### Lecture 25 - Precision and Recall



DSC 40A, Spring 2023

#### **Announcements**

- Homework 7 was due last night, but can still be turned in if you have a slip day remaining. This is the last homework!
- Midterm 2 is Monday during lecture.
- Final Exam is **Saturday, June 10**. Given in two separate parts, both of which are optional.
  - ▶ Part 1 is 9-9:50am. Can replace Midterm 1.
  - ▶ Part 2 is 10-10:50am. Can replace Midterm 2.
- Next week is review only. No new content.

# Midterm 2 is Monday during lecture

- You may use an unlimited number of handwritten note sheets for Midterm 2 (and Final Part 2). Start working on this now as you study!
- No calculators.
- Leave all answers unsimplified in terms of permutations, combinations, factorials, exponents, etc.
- Assigned seats will be posted on Campuswire.
- We will not answer questions during the exam. State your assumptions if anything is unclear.

# Midterm 2 is Monday during lecture

► The exam will definitely include short-answer questions such as multiple choice or filling in the numerical answer to a probability or combinatorics question. Short-answer questions will be graded on correctness only, so you don't need to show your work or provide explanation for these questions.



- The exam may also include long-answer homework-style questions, which would require explanation and be graded with partial credit.
- Midterm 2 covers all material that was not covered on Midterm 1. Clustering is in scope, but the vast majority will be probability and combinatorics. This week's lectures are also in scope.

# **Agenda**

- Recap: Text classification with Naive Bayes
- Measuring quality of classification

# **Text classification**

# Recap: Naive Bayes for spam classification

► To classify an email, we'll use Bayes' theorem to calculate the probability of it belonging to each class:

$$P(\text{spam } | \text{ features}) = \frac{P(\text{spam}) \cdot P(\text{features } | \text{ spam})}{P(\text{features})}$$

$$P(\text{ham } | \text{ features}) = \frac{P(\text{ham}) \cdot P(\text{features } | \text{ ham})}{P(\text{features})}$$

- We'll find the larger probability by comparing numerators, and predict that class.
- To compute the numerator, we make the naive assumption that the features are conditionally independent given the class.

# **Concrete example**

- Dictionary: "prince", "money", "free", and "just".
- Dataset of 5 emails (red are spam, green are ham):
  - "I am the prince of UCSD and I demand money."
  - "Tapioca Express: redeem your free Thai Iced Tea!"
  - ► "DSC 10: free points if you fill out CAPEs!"
  - "Click here to make a tax-free donation to the IRS."
  - "Free career night at Prince Street Community Center."



# **Concrete example**

What happens if we try to classify the email 'ust what's

P(spam), P(x1)=1 | span). P(x(2) Olspam). P(x(3) Olspam). P(x(1)) / span)

your price, prince'?

# **Smoothing**

+ 1 to p, +2 to bottom

Without smoothing:

$$P(x^{(i)} = 1 \mid \text{spam}) \approx \frac{\text{\# spam containing word } i}{\text{\# spam containing word } i + \text{\# spam not containing word } i}$$

With smoothing:

$$P(x^{(i)} = 1 \mid \text{spam}) \approx \frac{(\# \text{spam containing word } i) + 1}{(\# \text{spam containing word } i) + 1 + (\# \text{spam not containing word } i) + 1}$$

When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability. Concrete example with smoothing What happens if we try to classify the email 'jusy what's your price prince?? P(x(2) Olspam) -P(x(3) = Olspam) -P(x(n) 1/spm) P(x(1) 1/ham). P(x(2) = 0 | ham). P(x(3) = 0/ham). P(x(4) = 1/ham)

#### **Modifications and extensions**

- ► Idea: Use pairs (or longer sequences) of words rather than individual words as features.
  - This better captures the dependencies between words.
  - It also leads to a much larger space of features, increasing the complexity of the algorithm.

#### **Modifications and extensions**

- ► Idea: Use pairs (or longer sequences) of words rather than individual words as features.
  - This better captures the dependencies between words.
  - It also leads to a much larger space of features, increasing the complexity of the algorithm.
- Idea: Instead of recording whether each word appears, record how many times each word appears.
  - This better captures the importance of repeated words.

# Measuring quality of classification

# Taxonomy of machine learning



# **Classification problems**

- In the classification problem, we make predictions based on data (called **training data**) for which we know the value of the **categorical** response variable.
- Example classification problems:
  - Deciding whether a patient has kidney disease.
  - Identifying handwritten digits.
  - Determining whether an avocado is ripe.
    - Predicting whether credit card activity is fraudulent.

# Assessing the quality of a classifier

- Naive Bayes is one classification algorithm, or classifier, but there are many others.
- Is Naive Bayes any good? How do we measure how good of a job a classifier does?

Close vs.

**Discussion Question** 

Think back to regression (supervised learning with a quantitative response variable). How did we measure the quality of our predictions? Can we adopt a similar strategy?

no close : just right/wrong

# Unseen data on training data

- A natural way to measure the quality of our classifications is to see how often we predict the right category.
- We want to make good predictions on **unseen data**. So we'll measure how often we classify examples correctly for a new set of **test data**.
- ► This avoids **overfitting**.

