

Complex Numbers and Quadratic Equations

Quadratic Equations

An equation of the form $ax^2 + bx + c = 0$ is called a quadratic equation, where a, b and c are real or complex numbers such that $a \neq 0$ and x is a variable.

Roots of Quadratic Equation

A quadratic equation has exactly two roots, which can be real or imaginary.

- $x = \alpha$ and $x = \beta$ are the roots of the quadratic equation f(x) = 0 if $f(\alpha) = f(\beta) = 0$.
- If α and β are the roots of the quadratic equation $ax^2 + bx + c = 0$, then we have:

Sum of roots,
$$\alpha + \beta = -\frac{b}{a}$$
 ,

And,

Product of roots, $\alpha\beta = \frac{c}{a}$

Solving Quadratic Equation Using Quadratic Formula

We can solve the quadratic equation $ax^2 + bx + c = 0$ using the following quadratic formula:

$$x = \frac{-b \pm \sqrt{D}}{2a}$$

Here, *D* is called the discriminant. It is given by:

$$D = b^2 - 4ac$$

Nature of Roots

The nature of roots of a quadratic equation depends on its discriminant (D), which can be observed as follows:

Nature of D	Nature of roots of $ax^2 + bx + c = 0$
If $D = 0$, then	Roots are real and each is equal to $-\frac{b}{2a}$.
$b^2 = 4ac.$	

If $D > 0$, then	Roots are distinct and real.
b ² > 4ac.	
If $D < 0$, then	Roots are imaginary and given by:
b ² < 4ac	$\alpha = \frac{-b+i\sqrt{4ac-b^2}}{2a}$ and $\beta = \frac{-b-i\sqrt{4ac-b^2}}{2a}$

• Imaginary roots of a quadratic equation are complex conjugates of each other; i.e., $\alpha = \overline{\beta}$ and $\overline{\alpha} = \beta$.

Roots of Unity

Roots of unity are used in many branches of mathematics, especially in number theory and field theory. Let us study about the cube roots and *n*th roots of unity in detail.

· Cube roots of unity

Consider the equation $x^3 = 1$.

$$\Rightarrow x^3 - 1 = 0$$

$$\Rightarrow (x - 1)(x^2 + x + 1) = 0$$

$$\Rightarrow x - 1 = 0 \text{ or } x^2 + x + 1 = 0$$

$$\Rightarrow x = 1 \text{ or } x = \frac{-1 + i\sqrt{3}}{2} \text{ or } x = \frac{-1 - i\sqrt{3}}{2}$$

If
$$\omega = \frac{-1 + i\sqrt{3}}{2}$$
 then $\omega^2 = \frac{-1 - i\sqrt{3}}{2}$

The roots 1, ω , ω^2 are called the cube roots of unity. Also, ω and ω^2 can be written as $e^{i\frac{2\pi}{3}}$ and $e^{-i\frac{2\pi}{3}}$ respectively.

Properties of cube roots of unity:

- Sum of the roots, $1 + \omega + \omega^2 = 0$
- Product of the roots, $1 \times \omega \times \omega^2 = \omega^3 = 1$

Representation of cube roots of unity on the Argand plane:

If we plot the roots of the equation $x^3 = 1$ on the Argand plane, we obtain an equilateral triangle.

Important Identities:

•
$$x^3 - y^3 = (x - y)(x - y\omega)(x - y\omega^2)$$

•
$$x^3 + y^3 = (x + y)(x + y\omega)(x + y\omega^2)$$

•
$$x^2 + xy + y^2 = (x - y\omega)(x - y\omega^2)$$

•
$$x^2 - xy + y^2 = (x + y\omega)(x + y\omega^2)$$

•
$$x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x + y\omega + z\omega^2)(x + y\omega^2 + z\omega)$$

Note: If α be one cube root of a number p, then its other cube roots will be $\alpha\omega$ and $\alpha\omega^2$.

