

ELEC 341: Systems and Control

Lecture 10

Time response: Examples

Course roadmap

Modeling

Analysis

Design

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical
- Linearization, delay

- Routh-Hurwitz
- Nyquist

- Transient
- Steady state

Frequency response

Bode plot

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Typical step response (review)

Performance measures

- Transient response
 - Peak value
 - Peak time
 - Percent overshoot
 - Delay time
 - Rise time
 - Settling time
- Steady state response
 - Steady state error

(Done for 1st & 2nd order systems)

Next, we will connect these performance measures with s-domain.

(Done)

Step response for 1st-order system (review)

$$G(s) = \frac{K}{Ts + 1}$$

Settling time

5%: 3T = 3 / |Re|

2%: 4T = 4 / |Re|

Step response of 2nd-order system for various damping ratios (review)

Undamped

$$\zeta = 0$$

Underdamped

$$0 < \zeta < 1$$

Critically damped

$$\zeta = 1$$

Overdamped

$$\zeta > 1$$

Pole locations & damping

Undamped

Underdamped

Critically damped

Overdamped

Step response for 2nd order system: Underdamped case (review)

Properties of underdamped 2nd order system in terms of ζ and ω_{n} (review)

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

$$0 < \zeta < 1$$

(5%)

(2%) $pprox rac{3}{\zeta\omega_n}$ or $rac{4}{\zeta\omega_n}$ Settling time Peak time Peak value $100e^{-\zeta\pi/\sqrt{1-\zeta^2}}$ Percent overshoot

Step response properties of underdamped 2nd order system in terms of pole locations (review)

• Poles $(0 < \zeta < 1)$

$$s = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2}$$

$$\zeta = \cos \theta \qquad \omega_d$$

$$T = \text{Time Constant} = 1/\zeta \omega_n$$

Pole			Performance	
Real part	$\zeta \omega_n$	determines	$T_s = \frac{3}{\zeta \omega_n}, \frac{4}{\zeta \omega_n}$	$=\frac{3}{ \mathrm{Re} },\frac{4}{ \mathrm{Re} }$
Imag. part	ω_d	determines	$T_p = \frac{\pi}{\omega_d}$	$=rac{\pi}{ \mathrm{Im} }$
Angle	heta	determines	overshoöt	****

Angle θ and the overshoot (review)

Example 1: Cruise control

- Control goal: SS (steady-state) speed 10 m/s (= 36 km/h).
 - Stable
 - Zero steady-state error
 - Percent overshoot of 10 %
 - 5% T_s < 10 sec

Example 1: Open-loop control (cont'd)

a place of mind

Solution:

$$G(s) = \frac{V(s)}{F(s)} = \frac{1}{1000s + 50} = \frac{1/50}{20s + 1}$$

 Obtain the amplitude of the step force necessary to get the steady-state speed of 10 m/s. This is shown by A (or R).

- However, by open-loop control, $5\% T_s = 60$ sec! and thus Too Slow!
- Note that $5\% T_s = 3T$ or $3\times20 = 60$ sec, which we need it to be less 10 sec (which obviously is not).

Example 1: P control (cont'd)

Block diagram

$$3 \times \frac{1000}{50 + K} < 10 \implies 300 < 50 + K \implies K > 250$$

Example 1: P control (cont'd)

• K > 250

To have zero SS error:

$$e_{ss} = \frac{10}{1 + K_p} = \frac{10}{1 + L(0)} = \frac{10}{1 + KG(0)} = \frac{10}{1 + K/50}$$

$$e_{ss} = 0 \longrightarrow K = \infty$$

Example 1: PI control (cont'd)

Block diagram

$$\frac{V(s)}{V_{desired}(s)} = \frac{K(s)G(s)}{1 + K(s)G(s)} = \frac{c_p s + c_i}{1000s^2 + (c_p + 50)s + c_i}$$

- Stability: OK
- Zero SS error: OK $K_p = L(0) = K(0)G(0) = \infty$

Example 1: PI control (cont'd)

- How to satisfy transient requirements?
 - Tune controller parameters to place poles of the closed-loop transfer function at the "right places".

$$\frac{V(s)}{V_{desired}(s)} = \frac{c_p s + c_i}{1000s^2 + (c_p + 50)s + c_i}$$

- We will learn
 - where the "right places" are (today: Example 2)
 - how to tune controller parameters (from next lecture)
- We can show (by trial and error and computer simulation) that the following controller is one of the controllers that can satisfy all the required conditions:

$$K(s) = 1050 + \frac{274}{s}$$

 For the following design specs, find the allowable region of the second-order poles:

