

Third Millennium Systems Ltd

Door Access RFID Reader Family:

BD Inline / LNL-R11030 / 3M Inline / 3MIL-R11030

BD Mullion / LNL-R11330 / 3M Mullion / 3MIL-R11330

BD S-Gang / LNL-R11320 / 3M S-Gang / 3MIL-R11320

BD S-Gang Keypad / LNL R11325 / 3M S-Gang Keypad / 3MIL-R11325

FCC 15.207:2016

FCC 15.209:2016

Inductive Radio Module

Report # ELEM0005.1 Rev. 2

NVLAP Lab Code: 201049-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

CERTIFICATE OF TEST

Last Date of Test: September 13, 2016
Third Millennium Systems Ltd
Model: Door Access RFID Reader Family

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2016 FCC 15.209:2016	ANSI C63.10:2013

Results

Method Clause	Test Description		Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.4	Field Strength of Fundamental	Yes	Pass	
6.4, 6.5	Spurious Radiated Emissions	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
01	Updated Functional Description to clarify the radios contained in each model	10-7-16	7
	Updated Cover Page to list each of the four variants of each model	10-20-16	1
02	Updated functional description on Product Description page with explanation and table of models and variants	10-20-16	8
	Updated ANSI C63.10:2009 method to 2013	10-20-16	12, 15, 18, 21

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Validated by the European Commission as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC - Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://www.nwemc.com/accreditations/ http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	<u>- MU</u>
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

FACILITIES

California			
Labs OC01-13			
41 Tesla			
rvine, CA 92618			
(949) 861-8918			

Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214

Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066 **Texas**Labs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600

(949) 861-8918	(612)-638-5136	(315) 554-8214	(503) 844-4066	(469) 304-5255	(425)984-6600		
NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0		
	Innov	ation, Science and Eco	nomic Development Car	ada			
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1		
		BS	МІ				
SL2-IN-E-1154R SL2-IN-E-1152R N/A SL2-IN-E-1017 SL2-IN-E-1158R SL2-IN-E-1153					SL2-IN-E-1153R		
		VC	CI				
A-0029	A-0109	N/A	A-0108	A-0201	A-0110		
Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	N/A	US0017	US0191	US0157		

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Third Millennium Systems Ltd
Address:	18/19 Torfaen Business Centre
City, State, Zip:	Panteg Way, New Inn Pontypool NP4 0LS
Test Requested By:	Alex Toohie
Model:	Door Access RFID Reader Family
First Date of Test:	September 7, 2016
Last Date of Test:	September 13, 2016
Receipt Date of Samples:	September 7, 2016
Equipment Design Stage:	Production
Equipment Condition:	No Damage

PRODUCT DESCRIPTION

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

The Door Access RFID Reader Family includes the AV400, AV390, AV3K90, and AV490. All four models contain a 125 kHz Inductive radio with one antenna and a Bluetooth radio module. Only the AV390, AV3K90 and AV490 also contain a 13.56 MHz radio that uses one modulation scheme and has one antenna configuration. All three radios use different antennas and can transmit simultaneously.

The four models tested, the AV400, AV390, AV3K90, and AV490, are intended to represent the entire Door Access RFID Reader Family. Each of those four models has four variants that are electrically and mechanically identical to the models tested. The table below provides the cross reference for each of the different models. Therefore, this report is intended to demonstrate compliance for each of the following models listed below.

AV00				
Old Model New Models (AV00 Variants)				
	BD Inline			
AV/400	LNL-R11030			
AV400	3M Inline			
	3MIL-R11030			

AV90			
Old Model	New Models (AV90 Variants)		
	BD Mullion		
AV490	LNL-R11330		
AV490	3M Mullion		
	3MIL-R11330		
	BD S-Gang		
AV/200	LNL-R11320		
AV390	3M S-Gang		
	3MIL-R11320		
	BD S-Gang Keypad		
AV3K90	LNL-R11325		
AVJKJU	3M S-Gang Keypad		
	3MIL-R11325		

Testing Objective:

To demonstrate compliance of the 125 kHz inductive radio to FCC Part 15.209 specifications.

CONFIGURATIONS

Configuration ELEM0005-1

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
3M MULLION (AV490)	Third Millennium Systems Ltd	3MIL-R11330	IRN0430-07		
Main PCB	Third Millennium Systems Ltd	AV90	None		

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
DC Power Supply	Agilent	E3648A	MY51120046	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	3.0m	No	Device Under Test	DC Power Supply
AC Cable	No	1.8m	No	AC Mains	DC Power Supply

Configuration ELEM0005-2

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
3M S-GANG (AV390)	Third Millennium Systems Ltd	3MIL-R11320	IRN0430-09		
Main PCB	Third Millennium Systems Ltd	AV90	None		

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
DC Power Supply	Agilent	E3648A	MY51120046

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	3.0m	No	Device Under Test	DC Power Supply
AC Cable	No	1.8m	No	AC Mains	DC Power Supply

CONFIGURATIONS

Configuration ELEM0005-3

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
3M INLINE (AV400)	Third Millennium Systems Ltd	3MIL-R11030	IRN0430-06	
Main PCB	Third Millennium Systems Ltd	AV00	None	

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
DC Power Supply	Agilent	E3648A	MY51120046

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	3.0m	No	Device Under Test	DC Power Supply
AC Cable	No	1.8m	No	AC Mains	DC Power Supply

Configuration ELEM0005-4

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
3M S-GANG KEYPAD (AV3K90)	Third Millennium Systems Ltd	3MIL-R11325	IRN0430-10
Main PCB	Third Millennium Systems Ltd	AV90	None

Peripherals in test setup boundary			
Description	Manufacturer	Model/Part Number	Serial Number
DC Power Supply	Agilent	E3648A	MY51120046

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC Cable	No	3.0m	No	Device Under Test	DC Power Supply
AC Cable	No	1.8m	No	AC Mains	DC Power Supply

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Field	Tested as	No EMI suppression	EUT remained at
1	9/7/2016	Strength of	delivered to	devices were added or	Northwest EMC
		Fundamental	Test Station.	modified during this test.	following the test.
		Spurious	Tested as	No EMI suppression	EUT remained at
2	9/9/2016	Radiated	delivered to	devices were added or	Northwest EMC
		Emissions	Test Station.	modified during this test.	following the test.
		Powerline	Tested as	No EMI suppression	Scheduled testing
3	9/13/2016	Conducted	delivered to	devices were added or	was completed.
		Emissions	Test Station.	modified during this test.	was completed.

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting at 125KHz and 13.56MHz, 2.4GHz off.

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 2

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar Electronics	9252-50-24-BNC	LIA	3/3/2016	12 mo
Cable - Conducted Cable Assembly	Northwest EMC	OCP, HFP, AWC	OCPA	4/4/2016	12 mo
Receiver	Rohde & Schwarz	ESCI	ARG	6/9/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	BWI (kHz)
0.15 - 30.0	1.0
30.0 - 400.0	10.0
400.0 - 1000.0	100.0
1000.0 - 6000.0	1000.0

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2013.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

Per the FCC Guidance, the FCC will accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. (1) First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. (2) For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested.

