

Servicehandbuch

Signalgenerator SMT

1039.2000.02/03/06

ENGLISH SERVICE MANUAL FOLLOWS FIRST COLOURED DIVIDER

*Band 1
Servicehandbuch besteht aus 3 Bänden*

Printed in the Federal
Republic of Germany

Qualitätszertifikat

Sehr geehrter Kunde,

Sie haben sich für den Kauf eines Rohde & Schwarz-Produktes entschieden. Hiermit erhalten Sie ein nach modernsten Fertigungsmethoden hergestelltes Produkt. Es wurde nach den Regeln unseres Qualitätsmanagementsystems entwickelt, gefertigt und geprüft. Das Rohde & Schwarz-Qualitätsmanagementsystem ist u.a. nach ISO 9001 und ISO 14001 zertifiziert.

Certificate of quality

Dear Customer,

You have decided to buy a Rohde & Schwarz product. You are thus assured of receiving a product that is manufactured using the most modern methods available. This product was developed, manufactured and tested in compliance with our quality management system standards. The Rohde & Schwarz quality management system is certified according to standards such as ISO 9001 and ISO 14001.

Certificat de qualité

Cher client,

Vous avez choisi d'acheter un produit Rohde & Schwarz. Vous disposez donc d'un produit fabriqué d'après les méthodes les plus avancées. Le développement, la fabrication et les tests respectent nos normes de gestion qualité. Le système de gestion qualité de Rohde & Schwarz a été homologué, entre autres, conformément aux normes ISO 9001 et ISO 14001.

Adressen/Addresses

FIRMENSITZ/HEADQUARTERS	Phone Fax E-mail	Baltic Countries	siehe/see Denmark
Rohde & Schwarz GmbH & Co. KG Mühldorfstraße 15 · D-81671 München Postfach 80 14 69 · D-81614 München	+49 (89) 41 29-0 +49 89 4129-121 64 info@rohde-schwarz.com	Bangladesh	BIL Consortium Ltd. Corporate Office House-33, Road-4, Block-F Banani Dhaka-1213
WERKE/PLANTS			
Rohde & Schwarz Messgerätebau GmbH Riedbachstraße 58 · D-87700 Memmingen Postfach 1652 · D-87686 Memmingen	+49 (8331) 108-0 +49 (8331) 108-11 24 info.rsmb@rohde-schwarz.com	Belgium	Rohde & Schwarz Belgium N.V. Excelsiorlaan 31 Bus 1 1930 Zaventem
Rohde & Schwarz GmbH & Co. KG Werk Teisnach Kaikenrieder Straße 27 · D-94244 Teisnach Postfach 1149 · D-94240 Teisnach	+49 (9923) 857-0 +49 (9923) 857-11 74 info.rsmts@rohde-schwarz.com	Bosnia- Herzegovina	siehe/see Slovenia
Rohde & Schwarz GmbH & Co. KG Dienstleistungszentrum Köln Graf-Zeppelin-Straße 18 · D-51147 Köln Postfach 98 02 60 · D-51130 Köln	+49 (2203) 49-0 +49 (2203) 49 51-308 info.rsdcc@rohde-schwarz.com service.rsdcc@rohde-schwarz.com	Brazil	Rohde & Schwarz Do Brasil Ltda. Av. Alfredo Egídio de Souza Aranha nº 177, 1º andar - Santo Amaro 04726-170 São Paulo - SP
TOCHTERUNTERNEHMEN/SUBSIDIARIES			
Rohde & Schwarz Vertriebs-GmbH Mühldorfstraße 15 · D-81671 München Postfach 80 14 69 · D-81614 München	+49 (89) 41 29-137 74 +49 (89) 41 29-137 77	Brunei	GKL Equipment Pte Ltd. #11-01 BP Tower 396 Alexandra Road Singapore 119954
Rohde & Schwarz International GmbH Mühldorfstraße 15 · D-81671 München Postfach 80 14 60 · D-81614 München	+49 (89) 41 29-129 84 +49 (89) 41 29-120 50 info.rsi@rohde-schwarz.com	Bulgaria	Rohde & Schwarz Representation Office Bulgaria 39, Fridtjof Nansen Blvd. 1000 Sofia
Rohde & Schwarz Engineering and Sales GmbH Mühldorfstraße 15 · D-81671 München Postfach 80 14 29 · D-81614 München	+49 (89) 41 29-137 11 +49 (89) 41 29-137 23 info.rse@rohde-schwarz.com	Canada	Rohde & Schwarz Canada Inc. 555 March Rd. Kanata, Ontario K2K 2M5
Rohde & Schwarz BICK Mobilfunk GmbH Fritz-Hahne-Str. 7 · D-31848 Bad Münder Postfach 2062 · D-31844 Bad Münder	+49 (5042) 998-0 +49 (5042) 998-105 info.bick@rohde-schwarz.com		Tektronix Canada Inc. Test and Measurement 4929 Place Olivia Saint-Laurent, PQ Montreal H4R 2V6
Rohde & Schwarz FTK GmbH Wendenschlossstraße 168, Haus 28 D-12557 Berlin	+49 (30) 658 91-122 +49 (30) 655 50-221 info.ftk@rohde-schwarz.com	Chile	Dymeq Ltda. Av. Larraín 6666 Santiago
Rohde & Schwarz SIT GmbH Agastrasse 3 D-12489 Berlin	+49 (30) 658 84-0 +49 (30) 658 84-183 info.sit@rohde-schwarz.com	China	Rohde & Schwarz China Ltd. Representative Office Beijing Room 602, Parkview Center 2 Jianguai Road Chao Yang District Beijing 100016
ADRESSEN WELTWEIT/ADDRESSES WORLDWIDE			
Albania	siehe/see Austria		
Algeria	Rohde & Schwarz Bureau d'Alger 5B Place de Laperrine 16035 Hydra-Alger	+213 (21) 48 20 18 +213 (21) 69 46 08	Rohde & Schwarz China Ltd. Representative Office Shanghai Central Plaza 227 Huangpi North Road RM 807/809 Shanghai 200003
Argentina	Precision Electronica S.R.L. Av. Pde Julio A. Roca 710 - 6º Piso (C1067ABP) Buenos Aires	+541 (14) 331 41 99 +541 (14) 334 51 11 alberto_lombardi@prec-elec.com.ar	Rohde & Schwarz China Ltd. Representative Office Guangzhou Room 2903, Metro Plaza 183 Tianhe North Road Guangzhou 510075
Australia	Rohde & Schwarz (Australia) Pty. Ltd. Sales Support Unit 6 2-8 South Street Rydalmerle, N.S.W. 2116	+61 (2) 88 45 41 00 +61 (2) 96 38 39 88 lyndell.james@rsaus.rohde-schwarz.com	Rohde & Schwarz China Ltd. Representative Office Chengdu Unit G, 28/F, First City Plaza 308 Shuncheng Avenue Chengdu 610017
Austria	Rohde & Schwarz Österreich Ges.m.b.H. Am Europplatz 3 Gebäude B 1120 Wien	+43 (1) 602 61 41-0 +43 (1) 602 61 41-14 rs-austria@rsoe.rohde-schwarz.com	Rohde & Schwarz China Ltd. Representative Office Xi'an Room 10125, Jianguo Hotel Xi'an No. 2, Huzhu Road Xi'an 710048
Azerbaijan	Rohde & Schwarz Azerbaijan Liaison Office Baku ISR Plaza 340 Nizami Str. 370000 Baku	+994 (12) 93 31 38 +994 (12) 93 03 14 rs-azerbaijan@rus.rohde-schwarz.com	Rohde & Schwarz China Ltd. Representative Office Xi'an Room 10125, Jianguo Hotel Xi'an No. 2, Huzhu Road Xi'an 710048

Adressen/Addresses

China	Rohde & Schwarz China Ltd. Representative Office Shenzhen No. 2002 Jiabin Road Luohu District Shenzhen 518001	+86 (755) 25 18 50 18 +86 (755) 25 18 50 18 jessica.lia@rsbp.rohde-schwarz.com	Germany	Zweigniederlassung Büro Bonn Josef-Wirmer-Straße 1-3 · D-53123 Bonn Postfach 140264 · D-53057 Bonn	+49 (228) 918 90-0 +49 (228) 25 50 87 info.rsv@rohde-schwarz.com
Croatia	siehe/see Slovenia			Zweigniederlassung Nord, Geschäftsstelle Hamburg Steilshooper Alle 47 · D-22309 Hamburg Postfach 60 22 40 · D-22232 Hamburg	+49 (40) 63 29 00-0 +49 (40) 630 78 70 info.rsv@rohde-schwarz.com
Cyprus	Hinis Telecast Ltd. Agiou Thoma 18 Kiti Larnaca 7550	+357 (24) 42 51 78 +357 (24) 42 46 21 hinis@logos.cy.net		Zweigniederlassung Mitte, Geschäftsstelle Köln Niederkasseler Straße 33 · D-51147 Köln Postfach 900 149 · D-51111 Köln	+49 (2203) 807-0 +49 (2203) 807-650 info.rsv@rohde-schwarz.com
Czech Republic	Rohde & Schwarz Praha s.r.o. Hadovka Office Park Evropská 33c 16000 Praha 6	+420 (2) 24 31 12 32 +420 (2) 24 31 70 43 office@rscz.rohde-schwarz.com		Zweigniederlassung Süd, Geschäftsstelle München Mühldorfstraße 15 · D-81671 München Postfach 80 14 69 · D-81614 München	+49 (89) 41 86 95-0 +49 (89) 40 47 64 info.rsv@rohde-schwarz.com
Denmark	Rohde & Schwarz Danmark A/S Ejby Industrivej 40 2600 Glostrup	+45 (43) 43 66 99 +45 (43) 43 77 44		Zweigniederlassung Süd, Geschäftsstelle Nürnberg Donaustraße 36 D-90451 Nürnberg	+49 (911) 642 03-0 +49 (911) 642 03-33 info.rsv@rohde-schwarz.com
Ecuador	Representaciones Manfred Weinzierl Vía Láctea No. 4 y Via Sta. Inés P.O.Box 17-22-20309 1722 Cumbyá-Quito	+593 (22) 89 65 97 +593 (22) 89 65 97 mweinzierl@plus.net.ec		Zweigniederlassung Mitte, Geschäftsstelle Neu-Isenburg Siemensstraße 20 D-63263 Neu-Isenburg	+49 (6102) 20 07-0 +49 (6102) 20 07 12 info.rsv@rohde-schwarz.com
Egypt	U.A.S. Universal Advanced Systems 31 Manshiet El-Bakry Street Heliopolis 11341 Cairo	+20 (2) 455 67 44 +20 (2) 256 17 40 an_uas@link.net	Ghana	Kop Engineering Ltd. P.O. Box 11012 3rd Floor Akai House, Osu Accra North	+233 (21) 77 89 13 +233 (21) 701 06 20
El Salvador	siehe/see Mexico				
Estonia	Rohde & Schwarz Danmark A/S Estonian Branch Office Narva mnt. 13 10151 Tallinn	+372 (6) 14 31 23 +372 (6) 14 31 21 margo.fingling@rsdk.rohde-schwarz.com	Greece	Mercury S.A. 6, Loukianou Str. 10675 Athens	+302 (10) 722 92 13 +302 (10) 721 51 98 mercury@hol.gr
Finland	Orbis Oy P.O.Box 15 00421 Helsinki 42	+358 (9) 47 88 30 +358 (9) 53 16 04 info@orbis.fi	Honduras	siehe/see Mexico	
France	Rohde & Schwarz France Immeuble "Le Newton" 9-11, rue Jeanne Braconnier 92366 Meudon La Forêt Cédex	+33 (1) 41 36 10 00 +33 (1) 41 36 11 73 contact@rsf.rohde-schwarz.com	Hong Kong	Electronic Scientific Engineering 9/F North Somerset House Taikoo Place 979 King's Road Hong Kong	+852 (25) 07 03 33 +852 (25) 07 09 25 stephenchau@ese.com.hk
	Niederlassung/Subsidiary Rennes 37 Rue du Bignon Bât. A F-35510 Cesson Sevigne	+33 (0) 299 51 97 00 +33 (0) 299 51 98 77	Hungary	Rohde & Schwarz Budapesti Iroda Váci út 169 1138 Budapest	+36 (1) 412 44 60 +36 (1) 412 44 61 rs-hungary@rshu.rohde-schwarz.com
	Niederlassung/Subsidiary Toulouse Technoparc 3 B.P. 501 F-31674 Labège Cédex	+33 (0) 561 39 10 69 +33 (0) 561 39 99 10	Iceland	siehe/see Denmark	
	Office Aix-en-Provence	+33 (0) 494 07 39 94 +33 (0) 494 07 55 11	India	Rohde & Schwarz India Pvt. Ltd. Bangalore Office No. 24, Service Road, Domlur 2nd Stage Extension Bangalore - 560 071	+91 (80) 535 23 62 +91 (80) 535 03 61 rsindiah@rsnl.net
	Office Lyon	+33 (0) 478 29 88 10 +33 (0) 478 79 18 57	India	Rohde & Schwarz India Pvt. Ltd. Hyderabad Office 302 & 303, Millennium Centre 6-3-1099/1100, Somajiguda Hyderabad - 500 016	+91 (40) 23 32 24 16 +91 (40) 23 32 27 32 rsindiah@nd2.dot.net.in
	Office Nancy	+33 (0) 383 54 51 29 +33 (0) 383 54 82 09	India	Rohde & Schwarz India Pvt. Ltd. RS India Mumbai Office B-603, Remi Bizcourt, Shah Industrial Estate, Off Veera Desai Road Mumbai - 400 058	+91 (22) 26 30 18 10 +91 (22) 26 73 20 81 rsindiam@rsnl.net
Germany	Zweigniederlassungen der Rohde & Schwarz Vertriebs-GmbH/Branch offices of Rohde & Schwarz Vertriebs-GmbH		Indonesia	PT Rohde & Schwarz Indonesia Graha Paramita 5th Floor Jln. Denpasar Raya Blok D-2 Jakarta 12940	+62 (21) 252 36 08 +62 (21) 252 36 07 sales@rsbj.rohde-schwarz.com services@rsbj.rohde-schwarz.com
	Zweigniederlassung Nord, Geschäftsstelle Berlin Ernst-Reuter-Platz 10 · D-10587 Berlin Postfach 100620 · D-10566 Berlin	+49 (30) 34 79 48-0 +49 (30) 34 79 48 48 info.rsv@rohde-schwarz.com			

Adressen/Addresses

Iran	Rohde & Schwarz Iran Groundfloor No. 1, 14th Street Khaled Eslamboli (Vozara) Ave. 15117 Tehran	+98 (21) 872 42 96 +98 (21) 871 90 12 rs-tehran@neda.net	Lebanon	Netcom P.O.Box 55199 Op. Ex-Presidential Palace Horsch Tabet Beirut	+961-1-48 69 99 +961-1-49 05 11 netcom@inco.com.lb
Ireland	siehe/see United Kingdom		Liechtenstein	siehe/see Switzerland	
Israel	Eastronics Ltd. Messtechnik/T&M Equipment 11 Rozanis St. P.O.Box 39300 Tel Aviv 61392	+972 (3) 645 87 77 +972 (3) 645 86 66 david_hasky@easx.co.il	Lithuania	Rohde & Schwarz Danmark A/S Lithuanian Office Lukiskiu 5-228 2600 Vilnius	+370 (5) 239 50 10 +370 (5) 239 50 11
	J.M. Moss (Engineering) Ltd. Kommunikationstechnik/ Communications Equipment 9 Oded Street P.O.Box 967 52109 Ramat Gan	+972 (3) 631 20 57 +972 (3) 631 40 58 jmross@zahav.net.il	Luxembourg	siehe/see Belgium	
Italy	Rohde & Schwarz Italia S.p.a. Centro Direzionale Lombardo Via Roma 108 20060 Cassina de Pecchi (MI)	+39 (02) 95 70 42 03 +39 (02) 95 30 27 72 ornella.crippa@rsi.rohde-schwarz.com	Macedonia	siehe/see Slovenia	
	Rohde & Schwarz Italia S.p.a. Via Tiburtina 1182 00156 Roma	+39 (06) 41 59 82 18 +39 (06) 41 59 82 70	Malaysia	Dagang Teknik Sdn. Bhd. No. 9, Jalan SS 4D/2 Selangor Darul Ehsan 47301 Petaling Jaya	+60 (3) 27 03 55 68 +60 (3) 27 03 34 39 maryanne@danik.com.my
Japan	Rohde & Schwarz Support Center Japan K.K. 711 bldg., Room 501 (5th floor) 7-11-18 Nishi-Shinjuku Shinjuku-ku Tokyo 160-0023	+81 (3) 59 25 12 88 +81 (3) 59 25 12 90	Malta	ITEC International Technology Ltd B'Kara Road San Gwann SGN 08	+356 (21) 37 43 00 or 37 43 29 +356 (21) 37 43 53 sales@itec.com.mt
	Advantest Corp. Sales Promotion Department Shinjuku-NS bldg. 2-4-1, Nishi-Shinjuku Shinjuku-ku Tokyo 160-0880	+81 (3) 33 42 75 52 +81 (3) 53 22 72 70 mkoyama@ns.advantest.co.jp	Mexico	Rohde & Schwarz de Mexico Av. Prol. Americas No. 1600, 2º Piso Col. Country Club Guadalajara, Jal. Mexico CP, 44610	+52 (33) 36 78 91 70 +52 (33) 36 78 92 00
Jordan	Jordan Crown Engineering & Trading Co. Jabal Amman, Second Circle Youssef Ezideen Street P.O.Box 830414 Amman, 11183	+962 (6) 462 17 29 +962 (6) 465 96 72 jocrown@google.com.jo		Rohde & Schwarz de Mexico S. de R.L. de C.V. German Centre Oficina 4-2-2 Av. Santa Fé 170 Col. Lomas de Santa Fé 01210 Mexico D.F.	+52 (55) 85 03 99 13 +52 (55) 85 03 99 16 latinoamerica@rsd.rohde-schwarz.com
Kazakhstan	Rohde & Schwarz Kazakhstan Representative Office Almaty Pl. Respublik 15 480013 Almaty	+7 (32) 72 67 23 54 +7 (32) 72 67 23 46 rs-kazakhstan@rus-rohde-schwarz.com	Moldavia	siehe/see Romania	
Kenya	Excel Enterprises Ltd Dunga Road P.O.Box 42 788 Nairobi	+254 (2) 55 80 88 +254 (2) 54 46 79	Nepal	ICTC Pvt. Ltd. Hattisar, Post Box No. 660 Kathmandu	+977 (1) 443 48 95 +977 (1) 443 49 37 ictc@mos.com.np
Korea	Rohde & Schwarz Korea Ltd. 83-29 Nonhyun-Dong, Gangnam-Ku Seoul 135-010	+82 (2) 3485 1900 +82 (2) 3485 1900 sales@rskor.rohde-schwarz.com service@rskor.rohde-schwarz.com	New Zealand	Nichecom 1 Lincoln Ave. Tawa, Wellington	+64 (4) 232 32 33 +64 (4) 232 32 30 rob@nichecom.co.nz
Kuwait	Group Five Trading & Contracting Co. Mezanine Floor Al-Bana Towers Ahmad Al Jaber Street Sharq	+965 (244) 91 72/73/74 +965 (244) 95 28 jk_agarwal@yahoo.com	Nicaragua	siehe/see Mexico	
Latvia	Rohde & Schwarz Danmark A/S Latvian Branch Office Merkela iela 21-301 1050 Riga	+371 (7) 50 23 55 +371 (7) 50 23 60 rsdk@rsdk.rohde-schwarz.com	Nigeria	Ferrostaal Abuja Plot 3323, Barada Close P.O.Box 8513, Wuse Off Amazon Street Maitama, Abuja	+234 (9) 413 52 51 +234 (9) 413 52 50 fsabuja@rosecom.net
Lebanon	Rohde & Schwarz Liaison Office Riyadh P.O.Box 361 Riyadh 11411	+966 (1) 465 64 28 Ext. 303 +966 (1) 465 64 28 Ext. 229 chris.porzky@rsd.rohde-schwarz.com	Norway	Rohde & Schwarz Norge AS Enebakkveien 302 B 1188 Oslo	+47 (23) 38 66 00 +47 (23) 38 66 01
			Oman	Mustafa Sultan Science & Industry Co.LLC. Test & Measurement Products Way No. 3503 Building No. 241 Postal Code 112 Al Khuwair, Muscat	+968 63 60 00 +968 60 70 66 m-aziz@mustafasultan.com
			Pakistan	Siemens Pakistan 23, West Jinnah Avenue Islamabad	+92 (51) 227 22 00 +92 (51) 227 54 98 reza.bokhary@siemens.com.pk

Adressen/Addresses

Panama	siehe/see Mexico		Sri Lanka	Dynatel Communications (PTE) Ltd. 451/A Kandy Road Kelaniya	+94 (1) 90 80 01 +94 (1) 91 04 69 dyna-svc@slt.net.lk
Papua New Guinea	siehe/see Australia		Sudan	SolarMan Co. Ltd. P.O.Box 11 545 North of Fraouq Cementry 6/7/9 Bldg. 16 Karthoum	+249 (11) 47 31 08 +249 (11) 47 31 38 solarman29@hotmail.com
Philippines	Rohde & Schwarz (Philippines) Ltd. PBCOM Tower Ayala Ave. cor. Herrera Sts. Makati City	+63 (2) 755 88 70 +63 (2) 755 88 67	Sweden	Rohde & Schwarz Sverige AB Marketing Div. Flygfältsgatan 15 128 30 Skarpnäck	+46 (8) 605 19 00 +46 (8) 605 19 80 info@rss.se
Poland	Rohde & Schwarz SP.z o.o. Przedstawicielstwo w Polsce ul. Stawki 2, Pietro 28 00-193 Warszawa	+48 (22) 860 64 94 +48 (22) 860 64 99 rs-poland@rspl.rohde-schwarz.com	Switzerland	Roschi Rohde & Schwarz AG Mühlestr. 7 3063 Ittigen	+41 (31) 922 15 22 +41 (31) 921 81 01 sales@roschi.rohde-schwarz.com
Portugal	Rohde & Schwarz Portugal, Lda. Alameda Antonio Sergio 7-R/C - Sala A 2795-023 Linda-a-Velha	+351 (21) 415 57 00 +351 (21) 415 57 10 info@rspt.rohde-schwarz.com	Syria	Electro Scientific Office Baghdad Street Dawara Clinical Lab. Bldg P.O.Box 8162 Damascus	+963 (11) 231 59 74 +963 (11) 231 88 75 memo@hamshointl.com
Romania	Rohde & Schwarz Representation Office Bucharest Str. Uranus 98 Sc. 2, Et. 5, Ap. 36 76102 Bucuresti, Sector 5	+40 (21) 410 68 46 +40 (21) 411 20 13 rs-romania@rsro.rohde-schwarz.com	Taiwan	Rohde & Schwarz Taiwan (Pvt.) Ltd. Floor 14, No. 13, Sec. 2, Pei-Tou Road Taipei 112	+886 (2) 28 93 10 88 +886 (2) 28 91 72 60 celine.tu@rstw.rohde-schwarz.com
Russian Federation	Rohde & Schwarz Representative Office Moscow 119180, Yekimanskaya nab., 2 Moscow	+7 (095) 745 88 50 to 53 +7 (095) 745 88 54 rs-russia@rsru.rohde-schwarz.com	Tanzania	SSTL Group P.O. Box 7512 Dunga Street Plot 343/345 Dar es Salaam	+255 (22) 276 00 37 +255 (22) 276 02 93 sstl@ud.co.tz
Saudi Arabia	Rohde & Schwarz Liaison Office Riyadh c/o Haji Abdullah Alireza Co. Ltd. P.O.Box 361 Riyadh 11411	+966 (1) 465 64 28 Ext. 303 +966 (1) 465 6428 Ext. 229 chris.porzyk@rsd.rohde-schwarz.com	Thailand	Schmidt Electronics (Thailand) Ltd. 63 Government Housing Bank Bldg. Tower II, 19th floor, Rama 9 Rd. Huaykwang, Bangkapi Bangkok 10320	+66 (2) 643 13 30 to 39 +66 (2) 643 13 40 kamthoninthuyot@schmidthailand.com
Saudi Arabia	Gentec Haji Abdullah Alireza & Co. Ltd. P.O.Box 43054 Riyadh	+966 (1) 465 64 28 +966 (1) 465-64 28 akanbar@gentec.com.sa	Trinidad & Tobago	siehe/see Mexico	
Serbia-Montenegro	Representative Office Belgrade Tose Jovanovica 7 11030 Beograd	+381 (11) 305 50 25 +381 (11) 305 50 24	Tunisia	Teletek 71, Rue Alain Savary Residence Alain Savary (C64) 1003 Tunis	+216 (71) 77 22 88 +216 (71) 77 05 53
Singapore	Rohde & Schwarz Regional Headquarters Singapore Pte. Ltd. 1 Kaki Bukit View #05-01/02 Techview Singapore 415 941	+65 (6) 846 1872 +65 (6) 846 1252 rsca@rssg.rohde-schwarz.com	Turkey	Rohde & Schwarz International GmbH Liaison Office Istanbul Bagdad Cad. 191/3, Arda Apt. B-Blok 81030 Selamicesme-Istanbul	+90 (216) 385 19 17 +90 (216) 385 19 18 rsturk@superonline.com
Slovak Republic	Specialne systemy a software, a.s. Svrcia ul. 841 04 Bratislava	+421 (2) 65 42 24 88 +421 (2) 65 42 07 68 stefan.lozek@special.sk	Ukraine	Rohde & Schwarz Representative Office Kiev 4, Patris Loumouumba ul 01042 Kiev	+38 (044) 268 60 55 +38 (044) 268 83 64 rsbkiev@public.ua.net
Slovenia	Rohde & Schwarz Representation Ljubljana Tbilisijska 89 1000 Ljubljana	+386 (1) 423 46 51 +386 (1) 423 46 11 rs-slovenia@rss.si.rohde-schwarz.com	United Arab Emirates	Rohde & Schwarz International GmbH Liaison Office Abu Dhabi P.O. Box 31156 Abu Dhabi	+971 50 62 40 197 +971 (4) 3944 794 michael.rogler@rsd.rohde-schwarz.com
South Africa	Protea Data Systems (Pty.) Ltd. Communications and Measurement Division Private Bag X19 Bramley 2018	+27 (11) 719 57 00 +27 (11) 786 58 91 unicm@protea.co.za	United Arab Emirates	Rohde & Schwarz Bick Mobile Communication P.O.Box 17466 Dubai	+971 (4) 883 71 35 +971 (4) 883 71 36
South Africa	Protea Data Systems (Pty.) Ltd. Cape Town Branch Unit G9, Centurion Business Park Bosrandam Road Milnerton Cape Town, 7441	+27 (21) 555 36 32 +27 (21) 555 42 67 unicm@protea.co.za	United Arab Emirates	Rohde & Schwarz Emirates L.L.C. Ahmed Al Nasri Building, Mezzanine Floor, P.O.Box 31156 Off old Airport Road Behind new GEMACO Furniture Abu Dhabi	+971 (2) 631 20 40 +971 (2) 631 30 40 rsuaeam@emirates.net.ae
Spain	Rohde & Schwarz Espana S.A. Salcedo, 11 28034 Madrid	+34 (91) 334 10 70 +34 (91) 329 05 06 rses@rses.rohde-schwarz.com			

Adressen/Addresses

United Kingdom	Rohde & Schwarz UK Ltd. Ancells Business Park Fleet Hampshire GU 51 2UZ England	+44 (1252) 81 88 88 (sales) +44 (1252) 81 88 18 (service) +44 (1252) 81 14 47 sales@rsuk.rohde-schwarz.com
Uruguay	Aeromarine S.A. Cerro Largo 1497 11200 Montevideo	+598 (2) 400 39 62 +598 (2) 401 85 97 mjn@aeromarine.com.uy
USA	Rohde & Schwarz, Inc. Broadcast & Comm. Equipment 8661-A Robert Fulton Drive Columbia, MD 21046-2265	+1 (410) 910 78 00 +1 (410) 910 78 01 rsatv@rsa.rohde-schwarz.com rsacomms@rsa.rohde-schwarz.com
USA	Rohde & Schwarz, Inc. Marketing & Support Center/T&M Equipment 2540 SW Alan Blumlein Way M/S 58-925 Beaverton, OR 97077-0001	+1 (503) 627 26 84 +1 (503) 627 25 65 info@rsa.rohde-schwarz.com
USA	Rohde & Schwarz, Inc. Systems & EMI Products 8080 Tristar Drive Suite 120 Irving, Texas 75063	+1 (469) 713 53 00 +1 (469) 713 53 01 info@rsa.rohde-schwarz.com
Venezuela	Equilab Telecom C.A. Centro Seguros La Paz Piso 6, Local E-61 Ava. Francisco de Miranda Boleita, Caracas 1070	+58 (2) 12 34 46 26 +58 (2) 122 39 52 05 r_ramirez@equilabtelecom.com
Venezuela	Representaciones Bopic S.A. Calle C-4 Qta. San Jose Urb. Caurimare Caracas 1061	+58 (2) 129 85 21 29 +58 (2) 129 85 39 94 incotr@cantv.net
Vietnam	Schmidt Vietnam Co. (H.K.) Ltd., Representative Office Hanoi Intern. Technology Centre 8/F, HITC Building 239 Xuan Thuy Road Cau Giay, Tu Liem Hanoi	+84 (4) 834 61 86 +84 (4) 834 61 88 svnhn@schmidtgroup.com
West Indies	siehe/see Mexico	

Sicherheitshinweise

Dieses Gerät ist gemäß umseitig gekennzeichneter Vorschriften gebaut und geprüft und hat das Werk in sicherheitstechnisch einwandfreiem Zustand verlassen.

Um diesen Zustand zu erhalten und einen gefahrlosen Betrieb sicherzustellen, muß der Anwender folgende Hinweise, Symbole und Warnvermerke beachten.

- 1) Bei Anschluß eines Gerätes mit ortsfestem Anschluß ist die Verbindung zwischen dem Schutzleiteranschluß und einem Schutzleiter vor jeglichen anderen Verbindungen herzustellen.
- 2) Einbaugeräte dürfen nur in eingebautem Zustand betrieben werden.
- 3) Bei ortsfesten Geräten ohne eingebaute Sicherungen, Selbstschalter oder ähnliche Schutzeinrichtungen muß die Netzzuleitung für diese Geräte mit Sicherungen der den Geräten entsprechenden Nennstromstärke versehen sein.
- 4) Vor dem Einschalten des Gerätes ist sicherzustellen, daß die am Gerät eingestellte Betriebsspannung und die Netzspannung übereinstimmen.
Wird eine andere Betriebsspannung eingestellt, so ist ggf. die Sicherung der geänderten Nennstromstärke anzupassen.
- 5) Bei Geräten der Schutzklasse I mit beweglicher Netzzuleitung und Netzstecker ist der Betrieb nur an einer Steckdose mit Schutzkontakt zulässig.
Die Schutzwirkung darf nicht durch eine Verlängerungsleitung aufgehoben werden.
Jegliche Unterbrechung des Schutzleiters inner- oder außerhalb des Gerätes oder Lösen des Schutzleiteranschlusses kann dazu führen, daß das Gerät gefahrbringend wird.
Eine absichtliche Unterbrechung des Schutzleiters ist nicht zulässig.
- 6) Vor Öffnen des Gerätes ist dieses vom Netz zu trennen.
Abgleich, Auswechseln von Teilen, Wartung und Instandsetzung darf nur von R&S-autorisierten Fachkräften ausgeführt werden.
Sicherheits- und Unfallverhütungsvorschriften sind zu beachten.
Werden sicherheitsrelevante Teile (z.B. Netzschalter, Netztrafos oder Sicherungen) ausgewechselt, sind Originalteile zu verwenden.
- 7) Zusätzliche Sicherheitshinweise in diesem Handbuch sind ebenfalls zu beachten.

Erklärung der verwendeten Symbole

- Bedienungsanleitung lesen, verwendete Sicherheitssymbole beachten

- Achtung, berührungsgefährliche Spannung

- Schutzleiteranschluß, ausschließliche Schutzfunktion

- Gerätemasse

- Aquipotential (gleitende Masse)

- Erde

Inhaltsübersicht

Band 1

6 Instandsetzung

7 Prüfen und Instandsetzen der Baugruppen

Frontmodul mit Rechner VAR 02	Register 1
Frontmodul mit Rechner VAR 04	Register 2
Synthesizer	Register 3

Band 2

7 Prüfen und Instandsetzen der Baugruppen

Ausgangsteil 1,5 GHz VAR 06	Register 1
Ausgangsteil 1,5 GHz VAR 10	Register 2
Ausgangsteil 3,0 GHz	Register 3
Ausgangsteil 6,0 GHz	Register 4

Band 3

7 Prüfen und Instandsetzen der Baugruppen

Eichleitung 3 GHz	Register 1
Eichleitung 6 GHz	Register 2
Option Referenzoszillator OCXO SM-B1	Register 3
Option LF-Generator SM-B2	Register 4
Option Pulsmodulator SM-B3/B8/B9	Register 5
Option Pulsgenerator SM-B4	Register 6
Option Multifunktionsgenerator SM-B6	Register 7
Netzteil	Register 8

Inhaltsverzeichnis

6.	Instandsetzung.....	3
6.1	Liste der Baugruppen und Funktionsbeschreibung des SMT.....	3
6.1.1	A7 Synthesizer.....	4
6.1.1.1	Referenzfrequenzen.....	4
6.1.1.2	Synthesizer.....	4
6.1.2	A10 Ausgangsteil 1.5GHz.....	4
6.1.3	A11 Ausgangsteil 3GHz (SMT03).....	5
6.1.4	A11 Ausgangsteil 6GHz (SMT06).....	5
6.1.5	Option B3/B8/B9 Pulsmodulator.....	5
6.1.6	Option B4 Pulsgenerator.....	5
6.1.7	Option B2 LF-Generator.....	5
6.1.8	Option B6 Multifunktionsgenerator.....	5
6.1.9	A15 Eichleitung/Eichleitungssteuerung.....	6
6.2	Messgeräte und Hilfsmittel.....	6
6.3	Fehlersuche.....	6
6.3.1	Eingebaute Hilfsmittel, Servicekit.....	6
6.3.1.1	Selbsttest, Fehlermeldungen (ERROR).....	7
6.3.1.2	Diagnose.....	8
6.3.1.2.1	Liste der Diagnosemesspunkte.....	8
6.3.2	Überprüfung der Baugruppen mit der eingebauten Diagnose.....	11
6.3.2.1	Fehlersuche nach Baugruppen.....	11
6.3.2.1.1	A3 Frontmodul, Diagnosetest.....	11
6.3.2.1.2	A2 Netzteil.....	12
6.3.2.1.3	A7 Synthesizer.....	12
6.3.2.1.4	A10 Ausgangsteil 1.5GHz / A11 Ausgangsteil 3/6GHz.....	13
6.3.2.1.5	A50 LF-Generator (Option).....	13
6.3.2.1.6	A5 Multifunktionsgenerator (Option).....	13
6.3.3	Fehlersuche nach Fehlerart.....	14
6.3.3.1	Frequenzfehler.....	14
6.3.3.2	Pegelfehler.....	14
6.3.3.3	AM - Fehler.....	14
6.3.3.4	FM/PhiM - Fehler.....	14
6.3.3.5	Oberwellenpegel zu hoch.....	14
6.3.3.6	Mangelhafte spektrale Reinheit (SSB-Rauschen, Störhub).....	14
6.4	Prüfen und Abgleich.....	14
6.4.1	Kalibrierroutinen.....	15
6.4.1.1	Kalibrieren der Voreinstellung des Synthesizers.....	15
6.4.1.2	Kalibrieren der Pegelvoreinstellung (Level preset).....	15
6.4.1.3	Ausgangspegelkorrektur.....	16
6.4.1.4	Kalibration der FM.....	16
6.4.1.5	Kalibrationen an Optionen.....	17
6.4.2	Abgleicharbeiten am Gesamtgerät.....	17
6.4.3	Abgleicharbeiten bei Baugruppenwechsel.....	17
6.5	Einbau der Option B3/B8/B9 Pulsmodulator.....	17
6.5.1	Option SM-B3, Pulsmodulator 1.5 GHz.....	17
6.5.2	Option SM-B8/B9, Pulsmodulator 3/6 GHz.....	18
6.5.3	Einbau mit Option B4 Pulsgenerator.....	18
6.5.4	Kalibrationen nach dem Einbau.....	18
6.6	Zerlegen und Zusammenbau.....	19
6.6.1	Abnehmen und Einbau der Beplankung.....	19
6.6.2	Aus- und Einbau einer steckbaren Baugruppe.....	19

6.6.3	Aus- und Einbau des Frontmoduls.....	20
6.6.4	Aus- und Einbau des Netzteils.....	20

Liste der mechanischen Teile
Explosionszeichnung
Schlüsselliste
Netzkabelliste
Cross-reference-Liste
Schalteilliste
Koordinatenliste
Stromlauf
Bestückungsplan

6. Instandsetzung

6.1 Liste der Baugruppen und Funktionsbeschreibung des SMT

Baugruppen deutsch/englisch	Abkürzung	Sachnummer
A3 Fronteinheit/ Front Module	FRO	1035.5440
Tastatur/Anzeige/ Keyboard/Display	KBDSP	
CPU/ CPU Assembly	CPU	
Peripherie/ Periphery Assembly	PERI	
Drehgeber/ Knob Assembly	KNOB	
A7 Synthesizer / Synthesizer	TSYN	1039.2330
A10 Ausgangsteil 1.5GHz/ Output Unit 1.5 GHz NF-Teil/ AF-Part	OPU1	1038.7780
A11 Ausgangsteil 3 GHz/ Output Unit 3 GHz	OPU3	1038.8140
A11 Ausgangsteil 6 GHz/ Output Unit 6 GHz	OPU6	1038.8534
A15 Eichleitung/ Attenuator 3GHz	ATT3	1038.6948
A15 Eichleitung/ Attenuator 6GHz	ATT6	1008.7400
Eichleitungssteuerung/ Attenuator Cont. Ass.	ATTC	
A1 Motherboard SMT/ Motherboard SMT	MBRDE	1039.2646
A2 Netzteil/ Power Supply	POWS1	1039.1304

Optionen

A71 SM-B1 Referenzoszillator OCXO/ Reference Oscillator OCXO	ROSC	1036.7599
A50 SM-B2 LF-Generator/ LF Generator	LFGEN	1036.7947
A5 SM-B6 Multifunktionsgenerator/ Multi Function Generator	MGEN	1036.7760
A4 SM-B3 Pulsmodulator 1.5 GHz/ Pulse Modulator 1.5 GHz	PUM1	1036.6340
A4 SM-B8 Pulsmodulator 3 GHz/ Pulse Modulator 3 GHz	PUM3	1036.6805
A4 SM-B9 Pulsmodulator 6 GHz/ Pulse Modulator 6 GHz	PUM6	1036.6370
A40 SM-B4 Pulsgenerator (in PUM)/ Pulse Generator	PGEN	1036.9310

Zum folgenden siehe Funktionsstromlauf 1039.2000.01 S

Der SMT synthetisiert die Oktave 750 - 1500 MHz mit einem Einschleifensynthesizer. Alle anderen Frequenzen werden daraus

durch Teilen, Verdoppeln oder Mischen abgeleitet. Die FM/PHiM-Modulation wird durch Modulation in der Regelschleife sowie der Ausgangsoszillatoren erzeugt.

Auf die Frequenzerweiterung durch Teilen und Mischen folgt die Pegelaufbereitung, der optionelle Verdoppler sowie die optionelle Pulsmodulation und die mechanische Eichleitung.

6.1.1 A7 Synthesizer

Die Baugruppe TSYN enthält einen FM/PHiM modulierbaren Synthesizer von 67.5...1500MHz, einen 10MHz Standardreferenzquarz sowie einen 600MHz Oszillator als LO für den Mischerbereich der Ausgangsstufe.

6.1.1.1 Referenzfrequenzen

Als interne Zeitbasis für die gesamte Synthese dient ein temperaturkompensierter 10MHz Quarzoszillator (TCXO), optionell kann er durch einen thermostatgeregelten (OCXO) ersetzt werden.

Der 600MHz Oszillator ist mit einem keramischen Resonator aufgebaut, mit einer PLL von 300Hz Bandbreite wird er an die 10MHz Referenz angebunden. Von einem Abgriff der Teilerkette wird die 50MHz Referenz gewonnen.

6.1.1.2 Synthesizer

Der Einschleifensynthesizer arbeitet mit einer Grundoktave von 750...1500MHz. Der weitere Frequenzbereich wird durch binäres Teilen erzeugt. Die Ausgangsfrequenz wird in einer PLL mit gebrochenem Teilungsfaktor erzeugt. Der eigentliche Teiler ist mit einem ECL-Gatearray realisiert, ein zweites CMOS-Gatearray dient zur Steuerung und digitalen Kompensation der Bruchteilernebenwellen.

Die FM/PHiM Modulation wird über zwei Pfade übertragen. In dem ersten Pfad wird bei FM nach A/D-Wandlung mit einem Sigma-Delta-Wandler der Teilungsfaktor und damit die momentane Mittenfrequenz moduliert. Im zweiten Pfad wird direkt der Oszillator moduliert. Mit einer Kalibrierroutine wird dazu die Abstimmsteilheit der Oszillatoren bestimmt.

Bei PHiM wird im ersten Pfad die Phasenmodulation hinter dem Phasendetektor in die PLL eingespeist. Im zweiten Zweig wird nach Differenzierung wieder direkt der Oszillator moduliert.

6.1.2 A10 Ausgangsteil 1.5GHz

Das Ausgangsteil bekommt von Synthesizer das synthetisierte, FM/PhiM-modulierte Signal im Frequenzbereich 67.5...1500MHz.

Um optimale AM-Eigenschaften zu erreichen, ist eine Pegelvorstellung (Level preset) vorgesehen, die nach einer im Rechner abgespeicherten individuellen Tabelle interne Frequenzgang- und Exemplarschwankungen soweit ausgleicht, dass die eigentliche Regelschaltung für Pegel und AM immer in ihrem besten Arbeitspunkt betrieben wird.

Darauf folgt ein Satz Tiefpassfilter, die Frequenzerweiterung durch Abmischen mit dem 600MHz-Signal aus dem Synthesizer sowie der Ausgangsverstärker.

Nach dem Messgleichrichter stellt ein 50Ohm-Längswiderstand den korrekten Innenwiderstand her. Der Pegelfrequenzgang wird durch eine Softwarepegelkorrektur (Eichung mit einem genauen Leistungsmesser) verbessert.

6.1.3 A11 Ausgangsteil 3GHz (SMT03)

Im Ausgangsteil 3GHz wird die Oktave 1500-3000MHz durch Frequenzverdoppeln erzeugt. 3 Bandpässe filtern Harmonische und Subharmonische aus, ein Leistungsverstärker mit eigenem Detektor sorgt für den Ausgangspegel in dieser Oktave. Signale bis 1500MHz werden durchgeschaltet.

6.1.4 A11 Ausgangsteil 6GHz (SMT06)

Im Ausgangsteil 6GHz wird die Oktave 1500-3000MHz durch Frequenzverdoppeln erzeugt. 3 Bandpässe filtern Harmonische und Subharmonische aus. Der Frequenzbereich 3-6GHz wird durch nochmaliges Verdoppeln erzeugt. 3 weitere Bandpässe filtern die Subharmonischen. Ein breitbandiger Leistungsverstärker mit eigenem Detektor sorgt für den Ausgangspegel bei Frequenzen >1500MHz. Signale bis 1500MHz werden durchgeschaltet.

6.1.5 Option B3/B8/B9 Pulsmodulator

Damit alle Modulationsarten gleichzeitig möglich sind, wird der optionelle Pulsmodulator nach dem Ausgangsteil in den Signalweg eingeschleift. Mit Koaxialrelais wird er umgangen, wenn er nicht benutzt wird.

6.1.6 Option B4 Pulsgenerator

Der optionelle Pulsgenerator ist mit einem Gatearray realisiert. Er kann Einzel- und Doppelpulse mit einstellbaren Verzögerungszeiten erzeugen. Für Monitorzwecke ist ein Video- und ein Synchronisationsausgang vorgesehen.

6.1.7 Option B2 LF-Generator

Der LF-Generator arbeitet auf der Basis einer Digitalen Synthese und kann die Kurvenformen Sinus, Dreieck und Rechteck erzeugen. Bei Sinusform reicht der Frequenzbereich bis 500kHz, sonst bis 50kHz. Außerdem kann noch ein Rauschsignal mit einer Bandbreite von 500kHz erzeugt werden.

6.1.8 Option B6 Multifunktionsgenerator

Der Multifunktionsgenerator basiert auf einem digitalen Signalprozessor (DSP) und ist dadurch in der Lage, auch komplexe Signale zu erzeugen. Es sind zwei Ausgangszweige vorhanden, ein schneller

mit 1MHz Bandbreite, der nur einfache Signale (Sinus, Dreieck, Rechteck) liefert und ein langsamerer, der auch komplexe Signalformen (VOR/ILS, Stereo) erzeugen kann.

6.1.9 A15 Eichleitung/Eichleitungssteuerung

Die mechanische Eichleitung erweitert den einstellbaren Pegelbereich um 135dB. Beim SMT02 und SMT03 ist ein Überspannungsschutz für Gleich- und Wechselspannung integriert, der den Ausgang vor extern eingespeisten Spannungen schützt. Er besteht aus einem Detektor, einem Begrenzer und einem mechanischen Trennschalter, der direkt durch die Eichleitungssteuerung betätigt wird. Dieser Trennschalter wird auch beim Ausschalten des Gerätes in die offene Stellung gebracht.

Der SMT06 hat keinen Überspannungsschutz (Detektor und Begrenzer). Der Trennschalter wird nur bei RF OFF betätigt.

6.2 Messgeräte und Hilfsmittel

Pos. 1

- Steuerrechner nach Industriestandard PC/XT/AT mit Fernsteuerschnittstelle IEC-625/IEEE488 und serieller Schnittstelle RS232, Verbindungskabel für RS232 und IEC-Bus R&S PSA15P1 (1008.2009.02)

Pos. 2

- Programmdiskette aus Servicekit SM-Z2

Pos. 3

- HF-Leistungsmessgerät, 5 kHz bis 1.5(3) GHz
R&S NRVS (1020.1809.02) mit Messkopf NRV-Z51 (857.9004.02)

Pos. 4

- HF-Spektrumanalysator
R&S FSB (848.0020.52)

Pos. 5

- HF-Signalgenerator
R&S SMT02 (1039.2000.02)

6.3 Fehlersuche

6.3.1 Eingebaute Hilfsmittel, Servicekit

Zur Selbstüberwachung und für Servicezwecke sind auf allen Baugruppen interne Messtellen vorgesehen. Die wichtigsten lösen über Komparatoren beim Überschreiten von Grenzwerten intern Alarm aus, alle können über Multiplexer und einen A/D-Wandler auf der Rechnerbaugruppe gemessen werden.

Auf jeder Baugruppe sind alle Regelspannungen (dort sind auch Alarmkomparatoren) und die Ausgangspegel intern messbar. Zusätzlich sind auch Messpunkte zur Unterstützung von Abgleicharbeiten und Messpunkte an für den Signalfluss entscheidenden Stellen angelegt, wo eine externe Messung schwierig wäre (z.B. HF-Pegel in der Baugruppe an Schnittstellen zu Submodulen).

Der Servicekit SM-Z2 enthält eine Verlängerungsplatine und Verlängerungskabel, mit denen die Baugruppen in eine zugängliche Serviceposition gebracht werden können. Außerdem ist eine Diskette beigelegt, die ein Diagnoseprogramm in R&S BASIC enthält, das umfangreiche Baugruppentests, Schaubilder und Abgleichroutinen anbietet, mit deren Hilfe die Fehlerfeststellung und Beseitigung sehr erleichtert werden.

6.3.1.1 Selbsttest, Fehlermeldungen (ERROR)

Überschreitet die Steuerspannung in einer Regelschleife den erlaubten Bereich, so wird am Rechner Alarm ausgelöst, der im Display in der Statuszeile angezeigt wird. Ursache dafür können fehlende Kalibrationen, Fehlbedienungen, Überschreitung der spezifizierten Einstellparameter (vor allem beim Pegel sowie AM- und FM-Modulation) oder interne Defekte sein.

Die Fehlerbeseitigung sollte in der unten angegebenen Reihenfolge geschehen, da die weiter unten genannten Fehler auch Folgefehler der oberen sein können.

Meldung im Display	Fehler, mögliche Ursachen
222 Synthesizer loop unlocked	Die Regelschleife der Ausgangsoszillatoren, des 600MHz Oszillators oder des 10MHz VTCXO auf der Baugruppe Synthesizer (A7) ist asynchron (alle 3 Interrupts sind zu einem Interrupt verordert, mit der Diagnose kann die asynchrone PLL ermittelt werden, siehe 6.3.1.2.1). Externe Referenz gewählt, aber nicht angeschlossen, Frequenz der externen Referenz falsch, externe Referenz nicht im erlaubten Ziehbereich.
	HF-Kabel der Optionsreferenz (SM-B1) nicht angeschlossen.
	Fehlende oder fehlerhafte Kalibration der Voreinstellspannung (siehe 6.4.1.1).
	Hardwarefehler.

110 Output unleveled; ALC Failure

Die Pegelregelung auf der Baugruppe Ausgangsteil (A10) ist gestört.

Pegel ausserhalb des spezifizierten Bereiches.

Übersteuerung bei AM-EXT-DC.

Fehlende oder fehlerhafte Kalibration (siehe 6.4.1.2), z. B. nach Baugruppenwechsel oder bei Extremtemperaturen.

Hardwarefehler.

6.3.1.2 Diagnose

Da der Spannungsbereich der Multiplexer auf +5V begrenzt ist, sind an vielen Messpunkten Spannungsteiler notwendig. Im Display soll aber die Originalspannung erscheinen, so dass zu jedem Messpunkt ein Skalierungsfaktor gehört. Angezeigt wird der volle Messwert vor dem Spannungsteiler.

Um einen Fehler weiter einzukreisen, können die folgenden Messpunkte angewählt werden, die angegebenen Spannungen sind ein Richtwerte für ein fehlerfrei arbeitendes Gerät. Sie werden im Display angezeigt und können auch über die IEC-625-Schittstelle von einem Steuerrechner ausgelesen werden.

6.3.1.2.1 Liste der Diagnosemesspunkte

In der Tabelle sind die Spannungen eingetragen, die bei einem funktionierenden Gerät vorkommen können. Ein F bei einem Messpunkt bedeutet, dass die Werte nur bei aktivierter Funktion gelten, ein X in der Spalte IR, dass der Messpunkt Alarm auslöst. Tf ist der Teilerfaktor vor dem Multiplexer.

Baugr	Adr.	Messpunkt	IR	min. V	max. V	Tf
CPU	0	Referenz 1 kOhm		0	50m	1
	1	Eingang DIAG-15		-15	15	"
	2	Eingang DIAG-5		-5	5	"
	3	X-Spannung		0	10	"
	4	Voltmeter		-15	15	"
	5	Programmiersp. FLASH		4.5	5.5	"
	6	Referenzsp. X-D/A		4.9	5.1	"
	7	Batteriespannung		2.2	3.7	"

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
ROSC	100	Referenz 10kOhm		-10m	10m	1
	101	Brückensp. Thermostat*	X	5.6	6.4	3
	102	Pegel Ausgang	F	0.6	2.5	1
	103	frei				
	104	"				
	105	"				
	106	"				
	107	"				

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
TSYN	400	Referenz 10 kOhm		-10m	10m	1
	401	Abstimmssp. VTCXO 10 MHz	X	0	5	3
	402	Pegel Referenze 10MHz		1.5	4	1
	403	Pegel VCO 600MHz		50m	300m	1
	404	Abstimmssp. VCO 600MHz	X	2	20	5
	405	Ausgangspegel REF600	F	100m	500m	1
	406	Ausgangspegel REF50		0.4	2	1
	407	Pegel VCO FSYN		10m	150m	1
	408	Ausgangspegel FSYN		40m	400m	1
	409	Ausgangssp. PI-Regler	X	-5	5	3
	410	Pegel 1kHz Dtektor		-10m	150m	3
	411	Abstimmssp. VCO FSYN		2	20	5
	412	Versorgung +10V		9.7	10.3	3
	413					
	414	Spannung FM1+FM2		-12	12	3
	415	Ausgangssp. FM-DC Regler		0.5	4.5	1

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
OPU1	700	Referenz 10 kOhm		-10m	10m	1
	701	Detektorspg. Ausgang	F	0	3.4	3
	702	Detektorspg. Mischer	F	0	2.9	3
	703	Pegel nach Filter		0	2.7	1
	704	Pegel-D/A-Wandler		-6	0	3
	705	Ausgangssp. Regelv.	X	-1	9	3
	706	Steuersp. Modulator		-1	12	3
	707	Level Preset D/A-Wandler		0	12	3

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
OPU3	800	Referenz 10 kOhm		-10m	10m	1
	801	Modulator-Eingangsspege	F	10m	200m	1
	802	Steuersp. Modulator	F	-1	12	5
	803	Ausgangspieg. Treiberst.	F	20m	400m	1
	804	Drainspannung Endstufe 1		8.0	10.8	4
	805	Drainspannung Endstufe 2		8.0	10.8	4
	806	Detektorspannung	F	50m	4	4
	807	Reserve 10 kOhm		-10m	10m	1

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
OPU6	900	Referenz 10 kOhm	F	-10m	10m	1
	901	RF-Pegel RF AMPL. 1		.01	.2	1
	902	Steuersp. AM-Modulator		-1	12	5
	903	RF-Pegel RF AMPL. 4		.02	.4	1
	904	RF-AMPLIFIER 5 Gatesp.		-5	-3	3
	905	RF-AMPLIFIER 5 Drainsp.		7.0	7.5	3
	906	Detektorspannung		50m	4	4
	907	RF-AMPLIFIER 9 Drainsp.		3.8	4.2m	3

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
PGEN	1000	Referenz		-10m	10m	1
	1001	Versorgung 4.5V		4.3	4.6	2
	1002	Versorgung -5V		-5.3	-4.8	3
	1003	Referenzfrequenz		0.7	1.2	1
	1004	VIDEO		0	5.2	2
	1005	SYNCHRO		0	5.2	2
	1006					
	1007					

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
ATTC	1100	Ausgangspegel nicht SMT06		-5	-3	1

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
LFGEN 1	1200	Referenz 10kOhm	F	-10m	10m	1
	1201	Pegel Quarzoszillator		1.0	5.0	2
	1202	Ausgang INT2		-1.1	1.1	4
	1203	Ausgang LFOUT		-4.1	4.1	4
	1204	Versorgung +5VA		4.8	5.2	2
	1205	Versorgung +5VDDS		4.8	5.2	2
	1206	Versorgung VA15-P		14.4	15.6	4
	1207	Versorgung VA15-N		-15.6	-14.4	4

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
LFGEN 2	1300					
	1301					
	1302					
	1303	wie LFGEN1				
	1304					
	1305					
	1306					
	1307					

Baugr	Adr.	Messpunkt	I R	min. V	max. V	Tf
MGEN	1400	Referenz 10 kOhm		-10m	10m	1
	1401	Ausgang DAC1 (12bit)		-1	1	1
	1402	Ausgang DAC2 (16bit)		-3	3	1
	1403	Ausgang INT2		-1	1	1
	1404	LFOUT-Wahlschalter		-1	1	1
	1405	Ausgang LFOUT		-4	4	4
	1406	EXT1 A/D-Wandler Eing.		-1	1	1
	1407	EXT2 A/D-Wandler Eing.		-1	1	1

* nur VAR 06

6.3.2 Überprüfung der Baugruppen mit der eingebauten Diagnose

Die Diagnose wird im Menue UTILITIES/DIAG/TPOINT/STATE mit ON aktiviert. Mit TPOINT kann der gewünschte Messpunkt per Drehgeber oder Werteingabe angewählt werden.

6.3.2.1 Fehlersuche nach Baugruppen

Vor den angegebenen Einstellungen am SMT sollte das Gerät mit PRESET in einen definierten Anfangszustand gebracht werden. Diagnosemesspunkte, die im Folgenden nicht angesprochen werden, sollen unabhängig von den Einstellungen innerhalb der angegeben Grenzen liegen.

Die meisten der im Folgenden beschriebenen Tests und viele weitere werden im Diagnoseprogramm des Servicekits SM-Z2 angeboten. Das Programm bietet auch einen Gesamttest an, bei dem alle Baugruppen in Signalfussreihenfolge geprüft werden. Die Fehler werden dadurch in der Reihenfolge aufgelistet, in der die Reparatur erfolgen sollte, um unnötiges Suchen nach Folgefehlern zu vermeiden.

6.3.2.1.1 A3 Frontmodul, Diagnosetest

Erfolgt keine Reaktion des Gerätes auf Drehknopf und die Tastatur, obwohl die Anzeigen beschrieben werden, sollte zuerst geprüft werden, ob das Gerät durch die Fernsteuerung (IEC-Bus) blockiert ist, oder eine Taste klemmt. Ist dies nicht der Fall, siehe Serviceanleitung für die Baugruppen A3.

Die Messpunkte 0 bis 7 befinden sich auf dem Rechner selbst. Messpunkt 0 ist gegen die digitale Masse geschaltet und misst den Spannungsabfall dieser Masse gegen die analoge Masse. Messpunkt 2 wird beim SMT nicht benutzt. Messpunkt 3 zeigt die Eingangsspannung des Diagnose-A/D-Wandlers an.

- Zum Test der Diagnose TPOINT 3 wählen und an Pin 19 des Motherboardsteckers einer Baugruppe eine Spannung U mit -5V <U <+5V einspeisen.
- Am Display muss die Spannung angezeigt werden, die am Pin 19 eingespeist wird. Die Abweichung soll <1% ±50mV sein.

Messpunkt 4 ist ein Testpunkt im Inneren des Rechners.

Messpunkt 6 misst die Spannung für die Ausgangsbuchse X-AXIS an der Rückseite.

- Am SMT einen beliebigen Sweep mit ca. 100 Schritten einstellen. In der Betriebsart MAN von der unteren bis zur oberen Sweepgrenze variieren und die angezeigte Spannung beobachten.
- Sie muss von 0 bis 10 V proportional zu den Sweepschritten mitlaufen.

Der Messpunkt 7 misst die Spannung der Batterie, die die nichtflüchtigen Speicher (RAM) versorgt. Bei Spannungen unter 3V ist der Erhalt der Daten beim Abschalten nicht mehr gesichert.

6.3.2.1.2 A2 Netzteil

Das Netzteil hat eine unabhängige Selbstüberwachung und schaltet sich bei Überlastung oder internen Störungen auf Standby-Betrieb um (LED an der Frontplatte).

6.3.2.1.3 A7 Synthesizer

Die Funktion der Regelschleife des 10MHz VTCXO kann wie folgt geprüft werden:

- Im Menue UTILITIES/REF OSC/SOURCE EXT auf externe Referenz schalten. Mit Signalgenerator 10MHz, 0dBm in die rückwärtige BNC-Buchse REF einspeisen, die Frequenz um $\pm 30\text{Hz}$ variieren.
- Die Spannung am TPOINT 401 muß zwischen 0.5... 4.5V liegen.

Die korrekte Synchronisation der 3 Ausgangoszillatoren lässt sich wie folgt prüfen :

- Am SMT die Trägerfrequenz (unmoduliert) von 750.0000001 bis 1000MHz, 1000.000001 bis 1250MHz und 1250.000001 bis 1500MHz variieren. Dadurch wird der ganze Abstimmmbereich der 3 Oszillatoren überstrichen.
- Die Spannung am TPOINT 411 muss in jedem Abstimmmbereich von 2.7 ± 0.5 bis $19 \pm 2\text{V}$ stetig ansteigen. Am Messpunkt 409 darf die Spannung $\pm 1\text{V}$ nicht überschreiten. Überschreitet die Spannung den Grenzwert, ist möglicherweise eine fehlerhafte Kalibration der Voreinstellspannung schuld (siehe 6.4.1.1).

Bei eingebauter Option SM-B2 LF-Generator oder SM-B6 kann der Signalweg der FM in der Modulationseicheleitung verfolgt werden.

- Dazu bei RF 1000MHz im Menue MODULATION/FM/FM2 SOURCE LFGEN2/ DEVIATION 10kHz und bei LFGEN2 FREQUENCY 0.2Hz, SHAPE SQUARE wählen.
- Am TPOINT 414 soll die Anzeige zwischen ca.+5V und -5V springen.

Ebenso kann die Funktion der FMDC-Regelung geprüft werden:

- Am TPOINT 415 soll die Anzeige zwischen ca. +1.8V und 3.2V springen.

6.3.2.1.4 A10 Ausgangsteil 1.5GHz / A11 Ausgangsteil 3/6GHz

Prüfen der Pegelregelung

- Am SMT RF 5 MHz, unmoduliert, Pegel 13 dBm einstellen. Im Menue LEVEL die Funktion ATT FIXED wählen.
Im Menue UTILITIES/CALIB/LEVEL/STATE OFF wählen.
- Es müssen die in der folgenden Tabelle genannten Spannungen ($\pm 10\% \pm 0.05V$) gemessen werden.

