The Outliers Theorem Revisited

Samuel Epstein*

August 7, 2022

Abstract

An outlier is a datapoint set apart from a sample population. The outliers theorem in algorithmic information theory states given a computable sampling method, outliers have to appear. We present a simple proof to the outliers theorem, with exponentially improved bounds. We extend the outliers theorem to ergodic dynamical systems. Ergodic dynamical systems are guaranteed to hit ever larger outlier states with diminishing measure. We also prove that all open sets of the Cantor space with large uniform measure will either have a simple computable member or high mutual information with the halting sequence.

1 Introduction

The deficiency of randomness of an infinite sequence $\alpha \in \{0,1\}^{\infty}$ with respect to a computable measure P over $\{0,1\}^{\infty}$ is defined to be $\mathbf{D}(\alpha|P) = \sup_{n} -\log P(\alpha[0..n]) - \mathbf{K}(\alpha[0..n])$. The term \mathbf{K} is the prefix free Kolmogorov complexity.

Theorem. For computable measures μ and non-atomic λ over $\{0,1\}^{\infty}$ and $n \in \mathbb{N}$, $\lambda\{\alpha: \mathbf{D}(\alpha|\mu) > n\} > 2^{-n-\mathbf{K}(n,\mu,\lambda)-O(1)}$.

This has special meaning when λ is the stationary measure of a dynamical system. The theorem was proven using a general template consistent with the Independence Postulate, [Lev13, Lev84]. This involves first proving that an object has mutual information with the halting sequence. The second step involves removing the mutual information term from the inequality. The removal of the information term can be done in a number of ways, and the dynamical systems theorem represents one such example.

Outliers

In addition, we present a simple proof of the outliers theorem in [Eps21] with exponentially improved bounds. A sampling method A is a probabilistic function that maps an integer N with probability 1 to a set containing N different strings. Let $P = P_1, P_2, \ldots$ be a sequence of measures over strings. For example, one may choose $P_1 = P_2 \ldots$ or choose P_n to be the uniform measure over n-bit strings. A conditional probability bounded P-test is a function $t : \{0,1\}^* \times \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that for all $n \in \mathbb{N}$ and positive real number r, we have $P_n(\{x : t(x|n) \geq r\}) \leq 1/r$. If P_1, P_2, \ldots is uniformaly computable, then there exists a lower-semicomputable such P-test t that is "maximal", i.e., for which $t' \leq O(t)$ for every other such test t'. Fix such a t, and let $\overline{\mathbf{d}}_n(x|P) = \log t(x|n)$.

^{*}JP Theory Group. samepst@jptheorygroup.org

Theorem. Let $P = P_1, P_2...$ be a uniformly computable sequence of measures on strings and let A be a sampling method. There exists $c \in \mathbb{N}$ such that for all n and k:

$$\Pr\left(\max_{a\in A(2^n)}\overline{\mathbf{d}}_n(a|P) > n-k-c\right) \ge 1 - 2e^{-2^k}.$$

Open Sets

For $x \in \{0,1\}^*$ let $\Gamma_x = \{x\beta : \beta \in \{0,1\}^\infty\}$ be the interval of x. For open set $S \subseteq \{0,1\}^\infty$, let its encoding be $\langle S \rangle = \langle \{x : \Gamma_x \text{ is maximal in } S \} \rangle$. Arbitrary open sets $S \subset \{0,1\}^\infty$ can have infinite $\langle S \rangle$. The halting sequence is $\mathcal{H} \in \{0,1\}^\infty$. The Kolmogorov complexity of an infinite sequence $\alpha \in \{0,1\}^\infty$ is $\mathbf{K}(\alpha)$, the size of the smallest program to a universal Turing machine that will output, without halting, α on the output tape. Let μ be the uniform measure of the Cantor space. The information term between infinite sequences is $\mathbf{I}(\alpha : \beta) = \log \sum_{x,y \in \{0,1\}^*} \mathbf{m}(x|\alpha) \mathbf{m}(y|\beta) 2^{\mathbf{I}(x:y)}$, where \mathbf{m} is the algorithmic probability [Lev74]. The mutual information between two finite strings is defined to be $\mathbf{I}(x : y) = \mathbf{K}(x) + \mathbf{K}(y) - \mathbf{K}(x,y)$.

Theorem. For open $S \subseteq \{0,1\}^{\infty}$, $\min_{\alpha \in S} \mathbf{K}(\alpha) <^{\log} - \log \mu(S) + \mathbf{I}(\langle S \rangle : \mathcal{H})$.

This is a variation of the Sets have Simple Members Theorem [Lev16, Eps19]. We also prove a slightly stronger results for clopen sets.

