泛函分析习题参考答案

November 22, 2019

一共是 18 次作业, 这里缺最后两次作业, 因为没有检查过, 所以可能会有一些错误, 可以参考一下

Contents

1	2019-09-03	2
2	2019-09-05	2
3	2019-09-10	3
4	2019-09-12	4
5	2019-09-17	5
6	2019-09-19	5
7	2019-09-24	5
8	2019-09-26	6
9	2019-10-08	7
10	2019-10-10	8
11	2019-10-15	9
12	2019-10-17	9
13	2019-10-22	10
14	2019-10-24	11
15	2019-10-29	11
16	2019-10-31	12

1 2019-09-03

Exercise p63 8(a)

Solution: 仅验证三角不等式

$$\begin{split} \rho(x,y) &= \sum_{j=0}^k \max_{a \leq t \leq b} \left| x^{(j)} - y^{(j)} \right| \\ &\leq \sum_{j=0}^k \left(\left| \max_{a \leq t \leq b} x^{(j)} - z^{(j)} \right| + \left| z^{(j)} - y^{(j)} \right| \right) \\ &\leq \sum_{j=0}^k \left(\max_{a \leq t \leq b} \left| x^{(j)} - z^{(j)} \right| + \max_{a \leq t \leq b} \left| z^{(j)} - y^{(j)} \right| \right) \\ &= \rho(x,z) + \rho(z,y). \end{split}$$

Exercise *p64 10(a)*

Solution: 仅验证三角不等式

$$\begin{split} \overline{\rho}(x,y) &= \frac{\rho(x,y)}{1 + \rho(x,y)} \\ &= 1 - \frac{1}{1 + \rho(x,y)} \\ &\leq 1 - \frac{1}{1 + \rho(x,z) + \rho(z,y)} \\ &= \frac{\rho(x,z) + \rho(z,y)}{1 + \rho(x,y) + \rho(z,y)} \\ &= \frac{\rho(x,z)}{1 + \rho(x,z) + \rho(z,y)} + \frac{\rho(z,y)}{1 + \rho(x,z) + \rho(z,y)} \\ &\leq \frac{\rho(x,z)}{1 + \rho(x,z)} + \frac{\rho(z,y)}{1 + \rho(z,y)} \\ &= \overline{\rho}(x,z) + \overline{\rho}(z,y). \end{split}$$

2 2019-09-05

Exercise 构造无穷多个开区间使得它们的交为 (0,1].

Solution: $\mathcal{O}_n = (0, 1 + \frac{1}{n}), n = 1, 2, \cdots$.

Exercise 利用 p18 三个等价命题的语言改写结论:有理多项式在 (a,b) 上稠密.

Solution:

- a. 对于任给的 $f(x) \in C[a,b]$ 以及任给的 $\epsilon > 0$,存在有理多项式 p(x) 使 $\max_{a \le x \le b} |f(x) p(x)| < \epsilon$.
- b. 对于任给的 $\epsilon > 0$, 以每个有理多项式为中心, 以 ϵ 为半径的全部开球的并包含 C[a,b].

c. 对于任给的 $f(x) \in C[a,b]$, 存在有理多项式序列 $p_n(x)$ 收敛于 f(x).

3 2019-09-10

Exercise p63 4

Solution: $\forall \epsilon > 0, \exists x', y' \in F \text{ s.t.}$

$$|f(x) - \rho(x, x')| < \frac{\epsilon}{4}$$

$$|f(y) - \rho(y, y')| < \frac{\epsilon}{4}.$$

由定义知,

$$\rho(y,y') - \frac{\epsilon}{4} < f(y) \le \rho(y,x') \le \rho(x,x') + \rho(x,y).$$

则有

$$\rho(y, y') - \rho(x, x') < \frac{\epsilon}{4} + \rho(x, y).$$

由 x 和 y 的对称性同理可得

$$\rho(x, x') - \rho(y, y') < \frac{\epsilon}{4} + \rho(x, y).$$

综合上面两个式子可得

$$|\rho(x,x') - \rho(y,y')| < \frac{\epsilon}{4} + \rho(x,y).$$

取 $\delta = \frac{\epsilon}{4}$, 当 $\rho(x,y) < \delta$ 时, 有

$$|\rho(x,x') - \rho(y,y')| < \frac{\epsilon}{2}.$$

所以

$$|f(x) - f(y)| \le |f(x) - \rho(x, x')| + |\rho(x, x') - \rho(y, y')| + |\rho(y, y') - f(y)| < \epsilon.$$

