DATA 621 – Business Analytics and Data Mining Homework 1

By Yohannes Deboch

09/24/2019

1. DATA EXPLORATION

In this section I will be describing the size and the variables in the moneyball training data set for the purpose of enabling decision makers to make sound decision on their move.

There are 16 variables and 2,276 observations in the training data.

```
##
                              Observations:
                                                                       2,276
##
                                 Variables:
## $ TARGET WINS
                      <dbl> 39, 70, 86, 70, 82, 75, 80, 85, 86, 76, 78, 68,...
## $ TEAM BATTING H
                      <dbl> 1445, 1339, 1377, 1387, 1297, 1279, 1244, 1273,...
                      <dbl> 194, 219, 232, 209, 186, 200, 179, 171, 197, 21...
## $ TEAM BATTING 2B
## $ TEAM BATTING 3B
                     <dbl> 39, 22, 35, 38, 27, 36, 54, 37, 40, 18, 27, 31,...
                     <dbl> 13, 190, 137, 96, 102, 92, 122, 115, 114, 96, 8...
## $ TEAM_BATTING_HR
## $ TEAM_BATTING_BB
                      <dbl> 143, 685, 602, 451, 472, 443, 525, 456, 447, 44...
                      <dbl> 842, 1075, 917, 922, 920, 973, 1062, 1027, 922,...
## $ TEAM BATTING SO
## $ TEAM BASERUN SB
                      <dbl> NA, 37, 46, 43, 49, 107, 80, 40, 69, 72, 60, 11...
## $ TEAM BASERUN CS
                      <dbl> NA, 28, 27, 30, 39, 59, 54, 36, 27, 34, 39, 79,...
                     ## $ TEAM_BATTING_HBP
## $ TEAM PITCHING H
                      <dbl> 9364, 1347, 1377, 1396, 1297, 1279, 1244, 1281,...
## $ TEAM_PITCHING_HR <dbl> 84, 191, 137, 97, 102, 92, 122, 116, 114, 96, 8...
## $ TEAM PITCHING BB <dbl> 927, 689, 602, 454, 472, 443, 525, 459, 447, 44...
## $ TEAM_PITCHING_SO <dbl> 5456, 1082, 917, 928, 920, 973, 1062, 1033, 922...
## $ TEAM_FIELDING_E
                      <dbl> 1011, 193, 175, 164, 138, 123, 136, 112, 127, 1...
## $ TEAM FIELDING DP <dbl> NA, 155, 153, 156, 168, 149, 186, 136, 169, 159...
```

Summary Statistics of the variables

Table continues below

TARGET _WINS	TEAM_BAT TING_H	TEAM_BAT TING_2B	TEAM_BAT TING_3B	TEAM_BATT ING_HR	TEAM_BATT ING_BB
Min.: 0.00	Min.: 891	Min.: 69.0	Min.: 0.00	Min.: 0.00	Min.: 0.0
1st Qu.: 71.00	1st Qu.:1383	1st Qu.:208.0	1st Qu.: 34.00	1st Qu.: 42.00	1st Qu.:451.0
Median : 82.00	Median:1454	Median :238.0	Median : 47.00	Median :102.00	Median :512.0
Mean : 80.79	Mean :1469	Mean :241.2	Mean: 55.25	Mean: 99.61	Mean :501.6
3rd Qu.: 92.00	3rd Qu.:1537	3rd Qu.:273.0	3rd Qu.: 72.00	3rd Qu.:147.00	3rd Qu.:580.0