PO at most 5% and T_s (5%) at most T_{smax} sec.

a place of mind

Solution:

- From the given PO constraint, we can obtain allowable angles θ .
- From the given settling time T_s constraint, we can obtain allowable real part of poles:

$$T_s = \frac{3}{\zeta \omega_n}$$
; $\frac{3}{\zeta \omega_n} < (given \ T_{smax}) \Leftrightarrow \zeta \omega_n > \frac{3}{T_{smax}}$

• Require 5% settling time $T_s < T_{smax}$ (given):

$$(T_s = \frac{3}{\zeta \omega_n}) < T_{smax} \longrightarrow \zeta \omega_n > \frac{3}{T_{smax}}$$

• Require $PO < PO_{max}$ (given):

PO _{max}	$ heta_{max}$
5%	46.3°

Combination of two requirements

Consider a 2nd order overdamped system

$$G(s) = \frac{10}{s^2 + 11s + 10} = \frac{10}{(s+1)(s+10)}$$

For unit step input, obtain (or estimate)

- steady state value,
- 2% settling time, and
- percent overshoot.

Solution:

- Steady state value is the DC gain G(0) = 1.
- No overshoot (overdamped!)

Poles are -1 and -10.

$$G(s) = \frac{10}{s^2 + 11s + 10} = \underbrace{\frac{A}{s+1}}_{G_1(s)} + \underbrace{\frac{B}{s+10}}_{G_2(s)}$$

Time constant = 1

Time constant = 0.1

 Dominant poles: Poles closest to the imaginary axis and far away from remaining poles dominate the behavior of responses.

Poles far left (5-10 times) from dominant poles may be ignored.
$$G(s) = \frac{10}{(s+1)(s+10)} \approx \frac{1}{s+1}$$

Same DC gain

• For the unit step response of a stable 3rd-order system,

$$G(s) = \frac{8}{(s+2.5)(s^2+2s+4)}$$

obtain (or estimate)

- steady state value,
- 2% settling time, and
- percent overshoot.

Solution:

• Steady state value is the DC gain G(0) = 0.8.

Partial fraction expansion

$$G(s) = \frac{8}{(s+2.5)(s^2+2s+4)} = \underbrace{\frac{A}{s+2.5}}_{G_1(s)} + \underbrace{\frac{Bs+C}{s^2+2s+4}}_{G_2(s)}$$

Time constant = 1/2.5 = 0.4 s

$$\omega_n = 2, \; \zeta = 0.5$$

Time constant = $1/(\zeta \omega_n) = 1 \text{ s}$

Time constant of G(s) is estimated by a slower subsystem G₂(s), i.e., the larger T.

2% settling time: about 4 seconds

• Poles $s = -2.5, -1 \pm \sqrt{3}j$

These poles are not "sufficiently dominant"!

Estimation based on these poles may be inaccurate.

Step response of G(s)

• For the standard 2nd order systems, derive the relationship for damping ratio as a function of percent overshoot, from

$$PO = 100e^{-\zeta\pi/\sqrt{1-\zeta^2}}$$

Solution:

$$\left(\ln \frac{PO}{100}\right)^2 = \frac{\zeta^2 \pi^2}{1 - \zeta^2}$$

$$\Leftrightarrow \zeta^2 = \frac{\left(\ln \frac{PO}{100}\right)^2}{\pi^2 + \left(\ln \frac{PO}{100}\right)^2}$$

$$\Leftrightarrow \zeta = \frac{\left|\ln \frac{PO}{100}\right|}{\sqrt{\pi^2 + \left(\ln \frac{PO}{100}\right)^2}}$$

- For the system below,
 - Find the transfer function from F(s) to X(s)
 - Find DC gain, ζ , ω_n , T_s (2%), T_p , PO

Solution:

$$G(s) = \frac{X(s)}{F(s)} = \frac{1}{3s^2 + 15s + 33}$$

• Find DC gain, ζ , ω_n , T_s (2%), T_p , PO

$$G(s) = \frac{1}{3s^2 + 15s + 33} = \frac{1}{33} \cdot \frac{11}{s^2 + 5s + 11}$$

• DC gain: G(0) = 1/33

$$2\zeta\omega_n = 5, \ \omega_n^2 = 11$$

•
$$\omega_n = \sqrt{11}$$
 ; $\zeta = \frac{5}{2\sqrt{11}}$; $\omega_d = \omega_n \sqrt{1 - \zeta^2} = \frac{\sqrt{19}}{2}$

•
$$T_s = \frac{4}{\zeta \omega_n} = 1.6$$
 ; $T_p = \frac{\pi}{\omega_d} = \frac{2\pi}{\sqrt{19}}$

•
$$PO = 100e^{-\zeta\pi/\sqrt{1-\zeta^2}} = 2.72$$

DC motor position control

- Design the amplifier gain *K* so that
 - Percent overshoot is 5%.

