# CHAPTER - 4 COMPLEX NUMBERS

### Important Points

- 1. The imaginary number  $\sqrt{-1}$  is denoted by 'i' and is defined by the equation  $i^2 = -1$
- 2.  $\sqrt{-1}$  is called 'iota' and is written as i
- 3. If a, b  $\in$  R, then  $\sqrt{a}$   $\sqrt{b}$  =  $\sqrt{ab}$  provided, a, b are not both negative
- 4. If x and y are two real numbers, then x + iy is called a complex number
  In Z = x + iy, the real numbers x and y are respectively called the real part [Re (z)] and imaginary part (Im(z))
- A complex number z = a + ib is called purely real if Im(z) = 0, ie b = 0
   It is purely imaginary if Re(z) = 0 ie. a = 0
- 6. Let  $z_1 = x_1 + iy_1$  and  $z_2 = x_2 + iy_2$ Then  $z_1 = z_2 \Leftrightarrow x_1 = x_2$  and  $y_1 = y_2$
- 7. If z = x + iy is a complex number, then the complex number x iy denoted by  $\overline{z}$  is called the conjugate of the complex number ie  $\overline{z} = x iy$

### **Properties**

- (i)  $\overline{(\overline{z})} = z$
- (ii)  $z + \overline{z} = 2Re(z) = 2Re(\overline{z})$
- (iii)  $z \overline{z} = 2i \text{ Im } (z)$
- (iv)  $z = \overline{z}$  iff z is purely real
- (v)  $z = -\overline{z}$  iff z is purely imaginary
- (vi)  $(\overline{z_1 \pm z_2}) = \overline{z}_1 \pm \overline{z}_2$

(vii) 
$$\overline{z_1, z_2} = \overline{z_1}, \overline{z_2}$$

(viii) 
$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$$
 provided  $z_2 \neq 0$ 

(ix) 
$$z \cdot \overline{z} = [Re(z)]^2 + [Im(z)]^2$$
 ie if  $z = x + iy$ , then  $z \cdot \overline{z} = x^2 + y^2$ 

(x) 
$$\overline{(z^n)} = (\overline{z})^n$$

#### **Geometrical Interpretation of a Complex Number**



Acomplex number z = x + iy represents a point p(x, y) in the Argand plane. In the Argand diagram length OP ie the non negative real number  $\sqrt{x^2 + y^2}$  is called the modulus of the complex number x + iy written as |x + iy| and the angle between OP and positive direction of x axis called the argument or amplitude of z.

#### **Properties**

(i) 
$$z. \overline{z} = |\overline{z}|^2 = |z|^2 : |z| = |\overline{z}|$$

(ii) 
$$z = 0$$
 iff  $|z| = 0$ 

(iii) 
$$|z_1 \pm z_2|^2 = |z_1|^2 + |z_2|^2 \pm 2 |z_1||z_2| \cos (\theta_1 - \theta_2) = |z_1|^2 + |z_2|^2 \pm 2 \operatorname{Re} (z_1 \overline{z}_2)$$

(iv) 
$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2\{|z_1|^2 + |z_2|^2\}$$

(v) 
$$|z_1z_2| = |z_1| |z_2|, |z_1| = (|z|)^n$$

# **Brilliant STUDY CENTRE**

(vi) 
$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}; |z_2| \neq 0$$

(vii) 
$$-|z| \le \text{Re}(z) \le |z|$$
  
-  $|z| \le \text{Im}(z) \le |z|$ 

(viii) 
$$|z_1 + z_2| \le |z_1| + |z_2|$$

(ix) 
$$|z_1 - z_2| \ge ||z_1| - |z_2||$$

(x). The order relations are not defined on the set of complex numbers. But =,  $\neq$  are defined.

$$Z_1 < Z_2$$
,  $Z_1 > Z_2$  etc have no meaning

- 8. The multiplicative inverse of the nonzero complex number z is denoted by z<sup>-1</sup> and is given by  $z^{-1} = \frac{\overline{z}}{|z|^2}$
- 9. Polar representation

The complex number z = x + iy when expressed in the form  $z = r (\cos \theta + i \sin \theta)$  is called the polar form or modulus amplitude form or trigonometric form of the complex number, where

$$r = \sqrt{x^2 + y^2} = |z|$$
 and the value of  $\theta$  obtained by solving the equations  $\cos \theta =$ 

$$\frac{x}{\sqrt{x^2+y^2}} \& \sin \theta = \frac{y}{\sqrt{x^2+y^2}} \text{ is called the argument (amplitude) of z denoted by arg z. If } -\pi < \theta \leq \pi$$
 then  $\theta$  is called the principal argument of z. argument of zero is not defined.

