AE 737: Mechanics of Damage Tolerance

Lecture 2 - Common Stress Intensity Factors

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

20 January, 2022

1

schedule

- 20 Jan Common Stress Intensity Factors
- 25 Jan Superposition, Compounding
- 27 Jan Curved Boundaries, HW 1 Due
- 1 Feb Plastic Zone

review

fracture mechanics

- In fracture mechanics we consider three different modes.
- Mode I is known as the "opening mode"
- Mode II is known as the "sliding mode"
- Mode III is known as the "tearing mode"

Figure 1: An image of the three fracture modes, with a representative crack in the xy plane. The first mode showns a crack opening vertically in the z-direction, like jaws opening. The second mode is known as the sliding mode, where one face moves into the

stress intensity

- A key finding from Linear Elastic Fracture Mechanics (LEFM) is known as the Stress Intensity Factor
- The stress intensity factor is often written in this form

$$K = \sigma \sqrt{\pi a} \beta$$

 Where K is the stress intensity factor, σ is the applied stress, a is the crack length, and β is a dimensionless parameter depending on geometry

- Be careful that although the notation is similar, the Stress Intensity Factor is different from the Stress Concentration Factor from strength of materials
- We are usually most concerned with Mode I, but there will be a unique stress intensity factor for each mode, we label these K_I, K_{II}, and K_{III}
- If no subscript is given, assume Mode I

6

stress intensity

 For brittle materials (where "linear" fracture mechanics assumptions hold true) we can find the full stress field near the crack in terms of the stress intensity factor

$$\begin{split} \sigma_{\rm x} &= \frac{K_{\rm I}}{\sqrt{2\pi r}}\cos\frac{\theta}{2}\left(1-\sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right)\\ \sigma_{\rm y} &= \frac{K_{\rm I}}{\sqrt{2\pi r}}\cos\frac{\theta}{2}\left(1+\sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right)\\ \tau_{\rm xy} &= \frac{K_{\rm I}}{\sqrt{2\pi r}}\sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} \end{split}$$

7

Similarly for Mode II we find

$$\begin{split} \sigma_{\rm x} &= \frac{-K_{\rm II}}{\sqrt{2\pi r}} \sin\frac{\theta}{2} \left(2 + \cos\frac{\theta}{2}\cos\frac{3\theta}{2}\right) \\ \sigma_{\rm y} &= \frac{K_{\rm II}}{\sqrt{2\pi r}} \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} \\ \tau_{\rm xy} &= \frac{K_{\rm II}}{\sqrt{2\pi r}}\cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) \end{split}$$

8

mode III

And for Mode III

$$\tau_{xz} = \frac{-K_{III}}{\sqrt{2\pi r}} \sin \frac{\theta}{2}$$
$$\tau_{yz} = \frac{K_{III}}{\sqrt{2\pi r}} \cos \frac{\theta}{2}$$

common stress intensity factors

center crack, infinite width

Figure 2: center crack infinite width

center crack, finite width

Figure 3: center crack, finite width

- -

center crack, finite width

$$K_I = \sigma \sqrt{\pi a} \sqrt{\sec(\pi a/W)}$$

- Accurate within 0.3% for $2a/W \le 0.7$
- within 1.0% for 2a/W = -.8

$$\mathcal{K}_{I} = \sigma \sqrt{\pi a} \left[1.0 - 0.025 \left(\frac{2a}{W} \right)^2 + 0.06 \left(\frac{2a}{W} \right)^4 \right] \sqrt{\text{sec}(\pi a/W)}$$

Accurate within 0.1% for all crack lengths.

edge crack, semi-infinite width

Figure 4: edge crack, semi-infinite

edge crack, finite width

Figure 5: edge crack, finite width

13

$$\beta = \left[1.122 - 0.231 \frac{\textit{a}}{\textit{W}} + 10.55 \left(\frac{\textit{a}}{\textit{W}}\right)^2 - 21.71 \left(\frac{\textit{a}}{\textit{W}}\right)^3 + 30.82 \left(\frac{\textit{a}}{\textit{W}}\right)^4\right]$$

• Within 0.5% accuracy for $\frac{a}{W} < 0.6$

$$\beta = \frac{0.752 + 2.02\frac{s}{W} + 0.37\left(1 - \sin\frac{\pi s}{2W}\right)^3}{\cos\frac{\pi s}{2W}}\sqrt{\frac{2W}{\pi s}}\tan\frac{\pi s}{2W}$$

