Aufgabe 1 (Graphalgorithmen)

Die folgende Abbildung zeigt die wichtigsten bayerischen Autobahnen zusammen mit einigen anliegenden Orten und die Entfernungen zwischen diesen.

Entfernungstabelle

von	nach	km
Würzburg	Nürnberg	115
Nürnberg	Regensburg	105
Regensburg	AK Deggendorf	70
AK Deggendorf	Passau	50
Hof	Nürnberg	135
Nürnberg	Ingolstadt	90
Ingolstadt	AD Holledau	20
AD Holledau	München	50
München	AK Deggendorf	140
Hof	Regensburg	170
Regensburg	AD Holledau	70

Abkürzungen

D Deggendorf

HF Hof

HD Holledau

I Ingolstadt

M München

N Nürnberg

P Passau

R Regensburg

W Würzburg

(a) Bestimmen Sie mit dem Algorithmus von *Dijkstra* den kürzesten Weg von Ingolstadt zu allen anderen Orten. Verwenden Sie zur Lösung eine Tabelle gemäß folgendem Muster und markieren Sie in jeder Zeile den jeweils als nächstes zu betrachtenden Ort. Setzen Sie für die noch zu bearbeitenden Orte eine Prioritätswarteschlange ein, d. h. bei gleicher Entfernung wird der ältere Knoten gewählt.

Nr.	besucht	D	HD	HF	I	M	N	P	R	W
0		∞	∞	∞	0	∞	∞	∞	∞	∞
1	I	∞	20	∞	0	∞	90	∞	∞	∞
2	HD	∞	20	∞	1	70	90	∞	90	∞
3	M	210		∞		70	90	∞	90	∞
4	N	210		225			90	∞	90	205
5	R	160		225	1	1	1	∞	90	205
6	D	160		225				210		205
7	W			225				210		205
8	P	1		225			1	210		
9	HF			225	1		1			

- (b) Die bayerische Landesregierung hat beschlossen, die eben betrachteten Orte mit einem breitbandigen Glasfaser-Backbone entlang der Autobahnen zu verbinden. Dabei soll aus Kostengründen so wenig Glasfaser wie möglich verlegt werden. Identifizieren Sie mit dem Algorithmus von Kruskal diejenigen Strecken, entlang welcher Glasfaser verlegt werden muss. Geben Sie die Ortspaare (Autobahnsegmente) in der Reihenfolge an, in der Sie sie in Ihre Verkabelungsliste aufnehmen.
- (c) Um Touristen den Besuch aller Orte so zu ermöglichen, dass sie dabei jeden Autobahnabschnitt genau einmal befahren müssen, bedarf es zumindest eines sogenannten offenen Eulerzugs. Zwischen welchen zwei Orten würden Sie eine Autobahn bauen, damit das bayerische Autobahnnetz mindestens einen Euler-Pfad enthält?

Exkurs: offener Eulerzug

Ein offener Eulerzug ist gegeben, wenn Start- und Endknoten nicht gleich sein müssen, wenn also statt eines Zyklus lediglich eine Kantenfolge verlangt wird, welche jede Kante des Graphen genau einmal enthält. Ein bekanntes Beispiel ist das "Haus vom Nikolaus".

Zwischen Deggendorf und Würzburg $P\to D\to R\to N\to W\to D\to M\to HD\to R\to HF\to N\to I\to HD$