:146.00		17147 120.0	1 114 71. 1223.0	10 101a/120	1.00	1414.1. 1070.0	
NA NA		NA	NA	NA		NA	
Table continue	s below						
TEAM_BA TTING_SO	TEAM_BAS ERUN_SB	TEAM_BAS ERUN_CS	TEAM_B ING_HBF		_PITC _H	TEAM_PITC HING_HR	
Min.: 0.0	Min.: 0.0	Min.: 0.0	Min. :29.0	00 Min.:	1137	Min.: 0.0	
1st Qu.: 548.0	1st Qu.: 66.0	1st Qu.: 38.0	1st Qu.:50	0.50 1st Qu	: 1419	1st Qu.: 50.0	
Median : 750.0	Median:101.	0 Median 49.0	: Median :5	8.00 Median 1518	n :	Median :107.0	
Mean: 735.6	Mean :124.8	Mean: 52.8	Mean :59.	36 Mean:	1779	Mean :105.7	
3rd Qu.: 930.0			3rd Qu.:67	7.00 3rd Qu	.: 1682	3rd Qu.:150.0	
Max. :1399.0	Max. :697.0	Max. :201.0	Max. :95.0	00 Max. :	30132	Max. :343.0	
NA's:102	NA's:131	NA's:772	NA's :208	35 NA		NA	
TEAM_PITC BB	_	M_PITCHING_		EAM_FIEL DING_E	TEAM DP	_FIELDING_	
Min.: 0.0	Min.	: 0.0	N	Iin.: 65.0	Min.:	52.0	
1st Qu.: 476.0	1st Q	Qu.: 615.0	1	1st Qu.: 127.0		1st Qu.:131.0	
Median: 536.5 Median		ian : 813.5		Median : 159.0		n :149.0	
Mean: 553.0 Mean:		n:817.7	\mathbf{N}	Iean: 246.5	Mean:	146.4	
3rd Qu.: 611.0 3rd Qu		Qu.: 968.0	3	rd Qu.: 249.2	3rd Qu	.:164.0	
Max. :3645.0	Max	. :19278.0	N	Iax.:1898.0	Max. :228.0		
NA	NA'	s:102	N	IΑ	NA's :286		

Max. :223.00

Max. :264.00

Max. :878.0

Box plot of the data

From the following box plots of the variables we can see that the following variables have outliers

[1] "TARGET_WINS" "TEAM_BATTING_H" "TEAM_BATTING_2B" "TEAM_BATTING_3B" "TEAM_BATTING_BB"

[6] "TEAM_BASERUN_SB" "TEAM_BASERUN_CS" "TEAM_BATTING_HBP" "TEAM_PITCHING_HR" "TEAM_PITCHING_BB"

[11] "TEAM_PITCHING_SO" "TEAM_FIELDING_E" "TEAM_FIELDING_DP".

Other variables don't have any outlier.

Max. :2554

Max. :458.0

Max.

From the above plots histograms we can see that "TARGET_WINS", "TEAM_BATTING_H", "TEAM_BATTING_2B", "TEAM_BASERUN_CS" "TEAM_FIELDING_DP" are approximately normally distributed. 1,2,3,9,16

"TEAM_BATTING_3B" c"TEAM_BASERUN_SB" c"TEAM_BASERUN_CS", "TEAM_FIELDING_E"

are positively skewed. These variables have very few high values.

"TEAM_BATTING_HR", "TEAM_BATTING_SO", "TEAM_PITCHING_HR" has bi modal distributions. A large number of players scored two modes scores.

From the missing data plot we can see that 10% training data are missing. Most missings are in Team Batting HBP, Team BASERUN CS, Team Filding DP.

From the corrections matrix plot we can see that our Target Wins variable is highly positively correlated with Team Batting BB, Team Pitching BB and negatively correlated with Team Fielding E, Team Batting SO, Team Pitching SO.

2. DATA PREPARATION

In this section I will be describing how I transformed the data . The steps taken are provided as follows .

- a. Missing value imputation. Missing values were imputed using mice R package for both the training and test data set.
- b. Create flags to suggest if a variable was missing

- c. Transform data by putting it into buckets
 I've transformed TEAM_BATTING_H into 3 buckets based on 0-1200,1200-2000,2000-3000. The new variable is TEAM_BATTING_H.cat. which has 3 categories Low, Medium,High. The old variable was dropped from the data set.
- d. Combine variables (such as ratios or adding or multiplying) to create new variables stolen variable was created summing TEAM_BASERUN_CS and TEAM_BASERUN_SB. Old two variables were dropped from the data.

