FLAT-BASE TYPE INSULATED PACKAGE

PM100RL1A120

FEATURE

Inverter + Brake + Drive & Protection IC

- a) Adopting new 5th generation Full-Gate CSTBTTM chip
- b) The over-temperature protection which detects the chip surface temperature of $\mathsf{CSTBT}^\mathsf{TM}$ is adopted.
- c) Error output signal is possible from all each protection upper and lower arm of IPM.
- d) Compatible L-series package.
 - 3φ 100A, 1200V Current-sense and temperature sense IGBT type inverter
 - Monolithic gate drive & protection logic
 - Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-Fo available from upper arm devices)
 - UL Recognized

APPLICATION

General purpose inverter, servo drives and other motor controls

FLAT-BASE TYPE INSULATED PACKAGE

MAXIMUM RATINGS (Tj = 25°C, unless otherwise noted)

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
VCES	Collector-Emitter Voltage	VD = 15V, VCIN = 15V	1200	V
±lc	Collector Current	$Tc = 25^{\circ}C$ (Note-1)	100	Α
±ICP	Collector Current (Peak)	Tc = 25°C	200	Α
Pc	Collector Dissipation	$Tc = 25^{\circ}C$ (Note-1)	657	W
Tj	Junction Temperature		− 20 ~ +150	°C

^{*:} Tc measurement point is just under the chip.

BRAKE PART

Symbol	Parameter	Condition	Ratings	Unit
VCES	Collector-Emitter Voltage	VD = 15V, VCIN = 15V	1200	V
Ic	Collector Current	$Tc = 25^{\circ}C$ (Note-1)	50	Α
ICP	Collector Current (Peak)	Tc = 25°C	100	Α
Pc	Collector Dissipation	$Tc = 25^{\circ}C$ (Note-1)	462	W
lF	FWDi Forward Current	Tc = 25°C	50	Α
VR(DC)	FWDi Rated DC Reverse Voltage	Tc = 25°C	1200	V
Tj	Junction Temperature		−20 ~ +150	°C

CONTROL PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Supply Voltage	Applied between: VuP1-VuPc, VvP1-VvPc VwP1-VwPc, Vn1-Vnc	20	V
VCIN	Input Voltage	Applied between : UP-VUPC, VP-VVPC, WP-VWPC UN • VN • WN • Br-VNC	20	V
VFO	Fault Output Supply Voltage	Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC FO-VNC	20	V
IFO	Fault Output Current	Sink current at UFO, VFO, WFO, Fo terminals	20	mA

FLAT-BASE TYPE INSULATED PACKAGE

TOTAL SYSTEM

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC(PROT)}	Supply Voltage Protected by SC	V_D =13.5V ~ 16.5V Inverter Part, T_i =+125°C Start	800	V
$V_{CC(surge)}$	Supply Voltage (Surge)	Applied between : P-N, Surge value	1000	V
T _{stg}	Storage Temperature		-40 ~ +125	°C
V _{iso}	Isolation Voltage	60Hz, Sinusoidal, Charged part to Base plate, AC 1min, RMS	2500	V

^{*:} T_C measurement point is just under the chip.

THERMAL RESISTANCE

Symbol	Parameter Conditions			Limits			Unit
Symbol	i arameter	Conditions		Min.	Тур.	Max.	Offic
$R_{th(j-c)Q}$	Thermal Resistance	Inverter, IGBT (per 1 element) (Not	te.1)	-	-	0.19	
$R_{th(j-c)F}$		Inverter, FWDi (per 1 element) (Not	te.1)	-	-	0.31	
$R_{th(j-c)Q}$		Brake, IGBT (Not	te.1)	-	-	0.27	°C/W
$R_{th(j-c)F}$		Brake, FwDi upper part (Not	te.1)	-	-	0.47	C/VV
R _{th(c-f)}	Contact Thermal Resistance	Case to fin, (per 1 module) Thermal grease applied (Not	te.1)	-	-	0.023	

Note.1: If you use this value, R_{th(f-a)} should be measured just under the chips.

