

8.2.7.3 Wallace Tree Multiplication

TABLE 8.4	An Adder as a 1's Counter					
ABC	CS	Number of 1's				
000	00	0				
001	10	1				
010	10	1				
011	01	2				
100	01	· 1				
101	10	2				
110	10	2				
111	11	3				

- In effect, a "one's counter": *A, B*, and *C* inputs and encodes them on *SUM* and *CARRY* outputs.
- A 1-bit full adder
 (FA) provides a 3:2
 compression in the
 number of bits.

A. Y. Wu

Ex: 6x6 Multiplier(table)

TABLE 8.5 A 6 × 6 Multiplier												
			í			X5 Y5	X4 Y4	X3 Y3	X2 Y2	X1 Y1	X0 Y0	Multiplicand Multiplier
				· · · · · · · · · · · · · · · · · · ·		X5Y0	X4Y0	X3Y0	X2Y0	X1Y0	X0Y0	
					X5Y1	X4Y1	X3Y1	X2Y1	X1Y1	X0Y1		
				X5Y2	X4Y2	X3Y2	X2Y2	XIY2	X0Y2			Ţ.
			X5Y3	X4Y3	X3Y3	X2Y3	X1Y3	X0Y3				
		X5Y4	X4Y4	X3Y4	X2Y4	X1Y4	X0Y4					
	X5Y5	X4Y5	X3Y5	X2Y5	X1Y5	X0Y5						
P11	P10	P9	P8	P7	P6	P5	P4	P3	P2	P1	P()	Product

Seven bits Wallace tree addition

Fig. 2. Two examples of Wallace tree addition of seven bits

Ex: 6×6 Wallace Multiplier

Example

 In a 32-bit multiplier, the maximum number of partial products is 32 and the compressions are:

$$32 \rightarrow 22 \rightarrow 16 \rightarrow 12 \rightarrow 8 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 2$$

=> There are 9 adder delays in the array

- 1. c.f. Array multiplier (Booth-recoded) =16
- 2. Can be used together with Booth-encoding scheme

Wallace Tree Multiplier

 Mx/VBooth-encoded multiplier (IEEE JSSC, vol.1,no.2, June 1993)

Fig.1. Block diagram of the parallel multiplier.

A. Y. Wu

A typical delay distribution of the output of Wallace tree section

Extension

- 32-bits Wallace-tree multiplier has 9 adder delays in the array
- Questions:
 - 1. For a 64-bit multiplier, what is the minimum adder delay?
 - 2. Is there any way to reduce the delay by other compression scheme?

Approach:

Using 4: 2 compression adder

- The 4:2 compression (really *5:3*) has three XOR delays in the sum path.
- c.f.: Four XOR delays will be present if two adders are used

Reference

• A 54x54 regularly structured tree multiplier, IEEE Journal of Solid-State Circuits (vol27 no.9, 1992)

Fig. 4. Logic diagram of the 4W unit.