МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра вычислительной математики и программирования

Тюменцев Ю. В., Козлов Д. С.

ПРАКТИКУМ ПО

НЕЙРОИНФОРМАТИКЕ

для специальности 010501 «Прикладная математика и информатика» (2006–2010 гг. приема)

Под редакцией проф. Зайцева В. Е.

СОДЕРЖАНИЕ

Лабораторная работа № 1.	
Персептроны. Процедура обучения Розенблатта	3
Лабораторная работа №2.	
Линейная нейронная сеть. Правило обучения Уидроу-Хоффа	12
Лабораторная работа № 3.	
Многослойные сети. Алгоритм обратного распространения ошибки	17
Лабораторная работа № 4.	
Сети с радиальными базисными элементами	26
Лабораторная работа № 5.	
Сети с обратными связями	29
Лабораторная работа № 6.	
Сети Кохонена	36
Лабораторная работа № 7.	
Автоассоциативные сети с узким горлом	43
Лабораторная работа № 8.	
Динамические сети	50
Курсовая работа.	
Динамические сети	58
Таблицы № 1 и № 2	71
Рекомендации по оформлению лабораторных работ	73

Лабораторная работа № 1. Персептроны. Процедура обучения Розенблатта

Целью работы является исследование свойств персептрона Розенблатта и его применение для решения задачи распознавания образов.

Основные этапы работы:

- 1. Для первой обучающей выборки построить и обучить сеть, которая будет правильно относить точки к двум классам. Отобразить дискриминантную линию и проверить качество обучения.
- 2. Изменить обучающее множество так, чтобы классы стали линейно неразделимыми. Проверить возможности обучения по правилу Розенблатта.
- 3. Для второй обучающей выборки построить и обучить сеть, которая будет правильно относить точки к четырем классам. Отобразить дискриминантную линию и проверить качество обучения.

Сценарий работы:

0. Для выполнения работы требуется использовать пакет прикладных программ Neural Network Toolbox системы MATLAB. Система MATLAB (Matrix Laboratory) стала стандартом де-факто в академической и научной среде. Система развивалась от специализированной программы для матричных расчетов в начале 1970-х гг. до универсальной системы компьютерной математики. Одним из достоинств системы является наличие большого числа поставляемых пакетов расширения по основным областям современной математики. Также к достоинствам можно отнести то, что множество пакетов расширений поставляется вместе с исходными текстами программ. MATLAB содержит интерпретируемый С-подобный язык программирования. Поэтому вычислительная среда МАТLAB (рис. 1) может использоваться как в виде «суперкалькулятора» для выполнения огромного числа математических и научно-технических расчетов, так и для создания пользователями своих собственных программ и пакетов расширений. Система МАТLAB изначально ориентирована на матричные вычисления, что должно учитываться при разработке алгоритмов. Описанные преимущества делают систему МАТLAB особенно удобной для макетирования и отработки алгоритмов.

В пакете прикладных программ Neural Network Toolbox реализованы наиболее известные типы сетей, различные методы их обучения и использования. Модели сетей, реализованных в пакете, могут быть использованы для решения задач аппроксимации функции, распознавания образов, классификации, сжатия данных и оптимизации. Для сети каждого типа реализованы функции создания, инициализации, обучения, адаптации и демонстрационные примеры. Пакет может использоваться совместно с системой блочного имитационного моделирования Simulink.

Для выполнения заданий допускается использовать любые версии пакета Neural Network Toolbox. Но в сценарии работы указываются функции пакета Neural Network Toolbox версии 7.0 (MATLAB R2010b).

1. С помощью персептрона Розенблатта решить задачу классификации точек плоскости. Точки располагаются по осям в диапазоне [-5;5]. Для этого построить и обучить сеть, которая будет правильно классифицировать точки из заданного набора примеров. В сети должны быть нейроны, имеющие ненулевое смещение.

Для первой обучающей выборки построить и обучить сеть, которая будет правильно относить точки к двум классам.

Рис. 1. Окно вычислительной среды MATLAB.

- 1.1 Обучающее множество занести в отчет.
- 1.2 Создать сеть. Сконфигурировать сеть под обучающее множество. Отобразить структуру сети с помощью функции *display* и результат занести в отчет.
- 1.3 Реализовать алгоритм обучения по правилу Розенблатта. Код алгоритма занести в отчет.
- 1.3.1 Инициализировать сеть случайными значениями. Для инициализации весов и смещений использовать функцию *rands*. Занести в отчет весовые коэффициенты и смещения.
- 1.3.2 Рассчитать два цикла обучения сети по правилу. Для расчета выходов сети использовать функцию net. В качестве показателя качества обучения использовать функцию mae. Занести в отчет весовые коэффициенты и смещения после расчета каждой эпохи (итерации). Также занести в отчет ошибку обучения сети по всей обучающей выборке (mae(T-net(P)))
- 1.3.3 После обучения отобразить обучающую выборку и дискриминантную линию. Для отображения использовать функции *plotpv* и *plotpc* соответственно. Также отобразить сетку с помощью функции *grid*.
- 1.4 Провести обучение сети с помощью встроенной функции *train* и проверить качество обучения. Занести в отчет окно Neural Network Training.
 - 1.4.1 Инициализировать сеть случайными значениями.
- 1.4.2 Провести обучение сети с помощью функции *train* с числом эпох равным 50. Если необходимо, то произвести обучение несколько раз. Занести в отчет весовые коэффициенты и смещения.
- 1.4.3 Проверить качество обучения: случайным образом задать 3 точки и классифицировать их. Для генерации случайных чисел использовать функцию *rands*. Отобразить сетку, дополнительные точки, обучающую выборку, и дискриминантную линию. Результаты занести в отчет.

- 2. Изменить обучающее множество так, чтобы классы стали линейно неразделимыми. Проверить возможности обучения по правилу Розенблатта.
 - 2.1 Изменить обучающее множество.
 - 2.2 Инициализировать сеть случайными значениями.
- 2.3 Провести обучение сети с помощью функции *train* с числом эпох равным 50. Отобразить обучающую выборку и полученную дискриминантную линию. Результаты занести в отчет.
- 3. Для второй обучающей выборки построить и обучить сеть, которая будет правильно относить точки к четырем классам.
 - 3.1 Обучающее множество занести в отчет.
 - 3.2 Создать сеть.
 - 3.3 Инициализировать сеть случайными значениями.
- 3.4 Провести обучение сети с помощью функции *train* с числом эпох равным 50. Если необходимо, то произвести обучение несколько раз. Занести в отчет весовые коэффициенты и смещения. Занести в отчет окно Neural Network Training.
- 3.5 Проверить качество обучения: случайным образом задать 5 точек и классифицировать их. Отобразить сетку, дополнительные точки, обучающую выборку, и дискриминантную линию. Результаты занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы.

No	Входные образы	Распределение по классам
1.	$\begin{bmatrix} 1.1 & -1.5 & 0.8 & 4.1 & 2.5 & -1.2 \\ -0.3 & 3.3 & 0.4 & -2.2 & 2.5 & 0.6 \end{bmatrix}$	[1 0 1 1 0 1]
	$\begin{bmatrix} 3.6 & -1.5 & -2.8 & 1 & -3.6 & -0.8 & 2.2 & 3.4 \\ 1.3 & 4.9 & 1.5 & -1.2 & -4.8 & -3.2 & -1.3 & 2.3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$
2.	$\begin{bmatrix} 2.6 & 3.6 & 0.1 & 0.8 & -3.1 & 2.4 \\ -3.4 & 4.8 & 3.8 & -3.5 & -1 & 3.2 \end{bmatrix}$	
	$\begin{bmatrix} -1.6 & 2.9 & 1.8 & -4.5 & -4.6 & 2.2 & 3.7 & -4.3 \\ 2.3 & 0.4 & 3.9 & -2 & -3.1 & 2.2 & 0.8 & 4.2 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$

No	P]	Γ			
3.	$\begin{bmatrix} -2.8 & 4 & 3.4 & 0.8 & 1.6 & 1.2 \\ -0.1 & 0.7 & 2.3 & -2.6 & -4.2 & 1.6 \end{bmatrix}$		[1	0	0	1	1	1]	
	$\begin{bmatrix} -1.8 & 2.1 & 2.2 & 1.7 & -0.7 & 3.1 & -2.6 & -1.3 \\ -0.5 & 3.8 & -4.9 & -0.7 & -3.9 & -1.8 & -1.6 & 0.4 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1 0	1 0	1 0	0	1 0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
4.	$\begin{bmatrix} -4 & -3.4 & 0.7 & 4.3 & 2.3 & 3.6 \\ -3.6 & 1.2 & -4.5 & 2.2 & -4.4 & 4.3 \end{bmatrix}$		[0	1	0	0	0	1]	
	$\begin{bmatrix} 4.3 & -2.5 & 0.9 & 1.1 & 0.3 & -0.5 & 4.6 & 1.9 \\ -3.1 & 3.9 & 0 & 3.1 & -3 & -0.8 & 1.2 & 2.2 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1 1	0	0	1 0	1 1	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
5.	$\begin{bmatrix} 0.3 & 4.9 & -0.9 & 2.6 & -4 & -1.5 \\ 2 & -2.2 & -0.4 & 3.1 & -3.3 & -4.5 \end{bmatrix}$		[0	0	1	0	1	1]	
	$\begin{bmatrix} -3.5 & -0.7 & 1.1 & 3.6 & 4 & 0.1 & 0.5 & 2.6 \\ -4.9 & 3.3 & 0.2 & -4.1 & -4 & -3.6 & -5 & 3.4 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 0	0	0	0	1 0	1 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
6.	$\begin{bmatrix} -0.5 & 4.9 & -2.1 & -2.1 & 0 & 1.3 \\ -4 & -1.7 & -4.4 & -4.6 & 2.6 & -4.2 \end{bmatrix}$		_	0				-	
	$\begin{bmatrix} -0.8 & -2.1 & -3.9 & 2 & 2.8 & -1.1 & -2.8 & -3.2 \\ -2.5 & -0.8 & -0.1 & -2.6 & -4.3 & -5 & -5 & -3.6 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0	1 0	1 0	1	0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
7.	$\begin{bmatrix} -3.8 & -0.2 & 2.9 & -4.5 & -4.2 & 4.4 \\ 0.4 & 3.9 & 2.3 & -4.3 & 2.9 & 1.8 \end{bmatrix}$		[1						- 1
	$\begin{bmatrix} -0.6 & -4.7 & 2.1 & -1.7 & -1.8 & 0.4 & 0.5 & -2.6 \\ 4 & 0.3 & -3.3 & -3.2 & -1 & -4.6 & -2.3 & -2.6 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1 1	0 0	0 0	0 1	0 0	0 0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

№	P	T
8.	$\begin{bmatrix} -2.8 & -0.2 & 2.8 & -2.1 & 0.3 & -1 \\ 1.4 & -3.5 & -4 & -2.7 & -4.1 & -4 \end{bmatrix}$	[0 1 1 0 1 0]
	$\begin{bmatrix} 1.7 & 4.7 & -0.5 & 1.8 & 1.5 & -1.3 & -3.9 & 4.7 \\ 3.3 & -4.5 & 0.8 & 2.1 & 2.2 & 0.8 & -4.5 & -2.2 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$
9.	$\begin{bmatrix} -1.1 & 1.8 & 4.8 & 1.2 & -1.2 & 2.5 \\ -4.3 & -1 & -1 & -3.5 & -3.4 & 3.7 \end{bmatrix}$	[0 1 1 1 0 1]
	$\begin{bmatrix} 4.6 & -1 & -0.3 & -1.1 & 0.5 & 4.9 & 0.3 & -3.9 \\ 1.7 & 4.3 & -2.7 & 2 & 2.5 & 4.6 & 4.6 & -4.5 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
10.	$\begin{bmatrix} 3 & -3.8 & -1.8 & -1.1 & -3.2 & -4.8 \\ 2.4 & 0.2 & 0.4 & -0.9 & -2.5 & 4.2 \end{bmatrix}$	[0 1 1 1 1 0]
	$\begin{bmatrix} 2 & 2.3 & 0.4 & -1.9 & -3.2 & -0.4 & 4.1 & -5 \\ -1.3 & 4.5 & 0.4 & -4.3 & -4.1 & -5 & 1.4 & -4.7 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$
11.	$\begin{bmatrix} -3.9 & 4.5 & 0.8 & 2.5 & 0 & 3.9 \\ -0.1 & -1.6 & -2.8 & -2.5 & 1.9 & 4.5 \end{bmatrix}$	[0 1 0 0 0 1]
	$\begin{bmatrix} 3.9 & -4.6 & 2.7 & -3.3 & -2.9 & 4 & -4 & -4.5 \\ -4.1 & 0.5 & -1.9 & -1.7 & 0.1 & 1.2 & -1.1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
12.	$\begin{bmatrix} 2.7 & -3.8 & -0.4 & -1.7 & 2.9 & 0.2 \\ 4.3 & 0.6 & -4.9 & -3.4 & -1.9 & -3.4 \end{bmatrix}$	[0 0 1 1 1 1]
	$\begin{bmatrix} -1.5 & 4.6 & 4.7 & 1.6 & 1.7 & 1.2 & -4.9 & 4.7 \\ -0.6 & -4.6 & -3.2 & 0.8 & -1.4 & 3.1 & -4.2 & 1.5 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$

No	P	T
13.	$\begin{bmatrix} 0.7 & -2.7 & 3.2 & -4.6 & 1.4 & 1.4 \\ -4.5 & -1.5 & -4.9 & -3.4 & 2.3 & -0.5 \end{bmatrix}$	[0 1 0 1 1 0]
	$\begin{bmatrix} 0.6 & 2.4 & 1.4 & -3.7 & -1.4 & 2.8 & -3.7 & 0.5 \\ -2.4 & 0 & -2 & -0.3 & 2.8 & 1.6 & -4.8 & -2 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$
14.	$\begin{bmatrix} 4.7 & -3.9 & -1 & -2.4 & 2.1 & -3.9 \\ -0.7 & -2.5 & 0.9 & 1 & -2.8 & -2.1 \end{bmatrix}$	[0 1 0 0 1 1]
	$\begin{bmatrix} -0.5 & 2.8 & 4.1 & 0.9 & 3.9 & -3 & 2.6 & -2.2 \\ -2.6 & 3.8 & 0.5 & -3.6 & -0.5 & 3.9 & 3.8 & 1.7 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$
15.	$\begin{bmatrix} -4.1 & -1.7 & -3.7 & -4 & -0.1 & 2.1 \\ -2.4 & 1.7 & 2.2 & 1.5 & 2.7 & 4 \end{bmatrix}$	
	$\begin{bmatrix} 2 & -2.3 & -4.1 & 1.9 & 4.5 & -0.7 & 2.6 & -3.2 \\ -4.7 & -4.6 & 3.2 & -1.9 & -4.7 & -1.2 & 2.9 & -0.2 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
16.	$\begin{bmatrix} -5 & -1.2 & -5 & -0.8 & 2.7 & 2.8 \\ 1 & 4.1 & -0.4 & -0.4 & -1.8 & -0.3 \end{bmatrix}$	[0 0 0 1 1 1]
	$\begin{bmatrix} 4.1 & 2.5 & -1.2 & -4.3 & 0.3 & 4.3 & 0.6 & -4.9 \\ -2.2 & 2.5 & 0.6 & -4.5 & 2.7 & -3.8 & -0.4 & -1.7 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$
17.	$\begin{bmatrix} 1.4 & 1.3 & 1.4 & 2.2 & 4.9 & -4 \\ -0.3 & 0.4 & 0.4 & 0.2 & -2.9 & -4 \end{bmatrix}$	[1 1 1 1 0 0]
	$\begin{bmatrix} -2.6 & -4.1 & 4.4 & 0.7 & -2.7 & 3.2 & -4.6 & 1.4 \\ -1 & -3.7 & 4.5 & -4.5 & -1.5 & -4.9 & -3.4 & 2.3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$

