

Support Vector Machine (SVM) Machine Learning and Pattern Recognition

Prof. Sandra Avila

Institute of Computing (IC/Unicamp)

SVMs are among the best "off-the-shelf" supervised learning algorithm.

Andrew Ng

"An Introduction to Support Vector Machines: And Other

Kernel-based Learning Methods", Cristianini & Shawe-Taylor, 2000.

Shawe-Taylor & Cristianini, 2004.

"Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond", Scholkopf & Smola, 2001.

Traditional Recognition

Traditional Recognition

Deep Learning

Deep Learning

Deep Learning

Transfer Learning

Transfer Learning

Transfer Learning

What is Support Vector Machine?

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

Idea of separating data with a large "gap".

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

Idea of separating data with a large "gap".

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

Examples closest to the hyperplane are support vectors.

[Vapnik and Chervonenkis, 1964; Vapnik, 1982; Vapnik, 1995]

Margin ρ of the separator is the distance between support vectors.

How does SVM work?

SVM: Notation

We will be considering a linear classifier for a binary classification problem with labels y and features x.

SVM: Notation

We will be considering a linear classifier for a binary classification problem with labels y and features x.

- Class labels: $y \in \{-1,1\}$ (instead of $\{0,1\}$)
- Parameters: w, b (instead of vector θ)

SVM: Notation

We will be considering a linear classifier for a binary classification problem with labels y and features x.

- Class labels: $y \in \{-1,1\}$ (instead of $\{0,1\}$)
- Parameters: w, b (instead of vector θ)
- Classifier: $h_{w,b}(x) = g(w^Tx + b)$
 - \circ g(z) = 1 if $z \ge 0$, and g(z) = -1 otherwise

Given a training example $(x^{(i)}, y^{(i)})$, we define the margin of (w, b) with respect to the training example:

$$y^{(i)}(w^Tx + b) \ge 1, i = \{1, ..., m\}.$$

Let $P(x^{(1)}, y^{(1)})$ be a point and l be a line defined by ax + by + c = 0. The distance d from P to l is defined by:

$$d(l,P) = |ax^{(1)} + by^{(1)} + c|$$

$$\sqrt{a^2 + b^2}$$

Let $P(x^{(1)}, y^{(1)})$ be a point and l be a line defined by ax + by + c = 0. The distance d from P to l is defined by:

$$d(l,P) = |ax^{(1)} + by^{(1)} + c|$$

$$\sqrt{a^2 + b^2}$$

$$d(w,b,x) = |w^Tx + b|$$

$$||w||$$

$$d(w,b,x) = \frac{|w^Tx + b|}{||w||}$$

$$\min_{w,b} \frac{1}{2} ||w||^2$$

s.t. $y^{(i)}(w^T x + b) \ge 1, i = \{1, ..., m\}$

$$d(w,b,x) = \frac{|w^Tx + b|}{||w||}$$

http://cs229.stanford.edu/notes/cs229-notes3.pdf

$$\min_{w,b} \sqrt[1/2]{|w||^2}$$

s.t. $y^{(i)}(w^Tx + b) \ge 1, i = \{1, ..., m\}$

Need to optimize a quadratic function subject to linear constraints.

Soft Margin Classification

What if the training set is not linearly separable?

Soft Margin Classification

Slack variables ξ_i can be added to allow misclassification of difficult or noisy examples, resulting margin called **soft**.

Soft Margin Classification

Modified formulation incorporates slack variables:

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C\Sigma \xi_i$$

s.t. $y_i(w^T x + b) \ge 1 - \xi_i, \, \xi_i \ge 0, \, i = \{1, ..., m\}$

Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Kernel Trick

Suppose you want to apply a 2nd degree polynomial transformation to a 2-dimensional training set, then train a linear SVM classifier on the transformed training set.

$$\varphi(x) = \varphi((x_1 x_2)) = (x_1^2 \sqrt{2x_1 x_2} x_2^2)$$

Suppose you want to apply a 2nd degree polynomial transformation to a 2-dimensional training set, then train a linear SVM classifier on the transformed training set.

$$\varphi(x) = \varphi((x_1 x_2)) = (x_1^2 \sqrt{2x_1 x_2} x_2^2)$$

The transformed vector is 3-dimensional instead of 2-dimensional.

Let's look at what happens to a couple 2-dimensional vectors \mathbf{a} and \mathbf{b} if we apply this 2^{nd} degree polynomial mapping then compute the dot product of the transformed vectors.

$$\varphi(\mathbf{a})^{\mathrm{T}}\varphi(\mathbf{b}) =$$

Let's look at what happens to a couple 2-dimensional vectors \mathbf{a} and \mathbf{b} if we apply this 2^{nd} degree polynomial mapping then compute the dot product of the transformed vectors.

$$\varphi(\mathbf{a})^{\mathrm{T}}\varphi(\mathbf{b}) = (a_1^2 \sqrt{2a_1a_2} a_2^2)^{\mathrm{T}}(b_1^2 \sqrt{2b_1b_2} b_2^2) =$$

Let's look at what happens to a couple 2-dimensional vectors \mathbf{a} and \mathbf{b} if we apply this 2^{nd} degree polynomial mapping then compute the dot product of the transformed vectors.