3. BUILD MODELS.

In this section I will build models using the training data set.

Model 1 with all the variables

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	66.51	4.338	15.33	1.544e-50
TEAM_BATTING_2B	0.04058	0.006974	5.818	6.8e-09
TEAM_BATTING_3B	0.0825	0.01582	5.216	1.992e-07
TEAM_BATTING_HR	0.1187	0.02747	4.32	1.625e-05
TEAM_BATTING_BB	0.01267	0.005732	2.21	0.02717
TEAM_BATTING_SO	-0.0299	0.002299	-13	2.445e-37
TEAM_BATTING_HBP	0.1591	0.02919	5.451	5.54e-08
TEAM_PITCHING_H	0.001164	0.0003972	2.931	0.00341
TEAM_PITCHING_HR	0.007045	0.02432	0.2896	0.7721

TEAM_PITCHING_BB	-0.001544	0.00413	-0.3739	0.7085
TEAM_PITCHING_SO	0.001794	0.0009085	1.975	0.04841
TEAM_FIELDING_E	-0.04154	0.002752	-15.09	4.159e-49
TEAM_FIELDING_DP	-0.1157	0.01291	-8.966	6.279e-19
TEAM_BATTING_H.catMedium	9.968	2.672	3.73	0.000196
TEAM_BATTING_H.catHigh	33.9	4.349	7.794	9.828e-15
stolen	0.039	0.003167	12.31	8.961e-34

Fitting linear model: TARGET_WINS ~ .

	Resid		
	ual		
	Std.	Adjus	
Observations	Error R^2	Adjus ted R^2	
2276	12.8 0.34	0.339	
	37	4	

Model 1 Interpretations

For 1 unit increase in TEAM_BATTING_2B holding other things constant number of wins increases by 0.04058 units.

For 1 unit increase in TEAM_BATTING_3B holding other things constant number of wins increases by 0.0825 units.

For 1 unit increase in TEAM_BATTING_HR holding other things constant number of wins increases by 0.1187 units.

For 1 unit increase in TEAM_BATTING_BB holding other things constant number of wins increases by 0.01267 units.

For 1 unit increase in TEAM_BATTING_SO holding other things constant number of wins decreases by 0.0299 units.

For 1 unit increase in TEAM_BATTING_HBP holding other things constant number of wins increases by 0.1591 units.

For 1 unit increase in TEAM_PITCHING_H holding other things constant number of wins increases by 0.001164 units.

For 1 unit increase in TEAM_PITCHING_HR holding other things constant number of wins increases by 0.007045 units.

For 1 unit increase in TEAM_PITCHING_BB holding other things constant number of wins decreases by 0.001544 units.

For 1 unit increase in TEAM_PITCHING_SO holding other things constant number of wins increases by 0.001794 units.

For 1 unit increase in TEAM_FIELDING_E holding other things constant number of wins decreases by 0.04154 units.

For 1 unit increase in TEAM_FIELDING_DP holding other things constant number of wins decreases by 0.1157 units.

For 1 unit increase in TEAM_BATTING_H.catMedium holding other things constant number of wins increases by 9.968 units.

For 1 unit increase in TEAM_BATTING_H.catHigh holding other things constant number of wins increase by 33.9 units. For 1 unit increase in stolen holding other things constant number of wins increase by 0.039 units.