Exercise p63 7

Solution: 任取一个 $y \in T(x)$, 因为 A 在 X 中稠密, 所以存在序列 $\{x_n\}$ 使得 $\lim_{n\to\infty}x_n=x$. 由 T 的连续性可得 $\lim_{n\to\infty}T(x_n)=T(\lim_{n\to\infty}x_n)=T(x)=y$, 所以在 T(A) 中有序列 $\{T(x_n)\}$ 收敛到 y, 由 y 的任意性可知 T(A) 在 T(X) 中稠密.

Exercise p65 16

Solution:

a. 设x为A的一个聚点,则存在A中的一个点列 $\{x_n\}$ 使得

$$\lim_{n \to \infty} x_n = x.$$

因为 A 完备, 所以 $x \in A$. 也就是说 A 中的聚点包含于 A, 即 A 为闭集.

b. 设 $\{x_n\}$ 为 A 中的柯西列, 因为 X 完备, 所以存在 $x \in X$ 使得

$$\lim_{n \to \infty} x_n = x.$$

又因为 A 是闭集, 所以 $x \in A$. 所以 A 按照 X 的距离定义下是完备的距离空间.

4 2019-09-12

Exercise p65 18

Solution:

a. 若 B 是第一类型的集,则存在可数稀疏集合序列 $\{B_n\}$ 使得

$$B = \bigcup_{n=1}^{\infty} B_n.$$

则

$$A = A \cap B = \bigcup_{n=1}^{\infty} (B_n \cap A).$$

 $\{B_n \cap A\}$ 也是稀疏集, 所以 A 可以写成可数稀疏集的并, 自然也是稀疏集.

b. 这是上面的逆否命题, 所以和前面等价.

Exercise p65 23

Solution: 设 A 为准紧集, \overline{A} 为相应的闭包. 我们需要证明任给一个 \overline{A} 中的点列 $\{x_n\}$ 都存在子列收敛于 \overline{A} 中. 对每一个点 x_n , 都可以在 A 中找到一个点 y_n 使得 $\rho(x_n,y_n)<\frac{1}{n}$. 因为 $\{y_n\}$ 是准紧急 A 中的点列, 所以 $\{y_n\}$ 中有子序列 $\{y_{k_n}\}$ 收敛到全空间 X 中的一个点, 记为 x_0 . 因为 \overline{A} 是 A 的闭包, 所以 $x_0 \in \overline{A}$. 因此任给 $\epsilon > 0$, 存在正整数 N_1 , 当 $k_n \geq N_1$ 时

$$\rho(y_{k_n}, x_0) < \frac{\epsilon}{2}.$$

另一方面, 当 $k_n \ge n > N_2 = \left\lceil \frac{2}{\epsilon} \right\rceil$ 时, 有

$$\rho(y_{k,n}, x_{k_n}) < \frac{\epsilon}{2}.$$

综上所述, 当 $k_n \ge \max\{N_1, N_2\}$ 时, 有

$$\rho(x_{k_n}, x_0) \le \rho(x_{k_n}, y_{k_n}) + \rho(y_{k_n}, x_0) < \epsilon.$$

即子列 $\{x_{k_n}\}$ 收敛到 \overline{A} 中的点 x_0 .

5 2019-09-17

Exercise p66 25

Solution: 若 $\bigcap_{n=1}^{\infty} = \emptyset$, 则 $X = \bigcup_{n=1}^{\infty} (X \backslash F_n)$, 由有限覆盖定理知存在 $\{X \backslash F_{n_k}\}_{k=1}^l$ 使得 $X = \bigcup_{k=1}^l (X \backslash F_{n_k})$, 则 $\bigcap_{k=1}^l F_{n_k} = \emptyset$. 而由条件可知 $\bigcap_{k=1}^l F_{n_k} = F_{n_l} \neq \emptyset$, 矛盾.

