Meccanica

Luca Mombelli

Ottobre 2024

Indice

1	Cop	pie cinematiche e meccanismi	
	1.1	Vincoli geometrici	3
	1.2	Coppie cinematiche	Ł
2	Cat	ene cinematica	j
	2.1	Molteplicità	;
	2.2	Equazione di Grüber	;
3	Forz	ze di contatto ed effetti dissipativi	j
	3.1	Usura	
	3.2	Ipotesi di Reye	
		3.2.1 Esempio	
	3.3	Teoria di Hertz	
		3.3.1 Contatti puntiformi (sfera-sfera)	
		3.3.2 Contatti Lineari	
	3.4	Urti	
	0.1		•
4	Cine	ematica dei meccanismi piani 12	2
	4.1	Analisi di posizione	2
	4.2	Analisi di velocità	2
		4.2.1 Formulazione geometrica	_
		4.2.2 Formulazione matematica	3
	4.3	Aspetti geometrici della cinematica dei meccanismi	3
		4.3.1 CIR per le coppie	Ĺ
	4.4	Analisi di accelerazione	í
		4.4.1 Formulazione geometrica	í
		4.4.2 Formulazione matematica	í
5	Stat	cica dei meccanismi piani	ì
•	5.1	Reazini vincolari per le principali coppie cinematiche	
	5.2	Principio dei lavori virtuali	
	5.3	Analisi grafica	
		5.3.1 Modelli	
6	Din	amica dei Meccanismi 18	2
	6.1	Equazione di Newton Eulero	
	6.2	Principio di D'Alembert	
	6.3	Principio dei lavori virtuali	
	6.4	Condizioni di funzionamento	
	0.1	6.4.1 Macchine a regime o in moto vario	
	6.5	Rendimento	
	J.0	6.5.1 Rendimento per macchine in serie	
		6.5.2 Rendimento per macchine in parallelo	
		6.5.3 Flusso di Potenza Retrogrado	

7	Meccanica delle coppie cinematiche	22
	7.1 Coppia Prismatica	22

1 Coppie cinematiche e meccanismi

1.1 Vincoli geometrici

• Contatto puntuale : elimina la possibilità del corpo traslare in direzione ortogonale al piano , rimango pertanto al corpo **5 gradi di libertà**

• Contatto di linea :

il corpo perde la possibilità di traslare rispetto alla direzione ortogonale al piano e inoltre può routare unicamente nella direzione perpendicolare al piano e nella direzione parallela al segmento di contatto. Quindi in conclusione il corpo ha un ${\bf gradi\ di\ libert\^a}$ pari a ${\bf 4}$

• Contatto d'area:

Il corpo 2 condivide un piano con il corpo 1 . Il corpo potrà traslare in due direzioni ma ruotare unicamente nella direzione perpendicolare al corpo uno. In conclusione il corpo ha un **grado di libertà** pari a $\bf 3$

ù Inoltre si possono ottenere vincoli più complessi ponendo in contatto più di una coppia di elementi geometrici : Di sicuro il corpo 2 può traslare il nella direzione indicata dalla

Figura 1: Esempio

freccia ma il doppio vincolo introdotto dai piani verticali bloccato la secondo traslazione orizzontale , però il corpo 2 potrebbe allontanarsi dal corpo 1 , quindi il **vincolo** è **monolaterale**.

I vincoli possono poi essere:

- monolaterale o accoppiamento di forza : agisce unicamente in una certa direzione e in un certo verso
- bilaterali o accoppiamento di forma : agisce su tutte e due i versi di una direzione.

1.2 Coppie cinematiche

una coppia cinematica costituisce una relazione di vincolo nel moto relativo fra due corpi. Nelle coppie cinematiche è essenziale il tipo di moto relativo , inoltre un coppia cinematica connette sempre almeno due corpi.

Il moto relativo è definito da:

- numero di gradi di libertà
- componenti di moto relativo ammesse
- elementi geometrici che rimangono fermi nel moto relativo e che, pertanto, possono essere considerati appartenenti ad ambedue i corpi

Inoltre se si vuole analizzare il funzionamento *interno* delle coppie cinematiche dobbiamo prendere in esame i suoi *elementi cinematici* cioè le superfici coniugate che , solidali ai due corpi , consentono la realizzazione del moto relativo prescritto.

