Teoria dei Giochi - Prova del 28 Settembre 2012

Cognome, Nome, Numero di Matricola, email:

Esercizio 1. Considera il seguente gioco non cooperativo. È data una rete con insieme dei nodi $V = \{s, x_1, x_2, y, t\}$ e insieme degi archi $E = \{a_1 = (s, x_1), a_2 = (s, x_2), b_1 = (x_1, y), b_2 = (x_2, y), c_1 = (y, t), c_2 = (y, t), c_3 = (y, t), d_1 = (x_1, t), d_2 = (x_2, t)\}$ (si noti che gli archi c_1 , c_2 e c_3 sono "paralleli").

Ci sono quattro giocatori: A, B, C, D. Il giocatore A controlla gli archi a_1 e a_2 , il giocatore B controlla gli archi b_1 e b_2 , il giocatore C controlla gli archi c_1 , c_2 e c_3 , il giocatore D controlla gli archi d_1 e d_2 . Ciascun giocatore sceglie uno degli archi che controlla, che hanno il seguente costo: gli archi a_1, b_1 e c_1 costano 5, gli archi a_2 e d_2 costano 2, gli archi b_2 , d_1 , c_2 e c_3 costano 15. Se i quattro archi scelti inducono un cammino da s a t, allora ciascun giocatore ottiene 8 unità (n.b. questo vale anche per un eventuale giocatore che abbia scelto un arco che non appartiene ad alcun cammino da s a t). Se invece gli archi scelti non contengono alcun cammino da s a t, allora ciascun giocatore ottiene 0.

Il payoff di ciascun giocatore (in forma di costo) è quindi pari al costo dell'arco scelto, se gli archi scelti non inducono un cammino da *s* a *t*; altrimenti è pari al costo dell'arco scelto meno 8.

Dire quali delle possibili stati del gioco è un equilibrio di Nash, giustificando la risposta in modo dettagliato.

Soluzione Ci sono 24 stati possibili. Nessuno degli stati che contiene b_2 , c_2 , c_3 o d_1 determina un equilibrio di Nash, perché questi archi costano 15 e quindi un giocatore che ne avesse scelto uno pagherebbe almeno 15-8= 7, e poiché il costo di ogni altro arco è minore di 7 avrebbe in ogni caso convenienza a cambiare. Rimangono quindi da esaminare 2 stati. Gli stati (a_1,b_1,c_1,d_2) e (a_2,b_1,c_1,d_2) . Il primo stato non è un equilibrio di Nash perché il primo giocatore migliorerebbe il proprio payoff cambiando la propria strategia. Il secondo stato, come è facile verificare, è l'unico equilibrio di Nash.

Esercizio 2. Considera il seguente gioco non cooperativo. È data una rete con insieme dei nodi $V = \{s, x_1, x_2, t\}$ e insieme degi archi $E = \{a_1 = (s, x_1), a_2 = (x_1, x_2), a_3 = (x_1, x_2), a_4 = (x_2, t), a_5 = (x_2, t)\}$ (si noti che gli archi a_2 e a_3 , e gli archi a_4 e a_5 sono "paralleli").

Ogni giocatore controlla un arco (abbiamo quindi 5 giocatori: $\{a_1, a_2, a_3, a_4, a_5\}$) e l'utilità di una coalizione è 1 se e solo se nel grafo indotto dagli archi controllati dai giocatori della coalizione esiste un cammino da s a t; altrimenti l'utilità della coalizione è 0.

Il gioco così definito è cooperativo? (Se non lo è, spiegare perché.) In caso affermativo, determinare il valore di Shapley di ciascun giocatore, giustificando la risposta.

Soluzione Il gioco è cooperativo. Inoltre è del tutto equivalente a un gioco "parlamentare" in cui ci sono 5 giocatori: uno proveniente da una regione A, due provenienti da una regione B e due provenienti da una regione C, e in cui l'approvazione di una legge richiede il voto a favore di almeno un deputato di ogni regione. La analisi del gioco mostra che il valore di Shapley del giocatore della regione A è pari a $\frac{8}{15}$, mentre il valore di Shapley di tutti gli altri giocatori è pari a $\frac{7}{60}$.

