

Кафедра "Материаловедение в машиностроении"

Лабораторная работа № 17

по теме: «ИЗУЧЕНИЕ ПРОЦЕССА ГАЗОПЛАМЕННОЙ НАПЛАВКИ»

Выполнил: студент группы ТТ-21 Галицкий И.П. Принял преподаватель: Поздняков Е.П.

Лабораторная работа № 20 ИЗУЧЕНИЕ ПРОЦЕССА ГАЗОПЛАМЕННОЙ НАПЛАВКИ

Цель работы: Ознакомиться с процессами формообразования изделий методами наплавления поверхностного слоя материала с использованием в качестве источника тепла газового пламени.

Оборудование и материалы: Плоская и цилиндрическая заготовки металлических изделий, предназначенные для нанесения на их поверхность наплавленного слоя металла, ручная газовая горелка, припой оловянно-свинцовый, наждачная бумага, флюс на основе хлористого цинка, огнетушитель улекислотный.

Общие сведения

Наплавкой называется нанесение слоя расплавленного металла необходимого состава на поверхность изделия, нагретую до оплавления. При помощи наплавки можно увеличить или восстановить размеры изделия, а также получить поверхностный слой металла, обладающий высокой твердостью, износоустойчивостью, кислотостойкостью, жаропрочностью и т. д. Наплавлять можно сталью, цветными металлами и твердыми сплавами.

Способы наплавки

Ручная дуговая наплавка покрытыми электродами.

Эта технология наплавки при меняется наиболее часто благодаря свой универсальности: детали могут быть практически любой формы, находиться в любом пространственном положении.

Легирование наплавленного металла происходит через состав стержня электрода и его покрытие. Минимальная толщина наплавленного слоя 1,5 ...2 мм характеризуется значительным проплавлением основного металла, его существенным перемешиванием с электродным (до 50 %), невысокой производительностью: 0,8 ...2,5 кг/ч. Наплавленный металл по длине и ширине наплавки имеет нестрого постоянный химический состав, а следовательно, и свойства.

Однако простота применяемого оборудования (обычное сварочное), возможность получения наплавки практически любой системы легирования делают способ весьма распространенным.

Механизированная и автоматическая наплавка под флюсом.

Она выполняется сплошной проволокой, порошковыми проволокой И лентой, имеет большую производительность (до 5 кг/ч), лучшую равномерность по свойствам наплавленного металла по его сечению. Применение порошковых наплавочных материалов существенно повышает диапазон легирования. Особенно расширяется возможность легирования и уменьшается степень перемешивания основного и присадочного материалов благодаря применению специально изготовленной магнитолегирующей шихты.

Данные способы могут использоваться и при наплавке в защитных газах. В этом случае легирование достигается исключительно через присадочную электродную проволоку. При необходимости производить наплавку в три-четыре слоя верхние слои наплавленного металла практически полностью по химическому составу соответствуют составу электродной проволоки.

При применении неплавящегося электрода и присадочной проволоки удается существенно снизить содержание основного металла даже в первом слое наплавки (до 20 %), хотя в этом случае производительность существенно снижается. В целом же

способ характеризуется большой проплавляющей способностью и весьма значительными деформациями.

Плазменная наплавка.

Различаются два вида: плазменная *технология наплавки* струей (изделие находится не под напряжением) и дугой (изделие включается в электрическую цепь источника питания сварочной дуги). При наплавке первым способом получают небольшое проплавление основного металла и поверхностный наплавленный слой почти полностью соответствует по химическому составу присадочной проволоке.

При наплавке с использованием сварочной сжатой дуги между электродом и изделием проплавление основного металла существенно увеличивается. Возрастает и степень перемешивания основного и присадочного металлов.

Достоинствами первого способа являются малое проплавление основного металла, низкий уровень сварочных деформаций. Плазменная наплавка дугой обладает большой производительностью (до 6 кг/ч) и может обеспечить получение за один проход толщины слоя до 6 мм.

Электрошлаковая наплавка.

Проводится в вертикальном, горизонтальном или наклонном положении детали с принудительным или свободным формированием наплавленного металла.

Рекомендуется для наплавки больших поверхностей - прокатных валков, зубьев ковшей экскаваторов большой емкости, крупномодульных зубьев шестерен и звездочек, в производстве заготовок для последующей прокатки биметаллических листов и др.

Широкое применение электрошлаковая <u>технология наплавки</u> получила при облицовке поверхностей в нефтехимии и атомной промышленности.

