Control System Design - 2

ICT 41205 Digital Control Systems

Nimal Skandhakumar

Faculty of Technology
University of Sri Jayewardenepura

• $u(t) = K_p e(t) + K_i \int e(\tau) d\tau + K_d \frac{de(t)}{dt}$

- u(t) control input
- e(t) error
- K_p proportional gain
- K_i integral gain
- K_d derivative gain

- Multiply the error by the proportional gain value K_p
- Multiply the integral of error by the integral gain value K_i
- Multiply the derivative of error by the derivative gain value K_d

PID Control – Example

Tuning of controllers

- Tuning is part of loop design, usually required if the system oscillates too much, responds too slowly, has steady-state error, or is unstable.
- Stability (no unbounded oscillation) is a basic requirement.
- Tuning a control loop is the adjustment of its control parameters to optimum values for a target response.
- There are several methods for tuning a PID loop.
- Manual tuning methods can be relatively time consuming, particularly for systems with long loop times.

https://www.youtube.com/watch?v=sFOEsA0Irjs

2018/11/26 ICT 41205

Tuning a PID Controller

- Heuristic procedure #1:
 - Set K_p to small value, K_d and K_i to 0
 - Increase K_d until oscillation, then decrease by factor of 2-4
 - Increase K_p until oscillation or overshoot, decrease by factor of 2-4
 - Increase K_i until oscillation or overshoot
 - Iterate

Tuning a PID Controller

- Heuristic procedure #2:
 - Set K_d and K_i to 0
 - Increase K_p until oscillation, then decrease by factor of 2-4
 - Increase K_i until loss of stability, then back off
 - Increase K_d to increase performance in response to disturbance
 - Iterate

Tuning a PID Controller

- Other methods:
 - Ziegler–Nichols
 - Tyreus Luyben
 - Cohen-Coon
 - Åström-Hägglund

PID tuning software

- Modern industrial systems use tuning software instead of manual tuning or calculation methods.
- These software packages will gather the data, develop process models, and suggest optimal tuning.
- With advanced PID tuning software PID loops can also be tuned in a dynamic or non-steady state (NSS) scenario.
- In such cases, the software will model the dynamics of a process, through a disturbance, and calculate PID control parameters in response.