#### [0064]

図2に示されるように、第二の誘電体層6の表面上には、光吸収層7が形成されている

#### [0065]

本実施態様において、光吸収層7は、光記録ディスク1に、記録用のパワーに設定されたレーザビームLが照射されたときに、レーザビームLを吸収して、発熱し、生成した熱を、分解反応層5に伝達する機能を有している。

#### [0066]

本実施態様においては、光吸収層7は、光の吸収係数が高く、熱伝導率の低いSbおよびTeの少なくとも一方を含む合金によって形成されている。

#### [0067]

光吸収層 7 に含まれる S b および T e の少なくとも一方を含む合金としては、(S b a T e  $_1$  -  $_a$  )  $_1$  -  $_b$   $M_b$  、または  $_+$  (G e T e )  $_c$  (S b  $_2$  T e  $_3$  )  $_1$  -  $_c$   $_+$   $_d$   $X_1$  -  $_d$  で表わされる組成を有するものがとくに好ましい。ここに、元素Mは、S b および T e を除く元素を表わし、元素X は、S b 、T e および G e を除く元素を表す。

#### [0068]

光吸収層 7 に含まれる S b および T e の少なくとも一方を含む合金が、(S b a T e 1 - a )  $_{1}$  - b  $_{1}$  M b で表される組成を有するもののときは、a および b は、 $0 \le a \le 1$  、かっ、 $0 \le b \le 0$  . 2 5 であることが好ましい。b が 0 . 2 5 を越えているときは、光の吸収係数が光吸収層 7 に要求される値よりも低くなり、また、熱伝導性が光吸収層 7 に要求される値よりも低くなり、好ましくない。

#### [0069]

元素Mは、とくに限定されるものではないが、In、Ag、Au、Bi、Se、Al、Ge、P、H、Si、C、V、W、Ta、Zn、Mn、Ti、Sn、Pb、Pd、N、O および希土類元素 (Sc 、 Y およびランタノイド)よりなる群から選ばれる少なくとも 1 種の元素を主成分として含むことが好ましい。

#### [0070]

一方、光吸収層 7 に含まれる S b および T e の少なくとも一方を含む合金が、  $\{(GeTe)_c(Sb_2Te_3)_{1-c}\}_dX_{1-d}$  で表される組成を有するもののときは、  $1/3 \le c \le 2/3$ 、かつ、  $0.9 \le d$  に設定することが好ましい。

#### [0071]

元素 X は、とくに限定されるものではないが、I n、A g、A u、B i、S e、A l、P、H、S i、C、V、W、T a、Z n、M n、T i、S n、P b、P d、N、O および 希土類元素よりなる群から選ばれる少なくとも 1 種の元素を主成分として含むことが好ましい。

#### [0072]

光吸収層 7 は、5 n m ないし1 0 0 n m の厚さを有していることが好ましい。光吸収層 7 の厚さが、5 n m 未満である場合には、光吸収量が低すぎ、一方、光吸収層 7 の厚さが、1 0 0 n m を越えると、後述のように、分解反応層 5 に空洞が形成される際に、光吸収層 7 が変形し難くなり、好ましくない。

#### [0073]

図2に示されるように、光吸収層7の表面上には、第三の誘電体層8が形成されている

#### [0074]

本実施態様において、第三の誘電体層 8 は、第二の誘電体層 6 とともに、光吸収層 7 を 、物理的、化学的に保護する機能を有している。

出証特2004-3122227

#### [0075]

第三の誘電体層8を形成するための材料は、とくに限定されるものではなく、たとえば 、第三の誘電体層8は、第一の誘電体層4と同様の材料を用いて形成することができる。

#### [0076]

第三の誘電体層 8 の厚さは、とくに限定されるものではないが、 5 n m ないし 3 0 0 n mの厚さを有するように形成されるのが好ましい。

#### [0077]

以上のような構成を有する光記録ディスク1は、次のようにして、製造される。

#### [0078]

まず、射出成形法により、グルーブおよびランドが形成された光透過性基板2が作製さ れる。

#### [0079]

次いで、光透過性基板2のグルーブおよびランドが形成された表面上に、第一の誘電体 層4が形成される。第一の誘電体層4は、たとえば、第一の誘電体層4の構成元素を含む 化学種を用いた気相成長法によって、形成することができる。気相成長法としては、真空 蒸着法、スパッタリング法などが挙げられる。

#### [0080]

次いで、第一の誘電体層4の表面上に、分解反応層5が形成される。分解反応層5は、 分解反応層 5 の構成元素を含む化学種を用いた気相成長法によって、形成することができ