Она характеризуется высокой производительностью (до 200 кг/ч), малой долей основного металла в наплавке (до 10 %), хорошим диапазоном (разнообразием) по толщине наплавки (2 ... 60 мм).

Одним из достоинств электрошлаковой наплавки является возможность формировать в жидком состоянии сечение и форму наплавки. Однако большая погонная энергия вызывает сильный перегрев основного металла, рост зерна в ОШЗ, потерю пластических свойств в ЗТВ.

Лазерная наплавка.

Лазерная технология наплавки нашла применение тремя способами:

- с подачей присадочного порошка в зону лазерного луча с помошью достаточно сложного дозирующего устройства;
- с оплавлением предварительно нанесенного на поверхность присадочного материала в виде пасты;
 - с оплавлением предварительно напыленных поверхностей.

Быстрое (до 2000 °C/с) охлаждение наплавленного металла способствует получению высокотвердых структур в наплавке и поверхности основного металла. Способ весьма эффективен, хотя и требует специального дорогого оборудования и обученного персонала. Его используют для наплавки лопастей турбин, клапанов, распределительных валов и других деталей ответственного назначения. Он позволяет получать наплавленные поверхности толщиной до 0,1 мм. Производительность при хорошо организованном серийном производстве может достигать до 1 кг/ч при доле основного металла в наплавленном 5... 7 % за счет возможности перераспределения тепловложения.

Электронно-лучевая наплавка.

Этот вид наплавки выполняют в вакуумных камерах. Достоинством такой технологии наплавки является возможность отдельно распределять мощность луча, идущего на подогрев наплавляемой поверхности и наплавляемого металла. Отсюда возможность добиваться практически минимального перемешивания основного и наплавочного материалов и только в слоях наплавки, прилегающих к основному материалу (3 ... 5 %). Так как наплавка проводится в вакууме, то выгорание из присадочного материала легирующих элементов исключается; в результате появляется возможность легировать наплавляемый металл в любых количествах и сочетаниях. Присадкой служит проволока сплошного сечения или порошковая. Производительность такой технологии наплавки достаточно велика: до 2 кг/ч, толщина наплавки может быть в пределах 0,2 ... 3 мм.

Недостатками являются сложность и дороговизна оборудования и необходимость квалифицированного персонала и малый КПД установки.

Индукционная наплавка.

Это наплавка, проводимая в индукторах. Она подразделяется на два вида в зависимости от состояния присадочного материала. В одном случае твердый присадочный материал помещают на наплавляемую поверхность и направляют в индуктор, где он расплавляется. В другом случае отдельно расплавленный присадочный материал заливают на наплавляемую поверхность, затем в индукторе изделие дополнительно нагревают до полного растекания наплавки.

Иногда в обоих случаях используют дополнительно флюсы, способствующие смачиванию. Одним из требований при индукционной наплавке является необходимость иметь материал подложки с более высокой температурой плавления, чем наплавляемый. КПД процесса невысок, существует опасность перегрева основного металла. Однако можно подобрать такой режим, при котором почти полностью исключается перемешивание основного и присадочного металлов. Производительность такой наплавки может достигать 15 кг/ч при толщине наплавляемого слоя 3... 4 мм. Процесс становится эффективным в условиях серийного производства и чаще всего применяется в сельскохозяйственном машиностроении.

Электроконтактная наплавка.

Ее выполняют на несколько модернизированных машинах для контактной сварки путем при варки ленточного или проволочного наплавляемого металла. Толщина наплавки может быть значительной (до 3 мм), однако целесообразно осуществлять наплавку тонких лент в несколько слоев. В этом случае исключается перегрев, и свойства металла сохраняются. 8 последнее десятилетие чаще применяют способ наплавки ленты к изделию с использованием промежуточного порошкообразного подслоя, например из порошков типа ПГ-СР. В этом случае происходит как бы наплавка-напайка.

Степень перемешивания основного металла и наплавленного практически нулевая. Производительность может достигать 2... 4 кг/ч. Толщина наплавки зависит от числа слоев. При однослойной наплавке рекомендуется $\leq 1...$ 1,2 мм в случае использования в качестве присадки ленты.

Плакирование поверхности листов энергией взрыва.

