PROJECT REPORT

PROJECT TITLE: Smart Waste Management System For Metropolitician Cities

TEAM ID: PNT2022TMID14224

TEAM MEMBERS:

DEEPAKRAJ D V(TEAM LEAD)

BARATH S

DEEPAK K

HARISHRAJ R

1.INTRODUCTION

1.1 OBJECTIVES

The main objective of this system includes

1.2 SYSTEM OVERVIEW

Our waste generation is constantly growing to form a global garbage crisis. Even though we indulge in creating a more sustainable and greener, we still fail to handle our waste generation and management. Combining technology support with a vision of social, economic and environmental sustainability is the best way out of this problem. It is done in the following manner. The smart bin system undergoes a thorough system check and battery level monitoring in order to function efficiently. If the battery level is found to be low, it has to be recharged immediately, else it can proceed to the next step. The threshold level levels of the bin are indicated my multiple sensors attached to bin. If the garbage exceeds the level, then an alert message is sent to the garbage collectors as well as to the municipality or area administration.

1.3 ORGANIZATION OF REPORT

Chapter 1 gives the objectives, system overview.

Chapter 2 summarizes the review of related background to the semiautomated wiper system.

Chapter 3 outlines the system implementation including problem statement, overview of components usage proposed methodology.

Chapter 4 deliberates the results of the proposed system and gives inference about the results. Chapter 5 discusses the conclusion and future outlooks.

2. LITERATURE REVIEW

2.1 EXISTING PROBLEM

Waste management has become an alarming challenge in local towns and cities across the world. Often the local area bins are overflowing and the municipalities are not aware of it. This affects the residents of that particular area in numerous ways starting from bad odour to unhygienic and unsafe surroundings. Poor waste management - ranging from non-existing collection systems to ineffective disposal -causes air pollution, water and soil contamination. Open and unsanitary areas contribute to contamination of drinking water and can cause infection and transmit diseases. Toxic components such as Persistent Organic Pollutants (POPs) pose particularly significant risks to human health and the environment as they accumulate through the food chain. Animals eating contaminated plants have higher doses of contaminants than if they were directly exposed.

2.2 RELATED BACKGROUNDS

The given below literature covers a wide variety of inventions, this review will focus on four major themes which emerge repeatedly throughout the literature reviewed.

T. K. Leong (2011), Smart Recycle and Reward Bin plays an important role to enable time-saving and efficient beverage containers recycling process such as in stores and supermarkets. The machine is powered by solar energy and is capable of auto-recognition of container material to separates them accordingly. The reward system uses Smart Card system to overcome the inconvenience faced by manual reward redemption as well as to save on paper usage. The microcontroller with the integration of sensors and mechanisms enable effective recognition and automatic separation of recycled items. After the sensor defferentiates the material, it will send the information to the microcontroller and the separation part will start working. The separation part involves 3 servo motors and 4 holes for reject item, tin container, plastic container, and glass container. Besides that, the microcontroller also performs auto-summation and stores the total of reward points into the smart card.

Mohd Helmy Abd Wahab, Aeslina Abdul Kadir, Mohd Razali Tomari and Mohamad Hairol Jabbar (2014), In this paper, proposed a smart recycle bin application based on information in the smart card to automatically calculate the weight of waste and convert the weight into point then store it into the card. The wastes are tracked by smart bins using a RFID-based system integrating the web-based information system at the host server.

M. Aazam, M. St-Hilaire, C. -H. Lung and I. Lambadaris (2016), This paper is proposed a cloud-based smart waste management mechanism in which the waste bins are equipped with sensors, capable of notifying their waste level status and upload the status to the cloud.

Aderemi A. Atayero, Segun I. Popoola, Rotimi Williams, Joke A. Badejo and Sanjay Misra (2019), Indiscriminate disposal of solid waste is a major issue in urban centers of most developing countries, and it poses a serious threat to healthy living of the citizens. Access to reliable data on the state of solid waste at different lo-cations within the city will help both the local authorities and the citizens to effectively manage the menace. In this paper, an intelligent solid waste monitor-ing system is developed using Internet of Things (IoT) and cloud computing technologies.

Na Jong Shen, Azham Hussain and Yuhanis Yusof (2022), This system is developed to perform the connectivity of mobile application with Internet of Things (IoT) based dustbins. These dustbins are developed using IoT. IoT is the system of physical devices implanted with software, sensors and network connectivity which empowers these items to gather and trade information.

