Exerzitien III

Submit your *concise* solutions in the correct order and no later than 4:10 pm on Oct. 6., in your tutorial.

Reading suggestion: **Span, linear independence, Basis**, First two sections of Chapter 2.

Exercise 1. Let V be a vector space over the field \mathbb{F} , and let $v_1, v_2, v_3, v_4 \in V$.

- 1. Prove that if (v_1, v_2, v_3, v_4) spans V, then so does $(v_1 v_2, v_2 v_3, v_3 v_4, v_4)$.
- 2. Prove that if (v_1, v_2, v_3, v_4) is linearly independent, then so is $(v_1 v_2, v_2 v_3, v_3 v_4, v_4)$.
- 3. Show that $(v_1 v_2, v_2 v_3, v_3 v_4, v_4 v_1)$ is linearly dependent.

Exercise 2. Determine (and justify) whether the given sequence of vectors is linearly independent or not.

- 1. ((-1,1,1,1),(1,-1,1,1),(1,1,-1,1),(1,1,1,-1)) in the real vector space \mathbb{R}^4
- 2. ((1,0),(i,0),(0,1),(0,i)) in the complex vector space \mathbb{C}^2
- 3. $(x^2, x^2 + 1, x^2 + 2)$ in the vector space of real polynomials in one variable, $\mathcal{P}(\mathbb{R})$
- 4. $(x^2, (x+1)^2, (x+2)^2)$ in $\mathcal{P}(\mathbb{R})$
- 5. ((1,1,0),(1,0,1),(0,1,1)) in \mathbb{F}_2^3

Exercise 3. What is the probability that a list (v_1, v_2, v_3) of three vectors, each chosen at random from $(\mathbb{F}_2)^5$, is linearly independent? Prove your claim. Does this probability increase or decrease as we increase the prime, for example in $(\mathbb{F}_3)^5$ and $(\mathbb{F}_5)^5$?

Exercise 4. Let $V = \mathcal{P}_4(\mathbb{R})$ be the vector space of real polynomials of degree \leq 4 in one variable. Show that

$$\{f \in \mathcal{P}_4(\mathbb{R}) : f(0) = f(1) = 0\}$$

defines a subspace of V, and find a basis for this subspace. Justify your claim and plot graphs of your basis elements.