高数基础班 (20)

常数项级数(定义、性质、敛散性的判别法及举例)

20

P149-P155

第十章无穷级数

(数二不要求)

第一节 常数项级数 🗸

第二节幂级数

第三节 傅里叶级数 (数三不要求)

第一节 常数项级数

本节内容要点

- 一. 考试内容概要
 - (一) 级数的概念与性质
 - (二) 级数的审敛准则
- 二. 常考题型与典型例题

常数项级数敛散性的判定

考试内容概要

(一) 概念与性质

1. 级数的概念

$$\sum_{n=1}^{\infty} u_n = u_1 + u_2 + \dots + u_n + \dots$$

无穷级数

$$S_n = \sum_{i=1}^n u_i$$

部分和

$$\sum_{n=1}^{\infty} u_n = \lim_{n \to \infty} s_n = 5$$

Sasn

【例1】判定下列级数敛散性

(1)
$$\sum_{n=1}^{\infty} \ln(1+\frac{1}{n});$$
 (2) $\sum_{n=0}^{\infty} aq^n \ (a \neq 0).$

【解】 (1)
$$s_n = \ln(1+\frac{1}{1}) + \ln(1+\frac{1}{2}) + \dots + \ln(1+\frac{1}{n})$$

$$= \ln 2 + \ln \frac{3}{2} + \dots + \ln \frac{n+1}{n}$$

$$= \ln (2 \cdot \frac{3}{2} \cdot \dots \cdot \frac{n+1}{n}) = \ln(n+1)$$

由于
$$\lim_{n\to\infty} s_n = \lim_{n\to\infty} \ln(n+1) = \infty$$

则级数
$$\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$$
 发散.

(2)
$$s_n = a + aq + aq^2 + \dots + aq^{n-1}$$

$$= \begin{cases} \frac{a(1-q^n)}{1-q}, & q \neq 1, \\ na, & q = 1. \end{cases}$$

$$\lim_{n\to\infty} s_n = \left\{ \begin{array}{c} \frac{\alpha}{1-\alpha} \\ |-\alpha| \\ \infty \\ |\alpha| > 1 \end{array} \right\}$$

$$\left\{ \begin{array}{c} |\alpha| < |-\alpha| \\ |\alpha| > 1 \end{array} \right\}$$

$$\left\{ \begin{array}{c} |\alpha| < |-\alpha| \\ |\alpha| > 1 \end{array} \right\}$$

$$\left\{ \begin{array}{c} |\alpha| < |-\alpha| \\ |\alpha| > 1 \end{array} \right\}$$

$$\left\{ \begin{array}{c} |\alpha| < |-\alpha| \\ |\alpha| > 1 \end{array} \right\}$$

$$\left\{ \begin{array}{c} |\alpha| < |-\alpha| \\ |\alpha| > 1 \end{array} \right\}$$

2. 级数的性质

- 1) 若 $\sum_{n=1}^{\infty} u_n$ 收敛于 s, 则 $\sum_{n=1}^{\infty} ku_n$ 也收敛,且其和为 ks.
- 2) 若 $\sum_{n=1}^{\infty} u_n$ 和 $\sum_{n=1}^{\infty} v_n$ 分别收敛于 s,σ . 则 $\sum_{n=1}^{\infty} (u_n \pm v_n)$

收敛于 $s \pm \sigma$.

【注】 收敛 生发散 = 发散 : 发散 生发散 = 不确定

- 3) 在级数中去掉、加上或改变有限项不影响级数的敛散性.
- 4) 收敛级数加括号仍收敛且和不变.

- 2) 加括号发散 —— 原级数发散;
- 5)(级数收敛必要条件)

$$\sum_{n=1}^{\infty} u_n$$
 收敛
$$\longrightarrow_{n \to \infty} u_n = 0$$

$$= 0$$

$$= \sqrt{n}$$

$$=$$

(二) 级数的审敛准则

(1) 正项级数
$$(\sum_{n=1}^{\infty} u_n, u_n \geq 0)$$

基本定理:
$$\sum_{n=1}^{\infty} u_n$$
 收敛 $\rightleftharpoons s_n$ 上有界

1) 比较判别法: 设 <u>u, ≤ v, </u>则

$$\sum_{n=1}^{\infty} \overset{\downarrow}{v_n} \psi \Rightarrow \sum_{n=1}^{\infty} \overset{\downarrow}{u_n} \psi \Rightarrow \sum_{n=1}^{\infty} \overset{\downarrow}{v_n} \xi$$

きしゅんちょうくりょうせる

2) 比较法极限形式: 设
$$\lim_{n\to\infty}\frac{u_n}{v}=l\ (0\leq l\leq +\infty)$$

①若
$$0 < l < +\infty$$
, 则 $\sum_{n=1}^{\infty} u_n$ 与 $\sum_{n=1}^{\infty} v_n$ 同敛散.

