Contents

1	Topological Spaces and Continuous Maps	2
	1.1 Elementary Topology	2
	1.2 Topological Bases	
	1.3 Subspaces	
	1.4 Continuous Maps	
	1.5 Examples of Homeomorphisms	
	Examples of Topological Spaces	
	2.1 Products of Topological Spaces	
	2.2 Quotient Spaces	

Contents 1

1 Topological Spaces and Continuous Maps

1.1 Elementary Topology

Given an inner product on an \mathbb{R} -vector space $\langle \cdot, \cdot \rangle$, one can define a norm $\|x\| = \sqrt{\langle x, x \rangle}$. Given a norm, one can define a metric $d(x,y) = \|x-y\|$. Given a metric d on a set X, one can define open sets in X:

given $a \in X$ and r > 0, $B(a,r) := \{x \in X \mid d(x,a) < r\}$. Then for $A \subseteq X$, we say A is open in X when $\forall a \in A \exists r > 0$ such that $B(a,r) \subseteq A$. Equivalently, for all $a \in A$, there is $b \in X$, r > 0 such that $a \in B(b,r) \subseteq A$.

Remark

The set of open sets on a metric space is called the *metric topology* on X.

Open sets in a metric space satisfy the following:

- 1. \emptyset and X are open
- 2. arbitrary unions of open sets are open
- 3. finite intersections of open sets are open

Notation

For a set of sets S, the union of S is

$$\bigcup S \coloneqq \{x \,|\, \exists A \in S, x \in A\} = \bigcup_{A \in S} A$$

In the case that $S \neq \emptyset$, the intersection of S is

$$\bigcap S \coloneqq \{x \,|\, \forall A \in S, x \in A\} = \bigcap_{A \in S} A$$

Note

 $\bigcap S$ would contain all elements as the condition $\forall A \in \emptyset$ would be vacuously satisfied. If we are given a universal set X, and S is known to be a set of subsets of X, then $\bigcap \emptyset = X$.

Definition 1.1.1

Let *X* be a set. $\mathcal{T} \subseteq \mathcal{P}(X)$ is called a *topology* on *X* if

- 1. $\emptyset, X \in \mathcal{T}$
- 2. If $S \subseteq \mathcal{T}$ is nonempty, then $| | S \in \mathcal{T}$
- 3. If $S \subseteq \mathcal{T}$ is nonempty and finite, then $\bigcap S \in \mathcal{T}$

The elements of \mathcal{T} are called the open sets of X. The closed sets are the compliments of the open sets.

Elementary Topology

Remark

To show 3 holds, it suffices to show the intersection of 2 open sets is open (by induction)

Definition 1.1.2

If X is a set, and \mathcal{T} is a topology on X, then (X,\mathcal{T}) is called a *topological* space

Remark

When $f: X \to Y$ is a map between metric spaces, f is continuous iff $f^{-1}(V)$ is open in X for every open set $V \subseteq Y$.

Definition 1.1.3

For a map $f: X \to Y$ between topological spaces, we say that f is continuous when $f^{-1}(V)$ is open in X for every open set $V \subseteq Y$.

Example 1.1.1

if $f:A\subseteq\mathbb{R}^n\longrightarrow B\subseteq\mathbb{R}^m$ is an elementary function, then f is continuous.

Definition 1.1.4

When S, T are topologies on X with $S \subseteq T$, we say that S is coarser than T and T is finer than S. When $S \subseteq T$, we use strictly coarser/finer.

Example 1.1.2

 $\{\emptyset, X\}$ is a topology on X called the *trivial topology*

Example 1.1.3

 $\mathcal{P}(X)$ is a topology on X called the *discrete topology*

Example 1.1.4

When $X = \emptyset$, $\mathcal{T} \subseteq \mathcal{P}(X) \Rightarrow \mathcal{T} \subseteq \{\emptyset\} \Rightarrow \mathcal{T} = \emptyset \lor \mathcal{T} = \{\emptyset\}$. Thus the only topology on \emptyset is $\{\emptyset\}$.

Example 1.1.5

When $X = \{a\}$ the only topology is $\mathcal{T} = \{\emptyset, \{a\}\}$

Exercise 1.1.1

Find all topologies on the 2 and 3 element sets.

Definition 1.1.5

Let X be a topological space. Let $A \subseteq X$.

- 1. The *interior* of A (in X) denoted by A° is the union of all open sets in X which are contained in A.
- 2. The *closure* of A denoted \overline{A} is the intersection of all closed sets in X which contain A.
- 3. The *boundary* of A, denoted by ∂A , given by $\partial A = \overline{A} \setminus A^{\circ}$

Note

The set of closed sets in a topological space is closed under arbitrary intersections and under finite unions. In particular \emptyset , X are closed

Theorem 1.1.1

Let X be a topological space, $A \subseteq X$.

- 1. A° is open, and is the largest open set which is contained in A
- 2. \overline{A} is closed, and is the smallest closed set which contains A
- 3. A is open iff $A = A^{\circ}$
- 4. A is closed iff $A = \overline{A}$
- 5. $\underline{A}^{\circ \circ} = A^{\circ}$
- 6. $\overline{A} = \overline{A}$

Definition 1.1.6

Let X be a topological space, let $A \subseteq X$, let $a \in X$.

