综合物理实验报告——综合光学实验

物理 4+4 胡喜平 U201811966 hxp@hust.edu.cn https://hxp.plus/

摘要:本次实验研究了光学里的法拉第磁光效应并测量了法拉第旋转角。测量了 LED 的电学性质,并研究了温度对 LED 电学性质的影响。

关键词: LED、法拉第磁光效应、法拉第旋转角

一、实验原理

【法拉第磁光效应】

线偏振光透过放置于磁场中的物质,且沿着磁场方向传播时,光的偏振方向会发生变化。其中变化的角度,即法拉第旋转角,和样品长度 l 的关系为

$$\Delta\varphi=BlV$$

其中 V 是与物质性质和光的频率有关的常数。其中测量法拉第旋转角的方法是不停旋转检偏镜,然后测量光强,绘制检偏镜角度和光强的角度。

图 1: 法拉第磁光效应

【LED 的物理特性】

LED 是一种半导体二极管,当 PN 结加入反向电压时,少数载流子难以注入,不发光而且电阻很大。当 PN 结加入正想电压时,电流从阳极流向阴级时,半导体内部注入的少数载流子和多数载流子复合时,会把多余的能量以光的形式释放出去,发出相应波长的光。

半导体的 V-I 特性和 P-I 特性应该是下图所示

二、实验内容

- 测量励磁线圈的电流 I 和励磁线圈产生的磁场 B 之间的关系。
- 测量法拉第磁光效应中磁致旋转角 $\Delta \varphi$ 和磁场强度 B 的关系。
- 测量 LED 的 I-V 特性和 I-P 特性。
- 测量 LED 的 I-V 特性和 I-P 特性的温度效应。

三、实验结果的分析和结论

【磁励电流与磁场强度的关系测量】

搭建好光路和相关实验仪器,通人正向和反向的不同电流,不放置晶体,用高斯计测量的到不同电流下的磁场强度数据如下,其中反向的电流用负数表示,磁场以 N 方向为正, S 方向为负。

励磁电流 (A)	0.00	0.30	0.60	0.90	1.20	1.50	1.80	2.00
磁场强度 (mT)	0.00	7.20	14.20	21.50	29.00	36.50	42.40	48.00
反向励磁电流 (A)	0.00	-0.30	-0.60	-0.90	-1.20	-1.50	-1.80	-2.00
磁场强度 (mT)	0.00	-7.50	-14.70	-21.60	-28.40	-35.10	-41.60	-44.80

表 1: 励磁电流和磁场强度关系

绘制了励磁电流和磁场强度数据如下

由此可以得出励磁电路的强度和磁场强度成正比的结论,因此在之后的实验中,可以用励磁电流的强度代表仪器中磁场的强度。

【测量磁致旋光角和磁场强度的关系】

不放入晶体,通入正向励磁电流时

检偏镜角度 (°)	0	10	20	30	40	50	60	70	80
光强 (10 ⁻⁷ A)	13.73	1.25	15.13	58.60	119.30	203.00	289.00	375.00	440.00
检偏镜角度 (°)	90	100	110	120	130	140	150	160	170
光强 (10 ⁻⁷ A)	484.00	498.00	483.00	441.00	374.00	286.00	203.00	118.00	54.10
检偏镜角度 (°)	180	190	200	210	220	230	240	250	260
光强 (10 ⁻⁷ A)	14.18	0.69	16.20	58.00	123.80	197.20	284.00	362.00	421.00
检偏镜角度 (°)	270	280	290	300	310	320	330	340	350
光强 (10 ⁻⁷ A)	461.00	472.00	454.00	414.00	349.00	271.00	186.50	110.60	53.30

