

Experimento 06

Laboratório de Princípios de Comunicação

Autoria

Matrícula

Pedro Henrique Dornelas Almeida

18/0108140

Engenharia de Redes de Comunicação Universidade de Brasília

4 de abril de 2021

Versão do GNU Radio Companigon: 3.8.1.0 (Python 3.8.5).

1 Introdução

O objetivo deste experimento é trabalhar com o ruído parar simular com mais precisão um ambiente real. Para isso na primeira parte trabalharemos somente com o ruído e veremos como é o comportamento dele em algumas situações. Já na segunda trabalharemos com os sinais AM e FM, buscando obter relações entre sinal e ruído e ver qual das modulações é mais suscetível a ruído.

2 Desenvolvimento

AR 01

Para esta parte da atividade foi montado a seguinte área de trabalho:

Figura 1: Área de Trabalho

Em seguida, organizamos o painel para ser exibido da seguinte maneira:

Figura 2: Painel de visualização

Com este painel foi possível medir as informações pedidas nos itens a seguir.

a)

M1:

Figura 3: M1

Na figura acima é possível é possível ver que a curva obedece a equação 4, parecendo-se muito com uma curva quadrática, o que comprova a concordância do experimento com a teoria.

M2:

Figura 4: M2

Na figura acima é possível ver que o gráfico se parece com uma reta, o que também está correto pela equação 5, pois não alteramos a amplitude do sinal, ou seja, a inclinação da reta é constante, logo, teremos aproximadamente uma reta.

b)

Para esta parte foi mantida a estrutura da última área de trabalho e também do painel de controle.

E1)

Figura 5: E1

Na figura acima como pode-se ver, não foi possível concluir do histograma se as funções eram de fato de funções gaussianas. Pode-se também ver no domínio do tempo(Osciloscópio) que a amplitude do sinal vai até aproximadamente 2 e -2, podendo ver o fator σ .

E2)

Figura 6: E2

Aqui é possível observar a falta de componentes de altas frequências no domínio do tempo para o sinal filtrado. Também é possível ver os diferentes

valores de σ como na figura, em que apenas demarcamos para o sinal filtrado, porém, também é possível marcá-los para o sinal n(t), porém existirão mais níveis que o visto.

Aqui também, variando R é possível ver como as amplitudes mudam conforme tem frequências maiores, um exemplo é que na figura do sinal filtrado somente é possível ver um valor acima do σ , enquanto no sinal sem estar filtrado pode-se observar vários valores acima do σ o que mostra a função de probabilidade na amplitude.

E3)
E4)

Figura 7: E4

Acima é possível ver os gráficos para os sinais, agora com distribuição uniforme. Note nos histogramas que não há muita diferença, para a distribuição gaussiana, isso se deve ao fato de que não tínhamos uma definição muito clara na função gaussiana, de que pelo histograma era possível perceber com nitidez.

AR 02

Neste momento o objetivo é comparar como o ruído interfere nos sinais AM e FM, de forma a obter uma comparação e saber em qual dos dois tipos de modulação o ruído interfere mais.

Após montar todo o circuito conforme o passo a passo indicado no roteiro, e montar de forma adequada o painel, podemos ir para os procedimentos P1 e P2.

P1)

Aqui, podemos observar os sinais demodulados e comparar com o sinal mensagem. E após ajustar o ganho ao demodulador DSB, foram obtidos os seguintes sinais:

Figura 8: Sinais no tempo

Agora, devemos configurar o delay para que as ondas estejam o mais próximas possíveis, e da seguinte maneira, foi possível obter:

Figura 9: Sinais no tempo

Tabela 1 – Medida da potência de saída dos demoduladores na ausência de ruído.

$A_m(V)$	$P_{out,AM}(dBV^2)$	$P_{out,FM}(dBV^2)$
0.5	0.2698	0.2687
1.0	0.5676	0.5571

P2)

P2a)

Aqui foi possível colocar a amplitude da mensagem em 0V e alterando a onda para uma onda quadrada foi possível anotar os valores da tabela abaixo para ver a relação entre ruído nos dois tipos de modulação.

Tabela 2 - Curvas de desempenho na ausência de sinal modulante.

	Demod AM	Demod $FM(B_{FM,0.5})$	Demod $FM(B_{FM,1.0})$
$\sigma_{AM} = \sigma_{fm}$	$P_{n,out}(dBV^2)$	$P_{n,out}(dBV^2)$	$P_{n,out}(dBV^2)$
0.01	-50,38	-45,45	-42,43
0.05	-37,08	-31,15	-28,84
0.08	-32,84	-27,95	-23,47
0.1	-29,75	-25,87	-22,53
0.2	-22,73	-20,11	-15,88
0.3	-20,37	-15,72	-12,61
0.4	-18,11	-13,74	-10,46
0.5	-15,89	-11,25	-7,94
0.6	-15,06	-10,67	-7,21
0.7	-12,51	-8,25	-6,84
0.8	-11,58	-7,13	-4,55
0.9	-10,42	-6,44	3,51
1.0	-9,93	-5,55	-2,53
1.2	-8,26	-3,92	-0,92

P2b)

- P2c) Aqui montamos o circuito de forma a conseguir observar em um mesmo gráfico as relações de RSR tanto de entrada quanto de saída para a modulação AM e os dois casos de modulação FM. E assim foi possível responder as perguntas:
- Q1) A modulação que se mostrou mais robusta à presença de ruído foi a modulação FM, é possível ver até mesmo no osciloscópio que o sinal fica bem menos contaminado que o sinal modulado AM.

Q2)

Q3) Provavelmente seriam resultados bem próximos, pois o que realmente vai importar é a parte útil, e a parte que envolve o ruído, os diferentes tipos de demodulação implementados provavelmente vão manter essas 2 partes bem parecidas, o que deve manter o RSR out bem próximo.

3 Conclusão

O experimento pôde ser aproveitado para explorar os conceitos de ruído, sobre a relação sinal ruído existente em sinais e também simular um ambiente real. Com isso foi possível observar que os sistemas com modulação FM são menos suscetíveis a ruído, o que torna preferencial usar este tipo de modulação em canais que possam introduzir ruído no sinal, e mesmo assim tornar possível identificar o sinal mensagem nos receptores.

Houveram dificuldades para realizar o experimento pois existiram muitas variáveis, muitos gráficos que tiveram de ser entendidos para então entender o que o roteiro pedia. O fato também de ser um experimento longo desmotivou a realização de todas as etapas.