PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-278927

(43)Date of publication of application: 12.10.1999

(51)Int.CI.

CO4B 35/46 CO4B 35/44 H01B 3/12 H01P 7/10

(21)Application number: 11-008306

(71)Applicant:

KYOCERA CORP

(22)Date of filing:

14.01.1999

(72)Inventor:

MURAKAWA SHUNICHI

OKAWA YOSHIHIRO

(30)Priority

Priority number: 10 5927

Priority date: 14.01.1998

Priority country: JP

(54) DIELECTRIC PORCELAIN COMPOSITION, PRODUCTION OF DIELECTRIC PORCELAIN AND DIELECTRIC RESONATOR

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a dielectric porcelain composition, dielectric porcelain and dielectric resonator, having high εr and high Q value in high frequency region and making dispersion of εr, Q value and a temperature characteristic τ f of resonance frequency small. SOLUTION: This dielectric porcelain composition contains at least rare earth element, Al, M (M: Sr or Sr and Ca) and Ti as metal elements and contains p rovskite type crystalline phase represented by the compositional formula; aLn2OX.bAl2O3.cMO.dBaO.eTiO2 (Ln: rare earth element) [0.056=a=0.450, 0.056 = b = 0.450. 100 = c = 0.500. 0 = d = 0.100. 0.100 < e < 0.470. 0.75 = b/a = 1.25, 0.75 = 0.75 = 0.056e/(c+d)=1.25 and a+b+c+d+e=1] and comprising a solid solution of LnAIO (X+3)/2 (3=x=4) and MbaTiO3 as a main crystalline phase.

LEGAL STATUS

[Date of request for examination]

13.07.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's d cision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-278927

(43)公開日 平成11年(1999)10月12日

(51) Int. Cl. 6		識別言	7号		FI				
C 0 4 B	35/46				C 0 4 B	35/46		С	
	35/44				H 0 1 B	3/12	303		
H 0 1 B	3/12	303	3		H 0 1 P	7/10			
H 0 1 P	7/10				C 0 4 B	35/44			
<u> </u>	審査請求	未請求	請求項の数 6	OL			(全1	2頁)	
(21)出願番号	特別	万平11~83	306		(71)出願人	. 000000	6633		
						京セラ	株式会社		
(22) 出願日	平均	戊11年(19	999) 1月 14日			京都府	f京都市伏!	見区竹田鳥羽	殿町6番地
					(72)発明者	村川	俊一		
(31)優先権主張	番号 特層	顏平10-59	927			鹿児島	場里分市に	山下町1番1号	京セラ株式
(32)優先日	平	0 (1998)	月14日			会社国	分工場内		
(33)優先権主張	国 日2	本(JP)	•		(72)発明者	大川	善裕		
						鹿児島	場県国分市に	山下町1番1号	京セラ株式
				1		会社国	分工場内		
				j					
				İ					

(54) 【発明の名称】誘電体磁器組成物、誘電体磁器の製造方法並びに誘電体共振器

(57)【要約】

【課題】高周波領域で高εr、高Q値となり、εr、Q値、共振周波数の温度特性τfのばらつきを小さくする。

【解決手段】金属元素として少なくとも希土類元素、A 1、M(M:S r あるいはS r と C a)、及びT i を含有し、組成式が a L n $_2$ O $_3$ · b A 1 $_2$ O $_3$ · c MO · d B a O · e T i O $_2$ (L n:希土類元素)(但し、0.0 5 6 \le a \le 0.4 5 0、0.0 5 6 \le b \le 0.4 5 0、0.100 \le c \le 0.5 0 0、0 \le d \le 0.100、0.100 < e < 0.470、0.75 \le b / a \le 1.25、0.75 \le e / (c + d) \le 1.25、a + b + c + d + e = 1)で表され、かつL n A 1 O (x+3)/2 (3 \le x \le 4)及び/又はMB a T i O $_3$ の固溶体からなるペロブスカイト型結晶相を主結晶相とする誘電体磁器を得る。

【特許請求の範囲】

【請求項1】金属元素として少なくとも希土類元素(L n)、AI、SrあるいはSrとCa、およびTiを含 有する複合酸化物からなり、前記金属元素によるモル比 による組成式を

a L n_2 O_x · b A l_2 O_3 · c MO · d B a O · e Ti O2

(但し、Mは、Sr、あるいはSrとCa、3≦x≦ 4) で表した時、前記a、b、c、d、eが、

- $0.056 \le a \le 0.450$
- $0.056 \le b \le 0.450$
- $0.100 \le c \le 0.500$
- $0 \le d \le 0.100$
- 0.100 < e < 0.470
- 0. $7.5 \le b/a \le 1.2.5$
- 0. $7.5 \le e / (c+d) \le 1.2.5$
- a + b + c + d + e = 1

を満足するとともに、ペロブスカイト型結晶相を主結晶 相とすることを特徴とする誘電体磁器組成物。

なることを特徴とする請求項1記載の誘電体磁器組成

【請求項3】前記ペロブスカイト型結晶相が、少なくと $b L n A l O_{(x+3)/2} (3 \le x \le 4)$ $b \in RT i O$ a(Rは、少なくともSrを含むアルカリ土類元素)と の固溶体からなることを特徴とする請求項1記載の誘電 体磁器組成物。

【請求項4】金属元素として少なくともLa、A1、S r及びTiを含有する複合酸化物からなり、モル比によ る組成式を

a La₂ O₃ · b A l₂ O₃ · c S r O · e T i O₂ で表した時、前記a、b、c、eが、

- 0. $1061 \le a \le 0$. 2162
- 0. $1050 \le b \le 0$. 2086
- 0. $3040 \le c \le 0$. 4185
- 0. $2747 \le e \le 0$. 4373
- 0. $7.5 \le b/a \le 1.2.5$
- 0. $7.5 \le e/c \le 1.2.5$
- a+b+c+e=1

を満足する請求項1記載の誘電体磁器組成物。

【請求項5】LnA1O(x+3)/2 (Ln:希土類元素、 3 ≤ x ≤ 4) を主結晶相とする仮焼粉末と、RTiO₃ (Rは、少なくともSrを含むアルカリ土類元素)を主 結晶相とする仮焼粉末とを混合し、成形した後、焼成す ることを特徴とする誘電体磁器の製造方法。