• *n*th root of unity

Consider the equation $x^n = 1$. The number of roots of this equation is n and each root is called the nth root of unity.

$$x^n = 1$$

If
$$r = 0$$
, then $x = 1$

If
$$r = 1$$
, then $x = \cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n} = e^{i\frac{2\pi}{n}}$
If $r = 2$, then $x = \cos \frac{4\pi}{n} + i \sin \frac{4\pi}{n} = e^{i\frac{4\pi}{n}}$

If
$$r = n - 1$$
, then $x = \cos \frac{2(n-1)\pi}{n} + i \sin \frac{2(n-1)\pi}{n} = e^{i\frac{2(n-1)\pi}{n}}$

The roots $_1$, $e^{i\frac{2\pi}{n}}$, $e^{i\frac{4\pi}{n}}$, ..., $e^{i\frac{2(n-1)\pi}{n}}$ are the n^{th} roots of unity.

If $e^{i\frac{2\pi}{n}} = \alpha$ then the n^{th} roots of unity will be represented as 1, α , α^2 ,..., α^{n-1} .

Representation of n^{th} roots of unity on the Argand plane:

The *n*th roots of unity when plotted on Argand plane represent the vertices of a regular polygon of *n* sides which are inscribed in the circle |z| = 1.

Properties of nth roots of unity:

- Sum of *n*th roots of unity, $1+\alpha+\alpha^2+...+\alpha^n=0$
- Product of n^{th} roots of unity, $1 \times \alpha \times \alpha^2 \times ... \times \alpha^{n-1} = -1^{n-1}$
- $1 + \alpha^r + \alpha^{2r} + ... + \alpha^{(n-1)r} = 0$ if H.C.F (r, n) = 1
- A number of the form a + ib, where a and b are real numbers and $i = \sqrt{-1}$, is defined as a complex number.
- For the complex numbers z = a + ib, a is called the real part (denoted by Re z) and b is called the imaginary part (denoted by Im z) of the complex number z.

Example: For the complex number $z = \frac{-5}{9} + i \frac{\sqrt{3}}{17}$, Re $z = \frac{-5}{9}$ and Im $z = \frac{\sqrt{3}}{17}$

- Two complex numbers $z_1 = a + ib$ and $z_2 = c + id$ are equal if a = c and b = d.
- Addition of complex numbers

Two complex numbers $z_1 = a + ib$ and $z_2 = c + id$ can be added as,

$$z_1 + z_2 = (a + ib) + (c + id) = (a + c) + i(b + d)$$

• Properties of addition of complex numbers:

- **Closure Law:** Sum of two complex numbers is a complex number. In fact, for two complex numbers z_1 and z_2 , such that $z_1 = a + ib$ and $z_2 = c + id$, we obtain $z_1 + z_2 = (a + c) + i(b + d)$.
- Commutative Law: For two complex numbers z_1 and z_2 ,

$$Z_1 + Z_2 = Z_2 + Z_1$$
.

• **Associative Law:** For any three complex numbers z_1 , z_2 and z_3 ,

$$(Z_1 + Z_2) + Z_3 = Z_1 + (Z_2 + Z_3).$$

- **Existence of Additive Identity:** There exists a complex number 0 + i0 *denotedby*0, called the additive identity or zero complex number, such that for every complex number z, z + 0 = z.
- **Existence of Additive Inverse:** For every complex number z = a + ib, there exists a complex number -a + i(-b) [denoted by -z], called the additive inverse or negative of z, such that z + (-z) = 0.

Subtraction of complex numbers

Given any two complex numbers z_1 , and z_2 , the difference $z_1 - z_2$ is defined as

$$Z_1 - Z_2 = Z_1 + (-Z_2).$$

• Multiplication of complex numbers:

Two complex numbers $z_1 = a + ib$ and $z_2 = c + id$ can be multiplied as,

$$z_1 z_2 = (ac - bd) + i(ad + bc)$$

- Properties of multiplication of complex numbers:
 - Closure law: The product of two complex numbers is a complex number.

