Final Project Report

Group 7 R12943006 謝郡軒 R12943012 蔡東翰 R12943031 李允恩

Block Diagram

- In this project, we implemented FIR, QS, MM hardware, and we also added DMA and arbiter to accelerate the calculation, so that hardware can directly communicate with SDRAM.
- Steps
 - CPU sends coefficients to FIR.
 - FIR, QS, and MM start simultaneously.
 - CPU sends address and length of data and answer to DMA.
 - DMA starts reading SDRAM through the arbiter and saves data into data BRAM.
 - When DMA finishes reading data, it can start sending data to hardware, and then hardware starts calculating.
 - Hardware sends answers to DMA, and DMA saves data into answer BRAM.
 - After DMA gets all answers, DMA sends answers back to SDRAM through the arbiter.

FIR

Block diagram

- Use only <u>1 multiplier</u> and <u>1 adder</u>.
- CPU first sends coefficients, and FIR saves coefficients in BRAM. After that, DMA sends input data.
- FIR receives new data when the previous answer is outputted.
- FIR produces 1 data per 12 cycles.
- If DMA is fast enough to send and receive the input/output data, the FIR process in our design totally costs about <u>132 cycles</u> (excluding coef receiving time).

Matmul

- Use only 1 multiplier and 1 adder.
- After we read the 4*4 A matrix, we read the elements in B matrix one by one and calculate all the results related to the current B element before asking for the next B element, we don't need to save the whole B matrix in our design so therefore we can save about 14 registers.

 If DMA is fast enough to send and receive the input/output data, the matrix multiplication process in our design totally costs about 16 (receiving A) + 64 (receiving B and calculating C) + 16 (returning C) = 96 cycles.

Quick Sort

- Use only <u>1 comparator</u>.
- Although quicksort may be more efficient and powerful in C++, however, in this project, we use verilog code for coding and the input sequence comes in serial, so we think using <u>insertion sort</u> will be more suitable.
- Because insertion sort is also <u>in-place</u>, we can use about only 12 registers to sort 10 elements (2 more for buffering).
- If DMA is fast enough to send and receive the input/output data, the insertion sort process in our design totally costs about <u>53 cycles</u>.

UART

Block diagram

- We <u>add buffers at both rx and tx sides</u>, so that (1) we don't need to enter ISR
 as soon as one interrupt happens, and (2) we can send another data to be
 transmitted without waiting for the previous one to finish its transmission.
- Besides, to prevent unsettled interrupts, we have a count-down counter to check if the rx buffer is empty periodically.
- Therefore, we can set two parameters n and m, which the UART generates an irq signal if there has been total <u>n unsettled interrupts</u> or <u>m cycles since the last time entering ISR</u>.

Direct Memory Access

Block diagram

- There are 3 DMAs for FIR, MM, and QS respectively.
- Each of them will receive five data through axi-lite protocol from CPU, including information of data_len, data_addr, ans_len, ans_addr, ap_start, and DMAs have to return the ap_done signal back to CPU when necessary.
- After receiving all data above, DMAs will ask for input data for FIR/MM/QS engines through wishbone protocol from SDRAM controller according to the given data addr and data len, and save them into DATA BRAM in order.
- However, we need an arbiter between DMAs and SDRAM controller to avoid collision of data requests.
- After saving all input data into DATA BRAM, DMAs will start sending input data into FIR/MM/QS engines through axi-stream protocol with a view to activating the corresponding computations.
- When FIR/MM/QS engines finish the operations, they will send the answers back to DMAs through axi-stream protocol, which will be saved in ANS BRAM in order by DMAs.
- After saving all answer data into ANS BRAM, DMAs will start sending answer data to arbiter through wishbone protocol. Eventually, arbiter and SDRAM controller will save those data into SDRAM properly.

Arbiter

Block diagram

- Arbiter collects the wishbone signals of DRAM access from 3 DMAs and CPU together, putting them in a <u>FIFO</u>, and then arbiter will access the DRAM according the output of FIFO and send back the corresponding wishbone signals to DMA.
- Since wishbone signals cannot be pipelined, arbiter will receive a new request from one source only when the last request from the same source has been fulfilled. Therefore, we only need a FIFO of size 4 to accommodate all the requests from 4 different sources.
- To accelerate the whole process, if two requests comes in at the same time, the priority will be <u>CPU > FIR > matmul > sort</u>

SDRAM Controller

Block diagram

FSM (our different part)

Schedule

- We observe that if this cycle CPU is accessing address "x" then the next cycle CPU will likely access address "x+4".
- Since it costs 3 cycles from we send a request to SDRAM to we get the data, we need to have at least 2 caches to store the prefetch datas.
- Therefore, we use 2 caches where cache n (n = 0, 1) saves the data whose addr[2] == n, and every time we send back a data of address "x" to arbiter we will immediately go prefetch the data of address "x+8" and save it in the corresponding cache.
- At the best situation (we've guessed the prefetch address correctly), the latency of accessing a data from SDRAM will be shortened to <u>2 CYCLES</u>.