• Coppie inferiore :

Coppie che possono essere realizzate con elementi cinematici in contatto superficiale (superfici combacianti)

1. Coppia rotoidale:

- Lascia 1 grado di libertà nel moto relativo : rotazione attorno all'asse della coppia
- Gli elementi fissi della coppia sono la retta che ne definisce l'asse e tutti i suoi punti-

2. Coppia prismatica:

- Lascia 1 grado di libertà nel moto relativo : traslazione lungo l'asse della coppia
- L'elemento fisso della coppia è la retta che ne definisce l'asse

3. Coppia Elicoidale:

- $-\,$ Lascia 1 grado di libertà nel moto relativo che è una rototraslazione lungo l'asse della coppia
- Rotazione e traslazione sono correlate dal passo p
 dell'elica ($\Delta h = P\Delta\theta)$
- L'elemento fisso della coppia è la retta che ne definisce l'asse

- 4. Coppia cilindrica:
 - Lascia 2 gradi di libertà nel moto relativo : rotazione e traslazione sono indipendenti
 - L'elemento fisso della coppia è la retta che ne definisce l'asse

- 5. Coppia piana:
 - Lascia 3 gradi di libertà nel moto relativo : 2 traslazione , 1 rotazione
 - L'elemento fisso della coppia è l'insieme dei piani paralleli al piano del moto

- 6. Coppia sferica
 - Lascia 3 gradi di libertà nel moto relativo : tutte e tre le rotazioni
 - L'elemento fisso della coppia è il punto centrale del moto sferico

Le tre coppie inferiore a un grado di libertà (rotoidale , elicodsale , prismatica) sono dette **elementari** Nei **Meccanismi piani** le uniche coppie inferiori sono la coppia rotoidale e quella prismatica

- Coppie superiori : sono coppie in cui le superfici coniugate non sono combacianti oppure nei quali i corpi sono deformabili (cinghie)
 - Coppie a camma :
 - * coppie a camma con puro rotolamento :
 - · La coppia ha solo un grado di libertà
 - \cdot Il membro 2 può ruo
tare attorno al punto P , punto di contatto tra i due profili , che cambia durante il moto
 - Nel punto di contatto le velocità relative normali e tangenziali sono nulle.
 - * coppie a camma con strisciamento : La coppia ha due gradi di libertà

2 Catene cinematica

La catena cinematica è l'unione di più membri attraverso coppie cinematiche.

Ciascun membro può avere un numero arbitrario di coppie : corpi binari (2) , corpi ternari (3) , corpi quaternari (4).

Se la catena contiene un corpo considerato fisso, esso è detto telaio.

Una catena cinematica può essere rappresentato sia facendo riferimento all'effettiva forma fisica sia evidenziando solo la geometria dei corpi , ossia lo schema cinematico.

2.1 Molteplicità

La molteplicità di una coppia cinematica è pari al numero di corpi -1.

La scomposizione di una coppia cinematica con molteplicità ${\bf n}$, da luogo a ${\bf n+1}$ schemi cinematici equivalenti formati da coppie binarie

2.2 Equazione di Grüber

L'equazione di Grüber consente di trovare il numero di gradi di libertà di un meccanismo piano

$$n_{adl} = 3(m-1) - 2c_1 - c_2$$

- m = numeri di corpi
- ullet $c_1 =$ numero delle coppie cinematiche di classe 1 presenti nel meccanismo
- ullet $c_1 =$ numero delle coppie cinematiche di classe 2 presenti nel meccanismo

Le coppie vanno contato in base alla loro molteplicità

3 Forze di contatto ed effetti dissipativi

3.1 Usura

l'usura è la perdita progressiva di materiale da una delle due superfici o da entrambe le superfici a contatto e in moto relativo tra di loro . L'usura è strettamente legata all'attrito ma non sempre coppie che presentato un elevato coefficiente d'attrito manifestano un'elevata propensione all'usura e viceversa.

• Usura adesiva:

L'usura adesiva consiste nella rottura delle micro-saldature consentendo l'avvio del moto relativo tra i membri della coppia. La rottura delle micro-saldature può causare il distacco di piccole quantità di materiale che si separa da uno dei due materiali

• Usura abrasiva :

Si verifica quando particelle dure o asperità sulle superfici rimuovono materiale dalla superficie opposta, agendo come agenti abrasivi

• Usura corrosiva:

Sulla superficie dei materiali si creano degli stati di composti che proteggono il materiale . Se asportato di ha la formazione di particelle abrasive e la formazione di nuovo ossido sulla superficie fresca.

 $\bullet\,$ Fatica superficiale (Usura per fatica) :

Esso è prodotto da sollecitazioni periodiche di contatto hertziano tra superfici che si scambiano forze. Ciò può alla lunga provocare l'insorgenza di cricche sia sulla superficie, sia sotto.

• Erosione:

L'usura erosiva (o erosione) ha origine quando le particelle in un fluido (o altro veicolo) scivolano e rotolano a velocità relativamente alta contro una superficie.

