HW2+2253744+林觉凯

Question 1: Calculate the gradient of the following multivariate function:

(1)
$$u=xy+y^2+5$$
 (2) $u=ln\sqrt{x^2+y^2+z^2}$, at (1, 2, -2)

(1) Calculate the gradient of the following multivariate function $u=xy+y^2+5$:

$$\therefore \frac{\partial u}{\partial x} = y, \frac{\partial u}{\partial y} = x + 2y$$
$$\therefore \nabla u = (y, x + 2y)$$

(2) Calculate the gradient of the following multivariate function $u=ln\sqrt{x^2+y^2+z^2}$:

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{1}{2} \times \frac{1}{x^2 + y^2 + z^2} \times 2x = \frac{x}{x^2 + y^2 + z^2} \\ \frac{\partial u}{\partial y} &= \frac{1}{2} \times \frac{1}{x^2 + y^2 + z^2} \times 2y = \frac{y}{x^2 + y^2 + z^2} \\ \frac{\partial u}{\partial z} &= \frac{1}{2} \times \frac{1}{x^2 + y^2 + z^2} \times 2z = \frac{z}{x^2 + y^2 + z^2} \\ \nabla u &= (\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2}) \\ \therefore \nabla u_{(1,2,-2)} &= (\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z})_{(1,2,-2)} = (\frac{1}{9}, \frac{2}{9}, -\frac{2}{9}) \end{split}$$

Code program for Question1:

```
import numpy as np
import sympy as sp
def calculate_gradient_1():
    """Calculate the gradient of the function u = xy + y^2 + 5""
    x, y = sp.symbols('x y')
    u = x*y + y**2 + 5
    # Calculate partial derivatives
    du_dx = sp.diff(u, x)
    du_dy = sp.diff(u, y)
    print("Gradient of the function u = xy + y^2 + 5:")
    print(f''\partial u/\partial x = \{du_dx\}'')
    print(f''\partial u/\partial y = \{du_dy\}'')
    print(f"Gradient \nabla u = (\{du_dx\}, \{du_dy\})")
def calculate_gradient_2():
    """Calculate the gradient of the function u = ln(sqrt(x^2 + y^2 + z^2)) at the
point (1, 2, -2)"""
    x, y, z = sp.symbols('x y z')
    u = sp.log(sp.sqrt(x**2 + y**2 + z**2))
    # Calculate partial derivatives
    du_dx = sp.diff(u, x)
    du_dy = sp.diff(u, y)
    du_dz = sp.diff(u, z)
    # Calculate the gradient at the point (1, 2, -2)
    point = \{x: 1, y: 2, z: -2\}
    grad_x_value = du_dx.subs(point)
    grad_y_value = du_dy.subs(point)
    grad_z_value = du_dz.subs(point)
    # Calculate the length of the vector
    vector\_length = sp.sqrt(x**2 + y**2 + z**2).subs(point)
```

```
print("\nGradient of the function u = ln(sqrt(x^2 + y^2 + z^2)) at the point (1, 2, -2):")
    print(f"\partial u/\partial x at (1, 2, -2) = {grad_x_value}")
    print(f"\partial u/\partial y at (1, 2, -2) = {grad_y_value}")
    print(f"\partial u/\partial z at (1, 2, -2) = {grad_z_value}")
    print(f"Gradient \nabla u at (1, 2, -2) = ({grad_x_value}, {grad_y_value}, {grad_z_value})")

# Numerical results (converted to float)
    print("\nNumerical results:")
    print(f"\nabla u at (1, 2, -2) = ({float(grad_x_value)}, {float(grad_y_value)}, {float(grad_z_value)})")

if __name__ == "__main__":
    calculate_gradient_1()
    calculate_gradient_2()
```

Program output for Question1:

Question 2: As we all know, whether to sleep in is a complex question that depends on multiple variables. The following is a random selection of student A's 12-day data on sleeping in. Please build a decision tree based on this data, and use the information gain to divide the attributes. An illustration of the calculation process and the final decision tree is required. Hint: For some nodes, you may not need to calculate conditional entropy, but directly make decision by observing the data.

Season	After 8:00	Wind	Sleep in		
spring	no	breeze	yes		
winter	no	no wind	yes		
autumn	yes	breeze	yes		
winter	no	no wind	yes		
summer	no	breeze	yes		
winter	yes	breeze	yes		
winter	no	gale	yes		
winter	no	no wind	yes		
spring	yes	no wind	no		
summer	yes	gale	no		
summer	no	gale	no		
autumn	yes	breeze	yes		

The two main formulas on the PPT:

$$\operatorname{Ent}(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k$$
 $\operatorname{Gain}(D,a) = \operatorname{Ent}(D) - \sum_{v=1}^V rac{|D^v|}{|D|} \operatorname{Ent}\left(D^v
ight)$

For the Node1, calculate:

$$Ent(D) = -\sum_{k=1}^{|\mathcal{Y}|} p_k \log_2 p_k = -\frac{3}{12} log_2(\frac{3}{12}) - \frac{9}{12} log_2(\frac{9}{12}) = 0.8113$$