Exercise p66 27

Solution: 由 $\rho(F_1, F_2) = 0$ 知存在序列 $\{x_n, y_n\}$ 使得

$$\lim_{n \to \infty} \rho(x_n, y_n) = 0.$$

不妨设 F_1 为闭集, F_2 为紧集, 则 $\{y_n\}$ 中有收敛的子序列, 不妨设收敛的子序列是 $\{y_{k_n}\}$, 收敛到的点设为 y_0 . 由

$$\rho(x_{k_n}, y_0) \le \rho(x_{k_n}, y_{k_n}) + \rho(y_{k_n}, y_0)$$

可知 $\lim_{n\to\infty} \rho(x_{k_n},y_0)=0$. 因为 F_1 是闭集, 所以 $y_0\in F_1$. 综上所述, 我们得到了点 $y_0\in F_1\cap F_2$, 即 $F_1\cap F_2\neq\emptyset$.

6 2019-09-19

Exercise p66 26

Solution: 由定义可以知道存在序列 $\{(x_n,y_n\}$ 使得 $\lim_{n\to\infty} \rho(x_n,y_n) = \rho(F_1,F_2)$. 因为 F_1 是紧的, 所以 $\{x_n\}$ 中有收敛的子列 $\{x_n'\}$ 收敛到某个点 $x_0 \in F_1$. 因为 F_2 是紧的, 所以 $\{y_n'\}$ 中有收敛的子列 $\{y_n''\}$ 收敛到某个点 $y_0 \in F_2$. 通过上述过程以及 $\rho(x,y)$ 的连续性可知

$$\lim_{n \to \infty} \rho(x_n'', y_n'') = \rho(x_0, y_0).$$

Exercise p66 32

Solution: 不妨设 $\{f_n\}$ 为单调增序列, 即 $f_1 \leq f_2 \leq \cdots \leq f_n \leq \cdots$. 对任给的 $\epsilon > 0$, 定义集合

$$\mathcal{O}_{n,\epsilon} = \{x : f(x) - f_n(x) < \epsilon\}.$$

由逐点收敛的条件可知 $X = \bigcup_{n=1}^{\infty} \mathcal{O}_{n,\epsilon}$, 其中 $\mathcal{O}_{1,\epsilon} \subset \mathcal{O}_{2,\epsilon} \subset \cdots \subset \mathcal{O}_{n,\epsilon} \subset \cdots$. 由 X 紧知存在有限个集合族 $\{\mathcal{O}_{n_k,\epsilon}\}_{k=1}^l$ 使得 $X = \bigcup_{k=1}^l \mathcal{O}_{n_k,\epsilon} = \mathcal{O}_{n_l,\epsilon}$. 即任给 $\epsilon > 0$, 存在与 x 无关的正整数 n_l , 当 $n \geq n_l$ 时, 有 $f(x) - f_n(x) < \epsilon$.

7 2019-09-24

Exercise p66 28

Solution: 因为 l^p 是完备的度量空间, 所以准紧性与全有界性等价 (本章定理 4.2). 所以下面都是证明全有界性和两个条件的等价关系.

充分性: 设 (a), (b) 成立, 由 (b) 知, 任给 $\epsilon > 0$ 存在 N > 0, 当 m > N 时, 对一切 $x \in A$ 都有

$$\sum_{n=m}^{\infty} |\xi_n|^p < \frac{\epsilon}{2}.$$

固定 N, 设集合 B 是 A 中的元素在 N 处截断后的集合, 也就是把 A 中元素 $x=(\xi_1,\xi_2,\cdots,\xi_N,\xi_{N+1},\cdots)$ 变为 $(\xi_1,\xi_2,\cdots,\xi_N,0,0,\cdots)$. 这样得到的 B 由 (a) 知有界, 但是 R^N 中的有界集一定是准紧集, 所以 B 存在一个 $\frac{\epsilon}{2}$ -网,设该 $\frac{\epsilon}{2}$ -网为 $C=\left\{x^{(1)},x^{(2)},\cdots,x^{(l)}\right\}$. 则对任给 $\epsilon>0$, 以及人给的 $x\in A$, 存在 N 以及 $x^{(i)}\in C$ 使得

$$\sum_{n=1}^{\infty} \left| \xi_n - x_n^{(i)} \right|^p = \sum_{n=1}^{N} \left| \xi_n - x_n^{(i)} \right|^p + \sum_{n=N+1}^{\infty} \left| \xi_n - 0 \right|^p < \epsilon.$$

所以 C 是 A 的一个 ϵ -网, 即 A 全有界.

