Algebraische Geometrie I

Prof. Dr. Venjakob

18. Januar 2019

Inhaltsverzeichnis

1	Pra-	-Varietaten	7
	1.1	Einführung	8
	1.2	Die Zariski-Topologie	9
		1.2.1 Eigenschaften	9
	1.3	Affine algebraische Mengen	10
	1.4	Der Hilbertsche Nullstellensatz	11
	1.5	Korrespondenz zwischen Radikalidealen und affinen algebraischen Mengen $\ \ .$	12
	1.6	Irreduzible topologische Räume	13
	1.7	Irreduzible affine algebraische Mengen	15
	1.8	Quasikompakte und noethersche topologische Räume	16
	1.9	Morphismen von affinen algebraischen Mengen	18
	1.10	Unzulänglichkeiten des Begriffs der affinen algebraischen Mengen	19
	1.11	Der affine Koordinatenring	20
	1.12	Funktorielle Eigenschaften von $\Gamma(X)$	22
	1.13	Räume mit Funktionen	24
	1.14	Der Raum mit Funktionen zu einer affin-algebraischen Menge	26
	1.15	Funktorialität der Konstruktion	29
	1.16	Definition von Prävarietäten	31
	1.17	$\label{thm:continuous} Vergleich \ mit \ differenzierbaren/komplexen \ Mannigfaltigkeiten \ \dots \dots \dots \dots$	32
	1.18	Topologische Eigenschaften von Prävarietäten	33
	1.19	Offene Untervarietäten	34
	1.20	Funktionenkörper einer Prävarietät	36
	1.21	Abgeschlossene Unterprävarietäten	38
	1.22	Homogene Polynome	39
	1.23	Definition des projektiven Raumes	40
		1.23.1 Reguläre Funktionen	41
	1.24	Projektive Varietäten	44
	1.25	Koordinatenwechsel in \mathbb{P}^n	46
	1.26	Lineare Unterräume von \mathbb{P}^n	47
	1.27	Kegel	48
	1.28	Quadriken	49

2	Das	Ringspektrum	53
	2.1	Definition von $\operatorname{Spec}(A)$	54
	2.2	Topologische Eigenschaften von $\operatorname{Spec}(A)$	56
	2.3	Der Funktor $A \mapsto \operatorname{Spec}(A)$	58
	2.4	Beispiele	60
	2.5	Prägarben und Garben	62
	2.6	Halme von Garben	66
	2.7	Die zu einer Prägarbe assoziierte Garbe	68
	2.8	Direktes und inverses Bild von Garben	69
	2.9	Lokal geringte Räume	71

Literatur

- \bullet Görtz, Wedhorn. Algebraic Geometry I
- ullet Hartshorne. Algebraic Geometry
- \bullet Shafarevich. Basic Algebraic Geometry 1 & 2
- \bullet Grothendieck. Eléments de géometrie algébrique, EGA I-IV

Kommutative Algebra

- Brüske, Ischebeck, Vogel. Kommutative Algebra
- Kunz. Einführung in die kommutative Algebra und algebraische Geometrie

Kapitel 1

Prä-Varietäten

Abbildung 1.1:
$$T_2^2 = T_1^2(T_1 - 1) = T_1^3 - T_1^2$$

1.1 Einführung

Algebraische Geometrie kann man verstehen, als das Studium von Systemen polynomialer Gleichungen (in mehreren Variabelen). Damit ist die algebraische Geometrie eine Verallgemeinerung der linearen Algebra, also statt X auch X^n , und auch der Algebra, durch Polynome in mehreren Variablen.

Frage. Seien k ein (algebraisch abgeschlossener) Körper, und $f_1, \ldots, f_m \in k[T_1, \ldots, T_n]$ gegeben. Was sind die "geometrischen Eigenschaften" der Nullstellenmenge

$$V(f_1, \dots, f_n) := \{ (t_1, \dots, t_n) \in k^n \mid f_i(t_1, \dots, t_n) = 0 \ \forall i \}$$

Beispiel 1.1. Sei $f = T_2^2 - T_1^2(T_1 - 1) \in k[T_1, T_2]$. Die Nullstellenmenge für $k = \mathbb{R}$ (aber: trügerisch, da \mathbb{R} nicht algebraisch abgeschlossen!) ist gegeben durch:

- Dimension 1
- (0,0) ist singulärer Punkt
- Alle anderen Punkte besitzen eine eindeutig bestimmte Tangente

Abbildung 1.2: Spitze und Doppelpunkt

Vergleiche mit dem Satz über implizite Funktionen: (Analysis, Differentialgeometrie) V(f) ist lokal diffeomorph zu \mathbb{R} (= reelle Gerade) im Punkt (x_1, x_2) genau dann, wenn die Jacobi-Matrix

 $\left(\frac{\partial f}{\partial T_1}, \frac{\partial f}{\partial T_2}\right) = (T_1(3T_1 - 2), \ 2T_2)$

Rang 1 in (x_1, x_2) hat. Das ist äquivalent dazu, dass $(x_1, x_2) \neq (0, 0)$. Dies lässt sich rein formal über beliebigen Grundkörpern **algebraisch** formulieren.

Methoden. GAGA - Géometrie algébrique, géometrique analytique (Serre)

Komplexe Geometrie (\mathbb{C}), Differential geometrie (\mathbb{R})	Algebraische Geometrie
Analytische Hilfsmittel	Kommutative Algebra

1.2 Die Zariski-Topologie

Definition 1.2. Sei $M \subseteq k[T_1, \ldots, T_n] =: k[\underline{T}]$ eine Teilmenge. Mit

$$V(M) := \{(t_1, \dots, t_n) \in k^n \mid f(t_1, \dots, t_n) = 0 \ \forall f \in M\}$$

bezeichnen wir die gemeinsame Nullstellen-(Verschwindungs-)Menge der Elemente aus M. (Manchmal auch $V(f_i, i \in I)$ statt $V(\{f_i, i \in I\})$.

Notation Wir schreiben auch $V(f_i, i \in I)$ statt $V(\{f_i \mid i \in I\})$

1.2.1 Eigenschaften

- $V(M) = V(\mathfrak{a})$, wenn $\mathfrak{a} = \langle M \rangle_{k[T]}$ das von M erzeugte Ideal in $k[\underline{T}]$ bezeichnet.
- Da $k[\underline{T}]$ noethersch (Hilbertscher Basissatz) ist, reichen stets endlich viele $f_1, \ldots, f_n \in M$:

$$V(M) = V(f_1, \ldots, f_n)$$
 falls $\mathfrak{a} = \langle f_1, \ldots, f_n \rangle_{k[T]}$.

• V(-) ist inklusionsumkehrend, $M' \subseteq M \implies V(M) \subseteq V(M')$.

Satz 1.3. Die Mengen $V(\mathfrak{a})$, $\mathfrak{a} \leq k[\underline{T}]$ ein Ideal, sind die **abgeschlossenen** Mengen einer Topologie auf k^n , der sogenannten **Zariski-Topologie**.

- (i) $\emptyset = V((1)), k^n = V(0).$
- (ii) $\bigcap_{i \in I} V(\mathfrak{a}_i) = V\left(\sum_{i \in I} \mathfrak{a}_i\right)$ für beliebige Familien $(\mathfrak{a}_i)_{i \in I}$ von Idealen.
- (iii) $V(\mathfrak{a}) \cup V(\mathfrak{a}) = V(\mathfrak{a}\mathfrak{b})$ für $\mathfrak{a}, \mathfrak{b} \leq k[\underline{T}]$ Ideale.

Beweis. Übung / Algebra II.

1.3 Affine algebraische Mengen

Definition 1.4.

- $\mathbb{A}^n(k)$, der **affine Raum der Dimension n** (über k), bezeichne k^n mit der Zariski-Topologie.
- Abgeschlossene Teilmengen von $\mathbb{A}^n(k)$ heißen affine abgeschlossene Mengen.

Beispiel 1.5. Da k[T] ein Hauptidealring ist, sind die abgeschlossen Mengen in $\mathbb{A}^1(k)$: \emptyset , \mathbb{A}^1 , Mengen der Form V(f), $f \in k[T] \setminus \{k\}$ (endliche Teilmengen). Insbesondere sieht man, dass die Zariski-Topologie im Allgemeinen nicht Hausdorff ist.

Beispiel 1.6. $\mathbb{A}^2(k)$ hat zumindestens als abgeschlossene Mengen:

- \emptyset , \mathbb{A}^2 ;
- Einpunktige Mengen: $\{(x_1, x_2)\} = V(T_1 x_1, T_2 x_2);$
- V(f), $f \in k[T_1, T_2]$ irreduzibel.

Ferner alle endlichen Vereinigungen dieser Liste. (Dies sind in der Tat alle, denn später sehen wir: "irreduzible" abgeschlossene Mengen entsprechen den Primidealen, und $k[T_1, T_2]$ hat "Krull-Dimension 2".)

1.4 Der Hilbertsche Nullstellensatz

Theorem 1.7. Sei K ein (nicht notwendigerweise algebraisch abgeschlossener) Körper, und A eine endlich erzeugte K-Algebra. Dann ist A Jacobson'sch, d.h. für jedes Primideal $\mathfrak{p} \subseteq A$ gilt:

$$\mathfrak{p} = \bigcap_{\mathfrak{m} \supseteq \mathfrak{p}} \mathfrak{m}, \quad \mathfrak{m} \text{ maximales Ideal}$$

Ist $\mathfrak{m} \subseteq A$ ein maximales Ideal, so ist die Körpererweiterung $K \subseteq A/\mathfrak{m}$ endlich.

Beweis. Algebra II / kommutative Algebra.

Korollar 1.8.

- (i) Sei A eine e.e. (endlich erzeugte) k-Algebra (k sei algebraisch abgeschlossen), $\mathfrak{m} \subseteq A$ ein maximales Ideal. Dann ist $A/\mathfrak{m} = k$.
- (ii) Jedes maximale Ideal $\mathfrak{m} \leq k[\underline{T}]$ ist von der Form $\mathfrak{m} = (T_1 x_1, \dots, T_n x_n)$ mit $x_1, \dots, x_n \in k$.
- (iii) Für ein Ideal $\mathfrak{a} \subseteq k[\underline{T}]$ gilt:

$$\mathrm{rad}(\mathfrak{a}) = \sqrt{\mathfrak{a}} \stackrel{(i)}{=} \bigcap_{\mathfrak{a} \subseteq \mathfrak{p} \unlhd k[\underline{T}], \mathfrak{p}prim} \mathfrak{p} \stackrel{(ii)}{=} \bigcap_{\mathfrak{a} \subseteq \mathfrak{m} \unlhd k[\underline{T}], \mathfrak{m}maximal} \mathfrak{m}$$

Beweis.

- (i) $k \to A \to A/\mathfrak{m}$ ist Isomorphismus, da k keine echte algebraische Körpererweiterung besitzt.
- (ii) Es ist

$$k[T_1, \dots, T_n] \twoheadrightarrow k[\underline{T}]/\mathfrak{m} = k$$

$$T_i \mapsto x_i$$

surjektiv. Es folgt: $\mathfrak{m}=(T_1-x_1,\ldots,T_n-x_n)$, da letzteres bereits maximal ist. $(\supseteq klar.)$

(iii) (i) Algebra II. (ii) Theorem 1.7.

1.5 Korrespondenz zwischen Radikalidealen und affinen algebraischen Mengen

Sei $V(\mathfrak{a}) \subseteq \mathbb{A}^n(k)$ affin algebraische Menge, $\mathfrak{a} \subseteq k[\underline{T}]$ ein Ideal. Es gilt:

$$V(\mathfrak{a}) = V(\operatorname{rad} \mathfrak{a})$$

mit rad $\mathfrak{a}=\{f\in k[\underline{T}]\mid f^n\in\mathfrak{a}$ für ein $n>0\},$ da

$$f^n(x) = 0 \Leftrightarrow f(x) = 0,$$

d.h. verschiedene Ideale können dieselbe algebraische Menge beschreiben.

Definition 1.9. Für eine Teilmenge $Z \subseteq \mathbb{A}^n(k)$ bezeichne

$$I(Z) := \{ f \in k[T] \mid f(x) = 0 \ \forall x \in Z \}$$

das Verschwindungsideal von \mathbb{Z} , das Ideal aller auf Z verschwindenden Polynomfunktionen.

Satz 1.10.

- (i) Sei $\mathfrak{a} \leq k[\underline{T}]$ Ideal. Dann ist $I(V(\mathfrak{a})) = \operatorname{rad}(\mathfrak{a})$.
- (ii) Sei $Z \subseteq \mathbb{A}^n(k)$ Teilmenge. Dann ist $V(I(Z)) = \overline{Z}$, der Abschluss von Z in $\mathbb{A}^n(k)$.

Beweis. Übungsblatt 2.

 \mathfrak{a} heißt **Radikalideal**, falls $\mathfrak{a} = \operatorname{rad}(\mathfrak{a})$, oder äquivalent falls $k[\underline{T}]/\mathfrak{a}$ reduziert ist, d.h. keine nilpotente Elemente ungleich 0 hat.

Korollar 1.11. Wir erhalten eine 1-1 Korrespondenz

$$\{abg.\ Mengen\ \subseteq \mathbb{A}^n\} \leftrightarrow \{Radikalideale\ \mathfrak{a} \unlhd k[\underline{T}]\}$$

$$Z \mapsto I(Z)$$

$$V(\mathfrak{a}) \leftrightarrow \mathfrak{a}$$

die sich zu einer 1-1 Korrespondenz

$$\{Punkte\ in\ \mathbb{A}^n\} \leftrightarrow \{max.\ Ideale\ in\ k[\underline{T}]\}$$

$$x = (x_1, \dots, x_n) \mapsto \begin{array}{l} \mathfrak{m}_x = I(\{x\}) \\ = \ker(k[\underline{T}] \to k,\ T_i \mapsto x_i) \end{array}$$

einschränkt.

1.6 Irreduzible topologische Räume

Die folgenden topologischen Begriffe sind nur interessant, da $\mathbb{A}^n(k)$ (n > 0) kein Hausdorff'scher Raum ist.

Definition 1.12. Ein topologischer Raum X heißt **irreduzibel**, falls $X \neq \emptyset$ und X sich *nicht* als Vereinigung zweier echter abgeschlossener Teilmengen darstellen lässt, d.h

$$X = A_1 \cup A_2$$
, A_i abg. \Longrightarrow $A_1 = X$ oder $A_2 = X$.

 $Z \subseteq X$ heißt irreduzibel, falls Z mit der induzierten Topologie irreduzibel ist.

Satz 1.13. Für einen topologischen Raum $X \neq \emptyset$ sind äquivalent:

- (i) X ist irreduzibel.
- (ii) Je zwei nichtleere offene Teilmengen von X haben nicht-leeren Durchschnitt.
- (iii) Jede nichtleere offene Teilmenge $U \subseteq X$ ist dicht in X.
- (iv) Jede nichtleere offene Teilmenge $U \subseteq X$ ist zusammenhängend.
- (v) Jede nichtleere offene Teilmenge $U \subseteq X$ ist irreduzibel.

Beweis.

- $(i) \Leftrightarrow (ii)$ Komplementärmengen.
- $(ii) \Leftrightarrow (iii)$ Es ist: $U \subseteq X$ dicht $\Leftrightarrow U \cap O \neq \emptyset$ für jedes offene $\emptyset \neq O \subseteq X$.
- $(iii) \Rightarrow (iv)$

Klar.

• $(iv) \Rightarrow (iii)$ Sei $\emptyset \neq U$ offen und zusammenhängend. Es folgt:

$$U = U_1 \sqcup U_2, \qquad \emptyset \neq U_i \subseteq U \subseteq X$$

Damit ist $U_1 \cap U_2 = \emptyset$, ein Widerspruch zu (iii).

• $(v) \Rightarrow (i)$ Klar. (U = X)

• $(iii) \Rightarrow (v)$

Sei $\emptyset \neq U \subseteq_{\text{offen}} X$. Ist $\emptyset \neq V \subseteq_{\text{offen}} U$, so ist $V \subseteq_{\text{offen}} X$. Es folgt: V ist dicht in X und irreduzibel in U. Mit $(iii) \Rightarrow (i)$ folgt, dass U irreduzibel ist.

Lemma 1.14. Eine Teilmenge Y ist genau dann irreduzibel, wenn ihr Abschluss \overline{Y} dies ist.

Beweis. Y irreduzibel

$$\Leftrightarrow \forall U, V \subseteq X \text{ offen mit } U \cap Y \neq \emptyset \neq V \cap Y, \text{ gilt } Y \cap (U \cap V) \neq \emptyset.$$

$$\Leftrightarrow \overline{Y} \text{ irreduzibel}$$

Definition 1.15. Eine maximale irreduzible Teilmenge eines topologischen Raumes X heißt irreduzible Komponente von X.

Bemerkung 1.16.

- (i) Jede irreduzible Komponente ist abgeschlossen nach Lemma 1.14.
- (ii) X ist Vereinigung seiner irreduziblen Komponenten, denn:

die Menge der irreduziblen Teilmengen von X ist **induktiv geordnet**: für jede aufsteigende Kette irreduzibler Teilmengen ist die Vereinigung wieder irreduzible (Satz 1.13.(ii)). Mit dem **Lemma von Zorn** folgt: Jede irreduzible Teilmenge ist in einer irreduziblen Komponente enthalten. Damit ist jeder Punkt in einer irreduziblen Komponente enthalten.

1.7 Irreduzible affine algebraische Mengen

Lemma 1.17. Eine abgeschlossene Teilmenge $Z \subseteq \mathbb{A}^n(k)$ ist genau dann irreduzibel, wenn $I(Z) \subseteq k[\underline{T}]$ ein Primideal ist. Insbesondere ist $\mathbb{A}^n(k)$ irreduzibel.

 $Beweis.\ Z$ irreduzibel ist äquivalent zu

$$(Z = \underbrace{V(\mathfrak{a})}_{\bigcap_{i}V(f_{i})} \cup \underbrace{V(\mathfrak{b})}_{\bigcap_{j}V(g_{j})} \Rightarrow V(\mathfrak{a}) = Z \text{ oder } V(\mathfrak{b}) = Z).$$

$$\Leftrightarrow \forall f, g \in k[\underline{T}]: \ V(fg) = V(f) \cup V(g) \supseteq Z: \ V(f) \supseteq Z \text{ oder } V(g) \supseteq Z.$$

$$(*) \Leftrightarrow \forall f, g \in k[\underline{T}]: \ fg \in I(V(fg)) \subseteq I(Z): \ f \in I(Z) \text{ oder } g \in I(Z).$$

$$\Leftrightarrow I(Z) \text{ ist Primideal.}$$

(*):
$$V(I(Z)) = Z$$
, $I(V(\mathfrak{a})) = \operatorname{rad}(\mathfrak{a})$.

Bemerkung 1.18. Die Korrespondenz aus Korollar 1.11 schränkt sich ein zu

{irred. abg. Teilmengen $\subseteq \mathbb{A}^n$ } $\stackrel{1:1}{\longleftrightarrow}$ {Primideale in $k[\underline{T}]$ }

1.8 Quasikompakte und noethersche topologische Räume

Definition 1.19. Ein topologischer Raum X heißt **quasikompakt**, falls jede offene Überdeckung von X eine *endliche* Teilüberdeckung enthält. ("quasi" deutet an, dass X in der Regel nicht Hausdorff'sch ist!). Er heißt **noethersch**, wenn jede absteigende Kette

$$X \supseteq Z_1 \supseteq Z_2 \supseteq \cdots$$

abgeschlossener Teilmengen von X stationär wird (\Leftrightarrow jede aufsteigende Kette offener Teilmengen wird stationär).

Lemma 1.20. Sei X ein noetherscher topologischer Raum. Dann gilt:

- (i) Jede abgeschlossene Teilmenge $Z \subseteq X$ ist noethersch.
- (ii) Jede offene Teilmenge $U \subseteq X$ ist quasikompakt.
- (iii) Jeder abgeschlossene Teilraum $Z \subseteq X$ besitzt nur endlich viele irreduzible Komponenten. Beweis.
 - (i) Nach Definition, da abgeschlossene Mengen von Z auch solche von X sind.
 - (ii) $U=\bigcup_{i\in I}U_i$ offen; Angenommen U wäre nicht quasikompakt. Dann gibt es eine Folge $I_1\subseteq I_2\subseteq\cdots\subseteq I$ von Teilmengen mit

$$V_1 \subsetneq V_2 \subsetneq \cdots \neq U$$
 für $V_j = \bigcup_{i \in I_j} U_i$.

Widerspruch zu noethersch.