No	P	T
18.	$\begin{bmatrix} 2.6 & 3 & -1.3 & 2.9 & -1.8 & -0.7 \\ -1.1 & 2.5 & -2.9 & 4.4 & 1.7 & 3.3 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} -2.8 & -2.8 & -1.9 & -0.7 & 4 & -0.7 & -2.5 & 0.9 \\ -3.3 & -0.7 & 4.2 & -3.2 & 4.7 & -3.9 & -1 & -2.4 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$
19.	$\begin{bmatrix} 1.9 & 3.1 & 4.8 & 3.6 & 4.8 & -0.3 \\ 0.8 & 3.7 & -5 & 1.1 & 0.2 & 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$
	$\begin{bmatrix} -4 & -0.1 & 2.1 & 3.9 & 1.9 & -4.7 & 0 & 4 \\ 1.5 & 2.7 & 4 & -1.7 & -3.1 & 2.4 & -0.3 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}$
20.	$\begin{bmatrix} 4.3 & 2.3 & 3.6 & 4.8 & 2.8 & -3.3 \\ 2.2 & -4.4 & 4.3 & 3.5 & 0.1 & -1.1 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$
	$\begin{bmatrix} -4.4 & 0.2 & 1.5 & -2.1 & -4.9 & -3.4 & -1.3 & -0.2 \\ -1.1 & -0.9 & 1.2 & -0.7 & 4.8 & -4 & -3.1 & -1.7 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$
21.	$\begin{bmatrix} 2.6 & -4 & -1.5 & 0.2 & -3.3 & 4 \\ 3.1 & -3.3 & -4.5 & -1.7 & -3 & 1.7 \end{bmatrix}$	$[0 \ 1 \ 1 \ 0 \ 1 \ 0]$
	$\begin{bmatrix} -1.2 & -2.5 & 1.1 & 3.2 & 2.3 & 0.8 & 4 & 3.1 \\ 0.8 & -2.1 & -2.4 & 4.8 & -1.6 & -4 & -3.7 & -2.4 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
22.	$\begin{bmatrix} -2.1 & 0 & 1.3 & -4.2 & 4 & -4 \\ -4.6 & 2.6 & -4.2 & 2.7 & 0.3 & 3.2 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 \end{bmatrix}$
	$\begin{bmatrix} 1.3 & -2.6 & -2.2 & 1.9 & -2.5 & 1.6 & -1.6 & 1.7 \\ 4.5 & 1.7 & 1.7 & -4.4 & -2.8 & 3.4 & 2.8 & -5 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$

№	P	T
23.	$\begin{bmatrix} 4.7 & -4.2 & -1.4 & 0.9 & -1.4 & -4.2 \\ 3.6 & -1.4 & 1.8 & 2.8 & -3 & 2.7 \end{bmatrix}$	[0 1 1 1 1 1]
	$\begin{bmatrix} -2.7 & 1 & -0.5 & 2.7 & 1.6 & 3.4 & -2.5 & 0.8 \\ -3.9 & -0.5 & 1.6 & -1.5 & -0.9 & 3.3 & 1.1 & 0.4 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$
24.	$\begin{bmatrix} -3.2 & 2.9 & 2.6 & -2.3 & 1.7 & -0.5 \\ -2.4 & -0.2 & -1.1 & -4.7 & -0.8 & 1 \end{bmatrix}$	
	$\begin{bmatrix} -1.6 & 0.8 & -4.6 & -2.6 & 1.8 & 2.3 & 1.8 & -0.6 \\ -3.6 & -2.4 & 2.5 & -0.6 & -1.5 & -1.1 & 2 & -4.9 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$
25.	$\begin{bmatrix} -3.2 & -4.3 & 2 & -1.9 & 1.2 & -3.3 \\ -2.9 & 4.1 & 0.5 & -3.4 & 4.8 & -2.5 \end{bmatrix}$	[0 1 1 0 1 0]
	$\begin{bmatrix} 0.7 & 2.3 & -2.6 & -4.2 & 1.6 & 3.9 & 2.6 & 4.2 \\ 3.4 & 0.8 & 1.6 & 1.2 & 2.2 & 4.8 & 0.8 & 0.8 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$
26.	$\begin{bmatrix} -3.8 & -2.1 & 1.5 & 4.3 & -2.6 & 2.5 \\ -4.8 & -1.9 & 4.5 & -0.5 & 2.6 & 2.4 \end{bmatrix}$	
	$\begin{bmatrix} -4 & -3.4 & 0.7 & 4.3 & 2.3 & 3.6 & 4.8 & 2.8 \\ -3.6 & 1.2 & -4.5 & 2.2 & -4.4 & 4.3 & 3.5 & 0.1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
27.	$\begin{bmatrix} -2.5 & 4.2 & 4.3 & 4.2 & 0.7 & -2.5 \\ -4.8 & 1.5 & -3.4 & 2.9 & -0.6 & 2.5 \end{bmatrix}$	[0 1 0 1 0 0]
	$\begin{bmatrix} -3 & 1.7 & 4.1 & 2.4 & 0.6 & 0.9 & -3.7 & 3.9 \\ 4 & -0.4 & -4 & 2.3 & -3.2 & -2.1 & -2.9 & -4.3 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$

No	P	T
28.	$\begin{bmatrix} -4.8 & -3.2 & -1.3 & 2.3 & -3.3 & -2.4 \\ -0.8 & 2.2 & 3.4 & 0.7 & 4.5 & 4.2 \end{bmatrix}$	[1 1 0 0 0 0]
	$\begin{bmatrix} 1.9 & -1.1 & 2.8 & 1 & -4 & 0.4 & 3.9 & 2.3 \\ 0.5 & -4.4 & -1.7 & 2.4 & -3.8 & -0.2 & 2.9 & -4.5 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$
29.	$\begin{bmatrix} 0.3 & 3 & -4.4 & -4.9 & 2.8 & 3.8 \\ -4.2 & 4.8 & 4.3 & 1.8 & 0.3 & 3.9 \end{bmatrix}$	$[0 \ 1 \ 1 \ 0 \ 1 \ 1]$
	$\begin{bmatrix} -2.1 & 0.3 & -1 & -3.9 & -2.1 & 4.6 & 1.9 & -0.7 \\ -2.7 & -4.1 & -4 & 2.8 & 1 & -0.7 & 2.5 & 1.5 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$
30.	$\begin{bmatrix} 0.1 & 2.1 & -1.5 & -1.6 & -0.5 & -2.9 \\ -4.2 & 4.9 & 4.7 & 3.8 & -0.9 & -3.8 \end{bmatrix}$	$[0 \ 0 \ 1 \ 1 \ 0 \ 0]$
	$\begin{bmatrix} -3.4 & 3.7 & 1.8 & 0.3 & 0.9 & -2.1 & -0.8 & -0.5 \\ 2.5 & -1.5 & -2.1 & 3.3 & -1.7 & -0.5 & -1.5 & 2.4 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$

- 1. *Beale M., Hagan M., Demuth H.* Neural Network Toolbox User's guide R2011b. The MathWorks, 2011. –pp. 9-3–9-17.
- 2. *Медведев В. С., Потемкин В. Г.* Нейронные сети. МАТLAB 6/Под общ. ред. к. т. н. В. Г. Потемкина М.: ДИАЛОГ-МИФИ, 2006. с. 102-114.
- 3. Hagan M., Demuth H. Neural Network Design. 1996. Chapter 4. 35 pp.

Лабораторная работа № 2.

Линейная нейронная сеть. Правило обучения Уидроу-Хоффа

Целью работы является исследование свойств линейной нейронной сети и алгоритмов ее обучения, применение сети в задачах аппроксимации и фильтрации.

Основные этапы работы:

- 1. Использовать линейную нейронную сеть с задержками для аппроксимации функции. В качестве метода обучения использовать адаптацию.
- 2. Использовать линейную нейронную сеть с задержками для аппроксимации функции и выполнения многошагового прогноза.
- 3. Использовать линейную нейронную сеть в качестве адаптивного фильтра для подавления помех. Для настройки весовых коэффициентов использовать метод наименьших квадратов.

Сценарий работы:

1. Задана временная последовательность x(n). Построить и обучить линейную сеть с задержками, которая будет выполнять одношаговый прогноз для первой функции из варианта задания:

$$\hat{x}(n+1) = \sum_{i=1}^{D} w_i x(n-i+1) + b$$

где D задает глубину погружения временного ряда (delays), $\{w_i, b\}$ — весовые коэффициенты.

- 1.1 Построить обучающее множество: в качестве входного множества использовать значения первого входного сигнала на заданном интервале; преобразовать входное множество к последовательности входных образцов с помощью функции con2seq; эталонные выходы сети формируются из входной последовательности, чтобы сеть выполняла одношаговый прогноз.
- 1.2 Создать сеть с помощью функции newlin. Задать задержки от 1 до D=5 . Задать скорость обучения равной 0.01.
 - 1.3 Инициализировать сеть случайными значениями.
- 1.4 Выполнить адаптацию с числом циклов равным 50. Занести в отчет величину ошибки обучения с помощью sqrt(mse). Поскольку сеть имеет задержки, то в функцию адаптации необходимо отдельно передать первые 5 элементов входной последовательности для инициализации задержек (входной параметр Pi). В противном случае задержки будут инициализированы нулями, что приведет к увеличению ошибки обучения при выполнении адаптации. В дальнейшем использовать входную и выходную последовательности, начиная с 6 элемента.
- 1.5 Отобразить на графике эталонные значения и предсказанные сетью. График занести в отчет.
- 2. Для временной последовательности из задания 1 обучить линейную сеть с задержками (линейный адаптивный фильтр) и выполнить многошаговый прогноз.
- 2.1 Построить обучающее множество: в качестве входного множества использовать значения первого входного сигнала на заданном интервале; преобразовать входное множество к последовательности входных образцов с помощью функции con2seq; эталонные выходы сети формируются из входной последовательности, чтобы сеть выполняла одношаговый прогноз.
- 2.2 Создать сеть с помощью функции newlin. Задать задержки от 1 до D=3. Задать скорость обучения с помощью функции maxlinlr(cell2mat(P), 'bias').
 - 2.3 Инициализировать сеть случайными значениями.
- 2.4 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) равным равными 600, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-6} . Также

необходимо проинициализировать задержки Pi. Выполнить обучение сети с помощью функции train.

- 2.5 Занести в отчет весовые коэффициенты и смещение. Занести в отчет окно Performance и Neural Network Training. Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
- 2.6 Рассчитать выход сети (sim) для обучающего множества. Сравнить выход сети с соответствующим эталонным множеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения. Графики занести в отчет.
- 2.7 Сформировать набор данных для выполнения прогноза: продлить временную последовательность с заданным шагом на 10 отсчетов. Использовать полученный набор данных для выполнения прогноза: рассчитать выход сети (sim) для полученного набора. Сравнить выход сети с соответствующим куском исходной временной последовательности: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения. Графики занести в отчет.
- 3. Построить и обучить линейную сеть, которая является адаптивным линейным фильтром. Задачей фильтра является моделирование источника шума, чтобы в последующем удалить помехи из полезного сигнала. Фильтр должен аппроксимировать отображение:

$$\hat{y}(n+1) = \sum_{i=1}^{D} w_i x(n-i+1) + b$$

Вместо задержек использовать погружение временного ряда.

- 3.1 Построить обучающее множество: в качестве входного множества использовать значения второго входного сигнала на заданном интервале; эталонными выходами сети являются значения второй эталонной функции на заданном интервале. Эталонный выходной сигнал соответствует входному сигналу, измененному по амплитуде и смещенному по фазе, поэтому диапазон значений и шаг для сигналов совпадают.
 - 3.2 Вместо задержек необходимо расширить входное множество по формуле

$$P = zeros(D, Q)$$

$$P(i, i : Q) = x(1 : Q - i + 1), i = 1, \dots, D$$

где Q — количество элементов. Задать глубину погружения временного ряда D равной 4.

- 3.3 Создать сеть с помощью функции *newlind*. Занести в отчет весовые коэффициенты и смещение.
- 3.4 Рассчитать выход сети (sim) для обучающего множества. Сравнить выход сети с эталонным множеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения. Графики занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы.

No	Входной сигнал	Выходной сигнал
1.	$x = \sin(t^2), t \in [0, 5], h = 0.025$ $x = \sin(\frac{2\pi t}{3}), t \in [0, 5], h = 0.025$	$y = 0.2\sin\left(\frac{2\pi t}{3} + \frac{\pi}{2}\right)$

	_	_
№	P	T
2.	$x = \sin(\frac{1}{2}t^2 - 5t), t \in [0, 2.2], \ h = 0.01$ $x = \sin(-3t^2 + 5t + 10), t \in [0, 2.5], \ h = 0.01$	$y = \frac{1}{3}\sin(-3t^2 + 5t - 3)$
3.	$x = \sin(-2t^2 + 7t), t \in [0, 5], h = 0.025$ $x = \sin(2.5t^2 - 5t), t \in [0, 2.2], h = 0.01$	$y = \frac{1}{3}\sin(2.5t^2 - 5t + 4\pi)$
4.	$x = \sin(-3t^2 + 10t - 5), t \in [0.5, 4], \ h = 0.01$ $x = \sin(2t^2 - 6t + 3), t \in [0, 5], \ h = 0.02$	$y = \frac{1}{2}\sin(2t^2 - 6t - \pi)$
5.	$x = \sin(t^2 - 7t), t \in [0, 5], \ h = 0.025$ $x = \sin(t^2 - 6t + 3), t \in [0, 5], \ h = 0.025$	$y = \frac{1}{4}\sin(t^2 - 6t - 2\pi)$
6.	$x = \sin(t^2 - 2t + 5), t \in [0, 5], h = 0.025$ $x = \sin(t^2 - 5t + 6), t \in [0, 6], h = 0.02$	$y = \frac{1}{5}\sin(t^2 - 5t + 3)$
7.	$x = \sin(t^2 - 6t + 3), t \in [0, 6], \ h = 0.025$ $x = \sin(\sin(t)t^2), t \in [0, 3.5], \ h = 0.01$	$y = \frac{1}{4}\sin(\sin(t)t^2 - \pi)$
8.	$x = \sin(t^2 - 10t + 3), t \in [1, 6], h = 0.025$ $x = \sin(-2t^2 + 7t), t \in [0, 3.5], h = 0.01$	$y = \frac{1}{8}\sin(-2t^2 + 7t - \pi)$
9.	$x = \sin(t^2 - 2t + 3), t \in [0, 6], h = 0.025$ $x = \sin(t^2 - 2t + 3), t \in [0, 6], h = 0.025$	$y = \frac{1}{4}\sin(t^2 - 2t)$
10.	$x = \sin(-2t^2 + 7t) - \frac{1}{2}\sin(t), t \in [0, 4.5], \ h = 0.025$ $x = \sin(t^2 - 6t + 3), t \in [0, 6], \ h = 0.025$	$y = \frac{1}{3}\sin(t^2 - 6t - \frac{\pi}{6})$
11.	$x = \sin(t^2 - 15t + 3) - \sin(t), t \in [0, 3.5], \ h = 0.01$ $x = \cos(2.5t^2 - 5t), t \in [0, 2.2], \ h = 0.01$	$y = \frac{1}{4}\cos(2.5t^2 - 5t + \pi)$
12.	$x = \sin(t^2 - 15t + 3) - \sin^2(t), t \in [0.5, 3], \ h = 0.01$ $x = \cos(t^2), t \in [0, 4], \ h = 0.02$	$y = \frac{1}{2}\cos(t^2 + 2\pi)$
13.	$x = \sin(\sin(t)t^{2} - t), t \in [1, 4.5], h = 0.01$ $x = \sin(-5t^{2} + 10t - 5), t \in [0, 2.5], h = 0.01$	$y = \frac{1}{7}\sin(-5t^2 + 10t - \pi)$
14.	$x = \sin(\sin(t)t^{2}), t \in [0, 3.5], h = 0.01$ $x = \cos(-2t^{2} + 7t), t \in [0, 3.5], h = 0.01$	$y = \frac{1}{9}\cos(-2t^2 + 7t + 2\pi)$

