

TEST REPORT No.: 17-1-0060101T11a

According to:

FCC Regulations

Part 15.205

Part 15.207

Part 15.209

Part 15.247

for

Viessmann Werke GmbH & Co. KG

Vitoconnect OT2

FCC ID: 2AIZ9-VC0218

Table of Contents

1. SUMMARY OF TEST RESULTS	3
1.1. Tests Measurement Overview According to US CFR Title 47, Subpart 15C	3
2. ADMINISTRATIVE DATA	5
2.1. Identification of the Testing Laboratory 2.2. Test Location 2.3. Organizational Items 2.4. Applicant's Details 2.5. Manufacturer's Details 2.6. Responsible for Technical Tests	5 5 5
3. EQUIPMENT UNDER TEST (EUT)	6
3.1. Certification Data of Main EUT declared by Applicant 3.2. ZigBee IEEE 802.15.4 Technical Data of Main EUT as Declared by Applicant 3.3. EUT: Type, S/N etc. and Short Descriptions used in this Test Report 3.4. Auxiliary Equipment (AE): Type, S/N etc. and Short Descriptions 3.5. EUT Set-ups 3.6. EUT Operating Modes 3.7. Configuration of Cables Used for Testing	
4. DESCRIPTION OF TEST SYSTEM SET-UP'S	10
4.1. Test System Set-Up for Conducted Measurements on Antenna Port 4.2. Test System Set-Up For Radiated Magnetic Field Measurements Below 30 MHz 4.3. Test System Set-Up For Radiated Electric Field Measurement 30 MHz To 1 GHz 4.4. Test System Set-Up For Radiated Electric Field Measurement Above 1 GHz 4.5. Test System Set-Up For AC Power-Line Conducted Emission Measurements	12 13 14
5. MEASUREMENTS	16
5.1. Duty-Cycle 5.2. RF Output Power (Conducted) 5.3. Power Spectral Density 5.4. 6 dB & 99% Bandwidth 5.5. 20 dBc Spurious Emissions (Conducted) 5.6. Radiated Field Strength Emissions Below 30 MHz 5.7. Radiated Field Strength Emissions 30 MHz - 1 GHz 5.8. Radiated Field Strength Emissions Above 1 GHz 5.9. Radiated Band-Edge Compliance 5.10. AC-Power Lines Conducted Emissions	
5.11. Measurement Uncertainties	
9. VERSIONS OF TEST REPORTS (CHANGE HISTORY)	VE DATA 5 of the Testing Laboratory 5 Items 5 tails 5 Details 5 Technical Tests 5 DER TEST (EUT) 6 ata of Main EUT declared by Applicant 6 Oz. 15.4 Technical Data of Main EUT as Declared by Applicant 7 N etc. and Short Descriptions used in this Test Report 8 syment (AE): Type, S/N etc. and Short Descriptions 8 ment (AE): Type, S/N etc. and Short Descriptions 9 Modes 9 of Cables Used for Testing 9 of TEST SYSTEM SET-UP'S 10 t-Up For Radiated Magnetic Field Measurements Below 30 MHz 12 t-Up For Radiated Electric Field Measurement 30 MHz To 1 GHz 13 t-Up For Radiated Electric Field Measurement Above 1 GHz 14 t-Up For Radiated Electric Field Measurement Above 1 GHz 14 t-Up For AC Power-Line Conducted Emission Measurements 15 CS 16 err (Conducted) 17 Density 19 andwidth 21

	Table of Annex					
Annex No.	Contents	Reference Description	Total Pages			
Annex 1	Test Results	CETECOM-TR17-1-0060101T11a-A1	46			
Annex 2	External Photographs of EUT	CETECOM-TR17-1-0060101T11a-A2	11			
Annex 3	Internal Photographs of EUT	CETECOM-TR17-1-0060101T11a-A3	5			
Annex 4	Test Set-Up Photographs	CETECOM-TR17-1-0060101T11a-A4	11			
	The listed attachments are an integral part of this report.					

1. Summary of Test Results

The test results apply exclusively to the test samples as presented in this Report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests.

The test results apply exclusively to the test samples as presented in this report. The CETECOM GmbH does not assume responsibility for any conclusions and generalizations taken in conjunction with other specimens or samples of the type of the item presented to tests. Also we refer on special conditions which the applicant should fulfill according §2.927 to §2.948, special focus regarding modification of the equipment and availability of sample equipment for market surveillance tests.

The presented $\underline{\underline{U}}$ nder $\underline{\underline{U}}$ nder $\underline{\underline{T}}$ est(in this report, hereinafter referred as EUT) : **Vitoconnect OT2** supports following technologies : **2.4 GHz RF Transceiver Modes.**

EUT supported Technologies which are not tested within this test report

EUT supported Technology	Test Report Reference
WLAN 802.11b/g/n(HT20) Modes: 2412 – 2462 MHz	CETECOM-TR17-1-0060101T06a

EUT supported Technologies which are tested within this test report

- ZigBee 2.4 GHz Modes: 2405 – 2480 MHz

Following test cases have been performed to show compliance with valid Part 15.205/15.207/15.209/15.247 of the FCC CFR Title 47 Rules, Edition 4th November 2016.

1.1. Tests Measurement Overview According to US CFR Title 47, Subpart 15C

		References and Limits		EUT	EUT	
Test cases	Port FCC Test limit		set-up	op. mode	Result	
	Intent	tional Radiator -	→ ZigBee 2.4 GHz Modes: 2405 –	2480 MI	łz	
Timing Of Transmitter (Pulsed Operation) + Duty Cycle	Antenna terminal (conducted)	\$15.35 + ANSI C63.10:2013	+ ANSI No Limit Criteria		1	PERFORMED for Information only
6 dB Bandwidth	Antenna terminal (conducted)	§15.247(a)(2)	≥ 500 kHz for DTS systems	1	1	PASS
99% Occupied Bandwidth	Antenna terminal (conducted)	2.1049(h)	(h) 99% Power bandwidth		1	PERFORMED for Information only
Transmitter Frequency Stability	Antenna terminal (conducted)		Operation within designated operational band	1	1	NOT PERFORMED
Transmitter Peak Output Power	Antenna terminal (conducted)	§15.247(b)(3)	1 W (Peak) (for Antenna Gain < 6 dBi)	1	1	PASS
Transmitter Peak Output Power EIRP	Antenna terminal (conducted + Antenna Gain	§15.247(b)(4)	< 4 Watt EIRP (for Antenna Gain < 6 dBi) if Antenna directional Gain > 6dBi reduction of Max. power by the amount in dB that the directional gain of the antenna exceeds 6 dBi	1	1	PASS
Power Spectral Density	Antenna terminal (conducted)	§15.247(e)	8dBm/3kHz Band (for Antenna Gain < 6 dBi) if Antenna directional Gain > 6dBi reduction of Max. power spectral density by the amount in dB that the directional gain of the antenna exceeds 6 dBi	1	1	PASS

Out-Of-Band RF- emissions + Band-Edge emissions	Antenna terminal (conducted)	§15.247 (d)	≥ 20 dBc/100 kHz Bandwidth	1	1	PASS
General field strength emissions within restricted	Enclosure + Inter-connecting	§15.247 (d)	≥ 20 dBc/100 kHz Bandwidth	2	1	PASS
bands + Band-Edge compliance radiated	cables (radiated)	\$15.205 + \$15.209	Restricted band limits + General field strength limits			
AC-Power Lines Conducted Emissions	AC-Power lines or Battery Charger	§15.207(a)	AC Power line conducted limits	2	1	PASS

Remark 1) :--

	RF-Exposure Evaluation (separation distance user to RF-radiating element greater 20cm)					
Test cases	Port	References & Limits		EUT	EUT op.	Result
		FCC Standard	Test Limit	set-up	mode	
Radio Frequency Radiation Exposure Requirements	Cabinet + Inter- connecting cables (radiated)	\$2.1091 \$2.1093 + KDB 865664 D02 RF Exposure Reporting v01r02	RF-Field Strength Limits: for Devices Used by the General Public (Uncontrolled Environment)		-1	Refer test report CETECOM GmbH Test report no.: - CETECOM-TR17- 1-0060101T09a

Dipl.-Ing. Niels Jeß Responsible for test section

M.Sc. Ajit Phadtare Responsible for test report

2. Administrative Data

2.1. Identification of the Testing Laboratory

Company name: CETECOM GmbH Address: Im Teelbruch 116

45219 Essen - Kettwig

Germany

Responsible for testing laboratory: Dipl.-Ing. Rachid Acharkaoui

Deputy: Dipl.-Ing. Niels Jeß

2.2. Test Location

2.2.1. Test laboratory "CTC"

Company name: see chapter 2.1. Identification of the Testing Laboratory

2.3. Organizational Items

Responsible for test report and

Project leader: M.Sc. Ajit Phadtare

Receipt of EUT: 2017-07-26

Date(s) of test: 2017-08-05 to 2017-10-03

Date of report: 2017-10-09

Version of template: 13.02

2.4. Applicant's Details

Applicant's name: Viessmann Werke GmbH & Co. KG

Address: Viessmannstraße 1

35108 Allendorf (Eder)

GERMANY

Contact: +49 (0) 6452 700

2.5. Manufacturer's Details

Manufacturer's name: PRETTL Electronics GmbH

Address: Robert-Bosch Str.10

01454 Radeberg GERMANY

Contact: +49 (0) 3528 456 233

2.6. Responsible for Technical Tests

Company name: ithinx GmbH

Address: Butzweilerhof Allee 4

50829 Cologne GERMANY

Contact Person: Mr. Jan Rüsen

Contact Details : +49 (0) 221 99589 422 | jan.ruesen@ithinx.io

3. Equipment Under Test (EUT)

3.1. Certification Data of Main EUT declared by Applicant

EUT Model		Vitoconnect OT2			
EUT Model Type					
EUT Applications	S	Wall mounted Thermostat for home applications for remote control of heating systems			
FCC ID		2AIZ9-VC0218			
	Additional Information: Onboard ZigBee 2.4 GHz Chip				
Onboard ZigBee 2.4 GHz Chip S		Silicon Labs EFR32MG1P232F256GM48-C0			
Chip Certification FCC ID Not Ce		Not Certified	Not Certified		
Number of Integr	ated Chips	1			
	Add	itional Information : S	Supported Technologies		
Technology	y Modes		Frequency Range	Remarks	
ZigBee 2.4 GHz	ZigBee 2.4 GHz		2405 MHz – 2480 MHz	refer chapter 3.2	
WLAN 2.4 GHz	WLAN 802.11b/g/n(HT20)		2412 MHz – 2462 MHz	not tested under this report	

3.2. ZigBee IEEE 802.15.4 Technical Data of Main EUT as Declared by Applicant

Vitoconnect OT2				
				
Wall mounted Thermostat for home applications for remote control of heating systems				
V005, BOM Rev-k				
Linux:0.10.0 STM	I:1.33.02 EFR32	v1.0		
Ember Node Test	Application v1.0			
ZigBee 2.4 GHz 2405 – 2480 MHz	⊠ Ch.16 17 18	19 20		ridth: 2 MHz g: 5 MHz
	cant's Declaration	Max. Rated Pow	er Values ((see below)
■ DSSS: Offset QP	PSK 250 Kbps			
Ch 11 to Ch 25 : 19	.5 dBm	Ch 26 : 5 dBr	n	
Onboard ZigBee 2.4	GHz PCB Anten	na		
-2 dBi (2400 MHz -	- 2500 MHz) (Acc	ording to Applicant's	Declaration)	
1 (ZigBee 2.4 GHz	System On-Chip)			
1 Onboard ZigBee	2.4 GHz PCB An	tenna: used for Z	igBee 2.4 (GHz
Putty Command Lin	ne			
AC/DC Adapter: PI	HIHONG Technolo	ogy Model:PSA		
	1 2 2 2			
■ Production	☐ Pre-Production	on	19	
				condensing)
				<i>O/</i>
□Yes	ĭ No			
		lowing technical	document	ts
				Total Pages
Vitoconnect OT2 /OPTO2				
Funktests EN300328 und FCC 15.x : Prüfaufbau und Durchführung			08/2017	46
	<u> </u>			
	Wall mounted The for remote control V005, BOM Rev-k Linux:0.10.0 STM Ember Node Test A ZigBee 2.4 GHz 2405 – 2480 MHz According to Appli DSSS: Offset QP Ch 11 to Ch 25: 19 Onboard ZigBee 2.4 -2 dBi (2400 MHz - 1 (ZigBee 2.4 GHz 1 Onboard ZigBee Putty Command Lir External AC/DC AC/DC Adapter: PI Input:100-240V 50- 500mA (12V) 100 x 100 x 30 mm 250 gm E Production Temperature: 0 °C t □ for normal use □ □ Yes ils refer Applicants □ Document (supplied □	Wall mounted Thermostat for home for remote control of heating system V005, BOM Rev-k Linux:0.10.0 STM:1.33.02 EFR32 Ember Node Test Application v1.0 ZigBee 2.4 GHz 2405 - 2480 MHz According to Applicant's Declaration DSSS: Offset QPSK 250 Kbps Ch 11 to Ch 25: 19.5 dBm Onboard ZigBee 2.4 GHz PCB Antender Company (According 12400 MHz - 2500 MHz) (According 12400 MHz) (According 12	Wall mounted Thermostat for home applications for remote control of heating systems V005, BOM Rev-k Linux:0.10.0 STM:1.33.02 EFR32 v1.0 Ember Node Test Application v1.0 ZigBee 2.4 GHz 2405 − 2480 MHz □ Ch. 11 12 13 14 15 □ Ch. 21 22 23 24 25 26 According to Applicant's Declaration Max. Rated Pow □ DSSS: Offset QPSK 250 Kbps Ch 11 to Ch 25: 19.5 dBm Onboard ZigBee 2.4 GHz PCB Antenna -2 dBi (2400 MHz − 2500 MHz) (According to Applicant's 1 (ZigBee 2.4 GHz System On-Chip) 1 Onboard ZigBee 2.4 GHz PCB Antenna: used for Z Putty Command Line □ External AC/DC Adapter: 12 VDC using AC/DC A AC/DC Adapter: PHIHONG Technology Model:PSA4 Input: 100-240V 50-60 Hz 0.5A Output: 12.0V 1.0 A 500mA (12V) 100 x 100 x 30 mm 250 gm □ Pre-Production □ Engineerin Temperature: 0 °C to +40°C Humidity: 10% to □ for normal use □ Special version for test execution □ Yes □ No ills refer Applicants Declaration & following technical Document (supplied by applicant) Vo 7 Date: 02/V0 7 Date:	Wall mounted Thermostat for home applications for remote control of heating systems V005, BOM Rev-k Linux:0.10.0 STM:1.33.02 EFR32 v1.0 Ember Node Test Application v1.0 ZigBee 2.4 GHz 2405 − 2480 MHz

3.3. EUT: Type, S/N etc. and Short Descriptions used in this Test Report

Short Descrip- tion*)	EUT	Type	Serial Number	Hardware Status	Software Status
EUT A	Vitoconnect OT2		GNV 7637415600222108	V005, BOM Rev-k	Linux:0.10.0 STM:1.33.02 EFR32 v1.0 Ember Node Test Application v1.0
EUT B	Vitoconnect OT2		GNV 7637415600219108	V005, BOM Rev-k	Linux:0.10.0 STM:1.33.02 EFR32 v1.0 Ember Node Test Application v1.0

^{*)} EUT short description is used to simplify the identification of the EUT in this test report.