* "350G" is printed on the label

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise noted) **INVERTER PART**

Symbol	Parameter	Parameter Conditions		Limits			Unit
Symbol	Farameter	Conditions		Min.	Тур.	Max.	Offic
M	Collector-Emitter Saturation	V _D =15V, I _C =100A	T _j =25°C	-	1.65	2.15	V
$V_{CE(sat)}$	Voltage	V _{CIN} =0V, Pulsed (Fig. 1)	T _j =125°C	-	1.85	2.35	V
V_{EC}	FwDi Forward Voltage	-I _C =100A, V _D =15V, V _{CIN} = 15V	(Fig. 2)	-	2.3	3.3	V
t _{on}				0.3	0.8	2.0	
t _{rr}		V _D =15V, V _{CIN} =0V ← 15V		-	0.3	0.8]
t _{c(on)}	Switching Time	V _{CC} =600V, I _C =100A T _i =125°C		-	0.4	1.0	μS
t _{off}		Inductive Load	(Fig. 3,4)	-	1.2	2.8	
$t_{c(off)}$			(1.9, 1)	-	0.4	1.2	
I _{CES}	Collector-Emitter Cut-off	\\ -\\ \\ -15\\ \\ -15\\ \\ -15\\ (\Fig. 5)	T _j =25°C	-	-	1	mA
	Current	$V_{CE}=V_{CES}$, $V_{D}=15V$, $V_{CIN}=15V$ (Fig. 5)	T _j =125°C	-	-	10	IIIA

FLAT-BASE TYPE INSULATED PACKAGE

BRAKE PART

0	5 .	Condition		Limits			
Symbol	Parameter	Condition	Condition		Тур.	Max.	Unit
	Collector-Emitter Saturation	VD = 15V, IC = 50A	Tj = 25°C	_	1.65	2.15	V
VCE(sat)	Voltage	VCIN = 0V, Pulsed (Fig. 1)	Tj = 125°C	_	1.85	2.35	v
VEC	FWDi Forward Voltage	-IC = 50A, VCIN = 15V, VD = 15V	(Fig. 2)	_	2.3	3.3	V
ICES	Collector-Emitter Cutoff	VCE = VCES. VD = 15V (Fig. 5)	Tj = 25°C	_	_	1	
	Current	VCE = VCES, VD = 15V (Fig. 5)	Tj = 125°C	_	_	10	mA

CONTROL PART

Cumala al	Downwood and	Davarrata: Candition			Limits		Unit
Symbol	Parameter	Condition	Condition		Тур.	Max.	
ID	Circuit Current	VD = 15V, VCIN = 15V	VN1-VNC	_	8	16	Л
טו	Circuit Current	VD = 13V, VCIN = 13V	V*P1-V*PC	_	2	4	mA
Vth(ON)	Input ON Threshold Voltage	Applied between : UP-VUPC, VP-VVPC,	WP-VWPC	1.2	1.5	1.8	V
Vth(OFF)	Input OFF Threshold Voltage	Un • Vn • Wn • Br-Vn	IC	1.7	2.0	2.3	V
SC	Short Circuit Trip Level	$-20 \le T_i \le 125^{\circ}C$, $VD = 15V$ (Fig. 3,6)	Inverter part	200	_	_	^
30	Short Circuit Trip Level	$-20 \le 1 \le 125 \text{ C}, \text{ VD} = 15 \text{ V} \text{ (Fig. 5,0)}$	Brake part	100	_	_	A
toff(SC)	Short Circuit Current Delay Time	VD = 15V	(Fig. 3,6)	_	0.2	_	μs
OT	Over Temperature Protection	Data at Tamanawatuwa of ICRT ahin	Trip level	135	_	_	°C
OT(hys)	Over Temperature Protection	Detect Temperature of IGBT chip	Hysteresis	_	20	_	-0
UV	Supply Circuit Under-Voltage	–20 ≤ Tj ≤ 125°C	Trip level	11.5	12.0	12.5	V
UVr	Protection	-20 ≤ 1j ≤ 125°C	Reset level	_	12.5	_	V
IFO(H)	Foult Output Current	VD - 15V VOIN - 15V	(Note-2)	_	_	0.01	mA
IFO(L)	Fault Output Current	VD = 15V, VCIN = 15V	(NOIE-2)	_	10	15	IIIA
tFO	Minimum Fault Output Pulse Width	VD = 15V	(Note-2)	1.0	1.8	_	ms

⁽Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to protect it.

