

Session 2 - Basic LV Models SEM with latent variables: Types of LVs Identification and scaling of LVs Parameter estimation Assessing model fit

Latent variables

- Latent variables (LVs) are variables that are not directly observed, but are inferred from other variables that are directly observed (OVs)
- □ LVs represent a construct or concept that researchers are interested in, but cannot directly measure:
 - E.g., depression, anxiety, aggressiveness, socio-economic status, wellbeing, quality of life, social skills, intelligence, mathematical abilities, ...
 - □ In this workshope we focus on continuous LVs; LVs can also be categorical (latent classes), but discussed in advanced LVM course

Factor analysis

- □ Confirmatory factor analysis (CFA)
 - We have a (relatively) clear idea about:
 - number of factors underlying observed variables
 - with which observed variables they are related
 - what they represent
- □ Exploratory factor analysis (EFA)
 - □ When we have no clear idea about that
 - Not in this course
- □ Both assume arrows to go from factor to indicator (i.e., reflective model)

Coefficients □ A factor loading is a regression coefficient: □ Unstandardized factor loading: ■ expected increase in observed variable, when latent variable increases by 1 □ Standardized factor loading: ■ bivariate correlation between observed and latent variable ■ expected increase in SDs of observed variable, when latent variable increases by 1 SD □ Communality of item i is the sum of its squared standardized loadings over all factors (i=1,...,m): h_i = ∑_{i=1}^m λ_{ij}

3 ways to identify scale of an LV: 1. Standardize LV: fix LV's variance to 1 In lavaan: use model syntax, or set 'std.lv = TRUE' in cfa() function 2. Marker variable: set factor loading of an item to 1 In Best practice: use the item most strongly correlated with the factor In Most common practice: use first item (not a major sin but always check if marker item is substantially correlated with factor) In Default in lavaan's cfall function 3. Effects coding: set sum of loadings equal to the number of indicator variables (not used often) In See example 3.3.1 in Beaujean book Yield same standardized solution, but different unstandardized solutions.

If the model involves (co)variances only (i.e., no mean structure) □ If # OVs in the model = P, then # of sample statistics = P(P+1)/2 □ So max. # of (model, population) parameters that can be freely estimated with P observed variables is P(P+1)/2 □ SEM models can be: □ Just identified □ No. of free parameters = P(P+1)/2 □ Model always fits data perfectly □ Underidentied □ No. of free parameters > P(P+1)/2 □ Free parameters cannot be estimated, because there is no unique solution □ Overidentified □ No. of free parameters < P(P+1)/2 □ All free parameters can be estimated. Generally, model fits data imperfectly -> degree of fit can be quantified and compared between models

Identification

Two basic conditions for model identification:

- 1) The number of free parameters t in the overall model must not exceed the number of non-redundant elements in the empirical variance-covariance matrix
- Each latent variable needs to be scaled

Thus:

- $\hfill \square$ In SEMs with OVs only, the model is always (just- or over-) identified
- In models with LVs, some parameter values have to be fixed to a constant by the user for the model to be identified
- In other words: The scales of observed variables are determined by a combination of sample statistics and assumptions (also: normality, linearity).

Identification

- With overidentified models, we can select a 'best' model by comparing different models' trade-offs between
 - Parsimonity
 - More parsimoneous is better (Occam's razor)
 - Quantified by df
 - Models' misfit to the data
 - Closer fit to data is better
 - Quantified by chi-square value
- □ df = # knowns # unknowns
 - # of sample stats (knowns) # of free model parameters (unknowns)
- □ Just identified models have df = 0
- \Box Overidentified models have df > 0
- \Box Under identified models have df < 0 (cannot be estimated)

Exercise

Figure 3.3 Single-factor model of five Wechsler Intelligence Scale for Children-Fourth Edition subtests.

How many sample (co)variances are there? How many population parameters to be freely estimated? How many degrees of freedom?

SEM parameter matrices

- This mornings examples involved a structural model only:
 - □ β: a matrix of regression coefficients (single-headed arrows)
 - $\hfill\Box$ $\hfill\Psi$: a matrix of (co)variances not explained by the regression equations (double headed arrows)
- □ SEMs with LVs also involve a **measurement** model:
 - Ω \(\). a matrix of factor loadings, relating observed variables to reflective latent variables
 - □ 0: a matrix of measurement error variances

SEM parameter matrices

- $\hfill\Box$ If model involves $\mbox{measurement}$ model only, this simplifies to: $\hat{\Sigma} = \Lambda \Psi \Lambda^T + \Theta$
- $\hfill\Box$ If model involves structural model only, this simplifies to: $\hat{\Sigma} = \left(I \beta\right)^{-1} \Psi \Big[(I \beta)^{-1} \Big]^T$