- 1. We say that a is an $interior\ point$ of A when $a\in A$ and there is an open set U such that $a\in U\subseteq A$
- 2. We say that a is a *limit point* of A when for every open set $U \ni a$ we have $U \cap (A \setminus \{a\}) \neq \emptyset$. The set of limit points of A is denoted by A'
- 3. We say that a is a boundary point of A when every open set $U \ni a$, we have $U \cap A \neq \emptyset$ and $U \cap A^c \neq \emptyset$

Theorem 1.1.2

Let *X* be a topological space and let $A \subseteq X$.

- 1. A° is equal to the set of all interior points
- 2. For $a \in X$,

$$a \in A' \iff a \in \overline{A \setminus \{a\}}$$

- 3. A is closed iff $A' \subseteq A$
- 4. $\overline{A} = A \cup A'$
- 5. \overline{A} is the disjoint union

$$\overline{A} = A^{\circ} \sqcup \partial A$$

6. ∂A is equal to the set of boundary points of A

1.2 Topological Bases

Theorem 1.2.1

Let X be a set. Then the intersection of any set of topologies on X is also a topology on X.

Proof: Let $\{\mathcal{T}_{\alpha}\}_{\alpha\in I}$ be a collection of topologies on X. Let $\mathcal{T}=\bigcap_{\alpha}\mathcal{T}_{\alpha}$

- 1. Since $X, \emptyset \in \mathcal{T}_{\alpha}$ for all $\alpha \in I$. We have $X, \emptyset \in \mathcal{T}$
- 2. Let $\{U_i\} \subseteq \mathcal{T}$. For all $\alpha \in I$, we have each $U_i \in \mathcal{T}_{\alpha}$. Thus $\bigcup_i U_i \in \mathcal{T}_{\alpha} \Longrightarrow \bigcup_i U_i \in \mathcal{T}$ as desired.

3. Let $U_1,...,U_n\in\mathcal{T}$. Then again for all $\alpha\in I$, we have each $U_i\in\mathcal{T}_{\alpha}$. Thus $\bigcap_{i=1}^n U_i\in\mathcal{T}_{\alpha}\Longrightarrow\bigcap_{i=1}^n U_i\in\mathcal{T}$

Corollary 1.2.2

When X is a set and \mathcal{S} is any set of subsets of X (that is $S \subseteq \mathcal{P}(X)$), there is a unique smallest (coarsest) topology \mathcal{T} on X which contains \mathcal{S} . Indeed \mathcal{T} is the intersection of (the set of) all topologies on X containing \mathcal{S} .

This topology \mathcal{T} is called the topology on X generated by \mathcal{S}

Definition 1.2.1

Let X be a set. A *basis of sets* on X is a set \mathcal{B} of subsets of X (So $\mathcal{B} \subseteq \mathcal{P}(X)$) such that

- 1. \mathcal{B} covers X, that is $\bigcup \mathcal{B} = X$
- 2. For every $C, D \in \mathcal{B}$ and $a \in C \cap D$. There is $B \in \mathcal{B}$ such that $a \in B \subseteq C \cap D$.

When \mathcal{B} is a basis of sets in X and \mathcal{T} is the topology on X generated by \mathcal{B} , we say that \mathcal{B} is a basis for \mathcal{T} . The elements in \mathcal{B} are called basic open sets in X.

Topological Bases 5

Theorem 1.2.3

Characterization of Open Sets in Terms of Basic Open Sets

Let X be a topological space, Let \mathcal{B} be a basis for the topology on X.

- 1. For $A \subseteq X$, A is open iff for every $a \in A$, there is $B \in \mathcal{B}$ such that $a \in B \subseteq A^*$
- 2. The open sets in X are the unions of (sets of) elements in \mathcal{B}

Equivalently,

- 1. $\mathcal{T} = \{A \subseteq X \mid \forall a \in A, \exists B \in \mathcal{B} \ a \in B \subseteq A\}$
- 2. $\mathcal{T} = \{ \bigcup C \mid C \subseteq \mathcal{B} \}$

Proof: Let \mathcal{T} be the topology on X (generated by \mathcal{B}). Let \mathcal{S} be the set of all sets $A \subseteq X$ with property * ($\forall a \in A \exists B \in \mathcal{B} : a \in B \subseteq A$). And let \mathcal{R} be the set of (arbitrary) unions of (sets of) elements in \mathcal{B} . Recall that \mathcal{T} is the intersection of the set of all topologies on X which contain \mathcal{B} . Note that \mathcal{S} contains \mathcal{B} (obviously). Let us show that \mathcal{S} is a topology on X. We have $\emptyset \in \mathcal{S}$ vacuously and $X \in \mathcal{S}$ because \mathcal{B} covers X (given $a \in X$, we can choose $B \in \mathcal{B}$ with $a \in B$). When $U_k \in \mathcal{S}$ for every $k \in K$ (where K is any index set). Let $a \in \cup_k U_k$. Choose $\ell \in K$ so that $a \in U_\ell$. Since $U_\ell \in \mathcal{S}$, we can choose $B \in \mathcal{B}$ so that $a \in B \subseteq U_\ell$. Since $U_\ell \subseteq \bigcup_k U_k$, we have $a \in B \subseteq \bigcup_k U_k$. Thus $\bigcup_k U_k$ satisfies * , hence $\bigcup_k U_k \in \mathcal{S}$ as required. Suppose $U, V \in \mathcal{S}$ Let $a \in U \cap V$. Since $U \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{S}$ we can choose $C \in \mathcal{B}$ with $C \in \mathcal{C}$ with $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a basis, $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain $C \in \mathcal{C}$ where $C \in \mathcal{C}$ is a contain