 \blacksquare Within 0.5% accuracy for 0 $<\frac{a}{W}<1.0$

15

edge crack, bending moment

Figure 6: edge crack under bending

edge crack, bending moment

• The usual form for stress intensity still applies

$$K_I = \sigma \sqrt{\pi a} \beta$$

• Where $\sigma = \frac{6M}{tW^2}$

$$\beta = 1.122 - 1.40 \left(\frac{a}{W}\right) + 7.33 \left(\frac{a}{W}\right)^2 - 13.08 \left(\frac{a}{W}\right)^3 + 14.0 \left(\frac{a}{W}\right)^4$$

• valid within 0.2% accuracy for $\frac{a}{W} \leq 0.6$

17

edge crack, bending moment

$$\beta = \frac{0.923 + 0.199 \left(1 - \sin\frac{\pi a}{2W}\right)^4}{\cos\frac{\pi a}{2W}} \sqrt{\frac{2W}{\pi a}} \tan\frac{\pi a}{2W}$$

• valid within 0.5% for any $\frac{a}{W}$

nominal bending stress

- The nominal bending stress is for rectangular cross-sections
- \bullet A more general form is given by $\sigma = \frac{\mathit{Mc}}{\mathit{I}}$
- Where for a rectangular cross-section, c = W/2 and $I = tW^3/12$ which simplifies as shown previously

19

center crack, finite width, splitting forces

Figure 7: center crack, finite widte, splitting forces

center crack, finite width, splitting forces

- With an applied load we use a slightly modified form for the stress intensity factor $K_I = \frac{P}{t\sqrt{\pi}a}\beta$
- With β in this case given as

$$\beta = \frac{1 - 0.5 \left(\frac{s}{W}\right) + 0.975 \left(\frac{s}{W}\right)^2 - 0.16 \left(\frac{s}{W}\right)^3}{\sqrt{1 - \left(\frac{s}{W}\right)}}$$

21

offset crack

Figure 8: off-center crack

offset crack

$$K_{IA} = \sigma \sqrt{\pi a} \beta_c \beta_A$$
 and $K_{IB} = \sigma \sqrt{\pi a} \beta_c \beta_B$

$$\beta_c = \sqrt{\sec \frac{\pi a}{W}}$$

23

offset crack

$$\begin{split} \beta_A &= \left(1 - 0.025\lambda^2 + 0.6\lambda^4 - \gamma\lambda^{11}\right) \\ \sqrt{\sec\left(\frac{\pi\lambda}{2}\right)\frac{\sin\left(2\lambda - 4\frac{3}{W}\right)}{2\lambda - 4\frac{3}{W}}} \\ \beta_B &= \left(1 - 0.025\delta^2 + 0.06\delta^4 - \zeta\lambda^{30}\right) \\ \left(1 + \frac{\sqrt{\sec\left(\frac{2\pi\lambda + 1.5\pi\delta}{7}\right) - 1}}{1 + 0.21\sin\left(8\tan^{-1}\left(\frac{\lambda - \delta}{\lambda + \delta}\right)^{0.9}\right)}\right) \end{split}$$

24

offset crack

• The parameters λ , δ are given as

$$\lambda = \frac{a}{b}$$
$$\delta = \frac{a}{W - b}$$

25

offset crack

 \bullet And γ and ζ can be looked up on a table

$\frac{b}{W}$	γ	ζ
0.1	0.382	0.114
0.25	0.136	0.286
0.4	0.0	0.0
0.5	0.0	0.0

non-uniform stress, infinite width

Figure 9: arbitrary pressure function loading along crack

27

non-uniform stress, infinite width

Stress intensity will be different at points A and \$B\$

$$\begin{split} K_{IA} &= \int_{-a}^{a} \frac{p(x)}{\sqrt{\pi}a} \frac{\sqrt{a-x}}{\sqrt{a+x}} dx \\ K_{IB} &= \int_{-a}^{a} \frac{p(x)}{\sqrt{\pi}a} \frac{\sqrt{a+x}}{\sqrt{a-x}} dx \end{split}$$

cracks around a hole

Figure 10: a crack around a hole under both remote stress and a local bearing load

cracks around a hole

 For symmetric through cracks under uniform applied stress, we have

$$\begin{split} \beta &= \beta_1 + \beta_2 \\ \beta_1 &= F_{c/R} F_w F_{ww} \\ \beta_2 &= \frac{\sigma_{br}}{\sigma} F_3 F_w F_{ww} \\ F_{c/R} &= \frac{3.404 + 3.8172 \frac{c}{R}}{1 + 3.9273 \frac{c}{R} - 0.00695 \left(\frac{c}{R}\right)^2} \\ F_w &= \sqrt{\sec \frac{\pi R}{W} \sec \frac{\pi (R + c)}{W}} \end{split}$$