②若
$$l=0$$
,则 $\sum_{n=1}^{\infty}v_n$ 收敛 $\Rightarrow \sum_{n=1}^{\infty}u_n$ 收敛, $\sum_{n=1}^{\infty}u_n$ 发散 $\Rightarrow \sum_{n=1}^{\infty}v_n$ 发散.

③若
$$l = +\infty$$
, 则 $\sum_{n=1}^{\infty} v_n$ 发散 $\Rightarrow \sum_{n=1}^{\infty} u_n$ 发散. $\sum_{n=1}^{\infty} u_n$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} v_n$ 收敛,

两个常用级数

$$1) \quad \sum_{n=1}^{\infty} \frac{1}{n^p} \quad \checkmark$$

2)
$$\sum_{n=1}^{\infty} aq^n \ (a > 0, q > 0)$$

$$p>1$$
 时收敛, 当 $p\leq 1$ 时发散;

$$q < 1$$
 时收敛,当 $q \ge 1$ 时发散.

△ 有道考袖

3) 比值法: 设
$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\rho$$
,则 $\sum_{n=1}^{\infty}u_n$ $\begin{cases} \psi \otimes, & \rho<1,\\ \xi \otimes, & \rho>1,\\ \hline \pi-\varepsilon, & \rho=1, \end{cases}$

4) 根值法: 设
$$\lim_{n\to\infty} \sqrt[n]{u_n} = \rho$$
,则 $\sum_{n=1}^{\infty} u_n$ $\begin{cases} \psi \otimes_n, & \rho < 1, \\ \xi \otimes_n, & \rho > 1, \\ \hline \pi - \varepsilon, & \rho = 1, \end{cases}$

5) 积分判别法: 设 f(x) 是 $[1,+\infty)$ 上单调减, 非负的连续函数, 且 $a_n = f(n)$

则
$$\sum_{n=1}^{\infty} a_n$$
 与 $\int_1^{+\infty} f(x) dx$ 同敛散.

【例2】证明级数 $\sum_{n=1}^{\infty} \frac{1}{n^p}$ 当 p > 1 时收敛,当 $p \le 1$ 时发散. \checkmark

$$a_n = \frac{1}{\sqrt{p}} = f(n), f(x) = \frac{1}{\sqrt{p}}$$

$$\int_{-\infty}^{+\infty} \frac{dx}{\sqrt{p}}$$

$$\int_{-\infty}^{+\infty} \frac{dx}{\sqrt{p}}$$

$$\int_{-\infty}^{+\infty} \frac{dx}{\sqrt{p}}$$

$$\int_{-\infty}^{+\infty} \frac{dx}{\sqrt{p}}$$

$$\int_{-\infty}^{+\infty} \frac{dx}{\sqrt{p}}$$

【例3】判定级数 $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ 的敛散性.

$$(i4). f(x) = \frac{1}{xex}$$

例3】判定级数
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 的数散性. $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

(2) 交错级数
$$(\sum_{n=1}^{\infty} (-1)^{n-1} u_n, u_n > 0)$$

莱不尼兹准则: 若(1)
$$u_n$$
 单调减;

$$(2) \quad \lim_{n\to\infty}u_n=0$$

$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n \, \mathfrak{L} \mathfrak{D}.$$

【注】
$$\sum_{n=1}^{\infty} (-1)^{n-1} u_n$$
 收敛. u_n 单调减且 $\lim_{n\to\infty} u_n = 0$

$$u_n$$
 单调减且 $\lim_{n\to\infty}u_n=0$

【例】
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^{n+(-1)^n}}$$
 收敛,但 $u_n = \frac{1}{2^{n+(-1)^n}}$ 并不递减.