2.3 PROBLEM STATEMENT DEFINITION

Problem statement	I am (customer)	I am trying to	But	Because	Which makes me feel
PS-1	Municipal corporation authority	Get notified when the trash cans are full and be made aware of wherethe full cans are located	Don't havethe facilities atthe moment	There is no tool available to determine the level of bins.	Frustrated

PS-2	Individual	Get rid of	The trash	I occupy a	Worried	
	working for a	the example	cans are	metropolitan		
	private	of a surplus	always filled	where there		l
	limited	of waste		is acity is		
	corporation			invariably		
				crowd.		

3.Ideation and proposed solution

3.1 Empathy map canvas

3.2 Ideation and BrainStorming

3.3 Proposed Solution

Si.No	Parameter	Description

1.	Problem Statement (Problem	The manual monitoring of
	to resolved)	wastes in trash cans is a
		laborious operation that
		requires additional time,
		money, and human labor
		Unsafe trash disposal is
		generating problems for
		people.
		Bad odor all around the
		place from uncollected
		trash or rubbish.
2.	Idea / Solution description	The key research objectives are as
		follows: • The proposed system
		would be able to automate the
		solid waste monitoring process
		and management of the overall
		collection process using IOT
		(Internet of Things). ● The
		Proposed system consists of main
		subsystems namely Smart Trash

System(STS) and Smart Monitoring and Controlling Hut(SMCH). • In the proposed system, whenever the waste bin gets filled this is acknowledged by placing the circuit at the waste bin, which transmits it to the receiver at the desired place in the area or spot. • In the proposed system, the received signal indicates the waste bin status at the monitoring and controlling system 3. Novelty / Uniquenes In contrast to the traditional ways for collecting trash cans, this strategy instructs us to utilize the transportationonly when necessary. Keeping an eye on the trash cans easier and less laborintensive for humans

4.	Social Impact / Customer	From the public perception as
	Satisfaction	worst impacts of present solid
		waste disposal practices are seen
		direct social impacts such as
		neighbourhood of landfills to
		communities, breeding of pests
		and loss in property value
5.	Business Model (Revenue	By cutting back on unneeded
	Model)	transportation costs to pointless
		locations, this lowers a
		significantamount of fuel costs for
		city businesses. This initiative
		intends to assistmunicipal
		corporation. Provide a sanitary
		atmosphere.

3.4 Problem solution Fit

Smart waste management system

STEP 3

Ideas Problem Solution

Example ideas:

Ai-based smart waste bin, designed for publi places, enabling them to Monitor and Manage Reduce the number of bins required & DEcluttering and improving the street scene

Previously there were numerous initiatives on waste management and educating people to dispose waste properly, and as they failed to achieve significant results, we have figured out the scopes that could be develop. To solve this problem, we have designed a process that ensures proper disposal and efficient waste collection. The procedures we designed involves creative initiative that will inspire people to dump in designated area or bins, and innovative method by using Decreasing Time algorithm or DTA for monitoring garbage generation and collection of the garbage's.

miro

4.Requirment Analysis

4.1 Functional Requirment

Following are functional requirements for proposed solution

y / Sub-Task)
stands can be
ou can visit
e Street View
ns orstands

		are visible on the map as green,
		orange or red circles. You can see bin
		details in the Dashboard – capacity,
		waste type, last measurement, GPS
		location and collection schedule or
		pick recognition.
FR 2	Real time bin monitoring.	The Dashboard displays real-time
		data on fill-levels of bins monitored
		by smart sensors. In addition to the %
		of fill-level, based on the historical
		data, the tool predicts when the bin
		will become full, one of the
		functionalities that are not included
		even in the best waste management
		software Sensorsrecognize picks as
		well; so you can check when the bin
		was last collected. With real-time
		data and predictions, you can
		eliminate the overflowing bins and
		stop collecting half-empty ones.
Fr 3	Expensive bins.	We help you identify bins that drive
		up your collection costs. The tool
	I.	