29

cracks around a hole

$$F_{ww} = 1 - \left(\left(1.32 \frac{W}{D} - 0.14 \right)^{-(.98 + \left(0.1 \frac{W}{D} \right)^{0.1})} - 0.02 \right)$$
$$\left(\frac{2c}{W - D} \right)^{N}$$
$$F_{3} = 0.098 + 0.3592e^{-3.5089 \frac{c}{R}} + 0.3817e^{-0.5515 \frac{c}{R}}$$

31

cracks around a hole

Note that

$$\sigma_{br}=rac{P}{Dt}$$

$$N=rac{W}{D}+2.5 \qquad ext{when} \qquad rac{W}{D}<2$$
 $N=4.5 \qquad ext{otherwise}$

• Also R is the radius, $R = \frac{D}{2}$

cracks around a hole

Figure 11: a crack around a hole under both remote stress and a local bearing load, but there is only a crack on one side

cracks around a hole

$$\begin{split} \beta &= \beta_1 + \beta_2 \\ \beta_1 &= \beta_3 F_w F_{ww} \\ \beta_2 &= \frac{\sigma_{br}}{\sigma} F_4 F_w F_{ww} \\ \beta_3 &= 0.7071 + 0.7548 \frac{R}{R+c} + 0.3415 \left(\frac{R}{R+c}\right)^2 + \\ 0.6420 \left(\frac{R}{R+c}\right)^3 + 0.9196 \left(\frac{R}{R+c}\right)^4 \\ F_4 &= 0.9580 + 0.2561 \frac{c}{R} - 0.00193 \left(\frac{c}{R}\right)^{2.5} - 0.9804 \left(\frac{c}{R}\right)^{0.5} \end{split}$$

34

33

$$F_{w} = \sqrt{\sec \frac{\pi R}{W}} \sec \frac{\pi (R + c/2)}{W - c}$$

$$F_{ww} = 1 - N^{-\frac{W}{D}} \left(\frac{2c}{W - D}\right)^{\frac{W}{D} + 0.5}$$

$$N = 2.65 - 0.24 \left(2.75 - \frac{W}{D}\right)^{2}$$

$$N > 2.275 \qquad \text{(if } N < 2.275, let } N = 2.275)$$

Also note that R indicates radius, $R = \frac{D}{2}$

35

group problems

- 1. Find K_l for a center-cracked panel with W/2a = 3 and a uniformly applied remote stress, σ .
- 2. Find K_I for an edge-cracked panel with W/a=3 and a uniformly applied remote stress, σ .
- 3. Find K_I for an edge-cracked panel with W/a=3 and a remote bending moment, $M=tW^2\sigma/6$.

group problems

- 4. Find K_I for a center-cracked panel with W/2a=3 and a concentrated splitting force, $P=\sigma at$.
- 5. What do you think causes the difference (if any) in stress intensity between these panels?

37

example 1

example 1

39

2D crack shapes

crack depth

- The previous stress intensity factors all assume a 2D problem (with a 1D crack)
- Through the thickness, it is assumed that the crack length is the same
- In many cases this is not an accurate assumption
- We will now consider 2D crack shapes and their effect on the stress intensity factor

40

elliptical flaw, infinite solid

 \blacksquare For an ellipse the stress intensity factor will vary with the angle, ϕ

$$K_I = \sigma \sqrt{\pi a} eta$$

$$eta = \sqrt{\frac{1}{Q}} f_\phi$$

$$Q = 1 + 1.464 \left(\frac{a}{c}\right)^{1.65} \qquad \text{if } a/c \leq 1$$

42

elliptical flaw, infinite solid

 \blacksquare For an ellipse the stress intensity factor will vary with the angle, ϕ

$$\begin{split} Q &= 1 + 1.464 \left(\frac{c}{a}\right)^{1.65} & \text{if } a/c > 1 \\ f_{\phi} &= \left(\left(\frac{a}{c}\right)^2 \cos^2 \phi + \sin^2 \phi\right)^{1/4} & \text{if } a/c \leq 1 \\ f_{\phi} &= \left(\cos^2 \phi + \left(\frac{c}{a}\right)^2 \sin^2 \phi\right)^{1/4} & \text{if } a/c > 1 \end{split}$$

