	Roll number: 180020036 Google Colab Link: https://colab.research.google.com/drive/1PqBT35TTD3TtnBE0fZ3TdUIQpNJvEAaK?usp=sharing Aim • Develop a method for the estimation of pitch by the autocorrelation of speech signal. • Develop a cepstrum pitch estimation method.				
	 Develop a cepstrum pitch estimation method. Develop a simple inverse filtering technique(SIFT) pitch estimation method. Comparison of all these three methods. Theory Speech signal can be classified into voiced, unvoiced and silence regions. The near periodic vibration of vocal folds is excitation for the production of voiced speech, the random noise like excitation for production of unvoiced speech and no excitation during silence region. Majority of speech regions are voiced in nature that includevowels, semivowels and other voiced components. The voiced regions looks lil a near periodic signal in the time domain representation. In a short term analysis, we may treat the voiced speech segments to be periodic for all practical analysis and processing. The periodicity associated with such segmentsis defined is 'pitch period To' in the time domain an 'Pitch frequency or Fundamental Frequency Fo' in the frequency domain. Unless specified, the term 'pitch' refers to the fundamental				
In [2]:	frequency 'Fo'. Pitch is an important attribute of voiced speech. It contains speaker-specific information. It is also needed for speech codin task. Thus estimation of pitch is one of the important issue in speech processing. There are a large set of methods that have been developed in the speech processing area for the estimation of pitch. Among them the three mostly used methods include, autocorrelation of speech, cepstrum pitch determination and SIFT pitch estimation. One success of these methods is due to the involvment of simple steps for the estimation of pitch. Even though autocorrelation method is of theoritical interest, it produce a frame work for SIFT methods. # Mounting Google Drive				
	<pre>from google.colab import drive drive.mount('/content/gdrive') Drive already mounted at /content/gdrive; to attempt to forcibly remount, call drive.mount("/content/gdrive", force_remount=True). # Changing directory %cd /content/gdrive/MyDrive/Sem6/Speech Lab/Week10 !ls</pre>				
In [6]:	/content/gdrive/MyDrive/Sem6/Speech Lab/Week10 Lab10.ipynb week10audio.wav # Importing Libraries import numpy as np from matplotlib import pyplot as plt from scipy.fft import fft, fftfreq, fftshift, ifft from scipy import signal import scipy.fft				
	<pre>from scipy.io import wavfile import librosa import librosa.display import soundfile as sf #Functions # Magnitude spuctrum plot function def magnitudeSpectrum(sound):</pre>				
	<pre># Computing the FFT of the sound sound_len = sound.shape[0] sound_fft = fft(sound)/sound_len # Computing the frequency array freqs = fftfreq(sound_len, 1/fs) #freqs = freqs[0:sound_len//2] #fft_db = 2*np.log10(np.abs(sound_fft[0:sound_len//2]))</pre>				
	<pre>fft_db = np.log10(np.abs(sound_fft)) return freqs,fft_db def cepstrum(sound): #Computing the Log Magnitude Spectrum _,cep_fft_db = magnitudeSpectrum(sound) cepCoff = scipy.fft.ifft(cep_fft_db) return cepCoff def autocorr(sound):</pre>				
	<pre>len = sound.shape[0] shift = np.arange(0, len, 1) autocorr = np.zeros((shift.shape[0],)) for curr_shift in shift: autocorr[curr_shift] = np.dot(sound[0:len-curr_shift].T, sound[curr_shift:]) autocorr = autocorr/autocorr[0] return autocorr # Function to estimate the LPCs using autocorrelation method</pre>				
	<pre>def invMat(sound,p): acf = autocorr(sound) covMat = np.zeros([p,p]) for i in range(p): for j in range(p): covMat[i,j] = acf[np.abs(i-j)] c = np.zeros([p,1]) for i in range(p):</pre>				
	<pre>c[i,0] = acf[i+1] coeff = np.matmul(np.linalg.inv(covMat),c) coeff = coeff.T coeff = coeff.reshape(p) return coeff</pre> Problem A				
	 Pitch estimation by autocorrelation method: Divide the given speech signal into 30-40ms blocks of speech frames. Find and plot the auto-correlation sequence of a voiced frame and an unvoiced frame. Estimate the pitch frequency using this computed auto-correlation for the above voiced frame and an unvoiced frame. You may set a threshold for a significant peak, and assign zero to pitch frequency if there is no significant peak. 				