Solution:

$$\zeta = \frac{\left| \ln \frac{PO}{100} \right|}{\sqrt{\pi^2 + \left(\ln \frac{PO}{100} \right)^2}} = \frac{1}{\sqrt{2}} \longrightarrow \omega_n = \sqrt{2} \longrightarrow K = 4$$

 $\begin{cases} 2\zeta\omega_n = 2\\ \omega^2 = 0.5K \end{cases}$

For the unity feedback system, check and compute

- Stability
- 2% settling time for r(t) = u(t) (unit step)
- Steady-state error for r(t) = 5u(t) (step)
- Steady-state error for r(t) = 5tu(t) (ramp)
- Steady-state error for $r(t) = 5t^2u(t)$ (parabolic)

Solution:

- Stability
 - Characteristic equation

$$1 + G(s) = 0 \Leftrightarrow s^2 + 70s + 4900 = 0$$

$$\zeta = \frac{1}{2}, \ \omega_n = 70$$

Since all the coefficients in the first column of Routh array have the same sign, the CL system is stable.

- 2% settling time ($\zeta < 1$: underdamped case)
 - Time constant is $T = \frac{1}{|\mathrm{Re}(\mathrm{pole})|} = \frac{1}{\zeta \omega_n} = \frac{1}{35}$
 - 2% settling time is $4T = \frac{4}{35}$

- Steady-state errors
 - For 5*u*(*t*) (step)

$$G(s) = \frac{4900}{s(s+70)}$$

$$K_p = \lim_{s \to 0} G(s) = \infty$$
 $e_{ss} = \frac{5}{1 + K_p} = 0$

• For 5*tu*(*t*) (ramp)

$$K_v = \lim_{s \to 0} sG(s) = 70$$
 \longrightarrow $e_{ss} = \frac{5}{K_v} = \frac{1}{14}$

• For $5t^2u(t)$ (parabolic)

$$K_a = \lim_{s \to 0} s^2 G(s) = 0 \qquad \longrightarrow \qquad e_{ss} = \frac{10}{K_a} = \infty$$

Design the unity feedback system such that:

$$G(s) = \frac{K(s+\alpha)}{s(s+\beta)}$$

- (a) Steady-state error for unit ramp input is 1/10 and
- (b) Closed-loop poles are $-1 \pm j$

Solution:

• (a)
$$K_v = \lim_{s \to 0} sG(s) = \frac{K\alpha}{\beta} = 10$$

• (b) Closed-loop poles are at $-1 \pm j$

characteristic equation =
$$s(s+\beta) + K(s+\alpha) = s^2 + 2\zeta\omega_n s + \omega_n^2$$

$$\alpha = 1.111, \beta = 0.2, K = 1.8$$

• Design the parameters $K_1 \& K_f$ so that:

$$K_v = 10, \ \zeta = 0.5$$

Solution:

Closed-loop transfer function

$$\frac{\theta_o(s)}{\theta_i(s)} = \frac{K_1 F(s)}{1 + K_1 F(s)} = \frac{10K_1}{s^2 + (1 + 10K_f)s + 10K_1}$$

From the two requirements,

$$K_{v} = \lim_{s \to 0} sK_{1}F(s) = \frac{10K_{1}}{1 + 10K_{f}} = 10$$

$$\Longrightarrow K_{1} = 1 + 10K_{f}$$

$$\begin{cases} \zeta = 0.5 \\ 2\zeta\omega_{n} = K_{1} \\ \omega_{n}^{2} = 10K_{1} \end{cases} \Longrightarrow K_{1}^{2} - 10K_{1} = 0$$

$$K_1 = 10, K_f = 0.9$$

(For CL stability, K_1 has to be positive.)

Summary

- Cruise control example
- Allowable pole locations
- Step responses
 - 2nd order overdamped systems
 - Higher order systems
- Design of some feedback systems
- Next
 - Root locus