(iii) Es reicht zu zeigen: Jeder noethersche Raum ist Vereinigung endlich vieler irreduzibler Teilmengen. Da X noethersch ist, folgt mit dem $Lemma\ von\ Zorn$ dass jede nichtleere Menge von algebraischen Teilmengen in X ein minimales Element besitzt.

Angenommen: $\mathcal{M} := \{Z \subseteq X \text{ abg. } | Z \text{ ist } \mathbf{nicht} \text{ endl. Vereinigung irred. Mengen} \}$ wäre nichtleer.

- $\Rightarrow \exists$ minimales Element, sagen wir Z, in \mathcal{M} .
- $\Rightarrow Z$ ist nicht irreduzibel.
- $\Rightarrow Z = Z_1 \cup Z_2 \text{ mit } Z_1, Z_2 \subsetneq Z \text{ abgeschlossen.}$
- $\Rightarrow (Z \text{ minimal}) \ Z_1, Z_2 \notin \mathcal{M}$
- $\Rightarrow Z \notin \mathcal{M}$. Widerspruch.

Beweis. Nach dem obigen Lemma ist nur zu zeigen, dass $\mathbb{A}^n(k)$ noethersch ist.

Absteigende Ketten abgeschlossener Teilmengen sind nach Korollar 1.11 in 1-1 Korrespondenz mit aufsteigenden Ketten von (Radikal-)Idealen in $k[\underline{T}]$. Da $k[\underline{T}]$ nach dem Hilbertschen Basissatz noethersch ist, werden letzere Ketten stationär.

Korollar 1.22 (Primärzerlegung). Sei $\mathfrak{a} = \operatorname{rad}(\mathfrak{a}) \leq k[\underline{T}]$ ein Radikalideal. Dann gilt: \mathfrak{a} ist Durchschnitt von endlich vielen Primidealen, die sich jeweils paarweise nicht enthalten; diese Darstellung ist eindeutig bis auf Reihenfolge.

Beweis. $V(\mathfrak{a}) = \bigcup_{i=1}^n V(\mathfrak{b}_i)$, \mathfrak{b}_i Primideal. [Anmerkung] Mit Satz 1.10 folgt:

$$\mathfrak{a} = \mathrm{rad}(\mathfrak{a}) = I(V(\mathfrak{a})) = \bigcap_{i=1}^{n} \underbrace{I(V(\mathfrak{b}_i))}_{\mathfrak{b}_i \text{ minimale Primideale (1.17)}}$$

1.9 Morphismen von affinen algebraischen Mengen

Definition 1.23. Seien $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$ affine algebraische Mengen. Ein **Morphismus** $X \to Y$ affiner algebraischer Mengen ist eine Abbildung $f: X \to Y$ der zugrundeliegenden Mengen, sodass $f_1, \ldots, f_n \in k[T_1, \ldots, T_m]$ existieren, derart dass $\forall x \in X$ gilt:

$$f(x) = (f_1(x), \dots, f_n(x)) \in Y.$$

Es bezeichne hom(X,Y) die Menge der Morphismen $X \to Y$.

Bemerkung 1.24. $f: X \to Y$ lässt sich immer fortsetzen zu einem Morphismus

$$f: \mathbb{A}^m(k) \to \mathbb{A}^n(k),$$

aber nicht eindeutig, es sei denn $X = \mathbb{A}^m(k)$.

Komposition

$$X \xrightarrow{f} Y \xrightarrow{g} Y \xrightarrow{g_{1,\dots,f_n \in k[T_1,\dots,T_m]}} Y$$

mit $X \subseteq \mathbb{A}^m(k)$, $Y \subseteq \mathbb{A}^n(k)$, $Z \subseteq \mathbb{A}^r(k)$. Es folgt:

$$g(f(x)) = (g_1(f_1(x), \dots, f_n(x)), \dots, g_r(f_1(x), \dots, f_n(x))$$

=: $(h_1(x), \dots, h_r(x))$

d.h. $g \circ f$ ist durch Polynome $h_i \in k[T_1, \dots, T_m]$ gegeben, also ist $g \circ f$ wieder ein Morphismus affiner algebraischer Mengen. Wir erhalten die **Kategorie affiner algebraischer Mengen**.

Beispiel 1.25.

(i) Sei die Abbildung

$$\mathbb{A}^{1}(k) \to V(T_{2} - T_{1}^{2}) \subseteq \mathbb{A}^{2}(k)$$
$$x \mapsto (x, x^{2}).$$

Diese Abbildung ist sogar ein *Isomorphismus* affiner algebraischer Mengen, da die Umkehrabbildung

$$(x,y) \mapsto x$$

ebenfalls ein Morphismus ist.

(ii) Sei char $(k) \neq 2$. Die Abbildung

$$\mathbb{A}^{1}(k) \to V(T_{2}^{2} - T_{1}^{2}(T_{1} + 1))$$
$$x \mapsto (x^{2} - 1, x(x^{2} - 1))$$

ist ein Morphismus, aber nicht bijektiv, da 1, -1 beide auf (0,0) abgebildet werden.

1.10 Unzulänglichkeiten des Begriffs der affinen algebraischen Mengen

- (i) Offene Teilmengen affiner algebraischer Mengen tragen nicht in natürlicher Weise die Struktur einer affinen algebraischen Menge.
- (ii) Insbesondere können wir affine algebraische Mengen nicht entlang offener Teilräume verkleben. (vgl. Mannigfaltigkeiten.)
- (iii) Keine Unterscheidungsmöglichkeiten z.B. zwischen $\{(0,0)\}$, $V(T_1) \cap V(T_2)$ und $V(T_2) \cap V(T_1^2 T_2) \subseteq \mathbb{A}^2(k)$, obwohl die "geometrische Situation" offensichtlich verschieden ist.

Um die Punkte 1 und 2 zu verbessern, gehen wir im Folgenden zu "Räumen mit Funktionen" über, und verzichten darauf, dass sich diese in einen affinen Raum $\mathbb{A}^n(k)$ einbetten lassen. Der Punkt 3 ist eine Motivation dafür, später Schemata einzuführen. (subtiler)

Affine algebraische Mengen als Räume von Funktionen

1.11 Der affine Koordinatenring

Sei $X \subseteq \mathbb{A}^n(k)$ abgeschlossen. Für den surjektiven (Def. von Morphismen) k-Algebren-Homomorphismus

$$k[\underline{T}] \xrightarrow{\varphi} \text{hom}(X, \mathbb{A}^1(k))$$

 $f \mapsto (x \mapsto f(x)),$

wobei die Morphismen in folgende Weise eine k-Algebra bilden:

$$(f+g)(x) := f(x) + g(x)$$
$$(fg)(x) := f(x)g(x)$$
$$(\alpha f)(x) := \alpha f(x)$$

mit $f, g \in \text{hom}(X, \mathbb{A}^1(k)), \alpha \in k$, gilt:

$$\ker \varphi = I(X).$$

Definition 1.26. $\Gamma(X) := k[\underline{T}]/I(X) \cong_{k-\text{Alg}} \text{hom}(X, \mathbb{A}^1(k))$ heißt der affine Koordinatenring von X.

Für $x = (x_1, \ldots, x_n) \in X$ gilt:

$$\mathbf{m}_{x} := \ker(\Gamma(X) \twoheadrightarrow k, f \mapsto f(x))$$

$$= \{ f \in \Gamma(X) \mid f(x) = 0 \}$$

$$= \pi((T_{1} - x_{1}, \dots, T_{n} - x_{n}))$$

$$= \ker(\Gamma(\mathbb{A}^{n}(k)) \twoheadrightarrow k)$$

unter der Projektion $\pi: k[\underline{T}] = \Gamma(\mathbb{A}^n(k)) \twoheadrightarrow \Gamma(X)$. Es ist \mathfrak{m}_x ein maximales Ideal von $\Gamma(X)$ mit $\Gamma(X)/\mathfrak{m}_x \cong k$. Für ein Ideal $\mathfrak{a} \subseteq \Gamma(X)$ sei

$$V(\mathfrak{a}):=\{x\in X\mid f(x)=0\;\forall f\in\mathfrak{a}\}=V(\pi^{-1}(\mathfrak{a}))\cap X.$$

Dies sind genau die abgeschlossenen Mengen von X als Teilraum von $\mathbb{A}^n(k)$ mit der induzierten Topologie, diese wird auch **Zariski-Topologie** genannt. Für $f \in \Gamma(X)$ setze:

$$D_X(f) := D(f) := \{x \in X \mid f(x) \neq 0\} = X \setminus V(f).$$

Lemma 1.27. Die offenen Mengen D(f), $f \in \Gamma(X)$, bilden eine Basis der Topologie von X, d.h.

$$\forall U \subseteq X \text{ offen } \exists f_i \in \Gamma(X), \ i \in I \text{ mit } U = \bigcup_{i \in I} D(f_i)$$

Beweis. $U = X \setminus V(\mathfrak{a})$ für ein $\mathfrak{a} \subseteq \Gamma(X)$, $\mathfrak{a} = \langle f_1, \dots, f_n \rangle_{\Gamma(X)}$. Wegen

$$V(\mathfrak{a}) = \bigcap_{i=1}^{n} V(f_i) \quad \Rightarrow \quad U = \bigcup_{i=1}^{n} D(f_i)$$

Es reichen also sogar endlich viele $f_i \in \Gamma(X)$!

Satz 1.28. Der Koordinatenring $\Gamma(X)$ einer affinen algebraischen Menge X ist eine endlich erzeugte k-Algebra, die reduziert ist (d.h. keine nilpotenten Elemente $\neq 0$ enthält). Ferner ist X irreduzibel genau dann, wenn $\Gamma(X)$ integer ist.

Beweis. $k[\underline{T}] \twoheadrightarrow \Gamma(X)$ impliziert, dass $\Gamma(X)$ als k-Algebra endlich erzeugte ist. Es gilt:

$$\Gamma(X)$$
 irreduzibel $\Leftrightarrow I(X) = \operatorname{rad} I(X)$.

Denn mit Satz 1.10.(ii) und Korollar 1.11 folgt:

$$X = V(\mathfrak{a}): \ I(X) = \operatorname{rad} \mathfrak{a}$$

$$\Rightarrow \operatorname{rad} I(X) = \operatorname{rad} \operatorname{rad} \mathfrak{a} = \operatorname{rad} \mathfrak{a} = I(X).$$

Mit Lemma 1.17 folgt: X irreduzibel

$$\Leftrightarrow I(X)$$
 prim

$$\Leftrightarrow \Gamma(X) = k[\underline{T}]/I(X)$$
 integer.

1.12 Funktorielle Eigenschaften von $\Gamma(X)$

Satz 1.29. Für einen Morphismus $X \xrightarrow{f} Y$ affiner algebraischer Mengen definiert

$$\Gamma(f): \quad \Gamma(Y) \to \Gamma(X)$$

$$g \mapsto g \circ f$$

ein Homomorphismus von k-Algebren. Der so definierte kontravariante Funktor

 $\Gamma: \{\textit{affine algebraische Mengen}\} \rightarrow \{\textit{reduzierte endl. erz. k-Algebran}\}$

liefert eine Kategorienäquivalenz, welche durch Einschränkung eine Äquivalenz

 $\Gamma: \{irred. \ aff. \ alg. \ Mengem\} \rightarrow \{integre \ endl. \ erz. \ k-Algebren\}$

induziert.

Beweis. Sei $Y \xrightarrow{g} \mathbb{A}^1(k) \in \Gamma(Y)$ ein Morphismus. Es folgt:

$$g \circ f : X \xrightarrow{f} Y \xrightarrow{g} \mathbb{A}^{1}(k)$$

ist Morphismus, d.h. $g \circ f \in \Gamma(X)$. $\Gamma(f) : \Gamma(Y) \to \Gamma(X)$ ist ein k-Algebren-Homomorphismus mit $\Gamma(\mathrm{id}_X) = \mathrm{id}_{\Gamma(X)}$. Da ferner gilt, dass $\Gamma(f_1 \circ f_2) = \Gamma(f_2) \circ \Gamma(f_1)$ ist Γ ein kontravarianter Funktor.

Behauptung. Γ ist volltreu, d.h.

$$\Gamma : \hom(X, Y) \to \hom_{k\text{-Alg}}(\Gamma(Y), \Gamma(X))$$
$$f \mapsto \Gamma(f)$$

ist bijektiv für alle affinen algebraischen Mengen X, Y.

Beweis. Wir konstruieren eine Umkehrabbildung wie folgt: Zu $\varphi : \Gamma(Y) \to \Gamma(X)$ für $X \subseteq \mathbb{A}^m(k), Y \subseteq \mathbb{A}^n(k)$ existiert ein Lift $\tilde{\varphi}$, s.d.

$$k[T'_1, \dots, T'_n] \xrightarrow{\tilde{\varphi}} k[T_1, \dots, T_m]$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Gamma(Y) \xrightarrow{\varphi} \Gamma(X)$$

kommutiert; $\tilde{\varphi}(T_i') := f_i$ mit $f_i \in \pi^{-1}(\varphi(T_i')) \subseteq k[T_1, ..., T_n]$, wobei $\pi: k[\underline{T}] \to \Gamma(X)$ die kanonische Projektion bezeichne. Definiere:

$$f: X \to Y$$

$$x = (x_1, \dots, x_n) \mapsto (\tilde{\varphi}(T_1')(x_1, \dots, x_n), \dots, \tilde{\varphi}(T_n')(x_1, \dots, x_n))$$

Behauptung. Γ ist essentiell surjektiv, d.h. zu jeder reduzierten endlich erzeugten k-Algebra A existiert eine affine algebraische Menge X mit $A \cong \Gamma(X)$.

Beweis. Da nach Voraussetzung $A \cong k[T]/\mathfrak{a}$ für ein Radikalideal \mathfrak{a} , können wir etwa $X := V(\mathfrak{a}) \subseteq \mathbb{A}^n(k)$ setzen. Der Rest folgt aus Satz 1.28.

Satz 1.30. Sei $f: X \to Y$ ein Morphismus affiner algebraischer Mengen und $\Gamma(f): \Gamma(Y) \to \Gamma(X)$ der zugehörige Homomorphismus der Koordinatenringe. Dann gilt $\forall x \in X: \Gamma(f)^{-1}(\mathfrak{m}_x) = \mathfrak{m}_{f(x)}$.

Beweis.

$$\Gamma(f)^{-1}(\mathfrak{m}_x) = \{g \in \Gamma(Y) \mid g \circ f \in \mathfrak{m}_x\} = \{g \in \Gamma(Y) \mid g(f(x)) = 0\} = \mathfrak{m}_{f(x)},$$
 da $\Gamma(f)(g) = g \circ f$.

1.13 Räume mit Funktionen

(Prototyp eines geometrischen Objektes, Spezialfall eines "geringten Raumes" vgl. später.) Sei K ein nicht notwendigerweise algebraisch abgeschlossener Körper.

Definition 1.31.

- (i) Ein Raum mit Funktionen $_{/K}$ besteht aus den folgenden Daten:
 - ein topologischer Raum X;
 - eine Familie von Unter-K-Algebren

$$\mathcal{O}_X(U) \leq \text{Abb}(U, K), \quad \forall U \subseteq X \text{ offen } d.d$$

- 1. Sind $U' \subseteq U \subseteq X$ offen und $f \in \mathcal{O}_X(U)$ so ist $f|_{U'} \in \mathcal{O}_X(U')$.
- 2. (Verklebungsaxiom) Sind $U_i \subseteq X$ offen, $i \in I$, und $U = \bigcup_i U_i$, $f_i \in \mathcal{O}_X(U_i)$, $i \in I$ gegeben mit

$$f_i|_{U_i \cap U_j} = f_j|_{U_i \cap U_j} \quad \forall i, j \in I$$

dann ist die eindeutige Abbildung

$$f: U \to K \text{ mit } f|_{U_i} = f_i$$

in
$$\mathcal{O}_X(U)$$
, bzw. $\exists ! f \in \mathcal{O}(U)$ mit $f|_{U_i} = f_i$ für alle $i \in I$.

Bezeichne \mathcal{O}_X oder auch \mathcal{O} die oben genannte Familie $\{\mathcal{O}_X(U) \mid U \subseteq X \text{ offen}\}$. Das Tupel (X, \mathcal{O}_X) heißt **Raum mit Funktionen**.

(ii) Ein **Morphismus** $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ von Räumen von Funktionen ist eine stetige Abbildung $\varphi: X \to Y$, so dass für alle $V \subseteq Y$ offen und $f \in \mathcal{O}_Y(V)$ gilt:

$$f \circ \varphi|_{\varphi^{-1}(V)} : \varphi^{-1}(V) \to K$$

liegt in $\mathcal{O}_X(\varphi^{-1}(V))$.

$$X \xrightarrow{\varphi} Y$$

$$\downarrow \qquad \qquad \downarrow \text{offen}$$

$$\varphi^{-1}(V) \xrightarrow{\varphi|} V$$

$$f \circ \varphi|_{\varphi^{-1}(V)} \downarrow \qquad \qquad \downarrow f$$

$$K = K$$

Wir erhalten die Kategorie der Räume mit Funktionen über K.

Definition 1.32 (offene Unterräume von Räumen mit Funktionen). Für (X, \mathcal{O}_X) einen Raum mit Funktionen und $U \subseteq X$ offen bezeichne $(U, \mathcal{O}_X|_U)$ den Raum mit Funktionen gegeben durch den topologischen Raum U mit Funktionen $\mathcal{O}_X|_U(V) := \mathcal{O}_X(V)$ für $V \subseteq U \subseteq X$.

 ${\bf Ab}$ jetzt betrachten wir Räume von Funktionen über einem fixierten, algebraisch abgeschlossenen Grundkörper k.

1.14 Der Raum mit Funktionen zu einer affin-algebraischen Menge

Ziel. Wir wollen jeder irreduziblen affin algebraischen Menge $X \subseteq \mathbb{A}^n(k)$ einen Raum mit Funktionen (X, \mathcal{O}_X) zuordnen. D.h. wir müssen Mengen von Funktionen $\mathcal{O}_X(U) \leq \mathrm{Abb}(U, k)$, $U \subseteq X$ offen, definieren. Diese werden als Teilmengen des Funktionenkörpers K(X) definiert (dazu X irreduzibel, später bei Schemata fällt diese Bedingung weg!)

Definition 1.33. Für eine irreduzible, affin-algebraische Menge X heißt $K(X) := \operatorname{Quot}(\Gamma(X))$ Funktionenkörper von X.

Elemente $\frac{f}{g} \in K(X)$, $f, g \in \Gamma(X) = \text{hom}(X, \mathbb{A}^1(k))$, $g \neq 0$ lassen sich zumindest als Funktion auf der offenen Menge $D(g) \subseteq X$ auffassen, wenn auch i.A. nicht auf ganz X.

Lemma 1.34. Gilt für $\frac{f_1}{g_1}, \frac{f_2}{g_2} \in K(X), f_i, g_i \in \Gamma(X), und einer offenen Teilmenge <math>\emptyset \neq U \subseteq D(g_1g_2)$

$$\frac{f_1(x)}{g_1(x)} = \frac{f_2(x)}{g_2(x)} \qquad \forall x \in U,$$

dann folgt $\frac{f_1}{g_1} = \frac{f_2}{g_2}$ in K(X).

Beweis. Sei ohne Einschränkung der Allgemeinheit $g_1 = g_2 = g$. (Sonst Erweitern!)

$$\Rightarrow (f_1 - f_2)(x) = 0 \ \forall x \in U.$$

$$\Rightarrow \emptyset \neq U \subseteq V(f_1 - f_2) \subseteq X \text{ dicht, d.h. } V(f_1 - f_2) = X.$$

$$f_1 - f_2 \in I()V(f_1 - f_2)) = I(X) \equiv (0) \text{ in } \Gamma(X)$$

$$\Rightarrow f_1 - f_2 = 0.$$

Definition 1.35. Sei X eine irreduzible affin-algebraische Menge, $U \subseteq X$ offen. Für $x \in X$ bezeichne $\Gamma(X)_{\mathfrak{m}_x}$ die Lokalisierung von $\Gamma(X)$ an der multiplikativ abgeschlossenen Menge $S := \Gamma(X) \setminus \mathfrak{m}_x$.

$$\mathcal{O}_X(U) := \bigcap_{x \in U} \Gamma(X)_{\mathfrak{m}_x} \subseteq K(X)$$

d.h. für jedes $x \in U$ lässt sich $f \in \mathcal{O}_X(U)$ schreiben als $\frac{h}{g} \in K(X)$ mit $g(x) \neq 0$.