n [7]:	<pre># Loading the audio into colab. Fs = 16kHz audio, fs = librosa.load("week10audio.wav", sr = 16000) # Plotting time domain plot of the audio plt.figure(figsize=(20,3)) librosa.display.waveplot(audio, sr=fs); plt.title("Time Domain Plot of Speech Signal (Fs = " +str(fs)+" Hz)") plt.xlabel('Time (sec)') plt.ylabel('Amplitude') plt.show()</pre>				
	Time Domain Plot of Speech Signal (Fs = 16000 Hz) 10 0.5 -0.5 -1.0 05 15 2				
n [8]:	<pre># Function to compute Pitch using ACF method def acfPitchCalculator(sound, fs): time = np.arange(0, len(sound)/fs, 1/fs) acf = autocorr(sound) peaks = signal.find_peaks(acf,prominence=1) args = peaks[0] args = np.array(args) acfPitch = 0</pre>				
	<pre>acfPitch = 0 if len(args)>1: diff = time[args[1]] - time[args[0]] acfPitch = 1/diff return acfPitch # Extracting different categories of sound in the speech # The time stamp for each sound component was extracted from wavesurfer and they # are as follows: # /s/ - 0.236 s to 0.387 s</pre>				
	<pre># /ee/ - 0.591 s to 0.756 s # /ch/ - 0.883 s to 0.992 s # /n/ - 1.407 s to 1.503 s # sil - 1.101 s to 1.165 s s = audio[int(0.236*fs):int(0.387*fs)] ee = audio[int(0.591*fs):int(0.756*fs)] ch = audio[int(0.883*fs):int(0.992*fs)] n = audio[int(1.407*fs):int(1.503*fs)]</pre>				
	<pre>sil = audio[int(1.101*fs):int(1.165*fs)] #Choosing one voiced sound (ee) and one unvoiced sound (s) and taking 30ms of the sound frameSize = 0.030 * fs acfTime = np.arange(0, frameSize/fs, 1/fs) choose = [ee,s] soundName = ['/ee/','/s/'] soundType = ['Voiced','Unvoiced'] acfSounds = []</pre>				
n [9]:	<pre>midFrame = frameSize/2 for curSound in choose: N = len(ee) / 2 frame = curSound[int (N-midFrame): int (N+midFrame)] acfSounds.append(frame) i = 0 acf = [] plt.figure(figsize=(20,3)) for curSound in acfSounds:</pre>				
	<pre>curAcf=autocorr(curSound) curAcf = curAcf/curAcf[0] acf.append(curAcf) plt.subplot(1,2,i+1) plt.plot(acfTime,curAcf) plt.title("Auto-correlation function of sound "+soundName[i]) i=i+1 plt.show()</pre>				
	Auto-correlation function of sound /ee/ Auto-correlation function of sound /s/ 1.00 0.75 0.50 0.25 0.00 -0.25 -0.50 -0.75 0.00 0.000 0.005 0.010 0.015 0.020 0.025 0.030 Auto-correlation function of sound /s/ 0.75 0.50 0.25 0.000 0.005 0.000 0.005 0.0010 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.005				
[10]:	<pre>acfPitch = [] i = 0 plt.figure(figsize=(20,3)) for curAcf in acf: peaks = signal.find_peaks(curAcf,prominence=1) args = peaks[0] args = np.array(args) curPitch = 0 if len(args)>1:</pre>				
	<pre>if len(args)>1: diff = acfTime[args[1]] - acfTime[args[0]] curPitch = 1/diff acfPitch.append(curPitch) plt.subplot(1,2,i+1) plt.plot(curAcf) plt.title(soundType[i]) plt.scatter(args,curAcf[args],marker= "o",color='red') i = i+1 plt.show()</pre>				
	<pre>print("Pitch computed through ACF method (in Hz): ") for i in range(len(acfSounds)): print(soundType[i] + " ("+ soundName[i]+"): " + "{:.2f}".format(acfPitch[i])+" Hz") print("\n") print("Results through Function: ") for curSound in acfSounds: a = acfPitchCalculator(curSound, fs) print(a)</pre>				
	Voiced Unvoiced 100 0.75 0.50 0.25 0.00 0.25 0.00 0.75 0.50 0.00 0.25 0.00 0.00 0.00 0.00 0.0				
	Pitch computed through ACF method (in Hz): Voiced (/ee/): 253.97 Hz Unvoiced (/s/): 0.00 Hz Results through Function: 253.96825396825398 0				
	Problem B Cepstrum based pitch estimation: • Divide the speech into short segments of 15-20ms frame size. Compute the cepstrum of the speech segment in the quefrency domain for each of these frames and plot for one voiced frame. • Estimate the pitch period by the high time liftering of the cepstrum of the voiced speech.				