【請求項6】一対の入出力端子間に誘電体磁器を配置し てなり、電磁界結合により作動する誘電体共振器におい て、前記誘電体磁器が、請求項1乃至請求項4のいずれ か記載の誘電体磁器組成物からなることを特徴とする誘 電体共振器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、マイクロ波、ミリ 波等の髙周波領域において、比誘電率 εr、共振器の先 鋭度Q値、温度係数τf を安定に制御し、製造上特性の ばらつきの小さい誘電体磁器組成物及び誘電体共振器に 関し、例えば前記高周波領域において使用される種々の 共振器用材料やMIC (Monolithic IC) 用誘電体基板材料、誘電体導波路用材料や積層型セラミ 10 ックコンデンサ等に使用される誘電体磁器組成物、誘電 体磁器の製造方法及び誘電体共振器に関する。

[0002]

【従来の技術】誘電体磁器は、マイクロ波やミリ波等の 高周波領域において、誘電体共振器、MIC用誘電体基 板や導波路等に広く利用されている。その要求される特 性としては、(1)誘電体中では伝搬する電磁波の波長 が1/εr 1/2 に短縮されるので、小型化の要求に対し て比誘電率が大きいこと、(2) 高周波領域での誘電損 失が小さいこと、すなわち高Q値であること、(3)共 【請求項2】実質的にペロブスカイト型結晶相のみから 20 振周波数の温度に対する変化が小さいこと、即ち比誘電 率 εr の温度依存性が小さく且つ安定であること、以上 の3特性が主として挙げられる。

> 【0003】これらを満たすものとして、本出願人は、 先に希土類元素 (Ln)、Al、CaおよびTiを含有 する複合酸化物からなる比誘電率が34~46と高く、 Q値が2000以上の誘電体磁器組成物を提案した (特開平6-76633号公報参照)。

[0004]

【発明が解決しようとする課題】ところが、上記LnA 30 1 Ca Ti 系誘電体磁器組成物では、高比誘電率、高Q 値を有するものの、その製造工程において比誘電率 ε r、Q値及び共振周波数の温度係数 τ f の値がばらつ き、これらを安定に制御することが困難であるという課 題があった。

【0005】本発明は、上記事情に鑑みて完成されたも ので、その目的は比誘電率 ϵ r が大きく、高Q値であ り、かつ比誘電率 ε r 、Q値及び共振周波数の温度係数 τfの値のばらつきが小さく、安定に制御することがで きる誘電体磁器組成物、誘電体磁器の製造方法並びに誘 40 電体共振器を提供することにある。

[0006]

【課題を解決するための手段】本発明の誘電体磁器組成 物は、金属元素として少なくとも希土類元素(Ln)、 Al、SrあるいはSrおよびCa、およびTiを含有 する複合酸化物からなり、前記金属元素によるモル比に よる組成式がaLngOx・bAlgOs・cMO・d BaO・e TiO2 (但し、Mは、Sr、あるいはSr とCa、3≤x≤4)で表され、かつペロブスカイト型 結晶相を主結晶相とするものである。

50 【0007】なお、上記組成式における前記a、b、

c、d、eは、

 $0.056 \le a \le 0.450$

 $0.056 \le b \le 0.450$

 $0.100 \le c \le 0.500$

 $0 \le d \le 0.100$

0.100 < e < 0.470

0. $7.5 \le b/a \le 1.2.5$

0. $7.5 \le e / (c+d) \le 1.2.5$

a + b + c + d + e = 1

を満足するものである。

【0008】また、上記の誘電体磁器組成物において、特に、金属元素として少なくともLa、Al、Sr 及び Tiを含有する複合酸化物からなり、モル比による組成式がa La $_2$ O $_3$ · b Al $_2$ O $_3$ · c Sr O· e Ti O $_2$ で表され、上記組成式における前記a、b、c、e が、

0. $1061 \le a \le 0$. 2162

0. $1050 \le b \le 0$. 2086

0. $3040 \le c \le 0$. 4185

0. $2747 \le e \le 0$. 4373

0. $7.5 \le b/a \le 1.2.5$

0. $7.5 \le e/c \le 1.25$

a + b + c + e = 1

を満足することが望ましい。

【0009】なお、上記の誘電体磁器組成物においては、ペロブスカイト型結晶相の単一結晶相からなることが望ましく、さらに、このペロブスカイト型結晶相が、少なくとも $LnAlO_{(x+3)/2}$ (3 \leq x \leq 4)と、RTiO₃ (Rは、少なくともSrを含むアルカリ土類元素)との固溶体からなることが望ましい。

【0010】また、本発明の誘電体磁器の製造方法は、 $LnA1O_{(x+3)/2}$ ($3 \le x \le 4$)を主結晶相とする仮焼粉末と、 $RTiO_3$ (Rは、少なくともSrを含むアルカリ土類元素)を主結晶相とする仮焼粉末とを混合し、成形した後、焼成することを特徴とするものである。

【0011】さらに、本発明の誘電体共振器は、一対の 入出力端子間に誘電体磁器を配置してなり、電磁界結合 により作動する誘電体共振器において、前記誘電体磁器 が、上記誘電体磁器組成物からなるものである。

[0012]

【作用】本発明の誘電体磁器組成物によれば、比誘電率 ϵ r が大きく、高Q値であり、かつ、比誘電率 ϵ r 、Q 値及び共振周波数の温度係数 τ f の値のばらつきが小さく、安定に制御することができる磁器を得ることができ、さらに上記のように金属元素として少なくとも L a、Al、Sr及びTiを含有する複合酸化物からなり、かつ LaAlO3 とSrTiO3 の固溶体を主結晶相とする誘電体磁器組成物によれば、さらに高Q値を得ることができる。

【0013】また、 $LnAlO_{(x+3)/2}$ (Ln: 希土類元素、 $3 \le x \le 4$)を主結晶相とする仮焼粉末と、 $RTiO_3$ (R は、少なくともSr を含むアルカリ土類元素)を主結晶相とする仮焼粉末とを混合し、成形した後、焼成することによって、上記仮焼粉末同時の固溶を促進することができる結果、実質的にペロブスカイト型(ABO_3)の複合酸化物結晶相による単一結晶相からなる誘電体磁器を得ることができる。