For the attribute **season**:

$$\begin{split} \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} & \text{Ent} \left(D^{v}\right) = \frac{2}{12} \left(-\frac{1}{2}log_{2}(\frac{1}{2}) - \frac{1}{2}log_{2}(\frac{1}{2})\right) + \frac{3}{12} \left(-\frac{2}{3}log_{2}(\frac{2}{3}) - \frac{1}{3}log_{2}(\frac{1}{3})\right) \\ & + \frac{2}{12} \left(-\frac{2}{2}log_{2}(\frac{2}{2})\right) + \frac{5}{12} \left(-\frac{5}{5}log_{2}(\frac{5}{5})\right) \\ & = \frac{2}{12} \times 1 + \frac{3}{12} \times 0.9183 + \frac{2}{12} \times 0 + \frac{5}{12} \times 0 = 0.3962 \\ & gain(Season) = \text{Ent}(D) - \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \text{Ent} \left(D^{v}\right) = 0.4151 \end{split}$$

For the attribute After 8:00:

$$\begin{split} \sum_{v=1}^{V} \frac{|D^v|}{|D|} \mathrm{Ent}\left(D^v\right) &= \frac{7}{12} (-\frac{1}{7} log_2(\frac{1}{7}) - \frac{6}{7} log_2(\frac{6}{7})) + \frac{5}{12} (-\frac{2}{5} log_2(\frac{2}{5}) - \frac{3}{5} log_2(\frac{3}{5})) \\ &= \frac{7}{12} \times 0.5917 + \frac{5}{12} \times 0.9710 = 0.7497 \\ gain(After~8:00) &= \mathrm{Ent}(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} \mathrm{Ent}\left(D^v\right) = 0.0616 \end{split}$$

For the attribute **Wind**:

$$\begin{split} \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \mathrm{Ent}\left(D^{v}\right) &= \frac{4}{12} \left(-\frac{1}{4} log_{2}(\frac{1}{4}) - \frac{3}{4} log_{2}(\frac{3}{4})\right) + \frac{5}{12} \left(-\frac{5}{5} log_{2}(\frac{5}{5})\right) + \frac{3}{12} \left(-\frac{2}{3} log_{2}(\frac{2}{3}) - \frac{1}{3} log_{2}(\frac{1}{3})\right) \\ &= \frac{4}{12} \times 0.8113 + \frac{5}{12} \times 0 + \frac{3}{12} \times 0.9183 = 0.5 \\ &gain(Wind) = \mathrm{Ent}(D) - \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \mathrm{Ent}\left(D^{v}\right) = 0.3113 \end{split}$$

0.4151 > 0.3113 > 0.0616, so Season is chosen as root.

For the Node2, calculate:

$$Ent(D) = -\frac{1}{2}log_2(\frac{1}{2}) - \frac{1}{2}log_2(\frac{1}{2}) = 1$$

For the attribute After 8:00:

$$\sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \operatorname{Ent}(D^{v}) = \frac{1}{2} \left(-\frac{1}{1} log_{2}(\frac{1}{1}) \right) + \frac{1}{2} \left(-\frac{1}{1} log_{2}(\frac{1}{1}) \right) = 0$$

$$gain(After\ 8:00) = \operatorname{Ent}(D) - \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \operatorname{Ent}(D^{v}) = 1.000$$

For the attribute Wind:

$$\sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Ent}(D^v) = \frac{1}{2} \left(-\frac{1}{1} log_2(\frac{1}{1}) \right) + \frac{1}{2} \left(-\frac{1}{1} log_2(\frac{1}{1}) \right) = 0$$

$$gain(Wind) = \operatorname{Ent}(D) - \sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Ent}(D^v) = 1.000$$

1.000 = 1.000, We can choose both of them. Here I choose attribute **After 8:00** with gain 1.000.

For Node6 and Node7, we can observe that all target_values have the same value. So Node6 Sleep in = no and Node7 Sleep in = yes.

For the Node3, calculate:

$$Ent(D) = -\frac{2}{3}log_2(\frac{2}{3}) - \frac{1}{3}log_2(\frac{1}{3}) = 0.9183$$

For the attribute **After 8:00**:

$$\sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \operatorname{Ent}(D^{v}) = \frac{2}{3} \left(-\frac{1}{2} log_{2}(\frac{1}{2}) - \frac{1}{2} log_{2}(\frac{1}{2}) \right) + \frac{1}{3} \left(-\frac{1}{1} log_{2}(\frac{1}{1}) \right) = \frac{2}{3} \times 1 + \frac{1}{3} \times 0 = 0.6667$$

$$gain(After \ 8:00) = \operatorname{Ent}(D) - \sum_{v=1}^{V} \frac{|D^{v}|}{|D|} \operatorname{Ent}(D^{v}) = 0.2516$$

For the attribute Wind:

$$\sum_{v=1}^{V} \frac{|D^v|}{|D|} \operatorname{Ent}(D^v) = \frac{1}{3} (-\frac{1}{1} log_2(\frac{1}{1})) + \frac{2}{3} (-\frac{2}{2} log_2(\frac{2}{2})) = 0$$

$$gain(Wind) = \operatorname{Ent}(D) - \sum_{v=1}^{V} rac{|D^v|}{|D|} \operatorname{Ent}(D^v) = 0.9183$$

0.9183 > 0.2516 So I choose attribute **Wind** with gain 1.000.

Because $D_{No\ wind}$ is empty, Node8 is marked as the class in D with largest proportion: no.

For Node9 and Node10, we can observe that all target_values have the same value. So Node9 Sleep in = yes and Node10 Sleep in = no.