n [11]:	<pre>#Function to calculate Pitch using Cepstrum method def cepPitchCalculator(sound, lc=15): length = len(sound) freqs,_=magnitudeSpectrum(sound) freqs = freqs[0:length//2] # Computing the hamming window</pre>				
	<pre>window = np.hamming(length) # Computing windowed sound signal winSound = np.multiply(sound, window) # Computing the cepstrum of the sound frame cep = cepstrum(winSound) cepLen = len(cep) # Performing high time liftering highTime = np.zeros(cepLen) highTime[lc:cepLen-lc] = 1</pre>				
	highLif = np.multiply(highTime,cep) # Computing the excitation signal exc= fft(highLif) exc = exc[0:length//2] # Computing the pitch of the signal cepPitch = freqs[np.argmax(exc)] return cepPitch #Choosing one voiced sound (ee) and one unvoiced sound (s) and taking 20ms of the sound				
	<pre>frameSize = 0.020 * fs cepTime = np.arange(0, frameSize/fs, 1/fs) choose = [ee,s] cepSounds = [] midFrame = frameSize/2 for curSound in choose: N = len(ee) / 2 frame = curSound[int (N-midFrame): int (N+midFrame)] cepSounds.append(frame)</pre>				
[12]:	<pre># Plotting Cepstrum of the audio plt.figure(figsize=(20,3)) i = 1 window = np.hamming(frameSize) soundCepstrums = [] for curSound in cepSounds: curCep = cepstrum(np.multiply(curSound, window)) soundCepstrums.append(curCep)</pre>				
	<pre>plt.subplot(1,2,i) plt.plot(curCep[1:].real) plt.title("Cepstrum of Sound " + soundName[i-1] +" (" + soundType[i-1] + ")") plt.ylim([-1.5,1]) plt.xlim([0,80]) i = i+1 plt.show()</pre> Cepstrum of Sound /ee/ (Voiced) Cepstrum of Sound /ee/ (Voiced)				
[13]:	05 00 -0.5 -1.0 -1.5 0.0 -0.5 -1.0 -1.5 0.0 -1.5 0.0 -1.5 0.0 -1.5 0.0 -1.5 0.0 -1.5 0.0 -1.5 0.0 -1.5 0.0 -1.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0				
(10).	<pre>lc = 15 plt.figure(figsize=(20,8)) i = 1 for curCep in soundCepstrums: curLen = len (curCep) highTime = np.zeros(curLen) highTime[lc:curLen-lc] = 1 curLif = np.multiply(highTime, curCep) highLifter.append(curLif)</pre>				
	<pre>plt.subplot(2,2,i) plt.plot(curCep.real) plt.plot(highTime) plt.ylim([-1.5,1.1]) plt.xlim([0,160]) plt.title("High-Time Liftering for sound " + soundName[i-1]) plt.legend(['Cepstrum','Liftering Window']) plt.subplot(2,2,i+2) plt.plot(curLif.real)</pre>				
	plt.xlim([0,160])				
	-0.5 -1.0 -1.5 -1.5 -1.0 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5				
[14]:	-0.02 -0.04 -0.06 -0.08				
	<pre>curLen = curSound.shape[0] cepSoundFreq = freqs[0:curLen//2] soundExcitation = [] cepPitch = [] plt.figure(figsize=(20,3)) for i in range(len(soundCepstrums)): curHigh = highLifter[i] curLen = curHigh.shape[0]</pre>				
	<pre>excitation = fft(curHigh) excitation = excitation[0:curLen//2] soundExcitation.append(excitation.real) curPitch = cepSoundFreq[np.argmax(excitation)] cepPitch.append(curPitch) plt.subplot(1,2,i+1) plt.plot(cepSoundFreq,excitation.real) plt.title("Input excitation of sound " +soundName[i]) plt.xlabel("Frequency (Hz)") plt.ylabel("Magnitude")</pre>				
	<pre>print("Pitch computed through Cepstrum method (in Hz): ") for i in range(len(acfSounds)): print(soundType[i] + " ("+ soundName[i]+"): " + "{:.2f}".format(cepPitch[i])+" Hz") print("\n\nPitch computed using Function") for curSound in cepSounds:</pre>				
	Input excitation of sound /ee/ Input excitation of sound /s/				
	-1.5 - -0.8 - -0.				
