

Программная инженерия. Разработка ПО (Python для продвинутых специалистов. Машинное обучение)

Модуль: Предобработка данных и машинное обучение

Лекция 3: Обработка пропущенных данных

Дата: 19.05.2025

Содержание лекции

- Почему в данных бывают пропуски?
- Почему пропущенные значения являются проблемой?

Методы обработки пропущенных значений

Почему в данных бывают пропуски?

- 🔌 Ошибки сбора данных (датчики, сбои систем)
- 📋 Неполные анкеты и опросы
- 👤 Пользователь не указал информацию (возраст, пол и др.)
- 💡 Специально не заполняют (например, не применимо)

Почему пропуск - это проблема?

На примере алгоритма линейная регрессия:

- Цель — предсказать доход (income) на основе возраста (age) и стажа (experience):

ID	Age	Experience	Income
1	25	2	40 000
2	30	NaN	50 000
3	NaN	5	55 000
4	35	10	70 000

если подать эти данные в LinearRegression из scikit-learn?

- Модель выдаст ошибку: ValueError: Input contains NaN
- Она не сможет построить уравнение вида: Income=a · Age+b · Experience+c · Income =
- ...потому что для некоторых наблюдений **нет одного из слагаемых** и это ломает всю формулу, то есть с NaN невозможно провести ни одну арифметическую операцию, например,

NaN * число = NaN - невозможно

Обнаружение пропущенных значений

- Методы describe, либо isna().sum()
- Визуализация пропусков (Seaborn heatmap, missingno)
 - o import missingno as msno
 - o msno.matrix(df_miss, figsize=(10, 6))

• Простые EDA-подходы: группировка, сравнение количества

Удаление строк

применимо только в том случае, когда

- количество удаленных строк составляет небольшой процент
- удаление не искажает выборку, то есть до удаления и после удаления не должно сильно изменится, например распределение целевого признака

Синтаксис на python, пример

- df.dropna()

Удаление столбцов (если много пропусков)

применимо только в том случае, когда

- столбец почти весь состоит из NaN (пропуск) (>70-80%)
- столбец не несет никакой важной информации, перед удалением необходимо проверить связь целевого столбца с потенциально удаляемым столбцом

Синтаксис на python, пример

- df.drop(columns=['feature_with_many_nans'])

Простая импутация (заполнение) значениями

- Заполнение константами: UNK, 0, -1, 99999
- Может ввести шум (например, 0 в доходе не значит "нет дохода")
- Требует добавления дополнительного бинарного признака: was_missing

Синтаксис на python, пример

- df['grade'].fillna('unknown', inplace=True)

Заполнение средним/медианой/модой

- Среднее (mean) при симметричном распределении
- Медиана при скошенном (например, доход)
- Мода для категориальных (например, чаще всего встречающееся значение)

Синтаксис на python, пример

- df['age'].fillna(df['age'].median(), inplace=True)

Заполнение средним/медианой/модой

Минусы:

- Не учитывает взаимосвязи между признаками
- Может "размывать" распределения

например, мы можем рассчитать среднее = 1198 и пропуски заменить на 1198

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8		2	1	300000
9		2	0	500000
10	700	1	0	600000

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8	1198	2	1	300000
9	1198	2	0	500000
10	700	1	0	600000

Импутация на основе других признаков

- Импутация с учетом группировки

Пример: заполнение пропущенного возраста средним по полу:

df['age'] = df.groupby('gender')['age'].transform(lambda x: x.fillna(x.median()))

- Использование модели (предсказание пропуска)

Идея: обучаем модель предсказывать пропущенное значение на основе других признаков

То есть строим регрессию на наблюдениях с 1 по 7 и 10. Целевая переменная у=площадь магазина, независимые признаки: x1 = "количество этажей" и x2="в ТЦ" у = 700 + 300*x1+100*x2

ID магазина	площадь	количество этажей	в ТЦ?	доход от магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8		2	1	300000
9		2	0	500000
10	700	1	0	600000

ID		количество		доход от
магазина	площадь	этажей	в ТЦ?	магазина
1	1000	1	1	1000000
2	1569	2	0	200000
3	870	1	0	300000
4	2000	2	0	500000
5	900	1	1	600000
6	850	1	1	1000000
7	1700	2	1	200000
8	1400	2	1	300000
9	1300	2	0	500000
10	700	1	0	600000

Рекомендуется добавление флагов пропуска

df['income_missing'] = df['income'].isna().astype(int)
df['income'].fillna(df['income'].median(), inplace=True)

Иногда сам факт пропуска информативен

 Например, отсутствие информации о доходе может указывать на его высокий уровень

M

- MCAR (Missing Completely at Random) = Пропущенные значения отсутствуют полностью случайно
- MAR (Missing At Random) = Пропущенные значения зависят от других известных признаков
- MNAR (Missing Not At Random) = Пропуски зависят от самого значения, которое пропущено

MCAR (Missing Completely at Random) – Пропущенные значения отсутствуют полностью случайно

Что это значит:

Пропуски не зависят ни от наблюдаемых, ни от ненаблюдаемых данных.

Пример:

- Опросник, где случайно "заглючил" веб-интерфейс и не записал ответы 5% пользователей.
- В датасете часть значений температуры датчика отсутствует из-за случайных перебоев в соединении.

Последствия:

- Если вы удалите такие строки не возникнет систематической ошибки.
- Это наименее проблемный тип пропусков.

MAR (Missing At Random) = Пропуски зависят от других известных признаков

Что это значит:

Вероятность пропуска зависит от других столбцов, но не от самого признака с пропусками.

Пример:

- Женщины чаще не указывают возраст в анкете → пропуски в возрасте зависят от пола.
- Доход чаще не заполняют люди младше 25 лет \rightarrow пропуски в доходе зависят от возраста.

Последствия:

- Просто удалять строки уже **может ввести в систематическую ошибку** (например, "у нас остались только мужчины").
- Лучше использовать **импутацию с учётом других признаков** среднее по полу, возрасту и т.п.
- Модели, умеющие учитывать контекст (например, IterativeImputer), будут работать лучше

MNAR (Missing Not At Random) = Пропуски зависят от самого значения, которое пропущено

Что это значит:

Пропуски связаны с самим значением, которого нет — это самый коварный тип.

Пример:

- Люди с высоким доходом скрывают его → пропуски зависят от дохода.
- Пациенты с тяжёлыми симптомами не приходят на обследование → пропуски зависят от скрытого состояния здоровья.

Последствия:

- Здесь невозможно просто так "восстановить" пропущенные значения, так как они несут в себе информацию.
- Импутация может исказить реальность например, недооценить доход.
- Иногда лучше: добавить флаг пропуска как отдельный признак (например, income_missing = 1), и не трогать сами пропуски.
- В идеале разобраться в бизнес-контексте и понять причину пропусков.

Стратегия

Ситуация	Что делать		
	Удалить строки или заполнить		
	средним/медианой/квантиль/мода/конст		
Мало пропусков и MCAR	анта		
Пропуски зависят от других признаков	Заполнять по группам или использовать		
(MAR)	модель		
Пропуски не случайны (MNAR)	Добавить флаг		
	Удалить признак или заменить		
Много пропусков в одном признаке	константой		

Спасибо за внимание