【0014】さらに、本発明によれば、一対の入出力端 7間に誘電体磁器を配置してなり、電磁界結合により作動する誘電体共振器において、前記誘電体磁器を上記誘 電体磁器組成物によって構成することによって、無負荷 Qと共振周波数の安定性に優れた共振器を提供すること ができる。

[0015]

【発明の実施の形態】本発明における誘電体磁器組成物によれば、誘電体特性のばらつきを小さくするためには、誘電体磁器組成物中の主結晶相を制御することが重要であるとの観点に基づくものである。なお、本発明の20 磁器組成物は、粉末であっても、特定形状に成形後、焼成されたバルク体(磁器)であってもよい。

【0016】即ち、本発明の誘電体磁器組成物は、少なくとも希土類元素(Ln)と、Alと、SrまたはSrとCaと、Tiとを含有する複合酸化物からなるものであり、ペロブスカイト型結晶相を主結晶相とするものである。

【0017】上記主結晶相は、磁器組成物をX線回折で分析することによって測定することができる。本発明において、ペロブスカイト型結晶相を主結晶相とするとは、X線回折による前記固溶体からなる結晶相の主ピークが、他の結晶相の主ピークよりも高いことを意味し、特に、実質的に、上記ペロブスカイト型結晶相のみからなることが望ましい。特に、このペロブスカイト型結晶相は、少なくともLnAlO(x+3)/2 (3≦x≦4)と、RTiO3 (Rは、少なくともSrを含むアルカリ土類元素)との固溶体からなる(Ln,R)(Al,Ti)O3で表されるものであることが望ましい。

【0018】上記誘電体磁器組成物においては、前記金 属元素の酸化物のモル比による組成式を

40 a L n₂ O_x · b A l₂ O₃ · c MO· d B a O· e T

(Mは、Sr、あるいはSrとCa) で表した時、前記a、b、c、d、eが、

 $0. \ 0.56 \le a \le 0.450$

0. $0.56 \le b \le 0.450$

 $0\,,\ 1\ 0\ 0 \le c \le 0\,,\ 5\ 0\ 0$

 $0 \leq d \leq 0. \quad 1 \quad 0 \quad 0$

 $0\,,\ 1\ 0\ 0 < e < 0\,,\ 4\ 7\ 0$

 $0, 75 \le b/a \le 1.25$

50 0. $7.5 \le e / (c+d) \le 1. 2.5$

成することができる。

a + b + c + d + e = 1であることが重要である。

【0019】各金属元素量を上記の範囲に限定した理由 は以下の通りである。即ち、0.056≤a≤0.45 0としたのは、a < 0. 0 5 6 の場合は τ f が正に大き くなったり、Q値が低下したりするからであり、a> 0. 450の場合は比誘電率 ε r が低下したり、Q値が 低下したり、 r f が負に大きくなったりするからであ る。特に、0.078≤a≤0.325が好ましい。

 $[0020]0.056 \le b \le 0.450$ としたのは、 b < 0.056の場合はQ値が低下したり、 τ fが正に 大きくなるからであり、b>0. 450の場合はQ値が 低下するためである。特に、0.078≦b≦0.32 5が好ましい。

[0021] 0. $100 \le c \le 0$. $500 \ge 0$ the following that [00000]c < 0. 100の場合はQ値が低下したり、 τ fが負に 大きくなったりするからであり、c>0.500の場合 はτfが正に大きくなったり、Q値が低下したりするか らである。特に、0.250≤c≤0.47が好まし ٧١₀

 $\{0022\}\ 0 \le d \le 0.\ 100 \ge l \ge 0$, d > 0. 100であるとQ値が低下するからである。

【0023】0.100<e<0.470としたのは、 e ≤ 0.100の場合は τf が負に大きくなったり、Q 値が低下したりするからでり、e≥0.470の場合は τfが正に大きくなったり、Q値が低下したりするから である。特に、0. 250≦e≦0. 422が好まし

 $[0024] 0.75 \le b/a \le 1.25$ としたのは、 b/a<0.75であるとQ値が低下するからであり、 b/a>1.25であるとQ値が低下するからである。 特に、0.80≤b/a≤1.20が望ましい。

【0025】0. 75≦e/(c+d)≦1. 25とし たのは、e/(c+d)<0.75であるとQ値が低下 するからであり、e/(c+d)>1.25であるとQ 値が低下するからである。特に0.80≦e/(c+ d) ≤1.20が望ましい。

【0026】本発明によれば、上記の誘電体磁器組成物 において、金属元素として少なくともLa、Al、Sr 組成式を

a La₂ O₃ · b A l₂ O₃ · c S r O · e T i O₂ で表した時、前記a、b、c、eが、

0. $1061 \le a \le 0$. 2162

 $0. \ 1 \ 0 \ 5 \ 0 \le b \le 0. \ 2 \ 0 \ 8 \ 6$

0. $3040 \le c \le 0$. 4185

0. $2747 \le e \le 0$. 4373

0. $7.5 \le b/a \le 1.2.5$

0. $7.5 \le e/c \le 1.2.5$

a+b+c+e=1

を満足するとともに、LaAlOsとSrTiOsとの 固溶体を主結晶相とする場合には、さらに高いQ値を達

【0027】かくして、本発明の誘電体磁器組成物は、 比誘電率εrが大きく、高Q値であり、かつ、比誘電率 εr、Q値及び共振周波数の温度係数τfの値のばらつ きが小さく、安定に制御可能なものとなるという作用効 果を有する。

【0028】本発明の誘電体磁器の製造方法としては、 10 誘電体磁器を形成する複数の金属元素の酸化物粉末を所 定の割合で添加混合した後、それを成形し、焼成する方 法(第1の製造方法)、誘電体磁器を形成する複数の金 属元素の酸化物粉末を組み合わせて混合した混合物を一 旦仮焼、粉砕した後、それらを再度混合し、成形、焼成 する方法 (第2の製造方法) がある。