必要性: 由 A 准紧知任给 $\epsilon > 0$, 存在 $\frac{\epsilon}{2}$ -网 $C = \{x^{(1)}, x^{(2)}, \cdots, x^{(l)}\}$. 因为 C 中只有有限个元素, 所以存在正整数 N, 使得对任意 $x^{(i)} \in C$ 都有

$$\sum_{n=N+1}^{\infty} \left| x_n^{(i)} \right|^p < \epsilon/2.$$

则任给 $x=(\xi_1,\xi_2,\cdots,\xi_n,\cdots)\in A$, 在 ξ -网中选取某个 $x^{(i)}$, 对 m>N 有

$$\sum_{n=m}^{\infty} \left| \xi_n \right|^p \le \sum_{n=N+1}^{\infty} \left| \xi_n \right|^p \le \sum_{n=N+1}^{\infty} \left| \xi - x_n^{(i)} \right|^p + \sum_{n=N+1}^{\infty} \left| x_n^{(i)} \right|^p < \epsilon.$$

这样我们就证明了(b),(a)对于全有界集是显然的.

Exercise 设 $0 < \alpha \le 1$, 定义集合 A 为

$$A = \left\{ x \in C[a, b] : \max_{a \le t \le b} |x(t)| + \max_{t' \ne t''} \frac{|x(t') - x(t'')|}{|t' - t''|^{\alpha}} \le M \right\}.$$

证明 A 在 C[a,b] 中准紧.

Solution: 设 $\{x_n\}$ 为 A 中的一个函数序列, 由 A 的定义可知 $\{x_n\}$ 有界. 又由定义可知对任意 A 中的函数都有 $|x(t') - x(t'')| \le M |t' - t''|^{\alpha}$, 所以 $\{x_n\}$ 等度连续, 所以由定理 5.1 知 A 准紧.

8 2019-09-26

Exercise p67 33

Solution: 参见 54 页例 2, 这是例 2 中 K(t,s)=1 的特殊情形.

Exercise p67 36

Solution: 对 Ax = b 变形可得 b - (A - I)x = x, 令 T(x) = b - (A - I)x, 则问 题变为证明 T 有唯一的不动点.

$$||T(x) - T(y)|| = ||(A - I)(x - y)||$$

$$= \sqrt{\sum_{i=1}^{n} \left| \sum_{j=1}^{n} (a_{ij} - \delta_{ij}) (x_j - y_j) \right|^2}$$

$$\leq \sqrt{\sum_{i,j=1}^{n} |a_{ij} - \delta_{ij}|^2} \sqrt{\sum_{j=1}^{n} |x_j - y_j|^2}$$

$$= \sqrt{\sum_{i,j=1}^{n} |a_{ij} - \delta_{ij}|^2} ||x - y||.$$

其中第三行用到了 Cauchy-Schwartz 不等式. 由条件知系数小于 1, 所以 T 是欧式空间到自身的压缩变换, 再用不动点定理即可得到结论.

9 2019-10-08

Exercise p120 2

Solution: 要证明其为完备的巴拿赫空间, 就是要证明该范数下空间是完备的. 设 $\{x_n\}$ 为该范数下的基本列, 则由该范数的定义易得 $\{x_n(a)\}$ 为 \mathbb{R} 上的基本列, 所以存在极限 x_a . 还可以从该范数定义中得到 $x_n'(t)$ 在 $L^1[a,b]$ 中也是基本列, 所以由 $L^1[a,b]$ 空间的完备性可知存在 $y(t) \in L^1[a,b]$ 使得

$$\int_{a}^{b} |x'_{n}(t) - y(t)| dt \to 0 \quad n \to \infty.$$

 $\Rightarrow x(t) = x_a + \int_a^t y(s) ds$, \mathbb{M}

$$||x(t) - x_n(t)||_{L^1} = |x_a - x_n(a)| + \int_a^b |x'_n(t) - y(t)| dt \to 0 \quad n \to \infty.$$

完备性得证.

下证可分性. 设 A_0 为 A 中 x(a) = 0 的所有元素构成的集合,则

$$A = \overline{\bigcup_{r \in \mathbb{O}} (r + A_0)}.$$

所以我们仅仅需要证明 A_0 可分即可. 作映射 $f: x \mapsto x'$, 该映射是 A_0 到 $L^1[a,b]$ 的单射且保范, 所以由 $L^1[a,b]$ 的可分性立即得到 A_0 可分.

