Lecture 7: Operations on Functions

We already know what a function is: a rule that takes an input (x) and gives back an output (y). Now, just like numbers can be added, subtracted, multiplied, or divided, we can do the same with **functions**.

1. Arithmetic Operations on Functions

If we have two functions, f(x) and g(x), we can create **new functions** like this:

Addition:

$$(f + g)(x) = f(x) + g(x)$$

• Subtraction:

$$(f - g)(x) = f(x) - g(x)$$

• Multiplication:

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

• Division:

$$(f/g)(x) = f(x)/g(x)$$
, but only if $g(x) \neq 0$

 \leftarrow For division, we also remove points where g(x) = 0 (since division by zero is not allowed).

Example 1: Addition

Suppose:

$$f(x) = x^2$$

$$g(x) = x$$

Then:

$$(f + g)(x) = f(x) + g(x) = x^2 + x$$

 \bigvee Domain of f(x) = all real numbers

 \bigvee Domain of g(x) = all real numbers

 \leftarrow So domain of (f + g)(x) = all real numbers

Example 2: Subtraction

$$f(x) = x^2 + 1$$

 $g(x) = x - 2$

Then:

$$(f-g)(x) = (x^2 + 1) - (x - 2) = x^2 - x + 3$$

Example 3: Multiplication

$$f(x) = x$$
$$g(x) = \sqrt{x}$$

Then:

$$(f \cdot g)(x) = f(x) \cdot g(x) = x \cdot \sqrt{x} = x\sqrt{x}$$

- Domain of $f(x) = (-\infty, \infty)$
- Domain of $g(x) = [0, \infty)$
 - \leftarrow Domain of (f · g)(x) = intersection = [0, ∞)

Example 4: Division

$$f(x) = x^2 - 1$$
$$g(x) = x - 1$$

Then:

$$(f/g)(x) = (x^2 - 1)/(x - 1)$$

Simplify numerator: $x^2 - 1 = (x - 1)(x + 1)$

So
$$(f/g)(x) = (x-1)(x+1)/(x-1) = x+1$$
, but only if $x \ne 1$

3. Special Notation

- $f^2(x)$ means $f(x) \cdot f(x)$
- $f^3(x)$ means $f(x) \cdot f(x) \cdot f(x)$
- In general: $f^n(x) = f(x)$ multiplied by itself n times

Example:

If $f(x) = \sin(x)$, then $f^2(x) = (\sin(x))^2 = \sin^2(x)$

✓ Summary:

- Functions can be added, subtracted, multiplied and divided
- Domains matter: new functions inherit the overlap of original domains, and division excludes points where denominator = 0.
- Special notation $f^2(x)$, $f^3(x)$, etc. means repeated multiplication of function values.

Composition of Functions

So far, we've seen arithmetic operations on functions (add, subtract, multiply, divide). Now comes a new type of operation: composition.

← This has no analog in arithmetic — it's something special to functions.

1. What is Composition?

Composition means: apply one function, then feed its result into another function.

Notation:

- $\bullet \quad (f \circ g)(x) = f(g(x))$
- Read as "f composed with g of x"

Steps:

- 1. Take x (from the domain of g).
- 2. Compute g(x).
- 3. Plug g(x) into f(x).

Simple analogy:

- Put your sock on first, then your shoe.
- The order matters!

2. Example 1

```
Let:
```

$$f(x) = x^3$$

$$g(x) = x + 4$$

Now, compute (f \circ g)(x):

$$(f \circ g)(x) = f(g(x))$$

= $f(x + 4)$
= $(x + 4)^3$

b Domain:

- $g(x) = x + 4 \rightarrow domain = (-\infty, \infty)$
- $f(x) = x^3 \rightarrow domain = (-\infty, \infty)$
- So domain of $f \circ g = (-\infty, \infty)$

3. Example 2

Let:

$$f(x) = x^2 + 3$$

$$g(x) = \sqrt{x}$$

Now:

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 + 3 = x + 3$$

b Domains:

- $g(x) = \sqrt{x} \rightarrow domain = [0, \infty)$
- $f(x) = x^2 + 3 \rightarrow domain = (-\infty, \infty)$
- But in composition, domain must be valid for both.

$$\leftarrow$$
 So domain of (f ∘ g)(x) = [0, ∞)

Notice: if we switch the order \rightarrow (g \circ f)(x) = g(f(x)) = g(x² + 3) = $\sqrt{(x² + 3)}$, which is totally different.

4. Key Idea: Order Matters

 $(f \circ g)(x) \neq (g \circ f)(x)$ in general.

- First sock then shoe ≠ first shoe then sock.
- That's why order of composition is important.

5. Decomposition of Functions

Sometimes a complicated function can be **broken into simpler functions**. This is called **decomposition**.

Example:

$$h(x) = (x+1)^2$$

We can write it as:

- g(x) = x + 1
- $f(x) = x^2$
- Then h(x) = f(g(x))

Another Example:

$$h(x) = \sqrt{2x + 5}$$

We can split it as:

- g(x) = 2x + 5
- $f(x) = \sqrt{x}$
- Then h(x) = f(g(x))

 ← Decomposition is useful because it makes complex functions easier to understand and work with.

Summary:

• Composition = plugging one function into another.

- $(f \circ g)(x) = f(g(x))$
- $\bullet \quad \text{Order matters} \to (f \, \circ \, g)(x) \text{ is usually different from } (g \, \circ \, f)(x).$
- Domain of $(f \circ g)$ = all x in domain of g for which g(x) is in domain of f.
- Complicated functions can be decomposed into simpler ones.

Function	g(x)	f(x)	composition
	Inside	Outside	
$(x^2+1)^{10}$	x ² +1	x ¹⁰	$(x^2+1)^{10}=f(g(x))$
sin³x	sinx	x^3	$sin^3x=f(g(x))$
1/(x+1)	x+1	1/x	1/(x+1) = f(g(x))
tan(x5)	x ⁵	tanx	$tan(x^5)=f(g(x))$

Classification of Functions

Functions can come in many types. Let's start with the basic ones you'll see most often.

1. Constant Function

 ← A function that always gives the same number, no matter what x is.

Example:

$$f(x) = 2$$

- f(1) = 2
- f(-7) = 2
- f(100) = 2
- Output never changes.

2. Monomial in x

 \leftarrow A monomial is of the form: $f(x) = c \cdot x^n$

- where c is a constant
- n is a nonnegative integer (0, 1, 2, 3, ...)

Examples of monomials:

- $f(x) = 5x^5$
- f(x) = 2x
- f(x) = 3 (because $x^0 = 1$, so constants are also monomials)
- X Not monomials:

- $f(x) = x^{-2}$ (negative power)
- $f(x) = \sqrt{x} = x^{(1/2)}$ (fractional power)

3. Polynomial in x

General form:

$$f(x) = a_0 + a_1x + a_2x^2 + ... + a \square x^n$$

- where a_0 , a_1 , a_2 ... $a\square$ are constants (called coefficients)
- n is a nonnegative integer

Examples:

- $f(x) = 4x^2 + 3x 1$
- $f(x) = 17x^3 + 4x^2 5$
- Polynomials are just combinations of terms like c·xn.

♥ Quick Summary Table					
Type of Function	Formula	Example	Key Idea		
Constant	f(x) = c	f(x) = 2	Always the same value		
Monomial	$f(x) = c \cdot x^n \ (n \ge 0)$	$f(x) = 5x^3$	Single power term		
Polynomial	$f(x) = a_0 + a_1 x + a_2 x^2 + + a_n x^n$	$f(x) = 3x^3 + 2x - 7$	Sum of monomials		