Die Spannungen an TPOINT 704 gelten bei allen Frequenzen. Bei RF bis 9.3625 MHz gilt zusätzlich die Spannung an TPOINT 702, bei RF von 9.3625001 bis 1500MHz an TPOINT 701, beim SMT03 gelten ab 1500.0000001MHz die Spannungen an TPOINT 806, beim SMT06 ab 1500.0000001MHz die Spannungen am TP906.

Pegel	TPOINT 704	TPOINT 702	TPOINT 701	TPOINT 806/906
13 dBm	-3.00 V	1.69 V	1.43 V	3.00 V
8 dBm	-1.69 V	0.95 V	0.80 V	1.69 V
3 dBm	-0.95 V	0.53 V	0.45 V	0.95 V
-2dBm	-0.53 V	0.30 V	0.25 V	0.53 V
-7 dBm	-0.30 V	0.17 V	0.14 V	0.30 V

Werden die Tabellenwerte verfehlt, kann am TPOINT 703 zur weiteren Fehlereinkreisung der Pegel nach dem Modulator und den Tiefpassfiltern gemessen werden. Diese Messungen sollen bei Maximalpegel erfolgen.

6.3.2.1.5 A50 LF-Generator (Option)

Eine Funktionsprüfung kann am Messpunkt 1303 erfolgen.

- Im Menue LF OUTPUT/SOURCE/LFGEN2 STATE ON mit einem Pegel von 4V wählen, Frequenz und Kurvenform mit LFGEN2 FREQUENCY 0.2Hz und SHAPE SQUARE einstellen.
- Am TPOINT 1203 muss die Anzeige von -4 nach +4V wechseln.

Der angegebene Meßpunkt gilt für den LFGEN2. Für einen LFGEN1 ist der Meßpunkt 1203 und die SOURCE LFGEN1 zu wählen.

6.3.2.1.6 A5 Multifunktionsgenerator (Option)

Eine Funktionsprüfung kann am Messpunkt 1405 erfolgen.

- Im Menue LF OUTPUT/SOURCE/LFGEN2 STATE ON mit einem Pegel von 4V wählen, Frequenz und Kurvenform mit LFGEN2 FREQUENCY 0.2Hz und SHAPE SQUARE einstellen.
- Am TPOINT 1405 muss die Anzeige von -4 nach +4V wechseln.

6.3.3 Fehlersuche nach Fehlerart

Je nach Fehlerart wird im Folgenden die Reihenfolge der möglicherweise verursachenden Baugruppen nach dem Signalfuss aufgeführt.

6.3.3.1 Frequenzfehler

A71 Referenzoszillator OCXO (Option)
A7 Synthesizer
A10 Ausgangsteil 1.5GHz
A11 Ausgangsteil 3GHz (SMT03)

6.3.3.2 Pegelfehler

A7 Synthesizer
A10 Ausgangsteil 1.5GHz
A11 Ausgangsteil 3GHz (SMT03)
A4 Pulsmodulator (Option)
A15 Eichleitung

6.3.3.3 AM - Fehler

A10 Ausgangsteil 1.5GHz
A11 Ausgangsteil 3GHz (SMT03)
A50 LF-Generator (Option)
A5 Multifunktionsgenerator (Option)

6.3.3.4 FM/PhiM - Fehler

A7 Synthesizer
A50 LF-Generator (Option)
A5 Multifunktionsgenerator (Option)

6.3.3.5 Oberwellenpegel zu hoch

A10 Ausgangsteil 1.5GHz
A11 Ausgangsteil 3GHz (SMT03)

6.3.3.6 Mangelhafte spektrale Reinheit (SSB-Rauschen, Störhub)

A7 Synthesizer

6.4 Prüfen und Abgleich

Das Diagnoseprogramm im Servicekit SM-Z2 bietet die Ausführung aller internen Kalibrierungen an und unterstützt durch Bildschirmgrafik viele Abgleicharbeiten an den Baugruppen.

6.4.1 Kalibrierroutinen

Für den störungsfreien und datenhaltigen Betrieb des Gerätes sind gültige Kalibrierwerte für verschiedene Funktionen notwendig.

Kalibrierwerte, die vom Gerät selbstständig erzeugt werden können, werden im batteriegesicherten RAM des Rechners gehalten.

Werte, die nur mit externen Messmitteln zu ermitteln sind, werden in das Flash-EPROM geschrieben (Pegelkorrektur und Abstimmspannung des Referenzoszillators). Da das Flash-EPROM keine Löschung von einzelnen Daten zulässt, wird für jede Kalibration neuer Speicherplatz belegt.

Ist kein Speicherplatz mehr verfügbar, muss das EPROM von einer autorisierten Servicestelle gelöscht und neu beschrieben werden. Solche Kalibrationen sollten also nur dann durchgeführt werden, wenn Anlass dazu besteht.

6.4.1.1 Kalibrieren der Voreinstellung des Synthesizers

ACHTUNG !!

- Ohne eine gültige Kalibrierung der Voreinstellung ist es möglich, daß der Synthesizer nicht synchronisiert! Nach einem Abgleich oder Wechsel dieser Baugruppe muss diese Routine aufgerufen werden. Das Gerät soll dabei im warmgelaufenen Zustand sein, am besten bei der üblichen Betriebstemperatur.
- Diese Kalibration muss vor allen anderen erfolgen!
- Im Menue UTILITIES/CALIB/VCO SYN CALIBRATE aufrufen. Der Ablauf der Kalibration wird am Display angezeigt.

Die Kalibrierdaten werden im RAM abgelegt und können beliebig oft erneuert werden.

6.4.1.2 Kalibrieren der Pegelvoreinstellung (Level preset)

Durch die geräteindividuelle Pegelvoreinstellung wird erreicht, dass die Pegelregelung im optimalen Arbeitspunkt betrieben wird.

ACHTUNG !!

Bei fehlender oder fehlerhafter Kalibriertabelle werden die AM-Eigenschaften verschlechtert, im Extremfall kann die Pegelregelung schwingen.

Die Kalibration muss immer erfolgen, wenn der Rechner gewechselt oder Baugruppen ab einschließlich des Synthesizers repariert bzw. ausgetauscht worden sind. Die Frequenzerzeugung muss einwandfrei arbeiten, insbesondere muss der Synthesizer kalibriert sein (siehe 6.4.1.1). Das Gerät soll dabei im warmgelaufenen Zustand sein, am besten bei der üblichen Betriebstemperatur.

- Im Menue UTILITIES/CALIB/LEVEL PRESET CALIBRATE aufrufen. Der Ablauf der Kalibration wird am Display angezeigt sie dauert ca. 1 Minute.

Die Kalibrierdaten werden im RAM abgelegt und können beliebig oft erneuert werden.

6.4.1.3 Ausgangspegelkorrektur

Die Genauigkeit des Ausgangspegels wird durch eine Pegelkorrektur nach einer im Rechner gespeicherten Tabelle erreicht. Die Tabelle wird mit einem Messprogramm und einem geeichten Leistungsmessgerät erzeugt und in das EPROM des Rechners übertragen.

Diese Kalibration muss bei Austausch des Rechners und nach Tausch oder Reparaturen an Ausgangsteil 1.5GHz, Ausgangsteil 3GHz (SMT03), Pulsmodulator (Option) oder Eichleitung neu durchgeführt werden.

Folgende Geräte und Hilfsmittel werden benötigt:

- Steuerrechner nach 6.2 Pos. 1
- Geeichtetes Leistungsmessgerät nach 6.2 Pos. 2
- Programmdiskette nach 6.2 Pos. 3
- Kabelverbindung für die IEC-Bus-Fernsteuerung von SMT und Leistungsmessgerät herstellen.
- Verbindung für die serielle Schnittstelle RS232 herstellen.
- Auf dem Rechner muss R&S BASIC installiert sein.
- Das Laufwerk wählen, in dem die Programmdiskette eingelegt ist und den Befehl SMTKORR eingeben.

► Die Kalibrierung läuft dann automatisch ab.

6.4.1.4 Kalibration der FM

Für die korrekte Einstellung der FM ermittelt die Kalibration die Abstimmsteilheit der Ausgangsoszillatoren.

ACHTUNG !!

Bei fehlender oder fehlerhafter Kalibriertabelle werden die FM-Eigenschaften verschlechtert (Frequenzgang), im Extremfall kann es bei großen Hüben zu starken Verzerrungen kommen.

Die Kalibration muss immer erfolgen, wenn der Rechner gewechselt oder der Synthesizer repariert bzw. ausgetauscht worden sind. Die Frequenzerzeugung muss einwandfrei arbeiten, insbesondere muss der Synthesizer kalibriert sein (siehe 6.4.1.1). Desweiteren muß die Kalibration bei Temperaturänderungen >5grad und geforderter Datenhaltigkeit bei Stereobetrieb erneuert werden. Das Gerät soll dabei im warmgelaufenen Zustand sein, am besten bei der üblichen Betriebstemperatur.

- Im Menue UTILITIES/CALIB/FM CALIBRATE aufrufen. Der Ablauf der Kalibration wird am Display angezeigt, sie dauert ca. 30s.

Die Kalibrierdaten werden im RAM abgelegt und können beliebig oft erneuert werden.

6.4.1.5 Kalibrationen an Optionen

Bei Ausstattung mit Optionen werden weitere Kalibrationen nötig. Sie sind in Kapitel 1.3 Einbau der Optionen und 6.5 Einbau der Option B3/B8 Pulsmodulator beschrieben.

6.4.2 Abgleicharbeiten am Gesamtgerät

Wird ein Gerät aus Baugruppen zusammengestellt, die nach Kapitel 7 geprüft und abgeglichen sind, müssen nur die in 6.4.1 aufgeführten Kalibrationen durchgeführt werden.

6.4.3 Abgleicharbeiten bei Baugruppenwechsel

Wechsel der Baugruppe	Erforderliche Abgleicharbeiten
-----------------------	--------------------------------

A7 Synthesizer

Kap. 6.4.1.1 VCO SYN
 Kap. 6.4.1.2 LEVEL PRESET
 Kap. 6.4.1.4 FM.

A10 Ausgangsteil 1.5GHz

Kap. 6.4.1.2 LEVEL PRESET

A11 Ausgangsteil 3GHz(SMT03)

Kap. 6.4.1.3 Ausgangspegelkorrektur

Opt. SM-B3/B8 Pulsmodulator

A15 Eichleitung

6.5 Einbau der Option B3/B8/B9 Pulsmodulator

Für allgemeine Hinweise siehe Kapitel 6.6, Zerlegen und Zusammenbau und Kapitel 1.3 des Betriebshandbuches, Einbau der Optionen.

6.5.1 Option SM-B3, Pulsmodulator 1.5 GHz

Nach dem Öffnen des Gerätes und Lösen der Verriegelung wird die Baugruppe auf den Steckplatz A4 gesteckt. Das Festmantelkabel W108 (von OPUL zur Eichleitung) wird entfernt. Danach sind folgende HF-Verbindungen herzustellen:

Kabel	von	nach	Signal
W46	A10/X108	A4/X46	FOPU1
W48	A4/X48	A15/X2	FPUM
W47	Rückwand	A4/X47	PEXT

6.5.2 Option SM-B8/B9, Pulsmodulator 3/6 GHz

Nach dem Öffnen des Gerätes und Lösen der Verriegelung wird die Baugruppe auf den Steckplatz A4 gesteckt. Das Festmantelkabel W154 (von OPU3 zur Eichleitung) wird entfernt. Danach sind folgende HF-Verbindungen herzustellen:

Kabel	von	nach	Signal
W46	A11/X118	A4/X46	FOPU3/6
W48	A4/X48	A15/X2	FPUM
W47	Rückwand	A4/X47	PEXT

6.5.3 Einbau mit Option B4 Pulsgenerator

Wird die Option B4 Pulsgenerator mit eingebaut, so muss noch die 50MHz-Referenz verkabelt werden:

Nur Option SM-B4 Pulsgenerator:

Kabel	von	nach
W41	A7/X72	A4/X41

Optionen SM-B6 Multifunktionsgenerator und SM-B4 Pulsgenerator:

Kabel	von	nach
W172	A7/X72	A5/X53
W41	A5/X51	A4/X41

Nun können die Baugruppen verriegelt und das Gerät wieder komplettiert werden (s. Kap. 6.6).

6.5.4 Kalibrationen nach dem Einbau

Nach der in 1.3 beschriebenen Erneuerung der im RAM gespeicherten Kalibrationen:

- Im Menue UTILITIES/CALIB/PULSE GEN CALIBRATE aufrufen. Der Ablauf der Kalibration wird am Display angezeigt, sie dauert nur einige Sekunden.

Die Kalibrierdaten werden im RAM abgelegt und können beliebig oft erneuert werden.

Da sich die HF-Wege nach der Pegelmesstelle geändert haben, muss die Ausgangspegelkorrektur nach Kapitel 6.4.1.3. erneuert werden. Dabei werden neue Tabellen für den ausgeschalteten Pulsmodulator und für den ON-Zustand des Modulators angelegt, so dass der zusätzliche Pegelfehler minimal bleibt.

ACHTUNG !!!

Vor dem Zerlegen Gerät ausschalten und Netzkabel abziehen!

6.6.1 Abnehmen und Einbau der Beplankung

- Vier Schrauben in den Stellfüßen an der Rückwand lösen und die Stellfüße abnehmen.
- Die obere Beplankung kann nun nach hinten und oben abgehoben werden.
- Gerät wenden, dann kann die untere Beplankung ebenso abgenommen werden.

Vor dem Einbau der Beplankung zuerst prüfen, ob die Baugruppen verriegelt sind und dies ggf. nachholen.

- Gerät auf eine Seitenkante stellen und zuerst die untere Beplankung einsetzen. Dabei darauf achten, dass die Dichtungsschnüre richtig in ihren Nuten liegen.
- Gerät wieder waagerecht stellen und die obere Beplankung ebenso einsetzen.

Bei beiden Beplankungen darauf achten, dass die Führungsnasen an der Rückwand in die Aussparungen der Beplankungen rasten.

- Stellfüße wieder anschrauben

6.6.2 Aus- und Einbau einer steckbaren Baugruppe

- Beplankung abnehmen (6.6.1).
- Gerät auf eine Seitenkante stellen.

Vor dem Ausbau einer Baugruppe muss die gemeinsame Verriegelung der Baugruppen gelöst werden.

- Dazu müssen auf jeder Verriegelungsschiene die zwei Schrauben in den Langlöchern gelockert werden. Die betreffende Schiene kann dann mit einem Schraubenzieher (Normalschlitz) an den mit dem Schraubenziehersymbol gekennzeichneten Stellen nach vorne geschoben werden.
- HF-Kabel abziehen bzw. schrauben.
- Die Baugruppe kann nun herausgezogen werden.

Der Einbau geschieht sinngemäss in umgekehrter Reihenfolge.

6.6.3

Aus- und Einbau des Frontmoduls

- Vier Schrauben an den Ecken der Frontplatte herausdrehen.
- Frontmodul vorsichtig soweit herausnehmen, dass die Flachkabelstecker am Frontmodul abgezogen werden können.
- Verriegelung des grossen Flachkabelsteckers an der Vorderkante des Motherboards lösen und Stecker auch abziehen.
► Das Frontmodul kann jetzt entfernt werden.

Beim Einbau in umgekehrter Reihenfolge ist vor allem darauf zu achten, dass keine Flachbandkabel eingeklemmt werden.

6.6.4

Aus- und Einbau des Netzteils

- Vier Schrauben in den Stellfüßen an der Rückwand lösen und die Stellfüsse abnehmen.
- Sechs Schrauben (kenntlich an der Freifräzung ihrer Auflagefläche) am Rand des rechten Teilbleches der Rückwand und zwei auf der Trennstelle der beiden Rückwandbleche herausdrehen.
► Das Netzteil ist direkt an das Motherboard gesteckt und kann jetzt herausgezogen werden.

Der Einbau erfolgt sinngemäss in umgekehrter Reihenfolge.

Test and Measurement
Division

Service Manual

SIGNAL GENERATOR SMT

1039.2000.02/03/06

Volume 1
Service manual consists of 3 volumes

Printed in the Federal
Republic of Germany

Safety Instructions

This unit has been designed and tested according to the standards outlined overleaf and has left the manufacturer's premises in a state fully complying with the safety standards.

In order to maintain this state and to ensure safe operation, observe the following instructions, symbols and precautions.

- 1) When the unit is to be permanently cabled, first connect protective ground conductor before making any other connections.
- 2) Built-in units should only be operated when properly fitted into the system.
- 3) For permanently cabled units without built-in fuses, automatic switches or similar protective facilities, the AC supply line shall be fitted with fuses rated to the units.
- 4) Before switching on the unit ensure that the operating voltage set at the unit matches the line voltage.
If a different operating voltage is to be set, use a fuse with appropriate rating.
- 5) Units of protection class I with disconnectible AC supply cable and plug may only be operated from a power socket with protective ground contact.

The protective ground connection should not be made ineffective by an extension cable.

Any breaking of the protective ground conductor within or outside of the unit or loosening of the protective ground connection may cause the unit to become electrically hazardous.

The protective ground conductor shall not be interrupted intentionally.

- 6) Before opening the unit, isolate it from the AC supply.

Adjustment and replacement of parts as well as maintenance and repair should be carried out only by specialists approved by R & S..

Observe safety regulations and rules for the prevention of accidents.

Use only original parts for replacing parts relevant to safety (e.g. power on/off switches, power transformers or fuses).

- 7) Also observe the additional safety instructions specified in this manual.

Explanation of Symbols Used

- Read operating manual, observe the safety symbols used

- Caution, shock hazard

- Protective ground connection

- Unit ground

- Equipotentiality

- Ground

Contents

Volume 1

6 Repair Instruction

7 Testing and Repair of Modules

Front Module with Controller VAR 02.....	Register 1
Front Module with Controller VAR 04.....	Register 2
Synthesizer	Register 3

Volume 2

7 Testing and Repair of Modules

Output Module 1.5 GHz VAR 06	Register 1
Output Module 1.5 GHz VAR 10	Register 2
Output Module 3.0 GHz	Register 3
Output Module 6.0 GHz	Register 4

Volume 3

7 Testing and Repair of Modules

Attenuator 3 GHz	Register 1
Attenuator 6 GHz	Register 2
Option Reference Oscillator OCXO SM-B1	Register 3
Option LF-Generator SM-B2	Register 4
Option Pulse Modulator SM-B3/B8/B9	Register 5
Option Pulse Generator SM-B4.....	Register 6
Option Multifunction Generator SM-B6.....	Register 7
Power Supply.....	Register 8

Contents

6.	Repair Instructions.....	3
6.1.	List of Modules and Function Description of SMT.....	3
6.1.1.	A7 Synthesizer.....	4
6.1.1.1.	Reference Frequencies.....	4
6.1.1.2	Synthesizer.....	4
6.1.2.	A10 Output Unit 1.5 GHz.....	4
6.1.3	A11 Output Unit 3 GHz (SMT03).....	5
6.1.4	A11 Output Unit 6 GHz (SMT06).....	5
6.1.5	Option B3/B8/B9 Pulse Modulator.....	5
6.1.6	Option B4 Pulse Generator.....	5
6.1.7	Option B2 LF Generator.....	5
6.1.8	Option B6 Multifunction Generator.....	5
6.1.9	A15 Attenuator/Attenuator Control.....	6
6.2	Measuring Equipment and Accessories.....	6
6.3	Troubleshooting.....	6
6.3.1.	Built-in Auxiliary Devices, Service Kit.....	6
6.3.1.1	Self-test, Error Messages (ERROR).....	7
6.3.1.2.	Diagnosis.....	8
6.3.1.2.1.	List of Diagnostic Test Points.....	8
6.3.2.	Testing the Modules with the Built-in Diagnosis.....	11
6.3.2.1.	Troubleshooting with Respect to Modules.....	11
6.3.2.1.1.	A3 Front Module, Diagnostic Test.....	11
6.3.2.1.2.	A2 Power Supply.....	12
6.3.2.1.3.	A7 Synthesizer.....	12
6.3.2.1.4.	A10 Output Unit 1.5 GHz.....	13
6.3.2.1.5.	A50 LF Generator (Option).....	13
6.3.2.1.6.	A5 Multifunction Generator (Option).....	14
6.3.3.	Troubleshooting with Respect to Type of Error.....	14
6.3.3.1.	Frequency Error.....	14
6.3.3.2.	Level Error.....	14
6.3.3.3.	AM Error.....	14
6.3.3.4.	FM/PhiM Error.....	14
6.3.3.5.	Harmonics Level Too High.....	14
6.3.3.6.	Insufficient Spectral Purity (SSB Noise, Spurious Deviation).....	15
6.4.	Testing and Adjustment.....	15
6.4.1	Calibration Routines.....	15
6.4.1.1	Calibration of Synthesizer Presetting.....	15
6.4.1.2	Calibration of Level Preset	15
6.4.1.3.	Output Level Correction.....	16
6.4.1.4.	FM Calibration.....	16
6.4.1.5.	Calibrations of Options.....	17
6.4.2.	Adjustments of Complete Instrument.....	17
6.4.3.	Adjustments on Module Replacement.....	17
6.5	Fitting the Option B3/B8/B9 Pulse Modulator.....	17
6.5.1	Option SM-B3, Pulse Modulator 1.5 GHz.....	17
6.5.2	Option SM-B8/B9, Pulse Modulator 3/6 GHz.....	18
6.5.3.	Fitting Option B3/B8 with Option B4 Pulse Generator.....	18
6.5.4	Calibrations after Fitting the Option.....	18
6.6	Disassembly and Assembly.....	19
6.6.1	Replacing the Panelling.....	19
6.6.2	Replacing a Plug-in Module.....	19
6.6.3	Replacing the Front Module.....	20

6.6.4 Replacing the Power Supply..... 20

List of Mechanical Parts
Exploded View
Coding List
Power Cable List
Cross Reference List
Parts List
Coordinates List
Circuit Diagram
Layout Diagram

6. Repair Instructions

6.1. List of Modules and Function Description of SMT

Modules	German/English	Short form	Order number
A3	Fronteinheit/ Front Module	FRO	1035.5440
	Tastatur/Anzeige/ Keyboard/Display	KBDSP	
	CPU/ CPU Assembly	CPU	
	Peripherie/ Periphery Assembly	PERI	
	Drehgeber/ Knob Assembly	KNOB	
A7	Synthesizer / Synthesizer	TSYN	1039.2330
A10	Ausgangsteil 1.5GHz/ Output Unit 1.5 GHz NF-Teil/ AF-Part	OPU1	1038.7780
A11	Ausgangsteil 3 GHz/ Output Unit 3 GHz	OPU3	1038.8140
A11	Ausgangsteil 6 GHz/ Output Unit 6 GHz	OPU6	1038.8534
A15	Eichleitung/ Attenuator 3GHz	ATT3	1038.6948
A15	Eichleitung/ Attenuator 6GHz	ATT6	1008.7400
	Eichleitungssteuerung/ Attenuator Cont. Ass.	ATTC	
A1	Motherboard SMT/ Motherboard SMT	MBRDE	1039.2646
A2	Netzteil/ Power Supply	POWS1	1039.1304

Options

A71	SM-B1 Referenzoszillator OCXO/ Reference Oscillator OCXO	ROSC	1036.7599
A50	SM-B2 LF-Generator/ LF Generator	LFGEN	1036.7947
A5	SM-B6 Multifunktionsgenerator/ Multi Function Generator	MGEN	1036.7760
A4	SM-B3 Pulsmodulator 1.5 GHz/ Pulse Modulator 1.5 GHz	PUM1	1036.6340
A4	SM-B8 Pulsmodulator 3 GHz/ Pulse Modulator 3 GHz	PUM3	1036.6805
A4	SM-B9 Pulsmodulator 6 GHz/ Pulse Modulator 6 GHz	PUM6	1036.6370
A40	SM-B4 Pulsgenerator (in PUM)/ Pulse Generator	PGEN	1036.9310

For the following see function circuit diagram 1039.2000.01 S

The SMT synthesizes the octave 750 to 1500MHz. All other frequencies are derived by division, doubling or mixing. FM and PM

modulation are generated by modulation in the control loop and of the output oscillators.

The frequency extension by division and mixing is followed by the level conditioning, the optional doubler, the optional pulse modulation and the mechanical attenuator.

6.1.1. A7 Synthesizer

The TSYN module includes a synthesizer of 67.5 to 1500MHz that can be FM/PhiM modulated, a 10-MHz standard reference crystal and a 600MHz oscillator serving as LO for the mixer range of the output stage.

6.1.1.1. Reference Frequencies

As internal time base for the complete synthesis, a temperature-compensated 10-MHz crystal oscillator (TCXO) is used, which can be optionally replaced by an oven-controlled oscillator (OCXO).

The 600-MHz oscillator is made up of a ceramic resonator and locked to the 10-MHz reference by means of a PLL with a bandwidth of 300 Hz. The 50-MHz reference is obtained by tapping the divider chain.

6.1.1.2. Synthesizer

The single loop synthesizer uses a basic octave of 750 to 1500MHz. Other frequencies are generated by binary division. The output frequency is generated in a phase-locked loop with fractional divider factor. The actual divider is implemented as ECL gate array, a second CMOS gate array is used for control and digital compensation of the fractional divider spuriae.

FM/PhiM modulation is transmitted via two paths. With FM, the divider factor, thus the current center frequency is modulated in the first path after A/D conversion with a sigma-delta converter. In the second path, the oscillator is directly modulated. A calibration routine is used to determine the required tuning rate of the oscillators.

With PhiM, in the first path the phase modulation is fed into the PLL following the phase detector. In the second path, the oscillator is directly modulated after differentiation.

6.1.2. A10 Output Unit 1.5 GHz

The output unit receives the synthesized, FM/PhiM modulated signal in the frequency range 67.5 to 1500 MHz from the synthesizer.

In order to achieve optimal AM characteristics, a level preset is provided, which corrects internal frequency response variations and manufacturing tolerances according to an individual table stored in the computer to such an extent that the control loop for level and AM is always operated in its optimal operating point.

This is followed by a set of lowpass filters, the frequency extension by down-conversion with the 600-MHz signal from the module Synthesizer and the output amplifier.

The rectifier is followed by a 50-ohm series resistor which restores the correct output impedance. The level frequency response is improved by a software level correction (calibration using an accurate power meter).

6.1.3 A11 Output Unit 3 GHz (SMT03)

The 3-GHz output unit generates the octave 1500 to 3000 MHz by frequency doubling. 3 bandpass filters suppress harmonics and subharmonics, a power amplifier with its own detector is responsible for the output level in this octave. Signals up to 1500 MHz are through-connected.

6.1.4 A11 Output Unit 6 GHz (SMT06)

The 6-GHz output unit generates the octave 1500 to 3000 MHz by frequency doubling. 3 bandpass filters suppress harmonics and subharmonics. The frequency range 3000 to 6000 MHz is created by a repeated frequency doubling. 3 additional bandpass filter suppress the subharmonics. A broadband power amplifier with its own detector is responsible for the output level at frequencies > 1500 MHz. Signals up to 1500 MHz are through-connected.

6.1.5 Option B3/B8/B9 Pulse Modulator

In order to provide all types of modulation at the same time, the optional pulse modulator is connected into the signal path after the output unit. If it is not used, it is bypassed by means of coaxial relays.

6.1.6 Option B4 Pulse Generator

The optional pulse generator is implemented by means of a gate array. It can generate single and double pulses with settable delay times. A video and a synchronization output are provided for monitoring purposes.

6.1.7 Option B2 LF Generator

The LF generator operates on the basis of digital synthesis and can generate the waveforms sine, triangle and square. With sinewave, the frequency range extends to 500 kHz, otherwise to 50 kHz. Besides, a noise signal with a bandwidth of 500 kHz can be produced.

6.1.8 Option B6 Multifunction Generator

The multifunction generator is based on a digital signal processor (DSP) and is thus able to generate even complex signals. Two output paths are provided, a fast one with a bandwidth of 1 MHz,

which provides simple signals only (sine, triangle, square) and a slow one, which can also generate complex waveforms (VOR/ILS, stereo).

6.1.9 A15 Attenuator/Attenuator Control

The mechanical attenuator expands the settable level range by 135 dB. For SMT02 and SMT03 an overvoltage protection for DC and AC voltage is integrated, protecting the output against externally applied voltages. It consists of a detector, a limiter and a mechanical disconnecting switch, which is directly actuated by the attenuator control. This disconnecting switch is set to open position even when the instrument is switched off. The SMT06 doesn't have an overload protection (detector and limiter). The disconnecting switch is only set to open position when the [RF ON/OFF] key setting is OFF.

6.2 Measuring Equipment and Accessories

Item 1

- Controller according to industry standard PC/XT/AT with remote control interface IEC-625/IEEE488 and serial interface RS232, connecting cable for RS232 and IEC bus

R&S PSA15P1 (1008.2009.02)

Item 2

- Program floppy disk, included in Service Kit SM-Z22

Item 3

- RF power meter, 5 kHz to 1.5 (3) GHz

R&S NRVS (1020.1809.02) with measuring head NRV-Z51 (857.9004.02)

Item 4

- RF spectrum analyzer

R&S FSB (848.0020.52)

Item 5

- RF signal generator

R&S SMT02 (1039.2000.02)

6.3 Troubleshooting

6.3.1. Built-in Auxiliary Devices, Service Kit

For self-monitoring and servicing purposes, internal test points are provided on all modules. The most important ones release an internal alarm via comparators when limit values are exceeded; all of them can be measured via multiplexer and an A/D converter on the computer board.

All control voltages (also provided with alarm comparators) and the output levels can be internally measured on every module. In addition, test points are provided to support adjustments and enable measurements at places where an external measurement would cause problems (eg RF level in the module at interfaces to submodules).

The Service Kit SM-Z2 includes an extension board and extension cable allowing to bring the boards into an easily accessible service position. SM-Z2 provides furthermore a floppy disk containing a diagnostic program in R&S BASIC. It offers a wide range of module tests, charts and adjustment routines facilitating troubleshooting and elimination of the faults.

6.3.1.1 Self-test, Error Messages (ERROR)

If the control voltage exceeds the permissible range in a control loop, an alarm is released on the computer, which is indicated in the status line of the display. It may be caused by missing calibrations, wrong operation, exceeding of the specified parameters (above all in the case of the leleveland AM- and FM-modulation) or internal faults.

The faults should be eliminated in the sequence given below, since the faults listed further down may result from faults above.

Message in the display

Fault, possible causes

222 Synthesizer loop unlocked

The control loop of the output oscillators, the 600-MHz oscillator or of the 10-MHz VTCXO on the module Synthesizer (A7) is asynchronous (all 3 interrupts are ORed to an interrupt, the diagnosis allows the determination of the asynchronous PLL, see 6.3.1.2.1).

External reference selected, but not connected, wrong frequency of the external reference selected, external reference not in the permissible lock-in range.

RF cable of optional reference (SM-B1) not connected.

Missing or faulty calibration of preset voltage (see 6.4.1.1).

Hardware error.

110 Output unleveled; ALC Failure

The automatic level control on the module Output Unit (A10) is disturbed.

Level is outside the specified range.

Overload with AM-EXT-DC.

Missing or faulty calibration (see 6.4.1.2), eg after module replacement or at extreme temperatures.

Hardware error.

6.3.1.2. Diagnosis

Since the voltage range of the multiplexers is limited to ± 5 V, voltage dividers are required at many test points. However, the original voltage is to be indicated in the display so that every test point has its associated scaling factor. The full measured value before the voltage divider is displayed.

For further fault location, the following test points can be selected, the specified voltages are approximate values for properly functioning instruments. They are indicated on the display and can also be read out by a controller via the IEC-625/IEE488 interface.

6.3.1.2.1. List of Diagnostic Test Points

The table contains the voltages which may occur in a properly working instrument. An F for a test point means that the values apply only with the function activated, an X in the column IR means that the test point releases an alarm. Tf is the divider factor before the multiplexer.

Mod- ule	Addr	Test point	I R	min. V	max. V	Tf
CPU	0	Reference 1 kohm		0	50m	1
	1	Input DIAG-15		-15	15	"
	2	Input DIAG-5		-5	5	"
	3	X-voltage		0	10	"
	4	Voltmeter		-15	15	"
	5	Program. volt. FLASH		4.5	5.5	"
	6	Reference volt. X-D		4.9	5.1	"
	7	Battery voltage		2.2	3.7	"

Module	Addr	Test point	I R	min. V	max. V	Tf
ROSC	100	Reference 10 kohms	X	-10m	10m	1
	101	Bridge volt. thermostat*		5.6	6.4	3
	102	Level output		0.6	2.5	1
	103	free				
	104	"				
	105	"				
	106	"				
	107	"				

Module	Addr	Test point	I R	min. V	max. V	Tf
TSYN	400	Reference 10 kohms	X	-10m	10m	1
	401	Tun. volt. VTCXO 10 MHz		0	5	3
	402	Level reference 10MHz		1.5	4	1
	403	Level VCO 600MHz		50m	300m	1
	404	Tun. volt. VCO 600MHz		2	20	5
	405	Output level REF600		100m	500m	1
	406	Output level REF50		0.4	2	1
	407	Level VCO FSYN		10m	150m	1
	408	Output level FSYN		40m	400m	1
	409	Output volt. PI contr.		-5	5	3
	410	Level 1-kHz detector		-10m	150m	3
	411	Tun. volt. VCO FSYN		2	20	5
	412	Supply +10 V		9.7	10.3	3
	413	Voltage FM1+FM2		-12	12	3
	414	Output volt. FM-DC contr.		0.5	4.5	1

Module	Addr	Test point	I R	min. V	max. V	Tf
OPU1	700	Reference 10 kohms	F	-10m	10m	1
	701	Detector volt. output		0	3.4	3
	702	Detector volt. mixer		0	2.9	3
	703	Level after filter		0	2.7	1
	704	Level D/A converter		-6	0	3
	705	Outp. volt. contr. amp.		-1	9	3
	706	Control volt. modulator		-1	12	3
	707	Level preset D/A convert.		0	12	3

Module	Addr	Test point	I R	min. V	max. V	Tf
OPU3	800	Reference 10 kohms	F	-10m	10m	1
	801	Modulator input level		10m	200m	1
	802	Control volt. modulator		-1	12	5
	803	Driver output level		20m	400m	1
	804	Drain volt. driver 1		8.0	10.8	4
	805	Drain volt. driver 2		8.0	10.8	4
	806	Detector voltage		50m	4	4
	807	Reserve 10 kohms		-10m	10m	1

Mod- ule	Addr	Test point	I R	min. V	max. V	Tf
OPU6	900	Reference 10 kohms		-10m	10m	1
	901	RF ampl. 1 RF level		10m	200m	1
	902	Control volt. modulator F		-1	12	5
	903	RF ampl. 4 RF level		20m	400m	1
	904	RF ampl. 5 gate voltage		-5.0	-3.0	3
	905	RF ampl. 5 drain voltage		7.0	7.5	3
	906	Detector voltage F		50m	4	4
	907	RF ampl. 9 drain voltage		3.8	4.2	3

Mod- ule	Addr	Test point	I R	min. V	max. V	Tf
PGEN	1000	Reference		-10m	10m	1
	1001	Supply 4.5V		4.3	4.6	2
	1002	Supply -5V		-5.3	-4.8	3
	1003	Reference frequency		0.7	1.2	1
	1004	VIDEO		0	5.2	2
	1005	SYNCHRO		0	5.2	2
	1006					
	1007					

Mod- ule	Addr	Test point	I R	min. V	max. V	Tf
ATTC	1100	Output level (not SMT06)		-5	-3	1

Mod- ule	Adr.	Test point	I R	min. V	max. V	Tf
LFGEN 1	1200	Reference 10kohms		-10m	10m	1
	1201	Level crystal oscillator		1.0	5.0	2
	1202	Output INT2 F		-1.1	1.1	4
	1203	Output LFOUT F		-4.1	4.1	4
	1204	Supply +5VA		4.8	5.2	2
	1205	Supply +5VDDS		4.8	5.2	2
	1206	Supply VA15-P		14.4	15.6	4
	1207	Supply VA15-N		-15.6	-14.4	4

Mod- ule	Adr.	Test point	I R	min. V	max. V	Tf
LFGEN 2	1300 1301 1302 1303 1304 1305 1306 1307	same as LFGEN1		same as LFGEN1		

Mod- ule	Addr	Test point	I R	min. V	max. V	Tf
MGEN	1400 1401 1402 1403 1404 1405 1406 1407	Reference 10 kohms Output DAC1 (12 bit) Output DAC2 (16 bit) Output INT2 LFOUT select switch Output LFOUT EXT1 A/D converter input EXT2 A/D converter input		-10m -1 -3 -1 -1 -4 -1 -1	10m 1 3 1 1 4 1 1	1 1 1 1 1 4 1 1

* only VAR 06

6.3.2. Testing the Modules with the Built-in Diagnosis

The diagnosis is activated in the menu UTILITIES/DIAG/TPOINT/STATE with ON. TPOINT permits to select the desired test point via rotary knob or keyboard.

6.3.2.1. Troubleshooting with Respect to Modules

Before performing the specified settings on the SMT, the instrument should be set to a defined initial status by means of PRESET. Diagnostic test points which are not referred to in the following must lie inside the given limits irrespective of the settings.

The majority of the tests described below and many others are offered in the diagnostic program of Service Kit SM-Z2. The program provides in addition a complete test, checking all modules in the order of the signal flow. The faults are therefore listed in the order they should be repaired in order to avoid searching needlessly for sequential faults.

6.3.2.1.1. A3 Front Module, Diagnostic Test

If the instrument does not respond to inputs via rotary knob or keyboard although the displays show readings, first check whether the instrument is disabled by the remote control (IEC/IEEE bus) or whether a key got stuck. If this is not the case, see service instructions for the modules A3.

Test points 0 to 7 are to be found on the computer. Test point 0 is applied to digital ground, measuring the voltage drop of this ground with respect to the analog ground. Test point 2 is not used with the SMT. Test point 3 indicates the input voltage of the diagnostic A/D converter.

- For testing the diagnosis, select TPOINT 3 and apply a voltage V of $-5 \text{ V} < V < +5 \text{ V}$ to pin 19 of the motherboard plug of a module.
- The voltage applied to pin 19 must be read out on the display. The deviation must be $< 1 \% \pm 50\text{mV}$.

Test point 4 is situated inside the computer.

Test point 6 measures the voltage for the output socket X-AXIS at the rear.

- Set any sweep with approx. 100 steps on the SMT. Vary from the lower to the upper sweep limit in the operating mode MAN and observe the indicated voltage.
- It must vary from 0 to 10 V proportionally to the sweep steps.

Test point 7 measures the voltage of the battery supplying the non-volatile memories (RAM). If the voltage falls below 3 V, the data will no longer remain saved after switching off.

6.3.2.1.2. A2 Power Supply

The power supply features an independent self-monitoring facility, switching to standby mode in the case of overload or internal disturbances (LED on the front panel).

6.3.2.1.3. A7 Synthesizer

The function of the control loop of the 10-MHz VTCXO can be checked as follows:

- Switch to external reference in the menu UTILITIES/REF OSC/SOURCE EXT. Using the signal generator, feed 10 MHz, 0 dBm into the rear-panel BNC socket REF, vary the frequency around $\pm 30\text{Hz}$.
- The voltage at TPOINT 401 must lie between 0.5 to 4.5 V.

Correct synchronization of the three output oscillators can be tested as follows:

- Vary the carrier frequency (unmodulated) from 750.0000001 to 1000MHz, 1000.0000001 to 1250MHz and 1250.0000001 to 1500MHz on the SMT. Thus, the complete tuning range of the three oscillators is covered.
- The voltage at TPOINT 411 must continuously increase from 2.7 ± 0.5 to 19 ± 2 V in each of the tuning ranges. It must not exceed ± 1 V at test point 409. If the voltage exceeds this

- limit, the calibration of the preset voltage might be faulty (see 6.4.1.1).
- With the option SM-B2 LF Generator or SM-B6 fitted, the FM signal flow in the modulation attenuator can be traced.

- Select for RF 1000 MHz in the menu **MODULATION/FM/FM2 SOURCE LFGEN2/DEVIATION** 10kHz and 0.2 Hz for **LFGEN2 FREQUENCY, SHAPE SQUARE**.
- The readout at TPOINT 414 is to vary between approx. +5 V and -5 V.

The function of the FMDC control can be checked in the same way:

- The readout at TPOINT 415 is to vary between approx. +1.8 V and 3.2 V.

6.3.2.1.4. A10 Output Unit 1.5 GHz

Testing the level control

- Set RF 5 MHz, unmodulated, level 13 dBm on the SMT. Select the function **ATT FIXED** in the menu **LEVEL**. Select **OFF** in the menu **UTILITIES/CALIB/LEVEL/STATE**.
- The voltages ($\pm 10\% \pm 0.05$ V) given in the following table must be measured.

The voltages at TPOINT 704 apply to all frequencies.

At an RF up to 9.3625 MHz, the voltage at TPOINT 702 additionally applies, at an RF of 9.3625001 to 1500MHz the voltage at TPOINT 701, in the case of the SMT03 the voltages at TPOINT 806 apply above 1500.0000001 MHz.

Level	TPOINT 704	TPOINT 702	TPOINT 701	TPOINT 806/906
13 dBm	-3.00 V	1.69 V	1.43 V	3.00 V
8 dBm	-1.69 V	0.95 V	0.80 V	1.69 V
3 dBm	-0.95 V	0.53 V	0.45 V	0.95 V
-2dBm	-0.53 V	0.30 V	0.25 V	0.53 V
-7 dBm	-0.30 V	0.17 V	0.14 V	0.30 V

If the table values are not met, the level after the modulator and the lowpass filters can be measured at TPOINT 703 for further fault location. These measurements are to be made with maximum level.

6.3.2.1.5. A50 LF Generator (Option)

The function can be checked at test point 1303.

- Select in the menu **LF OUTPUT/SOURCE/LFGEN2/STATE ON** with a level of 4 V , frequency and shape with **LFGEN2 FREQUENCY 0.2Hz, SHAPE SQUARE**.
- The readout must change from -4 to +4 V at TPOINT 1303.

The test point stated above applies to LFGEN2. For LFGEN1 select test point 1203 and SOURCE LFGEN1.

6.3.2.1.6. A5 Multifunction Generator (Option)

The function can be checked at test point 1405.

- Select LFGEN2, STATE ON in the menu LF OUTPUT/SOURCE with a level of 4 V , frequency and shape with LFGEN2 FREQUENCY 0.2Hz, SHAPE SQUARE.
- The readout must change from -4 to +4 V at TPOINT 1405.

6.3.3. Troubleshooting with Respect to Type of Error

Depending on the type of error, the sequence of the modules that may have caused the fault is listed in the following according to the signal flow.

6.3.3.1. Frequency Error

A71 Reference oscillator OCXO (option)
A7 Synthesizer
A10 Output unit 1.5 GHz
A11 Output unit 3 GHz (SMT03)

6.3.3.2. Level Error

A7 Synthesizer
A10 Output unit 1.5 GHz
A11 Output unit 3 GHz (SMT03)
A4 Pulse modulator (option)
A15 Attenuator

6.3.3.3. AM Error

A10 Output unit 1.5 GHz
A11 Output unit 3 GHz (SMT03)
A50 LF generator (option)
A5 Multifunction generator (option)

6.3.3.4. FM/PhiM Error

A7 Synthesizer
A50 LF generator (option)
A5 Multifunction generator (option)

6.3.3.5. Harmonics Level Too High

A10 Output unit 1.5 GHz
A11 Output unit 3 GHz (SMT03)

6.3.3.6. Insufficient Spectral Purity (SSB Noise, Spurious Deviation)

A7 Synthesizer

6.4. Testing and Adjustment

The diagnostic program in the Service Kit SM-Z2 allows the execution of all internal calibrations and supports many adjustment works on modules through screen graphics.

6.4.1 Calibration Routines

For troublefree and safe operation of the instrument, valid calibration values are required for various functions.

Calibration values which can be generated by the instrument itself are kept in the battery-backed RAM of the computer.

Values which can only be determined using external measuring equipment are written into the flash EPROM (level correction and tuning voltage of reference oscillator). Since the flash EPROM does not permit single data to be deleted, new memory space is used for each calibration.

If no more memory area is available, the EPROM must be cleared at an authorized service center and newly written to. Calibrations of this kind should only be performed if required.

6.4.1.1 Calibration of Synthesizer Presetting

CAUTION !!

- The synthesizer may not synchronize without valid calibration of the presetting! This routine must be called up after an adjustment or replacement of the Synthesizer module. The instrument should have warmed up, if possible, to normal operating temperature.
- This calibration must be performed first!
- Activate **CALIBRATE** in the menu **UTILITIES/CALIB/VCO SYN**. The beginning and the end of calibration are indicated on the display.

The calibration data are stored in the RAM and can be updated as often as desired.

6.4.1.2 Calibration of Level Preset

The individual level preset of the instrument permits the level control to be operated in its optimal operating point.

CAUTION !!

If the calibration table is missing or faulty, the AM characteristics become worse, in the extreme case the level control may oscillate.

The calibration must always be performed when the computer has been replaced or modules starting from the synthesizer have been repaired or replaced. The frequency generation must work properly, the synthesizer, in particular, must be calibrated (see 6.4.1.1). The instrument should have warmed up, if possible, to normal operating temperature.

- Activate CALIBRATE in the menu UTILITIES/CALIB/LEVEL PRESET. The beginning and the end of calibration are indicated on the display. The calibration takes approx. 1 minute.

The calibration data are stored in the RAM and can be updated as often as desired.

6.4.1.3. Output Level Correction

The accuracy of the output level is obtained by means of a level correction according to a table stored in the computer. The table is generated using a test program and a calibrated power meter and transferred into the EPROM of the computer.

This calibration must be repeated after replacement of the computer and after replacement or repair of output unit 1.5 GHz, output unit 3 GHz (SMT03), pulse modulator (option) or attenuator.

The following instruments and auxiliary equipment are required:

- Controller according to 6.2 item 1
- Calibrated power meter according to 6.2 item 2
- Program floppy disk according to 6.2 item 3
- Establish cable connection for the IEC-bus remote control of SMT and power meter.
- Establish connection for the serial interface RS232.
- R&S BASIC must be installed on the computer.
- Select the drive where the program floppy disk is inserted and enter the SMTKORR command.
- The calibration is performed automatically.

6.4.1.4. FM Calibration

To allow for correct FM setting, the calibration determines the tuning rate of the output oscillators.

CAUTION !!

If the calibration table is missing or faulty, the FM characteristics (frequency response) become worse, in the extreme case high deviations may result in serious distortions.

The calibration must always be performed when the computer has been replaced or the synthesizer has been repaired or replaced. The frequency generation must work properly, the synthesizer, in particular, must be calibrated (see 6.4.1.1). The calibration must be updated in the case of temperature changes of $> 5^\circ \text{C}$ and when it is required that the instrument complies with the specifications in stereo mode. The instrument should have warmed up, if possible, to normal operating temperature.

- Activate **CALIBRATE** in the menu **UTILITIES/CALIB/FM**. The beginning and the end of calibration is indicated on the display. The calibration takes approx. 30s.

The calibration data are stored in the **RAM** and can be updated as often as desired.

6.4.1.5. Calibrations of Options

Further calibrations are required when options are fitted. Refer to Section 1.3 Fitting the Options and 6.5 Fitting the Option B3/B8 Pulse Modulator.

6.4.2. Adjustments of Complete Instrument

If the instrument is made up of modules which are tested and adjusted according to Section 7, only the calibrations listed in 6.4.1 need be performed.

6.4.3. Adjustments on Module Replacement

Replacement of module	Required adjustments
-----------------------	----------------------

A7 Synthesizer	Section 6.4.1.1 VCO SYN Section 6.4.1.2 LEVEL PRESET Section 6.4.1.4 FM.
----------------	--

A10 Output Unit 1.5GHz A11 Output Unit 3GHz (SMT03) Opt. SM-B3/B8 Pulse Mod.	Section 6.4.1.2 LEVEL PRESET Section 6.4.1.3 Output Level Correction
--	---

A15 Attenuator	
----------------	--

6.5 Fitting the Option B3/B8/B9 Pulse Modulator

For general information, see Section 6.6, Disassembly and Assembly and Section 1.3 in the operating manual, Fitting the Options.

6.5.1 Option SM-B3, Pulse Modulator 1.5 GHz

After opening the instrument and loosening the lock, plug the module into slot A4. Remove the solid-jacket cable W108 (from OPU1 to attenuator). Establish the following RF connections:

Cable	from	to	Signal
W46	A10/X108	A4/X46	FOPU1
W48	A4/X48	A15/X2	FPUM
W47	rear panel	A4/X47	PEXT

6.5.2 Option SM-B8/B9, Pulse Modulator 3/6 GHz

After opening the instrument and loosening the lock, plug the module into slot A4. Remove the solid-jacket cable W154 (from OPU3 to attenuator). Establish the following RF connections:

Cable	from	to	Signal
W46	A11/X118	A4/X46	FOPU3/6
W48	A4/X48	A15/X2	FPUM
W47	rear panel	A4/X47	PEXT

6.5.3. Fitting Option B3/B8 with Option B4 Pulse Generator

If the option B3/B8 is fitted together with option B4 pulse generator, the 50MHz reference must also be connected:

Only option SM-B4 pulse generator:

Cable	from	to
W41	A7/X72	A4/X41

Options SM-B6 Multifunction generator and SM-B4 pulse generator:

Cable	from	to
W172	A7/X72	A5/X53
W41	A5/X51	A4/X41

The modules can now be locked and the instrument reassembled (see Section 6.6).

6.5.4 Calibrations after Fitting the Option

Following the update of the calibrations stored in the RAM as described in 1.3, proceed as follows:

- Activate **CALIBRATE** in the menu **UTILITIES/CALIB/PULSE GEN.** The beginning and the end of the calibration is indicated on the display. The calibration takes only a few seconds.

The calibration data are stored in the RAM and can be updated as often as desired.

Since the RF paths after the level measurement point have changed, the output level correction must be updated according to Section 6.4.1.3. New tables for the switched-off pulse modulator and for the modulator in ON status are created, keeping the additional level error at a minimum.

6.6 Disassembly and Assembly

CAUTION !!!

Switch off the instrument and pull the power plug prior to disassembly!

6.6.1 Replacing the Panelling

- Loosen four screws in the rear-panel feet and remove the feet.
- The upper panelling can then be lifted towards the rear and the top.
- Place the instrument upside down in order to remove the lower panelling.

Before fitting the panelling first check whether the modules are locked and lock them, if necessary.

- Place the instrument onto a side edge and insert the lower panelling first. Make sure that the sealing cords are correctly placed in their grooves.
- Place the instrument in the horizontal position and insert the upper panelling.

Make sure with both panellings that the guide lugs on the rear panel engage with the grooves of the panellings.

- Fasten the feet with screws.

6.6.2 Replacing a Plug-in Module

- Remove panelling (6.6.1).
- Place the instrument onto a side edge.

Before removing a module, the common lock of the modules must be loosened.

- For this purpose, loosen the two screws in the elongated holes on every locking rail. The rail in question can then be pushed to the front using a screw-driver (slotted-type) at the points marked by the screw-driver symbol.
- Take off or unscrew the RF cables.
- The module can then be pulled out.

For fitting the plug-in module proceed in the reverse order.

6.6.3 Replacing the Front Module

- Unscrew four screws at the corners of the front panel.
- Carefully take out the front module until the flat cable connectors can be removed from the front module.
- Loosen the lock of the large flat cable plug at the front edge of the motherboard and pull off the plug.
- ▶ The front module can then be removed.

When fitting the module in the reverse order make sure that no flat cables get stuck.

6.6.4 Replacing the Power Supply

- Loosen four screws in the feet on the rear panel and take off the feet.
- Unscrew six screws (marked by milling of their contact surface) at the edge of the right-hand sheet of the rear panel and two screws on the joint of the two rear panel sheets.
- ▶ The power supply is directly plugged to the motherboard and can then be removed.

For fitting the power supply, proceed in the reverse order.

**Liste mechanischer Teile
Bilder und Erklärung zur
Liste mechanischer Teile**

**List of mechanical parts
Figures and explanation pertaining to
list of mechanical parts**

**Liste des pièces mécaniques
Figures et définitions
pour la liste des pièces mécaniques**

Liste mechanischer Teile

Der SMT ist in **R&S-Kompaktbauweise 90**
aufgebaut.

Gehäusegröße:
4 E, 1 / 1 , T 350

Maße über alles:
435 x 192 x 350 (B x H x T)

Ergänzungen:
19"-Adapter ZZA
Tragegriff, Nachrüstsatz
(falls ein zweiter Tragegriff gewünscht
wird)

List of mechanical parts

The SMT is designed in accordance with the
R&S design 90.

Cabinet size:
4 E, 1 / 1 , T 350

Overall dimensions:
435 x 192 x 350 (width x height x depth)

Accessories:
19"-Adapter ZZA
Carrying handle, retrofit set
(if a second carrying handle is desired)

Lfd. Nr.	Kenn- zeichen	Menge	Benennung/Beschreibung	Sachnummer
No	Unit/ Comp.No	Qty	Designation	Stock No.
1		1	Haube, oben 4 E, 1 / 1 , T 350 Cover, top	1012.4454
2		1	Haube, unten 4 E, 1 / 1 , T 350 Cover, bottom	396.7904
3		1	Führungsschiene, rechts Guide rail, right	—
4		1	Führungsschiene, links Guide rail, left	—
5		1	Bedienhinweiskarte 1 User guide card 1	—
6		1	Bedienhinweiskarte 2 User guide card 2	—
7		1	Bedienhinweiskarte 3 User guide card 3	—
8		2	Gerätefuß, vorne Instrument foot, front	396.4534
9		2	Aufstellfuß, unten Foot, bottom	396.4540
11		2	Gerätefuß, hinten Instrument foot, rear	396.4586
12		8	Zapfen Pin	396.4634
15		2	Seitenleiste T 350 Side strip	396.3073

Lfd. Nr.	Kenn- zeichen	Menge	Benennung/Beschreibung	Sachnummer
No	Unit/ Comp.No	Qty	Designation	Stock No.
16		4	M3 x 6 DIN965 A4	081.9378
17		1	Rückwandfuß, links 4 E Rear-panel foot, left	396.4363
18		1	Rückwandfuß, rechts 4 E Rear-panel foot, right	396.4157
19		4	Ansatzschr. M4 K.D 7985 Screw	396.4492
21		1	Tragegriff T 350 Carrying handle	396.3215
22		2	Griffbuchse Washer	396.3367
23		2	M4 x 10 DIN965 A4	081.9478
24		2	Abdeckung, Griffseite Cover, handle side	396.3350
25		2	Abdeckung, Leerseite Cover, blank side	396.3344
30		1	Frontrahmen 4 E 1 / 1 Front frame	396.2131
31		4	Seitenfuß Side foot	396.4692
32		2	Stapelnutabdeckung Cover for groove	396.4711
33		2	Frontgriff Front grip	—
34		4	M4 x 8 DIN965	396.1087
35		1	Rückrahmen 4 E 1 / 1 Rear frame	396.2277
36		4	Rahmenschiene T 350 Frame rail	396.2360
37		16	M3 x 8 DIN965 A4	081.9384
40		1.17 M	HF-Dichtschnur O-Prof. 2,7 SI RF seal	396.0916
41		3.22 M	WG HF-Dicht. O-Prof. 2,0 SI RF seal	396.1035

**Schlüsselliste
für Bauteile-Sachnummern**

**Code list
for component stock nos.**

**Liste des références
des composants**

R&S-Schlüsselliste

R&S key list

Liste des symboles de référence R&S

Die R&S-Schaltteillisten nennen in der Spalte "Benennung/Beschreibung" die technischen Daten der Bauelemente in Kurzform. Die Art des Bauelements (z.B. Schicht-, Draht-Widerstand usw.) beschreiben die 2 Kennbuchstaben vor der "Benennung" (evtl. auch vor der "Sachnummer"), die nachfolgend erklärt werden. In Ersatzteil-Bestellungen an R&S ist stets die Angabe der vollständigen Sachnummer erforderlich.

The R&S Parts Lists give the technical data of the components in short form in the column "Benennung/Beschreibung" (designation). The type of component (e.g. depos.-carbon resistor, wire-wound resistor etc.) is indicated by 2 identification letters before the designation, possibly also before the "Sachnummer" (order number), which are explained below. When ordering spare parts from R&S, the complete order number must always be specified.

La colonne «Désignation/description» des listes de pièces de R&S indique les caractéristiques des éléments sous forme abrégée. Le type d'élément (p.ex. résistance à couche, résistance bobinée etc. ...) est décrit par les deux lettres précédant la désignation (et éventuellement le numéro de référence), dont voici l'explication. Prière d'indiquer le numéro de référence («Sachnummer») complet dans toute commande de pièces de rechange.

