心臓病罹患に関する分析

Team3:長田茅野河合

概要

✓ 調査

ドメイン知識から重要なカラムを選出

✓ 分析

- ・ 選出したカラムを可視化
- 事前に影響力を予想・考察

✓ 結論

- ・ 実際にモデルに適用し影響力を確認
- ・ 結果から考察

1.

✓ 調査

ドメイン知識から重要なカラムを選出

✓ 分析

- ・ 選出したカラムを可視化
- 事前に影響力を予想・考察

✓結論

- 実際にモデルに適用し影響力を確認
- ・結果から考察

- ■そもそも「心臓病」とは
 - ・ 心疾患に関する症状の総称
 - 心不全, 虚血性心疾患, 心臓弁膜症, 心筋症, 不整脈, 先天性心疾患 等

「心臓病」という意味が広義的であることから さまざまな要素が関係してくるのでは?

- ✓ 概 要:安静時最大血圧
- ✓ 単 位:mmHg
- ✓ 正常値:一般に140mmHg未満

糖尿病患者は130mmHg未満

■心臓病の診断方法

✓ ST上昇

• 概 要:ST部分が上がった状態

• 診 断:心筋梗塞、心筋炎、ブルガダ症候群

• 備 考:病気がなくても現れることがある

✓ ST低下

概要:ST部分が下がった状態

• 診 断:心筋虚血、心肥大

• 備 考: 傾きによりUp, U字, Flat, Downに分類

✓ ST正常

• 概 要:ST部分が基線に近しい状態

• 正常值:-0.5~2.0 mm

■心臓病の診断方法

2.

✓ 調査

• ドメイン知識から重要なカラムを選出

✓ 分析

- ・選出したカラムを可視化
- 事前に影響力を予想・考察

✓結論

- 実際にモデルに適用し影響力を確認
- 結果から考察

Cholesterolカラムについて

- ✓ Cholesterolとは
 - 概 要:血清総コレステロール
 - 単 位: mg/dL
 - 正常値: 120~220 mg/dL

- ✓ 全体的に正常値と比べて値が高い
- ✓ 0は欠損値と判断

ST-Slopeカラムについて

- ✓ ST-Slopeについて
 - 概要:ST波の傾き
 - 単 位:-

- → Flatが影響するのでは
- ✓ 「心臓病になりにくい」予測
 - → Upが影響するのでは

ST-Slope, Oldpeakカラムについて

- ✓ Abnormal+: 2.0mmより大きい
- ✓ Normal: -0.5mm以上2.0mm以下
- ✓ Abnormal-: -0.5mmより小さい

ST-Slope, Oldpeakカラムについて

Old-ST Heart Disease	Abnormal+			Normal			Abnormal-		
	Up		Down	Up		Down	Up	Flat	Down
0	_	2	1	223	49	8	_	-	
1	7	40	19	46	222	19	1	3	7

- ✓ 「心臓病になりにくい」予測
 - →「Oldpeak:正常 | ST-Slope:Up」が影響するのでは
- ✓ 「心臓病になりやすい」予測
 - →「Oldpeak:正常 | ST-Slope:Flat」が影響するのでは

3.

✓ 調査

• ドメイン知識から重要なカラムを選出

✓ 分析

- ・ 選出したカラムを可視化
- 事前に影響力を予想・考察

✓ 結論

- 実際にモデルに適用し影響力を確認
- ・ 結果から考察

学習方法

■ 決定木

樹形図を用いて分類・回帰を行う機械学習手法

→ 複数組み合わせて、より誤差を小さくするよう拡張したXGBoostを採用

学習の結果

なりやすい人まとめ

■ 事前に調査・分析した特徴

ST-Slope ST波の傾き

- 1. Upでない
 - 2. Flatである

Oldpeak ST波の離れ具合

3. 高い

Cholesterol 血清総コレステロール値

4. 高い

FastingBS 空腹時血糖値 5. 1である 糖尿病の疑い

■ 未調査の特徴

ChestPainType 胸痛の種類 6. ASY 無症状である

Sex 性別

7. 1である

- 6. ChestPainType: ASY
 - → 胸痛に関して無症状

- 再分析
 - ChestPainType : ASY | ST-Slope : Flat

- ✓ Flatと合わせて抽出すると Heart Diseaseの人数が高い
- ✓ Flatであることに帰着する
- ✓ 単体で影響力が強いと言えない

7. Sex : 1

→ 性別が1

■ 再分析

- 1. ST-Slope-Up: 0
 - → STの傾きがFlatかDownである

- 4. ST-Slope-Flat: 1
 - → STの傾きがFlatである

- ✓ 「なりやすい」という点に関してST-SlopeがFlatであることに帰着する
- ✓ 「Oldpeak:正常 | ST-Slope:Flat」が強く影響していると考察

- ■「Oldpeak:正常 | ST-Slope:Flat」について
 - 1. ドメイン知識が異なる
 - 「ST波の傾き」という解釈が違うのでは
 - FastingBSやRestingBPのように、特定の条件下で測る指標では
 - 2. 他に重要な要因がある
 - ST異常について、2つのカラムで考えたが、他に要因があるのでは
 - 3. データに偏りもしくは誤りがある

- ✓ 再考察にするには、サンプルサイズが小さい
- ✓ データの偏りが見られるため、今回のデータから考察しにくい (Cholesterolが全体的に高い傾向)
- ✓ ラベルに誤りがないか確認すべき

なりやすい人まとめ

■ 影響があると考えられる特徴

Oldpeak ST波の離れ具合

1. 高い

Cholesterol 血清総コレステロール値

2. 高い

FastingBS 空腹時血糖値 3. 1である 糖尿病の疑い ■ 再検討すべき特徴

ChestPainType 胸痛の種類 4. ASY 無症状

ST-Slope ST波の傾き 5. Flatである

Sex 性別

6. 1である

- ✓ 妥当なサンプルサイズの検討
- ✓ 抽出方法についての再考