NFL Game Outcome Prediction

The National Football League

- The true American pastime
- NFL Founded in 1920
- Football is America
- Football is big business
 - 24% sports betting
 - o Fantasy sports \$24B in 2022

The Beal Paper

International Journal of Computer Science in Sport

Volume 19, Issue 2, 2020

Journal homepage: http://iacss.org/index.php?id=30

DOI: 10.0476

DOI: 10.2478/ijcss-2020-0009

A Critical Comparison of Machine Learning Classifiers to Predict Match Outcomes in the NFL

Ryan Beal, Timothy J. Norman and Sarvapali D. Ramchurn
University of Southampton, University Rd, Southampton, SO17 1BJ

Abstract

\$ sciendo

In this paper, we critically evaluate the performance of nine machine learning classification techniques when applied to the match outcome prediction problem presented by American Football. Specifically, we implement and test nine techniques using real-world datasets of 1280 games over 5 seasons from the National Football League (NFL). We test the nine different classifier techniques using a total of 42 features for each team and we find that the best performing algorithms are able to improve one previous published works. The algoriothms achieve an accuracy of between 44.64% for a Guassian Process classifier to 67.53% with a Naïve Bayes classifer. We also test each classifier on a year by year basis and compare our results to those of the bookmakers and other leading academic papers.

KEYWORDS: MACHINE LEARNING, SUPERVISED LEARNING, FOOTBAL, NFL

Beal's Models

Support Vector Machine	Nearest Neighbors	Gaussian Process
Decision Tree	Random Forest	AdaBoost
Naïve Bayes	Quadratic Discriminant Analysis (QDA)	Neural Network

- They addressed the problem of NFL game prediction head on, using actual datasets curated from actual games
- They surveyed nine different machine learning techniques, which offer a good overview of how these methods performed in a complex benchmark

The Beal Paper

Setup

- Dataset = the full-game statistical summary of 1280 games played by all 32 NFL teams in a five-year period
- Make W/L predictions
- A simplistic model with limited feature selections
 - 21 distinct concepts such as passing completions, total yards, etc,
 - Home + Away, This season + Last season
 - $21 \times 4 + 1 = 85$

Significant Opportunities

- Bigger Dataset (2006 2023)
- Better Statistics
- ESPN QBR Rating
- 538 ELO Rating

Pro-Football-Reference.com

- Beal's Data Source
- Web scrapping

ESPN

- Model
- Similar Statistics
- JSON APIs

ESPN QBR

ESPN QBR

"QBR incorporates all of a quarterback's contributions to winning, including how he impacts the game on passes, rushes, turnovers and penalties.

Also, since QBR is built from the play level, it accounts for a team's level of success or failure on every play to provide the proper context and then allocates credit to the quarterback and his teammate to produce a clearer measure of quarterback efficiency"

- Katz and Burke, ESPN

ESPN QBR

Caveats

- ESPN data can be missing
- ESPN data can be messy (person != team)
- ESPN data can be WRONG
 - Aaron Rodgers did not play for Jets for the last two years!

538's ELO Rating

How Our NFL Predictions Work

Filed under Methodology

See our latest predictions

Pro-Football-Reference.com

Autocorrelation / Elo rating / Monte Carlo simulations / Regression to the mean / ESPN's Total Quarterback Rating

FiveThirtyEight has an admitted fondness for the Elo rating — a simple system that judges teams or players based on head-to-head results — and we've used it to rate competitors in basketball, baseball, tennis and various other sports over the years. The sport we cut our teeth on, though, was professional football. Way back in 2014, we developed our NFL Elo ratings to forecast the outcome of every game. The nuts and bolts of that system are described below.