In fact, for two complex numbers z_1 and z_2 , such that $z_1 = a + ib$ and $z_2 = c + id$, we obtain z_1 $z_2 = (ac - bd) + i(ad + bc)$.

- Commutative Law: For any two complex numbers z_1 and z_2 , $z_1z_2 = z_2z_1$.
- Associative Law: For any three complex numbers z₁, z₂ and z₃,

$$(z_1z_2)$$
 $z_3 = z_1$ (z_2z_3) .

- **Existence of Multiplicative Identity:** There exist a complex number 1 + *i* 0 *denotedas*1, called the multiplicative identity, such that for every complex numbers *z*, *z*.1 = *z*.
- **Existence of Multiplicative Inverse:** For every non-zero complex number z = a + ib $(a \neq 0, b \neq 0)$, we have the complex number

 $\frac{a}{a^2+b^2}+i\frac{-b}{a^2+b^2}$ (denoted by $\frac{1}{z}$ or z^{-1}), called the multiplicative inverse of z, such that $z\frac{1}{z}=1$.

Example: The multiplicative inverse of the complex number z = 2 - 3i can be found as, $z^{-1} = \frac{2}{(2)^2 + (-3)^2} + i \frac{(-3)}{(2)^2 + (-3)^2} = \frac{2}{13} - \frac{3}{13}i$

- **Distributive Law:** For any three complex numbers z_1 , z_2 and z_3 ,
 - $Z_1(Z_2 + Z_3) = Z_1Z_2 + Z_1Z_3$
 - \blacksquare $(z_1 + z_2) z_3 = z_1 z_3 + z_2 z_3$

• Division of Complex Numbers

Given any two complex number z_1 and z_2 , where $z_2 \neq 0$, the quotient $\frac{z_1}{z_2}$ is defined as $\frac{z_1}{z_2} = z_1 \frac{1}{z_2}$

Example: For $z_1 = 1 + i$ and $z_2 = 2 - 3i$, the quotient $\frac{z_1}{z_2}$ can be found as,

$$\begin{aligned} &\frac{z_1}{z_2} = \frac{1+i}{2-3i} \\ &= \left(1+i\right) \left(\frac{1}{2-3i}\right) \\ &= \left(1+i\right) \left(\frac{2}{(2)^2 + (-3)^2} + i \frac{(-3)}{(2)^2 + (-3)^2}\right) \\ &= \left(1+i\right) \left(\frac{2}{13} - \frac{3}{13}i\right) \\ &= \left[1 \times \frac{2}{13} - 1 \times \left(-\frac{3}{13}\right)\right] + i\left[1 \times \left(-\frac{3}{13}\right) + 1 \times \frac{2}{13}\right] \\ &= \frac{5}{13} - \frac{1}{13}i \end{aligned}$$

• Property of Complex Numbers

- For any integer k, $i^{4k} = 1$, $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$.
- If a and b are negative real numbers, then

• Modulus of a Complex Number

The modulus of a complex number z = a + ib, is denoted by |z|, and is defined as the non-negative real number $\sqrt{a^2 + b^2}$, i.e., $|z| = \sqrt{a^2 + b^2}$.

Example 1: If
$$z = 2 - 3i$$
, then $|z| = \sqrt{(2)^2 + (-3)^2} = \sqrt{13}$

• Conjugate of Complex Number

The conjugate of a complex number z = a + ib, is denoted by \overline{Z} , and is defined as the complex number a - ib, i.e., $\overline{Z} = a - ib$.

Example 2: Find the conjugate of $\frac{2}{3+5i}$.

Solution: We have

$$\frac{2}{3+5i}$$

$$= \frac{2}{3+5i} \times \frac{3-5i}{3-5i}$$

$$= \frac{2(3-5i)}{(3)^2 - (5i)^2}$$

$$= \frac{2(3-5i)}{9-25i^2}$$

$$= \frac{6-10i}{9+25} \quad (\because i^2 = -1)$$

$$= \frac{6-10i}{34}$$

$$= \frac{6}{34} - \frac{10i}{34}$$

$$= \frac{3}{17} - \frac{5i}{17}$$

Thus, the conjugate of $\frac{2}{3+5i}$ is $\frac{3}{17} + \frac{5i}{17}$.