	-	
№	P	T
15.	$x = \sin(\sin(t)t^3 - 10), t \in [1, 3], \ h = 0.01$ $x = \cos(t^2 - 10t + 3), t \in [1, 6], \ h = 0.025$	$y = \frac{1}{5}\cos(t^2 - 10t + 6)$
16.	$x = \sin(-\sin(t)t^{2} + t), t \in [0.5, 4], \ h = 0.01$ $x = \cos(-5t^{2} + 10t - 5), t \in [0, 2.5], \ h = 0.01$	$y = \frac{1}{8}\cos(-5t^2 + 10t)$
17.	$x = \sin(\sin(t)t^{2} + 3t - 10), t \in [2.5, 5], h = 0.01$ $x = \cos(\cos(t)t^{2} + 5t), t \in [0, 3.5], h = 0.01$	$y = \frac{1}{5}\cos(\cos(t)t^2 + 5t + 4)$
18.	$x = \sin(\sin(t)t^2 - 2t + 7), t \in [0, 4], \ h = 0.02$ $x = \cos(\cos(t)t^2 - t), t \in [1, 4.5], \ h = 0.01$	$y = \frac{1}{5}\cos(\cos(t)t^2 - t + \pi)$
19.	$x = \sin(-2\sin(t)t^{2} + 7), t \in [0, 3.5], h = 0.01$ $x = \cos(t^{2} - 2t + 3), t \in [0, 6], h = 0.025$	$y = \frac{1}{3}\cos(t^2 - 2t - \pi)$
20.	$x = \sin(-2\sin(t)t^{2} + 7t), t \in [0.5, 3.2], h = 0.01$ $x = \cos(-\cos(t)t^{2} + t), t \in [0.5, 4], h = 0.01$	$y = \frac{1}{4}\cos(-\cos(t)t^2 + t + 2\pi)$
21.	$x = \cos(-3t^2 + 10t - 5) - \cos(t), t \in [0.5, 4], \ h = 0.01$ $x = \cos(-3t^2 + 5t + 10), t \in [0, 2.5], \ h = 0.01$	$y = \frac{1}{6}\cos(-3t^2 + 5t + \frac{3\pi}{2})$
22.	$x = \cos(\cos(t)t^2 - 2t + 7), t \in [0, 4], \ h = 0.02$ $x = \sin(t^2 - 10t + 3), t \in [0, 6], \ h = 0.025$	$y = \frac{1}{6}\sin(t^2 - 10t + \frac{\pi}{4})$
23.	$x = \cos(t^2 - 2t + 3), t \in [0, 6], h = 0.025$ $x = \sin(t^2 - 7t), t \in [0, 5], h = 0.025$	$y = \frac{1}{2}\sin(t^2 - 7t + \frac{\pi}{4})$
24.	$x = \cos\left(\frac{1}{2}t^2 - 5t\right), t \in [0, 2], \ h = 0.01$ $x = \sin\left(t^2 - 2t + 5\right), t \in [0, 5], \ h = 0.025$	$y = \frac{1}{7}\sin(t^2 - 2t + \pi)$
25.	$x = \cos(-\cos(t)t^{2} + t), t \in [0.5, 4], \ h = 0.01$ $x = \sin(\frac{1}{2}t^{2} - 5t), t \in [0, 2], \ h = 0.01$	$y = \frac{1}{10}\sin(\frac{1}{2}t^2 - 5t - \frac{3\pi}{2})$
26.	$x = \cos(-2t^2 + 7t) - \frac{1}{2}\cos(t), t \in [0, 4.5], \ h = 0.025$ $x = \sin(t^2), t \in [0, 4], \ h = 0.02$	$y = \frac{1}{3}\sin(t^2 + \frac{\pi}{2})$
27.	$x = \cos(\cos(t)t^2 + 3t - 10), t \in [2.5, 5], h = 0.01$ $x = \sin(-\sin(t)t^2 + t), t \in [0.5, 4], h = 0.01$	$y = \frac{1}{2}\sin(-\sin(t)t^{2} + t - 2\pi)$

№	P	T
28.	$x = \cos(-2t^2 + 7t), t \in [0, 5], \ h = 0.025$ $x = \sin(\sin(t)t^2 + 3t - 10), t \in [2.5, 5], \ h = 0.01$	$y = \frac{1}{4}\sin(\sin(t)t^2 + 3t - 3)$
29.	$x = \cos(\cos(t)t^2), t \in [0, 3.5], \ h = 0.01$ $x = \sin(\sin(t)t^2 - t), t \in [1, 4.5], \ h = 0.01$	$y = \frac{1}{7}\sin(\sin(t)t^2 - t + \frac{3\pi}{2})$
30.	$x = \cos(t^2 - 15t + 3) - \cos(t), t \in [0.5, 3], \ h = 0.01$ $x = \sin(\sin(t)t^2 + 5t), t \in [0, 3.5], \ h = 0.01$	$y = \frac{1}{4}\sin(\sin(t)t^2 + 5t - 2\pi)$

- 1. *Beale M., Hagan M., Demuth H.* Neural Network Toolbox User's guide R2011b. The MathWorks, 2011. –pp. 7-2–7-18, 9-18–9-33.
- 2. *Медведев В. С., Потемкин В. Г.* Нейронные сети. MATLAB 6/Под общ. ред. к. т. н. В. Г. Потемкина М.: ДИАЛОГ-МИФИ, 2006. с. 115-130, 188-198.
- 3. Hagan M., Demuth H. Neural Network Design. 1996. Chapter 10. 44 pp.

Лабораторная работа № 3.

Многослойные сети. Алгоритм обратного распространения ошибки

Целью работы является исследование свойств многослойной нейронной сети прямого распространения и алгоритмов ее обучения, применение сети в задачах классификации и аппроксимации функции.

Основные этапы работы:

- 1. Использовать многослойную нейронную сеть для классификации точек в случае, когда классы не являются линейно разделимыми.
- 2. Использовать многослойную нейронную сеть для аппроксимации функции. Произвести обучение с помощью одного из методов первого порядка.
- 3. Использовать многослойную нейронную сеть для аппроксимации функции. Произвести обучение с помощью одного из методов второго порядка.

Для обучения многослойных нейронных сетей прямого распространения используются методы поиска экстремума функций многих переменных.

Методы первого порядка:

- Метод градиентного спуска (traingd). Для работы алгоритма необходимо задать скорость обучения: net.trainParam.lr = 0.05.
- Метод градиентного спуска с моментом (traingdm). Для работы алгоритма необходимо задать скорость обучения и величину момента: net.trainParam.lr = 0.05, net.trainParam.mc = 0.9.
- Метод градиентного спуска с адаптивным шагом (traingda). Для работы алгоритма необходимо задать скорость обучения и коэффициент увеличения скорости настройки: net.trainParam.lr = 0.05, net.trainParam.lr inc = 1.05.
- Метод градиентного спуска с адаптивным шагом и моментом (traingdx). Для работы алгоритма необходимо задать скорость обучения, коэффициент увеличения скорости настройки и величину момента: net.trainParam.lr = 0.05, $net.trainParam.lr_inc = 1.05$, net.trainParam.mc = 0.9.
- Метод гибкого распространения (trainrp). Другое название RProp (Resilient Backpropagation).
- Методы сопряженных градиентов: метод Флетчера-Ривса (*traincgf*), метод Полака-Рибейры (*traincgp*), метод Пауэлла-Биеле (*traincgb*), метод Моллера (*trainscg*). Для группы методов сопряженных градиентов рекомендуется задать число нейронов в скрытом слое равным 15.

Методы второго порядка:

- Квазиньютоновский метод, предложенный Бройденом, Флетчером, Гольдфарбом и Шанно (*trainbfg*).
- Метод Левенберга-Марквардта (*trainlm*).
- Одношаговый метод секущих (trainoss).

Сценарий работы:

Этап 1

1. Заданы 3 линейно неразделимых класса. Точки, принадлежащие одному классу, лежат на алгебраической линии. Построить и обучить многослойную сеть прямого распространения, которая будет классифицировать точки заданной области.

Обучающий набор $\{x_i,y_i\},\ i=1,..,N,$ число классов K=3. Сеть реализует отображение вида:

$$f(x_i, y_i) = \{(z_k)_{k=1}^K = (0, ..., 1, ..0) | z_{k=K^*} = 1$$
 при $(x_i, y_i) \in K^* \}$

- $1.1~\mathrm{B}$ соответствии с вариантом задания для каждой линии сгенерировать множество точек. Далее для первого класса выбрать из исходного множества случайным образом 60 точек. Для второго и третьего классов $100~\mathrm{u}$ $120~\mathrm{tovek}$ соответственно. Для выбора точек рекомендуется использовать функцию randperm, с помощью которой получить псевдослучайную последовательность индексов вектора.
- 1.2 Множество точек, принадлежащее каждому классу, разделить на обучающее, контрольное, и тестовое подмножества с помощью функции divider and в отношении 70%-20%-10%.
- 1.3 Отобразить с помощью функции plot исходные множества точек для каждого из классов. Задать параметр LineWidth равным 2, подписать линии, задать сетку. С помощью axis задать границы для входного множества. Параметры отображения для классов:
- **Класс 1** Исходное множество: -r. Обучающее подмножество: or, MarkerEdgeColor = k, MarkerFaceColor = r, MarkerSize = 7. Контрольное подмножество: rV, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7. Тестовое подмножество: rs, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7.
- **Класс 2** Исходное множество: -g. Обучающее подмножество: og, MarkerEdgeColor = k, MarkerFaceColor = g, MarkerSize = 7. Контрольное подмножество: gV, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7. Тестовое подмножество: gs, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7.
- **Класс 3** Исходное множество: -b. Обучающее подмножество: ob, MarkerEdgeColor = k, MarkerFaceColor = b, MarkerSize = 7. Контрольное подмножество: bV, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7. Тестовое подмножество: bs, MarkerEdgeColor = k, MarkerFaceColor = c, MarkerSize = 7.
- 1.4 Соответствующие подмножества точек каждого класса объединить в обучающее, контрольное, и тестовое подмножества обучающей выборки. Обучающая выборка состоит из последовательного объединения полученных обучающего, контрольного, и тестового подмножеств.
- 1.5 Создать сеть с помощью функции feedforwardnet. Сконфигурировать сеть (configure), указав диапазоны изменения для входного множества и эталонных выходов сети. Точки входного и выходного множеств лежат на отрезках [-1.2, 1.2] и [0, 1] по каждой из координат соответственно.

Число нейронов скрытого слоя задать равным 20. Использовать активационные функцию tansig для скрытого и выходного слоев. Задать RProp в качестве алгоритма обучения.

1.6~Для разделения обучающего множества на подмножества использовать net.divideFcn='divideind'. Также задать параметры:

net.divideParam.trainInd = 1:trnInd; net.divideParam.valInd = trnInd + 1:tstInd;net.divideParam.testInd = tstInd + 1:proInd; где trnInd, tstInd, proInd задают количество примеров в обучающем, контрольном, и тестовом подмножествах.

- 1.7~Инициализировать (init) весовые коэффициенты и смещения сети с помощью функции, заданной по умолчанию.
- 1.8 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) и число эпох, в течение которых может расти ошибка на контрольном подмножестве ($net.trainParam.max_fail$), равными 1500, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .
- 1.9 Выполнить обучение сети с помощью функции train. Для обучения использовать обучающую выборку. Занести в отчет содержимое Performance и Neural Network Training.
 - 1.10 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
- 1.11 Рассчитать выход сети (sim) для обучающего подмножества. Преобразовать значения по правилу

$$o_{ij} = \begin{cases} 1, & a_{ij} \geqslant 0.5; \\ 0, & a_{ij} < 0.5; \end{cases}$$

Занести в отчет количество правильно классифицированных точек.

- 1.12 Провести аналогичные расчеты для контрольного и тестового подмножеств.
- 1.13 Произвести классификацию точек области $[-1.2, 1.2] \times [-1.2, 1.2]$. Для этого задать сетку для указанной области с шагом h=0.025. Рассчитать выход сети для всех узлов сетки.
- 1.14 Выход сети для каждой точки задает ее принадлежность к трем классам. Закодировать принадлежности к классам различными цветами и занести полученное изображение в отчет.

Для этого использовать функции image и colormap. image отображает матрицу, каждый элемент которой содержит ссылку на таблицу цветов, которая задается с помощью colormap. Элементы в матрице цветов должны находиться в диапазоне [0,1]. Каждая компонента выходного вектора задает интенсивность одного из цветов в модели RGB. Например, (1,0,0) — красный цвет, (0,1,0) — зеленый, (0,0,1) — голубой, (1,1,0) — желтый цвет.

Сначала нужно сформировать таблицу цветов: округлить компоненты выходных векторов до десятых (floor или round) и удалить повторяющиеся вектора с помощью функции unique('rows'). Затем каждый из выходных векторов заменить на номер строки из таблицы цветов. Для перехода от пакетного (batch) представления к матрице ссылок использовать функцию reshape и операцию транспонирования.

Варианты заданий:

Номер варианта соответствует номеру в списке группы. Для генерации точек использовать параметрическое уравнение линии в канонической системе координат.

$$t = 0: 0.025: 2\pi$$
$$x = f(t)$$
$$y = g(t)$$

Константы a и b задают большую и малую полуоси эллипса, p — параметр параболы. Параметры преобразования прямоугольной системы координат на плоскости: угол поворота (α) и координаты параллельного переноса (x_0, y_0).

No	Алгебраические линии
1.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$

№	Алгебраические линии	
2.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
3.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
4.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
5.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=-0.1,y_0=0.15$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
6.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
7.	Эллипс: $a=0.2,b=0.2,\alpha=0,x_0=0.25,y_0=-0.25$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
8.	Эллипс: $a=0.2,b=0.2,\alpha=0,x_0=-0.25,y_0=0.25$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
9.	Эллипс: $a=0.2,b=0.2,\alpha=0,x_0=-0.2,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
10.	Эллипс: $a=0.2,b=0.2,\alpha=0,x_0=0.2,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
11.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/3,x_0=-0.2,y_0=-0.18$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=-0.2,y_0=-0.18$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
12.	Эллипс: $a=0.2,b=0.2,\alpha=\pi/3,x_0=0,y_0=0.4$ Эллипс: $a=0.7,b=0.5,\alpha=-\pi/3,x_0=0.2,y_0=0.18$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	

№	Алгебраические линии	
13.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=1,\alpha=0,x_0=-0.8,y_0=0$	
14.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=0,y_0=-0.8$	
15.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=0,y_0=-0.8$	
16.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=0,y_0=-0.8$	
17.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=-0.8,y_0=0$	
18.	Эллипс: $a=0.4,b=0.4,\alpha=0,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=1,\alpha=0,x_0=-0.8,y_0=0$	
19.	Эллипс: $a=0.4,b=0.4,\alpha=0,x_0=0.1,y_0=-0.15$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=-1,\alpha=0,x_0=0.8,y_0=0$	
20.	Эллипс: $a=0.4,b=0.4,\alpha=0,x_0=-0.1,y_0=0.15$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0,y_0=0$ Парабола: $p=-1,\alpha=0,x_0=0.8,y_0=0$	
21.	Эллипс: $a=0.5,b=0.2,\alpha=\pi/3,x_0=0,y_0=0$ Эллипс: $a=0.7,b=0.7,\alpha=0,x_0=0.08,y_0=0.05$ Парабола: $p=-1,\alpha=-\pi/2,x_0=0,y_0=-0.8$	
22.	Эллипс: $a=0.5,b=0.5,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=0.8,b=0.8,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=1,b=1,\alpha=0,x_0=0,y_0=0$	
23.	Эллипс: $a=0.4,b=0.5,\alpha=0,x_0=0.05,y_0=0$ Эллипс: $a=0.6,b=0.6,\alpha=0,x_0=0,y_0=0$ Эллипс: $a=0.8,b=1,\alpha=0,x_0=0,y_0=0$	

№	Алгебраические линии	
24.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0.35$ Эллипс: $a=0.5,b=0.5,\alpha=0,x_0=0,y_0=0.35$ Эллипс: $a=0.8,b=1,\alpha=0,x_0=0,y_0=0$	
25.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0.2$ Эллипс: $a=0.5,b=0.5,\alpha=0,x_0=0,y_0=0.2$ Эллипс: $a=0.8,b=1,\alpha=0,x_0=-0.1,y_0=-0.1$	
26.	Эллипс: $a=0.3,b=0.3,\alpha=0,x_0=0,y_0=0$ Парабола: $p=0.5,\alpha=0,x_0=-0.5,y_0=0$ Парабола: $p=1,\alpha=0,x_0=-0.8,y_0=0$	
27.	Парабола: $p=0.3,\alpha=0,x_0=0.,y_0=0$ Парабола: $p=0.5,\alpha=0,x_0=-0.5,y_0=0$ Парабола: $p=1,\alpha=0,x_0=-0.8,y_0=0$	
28.	Парабола: $p=-0.3,~\alpha=0,~x_0=0.,~y_0=0$ Парабола: $p=-0.4,~\alpha=0,~x_0=0.4,~y_0=0$ Парабола: $p=-0.5,~\alpha=0,~x_0=0.65,~y_0=0$	
29.	Эллипс: $a=0.3,b=0.15,\alpha=-\pi/6,x_0=-0.05,y_0=-0.05$ Эллипс: $a=0.7,b=0.5,\alpha=\pi/3,x_0=0,y_0=0$ Парабола: $p=1,\alpha=\pi/2,x_0=0,y_0=-0.8$	
30.	Эллипс: $a=0.4,b=0.15,\alpha=\pi/6,x_0=0,y_0=0$ Парабола: $p=0.7,\alpha=-\pi/3,x_0=-0.2,y_0=0.4$ Парабола: $p=1,\alpha=-\pi/3,x_0=-0.4,y_0=0.6$	

Этапы 2 и 3

2. Задан обучающий набор $\{x(i), y(i)\}$. Построить и обучить двухслойную нейронную сеть прямого распространения, которая будет выполнять аппроксимацию функции вида

$$\hat{y}(i) = f[x(i)]$$

Для обучения использовать алгоритм, реализующий метод поиска экстремума функции многих переменных первого порядка. Функция и метод обучения определяются вариантом задания.