$$a \in B \subset C \cap D \subset U \cap V$$

Thus $U\cap V$ satisfies * so that $U\cap V\in\mathcal{S}$ as required. Thus \mathcal{S} is a topology on X containing \mathcal{B} , hence $\mathcal{T}\subseteq\mathcal{S}$. Let us show that $\mathcal{S}\subseteq\mathcal{R}$ let $U\in\mathcal{S}$. For each $a\in U$, choose $B_a\in\mathcal{B}$ with $a\in B_a\subseteq U$. Then we have

$$U=\bigcup_{a\in U}B_a\in\mathcal{R}$$

Thus $\mathcal{S} \subseteq \mathcal{R}$. Finally note that $\mathcal{R} \subseteq \mathcal{T}$ because if $U = \bigcup_k B_k$ with $B_k \in \mathcal{B}$, then each $B_k \in \mathcal{T}$, and \mathcal{T} is a topology, so

$$U = \bigcup_{k \in K} B_k \in \mathcal{T}$$

Theorem 1.2.4

Characterization of a Basis in terms of the Open Sets

Let X be a topological space with topology \mathcal{T} . Let $\mathcal{B} \subseteq \mathcal{T}$. Then \mathcal{B} is a basis for \mathcal{T} iff $\forall U \in \mathcal{T} \forall a \in U \exists B \in \mathcal{B} \quad a \in B \subseteq U$. *

Proof: If \mathcal{B} is a basis for \mathcal{T} , then * holds by part 1 of the previous theorem. Suppose * holds. Let us show that \mathcal{B} is a basis of sets in X. Note that \mathcal{B} covers X since, taking U = X in * we have $\forall a \in X \exists B \in \mathcal{B} \quad a \in B \subseteq X$. Also note that given $C, D \in \mathcal{B}$ and $a \in C \cap D$, then by taking $U = C \cap D$ in * (noting that $C, D \in \mathcal{B} \subseteq \mathcal{T}$ so that $U = C \cap D \in \mathcal{T}$) we can choose $B \in \mathcal{B}$ with $a \in B \subseteq C \cap D$. Thus \mathcal{B} is a basis of sets in X. It remains to show that \mathcal{T} is the topology generated by \mathcal{B} . Let \mathcal{S} be the topology generated by \mathcal{B} . By part 1 of the previous theorem, S is the set of all unions of

Topological Bases 6

elements in \mathcal{B} . Also \mathcal{S} is the smallest topology which contains \mathcal{B} . Since $\mathcal{B} \subseteq \mathcal{T}$ and \mathcal{T} is a topology, we have $\mathcal{S} \subseteq \mathcal{T}$. Also we have $\mathcal{T} \subseteq \mathcal{S}$ because given $U \in \mathcal{T}$, by property *, for each $a \in U$, we can choose $B_a \in \mathcal{B}$ with $a \in B_a \subseteq U$, and then we have $U = \bigcup_{a \in U} B_a \in \mathcal{S}$ since it is a union of elements in \mathcal{B}

Example 1.2.1

When X is a metric space, the set \mathcal{B} of all open balls in X is a basis for the metric topology on X.

Remark

We can use a basis for testing various topological properties:

When X is a topological space, and \mathcal{B} is a basis for the topology on X, and $A\subseteq X$ and $a\in X$. Then

$$a \in A^{\circ} \iff \exists B \in \mathcal{B} \text{ with } a \in B \subseteq A$$

$$a \in \overline{A} \iff \forall B \in \mathcal{B} \text{ with } a \in B \quad B \cap A \neq \emptyset$$

$$a \in A' \iff \forall B \in \mathcal{B} \text{ with } a \in B \quad (B \setminus \{a\}) \cap A \neq \emptyset$$

$$a \in \partial A \iff \forall B \in \mathcal{B} \text{ with } a \in B \quad B \cap A \neq \emptyset \text{ and } B \cap (X \setminus A) \neq \emptyset$$

Definition 1.2.2

A topological space X is called *Hausdorff* when for all $a,b\in X$ with $a\neq b$, there exist disjoint open sets U and V in X with $a\in U$ and $b\in V$.