Esercizio 3. Si consideri la seguente istanza dell'House Allocation Problem: siano l'insieme dei giocatori e quello delle case rispettivamente $N = \{1,2,3,4,5,6,7,8\}$ e $C = \{1,2,3,4,5,6,7,8\}$, dove il giocatore i—esimo possiede la i—esima casa, con $i = 1, \dots, 8$. Le seguenti graduatorie rappresentano le preferenze dei vari giocatori rispetto le case e sono degli ordini totali:

- Giocatore 1: {2,7,3,4,8,6,5,1};
- Giocatore 2: {2,3,8,7,5,1,4,6};
- Giocatore 3: {4,2,3,7,8,1,6,5};
- Giocatore 4: {1,2,3,4,5,6,7,8};

```
• Giocatore 5: {4,7,1,3,6,5,2,8};
```

- Giocatore 6: {5,3,8,1,4,2,7,6};
- Giocatore 7: {2,4,3,5,8,1,7,6};
- Giocatore 8: {3,1,2,7,4,5,6,8}.
- **3.1** Trovare il matching stabile utilizzando il TTCA (fornire una breve descrizione di ogni iterazione).
- **3.2** Esiste un matching che non è stabile rispetto la coalizione $S = \{6,7\}$? (In caso affermativo, esibire un tale matching)
- **3.3** Si consideri ora un'istanza dell'HAP con 6 giocatori e 6 case. Si forniscano delle graduatorie per i vari giocatori tali che il TTCA richieda **almeno due iterazioni** per fornire il matching (stabile) $M = \{(1,5), (2,6), (3,1), (4,4), (5,3), (6,2)\}$

```
Soluzione 3.1 L'algoritmo TTCA restituisce, in cinque iterazioni, il seguente matching: M = \{(1,7), (2,2), (3,3), (4,1), (5,6), (6,5), (7,4), (8,8)\}.
```

3.2 Innanzitutto osserviamo che le possibili allocazioni "interne" per la coalizione $\{6,7\}$ sono due: ciascuno dei 2 giocatori rimane nella proprio casa, oppure i due gocatori si scambiano le case. Sia ora M un matching qualsiasi. Se M assegna ad almeno uno dei giocatori 6 e 7 una casa dall'insieme $\{1,2,3,4,5,8\}$, allora questo giocatore preferisce la casa che gli assegna M a quella che ciascuna delle due possibili allocazioni interne della coalizione $\{6,7\}$ potrebbe assegnargli: quindi M è stabile. Consideriamo quindi il caso di un matching M che assegni ai due giocatori 6 e 7 le case dell'insieme $\{6,7\}$: si noti che M assegna ai giocatori $\{6,7\}$ le case secondo una delle due possibili allocazioni interne. Per cui M potrebbe non essere stabile rispetto la coalizione $S = \{6,7\}$ solo se l'altra coalizione interna assegnasse ad entrambi i giocatori una casa non peggiore di quella assegnatagli da M, e ad almeno uno dei due una casa migliore: ma questo non è possibile perché entrambi preferiscono la casa 7. Quindi non esiste alcun matching non stabile rispetto alla coalizione $S = \{6,7\}$.

3.3 Una possibile soluzione è:

```
• Giocatore 1: {5,...};
```

- Giocatore 2: {5,6,...};
- Giocatore 3: {1,...};
- Giocatore 4: {5,4...};
- Giocatore 5: {3,...};
- Giocatore 6: {5,2,...}.

Esercizio 4 Si consideri un gioco non cooperativo a due giocatori, in cui ciascun giocatore controlla un'unica variabile, che indichiamo, rispettivamente, con x_1 per il primo giocatore e x_2 per il secondo. L'insieme ammissibile del primo giocatore è $X_1 = \{x_1 : -2 \le x_1 \le 5\}$, quello del secondo giocatore è $X_2 = \{x_2 : -3 \le x_2 \le 5\}$. I payoff (in forma di costo) dei due giocatori sono rispettivamente $C_1(x_1, x_2) = (7+x_1)(2-x_2)$ e $C_2(x_1, x_2) = \frac{1}{2}x_2^2 - x_2(x_1^2 - 4x_1) + 16$.