- 2.1 Создать сеть с помощью функции feedforwardnet. Сконфигурировать сеть под обучающее множество с помощью функции configure. Число нейронов скрытого слоя задать равным 10. Использовать активационные функции, заданные по умолчанию (tansig, purelin). Алгоритм обучения определяется вариантом задания.
- 2.2 Для разделения обучающией выборки на обучающее, контрольное, и тестовое подмножества использовать функцию *divideind*. Выделить с конца временной последовательности 10% отсчетов на контрольное подмножество. Тестовое подмножество оставить пустым.

$$net.divideParam.testInd = []$$

2.3 Инициализировать сеть (init) с помощью функции, заданной по умолчанию.

- 2.4 Задать параметры обучения: значения параметров для некоторых методов обучения описаны выше, число эпох обучения (net.trainParam.epochs) и число эпох, в течение которых может расти ошибка на контрольном подмножестве ($net.trainParam.max_fail$), равными 600, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-8} ,
- 2.5 Выполнить обучение сети с помощью функции *train*. Если необходимо, то произвести обучение несколько раз. Если результаты неудовлетворительные или наблюдается переобучение, то изменить число нейронов в функции *feedforwardnet*, увеличить число эпох обучения или уменьшить предельное значение критерия обучения. Занести в отчет весовые коэффициенты и смещения для двух слоев. Занести в отчет окна Performance и Neural Network Training, если это возможно для данного метода обучения.
 - 2.6 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
- 2.7 Рассчитать выход сети (sim) для обучающего подмножества. Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения. Графики занести в отчет.
 - 2.8 Проделать тоже самое для контрольного подмножества.
- 3. Построить и обучить двухслойную нейронную сеть прямого распространения, которая будет выполнять аппроксимацию функции. Для обучения использовать алгоритм, реализующий метод оптимизации функций многих переменных второго порядка. Функция и метод обучения определяются вариантом задания.

Последовательности шагов для выполнения 2 и 3 этапов работы совпадают.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы.

No	Функция	Методы обучения
	$x = \sin(t^2), t \in [0, 4], h = 0.02$	trainrp, trainoss
1.	$x = \sin(t^2), t \in [0, 4], h = 0.02$ $x = \sin(t^2 - 2t + 3), t \in [0, 6], h = 0.025$ $x = \cos(2.5t^2 - 5t), t \in [0, 2.2], h = 0.01$ $x = \sin(\sin(t)t^2 + 5t), t \in [0, 3.5], h = 0.01$ $x = \cos(-3t^2 + 5t + 10), t \in [0, 2.5], h = 0.01$ $x = \sin(0.5t^2 - 5t), t \in [0, 2], h = 0.01$ $x = \sin(\sin(t)t^2 - t), t \in [1, 4.5], h = 0.01$ $x = \sin(-2t^2 + 7t), t \in [0, 3.5], h = 0.01$ $x = \sin(t^2 - 2t + 5), t \in [0, 5], h = 0.025$	traincgb, trainlm
3.	$x = \cos(2.5t^2 - 5t), t \in [0, 2.2], h = 0.01$	trainscg, trainbfg
4.	$x = \sin(\sin(t)t^2 + 5t), t \in [0, 3.5], h = 0.01$	traingd, trainbfg
5.	$x = \cos(-3t^2 + 5t + 10), t \in [0, 2.5], h = 0.01$	traingdm, trainoss
6.	$x = \sin(0.5t^2 - 5t), t \in [0, 2], h = 0.01$	traincgp, trainlm
7.	$x = \sin(\sin(t)t^2 - t), t \in [1, 4.5], h = 0.01$	traincgp, trainbfg
8.	$x = \sin(-2t^2 + 7t), t \in [0, 3.5], h = 0.01$	traingdx, trainoss
9.	$x = \sin(t^2 - 2t + 5), t \in [0, 5], h = 0.025$	traingd, trainbfg

№	T	trainFcn
10.	$x = \sin(t^2 - 7t), t \in [0, 5], h = 0.025$	trainscg, trainoss
11.	$x = \cos(t^2), t \in [0, 4], h = 0.02$	traingda, trainbfg
12.	$x = \cos(-\cos(t)t^2 + t), t \in [0.5, 4], h = 0.01$	traincgf, trainlm
13.	$x = \cos(t^2 - 2t + 3), t \in [0, 5], h = 0.02$	traingdx, trainbfg
14.	$x = \cos(t^2 - 10t + 3), t \in [1, 6], h = 0.025$	trainrp, trainlm
	$x = \cos(-2t^2 + 7t), t \in [0, 3.5], h = 0.01$	traingda, trainoss
15.	$x = \sin(\sin(t)t^2 + 3t - 10), t \in [2.5, 5], h = 0.01$	traincgb, trainbfg
16.	$x = \cos(-5t^2 + 10t - 5), t \in [0, 2.5], h = 0.01$	trainscg, trainoss
17.	$x = \cos(\cos(t)t^2 - t), t \in [1, 4.5], h = 0.01$	traincgf, trainlm
18.	$x = \sin(-5t^2 + 10t - 5), t \in [0, 2.5], h = 0.01$	traingda, trainoss
19.	$x = \cos(\cos(t)t^2 + 5t), t \in [0, 3.5], h = 0.01$	traingdx, trainlm
20.	$x = \sin(t^2 - 10t + 3), t \in [1, 6], h = 0.025$	traingdx, trainoss
21.	$x = \sin(-\sin(t)t^2 + t), t \in [0.5, 4], h = 0.01$	traincgb, trainlm
22.	$x = \sin(t^2 - 6t + 3), t \in [0, 5], h = 0.025$	traingd, trainbfg
23.	$x = \sin(0.66\pi t), t \in [0, 5], h = 0.025$	traingdx, trainoss
24.	$x = \sin(t^2 - 6t + 3), t \in [0, 6], h = 0.025$	traincgp, trainlm
25.	$x = \sin(t - 0t + 0), t \in [0, 0], h = 0.025$ $x = \sin(\sin(t)t^2), t \in [0, 3.5], h = 0.01$	trainrp, trainbfg
26.	$x = \sin(\sin(t)t^{2}), t \in [0, 5.5], h = 0.01$ $x = \sin(t^{2} - 5t + 6), t \in [0, 6], h = 0.02$	traingda, trainoss
27.	$x = \sin(t - 5t + 0), t \in [0, 0], \ h = 0.02$ $x = \sin(2.5t^2 - 5t), t \in [0, 2.2], \ h = 0.01$	
28.	$u = \sin(2.5t - 5t), t \in [0, 2.2], \ t = 0.01$	traincgf, trainbfg

№	T	trainFcn
29.	$x = \sin(2t^2 - 6t + 3), t \in [0, 5], h = 0.02$	traincgp, trainlm
30.	$x = \sin(-3t^2 + 5t + 10), t \in [0, 2.5], h = 0.01$	trainscg, trainlm

- 1. *Beale M., Hagan M., Demuth H.* Neural Network Toolbox User's guide R2011b. The MathWorks, 2011. -pp. 2-2–2-32.
- 2. *Медведев В. С., Потемкин В. Г.* Нейронные сети. МАТLAB 6/Под общ. ред. к. т. н. В. Г. Потемкина М.: ДИАЛОГ-МИФИ, 2006. с. 47–101.
- 3. Hagan M., Demuth H. Neural Network Design. 1996. Chapter 11 and 12. -pp. 11-1-12-52.
- 4. *Бортаковский А. С., Пантелеев А. В.* Аналитическая геометрия в примерах и задачах: Учеб. пособие. М.: Высш. шк., 2005. с. 135–137, 268-289.

Лабораторная работа № 4.

Сети с радиальными базисными элементами

Целью работы является исследование свойств некоторых видов сетей с радиальными базисными элементами, алгоритмов обучения, а также применение сетей в задачах классификации и аппроксимации функции.

Основные этапы работы:

- 1. Использовать вероятностную нейронную сеть для классификации точек в случае, когда классы не являются линейно разделимыми.
- 2. Использовать сеть с радиальными базисными элементами (RBF) для классификации точек в случае, когда классы не являются линейно разделимыми.
- 3. Использовать обобщенно-регрессионную нейронную сеть для аппроксимации функции. Проверить работу сети с рыхлыми данными.

Сценарий работы:

1. Для трех линейно неразделимых классов из лабораторной работы № 3 решить задачу классификации. Точки, принадлежащие одному классу, лежат на алгебраической линии. Построить вероятностную сеть, которая будет классифицировать точки заданной области.

Обучающий набор $\{x_i,y_i\},\ i=1,..,N,$ число классов K=3. Сеть реализует отображение вида:

$$f(x_i, y_i) = \{(z_k)_{k=1}^K = (0, ..., 1, ..0) | z_{k=K^*} = 1$$
 при $(x_i, y_i) \in K^* \}$

- 1.1 В соответствии с вариантом задания для каждой линии сгенерировать множество точек. Далее для первого класса выбрать из исходного множества случайным образом 60 точек. Для второго и третьего классов 100 и 120 точек соответственно.
- 1.2 Множество точек, принадлежащее каждому классу, разделить на обучающее и тестовое подмножества с помощью функции dividerand в отношении 80%-20%.
- 1.3 Способом, описанным в Л.р. № 3, отобразить множества точек для каждого класса, а также соответствующие обучающие и тестовые подмножества.
- 1.4 Соответствующие подмножества точек объединить в обучающее и тестовое подмножества обучающей выборки.
- 1.5 Эталонное распределение точек обучающей выборки по классам преобразовать к индексам (ind2vec).
- 1.6 Константу SPREAD задать равной 0.3. Создать сеть с помощью функции newpnn. Подать в сеть обучающее подмножество обучающей выборки.
 - 1.7 Отразить структуру сети, заполнив таблицу 1.
- 1.8~ Проверить качество обучения: рассчитать выход сети для обучающего подмножества обучающей выборки. Преобразовать выходные значения с помощью функции (vec2ind). Занести в отчет количество правильно классифицированных точек.
 - 1.9 Провести аналогичные расчеты для тестового подмножеств.
- 1.10 Произвести классификацию точек области $[-1.2, 1.2] \times [-1.2, 1.2]$. Закодировать принадлежности к классам различными цветами и занести полученное изображение в отчет. Для этого использовать методику, описанную в лабораторной работе № 3.
 - 1.11 Константу SPREAD задать равной 0.1. Создать сеть с помощью функции newpnn.
- 1.12 Произвести классификацию точек области $[-1.2, 1.2] \times [-1.2, 1.2]$. Закодировать принадлежности к классам различными цветами и занести полученное изображение в отчет. Использовать методику, описанную в лабораторной работе № 3.

- 2. Для трех линейно неразделимых классов из лабораторной работы № 3 решить задачу классификации. Точки, принадлежащие одному классу, лежат на алгебраической линии. Построить сеть с радиальными базисными элементами, которая будет классифицировать точки заданной области.
- 2.1 В соответствии с вариантом задания для каждой линии сгенерировать множество точек. Далее для первого класса выбрать из исходного множества случайным образом 60 точек. Для второго и третьего классов 100 и 120 точек соответственно.
- 2.2 Множество точек, принадлежащее каждому классу, разделить на обучающее и тестовое подмножества с помощью функции dividerand в отношении 80%-20%.
- 2.3 Способом, описанным в Л.р. № 3, отобразить множества точек для каждого класса, а также соответствующие обучающие и тестовые подмножества.
- 2.4 Соответствующие подмножества точек объединить в обучающее и тестовое подмножества обучающей выборки.
- 2.5 Создать сеть с помощью newrb, задав следующие параметры: предельное значение критерия обучения $(goal)-10^{-5}$, SPREAD-0.3, размер обучающей выборки число элементов в обучающем подмножестве. В сеть подается обучающее подмножество обучающей выборки.
- 2.6 Занести в отчет окно Training with newrb. Отразить структуру сети, заполнив таблицу 1. Указать число радиальных базисных нейронов.
- 2.7 Проверить качество обучения: рассчитать выход сети для обучающего подмножества обучающей выборки. Занести в отчет количество правильно классифицированных точек.
 - 2.8 Провести аналогичные расчеты для тестового подмножеств.
- 2.9 Произвести классификацию точек области $[-1.2, 1.2] \times [-1.2, 1.2]$. Закодировать принадлежности к классам различными цветами и занести полученное изображение в отчет. Для этого использовать методику, описанную в лабораторной работе № 3.
 - 2.10 Константу SPREAD задать равной 0.1. Создать сеть с помощью функции newrb.
- 2.11 Произвести классификацию точек области $[-1.2, 1.2] \times [-1.2, 1.2]$. Закодировать принадлежности к классам различными цветами и занести полученное изображение в отчет. Использовать методику, описанную в лабораторной работе № 3.
- 3. Задан обучающий набор $\{x(i), y(i)\}$. Построить обобщенно-регрессионную нейронную сеть, которая будет выполнять аппроксимацию функции

$$\hat{y}(i) = f[x(i)]$$

Функцию, соответствующего варианта, взять из лабораторной работы № 3.

- 3.1 Создать сеть с помощью функции newgrnn(P1,T1,SPREAD). Константу SPREAD задать равной h, где h величина шага для заданной функции.
- 3.2 Произвести разделение обучающей выборки на обучающее и тестовое подмножества. Индексы обучающего подмножества использовать для создания сети.

$$P1 = P(trainInd);$$

 $T1 = T(trainInd);$

Выделить с конца временной последовательности 10% отсчетов на тестовое подмножество.

- 3.3 Если результаты неудовлетворительные, то изменить значение *SPREAD* и создать новую сеть.
 - 3.4 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
- 3.5 Рассчитать выход сети (*sim*) для обучающего подмножества. Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью. Отобразить на отдельном графике ошибку обучения. Графики занести в отчет.

- 3.6 Получить апостериорную оценку качества работы сети: проделать аналогичные действия для тестового подмножества.
- 3.7 Сформировать обучающее множество с рыхлыми данными. Для этого произвести разделение обучающей выборки на обучающее и тестовое подмножества. с помощью функции (dividerand) в соотношении 80% и 20%.
- 3.8 Рассчитать выход сети (sim) для обучающего подмножества. Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения. Графики занести в отчет.

- 1. *Beale M., Hagan M., Demuth H.* Neural Network Toolbox User's guide R2011b. The MathWorks, 2011. –pp. 5-2–5-16.
- 2. *Медведев В. С., Потемкин В. Г.* Нейронные сети. МАТLAB 6/Под общ. ред. к. т. н. В. Г. Потемкина М.: ДИАЛОГ-МИФИ, 2006. с. 131–146.
- 3. *Круглов В. В., Дли М. И., Голунов Р. Ю.* Нечеткая логика и искусственные нейронные сети. М.: Физматлит, 2001. с. 94–100.