Für $f \in \Gamma(X)$ bezeichne $\Gamma(X)_f$ die Lokalisierung von $\Gamma(X)$ an der multiplikativ abgeschlossenen Menge $\{1, f, f^2, \dots, f^n \dots\}$. Dann lässt sich

$$\Gamma(X)_{\mathfrak{m}_x} = \bigcup_{f \in \Gamma(X) \setminus \mathfrak{m}_x} \Gamma(X)_f \subseteq K(X)$$

schreiben. " \supseteq ": klar, " \subseteq ": $\frac{g}{f}$ mit $f(x) \neq 0$ d.h. $f \notin \mathfrak{m}_x \Rightarrow \frac{g}{f} \in \Gamma(X)_f$.

Es gilt:

(i) Für $V \subseteq U \subseteq X$ offen kommutiert das folgende Diagramm:

$$\mathcal{O}_X(V) \hookrightarrow \operatorname{Abb}(V, k)$$

$$\downarrow \qquad \qquad \uparrow \text{Einschränkungsabb.}$$

$$\mathcal{O}_X(U) \hookrightarrow \operatorname{Abb}(U, k)$$

mit $\mathcal{O}_X(U) \hookrightarrow \mathcal{O}_X(V), f \mapsto f|_V$ nach Definition.

- (ii) $\mathcal{O}_X(U) \to \text{Abb}(U, k)$, $f \mapsto (x \mapsto f(x) := \frac{g(x)}{f(x)} \in k)$ ist injektiv (Lemma 1.34) und wohldefiniert (kürzen/erweitern), wobei $g, h \in \Gamma(X)$ mit $h \notin \mathfrak{m}_x$ mit $f = \frac{g}{h}$ nach Definition von $\mathcal{O}_X(U)$ existiert.
- (iii) Verklebungseigenschaft. Sei $U = \bigcup_{i \in I} U_i$. Nach Definition ist

$$\mathcal{O}_X(U) = \bigcap_i \mathcal{O}_X(U_i) \subseteq K(X)$$

$$\ni f: U \to k \quad \ni f_i: U_i \to k$$

[Diagramm fehlt]. (X, \mathcal{O}_X) ist Raum mit Funktionen, der zur irreduziblen affin algebraische Menge assoziierte Raum von Funktionen.

Satz 1.36 (orig. 33). Für (X, \mathcal{O}_X) zu X wie oben und $f \in \Gamma(X)$ gilt:

$$\mathcal{O}_X(D(f)) = \Gamma(X)_f,$$

insbesondere $\mathcal{O}_X(X) = \Gamma(X)$.

Beweis. $\Gamma(X)_f \subseteq \mathcal{O}_X(D(f))$ klar, da $f(x) \neq 0 \ \forall x \in D(f)$ bzw. $f \in \Gamma(X) \setminus \mathfrak{m}_x$.

Sei nun g in $\mathcal{O}_X(D(f))$ gegeben, (*) und $\mathfrak{a} := \{h \in \Gamma(X) \mid hg \in \Gamma(X)\} \subseteq \Gamma(X)$.

Dann gilt: $g \in \Gamma(X)_f$

 $\Leftrightarrow g = \frac{k}{f^n}$ für ein n und $k \in \Gamma(X)$

 $\Leftrightarrow f^n \in \mathfrak{a}$ für ein n.

d.h. zu zeigen: $f \in rad(\mathfrak{a}) = I(V(\mathfrak{a}))$ (Hilbertscher Nullstellensatz)

$$\Leftrightarrow f(x) = 0 \ \forall x \in V(\mathfrak{a})$$

Ist dazu $x \in X$ mit $f(x) \neq 0$, also $x \in D(f)$, so existieren wegen $g \in \mathcal{O}_X(D(f))$

Funktionen $f_1, f_2 \in \Gamma(X), f_2 \notin \mathfrak{m}_x$ mit $g = \frac{f_1}{f_2}$, also gilt $f_2 \in \mathfrak{a}$.

Da
$$f_2(x) \neq 0$$
 folgt weiter $x \notin V(\mathfrak{a})$.

Bemerkung 1.37 (orig. 34).

- (i) Im Allgemeinen existieren für $f \in \mathcal{O}_x(U)$ nicht notwendigerweise $g, h \in \Gamma(X)$ mit $f = \frac{g}{h}$ und $h(x) \neq 0 \ \forall x \in U$.
- (ii) Alternative Definition von \mathcal{O}_X , I.

$$\mathcal{O}_X(D(f)) := \Gamma(X)_f, \quad \forall f \in \Gamma(X).$$

Da $(D(f))_{f \in \Gamma(X)}$ Basis der Topologie bildet, kann es höchstens einen Raum mit Funktionen mit dieser Eigenschaft geben, es bleibt die Existenz zu zeigen.

(iii) Alternative Definition von \mathcal{O}_X , II.

Direkt von einer integeren endlich erzeugten k-Algebra A ausgehend (die X bis auf Isomorphie festlegt), aber ohne "Koordinaten" zu wählen.

$$X := \{ \mathfrak{m} \leq A \mid \mathfrak{m} \text{ ist max. Ideal} \}$$

Die abgeschlossenen Mengen sind gegeben durch:

$$V(\mathfrak{a}) := \{ \mathfrak{m} \in X \mid \mathfrak{m} \supseteq \mathfrak{a} \}, \quad \mathfrak{a} \subseteq A \text{ Ideal.}$$

$$\mathcal{O}_X(U) := \bigcap_{\mathfrak{m} \in U} A_{\mathfrak{m}} \subseteq \operatorname{Quot}(A)$$
 für $U \subseteq X$ offen (vgl. später Schemata).

1.15 Funktorialität der Konstruktion

Satz 1.38 (orig. 35). Sei $f: X \to Y$ eine stetige Abbildung zwischen irreduziblen affinalgebraischen Mengen. Es sind äquivalent:

- (i) f ist ein Morphismus affin-algebraischer Mengen.
- (ii) $\forall g \in \Gamma(Y)$ gilt $g \circ f \in \Gamma(X)$.
- (iii) f ist ein Morphismus von Räumen von Funktionen, d.h. für alle $U \subseteq Y$ offen und alle $g \in \mathcal{O}_Y(U)$ gilt $g \circ f \in \mathcal{O}_X(f^{-1}(U))$.

Beweis.

- $(i) \Leftrightarrow (ii)$ Folgt aus Satz 1.29.
- $(iii) \Rightarrow (ii)$ U := Y und Satz 1.36.
- $(ii) \Rightarrow (iii)$

Betrachte $\Gamma(f): \Gamma(Y) \to \Gamma(X)$, $h \mapsto h \circ f$. Aufgrund des Verklebungsaxioms reicht es, die Bedingung für U von der Form D(g) zu zeigen; hier gilt:

$$f^{-1}(D(g)) = \{x \in X \mid \underbrace{g(f(x))}_{=\Gamma(f)(g)(x)} \neq 0\} = D(g \circ f)$$

Deswegen induziert $\Gamma(f)$:

$$h \longmapsto h \circ f$$

$$\mathcal{O}_{Y}(D(g)) \longrightarrow \mathcal{O}_{X}(D(g \circ f))$$

$$\Gamma(Y)_{g} \longrightarrow \Gamma(X)_{g \circ f}$$

$$\frac{h}{g^{n}} \longmapsto \frac{h \circ f}{(g \circ f)^{n}}$$

mit $h \circ f, g \circ f \in \Gamma(X)$ nach Voraussetzung.

Insgesamt erhalten wir:

Theorem 1.39 (orig. 36). Die obige Konstruktion definiert einen volltreuen Funktor

 $\{irreduzible \ aff. \ alg. \ Mengen \ \ddot{u}ber \ k\} \rightarrow \{R\ddot{a}ume \ mit \ Funktionen \ \ddot{u}ber \ k\}.$

Prävarietäten

Ziel. Klasse der affin-algebraischen Mengen, aufgefasst als Räume mit Funktionen durch Verkleben vergrößern.

 (X, \mathcal{O}_X) heißt **zusammenhängend**, falls X als topologischer Raum zusammenhängend ist.

1.16 Definition von Prävarietäten

Definition 1.40 (orig. 37). Eine **affine Varietät** ist ein Raum mit Funktionen, der isomorph zu dem Raum mit Funktionen assoziiert zu einer irreduziblen affin-algebraischen Menge ist.

Definition 1.41 (orig. 38). Eine **Prävarietät** ist ein zusammenhängender Raum mit Funktionen (X, \mathcal{O}_X) , für den eine *endliche* Überdeckung $X = \bigcup_{i=1}^n U_i$ durch offene Teilmengen $U_i \subseteq X$ existiert, d.d. $\forall i = 1, \ldots, n$ $(U_i, \mathcal{O}_{X|U_i})$ eine affine Varietät ist. Insbesondere sind affine Varietäten Prävarietäten!

Ein Morphismus von Prävarietäten ist ein Morphismus der entsprechenden Räume mit Funktionen.

Später sehen wir: Varietät = "separierte Prävarietät". Affine Varietäten sind stets "separiert", daher braucht man nicht von "affinen Prävarietäten" zu reden. Ist X eine affine Varietät, so schreiben wir oft $\Gamma(X)$ für $\mathcal{O}_X(X)$ (vgl. Satz 1.36).

Unter einer **offenen affinen Überdeckung** einer Prävarietät X verstehen wir eine Famile von offenen affinen Unterräumen mit Funktionen $U_i \subseteq X$, $i \in I$ die affine Varietäten sind, d.d. $X = \bigcup_i U_i$.

1.17 Vergleich mit differenzierbaren/komplexen Mannigfaltigkeiten

Differential/Komplexe Geometrie Mannigfaltigkeiten werden via Kartenabbildungen mit differenzierbaren/holomorphen Übergangsabbildungen definiert (hier problematisch, da offene Teile affiner algebraischer Mengen i.A. keine solche Struktur besitzen.) Jedoch:

{differenzierbare Mfgkt.}
$$\longrightarrow$$
 {Räume mit Fkt./ \mathbb{R} }
$$X \longmapsto (X, \mathcal{O}_X)$$

$$\mathcal{O}_X(U) := C^{\infty}(U, \mathbb{R}), \ U \subseteq X \text{ offen}$$

ist ein volltreuer Funktor. Daher kann man differenzierbare Mannigfaltigkeiten auch als diejenigen Räume mit Funktionen über \mathbb{R} definieren, für die X Hausdorff ist, und so dass eine offene Überdeckung durch solche Räume mit Funktionen über \mathbb{R} existiert, die in obiger Weise offene Teilmengen von \mathbb{R}^n zugeordnet sind. (Analog bei komplexen Mannigfaltigkeiten.)

1.18 Topologische Eigenschaften von Prävarietäten

Lemma 1.42. Für einen topologischen Raum X und $U \subseteq X$ offen haben wir eine Bijektion

$$\{Y\subseteq U\ irred.\ abg.\}\longleftrightarrow \{Z\subseteq X\ irred.\ abg.\ mit\ Z\cap U\neq\emptyset\}$$

$$Y\longmapsto \overline{Y}\ (Abschluss\ in\ X)$$

$$Z\cap U\longleftrightarrow Z$$

Beweis. Lemma 1.14: $Y \subseteq X$ irreduzibel $\Leftrightarrow \overline{Y} \subseteq X$ irreduzibel.

 $Y\subseteq U$ abgeschlossen $\Leftrightarrow \exists A\subseteq X$ abgeschlossen: $Y=U\cap A.$

$$\Rightarrow Y \subseteq \overline{Y} \subseteq A \Rightarrow Y = U \cap \overline{Y}$$

Y irreduzibel in $U \Rightarrow Y$ irreduzibel in X

 $\Rightarrow \overline{Y}$ irreduzibel nach 1.14

$$\Rightarrow Y \mapsto \overline{Y} \mapsto \overline{Y} \cap U = Y. \checkmark$$

 $\emptyset \neq Z \cap U \subseteq Z$ damit dicht da Z irreduzibel (Satz 1.13 ii. und v.)

Also ist die Abbildung \leftarrow wohldefiniert.

$$\Rightarrow \overline{Z \cap U} = Z$$

Satz 1.43. Sei (X, \mathcal{O}_X) eine Prävarietät.

Dann ist X noethersch (insbesondere quasikompakt) und irreduzibel.

Beweis. Sei $X = \bigcup_{i=1}^n$ endliche offene aff. Überdeckung und $X \supseteq Z_1 \supseteq Z_2 \supseteq \cdots$ eine absteigende Kette abgeschlossener Teilmengen.

 $\Rightarrow U_i \cap Z_1 \supseteq U_i \cap Z_2 \supseteq \cdots$, ist eine absteigende Kette abgeschlossener Teilmengen von U_i

 $\Rightarrow \forall i \ \exists n_i \in \mathbb{N}: U_i \cap Z_{n_i} = U_i \cap Z_{i+m}$ für alle $m \in \mathbb{N}$. Setzen wir $n := \max n_i$, so folgt:

$$\forall i = 1, \dots, n \ \forall m \ge n : U_i \cap Z_m = U_i \cap Z_{m+1}$$

 $\Rightarrow (Z_i)_i$ wird stationär da $Z_m = \bigcup_i U_i \cap Z_m$.

X ist demnach noethersch.

X ist weiter irreduzibel:

Sei $X = X_1 \cup \cdots \cup X_n$ die Zerlegung in irreduzible Komponenten.

Angenommen es wäre $n \geq 2$.

$$\Rightarrow \exists i_0 \in \{2, \dots, n\}: X_1 \cap X_{i_0} \neq \emptyset. \text{ (Andernfalls gilt: } X = X_1 \sqcup \underbrace{X \backslash X_1}_{=X_2 \cup \dots \cup X_n \text{ abg.}}, \text{ im Widerspruch}$$

dazu, dass X zusammenhängend ist.)

Sei ohne Einschränkung $i_0 = 2$. Sei $x \in X_1 \cap X_2$, $x \in U \subseteq X$ offen, affin (d.h. affine Varietät).

$$U$$
 irreduzibel $\Rightarrow \overline{U}$ (Abschluss in X) $\subseteq X_j$ für ein $j \in \{1, \dots, n\}$

Jedoch: Da
$$x \in X_i \cap U \subseteq U$$
 irreduzibel ist, ist $\underbrace{\overline{X_i \cap U}}_{\subseteq \overline{U} \subseteq X_i} = X_i$, $i = 1, 2$

$$\Rightarrow X_1, X_2 \subseteq X_i$$
. Widerspruch zu maximale Komponente.

1.19 Offene Untervarietäten

Offene Teilmengen von affinen Varietäten (und allgemeiner beliebigen Prävarietäten) sind wieder Prävarietäten. (aber i.A. nicht affin!)

Lemma 1.44 (orig. 41). Sei X eine affine Varietät, $f \in \mathcal{O}_X(X)$, $D(f) \subseteq X$. Die Lokalisierung von $\Gamma(X) = \mathcal{O}_X(X)$ an f,

$$\Gamma(X)_f = \Gamma(X)[T]/(Tf-1)$$

ist eine integre, endlich erzeugte k-Algebra. (Y, \mathcal{O}_Y) bezeichne die zugehörige affine Varietät. Dann gilt:

$$(D(f), \mathcal{O}_X|_{D(f)}) \cong (Y, \mathcal{O}_Y)$$

als Räume mit Funktionen, d.h. $(D(f), \mathcal{O}_{X|_{D(f)}})$ ist selbst affine Varietät.

Beweis. $\mathcal{O}_X(D(f)) = \mathcal{O}_X(X)_f$ muss affiner Koordinatenring von $(D(f), \mathcal{O}_{X|_{D(f)}})$ sein, wenn letzterer Raum von Funktionen affin ist. $X \subseteq \mathbb{A}^n(k)$ korrespondiert zu dem Radikalideal:

$$\mathfrak{a} := I(X) \leq k[T_1, \dots, T_n] \subseteq \mathfrak{a}' := (\mathfrak{a}, fT_{n+1} - 1) \subseteq k[T_1, \dots, T_{n+1}]$$

mit Koordinatenringen:

$$\Gamma(X) = k[T_1, \dots, T_n]/\mathfrak{a}$$

$$\Gamma(Y) = \Gamma(X)_f = (k[T_1, \dots, T_n]/\mathfrak{a})[T_{n+1}]/(T_{n+1}f - 1)$$

$$\cong k[T_1, \dots, T_{n+1}]/\mathfrak{a}'$$

Für $Y = V(\mathfrak{a}') \subseteq \mathbb{A}^{n+1}(k)$ induziert die Abbildung

$$Y \subseteq \mathbb{A}^{n+1}(k) \qquad (x_1, \dots, x_{n+1}) \qquad T_i$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \subseteq \mathbb{A}^n(k) \qquad (x_1, \dots, x_n) \qquad T_i$$

eine Bijektion $Y \xrightarrow{j} D_X(f)$ mit Umkehrabbildung $(x_0, \dots, x_n, \frac{1}{f(x_0, \dots, x_n)}) \longleftrightarrow (x_0, \dots, x_n)$ Behauptung. j ist Isomorphismus von Räumen mit Funktionen:

- (i) j ist stetig (als Einschränkung einer stetigen Abbildung) \checkmark
- (ii) j ist offen: Für $\frac{g}{f^n} \in \Gamma(X)_f = \Gamma(Y)$ mit $g \in \Gamma(X)$ gilt

$$j\left(D_Y\left(\frac{g}{f^n}\right)\right) = j\left(D_Y(gf)\right)$$
 f Einheit $= D_X(gf)$ offen

 $\Rightarrow j$ Homömorphismus.

(iii) j induziert $\forall g \in \Gamma(X)$ Isomorphismen:

$$\mathcal{O}_X(D(fg)) \longrightarrow \Gamma(Y)_g$$

 $s \longmapsto s \circ j$

mit $\mathcal{O}_X(D(fg)) = \Gamma(X)_{fg} = \Gamma(X)_f)_g = \Gamma(Y)_g$. Mit dem Verklebungsaxiom folgt: j ist Morphismus von Räumen mit Funktionen.

Satz 1.45 (orig. 42). Sei (X, \mathcal{O}_X) Prävarietät, $\emptyset \neq U \subseteq X$ offen. Dann ist $(U, \mathcal{O}_X|_U)$ eine Prävarietät und $U \hookrightarrow X$ ist Morphismus von Prävarietäten.

Beweis. X ist irreduzibel, also folgt mit Satz 1.13, dass U zusammenhängend ist. Nach Voraussetzung besitzt $X = \bigcup_i X_i$ eine affine, offene Überdeckung. Es folgt:

$$U = \bigcup_{i} (\underbrace{X_i \cap U}_{\text{offen in } X_i}) = \bigcup_{i,j} D_{X_i}(f_{i,j})$$

und $D_{X_i}(f_{i,j})$ ist eine affine Varietät nach Lemma 1.44. Da X noethersch ist, folgt mit Lemma 1.20, dass U quasikompakt ist.

 \Rightarrow Es existiert eine endliche Teilüberdeckung, also ist U Prävarietät. \checkmark

Die kanonische Inklusion $i:U\hookrightarrow X$ ist sicher stetig. Für $f\in\mathcal{O}_X(V), V\subseteq X$ offen gilt mit dem Einschränkungsaxiom

$$\mathcal{O}_X|_U(U\cap V) = \mathcal{O}_X(U\cap V) \ni f\circ i = f|_{U\cap V}$$

Also ist i Morphismus von Prävarietäten.

Die offenen affinen Teilmengen einer Prävarietät X ($\hat{=}U \subseteq X$ offen mit $(U, \mathcal{O}_X|_U)$ affine Varietät) bilden eine Basis der Topologie von X, da X durch offene affine Untervarietäten überdeckt wird und letzere diese Eigenschaft nach Lemma 1.44 haben.

1.20 Funktionenkörper einer Prävarietät

Definition 1.46 (orig. 43). Für eine Prävarietät X sind die rationalen Funktionenkörper aller nicht-leeren affin-offenen Teilmengen in natürlicher Weise zu einander isomorph. Diesen Körper K(X) nennen wir den **rationalen Funktionenkörper**von X.

Beweis. $\emptyset \neq U, V \subseteq X$ affine, offene Untervarietäten. Da X irreduzibel ist, gilt nach Satz 1.13:

$$\emptyset \neq U \cap V \subseteq U$$
 offen.

Nach Definition von \mathcal{O}_X ist

$$\mathcal{O}_X(U) \subseteq \mathcal{O}_X(U \cap V) \subseteq K(U) = \operatorname{Quot}(\mathcal{O}_X(U)).$$

Das impliziert $\operatorname{Quot}(\mathcal{O}_X(U \cap V)) = K(U)$. Aus Symmetriegründen ist aber damit auch bereits $K(V) = \operatorname{Quot}(\mathcal{O}_X(U \cap V))$.