						EMIR5 2016.07.22.1
Work Order:	ELEM0005	Date:	09/07/16		7 _ 0	
Project:	TRA-030990	Temperature:	21.7 °C	N	no chuy	
Job Site:	OC06	Humidity:	51.4% RH			
Serial Number:	IRN0430-09	Barometric Pres.:	1018 mbar	Tested	by: Mike Tran	
EUT:	Door Access RFID Re	eader Family (AV390)				
Configuration:	2					
Customer:	Third Millennium Syst	ems Ltd				
Attendees:	None					
EUT Power:	12VDC					
Operating Mode:	Transmitting at 125KH	Hz and 13.56MHz, 2.4G	SHz off.			
Deviations:	None					
Comments:	different antennas wh	25 kHz Inductive radio, ich transmit simultaneo 56 MHz radio antenna v	usly. The 125 KHz ra	idio was transmittii	ng with no means	to stop
Test Specifications			Test Meth	od		
FCC 15.207:2016			ANSI C63.	10:2013		
Run # 1	Line:	High Line	Ext. Attenuation:	0	Results	Pass

Average Data - vs - Average Limit

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
13.561	34.0	20.8	54.8	60.0	-5.2
27.122	23.5	21.9	45.4	60.0	-14.6
0.512	15.0	19.9	34.9	56.0	-21.1
0.379	15.2	20.0	35.2	58.3	-23.1
0.884	9.7	20.0	29.7	56.0	-26.3
0.154	0.154 7.8		28.0	65.8	-37.8
5.355	-0.3	20.3	20.0	60.0	-40.0

Average Data - vs - Average Limit

	, ,,,,,,,		0 / tro.u.g.		
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
13.561	26.5	20.8	47.3	50.0	- 2.7
27.122	16.2	21.9	38.1	50.0	-11.9
0.512	12.8	19.9	32.7	46.0	-13.3
0.379	6.3	20.0	26.3	48.3	-22.0
0.884	2.0	20.0	22.0	46.0	-24.0
5.355	-4.9	20.3	15.4	50.0	-34.6
0.154	-1.0	20.2	19.2	55.8	-36.6

							EIIIRS 2016.07.22.1			
Work Order	: ELEM0005	Date:	09/07/16		0	0				
Project	: TRA-030990	Temperature:	21.7 °C		And	Huy				
Job Site	: OC06	Humidity:	51.4% RH							
Serial Number	: IRN0430-09	Barometric Pres.:	1018 mbar	_	Tested by: M	ike Tran				
EUT	: Door Access RFID Re	loor Access RFID Reader Family (AV390)								
Configuration	1: 2									
Customer	: Third Millennium Syst	ems Ltd								
Attendees	: None									
EUT Power	: 12VDC									
Operating Mode	Transmitting at 125KH	Hz and 13.56MHz, 2.4G	SHz off.							
Deviations	None									
Comments	different antennas wh	25 kHz Inductive radio, ich transmit simultaneo 56 MHz radio antenna v	usly. The 125 KHz ra	idio was tra	nsmitting with	no means	to stop			
Test Specifications			Test Meth	od						
FCC 15.207:2016			ANSI C63	.10:2013	I.					
Run # 2	Line:	Neutral	Ext. Attenuation:	0		Results	Pass			

	Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)			
13.561	34.6	20.8	55.4	60.0	-4.6			
27.122	20.2	21.9	42.1	60.0	-17.9			
0.513	15.8	19.9	35.7	56.0	-20.3			
0.379	15.4	20.0	35.4	58.3	-22.9			
0.631	11.1	20.0	31.1	56.0	-24.9			
0.883	10.0	20.0	30.0	56.0	-26.0			
19.994	-0.9	21.2	20.3	60.0	-39.7			

Average Data - vs - Average Limit								
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)			
13.561	27.1	20.8	47.9	50.0	-2.1			
0.513	14.1	19.9	34.0	46.0	-12.0			
27.122	13.0	21.9	34.9	50.0	-15.1			
0.379	6.5	20.0	26.5	48.3	-21.8			
0.631	3.2	20.0	23.2	46.0	-22.8			
0.883	2.3	20.0	22.3	46.0	-23.7			
19.994	-5.3	21.2	15.9	50.0	-34.1			

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting at 125KHz and 13.56MHz, 2.4GHz Off

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 4

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT

Description	Description Manufacturer		ID	Last Cal.	Interval
LISN	Solar Electronics	9252-50-24-BNC	LIA	3/3/2016	12 mo
Cable - Conducted Cable	Northwest EMC	OCP, HFP, AWC	OCPA	4/4/2016	12 mo
Receiver	Rohde & Schwarz	ESCI	ARG	6/9/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	BWI
(MHz)	(kHz)
0.15 - 30.0	1.0
30.0 - 400.0	10.0
400.0 - 1000.0	100.0
1000.0 - 6000.0	1000.0

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2013.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

Per the FCC Guidance, the FCC will accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. (1) First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. (2) For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested.

							1111113 20 10.01.22.1		
Wo	ork Order:	ELEM0005	Date:	09/07/16	0	27			
	Project:	TRA-030990	Temperature:	21.7 °C	Ani	Huy			
	Job Site:	OC06	Humidity:	51.4% RH					
Seria	l Number:	IRN0430-09	Barometric Pres.:	1018 mbar	Tested by:	Mike Tran			
	EUT:	Door Access RFID Re	ader Family (AV3K90)						
Conf	iguration:	4							
	Customer:	Third Millennium Syst	ems Ltd						
Α	ttendees:	None							
El	JT Power:	12VDC							
Operat	ing Mode:	Transmitting at 125KF	ransmitting at 125KHz and 13.56MHz, 2.4GHz off.						
D	eviations:	None							
C	ammanta.	different antennas wh	25 kHz Inductive radio ich transmit simultaned 56 MHz radio antenna	ously. The 125 KHz ra	idio was transmitting w	ith no means to stop)		
Test Speci	ifications			Test Meth	od				
FCC 15.20	7:2016			ANSI C63	10:2013				
Run #	7	Line:	Neutral	Ext. Attenuation:	0	Results	Pass		

Quasi Peak Data - vs - Quasi Peak Limit Freq Amplitude Factor Adjusted Spec. Limit Compare Spec.							
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)		
13.561	34.4	20.8	55.2	60.0	-4.8		
27.121	15.4	21.9	37.3	60.0	-22.7		
0.509	13.3	19.9	33.2	56.0	-22.8		
0.379	9.9	20.0	29.9	58.3	-22.6 -28.4		
2.384	-0.5	20.1	19.6	56.0	-36.4		
1.718	-1.5	20.1	18.6	56.0	-37.4		

_	Average Data - vs - Average Limit								
	Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)			
•	13.561	26.7	20.8	47.5	50.0	-2.5			
	0.509	7.9	19.9	27.8	46.0	-18.2			
	27.121	8.5	21.9	30.4	50.0	-19.6			
	0.379	2.3	20.0	22.3	48.3	-26.0			
	1.718	-4.5	20.1	15.6	46.0	-30.4			
	2.384	-5.1	20.1	15.0	46.0	-31.0			

Work C	Order:	ELEM0005	Date:	09/0	7/16		0	27		
Pro	oject:	TRA-030990	Temperature:	21.7	′ °C		Dui	Muy		
Job	Site:	OC06	Humidity:	51.49	6 RH					
Serial Nur	mber:	IRN0430-09	Barometric Pres.:	1018	mbar		Tested by:	Mike Tran		
	EUT:	Door Access RFID Re	eader Family (AV3K90))						
Configura	ation:	4								
Custo	omer:	Third Millennium Syst	nird Millennium Systems Ltd							
Atten	dees:	None								
EUT Po	ower:	12VDC								
Operating N	Mode:	Transmitting at 125KF	lz and 13.56MHz, 2.40	GHz off.						
Deviat	tions:	None								
Comm		different antennas wh	25 kHz Inductive radio ich transmit simultaned 56 MHz radio antenna	ously. The	125 KHz ra	dio was tra	nsmitting w	th no means	to stop	
Test Specificat	tions				Test Metho	od				
FCC 15.207:20	16				ANSI C63.	10:2013				
Run#	8	Line:	High Line	Ext. At	enuation:	0		Results	Pass	

Quasi Peak Data - vs - Quasi Peak Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	
13.561	34.8	20.8	55.6	60.0	-4.4	
27.120	14.4	21.9	36.3	60.0	-23.7	
0.511	12.1	19.9	32.0	56.0	-24.0	
0.378	10.0	20.0	30.0	58.3	-28.3	
4.150	-0.4	20.3	19.9	56.0	-36.1	
1.234	-1.4	20.1	18.7	56.0	-37.3	

Average Data - vs - Average Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	
13.561	27.2	20.8	48.0	50.0	-2.0	
0.511	6.1	19.9	26.0	46.0	-20.0	
27.120	7.6	21.9	29.5	50.0	-20.5	
0.378	2.6	20.0	22.6	48.3	-25.7	
1.234	-4.4	20.1	15.7	46.0	-30.3	
4.150	-5.1	20.3	15.2	46.0	-30.8	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting at 125KHz and 13.56MHz, 2.4GHz Off

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 3

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar Electronics	9252-50-24-BNC	LIA	3/3/2016	12 mo
Cable - Conducted Cable	Northwest EMC	OCP, HFP, AWC	OCPA	4/4/2016	12 mo
Receiver	Rohde & Schwarz	ESCI	ARG	6/9/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	BWI
(MHz)	(kHz)
0.15 - 30.0	1.0
30.0 - 400.0	10.0
400.0 - 1000.0	100.0
1000.0 - 6000.0	1000.0

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2013.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

Per the FCC Guidance, the FCC will accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. (1) First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. (2) For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested.