$$\frac{1}{2utt} = \frac{2utt-1}{2^{utt-1}}$$

$$\frac{1}{2utt} = \frac{1}{2^{utt-1}}$$

(3)任意项级数

1)绝对收敛与条件收敛概念

- (1) 若 $\sum_{n=1}^{\infty} |a_n|$ 收敛,则 $\sum_{n=1}^{\infty} a_n$ 必收敛,此时称 $\sum_{n=1}^{\infty} a_n$ 绝对收敛
- (2) 若 $\sum_{n=1}^{\infty} a_n$ 收敛, $\sum_{n=1}^{\infty} |a_n|$ 发散, 则称 $\sum_{n=1}^{\infty} a_n$ 条件收敛
- 2) 绝对收敛和条件收敛的基本结论
 - ①绝对收敛的级数一定收敛,即 $\sum_{n=1}^{\infty} |u_n|$ 收敛 $\Rightarrow \sum_{n=1}^{\infty} u_n$ 收敛.
 - ②条件收敛的级数的所有正项(或负项)构成的级 🗸

数一定发散. 即:
$$\mathcal{L}$$
 \mathcal{L} $\mathcal{L$

常考题型与典型例题

常考题型

【解2】排除法

$$\sum_{n=1}^{\infty} \frac{n}{3^n} \cdot \alpha^n$$

$$\sum_{n=2}^{\infty} \frac{(-1)^n + 1}{\ln n}.$$

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \ln(1+\frac{1}{n}).$$

$$\sum_{n=1}^{\infty} \frac{n!}{n!}$$

(4) (4)

$$\frac{1}{\sqrt{n!}} \left(D \right) \sum_{n=1}^{\infty} \frac{n!}{n^n} \cdot \left(C \right) \left(C \right)$$

【解1】直接法

$$\frac{2}{2} \frac{(-1)^{n}+1}{4} = \frac{1}{2} \frac{(-1)^{n}}{4n} + \frac{2}{n} \frac{1}{2} \frac{1}{4n}$$

$$\frac{2}{n} \frac{1}{4n} = \frac{1}{2} \frac{1}{4n} + \frac{2}{n} \frac{1}{4n} = \frac{1}{2} \frac{1}{4n} = \frac{1}{2}$$

【例5】(2013年3)设 $\{a_n\}$ 为正项数列, 下列选项正确的是()

(A) 若
$$a_n > a_{n+1}$$
, 则 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛;

$$(B)$$
 若 $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ 收敛,则 $a_n > a_{n+1}$;

$$(C)$$
 若 $\sum_{n=1}^{\infty} a_n$ 收敛,则存在常数 $p>1$, 使 $\lim_{n\to\infty} n^p a_n$ 存在;

(D) 若存在常数
$$p > 1$$
, 使 $\lim_{n \to \infty} n^p a_n$ 存在,则 $\sum_{n=1}^{\infty} a_n$ 收敛 .

$$\frac{dy}{dy} = \frac{dy}{dy} = \frac{dy$$

Qu= (H+)

设有两个数列 $\{a_n\},\{b_n\}$, 若 $\lim a_n=0$,则((A) 当 $\sum_{n}^{\infty} b_{n}$ 收敛时, $\sum_{n}^{\infty} a_{n}b_{n}$ 收敛. Q4 > 0 $\sum b_n$ 发散时, $\sum a_n b_n$ 发散. $\sum_{n=1}^{n-1} |b_n|$ 收敛时, $\sum_{n=1}^{\infty} a_n^2 b_n^2$ 收敛; (D) 当 $\sum_{n=1}^{n-1} |b_n|$ 发散时, $\sum_{n=1}^{n-1} a_n^2 b_n^2$ 发散. 【解1】直接法 hu | → 0 → | hu | < | > | bu | > | bu | 排除法 Q 1 < [, =) On Unby sby $a_n \rightarrow 0$ [an | < 1

【例5】(2011年3)设
$$\{u_n\}$$
 是数列,则下列命题正确的是()

(A) 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛.

(B) 若 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛.

(C) 若 $\sum_{n=1}^{\infty} u_n$ 收敛,则 $\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$ 收敛.

(D) 若 $\sum_{n=1}^{\infty} (u_{2n-1} - u_{2n})$ 收敛,则 $\sum_{n=1}^{\infty} u_n$ 收敛.

(解1】直接法

[解2】排除法