SEM parameter matrices

- If P is the number of observed variables and Q the number of latent variables in the model*, then:
 - β (beta) is a QxQ matrix
 - Regression coefficients between latent vars
 - Ψ (psi) is a QxQ matrix
 - (Co)variances of latent vars
 - □ Λ (lambda) is a PxQ matrix
 - Factor loadings, relating observed to latent vars
 - □ **Θ** (theta) is a *PxP* matrix
 - Measurement error (co)variances of observed vars
- * and there are no formative latent variables and all regression relationships specified are between latent variables only

Examples and exercises

Example 3.3, part I

Exercise 3.1

Parameter estimation

- □ Most often, parameter estimation in a SEM is performed by maximum likelihood (ML)
- □ Sometimes, ML estimates have closed form solutions, and can be calculated directly using a fomula
 - e.g., ML estimates for the pop. mean and variance:

$$\hat{\mu}_X = \overline{X} = \frac{1}{N} \sum_N X$$

$$\hat{\sigma}_X^2 = \frac{1}{N} \sum_N (X - \overline{X})^2$$

- □ SEMs generally have a large number of parameters to be estimated, and an iterative procedure is more efficient to estimate the parameters
 - □ Therefore, output reports 'lavaan converged normally after ... iterations'

Parameter estimation and model fit

The outcome of the optimization process provides:

- 1. The ML estimates of the parameter values
- 2. The standard errors of the ML parameter estimates
- Based on the 2nd order derivative of the likelihood function
- With large sample sizes, the ratio of each estimated parameter to its standard error is approximately z-distributed
- Gives a z- and p-value for each parameter in the outpu 3. The value of the likelihood function $F_{\rm ML}$
 - □ Under the null hypothesis (i.e., the model-implied cov matrix is the true cov matrix in the population), -2 times the log-likelihood value at the final parameter estimates follows a chi-square distribution with df degrees of freedom
 - \blacksquare Allows for a statistical test of overall model fit when df > 0
 - When df = 0, the model always fits perfectly: likelihood = 1 and log(likelihood) = 0

Assessing model fit

- □ Model fit should be evaluated in several ways:
 - 1. Overal model fit: assessed with model fit indices
 - Individual parameter estimates
 - Parameter estimates substantial and statistically (in)significant where expected?
 - Are estimated parameter values plausible? E.g., expected sign of regression coefficients? Values as large or small as expected? E.g., $|standardized\ factor\ loadings| > .30$?
 - Possible sources of misfit
 - Strikingly large residuals (co)variances or means?
 - Strikingly large modification index values?

Assessing overal model fit

- \square Statistical test of model fit: χ^2 (df)
 - □ Tests whether difference between the population and model-implied covariance matrix is zero
- \square In a SEM model, χ^2 value quantifies difference
 - $lue{}$ observed (sample) covariance matrix $oldsymbol{S}$ and
 - $lue{\Sigma}$ model-implied (population) covariance matrix $\widehat{\Sigma}$
 - lacksquare χ^2 =0 if model fits perfectly, when $\hat{\Sigma}$ S = 0
 - In all other cases, $\chi^2 > 0$
 - \blacksquare The larger the difference between $\widehat{\Sigma}$ and \emph{S} , the larger the χ^2 value

Assessing overal model fit

- The larger the difference between $\widehat{\Sigma}$ and S, the larger the χ^2 value, but:
- $\chi^2\,\text{value}$ is also affected by other factors, affecting type I and II error rates of the χ^2 test:
 - Sample size
 - \mathbf{x}^2 value almost always significant with sample sizes > 75
 - X² assesses statistical significance, but what about substantial significance?
 One remedy: fit indices, are less dependent on sample size
 - Model complexity
 - More observed variables in model -> larger χ^2 value
 - Remedy: Evaluate individual parameter estimates and residual (co)variances to assess model fit
 - Departures from multivariate normality
 - Increasing non-normality -> in- or deflated x² value
 - Remedy: use robust ML estimation

Robust ML estimation

- □ Robust ML estimation, like ML, assumes the data follow a multivariate normal distribution, but that the data have more or less kurtosis than a normal distribution
 - □ Thus does not correct for skewness!
- □ Kurtosis: measure of the shape of the distribution
 - From Greek word for bulging
- □ The degree of kurtosis in a data set is related to how incorrect the log-likelihood value will be
 - □ Leptokurtic data: χ^2 too large, SEs too small
 - □ Platykurtic data: χ^2 too small, SEs too large

Robust ML estimation

- □ Parameter estimates under MLR are just ML estimates
- \square SEs and model χ^2 value are adjusted under MLR. depending on kurtosis of data:
 - lacktriangle Model χ^2 value and associated fit statistics are adjusted
 - smaller χ^2 when data are leptokurtic
 - larger χ^2 when data are platykurtic
 - Model SEs are adjusted
 - smaller SEs when data are leptokurtic
 - larger SEs when data show platykurtosis
- □ If data have normal kurtosis, no adjustment is made (so safe to always use MLR)