Example 1.2.2

Metric spaces are Hausdorff

Topological Bases 7

1.3 Subspaces

Definition 1.3.1

Subspace Topology

П

Let Y be a topological space with topology S, and $X \subseteq Y$ be a subset. Let

$$\mathcal{T} \coloneqq \{ V \cap X \,|\, V \in \mathcal{S} \}$$

Then \mathcal{T} is a topology on X:

Indeed $\emptyset \in \mathcal{S}$ so $\emptyset \cap X = \emptyset \in \mathcal{T}$ and $Y \in \mathcal{S}$ so $Y \cap X = X \in \mathcal{T}$. If K is any index set and $U_k \in \mathcal{T}$ for each $k \in K$, then for each $k \in K$ we can choose $V_k \in \mathcal{S}$ such that $U_k = V_k \cap X$ and then we have

$$\begin{split} \bigcup_{k \in K} U_k &= \bigcup_{k \in K} (V_k \cap X) \\ &= \left(\bigcup_{k \in K} V_k \right) \cap X \in \mathcal{T} \end{split}$$

since $\bigcup_{k \in K} V_k \in \mathcal{S}$. Similarly, when K is finite and $U_k \in \mathcal{T}$ for each $k \in K$ we have $\bigcap_{k \in K} U_k \in \mathcal{T}$ The topology \mathcal{T} on X is called the *subspace topology* on X (inherited from the topology on Y).

Theorem 1.3.1

Let Y be a topological space, let \mathcal{C} be a basis for the topology on Y. Let $X \subseteq Y$ be a subset. Then the set

$$\mathcal{B} = \{ C \cap X \, | \, C \in \mathcal{C} \}$$

is a basis for the subspace topology on X.

Proof: Exercise

Theorem 1.3.2

Let Z be a topological space, let $Y \subseteq Z$ be a subspace and $X \subseteq Y$ be a subset. Then the subspace topology on X inherited from Y is equal to the subspace topology on X inherited from Z.

Proof: Exercise

Theorem 1.3.3

Let Y be a metric space, (using the metric topology) and let $X \subseteq Y$. Then the subspace topology on X (inherited from the topology on Y) is equal to the metric topology on X using the metric on X obtained by restricting the metric on Y.

Proof: Exercise

Subspaces 8

1.4 Continuous Maps

Definition 1.4.1

Let X, Y be topological spaces.

- 1. For $f: X \to Y$ and $a \in X$, we say that f is *continuous at* a when for every open set $V \subseteq Y$ with $f(a) \in V$, there exists an open set $U \subseteq X$ with $a \in U \subseteq f^{-1}(V)$.
- 2. We say that f is *continuous* (in or on X) when for every open set $V \subseteq Y$, $f^{-1}(V)$ is open in X.
- 3. A homeomorphism from X to Y is is a bijective map $f: X \to Y$ such that both f and its inverse $f^{-1}: Y \to X$ are continuous. We say that X and Y are homeomorphic, and we write $X \cong Y$, when there exists a homeomorphism $f: X \to Y$. (and we remark that $f^{-1}: Y \to X$ is also a homeomorphism).

Theorem 1.4.1

Constant maps and inclusion maps are continuous.

Proof: For $f: X \to Y$ given by $f(x) = c \in Y$ for all $x \in X$. When V is open in Y,

$$f^{-1}(V) = \begin{cases} X \text{ if } c \in V \\ \emptyset \text{ if } c \not\in V \end{cases}$$

When $X \subseteq Y$ is a subspace and $f: X \to Y$ is given by f(x) = x for all $x \in X$, when V is open in Y.

$$f^{-1}(V) = \{x \in X \mid f(x) \in V\}$$
$$= \{x \in X \mid x \in V\}$$
$$= V \cap X$$

which is open in X. (when X uses the subspace topology)

Remark

When Y is a topological space and $X \subseteq Y$ we shall assume, unless otherwise noted, that X uses the subspace topology.

Theorem 1.4.2

Equivalent Definitions of Continuity

Let $f: X \to Y$ be a map between topological spaces

- 1. f is continuous iff f is continuous at every $a \in X$
- 2. f is continuous iff for every closed set $K \subseteq Y$, $f^{-1}(K)$ is closed in X.
- 3. If \mathcal{C} is a basis for the topology on Y then f is continuous iff for every $C \in \mathcal{C}$, $f^{-1}(C)$ is open in X.

Proof of 1: Suppose f is continuous on X. Let $a \in X$. Let V be an open set in Y with $f(a) \in V$. Let $U = f^{-1}(V)$, then $f^{-1}(V)$ is open, since f is continuous and $a \in U \subseteq f^{-1}(V)$. Suppose, conversely, that f is continuous at every $a \in X$. Let V be an open set in Y. For each $a \in f^{-1}(V)$ since f is continuous at a with $f(a) \in V$, we can choose an open set U_a in X with $a \in U_a \subseteq f^{-1}(V)$. Then

Continuous Maps 9

$$f^{-1}(V)=\bigcup_{a\in f^{-1}(V)}U_a$$

which is open in X, since it is a union in open sets in X.

Theorem 1.4.3

Let $f:X\to Y, g:Y\to Z$ be continuous maps between topological spaces, then the composite map $h=g\circ f:X\to Z$ is continuous.