3.2 Ipotesi di Reye

Il volume di materiale asportato in un intervallo di tempo è direttamente proporzionale al Lavoro svolto dalle forze d'attrito nello stesso intervallo

$$V \propto L_{att}$$

$$\Delta h \ dA \propto f_d \ p \ dA \ \Delta s$$

dove:

• Δh : è lo spessore del materiale asportato

• dA: è l'area (infinitesimale di contatto)

• f_d : è il coefficiente d'attrito

 \bullet p: è la pressione di contatto

 \bullet ΔS : è lo spostamento nell'intervallo di tempo

3.2.1 Esempio

Si determini la distribuzione delle pressioni sulle superfici di contatto tra il pattino e il piano Ipotizziamo che l'altezza abbia andamento lineare $h(x)=\frac{h_2-h_1}{a}x+h1$, adesso possiamo calcolare grazie all'ipotesi di Reye il Volume di materiale asportato

$$V \propto L$$
 $dx \ b \ h(x) \propto f_d \ N \ S$ $dx \ b \ h(x) \propto f_d \ p(x) \ dx \ b \ S \rightarrow h(x) \propto p(x)$

con spostamento unitario , inoltre la costa dell' attrito viene incorporata nella constante di proporzionalità $\,$

Quindi ora sappiamo che anche la pressione è lineare ed ha forma

$$p(x) = kh(x) = \frac{h_2 - h_1}{a}x + h_1$$

7

inoltre se chiamiamo $m = \frac{h_2 - h_1}{h_1}$ $p_1 = kh_1$ possiamo riscrivere la pressione come

$$p(x) = p_1 \left[m \frac{x}{a} + 1 \right]$$

Ora andiamo a calcolare i valori di p_1 e m
 utilizzando due relazione

$$Q = \int_0^a p(x) \ b \ dx = \int_0^a p_1 \left[m \frac{x}{a} + 1 \right] b \ dx = p_1 b \left[m \frac{x^2}{2a} + x \right]_0^a = p_1 b a \left[\frac{m}{2} + 1 \right]$$

$$Qd = \int_0^a x \ p(x) \ b \ dx = p_1 b \int_0^a \left[m \frac{x^2}{a} + x \right] = p_1 b \left[m \frac{x^3}{3a} + \frac{x^2}{2} \right]_0^a = p_1 b a^2 \left[\frac{m}{3} + \frac{1}{2} \right]$$

Ora possiamo ricarvare m e p_1 dal seguente sistema

$$\begin{cases} Q = p_1 ba \left[\frac{m}{2} + 1 \right] \\ Qd = p_1 \ ba^2 \left[\frac{m}{3} + \frac{1}{2} \right] \end{cases} \rightarrow p_1 ba \left[\frac{m}{2} + 1 \right] d = p_1 ba \ a \left[\frac{m}{3} + \frac{1}{2} \right] \rightarrow \begin{cases} m = \frac{3a - 6d}{3d - 2a} \\ p_1 = \frac{2Q}{ba(m + 2)} = \frac{2Q}{ba^2} (2a - 3d) \end{cases}$$

3.3 Teoria di Hertz

La teoria di Hertz rappresenta il modella più diffuso per il calcolo dell'area effettiva di contatto e della distribuzione si pressione.

Le leggi di Hertz sono valide soddisfatte le seguenti ipotesi :

- Materiale uniforme, isotropo e perfettamente elastico
- Forza normali alla superficie di contatto (non viene preso in considerazione l'attrito)
- Area di contatto piccola rispetto alle dimensione dei membri
- Deformazioni piccole rispetto alle dimensione delle zone di contatto

Due casi:

3.3.1 Contatti puntiformi (sfera-sfera)

Il contatto tra due sfere generiche di raggio r_1 ed r_2 , sotto l'azione di una forza di chiusura Q (normale alle superficie), genera una zona di contatto circolare. Indichiamo con a il raggio di tale aureola, mentre δ rappresenta la deformazione superficiale.

Sappiamo che:

- all'aumentare della forza Q([N]) aumne ta anche l'area di contatto a $(Q \uparrow \rightarrow a \uparrow)$
- All'aumentare del raggio di curvatura r([m]) delle due sfera aumenta anche l'area di contatto a $(r \uparrow \to a \uparrow)$
- all'aumentare del Modulo di Young E([$\frac{N}{m^2}$]) ($E=\frac{F\ l}{S\Delta l}$), dimunuisce l'area di contatto poichè i corpi diventa meno elastici ($E\uparrow \to a\downarrow$)

VIste queste considerazioni possiamo dire che:

$$a \propto \frac{Q \cdot r}{E}$$

inoltre conoscendo le unità di misura possiamo arrivare alla seguente formula

$$a = k\sqrt[3]{\frac{Q \cdot \bar{r}}{\bar{E}}} \qquad k = \sqrt[3]{\frac{3}{4}}$$

inoltre $\frac{1}{\bar{r}}=\left|\frac{1}{r_1}\pm\frac{1}{r_2}\right|$ $\frac{1}{\bar{E}}=\frac{1-v_1^2}{E_1}+\frac{1-v_2^2}{E_2}$ dove v_1,v_2 sono i coefficienti di Poisson relativi ai materiali