Лабораторная работа № 5. Сети с обратными связями

Целью работы является исследование свойств сетей Хопфилда, Хэмминга и Элмана, алгоритмов обучения, а также применение сетей в задачах распознавания статических и динамических образов.

Основные этапы работы:

- 1. Использовать сеть Элмана для распознавания динамических образов. Проверить качество распознавания.
- 2. Использовать сеть Хопфилда для распознавания статических образов. Проверить качество распознавания.
- 3. Использовать сеть Хэмминга для распознавания статических образов. Проверить качество распознавания.

Сценарий работы:

Этап 1

- 1. Построить и обучить сеть Элмана, которая будет выполнять распознавание динамического образа. Проверить качество распознавания.
- 1.1 Входная последовательность обучающего множества состоит из комбинации основного сигнала (p_1) и сигнала, подлежащего распознаванию (p_2) . Каждому значению основного сигнала соответствует -1 целевого выхода, каждому значению сигнала p_2 соответствует 1 целевого выхода.

$$p_1(k)=\sin(4\pi k),\quad t_1(k)=-1,\quad k\in[0,1]$$
 с шагом $h=0.025$ $p_2(k)=g(k),\quad t_2(k)=1,\quad k\in[a_2,b_2]$ с шагом $h=0.025$

Функция g(k) определяется вариантом задания. Длительность основного сигнала задается набором чисел $R = \{r_1, r_2, r_3\}$. Значения R также определяются вариантом задания. Входное множество формируется по формуле

$$P = [repmat(p_1, 1, r_1), p_2, repmat(p_1, 1, r_2), p_2, repmat(p_1, 1, r_3), p_2]$$

$$T = [repmat(t_1, 1, r_1), t_2, repmat(t_1, 1, r_2), t_2, repmat(t_1, 1, r_3), t_2]$$

Преобразовать обучающее множество с помощью функции con2seq. Не выделять из обучающего множества контрольное и тестовое подмножества.

- 1.2 Создать сеть с помощью функции layrecnet. Задать задержки 1:2. Число нейронов скрытого слоя задать равным 8. Для обучения сети использовать одношаговый метод секущих (trainoss). Для скрытого и выходного слоев использовать tansig в качестве активационной функции $(net.layers\{i\}.transferFcn)$. Сконфигурировать сеть (configure) под обучающее множество.
- $1.3~\mathrm{C}$ помощью функции preparets сформировать массивы ячеек для функции обучения, содержащие обучающее множество и значения для инициализации задержек обратной связи (P,T,Pi,Ai) соответственно). Если при выполнении заданий используется версия MATLAB, которая не поддерживает эту функцию, то обучать и выполнять расчет выходов сети без инициализации задержек.
- 1.4 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) равным 100, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .

- 1.5 Произвести обучение сети. Если необходимо, то произвести обучение несколько раз. Если результаты неудовлетворительные, то увеличить число нейронов сети. Занести в отчет содержимое Performance и Neural Network Training.
 - 1.6 Отразить структуру сети и проведенное обучение, заполнив таблицу 1.
- 1.7 Рассчитать выход сети (sim) для обучающего подмножества. Отобразить на графике эталонные значения и предсказанные сетью. С помощью функции legend подписать кривые.
 - 1.8 Преобразовать значения по правилу

$$o_{ij} = \begin{cases} 1, & a_{ij} \geqslant 0; \\ -1, & a_{ij} < 0; \end{cases}$$

Сравнить выход сети с эталонными значениями. Занести в отчет количество правильно классифицированных точек.

- $1.9~{\rm Для}$ проверки качества распознавания сформировать новое обучающее множество, изменив одно из значений $R=\{r_1,r_2,r_3\}$. Рассчитать выходы сети для измененной входной последовательности.
- 1.10 Рассчитать выход сети (sim) для обучающего подмножества. Отобразить на графике эталонные значения и предсказанные сетью. С помощью функции legend подписать кривые.
- 1.11 Преобразовать значения по правилу. Сравнить выход сети с эталонными значениями. Занести в отчет количество правильно классифицированных точек.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы.

No	Динамический образ	Длительность $p_1(k)$
1.	$g(k) = \sin(-3k^2 + 10k - 5), k \in [0.62, 3.14]$	[0, 8, 6]
2.	$g(k) = \cos(-2k^2 + 7k), k \in [0.92, 4.07]$	[2, 4, 7]
3.	$g(k) = \sin(k^2 - 15k + 3) - \sin^2(k) + 0.5, k \in [0.9, 3.1]$	[3, 5, 2]
4.	$g(k) = \sin(\sin(k)k^3 - 10), k \in [1.56, 3.12]$	[0, 1, 5]
5.	$g(k) = 1.5\sin(\sin(k)k^2) - 0.5, k \in [0.74, 3.14]$	[3, 3, 4]
6.	$g(k) = \sin(k^2 - 5k + 6), k \in [0.67, 4.98]$	[2, 6, 5]
	$g(k) = \cos(\cos(k)k^2 - k), k \in [2.16, 4.04]$	[1, 4, 7]
7.	$g(k) = \cos(\cos(k)k^2 + 5k), k \in [2.38, 4.1]$	[1, 3, 5]
8.	$g(k) = \sin(\sin(k)k^2 - k), k \in [1.13, 3.6]$	[7, 0, 7]
٦.		

№	G	R
10.	$g(k) = \sin(-3k^2 + 5k + 10) + 0.8, k \in [0.46, 3.01]$	[0, 2, 2]
11.	$g(k) = \cos(-\cos(k)k^2 + k), k \in [2.9, 4.55]$	[6, 7, 1]
12.	$g(k) = \sin(\sin(k)k^2 + 5k), k \in [1.86, 3.86]$	[4, 3, 0]
	$g(k) = \sin(2k^2 - 6k + 3), k \in [-0.02, 2.36]$	[2, 5, 6]
13.	$g(k) = \sin(\sin(k)k^2 + 3k - 10), k \in [4.45, 5.86]$	[6, 5, 7]
14.	$g(k) = \cos(-2k^2 + 7k), k \in [0.92, 3.25]$	[0, 4, 2]
15.	$g(k) = \sin(\sin(k)k^2) - 0.1, k \in [0.48, 2.71]$	[7, 0, 3]
16.	$g(k) = \sin(2.5k^2 - 5k), k \in [-1.14, 1.16]$	[5, 5, 4]
17.	$g(k) = \cos(-5k^2 + 10k - 5), k \in [0.45, 2.48]$	[2, 1, 4]
18.	$g(k) = \sin(-\sin(k)k^2 + k), k \in [0.01, 2.77]$	[3, 1, 3]
19.	$g(k) = 1.5\sin(-5k^2 + 10k - 5) + 0.4, k \in [0.78, 2.35]$	[2, 2, 5]
20.	$g(k) = \sin(\sin(k)k^2 - k), k \in [1.12, 3.6]$	[3, 0, 5]
21.	$g(k) = \cos(-3k^2 + 5k + 10), k \in [0.24, 2.7]$	[2, 4, 4]
22.		
23.	$g(k) = \sin(-2k^2 + 7k), k \in [0.01, 2.96]$	[3, 4, 6]
24.	$g(k) = \cos(k^2 - 10k + 3), k \in [2.84, 6.25]$	[3, 4, 6]
25.	$g(k) = 1.5\sin(k^2 - 6k + 3) - 0.8, k \in [1.49, 3.52]$	[5, 3, 3]
26.	$g(k) = \sin(k^2 - 10k + 3), k \in [2.5, 4.84]$	[1, 2, 3]
27.	$g(k) = \sin(k^2 - 2k + 3), k \in [-0.05, 4.25]$	[0, 1, 6]
28.	$g(k) = \cos(\cos(k)k^2), k \in [2.47, 4.26]$	[7, 1, 3]

№	G	R
29.	$g(k) = \sin(-2\sin(k)k^2 + 7), k \in [1.41, 3.1]$	[2, 3, 8]
30.	$g(k) = \sin(-2k^2 + 7k) - 0.5\sin(k), k \in [0.01, 2.98]$	[4, 5, 2]

Этап 2

- 2. Построить сеть Хопфилда, которая будет хранить образы из заданного набора. Эталонными образами являются двоичные изображения цифр 0, 1, 2, 3, 4, 6, 9 (рис. 3) размером 12x10. Проверить работу сети с зашумленными образами.
- 2.1 Создать сеть с помощью функции newhop. Аттракторами построенной сети должны быть 3 образа, которые определяются вариантом задания. Каждый эталонный образ задается матрицей. Цветам точек соответствуют -1 и 1. Для синтеза сети необходимо объединить эталонные образы по формуле T = [p1(:), p2(:), p3(:)].
- 2.2 Подать в сеть первый образ, рассчитать выход сети. Число итераций задать равным 600. Результат распознавания занести в отчет. Для этого с помощью функции reshape(p1, 12, 10) преобразовать выход сети и заменить в полученной матрице значения по правилу

$$x_{ij} = \begin{cases} 2, & a_{ij} \geqslant 0; \\ 1, & a_{ij} < 0; \end{cases}$$

Для отображения результата распознавания использовать вызов следующих функций:

2.3 Произвести зашумление второго образа на 20%, полученный образ занести в отчет. Рассчитать выход сети. Результат распознавания занести в отчет.

Зашумление произвести следующим образом: для каждой точки изображения изменить цвет по правилу

 $if\ r_{ij} < M\ then\ инвертировать цвет\ точки$ где M — степень зашумления, r —реализация случайной величины, распределенной по равномерному закону (функция rand).

2.4 Произвести зашумление третьего образа на 30%, полученный образ занести в отчет. Рассчитать выход сети. Число итераций задать равным 600. Если необходимо, то произвести обучение несколько раз. Если результаты распознавания неудовлетворительные, то увеличить число итераций. Результат распознавания занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру в списке группы.

No	Цифры
1	[1,0,6]
1.	[1,6,4]
2.	

Рис. 2. Эталонные образы

No	Цифры
3.	[4, 3, 2]
4.	[6, 3, 9]
5.	[9, 0, 4]
6.	[9, 2, 3]
7.	[3, 1, 0]
8.	$\left[2,4,1\right]$
9.	$\left[0,9,2\right]$
10.	[4,3,0]
11.	[9, 6, 1]
12.	[2, 1, 6]

N ₂	Цифры
13.	[0, 1, 4]
14.	[6, 2, 3]
15.	[6,2,3] $[4,2,9]$ $[3,6,0]$
16.	[3, 6, 0]
17.	[0, 1, 3]
18.	[0, 1, 3] $[1, 4, 2]$ $[9, 3, 0]$
19.	[9, 3, 0]
20.	[6, 2, 9]
21.	[3, 0, 4]
22.	[9, 1, 3]
23.	[6, 9, 2]
24.	[6, 1, 0]
25.	[6, 1, 0] $[0, 2, 3]$
	[4, 0, 6]
27.	[3, 4, 2]
28.	[4, 0, 6] [3, 4, 2] [2, 1, 6] [9, 3, 2] [1, 4, 0]
29.	[9,3,2]
30.	[1,4,0]

<u>Этап 3</u>

3. Построить сеть Хэммиинга, которая будет хранить образы из заданного набора. Эталонными образами являются двоичные изображения цифр 0,1,2,3,4,6,9 (рис. 3) размером 12x10. Проверить работу сети с зашумленными образами.

3.1 Реализовать сеть Хэмминга. Сеть Хэмминга является двухслойной сеть прямого распространения. Функционирование сети производится в соответствии с правилами:

$$IW = \begin{pmatrix} p_1^T \\ \vdots \\ p_Q^T \end{pmatrix} \qquad b^1 = \begin{pmatrix} R \\ \vdots \\ R \end{pmatrix} \qquad a^1 = IW * p + b^1$$

$$LW = \begin{pmatrix} 1 & -\varepsilon & \dots & -\varepsilon \\ -\varepsilon & 1 & \dots & -\varepsilon \\ \dots & & & \\ -\varepsilon & -\varepsilon & \dots & 1 \end{pmatrix} \qquad a^{2}(k) = poslin\left(LW * a^{2}(k-1)\right)$$

где Q — число эталонных образов, $\varepsilon = 1/(Q-1)$, R — размерность входного вектора.

- 3.2 Первый слой вычисляет расстояние Хэмминга между входным и эталонными векторами. Вычисления, проводимые в первом слое, реализовать по приведенному правилу.
- 3.3 Для реализации работы второго слоя использовать сеть Хопфилда. Создать сеть с помощью функции $newhop(a^1)$. Использовать poslin в качестве активационной функции $(net.layers\{1\}.transferFcn)$. Весовые коэффициенты и смещения (LW^{11},b^1) задать по приведенным правилам.
- 3.4 Подать в сеть первый образ. Число итераций задать равным 600 и рассчитать выход сети. В результате работы сети в выходном векторе должна быть одна ненулевая компонента. Если ненулевых компонент несколько, то выбрать наибольшую компоненту. Индекс этой компоненты соответствует строке матрицы IW, содержащей эталонный образ. Занести выход сети и номер образа в отчет.
- 3.5 Рассчитать выход сети для зашумленного на 20% образа из Этапа 2. Занести выход сети и номер образа в отчет.
- 3.6 Рассчитать выход сети для зашумленного на 30% образа из Этапа 2. Занести выход сети и номер образа в отчет.

- 1. *Beale M., Hagan M., Demuth H.* Neural Network Toolbox User's guide R2011b. The MathWorks, 2011. –pp. 3-29–3-31, 9-34–9-41.
- 2. *Медведев В. С., Потемкин В. Г.* Нейронные сети. МАТLAB 6/Под общ. ред. к. т. н. В. Г. Потемкина М.: ДИАЛОГ-МИФИ, 2006. с. 175–188.
- 3. *Осовский С.* Нейронные сети для обработки информации. М.: Финансы и статистика, 2002. с. 210–219.
- 4. *Круглов В. В., Дли М. И., Голунов Р. Ю.* Нечеткая логика и искусственные нейронные сети. М.: Физматлит, 2001. с. 90–94.

Лабораторная работа № 6. Сети Кохонена

Целью работы является исследование свойств слоя Кохонена, карты Кохонена, а также сетей векторного квантования, обучаемых с учителем, алгоритмов обучения, а также применение сетей в задачах кластеризации и классификации.

Основные этапы работы:

- 1. Использовать слой Кохонена для выполнения кластеризации множества точек. Проверить качество разбиения.
 - 2. Использовать карту Кохонена для выполнения кластеризации множества точек.
 - 3. Использовать карту Кохонена для нахождения одного из решений задачи коммивояжера.
- 4. Использовать сеть векторного квантования, обучаемую с учителем, (LVQ-сеть) для классификации точек в случае, когда классы не являются линейно разделимыми.

Сценарий работы:

- 1. Построить и обучить слой Кохонена, который будет содержать координаты центров 8 сформированных кластеров.
- 1.1 Сформировать множество случайных точек, которые изначально сгруппированы в 8 кластеров. Использовать функцию nngenc(X, clusters, points, deviation), где X = [0, 1.5; 0, 1.5] задает область, в которой находятся точки множества; clusters = 8 задает число кластеров; points = 10 задает число точек в каждом из кластеров; deviation = 0.1 задает среднее квадратическое отклонение от центра кластера.
 - 1.2 Не разбивать обучающее множество на подмножества.
- 1.3 Создать сеть с помощью функции *competlayer*. Число кластеров задать равным 8. Сконфигурировать сеть под обучающее множество.
- 1.4 Задать число эпох обучения net.trainParam.epochs равным 50. Произвести обучение сети с помощью метода, заданного по умолчанию. Занести в отчет весовые коэффициенты первого слоя, которые являются центрами кластеров. Занести в отчет содержимое окна Neural Network Training.
 - 1.5 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
- 1.6 Проверить качество разбиения: случайным образом задать 5 точек и подать их в сеть. Преобразовать выход сети с помощью функции vec2ind и занести в отчет номера кластеров. Занести в отчет график, на котором отобразить множество точек, полученные центры кластеров ($net.IW_{1,1}$) и 5 дополнительных точек. На графике исходное множество, центры кластеров и дополнительные точки должны быть изображены разным цветом, также должна быть отображена сетка.
- 2. Построить и обучить карту Кохонена размера 2х4 с гексагональной сеткой, которая будет содержать координаты центров кластеров.
- 2.1 Сформировать множество случайных точек, которые изначально сгруппированы в 8 кластеров. Использовать функцию nngenc(X, clusters, points, deviation), где X = [0, 1.5; 0, 1.5] задает область, в которой находятся точки множества; clusters = 8 задает число кластеров; points = 10 задает число точек в каждом из кластеров; deviation = 0.1 задает среднее квадратическое отклонение от центра кластера. Не разбивать обучающее множество на подмножества.
 - 2.2 Создать сеть с помощью функции newsom(X, [2, 4]).
- 2.3 Задать число эпох обучения net.trainParam.epochs равным 150. Произвести обучение сети с помощью метода, заданного по умолчанию. Занести в отчет весовые коэффициенты первого слоя после обучения. Занести в отчет графики SOM Sample Hits, SOM Weight Positions, а также содержимое окна Neural Network Training.

