ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 16 aprile 2015

Esercizio A

$R_2 = 176 \text{ k}\Omega$ $R_3 = 250 \Omega$ $R_4 = 4 \text{ k}\Omega$ $R_5 = 1 \text{ k}\Omega$ $R_6 = 50 \Omega$ $R_7 = 550 \Omega$ $R_8 = 24 \text{ k}\Omega$	$R_{10} = 10 \text{ k}\Omega$ $R_{11} = 4 \text{ k}\Omega$ $R_{12} = 30 \text{ k}\Omega$ $C_1 = 15 \text{ nF}$ $C_2 = 220 \text{ nF}$ $C_3 = 1 \mu\text{F}$ $C_4 = 680 \text{ pF}$ $V_{CC} = 18 V$	V_{cc} R_{s}
$R_9 = 10 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$	<i>,,,,</i>

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.5 mA/V² e $V_T = -1$ V. Con riferimento al circuito in figura:

- 1) Calcolare il valore della resistenza R_1 in modo che, in condizioni di riposo, la tensione sul drain di Q_2 sia 8 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q_2 . (R: $R_1 = 213440 \,\Omega$)
- 2) Determinare V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 C_4 possono essere considerati dei corto circuiti. ($R: V_U/V_i = -1.73$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 2652.58$ Hz; $f_{p1} = 20746.39$ Hz; $f_{z2} = 1315.33$ Hz; $f_{p2} = 1785.15$ Hz; $f_{z4} = 0$ Hz; $f_{p4} = 6883.86$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = (\overline{A + C})(\overline{B}D + \overline{D}E) + \overline{C}(\overline{B} + A\overline{D}E) + A\overline{E}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 400 \Omega$	$R_5 = 2 \text{ k}\Omega$
$R_2 = 1 \text{ k}\Omega$	$R_6 = 5 \text{ k}\Omega$
$R_3 = 1 \text{ k}\Omega$	C = 100 nF
$R_4 = 30 \text{ k}\Omega$	$V_{CC} = 6 V$

Il circuito IC_1 è un NE555 alimentato a $\mathbf{V}_{CC} = \mathbf{6V}$, Q_1 ha una $R_{on} = 0$ e $V_T = -1V$. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 4751.87 Hz)