Pressione Superficiale La distribuzione della pressione è di tipo elissoidale con valori nulli ai bordi e valore massimo al centro dell'ellisse.« Per calcolare La pressione mediana

basta prendere l'area della circonferenza di base e dividerla per la forza Q

$$P_m = \frac{Q}{\pi a^2}$$

Per determinare la P_{max} iniziamo a determinare il volume del semielisse $V=\frac{1}{2}\frac{4}{3}\pi a^2P_{max}=\frac{2}{3}\pi a^2P_{max}$ ora eguagliamo il volume del semielisse a quello del cilindro con base la circonferenza e con altezza la P_m

$$\frac{2}{3}\pi a^2 P_{max} = P_m \pi a^2 \quad P_{max} = \frac{3}{2} P_m = \frac{3}{2} \frac{Q}{\pi a^2}$$

ora sostituendo con a il valore precedentemente calcolato si ottiene

$$P_{max} = K_b \sqrt[3]{\frac{Q \cdot \bar{E}^2}{\bar{r}^2}} \qquad k_b = \frac{\sqrt[3]{6}}{\pi} \approx 0,578$$

Può essere d'interessa anche il calcolo della deformazione dovuto al contatto

$$\delta = k_c \sqrt[3]{\frac{Q^2}{\bar{E}^2 \bar{r}}} \qquad k_c = \sqrt[3]{\frac{9}{16}} \approx 0,825$$

3.3.2 Contatti Lineari

Contatto tra due cilindri lungo una generatrice Sappiamo che:

- all'aumentare della forza Q([N]) aumenta anche l'altezza b $(Q \uparrow \to b \uparrow)$
- All'aumentare del raggio di curvatura r([m]) dei due cilindri aumenta anche l'altezza b $(r \uparrow \to b \uparrow)$
- all'aumentare del Modulo di Young E([$\frac{N}{m^2}$]) ($E=\frac{F\ l}{S\Delta l}$), dimunuisce l'altezza bo poichè i corpi diventa meno elastici ($E\uparrow \rightarrow b\downarrow$)
- Se la lunghezza l ([m]) aumenta , a parità di Q , diminuisce la pressione e quindi diminuisce anche l'altezza b ($l\uparrow\to b\downarrow$)

Viste queste considerazione possiamo dire che:

$$b \propto \frac{Q \cdot r}{E \cdot l}$$

Inoltre conoscendo le unità di misura possiamo arrivare alla seguente formula

$$b = k_b \sqrt{\frac{Q \cdot r}{E \cdot l}}$$
 $k_b = \frac{2}{\sqrt{\pi}} \approx 1,128$

Pressione superficiale Il diagramma delle pressione corrisponde ad un semi-cilindroide a direttrice ellittica : le pressioni assumono valore nullo sulle generatrici ai bordi del contatto , sono massime in corrispondenza dell'asse. La pressione media è immediata :

$$P_m = \frac{Q}{2b \cdot l}$$

Ora passiamo al calcolo del volume del semi-cilindroide :

$$V = \frac{1}{2}l\pi^2 P_{max}b$$

ora calcoliamo la Pressione massima :

$$\frac{1}{2}l\pi P_{max}b = P_m 2bl \qquad P_{max} = \frac{4}{\pi}P_m = \frac{4}{\pi}\frac{Q}{2b \cdot l}$$

Inoltre sostituendo a b la formula precedentemente ricavata

$$P_{max} = k_p \sqrt{\frac{\bar{E}Q}{l\bar{r}}}$$
 $k_p = \frac{1}{\sqrt{\pi}} \approx 0,564$

Inoltre anche in questo caso è possibile calcolare l'avvicinamento relativo degli assi

$$\delta = \frac{Q}{\pi l \bar{E}} \left[1 + \ln \frac{\pi l^3 \bar{E}}{Q \bar{r}} \right]$$

3.4 Urti

Tipi di urti :

- Dipendenti dalla forma dei corpi :
 - 1. Urto centrale : i baricentri dei due corpi giacciono sulla normale comune passante per il punto di collisione , le equazioni del moto non sono accoppiate
 - 2. Urto eccentrico: i baricentri dei due corpi non giacciono sulla normale comune passante per il punto di collisione, le equazioni del moto risultano accoppiate
- Dipendenti dalla cinematica :
 - 1. Urto diretto : ogni corpo ha campo di velocità uniforme , parallelo a alla linea d'urto e perpendicolare al piano d'urto
 - 2. Urto obliquo : la velocità relativa del punto di contatto dei 2 corpi all'impatto forma un angolo ψ con la normale comune