Simulation Result

Compile optimization: O3

```
LA Test uart started
                                       LA Test qsort started
tx data bit index 0: 1
                                       correct answer: 0028
tx data bit index 1: 1
                                       correct answer: 037d
tx data bit index 2: 1
                                       correct answer: 09ed
tx data bit index 3: 1
                                       correct answer: 0a6d
tx data bit index 4: 0
                                       correct answer: 0ca1
tx data bit index 5: 0
                                       correct answer: 10ab
tx data bit index 6: 0
                                       correct answer: 120e
tx data bit index 7: 0
                                       correct answer: 1631
tx complete 1
                                       correct answer: 1787
Calculation start, Time = 1.46244 ms
                                       correct answer: 2371
Calculation finish, Time = 1.53484 ms
                                       LA Test 2 passed
LA Test fir started
                                       tx data bit index 0: 1
correct answer: 0000
                                       tx data bit index 1: 0
correct answer: fff6
                                       tx data bit index 2: 1
correct answer: ffe3
                                       tx data bit index 3: 1
correct answer: ffe7
                                       tx data bit index 4: 1
correct answer: 0023
correct answer: 009e
                                       tx data bit index 5: 1
correct answer: 0151
                                       tx data bit index 6: 0
correct answer: 021b
                                       tx data bit index 7: 0
correct answer: 02dc
                                       tx complete 2
correct answer: 0393
                                       rx data bit index 0: 1
correct answer: 044a
                                       rx data bit index 1: 1
LA Test mm started
                                       rx data bit index 2: 1
correct answer: 003e
                                       rx data bit index 3: 1
correct answer: 0044
                                       rx data bit index 4: 0
correct answer: 004a
                                       rx data bit index 5: 0
correct answer: 0050
                                       rx data bit index 6: 0
correct answer: 003e
                                       rx data bit index 7: 0
correct answer: 0044
                                       recevied word
correct answer: 004a
                                       rx data bit index 0: 1
correct answer: 0050
                                       rx data bit index 1: 0
correct answer: 003e
                                       rx data bit index 2: 1
correct answer: 0044
                                       rx data bit index 3: 1
correct answer: 004a
                                       rx data bit index 4: 1
correct answer: 0050
                                       rx data bit index 5: 1
correct answer: 003e
                                       rx data bit index 6: 0
correct answer: 0044
correct answer: 004a
                                       rx data bit index 7: 0
correct answer: 0050
                                       recevied word
                                                      61
```

Hardware Result

Original (Lab6)

o Setup: 2.93 ms

 \circ Calculation: 4.81(fir) - 0.98(uart) + 2.95(mm) - 0.97(uart) + 0.77(qs) = 6.58ms

• Check answer: 0.68(fir) + 0.24(mm) + 0.62(qs) = 1.54

Our work

Setup: 1.46 ms

o Calculation: 0.07 ms = 2800 cycles

o Check answer: 0.12 ms

Calculation improvement: 9300%Calculation cycle: 2800 cycles

UART Result

Original

interrupts to trigger ISR: 1

o time spent in one ISR: 0.9 (ms) = 36000 (cycles)

Our work

o interrupts to trigger ISR : n

o time spent in one ISR :

n	time	cycle	cycle / interrupt
2	0.48 (ms)	19200	9600
3	0.60 (ms)	24000	8000
4	0.72 (ms)	28800	7200
5	0.85 (ms)	34000	6800

Utilization

 $design_1_caravel_ps_0_0_utilization_synth.rpt$

	L					
Ì	Site Type	Used	Fixed	Prohibited	Available	Util%
Ī	Slice LUTs*	119	0	0	53200	0.22
	LUT as Logic	119	0	0	53200	0.22
	LUT as Memory	0	0	0	17400	0.00
	Slice Registers	158	0	0	106400	0.15
	Register as Flip Flop	158	0	0	106400	0.15
	Register as Latch	0	0	0	106400	0.00
	F7 Muxes	0	0	0	26600	0.00
	F8 Muxes	0	0	0	13300	0.00

