Analyse 3

Feuille d'exercices : Suites et séries de fonctions

Les exercices avec des étoiles sont à préparer en priorité.

1 Suites de fonctions

*Exercice 1. Pour chaque suite de fonctions, montrer qu'elle converge simplement sur l'intervalle considéré et calculer la fonction limite. Puis, déterminer si la convergence est uniforme.

1.
$$f_n(x) = x^n \text{ sur } [0,1].$$

2.
$$f_n(x) = \frac{x^n}{n} \text{ sur } [0, 1].$$

3.
$$f_n(x) = x^n (1-x)^n \text{ sur } [0,1].$$

4.
$$f_n(x) = x^n(1-x) \text{ sur } [0,1].$$

5.
$$f_n(x) = \frac{e^{nx}}{1+e^{nx}}$$
 sur \mathbb{R} .

6.
$$f_n(x) = \frac{e^{nx}}{1+e^{nx}}$$
 sur $[1,2]$.

7.
$$f_n(x) = n \sin\left(\frac{x}{n}\right) \text{ (pour } n \ge 1) \text{ sur } \mathbb{R}.$$

8.
$$f_n(x) = (1 + \frac{x}{n})^n \text{ (pour } n \ge 1) \text{ sur } \mathbb{R}^+.$$

9.
$$f_n(x) = (1 + \frac{x}{n})^n$$
 (pour $n \ge 1$) sur $[0, A], A \ge 0$ fixé.

Exercice 2. Considérons la suite de fonctions $f_n: \mathbb{R}_+ \longrightarrow \mathbb{R}$ définies par $f_n(x) = (1+x^n)^{1/n}$.

- 1. Montrer que (f_n) converge simplement vers une fonction f que l'on déterminera.
- 2. On va rechercher si la convergence est uniforme.

- a) Montrer que pour tout $\alpha \in [0,1]$ et $x \geq 0$ on a $(1+x)^{\alpha} \leq 1 + \alpha x$
- b) En déduire que la convergence est uniforme sur [0, 1].
- c) Montrer que $f_n(x) = x f_n(1/x)$ pour tout $n \in \mathbb{N}^*$ et $x \in \mathbb{R}_+$.
- d) En utilisant une nouvelle fois la question a), en déduire que la convergence est uniforme sur $[1, +\infty[$.
- e) Conclure.
- *Exercice 3. Considérons la suite de fonctions $f_n:[0,1] \longrightarrow \mathbb{R}$ définies par $f_n(t) = n^{\alpha}t^n \sin(\pi t)$, où $\alpha \geq 0$ est un paramètre réel fixé.
- 1. Montrer que (f_n) converge simplement vers une fonction f que l'on déterminera.
- 2. On va rechercher si la convergence est uniforme.
- a) Montrer qu'il existe un unique $t_n \in [0,1]$ tel que $\sup_{[0,1]} |f_n| = f_n(t_n)$.
- b) Montrer que $t_n = 1 \frac{1}{n} + o(\frac{1}{n})$.
- c) En déduire les valeurs de α pour lesquelles la convergence est uniforme.
- 3. Déterminer la convergence et la limite de la suite $u_n = \sqrt{n} \left(\cos \left(\frac{1}{\ln(n)} \right) \right)^{2n} \sin \left(\pi \cos^2 \left(\frac{1}{\ln(n)} \right) \right)$.

Exercice 4. Considérons la suite de fonctions $f_n:[0,+\infty]\longrightarrow \mathbb{R}$ définies par $f_n(t)=\left(1+\frac{x^2}{n}\right)^{-n}$.

- 1. Montrer que (f_n) converge simplement vers une fonction f que l'on déterminera.
- 2. On va montrer que la convergence est uniforme.
- a) Montrer que $\forall x \in \mathbb{R}^+, f_n(x) f(x) = e^{-x^2}.g_n(x)$, où g_n est une fonction croissante que l'on déterminera. En déduire que $\forall x \in \mathbb{R}^+, 0 \le f_n(x) f(x) \le \min(f_n(x), g_n(x))$.
- b) Soit $a_n > 0$. Montrer que $\forall x \le a_n, |f_n(x) f(x)| \le g_n(a_n)$ et $\forall x \ge a_n, |f_n(x) f(x)| \le f_n(a_n)$.

Conclure en posant $a_n = n^{\alpha}$ avec un choix judicieux de α .