Figura 2: Urto diretto

Figura 3: Urto obliquo

4 Cinematica dei meccanismi piani

4.1 Analisi di posizione

4.2 Analisi di velocità

4.2.1 Formulazione geometrica

Teorema 4.1: teorema di Rivals per le velocità

$$\overrightarrow{v}_B = \overrightarrow{v}_A + \overrightarrow{\omega} \times \overrightarrow{(B-A)} = \overrightarrow{v}_A + v_{AB}$$

Inoltre come nel caso delle posizioni , ciascun tipo di coppia impone a livello delle velocità uno specifici tipo du condizioni di congruenza :

• Coppia rotoidale:

è modellata imponendo che il punto in comune fra i corpi afferenti sulla coppia abbia la stessa velocità assoluta (la velocitò relativa tra i due corpi deve essere zero)

• Coppia prismatica ;

è modellata imponendo che i corpi da esse connessi abbiano la stessa velocità , la stessa accelerazione angolare e velocità relative parallele alla retta della coppia.

Ora vediamo un'esempio di formulazione geometrica: In questo caso possiamo subito

ricavare $v_A = v_{A2} = v_0 + \omega_2 \times (A - O) = \omega_2 \times (A - O)$ quindi ora possiamo ricavare la direzione e il verso di $v_A = v_{A2} = v_{A3}$ grazie alla regola della mano destra.

Ora posso imporre la congruenza sull'asta B quindi sappiamo che $V_B = V_{B3} = v_{B4}$, $v_{B3} = v_A + \omega_3 \times (B-A)$ $v_{B4} = v_C + \omega_4 \times (B-C)$ quindi possiamo dire che $v_A + \omega_3 \times (B-A) = \omega_4 \times (B-C)$ ora data questa relazione possiamo risolvere graficamente per ricavare v_B e v_{rBA} come mostrato nella seguente figura

Figura 4

4.2.2 Formulazione matematica

Esiste anche un metodo del tutto sistematico per formulare le equazioni di velocità. Quest'ultimo consiste nel derivare rispetto al tempo le equazioni di posizione , per poi risolvere le relazioni risultanti rispetto alle velocità incognite. Derivando sistematicamente le equazioni di posizione si ottiene un sistema di equazioni lineari che ha lo stesso numero di equazioni , incognite e coordinate libere del primo sistema

$$\frac{df(x(t), y(t), p)}{dt} = \frac{df(x(t), y(t), p)}{dy}\dot{y} + \frac{df(x(t), y(t), p)}{dx}\dot{x}$$

Inoltre chiamiamo $\frac{df(x(t),y(t),p)}{dy}=f_y$ la matrice jacobiana del sistema delle equazioni del vincolo mente $\frac{df(x(t),y(t),p)}{dx}=f_x$ quindi possiamo riscrivere l'equazione come

$$f_x \dot{x} + f_y \dot{y} = 0$$

con \dot{x} il vettore delle coordinate libera , \dot{y} è il vettore delle coordinate dipendenti

4.3 Aspetti geometrici della cinematica dei meccanismi

La distribuzione di un sistema rigido a un certo istante è denominata "atto di moto" e in riferimento alla figura vi sono due casi :

- Se esistono due punti che hanno la stessa velocità allora tutti i punti del sistema rigidi hanno la stessa velocità. Quindi le velocità relativa tra i punti sono nulle e la velocità angolare del corpo è nulla.
- qualora vi siano due punti con la velocità diverse , la situazione è più complessa.Inoltre è sempre possibili individuare un punto C la cui velocità all'instante considerato è nulla : tale punto è chiamato centro istantaneo di rotazione.

Per individuar
lo basta usare il teorema di Rivals per individuare un punto C
 c
 velocità nulla $\,$

$$v_c = 0 = v_a + \omega \times (C - A)$$

Quindi affinchè la velocità C sia nulla , la velocità di C rispetto ad A $(V_{C-A}=\omega\times(C-A))$ dovrà essere ortogonale alla velocità A.

Ripetendo lo stesso procedimento per il punto B si trovano due rette ortogonali alla velocità nei rispettivi punti alla cui intersezione si trova il centro d istantanea rotazione $\mathcal C$

4.3.1 CIR per le coppie

- Coppia rotoidale:
 - Nel caso di due corpi connessi tramite una coppia rotoidale , il relativo C.i.r coincide con il centro della coppia , che è l'unico punto con velocità nulla nel moto relativo
- Coppia prismatica : Nel Caso di due corpi collegati tramite una coppia prismatica il C.i.r si trova a distanza infinita sulla retta perpendicolare alla direzione di spostamento (traiettoria)

Ora dato il teorema di A-K posso analizzare due situazione tipiche :

• Quadrilatero articolato : Come si vede dalla figura possiamo calcolare il centro

Figura 5: Analisi quadrilatero

di rotazione C_{13} come l'intersezione tra la retta passante per C_{23}, C_{12} (quindi arriviamo al corpo 3 passando per 2) e la retta passante per C_{34}, C_{14} (quindi raggiungiamo il corpo 3 passando per il corpo 4).

