Özellik	Alfa () Parçacıkları	Beta () Parçacıkları	Gama () Işınları	Bremsstrahlung
Doğası	Helyum çekirdeği (2p	Elektron veya pozitron	Elektromanyetik dalga	Elektromanyetik dalga
	+2n)			
Yükü	+2	-1 (), +1 ()	Nötr	Nötr
Kütlesi	Ağır $(\approx 4u)$	Hafif (elektron kütlesi)	Yok (fotonlar	Yok
			kütlesizdir)	
Hız	Yavaş ($\sim 0.05 - 0.1c$)	Orta ($\sim 0.9 - 0.99c$)	Çok hızlı (c)	Çok hızlı (c)
Penetrasyon Gücü	Düşük (kağıt ile durdu-	Orta (alüminyum ile	Yüksek (kurşun ile	Çok yüksek (yoğun
	rulur)	durdurulur)	azaltılır)	malzemelerde azalır)
İyonlaştırma Gücü	Çok yüksek	Orta	Düşük	Orta
Spesifik İyonlaşma	$\sim 10^4$ iyon çiftleri/mm	$\sim 10^2$ iyon çiftleri/mm	~ 10 iyon çiftleri/mm	$\sim 10 - 10^2$ iyon
		,		çiftleri/mm
Menzil (Range)	Milimetre seviyesinde	Santimetre ile metre	Kilometrelerce	Kilometrelerce
		arasında		
Kaynağı	Alfa bozunumu	Beta bozunumu	Çekirdek ışıması	Elektronların
				yavaşlaması
Elektrik ve Manyetik	Alanlardan az sapar	Alanlardan çok sapar	Sapmaz	Sapmaz
Alanlardaki Davranışı	(ağır)	(hafif)		
Tehlike Derecesi	Deri için zararlı (yutul-	İç organlar ve deri için	Tüm vücut için zararlı	İç organlara zarar vere-
	mazsa güvenli)	zararlı		bilir
Kullanım Alanları	Kanser tedavisi, du-	Tıbbi görüntüleme,	Sterilizasyon, enerji	X-ışını üretimi, rady-
	man dedektörü	radyoterapi	üretimi	oterapi

Table 1: Alfa, Beta, Gama ve Bremsstrahlung Karşılaştırması (Spesifik İyonlaşma Dahil)

••	1	I	
Özellik	Alfa () Bozunumu	Beta () Bozunumu	Gama () Bozunumu
Tanım	Bir çekirdek, 2 pro-	Bir çekirdek, bir	Çekirdek yüksek ener-
	ton ve 2 nötron (alfa	nötronun bir protona	jili bir gama fotonu ya-
	parçacığı) yayar.	dönüşmesiyle elektron	yarak kararlı hale gelir.
		() veya pozitron ()	
		yayar.	
Yayılan Parçacık	Alfa parçacığı (⁴ ₂ He)	Elektron (β^-) veya	Gama fotonu (γ)
		pozitron (β^+)	
Değişim Türü	Çekirdek kütlesi	Atom numarası 1 artar	Enerji seviyesi düşer,
	azalır, atom numarası	(β^-) veya azalır (β^+) ,	atom numarası ve
	2 düşer.	kütle değişmez.	kütle değişmez.
Enerji Yayılımı	Orta düzey ($\sim 4-8$	Düşük veya orta (\sim	Çok yüksek ($\sim keV$ -
	MeV)	0.1 - 1 MeV)	MeV)
İyonlaştırma Gücü	Çok yüksek	Orta	Düşük
Penetrasyon Gücü	Düşük (kağıt durdura-	Orta (ince metal	Yüksek (kalın kurşun
	bilir)	tabaka yeterli)	gerekir)
Doğal Olaylar	Ağır elementlerin	Kararsız izotoplarda	Enerji dolu çekirdekler
	bozunması (örneğin,	nötron-proton dengesi-	(örneğin, uranyum
	uranyum-238)	zliği	bozunumları sonrası)
Tipik Örnek	$^{238}_{92}\text{U} \rightarrow ^{234}_{90}\text{Th} + ^{4}_{2}\text{He}$	$^{14}_{6}\text{C} \rightarrow ^{14}_{7}\text{N} + \beta^{-} + \bar{\nu}_{e}$	$^{60}_{27}\mathrm{Co}^* \rightarrow ^{60}_{27}\mathrm{Co} + \gamma$
Tehlike Derecesi	Yutulursa ciddi iç	Orta düzeyde dış ve iç	Daha az iyonize
	radyasyon tehlikesi	tehlike taşır.	eder ama derinlere
	oluşturur.		ulaşabilir.
Kullanım Alanları	Duman dedektörleri,	Radyoterapi, tıbbi	Sterilizasyon,
	radyoizotoplu tedavi	görüntüleme	endüstriyel tarama