【0029】本発明によれば、特に、誘電体磁器におけ る金属酸化物の固溶化を促進し、結晶相の単一化を図る 上で、前記第2の製造方法を採用することが望ましい。 【0030】即ち、希土類元素及びAlを含有するLn 20 A 1 O (x+3)/2 (3 ≤ x ≤ 4) を主結晶相とする仮焼粉 末と、RTiOa(Rは、少なくともSrを含有するア ルカリ土類元素)を主結晶相とする仮焼粉末とを混合 し、成形した後、焼成する。つまり、希土類元素酸化物 とAlの酸化物との混合物を仮焼、粉砕した仮焼粉末 と、SrOを少なくとも含むアルカリ土類金属酸化物と TiO₂との混合物を仮焼、粉砕した仮焼粉末とを、混 合し、所定形状に成形後、焼成する。

【0031】かかる製造方法によって、上記のLnA1 O(x+3)/2 と、RTiO3 (Rは、少なくともSrを含 30 有するアルカリ土類元素)との固溶体、即ち、(Ln, R) (A1, Ti) O₃ で表されるペロブスカイト型結 晶を主結晶相とする、εr、Q値及びτfの特性値のば らつきの小さい誘電体磁器を得ることができる。なお、 アルカリ土類元素としては、Sェ以外に、Ca、Baが 挙げられる。

【0032】本発明の製造方法によって、上記特性値の ばらつきを小さくできる理由は以下のように考えられ

【0033】一般に、誘電体磁器組成物の素原料には不 及びTiを含有する複合酸化物からなり、モル比による 40 純物や水等が含まれている。しかも、製造工程中で溶媒 にイオンとして溶出したり、スラリー中で沈降したり、 スプレードライ中に重い元素が排出されたりすることに よって、組成変化が生じる。そのため、いくら高精度に 調合しても、Ln、Al、Sr、Ca、Ba、Tiの各 成分の比率を正確に制御することは困難であり、これに より特性値にばらつきが生じる。

> 【0034】これに対し、第2の製造方法では、上記の 組み合わせによって作製された仮焼粉末を混合すること によって、各成分の比率を高精度に制御することがで

50 き、その結果、特性値のばらつきを小さくすることがで

きるものと推察される。

【0035】誘電体磁器の上記第2の製造方法は、より 具体的には、以下の工程(1)~(6)から成る。

【0036】(1)出発原料として、高純度の、少なく とも1種の希土類元素 (Ln) 酸化物 (Ln2 O3)、 酸化アルミニウム (A12 O3) の各粉末を用いて、こ れを所定の割合、特にO. 75≦Al₂O₃/Ln₂O 3 ≤1.25となるように秤量後、純水を加え、この混 合原料の平均粒径が2.0μm以下となるまで1~10 り湿式混合及び粉砕を行う。

【0037】(2)この混合物を乾燥後、1000~1 300℃で1~10時間仮焼後、粉砕して、LnAlO (x+3)/2 (Ln:希土類元素、3≦x≦4)を主結晶相 とする仮焼粉末を得る。

【0038】(3)同様に、炭酸カルシウム、炭酸スト ロンチウム、炭酸バリウムなどの熱処理によってアルカ リ土類 (R) の酸化物 (RO) を生成し得るアルカリ土 類金属の炭酸塩、及び酸化チタン(TiO2)の各粉末 を用いて、前述したような所望の割合、特に、0.75 20 合で添加することができる。 ≦TiO₂/RO≦1.25となるように秤量後、純水 を加え、混合原料の平均粒径が2.0μm以下となるま で1~100時間、ジルコニアボール等を使用したボー ルミルにより湿式混合及び粉砕を行う。

【0039】(4)この混合物を乾燥後、1000~1 300℃で1~10時間仮焼後、粉砕して、RTiO₃ (Rは、少なくともSェを含有するアルカリ土類元素) を主結晶相とする仮焼粉末を得る。

【0040】(5)次に、得られたLnAlO(x+3)/2 を主結晶相とする仮焼粉末と、RTiOaを主結晶相と する仮焼粉末を所定の割合で混合し、この混合原料の平 均粒径が2.0μm以下となるまで1~100時間、ジ ルコニアボール等を使用したボールミルにより湿式混合 及び粉砕を行う。

【0041】(6)更に、3~10重量%の成形用の有 機バインダーを加えてから脱水し、その後、公知の例え ばスプレードライ法等により造粒または整粒し、得られ た造粒体又は整粒粉体を公知の例えば金型プレス法、冷 間静水圧プレス法、押し出し成形法等により任意の形状 に成形する。

【0042】(7)上記のようにして作製した成形体を 1400~1700℃の温度で1~10時間大気中にお いて焼成することにより、LnAlO(x+3)/2、RTi Oa(Rは、少なくともSrを含有するアルカリ土類元 素)との固溶体を主結晶相とする誘電体磁器を作製する ことができる。

【0043】特に、上記の第2の製造方法によれば、実 質的に結晶相がLnAlO(x+3)/2と、RTiO3 (R は、少なくともSェを含むアルカリ土類金属)との固溶 体からなる (Ln、R) (Al、Ti) O₃ からなるペ 50

ロブスカイト型結晶相による単一相から構成されること により、比誘電率 ε r 、Q値、τ f の安定性に優れた誘 電体磁器を作製できる。

【0044】本発明において、用いられる希土類元素 (Ln) としては、Y、La、Ce、Pr、Sm、E u、Gd、Dy、Er、Yb、Nd等である。これらの 希土類元素 (Ln)の酸化物の形態としては、Ln2 O x (3≤x≤4)のものが挙げられる。希土類元素とし ては、特に、Y、La、Sm、Gd、Dy、Er、Y O時間、ジルコニアボール等を使用したボールミルによ 10 b、Ndが好ましく、さらには、La、Ndが特に望ま

> 【0045】更に、本発明の誘電体磁器組成物によれ ば、上記の誘電体磁器組成物を主成分として、これにZ nO, NiO, SnO₂, Co₃ O₄, ZrO₂, WO 3 、 LiCO3 、 Rb2 CO3 、 Sc2 O3 、 V 2 O5 CuO, SiO2, MgCO3, Cr2 O3, B_2 O_3 , GeO_2 , Sb_2 O_6 , Nb_2 O_6 , Ta_2 O₅ 等を添加しても良い。これらは、その添加成分にも よるが、主成分100重量部に対して6重量部以下の割