10. 
$$e^{i\theta} = \cos\theta + i \sin\theta$$
,  $e^{-i\theta} = \cos\theta - i \sin\theta$ ,  $|e^{i\theta}| = \sqrt{\cos^2\theta + \sin^2\theta} = 1$ . If  $z_1 = r_1 e^{i\theta}$ ,  $z_2 = r_2 e^{i\theta}$  then

(i) 
$$z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$
 (ii)  $\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$ 

(ii) arg 
$$(z_1z_2)$$
 = arg  $(z_1)$  + arg  $(z_2)$  and arg  $\left(\frac{Z_1}{Z_2}\right)$  = arg  $z_1$  – arg  $(z_2)$ 

(iii) arg 
$$\overline{z} = -arg z$$

11. De - Moivre's Theorem

If 'n' is any integer, then  $(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$ 

- Distance between two points having affixes Z<sub>1</sub> and Z<sub>2</sub> is |Z<sub>2</sub> Z<sub>1</sub>|, the complex number z = x + iy is known as the affix of the point P.
- 13. The area of the triangle formed by z, iz and z + iz is equal to  $\frac{1}{2}|z|^2$
- 14. The triangle with vertices  $z_1$ ,  $z_2$ ,  $z_3$  is equilateral iff  $z_1^2 + z_2^2 + z_3^2 = z_1z_2 + z_2z_3 + z_3z_1$

### **Cube roots of unity**

The roots of the equation  $z^3 - 1 = 0$  are called cube roots of unity

$$\therefore z^3 - 1 = (z - 1)(z^2 + z + 1) = 0$$

 $\Rightarrow$  z = 1, w, w<sup>2</sup> are roots, where

$$w = \frac{-1 + i\sqrt{3}}{2}, w^2 = \frac{-1 - i\sqrt{3}}{2}$$

(i) 
$$1 + w + w^2 = 0$$
 and  $w^3 = 1$ 

(ii) 
$$w^{3n} = 1$$
,  $w^{3n+1} = w$ 

$$w^{3n+2} = w^2 \text{ and } w^{3n} + w^{3n+1} + w^{3n+2} = 0, n \in N$$

(iii) 
$$w^2 = \frac{1}{w}, w = \frac{1}{w^2}$$

(iv) 
$$\overline{w} = w^2, \overline{w}^2 = w$$

(v) 
$$\sqrt{w^2} = \pm w$$
,  $\sqrt{w} = \pm w^2$ 

- (vi) Cube roots of unity lie on a circle |z|=1 and divide its circumference into three equal parts
- (vii) In the Argand plane cube roots of unity form an equilateral triangle with area  $\frac{3\sqrt{3}}{4}$  sq,units

### PART I - (JEEMAIN )

### SECTION - I - Straight objective type questions

- If (1+i)(1+2i)(1+3i)...(1+ni) = a+ib, then  $2\times5\times10\times...\times(1+n^2)$  is equal to
  - 1)  $a^2 + b^2$
- 2)  $\sqrt{a^2 + b^2}$  3)  $\sqrt{a^2 b^2}$  4)  $a^2 b^2$
- If z is a complex number such that z + |z| = 8 + 12i, then the value of  $|z^2|$  is equal to
  - 1) 228
- 2) 144
- 3) 121
- 4) 169
- If  $e^{i\theta} = \cos\theta + i\sin\theta$  and  $a = e^{i\alpha}$ ,  $b = e^{i\beta}$ ,  $c = e^{i\gamma}$  and  $\frac{a}{b} + \frac{b}{c} + \frac{c}{a} = 1$ , then  $\cos(\alpha \beta) + \cos(\beta \gamma) + \cos(\gamma \alpha) = 1$ 
  - 1)  $\frac{3}{2}$
- 2)  $-\frac{3}{2}$
- 3)0

- 4) 1
- If  $O, Z_1, Z_2$  form the vertices of an equilateral triangle then  $Z_1^2$ ,  $Z_1Z_2$ ,  $Z_2^2$  will be vertices of 4.
  - (1) an equilateral triangle with centre at O
  - (2) an isosceles triangle
  - (3) a right angled triangle
  - (4) none of these
- 5. If  $(1+x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$ , then  $a_0 + a_3 + a_6 + \dots = a_{2n}x^{2n}$ 
  - 1)0