表 2: 检偏器角度与光强关系,特定励磁电流 $I=2.00\mathrm{A}$

不放入晶体,通入反向励磁电流时

检偏镜角度 (°)	0	10	20	30	40	50	60	70	80
光强 (10 ⁻⁷ A)	15.53	1.44	17.20	58.10	121.50	199.50	290.00	372.00	440.00
检偏镜角度 (°)	90	100	110	120	130	140	150	160	170
光强 (10 ⁻⁷ A)	485.00	499.00	483.00	438.00	377.00	289.00	204.00	102.60	57.80
检偏镜角度(°)	180	190	200	210	220	230	240	250	260
光强 (10 ⁻⁷ A)	15.73	1.30	16.35	57.50	122.80	204.00	282.00	361.00	421.00
检偏镜角度 (°)	270	280	290	300	310	320	330	340	350
光强 (10 ⁻⁷ A)	463.00	474.00	458.00	418.00	352.00	275.00	184.80	114.20	54.10

表 3: 检偏器角度与光强关系,特定励磁电流 $I=-2.00\mathrm{A}$

可以看出,没有放入晶体的时候,使励磁电流反向,上面的两条绘制出来的曲线没有变化。因此没有放入晶体的时候,磁偏转角为零。

放入晶体, 通入正向励磁电流时

检偏镜角度 (°)	0	10	20	30	40	50	60	70	80
光强 (10 ⁻⁷ A)	44.00	18.35	4.82	7.37	25.70	58.10	101.20	150.70	196.40
检偏镜角度 (°)	90	100	110	120	130	140	150	160	170
光强 (10 ⁻⁷ A)	240.00	268.00	283.00	280.00	261.00	225.00	179.10	132.10	86.70
检偏镜角度(°)	180	190	200	210	220	230	240	250	260
光强 (10 ⁻⁷ A)	48.20	18.29	4.34	7.48	26.10	59.30	100.30	141.50	190.10
检偏镜角度 (°)	270	280	290	300	310	320	330	340	350
光强 (10 ⁻⁷ A)	229.00	255.00	267.00	263.00	247.00	214.00	174.20	128.60	86.50

表 4: 检偏器角度与光强关系,特定励磁电流 $I=2.00\mathrm{A}$

放入晶体,通入反向励磁电流时

检偏镜角度 (°)	0	10	20	30	40	50	60	70	80
光强 (10 ⁻⁷ A)	4.55	17.82	46.30	85.40	131.50	180.50	227.00	262.00	282.00
检偏镜角度 (°)	90	100	110	120	130	140	150	160	170
光强 (10 ⁻⁷ A)	285.00	272.00	242.00	201.00	150.10	100.90	60.70	26.20	7.25
检偏镜角度(°)	180	190	200	210	220	230	240	250	260
光强 (10 ⁻⁷ A)	4.24	15.33	45.10	85.30	130.60	176.60	218.00	250.00	267.00
检偏镜角度 (°)	270	280	290	300	310	320	330	340	350
光强 (10 ⁻⁷ A)	268.00	255.00	226.00	185.50	139.90	95.20	53.50	23.20	7.25

表 5: 检偏器角度与光强关系,特定励磁电流 $I=-2.00\mathrm{A}$

可以看出,放入晶体后,改变励磁电流方向,磁场反向,最终出射的偏振光角度差异为 30 度 (通入反向电流时消光角度是 170 度,通入正向电流时消光角度是 200 度)。因此放励磁电流为 2.00A 时,磁偏转角是 15 度。

不同励磁电流下消光角度的测量

测的的实验数据如下,其中法拉第旋转角的计算方法是:将电流和其反向电流的角度相减之后处以2

正向电流 (A)	0.00	0.30	0.60	0.90	1.20	1.50	1.80	2.00
检偏器角度 (°)	8.00	12.00	13.00	16.00	17.00	19.00	21.00	23.00
反向电流 (A)	0.00	-0.30	-0.60	-0.90	-1.20	-1.50	-1.80	-2.00
检偏器角度 (°)	8.00	5.00	3.00	2.00	0.00	-1.00	-4.00	-5.00
法拉第偏转角(°)	0.00	3.50	5.00	7.00	8.50	10.00	12.50	14.00