	Problem C Pitch estimation by Simple Inverse Filtering Technique (SIFT): Take a 30 ms veiged speech segment and compute the Linear Prodiction (LP) residual by LP analysis. Perform autocorrelation on the				
[15]:	<pre>def lpcPitchCalculator(sound, fs, p=12): length = len(sound) time = np.arange(0, length/fs, 1/fs)</pre>				
	<pre>window = np.hamming(length) winSound = np.multiply(sound, window) lpc = invMat(winSound,p) A = np.insert(-1*lpc, 0, 1) residual = np.convolve(winSound,A) residual = residual[0:-len(A)+1] acf = autocorr(residual) thresh = acf[0]*0.15 peaks = signal.find_peaks(acf,height=thresh,distance = 20) args = peaks[0]</pre>				
	<pre>args = np.array(args) pitch = 0 if len(args) >1: diff = time[args[1]] - time[args[0]] pitch = (1/diff) return pitch #Choosing one voiced sound (ee) and one unvoiced sound (s) and taking 30ms of the sound</pre>				
	<pre>#Choosing one voiced sound (ee) and one unvoiced sound (s) and taking 30ms of the sound frameSize = 0.030 * fs lpcTime = np.arange(0, frameSize/fs, 1/fs) choose = [ee,s] lpcSounds = [] midFrame = frameSize/2 for curSound in choose: N = len(ee) / 2 frame = curSound[int (N-midFrame): int (N+midFrame)] lpcSounds.append(frame)</pre>				
[16]:	<pre>lpcCoeff = [] residualSignals = [] window = np.hamming(frameSize) p = 12 i = 0 plt.figure(figsize=(20,3)) for curSound in lpcSounds: winSound = np.multiply(curSound, window)</pre>				
	<pre>curCoeff = invMat(winSound, p) curA = np.insert(-1*curCoeff, 0, 1) lpcCoeff.append(curA) curResidual = np.convolve(winSound, curA) curResidual = curResidual[0:-len(curA)+1] residualSignals.append(curResidual) plt.subplot(1,2,i+1) plt.title("Residual signal for sound "+soundName[i]) plt.plot(curResidual)</pre>				
	$i = i+1$ plt. show() Residual signal for sound /ee/ $0.06 \\ 0.04 \\ 0.02 \\ 0.00 \\ -0.02 \\ -0.04$ Residual signal for sound /s/ $0.04 \\ 0.02 \\ 0.00 \\ -0.02 \\ -0.04$				
[17]:	i = 0 lpcPitch = [] plt.figure(figsize=(20,3)) for curResidual in residualSignals: curAuto = autocorr(curResidual)				
	<pre>#curAuto[0] = curAuto[1] curAuto = curAuto/curAuto[0] thresh = curAuto[0]*0.15 peaks = signal.find_peaks(curAuto, height=thresh, distance = 20) args = peaks[0] args = np.array(args) plt.subplot(1,2,i+1) plt.title(soundType[i]) plt.plot(curAuto) plt.scatter(args, curAuto[args], marker='X', color = 'red')</pre>				
	<pre>curPitch = 0 if len(args) >1: diff = lpcTime[args[1]] - lpcTime[args[0]] curPitch = (1/diff) i = i+1 lpcPitch.append(curPitch) plt.show() print("Pitch computed through LPC method (in Hz): ")</pre>				
	<pre>for i in range(len(lpcSounds)): print(soundType[i] + " ("+ soundName[i]+"): " + "{:.2f}".format(lpcPitch[i])+" Hz") print("\n\nPitch computed using Function") for curSound in lpcSounds: print(lpcPitchCalculator(curSound,fs))</pre> Voiced Unvoiced Unvoiced				
	0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				
	Voiced (/ee/): 146.79 Hz Unvoiced (/s/): 571.43 Hz Pitch computed using Function				
	146.78899082568807 571.4285714285714				
ī.	Problem D Comparison of pitch estimation methods: • Plot the entire input speech signal and it's pitch contours estimated using autocorrelation, cepstrum and SIFT based pitch estimation methods.				