3.4. Auxiliary Equipment (AE): Type, S/N etc. and Short Descriptions

011111111	mary Equipment (1	112). Type, 5/11 etc. at	ia phore beser	Perons	
AE short descrip- tion *)	Auxiliary Equipment	Туре	S/N serial number	HW hardware status	SW software status
AE 1	AC/DC Adapter	PHIHONG Technology MODEL:PSAC12R-120 100-240 VAC 50-60 Hz 0.5A to 12.0 VDC1.0 A	P70101371A1	Length: 1.47m	
AE 2	Optolink Box with RJ10 UART Connection	Optolink Kopf V-Gegenstück			
AE 3	Optolink –USB Cable	E238846 AWM 2725 24AWG/2C HIGH SPEED USB2.0		Length: 3 m	
AE 4	Open Therm Loop Cable	Shielded		Length: 12 m	
AE 5	RJ45 Ethernet -USB Adapter	LogiLink UA0174			
AE 6	RJ45 Ethernet Cable (Blue Colour)	CAT6A S-STP AWG26 100 ohm		Length: 2.5 m	
AE 7	RJ45 Ethernet Cable (Gray Colour)	UTP CAT5 PATCH		Length: 1.2 m	
AE 8	WLAN 2.4GHz Router	FRITZ!Box 4020 Artikel-Nr.: 200 2713	J126.564.A0.05 0.867	SSID: FRITZ!Box 4020 FA	
AE 0	WLAN 2.4GHz Router Charger	I.T.E: Power Supply Type:FW8009/EU/12 230 VAC to 12 VDC	AVM311P0W1 05	Length: 1.4 m	
AE 9	Test Laptop ithinx GmbH HW extern 1	Lenovo ThinkPad TYPE: 7470-A95 P/N: 44C9633	R8-ZTB09 09/08		Windows 7 Professional (64 Bit) Atheros Radio Test 2 (ART2- GUI)

^{*)} AE short description is used to simplify the identification of the auxiliary equipment in this test report.

3.5. EUT Set-ups

EUT set-up no.*)	Combination of EUT and AE	Remarks
set. 1	EUT A + AE 1 + AE 5 + AE 6 + AE 7 + AE 8 + AE 9	Conducted Measurements
	[AE 9: was only used to activate test mode using test software]	[ZigBee 2.4 GHz Connector losses are corrected in measurements] [Unused WLAN 2.4 GHz Connector was terminated using 50 Ω during ZigBee 2.4 GHz measurements]
set. 2	EUT B + AE 1 + AE 2 + AE 3 + AE 4 (+ AE 5 + AE 6 + AE 7 + AE 8 + AE 9) [AE 5 + AE 6 + AE 7 + AE 8 + AE 9: were only used to activate test mode using test software & were kept out of the test chamber during tests]	Radiated Measurements AC-Power Lines Emissions

^{*)} EUT set-up no. is used to simplify the identification of the EUT set-up in this test report.

3.6. EUT Operating Modes

•	3.0. EUI U	peraung Modes	
	EUT operating mode no.*1)	Description of operating modes	Additional information
	op. 1	TX-Fixed Channel (Modulated) ZigBee 2.4 GHz Modes*	For ZigBee 2.4 GHz Modes tests are carried out with different Channels Modulation Data Rate combinations with help of Putty Command Line Software The EUT was put to Fixed Channel (Modulated) Continuous transmissions mode with help of Putty Command Line Software (Channel Type Channel Frequency Power Settings) Lowest Channel :11: 2405 MHz +19.5 dBm Middle Channel :18: 2440 MHz + 19.5 dBm Highest Channel:26: 2480 MHz +5 dBm ZigBee 2.4 GHz Data Rate 250Kbps *Other supported wireless technologies were put in idle mode using special test software
		OpenTherm & Optolink Communication Loop Mode	Following modes were activated with help of Putty Command Line Bidirectional OpenTherm & Optolink Communication Loop was activated between OT-Master & OT-Slave. In order to simulate the worst case the processor load was set to 25%.

3.7. Configuration of Cables Used for Testing

Cable number	Description	Connections	Cable length
Cable 1			

4. Description of Test System Set-Up's

4.1. Test System Set-Up for Conducted Measurements on Antenna Port

Conducted Set-up W1

Conducted RF-Setup 1

General description:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to the power meter (3) for conducted power measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings.

Schematic:

Testing method:

ANSI C63.10:2013.

KDB 558074 D01 DTS Meas.Guidance v04

Used Equipment

Passive Elements

Test Equipment

Remark:

■ 10 dB Attenuator

☒ Power Meter

■ Low loss RF-

☑ DC-Power Supply

See List of equipment under each test case and chapter 6 for calibration info

cables

■ Spectrum-Analyser

Measurement uncertainty

See chapter 5.11

Conducted Set-up W2

Conducted RF-Setup 2

General description:

The EUT's RF-signal is coupled out by a suitable antenna coupling connector (1). The signal is first attenuated (2) then connected to spectrum-analyzer (4) for RF-conducted measurements. The specific attenuation loss is determined prior to the measurement within a set-up attenuation measurement. These are then taken into account by correcting the measurement readings of the spectrum-analyzer.

Schematic:

Testing method: ANSI C63.10:2013,

KDB 558074 D01 DTS Meas.Guidance v04

Used Equipment Passive Elements Test Equipment Remark:

■ 10 dB Attenuator
 ■ Power Meter
 ■ Low loss RF ■ DC-Power Supply
 See List of equipment under each test case and chapter 6 for calibration info

cables
■ Spectrum-Analyser

■ Spectrum-Anaryse

Measurement uncertainty See chapter 5.11

4.2. Test System Set-Up For Radiated Magnetic Field Measurements Below 30 MHz

Specification: ANSI C63.4-2014 §5.3, §8.2.1, §8.3.1.1+§8.3.2.1, ANSI C63.10-2013 chapter

6.4 (§6.4.4.2)

General Description: Evaluating the radiated field emissions are done first by an exploratory emission measurement and a final measurement for most critical frequencies determined.

The loop antenna was placed at 1 m height above ground plane and 3 m measurement distance from set-up for investigations. Because of reduced measurement distance, correction data were applied, as stated in chapter "General Limit - Radiated field strength emissions below 30 MHz". The tests are performed in the semi anechoic room recognized by the regulatory commission.

Schematic:

Testing method:

Exploratory, preliminary measurement

The EUT and it's associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (step 90° , range 0° to 360°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2orthogonal axis (defined operational position of EUT), the emission spectrum was recorded. The loop antenna was moved at least to 2-perpendicular axes (antenna vector in direction of EUT and parallel to EUT) in order to maximize the emissions. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a data reduction table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$

 $M = L_T - E_C$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position).

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

AF = Antenna factor

 $C_L = Cable loss$

D_F= Distance correction factor

 E_C = Electrical field – corrected value

 E_R = Receiver reading

 G_A = Gain of pre-amplifier (if used)

 $L_T = Limit$

M = Margin

All units are dB-units, positive margin means value is below limit.

Distance correction: Reference for applied correction (extrapolating) factors due to reduced

measurement distance:

ANSI C63.10:2013, $\S6.4.4.2$ - Equations (2) + (3) + (4)

4.3. Test System Set-Up For Radiated Electric Field Measurement 30 MHz To 1 GHz

Specification: ANSI C63.4-2014 chapter 8.2.3, ANSI C63.10-2013 chapter 6.5

General Description: Evaluating the field emissions have to be done first by an exploratory emissions

measurement and a final measurement for most critical frequencies. The tests are performed in a NSA-compliant semi anechoic room (SAR) recognized by the

regulatory commissions.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 0.8 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 90°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

Measurement antenna: horizontal and vertical, heights: 1,0 m and 1,82 m as worst-case determined by an exploratory emission measurements. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

 $E_C = E_R + AF + C_L + D_F - G_A$ (1)

 $M = L_T - E_C \tag{2}$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc. either on 10m OATS or 3m semi-anechoic room.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined.

Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself either over 3-orthogonal axis (not defined usage position) or 2-orthogonal axis (defined usage position). The measurement antenna height between 1 m and 4 m.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

AF = Antenna factor

 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 E_C = Electrical field – corrected value

 E_R = Receiver reading

 $G_A = Gain of pre-amplifier (if used)$

 $L_T = Limit$

M = Margin

All units are dB-units, positive margin means value is below limit.

4.4. Test System Set-Up For Radiated Electric Field Measurement Above 1 GHz

Specification: ANSI C63.4-2014 chapter 8.3, ANSI C63.10-2013 chapter 6.6.3.3 & 6.6.4

General Description:

Evaluating the emissions have to be done first by an exploratory emissions measurement and a final measurement for most critical frequencies. The tests are performed in a CISPR 16-1-4:2010 compliant fully anechoic room (FAR) recognized by the regulatory commission. The measurement distance was set to 3 meter for frequencies up to 18 GHz and 2 meter above 18 GHz. A logarithmic periodic antenna is used for the frequency range 30 MHz to 1 GHz. Horn antennas are used for frequency range 1 GHz to 40 GHz. The EUT is aligned within 3 dB beam width of the measurement antenna with three orthogonal axis measurements on the EUT.

Schematic:

Testing method:

Exploratory, preliminary measurements

The EUT and its associated accessories are placed on a non-conductive position manipulator (tipping device) of 1.55 m height which is placed on the turntable. By rotating the turntable (range 0° to 360°, step 15°) and the EUT itself either on 3-orthogonal axis (portable equipment) or 2-orthogonal axis (defined operational position of EUT) the emission spectrum and it's characteristics was recorded with an EMI-receiver, broadband antenna and software.

The measurements are performed in horizontal and vertical polarization of the measurement antennas. The results are documented in a diagram. Critical frequencies (low margin to limit) are saved within a table for further investigations. If various operating modes are supported, further investigations are made to find the worst-case of them. Also the interconnection cables and equipment position were varied in order to maximize the emissions.

Formula:

$$E_C = E_R + AF + C_L + D_F - G_A$$
 (1)

$$M = L_T - E_C \tag{2}$$

Final measurement on critical frequencies

Based on the exploratory measurements, the most critical frequencies are re-measured by maintaining the EUT's worst-case operation mode, cable position, etc.

First a frequency zoom around the critical frequency is done to locate the frequency more precisely. After this step, for all identified critical frequencies, the maximum peak was determined. Following parameters were varied: the turntable angle continuously in the range 0 to 360 degree, the EUT itself over 3-orthogonal axis and the height for EUT with large dimensions.

On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out. On the determined worst-case position, a final measurement with necessary bandwidth and detector according standard has been carried out.

 E_C = Electrical field – corrected value

 $E_R = Receiver reading$

M = Margin

 $L_T = Limit$

AF = Antenna factor

 $C_L = Cable loss$

 D_F = Distance correction factor (if used)

 $G_A = Gain of pre-amplifier (if used)$

All units are dB-units, positive margin means value is below limit.

4.5. Test System Set-Up For AC Power-Line Conducted Emission Measurements

Specification: ANSI C63.4-2014 chapter 7, ANSI C63.10-2013 chapter 6.2

General Description: The radio frequency voltage conducted back into the AC power line in the frequency

range 150 kHz to 30 MHz has to be investigated. Compliance should be tested by measuring the radio frequency voltage between each power line and ground at the power terminals in the stated frequency range.

A 50 Ohm / 50 µH line impedance stabilization network (LISN) is used coupling the interface to the measurement equipment. The EUT power input leads are connected through the LISN to the AC-power source. The LISN enclosure is electrically connected to the ground plane. The measuring instrument is connected to the coaxial output of the LISN.

Tabletop devices were set-up on a 80 cm height above reference ground plane, floor standing equipment 10 cm raised above ground plane. Measurements have been performed on each phase line and neutral line of the devices AC-power lines. The EUT was power supplied with 110 V/60 Hz. The EUT was tested in the defined operating mode and installed (connected) to accessory equipment according the general description of use given by the applicant.