Exercise p121 7

Solution: 设 $\{x_n\}$ 为 c_0 中的基本列, 则任给 $\epsilon > 0$, 存在正整数 N, 当 n, m > N 时, 有

$$||x_n - x_m|| = \sup_{k \ge 1} \left| \xi_k^{(m)} - \xi_k^{(n)} \right| < \epsilon.$$

由此可得对任意的正整数 k 都有 $\left|\xi_k^{(m)} - \xi_n^{(n)}\right| < \epsilon$, 所以对每一个固定的 k, $\left\{\xi_k^{(n)}\right\}_{n=1}^\infty$ 是基本列, 设其收敛到 $\xi_k^{(0)}$. 则对任给的 $\epsilon>0$, 对上个式子中的 m 取

$$\left|\xi_k^{(n)} - \xi_k^{(0)}\right| \le \epsilon.$$

接下来我们说明 $x^{(0)}=\left(\xi_1^{(0)},\xi_2^{(0)},\cdots,\xi_k^{(0)},\cdots\right)$ 是属于 c_0 的. 固定 n, 以及给 定的 ϵ , 由 $x^{(n)} \in c_0$ 知存在正整数 M,k > M 时满足 $\left| \xi_k^{(n)} \right| < \epsilon$. 则

$$\left|\xi_k^{(0)}\right| \le \left|\xi_k^{(0)} - \xi_k^{(n)}\right| + \left|\xi_k^{(n)}\right| < 2\epsilon.$$

所以 $x^{(0)} \in c_0$. 即 c_0 为巴拿赫空间. 下证可分性. 令 $\eta^{(n)} = (0, \cdots, 1($ 第 n 个分量), $\cdots, 0, \cdots)$, 则 $\{\eta\}$ 构成一个 完备正交基且可列, 所以 c_0 可分.

10 2019-10-10

Exercise p121 11

Solution: 由 dist(x, K) 的定义可以知道存在序列 $\{y_n\} \subset K$ 使得

$$\operatorname{dist}(x,K) = \lim_{n \to \infty} \rho(x, y_n) = \lim_{n \to \infty} ||x - y_n||.$$

因为 K 是紧集, 所以 $\{y_n\}$ 中有收敛到 K 中点的子序列 $\{y_{k_n}\}$, 设收敛点为 y_0 , 则 $||y_{k_n} - y_0|| \to 0$. 由此可得

$$dist(x, K) = \lim_{n \to \infty} ||x - y_{k_n}|| = ||x - y_0||.$$

Exercise p121 13

Solution: $\diamondsuit \alpha_n = \sum_{k=1}^n x_k$, \mathbb{M}

$$\|\alpha_{n+p} - \alpha_n\| = \|\sum_{k=n+1}^{n+p} x_k\| \le \sum_{k=n+1}^{n+p} \|x_k\|.$$

因为 $\sum_{n=1}^{\infty}\|x_n\|$ 收敛, 所以当 $n\to\infty$ 时, 上式右边趋于 0. 也就是对任给 $\epsilon>0$, 存在正整数 N, 当 n>N,p 为任意正整数时, 有 $\|\alpha_{n+p}-\alpha_n\|=\sum_{k=n+1}^{n+p}\|x_k\|<\epsilon$. 所以 $\{\alpha_n\}$ 为基本列, 由空间完备性知存在 $x\in E$ 使得

$$x = \lim_{n \to \infty} \alpha_n = \sum_{n=1}^{\infty} x_n.$$

再由范数的连续性和 $\|\alpha_n\| \leq \sum_{n=1}^{\infty} \|x_n\| = M$ 可得

$$||x|| = \lim_{n \to \infty} ||\alpha_n|| \le M.$$

11 2019-10-15

Exercise p122 20

Solution: 容易验证 H 是一个线性空间, 并且 $||x||_H$ 是该线性空间的一个范数. 由定理 3.1 知, 要证明给出的范数可以定义内积, 只要验证下述等式成立

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

其中 $x, y \in H$. 可以通过令 $x \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$ 和 $y \sim \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} (\alpha_n \cos nt + \beta_n \sin nt)$, 代人上面等式验证即可.

