コンピュータグラフィクス論

- 画像処理(1) -

2017年6月8日 高山 健志

本日のトピック

• Edge-aware な画像処理

• Gradient-domain の画像処理

Gaussian Filter による画像平滑化

• 「滑らかさ」パラメタ σ

元画像

 $\sigma = 2$

 $\sigma = 5$

 $\sigma = 10$

Gaussian Filter の数式

- 画像 I のピクセル位置 $\mathbf{p}=(p_{\mathrm{x}},p_{\mathrm{y}})\in\Omega$ における画素値を $I_{\mathbf{p}}$ で表す
 - 解像度640×480の場合、 $\Omega \coloneqq \{1, \dots, 640\} \times \{1, \dots, 480\}$
- パラメタ σ による Gaussian Filter 適用後の画像を $\mathrm{GF}_{\sigma}[I]$ で表す

$$GF_{\sigma}[I]_{\mathbf{p}} := \frac{\sum_{\mathbf{q} \in \Omega} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}}{\sum_{\mathbf{q} \in \Omega} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|)}$$

$$W_{\mathbf{p}}$$

• $G_{\sigma}(x) \coloneqq \exp\left(-\frac{x^2}{2\sigma^2}\right) \leftarrow \# \ \, \exists \ \, \sigma \ \, \mathcal{O}$ Gaussian Kernel

$$-3\sigma$$
 -2σ $-\sigma$ 0 σ 2σ 3σ

 $G_{\sigma}(x)$

Gaussian Filter の数式

- 画像 I のピクセル位置 $\mathbf{p}=(p_{\mathrm{x}},p_{\mathrm{y}})\in\Omega$ における画素値を $I_{\mathbf{p}}$ で表す
 - 解像度 640×480 の場合、 $\Omega \coloneqq \{1, \dots, 640\} \times \{1, \dots, 480\}$
- パラメタ σ による Gaussian Filter 適用後の画像を $\mathrm{GF}_{\sigma}[I]$ で表す

$$GF_{\sigma}[I]_{\mathbf{p}} \coloneqq \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \Omega} G_{\sigma}(\|\mathbf{p} - \mathbf{q}\|) I_{\mathbf{q}}$$

• $G_{\sigma}(x) \coloneqq \exp\left(-\frac{x^2}{2\sigma^2}\right) \leftarrow \# \ \, \exists \ \, \sigma \ \, \mathcal{O}$ Gaussian Kernel

Gaussian Filter の実装

• $G_{\sigma}(3\sigma) \approx 0 \rightarrow 遠くのピクセルは無視できる$

• $r := ceil(3\sigma)$ として $(2r + 1) \times (2r + 1)$ のステンシル上で重みを前計算

ステンシル

Kernel 半径 σ が非常に大きい場合

- そのまま計算すると時間がかかる
- 代替法:downsample → 小さい σ で平滑化 → upsample

Detail Extraction & Enhancement

Edge-aware な画像平滑化を使うと・・・

Bilateral Filter による edge-aware な平滑化

- 二つのパラメタ
 - σ_{s} :ピクセルの 位置 に関する平滑化の範囲
 - σ_r :ピクセルの $\dot{\Theta}$ に関する平滑化の範囲

$$BF_{\sigma_{S}, \sigma_{\Gamma}}[I]_{\mathbf{p}} \coloneqq \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \Omega} G_{\sigma_{S}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{\Gamma}}(\|I_{\mathbf{p}} - I_{\mathbf{q}}\|) I_{\mathbf{q}}$$

すべて $\sigma_{\rm S} = 10$

元画像

 $\sigma_{\rm r}=32$

 $\sigma_{\rm r} = 128$

 $\sigma_{\rm r} = 512_{10}$

Bilateral Filter の応用:Stylization

(平滑化した上に輪郭線を描く)

Bilateral Filter の応用: Tone Mapping

- 24bitカラー画像の各成分の範囲:1~255
- 現実世界の光の強さの範囲: 1~105
 - **H**igh **D**ynamic **R**ange 画像
 - 露光時間を変えて撮影することで計測可能

Tone mapping処理結果

オリジナルの撮影データ (Tone mapping無し)