Exercice 5. Soit $(f_n)_{n\geq 1}$ la suite de fonctions définies sur [0,1] par

$$f_n(x) = \begin{cases} n^2 x, & \text{si } 0 \le x < \frac{1}{n}, \\ 2n - n^2 x, & \text{si } \frac{1}{n} \le x < \frac{2}{n}, \\ 0 & \text{si } x > \frac{2}{n}. \end{cases}$$

- 1. Montrer que les f_n sont continues.
- 2. Montrer que la suite converge simplement vers une fonction f à déterminer.
- 3. La convergence est elle uniforme?
- 4. Calculer $\int_0^1 f_n(t)dt$ pour tout n, ainsi que $\int_0^1 f(t)dt$. Commenter.
- *Exercice 6. Soit $f_n : \mathbb{R} \to \mathbb{R}$ définie par

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}}$$

Montrer que chaque f_n est de classe \mathcal{C}^{∞} et que la suite (f_n) converge uniformément sur \mathbb{R} vers une fonction f qui n'est pas partout dérivable.

*Exercice 7. Soit $f_n(x) = x + \frac{1}{n}$. La suite f_n converge t-elle uniformément sur \mathbb{R} ? La suite f_n^2 converge t-elle uniformément sur \mathbb{R} ? Commenter.

Exercice 8. Soit f_n une suite de fonctions convergeant simplement vers f sur un segment [a, b]. On suppose que les f_n sont équilipschitziennes : il existe un réél K tel que pour tout n et tous x et y dans [a, b] on a

$$|f_n(x) - f_n(y)| \le K|x - y|.$$

Montrer que la convergence de la suite f_n est uniforme.

- *Exercice 9. 1. Soit $\alpha \in \mathbb{R}$ un paramètre fixé. Montrer que la suite de fonctions $f_n(x) = x(1+n^{\alpha}e^{-nx})$ définies sur \mathbb{R}_+ pour $n \in \mathbb{N}^*$ converge simplement vers une fonction f à déterminer.
 - 2. Déterminer les valeurs de α pour lesquelles il y a convergence uniforme sur \mathbb{R}_+ .
 - 3. Calculer

$$\lim_{n \to +\infty} \int_0^1 x(1 + \sqrt{n}e^{-nx}) dx$$

Exercice 10. Soit $f_n(x) = \frac{e^{nx}+2}{e^{nx}+1}$, pour $x \in \mathbb{R}$.

- 1. Montrer que la suite (f_n) converge simplement sur \mathbb{R} . Expliciter sa limite simple.
- 2. La convergence est-elle uniforme sur \mathbb{R} ?
- 3. La convergence est-elle uniforme sur $[1, +\infty]$?

Exercice 11. Premier théorème de Dini

Soit f_n une suite de fonctions convergeant simplement vers f sur un segment [a,b]. On suppose que les f_n sont continues et que f l'est également. On suppose aussi que pour tout x fixé la suite numérique de terme général $f_n(x)$ est croissante en n. Montrer que la convergence de la suite f_n est uniforme.

Exercice 12. Deuxième théorème de Dini

Soit f_n une suite de fonctions convergeant simplement vers f sur un segment [a,b]. On suppose que f est continue (mais pas forcément les f_n). On suppose aussi que pour tout n fixé la fonction $f_n(x)$ est croissante en x. Montrer que la convergence de la suite f_n est uniforme.

Exercice 13. On note $I = [0, \frac{1}{2}]$. Le but de l'exercice est de construire une application continue $f: I \to \mathbb{R}$, telle que

$$\forall x \in I, \quad f(x) = 1 + \frac{1}{2} \int_0^x (f(t) + f(t^2)) dt.$$

On considère les applications $f_n:I\to\mathbb{R}$ définies par récurrence :

$$\begin{cases} f_0(x) = 1, & \forall x \in I, \\ f_{n+1}(x) = 1 + \frac{1}{2} \int_0^x (f_n(t) + f_n(t^2)) dt. \end{cases}$$

- 1. Calculer f_1 et f_2 . Montrer que, pour tout entier n, f_n est un polynôme.
- 2. On note, pour $n \geq 1$,

$$D_n = \sup_{x \in I} |f_n(x) - f_{n-1}(x)|.$$

Calculer D_1 et D_2 . Montrer que

$$\forall n \in \mathbb{N}^*, \ \forall x \in I, \quad |f_{n+1}(x) - f_n(x)| \le \frac{1}{2}D_n,$$

et en déduire que, pour tout $n \in \mathbb{N}^*$,

$$D_n \le \frac{1}{2^n}.$$

- 3. En déduire que f_n vérifie le critère de Cauchy uniforme et converge donc uniformément sur [0,1].
- 4. Soit f la fonction limite. Montrer qu'elle vérifie la propriété demandée.

Exercice 14. Soit f la fonction définie sur [0,1] par f(0)=0 et $f(x)=\frac{1}{n}$ sur $\left[\frac{1}{n+1},\frac{1}{n}\right]$ pour tout entier n.

- 1. Montrer que f est la limite uniforme d'une suite de fonctions continues par morceaux à déterminer.
- **2.** f est elle continue par morceaux?