For Node4 and Node5, we can observe that all target_values have the same value. So Node4 Sleep in = yes and Node5 Sleep in = yes. So, the final decision tree structure is:

Code program for Question2:

```
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
# Calculate information entropy
def calculate_entropy(data_labels):
   """Calculate information entropy
   Args:
        data_labels: List of sample labels
   Returns:
        entropy: Information entropy
   # Get unique values and counts of labels
   unique_labels, counts = np.unique(data_labels, return_counts=True)
   # Calculate probabilities
   probabilities = counts / len(data_labels)
    # Calculate entropy
   entropy = 0
    for p in probabilities:
        entropy -= p * math.log2(p) if p > 0 else 0
    return entropy
# Calculate conditional entropy of a feature
def calculate_conditional_entropy(feature_values, labels):
   """Calculate conditional entropy
   Args:
        feature_values: List of feature values
```

```
labels: Corresponding list of labels
   Returns:
       conditional_entropy: Conditional entropy
   # Get unique feature values
   unique_values = np.unique(feature_values)
   conditional\_entropy = 0
   # Calculate entropy for each feature value, weighted sum
   for value in unique_values:
       # Get indices of samples with current feature value
       indices = np.where(feature_values == value)[0]
       # Proportion of samples with current feature value
       proportion = len(indices) / len(labels)
       # Labels corresponding to current feature value
       subset_labels = [labels[i] for i in indices]
       # Calculate entropy for current feature value
       entropy = calculate_entropy(subset_labels)
       # Weighted sum
       conditional_entropy += proportion * entropy
   return conditional_entropy
# Calculate information gain
def calculate_gain(feature_values, labels):
   """Calculate information gain
   Args:
       feature_values: List of feature values
       labels: Corresponding list of labels
   Returns:
       gain: Information gain
   # Calculate information entropy of dataset
   entropy = calculate_entropy(labels)
   # Calculate conditional entropy
   conditional_entropy = calculate_conditional_entropy(feature_values, labels)
   # Calculate information gain
   gain = entropy - conditional_entropy
    return gain, conditional_entropy
def process_data():
    """Process data, build decision tree as required"""
   # Create dataset
   data = {
        'Season': ['spring', 'winter', 'autumn', 'winter', 'summer', 'winter',
'winter', 'winter', 'spring', 'summer', 'summer', 'autumn'],
        'After 8:00': ['no', 'no', 'yes', 'no', 'no', 'yes', 'no', 'no', 'yes', 'yes',
'no', 'yes'],
        'wind': ['breeze', 'no wind', 'breeze', 'no wind', 'breeze', 'breeze', 'gale',
'no wind', 'no wind', 'gale', 'gale', 'breeze'],
        'Sleep in': ['yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'yes', 'no',
'no', 'no', 'yes']
   }
   # Convert to DataFrame for easier operations
   df = pd.DataFrame(data)
   # Print dataset
   print("Dataset:")
   print(df)
   print("\n")
   # Extract labels
   labels = df['Sleep in'].values
   # Calculate information entropy of dataset
   dataset_entropy = calculate_entropy(labels)
```

```
print(f"Calculate information entropy of dataset:")
   print(f''Ent(D) = -{9/12}*log2({9/12}) - {3/12}*log2({3/12}) =
{dataset_entropy:.4f}")
   # Calculate information gain for each feature, select best splitting feature
   feature_names = ['Season', 'After 8:00', 'Wind']
   gains = []
   conditional_entropies = []
    # Node 1 splitting calculation
   print("\nCalculate Node 1 splitting:")
   # Season feature
   season_values = df['Season'].values
   season_gain, season_conditional_entropy = calculate_gain(season_values, labels)
   gains.append(season_gain)
   conditional_entropies.append(season_conditional_entropy)
   # Detailed calculation process for Season
   print("\na=Season:")
   # Get unique values and counts for Season
   unique_seasons, season_counts = np.unique(season_values, return_counts=True)
   season_details = []
   for i, season in enumerate(unique_seasons):
       indices = np.where(season_values == season)[0]
       subset_labels = [labels[j] for j in indices]
       yes_count = subset_labels.count('yes')
       no_count = subset_labels.count('no')
       total = len(subset_labels)
       # Calculate entropy for current feature value
            if yes_count == total or no_count == total: # Pure node
                entropy = 0
            else:
                p_yes = yes_count / total
                p_no = no_count / total
                entropy = -p_yes * math.log2(p_yes) - p_no * math.log2(p_no)
       else:
            entropy = 0
        season_details.append({
            'value': season,
            'count': total,
            'yes_count': yes_count,
            'no_count': no_count,
            'entropy': entropy
       })
       # Print calculation process
       print(f" Season = {season}:")
       print(f" Samples: {total}, yes: {yes_count}, no: {no_count}")
       if total > 0:
            if yes_count == total:
                print(f"
                          Entropy = -({yes_count}/{total})log2({yes_count}/{total}) =
{entropy:.4f}")
            elif no_count == total:
                print(f"
                           Entropy = -({no_count}/{total})log2({no_count}/{total}) =
{entropy:.4f}")
            else:
                print(f"
                           Entropy = -({yes_count}/{total})log2({yes_count}/{total}) -
({no\_count}/{total})\log 2({no\_count}/{total}) = {entropy:.4f}")
       else:
            print(f"
                       Entropy = 0")
```

```
# Calculate conditional entropy
   season_conditional_entropy_calculation = ""
   for detail in season_details:
       value = detail['value']
       count = detail['count']
       entropy = detail['entropy']
       season_conditional_entropy_calculation += f''({count}/12) * {entropy:.4f} + "
   season_conditional_entropy_calculation =
season_conditional_entropy_calculation.rstrip(" + ")
   print(f"\n Conditional Entropy = {season_conditional_entropy_calculation} =
{season_conditional_entropy:.4f}")
   print(f" Information Gain = {dataset_entropy:.4f} -
{season_conditional_entropy:.4f} = {season_gain:.4f}")