		L
Ref Name	Used	Functional Category
FDRE LUT3 LUT6 LUT2 LUT4 LUT5 LUT1	158 79 46 8 4 1	Flop & Latch LUT LUT LUT LUT LUT
+		++

design_1_axi_uartlite_0_0_utilization_synth.rpt

1. Slice Logic

Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs* LUT as Logic LUT as Memory LUT as Distributed RAM LUT as Shift Register Slice Registers Register as Flip Flop Register as Latch F7 Muxes	104 86 18 0 18 113 113 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	53200 53200 17400 106400 106400 106400 26600	0.20 0.16 0.10 0.11 0.11 0.00
F8 Muxes	0	0	0	13300	0.00

+		
Ref Name	Used	Functional Category
+ FDRE LUT6 LUT5 LUT4 SRL16E FDSE LUT2 LUT3 LUT1 MUXF7	95 29 27 27 18 18 14 9 2 1	Flop & Latch LUT LUT LUT Distributed Memory Flop & Latch LUT LUT MuxFx

design_1_blk_mem_gen_0_0_utilization_synth.rpt

1. Slice Logic

.....

4	+				++
Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs*	10	0	0	53200	0.02
LUT as Logic	8	0	0	53200	0.02
LUT as Memory	2	0	0	17400	0.01
LUT as Distributed RAM	0	0			
LUT as Shift Register	2	0			
Slice Registers	12	0	0	106400	0.01
Register as Flip Flop	12	0	0	106400	0.01
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	+				++

Memory

						_
Site Type		Fixed	Prohibited	Available	Util%	İ
1 51 1 500 711	2 2 2 0	0 0		140 140	1.43 1.43 0.00	
+	+	+	+		+	t

Ref Name	Used	Functional Category
FDRE LUT2 SRL16E RAMB36E1 LUT4	12 6 2 2 2	LUT Distributed Memory

design_1_output_pin_0_0_utilization_synth.rpt

1. Slice Logic

.

Site Type	Used	Fixed	Prohibited	Available	++ Util%
Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch	10 10 0 12 12 0		0 0 0 0 0	53200 53200 17400 106400 106400 106400 26600	0.02 0.02 0.00 0.01 0.01 0.00
F8 Muxes	0	0	0	13300	0.00

7. Primitives

Ref Name	Used	Functional Category
FDRE LUT5 LUT4 LUT6 LUT2 LUT1	12 4 4 1 1 1	Flop & Latch LUT LUT LUT LUT LUT
+	+	

design_1_caravel_0_0_utilization_synth.rpt

4		+		.	+	++
į	Site Type	Used	Fixed	Prohibited	Available	Util%
+	Slice LUTs* LUT as Logic LUT as Memory LUT as Distributed RAM LUT as Shift Register Slice Registers Register as Flip Flop Register as Latch	7052 6774 278 240 38 7608 7608	0 0 0	0 0 0 1 0 0	53200	13.26 12.73 1.60 7.15 0.00
i	F7 Muxes	298	0	0	26600	1.12
	F8 Muxes	79	0	0	13300	0.59

2. Memory

+-----| Site Type | Used | Fixed | Prohibited | Available | Util% | +-----

+-----

3. DSP

+----+ | Site Type | Used | Fixed | Prohibited | Available | Util% | +-----+-----

7. Primitives

+		++
Ref Name	Used	Functional Category
+		++
FDCE	4207	Flop & Latch
LUT6	3040	LUT
FDRE	3029	Flop & Latch
LUT4	1542	LUT
LUT5	1452	LUT
LUT2	627	LUT
LUT3	586	LUT
LUT1	424	LUT
CARRY4	419	CarryLogic
MUXF7	298	MuxFx
FDPE	283	Flop & Latch
RAMS32	232	Distributed Memory
FDSE	89	Flop & Latch
MUXF8	79	MuxFx
SRL16E	38	Distributed Memory
RAMD32	24	Distributed Memory
RAMB18E1	6	Block Memory
RAMB36E1	4	Block Memory
DSP48E1	4	Block Arithmetic
+	+	++

design_1_auto_us_0_utilization_synth.rpt

Slice Logic

4		L	L		
Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs* LUT as Logic	192 168	0 0	0 0	53200 53200	0.36
LUT as Memory LUT as Distributed RAM	24	0	0	17400	0.14
LUT as Shift Register	24	0			
Slice Registers Register as Flip Flop	343 343	0 0	0 0	106400 106400	0.32
Register as Latch	0	0	0	106400	0.00
F7 Muxes F8 Muxes	0	0	0	26600 13300	0.00
1	L	L	L	L	L L