Class B



<sup>&</sup>lt;sup>2</sup>Park, Hochong Son, Joo-Hiuk. (2021). Machine Learning Techniques for THz Imaging and Time-Domain Spectroscopy. Sensors. 21. 1186. 10.3390/s21041186.

#### **Accuracy**

- ► Classification accuracy is the proportion of examples in the test set that are correctly classified.
- Accuracy is measured on a 0 to 1 scale.

#### **Accuracy**

- We can think of accuracy as an estimate for the probability of making a correct classification on an unseen example.
- Parameter:

P(successful classification)

Estimate:

#### **Imbalanced classes**

Alagille syndrome is a rare genetic condition that affects 1 in 40,000 people. We want to classify people as having this condition (unhealthy) or not having this condition (healthy).

#### **Discussion Question**

Consider a classifier that classifies everyone as **healthy**.

- 1. What is the accuracy of this classifier? 39,999
  - . What are the ethical repercussions of using this
- 2. What are the ethical repercussions of using this classifier?

# High accuracy is not enough

- ► We want to avoid <u>overdiagnosis</u> (telling someone they have the condition when they don't).
- ► We also want to avoid underdiagnosis (telling someone they're healthy when they're not).
- It's easy to avoid either one of these. It's hard to avoid both of these simultaneously, yet a good classifier should do exactly that.

# **Different types of errors**



# **Avoid overdiagnosis**

|                              | Actually unhealthy | Actually <b>healthy</b> |
|------------------------------|--------------------|-------------------------|
| Classified as unhealthy      | True positive      | False positive 🔘        |
| Classified as <b>healthy</b> | ralse negative     | True negative           |

How often does our prediction of the condition mean a person actually has the condition?

Parameter:

P(actually unhealthy|classified as unhealthy)

Estimate:

precision = # people in test set correctly classified as unhealthy

# people in test set classified as unhealthy



A and B

# **Avoid underdiagnosis**



- How often do we identify those that actually have the condition?
- Parameter:

P(classified as unhealthy|actually unhealthy) — Went

Estimate:

recall = # people in test set correctly classified as unhealthy
# unhealthy people in test set

#### Precision vs. recall

|                              | Actually unhealthy | Actually <b>healthy</b> |
|------------------------------|--------------------|-------------------------|
| Classified as unhealthy      | True positive      | False positive          |
| Classified as <b>healthy</b> | False negative     | True negative           |

Precision:

► Recall:



goal. both high

#### Precision vs. recall

|                              | Actually unhealthy  | Actually <b>healthy</b> |
|------------------------------|---------------------|-------------------------|
| Classified as unhealthy      | True positive ()    | False positive 🔾        |
| Classified as <b>healthy</b> | False negative four | True negative man       |
|                              |                     |                         |

#### **Discussion Question**

Consider a classifier that classifies everyone as **healthy**.

- 1. What is the precision of this classifier? undefined,
- 2. What is the recall of this classifier?



#### Precision vs. recall

|                              | Actually unhealthy | Actually <b>healthy</b> |
|------------------------------|--------------------|-------------------------|
| Classified as unhealthy      | True positive 🕬    | False positive ma       |
| Classified as <b>healthy</b> | False negative 👝   | True negative 💍         |

#### **Discussion Question**

Now consider a classifier that classifies everyone as **unhealthy**.

- 1. What is the precision of this classifier? c > c
- 2. What is the recall of this classifier?

# Combining precision and recall

- We want high precision and high recall, but it's hard to have both.
- Let's combine them into a single measurement.
- Does the average of precision and recall work well?

pare:  
Classifier A (P = 0, R = 1) 
$$\rightarrow P+R = 0$$

Stopid Compare:  
Classifier A 
$$(P = 0, R = 1)$$
  $\rightarrow P+R - O+1 = 0.5$   
Stopid Compare:  
Classifier B  $(P = 0.5, R = 0.6)$   $\rightarrow 0.5+0.6 = 0.59$ 

# **Combining precision and recall**

- ► **Key insight:** Two moderate values are better than two extremes. Use the product, which shrinks when either term in the product is small.
- ► New way of combining precision and recall: F-score

$$\frac{2PR}{P+R}$$

- Compare:
- Classifier A (P = 0, R = 1)  $\rightarrow 2 \cdot 0 \cdot 1 = 0$

The F-score combines the precision and recall of a classifier in a single measurement.

2PR - 2 1 - 1

Discussion Question

What would be the F-score of a "perfect classifier"?

Higher F-score ⇒ better classifier.

# **Summary**

# **Summary**

- Accuracy is a simple way of measuring the quality of a classifier, but it can be misleading when classes are imbalanced.
- Precision and recall are two other ways of measuring the quality of a classifier, but they can be hard to achieve simultaneously.
- The F-score combines precision and recall into a single measurement that assesses the quality of a classifier on a 0 to 1 scale.

$$\frac{2PR}{P+R}$$