						EIIIR3 2010.01.22.1		
Work	Order:	ELEM0005	Date:	09/13/16	0			
Р	Project:	TRA-030990	Temperature:	21.2 °C	Dini	Muy		
Jo	b Site:	OC06	Humidity:	48% RH				
Serial Nu	umber:	IRN0430-06	Barometric Pres.:	1018 mbar	Tested by:	Mike Tran		
	EUT:	Door Access RFID Re	eader Family (AV400)					
Configu	ıration:	3						
Cus	stomer:	Third Millennium Syst	ems Ltd					
Atte	ndees:	None						
EUT	Power:	12VDC						
Operating	Mode:	Transmitting at 125KF	Transmitting at 125KHz and 13.56MHz, 2.4GHz Off					
Devi	iations:	None						
Com	monte	The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. Pertaining to the 13.56 MHz radio, per the manufacturer's instructions, the following components were removed on the PCB to disconnect the aerial loop: R33, L8, L7, and R32. The Bluetooth radio was not transmitting.						
Test Specifica	ations			Test Meth	od			
FCC 15.207:2	2016			ANSI C63.	10:2013			
Run #	9	Line:	High Line	Ext. Attenuation:	0	Results Pass		

Quasi Peak Data - vs - Quasi Peak Limit

Average Data - vs - Average Limit

Quasi Peak Data - vs - Quasi Peak Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.523	6.9	19.9	26.8	56.0	-29.2
0.380	3.0	20.0	23.0	58.3	-35.3
4.146	-0.4	20.3	19.9	56.0	-36.1
3.373	-0.5	20.2	19.7	56.0	-36.3
20.324	-0.9	21.3	20.4	60.0	-39.6
12.661	-1.1	20.7	19.6	60.0	-40.4

Average Data - vs - Average Limit

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.523	5.6	19.9	25.5	46.0	-20.5
0.380	0.1	20.0	20.1	48.3	-28.2
4.146	-5.0	20.3	15.3	46.0	-30.7
3.373	-5.1	20.2	15.1	46.0	-30.9
20.324	-5.3	21.3	16.0	50.0	-34.0
12.661	-5.6	20.7	15.1	50.0	-34.9

ELEM0005	Date:	09/13/16	-	, ,				
TRA-030990	Temperature:	21.2 °C	10	no Muy				
OC06	Humidity:	48% RH	5: 105:					
IRN0430-06	Barometric Pres.:	1018 mbar	Tested	y: Mike Tran				
Door Access RFID Re	eader Family (AV400)							
3								
Third Millennium Syst	ems Ltd							
None								
12VDC								
Transmitting at 125KH	Fransmitting at 125KHz and 13.56MHz, 2.4GHz Off							
None								
The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. Pertaining to the 13.56 MHz radio, per the manufacturer's instructions, the following components were removed on the PCB to disconnect the aerial loop: R33, L8, L7, and R32. The Bluetooth radio was not transmitting.								
		Test Meth	od					
•		ANSI C63	.10:2013					
Line:	Neutral	Ext. Attenuation:	0	Results	Pass			
	TRA-030990 OC06 IRN0430-06 Door Access RFID Re 3 Third Millennium Syst None 12VDC Transmitting at 125KH None The EUT contains a 1 different antennas wh transmitting. Pertainir removed on the PCB	TRA-030990 Temperature: OC06 Humidity: IRN0430-06 Barometric Pres.: Door Access RFID Reader Family (AV400) 3 Third Millennium Systems Ltd None 12VDC Transmitting at 125KHz and 13.56MHz, 2.40 None The EUT contains a 125 kHz Inductive radio different antennas which transmit simultaneous transmitting. Pertaining to the 13.56 MHz ra	TRA-030990 Temperature: 21.2 °C OC06 Humidity: 48% RH IRN0430-06 Barometric Pres.: 1018 mbar Door Access RFID Reader Family (AV400) 3 Third Millennium Systems Ltd None 12VDC Transmitting at 125KHz and 13.56MHz, 2.4GHz Off None The EUT contains a 125 kHz Inductive radio, a Bluetooth radio modifferent antennas which transmit simultaneously. The 125 KHz ratransmitting. Pertaining to the 13.56 MHz radio, per the manufact removed on the PCB to disconnect the aerial loop: R33, L8, L7, ar Test Meth ANSI C63	TRA-030990 Temperature: 21.2 °C OC06 Humidity: 48% RH IRN0430-06 Barometric Pres.: 1018 mbar Tested I Door Access RFID Reader Family (AV400) 3 Third Millennium Systems Ltd None 12VDC Transmitting at 125KHz and 13.56MHz, 2.4GHz Off None The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 M different antennas which transmit simultaneously. The 125 KHz radio was transmittin transmitting. Pertaining to the 13.56 MHz radio, per the manufacturer's instructions, tremoved on the PCB to disconnect the aerial loop: R33, L8, L7, and R32. The Blueto Test Method ANSI C63.10:2013	TRA-030990 Temperature: 21.2 °C OC06 Humidity: 48% RH IRN0430-06 Barometric Pres.: 1018 mbar Tested by: Mike Tran Door Access RFID Reader Family (AV400) 3 Third Millennium Systems Ltd None 12VDC Transmitting at 125KHz and 13.56MHz, 2.4GHz Off None The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All thre different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means transmitting. Pertaining to the 13.56 MHz radio, per the manufacturer's instructions, the following compremoved on the PCB to disconnect the aerial loop: R33, L8, L7, and R32. The Bluetooth radio was not			

Quasi Peak Data - vs - Quasi Peak Limit					
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)
0.524	9.5	19.9	29.4	56.0	-26.6
3.886	-0.5	20.2	19.7	56.0	-36.3
2.341	-0.5	20.1	19.6	56.0	-36.4
1.615	-1.5	20.1	18.6	56.0	-37.4
0.805	-1.6	20.1	18.5	56.0	-37.5
8.227	-0.4	20.5	20.1	60.0	-39.9

Average Data - vs - Average Limit						
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)	
0.524	8.8	19.9	28.7	46.0	-17.3	
0.805	-4.3	20.1	15.8	46.0	-30.2	
1.615	-4.3	20.1	15.8	46.0	-30.2	
3.886	-5.1	20.2	15.1	46.0	-30.9	
2.341	-5.0	20.1	15.1	46.0	-30.9	
8.227	-5.0	20.5	15.5	50.0	-34.5	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting at 125KHz and 13.56MHz, 2.4GHz Off

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 1

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
LISN	Solar Electronics	9252-50-24-BNC	LIA	3/3/2016	12 mo
Cable - Conducted Cable	Northwest EMC	OCP, HFP, AWC	OCPA	4/4/2016	12 mo
Receiver	Rohde & Schwarz	ESCI	ARG	6/9/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	BWI
(MHz)	(kHz)
0.15 - 30.0	1.0
30.0 - 400.0	10.0
400.0 - 1000.0	100.0
1000.0 - 6000.0	1000.0

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT.

The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2013.

In the event that the operating frequency of 13.56 MHz is causing the product to fail the FCC 15.207 limits, the following guidance can be used:

Per the FCC Guidance, the FCC will accept measurements on a 13.56 MHz transmitter done with a dummy load under the following conditions. (1) First, perform the AC line conducted tests with the antenna attached to make sure the device complies with the 15.207 limits outside the transmitter's fundamental emission band, and then retest with a dummy load to make sure the device complies with the 15.207 limits inside the transmitter's fundamental emission band. (2) For the second portion of these tests, only the fundamental emission band of the transmitter needs to be retested.