#### [0081]

本実施態様においては、気相成長法として、反応性スパッタリング法が用いられ、Ar と酸素との混合ガス中で、白金を主成分として含むターゲットをスパッタリングすること によって、白金酸化物を主成分として含む分解反応層 5 が形成される。

#### [0082]

反応性スパッタリング法によって、分解反応層 5 が形成される場合には、成膜上の基本 的な条件として、Arと酸素との混合ガスにおけるArと酸素の比率と、ターゲットに投 入するパワーをターゲットの単位面積当たりで換算した数値であるパワー密度と、チャン バー内に、Arガスおよび酸素ガスを導入して、Arと酸素の混合ガスを生成したときの チャンバー内の圧力であるガス圧力と、が挙げられる。

#### [0083]

本実施態様においては、これらの成膜条件につき、Arと酸素との混合ガスにおける酸 素の流量比を10%以上とするとともに、パワー密度を4W/cm²より小さくして、ス パッタリング法により、分解反応層 5 が形成され、好ましくは、さらに、ガス圧力を 0. 5 P a より大きくして、スパッタリング法により、分解反応層 5 が形成される。

#### [0084]

次いで、分解反応層5の表面上に、第二の誘電体層6が形成される。第二の誘電体層6 は、第二の誘電体層 6 の構成元素を含む化学種を用いた気相成長法によって、形成するこ とができる。気相成長法としては、第一の誘電体層4を形成する方法と同様に、真空蒸着 法、スパッタリング法などが挙げられる。

#### [0085]

次いで、第二の誘電体層6の表面上に、光吸収層7が形成される。光吸収層7は、光吸 収層7の構成元素を含む化学種を用いた気相成長法によって、形成することができる。気 相成長法としては、第一の誘電体層 4 を形成する方法と同様に、真空蒸着法、スパッタリ ング法などが挙げられる。

#### [0086]

次いで、光吸収層7の表面上に、第三の誘電体層8が形成される。第三の誘電体層8は 、第三の誘電体層8の構成元素を含む化学種を用いた気相成長法によって、形成すること ができる。気相成長法としては、第一の誘電体層4を形成する方法と同様に、真空蒸着法 、スパッタリング法などが挙げられる。

#### [0087]

こうして、光記録ディスク1が作製される。

#### [0088]

以上のように構成された光記録ディスク1には、次のようにして、データが記録され、 データが再生される。

#### [0089]

図3(a)は、データが記録される前の光記録ディスク1の一部拡大略断面図であり、 図3(b)は、データが記録された後の光記録ディスク1の一部拡大略断面図である。

#### [0090]

光記録ディスク1にデータを記録するに際しては、光透過性基板2を介して、光記録デ ィスク1にレーザビームLが照射される。

#### [0091]

本実施態様においては、635nmないし675nmの波長λを有するレーザビームL を、0.59ないし0.66の開口数NAを有する対物レンズによって、光記録ディスク 1に集光するように構成されている。

#### [0092]

また、レーザビームLのパワーは、4mWより高く、30mW以下に設定される。ここ に、レーザビームLのパワーは、光記録ディスク1の表面におけるレーザビームLのパワ ーとして、定義される。

#### [0093]

記録用のパワーに設定されたレーザビームLが、光透過性基板2を介して、光記録ディ スク1に照射されると、光吸収層7が光の吸収係数が高いSbおよびTeの少なくとも一 方を含む合金によって形成されているため、レーザビームLが照射された光吸収層7の領 域が加熱される。

#### [0094]

光吸収層 7 で生成された熱は、分解反応層 5 に伝達され、分解反応層 5 の温度が上昇す る。こうして、分解反応層5が、白金酸化物の分解温度以上に加熱され、分解反応層5に 主成分として含まれている白金酸化物が、白金と酸素に分解される。

#### [0095]

その結果、図3(b)に示されるように、白金酸化物が分解して、生成された酸素ガス によって、分解反応層 5 中に、空洞 5 a が形成され、白金の微粒子 5 b が空洞 5 a 内に析 出する。

#### [0096]

また、本実施態様においては、同時に、図3 (b) に示されるように、酸素ガスの圧力 によって、分解反応層 5 とともに、第二の誘電体層 6 および光吸収層 7 が変形する。

#### [0097]

こうして、空洞5 aが形成され、分解反応層5、第二の誘電体層6および光吸収層7が 変形した領域は、他の領域とは異なる光学特性を有するため、空洞 5 a が形成され、分解 反応層 5、第二の誘電体層 6 および光吸収層 7 が変形した領域によって、記録マークが形 成される。

