CODE: 20BST101 SET2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech I Semester Supplementary Examinations, November-2021

LINEAR ALGEBRA AND CALCULUS (Common to All Branches)

Time: 3 Hours Max Marks: 6x10 = 60

Answer ONE Question from each Unit Each Question Carry 10 Marks

All parts of the Question must be answered at one place

UNIT-I

1. a) Determine the values of α for which the system has **exactly one** Solution (Unique solution).

$$x + 2y - 3z = 4$$

$$3x - y + 5z = 2$$

$$4x + y + (a^{2} - 14)z = a + 2$$
5M

b) Find the number of free variables and solve the system of equation by Gauss Elimination method:

$$Z_3 + Z_4 + Z_5 = 0$$
, $-Z_1 - Z_2 + 2Z_3 - 3Z_4 + Z_5 = 0$, $Z_1 + Z_2 - 2Z_3 - Z_5 = 0$, 5M $2Z_1 + 2Z_2 - Z_3 + Z_5 = 0$

(OR)

Find the relations among p, q and r for which the rank of $A = \begin{bmatrix} 1 & 1 & 1 \\ p & q & r \\ p^2 & q^2 & r^2 \end{bmatrix}$ is 2.

b) Investigate for what values of λ , μ the simultaneous equations

$$x + y + z = 6,$$

 $x + 2y + 3z = 10,$
 $x + 2y + \lambda z = \mu,$
5M

have an infinite number of solutions.

UNIT-II

Find a matrix *P*that diagonalizes $A = \begin{bmatrix} -1 & 7 & -1 \\ 0 & 0 & 0 \\ 0 & 15 & -2 \end{bmatrix}$, and then compute A^{11} . 10M

4. Find all values of k for which the quadratic form of $5x_1^2 + x_2^2 + kx_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$ is positive definite.

UNIT-III

Evaluate $\iint_E \frac{xy(x+y)^2}{(x^2+y^2)} dxdy$, Where E is bounded by y=0, y=x, $x^2+y^2=a^2$ 10M the first quadrant.

(OR)

6. Evaluate $\iiint_E 6z^2 dV$ where E is the region below 4x + y + 2z = 10 in the first octa 10M

AR20

CODE: 20BST101 SET2

UNIT-IV

7. Evaluate $\int_0^{\frac{\pi}{2}} (\sin x)^{2n-1} (\cos x)^{2m-1} dx$, using β and γ functions.

(OR)

8. Evaluate $\int_0^1 x^n (\ln x)^m dx$ using β and γ functions

10M

UNIT-V

9. Find the values of a, b so that the surfaces $ax^2 - byz = (a + 2)x$ and $4x^2y + z^3 = 4$ may intersect at orthogonally at the point (1,-1,2).

(OR)

10. Find $div(\nabla \emptyset)$ where $\phi = x^2 yz + 4xz^2$ at (1, -2, -1).

10M

UNIT-VI

Evaluate $\int_S F.N \, ds$ where F = 18zi - 12j + 3yk and S is the part of the plane 2x + 3y + 6z = 12 located in the first octant.

(OR)

Verify Gauss's divergence theorem to evaluate $F = (x^3 - yz)i - 2x^2yj + zk$ over the Surface of the cube bounded by the coordinate planes x = y = z = a.