						EmiR5 2016.07.22.1				
Wo	rk Order:	ELEM0005	Date:	09/07/16	0					
	Project:	TRA-030990	Temperature:	21.7 °C	Un	I cliny				
	Job Site:	OC06	Humidity:	51.4% RH						
Serial	Number:	IRN0430-07	Barometric Pres.:	1018 mbar	Tested by	Mike Tran				
	EUT:	Door Access RFID Re	eader Family (AV490)							
Confi	iguration:	1								
С	ustomer:	Third Millennium Syst	ems Ltd							
A	ttendees:	None								
EU	IT Power:	12VDC								
Operati	ng Mode:	Transmitting at 125KH	ansmitting at 125KHz and 13.56MHz, 2.4GHz Off							
De	eviations:	None								
Co		The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. Pertaining to the 13.56 MHz radio, per the manufacturer's instructions, the following components were removed on the PCB to disconnect the aerial loop: R33, L8, L7, and R32. The Bluetooth radio was not transmitting.								
Test Speci	fications			Test Met	nod					
FCC 15.20	7:2016			ANSI C63	3.10:2013					
Run#	3	Line:	Neutral	Ext. Attenuation	0	Results Pass				

MHz

10.0

100.0

Quasi Peak Data - vs - Quasi Peak Limit

Quasi Peak Data - vs - Quasi Peak Limit								
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)			
27.122	30.7	21.9	52.6	60.0	-7.4			
13.561	22.5	20.8	43.3	60.0	-16.7			
0.510	11.3	19.9	31.2	56.0	-24.8			
4.485	-0.4	20.3	19.9	56.0	-36.1			
1.119	-1.4	20.0	18.6	56.0	-37.4			
0.209	1.8	20.1	21.9	63.2	-41.3			

1.0

Average Data - vs - Average Limit									
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)				
27.122	23.2	21.9	45.1	50.0	-4.9				
13.561	15.3	20.8	36.1	50.0	-13.9				
0.510	7.8	19.9	27.7	46.0	-18.3				
1.119	-4.4	20.0	15.6	46.0	-30.4				
4.485	-5.0	20.3	15.3	46.0	-30.7				
0.209	-2.4	20.1	17.7	53.2	-35.5				

0 ⊢ 0.1

Work Order:	ELEM0005	Date:	09/07/16	0						
Project	TRA-030990	Temperature:	21.7 °C	An	Muy					
Job Site:	OC06	Humidity:	51.4% RH							
Serial Number:	: IRN0430-07	Barometric Pres.:	1018 mbar	Tested by:	Mike Tran					
EUT	Door Access RFID Re	oor Access RFID Reader Family (AV490)								
Configuration	1									
Customer	Third Millennium Syst	nird Millennium Systems Ltd								
Attendees	None	ne								
EUT Power:	: 12VDC	VDC								
Operating Mode	Transmitting at 125KH	ansmitting at 125KHz and 13.56MHz, 2.4GHz Off								
Deviations	None									
Comments	different antennas wh transmitting. Pertainir	The EUT contains a 125 kHz Inductive radio, a Bluetooth radio module, and a 13.56 MHz radio. All three radios use different antennas which transmit simultaneously. The 125 KHz radio was transmitting with no means to stop transmitting. Pertaining to the 13.56 MHz radio, per the manufacturer's instructions, the following components were removed on the PCB to disconnect the aerial loop: R33, L8, L7, and R32. The Bluetooth radio was not transmitting.								
Test Specifications			Test Meth	od						
FCC 15.207:2016	•		ANSI C63	.10:2013						
Run # 4	Line:	High Line	Ext. Attenuation:	0	Results Pass					

Quasi Peak Data - vs - Quasi Peak Limit								
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)			
27.121	29.9	21.9	51.8	60.0	-8.2			
13.561	22.9	20.8	43.7	60.0	-16.3			
0.512	7.9	19.9	27.8	56.0	-28.2			
2.377	-0.5	20.1	19.6	56.0	-36.4			
3.936	-0.6	20.2	19.6	56.0	-36.4			
1.300	-1.5	20.1	18.6	56.0	-37.4			
0.174	2.3	20.2	22.5	64.8	-42.3			

Average Data - vs - Average Limit									
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Compared to Spec. (dB)				
27.121	22.4	21.9	44.3	50.0	-5.7				
13.561	15.6	20.8	36.4	50.0	-13.6				
0.512	3.5	19.9	23.4	46.0	-22.6				
1.300	-4.3	20.1	15.8	46.0	-30.2				
3.936	-5.0	20.2	15.2	46.0	-30.8				
2.377	-5.0	20.1	15.1	46.0	-30.9				
0.174	-1.4	20.2	18.8	54.8	-36.0				

FIELD STRENGTH OF FUNDAMENTAL AV390

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 125KHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency	10 kHz	Stop Frequency	490 kHz
Ctart i roquonoy	10 KH2	Ctop i roquorio,	100 Ki i2

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

Per ANSI C63.10 sections 6.4.4.1 and 6.4.4.2, the emissions from the EUT were maximized by rotating the EUT on the turntable. Also, the EUT and/or associated antenna was positioned in 3 orthogonal planes. A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity per section 4.5.1. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

If there are no detectable emissions above the noise floor, the data included will show noise floor measurements for reference only.

FIELD STRENGTH OF FUNDAMENTAL **AV390**

												R5 2016.07.22.1	_
W	ork Order:	ELEM			Date:		7/16		17.	Huy			
	Project:	TRA-03		Ter	nperature: Humidity:		1 °C		wine	aug			
Soria	Job Site:	IRN043		Barome	etric Pres.:	48.9	mbar		Tested by:	Mike Tran			1
Serie		Door Acces				1010	IIIDai		rested by.	IVIING ITAIT			=
Con	figuration:	2	OTA ID TA	Jacon I anni	19 (711000)								-
(Customer:	Third Millen	nium Syst	ems Ltd									=
	Attendees:												=
E	UT Power:												- -
Operat	ting Mode:	Transmitting	g at 125KH	Ηz									
Орога	g modo.												_
	Deviations:	None											
		None											-
C	Comments:	Tione											
Test Spec	cifications						Test Meth	od					
FCC 15.20							ANSI C63.						-
. 00 .0.20	00.20.0												
													_
Run #	10	Test Dist	ance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass	_
80													
60													
00			_										
		_				\Box							
40													
				_						_			
E						+							
Š													
m//ngp												-	
쁑													
0													
							_						
							■						
-20													
-40													
0.	.01					0.10						1.00	
						MHz				■ PK	A 41/	• QP	
										FR	◆ AV	- Qi	
						External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude		Antenna Height		Test Distance	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Commonto
0.126	67.2	10.3	1.0	358.0	3.0	0.0	Par EUT	AV	-80.0	-2.5	25.6	-28.1	Comments EUT Vert
0.127	66.9	10.3	1.0	91.0	3.0	0.0	Par EUT	AV	-80.0	-2.8	25.6	-28.4	EUT on Side
0.126 0.127	63.6 63.3	10.3 10.3	1.0 1.0	356.0 90.0	3.0 3.0	0.0 0.0	Per EUT Per EUT	AV AV	-80.0 -80.0	-6.1 -6.4	25.6 25.6	-31.7 -32.0	EUT on Side EUT Vert
0.127	62.3	10.3	2.0	90.0	3.0	0.0	Per EU1	AV	-80.0 -80.0	-0.4 -7.4	25.6 25.6	-32.0 -33.0	EUT on Side
0.126	62.3	10.3	2.0	360.0	3.0	0.0	Par GND	AV	-80.0	-7.4 -7.4	25.6	-33.0	EUT Vert
0.125	58.6	10.3	1.5	315.0	3.0	0.0	Par GND	AV	-80.0	-11.1	25.7	-36.8	EUT Horz
0.126 0.126	53.7 46.9	10.3 10.7	1.0 1.5	315.0 90.0	3.0 3.0	0.0 0.0	Par EUT Per EUT	AV AV	-80.0 -80.0	-16.0 -16.4	25.6	-41.6 -43.0	EUT Horz EUT Horz
U. 120	40.9	10.7	1.5	90.0 358.0	3.0	0.0	Per EUT	PK	-80.0 -80.0	-16.4 -2.0	26.6 45.6	-43.0 -47.6	EUT Horz EUT Vert
0.127	67.7	10.3							-80.0	-2.4			
0.127 0.127	67.7 67.3	10.3	1.0	91.0	3.0	0.0	Par EUT	PK			45.6	-48.0	EUT on Side
0.127 0.127	67.3 64.3	10.3 10.3	1.0 1.0	356.0	3.0	0.0	Per EUT	PK	-80.0	-5.4	45.6	-51.0	EUT on Side
0.127 0.127 0.127	67.3 64.3 64.0	10.3 10.3 10.3	1.0 1.0 1.0	356.0 90.0	3.0 3.0	0.0 0.0	Per EUT Per EUT	PK PK	-80.0 -80.0	-5.4 -5.7	45.6 45.6	-51.0 -51.3	EUT on Side EUT Vert
0.127 0.127	67.3 64.3	10.3 10.3	1.0 1.0	356.0	3.0	0.0	Per EUT	PK	-80.0	-5.4	45.6	-51.0	EUT on Side
0.127 0.127 0.127 0.127 0.126 0.125	67.3 64.3 64.0 63.1 63.2 60.1	10.3 10.3 10.3 10.3 10.3 10.3	1.0 1.0 1.0 2.0 2.0 1.5	356.0 90.0 90.0 360.0 315.0	3.0 3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0 0.0	Per EUT Per EUT Par GND Par GND Par GND	PK PK PK PK PK	-80.0 -80.0 -80.0 -80.0 -80.0	-5.4 -5.7 -6.6 -6.5 -9.6	45.6 45.6 45.5 45.6 45.7	-51.0 -51.3 -52.1 -52.1 -55.3	EUT on Side EUT Vert EUT on Side EUT Vert EUT Horz
0.127 0.127 0.127 0.127 0.126	67.3 64.3 64.0 63.1 63.2	10.3 10.3 10.3 10.3 10.3	1.0 1.0 1.0 2.0 2.0	356.0 90.0 90.0 360.0	3.0 3.0 3.0 3.0	0.0 0.0 0.0 0.0	Per EUT Per EUT Par GND Par GND	PK PK PK PK	-80.0 -80.0 -80.0 -80.0	-5.4 -5.7 -6.6 -6.5	45.6 45.6 45.5 45.6	-51.0 -51.3 -52.1 -52.1	EUT on Side EUT Vert EUT on Side EUT Vert