Schematic:

Only schematic view, we refer to figure 6, 7 and 8 of ANSI C63.4-2009 for more details.

Testing method:

Exploratory, preliminary measurements as a first step, determines the worst-case phase line (neutral or phase) as well as the most critical operating mode of the equipment. A complete frequency-sweep with PK-Detector is performed on each current-carrying conductor.

Final testing for power phases and critical frequencies (Margin to AV- or QP limit lower than 3 dB) as a second step includes measurements with receivers detector set to Quasi-Peak and Average.

Formula:

 $V_C = V_R + C_L \quad (1)$ $M = L_T - V_C \qquad (2)$

V_C = measured Voltage –corrected value

 V_R = Receiver reading

 $C_L = Cable loss$ M = Margin $L_T = Limit$

Values are in dB, positive margin means value is below limit.

5. Measurements

5.1. Duty-Cycle

5.1.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

		•	`	Rel. humidity: (45±15)%			
Ambient Climatic conditions Ten			Temperatu	re: (22±2)°C	Ref. fluffluffy: (45±1		
test site	□ 441 EMISAR	□ 348 EI	MI cond.	□ 443 EMI FAR	■ 347 Radio.lab.	□ 337 OATS	
equipment	□ 331 HC 4055	□396 Tl	nermo				
spectr. analys.	□ 584 FSU	□ 598 FS	SEM	□ 264 FSEK	区 611 TS8997	≅ 683 FSU 26	
antenna meas	□ 574 BTA-L	□ 289 C	BL 6141	□ 608 HL 562	□ 133 EMCO3115	□ 302 BBHA9170	
antenna meas	□ 123 HUF-Z2	□ 132 H	UF-Z3	□ 030 HFH-Z2			
antenna subst	□ 071 HUF-Z2	□ 020 El	MCO3115	□ 063 LP 3146	□ 303 BBHA9170		
power meter	□ 009 NRV	□ 010 U	RV5-Z2	□ 011 URV5-Z2	☑ 611 TS8997		
Signalgener.	□ 008 SMG	□ 140 SI	MHU	□ 263 SMP04			
power meter	□ 262 NRV-S	□ 266 N	RV-Z31	□ 265 NRV-Z33	□ 261 NRV-Z55	□ 356 NRV-Z1	
multimeter	☐ 341 Fluke 112						
DC power	□ 086 LNG50-10	□ 087 E	A3013	□ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	☐ Integrated battery
line voltage	■ 120 V AC/ 60 Hz public mains to AE			1	□ 060 24 V DC		
otherwise		□ K4 Ca	able				

Method of Measurement:	⊠ conducted		☐ radiated		
Maximum Rated Conducted Output Power:	Ch 11: 19.5 dBm		Ch 26:5 dBm		
Single Antenna Assembly Gain (G):	-2 dBi				
Beamforming Gain (Y):	0 dBi				
Duty-Cycle Factor:	Near 100% (test purposes only)				

A special firmware program is used for test purposes. In contrast to normal operating mode a higher duty-cycle is set in order to facilitate the measurements. This is maximized at the extent possible.

The necessary duty-cycle correction factor is determined on nominal conditions on channel for all modes. It is assumed that no noticeable changes occur when tested on other channels or climatic conditions.

5.1.2. Duty-Cycle Results:

DUTY-CYCLE Measurement							
Set-up No	o.: 1	Op. Mode: 1					
ZigBee 2.4 GHz	Duty Cycle $x = \frac{Tx_{on}}{Tx_{on} + T}$	$\frac{n}{Tx_{off}}$ * 100	Duty Cycle Correction-Factor: 100log(1/DC)				
Worst Case Data Rate Remark 1	(%)		(dB)				
ZigBee 2.40	GHz Mode 2 MHz 250 Kbps	Ch 11 & Ch 18: 19	.5 dBm / Ch 26: 5dBm				
250 Kbps	100		0.00				
Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1							

5.1.3. Duty-Cycle Verdict:

- ☐ The results were corrected in order to evaluate for worst-case result each time when average values are necessary for example average radiated emissions or similar
- ☑ No correction necessary: Duty-Cycle > 98%

5.2. RF Output Power (Conducted)

5.2.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

Ambient Climatic conditions Temperatur				re: (22±	·2)°C	Rel. humidity: (45±15)%				
test site	□ 441	EMI SAR	□ 348 1	EMI cond.	□ 443	EMI FAR	≥ 347	Radio.lab.	□ 337 OATS	
equipment	□ 331	HC 4055	□ 396 7	Гhermo						
spectr. analys.	□ 584	FSU	□ 598 1	FSEM	□ 264	FSEK	≥ 611	TS8997	■ 683 FSU 26	
antenna meas	□ 574	BTA-L	□ 289 (CBL 6141	□ 608	HL 562	□ 133	EMCO3115	□ 302 BBHA9170	
antenna meas	□ 123	HUF-Z2	□ 132 1	HUF-Z3	□ 030	HFH-Z2				
antenna subst	□ 071	HUF-Z2	□ 020 1	EMCO3115	□ 063	LP 3146	□ 303	BBHA9170		
power meter	□ 009	NRV	□ 010 l	URV5-Z2	□ 011	URV5-Z2	≥ 611	TS8997		
Signalgener.	□ 008	SMG	□ 140 S	SMHU	□ 263	SMP04				
power meter	□ 262	NRV-S	□ 266 I	NRV-Z31	□ 265	NRV-Z33	□ 261	NRV-Z55	□ 356 NRV-Z1	
multimeter	□ 341	Fluke 112								
DC power	□ 086	LNG50-10	□ 087 1	EA3013	□ 354	NGPE 40	□ 349	car battery	☐ 350 Car battery	☐ Integrated battery
line voltage	■ 120 V AC/ 60 Hz public mains to AE			□ 060 24 V DC						
otherwise 🗷 K4 Cable			☑530 10dB Attenuator							

5.2.2. Requirements & Limits:

FCC	☑ §15.247(b) (3) (4)
ANSI	☑ C63.10-2013
KDB Guidance no.	 ■ KDB 558074 D01 DTS Meas.Guidance v04 □ KDB 662911 D01 Multiple Transmitter Output v02r01 (MIMO, Smart-antenna)
Limits	 ☑ Frequency Band 2400-2483.5 MHz ☑ Digital Modulation Techniques System: maximum conducted power shall not exceed 1 W if Antenna Gain < 6 dBi if Antenna Gain > 6 dBi maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi if MIMO Antennas: directional Antenna Array Gain = 10 log (No. Antennas) + Highest Antenna Gain amongst total Antennas

5.2.3. RF Output Power (Peak) Measurement Settings:

Method of Measurement:	⊠ conducted □ radiated			
Maximum Rated Conducted Output Power:	Ch 11: 19.5 dBm	Ch 11: 19.5 dBm Ch 18: 19.5 dBm Ch 26		
Single Antenna Assembly Gain (G):	-2 dBi			
Beamforming Gain (Y):	0 dBi			
Duty-Cycle Factor:	Refer Chapter 5.1			
KDB Guidance:	KDB 558074 D01 DTS Meas.Guidance v04)4
Power Measurement Type:	Bandwidth Integration using Spectrum Analyzer			

5.2.4. RF Output Power (Peak) Results:

5.2.4. Kr Output Po	5.2.4. RF Output Power (Peak) Results:							
Test Settings								
	Model B.W. Data Rate Channel Power Settings							
ZigBee 2	ZigBee 2.4GHz Mode 2 MHz 250 Kbps Ch 11 & Ch 18: 19.5 dBm / Ch 26: 5 dBm							
TX-Fixed Channel (Modulated)								
		RF Peak Output Power (Conducted) [dBm]						
Test conditio	ons: (Set. 1, Op. 1)	Lowest Channel	Highest Channel					
	, , , ,	Channel No.11	Channel No.18	Channel No.26				
		2405 MHz	2440 MHz	2480 MHz				
T _{NOM} = 20 °C	V _{NOM} = 12 V DC (using AE 1)	22.57	22.37	7.98				
Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1								

5.2.5. RF Output Power (Peak) Verdict: Compliant

5.2.6. RF Output Power (RMS) Measurement Settings:

Method of Measurement:	区 conducted		☐ radiated		
Maximum Rated Conducted Output Power:	Ch 11: 19.5 dBm	Ch 18:1	9.5 dBm	Ch 26:5 dBm	
Single Antenna Assembly Gain (G):	-2 dBi	-2 dBi			
Beamforming Gain (Y):	0 dBi				
Duty-Cycle Factor: Refer Chapter 5.1					
KDB Guidance:	KDB 558074 D01 DTS Meas.Guidance v04				
Power Measurement Type: Bandwidth Integration using Spectrum Analyzer				alyzer	

5.2.7. KF Output Po	wer (RMS) Results:							
Test Settings								
Mode B.W. Data Rate Channel Power Settings								
ZigBee 2.4GHz Mode 2 MHz 250 Kbps Ch 11 & Ch 18: 19.5 dBm / Ch 26: 5 dBm								
TX-Fixed Channel (Modulated)								
		RF RMS Output Power (Conducted) [dBm]						
Test conditio	ons: (Set. 1, Op. 1)	Lowest Channel	Highest Channel					
	, , , , ,	Channel No.11	Channel No.18	Channel No.26				
		2405 MHz	2440 MHz	2480 MHz				
T _{NOM} = 20 °C	V _{NOM} = 12 V DC (using AE 1)	18.7	18.6	4.3				
Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1								

5.2.8. RF Output Power (RMS) Verdict: Compliant

5.3. Power Spectral Density

5.3.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

Ambient Climatic conditions Temperatur			rre: (22±2)°C Rel. humidity: (45±15			midity: (45±1	5)%			
test site	□ 441	EMI SAR	□ 348	EMI cond.	□ 443	EMI FAR	≥ 347	Radio.lab.	□ 337 OATS	
equipment	□ 331	HC 4055	□ 396	Thermo						
spectr. analys.	□ 584	FSU	□ 598	FSEM	□ 264	FSEK	≥ 611	TS8997	№ 683 FSU 26	
antenna meas	□ 574	BTA-L	□ 289	CBL 6141	□ 608	HL 562	□ 133	EMCO3115	□ 302 BBHA9170	
antenna meas	□ 123	HUF-Z2	□ 132	HUF-Z3	□ 030	HFH-Z2				
antenna subst	□ 071	HUF-Z2	□ 020	EMCO3115	□ 063	LP 3146	□ 303	BBHA9170		
power meter	□ 009	NRV	□ 010	URV5-Z2	□ 011	URV5-Z2	≥ 611	TS8997		
Signalgener.	□ 008	SMG	□ 140	SMHU	□ 263	SMP04				
power meter	□ 262	NRV-S	□ 266	NRV-Z31	□ 265	NRV-Z33	□ 261	NRV-Z55	□ 356 NRV-Z1	
multimeter	□ 341	Fluke 112								
DC power	□ 086	LNG50-10	□ 087	EA3013	□ 354	NGPE 40	□ 349	car battery	☐ 350 Car battery	☐ Integrated battery
line voltage	■ 120 V AC/ 60 Hz via public mains to A			AE 1						
otherwise			□530 10dB Attenuator							

5.3.2. Requirements & Limits:

FCC	☑ §15.247(e)
ANSI	☑ C63.10-2013
KDB Guidance no.	 ■ KDB 558074 D01 DTS Meas.Guidance v04 □ KDB 662911 D01 Multiple Transmitter Output v02r01 (MIMO, Smart-antenna)
Limits	 ☑ Frequency Band 2400-2483.5 MHz ☑ Digital Modulation Techniques System: maximum conducted power spectral density shall not be greater than 8 dBm in any 3 kHz band if Antenna Gain < 6 dBi if Antenna Gain > 6 dBi maximum conducted power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi if MIMO Antennas: directional Antenna Array Gain = 10 log (No. Antennas) + Highest Antenna Gain amongst total Antennas

5.3.3. Power Spectral Density (Peak) Measurement Settings:

Method of Measurement:	⊠ conducted □ radiated					
Maximum Rated Conducted Output Power:	Ch 11: 19.5 dBm	9.5 dBm Ch 18: 19.5 dBm Ch 26: 5				
Single Antenna Assembly Gain (G):	-2 dBi					
Beamforming Gain (Y):	0 dBi					
Duty-Cycle Factor:	Refer Chapter 5.1					
KDB Guidance:	KDB 558074 D01 DTS	Meas.Gui	dance v04			
Power Measurement Type:	Bandwidth Integration	using Spec	trum Analyz	er		
Center Frequency	Nominal channel frequency					
Span	530% higher than the EBW	measured bef	ore			
Resolution Bandwidth (RBW)	> 3 kHz (at least 3 times RBV	V) - pls. see d	liagram			
Video Bandwidth (VBW)	> 10 kHz - pls. see diagram					
Sweep time	coupled					
Detector	Peak, Max hold mode for method PKPSD or RMS method AVGPSD					
Sweep Mode	Repetitive mode, allow trace to stabilize (PKPSD) or single (AVGPSD)					
Addition of correction factors	of correction factors external measuring set-up path-loss					

5.3.4. Power Spectral Density (Peak) Results:

5.5.4. Power Spectral Density (Peak) Results:							
Test Settings							
Mode B.W. Data Rate Channel Power Settings							
ZigBee 2	2.4GHz Mode 2 MHz 2	250 Kbps Ch 11 & C	Ch 18: 19.5 dBm / Ch 2	26: 5 dBm			
TX-Fixed Channel (Modulated)							
	ctral Density (Peak) [o	dBm/3 kHz]					
Test conditio	ns: (Set. 1, Op. 1)	Lowest Channel	Highest Channel				
	, , ,	Channel No.11	Channel No.18	Channel No.26			
		2405 MHz	2440 MHz	2480 MHz			
T _{NOM} = 20 °C	V _{NOM} = 12 V DC (using AE 1)	-5.497	-5.717	-19.930			
Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1							

