Regularized Anderson Acceleration for Off-Policy Deep Reinforcement Learning

Wenjie Shi, Shiji Song, Hui Wu, Ya-Chu Hsu, Cheng Wu, Gao Huang Tsinghua University, Beijing, China Email: shiwj16@mails.tsinghua.edu.cn

MOTIVATION

Sample inefficiency

AlphaGo Zero

millions of self-play

StarCraft

several days

Autonomous Driving

safety-critical scenarios

- Millions of trials are required to learn.
- Leading to long training time.
- Making the learning in real physical systems impractical.

Existing methods

- To learn the model of system dynamics.
- To reuse past experience (off-policy).

Main observations

- RL is closely linked to fixed-point iteration.
- Anderson acceleration is a method capable of speeding up the computation of fixed point iterations.

METHOD

Fixed-point problem:

RL problem:

Given the optimality Bellman operator \mathcal{T} : solve $Q^{\pi} = \mathcal{T}Q^{\pi}$.

Algorithm FPI. Fixed-Point Iteration:

Given x_0 ,

For
$$k = 0, 1, ...$$

 $\operatorname{Set} x_{k+1} = g(x_k).$

Given π_0 ,

For
$$k = 0, 1, ...$$

$$\operatorname{Set} Q^{\pi_{k+1}} = \mathcal{T} Q^{\pi_k}.$$

Algorithm AA. Anderson Acceleration: — Algorithm AA for Pl.

Given x_0 and $m \ge 1$,

For k = 0, 1, ...

Set $F_k = (f_{k-m+1}, ..., f_k)$, where

 $f_i = g(x_i) - x_i$.

Solve $\alpha^k = (\alpha_1^k, ..., \alpha_m^k)^T$:

 $min_{\alpha} ||F_k\alpha||_2$ s.t. $\sum \alpha_i = 1$.

Set $x_{k+1} = \sum_{i=1}^{m} \alpha_i^k g(x_{k-m+i})$.

Algorithm PI. Policy Iteration:

$$\operatorname{Set} Q^{n_{k+1}} = \mathcal{T} Q^{n_k}.$$

Given π_0 and $m \ge 1$,

For k = 0,1,...

Set $\Delta_k = (\delta_{k-m+1}, \dots, \delta_k)$, where

 $\delta_i = \mathcal{T} Q^{\pi_i} - Q^{\pi_i}.$

Solve $\alpha^k = (\alpha_1^k, ..., \alpha_m^k)^T$:

 $\min_{\alpha} ||\Delta_k \alpha||_2 \text{ s.t. } \sum \alpha_i = 1. | \longrightarrow | \min_{\alpha} ||\widetilde{\Delta}_k \alpha||_2 + \lambda ||\alpha||^2$ Set $Q^{\pi_{k+1}} = \sum_{i=1}^{m} \alpha_i^k \mathcal{T} Q^{\pi_{k-m+i}}$.

Challenges

space is intractable.

are unavoidable.

ill-conditioning.

Sweeping entire state-action

Function approximation errors

The solution may suffer from

Algorithm RAA. Regularized AA:

EXPERIMENTS

Comparative evaluation

Figure 1: Learning Curves of Dueling-DQN, TD3 and their RAA variants on discrete and continuous control tasks.

Ablation studies

Time steps (1e6)

Larger m leads to faster convergence and better final performance.

Time steps (1e6)

Code

Arxiv