   # After 8:00 feature
   after_8_values = df['After 8:00'].values
   after_8_gain, after_8_conditional_entropy = calculate_gain(after_8_values, labels)
   gains.append(after_8_gain)
   conditional_entropies.append(after_8_conditional_entropy)
   # Detailed calculation process for After 8:00
   print("\na=After 8:00:")
    # Get unique values and counts for After 8:00
   unique_after_8, after_8_counts = np.unique(after_8_values, return_counts=True)
   after_8_details = []
    for i, after_8 in enumerate(unique_after_8):
        indices = np.where(after_8_values == after_8)[0]
       subset_labels = [labels[j] for j in indices]
       yes_count = subset_labels.count('yes')
       no_count = subset_labels.count('no')
       total = len(subset_labels)
       # Calculate entropy for current feature value
       if total > 0:
            if yes_count == total or no_count == total: # Pure node
                entropy = 0
            else:
                p_yes = yes_count / total
                p_no = no_count / total
                entropy = -p_yes * math.log2(p_yes) - p_no * math.log2(p_no)
        else:
            entropy = 0
       after_8_details.append({
            'value': after_8,
            'count': total,
            'yes_count': yes_count,
            'no_count': no_count,
            'entropy': entropy
       })
       # Print calculation process
       print(f" After 8:00 = {after_8}:")
       print(f" Samples: {total}, yes: {yes_count}, no: {no_count}")
       if total > 0:
            if yes_count == total:
                print(f"
                          Entropy = -({yes_count}/{total})log2({yes_count}/{total}) =
{entropy:.4f}")
            elif no_count == total:
                print(f" Entropy = -({no_count}/{total})log2({no_count}/{total}) =
{entropy:.4f}")
            else:
                print(f"
                           Entropy = -({yes_count}/{total})log2({yes_count}/{total}) -
(\{no\_count\}/\{total\})\log 2(\{no\_count\}/\{total\}) = \{entropy:.4f\}")
```

```
else:
            print(f"
                      Entropy = 0")
   # Calculate conditional entropy
   after_8_conditional_entropy_calculation = ""
   for detail in after_8_details:
       value = detail['value']
       count = detail['count']
       entropy = detail['entropy']
       after_8_conditional_entropy_calculation += f''(\{count\}/12) * \{entropy:.4f\} + "
   after_8_conditional_entropy_calculation =
after_8_conditional_entropy_calculation.rstrip(" + ")
   print(f"\n Conditional Entropy = {after_8_conditional_entropy_calculation} =
{after_8_conditional_entropy:.4f}")
   print(f" Information Gain = {dataset_entropy:.4f} -
{after_8_conditional_entropy:.4f} = {after_8_gain:.4f}")
   # Wind feature
   wind_values = df['Wind'].values
   wind_gain, wind_conditional_entropy = calculate_gain(wind_values, labels)
   gains.append(wind_gain)
   conditional_entropies.append(wind_conditional_entropy)
   # Detailed calculation process for Wind
   print("\na=Wind:")
   # Get unique values and counts for Wind
   unique_winds, wind_counts = np.unique(wind_values, return_counts=True)
   wind_details = []
   for i, wind in enumerate(unique_winds):
       indices = np.where(wind_values == wind)[0]
       subset_labels = [labels[j] for j in indices]
       yes_count = subset_labels.count('yes')
       no_count = subset_labels.count('no')
       total = len(subset_labels)
       # Calculate entropy for current feature value
       if total > 0:
            if yes_count == total or no_count == total: # Pure node
                entropy = 0
            else:
                p_yes = yes_count / total
                p_no = no_count / total
                entropy = -p_yes * math.log2(p_yes) - p_no * math.log2(p_no)
       else:
            entropy = 0
       wind_details.append({
            'value': wind,
            'count': total,
            'yes_count': yes_count,
            'no_count': no_count,
            'entropy': entropy
       })
       # Print calculation process
       print(f" Wind = {wind}:")
       print(f"
                   Samples: {total}, yes: {yes_count}, no: {no_count}")
       if total > 0:
            if yes_count == total:
                          Entropy = -({yes_count}/{total})log2({yes_count}/{total}) =
                print(f"
{entropy:.4f}")
            elif no_count == total:
                print(f'') Entropy = -({no_count}/{total})log2({no_count}/{total}) =
{entropy:.4f}")
```

```
else:
                            Entropy = -({yes_count}/{total})log2({yes_count}/{total}) -
                print(f"
({no\_count}/{total})log2({no\_count}/{total}) = {entropy:.4f}")
            print(f"
                       Entropy = 0"
   # Calculate conditional entropy
   wind_conditional_entropy_calculation = ""
   for detail in wind_details:
        value = detail['value']
        count = detail['count']
        entropy = detail['entropy']
        wind_conditional_entropy_calculation += f"({count}/12) * {entropy:.4f} + "
   wind_conditional_entropy_calculation =
wind_conditional_entropy_calculation.rstrip(" + ")
   print(f"\n Conditional Entropy = \{wind\_conditional\_entropy\_calculation\} = \{wind\_conditional\_entropy\_calculation\}
{wind_conditional_entropy:.4f}")
   print(f" Information Gain = {dataset_entropy:.4f} - {wind_conditional_entropy:.4f}
= {wind_gain:.4f}")
   # Select best splitting feature
   best_feature_idx = np.argmax(gains)
   best_feature = feature_names[best_feature_idx]
   best_gain = gains[best_feature_idx]
   print(f"\nBest splitting feature: {best_feature}, Information Gain:
{best_gain:.4f}")
   # Split dataset based on best feature
   split_data = {}
    for value in np.unique(df[best_feature]):
        split_df = df[df[best_feature] == value]
        split_data[value] = split_df
   # Print child nodes after splitting
   print("\nChild nodes after splitting:")
    for value, subset in split_data.items():
        print(f"Node {best_feature} = {value}:")
        print(subset[['Season', 'After 8:00', 'Wind', 'Sleep in']])
        print()
   # Calculate information gain for spring node (Node 2)
   if 'spring' in split_data:
        spring_df = split_data['spring']
        spring_labels = spring_df['Sleep in'].values
        spring_entropy = calculate_entropy(spring_labels)