Allo stesso modo possiamo calcolare il centro di rotazione C_{24} come l'intersezione tra la retta che raggiunge 4 attraverso tre e la retta che raggiunge 4 attraverso 1

• Biella-manovella:

In questo caso possiamo calcolare il centro C_{13} come l'intersezione tra la retta

Figura 6: Analisi biella-manovella

passante per C_{34} con direzione parallela a quella di C_{14} e la retta passante per C_{12}, C_{23}

4.4 Analisi di accelerazione

4.4.1 Formulazione geometrica

Teorema 4.3: Teorema di Rivals per le accelerazioni

er ricavare il teorema di Rivals applicato alle accelerazioni possiamo semplicemente derivare il teorema applicato alle velocità

$$\overrightarrow{a}_b = \overrightarrow{a}_A + \overrightarrow{\omega} \times \overrightarrow{B - A} + \omega \times (\overrightarrow{B - A}) = \dots + \omega \times (v_B - v_A)$$
$$= \overrightarrow{a}_A + \overrightarrow{\omega} \times \overrightarrow{B - A} + \overrightarrow{\omega} \times (\overrightarrow{\omega} \times (\overrightarrow{B - A}))$$

in modulo possiamo scrivere $\overrightarrow{\omega}\times(\overrightarrow{\omega}\times\overrightarrow{(B-A)})$ come $-\omega^2(B-A)$

4.4.2 Formulazione matematica

Anche nel caso delle accelerazioni , il problema può essere formulato e risolto in forma puramente matematica , senza ricorrere a costruzioni grafiche , derivando le equazioni du velocità , ottenendo così un altro sistema di equazioni lineari

5 Statica dei meccanismi piani

5.1 Reazini vincolari per le principali coppie cinematiche

5.2 Principio dei lavori virtuali

Teorema 5.1: Principio dei lavori virtuali

In condizioni ideali il lavoro virtuale ¹ fatto dalle forze e coppie esterne agenti sul meccanismo è nullo

$$\delta L = \sum F_i * \delta r_i$$

NOTA BENE : nell'utilizzare il PLV non dobbiamo prendere in considerazione la presenza di eventuali reazioni vincolari (ad esempio dovute a coppie cinematiche) , poichè , in assenza di attrito , esse sono perpendicolari ai vincoli e quindi tali forza non compaiono nelle equazioni di equilibrio

5.3 Analisi grafica

5.3.1 Modelli

- 2 Forze : Se un corpo è sottoposto all'azione di 2 forze , queste devono costituire una coppia a braccio nullo. Devono quindi avere la stessa direzione e verso opposti (devono essere colineari)
- ullet 2 Forze ed un momento
- 3 Forze : Se un corpo è soggetto soltanto a 3 forze , queste devono giacere sullo stesso piano e devono essere concorrenti in un uni punti (eventualmente all'infinito al caso in cui siano parallele)
- 4 Forze

¹lavoro fittizio sviluppato in corrispondenza di uno spostamento virtuale , un arbitrario spostamento infinitesimo dei punti del sistema compatibile con i vincoli supposti fissi all'istante considerato

6 Dinamica dei Meccanismi

6.1 Equazione di Newton Eulero

Un approccio comune per lo studio della dinamica dei sistemi meccanici consiste nell'applicazione delle equazioni cardinali della dinamica che nel caso piano sono

$$\begin{cases} \sum F_x = ma_x \\ \sum F_y + ma_y \\ \sum_i M_{Oi} = J_0 \dot{\omega} \end{cases}$$

Dove i momenti vanno calcolati rispetto a una punto fisso oppure al *baricentro*. Le equazioni cardinali non tengono in conto le **equazione di congruenza** (le equazioni che esprimono i vincoli che legano il moto dei vari membri, es. coppie cinematiche) Il

Modellazione dinamica

Figura 7: Schema modellazione dinamica

problema della dinamica diretta , quindi date le forze trovare il moto , risulta essere più difficile perchè alla fine di tutto giungiamo ad n_{gdl} di equazioni differenziali che vanno integrate per risolvere il moto del sistema (utilizzando le condizioni iniziali)

6.2 Principio di D'Alembert

D'Alembert riorganizzò le equazioni di Newton per ricostruire una situazione "quasistatica" da una dinamica

$$\begin{cases} \sum_{i} F_{ix} + F_{in \ x} = 0 \\ \sum_{i} F_{iy} + F_{in \ y} = 0 \\ \sum_{i} M_{iG} + F_{in \ G} = 0 \end{cases}$$

nelle quali i momenti vengono calcolati rispetto a G baricentro e sono stati introdotti i termini fittizi chiamati forza d'inerzia e momento risultante delle forze d'inerzia

rispettivamente:

$$\begin{cases} F_{in} = -ma_G \\ M_i n \ G = -J_G \dot{\omega} \end{cases}$$

Se come polo P si sceglie un polo diverso dal baricentro G è necessario calcolare il momento della forza d'inerzia rispetto al polo scelto

$$M_{inP} = M_{inG} + (G - P) \times F_{in} = -J_G \dot{\omega} - (G - P) \times ma_G$$