2 Séries de fonctions

- *Exercice 15. 1. a) Montrer que la série de fonction $x \to \sum_{n\geq 0} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ converge simplement vers sin pour tout réel.
- b) La convergence est-elle normale sur \mathbb{R} ? Uniforme?
- c) La convergence est-elle normale sur tout segment de \mathbb{R} ? Uniforme?
- 2. Etablir un résultat similaire pour cos.

- *Exercice 16. Soit, pour n entier, et pour $x \in]-1,1[$, $u_n(x)=nx^n$. Montrer que la série de fonctions $\sum u_n$ converge simplement sur]-1,1[et uniformément sur tout intervalle de la forme $[-1+\varepsilon,1-\varepsilon]$ vers une fonction u à déterminer.
- *Exercice 17. Soit $\forall (n,x) \in \mathbb{N}^* \times \mathbb{R}, u_n(x) = \frac{(-1)^n}{n^2 + x^2}$.
 - 1. Montrer la convergence normale de la série de fonctions de terme général u_n sur \mathbb{R} .
 - 2. Soit u sa fonction somme. En déduire la continuité de la fonction u sur \mathbb{R} .
 - 3. Montrer que la fonction u est dérivable sur \mathbb{R} et que sa dérivée est donnée par

$$\forall x \in \mathbb{R}, \quad u'(x) = -2x \sum_{n=1}^{+\infty} \frac{(-1)^n}{(n^2 + x^2)^2}.$$

Exercice 18. Soit $\alpha > 0$. Calculer $\lim_{n \to +\infty} S_n$, où $S_n = \sum_{k=0}^n \left(1 - \frac{k}{n}\right)^{n\alpha}$.

Indication : introduire une fonction $x \to f_k(x)$ telle que $S_n = \sum_{k=0}^{+\infty} f_k(n)$ et appliquer le théorème de la double limite.

Exercice 19. 1. Posons $S(x) = \sum_{k=0}^{+\infty} \sin(\frac{x}{2^k})$.

- a) Domaine de définition de S? Continuité de S? S est-elle C^{∞} ?
- b) La convergence de S est-elle normale sur \mathbb{R} ?
- **2.** Posons $T(x) = \sum_{k=0}^{+\infty} \frac{1}{2^k} \sin(2^k x)$.
- a) Domaine de définition et Continuité de T? Peut-on appliquer le Th. de dérivation terme à terme?
- b) Dérivabilité de T en 0?

Exercice 20. Considérons la série de fonctions $S(x) := \sum_{k=1}^{+\infty} \frac{1}{sh(kx)}$. sur \mathbb{R}^+_*

Etudier la convergence et la continuité de S. Trouver un équivalent pour S en $+\infty$.

Exercice 21. Pour x > 0, on pose :

$$S(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+x}$$

- 1. Montrer que S est définie et de classe C^1 sur $]0, +\infty[$.
- **2.** Préciser le sens de variation de S.

- **3.** Montrer que : $\forall x > 0, S(x+1) + S(x) = \frac{1}{x}$.
- 4. Donner un équivalent de S en 0.
- **5.** Donner un équivalent de S en $+\infty$.

Exercice 22. Soit

$$\forall x \in \mathbb{R}, \ S(x) = \sum_{n=0}^{\infty} \frac{x}{1 + n^2 x^2}.$$

- 1. Montrer que S est définie sur \mathbb{R} et impaire.
- 2. Montrer que S est continue sur \mathbb{R}^* .
- 3. Montrer que

$$\forall x > 0, \qquad \frac{\pi}{2} \le S(x) \le \frac{\pi}{2} + x.$$

En déduire que S admet des limites à droite et à gauche en 0, mais n'y est pas continue.

4. Montrer que S est de classe C^1 sur \mathbb{R}^* .

Exercice 23. Soit $\forall (n,x) \in \mathbb{N}^* \times \mathbb{R}$, $u_n(x) = \frac{\sin(nx)}{n^3}$.

- 1. Montrer la convergence normale de la série de fonctions de terme général u_n sur \mathbb{R} .
- 2. Soit u sa limite. Calculer la limite de u(x) lorsque x tend vers 0.
- 3. Prouver que

$$\int_0^{\pi} u(x) \, dx = 2 \sum_{n=1}^{+\infty} \frac{1}{(2n-1)^4}.$$

On admet que $\sum_{k=1}^{+\infty} \frac{1}{k^4} = \frac{\pi^4}{90}$. En déduire $\int_0^{\pi} u(x) dx$.

4. Montrer que la fonction u est dérivable sur \mathbb{R} et que sa dérivée est donnée par

$$\forall x \in \mathbb{R}, \ u'(x) = \sum_{n=1}^{+\infty} \frac{\cos(nx)}{n^2}.$$