2 Conventions

Let \mathbb{N} , \mathbb{R} , $\{0,1\}$, $\{0,1\}^*$, and $\{0,1\}^\infty$ be the sets of natural numbers, real numbers, bits, finite strings, and infinite strings. We use $\langle x \rangle$ to represent a self-delimiting code for $x \in \{0,1\}^*$, such as $1^{||x||}0x$. The self-delimiting code for a finite set of strings $\{a_i\}_{i=1}^n$ is $\langle \{a_i\}_{i=1}^n \rangle = \langle n \rangle \langle a_1 \rangle \langle a_2 \rangle \dots \langle a_n \rangle$. For positive real functions f the terms $<^+f$, $>^+f$, $=^+f$ represent < f+O(1), >f-O(1), and $=f\pm O(1)$, respectively. In addition $<^*f$, $>^*f$ denote < f/O(1), > f/O(1). The terms $=^*f$ denotes $<^*f$ and $>^*f$. For nonnegative real function f, the terms $<^{\log}f$, $>^{\log}f$, $=^{\log}f$ represent the terms $< f+O(\log(f+1))$, $>f-O(\log(f+1))$, and $=f\pm O(\log(f+1))$, respectively.

A semi measure is a function $Q: \mathbb{N} \to \mathbb{R}_{\geq 0}$ such that $\sum_{a \in \mathbb{N}} Q(a) \leq 1$. A probability measure is a semi measure such that $\sum_{a \in \mathbb{N}} Q(a) = 1$. A probability measure Q is elementary if $|\{a: Q(a) > 0\}| < \infty$ and $\mathrm{Range}(Q)$ consists of all rationals. Elementary measures Q can be encoded into finite strings $\langle Q \rangle$.

The universal probability of a string $x \in \{0,1\}^*$, conditional to $y \in \{0,1\}^* \cup \{0,1\}^{\infty}$, is $\mathbf{m}(x|y) = \sum \{2^{-\|p\|} : U_y(p) = x\}$ The coding theorem states $-\log \mathbf{m}(x|y) = \mathbf{K}(x|y)$. The mutual information of a string x with the halting sequence is $\mathbf{I}(x;\mathcal{H}) = \mathbf{K}(x) - \mathbf{K}(x|\mathcal{H})$, where $\mathcal{H} \in \{0,1\}^{\infty}$ is the halting sequence.

This paper uses notions of stochasticity in the field of algorithmic statistics [VS17]. A string x is stochastic, i.e. has a low $\mathbf{Ks}(x)$ score if it is typical of a simple probability distribution. The deficiency of randomness function of a string x with respect to an elementary probability measure P conditional to $y \in \{0,1\}^*$, is $\mathbf{d}(x|P,y) = \lfloor -\log P(x) \rfloor - \mathbf{K}(x|\langle P \rangle, y)$.

Definition 1 (Stochasticity) For $x, y \in \{0, 1\}^*$, $\mathbf{Ks}(x|y) = \min\{\mathbf{K}(P|y) + 3\log\max\{\mathbf{d}(x|P, y), 1\} : P \text{ is an elementary probability measure}\}.$

3 Dynamical Systems

In this section, we prove that dynamical systems will hit ever larger outliers with diminishing probability. To do so, we use properties of the mutual information of an infinite sequence with the halting problem. The deficiency of randomness of an infinite sequence $\alpha \in \{0,1\}^{\infty}$ with respect to a computable probability measure P over $\{0,1\}^{\infty}$ is defined to be

$$\mathbf{D}(\alpha|P,x) = \log \sup_{n} \mathbf{m}(\alpha[0..n]|x) / P(\alpha[0..n]).$$

We have $\mathbf{D}(\alpha|P) = \mathbf{D}(\alpha|P,\emptyset)$. We require the following two theorems for the main proof of this section.

Theorem 1 ([Ver21, Lev74, Gei12]) $\Pr_{\mu}(\mathbf{I}(\alpha:\mathcal{H}) > n) \stackrel{*}{<} 2^{-n+\mathbf{K}(\mu)}$.

Theorem 2 ([Eps21]) For computable probability measure P over $\{0,1\}^{\infty}$, for $Z \subseteq \{0,1\}^{\infty}$, if $\mathbb{N} \ni s < \log \sum_{\alpha \in Z} 2^{\mathbf{D}(\alpha|P)}$, then $s < \sup_{\alpha \in Z} \mathbf{D}(\alpha|P) + \mathbf{I}(\langle Z \rangle : \mathcal{H}) + O(\mathbf{K}(s) + \log \mathbf{I}(\langle Z \rangle : \mathcal{H}) + \mathbf{K}(P))$.

Theorem 3 (Dynamical Systems) For computable measures μ and non-atomic λ over $\{0,1\}^{\infty}$ and $n \in \mathbb{N}$, $\lambda \{\alpha : \mathbf{D}(\alpha|\mu) > n\} > 2^{-n-\mathbf{K}(n,\mu,\lambda)-O(1)}$.