Teile-familie	Art des Bauelementes	Parts family	Type of component	Familie	Type d'élément
A Aktive Bauelemente, Halbleiter		A Active components, semiconductors		A Composants actifs, semiconducteurs	
AD Universaldiode, z.B. Gleichrichter, Sperrdiode	AD General-purpose diode, e.g. rectifier, high-resistance diode	AD Diode d'usage général, p.ex. redresseur, diode à haute résistance			
AE Spezialdiode, z.B. Tunnel-, Kapazitäts-, Zener-Diode	AE Diode (special), e.g. tunnel diode, varactor, Zener diode	AE Diode spéciale, p.ex. diode tunnel, varactor, diode Zener			
AF Fotohalbleiter, z.B. Foto-Diode, -Transistor, -Widerstand, Leuchtdiode	AF Photo-semiconductor, e.g. resistor, diode, transistor, LED	AF Semiconducteur photoélectrique, p.ex. diode, transistor, résistance photoél., DEL			
AG Leistungs-Gleichrichter, z.B. Thyristor, Triac, Selengleichrichter	AG Power rectifier, e.g. thyristor, triac, selenium rectifier	AG Redresseur de puissance, p.ex. thyristor, triac, redresseur, au sélénium			
AK Kleinsignal-Transistor	AK Small-signal transistor	AK Transistor faible puissance			
AL Leistungs-Transistor	AL High-power transistor	AL Transistor grande puissance			
AM Spezial-Transistor, z.B. FET, MOSFET	AM Transistor (special), e.g. FET, MOS-FET	AM Transistor spécial, p.ex. TEC, MOSTEC			
AP Peltier-, Hall-Element	AP Peltier element, Hall element	AP Element Peltier, élément Hall			
AR Röhre für Empfänger, Verstärker, Gleichrichter	AR Valve for receiver, amplifier, rectifier	AR Tube pour récepteur, amplificateur, redresseur			
AS Spezialröhre, z.B. Senderöhre, EW-Widerstand, Stabilisator	AS Valve (special), e.g. for transmitter, barettter, ballast valve	AS Tube (spécial), p.ex. pour émetteur, résistance fer-hydrogène, ballast			
AT Katodenstrahlröhre, z.B. Bildröhre, Ziffern-Anzeigeröhre	AT Cathode ray tube, e.g. picture tube, digital indicator tube	AT Tube à rayon cathodique, p.ex. tube à image, tube à affichage numérique			
AZ Zubehör für Halbleiter u. Röhren	AZ Accessories for semiconductors and valves	AZ Accessoires pour semiconducteurs et tubes			
B Bausteine		B PC boards, chips		B Cartes imprimées, puces	
BC Integr. Schaltkreis (Microcomp.)	BC Integrated circuit (interface, A/D)	BC Circuit intégré (microprocesseur)			
BD R&S-Dünnenschicht- und Dickschichtschaltung	BD R&S thinfilm or thickfilm circuit	BD Circuit R&S à couche mince ou épaisse			
BG R&S-spezifische Gate-Arrays	BG R&S gate arrays	BG Circuits intégrés prédiffusés R&S			
BJ Integrierter Schaltkreis (Interface, A/D-Wandler)	BJ Integrated circuit (interface, A/D converter)	BJ Circuit intégré (interface, convertisseur A/N)			
BL Log. Schaltkreis z.B. DTL, TTL, HTL, ECL, C-MOS	BL Logic circuit, e.g. DTL, TTL, HTL, ECL, C-MOS	BL Circuit logique, p.ex. DTL, TTL, HTL, ECL, C-MOS			
BM Hybridbaustein, z.B. Mischer, Tuner, Modulator	BM Hybrid chip, e.g. mixer, tuner, modulator	BM Puce hybride, p.ex. mélangeur, tuner, modulateur			
BO Analogschaltkreis, z.B. Operationsverstärker	BO Analog circuit, e.g. operational amplifier	BO Circuit analogique, p.ex. amplificateur opérationnel			
BP Optoelektronischer Baustein, z.B. Anzeigeeinheit, Koppler	BP Optoelectronic component, e.g. display, coupler	BP Composant optoélectronique, p.ex. afficheur, coupleur			
BS Schalt- und Steuerbaustein, elektronischer Sensor	BS Switching and control modul, electronic sensor	BS Modul de commutation et de commande, sonde électronique			
BV Stromversorgung, Übersp.-Schutz	BV Power pack, protective circuit	BV Alimentation, protection surcharge			
BZ Zubehör	BZ Accessories	BZ Accessoires			

Teile-familie	Art des Bauelementes	Parts family	Type of component	Familie	Type d'élément
C Kondensatoren		C Capacitors		C Condensateurs	
CB Bypass-, Durchf.-Kondensator		CB Bypass capacitor, feed-through capacitor		CB Condensateur bypass, condensateur de traversée	
CC Keramischer Kondensator		CC Ceramic capacitor		CC Condensateur céramique	
CD Drehkondensator		CD Variable capacitor		CD Condensateur variable	
CE Elektrolytkondensator		CE Electrolytic capacitor		CE Condensateur électrolytique	
CG Glimmerkondensator		CG Mica capacitor		CG Condensateur au mica	
CH Sperrsichtkondensator		CH Semiconductor capacitor		CH Condensateur semiconducteur	
CK Kunstfolienkondensator		CK Synthetic-foil capacitor		CK Condensateur à feuille synthétique	
CL Ker. Hochsp.-Kondensator		CL HV capacitor (ceramic)		CL Condensateur HT céramique,	
CM Metallpapier-Kondensator		CM MP capacitor		CM Condensateur à papier métallisé	
CN Kondensatornetzwerk		CN Capacitor network		CN Réseau capacitif	
CP Papierkondensator		CP Paper capacitor		CP Condensateur au papier	
CS Störschutzkondensator		CS Interference-suppression capacitor		CS Condensateur anti-parasite	
CT Trimmkondensator		CT Trimmer capacitor		CT Condensateur ajustable	
CV Vakuum-Kondensator		CV Vacuum capacitor		CV Condensateur à vide	
D Drähte, Leitungen		D Wires, lines		D Fils, lignes	
DD Schalt- und Wickeldraht		DD Hook-up or winding wire		DD Fil de câblage, fil de bobinage	
DF Flachleitung, Litze		DF Flat multiple line, stranded wire		DF Ligne plate, ligne torsadée	
DG Abgeschirmte Leitung		DG Shielded line		DG Ligne blindé	
DH Koaxialkabel		DH Coaxial line		DH Ligne coaxiale	
DJ Isolierschläuche, Schrumpfschläuche, Wellrohre, Schutzschräume		DJ Insulating sheaths, shrink-on sleeves, corrugated tubes, protective tubes		DJ Gaines isolantes, gaines thermorétratables tubes ondulés, gaines protectrices	
DL HF-Litzen		DL RF stranded wires		DL Lignes torsadées RF	
DM Schaltlitzen (mehrdrähtige Leiter)		DM Multi-conductor wires		DM Lignes torsadées (multiconducteurs)	
DN Antenne		DN Antenna		DN Antenne	
DO Lichtleiter (optisch)		DO Optical waveguides		DO Guides d'onde optiques	
DP Leiterplatten (unbestückt)		DP Printed circuit boards (bare)		DP Cartes imprimées (non équipées)	
DQ Multilayer (unbestückt)		DQ Multilayer boards (bare)		DQ Cartes multicouche (non équipées)	
DS Anschlußkabel (mehrdrähtig)		DS Connecting cable, multicore		DS Câble de connexion (multiconducteur)	
DU Substratplatten für Dickschichtschaltungen		DU Substrate boards for thickfilm circuits		DU Cartes à substrat pour circuits à couche épaisse	
DW Festmantelkabel		DW Rigid cables		DW Câbles rigides	
E Elektrische Teile		E Electric parts		E Organes électriques	
EB Blei-, NC-Akku, Batterie		EB Lead or alkaline accumulator, battery		EB Accumulateur Pb/NC, batterie	
ED Gedruckte Schaltung (bestückte Leiterplatte), nicht steckbar		ED Printed circuits (assembled), non-pluggable		ED Circuits imprimés (équipés) non enfichables	
EE Gedruckte Schaltung (bestückte Leiterplatte), steckbar		EE Printed circuits (assembled), pluggable		EE Circuits imprimés (équipés) enfichables	
EF Glühlampe, Leuchte		EF Incandescent lamp, pilot lamp		EF Lampe à incandescence, voyant	
EG Glimmlampe, Entladungslampe		EG Glow lamp, discharge lamp		EG Lampe à luminescence lampe à décharge	
EK Kontakt-Streifen, -Feder		EK Contact clip, contact spring		EK Lampe de contact, ressort de contact	
EL Lautsprecher, Kopfhörer, Mikrofon		EL Loudspeaker, headphones, microphone		EL Haut-parleur, casque, microphone	
EM Motor, Hubmagnet, Drehfeldsystem		EM Motor, lifting magnet, synchro system		EM Moteur, électro-aimant de levage, système synchro	
EO Oszillator, z.B. Quarzoszillator		EO Oscillator, e.g. crystal oscillator		EO Oscillateur p.ex. oscillateur à quartz	
EP Tief-, Band-, Hochpaß, Bandsperre, Diskriminator		EP Lowpass, bandpass, highpass filter, band-stop filter, discriminator		EP Filtre passe-bas, passe-bande, passe-haut, suppression de bande, discriminateur	
EQ Schwing-, Filter-Quarz		EQ Oscillator or filter crystal		EQ Quartz oscillateur, quartz de filtre	
ER Resonator, piezoelektr./magnetostriktiv		ER Resonator, piezoelectric/magnetostrictive		ER Résonateur piézo-électrique/magneto-stricif	
ES Passive SHF-Bauteile		ES Passive SHF-components		ES Composant SHF passif	
ET Thermostat		ET Thermostat		ET Thermostat	
EV Lüfter, Gebläse		EV Ventilator, blower		EV Ventilateur, soufflerie	

Teile-familie	Art des Bauelementes	Parts family	Type of component	Familie	Type d'élément
F Fassungen, Steckverbindungen		F Sockets, connectors		F Douilles, connecteurs	
FG Koax-Umrüstsatz		FG Coaxial screw-in assembly		FG Ensemble vissable coaxial	
FH Koax-Übergang auf Fremdsystem		FH Coaxial adapter		FH Adaptateur coaxial	
FJ BNC-Systemteil		FJ BNC screw-in assembly		FJ Ensemble vissable BNC	
FK Koaxial-UHF-Systemteil		FK Coaxial UHF screw-in assembly		FK Ensemble vissable coaxial UHF	
FM Mehrfachstecker, Buchsenleiste		FM Multipoint connector		FM Connecteur multiple	
FN Netz-Steckverbindung		FN AC-supply connector		FN Connecteur secteur	
FO Runde Mehrfach-Steckverbindung		FO Round multipoint connector		FO Connecteur multipoles rond	
FP Druckschalt-Steckverbindung		FP Multipoint connector for PC boards		FP Connecteur multipoles pour cartes imprimées	
FR Fassung für Lampe, Sicherung, usw.		FR Socket for lamp, fuse, etc.		FR Douille pour lampe, fusible etc. . . .	
FT Schwachstrom-Steckverbindung		FT LV plug and socket		FT Connecteur pour faible courant	
FU Hochspannungs-Steckverbindung		FU HV plug and socket		FU Connecteur pour haute tension	
FV Verbinder (z.B. AMP)		FV Push-on connector		FV Connecteur à enfichage	
FZ Zubehör für koax. Bauelemente		FZ Accessories for coax. components		FZ Accessoires pour composants coax.	
H Software		H Software		H Logiciel	
HP Software-Komponenten und Software-Module		HP Rights to software components and software modules		HP Droits d'utilisation de composants et modules logiciel	
HS Auf Informationsträger geladene Software		HS Software data media		HS Logiciel sur support d'information	
J Meßinstrumente		J Indicators		J Indicateurs	
JD Drehspul-Anzeigegerät		JD Moving-coil meter		JD Galvanomètre à cadre mobile	
JE Dreheisen-Anzeigegerät		JE Moving-iron meter		JE Galvanomètre à fer mobile	
JF Frequenzmesser		JF Frequency meter		JF Fréquencemètre	
JG Drehspulinstrument mit Gleichrichter		JG Moving-coil meter with rectifier		JG Galvanomètre à cadre mobile avec redresseur	
JH Betriebsstundenzähler		JH Operating-hours counter		JH Compteur d'heures de fonctionnement	
JJ Impulszähler		JJ Pulse counter		JJ Compteur d'impulsions	
JK Kleinst-Instrument, z.B. Abstimmanzeiger		JK Mini-instrument, e.g. tuning indicator		JK Petit indicateur, p.ex. indicateur d'accord	
JM Mechanisches Zählwerk		JM Mechanical counter		JM Compteur mécanique	
JP Projektions-Instrument (Leuchtziffer)		JP Digital display		JP Afficheur numérique	
JQ Quotientenmesser (Kreuzspulinstrum.)		JQ Ratiometer (cross coul.)		JQ Quotientmètre (à cadres croisés)	
JU Uhrwerk		JU Clockwork		JU Mouvement d'horlogerie	
JW Elektrodyn. Anzeigegerät		JW Electrodynamic meter		JW Instrument électrodynamique	
L Induktivitäten, Magnetik		L Inductors, magnetic components		L Composants inductifs et magnétiques	
LB Blech- und Schnittbandkerne mit Zubehör		LB Laminated and C-cores with accessories		LB Noyaux feuilletés et noyaux de type C, avec accessoires	
LC Keramische Spule		LC Ceramic coil		LC Bobine céramique	
LD Netz-, HF-Drossel, Df-Filter		LD Choke, lead-through filter		LD Self de choc, filtre dé traversée	
LE Einzelkreis, Bandfilter		LE Single tuned circuit, bandpass filter		LE Circuit accordé, filtre passe-bande	
LF Ferritkern mit Zubehör		LF Ferrite cores with accessories		LF Noyaux en ferrite avec accessoires	
LK Karbonyleisenkern und elektrischer Kupferkern mit Zubehör		LK Iron carbonyl slugs and copper slugs with accessories		LK Noyaux en fer carbonyle et en cuivre, avec accessoires	
LL Luftspule		LL Air-core coils		LL Bobines à air	
LM Magnetband und -platte		LM Magnetic tapes and disks		LM Bandes et disques magnétiques	
LS Schirmbecher		LS Screening cans		LS Boîtiers de blindage	
LT Netztransformator		LT Power transformer		LT Transformateur secteur	
LU NF-Übertrager		LU AF transformer		LU Transformateur BF	
LV Variometer		LV Variometer		LV Variomètre	
LW Wickelkörper, allgemein		LW Coil formers, general		LW Carcasses de bobine, en général	

Teilefamilie	Art des Bauelementes	Parts family	Type of component	Familie	Type d'élément
R	Widerstände	R	Resistors	R	Résistances
RD	Drahtwiderstand	RD	Wire-wound resistor	RD	Résistance bobinée
RF	Kohleschicht-Widerstand	RF	Carbon-film resistor	RF	Résistance à couche de carbone
RG	Metallglasur-Widerstand	RG	Metal-coated resistor	RG	Résistance à couche métallique
RJ	Metalloxid-Widerstand	RJ	Metal-oxide resistor	RJ	Résistance à oxyde métallique
RK	Kaltleiter, Heißleiter, Varistor	RK	PTC, NTC resistors, varistors	RK	Résistances CPT, CNT, varistors
RL	Metallfilm-Widerstand	RL	Metal-film resistor	RL	Résistance à film métallique
RN	Widerstandsnetzwerk	RN	Resistor network	RN	Réseau de résistance
RR	Draht-Potentiometer	RR	Wire-wound potentiometer	RR	Potentiomètre bobiné
RS	Schicht-Potentiometer	RS	Carbon-film potentiometer	RS	Potentiomètre à couche
RT	Dämpfungsglied, Abschlußwiderstand	RT	Attenuator, termination	RT	Atténuateur, charge
RV	Drahtwiderstand mit Abgriff	RV	Wire-wound resistor, tapped	RV	Résistance bobinée à prise
RW	Wendelpotentiometer	RW	Helical potentiometer	RW	Potentiomètre hélicoïdal
S	Schalter, Relais, Sicherungen	S	Switches, relays, fuses	S	Commutateurs, relais, fusibles
SB	Drucktastenschalter	SB	Pushbutton switch	SB	Commutateur à touche
SD	Drehschalter	SD	Rotary switch	SD	Commutateur rotatif
SF	Kontaktfedersatz	SF	Spring contact assembly	SF	Jeu de ressorts de contact
SH	HF-Koaxialschalter, -Relais, -Teiler	SH	Coaxial RF switch, RF relay, RF attenuator	SH	Commutateur RF coaxial, relais RF, atténuateur RF
SK	Kipp-, Wipp- und Schiebeschalter	SK	Toggle switch, slide switch	SK	Commutateur à bascule, à glissière
SL	Leistungsschalter Netz/HF	SL	AC supply switch, high-power RF switch	SL	Commutateur secteur, de puissance RF
SM	Mikroschalter	SM	Microswitch	SM	Microrupteur
SN	Elektromagnet, Relais	SN	Electromagnetic relay	SN	Relais électromagnétique
SP	Leistungsrelais, Luftschütz	SP	Power relay, air-type contactor	SP	Relais de puissance, contacteur à air
SR	Reedrelais	SR	Reed relay	SR	Relais reed
SS	Sicherung, Schutzschalter	SS	Fuse, automatic cut-out	SS	Fusible, coupe-circuit automatique
ST	Thermoschalter	ST	Thermal circuit breaker	ST	Disjoncteur thermique
SU	Überspannungs-Ableiter	SU	Arrester	SU	Eclateur
SW	Wechselrichter, Näherungsschalter	SW	Inverter (DC-AC), proximity switch	SW	Inverseur (DC-AC), commutateur de proximité
SZ	Zeitschalter	SZ	Time switch	SZ	Interruuteur horaire
V	Verbindungselemente	V	Connecting elements	V	Éléments de raccordement
VK	Klemme, Klemmleiste	VK	Clamp, terminal strip	VK	Pince, réglette à bornes
VL	Lötose, Stützpunkt	VL	Soldering lug	VL	Cosse à souder
VS	Schraube, Mutter, Scheibe	VS	Screw, nut, washer	VS	Vis, écrou, disque

Farocode für Widerstände und Kondensatoren

Anmerkung:

Die Wertangabe der weitgehend miniaturisierten Bauelemente erfolgt überwiegend durch Farbkennzeichnungen, deren Bedeutung der nachfolgenden Tabelle entnommen werden kann.

Hinweis:

Im Zuge des technischen Fortschrittes setzt R&S zunehmend Metallschichtwiderstände mit 1% Toleranz anstelle von Kohleschichtwiderständen mit 5% Toleranz ein. Metallschichtwiderstände können sich dabei an Stellen befinden, an denen gemäß Schalteiliste Kohleschichtwiderstände vorgesehen sind. Etwaige geringfügige Differenzen der Nennwerte zwischen Stromlaufplan, Schalteiliste und Gerät liegen im zulässigen Toleranzbereich.

Colour code for resistors and capacitors

Note:

The electrical values of the largely miniaturized components are mainly identified by a colour code, the meaning of which can be taken from the table below.

N. B.:

Following the state of the art R&S makes increasing use of metal-film resistors (1% tolerance) instead of carbon-film resistors (5% tolerance). Metal-film resistors may have been employed where carbon-film resistors are specified in the parts list. Any slight differences of nominal values between circuit diagram, parts list and equipment are within tolerance.

Code couleur pour résistances et condensateurs

Remarque:

Les valeurs électriques des composants fort miniaturisés sont indiquées dans la plupart des cas par un code couleur dont voici l'explication.

N. B.:

Suivant le progrès technique R&S utilise de plus en plus des résistances à film métallique (tolérance 1%) au lieu des résistances à couche de carbone (tolérance 5%). Des résistances à film métallique peuvent se trouver en des points où des types à couche de carbone figurent dans la liste des composants. Les différences minimales des valeurs nominales existant éventuellement entre le schéma de circuit, la liste des composants et l'appareil sont dans la marge de tolérance.

Farbe/Colour/Couleur	A	B	C	D	Anordnungsbeispiele für Examples for / Exemple pour	Definition* / Définition *
Schwarz/Black/Noir	—	0			Widerstände (R) Resistors (R) Résistance (R)	Kennzeichen A (Bauteilfarbe/1. Farbring) = 1. Zahl Kennzeichen B (Bauteilende/2. Farbring) = 2. Zahl Kennzeichen C (Punkt/3. Farbring) - 3. Zahl = Zahl der Nullen Kennzeichen D (Punkt/4. Farbring) = Toleranz des Nennwerts in % Das Fehlen eines Kennzeichens bedeutet, daß die Farbe des Bauteilkörpers die Wertangabe darstellt.
Braun/Brown/Marron	1	1	0	± 1%		Marking A (body colour or first coloured ring) = 1st digit Marking B (body end or second coloured ring) = 2nd digit Marking C (dot or third coloured ring) = number of zeros Marking D (dot or fourth coloured ring) = tolerance on nominal value in % (with no D marking tolerance ± 20%)
Rot/Red/Rouge	2	2	00	± 2%		The absence of a marking signifies that the body colour gives the corresponding information.
Orange/Orangé	3	3	000			Repérage A (couleur du corps ou 1er anneau) = 1er chiffre Repérage B (bout du corps ou 2e anneau) = 2e chiffre Repérage C (point ou 3e anneau) = nombre de zeros. Repérage D (point ou 4e anneau) = tolérance en % de la valeur nominale (L'absence du repérage D signifie ± 20%)
Gelb/Yellow/Jaune	4	4	0000			L'absence de tout repérage signifie que la couleur du corps du composant représente la valeur correspondante.
Grün/Green/Vert	5	5	00000	± 0,5%		
Blau/Blue/Bleu	6	6	000000			
Violett/Violet	7	7	—	± 0,1%		
Grau/Gray/Gris	8	8	—			
Weiß/White/Blanc	9	9	—			
Gold/Doré	—	—	—	± 5%		
Silber/Silver/Argenté	—	—	—	± 10%		
Ohne Farbe/No colour/Pas de couleur	—	—	—	± 20%		

1) Toleranzring, hier nicht spezifiziert. 1) Tolerance ring, here not specified.
1) Anneau de tolérance, ne pas spécifié ici.

* Siehe auch DIN 41 429 und DIN 40 825 * see also IEC publication 62-1952 and 62-1968
Voir aussi DIN 41 429 et DIN 40 825

Zusammenstellung der lieferbaren Netzkabel
List of power cables available
Liste des câbles d'alimentation disponibles

Sach-Nr. Stock No. Référence	Schutzkontaktsteckker nach Earthed-contact connector Fiche à contact de protection	Vorzugsweise verwendet in Preferably used in Utilisé de préférence en
DS 006.7013	BS1363: 1967' entsprechend IEC 83: 1975 Standard B2 BS1363: 1967' complying with IEC 83: 1975 standard B2 BS1363: 1967' suivant CEI 83: 1975 norme B2	Großbritannien Great Britain Grande-Bretagne
DS 006.7020	Typ 12 nach SEV-Vorschrift 1011.1059, Normblatt S 24 507 Type 12 complying with SEV regulation 1011.1059, standard sheet S 24 507 Type 12 suivant la norme SEV 1011.1059, feuille S 24 507	Schweiz Switzerland Suisse
DS 006.7036	Typ 498/13 nach US-Vorschrift UL 498, bzw. IEC 83 Type 498/13 complying with US regulation UL 498 or with IEC 83 Type 498/13 suivant la norme E.U.A. UL 498 ou la norme CEI 83	USA/Kanada USA/Canada E.U.A./Canada
DS 006.7107	Typ SAA3 10 A, 250 V, nach AS C112-1964 Ap. Type SAA3 10 A, 250 V, complying with AS C112-1964 Ap. Type SAA3 10 A, 250 V, suivant AS C112-1964 Ap.	Australien Australia Australie
DS 0025.2365 DS 0099.1456	DIN 49 441, 10 A, 250 V, abgewinkelt DIN 49 441, 10 A, 250 V, gerade	Europa (ohne Schweiz)
DS 0025.2365 DS 0099.1456	DIN 49 441, 10 A, 250 V, angular DIN 49 441, 10 A, 250 V, straight	Europe (Switzerland not included)
DS 0025.2365 DS 0099.1456	DIN 49 441, 10 A, 250 V, angulaire DIN 49 441, 10 A, 250 V, droit	Europe (Suisse non comprise)

Cross-Reference List of Class Designation Letters

IEC Publication 113-2 (1971) Item Designations, Letter Codes
ANSI Y32.2-1975 (IEEE Std 315-1975), Section 22, Class Designation Letters

Note: The designation letters used in the R&S Manuals correspond to the letter codes of the IEC Standard identified in the first column!

IEC Publication 113-2 Terminology	Letter Code IEC Y32.2	IEC Publication 113-2 Terminology	Letter Code IEC Y32.2
Acoustical indicator	H LS	Magnetic tape recorder	D A
Adjustable resistor	R R	Maser	A A
Aerial	W E	Measuring equipment	P M
Amplifier	A AR	Microphone	B MK
Amplifier (with tubes)	A AR	Miscellaneous	E E
Arrester	F E	Modulator	C A
Assemblies	A A,U	Monostable element	D A,U
Auxiliary switch	S S	Motor	M B
Battery	G BT	Optical indicator	H DS
Adjustable element	D U,A	Oscillator	G Y,G
Brake	Y MP	Overvoltage discharge device	F F,E
Busbar	W W	Parabolic aerial	W E
Cable	W W	Photoelectric cell	B V
Cable balancing network	Z Z	Pickup	B PU
Capacitor	C C	Plug	X P
Changer	U A,B,G,MT	Pneumatic valve	Y MP
Circuit breaker	Q CB	Potentiometer	R R
Clutch	Y MP	Power switchgear	Q CB,S
Coder	U U,A	Protective device	F F
Comander	Z A	Pushbutton	S S
Connecting stage	S S	Quartz-oscillator	G Y
Contactors	K K	Recording device	P A,M
Control switch	S S	Register	D A,U,M
Converter	U A,U,MG	Relay	K K
Core, storage	D E	Resistor	R R
Crystal filter	Z FL	Resolver	R R
Crystal transducer	B Y	Rheostat	G G,MG
Current transformer	T T	Rotating frequency generator	G G
Delay device	D DL	Rotating generator	S S
Delay line	D DL	Selector	S S
Demodulator	U A	Selector switch	V D,CR,Q
Dial contact	S S	Semiconductor	R R
Diode	V D	Shunt (resistor)	P A
Dipole	W E	Signal generator	H DS
Disconnecting plug	X P	Signaling device	X X
Disconnecting socket	X X	Socket	X E,TB
Discriminator	U A	Soldering terminal strip	U A
Disk recorder	D A	Static frequency changer	D A,U
Dynamotor	B MG	Storage device	A A
Electrically operated mechanical device	Y MT	Subassembly	G A,PS
Electronic tube	V V	Supply	G A,PS
Equalizer	Z EQ	Supply device	B B
Filter	Z FL	Synchro	U A
Frequency changer	U A,B,G	Telegraph translator	X E
Fuse	F F	Terminal	X TB
Gas discharge tube	V V	Terminal board	Z AT
Generator	G G	Termination	X E,J
Heating device	E HR	Test jack	P A
Hybrid	Z Z	Testing equipment	R RT
Indicating device	P DS	Thermistor	B A,TC
Induction coil	L L	Thermo cell	B A
Inductors	L L	Thermoelectric sensor	V Q
Integrating measuring device	P M,MT,Z	Thyristor	B A,BT
Inverter	U A,U,PS,MG	Transducer (nonelectrical quantity to electrical quantity)	T T
Isolator	Q AT	Transformer	W W
Jumper wire	W W	Transmission path	V Q
Laser	A MT,A	Transistor	V V
Lighting device	E DS	Tube (electron)	T T
Limit switch	S S	Voltage transformer (potential)	W W
Limiter	Z MT,RE	Waveguide	W W
Line trap	L FL,MP,V	Waveguide directional coupler	W DC
Loudspeaker	B LS		
Magnetic amplifier	A AR		

XY-Liste

XY List

Erklärung der Spaltenbezeichnungen:

el. Kennz.	Bauelement-Kennzeichen
Seite	Leiterplatten-Seite, auf der sich das Bauelement befindet
X/Y	Koordinaten (in Millimeter) des Bauelementes auf der Leiterplatte bezogen auf den Nullpunkt
Planq., Bl.	Planquadrat und Seite des Schaltbildes für das jeweilige Bauelement

Explanation of column designations:

Part	Identification of instrument part
Side	Side of the PC board on which instrument part is positioned
X/Y	Coordinates (in units of millimeters) of the component on the PC board in reference to zero point
Sqr, Pg	Square and page of the diagram for the respective instrument part

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
X2	B	181	86	11B	1	X11A	B	60	40	5B	1	X27	A	51	123	3E	1
X4A	B	30	40	4B	1	X11D	B	60	40			X28	B	73	46	5B	1
X4D	B	30	40			X12A	B	129	40	7B	1	X29	B	76	46	8B	1
X5A	B	157	40	8B	1	X12D	B	129	40			X30	B	182	41	11B	1
X5D	B	157	40			X15	B	10	19	2A	1	X50	B	8	66	2C	1
X10A	B	96	40	6B	1	X20	B	116	17	6B	1	X710	B	192	55	10C	1
X10B	B	96	40	6B	1	X24	B	182	23	9B	1						
X10D	B	96	40			X25	B	192	71	12E	1						

ROHDE &	ÄI	Datum	XY-Liste für	Sach-Nummer	Blatt
SCHWARZ	Date		XY-list for	Stock-Nr	Page
			ED MOTHERBOARD_SMT		
		03 02.06.93		1039.2646.01 XY	1-

ROHDE & SCHWARZ

**Stromläufe
Bestückungspläne**

**Circuit diagrams
Component plans**

**Schémas de circuit
Plans des composants**

ROHDE & SCHWARZ

SERVICEUNTERLAGEN

Frontmodul mit Rechner VAR 02

1035.5440

Inhaltsverzeichnis

7.	Prüfen und Instandsetzen der Baugruppe	5
7.1	Funktionsbeschreibung	5
7.1.1	CPU: 80960SB-16	6
7.1.2	512K-Byte batteriegepuffertes RAM	6
7.1.3	Batterietest	6
7.1.4	FLASH-EPROMs (Firmware-Update)	7
7.1.5	IEC-Bus Interface	7
7.1.6	SERBUS-Interface	7
7.1.7	RS232- / V.24-Interface	7
7.1.8	Timer	7
7.1.9	Interruptcontroller	8
7.1.10	ACFAIL, SYSRESET	8
7.1.11	Verarbeitung externer Triggersignale	8
7.1.12	LCD-Interface	8
7.1.13	Helligkeits- und Kontrasteinstellung für LCD	9
7.1.14	Drehknopfinterface	9
7.1.15	Anschluß für die Tastaturmatrix	9
7.1.16	Diagnose A/D-Wandler	9
7.1.17	X-Ausgang	10
7.1.18	Variantenerkennung	10
7.1.19	Steuersignale, Tastenbeep	10
7.1.20	Standby Schalter und -LED	10
7.2	Meßgeräte und Hilfsmittel	10
7.3	Fehlersuche	11
7.4	Prüfen und Abgleich	12
7.4.1	Prüfen der Versorgungsspannung des DC/AC-Wandlers	12
7.4.2	Prüfen der Kontrastspannung	12
7.4.3	Prüfen des Drehgebers	12
7.4.4	Prüfen des RESET und ACFAIL-Signales	12
7.4.5	Prüfen des Diagnosezweiges	12
7.4.6	Prüfen und Auslesen der Diagnosemeßpunkte	12
7.4.7	Prüfen der Position der Steckbrücken	13
7.5	Zerlegung und Zusammenbau	13
7.6	Externe Schnittstellen	14
7.6.1	Schnittstelle Rechner	14
7.6.2	Schnittstelle Drehgeber	16
7.6.3	Schnittstelle LCD	16

Schaltteilliste
Koordinatenliste
Stromlauf
Bestückungsplan

7. Prüfen und Instandsetzen der Baugruppe

Achtung !! Im Frontmodul sind viele betriebsnotwendige Daten gespeichert. Die im RAM gespeicherten Daten können vom Gerät selbst, die Daten im Flash-EPROM jedoch nur mit Hilfsmitteln wieder hergestellt werden. Besteht die Gefahr, den Speicherinhalt der Flash-EPROMs zu verlieren, muss sichergestellt sein, dass

- 1) neue Firmware geladen werden kann,
- 2) eine Pegelkalibration durchgeführt werden kann (Kap. 6.4 des Service-Handbuches),
- 3) die Kalibrierdaten des Referenzoszillators wieder hergestellt oder eine Kalibration des Referenzoszillators durchgeführt werden kann (Kap. 2.11.8 des Betriebshandbuches),
- 4) die Betriebsdaten im Menue UTILITIES/DIAG/PARAM wieder hergestellt werden können.

Zu 3) und 4) sollten vor Arbeiten am Frontmodul die betreffenden Daten notiert werden. Zur Wiederherstellung muss für 3) der Passwortschutz Level 2 entriegelt werden (Kap. 2.11.7 des Betriebshandbuches). Das Passwort für Level 2 ist 250751. Danach kann im Menue UTILITIES/CALIB/REF OSC der notierte Wert wieder eingegeben und gespeichert werden. Für 4) muss der Passwortschutz Level 3 entriegelt werden, das Passwort erfragen Sie bitte bei Ihrer R&S-Vertretung. Das Menue UTILITIES/DIAG/SET PARAM wird dann sichtbar und die Daten können wieder eingegeben werden.

7.1 Funktionsbeschreibung

Das Frontmodul beinhaltet die Komponenten: Rechner, Drehgeber, Tastatur und das LC-Display.

Folgende Funktionen und Eigenschaften muß der Rechner zur Verfügung stellen:

- CPU: 80960SB-16
- 512K-Byte batteriegepuffertes RAM
- Batterietest
- Firmware in Flash-Eeprom's mit der Möglichkeit des Updates
- EEPROM-Speicher (optional)
- IEC-Bus Interface
- SERBUS Interface
- RS232 / V.24 Interface
- ausreichend Timer (>=4 16-Bit Timer)
- Interruptcontroller
 - alle Interrupts entweder in der Quelle oder am Interruptcontroller einzeln maskierbar
- ACFAIL vom Netzteil löst maskierbaren Interrupt aus
- Verarbeitung externer Triggersignale (TRIGGER, AUX-TRIG) Polarität & Triggerart (dyn./stat.) wählbar
- LCD-Interface
- Helligkeits- und Kontrasteinstellung für LCD
- Drehknopf-Interface
- Anschluß für Tastaturmatrix
- Selbstdiagnose mit 12-Bit-Wandler und

- zwei Diagnoseeingänge (±5V & ±15V)
- X-Ausgang (0 ... 10 V)
- Variantenerkennung
- Einige Steuerleitungen für andere Baugruppen (MODCTRL-OUT, MODCTRL-IN)
- Digitale Aus- & Eingangssignale (BLANK, MARKER, SWEEP-STOP, TASTENBEEP)
- SYS-RESET vom Netzteil löst einen Reset des Systems aus
- Standby-Schalter und Standby-LED

7.1.1 CPU: 80960SB-16

Die Verwendung des Prozessors 80960 (Taktfrequ.: 16MHz) erfordert definierte RESET und Taktsignale für das gesamte Rechnersystem.

Diese Signalerzeugung wird in einem ASIC (CLOCKGEN D120) realisiert. In diesem ASIC erfolgt auch die Ableitung einiger im System verwendeter Taktfrequenzen.

Da das Bus-Interface des 80960 auf BURST-Zugriffe ausgelegt ist, werden mehrere PLD's verwendet (D300, D402, D540, D600, D800, D950). Sie dienen der Umsetzung des BURST-Zugriffes in den für die angeschlossenen Bausteine entsprechende Ansteuerung. Zugleich erzeugen sie das READY-Signal zur Anpassung der Zugriffsgeschwindigkeit. Die Zusammenführung der verschiedenen READY-Signale zu einem gemeinsamen Signal für den Prozessor erfolgt über eine AND-Verknüpfung an D103.

Der Prozessor 80960 verfügt über einen gemultiplexten Adress- und Datenbus. Während des Adress-Cycle der CPU werden die Adressen A4 bis A15 in die Bausteine D204, D205 und D216 übernommen und stehen dann während der folgenden Data-/Wait-Cycle und des abschließenden Recovery-Cycle zur Verfügung.

Die beiden Datenbustreiber D208 und D209 werden benötigt, um eine Isolation des Datenbusses vom gemultiplexten Daten-/Adressbus des Prozessors zu erreichen. Dies ist beim Einsatz langsamer Peripheriebausteine notwendig.

7.1.2 512K-Byte batteriegepuffertes RAM

Dieser Speicher wird mittels vier 1M-Bit SRAM-Speicherbausteinen (D302, D304, D303, D305) in Form von zwei Bänken zu je 128K-Worten realisiert.(1 Wort=16bit). Der Zugriff auf diesen Speicher wird durch das Signal EN-MEM-P blockiert, wenn entweder das Resetsignal aktiv ist oder die Versorgungsspannung unter 4 V absinkt (V390, V391). Diese Überwachung der Versorgungsspannung ist nur für den Notfall gedacht, daß die Spannung plötzlich zusammenbricht, ohne daß vorher vom Netzteil das Signal SYSRESET generiert wurde. Die Schaltung aus den Transistoren V300 und V301 sowie der Diode V302 bewirkt ein Umschalten von UBATT auf +5V, sobald die Versorgungsspannung +5V größer als die Batteriespannung ist.

7.1.3 Batterietest

Um den Ladezustand der Batterie zu testen, wird durch das Signal TST-BATT mittels REED-Relais ein Belastungswiderstand von 39,2 k_Ω an die Batterie angeschlossen. Die Spannung am Widerstand wird der Selbstdiagnoseschaltung zugeführt und gibt Auskunft über den Zustand der Batterie.

7.1.4

FLASH-EPROMs (Firmware-Update)

Um Firmware-Updates ohne Eingriff von außen durchführen zu können, werden FLASH-EPROM's als Speicher verwendet. Es sind zwei Bausteine D404 und D405 vom Type 28F020 (256K-Worte) vorgesehen. Die zum Programmieren nötige Spannung VPP wird durch den Baustein D400 aus +15V erzeugt. Dieser Linearregler kann durch das Signal VPP-EIN an- und abgeschaltet werden.

Der Update der Firmware erfolgt über eine RS232-Schnittstelle an der Rückseite des Gerätes.

Da die FLASH-EPROM's nur als ganzes gelöscht werden können, gibt es noch ein BOOT-EPROM (D301), welches den Urlader enthält. Zudem erlaubt das Vorhandensein des BOOT-EPROM's das Bestücken der FLASH-EPROM's als unprogrammierte Standardbauteile.

Ob ein Firmware Update erfolgen soll oder nicht, kann der Prozessor am Signal der Brücke X200 erkennen.

7.1.5

IEC-Bus Interface

Als IEC-Bus-Controller wird der NEC Baustein uPD7210 (D602) mit den Bustreibern 75160 (D603) und 75162 (D604) verwendet. Seine 8MHz-Taktfrequenz erhält er vom "CLOCKGEN". Durch entsprechende Bestückung der Kurzschlußbrücke an X600 können auch alle Controller-Fähigkeiten des IEC-Bus realisiert werden.

7.1.6

SERBUS-Interface

Für die Ansteuerung und Programmierung der einzelnen Baugruppen wird ein von R&S eigens entwickeltes serielles Bussystem (SERBUS) verwendet. Hierfür existieren bisher zwei Standard-ASIC's (SERBUS-M und SERBUS-D).

Auf dem Rechner befindet sich der Bus-Master-Baustein (SERBUS-M / D87). Er wird wortweise programmiert und mit einer Taktfrequenz von 32MHz betrieben. Zur seriellen Datenübertragung an die Baugruppen wird 4MHz verwendet.

7.1.7

RS232- / V.24-Interface

Dieses Interface ist ein Bestandteil des Bausteines SAB82556 (D85). Die Pegelumsetzung von TTL auf RS232 erfolgt im Baustein LT1181 (D860).

Das zweite im SAB82556 enthaltene serielle Interface wird ohne Pegelwandlung auf's Motherboard geführt und steht dort für Testzwecke an einem 10pol. Stecker zur Verfügung.

7.1.8

Timer

Der Baustein SAB82556 enthält drei 16-Bit Timer. Da diese Anzahl nicht ausreicht, wurde noch ein Baustein 82C54 (D610) mit eingebaut. Dieser Baustein enthält ebenfalls drei 16-Bit Timer. Um lange Zeiten mit hoher Auflösung realisieren zu können sind zwei dieser Timer kaskadiert (Timer1 und Timer2). Als Eingangstakt stehen am 82C54 1kHz für Timer0 und 1MHz für Timer1/2 zur Verfügung. Am SAB82556 stehen als Taktquellen zur Verfügung: für Timer0 8MHz, 1kHz und als Sonderfall 14,7456MHz/x, für Timer1 8MHz, 1kHz und ebenfalls 14,7456MHz/x und für Timer2 8MHz.

7.1.9 Interruptcontroller

Die Funktion des Interruptcontrollers ist ebenfalls im SAB82556 realisiert. Folgende 5 Interruptquellen sind angeschlossen, wobei jeder Eingang als dynamisch oder statisch verwendet werden kann:

Port-Eing.	Interrupt
PA0	Trigger
PA1	Aux-Trigger
PA4	IEC-INT-P
PA5	T2-INT0
PA6	T2-INT2

Alle statischen Interrupts werden an D830 zu einem zusammengefaßt und auf den verbleibenden Interrupeeingang (INTE) gelegt:

1. - SERBUS-INT1
2. - SERBUS-INT2
3. - ACFAIL (Powerfail vom Netzteil)
4. - SERBUS-ACT-REQ.

Alle Interrupts am Port des SAB82556 sind im Baustein maskierbar. Die statischen Interrupts 3. und 4. sind an der Quelle und die verbleibenden können über das Portregister D810 maskiert werden.

7.1.10 ACFAIL, SYSRESET

Das Signal ACFAIL wird im Netzteil erzeugt und ist eines der statischen Interruptsignale, welche nicht an der Quelle maskierbar ist. Die Maskierung erfolgt wie bei vorherigem Punkt beschrieben.

SYSRESET (ebenfalls vom Netzteil) wird über D106C/D an das ASIC CLKGEN geführt und löst dort die Resetschaltung aus. Zugleich wird über R108 und V102 der Kondensator C109 entladen. Wird das Signal SYSRESET wieder HIGH, lädt sich C109 über R129 auf und gibt nach Erreichen der Schwellspannung von D106C den Reseteingang des CLKGEN wieder frei.

7.1.11 Verarbeitung externer Triggersignale

(TRIGGER, AUX-TRIG) Polarität & Triggerart (dyn./stat.) wählbar

Die Wahl der Triggerart erfolgt durch Programmierung des Interruptcontrollers im Baustein SAB82556. Die Polarität des Triggersignales kann für beide Triggersignale getrennt an Port D810 eingestellt werden und erfolgt durch EXOR-Verknüpfung des Portsingales mit dem Triggersignal (D840).

7.1.12 LCD-Interface

Zur Ansteuerung des LC-Displays wird der LCD-Controller SED1351F (D90) von SEIKO EPSON verwendet. Der Bildspeicher besteht aus den beiden SRAM's D960 und D970. Dieser Speicher ist ausreichend für vier Bildschirmseiten (640 x 200).

Um eine lineare Adressierung der Pixel (Pixel 0 ist LSB der untersten Adresse) zu erhalten, wurde der Datenbus an D90 byteweise in sich gespiegelt.

Zur Erhöhung der Treiberfähigkeit und zur Isolation des Bausteines D90 werden die Daten- und Clock-Signale für das LCD über D980 geführt.

7.1.13 Helligkeits- und Kontrasteinstellung für LCD

Leiterplatte: Drehgeber (1035.5592.01).

Die Helligkeitseinstellung erfolgt über die Eingangsspannung des DC/AC-Wandlers für die CFL-Beleuchtung. Die Eingangsspannung für diesen Wandler darf im Bereich von +6V bis +10V liegen. Höhere Spannung bedeutet höhere Helligkeit. Die Spannungsregelung erfolgt mittels eines LM317T (N50), und die Einstellung der Ausgangsspannung wird mit R990 vorgenommen.

Beim Einschalten des Gerätes ist es aber für ein sicheres Zünden der Leuchtstoffröhren nötig, die Eingangsspannung des Wandlers auf +10V zu bringen. Hierzu dient die Schaltung aus N51 und V52, die nach dem Einschalten kurzzeitig +10V zur Verfügung stellt.

Zum Verbessern der Störabstrahlung des AC/DC Wandlers bzw. der Leuchtstoffröhren kann mit V48 die Beleuchtung ausgeschaltet werden.

Die Einstellung des Kontrastes erfolgt über die negative Versorgungsspannung VEE des LC-Displays. Diese Spannung wird mittels eines Switch-Capcitor-Voltage-Converters mit Regler (LT1054/N70) aus +15V erzeugt und kann mittels R995 im Bereich von -15V bis -22V eingestellt werden.

Zur Filterung der Störungen des DC/AC-Wandlers und des Converters LT1054 befinden sich noch zwei LC-Filter in _-Form auf dieser Leiterplatte.

7.1.14 Drehknopfinterface

Bei jedem Pegelwechsel des Signales KNOB2 (CLK) wird über die Laufzeitkette aus D566C/D und D562B/C am EXNOR-Gatter D566B ein LOW-Puls erzeugt. Mit diesem Puls wird die Richtungsinformation im Flip-Flop D565B gespeichert und mit D565A ein Interrupt ausgelöst.

7.1.15 Anschluß für die Tastaturmatrix

Die Spaltenleitungen der Tastaturmatrix werden am Register D550, die Zeilenleitungen am Port D560 angeschlossen.

Solange keine Taste betätigt wird, liegen die angeschlossenen Zeilenleitungen über die Pull-Up-Widerstände R560 auf HIGH-Potential. Die Spaltenleitungen werden von den Registerausgängen auf LOW-Potential gehalten. Wird nun eine Taste betätigt, wird die zugehörige Zeilenleitung auf LOW-Potential gebracht. Nach Entprellung wird ein Interrupt erzeugt, woraufhin nacheinander die Spalten einzeln auf LOW-Potential gelegt werden und an Hand des Pegels erkannt wird, welche Taste betätigt wurde.

7.1.16 Diagnose A/D-Wandler

mit 12-Bit-Wandler und zwei Diagnoseeingängen ($\pm 5V$ & $\pm 15V$)

Die beiden Diagnoseeingänge und einige Meßpunkte des Rechners werden über den Multiplexer D700, Impedanzwandler N701 und Eingangsverstärker dem A/D-Wandler D704 zugeführt.

Folgende Spannungen für Vollaussteuerung des A/D-Wandlers sind einstellbar: $\pm 15V$, $\pm 5V$ und $\pm 1V$.

Die Wandlungszeit (max. 9us) zeigt der ADC am BUSY-Ausgang an, welcher über D570 (Port1) eingelesen werden kann.

Für Zwecke der Selbstdiagnose können folgende Spannungen mit dem Selbstdiagnosewandler gemessen werden:

die Spannung des X-Ausgangs
die Programmierspannung der FLASH-EPROMs
die Referenzspannung des D/A-Wandlers
die Batteriespannung

Es existiert zudem die Möglichkeit an Stelle der Kurzschlußbrücke X700 Meßkabel anzuschließen und damit beliebige Meßpunkte an den A/D-Wandler anzuschließen. Dabei ist allerdings zu beachten, daß die Meßspannung $\pm 15V$ nicht überschreitet.

7.1.17 X-Ausgang

Der X-Ausgang erzeugt beim Sweep ein Ausgangssignal von 0V (Sweepanfang) bis 10V (Sweepende), welches zur Ansteuerung von externen Geräten genutzt werden kann. Dieses Signal wird vom Prozessor durch entsprechende Einstellung des D/A-Wandlers D706 in Abhängigkeit vom Sweep generiert. Dem Schutz vor Überspannung dienen der Widerstand R707 und die Dioden V700.

7.1.18 Variantenerkennung

Zur Variantenerkennung dient der Port D590. Je nach Bestückung der Widerstände R591 bis R598 können die verschiedenen Varianten kodiert werden.

7.1.19 Steuersignale, Tastenbeep

Die Signale MODCRTL-OUT und MODCRTL-IN ermöglichen eine Synchronisation zwischen dem Signalprozessor der Baugruppe Modulationsgenerator und dem Prozessor.

Die Ausgangssignale BLANK und MARKER sowie das Eingangssignal SWEEP-STOP dienen zur Steuerung- und Synchronisation von und mit externen Geräten.

Das Ausgangsport D213 liefert das Steuersignal (LAMP-OFF) für die Beleuchtungsabschaltung der Leuchtstoffröhren.

Zum Erzeugen eines Tastenbeep ist der Piezosummen H200 vorgesehen. Das Port D301 schaltet über D310 die Tonfrequenz 1kHz an V287.

7.1.20 Standby Schalter und -LED

Der an der Frontseite des Generators angebrachte Standbyschalter wird direkt am Rechner angeschlossen und über das gemeinsame Flachbandkabel aufs Motherboard herausgeführt.

Die Standby-LED wird so zwischen $+15V$ und VS12-P geschaltet, daß bei fehlenden $+15V$ ein Strom von VS12-P über die LED auf die virtuelle Masse der $+15V$ fließen kann.

7.2 Meßgeräte und Hilfsmittel

Oszilloskop	100MHz	z.B. BOL
DC-Multimeter	0....+30V, $R_i > 1M\Omega$	z.B. UDL33
DC-Spannungsquelle	..10V	z.B. NGT20

Standby-LED bleibt dunkel	Prüfen der Standby-Spannung an X312.5
Nach dem Einschalten bleibt LC-Display dunkel	Prüfen der Spannung des DC/AC-Wandlers nach 7.4.1
Keine Kontrasteinstellung möglich	Prüfen der Kontrastspannung nach 7.4.2
Drehgeber funktioniert nicht	Prüfen der Pulse des Drehgebers nach 7.4.3
Keine Anzeige nach dem Einschalten	Prüfen des RESET-Signales nach 7.4.4
	Prüfen des ACFAIL-Signales nach 7.4.4
Keine Spannung an X-AXIS	Prüfen des Ausganges X-AXIS mit Diagnose nach 7.4.6
	Prüfen der Referenzspannung mit Diagnose nach 7.4.6
Keine Datenspeicherung nach dem Geräteabschalten	Prüfen der RAM-Spannung mit Diagnose nach 7.4.6

7.4

Prüfen und Abgleich

7.4.1 Prüfen der Versorgungsspannung des DC/AC-Wandlers

Baugruppe Drehgeber:

Am Stecker X6.4 ist in Abhängigkeit der Stellung des Helligkeitsreglers an der Gerätefrontseite die DC-Spannung zu messen: Sollwert: 6V...10V.

7.4.2 Prüfen der Kontrastspannung

Baugruppe DREHGEBER:

Am Stecker X7.5 und X10.5 ist in Abhängigkeit der Stellung des Kontrastreglers an der Gerätefrontseite die DC-Spannung zu messen: Sollwert: -15V...-22V.

7.4.3 Prüfen des Drehgebers

Baugruppe RECHNER:

Oszilloskop an X315.9 und X315.11 anschließen.

Drehgeber drehen. Es müssen 2 zeitversetzte Signale zu messen sein.

7.4.4 Prüfen des RESET und ACFAIL-Signales

Baugruppe RECHNER:

Oszilloskop an X31.35 und D106 PIN2 anschließen.

Unmittelbar nach dem Einschalten des Gerätes muß beim ACFAIL-Signal ein L->H-Übergang stattfinden. Nach ca. 200-300ms muß das RESET-Signal (RES-N) den Pegelwechsel L->H zeigen. Beide Signale müssen bei allen Bedienzuständen den H-Pegel beibehalten.

7.4.5 Prüfen des Diagnosezweiges

- Einstellungen: TPOINT 4
- An X700 eine DC-Spannung von 0,5V einspeisen.
- Prüfen der Spannung an P710: 0,5V und P730: 1,5V.

7.4.6 Prüfen und Auslesen der Diagnosemesspunkte

TPOINT	Spannung	Bedeutung
0	-10mV...10mV	Referenzpunkt
3	0V...10V	X-AXIS
4	-15V...15V	Voltmeter
5	11.5V...12.5V	Progr. spannung FLASH
6	4.9V...5.1V	Referenzspannung X-D/A
7	3.0V...3.7V	Batteriespannung

7.4.7

Prüfen der Position der Steckbrücken

Steckbrücke	Position	Bemerkung
X105	1 - 2	Clock (CPU)
X200	1 - 2	SW-Update
X300	1 - 2	Batterie
X900	1 - 2	+5V-Spannung
X700	1 - 2	Voltmeter
X600	1 - 2	IEC-Control
X800	2 - 3	Timer-Int
X85	1 - 2	Clock (RS232)

7.5

Zerlegung und Zusammenbau

Die 4 Schrauben an der Geräte-Vorderseite entfernen. Das Modul vorsichtig nach vorne klappen, um die Kabelverbindungen W20, W313 und W314 lösen zu können. Nach Trennen von W31 (Flachbandkabel z. Motherboard) kann das Frontmodul herausgenommen werden. Der rückseitige Blechdeckel ist mit 6 Schrauben befestigt. Die Platine RECHNER kann nach Entriegeln der Buchsen X316, X317 und Trennen der beiden Folien sowie der Buchse an X312 vorsichtig herausgenommen werden. Abschließend das Flachbandkabel W315 zur Leiterplatte DREHgeber lösen.

Ausbau der LP DREHgeber: Den Drehknopf abnehmen, und die Verbindung an X6 (z. DC/AC-Wandler) und X7 (Flachfolie z. LCD) trennen. 12pol. Buchsenhalter des Kabels W10 am LCD abziehen. Die LP kann nach Abschrauben von 4 Schrauben herausgenommen werden.

Ausbau des LCD: Kabel W10 sowie Flachfolie zur LP DREHgeber an X7 abziehen. 4pol. Steckverbindung vom DC/AC-Wandler zur CFL-Beleuchtung auftrennen. Das LCD ist mit 4 Schrauben am Gußgehäuse befestigt und kann komplett herausgenommen werden.

Der Zusammenbau geschieht in umgekehrter Reihenfolge. Vor dem Zuschrauben des Deckels ist auf den korrekten Sitz der Baugruppe RECHNER zu achten, insbesondere auf das Anliegen der Dichtschnur.

7.6.1Schnittstelle Rechner

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
X31.1	VD-5P	Eingang	A2, P0WS	5.10V...5.25V max. 3000mA	Versorgungsspannung digital
.	.				
X31.6					
X31.11	VA15-P	Eingang	A2, P0WS	14.7V...15.9V max. 660mA	Versorgungsspannung analog
X31.12					
X31.15	VA15-N	Eingang	A2, P0WS	-15.9V...-14.7V max. 50mA	Versorgungsspannung analog
X31.27	VS12-P	Eingang	A2, P0WS	11.6V...12.4V	Standby-spannung
X31.7,8,9,10,13,14,16					Masse digital
X31.19,20					Masse analog
X31.26	POWER-SWITCH	Ausgang	A2, P0WS		Schalterkontakt
X312.2					
X31.25	POWER-SWITCH-	Ausgang	A2, P0WS		Schalterkontakt
X312.1	GND				
X312.5	STBY-LED1	Ausgang	A2, P0WS		Anode Standby-LED
X312.3	STBY-LED2	Eingang	A2, P0WS		Kathode Standby-LED
X312.4	N.C.				Codierung
X31.40	SERBUS-CLK	Ausgang		HCMOS-Pegel	Serbus-Clock
X31.39	SERBUS-DAT	bidir.		HCMOS-Pegel	Serbus-Daten
X31.37	SERBUS-SYNC	Ausgang		HCMOS-Pegel	Serbus-Synchronisation
X31.38	SERBUS-INT	Eingang		HCMOS-Pegel	Serbus-Interrupt
X31.28	RES-P	Ausgang		HCMOS-Pegel	Reset
X31.44	DIAG-5V	Eingang		-5V...5V	Diagnose
X31.43	DIAG-15V	Eingang		-15V...15V	Diagnose
X31.42	TRIGGER	Eingang	Rückwand	HCMOS-Pegel	Trigger
X31.41	AUX-TRIG	Eingang	Rückwand	HCMOS-Pegel	Trigger
X31.36	SYSRESET	Eingang	A2, P0WS	HCMOS-Pegel	System-Reset
X31.35	ACFAIL	Eingang	A2, P0WS	HCMOS-Pegel	Powerfail
X31.34	BLANK	Ausgang	Rückwand	HCMOS-Pegel	Steuersignal
X31.33	MARKER	Ausgang	Rückwand	HCMOS-Pegel	Steuersignal
X31.32	SWEEP-STOP	Eingang	Rückwand	HCMOS-Pegel	Steuersignal
X31.30	MODCTRL-OUT	Ausgang	A5, MGEN X5.2	HCMOS-Pegel	Steuerung Modulationsgenerator
X31.31	MODCTRL-IN	Eingang	A5, MGEN X5.1	HCMOS-Pegel	Steuerung Modulationsgenerator
X31.45	X-AXIS	Ausgang	Rückwand	0...10V	Frequ.prop. Spannung
X31.49	RXD1	Eingang	Motherboard	HCMOS-Pegel	TEST
X31.48	TXD1	Ausgang	Motherboard	HCMOS-Pegel	TEST
X31.47	CTS1	Eingang	Motherboard	HCMOS-Pegel	TEST
X31.46	RTS1	Ausgang	Motherboard	HCMOS-Pegel	TEST
X317.1	RETO	Eingang	Drehgeber	HCMOS-Pegel	Tastatur
.	.				
X317.7	RET6				
X317.8	SCAN0	Ausgang	Drehgeber	HCMOS-Pegel	Tastatur
.	.				
X317.13	SCAN5				
X316.1	"GND"			1kOhm Pulldown	Tastatur
.	.				
X316.13					
X313.2	DSR	Eingang	Rückwand	RS232-Pegel	Serielle Schnittstelle

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
X313.3	RXD	Eingang	Rückwand	RS232-Pegel	Serielle Schnittstelle
X313.5	TXD	Ausgang	Rückwand	RS232-Pegel	Serielle Schnittstelle
X313.7	DTR	Ausgang	Rückwand	RS232-Pegel	Serielle Schnittstelle
X313.4					
X313.9					Masse digital
X314.1	DIO-1	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.3	DIO-2	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.5	DIO-3	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.7	DIO-4	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.2	DIO-5	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.4	DIO-6	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.6	DIO-7	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.8	DIO-8	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.9	EOI	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.10	REN	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.11	DAV	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.13	NRFD	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.15	NDAC	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.17	IFC	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.19	SRQ	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.21	ATN	bidir.	Rückwand	TTL O.C.	IEC-Bus
X314.12,14,16,18,20,22,24					Masse
X315.2	VA15- P	Eingang	DREHGEBER max. 650mA	14.7V...15.9V	Versorgungsspannung analog
X315.4					
X315.6					
X315.8					
X315.18	+5V	Eingang	DREHGEBER	5.1V...5.3V max.20mA	Versorgungsspannung digital
X315.1,20,21,23,25					Masse
X315.16	LAMPOFF	Eingang	DREHGEBER	HCMOS-Pegel	Steuerung Beleuchtung
X315.3	POT1	bidir.	DREHGEBER		Anschl.1 d. Kontrastreglers
X315.5	POT2	bidir.	DREHGEBER		Anschl.2 d. Kontrastreglers
X315.7	POT3	bidir.	DREHGEBER		Anschl.3 d. Kontrastreglers
X315.10	POT4	bidir.	DREHGEBER		Anschl.1 d. Helligkeitsreglers
X315.12	POT5	bidir.	DREHGEBER		Anschl.2 d. Helligkeitsreglers
X315.14	POT6	bidir.	DREHGEBER		Anschl.3 d. Helligkeitsreglers
X315.9	KNOB1	Eingang	DREHGEBER	HCMOS-Pegel	Anschl.1 d. Drehgebers
X315.11	KNOB2	Eingang	DREHGEBER	HCMOS-Pegel	Anschl.2 d. Drehgebers
X315.22	LCD-D0	Ausgang	DREHGEBER	HCMOS-Pegel	Daten LCD
X315.24	LCD-D1	Ausgang	DREHGEBER	HCMOS-Pegel	Daten LCD
X315.26	LCD-D2	Ausgang	DREHGEBER	HCMOS-Pegel	Daten LCD
X315.13	LCD-D3	Ausgang	DREHGEBER	HCMOS-Pegel	Daten LCD
X315.17	LCD-CP1	Ausgang	DREHGEBER	HCMOS-Pegel	Clock1 LCD
X315.19	LCD-CP2	Ausgang	DREHGEBER	HCMOS-Pegel	Clock2 LCD
X315.15	LCD-CS	Ausgang	DREHGEBER	HCMOS-Pegel	Chip-Select LCD

7.6.2

Schnittstelle Drehgeber

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
X5A.1	+15V	Eingang	RECHNER	14.7V...15.9V	Versorgungsspannung analog
:			max. 600mA		
X5A.4					
X5A.9	+5V	Eingang	RECHNER	5.1V...5.3V max.20mA	Versorgungsspannung digital
X5A.10					Masse
X5B.1,11,12,13					
X6.1	V-DC/AC	Ausgang	DC/AC-Wandler	6V...10V max. 550mA	Versorgungsspannung Beleuchtung
X6.4	GND-DC/AC		DC/AC-Wandler		
X7.5	VEE-LCD	Ausgang	LCD	-15V...-22V	Kontrastspannung
X10.5			max. 20mA		
X7.7	VDD-LCD	Ausgang	LCD	5.1V...5.3V	Versorgungsspannung digital
X10.7			max. 20mA		
X7.6	VSS-LCD				Masse
X5A.11	LCD-D0	Eingang	RECHNER	HCMOS-Pegel	Daten LCD
X7.4		Ausgang	LCD		
X5A.12	LCD-D1	Eingang	RECHNER	HCMOS-Pegel	Daten LCD
X7.3		Ausgang	LCD		
X5A.13	LCD-D2	Eingang	RECHNER	HCMOS-Pegel	Daten LCD
X7.2		Ausgang	LCD		
X5B.7	LCD-D3	Eingang	RECHNER	HCMOS-Pegel	Daten LCD
X7.1		Ausgang	LCD		
X5B.8	LCD-CS	Eingang	RECHNER	HCMOS-Pegel	Chip-Select LCD
X7.10		Ausgang	LCD		
X5B.9	LCD-CP1	Eingang	RECHNER	HCMOS-Pegel	Clock1 LCD
X7.8		Ausgang	LCD		
X5B.10	LCD-CP2	Eingang	RECHNER	HCMOS-Pegel	Clock2 LCD
X7.9		Ausgang	LCD		
X5A.8	LAMPOFF	Eingang	RECHNER	HCMOS-Pegel	Steuerung Beleuchtung
X5B.5	KNOB1	Ausgang	RECHNER	0.C. 2,2kOhm	Pullup Anschl.1 d. Drehgebers
X5B.6	KNOB2	Ausgang	RECHNER	0.C. 2,2kOhm	Pullup Anschl.2 d. Drehgebers
X5B.2	POT1,2,3	bidir.	RECHNER		Anschl.1,2,3 d. Kontrastreglers
:					
X5B.4					
X5A.5	POT4,5,6	bidir.	RECHNER		Anschl.1,2,3 d. Helligk.reglers
:					
X5A.7					

7.6.3

Schnittstelle LCD

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
CONN2.5	VEE-LCD	Eingang	DREHGEBER	-15V...-22V	Kontrastspannung
CONN2.7	VDD-LCD	Eingang	DREHGEBER	5.1V...5.3V	Versorgungsspannung digital
CONN1.6	VSS-LCD				Masse
CONN1.4	LCD-D0	Eingang	DREHGEBER	HCMOS-Pegel	Daten LCD
CONN1.3	LCD-D1	Eingang	DREHGEBER	HCMOS-Pegel	Daten LCD
CONN1.2	LCD-D2	Eingang	DREHGEBER	HCMOS-Pegel	Daten LCD
CONN1.1	LCD-D3	Eingang	DREHGEBER	HCMOS-Pegel	Daten LCD
CONN1.10	LCD-CS	Eingang	DREHGEBER	HCMOS-Pegel	Chip-Select LCD
CONN1.8	LCD-CP1	Eingang	DREHGEBER	HCMOS-Pegel	Clock1 LCD
CONN1.9	LCD-CP2	Eingang	DREHGEBER	HCMOS-Pegel	Clock2 LCD

SERVICE INSTRUCTIONS

Front Module with Controller VAR 02

1035.5440

Contents

7. TESTING AND REPAIR OF THE BOARD	5
 7.1 Function Description	5
7.1.1 CPU: 80960SB-16	6
7.1.2 512K-Byte RAM with Battery-backup	6
7.1.3 Battery Test	6
7.1.4 Firmware in FLASH-EPROMs, Update	6
7.1.5 IEEE-Bus Interface	7
7.1.6 SERBUS-Interface	7
7.1.7 RS232- / V.24-Interface	7
7.1.8 Timer	7
7.1.9 Interrupt Controller	7
7.1.10 ACFAIL, SYSRESET	8
7.1.11 Processing of External Trigger Signals	8
7.1.12 LCD Interface	8
7.1.13 Brightness and Contrast Control for LCD	8
7.1.14 Knob Interface	9
7.1.15 Connector for the Keyboard Matrix	9
7.1.16 Diagnostics A/D Converter	9
7.1.17 X-Output	10
7.1.18 Identification of Variant and Revision	10
7.1.19 Control Signals, Key Beep	10
7.1.20 Standby Switch and LED	10
 7.2 Test Instruments and Utilities	10
 7.3 Troubleshooting	11
 7.4 Testing and Adjustment	11
7.4.1 Checking the Supply Voltage of the DC/AC Converter	11
7.4.2 Checking the Contrast Voltage	11
7.4.3 Checking the Shaft Encoder	11
7.4.4 Testing the RESET and the ACFAIL Signal	11
7.4.5 Checking the Diagnostic Path	12
7.4.6 Check and Readout of the Diagnostic Test Points	12
7.4.7 Checking the Position of Jumpers	12
 7.5 Removal and Assembly	12
 7.6 External Interfaces	14
7.6.1 Controller Interface	14
7.6.2 Shaft encoder Interface	16
7.6.3 LCD Interface	16
Part list	
Coordinates list	
Circuit diagram	
Layout diagram	

7. Testing and Repair of the Board

Caution ! ! In the Front Module many data are stored, which are necessary for operation. All data contained in the RAM may be reconstructed by the unit itself. To reconstruct data in the flash EPROM additional tools are necessary. If there is some danger to loose data of the flash EPROM, be shure, you can

- 1) load new firmware,
- 2) perform a level calibration (refer to section 6.4 of service manual),
- 3) restore calibration data or calibrate the Reference Oscillator (refer to section 2.11.8 of operating manual),
- 4) reconstruct the operational data in the menue UTILITIES/DIAG/PARAM.