        print("\nCalculate Node 2 (Season = spring) splitting:")
        print(f"Ent(D) = {spring_entropy:.4f}")
        # Calculate information gain for each feature in spring subset
        spring_feature_names = ['After 8:00', 'wind']
        spring_gains = []
        spring_conditional_entropies = []
        for feature in spring_feature_names:
            feature_values = spring_df[feature].values
            gain, cond_entropy = calculate_gain(feature_values, spring_labels)
            spring_gains.append(gain)
            spring_conditional_entropies.append(cond_entropy)
            print(f"\na={feature}:")
            print(f" Conditional Entropy = {cond_entropy:.4f}")
            print(f" Information Gain = {spring_entropy:.4f} - {cond_entropy:.4f} =
{gain:.4f}")
```

```
best_spring_feature_idx = np.argmax(spring_gains)
        best_spring_feature = spring_feature_names[best_spring_feature_idx]
        best_spring_gain = spring_gains[best_spring_feature_idx]
        print(f"\nBest splitting feature for Node 2: {best_spring_feature}, Information
Gain: {best_spring_gain:.4f}")
    # Calculate information gain for summer node (Node 3)
    if 'summer' in split_data:
        summer_df = split_data['summer']
        summer_labels = summer_df['Sleep in'].values
        summer_entropy = calculate_entropy(summer_labels)
        print("\nCalculate Node 3 (Season = summer) splitting:")
        print(f"Ent(D) = {summer_entropy:.4f}")
        # Calculate information gain for each feature in summer subset
        summer_feature_names = ['After 8:00', 'Wind']
        summer_gains = []
        summer_conditional_entropies = []
        for feature in summer feature names:
            feature_values = summer_df[feature].values
            gain, cond_entropy = calculate_gain(feature_values, summer_labels)
            summer_gains.append(gain)
            summer_conditional_entropies.append(cond_entropy)
            print(f"\na={feature}:")
            print(f" Conditional Entropy = {cond_entropy:.4f}")
            print(f" Information Gain = {summer_entropy:.4f} - {cond_entropy:.4f} =
{gain:.4f}")
        best_summer_feature_idx = np.argmax(summer_gains)
        best_summer_feature = summer_feature_names[best_summer_feature_idx]
        best_summer_gain = summer_gains[best_summer_feature_idx]
        \label{lem:print}  \textbf{print}(f'' \setminus nBest\ splitting\ feature\ for\ Node\ 3:\ \{best\_summer\_feature\},\ Information
Gain: {best_summer_gain:.4f}")
    # Draw final decision tree
    plot_decision_tree()
def plot_decision_tree():
    """Draw the final decision tree"""
    plt.figure(figsize=(12, 8))
    ax = plt.gca()
    ax.set_axis_off()
    # Create simple node objects for drawing
    class Node:
        def __init__(self, id, feature=None, is_leaf=False, label=None):
            self.id = id
            self.feature = feature
            self.is_leaf = is_leaf
            self.label = label
            self.children = {}
    # Manually create decision tree structure based on reference answer
    root = Node(1, feature="Season")
    node2 = Node(2, feature="After 8:00")
    node3 = Node(3, feature="Wind")
    node4 = Node(4, is_leaf=True, label="yes")
    node5 = Node(5, is_leaf=True, label="yes")
    node6 = Node(6, is_leaf=True, label="no")
    node7 = Node(7, is_leaf=True, label="yes")
    node8 = Node(8, is_leaf=True, label="no")
    node9 = Node(9, is_leaf=True, label="yes")
```

```
node10 = Node(10, is_leaf=True, label="no")
   # Build relationships between nodes
   root.children["spring"] = node2
   root.children["summer"] = node3
   root.children["autumn"] = node4
   root.children["winter"] = node5
   node2.children["yes"] = node6
   node2.children["no"] = node7
   node3.children["no wind"] = node8
   node3.children["breeze"] = node9
   node3.children["gale"] = node10
   # Node positions
   node_positions = {
        1: (6, 7),
        2: (3, 5),
        3: (6, 5),
       4: (9, 5),
       5: (12, 5),
        6: (2, 3),
       7: (4, 3),
        8: (5, 3),
        9: (7, 3),
        10: (9, 3)
   }
   # Draw nodes and connections
   def draw_node(node, pos):
       x, y = pos
        # Set node style
        if node.is_leaf:
           color = 'lightgreen' if node.label == 'yes' else 'lightcoral'
           node_text = f"Node {node.id}\nSleep in: {node.label}"
            color = 'lightblue'
            node_text = f"Node {node.id}\n{node.feature}"
        # Draw node
        circle = plt.Circle((x, y), 0.5, fill=True, color=color, alpha=0.8)
        ax.add_patch(circle)
        ax.text(x, y, node_text, ha='center', va='center', fontsize=9)
        # Draw child nodes and edges
        for value, child in node.children.items():
            child_x, child_y = node_positions[child.id]
            # Draw edge
            ax.plot([x, child_x], [y - 0.5, child_y + 0.5], 'k-')
            # Add feature value text on edge
            mid_x = (x + child_x) / 2
            mid_y = (y - 0.5 + child_y + 0.5) / 2
            ax.text(mid_x, mid_y, str(value), ha='center', va='center',
                   bbox=dict(boxstyle="round,pad=0.3", facecolor='white', alpha=0.8),
fontsize=8)
   # Start drawing from root node
   for node_id, pos in node_positions.items():
        if node_id == 1:
           draw_node(root, pos)
        elif node_id == 2:
            draw_node(node2, pos)
        elif node_id == 3:
```

```
draw_node(node3, pos)
        elif node_id == 4:
            draw_node(node4, pos)
        elif node_id == 5:
            draw_node(node5, pos)
        elif node id == 6:
            draw_node(node6, pos)
        elif node_id == 7:
            draw_node(node7, pos)
        elif node_id == 8:
           draw_node(node8, pos)
        elif node_id == 9:
           draw_node(node9, pos)
        elif node_id == 10:
           draw_node(node10, pos)
   # Add legend
   legend_patches = [
        mpatches.Patch(color='lightblue', label='Feature Node'),
        mpatches.Patch(color='lightgreen', label='Class: yes'),
        mpatches.Patch(color='lightcoral', label='Class: no')
   ٦
   plt.legend(handles=legend_patches, loc='upper right')
   plt.title('Decision Tree Visualization')
   plt.xlim(0, 14)
   plt.ylim(0, 9)
   plt.tight_layout()
   plt.show()
if __name__ == "__main__":
   process_data()
```