Proof: Show that $h^{-1}(W) = f^{-1}(g^{-1}(W))$

Remark

Homeomorphism of topological spaces behaves like an equivalence relation on the class of all topological spaces. For topological spaces X, Y, Z

- 1. $X \cong X$ (since id_X is a homeomorphism a special case of the inclusion map)
- 2. If $X \cong Y$ then $Y \cong X$ (when $f: X \to Y$ is a homeomorphism, so is $f^{-1}: Y \to X$)
- 3. If $X\cong Y\cong Z$ then $X\cong Z$ (if $f:X\to Y,g:Y\to Z$ are homeomorphisms then so is $g\circ f$)

Theorem 1.4.4 Restriction of Domain and Restriction or Expansion of Codomain

Let X, Y, Z be topological spaces. Suppose $f: X \to Y$ is continuous.

- 1. For any subspace $A \subseteq X$, the restriction $f|_A : A \to Y$ is continuous.
- 2. If $Y \subseteq Z$ is a subspace then $f: Y \to Z$ is continuous and if $B \subseteq Y$ with $f(X) \subseteq B$, then $f: X \to B$ is continuous.

Proof: Exercise

Lemma 1.4.5

Glueing/Pasting Lemma

Let $f: X \to Y$ be a map between topological spaces

- 1. If $X = \bigcup_{k \in K} U_k$ where each U_k is open in X and if each restriction map $f|_{U_k} : U_k \to y$ is continuous (where U_k is using the subspace topology), then f is continuous.
- 2. If $X = C_1 \cup \cdots \cup C_n$ where each C_k is closed in X, and if each restriction $f|_{C_k} : C_k \to Y$ is continuous, then f is continuous.

Proof of 1: Suppose $X = \bigcup_{k \in K} U_k$ where each U_k is open in X and suppose each restriction $f|_{U_k}$ is continuous. Let $V \subseteq Y$ be open. Note that

Continuous Maps 10

$$\begin{split} f^{-1}(V) &= \{x \in X \,|\, f(x) \in V\} \\ &= \bigcup_{k \in K} \{x \in U_k \,|\, f(x) \in V\} \\ &= \bigcup_{k \in K} \left\{x \in U_k \,\big|\, f|_{U_k}(x) \in V\right\} \\ &= \bigcup_{k \in K} f|_{U_k}^{-1}(V) \end{split}$$

For each $k \in K$, since $f|_{U_k}$ is continuous, we know that $f|_{U_k}^{-1}(V)$ is open in U_k . Since U_k is using the subspace topology, we can choose an open W_k in X such that $f|_{U_k}^{-1}(V) = W_k \cap U_k$. This is open in X since W_k and U_k are both open in X. Since $f^{-1}(V) = \bigcup_{k \in K} f|_{U_k}^{-1}(V)$ it is a union of open sets in X, so it is open in X. Thus f is continuous.

Proof of 2: Exercise. First show that for $f: X \to Y$, f is continuous iff $f^{-1}(C)$ is closed in X for every closed set C in Y. And, show that when $A \subseteq X \subseteq Y$, A is closed in X (using the subspace topology from Y) iff $A = B \cap X$ for some closed set B in Y.

Example 1.4.1

The map $f:\mathbb{R}\to\mathbb{R}$ given by $f(x)=\left\{egin{array}{l} 2x&x\leq0\\ x^2&x>0 \end{array}
ight.$ is continuous.

1.5 Examples of Homeomorphisms

Example 1.5.1

The circle

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

in \mathbb{R}^2 is homeomorphic to the ellipse

$$\left\{ (x,y) \in \mathbb{R}^2 \, \bigg| \, \frac{(x-a)^2}{A^2} + \frac{(y-b)^2}{B^2} = 1 \right\}$$

in \mathbb{R}^2

Example 1.5.2

 $\mathbb{R}\cong (-1,1)\subseteq \mathbb{R}$

Example 1.5.3

The standard unit n-sphere in \mathbb{R}^{n+1} is the set

$$\mathbb{S}^n = \{ x \in \mathbb{R}^{n+1} \, | \|x\| = 1 \}$$

Where p is the north pole

$$p = e_{n+1} = (0, ..., 0, 1) \in \mathbb{S}^n$$

We have $\mathbb{S}^n \setminus \{p\} \cong \mathbb{R}^n$

2 Examples of Topological Spaces

Definition 2.0.1

Let X be a set. We sometimes write X_t to indicate that X is using the trivial topology $\mathcal{T}_t = \{\emptyset, X\}$. We sometimes write X_d to indicate X is using the discrete topology $\mathcal{T}_d = \mathcal{P}(X)$. We sometimes write X_c to indicate X is using the co-finite topology $\mathcal{T}_c = \{A \subseteq X \mid A = \emptyset \text{ or } X \setminus A \text{ is finite}\}$. Note the closed sets in X_c are exactly the finite ones and X.

Definition 2.0.2

When X is a metric space, we assume, unless otherwise indicated, that X uses the metric topology. Sometimes, we might write X_m to indicate that X is using the metric topology \mathcal{T}_m .