$$\begin{split} \phi(\mathbf{a})^{\mathrm{T}}\phi(\mathbf{b}) &= (a_{1}^{\ 2} \ \sqrt{2a_{1}a_{2}} \ a_{2}^{\ 2})^{\mathrm{T}}(b_{1}^{\ 2} \ \sqrt{2b_{1}b_{2}} \ b_{2}^{\ 2}) = \\ &= a_{1}^{\ 2}b_{1}^{\ 2} + 2a_{1}a_{2}b_{1}b_{2} + a_{2}^{\ 2}b_{2}^{\ 2} = \\ &= (a_{1}b_{1} + a_{2}b_{2})^{2} = \\ &= ((a_{1}\ a_{2})^{\mathrm{T}}(b_{1}\ b_{2}))^{2} = \\ &= (\mathbf{a}^{\mathrm{T}} \cdot \mathbf{b})^{2} \end{split}$$

The dot product of the transformed vectors is equal to the square of the dot product of the original vectors: $\varphi(\mathbf{a})^T \varphi(\mathbf{b}) = (\mathbf{a}^T \cdot \mathbf{b})^2$

The dot product of the transformed vectors is equal to the square of the dot product of the original vectors: $\varphi(\mathbf{a})^T \varphi(\mathbf{b}) = (\mathbf{a}^T \cdot \mathbf{b})^2$

So you don't actually need to transform the training instances at all: just replace the dot product by its square.

This is the essence of the kernel trick.

In Machine Learning, a **kernel** is a function capable of computing the dot product $\varphi(\mathbf{a})^T \varphi(\mathbf{b})$ based only on the original vectors **a** and **b**, without having to compute (or even to know about) the transformation φ .

• Linear SVM: $x_i \cdot x_j$

- Linear SVM: $x_i \cdot x_j$
- Nonlinear SVM: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, feature mapping ϕ

- Linear SVM: $x_i \cdot x_j$
- Nonlinear SVM: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, feature mapping ϕ
- Kernel matrix $K_{ij} = K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) = \phi(x_j) \cdot \phi(x_i) = K_{ji}$

- Linear SVM: $x_i \cdot x_j$
- Nonlinear SVM: $K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$, feature mapping ϕ
- Kernel matrix $K_{ij} = K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) = \phi(x_j) \cdot \phi(x_i) = K_{ji}$
- Radial Basis Function (RBF) kernel: $\exp(-\lambda ||x_i x_j||^2)$
- Gaussian kernel: $K(x_i, x_j) = \exp(-||x_i x_j||^2/(2\sigma^2))$
- Polynomial kernel: $K(x_i, x_j) = (x_i \cdot x_j + 1)^d$, d degree
- Chi-square kernel, histogram intersection kernel, string kernel,

SVM is also available in scikit-learn library and follow the same structure: import library, object creation, fitting model and prediction.

```
#Import Library
from sklearn import svm
#Assumed you have, X (predictor) and Y (target) for training data set and x test(predictor)
of test dataset
# Create SVM classification object
model = svm.svc(kernel='linear', c=1, gamma=1)
# there is various option associated with it, like changing kernel, gamma and C value. Will
discuss more # about it in next section. Train the model using the training sets and check s
core
model.fit(X, v)
model.score(X, y)
#Predict Output
predicted= model.predict(x test)
```

```
#Import Library
from sklearn import svm
#Assumed you have, X (predictor) and Y (target) for training data set and x test(predictor)
of test dataset
# Create SVM classification object
                                                 object creation
model = svm.svc(kernel='linear', c=1, gamma=1)
# there is various option associated with it, like changing kernel, gamma and C value. Will
discuss more # about it in next section. Train the model using the training sets and check s
core
model.fit(X, y)
model.score(X, y)
#Predict Output
predicted= model.predict(x test)
```

```
#Import Library
from sklearn import svm
#Assumed you have, X (predictor) and Y (target) for training data set and x test(predictor)
of test dataset
# Create SVM classification object
model = svm.svc(kernel='linear', c=1, gamma=1)
# there is various option associated with it, like changing kernel, gamma and C value. Will
discuss more # about it in next section. Train the model using the training sets and check s
core
                                                fitting model
model.fit(X, y)
model.score(X, y)
#Predict Output
predicted= model.predict(x test)
```

```
#Import Library
from sklearn import svm
#Assumed you have, X (predictor) and Y (target) for training data set and x test(predictor)
of test dataset
# Create SVM classification object
model = svm.svc(kernel='linear', c=1, gamma=1)
# there is various option associated with it, like changing kernel, gamma and C value. Will
discuss more # about it in next section. Train the model using the training sets and check s
core
model.fit(X, y)
model.score(X, y)
#Predict Output
                                                 prediction
predicted= model.predict(x test)
```

Important Parameters

Important parameters having higher impact on model performance, "kernel", "gamma" and "C".

Important Parameters

Important parameters having higher impact on model performance, "kernel", "gamma" and "C".

C: Penalty parameter C of the error term. It also controls the trade off between smooth decision boundary and classifying the training points correctly.

Important Parameters

Important parameters having higher impact on model performance, "kernel", "gamma" and "C".

C: Penalty parameter C of the error term. It also controls the trade off between smooth decision boundary and classifying the training points correctly.

The parameters can be tuned using grid-search.

Grid Search

Libraries

- Scikit-learn: https://scikit-learn.org/stable/modules/svm.html
- LIBSVM: https://www.csie.ntu.edu.tw/~cjlin/libsvm
- LIBLINEAR: https://www.csie.ntu.edu.tw/~cjlin/liblinear
- PmSVM: https://sites.google.com/site/wujx2001/home/power-mean-svm

References

Machine Learning Books

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Chap. 5
- Pattern Recognition and Machine Learning, Chap. 6 & 7

Machine Learning Courses

- https://www.coursera.org/learn/machine-learning, Week 7
- http://cs229.stanford.edu/syllabus.html,
 - http://cs229.stanford.edu/notes/cs229-notes3.pdf