#### [0098]

本実施態様においては、こうして形成される記録マークおよび隣り合った記録マーク間 のブランク領域の中には、λ/4NAよりも長さが短いものが含まれ、解像限界未満の記 録マーク列が形成される。

#### [0099]

本実施態様においては、分解反応層 5 が、分解温度が高い白金酸化物を主成分として含 んでいるから、記録用のパワーに設定されたレーザビームLを照射して、記録マークを形 成する際に、レーザビームLが照射された領域から、熱が周囲の分解反応層5に拡散した 場合にも、レーザビームLが照射された領域以外の領域で、白金酸化物の分解反応が生じ ることが防止され、したがって、分解反応層 5 の所望の領域に、空洞 5 a を形成して、記



#### [0100]

こうして、光記録ディスク1にデータが記録され、光記録ディスク1に記録されたデータは、以下のようにして、再生される。

#### [0101]

光記録ディスク 1 に記録されたデータを再生するに際しては、まず、635nmないし675nmの波長  $\lambda$  を有するレーザビーム L を、0.59 ないし0.66 の開口数 N A を 有する対物レンズによって、光記録ディスク 1 に集光させる。

#### [0102]

本実施態様においては、データを再生するために光記録ディスク1に照射されるレーザビームLのパワーは、通常よりも高く、1mWないし5mWに設定される。

#### [0103]

本発明者の研究によれば、こうして、635nmないし675nmの波長 $\lambda$ を有するレーザビームLを、0.59ないし0.66の開口数NAを有する対物レンズを用いて、光透過性基板2を介して、光記録ディスク1に集光することによって、記録マーク列を構成する記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満であるときにも、データが再生可能であることが見出されている。

#### [0104]

分解反応層 5 に主成分として含まれている白金酸化物が白金と酸素に分解され、生成された酸素ガスによって、分解反応層 5 内に空洞 5 a が形成されるとともに、白金の微粒子 5 b が空洞 5 a 内に析出し、分解反応層 5 に記録マークが形成されて、データが記録された場合に、記録マーク列を構成する記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満であるときでも、データを再生することができるという理由は必ずしも明らかではないが、空洞 5 a 内に析出した白金の微粒子 5 b に、再生用のレーザビーム L が照射されることにより、近接場光が発生し、解像限界がなくなったためか、あるいは、空洞 5 a 内に析出した白金の微粒子 5 b と照射されたレーザビーム L との相互作用によって、解像限界が小さくなったためではないかと推測される。

#### [0105]

本実施態様においては、分解反応層 5 は、分解温度が高い白金酸化物を主成分として含んでいるから、高いパワーの再生用レーザビームLが照射されて、データが再生される場合においても、白金酸化物が白金と酸素に分解されるおそれがなく、したがって、繰り返し、光記録ディスク1に記録されたデータを再生しても、記録マークの形状が変化することはなく、空洞 5 a が形成され、また、記録マークが形成された領域以外の領域に、新たに空洞が形成されることもないから、光記録ディスク1の再生耐久性を向上させることが可能になる。

#### [0106]

また、本実施態様においては、白金酸化物 P t O x における x が 1.0 以上であり、 2.0 以下の光吸収係数 k を有するように、分解反応層 5 が構成されており、本発明者の研究によれば、白金酸化物 P t O x における x が 1.0 以上となり、 2.0 以下の光吸収係数 k を有するように、分解反応層が構成された場合には、光記録ディスクに記録されたデータを再生したときの再生信号に含まれるノイズ信号を抑制することができるとともに、再生信号の振幅のバラツキを少なくすることができるのが見出されている。

#### [0107]

白金酸化物 P t O x における x が 1. 0 以上となり、 2. 0 以下の光吸収係数 k を有するように、分解反応層 5 が構成された場合に、再生信号に含まれるノイズ信号を抑制することができるとともに、再生信号の振幅のバラツキを少なくすることができる理由は、必ずしも明らかではないが、かかる組成および光学特性を有するように、分解反応層 5 を構成したときには、分解反応層 5 がレーザビーム L に対して高い透明性を有し、この結果、光記録ディスク 1 にデータが記録されたときに、白金酸化物 P t O x がそのまま残るブランク領域のレーザビーム L に対する透明性が高くなり、したがって、分解反応層 5 にレー



#### [0108]

したがって、本実施態様によれば、記録マーク列を構成する記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満であるときでも、良好な信号特性を有する再生信号を得ることができる。

