

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - Com. 1- 2020

Anexo. Más resultados sobre límites

Repaso de definiciones

Definición. Límite finito.

Se dice que un número L es el límite de la función f en el punto a, y se nota

$$\lim_{x \to a} f(x) = L,$$

si para cualquier $\epsilon > 0$, existe un número $\delta > 0$, tal que

$$x \in \text{Dom}(F) \land 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon.$$

Definición. Límites laterales finitos.

-a- Se dice que un número L es el límite por derecha de la función f en el punto a, y se nota

$$\lim_{x \to a^+} f(x) = L,$$

si para cualquier $\epsilon > 0$, existe un número $\delta > 0$, tal que

$$x \in \text{Dom}(f) \land a < x < a + \delta \implies |f(x) - L| < \epsilon.$$

-b- Se dice que un número L es el límite por izquierda de la función f en el punto a, y se nota

$$\lim_{x \to a^{-}} f(x) = L,$$

si para cualquier $\epsilon > 0$, existe un número $\delta > 0$, tal que

$$x \in \text{Dom}(F) \land a - \delta < x < a \implies |f(x) - L| < \epsilon.$$

Definición. Límites laterales infinitos.

-a- Se dice que el límite por derecha de la función f en el punto a es **más infinito**, y se nota

$$\lim_{x \to a^+} f(x) = +\infty,$$

si para cualquier M>0, existe un número $\delta>0$, tal que

$$x \in \text{Dom}(f) \land a < x < a + \delta \implies f(x) > M.$$

-b- Se dice que el límite por derecha de la función f en el punto a es **menos infinito**, y se nota

$$\lim_{x \to a^+} f(x) = -\infty,$$

si para cualquier M>0, existe un número $\delta>0$, tal que

$$x \in \text{Dom}(f) \land a < x < a + \delta \implies f(x) < -M.$$

-c- Análogamente, se definen los límites por izquierda de la función f en el punto a cuando sean $+\infty$ o $-\infty$, considerando los semientornos a izquierda $a - \delta < x < a$.

Definición. Límites en el infinito.

-a- Se dice que el límite cuando x tiende a más infinito de una función f es L, y se nota

$$\lim_{x \to +\infty} f(x) = L,$$

si para cualquier $\epsilon > 0$, existe un número H > 0, tal que

$$x \in \text{Dom}(f) \land x > H \implies |f(x) - L| < \epsilon.$$

-b- Se dice que el límite cuando x tiende a menos infinito de una función f es L, y se nota

$$\lim_{x \to -\infty} f(x) = L,$$

si para cualquier $\epsilon > 0$, existe un número H > 0, tal que

$$x \in \text{Dom}(f) \land x < -H \Rightarrow |f(x) - L| < \epsilon.$$

-c- Se dice que el límite cuando x tiende a más infinito de una función f es más infinito, y se nota

$$\lim_{x \to +\infty} f(x) = +\infty,$$

si para cualquier M>0, existe un número H>0, tal que

$$x \in \text{Dom}(f) \land x > H \implies f(x) > M.$$

-d- Se dice que el límite cuando x tiende a más infinito de una función f es menos infinito, y se nota

$$\lim_{x \to +\infty} f(x) = -\infty,$$

si para cualquier M>0, existe un número H>0, tal que

$$x \in \text{Dom}(f) \land x > H \implies f(x) < -M.$$

-e- Se dice que el límite cuando x tiende a menos infinito de una función f es más infinito, y se nota

$$\lim_{x \to -\infty} f(x) = +\infty,$$

si para cualquier M>0, existe un número H>0, tal que

$$x \in \text{Dom}(f) \land x < -H \implies f(x) > M.$$

-f- Se dice que el límite cuando x tiende a menos infinito de una función f es menos infinito, y se nota

$$\lim_{x \to -\infty} f(x) = -\infty,$$

si para cualquier M>0, existe un número H>0, tal que

$$x \in \text{Dom}(f) \land x < -H \implies f(x) < -M.$$

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - Com. 1- 2020

Algunos resultados - Más álgebra de límites

Teorema. Sea $a \in \mathbb{R}$, sean f y g funciones reales tales que

$$\lim_{x\to a^+} f(x) = L \quad \wedge \quad \lim_{x\to a^+} g(x) = +\infty.$$

Entonces

$$\lim_{x \to a^+} (f+g)(x) = +\infty.$$

Demostración. Recordemos que $Dom(f + g) = Dom(f) \cap Dom(g)$.