7. Primitives

L Dof Nome	Lucad	
+		Functional Category
FDRE	341	Flop & Latch
LUT3	84	LUT
LUT6	81	LUT
LUT5	28	LUT
SRLC32E	24	Distributed Memory
LUT4	19	LUT
LUT2	12	LUT
LUT1	4	LUT
FDSE	2	Flop & Latch
+	+	+

$design_1_rst_ps7_0_10M_0_utilization_synth.rp$

1. Slice Logic

Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs*	19	0	0	53200	0.04
LUT as Logic	18	0	0	53200	0.03
LUT as Memory	1	0	0	17400	<0.01
LUT as Distributed RAM	0	0			
LUT as Shift Register	1	0			
Slice Registers	40	0	0	106400	0.04
Register as Flip Flop	40	0	0	106400	0.04
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+	+		+	+	++

| Ref Name | Used | Functional Category |

Ret Name	usea	Functional Category
+		+
FDRE	36	Flop & Latch
LUT2	9	LUT
LUT4	6	LUT
LUT1	5	LUT
FDSE	4	Flop & Latch
LUT5	3	LUT
SRL16E	1	Distributed Memory
LUT6	1	LUT
LUT3	1	LUT
+		+

design_1_read_romcode_0_0_utilization_synth.rpt

1. Slice Logic

Used	Fixed	Prohibited	Available	Util%
739	0	0	53200	1.39
664	0	0	53200	1.25
75	0	0	17400	0.43
0	0			
75	0			
1100	0	0	106400	1.03
1100	0	0	106400	1.03
0	0	0	106400	0.00
0	0	0	26600	0.00
0	0	0	13300	0.00
_	739 664 75 0 75 1100 1100	739 0 664 0 75 0 0 0 75 0 1100 0	739 0 0 664 0 0 75 0 0 0 0 1100 0 0 1100 0 0	739 0 0 53200 664 0 0 53200 75 0 0 17400 0 0 75 0 1100 0 0 106400 1100 0 0 106400 0 0 0 26600

Memory

•	Used	Fixed	Prohibited	Available	Util%
Block RAM Tile RAMB36/FIFO* RAMB36E1 only RAMB18	1 1	0 0 0	0 0 1	140 140	0.71 0.71 0.71

4		L -
Ref Name	Used	Functional Category
FDRE LUT3 LUT6 LUT4 LUT2 SRL16E LUT5 CARRY4 LUT1 FDSE RAMB36E1	1097 261 212 158 132 75 68 63 22 3	Flop & Latch LUT LUT LUT LUT Distributed Memory LUT CarryLogic LUT Flop & Latch Block Memory
		'

design_1_spiflash_0_0_utilization_synth.rpt

1. Slice Logic

.....

Site Type	Used	Fixed	Prohibited	Available	++ Util%
Slice LUTs*	44	0	0	53200	0.08
LUT as Logic	44	0	0	53200	0.08
LUT as Memory	0	0	0	17400	0.00
Slice Registers	63	0	0	106400	0.06
Register as Flip Flop	63	0	0	106400	0.06
Register as Latch	0	0	0	106400	0.00
F7 Muxes	0	0	0	26600	0.00
F8 Muxes	0	0	0	13300	0.00
+				L	++

7. Primitives

Ref Name	Used	Functional Category
FDRE FDCE LUT3 LUT6 CARRY4 LUT4 LUT5 LUT1 LUT1	32 31 26 21 10 5 4 2	Flop & Latch Flop & Latch LUT LUT CarryLogic LUT LUT LUT

design_1_auto_pc_0_utilization_synth.rpt

Slice Logic

+-						
į	Site Type	Used	Fixed	Prohibited	Available	Util%
Ţ	Slice LUTs*	210	0	0	53200	0.39
	LUT as Logic	208	0	0	53200	0.39
	LUT as Memory	2	0	0	17400	0.01
	LUT as Distributed RAM	2	0			
	LUT as Shift Register	0	0			
	Slice Registers	230	0	0	106400	0.22
	Register as Flip Flop	230	0	0	106400	0.22
	Register as Latch	0	0	0	106400	0.00
	F7 Muxes	0	0	0	26600	0.00
	F8 Muxes	0	0	0	13300	0.00
			L			

7. Primitives

.

