# Computational Techniques for Machine Learning Assignment 2

Constanza Marini<sup>1</sup> and Diana Laura Aguilar<sup>1</sup>

Tecnologico de Monterrey, Carretera al Lago de Guadalupe Km. 3.5, Atizapán de Zaragoza, Estado de México 52926, México.

A01332485@itesm.mx A01751168@itesm.mx

# 1 Assignment Description

In this assignment, the Validity Index using supervised Classifiers (VIC) [1] was used in order to evaluate the effect of the partition size in binary and tertiary partitioned datasets with a 10 cross-validation procedure. As to the VIC implementation, the python source code provided by the authors of [1] was leveraged throughout this project. The dataset used here was generated with the information of 247 fingerprints (5241 objects); each fingerprint was associated to a set of minutiae with 132 attributes, along with the score-change values. The latter attribute was selected as the target in order to make partitions according to a specific cutoff value. Moreover, the analysis was performed on 50 different partitions of 2 sets and 50 different partitions of 3 sets; the leveraged supervised classifiers were Random Forest, Decision Tree, Extra Tree, Naïve Bayes, k-NN, Multi-layer Perceptron (MLP) and Linear Discriminant Analysis (LDA). For this purpose, we utilized the implementations of scikit learn [2] with their default parameters.

#### 2 Results and Discussion

### 2.1 Binary Partition

As mentioned before, the dataset was divided into two clusters according to the score-change and different cutoff values: we set 50 evenly spaced values, calculated over the interval [-0.2, 0.2]. In Table 2.1, the cutoff value and cluster sizes, along with the VIC value and the best supervised classifier are presented for each partition. Additionally, Fig. 1 shows the former values and Fig. 2 displays the Area Under the Receiver Operating Characteristic Curve (AUC) [3] of each classifier over each partition.

As it can be seen in Fig. 2, the class balance, or cluster size, affects the AUC value differently depending on the supervised classifier, for example, k-NN has a close to constant trend (purple line), suggesting an independence over the cluster size; while Naïve Bayes changes considerably according to the cluster size (yellow line). An interesting fact is that the classifiers with highest AUC (see Fig.

### Marini and Aguilar

2

3) and hence highest VIC score were obtained in the partitions with extremely imbalanced classes. The highest VIC score (0.714) was obtained in partitions 0 and 1, with a cutoff point of -0.2 and -0.192, respectively, and a cluster size of  $\sim 4000$  vs  $\sim 1200$  observations (see Table 2.1). Furthermore, the best classifiers for this dataset were Random Forest, Naïve Bayes and LDA.

Table 1. Relevant information and results for the binary partitions.