Proof. Assume not. For all $c \in \mathbb{N}$, there exist computable non-atomic measures μ , λ , and there exists n, where $\lambda\{\alpha : \mathbf{D}(\alpha|\mu) > n\} \leq 2^{-n-\mathbf{K}(n,\mu,\lambda)-c}$. Sample $2^{n+\mathbf{K}(n,\mu,\lambda)+c-1}$ elements $D \subset \{0,1\}^{\infty}$ according to λ . The probability that all samples $\beta \in D$, has $\mathbf{D}(\beta|\mu) \leq n$ is

$$\prod_{\beta \in D} \lambda \{ \mathbf{D}(\beta | \mu) \le n \} \ge (1 - |D|2^{-n - \mathbf{K}(n, \mu, \lambda) - c}) \ge (1 - 2^{n + \mathbf{K}(n, \mu, \lambda) + c - 1}2^{-n - \mathbf{K}(n, \mu, \lambda) - c}) \ge 1/2.$$

Let $\lambda^{n,c}$ be a probability of an encoding of $2^{n+\mathbf{K}(n,\mu,\lambda)+c-1}$ elements each distributed according to λ . Thus

$$\lambda^{n,c}$$
 (Encoding of $2^{n+\mathbf{K}(n,\mu,\lambda)+c-1}$ elements β , each having $\mathbf{D}(\beta|\mu) \leq n) \geq 1/2$.

Let v be a shortest program to compute $\langle n, \mu, \lambda \rangle$. By Theorem 1, with the universal Turing machine relativized to v, $\lambda^{n,c}(\{\gamma: \mathbf{I}(\gamma:\mathcal{H}|v) > m\}) \stackrel{*}{<} 2^{-m+\mathbf{K}(n,\mathbf{K}(n,\mu,\lambda),c,\lambda|v)} \stackrel{*}{<} 2^{-m+\mathbf{K}(c)}$. So there is a constant $f \in \mathbb{N}$, with

$$\lambda^{n,c}(\{\gamma: \mathbf{I}(\gamma:\mathcal{H}|v) > \mathbf{K}(c) + f\}) \le 1/4.$$

So, by probabilistic arguments, there exists $\alpha \in \{0,1\}^{\infty}$, such that α is an encoding of $2^{n+\mathbf{K}(n,\mu,\lambda)+c-1}$ elements $\beta \in D \subset \{0,1\}^{\infty}$, where each β has $\mathbf{D}(\beta|\mu) \leq n$ and $\mathbf{I}(\alpha : \mathcal{H}|v) <^+ \mathbf{K}(c)$. By Theorem 2, relativized to v, there are constants $d, f \in \mathbb{N}$ where

$$m = \log |D| < \max_{\beta \in D} \mathbf{D}(\beta | \mu, v) + 2\mathbf{I}(D : \mathcal{H}|v) + d\mathbf{K}(m|v) + f\mathbf{K}(\mu|v)$$

$$<^{+} \max_{\beta \in D} \mathbf{D}(\beta | \mu) + \mathbf{K}(n, \mu, \lambda) + 2\mathbf{K}(c) + d\mathbf{K}(m|v) + f\mathbf{K}(\mu|v)$$

$$<^{+} n + \mathbf{K}(n, \mu, \lambda) + d\mathbf{K}(m|v) + 2\mathbf{K}(c). \tag{1}$$

So

$$m = n + \mathbf{K}(n, \mu, \lambda) + c - 1$$

$$\mathbf{K}(m|v) <^{+} \mathbf{K}(c).$$

Plugging the inequality for $\mathbf{K}(m|v)$ back into Equation 1 results in

$$n + \mathbf{K}(n, \mu, \lambda) + c <^{+} n + \mathbf{K}(n, \mu, \lambda) + 2\mathbf{K}(c) + d\mathbf{K}(c)$$
$$c <^{+} (2 + d)\mathbf{K}(c).$$

This is a contradiction for large enough c solely dependent on the universal Turing machine. \square

Similar to the construction in the introduction, we can define a universal conditional lower computable integral test $T(\alpha|n)$ over a sequence of uniformly computable measures Q_1, Q_2, \ldots over $\{0,1\}^{\infty}$. We can also define the deficency of randomness to be $\mathbf{D}_n(\alpha|Q) = \log T(\alpha|n)$. The following corollary is derived from the fact that $\mathbf{D}_n(\alpha|\mu,n) = \mathbf{D}_n(\alpha|\mu)$.

Corollary 1 For uniformly computable measures $\{\mu_i\}$ and non-atomic $\{\lambda_i\}$ over $\{0,1\}^{\infty}$, for all n, $\lambda_n\{\alpha: \mathbf{D}_n(\alpha|\mu) > n\} > 2^{-n-\mathbf{K}(\mu,\lambda)-O(1)}$.