2) 1

- 3) 3<sup>n</sup>
- 4) 3<sup>n-1</sup>
- If  $z_1 = 1 + i$ ,  $z_2 = -1 + \sqrt{3}i$  and z is a complex number lying between the line segment 6. joining  $z_1$  and  $z_2$  then  $\arg(\mathbf{z})$  can be
  - (1)  $-\frac{3\pi}{4}$
- (2)  $-\frac{\pi}{6}$  (3)  $\frac{\pi}{6}$
- (4)  $\frac{\pi}{2}$
- The imaginary part of  $(3+2\sqrt{-54})^{1/2}-(3-2\sqrt{-54})^{1/2}$  can be:
  - $(1) -2\sqrt{6}$  (2) 6

- (3)  $\sqrt{6}$
- $(4) -\sqrt{6}$
- Let  $A = \left\{0 \in \left(-\frac{\pi}{2}, \pi\right); \frac{3 + 2i\sin\theta}{1 2i\sin\theta}$  is purely imaginary. Then the sum of the elements in A is:

  - (1)  $\frac{5\pi}{6}$  (2)  $\frac{2\pi}{3}$  (3)  $\frac{3\pi}{4}$
- (4)  $\pi$

- 9. The value of  $\left[\frac{1+\sin\frac{2\pi}{9}+i\cos\frac{2\pi}{9}}{1+\sin\frac{2\pi}{9}-i\cos\frac{2\pi}{9}}\right]^3$  is:
- (1)  $\frac{1}{2}(\sqrt{3}-i)$  (2)  $-\frac{1}{2}(\sqrt{3}-i)$  (3)  $-\frac{1}{2}(1-i\sqrt{3})$  (4)  $\frac{1}{2}(1-i\sqrt{3})$
- Let  $\alpha = \frac{-1+i\sqrt{3}}{2}$ . If  $a = (1+\alpha)\sum_{k=0}^{100} \alpha^{2k}$  and  $b = \sum_{k=0}^{100} \alpha^{3k}$ , then a and b are the roots of 10.

the quadratic equation:

(1)  $x^2 - 102x + 101 = 0$ 

(2)  $x^2 + 101x + 100 = 0$ 

(3)  $x^2 - 101x + 100 = 0$ 

- (4)  $x^2 + 102x + 101 = 0$
- The minimum value of |Z-1+2i|+|4i-3-Z| is 11.
  - (1)  $\sqrt{5}$
- (2)5
- (3)  $2\sqrt{13}$
- (4)  $\sqrt{15}$
- If  $|Z_i| = \lambda$ , i = 1, 2, 3, ..., n then  $\left| \frac{Z_1^{-1} + Z_2^{-1} + .... + Z_n^{-1}}{Z_1 + Z_2 + .... + Z_n} \right|$  is equal to
  - (1)  $\lambda^2$
- (2)  $\frac{1}{12}$
- (3) 1
- (4) none of these
- If  $Z_1 = 1 + i$  ,  $Z_2 = 1 i$  , Z and origin are four concyclic points then the maximum value 13. of |Z| is
  - (1) 1
- (2)2
- (3)3
- (4) 4
- If  $\alpha, \beta$  and  $\gamma$  are the roots of  $x^3 3x^2 + 3x + 7 = 0$ ,  $\omega$  is a non real cube root of unity 14. then  $\frac{\alpha-1}{\beta-1} + \frac{\beta-1}{\gamma-1} + \frac{\gamma-1}{\alpha-1}$  is
  - (1)  $\frac{3}{\omega^2}$  (2)  $\omega^2$
- (3)  $2\omega^2$
- (4)  $3\omega^2$

- 15. If  $Z + \frac{1}{Z} = -1$ , then  $\sum_{r=0}^{5} \left( Z^r + \frac{1}{Z^r} \right)^2 =$ 
  - (1) 8

- (2) 10
- (3) 12
- (4) 15

# **Brilliant STUDY CENTRE**

- 16. If a,b,c are distinct integers the minimum value of  $|a+bw+cw^2|+|a+bw^2+cw|$ , where  $w=e^{i2\frac{\pi}{3}}$  is
  - (1) 2 (2)  $2\sqrt{2}$  (3)  $2\sqrt{3}$  (4)  $2\sqrt{6}$