Robust ML estimation

- □ Invoked by adding argument 'estimator = "MLR" ' in model-fitting function (e.g., lavaan(), sem(), cfa(), growth functions)
- □ Works only when raw data is supplied
 - When only covariance matrix (and/or means) are supplied, there is no info about data's kurtosis

Assessing overal model fit

- \square In addition to $\chi^2(df)$, many other model fit indices
 - □ Lavaan provides > 40 of them for a single model
 - □ Have to make a selection:
 - Incremental fit indices (e.g., CFI)
 - Parsimony-based indices (e.g., RMSEA, AIC, BIC)
 - Absolute fit indices (e.g., SRMR)

Incremental fit indices

- □ Higher values indicate better fitting model (range: 0-1; rarely, values > 1 occur)
- $\hfill\Box$ Compare the fit of the proposed model with that of a null model
 - □ The null model has:
 - Zero correlation between variables in the model (so no latent variables)
 - Variances of observed variables equal to sample variances
- □ Value depends on the average size of the correlations in the data
 - □ If average correlation between variables is not very high, then incremental fit indices not very high.

Incremental fit indices

- □ Comparative fit index
 - \square Let $d = \chi^2 df$
 - □ CFI = <u>d(Null Model)</u> <u>d(Proposed Model)</u> d(Null Model)
- □ Bentler-Bonett Index or Normed Fit Index (NFI)
 - χ²(Null Model) χ²(Proposed Model) χ²(Null Model)
- □ Not so often used, due to no penalty for model complexity
- □ Tucker Lewis Index or Non-normed Fit Index (NNFI):
 - χ²/df(Null Model) χ²/df(Proposed Model)
 - $\chi^2/df(Null Model)$ 1

Parsimony-based indices

- □ Information-theoretic criteria:
 - Model with lowest value has best fit
 - Note that there are various ways to calculate AIC, so never compare between software packages!
 - AIC: Akaike's Information Criterion
 - Penalty for every additional, freely estimated parameter is 2
 - BIC: Bayesian Information Criterion
 - Penalty for every additional, freely estimated parameter is nat.log(N), where N is the total sample size
 - SSABIC: Sample-Size Adjusted BIC
 - Penalty for every additional, freely estimated parameter is ln([N+2]/24)

Parsimony-based indices

□ RMSEA: Root Mean Square Error of Approximation

$$RMSEA = \sqrt{\frac{\chi^2 - df}{df \cdot (N - 1)}}$$

- □ Lower values indicate better fitting model
 - Also, confidence interval can be calculated
 - And the p-value for RMSEA <= 0.05 (if p-value > .05, hypothesis of close fit is retained)
- - □ Smaller values indicate better fit
 - Various rules of thumb have been proposed, ranging from 2 to 6 (what is good depends also on sample size)

Absolute fit indices

□ SRMR: Standardized Root Mean Squared Residual

$$RMR = \sqrt{\frac{\sum\limits_{j=1}^{j}\sum\limits_{j=1}^{j}\left(s_{ij}-\hat{\sigma}_{ij}\right)^{2}}{p\left(p+1\right)/2}} \qquad \begin{array}{c} s_{ij} \text{ is an element of the empirical covariance matrix } S, \\ \\ \sigma_{ij} \text{ is an element of the model-implied matrix covariance } \Sigma(\hat{\theta}), \text{ and } \\ \\ p \text{ is the number of observed variables.} \end{array}$$

- Average difference between the observed and modelimplied correlations
- □ Has no penalty for model complexity
- □ SRMR = 0 indicates perfect fit

Overall model fit - cut-off values

- Based on simulations, Hu & Bentler (1999) derived the following cut-off values for good model fit:
 - □ CFI/TLI ≥ .95
 - □ SRMR ≤ .08
 - RMSEA ≤ .06
- □ Other authors suggest more lenient criteria
 - □ Sometimes, CFI ≥ .90 and/or RMSEA ≤ .08 called 'adequate' or 'acceptable'
- Model fit is not an all-or-nothing question, rules-ofthumb above offer a good starting point

Improving model fit

□ Residual (co)variances

- Observed sample (co)variances minus model-implied covariances
- $\hfill\Box$ Can be obtained in lavaan by using residuals() function
- □ Indicates whether observed associations are over- or underestimated
- □ Using this information, the model may be improved

Improving model fit

■ Modification indices

- $\hfill\Box$ Give an estimate of how much the $\chi^2\text{-value}$ of model fit will decrease when a parameter is freely estimated
- \Box It can be interpreted as a χ^2 -value with 1 df
 - Rule of thumb: if MI > 5, consider estimating parameter freely

Percentage Points of the Chi-Square Distribution

Degrees of Freedom	Probability of a larger value of x 2								
	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.34
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.28
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.09

Examples and exercises

- □ Example 3.3, part II
- □ Exercise 3.2
- □ Additional exercises 1 and 2