MECHANICAL RATINGS AND CHARACTERISTICS

	5 .	Condition		Limits			1.1-24
Symbol	Parameter			Min.	Тур.	Max.	Unit
_	Mounting torque	Mounting part	screw : M5	2.5	3.0	3.5	N•m
		Main terminal part	screw : M5	2.5	3.0	3.5	N•m
_	Weight	_		_	800	_	g

RECOMMENDED CONDITIONS FOR USE

Symbol	Parameter	Condition	Recommended value	Unit
Vcc	Supply Voltage	Applied across P-N terminals	≤ 800	V
VD	Control Supply Voltage	Applied between: VuP1-VuPc, VvP1-VvPc VwP1-VwPc, Vn1-Vnc (Note-3)	15.0 ± 1.5	V
VCIN(ON)	Input ON Voltage	Applied between: UP-VUPC, VP-VVPC, WP-VWPC	≤ 0.8	V
VCIN(OFF)	Input OFF Voltage	Un • Vn • Wn • Br-Vnc	≥ 9.0	V
fPWM	PWM Input Frequency	Using Application Circuit of Fig. 8	≤ 20	kHz
tdead	Arm Shoot-through Blocking Time	For IPM's each input signals (Fig. 7)	≥ 2.5	μs

(Note-3) With ripple satisfying the following conditions: dv/dt swing $\leq \pm 5V/\mu s$, Variation $\leq 2V$ peak to peak

FLAT-BASE TYPE INSULATED PACKAGE

PRECAUTIONS FOR TESTING

- 1. Before applying any control supply voltage (VD), the input terminals should be pulled up by resistors, etc. to their corresponding supply voltage and each input signal should be kept off state. After this, the specified ON and OFF level setting for each input signal should be done.
- 2. When performing "SC" tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device.

(These test should not be done by using a curve tracer or its equivalent.)

Fig. 3 Switching Time and SC Test Circuit

Fig. 4 Switching Time Test Waveform

Fig. 5 Ices Test

Fig. 6 SC Test Waveform

1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value

Fig. 7 Dead time measurement point example

FLAT-BASE TYPE INSULATED PACKAGE

Fig. 8 Application Example Circuit

NOTES FOR STABLE AND SAFE OPERATION;

- Design the PCB pattern to minimize wiring length between opto-coupler and IPM's input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler.
- Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
- ullet Fast switching opto-couplers: tPLH, tPHL $\leq 0.8 \mu s$, Use High CMR type.
- Slow switching opto-coupler: CTR > 100%
- Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply.
- Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal.
- •Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line and improve noise immunity of the system.

FLAT-BASE TYPE INSULATED PACKAGE

PERFORMANCE CURVES (Inverter Part)

OUTPUT CHARACTERISTICS (TYPICAL)

COLLECTOR-EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Ic) CHARACTERISTICS (TYPICAL)

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER SATURATION VOLTAGE (VS. VD) CHARACTERISTICS (TYPICAL)

CONTROL POWER SUPPLY VOLTAGE VD (V)

DIODE FORWARD CHARACTERISTICS

EMITTER-COLLECTOR VOLTAGE VEC (V)

SWITCHING TIME (ton, toff) CHARACTERISTICS

SWITCHING TIME (tc(on), tc(off)) CHARACTERISTICS (TYPICAL)

November 2012

FLAT-BASE TYPE INSULATED PACKAGE

(TYPICAL) 16.0 Eoff (mJ/pulse) Vcc = 600V -VD = 15V 14.0 - Tj = 25°C 12.0 --- Tj = 125°C Inductive load 10.0 Eon, 8.0 SWITCHING LOSS 6.0 4.0

2.0

0

20

SWITCHING LOSS CHARACTERISTICS

COLLECTOR CURRENT Ic (A)

80

60

40

100

120

DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

COLLECTOR REVERSE CURRENT -Ic (A)

SWITCHING RECOVERY LOSS CHARACTERISTICS (TYPICAL)

ID VS. fc CHARACTERISTICS (TYPICAL)

UV TRIP LEVEL VS. Tj CHARACTERISTICS (TYPICAL)

SC TRIP LEVEL VS. Tj CHARACTERISTICS

FLAT-BASE TYPE INSULATED PACKAGE

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (TYPICAL) 100 7 5 3 2 10-1 7 5 Single Pulse IGBT part; Per unit base = Rth(j-c)Q = 0.19°C/W FWDi part; Per unit base = Rth(j-c)F = 0.31°C/W 10-3 10-3 10-3 10-3 5710-23 5710-23 5710-23 5710-23 5710-23 5710

t(sec)

(Brake Part)

COLLECTOR-EMITTER VOLTAGE VCE (V)

COLLECTOR-EMITTER SATURATION VOLTAGE (VS. Vd) CHARACTERISTICS (TYPICAL)

CONTROL POWER SUPPLY VOLTAGE VD (V)

t(sec)