#### [0109]

図4は、本発明の別の好ましい実施態様にかかる光記録ディスクの略斜視図であり、図5は、図4のBで示された部分の略拡大断面図である。

#### [0110]

図5に示されるように、本実施態様にかかる光記録ディスク10は、支持基板12を備え、支持基板12上に、第三の誘電体層8と、光吸収層7と、第二の誘電体層6と、分解反応層5と、第一の誘電体層4と、光透過層13が、この順に、積層されている。

#### [0111]

本実施態様においては、図 5 に示されるように、光記録ディスク 1 0 は、光透過層 1 3 側から、レーザビームLが照射されて、データが記録され、記録されたデータが再生されるように構成されている。レーザビームLは、3 9 0 n m ないし 4 2 0 n m の波長  $\lambda$  を有し、開口数NAが 0. 7 0 ないし 0. 9 0 の対物レンズによって、光記録ディスク 1 0 に集光される。

#### [0112]

支持基板12は、光記録ディスク10に求められる機械的強度を確保するための支持体として、機能する。

#### [0113]

支持基板 1 2 を形成するための材料は、光記録ディスク 1 0 の支持体として機能することができれば、とくに限定されるものではなく、図 2 に示される光透過性基板 2 と同様に、たとえば、ガラス、セラミックス、樹脂などによって、形成することができる。

#### $[0\ 1\ 1\ 4]$

本実施態様においては、支持基板12は、ポリカーボネート樹脂によって形成され、約1.1mmの厚さを有している。

#### [0115]

光透過層13は、レーザビームLが透過する層であり、その表面は、レーザビームLの入射面を形成している。

#### [0116]

#### [0117]

光透過層13は、第一の誘電体層4の表面に、光透過性樹脂によって形成されたシートを、接着剤を用いて、接着することによって、形成されてもよい。

#### [0118]

光透過層 1 3 の厚さは、スピンコーティング法により、光透過層 1 3 を形成する場合には、 1 0  $\mu$  mないし 2 0 0  $\mu$  mが好ましく、光透過性樹脂によって形成されたシートを、接着剤を用いて、第一の誘電体層 4 の表面に接着して、光透過層 1 3 を形成する場合には、 5 0  $\mu$  mないし 1 5 0  $\mu$  mが好ましい。

#### [0119]



#### [0120]

光記録ディスク10にデータを記録するに際しては、光透過層13を介して、光記録デ ィスク10にレーザビームLが照射される。

#### [0121]

本実施態様においては、390nmないし420nmの波長 λ を有するレーザビーム L が、0.7ないし0.9の開口数NAを有する対物レンズによって、光記録ディスク10 に集光される。

#### [0122]

記録パワーに設定されたレーザビームLが照射されると、分解反応層5が、白金酸化物 の分解温度以上に加熱され、分解反応層 5 に主成分として含まれている白金酸化物が、白 金と酸素に分解される。

#### [0123]

その結果、図3(b)に示される光記録ディスク1と同様に、白金酸化物が分解して、 生成された酸素ガスによって、分解反応層 5 中に、空洞 5 a が形成され、白金の微粒子 5 bが空洞5a内に析出するとともに、酸素ガスの圧力によって、分解反応層5とともに、 第二の誘電体層 6 および光吸収層 7 が変形する。

#### [0124]

こうして、光記録ディスク10に記録されたデータは、390nmないし420nmの 波長λを有するレーザビームLを、0.7ないし0.9の開口数NAを有する対物レンズ によって、光記録ディスク10に集光させ、光記録ディスク10によって反射されたレー ザビームLの反射光を読み取ることによって、再生される。

#### [0125]

以上のように、本実施態様によれば、分解反応層5に空洞を形成するとともに、白金の 微粒子を空洞内に析出させて、分解反応層 5 に記録マークを形成することにより、記録マ ーク列を構成する記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、 解像限界未満であるときでも、データの再生が可能になるから、光記録ディスク10に、 より高密度に、データを記録することができ、したがって、光記録ディスク10の記憶容 量を大幅に増大させることが可能となる。

#### [0126]

また、本実施態様によれば、分解反応層5は、白金酸化物PtOxにおけるxが1.0 以上となり、レーザビームLに対する光吸収係数kが2.0以下となるように構成されて おり、したがって、本実施態様によれば、記録マーク列を構成する記録マークの長さや、 隣り合う記録マーク間のブランク領域の長さが、解像限界未満であるときでも、良好な信 号特性を有する再生信号を得ることができる。