Theorem 3 can be extended to uncomputable λ . This can be accomplished by using a stronger version of Theorem 1. The term $\langle \lambda \rangle \in \{0,1\}^{\infty}$ in the following corollary represents any encoding of λ that can compute $\lambda(x\{0,1\}^{\infty})$ for $x \in \{0,1\}^*$ up to arbitrary precision.

Corollary 2

- For measures μ and λ over $\{0,1\}^{\infty}$, non-atomic λ , computable μ , for all n, $\lambda\{\alpha: \mathbf{D}(\alpha|\mu) > n\} > 2^{-n-\mathbf{K}(n,\mu)-\mathbf{I}(\langle\lambda\rangle:\mathcal{H})-O(\log\mathbf{I}(\langle\lambda\rangle:\mathcal{H}))}$.
- For measures μ and λ over $\{0,1\}^{\infty}$, non-atomic λ , computable μ , if for every $c \in \mathbb{N}$, there is an $n \in \mathbb{N}$, where $\lambda\{\alpha : \mathbf{D}(\alpha|\mu) > n\} < 2^{-n-\mathbf{K}(n)-c}$, then $\mathbf{I}(\langle \lambda \rangle : \mathcal{H}) = \infty$.

We define a metric g on $\{0,1\}^{\infty}$ with $g(\alpha,\beta)=1/2^k$ where k is the first place where α and β disagree. Let \mathfrak{F} be the topology induced by g on $\{0,1\}^{\infty}$. Let \mathcal{B} be the Borel σ -algebra on $\{0,1\}^{\infty}$. Let λ and μ be computable measures over $\{0,1\}^{\infty}$ and λ be non-atomic. Let $(\{0,1\}^{\infty},\mathcal{B},\lambda)$ be a measure space and $T:\{0,1\}^{\infty}\to\{0,1\}^{\infty}$ be an ergodic measure preseving transformation. By the Birkoff theorem,

Corollary 3 Starting λ -almost everywhere, $\stackrel{*}{>}$ $\mathbf{m}(n,\mu,\lambda)2^{-n}$ states α visited by iterations of T have $\mathbf{D}(\alpha|\mu) > n$.

4 Outliers Theorem

A sampling method A is a probabilistic function that maps an integer N with probability 1 to a set containing N different strings.

Lemma 1 Let $P = P_1, P_2...$ be a uniformly computable sequence of measures on strings and let A be a sampling method. For all integers M and N there exists a finite set $S \subset \{0,1\}^*$ such that $P(S) \leq 2M/N$, and with probability strictly more than $1 - 2e^{-M}$: A(N) intersects S.

Proof. We show that some possibly infinite set S satisfies the conditions, and hence some finite subset also satisfies the conditions because of the strict inequality. We use the probabilistic method: we select each string to be in S with probability M/N, and show that 2 conditions are satisfied with positive probability. Indeed, the expected value of P(S) is M/N. By the Markov inequality, the

probability that P(S) > 2M/N is at most 1/2. For any set D containing N strings, the probability that S is disjoint from D is

$$(1 - M/N)^N < e^{-M}.$$

Let Q be the measure over N-element sets of strings generated by the sampling algorithm A(N). The left-hand side above is equal to the expected value of

$$Q(\{D: D \text{ is disjoint from } S\}).$$

Again by the Markov inequality, with probability less than 1/2, this measure is less than $2e^{-M}$. By the union bound, the probability that at least one of the conditions are violated is less than 1/2 + 1/2. Thus, with positive probability a required set is generated, and thus such a set exists.

Theorem 4 Let $P = P_1, P_2...$ be a uniformly computable sequence of measures on strings and let A be a sampling method. There exists $c \in \mathbb{N}$ such that for all n and k:

$$\Pr\left(\max_{a\in A(2^n)}\overline{\mathbf{d}}_n(a|P) > n-k-c\right) \ge 1 - 2e^{-2^k}.$$

Proof. Fix a search procedure that on input N and M finds a set $S_{N,M}$ that satisfies the conditions of Lemma 1. Let t'(a|n) be the maximal value of $2^n/2^{k+2}$ such that $a \in S_{2^n,2^k}$ for some integer k. By construction, t' is a computable probability bound test, since $P(\{x:t'(x|n)=2^\ell\}) \leq 2^{-\ell-1}$, and thus $P(t'(x|n) \geq 2^\ell) \leq 2^{-\ell-1} + 2^{-\ell-2} + \dots$ With the given probability, the set $A(2^n)$ intersects $S_{2^n,2^k}$. For any number a in the intersection, we have $t'(x|n) \geq 2^{n-k-2}$, thus by the optimality of t and definition of d, we have $\overline{\mathbf{d}}_n(a|P) > n - k - O(1)$.

An incomplete sampling method A takes in a natural number $n \in \mathbb{N}$ and outputs, with probability f(n), a set of n numbers. Otherwise A outputs \perp . f is computable.