elliptical flaw, finite solid

44

finite solid

$$\begin{split} \beta &= \sqrt{\frac{1}{Q}} F_e \\ F_e &= \left(M_1 + M_2 \left(\frac{a}{t} \right)^2 + M_3 \left(\frac{a}{t} \right)^4 \right) g f_\phi f_w \\ f_w &= \sqrt{\sec \left(\frac{\pi c}{2b} \sqrt{\frac{a}{t}} \right)} \\ g &= 1 - \frac{\left(\frac{a}{t} \right)^4 \left(2.6 - 2 \frac{a}{t} \right)^{1/2}}{1 + 4 \frac{a}{c}} \cos \phi \end{split}$$

elliptical flaw, finite solid

$$M_2 = \frac{0.05}{0.11 + \left(\frac{a}{c}\right)^{3/2}}$$

$$M_3 = \frac{0.29}{0.23 \left(\frac{a}{c}\right)^{3/2}}$$

46

elliptical flaw, finite solid

• If
$$a/c < 1$$

$$\begin{split} &M_1=1\\ &Q=1+1.464\left(\frac{a}{c}\right)^{1.65}\\ &f_\phi=\left(\left(\frac{a}{c}\right)^2\cos^2\phi+\sin^2\phi\right)^{1/4} \end{split}$$

elliptical flaw, finite solid

• Otherwise (a/c > 1)

$$\begin{aligned} M_1 &= \left(\frac{c}{a}\right)^{1/2} \\ Q &= 1 + 1.464 \left(\frac{c}{a}\right)^{1.65} \\ f_\phi &= \left(\cos^2 \phi + \left(\frac{c}{a}\right)^2 \sin^2 \phi\right)^{1/4} \end{aligned}$$

48

semi-elliptical surface flaw, finite body

semi-elliptical surface flaw, finite body

$$\begin{split} &K_{I} = \sigma \sqrt{\pi a} \beta \\ &\beta = \sqrt{\frac{1}{Q}} F_{s} \\ &F_{s} = \left(M_{1} + M_{2} \left(\frac{a}{t} \right)^{2} + M_{3} \left(\frac{a}{t} \right)^{4} \right) g f_{\phi} f_{w} \\ &f_{w} = \sqrt{\sec \left(\frac{\pi c}{2b} \sqrt{\frac{a}{t}} \right)} \end{split}$$

50

surface flaw, $\frac{a}{c} \leq 1$

$$\begin{split} M_1 &= 1.13 - 0.09 \left(\frac{a}{c}\right) \\ M_2 &= -0.52 + \frac{0.89}{0.2 + \frac{a}{c}} \\ M_3 &= 0.5 - \frac{1}{0.65 + \frac{a}{c}} + 14 \left(1 - \frac{a}{c}\right)^4 \end{split}$$

surface flaw, $\frac{a}{c} \leq 1$

$$\begin{split} Q &= 1 + 1.464 \left(\frac{a}{c}\right)^{1.65} \\ f_{\phi} &= \left(\left(\frac{a}{c}\right)^2 \cos^2 \phi + \sin^2 \phi\right)^{1/4} \\ g &= 1 + \left(0.1 + 0.35 \left(\frac{a}{t}\right)^2\right) (1 - \sin \phi)^2 \end{split}$$

52

surface flaw, $\frac{a}{c} > 1$

$$\begin{aligned} M_1 &= \left(\frac{c}{a}\right)^{1/2} \left(1 + 0.04 \frac{c}{a}\right) \\ M_2 &= 0.2 \left(\frac{c}{a}\right)^4 \\ M_3 &= -0.11 \left(\frac{c}{a}\right)^4 \end{aligned}$$

$$\begin{split} Q &= 1 + 1.464 \left(\frac{c}{a}\right)^{1.65} \\ f_{\phi} &= \left(\cos^2\phi + \left(\frac{c}{a}\right)^2\sin^2\phi\right)^{1/4} \\ g &= 1 + \left(0.1 + 0.35 \left(\frac{c}{a}\right) \left(\frac{a}{t}\right)^2\right) (1 - \sin\phi)^2 \end{split}$$

54

corner flaw, finite body

corner flaw, finite body

$$\begin{split} & \mathcal{K}_{I} = \sigma \sqrt{\pi a} \beta \\ & \beta = \sqrt{\frac{1}{Q}} F_{c} \\ & F_{c} = \left(M_{1} + M_{2} \left(\frac{a}{t} \right)^{2} + M_{3} \left(\frac{a}{t} \right)^{4} \right) g_{1} g_{2} f_{\phi} f_{w} \\ & f_{w} = 1 - 0.2 \lambda + 9.4 \lambda^{2} - 19.4 \lambda^{3} + 27.1 \lambda^{4} \\ & \lambda = \left(\frac{c}{b} \right) \left(\frac{a}{t} \right)^{1/2} \end{split}$$

