Examen « Compilation I » Enseignant : Karim Baïna Durée = 1H30

(Seuls les documents de Cours et de TD sont autorisés !!)
NB : le style **rigoureux** et **synthétique** sera apprécié

Nom:	•		 					 							
Préno	m	 		 										•	

Exercice I: QCM 5 pts (à rendre avec votre copie!!)

Pour chaque concept/question, remplissez la case de la colonne des choix uniques correspondante par un choix qui soit le plus adéquat :

Concept/Question	Choix	Choix possibles						
	unique							
(1) $A = \langle S, \Sigma, \delta, s_0, F \rangle \circ s_0 \notin F$	1	(a) Langage binaire						
(2) Automate à Piles	E	(b) Analyse syntaxique						
(3) Système d'équations	F	(c) deux arbres syntaxiques						
(4) ϵ -fermeture(s_0) \ { s_0 } $\neq \emptyset$	K	(d) Analyse lexicale						
(5) Problème semi-décidable	j	(e) Langage hors contexte						
(6) Erreur: if sans endif (en csh)	d	(f) Grammaire linéaire						
(7) Automate d'état finis	G	(g) Langage régulier						
(8) Erreur : /* sans */ (en C)	В	(h) Minimiser un automate						
(9) Grammaire ambiguë	С	(i) ε ∉ L						
(10) Optimisation en mémoire	Н	(j) Vérifier l'ambiguïté d'une grammaire						
(11) L1G	(a) « résolu »	(k) $\delta(s_0,\varepsilon) = s_1$, $O\grave{\cup} s_0 \neq s_1$						

Exercice II: Langages réguliers 10pts

- 1. Démontrer que pour toute expression régulière α et β :
 - a) $\alpha(\beta\alpha)^* = (\alpha\beta)^*\alpha$ (1pt)
 - b) $\alpha^*(\beta\alpha^*)^* = (\alpha^*\beta)^*\alpha^*$ (1pt)
- 2. Montrez que pour tout langage régulier L_1 et L_2 , le langage $L_1 \cap L_2$ est régulier (fermeture des langages réguliers par intersection) (1pt)
- 3. Donner l'expression régulière décrivant le langage L= $\{n \in \mathbb{N} / n = 0 [32]\}$ (1pt)
- 4. Si la complexité en temps de la fonction de transition δ est en O(1) quelle est la complexité en temps de l'algorithme non optimisé de transformation d'un automate non déterministe sans epsilon transition $A_N = \langle S_N, \Sigma_N, \delta_N, S_{NO}, F_N \rangle$ en un automate déterministe ? (1pt)
- 5. Soit (A_i)_{i=0..n} une suite d'automates d'états finis sous la forme de la figure 1 (**a**) donner et démontrer la forme régulière générale des langages L(A_i)_{i=0..n} (**b**) quelle est la propriété conservée par la suite (L(A_i))_{i=0..n} (**c**) démontrer cette propriété. (**3pts**)

Figure $\mathbf{1}^{\mathbf{A}_1}$: $(A_i)_{i=1..n}$ une suite d'automates d'états finis

6. Rendre le NFA $A_N = \langle S_N = \{A..T\}, \Sigma_N = \{0,1\}, \delta_N, s_{N0} = A, F_N = \{T\} \rangle$ déterministe (**2pts**)

Figure 2 : Automate non déterministe à epsilon transition

Exercice III: Langages hors contextes 5pts

- 1. Donner et décrire les grammaires hors contexte des langages suivants :
 - a. L1 = { $a^ib^jc^k / i\neq j \text{ ou } j\neq k$ } (1pt)
 - b. $L2 = \{ a^i b^j c^k / j = i + k \} (1pt)$
 - c. L3 = $\{w \in \{a,b\}^* / w = vv^{-1} \text{ ou } w = v\overline{v}^{-1}, \text{ où } v \in \{a,b\}^*\}^1$ (1pt)
- 2. Soit la grammaire suivante $G = \langle T = \{a,b,c\}, NT = \{A,B,C,D\}, S, P = \{r_1..r_{10}\} \rangle$
 - <A> | <C> <D> S ::= (r_1) (r_2) Α a <A> b (r_3) lab (r_4) В ::= С (r_5) | c (r_6) C |a <C> ::= (r_7) (r_8) a b **<D>** c D |bc (r_{10}) (r_9)
 - a. Quel est le langage L(G), justifier (1pt)
 - b. Que dire de la grammaire G, justifier, donner des idées de solutions éventuelles (1pt)

 $^{^1}$ V dénote le complément de v dans $\{a,b\}^*$ et v^{-1} dénote l'inverse de v dans $\{a,b\}^*$ (ex : abb =baa, $\{abb\}^{-1}$ =bba, abb^{-1} =aab)