Rod - Cut Il problème presente une sottostrutture ottime que sto perché le solutione è dete dolle somme del risultato dei sottopredlemi solutione d'ime $\frac{1}{2} = \begin{cases} 0 & \text{se } M = 0 \\ \text{mex } \left\{ \frac{1}{2} + \frac{1}{2} \right\} \\ \frac{1}{2} = \frac{1}{2} \end{cases}$ $\frac{1}{2} = \frac{1}{2}$ $\frac{1$ Usiemo un orreg per memorithrere i voloti tecendo un olbero di zieorsione, ereiomo un elbero con archi peseti e si colcole il commino con costo megiore SOLUZIONE RICORSIVA

MAX-ROB-CUT (P, m) valori per i tegli IF M == 0 RETURN O $q \leftarrow -\infty$ FOR i < 1 TO M DO IF 9 < P[i] & MAX-CUT-ROS(P, M-i) 9 - PTiJ+ HAX- CUT-ROB(P, M-i) KETURN 9

SOLUZIONE CON PROGRANMAZIONE BINAMICA
CON L'APPROCCIO TOP-LOWN AVRENO SENPRE BISOGNO BELLA
RICORSIONE, PERCIO USIANO UN APPROCCIO BOTTON-UP

MAX-ROD-CUT (P, m) $t \leftarrow NGN ARRAY [m+3]$ $t [o] \leftarrow O$ FOR $i \leftarrow 1$ TO M $t [i] \leftarrow -\infty$ FOR $i \leftarrow 1$ TO M BO

FOR $j \leftarrow 1$ TO i BO

IF $t [i] \leftarrow P[f] + t [i-f]$ $t [i] \leftarrow P[f] + t [i-f]$ RETURN t [m]

Nell'ultime locatione dell'arrey avremo une solutione offime per il mostro sottoprobleme Per sepere la Distensione dei veri tegli inseriamo un arreg ausiliario S che salve la dimensione del primo perso use to per l'assegnatione di r [i] così facendo sepremo trovere a ritroso; tagli essetueti, andendo a softrarre di volte in volta il primo teglio essetueto