To do 3) and 4) the concerned data have to be noted down before work on the module. To restore data of reference oscillator, you got to unlock password protection level 2 (refer to section 2.11.7 of operating manual). The password is 250751. After this in the menue UTILITIES/CALIB/REF OSC the noted calibration data can be keyed in. To construct operational data (4), password protection level 3 is to be unlocked. Please contact your R&S representative to get the password. The menue UTILITIES/DIAG/SET PARAM will appear and allow to key in the noted data.

7.1 Function Description

The front module contains the following components: controller, shaft encoder, keyboard and LC display.

The controller must provide the following functions and features:

- CPU: 80960SB-16
- 512K-Byte RAM with battery-backup
- Battery test
- Firmware in flash-EPROMs which can be updated
- EEPROM (optional)
- IEEE-bus interface
- SERBUS interface
- RS232 / V.24 interface
- Sufficient timers (≥ 4 16-Bit Timer)
- Interrupt controller
 - all interrupts maskable either at the source or at the interrupt controller
- ACFAIL of the power supply triggers maskable interrupt
- Processing of external trigger signals (TRIGGER, AUX-TRIG) polarity & trigger type (dyn./stat.) selectable
- LCD interface
- brightness and contrast control for LCD
- spinwheel interface
- connector for keyboard matrix
- self diagnostics with 12-bit converter and

- two diagnostic inputs (±5V & ±15V)
- X-output (0 to 10 V)
- identification of model/variation
- various control lines for other modules (MODCTRL-OUT, MODCTRL-IN)
- digital output and input signals (BLANK, MARKER, SWEEP-STOP, KEYBEEP)
- SYS-RESET by the power supply causes system reset
- standby switch and standby LED

7.1.1 CPU: 80960SB-16

Use of the processor 80960 (clock freq.: 16MHz) requires defined RESET and clock signals for the complete controller system. This signal-generation is realized by an ASIC (CLOCKGEN D120). Various clock frequencies used in the system are derived from this ASIC. Since the bus-interface of the 80960 is designed for BURST access, several PLDs have been used (D300, D402, D540, D600, D800, D950). The latter convert the BURST access into the corresponding control for the components connected. Besides, they generate the READY signal for adapting the access speed. The various READY signals are joined to a common signal for the processor via an AND logic at D103. The processor 80960 provides a multiplexed address and data bus. During the address cycle of the CPU, the addresses A4 to A15 are loaded into the components D204, D205 and D216 and are then available during the following data-/wait-cycles and the final recovery-cycle.

The two data-bus drivers D208 and D209 are required to achieve an isolation of the data bus from the multiplexed data-/address bus of the processor. This is necessary when using slow peripheral components.

7.1.2 512K-Byte RAM with Battery-backup

This memory is composed of four 1Mbit SRAM components (D302,D304,D303,D305) in two banks of 128K words, each. (1 word=16bits). The access to this memory is disabled by the signal EN-MEM-P, whenever the reset signal is active or the supply voltage drops below 4 V (V390, V391). This check of the supply voltage is intended for a sudden power failure, without prior generation of the SYSRESET signal by the power supply. The circuit consisting of the transistors V300 and V301 and the diode V302 initiates switchover from VBATT to +5V, as soon as the +5V-supply voltage exceeds the battery voltage.

7.1.3 Battery Test

The charge of the battery can be tested by connecting a load resistor of 39,2 k_Ω to the battery by means of the REED relay, which is controlled by the signal TST-BATT. The voltage at the resistor is applied to the self-diagnostics circuit and thus informs on the discharge degree of the battery.

7.1.4 Firmware in FLASH-EPROMs, Update

The use of FLASH-EPROMs allows for making firmware updates without external access. Two components D404 and D405, type 28F020 (256K-words) are therefore provided.

The voltage VPP required for programming is generated from +15V by the component D400. This linear controller can be switched on and off by means of the signal VPP-ON.

The firmware update is realized via an RS232 interface at the rear panel of the instrument.

Since the FLASH-EPROMs can only be deleted completely, a BOOT-EPROM (D301) is provided, which contains the IPL. This BOOT-EPROM additionally allows for fitting the FLASH-EPROMs as unprogrammed standard components.

The signal at bridge X200 indicates to the processor whether a firmware update is to be carried out or not.

7.1.5 IEEE-Bus Interface

The NEC component μ PD7210 (D602) with the bus drivers 75160 (D603) and 75162 (D604) is used as IEEE-bus controller. It is provided with an 8MHz clock frequency via "CLOCKGEN". The complete controller capability of the IEEE-bus can be realized by configuring the shorting jumper at X600 correspondingly.

7.1.6 SERBUS-Interface

A serial bus system (SERBUS) developed by R&S is used for control and programming of the individual modules. Two standard ASICs are already available (SERBUS-M and SERBUS-D).

The controller accommodates the bus-master component (SERBUS-M / D87). It is programmed in words and operated at a clock frequency of 32 MHz. 4 MHz are used for serial data transmission to the boards.

7.1.7 RS232- / V.24-Interface

This interface is part of the component SAB82556 (D85). The level is converted from TTL to RS232 in the component LT1181 (D860). The second serial interface contained in the SAB82556 is applied to the motherboard without level conversion and is provided there for test purposes at a 10-pin connector.

7.1.8 Timer

The component SAB82556 contains three 16-bit timers. Since three times are not enough, an additional component 82C54 (D610) has been fitted which also contains three 16-bit timers. Two of these timers have been cascaded to enable long times with high resolution.(timer1 und Timer2). 1 kHz are provided at 82C54 as input clock for timer 0 and 1 MHz for timers1/2. The following clock sources are provided at the SAB82556:
8MHz, 1kHz and 14,7456MHz/x in special cases, for timer 0
8MHz, 1kHz and 14,7456MHz/x, too, for timer 1 and
8MHz for timer 2.

7.1.9 Interrupt Controller

The function of the interrupt controller has also been realized by the SAB82556. The following 5 interrupt sources are connected, each input can be used dynamically or statically:

Port input	Interrupt
PA0	Trigger
PA1	Aux-Trigger
PA4	IEC-INT-P
PA5	T2-INT0
PA6	T2-INT2

All static interrupts are comprised to one interrupt at D830 and applied to the remaining interrupt input (INTE):

1. - SERBUS-INT1
2. - SERBUS-INT2
3. - ACFAIL (powerfail of power supply)
4. - SERBUS-ACT-REQ.

All interrupts at the port of the SAB82556 are maskable. The static interrupts 3. and 4. are maskable at the source and the remaining ones can be masked at port register D810.

7.1.10 ACFAIL, SYSRESET

The signal ACFAIL is generated in the power supply and belongs to those interrupt signals which are not maskable at the source. Masking is carried out as described under 7.1.9. SYSRESET (generated by the power supply, too) is applied to the ASIC CLKGEN via D106C/D and initiates the reset. Simultaneously, the capacitor C109 is discharged via R108 and V102. When the signal SYSRESET assumes HIGH level again, C109 charges via R129 and, subsequent to reaching the threshold voltage of D106C, enables the reset input of CLKGEN again.

7.1.11 Processing of External Trigger Signals

(TRIGGER, AUX-TRIG) polarity & trigger type(dyn./stat.) are selectable

Selection of the type of trigger is made by programming the interrupt controller in the component SAB82556. The polarity of the trigger signal can be set individually for both trigger signals at port D810 and is generated by an EXOR logic combining the port signal and the trigger signal(D840).

7.1.12 LCD Interface

The LCD controller SED1351F (D90) of SEIKO EPSON is used to address the LC display. The display buffer/video RAM consists of the two SRAMs D960 and D970 and offers memory space for four screen pages (640 x 200).

Linear addressing of the pixels (pixel 0 is LSB of the lowest address) is achieved by mirroring the data bus at D90 byte by byte.

The data and clock signals for the LCD are routed via D980 to increase the driver capability and to isolate the component D90.

7.1.13 Brightness and Contrast Control for LCD

PC board: Shaft Encoder (1035.5592.01)

Brightness is set via the input voltage of the DC/AC converter for the CFL illumination. The input voltage for this converter may vary between +6V and +10V. Increase of voltage means increase of

brightness. The voltage is controlled by means of LM317T (N50), and the output voltage is set using R990.

The input voltage of the converter must assume +10V with switch-on of the instrument in order to ensure ignition of the fluorescent tubes. The circuit consisting of N51 and V52, which shortly provides +10V following switch-on, is available for this purpose. The illumination can be switched off by means of V48 to improve the interference radiation of the AC/DC converter and of the fluorescent tubes.

The contrast is set via the negative supply voltage VEE of the LC display. This voltage is derived from +15V by means of a switch-capacitor-voltage-converter with controller (LT1054/N70) and can be set in the range from -15V to -22V using R995.

Two additional --type LC filters are contained on the board for filtering of the interferences radiated by the DC/AC converter and the converter LT1054.

7.1.14 Knob Interface

With each change of level of the signal KNOB2 (CLK), a LOW pulse is generated via the runtime chain consisting of D566C/D and D562B/C at the EXNOR-gate D566B. This pulse is used to store the direction information in the flip-flop D565B and to trigger an interrupt using D565A.

7.1.15 Connector for the Keyboard Matrix

The vertical lines are connected to the register D550, the horizontal lines to the port D560.

If no key is pressed the connected horizontal lines are applied to HIGH potential via the pull-up resistors. The vertical lines are kept at LOW potential by the register outputs. As soon as a key is pressed, the associate horizontal line assumes LOW potential.

Subsequent to debouncing, an interrupt is generated, which allows for applying the vertical lines individually to LOW potential. The level indicates, which key was pressed.

7.1.16 Diagnostics A/D Converter

including 12-bit converter and two diagnostic inputs ($\pm 5V$ & $\pm 15V$)

The two diagnostic inputs and a few test points of the controller are applied to the A/D converter D704 via the multiplexer D700, the impedance converter N701 and the input amplifier.

The following voltages can be set for maximum range of the A/D converter: $\pm 15V$, $\pm 5V$ and $\pm 1V$.

The conversion time (max. 9 μs) is indicated by the BUSY output, which can be read in via D570 (port1).

The following voltages can be measured using the self-diagnostics converter for self-diagnostic purposes:

- the voltage at the X-output
- the programming voltage of the FLASH-EPROMs
- the reference voltage of the D/A converter
- the battery voltage

Moreover, test cables can be connected instead of the shorting jumper X700 and thus, any test point can be connected to the A/D converter. Make sure, that the test voltage does not exceed $\pm 15V$.

7.1.17 X-Output

With sweeping, the X-output generates an output signal of 0V (sweep start) to 10V (end of sweep), which can be used to control external devices. This signal is generated by the processor by setting the D/A converter D706 correspondingly, depending on the sweep. The resistor R707 and the diodes V700 are provided for overvoltage protection.

7.1.18 Identification of Variant and Revision

The port D590 is provided for identification of the module. The variant of the module is coded by the configuration of the resistors R591 to R594, the revision by R595 through R598.

7.1.19 Control Signals, Key Beep

The signals MODCNTL-OUT and MODCNTL-IN allow for synchronization between the signal processor of the modulation generator module and the processor.

The output signals BLANK and MARKER as well as the input signal SWEEP-STOP are used for control and synchronization of external devices.

The output port D213 supplies the control signal (LAMP-OFF) for switching off the tubular fluorescent lamps.

The piezo-buzzer H200 is provided for generation of a key beep. The port D301 switches the 1-kHz tone frequency to V287 via D310.

7.1.20 Standby Switch and LED

The standby switch fitted to the front panel of the generator is connected directly to the controller and routed to the motherboard via the common ribbon cable.

The standby LED is switched between +15V and VS12-P such that in case of a cut of +15V a current may flow from VS12-P via the LED to the virtual ground of the +15V.

7.2 Test Instruments and Utilities

Oscilloscope	100MHz	e.g., BOL
DC multimeter	0 to +-30V, Ri>1MOhm	e.g., UDL33
DC voltage source	.10V	e.g., NGT20

7.3

Troubleshooting

Standby LED does not light up	Check the standby voltage at X312.5
Subsequent to switch-on, the LC-Display remains dark	Check the voltage of the DC/AC converter acc. to 7.4.1
Setting of contrast not possible	Check the contrast voltage acc. to 7.4.2
Shaft encoder does not work	Check the pulses of the shaft encoder acc. to 7.4.3
No display following switch-on	Check the RESET signal acc. to 7.4.4
	Check the ACFAIL signal acc. to 7.4.4
No voltage at X-AXIS	Check the output X-AXIS using diagnostics acc. to 7.4.6
	Check the reference voltage using the diagnostics acc. to 7.4.6
No storage of data after switching off the instrument	Check the RAM voltage using diagnostics acc. to 7.4.6

7.4

Testing and Adjustment

7.4.1 Checking the Supply Voltage of the DC/AC Converter

Shaft encoder module:

Measure the DC voltage at the connector X6.4 depending on the position of the brightness control at the front panel of the instrument: rated value: 6V to 10V.

7.4.2 Checking the Contrast Voltage

SHAFT ENCODER module:

Measure the DC voltage at the connectors X7.5 and X10.5 depending on the position of the contrast controller at the front panel of the instrument: rated value: -15V to -22V.

7.4.3 Checking the Shaft Encoder

CONTROLLER module:

Connect an oscilloscope to X315.9 and X315.11.

Turn the shaft encoder. There must be 2 signals with different timing.

7.4.4 Testing the RESET and the ACFAIL Signal

CONTROLLER module:

Connect an oscilloscope to X31.35 and D106 PIN2.

Just upon switching on the instrument, the level of the ACFAIL signal must change from L to H. This change of level must be indicated by the RESET signal (RES-N) after approx. 200 to 300 ms. Both signals must remain HIGH-level with all operating states.

7.4.5 Checking the Diagnostic Path

- Settings: **TPOINT 4**
- Apply a DC voltage of 0.5V to X700.
Check the voltage at P710: 0.5V and P730: 1.5V.

7.4.6 Check and Readout of the Diagnostic Test Points

TPOINT	Voltage	Meaning
0	-10mV to 10mV	Reference point
3	0V to 10V	X-AXIS
4	-15V to 15V	Voltmeter
5	11.5V to 12.5V	Progr. voltage FLASH
6	4.9V to 5.1V	Reference voltage X-D/A
7	3.0V to 3.7V	Battery voltage

7.4.7 Checking the Position of Jumpers

Jumper	Position	Remark
X105	1 - 2	Clock (CPU)
X200	1 - 2	SW-Update
X300	1 - 2	Battery
X900	1 - 2	+5V-voltage
X700	1 - 2	Voltmeter
X600	1 - 2	IEC-Control
X800	2 - 3	Timer-Int
X85	1 - 2	Clock (RS232)

7.5 Removal and Assembly

Remove the 4 screws at the front panel of the instrument. Carefully swing out the module to the front, in order to be able to disconnect the cable connections W20, W313 and W314. Subsequent to disconnecting W31 (ribbon cable to the motherboard), the front module can be withdrawn. The metal cover on the rear is fixed by 6 screws. The CONTROLLER board can be removed carefully after unlocking the sockets X316, X317 and separating the two foils as well as the socket at X312. Finally, disconnect the ribbon cable W315 to the ENCODER board.

Removal of the p.c.b. SHAFT ENCODER: remove the rotary knob, and disconnect the connection at X6 (to. DC/AC converter) and X7 (ribbon cable to LCD). Disconnect 12-pin connector support of the cable W10 from the LCD. The p.c.b. can be removed after unscrewing of 4 screws.

Removal of the LCD: disconnect the cable W10 as well as the flat foil to the PCB SHAFT ENCODER from X7. Disconnect the 4-pin

connector between the DC/AC converter and the CFL illumination. The LCD is fixed to the cast housing by 4 screws and can be taken out completely.

Assembly has to be carried out in the reverse order. Prior to fixing the cover again, make sure that the PROCESSOR board has locked in place correctly and that the seal cord is correctly applied.

7.6.1 Controller Interface

Pin	Name	Input/Output	Origin/Destin.	Specified range	Signal description
X31.1	VD-5P	Input	A2, P0WS	5.10V to 5.25V max. 3000mA	Supply voltage, digital
.	.				
X31.6					
X31.11	VA15-P	Input	A2, P0WS	14.7V to 15.9V max. 660mA	Supply voltage, analog
X31.12					
X31.15	VA15-N	Input	A2, P0WS	-15.9V to -14.7V max. 50mA	Supply voltage, analog
X31.27	VS12-P	Input	A2, P0WS	11.6V to 12.4V	Standby-voltage
X31.7,8,9,10,13,14,16					Ground, digital
X31.19,20					Ground, analog
X31.26	POWER-SWITCH	Output	A2, P0WS		Switch contact
X312.2					
X31.25	POWER-SWITCH	Output	A2, P0WS		Switch contact
X312.1	GND				
X312.5	STBY-LED1	Output	A2, P0WS		Anode of standby-LED
X312.3	STBY-LED2	Input	A2, P0WS		Cathode of standby-LED
X312.4	N.C.				Coding
X31.40	SERBUS-CLK	Output		HCMOS level	Serbus Clock
X31.39	SERBUS-DAT	bidir.		HCMOS level	Serbus data
X31.37	SERBUS-SYNC	Output		HCMOS level	Serbus synchronization
X31.38	SERBUS-INT	Input		HCMOS level	Serbus interrupt
X31.28	RES-P	Output		HCMOS level	Reset
X31.44	DIAG-5V	Input		-5V to 5V	Diagnostics
X31.43	DIAG-15V	Input		-15V to 15V	Diagnostics
X31.42	TRIGGER	Input	Rear panel	HCMOS level	Trigger
X31.41	AUX-TRIG	Input	Rear panel	HCMOS level	Trigger
X31.36	SYSRESET	Input	A2, P0WS	HCMOS level	System reset
X31.35	ACFAIL	Input	A2, P0WS	HCMOS level	Power fail
X31.34	BLANK	Output	Rear panel	HCMOS level	Control signal
X31.33	MARKER	Output	Rear panel	HCMOS level	Control signal
X31.32	SWEEP-STOP	Input	Rear panel	HCMOS level	Control signal
X31.30	MODCTRL-OUT	Output	A5, MGEN X5.2	HCMOS level	Modulation generator control
X31.31	MODCTRL-IN	Input	A5, MGEN X5.1	HCMOS level	Modulation generator control
X31.45	X-AXIS	Output	Rear panel	0 to 10V	Frequ.-prop. voltage
X31.49	RXD1	Input	Motherboard	HCMOS level	TEST
X31.48	TXD1	Output	Motherboard	HCMOS level	TEST
X31.47	CTS1	Input	Motherboard	HCMOS level	TEST
X31.46	RTS1	Output	Motherboard	HCMOS level	TEST
X317.1	RETO	Input	Shaft encoder	HCMOS level	Keyboard
.	.				
X317.7	RET6				
X317.8	SCAN0	Output	Shaft encoder	HCMOS level	Keyboard
.	.				
X317.13	SCAN5				
X316.1	"GND"			1kOhm Pulldown	Keyboard
.	.				
X316.13					
X313.2	DSR	Input	Rear panel	RS232 level	Serial interface

Pin	Name	Input/Output	Origin/Destin.	Specified range	Signal description
X313.3	RXD	Input	Rear panel	RS232 level	Serial interface
X313.5	TXD	Output	Rear panel	RS232 level	Serial interface
X313.7	DTR	Output	Rear panel	RS232 level	Serial interface
X313.4					
X313.9					Ground, digital
X314.1	DIO-1	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.3	DIO-2	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.5	DIO-3	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.7	DIO-4	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.2	DIO-5	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.4	DIO-6	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.6	DIO-7	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.8	DIO-8	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.9	EOI	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.10	REN	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.11	DAV	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.13	NRFD	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.15	NDAC	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.17	IFC	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.19	SRQ	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.21	ATN	bidir.	Rear panel	TTL O.C.	IEEE bus
X314.12,14,16,18,20,22,24					Ground
X315.2	VA15-P	Input	SHAFT ENCODER	14.7V to 15.9V max. 650mA	Supply voltage, analog
X315.4					
X315.6					
X315.8					
X315.18	+5V	Input	SHAFT ENCODER	5.1V...5.3V max.20mA	Supply voltage, digital
X315.1,20,21,23,25					Ground
X315.16	LAMPOFF	Input	SHAFT ENCODER	HCMOS level	Illumination control
X315.3	POT1	bidir.	SHAFT ENCODER		Conn.1 of contrast control
X315.5	POT2	bidir.	SHAFT ENCODER		Conn.2 of contrast control
X315.7	POT3	bidir.	SHAFT ENCODER		Conn.3 of contrast control
X315.10	POT4	bidir.	SHAFT ENCODER		Conn.1 of brightness control
X315.12	POT5	bidir.	SHAFT ENCODER		Conn.2 of brightness control
X315.14	POT6	bidir.	SHAFT ENCODER		Conn.3 of brightness control
X315.9	KNOB1	Input	SHAFT ENCODER	HCMOS level	Conn.1 of the shaft encoder
X315.11	KNOB2	Input	SHAFT ENCODER	HCMOS level	Conn.2 of the shaft encoder
X315.22	LCD-D0	Output	SHAFT ENCODER	HCMOS level	Data LCD
X315.24	LCD-D1	Output	SHAFT ENCODER	HCMOS level	Data LCD
X315.26	LCD-D2	Output	SHAFT ENCODER	HCMOS level	Data LCD
X315.13	LCD-D3	Output	SHAFT ENCODER	HCMOS level	Data LCD
X315.17	LCD-CP1	Output	SHAFT ENCODER	HCMOS level	Clock1 LCD
X315.19	LCD-CP2	Output	SHAFT ENCODER	HCMOS level	Clock2 LCD
X315.15	LCD-CS	Output	SHAFT ENCODER	HCMOS level	Chip-Select LCD

7.6.2

Shaft encoder Interface

Pin	Name	Input/Output	Origin/Destin.	Specified range	Signal description
X5A.1	+15V	Input	Controller	14.7V to 15.9V max. 600mA	Supply voltage, analog
:					
X5A.4					
X5A.9	+5V	Input	CONTROLLER	5.1V..5.3V max.20mA	Supply voltage, digital
X5A.10					Ground
X5B.1,11,12,13					
X6.1	V-DC/AC	Output	DC/AC converter	6V...10V max. 550mA	Supply voltage for illumination
X6.4	GND-DC/AC				DC/AC-converter
X7.5	VEE-LCD	Output	LCD	-15V to -22V max. 20mA	Contrast voltage
X10.5					
X7.7	VDD-LCD	Output	LCD	5.1V to 5.3V max. 20mA	Supply voltage, digital
X10.7					
X7.6	VSS-LCD				Ground
X5A.11	LCD-D0	Input	CONTROLLER	HCMOS level	Data LCD
X7.4		Output	LCD		
X5A.12	LCD-D1	Input	CONTROLLER	HCMOS level	Data LCD
X7.3		Output	LCD		
X5A.13	LCD-D2	Input	CONTROLLER	HCMOS level	Data LCD
X7.2		Output	LCD		
X5B.7	LCD-D3	Input	CONTROLLER	HCMOS level	Data LCD
X7.1		Output	LCD		
X5B.8	LCD-CS	Input	CONTROLLER	HCMOS level	Chip-Select LCD
X7.10		Output	LCD		
X5B.9	LCD-CP1	Input	CONTROLLER	HCMOS level	Clock1 LCD
X7.8		Output	LCD		
X5B.10	LCD-CP2	Input	CONTROLLER	HCMOS level	Clock2 LCD
X7.9		Output	LCD		
X5A.8	LAMPOFF	Input	CONTROLLER	HCMOS level	Illumination control of
X5B.5	KNOB1	Output	CONTROLLER	0.C. 2,2kOhm	Connect.1 of the shaft encoder
X5B.6	KNOB2	Output	CONTROLLER	0.C. 2,2kOhm	Connect.2 of the shaft encoder
X5B.2	POT1,2,3	bidir.	CONTROLLER		Conn.1,2,3 of contrast contr.
:					
X5B.4					
X5A.5	POT4,5,6	bidir.	CONTROLLER		Conn.1,2,3 of brightness control
:					
X5A.7					

7.6.3

LCD Interface

Pin	Name	Input/Output	Origin/Destin.	Specified range	Signal description
CONN2.5	VEE-LCD	Input	SHAFT ENCODER	-15V to -22V	Contrast voltage
CONN2.7	VDD-LCD	Input	SHAFT ENCODER	5.1V to 5.3V	Supply voltage digital
CONN1.6	VSS-LCD				Ground
CONN1.4	LCD-D0	Input	SHAFT ENCODER	HCMOS Level1	Data LCD
CONN1.3	LCD-D1	Input	SHAFT ENCODER	HCMOS Level1	Data LCD
CONN1.2	LCD-D2	Input	SHAFT ENCODER	HCMOS Level1	Data LCD
CONN1.1	LCD-D3	Input	SHAFT ENCODER	HCMOS Level1	Data LCD
CONN1.10	LCD-CS	Input	SHAFT ENCODER	HCMOS Level1	Chip-Select LCD
CONN1.8	LCD-CP1	Input	SHAFT ENCODER	HCMOS Level1	Clock1 LCD
CONN1.9	LCD-CP2	Input	SHAFT ENCODER	HCMOS Level1	Clock2 LCD

XY-Liste

XY List

Erklärung der Spaltenbezeichnungen:

el. Kennz.	Bauelement-Kennzeichen
Seite	Leiterplatten-Seite, auf der sich das Bauelement befindet
X/Y	Koordinaten (in Millimeter) des Bauelementes auf der Leiterplatte bezogen auf den Nullpunkt
Planq., Bl.	Planquadrat und Seite des Schaltbildes für das jeweilige Bauelement

Explanation of column designations:

Part	Identification of instrument part
Side	Side of the PC board on which instrument part is positioned
X/Y	Coordinates (in units of millimeters) of the component on the PC board in reference to zero point
Sqr, Pg	Square and page of the diagram for the respective instrument part

Service-Relevante Bauteile / Service-Relevant Components											
Part Side X Y Sqr Pg				Part Side X Y Sqr Pg				Part Side X Y Sqr Pg			
E1	A	36	27	7D	1	S1	A	22	43	7D	1
E2	A	41	34	7C	1	X5	B	76	35	1F	1
R71	B	25	10	5C	1	X6	B	4	95	6E	1
							X7		B	73	97
									6B		1

ROHDE & SCHWARZ	-I	Datum Date	XY-Liste f"r XY-list for	Sach-Nummer Stock-Nr	Blatt Page
		06 07.04.94	ED DREHGEBER KNOB_ASSEMBLY	1035.5592.01 XY	1+

Nicht-Service-Relevante Bauteile / Non-Service-Relevant Components																	
Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
C11	A	60	46	1C	1	C76	A	32	10	5C	1	R57	A	52	98	3D	1
C12	B	55	41	2C	1	C77	A	39	4	4C	1	R58	A	45	93	4D	1
C13	A	59	37	2C	1	C79	A	67	45	4B	1	R59	A	22	91	4D	1
C50	B	53	51	2D	1	L10	B	58	33	2C	1	R60	A	19	88	5E	1
C51	B	58	66	2D	1	L50	B	45	68	2D	1	R61	A	24	85	5E	1
C52	B	51	81	5E	1	L51	B	36	95	6E	1	R72	B	52	6	3C	1
C53	B	39	79	6E	1	N50	B	29	76	4E	1	R73	A	25	7	5C	1
C54	A	53	54	1D	1	N51-A	A	55	95	3D	1	R74	B	58	3	3C	1
C55	A	59	70	2D	1	N51-B				4D	1	R75	A	32	7	5C	1
C56	A	14	85	5E	1	N51-C				2A	1	R76	A	42	6	4B	1
C57	A	42	79	6E	1	N70	A	37	10	3B	1	R77	A	65	28	4B	1
C58	A	45	96	2A	1	MAS	B	56	58	2D	1	R78	A	65	34	4B	1
C59	A	17	85	5E	1	R1	A	39	27	7D	1	V48	B	34	90	3E	1
C60	B	29	97	4D	1	R2	A	44	29	7C	1	V50	A	50	88	3D	1
C61	B	27	90	4D	1	R48	A	41	88	3E	1	V51	A	59	93	3D	1
C70	B	45	23	3B	1	R49	A	38	85	3E	1	V52	B	16	90	5D	1
C71	B	62	9	3C	1	R50	A	19	83	5E	1	V70	B	57	10	4C	1
C72	B	51	21	4C	1	R53	A	22	79	5E	1	V71	B	48	7	4C	1
C73	B	51	11	4C	1	R54	A	41	90	3E	1	V75	B	68	25	4B	1
C74	B	53	29	5C	1	R55	A	33	92	4E	1	X10	B	72	3	6C	1
C75	A	49	24	3B	1	R56	A	30	93	4E	1						

ROHDE & SCHWARZ	-I	Datum Date	XY-Liste f"r XY-list for	Sach-Nummer Stock-Nr	Blatt Page
		06 07.04.94	ED DREHGEBER KNOB_ASSEMBLY	1035.5592.01 XY	2-

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
C500	A	92	125			C825	A	149	131			D590	A	25	124		
C510	B	54	122			C830	B	161	138			D600	B	120	19		
C520	B	58	109			C840	A	163	128			D602	B	68	50		
C540	A	77	117			C850	A	97	107			D603	B	119	41		
C550	A	9	81			C851	A	103	91			D604	B	64	32		
C551	A	6	81			C855	A	85	138			D610	B	65	25		
C552	A	65	82			C860	B	140	83			D621	A	86	55		
C560	A	30	127			C861	B	130	76			D700	A	126	39		
C561	B	32	141			C862	B	121	80			D701	A	145	17		
C562	B	19	90			C863	B	123	76			D702	A	165	77		
C563	B	25	102			C864	A	103	86			D703	A	155	74		
C565	B	10	102			C865	A	103	83			D704	B	138	55		
C566	B	10	91			C866	A	103	81			D706	B	121	55		
C567	B	33	119			C867	A	103	78			D707	A	163	65		
C568	B	32	116			C868	B	134	85			D800	B	125	132		
C569	B	13	128			C875	A	136	105			D810	A	107	142		
C570	B	34	106			C876	A	142	91			D820	A	147	135		
C571	B	36	106			C877	A	159	106			D825	A	147	124		
C572	B	39	106			C878	A	143	114			D830	A	161	135		
C573	B	41	106			C900	A	155	27			D840	A	160	124		
C574	B	44	110			C901	B	157	27			D860	A	133	79		
C575	B	46	110			C902	B	161	68			D950	B	26	77		
C576	B	49	110			C904	A	155	51			D960	A	30	23		
C577	A	58	128			C910	A	167	27			D970	A	29	6		
C580	B	10	131			C911	B	170	27			D980	A	14	57		
C590	A	25	137			C912	B	173	65			G800	B	81	135		
C610	A	65	13			C914	A	163	51			L900	B	155	55		
C631	A	119	36			C920	A	168	37			L910	B	163	55		
C632	A	64	39			C921	B	173	68			L920	B	173	60		
C636	A	116	21			C924	A	172	56			N700	A	147	30		
C638	A	69	69			C925	B	170	39			N701	A	130	13		
C700	A	116	57			C950	A	22	74			N702	B	131	72		
C701	B	114	46			C955	A	34	38			01	B	194	126		
C702	A	114	44			C956	A	36	64			02	B	194	136		
C703	A	120	73			C960	A	30	38			03	B	194	44		
C704	A	135	64			C970	A	32	14			04	A	194	39		
C705	A	135	67			C980	A	13	43			05	B	194	57		
C706	A	165	86			D85	B	106	94			06	A	194	55		
C710	B	129	41			D87	B	143	94			07	A	194	57		
C711	B	133	37			D90	B	36	40			08	B	194	60		
C720	B	152	58			D500	A	95	131			09	B	194	100		
C721	A	166	53			D510	A	57	118			10	A	194	98		
C722	A	156	61			D520	A	60	106			11	B	194	98		
C730	A	147	41			D540	B	70	117			12	A	194	95		
C731	A	149	39			D550	A	65	68			13	B	194	110		
C735	A	138	46			D560	A	33	136			14	A	194	110		
C736	A	148	64			D561	B	36	135			15	A	194	108		
C738	A	133	18			D562	A	20	93			16	B	194	108		
C739	A	127	10			D563	A	27	98			17	A	194	105		
C740	B	141	27			D565	A	11	98			18	A	194	103		
C741	B	141	21			D566	A	11	86			19	B	194	103		
C742	A	155	87			D567	A	36	121			20	A	194	100		
C800	A	126	134			D568	B	36	115			21	B	194	105		
C810	A	106	128			D569	B	14	119			22	B	194	113		
C820	A	150	138			D570	A	60	136			23	A	194	113		

ÄI	Datum	XY-Liste für	Sach-Nummer	Blatt
ROHDE	Date	XY-list for	Stock-Nr	Page
&		ED RECHNER		
SCHWARZ	04 25.09.92	PROCESSOR	1035.7308.01 XY	1+

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
24	B	194	116			80	B	194	52			R597	A	11	114		
25	A	194	116			81	B	194	42			R598	A	9	114		
26	B	194	118			88	B	194	29			R600	A	112	27		
27	A	194	118			89	A	194	37			R601	A	121	19		
28	A	194	121			90	B	194	37			R605	A	45	16		
29	A	194	60			91	A	194	34			R606	A	40	16		
30	B	194	62			92	B	194	34			R607	A	40	19		
31	A	194	62			93	B	194	95			R619	A	93	57		
32	B	194	65			94	A	194	29			R634	A	76	59		
33	A	194	65			P700	B	121	64			R700	A	113	55		
34	B	194	67			P710	B	130	15			R701	A	118	44		
35	A	194	67			P720	B	159	57			R702	A	121	70		
37	A	194	75			P730	B	144	39			R703	A	123	69		
38	B	194	75			R374	B	147	27			R705	A	138	70		
39	A	194	77			R510	A	50	115			R706	A	128	62		
40	B	194	77			R515	A	34	89			R707	A	156	64		
41	A	194	80			R516	A	91	84			R710	A	128	47		
42	B	194	80			R520	B	53	119			R711	A	131	47		
43	A	194	83			R521	B	50	119			R712	A	133	46		
44	B	194	83			R540	A	65	111			R713	A	136	46		
45	A	194	70			R550	A	3	77			R714	A	130	27		
46	B	194	70			R551	A	10	74			R715	A	132	27		
47	A	194	72			R552	A	8	74			R716	A	135	27		
48	B	194	72			R553	A	5	74			R717	A	137	27		
49	B	194	85			R558	A	17	91			R718	A	128	21		
50	A	194	90			R559	A	30	124			R719	A	131	21		
51	A	194	93			R560	B	31	102			R720	A	159	61		
52	B	194	90			R561	A	34	106			R725	A	159	74		
53	B	194	93			R562	A	36	106			R726	A	161	74		
54	B	194	88			R563	A	39	106			R727	A	164	74		
55	A	194	88			R564	A	41	106			R728	A	168	76		
56	A	194	85			R565	A	44	106			R730	A	144	42		
57	B	194	27			R566	A	46	106			R731	A	123	8		
58	B	194	133			R567	A	49	106			R732	B	136	15		
59	A	194	27			R568	A	17	104			R733	B	150	17		
60	B	194	39			R569	A	31	108			R735	A	149	21		
61	A	194	24			R570	A	68	142			R736	B	140	33		
62	A	194	32			R571	A	71	142			R737	B	140	36		
63	A	194	131			R573	A	14	91			R800	A	171	123		
64	B	194	128			R574	A	57	139			R801	A	171	126		
65	B	194	24			R575	A	14	104			R802	A	132	143		
66	B	194	123			R576	A	3	95			R805	A	125	128		
67	A	194	133			R580	B	6	125			R840	A	167	128		
68	A	194	123			R581	B	6	123			R841	A	165	131		
69	A	194	126			R582	B	6	120			R849	A	180	127		
70	A	194	128			R583	B	10	128			R850	A	105	105		
71	B	194	131			R584	A	17	107			R851	A	108	105		
72	A	194	42			R585	A	28	107			R852	A	175	127		
73	A	194	44			R590	B	29	117			R853	A	165	133		
74	B	194	47			R591	A	27	114			R856	A	101	114		
75	A	194	47			R592	A	24	114			R857	A	105	114		
76	B	194	50			R593	A	22	114			R858	A	108	114		
77	A	194	50			R594	A	19	114			R859	A	177	127		
78	B	194	55			R595	A	17	114			R860	B	120	87		
79	A	194	52			R596	A	14	114			R861	A	110	78		

ROHDE & SCHWARZ	ÄI	Datum Date	XY-Liste für XY-list for	Sach-Nummer Stock-Nr	Blatt Page
		04 25.09.92	ED RECHNER PROCESSOR	1035.7308.01 XY	2+

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
R862	A	110	81			R951	A	13	77			X31A	B	173	15		
R863	A	110	83			R952	A	53	36			X85	B	104	141		
R864	A	110	86			R959	A	29	75			X86	B	105	137		
R870	A	164	110			R960	A	33	8			X313	B	84	78		
R871	A	161	98			R981	A	17	43			X314	B	105	22		
R872	A	162	107			R982	A	18	62			X315	B	9	36		
R873	A	161	96			R990	B	161	5			X316	B	68	88		
R874	A	160	114			R995	B	177	5			X317	B	68	99		
R875	A	135	101			V550	A	57	95			X600	B	60	32		
R876	A	137	101			V551	A	54	95			X700	B	132	24		
R877	A	140	101			V552	A	50	95			X800	B	177	133		
R878	A	142	101			V553	A	46	95			X900	B	162	18		
R879	A	166	105			V554	A	42	95			X901	B	158	17		
R880	A	164	93			V555	A	38	95								
R881	A	168	114			V700	A	132	68								

	AI	Datum		XY-Liste für	Sach-Nummer	Blatt
ROHDE		Date		XY-list for	Stock-Nr	Page
&						
SCHWARZ				ED RECHNER	1035.7308.01 XY	3+
		04	25.09.92	PROCESSOR		

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
C102	B	-91	43	6A	2	D201-B				2A	3	01	B	\$\$\$	121		
C103	B	\$\$\$	21	7A	2	D202-A	A	\$\$\$	75	3C	3	2	B	-81	7	3E	4
C106	A	-87	23	7A	2	D202-B				3C	3	02	B	\$\$\$	131		
C109	B	-98	37	3E	2	D202-C				2A	3	03	B	\$\$\$	39		
C110	A	-90	93	4A	2	D204-A	A	-87	93	3F	3	04	A	\$\$\$	34		
C111	A	-94	85	4A	2	D204-B				3A	3	05	B	\$\$\$	52		
C112	A	-84	71	4A	2	D205-A	A	-59	29	3D	3	06	A	\$\$\$	50		
C113	A	-73	76	4A	2	D205-B				3A	3	07	A	\$\$\$	52		
C120	A	\$\$\$	133	1A	2	D208-A	A	-68	64	5E	3	08	B	\$\$\$	55		
C121	B	\$\$\$	122	2A	2	D208-B				4A	3	09	B	\$\$\$	95		
C122	B	-96	133	2A	2	D209-A	B	-45	141	5D	3	10	A	\$\$\$	93		
C132	A	-78	135	4D	2	D209-B				5A	3	11	B	\$\$\$	93		
C200	A	-51	49	1A	3	D213-A	A	-7	31	10D	3	12	A	\$\$\$	90		
C201	A	17	32	2A	3	D213-B				8A	3	13	B	\$\$\$	105		
C202	A	\$\$\$	71	2A	3	D214-A	B	-81	50	8F	3	14	A	\$\$\$	105		
C204	A	-89	80	3A	3	D214-B				6A	3	15	A	\$\$\$	103		
C205	A	-62	19	3A	3	D216-A	A	-68	83	3E	3	16	B	\$\$\$	103		
C207	A	-70	57	4A	3	D216-B				7A	3	17	A	\$\$\$	100		
C208	A	-37	139	5A	3	D300-A	B	-61	119	3C	4	18	A	\$\$\$	98		
C212	B	-72	50	6A	3	D300-B				1A	4	19	B	\$\$\$	98		
C213	A	-10	25	7A	3	D301-A	B	-4	116	5D	4	20	A	\$\$\$	95		
C214	A	-73	74	7A	3	D301-B				2A	4	21	B	\$\$\$	100		
C215	A	-12	16	11D	3	D302-A	B	13	77	7E	4	22	B	\$\$\$	108		
C216	A	-2	17	11D	3	D302-B				2A	4	23	A	\$\$\$	108		
C290	A	-51	39	8C	3	D303-A	B	13	97	9E	4	24	B	\$\$\$	110		
C310	A	-57	123	1A	4	D303-B				3A	4	25	A	\$\$\$	110		
C311	A	-1	115	2A	4	D304-A	B	13	36	7D	4	26	B	\$\$\$	113		
C312	B	16	58	2A	4	D304-B				4A	4	27	A	\$\$\$	113		
C313	B	16	79	3A	4	D305-A	B	13	57	9D	4	28	A	\$\$\$	116		
C314	B	17	22	4A	4	D305-B				5A	4	29	A	\$\$\$	55		
C315	B	16	39	4A	4	D310-A	B	-50	95	3D	4	30	B	\$\$\$	57		
C316	B	-44	99	6A	4	D310-B				11F	3	31	A	\$\$\$	57		
C400	B	20	131	4E	5	D310-C				6A	4	32	B	\$\$\$	60		
C411	A	-40	123	2A	5	D400	A	14	117	3E	5	33	A	\$\$\$	60		
C412	A	-36	95	3A	5	D402-A	B	-43	119	4C	5	34	B	\$\$\$	62		
C413	A	-36	49	3A	5	D402-B				2A	5	35	A	\$\$\$	62		
C414	A	-36	72	4A	5	D404-A	B	-32	93	8D	5	37	A	\$\$\$	70		
C415	A	-36	26	4A	5	D404-B				3A	5	38	B	\$\$\$	70		
C416	A	21	109	5A	5	D405-A	B	-32	48	8F	5	39	A	\$\$\$	72		
C420	A	17	124	2E	5	D405-B				3A	5	40	B	\$\$\$	72		
C421	A	13	114	4E	5	D406-A	B	-32	70	10D	5	41	A	\$\$\$	75		
C422	A	13	131	4E	5	D406-B				4A	5	42	B	\$\$\$	75		
D10A	B	-84	68	3B	2	D407-A	B	-32	25	10F	5	43	A	\$\$\$	77		
D103-A	B	-93	48	3C	2	D407-B				4A	5	44	B	\$\$\$	77		
D103-B				6A	2	D408-A	A	18	103	6A	5	45	A	\$\$\$	65		
D106-A	B	-86	33	5E	4	D408-B				2D	5	46	B	\$\$\$	65		
D106-B				6E	4	D408-C				3D	5	47	A	\$\$\$	67		
D106-C				3E	2	D408-D				3D	5	48	B	\$\$\$	67		
D106-D				4E	2	D408-E				5A	5	49	B	\$\$\$	80		
D106-E				7A	2	G100	B	-68	138	4D	2	50	A	\$\$\$	85		
D120-A	B	\$\$\$	131	5E	2	G300	B	-47	7	3E	4	51	A	\$\$\$	88		
D120-B				2A	2	H200	B	-11	136	12E	3	52	B	\$\$\$	85		
D200-A	A	-54	39	9C	3	K300-A	B	-29	7	3E	4	53	B	\$\$\$	88		
D200-B				1A	3	K300-B				3E	4	54	B	\$\$\$	83		
D201-A	A	15	25	10E	3	1	B	-49	7	3E	4	55	A	\$\$\$	83		

ROHDE & SCHWARZ	ÄI Date 04 25.09.92	XY-Liste für XY-list for RECHNER PROCESSOR	Sach-Nummer Stock-Nr 1035.7308.01 XY	Blatt Page 4+
-----------------	-----------------------------	---	--	---------------------

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
56	A	\$\$\$	80			R114-I				10D	2	R221-C				6D	3
57	B	\$\$\$	22			R115-A	B	-86	114	7E	2	R221-D				6D	3
58	B	\$\$\$	128			R115-B				7E	2	R221-E				6D	3
59	A	\$\$\$	22			R115-C				7E	2	R221-F				6D	3
60	B	\$\$\$	34			R115-D				7E	2	R221-G				6D	3
61	A	\$\$\$	19			R115-E				7E	2	R221-H				6D	3
62	A	\$\$\$	27			R115-F				7E	2	R221-I				6D	3
63	A	\$\$\$	126			R115-G				7E	2	R280	A	20	20	9E	3
64	B	\$\$\$	123			R116-A	B	-54	107	7E	2	R281	A	20	22	9E	3
65	B	\$\$\$	19			R116-B				7E	2	R282	A	20	17	9E	3
66	B	\$\$\$	118			R116-C				7E	2	R283-A	B	-52	34	8D	3
67	A	\$\$\$	128			R116-D				7E	2	R283-B				8D	3
68	A	\$\$\$	118			R116-E				7E	2	R283-C				8D	3
69	A	\$\$\$	121			R116-F				7E	2	R283-D				8D	3
70	A	\$\$\$	123			R116-G				7E	2	R283-E				8D	3
71	B	\$\$\$	126			R116-H				7D	2	R283-F				8D	3
72	A	\$\$\$	37	8D	6	R116-I				7D	2	R283-G				9D	3
73	A	\$\$\$	39	8D	6	R117-A	B	-98	53	11D	2	R283-H				9D	3
74	B	\$\$\$	42	8D	6	R117-B				11D	2	R283-I				9D	3
75	A	\$\$\$	42	8C	6	R117-C				11D	2	R285	A	-12	138	11E	3
76	B	\$\$\$	44	8C	6	R117-D				11D	2	R286	A	-9	129	11F	3
77	A	\$\$\$	44	8C	6	R117-E				11D	2	R287	A	-9	131	12F	3
78	B	\$\$\$	50	8C	6	R117-F				11D	2	R289	A	-46	99	11E	3
79	A	\$\$\$	47	8C	6	R117-G				11D	2	R290	A	-70	29	8C	3
80	B	\$\$\$	47	8C	6	R124	A	-91	73	9D	2	R310	A	-13	119	4D	4
81	B	\$\$\$	37	8C	6	R125	A	-93	77	8D	2	R313	A	-69	19	2E	4
88	B	\$\$\$	24			R128	B	\$\$\$	118	5E	2	R314	A	-76	25	1E	4
89	A	\$\$\$	32	8E	6	R129	A	\$\$\$	33	3E	2	R315	A	-43	9	3E	4
90	B	\$\$\$	32	8D	6	R131	A	\$\$\$	97	7D	2	R316	B	-29	11	3E	4
91	A	\$\$\$	29	8D	6	R132	A	\$\$\$	95	7D	2	R318	B	-63	110	3C	4
92	B	\$\$\$	29	8D	6	R133	A	\$\$\$	100	7D	2	R320	A	-88	30	5E	4
93	B	\$\$\$	90			R134	A	\$\$\$	92	7D	2	R322	A	-9	115	4C	4
94	A	\$\$\$	24			R143	B	\$\$\$	45	3C	2	R323	A	-9	111	5C	4
P300	B	-62	22	2F	4	R144	B	\$\$\$	48	3C	2	R324	A	-13	122	6C	4
R104	B	-92	130	5E	2	R145	B	\$\$\$	40	3C	2	R380	A	19	70	4E	4
R107	A	\$\$\$	27	3F	2	R150	A	-97	102	10D	2	R381	A	19	49	5E	4
R108	A	\$\$\$	30	3E	2	R151	A	-94	102	10D	2	R382	A	19	65	5E	4
R110	A	-91	102	10E	2	R153	B	\$\$\$	50	2C	2	R383	A	19	46	5E	4
R111	A	-89	102	10E	2	R154	B	\$\$\$	43	2C	2	R384	A	19	68	5E	4
R112	A	-86	102	10E	2	R200	A	\$\$\$	71	2B	3	R390	A	-76	37	4F	4
R113-A	B	-54	82	10E	2	R209	B	-88	43	7F	3	R391	A	-78	33	4F	4
R113-B						R212	A	-62	30	1D	3	R392	A	-88	37	5E	4
R113-C						R213	A	-12	18	11D	3	R402	A	-40	29	10E	5
R113-D						R214	A	2	18	11D	3	R403	A	-40	23	10E	5
R113-E						R220-A	B	-44	58	6E	3	R404	A	-37	59	10C	5
R113-F						R220-B				6E	3	R405	A	-34	59	10C	5
R113-G						R220-C				6E	3	R408	A	-26	31	10E	5
R114-A	B	-72	53	10E	2	R220-D				6E	3	R409	A	-28	25	10E	5
R114-B						R220-E				6E	3	R410	A	-30	79	10C	5
R114-C						R220-F				6E	3	R411	A	-25	66	10C	5
R114-D						R220-G				6E	3	R415	A	21	118	4F	5
R114-E						R220-H				6E	3	R418	A	15	95	2E	5
R114-F						R220-I				6E	3	R419	A	8	123	2E	5
R114-G						R221-A	B	-27	140	6D	3	R420	B	16	131	4E	5
R114-H						R221-B				6D	3	R422	B	6	129	4E	5

AI	Datum	XY-Liste für	Sach-Nummer	Blatt
ROHDE	Date	XY-list for	Stock-Nr	Page
&				
SCHWARZ	04 25.09.92	RECHNER PROCESSOR	1035.7308.01 XY	5+

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
R425	A	15	99	5A	5	V287	A	-4	135	11E	3	V400	A	21	126	4E	5
R430	B	-44	110	4B	5	V300	B	-72	22	2E	4	V405	A	16	114	2E	5
R435	B	9	126	5E	5	V301	B	-64	22	2E	4	V611	A	-18	11	6F	6
R436	B	-44	78	5E	5	V302	A	-65	25	2F	4	X31B	B	\$\$\$	8	2E	6
R610	A	-30	1	7E	6	V303	A	-36	10	3D	4	X105	B	-77	123	5D	2
R611	A	-12	21	3B	6	V306	A	-42	16	2E	4	X200	B	-70	32	8C	3
V100	A	\$\$\$	33	3E	2	V390	B	-83	37	4E	4	X300	B	-49	14	3E	4
V102	A	\$\$\$	30	3E	2	V391	B	-81	30	5F	4	X312	B	-25	11	7E	6

ROHDE & SCHWARZ	ÄI	Datum	XY-Liste für XY-list for RECHNER	Sach-Nummer	Blatt
		Date		Stock-Nr	Page
		04 25.09.92	PROCESSOR	1035.7308.01 XY	6-

ROHDE & SCHWARZ

**Stromläufe
Bestückungspläne**

**Circuit diagrams
Component plans**

**Schémas de circuit
Plans des composants**

SERVICEUNTERLAGEN

Frontmodul mit Rechner VAR 04

1035.5440.04

Inhaltsverzeichnis

7.	Prüfen und Instandsetzen der Baugruppe	5
7.1	Funktionsbeschreibung	5
7.1.1	CPU: 80960SB-16	6
7.1.2	512K-Byte batteriegepuffertes RAM	6
7.1.3	Batterietest	6
7.1.4	FLASH-EPROM's (Firmware-Update)	6
7.1.5	IEC-Bus Interface	7
7.1.6	SERBUS-Interface	7
7.1.7	RS232- / V.24-Interface	7
7.1.8	Timer	7
7.1.9	Interruptcontroller	7
7.1.10	ACFAIL, SYSRESET	8
7.1.11	Verarbeitung externer Triggersignale	8
7.1.12	LCD-Interface	8
7.1.13	Helligkeits- und Kontrasteinstellung für LCD	8
7.1.14	Drehknopfinterface	9
7.1.15	Anschluß für die Tastaturmatrix	9
7.1.16	Diagnose A/D-Wandler	9
7.1.17	X-Ausgang	10
7.1.18	Varianten-/Änderungszustandserkennung	10
7.1.19	Steuersignale, Tastenbeep	10
7.1.20	Standby Schalter und -LED	10
7.2	Meßgeräte und Hilfsmittel	10
7.3	Fehlersuche	11
7.4	Prüfen und Abgleich	11
7.4.1	Prüfen der Versorgungsspannung des DC/AC-Wandlers	11
7.4.2	Prüfen der Kontrastspannung	11
7.4.3	Prüfen des Drehgebers	11
7.4.4	Prüfen des RESET und ACFAIL-Signales	11
7.4.5	Prüfen des Diagnosezweiges	12
7.4.6	Prüfen und Auslesen der Diagnosemeßpunkte	12
7.4.7	Prüfen der Position der Steckbrücken	12
7.5	Zerlegung und Zusammenbau	13
7.6	Externe Schnittstellen	14
7.6.1	Schnittstelle Rechner	14
7.6.2	Schnittstelle Drehgeber	16
7.6.3	Schnittstelle LCD	16

Schaltteilliste
Koordinatenliste
Stromlauf
Bestückungsplan

7. Prüfen und Instandsetzen der Baugruppe

Achtung !! Im Frontmodul sind viele betriebsnotwendige Daten gespeichert. Die im RAM gespeicherten Daten können vom Gerät selbst, die Daten im Flash-EPROM jedoch nur mit Hilfsmitteln wieder hergestellt werden. Besteht die Gefahr, den Speicherinhalt der Flash-EPROMs zu verlieren, muss sichergestellt sein, dass

- 1) neue Firmware geladen werden kann,
- 2) eine Pegelkalibration durchgeführt werden kann (Kap. 6.4 des Service-Handbuches),
- 3) die Kalibrierdaten des Referenzoszillators wieder hergestellt oder eine Kalibration des Referenzoszillators durchgeführt werden kann (Kap. 2.11.8 des Betriebshandbuches),
- 4) die Betriebsdaten im Menue UTILITIES/DIAG/PARAM wieder hergestellt werden können.

Zu 3) und 4) sollten vor Arbeiten am Frontmodul die betreffenden Daten notiert werden. Zur Wiederherstellung muss für 3) der Passwortschutz Level 2 entriegelt werden (Kap. 2.11.7 des Betriebshandbuches). Das Passwort für Level 2 ist 250751. Danach kann im Menue UTILITIES/CALIB/REF OSC der notierte Wert wieder eingegeben und gespeichert werden. Für 4) muss der Passwortschutz Level 3 entriegelt werden, das Passwort erfragen Sie bitte bei Ihrer R&S-Vertretung. Das Menue UTILITIES/DIAG/SET PARAM wird dann sichtbar und die Daten können wieder eingegeben werden.

7.1 Funktionsbeschreibung

Das Frontmodul beinhaltet die Komponenten: Rechner, Drehgeber, Tastatur und das LC-Display.

Folgende Funktionen und Eigenschaften muß der Rechner zur Verfügung stellen:

- CPU: 80960SB-16
- 512K-Byte batteriegepuffertes RAM
- Batterietest
- Firmware in Flash-Eeprom's mit der Möglichkeit des Updates
- IEC-Bus Interface
- SERBUS Interface
- RS232 / V.24 Interface
- Timer
- Interruptcontroller
alle Interrupts entweder in der Quelle oder am Interruptcontroller einzeln maskierbar
- ACFAIL vom Netzteil löst maskierbaren Interrupt aus
- Verarbeitung externer Triggersignale
(TRIGGER, AUX-TRIG) Polarität & Triggerart (dyn./stat.) wählbar
- LCD-Interface
- Helligkeits- und Kontrasteinstellung für LCD
- Drehknopf-Interface
- Anschluß für Tastaturmatrix
- Selbstdiagnose mit 12-Bit-Wandler und zwei Diagnoseeingänge (±5V & ±15V)

- X-Ausgang (0 ... 10 V)
- Varianten-/Änderungszustandserkennung
- Einige Steuerleitungen für andere Baugruppen (MODCTRL-OUT, MODCTRL-IN)
- Digitale Aus- & Eingangssignale (BLANK, MARKER, SWEEP-STOP, TASTENBEEP)
- SYS-RESET vom Netzteil löst einen Reset des Systems aus
- Standby-Schalter und Standby-LED

7.1.1 CPU: 80960SB-16

Die Verwendung des Prozessors 80960 (Taktfrequ.: 16MHz) erfordert definierte RESET und Taktsignale für das gesamte Rechnersystem. Diese Signalerzeugung wird in einem ASIC (CLOCKGEN D120) realisiert. In diesem ASIC erfolgt auch die Ableitung einiger im System verwendeter Taktfrequenzen. Da das Bus-Interface des 80960 auf BURST-Zugriffe ausgelegt ist, werden mehrere PLD's verwendet (D300, D402, D540, D600, D800, D950). Sie dienen der Umsetzung des BURST-Zugriffes in den für die angeschlossenen Bausteine entsprechende Ansteuerung. Zugleich erzeugen sie das READY-Signal zur Anpassung der Zugriffsgeschwindigkeit. Die Zusammenführung der verschiedenen READY-Signale zu einem gemeinsamen Signal für den Prozessor erfolgt über eine AND-Verknüpfung an D103.

Der Prozessor 80960 verfügt über einen gemultiplexten Adress- und Datenbus. Während des Adress-Cycle der CPU werden die Adressen A4 bis A15 in die Bausteine D204, D205 und D216 übernommen und stehen dann während der folgenden Data-/Wait-Cycle und des abschließenden Recovery-Cycle zur Verfügung.

Die beiden Datenbustreiber D208 und D209 werden benötigt, um eine Isolation des Datenbusses vom gemultiplexten Daten-/Adressbus des Prozessors zu erreichen. Dies ist beim Einsatz langsamer Peripheriebausteine notwendig.

7.1.2 512K-Byte batteriegepuffertes RAM

Dieser Speicher wird mittels vier 1M-Bit SRAM-Speicherbausteinen (D302,D304,D303,D305) in Form von zwei Bänken zu je 128K-Worten realisiert.(1 Wort=16bit). Der Zugriff auf diesen Speicher wird durch das Signal EN-MEM-P blockiert, wenn entweder das Resetsignal aktiv ist oder die Versorgungsspannung unter 4 V absinkt (V390, V391). Diese Überwachung der Versorgungsspannung ist nur für den Notfall gedacht, daß die Spannung plötzlich zusammenbricht, ohne daß vorher vom Netzteil das Signal SYSRESET generiert wurde. Die Schaltung aus den Transistoren V300 und V301 sowie der Diode V302 bewirkt ein Umschalten von UBATT auf +5V, sobald die Versorgungsspannung +5V größer als die Batteriespannung ist.

7.1.3 Batterietest

Um den Ladezustand der Batterie zu testen, wird durch das Signal TST-BATT mittels REED-Relais ein Belastungswiderstand von 39,2kOhm an die Batterie angeschlossen. Die Spannung am Widerstand wird der Selbstdiagnoseschaltung zugeführt und gibt Auskunft über den Zustand der Batterie.

7.1.4 FLASH-EPROM's (Firmware-Update)

Um Firmware-Updates ohne Eingriff von außen durchführen zu können, werden FLASH-EPROM's als Speicher verwendet. Es sind vier

Bausteine D404, D405 und D424, D425 vom Type 28F020 (512K-Worte), bzw. 29F040 (1024K-Worte), vorgesehen.
Die zum Programmieren nötige Spannung VPP wird durch den Baustein D400 aus +15V erzeugt. Dieser Linearregler kann durch das Signal VPP-EIN an- und abgeschaltet werden.
Der Update der Firmware erfolgt über eine RS232-Schnittstelle an der Rückseite des Gerätes.
Da die FLASH-EPROM's nur als ganzes gelöscht werden können, gibt es noch ein BOOT-EPROM (D301), welches den Urlader enthält. Zudem erlaubt das Vorhandensein des BOOT-EPROM's das Bestücken der FLASH-EPROM's als unprogrammierte Standardbauteile.
Ob ein Firmware Update erfolgen soll oder nicht, kann der Prozessor am Signal der Brücke X200 erkennen.

7.1.5 IEC-Bus Interface

Als IEC-Bus-Controller wird der NEC Baustein uPD7210 (D602) mit den Bustreibern 75160 (D603) und 75162 (D604) verwendet. Seine 8MHz-Taktfrequenz erhält er vom "CLOCKGEN". Durch entsprechende Bestückung der Kurzschlußbrücke an X600 können auch alle Controller-Fähigkeiten des IEC-Bus realisiert werden.

