Special random variables

June 8, 2023

Table of contents

- Special discrete RVs
- 2 Special continuous RVs
- 3 Normal approximation to binomial and Poisson distribution

Special Discrete RVs

- Understand the assumptions for some common discrete probability distributions
- Select an appropriate discrete probability distribution to calculate probabilities in specific applications
- Calculate probabilities, determine means and variances for some common discrete probability distributions

Bernoulli RV

Discrete RV *X* is called *Bernoulli RV* with parameter *p* if its pmf is

$$P(X = 0) = 1 - p$$
$$P(X = 1) = p$$

Denote $X \sim \operatorname{Ber}(p)$

Mean and Variance of Bernouilli RV

$$X \sim \operatorname{Ber}(p)$$

$$E(X) = p$$
$$Var(X) = p(1 - p)$$

Use Bernoulli RV to

model generic probabilistic situations with just two outcomes:

- The state of a telephone at a given time that can be either free or busy.
- A person who can be either healthy or sick with a certain disease.

Use Bernoulli RV to

construct more complicated RV by combining multiple Bernoulli RV

Geometric RV

- toss a biased coin
- P(Head) = p, P(Tail) = 1 p
- *X*: number of tosses until a head comes up for the first time
- pmf of *X*

$$p(k) = (1-p)^{k-1}p, k \ge 1$$

• *X* is Geometric with parameters *p*, denoted by $X \sim Geo(p)$

Meaning

Repeat independent Bernoulli trials until the first success

Mean and Variance of Geometric RV

$$X \sim Geo(p)$$

$$E(X) = \frac{1}{p}$$

$$Var(X) = \frac{1}{p^2}$$

pmf of Geometric RV is decreasing

Example - Digital channel

The chance that a bit transmitted through a digital transmission channel is received in error is .1. Also, assume that the transmission trials are independent. X denote the number of bits transmitted until the first error. Determine P(X = 5).

Solution

•
$$X \sim Geo(.1)$$

$$P(X = 5) = (.9)^4(.1) \approx .066$$

Binomial RV

- toss a biased coin *n* time
- P(Head) = p, P(Tail) = 1 p
- X: number of heads in the *n*-toss sequence
- pmf of X

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}, \ 0 \le k \le n$$

• *X* is Binomial with parameters (n, p), denoted by $X \sim \text{Bino}(n, p)$

Meaning

- Counting the number of success in an experiment consisting of *n* independent Bernoulli trials
- sum of *n* independent and identical Bernouilli RV

pmf of Binomial RV

the pmf is skewed towards 0 if p < 1/2, and towards n if p > 1/2

Mean and Variance of Binomial RV

$$X \sim \text{Bino}(n, p)$$

$$E(X) = np$$

$$Var(X) = np(1-p)$$

Example - Digital channel

The chance that a bit transmitted through a digital transmission channel is received in error is .1. Also, assume that the transmission trials are independent. Let X the number of bits in error in the next four bits transmitted. Determine P(X = 2).

Solution

• $X \sim \text{Bino}(4,.1)$

$$P(X = 2) = {4 \choose 2} (.1)^2 (.9)^2 \approx .0486$$

Table of contents

- Special discrete RVs
- 2 Special continuous RVs
- 3 Normal approximation to binomial and Poisson distribution

Special continuous random variables

Normal distribution

- Use the table for the cumulative distribution function of a standard normal distribution to calculate probabilities
- Standardize normal random variables

Normal RV

Continuous RV X is said to be normally distributed or Gaussian with parameter μ and σ^2 if its pdf is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2}$$

for $-\infty < x < \infty$

Denote $X \sim \mathcal{N}(\mu, \sigma^2)$.

Mean and variance of $\mathcal{N}(\mu, \sigma^2)$

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

- $E(X) = \mu$
- $Var(X) = \sigma^2$

Bell shape, symmetric about the mean

Figure: $\mu_1 < \mu_2, \sigma_1 < \sigma_2$

Application

- Normal distibution is the most widely used distribution
- Many random phenomena obey a normal distribution
- Ex: the height and weight of a person, accuracy of shots from a gun...

Good approximation

- to approximate Binomial (n, p) when n is large
- *limiting distribution* of sample mean ...**broad base** for statistic inference (estimation and hypothesis testing), analysis of variance

Standard normal distribution

- $Z \sim \mathcal{N}(0, 1)$ is standard normal distribution
- pdf

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

• cdf

$$\Phi(x) = P(Z \le x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Figure: Pdf of Z

Compute probability of standard normal distribution

- Calculator
- Look up values in Normal Probability Table

Standard normal probability table (cdf)

Table A.3 Normal Probability Table

0.0015

0.0014

Table A.3 Areas under the Normal Curve

0.0018

0.0017

Edition 1276 1276 dated the 1.021162 date										
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010

0.0016

0.0016

0.0015

735

____ 0/57

Example

$$P(Z \le -2.54)$$

Solution 1 - Calculator

$$P(Z \le -2.54) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-2.54} e^{-\frac{x^2}{2}} dx$$
$$= \lim_{a \to -\infty} \frac{1}{\sqrt{2\pi}} \int_{a}^{-2.54} e^{-\frac{x^2}{2}} dx$$

Substitute a by -10, -30, -50 ... and find the limit

Solution 2 - Look up the table value of normal probability

- \bullet look up -2.5 in the first column
- 2 look up .04 in the first row
- 3 Intersection of the corresponding row and column

$$P(Z < -2.54) = .0055$$

Property

$$P(Z \le z) = \phi(z)$$

 $P(Z > z) = 1 - \phi(z)$
 $P(a < Z < b) = \phi(b) - \phi(a)$
 $P(-a < Z < a) = 2\phi(a) - 1$ for $a > 0$

Practice

Find

- P(Z > 2.33)
- P(-1.65 < Z < 1.65)
- **3** *z* such that P(Z > z) = .95

Practice

A bit 1 is sent from location A to location B. The value recieved at B is R = 1 + Z where Z is the channel noise disturbance. When the message is received at location B, the receiver decodes it according to the following rule: If R > 0.5 then "1" is concluded to be sent. If R < 0.5 then "0" is concluded. What is the probability that the decode is incorrect?