		calculates a rating for each bin in
		terms of collection costs. The tool
		considers the average distance depo-
		bindischarge in the area. The tool
		assigns bin a rating (1-10) and
		calculates distance from depo-bin
		discharge.
Fr 4	Adjust bin distribution.	Ensure the most optimal distribution
Fr 4	Adjust bin distribution.	Ensure the most optimal distribution of bins. Identify areas with either
Fr 4	Adjust bin distribution.	
Fr 4	Adjust bin distribution.	of bins. Identify areas with either
Fr 4	Adjust bin distribution.	of bins. Identify areas with either dense or sparse bin distribution.
Fr 4	Adjust bin distribution.	of bins. Identify areas with either dense or sparse bin distribution. Make sure all trash types are
Fr 4	Adjust bin distribution.	of bins. Identify areas with either dense or sparse bin distribution. Make sure all trash types are represented within a stand. Based on

Non-Functional requirements

Following are non functional requirements for proposed solution

NFR No	Non Functional Requirment	Description
NFR-1	Usability	IoT device verifies that usability is a
		special and important perspective to
		analyze user requirements, which can

design process with user experience as the core, the analysis of users' product usability can indeed help designers better understand users' potential needs in waste management, behavior and experience. NFR 2 Security Use a reusable bottles Use reusable grocery bags Purchase wisely and recycle Avoid single use food and drink containers NFR 3 Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a powerful cloud-based platform, for			further improve the design quality. In the
usability can indeed help designers better understand users' potential needs in waste management, behavior and experience. NFR 2 Security Use a reusable bottles Use reusable grocery bags Purchase wisely and recycle Avoid single use food and drink containers NFR 3 Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			design process with user experience as
understand users' potential needs in waste management, behavior and experience. NFR 2 Security Use a reusable bottles Use reusable grocery bags Purchase wisely and recycle Avoid single use food and drink containers NFR 3 Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			the core, the analysis of users' product
waste management, behavior and experience. NFR 2 Security Use a reusable bottles Use reusable grocery bags Purchase wisely and recycle Avoid single use food and drink containers NFR 3 Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			usability can indeed help designers better
NFR 2 Security Use a reusable bottles Use reusable grocery bags Purchase wisely and recycle Avoid single use food and drink containers NFR 3 Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			understand users' potential needs in
NFR 2 Security Use a reusable bottles Use reusable grocery bags Purchase wisely and recycle Avoid single use food and drink containers NFR 3 Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			waste management, behavior and
grocery bags Purchase wisely and recycle Avoid single use food and drink containers Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			experience.
Avoid single use food and drink containers Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a	NFR 2	Security	Use a reusable bottles Use reusable
NFR 3 Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			grocery bags Purchase wisely and recycle
NFR 3 Reliability Smart waste management is also about creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			Avoid single use food and drink
creating better working conditions for waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			containers
waste collectors and drivers. Instead of driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a	NFR 3	Reliability	Smart waste management is also about
driving the same collection routes and servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			creating better working conditions for
servicing empty bins, waste collectors will spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			waste collectors and drivers. Instead of
spend their time more efficiently, taking care of bins that need servicing. NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			driving the same collection routes and
Care of bins that need servicing. The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			servicing empty bins, waste collectors will
NFR 4 Performance The Smart Sensors use ultrasound technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			spend their time more efficiently, taking
technology to measure the fill levels (along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			care of bins that need servicing.
(along with other data) in bins several times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a	NFR 4	Performance	The Smart Sensors use ultrasound
times a day. Using a variety of IoT networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			technology to measure the fill levels
networks ((NB-IoT,GPRS), the sensors send the data to Sensoneo's Smart Waste Management Software System, a			(along with other data) in bins several
send the data to Sensoneo's Smart Waste Management Software System, a			times a day. Using a variety of IoT
Management Software System, a			networks ((NB-IoT,GPRS), the sensors
			send the data to Sensoneo's Smart Waste
powerful cloud-based platform, for			Management Software System, a
			powerful cloud-based platform, for

		datadriven daily operations, available
		also as a waste management app.
NFR 5	Availability	By developing & deploying resilient
		hardware and beautiful software we
		empower cities, businesses, and
		countries to manage waste smarter.
NFR 6	Scalability	Using smart waste bins reduce the
		number of bins inside town , cities coz we
		able to monitor the garbage 24/7 more
		cost effect and scalability when we
		moves to smarter.