56

corner flaw, finite body, $\frac{a}{c} \leq 1$

$$\begin{split} M_1 &= 1.08 - 0.03 \left(\frac{a}{c}\right) \\ M_2 &= -0.44 + \frac{1.06}{0.3 + \frac{a}{c}} \\ M_3 &= -0.5 + 0.25 \frac{a}{c} + 14.8 \left(1 - \frac{a}{c}\right)^{1.5} \end{split}$$

corner flaw, finite body, $\frac{a}{c} \leq 1$

$$\begin{split} Q &= 1 + 1.464 \left(\frac{a}{c}\right)^{1.65} \\ f_{\phi} &= \left(\left(\frac{a}{c}\right)^{2} \cos^{2} \phi + \sin^{2} \phi\right)^{1/4} \\ g_{1} &= 1 + \left(0.08 + 0.4 \left(\frac{a}{t}\right)^{2}\right) (1 - \sin \phi)^{3} \\ g_{2} &= 1 + \left(0.08 + 0.15 \left(\frac{a}{t}\right)^{2}\right) (1 - \cos \phi)^{3} \end{split}$$

58

corner flaw, finite body, $\frac{a}{c} > 1$

$$\begin{aligned} M_1 &= \left(\frac{c}{a}\right)^{1/2} \left(1.08 - 0.03 \frac{c}{a}\right) \\ M_2 &= 0.375 \left(\frac{c}{a}\right)^4 \\ M_3 &= -0.25 \left(\frac{c}{a}\right)^2 \end{aligned}$$

corner flaw, finite body, $\frac{a}{c} > 1$

$$\begin{split} Q &= 1 + 1.464 \left(\frac{c}{a}\right)^{1.65} \\ f_{\phi} &= \left(\cos^2 \phi + \left(\frac{c}{a}\right)^2 \sin^2 \phi\right)^{1/4} \\ g_1 &= 1 + \left(0.08 + 0.4 \left(\frac{c}{t}\right)^2\right) (1 - \sin \phi)^3 \\ g_2 &= 1 + \left(0.08 + 0.15 \left(\frac{c}{t}\right)^2\right) (1 - \cos \phi)^3 \end{split}$$

60

example 2

- Find maximum value of K_I for semi-elliptical surface flaw
- $\sigma = 20$ kpsi (in opening direction)

Figure 12: A surface flaw shown with a major diameter of 1.2 inches and a minor radius (the

example 2

- Here we will use the formula for a semi-elliptical surface flaw
- In the first step we find a/c = 0.4/0.6 < 1, so we use that set of formulae
- A worked python notebook of this example can be found here¹

62

2D cracks at a hole

¹https://colab.research.google.com/drive/11i24jBHuGPautBloU1FgGGBJN-y2HqDJ?usp=sharing

when to consider 2D crack shape

- When do we need to worry about 2D crack shape?
- The important factor is ratio of crack length to thickness
- When crack length is less than 5 times thickness, 2D shape effects are not negligible

63

cracks around a hole

$$\begin{split} &K_{I} = \sigma \sqrt{\pi a} \beta \\ &\beta = \sqrt{\frac{1}{Q}} F_{ch} \\ &F_{ch} = \left(M_{1} + M_{2} \left(\frac{a}{t} \right)^{2} + M_{3} \left(\frac{a}{t} \right)^{4} \right) g_{1} g_{2} g_{3} g_{4} f_{\phi} f_{w} \\ &f_{w} = \sqrt{\sec \left(\frac{\pi r}{2b} \right) \sec \left(\frac{\pi (2r + nc)}{4(b - c) + 2nc} \sqrt{\frac{a}{t}} \right)} \end{split}$$

65

remote stress

$$g_2 = \frac{1 + 0.358\lambda + 1.425\lambda^2 - 1.578\lambda^3 + 2.156\lambda^4}{1 + 0.13\lambda^2}$$
$$\lambda = \frac{1}{1 + (c/r)\cos(0.85\phi)}$$