5.3.5. Power Spectral Density (Peak) Verdict: Compliant

5.4. 6 dB & 99% Bandwidth

5.4.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

Ambient Climatic conditions Temperatu				<u>:</u> 2)°C	Rel. humidity: (45±15)%			· · · · · ·		
test site	□ 441	EMI SAR	□ 348 EMI	cond.	□ 443	EMI FAR	× 347	Radio.lab.	□ 337 OATS	
equipment	□ 331	HC 4055	□ 396 The	rmo						
spectr. analys.	□ 584	FSU	□ 598 FSE	M	□ 264	FSEK	≥ 611	TS8997	№ 683 FSU 26	
antenna meas	□ 574	BTA-L	□ 289 CBI	6141	□ 608	HL 562	□ 133	EMCO3115	□ 302 BBHA9170	
antenna meas	□ 123	HUF-Z2	□ 132 HUI	F-Z3	□ 030	HFH-Z2				
antenna subst	□ 071	HUF-Z2	□ 020 EM0	CO3115	□ 063	LP 3146	□ 303	BBHA9170		
power meter	□ 009	NRV	□ 010 URV	V5-Z2	□ 011	URV5-Z2	≥ 611	TS8997		
Signalgener.	□ 008	SMG	□ 140 SMI	HU	□ 263	SMP04				
power meter	□ 262	NRV-S	□ 266 NRV	V-Z31	□ 265	NRV-Z33	□ 261	NRV-Z55	□ 356 NRV-Z1	
multimeter	□ 341	Fluke 112								
DC power	□ 086	LNG50-10	□ 087 EA3	013	□ 354	NGPE 40	□ 349	car battery	☐ 350 Car battery	☐ Integrated battery
line voltage	■ 120 V AC/ 60 Hz via public mains to AE 1				□ 060 24 V DC					
otherwise	se 🗵 K4 Cable 🗵 530 10dB Atte				10dB Attenu	uator				

5.4.2. Requirements & Limits:

FCC	☑ §15.247(a)(2)
ANSI	☑ C63.10-2013
KDB Guidance no.	 ☑ KDB 558074 D01 DTS Meas.Guidance v04 ☐ KDB 662911 D01 Multiple Transmitter Output v02r01 (MIMO, Smart-antenna)
Limits	 ☑ Frequency Band 2400-2483.5 MHz ☑ Digital Modulation Techniques System: minimum 6 dB bandwidth shall be at least 500 kHz

5.4.3. 6 dB & 99% Bandwidth Measurement Settings:

Method of Measurement:	区 conducted □ radiated					
Maximum Rated Conducted Output Power:	Ch 11: 19.5 dBm					
Single Antenna Assembly Gain (G):	-2 dBi					
Beamforming Gain (Y):	0 dBi					
Duty-Cycle Factor:	Refer Chapter 5.1					
KDB Guidance:	KDB 558074 D01 DTS	Meas.Guidance v04				
Measurement Type:	Spectrum Analyzer					
Center Frequency	Nominal channel frequency					
Span	2 x EBW of the Signal					
Resolution Bandwidth (RBW)	≥ 100 kHz					
Video Bandwidth (VBW)	≥ 3 x RBW					
Sweep time	Coupled					
Detector	Peak					
Trace Mode	Max Hold					
Sweep Mode	Auto couple					
Addition of correction factors	external measuring set-up par					
Bandwidth Measurements	Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. / Measurement function X dB with X set to 6 dB, Employ 99% OBW functions					

5.4.4. 6 dB Bandwidth Results:

5.4.4. 0 ub balluwiu	5.4.4. 0 db bandwiddi Results:						
Test Settings							
Mode B.W. Data Rate Channel Power Settings							
ZigBee 2.4GHz Mode 2 MHz 250 Kbps Ch 11 & Ch 18: 19.5 dBm / Ch 26: 5 dBm							
TX-Fixed Channel (Modulated)							
			6 dB Bandwidth [MHz	1]			
Test conditio	ns: (Set. 1, Op. 1)	Lowest Channel	Middle Channel	Highest Channel			
	, , ,	Channel No.11	Channel No.18	Channel No.26			
		2405 MHz	2440 MHz	2480 MHz			
T _{NOM} = 20 °C	NOM= 20 °C V _{NOM} = 12 V DC (using AE 1)		1.81	1.81			
Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1							

5.4.5. 6 dB Bandwidth Verdict: Compliant

5.4.6. 99% Bandwidth Results:

5.4.0. 99 76 Danuwiu	4.6. 99% Bandwidth Results:						
	Test Settings						
	Mode B.W. Data Rate Channel Power Settings						
ZigBee 2	2.4GHz Mode 2 MHz 2	250 Kbps Ch 11 & C	Ch 18: 19.5 dBm / Ch 2	26: 5 dBm			
, and the second se		ixed Channel (Modul					
	99% Bandwidth [MHz]						
Test conditio	ns: (Set. 1, Op. 1)	Lowest Channel	Middle Channel	Highest Channel			
	, , ,	Channel No.11	Channel No.18	Channel No.26			
		2405 MHz	2440 MHz	2480 MHz			
T _{NOM} = 20 °C	V _{NOM} = 12 V DC (using AE 1)	2.29	2.29	2.32			
Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1							

5.4.7. 99% Bandwidth Verdict: Performed

5.5. 20 dBc Spurious Emissions (Conducted)

5.5.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

Ambient Climatic conditions Temperature			re: (22±	-2)°C	Rel. humidity: (45±15)%			,		
test site	□ 441	EMI SAR	□ 348 E	MI cond.	□ 443	EMI FAR	≥ 347	Radio.lab.	□ 337 OATS	
equipment	□ 331	HC 4055	□ 396 T	hermo						
spectr. analys.	□ 584	FSU	□ 598 F	SEM	□ 264	FSEK	□ 611	TS8997	≅ 683 FSU 26	
antenna meas	□ 574	BTA-L	□ 289 C	BL 6141	□ 608	HL 562	□ 133	EMCO3115	□ 302 BBHA9170	
antenna meas	□ 123	HUF-Z2	□ 132 H	IUF-Z3	□ 030	HFH-Z2				
antenna subst	□ 071	HUF-Z2	□ 020 E	MCO3115	□ 063	LP 3146	□ 303	BBHA9170		
power meter	□ 009	NRV	□ 010 U	RV5-Z2	□ 011	URV5-Z2	□ 611	TS8997		
Signalgener.	□ 008	SMG	□ 140 SI	MHU	□ 263	SMP04				
power meter	□ 262	NRV-S	□ 266 N	RV-Z31	□ 265	NRV-Z33	□ 261	NRV-Z55	□ 356 NRV-Z1	
multimeter	□ 341	Fluke 112								
DC power	□ 086	LNG50-10	□ 087 E	A3013	□ 354	NGPE 40	□ 349	car battery	☐ 350 Car battery	☐ Integrated battery
line voltage	voltage ■ 120 V AC/ 60 Hz via public mains to AE 1					□ 060 24 V DC				
otherwise						10dB Attenu	ator			

5.5.2. Requirements & Limits:

FCC	☑ §15.247(d)
ANSI	☑ C63.10-2013
KDB Guidance no.	 ■ KDB 558074 D01 DTS Meas.Guidance v04 □ KDB 662911 D01 Multiple Transmitter Output v02r01 (MIMO, Smart-antenna)
Limits	 ☑ Frequency Band 2400-2483.5 MHz ☑ Digital Modulation Techniques System-Peak Conducted Power: In any 100 kHz bandwidth outside the frequency band in which the digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates
	compliance with the peak conducted power limits.

5.5.3. 20 dBc Spurious Emissions (Conducted) Measurement Settings:

Method of Measurement:	⋈ conducted		☐ radiated				
Maximum Rated Conducted Output Power:	Ch 11: 19.5 dBm						
Single Antenna Assembly Gain (G):	-2 dBi						
Beamforming Gain (Y):	0 dBi						
Duty-Cycle Factor:	Refer Chapter 5.1						
KDB Guidance:	KDB 558074 D01 DTS	Meas.Gui	idance v04				
Measurement Type:	Peak Conducted Power	using Spe	ctrum Analy	zer			
Center Frequency	Nominal channel frequency						
Span	2 x EBW of the Signal						
Resolution Bandwidth (RBW)	100 kHz						
Video Bandwidth (VBW)	≥ 3 x RBW						
Sweep time	Coupled						
Detector	Max Peak						
Trace Mode	Max Hold						
Sweep Mode	Auto couple						
Addition of correction factors	external measuring set-up pat	h-loss					
20 dBc Measurements	For an intentional radiator, the spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least tenth harmonic (25 GHz) of the highest fundamental frequency. These Spurious Emissions are compared with limit values lower than 20dB related to the RF-carrier power value						

5.5.4. 20 dBc Spurious Emissions (Conducted) Results:

.5.4. 20 dbc Spurious Emissions (Conducted) Results:								
Test Settings								
Mode B.W. Data Rate Channel Power Settings								
ZigBee 2.	ZigBee 2.4GHz Mode 2 MHz 250 Kbps Ch 11 & Ch 18: 19.5 dBm / Ch 26: 5 dBm							
TX-Fixed Channel (Modulated)								
	1 A-Fixeu		<u>u)</u>					
m	(0 + 1 0 + 1)	20 dDo Cn	unious Emissions (Conducted)				
Test condition	ons: (Set. 1, Op. 1)	20 aBc Sp	ourious Emissions (Conducted)				
		Lowest Channel	Middle Channel	Highest Channel				
T 20.8C	$V_{NOM}= 12 V DC$			<u> </u>				
$T_{NOM}=20$ °C	(using AE 1)	Channel No.11	Channel No.18	Channel No.26				
	` ~ ,	2405 MHz	2440 MHz	2480 MHz				
T D 10 1 D	(C 1 ()) [ID 1	4 5 54	17.10					
In Band Carrier Po	ower (Conducted) [dBm]	15.71	15.10	1.11				
20 dDo Courious I	Emigaiona Limita [dDo]	-4.29	-4.90	-18.89				
20 abc spurious i	Emissions Limits [dBc]	-4,29	-4.90	-10.09				
150 kHz 20 MHz 6	Snumious Emissions [dDo]	-35.72	-36.08	-35,54				
150 KHZ – 50 MHZ S	Spurious Emissions [dBc]	-33.12	-30.00	-33.34				
30 MHz 2 2 CHz 6	Spurious Emissions [dBc]	-34.24	-35.48	-33.72				
30 WHIZ - 2.0 GHZ S	spurious Emissions [uDC]	*34.24	-33,40	-33.12				
2 8 СН7 _ 25 СН7 8	Spurious Emissions [dRa]	-33.67	-31.33	-32.49				
2.8 GHz – 25 GHz Spurious Emissions [dBc] -33.67 -31.33 -32.49								
Remark 1: For further	· details please refer → Anne	ex 1: Test results CE	TECOM-TR17-1-	0060101T11a-A1				
Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1								

5.5.5. 20 dBc Spurious Emissions (Conducted) Verdict: Compliant

5.6. Radiated Field Strength Emissions Below 30 MHz

5.6.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

Ambient Climatic conditions Temperature: (22±2)°C				Rel. humidity: (45±15)%					
test site	× 441	EMI SAR		348	EMI cond.	□ 443 EMI FAR	□ 347 Radio.lab.	□ 337 OATS	□ 487 SAR NSA
receiver	□ 377	ESCS30	×	001	ESS				
Spectr. analys.	□ 489	ESU 40		598	FSEM	□ 264 FSEK	□ 747 FSU 26		
antenna meas	□ 574	BTA-L		549	HL025	□ 608 HL 562	□ 133 EMCO3115	□ 302 BBHA9170	□ 376 BBHA9120E
antenna meas	□ 123	HUF-Z2		132	HUF-Z3	□ 030 HFH-Z2			
antenna subst	□ 071	HUF-Z2	×	021	EMCO6502	□ 063 LP 3146	□ 303 BBHA9170		
signaling	□ 392	MT8820A		371	CBT32	□ 547 CMU	□ 594 CMW 500	□ 371 CBT32	
otherwise	□ 400	FTC40x15E		401	FTC40x15E	□ 110 USB LWL	☐ 482 Filt. Matrix	□ 378 RadiSense	
Signalgener.	□ 008	SMG		140	SMHU	□ 263 SMP04			
power meter	□ 262	NRV-S		266	NRV-Z31	□ 265 NRV-Z33	□ 261 NRV-Z55	□ 356 NRV-Z1	
DC power	□ 086	LNG50-10		087	EA3013	□ 354 NGPE 40	☐ 349 car battery	☐ 350 Car battery	□ 671 EA3013S
line voltage	voltage 🗵 120 VAC 60 Hz via public mains to AE 1								

5.6.2. Requirements & Limits:

5.0.2. Requirements & Limits.								
FCC	Part 15, Subpart 0	Part 15, Subpart C, §15.205 & §15.209						
ANSI	C63.10-2013	C63.10-2013						
Frequency Range	Field S	Field Strength Limit Distance Remarks						
[MHz]	$[\mu V/m]$	[dBµV/m]	[m]	Acmai as				
0.009 - 0.490	2400/f (kHz)	67.6 – 20Log(f) (kHz)	300	Correction factor used due to measurement distance of 3 m				
0.490 - 1.705	24000/f (kHz)	0/f (kHz) 87.6 – 20Log(f) (kHz)		Correction factor used due to measurement distance of 3 m				
1.705 – 30	30	29.5	30	Correction factor used due to measurement distance of 3 m				