FIELD STRENGTH OF FUNDAMENTAL AV3K90

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 125KHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 4

FREQUENCY RANGE INVESTIGATED

		Start Frequency	10 kHz	Stop Frequency	490 kHz
--	--	-----------------	--------	----------------	---------

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

MEASUREMENT BANDWIDTHS

III LAGGICE III EITI BAITBITIO			
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

Per ANSI C63.10 sections 6.4.4.1 and 6.4.4.2, the emissions from the EUT were maximized by rotating the EUT on the turntable. Also, the EUT and/or associated antenna was positioned in 3 orthogonal planes. A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity per section 4.5.1. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

If there are no detectable emissions above the noise floor, the data included will show noise floor measurements for reference only.

FIELD STRENGTH OF FUNDAMENTAL **AV3K90**

												ESCI 2016.07.22 iR5 2016.07.22.1	
W	ork Order:		Л0005		Date:		7/16		11	, _	2 .		
	Project: Job Site:		030990		nperature: Humidity:		7 °C % RH		11/		7+		
Seria	al Number:		130-10		etric Pres.:		mbar		Tested by:	Mark Bayta	an		_
			ss RFID Rea	ader Famil	ly (AV3K90))				a Daya			_
	figuration:												<u>-</u>
			nnium Syste	ms Ltd									-
	Attendees: UT Power:												_
			ng at 125KH										-
Opera	ting Mode:												_
	Deviations:	None											
		None											_
C	Comments:												
													_
Test Spec	cifications						Test Meth	od					_
FCC 15.2	09:2016						ANSI C63.	.10:2013					
													_
Run #	1 1	Test Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Р	ass	_
70													
. •													
50						\bot							
			_										
30												<u> </u>	
Ε													
W//ngp									_				
<u>ത</u> 10													
0													
-10							-						
							•						
-30												<u>-</u>	
-50	0.0					0.1						1.0	
,	J.U					MHz						1.0	
						1911 12				■ PK	AV	QP	
							Polarity/						
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	External Attenuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)	,	22	(dB)	(dBuV/m)	(dBuV/m)	(dB)	0
0.126	73.4	10.3	1.0	186.0	3.0	0.0	Parallel to EUT	AV	-80.0	3.7	25.6	-21.9	Comments EUT Vert
0.126	73.1	10.3	1.0	180.0	3.0	0.0	Parallel to EUT	AV	-80.0	3.4	25.6	-22.2	EUT on Side
0.126 0.126	69.8 69.0	10.3 10.3	1.0 1.0	263.0 202.0	3.0 3.0	0.0 0.0	Perp to EUT Parallel to GND	AV AV	-80.0 -80.0	0.1 -0.7	25.6 25.6	-25.5 -26.3	EUT on Side EUT Vert
0.126	68.9	10.3	1.9	196.0	3.0	0.0	Parallel to GND	AV	-80.0	-0.8	25.6	-26.4	EUT on Side
0.126	68.4 62.2	10.3	1.0	227.0	3.0	0.0	Parallel to GND		-80.0 -80.0	-1.3 7.5	25.6	-26.9	EUT Horz EUT Horz
0.126 0.126	73.6	10.3 10.3	2.0 1.0	273.0 186.0	3.0 3.0	0.0 0.0	Parallel to EUT Parallel to EUT		-80.0 -80.0	-7.5 3.9	25.6 45.6	-33.1 -41.7	EUT Horz
0.126	73.3	10.3	1.0	180.0	3.0	0.0	Parallel to EUT	PK	-80.0	3.6	45.6	-42.0	EUT on Side
0.127 0.127	70.0 69.3	10.3 10.3	1.0 1.9	263.0 196.0	3.0 3.0	0.0 0.0	Perp to EUT Parallel to GND	PK PK	-80.0 -80.0	0.3 -0.4	45.5 45.5	-45.2 -45.9	EUT on Side EUT on Side
0.127	69.3	10.3	1.0	202.0	3.0	0.0	Parallel to GND		-80.0	-0.4	45.6	-46.0	EUT Vert
0.125	68.7	10.3	1.0	227.0 255.0	3.0	0.0	Parallel to GND		-80.0 -80.0	-1.0	45.7	-46.7 -48.7	EUT Horz
			1.0 1.0 1.0	227.0 255.0 201.0	3.0 3.0 3.0	0.0 0.0 0.0	Parallel to GND Perp to EUT Perp to EUT	PK AV AV	-80.0 -80.0 -80.0			-46.7 -48.7 -49.1	
0.125 0.127 0.126 0.125	68.7 46.6 46.2 63.2	10.3 10.3 10.3 10.3	1.0 1.0 2.0	255.0 201.0 273.0	3.0 3.0 3.0	0.0 0.0 0.0	Perp to EUT Perp to EUT Parallel to EUT	AV AV PK	-80.0 -80.0 -80.0	-1.0 -23.1 -23.5 -6.5	45.7 25.6 25.6 45.7	-48.7 -49.1 -52.2	EUT Horz EUT Horz EUT Vert EUT Horz
0.125 0.127 0.126	68.7 46.6 46.2	10.3 10.3 10.3	1.0 1.0	255.0 201.0	3.0 3.0	0.0 0.0	Perp to EUT Perp to EUT	AV AV	-80.0 -80.0	-1.0 -23.1 -23.5	45.7 25.6 25.6	-48.7 -49.1	EUT Horz EUT Horz EUT Vert

FIELD STRENGTH OF FUNDAMENTAL AV400

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 125kHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency .01 MHz Stop Frequency .490 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