• Properties of modulus and conjugate of complex numbers:

For any three complex numbers z, z_1 , z_2 ,

o
$$z^{-1} = \frac{\overline{z}}{|z|^2}$$
 or $z.\overline{z} = |z|^2$
o $|z_1 z_2| = |z_1||z_2|$
o $\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|}$, provided $|z_2| \neq 0$
o $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$
o $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$

• **Argand plan:** Each complex number represents a unique point on Argand plane. An Argand plane is shown in the following figure.

Here, x-axis is known as the **real axis** and y-axis is known as the **imaginary axis**.

• Complex Number on Argand plane: The complex number z = a + ib can be represented on an Argand plane as

In this figure, $OP = \sqrt{a^2 + b^2} = |z|$

- .Thus, the modulus of a complex number z = a + ib is the distance between the point P(x, y) and the origin O.
- Conjugate of Complex Number on Argand plane:
- The conjugate of a complex number z = a + ib is $\overline{z} = a ib$, z and \overline{z} can be represented by the points P(a, b) and Q(a, -b) on the Argand plane as

Thus, on the Argand plane, the conjugate of a complex number is the mirror image of the complex number with respect to the real axis.

Polar representation of Complex Numbers

The polar form of the complex number z = x + iy, is $r(\cos \theta + \sin \theta)$ where $r = \sqrt{x^2 + y^2}$ (modulus of z) and $\cos \theta = \frac{x}{r}$, $\sin \theta = \frac{y}{r}$ (θ is known as the argument of z).

The value of θ is such that $-\pi < \theta \le \pi$, which is called the principle argument of z.

Example 2: Represent the complex number $z = \sqrt{2} - i\sqrt{2}$ in polar form.

Solution:
$$z = \sqrt{2} - i\sqrt{2}$$

Let $\sqrt{2} = r \cos \theta$ and $-\sqrt{2} = r \sin \theta$

By squaring and adding them, we have

$$2 + 2 = r^{2} \left(\cos^{2} \theta + \sin^{2} \theta \right)$$

$$\Rightarrow r^{2} = 4$$

$$\Rightarrow r = \sqrt{4} = 2$$
Thus,

cos
$$\theta = \frac{\sqrt{2}}{2} = \frac{1}{\sqrt{2}}$$

$$\sin \theta = \frac{\sqrt{2}}{2} = \frac{-1}{\sqrt{2}} = \sin (2\pi - \frac{\pi}{4})$$

$$\Rightarrow \theta = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$$

Thus, the required polar form is $2\left(\cos\frac{7\pi}{4} + \sin\frac{7\pi}{4}\right)$.

• Solutions of the quadratic equation when D < 0.

The solutions of the quadratic equation $ax^2 + bx + c = 0$, where $a, b, c \in \mathbb{R}$, $a \ne 0$ are given by $x = \frac{-b \pm \sqrt{D}}{2a}$, where $D = b^2 - 4ac < 0$

Example: Solve
$$2x^2 + 3ix + 2 = 0$$

Solution: Here
$$a = 2$$
, $b = 3i$ and $c = 2$

$$D = b^2 - 4ac$$

$$= (3i)^2 - 4 \times 2 \times 2$$

$$= -9 - 16$$

$$= -25 < 0$$

$$\therefore \chi = \frac{-b \pm \sqrt{D}}{2a}$$

$$\Rightarrow X = \frac{-3i \pm \sqrt{-25}}{2 \times 2}$$

$$\Rightarrow \chi = \frac{-3i \pm 5i}{4}$$

$$\Rightarrow x = \frac{-3i+5i}{4}$$
 or $x = \frac{-3i-5i}{4}$

$$\Rightarrow x = \frac{2i}{4}$$
 or $x = -\frac{8i}{4}$

$$\Rightarrow x = \frac{i}{2}$$
 or $x = -2i$