7.1.6 SERBUS-Interface

Für die Ansteuerung und Programmierung der einzelnen Baugruppen wird ein von R&S eigens entwickeltes serielles Bussystem (SERBUS) verwendet. Hierfür existieren bisher zwei Standard-ASIC's (SERBUS-M und SERBUS-D).

Auf dem Rechner befindet sich der Bus-Master-Baustein (SERBUS-M / D87). Er wird wortweise programmiert und mit einer Taktfrequenz von 32MHz betrieben. Zur seriellen Datenübertragung an die Baugruppen wird 4MHz verwendet.

7.1.7 RS232- / V.24-Interface

Dieses Interface ist mit dem Controller-IC 82510 (D85) realisiert. Die Pegelumsetzung von TTL auf RS232 erfolgt im Baustein LT1181 (D860).

7.1.8 Timer

Der Baustein 82C54 (D610) enthält drei 16-Bit Timer. Um lange Zeiten mit hoher Auflösung realisieren zu können, sind zwei dieser Timer kaskadiert (Timer1 und Timer2). Als Eingangstakt stehen 1kHz für Timer0 und 1MHz für Timer1/2 zur Verfügung.

7.1.9 Interruptcontroller

Als Interruptcontrollers ist der Baustein UPD71059 (D86) eingesetzt. Folgende Interruptquellen sind angeschlossen, wobei jeder Eingang als dynamisch oder statisch verwendet werden kann:

Interrupt-Eing.	Bedeutung
INTP0	Trigger
INTP1	Aux-Trigger
INTP2	IEC-INT-P
INTP3	T2-INT0
INTP4	T2-INT2
INTP6	INT-RS232

Alle statischen Interrupts werden an D830 zu einem zusammengefaßt und auf den Interrupteingang INTP5 gelegt:

1. - SERBUS-INT1
2. - SERBUS-INT2
3. - ACFAIL (Powerfail vom Netzteil)
4. - SERBUS-ACT-REQ.

Alle Interrupts sind im UPD71059 maskierbar. Die statischen Interrupts 3. und 4. sind an der Quelle und die verbleibenden können über das Portregister D810 maskiert werden.

7.1.10 ACFAIL, SYSRESET

Das Signal ACFAIL wird im Netzteil erzeugt und ist eines der statischen Interruptsignale, welche nicht an der Quelle maskierbar ist. Die Maskierung erfolgt wie bei vorherigem Punkt beschrieben.

SYSRESET (ebenfalls vom Netzteil) wird über D106C/D an das ASIC CLKGEN geführt und löst dort die Resetschaltung aus. Zugleich wird über R108 und V102 der Kondensator C109 entladen. Wird das Signal SYSRESET wieder HIGH, lädt sich C109 über R129 auf und gibt nach Erreichen der Schwellspannung von D106C den Reseteingang des CLKGEN wieder frei.

7.1.11 Verarbeitung externer Triggersignale

(TRIGGER, AUX-TRIG) Polarität & Triggerart (dyn./stat.) wählbar

Die Wahl der Triggerart erfolgt durch Programmierung des Interruptcontrollers UPD71059. Die Polarität des Triggersignales kann für beide Triggersignale getrennt an Port D810 eingestellt werden und erfolgt durch EXOR-Verknüpfung des Portsingales mit dem Triggersignal (D840).

7.1.12 LCD-Interface

Zur Ansteuerung des LC-Displays wird der LCD-Controller SED1351F (D90) von SEIKO EPSON verwendet. Der Bildspeicher besteht aus den beiden SRAM's D960 und D970. Dieser Speicher ist ausreichend für vier Bildschirmseiten (640 x 200).

Um eine lineare Adressierung der Pixel (Pixel 0 ist LSB der untersten Adresse) zu erhalten, wurde der Datenbus an D90 byteweise in sich gespiegelt.

Zur Erhöhung der Treiberfähigkeit und zur Isolation des Bausteines D90 werden die Daten- und Clock-Signale für das LCD über D980 geführt.

7.1.13 Helligkeits- und Kontrasteinstellung für LCD

Leiterplatte: Drehgeber (1035.5592.01). Die Helligkeitseinstellung erfolgt über die Eingangsspannung des DC/AC-Wandlers für die CFL-

Beleuchtung. Die Eingangsspannung für diesen Wandler darf im Bereich von +6V bis +10V liegen. Höhere Spannung bedeutet höhere Helligkeit. Die Spannungsregelung erfolgt mittels eines LM317T (N50), und die Einstellung der Ausgangsspannung wird mit R990 vorgenommen.

Beim Einschalten des Gerätes ist es aber für ein sicheres Zünden der Leuchtstoffröhren nötig, die Eingangsspannung des Wandlers auf +10V zu bringen. Hierzu dient die Schaltung aus N51 und V52, die nach dem Einschalten kurzzeitig +10V zur Verfügung stellt.

Zum Verbessern der Störabstrahlung des AC/DC Wandlers bzw. der Leuchtstoffröhren kann mit V48 die Beleuchtung ausgeschaltet werden.

Die Einstellung des Kontrastes erfolgt über die negative Versorgungsspannung VEE des LC-Displays. Diese Spannung wird mittels eines Switch-Capcitor-Voltage-Converters mit Regler (LT1054/N70) aus +15V erzeugt und kann mittels R995 im Bereich von -15V bis -22V eingestellt werden.

Zur Filterung der Störungen des DC/AC-Wandlers und des Converters LT1054 befinden sich noch zwei LC-Filter in pi-Form auf dieser Leiterplatte.

7.1.14 Drehknopfinterface

Bei jedem Pegelwechsel des Signales KNOB2 (CLK) wird über die Laufzeitkette aus D566C/D und D562B/C am EXNOR-Gatter D566B ein LOW-Puls erzeugt. Mit diesem Puls wird die Richtungsinformation im Flip-Flop D565B gespeichert und mit D565A ein Interrupt ausgelöst.

7.1.15 Anschluß für die Tastaturmatrix

Die Spaltenleitungen der Tastaturmatrix werden am Register D550, die Zeilenleitungen am Port D560 angeschlossen.

Solange keine Taste betätigt wird, liegen die angeschlossenen Zeilenleitungen über die Pull-Up-Widerstände R560 auf HIGH-Potential. Die Spaltenleitungen werden von den Registerausgängen auf LOW-Potential gehalten. Wird nun eine Taste betätigt, wird die zugehörige Zeilenleitung auf LOW-Potential gebracht. Nach Entprellung wird ein Interrupt erzeugt, woraufhin nacheinander die Spalten einzeln auf LOW-Potential gelegt werden und an Hand des Pegels erkannt wird, welche Taste betätigt wurde.

7.1.16 Diagnose A/D-Wandler

mit 12-Bit-Wandler und zwei Diagnoseeingängen ($\pm 5V$ & $\pm 15V$)

Die beiden Diagnoseeingänge und einige Meßpunkte des Rechners werden über den Multiplexer D700, Impedanzwandler N701 und Eingangsverstärker dem A/D-Wandler D704 zugeführt.

Folgende Spannungen für Vollaussteuerung des A/D-Wandlers sind einstellbar: $\pm 15V$, $\pm 5V$ und $\pm 1V$.

Die Wandlungszeit (max. 9us) zeigt der ADC am BUSY-Ausgang an, welcher über D570 (Port1) eingelesen werden kann.

Für Zwecke der Selbstdiagnose können folgende Spannungen mit dem Selbstdiagnosewandler gemessen werden:

die Spannung des X-Ausgangs
die Referenzspannung des D/A-Wandlers
die Batteriespannung

Es existiert zudem die Möglichkeit an Stelle der Kurzschlußbrücke X700 Meßkabel anzuschließen und damit beliebige Meßpunkte an den A/D-Wandler anzuschließen. Dabei ist allerdings zu beachten, daß die Meßspannung $\pm 15V$ nicht überschreitet.

7.1.17 X-Ausgang

Der X-Ausgang erzeugt beim Sweep ein Ausgangssignal von 0V (Sweepanfang) bis 10V (Sweepende), welches zur Ansteuerung von externen Geräten genutzt werden kann. Dieses Signal wird vom Prozessor durch entsprechende Einstellung des D/A-Wandlers D706 in Abhängigkeit vom Sweep generiert. Dem Schutz vor Überspannung dienen der Widerstand R707 und die Dioden V700.

7.1.18 Varianten-/Änderungszustandserkennung

Dazu dient der Port D590. Je nach Bestückung der Widerstände R591 bis R594 können die verschiedenen Varianten kodiert werden. R595 bis R598 sind zur Kodierung des Änderungszustandes vorgesehen.

7.1.19 Steuersignale, Tastenbeep

Die Signale MODCNTL-OUT und MODCNTL-IN ermöglichen eine Synchronisation zwischen dem Signalprozessor der Baugruppe Modulationsgenerator und dem Prozessor.

Die Ausgangssignale BLANK und MARKER sowie das Eingangssignal SWEEP-STOP dienen zur Steuerung- und Synchronisation von und mit externen Geräten.

Das Ausgangsport D213 liefert das Steuersignal (LAMP-OFF) für die Beleuchtungsabschaltung der Leuchtstoffröhren.

Zum Erzeugen eines Tastenbeep ist der Piezosumme H200 vorgesehen. Das Port D301 schaltet über D310 die Tonfrequenz 1kHz an V287.

7.1.20 Standby Schalter und -LED

Der an der Frontseite des Generators angebrachte Standbyschalter wird direkt am Rechner angeschlossen und über das gemeinsame Flachbandkabel aufs Motherboard herausgeführt.

Die Standby-LED wird so zwischen +15V und VS12-P geschaltet, daß bei fehlenden +15V ein Strom von VS12-P über die LED auf die virtuelle Masse der +15V fließen kann.

7.2 Meßgeräte und Hilfsmittel

Oszilloskop	100MHz	z.B. BOL
DC-Multimeter	0....+30V, $R_i > 1M\Omega$	z.B. UDL33
DC-Spannungsquelle	..10V	z.B. NGT20

7.3

Fehlersuche

Standby-LED bleibt dunkel	Prüfen der Standby-Spannung an X312.5
Nach dem Einschalten bleibt LC-Display dunkel	Prüfen der Spannung des DC/AC-Wandlers nach 7.4.1
Keine Kontrasteinstellung möglich	Prüfen der Kontrastspannung nach 7.4.2
Drehgeber funktioniert nicht	Prüfen der Pulse des Drehgebers nach 7.4.3
Keine Anzeige nach dem Einschalten	Prüfen des RESET-Signales nach 7.4.4
	Prüfen des ACFAIL-Signales nach 7.4.4
Keine Spannung an X-AXIS	Prüfen des Ausganges X-AXIS mit Diagnose nach 7.4.6
	Prüfen der Referenzspannung mit Diagnose nach 7.4.6
Keine Datenspeicherung nach dem Geräteabschalten	Prüfen der RAM-Spannung mit Diagnose nach 7.4.6

7.4

Prüfen und Abgleich

7.4.1 Prüfen der Versorgungsspannung des DC/AC-Wandlers

Baugruppe Drehgeber:

Am Stecker X6.4 ist in Abhängigkeit der Stellung des Helligkeitsreglers an der Gerätefrontseite die DC-Spannung zu messen: Sollwert: 6V...10V.

7.4.2 Prüfen der Kontrastspannung

Baugruppe DREHGEBER:

Am Stecker X7.5 und X10.5 ist in Abhängigkeit der Stellung des Kontrastreglers an der Gerätefrontseite die DC-Spannung zu messen: Sollwert: -15V...-22V.

7.4.3 Prüfen des Drehgebers

Baugruppe RECHNER:

Oszilloskop an X315.9 und X315.11 anschließen.
Drehgeber drehen. Es müssen 2 zeitversetzte Signale zu messen sein.

7.4.4 Prüfen des RESET und ACFAIL-Signales

Baugruppe RECHNER:

Oszilloskop an X31.35 und D106 PIN2 anschließen.

Unmittelbar nach dem Einschalten des Gerätes muß beim ACFAIL-Signal ein L->H-Übergang stattfinden. Nach ca. 200-300ms muß das RESET-Signal (RES-N) den Pegelwechsel L->H zeigen. Beide Signale müssen bei allen Bedienzuständen den H-Pegel beibehalten.

7.4.5 Prüfen des Diagnosezweiges

- Einstellungen: **TPOINT 4**
- An X700 eine DC-Spannung von 0,5V einspeisen.
— Prüfen der Spannung an P710: 0,5V und P730: 1,5V.

7.4.6 Prüfen und Auslesen der Diagnosemeßpunkte

TPOINT	Spannung	Bedeutung
0	0mV...50mV	Referenzpunkt
1	-15V...15V	DIAG -15V
2	-15V...15V	DIAG -5V
3	0V...10V	X-AXIS
4	-15V...15V	Voltmeter
6	4.9V...5.1V	Referenzspannung X-D/A
7	3.2V...4.0V	Batteriespannung

7.4.7 Prüfen der Position der Steckbrücken

Steckbrücke	Position	Bemerkung
X105	1 - 2	Clock (CPU)
X200	1 - 2	SW-Update
X300	1 - 2	Batterie
X900	1 - 2	+5V-Spannung
X700	1 - 2	Voltmeter
X600	1 - 2	IEC-Control
X800	2 - 3	Timer-Int
X85	1 - 2	Clock (RS232)

Die 4 Schrauben an der Geräte-Vorderseite entfernen. Das Modul vorsichtig nach vorne klappen, um die Kabelverbindungen W20, W313 und W314 lösen zu können. Nach Trennen von W31 (Flachbandkabel z. Motherboard) kann das Frontmodul herausgenommen werden. Der rückseitige Blechdeckel ist mit 6 Schrauben befestigt. Die Platine RECHNER kann nach Entriegeln der Buchsen X316, X317 und Trennen der beiden Folien sowie der Buchse an X312 vorsichtig herausgenommen werden. Abschließend das Flachbandkabel W315 zur Leiterplatte DREHgeber lösen.

Ausbau der LP DREHgeber: Den Drehknopf abnehmen, und die Verbindung an X6 (z. DC/AC-Wandler) und X7 (Flachfolie z. LCD) trennen. 12pol. Buchsenhalter des Kabels W10 am LCD abziehen. Die LP kann nach Abschrauben von 4 Schrauben herausgenommen werden.

Ausbau des LCD: Kabel W10 sowie Flachfolie zur LP DREHgeber an X7 abziehen. 4pol. Steckverbindung vom DC/AC-Wandler zur CFL-Beleuchtung auftrennen. Das LCD ist mit 4 Schrauben am Fußgehäuse befestigt und kann komplett herausgenommen werden.

Der Zusammenbau geschieht in umgekehrter Reihenfolge. Vor dem Zuschrauben des Deckels ist auf den korrekten Sitz der Baugruppe RECHNER zu achten, insbesondere auf das Anliegen der Dichtschnur.

7.6.1

Schnittstelle Rechner

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
X31.1 .5	VD-5P	Eingang	A2, P0WS	5.10V...5.25V max. 3000mA	Versorgungsspannung digital
X31.11 .15					
X31.6,7	VA15-P	Eingang	A2, P0WS	14.7V...15.9V max. 660mA	Versorgungsspannung analog
X31.16,17					
X31.8	VA15-N	Eingang	A2, P0WS max. 50mA	-15.9V...-14.7V	Versorgungsspannung analog
X31.24	VS12-P	Eingang	A2, P0WS	11.6V...12.4V	Standby-spannung
X31.4,5,14,15,7,17,18					Masse digital
X31.10,20					Masse analog
X31.38	POWER-SWITCH	Ausgang	A2, P0WS		Schalterkontakt
X312.2					
X31.23	POWER-SWITCH-	Ausgang	A2, P0WS		Schalterkontakt
X312.1	GND				
X312.5	STBY-LED1	Ausgang	A2, P0WS		Anode Standby-LED
X312.3	STBY-LED2	Eingang	A2, P0WS		Kathode Standby-LED
X312.4	N.C.				Codierung
X31.45	SERBUS-CLK	Ausgang		HCMOS-Pegel	Serbus-Clock
X31.30	SERBUS-DAT	bidir.		HCMOS-Pegel	Serbus-Daten
X31.29	SERBUS-SYNC	Ausgang		HCMOS-Pegel	Serbus-Synchronisation
X31.44	SERBUS-INT	Eingang		HCMOS-Pegel	Serbus-Interrupt
X31.39	RES-PAusgang			HCMOS-Pegel	Reset
X31.47	DIAG-5V	Eingang		-5V...5V	Diagnose
X31.32	DIAG-15V	Eingang		-15V...15V	Diagnose
X31.46	TRIGGER	Eingang	Rückwand	HCMOS-Pegel	Trigger
X31.31	AUX-TRIG	Eingang	Rückwand	HCMOS-Pegel	Trigger
X31.43	SYSRESET	Eingang	A2, P0WS	HCMOS-Pegel	System-Reset
X31.28	ACFAIL	Eingang	A2, P0WS	HCMOS-Pegel	Powerfail
X31.42	BLANK	Ausgang	Rückwand	HCMOS-Pegel	Steuersignal
X31.27	MARKER	Ausgang	Rückwand	HCMOS-Pegel	Steuersignal
X31.41	SWEEP-STOP	Eingang	Rückwand	HCMOS-Pegel	Steuersignal
X31.40	MODCTRL-OUT	Ausgang	A5, MGEN X5.2	HCMOS-Pegel	Steuerung Modulationsgenerator
X31.26	MODCTRL-IN	Eingang	A5, MGEN X5.1	HCMOS-Pegel	Steuerung Modulationsgenerator
X31.33	X-AXIS	Ausgang	Rückwand	0...10V	Frequ.prop. Spannung
X37A.1	RETO	Eingang	Drehgeber	HCMOS-Pegel	Tastatur
.					
X37A.6	RET6				
X37A.8 .10	SCAN0	Ausgang	Drehgeber	HCMOS-Pegel	Tastatur
X37B.1					
X37B.3	SCAN5				
X36A.1 .10	"GND"			1kOhm Pulldown	Tastatur
X36B.1					
X36B.3					
X33B.3	CTS	Eingang	Rückwand	RS232-Pegel	Serielle Schnittstelle
X33A.2	RXD	Eingang	Rückwand	RS232-Pegel	Serielle Schnittstelle
X33A.3	TXD	Ausgang	Rückwand	RS232-Pegel	Serielle Schnittstelle
X33B.2	DTR	Ausgang	Rückwand	RS232-Pegel	Serielle Schnittstelle
X33A.4					
X33A.5					Masse digital

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
X34A.1	DIO-1	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34A.2	DIO-2	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34A.3	DIO-3	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34A.4	DIO-4	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34B.1	DIO-5	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34B.2	DIO-6	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34B.3	DIO-7	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34B.4	DIO-8	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34A.5	EOI	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34B.5	REN	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34A.6	DAV	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34A.7	NRFD	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34A.8	NDAC	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34C.1	IFC	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34C.2	SRQ	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34C.3	ATN	bidir.	Rückwand	TTL O.C.	IEC-Bus
X34B.6,7,8					Masse
X34D.1,2,3,4					
X35B.1	VA15-P	Eingang	DREHGEBER	14.7V...15.9V max. 650mA	Versorgungsspannung analog
.	.				
X35B.4					
X35B.9	+5V	Eingang	DREHGEBER	5.1V...5.3V max.20mA	Versorgungsspannung digital
X35A.1					Masse
X35B.10					
X35C.1,2,3					
X35B.8	LAMPOFF	Eingang	DREHGEBER	HCMOS-Pegel	Steuerung Beleuchtung
X35A.2	POT1	bidir.	DREHGEBER		Anschl.1 d. Kontrastreglers
X35A.3	POT2	bidir.	DREHGEBER		Anschl.2 d. Kontrastreglers
X35A.4	POT3	bidir.	DREHGEBER		Anschl.3 d. Kontrastreglers
X35B.5	POT4	bidir.	DREHGEBER		Anschl.1 d. Helligkeitsreglers
X35B.6	POT5	bidir.	DREHGEBER		Anschl.2 d. Helligkeitsreglers
X35B.7	POT6	bidir.	DREHGEBER		Anschl.3 d. Helligkeitsreglers
X35A.5	KNOB1	Eingang	DREHGEBER	HCMOS-Pegel	Anschl.1 d. Drehgebers
X35A.6	KNOB2	Eingang	DREHGEBER	HCMOS-Pegel	Anschl.2 d. Drehgebers
X35D.1	LCD-D0	Ausgang	DREHGEBER	HCMOS-Pegel	Daten LCD
X35D.2	LCD-D1	Ausgang	DREHGEBER	HCMOS-Pegel	Daten LCD
X35D.3	LCD-D2	Ausgang	DREHGEBER	HCMOS-Pegel	Daten LCD
X35A.7	LCD-D3	Ausgang	DREHGEBER	HCMOS-Pegel	Daten LCD
X35A.9	LCD-CP1	Ausgang	DREHGEBER	HCMOS-Pegel	Clock1 LCD
X35A.10	LCD-CP2	Ausgang	DREHGEBER	HCMOS-Pegel	Clock2 LCD
X35A.8	LCD-CS	Ausgang	DREHGEBER	HCMOS-Pegel	Chip-Select LCD

7.6.2

Schnittstelle Drehgeber

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
X5.2,4	+15V	Eingang	RECHNER	14.7V...15.9V max. 600mA	Versorgungsspannung analog
X5.6,8					
X5.18	+5V	Eingang	RECHNER	5.1V...5.3V max.20mA	Versorgungsspannung digital
X5.1					Masse
X5.20,21,23,25					
X6.4	V-DC/AC	Ausgang	DC/AC-Wandler	6V...10V max. 550mA	Versorgungsspannung Beleuchtung
X6.1	GND-DC/AC		DC/AC-Wandler		
X10.1	VEE-LCD	Ausgang	LCD	-15V...-22V	Kontrastspannung
X10.2	VDD-LCD	Ausgang	LCD	5.1V...5.3V	Versorgungsspannung digital
X7.6	VSS-LCD				Masse
X5.22	LCD-D0	Eingang	RECHNER	HCMOS-Pegel	Daten LCD
X7.4		Ausgang	LCD		
X5.24	LCD-D1	Eingang	RECHNER	HCMOS-Pegel	Daten LCD
X7.3		Ausgang	LCD		
X5.26	LCD-D2	Eingang	RECHNER	HCMOS-Pegel	Daten LCD
X7.2		Ausgang	LCD		
X5.13	LCD-D3	Eingang	RECHNER	HCMOS-Pegel	Daten LCD
X7.1		Ausgang	LCD		
X5.15	LCD-CS	Eingang	RECHNER	HCMOS-Pegel	Chip-Select LCD
X7.10		Ausgang	LCD		
X5.17	LCD-CP1	Eingang	RECHNER	HCMOS-Pegel	Clock1 LCD
X7.8		Ausgang	LCD		
X5.19	LCD-CP2	Eingang	RECHNER	HCMOS-Pegel	Clock2 LCD
X7.9		Ausgang	LCD		
X5.16	LAMPOFF	Eingang	RECHNER	HCMOS-Pegel	Steuerung Beleuchtung
X5.9	KNOB1	Ausgang	RECHNER	O.C. 2,2kOhm	Anschl.1 d. Drehgebers
X5.11	KNOB2	Ausgang	RECHNER	O.C. 2,2kOhm	Anschl.2 d. Drehgebers
X5.3,5,7	POT1,2,3	bidir.	RECHNER		Anschl.1,2,3 d. Kontrastreglers
X5.10,12	POT4,5,6	bidir.	RECHNER		Anschl.1,2,3 d. Helligk.reglers
14					

7.6.3

Schnittstelle LCD

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
CONN2.5	VEE-LCD	Eingang	DREHGEBER	-15V...-22V	Kontrastspannung
CONN2.7	VDD-LCD	Eingang	DREHGEBER	5.1V...5.3V	Versorgungsspannung digital
CONN1.6	VSS-LCD				Masse
CONN1.4	LCD-D0	Eingang	DREHGEBER	HCMOS-Pegel	Daten LCD
CONN1.3	LCD-D1	Eingang	DREHGEBER	HCMOS-Pegel	Daten LCD
CONN1.2	LCD-D2	Eingang	DREHGEBER	HCMOS-Pegel	Daten LCD
CONN1.1	LCD-D3	Eingang	DREHGEBER	HCMOS-Pegel	Daten LCD
CONN1.10	LCD-CS	Eingang	DREHGEBER	HCMOS-Pegel	Chip-Select LCD
CONN1.8	LCD-CP1	Eingang	DREHGEBER	HCMOS-Pegel	Clock1 LCD
CONN1.9	LCD-CP2	Eingang	DREHGEBER	HCMOS-Pegel	Clock2 LCD

SERVICE INSTRUCTIONS

Front Module with Controller VAR 04

1035.5440.04

Contents

7. TESTING AND REPAIR OF THE BOARD	5
7.1 Function Description	5
7.1.1 CPU: 80960SB-16	6
7.1.2 512K-Byte RAM with Battery-backup	6
7.1.3 Battery Test	6
7.1.4 FLASH-EPROMs (Firmware Update)	6
7.1.5 IEEE-Bus Interface	7
7.1.6 SERBUS-Interface	7
7.1.7 RS232- / V.24-Interface	7
7.1.8 Timer	7
7.1.9 Interrupt Controller	7
7.1.10 ACFAIL,SYSRESET	8
7.1.11 Processing of External Trigger Signals	8
7.1.12 LCD Interface	8
7.1.13 Brightness and Contrast Control for LCD	8
7.1.14 Knob Interface	9
7.1.15 Connector for the Keyboard Matrix	9
7.1.16 Diagnostics A/D Converter	9
7.1.17 X-Output	9
7.1.18 Identification of Variant and Revision	10
7.1.19 Control Signals, Key Beep	10
7.1.20 Standby Switch and LED	10
7.2 Test Instruments and Utilities	10
7.3 Troubleshooting	11
7.4 Testing and Adjustment	11
7.4.1 Checking the Supply Voltage of the DC/AC Converter	11
7.4.2 Checking the Contrast Voltage	11
7.4.3 Checking the Shaft Encoder	11
7.4.4 Testing the RESET and the ACFAIL Signal	11
7.4.5 Checking the Diagnostic Path	12
7.4.6 Check and Readout of the Diagnostic Test Points	12
7.4.7 Checking the Position of Jumpers	12
7.5 Removal and Assembly	13
7.6 External Interfaces	14
7.6.1 Controller Interface	14
7.6.2 Shaft encoder Interface	16
7.6.3 LCD Interface	16
Part list	
Coordinates list	
Circuit diagram	
Layout diagram	

7. Testing and Repair of the Board

Caution ! ! In the Front Module many data are stored, which are necessary for operation. All data contained in the RAM may be reconstructed by the unit itself. To reconstruct data in the flash EPROM additional tools are necessary. If there is some danger to loose data of the flash EPROM, be shure, you can

- 1) load a new firmware,
- 2) perform a level calibration (refer to section 6.4 of service manual),
- 3) restore calibration data or calibrate the Reference Oscillator (refer to section 2.11.8 of operating manual),
- 4) reconstruct the operational data in the menu UTILITIES/DIAG/PARAM.

To do 3) and 4) the concerned data have to be noted down before work on the module. To restore data of reference oscillator, you got to unlock password protection level 2 (refer to section 2.11.7 of operating manual). The password is 250751. After this in the menu UTILITIES/CALIB/REF OSC the noted calibration data can be keyed in. To construct operational data (4), password protection level 3 is to be unlocked. Please contact your R&S representative to get the password. The menu UTILITIES/DIAG/SET PARAM will appear and allow to key in the noted data.

7.1 Function Description

The front module contains the following components: controller, shaft encoder, keyboard and LC display.

The controller must provide the following functions and features:

- CPU: 80960SB-16
- 512K-Byte RAM with battery-backup
- Battery test
- Firmware in flash-EPROMs which can be updated
- IEEE-bus interface
- SERBUS interface
- RS232 / V.24 interface
- Timers
- Interrupt controller
 - all interrupts maskable either at the source or at the interrupt controller
- ACFAIL of the power supply triggers maskable interrupt
- Processing of external trigger signals (TRIGGER, AUX-TRIG) polarity & trigger type (dyn./stat.) selectable
- LCD interface
- brightness and contrast control for LCD
- spinwheel interface
- connector for keyboard matrix
- self diagnostics with 12-bit converter and two diagnostic inputs (±5V & ±15V)

- X-output (0 to 10 V)
- identification of model/variation
- various control lines for other modules
(MODCTRL-OUT, MODCTRL-IN)
- digital output and input signals
(BLANK, MARKER, SWEEP-STOP, KEYBEEP)
- SYS-RESET by the power supply causes system reset
- standby switch and standby LED

7.1.1 CPU: 80960SB-16

Use of the processor 80960 (clock freq.: 16MHz) requires defined RESET and clock signals for the complete controller system. This signal-generation is realized by an ASIC (CLOCKGEN D120). Various clock frequencies used in the system are derived from this ASIC. Since the bus-interface of the 80960 is designed for BURST access, several PLDs have been used (D300, D402, D540, D600, D800, D950). The latter convert the BURST access into the corresponding control for the components connected. Besides, they generate the READY signal for adapting the access speed. The various READY signals are joined to a common signal for the processor via an AND logic at D103. The processor 80960 provides a multiplexed address and data bus. During the address cycle of the CPU, the addresses A4 to A15 are loaded into the components D204, D205 and D216 and are then available during the following data-/wait-cycles and the final recovery-cycle.

The two data-bus drivers D208 and D209 are required to achieve an isolation of the data bus from the multiplexed data-/address bus of the processor. This is necessary when using slow peripheral components.

7.1.2 512K-Byte RAM with Battery-backup

This memory is composed of four 1Mbit SRAM components (D302,D304,D303,D305) in two banks of 128K words, each. (1 word=16bits). The access to this memory is disabled by the signal EN-MEM-P, whenever the reset signal is active or the supply voltage drops below 4 V (V390, V391). This check of the supply voltage is intended for a sudden power failure, without prior generation of the SYSRESET signal by the power supply. The circuit consisting of the transistors V300 and V301 and the diode V302 initiates switchover from VBATT to +5V, as soon as the +5V-supply voltage exceeds the battery voltage.

7.1.3 Battery Test

The charge of the battery can be tested by connecting a load resistor of 39,2 kOhm to the battery by means of the REED relay, which is controlled by the signal TST-BATT. The voltage at the resistor is applied to the self-diagnostics circuit and thus informs on the discharge degree of the battery.

7.1.4 FLASH-EPROMs (Firmware Update)

The use of FLASH-EPROMs allows for making firmware updates without external access. Four components D404,D405, type 28F020 (256K-words), resp. 29F040 (1024K-words), are therefore provided. The voltage VPP required for programming is generated from +15V by the component D400. This linear controller can be switched on and off by means of the signal VPP-ON.

The firmware update is realized via an RS232 interface at the rear panel of the instrument.

Since the FLASH-EPROMs can only be deleted completely, a BOOT-EPROM (D301) is provided, which contains the IPL. This BOOT-EPROM additionally allows for fitting the FLASH-EPROMs as unprogrammed standard components.

The signal at bridge X200 indicates to the processor whether a firmware update is to be carried out or not.

7.1.5 IEEE-Bus Interface

The NEC component μ PD7210 (D602) with the bus drivers 75160 (D603) and 75162 (D604) is used as IEEE-bus controller. It is provided with an 8MHz clock frequency via "CLOCKGEN". The complete controller capability of the IEEE-bus can be realized by configuring the shorting jumper at X600 correspondingly.

7.1.6 SERBUS-Interface

A serial bus system (SERBUS) developped by R&S is used for control and programming of the individual modules. Two standard ASICs are already available (SERBUS-M and SERBUS-D).

The controller accomodates the bus-master component (SERBUS-M / D87). It is programmed in words and operated at a clock frequency of 32 MHz. 4 MHz are used for serial data transmission to the boards.

7.1.7 RS232- / V.24-Interface

This interface is implemented by controller IC 82510 (D85). Level conversion from TTL to RS232 is carried out in component LT1181 (D860).

7.1.8 Timer

The component 82C54 (D610) contains three 16-bit timers. Two of them (timers 1 and 2) are cascaded to achieve a high resolution for long periods of time. The input clock is 1 kHz for timer 0 and 1 MHz for timers 1 and 2.

7.1.9 Interrupt Controller

The interrupt controller is component UPD71059 (D86) with the following interrupt sources connected. Each input can be used as a dynamic or static input.

Interrupt input	Definition
INTP0	Trigger
INTP1	Aux-Trigger
INTP2	IEC-INT-P
INTP3	T2-INT0
INTP4	T2-INT2
INTP6	INT-RS232

All static interrupts are combined to one interrupt at D830 and applied to interrupt input INTP5.

1. - SERBUS-INT1
2. - SERBUS-INT2
3. - ACFAIL (powerfail)
4. - SERBUS-ACT-REQ.

All interrupts are maskable in UPD71059. The static interrupts 3 and 4 are maskable at the source and the others via port register D810.

7.1.10 ACFAIL, SYSRESET

The signal ACFAIL is generated in the power supply and belongs to those interrupt signals which are not maskable at the source.

Masking is carried out as described under 7.1.9. SYSRESET (generated by the power supply, too) is applied to the ASIC CLKGEN via D106C/D and initiates the reset. Simultaneously, the capacitor C109 is discharged via R108 and V102. When the signal SYSRESET assumes HIGH level again, C109 charges via R129 and, subsequent to reaching the threshold voltage of D106C, enables the reset input of CLKGEN again.

7.1.11 Processing of External Trigger Signals

(TRIGGER, AUX-TRIG) polarity & trigger type(dyn./stat.) are selectable

Selection of the type of trigger is made by programming the interrupt controller IPD71059. The polarity of the trigger signal can be set individually for both trigger signals at port D810 and is generated by an EXOR logic combining the port signal and the trigger signal(D840).

7.1.12 LCD Interface

The LCD controller SED1351F (D90) of SEIKO EPSON is used to address the LC display. The display buffer/video RAM consists of the two SRAMs D960 and D970 and offers memory space for four screen pages (640 x 200).

Linear addressing of the pixels (pixel 0 is LSB of the lowest address) is achieved by mirroring the data bus at D90 byte by byte.

The data and clock signals for the LCD are routed via D980 to increase the driver capability and to isolate the component D90.

7.1.13 Brightness and Contrast Control for LCD

PC board: Shaft Encoder (1035.5592.01)

Brightness is set via the input voltage of the DC/AC converter for the CFL illumination. The input voltage for this converter may vary between +6V and +10V. Increase of voltage means increase of brightness. The voltage is controlled by means of LM317T (N50), and the output voltage is set using R990.

The input voltage of the converter must assume +10V with switch-on of the instrument in order to ensure ignition of the fluorescent tubes. The circuit consisting of N51 and V52. which shortly provides +10V following switch-on, is available for this purpose.

The illumination can be switched off by means of V48 to improve the interference radiation of the AC/DC converter and of the fluorescent tubes.

The contrast is set via the negative supply voltage VEE of the LC display. This voltage is derived from +15V by means of a switch-capacitor-voltage-converter with controller (LT1054/N70) and can be set in the range from -15V to -22V using R995.

Two additional pi-type LC filters are contained on the board for filtering of the interferences radiated by the DC/AC converter and the converter LT1054.

7.1.14 Knob Interface

With each change of level of the signal KNOB2 (CLK), a LOW pulse is generated via the runtime chain consisting of D566C/D and D562B/C at the EXNOR-gate D566B. This pulse is used to store the direction information in the flip-flop D565B and to trigger an interrupt using D565A.

7.1.15 Connector for the Keyboard Matrix

The vertical lines are connected to the register D550, the horizontal lines to the port D560.

If no key is pressed the connected horizontal lines are applied to HIGH potential via the pull-up resistors. The vertical lines are kept at LOW potential by the register outputs. As soon as a key is pressed, the associate horizontal line assumes LOW potential.

Subsequent to debouncing, an interrupt is generated, which allows for applying the vertical lines individually to LOW potential. The level indicates, which key was pressed.

7.1.16 Diagnostics A/D Converter

including 12-bit converter and two diagnostic inputs
(±5V & ±15V)

The two diagnostic inputs and a few test points of the controller are applied to the A/D converter D704 via the multiplexer D700, the impedance converter N701 and the input amplifier.

The following voltages can be set for maximum range of the A/D converter: ±15V, ±5V and ±1V.

The conversion time (max. 9 µs) is indicated by the BUSY output, which can be read in via D570 (port1).

The following voltages can be measured using the self-diagnostics converter for self-diagnostic purposes:

the voltage at the X-output
the reference voltage of the D/A converter
the battery voltage

Moreover, test cables can be connected instead of the shorting jumper X700 and thus, any test point can be connected to the A/D converter. Make sure, that the test voltage does not exceed ±15V.

7.1.17 X-Output

With sweeping, the X-output generates an output signal of 0V (sweep start) to 10V (end of sweep), which can be used to control external devices. This signal is generated by the processor by setting the D/A converter D706 correspondingly, depending on the

sweep. The resistor R707 and the diodes V700 are provided for overvoltage protection.

7.1.18 Identification of Variant and Revision

The port D590 is provided for identification of the module. The variant of the module is coded by the configuration of the resistors R591 to R594, the revision by R595 through R598.

7.1.19 Control Signals, Key Beep

The signals MODCNTL-OUT and MODCNTL-IN allow for synchronization between the signal processor of the modulation generator module and the processor.

The output signals BLANK and MARKER as well as the input signal SWEEP-STOP are used for control and synchronization of external devices.

The output port D213 supplies the control signal (LAMP-OFF) for switching off the tubular fluorescent lamps.

The piezo-buzzer H200 is provided for generation of a key beep. The port D301 switches the 1-kHz tone frequency to V287 via D310.

7.1.20 Standby Switch and LED

The standby switch fitted to the front panel of the generator is connected directly to the controller and routed to the motherboard via the common ribbon cable.

The standby LED is switched between +15V and VS12-P such that in case of a cut of +15V a current may flow from VS12-P via the LED to the virtual ground of the +15V.

7.2 Test Instruments and Utilities

Oscilloscope	100MHz	e.g., BOL
DC multimeter	0 to +-30V, Ri>1MOhm	e.g., UDL33
DC voltage source	..10V	e.g., NGT20

7.3

Troubleshooting

Standby LED does not light up	Check the standby voltage at X312.5
Subsequent to switch-on, the LC-Display remains dark	Check the voltage of the DC/AC converter acc. to 7.4.1
Setting of contrast not possible	Check the contrast voltage acc. to 7.4.2
Shaft encoder does not work	Check the pulses of the shaft encoder acc. to 7.4.3
No display following switch-on	Check the RESET signal acc. to 7.4.4
	Check the ACFAIL signal acc. to 7.4.4
No voltage at X-AXIS	Check the output X-AXIS using diagnostics acc. to 7.4.6
	Check the reference voltage using the diagnostics acc. to 7.4.6
No storage of data after switching off the instrument	Check the RAM voltage using diagnostics acc. to 7.4.6

7.4

Testing and Adjustment

7.4.1 Checking the Supply Voltage of the DC/AC Converter

Shaft encoder module:

Measure the DC voltage at the connector X6.4 depending on the position of the brightness control at the front panel of the instrument: rated value: 6V to 10V.

7.4.2 Checking the Contrast Voltage

SHAFT ENCODER module:

Measure the DC voltage at the connectors X7.5 and X10.5 depending on the position of the contrast controller at the front panel of the instrument: rated value: -15V to -22V.

7.4.3 Checking the Shaft Encoder

CONTROLLER module:

Connect an oscilloscope to X315.9 and X315.11.

Turn the shaft encoder. There must be 2 signals with different timing.

7.4.4 Testing the RESET and the ACFAIL Signal

CONTROLLER module:

Connect an oscilloscope to X31.35 and D106 PIN2.

Just upon switching on the instrument, the level of the ACFAIL signal must change from L to H. This change of level must be indicated by the RESET signal (RES-N) after approx. 200 to 300 ms. Both signals must remain HIGH-level with all operating states.

7.4.5 Checking the Diagnostic Path

- Settings: **TPOINT 4**
- Apply a DC voltage of 0.5V to X700.
- Check the voltage at P710: 0.5V and P730: 1.5V.

7.4.6 Check and Readout of the Diagnostic Test Points

TPOINT	Voltage	Meaning
0	0mV to 50mV	Reference point
1	-15V to 15V	DIAG -15V
2	-15V to 15V	DIAG -5V
3	0V to 10V	X-AXIS
4	-15V to 15V	Voltmeter
6	4.9V to 5.1V	Reference voltage X-D/A
7	3.2V to 4.0V	Battery voltage

7.4.7 Checking the Position of Jumpers

Jumper	Position	Remark
X105	1 - 2	Clock (CPU)
X200	1 - 2	SW-Update
X300	1 - 2	Battery
X900	1 - 2	+5V-voltage
X700	1 - 2	Voltmeter
X600	1 - 2	IEC-Control
X800	2 - 3	Timer-Int
X85	1 - 2	Clock (RS232)

7.5

Removal and Assembly

Remove the 4 screws at the front panel of the instrument. Carefully swing out the module to the front, in order to be able to disconnect the cable connections W20, W313 and W314. Subsequent to disconnecting W31 (ribbon cable to the motherboard), the front module can be withdrawn. The metal cover on the rear is fixed by 6 screws. The CONTROLLER board can be removed carefully after unlocking the sockets X316, X317 and separating the two foils as well as the socket at X312. Finally, disconnect the ribbon cable W315 to the ENCODER board.

Removal of the p.c.b. SHAFT ENCODER: remove the rotary knob, and disconnect the connection at X6 (to DC/AC converter) and X7 (ribbon cable to LCD). Disconnect 12-pin connector support of the cable W10 from the LCD. The p.c.b. can be removed after unscrewing of 4 screws.

Removal of the LCD: disconnect the cable W10 as well as the flat foil to the PCB SHAFT ENCODER from X7. Disconnect the 4-pin connector between the DC/AC converter and the CFL illumination. The LCD is fixed to the cast housing by 4 screws and can be taken out completely.

Assembly has to be carried out in the reverse order. Prior to fixing the cover again, make sure that the PROCESSOR board has locked in place correctly and that the seal cord is correctly applied.

7.6.1 Controller Interface

Pin	Name	Input/Output	Origin/Destin.	Specified range	Signal description
X31.1	VD-5P	Input	A2, P0WS	5.10V to 5.25V max. 3000mA	Supply voltage, digital
X31.5					
X31.11					
X31.15					
X31.6,7, ,16,17	VA15-P	Input	A2, P0WS	14.7V to 15.9V max. 660mA	Supply voltage, analog
X31.8	VA15-N	Input	A2, P0WS	-15.9V to -14.7V max. 50mA	Supply voltage, analog
X31.24	VS12-P	Input	A2, P0WS	11.6V to 12.4V	Standby-voltage
X31.4,5,14,15,7,17,18					Ground, digital
X31.10,20					Ground, analog
X31.38	POWER-SWITCH	Output	A2, P0WS		Switch contact
X312.2					
X31.23	POWER-SWITCH	Output	A2, P0WS		Switch contact
X312.1	GND				
X312.5	STBY-LED1	Output	A2, P0WS		Anode of standby-LED
X312.3	STBY-LED2	Input	A2, P0WS		Cathode of standby-LED
X312.4	N.C.				Coding
X31.45	SERBUS-CLK	Output	HCMOS level		Serbus Clock
X31.30	SERBUS-DAT	bidir.	HCMOS level		Serbus data
X31.29	SERBUS-SYNC	Output	HCMOS level		Serbus synchronization
X31.44	SERBUS-INT	Input	HCMOS level		Serbus interrupt
X31.39	RES-P	Output	HCMOS level		Reset
X31.47	DIAG-5V	Input	-5V to 5V		Diagnostics
X31.32	DIAG-15V	Input	-15V to 15V		Diagnostics
X31.46	TRIGGER	Input	Rear panel	HCMOS level	Trigger
X31.31	AUX-TRIG	Input	Rear panel	HCMOS level	Trigger
X31.43	SYSRESET	Input	A2, P0WS	HCMOS level	System reset
X31.28	ACFAIL	Input	A2, P0WS	HCMOS level	Power fail
X31.42	BLANK	Output	Rear panel	HCMOS level	Control signal
X31.27	MARKER	Output	Rear panel	HCMOS level	Control signal
X31.41	SWEET-STOP	Input	Rear panel	HCMOS level	Control signal
X31.40	MODCTRL-OUT	Output	A5, MGEN X5.2	HCMOS level	Modulation generator control
X31.26	MODCTRL-IN	Input	A5, MGEN X5.1	HCMOS level	Modulation generator control
X31.33	X-AXIS	Output	Rear panel	0 to 10V	Frequ.-prop. voltage
X37A.1	RETO	Input	Shaft encoder	HCMOS level	Keyboard
.					
X37A.6	RET6				
X37A.8	SCAN0	Output	Shaft encoder	HCMOS level	Keyboard
X37A.10					
X37B.1					
X317.3	SCAN5				
X36A.1	"GND"			1kOhm Pulldown	Keyboard
X36A.10					
X36B.1					
X316.3					
X33B.3	CTS	Input	Rear panel	RS232 level	Serial interface
X33A.2	RXD	Input	Rear panel	RS232 level	Serial interface
X33A.3	TXD	Output	Rear panel	RS232 level	Serial interface
X33B.2	DTR	Output	Rear panel	RS232 level	Serial interface
X33A.4					
X33A.5					Ground, digital

Pin	Name	Input/Output	Origin/Destin.	Specified range	Signal description
X34A.1	DIO-1	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34A.2	DIO-2	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34A.3	DIO-3	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34A.4	DIO-4	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34B.1	DIO-5	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34B.2	DIO-6	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34B.3	DIO-7	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34B.4	DIO-8	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34A.5	EOI	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34B.5	REN	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34A.6	DAV	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34A.7	NRFD	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34A.8	NDAC	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34C.1	IFC	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34C.2	SRQ	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34C.3	ATN	bidir.	Rear panel	TTL 0.C.	IEEE bus
X34B.6,7,8					Ground
X34D.1,2,3,4					
X35B.	VA15-P	Input	SHAFT ENCODER	14.7V to 15.9V max. 650mA	Supply voltage, analog
.					
X35B.4					
X35.9	+5V	Input	SHAFT ENCODER	5.1V...5.3V max.20mA	Supply voltage, digital
X35A.1					Ground
X35B.10					
X35C.1,2,3					
X35B.8	LAMPOFF	Input	SHAFT ENCODER	HCMOS level	Illumination control
X35A.2	POT1	bidir.	SHAFT ENCODER		Conn.1 of contrast control
X35A.3	POT2	bidir.	SHAFT ENCODER		Conn.2 of contrast control
X35A.4	POT3	bidir.	SHAFT ENCODER		Conn.3 of contrast control
X35B.5	POT4	bidir.	SHAFT ENCODER		Conn.1 of brightness control
X35B.6	POT5	bidir.	SHAFT ENCODER		Conn.2 of brightness control
X35B.7	POT6	bidir.	SHAFT ENCODER		Conn.3 of brightness control
X35A.5	KNOB1	Input	SHAFT ENCODER	HCMOS level	Conn.1 of the shaft encoder
X35A.6	KNOB2	Input	SHAFT ENCODER	HCMOS level	Conn.2 of the shaft encoder
X35D.1	LCD-D0	Output	SHAFT ENCODER	HCMOS level	Data LCD
X35D.2	LCD-D1	Output	SHAFT ENCODER	HCMOS level	Data LCD
X35D.3	LCD-D2	Output	SHAFT ENCODER	HCMOS level	Data LCD
X35A.7	LCD-D3	Output	SHAFT ENCODER	HCMOS level	Data LCD
X35A.9	LCD-CP1	Output	SHAFT ENCODER	HCMOS level	Clock1 LCD
X35A.10	LCD-CP2	Output	SHAFT ENCODER	HCMOS level	Clock2 LCD
X35A.8	LCD-CS	Output	SHAFT ENCODER	HCMOS level	Chip-Select LCD

7.6.2

Shaft encoder Interface

Pin	Name	Input/Output	Origin/Destination	Specified range	Signal description
X5.2	+15V	Input	Controller	14.7V to 15.9V	Supply voltage, analog
X5.6,8					
X5A.18	+5V	Input	CONTROLLER	5.1V..5.3V max.20mA	Supply voltage, digital
X5.1					Ground
X5.20,21,23,25					
X6.4	V-DC/AC	Output	DC/AC converter	6V...10V max. 550mA	Supply voltage for illumination
X6.1	GND-DC/AC		DC/AC-converter		
X10.1	VEE-LCD	Output	LCD	-15V to -22V max. 20mA	Contrast voltage
X10.2	VDD-LCD	Output	LCD	5.1V to 5.3V max. 20mA	Supply voltage, digital
X7.6	VSS-LCD				Ground
X5.22	LCD-D0	Input	CONTROLLER	HCMOS level	Data LCD
X7.4		Output	LCD		
X5.24	LCD-D1	Input	CONTROLLER	HCMOS level	Data LCD
X7.3		Output	LCD		
X5.26	LCD-D2	Input	CONTROLLER	HCMOS level	Data LCD
X7.2		Output	LCD		
X5.13	LCD-D3	Input	CONTROLLER	HCMOS level	Data LCD
X7.1		Output	LCD		
X5.15	LCD-CS	Input	CONTROLLER	HCMOS level	Chip-Select LCD
X7.10		Output	LCD		
X5.17	LCD-CP1	Input	CONTROLLER	HCMOS level	Clock1 LCD
X7.8		Output	LCD		
X5.19	LCD-CP2	Input	CONTROLLER	HCMOS level	Clock2 LCD
X7.9		Output	LCD		
X5.16	LAMPOFF	Input	CONTROLLER	HCMOS level	Illumination control of
X5.9	KNOB1	Output	CONTROLLER	O.C. 2,2kOhm	Connect.1 of the shaft encoder
X5.11	KNOB2	Output	CONTROLLER	O.C. 2,2kOhm	Connect.2 of the shaft encoder
X5.3	POT1,2,3	bidir.	CONTROLLER		Conn.1,2,3 of contrast contr.
X5.5					
X5.7					
X5.10	POT4,5,6	bidir.	CONTROLLER		Conn.1,2,3 of brightness control
X5.12					
X5.14					

7.6.3

LCD Interface

Pin	Name	Input/Output	Origin/Destin.	Specified range	Signal description
CONN2.5	VEE-LCD	Input	SHAFT ENCODER	-15V to -22V	Contrast voltage
CONN2.7	VDD-LCD	Input	SHAFT ENCODER	5.1V to 5.3V	Supply voltage digital
CONN1.6	VSS-LCD				Ground
CONN1.4	LCD-D0	Input	SHAFT ENCODER	HCMOS level	Data LCD
CONN1.3	LCD-D1	Input	SHAFT ENCODER	HCMOS level	Data LCD
CONN1.2	LCD-D2	Input	SHAFT ENCODER	HCMOS level	Data LCD
CONN1.1	LCD-D3	Input	SHAFT ENCODER	HCMOS level	Data LCD
CONN1.10	LCD-CS	Input	SHAFT ENCODER	HCMOS level	Chip-Select LCD
CONN1.8	LCD-CP1	Input	SHAFT ENCODER	HCMOS level	Clock1 LCD
CONN1.9	LCD-CP2	Input	SHAFT ENCODER	HCMOS level	Clock2 LCD

XY-Liste

XY List

Erklärung der Spaltenbezeichnungen:

el. Kennz.	Bauelement-Kennzeichen
Seite	Leiterplatten-Seite, auf der sich das Bauelement befindet
X/Y	Koordinaten (in Millimeter) des Bauelementes auf der Leiterplatte bezogen auf den Nullpunkt
Planq., Bl.	Planquadrat und Seite des Schaltbildes für das jeweilige Bauelement

Explanation of column designations:

Part	Identification of instrument part
Side	Side of the PC board on which instrument part is positioned
X/Y	Coordinates (in units of millimeters) of the component on the PC board in reference to zero point
Sqr, Pg	Square and page of the diagram for the respective instrument part

Service-Relevante Bauteile / Service-Relevant Components																	
Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
E1	A	36	27	7D	1	S1	A	22	43	7D	1	X7	B	73	97	6B	1
E2	A	41	34	7C	1	X5	B	76	35	1F	1						
R71	B	25	10	5C	1	X6	B	4	95	6E	1						

ROHDE & SCHWARZ	-I	Datum Date	XY-Liste f"r XY-list for	Sach-Nummer Stock-Nr	Blatt Page
		06 07.04.94	ED DREHGEBER KNOB ASSEMBLY	1035.5592.01 XY	1+

Nicht-Service-Relevante Bauteile / Non-Service-Relevant Components

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
C11	A	60	46	1C	1	C76	A	32	10	5C	1	R57	A	52	98	3D	1
C12	B	55	41	2C	1	C77	A	39	4	4C	1	R58	A	45	93	4D	1
C13	A	59	37	2C	1	C79	A	67	45	4B	1	R59	A	22	91	4D	1
C50	B	53	51	2D	1	L10	B	58	33	2C	1	R60	A	19	88	5E	1
C51	B	58	66	2D	1	L50	B	45	68	2D	1	R61	A	24	85	5E	1
C52	B	51	81	5E	1	L51	B	36	95	6E	1	R72	B	52	6	3C	1
C53	B	39	79	6E	1	N50	B	29	76	4E	1	R73	A	25	7	5C	1
C54	A	53	54	1D	1	N51-A	A	55	95	3D	1	R74	B	58	3	3C	1
C55	A	59	70	2D	1	N51-B				4D	1	R75	A	32	7	5C	1
C56	A	14	85	5E	1	N51-C				2A	1	R76	A	42	6	4B	1
C57	A	42	79	6E	1	N70	A	37	10	3B	1	R77	A	65	28	4B	1
C58	A	45	96	2A	1	MAS	B	56	58	2D	1	R78	A	65	34	4B	1
C59	A	17	85	5E	1	R1	A	39	27	7D	1	V48	B	34	90	3E	1
C60	B	29	97	4D	1	R2	A	44	29	7C	1	V50	A	50	88	3D	1
C61	B	27	90	4D	1	R48	A	41	88	3E	1	V51	A	59	93	3D	1
C70	B	45	23	3B	1	R49	A	38	85	3E	1	V52	B	16	90	5D	1
C71	B	62	9	3C	1	R50	A	19	83	5E	1	V70	B	57	10	4C	1
C72	B	51	21	4C	1	R53	A	22	79	5E	1	V71	B	48	7	4C	1
C73	B	51	11	4C	1	R54	A	41	90	3E	1	V75	B	68	25	4B	1
C74	B	53	29	5C	1	R55	A	33	92	4E	1	X10	B	72	3	6C	1
C75	A	49	24	3B	1	R56	A	30	93	4E	1						

ROHDE & SCHWARZ	-I	Datum Date	XY-Liste f"r XY-list for	Sach-Nummer Stock-Nr	Blatt Page
		06 07.04.94	ED DREHGEBER KNOB ASSEMBLY	1035.5592.01 XY	2-

Nicht-Service-Relevante Bauteile / Non-Service-Relevant Components

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
1	B	276	11	3E	4	C566	B	10	91	4A	7	C864	A	103	86	10D	10
2	B	240	11	3E	4	C567	B	33	119	5A	7	C865	A	103	83	11D	10
C102	B	229	48	6A	2	C568	B	32	116	6A	7	C866	A	103	81	11D	10
C103	B	213	33	7A	2	C569	B	13	128	6A	7	C867	A	103	78	11D	10
C106	A	237	29	7A	2	C570	B	34	106	3D	7	C868	B	134	85	7A	10
C109	B	222	42	3E	2	C571	B	36	106	4D	7	C869	A	95	107	8D	10
C110	A	231	98	4A	2	C572	B	39	106	4D	7	C875	A	136	105	2A	10
C111	A	226	90	4A	2	C573	B	41	106	4D	7	C876	A	142	91	3A	10
C112	A	236	76	4A	2	C574	B	44	110	3D	7	C877	A	159	106	3A	10
C113	A	247	81	4A	2	C575	B	46	110	4D	7	C878	A	143	114	3A	10
C120	A	235	133	1A	2	C576	B	49	110	4D	7	C900	A	155	27	2E	12
C121	A	232	123	2A	2	C577	A	58	128	2A	7	C901	B	157	27	2E	12
C122	B	243	136	2A	2	C580	B	10	131	7C	7	C902	B	161	68	2E	12
C132	A	258	139	4D	2	C590	A	25	137	6A	6	C904	A	155	51	3E	12
C200	A	269	54	2A	3	C610	A	65	13	5A	9	C910	A	167	27	2D	12
C201	A	337	37	3A	3	C631	A	90	45	4A	9	C911	B	170	27	2D	12
C202	A	207	76	3A	3	C632	A	76	34	4A	9	C912	B	173	65	2D	12
C204	A	231	85	4A	3	C636	A	116	21	2A	9	C914	A	163	51	3D	12
C205	A	258	24	4A	3	C638	A	69	69	3A	9	C920	A	168	37	2D	12
C207	A	250	62	5A	3	C700	A	116	57	7E	8	C921	B	173	68	2D	12
C208	A	283	144	6A	3	C701	B	121	37	7F	8	C924	A	172	56	3D	12
C212	B	248	55	6A	3	C702	A	118	39	7F	8	C925	B	170	39	2D	12
C213	A	310	35	7A	3	C703	A	120	73	8E	8	C950	A	22	74	5A	11
C214	A	247	79	7A	3	C704	A	135	64	9E	8	C955	A	34	38	7A	11
C215	A	302	24	11D	3	C705	A	135	67	9E	8	C956	A	36	64	7A	11
C216	A	321	20	11D	3	C706	A	165	86	5A	8	C960	A	30	38	6A	11
C290	A	269	45	8C	3	C710	B	129	41	5C	8	C970	A	32	14	8A	11
C310	A	263	128	3A	4	C711	B	133	37	6C	8	C980	A	13	43	5A	11
C311	A	320	120	3A	4	C720	B	152	58	3D	8	D10A	B	236	73	3B	2
C312	B	336	63	4A	4	C721	A	166	53	3D	8	D60A	B	116	65	8E	9
C313	B	336	84	5A	4	C722	A	156	61	3D	8	D60B	B	116	65	8E	9
C314	B	337	27	5A	4	C730	A	147	41	8C	8	D60C	B	116	65	6E	9
C315	B	336	44	6A	4	C731	A	149	39	8B	8	D60D	B	116	65	8D	9
C316	B	276	104	7A	4	C735	A	138	46	10C	8	D61A	B	65	25	5C	9
C400	B	340	137	5E	5	C736	A	148	64	10D	8	D61B	B	65	25	4C	9
C411	A	280	128	1A	5	C737	B	152	66	11C	8	D61C	B	65	25	5C	9
C412	A	284	100	2A	5	C738	A	133	18	7C	8	D61D	B	65	25	4C	9
C413	A	288	79	2A	5	C739	A	126	10	7D	8	D63A	B	83	40	9E	9
C420	A	337	129	3E	5	C740	B	141	27	3A	8	D63B	B	83	40	9E	9
C421	A	333	119	5E	5	C741	B	141	21	4A	8	D64A	B	76	26	9D	9
C422	A	333	137	4E	5	C742	A	155	87	4A	8	D64B	B	76	26	4A	9
C500	A	92	125	3A	6	C800	A	126	134	8A	10	D64C	B	76	26	9C	9
C510	B	54	122	4A	6	C810	A	106	128	4A	10	D64D	B	76	26	9C	9
C520	B	58	109	5A	6	C820	A	150	138	5A	10	D85-A	B	107	113	7E	10
C540	A	77	117	4A	6	C825	A	149	131	5A	10	D85-B				4A	10
C550	A	9	81	9E	7	C830	B	161	138	6A	10	D86A	B	101	109	8B	10
C551	A	6	81	9E	7	C840	A	163	128	6A	10	D87A	B	143	94	1A	10
C552	A	65	82	1A	7	C855	A	88	136	7E	10	D90A	B	36	41	7A	11
C560	A	30	127	2A	7	C856	A	113	115	4A	10	D103-A	B	227	53	3C	2
C561	B	32	141	3A	7	C860	B	140	83	9E	10	D103-B				6A	2
C562	B	19	90	3A	7	C861	B	130	76	9D	10	D106-A	B	234	38	5E	4
C563	B	25	102	4A	7	C862	B	121	80	10E	10	D106-B				6E	4
C565	B	10	102	5A	7	C863	B	123	76	10D	10	D106-C				3E	2

ROHDE & SCHWARZ	-I 02 04.03.94	Datum Date	XY-Liste f"r XY-list for ED RECHNER PROCESSOR	Sach-Nummer Stock-Nr	Blatt Page
				1035.7250.01 XY	1+