Bilateral Filter の応用:Tone Mapping

detail を保つ

Bilateral Filter のナイーブな実装

$$\sum_{\mathbf{q}\in\Omega}G_{\sigma_{\mathbf{s}}}(\|\mathbf{p}-\mathbf{q}\|)G_{\sigma_{\mathbf{r}}}(\|I_{\mathbf{p}}-I_{\mathbf{q}}\|)I_{\mathbf{q}}$$

ピクセル位置 p ∈ Ω ごとに ステンシルの再計算が必要→ 遅い

• (基本課題)

Bilateral Filter に対するもう一つの見方

• ピクセル位置 \mathbf{p} と画素値 $I_{\mathbf{p}}$ から特徴ベクトル $\mathbf{f}_{\mathbf{p}}\coloneqq\left(\frac{\mathbf{p}}{\sigma_{\mathbf{s}}},\frac{I_{\mathbf{p}}}{\sigma_{\mathbf{r}}}\right)$ を定義

• Bilateral Filter の重みは、特徴ベクトル 同士の Euclid 距離を Gaussian Kernel に代入したものに等しい

$$G_{\sigma_{S}}(\|\mathbf{p} - \mathbf{q}\|)G_{\sigma_{r}}(\|I_{\mathbf{p}} - I_{\mathbf{q}}\|)$$

$$= \exp\left(-\frac{\|\mathbf{p} - \mathbf{q}\|^{2}}{2\sigma_{S}^{2}}\right) \exp\left(-\frac{\|I_{\mathbf{p}} - I_{\mathbf{q}}\|^{2}}{2\sigma_{r}^{2}}\right)$$

$$= \exp\left(-\frac{\|\mathbf{f}_{\mathbf{p}} - \mathbf{f}_{\mathbf{q}}\|^{2}}{2}\right)$$

$$= G_{1}(\|\mathbf{f}_{\mathbf{p}} - \mathbf{f}_{\mathbf{q}}\|)$$

- Bilateral Filter は、特徴空間におけるサンプル集合 $\{f_p\}$ に対して 半径 1 の Gaussian Filter をかけるのと同義
 - → 計算が単純化

Bilateral Grid [Paris06; Chen07]

 3D 特徴ベクトルを (X座標, Y座標, 輝度) として定義し、 サンプル集合 {f_p} を 3D 配列上にマッピング

• $\sigma_{\rm s}$ と $\sigma_{\rm r}$ が大きいほど、配列の解像度を低くできる \rightarrow 計算コスト低減

特徴空間を介した重みマップの生成

白い scribble → 重み=1 の制約 黒い scribble → 重み=0 の制約

=7.7.*

重みマップ

利用例:色味の変更

- 様々な呼ばれ方:Edit Propagation, Matting, Segmentation
- Bilateral Grid 上で Laplace 方程式を解く

特徴空間を介した重みマップの生成

RBF で補間 [Li10] (目的:画像と動画の編集)

Hermite RBF で補間 [Ijiri13] (目的:CT volume の領域分割)

https://www.youtube.com/watch?v=mL6ig_OaQAA

Bilateral Filter の拡張:Joint (Cross) Bilateral Filter

フラッシュ無し写真 A

- ◎色味は良い
- ⊗ ノイズが大きい、ボケ気味

フラッシュ有り写真 F

- ⊗ 色味は悪い
- ◎ ノイズが小さい、クッキリ

考え方:

色味に関する情報はAから取ってきて、 構造に関する情報はFから取ってくる

$$JBF_{\sigma_{S}, \sigma_{r}}(A, F)_{\mathbf{p}} \coloneqq \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \Omega} G_{\sigma_{S}}(\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}}(\|F_{\mathbf{p}} - F_{\mathbf{q}}\|) A_{\mathbf{q}}$$

Digital Photography with Flash and No-Flash Image Pairs [Petschnigg SIGGRAPH04] Flash Photography Enhancement via Intrinsic Relighting [Eisemann SIGGRAPH04]

Bilateral Filter の拡張:Non-Local Means Filter

• ピクセル \mathbf{p} を中心とする 7×7 領域の画素値から成る 近傍ベクトル $\mathbf{n}_{\mathbf{p}}$ によって、特徴空間を定義

$$NLMF_{\sigma}(I)_{\mathbf{p}} \coloneqq \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in \Omega} G_{\sigma}(\|\mathbf{n}_{\mathbf{p}} - \mathbf{n}_{\mathbf{q}}\|) I_{\mathbf{q}}$$

Noisy input

Bilateral

NL Means

本日のトピック

• Edge-aware な画像処理

• Gradient-domain の画像処理

シナリオ:Source 画像を Dest. 画像へ挿入

Source

Dest.