5.6.3. Test Set-Up & Measurement Settings:

Signal link to test system (if used):		□ air link	□ cable connection	☑ none			
EUT-grounding		⊠ none	□ with power supply	□ additional connection			
Equipment set up		■ table top		☐ floor standing			
Climatic condition	s	Temperature: ((22±3°C)	Rel. humidity: (40±20)%			
	Scan data	■ 9 - 150 kHz RBW/VBW = 200 Hz Scan step = 80 Hz ■ 150 kHz - 30 MHz RBW/VBW = 9 kHz Scan step = 4 kHz □ other:					
EMI-Receiver or Analyzer Settings	Scan-Mode Detector Mode: Sweep-Time	図 6 dB EMI-Receiver Mode ☐ 3dB Spectrum analyser Mode Peak (pre-measurement) and Quasi-PK/Average (final if applicable) Repetitive-Scan, max-hold Coupled – calibrated display if continuous signal otherwise adapted to EUT's individual transmission duty-cycle					
General measureme	ent procedures	Please see chapter "Test system set-up radiated magnetic field measurements below 30 MHz"					

5.6.4. Radiated Field Strength Emissions – 9 kHz to 30 MHz Results:

	Radiated Field Strength Emissions – 9 kHz to 30 MHz											
$V_{NOM} = 20$ $V_{NOM} = 1$	O °C 2 V DC (using AE 1)	Technology: ZigBee 2.4GHz Mode	Technology: ZigBee 2.4GHz Mode					TX-Fixed Channel (Modulated)				
Diagram No.		Test Settings	OP- mode	Used	Verdict							
(Remark 1)	Mode B.W. Data	Rate Channel (Frequency) Channel Power	no.	no.	PK	AV	QP					
2.01	ZigBee 2 MHz 250	0 Kbps Channel 11:2405 MHz +19.5 dBm	2	1	×			PASS				
2.02	ZigBee 2 MHz 250	0 Kbps Channel 18:2440 MHz +19.5 dBm	2	1	×			PASS				
2.03	ZigBee 2MHz 2	50 Kbps Channel 26:2480 MHz +5 dBm	2	1	×			PASS				
Remark 1	l: For further details p	please refer → Annex 1: Test results CET	ECON	M-TR17	-1-00601	101T1	1a-A	1				

5.6.5. Correction factors due to reduced meas. distance (f< $30\ MHz$)

The used correction factors when the measurement distance is reduced compared to regulatory measurement distance, are calculated according Extrapolation formulas valid for EUT's with maximum dimension of 0.625xLambda. Formula 2+3+4 as presented in ANSI C63.10, Chapter 6.4.4 are used for the calculations of proper extrapolation factors.

Frequency -Range	f [kHz/MHz]	Lambda [m]	Far-Field Point [m]	Distance Limit accord. 15.209 [m]	1st Condition (dmeas< D _{near-field})	2'te Condition (Limit distance bigger d _{near-field})	Distance Correction accord. Formula
	9,00E+03	33333,33	5305,17		fullfilled	not fullfilled	-80,00
	1,00E+04	30000,00	4774,65		fullfilled	not fullfilled	-80,00
	2,00E+04	15000,00	2387,33		fullfilled	not fullfilled	-80,00
	3,00E+04	10000,00	1591,55		fullfilled	not fullfilled	-80,00
	4,00E+04	7500,00	1193,66		fullfilled	not fullfilled	-80,00
	5,00E+04	6000,00	954, 93		fullfilled	not fullfilled	-80,00
	6,00E+04	5000,00	795,78		fullfilled	not fullfilled	-80,00
	7,00E+04 8.00E+04	4285,71 3750,00	682, 09 596, 83	300	fullfilled fullfilled	not fullfilled	-80,00 -80,00
	9,00E+04	3333,33	590,83		fullfilled	not fullfilled not fullfilled	-80,00
kHz	1,00E+05	3000,00	477,47		fullfilled	not fullfilled	-80,00
KIIZ	1,25E+05	2400,00	381,97		fullfilled	not fullfilled	-80,00
	2,00E+05	1500,00	238,73		fullfilled	fulfilled	-78,02
	3.00E+05	1000.00	159, 16		fullfilled	fullfilled	-74,49
	4.00E+05	750,00	119,37		fullfilled	fullfilled	-74,49
	4,90E+05	612,24	97.44		fullfilled	fullfilled	-70,23
	5.00E+05	600.00	95,49		fullfilled	not fullfilled	-70,23
	6,00E+05	500,00	79,58		fullfilled	not fullfilled	-40,00
	7,00E+05	428,57	68,21		fullfilled	not fullfilled	-40,00
	8,00E+05	375,00	59,68		fullfilled	not fullfilled	-40,00
	9.00E+05	333.33	53.05		fullfilled	not fullfilled	-40,00
	1,00	300,00	47,75		fullfilled	not fullfilled	-40,00
	1,59	188.50	30,00		fullfilled	not fullfilled	-40,00
	2.00	150.00	23,87		fullfilled	fullfilled	-38,02
	3,00	100,00	15,92		fullfilled	fullfilled	-34,49
	4.00	75.00	11,94		fullfilled	fullfilled	-32,00
	5.00	60.00	9,55		fullfilled	fullfilled	-30,06
	6,00	50,00	7,96		fullfilled	fullfilled	-28,47
	7.00	42.86	6.82		fullfilled	fulfilled	-27, 13
	8.00	37.50	5,97		fullfilled	fullfilled	-25,97
	9.00	33.33	5,31		fullfilled	fullfilled	-24,95
	10,00	30,00	4,77	30	fullfilled	fullfilled	-24,04
	10,60	28,30	4,50		fullfilled	fullfilled	-23,53
	11,00	27,27	4,34		fullfilled	fullfilled	-23,21
MHz	12,00	25,00	3,98		fullfilled	fullfilled	-22,45
	13,56	22.12	3.52		fullfilled	fullfilled	-21,39
	15,00	20,00	3, 18		fullfilled	fullfilled	-20,51
	15,92	18,85	3,00		fullfilled	fullfilled	-20,00
	17,00	17,65	2,81		not fullfilled	fullfilled	-20,00
	18,00	16,67	2,65		not fullfilled	fullfilled	-20,00
	20,00	15,00	2,39		not fullfilled	fullfilled	-20,00
	21,00	14, 29	2,27		not fullfilled	fullfilled	-20,00
	23,00	13,04	2,08		not fullfilled	fullfilled	-20,00
	25,00	12,00	1,91		not fullfilled	fullfilled	-20,00
	27,00	11, 11	1,77		not fullfilled	fullfilled	-20,00
	29,00	10,34	1,65		not fullfilled	fullfilled	-20,00
	30,00	10,00	1,59		not fullfilled	fullfilled	-20,00

5.7. Radiated Field Strength Emissions 30 MHz - 1 GHz

5.7.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

Ambient Clima	Ambient Climatic conditions Temperature: (22±2)°C						Rel. humidity: (45±15)%				
test site	× 441	EMI SAR		348	EMI cond.	□ 443 EMI	I FAR	□ 347	Radio.lab.	□ 337 OATS	■ 487 SAR NSA
receiver	□ 377	ESCS30	×	001	ESS						
Spectr. analys.	□ 489	ESU 40		598	FSEM	□ 264 FSE	K	□ 747	FSU 26		
antenna meas	× 574	BTA-L		549	HL025	□ 608 HL 5	562	□ 133	EMCO3115	□ 302 BBHA9170	□ 376 BBHA9120E
antenna meas	□ 123	HUF-Z2		132	HUF-Z3	□ 030 HFH	I-Z2				
antenna subst	□ 071	HUF-Z2		020	EMCO3115	□ 063 LP 3	3146	□ 303	BBHA9170		
signaling	□ 392	MT8820A		371	CBT32	□ 547 CM	U	□ 594	CMW 500	□ 371 CBT32	
otherwise	□ 400	FTC40x15E		401	FTC40x15E	□ 110 USB	B LWL	¥ 482	Filt. Matrix	□ 378 RadiSense	
Signalgener.	□ 008	SMG		140	SMHU	□ 263 SMF	P04				
power meter	□ 262	NRV-S		266	NRV-Z31	□ 265 NRV	V-Z33	□ 261	NRV-Z55	□ 356 NRV-Z1	
DC power	□ 086	LNG50-10		087	EA3013	□ 354 NGF	PE 40	□ 349	car battery	☐ 350 Car battery	□ 671 EA3013S
line voltage	voltage ■ 120 VAC 60 Hz via public mains to AE 1										

5.7.2. Requirements & Limits:

77-12 Requirements & Emily.								
FCC	☐ Part 15 Subpart B, §15.109, class B Part 15 Subpart C, §15.209 @ frequencies defined in §15.205							
ANSI	☐ C63.4-2014 ☑ C63.10-2013							
Frequency Range	Field Strength Limit at 3 meters Measuring Distance							
[MHz]	QUASI Peak [μV/m]	QUASI-Peak [dBμV/m]						
30 - 88	100	40.0						
88 - 216	150	43.5						
216 - 960	200	46.0						
above 960	500	54.0						

5.7.3. Restricted Bands of Operation (FCC §15.205)

Frequency Range [MHz]	Frequency Range [MHz]	Frequency Range [MHz]	Frequency Range [GHz]		
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15		
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46		
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5		
4.20725-4.20775	37.5-38.25	1645.5-1646.5	9.3-9.5		
6.215-6.218	73-74.6	1660-1710	10.6-12.7		
6.26775-6.26825	74.8-75.2	1718.8-1722.2	13.25-13.4		
6.31175-6.31225	108-121.94	2200-2300	14.47-14.5		
8.291-8.294	123-138	2310-2390	15.35-16.2		
8.362-8.366	149.9-150.05	2483.5-2500	17.7-21.4		
8.37625-8.38675	156.52475-156.52525	2690-2900	22.01-23.12		
8.41425-8.41475	156.7-156.9	3260-3267	23.6-24.0		
12.29-12.293	162.0125-167.17	3332-3339	31.2-31.8		
12.51975-12.52025	167.72-173.2	3345.8-3358	36.43-36.5		
12.57675-12.57725	240-285	3600-4400			
13.36-13.41	322-335.4				
Remark: only spur	ious emissions are allowed within t	hese frequency bands not exceeding	ng the limits per §15.209		

5.7.4. Test Set-Up & Measurement Settings:

Test bet op a measurement bettings.									
Signal link to test sy	estem (if used):	□ air link	air link □ cable connection ■ none						
EUT-grounding		≥ none	■ none □ with power supply □ additional connection						
Equipment set up		≇ table top 0	0.8m height	☐ floor standing					
Climatic conditions		Temperature:	(22±3°C)	Rel. humidity: (40±20)%					
EMI-Receiver (Analyzer) Settings	Scan-Mode Detector RBW/VBW Mode: Scan sten	E 30 – 1000 MHz □ other: E 6 dB EMI-Receiver Mode □ 3 dB spectrum analyser mode Peak / Quasi-peak 100 kHz/300 kHz Repetitive-Scan, max-hold 80 kHz Coupled – calibrated display if continuous tx-signal otherwise adapted to EUT's individual duty-cycle							
General measureme	ent procedures	Please see chapter "Test system set-up for electric field measurement in the range 30 MHz to 1 GHz"							

5.7.5. Radiated Field Strength Emissions – 30 MHz to 1 GHz Results:

	Radiated Field Strength Emissions – 30 MHz to 1 GHz										
$T_{NOM} = 20$ $V_{NOM} = 1$	O °C 2 V DC (using AE 1)	Technology: ZigBee 2.4GHz Mode	Technology: ZigBee 2.4GHz Mode								
Diagram No.	Mode B.W. Data	Test Settings Rate Channel (Frequency) Channel Power	Set- up	OP- mode	Used	Verdict					
(Remark 1)	111000 21111 21111	Tame Chamer (Toquoney) Chamer Tonor	no.	no.	PK	AV	QP				
3.01	ZigBee 2 MHz 250	0 Kbps Channel 11:2405 MHz +19.5 dBm	2	1	×		×	PASS			
3.02	ZigBee 2 MHz 250	0 Kbps Channel 18:2440 MHz +19.5 dBm	2	1	×		×	PASS			
3.03	ZigBee 2MHz 2	50 Kbps Channel 26:2480 MHz +5 dBm	2	1	×		×	PASS			
Remark 1	: For further details i	please refer → Annex 1: Test results CET	ECON	и-TR17	-1-0060	101T	11a-A	1			

5.8. Radiated Field Strength Emissions Above 1 GHz

5.8.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

Ambient Clima	Ambient Climatic conditions Temperature: (22±2)°C						Rel. humidity: (45±15)%				
test site	□ 441	EMI SAR		348	EMI cond.	× 443	EMI FAR	□ 347	Radio.lab.	□ 337 OATS	□ 487 SAR NSA
receiver	□ 377	ESCS30		001	ESS						
Spectr. analys.	× 489	ESU 40		598	FSEM	□ 264	FSEK	□ 747	FSU 26		
antenna meas	× 574	BTA-L	×	549	HL025	□ 608	HL 562	□ 133	EMCO3115	፮ 302 BBHA9170	■ 376 BBHA9120E
antenna meas	□ 123	HUF-Z2		132	HUF-Z3	□ 030	HFH-Z2	□ 477	GPS		
antenna subst	□ 071	HUF-Z2		020	EMCO3115	□ 063	LP 3146	□ 303	BBHA9170		
signaling	□ 392	MT8820A		371	CBT32	□ <i>5</i> 47	CMU	□ 594	CMW 500	□ 371 CBT32	
otherwise	□ 400	FTC40x15E		401	FTC40x15E	□ 110	USB LWL	¥ 482	Filt. Matrix	□ 378 RadiSense	
Signalgener.	□ 008	SMG		140	SMHU	□ 263	SMP04				
power meter	□ 262	NRV-S		266	NRV-Z31	□ 265	NRV-Z33	□ 261	NRV-Z55	□ 356 NRV-Z1	
DC power	□ 086	LNG50-10		087	EA3013	□ 354	NGPE 40	□ 349	car battery	□ 350 Car battery	□ 611 E3632A
line voltage	☑ 120 VAC 60 Hz via public mains to AE 1										