- 2.4 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
- 2.5 Проверить качество разбиения: случайным образом задать 5 точек и подать их в сеть. Преобразовать выход сети с помощью функции vec2ind и занести в отчет номера кластеров. Занести в отчет график, на котором отобразить множество точек, полученные центры кластеров, связи между ними $(plotsom(net.IW\{1,1\},net.layers\{1\}.distances))$, и 5 дополнительных точек. На графике исходное множество, центры кластеров и дополнительные точки должны быть изображены разным цветом, также должна быть отображена сетка.
- 3. Построить и обучить карту Кохонена, которая будет находить одно из решений задачи коммивояжера.
- $3.1~{\rm C}$ помощью функции rand сгенерировать набор из N=20 случайных точек $T=\{x_i,y_i\}$ в диапазоне [-1.5,1.5]. Точки задают координаты каждого города, их последовательность маршрут, который должен пройти через все города. В данной задаче замыкать маршрут не требуется. Отобразить маршрут, полученный при создании набора точек:

```
hold on plot(T(1,:),T(2,:), '-V', 'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'g', 'MarkerSize',7), grid hold off
```

Занести график о отчет.

- 3.2 Не разбивать обучающее множество на подмножества. Создать сеть Кохонена, нейроны которой образуют одномерную цепочку, с помощью функции newsom(T, N).
- 3.3 Задать число эпох обучения net.trainParam.epochs равным 600. Произвести обучение сети с помощью метода, заданного по умолчанию. При обучении сети города, расположенные по соседству друг с другом, будут отображаться на нейроны, расположенные по соседству в сети Кохонена. Провести обучение несколько раз, добиться, чтобы маршрут, генерируемый сетью Кохонена, проходил через наибольшее число городов.
 - 3.4 Отобразить координаты городов и центры кластеров, сгенерированные сетью. hold on plotsom(net.IW1,1,net.layers1.distances), plot(T(1,:),T(2,:), 'V','MarkerEdgeColor','k', 'MarkerFaceColor','g', 'MarkerSize',7), grid hold off

График занести в отчет.

- 4. Для обучающей выборки построить LVQ-сеть, которая будет правильно относить точки к двум классам. Классы не являются линейно разделимыми. Отобразить границы классов, которые построила сеть.
- 4.1 Отобразить входное множество и эталонное распределение по классам с помощью функции plotpv, график занести в отчет. Для отображения необходимо индекс класса -1 заменить на 0.
- 4.2 Не разбивать обучающее множество на подмножества. Построить вектор индексов классов с помощью функции ind2vec. Перед этим в векторе, содержащим распределение по классам заменить -1 на 1, а 1 на 2.
- 4.3 Создать сеть с помощью функции newlvq. Число нейронов конкурентного слоя задать равным 12. Задать скорость обучения равной 0.1. При создании сети задать процентную долю принадлежности входных векторов к классу с индексом 1 и классу с индексом 2.
- 4.4 Задать число эпох обучения net.trainParam.epochs равным 300. Произвести обучение сети с помощью метода, заданного по умолчанию. Занести в отчет содержимое окна Performance и Neural Network Training.
 - 4.5 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
- 4.6 Проверить качество обучения: произвести классификацию точек области $[-1.5, 1.5] \times [-1.5, 1.5]$. Для этого задать сетку для указанной области с шагом h=0.1. Рассчитать выход сети

(sim) для всех узлов сетки. Преобразовать выходные значения с помощью функции vec2ind. Преобразовать индексы классов: $1\Rightarrow 0,\ 2\Rightarrow 1$. Отобразить границы классов с помощью: plotpv(xyGrid,output); point = findobj(gca,'type','line'); set(point,'Color','g'); hold on; plotpv(P,T) hold off;

где P,T — обучающее множество, xyGrid — набор узлов сетки, output — выход LVQ-сети. Полученный график занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру в списке группы.

No	Обучающее множество
1.	$\begin{bmatrix} 0.5 & 0.7 & 0.4 & 0.6 & -0.7 & -1.3 & 0.5 & 1.3 & -0.2 & 0.7 & -1 & -0.2 \\ 0.7 & -0.4 & -1 & -1.5 & -1.4 & 0.9 & -0.6 & -1.4 & -0.4 & 0.8 & -0.1 & 0.4 \end{bmatrix}$
	$\begin{bmatrix} 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & 1 & $
2.	$\begin{bmatrix} 0.1 & 0 & -0.9 & -1.2 & -0.3 & -0.5 & 1.2 & -1 & 0.5 & 0 & 1 \\ 0.6 & 1.4 & -1.2 & -1.4 & -0.2 & 0.7 & 0.8 & 1.4 & -1.1 & -1.3 & 0 - 0.1 \end{bmatrix}$
	$\begin{bmatrix} -1 & -1 & 1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 \end{bmatrix}$
3.	$\begin{bmatrix} 0 & 0.3 & -1.3 & 1.2 & -1.2 & -0.5 & 0.7 & -1.4 & 0.3 & 0.6 & 0.8 & 0.5 \\ 0.7 & -1.3 & 0.8 & 0.1 & 0.9 & -0.7 & -1.5 & 0.5 & 0 & 0.6 & -0.7 & 0.1 \end{bmatrix}$
	$\begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1$
4.	$\begin{bmatrix} -0.3 & -1.2 & -1 & 0.8 & 0.8 & -0.7 & 0.5 & -0.2 & -1.4 & 0.8 & -1.2 & -1.3 \\ 0.4 & 1.3 & -0.8 & -0.1 & -0.4 & -1.4 & -0.3 & 0.3 & -0.6 & 0.5 & -1.2 & -1.5 \end{bmatrix}$
	$\begin{bmatrix} 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 \end{bmatrix}$
5.	$\begin{bmatrix} -1.2 & -0.6 & -0.4 & -1 & -1.5 & 0.4 & -1.1 & 0.8 & -0.2 & 0.7 & -1.4 & 0.5 \\ 0 & 0.1 & -0.3 & -0.8 & 1.2 & 1.2 & 1.2 & 0.2 & -0.8 & -0.9 & 0.8 & 0.6 \end{bmatrix}$ $\begin{bmatrix} -1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & $

```
Ŋoౖ
                                             Обучающее множество
             \begin{bmatrix} 0.5 & 0.7 & 0.4 & 0.6 & -0.7 & -1.3 & 0.5 & 1.3 & -0.2 & 0.7 & -1 & -0.2 \end{bmatrix}
6.
             \begin{bmatrix} 0.7 & -0.4 & -1 & -1.5 & -1.4 & 0.9 & -0.6 & -1.4 & -0.4 & 0.8 & -0.1 & 0.4 \end{bmatrix}
                          \begin{bmatrix} 1.2 & -1.3 & -0.5 & -1.1 & -1.2 & -0.1 & 0.6 & 1.1 & 0.5 & -1.5 & 0 \end{bmatrix}
7.
               \begin{bmatrix} 0.8 & -0.8 & 0.5 & 0.6 & 0.4 & 0.8 & 1.2 & -0.5 & -1 & 0.7 & -0.1 & 0.3 \end{bmatrix}
                          [0.6]
                     0.2 \quad 1.2 \quad 0.9 \quad 0.2 \quad -0.3 \quad -1.1 \quad -0.3 \quad 0.2 \quad 0.5 \quad 0.4 \quad -1.3
8.
              \begin{bmatrix} -0.5 & -1.2 & 1.1 & -0.8 & -1.5 & -0.6 & -1 & -1.3 & -0.1 & 0.5 & -1.4 & -0.6 \end{bmatrix}
                          1 \quad -0.4 \quad 0.7 \quad -0.5 \quad 0.2 \quad -1.4 \quad -0.8 \quad 0.5 \quad 0.7 \quad 0.5 \quad -0.2 \quad -0.6
9.
             |-0.1 \quad 0.5
                             0 \quad -1.1 \quad -0.8 \quad 0.7 \quad -0.2 \quad -0.5 \quad -0.4 \quad 0.6 \quad -1.5 \quad -0.3
                                  0.3 \quad -1.3 \quad 1.2 \quad -1.2 \quad -0.5 \quad 0.7 \quad -1.4 \quad 0.3 \quad 0.6 \quad 0.8
10.
                \begin{bmatrix} 0.7 & -1.3 & 0.8 & 0.1 & 0.9 & -0.7 & -1.5 & 0.5 & 0 & 0.6 & -0.7 & 0.1 \end{bmatrix}
                          \begin{bmatrix} -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & 1 \end{bmatrix}
              \begin{bmatrix} -0.3 & -0.3 & -1.1 & -1.1 & 1.1 & 0.5 \end{bmatrix}
                                                               0
                                                                   0.2 \quad -0.7 \quad -0.3 \quad 0.1 \quad -0.3
11.
              \begin{bmatrix} 1.4 & 0.3 & -0.4 & 0.7 & -0.5 & -0.7 & 0.9 & -0.5 & -0.2 & -0.5 & 0.7 & -0.3 \end{bmatrix}
                                 \begin{bmatrix} -0.4 & -1.5 & -1 & -0.4 & 0.7 & -1 & -0.8 & -0.9 & -1.3 & -1 & 0.6 & 0.4 \end{bmatrix}
12.
              \begin{bmatrix} -1.1 & -0.3 & 0.6 & 1 & 0.2 & 1.3 & 1.2 & -0.4 & 0.4 & -1.4 & -0.5 & -0.4 \end{bmatrix}
                               \begin{bmatrix} -0.6 & -0.5 & 0 & 0.3 & -0.4 & 0 & 1.4 & -0.1 & -1.1 & 1.2 & 0.6 & -0.5 \end{bmatrix}
13.
               \begin{bmatrix} -1 & -0.9 & 1.2 & -1.2 & -1.4 & -0.3 & 0.9 & 1.1 & -0.4 & 1.2 & 0.3 & 1.3 \end{bmatrix}
                                 \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \end{bmatrix}
                                                                                       0.4 \quad -0.3
                  \begin{bmatrix} 0.2 & 1.3 & 0.6 & -1.5 & 0.4 & -0.4 & 0.9 & -0.4 & 1.1 & 0.5 \end{bmatrix}
14.
                 \begin{bmatrix} 1.1 & 0.1 & 0.2 & -0.2 & 0 & 1.3 & 1 & 0.2 & 1.3 & -0.9 & -1.3 & 0.5 \end{bmatrix}
                               \begin{bmatrix} 1 & 1 & -1 & 1 & -1^{39} & -1 & 1 & -1 & 1 & 1 & 1 \end{bmatrix}
```

No	Обучающее множество
15.	$\begin{bmatrix} 1.4 & 1.4 & 0 & -0.3 & -1.3 & -1.4 & 0.9 & 0.3 & 1.1 & -1 & 1.1 & 0 \\ 0.2 & 0.1 & -0.6 & -0.1 & 1.1 & -0.2 & -0.4 & 0.9 & 1.2 & -0.8 & 0.2 & 0.3 \end{bmatrix}$
	$\begin{bmatrix} 1 & 1 & 1 & -1 & 1 & 1 & -1 & 1 & 1 & -1 & \end{bmatrix}$
16.	$\begin{bmatrix} -1.3 & -0.8 & -0.3 & -0.1 & -0.8 & -1.3 & -1.5 & -1.5 & -1.1 & -1 & 0.2 & 1.3 \\ -0.3 & -0.7 & -1.2 & 0.6 & 0.8 & -0.4 & -0.9 & -1 & -0.7 & -1.1 & 1.2 & -0.9 \end{bmatrix}$
	$\begin{bmatrix} -1 & 1 & -1 & -1 & -1 & -1 & -1 & 1 & 1$
17.	$\begin{bmatrix} -1.3 & 0 & 0.6 & 0 & 1 & -0.6 & 0.7 & -1.2 & 0 & 0.6 & -0.7 & 1.2 \\ -0.6 & -1.4 & 0.1 & 0.9 & 0.8 & -0.2 & -1.2 & -0.7 & 1.4 & -0.6 & 1 & 0.4 \end{bmatrix}$
	$\begin{bmatrix} -1 & 1 & 1 & 1 & -1 & 1 & -1 & 1 & 1 & $
18.	$\begin{bmatrix} 0.6 & 0.7 & 1.3 & 1.3 & -1.4 & 0.2 & 1.2 & -0.3 & 0.6 & 0.9 & -0.1 & -0.4 \\ 0.1 & 1.4 & 0.1 & -1.2 & -0.6 & 0 & 0.1 & 0.1 & -1.5 & -1.1 & -0.8 & 0.4 \end{bmatrix}$
	$\begin{bmatrix} 1 & -1 & -1 & 1 & -1 & -1 & -1 & 1 & 1 $
19.	$\begin{bmatrix} 0.3 & -1 & -0.5 & -1.1 & 0.3 & 0.9 & 1.3 & 0.7 & 0.9 & -0.2 & 1.2 & 1.1 \\ 1.1 & 0.7 & -0.3 & 0.9 & 0.7 & -1.3 & -0.1 & 0.7 & -1.1 & 0.3 & 1 & 0.2 \end{bmatrix}$
	$\begin{bmatrix} -1 & 1 & 1 & -1 & 1 & 1 & 1 & -1 & 1 & $
20.	$\begin{bmatrix} 0.8 & 0.7 & -0.8 & -0.9 & -0.7 & -1.4 & -1.1 & -1 & 1.4 & -1.4 & -0.4 & -0.9 \\ -0.4 & 1.1 & -1.2 & -0.5 & 1.2 & 0.2 & 1 & 0 & -0.5 & -0.9 & -0.5 & 1.3 \end{bmatrix}$
	$\begin{bmatrix} 1 & 1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & $
21.	$\begin{bmatrix} -1.2 & 0.5 & 1.4 & 0.7 & -0.3 & -0.1 & 0.7 & -1.3 & -0.4 & -1 & 1.2 & 1.4 \\ -0.8 & 1 & -0.9 & 0.2 & 0 & 0.4 & -0.6 & 0.9 & 0.8 & -1.2 & 1.1 & 1 \end{bmatrix}$
	$\begin{bmatrix} -1 & 1 & -1 & -1 & 1 & -1 & -1 & -1 & $
22.	$\begin{bmatrix} 1.2 & 0.8 & -1 & 0.3 & 0.4 & 0.7 & 0.3 & 1.2 & 0 & -0.4 & -0.8 & 0.6 \\ 1.1 & 1.2 & 0 & 1.2 & -0.4 & 0.9 & -1.3 & -1.4 & -1.2 & 0.9 & 1.1 & -0.4 \end{bmatrix}$
	$\begin{bmatrix} 1 & 1 & -1 & 1 & -1 & 1 & 1 & 1 & 1 & 1$

7]
•

№ Обучающее множество

Литература

- 1. *Beale M., Hagan M., Demuth H.* Neural Network Toolbox User's guide R2011b. The MathWorks, 2011. –pp. 6-3–6-48.
- 2. *Медведев В. С., Потемкин В. Г.* Нейронные сети. МАТLAB 6/Под общ. ред. к. т. н. В. Г. Потемкина М.: ДИАЛОГ-МИФИ, 2006. с. 147-174.
- 3. Hagan M., Demuth H. Neural Network Design. 1996. Chapter 13-14. 76 pp.