本题的关键是要证明 H 在范数 $\|\cdot\|_H$ 下的完备性. 设 $\{x_n\}$ 为 H 中的一个基本列, 设

$$x_n \sim \frac{a_{0,n}}{2} + \sum_{k=1}^{\infty} (a_{k,n} \cos kt + b_{k,n} \sin kt).$$

我们可以作空间 H 到 $L^2[0,2\pi]$ 的保范映射 $f:x\mapsto x',$ 其中 $x'\sim\frac{a_0}{2}+\sum_{n=1}^{\infty}(a'_n\cos nt+b'_n\sin nt), a'_n=\sqrt{n}a_n, b'_n=\sin\sqrt{n}b_n.$ 因为

$$\sum_{n=1}^{\infty} n \left(a_n^2 + b_n^2 \right) < \infty.$$

所以

$$\sum_{n=1}^{\infty} \left(a_n'^2 + b_n'^2 \right) < \infty.$$

也就是说我们定义的映射确实是落在了 $L^2[0,2\pi]$ 中, 并且是保范的. 另一方面, 对于 $L^2[a,b]$ 中的每个函数 x' 我们都可以通过上述过程的逆过程找到一个 H 中的函数 x 使得它的像是 x'. 这说明 H 与 $L^2[0,2\pi]$ 同构, 而 $L^2[0,2\pi]$ 完备, 所以 H 完备.

Exercise *p122 21*

Solution: 若 (α_{ij}) 是正定矩阵,则正定二次型 (x,x)=0 当且仅当 x=0,内积的其它性质可由二次型的双线性性得到.

反之,若 $(x,y) = \sum_{i,j=1}^{n} \alpha_{ij} x_i y_j$ 是一个内积,那么可知 $(x,x) \ge 0$ 且 (x,x) = 0 当且仅当 x = 0,这说明 (α_{ij}) 是一个正定矩阵.

12 2019-10-17

Exercise p123 23

Solution: 必要性, $||x + \alpha y||^2 = (x + \alpha y, x + \alpha y) = ||x||^2 + ||y||^2 \ge ||x||^2$. 充分性, 若 y = 0, 显然. 下设 $y \ne 0$. 平方条件可得

$$\overline{\alpha}(x,y) + \alpha(y,x) + \left|\alpha\right|^2 \|y\|^2 \ge 0.$$

$$-\frac{(x,y)\overline{(x,y)}}{\|y\|^2} \ge 0 \Rightarrow (x,y) = 0.$$

Exercise p123 24

Solution: 必要性显然, 只证充分性. 条件平方展开可得

$$||x||^{2} + \overline{\alpha}(x,y) + \alpha(y,x) + |\alpha|^{2} ||y||^{2} = ||x||^{2} - \overline{\alpha}(x,y) - \alpha(y,x) + |\alpha|^{2} ||y||^{2}$$
$$\overline{\alpha}(x,y) + \alpha(y,x) = 0.$$

Exercise p123 28

Solution: 假设存在一个规范正交系不是线性无关的, 那么该规范正交系中存在 $\{e_1,e_2,\cdots,e_n\}$ 线性相关. 也就是说, 存在不全为零的系数 $\{\lambda_1,\lambda_2,\cdots,\lambda_n\}$ 使得

$$\sum_{i=1}^{n} \lambda_i e_i = 0.$$

由规范正交系的的定义可知对任意的 $j=1,2,\cdots,n,$ 有 $(\sum_{i=1}^n \lambda_i e_i,e_j)=\lambda_j,$ 从而结合上式可得 $\lambda_j=0,$ 由 j 的任意性知所有系数等于零, 这与假设矛盾. $\ \square$

13 2019-10-22

Exercise p218 1

Solution: 充分性:

$$\|Tx\| = \max_{a \leq t \leq b} |\alpha(t)x(t)| \leq \max_{a \leq t \leq b} |\alpha(t)| \max_{a \leq t \leq b} |x(t)| = \|\alpha\| \|x\|.$$