#### 【実施例】

#### [0127]

以下、本発明の効果をより明瞭なものとするため、実施例を掲げる。

#### [0128]

0.6mmの厚さと120mmの直径を有する光透過性基板を、芝浦メカトロニクス株 式会社製のスパッタリング装置「CFS-4ES-231」(商品名)にセットし、光透 過性基板上に、ZnSとSiO2の混合物をターゲットとして、スパッタリング法により 、130nmの厚さを有する第一の誘電体層を形成した。ZnSとSiO2の混合物ター ゲットは、ZnSとSiО2のモル比が85:15のものを使用した。

次いで、第一の誘電体層の表面に、Arと酸素との混合ガス雰囲気中で、白金を主成分 として含むターゲットを、スパッタリングすることにより、白金酸化物を主成分として含 み、4 nmの厚さを有する分解反応層を形成した。分解反応層を形成するに際しては、酸 素の流量比を20%に設定するとともに、スパッタリング装置の成膜パワーを50W、タ



#### [0130]

分解反応層を形成するに際し、分解反応層を成膜するときの成膜レートを測定した結果、成膜レートは、 $79.0 \, \text{Å/m} \, \text{i} \, \text{n}$ であった。また、分解反応層の形成後、National E lectrostatics Corporation製のラザフォード後方散乱分析システム「3S-R10」(システム名)を用いて、分解反応層に含まれる酸素の含有量を測定した結果、白金酸化物 P t O x における x は、1.7であった。

#### [0131]

次いで、分解反応層の表面に、 $ZnSeSiO_2$ の混合物をターゲットとして、スパッタリング法により、40nmの厚さを有する第二の誘電体層を形成した。 $ZnSeSiO_2$ の混合物ターゲットは、 $ZnSeSiO_2$ のモル比が 85:15のものを使用した。

#### [0132]

次いで、第二の誘電体層の表面に、Ag6.0 In4.5 Sb60.8 Te28.7の組成を有する合金をターゲットとして、スパッタリング法により、60nmの厚さを有する光吸収層を形成した。光吸収層の組成は、ターゲットの組成と同様に、原子比で、Ag6.0 In4.5 Sb60.8 Te28.7 であった。

#### [0133]

さらに、光吸収層の表面に、 $ZnSeSiO_2$ の混合物よりなるターゲットを用いて、スパッタリング法により、100nmの厚さを有する第三の誘電体層を形成した。 $ZnSeSiO_2$ の混合物ターゲットは、 $ZnSeSiO_2$ のモル比が85:15のものを使用した。

#### [0134]

こうして、光記録ディスクサンプル#1を作製した。

#### [0135]

次いで、分解反応層を形成するに際し、スパッタリング装置の成膜パワーを100W、パワー密度を $2.19W/cm^2$ 、Arガスおよび酸素ガスをチャンバー内に導入したときのチャンバー内の圧力を2.0Paにした点を除き、光記録ディスクサンプル#1と同様にして、光記録ディスクサンプル#2を作製した。 光記録ディスクサンプル#1と同様にして、分解反応層を成膜するときの成膜レートを測定した結果、成膜レートは、112.4 Å/minであった。また、分解反応層の形成後、光記録ディスクサンプル#1と同様にして、分解反応層に含まれる酸素の含有量を測定した結果、白金酸化物PtOxにおけるxは、1.7であった。

#### [0136]

次いで、分解反応層を形成するに際し、スパッタリング装置の成膜パワーを100W、パワー密度を $2.19W/cm^2$ 、Arガスおよび酸素ガスをチャンバー内に導入したときのチャンバー内の圧力を0.5Paにした点を除き、光記録ディスクサンプル#1と同様にして、光記録ディスクサンプル#3を作製した。 光記録ディスクサンプル#1と同様にして、分解反応層を成膜するときの成膜レートを測定した結果、成膜レートは、208.2Å/minであった。また、分解反応層の形成後、光記録ディスクサンプル#1と同様にして、分解反応層に含まれる酸素の含有量を測定した結果、白金酸化物PtOxにおけるxは、1.3であった。

#### [0137]

次いで、分解反応層を形成するに際し、スパッタリング装置の成膜パワーを 200W、パワー密度 600W の 100 の 1



#### [0138]

次いで、分解反応層を形成するに際し、スパッタリング装置の成膜パワーを100W、パワー密度を $2.19W/cm^2$ 、Arガスおよび酸素ガスをチャンバー内に導入したときのチャンバー内の圧力を0.1Paにした点を除き、光記録ディスクサンプル#1と同様にして、光記録ディスクサンプル#5を作製した。 光記録ディスクサンプル#1と同様にして、分解反応層を成膜するときの成膜レートを測定した結果、成膜レートは、174.4A/minであった。また、分解反応層の形成後、光記録ディスクサンプル#1と同様にして、分解反応層に含まれる酸素の含有量を測定した結果、白金酸化物PtOxにおけるxは、1.0であった。