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
D106-D		4E	2			D500-B		3A	6			D600-B		2A	9		
D106-E		7A	2			D510-A	A	57	118	3D	6	D621-A	A	85	69	3E	9
D120-A	B	228	135	5E	2	D510-B		4A	6			D621-B		3E	9		
D120-B		2A	2			D520-A	A	60	106	5E	6	D621-C		8C	9		
D200-A	A	266	44	9C	3	D520-B		5D	6			D621-D		6A	9		
D200-B		2A	3			D520-C		5C	6			D621-E		5A	9		
D201-A	A	335	30	10E	3	D520-D		4D	6			D700	A	126	39	5D	8
D201-B		3A	3			D520-E		5A	6			D701-A	A	145	17	7C	8
D202-A	A	217	80	3C	3	D540-A	B	70	117	3C	6	D701-B		7C	8		
D202-B		3C	3			D540-B		4A	6			D701-C		7B	8		
D202-C		3A	3			D550-A	A	65	68	2C	7	D701-D		7B	8		
D204-A	A	233	98	3F	3	D550-B		1A	7			D701-E		3A	8		
D204-B		4A	3			D560-A	A	33	136	7D	7	D702-A	A	165	77	5E	8
D205-A	A	261	34	3D	3	D560-B		2A	7			D702-B		5B	8		
D205-B		4A	3			D561-A	B	36	135	5C	7	D702-C		5A	8		
D208-A	A	252	69	5E	3	D561-B		5C	7			D703-A	A	155	74	3C	8
D208-B		5A	3			D561-C		6C	7			D703-B		4A	8		
D209-A	B	275	146	5D	3	D561-D		3A	7			D704	B	138	55	9C	8
D209-B		6A	3			D562-A	A	20	93	8A	7	D706	B	121	55	6F	8
D213-A	A	313	36	10D	3	D562-B		10D	7			D707	A	163	65	3D	8
D213-B		8A	3			D562-C		11D	7			D800-A	B	125	132	3F	10
D214-A	B	239	55	8F	3	D562-D		3A	7			D800-B		8A	10		
D214-B		6A	3			D563-A	A	27	98	10C	7	D810-A	A	107	142	3E	10
D216-A	A	252	88	3E	3	D563-B		10C	7			D810-B		4A	10		
D216-B		7A	3			D563-C		4A	7			D820-A	A	147	135	4D	10
D300-A	B	259	124	3C	4	D565-A	A	11	98	11E	7	D820-B		4D	10		
D300-B		3A	4			D565-B		11E	7			D820-C		4D	10		
D301-A	B	316	121	5D	4	D565-C		5A	7			D820-D		4D	10		
D301-B		3A	4			D566-A	A	11	86	9E	7	D820-E		5A	10		
D302-A	B	333	82	7E	4	D566-B		10E	7			D825-A	A	147	124	4E	10
D302-B		4A	4			D566-C		9D	7			D825-B		4D	10		
D303-A	B	333	102	9E	4	D566-D		10D	7			D825-C		5E	10		
D303-B		5A	4			D566-E		4A	7			D825-D		5D	10		
D304-A	B	333	41	7D	4	D567-A	A	36	121	4D	7	D825-E		5A	10		
D304-B		6A	4			D567-B		4D	7			D830-A	A	161	135	5D	10
D305-A	B	333	62	9D	4	D567-C		4D	7			D830-B		11C	10		
D305-B		6A	4			D567-D		4D	7			D830-C		6A	10		
D310-A	B	270	100	3D	4	D567-E		4D	7			D840-A	A	160	124	5C	10
D310-B		11F	3			D567-F		4D	7			D840-B		5C	10		
D310-C		7A	4			D567-G		5A	7			D840-C		7A	10		
D400	A	334	123	3E	5	D568-A	B	36	115	4D	7	D840-D		7A	10		
D402-A	B	277	124	4C	5	D568-B		7A	7			D840-E		6A	10		
D402-B		1A	5			D568-C		7A	7			D860-A	A	133	79	9E	10
D404-A	B	288	98	7D	5	D568-D		8A	7			D860-B		7A	10		
D404-B		2A	5			D568-E		7A	7			D950-A	B	26	77	6E	11
D405-A	B	288	77	7F	5	D568-F		7A	7			D950-B		5A	11		
D405-B		2A	5			D568-G		6A	7			D960-A	A	30	23	10E	11
D410-A	B	283	13	4D	5	D569-A	B	14	119	7C	7	D960-B		6A	11		
D410-B		6A	5			D569-B		7C	7			D970-A	A	29	6	10D	11
D410-C		6A	5			D569-C		6A	7			D970-B		7A	11		
D424-A	B	288	34	9F	5	D570-A	A	60	136	7E	7	D980-A	A	14	57	10C	11
D424-B		4A	5			D570-B		2A	7			D980-B		5A	11		
D425-A	B	288	55	9D	5	D590-A	A	25	124	9D	6	G85	B	84	142	8F	10
D425-B		5A	5			D590-B		6A	6			G100	B	268	145	4D	2
D500-A	A	95	131	3E	6	D600-A	B	120	19	4D	9	G300	B	276	11	3E	4

ROHDE & SCHWARZ	-I 02	Datum Date 04.03.94	XY-Liste f"r XY-list for ED RECHNER PROCESSOR	Sach-Nummer Stock-Nr 1035.7250.01 XY	Blatt Page 2+
-----------------------	----------	---------------------------	--	--	---------------------

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
H200	B	309	141	12E	3	R117-D				11D	2	R286	A	311	134	11F	3
K300-A	B	237	24	3E	4	R117-E				11D	2	R287	A	311	137	12F	3
K300-B				3E	4	R117-F				11D	2	R289	A	274	104	11E	3
L900	B	155	55	2E	12	R117-G				11D	2	R290	A	255	33	8C	3
L910	B	163	55	2D	12	R124	A	229	78	9D	2	R310	A	307	124	4D	4
L920	B	173	60	2D	12	R125	A	227	83	8D	2	R313	A	248	31	2E	4
N700	A	147	30	8C	8	R128	A	235	123	5E	2	R314	A	243	36	1E	4
N701	A	129	13	6C	8	R129	A	213	38	3E	2	R315	A	278	22	3E	4
N702	B	131	72	8E	8	R131	A	212	102	7D	2	R316	A	230	24	3E	4
P300	B	255	30	2F	4	R132	A	212	100	7D	2	R318	B	257	115	3C	4
P700	B	121	64	7E	8	R133	A	212	105	7D	2	R320	A	232	35	5E	4
P710	B	130	15	6C	8	R134	A	212	97	7D	2	R322	A	311	120	4C	4
P720	B	159	57	4D	8	R143	B	216	50	3C	2	R323	A	311	116	5C	4
P730	B	144	39	9C	8	R144	B	216	53	3C	2	R324	A	307	127	6C	4
R104	B	243	128	5E	2	R145	B	212	45	3C	2	R374	A	147	27	7B	8
R107	A	211	32	3F	2	R150	A	224	107	10D	2	R380	A	339	76	4E	4
R108	A	214	35	3E	2	R151	A	226	107	10D	2	R381	A	339	54	5E	4
R110	A	229	107	10E	2	R153	B	216	55	2C	2	R382	A	339	70	5E	4
R111	A	231	107	10E	2	R154	B	216	48	2C	2	R383	A	339	51	5E	4
R112	A	234	107	10E	2	R200	A	211	76	2B	3	R384	A	339	73	5E	4
R113-A	B	266	87	10E	2	R209	B	233	48	7F	3	R390	A	244	43	4F	4
R113-B			10E	2	R212	A	258	35	1D	3	R391	A	239	39	4F	4	
R113-C			10E	2	R213	A	310	32	11D	3	R392	A	232	42	5E	4	
R113-D			10E	2	R214	A	321	23	11D	3	R410	B	283	25	4D	5	
R113-E			10E	2	R220-A	B	276	63	6E	3	R411	B	280	25	4D	5	
R113-F			10E	2	R220-B				6E	3	R412	B	281	14	4D	5	
R113-G			10E	2	R220-C				6E	3	R413	A	283	10	6A	5	
R114-A	B	248	58	10E	2	R220-D				6E	3	R414	A	283	8	6A	5
R114-B			10E	2	R220-E				6E	3	R415	A	341	123	5F	5	
R114-C			10E	2	R220-F				6E	3	R416	A	283	13	6A	5	
R114-D			10E	2	R220-G				6E	3	R418	A	335	100	3E	5	
R114-E			10D	2	R220-H				6E	3	R419	A	328	128	3E	5	
R114-F			10D	2	R220-I				6E	3	R420	A	333	139	4E	5	
R114-G			10D	2	R221-A	B	293	145	6D	3	R422	A	329	134	4E	5	
R114-H			10D	2	R221-B				6D	3	R430	B	276	115	3B	5	
R114-I			10D	2	R221-C				6D	3	R431	B	282	114	3B	5	
R115-A	B	229	119	7E	2	R221-D				6D	3	R435	B	329	131	5E	5
R115-B			7E	2	R221-E				6D	3	R436	B	276	83	5E	5	
R115-C			7E	2	R221-F				6D	3	R510	A	50	115	3D	6	
R115-D			7E	2	R221-G				6D	3	R515	A	34	89	7B	12	
R115-E			7E	2	R221-H				6D	3	R540	A	65	111	3B	6	
R115-F			7E	2	R221-I				6D	3	R550	A	3	77	9E	7	
R115-G			7E	2	R280	A	340	25	9E	3	R551	A	10	74	9E	7	
R116-A	B	266	112	7E	2	R281	A	340	27	9E	3	R552	A	8	74	9E	7
R116-B			7E	2	R282	A	340	22	9E	3	R553	A	5	74	9E	7	
R116-C			7E	2	R283-A	B	268	39	8D	3	R558	A	17	91	8A	7	
R116-D			7E	2	R283-B				8D	3	R560-A	B	31	102	2D	7	
R116-E			7E	2	R283-C				8D	3	R560-B				2D	7	
R116-F			7E	2	R283-D				8D	3	R560-C				2D	7	
R116-G			7E	2	R283-E				8D	3	R560-D				2D	7	
R116-H			7D	2	R283-F				8D	3	R560-E				3D	7	
R116-I			7D	2	R283-G				9D	3	R560-F				3D	7	
R117-A	B	222	58	11D	2	R283-H				9D	3	R560-G				3D	7
R117-B			11D	2	R283-I				9D	3	R560-H				3D	7	
R117-C			11D	2	R285	A	308	144	11E	3	R560-I				3D	7	

ROHDE & SCHWARZ	-I	Datum Date	XY-Liste f"r XY-list for ED RECHNER PROCESSOR	Sach-Nummer Stock-Nr 1035.7250.01 XY	Blatt Page 3+
	02	04.03.94			

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
R561	A	34	106	3D	7	R716	A	135	27	4C	8	TP1	B	227	125	5E	2
R562	A	36	106	3D	7	R717	A	137	27	4C	8	TP2	B	230	125	5E	2
R563	A	39	106	3D	7	R718	A	128	21	5C	8	TP3	B	232	125	5E	2
R564	A	41	106	3D	7	R719	A	131	21	5C	8	TP4	B	240	126	5E	2
R565	A	44	106	3D	7	R720	A	159	61	4D	8	TP5	B	245	138	5E	2
R566	A	46	106	3D	7	R725	A	159	74	5E	8	TP6	B	225	140	6E	2
R567	A	49	106	3D	7	R726	A	161	74	5E	8	TP7	B	164	121	8E	3
R568	A	17	104	10C	7	R727	A	164	74	5E	8	TP8	B	44	8	3D	3
R569	A	31	108	10C	7	R728	A	168	76	5C	8	TP9	B	34	74	3D	3
R573	A	14	91	10D	7	R730	A	144	42	9D	8	TP10	B	41	32	3D	3
R575	A	14	104	10F	7	R731	A	123	8	7C	8	TP11	B	168	107	3D	3
R576	A	3	95	11F	7	R732	A	143	15	7C	8	TP20	B	175	133	4E	10
R580	B	6	125	6C	7	R733	A	149	15	7C	8	TP21	B	172	133	4E	10
R581	B	6	123	6C	7	R735	A	149	21	8C	8	TP22	B	83	112	7B	10
R582	B	6	120	7C	7	R736	A	153	32	8C	8	V100	A	216	38	3E	2
R583	B	10	128	7C	7	R737	A	153	35	8C	8	V102	A	220	35	3E	2
R584	A	17	107	10B	7	R800	A	171	123	3C	10	V287	A	316	140	11E	3
R585	A	28	107	10B	7	R801	A	171	126	3C	10	V300	B	250	28	2E	4
R590-A	B	29	117	7D	6	R802	A	132	143	3E	10	V301	B	245	28	2E	4
R590-B				8D	6	R805	A	125	128	3E	10	V302	A	241	27	2F	4
R590-C				8D	6	R840	A	167	128	7A	10	V303	A	226	27	3D	4
R590-D				8D	6	R841	A	165	131	7A	10	V306	A	254	25	2E	4
R590-E				8D	6	R849	A	180	127	10C	10	V390	B	237	42	4E	4
R590-F				8D	6	R851	A	112	108	8E	10	V391	B	239	37	5F	4
R590-G				8D	6	R852	A	175	127	10C	10	V400	A	341	131	5E	5
R590-H				8D	6	R853	A	165	133	10C	10	V405	A	336	119	3E	5
R590-I				8D	6	R857	A	139	90	2D	11	V550	A	57	95	3C	7
R591	A	27	114	7C	6	R859	A	177	127	10C	10	V551	A	54	95	3C	7
R592	A	24	114	8C	6	R860	B	120	87	9D	10	V552	A	50	95	3C	7
R593	A	22	114	8C	6	R861	A	110	78	10D	10	V553	A	46	95	3B	7
R594	A	19	114	8C	6	R862	A	110	81	10D	10	V554	A	42	95	3B	7
R595	A	17	114	8C	6	R863	A	110	83	10D	10	V555	A	38	95	3B	7
R596	A	14	114	8C	6	R864	A	110	86	10D	10	V611	A	316	20	10F	12
R597	A	11	114	8C	6	R865	A	88	123	7C	10	V700	A	132	68	8E	8
R598	A	9	114	8C	6	R870	A	164	110	2E	11	X31A	B	173	15	2E	12
R605	A	45	16	3B	9	R871	A	161	98	3D	11	X33A	B	84	78	2B	12
R606	A	40	16	4B	9	R872	A	162	107	3C	11	X33B	B	84	78	2B	12
R607	A	40	19	4B	9	R873	A	161	96	3C	11	X34A	B	105	22	4F	12
R610	A	237	5	10E	12	R874	A	160	114	3C	11	X34B	B	105	22	4F	12
R611	A	311	27	10B	12	R875	A	135	101	2C	11	X34C	B	105	22	4D	12
R619	A	101	72	6E	9	R876	A	137	101	2C	11	X34D	B	105	22	4D	12
R634	A	81	80	6A	9	R877	A	140	101	2C	11	X35A	B	9	36	6F	12
R700	A	113	55	7F	8	R878	A	142	101	2C	11	X35B	B	9	36	6F	12
R701	A	121	40	7E	8	R879	A	166	105	4D	11	X35C	B	9	36	6D	12
R702	A	121	70	8E	8	R880	A	164	93	4D	11	X35D	B	9	36	6D	12
R703	A	123	69	8E	8	R881	A	168	114	4D	11	X36A	B	68	88	6C	12
R705	A	138	70	8F	8	R951	A	13	77	6E	11	X36B	B	68	88	6B	12
R706	A	128	62	8E	8	R952	A	53	36	8E	11	X37A	B	68	99	4C	12
R707	A	156	64	9E	8	R959	A	29	75	6E	11	X37B	B	68	99	4B	12
R710	A	128	47	4C	8	R960	A	33	8	10B	11	X85	B	105	122	8E	10
R711	A	131	47	4C	8	R980	A	24	41	11B	11	X105	B	240	144	5D	2
R712	A	133	46	4C	8	R981	A	17	43	10B	11	X200	B	250	37	8C	3
R713	A	136	46	4C	8	R982	A	18	62	10B	11	X300	B	276	17	3E	4
R714	A	130	27	4C	8	R990	B	161	5	11B	11	X312	B	292	14	10E	12
R715	A	132	27	4C	8	R995	B	177	5	11B	11	X600	B	77	86	8D	9

ROHDE & SCHWARZ	-I 02	Datum Date 04.03.94	XY-Liste f"r XY-list for ED RECHNER PROCESSOR	Sach-Nummer Stock-Nr 1035.7250.01 XY	Blatt Page 4+
-----------------------	--------------	---------------------------	--	--	---------------------

Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg	Part	Side	X	Y	Sqr	Pg
X700	B	132	24	4D	8	X800	B	177	133	3D	10	X900	B	158	18	2E	12

ROHDE & SCHWARZ	-I	Datum Date	XY-Liste f"r XY-list for	Sach-Nummer Stock-Nr	Blatt Page
	02	04.03.94	ED RECHNER PROCESSOR	1035.7250.01 XY	5-

X

**Stromläufe
Bestückungspläne**

**Circuit diagrams
Component plans**

**Schémas de circuit
Plans des composants**

Signal-Name	Page-No.: Zones
+15V	05: 3F 08: 3A 6D 7D 7F 8D 9F 12: 3D 10F
+5V	02: 2B 2C 3D 3E 3F 4B 4E 6A 6E 7D 9D 10D 11D 11E 03: 5A 6D 6E 7F 8D 12F 04: 2F 3B 3E 4D 4E 4F 5F 6C 7B 05: 2A 3B 5F 06: 3A 4A 5A 6A 7D 07: 1A 2A 2E 3A 4A 5A 6A 6C 7D 9E 10C 10F 11F 08: 4A 5C 5E 9D 10D 09: 2A 3A 3B 4A 4B 5A 6E 10: 3A 3C 4A 5A 6A 7A 7C 7F 8A 8D 8E 9E 10E 11: 2D 2E 3D 5A 6A 7A 7E 12: 3E 7D
-15V	08: 3D 4A 5D 7C 8B 9D 12: 3D
100HZ	02: 6D 10: 3D
1KHZ	02: 6D 03: 10F 09: 3C
1MHZ	02: 6D 09: 3C
200HZ	02: 6D 10: 3D
2MHZ	02: 6D 11: 7C
8MHZ	02: 6D 09: 6B 11: 7E
A1	02: 9E 10E 03: 2C 04: 5C 7D 7E 9D 9E 05: 6D 6F 8D 8F
A1-PERI	03: 3C 06: 3D 09: 3C 6E 10: 6C 7D 11: 2E 7E
A10-MEM	03: 3E
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae. Mi. Aei. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg in Verz. 1035.5005 V Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones				
A10-MEM	04: 5C 7C 7E 9C 9E 05: 6C 6E 8C 8E				
A10-PERI	03: 3E 11: 7D				
A11-MEM	03: 3E 04: 5C 7C 7E 9C 9E 05: 6C 6E 8C 8E				
A11-PERI	03: 3E 11: 7D				
A12-MEM	03: 3E 04: 5C 7C 7E 9C 9E 05: 6C 6E 8C 8E				
A12-PERI	03: 3F 11: 7D				
A13-MEM	03: 3E 04: 5C 7C 7E 9C 9E 05: 6C 6E 8C 8E				
A13-PERI	03: 3F 11: 7D				
A14-MEM	03: 3E 04: 5C 7C 7E 9C 9E 05: 6C 6E 8C 8E				
A14-PERI	03: 3F 11: 7D				
A15-MEM	03: 3E 04: 5C 7C 7E 9C 9E 05: 6C 6E 8C 8E				
A15-PERI	03: 3F 11: 7D				
A16	02: 9E 10E 04: 5C 7C 7D 9C 9D 05: 6C 6E 8C 8E				
A17	02: 9E 10E 04: 5C 7C 7D 9C 9D 05: 6C 6E 8C 8E				
A18	02: 9E 10E 04: 2D 4B 05: 6C 6E 8C 8E				
A19	02: 9E 10E				
Druck 03.05.94	Abt. 1GPK	Name JN	Dat. 03.05.94	Ae.Mi.	Aei. 05
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR			14+	
Typ. SMP	Reg in Verz. 1035.5005	V	Sachnummer 1035.7250	S	

Signal-Name	Page-No.: Zones
A19	04: 2D 05: 4D 6E
A2	02: 9E 10E 03: 2C 04: 5C 7D 7E 9D 9E 05: 6D 6F 8D 8F
A2-PERI	03: 3C 06: 3D 09: 3C 6E 10: 7D 11: 2E 7E
A20	02: 9E 10E 05: 4D
A21	02: 9E 10E
A22	02: 9E 10E
A23	02: 9E 10E
A24	02: 9E 10E
A25	02: 9E 10E 11: 6E
A26	02: 9E 10E 06: 3E
A27	02: 9D 10D 03: 7F 06: 3E
A28	02: 9D 10D 03: 7F 06: 3E
A29	02: 9D 10D 03: 7F 06: 3E
A3	02: 9E 10E 03: 2C 04: 5C 7D 7E 9D 9E 05: 6D 6E 8D 8E
A3-PERI	03: 3C 06: 3D 09: 6E 10: 7D 11: 2E 7E
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae.Mi. Ae.i. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg. in Verz. 1035.5005 V Sachnummer 1035.7250 S

X

Signal-Name	Page-No.: Zones
A30	02: 9D 10D 03: 7E 06: 3E
A31	02: 9D 10D 03: 7E 06: 3D 3E
A4-MEM	03: 3D 04: 5C 7D 7E 9D 9E 05: 6D 6E 8D 8E
A4-PERI	03: 3D 11: 2E 7E
A5-MEM	03: 3D 04: 5C 7C 7E 9C 9E 05: 6D 6E 8D 8E
A5-PERI	03: 3D 11: 2E 7E
A6-MEM	03: 3D 04: 5C 7C 7E 9C 9E 05: 6D 6E 8D 8E
A6-PERI	03: 3D 11: 7D
A7-MEM	03: 3D 04: 5C 7C 7E 9C 9E 05: 6D 6E 8D 8E
A7-PERI	03: 3D 11: 7D
A8-MEM	03: 3D 04: 5C 7C 7E 9C 9E 05: 6D 6E 8D 8E
A8-PERI	03: 3E 11: 7D
A9-MEM	03: 3D 04: 5C 7C 7E 9C 9E 05: 6D 6E 8D 8E
A9-PERI	03: 3E 11: 7D
AC-FAIL	07: 5E 10: 1B 12: 11C

Druck 03.05.94	Abt. 1GPK	Name JN	Dat. 03.05.94	Ae. Mi.	Aei. 05
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR				16+
Typ. SMP	Reg in Verz. 1035.5005	V	Sachnummer 1035.7250	S	

Signal-Name	Page-No.: Zones
AD1	02: 7E 8E 03: 5C
AD10	02: 7E 8E 03: 2E 5D
AD11	02: 7E 8E 03: 2E 5D
AD12	02: 7E 8E 03: 2E 2F 5E
AD13	02: 7E 8E 03: 2E 2F 5E
AD14	02: 7D 8D 03: 2E 2F 5E
AD15	02: 7D 8D 03: 2E 2F 5E
AD2	02: 7E 8E 03: 5C
AD3	02: 7E 8E 03: 5C
AD4	02: 7E 8E 03: 2D 5C
AD5	02: 7E 8E 03: 2D 5D
AD6	02: 7E 8E 03: 2D 5D
AD7	02: 7E 8E 03: 2D 5D
AD8	02: 7E 8E 03: 2D 2E 5D
AD9	02: 7E 8E 03: 2D 2E 5D
ALE	02: 10D 11D 03: 2B
AS	02: 10D 11D 03: 2B 04: 2C 05: 3C
AS-PERI	03: 3B
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae. Mi. Aei. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg in Verz. 1035.5005 v sachnummer 1035.7250 S

X

Signal-Name	Page-No.: Zones
AS-PERI	06: 3C 09: 3D 10: 3F 11: 6E
ATN	09: 11C 12: 5D
AUX-TRIG	10: 2C 12: 11C
BEO	02: 9D 03: 2C 04: 2C 05: 3C
BEO-PERI	03: 3C 06: 3C 09: 3D 11: 7E
BE1	02: 9D 03: 2C 04: 2C 05: 3C
BE1-PERI	03: 3C 06: 3C 11: 7E
BLANK	03: 11D 12: 11C
BLAST	02: 10D 11D 03: 2B 04: 2C 05: 3C
BLAST-PERI	03: 3B 06: 3C 09: 3D 10: 3E 11: 6E
BUSY-A/D	07: 5E 08: 10C
CLK1XA	02: 6D 04: 2C 05: 3C
CLK1XB	02: 6D 06: 3C 09: 3D

Druck 03.05.94 | Abt. 1GPK | Name JN | Dat. 03.05.94 | Ae.Mi. | Ae.i. 05 |

ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR	18+
Typ. SMP	Reg in Verz. 1035.5005 V	Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones
CLK1XB	10: 3F 11: 6E
CLK2XA	02: 6D
CLK2XB	02: 6D 11: 2B
CS-D/A-CONV	06: 3C 08: 1F
CS-EPROM	03: 8F 04: 1C
CS-FLASH	03: 8F 05: 2C
CS-FLASH1	05: 5D
CS-FLASH2	05: 5D 9D 9F
CS-IEC	06: 4E 09: 1D
CS-INTCONTR	06: 4E 09: 1D 10: 6C
CS-LCD	06: 4E 11: 5E
CS-RAM	03: 8F 04: 1C
CS-REG	06: 3C
CS-REG-VARI	03: 10F 04: 1C
CS-REG1	06: 4D 07: 5E
CS-REG2	06: 4D 08: 1D
CS-REG3	06: 5C 08: 1D
CS-REG4	06: 4D
CS-REG5	06: 4D
CS-SERBUS	06: 4E 10: 1E
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae. Mi. Ae. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg. in Verz. 1035.5005 V Sachnummer 1035.7250 S

X

Signal-Name	Page-No.: Zones
CS-SERBUS	11: 1E
CS-TEST2SS	03: 8E 10: 1E
CS-TIMER	06: 4E 09: 1D
CS-UART	06: 4E 09: 1D 10: 7E
CTS	10: 11D 12: 3B
DO	02: 7E 8E 03: 5C
DO-BUF	03: 7C 9E 04: 6C 8D 10D 05: 8D 10D 06: 9C 07: 8D 08: 5E 10C 09: 5C 6D 10: 3D 7D 8C 11: 2E 7D
D1-BUF	03: 7C 9E 04: 6C 8D 10D 05: 8D 10D 06: 9D 07: 8D 08: 5E 10C 09: 5C 6D 10: 3D 7D 8C 11: 2E 7D
D10-BUF	03: 7D 10C 04: 6C 8E 10E 05: 8E 10E 07: 2C 8E 08: 3B 5E 10C 11: 2D 7C
D11-BUF	03: 7D 10C 04: 6C 8E 10E 05: 8E 10E 07: 2B 8E 08: 3B 5E 10B 11: 2D 7C
D12-BUF	03: 7E 10C 04: 6C 8E 10E
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae.Mi. Ae.i. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg in Verz. 1035.5005 V Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones
D12-BUF	05: 8E 10E 07: 2B 8E 08: 3B 11: 2D 7C
D13-BUF	03: 7E 10C 04: 6C 8E 10E 05: 8E 10E 07: 2B 8E 08: 3B 11: 2D 7C
D14-BUF	03: 7E 10C 04: 6C 8E 10E 05: 8E 10E 07: 2B 8E 08: 3B 11: 2D 7C
D15-BUF	03: 7E 10C 04: 6C 8E 10E 05: 8E 10E 07: 2B 8E 08: 3B 11: 2D 7D
D2-BUF	03: 7C 9E 04: 6C 8D 10D 05: 8D 10D 06: 9D 07: 8D 08: 5E 10C 09: 5C 6D 10: 3D 7D 8C 11: 2E 7D
D3-BUF	03: 7C 9E 04: 6C 8D 10D 05: 8D 10D 06: 9D 07: 8D 08: 5E 10C 09: 5C 6D 10: 3D 7D 8C 11: 2D 7D
D4-BUF	03: 7C 9D 04: 6C 8C 10C 05: 8D 10D 06: 9D 07: 8D 08: 5E 10C 09: 5C 6D 10: 3D 7D 8C
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae. Mi. Aei. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg in Verz. 1035.5005 V Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones
D4-BUF	11: 2D 7D
D5-BUF	03: 7D 9D 04: 6C 8C 10C 05: 8D 10D 06: 9D 07: 8D 08: 5E 10C 09: 5C 6D 10: 3D 7D 8C 11: 2D 7D
D6-BUF	03: 7D 9D 04: 6C 8C 10C 05: 8D 10D 06: 9D 07: 8D 08: 5E 10C 09: 5C 6D 10: 3D 7D 8C 11: 2D 7D
D7-BUF	03: 7D 9D 04: 6C 8C 10C 05: 8D 10D 06: 9D 07: 8D 08: 5E 10C 09: 5C 6D 10: 3D 7D 8B 11: 2D 7D
D8-BUF	03: 7D 10C 04: 6C 8E 10E 05: 8F 10F 07: 2C 8E 08: 3B 5E 10C 11: 2D 7C
D9-BUF	03: 7D 10C 04: 6C 8E 10E 05: 8F 10F 07: 2C 8E 08: 3B 5E 10C 11: 2D 7C
DAV	09: 11C 12: 5E
DEN	02: 10D 11D 03: 5D
DIAG-15V	08: 1C
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae.Mi. Ae.i. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg in Verz. 1035.5005 V Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones
DIAG-15V	12: 11D
DIAG-5V	08: 1C 12: 11D
DIO-1	09: 11E 12: 5F
DIO-2	09: 11D 12: 5F
DIO-3	09: 11D 12: 5E
DIO-4	09: 11D 12: 5E
DIO-5	09: 11D 12: 5F
DIO-6	09: 11D 12: 5E
DIO-7	09: 11D 12: 5E
DIO-8	09: 11D 12: 5E
DIR-FF	03: 7C 07: 11E
DT/R	02: 10D 11D 03: 5D
DTR	10: 11D 12: 3B
EOI	09: 11C 12: 5E
IEC-INT-P	09: 11E 10: 2C
IFC	09: 11C 12: 5D
INT-RS232	10: 6C 7E
INTO-N	02: 8D 10: 5D
INT1-P	02: 8D
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae. Mi. Aei. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg. in Verz. 1035.5005 V Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones
INT1-P	10: 5E
INTA-N	02: 8D 09: 1D 10: 2B 6C
INTR-P	02: 8D 10: 8C
IRQUIT-SERBUS	03: 11C 11: 1C
KEY-INT-P	03: 7C 07: 11C 10: 1D
KEY-STROKE	07: 11C
KNOB-INT-P	03: 7C 07: 11E 10: 1C
KNOB1	07: 8E 12: 7E
KNOB2	07: 8E 12: 7E
LAMPOFF	03: 11C 12: 7D
LCD-CP1	11: 11B 12: 7D
LCD-CP2	11: 11B 12: 7D
LCD-CS	11: 11B 12: 7D
LCD-DO	11: 11C 12: 7D
LCD-D1	11: 11C 12: 7C
LCD-D2	11: 11B 12: 7C
LCD-D3	11: 11B 12: 7E
MARKER	03: 11D
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae. Mi. Aei. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg in Verz. 1035.5005 V Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones
MARKER	12: 11C
MODCTRL-IN	03: 7C 12: 11B
MODCTRL-OUT	03: 11E 12: 11B
NDAC	09: 11B 12: 5D
NRFD	09: 11B 12: 5E
POT1	11: 11B 12: 7F
POT2	11: 11B 12: 7E
POT3	11: 11B 12: 7E
POT4	11: 11B 12: 7E
POT5	11: 11B 12: 7E
POT6	11: 11B 12: 7D
RD-MEM1	03: 7C 04: 5D
RD-PERI1	06: 4C 07: 5E 08: 1D
RD-PERI2	09: 4D 10: 6C 7D
RD-SERBUS	10: 4E 11: 1E
RDY-LCD	11: 9E
RDY-MEM1	02: 2C 04: 3C
RDY-MEM2	02: 2C 05: 4C
RDY-PERI1	02: 2C
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae.Mi. Aei. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg in Verz. 1035.5005 V Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones
RDY-PERI1	06: 4C
RDY-PERI2	02: 2C 09: 4D
RDY-PERI3	02: 2C 10: 4F
RDY-PERI4	02: 2C 11: 7E
READY-N	02: 8D
REN	09: 11C 12: 5E
RES-IEC-P	09: 1E 10: 4E
RES-N	02: 6E 04: 1F 05: 2C 06: 2C 07: 2C 08: 1F 09: 1D 10: 1E 11: 5E
RES-P	02: 6F 03: 9E 09: 1E 10: 7E 11: 5F 12: 11B
RESERVE	03: 11E 12: 11B
RESIN2	02: 4E 04: 6F
RETO	07: 2D 12: 5C
RET1	07: 2D 12: 5C
RET2	07: 2D 12: 5C
RET3	07: 2D 12: 5C
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae.Mi. Ae.i. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg in Verz. 1035.5005 V Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones
RET4	07: 2D 12: 5B
RET5	07: 2D 12: 5B
RET6	07: 2D 12: 5B
RXD	10: 11D 12: 3B
SCAN0	07: 4C 12: 5B
SCAN1	07: 4C 12: 5B
SCAN2	07: 4C 12: 5B
SCAN3	07: 4B 12: 5B
SCAN4	07: 4B 12: 5B
SCAN5	07: 4B 12: 5B
SERBUS-ACTREQ	07: 5E 10: 1B 11: 4D
SERBUS-BUSY	07: 5E 11: 4B
SERBUS-CLK	11: 4D 12: 11C
SERBUS-DAT	11: 4C 12: 11C
SERBUS-INT	11: 4C 12: 11C
SERBUS-INT1	07: 5E 10: 1B 11: 4C
SERBUS-INT2	07: 5E 10: 1B 11: 4C
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae.Mi. Aei. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg. in Verz. 1035.5005 V Sachnummer 1035.7250 S

X

Signal-Name	Page-No.: Zones
SERBUS-RDBF	07: 5E 11: 4C
SERBUS-SYNC	11: 4C 12: 11C
SERBUS-WRBE	07: 5E 11: 4C
SRQ	09: 11C 12: 5D
SWEET-STOP	03: 7C 12: 11B
SYSRESET	02: 2E 12: 11C
T2-INT0	09: 5C 10: 2C
T2-INT2	09: 5C 10: 2C
TRIGGER	10: 1C 12: 11C
TST-BATT	04: 2D 08: 5B
TXD	10: 11D 12: 3B
UBATT	02: 7A 04: 2F 6B
UBATT-TST	04: 3E 08: 1C
UREF-D/A	08: 1C 7F
VA1	11: 10D 10E
VA10	11: 10C 10D 10E
VA11	11: 10C 10D 10E
VA12	11: 10C 10D 10E
VA13	11: 10C 10D 10E
VA14	11: 10C 10D 10E
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae.Mi. Ae.i. 05	
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR
Typ. SMP	Reg in Verz. 1035.5005 V Sachnummer 1035.7250 S

Signal-Name	Page-No.: Zones
VA15	11: 10C 10D 10E
VA15-P	12: 3E 7E 7F
VA2	11: 10D 10E
VA3	11: 10D 10E
VA4	11: 10D 10E
VA5	11: 10D 10E
VA6	11: 10D 10E
VA7	11: 10D 10E
VA8	11: 10D 10E
VA9	11: 10D 10E
VDO	11: 9D 11D
VD1	11: 9D 11D
VD10	11: 9D 11E
VD11	11: 9C 11E
VD12	11: 9C 11E
VD13	11: 9C 11E
VD14	11: 9C 11E
VD15	11: 9C 11E
VD2	11: 9D 11D
VD3	11: 9D 11D
VD4	11: 9D 11D
VD5	11: 9D 11D
VD6	11: 9D 11D
VD7	11: 9D 11D
VD8	11: 9D 11E
VD9	11: 9D 11E
VPP	05: 5E 8C 8E 10C 10E
Druck 03.05.94 Abt. 1GPK Name JN Dat. 03.05.94 Ae. Mi. Aei. 05	
ROHDE & SCHWARZ Benennung RECHNER PROCESSOR 29+	
Typ. SMP	Reg in Verz. 1035.5005 V Sachnummer 1035.7250 S

X

Signal-Name	Page-No.: Zones
VPP	08: 1C
VPP-EIN	03: 11E 05: 2E
W/R	02: 10D 11D 03: 2B 04: 2C 05: 3C
W/R-PERI	03: 3B 06: 3C 09: 3D 10: 3E 11: 6E
WR-D/A-CONV	06: 4C 08: 1F
WR-PERI1-HIGH	06: 4C
WR-PERI1-LOW	06: 4C
WR-PERI2	09: 4D 10: 6C 7E
WR-RAM-LOW	03: 9E 04: 6E
WR-REG1-HIGH	06: 10F 07: 2C
WR-REG2-HIGH	06: 10E 08: 1B
WR-REG4-LOW	06: 10E 10: 1E
WR-SERBUS	10: 4E 11: 1E
X-AXIS	08: 1C 9E 12: 11D

Druck 03.05.94	Abt. 1GPK	Name JN	Dat. 03.05.94	Ae. Mi.	Aei. 05
ROHDE & SCHWARZ	Benennung RECHNER PROCESSOR				30-
Typ. SMP	Reg in Verz. 1035.5005	V	Sachnummer 1035.7250	S	+14m

ROHDE & SCHWARZ

SERVICEUNTERLAGEN

Baugruppe Synthesizer

1039.2330.02

Inhaltsverzeichnis

7.	Prüfen und Instandsetzen der Baugruppe	5
7.1	Funktionsbeschreibung	5
7.1.1	Standardreferenz 10 MHz	5
7.1.2	Referenz int./ext. und optionale Referenz	5
7.1.3	600 MHz Oszillator mit PLL	5
7.1.4	Synthesizer 67.5...1500 MHz	6
7.1.4.1	Oszillatoren 750...1500 MHz	6
7.1.4.2	Ausgangsteiler	6
7.1.4.3	FRAC-N Teiler mit PLL	6
7.1.4.4	FM/PHiM Modulation	7
7.1.4.4.1	Funktionsprinzip	7
7.1.4.4.2	Modulationseichleitung	7
7.1.4.4.3	Sigma-Delta-Wandler und FM-DC Regelung	8
7.1.5	Kalibrierung	8
7.2	Meßgeräte und Hilfsmittel	9
7.3	Fehlersuche	9
7.3.1	Synchronisierfehler	9
7.3.2	Synthesizerfehler	9
7.3.3	Fehler bei FM-/PHiM-Modulation	10
7.3.4	Kalibrierungen	10
7.4	Prüfen und Abgleich	12
7.4.1	Datenübertragung und Stromversorgung	12
7.4.2	Referenzfrequenz	12
7.4.2.1	D/A-Wandler	12
7.4.2.2	TCXO, Referenz-PLL und Ein-/Ausgänge	13
7.4.2.3	Ein-/Ausgänge EXTTUNE und OPTTUNE	13
7.4.3	600MHz Signal	14
7.4.3.1	600MHz Oszillator	14
7.4.3.2	50MHz Ausgang und 600MHz-Oszillator PLL	14
7.4.3.3	600MHz Ausgangsverstärker	14
7.4.4	Ausgangsoszillatoren	15
7.4.4.1	Oszillatoren	15
7.4.4.2	Ausgangsstufe mit Teilern	16
7.4.5	PLL der Ausgangsoszillatoren	16
7.4.5.1	Voreinstellspannung	16
7.4.5.2	Teiler und PLL	16
7.4.6	Modulationseichleitung	17
7.4.6.1	Modulationsmatrix	17
7.4.6.2	EXT2-Überwachung	17
7.4.6.3	FM-Hubeinstellung	18
7.4.6.4	PHiM-Hubeinstellung	19
7.4.7	Sigma-Deltawandler mit FM-DC-Regelung	19
7.4.8	Hubabgleiche	20
7.4.8.1	FM-Hub Abgleich	20
7.4.8.2	PHiM-Hub Abgleich	20
7.4.8.3	PM2MHz Abgleich	20
7.4.9	Prüfen der Kalibrierungen	21
7.4.9.1	Kalibrierung VCO SYN	21
7.4.9.2	Kalibrierung FM	21
7.4.10	Einschwingverhalten des Synthesizer	21
7.4.11	Störhub Synthesizer	22
7.4.12	Nebenwellen Synthesizer	22
7.4.13	FM-DC Nulling	22
7.4.14	Tabellen und Schnittstellen	23
7.4.14.1	Digitale Schnittstelle	23
7.4.14.2	Liste der Diagnosemeßpunkte	24
7.5	Zerlegung und Zusammenbau	24

7.6 Externe Schnittstellen 25

**Schaltteilliste
Koordinatenliste
Stromlauf
Bestückungsplan**

7. Prüfen und Instandsetzen der Baugruppe

7.1 Funktionsbeschreibung

Die Baugruppe TSYN enthält einen FM/PHIM modulierbaren Synthesizer von 67.5...1500MHz, die Modulationseichleitung für FM/PHIM sowie die Referenzfrequenzerzeugung bestehend aus einem 10 MHz TCXO sowie einen 600MHz Oszillatoren als LO für den Mischerbereich der Ausgangsstufe.

7.1.1 Standardreferenz 10 MHz

Als Standardreferenz wird ein 10 MHz TCXO (N200) verwendet. Ein Emitterfolger mit Pegelwandler (V205, 210) verstärkt das Ausgangssignal auf TTL-Pegel. Gleichzeitig wird hier das Signal der Optionsreferenz eingespeist, in dieser Betriebsart wird dann der Standardoszillator ausgeschaltet (V200). Die Teilerstufe mit D205 erzeugt die 2MHz-Referenzfrequenz für die PLL der Ausgangsoszillatoren und den Sigma-Delta-Wandler sowie die 1MHz Vergleichsfrequenz für den Phasendetektor der Referenz-PLL.

7.1.2 Referenz int./ext. und optionale Referenz

In der Betriebsart int. Referenz steht die Standardreferenz mit 10 MHz zur Verfügung (Ausgang X78, EXTREF), die Abstimmspannung zur genauen Frequenzeinstellung des TCXO wird dabei von einem 12 Bit D/A-Wandler erzeugt (D220, N220). Außerdem kann dann mit einer externen Spannung über den EXTTUNE-Eingang die Referenzfrequenz fein verstimmt werden ($\pm 1\text{ppm}$ für $\pm 10\text{V}$). Bei ext. Referenz können 5- oder 10 MHz mit einer Toleranz von $\pm 3\text{ ppm}$ eingespeist werden. Eine Diodenschaltung (V214) erzeugt dazu ein Oberwellenspektrum, ein Resonanzverstärker filtert das 10MHz Signal aus und verstärkt es auf TTL-Pegel. Nach Teilung durch 10 wird es im Phasendetektor D210 mit der heruntergeteilten Frequenz des TCXO's verglichen. Der Standardreferenzoszillatator wird in der PLL mit einer Bandbreite von 2 Hz auf die externe Referenz synchronisiert. Ist ein optionaler Referenzoszillatator (SM-B1) vorhanden, so ersetzt er in der Betriebsart int. Referenz den Standardoszillatator, die Abstimmspannung wird dabei auf den Wert für den Optionsquarz eingestellt. Bei ext. Referenz oder bei eingeschalteter EXTTUNE-Funktion bleibt der Standardoszillatator eingeschaltet.

7.1.3 600 MHz Oszillatoren mit PLL

Der 600 MHz Oszillatoren ist mit einem keramischen Resonator (X300) aufgebaut, der mit einer Kapazitätsdiode fein abgestimmt wird (V300). Die Transistorstufe V305 entdämpft mit ihrer negativen Impedanz den Schwingkreis. Über einen Trennverstärker (N300) wird das Oszillatorsignal am Emitter ausgekoppelt, ein ohmscher Leistungsteiler verteilt es auf den Ausgangsverstärker sowie die Teilerkette für die PLL.

Der Ausgangsverstärker mit einem "Dual Gate MESFET" (V325) verstärkt das Oszillatorsignal auf 9dBm (X76, REF600). Über Steuerung am Gate2 (V320, 321) lässt sich der Ausgangspegel um $> 40\text{dB}$ absenken wenn der Mischerzweig im Ausgangsteil nicht aktiv ist.

Die Teiler im Rückwärtzweig des PLL teilen die Oszillatorkreisfrequenz in zwei Stufen auf die Vergleichsfrequenz der PLL von 10MHz. Ein erster Teiler durch 12, bestehend aus Teilern durch 4 (D350) mit Pegewandler von ECL auf TTL und einem Teiler durch 3 (D355), liefert ebenfalls die 50 MHz Referenzfrequenz (X72, REF50) für die Optionsbaugruppen (D360). Nach weiterer Teilung durch 5 (D370) wird es in dem Phasendetektor D255 mit der 10 MHz Referenzfrequenz verglichen. Das Ausgangsspannung des PI-Reglers mit N250 stimmt den Oszillator ab, die Bandbreite der PLL beträgt 300 Hz. Die Pegel des Oszillators, des 600- und 50 MHz Ausgangs werden von Diagnosegleichrichtern gemessen. Die Regelspannung der PLL wird von einem Fensterkomparator (N105) überwacht.

7.1.4 Synthesizer 67.5...1500 MHz

7.1.4.1 Oszillatoren 750...1500 MHz

3 Oszillatoren mit einem Abstimmkreis von jeweils 250 MHz erzeugen die Frequenz der Grundoktave. Ein Transistor mit einer negativen Impedanz an der Basis (V404, 4343, 464) entdämpft den Serienschwingkreis, der aus einem Trimmer, einer Leiterplatten-induktivität und zwei Kapazitätsdiode besteht. Eine Stromquelle stabilisiert den Arbeitspunkt über den Abstimmkreis, mit einer Schaltstufe wird die Versorgungsspannung und damit der Oszillator geschaltet. Über einen PIN-Schalter wird das Ausgangssignal zu der Trennstufe geführt. Ein Diagnosegleichrichter überwacht den Oszillatormpegel am Ausgang der Trennstufe. Ein ohmscher Leistungssteiler verzweigt das Oszillatortsignal auf die Ausgangsteiler sowie den FRAC-N-Teiler der PLL.

7.1.4.2 Ausgangsteiler

Es werden ein Teiler durch 2 (D510) und zwei Teiler durch 4 (D520, 540) verwendet. Durch Kettenschaltung entstehen die Teilerfaktoren 2, 4, 8 und 16. Dazu werden über PIN-Schalter (S1...S8) die Ein- und Ausgänge der Teiler entsprechend verbunden. Die Teiler selber werden über die Versorgungsspannung (V510, 520, 540) geschaltet. Der Ausgangsverstärker N560 erhöht den Pegel auf 9dBm. Ein Diagnosegleichrichter überwacht den Ausgangspegel.

7.1.4.3 FRAC-N Teiler mit PLL

Die Ausgangsoszillatoren werden in einer PLL mit einem Fractional-Divider auf die Referenzfrequenz von 2 MHz geregelt. Dieser Schaltungsteil ist im Gatearray FRACSYN integriert. Die beiden MMIC-Verstärker N600, 610 entkoppeln die Teilerschaltung von den Oszillatoren. Das ECL-Gatearray DIVREF arbeitet als programmierbarer Teiler ($N=375\dots750$). Das von einer Pegewandlerstufe auf TTL-Pegel verstärkte Ausgangssignal des DIVREF wird dem FRACSYN als Takt sowie dem Phasendetektor zugeführt. Der Baustein FRACSYN berechnet für jede Referenzperiode aus dem programmierten Teilungsfaktor sowie dem eingestellten Hub den Teilungsfaktor des DIVREF (DIVPROG0...10). Zur Programmierung verfügt der Baustein über eine integrierte SERBUS-Schnittstelle. Die UP/DOWN-Ausgangssignale des Phasendetektors D700 werden in dem Differenzverstärker N710 addiert. Die Verstärkung des folgenden

PI-Reglers (N720) lässt sich zur Kompensation der Verstärkungsänderungen in der PLL (Teilerfaktor, VCO-Steilheit) mit einem Analogmultiplexer (D720) in 8 Stufen einstellen. Zur Reglerspannung wird in N750 eine Voreinstellspannung aus einem 8-Bit D/A addiert. Eine Transistorenstufe (V755, 760) mit Diodenumschaltung der PLL-Bandbreite (V765...768) beschleunigt den Einschwingvorgang der Regelschleife.

Die Ausgangsspannung des PI-Reglers wird von einem Fensterkomparator überwacht. Die Abstimmspannung sowie die Reglerspannung können über Diagnosestellen gemessen werden.

7.1.4.4 FM/PHiM Modulation

7.1.4.4.1 Funktionsprinzip

Durch die Verwendung eines Bruchteilers mit einem digitalen Modulationseingang lässt sich eine relativ einfache und dennoch präzise FM und PHiM AC/DC-Schaltung realisieren.

Dabei wird die Modulation über zwei Pfade mit unterschiedlichen Frequenzgängen übertragen. In dem ersten Pfad wird bei FM nach A/D-Wandlung mit einem Sigma-Delta-Wandler direkt der Teilungsfaktor und damit die momentane Mittenfrequenz moduliert. Dieser Teil hat die Tiefpaßfunktion für die Nutzübertragung einer PLL, gleichzeitig ist hier die PLL ein Tiefpaß für das Quantisierungsgeräusch des A/D-Wandlers. In dem zweiten Pfad wird direkt der Oszillator moduliert, dieser Teil hat die Hochpaßfunktion für die Störübertragung einer PLL. Bei gleicher Empfindlichkeit und Laufzeit in beiden Zweigen ergibt sich ein ebener Frequenzgang mit konstanter Gruppenlaufzeit.

Bei PHiM wird im ersten Pfad die Phasenmodulation hinter dem Phasendetektor in die PLL eingespeist. Im zweiten Zweig wird nach Differenzierung der Modulationsspannung wieder direkt der Oszillator moduliert. Die Übertragungsfunktionen sind die gleichen wie bei FM.

7.1.4.4.2 Modulationseichleitung

Zur Einspeisung der Modulationssignale stehen die vier Eingänge INT1, INT2, EXT1 und EXT2 zur Verfügung. Die externen Modulationseingänge verfügen über einen hochohmigen Eingangsverstärker (N800, 810) mit umschaltbarer AC/DC-Kopplung (D820, 825).

Über die Schalter D800, 810 wird je ein Modulationssignal auf die beiden Kanäle FM1 und FM2 verteilt. Dabei ist eine Einton- sowie Zweittonmodulation möglich. Die Verstärker N840, 850 verstärken das Eingangssignal von $1V_s$ auf $6V_s$. Im FM1-Kanal wird zur Feineinstellung des Hubes ein multiplizierender 12 Bit D/A-Wandler verwendet. Im breitbandigen FM2-Kanal wird ein analoger Multiplizierer (D865), der mit einer Stellspannung aus einem D/A-Wandler (D840, N840) und dem Modulationssignal angesteuert wird, als Stellglied eingesetzt. Der integrierte OP summiert außerdem die Signale FM1 und FM2.

Zur Grobeinstellung des Hubes am Oszillator wird eine Eichleitung in Kettenleiterstruktur mit 12dB-Schritten verwendet (dividiert 1...4096). Die Abgriffe werden von dem Videomultiplexer D960 geschaltet. Die Hubwertigkeit für die Modulation des Teilungsfaktors über den Sigma-Delta-Wandler wird grob intern im FRACSYN und fein über die ADWE-Eingänge eingestellt.

Für PHiM ist dem Grobteiler eine Differenzierschaltung mit umschaltbarer Zeitkonstante (K911) vorgeschaltet, die die PHiM in FM zur direkten Modulation des Oszillators umwandelt. In dem Regelungszweig kompensiert ein D/A-Wandler (D920) den Einfluß des Teilungsfaktors auf die Modulationsempfindlichkeit nach dem Phasendetektor. Ein Teiler mit 4 Stufen in 12dB-Schritten (D930) dient zur Grobeinstellung des PHiM-Hubes in diesem Zweig. Eine Laufzeitentzerrung (D910) sorgt für gleiche Gruppenlaufzeit in beiden Modulationszweigen.

Der Pegel am EXT2-Eingang wird von der Fensterkomparatorschaltung mit N860, 861 und D870, 875 überwacht. Bei Abweichung vom Sollpegel von 1...3% wird der Interrupt INT1 ausgelöst. Die Interrupts EXT2-HIGH und EXT2-LOW zeigen die jeweilige Richtung an.

7.1.4.4.3 Sigma-Delta-Wandler und FM-DC Regelung

Zur Wandlung des analogen Modulationssignals in ein digitales zur Modulation des Teilungsfaktors wird ein Sigma-Delta-Wandler 3.ter Ordnung (N950, 955, D950, 965) eingesetzt. Der gleitende Mittelwert des 1 Bit Ausgangssignals entspricht dabei der analogen Eingangsgröße. Das dabei entstehende Quantisierungsgeräusch wird durch die Tiefpaßfunktion der PLL gefiltert. Ein Laufzeitentzerrerschaltung am Eingang des Wandlers sorgt für gleiche Gruppenlaufzeit in beiden Modulationswegen.

Da alle Offsetspannungen auch bei AC-Betrieb zu einer Verschiebung der Mittenfrequenz führen, werden diese durch eine Mittelwertregelung kompensiert. Bei FM-DC wird die Regelung geklemmt. Dieser Schaltungsteil befindet sich im Gatearray FRACSYN.

7.1.5 Kalibrierung

Zum Anlegen der Kalibriertabelle für die Voreinstellspannung wird vom unteren Ende des Abstimmbereiches her die Voreinstellspannung gesucht, bei der die PI-Reglerspannung Null ist. Die Abstimmspannung ist dann gleich der Voreinstellspannung.

Für die Kalibriertabelle der Hubsteilheit mißt ein Diagnosendetektor den Differenzhub in der Regelschleife. In einer Abgleichroutine werden die Stellglieder der Modulationseichleitung so lange verändert, das der Differenzhub minimal wird. Aus den Einstellwerten wird die Modulationssteilheit des Oszillators bei der Frequenz berechnet. Weiterhin wird der Maßstab der PHiM-Modulation bei 100kHz-Bandbreite ermittelt.

Beide Kalibrierungen habe ein Fequenzraster von 10MHz.

7.2

Meßgeräte und Hilfsmittel

- HF-Spektrumanalysator (>1.5GHz), FSA
- HF-Signalgenerator (SMGU, SME)
- NF-Generator ($f=1\text{kHz}$, $k<0.1\%$), APN
- Funktionsgenerator ($f>=8\text{MHz}$), AFGU
- Oszilloskop, BOL
- AC/DC-Voltmeter, URE3
- Modulationsanalysator, FMB
- Servicekit (1039.3520)

7.3

Fehlersuche

7.3.1

Synchronisierfehler

**Fehlermeldung "SYNTHESIZER
LOOP UNLOCKED"**

Diese Fehlermeldung ist eine Veroderung der Fehlerüberwachungen der PLL für den TCXO, den 600MHz Oszillators sowie der PLL der Ausgangoszillatoren. Mit der Diagnose feststellen, welche PLL außer Toleranz ist.

1. 10 MHz TCXO
Prüfen ob in der Betriebsart ext. Referenz die richtige Frequenz mit ausreichendem Pegel anliegt
Prüfen der Referenzfrequenz
2. 600MHz Oszillator
Oszillator mit Teiler prüfen
Referenzfrequenz und PLL prüfen
3. Ausgangoszillatoren
Kalibrierung VCO SYN durchführen
Oszillatoren prüfen
FRAC-N Teiler und Referenzfrequenz prüfen
PLL und Voreinstellspannung prüfen

7.3.2

Synthesizerfehler

Kein Ausgangspegel an X70

Oszillatoren prüfen
Ausgangsteiler und Verstärker prüfen

**Störhub zu groß
Nebenwellen mit $df<10\text{kHz}$**

Voreinstellspannung prüfen
PLL prüfen
Phasendetektor prüfen
Arbeitspunkte der Oszillatoren prüfen

7.3.3

Fehler bei FM-/PHiM-Modulation

Hubfehler bei FM oder PM Stereoübersprechen außer Toleranz	FM-Kalibrierung durchführen Modulationeichleitung prüfen
Starke Modulationsverzer- rungen bei Maximalhub	
Keine oder falsche FM- Modulation bei NF<< 1kHz	Sigma-Delta-Wandler prüfen
Keine oder falsche FM- Modulation bei NF>> 1kHz	Grobteiler prüfen
Keine oder falsche PHiM- Modulation bei NF<< 1kHz	PHiM-Modulation über PLL prüfen
Keine oder falsche FM- Modulation bei NF>> 1kHz	PHiM-Differenzierer prüfen

7.3.4

Kalibrierungen

Kalibrierung VCO SYN fehlerhaft	Die Kalibrieroutine gibt die VCO- Frequenz zurück, bei der sich die Kalibrierung nicht durchführen ließ, sowie die Fehlerursache zurück. Folgende Kriterien führen zu einem Abbruch:
VSYN-ERR 1	Voreinstellspannung <1V oder >23V Oszillatoren prüfen Voreinstellspannung prüfen
VSYN-ERR 2	Mehr als 3 Iterationsschritte FRAC-N Teiler und Referenzfrequenz prüfen PLL und Voreinstellspannung prüfen
VSYN-ERR 3	Oszillatorabgleich außer Toleranz Oszillatoren prüfen PLL und Voreinstellspannung prüfen
Kalibrierung FM fehlerhaft	Die Kalibrieroutine gibt die VCO- Frequenz zurück, bei der sich die Kalibrierung nicht durchführen ließ, sowie die Fehlerursache zurück. Folgende Kriterien führen zu einem Abbruch:
FM-ERR 1	Offset Diagnosedetektor 410 >20mV Diagnosedetektor 410 prüfen

FM-ERR 2	FM über Regelungszweig außer Toleranz Sigma-Delta-Wandler prüfen
FM-ERR 3	FM über Steuerungszweig außer Toleranz Grobteiler FM prüfen
FM-ERR 4	Mehr als 6 Iterationsschritte beim FM-Abgleich PLL prüfen Laufzeitentzerrung am Eingang Sigma-Delta-Wandler prüfen
FM-ERR 5	Hubsteilheit <10MHz/V oder >25MHz/V Oszillatorabgleich prüfen
FM-ERR 6	PHiM über Regelungszweig außer Toleranz Grobteiler PHiM prüfen
FM-ERR 7	PHiM über Steuerungszweig außer Toleranz PHiM-Differenzierer prüfen
FM-ERR 8	Mehr als 4 Iterationsschritte beim PHiM-Abgleich

Der Servicekit SM-Z2 bietet zahlreiche weitere Diagnosemöglichkeiten, wenn Kalibrierungen nicht möglich sind.

7.4

Prüfen und Abgleich

Alle Meßwerte ohne Toleranzangaben sind als Richtwerte zu verstehen. Spannungsangaben ohne weitere Bezeichnung bedeuten DC-Spannungen.

Im Servicekit ist ein Adapter enthalten, mit dem die Baugruppe zugänglich gemacht werden kann. Der Adapter wird statt der Baugruppe in das Chassis gesteckt und die HF-Verbindungen an den entsprechenden Buchsen auf der Unterseite wieder hergestellt. Die Baugruppe kann jetzt auf den Adapter gesteckt werden.

Wird die Baugruppe mit geöffnetem Deckel betrieben, so müssen die drei Oszillatorkammern mit Prüfdeckeln auf der Bauteil- und Lötseite geschlossen werden.

Vor allen Prüfungen ist mit PRESET der SMT in einen definierten Anfangszustand zu bringen.

7.4.1 Datenübertragung und Stromversorgung

Gemäß Gerätestandard wird die Baugruppe über eine serielle Schnittstelle unter Verwendung des Bausteins SERBUS-D angesteuert. Ein weiterer SERBUS-D befindet sich im Gatearray FRACSYN. Die Einstellungen und die zugehörigen Daten sind im Kapitel 'Digitale Schnittstellen' zu finden.

Die Stromaufnahme kann überprüft werden, indem anstelle der Spulen L1 bis L5 ein Amperemeter eingeschleift wird. Die Sollwerte sind im Kapitel 'Externe Schnittstellen' zu finden.

Die DC-Spannung an den Meßpunkten P20, P25 und P22 (bei den Leiterplatten mit dem Änderungszustand "A" ist P22 noch nicht vorhanden, ersatzweise an N20.8) ist zu messen.

Meßpunkt	Spannung [V]
P20	+9.9...+10.1
P25	+5.1 ... +5.3
P22	-10.3... -9.7

7.4.2 Referenzfrequenz

7.4.2.1 D/A-Wandler

Stromlauf Blatt 2

Es wird die Abstimmspannung für die Referenz mit der Diagnose gemessen.

- Einstellungen: UTILITIES DIAG TPOINT 401
UTILITIES REF OSC ADJUSTMENT STATE ON
- Den Parameter FREQUENCY ADJUSTMENT nach Tabelle einstellen und die Diagnosespannung überprüfen

FREQUENCY ADJUSTMENT	Diagnosespannung TPOINT 401
0	±10mV
4095	4.9...5.1V
2048	2.45...2.55V

7.4.2.2 TCXO, Referenz-PLL und Ein-/Ausgänge

Stromlauf Blatt 2

Es wird die Funktion des TCXO, des Pegelwandlers auf HCMOS sowie der Eingang für die optionale Referenz und der Referenzausgang geprüft.

- Oszilloskop mit Tastkopf an P201 anschließen.

- Signal an P201 prüfen: 10 MHz, HCMOS-Pegel.

Diese Prüfung ist nur möglich, wenn die Option SM-B1 im Gerät eingebaut ist.

- Kabel W174 an Baugruppe Synthesizer abziehen.
- Signal an P201 prüfen: $+2,5 \pm 1,5$ V DC, <10 mV AC.
- Kabel W174 an Baugruppe Synthesizer wieder aufstecken.

- Spektrumanalysator mit Einstellung CF50MHz, SPAN 100MHz, REF 10dBm an X78 anschließen.
- Signal am Ausgang X78 prüfen: 10MHz, Oberwellenabstand >20 dB, 8 ± 2 dBm.