【0046】また、本発明の誘電体磁器組成物は、特に 誘電体共振器の誘電体磁器として最も好適に用いられ る。図1に、TEモード型の誘電体共振器の概略図を示 した。図1の誘電体共振器は、金属ケース1内壁の相対 する両側に入力端子2及び出力端子3を設け、これらの 入出力端子2、3の間に上記誘電体磁器組成物からなる 誘電体磁器4を配置して構成される。このようなTEモ ード型誘電体共振器は、入力端子2からマイクロ波が入 力され、マイクロ波は誘電体磁器4と自由空間との境界 30 の反射によって誘電体磁器4内に閉じこめられ、特定の 周波数で共振を起こす。この信号が出力端子3と電磁界 結合して出力される。

【0047】また、図示しないが、本発明の誘電体磁器 組成物を、TEMモードを用いた同軸型共振器やストリ ップ線路共振器、TMモードの誘電体磁器共振器、その 他の共振器に適用して良いことは勿論である。更には、 入力端子2及び出力端子3を誘電体磁器4に直接設けて も誘電体共振器を構成できる。

【0048】上記誘電体磁器4は、本発明の誘電体磁器 組成物からなる所定形状の共振媒体であるが、その形状 は直方体、立方体、板状体、円板、円柱、多角柱、その 他共振が可能な立体形状であればよい。また、入力され る高周波信号の周波数は100MHz~300GHz程 度であり、共振周波数としては200MHz~100G Hz程度が実用上好ましい。

【0049】かくして、本発明の誘電体共振器は、上記 誘電体磁器組成物を用いることにより、無負荷Q、共振 周波数の安定性、共振周波数の温度安定性を向上するこ とができる。

【0050】尚、本発明は上記実施形態に限定されるも

のではなく、本発明の要旨を変更しない範囲で種々の変 更は何等差し支えない。

[0051]

【実施例】(実施例1)前述した第2の製造方法に基づき、以下の工程(1)~(7)で誘電体磁器を作製した

【0052】 (1) 出発原料として純度99%以上の希土類元素(Ln)酸化物 Ln_2O_x ($3\le x\le 4$)、具体的には Y_2O_3 、 La_2O_3 、 CeO_2 、Pr。 O_{11} 、 Sm_2O_3 、 Eu_2O_3 、 Gd_2O_3 、 Dy_2O_3 、 Er_2O_3 、 Yb_2O_3 、 Nd_2O_3 の各粉末と、酸化アルミニウム(Al_2O_3)の粉末を用い、それらを表1のモル比の割合となるように秤量後、純水を加え混合し、この混合原料の平均粒径が2. O_μ m以下となるまで、ボールミルにより約20時間湿式混合し、粉砕を行った。

【0053】 (2) この混合物を乾燥後、1200℃で 2時間仮焼後、粉砕して、平均粒径が $0.4\sim1.5\mu$ mの $LnAlO_{(x+3)/2}$ (3 \leq x \leq 4) を主結晶相とする仮焼粉末Aを得た。

【0054】(3) 同様に、炭酸カルシウム(CaCOa)、炭酸ストロンチウム(SrCOa)、炭酸バリウム(BaCOa)、酸化チタン(TiO2)の各粉末を用い、それらを表1のモル比の割合となるように秤量後、純水を加え混合し、この混合原料の平均粒径が2.0μm以下となるまで、ボールミルにより約20時間湿式混合し、粉砕を行った。

【.0055】(4) この混合物を乾燥後、1200℃で 2時間仮焼後、粉砕して、平均粒径が2.5~10μm のRTiO₃ (Rは、少なくともSrを含有するアルカ 30 リ土類元素)を主結晶相とする仮焼粉末Bを得た。

【0056】(5)上記(2)の仮焼粉末Aと、上記(4)の仮焼粉末Bとを混合物に純水を加え混合し、この混合原料の平均粒径が2.0μm以下となるまで、ボールミルにより約20時間湿式混合し、粉砕を行った。

【0057】(6) 更に、得られたスラリーに5重量%の成形用有機バインダを加え、スプレードライにより整 対した。

【0058】 (7) 得られた整粒粉体を約1 t o n/c

【0059】そして、得られた磁器の円板部(主面)を平面研磨し、アセトン中で超音波洗浄し、150℃で1時間乾燥した後、円柱共振器法により測定周波数3.510~4.5GHzで比誘電率 εr、Q値、共振周波数の温度係数 τfを各30個測定し平均値を計算した。Q値は、マイクロ波誘電体において一般に成立する(Q値)×(測定周波数f)=(一定)の関係から、1GHzでのQ値に換算した。共振周波数の温度係数 τfは、-40~85℃の範囲で測定した。

【0060】上記と同じ出発原料を用いて上記と同じ実験を30回行ない、各ロットの比誘電率 ϵ r、Q値、共振周波数の温度係数 τ fの平均値を用いて、30ロットの比誘電率 ϵ r、Q値、共振周波数の温度係数 τ fのそ 1000 れぞれの標準偏差 σ を, σ = $\{\Sigma$ $\{w-y\}$ 0 $\{v\}$ 1 $\{v\}$ 2 によって計算した。

【0061】ここで、wは各ロットの30個の試料の ϵ rの平均値、又は Q f の平均値、又は τ f の平均値、 y は各ロットの ϵ r の平均値の合計を30で割った値、又 は各ロットの Q f の平均値の合計を30で割った値、又 は各ロットの τ f の平均値の合計を30で割った値であり、n=30とした。結果を表1~表3に示す。

【0062】一方、比較例として、希土類元素酸化物 L n_2O_x ($3 \le x \le 4$)、酸化アルミニウム ($A1_2O_3$)、炭酸カルシウム ($CaCO_3$)、炭酸ストロンチウム ($SrCO_3$)、炭酸バリウム ($BaCO_3$)、酸化チタン (TiO_2) の各粉末を同時に混合し、粉砕、乾燥、仮焼、整粒、焼成、研磨して、誘電体磁器を作製し、得られた誘電体磁器についても同様の試験を行った。結果は、表2の試料 $No.40\sim55$ 、表3の試料 $No.83\sim87$ に示した。

[0063]

