CBSE MATH

Made Simple

G. V. V. Sharma

Copyright ©2023 by G. V. V. Sharma.

 ${\rm https://creative commons.org/licenses/by-sa/3.0/}$

and

https://www.gnu.org/licenses/fdl-1.3.en.html

Contents

Introduction

This book links high school coordinate geometry to linear algebra and matrix analysis through solved problems. $\,$

Chapter 1

Intersection of Conics

1.1. Chords

1. Using integration, find the area of the region enclosed by the curve $y=x^2$, the x-axis and the ordinates x=-2 and x=1.

\mathbf{OR}

- 2. Using integration, find the area of the region enclosed by line $y = \sqrt{3}x$ semi-circle $y = \sqrt{4-x^2}$ and x-axis in first quadrant.
- 3. (a) Using integration, find the area of the smaller region enclosed by the curve $4x^2 + 4y^2 = 9$ and the line 2x + 2y = 3.

\mathbf{OR}

- (b) If the area of the regin bounded by the curve $y^2 = 4ax$ and the line x = 4a is $\frac{256}{3}$ sq. units, then using integration, find the value of a, where a > 0.
- 4. Find the area of the region enclosed by the curves $y^2 = x$, $x = \frac{1}{4}$, y = 0 and x = 1, using integration.

- 5. If the area of the region bounded by the line y=mx and the curve $x^2=y$ is $\frac{32}{3}$ sq. units, then find the positive value of m, using integration.
- 6. (a) Find the area bounded by the ellipse $x^2 + 4y^2 = 16$ and the ordinates x = 0 and x = 2, using integration.

OR

- (b) Find the area of the region $\{(x,y): x^2 \leq y \leq x\}$, using integration.
- 7. If the area between the curves $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, then find the value of a, using integration.

1.2. Curves

Chapter 2

Tangent And Normal

1. Find the equation of tangent to the curve $y = x^2 + 4x + 1$ at the point (3, 22).

2.1. Construction

Chapter 3

Vectors

3.1. projection vectors

- 1. If $\overrightarrow{a} = 2\hat{i} + y\hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are two vectors for which the vector $(\overrightarrow{a} + \overrightarrow{b})$ is perpendicular to the vector $(\overrightarrow{a} \overrightarrow{b})$ then find all the possible values of y.
- 2. Write the projection of the vector $(\overrightarrow{b} + \overrightarrow{c})$ on the vector \overrightarrow{a} , where $\overrightarrow{a} = 2\hat{i} 2\hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + 2\hat{j} 2\hat{k}$ and $\overrightarrow{c} = 2\hat{i} \hat{j} + 4\hat{k}$.
- 3. If $\overrightarrow{a} = 2\hat{i} \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} + \hat{j} 2\hat{k}$ and $\overrightarrow{c} = \hat{i} + 3\hat{j} \hat{k}$ and the projection of vector $\overrightarrow{c} + \lambda \overrightarrow{b}$ on vector \overrightarrow{a} is $2\sqrt{6}$, find the value of λ .
- 4. If $\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k}, \hat{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} + 2\hat{k}$, then find $\overrightarrow{a}.(\overrightarrow{b} \times \overrightarrow{c}).$
- 5. If $\overrightarrow{a} = 2\hat{i} \hat{j} + 2\hat{k}$ and $\overrightarrow{b} = 5\hat{i} 3\hat{j} 4\hat{k}$, then find the ratio $\underbrace{projectionofvector \overrightarrow{d}onvector \overrightarrow{b}}_{projectionofvector \overrightarrow{b}onvector \overrightarrow{d}}$
- 6. Show that the three vectors $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$, and $3\hat{i} 4\hat{j} 4\hat{k}$ form the vertices of a right-angled triangle. If $\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\overrightarrow{b} = 2\hat{i} + 2\hat{j} + 3\hat{k}$

 $-\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ are such that the vector $(\overrightarrow{a} + \lambda \overrightarrow{b})$ is perpendicular to vector \overrightarrow{c} , then find the value of λ .

3.2. product vectors

- 1. \overrightarrow{a} and \overrightarrow{b} are two unit vectors such that $\left|2\overrightarrow{a}+3\overrightarrow{b}\right|=\left|3\overrightarrow{a}-2\overrightarrow{b}\right|$. Find the angle between \overrightarrow{a} and \overrightarrow{b} .
- 2. If \overrightarrow{d} and \overrightarrow{b} are two vectors such that $\overrightarrow{d} = \hat{i} \hat{j} + \hat{k}$ and $\overrightarrow{b} = 2\hat{i} \hat{j} 3\hat{k}$ then find the vector \overrightarrow{c} , given that $\overrightarrow{d} \times \overrightarrow{c} = \overrightarrow{b}$ and $\overrightarrow{d} \cdot \overrightarrow{c} = 4$.
- 3. If $\left| \overrightarrow{a} \times \overrightarrow{b} \right|^2 + \left| \overrightarrow{a} \cdot \overrightarrow{b} \right|^2 = 400$ and $\left| \overrightarrow{b} \right| = 5$, find the value of $\left| \overrightarrow{a} \right|$.
- 4. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, \overrightarrow{a} . $\overrightarrow{b} = 1$ and $\overrightarrow{a} \times \overrightarrow{b} = \hat{j} \hat{k}$, then find $|\overrightarrow{b}|$
- 5. If $|\overrightarrow{a}| = 3$, $|\overrightarrow{b}| = 2\sqrt{3}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 6$, then find the value of $|\overrightarrow{a} \times \overrightarrow{b}|$.
- 6. $|\overrightarrow{a}| = 8$, $|\overrightarrow{b}| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 12\sqrt{3}$, then the value of $|\overrightarrow{a} \times \overrightarrow{b}|$ is
 - (a) 24
 - (b) 144
 - (c) 2
 - (d) 12

If $\overrightarrow{a} = 2\hat{i} + \hat{j} + 3\hat{k}$, $\hat{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j} + 2\hat{k}$, then find $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c})$.