5.Project Design

5.1 Data Flow Diagram

5.2 Solution & Technical Architecture

Components and Technologies

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Mobile Application	HTML, CSS, JavaScript.
2.	Application Logic	Logic for a process in the application	Java
3.	Database	Data Type, Configurations etc.	MySQL
4.	Cloud Database	Database Service on Cloud	IBM Cloud
5.	File Storage	File storage requirements	Local Filesystem and IBM cloud
6.	Infrastructure (Server / Cloud)	Application Deployment on Cloud Local Server Configuration	Local and Cloud Foundry

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	GitHub	Internet hosting service
2.	Security Implementations	Application security: Veracode	Network automation
		Firewall: cisco	
3.	Scalable Architecture	It provides the room for expansion more database	Cloud storage
		of smart bins added additionally can be updated.	
4.	Availability	As the system control is connected to web server it	Server
	_	is available 24*7 and can be accessed whenever	
		needed.	
5.	Performance	Performance is high it uses 5mb caches	Wireless Sensor Network

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Admin	Login	USN-1	As an administrator, I assigned user names and passwords to each employee and managed them.	I can control my online account and dashboard.	Medium	Sprint-1
Co-Admin	Login	USN-2	As a Co-Admin, I'll control the waste level monitor. If a garbage filling alert occurs, I will notify the trash truck of the location and rubbish ID.	I can handle the waste collection.	High	Sprint-1
Truck Driver	Login	USN-3	As a Truck Driver, I'll follow Co Admin'sinstruction to reach the filled garbage.	I can take the shortest path to reach the waste filled route specified.	Medium	Sprint-2
Local Garbage Collector	Login	USN-4	As a Local Garbage Collector, I'll gather all the waste from the garbage, load it onto a garbage truck, and deliver it to Landfills	I can collect the trach, pullit to the truck, and send it out.	Medium	Sprint-3
Municipali tyofficer	Login	USN-5	As a Municipality officer, I'll make sure everything is proceeding as planned andwithout any problems.	All of these processes are under my control.	High	Sprint-4

6.Project planning and Scheduling

6.1 Sprint Planning and Estimation

TITLE	DESCRIPTION	DATE
Literature Survey & Information Gathering	Literature survey on the selected project & gathering information by referring the, technical papers,research publications etc.	30 SEPTEMBER 2022
Prepare Empathy Map	Prepare Empathy Map Canvas to capture the user Pains & Gains, Prepare list of problem statements	30 SEPTEMBER 2022
Ideation	List the by organizing the brainstorming session and prioritize the top 3 ideas based on the feasibility & importance.	30 SEPTEMBER 2022
Proposed Solution	Prepare the proposed solution document, which includes the novelty, feasibility of idea, business model, social impact, scalability of solution, etc.	25 SEPTEMBER 2022
Problem Solution Fit	Prepare problem - solution fit document.	28 SEPTEMBER 2022
Solution Architecture	Prepare solution architecture document.	30 SEPTEMBER 2022

Customer Journey	Prepare the customer journey maps to understand the user interactions & experiences with the application (entry to exit).	08 OCTOBER 2022
Functional Requirement	Prepare the functional requirement document.	11 OCTOBER 2022
Data Flow Diagrams	Draw the data flow diagrams and submit for review.	14 OCTOBER 2022
Technology Architecture	Prepare the technology architecture diagram.	16 OCTOBER 2022
Prepare Milestone & ActivityList	Prepare the milestones & activity list of the project.	24 OCTOBER 2022
Project Development - Delivery of Sprint-1, 2, 3 & 4	Develop & submit the developed code by testing it.	IN PROGRESS

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Objective	USN-1	The smart bin system will alert the nearby garbage collectors when the bin overflows.	6	High	DEEPAKRA J D V
Sprint-1	Registration	USN-2	The user(garbage collectors) can register for the application using the respective credentials provided to them.	4	Medium	DEEPAKRA J D V
Sprint-1	Designing	USN-3	Designing a circuit with sensors and arduino interface	6	High	DEEPAKRA J D V
Sprint-1	Cloud	USN-4	As an administrator, register in IBM cloud	4	Medium	DEEPAKRA J D V
Sprint-2	Code development	USN-5	Develop a code to send a message when the bin overflows using ultrasonic sensor	10	High	DEEPAK K