Лабораторная работа № 7. Автоассоциативные сети с узким горлом

Целью работы является исследование свойств автоассоциативных сетей с узким горлом, алгоритмов обучения, а также применение сетей для выполнения линейного и нелинейного анализа главных компонент набора данных.

Основные этапы работы:

- 1. Использовать автоассоциативную сеть с узким горлом для отображения набора данных, выделяя первую главную компоненту данных.
- 2. Использовать автоассоциативную сеть с узким горлом для аппроксимации кривой на плоскости, выделяя первую нелинейную главную компоненту данных.
- 3. Применить автоассоциативную сеть с узким горлом для аппроксимации пространственной кривой, выделяя старшие нелинейные главные компоненты данных.

Сценарий работы:

- 1. Задан обучающий набор $\{x_i,y_i\}$, i=1,...,N. Построить автоассоциативную сеть с узким горлом, реализующую метод главных компонент. С помощью сети восстановить набор данных, учитывая информацию только о первой главной компоненте.
- $1.1~{
 m B}$ соответствии с вариантом задания сгенерировать обучающее множество. Выполнить преобразование множества с помощью функции con2seq. Не выделять из обучающего множества контрольное и тестовое подмножества.
- 1.2 Создать линейную многослойную сеть прямого распространения с помощью функции feedforwardnet. Число нейронов скрытого слоя задать равным 1. Использовать активационные функции purelin для скрытого и выходного слоев. Задать метод Левенберга-Марквардта в качестве алгоритма обучения. Сконфигурировать сеть (configure) под обучающее множество.
- 1.3~Инициализировать (init) весовые коэффициенты и смещения сети с помощью функции, заданной по умолчанию.
- 1.4 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) равным 100, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .
- 1.5 Выполнить обучение сети с помощью функции train. Для обучения использовать обучающую выборку. Занести в отчет содержимое окон Performance и Neural Network Training.
 - 1.6 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
 - 1.7 Рассчитать выход сети для обучающего множества.
- 1.8 Отобразить обучающее множество и выход сети с параметрами -r и -b соответственно и Linewidth равным 2 в области $[-1,1] \times [-1,1]$ (axis). График занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы. Обучающее множество представляет собой алгебраическую линию или геометрическую фигуру. Для генерации точек использовать параметрическое уравнение алгебраической линии в канонической системе координат.

$$t = 0: h: 2\pi$$
$$x = f(t)$$
$$y = g(t)$$

Константы a и b задают большую и малую полуоси эллипса. Параметры преобразования прямоугольной системы координат на плоскости: угол поворота (α) и координаты параллельного переноса (x_0,y_0) . Константы d_1 и d_2 задают длины сторон прямоугольника. При построении прямоугольника считать, что точка пересечения диагоналей находится в начале системы координат.

No	Обучающее множество
1.	Эллипс: $a=0.7,b=0.4,\alpha=\pi/3,x_0=0.2,y_0=-0.4$
2.	Эллипс: $a=0.6, b=0.2, \alpha=-\pi/3, x_0=-0.1, y_0=0$
3.	Эллипс: $a=0.6,b=0.6,\alpha=-\pi/3,x_0=-0.1,y_0=0$
4.	Прямоугольник: $d_1=0.1,d_2=0.8,\alpha=\pi/8,x_0=-0.2,y_0=0.1$
5.	Эллипс: $a=0.6$, $b=0.6$, $\alpha=0$, $x_0=0$, $y_0=0$
6.	Прямоугольник: $d_1=0.3,d_2=0.8,\alpha=-\pi/4,x_0=0.5,y_0=-0.4$
7.	Эллипс: $a=0.7$, $b=0.2$, $\alpha=-\pi/6$, $x_0=0$, $y_0=-0.1$
8.	Эллипс: $a=0.7$, $b=0.7$, $\alpha=-\pi/6$, $x_0=0$, $y_0=-0.1$
9.	Прямоугольник: $d_1=0.6,d_2=0.2,\alpha=0,x_0=0,y_0=0$
10.	Прямоугольник: $d_1=0.1,d_2=0.8,\alpha=\pi/4,x_0=0.4,y_0=0.4$
11.	Прямоугольник: $d_1=0.5,d_2=0.3,\alpha=0,x_0=-0.5,y_0=0.1$
12.	Эллипс: $a=0.6, b=0.9, \alpha=\pi/8, x_0=0.2, y_0=-0.1$
13.	Эллипс: $a=0.4$, $b=0.3$, $\alpha=0$, $x_0=0$, $y_0=0$
14.	Прямоугольник: $d_1=0.3,d_2=0.8,\alpha=-\pi/2,x_0=0.2,y_0=-0.1$
15.	Эллипс: $a=0.5, b=0.4, \alpha=0, x_0=0.3, y_0=-0.1$
16.	Прямоугольник: $d_1=0.5,d_2=0.65,\alpha=-\frac{3\pi}{2},x_0=-0.25,y_0=-0.55$
17.	Прямоугольник: $d_1=0.2,d_2=0.3,\alpha=\pi,x_0=0.5,y_0=0.5$

№	Обучающее множество
18.	Эллипс: $a=0.1,b=0.6,\alpha=0,x_0=0,y_0=0.1$
19.	Прямоугольник: $d_1=0.7,d_2=0.75,\alpha=\pi/3,x_0=-0.1,y_0=-0.4$
20.	Прямоугольник: $d_1=0.3,d_2=0.5,\alpha=\pi/3,x_0=0.4,y_0=-0.2$
21.	Эллипс: $a=0.5,b=0.5,\alpha=\pi/6,x_0=0.2,y_0=-0.1$
22.	Эллипс: $a=0.3,b=0.7,\alpha=\pi/4,x_0=0,y_0=0$
23.	Прямоугольник: $d_1=0.7,d_2=0.4,\alpha=-\pi/6,x_0=0.5,y_0=0$
24.	Прямоугольник: $d_1=0.3,d_2=0.5,\alpha=-\pi/8,x_0=0.2,y_0=-0.1$
25.	Прямоугольник: $d_1=0.4,d_2=0.5,\alpha=-\pi/3,x_0=0,y_0=-0.5$
26.	Эллипс: $a=0.1,b=0.6,\alpha=\pi/3,x_0=0.2,y_0=0.1$
27.	Прямоугольник: $d_1=0.7,d_2=0.4,\alpha=\pi/3,x_0=0.3,y_0=-0.25$
28.	Эллипс: $a=0.6,b=0.6,\alpha=0,x_0=-0.3,y_0=0.3$
29.	Эллипс: $a=0.3,b=0.8,\alpha=0,x_0=-0.5,y_0=0.4$
30.	Эллипс: $a=0.5,b=0.4,\alpha=\pi/8,x_0=0.3,y_0=-0.1$

- 2. Задан обучающий набор $\{x_i, y_i\}$, i = 1, ..., N. Точки набора лежат на плоской кривой. Построить автоассоциативную сеть с узким горлом, реализующую нелинейный метод главных компонент. С помощью сети выполнить аппроксимацию кривой, выделяя первую нелинейную главную компоненту.
- 2.1 В соответствии с вариантом задания сгенерировать обучающее множество. Выполнить преобразование множества с помощью функции con2seq. Не выделять из обучающего множества контрольное и тестовое подмножества.
- 2.2 Создать многослойную сеть прямого распространения с помощью функции feed forward net. Число нейронов скрытого слоя задать равным [10, 1, 10]. Использовать активационные функции tansig для трех скрытых слоев и purelin для выходного слоя. Задать метод Левенберга-Марквардта в качестве алгоритма обучения. Сконфигурировать сеть (configure) под обучающее множество.
- 2.3~Инициализировать (init) весовые коэффициенты и смещения сети с помощью функции, заданной по умолчанию.
- 2.4 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) равным 2000, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .

- 2.5 Выполнить обучение сети с помощью функции train. Для обучения использовать обучающую выборку. Созданная сеть чувствительна к инициализации, поэтому иногда необходимо провести обучение несколько раз. Если результаты аппроксимации неудовлетворительные, то следует увеличить число эпох обучения или число нейронов в скрытых слоях, но при этом число нейронов в узком горле сети должно остаться равным 1. Занести в отчет содержимое окон Performance и Neural Network Training.
 - 2.6 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
 - 2.7 Рассчитать выход сети для обучающего множества.
- 2.8 Отобразить обучающее множество и выход сети с параметрами -r и -b соответственно и Linewidth равным 2. График занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы. Кривая задается полярным уравнением. Генерацию точек точек кривой проводить по формулам:

$$arphi \in [0,2\pi]$$
 с шагом $h=0.025$
$$x=r\cos(arphi)$$

$$y=r\sin(arphi)$$

 $\varphi \in [0,2\pi]$ если в задании специально не указан отрезок.

No	Полярные уравнения
1.	$r=rac{arphi}{2\pi}$
2.	$r = e^{\varphi}$
3.	$r = -\varphi + 1$
4.	$r = \frac{2}{\varphi} + 4, \varphi \in [0.01, 2\pi]$
5.	$r = \varphi + 3$

No	Полярные уравнения
6.	$r = e^{\varphi} + 2\varphi$
7.	$r = \varphi^2;$
8.	r=2arphi
9.	$r = 5 \operatorname{ctg} \varphi, \varphi \in [0.01, \pi]$
10.	$r = \frac{2\sin\varphi}{\varphi}, \varphi \in [0.01, \pi]$
11.	$r = 5, \varphi \in [0.01, \frac{11\pi}{6}]$
12.	$r = \sqrt{\varphi}$
13.	$r = \frac{\pi}{\cos\frac{\varphi}{3}}, \varphi \in [0.01, \pi]$
14.	$r = 2\varphi^2$
15.	$r = -3\varphi^2 + 1$
16.	$r = \left(\frac{1}{2}\right)^{\varphi}$
17.	$r = 2\cos\varphi, \varphi \in [0.01, \frac{11\pi}{6}]$
18.	$r = \frac{2(\pi - 2\varphi)}{\pi \cos \varphi}, \varphi \in [0.01, \pi]$
19.	$r = \operatorname{ctg} \overset{4}{\varphi}, \varphi \in [0.01, \pi]$

 $8\sin \omega$

No	Полярные уравнения
21.	$r = \frac{1}{\sqrt{\varphi}}, \varphi \in [0.01, 2\pi]$
22.	$r=2^{\varphi}$
23.	$r = \frac{1}{\cos\frac{\varphi}{3}}, \varphi \in [0.01, \pi]$
24.	$r = \cos^2 \frac{\varphi}{2}, \varphi \in [0.01, \pi]$
25.	$r = \frac{1 - \sin \varphi}{\cos \varphi}, \varphi \in [0.01, \frac{11\pi}{12}]$
26.	$r = \sqrt{\varphi} + 5\varphi$
27.	$r = \varphi^2 + 3\varphi$
28.	$r = \frac{2(1-\sin\varphi)}{\cos\varphi}, \varphi \in [0.01, \frac{11\pi}{12}]$
29.	$r = 2\cos^2\frac{\varphi}{2}, \varphi \in [0.01, \pi]$
30.	$r=2, \varphi \in [0.01, \frac{11\pi}{6}]$

- 3. Задан обучающий набор $\{x_i,y_i\}$, i=1,..,N. Точки набора лежат на пространственной кривой. Построить автоассоциативную сеть с узким горлом, реализующую нелинейный метод главных компонент. С помощью сети выполнить аппроксимацию кривой, выделяя две старшие нелинейные главные компоненты.
- 3.1 Модифицировать обучающее множество из задания 2, добавив в каждой точке третью координату по формуле

$$z = \varphi$$

Выполнить преобразование множества с помощью функции con2seq. Не выделять из обучающего множества контрольное и тестовое подмножества.

- 3.2 Создать многослойную сеть прямого распространения с помощью функции feedforwardnet. Число нейронов скрытого слоя задать равным [10,2,10]. Использовать активационные функции tansig для трех скрытых слоев и purelin для выходного слоя. Задать метод Левенберга-Марквардта в качестве алгоритма обучения. Сконфигурировать сеть (configure) под обучающее множество.
- 3.3~Инициализировать (init) весовые коэффициенты и смещения сети с помощью функции, заданной по умолчанию.
- 3.4 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) равным 1000, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .
- 3.5 Выполнить обучение сети с помощью функции train. Для обучения использовать обучающую выборку. Созданная сеть чувствительна к инициализации, поэтому иногда необходимо провести обучение несколько раз. Если результаты аппроксимации неудовлетворительные, то следует увеличить число эпох обучения или число нейронов в скрытых слоях, но при этом число нейронов в узком горле сети должно остаться равным 2. Занести в отчет содержимое окон Performance и Neural Network Training.
 - 3.6 Отразить структуру сети и проведенное обучение в отчете, заполнив таблицу 1.
 - 3.7 Рассчитать выход сети для обучающего множества.
- 3.8 Отобразить обучающее множество и выход сети с параметрами -r и -b соответственно и Linewidth равным 2 с помощью функции plot3. График занести в отчет.

Литература

- 1. *Ежов А. А., Шумский С. А.* Нейрокомпьютинг и его применения в экономике и бизнесе. М.: МИФИ, 1998. с. 70–79. (серия «Учебники экономико-аналитического института МИФИ» под ред. проф. В. В. Харитонова)
- 2. *Хайкин С.* Нейронные стеи: Полный курс: Пер. с англ. Н. Н. Куссуль и А. Ю. Шелестова под ред. Н. Н. Куссуль М.: Вильямс, 2006. с. 509–523.
- 3. *Фихтенгольц Г. М.* Курс дифференциального и интегрального исчисления. В 3 т. 8-е изд. М.: ФИЗМАТЛИТ, 2003. т. 1. –с. 572–585.

Лабораторная работа № 8. Динамические сети

Целью работы является исследование свойств некоторых динамических нейронных сетей, алгоритмов обучения, а также применение сетей в задачах аппроксимации функций и распознавания динамических образов.

Основные этапы работы:

- 1. Использовать сеть прямого распространения с запаздыванием для предсказания значений временного ряда и выполнения многошагового прогноза.
- 2. Использовать сеть сеть прямого распространения с распределенным запаздыванием для распознавания динамических образов.
- 3. Использовать нелинейную авторегрессионную сеть с внешними входами для аппроксимации траектории динамической системы и выполнения многошагового прогноза.

Сценарий работы:

Этап 1

1. Построить и обучить сеть прямого распространения с запаздыванием (Focused Time-Delay Neural Network, FTDNN), которая будет аппроксимировать последовательность чисел Вольфа, а также выполнить многошаговый прогноз. Сеть должна выполнять отображение вида:

$$\hat{y}(n+1) = F[y(n), \dots, y(n-D)]$$

где D задает глубину погружения временного ряда (delays).

- 1.1 Число Вольфа один характерных из показателей солнечной активности. Для заданного момента времени задает количество пятен на Солнце. Для аппроксимации использовать среднемесячные значения чисел Вольфа. Данные рекомендуется загрузить по адресу ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/ или http://sidc.oma.be/sunspot-data/.
- 1.2 Импортировать загруженные данные, выбрав пункт меню *File > Import Data*. Рекомендуется перед импортированием удалить незаполненные строки в начале и в конце файла.
- $1.3~\mathrm{B}$ соответствии с вариантом выделить часть временной последовательности. Начало последовательности определяется вариантом задания. Выполнить сглаживание траектории с помощью усредняющего фильтра (smooth) с шириной окна равной 12. Преобразовать входную последовательность в матрицу-строку.
- 1.4 Глубина погружения временного ряда D=5. Выделить часть временной последовательности для инициализации задержек (Pi). Сформировать обучающее, контрольное, тестовое подмножества: задать число временных отсчетов равным 500, 100, и 50 соответственно.
- 1.5 Выделенные подмножества объединить в обучающую выборку последовательно. При формировании эталонной выборки учесть, что сеть по значению на текущем шаге должна предсказывать значения на следующем, т.е. выполнять одношаговый прогноз.
 - 1.6 Преобразовать обучающее множество с помощью функции con2seq.
- 1.7 Создать сеть с помощью функции timedelaynet. Число нейронов скрытого слоя задать равным 8. Задать задержки от 1 до D=5. Для обучения сети использовать метод Левенберга-Марквардта (trainlm). Для скрытого и выходного слоев использовать активационные функции tansiq и purelin соответственно.
- $1.8~{
 m При}$ обучении сети использовать разделение обучающего множества на подмножества с помощью функции divideind. Индексы задать задать в соответствии с тем, что подмножества выделяются последовательно.