Sea M>0 cualquiera. A partir de la definición, queremos hallar $\delta>0$ tal que

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land a < x < a + \delta \Rightarrow (f + g)(x) > M.$$

En primer lugar, como $\lim_{x \to a^+} f(x) = L$, en particular se sabe que $\exists \ \delta_1 > 0$ tal que

$$x \in \text{Dom}(f) \land a < x < a + \delta_1 \implies |f(x) - L| < 1 \implies L - 1 < f(x) < L + 1 \implies f(x) > L - 1.$$
 (1)

Como $\lim_{x\to a^+}g(x)=+\infty$, considerando $K=\max\{M,M-L+1\}$, resulta K>0, y sabemos que $\exists \ \delta_2>0$ tal que

$$x \in \text{Dom}(g) \land a < x < a + \delta_2 \implies g(x) > K \implies g(x) > M - L + 1.$$
 (2)

Considerando ahora $\delta = \min\{\delta_1, \delta_2\}$, se tiene $\delta > 0$ tal que, por (1) y (2),

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land a < x < a + \delta \Rightarrow (f + g)(x) = f(x) + g(x) > (L - 1) + (M - L + 1) = M.$$

Es decir, para M>0 hemos encontrado un $\delta>0$ tal que

$$x \in \text{Dom}(f+g) \land a < x < a + \delta \Rightarrow (f+g)(x) > M.$$

Por lo tanto,

$$\lim_{x \to a^+} (f+g)(x) = +\infty.$$

Corolario. Sea $a \in \mathbb{R}$, sean f y g funciones reales tales que

$$\lim_{x \to a^+} f(x) = L \quad \land \quad \lim_{x \to a^+} g(x) = -\infty.$$

Entonces

$$\lim_{x \to a^+} (f+g)(x) = -\infty.$$

Demostración. Consideremos la función \tilde{g} tal que

$$x \in \text{Dom}(g) \Rightarrow \tilde{g}(x) = -g(x).$$

Luego, por el ítem 4 del Teorema 10 de la página 21 del apunte, sabemos que

$$\lim_{x \to a^+} \tilde{g}(x) = +\infty$$

(En realidad, estaríamos usando la Proposición 7 por tratarse de límites laterales).

Entonces, con \tilde{g} y f se puede utilizar el teorema anterior y obtener el resultado de este corolario.

Corolario. Sea $a \in \mathbb{R}$, sean f, g_1 y g_2 funciones reales tales que

$$\lim_{x \to a^{-}} f(x) = L \quad \wedge \quad \lim_{x \to a^{-}} g_{1}(x) = +\infty \quad \wedge \quad \lim_{x \to a^{-}} g_{2}(x) = -\infty.$$

Entonces

$$\lim_{x \to a^{-}} (f + g_1)(x) = +\infty \quad \wedge \quad \lim_{x \to a^{-}} (f + g_2)(x) = -\infty.$$

Demostración. Para ver este corolario basta reescribir la demostración del teorema anterior considerando siempre los semientornos a izquierda del punto a, es decir, $a - \delta < x < a$.

Teorema. Sea $a \in \mathbb{R}$, sean f y g funciones reales tales que

$$\lim_{x\to a^+} f(x) = L \neq 0 \quad \wedge \quad \lim_{x\to a^+} g(x) = +\infty.$$

Entonces

$$\lim_{x \to a^+} (fg)(x) = \left\{ \begin{array}{ll} +\infty & L > 0, \\ -\infty & L < 0. \end{array} \right.$$

Demostración. Consideremos primero el caso L > 0.

Recordemos que $Dom(fg) = Dom(f) \cap Dom(g)$.

