6.1 Flip-flop Characteristic Tables

 Each type of flip-flop has its own behaviour, shown by its characteristic table.

J	K	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q(t)'	Toggle

S	R	Q(t+1)	Comments
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	?	Unpredictable

D	Q(t+1)	
0	0	Reset
1	1	Set

T	Q(t+1)	
0	Q(t)	No change
1	Q(t)'	Toggle

6.3 Flip-flop Excitation Tables (1/2)

Excitation tables: given the required transition from present state to next state, determine the flip-flop input(s).

Q	Q^{\dagger}	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

JK Flip-flop

Q	Q^{\dagger}	D
0	0	0
0	1	1
1	0	0
1	1	1
D Flip-flop		

Q	Q^{\dagger}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	X	0

SR Flip-flop

Q	$oldsymbol{Q}^{\dagger}$	<i>T</i>
0	0	0
0	1	1
1	0	1
1	1	0

T Flip-flop