Where n = number of cracks (1 or 2)

$$M_1 = 1.13 - 0.09 (a/c)$$

$$M_2 = -0.54 + \frac{0.89}{0.2 + a/c}$$

$$M_3 = 0.5 - \frac{1}{0.65 + a/c} + 14 (1 - a/c)^{24}$$

$$Q = 1 + 1.464 (a/c)^{1.65}$$

67

remote stress when $a/c \le 1$

$$\begin{split} g_1 &= 1 + \left(0.1 + 0.35 \left(a/t\right)^2\right) \left(1 - \sin\phi\right)^2 \\ g_3 &= \left(1 + 0.04 (a/c)\right) \left(1 + 0.1 (1 - \cos\phi)^2\right) \left(0.85 + 0.15 (a/t)^{1/4}\right) \\ g_4 &= 1 - 0.7 (1 - a/t) (a/c - 0.2) (1 - a/c) \\ f_\phi &= \left((a/c)^2 \cos^2\phi + \sin^2\phi\right)^{1/4} \end{split}$$

remote stress when a/c > 1

$$\begin{split} M_1 &= \sqrt{c/a} (1 + 0.04(c/a)) \\ M_2 &= 0.2(c/a)^4 \\ M_3 &= -0.11(c/a)^4 \\ Q &= 1 + 1.464 \left(\frac{c}{a}\right)^{1.65} \end{split}$$

69

remote stress when a/c > 1

$$\begin{split} g_1 &= 1 + \left(0.1 + 0.35(c/a)\left(a/t\right)^2\right)(1 - \sin\phi)^2 \\ g_3 &= \left(1.13 - 0.09(c/a)\right)\left(1 + 0.1(1 - \cos\phi)^2\right)\left(0.85 + 0.15(a/t)^{1/4}\right) \\ g_4 &= 1 \\ f_\phi &= \left(\cos^2\phi + \left(\frac{c}{a}\right)^2\sin^2\phi\right)^{1/4} \end{split}$$

The same formulas apply for both symmetric cracks
 (n = 2) and a single crack (n = 1) with one additional
 correction factor applied to the single crack case

$$K_{I, single} = \sqrt{\frac{4/\pi + ac/2tr}{4/\pi + ac/tr}} K_{I, symmetric}$$

71

surface cracks around a hole

$$\begin{split} &K_{I} = \sigma \sqrt{\pi a}\beta \\ &\beta = \sqrt{\frac{1}{Q}}F_{sh} \\ &F_{sh} = \left(M_{1} + M_{2}\left(\frac{a}{t}\right)^{2} + M_{3}\left(\frac{a}{t}\right)^{4}\right)g_{1}g_{2}g_{3}f_{\phi}f_{w} \\ &f_{w} = \sqrt{\sec\left(\frac{\pi r}{2b}\right)\sec\left(\frac{\pi(2r+nc)}{4(b-c)+2nc}\sqrt{\frac{a}{t}}\right)} \end{split}$$

73

remote stress

$$M_2 = \frac{0.05}{0.11 + (a/c)^{3/2}}$$

$$M_3 = \frac{0.29}{0.23 + (a/c)^{3/2}}$$

Where n = number of cracks (1 or 2)

$$\begin{split} g_1 &= 1 - \frac{(a/t)^4 (2.6 - 2a/t)^{1/2}}{1 + 4a/c} \cos \phi \\ g_2 &= \frac{1 + 0.358\lambda + 1.425\lambda^2 - 1.578\lambda^3 + 2.156\lambda^4}{1 + 0.08\lambda^2} \\ \lambda &= \frac{1}{1 + (c/r)\cos(0.9\phi)} \\ g_3 &= 1 + 0.1(1 - \cos\phi)^2 (1 - a/t)^{10} \end{split}$$

75

remote stress $a/c \le 1$

$$\begin{split} Q &= 1 + 1.464 (a/c)^{1.65} \\ M_1 &= 1 \\ f_\phi &= \left(\left(\frac{a}{c} \right)^2 \cos^2 \phi + \sin^2 \phi \right)^{1/4} \end{split}$$

$$\begin{split} Q &= 1 + 1.464 (c/a)^{1.65} \\ M_1 &= \sqrt{c/a} \\ f_\phi &= \left(\cos^2\phi + \left(\frac{c}{a}\right)^2 \sin^2\phi\right)^{1/4} \end{split}$$

77

single-crack correction

 When the surface crack is only on one side of the hole, we use the same correction as for corner cracks

$$K_{I, single} = \sqrt{rac{4/\pi + ac/2tr}{4/\pi + ac/tr}} K_{I, symmetric}$$

edge crack on a lug

79

edge crack on a lug

$$\begin{split} &K_{I} = \sigma_{br} \sqrt{\pi c} \beta \\ &\sigma_{br} = P/Dt \\ &\beta = \left(\frac{G_{0}D}{2W} + G_{1}\right) G_{w} G_{L} G_{2} \\ &z = \left(1 + \frac{2C}{D}\right)^{-1} \\ &G_{0} = 0.7071 + 0.7548z + 0.3415z^{2} + 0.642z^{3} + 0.9196z^{4} \\ &G_{1} = 0.078z + 0.7588z^{2} - 0.4293z^{3} + 0.0644z^{4} + 0.651z^{5} \\ &G_{L} = \left(\sec\left(\frac{\pi D}{2W}\right)\right)^{1/2} \end{split}$$