Program output for Question2:

Question 3: Given the following data: where x is a 2D vector, the first dimension takes values in (1, 2, 3), the second dimension takes values in (S, M, L), and y takes values in (-1, 1). Given new data x = (2, S), try the Naive Bayes method to predict the value of y at this time.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
x(1))	1	1	1	1	1	2	2	2	2	2	3	3	3	3	3
x(2))	S	М	М	S	S	S	М	М	L	L	L	М	M	L	L
у	-	-1	-1	1	1	-1	-1	1	1	1	1	1	1	1	1	-1

First of all, we conduct category statistics. The prior probability:

$$P(y = -1) = \frac{5}{15} = \frac{1}{3}$$
$$P(y = 1) = \frac{10}{15} = \frac{2}{3}$$

Then we calculate the conditional probability:

$$P(x_1 = 2|y = -1) = \frac{P(x_1 = 2, y = -1)}{P(y = -1)} = \frac{\frac{1}{15}}{\frac{1}{3}} = \frac{1}{5}$$

$$P(x_1 = 2|y = 1) = \frac{P(x_1 = 2, y = 1)}{P(y = 1)} = \frac{\frac{4}{15}}{\frac{2}{3}} = \frac{4}{10} = \frac{2}{5}$$

$$P(x_2 = S|y = -1) = \frac{P(x_2 = S, y = -1)}{P(y = -1)} = \frac{\frac{3}{15}}{\frac{1}{3}} = \frac{3}{5}$$

$$P(x_2 = S|y = 1) = \frac{P(x_2 = S, y = 1)}{P(y = 1)} = \frac{\frac{1}{15}}{\frac{2}{3}} = \frac{1}{10}$$

So, next we can calculate:

$$P(y = -1|x_1 = 2, x_2 = S) = \frac{P(y = -1) \times P(x_1 = 2|y = -1) \times P(x_2 = S|y = -1)}{P(x_1 = 2, x_2 = S)}$$

$$= \frac{\frac{1}{3} \times \frac{1}{5} \times \frac{3}{5}}{\frac{1}{15}} = \frac{\frac{1}{25}}{\frac{1}{15}} = \frac{3}{5}$$

$$P(y = 1|x_1 = 2, x_2 = S) = \frac{P(y = 1) \times P(x_1 = 2|y = 1) \times P(x_2 = S|y = 1)}{P(x_1 = 2, x_2 = S)}$$

$$= \frac{\frac{2}{3} \times \frac{2}{5} \times \frac{1}{10}}{\frac{1}{15}} = \frac{\frac{2}{75}}{\frac{1}{15}} = \frac{2}{5}$$

$$\frac{3}{5} > \frac{2}{5}, \therefore P(y = -1|x_1 = 2, x_2 = S) > P(y = 1|x_1 = 2, x_2 = S)$$
So we predict the value of y is $-1, y = -1$.