Bemerkung 1.47 (orig. 44). Bildung des des Funktionenkörpers $K(\cdot)$ ist **nicht** funktoriell! Für $X \to Y$ Morphismus affiner Varietäten ist die Abbildung auf den Koordinatenringen $\Gamma(Y) \to \Gamma(X)$ i.A. **nicht** injektiv, induziert also keine Abbildung $K(Y) \hookrightarrow K(X)$.

Jedoch: Eine Isomorphie $X \xrightarrow{\sim} Y$ induziert $K(Y) \xrightarrow{\sim} K(X)$. Allgemeiner sei $X \xrightarrow{\varphi} Y$ Morphismus mit $\operatorname{im}(\varphi) \subseteq Y$ offen (\Rightarrow dicht. Später: $X \xrightarrow{\varphi} Y$ dominant, gdw. $\operatorname{im}(\varphi) \subseteq Y$ dicht) induziert in funktioreller Weise eine Abbildung $K(Y) \hookrightarrow K(X)$.

Satz 1.48 (orig. 45). Sei X eine Prävarietät, $V \subseteq U \subseteq X$ offen. Dann gilt:

- (i) $\mathcal{O}_X(U) \subseteq K(X)$ ist k-Unteralgebra.
- (ii) $\mathcal{O}_X(U) \to \mathcal{O}_X(V)$ ist Inklusion von Teilmengen des Funktionenkörpers K(X).
- (iii) Insbesondere gilt für $U, V \subseteq X$ offen:

$$\mathcal{O}_X(U \cup V) = \mathcal{O}_X(U) \cap \mathcal{O}_X(V).$$

Beweis.

(ii) Sei $\mathcal{O}_X(X) \ni f: X \to k$. Dann ist $f^{-1}(0) \subseteq X$ abgeschlossen, da für $W \subseteq X$ affin-offen beliebig gilt, dass

$$f^{-1}(0) \cap W = V(f|_W).$$

Dazu macht man sich klar: "abgeschlossen" ist eine lokale Eigenschaft, affin-offene W bilden eine Basis der Topologie.

$$\Rightarrow \mathcal{O}_X(U) \hookrightarrow \mathcal{O}_X(V), f \mapsto f|_V$$
 ist injektiv für $\emptyset \neq V \subseteq U \subseteq X$ offen.

$$\Rightarrow V \subseteq f^{-1}(0)$$

$$\Rightarrow f^{-1}(0) = U$$

$$\Rightarrow f \equiv 0.$$

(i) $U \supseteq W$ affin-offene Untervarietät.

(iii) Wir haben folgendes kommutatives Diagramm:

Nach dem Verklebungsaxiom ist die Sequenz

$$0 \longrightarrow \mathcal{O}_X(U \cup V) \longrightarrow \mathcal{O}_X(U) \times \mathcal{O}_X(V) \longrightarrow \mathcal{O}_X(U \cap V)$$

$$f \longmapsto (f|_U, f|_V)$$

$$(g, h) \longmapsto g|_{U \cap V} - h|_{U \cap V}$$

exakt.

1.21 Abgeschlossene Unterprävarietäten

Sei X eine Prävarietät, $Z\subseteq X$ abgeschlossen und irreduzibel.

Ziel. (Z, \mathcal{O}'_Z) Raum von Funktionen erklären. Definiere dazu für $U \subseteq Z$ offen:

$$\mathcal{O}_Z'(U) := \{ f \in \mathrm{Abb}(U,k) \mid \forall x \in U \ \exists x \in V \subseteq X \ \mathrm{offen}, \ g \in \mathcal{O}_X(V) \ \mathrm{mit} \ f|_{U \cap V} = g|_{U \cap V} \}$$

Damit ist (Z, \mathcal{O}'_Z) Raum von Funktionen (klar!) mit $\mathcal{O}'_X = \mathcal{O}_X$.

Lemma 1.49 (orig. 46). Seien $X \subseteq \mathbb{A}^n(k)$ eine irreduzible, affin-algebraische Menge und $Z \subseteq X$ ein irreduzibler abgeschlossener Teilraum. Dann ist $(Z, \mathcal{O}_Z) = (Z, \mathcal{O}_Z')$.

Bezeichne ab jetzt stets \mathcal{O}_Z für $\mathcal{O}_{Z'}$.

Beweis. $Z \subseteq X$ ist in beiden Fällen mit der Teilraumtopologie ausgestattet! Ferner wissen wir, dass der Morphismus $Z \hookrightarrow X$ affin-algebraischer Mengen einen Morphismus $(Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ von Prävarietäten induziert. Nach Definition von \mathcal{O}' folgt dann:

$$\mathcal{O}'_Z(U) \subseteq \mathcal{O}_Z(U)$$
 für $U \subseteq Z$ offen, denn:

Ist $f \in \mathcal{O}'_Z(U)$ und $x \in U$ so existieren nach Definition eine offene Umgebung $x \in V_x \subseteq X$ und ein $g \in \mathcal{O}_X(V_x)$ d.d. $f|_{U \cap V_x} = g|_{U \cap V_x}$. Damit gilt $g|_{Z \cap V_x} \in \mathcal{O}_Z(Z \cap V_x)$. Mit dem Verklebungsaxiom erhalten wir also $f \in \mathcal{O}_Z(U)$.

Sei $f \in \mathcal{O}_Z(U)$ und $x \in U$ beliebig. Es folgt: $\exists h \in \Gamma(Z)$ mit $x \in D(h) \subseteq U$ und

$$f|_{D(h)} = \frac{g}{h^n} \in \Gamma(Z)_h = \mathcal{O}_Z(D(h))$$

für $n \geq 0$ und $g \in \Gamma(Z)$ geeignet. Lifte $g,h \in \Gamma(Z) \twoheadleftarrow \Gamma(X)$ zu $\overline{g},\overline{h} \in \Gamma(X)$ und setze $V := D(\overline{h}) \subseteq X$.

$$\Rightarrow x \in V, \ \frac{\overline{g}}{\overline{h}^n} \in \mathcal{O}_X(D(\overline{h})) \text{ und } f|_{U \cap V} = \frac{\overline{g}}{\overline{h}^n}|_{U \cap V}.$$

$$\Rightarrow f \in \mathcal{O}_Z'(U).$$

Korollar 1.50 (orig. 47). Wenn X eine Prävarietät ist, und $Z \subseteq X$ irreduzibel und abgeschlossen, dann ist (Z, \mathcal{O}_Z) ebenfalls eine Prävarietät.

Beweis. Es ist $X = \bigcup_i X_i$ für eine endliche affin-offene Überdeckung $(X_i)_i$. Damit ist

$$Z = \bigcup_{i} (Z \cap X_i) := \bigcup_{i} Z_i$$

mit (Z_i, \mathcal{O}_{Z_i}) affine Varietät nach Lemma 1.49.

Beispiele (Projektiver Raum und projektive Varietäten)

1.22 Homogene Polynome

Definition 1.51 (orig. 48). Ein Polynom $f \in k[X_0, ..., X_n]$ heißt **homogen vom Grad** $d \in \mathbb{Z}_{\geq 0}$, falls f die Summe von Monomen von Grad d ist. (Insbesondere ist für jedes d das Nullpolynom homogen von Grad d.)

Es bezeichne $k[X_0,\ldots,X_n]_d$ den k-Untervektorraum der Polynome homogen vom Grad $d,\,k[X_0,\ldots,X_n]_{\leq n}$ den k-Untervektorraum aller Polynome vom Grad $\leq n$.

Bemerkung 1.52 (orig. 49). Da #k unendlich ist, ist f homogen vom Grad $d \Leftrightarrow f(\lambda x_0, \dots, \lambda x_n) = \lambda^d f(x_0, \dots, x_n) \ \forall x_0, \dots, x_n \in k, \ \lambda \in k^{\times}.$

Es gilt:
$$k[X_0, \dots X_n] = \bigoplus_{d>0} k[X_0, \dots, X_n]_d$$
.

Lemma 1.53 (orig. 50). Für $i \in \{0, ..., n\}$ und $d \ge 0$ haben wir bijektive k-lineare Abbildungen

$$k[X_0, \dots, X_n]_d \longrightarrow k[T_0, \dots, \hat{T}_i, \dots, T_n]_{\leq d}$$

$$f \stackrel{\Phi_i^d}{\longmapsto} f(T_0, \dots, \underbrace{1}_i, \dots, T_n)$$

$$X_i^d g\left(\frac{X_0}{X_i}, \dots, \frac{\hat{X}_i}{X_i}, \dots, \frac{X_n}{X_i}\right) \stackrel{\Psi_i^d}{\longleftarrow} g$$

Dehomogenisierung bzw. Homogenisierung.

Beweis. Es reicht, $\Psi_i^d \circ \Phi_i^d = \operatorname{id}$, $\Phi_i^d \circ \Psi_i^d = \operatorname{id}$ auf Monomen nachzurechnen, da alle Abbildungen k-linear sind.

Oft ist es nützlich, $k[T_0,\ldots,\hat{T}_i,\ldots,T_n]$ mit $k\left[\frac{X_0}{X_i},\ldots,\frac{\hat{X}_i}{X_i},\ldots,\frac{X_n}{X_i}\right] \hookrightarrow k(X_0,\ldots,X_n)$ zu identifizieren.

1.23 Definition des projektiven Raumes

Seien $X_1=X_2=\mathbb{A}^1,\, \tilde{U}_1\subseteq X_1, \tilde{U}_2\subseteq X_2 \text{ mit } \tilde{U}_1=\tilde{U}_2=\mathbb{A}^1\setminus\{0\}.$

$$\tilde{U}_1 \xrightarrow{\sim} \tilde{U}_2$$

$$x \longmapsto \frac{1}{x}$$

Verkleben von X_1 und X_2 entlang $\tilde{U}_1 \stackrel{\sim}{\longrightarrow} \tilde{U}_2$ liefert die **projektive Gerade**

$$\mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\} = U_1 \cup U_2.$$

Allgemein:

$$\mathbb{P}^n = \bigcup_{i=1}^{n+1} U_i = \mathbb{A}^n \cup \mathbb{P}^{n-1} = \mathbb{A}^n \sqcup \mathbb{A}^{n-1} \sqcup \cdots \sqcup \mathbb{A}^1 \sqcup \mathbb{A}^0$$

Idee: $\mathbb{P}^2 \supseteq \mathbb{A}^2$: Zwei verschiedene Geraden in \mathbb{P}^2 schneiden sich genau in einem Punkt. Als Menge:

$$\mathbb{P}^n(k):=\{\text{Ursprungsgeraden in }k^{n+1}\}=\{\text{1-dim. }k\text{-Unterr\"{a}ume}\}$$

$$=(k^{n+1}\backslash\{0\})/k^\times$$

Man schreibt meist kurz $(x_0 : \ldots : x_n)$ für den Repräsentanten der Klasse von $\langle (x_0, \ldots x_n) \rangle_k$ und nennt $(x_0 : \ldots : x_n)$ homogene Koordinaten auf \mathbb{P}^n .

Äquivalenzrelation:

$$(x_0, \ldots, x_n) \sim (x'_0, \ldots, x'_n) \Leftrightarrow \exists \lambda \in k^{\times} \text{ mit } x_i = \lambda x'_i \ \forall i.$$

Die Mengen

$$U_i := \{(x_0 : \ldots : x_n) \in \mathbb{P}^n \mid x_i \neq 0\} \subseteq \mathbb{P}^n(k), \ 0 \le i \le n$$

sind wohldefiniert und überdecken $\mathbb{P}^n(k)$:

$$\mathbb{P}^n(k) = \bigcup_{i=0}^n U_i$$

Weiter hat man eine Bijektion

$$U_i \xrightarrow{\kappa_i} \mathbb{A}^n(k)$$

$$(x_0 : \dots : x_n) \longmapsto \left(\frac{x_0}{x_i}, \dots, \frac{\hat{x}_i}{x_i}, \dots, \frac{x_n}{x_i}\right)$$

$$(t_0 : \dots : t_{i-1} : 1 : t_{i+1} : \dots : t_n) \longleftrightarrow (t_0, \dots, \hat{t}_i, \dots, t_n)$$

Über die κ_i definiert man nun eine Topologie auf $\mathbb{P}^n(k)$ durch: $U \subseteq \mathbb{P}^n(k)$ ist genau dann offen, wenn $\kappa_i(U \cap U_i) \subseteq \mathbb{A}^n(k)$ offen ist für alle i.

Es gilt:

$$U_i \cap U_j = D(T_i) \subseteq U_i$$
 offen, $i \neq j$

wenn auf $U_i \cong \mathbb{A}^n$ die Koordinaten $T_0, \dots, \hat{T}_i, \dots, T_n$ verwendet werden. Damit wird $\mathbb{P}^n(k)$ zu einem topologischen Raum, der durch die U_i , $0 \le i \le n$, offen überdeckt wird.

1.23.1 Reguläre Funktionen

Sei $U \subseteq \mathbb{P}^n(k)$ eine beliebige offene Teilmenge. Die regularären Funktionen auf U sind definiert als

$$\mathcal{O}_{\mathbb{P}^n}(U) := \{ f \in Abb(U, k) \mid f|_{U \cap U_i} \in \mathcal{O}_{U_i}(U \cap U_i) \} \qquad \forall i \in \{0, \dots, n\}$$

wobei wir die U_i via κ_i implizit als Raum mit Funktionen auffassen. Insgesamt erhalten wir:

$$\mathbb{P}^n(k) = (\mathbb{P}^n(k), \mathcal{O}_{\mathbb{P}^n})$$

als Raum mit Funktionen.

Satz 1.54 (orig 51). Für $U \subseteq \mathbb{P}^n$ offen gilt: $\mathcal{O}_{\mathbb{P}^n}(U) = \{f : U \to k \mid \forall x \in U : \exists x \in V \subseteq U \text{ offen, } d \geq 0 \text{ und } g, h \in k[X_0, \dots, X_n]_d \text{ homogen vom selben Grad } d, d.d. \forall v \in V : h(v) \neq 0 \text{ und } f(v) = \frac{g(v)}{h(v)} \}$

Wohldefiniertheit: Sei $v = (x_0 : \ldots : x_n)$.

$$f(\lambda x_0, \dots, \lambda x_n) = \frac{g(\lambda x_0, \dots, \lambda x_n)}{h(\lambda x_0, \dots, \lambda x_n)} = \frac{\lambda^d g(x_0, \dots, x_n)}{\lambda^d h(x_0, \dots, x_n)} = f(x_0, \dots, x_n)$$

Beweis.

" \subseteq ": Sei $f \in \mathcal{O}_{\mathbb{P}^n}(U)$. Dann ist $f|_{U \cap U_i} \in \mathcal{O}_{U_i}(U \cap U_i)$. Es folgt:

$$f = \frac{\tilde{g}}{\tilde{h}}, \ \tilde{g}, \tilde{h} \in k[T_0, \dots, \hat{T}_i, \dots, T_n]$$

Definiere $d := \max\{\deg(\tilde{g}), \deg(\tilde{h})\}$. Homogenisiere:

$$g := \psi_i^d(\tilde{g}), \ h := \psi_i^d(\tilde{h})$$

 $\Rightarrow f = \frac{g}{h}$ lokal.

$$f(x) = \frac{\tilde{g}}{\tilde{h}}(\kappa_i(x))$$

$$f((x_0 : \dots : x_n)) = \frac{\tilde{g}\left(\frac{x_0}{x_i}, \dots, \frac{\hat{x_i}}{x_i}, \dots, \frac{x_n}{x_i}\right)}{\tilde{h}\left(\frac{x_0}{x_i}, \dots, \frac{\hat{x_i}}{x_i}, \dots, \frac{x_n}{x_i}\right)}$$

$$= \frac{x_i^d \tilde{g}(\dots)}{x_i^d \tilde{h}(\dots)}$$

$$= \frac{\psi_i^d(\tilde{g})(\dots)}{\psi_i^d(\tilde{h})(\dots)} = \frac{g}{h}(x_0 : \dots : x_n)$$

"⊇": Sei f in der rechten Menge, fixiere $i \in \{0, ..., n\}$. Nach Voraussetzung ist f lokal auf $U \cap U_i$ von der Form $f = \frac{g}{h}, g, h \in k[X_0, ..., X_n]_d, d \geq 0$ geeignet. Definiere:

$$\tilde{g}_i := \frac{g}{X_i^d}, \ \tilde{h} := \frac{h}{X_i^d} \in k \left[\frac{X_0}{X_i}, \dots, \frac{\hat{X}_i}{X_i}, \dots, \frac{X_n}{X_i} \right]$$

- $\Rightarrow f$ ist lokal von der Form: $\frac{\tilde{g}}{\tilde{h}}, \ \tilde{g}, \tilde{h} \in k[T_0, \dots, \hat{T}_i, \dots, T_n].$
- $\Rightarrow f|_{U \cap U_i} \in \mathcal{O}_{U_i}(U \cap U_i), \text{ also } f \in \mathcal{O}_{\mathbb{P}^n}(U).$

Korollar 1.55 (orig. 52). $F\ddot{u}r \ i \in \{0, \dots, n\}$ induziert

$$U \xrightarrow{\kappa_i} \mathbb{A}^n(k)$$

einen Isomorphismus

$$(U_i, \mathcal{O}_{\mathbb{P}^n|_{U_i}}) \xrightarrow{\cong} \mathbb{A}^n(k)$$

von Räumen mit Funktionen. Insbesondere ist $\mathbb{P}^n(k)$ eine Prävarietät.

Beweis. Zu zeigen: $\forall U \subseteq U_i$ offen gilt

$$\mathcal{O}_{\mathbb{P}^n(k)}(U) = \mathcal{O}_{U_i}(U) = \{ f : U \to k \mid f \in \mathcal{O}_{U_i}(U) \}$$

d.h. auf der rechten Seite muss die Bedingung nur für das fixierte i überprüft werden. Dies folgt aus dem Beweis von Satz 1.54.

Damit identifizieren sich die Funktionenkörper

$$K(\mathbb{P}^n(k)) = K(U_i) = k\left(\frac{X_0}{X_i}, \dots, \frac{X_n}{X_i}\right)$$

Satz 1.56 (orig. 53). $\mathcal{O}_{\mathbb{P}^n(k)}(\mathbb{P}^n(k)) = k$. Insbesondere ist \mathbb{P}^n für $n \geq 1$ keine affine Varietät. (Da der k-Algebra A = k ja $\mathbb{A}^0(k) = \{pt\}$ als affine Varietät entspricht.)

Beweis. $k\subseteq \mathcal{O}_{\mathbb{P}^n(k)}(\mathbb{P}^n(k))$ klar, da konstante Funktionen. Nach Satz 1.48 (iii) gilt:

$$\mathcal{O}_{\mathbb{P}^n}(\mathbb{P}^n) = \bigcap_{i=0}^n \mathcal{O}_{\mathbb{P}^n}(U_i) \subseteq K(\mathbb{P}^n(k))$$
$$= \bigcap_{i=0}^n k[t_0, \dots, \hat{t}_i, \dots, t_n] = k$$

1.24 Projektive Varietäten

Definition 1.57 (orig. 54). Abgeschlossene Unterprävarietäten eines projektiven Raumes $\mathbb{P}^n(k)$ heißen **projektive Varietäten**.

Vorsicht: für $x = (x_0 : \ldots : x_n) \in \mathbb{P}^n$, $f \in k[X_0, \ldots, X_n]$ ist $f(x_1, \ldots, x_n)$ nicht wohldefiniert, da von Repräsentaten abhängig, d.h. f kann nicht als Funktion auf \mathbb{P}^n aufgefasst werden. Für homogene Polynome $f_1, \ldots, f_n \in k[X_0, \ldots X_n]$ (nicht notwendig vom selben Grad) können wir dennoch Verschwindungsmengen definieren:

$$V_{+}(f_{1},...,f_{n}) = \{(x_{0}:...:x_{n}) \in \mathbb{P}^{n} \mid f_{i}(x_{0},...,x_{n}) = 0 \ \forall j\}$$

Da $V_+(f_1,\ldots,f_n)\cap U_i=V(\Phi_i(f_1),\ldots,\Phi_i(f_m))$ ist $V_+(f_1,\ldots,f_m)$ abgeschlossen in \mathbb{P}^n . Ist $V_+(f_1,\ldots,f_n)$ irreduzibel, so erhalten wir eine projektive Varietät. In der Tat entstehen alle projektiven Varietäten auf diese Weise, wie der folgende Satz zeigt:

Satz 1.58 (orig. 55). Sei $Z \subseteq \mathbb{P}^n(k)$ eine projektive Varietät. Dann existieren homogene Polynome $f_1, \ldots, f_n \in k[X_0, \ldots, X_n]$, so dass

$$Z = V_+(f_1, \dots, f_n)$$

gilt.