【表1】

Second S	0.0800 0.1250 0.1250 0.1250 0.3500 0.3500 0.0881 0.0881 0.008	0.4300 0.0100 0.4000 0.3730 0.0000 0.3730 0.3750 0.0000 0.3750		•				1		Г	r		
	-2 1	0.4300 0.00 0.3730 0.00	-				- 1	Š	<u></u>	ر		1 2	
	" 1	0.4300 0.03730 0.0	•		b/a	(C+Q)		_	Dem/C			ppm/C	
	1 <u> </u>	0.3730 0	00100	804	- 00:	606.0	44.6	28000	24.9	0.25	2900	0.28	11
	<u> </u>	0 975010	0.0000	0.3730	1.048	1.000	34.8	48000	-28.1	0.24	2100	0.55	
		2000	0000	2750	1.000	1.000	40.0	50000	1.0	0.20	2200	0.65	
		0.3137 0	0.0193	0.4160	1.008	1.249	35.8		-17.5	0.27	2600	090	
	9	1	0.0000	0.3330	1.000	0.799	42.2	48000	-15.4	6Z 0	2500	0	
		0.150000	0000	0.0000 0.1500	1.000	1.000	32.4	59000	-27.2	0. 29	2002	0.70	
	5	0.3300	0.1000	0.3500	0.932	0.814	38.9	30000	-1.8	1	<u>8</u>	0.61	
1 1 1 1		0.3119 0.	0.1000	0.4119	1.000	1.000	42.4	29000	10.6	8	2 0	0.63	
	1. [] [0.4954 0.	0.000	0.3836	1.161	0.774	45.9	45000	29.7	020	2300	0.67	
	1 1	ł	0.0000	0.3450	1.072	0.750	40.6	21000	27.5		7800 7800	0.54	
	ΙI		00100	0.4160	1.000	0.967	46.8	42000	28.6	022	2400	0.53	
	Į	0.4240 0.	0.000	0.4500	0.800	1.061	47.9	21000	20.4	0.22	88 88 7	0.57	
	000	1	0000	0.3810	1.212	1.165	45.2	50000	5.4	0.25	3000	0.62	
	ı		00000	0.4300	1.018	1.215	37.8	42000	10.3	0.29	2800	0.68	
1_	L		0.0000	0.3800	1.000	0.760	37.0	22000	15.4		008Z	0.57	
ļ	0.1750	0.3350 0.	0.0200	0.3300	1.250	0.930	34.1	25000	-15.6		248 8	0.58	
1_	1		0.0000	0.4695	1.000	1.144	34.3	24000	18.1		7 1 1 1 1 1 1 1	0.55 55	
ł	į	l	0.0000	0.4220	1.000	1.000	42.5	52000	20.4	0.28	2 <u>88</u>	0.63	
L	0.1166	0.4267	0.0001	0.3400	1.000	0.797	40.9	58000	0.0	0.24	220	0 73:	
0.60 0.1098	i	0.3902	0.0000	0.3902	1.000	1.000	39.4	54000	1,0	<u>22</u> 0	82	<u>0.53</u>	
0.01 0.0790	0000	0,4610 0	0.0100	0.3710	1.000	0.788	33.8	51000	14	1		0.64	
┖		0.4119 0	0.0000	0.4119	1.000	1.000	45.8		26.8	- 1	8	<u>S</u>	
		0,4376	0.000	0.3480	1.000	0.795	37.5	51000	2.9	0.27	882	8	
1_	ı	0.4100	0.0500	0.3632	1.000	0.790	41.5	30000	20.1	0.23	2100	0.63	,
		0.3270	0.0000	0.3270	1.035	1.000	38.7	52000			2600	0.69	2
L_	١.	0.1050	0.0000	0.1070	0.751	1.019		1 1			8	0.51	
0.60 0.3558	0.4440	0.1001	0.000	0.1001		l	- 1	- 1	1		2,00	0.87	
0.50 0.1500	0.1500	0.2500	0.1000	0.3500	8	8	43.8	31000	1	8	2200	0.52	