| Partition<br>Number | Cutoff<br>Value | Size of Class 0 Size of Class 1 |      | VIC   | Best Classifier          |
|---------------------|-----------------|---------------------------------|------|-------|--------------------------|
| 0                   | -0.2            | 4073                            | 1168 | 0.717 | Random Forest            |
| 1                   | -0.192          | 4020                            | 1221 | 0.717 | Random Forest            |
| 2                   | -0.184          | 3969                            | 1272 | 0.714 | Random Forest            |
| 3                   | -0.176          | 3907                            | 1334 | 0.712 | Random Forest            |
| 4                   | -0.167          | 3851                            | 1390 | 0.71  | Random Forest            |
| 5                   | -0.159          | 3787                            | 1454 | 0.714 | Random Forest            |
| 6                   | -0.151          | 3706                            | 1535 | 0.704 | Random Forest            |
| 7                   | -0.143          | 3622                            | 1619 | 0.706 | Random Forest            |
| 8                   | -0.135          | 3544                            | 1697 | 0.7   | Random Forest            |
| 9                   | -0.127          | 3473                            | 1768 | 0.699 | Random Forest            |
| 10                  | -0.118          | 3378                            | 1863 | 0.704 | Random Forest            |
| 11                  | -0.11           | 3299                            | 1942 | 0.702 | Random Forest            |
| 12                  | -0.102          | 3206                            | 2035 | 0.699 | Random Forest            |
| 13                  | -0.094          | 3126                            | 2115 | 0.694 | Random Forest            |
| 14                  | -0.086          | 3029                            | 2212 | 0.69  | Random Forest            |
| 15                  | -0.078          | 2949                            | 2292 | 0.69  | Random Forest            |
| 16                  | -0.069          | 2852                            | 2389 | 0.684 | Random Forest            |
| 17                  | -0.061          | 2765                            | 2476 | 0.683 | Random Forest            |
| 18                  | -0.053          | 2676                            | 2565 | 0.684 | Random Forest            |
| 19                  | -0.045          | 2568                            | 2673 | 0.676 | Random Forest            |
| 20                  | -0.037          | 2470                            | 2771 | 0.673 | Random Forest            |
| 21                  | -0.029          | 2374                            | 2867 | 0.671 | Random Forest            |
| 22                  | -0.02           | 2282                            | 2959 | 0.664 | Random Forest            |
| 23                  | -0.012          | 2165                            | 3076 | 0.662 | Random Forest            |
| 24                  | -0.004          | 2069                            | 3172 | 0.656 | Random Forest            |
| 25                  | 0.004           | 1932                            | 3309 | 0.653 | Random Forest            |
| 26                  | 0.012           | 1778                            | 3463 | 0.634 | Random Forest            |
| 27                  | 0.02            | 1687                            | 3554 | 0.642 | Random Forest            |
| 28                  | 0.029           | 1580                            | 3661 | 0.63  | Random Forest            |
| 29                  | 0.037           | 1482                            | 3759 | 0.631 | Random Forest            |
| 30                  | 0.045           | 1372                            | 3869 | 0.64  | Random Forest            |
| 31                  | 0.053           | 1282                            | 3959 | 0.631 | Random Forest            |
| 32                  | 0.061           | 1191                            | 4050 | 0.632 | Random Forest            |
| 33                  | 0.069           | 1120                            | 4121 | 0.627 | Random Forest            |
| 34                  | 0.078           | 1055                            | 4186 | 0.628 | Random Forest            |
| 35                  | 0.086           | 996                             | 4245 | 0.627 | Random Forest            |
| 36                  | 0.094           | 938                             | 4303 | 0.626 | Random Forest            |
| 37                  | 0.102           | 885                             | 4356 | 0.638 | Random Forest            |
| 38                  | 0.11            | 831                             | 4410 | 0.624 | Random Forest            |
| 39                  | 0.118           | 773                             | 4468 | 0.625 | Naive Bayes              |
| 40                  | 0.113 $0.127$   | 706                             | 4535 | 0.634 | Naive Bayes              |
| 41                  | 0.135           | 659                             | 4582 | 0.639 | Naive Bayes              |
| 42                  | 0.143           | 619                             | 4622 | 0.647 | Naive Bayes  Naive Bayes |
| 43                  | 0.143           | 573                             | 4668 | 0.649 | Naive Bayes Naive Bayes  |
| 44                  | 0.151           | 528                             | 4713 | 0.651 | Naive Bayes Naive Bayes  |
| 45                  | 0.167           | 501                             | 4740 | 0.662 | Naive Bayes Naive Bayes  |
| 46                  | 0.176           | 476                             | 4765 | 0.671 | Naive Bayes Naive Bayes  |
| 47                  | 0.176           | 435                             | 4806 | 0.689 | Random Forest            |
| 48                  | 0.184 $0.192$   | 413                             | 4828 | 0.682 | Naive Bayes              |
| 49                  | 0.192           | 386                             | 4855 | 0.684 | Naive Bayes Naive Bayes  |
| 40                  | 0.2             | 300                             | 4000 | 0.004 | naive Dayes              |



Fig. 1. VIC score obtained for each partition. The cluster cutoff point defines the division according to the score-change value.



**Fig. 2.** Average AUC value for the 50 different binary partitions obtained by each supervised classifier. The average AUC was calculated with a 10 cross-validation. Random Forest: red; LDA: orange; Naïve Bayes: yellow; MLP: green; Decision Tree: blue; Extra Tree: indigo; k-NN: purple.

#### 4 Marini and Aguilar



Fig. 3. Box plot of the average AUC for each classifier over all the binary partitions.

#### 2.2 Tertiary Partition

The tertiary partitions were generated by selecting two cutoff points on the score-change attribute: one of them was a random floating point number over the interval [-0.2, 0], and the other was randomly chosen over the interval [0, 0.2]. These numbers were verified so as to avoid cluster overlapping. In Table 2.2, the relevant information of the 50 tertiary partitions is presented. In addition, the VIC scores for each partition are shown in Fig. 4 and the AUC value for each classifier over the partitions are displayed in Fig. 5. Finally, the distribution of the AUC values of each classifier for all the partitions is shown in Fig. 6.

