Summary - Phase to Amplitude CORDIC

Name	phase_to_amp_cordic
Worker Type	Application
Version	v1.4
Release Date	September 2018
Component Library	ocpi.assets.dsp_comps
Workers	phase_to_amp_cordic.hdl
Tested Platforms	xsim, isim, modelsim, alst4, ml605, ZedBoard(PL), Matchstiq-Z1(PL)

Functionality

This worker implements a phase to amplitude conversion (PAC). The real 16 bit signed input data is phase accumulated, then fed into a polar-to-rectangular CORDIC. The output of the CORDIC produces a complex waveform. Figure 1 diagrams the Phase to Amplitude CORDIC.

Figure 1: Phase to Amplitude CORDIC Functional Diagram

Worker Implementation Details

phase_to_amp_cordic.hdl

The phase to amplitude converter calculates the amplitude for the current phase angle. This operation is basically the same as calculating the sine or cosine function of its argument. Two methods are typically used for implementing in hardware, the Coordinate Rotation Digital Computer (CORDIC) algorithm and the ROM lookup table.

This worker implements the CORDIC algorithm. The frequency of its complex output is determined by the following equation:

$$output_freq = \frac{phs_accum}{2^{DATA_WIDTH}} \tag{1}$$

Where phs_accum is the output of the accumulator. DATA_WIDTH is the input/output data width of the CORDIC which has a range of 8 to 16. The input clock frequency is the sample rate of the samples. The amplitude of the complex wave is runtime configurable via the magnitude property. An enable input is available to either enable (true) or bypass (false) the circuit. In bypass mode, pipe-lining registers are not used, and the real input data is available on the lower 16 bits of the complex output.

Build time parameters control the width of the input, output and the number of stages of the CORDIC primitive module. The I/O data widths of the worker itself are set within the OCS and adjusted in the OWD.

Block Diagrams

Top level

Figure 2: Top Level Block Diagram

State Machine

Only one finite-state machine (FSM) is implemented by this worker. The FSM supports Zero-Length Messages.

Figure 3: Zero-Length Message FSM

Note: In future releases this finite-state machine will be replaced with a register-delay based mechanism, currently exemplified in the dc offset filter

Source Dependencies

$phase_to_amp_cordic.hdl$

 $\bullet \ projects/assets/components/dsp_comps/phase_to_amp_cordic.hdl/phase_to_amp_cordic.vhd \\$

- projects/assets/hdl/primitives/dsp_prims/dsp_prims_pkg.vhd

 projects/assets/hdl/primitives/dsp_prims/cordic/src/cordic_pr.vhd

 projects/assets/hdl/primitives/dsp_prims/cordic/src/cordic.vhd

 projects/assets/hdl/primitives/dsp_prims/cordic/src/cordic_stage.vhd
- projects/assets/hdl/primitives/misc_prims/misc_prims_pkg.vhd projects/assets/hdl/primitives/misc_prims/round_conv/src/round_conv.vhd

ANGRYVIPER Team

Component Spec Properties

Name	Type	SequenceLength	ArrayDimensions	Accessibility	Valid Range	Default	Usage
DATA_WIDTH	UChar	-	-	Readable	-	-	Input (real) and Output (I/Q) data width
DATA_EXT	_EXT UChar -		-	Readable	-	-	CORDIC requirement: # of extension bits
STAGES	UChar	-	-	Readable	-	-	Number of CORDIC stages implemented
messageSize	essageSize UShort -		-	Readable, Writable	-	8192	Number of bytes in output message
enable	nable Bool -		-	Readable, Writable	-	True	Enable(true) or bypass(false)
magnitude UShort -		-	Readable, Writable	-	16384	Magnitude of output	
							* +2^(DATA_WIDTH)-1 to -2^(DATA_WIDTH)

Worker Properties

$phase_to_amp_cordic.hdl$

Type	Name	Type	SequenceLength	ArrayDimensions	Accessibility	Valid Range	Default	Usage
SpecProperty	DATA_WIDTH	-	-	-	Parameter	8-16	16	Input (real) and Output (I/Q) data width
SpecProperty	DATA_EXT	-	-	-	Parameter	6	6	CORDIC requirement: # of extension bits
SpecProperty	STAGES	-	-	-	Parameter	8-16	12	Number of CORDIC stages implemented

Component Ports

 σ

	Name	Producer	Protocol	Optional	Advanced	Usage
ĺ	in	false	rstream_protocol	false	-	Signed real samples
	out	true	iqstream_protocol	false	-	Signed complex samples

Worker Interfaces

$phase_to_amp_cordic.hdl$

Type	Name	DataWidth	Advanced	Usage
StreamInterface	in	16	ZeroLengthMessages=true	Signed real samples
StreamInterface	out	32	ZeroLengthMessages=true	Signed complex samples

Control Timing and Signals

The Phase to Amplitude CORDIC worker uses the clock from the Control Plane and standard Control Plane signals.

There is a startup delay for this worker. Once the input is ready and valid and the output is ready, there is a delay of STAGES+1 before the first sample is taken. After this initial delay, valid output data is given STAGES+1 clock cycles after input data is taken.

Latency
STAGES+1 clock cycles

Worker Configuration Parameters

 $phase_to_amp_cordic.hdl$

Table 1: Table of Worker Configurations for worker: phase_to_amp_cordic

Configuration	ocpi_endian	DATA_EXT	DATA_WIDTH	STAGES	ocpi_debug
0	little	6	16	12	false
1	little	6	16	16	false

Performance and Resource Utilization

$phase_to_amp_cordic.hdl$

Table 2: Resource Utilization Table for worker: phase_to_amp_cordic

Configuration	OCPI Target	Tool	Version	Device	Registers (Typ)	LUTs (Typ)	Fmax (MHz) (Typ)	Memory/Special Functions
0	zynq	Vivado	2017.1	xc7z020clg484-1	1021	2283	N/A	DSP48E1: 2
0	virtex6	ISE	14.7	6vlx240tff1156-1	978	2310	164.88	DSP48E1: 4
0	stratix4	Quartus	17.1.0	EP4SGX230KF40C2	1035	1350	N/A	DSP18: 8
1	zynq	Vivado	2017.1	xc7z020clg484-1	1287	2901	N/A	DSP48E1: 2
1	virtex6	ISE	14.7	6vlx240tff1156-1	1242	2934	164.88	DSP48E1: 4
1	stratix4	Quartus	17.1.0	EP4SGX230KF40C2	1303	1734	N/A	DSP18: 8

Test and Verification

This component is tested via the unit test automation feature of the framework. The component's .test/ contains XML files that describe the combinations of tests.

Two test cases are employed to verify the Phase to Amplitude CORDIC component:

- 1. Disabled. The real input data is passed through the worker and made available on lower 16 bits of the complex output.
- 2. Constant output frequency: A python script creates a file containing a constant value. The CORDIC produces a complex output frequency according to the equation 1.

The plots below show the input (real) and output data (Q-leg showing all samples, I-leg zoomed into one cycle) for testing a Phase to Amplitude CORDIC having the default parameter set. The input file shows a DC value of 2048, and 16384 real samples. The output file shows the converted complex waveform having $DCvalue/2^{DATA_WIDTH} = 2048/2^{16} = 0.03125$ Hz, and 16384 complex samples.

100

-100 -200 -200 -100 -150 -200 -100 -150

16384-Point Real FFT

case00.09.in

Figure 4: Time Domain

Figure 5: Frequency Domain

Figure 6: Time Domain

Figure 7: Frequency Domain