Exercise p219 5

Solution: 因为

$$||T|| = \sup_{\|\xi\|=1} |\alpha_n \xi_n| \le \sup_{n \ge 1} |\alpha_n|.$$

所以 T 是有界算子. 令 $x = (1, 1, \dots, 1, \dots)$, 则 ||x|| = 1, 从而

$$||T|| > ||Tx|| = \sup_{n \ge 1} |\alpha_n|.$$

综合两个不等式可得

$$||T|| = \sup_{n \ge 1} |\alpha_n|.$$

14 2019-10-24

Exercise p219 7

Solution:

$$||S_n T_n - ST|| \le ||S_n (T_n - T)|| + ||(S_n - S)T||$$

$$\le ||S_n|| ||T_n - T|| + ||S_n - S|| ||T||$$

$$\to 0 \quad (n \to \infty).$$

Exercise p219 8

Solution:

$$||T_n x_n - Tx|| \le ||T_n (x_n - x)|| + ||(T_n - T)x||$$

$$\le ||T_n|| ||x_n - x|| + ||T_n - T|| ||x||$$

$$\to 0 \quad (n \to \infty)$$

Exercise p220 15

Solution: 任给 $y \in E_1$, 由 T 是满映射可知存在 $x \in E$ 使得 T(x) = y, 因为 D 在 E 中稠密, 存在 $\{x_n\} \subset E$ 使得 $\lim_{n \to \infty} x_n = x$, 又由 T 的连续性得 $y = T(x) = T(\lim_{n \to \infty} x_n) = \lim_{n \to \infty} T(x_n)$, 而 $\{T(x_n)\} \subset T(D)$, 所以由 y 的任意性知 T(D) 在 E_1 中稠密.

15 2019-10-29

Exercise *p220 13(a)*

Solution: 一方面,

$$\sup_{t \in [0,1]} |(Tx)(t)| \leq \sup_{t \in [0,1]} x(t) \int_0^1 \left| \sin \pi(t-s) \right| \mathrm{d}s = \frac{2}{\pi} \sup_{t \in [0,1]} \left| x(t) \right|.$$

另一方面, <math> <math>

$$\sup_{t \in [0,1]} |(Tx)(t)| \ge |T(x)(0)| = \left| \int_0^1 \sin \pi s ds \right| = \frac{2}{\pi}.$$

综上 $||T|| = \frac{2}{\pi}$.

Exercise *p220 17*

Solution: 由定理 3.2 可知, 存在正实数 M 使得 T_n, S_n, T, S 的范数都不超过 M. 对任意给定的 $x \in E$, 有

$$||S_n T_n x - STx|| \le ||S_n T_n x - S_n Tx|| + ||S_n Tx - STx||$$

$$\le ||S_n|| ||T_n x - Tx|| + ||S_n (Tx) - S(Tx)||$$

$$\to 0 \quad (n \to \infty).$$

16 2019-10-31

Exercise *p220 20*

Solution: 取函数 $g_n = [g]_n$, 这里 $[g]_n$ 表示当 |x| > n 或者 |g(x)| > n 时取函数值为零, 显然 g_n 逐点收敛到 g. 定义 L^p 上的线性泛函

$$T_n f = \int_F g_n f.$$

其中 $f \in L^p$. 由赫尔德不等式

$$|T_n f| \le ||g_n||_q ||f||_p$$
.

也就是说 $||T_n|| \le ||g_n||_q$ 另一方面令 $f = \operatorname{sgn} \frac{(g_n)|g_n|^{q-1}}{||g_n||_q^{q-1}}$,容易验证 $f \in L^p$ 并且 $||f||_p = 1$,此时

$$||T_n|| \ge |T_n f| = ||g_n||_q.$$

所以 $||T_n|| = ||g_n||_q$. 另一方面, 对每个固定的 x 都有

$$|T_n f| \le \int_E |gf|.$$

(这里用到了可积性在函数与其取绝对值的函数之间是等价的) 从而由共鸣定理可知 $\{||T_n||\}$ 一致有界. 再由控制收敛定理得

$$\int |g|^q = \lim_{n \to \infty} ||g_n||^q < \infty.$$

Exercise *p220 23*

Solution: 令 $\eta_j = (\eta_1, \eta_2, \dots, \eta_j, 0, \dots)$. 定义算子 $T_j = sum_{n=1}^j \eta_n \xi_n$. 对任意 $x \in l$, 以及 j, 都有

$$|T_i x| \leq |T x| < \infty$$
.

从而由共鸣定理得 $\{\|T_j\|\}$ 一致有界. 又因为 $\|T_j\|=\sup_{1\leq i\leq j}|\eta_i|$, 所以 $\{\eta_n\}$ 有界.