Analiza Algorytmów, Lista 3 Raport

Tomasz Krent

April 26, 2020

1 Wstep

Programy zostały napisane w jezyku python. Algorytmy przybliżonego sumowania oraz szacujaca średnia wartość znajduja sie pliku $unique_sum.py$.

2 Zadanie 9

(a) Wyniki działania programu zad9a sprawdzajacy jak działa algorytm przybliżonego sumowania dla m=100 i różnych funkcji haszujacych w postaci wykresy $\frac{\tilde{\Lambda}}{\Lambda}$ w zależności od liczby n=1..1000 unikalnych elementów w multizbiorze.

 $\hbox{ (a) } Funkcjahaszujaca 1 \\ \hbox{ (b) } Funkcjahaszujaca 2 \\ \hbox{ }$

Widać, że wyniki dla funkcji haszujacej 1 sa bardziej dokładne niż dla drugiej. Różnica w wynikach działania danych programów wynika z tego, że funkcja haszujaća 1 zwraca wartości zgodnie z rozkładem zbliżonym do jednostajnego na przedziale [0, 1). Z wykresu widać, że dla niewielkiej ilości elementów w multizbiorze funkcja haszujaca 2 nie zwraca wyników zgodnie z rozkładem jednostajnym w tak dobry sposób jak funkcja haszujaca 1.

(b) Wyniki działania programu zad9b sprawdzajacy jak działa algorytm w zależności od różnych wartości $\lambda_1..\lambda_n$. Wyniki przedstawione sa w postaci $\frac{\tilde{\Lambda}}{\Lambda}$ dla n=100 i m=100 unikalnych elementów w multizbiorze w 1000 próbach.

(a) $\lambda_1...\lambda_n$ (b) $\lambda_1...\lambda_n$ wy jnego (1, 1000)

(b) $\lambda_1..\lambda_n$ wybrane z rozkładu jednosta-(c) wartości $\lambda_1..\lambda_{n-1}$ wybranych z rozkładu jnego (1,1000) jednostajnego (1,5) oraz wartości $\lambda_n = 2000$

Z wykresów widać że wartości zwracane przez algorytm sa bardzo zbliżone do wartości poprawnych w momencie gdy gdy wartości $\lambda_1..\lambda_n$ sa sobie równe i sa wybrane z zakresu (a,b) w sposób jednostajny. Jednak gdy wystepuje kilka wartości znacznie odbiegajaca od innych wyniki zwracane przez algorytm odbiegaja od oczekiwanych.

(c) Wyniki działania programu zad9c w postaci wykresu przedstawiajacego $\frac{\tilde{\Lambda}}{\Lambda}$ dla 100 unikalnych elementów i m=1000 w 1000 próbach z ograniczeniami Czebyszewa dla różnych wartości parametru α .

(a) $\alpha = 0.1$, $\delta = 0.14156299007975437$

(b) $\alpha = 0.05$, $\delta = 0.10010015025043828$

3 Zadanie 10

Procedura szacujaca średnia wartość:

Algorithm 1 Procedure(\mathfrak{M}, h, m)

```
Initialization: set each of m positions of sketch M to \infty upon element (i,\lambda_i)\in\mathfrak{M} arrival for all k\in\{1..m\} do u\leftarrow h(i^\frown k) u_2\leftarrow h(k^\frown i) M[k]\leftarrow min\{M[k],-\frac{\ln u}{\lambda_i}\} M_2[k]\leftarrow min\{M[k],-\ln u\} end for Initialization: upon request: Return: \frac{\sum_{k=1}^m M_2[k]}{\sum_{k=1}^m M[k]}
```

Wyniki działania programu zad10.py sprawdzajacego stosunek wyniku procedury szacujacej średnia wartość do oczekiwanej wartości dla multizbioru o 100 różnych elementach oraz m = 1000 w 1000 próbach:

Kolejne wyniki działania programu zad10.py sprawdzajacego stosunek wyniku procedury szacujacej średnia wartość do oczekiwanej wartości tym razem dla m=100 w zależności od liczby elementów w unikalnym multizbiorze n=1..1000.