Game predictions

In essence, Elo assigns every team a power rating (the NFL average is around 1500). Those ratings are then used to generate win probabilities for games, based on the difference in quality between the two teams involved, plus adjustments for changes at starting quarterback, the location of the

Data Processing – **11 Steps**

- 1. Read ELO (clean, backbone)
- 2. Read ESPN (via Kaggle dataset)
- 3. Create game dictionary (team, date)
- 4. Read ESPN QBR
- Calendar management (2023/02/12 = which week? And vice versa)
- 6. Fix ESPN QBR problem
- 7. Process ELO
- 8. Split game into two halves
- 9. Compute averages of the week
- 10. Compute rolling averages (multiple, based on SPECs)
- 11. For each (rivalry, date)
 - Pull necessary averages based on SPECs

Data Processing – Why So Complicated?

- Try out different ways of extracting the features while maintaining correctness
- Avoid data leakage
- Flexible and extensible for prosperity

Tabular Data

- 3 sets of averages
 - o Last game, this season, last season
 - o 33 features / team
 - $5 + 33 \times 2 \times 3 = 5 + 198 = 203$
- Each model in the experiment takes the exact same tabular data
 - 4573 rows, 203 columns

Experimental Results

Algorithm	Beal et al. [2]	Our Work
SVM with RBF	Yes	Yes
Nearest Neighbors	Yes	Yes (\star)
Gaussian Process	Yes	Yes
Decision Tree	Yes	Yes
Random Forest	Yes	Yes
AdaBoost	Yes	Yes
Naïve Bayes	Yes	Yes
QDA	Yes	Yes
Neural Network	Yes	$Yes(\star)$
Logistic Regression	Yes	Yes
XGBoost		Yes
${ m LightGBM}$		Yes
CatBoost		Yes
Model Tree		Yes
TabNet		Yes
Ensemble		Yes
Elo		Yes

Exp I

Algorithm	Rank	Accuracy	Precision	Recall	F1
Gaussian Process	16	0.4706	_	-	
QDA	15	0.5294	0.5294	1.0000	0.6923
TabNet	14	0.5376	0.5564	0.6239	0.5882
Decision Tree	13	0.5756	0.5929	0.6325	0.6121
XGBoost	12	0.5864	0.5924	0.7009	0.6421
SVM	11	0.6109	0.5878	0.8872	0.7071
AdaBoost	10	0.5937	0.6009	0.6923	0.6434
Naïve Bayes	9	0.5973	0.5875	0.8034	0.6787
LightGBM	8	0.6045	0.6034	0.7385	0.6641
Ensemble (Mult)	7	0.6054	0.5959	0.7915	0.6799
Ensemble (Sum)	6	0.6072	0.5984	0.7846	0.6790
Ensemble (Vote)	5	0.6136	0.6065	0.7692	0.6782
Random Forest	4	0.6109	0.6078	0.7470	0.6702
Model Tree	3	0.6163	0.6148	0.7368	0.6703
Logistic Regression	2	0.6325	0.6211	0.7846	0.6934
Elo	1	0.6470	0.6696	0.6581	0.6638

Table 7: Experimental I: $\alpha = 1.00$, $\epsilon = 1.00$, Unnormalized, No PCA.

Figure 2: The top-15 most importance features.

Algorithm	Rank	Accuracy	Precision	Recall	F1
Gaussian Process	16	0.4706	<u> </u>	-	_
TabNet	15	0.5357	0.5502	0.6735	0.6057
Decision Tree	14	0.5475	0.5687	0.6017	0.5847
QDA	13	0.6009	0.5891	0.8137	0.6834
Random Forest	12	0.6072	0.6024	0.7590	0.6717
XGBoost	11	0.6090	0.6147	0.7009	0.6550
SVM	10	0.6100	0.5925	0.8427	0.6958
Model Tree	9	0.6163	0.6148	0.7368	0.6703
${ m AdaBoost}$	8	0.6200	0.6132	0.7641	0.6804
${ m LightGBM}$	7	0.6217	0.6223	0.7265	0.6703
Logistic Regression	6	0.6235	0.6125	0.7863	0.6886
Ensemble (Vote)	5	0.6271	0.6183	0.7726	0.6869
Naïve Bayes	4	0.6290	0.6061	0.8547	0.7092
Ensemble (Sum)	3	0.6299	0.6219	0.7675	0.6871
Ensemble (Mult)	2	0.6299	0.6222	0.7658	0.6866
Elo	1	0.6470	0.6696	0.6581	0.6638

Table 8: Experimental II: $\alpha = 1.00$, $\epsilon = 1.00$, Unnormalized, with PCA.