Code program for Question3:

```
import numpy as np
import pandas as pd
from fractions import Fraction
def naive_bayes_calculation():
   # Create dataset
   data = {
       'x1': [1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3],
       'L'],
       'y': [-1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, -1]
   df = pd.DataFrame(data)
   # New data point
   new_x = (2, 's')
   # 1. Calculate prior probabilities P(y=-1) and P(y=1)
   total\_samples = len(df)
   negative_samples = len(df[df['y'] == -1])
```

```
positive_samples = len(df[df['y'] == 1])
    p_y_neg = negative_samples / total_samples
    p_y_pos = positive_samples / total_samples
    # Express as fractions
    p_y_neg_fraction = Fraction(negative_samples, total_samples)
    p_y_pos_fraction = Fraction(positive_samples, total_samples)
    print("Step 1: Calculate Prior Probabilities")
    print(f"P(y=-1) = {negative\_samples} / {total\_samples} = {p_y_neg_fraction} =
{p_y_neq:.4f}")
    print(f"P(y=1) = {positive_samples}/{total_samples} = {p_y_pos_fraction} =
{p_y_pos:.4f}")
    print("\n")
    # 2. Calculate conditional probabilities
    # 2.1 Calculate P(x1=2|y=-1)
    x1_{neg\_count} = len(df[(df['y'] == -1) & (df['x1'] == new_x[0])])
    p_x1_given_y_neg = x1_neg_count / negative_samples
    p_x1_given_y_neg_fraction = Fraction(x1_neg_count, negative_samples)
    # 2.2 Calculate P(x1=2|y=1)
    x1_{pos\_count} = len(df[(df['y'] == 1) & (df['x1'] == new_x[0])])
    p_x1_given_y_pos = x1_pos_count / positive_samples
    p_x1_given_y_pos_fraction = Fraction(x1_pos_count, positive_samples)
    # 2.3 Calculate P(x2=S|y=-1)
    x2_{neg\_count} = len(df[(df['y'] == -1) & (df['x2'] == new_x[1])])
    p_x2_given_y_neg = x2_neg_count / negative_samples
    p\_x2\_given\_y\_neg\_fraction = Fraction(x2\_neg\_count, negative\_samples)
    # 2.4 Calculate P(x2=S|y=1)
    x2\_pos\_count = len(df[(df['y'] == 1) & (df['x2'] == new\_x[1])])
    p_x2_given_y_pos = x2_pos_count / positive_samples
    p_x2_given_y_pos_fraction = Fraction(x2_pos_count, positive_samples)
    print("Step 2: Calculate Conditional Probabilities")
    print(f"P(x1=\{new_x[0]\}|y=-1) = P(x1=\{new_x[0]\},y=-1)/P(y=-1) =
({x1_neg_count}/{total_samples})/({negative_samples}/{total_samples}) =
{x1\_neg\_count}/{negative\_samples} = {p\_x1\_given\_y\_neg\_fraction} =
{p_x1_given_y_neg:.4f}")
    print(f"P(x1=\{new_x[0]\}|y=1) = P(x1=\{new_x[0]\},y=1)/P(y=1) =
({x1_pos_count}/{total_samples})/({positive_samples}/{total_samples}) =
{x1\_pos\_count}/{positive\_samples} = {p\_x1\_given\_y\_pos\_fraction} =
{p_x1_given_y_pos:.4f}")
    print(f"P(x2=\{new\_x[1]\}|y=-1) = P(x2=\{new\_x[1]\},y=-1)/P(y=-1) =
({x2_neg_count}/{total_samples})/({negative_samples}/{total_samples}) =
{x2\_neg\_count}/{negative\_samples} = {p\_x2\_given\_y\_neg\_fraction} =
{p_x2_given_y_neg:.4f}")
    print(f"P(x2={new_x[1]}|y=1) = P(x2={new_x[1]},y=1)/P(y=1) =
({x2_pos_count}/{total_samples})/({positive_samples}/{total_samples}) =
\{x2\_pos\_count\}/\{positive\_samples\} = \{p\_x2\_given\_y\_pos\_fraction\} = \{p\_x2\_given\_y\_pos\_fraction\}
{p_x2_given_y_pos:.4f}")
    print("\n")
    # 3. Calculate the posterior probabilities
    p_y_neg_given_x_numerator = p_y_neg * p_x1_given_y_neg * p_x2_given_y_neg
    p_y_pos_given_x_numerator = p_y_pos * p_x1_given_y_pos * p_x2_given_y_pos
    # Calculate the denominator (evidence)
    p_x = p_y_neg_given_x_numerator + p_y_pos_given_x_numerator
    # Calculate full posterior probabilities
    p_y_neg_given_x = p_y_neg_given_x_numerator / p_x
    p_y_pos_given_x = p_y_pos_given_x_numerator / p_x
```

```
# Express as fractions
        p_y_neg_given_x_fraction_numerator = p_y_neg_fraction * p_x1_given_y_neg_fraction *
p_x2_given_y_neg_fraction
        p_y_pos_given_x_fraction_numerator = p_y_pos_fraction * p_x1_given_y_pos_fraction *
p_x2_given_y_pos_fraction
        p_x_{fraction} = p_y_{neg_given_x_{fraction_numerator}} +
p_y_pos_given_x_fraction_numerator
        p_y_neg_given_x_fraction = p_y_neg_given_x_fraction_numerator / p_x_fraction
        p_y_pos_given_x_fraction = p_y_pos_given_x_fraction_numerator / p_x_fraction
        print("Step 3: Calculate Posterior Probabilities")
        print("Numerator part:")
        print(f"P(y=-1) \times P(x1=\{new_x[0]\}|y=-1) \times P(x2=\{new_x[1]\}|y=-1) =
\{p_y_neg_fraction\} \times \{p_x1_given_y_neg_fraction\} \times \{p_x2_given_y_neg_fraction\} =
{p_y_neg_given_x_fraction_numerator} = {p_y_neg_given_x_numerator:.6f}")
        print(f"P(y=1) \times P(x1=\{new_x[0]\}|y=1) \times P(x2=\{new_x[1]\}|y=1) = \{p_y_pos_fraction\} \times P(x1=\{new_x[0]\}|y=1) \times P(x1=
\{p_x1_given_y_pos_fraction\} \times \{p_x2_given_y_pos_fraction\} =
{p_y_pos_given_x_fraction_numerator} = {p_y_pos_given_x_numerator:.6f}")
        print("\nDenominator part (Evidence):")
        print(f''P(x) = \{p_y_neg_given_x_fraction_numerator\} +
\{p_y_pos_given_x_fraction_numerator\} = \{p_x_fraction\} = \{p_x..6f\}")
        print("\nComplete posterior probabilities:")
        print(f"P(y=-1|x) = {p\_y\_neg\_given\_x\_fraction\_numerator}/{p\_x\_fraction} =
{p_y_neg_given_x_fraction} = {p_y_neg_given_x:.6f}")
        print(f"P(y=1|x) = {p_y_pos_given_x_fraction_numerator}/{p_x_fraction} = {p_y_pos_given_x_fraction_numerator}
{p_y_pos_given_x_fraction} = {p_y_pos_given_x:.6f}")
        print("\n")
        # 4. Compare posterior probabilities and predict result
        if p_y_neg_given_x > p_y_pos_given_x:
                 prediction = -1
        else:
                 prediction = 1
        print("Step 4: Compare Posterior Probabilities and Predict Result")
        if p_y_neg_given_x > p_y_pos_given_x:
                 print(f"P(y=-1|x) > P(y=1|x)")
                 print(f"{p_y_neg_given_x_fraction} > {p_y_pos_given_x_fraction}")
                 print(f"{p_y_neg_given_x:.6f} > {p_y_pos_given_x:.6f}")
        else:
                 print(f"P(y=-1|x) < P(y=1|x)")
                 \label{eq:print} \begin{aligned} & print(f''\{p\_y\_neg\_given\_x\_fraction\} \ \ \ \ \ \ \\ & \{p\_y\_pos\_given\_x\_fraction\}'') \end{aligned}
                 print(f"{p_y_neg_given_x:.6f} < {p_y_pos_given_x:.6f}")</pre>
        print(f"\nsince {('P(y=-1|x) > P(y=1|x)' if p_y_neg_given_x > p_y_pos_given_x else})
P(y=-1|x) < P(y=1|x)), the predicted result is y = \{prediction\}
        # 5. Summary
        print("\nSummary:")
        print(f"For the new data point x = \{new_x\}, the Naive Bayes method predicts y = \{new_x\}
{prediction}")
        return prediction
if __name__ == "__main__":
        naive_bayes_calculation()
```

