Teorema di Cramer. Sia AX = B un sistema lineare in n equazioni ed n incognite. Se $det(A) \neq 0$ allora AX = B ammette un'unica soluzione.

Dimostrazione. Sia $|A| \neq 0 \iff n = \rho(A) = \rho(A|B)$ perché A|B ha n righe, quindi per il teorema di Rouché-Capelli il sistema è compatibile e ammette almeno una soluzione. Supponiamo ora per assurdo che non ammetta soluzione unica, siano X_1 e X_2 due soluzioni distinte di AX = B. Avremo che sia $AX_1 = B$ e sia $AX_2 = B$, quindi $AX_1 = AX_2$. Ora ricordiamo che $|A| \neq 0$, quindi A è invertibile, perciò

$$\exists A^{-1}: \quad A^{-1}A = I$$

Quindi possiamo giustificare la seguente equazione

$$A^{-1}(AX_1) = A^{-1}(AX_2) \iff (A^{-1}A)X_1 = (A^{-1}A)X_2$$

 $IX_1 = IX_2 \iff X_1 = X_2$

ma questo è un **assurdo**! Poiché avevamo supposto che $X_1 \neq X_2$, quindi esiste un'unica soluzione.

Indichiamo con B_i , la matrice ottenuta sostituendo a C_i la colonna dei termini noti B.

$$A = (C_1, C_2, \dots, C_n)$$
 $B_i = (C_1, C_2, \dots, C_{i-1}, B, C_{i+1}, \dots, C_n)$

Se $|A| \neq 0$ allora (X_1, X_2, \dots, X_n) è data da:

$$X_i = \frac{|B_i|}{|A|} = \frac{\det(B_i)}{\det(A)}$$