- **4.1** Si può affermare *a priori*, ovvero senza calcolare le funzioni best response, l'esistenza di almeno un equilibrio di Nash? (Giustifica brevemente la risposta)
 - **4.2** Individuare, per ciascun giocatore, la funzione best response.
- **4.3** Individuare quindi gli equilibri di Nash del gioco, se essi esistono. (*NB* È sufficiente determinare gli eventuali equilibri di Nash per via grafica.)

Soluzione 4.1 Possiamo affermare l'esistenza a priori di un equilibrio di Nash perché le funzioni di costo di entrambi i giocatori sono continuamente differenziabili, $C_1(x_1,x_2)$ è convessa in x_1 e $C_2(x_1,x_2)$ è convessa in x_2 , ed entrambi gli insiemi X_1 ed X_2 sono convessi e compatti.

4.2 Per una data strategia $x_2 \in X_2$, per individuare la best response il primo giocatore deve risolvere il seguente problema:

$$\min (7 + x_1)(2 - x_2)$$
$$-2 < x_1 < 5$$

Analogamente, per una data strategia $x_1 \in X_1$, per individuare la best response il secondo giocatore deve risolvere il seguente problema:

$$\min \frac{1}{2}x_2^2 - x_2(x_1^2 - 4x_1) + 16$$
$$-3 < x_2 < 5$$

Per determinare le funzioni best response dobbiamo risolvere il sottoproblema di ciascun giocatore scritto precedentemente. In questo caso quindi le best response function sono date da

$$b_1(x_2) = \begin{cases} -2 & \text{se } -3 \le x_2 < 2 \\ [-2,5] & \text{se } x_2 = 2 \\ 5 & \text{se } 2 < x_2 \le 5 \end{cases} \qquad b_2(x_1) = \begin{cases} 5 & \text{se } -2 \le x_1 \le -1 \\ x_1^2 - 4x_1 & \text{se } -1 \le x_1 \le 1 \\ -3 & \text{se } 1 \le x_1 \le 3 \\ x_1^2 - 4x_1 & \text{se } 3 \le x_1 \le 5 \end{cases}$$

4.3 Si può verificare graficamente o analiticamente che esistono tre punti di intersezione delle best response function (e quindi tre equilibri di Nash): (5,5), $(2+\sqrt{6},2)$ e $(2-\sqrt{6},2)$.

Esercizio 5 Considera il seguente gioco. Tu puoi scegliere una lettera tra $\{A, E, I, O, U\}$; il tuo avversario può scegliere una parola tra $\{CANE, GATTO, FLUSSO, PESO, CUBI\}$. Se la parola giocata dal tuo avversario contiene la lettera da te scelta allora perdi 1 euro, altrimenti vinci 1 euro.

5.1 Considera l'*estensione in strategia mista* del gioco. Formula i problemi di programmazione lineare che tu e il tuo avversario dovete risolvere per individuare, ciascuno, la propria strategia conservativa (non è richiesto di risolvere tali programmi).

Considera quindi le seguenti strategie per te:

- $\xi_1^1 = \xi_1^2 = \xi_1^5 = \frac{1}{3} e \xi_1^3 = \xi_1^4 = 0.$
- $\xi_1^1 = \xi_1^2 = \xi_1^4 = \frac{1}{5}, \, \xi_1^3 = \frac{2}{5} e \, \xi_1^5 = 0.$
- $\xi_1^1 = \xi_1^3 = \xi_1^4 = 0$ e $\xi_1^2 = \xi_1^5 = \frac{1}{2}$

e le seguenti strategie per il tuo avversario:

- $\xi_2^j = \frac{1}{5} \ \forall j = 1, \dots, 5$
- $\xi_2^1 = \xi_2^2 = \xi_2^4 = \frac{1}{5}, \, \xi_2^3 = 0 \, \text{e} \, \xi_2^5 = \frac{2}{5}$

(al solito indichiamo con $\xi_1 = (\xi_1^1, \dots, \xi_1^5)$ il vettore stocastico associato alle 5 possibili strategie pure del primo giocatore, e con $\xi_2 = (\xi_2^1, \dots, \xi_2^5)$ il vettore stocastico associato alle 3 possibili strategie pure del secondo giocatore). Per ciascuna di queste strategie, indica quanto paga, nel caso peggiore, il giocatore (tu o il tuo avversario) che la utilizza. (Giustifica brevemente la risposta).