Model 2 dropping non-significant variable

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	66.73	4.238	15.75	4.316e-53
TEAM_BATTING_2B	0.04177	0.006956	6.005	2.224e-09
TEAM_BATTING_3B	0.08301	0.01567	5.298	1.287e-07
TEAM_BATTING_HR	0.1232	0.00859	14.34	1.003e-44
TEAM_BATTING_BB	0.01074	0.00316	3.397	0.0006922
TEAM_BATTING_SO	-0.02728	0.001968	-13.86	5.645e-42
TEAM_BATTING_HBP	0.1582	0.02913	5.431	6.21e-08
TEAM_PITCHING_H	0.001484	0.0003129	4.744	2.225e-06
TEAM_FIELDING_E	-0.04246	0.002718	-15.62	2.54e-52
TEAM_FIELDING_DP	-0.1157	0.01279	-9.046	3.096e-19
TEAM_BATTING_H.catMedium	8.906	2.622	3.396	0.0006944
TEAM_BATTING_H.catHigh	31.66	4.123	7.678	2.392e-14
stolen	0.03984	0.003069	12.98	3.197e-37

Fitting linear model: $TARGET_WINS \sim . - TEAM_PITCHING_HR - TEAM_PITCHING_BB - TEAM_PITCHING_SO$

Observations	Residual Std. Error	R^2	Adjusted R ²
2276	12.81	0.3421	0.3386

Model 2 Interpretations

For 1 unit increase in TEAM_BATTING_2B holding other things constant number of wins increases by 0.04177 units.

For 1 unit increase in TEAM_BATTING_3B holding other things constant number of wins increases by 0.08301 units.

For 1 unit increase in TEAM_BATTING_HR holding other things constant number of wins increases by 0.1232 units.

For 1 unit increase in TEAM_BATTING_BB holding other things constant number of wins increases by 0.01074 units.

For 1 unit increase in TEAM_BATTING_SO holding other things constant number of wins decreases by 0.02728 units.

For 1 unit increase in TEAM_BATTING_HBP holding other things constant number of wins increases by 0.1582 units.

For 1 unit increase in TEAM_PITCHING_H holding other things constant number of wins increases by 0.001484 units.

For 1 unit increase in TEAM_FIELDING_E holding other things constant number of wins decreases by 0.04246 units.

For 1 unit increase in TEAM_FIELDING_DP holding other things constant number of wins decreses by 0.1157 units.

For 1 unit increase in TEAM_BATTING_H.catMedium holding other things constant number of wins increases by 8.906 units.

For 1 unit increase in TEAM_BATTING_H.catHigh holding other things constant number of wins increases by 31.66 units.

For 1 unit increase in stolen holding other things constant number of wins increases by 0.03984 units.

Model 3 with highly correlated variables

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	40.83	3.45	11.83	2.141e-31
TEAM_BATTING_H.catMedium	14.47	2.954	4.899	1.032e-06
TEAM_BATTING_H.catHigh	41.4	4.69	8.827	2.102e-18
TEAM_BATTING_2B	0.07106	0.00758	9.374	1.626e-20
TEAM_BATTING_HR	-0.07093	0.02402	-2.953	0.003178
TEAM_BATTING_BB	0.0215	0.003164	6.794	1.39e-11
TEAM_PITCHING_H	-0.001288	0.0002817	-4.574	5.033e-06
TEAM_PITCHING_HR	0.06504	0.02306	2.82	0.004838

	Resid		
	ual		
Observat	Std.		
ions	Error	R^2	Adjusted R^2
2276	14.53	0.15	0.1489
		15	

Model 3 Interpretations

For 1 unit increase in TEAM_BATTING_H.cat Medium holding other things constant number of wins increase by 14.47 units.

For 1 unit increase in TEAM_BATTING_H.catHigh holding other things constant number of wins increase by 41.4 units.

For 1 unit increase in TEAM_BATTING_2B holding other things constant number of wins increase by 0.07106 units.

For 1 unit increase in TEAM_BATTING_HR holding other things constant number of wins decreses by 0.07093 units.

For 1 unit increase in TEAM_BATTING_BB holding other things constant number of wins increase by 0.0215 units.

For 1 unit increase in TEAM_PITCHING_H holding other things constant number of wins decerses by 0.001288 units.