In contrast to the binary partitions, AUC values of the tertiary partitions only follow a close to constant trend independently of the supervised classifier used in the analysis (see Fig. 5). On the other hand, VIC scores are the same as the AUC of Random Forest, except for the partition 45. Hence, this suggests that the VIC score is independent of the cluster size. However, the best VIC scores were obtained when Class 1 had the biggest size, and Class 0 and Class 2 had similar sizes. On the contrary, the lowest VIC scores were obtained when Class 1 had the smallest size, and Class 0 and Class 2 were imbalanced, for instance, see partition number 36 and number 37 in Table 2.2. The highest VIC score was 0.679 for partitions number 10 and number 36 with cutoff points of -0.19 and 0.05, and -0.19 and 0.07, respectively. The cluster sizes were  $\sim$ 1200 vs  $\sim$ 2800 vs  $\sim$ 1200 observations. Finally, as mentioned above, the best classifiers were Random Forest, LDA and Naïve Bayes, as seen in Fig. 6.

## 3 Conclusions

In this project, binary and tertiary partitions of a dataset were used to understand the effect of the cluster sizes. This effect was evaluated with the VIC method and leveraging seven supervised classifiers (Random Forest, Decision



Fig. 4. VIC score obtained for each partition. The information of the partition is described in Table 2.2.



**Fig. 5.** Average AUC value for the 50 different tertiary partitions obtained by each supervised classifier. The average AUC was calculated with a 10 cross-validation. Random Forest: red; LDA: orange; Naïve Bayes: yellow; MLP: green; Decision Tree: blue; Extra Tree: indigo; k-NN: purple.

Table 2. Relevant information and results for the tertiary partitions.