- If Z lies on the circle  $|Z-2i|=2\sqrt{2}$  then the value of  $\arg\left(\frac{Z-2}{Z+2}\right)$  is equal to
  - (1)  $\frac{\pi}{2}$
- (2)  $\frac{\pi}{4}$  (3)  $\frac{\pi}{6}$
- The area of the region of the Argand plane described by complex numbers Z satisfying 18.  $\frac{\pi}{6} < \arg(Z) < \frac{2\pi}{2}$  and 3 < |Z| < 5 is (in sq. units)
  - (1)  $17\pi$
- (2)  $16\pi$
- (3)  $\frac{16\pi}{2}$
- $(4) 4\pi$

- Assertion & Reasoning 19.
  - If both Statement-I and Statement-II are true and the reason is the correct (1)explanation of the statement-I.
  - If both Statement-I and Statement-II are true but reason is not the correct (2) explanation of the statement-I.
  - (3) If Statement-I is true but Statement-II is false.
  - (4) If Statement-I is false but Statement-II is true.

Consider  $z_1$  and  $z_2$  are two complex numbers such that  $|z_1 + z_2| = |z_1| + |z_2|$ 

Statement-I:  $amp(z_1) - amp(z_2) = 0$ 

Statement-II: The complex numbers z<sub>1</sub> and z<sub>2</sub> are collinear with origin

Let  $z_1, z_2$  be two complex numbers satisfying  $|z| = \sqrt{2}$  and  $|z - 3 - 3i| = 2\sqrt{2}$ 20. respectively. Then

**Statement-I:** min |  $z_1 - z_2 = 0$  and max |  $z_1 - z_2 = 6\sqrt{2}$ 

**Statement-II:** Two curves  $|z| = \sqrt{2}$  and  $|z-3-3i| = 2\sqrt{2}$  touch each other externally

# **SECTION - II**

# **Numerical Type Questions**

21. If  $z_1$  and  $z_2$  be two variable complex numbers such that  $\left|z_1\right|^2 \leq 169$  and  $\left|z_2 + 3 - 4i\right|^2 \leq 25$ , then the maximum value of  $\left|z_{_{\! 1}}\!-\!z_{_{\! 2}}\right|$  is 15+p . The value of p is

- 22. If  $\left|z \frac{3}{z}\right| = 2$ , then the greatest value of  $\left|z\right|$  is
- 23. Let  $\left(-2-\frac{1}{3}i\right)^3 = \frac{x+iy}{27}(i=\sqrt{-1})$ , where x and y are real numbers, then y-x equals:
- If  $z_1, z_2, z_3$  are distinct non-zero complex numbers and  $a, b, c \in \mathbb{R}^+$ 24. such that  $\frac{a}{|z_1-z_2|} = \frac{b}{|z_2-z_3|} = \frac{c}{|z_2-z_3|}$  then  $\frac{a^2}{|z_3-z_3|} + \frac{b^2}{|z_3-z_3|} + \frac{c^2}{|z_3-z_3|}$  is always
- If the equation  $z^2 + (a+ib)z + (c+id) = 0$  ( a,b,c,d are real and  $bd \neq 0$  ) has a 25. real root, then  $d^2 - abd + b^2c$  is equal to

### PART - II (JEE ADVANCED)

# SECTION - III (Only one option correct type)

- 26. If z(1+a) = b + ic,  $a^2 + b^2 + c^2 = 1$ , then  $\frac{1+iz}{1-iz} =$ 
  - A)  $\frac{(a-ib)}{1+c}$  B)  $\frac{(a+ib)}{1+c}$  C)  $\frac{(a+ib)}{1-c}$  D)  $\frac{(a-ib)}{1-c}$

- 27. If  $\left|z_1\right|=2, \left|z_2\right|=3$  , then  $\left|z_1+z_2+5+12i\right|$  is less than or equal to

- D) 5
- 28. If z is a complex number satisfying  $z^4 + z^3 + 2z^2 + z + 1 = 0$ , then the set of possible values of |z|
  - A) {1,2}
- B) {1}
- C) {1,2,3}
- D) {1,2,3,4}

- 29. If  $|z 25i| \le 15$ , then  $|\max.arg(z) \min.arg(z)| =$

- A)  $2\cos^{-1}\frac{3}{5}$  B)  $2\cos^{-1}\frac{4}{5}$  C)  $\frac{\pi}{2} + \cos^{-1}\frac{3}{5}$  D)  $\sin^{-1}\frac{3}{5} \cos^{-1}\frac{3}{5}$
- 30. Let z, w be complex number such that  $\overline{z}_{+i\overline{w}} = 0$  and arg  $zw = \pi$ . Then arg z equals
  - A)  $\frac{\pi}{4}$

