

Intro. a Ciencia de la Computación Práctica Calificada 4 Pregrado 2020-I Profesor Jorge Alvarado Revata

Lab 1.01

Indicaciones específicas:

- Esta evaluación contiene 7 páginas (incluyendo esta página) con 3 preguntas. El total de puntos son 20.
- El tiempo límite para la evaluación es 100 minutos.
- Escribe con lapicero de tinta permanente. Si respondes con lápiz no podrás presentar ningún reclamo por la corrección.
- Escribe con letra clara y legible, esto es parte de tu nota.
- Puedes utilizar las carillas de la izquierda del cuadernillo como borrador.
- Solo se calificará lo que escribas en las carillas de la parte derecha del cuadernillo.
- Al finalizar la prueba deberás entregar tu cuadernillo y el texto de la práctica.
- Durante el examen no podrás utilizar la computadora.

Las preguntas de la práctica evalúan el grado de desarrollo de las siguientes competencias:

- Para los alumnos de la carrera de Ciencia de la Computación a) Aplicar conocimientos de computación y de matemáticas apropiadas para la disciplina. (Usar)
- Para los alumnos de las carreras de Ingeniería a3) Capacidad de aplicar conocimientos de ingeniería (nivel 2)

Calificación:

Tabla de puntos (sólo para uso del profesor)

Question	Points	Score
1	6	
2	7	
3	7	
Total:	20	

1. (6 points) Dado el siguiente archivo libros.txt de un reciente inventario de libros (tabla 1). Genere un nuevo archivo menor-cuantia.txt que incluya solo el ISBN y el autor de los libros en español y que se publicaron antes del 2016.

Table 1: inventario-libros.txt

ISBN	Autor	Titulo		Publicacion
1020,	Ignacio Villa,	La medida de las cosas,	Spanish,	2015
2132,	Rosa Montero,	Cuentos eternos,	Spanish,	2017
2311,	Larson,	Calculus I,	English,	2012
9834,	Loomis,	Dibujo I,	Spanish,	2012
1456,	Apostol,	Calculus,	Spanish,	2017
2341,	Ha-Joon-Chang,	Economía,	Spanish,	2013

- Su solución debe incluir la creación manual del archivo libros.txt y su programa debe generar el archivo menor-cuantia.txt.
- Usted eliga el tipo de estructura de datos que usará para importar los elementos del archivo.
- El separador de datos entre los datos es el simbolo coma y las lineas se separan por saltos de línea.
- Utilice diccionarios o listas para importar la información.
- Genere el archivo con los datos que aparecen en la tabla 2.

Table 2: Compras-menores.txt

ISBN	Autor
1020,	Ignacio Villa
2311,	Larson
9834,	Loomis
2341,	Ha-Joon-Chang

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (2pts)	quiere (1pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correc-	las sentencias son cor-
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)
	(1pts)	sintáxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)
Archivos	Lee y escribe archivos	Lee o escribe archivos	No hace uso de lectura
	de forma óptima (2pts)	de forma parcial	ni escritura de archivos
		(0.5pts)	(0pts)

- 2. (7 points) Un simulacro de emergencia en un centro comercial ha obligado a las personas a agruparse en 5 grupos, cada fila representa un piso del centro comercial. En la matriz M se encuentran las edades de cada integrante de los grupos.
 - Ordene de menor a mayor todas las listas de edades de esta matriz.
 - Utilice un algoritmo de ordenacion explicado en clase.
 - Genere un diccionario con las listas ordenadas de la matriz tal como aparece en el ejemplo.
 - Utilice como llave de los diccionarios un texto tal como: "piso1", "piso2"...

```
M = [[67, 74, 22, 48, 86, 20, 91, 69, 4, 66],
[78, 44, 70, 88, 88, 100, 58, 15,73, 26],
[74, 60, 99, 42, 90, 48, 28,85, 88, 98],
[62, 76, 29, 54, 51, 49,63, 26, 25, 57],
[26, 30, 100, 8, 98,7, 73, 19, 48, 16]]

def ordenarmatriz(matriz):
    # ToDO
    return matriz
```

```
output:
{'piso1': [4, 20, 22, 48, 66, 67, 69, 74, 86, 91],
'piso2': [15, 26, 44, 58, 70, 73, 78, 88, 88, 100],
'piso3': [28, 42, 48, 60, 74, 85, 88,90, 98, 99],
'piso4': [25, 26, 29, 49, 51, 54,57, 62, 63, 76],
'piso5': [7, 8, 16, 19, 26, 30, 48, 73, 98, 100]}
```

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado
	que el enunciado re-	que el enunciado re-	requiere (0pts)
	quiere (4pts)	quiere (1.5pts)	
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de
	son correctas y no	sentencias son correc-	las sentencias son cor-
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)
	(1pts)	sintáxis (0.5pts)	
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la
	das las variables y fun-	de las variables y fun-	mitad de las variables y
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-
	(1pts)	(0.5 pts)	vas (0 pts)
Analiza	Analiza en forma pre-		No analiza o no se
	cisa la complejidad del		aproxima a la com-
	algoritmo (1pts)		plejidad del algoritmo
			(0pts)

3. (7 points) Una web de reservas de vuelo, quiere construir un visualizador de información de vuelos que permita al usuario ordenar y buscar información de vuelos por 3 criterios distintos. La información de los vuelos aparece a continuación. Construya una matriz con estos datos:

Table 3: Datos de Vuelo

VUELO	ORIGEN	DESTINO
2132	10	20
2311	20	30
1456	15	75
3256	25	35
6486	35	35
1488	90	15
1055	65	65
1363	33	77

- Permita al usuario indicar por cual columna será ordenada las filas de la matriz, use un algoritmo explicado en clase.
- Los valores para elegir la columna de ordenación serán: V, O, D.
- Solicite el valor a buscar y aplique busqueda binaria según la columna seleccionada de la matriz.
- Imprima la matriz ordenada por el criterio de ordenación.
- Imprima la posición de la fila donde se encuentra el elemento, caso contrario imprimir -1.

Listing 1: Ejemplo 2

```
Input:
Ingrese criterio: V
Matriz ordenada por Vuelos:
1055 65 65
1363 33 77
1456 15 75
1488 90 15
2132 10 20
2311 20 30
3256 25 35
6486 35 35
Ingrese el valor a buscar: 6486
Se encontro en la posicion: 7
```

La rúbrica para esta pregunta es:

Criterio	Logrado	Parcialmente Logrado	No Logrado	
Algoritmo	Es preciso, finito y	Es preciso, finito y hace	Hace menos de la mitad	
	hace exactamente lo	la mitad o más de lo	de lo que el enunciado	
	que el enunciado re-	que el enunciado re-	requiere (0pts)	
	quiere (4pts)	quiere (1.5pts)		
Sintáxis	Todas las sentencias	Mas de la mitad de las	Menos de la mitad de	
	son correctas y no	sentencias son correc-	las sentencias son cor-	
	hay errores de sintáxis	tas y no hay errores de	rectas (0pts)	
	(1pts)	sintáxis (0.5pts)		
Legible	El algoritmo es cor-	El algoritmo es correcto	El algoritmo es correcto	
	recto y el nombre de to-	y el nombre de la mitad	y el nombre de menos la	
	das las variables y fun-	de las variables y fun-	mitad de las variables y	
	ciones son descriptivas	ciones son descriptivas	funciones son descripti-	
	(1pts)	(0.5 pts)	vas (0 pts)	
Analiza	Analiza en forma pre-		No analiza o no se	
	cisa la complejidad del		aproxima a la com-	
	algoritmo (1pts)		plejidad del algoritmo	
			(0pts)	