While scanning, fundamental carrier from the EUT was maximized by rotating the EUT, adjusting the measurement antenna height and orientation in 3 orthogonal planes, the EUT and/or associated antenna is positioned in 3 orthogonal planes (per ANSI C63.10). An active loop antenna was used for this test in order to provide sufficient measurement sensitivity.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

FIELD STRENGTH OF FUNDAMENTAL **AV400**

												ESCI 2016.07.22 R5 2016.07.22.1	
W	/ork Order:		Л0005		Date:		09/16		11	,			
	Project:		030990		nperature:		.3 °C		11	6	2/		
	Job Site:		208		Humidity:		% RH				/		_
Seria	al Number:		430-06		etric Pres.:	1017	7 mbar		Tested by:	Mark Bayta	an		-
Con	figuration:	3	ss RFID Re	ader Famil	ly (AV400)								=
	Customer:		nnium Syste	ems I td									-
	Attendees:	None	milain Oysi	JIIIO Eta									_
	UT Power:												-
			ng at 125kH	Z									-
Opera	ting Mode:		3										
	Deviations:	None											=
	Deviations.												=
_	_	None											
C	Comments:												
	cifications						Test Meth						- =
FCC 15.2	09:2016						ANSI C63.	10:2013					
													_
Run #	# 38	Test Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass	_
80													
60													
•													
40													
<u>,</u> E													
≥ 20													
W//NBp													
ס													
0													
							_						
-20							<u> </u>						
-40	0.0					0.1						1.0	
,	J.U						_					1.0	
						MHz	2			■ PK	◆ AV	QP	
							Polarity/						
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	External Attenuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)	Туре	Detector	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
													Comments
0.127 0.127	75.7 75.5	10.3 10.3	1.0 1.0	189.0 183.0	3.0 3.0	0.0 0.0	Parallel to EUP Parallel to EUP	AV AV	-80.0 -80.0	6.0 5.8	25.6 25.6	-19.6 -19.8	EUT Vert EUT on Side
0.127	73.5 72.5	10.3	1.0	109.0	3.0	0.0	Perp to EUT	AV	-80.0	2.8	25.6	-19.8	EUT on Side
0.127	72.5	10.3	1.0	101.0	3.0	0.0	Perp to EUT	AV	-80.0	2.8	25.6	-22.8	EUT Vert
0.126	72.2	10.3	1.6	190.0	3.0	0.0	'arallel to GNI		-80.0	2.5	25.6	-23.1	EUT Vert
0.126 0.126	71.8 70.9	10.3 10.3	1.0 1.6	163.0 179.0	3.0 3.0	0.0 0.0	Perp to EUT arallel to GNI	AV AV	-80.0 -80.0	2.1 1.2	25.6 25.6	-23.5 -24.4	EUT Horz EUT on Side
0.126	66.2	10.3	1.8	159.0	3.0	0.0	Parallel to EU	AV	-80.0	-3.5	25.6	-24.4	EUT Horz
0.127	75.9	10.3	1.0	189.0	3.0	0.0	Parallel to EU	PK	-80.0	6.2	45.6	-39.4	EUT Vert
0.126	75.7	10.3	1.0	183.0	3.0	0.0	Parallel to EU	PK	-80.0	6.0	45.6	-39.6	EUT on Side
0.126	72.8	10.3	1.0	109.0	3.0	0.0	Perp to EUT	PK	-80.0	3.1	45.6	-42.5	EUT on Side
0.127 0.127	72.7 72.6	10.3 10.3	1.0 1.6	101.0 190.0	3.0 3.0	0.0 0.0	Perp to EUT 'arallel to GNI	PK PK	-80.0 -80.0	3.0 2.9	45.5 45.6	-42.5 -42.7	EUT Vert EUT Vert
0.127	72.0	10.3	1.0	163.0	3.0	0.0	Perp to EUT	PK	-80.0	2.4	45.6	-43.2	EUT Horz
0.127	52.0	10.3	1.9	87.0	3.0	0.0	'arallel to GNI	AV	-80.0	-17.7	25.6	-43.3	EUT Horz
0.407	71.4	10.3	1.6	179.0	3.0	0.0	'arallel to GNI		-80.0	1.7	45.6	-43.9	EUT on Side
0.127							corollol to Elli	שט	-80.0	-2.8	45.6		
0.127 0.126 0.125	66.9 55.1	10.3 10.3	1.8 1.9	159.0 87.0	3.0 3.0	0.0 0.0	Parallel to EUP Parallel to GNI	PK PK	-80.0	-14.6	45.6 45.7	-48.4 -60.3	EUT Horz EUT Horz

FIELD STRENGTH OF FUNDAMENTAL AV490

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 125KHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency	10 kHz	Stop Frequency	490 kHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

MEASUREMENT BANDWIDTHS

III LAGGICE III EITI BAITBITIO			
Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

Per ANSI C63.10 sections 6.4.4.1 and 6.4.4.2, the emissions from the EUT were maximized by rotating the EUT on the turntable. Also, the EUT and/or associated antenna was positioned in 3 orthogonal planes. A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity per section 4.5.1. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

As outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit.

If there are no detectable emissions above the noise floor, the data included will show noise floor measurements for reference only.

FIELD STRENGTH OF FUNDAMENTAL AV490

1.00

• QP

■ PK ◆ AV

				Emilio 20 10.07.22.1
Work Order:	ELEM0005	Date:	09/07/16	0 0
Project:	TRA-030990	Temperature:	20.7 °C	And cley
Job Site:	OC08	Humidity:	47.1% RH	
Serial Number:	IRN0430-07	Barometric Pres.:	1016 mbar	Tested by: Mike Tran
EUT:	Door Access RFID Re	eader Family (AV490)		
Configuration:	1			
Customer:	Third Millennium System	ems Ltd		
Attendees:	None			
EUT Power:	12VDC			
Operating Mode:	Transmitting at 125KF	łz		
Deviations:	None			
	None			_
Comments:				
Test Specifications			Test Meth	od
FCC 15.209:2016	ı		ANSI C63.	
			""	

00 10.200								,	. 000.10.2					
Run#	6	Test Dista	nce (m)	3	An	tenna	Height	(s)	1 to	o 4(m)	Resu	lts	Pas	SS
70														
50														
30						+	4		_		_			
W//N 10														
-10								-						
-30														

0.10

MHz

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.126	65.6	10.3	1.0	360.0	3.0	0.0	Par EUT	AV	-80.0	-4.1	25.6	-29.7	EUT Vert
0.127	65.5	10.3	1.0	90.0	3.0	0.0	Par EUT	AV	-80.0	-4.2	25.6	-29.8	EUT on Side
0.127	62.2	10.3	1.0	360.0	3.0	0.0	Per EUT	AV	-80.0	-7.5	25.6	-33.1	EUT on Side
0.127	61.9	10.3	1.0	90.0	3.0	0.0	Per EUT	AV	-80.0	-7.8	25.6	-33.4	EUT Vert
0.127	60.7	10.3	2.0	180.0	3.0	0.0	Par GND	AV	-80.0	-9.0	25.6	-34.6	EUT Vert
0.126	60.6	10.3	2.0	93.0	3.0	0.0	Par GND	AV	-80.0	-9.1	25.6	-34.7	EUT on Side
0.127	56.9	10.3	1.0	45.0	3.0	0.0	Par GND	AV	-80.0	-12.8	25.5	-38.3	EUT Horz
0.126	54.2	10.3	1.0	135.0	3.0	0.0	Par EUT	AV	-80.0	-15.5	25.7	-41.2	EUT Horz
0.126	47.3	10.9	1.0	90.0	3.0	0.0	Per EUT	AV	-80.0	-16.8	26.1	-42.9	EUT Horz
0.126	66.2	10.3	1.0	360.0	3.0	0.0	Par EUT	PK	-80.0	-3.5	45.6	-49.1	EUT Vert
0.126	65.8	10.3	1.0	90.0	3.0	0.0	Par EUT	PK	-80.0	-3.9	45.6	-49.5	EUT on Side
0.127	62.9	10.3	1.0	360.0	3.0	0.0	Per EUT	PK	-80.0	-6.8	45.6	-52.4	EUT on Side
0.127	62.5	10.3	1.0	90.0	3.0	0.0	Per EUT	PK	-80.0	-7.2	45.5	-52.7	EUT Vert
0.126	61.7	10.3	2.0	180.0	3.0	0.0	Par GND	PK	-80.0	-8.0	45.6	-53.6	EUT Vert
0.126	61.5	10.3	2.0	93.0	3.0	0.0	Par GND	PK	-80.0	-8.2	45.6	-53.8	EUT on Side
0.127	58.2	10.3	1.0	45.0	3.0	0.0	Par GND	PK	-80.0	-11.5	45.6	-57.1	EUT Horz
0.128	57.2	10.3	1.0	135.0	3.0	0.0	Par EUT	PK	-80.0	-12.5	45.5	-58.0	EUT Horz
0.126	54.0	10.8	1.0	90.0	3.0	0.0	Per EUT	PK	-80.0	-15.2	50.0	-65.2	EUT Horz