5.8.2. Requirements & Limits:

· · · · · · · · · · · · · · · · · · ·	.2. Requirements & Limits.									
FCC	☐ Part 15 Subpart B. §15.109 class B E Part 15 Subpart C. §15.209 for frequencies defined in §15.205 E Part 15.247 (d)									
ANSI	☐ C63.4-2014 ☑ C63.10-2013	□ C63.4-2014								
Frequency		Field Strength Limit at 3 meters Measuring Distance								
[MHz]	Average [µV/m]	Average [dBµV/m]	Peak [μV/m]	Peak [dBμV/m]						
above 1 GHz for frequencies as defined in §15.205	500	54.0	5000	74.0						

5.8.3. Test Set-Up & Measurement Settings:

CIOICI TOS	.o.s. Test bet-op a Measurement bettings.								
Signal link	gnal link to test system (if used):		☐ cable connection	⊠ none					
EUT-groun	ding	≥ none	☐ with power supply	□ additional connection					
Equipment	set up	⊠ table top 1.5	5m height	☐ floor standing					
Climatic conditions Temperature: (22±3°C)			(22±3°C)	Rel. humidity: (40±20)%					
	Scan frequency range:	■ 1 – 18 GHz ■ 18 – 25 GHz □ 18 – 40 GHz □ other:							
	Scan-Mode	ĭ 6 dB EMI-F	Receiver Mode 🗆 3 dB S	Spectrum analyser Mode					
Spectrum-	Detector	Peak and Aver	age						
Analyzer	RBW/VBW	1 MHz / 3 MH	ÍZ						
settings	Mode:	Repetitive-Sca	n, max-hold						
	Scan step	400 kHz							
	Sweep-Time Coupled – calibrated display if CW signal otherwise adapted to EUT's individual duty-cycle								
General mea	asurement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz"							

5.8.4. Radiated Field Strength Emissions – 1 GHz to 18 GHz Results

$T_{NOM}=20$) °C	Technology: ZigBee 2.4GHz Mode	Tashualagu ZigPas 2 4CHz Mada				Try Pine I (II and I (Madel A. J.)					
$V_{NOM}=1$	2 V DC (using AE 1)	reciniology. Zigdee 2.40112 Wood	Technology: Zigbee 2.4GHZ Wode			TX-Fixed Channel (Modulated)						
Diagram No.		Test Settings	Set- up	OP- mode	Used	Used detector						
(Remark 1)	Mode B.W. Data F	Rate Frequency Band - Channel (Frequency)	no.	no.	PK	AV	QP					
4.01	ZigBee 2 MHz 250	0 Kbps Channel 11:2405 MHz +19.5 dBm	2	1	×	×		PASS				
4.02	ZigBee 2 MHz 250	0 Kbps Channel 18:2440 MHz +19.5 dBm	2	1	×	×		PASS				
4.03	ZigBee 2MHz 250 Kbps Channel 26:2480 MHz +5 dBm			1	×	×		PASS				

5.8.5. Radiated Field Strength Emissions – 18 GHz to 25 GHz Results

	Radiated Field Strength Emissions – 18 GHz to 25 GHz								
$T_{NOM} = 20$ $V_{NOM} = 1$	0 °C 2 V DC (using AE 1)	Technology: ZigBee 2.4GHz Mod	e	TX-Fix	xed Cha	nnel	(Mod	ulated)	
Diagram No.		Test Settings	Set-	OP- mode	Used detector			Verdict	
(Remark 1)	Mode B.W. Data Ra	te Frequency Band - Channel (Frequency)	no.	no.	PK	AV	QP		
4.01a	ZigBee 2 MHz 250 l	Kbps Channel 11:2405 MHz +19.5 dBm	2	1	×	×		PASS	
4.02a	ZigBee 2 MHz 250 l	Kbps Channel 18:2440 MHz +19.5 dBm	2	1	×	×		PASS	
4.03a	ZigBee 2MHz 250	2	1	×	×		PASS		
Remark	Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1								

5.9. Radiated Band-Edge Compliance

5.9.1. Test location and equipment (for reference numbers please see chapter 'List of test equipment')

Ambient Clima					Temperatu				midity: (45±1	15)%	,
test site	□441	EMI SAR		348	EMI cond.	× 443	EMI FAR	□ 347	Radio.lab.	□ 337 OATS	□ 487 SAR NSA
receiver	□ 377	ESCS30		001	ESS						
Spectr. analys.	× 489	ESU 40		598	FSEM	□ 264	FSEK	□ 747	FSU 26		
antenna meas	≥ 574	BTA-L	×	549	HL025	□ 608	HL 562	□ 133	EMCO3115	≥ 302 BBHA9170	■ 376 BBHA9120E
antenna meas	□ 123	HUF-Z2		132	HUF-Z3	□ 030	HFH-Z2	□ 477	GPS		
antenna subst	□ 071	HUF-Z2		020	EMCO3115	□ 063	LP 3146	□ 303	BBHA9170		
signaling	□ 392	MT8820A		371	CBT32	□ 547	CMU	□ 594	CMW 500	□ 371 CBT32	
otherwise	□ 400	FTC40x15E		401	FTC40x15E	□ 110	USB LWL	¥ 482	Filt. Matrix	□ 378 RadiSense	
Signalgener.	□ 008	SMG		140	SMHU	□ 263	SMP04				
power meter	□ 262	NRV-S		266	NRV-Z31	□ 265	NRV-Z33	□ 261	NRV-Z55	□ 356 NRV-Z1	
DC power	□ 086	LNG50-10		087	EA3013	□ 354	NGPE 40	□ 349	car battery	□ 350 Car battery	□ 611 E3632A
line voltage	≥ 120 °	120 VAC 60 Hz via public mains to AE 1									

5.9.2. Requirements & Limits:

7.2. Requirements & Elimits.							
FCC	□ Part 15 Subpart B. §15.109 class B ☑ Part 15 Subpart C. §15.209 for frequencies defined in §15.205 ☑ Part 15.247 (d)						
ANSI	□ C63.4-2014 ☑ C63.10-2013						
Frequency	Field Strength Limit at 3 meters Measuring Distance						
[MHz]	Average [µV/m]	Average [dBµV/m]	Peak [μV/m]	Peak [dBµV/m]			
above 1 GHz for frequencies as defined in §15.205	500						

5.9.3. Test Set-Up & Measurement Settings:

5.7.5. T CB	7.5. Test Set-Op & Weastif ement Settings.						
Signal link	to test system (if used):	□ air link	☐ cable connection	⊠ none			
EUT-groun	EUT-grounding		one				
Equipment	Equipment set up		5m height	☐ floor standing			
Climatic co	Climatic conditions		(22±3°C)	Rel. humidity: (40±20)%			
Spectrum- Analyzer settings	Scan-Mode Detector RBW/VBW Mode: Scan step	□ 1 – 18 GHz □ 18 – 25 GHz □ 18 – 40 GHz ☑ other: see diagrams □ 6 dB EMI-Receiver Mode ☒ 3 dB Spectrum analyzer Mode Peak and Average Left band-edge: 100kHz/300kHz Right band-edge: 1 MHz / 3 MHz Repetitive-Scan, max-hold 40kHz or 400 kHz Coupled – calibrated display if CW signal otherwise adapted to EUT's individual duty-cycle					
General mea	asurement procedures	Please see chapter "Test system set-up for radiated electric field measurements above 1 GHz" for general measurements procedures in anechoic chamber.					

5.9.4. Radiated Band-Edge Measurement Method

For <u>uncritical results</u> where a measurement resolution bandwidth of 1MHz can clearly show the compliance without influencing the results, a field strength measurement was performed to show compliance.

For <u>critical results</u> a Marker-Delta marker method was used for showing compliance to restricted bands. The method is according ANSI C63.10:2013, Chapter 6.10.6 "Marker-Delta method",. The method consists of three independent steps:

- **1. Step:** Prior to the measurement the fundamental radiated In-Band field strength was performed. The determined value is used as reference value.
- **2. Step**: Second step consist of finding the relative attenuation between the fundamental emission and the maximum local out-of-band emission (within 2 MHz range around the band edge either on the band-edge directly or some modulation product if the level is greater than that on the band-edge) when measured with lower resolution bandwidth.
- **3. Step:** The delta value recorded in step 2 will be subtracted from value recorded in step 1, thus giving the required field strength at the band-edge. This value must fulfil the requirements for radiated spurious emissions in restricted bands in FCC §15.205 with the general limits of FCC §15.209.

5.9.5. Radiated Band-Edge Results:

5.9.5.1. Non-Restricted Bands Near-By Limits According to FCC §15.247

Test Settings:	Technology: ZigBee 2.4GHz Mode	TX-Fixed Channel (Modulated)
Test Conditions:	T _{NOM} = 20 °C	V _{NOM} = 12 V DC (using AE 1)
Set-up No.:		2
Op. Mode:		1

Diagram no.	Channel	Restricted		amental Value [dBuV/m]	Band-Edge Value [dBuV/m] Difference		Limit	Margin	Verdict	Remark:	
Diagram no.	no.	band ?	Peak -Value	Average -Value	Peak-Value	[dB]	[dBc]	[dB]	verdict	Mode-B.WData Rate-Power	
9.01	11	NO	110,48	104,23	58,50	51,98	20,00	31,98	PASS	ZigBee Mode-2 MHz-250Kbps+19.5dBm	

Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1

5.9.5.2. Restricted Bands Near-By Limits According to FCC $\S15.205~\S15.209$

Test Settings:	Technology: ZigBee 2.4GHz Mode	TX-Fixed Channel (Modulated)
Test Conditions:	T _{NOM} = 20 °C	V _{NOM} = 12 V DC (using AE 1)
Set-up No.:		2
Op. Mode:		1

	Channel	Restricted		Fundamental Value Band-Edge Value [dBuV/m] [dBuV/m]			Limits Margin [dBuV/m] [dB]					Remark:	
Diagram no.	no.	band ?	Peak -Value	Average -Value	Peak -Value	Average -Value	Peak Average -Value		Peak	Average	Verdict	Mode-B.WData Rate-Power	
9.02	26	YES	103,20	99,64	72,05	52,06	74,00	54,00	1,95	1,94	PASS	ZigBee Mode-2 MHz-250Kbps+5dBm	

Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1

5.9.6. Radiated Band-Edge Verdict: Compliant

5.10. AC-Power Lines Conducted Emissions

5.10.1. Test location and equipment	(for reference nur	mbers please see	chapter 'L	List of test equipme	ent')
--	--------------------	------------------	------------	----------------------	-------

		T * ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	1	1	1	<u>'</u>
test site	□ 333 EMI field	■ 348 EMI cond.				
receiver	□ 001 ESS	■ 377 ESCS 30	□ 489 ESU 40	□ 620 ESU 26		
LISN	■ 005 ESH2-Z5	□ 007 ESH3-Z6	□ 300 ESH3-Z5		□ no LISN for AE	
signaling	□ 392 MT8820A	□ 436 CMU	□ 547 CMU	□ 594 CMW		
line voltage	ĭ 120 VAC 60 Hz v	via public mains to A	E 1			

5.10.2. Requirements & Limits:

FCC	☑ Part 15 Subpart C, §15.207						
ANSI	C63.4-2014, § 5.2, 6, 7						
Frequency	☑ Conducted Limit Class B						
[MHz]	QUASI-Peak [dBμV] AVERAGE [dBμV]						
0.15 - 0.5	66 to 56*	56 to 46*					
0.5 – 5	56	46					
5 – 30	60 50						
Remark: * decreases with t	Remark: * decreases with the logarithm of the frequency						

5.10.3. Test Set-Up & Measurement Settings:							
Signal link to test system (if used):		□ air link	□ cable connection	☑ none			
EUT-grounding		□ none	with power supply	□ additional connection			
Equipment set up		☑ table top (40 cm distance to reference ground plane (wall)		☐ floor standing EUT stands isolated on reference ground plane (floor)			
Climatic conditions		Temperature: (22±3°C) Rel. humidi		Rel. humidity: (40±20)%			
Scan data □ 9 - 150 kHz, RBW = 200 Hz, Step = 61 Hz □ 150 kHz - 30 MHz RBW = 9 kHz, Step = 4 kHz □ other:				· 1			
Analyzer settings	Scan-Mode Pre-measurement Final measurement	Peak detec	Receiver Mode tor, Repetitive-Scan, ma Quasi-peak detector at	max-hold, sweep-time 50 μs per frequency point at critical frequencies			
General measureme	nt procedures	Please see chapter "Test system set-up for AC power line conducted emissions measurements"					

5.10.4. AC-Power Lines Conducted Emissions Results:

AC-Power Lines Conducted Emissions – 150 kHz to 30 MHz								
$T_{NOM}=20$) °C	Toohnology, ZigPoo 2 ACUz Mode	TX-Fixed Channel					el
V _{NOM} = 1	2 V DC (using AE 1)	Technology: ZigBee 2.4GHz Mode	2.4GHz Mode (Modulated)					
Diagram No.		Test Settings	Set- up	OP- mode	Used	detec	tor	Verdict
(Remark 1)	Mode B.W. Data I	Rate Frequency Band - Channel (Frequency)	no.	no.	PK	AV	QP	verdict
1.01	ZigBee 2 MHz 250 Kbps Channel 18:2440 MHz +19.5 dBm			1	×	×		PASS
			•					

Remark 1: For further details please refer → Annex 1: Test results CETECOM-TR17-1-0060101T11a-A1

5.11. Measurement Uncertainties

The reported uncertainties are calculated based on the standard uncertainty multiplied with the appropriate coverage factor \mathbf{k} , such that a confidence level of approximately 95% is achieved.

