Algebraic geometry 1 Exercise sheet 1

Solutions by: Eric Rudolph and David Čadež 23. Oktober 2023

Exercise 1.

- 1. Closed subsets of $\mathbb{A}^1(k)$ are \emptyset , $\mathbb{A}^1(k)$ and all finite subsets.
- 2. That is true because there exists no product of two closed subsets of $\mathbb{A}^1(k)$ that would cover closed subspace $V(x-y)\subseteq \mathbb{A}^2(k)$ and not cover the point (x-1,y). Basis for closed sets of the product topology are the whole space and finite union of lines parallel to one of the coordinates.

Exercise 2.

- 1. The polynomials from the definition exist.
- 2. Discriminant is a polynomial function on coefficients of a polynomial.
- 3. A matrix has pairwise different eigenvalues if and only if its characteristic polynomial has only simple roots. That is exactly when discriminant of its characteristic polynomial is non-zero. We can compose maps from 1) and 2) to get a map $h\colon V\to \mathbb{A}^1(k)$ that vanishes on a matrix M if and only if M is not diagonalizable with pairwise different eigenvalues. Since $\{0\}$ is a closed set in $\mathbb{A}^1(k)$ and h continuous, we get that $\{M\in V\mid h(M)\neq 0\}$ is open in V.

Exercise 3. Using the hint we look at linear transormations that would simplify polynomial. Write $x \mapsto ux + vy$ and $y \mapsto wx + zy$. We get that if $a_2^2 - 4a_1a_3 = 0$, then we can pick $u = \sqrt{a_1}$ and $v = \sqrt{a_3}$ and $x^2 \mapsto a_1x^2 + a_2xy + a_3y^2$. Otherwise we can define u = 1, $w = a_1$, v is the solution to $v(a_2 - va_1) = a_3$ and $z = a_2 - va_1$.

From now on a_4 , a_5 and a_6 are not the same as in the original polynomial. So if $f(x,y) = x^2 + a_4x + a_5y + a_6$, then V is either

- if $a_5 \neq 0$; V is isomorphic to a parabola
- if $a_5 = 0$ and $a_4^2 4a_6 \neq 0$; V is isomorphic to disjoint union of two lines
- if $a_5 = 0$ and $a_4^2 4a_6 = 0$; V is isomorphic to a single line

If $f(x,y) = xy + a_4x + a_5y + a_6$, then V is either isomorphic to a hyperbola or a union of coordinate lines. We can write f in the form (x+u)(y+v) - z for some suitable $u, v, z \in k$. Explicitly we get $u = a_4, v = a_5$ and $z = uv - a_6$. So if $a_4a_5 = a_6$, then z = 0 and V is isomorphic to the union of coordinate lines, otherwise V is isomorphic to a hyperbola. But again note that these a_4, a_5, a_6 are not the ones in original polynomial, because we used a linear transormation earlier.

Exercise 4. Lets look at coordinate rings:

1.
$$\mathcal{O}_{\{y-x^2=0\}} = k[x,y]/(y-x^2) = k[x]$$

2.
$$\mathcal{O}_{\{xy-1=0\}} = k[x,y]/(xy-1) = k[x,x^{-1}]$$

3.
$$\mathcal{O}_{\{xy=0\}} = k[x,y]/(xy)$$

4.
$$\mathcal{O}_{\{x(x-1)=0\}} = k[x,y]/(x(x-1))$$

5.
$$\mathcal{O}_{\{x=0\}} = k[x,y]/(x) = k[y]$$

The 1st and 5th are clearly isomorphic. Number 2 is not isomorphic to any else, because it has strictly more invertible elements than just the field k. Number 3 and 4 are only ones with zero-divisors, so they could only be isomorphic to each other. But they are not, because number 4 has an idempotent element (other than 0 and 1) and 3 doesn't.