単純な上書き

境界をぼかしてみる

Gradient-domain 処理

シナリオ:複数写真からパノラマ合成

1D grayscale 画像の場合の考察

2D の場合:Offset by Laplace Membrane

(b) Laplace membrane

(c) Mean-value membrane

- ディリクレ境界条件の下で Laplace 方程式を解く
- Mean Value Coordinates を 用いた高速な近似

https://www.youtube.com/watch?v=AXvPeuc-wRw

単純な cloning 以外の gradient-domain 処理

単純な cloning 以外の gradient-domain 処理

Gradient を好き勝手に操作する!

単純な cloning 以外の gradient-domain 処理

1D の場合

Find $\{f_i\}$ that minimize

$$\sum_{i} (f_i - f_{i-1} - g_i)^2$$
 subject to: $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

• Gradient-domain 画像処理の基本:

ユーザが好き勝手に与えた目標勾配 ベクトル場 g になるべく合うような 画像 f を、Poisson 方程式を解いて求める

2D の場合

Find f(x, y) that minimizes

$$\int_{(x,y)\in\Omega} \|\nabla f(x,y) - \mathbf{g}(x,y)\|^2$$

subject to: $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

Solve Poisson equation:

$$\Delta f = \nabla \cdot \mathbf{g}$$

subject to: $f|_{\partial\Omega} = f^*|_{\partial\Omega}$

Target gradient の与え方:Mixing Gradients

- Source 勾配と Dest. 勾配のうち大きい方を使う
 - → 平坦な部分は clone されない

Source

Destination

Sourceの勾配を そのまま使った場合

Source / Dest. 勾配のうち 大きい方を使った場合

Target gradient の与え方:Mixing Gradients

- Source 勾配と Dest. 勾配のうち大きい方を使う
 - → 平坦な部分は clone されない

Source

Destination

Sourceの勾配を そのまま使った場合

Source / Dest. 勾配のうち 大きい方を使った場合

Target gradient の与え方:Edge Brush

• 物体輪郭に沿った勾配をコピーし、ストロークに沿って貼り付け

• GPU 実装の Poisson solver によってリアルタイム動作

https://www.youtube.com/watch?v=9MGjrsPzFc4

Target gradient の与え方:元の gradient を操作

選択範囲内でのみ増幅・減衰 → Local Tone Mapping

エッジ検出された場所以外ではゼロにする

→ Stylization

おまけ: Gradient-domain の形状処理

Gradient-domain 形状処理

Find $\{v_i\}$ that minimize

subject to: $\mathbf{v}_c = \mathbf{v}_c^*, c \in I_C$

Poisson 方程式

いくつかの頂点の位置制約

→ 境界条件

Mesh editing with poisson-based gradient field manipulation [Yu SIGGRAPH04]

Laplacian surface editing [Sorkine SGP04]

Interfaces and algorithms for the creation, modification, and optimization of surface meshes [Nealen PhD07]

変形に伴う局所領域の回転

- ・目標勾配も合わせて 回転させないといけない
 - ・非線形で難しい!

- Local-global 最適化アルゴリズム [Sorkine07]
 - Local step: 頂点座標を固定し、 SVD で局所領域の回転を計算
 - Global step: 局所領域の回転を固定し、 Poisson 方程式を解いて頂点座標を更新

https://www.youtube.com/watch?v=ltX-qUjbkdc

回転あり

GeoBrush: サーフェスメッシュのためのクローンブラシ

https://www.youtube.com/watch?v=FPsccn_gG8E

- 変形計算を2ステップに分解:
 - 1. 局所領域の回転
 - → cage-based な方法で高速に計算

- 2. 正確なオフセット
 - → 画像合成用の GPU Poisson ソルバ を流用