For uncertainty determination, each component used in the concrete measurement set-up was taken in account and it's contribution to the overall uncertainty according it's statistical distribution calculated.

Following table shows expectable uncertainties for each measurement type performed.

RF-Measurement	Reference	Frequency range	Calculated uncertainty based on a confidence level of 95%					Remarks	
Conducted emissions (U CISPR)	CISPR 16-2-1	9 kHz - 150 kHz 150 kHz - 30 MHz	4.0 dE 3.6 dE			-			
Radiated emissions Enclosure	CISPR 16-2-3	30 MHz - 1 GHz 1 GHz - 18 GHz	4.2 dE 5.1 dE						E-Field
Disturbance power	CISPR 16-2-2	30 MHz - 300 MHz	-						-
Power Output radiated	-	30 MHz - 4 GHz	3.17 d	В					Substitution method
Downer Output conducted		Set-up No.	Cel- C1	Cel- C2	BT1	W1	W2		
Power Output conducted	-	9 kHz - 12.75 GHz	N/A	0.60	0.7	0.25	N/A		_
		12.75 - 26.5GHz	N/A	0.82		N/A	N/A		
Conducted emissions	-	9 kHz - 2.8 GHz	0.70	N/A	0.70	N/A	0.69		N/A - not
on RF-port		2.8 GHz - 12.75GHz	1.48	N/A	1.51	N/A	1.43		applicable
		12.75 GHz - 18GHz	1.81	N/A	1.83	N/A	1.77]
		18 GHz - 26.5GHz	1.83	N/A	1.85	N/A	1.79		
			0.1272	2 ppm (Delta N	Marker)	1		Frequency
Occupied bandwidth	-	9 kHz - 4 GHz							error
			1.0 dE						Power
	-	9 kHz - 4 GHz	0.1272	2 ppm (Delta N	Marker)	1		Frequency
Emission bandwidth	Emission bandwidth								error
	-		See above: 0.70 dB					Power	
Frequency stability	-	9 kHz - 20 GHz	0.0636						-
		150 kHz - 30 MHz	5.0 dB					Magnetic	
Radiated emissions	_	30 MHz - 1 GHz	4.2 dE						field
Enclosure		1 GHz - 20 GHz	3.17 d	B					E-field
									Substitution

Table: measurement uncertainties, valid for conducted/radiated measurements

6. Abbreviations Used in this Report

The abbreviation	The abbreviations					
ANSI	American National Standards Institute					
AV . AVG. CAV	Average detector					
EIRP	Equivalent isotropically radiated power. determined within a separate measurement					
EGPRS	Enhanced General Packet Radio Service					
EUT	Equipment Under Test					
FCC	Federal Communications Commission. USA					
IC	Industry Canada					
n.a.	not applicable					
Op-Mode	Operating mode of the equipment					
PK	Peak					
RBW	resolution bandwidth					
RF	Radio frequency					
RSS	Radio Standards Specification. Documents from Industry Canada					
Rx	Receiver					
TCH	Traffic channel					
Tx	Transmitter					
QP	Quasi peak detector					
VBW	Video bandwidth					
ERP	Effective radiated power					

7. Accreditation Details of CETECOM's Laboratories and Test Sites

Ref No.	Accreditation Certificate	Valid for laboratory area or test site	Accreditation Body
-	D-PL- 12047-01-01	All laboratories and test sites of CETECOM GmbH. Essen	DAkkS. Deutsche Akkreditierungsstelle GmbH
337 487 558 348 348	(MRA US-EU 0003)	Radiated Measurements 30 MHz to 1 GHz. 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz. 3 m (SAR) Radiated Measurements above 1 GHz. 3 m (FAR) Mains Ports Conducted Interference Measurements Telecommunication Ports Conducted Interference Measurem.	FCC. Federal Communications Commission Laboratory Division. USA
337 487 550 558	3462D-1 3462D-2 3462D-2 3462D-3	Radiated Measurements 30 MHz to 1 GHz. 3 m / 10 m (OATS) Radiated Measurements 30 MHz to 1 GHz. 3 m (SAR) Radiated Measurements 1 GHz to 6 GHz. 3 m (SAR) Radiated Measurements above 1 GHz. 3 m (FAR)	IC. Industry Canada Certification and Engineering Bureau
487 550 348 348	R-2666 Radiated Measurements 30 MHz to 1 GHz. 3 m (SAR) G-301 Radiated Measurements 1 GHz to 6 GHz. 3 m (SAR) C-2914 Mains Ports Conducted Interference Measurements T-1967 Telecommunication Ports Conducted Interference Measurem.		VCCI. Voluntary Control Council for Interference by Information Technology Equipment. Japan
OATS	S = Open Area Te	est Site. SAR = Semi Anechoic Room. FAR = Fully Anechoic Room	

8. Instruments and Ancillary

TC"The "Ref.-No" in the left column of the following tables allows the clear identification of the laboratory equipment.

8.1.1. Test Software and Firmware Of Equipment

100 RefNo.	Equipment EMI Test Receiver	Type	Serial-No.	Version of Firmware or Software during the test
				Firm.= 1.21, OTP=2.0, GRA=2.0
012	Signal Generator (EMS-cond.)	SMY 01	839069/027	Firm.= V 2.02
013	Power Meter (EMS cond.) Digital Radiocommunication Tester	NRVD CMD COM	839111/003	Firm.= V 1.51
017	8	CMD 60 M	844365/014	Firmware = V 3.52 .22.01.99, DECT = D2.87 13.01.99
053	Audio Analyzer	UPA3	860612/022	Firm. V 4.3
119	RT Harmonics Analyzer dig. Flickermeter Signal Generator	B10 SMHU	G60547	Firm.= V 3.1DHG
140	ŭ	NRV-Z55	831314/006	Firm.= 3.21
261	Thermal Power Sensor Power Meter	NRV-Z55	825083/0008 825770/0010	EPROM-Datum 02.12.04, SE EE 1 B Firm.= 2.6
262	Signal Generator	SMP 04	826190/0007	Firm.= 2.6 Firm.=3.21
263	Signal Generator	SIMP 04	820190/0007	UNIT Firmware= 4.04, SW-Main=4.04, SW-BBP=1.04,
295	Racal Digital Radio Test Set	6103	1572	SW-DSP=1.02, Hardboot=1.02, Softboot=2.02
298	Univ. Radio Communication Tester	CMU 200	832221/091	R&S Test Firmware =3.53 /3.54 (current Testsoftw. f. all band used
323	Digital Radiocommunication Tester	CMD 55	825878/0034	Firm.= 3.52 .22.01.99
335	CTC-EMS-Conducted	System EMS Conducted	-	EMC 32 V 8.52
340	Digital Radiocommunication Tester	CMD 55	849709/037	Firm.= 3.52 .22.01.99
355	Power Meter	URV 5	891310/027	Firm.= 1.31
365	10V Insertion Unit 50 Ohm	URV5-Z2	100880	Eprom Data = 31.03.08
366	Ultra Compact Simulator	UCS 500 M4	V0531100594	Firm. UCS 500=001925/3.06a02, rc=ISMIEC 4.10
371	Bluetooth Tester	CBT32	100153	CBT V5,30+ SW-Option K55, K57
377	EMI Test Receiver	ESCS 30	100160	Firm.= 2.30, OTP= 02.01, GRA= 02.36
378	Broadband RF Field Monitor	RadiSense III	03D00013SNO-08	Firm.= V.03D13
389	Digital Multimeter Radio Communication Tester	Keithley 2000 MT8820A	0583926 6K00000788	Firm. = A13 (Mainboard) A02 (Display) Firm.= 4.50 #005, IPL=4.01#001,OS=4.02#001, GSM=4.41#013, W-CDMA= 4.54#004, scenario= 4.52#002
436	Univ. Radio Communication Tester	CMU 200	103083	R&S Test Firmware Base=5.14, Mess-Software= GSM:5.14 WCDMA:5.14 (current Testsoftw. F. all band
441	CTC-SAR-EMI Cable Loss	System EMI field (SAR)	-	EMC 32 Version 8.52
442	CTC-SAR-EMS	System EMS field (SAR)	-	EMC 32 Version 8.40
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE	-	Spuri 7.2.5 or EMC 32 Ver. 9.15.00
444	CTC-FAR-EMS field	System-EMS-Field (FAR)	-	EMC 32 Version 9.15.00
460	Univ. Radio Communication Tester	CMU 200	108901	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used,
489	EMI Test Receiver	ESU40	1000-30	Firmware=4.43 SP3, Bios=V5.1-16-3, Spec. =01.00
491	ESD Simulator dito	ESD dito	dito307022	V 2.30
524	Voltage Drop Simulator	VDS 200	0196-16	Software Nr: 000037 Version V4.20a01
526	Burst Generator	EFT 200 A	0496-06	Software Nr. 000034 Version V2.32
527	Micro Pulse Generator	MPG 200 B	0496-05	Software-Nr. 000030 Version V2.43
528	Load Dump Simulator	LD 200B	0496-06	Software-Nr. 000031 Version V2.35a01
546	Univ. Radio Communication Tester	CMU 200	106436	R&S Test Firmware Base=5.14, GSM=5.14 WCDMA=5.14 (current Testsoftw.,f. all band to be used
547	Univ. Radio Communication Tester	CMU 200	835390/014	R&S Test Firmware Base=V5.1403 (current Testsoftw., f. all band used, GSM = 5.14 WCDMA: = 5.14
584	Spectrum Analyzer	FSU 8	100248	2.82_SP3 R&S Test Firmware Base=5.01, GSM=5.02 WCDMA=
597		CMU 200	100347	not installed, Mainboard= µP1=V.850
598	Spectrum Analyzer	FSEM 30	831259/013	Firmware Bios 3.40 , Analyzer 3.40 Sp 2
607	Signal Generator	SMR 20	832033/011	V1.25
620	EMI Test Receiver	ESU 26	100362	4.43_SP3
642	Wideband Radio Communication Tester	CMW 500	126089	Setup V03.26, Test programm component V03.02.20
670	Univ. Radio Communication Tester	CMU 200	106833	μ P1 = V8.50, Firmware = V.20
689	Vector Signal Generator Bluetooth Tester	SMU200 CBT 32	100970 100236	02.20.360.142 CBT V 5.40, FW: V.2.41 (FPGA Digital, V. 3.09 FPGA RF)