In questo caso la seconda equazione cardinale della dinamica si scrive:

$$\sum M_{iP} + M_{inP} = 0$$

6.3 Principio dei lavori virtuali

E possibile applicare il principio dei Lavori virtuali anche alla studio della dinamica , purché al lavoro svolte dalla forze esterna venga aggiunto quello svolte dalla Forza d'inerzia

$$\delta L + \delta L_{in} = 0$$

6.4 Condizioni di funzionamento

Durante il funzionamento della macchine si verificano significativi scambi di energia fra le varie parti , indicati con il **flusso di potenza**. Per un sistema puramente meccanico l'energia scambiata é uguale al lavoro , inoltre in un sistema sono presenti scambi di energia con l'esterno e accumuli o diminuzione di energia.

Supponendo che gli scambi con l'esterno siano solo quelli di lavoro meccanico e quelli termici dovuti ad effetti dissipativi , allora perveniamo al teorema dell'energia cinetica che afferma :

Figura 8: bilancio energetico di una macchina $\Delta T = \Delta K$

$$L_m - L_r - L_p = \Delta K$$

dove

- L_m è il lavore motore
- L_r è il lavore resistente
- $\bullet \ L_p$ è il lavore dell'energia perduta per fenomeni dissipativa come attrito

6.4.1 Macchine a regime o in moto vario

Il caso più semplice del teorema dell'energia cinetica è quando non vi è variazione di energia cinetica e quindi

$$L_m = L_p + L_r$$

In questo caso, chiamato **moto a regime assoluto** m, non si hanno variazione di energia cinetica. Molte macchine come le turbine per la generazione di energia elettrica,nastri trasportatori lavorano in questo regime.

Moto spesso l'energia cinetica dei meccanismi non è esattamente costante nel tempo ma

oscilla periodicamente (piccole fluttuazione ad elevate frequenze) , questo è il caso di un albero che ruota a velocità angolare costante mentre gli altri membri sono animati da una velocità variabile con la rotazione dell'albero stesso. In questo caso la variazione di energia cinetica è ancora nulla se viene valutata sul periodo del moto , per cui il moto viene chiamato a **regime periodico**

Se la maccchina funzione in **moto vario** la variazione dell'energia cinetica non è pari a zero

6.5 Rendimento

Il rendimento viene usato per valutare l'impatto relativo delle perdite di energie dovute all'attrito ed effetti dissipativa in genere sul funzionamento 7 di una macchina.

$$\eta = \frac{L_r}{L_m} = \left(\frac{L_m - L_p}{L_m}\right)$$

In condizioni ideali non si ha perdita di di energia $(L_{p0} = 0)$ per cui $\eta = 1$ e tutto il lavoro motore diventa lavore resistente quindi

$$L_{m0} = L_r$$

In condizioni reali invece una parte di energia viene persa per attrito , in questo caso per fornire lo stesso valore resistente servirà un lavoro motore più alto , pertanto possiamo definire il rendimento nel seguente modo

$$\eta = \frac{L_{m0}}{L_m}$$

Solo nel caso in cui la **forza motrice sia costante** , dividendo il numeratore e il denominatore per uno spostamento unitario , ottieniamo il rendimento in funzione delle forze o dei momenti

$$\eta = \frac{F_{m0}}{F_m} = \frac{M_{m0}}{M_m}$$

Inoltre possiamo definire , in modo un po' improprio , il rendimento istantaneo per le macchine a moto vario

$$\eta_{ist} = \frac{P_r}{P_m}$$

6.5.1 Rendimento per macchine in serie

Figura 9: Tre macchine in serie

$$\begin{split} L_{r_{tot}} &= L_{r_3} \\ &= \eta_3 L_{r_2} \\ &= \eta_3 \eta_2 L r_1 \\ &= \eta_3 \eta_2 \eta_1 l_m \\ \eta_{tot} &= \eta_1 \eta_2 \eta_3 \end{split}$$

6.5.2 Rendimento per macchine in parallelo

$$\begin{split} \eta &= \frac{L_{r_1} + L_{r_2} + L_{r_3}}{L_m} \\ &= \frac{\eta_1 L_{m_1} + \eta_2 L_{m_{2_2}} + \eta_3 L_{m_3}}{L_m} \\ &= \eta_1 \frac{L_{m_1}}{L_m} + \eta_2 \frac{L_{m_2}}{L_m} + \eta_3 \frac{L_{m_3}}{L_m} \end{split}$$

Quindi , quanto il rendimento di una macchina influisci il totale dipende dalla percentuale di lavoro motrice che utilizza

6.5.3 Flusso di Potenza Retrogrado

In normali condizione la potenza fluisce dal motore verso l'utilizzatore (**flusso diretto**).In certi casi è possibile avere un'inversione del flusso di potenza che percorse la macchina dal lato utilizzatore verso il motore (**flusso retrogrado**).

