

Automated Intrinsic Text Classification for Component Content Management Applications in Technical Communication

Jan Oevermann

jan.oevermann@hs-karlsruhe.de

Wolfgang Ziegler

wolfgang.ziegler@hs-karlsruhe.de

DocEng 2016, Vienna, 15.09.2016

Motivation

- Semantic access to information through classification
- Demand for automation in industry use cases
- Adapt existing ML methods for Component Content Management
- Little research on Technical Communication topics

Technical Communication

- Writing documentation (and more)
- Complex information management
- Legal obligations and international standards
- Component Content Management
 - Modularized content for reuse and translation
 - XML-based information models
 - Metadata and classification models
 - Single Source Publishing

Methodology

- 1. Characterize relevant properties of CCM
- 2. Derive implications for classification
- 3. Verify with real-world data sets (Vector space classification)

Classification Models

- PI classification model (Ziegler 2011)
- Organized in taxonomies

Focus on intrinsic information classification

Extrinsic Document Series Product Information **Assembly** type group Intrinsic

Information

Use Cases

- Content delivery portals
- Automated publishing
- Dynamic linking

	Series	Model	Project
Safety advice	C-123		
Product description		C-321	
Operation Main Engine	C-159		C-158
Maintenance			C-123

Characteristics

- Standardized patterns
- Specific terminology
- Size of content
- Training and validation data
- Quality requirements

3.3.2 Starting the engine

opp00218

Fig. 288: Operating manual

- 1.) Make sure you have read and understood the operator's manual
- 2.) Then you are re machine

Only operate the machine after you have read and understood the manual!

Note

The machine is equipped with a hydrostatic travel drive.

You cannot start the engine by bump-starting it or towing it.

Data sets

Set	Sector	Units	Words/Unit	Classes
Α	Construction equipment	570	173	11
В	Medical lab equipment	278	41	10
C	Security printing presses	3947	97	22

- XML-based content components
- Manually classified
- German language

Implications

Semantic quantifiers

$$tf_{iq} = tf_i * q \text{ for } q > 0$$

Confidence scoring

$$p = \frac{s_1 - s_2}{s_1 - s_n}$$

Instead of softmax or standard deviation

Feature selection

- Smaller total number of features
 - Standardization of wording and patterns
 - Size of content components
- Single words and patterns important
 - Combination of words and patterns

Token weighting

- Tf-Idf
 - Good for documents
- Tf-Idf-Cf (Liu/Yang 2012)
 - In-class characteristics
- Tf-Icf-Cf:

$$w_{ij} = \log(1 + tf_i) * \log(1 + \frac{|C|}{tf_i}) * \frac{tf_{ij}}{C_j}$$

Applications

- Data migration
- Key figures (QA)
- Authoring assistance
- Content delivery portals (API, Import hook)

Results & Observations

- CCM has different requirements than document classification
- Technical content is well suited for automated classification

- Set of adjustments for content components to improve results
- Working prototype: REST API for classification of content components

Related work & Outlook

- Soto et al. (2015): Similarity-Based Support for Text Reuse in Technical Writing
- Oevermann (2016): Reconstructing Semantic Structures in Technical Documentation with Vector Space Classification
- Apply results to unstructured technical content
- Use more advanced machine learning or deep learning technologies

Contact

Jan Oevermann

jan.oevermann@hs-karlsruhe.de www.janoevermann.de