| Partition<br>Number | Cutoff<br>Value<br>for 0-1<br>Class | Cutoff<br>Value<br>for 1-2<br>Class | Size of<br>Class 0 | Size of<br>Class 1 | Size of<br>Class 2 | VIC   | Best Classifier |
|---------------------|-------------------------------------|-------------------------------------|--------------------|--------------------|--------------------|-------|-----------------|
| 0                   | -0.17                               | 0.08                                | 1377               | 2829               | 1035               | 0.675 | Random Forest   |
| 1                   | -0.05                               | 0.03                                | 2602               | 1086               | 1553               | 0.647 | Random Forest   |
| 2                   | -0.1                                | 0.04                                | 2055               | 1743               | 1443               | 0.665 | Random Forest   |
| 3                   | -0.07                               | 0.08                                | 2386               | 1820               | 1035               | 0.663 | Random Forest   |
| 4                   | -0.18                               | 0                                   | 1301               | 1949               | 1991               | 0.662 | Random Forest   |
| 5                   | -0.03                               | 0.04                                | 2854               | 944                | 1443               | 0.656 | Random Forest   |
| 6                   | -0.05                               | 0                                   | 2602               | 648                | 1991               | 0.643 | Random Forest   |
| 7                   | -0.11                               | 0.07                                | 1944               | 2181               | 1116               | 0.666 | Random Forest   |
| 8                   | -0.15                               | 0.09                                | 1548               | 2730               | 963                | 0.669 | Random Forest   |
| 9                   | -0.02                               | 0                                   | 2965               | 285                | 1991               | 0.637 | Random Forest   |
| 10                  | -0.19                               | 0.05                                | 1238               | 2689               | 1314               | 0.679 | Random Forest   |
| 11                  | -0.01                               | 0.04                                | 3104               | 694                | 1443               | 0.644 | Random Forest   |
| 12                  | -0.16                               | 0.04                                | 1446               | 2352               | 1443               | 0.667 | Random Forest   |
| 13                  | -0.19                               | 0.02                                | 1238               | 2312               | 1691               | 0.668 | Random Forest   |
| 14                  | -0.11                               | 0.05                                | 1944               | 1983               | 1314               | 0.674 | Random Forest   |
| 15                  | -0.15                               | 0.02                                | 1548               | 2002               | 1691               | 0.668 | Random Forest   |
| 16                  | -0.16                               | 0.05                                | 1446               | 2481               | 1314               | 0.677 | Random Forest   |
| 17                  | -0.14                               | 0                                   | 1641               | 1609               | 1991               | 0.662 | Random Forest   |
| 18                  | -0.03                               | 0.06                                | 2854               | 1189               | 1198               | 0.657 | Random Forest   |
| 19                  | -0.07                               | 0.02                                | 2386               | 1164               | 1691               | 0.656 | Random Forest   |
| 20                  | 0                                   | 0.09                                | 3224               | 1054               | 963                | 0.635 | Random Forest   |
| 21                  | -0.18                               | 0.03                                | 1301               | 2387               | 1553               | 0.666 | Random Forest   |
| 22                  | -0.06                               | 0.07                                | 2496               | 1629               | 1116               | 0.668 | Random Forest   |
| 23                  | -0.01                               | 0.04                                | 3104               | 694                | 1443               | 0.645 | Random Forest   |
| 24                  | -0.03                               | 0.07                                | 2854               | 1271               | 1116               | 0.659 | Random Forest   |
| 25                  | -0.14                               | 0.06                                | 1641               | 2402               | 1198               | 0.673 | Random Forest   |
| 26                  | -0.02                               | 0.08                                | 2965               | 1241               | 1035               | 0.65  | Random Forest   |
| 27                  | -0.1                                | 0.06                                | 2055               | 1988               | 1198               | 0.67  | Random Forest   |
| 28                  | -0.19                               | 0.02                                | 1238               | 2312               | 1691               | 0.67  | Random Forest   |
| 29                  | -0.04                               | 0.04                                | 2730               | 1068               | 1443               | 0.651 | Random Forest   |
| 30                  | -0.17                               | 0.05                                | 1377               | 2550               | 1314               | 0.675 | Random Forest   |
| 31                  | -0.06                               | 0.07                                | 2496               | 1629               | 1116               | 0.66  | Random Forest   |
| 32                  | -0.13                               | 0.04                                | 1732               | 2066               | 1443               | 0.67  | Random Forest   |
| 33                  | -0.1                                | 0.08                                | 2055               | 2151               | 1035               | 0.667 | Random Forest   |
| 34                  | -0.1                                | 0.04                                | 2055               | 1743               | 1443               | 0.664 | Random Forest   |
| 35                  | -0.1                                | 0                                   | 2055               | 1195               | 1991               | 0.653 | Random Forest   |
| 36                  | -0.19                               | 0.07                                | 1238               | 2887               | 1116               | 0.679 | Random Forest   |
| 37                  | 0                                   | 0.06                                | 3224               | 819                | 1198               | 0.635 | Random Forest   |
| 38                  | -0.12                               | 0.02                                | 1844               | 1706               | 1691               | 0.666 | Random Forest   |
| 39                  | -0.1                                | 0.1                                 | 2055               | 2285               | 901                | 0.664 | Random Forest   |
| 40                  | -0.05                               | 0.05                                | 2602               | 1325               | 1314               | 0.665 | Random Forest   |
| 41                  | -0.03                               | 0.02                                | 2854               | 696                | 1691               | 0.646 | Random Forest   |
| 42                  | -0.1                                | 0.1                                 | 2055               | 2285               | 901                | 0.662 | Random Forest   |
| 43                  | -0.08                               | 0.05                                | 2270               | 1657               | 1314               | 0.669 | Random Forest   |
| 44                  | -0.15                               | 0.05                                | 1548               | 2379               | 1314               | 0.671 | Random Forest   |
| 45                  | -0.01                               | 0                                   | 3104               | 146                | 1991               | 0.65  | LDA             |
| 46                  | -0.04                               | 0.08                                | 2730               | 1476               | 1035               | 0.655 | Random Forest   |
| 47                  | -0.02                               | 0.07                                | 2965               | 1160               | 1116               | 0.656 | Random Forest   |
| 48                  | -0.04                               | 0.05                                | 2730               | 1197               | 1314               | 0.661 | Random Forest   |
| 49                  | -0.09                               | 0.04                                | 2158               | 1640               | 1443               | 0.664 | Random Forest   |

Tree, Extra Tree, Naïve Bayes, k-NN, MLP and LDA). The findings are that, in binary partitions, the VIC score and AUC values were higher when having extremely imbalanced cluster sizes. Additionally, in the tertiary partition, the cluster size did not have a vast effect over the VIC scores. However, the highest and the lowest scores depended on the size of Class 1 and a balanced size of



Fig. 6. Box plot of the average AUC for each classifier over all the tertiary partitions.

Class 0 and 2. In conclusion, the cluster size can or cannot have an effect on classification since it depends on the structure and the partition number of the dataset.

## References

- J. Rodríguez, M. A. Medina-Pérez, A. E. Gutierrez-Rodríguez, R. Monroy, and H. Terashima-Marín, "Cluster validation using an ensemble of supervised classifiers," Knowledge-Based Systems, vol. 145, pp. 134–144, 2018.
- F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine learning in Python," *Journal of Machine Learning Research*, vol. 12, pp. 2825–2830, 2011.
- 3. J. Huang and C. X. Ling, "Using AUC and accuracy in evaluating learning algorithms," *Knowledge and Data Engineering, IEEE Transactions on*, vol. 17, no. 3, pp. 299–310, Mar. 2005.