Definition 2.0.3

When Y is a topological space, and $X\subseteq Y$, we assume, unless otherwise indicated, that X uses the subspace topology. Sometimes, we might write X_s to indicate that X is using the subspace topology \mathcal{T}_s . When $X\subseteq \mathbb{R}^n$, we shall assume, unless otherwise indicated, that X is using $\mathcal{T}_m=\mathcal{T}_s$

Definition 2.0.4

Let X be a set. A (strict, linear or total) order on X is a binary relation < on X such that

1. For all $x, y \in X$ exactly one of the following holds:

a.
$$x < y$$

b.
$$x = y$$

c.
$$y < x$$

2. For all $x, y, z \in X$, if x < y and y < z then x < z

An *ordered set* is a set X with an order <. When X is an ordered set, we also define \leq , >, \geq by stipulating that for all $x, y \in X$

$$x \le y \iff (x < y \lor x = y)$$

$$x > y \Longleftrightarrow y < x$$

$$x \ge y \Longleftrightarrow y \le x$$

Remark

In an ordered set X we can define an *upper bound*, a *lower bound*, the *supremum*, the *infimum*, the *maximum*, and the *minimum* of a subset $A \subseteq X$.

Example 2.0.1

Let X be an ordered set and $A \subseteq X$, $M = \max(A)$ when $M \in A$ with $M \ge x$ for all $x \in A$. Similarly, m for minimum.

Definition 2.0.5

When X is an ordered set, we have the following subsets which are called *intervals* in X. For $a, b \in X$ with a < b we have

$$(a,b) := \{x \in X \mid a < x < b\}$$

$$(a, b] := \{x \in X \mid a < x \le b\}$$

$$[a,b) := \{x \in X \mid a \le x < b\}$$

$$[a,b] := \{x \in X \mid a \le x \le b\}$$

Definition 2.0.6

Let X be an ordered set. The *order topology* on X is the topology \mathcal{T}_o which is generated by the basis \mathcal{B}_o of sets in X which consist of the following intervals:

- (a, b) where $a, b \in X$, a < b
- (a, M] where $M = \max X$ and $a \in X$ with $a \neq M$ (in the case that X has a maximum)
- [m,b) where $m=\min X$ and $b\in X$ with $b\neq m$ (in the case that X has a minimum)

We sometimes write X_o to indicate that X is using the order topology \mathcal{T}_o

Exercise 2.0.1

Verify \mathcal{B}_o is a basis.

Example 2.0.2

$$\mathbb{R} = \mathbb{R}_o = \mathbb{R}_m$$

Definition 2.0.7

Let X be an ordered set the *lower limit topology* on X is the topology \mathcal{T}_{ℓ} generated by the basis \mathcal{B}_{ℓ} which consists of intervals of the form [a,b) where $a,b\in X$ with a< b we sometimes write X_{ℓ} to indicate that X is using the lower limit topology.

Note

on \mathbb{R} , \mathcal{T}_{ℓ} is not equal to \mathcal{T}_m . Note that when $a, b \in \mathbb{R}$ with a < b,

$$(a,b) = \bigcup_{n=m}^{\infty} \left[a + \frac{1}{n}, b \right)$$
 where $\frac{1}{m} < b - a$

which is open in \mathbb{R}_{ℓ} . So we have $\mathcal{T}_o \subseteq \mathcal{T}_{\ell}$

Example 2.0.3

Let $X=(0,1)\cup\{2\}\subseteq\mathbb{R}$. Note that $\mathcal{T}_o\neq\mathcal{T}_m=\mathcal{T}_s$ on X. (Where X uses the standard order inherited from \mathbb{R}). For example $\{2\}$ is open in X_m . But is not open in X_o because any open set in X_o which contains 2, must contain a basic open set B with B0. So it must contain a set of the form

$$B = (a, 2]_X = (a, 1) \cup \{2\}$$
 where $a \in (0, 1)$

So they include elements other than 2

Example 2.0.4

When X is an ordered set, the *dictionary* (or *lexicographic*) order on X^2 is given by

$$(a,b) < (c,d) \Longleftrightarrow (a=c \text{ and } b < d) \text{ or } a < c$$

Note that on \mathbb{R}^2 , the order topology \mathcal{T}_o is not equal to the standard metric topology \mathcal{T}_m

2.1 Products of Topological Spaces

Definition 2.1.1

Let X, Y be sets, then the Cartesian product of X and Y is

$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}$$

Definition 2.1.2

Let K be a non-empty index set and let X_k be a set for each $k \in K$. Then the Cartesian product of the (indexed set of) sets X_k , $k \in K$

$$\prod_{k \in K} X_k = \left\{ x : K \to \bigcup_{k \in K} X_k \, \middle| \, x(k) \in X_k \text{ for all } k \in K \right\}$$

and we write x(k) as x_k . In the case that $K = \{1, ..., n\}$ we write

$$\prod_{k \in K} X_k = \prod_{k=1}^n X_k = X_1 \times \dots \times X_n$$

In the case that $K = \mathbb{Z}^+$ we write

$$\prod_{k \in K} X_k = \prod_{k=1}^\infty X_k = X_1 \times X_2 \times \cdots$$

In the case that $K = \{1, ..., n\}$ and $X_k = X$ for all $k \in K$, we also write

$$\prod_{k \in K} X_k = \prod_{k \in K} X = \underbrace{X \times X \cdots \times X}_{n \text{ times}} = X^n$$

In the case that $K = \mathbb{Z}^+$, and $X_k = X$ for all $k \in K$, we also write

$$\prod_{k \in K} X_k = \prod_{k=1}^\infty = X \times X \times \dots = X^\omega$$

In the case that *X* is a vector space, we write

$$X^{\infty} = \{x = (x_1, x_2...) \in X^{\omega} \, | \, x_k = 0 \text{ for all but finitely many } k \in \mathbb{Z}^+ \}$$

In this case X^{∞} and X^{ω} are both vector spaces.