【表2】

蓝	试料 希土類元素	Catsrto Ln2Ox	103		A ₂ O ₃	Ş	BaO	TiO ₂			中均額			標準偏差の	ρ₩	
Š	の比略	比器								•	Er		12	2.5		4
		_ව	Sr		b	0	đ	•	b/a	e/(c+d)			ppm/C		7	DDM/C
6 7*	λ	0.10	0.00	0.0500	0.0600	0.4000	0.1000	0.3900	1.200	0.780	34.5	12000	34.5	-	5	-
6 €	La	0.20	0.80	0.4550	0.3440	0.1005	0.0001	0.1004	0.756	0.998	26.5	8000	6.04		-	ı
* 31	Sm	0.30	0.70	09900	0.0500	0.3850	0.1000	0.3990	0.758	0.823	28.5	0006	-35.8	_		1
*35	Dγ	0.50	0.50	0.3100	0.3100	00800	0.1000	0.2000	1.000	1.111	24.8	12000	-43.1		-	
*33	Ce	09'0	0.40	0.0570	0.0575	0.5050	0.0010	2618.0	1.009	0.750	29.0	2000	43.3	-	-	١
¥3	Eu	0.70	0.30	0.4000	0.4000	0.0800	00200	0060'0	1.000	0.818	26.4	8000	-39.4		-	1
* 35	Er	0.80	0.20	0.0675	0.0675	0.2850	0.1000	0.4800	1.000	1.247	33.5	0006	39.8	-	1	ł
96. *	0.5Nd-0.5La	06:0	0.10	0.1600	0.0900	0.3220	0.0500	0.3780	0.563	1.016	30.4	2000	5.5	=	-	1
*37	0.9Nd-0.1La	0.10	0.90	0.1500	0.2600	0.2930	0.0020	0.2950	1.733	1,000	29.4	3000	1.5		-	
* 38	0.5Nd-0.5La	0.20	080	0.2500	0.2400	0.1880	0.0020	0.3200	0.960	1.684	25.1	3000	-11.7	1	_	_
\$30	0.1Nd-0.9La	0.30	0.70	0.1600	0.1300	0.4200	0.0400	0.2500	0.813	0.543	28,6	2000	4.0	-	_	1
4	DN6.0.Y1.0	0.50	0.50	0.1240	0.1300	0.3730	0.0000	0.3730	1.048	1.000	34.8	48000	-28.1	1.21	3000	2.15
#41	La	0.80) . 20[C	. 2250	0.2250	0.2750	0. 80 0. 20 0. 2250 0. 2250 0. 2750 0. 0000 0. 2750	0.2750	1,000	1,000	40.0	50000	1.0	1,51	3200	2.61
#42	0.1La-0.9Nd	06.0	0.10	0.1250	0.1250	0.4170	0.0000	0.3330	1.000	0.799	42.2	48000	-15.4	1.30	3500	2.85
*43	0.5La-0.5Nd	0.300.70). 70[0	3500	0.3500	0.1500	0.3500 0.3500 0.1500 0.0000 0.1500	0.1500	1.000	1.000	32, 4	59000	-27.2	1.46	4000	2, 63
7	రి	0.50	0.50	0.1139	0.1061	0.3300	0.1000	0.3500	0.932	0.814	38.9	30000	-1.8	1.82	2100	2.19
*45	0.1Pr-0.9Nd	0.50	0.50	0.0941	0.1009	0.4600	00000	0.3450	1.072	0.750	40.6	21000	27.5	1.92	2000	2.44
*46	0.5Pr-0.5Nd	0.70	0.30	0.0770	0.0770	0.4200	0.0100	0.4160	1.000	0.967	46.8		28.6		2600	2.45
*47	0.15m-0.9Nd	0.60	0.40	0.1320	0.1600	0.3270	0.0000	0.3810	1.212	1.165	45.2	50000	-5.4	1.93	2400	2.26
*	0.55m-0.5Nd	0.50	0.50	0.1071	0.1090	0.3539	0.0000	0.4300	1.018	1.215	37.8	42000	10.3	1.25	2900	2.85
*49	0.1 Gd - 0.9Nd	0.80	0.20	0.0780	0,0780	0.4220	0.0000	0.4220	1.000	1.000	42.5	52000	20.4	1.44	3600	2.94
* 50	Dy	0.50	0.50	0.1166	0.1166	0.4267	0.0001	0.3400	1.000	0.797	6'0'	58000	0.0	1.64	2500	2.62
* 51	0.1 Dy - 0.9Nd	0.40	0.60	0.1098	0.1098	0.3902	0.0000	0.3902	1.000	1.000	39.4	54000	1.0	1.28	2900	2.79
*52	Ēr	0.50	0.50	0.0881	0,0881	0.4119	0.0000	0.4119	1.000	1.000	45.8	30000	26.8	1.95	1800	2.12
*5 3	0.1Er-0.9Nd	0.40	0.60	0.1072	0.1072	0.4376	0.0000	0.3480	1.000	0.795	37.5	51000	2.9	1.36	2600	2.53
	Уь		0.20	0.0884	0.0884				1.000	0.790	41.5				2100	2.14
# 22	0.1 Yb - 0.9 Nd	0.50	0.50	0.1700	0.1760	0.3270	00000	0.3270	1.035	1.000	38.7	22000	-3.6	1.43	3800	2.27

*を付けた試料者号は本発明の請求範囲外のものである。

[0065]

【表3】

		10						77 14 24			4246	-
科斌	Le ₂ 0	Al_2O_3	SrO	TiO ₂				平均值			標準偏	
NO	a	ь	c	0	b/a	6/c	εr	Qf	τf	8 r	Qf	τf
56	0.1623	0.1623	0.3377	0.3377	1.0000	1.0000	37	72000_	-12	0.28	2100	0.55
57	0.1307	0.1597	0.3548	0.3548	1.2219	1.0000	38	45000	5	0.26	2900	0.57
58	0.2105	0,1688	0.3460	0.2747	0.8019	0.7939	31_	51000	_28	0.24	2200	0.56
59	0.1382	0.1438	0.3769	0.3411	1.0405	0.9050	38	55000	2	0.28	2800	0.64
60	0.1707	0.2086	0.3460	0.2747	1.2220	0.7939	33	57000	-23	0.29	3000	0.61
61	0.1061	0.1061	0.3939	0.3939	1.0000	1.0000	45	46000	30	0.27	2500	0.60
62	0.1801	0.1444	0.3040	0.3715	0.8018	1.2220	38	54000	5	0.28	2700	0.59
63	0.1452	0.1452	0.3956	0.3140	1.0000	0.7937	34	40500	-8		2200	0.56
64	0.1163	0.1259	0.4092	0.3486	1.0825	0.8519	38	52100	21	0.29	2800	0.59
65	0.1211	0.1211	0.3789	0.3789	1.0000		3	55000	17	0.22	2600	0.57
66	0.1276	0.1383	0.3597	0.3744	1.0839		43	44000	11	0.30	2900	0.57
67	0.2162	0.1631	0.3041	0.3166	0.7543	1.0411	35	43600	-21	0.30	2800	0.60
68	0.1410	0.1410	0.3590	0.3590	1.0000	1.0000	39	66500	1	0.28	3000	0.53
69	0.1707	0.2086	0.3166	0.3041	1.2220	0.9605	32_	44000	-18	0.23	2200	0.51
70	0.1071	0.1050	0.3506	0.4373	0.9804	1.2473	46_	40800	29	0.30	2900	0.59
71	0.1125	0.1375	0.4125	0.3375	1.2222	0.8181	35	45000	18		2800	0.60
72	0.1515	0.1143	0.4185	0.3157	0.7545	0.7544	35	56000	3		2300	0.53
73	0.1329	0.1658	0.3121	0.3892	1.2476	1.2470		46800	1		2700	0.58
74	0.1897	0.1897	0.3103	0.3103	1.0000	1.0000	34	75000	-27	0.25	2400	0.53
75	0.1308	0.1114	0.3979	0.3599	0.8517	0.9045	39_	59800	11	0.21	2300	0.52
*76	0.1631	0.2162	0.2569	0.3538	1.3256	1.3256	36	23000	-21			
*77	0.1229	0.1843	0.3464	0.3464	1.4996	1.0000	37	11800	13			
*78	0.1453	0.0969	0.3789	0.3789	0.6669	1.0000	43	13500	18			
*79	0.1915	0.1878	0.3724	0.2483	0.9807	0.6668	26	52000	-31			
+80	0.0874	0.0891	0.3294	0.4941	1,0194		63	8200	53			
+81	0.1536	0.1536	0.2771	0.4157	1.0000			9600	15			
*82	0.1061	0.1061	0.3388	0.4490	1.0000	1.3250	49	12000	44			
*83	0.1623	0.1623	0.3377	0.3377	1.0000		37	63000	-11	1.52	3300	2.82
*84	0.1711	0.1711	0.3289	0.3289	1.0000			68000	-16		3500	2.27
*85	0.1606	0.1639	0.3394	0.3361	1.0205	0.9903	36	52700	-9		3100	2.14
*86	0.1342	0.1397	0.3667	0.3594	1.0410	0.9801	38	58300	2		3600	2.85
*87	0.1289		0.3711		1.0000	1.0000	44	64500	8	1.46	2600	2.85