表 6: 检偏器角度与励磁电流关系

检偏计角度和励磁电流关系图像如下

可以看出,增加励磁电流,磁场增加,法拉第旋转角线性增加。

【常温下不同颜色 LED 伏安特性的测量】

红色 LED 测得的数据如下

$I/(\mathrm{mA})$	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00
U/(V)	1.40	1.60	1.70	1.70	1.70	1.80	1.80	1.80
$P/(\mathrm{mW})$	0.00	1.23	2.48	3.65	4.75	5.73	6.64	7.49

表 7: LED, 温度 $T=25.00^{\circ}C$, 红色

紫色 LED 测得的数据如下

$I/(\mathrm{mA})$	0.00	10.00	20.00	30.00	40.00	50.00	60.00	70.00
U/(V)	2.70	3.10	3.10	3.20	3.30	3.30	3.40	3.40
$P/(\mathrm{mW})$	0.00	2.89	5.52	7.54	9.13	10.22	10.30	11.03

表 8: LED, 温度 T=25.00°C, 紫色

黄色 LED 测得的数据如下

$I/(\mathrm{mA})$	0.00	10.00	20.00	30.00	40.00	50.00	60.00	70.00
U/(V)	1.60	1.90	2.00	2.00	2.00	2.00	2.00	2.00
$P/(\mathrm{mW})$	0.00	1.24	2.31	3.05	3.48	3.61	3.40	3.33

表 9: LED, 温度 T=25.00°C, 黄色

绿色 LED 测得的数据如下

$I/(\mathrm{mA})$	0.00	10.00	20.00	30.00	40.00	50.00	60.00	70.00
U/(V)	2.10	2.70	2.90	3.00	3.10	3.20	3.30	3.50
$P/(\mathrm{mW})$	0.00	6.54	9.79	12.12	13.81	14.71	15.86	17.52

表 10: LED, 温度 T = 25.00°C, 绿色

【不同温度下红色 LED 伏安特性的测量】

25 摄氏度时测得的数据如下

I	I/(mA)	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00
	U/(V)	1.40	1.60	1.70	1.70	1.70	1.80	1.80	1.80
P	P/(mW)	0.00	1.23	2.48	3.65	4.75	5.73	6.64	7.49

表 11: LED, 温度 T = 25.00°C, 红色

$I/(\mathrm{mA})$	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00
U/(V)	1.40	1.60	1.70	1.70	1.70	1.70	1.80	1.80
$P/(\mathrm{mW})$	0.00	1.89	3.88	5.67	7.48	8.92	10.29	11.47

表 12: LED, 温度 T = 35.00°C, 红色

$I/(\mathrm{mA})$	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00
U/(V)	1.40	1.60	1.70	1.70	1.70	1.70	1.80	1.80
$P/(\mathrm{mW})$	0.00	1.82	3.65	5.45	7.04	8.45	9.77	10.91

表 13: LED, 温度 T = 45.00°C, 红色

	$I/(\mathrm{mA})$	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00
	U/(V)	1.40	1.60	1.70	1.70	1.70	1.70	1.80	1.80
Ī	$P/(\mathrm{mW})$	0.00	1.72	3.44	5.10	6.55	8.01	9.23	10.34

表 14: LED, 温度 T = 55.00°C, 红色

$I/(\mathrm{mA})$	0.00	5.00	10.00	15.00	20.00	25.00	30.00	35.00
U/(V)	1.40	1.60	1.60	1.70	1.70	1.70	1.70	1.80
$P/(\mathrm{mW})$	0.00	1.56	3.20	4.71	6.17	7.49	8.65	9.67

表 15: LED, 温度 T = 65.00°C, 红色

可以看出,升高温度使得 I-V 曲线上移, I-P 曲线向右移动。

四、参考文献

综合物理实验讲义