When X_k is a set for each $k \in K$, for each $\ell \in K$ we have the projection map

$$p_\ell: \prod_{k\in K} X_k \to x_\ell$$

given by $p_\ell(x)=x_\ell=x(\ell)$. For any set Y, a function $f:Y\to\prod_{k\in K}X_k$ determines, and is determined by, its component functions

$$f_{\ell}: Y \to X_{\ell}$$

where $f_\ell = p_\ell \circ f$ so $f_\ell(y) = f(y)_\ell = f(y)(\ell)$

Definition 2.1.3

When X_k is a topological space for each $k \in K$, there are two commonly used topologies on $\prod_{k \in K} X_k$.

1. The box topology on $\prod_{k\in K} X_k$ is the topology generated by the basis of sets of the form

$$\prod_{k \in K} U_k \subseteq \prod_{k \in K} X_k$$

Where each U_k is open in X_k

2. The *product topology* on $\prod_{k \in K} X_k$ is the topology generated by the basis of sets consisting of the sets of the form $\prod_{k \in K} U_k$ where each U_k is open in X_k with $U_k = X_k$ for all but finitely many $k \in K$.

Note

The above two proposed bases are indeed bases of sets because

$$\left(\prod_{k\in K}U_k\right)\cap\left(\prod_{k\in K}V_k\right)=\prod_{k\in K}(U_k\cap V_k)$$

Also note that when K is finite, these two topologies are equal. When K is infinite, the box topology is finer than the product topology.

Theorem 2.1.1

Let \mathcal{B}_k be a basis for X_k for each $k \in K$. Then the set of sets of the form

$$\prod_{k \in K} B_k \text{ where } B_k \in \mathcal{B}_k \text{ for all } k \in K$$

is a basis for the box topology on $\prod_{k \in K} X_k$, and the set of sets of the form

$$\prod_{k \in K} B_k$$
 where $B_k \in \mathcal{B}_k \cup \{X_k\}$ for all $k \in K$

with $B_k = X_k$ for all but finitely many $k \in K$ is a basis for the product topology on $\prod_{k \in K} X_k$.

Proof: Exercise

Theorem 2.1.2

For each $k \in K$, let X_k be a subspace of Y_k (using the subspace topology). Then the box topology on $\prod_{k \in K} X_k$ is equal to the subspace topology on $\prod_{k \in K} X_k$ as a subspace of $\prod_{k \in K} Y_k$ using the box topology, and the product topology on $\prod_{k \in K} X_k$ is equal to the subspace topology on $\prod_{k \in K} X_k$ as a subspace of $\prod_{k \in K} Y_k$ using the product topology.

Theorem 2.1.3

Let Y be a topological space, and let X_k be a topological space for each $k \in K$, and let $f: Y \to \prod_{k \in K} X_k$. Then when $\prod_{k \in K} X_k$ uses the product topology, f is continuous if and only if each component map $f_\ell: Y \to X_\ell$ is continuous.

Proof: Suppose that f is continuous, then (using either the box or product topologies on $\prod_{k \in K} X_k$) each projection map $p_\ell : \prod_{k \in K} X_k \to X_\ell$ is continuous because when $U \subseteq X_\ell$ is open,

$$\begin{split} p_\ell^{-1}(U) &= \left\{ x \in \prod_{k \in K} X_k \,\middle|\, x_\ell = p_\ell(x) \in U \right\} \\ &= \prod_{k \in K} U_k \end{split}$$

where

$$U_k = \begin{cases} U & \text{if } k = \ell \\ X_k & \text{if } k \neq \ell \end{cases}$$

which is open in $\prod_{k \in K} X_k$ (using either the box or product topology) It follows that each component function f_ℓ is continuous because

$$f_{\ell} = p_{\ell} \circ f$$

Suppose, conversely, that each component map

$$f=p_{\ell}\circ f:Y\to \prod_{k\in K}X_k$$

is continuous, and that $\prod_{k\in K} X_k$ is using the product topology. To show that f is continuous, it suffices to show that $f^{-1}(B)$ is open in Y for every basic open set B in $\prod_{k\in K} X_k$. Let B be a basic open set (for the product topology) on $\prod_{k\in K} X_k$. Say $B=\prod_{k\in K} U_k$ where each U_k is open in X_k with $U_k=X_k$ for all but finitely many indices $k\in K$. Let $L\subseteq K$ be the finite set of all indices $k\in K$ for which $U_k\neq X_k$. We have

$$\begin{split} f^{-1}(B) &= \left\{ y \in Y \,\middle|\, f(y) \in \prod_{k \in K} U_k \right\} \\ &= \left\{ y \in Y \,\middle|\, f_k(y) = f(y)_k \in U_k \text{ for all } k \in K \right\} \\ &= \left\{ y \in Y \,\middle|\, f_k(y) \in U_k \text{ for all } k \in L \right\} \\ &= \bigcap_{k \in L} f_k^{-1}(U_k) \end{split}$$

Which is open in Y since it is a finite intersection of open sets in Y (with $f_k^{-1}(U_k)$) is open in Y because U_k is open in X_k and $f_k:Y\to X_k$ is continuous.