In condizione di *flusso retrogrado della potenza* il lavoro resistenza nel caso di flusso diretto diventa lavoro motore , invece il lavoro motore non diventa completamente il lavoro resistenza a causa de fenomeni d'attrito

Un sistema si dice

- Irreversibile : la potenza può fluire solo dal motore all'utilizzatore
- Reversibile : si ha un'inversione del flusso di potenza , che avviene in modo retrogrado

Possiamo quindi definire il rendimento retrogrado come :

$$\eta' = \frac{L_r'}{L_m'} = \frac{L_r'}{L_r} = \frac{L_r'}{L_{m0}}$$

Ora ricaviamo il rendimento per un flusso retrogrado rispetto al rendimento del flusso diretto

$$L_{m} = L_{r} = L_{p} \rightarrow L_{r} = L_{m} - L_{p}$$

$$\eta = \frac{L_{r}}{L_{m}} = \frac{L_{m} - L_{p}}{L_{m}} = 1 - \frac{L_{r}}{L_{m}} \rightarrow 1 - \eta = \frac{L_{p}}{L_{m}}$$

$$\frac{1 - \eta'}{1 - \eta} = \frac{L'_{p}}{L'_{m}} \frac{L_{m}}{L_{p}} = \frac{L'_{p}}{L_{r}} \frac{L_{m}}{L_{p}} = \frac{k}{\eta} \quad k = \frac{L'_{p}}{L_{p}}$$

$$\eta' = 1 - \frac{1 - \eta}{\eta} k$$

Inoltre sappiamo che il sistema è irreversibile quando $\eta' < 0$ quindi quando

$$\eta' < 0 \rightarrow 1 - \frac{1 - \eta}{\eta} k < 0 \rightarrow \frac{1 - \eta}{\eta} k > 1 \rightarrow \eta < (1 - \eta)k \rightarrow \eta < \frac{k}{k + 1}$$

7 Meccanica delle coppie cinematiche

7.1 Coppia Prismatica

Dobbiamo determinare la Forza motrice P che vinca la forza resistente Q e il suo rendimento

• Caso ideale

$$\begin{cases} P_0 \; \cos \alpha = Q \\ R_A + P_0 \; \sin \alpha - R_B = 0 \\ -R_B \; d + P_0 \; \sin \alpha \; (d+b) = 0 \; \; \text{Polo A} \end{cases} \Rightarrow P_0 = \frac{Q}{\cos \alpha}$$

• Caso reale

$$\begin{cases} P\cos\alpha - R_A\sin\varphi - Q - R_B\sin\varphi = 0\\ P\sin\alpha + R_A\cos\varphi = R_B\cos\varphi\\ P\sin\alpha \ (d+b) - R_B\cos\varphi \ d = 0 \end{cases}$$

Ora risolviamo il precedente sistema

$$\begin{split} R_B \cos \varphi &= \frac{P \sin \alpha \ (d+b)}{d} \\ R_A \cos \varphi &= R_B \cos \varphi - P \sin \alpha \\ &= P \sin \alpha \ \left(\frac{d+b}{d}\right) - P \sin \alpha \\ &= \left(\frac{b}{d}\right) P \sin \alpha \\ Q &= P \cos \alpha - R_A \sin \varphi - R_b \sin \varphi \\ &= P \cos \alpha - \left(\frac{b}{d}\right) P \sin \alpha \tan \varphi - P \sin \alpha \ \left(\frac{d+b}{d}\right) \tan \varphi \\ &= P \cos \alpha \left(1 - \frac{b}{d} \tan \alpha \tan \varphi - \left(\frac{d+b}{d}\right) \tan \alpha \tan \varphi\right) \\ &= P \cos \alpha \left(1 - \tan \alpha \tan \varphi \left(1 + \frac{2b}{d}\right)\right) \\ P &= \frac{Q}{\cos \alpha \left(1 - \tan \alpha \tan \varphi \left(1 + \frac{2b}{d}\right)\right)} \end{split}$$

Ora che abbiamo calcolato La forza motrice nel caso ideale e nel caso reale possiamo calcolare la efficienza come

$$\eta = \frac{P_0}{P}$$

$$= \frac{\mathcal{Q}}{\cos \alpha} \frac{\cos \alpha \left(1 - \tan \alpha \tan \varphi \left(1 + \frac{2b}{d}\right)\right)}{\mathcal{Q}}$$

$$= \left(1 - \tan \alpha \tan \varphi \left(1 + \frac{2b}{d}\right)\right)$$