SS 2024 Marc Kegel

Differentialtopologie

Blatt 11

Aufgabe 1.

- (a) Zeigen Sie, dass man eine Chirurgie von Index k in Dimension n durch eine geeignete Chirurgie **umkehren** kann, d.h. nach ausführen einer weiteren Chirurgie erhält man die ursprüngliche Mannigfaltigkeit zurück.
- (b) Skizzieren Sie Index-k-Chirurgien und deren Umkehrungen in Dimension n für $k, n \leq 3$.
- (c)) Realisieren Sie die verbundene Summe in beliebiger Dimension als eine Chirurgie.

Aufgabe 2.

Ein Kirby-Diagramm ohne 1-Henkel einer 4-Mannigfaltigkeit W mit Rand M fassen wir als ganzzahliges Chirurgiediagramm von M auf.

- (a) Wie berechnet man die Homologie-Gruppen von M? Wann ist M eine Homologiesphäre?
- (b) Wie berechnet man die Homologie von M, wenn auch 1-Henkel vorhanden sind?
- (c) **Bonusaufgabe:** Wie berechnet man die Homologie von ∂M aus einer Henkelzerlegung einer n-Mannigfaltigkeit?
- (c) Wie berechnet man die Homologie-Gruppen einer 3-Mannigfaltigkeit aus einem rationalem Chirurgie-Diagramm?
- (d) Zeigen Sie, dass man den 3-Torus nicht als rationale Chirurgie entlang eines Knotes K in S^3 erhalten kann. Beschreiben Sie ein Chirurgiediagramm von T^3 entlang einer Verschlingung mit 3-Komponenten. Kann man T^3 als Chirurgie entlang einer 2-Komponentenverschlingung erhalten?
- (e) Für jede natürliche Zahl k gibt es eine 3-Mannigfaltigkeit die man als rationale Chirurgie entlang einer Verschlingung L in S^3 mit k Komponenten erhalten kann, aber nicht entlang einer Verschlingung in S^3 mit weniger als k Komponenten.

Aufgabe 3.

- (a) Erklären Sie wie man aus einem Chirurgiediagramm einer 3-Mannigfaltigkeit M eine Heegaard-Zerlegung von M erhält.
- (b) Wie erhält man aus einer Heegaard-Zerlegung von M eine Chirurgiebeschreibung von M?

Aufgabe 4.

- (a) Die Linsenräume L(p,q) und L(p,q+np) sind für $n \in \mathbb{Z}$ orientierungserhaltend diffeomorph.
- (b) Falls $qq' \equiv 1 \mod(p)$ gilt, so sind die Linsenräume L(p,q) und L(p,q') orientierungserhaltend diffeomorph.
- (c) Weiter sind L(-p,q), L(p,-q) und -L(p,q) orientierungserhaltend diffeomorph. **Bemerkung:** Die Relationen aus (a), (b) und (c) liefern die vollständige Klassifikation von Linsenräumen bis auf orientierungserhaltende Diffeomorphie.
- (d) (+5)-Chirurgie entlang des rechtshändigen Kleeblattknotens liefert einen Linsenraum.
- (e) Beschreiben Sie ein Chirurgiediagramm der verbundenen Summe zweier Linsenräume.
- (f) Zeigen Sie, dass (+6)-Chirurgie entlang des rechtshändigen Kleeblattknotens die verbundene Summe zweier Linsenräume liefert.

Aufgabe 5.

Der **Eigenschaft-**R-**Satz** (bewiesen von David Gabai) besagt, dass falls man $S^1 \times S^2$ als 0-Chirurgie entlang eines Knotens K in S^3 erhalten kann, dann ist K der Unknoten.

(a) Zeigen Sie, dass jede 4-dimensionale Homologiesphäre mit einer Henkelzerlegung mit genau einem 2-Henkel und keinem 3-Henkel schon diffeomorph zu S^4 sein muss.

Die **verallgemeinerte Eigenschaft-**R-**Vermutung** besagt, dass jedes Chirurgie-Diagramm für $\#_n S^1 \times S^2$ entlang einer n-Komponenten Verschlingung L in S^3 durch 2-Henkelbewegungen in die 0-gerahmte n-Komponenten Unverschlingung überführt werden kann.

- (b) Zeigen Sie, dass wenn die verallgemeinerte Eigenschaft-R-Vermutung wahr ist, jede 4-dimensionale Homologiespähre mit einer Henkelzerlegung ohne 3-Henkel schon diffeomorph zu S^4 ist.
- (c) Zeigen Sie, dass das Chirurgiediagramm aus Abbildung 1 durch 2-Henkelbewegungen in das Standardchiriurgiediagramm von $\#_2S^1 \times S^2$ umgeformt werden kann.
- (d) Zeigen Sie, dass alle Komponenten einer gerahmte n-Komponenten Verschlingung, die ein Chirurgiediagramm von $\#_n S^1 \times S^2$ repräsentiert, 0-gerahmt und algebraisch unverschlungen sein müssen.
- (e) **Bonusaufgabe:** Finden Sie eine komplett 3-dimensionale Aussage die äquivalent zu glatten 4-dimensionalen Poincaré-Vermutung ist.

Abbildung 1: Ein Chirurgiediagramm von $\#_2S^1 \times S^2$.