Sea M>0 cualquiera. A partir de la definición, queremos hallar $\delta>0$ tal que

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land a < x < a + \delta \Rightarrow (fg)(x) > M.$$

Como $\lim_{x\to a^+}f(x)=L>0$, aplicando el Teorema 4 (para el caso de límite lateral) del Apunte de la Unidad 3, sabemos que existe $\rho>0$ tal que

$$x \in \text{Dom}(f) \land a < x < a + \rho \Rightarrow f(x) > \frac{L}{2} > 0.$$

Consideremos ahora $K=\frac{2M}{L}$. Luego, K>0, ya que M>0 y L>0. Ahora, como $\lim_{x\to a^+}g(x)=+\infty$, entonces existe $\delta_1>0$ tal que

$$x \in \text{Dom}(g) \land a < x < a + \delta_1 \Rightarrow g(x) > K.$$

Consideremos entonces $\delta = \min\{\rho, \delta_1\}$. Resulta $\delta > 0$ tal que

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land a < x < a + \delta \Rightarrow f(x)g(x) > \frac{L}{2}K = \frac{L}{2}\frac{2M}{L} = M.$$

Es decir, a partir de un M>0 dado, hemos encontrado un $\delta>0$ tal que

$$x \in \text{Dom}(fq) \land a < x < a + \delta \Rightarrow (fq)(x) > M.$$

Consideremos ahora el caso L < 0.

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - Com. 1- 2020

Sea M>0 cualquiera. A partir de la definición, queremos hallar $\delta>0$ tal que

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land a < x < a + \delta \Rightarrow (fg)(x) < -M.$$

Como $\lim_{x \to a^+} f(x) = L < 0$, aplicando nuevamente el Teorema 4, sabemos que existe $\rho > 0$ tal que

$$x \in \text{Dom}(f) \land a < x < a + \rho \Rightarrow f(x) < \frac{L}{2} < 0.$$

Consideremos ahora $K=\dfrac{-2M}{L}.$ Luego, K>0, ya que M>0 y L<0.

Ahora, como $\lim_{x \to a^+} g(x) = +\infty$, entonces existe $\delta_1 > 0$ tal que

$$x \in \text{Dom}(g) \land a < x < a + \delta_1 \Rightarrow g(x) > K.$$

Consideremos entonces $\delta = \min\{\rho, \delta_1\}$. Resulta $\delta > 0$ tal que

$$x \in \mathrm{Dom}(f) \cap \mathrm{Dom}(g) \wedge \ a < x < a + \delta \ \Rightarrow f(x) < \frac{L}{2} < 0 \ \wedge \ g(x) > K \ \Rightarrow f(x)g(x) < \frac{L}{2} \ K.$$

Es decir, a partir de un M>0 dado hemos encontrado un $\delta>0$ tal que

$$x \in \text{Dom}(fg) \land a < x < a + \delta \Rightarrow (fg)(x) > M.$$

Corolario. Sea $a \in \mathbb{R}$, sean f y g funciones reales tales que

$$\lim_{x\to a^+} f(x) = L \neq 0 \quad \wedge \quad \lim_{x\to a^+} g(x) = -\infty.$$

Entonces

$$\lim_{x \to a^+} (fg)(x) = \begin{cases} -\infty & L > 0, \\ +\infty & L < 0. \end{cases}$$

Demostración. Consideremos la función \tilde{g} tal que

$$x \in \text{Dom}(g) \Rightarrow \tilde{g}(x) = -g(x).$$

Luego, por el ítem 4 del Teorema 10 de la página 21 del apunte, sabemos que

$$\lim_{x \to a^+} \tilde{g}(x) = +\infty$$

(En realidad, estaríamos usando la Proposición 7 por tratarse de límites laterales).

Entonces, con \tilde{g} y f se puede utilizar el teorema anterior y obtener el resultado de este corolario.