Corollary 4 Let $P = P_1, P_2...$ be a uniformly computable sequence of measures on strings and let A be an incomplete sampling method. There exists $c \in \mathbb{N}$ such that for all n and k:

$$\Pr_{D=A(n)}\left(D\neq \perp \ and \ \max_{a\in D}\overline{\mathbf{d}}_n(a|P) \le n-k-c\right) < 2e^{-2^k}.$$

4.1 Continuous Sampling Method

For a mathematical statement W, [W] = 1 if W is true, and [W] = 0 otherwise. Let $\mu = \mu_1, \mu_2, \ldots$ be a uniformly computable sequence of measures over infinite sequences. In a similar way as for strings, the deficiency $\overline{\mathbf{D}}_n(\omega|\mu)$ for sequences ω is defined using lower-semicomputable functions $\{0,1\}^{\infty} \times \mathbb{N} \to \mathbb{R}_{\geq 0}$. A continuous sampling method C is a probabilistic function that maps, with probability 1, an integer N to an infinite encoding of N different sequences.

Theorem 5 There exists $c \in \mathbb{N}$ where for all n:

$$\Pr\left(\max_{\alpha \in C(2^n)} \overline{\mathbf{D}}_n(\alpha|\mu) > n - k - c\right) \ge 1 - 2.5e^{-2^k}.$$

Proof. For $D \subseteq \{0,1\}^{\infty}$, $D_m = \{x : ||x|| = m, x\omega \in D\}$. Let $g(n) = \arg\min_m \Pr_{D=C(n)}(|D_m| < n) < 0.5e^{-2^n}$ be the smallest number such that the initial m-segment of C(n) are sets of n strings with very high probability. g is computable, since C outputs a set with probability 1. For probability ψ over $\{0,1\}^{\infty}$, let $\psi^m(x) = [|x| = m]\psi(\{\omega : x \sqsubset \omega\})$. Let $\mu^g = \mu_1^{g(1)}, \mu_2^{g(2)}, \ldots$ be a uniformly computable sequence of discrete probability measures. Let A be an discrete incomplete sampling method, where for random seed $\omega \in \{0,1\}^{\infty}$, $A(n,\omega) = C(n,\omega)_{g(n)}$ if $|C(n,\omega)_{g(n)}| = n$, otherwise $A(n,\omega) = \bot$. Thus due to Corollary 4,

$$\Pr\left(\max_{\alpha \in C(2^n)} \overline{\mathbf{D}}_n(\alpha | \mu) \le n - k - O(1)\right)$$

$$\leq \Pr_{Z=C(2^n)} \left((|Z_{g(n)}| < 2^n) \text{ or } (|Z_{g(n)}| = 2^n \text{ and } \max_{\alpha \in Z} \overline{\mathbf{D}}_n(\alpha | \mu) \le n - k - O(1)\right)$$

$$< \Pr_{D \in A(2^n)} \left(D = \bot \text{ or } (D \ne \bot \text{ and } \max_{x \in D} \overline{\mathbf{d}}_n(x | \mu^g) \le n - k - O(1))\right)$$

$$< 0.5e^{-2^n} + 2e^{-2^k}$$

$$\leq 2.5e^{-2^k}.$$

4.2 Alternative Proof to Theorem 3

Using the theorem of the previous section, one can produce a simple proof to a variant of Theorem 3. The longer proof was included because of its tight error terms as well as its corollaries extending the results to uncomputable measures. Let $\lambda = \lambda_1, \lambda_2, \ldots$ and $\mu = \mu_1, \mu_2, \ldots$ be uniformly computable sequences of measures over infinite sequences. Let λ_n be non-atomic.

Theorem 6 There is a constant $c \in \mathbb{N}$, where for all $n \in \mathbb{N}$, $\lambda_n \{ \alpha : \overline{\mathbf{D}}_n(\alpha | \mu) > n \} > 2^{-n-c}$.

Proof. Let $d_n = \lambda_n \{\alpha : \overline{\mathbf{D}}_n(\alpha | \mu) > n - O(1)\}$. We define the continuous sampling method C, where on input n, randomly samples n elements from λ_n . By Theorem 5, where k = 0,

$$1 - (1 - d_n)^{2^n} > 1 - 2.5e^{-1}$$
$$1 - 2^n d_n < 2.5/e$$
$$d_n > (1 - 2.5/e)2^{-n}.$$

4.3 Necessity of Double Exponential

Theorem 4 showed that the probability that $A(2^n)$ contains no strings of defiency less than n-k, decreases double exponential in k. We show that at least a double exponential probability is needed for k = n - O(1). Let P_n be the uniform measure on (n+2)-bit strings. The algorithm A that on input 2^n generates a random set of 2^n strings of length n+2 satisfies

$$\Pr\left(\forall x \in A(2^n) : \overline{\mathbf{d}}_n(x|P) \le 2\right) \ge 2^{-2^n}.$$

Indeed, for at most a quarter of the (n+2)-bit strings, we have $\overline{\mathbf{d}}_n(x|P) \geq 3$, by definition of a probability bounded test t. A random selection of $N=2^n$ different (n+2)-bit strings, contains no

such string with probability at least 2^{-N} . Indeed, imagine that in a bag with 4N balls, N balls are marked. One selects N balls one by one. Consider the probability that no marked ball is drawn if previously no marked ball was drawn. The smallest probability appears at the last draw, when there are T = 4N - (N-1) balls in the bag. This probability is $(T-N)/T \ge 1/2$.