Beweis. Betrachte:

 $f|: f^{-1}(U_i) \longrightarrow U_i$ ist Morphismus von Prävarietäten. Dann ist f selbst ein Morphismus von Prävarietäten: lokal ist die Aussage klar, global verklebt man.

$$\overline{Y} := Y \cup \{0\}$$
, der Abschluss von Y in $\mathbb{A}^{n+1}(k)$
 $\mathfrak{a} := I(\overline{Y}) \subseteq k[X_0, \dots, X_n]$

Behauptung: \mathfrak{a} wird von homogenen Polynomen erzeugt. Denn: Sei für $g \in \mathfrak{a}$, $g = \sum_d g_d$ die Zerlegung in homogene Bestandteile vom Grad d. \overline{Y} ist Vereinigung von Ursprungsgeraden im k^{n+1} , d.h. $\forall \lambda \in k^{\times}$ gilt:

$$g(x_0, \dots, x_n) = 0 \iff g(\lambda x_0, \dots, \lambda x_n) = 0$$

Beweis durch Widerspruch: Angenommen nicht alle g_d liegen in \mathfrak{a} .

$$\Rightarrow \exists (x_0,\ldots,x_n) \in \mathbb{A}^{n+1}(k)$$
, so dass $g(x_0,\ldots,x_n)=0$, aber $g_{d_0}(x_0,\ldots,x_n)\neq 0$.

$$\Rightarrow 0 \neq \sum_d g_d(x_0, \dots, x_n) T^d \in k[T]$$

 $\Rightarrow \exists \lambda \in k^{\times} : 0 \neq \sum_{d} g_d(x_0, \dots, x_n) \lambda^d = \sum_{d} g_d(\lambda x_0, \dots, \lambda x_n) = g(\lambda x_0, \dots, \lambda x_n) = 0.$ Widerspruch.

$$\Rightarrow \mathfrak{a} = (f_1, \dots, f_m)$$
, mit f_j homogen, also $Z = V_+(f_1, \dots, f_m)$.

$$Z \ni (x_0 : \ldots : x_n) \Leftrightarrow (\lambda x_0, \ldots, \lambda x_n) \in \overline{Y} \ \forall \lambda \in k^{\times} \ \text{und} \neq 0$$

$$\Leftrightarrow f_i(x_0, \ldots, x_n) = 0 \ \forall 1 \le i \le n, \ (x_0, \ldots, x_n) \in \mathbb{P}^n$$

Zu Bemerkung 1.52:

Nach Satz 1.54 und Definition von \mathcal{O}_Z' folgt: Ist X eine projektive Varietät und $U\subseteq X$ offen, so erhalten wir

(†) $\mathcal{O}_X(U) = \{ f : U \to k \mid \forall x \in U \ \exists x \in V \subseteq U, \ g, h \in k[X_0, \dots, X_n] \ \text{homogen vom gleichen Grad mit } h(v) \neq 0, \ f(v) = \frac{g(v)}{h(v)}, \ \forall v \in V \}.$

Insbesondere gilt:

Satz 1.59 (orig. 56). Seien $V \subseteq \mathbb{P}^m(k)$, $W \subseteq \mathbb{P}^n(k)$ projektive Varietäten und

$$\phi: V \longrightarrow W$$

eine Abbildung. Dann ist ϕ eine Morphismus genau dann, wenn zu jedem $x \in V$ eine offene Umgebung $x \in U_x \subseteq V$ und homogene Polynome $f_0, \ldots, f_n \subseteq k[X_0, \ldots, X_m]$ vom selben Grad existieren mit

$$\phi(y) = (f_0(y), \dots, f_n(y)) \quad \forall y \in U_x$$

Beweis.

- "⇒": Übung.
- "⇐":
 - (i) ϕ stetig: Sei $Z\subseteq W$ abgeschlossen. Ohne Einschränkung $Z=V_+(g)\cap W$ für ein homogenes Polynom g. Dann berechnet sich das Urbild

$$\phi^{-1}(Z) = V_+(g \circ \phi) \cap V.$$

Auf U_x , $x \in V$, ist $g \circ \phi$ als homogenes Polynom in X_0, \ldots, X_n gegeben.

- $\Rightarrow V(g \circ \phi) \cap U_x = \phi^{-1}(Z) \cap U_x$ abgeschlossen in U_x für alle x.
- $\Rightarrow \phi^{-1}(Z) \subseteq V$ abgeschlossen.
- (ii) Zu zeigen: $\forall W' \subseteq W$ offen, $g \in \mathcal{O}_W(W')$ ist $g \circ \phi \in \mathcal{O}_V(\phi^{-1}(W'))$.
 - $(\dagger)\Rightarrow$ Es ex. eine offene Umgebung W_y in W' mit $g=\frac{h}{q}$ auf $W_y,\,h,q$ homogen vom Grad d.
 - $\Rightarrow \phi_{|U_x \cap \phi^{-1}(W_y) := \tilde{U}_x} \text{ ist auch von dieser Gestalt, also } \frac{h(f_0, \dots, f_n)}{q(f_0, \dots, f_n)} = g \circ \phi_{|\tilde{U}_x} \in \mathcal{O}_V(\tilde{U}_x).$

Verklebungsaxiom $\Rightarrow g \circ \phi \in \mathcal{O}_V(\phi^{-1}(V)).$

1.25 Koordinatenwechsel in \mathbb{P}^n

Sei $A = (a_{ij}) \in GL_{n+1}(k)$ eine invertierbare, lineare Abbildung $k^{n+1} \to k^{n+1}$. Dann überführt A Ursprungsgeraden in Ursprungsgeraden, respektiert also die Äquivalenzrelation des projektiven Raumes. Wir erhalten Abbildungen:

$$\mathbb{P}^{n}(k) \xrightarrow{\phi_{A}} \mathbb{P}^{n}(k)$$

$$(x_{0}: \ldots: x_{n}) \longmapsto \left(\sum_{i=0}^{n} a_{0i}x_{i}: \ldots: \sum_{i=0}^{n} a_{ni}x_{i}\right),$$

die nach Satz 1.59 ein Morphismus von Prävarietäten ist. Offensichtlich gilt für $A, B \in GL_{n+1}(k)$:

$$\varphi_{A\cdot B} = \varphi_A \circ \varphi_B$$

d.h. φ_A ist insbesondere wieder ein Isomorphismus, **der durch** A **bestimmte Koordinatenwechsel des** $\mathbb{P}^n(k)$. Es bezeichne $\operatorname{Aut}(\mathbb{P}^n(k))$ die Gruppe der Automorphismen von $\mathbb{P}^n(k)$. Es folgt:

$$\varphi_-: GL_{n+1}(k) \to \operatorname{Aut}(\mathbb{P}^n(k)), A \mapsto \varphi_A$$

ist ein Gruppenhomomorphismus mit

$$Z := \ker \varphi_- = \{ \lambda E_{n+1}, \mid \lambda \in k^\times \}$$

der Untergruppe der Skalarmatrizen. Später:

$$PGL_{n+1}(k) := GL_{n+1}(k)/Z \xrightarrow{\sim} \operatorname{Aut}(\mathbb{P}^n(k)), \quad Z \cong k^{\times}$$

die projektive lineare Gruppe.

Beispiel. Sei n=1. Es ist

$$PGL_{2}(\mathbb{C}) = \left\{ \begin{array}{l} \mathbb{P}^{1}(\mathbb{C}) & \to \mathbb{P}^{1}(\mathbb{C}) \\ (z:w) & \mapsto (az+bw,cz+dw) \end{array} \right\}$$

 \leftrightarrow Möbiustransformationen $z \mapsto \frac{az+b}{cz+d}$

1.26 Lineare Unterräume von \mathbb{P}^n

Sei $\varphi:k^{m+1}\to k^{n+1}$ ein injektiver Homomorphismus von k-Vektorräumen. φ induziert eine injektive Abbildung

$$i: \mathbb{P}^m(k) \to \mathbb{P}^n(k)$$

die nach Satz 1.59 ein Morphismus von Prävarietäten ist. Das Bild von i ist eine abgeschlossene Untervarietät. Ist $A = (a_{ij}) \in M_{l \times (n+1)}$ mit $\operatorname{im}(\varphi) = \ker(k^{n+1} \xrightarrow{A} k^l)$ und

$$f_i := \sum_{j=0}^{n} a_{ij} X_j \in k[X_0, \dots, X_n], \text{ für } i = 1, \dots, l$$

so identifiziert i den projektiven Raum $\mathbb{P}^m(k)$ mit $V_+(f_1,\ldots,f_l)\subseteq\mathbb{P}^n(k)$. (Die Abbildung $i:\mathbb{P}^m(k)\to V_+(f_1,\ldots,f_l)$ ist ein Isomorphismus von Prävarietäten, mit Umkehrabbildung induziert von $\varphi^{-1}:\varphi(k^{m+1})\to k^{m+1}$)

Beispiel. $\mathbb{P}^m = V_+(X_{m+1}, \dots, X_n) \subseteq \mathbb{P}^n$. Solche Unterräume heißen lineare Unterräume (der Dimension m).

m = 0: Punkte

m=1: Geraden

m=2: Ebenen

m = n - 1: Hyperebenen in $\mathbb{P}^n(k)$.

- Zu zwei Punkten $p \neq q \in \mathbb{P}^n(k)$ existiert genau eine gerade \overline{pq} in $\mathbb{P}^n(k)$, die p und q enthält, da zu zwei verschiedenen Ursprungsgeraden im k^{n+1} genau eine Ebene (in k^{n+1}) existiert, die beide Geraden enthält.
- Je zwei verschiedene Geraden in $\mathbb{P}^2(k)$ schneiden sich in genau einem Punkt, da Geraden in \mathbb{P}^2 Ebenen in k^3 entsprechen, und zwei Ebenen sich dort genau in einer Geraden, d.h. einem Punkt des \mathbb{P}^2 , schneiden. Dimensionsformel (lineare Algebra):

$$\dim_k E_1 \cap E_2 = -\underbrace{\dim_k (E_1 + E_2)}_{3} + \underbrace{\dim_k E_1}_{2} + \underbrace{\dim_k E_2}_{2} = 1$$

Später: Verallgemeinerung durch den Satz von Bézout für allgemeine Unterprävarietäten $V_{+}(f)$.

1.27 Kegel

Sei $H \subseteq \mathbb{P}^n(k)$ Hyperebene, $p \in \mathbb{P}^n(k) \setminus H$, $X \subseteq H$ abgeschlossene Unterprävarietät.

$$\overline{X,p}:=\bigcup_{q\in X}\overline{qp}$$

heißt **Kegel von** X **über** p, es handelt sich um eine abgeschlossenen Untervarietät von $\mathbb{P}^n(k)$. Ohne Einschränkung: $H = V_+(X_n)$, $p = (0 : \ldots : 0 : 1)$ (geeigneter Koordinatenwechsel) Für

$$X = V_{+}(f_{1}, \dots, f_{m}) \subseteq \mathbb{P}^{n-1}(k) = H, \quad f_{i} \in k[X_{0}, \dots, X_{n-1}]$$

$$\Rightarrow \overline{X, p} = V_{+}(\tilde{f}_{1}, \dots, \tilde{f}_{m}) \subseteq \mathbb{P}^{n}(k), \quad \tilde{f}_{i} \in k[X_{0}, \dots, X_{n}]$$

Verallgemeinerung. Sei $\mathbb{P}^n(k) \cong \Lambda \subseteq \mathbb{P}^n(k)$ linearer Unterraum, $V \subseteq \mathbb{P}^n(k)$ komplementärer linearer Unterraum, d.h. $\Lambda \cap V = \emptyset$ und $\mathbb{P}^n(k)$ ist der kleinste linearer Unterraum von $\mathbb{P}^n(k)$, der Λ und V enthält. Für $X \subseteq V$ eine abgeschlossene Unterprävarietät definiert man den

Kegel von X **über** Λ durch $\overline{X}, \overline{\Lambda} := \bigcup_{q \in X} \overline{q}, \overline{\Lambda}$, wobei der von q und Λ aufgespannte lineare Unterraum $\overline{q}, \overline{\Lambda}$ der kleinste Unterraum sei, der q und Λ enthält.

1.28 Quadriken

Sei in diesem Abschnitt $char(k) \neq 2$.

Definition 1.60 (orig. 57). Eine abgeschlossene Unterprävarietät $Q \subseteq \mathbb{P}^n(k)$ von der Form $V_+(q), 0 \neq q \in k[X_0, \dots, X_n]_2$ heißt **Quadrik**.

$$Q = V_+(q)$$

Zur quadratischen Form q gehört eine assoziierte Bilinearform β auf k^{n+1} (vgl. lineare Algebra),

$$\beta(v,w) := \frac{1}{2}(q(v+w) - q(v) - q(w)), \quad v,w \in k^{n+1}$$

Es gibt eine Basis von k^{n+1} , sodass die Strukturmatrix B von β die Gestalt

$$B = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & 0 & \\ & & 1 & & & \\ & & & 0 & & \\ & 0 & & & \ddots & \\ & & & 0 \end{pmatrix}$$

hat, d.h. Koordinatenwechsel zur Basiswechselmatrix liefert einen Isomorphismus

$$Q \xrightarrow{\sim} V_+(X_0^2 + \dots + X_{r-1}^2), \quad r = \operatorname{rk} B$$

Lemma 1.61 (orig. 58). (i) $X_0^2 + \ldots + X_{r-1}^2$ ist irreduzibel $\iff r > 2$

(ii)
$$V_+(X_0^2 + \ldots + X_{r-1}^2)$$
 ist irreduzibel $\iff r \neq 2$

Beweis. • $r = 0, 1: X_0^2 = X_0 \cdot X_0 \Rightarrow V_+(X_0^2) = V_+(X_0)$ irreduzibel

•
$$r = 2: X_0^2 + X_1^2 = (X_0 + i \cdot X_1) \cdot (X_0 - i \cdot X_1)$$
 für $i = \sqrt{-1}$

• r > 2: Angenommen $\sum_i a_i X_i \cdot \sum_j b_j X_j = X_0^2 + \dots X_{r-1}^2$. Ausmultiplizieren + Koeffizientenvergleich \Rightarrow Widerspruch.

Satz 1.62 (orig. 59). Ist $r \neq s$, so sind $V_+(T_0^2 + \cdots + T_{r-1}^2)$ und $V_+(T_0^2 + \cdots + T_{s-1}^2)$ nicht isomorph.

Beweis. Später: Es gibt keinen Koordinatenwechsel von $\mathbb{P}^n(k)$, der die beiden Mengen miteinander identifiziert, damit auch kein Automorphismus von $\mathbb{P}^n(k)$.

Definition 1.63. Eine Quadrik $Q \subseteq \mathbb{P}^n(k)$ mit $Q \cong V_+(T_0^2 + \cdots + T_{r-1}^2), r \geq 1$, hat **Dimension** n-1 und den **Rang** r. (nach Satz eindeutig!)

Korollar 1.64 (orig. 61). Zwei Quadriken Q_1 und Q_2 sind genau dann isomorph als Prävarietäten, wenn sie dieselbe Dimension und denselben Rang haben.

Beweis.

$$, \Leftarrow$$
 " $Q_1 \cong V_+(T_0^2 + \cdots + T_{n-1}^2) \cong Q_2$ in dem selben \mathbb{P}^n .

" \Rightarrow " Für $Q \subseteq \mathbb{P}^n(k)$ berechne K(Q). Ohne Einschränkung $Q = V_+(X_0^2 + \cdots + X_{n-1}^2)$.

(i)
$$r = 1$$
: $V_+(X_0^2) = V_+(X_0) = \mathbb{P}^{n-1}(k)$: $K(Q) = k(T_1, \dots, T_{n-1})$.

- (ii) r = 2: reduzibel: Zerlegung in zwei Hyperebenen $Z \cong \mathbb{P}^{n-1}$ $\Rightarrow K(Z) \cong k(T_1, \dots, T_{n-1}).$
- (iii) r > 2: $U = V(1 + T_1^2 + \dots + T_{n-1}^2) \subseteq \mathbb{A}^n(k)$ ist nichtleere offene affine Teilmenge von Q. $\Rightarrow K(Q) = K(U) = \operatorname{Quot}(\Gamma(U)) = \operatorname{Quot}(k[T_1, \dots, T_n]/(1 + T_1^2 + \dots + T_{n-1}^2)$

Beispiel 1.65. Q Quadrik in \mathbb{P}^n (vgl. Joe Harris, Seite 34).

- (i) In $\mathbb{P}^1(k)$.
 - Rang 2: 2 Punkte, reduzibel.

 $\Rightarrow \operatorname{trgrad}_k K(Q) = n - 1.$

- Rang 1: 1 Punkt (Doppelpunkt).
- (ii) In $\mathbb{P}^2(k)$.
 - Rang 3: Glatter Kegel $\cong \mathbb{P}^1(k)$. $X_0^2 + X_1^2 X_2^2 = 0$
 - Rang 2: 2 verschiedene Geraden, reduzibel.
 - Rang 1: (Doppel)gerade.
- (iii) In $\mathbb{P}^3(k)$.
 - Rang 1: Doppelebene (2-dimensionaler linearer Unterraum)
 - Rang 2: (insert image)
 - Rang 3: (insert image)
 - Rang 4: (insert image)

Die Quadrik $Q \subseteq \mathbb{P}^n(k)$ heißt **glatt**, falls $r = \underline{n+1}$, d.h. falls die Matrix B zu q maximalen Rang hat. Für $\mathrm{rk}(Q) > 3$, $\dim(Q) = d$, ist $Q \cong \overline{\widetilde{Q}}, \Lambda$ Kegel über einer **glatten** Quadrik \widetilde{Q} , da Dimension r-2 bzgl. einer (d-r+2)-dimensionalen Unterraums 1.

• r = 1, 2 ausgeartet.

- r = 1. $Q = V_{+}(X_{0}^{2}) = V_{+}(X_{0})$ Hyperebenen in $\mathbb{P}^{n}(k)$. Der Unterschied zwischen $V_{+}(X_{0}^{2})$ und $V_{+}(X_{0})$ ist für eine projektive Varietät Q nicht sichtbar, jedoch in der Theorie der Schemata unterscheidbar!
- r=2. $Q=V_+(X_0^2+X_1^2)$ reduzibel, d.h. keine Prävarietät in unserem Sinne! Auch hier werden uns Schemata später helfen.

$$Q = V_{+}(X_{0}^{2} + X_{1}^{2} + \dots + X_{n-1}^{2}) \subseteq \mathbb{P}^{d+1}, r \leq d+2$$

$$\tilde{Q} = V_{+}(X_{0}^{2} + \dots + X_{n-1}^{2}) \subseteq \mathbb{P}^{r-1} \text{ glatt.}$$

$$A = \mathbb{P}^{d+1-v} = V_{+}(X_{0}, \dots, X_{n-1}) \subseteq \mathbb{P}^{d+1}$$

$$Q = \widetilde{Q}, \Lambda$$

Kapitel 2

Das Ringspektrum

Bisher:

Prävarietäten_{/k} sind Verklebungen von affinen $Varietäten_{/k}$ mit k algebraisch abgeschlossen. Dabei sind affine $Varietäten_{/k}$ äquivalent zu endlich erzeugten, integren k-Algebraen, wobei die Punkte der Varietäten den maximalen Idealen der k-Algebraen entsprechen.

Ziel: Schemata sind Verklebungen von affinen Schemata.

Dabei sollen affine Schemta äquivalent zu beliebigen (kommutativen) Ringen sein.

Die Punkte affiner Schemata werden den Primidealen der zugehörigen Ringe entsprechen.

Methodik: Wir wollen einen Funktor:

$$A \longmapsto (\underbrace{\operatorname{Spec}(A)}_{\text{top. Raum}}, \underbrace{\mathcal{O}_{\operatorname{Spec}(A)}}_{Garbe})$$

 $\mathcal{O}_{\mathrm{Spec}(A)}$ ist dabei "Garbe von Funktionen" und verallgemeinert "Systeme von Funktionen" für Raume mit Funktionen.

Wir erhalten insbesondere affine Schemata für k-Algebren über beliebigen Körpern k! Grund für den Übergang zu Primidealen:

Für einen Ringhomomorphismus $\varphi: A \to B$, und ein maximales Ideal $\mathfrak{m} \subseteq B$ ist $\mathfrak{m}^c := \varphi^{-1}(\mathfrak{m})$ im Allgemeinen **kein** maximales Ideal von A. Wir erhalten in dieser Allgemeinheit also keinen Funktor auf den Maximalsprektren, wie bisher.