7. \overrightarrow{d} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are four non-zeros vectors such that $\overrightarrow{d} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$ and $\overrightarrow{d} \times \overrightarrow{c} = 4\overrightarrow{b} \times \overrightarrow{d}$, then show that $(\overrightarrow{d} - 2\overrightarrow{d})$ is parallel to $(2\overrightarrow{b} - \overrightarrow{c})$ where $\overrightarrow{d} \neq 2\overrightarrow{d}$, $\overrightarrow{c} \neq 2\overrightarrow{b}$

- 8. If $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{a} \cdot \overrightarrow{b} = 1$ and $\overrightarrow{a} \times \overrightarrow{b} = \hat{j} \hat{k}$, then find $|\overrightarrow{b}|$
- 9. (a) If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{b} \right|$, then prove that $\left(\overrightarrow{a} + 2\overrightarrow{b} \right)$ is perpendicular to \overrightarrow{a} .
- 10. If \overrightarrow{a} and \overrightarrow{b} are unit vectors and θ is the angle between them , then prove that $\sin \frac{\theta}{2} = \frac{1}{2} \left| \overrightarrow{a} \overrightarrow{b} \right|$.
- 11. If \overrightarrow{a} and \overrightarrow{b} are two unit vectors such that and θ is the angle between them, then prove that

$$\sin\frac{\theta}{2} = \frac{1}{2} \left| \overrightarrow{a} - \overrightarrow{b} \right|$$

3.3. position vectors

- 1. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are the position vectors of the points A(2, 3, -4), B(3, -4, -5) and C(3, 2,-3) and respectively, then $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$ is equal to
 - (a) $\sqrt{113}$
 - (b) $\sqrt{185}$
 - (c) $\sqrt{203}$
 - (d) $\sqrt{209}$

3.4. Section Formula

1. A circle has its center at (4,4). If one end of adiameter is (4,0), then find the coordinates of other end.

3.5. plane vectors

- 1. Find the values λ , for which the distance of point (2,1, λ) from plane 3x + 5y + 4z = 11 is $2\sqrt{2}$ units.
- 2. Find the coordinates of the point where the line through (3,4,1) crosses the ZX-plane

3.6. geometry vectors

- 1. Using vectors, find the area of the triangle with vertices A(-1, 0, -2), ${\rm B}(0,\,2,\,1) \mbox{ and C(-1,\,4,1)}$
- 2. Using integration, find the area of triangle region whose vertices are (2,0), (4,5) and (1,4).

3.7. Distance formula

- 1. The distance between the points (0,0) and (a-b, a+b) is
 - (a) $2\sqrt{ab}$
 - (b) $\sqrt{2a^2 + ab}$
 - (c) $2\sqrt{a^2+b^2}$
 - (d) $\sqrt{2a^2 + 2b^2}$
- 2. The value of m which makes the point (0,0) , (2m,-4) and (3,6) collinear, is _____

3.8. Direction vectors

- (a) If a line makes 60° and 45° angles with the positive directions of X-axis and z-axis respectively, then find the angle that it makes with the positive direction of y-axis. Hence, write the direction cosines of the line.
- 2. The Cartesian equation of a line AB is:

$$\frac{2x-1}{12} = \frac{y+2}{2} = \frac{z-3}{3}.$$

- 3. Find the directions cosines of a line parallel to line AB.
- 4. Find the direction cosines of a line whose cartesian equation is given as 3x + 1 = 6y 2 = 1 z.
- 5. A vector of magnitude 9 units in the direction of the vector $-2\hat{i}-\hat{j}+2\hat{k}$ is

3.9. Diagonal vectors

- 1. The two adajacent sides of a parallelogram are represented by $2\hat{i} 4\hat{j} 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$. Find the unit vectors parallel toits diagonals. Using the diagonal vectors, find the area of the parallelogram also.
- 2. The two adjacent sides of a parallelogram are represented by vectors $2\hat{i} 4\hat{j} + 5\hat{k}$ and $\hat{i} 2\hat{j} 3\hat{k}$. Find the unit vector parallel to one of its diagonals. Also, find the area of the parallelogram.

3. If $\overrightarrow{d} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k}$ and $\overrightarrow{b} = 2\hat{i} + 4\hat{j} - 5\hat{k}$ represent two adjacent sides of a parallelogram, then find the unit vector parallel to the diagonal of the parallelogram

3.10. Area of triangle

- 1. Find the area of the quadrilateral ABCD whose vertices are A(-4, -3) , B(3, -1), C(0, 5) and D(-4, 2)
- 2. If the points A(2,0), B(6,1), and c(p,q) form a triangle of area 12sq. units (positive only) and 2p + q = 10, then find the values of p and q.