-50 0.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 125KHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 2

FREQUENCY RANGE INVESTIGATED

04 14	o L	4000 8411
Start Frequency .01 MHz	Stop Frequency	1000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AM-1551	AOX	1/21/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	5/18/2015	24 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
 0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
 30.0 - 1000	100.0	120.0	120.0
 Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

Per ANSI C63.10 sections 6.4.4.1 and 6.4.4.2, the emissions from the EUT were maximized by rotating the EUT on the turntable. Also, the EUT and/or associated antenna was positioned in 3 orthogonal planes. A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity per section 4.5.1. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

For measurements below 30 MHz, as outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit. Per FCC 15.33(a)(4), measurements were taken up to the highest frequency range of either the 10th harmonic of the fundamental or the applicable digital frequency test range.

If there are no detectable emissions above the noise floor, the data included will show noise floor measurements for reference only.

EmiR5 2016.07.22.1 Work Order: ELEM0005 Date: 09/07/16 TRA-030990 22.7 °C Project: Temperature: . Humidity: 48.7% RH Job Site: OC08 Serial Number: IRN0430-09 Tested by: Mark Baytan Barometric Pres.: 1018 mbar EUT: Door Access RFID Reader Family (AV390) Configuration: Customer: Third Millennium Systems Ltd Attendees: None **EUT Power:** 12VDC Transmitting at 125KHz **Operating Mode: Deviations:** Wide span maximization for harmonic investigation. No emissions were found. Measurements taken were noise floor. Comments:

Test Specifications Test Method

FCC 15.209:2016

ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.380	37.8	10.0	1.0	5.0	3.0	0.0	Parallel to EUT	AV	-80.0	-32.2	16.0	-48.2	EUT Vert
0.149	43.5	10.3	1.0	143.0	3.0	0.0	Parallel to EUT	AV	-80.0	-26.2	24.1	-50.3	EUT Vert
0.211	39.8	10.2	1.0	27.0	3.0	0.0	Parallel to EUT	AV	-80.0	-30.0	21.1	-51.1	EUT Vert
0.350	35.5	10.0	1.0	214.0	3.0	0.0	Parallel to EUT	AV	-80.0	-34.5	16.7	-51.2	EUT Vert
0.252	38.1	10.1	1.0	197.0	3.0	0.0	Parallel to EUT	AV	-80.0	-31.8	19.6	-51.4	EUT Vert
0.193	40.0	10.2	1.0	0.0	3.0	0.0	Parallel to EUT	AV	-80.0	-29.8	21.9	-51.7	EUT Vert
0.150	51.7	10.2	1.0	143.0	3.0	0.0	Parallel to EUT	PK	-80.0	-18.1	44.1	-62.2	EUT Vert
0.380	42.2	10.0	1.0	5.0	3.0	0.0	Parallel to EUT	PK	-80.0	-27.8	36.0	-63.8	EUT Vert
0.197	47.4	10.2	1.0	0.0	3.0	0.0	Parallel to EUT	PK	-80.0	-22.4	41.7	-64.1	EUT Vert
0.248	45.1	10.1	1.0	197.0	3.0	0.0	Parallel to EUT	PK	-80.0	-24.8	39.7	-64.5	EUT Vert
0.349	41.6	10.0	1.0	214.0	3.0	0.0	Parallel to EUT	PK	-80.0	-28.4	36.7	-65.1	EUT Vert
0.212	45.3	10.2	1.0	27.0	3.0	0.0	Parallel to EUT	PK	-80.0	-24.5	41.1	-65.6	EUT Vert

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 125KHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 4

FREQUENCY RANGE INVESTIGATED

Start Frequency .01 MHz Stop Frequency 1000 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AM-1551	AOX	1/21/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	5/18/2015	24 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

Per ANSI C63.10 sections 6.4.4.1 and 6.4.4.2, the emissions from the EUT were maximized by rotating the EUT on the turntable. Also, the EUT and/or associated antenna was positioned in 3 orthogonal planes. A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity per section 4.5.1. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

For measurements below 30 MHz, as outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit. Per FCC 15.33(a)(4), measurements were taken up to the highest frequency range of either the 10th harmonic of the fundamental or the applicable digital frequency test range.

If there are no detectable emissions above the noise floor, the data included will show noise floor measurements for reference only.

EmiR5 2016.07.22.1

Work Order:	ELEM0005	Date: 09/07/16		11 0					
Project:	TRA-030990	Temperature:	22.7 °C	1464					
Job Site:	OC08	Humidity:	48.7% RH						
Serial Number:	IRN0430-10	Barometric Pres.:	1018 mbar	Tested by: Mark Baytan					
EUT:	Door Access RFID Re	eader Family (AV3K90)							
Configuration:	4								
Customer:	Third Millennium Syst	ems Ltd							
Attendees:	None								
EUT Power:	12VDC	2VDC							
Operating Mode:	Transmitting at 125Kh	·lz							
Deviations:	None								
Comments:	Wide span maximization for harmonic investigation. No emissions were found. Measurements taken at noise floor.								
Test Specifications			Test M	ethod					

Test Specifications FCC 15.209:2016

ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.148	44.4	10.3	1.0	4.0	3.0	0.0	Parallel to EUT	AV	-80.0	-25.3	24.2	-49.5	EUT Vert
0.378	36.6	10.0	1.0	30.0	3.0	0.0	Parallel to EUT	AV	-80.0	-33.4	16.1	-49.5	EUT Vert
0.251	38.1	10.1	1.0	146.0	3.0	0.0	Parallel to EUT	AV	-80.0	-31.8	19.6	-51.4	EUT Vert
0.404	33.8	10.0	1.8	276.0	3.0	0.0	Parallel to EUT	AV	-80.0	-36.2	15.5	-51.7	EUT Vert
0.375	34.4	10.0	3.2	17.0	3.0	0.0	Parallel to EUT	AV	-80.0	-35.6	16.1	-51.7	EUT Vert
0.179	40.6	10.2	1.0	301.0	3.0	0.0	Parallel to EUT	AV	-80.0	-29.2	22.6	-51.8	EUT Vert
0.148	54.2	10.3	1.0	4.0	3.0	0.0	Parallel to EUT	PK	-80.0	-15.5	44.2	-59.7	EUT Vert
0.381	42.7	10.0	1.0	30.0	3.0	0.0	Parallel to EUT	PK	-80.0	-27.3	36.0	-63.3	EUT Vert
0.401	40.5	10.0	1.8	276.0	3.0	0.0	Parallel to EUT	PK	-80.0	-29.5	35.5	-65.0	EUT Vert
0.248	44.1	10.1	1.0	146.0	3.0	0.0	Parallel to EUT	PK	-80.0	-25.8	39.7	-65.5	EUT Vert
0.373	40.6	10.0	3.2	17.0	3.0	0.0	Parallel to EUT	PK	-80.0	-29.4	36.2	-65.6	EUT Vert
0.182	46.5	10.2	1.0	301.0	3.0	0.0	Parallel to EUT	PK	-80.0	-23.3	42.4	-65.7	EUT Vert

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 125kHz

POWER SETTINGS INVESTIGATED

12VDC

CONFIGURATIONS INVESTIGATED

ELEM0005 - 3

FREQUENCY RANGE INVESTIGATED

Start Fr	requency	.01 MHz	Stor	Fregu	jency	3	0 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Antenna - Biconilog	Teseq	CBL 6141A	AYE	5/18/2015	24 mo
Amplifier - Pre-Amplifier	Miteq	AM-1551	AOX	1/21/2016	12 mo
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

Per ANSI C63.10 sections 6.4.4.1 and 6.4.4.2, the emissions from the EUT were maximized by rotating the EUT on the turntable. Also, the EUT and/or associated antenna was positioned in 3 orthogonal planes. A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity per section 4.5.1. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

For measurements below 30 MHz, as outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit. Per FCC 15.33(a)(4), measurements were taken up to the highest frequency range of either the 10th harmonic of the fundamental or the applicable digital frequency test range.