Ref Name	Used	Functional Category
FDRE LUT5 LUT6 FDCE LUT4 LUT3 LUT2 LUT1 CARRY4 FDPE RAMD32	196 131 25 23 22 21 20 16 16 11 2	Flop & Latch LUT LUT Flop & Latch LUT LUT LUT LUT CarryLogic Flop & Latch Distributed Memory

design_1_auto_pc_1_utilization_synth.rpt

1. Slice Logic

Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs* LUT as Logic LUT as Memory LUT as Distributed RAM LUT as Shift Register Slice Registers Register as Flip Flop Register as Latch	421 356 65 0 65 562 562 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	53200 53200 17400 106400 106400 106400 26600	0.79 0.67 0.37 0.37 0.53 0.53 0.00
F8 Muxes	0	0	0	13300	0.00

+	+	
Ref Name	Used	Functional Category
+	+	+
FDRE	546	Flop & Latch
LUT3	236	LUT
LUT6	130	LUT
LUT5	53	LUT
SRLC32E	47	Distributed Memory
LUT4	43	LUT
LUT2	19	LUT
SRL16E	18	Distributed Memory
CARRY4	18	CarryLogic
FDSE	16	Flop & Latch
LUT1	5	LUT
+	+	+

design_1_axi_intc_0_0_utilization_synth.rpt

1. Slice Logic

.....

				L		L L	
	Site Type	Used	Fixed	Prohibited	Available	Util%	
	Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes F8 Muxes	70 70 0 65 65 65 0	0 0 0 0 0	0 0 0 0 0 0	53200 53200 17400 106400 106400 106400 26600 13300	0.13 0.13 0.00 0.06 0.06 0.00 0.00	
+		+				++	

7. Primitives

+		
Ref Name	Used	Functional Category
FDRE LUT3 LUT6 LUT5 LUT4 LUT2 LUT1	63 29 24 12 11 11 2	Flop & Latch LUT LUT LUT LUT LUT
FDSE	2	Flop & Latch

design_1_processing_system7_0_0_utilization_synth.rpt

1. Slice Logic

Slice LUTs*	Site Type	Used	Fixed	Prohibited	Available	Util%
F8 Muxes	LUT as Logic LUT as Memory Slice Registers Register as Flip Flop Register as Latch F7 Muxes	24 0 0 0 0	0 0 0	0 0 0	53200 17400 106400 106400 106400 26600	0.05 0.00 0.00 0.00 0.00 0.00

4. IO and GT Specific

+	+		+		+
Site Type	Used	Fixed	Prohibited	Available	Util%
Bonded IOB	0	0	0	125	0.00
Bonded IPADs	0	0	0	2	0.00
Bonded IOPADs	130	0	0	130	100.00
PHY_CONTROL	0	0	0	4	0.00
PHASER_REF	0	0	0	4	0.00
OUT_FIFO	0	0	0	16	0.00
IN_FIFO	0	0	0	16	0.00
IDELAYCTRL	0	0	0	4	0.00
IBUFDS	0	0	0	121	0.00
PHASER_OUT/PHASER_OUT_PHY	0	0	0	16	0.00
PHASER_IN/PHASER_IN_PHY	0	0	0	16	0.00
IDELAYE2/IDELAYE2_FINEDELAY	0	0	0	200	0.00
ILOGIC	0	0	0	125	0.00
OLOGIC	0	0	0	125	0.00
+	+		+		

5. Clocking

_						
į	Site Type		Fixed	Prohibited	Available	Util%
	BUFGCTRL BUFIO MMCME2_ADV PLLE2_ADV BUFMRCE BUFHCE BUFR	1 0 0 0 0	0 0 0	0 0	32 16 4 4 8 72	3.13
+		+				++

.

Ref Name	Used	Functional Category
BIBUF	130	IO
LUT1	24	LUT
PS7	1	Specialized Resource
BUFG	1	Clock

design_1_xbar_0_utilization_synth.rpt

1. Slice Logic

.

Site Type	Used	Fixed	Prohibited	Available	Util%
Slice LUTs* LUT as Logic LUT as Memory Slice Registers Register as Flip Flop	220 220 0 134 134		0	53200 53200 17400 106400 106400	0.41 0.41 0.00 0.13
Register as Latch F7 Muxes F8 Muxes	0 0 0	0 0 0 0	0 0 0	106400 26600 13300	0.00 0.00 0.00

7. Primitives

4		
Ref Name	Used	Functional Category
+		
FDRE	134	Flop & Latch
LUT6	124	LUT
LUT4	62	LUT
LUT5	33	LUТ
LUT3	13	LUТ
LUT2	11	LUТ
LUT1	1	LUT
+		