[22]:	Problem D Comparison of pitch estimation methods: • Plot the entire input speech signal and it's pitch contours estimated using autocorrelation, cepstrum and SIFT based pitch estimation methods. # Plotting time domain plot of the audio plt.figure(figsize=(20,3)) librosa.display.waveplot(audio, sr=fs); plt.title("Time Domain Plot of Speech Signal (Fs = " +str(fs)+" Hz)") plt.xlabel('Time (sec)') plt.ylabel('Amplitude') plt.show() frameSize = 0.020 * fs				
[22]:	Problem D Comparison of pitch estimation methods: • Plot the entire input speech signal and it's pitch contours estimated using autocorrelation, cepstrum and SIFT based pitch estimation methods. # Plotting time domain plot of the audio plt.figure(figsize=(20,3)) librosa.display.waveplot(audio, sr=fs); plt.title("Time Domain Plot of Speech Signal (Fs = " +str(fs)+" Hz)") plt.xlabel('Time (sec)') plt.ylabel('Amplitude') plt.show() frameSize = 0.020 * fs number = int(np.floor(audio.shape[0]/(frameSize))) #axis 0 - acf #axis 1 - cepstrum #axis 2 - LPC acfPitch = np.zeros((number,)) cepfitch = np.zeros((number,)) lpcPitch = np.zeros((number,)) for i in range(number): frame = audio[int(i*frameSize) : int((i+1)*frameSize)]				
[22]:	Problem D Comparison of pitch estimation methods: • Plot the entire input speech signal and it's pitch contours estimated using autocorrelation, cepstrum and SIFT based pitch estimation methods. # Plotting time domain plot of the audio plt. figure (figsize=(20,3)) librosa, display, waveplot (audio, sr=fs); plt.title("Time Domain Plot of Speech Signal (Fs = " +str(fs)+" Hz)") plt.xlabel("Time (sec)') plt.xlabel("Time (sec)') plt.xlabel("Amplitude") plt.show() frameSize = 0.020 * fs number = int(np.floor(audio.shape[0]/(frameSize))) #axis 0 - acf #axis 1 - cepstrum #axis 2 - LPC acffitch = np.zeros((number,)) cepfitch = np.zeros((number,)) lpcPitch = np.zeros((number)) for i in range(number): frame = audio[int(i*frameSize) : int((i+1)*frameSize)] acfPitch(i] = cepFitchCalculator(frame, fs) cepFitch(i] = cepFitchCalculator(frame, fs) lpcPitch(i] = lpcPitchCalculator(frame, fs) lplt.slubplot(3,1,1) plt.plot(acfPitch) plt.subplot(3,1,2) plt.plot(cepFitch)				
[22]:	Problem D Comparison of pitch estimation methods: • Plot the entire input speech signal and it's pitch contours estimated using autocorrelation, cepstrum and SIFT based pitch estimation methods. * Flotting time domain plot of the audio plt. figure (figsize-(20,3)) librosa, display, waveplot(sudio, sr=fs), plt.itite("Time Domain Plot of Speech Signal (Fs = " +str(fs)+" Hz)") plt. viabel("Time Good) plt. plt. plt. ("Time Good) plt. plt. plt. plt. ("Amplitude") plt. show() **FrameSize = 0.020 * fs				
n [22]:	Problem D Comparison of pitch estimation methods: • Plot the entire input speech signal and it's pitch contours estimated using autocorrelation, cepstrum and SIFT based pitch estimation methods. # Plotting time domain plot of the audio plt.figure(figslze=(20,3)) librosa.display, waveplot(audio, sr=fs); plt.title("Time Domain Plot of Speech Signal (Fs = " +str(fs)+" Hz)") plt.ylabel('Time (sec)') plt.ylabel('Time (sec)') plt.ylabel('Time (sec)') plt.ylabel('Amplitude') plt.show() framsSize = 0.020 * fs number = int(np.floor(audio.shape[0]/(frameSize))) ### ### ### ### ### ### ### ### ###				
	Problem D Comparison of pitch estimation methods: • Plot the entire input speech signal and it's pitch contours estimated using autocorrelation, departum and SIFT based pitch estimation methods. # Plot thing time domain aloat of the audito pitchingure (tignize (closit)) and tignize (closit) and tignize (closit) and tignize (closit) pitchingure (closit) and tignize (
	Problem D Comparison of pitch estimation methods: - Plot the entire input speech signal and it's pitch contours estimated using autocorrelation, departure and SiFT based pitch estimation methods. * Plotring time domain plot of the audio mit.sfigure(figure(cross)) Illicons. display.vaveplot(audio, ac-ta); plr.title("Time Jonain "lot of Speech Signal (rs = " +str(fs)+" Hz)") plr.ylabel ('Amplitune') plr.ylabel ('A				
	Problem D Comparison of pitch estimation methods: - Pitch the entire input speech signal and it's pitch contours estimated using autocorrelation, copstrum and SIFT based pitch estimation methods. - Pitch tips cause comain past of the audio vital signal (2m = m = min (fm)				