Redes neuronales dinámicas

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

Aproximación 1: entradas desplazadas $y(n) = f(\mathbf{x}(n))$

Aproximación 1: entradas desplazadas

$$y(n) = f(\mathbf{x}(n))$$

Aproximación 2: realimentación de las salidas

$$y(n) = f(\mathbf{x}(n), \mathbf{y}_1(n))$$

Aproximación 1: entradas desplazadas

$$y(n) = f(\mathbf{x}(n))$$

Aproximación 2: realimentación de las salidas

$$y(n) = f(\mathbf{x}(n), \mathbf{y}_1(n))$$

Aproximación 3: realimentación de estados internos

$$y(n) = f(\mathbf{x}(n), \mathbf{z}_1(n))$$

Aproximación 1: entradas desplazadas

$$y(n) = f(\mathbf{x}(n))$$

Aproximación 2: realimentación de las salidas

$$y(n) = f(\mathbf{x}(n), \mathbf{y}_1(n))$$

Aproximación 3: realimentación de estados internos

$$y(n) = f(\mathbf{x}(n), \mathbf{z}_1(n))$$

Caso general:

$$y(n) = f(\mathbf{x}(n), \mathbf{z}_1(n), \mathbf{y}_1(n))$$

Redes neuronales dinámicas (DNN)

• Redes con retardos en el tiempo (TDNN)

Redes neuronales dinámicas (DNN)

- Redes con retardos en el tiempo (TDNN)
- Redes recurrentes (RNN)
 - Redes totalmente recurrentes

Redes parcialmente recurrentes (PRNN)

Redes neuronales dinámicas (DNN)

- Redes con retardos en el tiempo (TDNN)
- Redes recurrentes (RNN)
 - Redes totalmente recurrentes
 - Redes de Hopfield (memorias asociativas)
 - Redes de Boltzman (supervisadas)
 - Teoría de la resonancia adaptativa (ART)
 - Redes parcialmente recurrentes (PRNN)

Redes neuronales dinámicas (DNN)

- Redes con retardos en el tiempo (TDNN)
- Redes recurrentes (RNN)
 - Redes totalmente recurrentes
 - Redes de Hopfield (memorias asociativas)
 - Redes de Boltzman (supervisadas)
 - Teoría de la resonancia adaptativa (ART)
 - Redes parcialmente recurrentes (PRNN)
 - Retropropagación a través del tiempo (BPTT)
 - Redes de Elman
 - Redes de Jordan

Redes de Hopfield

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

Redes de Hopfield

Arquitectura

Redes de Hopfield

Modelo matemático

$$y_j(n) = sgn(x) = sgn\left(\sum_{i=1}^N w_{ji}y_i(n-1) - \theta_j\right) \cdots \begin{cases} x > 0 & +1 \\ x = 0 & y_j(n-1) \\ x < 0 & -1 \end{cases}$$

$$w_{ji} = w_{ij} \quad \forall \ i \neq j$$
$$w_{ii} = 0 \quad \forall i$$

Redes de Hopfield: generalidades

- Cada neurona tiene un disparo probabilístico
- Conexiones simétricas

Redes de Hopfield: generalidades

- Cada neurona tiene un disparo probabilístico
- Conexiones simétricas
- El entrenamiento es no-supervisado

Redes de Hopfield: generalidades

- Cada neurona tiene un disparo probabilístico
- Conexiones simétricas
- El entrenamiento es no-supervisado
- Puede utilizarse como memoria asociativa

Redes de Hopfield Almacenamiento y recuperación

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

Entrenamiento (almacenamiento)

Dado un conjunto de patrones (memorias fundamentales o datos limpios):

$$X^* = \left\{ \mathbf{x}_k^* \in \mathbb{R}^N \right\}$$

Entrenamiento (almacenamiento)

Dado un conjunto de patrones (memorias fundamentales o datos limpios):

$$X^* = \left\{ \mathbf{x}_k^* \in \mathbb{R}^N \right\}$$

Aprendizaje Hebbiano:

$$w_{ji} = \frac{1}{N} \sum_{k=1}^{P} x_{kj}^* x_{ki}^*$$

Entrenamiento: observaciones

• El proceso de entrenamiento NO es iterativo

Entrenamiento: observaciones

- El proceso de entrenamiento NO es iterativo
- w_{ji} es mayor cuando las neuronas i y j se tienen que activar juntas (regla de Hebb)

Entrenamiento: observaciones

- El proceso de entrenamiento NO es iterativo
- w_{ji} es mayor cuando las neuronas i y j se tienen que activar juntas (regla de Hebb)
- La capacidad de almacenamiento está limitada a:

$$P_{max} = \frac{N}{2\ln(N)}$$

con un 1 % de error.

Prueba (recuperación)

Dado un patrón x (incompleto, ruidoso...) se fuerza:

$$\mathbf{y}(0) = \mathbf{x}$$

Prueba (recuperación)

Dado un patrón x (incompleto, ruidoso...) se fuerza:

$$\mathbf{y}(0) = \mathbf{x}$$

Iteración:

1.
$$j^* = rnd(N)$$

2.
$$y_{j^*}(n) = sgn\left(\sum_{i=1}^{N} w_{ji}y_i(n-1)\right)$$

3. volver a 1 hasta no observar cambios en las y_i

• El proceso de recuperación ES iterativo (dinámico)

- El proceso de recuperación ES iterativo (dinámico)
- En general no se utilizan los θ_i

- El proceso de recuperación ES iterativo (dinámico)
- En general no se utilizan los θ_i
- La salida final es y(M) cuando no hay cambios al "recorrer" todas las salidas

- El proceso de recuperación ES iterativo (dinámico)
- En general no se utilizan los θ_i
- La salida final es y(M) cuando no hay cambios al "recorrer" todas las salidas
- Se pueden obtener estados espúreos y oscilaciones...

Campos energéticos de Hopfield

- Almacenamiento
- Recuperación

Retropropagación a través del tiempo

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

Retropropagación a través del tiempo (BPTT)

Arquitectura con recurrencia total

$$x_1(n) \longrightarrow \square$$
 $\longrightarrow y_1(n)$ $\longrightarrow y_2(n)$

Retropropagación a través del tiempo (BPTT)

Arquitectura con recurrencia total

Retropropagación a través del tiempo (BPTT)

Arquitectura con recurrencia total

Expansión: propagación hacia adelante pura

Redes neuronales con retardos en el tiempo

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

Arquitectura de una TDNN

TDNN: clasificación espacio-temporal

Arquitecturas neuronales de Elman y Jordan

Arquitecturas neuronales de Elman y Jordan

Jordan