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-2	Cloud Server	USN-6	Cloud web server is created which connects the bin and the authority who is responsible for the disposal of waste from its bin	10	High	Deepak raj
Sprint-3	Sensor	USN-7	Detect the level of garbage using sensor and store it in the server for specific interval of time.	10	High	Deepak
Sprint-3	Cloud	USN-8	Authority should allocate which garbage collector should collect the waste at particular area	10	High	Harishraj
Sprint-4	Communicating Medium	USN - 9	Garbage collector receives the message from the authority and goes to collect the garbage	10	High	Barath
Sprint-4	Communicating Medium	USN-10	Once the garbage is collected the particular person should intimate the completion of the task	5	Medium	Deepakraj
Sprint -4	Cloud database	USN-11	Update the database after task completion	5	Medium	Barath

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	30 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

6.3 reports from JIRA

Burn Out Chart:

Road MAP:

7.CODING AND SOLUTIONING

7.1 Feature 1-Location Tracker

Feature 2:Live updation on collection Data

Smart Wa	Smart Waste Management			
	Monitoring layout			
BIN 1				
Location	Chennai - MMDA			
Distance	12			
Load cell	15			
NEED BIN CHANGE !!!!				

8.RESULTS

8.1 Performane Metrices

9. ADVANTAGES & DISADVANTAGES:

ADVANTAGES:

- Reduction in Collection Cost
- No Missed Pickups

- Reduced Overflows
- Waste Generation Analysis
- CO2 Emission Reduction

DISADVANTAGES:

- System requires a greater number of waste bins for separate waste collection as per population in the city.
- This results into high initial cost due to expensive smart dustbins compare to other methods.
- Sensor nodes used in the dustbins have limited memory size

10.CONCLUSION

A Smart Waste Management system that is more effective than the one in use now is achievable by using sensors to monitor the filling of bins. Our conception of a "smart waste management system" focuses on monitoring waste management, offering intelligent technology for waste systems, eliminating human intervention, minimizing human time and effort, and producing a healthy and trash-free environment. The suggested approach can be implemented in smart cities where residents have busy schedules that provide little time for garbage management. If desired, the bins might be put into place in a metropolis where a sizable container would be able to hold enough solid trash for a single unit. The price might be high.

11 FUTURE SCOPE

There are several future works and improvements for the proposed system, including the following:

1. Change the system of user authentication and atomic lock of bins, which would aid in protecting the bin from damage or theft.

- 2. The concept of green points would encourage the involvement of residents or end users, making the idea successful and aiding in the achievement of collaborative waste management efforts, thus fulfilling the idea of Swachh Bharath.
- 3. Having case study or data analytics on the type and times waste is collected on different days or seasons, making bin filling predictable and removing the reliance on electronic components, and fixing the coordinates.
- 4. Improving the Server's and Android's graphical interfaces