+PCA

Exp II

	Algorithm	Rank	Accuracy	Precision	Recall	F1
	QDA	16	0.4823	0.5243	0.2393	0.3286
	Naïve Bayes	15	0.4842	0.5333	0.2051	0.2963
	Gaussian Process	14	0.5294	0.5294	1.0000	0.6923
	Logistic Regression	13	0.5294	0.5294	1.0000	0.6923
Exp III	Decision Tree	12	0.5303	0.5432	0.7094	0.6153
— /\ \ \ \ \ \ \ \ \ \ \ \ \ \	XGBoost	11	0.5665	0.5673	0.7641	0.6511
	SVM	10	0.5709	0.5709	1.0000	0.7269
	Model Tree	9	0.5744	0.5735	0.9929	0.7271
	$\operatorname{LightGBM}$	8	0.5756	0.6086	0.5556	0.5809
	Random Forest	7	0.5765	0.5990	0.6051	0.6020
	Ensemble (Vote)	6	0.5819	0.5718	0.8376	0.6796
+Normalization	TabNet	5	0.5919	0.5876	0.7675	0.6657
	Ensemble (Mult)	4	0.5919	0.5840	0.7966	0.6739
	${ m AdaBoost}$	3	0.5937	0.5852	0.7983	0.6753
	Ensemble (Sum)	2	0.5937	0.5852	0.7983	0.6753
	Elo	1	0.6470	0.6696	0.6581	0.6638
	Table 9: Experimental III: $\alpha = 1.00$, $\epsilon = 1.00$, Normalized, with PCA.					

	Algorithm	Rank	Accuracy	Precision	Recall	F1
	QDA	16	0.4697	0.4935	0.0650	0.1148
	Gaussian Process	15	0.4706	_	_	_
	TabNet	14	0.5403	0.5399	0.8906	0.6723
	Decision Tree	13	0.5692	0.5932	0.5932	0.5932
Exp IV	${ m AdaBoost}$	12	0.5954	0.6117	0.6462	0.6284
	Naïve Bayes	11	0.6018	0.5926	0.7932	0.6784
	XGBoost	10	0.6027	0.6127	0.6786	0.6440
	$\operatorname{LightGBM}$	9	0.6063	0.6130	0.6957	0.6517
	SVM	8	0.6090	0.5870	0.8821	0.7049
	Ensemble (Vote)	7	0.6136	0.6079	0.7607	0.6758
	Ensemble (Mult)	6	0.6235	0.6125	0.7863	0.6886
-Weight Decay	Ensemble (Sum)	5	0.6235	0.6125	0.7863	0.6886
	Random Forest	4	0.6235	0.6181	0.7556	0.6780
	Model Tree	3	0.6262	0.6229	0.7453	0.6786
	Logistic Regression	2	0.6271	0.6151	0.7897	0.6916
	Elo	1	0.6470	0.6696	0.6581	0.6638
Table 10: Experimental IV: $\alpha = 0.95$, $\epsilon = 0.50$, Unnormalized, No PCA.						

+

Conclusion

Extended Beal's Work in Several Ways

- Used Bigger Dataset (350%)
- More Key statistics, ESPN Data, QBR, ELO
- Evaluated More Models
- Robust Data Processing Flow
- Ensemble Model
- Studied the impact of normalization, PCA, and weight decay

Much more research opportunities!