Das Ringspektrum als topologischer Raum

2.1 Definition von Spec(A)

Sei A stets ein kommutativer Ring. $Spec(A) := \{ \mathfrak{p} \leq A \mid \mathfrak{p} \text{ prim} \}.$

Für $M \subseteq A$ definiert man

$$V(M) := V_A(M) := \{ \mathfrak{p} \in \operatorname{Spec}(A) \mid M \subseteq \mathfrak{p} \} = V(\langle M \rangle_A)$$
$$V(f) := V(\{f\}) \text{ für } f \in A$$

Lemma 2.1. Es ist

$$\{Ideale\ in\ A\} \longrightarrow \{Teilmengen\ in\ \operatorname{Spec}(A)\}$$

$$\mathfrak{a} \longmapsto V(\mathfrak{a})$$

eine inklusionsumkehrende Abbildung. Weiter gilt:

(i)
$$V(0) = \text{Spec}(A), V(1) = \emptyset.$$

(ii)
$$V\left(\bigcup_{i\in I}\mathfrak{a}_i\right) = V\left(\sum_{i\in I}\mathfrak{a}_i\right) = \bigcap_{i\in I}V(\mathfrak{a}_i)$$

(iii)
$$V(\mathfrak{a} \cap \mathfrak{a}') = V(\mathfrak{a}\mathfrak{a}') = V(\mathfrak{a}) \cup V(\mathfrak{a}')$$

Beweis.

- (1), (2) klar.
- (3). $\mathfrak{p} \supseteq \mathfrak{a} \cap \mathfrak{a}' \supseteq \mathfrak{a} \mathfrak{a}' \Rightarrow \mathfrak{p} \supseteq \mathfrak{a} \mathfrak{a}'$. $\mathfrak{p} \text{ prim } \Rightarrow \mathfrak{p} \supseteq \mathfrak{a} \text{ oder } \mathfrak{p} \supseteq \mathfrak{a}'$. $\Rightarrow \mathfrak{p} \supseteq \mathfrak{a} \cap \mathfrak{a}'$

Definition 2.2. Spec(A) mit der Topologie, dessen abgeschlossene Mengen gerade die Mengen der Form $V(\mathfrak{a})$, $\mathfrak{a} \subseteq A$ ein Ideal sind, heißt das (**Prim**)Spektrum von A (mit der Zariski-Topologie).

$$x \in \operatorname{Spec}(A) \leftrightarrow \mathfrak{p}_x \leq A \operatorname{prim}$$

 $Y \subseteq \operatorname{Spec}(A), \quad I(Y) := \bigcap_{y \in Y} \mathfrak{p}_y$

I(-) ist inklusionumkehrend, $I(\emptyset) = A$.

Satz 2.3. Seien $\mathfrak{a} \subseteq A$ ein Ideal und $Y \subseteq \operatorname{Spec}(A)$ eine Teilmenge. Dann gilt:

- (i) $\operatorname{rad} I(Y) = I(Y), V(\mathfrak{a}) = V(\operatorname{rad} \mathfrak{a})$
- (ii) $I(V(\mathfrak{a})) = \operatorname{rad}(\mathfrak{a}), \ V(I(Y)) = \overline{Y} \ (Abschluss \ in \operatorname{Spec}(A)).$
- (iii) Wir haben eine 1:1-Korrespondenz:

$$\{\mathfrak{a} \leq A \mid \mathfrak{a} = \operatorname{rad} \mathfrak{a}\} \longrightarrow \{abg. \ Teilmengen \ Y \ in \ \operatorname{Spec}(A)\}$$

Beweis.

- (i) $V(\mathfrak{a}) = V(\operatorname{rad} \mathfrak{a})$.
 - " \supseteq ". Klar, da rad $\mathfrak{a} \supseteq \mathfrak{a}$.
 - "⊆". Aus $f^r \in \mathfrak{a} \subseteq \mathfrak{p}$ folgt $f \in \mathfrak{p}$, da \mathfrak{p} prim, also rad $\mathfrak{a} \subseteq \mathfrak{p}$.
- (ii) rad $\mathfrak{a} = \bigcap_{x \in V(\mathfrak{a})} \mathfrak{p}_x = IV(\mathfrak{a})$. Es ist:

$$V(\mathfrak{b}) \supseteq Y \Leftrightarrow \forall \mathfrak{p} \in Y : \mathfrak{p} \supseteq \mathfrak{b}$$
$$\Leftrightarrow I(Y) \supseteq \mathfrak{b}.$$

Damit ist V(I(Y)) die kleinste abgeschlossene Teilmenge, die Y umfasst, d.h. $V(I(Y)) = \overline{Y}$.

(iii) Klar.

2.2 Topologische Eigenschaften von Spec(A)

Definiere $D(f) := D_A(f) := \operatorname{Spec}(A) \setminus V(f) = \{x \in \operatorname{Spec} A \mid f \notin \mathfrak{p}_x\},\$

$$\operatorname{ev}_x : A \longrightarrow A/\mathfrak{p}_x \subseteq \kappa_x(A) := \operatorname{Quot}(A/\mathfrak{p}_x)$$

$$f \longmapsto f(x) := f(\mathfrak{p}_x) := f \mod \mathfrak{p}_x$$

Für $x \in D(f)$ gilt dann $f(x) = ev_x(f) \neq 0$.

Mengen der Form $D(f), f \in A$ heißen (standard) prinzipal offene Mengen. Man hat:

$$D(0) = \emptyset, \ D(1) = \operatorname{Spec}(A) = D(u), \ u \in A^{\times}$$

 $D(f) \cap D(g) = D(fg)$

Lemma 2.4. Für $f_i \in A, i \in I, g \in A$ gilt:

$$D(g) \subseteq \bigcup_{i \in I} D(f_i) \Leftrightarrow g^n \in \mathfrak{a} = (f_i, i \in I) \text{ für } n \in \mathbb{N} \text{ geeignet}$$

 $\Leftrightarrow g \in \operatorname{rad}(\mathfrak{a})$

Beweis. Es gilt:

$$D(g) \subseteq \bigcup_{i} D(f) \Leftrightarrow V(g) \supseteq \bigcap_{i} V(f_i) = V(\mathfrak{a})$$
$$\Leftrightarrow g \in \operatorname{rad}((g)) \subset \operatorname{rad}(\mathfrak{a}) \text{ nach } 2.3$$

Für q = 1, folgt:

$$\operatorname{Spec}(A) = \bigcup_{i \in I} D(f_i) \Leftrightarrow \sum_{i \in I} Af_i = A$$

Satz 2.5. Die prinzipal offenen Mengen D(f), $f \in A$, bilden eine Basis der Topologie von Spec(A), und sind quasikompakt. Insbesondere ist Spec(A) quasikompakt.

Beweis. Nach Lemma 2.1.(ii) gilt:

$$V(\mathfrak{a}) = \bigcap_{f \in \mathfrak{a}} V(f) \Longrightarrow \operatorname{Spec} A \setminus V(\mathfrak{a}) = \bigcup_{f \in \mathfrak{a}} D(f) \Longrightarrow \operatorname{Basis} \operatorname{der} \operatorname{Topologie}$$

Sei $D(g) \subseteq \bigcup_i D(f_i)$.

 $2.4 \Rightarrow g^n = \sum_{i \in I} a_i f_i, \, a_i \in A \text{ fast alle } 0.$

 $\Rightarrow D(g) \subseteq \bigcup_{i \in J} D(f_i) \ \forall i \in J \subseteq I \text{ endlich}$

 $\Rightarrow D(g)$ quasikompakt.

Satz 2.6. $Y \subseteq \operatorname{Spec}(A)$ ist irreduzibel, genau dann wenn $\mathfrak{p} := I(Y) \subseteq A$ prim ist. In diesem Fall ist $\{\mathfrak{p}\} \subseteq \overline{Y}$ dicht!

Beweis.

"⇒": Seien Y irreduzibel und $f, g \in A$ mit $fg \in \mathfrak{p}$.

$$\Rightarrow Y \subseteq \overline{Y} = VI(Y) \subseteq V(fg) = V(f) \cup V(g)$$

Y irreduzibel \Rightarrow Ohne Einschränkung: $Y \subseteq V(f)$.

$$\Rightarrow f \in \bigcap_{y \in V(f)} \mathfrak{p}_y = IV(f) \subseteq I(Y) = \mathfrak{p}, \text{ d.h. } \mathfrak{p} \text{ ist prim.}$$

"

—": Sei umgekehrt $\mathfrak{p} = I(Y)$ ein Primideal.

Satz $2.3 \Rightarrow \overline{Y} = V(\mathfrak{p}) = VI(\{\mathfrak{p}\}) = \overline{\{\mathfrak{p}\}}$, d.h. \overline{Y} ist der Abschluss der irreduziblen Menge $\{\mathfrak{p}\}$ und daher selbst irreduzibel.

Lemma $1.14 \Rightarrow Y$ ist auch irreduzibel, da dicht in \overline{Y} .

Warnung: im Allgemeinen ist \mathfrak{p} kein Punkt in Y!

Korollar 2.7. Die Abbildung

$$\operatorname{Spec}(A) \longrightarrow \{abg. \ irred. \ Teilmengen \ von \ Spec \ A\}$$

$$\mathfrak{p} \longmapsto V(\mathfrak{p}) = \overline{\{\mathfrak{p}\}}$$

ist eine Bijektion, unter der die minimalen Primideale von A den irreduziblen Komponenten entsprechen.

Beweis. Proposition 2.3 und 2.6.

Definition 2.8. Für einen topologischen Raum X heißt $\eta \in X$ generischer Punkt, falls $\overline{\{\eta\}} = X$. Allgemeiner sagen wir für $x, x' \in X$, dass x eine **Verallgeimeinerung** (engl. "generalization") von x' ist, bzw. x' eine **Spezialisierung** von x, falls $x' \in \overline{\{x\}}$.

Bemerkung 2.9.

- (i) $\eta \in X$ generisch $\Leftrightarrow \eta$ ist Verallgemeinerung von jedem Punkt von X.
- (ii) Existiert ein generischer Punkt in X, so ist X als Abschluss einer irreduziblen Menge selbst irreduzibel.
- (iii) Für $X = \operatorname{Spec}(A)$ gilt: x' ist eine Spezialisierung von $x \Leftrightarrow \mathfrak{p}_x \subseteq \mathfrak{p}_{x'}$

$$\Leftrightarrow V(\mathfrak{p}_{x'}) \subseteq V(\mathfrak{p}_x)$$

$$x' \in \overline{\{x'\}} \subseteq \overline{\{x\}}$$

Ferner hat jede abgeschlossene irreduzible Teilmenge $Y \subseteq \operatorname{Spec}(A)$ einen eindeutigen generischen Punkt (dies gilt nicht für beliebige irreduzible Teilmengen $Y \subseteq \operatorname{Spec}(A)$).

2.3 Der Funktor $A \mapsto \operatorname{Spec}(A)$

Ziel: Wir wollen einen kontravarianten Funktor

$$\frac{\text{CRing}}{A} \longrightarrow \frac{\text{Top}}{\text{Spec } A}$$

definieren. Sei $\varphi: A \longrightarrow B$ ein Ringhomomorphismus, \mathfrak{q} Primideal von B. Es folgt: $\varphi^{-1}(\mathfrak{q}) \leq A$ ist Primideal, denn $A/\varphi^{-1}(\mathfrak{q}) \hookrightarrow B/\mathfrak{q}$ ist integer als Unterring eines integren Rings. Wir erhalten also eine Abbildung

$${}^a\varphi = \operatorname{Spec} \varphi : \operatorname{Spec} B \longrightarrow \operatorname{Spec} A$$
 $\mathfrak{q} \longmapsto \varphi^{-1}(\mathfrak{q})$

Satz 2.10.

- (i) $({}^a\varphi)^{-1}(V(M)) = V(\varphi(M))$ für $M \subseteq \operatorname{Spec} A$ Teilmenge, insbesondere gilt $({}^a\varphi)^{-1}(D(f)) = D(\varphi(f))$, $f \in A$.
- (ii) $V(\varphi^{-1}(\mathfrak{b})) = \overline{{}^a \varphi(V(\mathfrak{b}))}$ für $\mathfrak{b} \leq B$ Ideal.

Beweis.

(i) Für $\mathfrak{q} \in \text{Spec } B$ gilt:

$$\mathfrak{q} \in V(\varphi(M)) \iff \mathfrak{q} \supseteq \varphi(M) \iff \varphi^{-1}(\mathfrak{q}) \supseteq M \iff \mathfrak{q} \in ({}^{a}\varphi)^{-1}(V(M))$$
 (2.1)

Weiter:

$$D(\varphi(f)) = \operatorname{Spec}(B) \setminus V(\varphi(f)) \tag{2.2}$$

$$= \operatorname{Spec}(B) \setminus ({}^{a}\varphi)^{-1}(V(f)) \tag{2.3}$$

$$= (^{a}\varphi)^{-1}(D(f)) \tag{2.4}$$

(ii) $\overline{{}^a\varphi(V(\mathfrak{b}))} = VI({}^a\varphi(V(\mathfrak{b})))$ nach Satz 2.3. Nach Definition gilt:

$$I({}^{a}\varphi(V(\mathfrak{b})) = \bigcap_{\mathfrak{p} \in {}^{a}\varphi(V(\mathfrak{b}))} \mathfrak{p} = \bigcap_{\mathfrak{q} \in V(\mathfrak{b})} \varphi^{-1}(\mathfrak{q})$$
komm. Algebra = $\varphi^{-1}(\operatorname{rad}\mathfrak{b})$

$$\stackrel{!}{=} \operatorname{rad} \varphi^{-1}(\mathfrak{b})$$

Denn: Ohne Einschränkung gelte $\mathfrak{b} = 0$, $\varphi^{-1}(\mathfrak{b}) = \ker \varphi$ (betrachte $A/\varphi^{-1}(\mathfrak{b}) \hookrightarrow B/\mathfrak{b}$). Es ist:

$$a \in \varphi^{-1}(\sqrt{0}) \Leftrightarrow \varphi(a)^n = \varphi(a^n) = 0$$
 für n geeignet

 $V(\cdot)$ liefert die Behauptung: $V(\operatorname{rad} \varphi^{-1}(\mathfrak{b})) = V(\varphi^{-1}(\mathfrak{b}))$ nach Satz 2.3.

Insbesondere ist ${}^a\varphi$: Spec $B\to \operatorname{Spec} A$ stetig. Wegen

$$^{a}(\psi \circ \varphi) = {^{a}\varphi} \circ {^{a}\psi} \text{ und } {^{a}\text{id}_{A}} = \text{id}_{\text{Spec }A}$$

für einen weiteren Ringhomomorphismus $\psi: B \to C$ ist $A \mapsto \operatorname{Spec} A$ der gesuchte kontravariante Funktor.

Korollar 2.11. ${}^a\varphi$ ist **dominant**, d.h. im $({}^a\varphi)\subseteq \operatorname{Spec} A$ dicht \iff Jedes Element in $\ker\varphi$ ist nilpotent: $\ker\varphi\subseteq rad(0)$.

Satz 2.12.

- (i) Ist $\varphi: A \to B$ ein surjektiver Ringhomomorphismus mit $\ker \varphi =: \mathfrak{a}$, dann ist ${}^a\varphi$ ein Homöomorphismus von Spec B auf $V(\mathfrak{a}) \subseteq \operatorname{Spec} A$.
- (ii) Ist S eine multiplikativ abgeschlossene Teilmenge von A, und $\varphi: A \longrightarrow S^{-1}A =: B$ die kanonische Lokalisierungsabbildung, dann ist ${}^a\varphi$ ein Homöomorphismus, von Spec $S^{-1}A$ auf $\{\mathfrak{p} \in \operatorname{Spec} A \mid S \cap \mathfrak{p} = \emptyset\}$.

Beweis. ${}^a\varphi$ injektiv + im ${}^a\varphi$ ist bekannt aus kommutative Algebra. Ferner: Für $\mathfrak{q} \in \operatorname{Spec} B$, $\mathfrak{b} \subseteq B$ Ideal gilt $\mathfrak{q} \supseteq \mathfrak{b} \Leftrightarrow \varphi^{-1}(\mathfrak{q}) \supseteq \varphi^{-1}(\mathfrak{b})$, also

$${}^a\varphi(V(\mathfrak{b})) = V(\varphi^{-1}(\mathfrak{b})),$$

d.h. $^{a}\varphi$ ist abgeschlossen.

2.4 Beispiele

- Spec $A = \emptyset \Leftrightarrow A = \{0\}.$
- A Körper oder Ring mit einem einzigem Primideal: Spec $A = \{\mathfrak{p}\}.$
- A Artinsch: Spec A endlich und diskret (da maximale Primideale mit den minimalen Primidealen übereinstimmen)

$$(\operatorname{Spec} A = \operatorname{Spec}(A/\sqrt{0}),\, A/\sqrt{0}$$
 Produkt von Körpern. $\operatorname{Spec}(\prod_i A_i) = \coprod_i \operatorname{Spec}(A_i)$

Beispiel 2.13. Sei A Hauptidealring (z.B. \mathbb{Z} oder K[X]). Falls \mathfrak{p} ein maximales Ideal ist, dann ist $\mathfrak{p} = (\pi)$, π Primelement in A.

Alle Primideale sind maximal oder 0.

Abg. Punkte von Spec $A \leftrightarrow$ Primelemente modulo A^{\times}

$$\overline{\{\eta\}} = \operatorname{Spec} A \text{ für } \eta \in \operatorname{Spec} A \text{ mit } \mathfrak{p}_{\eta} = (0).$$

Abgeschlossene Mengen Spec $A \neq V(\mathfrak{a}) \stackrel{0 \neq \mathfrak{a} = (f)}{=} V(f) = \{(p_1), \dots, (p_n)\}$ falls $f = p_1^{e_1} \cdots p_n^{e_n}$, p_i paarweise verschieden, $e_i \geq 1$, sind genau endliche Mengen abgeschlossener Punkte.

$$g \neq 0 \neq f$$
:

$$V(f) \cap V(g) = V(f,g) = V(d),$$
 $d = \operatorname{ggT}(f,g)$
 $V(f) \cup V(g) = V((f) \cap (g)) = V(e),$ $e = \operatorname{kgV}(f,g)$

Falls A lokaler Hauptidealring ist (also diskreter Bewertungsring, der kein Körper ist), dann:

Spec
$$A = \{x, \eta\}, \ \mathfrak{p}_x \text{ max. Ideal}, \ \mathfrak{p}_\eta = (0)$$

 $\{\eta\}$ einzige nicht-triviale offene Menge.

Beispiel 2.14. Sei k algebraisch abgeschlossener Körper. Affine Varietäten $V \leftrightarrow$ endlich erzeugte k-Algebren A.

$$V = {\max. Ideale in A} \subseteq \operatorname{Spec}(A)$$

Topologie auf V ist die Unterraumtopologie von Spec(A).

Beispiel 2.15. Sei R Hauptidealring, A = R[T], $X = \operatorname{Spec}(A)$. R faktoriell $\Rightarrow R[T]$ faktoriell, nach dem Satz von Gauß, mit Primidealen:

(i) $p \in R$ prim

Beweis. $p \in R$ prim $\Rightarrow R/pR$ Körper. Nach Proposition 2.12 gilt:

$$\overline{pR[T]} = V(pR[T]) \cong \operatorname{Spec}\left(R/pR[T]\right)$$

ein Hauptidealring mit unendlich vielen Elementen. Damit ist pR[T] nicht maximal, sondern

$$V(pR[T]) = \{pR[T], (f, p), f \in R[T] \text{ mit } \overline{f} \in R/p[T] \text{ irreduzibel}\}$$

2.4. BEISPIELE 61

(ii) $f \in R[T]$ primitives Polynom, irreduzibel in Quot(R)[T]

Beweis. Sei f primitives, irreduzibles Polynom.

- $l(f) \in R^{\times} \Rightarrow$ (Division mit Rest) $R \subseteq R[T]/pR[T]$ ist eine ganze Ringerweiterung und ein endl.-erz. freier R-Modul vom Rang $\deg(f)$. Angenommen, fR[T] ist maximal. Dann ist R[T]/fR[T] ein Körper, also R ein Körper (da ganze Ringerweiterung). Widerspruch.
- Andernfalls kann fR[T] ein maximales Ideal sein: R habe nur endlich viele Primelemente.

$$0 \neq a := \prod_{p} p \in R, \ f := aT - 1$$

Es folgt:

$$R[T]/fR[T] \cong R[a^{-1}] = \operatorname{Quot}(R)$$

also ist fR[T] maximal.