Es wird der Eingang für die externe Referenz, die PLL und der Ziehbereich des TCXO geprüft.

- Einstellungen: UTILITIES DIAG TPOINT 402
- Signalgenerator 5MHz an X78 anschließen.
- Oszilloskop mit Tastkopf an P204 anschließen.

- Signal an P204 prüfen: 10MHz, HCMOS-Pegel für -13...13dBm am Eingang X78.

- Diagnosespannung prüfen: $2 \pm 0,5$ V bei 0dBm an REF.

- Einstellungen: UTILITIES DIAG TPOINT 402
- Frequenz des Signalgenerators nach Tabelle, Pegel 7dBm.

- Diagnosespannung nach Tabelle prüfen.

Frequenz an REF	Diagnosespannung TPOINT 402
10MHz	$2,5 \pm 0,5$ V**
9.999970MHz	$>0,5$ V
10.000030MHz	$<4,5$ V

** Bei Änderungszustand -D- der Leiterplatte: mit C-Trimmer an TCXO auf 1.7V abgleichen, Spannung dann 1.4...2.4V.

7.4.2.3 Ein-/Ausgänge EXTTUNE und OPTTUNE

Stromlauf Blatt 2

Die Abstimmspannung für die Optionsreferenz sowie der Eingang für die externe Verstimmung der Referenzfrequenz wird geprüft.

- Voltmeter an X7A10 anschließen.
- Spannung am Baugruppenstecker X7A10 prüfen: $5V \pm 100mV$.
- Einstellungen: UTILITIES DIAG TPOINT 401
- Netzgerät (0...10V) an X7A1 (EXTTUNE) anschließen.

- Differenz der Diagnosespannung für eine EXTTUNE-Spannung von 0V und 10V: $250 \pm 30\text{mV}^{**}$.
- ** Bei Änderungszustand -D- der Leiterplatte: $400 \pm 100\text{mV}$.

7.4.3 600MHz Signal

7.4.3.1 600MHz Oszillator

Stromlauf Blatt 2 und 3

Es wird die Funktion sowie der Abstimmbereich des Oszillators geprüft.

- Einstellungen: FREQUENCY 50MHZ UTILITIES DIAG TPOINT 404
- Brücke X20 ziehen und Netzgerät (0...25V) an X20.2 und X20.3 (Masse) anschließen.
- Spektrumanalysator mit Einstellung CF600MHz, SPAN 50MHZ und REF 10dBm an X76 anschließen.
- Abstimmspannung von 0...20V variieren, der Oszillator muß im gesamten Abstimmbereich bei $600 \pm 20\text{MHz}$ ohne Aussetzer, Nebenlinien oder Rauschüberhöhungen schwingen.
- Abstimmspannung zwischen 2 und 18V umschalten, die Frequenzänderung des Oszillators muß $> 15\text{MHz}$ und $< 20\text{MHz}$ sein.
- Die Abstimmspannung für 600MHz muß $> 4\text{V}$ und $< 16\text{V}$ sein.
- Diagnosespannung an TPOINT 404 bei 10V Abstimmspannung: 50...250mV.
- Netzgerät wieder entfernen und Brücke X20 auf 1-2 stecken.

7.4.3.2 50MHz Ausgang und 600MHz-Oszillator PLL

Stromlauf Blatt 2 und 3

Der 50MHz Ausgang REF50 wird geprüft.

- Einstellungen: UTILITIES DIAG TPOINT 406
- Spektrumanalysator mit Einstellung CF 100MHz, SPAN 200MHz, REF 10dBm an X72 anschließen.
- Signal am Ausgang X72 prüfen: 50MHz, $9 \pm 2\text{dBm}$, Oberwellenabstand $> 23\text{dB}$.
- Diagnosespannung am TPOINT 406: 0.4...1V.

Mit der Diagnose wird geprüft, ob die PLL synchronisiert.

- Einstellungen: UTILITIES DIAG TPOINT 404
- Diagnosespannung am TPOINT 404: $10 \pm 6\text{V}$.

7.4.3.3 600MHz Ausgangsverstärker

Stromlauf Blatt 3

Der Ausgangskreis wird abgeglichen sowie der Ausgangspegel bei ein- und ausgeschaltetem Signal geprüft.

- Einstellungen: FREQUENCY 50MHz UTILITIES DIAG TPOINT 405
- Spektrumanalysator mit Einstellung CF 600MHz, SPAN 50MHz, REF 20dBm an X76 anschließen.
- Mit L316 auf maximalen Pegel an X76 abgleichen, Pegel: 9 ± 2 dBm.
- Diagnosespannung am TPOINT 405: 100...300mV.

Die Frequenz des SMT wird so eingestellt, daß der LO abgeschaltet wird.

- Einstellungen: FREQUENCY 10MHz
- Signal am Ausgang X76 prüfen: < -30 dBm.

7.4.4 Ausgangsoszillatoren

7.4.4.1 Oszillatoren

Stromlauf Blatt 4

Es müssen unbedingt Löt- und Bauteilseitige Trimmdeckel auf die Oszillatorkammern geschraubt sein.

Es wird die Funktion der Oszillatoren geprüft, die untere Abstimmgrenze abgeglichen und der Abstimmbereich überprüft.

- Spektrumanalysator mit Einstellung CF 1GHZ, SPAN 2GHz, REF 20dBm an X70 anschließen.
- Brücke X75 entfernen und Netzgerät an X75.2 und X75.3 (Masse) anschließen.
- Mit dem C-Trimmer die untere Frequenzgrenze bei 2V abgleichen und die obere Frequenzgrenze bei 19V Abstimmspannung überprüfen, Frequenz und C-Trimmer nach Tabelle.

FREQUENCY	Oszillator	C-Trimmer	Fmin (2V)	Fmax (19V)
900MHz	1	C402	740 ± 1 MHz**	990...1025MHz
1200MHz	2	C432	990 ± 1 MHz	1240...1275MHz
1400MHz	3	C462	1240 ± 1 MHz	1490...1525MHz

** Bei Änderungszustand -D- der Leiterplatte: 747 ± 1 MHz.

- Abstimmspannung von 0...22V variieren, der Oszillator muß im gesamten Abstimmbereich ohne Aussetzer, Nebenlinien und Rauschüberhöhungen schwingen. Der Ausgangspegel an X70 muß zwischen 7 und 12dBm liegen. Diesen Vorgang für alle drei Oszillatoren wiederholen.

- Einstellungen: FREQUENCY 1200MHZ UTILITIES DIAG TPOINT 407
- Diagnosespannung am TPOINT 407 bei 10V Abstimmspannung: 20...100mV.
- Einstellungen: UTILITIES DIAG TPOINT 408
- Diagnosespannung am TPOINT 408 bei 10V Abstimmspannung : 50...250mV.
- Netzgerät entfernen und Brücke X75 wieder auf 1-2 stecken.

7.4.4.2 Ausgangsstufe mit Teilern

Stromlauf Blatt 5

Es werden die Ausgangsteiler durch 2...16 geprüft.

- Abstimmspannung 10V mit Netzgerät nach 7.4.4.1 einspeisen.
- Prüfung nach Tabelle.

FREQUENCY	Teiler	Frequenz an X70	Pegel an X70
1120MHz	1	$F_{\text{soll}} (\approx 1120 \text{MHz})$	7...12dBm
560MHz	2	$F_{\text{soll}}/2$	7...12dBm
280MHz	4	$F_{\text{soll}}/4$	7...12dBm
140MHz	8	$F_{\text{soll}}/8$	7...12dBm
70MHz	16	$F_{\text{soll}}/16$	7...12dBm

- Netzgerät entfernen und Brücke X75 wieder auf 1-2 stecken.

7.4.5 PLL der Ausgangsoszillatoren

7.4.5.1 Voreinstellspannung

Stromlauf Blatt 7

Es wird der 8-Bit D/A für die Voreinstellspannung in der PLL geprüft.

- Einstellungen: FREQUENCY 750.001 MHz UTILITIES DIAG TPOINT 411
- Steckbrücke X750 auf 2-3 stecken.
- Die Voreinstellspannung am Diagnosevoltmeter muß bei abgeglichenem OSZ1 2.7V betragen. Erhöht man die Ausgangsfrequenz in 10MHz-Schritten bis 1000MHz, so muß die Voreinstellspannung kontinuierlich in Stufen von 450 bis 770mV auf ca. 19V steigen. Die Voreinstellspannung wird aus der momentan gültigen Kalibriertabelle abgeleitet und unterliegt den Exemplarschwankungen der Oszillatoren, so daß nur eine qualitative Aussage über die Funktion des DA-Wandlers möglich ist.
- Steckbrücke X750 wieder auf 1-2 stecken.

7.4.5.2 Teiler und PLL

Stromlauf Blatt 6 und 7

Es wird die Teilerkette im Rückwärtszweig der PLL geprüft. Dazu wird der Oszillator mit der Voreinstellspannung auf 1500MHz (Teilungsfaktor 750) eingestellt.

- Einstellungen: FREQUENCY 1500MHz
- Steckbrücke X750 auf 2-3 stecken.
- Oszilloskop mit Tastkopf an P600 anschließen.

► Signal an P600 prüfen: $2 \pm 1\text{MHz}$, HCMOS-Pegel.
Die PLL wird geschlossen.

- Einstellungen: UTILITIES DIAG TPOINT 408
- Brücke X750 auf 1-2 stecken.
- Spektrumanalysator mit Einstellung CF=FREQUENCY, SPAN 100kHz, REF 10dBm, an X70 anschließen.

► Ausgangssignal bei den verschiedenen Einstellungen überprüfen.
Es dürfen keine Seitenlinien oder Rauschüberhöhungen sichtbar sein.

FREQUENCY	Diagnosespannung TPOINT 408
750.0000001MHz	$0 \pm 1\text{V}$
1125MHz	$0 \pm 2\text{V}$
1500MHz	$0 \pm 2\text{V}$

7.4.6 Modulationseichleitung

7.4.6.1 Modulationsmatrix

Stromlauf Blatt 8

Es wird die Modulationsmatrix für beide Kanäle sowie die AC/DC-Umschaltung für die externen Eingänge geprüft.

- Modulationssignale an die Eingänge nach Tabelle einspeisen, mit AC/DC-Voltmeter an Meßpunkten nach Tabelle messen. Die Prüfung des LFGEN2-Einganges ist nur mit Option SM-B6 oder SM-B2 als LFGEN2 möglich.

Einstellung	Einspeisen	Signal	Meßpunkt	Signal am Meßpunkt
FMI SOURCE OFF	-	-	P840	AC: < 10mVeff DC: < $\pm 20\text{mV}$
FMI SOURCE LFGEN1	-	-	P840	AC: $707 \pm 10\text{mVeff}$ DC: < $\pm 20\text{mV}$
FMI SOURCE EXT1	EXT1	AC: 1Vs, 1kHz, DC: 1V	P840	AC: $707 \pm 10\text{mVeff}$ DC: < $\pm 10\text{mV}$
"	"	AC: -, DC: 1V	P840	AC: - DC: $1V \pm 10\text{mV}$
FMI SOURCE EXT2	EXT2	AC: 1Vs, 1kHz, DC: 1V	P840	AC: $707 \pm 10\text{mVeff}$ DC: < $\pm 10\text{mV}$
"	"	AC: -, DC: 1V	P840	AC: - DC: $1V \pm 10\text{mV}$
FM2 SOURCE LFGEN2	-	-	P835	AC: $707 \pm 10\text{mVeff}$ DC: < $\pm 20\text{mV}$
FM2 SOURCE LFGEN2	EXT2	AC: 1Vs, 1kHz, DC: -	P835	AC: $707 \pm 10\text{mVeff}$ DC: < $\pm 20\text{mV}$

7.4.6.2 EXT2-Überwachung

Stromlauf Blatt 8 und 10

- NF-Generator, 1kHz, Pegel nach Tabelle, an EXT2 anschließen.
- Die Funktion der Pegelüberwachung nach Tabelle prüfen.

Eingangsspannung an EXT2	Fehlermeldung
$1 \pm 0.005V$	-
$1.03 \pm 0.005V$	EXT2-HIGH
$0.97 \pm 0.005V$	EXT2-LOW

7.4.6.3 FM-Hub einstellung

Stromlauf Seite 8 und 9

Es wird die Funktion der Feinteiler in den beiden FM-Kanälen getestet.

- Einstellung: FREQUENCY 1GHz
MODULATION FM FM1 SOURCE LFGEN1
- NF-Voltmeter an P880 anschließen.
- Den FM-Hub mit FM1 DEVIATION von 100Hz bis 2.5kHz in 100Hz Stufen variieren. Die NF-Spannung an P880 muß von ca. $0.2V_{eff}$ bis $5V_{eff}$ in 0.2V Schritten ansteigen.

Einstellung: FREQUENCY 1GHz
MODULATION FM FM1 SOURCE EXT2 (LFGEN2)

- Am Eingang EXT2 1Vs, 1kHz anlegen. Ist der SMT mit einem optionalen LF-Generator ausgerüstet, kann auch die Quelle LFGEN2 gewählt werden.
- NF-Voltmeter an P880 anschließen.
- Den FM-Hub mit FM1 DEVIATION von 100Hz bis 2.5kHz in 100Hz Stufen variieren. Die NF-Spannung an P880 muß von ca. $0.2V_{eff}$ bis $5V_{eff}$ in 0.2V Schritten ansteigen.

Es wird die Funktion des Grobteilers für die Modulation des Oszillators getestet.

- Einstellung: FREQUENCY 1GHz
MODULATION FM FM1 SOURCE LFGEN1
- NF-Voltmeter an den Meßpunkt P930 anschließen.

► Die Funktion des Grobteilers nach Tabelle prüfen.

FM1 DEVIATION	Signal am P930
. 8.192MHz	U_{FM} (ca. $470mV_{eff}$)
. 2.048MHz	$U_{FM}/4$ (ca. $118mV_{eff}$)
.. 512kHz	$U_{FM}/16$ (ca. $29.4mV_{eff}$)
.. 128kHz	$U_{FM}/64$ (ca. $7.34mV_{eff}$)
... 32kHz	$U_{FM}/256$ (ca. $1.83mV_{eff}$)
... 8kHz	$U_{FM}/1024$ (ca. $460\mu V_{eff}$)
... 2kHz	$U_{FM}/4096$ (ca. $115\mu V_{eff}$)
.... 0Hz	<50 μV

7.4.6.4 PHiM-Hub einstellung

Stromlauf Seite 9

Es wird der Grobteiler für die PHiM über den Regelungszweig sowie die beiden PHiM-Differenzierer geprüft.

- Einstellung: FREQUENCY 1GHz
MODULATION PM PM1 SOURCE LFGEN1
LFGEN1 FREQ 1kHz
- Nf-Voltmeter an Meßpunkt nach Tabelle anschließen.

► Die Funktion nach den Einstellungen der Tabelle prüfen (Bei den Leiterplatten mit Änderungszustand "A" ist der Meßpunkt P940 noch nicht vorhanden, ersatzweise an D930.3 messen).

PM1 DEVIATION	PM BANDWIDTH	Meßpunkt	Signal/eff
5rad	2M	P1	ca. 5.7mV
100rad	100k	P1	ca. 285µV
80rad	100k	P940	U_{PM} (ca. 900mV)
20rad	100k	P940	$U_{PM}/4$ (ca. 225mV)
5rad	100k	P940	$U_{PM}/16$ (ca. 56mV)
1.25rad	100k	P940	$U_{PM}/64$ (ca. 14mV)
0rad	100k	P940	< 50µV

7.4.7 Sigma-Deltawandler mit FM-DC-Regelung

Stromlauf Seite 9

Es wird die Funktion des Sigma-Delta-Wandlers sowie der FM-DC-Regelung in den Betriebsarten FM-AC und FM-DC geprüft, indem mit der Diagnose die Ausgangsspannung der Offsetregelung gemessen wird.

- Einstellung: FREQUENCY 1GHz
MODULATION FM FM1 SOURCE EXT1
UTILITIES DIAG TPOINT 415
- DC-Spannungquelle (0...1V) an den Modulationseingang EXT1 anschließen.

► Die Diagnosespannung nach Tabelle prüfen.

EXT1 COUPLING	DC-NULLING	Spannung EXT1	Diagnosesp. TPOINT 415
AC	-	0V	U_{soll} (ca. 2,5V)
DC	-	0V	$U_{soll} \pm 50\text{mV}$
DC	X	1V	ca. 4,4 ± 0,2V

7.4.8 Hubabgleiche

7.4.8.1 FM-Hub Abgleich

Stromlauf Seite 9

Es wird der Maßstab des FM-Hubes über den Regelungszweig abgeglichen.

- Einstellung: FREQUENCY 1GHz
MODULATION FM FM1 SOURCE EXT1
FM1 DEVIATION 250kHz
- NF-Generator, $1V_s \pm 5mV$, 50Hz, an den Eingang EXT1 anschließen.
- Modulationsanlysator mit Einstellung HP 10Hz, TP 3kHz, Detektor RMS* $\sqrt{2}$, an X70 anschließen.

► Mit R946 auf $250 \pm 0,5$ kHz Hub abgleichen. Danach die Kalibrierung mit UTILITIES CALIB FM durchführen.

7.4.8.2 PHiM-Hub Abgleich

Stromlauf Seite 9

Es wird der Maßstab des PHiM-Hubes über den Regelungszweig abgeglichen.

- Einstellung: FREQUENCY 1GHz
MODULATION PM PM1 SOURCE EXT1
PM1 DEVIATION 100rad
PM BANDWIDTH 100k
- NF-Generator, $1V_s \pm 5mV$, 50Hz, an den Eingang EXT1 anschließen.
- Modulationsanlysator mit Einstellung HP 10Hz, TP 3kHz, Detektor RMS* $\sqrt{2}$, an X70 anschließen.

► Mit R918 auf $5 \pm 0,01$ kHz Hub abgleichen. Danach die Kalibrierung mit UTILITIES CALIB FM durchführen.

7.4.8.3 PM2MHz Abgleich

Stromlauf Seite 9

Es wird der Maßstab der PM mit 2MHz Bandbreite über den Steuerungszweig abgeglichen.

- Einstellung: FREQUENCY 1GHz
UTILITIES CALIB FM EXECUTE
MODULATION PM PM1 SOURCE EXT1
 - NF-Generator, $1V_s \pm 5mV$, 10kHz, an den Eingang EXT1 anschließen.
 - Modulationsanalysator mit Einstellung HP 20Hz, TP 100kHz, Detektor RMS* $\sqrt{2}$ an X70 anschließen.

► Mit C910 auf $50 \pm 0,5$ kHz Hub abgleichen.

7.4.9

Prüfen der Kalibrierungen

7.4.9.1

Kalibrierung VCO SYN

Die PI-Reglerspannung ist die Differenz zwischen Voreinstell- und Abstimmspannung. Mit der Diagnose wird die Spannung in der Grundoktave in 3MHz-Schritten gemessen.

- Einstellung: FREQUENCY 750.0000001M
FREQUENCY KNOB STEP USER 3MHZ
KNOB STEP USER
UTILITIES DIAG TPOINT 409
- Die Frequenz von 750.0000001MHz bis 1497.0000001MHz erhöhen. Die Diagnosespannung am TPOINT 409 muß bei jeder Frequenz im Bereich $0 \pm 150\text{mV}$ sein.

7.4.9.2

Kalibrierung FM

Mit einem Diagnosedetektor wird der Differenzhub bei FM-Modulation in der PLL in der Grundoktave in 3MHz-Schritten gemessen.

- Einstellung: FREQUENCY 750.0000001M
FREQUENCY KNOB STEP USER 3MHZ
KNOB STEP USER
UTILITIES DIAG TPOINT 410
MODULATION FM SOURCE LFGEN1
FM1 DEVIATION 500kHz
- Die Frequenz von 750.0000001MHz bis 1497.0000001MHz erhöhen. Die Diagnosespannung am TPOINT 410 muß bei jeder Frequenz im Bereich $0 \pm 50\text{mV}$ sein.

7.4.10

Einschwingverhalten des Synthesizer

Es wird das Einschwingverhalten der PI-Reglerspannung bei einem Frequenzsprung zwischen 760- und 1490MHz gemessen.

- Einstellung: SWEEP FREQ START FREQ 760MHz
STOP FREQ 1490MHz
STEP LIN 730MHz
MODE AUTO
- Oszilloskop mit Tastkopf an dem Meßpunkt P720 anschließen.
- Die Spannungsänderung am Ausgang des Phasendetektors darf sich bis 500 us nach Baugruppenstrobe nur noch um maximal 2V ändern. Nach 4mS muß die Änderung $< 0.5\text{V}$ sein. Es ergibt sich ein Spannungsverlauf wie in Abbildung 1.

Abbildung 1

7.4.11 Störhub Synthesizer

- Modulationsanalysator an X70 anschließen. Störhub mit Bewertungsfilter 20Hz...23kHz und CCITT bei folgenden Frequenzen (in MHz) prüfen:
750.0000001, 800, 850, 900, 950, 1000, 1000.0000001, 1050, 1100, 1150, 1200, 1250, 1250.0000001, 1300, 1350, 1400, 1450, 1500.
- ▶ Störhub < 20Hz_{eff} (20Hz...23kHz),
Störhub < 8Hz_{eff} (CCITT).

7.4.12 Nebenwellen Synthesizer

- Spektrumanalysator mit Einstellung CF=FREQUENCY, SPAN 50kHz, RBW 100Hz, VBW 30Hz, REF 10dBm, an X70 anschließen. Den Nebenwellenabstand bei den folgenden Frequenzen (in MHz) messen:
875.02, 1124.02, 1374.02, 1200.00333, 1200.005, 1200.01, 600.005.
- ▶ Der Nebenwellenabstand $\pm 10\text{kHz}$ neben dem Träger muß $\geq 80\text{dB}$ sein.

7.4.13 FM-DC Nulling

- Einstellung: FREQUENCY 1GHz
MODULATION FM FM1 DEVIATION 10MHz
FM1 SOURCE EXT1
EXT1 COUPLING DC
- Netzgerät ($\pm 1\text{V}$) an EXT1 anschließen.
- Modulationsanalysator mit Frequenzzähler an X70 anschließen.
- ▶ Spannung am Netzgerät auf $0\pm 50\text{mV}$ einstellen, FM-DC Nulling durchführen. Der Frequenzfehler muß $< 5\text{kHz}$ sein. Die Spannung von $-1\ldots+1\text{V}$ variieren und dabei den Störhub messen, er muß $< 1\text{kHz}_{\text{eff}}$ (Bewertungsbandbreite 300Hz...23kHz) sein (die Ansteuerspannung muß hinreichen rausch- und brummfrei sein!).

7.4.14.1 Digitale Schnittstelle

SERBUS-Adresse: 26H

Subadresse 0 (SERBUS-Kanal 1)

Latch		Bezeichnung	Funktion		
D885	11	EXT1-AC/DC	AC/DC-Kopplung für EXT1 Auswahl der Quelle für Kanal 2	0=AC	1=DC
	12	FM2-OFF		0=Aus	1=Ein
	13	FM2-INT2	Auswahl der Quelle für Kanal 1		
	14	FM2-EXT2			
	7	FM1-OFF		0=Aus	1=Ein
	6	FM1-INT			
	5	FM1-EXT2			
	4	FM1-EXT1			
D854	6	PM-HIGH/PM-LOW	Umschaltung PHIM-Bandbreite Umschaltung FM/ PHIM AC/DC-Kopplung EXT2	0=100kHz	1=2MHz
	5	PM/FM		0=FM	
	4	EXT2-AC/DC		0=AC	1=DC
D220	3	REFTUNE	Abstimmspannung Standard- und Optionsreferenz, serieller 12Bit D/A		
D110	12	INT/EXT	Umschaltung Referenz Umschaltung Standard/Option	0=ext.	1=int.
	13	OPTREF		0=Std.	1=Opt.
	14	END1	Diagnosemux. 2	0=Aus	1=Ein
	7	END0	Diagnosemux. 1	0=Aus	1=Ein
	6	DA	Diagnosemultiplexer	MSB	
	5	DA	Adresse 0...7	LSB	
	4	DA			

SERBUS-Adresse: 26H

Subadresse 1 (SERBUS-Kanal 2)

Latch		Bezeichnung	Funktion		
D900	11	FMCOARSE	Grobteiler FM 7 Stufen und aus	MSB	
	:			LSB	
	14			MSB	
	6		Grobteiler PHIM 4 Stufen und aus	LSB	
	:				
	4				
D920	4,5,7	PMKOMP	Teilerfaktor- und Hubsteilheitkomp. Serieller 12Bit D/A		
D795	11	PLLTUNE	Voreinstellspannung PLL FSYN 8 Bit	MSB	
	4			LSB	
D850	4,5,7	DEVSET2	Feineinstellung Hub FM2 Serieller 12Bit D/A		
D840	4,5,7	DEVSET1	Feineinstellung Hub FM1 Serieller 12Bit D/A		

SERBUS-Adresse: 26H

Subadresse 1 (SERBUS-Kanal 2)

Latch		Bezeichnung	Funktion	0=Aus	1=Ein
D790	14 6 : 5	S-DSIG PLLGAIN	Sigma-Delta-Wandler PLL-Schleifenverstärkung	MSB	
				LSB	
D665	11 : 4	ADWE15	Hubwertigkeit am A/D-Eingang des FRACSYN, MSByte	MSB	
				LSB	
D660	11 : 4	ADWE7	LSByte	MSB	
				LSB	
D585	11 12 13 14 7 6 5 4	S8 S7 S6 S5 S4 S3 S2 S1	Pfad Ausgang Teiler 3 Pfad Ausg. Teil. 2/Eing. Teil.3 Pfad Ausgang Teiler 2 Pfad Eingang Teiler 2 Pfad Ausg. Teil. 1/Eing. Teil.3 Pfad Ausgang Teiler 1 Pfad Eingang Teiler 1 Pfad kein Teiler	0=Aus	1=Ein
D580	12 13 14 7 6 5 4	S-REF600 <u>T3</u> <u>T2</u> <u>T1</u> OSZ3 OSZ2 OSZ1	Ausgang REF600 Teiler 3 (%4) Teiler 2 (%4) Teiler 1 (%2) Oszillator 1250...1500MHz Oszillator 1000...1250MHz Oszillator 750...1000MHz	0=Aus	1=Ein 0=Ein 1=Aus

Der Baustein FRACSYN verfügt ebenfalls über eine Schnittstelle nach SERBUS-Standard mit einer Subadresse. Da die übertragenen Daten von außen nicht zugänglich sind, sind sie hier auch nicht angegeben.

7.4.14.2 Liste der Diagnosemaßpunkte

Siehe Kapitel 6.3.2.1.

7.5 Zerlegung und Zusammenbau

Nach dem Öffnen des Gerätes, Entriegeln der Baugruppen und dem Lösen der HF-Verbindungen an X70, X72, X74, X76 und X78 kann die Baugruppe aus ihrem Steckplatz entnommen werden.

Die Schirmdeckel sind auf herkömmlich Weise verschraubt. Beim Betrieb mit geöffnetem Schirmdeckel ist darauf zu achten, daß die Resonatorkammern I, J, H auf beiden Seiten mit geeigneten Prüfdeckeln verschlossen werden.

7.6

Externe Schnittstellen

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
X7.A1	EXTTUNE	Eingang	Rückwand	-10V...+10V	EXTTUNE für Referenz
X7.A4	EXT1	Eingang	A3, FRO	1V _S	Modulationsspannung
X7.A5	EXT2	Eingang	A3, FRO	1V _S	Modulationsspannung
X7.A6	INT1	Eingang	A10, OPU1 X10.86 A50,LFGEN X1.A7 A5, MGEN X50.7	1V _S	Modulationsspannung
X7.A7	INT2	Eingang	A50,LFGEN X1.A7 A5,MGEN X50.7	1V _S	Modulationsspannung
X7.A9	OPTUNE	Ausgang	A71,ROSC X22.16	0...10V	Abstimmspannung für optionale Referenz (SM-B1)
X7.A12	SERBUS-CLK	Eingang	A3, FRO X50.40	HCMOS-Pegel	Serbus-Clock
X7.A14 X7.A15	SERBUS-DAT	bidir.	A3, FRO X50.39	HCMOS-Pegel	Serbus-Daten
X7.A16	SERBUS-SYNC	Eingang	A3, FRO X50.37	HCMOS-Pegel	Serbus-Synchronisation
X7.A17	SERBUS-INT	Ausgang	A3, FRO X50.38	HCMOS-Pegel	Serbus-Interrupt
X7.A18	RES-P	Eingang	A3, FRO X50.28	HCMOS-Pegel	Serbus-Reset
X7.A19	DIAG-5V	Ausgang	A3, FRO X50.44	-5V...5V	Diagnose
X7.A22	VA24-P	Eingang	A2, POWS1	23.4V...24.6V 20...90mA	Versorgungsspannung analog
X7.A24	VA15-P	Eingang	A2, POWS1	14.80V...15.75V 100...200mA	Versorgungsspannung analog
X7.A26	VA7.5-P	Eingang	A2, POWS1	7.45V...7.95V 1100...1400mA	Versorgungsspannung analog
X7.A28	VD-5P	Eingang	A2, POWS1	5.10V...5.25V 5...20mA	Versorgungsspannung digital
X7.A30	VA15-N	Eingang	A2, POWS1	-15.75V...-14.85V 200...300mA	Versorgungsspannung analog
X74	OPT10	Eingang	A71, ROSC X711	5...9dBm	
X78	EXTREF	bidir.	Rückwand	5/10MHz ±3ppm -13...13dBm 10MHz, 6...10dBm	Eingang Ausgang
X70	FSYN	Ausgang	A10, OPU1 X101	6...13dBm	Syn. Frequenz 67.5...1500MHz
X76	REF600	Ausgang	A10, OPU1 X105	7...11dBm	Referenz 600 MHz

Pin	Name	Ein/Ausgang	Herkunft/Ziel	Wertebereich	Signalbeschreibung
X72	REF50	Ausgang	A5, MGEN X53 A4,PUM1/3 X41	7...11dBm	Referenz 50 MHz, zu den

SERVICE DOCUMENTS

Synthesizer Board

1039.2330.02

Contents

7.	Testing and Repair of the Board	5
7.1	Function Description	5
7.1.1	Standard Reference 10 MHz	5
7.1.2	Int./Ext. Reference and Optional Reference	5
7.1.3	600-MHz Oscillator with PLL	5
7.1.4	Synthesizer 67.5...1500 MHz	6
7.1.4.1	Oscillators 750...1500 MHz	6
7.1.4.2	Output Dividers	6
7.1.4.3	FRAC-N Divider with PLL	6
7.1.4.4	FM/PHiM Modulation	7
7.1.4.4.1	Functioning	7
7.1.4.4.2	Modulation Attenuator	7
7.1.4.4.3	Sigma-Delta Converter and FM-DC Control	8
7.1.5	Calibration	8
7.2	Measuring Equipment and Auxiliary Means	9
7.3	Troubleshooting	9
7.3.1	Sync Error	9
7.3.2	Synthesizer Error	9
7.3.3	Error with FM/PHiM Modulation	10
7.3.4	Calibrations	10
7.4	Testing and Adjustment	12
7.4.1	Data Transmission and Current Supply	12
7.4.2	Reference Frequency	12
7.4.2.1	D/A Converter	12
7.4.2.2	TCXO, Reference PLL and Inputs/Outputs	13
7.4.2.3	Inputs/Outputs EXTTUNE and OPTTUNE	13
7.4.3	600-MHz Signal	14
7.4.3.1	600-MHz Oscillator	14
7.4.3.2	50-MHz Output and 600-MHz Oscillator PLL	14
7.4.3.3	600-MHz Output Amplifier	14
7.4.4	Output Oscillators	15
7.4.4.1	Oscillators	15
7.4.4.2	Output Stage with Dividers	16
7.4.5	PLL of Output Oscillators	16
7.4.5.1	Presetting Voltage	16
7.4.5.2	Dividers and PLL	16
7.4.6	Modulation Attenuator	17
7.4.6.1	Modulation Matrix	17
7.4.6.2	EXT2 Monitoring	17
7.4.6.3	FM Deviation Setting	18
7.4.6.4	PHiM Deviation Setting	19
7.4.7	Sigma-Delta Converter with FM-DC Control	19
7.4.8	Deviation Adjustments	20
7.4.8.1	FM Deviation Adjustment	20
7.4.8.2	PHiM Deviation Adjustment	20
7.4.8.3	PM2MHz Adjustment	20
7.4.9	Testing the Calibrations	21
7.4.9.1	Calibration VCO SYN	21
7.4.9.2	Calibration FM	21
7.4.10	Transient Response of Synthesizer	21
7.4.11	Spurious FM Synthesizer	22
7.4.12	Spurious Responses Synthesizer	22
7.4.13	FM-DC Nulling	22
7.4.14	Tables and Interfaces	23
7.4.14.1	Digital Interface	23
7.4.14.2	List of Diagnostic Test Points	24
7.5	Disassembly and Assembly	24

7.6 External Interfaces 25

Parts list

List of coordinates

Circuit diagram

Component location plan

7. Testing and Repair of the Board

7.1 Function Description

The TSYN board contains a synthesizer of 67.5 to 1500 MHz with FM/PHiM modulation capabilities, the modulation attenuator for FM/PHiM as well as the reference frequency generation consisting of a 10-MHz TCXO and a 600-MHz oscillator as LO for the mixer path of the output stage.

7.1.1 Standard Reference 10 MHz

A 10-MHz TCXO (N200) serves as standard reference. An emitter follower with level converter (V205, 210) amplifies the output signal to TTL level. At the same time, the signal of the optional reference is fed in here. In this operating mode, the standard oscillator is switched off (V200). The divider stage with D205 generates the 2-MHz reference frequency for the PLL of the output oscillators and the sigma-delta converter as well as the 1-MHz reference frequency for the phase detector of the reference PLL.

7.1.2 Int./Ext. Reference and Optional Reference

In int. reference mode, the standard 10-MHz reference is available (output X78, EXTREF), the tuning voltage for accurate frequency setting of the TCXO being generated by a 12-bit D/A converter (D220, N220). Besides, the reference frequency can be fine-tuned via the EXTTUNE input by means of an external voltage ($\pm 1\text{ppm}$ for $\pm 10\text{V}$).

In ext. reference mode, 5 or 10 MHz can be fed in with a tolerance of ± 3 ppm. A diode circuit (V214) is used to generate a harmonic spectrum, a resonance amplifier filters the 10-MHz signal and amplifies it to TTL level. After division by 10, it is compared with the divided frequency of the TCXO in phase detector D210. The standard reference oscillator is synchronized with the external reference in the PLL with a bandwidth of 2 Hz. If provided, the optional reference oscillator (SM-B1) replaces the standard oscillator in the int. reference mode, the tuning voltage being set to the value for the optional crystal. In the case of ext. reference or with the EXTTUNE function activated, the standard oscillator remains switched on.

7.1.3 600-MHz Oszilllator with PLL

The 600-MHz oscillator is designed with a ceramic resonator (X300) which is fine-tuned by means of a tuning diode (V300). With its negative impedance, the transistor stage V305 compensates attenuation of the resonator circuit. The oscillator signal is coupled out at the emitter via a buffer amplifier (N300), an ohmic power divider splits it up between the output amplifier and the divider chain for the PLL.

The output amplifier with a dual-gate MESFET (V325) amplifies the oscillator signal to 9 dBm (X76, REF600). Via control at gate2 (V320, 321), the output level can be reduced by > 40 dB when the mixer path in the output section is not active.

The dividers in the reverse path of the PLL divide the oscillator frequency in two steps to the 10-MHz reference frequency of the PLL. A first divider by 12 consisting of dividers by 4 (D350) with level conversion from ECL to TTL and a divider by 3 (D355) also furnishes the 50-MHz reference frequency (X72, REF50) for the optional boards (D360). After further division by 5 (D370), it is compared with the 10-MHz reference frequency in phase detector D255. The output voltage of the PI-controller with N250 tunes the oscillator, the bandwidth of the PLL is 300 Hz. The levels of the oscillator, the 600-MHz and 50-MHz output are measured by diagnostic rectifiers. The control voltage of the PLL is monitored by a window comparator (N105).

7.1.4 Synthesizer 67.5...1500 MHz

7.1.4.1 Oscillators 750...1500 MHz

3 oscillators with a tuning range of 250 MHz each generate the frequency of the fundamental octave. A transistor with a negative impedance at the base (V404, 4343, 464) compensates attenuation of the series resonant circuit consisting of a trimmer, a pcb-inductance and two tuning diodes. A current source stabilizes the operating point throughout the tuning range, a switching stage is used to switch the supply voltage and thus the oscillator. The output signal is taken via a PIN switch to the buffer stage. A diagnostic rectifier monitors the oscillator level at the output of the buffer stage. An ohmic power divider splits up the oscillator signal between the output dividers and the FRAC-N divider of the PLL.

7.1.4.2 Output Dividers

A divider by 2 (D510) and two dividers by 4 (D520, 540) are used. By series connection of the dividers, the division factors 2, 4, 8 and 16 are produced. To this end, the inputs and outputs of the dividers are connected appropriately via PIN switches (S1 to S8). The dividers themselves are switched via the supply voltage (V510, 520, 540). The output amplifier N560 increases the level to 9 dBm. A diagnostic rectifier monitors the output level.

7.1.4.3 FRAC-N Divider with PLL

The output oscillators are set to the reference frequency of 2 MHz in a PLL using a fractional divider. This circuit part is integrated in gate array FRACSYN. The two MMIC amplifiers N600, 610 decouple the divider circuit from the oscillators. The ECL gate array DIVREF functions as a programmable divider ($N=375\dots750$). The output signal of the DIVREF, amplified to TTL level by a level conversion stage, is applied as a clock signal to the FRACSYN and also to the phase detector. The FRACSYN device uses the programmed division factor and the set deviation to calculate the division factor of the DIVREF (DIVPROG0...10) for each reference period. For programming, the device is equipped with an integrated SERBUS interface.

The UP/DOWN output signals of phase detector D700 are added in differential amplifier N710. For compensation of the gain

variations in the PLL (division factor, VCO slope), the gain of the following PI-controller (N720) can be set in 8 steps using an analog multiplexer (D720). A presetting voltage from an 8-bit D/A is added to the controller voltage in N750. A transistor output stage (V755, 760) with diode switching of the PLL bandwidth (V765...768) accelerates the transient response of the control loop. The output voltage of the PI-controller is monitored by a window comparator. The tuning voltage and the controller voltage can be measured via diagnostic points.

7.1.4.4 FM/PHiM Modulation

7.1.4.4.1 Functioning

The use of a fractional divider with a digital modulation input permits implementation of a relatively simple and nevertheless accurate FM and PHiM AC/DC circuit.

The modulation is transferred via two paths with different frequency responses. In the first path, the division factor and thus the instantaneous center frequency is directly modulated after A/D conversion by means of sigma-delta converter in the case of FM. This section functions as a lowpass filter for useful transmission of a PLL; at the same time, the PLL is a lowpass for the quantization noise of the A/D converter. In the second path, the oscillator is directly modulated, this section operating as a highpass for the spurious transmission of the PLL. With the same sensitivity and group delay in both paths, a flat frequency response with constant group delay is obtained.

In the case of PHiM, the phase modulation is fed into the PLL after the phase detector in the first path. In the second path, the oscillator is again directly modulated after differentiation of the modulation voltage. The transmission functions are the same as with FM.

7.1.4.4.2 Modulation Attenuator

The four inputs INT1, INT2, EXT1 and EXT2 are provided for feeding in the modulation signals. The external modulation inputs are equipped with a high-impedance input amplifier (N800, 810) with selectable AC/DC coupling (D820, 825).

Switches D800, 810 permit to apply a modulation signal to each of the two channels FM1 and FM2. Both single-tone and two-tone modulation is possible. The amplifiers N840, 850 amplify the input signal from 1 V_p to 6 V_p. In the FM1 channel, a multiplying 12-bit D/A converter is used for fine-adjustment of the deviation. In the broadband FM2 channel, an analog multiplier (D865), which is driven by a control voltage from a D/A converter (D840, N840) and the modulation signal, is used as control element. Besides, the integrated opamp sums up the signals FM1 and FM2.

For coarse adjustment of the deviation on the oscillator, a ladder attenuator with 12-dB steps is used (divides 1...4096). The taps are switched by video multiplexer D960. The deviation value for the modulation of the division factor via the sigma-delta converter is internally coarse-adjusted in the FRACSYN and fine-adjusted via the ADWE inputs.

For PHiM, a differentiating circuit with switch-selectable time constant (K911) precedes the coarse divider, converting the PHiM

into FM for direct modulation of the oscillator. In the control path, a D/A converter (D920) compensates for the influence of the division factor on the modulation sensitivity after the phase detector. A divider with 4 stages in 12-dB steps (D930) is used for coarse adjustment of the PHiM deviation in this path. A correcting circuit (D910) ensures the same group delay in both modulation paths.

The level at the EXT2 input is monitored by the window comparator circuit with N860, 861 and D870, 875. If the level deviates from the nominal level by 1 to 3%, the interrupt INT1 is triggered. The interrupts EXT2-HIGH and EXT2-LOW indicate the respective direction.

7.1.4.4.3 Sigma-Delta Converter and FM-DC Control

For conversion of the analog modulation signal into a digital signal for modulation of the division factor, a 3rd-order sigma-delta converter (N950, 955, D950, 965) is used. The moving mean value of the 1-bit output signal corresponds to the analog input quantity. The resulting quantization noise is filtered by the lowpass function of the PLL. The correcting circuit at the input of the converter ensures the same group delay in both modulation paths.

Since all offset voltages cause the center frequency to be shifted even during AC operation, this is compensated for by adjustment of the center value. In FM-DC mode, the adjustment is clamped. This circuit section is located in gate array FRACSYN.

7.1.5 Calibration

For setting up the calibration table for the presetting voltage, the presetting voltage at which the PI-controller voltage is equal to zero is searched for starting at the lower end of the tuning range. The tuning voltage is then equal to the presetting voltage. For the calibration table of the deviation slope, a diagnostic detector measures the differential deviation in the control loop. In an adjustment routine, the control elements of the modulation attenuator are varied until the differential deviation is reduced to minimum. The modulation slope of the oscillator at the frequency is calculated from the setting values. Besides, the scale of PHiM modulation with 100-kHz bandwidth is determined. Both calibrations feature frequency steps of 10 MHz.

7.2 Measuring Equipment and Auxiliary Means

- RF spectrum analyzer (>1.5 GHz), FSA
- RF signal generator (SMGU, SME)
- AF generator ($f=1$ kHz, $k<0.1\%$), APN
- Function generator ($f>=8$ MHz), AFGU
- Oscilloscope, BOL
- AC/DC voltmeter, URE3
- Modulation analyzer, FMB
- Service kit (1039.3520)

7.3 Troubleshooting

7.3.1 Sync Error

**Error message "SYNTHEZIZER
LOOP UNLOCKED"**

This error message results from an OR function of error monitoring of the PLL for the TCXO, the 600-MHz oscillator and of the PLL of the output oscillators. Determine which PLL is out of tolerance by means of the diagnosis.

1. 10 MHz TCXO

Check whether the correct frequency is applied with adequate level in the ext. reference mode.

Check the reference frequency

2. 600-MHz oscillator

Check oscillator with divider
Check reference frequency and PLL

3. Output oscillators

Perform calibration of VCO SYN
Check oscillators
Check FRAC-N divider and reference frequency
Check PLL and presetting voltage

7.3.2 Synthesizer Error

No output level at X70

Check oscillators
Check output divider and amplifier

**Undue residual FM
Spurious with $df<10$ kHz**

Check presetting voltage
Check PLL
Check phase detector
Check operating points of oscillators

7.3.3 Error with FM/PHiM Modulation

Deviation error with FM or PM	Perform FM calibration Check modulation attenuator
Stereo crosstalk out of tolerance	
Heavy modulation distortions with maximum deviation	
No or faulty FM modulation at AF<< 1kHz	Check sigma-delta converter
No or faulty FM modulation at AF>> 1kHz	Check coarse divider
No or faulty PHiM modulation at AF<< 1kHz	Check PHiM modulation via PLL
No or faulty FM modulation at AF>> 1kHz	Check PHiM differentiating circuit

7.3.4 Calibrations

Calibration VCO SYN faulty	The calibration routine returns the VCO frequency at which the calibration could not be performed as well as the error cause. The following criteria cause the calibration to be aborted: VSYN-ERR 1 Presetting voltage <1 V or >23 V Check oscillators Check presetting voltage VSYN-ERR 2 More than 3 iteration steps Check FRAC-N divider and reference frequency Check PLL and presetting voltage VSYN-ERR 3 Oscillator adjustment out of tolerance Check oscillators Check PLL and preadjustment voltage Calibration FM faulty The calibration routine returns the VCO frequency at which the calibration could not be performed as well as the error cause. The following criteria cause the calibration to be aborted: FM-ERR 1 Offset diagnostic detector 410 >20 mV Check diagnostic detector 410
-----------------------------------	--

FM-ERR 2	FM out of tolerance via closed-loop control path Check sigma-delta converter
FM-ERR 3	FM out of tolerance via control path Check coarse divider FM
FM-ERR 4	More than 6 iteration steps with FM adjustment Check PLL Check correcting circuit at input of sigma-delta converter
FM-ERR 5	Deviation slope <10 MHz/V or >25 MHz/V Check oscillator adjustment
FM-ERR 6	PHiM out of tolerance via closed-loop control path Check coarse divider PHiM
FM-ERR 7	PHiM out of tolerance via control path Check PHiM differentiating circuit
FM-ERR 8	More than 4 iteration steps for PHiM adjustment

The Service Kit SM-Z2 offers various further diagnostic facilities if calibrations are not possible.

7.4 Testing and Adjustment

All measured values without tolerance specifications are meant to be understood as rough values. Voltages without further specifications are DC voltages.

The service kit includes an adapter which permits to make the board accessible. The adapter is inserted into the chassis instead of the board, and the RF connections are restored at the appropriate female connectors at the bottom. The board can then be plugged onto the adapter.

If the board is operated with opened cover, the three oscillator chambers must be closed by test covers on the component and solder side.

Before carrying out any tests, the SMT is to be set to a defined initial status by means of PRESET.

7.4.1 Data Transmission and Current Supply

In line with instrument standard, the board is controlled via a serial interface using the SERBUS-D device. A further SERBUS-D is located in gate array FRACSYN. The settings and the associated data are to be found in section 'Digital Interfaces'.

The current consumption can be checked by switching in an amperemeter instead of coils L1 to L5. The nominal values are to be found in section 'External Interfaces'.

Measure the DC voltage at test points P20, P25 and P22 (in the case of the pcbs with amendment "A", P22 is not provided yet, use N20.8 instead).

Test point	Voltage [V]
P20	+9.9... +10.1
P25	+5.1 ... +5.3
P22	-10.3... -9.7

7.4.2 Reference Frequency

7.4.2.1 D/A Converter

Circuit diagram sheet 2

The tuning voltage for the reference is measured by means of the diagnosis.

- Settings: UTILITIES DIAG TPOINT 401
UTILITIES REF OSC ADJUSTMENT STATE ON

- Set the parameter FREQUENCY ADJUSTMENT according to the table and check the diagnostic voltage

FREQUENCY ADJUSTMENT	Diagnostic voltage TPOINT 401
0	±10mV
4095	4.9...5.1V
2048	2.45...2.55V

7.4.2.2 TCXO, Reference PLL and Inputs/Outputs

Circuit diagram sheet 2

Functioning of the TCXO, of the level converter on HCMOS and the input for the optional reference and the reference output are checked.

- Connect oscilloscope with probe to P201.
 - Check signal at P201: 10 MHz, HCMOS level.
- This test is only possible with the Option SM-B1 installed in the instrument.
- Disconnect cable W174 from the Synthesizer board.
- Check signal at P201: $+2.5 \pm 1.5$ V DC, <10 mV AC.
- Reconnect cable W174 to Synthesizer board.
- Connect spectrum analyzer with the setting CF50MHz, SPAN 100MHz, REF 10dBm to X78.
- Check signal at output X78: 10 MHz, harmonics suppression >20 dB, 8 ± 2 dBm.

The input for the external reference, the PLL and the pulling range of the TCXO are checked.

- Settings: UTILITIES DIAG TPOINT 402
- Connect signal generator 5MHz to X78.
- Connect oscilloscope with probe to P204.
- Check signal at P204: 10 MHz, HCMOS level at input X78 for -13 to 13 dBm.
- Check diagnostic voltage: 2 ± 0.5 V with 0 dBm at REF.
- Settings: UTILITIES DIAG TPOINT 402
- Frequency of the signal generator according to the table, level 7 dBm.
- Check diagnostic voltage according to the table.

Frequency at REF	Diagnostic voltage TPOINT 402
10MHz	2.5 ± 0.5 V**
9.999970MHz	>0.5 V
10.000030MHz	<4.5 V

** In the case of the pcbs with amendment -D-: Use the capacitive trimmer of the TCXO to adjust to 1.7V, diagnostic voltage then 1.4....2.4V.

7.4.2.3 Inputs/Outputs EXTTUNE and OPTTUNE

Circuit diagram sheet 2

The tuning voltage for the optional reference and the input for external detuning of the reference frequency are checked.

- Connect voltmeter to X7A10.
- Check voltage at board connector X7A10: 5 V ± 100 mV.

- Settings: UTILITIES DIAG TPOINT 401
- Connect power supply (0...10 V) to X7A1 (EXTTUNE).

► Difference of the diagnostic voltage for an EXTTUNE voltage of 0 V and 10 V: 250 ±30 mV**.

** In the case of the pcbs with amendment -D-: 400±100mV.

7.4.3 600-MHz Signal

7.4.3.1 600-MHz Oscillator

Circuit diagram sheets 2 and 3

Functioning as well as the tuning range of the oscillator are checked.

- Settings: FREQUENCY 50MHZ UTILITIES DIAG TPOINT 404
- Disconnect jumper X20 and connect power supply (0...25V) to X20.2 and X20.3 (ground).
- Connect spectrum analyzer with the setting CF600MHz, SPAN 50MHz and REF 10dBm to X76.

► Vary tuning voltage from 0 to 20 V, the oscillator must oscillate throughout the entire tuning range at 600 ±20 MHz without failure of oscillations, spurious or excessive noise.

► Switch tuning voltage between 2 and 18 V, the frequency variation of the oscillator must be > 15 MHz and < 20 MHz.

► The tuning voltage for 600MHz must be > 4V and < 16V.

► Diagnostic voltage at TPOINT 404 with 10V tuning voltage: 50...250mV.

- Remove power supply and insert jumper X20 onto 1-2.

7.4.3.2 50-MHz Output and 600-MHz Oscillator PLL

Circuit diagram sheets 2 and 3

The 50-MHz output REF50 is checked.

- Settings: UTILITIES DIAG TPOINT 406
- Connect spectrum analyzer with the setting CF 100MHz, SPAN 200MHz, REF 10dBm to X72.

► Check signal at output X72: 50 MHz, 9±2 dBm, harmonics suppression > 23 dB.

► Diagnostic voltages at TPOINT 406: 0.4...1 V.

The diagnosis is used to check whether the PLL locks.

- Settings: UTILITIES DIAG TPOINT 404
- Diagnostic voltage at TPOINT 404: 10±6 V.

7.4.3.3 600-MHz Output Amplifier

Circuit Diagram Sheet 3

The output circuit is adjusted and the output level checked with the signal cut in and off.

- Settings: FREQUENCY 50MHz
UTILITIES DIAG TPOINT 405
- Connect spectrum analyzer with the setting CF 600MHz, SPAN 50MHz, REF 20dBm to X76.

► Use L316 to adjust for maximum level at X76, level: 9 ± 2 dBm.
► Diagnostic voltage at TPOINT 405: 100...300 mV.

The frequency of the SMT is set such that the LO is deactivated.

- Settings: FREQUENCY 10MHz
- Check signal at output X76: < -30 dBm.

7.4.4 Output Oscillators

7.4.4.1 Oscillators

Circuit diagram sheet 4

It is absolutely necessary to screw the covers onto the oscillator chambers on the component and solder side.

Functioning of the oscillators is tested, the lower tuning limit is adjusted and the tuning range checked.

- Connect spectrum analyzer with the setting CF 1GHZ, SPAN 2GHZ, REF 20dBm to X70.
- Remove jumper X75 and connect power supply to X75.2 and X75.3 (ground).

► Use the capacitive trimmer to adjust the lower frequency limit at 2 V and check the upper frequency limit with 19V tuning voltage, frequency and capacitive trimmer according to the table.

FREQUENCY	Oscillator	C-trimmer	Fmin (2V)	Fmax (19V)
900MHz	1	C402	740 ± 1 MHz**	990...1025MHz
1200MHz	2	C432	990 ± 1 MHz	1240...1275MHz
1400MHz	3	C462	1240 ± 1 MHz	1490...1525MHz

** In the case of the pcbs with amendment -D-: 747 ± 1 MHz.

► Vary the tuning voltage from 0 to 22V, the oscillator must oscillate throughout the entire tuning range without failure of oscillations, spurious and excessive noise. The output level at X70 must lie between 7 and 12 dBm. Repeat this procedure for the three oscillators.

- Settings: FREQUENCY 1200MHZ UTILITIES DIAG TPOINT 407
- Diagnostic voltage at TPOINT 407 with 10V tuning voltage: 10...100mV.
- Settings: UTILITIES DIAG TPOINT 408
- Diagnostic voltage at TPOINT 408 with 10V tuning voltage: 50...250mV.
- Remove power supply and reconnect jumper X75 to 1-2.

7.4.4.2 Output Stage with Dividers

Circuit diagram sheet 5

The output dividers by 2...16 are checked.

- Apply tuning voltage 10V using power supply according to 7.4.4.1.
- Test according to the table.

FREQUENCY	Divider	Frequency at X70	Level at X70
1120MHz	1	$F_{\text{nom.}} (\approx 1120\text{MHz})$	7...12dBm
560MHz	2	$F_{\text{nom.}} /2$	7...12dBm
280MHz	4	$F_{\text{nom.}} /4$	7...12dBm
140MHz	8	$F_{\text{nom.}} /8$	7...12dBm
70MHz	16	$F_{\text{nom.}} /16$	7...12dBm

- Remove power supply and reconnect jumper X75 to 1-2.

7.4.5 PLL of Output Oscillators

7.4.5.1 Presettingg Voltage

Circuit diagram sheet 7

The 8-bit D/A for the presetting voltage in the PLL is checked.

- Settings: FREQUENCY 750.001 MHz UTILITIES DIAG TPOINT 411
- Insert jumper X750 onto 2-3.
- The presetting voltage at the diagnostic voltmeter must be 2.7 V with OSC1 adjusted. When increasing the output frequency in 10-MHz steps to 1000 MHz, the presetting voltage must increase continuously in steps of 450 to 770 mV to approx. 19 V. The presetting voltage is derived from the currently valid calibration table and is subject to the manufacturing tolerances of the oscillators, allowing only for a qualitative statement on functioning of the D/A converter.
- Reconnect jumper X750 to 1-2.

7.4.5.2

Dividers and PLL

Circuit diagram sheets 6 and 7

The divider chain in the reverse path of the PLL is checked. To this end, the oscillator is set to 1500 MHz (division factor 750) using the presetting voltage.

- Settings: FREQUENCY 1500MHz
- Insert jumper X750 onto 2-3.
- Connect oscilloscope with probe to P600.

► Check signal at P600: $2 \pm 1\text{MHz}$, HCMOS level.
The PLL is closed.

- Settings: UTILITIES DIAG TPOINT 408
- Insert jumper X750 onto 1-2.
- Connect spectrum analyzer with the setting CF=FREQUENCY, SPAN 100kHz, REF 10dBm to X70.

► Check output signal with the various settings. There must not be any visible spurious response or excessive noise.

FREQUENCY	Diagnostic voltage TPOINT 408
750.000001MHz	$0 \pm 1\text{V}$
1125MHz	$0 \pm 2\text{V}$
1500MHz	$0 \pm 2\text{V}$

7.4.6

Modulation Attenuator

7.4.6.1

Modulation Matrix

Circuit diagram sheet 8

The modulation matrix for both channels and the AC/DC switchover for the external inputs are checked.

- Apply modulation signals to the inputs according to the table, use AC/DC voltmeter for measurement at the test points according to the table. The LFGEN2 input can only be checked using the option SM-B6 or SM-B2 LFGEN2.

Setting	Apply at	Signal	Test point	Signal at test point
FM1 SOURCE OFF	-	-	P840	AC: < 10mVrms DC: < $\pm 20\text{mV}$
FM1 SOURCE LFGEN1	-	-	P840	AC: $707 \pm 10\text{mVrms}$ DC: < $\pm 20\text{mV}$
FM1 SOURCE EXT1	EXT1	AC: 1Vp, 1kHz, DC: 1V	P840	AC: $707 \pm 10\text{mVrms}$ DC: < $\pm 10\text{mV}$
"	"	AC: -, DC: 1V	P840	AC: - DC: $1V \pm 10\text{mV}$
FM1 SOURCE EXT2	EXT2	AC: 1Vp, 1kHz, DC: 1V	P840	AC: $707 \pm 10\text{mVrms}$ DC: < $\pm 10\text{mV}$
"	"	AC: -, DC: 1V	P840	AC: - DC: $1V \pm 10\text{mV}$
FM2 SOURCE LFGEN2	-	-	P835	AC: $707 \pm 10\text{mVrms}$ DC: < $\pm 20\text{mV}$
FM2 SOURCE LFGEN2	EXT2	AC: 1Vp, 1kHz, DC: -	P835	AC: $707 \pm 10\text{mVrms}$ DC: < $\pm 20\text{mV}$

7.4.6.2 EXT2 Monitoring

Circuit Diagram Sheets 8 and 10

- Connect AF generator with 1kHz, level according to table to EXT2.
- Check functioning of level monitoring according to the table.

Input voltage at EXT2	Error message
1±0.005V 1.03±0.005V 0.97±0.005V	- EXT2-HIGH EXT2-LOW

7.4.6.3 FM Deviation Setting

Circuit diagram sheets 8 and 9

Functioning of the fine dividers is tested in both FM channels.

- Setting: FREQUENCY 1GHz
MODULATION FM FM1 SOURCE LFGEN1
- Connect AF voltmeter to P880.
- Vary the FM deviation with FM1 DEVIATION from 100 Hz to 2.5 kHz in 100-Hz steps. The AF voltage at P880 must rise from approx. 0.2 V_{rms} to 5 V_{rms} in 0.2-V steps.

Setting: FREQUENCY 1GHz
MODULATION FM FM1 SOURCE EXT2 (LFGEN2)

- Apply 1Vp, 1kHz to input EXT2. If the SMT is equipped with an optional LF generator, the source LFGEN2 can also be selected.
- Connect AF voltmeter to P880.
- Vary the FM deviation with FM1 DEVIATION from 100 Hz to 2.5 kHz in 100-Hz steps. The AF voltage at P880 must rise from approx. 0.2 V_{rms} to 5 V_{rms} in 0.2-V steps.

Functioning of the coarse divider for modulation of the oscillator is checked.

- Setting: FREQUENCY 1GHz
MODULATION FM FM1 SOURCE LFGEN1
- Connect AF voltmeter to test point P930.
- Check functioning of the coarse divider according to the table.

FM1 DEVIATION	Signal at P930
. 8.192MHz	V _{FM} (approx. 470mV _{rms})
. 2.048MHz	V _{FM} /4 (approx. 118mV _{rms})
.. 512kHz	V _{FM} /16 (approx. 29.4mV _{rms})
.. 128kHz	V _{FM} /64 (approx. 7.34mV _{rms})
... 32kHz	V _{FM} /256 (approx. 1.83mV _{rms})
... 8kHz	V _{FM} /1024 (approx. 460μV _{rms})
... 2kHz	V _{FM} /4096 (approx. 115μV _{rms})
.... 0Hz	<50μV

7.4.6.4 PHiM Deviation Setting

Circuit diagram sheet 9

The coarse divider for the PHiM is checked via the control path as well as the two PhiM differentiating circuits.

- Setting: **FREQUENCY 1GHz
MODULATION PM PM1 SOURCE LFGEN1
LFGEN1 FREQ 1kHz**
- Connect AF voltmeter to test point according to the table.
- Check functioning according to the settings in the table (in the case of the pcbs with the amendment "A", test point P940 is not provided yet, measure at D930.3 instead).

PM1 DEVIATION	PM BANDWIDTH	Test point	Signal/ rms
5rad	2M	P1	approx. 5.7mV
100rad	100k	P1	approx. 285µV
80rad	100k	P940	V_{PM} (approx. 900mV)
20rad	100k	P940	$V_{PM}/4$ (approx. 225mV)
5rad	100k	P940	$V_{PM}/16$ (approx. 56mV)
1.25rad	100k	P940	$V_{PM}/64$ (approx. 14mV)
0rad	100k	P940	< 50µV

7.4.7 Sigma-Delta Converter with FM-DC Control

Circuit diagram sheet 9

Functioning of the sigma-delta converter and of the FM-DC control is checked in the operating modes FM-AC and FM-DC by measuring the output voltage of the offset control using the diagnosis.

- Setting: **FREQUENCY 1GHz
MODULATION FM FM1 SOURCE EXT1
UTILITIES DIAG TPOINT 415**
- Connect DC voltage source (0...1V) to the modulation input EXT1.
- Check the diagnostic voltage according to the table.