Remark

$$\mathbb{R}^\infty \subseteq \ell_1 \subseteq \ell_p \subseteq \ell_q \subseteq \ell_\subseteq \mathbb{R}^\omega$$

for $1 \le p \le q \le \infty$. Recall that these norms induce different topologies.

Question: do any of the *p*-norms induce the box or product topology on $\mathbb{R}^{\infty} \subseteq \mathbb{R}^{\omega}$? Question: is there a norm or metric on \mathbb{R}^{ω} which induces the box or product topology?

Remark

Also, we have the p-norms on \mathbb{R}^n . They all give the same topology on \mathbb{R}^n . More generally, when X is a finite dimensional vector space, all norms on X induce the same topology on X. When $L: X \to Y$ is a linear map between normed linear spaces, L is continuous iff $\|L\|_{\operatorname{op}} < \infty$ iff $L\left(\overline{B_X(0,1)}\right)$ is bounded in Y. And when X is finite dimensional, $\overline{B_X(0,1)}$ is compact and $L\left(\overline{B_X(0,1)}\right)$ is bounded, so L is continuous. In particular, when X is finite dimensional and $\|\cdot\|_1, \|\cdot\|_2$ are two norms on X,

$$\operatorname{id}_X: (X, \|\cdot\|_1) \longrightarrow (X, \|\cdot\|_2)$$

is continuous, and it is equal to its own inverse which is continuous, so id_X is a homeomorphism, so for a set $U\subseteq X, U$ is open in $(X,\|\cdot\|_1)$ if and only if U is open in $(X,\|\cdot\|_2)$. Consequently, every finite dimensional vector space X has a standard topology. (pick a basis $\{u_1,...,u_n\}$), define

$$\left\langle \sum x_k u_k, \sum y_k u_k \right\rangle = \sum x_k y_k = x \cdot y$$

So the map $L: X \to \mathbb{R}^n$ given by

$$L\left(\sum x_k u_k\right) = \sum x_k e_k = x$$

is an inner product space isomorphism). Then use the inner product to define a norm, a metric, and a topology. The resulting topology doesn't depend on the choice of basis.

2.2 Quotient Spaces

Definition 2.2.1

Let X be a set. Let \sim be an equivalence relation on X. For $a \in X$, the equivalence class of a is

$$[a] = \{ x \in X \mid a \sim x \}$$

Recall distinct equivalence classes are disjoint, and X is the disjoint union of distinct equivalence classes. The set of all equivalence classes is denoted by X/\sim , is called the quotient set of X by \sim .

$$X/\!\!\sim = \{[a] \,|\, a \in X\}$$

The map $q: X \to X/\sim$ given by $x \mapsto [x]$ is called the quotient map.

Quotient Spaces 18

Definition 2.2.2

When X is a topological space, the *quotient topology* on X/\sim is the topology obtained by stipulating that for $V \subseteq X/\sim$, V is open in X/\sim if and only if $q^{-1}(V)$ is open in X.

Note

When $V \subseteq X/\sim$ so V is a set of equivalence classes.

$$\begin{split} q^{-1}(V) &= \{ x \in X \, | \, q(x) \in V \} \\ &= \{ x \in X \, | [x] \in V \} \\ &= \bigcup_{[x] \in V} [x] \\ &= \bigcup_{[x] \in V} [x] \end{split}$$

Remark

For sets X and Y,

1. When Y is a topological space and $X \subseteq Y$ is a subset, the subspace topology is the coarsest topology on X for which the inclusion map $i: X \to Y$ is continuous

$$i^{-1}(V) = \{x \in X \, | \, i(x) \in V\} = \{x \in X \, | \, x \in V\} = V \cap X$$

2. When X and Y are both topological spaces, the product topology on $X \times Y$ is the coarsest topology for which the two projection maps $p_X: X \times Y \to X, p_Y: X \times Y \to Y$ are both continuous

$$p_X^{-1}(U) = U \times Y \quad p_Y^{-1}(V) = V \times X$$

3. When X is a topological space and \sim an equivalence relation on X, the quotient topology on X/\sim is the finest topology on X/\sim for which the quotient map $q:X\to X/\sim$ is continuous

Note

Let X be a set and \sim an equivalence relation on X. Note that any function $g: X/\sim \to Y$ (where Y is any set) determines and is determined by a function $f: X \to Y$ which is constant on equivalence classes (meaning that for $x_1, x_2 \in X$ if $x_1 \sim x_2$ then $f(x_1) = f(x_2)$) with g given by g([x]) = f(x) and with f given by $f = g \circ q$. So f(x) = g(q(x)) = g([x])

Quotient Spaces 19