An Experimental Study of Online Database Index Selection Using MTS

COMP90055 - Research Project Presentation

Tanzid Sultan

The Need for Online Index Selection

• The simple reason why indexes are important in a database:

```
SELECT * FROM Employees
WHERE City = 'x';
```

Employees Table

ID	Name	Age	City	Occupation	
1	Alice	30	Gotham	Data Analyst	
2	Bob	22	Metropolis	Grave Digger	
3	Charlie	51	Gotham	Product Manager	
•••	•••	•••	•••		

of rows in table = 10^9 \Rightarrow Full Table Scan = 10 minutes

of rows matching predicate = $120 \Rightarrow Index Scan = 0.01$ seconds

1000x **speedup** with index scan!

B+ Tree Index on City Column

The Need for Online Index Selection

- Just create an index on every column of every table?
- Don't have infinite memory and time! (specially when database already large and complex)

- Also, what about **dynamic** workloads and system environments?
 - a static index configuration won't be best all the time (need to adapt)
 - memory budget might vary over time (need to adapt)
 - hand selection by human admin is impractical (need to automate)
- Solution → An Online Algorithm which automatically creates and drops indexes based on evolving workloads and system needs

Online Index Selection Problem Formulation and MTS

- Queries q_i arrive sequentially \to at each step algorithm decides on changing the index configuration (creating/dropping indexes) \to then executes q_i
- Objective is to minimize the total workload cost:

$$C_{tot}(\text{Workload}) = \sum_{i=1}^{n} C_{tr}(s_{i-1}, s_i) + C_{exe}(q_i, s_i)$$

$$transition cost execution cost$$

- Decision has to be made using limited knowledge: only workload/queries seen so far
- One-to-One correspondence with the problem of metrical task systems (Borodin et. al. 1992):

Task ↔ Query State ↔ Index Configuration

WFA and WFIT for Online Index Selection

- The *Work Function Algorithm (WFA) is* an optimal deterministic algorithm for MTS (<u>Borodin et. al. 1992</u>), i.e. achieves lowest possible competitive ratio upper-bound.
- WFA mimics the optimal offline algorithm but uses only limited information.

Should we use WFA for online index selection?

Pros	Cons
Simple algorithmStrong performance guarantee	Exponentially large configuration spaceComputationally intractable

Stable partitions to the Rescue! WFIT- Divide and Conquer (Schnaitter and Polyzotis, 2012)

A Major Flaw of WFIT & Our Research Goals

A major weak-point in WFIT → uses internal cost model

(Internal cost model means cost model of the DB query optimizer, accessed through what-if interface.)

- What's wrong with using what-if?
 - query optimizer's cost estimates are highly error-prone
 - high overhead of invoking what-if interface makes WFIT too slow

- Research goals:
 - 0. Leverage WFIT for online index selection
 - 1. Extend WFIT replace what-if with a lightweight external cost model
 - 2. Benchmark WFIT against current state-of-the-art MAB

A light-weight external cost model for access path prediction

- Difficulty in training end-to-end ML cost model (feature engineering, sample inefficiency, model complexity, offline training, etc.)
- Easier to focus directly on access path prediction → more relevant for index selection in large disk-based databases.
- Start with **simple heuristic-based approach**:

Input: query, configuration

for each table:

- enumerate all possible access paths (i.e. full table scan + possible index scans)
- > estimate the disk I/O cost for each access path (heuristic-based)
- > pick cheapest access path

• This works surprisingly well! (comparable to what-if in accuracy + 500x faster)

Heuristic-based Selectivity Estimation

- Disk I/O cost for index scans derived using selectivity estimates, i.e. fraction of rows that need to be retrieved based on predicates.
- Example:

```
SELECT * FROM Employees
WHERE City = 'x'
AND Occupation = 'y';
```

Employees Table

-								
	ID	Name	Age	City	Occupation			
	1	Alice	30	Gotham	Data Analyst			
	2	Bob	22	Metropolis	Grave Digger			
	3	Charlie	51	Gotham	Product Manager			
	•••	•••		•••	•••			

selectivity =
$$P(\text{City} = x, \text{ Occupation} = y) \approx P(\text{City} = x) P(\text{Occupation} = y)$$

- Attribute independence assumption → often violated due to correlations
- Single attribute distributions, e.g. P(City), from database catalog statistics → often inaccurate/outdated or unavailable

Towards Better Selectivity Estimation I: Learned Selectivity Prediction

- Learning to perform selectivity prediction for equality/range predicates.
- A separate model for each table.

This approach is powerful because:

- online learning → more accurate/up-to-date statistics
- can handle **joint selectivities over attributes** → learn **correlations**, no independence assumption
- simple prediction task, simple features → **lightweight** model can be used

Towards Better Selectivity Estimation II: Learned CDFs

• Learning the cumulative distribution function (CDF) of table attributes via monotonic regression.

$$CDF_A(x) = P(A \le x)$$

• Selectivity can be derived using the CDF, e.g. for this range predicate $\{a_1 \le A \le a_2\}$:

selectivity =
$$P(a_1 \le A \le a_2) = CDF_A(a_2) - CDF_A(a_1)$$

This approach is powerful because:

- online learning
- high sample efficiency
- handle joint selectivities via multidimensional monotonic regression
- very lightweight

Preliminary Results - Benchmarking WFIT vs. MAB

- Experimental environment:
 - Linux Ubuntu OS, 20GB RAM, Intel Core-i7 16 cores, 1TB SSD
 - PostgreSQL + HypoPG extension
- Datasets
 - SSB, TPC-H, TPC-H skew (all SF 10)
- Workload Types Static, Dynamic Shifting, Dynamic Random
- Query execution with cold cache (OS and PG buffer caches empty at start of each query execution)

Experiment:

- SSB Dataset
- Static Workload 10 templates
- 8 rounds

	WFIT + what-if	WFIT + ext.	MAB	No Index
$C_{tot}(W)$	583 <i>s</i>	507 s	1021 s	2258 s
$C_{tr}(W)$	140 s	152 s	455 <i>s</i>	0 s
$C_{exe}(W)$	392 s	355 s	566 <i>s</i>	2258 s

Conclusions & Future Directions

- WFIT algorithm holds up well against current SOTA MAB!
- External cost model significantly faster (500x) than what-if interface.
- Learned selectivity estimation may be a promising approach.
- However, still have room for improvement:
 - > Extend access path enumeration to incorporate multiple index scans for a single table
 - > Extend to multi-attribute joint selectivity prediction and multidimensional CDF
 - ➤ Scope for speeding up WFIT, certain aspects are "embarrassingly parallel" → multi-process parallelization
- On experimental side:
 - > Need to benchmark on larger real-world datasets with highly skewed data, e.g. imbd
 - > Use more diverse, complex and larger workloads
 - > Design experiments that test ability of learned models to handle joint attributes with high correlation