4.4 Partial Sampling Methods

A partial sampling method is a sampling method that can output with probability less than 1. Theorem 4 does not hold for partial sampling methods B. Let P_n be the uniform measure on (n+1)-bit strings. Let #B(N) represent the event that B halts and outputs a set of size N. We present a partial sampling method B for which

$$\Pr\left(\#B(2^n) \text{ and } \forall x \in B(2^n) : \overline{\mathbf{d}}_n(x|P) \le 1\right) \ge 2^{-n}.$$

Note that for at most half of the (n+1)-bit strings, we have $\overline{\mathbf{d}}_n(x|P) \geq 2$. On input 2^n , partial sampling method B generates a random natural number s bounded by 2^n , searches for s strings x of length n+1 with $\overline{\mathbf{d}}_n(x|P) \geq 2$, and outputs 2^n other (n+1)-bit strings. For some s, this search may never terminate. If A chooses to be precisely equal to the number of strings satisfying the condition, then it outputs only strings with deficiency at most 1, and the claim is proven. However partial sampling methods do exhibit the following properties

Proposition 1 Let $P = P_1, P_2,...$ be a uniformly computable sequence of measures and B be a partial sampling method, where #B(N) represents the event that B(N) terminates and outputs a set of N strings.

$$\Pr\left(\#B(N) \text{ and } \forall x \in B(2^n) : \overline{\mathbf{d}}_n(x|P) \le n - k\right) \le O(k2^{-k}).$$

Proof. Let Q be the lower-semicomputable semi-measure over sets of size 2^n such that Q(D) equals the probability that B(N) = D. We show that

$$\Pr\left(\#B(N) \text{ and } \forall x \in B(2^n) : \overline{\mathbf{d}}_n(x|P) \le n - k + \log k + O(1)\right) \le O(2^{-k}).$$

The result follows by a redefinition of k. We write Q as a uniform mixture over at most 2^k measures Q_i with finite support, and one lower semicomputable semi-measure Q_* :

$$Q = 2^{-k} (Q_1 + Q_2 + \dots Q_f + Q_*)$$

with $f \leq 2^k$. We assume that the finite descriptions of Q_1, \ldots, Q_f are enumerated one by one by a program (that may never terminate). For each enumerated measure Q, we search for a set S_i that satisfies the conditions of Lemma 1 for M = k. Let $S = \bigcup_{i \leq f} S_i$. Note that $P(S) \leq k2^{k+1-n}$. Hence every element in S satisfies $\overline{\mathbf{d}}_n(x|P) \geq n - k + \log k + O(1)$.

The probability that $A(2^n)$ produces a set that does not contain such an element, is at most $2^{-k} + 2e^{-k}$ because we can equivalently generate a set D by randomly selecting j from the list $[1, \ldots, f, *, \infty]$ with probabilities $[2^{-k}, \ldots, 2^{-k}, 2^{-k}r, 1 - (f+r)2^{-k}]$ and generating a random set D from Q_j if $j \neq \infty$ and letting D be undefined otherwise. The probability that D is defined and does not contain an element from S, is at most the probability j = * (which is $\leq 2^{-k}$) plus the probability that $j \in \{1, \ldots, f\}$ times $2e^{-k}$.

5 Clopen Sets

For sets $S \subseteq \{0,1\}^{\infty}$ and $D \subseteq \{0,1\}^*$, $S \subseteq D = \{x : x \in D, \Gamma_x \subseteq S\}$.

Lemma 2 For clopen set $C \subseteq \{0,1\}^{\infty}$, $s = \lceil -\log \mu(C) \rceil$, $\min_{\alpha \in C} \mathbf{K}(\alpha) < s + \mathbf{Ks}(\langle C \rangle) + O(\mathbf{K}(s))$.

Proof. We put s on an auxiliary tape to the universal Turing machine U. Thus, all algorithms have access to s, and all complexities implicitly have s as conditional terms. This can be done because the precision of the lemma is $O(\mathbf{K}(s))$.