For 1 unit increase in TEAM_PITCHING_HR holding other things constant number of wins increase by 0.06504 units.

4. SELECT MODELS

In this section I will be selecting a model and describe why I have selected the models.

I've selected model 2 as the best model with slightly worse performance as it's simpler than other is more parsimonious. From the residuals plots of the 3 plots we can see that the residuals of the model 3 is more normally distributed than other models.

Discuss why you selected your model. For the multiple linear regression model, will you use a metric such as Adjusted R2, RMSE, etc.?

For multiple regression model we can use Adjusted R2,RMSE etc as here the dependent variable is continuous.

Be sure to explain how you can make inferences from the model, discuss multi-collinearity issues (if any), and discuss other relevant model output.

Here multicollinearity is eliminated by removing two highly correlated variables in the training and evaluation data.

Using the training data set, evaluate the multiple linear regression model based on

(a) mean squared error

model 1 has the lowest mean squared error.

```
## [1] 162.7660 163.1656 210.4413
```

(b) R2

Model 1 has highest Adjusted R2, model 2 slightly lower and model 3 worst performer here.

```
## [1] 0.3393862
## [1] 0.338642
## [1] 0.1489004
```

(c) F-statistic

Based on f statistics model 2 is the best model

##		value	numdf	dendf
##	78.91779	15.00000 2260.00000		
##		value	numdf	dendf
##	98.07433	12.00000 2263.00000		
##		value	numdf	dendf
##	57.85895	7.00000 2268.00000		
(d)	residual plots.			

Predicted values based on evaluation data.

Make predictions using the evaluation data set.

## 4	[1]	68.48767	71.38504	72.12317	84.83438	70.16620	68.73464	85.6873
## 3	[8]	76.00445	75.85849	78.19033	72.68052	87.01893	86.71197	88.0376
## 8	[15]	88.13696	83.66940	75.79230	78.40343	74.22339	95.33227	83.2288
## 3	[22]	82.78867	82.06625	76.80082	80.28384	88.24047	62.91863	84.1598
## 7	[29]	85.86068	78.14723	92.96408	85.83207	81.48234	81.11226	79.8224
## 9	[36]	88.57711	78.00640	91.44307	84.99535	87.58912	85.06656	89.3765
## 9	[43]	28.54820	98.15649	91.91464	94.94144	95.22529	86.08178	72.6178
## 5	[50]	92.37001	80.60373	90.31735	74.78800	77.31880	72.74980	76.9870
## 6	[57]	94.45525	83.10520	59.88745	80.02173	91.12336	76.47366	84.5078
## 8	[64]	89.88557	89.66803	102.97966	73.05131	79.37974	78.73432	88.5710
## 2	[71]	86.60946	75.03791	79.20755	97.31598	72.64560	76.23734	80.5022