If there are no detectable emissions above the noise floor, the data included will show noise floor measurements for reference only.

PSA-ESCI 2016.07.22 EmiR5 2016.07.22.1

Work Order:	ELEM0005	Date:	09/09/16	11 0				
Project:	TRA-030990	Temperature:	22.3 °C	Mr Byt				
Job Site:	OC08	Humidity:	49.7% RH					
Serial Number:	IRN0430-06	Barometric Pres.:	1017 mbar	Tested by: Mark Baytan				
EUT:	Door Access RFID Re	eader Family (AV400)						
Configuration:	3							
Customer:	Third Millennium Syst	ems Ltd						
Attendees:	Vone							
EUT Power:	12VDC							
Operating Mode:	Transmitting at 125kH	łz						
Deviations:	None							
Comments:	Wide span maximization for harmonic investigation. No emissions were found. Measurements taken at noise floor.							
Toot Chapifications	Took Mothod							

Test Specifications

FCC 15.209:2016

ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.379	36.5	10.0	1.2	112.0	3.0	0.0	Horz	AV	-80.0	-33.5	16.0	-49.5	EUT Vert
0.482	32.9	10.2	1.0	154.0	3.0	0.0	Horz	AV	-80.0	-36.9	13.9	-50.8	EUT Vert
0.270	37.8	10.1	1.0	185.0	3.0	0.0	Horz	AV	-80.0	-32.1	19.0	-51.1	EUT Vert
0.351	35.1	10.0	1.0	108.0	3.0	0.0	Horz	AV	-80.0	-34.9	16.7	-51.6	EUT Vert
0.152	42.0	10.2	1.0	144.0	3.0	0.0	Horz	AV	-80.0	-27.8	24.0	-51.8	EUT Vert
0.163	41.4	10.2	1.0	5.0	3.0	0.0	Horz	AV	-80.0	-28.4	23.4	-51.8	EUT Vert
0.381	42.0	10.0	1.2	112.0	3.0	0.0	Horz	PK	-80.0	-28.0	36.0	-64.0	EUT Vert
0.479	39.4	10.2	1.0	154.0	3.0	0.0	Horz	PK	-80.0	-30.4	34.0	-64.4	EUT Vert
0.160	48.8	10.2	1.0	144.0	3.0	0.0	Horz	PK	-80.0	-21.0	43.6	-64.6	EUT Vert
0.272	44.0	10.1	1.0	185.0	3.0	0.0	Horz	PK	-80.0	-25.9	38.9	-64.8	EUT Vert
0.350	41.1	10.0	1.0	108.0	3.0	0.0	Horz	PK	-80.0	-28.9	36.7	-65.6	EUT Vert
0.154	47.9	10.2	1.0	5.0	3.0	0.0	Horz	PK	-80.0	-21.9	43.9	-65.8	EUT Vert

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting at 125KHz

POWER SETTINGS INVESTIGATED

12VD0

CONFIGURATIONS INVESTIGATED

ELEM0005 - 1

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AM-1551	AOX	1/21/2016	12 mo
Antenna - Biconilog	Teseq	CBL 6141A	AYE	5/18/2015	24 mo
Antenna	EMCO	6502	AZB	8/14/2015	24 mo
Cable	Northwest EMC	30MHz-6GHz RE Cables	OCB	1/21/2016	12 mo
Analyzer - Spectrum Analyzer	Agilent	E4443A	AAR	7/15/2016	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was continuously transmitting while set to the channel specified.

Per ANSI C63.10 sections 6.4.4.1 and 6.4.4.2, the emissions from the EUT were maximized by rotating the EUT on the turntable. Also, the EUT and/or associated antenna was positioned in 3 orthogonal planes. A calibrated active loop antenna was used for this test in order to provide sufficient measurement sensitivity per section 4.5.1. The center of the loop antenna was maintained at 1m above the ground plane during the testing.

For measurements below 30 MHz, as outlined in 15.209(e) and 15.31(f)(2), measurements may be performed at a distance closer than what is specified with the limit. The limit at the specified distance is shown on the data sheet. Measurements are made at a closer distance and the data is adjusted using a distance correction factor of 40dB/decade for comparison to the limit. Per FCC 15.33(a)(4), measurements were taken up to the highest frequency range of either the 10th harmonic of the fundamental or the applicable digital frequency test range.

If there are no detectable emissions above the noise floor, the data included will show noise floor measurements for reference only.

PSA-ESCI 2016.07.22
EmiR5 2016.07.22.1

Work Order:	ELEM0005	Date:	09/07/16	11, 0							
Project:	TRA-030990	Temperature:	22.7 °C	Mr Byt							
Job Site:	OC08	Humidity:	48.7% RH								
Serial Number:	IRN0430-07	Barometric Pres.:	1018 mbar	Tested by: Mark Baytan							
EUT:	Door Access RFID Reader Family (AV490)										
Configuration:	1	1									
Customer:	Third Millennium Systems Ltd										
Attendees:	None										
EUT Power:	12VDC										
Operating Mode:	Transmitting at 125KHz										
Deviations:	None										
Comments:	•	ion for harmonic investi	igation. No emissions	s were found. Measurements taken were noise floor.							

Test Specifications

FCC 15.209:2016

Test Method ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
0.378	37.4	10.0	1.0	359.0	3.0	0.0	Parallel to EUT	AV	-80.0	-32.6	16.1	-48.7	EUT Vert
0.200	40.4	10.2	1.0	28.0	3.0	0.0	Parallel to EUT	AV	-80.0	-29.4	21.6	-51.0	EUT Vert
0.145	42.8	10.3	1.3	56.0	3.0	0.0	Parallel to EUT	AV	-80.0	-26.9	24.4	-51.3	EUT Vert
0.298	36.5	10.0	1.0	349.0	3.0	0.0	Parallel to EUT	AV	-80.0	-33.5	18.1	-51.6	EUT Vert
0.249	37.9	10.1	1.0	0.0	3.0	0.0	Parallel to EUT	AV	-80.0	-32.0	19.7	-51.7	EUT Vert
0.400	33.9	10.0	1.0	266.0	3.0	0.0	Parallel to EUT	AV	-80.0	-36.1	15.6	-51.7	EUT Vert
0.148	51.8	10.3	1.3	56.0	3.0	0.0	Parallel to EUT	PK	-80.0	-17.9	44.2	-62.1	EUT Vert
0.380	40.7	10.0	1.0	359.0	3.0	0.0	Parallel to EUT	PK	-80.0	-29.3	36.0	-65.3	EUT Vert
0.248	44.2	10.1	1.0	0.0	3.0	0.0	Parallel to EUT	PK	-80.0	-25.7	39.7	-65.4	EUT Vert
0.295	42.5	10.0	1.0	349.0	3.0	0.0	Parallel to EUT	PK	-80.0	-27.5	38.2	-65.7	EUT Vert
0.202	45.5	10.2	1.0	28.0	3.0	0.0	Parallel to EUT	PK	-80.0	-24.3	41.5	-65.8	EUT Vert
0.398	39.5	10.0	1.0	266.0	3.0	0.0	Parallel to EUT	PK	-80.0	-30.5	35.6	-66.1	EUT Vert