Этот способ применяется для получения больших поверхностей или в крупносерийном производстве. Процесс мало чем отличается от обычной сварки взрывом, используются те же оборудование, камеры, взрывчатые вещества. Полученная в результате сварки взрывом двух или трехслойная заготовка направляется в прокатные станы для получения плакированного листа нужной толщины. Способ характеризуется высокой производительностью, отсутствием перемешивания основного и

наплавленного металлов, небольшими деформациями. Практически толщина наплавленного слоя неограниченна. Однако сложность оборудования и ограниченность ассортимента наплавляемого металла являются существенным препятствием для широкого применения способа.

Наплавка трением.

Технология наплавки трением напоминает обычную сварку трением, проводимую при вращении одного прутка или заготовки относительно другой при непрерывном их поджатии друг к другу. Наплавляемый металл как бы намазывается на поверхность другого. При этом наплавленный слой в зависимости от режима процесса может иметь весьма малую толщину (0,2 ... 0,5 мм).

Газопламенная наплавка.

Такая наплавка - довольно распространенный способ, проводимый на стандартном оборудовании газопламенного поста (рис.20.1). В качестве присадки используется проволока сплошного сечения или порошковая. Иногда наплавку выполняют вдуванием порошка в зону пламени. В зависимости от компонентов ее легирования пламя регулируется от восстановительного до окислительного. Это позволяет легко изменять нагрев основного металла и при садки, что может обеспечить в необходимых случаях почти полное отсутствие перемешивания основного и присадочного металлов. Наплавка может проводиться во всех пространственных положениях и на деталях практически любой толщины.

Рис. 20.1. Схема газопламенной наплавки:

1 — наплавленный слой; 2 — присадочный пруток; 3 — газовая горелка; 4 — наплавляемая деталь; A — направление наплавки

Процесс достаточно энергоемкий, приводит к значительному нагреву основной детали и ее деформациям. Производительность газовой наплавки до 3 кг/ч, толщина наплавленного слоя 0,3 ... 3 мм.

При газовой наплавке цветных металлов на предварительно зачищенную поверхность направляют пламя и нагревают ее до температуры плавления наплавляемого металла. Наплавлять можно один или несколько слоев. Для очистки нагретой поверхности от окислов применяют те же флюсы, что и для пайки. Таким: образом, физические процессы, происходящие при наплавке, во многом аналогичны процессам пайки. Здесь также происходит смачивание наплавляемой поверхности и образование на границе оплавления твердых растворов в результате диффузии. Для наплавки меди необходимо нормальное пламя, наплавку латуни производят с избытком кислорода. Образующиеся при этом окислы предохраняют цинк от испарения.

Твердые сплавы наплавляют для придания твердости и износоустойчивости рабочим поверхностям трущихся деталей. В зависимости от способа производства твердые сплавы делятся на спеченные или металлокерамические, литые (стеллит,

сормайт), порошкообразные или зернистые (вокар) и трубчато-зернистые (релит). Газовым пламенем наплавляются литые и трубчато-зернистые твердые сплавы, так как порошкообразные твердые сплавы сдуваются пламенем горелки, а керамические легко перегреваются.

Наплавку сормайта на сталь производят следующим образом; деталь, подлежащую наплавке сплавом, предварительно нагревают науглероживающим пламенем до запотевания поверхности, а затем наплавляют слой сормайта. Растекаясь по оплавленной поверхности, стали, сормайт сплавляется с ней, образуя прочное соединение. Сормайтом называют класс литых высокоуглеродистых сплавов большим содержанием хрома, дополнительно легированных никелем и кремнием. В результате наплавления слоя сормайта на поверхности детали образуется высокоуглеродистая аустенитная структура, которая при последующих внешних воздействиях — трении, ударах и т.п. претерпевает самопроизвольное старение с образованием мартенсита и повышения твердости поверхности. Эти изменения способствуют повышению износостойкости рабочей поверхности детали.

Баббитами называют сплавы на основе свинца и олова, а также других легкоплавких высокопластичных металлов. Благодаря наплавке баббитом при скольжении в узле трения происходит меньший износ детали, так как этот материал обладает таким свойством, как низкая температура плавления, за счет чего происходит лучшее притирание, меньший износ детали.

Контрольные вопросы

- 1. Опишите технику наплавки цветных металлов на сталь.
- 2. Перечислите твердые сплавы, наплавляемые газовым пламенем.
- 3. Как производится наплавка сормайта на сталь?
- 4. С какой целью осуществляется наплавка баббитов на поверхность деталей машин?
- 5. Какие технологические особенности процесса наплавки определяют качество наплавленного слоя?