#### [0139]

次いで、分解反応層を形成するに際し、酸素の流量比を80%に設定し、スパッタリング装置の成膜パワーを100W、パワー密度を2.19W/cm²、Arガスおよび酸素ガスをチャンバー内に導入したときのチャンバー内の圧力を0.5Paにした点を除き、光記録ディスクサンプル#1と同様にして、光記録ディスクサンプル#6を作製した。

#### [0140]

光記録ディスクサンプル#1と同様にして、分解反応層を成膜するときの成膜レートを測定した結果、成膜レートは、 $48.6\,\mathrm{A/min}$ であった。また、分解反応層の形成後、光記録ディスクサンプル#1と同様にして、分解反応層に含まれる酸素の含有量を測定した結果、白金酸化物  $\mathrm{PtOx}$  における  $\mathrm{xtil}$  は、 $\mathrm{1.7}$  であった。

#### [0141]

-次いで、以下のようにして、光記録ディスクサンプル#7を作製した。

#### [0142]

まず、光透過性基板を、芝浦メカトロニクス株式会社製のスパッタリング装置「DSー6105」(商品名)にセットし、光記録ディスクサンプル#1と同様にして、光透過性基板の表面上に、第一の誘電体層を形成した。

#### [0143]

次いで、第一の誘電体層の表面に、Arと酸素との混合ガス雰囲気中で、白金を主成分として含むターゲットを、スパッタリングすることにより、白金酸化物を主成分として含む分解反応層を形成した。分解反応層を形成するに際しては、酸素の流量比を 3.3%に設定するとともに、スパッタリング装置の成膜パワーを 1.0.0%、パワー密度を 0...7.9% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0

#### [0144]

分解反応層を形成するに際し、分解反応層を成膜するときの成膜レートを測定した結果、成膜レートは、 $60.1 \, \text{Å/min}$ であった。また、分解反応層の形成後、光記録ディスクサンプル#1と同様にして、分解反応層に含まれる酸素の含有量を測定した結果、白金酸化物PtOxにおけるxは、1.2であった。

#### [0145]

次いで、分解反応層の表面上に、光記録ディスクサンプル#1と同様にして、第二の誘電体層、光吸収層および第一の誘電体層を、順次、形成し、こうして、光記録ディスクサンプル#7を作製した。

#### [0146]

次いで、株式会社溝尻光学工業所製の自動エリプソメータ装置「DHA-OLX/S4M」(商品名)を用いて、光記録ディスクサンプル#1ないし#7につき、それぞれ、分解反応層の屈折率 n、光吸収係数 k を測定した。

#### [0147]

測定結果は、表1に示されている。

#### [0148]

#### 【表1】

|        | ×   | n    | k    |
|--------|-----|------|------|
| サンプル#1 | 1.7 | 2.77 | 0.75 |
| サンプル#2 | 1.7 | 2.35 | 0.39 |
| サンプル#3 | 1.3 | 3.03 | 1.32 |
| サンプル#4 | 0.6 | 2.91 | 2.90 |
| サンプル#5 | 1.0 | 3.20 | 1.98 |
| サンプル#6 | 1.7 | 2.40 | 8.0  |
| サンプル#7 | 1.2 | 3.03 | 1.69 |

#### [0149]

表1に示されるように、分解反応層に含まれる白金酸化物 PtOxにおける xが1.0以上である光記録ディスクサンプル#1ないし#3、ならびに光記録ディスクサンプル#5 および#6においては、光吸収係数 kが、いずれも、2.0以下となり、分解反応層に含まれる白金酸化物 PtOxにおける xが1.0未満である光記録ディスクサンプル#4に比べて、光吸収係数 kが低く、レーザビームに対して高い透明性を有することが認められた。

#### [0150]

次いで、光記録ディスクサンプル#1を、パルステック工業株式会社製の光記録ディスク評価装置「DDU1000」(商品名)にセットし、波長が635nmの赤色レーザビームを、記録用レーザビームとして用い、NA(開口数)が0.60の対物レンズを用いて、レーザビームを、光透過性基板を介して、集光し、記録マークの長さが、200nmとなるように、以下の条件で、光記録ディスクサンプル#1の分解反応層に、記録マークを形成した。ここに、記録パワーは、11.0mWに設定した。

