

Al6101 Introduction to Al and Al Ethics

Markov Decision Process

Assoc Prof Bo AN

www.ntu.edu.sg/home/boan

Email: boan@ntu.edu.sg

Office: N4-02b-55

Lesson Outline

- Introduction
- Markov Decision Process
- Two methods for solving MDP
 - Value iteration
 - Policy iteration
- Temporal difference learning

Introduction

- We consider a framework for decision making under uncertainty
- Markov decision processes (MDPs) and their extensions provide an extremely general way to think about how we can act optimally under uncertainty
- For many medium-sized problems, we can use the techniques from this lecture to compute an optimal decision policy
- For large-scale problems, approximate techniques are often needed (more on these in later lectures), but the paradigm often forms the basis for these approximate methods

The Agent-Environment Interface

Agent and environment interact at discrete time steps: t = 0,1,2,... Agent:

- 1. observes state at step $t: s_t \in S$
- 2. Produces action at step t: $a_t \in A(s_t)$
- 3. Gets resulting reward: $r_{t+1} \in \Re$ and resulting next state: $s_{t+1} \in S$

$$r_{t+1} \underbrace{s_{t}}_{a_{t}} \underbrace{s_{t+1}}_{a_{t+1}} \underbrace{s_{t+2}}_{a_{t+1}} \underbrace{s_{t+2}}_{a_{t+2}} \underbrace{s_{t+3}}_{a_{t+2}} \underbrace{s_{t+3}}_{a_{t+3}} \underbrace{s_{t+3}}_{a_{t+3}}$$

Making Complex Decisions

- Make a sequence of decisions
 - Agent's utility depends on a sequence of decisions
 - Sequential Decision Making
- Markov Property
 - Transition properties depend only on the current state, not on previous history (how that state was reached)
 - Markov Decision Processes

Markov Decision Processes

- Components:
 - *Markov* **States** s, beginning with initial state s_0
 - Actions a
 - Each state s has actions A(s) available from it
 - Transition model P(s' | s, a)
 - assumption: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 - Reward function R(s)
- **Policy** $\pi(s)$: the action that an agent takes in any given state
 - The "solution" to an MDP

Game Show

- A series of questions with increasing level of difficulty and increasing payoff
- Decision: at each step, take your earnings and quit, or go for the next question
 - If you answer wrong, you lose everything

Game Show

- Consider \$50,000 question
 - Probability of guessing correctly: 1/10
 - Quit or go for the question?
- What is the expected payoff for continuing?

$$0.1 * 61,100 + 0.9 * 0 = 6,110$$

What is the optimal decision?

Game Show

- What should we do in Q3?
 - Payoff for quitting: \$1,100
 - Payoff for continuing: 0.5 * \$11,100 = \$5,550
- What about Q2?
 - \$100 for quitting vs. \$4,162 for continuing
- What about Q1?

Grid World

R(s) = -0.04 for every non-terminal state

Transition model:

Goal: Policy

Grid World

Transition model:

R(s) = -0.04 for every non-terminal state

Grid World

Optimal policy when R(s) = -0.04 for every non-terminal state

Solving MDPs

- MDP components:
 - States s
 - Actions a
 - Transition model P(s' | s, a)
 - Reward function R(s)
- The solution:
 - **Policy** $\pi(s)$ mapping from states to actions
 - How to find the optimal policy?

Maximising Expected Utility

 The optimal policy should maximise the expected utility over all possible state sequences produced by following that policy:

$$\sum_{\substack{\text{state sequences} \\ \text{starting from } \mathbf{s}_0}} P(\text{sequence}) U(\text{sequence})$$

- How to define the utility of a state sequence?
 - Sum of rewards of individual states
 - Problem: infinite state sequences
 - If finite, LP can be applied

Utilities of State Sequences

- Normally, we would define the utility of a state sequence as the sum of the rewards of the individual states
- **Problem:** infinite state sequences
- **Solution:** discount the individual state rewards by a factor γ between 0 and 1:

$$U([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

$$= \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \frac{R_{\text{max}}}{1 - \gamma} \qquad (0 < \gamma < 1)$$

- Sooner rewards count more than later rewards
- Makes sure the total utility stays bounded
- · Helps algorithms converge

Utilities of States

Expected utility obtained by policy π starting in state s:

$$U^{\pi}(s) = \sum_{\substack{\text{state sequences} \\ \text{starting from s}}} P(\text{sequence})U(\text{sequence})$$

- The "true" utility of a state, denoted U(s), is the expected sum of discounted rewards if the agent executes an *optimal* policy starting in state s
- Reminiscent of minimax values of states...

Finding the Utilities of States

 What is the expected utility of taking action a in state s?

$$\sum_{s'} P(s'|s,a)U(s')$$

How do we choose the optimal action?

$$\pi^*(s) = \underset{a \in A(s)}{\arg \max} \sum_{s'} P(s'|s,a) U(s')$$

 What is the recursive expression for U(s) in terms of the utilities of its successor states?

$$U(s) = R(s) + \gamma \max_{a} \sum P(s'|s, a)U(s')$$

The Bellman Equation

 Recursive relationship between the utilities of successive states:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

End up here with P(s' | s, a)Get utility U(s')(discounted by γ)

The Bellman Equation

Recursive relationship between the utilities of successive states:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

- For N states, we get N equations in N unknowns
 - Solving them solves the MDP
 - We could try to solve them through expectimax search, but that would run into trouble with infinite sequences
 - Instead, we solve them algebraically
 - Two methods: value iteration and policy iteration

Method 1: Value Iteration

- Start out with every U(s) = 0
- Iterate until convergence
 - During the *i*th iteration, update the utility of each state according to this rule:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

- In the limit of infinitely many iterations, guaranteed to find the correct utility values
 - In practice, don't need an infinite number of iterations...

Value Iteration

What effect does the update have?

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

Method 2: Policy Iteration

- Start with some initial policy π_0 and alternate between the following steps:
 - **Policy evaluation:** calculate $U^{\pi_i}(s)$ for every state s
 - **Policy improvement:** calculate a new policy π_{i+1} based on the updated utilities

$$\pi^{i+1}(s) = \underset{a \in A(s)}{\arg \max} \sum_{s'} P(s'|s,a) U^{\pi_i}(s')$$

TD(Temporal difference) Prediction

Policy Evaluation (the prediction problem):

for a given policy p, compute the state-value function V^{π}

The simplest TD method, TD(0):

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

target: an estimate of the return

Simplest TD Method

$$V(s_t) \leftarrow V(s_t) + \alpha \left[r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \right]$$

- TD methods do not require a model of the environment, only experience
- TD methods can be fully incremental
 - You can learn before knowing the final outcome
 - Less memory
 - Less peak computation
 - You can learn without the final outcome
 - From incomplete sequences

We Won 2017 Microsoft Collaborative AI Challenge

- Collaborative Al
 - How can AI agents learn to recognise someone's intent (that is, what they are trying to achieve)?
 - How can AI agents learn what behaviours are helpful when working toward a common goal?
 - How can they coordinate or communicate with another agent to agree on a shared strategy for problem-solving?

Further Reading [AAAI'18: http://www.ntu.edu.sg/home/boan/papers/AAAI18_Malmo.pdf]

- Microsoft Malmo Collaborative Al Challenge
 - Collaborative mini-game, based on an extension "stag hunt"
 - Uncertainty of pig movement
 - Unknown type of the other agent
 - Detection noise (frequency 25%)
- Our team HogRider won the challenge (out of more than 80 teams from 26 countries)
 - learning + game theoretic reasoning + sequential decision making + optimisation

