COMP0009, Compactness

November 15, 2023

Proofs are Finite

lf

$$\Sigma \vdash \phi$$

then

$$\Sigma_0 \vdash \phi$$

for some finite subset Σ_0 of Σ .

Consistency and Inconcistency

Let Σ be a set of formulas. We say Σ is inconsistent if

$$\Sigma \vdash (p \land \neg p)$$

Otherwise (there is no such proof) we say Σ is <u>consistent</u>.

Compactness Theorem

Let Σ be a set of formulas.

Theorem

 Σ has a model if and only if each finite subset of Σ has a model.

Proof of Compactness Theorem

If Σ has a model then trivially every finite subset has a model. Now suppose Σ has no model. Then $\Sigma \models \bot$. By strong completeness

$$\Sigma \vdash \bot$$

Since proofs are finite, there is a finite subset $\Sigma_0 \subseteq \Sigma$ where $\Sigma_0 \vdash \bot$.

By soundness, $\Sigma_0 \models \bot$ so Σ_0 has no model. Hence, if every finite subset of Σ has a model then Σ has a model.

Problem

Let E be a binary relation denoting the edges of a graph, let = denote equality. For $k \geq 0$ we say there is a path of length k from x to y if there is a sequence $(x_0, x_1, \ldots, x_{k-1})$, where $x = x_0, \ y = x_{k-1}$ and for all i < k-1 we have $(x_i, x_{i+1}) \in E$. Write down first order formulas $\phi_0(x,y), \ \phi_1(x,y), \ \phi_2(x,y), \ldots, \phi_k(x,y)$ with two free variables x,y, meaning

- ▶ There is a path of length 0 from node x to node y.
- ► There is a path of length 1 from node x to node y,
- ▶ There is a path of length 2 from x to y
- ► There is a path of length 3 from x to y
- ▶ There is a path of length k from x to y, where $k \ge 1$ is fixed.

Connected Graphs

A directed graph (G, E) consists of a set of nodes G and a binary relation $E \subseteq G \times G$. A directed graph (G, E) is connected if for all $x, y \in G$ there is a path of length k from x to y where $k \ge 0$ is a finite integer.

First Order Logic Cannot Define Connectedness

Language

$$C = \{c, d\}$$

 $F = \emptyset$
 $P = \{=, E\}$ (both binary)

Suppose, for contradiction, that

$$G \models \Sigma \iff G$$
 is connected

Let

$$\phi_0(x,y) = (x = y)$$

$$\phi_{n+1}(x,y) = \exists z (\phi_n(x,z) \land E(z,y))$$

"there is a path of length n+1 from x to y".

$$\Sigma \cup \{\neg \phi_1(c,d), \neg \phi_2(c,d), \ldots\}$$

Every finite subset has a model (what model?). By compactness, the whole set has a model, say G,

$$G \models \Sigma \cup \{\neg \phi_n(c,d) : n = 1, 2, 3, \ldots\}$$

G is therefore connected (since a model of Σ), but there is no path from c to d — a contradiction.

No first-order theory defines the class of all finite structures.

No first-order theory defines the class of all finite structures. Suppose for contradiction that F is a set of sentences and $(D, I) \models F$ iff D is finite.

No first-order theory defines the class of all finite structures. Suppose for contradiction that F is a set of sentences and $(D, I) \models F$ iff D is finite.

Let C be an infinite set of constants.

Let $\Sigma = {\neg(c = d) : c \neq d \in C}.$

No first-order theory defines the class of all finite structures. Suppose for contradiction that F is a set of sentences and

 $(D,I) \models F$ iff D is finite.

Let C be an infinite set of constants.

Let $\Sigma = {\neg(c = d) : c \neq d \in C}.$

Every finite subset of $\Sigma \cup F$ has a model (why?)

No first-order theory defines the class of all finite structures. Suppose for contradiction that F is a set of sentences and

 $(D, I) \models F$ iff D is finite.

Let C be an infinite set of constants.

Let $\Sigma = {\neg(c = d) : c \neq d \in C}.$

Every finite subset of $\Sigma \cup F$ has a model (why?)

By compactness, $\Sigma \cup F$ has a model — finite and infinite — contradiction.

No first-order theory defines the class of all finite structures.

Suppose for contradiction that F is a set of sentences and $(D, I) \models F$ iff D is finite.

Let C be an infinite set of constants.

Let $\Sigma = {\neg(c = d) : c \neq d \in C}.$

Every finite subset of $\Sigma \cup F$ has a model (why?)

By compactness, $\Sigma \cup F$ has a model — finite and infinite — contradiction.

Therefore no such theory F exists.

Compactness theorem and non-standard analysis

Let

$$\Sigma = \{ \text{all valid statements about } \mathbb{N} \}$$

in a language with constants $0,1,2,\ldots$ functions $+,\times$ and predicate =.

 $\text{E.g. } 2+2=4\in \Sigma.$

Also $\forall x \forall y (x \times y = y \times x) \in \Sigma$.

Let c be another constant symbol.

Every finite subset of

$$\Sigma^+ = \Sigma \cup \{c \neq 0, c \neq 1, c \neq 2, \dots, c \neq n, \dots\}$$

has a model (what model?).

Therefore Σ^+ has a model.

Non-standard real analysis

Let L be similar but with a constant for every real number. Let

$$\Sigma = \{\text{all valid statements about } \mathbb{R}\}$$

and

$$\Sigma^+ = \Sigma \cup \{\alpha > r : r \in \mathbb{R}\}\$$

Every finite subset of Σ^+ has a model (just interpret α as a sufficiently big real number), therefore Σ^+ has a model M. Then $[\alpha]^M$ is an "infinitely big" real number and $[\frac{1}{\alpha}]^M$ is and "infinitesimally small" positive real number.

Can do calculus perfectly rigorously in this way. Can show that

$$\forall x((|x| < r) \rightarrow (x = St(x) + Inf(x)))$$

where r is a constant for any positive real, St(x) is a "standard real" and Inf(x) is an "infinitesimal real". Then let

$$f'(x) = St\left(\frac{f(x+\delta x)-f(x)}{\delta x}\right)$$

where x is any standard real and δx is any infinitesimal, provided this does not depend on the choice of δx .

Summary

- $ightharpoonup \Sigma$ is consistent iff Σ has a model (soundness and strong completeness)
- \blacktriangleright $\Sigma \vdash \phi \iff \exists \Sigma_0 \subseteq_f \Sigma, \ \Sigma_0 \vdash \phi \text{ (compactness)}$
- \triangleright Σ has a model iff each finite subset of Σ has a model)
- ▶ No first order theory defines connected graphs
- ▶ N has a non-standard model.