Corolario. Sea $a \in \mathbb{R}$, sean f, g_1 y g_2 funciones reales tales que

$$\lim_{x \to a^{-}} f(x) = L \neq 0 \quad \land \quad \lim_{x \to a^{-}} g_1(x) = +\infty \land \quad \lim_{x \to a^{-}} g_2(x) = -\infty.$$

Entonces

$$\lim_{x \to a^{-}} (f \cdot g_1)(x) = \begin{cases} +\infty & L > 0, \\ -\infty & L < 0. \end{cases}$$

У

$$\lim_{x \to a^{-}} (f \cdot g_2)(x) = \begin{cases} -\infty & L > 0, \\ +\infty & L < 0. \end{cases}$$

Demostración. Para ver este corolario basta reescribir la demostración del teorema anterior considerando siempre los semientornos a izquierda del punto a, es decir, $a - \delta < x < a$.

Teorema. Sean f y g funciones reales tales que

$$\lim_{x\to +\infty} f(x) = L \quad \wedge \quad \lim_{x\to +\infty} g(x) = +\infty.$$

Entonces

$$\lim_{x \to +\infty} (f+g)(x) = +\infty.$$

Demostración. Probemos primero que $\lim_{x\to +\infty} (f+g)(x) = +\infty$.

Recordemos que $Dom(f + g) = Dom(f) \cap Dom(g)$.

Sea M>0 cualquiera. A partir de la definición, queremos hallar H>0 tal que

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land x > H \Rightarrow (f+g)(x) > M.$$

En primer lugar, como $\lim_{x \to +\infty} f(x) = L$, se sabe que $\exists \ H_1 > 0$ tal que

$$x \in \text{Dom}(f) \land x > H_1 \implies |f(x) - L| < 1 \implies L - 1 < f(x) < L + 1 \implies f(x) > L - 1.$$
 (3)

Como $\lim_{x\to +\infty}g(x)=+\infty$, considerando $K=\max\{M,M-L+1\}$, resulta K>0, y sabemos que $\exists\ H_2>0$ tal que

$$x \in \text{Dom}(g) \land x > H_2 \Rightarrow g(x) > K \Rightarrow g(x) > M - L + 1.$$
 (4)

Considerando ahora $H = \max\{H_1, H_2\}$, se tiene H > 0 tal que, por (3) y (4),

$$x \in \mathrm{Dom}(f) \cap \mathrm{Dom}(g) \wedge \ x > H \ \Rightarrow (f+g)(x) = f(x) + g(x) > (L-1) + (M-L+1) = M.$$

Es decir, para M>0 hemos encontrado un H>0 tal que

$$x \in \text{Dom}(f+g) \land x > H \Rightarrow (f+g)(x) > M.$$

Por lo tanto,

$$\lim_{x \to +\infty} (f+g)(x) = +\infty.$$

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - Com. 1- 2020

Corolario. Sean f y g funciones reales tales que

$$\lim_{x \to +\infty} f(x) = L \quad \land \quad \lim_{x \to +\infty} g(x) = -\infty.$$

Entonces

$$\lim_{x \to +\infty} (f+g)(x) = -\infty.$$

Demostración. Consideremos la función \tilde{g} tal que

$$x \in \text{Dom}(g) \Rightarrow \tilde{g}(x) = -g(x).$$

Luego, por álgebra de límites en el infinito, sabemos que

$$\lim_{x \to a^+} \tilde{g}(x) = +\infty$$

Entonces, con \tilde{g} y f se puede utilizar el teorema anterior y obtener el resultado de este corolario.

Corolario. Sean f, g_1 y g_2 funciones reales tales que

$$\lim_{x \to -\infty} f(x) = L \quad \land \quad \lim_{x \to -\infty} g_1(x) = +\infty \quad \land \quad \lim_{x \to -\infty} g_2(x) = -\infty.$$

Entonces

$$\lim_{x \to -\infty} (f + g_1)(x) = +\infty \quad \land \quad \lim_{x \to -\infty} (f + g_2)(x) = -\infty.$$

Demostración. Para ver este corolario basta reescribir la demostración del teorema anterior o del corolario anterior, considerando siempre x < -H y las adaptaciones que correspondan.