#### [0151]

記録線速度: 6.0 m/s 記録方式:オングルーブ記録

#### [0152]

次いで、光記録ディスクサンプル#2ないし#7に、上述の光記録ディスク評価装置を用い、光記録ディスクサンプル#1と同様にして、記録マークを形成して、データを記録した。ここに、レーザビームの記録パワーは、それぞれ、14.0 mW、10.0 mW、8.0 mW、12.0 mW、10.0 mWに設定した。

#### [0153]

次いで、上述の光記録ディスク評価装置を用いて、光記録ディスクサンプル#1ないし#7に記録されたデータを再生し、スペクトラムアナライザーを用いて、再生信号の信号特性を評価した。ここに、レーザビームの再生パワーは、 $4.0\,\mathrm{mW}$ に設定し、再生線速度は、 $6.0\,\mathrm{m/s}$  に設定した。

#### [0154]

スペクトラムアナライザーの表示画面に表示された光記録ディスクサンプル#1ないし#7の周波数スペクトルのうち、光記録ディスクサンプル#1ないし4の周波数スペクトルが、それぞれ、図6、図7、図8、図9に示されている。ここに、図6ないし図9に示される周波数スペクトルにおいては、非記録周波数ではノイズレベルを、記録周波数では



#### [0155]

次いで、オシロスコープを用いて、光記録ディスクサンプル#1ないし#7につき、記録されたデータを再生したときの再生信号の波形を評価した。

#### [0156]

オシロスコープの表示画面に表示された光記録ディスクサンプル# 1 ないし# 7 の再生信号の波形のうち、光記録ディスクサンプル# 1 ないし3 の再生信号の波形が、それぞれ、図 10、図 11、図 12 に示されている。ここに、図 10 ないし図 12 に示される再生信号の波形においては、縦軸が、反射光を光電変換したときの電圧値を示し、横軸が、時間を示している。

#### [0157]

また、光記録ディスクサンプル#4については、再生信号の波形を、オシロスコープの表示画面に表示したところ、再生信号の波形が非常に乱れていたため、信号特性の適切な評価ができず、したがって、光記録ディスクサンプル#4において、評価不能と判断した

#### [0158]

図 6 ないし図 9 から明らかなように、白金酸化物 P t O x における x が 1.0 以上であり、 2.0 以下の光吸収係数 k を有する光記録ディスクサンプル# 1 ないし# 3 においては、 200 n mの記録マークを形成して、記録されたデータを再生したときに、 200 n mの記録マークの空間周波数である 15 MH z よりも低い周波数である 10 MH z 以下の周波数帯域のノイズ強度に着目すると、白金酸化物 P t O x における x が 1.0 未満であり、光吸収係数 k が 2.0 を超える光記録ディスクサンプル# 4 に比べて、ノイズが少なく、したがって、光記録ディスクサンプル# 1 ないし# 3 においては、再生信号に含まれるノイズ信号が抑制されることが認められた。

#### [0159]

#### [0160]

また、図10ないし図12から明らかなように、白金酸化物PtOxにおけるxが1.7である光記録ディスクサンプル#1および#2においては、200nmの記録マークを形成して記録したデータを再生したときの再生信号の振幅がほぼ揃い、振幅のバラツキが小さいことが認められ、白金酸化物PtOxにおけるxが1.0以上ではあるが、光記録ディスクサンプル#1および#2に比べて、PtOxにおけるxが小さい光記録ディスクサンプル#3においては、200nmの記録マークを形成して、記録されたデータを再生したときの再生信号の振幅に、若干のバラツキがあることが認められた。

#### [0161]

また、白金酸化物 P t O x における x が、それぞれ、1. 0、1. 7 である光記録ディスクサンプル# 5 ないし# 7 においても、2 0 0 n mの記録マークを形成して記録したデータを再生したときの再生信号の振幅がほぼ揃い、振幅のバラツキが小さいことが認められた。

#### [0162]

本発明は、以上の実施態様および実施例に限定されることなく、特許請求の範囲に記載された発明の範囲内で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。

#### [0163]

たとえば、図1および図2に示される実施態様にかかる光記録ディスク1においては、 光透過性基板2上に、第一の誘電体層4と、分解反応層5と、第二の誘電体層6と、光吸 収層7と、第三の誘電体層8とが積層されて構成されているが、本発明は、これに限られ