Let P be an elementary probability measure that realizes $\mathbf{Ks}(\langle C \rangle)$. Let $n = \max\{\|x\| : x \in W \subset \{0,1\}^*, \langle W \rangle \in \operatorname{Supp}(P)\}$. Let $d = \max\{\mathbf{d}(\langle C \rangle | P), 1\}$ and $c \in \mathbb{N}$ be a constant to be chosen later. Let κ be the uniform probability measure over lists L of $cd2^s$ strings of length n, where $\kappa(L) = 2^{-ncd2^s}$. Let $t_L(\langle W \rangle)$ be a function, parameterized by a list $L \subseteq \{0,1\}^n$, over encoded clopen sets $W \subseteq \{0,1\}^{\infty}$, with $t_L(\langle W \rangle) = [\mu(W) \geq 2^{-s}, W \leq L = \emptyset]e^{cd}$.

$$\mathbf{E}_{L \sim \kappa} \mathbf{E}_{\langle W \rangle \sim P}[t_L(\langle W \rangle)] \leq \sum_{\text{clopen } W \subseteq \{0,1\}^{\infty}} P(\langle W \rangle) \left(1 - 2^{-s}\right)^{cd2^s} e^{cd}$$

$$\leq e^{-2^{-s} cd2^s} e^{cd}$$

$$\leq 1.$$

Thus there exists a list L of $cd2^{s+1}$ strings such that $\mathbf{E}_{\langle W \rangle \sim P}[t_L(\langle W \rangle)] < 1$. This L can be found with brute force search, with $\mathbf{K}(L|c,d,P) = O(1)$. It must be that $C \leq L \neq \emptyset$. Otherwise $t_L(\langle C \rangle) = e^{cd}$ and since $t_L(\cdot)P(\cdot)$ is a semi-measure, for large enough c solely dependent on the universal Turing machine U, a contradiction occurs, with

$$\begin{split} \mathbf{K}(C|c,d,\langle P\rangle) &< -\log t_L(\langle C\rangle)P(\langle C\rangle) + O(1) \\ \mathbf{K}(C|c,d,\langle P\rangle) &< -\log P(\langle C\rangle) - (\lg e)cd + O(1) \\ &(\lg e)cd < -\log P(\langle C\rangle) - \mathbf{K}(C|\langle P\rangle) + \mathbf{K}(d,c) + O(1) \\ &(\lg e)cd < d + \mathbf{K}(d,c) + O(1). \end{split}$$

So there exists $x \in C \subseteq L$, with

$$\mathbf{K}(x) <^{+} \log |L| + \mathbf{K}(L)$$

$$<^{+} \log |L| + \mathbf{K}(d, P)$$

$$<^{+} \log d + s + \mathbf{K}(d) + \mathbf{K}(P)$$

$$<^{+} s + \mathbf{Ks}(\langle C \rangle).$$

Since $x \in C \subseteq L$, $\Gamma_x \subseteq C$. Thus there is a program g that outputs x and then an infinite sequence of 0's. Since $x0^{\infty} \in C$ and $||g|| <^+ \mathbf{K}(x)$,

$$\min_{\alpha \in C} \mathbf{K}(\alpha) \le ||g|| <^{+} \mathbf{K}(x) < s + \mathbf{Ks}(\langle C \rangle) + O(\mathbf{K}(s)).$$

Theorem 7

For clopen set
$$C \subseteq \{0,1\}^{\infty}$$
, $s = \lceil -\log \mu(C) \rceil$, $h = \mathbf{I}(\langle C \rangle; \mathcal{H})$, $\min_{\alpha \in C} \mathbf{K}(\alpha) < s + h + O(\mathbf{K}(s,h))$.

Proof. This follows from Lemma 10 in [Eps21], which states $\mathbf{Ks}(x) < \mathbf{I}(x; \mathcal{H}) + O(\mathbf{K}(\mathbf{I}(x; \mathcal{H})))$.

6 Open Sets

Theorem 7 can be generalized to arbitrary open sets of the Cantor space. Such sets S can have encodings $\langle S \rangle$ that are infinite sequences. The Big Oh term O and the $<^+$ are dependent solely on the choice of universal Turing machine.

Proposition 2

For every $c, n \in \mathbb{N}$, if x < y + c for some $x, y \in \mathbb{N}$ then $x + n\mathbf{K}(x) < y + n\mathbf{K}(y) + O(n \log n) + 2c$.

Proof. $\mathbf{K}(x) <^+ \mathbf{K}(y) + \mathbf{K}(y-x)$ as x can be computed from y and (y-x). So $n\mathbf{K}(x) - n\mathbf{K}(y) < n\mathbf{K}(y-x) + dn$, for some $d \in \mathbb{N}$ dependent on U. Assume not, then there exists $x, y, c \in \mathbb{N}$ where x < y + c, and $g \le O(n \log n) + 2c$ where $y - x + g < n\mathbf{K}(x) - n\mathbf{K}(y) < n\mathbf{K}(y-x) + dn$, which is a contradiction for $g =^+ dn + 2c + \max_a \{2n \log a - a\} =^+ dn + 2c + 2n \log n$.