12.APPENDIX

Source code:

```
#include <WiFi.h>
                                      // library for wifi
                                      // library for
#include < PubSubClient.h >
MQTT #include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 20, 4);
// credentials of IBM Accounts _____-
#define ORG "9v7njv"
#define DEVICE_TYPE "123"
#define DEVICE_ID "1234567"
                                      // IBM organisation id
                               // Token
#define TOKEN "12345678"
                                     // Token
// customise above values -
char server[] = ORG
".messaging.internetofthings.ibmcloud.com";
                                              // server
namechar publishTopic[] = "iot-2/evt/data/fmt/json";
char topic[] = "iot-2/cmd/led/fmt/String";
                                             // cmd Represent type and command is test format
of strings
char authMethod[] = "use-token-auth";
                                             // authentication
methodchar token[] = TOKEN;
char clientId[] = "d:" ORG ":" DEVICE_TYPE ":" DEVICE_ID;//Client id
WiFiClient wifiClient;
                                            // creating instance
for wificlient PubSubClient client(server, 1883, wifiClient);
#define ECHO_PIN 12
#define
TRIG PIN
13 float dist;
void setup()
```

```
Serial.begin(115200);
pinMode(LED_BUILTIN,
OUTPUT);
pinMode(TRIG_PIN,
OUTPUT);
pinMode(ECHO_PIN,
INPUT);
//pir pin
pinMode(4,
INPUT);
//ledpins
pinMode(23,
OUTPUT);
pinMode(2,
OUTPUT);
pinMode(4,
OUTPUT);
pinMode(15,
OUTPUT);
lcd.init();
lcd.backligh
t();
lcd.setCurso
r(1, 0);
lcd.print("");
wifiConnect(
);
mqttConnect(
);
}
float readcmCM()
digitalWrite(TRIG_PIN,
LOW);
delayMicroseconds(2);
digitalWrite(TRIG_PIN,
HIGH);
delayMicroseconds(10);
digitalWrite(TRIG_PIN,
LOW);
int duration =
pulseIn(ECHO_PIN, HIGH);
return duration * 0.034 / 2;
```

```
void loop()
lcd.clear();
publishData();
delay(500);
if (!client.loop())
  mqttConnect();
                                               // function call to connect to IBM
}
/* ______retrieving to cloud _____*/
void wifiConnect()
Serial.pri
nt("Conn
ecting to
 ");
Serial.pri
nt("Wifi"
);
WiFi.begi
n("Wokw
i-
GUEST",
"", 6);
while (WiFi.status() != WL_CONNECTED)
  delay(500);
  Serial.print(".");
Serial.print("WiFi connected, IP address: ");
Serial.println(WiFi.localIP());
void mqttConnect()
 if (!client.connected())
  Serial.print("Reconnecting MQTT client to ");
  Serial.println(server);
   while (!client.connect(clientId, authMethod, token))
    Serial.print("");
    delay(500)
```

```
initManagedDevice();
Serial.println();
void initManagedDevice()
 if (client.subscribe(topic))
  Serial.println("IBM subscribe to cmd OK");
 else
  Serial.println("subscribe to cmd FAILED");
void publishData()
float cm = readcmCM();
if(digitalRead(34))
                                                //PIR motion detection
 Serial.println(
 "Motion
 Detected");
 Serial.println(
 "Lid
 Opened");
 digitalWrite(1
 5,HIGH);
else
 digitalWrite(15, LOW);
if(digitalRead(34)== true)
if(cm \le 100)
                                               //Bin level detection
 digitalWrite(2, HIGH);
Serial.println("High Alert!!!,Trash bin is about to be full");
 Seria
 l.print
 ln("Li
          Closed");lcd.print("Full!
 Don't
              use");delay(2000); lcd.clear(); digitalWrite(4, LOW);
 digitalWrite(23
 , LOW);
```

```
else if(cm > 150 && cm < 250)
 digitalWrite(4, HIGH);
 Serial.println("Warning!!,Trash is about to cross
 50% of bin level");
digitalWrite(2, LOW);
digitalWrite(23, LOW);
} else if(cm > 250 && cm <=400)
 dig
 ital
 Wr
 ite(
 23,
 Н
 GH
 );
 Serial.pr
 intln("Bi
 n is
 availabl
 e");
 digitalWrite(2,LOW)
 digi
 tal
 Wr
 ite(
 4,
 LO
 W)
 ) delay(10000);
 Serial.println("Lid Closed");
}
else
 Serial.println("No motion detected");
if(cm \le 100)
digitalWrite(21,HIGH);
String
```

```
payload =
"{\"High
Alert!!\":\
payload
+= cm;
payload
+= "left\"
Serial.pri
nt("\n");
Serial.pri
nt("Sendi
ng
payload:
");
Serial.pri
ntln(payl
oa d);
if (client.publish(publishTopic, (char*) payload.c_str())) // if data is uploaded to
cloudsuccessfully, prints publish ok or prints publish failed
Serial.println("Publish OK");
if(cm \le 250)
digitalWrite(22,HIGH);
String
payload
"{\"Warn
ing!!\":\"
payload
+= dist;
payload
+=
"left\"
}";
Serial.pr
int("\n");
Serial.pr
int("Send
ing
```

```
distance:
");
Serial.pr
intln(cm)
if(client.publish(publishTopic, (char*) payload.c_str()))
Serial.println("Publish OK");
}
else
Serial.println("Publish FAILED");
float inches = (cm / 2.54);
lcd.setCursor
(0,0);
lcd.print("Inches");
lcd.setcursor(4.0);
lcd.setcursor(12,0);
lcd.print("cm");
lcd.setcursor(1,1);
lcd.print(inches,1);
lcd.setcursor(11,1);
lcd.print(cm,1);
lcd.setcursor(14,1);
delay(1000);
lcd.clear();
}
```

OUTPUT PICTURE:

GITHUB PROFILE:

https://github.com/IBM-EPBL/IBM-Project-9481-1659011193