Table 2: Alfa, Beta ve Gama Bozunumlarının Karşılaştırması

Birim	Tanım	Kullanım Alanı	Dönüşüm
Gray (Gy)	Absorbe edilen doz: 1 kg madde başına 1 joule enerji transferi.	Radyoterapi, radyasyon etki- lerinin fiziksel ölçümü.	$1 \mathrm{Gy} = 100 \mathrm{rad}$
Rad	Absorbe edilen radyasyon dozu: 100 erg enerji/kg madde. (Eski birim)	Radyasyonun biyolojik etki- lerinin hesaplanması.	$1 \operatorname{rad} = 0.01 \operatorname{Gy}$
Sievert (Sv)	Eşdeğer doz: Radyasyon türünün biyolojik etkilerini ölçer.	İnsan maruziyeti ve sağlık etkilerinin değerlendirilmesi.	$1 \mathrm{Sv} = 100 \mathrm{rem}$
Rem	Eşdeğer doz: 1 rad'ın radyasyona özgü biyolojik etkisi ile ölçümü.	Radyasyon güvenliği ve maruz kalma sınırları.	$1\mathrm{rem} = 0.01\mathrm{Sv}$
Becquerel (Bq)	Aktivite: Bir saniyede bir çekirdek bozunumunun gerçekleştiği oran.	Radyonüklidlerin aktivite ölçümü.	1 Bq = 1 disintegrasyon/saniye
Curie (Ci)	Aktivite: 3.7×10^{10} disintegrasyon/saniye (radyoaktif maddenin aktivitesi).	Eski birim, özellikle nükleer reaktörlerde kullanılmıştır.	$1 \mathrm{Ci} = 3.7 \times 10^{10} \mathrm{Bq}$
Coulomb/kg (C/kg)	İyonizasyon dozu: 1 kg havada üretilen elektrik yükü.	Radyasyon alanının ölçümü.	$1\mathrm{C/kg} = 3876\mathrm{R}$
Röntgen (R)	Havadaki iyonlaşma dozu: $1~{\rm cm^3}$ hava için $2.58 \times 10^{-4}{\rm C/kg}.$	Hava iyonizasyonunun ölçülmesi.	1 R = 0.000258 C/kg
Electronvolt (eV)	Bir elektronun, 1 voltluk bir elektrik potansiyel farkında kazandığı enerji.	Radyasyonun enerjisi ve nükleer reaksiyonlarda.	$1 \text{eV} = 1.6 \times 10^{-19} \text{joule}$
Erg	Enerji: 10^{-7} joule. (Eski birim)	Özellikle radyasyon dozu hesaplamalarında geçmişte kullanılmıştır.	$1 \mathrm{erg} = 10^{-7} \mathrm{J}$

Table 3: Nükleer Fizikte Kullanılan Doz ve Aktivite Birimlerinin Karşılaştırması

,

Typical Dose to US Residents

Figure 1: Background Radiation Pie

Figure 2: Radon Concentration of Turkiye