Theorem 8

For open set $S \subseteq \{0,1\}^{\infty}$, $s = \lceil -\log \mu(S) \rceil$, $h = \mathbf{I}(\langle S \rangle : \mathcal{H})$, $\min_{\alpha \in S} \mathbf{K}(\alpha) < s + h + O(\mathbf{K}(s,h))$.

Proof. Let $\{x_i\}_{i=1}^n = \{x : \Gamma_x \text{ is maximal in } S\}$, with $n \in \mathbb{N} \cup \infty$. Let $N \in \mathbb{N}$ be the smallest number such that $\sum_{i=1}^N 2^{-\|x_i\|} > 2^{-s-1}$. Let $C = \bigcup_{i=1}^N \Gamma_{x_i}$ be a clopen set with $C \subseteq S$. By Theorem 7,

$$\min_{\alpha \in C} \mathbf{K}(\alpha) < s + \mathbf{I}(\langle C \rangle; \mathcal{H}) + O(\mathbf{K}(s)) + O(\mathbf{K}(\mathbf{I}(\langle C \rangle; \mathcal{H}))). \tag{2}$$

By the definition of \mathbf{I} ,

$$\mathbf{I}(\langle C \rangle; \mathcal{H}) <^{+} \mathbf{I}(\langle S \rangle : \mathcal{H}) + \mathbf{K}(\langle C \rangle | \langle S \rangle)$$

$$<^{+} \mathbf{I}(\langle S \rangle : \mathcal{H}) + \mathbf{K}(s).$$

By Proposition 2, where $x = \mathbf{I}(\langle C \rangle; \mathcal{H}), y = \mathbf{I}(\langle S \rangle : \mathcal{H}), \text{ and } c = \mathbf{K}(s) + O(1),$

$$\mathbf{I}(\langle C \rangle; \mathcal{H}) + O(\mathbf{K}(\mathbf{I}(\langle C \rangle; \mathcal{H}))) < \mathbf{I}(\langle S \rangle : \mathcal{H}) + O(\mathbf{K}(\mathbf{I}(\langle S \rangle : \mathcal{H}))) + O(\mathbf{K}(s)). \tag{3}$$

Putting Equations 2 and 3 together results in

$$\min_{\alpha \in S} \mathbf{K}(\alpha) < s + \mathbf{I}(\langle S \rangle : \mathcal{H}) + O(\mathbf{K}(s, \mathbf{I}(\langle S \rangle : \mathcal{H}))).$$

7 Discussion

In the proof Theorem 3, a relativization technique can be used to convert an $O(\mathbf{K}(x))$ error term to a $\mathbf{K}(x)$ error term. This enables the removal of quantifiers from the theorem statement. This technique can be done by first relativizing inequalities to a shortest program that computes all the relevant parameters μ , λ , and n. Then the next part is to reconfigure all terms that have the parameters as conditional information, in this case the deficiency of randomness $\mathbf{D}(\alpha|\mu)$. This technique was also used in [Eps22a, Eps22b].

References

- [Eps19] S. Epstein. On the algorithmic probability of sets. CoRR, abs/1907.04776, 2019.
- [Eps21] Samuel Epstein. All sampling methods produce outliers. *IEEE Transactions on Information Theory*, 67(11):7568–7578, 2021.
- [Eps22a] Samuel Epstein. A note on the outliers theorem. CoRR, abs/2203.08733, 2022.
- [Eps22b] Samuel Epstein. On the kolmogorov complexity of binary classifiers. CoRR, abs/2201.12374, 2022.

- [Gei12] Philipp Geiger. Mutual information and Gödel incompleteness. PhD thesis, Heidelberg University, 10 2012.
- [Lev74] L. A. Levin. Laws of Information Conservation (Non-growth) and Aspects of the Foundations of Probability Theory. *Problemy Peredachi Informatsii*, 10(3):206–210, 1974.
- [Lev84] L. A. Levin. Randomness conservation inequalities; information and independence in mathematical theories. *Information and Control*, 61(1):15–37, 1984.
- [Lev13] L. A. Levin. Forbidden information. J. ACM, 60(2), 2013.
- [Lev16] L. A. Levin. Occam bound on lowest complexity of elements. Annals of Pure and Applied Logic, 167(10):897–900, 2016. And also: S. Epstein and L.A. Levin, Sets have simple members, arXiv preprint arXiv:1107.1458, 2011.
- [Ver21] N. Vereshchagin. Proofs of conservation inequalities for levin's notion of mutual information of 1974. *Theoretical Computer Science*, 856, 2021.
- [VS17] Nikolay K. Vereshchagin and Alexander Shen. Algorithmic statistics: Forty years later. In *Computability and Complexity*, pages 669–737, 2017.