Exkursion über Garben

Bisher:

$$X \text{ affin alg. Menge} \longmapsto \Gamma(X) = \text{Hom}(X, \mathbb{A}^1)$$
 (2.5)

Jetzt:

$$\operatorname{Spec} A \longleftrightarrow A \tag{2.6}$$

d.h. A soll den Funktionen auf Spec A entsprechen. Für $x \in \operatorname{Spec} A$ definiert man $ev_x : A \to A$ $\kappa_A(x) := A_{\mathfrak{p}_x}/\mathfrak{p}_x A_{\mathfrak{p}_x} \cong \operatorname{Quot}(A/\mathfrak{p}_x) \text{ durch } f \mapsto f(x) := ev_x(f) := f \mod \mathfrak{p}_x.$ Mit dieser Definition folgt insbesondere $D(f) = \{x \in \operatorname{Spec} A \mid f(x) \neq 0\}$. Da $x \mapsto f(x)$ keine Funktion im engeren Sinne ist, können wir diese Konstruktion nicht als System von Funktionen auffassen. Wichtige Aussagen: Restriktion + Verklebung \rightsquigarrow Garben.

Prägarben und Garben 2.5

Definition 2.16. Sei X ein topologischer Raum.

- (i) Eine **Prägarbe** \mathcal{F} auf X besteht aus den folgenden Daten:
 - eine Menge $\mathcal{F}(U)$ für jede offene Teilmenge $U \subseteq X$
 - Eine Restriktionsabbildung $res_U^V : \mathcal{F}(V) \to \mathcal{F}(U)$ für jedes Paar $U \subseteq V$ offen in X, so dass:

$$- res_U^U = \mathrm{id}_{\mathcal{F}(U)}$$
$$- res_U^W = res_U^V \circ res_V^W \text{ für } U \subseteq V \subseteq W \text{ offen in } X$$

(ii) Ein Morphismus von Prägarben $\phi: \mathcal{F} \to \mathcal{G}$ ist eine Familie von Abbildungen $\{\phi_U: \phi_U: \phi_U\}$ $\mathcal{F}(U) \to \mathcal{G}(U) \mid U \subseteq X \text{ offen } \}, \text{so dass für alle Paare } U \subseteq V \text{ offen in } X, \text{ das folgende Diagramm}$ kommutiert:

$$\mathcal{F}(V) \xrightarrow{\phi_{V}} \mathcal{G}(V)
\downarrow^{res_{U}^{V}} \qquad \downarrow^{res_{U}^{V}}
\mathcal{F}(U) \xrightarrow{\phi_{U}} \mathcal{G}(U)$$

Notation: $U \subseteq V$, $s \in \mathcal{F}(V)$, dann: $s|_U := res_U^V(s)$.

Die Elemente in $\mathcal{F}(U)$ heißen Schnitte von \mathcal{F} über U, $\Gamma(U,\mathcal{F}) := \mathcal{F}(U)$.

Alternative Beschreibung:

Alternative Descripting. $\mathcal{O}\text{uv}_X \colon \text{Kategorie offener Mengen von } X \text{ mit } \text{Hom}(U,V) := \begin{cases} \emptyset, \text{ falls } U \not\subseteq V \\ \{U \to V\}, \text{ falls } U \subseteq V \end{cases}$. Eine

Prägarbe auf X ist ein kontravarianter Funktor $\mathcal{F}: \mathcal{O}uv_X \to \underline{\operatorname{Set}}$. Ersetzt man $\underline{\operatorname{Set}}$ durch eine Kategorie \mathcal{C} , so bekommt man Prägarben **mit Werten in** \mathcal{C} . Ein Morphismus von Prägarben $\mathcal{F} \to \mathcal{G}$ ist eine natürliche Transformation $\mathcal{F} \implies \mathcal{G}$.

Für eine Prägarbe \mathcal{F} auf $X, U \subseteq X$ offen und $U = \bigcup_i U_i$ eine offene Überdeckung von U, definiere:

$$\rho: \mathcal{F}(U) \to \prod_{i} \mathcal{F}(U_i), s \mapsto (s|_{U_i})_i \tag{2.7}$$

$$b: \prod_{i} \mathcal{F}(U_i) \to \prod_{(i,j)} \mathcal{F}(U_i \cap U_j), (s_i)_i \mapsto (s_i|_{U_i \cap U_j})_{(i,j)}$$
(2.8)

$$b: \prod_{i} \mathcal{F}(U_{i}) \to \prod_{(i,j)} \mathcal{F}(U_{i} \cap U_{j}), (s_{i})_{i} \mapsto (s_{i}|_{U_{i} \cap U_{j}})_{(i,j)}$$

$$b': \prod_{i} \mathcal{F}(U_{i}) \to \prod_{(i,j)} \mathcal{F}(U_{i} \cap U_{j}), (s_{i})_{i} \mapsto (s_{j}|_{U_{i} \cap U_{j}})_{(i,j)}$$

$$(2.8)$$

Definition 2.17. (i) Eine Prägarbe \mathcal{F} auf X heißt **Garbe**, falls für alle offenen Teilmengen $U \subset X$ und alle offenen Überdeckungen $U = \bigcup_i U_i$ wie oben gilt:

$$(Sh)$$
 $\mathcal{F}(U) \xrightarrow{\rho} \prod_{i} \mathcal{F}(U_{i}) \xrightarrow{b} \prod_{(i,j)} \mathcal{F}(U_{i} \cap U_{j})$

d.h. ρ ist injektiv und im $\rho = \{s \in \prod_i \mathcal{F}(U_i) \mid b(s) = b'(s)\}$, mit anderen Worten: $(\mathcal{F}(U), \rho)$ ist Equalizer von b und b'.

Dabei ist (Sh) äquivalent zu:

- (Sh0) $\mathcal{F}(\emptyset)$ ist finales Objekt.
- (Sh1) Gilt für $s, s' \in \mathcal{F}(U)$ $s|_{U_i} = s'|_{U_i}$ für alle i, so folgt s = s'.
- (Sh2) Zu jeder Familie $(s_i)_i \in \prod_i \mathcal{F}(U_i)$ mit $s_i|_{U_i \cap U_i} = s_i|_{U_i \cap U_i}$ existiert ein $s \in \mathcal{F}(U)$ mit $s|_{U_i} = s_i$.
- (ii) Ein Morphismus von Garben ist ein Morphismus der unterliegenden Prägarben.

Wir erhalten die Kategorie $\mathcal{PSh}_X(\underline{Set})$ der Mengenwertigen Prägarben auf X und die volle Unterkategorie $\underline{Sh}_X(\underline{Set})$ der Mengenwertigen Garben auf X. Analog erhalten wir Garben von abelschen Gruppen, Ringen, R-Moduln und R-Algebren.

(i) $\mathcal{F} \in \underline{Sh} \implies \Gamma(\emptyset, \mathcal{F})$ ist einpunktig (wegen (Sh) für die leere Überde-Bemerkung 2.18. ckung)

- (ii) $X = \{pt\} \implies \mathcal{F} \text{ auf } X \text{ ist eindeutig durch } \mathcal{F}(X) \text{ bestimmt}$
- (i) $\mathcal{F} \in \underline{\mathcal{PSh}}_X, U \subseteq X$ offen $\Longrightarrow \mathcal{F}|_U \in \underline{\mathcal{PSh}}_U$ mit $\Gamma(V, \mathcal{F}|_U) := \Gamma(V, \mathcal{F}).$ Ist $\mathcal{F} \in \underline{\mathcal{S}h}_X$, so ist $\mathcal{F}|_U \in \underline{\mathcal{S}h}_U$.
 - (ii) Für X,Y top. Räume definiert $\mathcal F$ gegeben durch $\Gamma(U,\mathcal F):=\mathcal C(U,Y)=\{f:U\to Y\mid$ f stetig} und $res_V^U: f \mapsto f|_V$ eine Garbe.
- (iii) k ein Körper, (X, \mathcal{O}_X) ein Raum mit Funktionen/ $k \implies \mathcal{O}_X$ ist Garbe von k-Algebren auf X.

(iv) Für einen top. Raum X definiert $\mathcal{F}(U) := \{f : U \to \mathbb{R} \mid f \text{ stetig und beschränkt}\}$ eine Prägarbe auf X, im Allgemeinen aber keine Garbe.

Sei \mathcal{B} eine Basis der Topologie von X und $\mathcal{F} \in \underline{\mathcal{S}h}_X$. Sei für $V \subseteq X$ offen $\mathcal{B}_V := \{U \in \mathcal{B} \mid U \subseteq V\}$. Dann folgt wegen (Sh):

$$\mathcal{F}(V) \cong_{(\dagger)} \{ (s_U)_U \in \prod_{U \in \mathcal{B}_V} \mathcal{F}(U) \mid \forall U' \subseteq U \in \mathcal{B}_V : s_U|_{U'} = s_{U'} \} \cong \varprojlim_{U \in \mathcal{B}_V} \mathcal{F}(U)$$

d.h. \mathcal{F} ist bereits eindeutig durch die Schnitte auf einer Basis von X bestimmt.

 (\dagger) : einfache Folgerung aus (Sh1).

Eine **Prägarbe auf** \mathcal{B} ist ein kontravarianter Funktor $\mathcal{F}: \mathcal{B} \to \underline{\operatorname{Set}}$. Jedes solche \mathcal{F} induziert eine Prägarbe $\overline{\mathcal{F}}^X$ auf X durch $\overline{\mathcal{F}}^X(V) := \varprojlim_{U \in \mathcal{B}_V} \mathcal{F}(U)$. Für $U \in \mathcal{B}$ gilt dann $\overline{\mathcal{F}}^X(U) = \varprojlim_{U' \in \mathcal{B}_U} \mathcal{F}(U') = \mathcal{F}(U)$, da U initial in \mathcal{B}_U .

Ein Morphismus von Prägarben auf \mathcal{B} ist wieder ein Morphismus von Funktoren.

Satz 2.20. $\overline{\mathcal{F}}^X$ ist eine Garbe \iff \mathcal{F} erfüllt (Sh) für alle $U \in \mathcal{B}$ und Überdeckungen $U = \bigcup_i U_i$ mit $U_i \in \mathcal{B}$.

In diesem Fall heißt \mathcal{F} Garbe auf \mathcal{B} .

Beweis. Im Folgenden schreiben wir $\overline{\mathcal{F}} := \overline{\mathcal{F}}^X$.

$$\Rightarrow$$
": $\overline{\mathcal{F}}^X(U) = \mathcal{F}(U)$ für alle $U \in \mathcal{B}$.

"
=": Sei $U \subseteq X$ offen und $U = \bigcup_i U_i$ eine offene Überdeckung von U in X.
 (Sh1):

$$\varprojlim_{B \in \mathcal{B}_U} \mathcal{F}(B) = \overline{\mathcal{F}}(U) \hookrightarrow \prod_i \overline{\mathcal{F}}(U_i) \hookrightarrow \prod_i \prod_{B \in \mathcal{B}_{U_i}} \mathcal{F}(B)$$

$$s = (s_B)_B, s' = (s'_B)_B \longmapsto s|_{U_i} = s'|_{U_i} \longmapsto ((s_B)_{B \in \mathcal{B}_{U_i}})_i = ((s'_B)_{B \in \mathcal{B}_{U_i}})_i \qquad (\dagger)$$

Behauptung: $\forall B \in \mathcal{B}_U : s_B = s_B', \text{ d.h. } s = s'. \text{ denn:}$

$$\mathcal{F}(B) \hookrightarrow \prod_i \prod_{B' \in \mathcal{B}_{U_i \cap B}} \mathcal{F}(B')$$

ist injektiv nach (Sh1) für \mathcal{F} auf \mathcal{B} .

 s_B und s_B' haben gleiches Bild wegen (†).

(Sh2):

$$\overline{\mathcal{F}}(U) \xrightarrow{\rho} \prod_i \overline{\mathcal{F}}(U_i) \longrightarrow \prod_{(i,j)} \overline{\mathcal{F}}(U_i \cap U_j)$$

 $\overline{\mathcal{F}}(U) \subseteq \ker^{\circ}: \rho(s) = ((s_B)_{B \in \mathcal{B}_{U_i}})_i$. Sei $T \in \mathcal{B}_{U_i \cap U_j} \subseteq \mathcal{B}_{U_i}$, $V \in \mathcal{B}_{U_i}$ und $W \in \mathcal{B}_{U_j}$. Dann folgt: $s_V|_T = s_T = s_W|_T \implies \text{Behauptung}$.

$$\overline{\mathcal{F}}(U) \supseteq \ker^{"}: \operatorname{Sei}(s_i)_i \in \prod_i \overline{\mathcal{F}}(U_i) \text{ mit } b((s_i)_i) = b'((s_i)_i).$$

$$\underline{\operatorname{Gesucht:}} \ s = (s_B)_B \in \overline{\mathcal{F}}(U) \text{ mit } s|_{U_i} = s_i.$$

Es gilt:

$$\mathcal{F}(B) \xrightarrow{\rho} \prod_{i} \prod_{B' \in \mathcal{B}_{U_{i} \cap B}} \mathcal{F}(B') \xrightarrow{b} \prod_{(i,j)} \prod_{\mathcal{B}_{U_{i} \cap B} \times \mathcal{B}_{U_{j} \cap B}} \mathcal{F}(V \cap W)$$

ist exakt, d.h. ein Equalizer-Diagramm. Konstruiere damit $s_B \in \mathcal{F}(B)$, welche kompatibles System bilden. $s = (s_B)_B$ ist dann das gesuchte Element in $\overline{\mathcal{F}}(U)$.

2.6 Halme von Garben

Für $x \in X$ und $\mathcal{F} \in \underline{\mathcal{PSh}}_X$ ist $(\mathcal{F}(V), res_U^V)_{x \in U \subseteq X \text{offen}}$ ein <u>filtriertes</u> induktives System. filtriert:

 $\forall U, V \subseteq X$ offen $\exists W \subseteq U, V$ offen. (z.B. $W = U \cap V$).

Definition 2.21. Der induktive Limes (oder auch Colimes) $\mathcal{F}_x := \varinjlim_{x \in U} \mathcal{F}(U)$ heißt **Halm** von \mathcal{F} in x. Für $x \in U \subseteq X$ offen hat man einen kanonischen Morphismus $\pi_U : \mathcal{F}(U) \to \mathcal{F}_x$. Das Bild eines Schnittes $s \in \mathcal{F}(U)$ unter π_U heißt **Keim** von s in x und wird mit s_x bezeichnet.

Ein Morphismus von Prägarben $\varphi : \mathcal{F} \to \mathcal{G}$ induziert eine Abbildung $\varphi_x = \varinjlim_{x \in U} \varphi_U : \mathcal{F}_x \to \mathcal{G}_x$ von Halmen in x.

Beispiel 2.22. $z_0 \in X := \mathbb{C}$, $\mathcal{O}_{\mathbb{C}}$: Garbe der holomorphen Funktionen auf \mathbb{C} . Dann gilt: $(U, f) \sim (V, g) \iff f$ und g haben dieselbe Taylor-Entwicklung um z_0 . $\implies \mathcal{O}_{\mathbb{C}, z_0} = \mathbb{C}\{\{z_0\}\}$ ist der Ring der Potenzreihen um z_0 mit positivem Konvergenzradius.

Satz 2.23. Seien X ein top. Raum, $\mathcal{F}, \mathcal{G} \in \underline{\mathcal{PSh}}_X$ und $\mathcal{F} \xrightarrow{\varphi} \mathcal{G}$ zwei Morphismen.

- (1) Ist \mathcal{F} eine Garbe, so gilt $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ ist injektiv für alle $x \in X \iff \varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ ist injektiv für alle $U \subseteq X$ offen.
- (2) Sind \mathcal{F} und \mathcal{G} Garben, so gilt:
 - (a) φ_x ist bijektiv für alle $x \in X \iff \varphi_U$ ist bijektiv für alle $U \subseteq X$ offen.
 - (b) $\varphi = \psi \iff \varphi_x = \psi_x \text{ für alle } x \in X.$

Beweis. Für $U \subseteq X$ offen ist

$$\mathcal{F}(U) \hookrightarrow \prod_{x \in U} \mathcal{F}_x$$

$$s \longmapsto (s_x)_{x \in U}$$

injektiv, denn:

Seien $s, t \in \mathcal{F}(U)$ mit $s_x = t_x$ für alle $x \in U$. Dann gibt es für jedes $x \in U$ eine offene Umgebung $x \in V_x \subseteq U$ s.d. $s|_{V_x} = t|_{V_x}$.

$$(Sh1) \implies s = t.$$

Wir erhalten ein kommutatives Diagramm

$$\mathcal{F}(U) \longrightarrow \prod_{x \in U} \mathcal{F}_{x}$$

$$\downarrow^{\varphi_{U}} \qquad \qquad \downarrow^{\prod_{x} \varphi_{x}}$$

$$\mathcal{G}(U) \longrightarrow \prod_{x \in U} \mathcal{G}_{x}$$

welches " $(1) \Rightarrow$ " und (2)(b) impliziert.

Allgemein gilt:

- (i) Filtrierte Colimiten injektiver Abbildungen sind injektiv, d.h. " $(1) \Leftarrow$ " gilt.
- (ii) Colimiten surjektiver Abbildungen sind surjektiv, d.h. " $(2)(a) \Leftarrow$ " gilt

Zu "(2)(a) \Rightarrow ": reicht z.z.: Bijektivität von φ_x impliziert Surjektivität von φ_U . Sei dazu $t \in \mathcal{G}(U)$. Wähle für alle $x \in U$ eine offene Umgebung $x \in U^x \subseteq U$ und $s^x \in \mathcal{F}(U^x)$ so dass $(\varphi_{U^x}(s^x))_x = t_x$.

$$\implies \exists x \in V^x \subseteq U^x \text{ offen mit } \varphi_{V^x}(s^x|_{V^x}) = t|_{V^x}.$$

Da $U = \bigcup_x V^x$ offene Überdeckung, gilt für alle $x, y \in U$:

$$\varphi_{V^y \cap V^x}(s^x|_{V^y \cap V^y}) = t|_{V^y \cap V^x} = \varphi_{V^y \cap V^x}(s^y|_{V^y \cap V^x})$$

 φ_U injektiv nach (1) $\implies s^x|_{V^y \cap V^y} = s^y|_{V^y \cap V^y}$.

 $(Sh2) \implies \exists s \in \mathcal{F}(U) \text{ mit } s|_{V^x} = s^x \text{ für alle } x \in U.$

$$\implies \varphi_U(s)_x = [(V^x, \varphi_{V^x}(s|_{V^x}))] = [(V^x, t|_{V^x})] = t_x \implies \varphi_U(s) = t.$$

Definition 2.24. Ein Morphismus $\mathcal{F} \to \mathcal{G}$ von Garben heißt **injektiv**/ **surjektiv**/ **bijektiv**: $\iff \forall x \in X : \mathcal{F}_x \to \mathcal{G}_x$ ist injektiv/ surjektiv/ bijektiv.

Bemerkung 2.25. $\varphi : \mathcal{F} \to \mathcal{G}$ ist surjektiv gdw. für alle $t \in \mathcal{F}(U)$ eine offene Überdeckung $U = \bigcup_i U_i$ existiert und $s_i \in \mathcal{F}(U_i)$ s.d. $\varphi_{U_i}(s_i) = t|_{U_i}$, d.h. <u>lokal</u> findet man stets ein Urbild. Warnung: Aus φ surjektiv folgt nicht φ_U surjektiv für alle $U \subseteq X$ offen.

2.7 Die zu einer Prägarbe assoziierte Garbe

Definition 2.26. Sei \mathcal{F} eine Prägarbe auf einem top. Raum X. Eine **Vergarbung** (auch Garbifizierung/ assoziierte Garbe) von \mathcal{F} ist eine Garbe \mathcal{F}^{sh} auf X zusammen mit einem Morphismus $\iota : \mathcal{F} \to V(\mathcal{F}^{sh})$ von Prägarben, so dass gilt:

$$\operatorname{Mor}_{\underline{\mathcal{PS}h}_X}(\mathcal{F}, V(\mathcal{G})) \xrightarrow{\cong} \operatorname{Mor}_{\underline{\mathcal{S}h}_X}(\mathcal{F}^{sh}, \mathcal{G})$$

$$\varphi \circ \iota \leftarrow \varphi$$

Hierbei bezeichne $V: \underline{\mathcal{S}\mathbf{h}}_X \to \underline{\mathcal{P}\mathcal{S}\mathbf{h}}_X$ den Vergissfunktor.