EXT1 COUPLING	DC-NULLING	Voltage EXT1	Diagn. volt. TPOINT 415
AC	-	0V	$V_{nom.}$ (approx. 2.5V)
DC	-	0V	$V_{nom.} \pm 50mV$
DC	X	1V	approx. $4.4 \pm 0.2V$

7.4.8 Deviation Adjustments

7.4.8.1 FM Deviation Adjustment

Circuit diagram sheet 9

The scale of the FM deviation is adjusted via the closed-loop control path.

- Setting: **FREQUENCY 1GHz**
 MODULATION FM FM1 SOURCE EXT1
 FM1 DEVIATION 250kHz
- Connect AF generator, $1V_p \pm 5mV$, 50Hz, to the input EXT1.
- Connect modulation analyzer with the setting HP 10Hz, LP 3kHz, detector RMS* $\sqrt{2}$, to X70.
- Use R946 to adjust to a deviation of 250 ± 0.5 kHz. Then perform the calibration by means of UTILITIES CALIB FM.

7.4.8.2 PHiM Deviation Adjustment

Circuit diagram sheet 9

The scale of the PHiM deviation is adjusted via the closed-loop control path.

- Setting: **FREQUENCY 1GHz**
 MODULATION PM PM1 SOURCE EXT1
 PM1 DEVIATION 100rad
 PM BANDWIDTH 100k
- Connect AF generator, $1V_p \pm 5 mV$, 50 Hz, to the input EXT1.
- Connect modulation analyzer with the setting HP 10Hz, LP 3kHz, detector RMS* $\sqrt{2}$, to X70.
- Use R918 to adjust to a deviation of 5 ± 0.01 kHz. Then perform the calibration by means of UTILITIES CALIB FM.

7.4.8.3 PM2MHz Adjustment

Circuit diagram sheet 9

The scale of the PM with a bandwidth of 2 MHz is adjusted via the control path.

- Setting: **FREQUENCY 1GHz**
 UTILITIES CALIB FM EXECUTE
 MODULATION PM PM1 SOURCE EXT1
 - Connect AF generator, $1V_p \pm 5 mV$, 10 kHz, to the input EXT1.
 - Connect modulation analyzer with the setting HP 20Hz, LP 100kHz, detector RMS* $\sqrt{2}$ to X70.
- Use C910 to adjust to a deviation of $50 \pm .5$ kHz.

7.4.9 Testing the Calibrations

7.4.9.1 Calibration VCO SYN

The PI-controller voltage is the difference between the presetting and the tuning voltage. Using the diagnosis, the voltage in the fundamental octave is measured in 3-MHz steps.

- Setting:
FREQUENCY 750.0000001M
FREQUENCY KNOB STEP USER 3MHZ
KNOB STEP USER
UTILITIES DIAG TPOINT 409
- Increase the frequency from 750.0000001 MHz to 1497.0000001 MHz. The diagnostic voltage at TPOINT 409 must lie in the range 0±150mV at every frequency.

7.4.9.2 Calibration FM

Using a diagnostic detector, the difference deviation is measured in 3-MHz steps with FM modulation in the PLL in the fundamental octave.

- Setting:
FREQUENCY 750.0000001M
FREQUENCY KNOB STEP USER 3MHZ
KNOB STEP USER
UTILITIES DIAG TPOINT 410
MODULATION FM SOURCE LFGEN1
FM1 DEVIATION 500kHz
- Increase the frequency from 750.0000001 MHz to 1497.0000001 MHz. The diagnostic voltage at TPOINT 410 must lie in the range 0 ±50mV at every frequency.

7.4.10 Transient Response of Synthesizer

The transient response of the PI-controller voltage is measured with a frequency sweep between 760 and 1490 MHz.

- Setting:
SWEEP FREQ START FREQ 760MHz
STOP FREQ 1490MHz
STEP LIN 730MHz
MODE AUTO
- Connect oscilloscope with probe to test point P720.
- The voltage variation at the output of the phase detector may only vary by max. 2 V up to 500 us after the module strobe. After 5 ms, the variation must be < 0.5 V. Thus a voltage curve as shown in illustration 1 is obtained.

Illustration 1

7.4.11 Spurious FM Synthesizer

- Connect modulation analyzer to X70. Check the spurious FM using weighting filter 20 Hz...23 kHz and CCITT at the following frequencies (MHz):
750.0000001, 800, 850, 900, 950, 1000, 1000.0000001, 1050, 1100, 1150, 1200, 1250, 1250.0000001, 1300, 1350, 1400, 1450, 1500.
- Spurious FM < 20 Hz_{rms} (20 Hz...23 kHz),
Spurious FM < 8 Hz_{rms} (CCITT).

7.4.12 Spurious Responses Synthesizer

- Connect spectrum analyzer to X70 with the setting CF=FREQUENCY, SPAN 50kHz, RBW 100Hz, VBW 30Hz, REF 10dBm. Measure the spurious suppression at the following frequencies (in MHz): 875.02, 1124.02, 1374.02, 1200.00333, 1200.005, 1200.01, 600.005.
- The spurious suppression $\pm 10\text{kHz}$ from the carrier must be ≥ 80 dB.

7.4.13 FM-DC Nulling

- Setting: FREQUENCY 1GHz
MODULATION FM FM1 DEVIATION 10MHz
FM1 SOURCE EXT1
EXT1 COUPLING DC
- Connect power supply ($\pm 1\text{V}$) to EXT1.
- Connect modulation analyzer with frequency counter to X70.
- Set the voltage on the power supply to $0 \pm 50\text{ mV}$, perform FM-DC Nulling. The frequency error must be $< 10\text{ kHz}$. Vary the voltage from -1 to $+1\text{ V}$ and measure the spurious FM, it must be $< 1\text{ kHz}_{\text{rms}}$ (weighting bandwidth 300 Hz to 23 kHz) (the control voltage must be free from noise and hum!).

7.4.14.1Digital Interface

SERBUS address: 26H

Subaddress 0 (SERBUS channel 1)

Latch		Designation	Function		
D885	11	EXT1-AC/DC	AC/DC coupling for EXT1 Selection of source for channel 2	0=AC	1=DC
	12	FM2-OFF		0=off	1=on
	13	FM2-INT2			
	14	FM2-EXT2			
	7	FM1-OFF			
	6	FM1-INT			
	5	FM1-EXT2			
	4	FM1-EXT1			
D854	6	PM-HIGH/PM-LOW	Switchover PHIM bandwidth	0=100kHz	1=2MHz
	5	PM/FM		0=FM	
	4	EXT2-AC/DC		0=AC	1=DC
D220	3	REFTUNE	Tuning voltage standard and optional reference, serial 12-bit D/A		
D110	12	INT/EXT	Switchover reference Switchover standard/option Diagnostic multiplexer 2 Diagnostic multiplexer 1 Diagnostic multiplexer Address 0...7	0=ext.	1=int.
	13	OPTREF		0=Std.	1=Opt.
	14	END1		0=off	1=on
	7	END0		0=off	1=on
	6	DA			MSB
	5	DA			LSB
	4	DA			

SERBUS address: 26H

Subaddress 1 (SERBUS channel 2)

Latch		Designation	Function	
D900	11	FMCOARSE	Coarse divider FM 7 steps and off	MSB
	:			
	14			LSB
	6	PMCOARSE		MSB
	:			
	4			LSB
D920	4,5,7	PMKOMP	Divider factor and dev. slope comp. Serial 12-bit D/A	
D795	11	PLLTUNE	Presetting voltage PLL FSYN 8 bits	MSB
	4			LSB
D850	4,5,7	DEVSET2	Fine adjustment deviation FM2 Serial 12-bit D/A	
D840	4,5,7	DEVSET1	Fine adjustment deviation FM1 Serial 12-bit D/A	

SERBUS address: 26H

Subaddress 1 (SERBUS channel 2)

Latch		Designation	Function	0=off	1=on
D790	14 6 : 5	S-DSIG PLLGAIN	Sigma-delta converter PLL gain	MSB	
				LSB	
D665	11 : 4	ADWE15	Deviation value at A/D input of FRACSYN, MSByte	MSB	
				LSB	
D660	11 : 4	ADWE7	LSByte	MSB	
				LSB	
D585	11 12 13 14 7 6 5 4	S8 S7 S6 S5 S4 S3 S2 S1	Path output divider 3 Path outp. sect. 2/inp. sect.3 Path output divider 2 Path input divider 2 Path outp. sect. 1/inp. sect.3 Path output divider 1 Path input divider 1 Path no divider	0=off	1=on
D580	12 13 14 7 6 5 4	S-REF600 <u>T3</u> <u>T2</u> <u>T1</u> OSZ3 OSZ2 OSZ1	Output REF600 Divider 3 (%4) Divider 2 (%4) Divider 1 (%2) Oscillator 1250...1500MHz Oscillator 1000...1250MHz Oscillator 750...1000MHz	0=off 0=on	1=on 1=off

The FRACSYN device is also provided with an interface according to SERBUS standard with a subaddress. Since the transmitted data are not accessible from outside, they are not specified in this case.

7.4.14.2 List of Diagnostic Test Points

See section 6.3.2.1.

7.5 Disassembly and Assembly

After opening the instrument, unlocking the boards and loosening the RF connections at X70, X72, X74, X76 and X78, the board can be removed from its location.

The screening covers are fastened with screws. During operation with open cover, make sure that the resonator chambers I, J, H are closed with appropriate test covers on both sides.

Pin	Name	Input/Output	Origin/Destination	Value range	Signal description
X7.A1	EXTTUNE	Input	Rear panel	-10V...+10V	EXTTUNE for reference
X7.A4	EXT1	Input	A3, FRO	1V _p	Modulation voltage
X7.A5	EXT2	Input	A3, FRO	1V _p	Modulation voltage
X7.A6	INT1	Input	A10, OPU1 X10.86 A50,LFGEN X1.A7 A5, MGEN X50.7	1V _p	Modulation voltage
X7.A7	INT2	Input	A50,LFGEN X1.A7 A5,MGEN X50.7	1V _p	Modulation voltage
X7.A9	OPTUNE	Output	A71,ROSC X22.16	0...10V	Tuning voltage for optional reference (SM-B1)
X7.A12	SERBUS-CLK	Input	A3, FRO X50.40	HCMOS level	Serbus clock
X7.A14 X7.A15	SERBUS-DAT	bidir.	A3, FRO X50.39	HCMOS level	Serbus data
X7.A16	SERBUS-SYNC	Input	A3, FRO X50.37	HCMOS level	Serbus synchronization
X7.A17	SERBUS-INT	Output	A3, FRO X50.38	HCMOS level	Serbus interrupt
X7.A18	RES-P	Input	A3, FRO X50.28	HCMOS level	Serbus reset
X7.A19	DIAG-5V	Output	A3, FRO X50.44	-5V...5V	Diagnosis
X7.A22	VA24-P	Input	A2, POWS1	23.4V...24.6V 20...90mA	Supply voltage analog
X7.A24	VA15-P	Input	A2, POWS1	14.80V...15.75V 100...200mA	Supply voltage analog
X7.A26	VA7.5-P	Input	A2, POWS1	7.45V...7.95V 1100...1400mA	Supply voltage analog
X7.A28	VD-5P	Input	A2, POWS1	5.10V...5.25V 5...20mA	Supply voltage digital
X7.A30	VA15-N	Input	A2, POWS1	-15.75V...-14.85V 200...300mA	Supply voltage analog
X74	OPT10	Input	A71, ROSE X711	5...9dBm	
X78	EXTREF	bidir.	Rear panel	5/10MHz ±3ppm -13...13dBm 10MHz, 6...10dBm	Input Output
X70	FSYN	Output	A10, OPU1 X101	6...13dBm	Syn. Frequency 7.5...1500MHz
X76	REF600	Output	A10, OPU1 X105	7...11dBm	reference 600 MHz

Pin	Name	Input/Output	Origin/Destination	Value range	Signal description
X72	REF50	Output	A5, MGEN X53 A4,PUM1/3 X41	7...11dBm	Reference 50 MHz, to the

XY-Liste

XY List

Erklärung der Spaltenbezeichnungen:

el. Kennz.	Bauelement-Kennzeichen
Seite	Leiterplatten-Seite, auf der sich das Bauelement befindet
X/Y	Koordinaten (in Millimeter) des Bauelementes auf der Leiterplatte bezogen auf den Nullpunkt
Planq., Bl.	Planquadrat und Seite des Schaltbildes für das jeweilige Bauelement

Explanation of column designations:

Part	Identification of instrument part
Side	Side of the PC board on which instrument part is positioned
X/Y	Coordinates (in units of millimeters) of the component on the PC board in reference to zero point
Sqr, Pg	Square and page of the diagram for the respective instrument part

Service-Relevante Bauteile / Service-Relevant Components

el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg
C402	B	142	137	1B	4	P352	B	262	31	9D	3	P950	B	261	103	12A	9
C432	B	114	137	5B	4	P354	B	263	67	12C	3	R918	B	297	140	4C	9
C462	B	88	137	8B	4	P600	B	215	104	7B	6	R946	B	283	110	7B	9
L316	B	235	22	9B	3	P700	B	265	136	4D	7	X7A	B	189	11	11C	11
P20	B	149	53	5D	11	P720	B	235	131	6C	7	X20	B	239	76	12C	2
P22	B	163	46	7E	11	P755	B	182	142	7B	7	X70	B	55	15	11D	5
P25	B	167	39	7D	11	P835	B	42	63	6C	8	X72	B	258	15	11D	3
P201	B	281	44	4B	2	P840	B	58	83	4A	8	X74	B	296	15	1C	2
P202	B	281	60	7B	2	P845	B	46	90	7A	8	X75	B	162	140	9C	7
P203	B	284	65	11B	2	P880	B	13	106	11C	8	X76	B	245	15	9A	3
P204	B	295	56	8C	2	P920	B	26	126	4A	9	X78	B	283	15	1C	2
P205	B	263	65	9B	2	P930	B	60	130	8D	9	X750	B	201	127	6C	7
P350	B	247	43	7D	3	P940	B	290	135	4C	9						

ROHDE & SCHWARZ

Benennung: EE SYNTHESIZER
Designation: SYNTHESIZER

Sprache:
Lang.: de Blatt:
Sh.: 1 + Aei:
C.I.: 09.00

Typ: Type:	Datum: Date:	02-12-04	Abteilung: Dpt:	MEZ1	Name: Name:	WH	Sachnr.: Part No.:	1039.2330.01 XY
---------------	-----------------	----------	--------------------	------	----------------	----	-----------------------	-----------------

Nicht–Service–Relevante Bauteile / Non–Service–Relevant Components

el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg
C1	B	112	55	3C	5	C322	A	218	43	5C	3	C511	A	124	51	3B	5
C2	B	159	22	2B	11	C324	B	226	35	4B	3	C514	B	109	49	4B	5
C3	B	164	22	2C	11	C326	B	219	23	7B	3	C515	A	101	58	4B	5
C4	B	149	22	2D	11	C332	B	219	14	9C	3	C516	B	98	52	4B	5
C5	B	171	22	2D	11	C333	A	213	23	8B	3	C517	B	80	50	5B	5
C6	B	121	50	3B	5	C337	B	231	16	9B	3	C518	B	88	48	5B	5
C7	B	106	76	3D	5	C338	B	238	22	9A	3	C520	B	106	69	2D	5
C8	B	115	72	3D	5	C340	B	237	16	9B	3	C521	A	107	66	3C	5
C9	A	84	28	6E	5	C342	A	225	12	10B	3	C524	B	118	77	4D	5
C10	B	87	42	6F	5	C343	A	217	12	10B	3	C525	A	130	80	4C	5
C14	A	64	85	5B	11	C344	B	236	35	5C	3	C526	B	132	75	4D	5
C20	A	141	50	4D	11	C345	B	223	20	8B	3	C527	B	77	18	5D	5
C21	A	151	41	5D	11	C346	A	245	29	6D	3	C530	A	106	44	4E	5
C24	A	64	89	8B	11	C347	A	248	35	6D	3	C532	B	91	44	5E	5
C25	A	156	44	7D	11	C348	B	246	35	6D	3	C533	B	96	39	5E	5
C26	A	169	43	7D	11	C350	B	236	48	6D	3	C535	A	116	41	6E	5
C27	B	158	39	7D	11	C351	B	239	45	6D	3	C537	A	88	35	5E	5
C28	B	137	69	11A	11	C352	B	251	47	7D	3	C540	A	81	28	6E	5
C29	B	34	67	12A	11	C355	A	264	44	6E	3	C543	B	81	30	7E	5
C30	A	60	62	12A	11	C356	A	250	40	7D	3	C544	A	73	23	7E	5
C100	A	180	52	2E	10	C358	A	257	46	8D	3	C546	B	69	30	8E	5
C101	A	193	25	2E	10	C360	A	258	21	7E	3	C547	B	69	42	8E	5
C110	A	166	76	11E	10	C361	B	251	32	5C	3	C548	A	63	36	9E	5
C120	A	164	54	7D	10	C362	A	255	26	10D	3	C550	B	55	44	9D	5
C200	A	277	43	6E	2	C363	A	245	22	4A	3	C551	B	51	25	10D	5
C202	B	296	28	2A	2	C364	A	253	22	11D	3	C552	A	50	29	10C	5
C204	B	281	28	2B	2	C366	A	261	15	11D	3	C553	A	50	22	10C	5
C205	A	293	23	2B	2	C368	A	268	20	11E	3	C555	B	58	20	10D	5
C206	A	287	41	3A	2	C369	B	265	16	11E	3	C556	A	58	32	10D	5
C208	B	293	25	3B	2	C370	B	250	57	12C	3	C557	A	144	63	11D	5
C209	A	290	25	3C	2	C400	A	126	137	1A	4	C570	A	74	46	8C	5
C210	A	272	58	7E	2	C404	A	133	114	2A	4	C571	A	82	10	6C	5
C214	A	283	53	6B	2	C406	B	138	113	3B	4	C580	A	133	65	10E	5
C217	A	277	34	5C	2	C408	B	139	116	2B	4	C600	B	158	91	2B	6
C218	A	286	21	6C	2	C410	B	134	107	3B	4	C601	B	165	105	2B	6
C219	A	280	24	6C	2	C412	B	138	105	3B	4	C602	A	170	96	2A	6
C220	A	273	70	8F	2	C414	B	130	103	3B	4	C605	B	161	115	3B	6
C221	B	282	77	8E	2	C416	A	121	100	4C	4	C610	A	169	116	3A	6
C224	A	293	60	8C	2	C418	A	126	126	2C	4	C611	A	170	107	4A	6
C226	B	299	45	8C	2	C430	A	98	137	5A	4	C615	B	172	121	4B	6
C228	A	299	57	8D	2	C434	A	105	114	6A	4	C616	B	188	120	4B	6
C230	A	241	81	11A	2	C436	B	111	110	6B	4	C620	B	191	109	5A	6
C232	A	277	16	2C	2	C438	B	111	112	6B	4	C621	B	189	109	5B	6
C234	A	290	13	2C	2	C440	B	106	103	6B	4	C622	B	188	109	5A	6
C236	A	296	73	3D	2	C442	B	110	101	7B	4	C639	A	241	102	4F	6
C240	A	274	26	6D	2	C444	B	103	99	7B	4	C640	A	215	93	8A	6
C241	A	296	48	7C	2	C446	A	97	105	7C	4	C641	A	244	105	8D	6
C242	A	290	48	7C	2	C448	A	98	124	6C	4	C645	A	209	109	3F	6
C243	A	292	51	7C	2	C460	A	71	137	8A	4	C649	A	232	106	7D	6
C244	A	284	46	7C	2	C464	A	79	119	9A	4	C654	A	249	102	11D	6
C250	B	237	69	11C	2	C466	B	83	115	10B	4	C655	A	235	117	11D	6
C251	A	225	77	1E	2	C468	B	83	117	9B	4	C656	A	224	100	11D	6
C252	A	248	80	10C	2	C470	B	78	108	10B	4	C657	A	229	89	11D	6
C254	A	250	62	10D	2	C472	B	82	106	10B	4	C660	A	201	36	9D	6
C255	B	258	69	10E	2	C474	B	83	102	10B	4	C661	A	179	94	1D	6
C256	B	246	62	11C	2	C476	A	90	109	11C	4	C662	A	186	89	1D	6
C258	A	244	77	12C	2	C478	A	71	128	9C	4	C663	A	190	93	1E	6
C260	A	240	64	11D	2	C481	A	72	107	8C	4	C664	A	192	93	1E	6
C261	A	244	67	11E	2	C490	A	75	73	5E	4	C666	A	190	107	2E	6
C286	A	236	80	11D	2	C491	A	85	79	4E	4	C667	A	182	102	2E	6
C289	B	244	75	11D	2	C492	B	82	98	8E	4	C668	A	182	100	2E	6
C298	B	281	70	9A	2	C493	B	82	87	9E	4	C690	A	223	92	11C	6
C300	A	210	56	2B	3	C494	A	79	89	9D	4	C701	A	300	108	2C	7
C302	B	216	51	2B	3	C495	B	88	87	9E	4	C702	A	293	111	2D	7
C304	B	216	56	3B	3	C496	A	88	77	9E	4	C707	B	291	106	3E	7
C306	B	224	51	3B	3	C497	A	147	65	10E	4	C708	A	272	126	3D	7
C308	B	225	56	3B	3	C500	B	95	77	1C	5	C709	A	271	134	3C	7
C310	A	226	56	3C	3	C501	B	83	69	2C	5	C710	A	267	133	3C	7
C312	A	213	62	3C	3	C502	A	86	74	2C	5	C720	A	246	137	5B	7
C314	A	213	58	3D	3	C504	A	86	62	1B	5	C721	B	243	131	6C	7
C316	B	226	52	4B	3	C505	A	74	65	1A	5	C722	A	239	136	6C	7
C317	A	233	20	4A	3	C506	A	117	59	2A	5	C731	B	193	130	6C	7
C318	B	223	35	4B	3	C507	A	96	72	2E	5	C732	A	247	131	6C	7
C320	A	222	39	4B	3	C510	B	112	57	2B	5	C740	A	196	140	7A	7

ROHDE & SCHWARZ

Benennung:
Designation:
EE SYNTHESIZER
SYNTHESIZER

Sprache:
Lang.: de

Blatt:
Sh.: 2 +
Aei:
C.I.: 09.00

Typ: Type:	Datum: Date:	02-12-04	Abteilung: Dpt:	MEZ1	Name: Name:	WH	Sachnr.: Part No.:	1039.2330.01 XY
---------------	-----------------	----------	--------------------	------	----------------	----	-----------------------	-----------------

Nicht-Service-Relevante Bauteile / Non-Service-Relevant Components

el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg
C741	A	208	133	6B	7	C977	A	49	136	8D	9	D740	B	204	139	5E	7
C750	A	189	135	7C	7	C979	A	283	130	2F	9	D740	B	204	139	6A	7
C755	B	183	132	7B	7	C989	A	281	90	12D	9	D790	B	272	125	10B	7
C756	A	186	138	7B	7	C990	A	285	93	12E	9	D790	B	272	125	4E	7
C760	A	177	133	9C	7	D20	B	146	50	4D	11	D795	B	224	137	10D	7
C765	B	174	132	9C	7	D60	B	187	98	1E	6	D795	B	224	137	4E	7
C766	B	174	138	9C	7	D60	B	187	98	6B	6	D800	B	47	85	3F	8
C767	B	166	132	9C	7	D65	B	234	90	10B	6	D800	B	47	85	4A	8
C778	A	158	134	8C	7	D100	A	184	14	2B	10	D800	B	47	85	4B	8
C779	B	161	137	9C	7	D100	A	184	14	2C	10	D800	B	47	85	4B	8
C780	A	233	136	7D	7	D100	A	184	14	2C	10	D800	B	47	85	4B	8
C781	A	226	138	7D	7	D100	A	184	14	2C	10	D810	B	34	45	2D	8
C782	A	222	139	9D	7	D100	A	184	14	2F	10	D810	B	34	45	4C	8
C784	A	227	128	9E	7	D105	B	190	46	2F	10	D810	B	34	45	4C	8
C787	A	271	119	4E	7	D105	B	190	46	5B	10	D810	B	34	45	4D	8
C788	B	295	88	1E	7	D110	B	180	69	6D	10	D810	B	34	45	4D	8
C790	A	208	130	6F	7	D110	B	180	69	8E	10	D820	B	57	71	2A	8
C791	A	206	140	5E	7	D115	B	191	69	8A	10	D820	B	57	71	2F	8
C792	B	269	138	6E	7	D115	B	191	69	8E	10	D825	B	34	18	2C	8
C793	B	276	138	8F	7	D120	B	203	69	8B	10	D825	B	34	18	2F	8
C794	A	294	102	2F	7	D120	B	203	69	8E	10	D840	B	40	89	6B	8
C795	B	294	110	2E	7	D125	B	168	70	10C	10	D840	B	40	89	8F	8
C796	A	193	135	6F	7	D125	B	168	70	11D	10	D850	B	15	73	8A	8
C797	A	250	131	9E	7	D125	B	168	70	7B	10	D850	B	15	73	8F	8
C819	A	37	29	3B	8	D125	B	168	70	7C	10	D854	B	62	98	10A	8
C830	B	60	72	2A	8	D125	B	168	70	9E	10	D854	B	62	98	11E	8
C831	B	38	22	2C	8	D200	B	273	40	5A	2	D855	B	15	59	11A	8
C840	A	33	89	6B	8	D200	B	273	40	5C	2	D855	B	15	59	12E	8
C850	A	15	79	9B	8	D200	B	273	40	6B	2	D865	B	23	98	10C	8
C851	A	38	60	9E	8	D200	B	273	40	6B	2	D865	B	23	98	9E	8
C852	A	35	60	9E	8	D200	B	273	40	6E	2	D870	B	14	24	10E	8
C860	B	28	28	4D	8	D205	B	274	49	5B	2	D870	B	14	24	6D	8
C861	B	29	35	4D	8	D205	B	274	49	6E	2	D870	B	14	24	6D	8
C862	A	16	36	5C	8	D205	B	274	49	9B	2	D875	B	15	13	11E	8
C865	A	23	39	5C	8	D210	B	275	64	7E	2	D875	B	15	13	7D	8
C866	A	19	54	5E	8	D210	B	275	64	8A	2	D875	B	15	13	7D	8
C870	A	15	24	6D	8	D210	B	275	64	8B	2	D875	B	15	13	7E	8
C871	A	19	22	6E	8	D215	B	290	60	10B	2	D875	B	15	13	7E	8
C875	A	23	14	7D	8	D215	B	290	60	7E	2	D900	B	51	98	2C	9
C876	A	25	14	7E	8	D220	B	296	80	3D	2	D900	B	51	98	3F	9
C877	A	40	49	2D	8	D255	B	258	78	10C	2	D910	B	297	118	2F	9
C878	A	37	38	2E	8	D255	B	258	78	10C	2	D910	B	297	118	4C	9
C885	A	15	21	10E	8	D255	B	258	78	10E	2	D920	B	25	139	2B	9
C886	A	20	106	10E	8	D350	B	243	49	6D	3	D920	B	25	139	5F	9
C887	A	20	102	10E	8	D355	B	265	43	5E	3	D930	B	287	130	2F	9
C888	A	175	90	11D	8	D355	B	265	43	7D	3	D930	B	287	130	4C	9
C890	B	33	83	1E	8	D360	B	264	21	10C	3	D950	A	260	88	10D	9
C891	B	32	76	1F	8	D360	B	264	21	10D	3	D950	A	260	88	11A	9
C894	A	37	36	6F	8	D360	B	264	21	10D	3	D950	A	260	88	11A	9
C895	B	43	19	6F	8	D360	B	264	21	6E	3	D960	B	50	124	6F	9
C900	B	45	95	4E	9	D360	B	264	21	9D	3	D960	B	50	124	7D	9
C901	A	13	128	1A	9	D370	B	258	57	11A	3	D965	B	256	90	9B	9
C906	A	40	142	2D	9	D370	B	258	57	11C	3	K240	B	276	13	6C	2
C910	A	27	129	3D	9	D510	B	118	52	3B	5	K240	B	276	13	6D	2
C911	A	27	131	3D	9	D520	B	109	74	3D	5	K910	B	29	134	2E	9
C912	A	297	121	4C	9	D540	B	84	35	6E	5	K910	B	29	134	3D	9
C913	B	26	122	3E	9	D580	A	120	64	10E	5	K911	B	29	139	2E	9
C914	A	290	122	4C	9	D580	A	120	64	8A	5	K911	B	29	139	3E	9
C920	A	20	126	3B	9	D585	A	96	36	11E	5	L1	A	140	23	2B	11
C948	B	271	91	10D	9	D585	A	96	36	9A	5	L2	B	144	20	2B	11
C949	A	270	88	10D	9	D640	B	213	107	3F	6	L3	B	152	15	2C	11
C950	A	254	119	6B	9	D640	B	213	107	7B	6	L4	B	132	15	2D	11
C951	A	274	104	9A	9	D640	B	213	107	8B	6	L5	B	173	15	2D	11
C952	A	249	119	6A	9	D640	B	213	107	8C	6	L6	B	169	102	2A	6
C953	A	258	99	12B	9	D640	B	213	107	8C	6	L8	A	243	58	4B	11
C955	A	257	110	7B	9	D660	A	234	88	2C	6	L9	A	217	67	4B	11
C956	A	263	108	7B	9	D660	A	234	88	4F	6	L11	A	141	73	5B	11
C957	B	255	103	7B	9	D665	A	250	88	3C	6	L13	A	166	128	5B	11
C958	B	268	110	8A	9	D665	A	250	88	5F	6	L14	A	71	84	5B	11
C959	B	272	107	8B	9	D700	B	299	91	1E	7	L23	A	161	119	7B	11
C960	A	39	123	4D	9	D700	B	299	91	2C	7	L24	A	71	88	8B	11
C961	A	46	124	6F	9	D700	B	299	91	2D	7	L25	A	265	73	9A	11
C962	A	56	124	6E	9	D720	B	255	140	4B	7	L26	A	241	48	10A	11
C963	A	273	100	10A	9	D720	B	255	140	5E	7	L27	B	276	120	11A	11

ROHDE & SCHWARZ

Benennung: EE SYNTHESIZER
Designation: SYNTHESIZER

Sprache:
Lang.: de Blatt:
Sh.: 3 + Aei:
C.I.: 09.00

Typ: Type:	Datum: Date:	02-12-04	Abteilung: Dpt:	MEZ1	Name: Name:	WH	Sachnr.: Part No.:	1039.2330.01 XY
---------------	-----------------	----------	--------------------	------	----------------	----	-----------------------	-----------------

Nicht-Service-Relevante Bauteile / Non-Service-Relevant Components

el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg
L28	A	126	41	11A	11	N105	B	168	57	8D	10	R21	A	151	50	4D	11
L29	A	62	52	11A	11	N110	B	168	50	10D	10	R23	A	144	44	5D	11
L50	A	114	36	10C	11	N110	B	168	50	10E	10	R24	A	158	52	6D	11
L51	A	84	12	10C	11	N110	B	168	50	8D	10	R25	A	162	55	6D	11
L52	A	126	37	10D	11	N200	B	299	40	2B	2	R26	B	143	41	6D	11
L53	A	141	39	10D	11	N220	B	276	77	10A	2	R27	B	143	39	6D	11
L60	A	183	94	2E	6	N220	B	276	77	3D	2	R28	A	153	46	7D	11
L101	A	187	80	6E	10	N220	B	276	77	4D	2	R29	A	160	44	7D	11
L200	A	275	46	6B	2	N220	B	276	77	8E	2	R30	A	161	39	6E	11
L202	A	284	28	6C	2	N220	B	276	77	9A	2	R31	A	164	41	6E	11
L204	A	283	24	6C	2	N250	B	245	66	11C	2	R60	B	179	105	5B	6
L240	B	296	53	7C	2	N250	B	245	66	11D	2	R61	B	179	104	5B	6
L300	B	213	51	2B	3	N300	B	226	46	4B	3	R62	B	179	102	5B	6
L301	A	225	64	2B	3	N305	B	239	32	5D	3	R63	B	179	101	5B	6
L302	B	220	61	3B	3	N490	B	79	96	8E	4	R64	B	179	99	5C	6
L306	B	222	38	4B	3	N500	B	91	72	1C	5	R65	B	179	98	5C	6
L318	B	247	29	5D	3	N510	B	107	55	4B	5	R66	B	179	96	5C	6
L347	A	251	29	5C	3	N520	B	124	77	4D	5	R67	B	186	89	5C	6
L350	B	250	38	7D	3	N540	B	78	26	7E	5	R68	B	187	89	5D	6
L352	B	255	22	11D	3	N560	B	55	38	9D	5	R70	B	182	105	5B	6
L354	B	253	15	11D	3	N600	B	165	94	2B	6	R71	B	182	104	5B	6
L400	B	132	137	1B	4	N610	B	164	117	3B	6	R72	B	182	102	5B	6
L401	A	126	135	1A	4	N640	A	236	105	4F	6	R73	B	182	101	5B	6
L402	B	132	114	2B	4	N640	A	236	105	7D	6	R74	B	182	99	5C	6
L403	A	129	107	2A	4	N700	B	293	102	2E	7	R75	B	182	98	5C	6
L404	B	136	124	2B	4	N700	B	293	102	3E	7	R76	B	182	96	5C	6
L406	B	143	110	3C	4	N710	B	273	130	3C	7	R77	B	186	92	5C	6
L408	A	126	123	2C	4	N710	B	273	130	7E	7	R78	B	187	92	5D	6
L430	B	104	137	5B	4	N720	B	245	136	5C	7	R80	B	189	92	7B	6
L431	A	98	135	5A	4	N720	B	245	136	6E	7	R81	B	190	92	7B	6
L432	B	104	110	6B	4	N750	B	198	136	6C	7	R100	A	196	13	2B	10
L433	A	101	107	6A	4	N750	B	198	136	6E	7	R102	A	190	25	2C	10
L434	B	108	120	6B	4	N780	B	232	133	7D	7	R104	A	194	20	2D	10
L436	B	115	106	7C	4	N780	B	232	133	7E	7	R106	A	146	18	3B	10
L438	A	98	127	5C	4	N780	B	232	133	8D	7	R107	B	145	36	3B	10
L460	B	78	137	8B	4	N800	A	41	70	2A	8	R108	B	201	21	3A	10
L461	A	71	135	8A	4	N800	A	41	70	3F	8	R109	B	198	37	3A	10
L462	B	77	115	9B	4	N810	B	35	25	3C	8	R110	B	197	21	3B	10
L463	A	75	113	9A	4	N810	B	35	25	6F	8	R111	B	194	36	3B	10
L464	B	80	125	9B	4	N840	B	52	81	4F	8	R112	B	193	21	3C	10
L466	B	87	111	10C	4	N840	B	52	81	5A	8	R113	B	192	37	3C	10
L468	A	71	131	9C	4	N840	B	52	81	7B	8	R114	B	187	21	3C	10
L492	B	86	96	8E	4	N850	B	39	58	9C	8	R115	B	187	37	3C	10
L494	B	76	88	9D	4	N850	B	39	58	9E	8	R116	B	182	21	3D	10
L500	B	83	62	2C	5	N860	B	20	43	5D	8	R117	B	183	37	3D	10
L502	B	83	75	2C	5	N861	B	30	43	5D	8	R118	B	178	21	3D	10
L505	B	77	55	2A	5	N880	A	16	88	4F	8	R119	B	179	37	3D	10
L506	B	112	65	2B	5	N880	A	16	88	9B	8	R120	A	187	38	4C	10
L507	B	102	69	2D	5	N905	B	16	125	2A	9	R121	A	162	62	8D	10
L515	B	99	59	4B	5	N905	B	16	125	3B	9	R122	A	191	48	4B	10
L525	B	132	81	4C	5	N905	B	16	125	4F	9	R123	A	191	51	4B	10
L530	B	94	43	5E	5	N950	B	278	105	11D	9	R124	A	203	49	4B	10
L535	B	103	39	5E	5	N950	B	278	105	7B	9	R125	A	203	52	4B	10
L540	B	70	23	8E	5	N950	B	278	105	7C	9	R126	A	204	57	4B	10
L545	B	65	42	9E	5	N950	B	278	105	9A	9	R127	A	204	60	4B	10
L550	B	51	45	9D	5	N950	B	278	105	9B	9	R128	A	204	62	4B	10
L551	B	54	29	10C	5	N955	B	264	107	11D	9	R131	A	185	51	5C	10
L570	B	73	49	8C	5	N955	B	264	107	8B	9	R133	A	196	58	6B	10
L571	B	69	14	7D	5	N965	B	283	88	10A	9	R134	A	194	58	6C	10
L610	B	172	115	4A	6	N965	B	283	88	10D	9	R135	A	191	58	6C	10
L640	A	211	90	8A	6	R1	B	115	44	3C	5	R136	A	189	58	6C	10
L910	B	33	130	4D	9	R2	B	112	49	3B	5	R137	A	186	58	6C	10
L911	B	28	112	4E	9	R3	B	111	82	4D	5	R138	A	184	58	6C	10
L950	A	274	92	10D	9	R4	B	115	81	4D	5	R139	A	186	63	6C	10
N20	B	152	51	4E	11	R5	B	179	17	2E	11	R140	A	181	58	6C	10
N20	B	152	51	5D	11	R6	A	239	67	4A	11	R142	A	178	68	5D	10
N20	B	152	51	5E	11	R7	A	174	127	5A	11	R143	B	160	58	10B	10
N20	B	152	51	6D	11	R8	B	77	37	7E	5	R144	A	193	79	8E	10
N20	B	152	51	6E	11	R9	B	78	33	7E	5	R145	A	180	76	7B	10
N100	B	168	64	10B	10	R10	B	117	55	3C	5	R146	A	191	72	9A	10
N100	B	168	64	10B	10	R11	B	110	72	3D	5	R150	A	168	68	10A	10
N100	B	168	64	8D	10	R12	B	87	36	6E	5	R152	A	171	65	10B	10
N105	B	168	57	10C	10	R13	A	243	93	3C	6	R154	A	164	67	10B	10
N105	B	168	57	10C	10	R20	A	170	38	7D	11	R156	A	173	63	9C	10

ROHDE & SCHWARZ

Benennung:
Designation:
EE SYNTHESIZER
SYNTHESIZER

Sprache:
Lang.: de

Blatt:
Sh.: 4 +
Aei:
C.I.: 09.00

Typ: Type:	Datum: Date:	02-12-04	Abteilung: Dpt:	MEZ1	Name: Name:	WH	Sachnr.: Part No.:	1039.2330.01 XY
---------------	-----------------	----------	--------------------	------	----------------	----	-----------------------	-----------------

Nicht-Service-Relevante Bauteile / Non-Service-Relevant Components

el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg
R158	A	169	58	9C	10	R292	A	276	59	8A	2	R420	A	145	112	3C	4
R160	A	172	57	9D	10	R293	A	266	57	8A	2	R422	B	136	103	3B	4
R162	B	175	53	9D	10	R294	A	279	63	8B	2	R424	B	120	95	4C	4
R164	A	175	51	9D	10	R295	A	270	65	8A	2	R425	A	133	98	3C	4
R166	A	169	50	9E	10	R296	A	266	63	8B	2	R426	A	144	97	4C	4
R170	A	166	70	11C	10	R297	A	280	65	9A	2	R427	A	144	99	4C	4
R172	B	175	51	10D	10	R298	B	277	67	9A	2	R434	B	102	113	6B	4
R174	A	166	73	10D	10	R299	A	270	67	9B	2	R436	B	103	120	6B	4
R178	A	160	77	10E	10	R302	B	221	53	3B	3	R440	B	108	105	6B	4
R200	A	296	21	2B	2	R304	B	222	48	3B	3	R442	B	103	104	6B	4
R201	A	286	36	6E	2	R306	A	218	52	2C	3	R444	A	106	109	6C	4
R202	B	282	22	3B	2	R308	A	220	48	3C	3	R446	A	104	111	6C	4
R203	A	293	26	2C	2	R310	B	223	65	3C	3	R448	A	111	105	6C	4
R204	A	295	32	2B	2	R312	A	215	57	3D	3	R450	A	117	110	7C	4
R205	B	278	43	6B	2	R314	B	229	55	3B	3	R452	B	109	99	7B	4
R206	B	285	28	3B	2	R316	A	229	20	4A	3	R454	B	97	99	7C	4
R207	B	288	21	3B	2	R317	A	233	16	4A	3	R455	A	110	92	6C	4
R208	A	287	43	3A	2	R318	A	236	13	4B	3	R456	A	124	90	7C	4
R209	A	279	57	7E	2	R320	B	219	38	4C	3	R457	A	118	97	8C	4
R210	B	291	21	3B	2	R321	A	224	30	8B	3	R464	B	74	118	9B	4
R212	B	292	28	4B	2	R322	B	216	40	5C	3	R466	B	74	125	9B	4
R213	A	290	32	4B	2	R323	A	210	25	7B	3	R470	B	80	110	10B	4
R214	A	290	38	4B	2	R324	B	230	29	5B	3	R472	B	79	105	10B	4
R216	A	277	41	4A	2	R325	B	202	44	5A	3	R474	A	80	111	10C	4
R221	A	280	54	5B	2	R326	B	223	30	5B	3	R476	A	77	116	9C	4
R223	B	278	46	5B	2	R327	B	217	15	8B	3	R478	A	83	110	10C	4
R224	A	280	35	5C	2	R328	B	201	40	6A	3	R480	A	90	115	10C	4
R225	A	274	31	5C	2	R329	B	216	20	8B	3	R481	A	71	103	9C	4
R226	A	274	54	6A	2	R330	A	221	31	7A	3	R482	A	78	103	9D	4
R227	A	280	38	7B	2	R331	B	211	33	7B	3	R484	B	89	104	11C	4
R228	B	284	62	9A	2	R332	A	218	34	7B	3	R485	A	107	92	10C	4
R230	A	278	74	11A	2	R334	A	219	23	7A	3	R486	A	96	95	11C	4
R232	A	281	74	11A	2	R335	A	217	20	7A	3	R487	A	92	102	11C	4
R234	A	292	29	3C	2	R336	A	225	23	7B	3	R488	B	75	108	10B	4
R239	A	285	56	7C	2	R337	B	217	30	7B	3	R490	A	75	76	5D	4
R240	A	293	43	6C	2	R338	B	228	16	9B	3	R491	A	72	100	9C	4
R241	A	296	46	7C	2	R340	B	227	13	9B	3	R492	B	88	80	9E	4
R242	A	299	50	8C	2	R344	A	219	12	10B	3	R493	A	88	79	9E	4
R243	A	290	46	7C	2	R346	B	229	32	5C	3	R494	B	81	84	9E	4
R244	A	185	77	9B	10	R347	B	236	38	5C	3	R495	B	104	84	10E	4
R246	B	290	47	7C	2	R348	A	248	32	5D	3	R496	B	95	84	10D	4
R247	B	287	44	7C	2	R350	B	244	38	6D	3	R497	B	97	87	10E	4
R248	B	293	45	8C	2	R354	A	244	37	7D	3	R499	B	98	81	10D	4
R249	B	296	51	8C	2	R355	A	264	46	5E	3	R500	B	79	66	2C	5
R251	A	286	73	3D	2	R356	A	248	40	7D	3	R502	A	81	68	1B	5
R253	A	292	76	2D	2	R358	A	267	50	8D	3	R503	A	81	71	1B	5
R255	A	288	76	2D	2	R360	A	260	50	8D	3	R504	A	88	67	1B	5
R256	A	293	70	2D	2	R361	A	260	28	6E	3	R505	B	74	65	1A	5
R257	A	290	66	1E	2	R362	A	264	40	8E	3	R506	B	119	65	2B	5
R258	B	279	80	4D	2	R364	A	258	34	8E	3	R507	B	98	73	2D	5
R260	B	266	71	4D	2	R366	A	260	34	9E	3	R510	A	111	50	3B	5
R261	B	236	59	4E	2	R368	A	257	48	9D	3	R515	A	95	61	4A	5
R262	A	193	15	4F	2	R369	A	253	43	9D	3	R516	B	90	53	5B	5
R263	B	191	21	4F	2	R370	A	261	21	9D	3	R517	B	82	46	5B	5
R264	B	271	80	4D	2	R376	A	268	26	10C	3	R518	B	88	51	5B	5
R266	A	271	74	5D	2	R378	A	258	28	10D	3	R520	A	119	76	3C	5
R267	A	273	77	5D	2	R380	A	267	13	11D	3	R525	B	89	17	5D	5
R269	B	239	63	5D	2	R382	B	266	18	11E	3	R526	B	83	18	5D	5
R270	A	201	22	5E	2	R384	A	247	57	11C	3	R527	B	80	17	5D	5
R276	A	263	78	10C	2	R386	A	253	57	11A	3	R528	A	124	84	4C	5
R277	B	264	77	10C	2	R387	A	262	57	11B	3	R530	B	104	46	4E	5
R278	A	257	74	10D	2	R388	B	250	61	11B	3	R531	B	104	43	4E	5
R280	A	254	80	10C	2	R389	A	253	60	11B	3	R534	B	110	41	5E	5
R281	A	249	77	10C	2	R390	A	252	62	11B	3	R535	B	107	38	6E	5
R282	A	252	69	10C	2	R391	A	259	58	11B	3	R537	A	88	29	5E	5
R283	A	250	66	10C	2	R392	A	255	65	11B	3	R540	A	81	44	6D	5
R284	A	247	68	11C	2	R396	B	263	73	11C	3	R545	B	75	33	8E	5
R285	A	241	71	11C	2	R404	B	127	111	2B	4	R546	B	69	36	8E	5
R286	A	236	60	11C	2	R406	B	131	124	2B	4	R547	B	75	39	8E	5
R287	A	236	66	12C	2	R410	B	136	109	3B	4	R548	B	65	39	9E	5
R288	B	240	57	11B	2	R412	B	130	108	3B	4	R549	A	63	23	8D	5
R289	A	246	74	11D	2	R414	A	134	109	3C	4	R550	B	51	51	9D	5
R290	A	255	69	10D	2	R416	A	131	111	2C	4	R552	A	56	26	10C	5
R291	B	248	70	11E	2	R418	A	137	107	3C	4	R555	B	60	12	10E	5

ROHDE & SCHWARZ

Benennung: EE SYNTHESIZER
Designation: SYNTHESIZER

Sprache:

Lang.: de

de

Blatt:

Sh.: 5 +

5 +

Aer:

C.I.:

09.00

Typ: Type:	Datum: Date:	02-12-04	Abteilung: Dpt:	MEZ1	Name: Name:	WH	Sachnr.: Part No.:	1039.2330.01 XY
---------------	-----------------	----------	--------------------	------	----------------	----	-----------------------	-----------------

Nicht-Service-Relevante Bauteile / Non-Service-Relevant Components

el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg
R556	B	58	26	10D	5	R696	B	193	114	5A	6	R852	A	20	76	8B	8
R557	A	61	29	10D	5	R697	B	191	110	5A	6	R854	A	35	62	9D	8
R570	B	75	43	8C	5	R698	B	197	109	7B	6	R856	A	59	105	9A	8
R571	B	73	15	7C	5	R699	B	195	109	7B	6	R857	A	21	62	10A	8
R580	A	130	65	7A	5	R700	A	297	89	1B	7	R859	A	41	67	9E	8
R581	A	105	49	9A	5	R701	A	291	90	1B	7	R860	A	18	36	5D	8
R582	A	131	71	8B	5	R702	A	297	93	2C	7	R861	B	15	36	5D	8
R603	A	164	100	2A	6	R703	B	300	104	2C	7	R862	B	18	39	5D	8
R605	B	167	108	2B	6	R704	B	280	124	3C	7	R863	B	15	34	5E	8
R606	B	167	112	3B	6	R705	B	277	127	3C	7	R864	A	26	46	5E	8
R607	B	161	108	3B	6	R706	B	278	130	3C	7	R865	A	16	47	5C	8
R610	A	168	104	4A	6	R707	A	291	101	2D	7	R866	A	26	50	5E	8
R615	B	178	122	4B	6	R708	A	284	121	3D	7	R870	A	20	30	6D	8
R616	B	185	118	4B	6	R709	A	298	106	3E	7	R871	A	19	33	6D	8
R617	B	185	121	4B	6	R710	A	269	126	3D	7	R872	A	23	30	6E	8
R621	B	186	109	5B	6	R711	A	269	130	3C	7	R873	A	25	30	6E	8
R622	B	185	109	5B	6	R720	A	256	131	4B	7	R875	A	17	15	7D	8
R623	B	183	109	5B	6	R721	A	262	137	5B	7	R876	A	20	17	7E	8
R624	B	181	109	5B	6	R722	A	262	139	5B	7	R877	A	44	44	2D	8
R639	A	232	100	4E	6	R723	A	262	142	5B	7	R878	A	32	42	2E	8
R640	A	199	93	7B	6	R724	A	262	134	5B	7	R880	B	36	55	9C	8
R641	A	195	96	8B	6	R725	A	252	142	5B	7	R881	B	42	55	8C	8
R642	A	206	89	7B	6	R726	A	252	134	5B	7	R884	A	30	106	10C	8
R643	A	202	103	8B	6	R727	A	252	139	5C	7	R886	A	31	123	11C	8
R644	A	215	96	8A	6	R728	A	252	137	5C	7	R887	A	29	119	11D	8
R645	A	211	115	8C	6	R729	A	243	141	4C	7	R888	A	30	103	9D	8
R647	A	208	115	8C	6	R730	A	243	137	5C	7	R889	A	20	113	10E	8
R648	A	241	111	7D	6	R731	A	241	128	6C	7	R894	A	44	36	6F	8
R649	A	232	104	7D	6	R732	A	248	133	6C	7	R895	A	39	19	6F	8
R650	A	222	95	9D	6	R733	A	234	128	6C	7	R896	A	19	12	7E	8
R651	A	211	98	9D	6	R740	A	204	137	6A	7	R900	A	46	95	2C	9
R652	A	222	97	9D	6	R741	A	200	140	7A	7	R901	A	13	122	2A	9
R653	A	211	101	9D	6	R742	A	208	135	6B	7	R911	A	34	115	4E	9
R654	A	225	88	11D	6	R750	A	200	135	7E	7	R915	A	286	139	4C	9
R655	A	225	97	11D	6	R755	B	188	141	7B	7	R916	A	281	142	4C	9
R656	A	232	118	11D	6	R760	A	183	130	7C	7	R917	A	290	139	4C	9
R657	A	249	105	11D	6	R761	A	179	133	7C	7	R920	A	18	133	2B	9
R658	B	192	92	6B	6	R762	A	177	140	8C	7	R921	A	21	136	2B	9
R659	A	198	100	1E	6	R763	A	174	130	9C	7	R922	A	16	136	2B	9
R660	A	238	100	9B	6	R769	A	169	135	9C	7	R923	B	295	124	5B	9
R661	A	244	96	9B	6	R777	A	166	141	9C	7	R924	B	292	127	5B	9
R662	A	223	106	9D	6	R778	A	156	138	8C	7	R925	B	295	130	6B	9
R663	A	244	114	9C	6	R779	A	155	131	8C	7	R926	A	292	127	5B	9
R664	A	241	121	9C	6	R780	A	236	138	6D	7	R928	B	292	132	6B	9
R665	A	243	121	9D	6	R781	A	230	141	7D	7	R930	A	295	124	5B	9
R666	A	246	121	9D	6	R782	A	233	133	7D	7	R931	A	295	130	5B	9
R667	A	226	104	9C	6	R783	A	225	132	9D	7	R932	A	281	139	6B	9
R668	A	223	109	9C	6	R784	B	228	130	9D	7	R944	A	283	102	7B	9
R669	A	232	112	9C	6	R785	A	292	109	2E	7	R945	A	282	109	6B	9
R670	A	208	122	9C	6	R786	A	227	131	8D	7	R947	B	253	92	10A	9
R671	A	232	114	9C	6	R787	A	259	129	5E	7	R948	B	253	97	10A	9
R672	A	210	122	9C	6	R788	A	211	138	5E	7	R950	A	251	119	6B	9
R673	A	238	114	9C	6	R789	A	211	128	6F	7	R951	A	254	113	7B	9
R674	A	213	122	9C	6	R790	A	275	123	10B	7	R952	A	257	108	7B	9
R675	A	221	121	9C	6	R791	A	217	134	10D	7	R953	A	267	100	8B	9
R676	A	223	111	9D	6	R792	A	294	100	2F	7	R954	A	253	105	7B	9
R677	A	224	121	9D	6	R793	A	259	131	9E	7	R955	B	274	107	8A	9
R678	A	225	111	9D	6	R800	A	63	65	1A	8	R956	A	281	96	8B	9
R679	A	227	121	9D	6	R801	A	50	69	2B	8	R957	A	281	99	9A	9
R680	A	229	121	9D	6	R811	A	37	53	1D	8	R958	A	267	103	8B	9
R681	B	194	109	7B	6	R812	A	41	81	1B	8	R959	A	263	105	7B	9
R682	A	238	121	9D	6	R813	A	43	20	2C	8	R960	A	39	117	4D	9
R683	B	192	109	7B	6	R815	A	29	21	1C	8	R961	A	39	128	4E	9
R684	A	179	89	1D	6	R816	A	35	11	1C	8	R962	A	39	125	5E	9
R685	A	210	106	3E	6	R817	A	44	22	3C	8	R963	B	39	127	5D	9
R686	A	247	90	2C	6	R819	A	35	22	3B	8	R964	B	39	121	5D	9
R687	A	196	102	1F	6	R820	A	31	28	3C	8	R965	B	37	119	5D	9
R688	A	184	89	2D	6	R840	A	33	95	5B	8	R966	A	48	116	6D	9
R690	A	220	88	11C	6	R841	A	27	100	5B	8	R967	B	61	125	6D	9
R691	B	197	98	5B	6	R842	A	30	100	5B	8	R968	B	61	119	6D	9
R692	B	197	99	5B	6	R843	B	55	78	5A	8	R969	B	37	127	5E	9
R693	B	197	103	5C	6	R845	B	61	78	5A	8	R970	A	34	122	5E	9
R694	B	197	101	5C	6	R850	A	23	79	8B	8	R971	A	44	109	6E	9
R695	B	197	105	5C	6	R851	A	18	76	8B	8	R972	A	54	131	6E	9

ROHDE & SCHWARZ

Benennung:
Designation:
EE SYNTHESIZER
SYNTHESIZER

Sprache:
Lang.: de

Blatt:
Sh.: 6 +
Aei:
C.I.: 09.00

Typ: Type:	Datum: Date:	02-12-04	Abteilung: Dpt:	MEZ1	Name: Name:	WH	Sachnr.: Part No.:	1039.2330.01 XY
---------------	-----------------	----------	--------------------	------	----------------	----	-----------------------	-----------------

Nicht-Service-Relevante Bauteile / Non-Service-Relevant Components

el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg	el. Kennz. Part	Seite Side	X	Y	Planq. Sqr	Bl. Pg
R973	A	63	123	6E	9	V400	B	138	126	2B	4	V787	B	259	129	5E	7
R974	A	63	117	7E	9	V401	B	139	126	2B	4	V800	A	53	66	1A	8
R975	A	63	114	7E	9	V402	B	138	122	2B	4	V810	A	32	16	1C	8
R976	B	282	94	8C	9	V403	B	139	122	2B	4	V811	B	31	15	1C	8
R977	A	57	135	9D	9	V404	B	140	107	3B	4	V812	B	29	11	1C	8
R978	A	39	120	4D	9	V406	A	140	111	3C	4	V865	A	27	56	5E	8
R979	A	286	126	2E	9	V408	A	146	102	4C	4	V877	A	40	46	2D	8
R980	A	297	135	3E	9	V410	A	139	97	3D	4	V878	A	35	38	2E	8
R981	A	54	140	8E	9	V430	B	110	122	5B	4	V902	A	38	137	2E	9
R982	B	34	124	5E	9	V432	B	110	118	6B	4	V903	A	38	142	2E	9
R983	A	36	118	5E	9	V434	B	112	103	6B	4	V951	A	276	106	9A	9
R984	A	41	113	6E	9	V436	A	112	110	6C	4	V952	A	270	104	9A	9
R985	A	51	128	6E	9	V438	A	117	99	7C	4	V958	A	64	137	9E	9
R986	A	60	121	6E	9	V440	A	116	91	7D	4	V960	A	62	130	9E	9
R987	A	60	138	9D	9	V460	B	83	126	9B	4	V962	A	57	121	7E	9
R988	A	277	92	12E	9	V462	B	83	123	9B	4	V963	A	275	98	9A	9
R989	A	285	88	11D	9	V464	B	84	108	10B	4	V964	A	269	98	9A	9
R990	A	52	109	7D	9	V466	A	84	115	10C	4	V980	B	298	135	3F	9
R991	A	46	119	6E	9	V468	A	92	104	11C	4	X300	B	213	56	2B	3
R992	A	53	114	7D	9	V470	A	101	94	10D	4	Z2	B	156	27	2B	11
R993	A	56	119	7E	9	V480	A	74	81	4E	4	Z3	B	161	27	2C	11
T60	B	188	112	4B	6	V490	B	91	96	8D	4	Z4	B	151	27	2D	11
V20	B	168	46	7D	11	V491	A	75	98	9D	4	Z5	B	166	27	2D	11
V100	A	196	39	4C	10	V492	B	89	92	8D	4	Z6	B	171	27	2E	11
V105	A	194	37	4C	10	V494	B	92	100	8D	4	Z7	B	229	79	9B	11
V119	A	204	78	9E	10	V496	B	83	82	9E	4	Z9	B	215	81	10B	11
V120	B	160	77	11D	10	V500	B	83	54	2B	5	Z10	B	137	43	11B	11
V125	A	163	74	10D	10	V501	B	88	59	2C	5	Z15	B	220	77	7A	11
V200	A	297	36	2A	2	V502	B	88	63	2C	5	Z16	B	144	55	7A	11
V201	A	289	20	2C	2	V503	A	84	66	1B	5	Z17	B	169	81	8A	11
V205	B	290	26	3B	2	V510	A	117	51	3B	5	Z20	B	225	77	4C	11
V210	A	292	35	4B	2	V515	B	94	47	5C	5	Z21	B	154	71	5C	11
V211	B	287	62	9B	2	V520	A	110	75	3C	5	Z30	B	260	81	5A	11
V212	A	274	49	6A	2	V532	B	91	36	5D	5	Z31	B	265	87	7B	11
V214	A	301	48	7D	2	V540	A	82	37	6D	5	Z32	B	164	81	7C	11
V215	A	288	51	7C	2	V550	B	60	44	8D	5	Z33	B	137	48	8C	11
V216	B	297	44	8C	2	V551	B	60	52	8D	5	Z34	B	237	57	9B	11
V221	A	284	71	2E	2	V552	B	60	48	8D	5	Z35	B	159	81	5B	11
V225	B	298	53	8C	2	V553	B	60	56	9D	5	Z50	B	116	34	10C	11
V240	A	278	21	6D	2	V555	B	62	18	10D	5	Z51	B	90	10	10C	11
V250	A	251	76	10C	2	V600	A	206	98	8A	6	Z52	B	131	34	10D	11
V260	B	248	76	11E	2	V601	A	208	95	7A	6	Z53	B	141	34	10D	11
V265	A	236	74	12C	2	V602	A	202	92	7B	6	Z100	B	202	27	3A	10
V290	A	269	63	8B	2	V603	A	204	100	8B	6	Z101	B	146	27	3B	10
V300	B	213	48	2B	3	V610	A	180	91	1D	6	Z102	B	197	27	3B	10
V305	B	224	58	3B	3	V701	A	296	97	2C	7	Z104	B	192	27	3C	10
V310	A	221	58	3C	3	V750	A	204	132	7E	7	Z106	B	187	27	3C	10
V315	B	215	35	4C	3	V755	A	196	131	7C	7	Z108	B	182	27	3D	10
V316	A	230	14	4B	3	V760	A	185	134	7C	7	Z110	B	177	27	3D	10
V320	A	217	38	7B	3	V761	A	190	131	7C	7	Z200	B	204	15	4E	2
V321	A	219	29	7A	3	V765	B	177	136	9B	7	Z202	B	204	20	5E	2
V325	B	221	15	8B	3	V766	B	177	140	9B	7	Z301	B	236	66	1B	3
V330	B	235	10	9B	3	V767	B	177	132	9C	7	Z320	B	210	41	5A	3
V350	A	257	39	8D	3	V768	B	177	129	9C	7	Z331	B	210	38	6A	3
V355	A	261	39	9D	3	V780	A	221	129	8E	7	Z580	B	138	62	11B	5
V360	A	263	13	11D	3	V781	A	225	135	8D	7	Z750	B	154	142	10C	7

ROHDE & SCHWARZ

Benennung: EE SYNTHESIZER
Designation: SYNTHESIZER

Sprache:
Lang.: de

Blatt:
Sh.: 7 –

Aer:
C.I.: 09.00

Typ: Type:	Datum: Date:	Abteilung: Dpt:	Name: Name:	Sachnr.: Part No.:
02-12-04		MEZ1	WH	1039.2330.01 XY

ROHDE & SCHWARZ

**Stromläufe
Bestückungspläne**

**Circuit diagrams
Component plans**

**Schémas de circuit
Plans des composants**

