Babeş-Bolyai University, Faculty of Mathematics and Computer Science Bachelor, Computer Science, Groups 911-917, Academic Year 2016-2017

Mathematical Analysis Seminar 1

- **1.** Prove that for any real numbers $a_1, a_2, \ldots, a_n > 0$ $(n \in \mathbb{N}, n \ge 2)$ satisfying $a_1 \cdot a_2 \cdot \ldots \cdot a_n = 1$ we have $a_1 + a_2 + \ldots + a_n \ge n$.
- **2.** For any real numbers $x_1, x_2, \ldots, x_n > 0 \ (n \in \mathbb{N}, n \ge 2)$ denote

$$H(x_1, ..., x_n) := \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + ... + \frac{1}{x_n}}$$
 (the harmonic mean);

$$G(x_1, \dots, x_n) := \sqrt[n]{x_1 \cdot x_2 \cdot \dots \cdot x_n}$$
 (the geometric mean);

$$A(x_1, \ldots, x_n) := \frac{x_1 + x_2 + \ldots + x_n}{n}$$
 (the arithmetic mean).

Show that the following inequalities hold:

$$\min\{x_1,\ldots,x_n\} \le H(x_1,\ldots,x_n) \le G(x_1,\ldots,x_n) \le A(x_1,\ldots,x_n) \le \max\{x_1,\ldots,x_n\}.$$

3. Prove that for any $x \in [-1, +\infty)$ and $n \in \mathbb{N}$ we have

$$(1+x)^n \ge 1 + nx$$
 (Bernoulli's Inequality).

Deduce that, whenever $m \in \mathbb{N}$ is even, the following inequality holds for all $y \in \mathbb{R}$:

$$(1+y)^m \ge 1 + my.$$

4. Study the boundedness of each set A_i in the list below, by finding $\inf A_i$ (or $\min A_i$ if it exists) and $\sup A_i$ (or $\max A_i$ if it exists).

$$A_{1} = \{x^{2} \mid x \in \mathbb{Z}\}; \qquad A_{5} = \{x^{2} + x \mid x \in \mathbb{R}\};$$

$$A_{2} = \{x \in \mathbb{Q} \mid x^{2} \leq 2\}; \qquad A_{6} = \{x^{2} + y \mid x, y \in \mathbb{R}\};$$

$$A_{3} = A_{1} \cap A_{2}; \qquad A_{7} = \{n/(n+1) \mid n \in \mathbb{N}\};$$

$$A_{4} = A_{1} \cup A_{2}; \qquad A_{8} = \{n/(n+k) \mid n, k \in \mathbb{N}\}.$$

5. Let $f:D\to\mathbb{R}$ and $g:D\to\mathbb{R}$ be two functions defined on a nonempty set D. Prove that

$$\inf_{x \in D} [f(x) + g(x)] \geq \inf_{x \in D} f(x) + \inf_{x \in D} g(x) \quad \text{and} \quad \sup_{x \in D} [f(x) + g(x)] \leq \sup_{x \in D} f(x) + \sup_{x \in D} g(x).$$

Deduce that for any sequences of real numbers, $(a_n)_{n\in\mathbb{N}}$ and $(b_n)_{n\in\mathbb{N}}$, we have

$$\inf_{n\in\mathbb{N}}(a_n+b_n)\geq\inf_{n\in\mathbb{N}}a_n+\inf_{n\in\mathbb{N}}b_n\quad\text{and}\quad\sup_{n\in\mathbb{N}}(a_n+b_n)\leq\sup_{n\in\mathbb{N}}a_n+\sup_{n\in\mathbb{N}}b_n.$$

Give examples where the above inequalities are strict.

6. Decide which of the following sets are neighborhoods of 0. Justify.

$$A = [-1, 1] \cup \{2\}; \quad B = (-1, 1) \cap \mathbb{Q}; \quad C = \bigcap_{n=1}^{\infty} \left[-\frac{1}{n}, \frac{1}{n} \right].$$

7. Let $A \subseteq \mathbb{R}$ be a nonempty set, which is bounded from below (respectively from above) by $\alpha \in \mathbb{R}$. Prove that inf $A = \alpha$ (respectively sup $A = \alpha$) if and only if $V \cap A \neq \emptyset$ for every $V \in \mathcal{V}(\alpha)$.