Durch diese Eigenschaft ist $(\mathcal{F}^{sh}, \iota)$ eindeutig bis auf eindeutigen Isomorphismus bestimmt. Ferner gilt:

- (0) Es existiert eine Vergarbung $\iota: \mathcal{F} \to \mathcal{F}^{sh}$
- (1) ι wie oben induziert einen Isomorphismus $\iota_x : \mathcal{F}_x \to \mathcal{F}_x^{sh}$ auf Halmen für alle $x \in X$.
- (2) Für jede Prägarbe \mathcal{G} auf X und jeden Morphismus $\varphi: \mathcal{F} \to \mathcal{G}$ existiert genau ein Morphismus $\varphi^{sh}: \mathcal{F}^{sh} \to \mathcal{G}^{sh}$ s.d. folgendes Diagramm kommutiert:

$$\begin{array}{ccc}
\mathcal{F} & \xrightarrow{\iota_{\mathcal{F}}} \mathcal{F}^{sh} \\
\downarrow^{\varphi} & & \downarrow^{\varphi^{sh}} \\
\mathcal{G} & \xrightarrow{\iota_{\mathcal{G}}} \mathcal{G}^{sh}
\end{array}$$

d.h. $\underline{\mathcal{PSh}}_X \to \underline{\mathcal{Sh}}_X, \mathcal{F} \mapsto \mathcal{F}^{sh}$ ist ein Funktor, linksadjungiert zum Vergissfunktor V.

Beweis. Existenz:

 $\mathcal{F}^{sh}(U) := \{(s_x)_x \in \prod_{x \in U} \mathcal{F}_x \mid \forall x \in U : \exists x \in U^x \subseteq U \text{ offen und } t \in \mathcal{F}(U^x) : \forall y \in U^x : t_x = s_x\}$

"Keime, die lokal Schnitte von \mathcal{F} sind" - (Sh2) erzwingt dies.

Für $U \subseteq V$ ist res_U^V induziert von:

$$\mathcal{F}^{sh}(V) \xrightarrow{res_{\underline{U}}^{V}} \mathcal{F}^{sh}(U)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$\prod_{x \in V} \mathcal{F}_{x} \xrightarrow{proj.} \prod_{x \in U} \mathcal{F}_{x}$$

2.8 Direktes und inverses Bild von Garben

Sei $f: X \to Y$ stetige Abbildung topologischer Räume, \mathcal{F} eine Prägarbe auf X. Ziel: $f_*\mathcal{F}$ Prägarbe auf Y, das direkte Bild von \mathcal{F} unter f. Definiere $(f_*\mathcal{F})(V) := \mathcal{F}(f^{-1}(V))$ mit Restriktionsabbildung von \mathcal{F} $(V_1 \subseteq V_2 : s \in f_*\mathcal{F}(V_2) \to s|_{V_1} = \mathcal{F}res_{f^{-1}(V_1)}^{f^{-1}(V_2)})$.

$$f_*: PSh(X) \longrightarrow PSh(Y)$$

$$\mathcal{F} \longmapsto f_*\mathcal{F}$$

$$\mathcal{F} \xrightarrow{\varphi} \mathcal{G} \longmapsto f_*(U): f_*\mathcal{F} \to f_*\mathcal{G}$$

ist Funktor via $(f_*\varphi)_V = \varphi_{f^{-1}(V)}$.

Bemerkung 2.27 (28).

- (i) \mathcal{F} Garbe auf $X \Longrightarrow f_*\mathcal{F}$ Garbe auf X, d.h. $f_*: Sh(X) \to Sh(Y)$.
- (ii) Ist $g: Y \to Z$ eine weitere stetige Abbildung topologischer Räume, so existiert ein offensichtlicher Isomorphismus $g_* \circ (f_*\mathcal{F}) = (g \circ f)_*\mathcal{F}$, funktoriell in \mathcal{F} .

Nun sei \mathcal{G} eine Prägarbe auf Y.

Ziel: Definiere $f^+\mathcal{G}$ Prägarbe auf X. $f^{-1}\mathcal{G} = \widetilde{f^+\mathcal{G}}$ Garbe auf X, Inverses Bild zu \mathcal{G} unter f via

$$(f^+\mathcal{G})(U) := \lim_{\substack{\longrightarrow \ Y \supset V \supset f(U)}} \mathcal{G}(V)$$

mit induzierte Restriktionsabbildung.

Warnung: \mathcal{G} Garbe auf $Y \rightsquigarrow f^+\mathcal{G}$ im Allgemeinen keine Garbe auf X. Falls $f: X \hookrightarrow Y$ Inklusion, $\mathcal{G}|_X := f^{-1}\mathcal{G}$. Ist $X \subseteq Y$ offen stimmt $\mathcal{G}|_X$ mit der Einschränkung aus Beispiel 19 überein (cofinales Objekt). $\rightsquigarrow f^{-1}: PSh(Y) \to Sh(X)$ Funktor.

 $g: Y \xrightarrow{\text{stetig}} Z$, \mathcal{H} Prägarbe auf $Z, U \subseteq X$ offen.

$$Z \underset{\text{offen}}{\supseteq} W \supseteq g(f(U)) \Longleftrightarrow W \supseteq g(V)$$

für ein $f(U) \subseteq V \subseteq Y$ offen.

$$\lim_{\longrightarrow} \lim_{\longrightarrow} \lim_{\longrightarrow} \Longrightarrow f^{+}(g^{+}\mathcal{H}) = (g \circ f)^{+}\mathcal{H} \quad (*)$$

$$\Longrightarrow f^{-1}(g^{-1}\mathcal{H}) = (g \circ f)^{-1}\mathcal{H}$$

Beispiel 2.28. $i: \{x\} \to X$ Inklusion, \mathcal{F} Prägarbe auf $X. \Longrightarrow i^{-1}(\mathcal{F}) = \mathcal{F}_x$ per Definition. $(*) \Longrightarrow$

Satz 2.29 (29). Für $f: X \to Y$ stetig sind die Funktionen f_* und f^{-1} zueinander adjungiert, d.h. für \mathcal{F} Garbe auf X, \mathcal{G} Prägarbe auf Y existiert eine bijektion

$$\hom_{Sh(x)}(f^{-1}\mathcal{G}, \mathcal{F}) \longleftrightarrow \hom_{Psh(Y)}(\mathcal{G}, f_*\mathcal{F})$$
$$\varphi \longmapsto \varphi^{\flat}$$
$$\psi^{\sharp} \longleftrightarrow \psi$$

funktoriell in \mathcal{F} und \mathcal{G} .

Beweis. $\varphi: f^{-1}\mathcal{G} \to \mathcal{F}$ Morphismus von Garben auf $X. t \in \mathcal{G}(V), V \subseteq Y$ offen

$$\begin{split} \mathcal{G}(V) &\to f^+ \mathcal{G}(f^{-1}(V)) \xrightarrow{\imath_{f^+ \mathcal{G}}} f^{-1} \mathcal{G}(f^{-1}(V)) \xrightarrow{\varphi_{f^{-1}(V)}} \mathcal{F}(f^{-1}(V)) = f_* \mathcal{F}(V) \\ & \qquad \lim_{\substack{V \supseteq W \supseteq ff^{-1}(V) \subseteq V}} t \mapsto \varphi_V^\flat(t) \end{split}$$

Definition von $\psi^{\#}$. $\mathcal{G} \xrightarrow{\psi} f_{*}\mathcal{F}$ Morphismus von Prägarben auf . Wir definieren $\psi^{\#}: f^{+}\mathcal{G} \to \mathcal{F}$, welches dann $\psi^{\#}: f^{-1}\mathcal{G} \to \mathcal{F}$ induziert. $U \subseteq X$ offen, $S \subseteq f^{+}\mathcal{G}(U)$, $s = [(V, s_{V})], V \supseteq f(U)$, $s_{V} \in \mathcal{G}(V)$. $\Longrightarrow f^{-1}(V) \supseteq U$.

$$\psi_{V}(s_{V}) \in f_{*}\mathcal{F}(V) = \mathcal{F}(f^{-1}(V))$$

$$\downarrow^{\#}$$

$$\psi_{U}^{\#}(s) \in \mathcal{F}(U)$$

Überprüfe $\varphi^{\flat^\#}=\varphi,\,\psi^{\#^\flat}=\mathcal{H}$ und Funktoriell.

 Definition + Proposition 29 verallgemeinern sich zu (Prä) Garben von Ringen,
 $R\text{-}\mbox{Moduln},$ $R\text{-}\mbox{Algebren}.$

Beschreibung von:

$$\mathcal{G}_{f(x)} = (f^{-1}\mathcal{G})_x \xrightarrow{\varphi_x} \mathcal{F}_x, \ x \in X$$

$$f(x) \in U \subseteq Y \qquad \mathcal{G}(U) \xrightarrow{\varphi_U^b} \mathcal{F}(f^{-1}(U)) \xrightarrow{\varphi_U^b} \mathcal{F}_x$$

$$\lim_{U \to U} \mathcal{G}_{f(x)}$$

2.9 Lokal geringte Räume

Definition 2.30. Ein geringter Raum ist ein Paar (X, \mathcal{O}_X) bestehend aus einem topologischen Raum X und einer Garbe \mathcal{O}_X (kommutativer) Ringe. Ein Morphismus $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ geringter Räume ist wiederum ein Paar (f, f^{\flat}) bestehend aus einer stetigen Abbildung $f: X \to Y$ und einem Homomorphismus $f^{\flat}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ von Ringgarben auf Y. Dieses Datum ist gleichbedeutend (Proposition 29) mit (f, f^{\sharp}) , wobei nun $f^{\sharp}: f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$ ein Garbenhomomorphismus auf X ist.

Bezeichne: f oder (f, f^{\dagger}) oder (f, f^{\sharp}) . Damit haben wir eine **Kategorie der geringten Räume**. \mathcal{O}_X heißt Strukturgarbe von X, oft schreiben wir X für \mathcal{O}_X .

Idee: \mathcal{O}_X beschreibt die zulässigen Funktionen auf $U \subset X$, d.h. etwa stetige, differenzierbare, holomorphe, rigid analytische usw. Funktionen. Solche Funktionen auf $V \subset Y$ sollen beim "Zurückziehen" unter f in dieselbe Klasse überführt werden. Dies wird formal durch das Datum f^{\flat} sichergestellt.

Notation. Wenn A ein lokaler Ring ist, \mathfrak{m}_A das maximale Ideal, und $\kappa(A) = A/\mathfrak{m}_A$ Restklassenk \tilde{A} ¶rper. Ein Homomorphismus $\varphi: A \to B$ lokaler Ringe heißt **lokal**, falls $\varphi(\mathfrak{m}_A) \subset \mathfrak{m}_B$. $(f, f^{\flat}) = (f, f^{\sharp}) = X \to Y$ Morphismus geringter Räume induziert:

$$\mathcal{O}_{Y,f(x)} = (f^{-1}\mathcal{O}_Y)_x \xrightarrow{f_x^{\sharp}} \mathcal{O}_{X,x}$$
 oder
$$\mathcal{O}_Y(U) \xrightarrow{f_U^{\flat}} \mathcal{O}_X(f^{-1}(U)) \qquad f(x) \in U \subset Y \text{ offen}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{O}_{Y,f(x)} = \lim \mathcal{O}_Y(U) - - - - > \mathcal{O}_{X,x}$$

Definition 2.31 (orig. 31). Ein lokal geringter Raum ist ein geringter Raum (X, \mathcal{O}_X) , für der $\mathcal{O}_{X,x}$ für alle $x \in X$ ein lokaler Ring ist. Ein Morphismus $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ lokal geringter Räume ist ein Morphismus geringter Räume (f, f^{\flat}) , so dass die induzierte Abbildung

$$f_x^{\sharp}: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$$

ein lokaler Ringhomomorphismus ist für alle $x \in X$. Dies führt zu einer Unterkategorie der Kategorie geringter Räume, die im Allgemeinen nicht voll ist, d.h. es gibt Morphismen f geringter Räume zwischen lokal geringten Räume, die nicht lokal sind!

Bezeichne:

- $\mathcal{O}_{X,x}$ der "lokale Ring von X in x";
- \mathfrak{m}_x maximales Ideal;
- $\kappa(x) := \mathcal{O}_{X,x}/\mathfrak{m}_x$ Restklassenk \tilde{A} ¶rper (bei x).

$$\mathcal{O}_X(U) \longrightarrow \mathcal{O}_{X,x} \longrightarrow \kappa(x)$$
 $f \longrightarrow f(x)$

Warum lokal geringte Räume? Heuristik:

$$\mathcal{O}_X(U) \leftrightarrow \text{Funktionen auf } U$$

 $\mathcal{O}_{X,x} \leftrightarrow \text{Funktionen auf Umgebung } U \text{ von } x$

Wunsch: $f(x) \neq 0 \stackrel{!}{\Rightarrow} f$ ist invertierbar auf einer kleinen Umgebung V von x, d.h.

$$\mathcal{O}_{X,x} \setminus \underbrace{\{f \mid f(x) = 0\}}_{=\mathfrak{m}_{-}} \subset \mathcal{O}_{X,x}^{\times},$$

also $\mathcal{O}_{X,x}$ lokal. Ferner: $g\mathcal{O}_{Y,f(x)}$ mit g(f(x))=0 sollte implizieren: $(g\circ f)(x)=0$. Übersetzt:

$$f_x^{\sharp}(\mathfrak{m}_{f(x)}) \subset \mathfrak{m}_x, \quad f_x^{\sharp}(g) = g \circ f$$

Beispiel 2.32 (orig. 32). φ_X Garbe der \mathbb{R} -wertiger stetiger Funktionen auf einem topologischen Raum X. $\varphi_{X,x}$ Ring der Keime [s] stetiger Funktionen in einer Umgebung von X:

$$\mathfrak{m}_x = \{ [s] \in \varphi_{X,x} \mid 0 = s(x) \}$$

ist einziges maximale Ideal, d.h. (X, φ_X) ist lokal geringter Raum.

Denn: Sei $[s] \in \varphi_{X,x} \backslash \mathfrak{m}_x$ gegeben.

- $\Rightarrow s(x) \neq 0$ für alle $s \in [s]$.
- \Rightarrow (s stetig) $\exists x \in U \subset X$ offen mit $s(u) \neq 0$ für alle $u \in U$.
- $\Rightarrow \frac{1}{s|_U} \in \varphi_X(U)$ existiert.
- $\Rightarrow \varphi_{X,x} \backslash \mathfrak{m}_x = \varphi_{X,x}^{\times}$ Einheitengruppe. Es ist:

$$\varphi_{X,x} \to \mathbb{R}, \ [s] \mapsto s(x)$$

ein surjektiver Ringhomomorphismus mit ker = \mathfrak{m}_x .

$$\Rightarrow \kappa(x) \cong \mathbb{R}.$$
 Sei $f: X \to Y$ stetig, $V \subset Y$ offen.

$$f_x^{\flat}: \varphi_Y(V) \longrightarrow \varphi_X(f^{-1}(V)) = f_*\varphi_X(V)$$

 $t \longmapsto t \circ f$

Es folgt:

$$\varphi_{Y,f(x)} \longrightarrow \varphi_{X,x}$$

$$[t] \longmapsto [t \circ f]$$

ist ein Morphismus lokal geringter Räume. Ebenso lassen sich Prävarietäten über lokal geringte Räume interpretieren!

Das Ringsprektrum als lokal geringter Raum

Ziel: volltreuer Funktor

Ringe
$$\longrightarrow$$
 Kategorie lokal geringter Räume $A \longmapsto (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$

2.10 Die Strukturgarbe auf Spec A

Sei $X := \operatorname{Spec}(A), \mathcal{B} = \{D(f) \mid f \in A\}$ Basis der Topologie.

Vorgegeben: Definiere Prägarbe \mathcal{O}_X auf \mathcal{B} , die Garbenaxiome bzgl. \mathcal{B} erfüllt.

Wähle: $\mathcal{O}_X(X) = A$ (vgl. Prävarietäten) bzw. $\mathcal{O}_X(D(f)) = A_f$, da

$$i_j: A \longrightarrow A_f$$

$$a \longmapsto \frac{a}{1}$$

einen Homö
omorphismus $D(f) \xrightarrow{\sim} \operatorname{Spec}(A_f)$ induziert. ("Funktionen mit möglichen Polen in V(f)).

2.10.1 Wohldefiniertheit

 $D(f) = D(g) \Rightarrow A_f = A_g$ kanonisch. Dazu:

$$D(f) \subset D(g) \Leftrightarrow \exists n \geq 1 \text{ d.d. } f^n \in A_g$$

2.10.2 Induzierte Abbildung

$$\mathcal{O}_X(D(g)) \to \mathcal{O}_X(D(f)), \ \rho_{f,g} =: \operatorname{res}_{D(f)}^{D(g)}$$

Dies definiert eine Prägarbe auf \mathcal{B} .

Theorem 2.33 (orig. 33). Die Prägarbe \mathcal{O}_X ist eine Garbe auf \mathcal{B} . Die induzierte Garbe auf X

(Proposition 20) werde auch mit \mathcal{O}_X bezeichnet. Da

$$\mathcal{O}_{X,x} := \lim_{\substack{\longrightarrow \ D(f)\ni x}} \mathcal{O}_X(D(f)) = \lim_{\substack{\longleftarrow \ f\in\mathfrak{p}_x}} A_f = A_{\mathfrak{p}_x}$$

 $mit(X, \mathcal{O}_X) = (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$ (kurz $\operatorname{Spec} A$) ein lokal geringter Raum.

Beweis. Sei $D(f) = \bigcup_{i \in I} D(f_i)$ Überdeckung in \mathcal{B} . Zu zeigen:

- (i) $s \in \mathcal{O}_X(D(f))$ mit $s|_{D(f_i)} = 0, i \in I$. $\stackrel{!}{\Rightarrow} s = 0$.
- (ii) $s_i \in \mathcal{O}_X(D(f_i)), i \in I$, mit $s_i|_{D(f_i) \cap D(f_j)} = s_j|_{D(f_i) \cap D(f_j)} \ \forall i, j \in I$. $\stackrel{!}{\Rightarrow} \exists s \in \mathcal{O}_X(D(f)) \text{ mit } s|_{D(f_i)} = s_i \ \forall i \in I.$

Ohne Einschränkung:

- I endlich, da D(f) quasi-kompakt.
- $f = 1, D(f) = X \text{ (mit } (A_f, \mathcal{O}_X|_{D(f)}) \text{ statt } (A, \mathcal{O}_X) \text{ betrachtet)}$

$$X = \bigcup_{i \in I} D(f_i) \Leftrightarrow (f_i \mid i \in I) = A$$

Es folgt: $b_i = b_i(n) \in A$ d.d. $\sum_{i \in I} b_i f_i^n = 1$ Zerlegung der 1. (z)

Zu 1. Sei $s = a \in A$ d.d. $0 = \frac{a}{1} \in A_f$, $\forall i \in I$. I endlich, also $\exists n \geq 1$ d.d. $f_i^n a = 0 \ \forall i \in I$. Mit (z) folgt

$$a = \left(\sum_{i \in I} b_i f_i^n\right) a = 0$$

Zu 2. $s_i = \frac{a_i}{f_i^n}$ für n geeignet, unabhängig von $i \in I$ (endlich). Nach Voraussetzung:

$$\frac{a_i}{f_i^n} = \frac{a_j}{f_j^n} \in A_{f_i f_j}, \quad D(f_i) \cap D(f_j) = D(f_i f_j)$$

Es folgt: $\exists m \geq 1$ d.d. $(f_i f_j)^m (f_j^n a_i - f_i^n a_j) = 0 \ \forall i, j.$

$$\frac{a_i}{f_i^n} = \frac{f_i^m a_i}{f_i^{n+m}} =: \frac{a_i'}{f_i^{n'}}, \quad n' = n + m$$

Ohne Einschränkung: $f_j^n a_i = f_i^n a_j \ \forall i, j \in I, \ (*)$ denn:

$$f_j^{m+n} f_i a_i = f_i^{m+n} f_j^m a_j$$
$$f_j^{n'} a_i' = f_i^{n'} a_j'$$

Setze $s := \sum_{j \in I} b_j a_j \in A$ ((z)). Es folgt:

$$f_i^n s = f_i^n \sum_{i=1}^n b_i a_j = \sum_{i=1}^n b_j (f_i^n a_j) \stackrel{(*)}{=} \left(\sum_{i=1}^n b_i f_i^n\right) a_i \stackrel{(z)}{=} a_i$$

also
$$\frac{s}{1} = \frac{a_i}{f^n} = s_i$$
.