- **5.2** Qualcuna delle strategie indicate al punto 1.1 è conservativa? (Giustifica brevemente la risposta).
- **5.3** Quali sono gli equilibri di Nash del gioco in strategia mista? (Se non è possibile individuarli, spiega perché non è possibile).

5.4 Qual è il valore del gioco in strategia mista? (Se non è possibile individuarlo, spiega perché non è possibile).

Soluzione La tua matrice C dei payoff in forma di costo è la seguente

Se indichiamo con c_{ij} l'elemento alla riga i e la colonna j di tale matrice, il problema di programmazione lineare che devi risolvere per individuare la tua strategia conservativa è il seguente:

 $\min z$

$$z \ge \sum_{i=1}^{5} c_{ij} \xi_1^i \quad j = 1, \dots, 5$$
$$\xi_1^i \ge 0 \quad i = 1, \dots, 5$$

$$\sum_{i=1}^{5} \xi_1^i = 1$$

- il valore ottimo di questo programma, in corrispondenza a $\xi_1^1 = \xi_1^2 = \xi_1^5 = \frac{1}{3}$ e $\xi_1^3 = \xi_1^4 = 0$. è $z = \frac{1}{3}$. Quindi, se utilizzi questa strategia, perdi, nel caso peggiore, (in media) $\frac{1}{3}$ di euro per ogni round del gioco.
- il valore ottimo di questo programma, in corrispondenza a $\xi_1^1 = \xi_1^2 = \xi_1^4 = \frac{1}{5}$, $\xi_1^3 = \frac{2}{5}$ e $\xi_1^5 = 0$ è $z = -\frac{1}{5}$. Quindi, se utilizzi questa strategia, vinci, nel caso peggiore, (in media) $\frac{1}{5}$ euro per ogni round del gioco.
- il valore ottimo di questo programma, in corrispondenza a $\xi_1^1 = \xi_1^3 = \xi_1^4 = 0$ e $\xi_1^2 = \xi_1^5 = \frac{1}{2}$ è z = 0. Quindi, se utilizzi questa strategia, vinci, nel caso peggiore, in media 0 euro per ogni round del gioco.

Il problema di programmazione lineare che deve risolvere il tuo avversario per individuare la sua strategia conservativa è il seguente:

max w

$$w \le \sum_{j=1}^{5} c_{ij} \xi_2^j \quad i = 1, \dots, 5$$

$$\xi_2^j \ge 0 \quad j = 1, \dots, 5$$

$$\sum_{j=1}^{5} \xi_2^j = 1$$

- il valore ottimo di questo programma, in corrispondenza a $\xi_2^j = \frac{1}{5} \ \forall j = 1, \dots, 5 \ \text{è} \frac{3}{5}$. Quindi, il tuo avversario, se utilizza questa strategia, paga, nel caso peggiore, in media $\frac{3}{5}$ di euro per ogni round del gioco.
- il valore ottimo di questo programma, in corrispondenza a $\xi_2^1 = \xi_2^2 = \xi_2^4 = \frac{1}{5}$, $\xi_2^3 = 0$ e $\xi_2^5 = \frac{2}{5}$ è $-\frac{1}{5}$. Quindi, il tuo avversario, se utilizza questa strategia, paga, nel caso peggiore, in media $\frac{1}{5}$ di euro per ogni round del gioco.

Si osservi che z(1/5,1/5,2/5,1/5,0) = w(1/5,1/5,0,1/5,2/5) quindi la strategia (1/5,1/5,2/5,1/5,0) è conservativa per te e la strategia (1/5,1/5,0,1/5,2/5) è conservativa per il tuo avversario (e, le altre strategie che restituiscono un payoff atteso diverso da $-\frac{1}{5}$ non lo sono). Segue anche che il valore del gioco è $-\frac{1}{5}$. Infine, naturalmente, la coppia di strategie conservative individuate determina un equilibrio di Nash.