Teorema. Sean f y g funciones reales tales que

$$\lim_{x\to +\infty} f(x) = L \neq 0 \quad \wedge \quad \lim_{x\to +\infty} g(x) = +\infty.$$

Entonces

$$\lim_{x\to +\infty} (fg)(x) = \left\{ \begin{array}{ll} +\infty & L>0, \\ -\infty & L<0. \end{array} \right.$$

Demostración. Consideremos primero el caso L > 0.

Recordemos que $Dom(fg) = Dom(f) \cap Dom(g)$.

Sea M>0 cualquiera. A partir de la definición, queremos hallar H>0 tal que

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land x > H \Rightarrow (fg)(x) > M.$$

Como $\lim_{x\to +\infty} f(x)=L>0$, aplicando el Teorema 4 (para el caso de límite en el infinito) del Apunte de la Unidad 3, sabemos que existe T>0 tal que

$$x \in \text{Dom}(f) \land x > T \Rightarrow f(x) > \frac{L}{2} > 0.$$

Consideremos ahora $K=\frac{2M}{L}$. Luego, K>0, ya que M>0 y L>0. Ahora, como $\lim_{x\to +\infty}g(x)=+\infty$, entonces existe $H_1>0$ tal que

$$x \in \text{Dom}(g) \land x > H_1 \Rightarrow g(x) > K.$$

Consideremos entonces $H = \max\{T, H_1\}$. Resulta H > 0 tal que

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land x > H \Rightarrow f(x)g(x) > \frac{L}{2} K = \frac{L}{2} \frac{2M}{L} = M.$$

Es decir, a partir de un M>0 dado, hemos encontrado un H>0 tal que

$$x \in \text{Dom}(fg) \land x > H \Rightarrow (fg)(x) > M.$$

Consideremos ahora el caso L < 0.

Sea M>0 cualquiera. A partir de la definición, queremos hallar H>0 tal que

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land x > H \implies (fg)(x) < -M.$$

Como $\lim_{x\to +\infty} f(x) = L < 0$, aplicando nuevamente el Teorema 4, sabemos que existe T>0 tal que

$$x \in \text{Dom}(f) \land x > T \Rightarrow f(x) < \frac{L}{2} < 0.$$

Consideremos ahora $K=\frac{-2M}{L}$. Luego, K>0, ya que M>0 y L<0.

Ahora, como $\lim_{x\to +\infty}g(x)=+\infty$, entonces existe $H_1>0$ tal que

$$x \in \text{Dom}(q) \land x > H_1 \Rightarrow q(x) > K.$$

Consideremos entonces $H = \max\{T, H_1\}$. Resulta H > 0 tal que

$$x \in \text{Dom}(f) \cap \text{Dom}(g) \land x > H \Rightarrow f(x) < \frac{L}{2} < 0 \land g(x) > K \Rightarrow f(x)g(x) < \frac{L}{2} K.$$

Es decir, a partir de un M>0 dado hemos encontrado un H>0 tal que

$$x \in \text{Dom}(fg) \land x > H \Rightarrow (fg)(x) > M.$$

Corolario. Sean f y g funciones reales tales que

$$\lim_{x \to +\infty} f(x) = L \neq 0 \quad \land \quad \lim_{x \to +\infty} g(x) = -\infty.$$

Entonces

$$\lim_{x \to +\infty} (fg)(x) = \left\{ \begin{array}{ll} -\infty & L > 0, \\ +\infty & L < 0. \end{array} \right.$$

ESCUELA DE CIENCIAS EXACTAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA Av. Pellegrini 250. Rosario +54 0341 - 480 2649 internos 216 - 119

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - Com. 1- 2020

Demostración. Consideremos la función \tilde{g} tal que

$$x \in \text{Dom}(g) \Rightarrow \tilde{g}(x) = -g(x).$$

Luego, por el ítem 4 del Teorema 10 de la página 21 del apunte (para el caso de límite en el infinito), sabemos que

$$\lim_{x \to +\infty} \tilde{g}(x) = +\infty$$

Entonces, con \tilde{g} y f se puede utilizar el teorema anterior y obtener el resultado de este corolario.