##	[78]	83.83428	80.70453	83.93743	92.00608	89.36467	99.35351	80.3860
6 ## 6	[85]	83.57266	83.57485	88.09016	82.07539	88.44194	93.52788	86.7990
##	[92]	80.78706	79.16872	93.60227	91.40149	91.19427	89.05885	98.2753
## 8	[99]	85.97692	89.54876	83.29764	77.68317	85.97774	82.52179	74.8207
	[106]	70.70175	57.51297	79.36434	89.55668	60.99673	87.78159	94.7324
## 2	[113]	89.89639	88.85225	82.97740	81.25010	84.63588	84.04608	74.4766
	[120]	80.09763	101.91647	80.97909	76.04747	71.33448	72.16930	91.9450
	[127]	87.90748	83.36340	100.10939	90.71871	89.80031	84.93343	80.7221
## 8	[134]	79.57090	86.32260	82.13408	78.75019	79.79763	87.18288	80.0534
## 3	[141]	67.41627	80.10535	92.25060	73.38117	72.96425	75.61461	81.8164
## 2	[148]	77.30022	76.60572	84.41243	86.27781	80.18331	42.80567	69.7452
## 3	[155]	72.52029	70.95859	93.45498	72.35090	90.11417	82.30247	100.4465
## 3	[162]	103.07066	95.47314	100.96040	96.90498	94.47721	80.85722	91.7865
## 5	[169]	74.71601	83.73195	91.25980	89.58270	83.14932	95.65323	88.4534
## 8	[176]	77.94737	80.80159	72.14018	73.38385	80.19481	92.12023	88.7827
## 2	[183]	85.64648	88.45839	99.82228	99.32677	79.57212	61.82762	72.6687
## 5	[190]	131.76888	79.13778	89.45419	81.33148	79.67157	79.94568	71.7276
## 8	[197]	81.98435	89.47627	82.25859	79.79352	74.24921	73.40594	72.3437
## 1	[204]	96.59306	82.33178	83.00158	74.15658	78.11323	85.95968	76.6507
## 9	[211]	105.15990	89.00342	87.44518	67.67453	78.89580	81.53157	74.6886
## 5	[218]	91.57693	75.90977	79.24671	77.60802	79.39687	82.71303	77.9800
## 9	[225]	79.38975	81.22994	79.70342	76.84217	81.10108	72.15632	86.5392
## 8	[232]	95.59687	80.58169	88.47550	80.14375	77.55778	75.43614	81.2376
## 6	[239]	96.87252	75.12678	90.51053	91.18343	84.84442	79.27575	53.3497
## 6	[246]	87.15169	82.81757	87.13769	77.96667	86.75250	80.17237	55.8681

• Appendix.

##
library(ggcorrplot)
library(pander)
library(tidyverse)
library(PerformanceAnalytics)
library(Amelia)
library(caret)
library(mice)
##
training <- read_csv("moneyball-training-data.csv")
training <- training[,2:ncol(training)]
evaluation <- read_csv("moneyball-evaluation-data.csv")
colld <- evaluation\$INDEX
evaluation <- evaluation[,2:ncol(evaluation)]
##
glimpse(training)
##
pander(summary(training), split.table=120)
##
for(col in colnames(training)){ hownlot(training) coll yelds - coll)
boxplot(training[,col],ylab = col)
}
##
chart.Correlation(training)
·
##

```
missmap(training)
## -----
corr <- cor(training, use="complete.ob")
ggcorrplot(corr, hc.order = TRUE, type = "lower",
 lab = TRUE)
## -----
imputed_Data <- mice(training, m=1, maxit = 50, method = 'pmm', seed = 500)
complete_data <- complete(imputed_Data,1)</pre>
imputed_Data_eval <- mice(evaluation, m=1, maxit = 50, method = 'pmm', seed = 500)
complete_data_evaluation <- complete(imputed_Data_eval,1)</pre>
## -----
training$flag <- 0
training$flag[rowMeans(training) > 0] <- 1
table(training$flag)
## -----
# TEAM BATTING H 0-1200,1200-2000,2000-3000
b <- c(-Inf, 1200, 2000, Inf)
names <- c("Low", "Medium", "High")
complete_data$TEAM_BATTING_H.cat <- cut(complete_data$TEAM_BATTING_H, breaks =
b. labels = names)
complete_data_evaluation$TEAM_BATTING_H.cat <- cut(complete_data_evaluation$TEAM_
BATTING H, breaks = b, labels = names)
## -----
complete data$stolen <- complete data$TEAM BASERUN CS + complete data$TEAM BAS
ERUN SB
complete data evaluation$stolen <- complete data evaluation$TEAM BASERUN CS + compl
ete data evaluation$TEAM BASERUN SB
## -----
# drop TEAM BATTING H
complete data <- complete data %>%
select(-TEAM BATTING H,-TEAM BASERUN CS, -TEAM BASERUN SB)
# drop TEAM_BATTING_H
evaluation <- evaluation %>%
```