8.1.2. Single Instruments and Test Systems

8.1.2	2. Single Instruments and Test	Systems					
RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
001	EMI Test Receiver	ESS	825132/017	Rohde & Schwarz	12 M	-	16.05.2018
005	AC - LISN (50 Ohm/50µH, test site 1)	ESH2-Z5	861741/005	Rohde & Schwarz	12 M	-	15.05.2018
007	Single-Line V-Network (50 Ohm/5µH)	ESH3-Z6	892563/002	Rohde & Schwarz	12 M	-	17.05.2018
009	Power Meter (EMS-radiated)	NRV	863056/017	Rohde & Schwarz	24 M	-	15.05.2019
016	Line Impedance Simulating Network	Op. 24-D	B6366	Spitzenberger+Spies	36 M	-	30.05.2019
021	Loop Antenna (H-Field)	6502	9206-2770	EMCO	36 M	-	30.04.2018
030	Loop Antenna (H-field)	HFH-Z2	879604/026	Rohde & Schwarz	36 M	-	30.04.2018
033	RF-current probe (100kHz-30MHz)	ESH2-Z1	879581/18	Rohde & Schwarz	24 M	-	15.05.2019
057	relay-switch-unit (EMS system)	RSU	494440/002	Rohde & Schwarz	pre-m	1a	
060	power amplifier (DC-2kHz)	PAS 5000	B6363	Spitzenberger+Spies	-	3	
086	DC - power supply, 0 -10 A	LNG 50-10	-	Heinzinger Electronic	pre-m	2	
087	DC - power supply, 0 -5 A	EA-3013 S	-	Elektro Automatik	pre-m	2	
091	USB-LWL-Converter	OLS-1	007/2006	Ing. Büro Scheiba	-	4	
099	passive voltage probe	ESH2-Z3	299.7810.52	Rohde & Schwarz	36 M	-	30.04.2018
100	passive voltage probe	Probe TK 9416	without	Schwarzbeck	36 M	-	30.04.2018
110	USB-LWL-Converter	OLS-1	_	Ing. Büro Scheiba	-	4	
119	RT Harmonics Analyzer dig. Flickermeter	B10	G60547	BOCONSULT	36 M	i-	30.05.2019
133	horn antenna 18 GHz (Meas 1)	3115	9012-3629	EMCO	36 M	1c	10.03.2020
134	horn antenna 18 GHz (Subst 2)	3115	9005-3414	EMCO	36 M	-	10.03.2020
136	adjustable dipole antenna (Dipole 1)	3121C-DB4	9105-0697	EMCO	36 M	-	30.04.2018
140	Signal Generator	SMHU	831314/006	Rohde & Schwarz	24 M	-	30.05.2018
248	attenuator	SMA 6dB 2W	-	Radiall	pre-m	2	
249	attenuator	SMA 10dB 10W	_	Radiall	pre-m	2	
252	attenuator	N 6dB 12W	1_	Radiall	pre-m	2	
			-		<u> </u>	2	1
256	attenuator	SMA 3dB 2W	-	Radiall	pre-m		1
257	hybrid	4031C	04491	Narda	pre-m	2	
260	hybrid coupler	4032C	11342	Narda	pre-m	2	
261	Thermal Power Sensor	NRV-Z55	825083/0008	Rohde & Schwarz	24 M	-	30.05.2018
262	Power Meter	NRV-S	825770/0010	Rohde & Schwarz	24 M	-	30.05.2018
263	Signal Generator	SMP 04	826190/0007	Rohde & Schwarz	36 M	-	30.05.2019
265	peak power sensor	NRV-Z33, Model 04	840414/009	Rohde & Schwarz	24 M	-	30.05.2018
266	Peak Power Sensor	NRV-Z31, Model 04	843383/016	Rohde & Schwarz	24 M	-	30.05.2018
267	notch filter GSM 850	WRCA 800/960-6EEK	9	Wainwright GmbH	pre-m	2	
270	termination	1418 N	BB6935	Weinschel	pre-m	2	
271	termination	1418 N	BE6384	Weinschel	pre-m	2	
272	attenuator (20 dB) 50 W	Model 47	BF6239	Weinschel	pre-m	2	
273	attenuator (10 dB) 100 W	Model 48	BF9229	Weinschel	pre-m	2	
274	attenuator (10 dB) 50 W	Model 47 (10 dB) 50 W	BG0321	Weinschel	pre-m	2	
275	DC-Block	Model 7003 (N)	C5129	Weinschel	pre-m	2	
276	DC-Block	Model 7006 (SMA)	C7061	Weinschel	pre-m	2	
279			LH855	Weinschel		2	
	power divider	1515 (SMA)			pre-m		
298	Univ. Radio Communication Tester	CMU 200	832221/091	Rohde & Schwarz	pre-m	3	15.05.2010
300	AC LISN (50 Ohm/50µH, 1-phase)	ESH3-Z5	892 239/020	Rohde & Schwarz	12 M	-	17.05.2018
301	attenuator (20 dB) 50W, 18GHz	47-20-33	AW0272	Lucas Weinschel	pre-m	2	
302	horn antenna 40 GHz (Meas 1)	BBHA9170	155	Schwarzbeck	36 M	-	14.03.2020
303	horn antenna 40 GHz (Subst 1)	BBHA9170	156	Schwarzbeck	36 M	-	20.03.2020
331	Climatic Test Chamber -40/+180 Grad	HC 4055	43146	Heraeus Vötsch	24 M	-	30.10.2018
341	Digital Multimeter	Fluke 112	81650455	Fluke	24 M	-	30.05.2018
342	Digital Multimeter	Voltcraft M-4660A	IB 255466	Voltcraft	24 M	-	17.05.2019
347	laboratory site	radio lab.	-	-	-	5	
348	laboratory site	EMI conducted	-	-	-	5	ļ
354	DC - Power Supply 40A	NGPE 40/40	448	Rohde & Schwarz	pre-m	2	1
355	Power Meter	URV 5	891310/027	Rohde & Schwarz	24 M	-	30.05.2018
357	power sensor	NRV-Z1	861761/002	Rohde & Schwarz	24 M	-	24.05.2019
371	Bluetooth Tester	CBT32	100153	R&S	36 M	-	30.05.2019
373	Single-Line V-Network (50 Ohm/5µH)	ESH3-Z6	100535	Rohde & Schwarz	12 M	-	17.05.2018
377	EMI Test Receiver	ESCS 30	100160	Rohde & Schwarz	12 M	-	15.05.2018
392	Radio Communication Tester	MT8820A	6K00000788	Anritsu	12 M	-	18.05.2018
405	Thermo-/Hygrometer	OPUS 10 THI	126.0604.0003.3.3.3.2	LUFFT Mess u. Regeltechnik	24 M	-	30.03.2019
431	Model 7405	Near-Field Probe Set	9305-2457	EMCO	-	4	
436	Univ. Radio Communication Tester	CMU 200	103083	Rohde & Schwarz	12 M	-	24.05.2018
439	UltraLog-Antenna	HL 562	100248	Rohde & Schwarz	36 M	-	10.03.2020
443	CTC-FAR-EMI-RSE	System CTC-FAR-EMI- RSE	-	ETS-Lindgren / CETECOM	12 M	5	30.10.2017
454	Oscilloscope	HM 205-3	9210 P 29661	Hameg	-	4	1
456	DC-Power supply 0-5 A	EA 3013 S	207810	Elektro Automatik	pre-m	2	
459	DC -Power supply 0-5 A, 0-32 V	EA-PS 2032-50	910722	Elektro Automatik	pre-m	2	
460	Univ. Radio Communication Tester	CMU 200	108901	Rohde & Schwarz	12 M	-	16.06.2018
463	Universal source	HP3245A	2831A03472	Agilent	- 171	4	10.00.2010
466	Digital Multimeter	Fluke 112	89210157	Fluke USA	24 M	+	30.05.2018
400	Digital Multimeter	11UKC 112	07410137	TIUKE USA	24 M	ı -	JU.UJ.ZUI8

RefNo.	Equipment	Type	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
467	Digital Multimeter	Fluke 112	89680306	Fluke USA	36 M	-	30.04.2018
468	Digital Multimeter	Fluke 112	90090455	Fluke USA	36 M	-	30.04.2018
477	ReRadiating GPS-System	AS-47	-	Automotive Cons. Fink	-	3	
480	power meter (Fula)	NRVS	838392/031	Rohde & Schwarz	24 M	-	16.05.2019
482	filter matrix	Filter matrix SAR 1	-	CETECOM (Brl)	-	1d	
487	System CTC NSA-Verification SAR-EMI	System EMI field (SAR)	_	ETS Lindgren /	24 M	-	31.03.2019
489	EMI Test Receiver	NSA ESU40	1000-30	CETECOM Rohde & Schwarz			
469	EMI Test Receiver	WRCG 1709/1786-		Ronde & Schwarz	12 M	-	18.05.2019
502	band reject filter	1699/1796-	SN 9	Wainwright	pre-m	2	
503	band reject filter	WRCG 824/849-814/859-	SN 5	Wainwright	pre-m	2	
517	relais switch matrix	HF Relais Box Keithley	SE 04	Keithley	pre-m	2	
523	Digital Multimeter	L4411A	MY46000154	Agilent	24 M	-	18.05.2019
529	6 dB Broadband resistive power divider	Model 1515	LH 855	Weinschel	pre-m	2	
530	10 dB Broadband resistive power divider	R 416110000	LOT 9828	-	pre-m	2	
546	Univ. Radio Communication Tester	CMU 200	106436	R&S	12 M	-	30.03.2018
547	Univ. Radio Communication Tester	CMU 200	835390/014	Rohde & Schwarz	12 M	-	05.07.2018
549	Log.Per-Antenna System CTC S-VSWR Verification SAR-	HL025 System EMI Field SAR S-	1000060	Rohde & Schwarz ETS	36/12 M	-	31.07.2018
550	EMI	VSWR	-	Lindgren/CETECOM	24 M	-	30.03.2019
558	System CTC FAR S-VSWR	System CTC FAR S- VSWR	-	CTC	24 M	-	08.08.2019
574	Biconilog Hybrid Antenna	BTA-L	980026L	Frankonia	36/12 M	-	31.03.2019
584	Spectrum Analyzer	FSU 8	100248	Rohde & Schwarz	pre-m	-	
597	Univ. Radio Communication Tester	CMU 200	100347	Rohde & Schwarz	pre-m	-	15.05.5010
600	power meter	NRVD (Reserve)	834501/018	Rohde & Schwarz	24 M	-	17.05.2019
601	medium-sensitivity diode sensor	NRV-Z5 (Reserve)	8435323/003	Rohde & Schwarz	24 M	-	15.05.2019
602	peak power sensor	NRV-Z32 (Reserve)	835080 VD 75305054	Rohde & Schwarz	24 M	-	
611	DC power supply	E3632A	KR 75305854	Agilent	pre-m	2	
612	DC power supply Attenuator	E3632A	MY 40001321	Agilent Radiall	pre-m	2	
613	Digitalmultimeter	R416120000 20dB 10W Fluke 177	Lot. 9828 88900339	Fluke	pre-m 24 M	-	30.05.2018
617	Power Splitter/Combiner	ZFSC-2-2-S+	S F987001108	Mini Circuits	24 IVI	2	30.03.2018
618	Power Splitter/Combiner	50PD-634	600994	JFW Industries USA		2	
619	Power Splitter/Combiner	50PD-634	600995	JFW Industries, USA		3	
620	EMI Test Receiver	ESU 26	100362	Rohde-Schwarz	12 M	-	16.05.2018
621	Step Attenuator 0-139 dB	RSP	100017	Rohde & Schwarz	pre-m	2	
625	Generic Test Load USB	Generic Test Load USB	-	CETECOM	-	2	
627	data logger	OPUS 1	201.0999.9302.6.4.1.4	G. Lufft GmbH	24 M	-	30.03.2019
634	Spectrum Analyzer	FSM (HF-Unit)	826188/010	Rohde & Schwarz	pre-m	2	
637	High Speed HDMI with Ethernet 1m	HDMI cable with Ethernet	-	KogiLink	-	2	
638	HDMI Kabel with Ethernet 1,5 m flach	1m HDMI cable with Ethernet	_	Reichelt	_	2	
640		HDMI cable 2m rund	- -	Reichelt	-	2	
641	HDMI cable with Ethernet	Certified HDMI cable with	-	PureLink	-	2	
642	Wideband Radio Communication Tester	CMW 500	126089	Rohde&Schwarz	12 M	_	24.05.2018
644	Amplifierer	ZX60-2534M+	SN865701299	Mini-Circuits	-	-	24.03.2010
670	Univ. Radio Communication Tester	CMU 200	106833	Rohde & Schwarz	24 M	-	30.05.2018
671	DC-power supply 0-5 A	EA-3013S	-	Elektro Automatik	pre-m	2	
678	Power Meter	NRP	101638	Rohde&Schwarz	pre-m	-	
683	Spectrum Analyzer	FSU 26	200571	Rohde & Schwarz	12 M	-	17.05.2018
686	Field Analyzer	EHP-200A	160WX30702	Narda Safety Test Solutions	24 M	-	29.03.2019
687	Signal Generator	SMF 100A	102073	Rohde&Schwarz	12 M	-	17.05.2018
688	Pre Amp	JS-18004000-40-8P	1750117	Miteq	pre-m	-	
690	Spectrum Analyzer	FSU	100302/026	Rohde&Schwarz	12 M	-	16.05.2018
691	OSP120 Base Unit	OSP120	101183	Rohde & Schwarz	12 M	-	22.05.2018
692	Bluetooth Tester	CBT 32	100236	Rohde & Schwarz	36 M	-	29.05.2020
703	Power Splitter INNCO Antennen Mast	ZN4PD-642W-S+ MA 4010-KT080-XPET-	165001445 MA4170-KT100-	Mini-Circuits INNCO	pre-m	2	
704	INNCON Controller	ZSS3 CO 3000-4port	XPET- CO3000/933/3841051 6/L	INNCO Systems GmBh	pre-m	-	
711	Harmonic Mixer 90 GHz - 140GHz	RPG FS-Z140	101004	RPG	12 M	-	22.02.2018
712	Harmonic Mixer 75 GHz - 110GHz	FS-Z110	101468	Rohde & Schwarz	12 M	-	22.02.2018
713	Harmonic Mixer, 50 GHz - 75GHz	FS-Z75	101022	Rohde & Schwarz	12 M		22.05.2018
714	Signal Analyzer 67GHz	FSW67	104023	Rohde & Schwarz	24 M	-	03.03.2019
715	Harmonic Mixer, 140 GHz - 220GHz	FS-Z220	101009	RPG Radiometer Physics	12 M	-	03.08.2018
716	Harmonic Mixer 220 GHz to 325 GHZ	FS-Z325	101005	RPG Radiometer Physics	12 M	-	13.02.2018
747	Spectrum Analyzer	FSU 26	200152	Rohde & Schwarz	12 M	-	18.05.2018
748	Pickett-Potter Horn Antenna	FH-PP 4060	010001	Radiometer Physiscs	-	-	

RefNo.	Equipment	Туре	Serial-No.	Manufacturer	Interval of calibration	Remark	Cal due
749	Pickett-potter Horn Antenna	FH-PP 60-90	010003	Radiometer Physics	-	-	
750	Pickett-Potter Horn Antenna	FH-PP 140-220	010011	Radiometer Physics	-	-	

8.1.3. Legend

Note / remarks		Calibrated during system calibration:
	1a	System CTC-SAR-EMS (RefNo. 442)
	1b	System-CTC-EMS-Conducted (RefNo. 335)
	1c	System CTC-FAR-EMI-RSE (RefNo . 443)
	1d	System CTC-SAR-EMI (RefNo . 441)
	1e	System CTC-OATS (EMI radiated) (RefNo. 337)
	1 f	System CTC-CTIA-OTA (RefNo . 420)
	1 g	System CTC-FAR-EMS (RefNo . 444)
	2	Calibration or equipment check immediately before measurement
	3	Regulatory maintained equipment for functional check or support purpose
	4	Ancillary equipment without calibration e.g. mechanical equipment or monitoring equipment
	5	Test System

Interval of calibration	12 M	12 month
	24 M	24 month
	36 M	36 month
	24/12 M	Calibration every 24 months. between this every 12 months internal validation
	36/12 M	Calibration every 36 months. between this every 12 months internal validation
	Pre-m	Check before starting the measurement
	-	Without calibration

9. Versions of Test Reports (change history)

Version	Applied changes	Date of release
	Inital release	2017-10-09