Corolario. Sean f, g_1 y g_2 funciones reales tales que

$$\lim_{x \to -\infty} f(x) = L \neq 0 \quad \land \quad \lim_{x \to -\infty} g_1(x) = +\infty \land \quad \lim_{x \to -\infty} g_2(x) = -\infty.$$

Entonces

$$\lim_{x \to -\infty} (f \cdot g_1)(x) = \begin{cases} +\infty & L > 0, \\ -\infty & L < 0. \end{cases}$$

y

$$\lim_{x \to -\infty} (f \cdot g_2)(x) = \left\{ \begin{array}{ll} -\infty & L > 0, \\ +\infty & L < 0. \end{array} \right.$$

Demostración. Para ver este corolario basta reescribir la demostración del teorema anterior considerando siempre x < -H y las adaptaciones que correspondan.

Repaso: Asíntotas

Ahora podemos definir formalmente la idea de asíntota que ya veníamos usando.

Definición. Se dice que la recta vertical x=a es una <u>asíntota vertical</u> de la función f en el punto a si se verifica **por lo menos uno** de estos cuatro límites

$$\lim_{x \to a^+} f(x) = +\infty, \quad \lim_{x \to a^+} f(x) = -\infty, \quad \lim_{x \to a^-} f(x) = +\infty, \quad \lim_{x \to a^-} f(x) = -\infty.$$

Algunos ejemplos

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - Com. 1- 2020

Definición. Se dice que la recta horizontal y=b es una <u>asíntota horizontal</u> de función f si se verifica **por lo menos uno** de estos dos límites

$$\lim_{x \to +\infty} f(x) = b, \quad \lim_{x \to -\infty} f(x) = b.$$

Algunos ejemplos

Definición. Se dice que la recta y = mx + b, con $m \neq 0$, es una <u>asíntota oblicua</u> de la función f si se verifica **por lo menos uno** de estos dos límites

$$\lim_{x \to +\infty} (f(x) - (mx + b)) = 0 \quad \lim_{x \to -\infty} (f(x) - (mx + b)) = 0$$

La definición indica que la distancia entre la curva y=f(x) y la recta y=mx+b tiende a 0, como se observa en la figura .

Ejemplo

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Análisis Matemático I - ECEN - Com. 1- 2020

Ejercicios

1. Calcular los siguientes:

a)
$$\lim_{x\to 0^+} \frac{2x^4 + x^3 + 1}{x^2}$$
.

b)
$$\lim_{x \to 0} \frac{2x^4 + x^3 + x - 1}{x^2}$$
.

c)
$$\lim_{x \to \frac{\pi}{2}^{-}} \frac{x - \frac{\pi}{2}}{sen(x - \frac{\pi}{2})} tan(x)$$

- Calcular los límites necesarios para verificar las asíntotas de los cinco ejemplos anteriores.
 Observar que en cada ejemplo se presenta la ley de la función, la ecuación de las asíntotas y las gráficas completas.
- 3. Determinar, si existen, todas las asíntotas de las siguientes funciones.

a)
$$f(x) = \left\{ egin{array}{ll} x^2 & \mbox{si } x \leq 10 \\ \\ \dfrac{x-1}{x^2-10x} & \mbox{si } x > 10. \end{array} \right.$$

$$b) \ \ g(x) = \left\{ \begin{array}{ll} \frac{3x-5}{x-2} & \text{si } x < 2 \\ \\ \frac{x^4-1}{x^3} & \text{si } x > 2. \end{array} \right.$$

4. Probar que si

$$\lim_{x\to a^+} f(x) = L \quad \wedge \quad \lim_{x\to a^+} g(x) = \pm \infty,$$

entonces

$$\lim_{x \to a^+} \frac{f}{g}(x) = 0.$$

Sugerencia: Una opción para probarlo es utilizar el item 1 de la Proposición 10, el Teorema 3 y el Teorema 6 del Apunte de la Unidad 3. En cada caso con el límite que corresponda.

Observar que este resultado también es válido si reemplazamos $x \to a^+$ por $x \to a^-, x \to +\infty$ o $x \to -\infty$.