Normality is Preserved by Linear Transformations

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 then $Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

Standardize a normal distribution

If $X \sim \mathcal{N}(\mu, \sigma^2)$ then

$$Z = \frac{X - \mu}{\tau} \sim \mathcal{N}(0, 1)$$

calculation prob for normal distribution

If $X \sim \mathcal{N}(\mu, \sigma^2)$ then

$$P(X \le x) = P(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma})$$
$$= P(Z \le \frac{x - \mu}{\sigma}) = \phi(\frac{x - \mu}{\sigma})$$

and

The annual snowfall at a particular geographic location is modeled as a normal random variable with a mean of $\mu = 60$ inches, and a standard deviation of $\sigma = 20$. What is the probability that this year's snowfall will be at least 80 inches?

• Snowfall $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu = 60$,

$$\sigma = 20$$

$$P(X \ge 80) = 1 - P(X < 80)$$
$$= 1 - \phi(\frac{80 - \mu}{\sigma}) = 1 - .8413 = .1687$$

Practice

The power W dissipated in a resistor is proportional to the square of the voltage V

$$W = 3V^2$$

Suppose $V \sim \mathcal{N}(6, 1)$. Compute P(W > 120)

Table of contents

- Special discrete RVs
- 2 Special continuous RVs
- 3 Normal approximation to binomial and Poisson distribution

Binomial and normal

Binomial approximation

- Suppose $Y \sim \text{Bino}(n, p)$ where n is large and np is not too small
- *Y* can be approximated by

$$X \sim \mathcal{N}(\underbrace{np}_{E(Y)}, \underbrace{np(1-p)}_{Var(Y)})$$

- *Y* is discrete, *X* is continuous
- so we have to "fill the gap"

"Fill the gap" - midpoint rule

Figure 4-19 Normal approximation to the binomial distribution.

$$P(Y=i) \approx P(i-\frac{1}{2} < X < i+\frac{1}{2})$$

Continuity correction

To approximate a binomial probability of $X \hookrightarrow Bin(n,p)$ with a normal distribution, a **continuity correction** is applied as follows:

$$P(X \le x) = P(X \le x + 0.5) \approx P\left(Z \le \frac{x + 0.5 - np}{\sqrt{np(1 - p)}}\right)$$

The approximation is good for np > 5 *and n*(1 - *p*) > 5.

Toss a fair coin 40 times. Y is the number of heads. Calculate P(Y = 20) using normal approximation and direct computation.

Approximate *Y* by $X \sim \mathcal{N}(20, 10)$

$$P(Y = 20) \approx P(19.5 < X < 20.5)$$

$$= P(\frac{19.5 - 20}{\sqrt{10}} < Z < \frac{20.5 - 20}{\sqrt{10}})$$

$$= P(Z < .16) - P(Z < -.16)$$

$$= 1272$$

Exact value

$$P(Y = 20) = {40 \choose 20} (.5)^{40} = .1254$$

The ideal size of a first-year class at a particular college is 150 students. The college, knowing from past experience that, on the average, only 30 percent of those accepted for admission will actually attend, uses a policy of approving the applications of 450 students. Compute the probability that more than 150 first-year students attend this college.

X: number of attending students

$$X \sim \text{Bino}(450, .3) \approx \mathcal{N}(135, 94.5)$$

$$P(X > 150) = P(X \ge 150.5)$$

$$\approx P(Z \ge \frac{150.5 - 135}{\sqrt{94.5}})$$

$$= 1 - P(Z < 1.59)$$

 $= .0559 \approx 5.6\%$

Normal Approximation to the Poisson Distribution

If *X* is a Poisson random variable with $E(X) = \lambda$ and $Var(X) = \lambda$ then for $\lambda > 5$,

$$Z = rac{X - \lambda}{\sqrt{\lambda}}$$

is approximately a standard normal random variable.

Continuity correction

 $X \sim Pois(\lambda)$ then for $\lambda > 5$,

$$P(X \le x) = P(X \le x + 0.5)$$

$$\approx P\left(Z \le \frac{x + 0.5 - \lambda}{\sqrt{\lambda}}\right)$$

Assume that the number of asbestos particles in a squared meter of dust on a surface follows a Poisson distribution with a mean of 1000. If a squared meter of dust is analyzed, what is the probability that 950 or fewer particles are found?

Let $X \sim Pois(1000)$ then we need to compute

$$P(X \le 950) = \sum_{k=0}^{950} e^{-1000} \frac{1000^k}{k!}$$

which is difficult to compute but can be approximated by

$$P(X \le 950) = P(X \le 950.5)$$

$$\approx P\left(Z \le \frac{950.5 - 1000}{\sqrt{1000}}\right)$$
$$= P(Z \le -1.57) = 0.058$$

