• =
$$\{ z = x + iy \mid x,y \}$$

•
$$i = \sqrt[2]{-1}$$

•
$$i^2 = -1$$

Grundrechenarten

•
$$(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2)$$

•
$$(x1 + iy1)*(x2 + iy2) = x1x2 + iy1x2 + ix1y2 + i2y1y2 = (x1x2 - y1y2) + i(x1y2 + x2y1)$$

•
$$\frac{1}{x+iy} = \frac{x-iy}{x^2+y^2} = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2}$$
 für $x^2 + y^2 \neq 0$

Ordnungen/Vergleiche

· keine Ordung auf

$$-i > 0 ==> i^2 = -1 > 0$$

$$-i < 0 ==> i^2 = -1 > 0$$

Konjugation

•
$$z * Z = x2 + y2 \ge 0$$

•
$$|z| = \sqrt[2]{z * Z}$$

•
$$(Z + W) = (Z) + (W)$$

•
$$(Z * W) = (Z) * (W)$$

•
$$|z * w| = |z| * |w|$$

Wurzel

• Sei
$$z^2 = a + ib$$

 $-x^2 - y^2 = a$
 $-2xy = b$

$$-x = + -\sqrt[2]{\frac{a+\sqrt[2]{s^2+b^2}}{2}}$$
$$-y = + -\sqrt[2]{\frac{-a+\sqrt[2]{s^2+b^2}}{2}}$$

Komplexe Zahlen im Graph

- X/Y-Diagramm
 - -x = Re(z)
 - -y = Im(z)
- Rechenoperationen:

Addition ==> Zahlen zusammenhängen

Konjugieren ==> Spiegeln an Achse des Realteils

Multiplikation ==> Längen multipliziert und Winkel addiert

Wurzel ziehen in

•
$$z^n = w w \setminus \{0\}, n$$

•
$$z=|z|e^{i\varphi}$$
 - unbekannt

•
$$w = |w|e^{i\psi}$$
 - bekannt
- $|w| = \sqrt[2]{a + bi}$

$$-\psi$$

*
$$|w|e^{i\psi} = |w|(cos(\psi) + isin(\psi))$$

*
$$cos(\psi) = a/|w|$$

- ◆ 2 Lösungen
- $arcos(a/|w|) = \psi$
- \bullet $-arcos(a/|w|) = \psi$

$$*\ sin(b/|w|) = \psi$$

• positiv ==>
$$arcos(a/|w|) = \psi$$

$$\bullet \ \ \operatorname{negativ} ==> -arcos(a/|w|) = \psi$$

• Formel:
$$z=\sqrt[n]{|w|}exp(\frac{i}{n}(\psi+2k\pi))$$
 k=0,...,n-1

- hergeleitet durch
$$z^n=|z|^ne^{in\varphi}=|w|e^{i\psi}=w$$

Multiplikation

$$-z = |z|e^{i\varphi}$$

–
$$w = |w|e^{i\psi}$$

•
$$zw = |z||w|e^{i(\psi+\varphi+2k\pi)}$$

Logarithmus

- log(w) = ln|w| + iarg(w)
- $arg(w) \in (- \in, \in]$ $i^i = e^{ilog(i)} = e^{i^2 \frac{\pi}{2}} = e^{-\frac{\pi}{2}}$