- B)  $\frac{\pi}{2}$
- C)  $\frac{3\pi}{4}$
- D)  $\frac{5\pi}{4}$
- The complex number 3+4i is rotated (+ve) about origin by an angle of  $\frac{\pi}{4}$  and then stretched 2times. The complex number corresponding to new position is

  - A)  $\sqrt{2}(-3+4i)$  B)  $\sqrt{2}(-1+7i)$  C)  $\sqrt{2}(3-4i)$  D)  $\sqrt{2}(-1-7i)$

# **Brilliant STUDY CENTRE**

The mirror image of the curve  $\arg\left(\frac{z-3}{z-i}\right) = \frac{\pi}{6}$  in the real axis is

A) 
$$arg\left(\frac{z+3}{z+i}\right) = \frac{\pi}{6}$$

A) 
$$\operatorname{arg}\left(\frac{z+3}{z+i}\right) = \frac{\pi}{6}$$
 B)  $\operatorname{arg}\left(\frac{z-3}{z+i}\right) = \frac{\pi}{6}$  C)  $\operatorname{arg}\left(\frac{z+i}{z+3}\right) = \frac{\pi}{6}$  D)  $\operatorname{arg}\left(\frac{z+i}{z-3}\right) = \frac{\pi}{6}$ 

C) 
$$arg\left(\frac{z+i}{z+3}\right) = \frac{\pi}{6}$$

D) 
$$\arg\left(\frac{z+i}{z-3}\right) = \frac{\pi}{6}$$

- 33. The value of  $1 + \sum_{k=0}^{14} \left\{ \cos \frac{(2k+1)\pi}{15} + i \sin \frac{(2k+1)\pi}{15} \right\}$  is
  - A)0

- C) -1
- D) i

# SECTION - IV (More than one correct answer)

- Points A, B and C with affixes  $z_1, z_2$  and  $(1-i)z_1+iz_2$  are the vertices of
  - A) an isosceles triangle

B) an equilateral triangle

C) a right triangle

- D) an obtuse angled triangle
- Given that the two curves  $\arg(z) = \frac{\pi}{6}$  and  $|z 2\sqrt{3}i| = r$  intersect in two distinct points then 35.
  - A) r > 3
- B) r = 6
- C) 0 < r < 3
- D)  $[r] \neq 2$
- 36. Let a,b,x and y be real numbers such that a-b = 1 and  $y \ne 0$ . If the complex number z = x+iy satisfies  $\operatorname{Im}\left(\frac{az+b}{z+1}\right) = y$ , then which of the following is (are) possible value (s) of x?
  - A)  $1 \sqrt{1 + y^2}$

- B)  $-1-\sqrt{1-y^2}$  C)  $1+\sqrt{1+y^2}$  D)  $-1+\sqrt{1-y^2}$
- If from a point P representing the complex numebr  $z_1$  on the curve |z| = 2, pair of tangents are drawn to the curve |z|=1, meeting at point  $Q(z_2)$  and  $R(z_3)$ , then
  - A) complex number  $\frac{z_1 + z_2 + z_3}{2}$  will on the curve |z| = 1

B) 
$$\left(\frac{4}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right) \left(\frac{4}{z_1} + \frac{1}{z_2} + \frac{1}{z_3}\right) = 9$$

C) 
$$arg\left(\frac{z_2}{z_3}\right) = \frac{2\pi}{3}$$

D) orthocentre and circumcentre of ΔPQR will coincide

### SECTION - V (Numerical Type - Upto two decimal place)

- 38. If  $z_1$  lies on the circle |z|=3 and  $x+iy=z_1+\frac{1}{z_1}$  then  $\frac{x^2}{100}+\frac{y^2}{64}=\frac{1}{k}$  then k is equal to
- 39. If z is any complex number satisfying  $|z-3-2i| \le 2$ , then the minimum value of |2z-6+5i| is

### SECTION VI - (Matrix match type)

40. Column - I Column-II

A) The curve represented by  $Re(z^2)=4$  is

p) a straight line

B) The curve represented by  $z^2 + \overline{z}^2 = 2$  is

- q) an ellipse
- C) The curve represented by  $||z-z_1|-|z-z_2||=\lambda, \lambda<|z_1-z_2|$  is
- r) a hyperbola

D) The curve represented by  $\operatorname{Im}\left(\frac{2z+1}{iz+1}\right) = -2$  is

s) a circle

A) A-R, B-R, C-R, D-P

B) A-P, B-R, C-R, D-P

C) A-R,R, B-R, C-R, D-P

D) A-R, B-R, C-R, D-P, P