#### [0164]

また、図4および図5に示される実施態様にかかる光記録ディスク10においても、光記録ディスク1と同様に、レーザビームLに対する反射率を向上させるために、第三の誘電体層8と支持基板12との間に、反射層が形成されてもよい。

#### [0165]

さらに、図1および図2、ならびに図4および図5に示される実施態様にかかる光記録ディスク1、10においては、レーザビームLの光入射面から、分解反応層5と、第二の誘電体層6と、光吸収層7とが順に積層されているが、本発明は、これに限られるものではく、たとえば、レーザビームLの光入射面の反対側から、分解反応層5と、第二の誘電体層6と、光吸収層7とが順に積層されてもよく、あるいは、レーザビームLの光入射面から、光吸収層と、誘電体層と、分解反応層と、誘電体層と、光吸収層とが順に積層されてもよい。すなわち、本発明においては、光記録ディスクが、分解反応層と、光吸収層とが、少なくとも誘電体層を挟んで形成された積層体を有していればよい。

#### 【図面の簡単な説明】

#### [0166]

- 【図1】図1は、本発明の好ましい実施態様にかかる光記録ディスクの略断面図である。
- 【図2】図2は、図1のAで示された部分の略拡大断面図である。
- 【図3】図3(a)は、データが記録される前の光記録ディスクの一部拡大略断面図であり、図3(b)は、データが記録された後の光記録ディスクの一部拡大略断面図である。
- 【図4】図4は、本発明の好ましい実施態様にかかる光記録ディスクの略断面図である。
- 【図5】図5は、図4のBで示された部分の略拡大断面図である。
- 【図 6 】図 6 は、スペクトラムアナライザーの表示画面に表示された光記録ディスクサンプル# 1 の周波数スペクトルを示す図である。
- 【図7】図7は、スペクトラムアナライザーの表示画面に表示された光記録ディスクサンプル#2の周波数スペクトルを示す図である。
- 【図8】図8は、スペクトラムアナライザーの表示画面に表示された光記録ディスクサンプル#3の周波数スペクトルを示す図である。
- 【図9】図9は、スペクトラムアナライザーの表示画面に表示された光記録ディスクサンプル#4の周波数スペクトルを示す図である。
- 【図10】図10は、オシロスコープの表示画面に表示された光記録ディスクサンプル#1の再生信号の波形を示す図である。
- 【図11】図11は、オシロスコープの表示画面に表示された光記録ディスクサンプル#2の再生信号の波形を示す図である。
- 【図12】図12は、オシロスコープの表示画面に表示された光記録ディスクサンプル#3の再生信号の波形を示す図である。

#### 【符号の説明】

#### [0167]

- 1 光記録ディスク
- 2 光透過性基板
- 4 第一の誘電体層
- 5 分解反応層
- 6 第二の誘電体層
- 7 光吸収層

- 8 第三の誘電体層
- 10 光記録ディスク
- 12 支持基板
- 13 光透過層

## 【書類名】図面【図1】



【図2】





























【図8】



【図9】



【図10】











500mV



【要約】

【課題】 記録マークの長さや、隣り合う記録マーク間のブランク領域の長さが、解像限界未満である場合にも、これらの記録マークおよびブランク領域を含む記録マーク列により構成されたデータを、所望のように、記録し、再生することができ、記録容量を大幅に増大させることが可能になる光記録ディスクおよびその製造方法を提供することを目的とする。

【解決手段】 レーザビーム L が照射されて、データが記録され、再生されるように構成された光記録ディスクであって、白金酸化物 P t O x を主成分として含む分解反応層 5 と、光吸収層 7 とが、第二の誘電体層 6 を挟んで形成された積層体を含み、分解反応層 5 に含まれる白金酸化物 P t O x における x が、 1.0 以上であることを特徴とする光記録ディスク

【選択図】

図 2

特願2003-405359

出願人履歴情報

識別番号

[301021533]

1. 変更年月日

2001年 4月 2日

[変更理由]

新規登録

住所氏名

東京都千代田区霞が関1-3-1 独立行政法人産業技術総合研究所 特願2003-405359

出 願 人 履 歴 情 報

識別番号

[000005049]

1. 変更年月日

1990年 8月29日

[変更理由] 住 所 新規登録 大阪府大阪市阿倍野区長池町22番22号

氏 名 シャープ株式会社

特願2003-405359

出願人履歴情報

識別番号

[000003067]

1.変更年月日 [変更理由]

2003年 6月27日

更理由] 名称変更住 所 東京都中

東京都中央区日本橋1丁目13番1号

氏 名 TDK株式会社