edge crack on a lug

$$\lambda = \frac{\pi}{2} \left(\frac{D+c}{W-c} \right)$$

$$G_{w} = (\sec \lambda)^{1/2}$$

$$b = \frac{W-D}{2}$$

$$A_{1} = 0.688 + 0.772 \frac{D}{W} + 0.613 \left(\frac{D}{W} \right)^{2}$$

$$A_{2} = 4.948 - 17.318 \frac{D}{W} + 16.785 \left(\frac{D}{W} \right)^{2}$$

81

edge crack on a lug

$$\begin{split} A_3 &= -14.297 + 62.994 \frac{D}{W} - 69.818 \left(\frac{D}{W}\right)^2 \\ A_4 &= 12.35 - 58.644 \frac{D}{W} + 66.387 \left(\frac{D}{W}\right)^2 \\ G_2 &= A_1 + A_2 \frac{c}{b} + A_3 \left(\frac{c}{b}\right)^2 + A_4 \left(\frac{c}{b}\right)^3 \end{split}$$

corner crack on a lug

83

corner crack on a lug

$$\beta = \left(\frac{G_0 D}{2W} + G_1\right) G_w$$

$$z = \left(1 + 2\frac{c}{D}\cos(0.85\phi)\right)^{-1}$$

$$f_0(z) = 0.7071 + 0.7548z + 0.3415z^2 + 0.642z^3 + 0.9196z^4$$

$$f_1(z) = 0.078z + 0.7588z^2 - 0.4293z^3 + 0.0644z^4 + 0.651z^5$$

$$G_0 = \frac{f_0(z)}{d_0}$$

$$d_0 = 1 + 0.13z^2$$

corner crack on a lug

$$g_p = \left(\frac{W+D}{W-D}\right)^{1/2}$$

$$G_1 = f_1(z) \left(\frac{g_p}{d_0}\right)$$

$$G_w = M_0 g_1 g_3 g_4 f_{\phi} f_w f_x$$

$$v = \frac{a}{t}$$

85

corner crack on a lug

$$\lambda = \frac{\pi}{2} \sqrt{v} \left(\frac{D+c}{W-c} \right)$$

$$f_w = \left(\sec \lambda \sec \frac{\pi D}{2W} \right)^{1/2}$$

$$x = \frac{a}{c}$$

corner crack on a lug $a/c \le 1$

$$\begin{split} f_{\phi} &= \left(\left(\frac{a}{c} \cos \phi \right)^2 + \sin^2 \phi \right)^{1/4} \\ f_{x} &= \left(1 + 1.464 \left(\frac{a}{c} \right)^{1.65} \right)^{-1/2} \\ M_{0} &= \left(1.13 - 0.09x \right) + \left(-0.54 + \frac{0.89}{0.2 + x} \right) v^2 \\ &\qquad \left(0.5 - \frac{1}{.65 - x} + 14(1 - x^{24}) \right) v^4 \end{split}$$

87

corner crack on a lug $a/c \le 1$

$$\begin{split} g_1 &= 1 + \left(0.1 + 0.35v^2\right) \left(1 - \sin\phi\right)^2 \\ g_3 &= \left(1 + 0.04x\right) \left(1 + 0.1 \left(1 - \cos\phi\right)^2\right) \left(0.85 + 0.15v^{1/4}\right) \\ g_4 &= 1 - 0.7 \left(1 - v\right) \left(x - 0.2\right) \left(1 - x\right) \end{split}$$

corner crack on a lug a/c > 1

$$\begin{split} f_{\phi} &= \left(\left(\frac{ac}{c} \sin \phi \right)^2 + \cos^2 \phi \right)^{1/4} \\ f_{x} &= \left(1 + 1.464 \left(\frac{c}{a} \right)^{1.65} \right)^{-1/2} \\ M_{0} &= x^{-1/2} + 0.04x^{-3/2} + 0.2x^{-4}v^2 - 0.11x^{-4}v^4 \end{split}$$