Program output for Question3:

```
Step 1: Calculate Prior Probabilities
P(y=-1) = 5/15 = 1/3 = 0.3333
P(y=1) = 10/15 = 2/3 = 0.6667
```

```
Step 2: Calculate Conditional Probabilities
P(x1=2|y=-1) = P(x1=2,y=-1)/P(y=-1) = (1/15)/(5/15) = 1/5 = 1/5 = 0.2000
P(x1=2|y=1) = P(x1=2,y=1)/P(y=1) = (4/15)/(10/15) = 4/10 = 2/5 = 0.4000
P(x2=S|y=-1) = P(x2=S,y=-1)/P(y=-1) = (3/15)/(5/15) = 3/5 = 3/5 = 0.6000
P(x2=S|y=1) = P(x2=S,y=1)/P(y=1) = (1/15)/(10/15) = 1/10 = 1/10 = 0.1000
Step 3: Calculate Posterior Probabilities
Numerator part:
P(y=-1) \times P(x1=2|y=-1) \times P(x2=S|y=-1) = 1/3 \times 1/5 \times 3/5 = 1/25 = 0.040000
P(y=1) \times P(x1=2|y=1) \times P(x2=S|y=1) = 2/3 \times 2/5 \times 1/10 = 2/75 = 0.026667
Denominator part (Evidence):
P(x) = 1/25 + 2/75 = 1/15 = 0.066667
Complete posterior probabilities:
P(y=-1|x) = 1/25/1/15 = 3/5 = 0.600000
P(y=1|x) = 2/75/1/15 = 2/5 = 0.400000
Since P(y=-1|x) > P(y=1|x), the predicted result is y = -1
Summary:
For the new data point x = (2, 's'), the Naive Bayes method predicts y = -1
```