*は本発明の範囲外の試料を示す。

【0066】また、上記の製造過程でX線回折測定の変 化を調べ、その一例として試料No.1、10について図 30 2~図6に示した。まず、仮焼によって作製した仮焼粉 末Aと、仮焼粉末BのX線回折チャートを図2、図3に 示した。図2から明らかなように、仮焼粉末Aは、La AlO。を主結晶相とする粉末であり、図3から明らか なように、仮焼粉末Bは、SrTiO。を主結晶相とす る粉末であることがわかる。

【0067】次に、上記の仮焼粉末Aと仮焼粉末Bを試 料No. 1、No. 10の組成で混合した混合粉末のX線回 折チャートを図4と図5にそれぞれ示した。そして、そ の混合粉末を用いて焼成した後の誘電体磁器のX線回折 40 チャートを図6、図7に示した。図6、図7の結果から 明らかなように、LaAlOsとSrTiOsの各ピー ク位置の中間に、両者の固溶体によるピークが検出さ れ、(La, Sr) (Al、Ti) O3 のペロブスカイ ト型結晶相による単一結晶相からなることがわかる。

【0068】表1~表3の結果から明らかなように、各 成分の組成比が本発明の範囲内のもの(No.1~28) は、比誘電率 εrが30以上、1GHzに換算した時の Q値が20000以上、τfが±30 (ppm/℃) 以

準偏差がそれぞれ0.3以内、3000以内、0.7p pm/℃以内の優れた誘電特性が得られた。

【0069】一方、本発明の組成範囲外の誘電体磁器組 成 (No. 29~39、76~82) は、εrが低いか又 はQ値が低いか、又はτfの絶対値が30を超えてい た。

【0070】また、同時混合したNo.40~55、83 ~87では、εr、Q値及びτfの平均値は上記本発明 品と同等であったが、εrの標準偏差σが1以上、τf の標準偏差σが2ppm/℃以上とばらつきが大きく、 一部の比較例ではQfの標準偏差σが3000を越える ものがあり、ばらつきが大きかった。

【0071】特に、本発明品の中でも、0.1061≦ $a \le 0$. 2162, 0. 1050 $\le b \le 0$. 2086, 0. $3040 \le c \le 0$. 4185, 0. $2747 \le e \le$ 0. 4373, 0. $75 \le b/a \le 1$. 25, 0. 75≦e/c≦1. 25の試料No.56~75は、1GHz に換算した時のQ f 値が4000以上の優れた誘電特 性が得られた。

【0072】(実施例2)実施例1の表1、表2に示す 磁器組成物の仮焼粉末を表4に示す重量比率で混合した

料の誘電特性の測定等を行い、実施例1と同様に実験を 30回行ない、誘電特性の標準偏差σを計算した。 【0073】 【表4】

試料.	混合組成	の試料No	および混合	头比			組成A+B+0	の標準	偏差σ
No.	A		В		С		εr	Q I	τf
	試料No.	混合比重量%	試料No.	混合比	試料No.	混合比 重量%		GHz	ppm/°C
88	1	20	2	30	3	50	0.11	400	0.12
89	4	40	5	40	6	20	0.19	600	0.18
90		10	8	30	9	60	0.20	400	0.13
91	10	5		95	_	_	0.16	300	0.13
92		20	13	80	-	=	0.13	1000	0.12
93				70	_		0.18	600	0.18
94						_	0.14	500	0.17
95			19	50	_		0.17	900	0.15
96				40		_	0.13	500	0.12
97						_	0.12	800	0.20
98							0.19	800	0.15
99					28	5	0.18	700	0.16

【0074】その結果、試料No. $88\sim99$ のいずれも比誘電率 ϵ r が 30以上、1 GH z に換算した時のQ値が 2000 以上が得られ、表 4 から明らかなように、 ϵ r、Q f 及び τ f の標準偏差 σ が、それぞれ 0. 2以内、1000以内、0. 2 p p m/ \circ 以内と、実施例 1 よりもさらにばらつきを小さくすることができた。

【0075】また、これによって得られた誘電体磁器の X線回折測定を行ったところ、いずれもペロブスカイト 型結晶相による単一結晶相からなるものであった。

[0076]

【発明の効果】以上詳述した通り、本発明によれば、金属元素として少なくとも希土類元素、A1、M(M:Sr単独、又はSr及びCa)、及びTiを特定の範囲で30含有するペロブスカイト型結晶相を主結晶相とすることにより、高周波領域において高い比誘電率をr及び高いQ値を得ることができ、かつをr、Q値、rfのばらつきを小さくできる。これにより、マイクロ波やミリ波領域において使用される共振器用材料やMIC用誘電体基板材料、誘電体導波路、誘電体アンテナ、その他の各種電子部品等に適用することができ、特に、誘電体共振器として用いた場合に無負荷Q及び共振周波数の安定性の向上することができ、信頼性を高めることができる。

【図面の簡単な説明】

【図1】本発明の誘電体共振器を示す概略図である。

【図2】本発明の実施例におけるLaAlO。仮焼粉末のX線回折チャートである。

【図3】本発明の実施例におけるSrTiO。仮焼粉末のX線回折チャートである。

【図4】本発明の実施例(試料No.1)におけるLaAlog1 O_3 仮焼粉末と $SrTiO_3$ 仮焼粉末との混合粉末の X線回折チャートである。

【図5】本発明の実施例(試料No.10)におけるLaAlO₃ 仮焼粉末とSrTiO₃ 仮焼粉末との混合粉末のX線回折チャートである。

0 【図 6】本発明の実施例(試料No. 1)における誘電体 磁器のX線回折チャートである。

【図7】本発明の実施例(試料No.10)における誘電体磁器のX線回折チャートである。

【符号の説明】

1:金属ケース

2:入力端子

3:出力端子

4:誘電体磁器

【図7】