89

corner crack on a lug a/c > 1

$$\begin{split} g_1 &= 1 + \left(0.1 + \frac{0.35}{x} v^2\right) (1 - \sin \phi)^2 \\ g_3 &= \left(1.13 + \frac{0.09}{x}\right) \left(1 + 0.1 (1 - \cos \phi)^2\right) \left(0.85 + 0.15 v^{1/4}\right) \\ g_4 &= 1 \end{split}$$

symmetric corner cracks under bending

91

$$\sigma_b = \frac{Mt}{2I}$$

$$I = \frac{bt^3}{6}$$

$$\beta = H_{ch} \left(\frac{a}{cQ}\right)^{1/2} F_{ch}$$

corner cracks under bending

$$H_{ch} = H_1 + (H_2 - H_1) \sin^p \phi$$

$$H_1 = 1 + G_{11}(a/t) + G_{12}(a/t)^2 + G_{13}(a/t)^3$$

$$H_2 = 1 + G_2 1(a/t) + G_{22}(a/t)^2 + G_{23}(a/t)^3$$

93

$$\begin{split} F_{ch} &= \left(M_1 + M_2 (a/t)^2 + M_3 (a/t)^4\right) g_1 g_2 g_3 g_4 f_{\phi} f_w \\ \lambda &= \frac{1}{1 + (c/r) \cos(0.85\phi)} \\ g_2 &= \frac{1 + .358\lambda + 1.425\lambda^2 - 1.578\lambda^3 + 2.156\lambda^4}{1 + 0.13\lambda^2} \end{split}$$

corner cracks under bending $a/c \le 1$

$$M_1 = 1.13 - 0.09(a/c)$$

$$M_2 = -0.54 + \frac{0.89}{0.2 + a/c}$$

$$M_3 = 0.5 - \frac{1}{0.65 + a/c} + 14(1 - a/c)^4$$

$$Q = 1 + 1.464(a/c)1.65$$

95

corner cracks under bending $a/c \le 1$

$$\begin{split} g_1 &= 1 + \left(0.1 + (a/t)v^2\right)\left(1 - \sin\phi\right)^2 \\ g_3 &= \left(1 + 0.04(a/c)\right)\left(1 + 0.1\left(1 - \cos\phi\right)^2\right)\left(0.85 + 0.15(a/t)^{1/4}\right) \\ g_4 &= 1 - 0.7\left(1 - a/t\right)\left(a/c - 0.2\right)\left(1 - a/c\right) \end{split}$$

corner cracks under bending

$$f_{\phi} = \left(\left(\frac{a}{c} \cos \phi \right)^2 + \sin^2 \phi \right)^{1/4}$$

$$G_{11} = -0.43 - 0.74a/c - 0.84(a/c)^2$$

$$G_{12} = 1.25 - 1.19a/c + 4.39(a/c)^2$$

$$G_{13} = -1.94 + 4.22a/c - 5.51(a/c)^2$$

97

$$\begin{split} G_{21} &= -1.5 - 0.04a/c - 1.73(a/c)^2 \\ G_{22} &= 1.71 - 3.17a/c + 6.84(a/c)^2 \\ G_{23} &= -1.28 + 2.71a/c - 5.22(a/c)^2 \\ p &= 0.1 + 1.3a/t + 1.1a/c - 0.7(a/c)(a/t) \end{split}$$

corner cracks under bending a/c > 1

$$\begin{split} M_1 &= (c/a)^{1/2}(1+0.04c/a) \\ M_2 &= 0.2(c/a)^4 \\ M_3 &= -0.11(c/a)^4 \\ Q &= 1+1.464(c/a)^{1.65} \\ g_1 &= 1+\left(0.10.35(c/a)(a/t)^2\right)(1-\sin\phi)^2 \\ g_3 &= (1.13-0.09(c/a))\left(1+0.1(1-\cos\phi)^2\right)\left(0.85+0.15(a/t)^{1/4}\right) \\ g_4 &= 1 \end{split}$$

99

$$f_{\phi} = \left(\left(\cos^2 \phi + \frac{c}{a} \sin \phi \right)^2 \right)^{1/4}$$

$$G_{11} = -2.07 + 0.06c/a$$

$$G_{12} = 4.35 + 0.16c/a$$

$$G_{13} = -2.93 - 0.3c/a$$

corner cracks under bending

$$G_{21} = -3.64 + 0.37c/a$$

$$G_{22} = 5.87 - 0.49c/a$$

$$G_{23} = -4.32 + 0.53c/a$$

$$p = 0.2 + c/a + 0.6a/t$$

101

example 3

example

- Case 1 symmetric through cracks
- Case 2 single through crack
- Case 3 symmetric corner cracks
- Case 4 single corner crack
- Case 5 symmetric surface cracks
- Case 6 single surface crack
- Viewable here²

 $^{{\}rm ^{2}https://colab.research.google.com/drive/1fml1vs1Rpwn9BkXPz-8FV6-lqHnVvQu0?usp=sharing}$