- 1.9 Сконфигурировать сеть (configure) под обучающее множество.
- 1.10~Инициализировать (init) весовые коэффициенты и смещения сети с помощью функции, заданной по умолчанию.
- 1.11 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) и число эпох, в течение которых может расти ошибка на контрольном подмножестве

 $(net.trainParam.max_fail)$, равными 600, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .

- 1.12 Произвести обучение сети, инициализировав соответствующие линии задержек. Если необходимо, то произвести обучение несколько раз. Если результаты неудовлетворительные, то увеличить число нейронов сети. Занести в отчет содержимое окон Performance и Neural Network Training.
 - 1.13 Отразить структуру сети и проведенное обучение, заполнив таблицу 1.
- 1.14 Рассчитать выход сети (sim) для обучающего подмножества, инициализировав соответствующие линии задержек (Pi). Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения (на отдельном графике). Графики занести в отчет.
- 1.15 Выполнить многошаговый прогноз: рассчитать выход сети (sim) для тестового подмножества. Сформировать отдельное подмножество для инициализации задержек, выделив последние D элементов контрольного подмножества. Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения (на отдельном графике). Графики занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы. Для каждого варианта задается месяц и год, которые задают начало среднемесячной последовательности чисел Вольфа.

No	Начало временной последовательности
	07/1777
1.	
	10/1860
2.	
3.	04/1800
3.	10/1040
4.	10/1848
	05/1873
5.	
	05/1811
6.	
	04/1761
7.	

№	ММ/ГГГ
8.	04/1830
9.	03/1902
). 	12/1804
10.	
11.	05/1784
12.	11/1879
13.	04/1761
14.	07/1816
	10/1889
15.	10/1787
16.	11/1750
17.	08/1778
18.	10/1868
19.	
20.	03/1777
21.	05/1874
22.	02/1859
23.	03/1816
24.	07/1752
25.	03/1800
26.	05/1814

№	ММ/ГГГ
	02/1847
27.	
	05/1913
28.	
	03/1899
29.	
	01/1850
30.	

- 2. Построить и обучить сеть прямого распространения с распределенным запаздыванием (Distributed Time-Delay Neural Network, TDNN), которая будет выполнять распознавание динамического образа. Проверить качество распознавания.
- 2.1 Обучающее множество взять из лабораторной работы №5. Входная последовательность обучающего множества состоит из комбинации основного сигнала (p_1) и сигнала, подлежащего распознаванию (p_2) . Каждому значению основного сигнала соответствует -1 целевого выхода, каждому значению сигнала p_2 соответствует 1 целевого выхода.

$$p_1(k)=\sin(4\pi k),\quad t_1(k)=-1,\quad k\in[0,1]$$
 с шагом $h=0.025$ $p_2(k)=g(k),\quad t_2(k)=1,\quad k\in[a_2,b_2]$ с шагом $h=0.025$

Функция g(k) определяется вариантом задания. Длительность основного сигнала задается набором чисел $R=\{r_1,r_2,r_3\}$. Значения R также определяются вариантом задания. Входное множество формируется по формуле

$$P = [repmat(p_1, 1, r_1), p_2, repmat(p_1, 1, r_2), p_2, repmat(p_1, 1, r_3), p_2]$$

$$T = [repmat(t_1, 1, r_1), t_2, repmat(t_1, 1, r_2), t_2, repmat(t_1, 1, r_3), t_2]$$

Преобразовать обучающее множество с помощью функции con2seq.

- 2.2 Создать сеть с помощью функции dist delaynet. Задать задержки [0:4] для входного и скрытого слоев. Число нейронов скрытого слоя задать равным 8. Для обучения сети использовать одношаговый метод секущих (trainoss). Для скрытого и выходного слоев использовать tansig в качестве активационной функции $(net.layers\{i\}.transferFcn)$. При обучении сети не использовать разделение обучающего множества на подмножества (net.divideFcn=").
 - 2.3 Сконфигурировать сеть (configure) под обучающее множество.
- $2.4~\mathrm{C}$ помощью функции preparets сформировать массивы ячеек для функции обучения, содержащие обучающее множество и значения для инициализации задержек скрытого и выходного слоев (P,T,Pi,Ai) соответственно). Если при выполнении заданий используется версия MATLAB, которая не поддерживает эту функцию, то обучать и выполнять расчет выходов сети без инициализации задержек.
- 2.5 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) равным 100, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .
- 2.6 Произвести обучение сети. Если необходимо, то произвести обучение несколько раз. Если результаты неудовлетворительные, то увеличить число нейронов сети. Занести в отчет содержимое окон Performance и Neural Network Training.
 - 2.7 Отразить структуру сети и проведенное обучение, заполнив таблицу 1.
- 2.8 Рассчитать выход сети (sim) для обучающего множества, инициализировав соответствующие линии задержек. Отобразить на графике эталонные значения и предсказанные сетью. С помощью функции legend подписать кривые.

2.9 Преобразовать значения по правилу

$$o_{ij} = \begin{cases} 1, & a_{ij} \geqslant 0; \\ -1, & a_{ij} < 0; \end{cases}$$

Сравнить выход сети с эталонными значениями. Занести в отчет процент правильно классифицированных точек.

- 2.10~Для проверки качества распознавания сформировать новое обучающее множество, изменив одно из значений $R=\{r_1,r_2,r_3\}$. Рассчитать выходы сети для измененной входной последовательности.
- 2.11 Рассчитать выход сети (sim) для обучающего множества, инициализировав соответствующие линии задержек. Отобразить на графике эталонные значения и предсказанные сетью. С помощью функции legend подписать кривые.
- 2.12 Преобразовать значения по правилу. Сравнить выход сети с эталонными значениями. Занести в отчет процент правильно классифицированных точек.

Этап 3

3. Построить и обучить нелинейную авторегрессионную сеть с внешними входами (Non-linear AutoRegressive network with eXogeneous inputs, NARX), которая будет выполнять аппроксимацию траектории динамической системы, также выполнить многошаговый прогноз значений системы. Сеть должна выполнять отображение вида:

$$\hat{y}(n+1) = F[y(n), \dots, y(n-D_y), u(n), \dots, u(n-D_u)]$$

где y(n) — значение выходного сигнала для текущего момента времени, u(n) — значение входного управляющего сигнала для текущего момента времени, D_y , D_u — глубина погружения временного ряда (delays) для y(n) и u(n).

3.1 Построить обучающее множество. Динамическая система задается разностным уравнением вида

$$u(k)=f(k), \quad k\in [0,10]$$
 с шагом $h=0.01$
$$y(0)=0$$

$$y(k+1)=\frac{y(k)}{1+y^2(k)}+u^3(k)$$

Входная последовательность формируется из входного управляющего сигнала u(k) и выходного сигнала y(k). Функция f(k) определяется вариантом задания. Последовательность целевых выходов задает выходной сигнал y(k).

- 3.2 Глубина погружения временного ряда D=3. Выделить часть временной последовательности для инициализации задержек (Pi). Сформировать обучающее, контрольное, тестовое подмножества: задать число временных отсчетов равным 700, 200, и 97 соответственно.
- 3.3 Выделенные подмножества объединить в обучающую выборку последовательно. При формировании эталонной выборки учесть, что сеть по значению на текущем шаге должна предсказывать значения на следующем, т.е. выполнять одношаговый прогноз.
 - 3.4 Преобразовать обучающее множество с помощью функции con2seq.
- 3.5 Создать NARX сеть с последовательно-параллельной архитектурой с помощью функции narxnet. Задать задержки [1:3] для каждого из входов сети. Число нейронов скрытого слоя задать равным 10. Для обучения сети использовать метод Левенберга-Марквардта. Для скрытого и выходного слоев использовать активационные функции tansig и purelin соответственно.

- 3.6~ При обучении сети использовать разделение обучающего множества на подмножества с помощью функции divideind. Индексы задать в соответствии с тем, что подмножества выделяются последовательно.
- 3.7 Сконфигурировать сеть (*configure*) под обучающее множество. При этом необходимо учитывать, что сеть имеет 2 входа.
- 3.8~Инициализировать (init) весовые коэффициенты и смещения сети с помощью функции, заданной по умолчанию.
- 3.9 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) и число эпох, в течение которых может расти ошибка на контрольном подмножестве

 $(net.trainParam.max_fail)$, равными 600, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-8} .

- 3.10 Произвести обучение сети. Если необходимо, то произвести обучение несколько раз. Занести в отчет содержимое окон Performance и Neural Network Training.
 - 3.11 Отразить структуру сети и проведенное обучение, заполнив таблицу 1.
- 3.12 Рассчитать выход сети (sim) для обучающего подмножества, инициализировав соответствующие линии задержек (Pi). Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения (на отдельном графике). Графики занести в отчет.
- 3.13 Выполнить многошаговый прогноз: рассчитать выход сети (sim) для тестового подмножества. Сформировать отдельное подмножество для инициализации задержек, выделив последние D элементов контрольного подмножества. Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения (на отдельном графике). Графики занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы.

№	Управляющий сигнал
	$u(k) = \sin(k^2)$
1.	
	$u(k) = \sin(-2k^2 + 7k)$
2.	
3.	$u(k) = \sin(-3k^2 + 10k - 5)$
] 3.	$u(k) = \sin(k^2 - 7k)$
4.	$u(\kappa) = \sin(\kappa - i\kappa)$
	$u(k) = \sin(k^2 - 2k + 5)$
5.	
	$u(k) = \sin(k^2 - 6k + 3)$
6.	(1) (2) (3)
7.	$u(k) = \sin(k^2 - 10k + 3)$

№	Управляющий сигнал
8.	$u(k) = \sin(k^2 - 2k + 3)$ $u(k) = \sin(-2k^2 + 7k) - 0.5\sin(k)$ $u(k) = \sin(k^2 - 15k + 3) - \sin(k)$ $u(k) = \cos(k^2)$ $u(k) = \cos(k^2 - 15k + 3) - \cos(k)$ $u(k) = \frac{1}{7}\sin(k^2 - 2k + \pi)$ $u(k) = \frac{1}{2}\sin(k^2 - 7k + \frac{\pi}{4})$ $u(k) = \frac{1}{4}\sin(k^2 - 6k - 2\pi)$ $u(k) = \cos(k^2 - 15k + 3) - \cos(k)$ $u(k) = \cos(k^2 - 15k + 3) - \cos(k)$ $u(k) = \cos(k^2 - 16k + 3)$ $u(k) = \sin(2k^2 - 6k + 3)$ $u(k) = \cos(k^2 - 10k + 3)$ $u(k) = \cos(k^2 - 2k + 3)$ $u(k) = \sin(2k^2 - 6k - \pi)$
9.	$u(k) = \sin(-2k^2 + 7k) - 0.5\sin(k)$
10	$u(k) = \sin(k^2 - 15k + 3) - \sin(k)$
10.	$u(k) = \cos(k^2)$
11.	$u(k) = \cos(k^2 - 15k + 3) - \cos(k)$
12.	$u(k) = \frac{1}{7}\sin(k^2 - 2k + \pi)$
13.	$u(k) = \frac{1}{2} \sin(k^2 - 7k + \pi)$
14.	$\frac{u(\kappa) - \frac{1}{2}\sin(\kappa - 7\kappa + \frac{1}{4})}{1}$
15.	$u(k) = \frac{1}{4}\sin(k^2 - 6k - 2\pi)$
16.	$u(k) = \cos(k^2 - 15k + 3) - \cos(k)$
17.	$u(k) = \cos(-2k^2 + 7k)$
18.	$u(k) = \sin(2k^2 - 6k + 3)$
19.	$u(k) = \cos(k^2 - 10k + 3)$
20.	$u(k) = \cos(k^2 - 2k + 3)$
21.	$u(k) = \sin(2k^2 - 6k - \pi)$
22.	$u(k) = \sin(-k^2 + 2)$
23.	$u(k) = \sin(-k^2 + 8k) - \sin(2k)$
24.	$u(k) = \sin(2k^2 - 6k - \pi)$ $u(k) = \sin(-k^2 + 2)$ $u(k) = \sin(-k^2 + 8k) - \sin(2k)$ $u(k) = \sin(k^2 + 3k) + \sin(k)$ $u(k) = \sin(k^2) - 6\sin(k)$ $u(k) = \cos(k^2) - \cos(k)$
24.	$u(k) = \sin(k^2) - 6\sin(k)$
25.	$u(k) = \cos(k^2) - \cos(k)$
26.	

№	Управляющий сигнал
	$u(k) = \cos(k^2) - \cos^2(k)$
27.	
	$u(k) = \cos(-k^2 - 8k) + \cos^2(k)$
28.	
	$u(k) = \sin(-k^2 + k) + \sin(2k)$
29.	
	$u(k) = \sin(k^2) + \sin^2(k)$
30.	

Литература

- 1. *Beale M., Hagan M., Demuth H.* Neural Network Toolbox User's guide R2011b. The MathWorks, 2011. –pp. 3-2–3-29.
- 2. *Медведев В. С., Потемкин В. Г.* Нейронные сети. МАТLAB 6/Под общ. ред. к. т. н. В. Г. Потемкина М.: ДИАЛОГ-МИФИ, 2006. с. 258–260.
- 3. *Осовский С*. Нейронные сети для обработки информации. М.: Финансы и статистика, 2002. с. 200–210.

Курсовая работа. Динамические сети

Целью работы является исследование свойств некоторых динамических нейронных сетей, алгоритмов обучения, а также применение сетей в задачах аппроксимации функций и распознавания динамических образов.

Основные этапы работы:

- 1. Использовать сеть прямого распространения с запаздыванием для предсказания значений временного ряда и выполнения многошагового прогноза.
- 2. Использовать нелинейную авторегрессионную сеть с внешними входами для аппроксимации траектории динамической системы и выполнения многошагового прогноза.
 - 3. Использовать сеть Элмана для распознавания динамических образов.
- 4. Использовать сеть сеть прямого распространения с распределенным запаздыванием для распознавания динамических образов.
 - 5. Использовать сеть Хопфилда для распознавания статических образов.

Сценарий работы:

Этап 1

1. Построить и обучить сеть прямого распространения с запаздыванием (Focused Time-Delay Neural Network, FTDNN), которая будет аппроксимировать последовательность чисел Вольфа, а также выполнить многошаговый прогноз. Сеть должна выполнять отображение вида:

$$\hat{y}(n+1) = F[y(n), \dots, y(n-D)]$$

где D задает глубину погружения временного ряда (delays).

- 1.1 Число Вольфа один характерных из показателей солнечной активности. Для заданного момента времени задает количество пятен на Солнце. Для аппроксимации использовать среднемесячные значения чисел Вольфа. Данные рекомендуется загрузить по адресу ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/ или http://sidc.oma.be/sunspot-data/.
- 1.2 Импортировать загруженные данные, выбрав пункт меню *File > Import Data*. Рекомендуется перед импортированием удалить незаполненные строки в начале и в конце файла.
- $1.3~\mathrm{B}$ соответствии с вариантом выделить часть временной последовательности. Начало последовательности определяется вариантом задания. Выполнить сглаживание траектории с помощью усредняющего фильтра (smooth) с шириной окна равной 12. Преобразовать входную последовательность в матрицу-строку.
- 1.4 Глубина погружения временного ряда D=5. Выделить часть временной последовательности для инициализации задержек (Pi). Сформировать обучающее, контрольное, тестовое подмножества: задать число временных отсчетов равным $500,\,100,\,$ и 50 соответственно.
- 1.5 Выделенные подмножества объединить в обучающую выборку последовательно. При формировании эталонной выборки учесть, что сеть по значению на текущем шаге должна предсказывать значения на следующем, т.е. выполнять одношаговый прогноз.
 - 1.6 Преобразовать обучающее множество с помощью функции con2seq.
- 1.7 Создать сеть с помощью функции timedelaynet. Число нейронов скрытого слоя задать равным 8. Задать задержки от 1 до D=5. Для обучения сети использовать метод Левенберга-Марквардта (trainlm). Для скрытого и выходного слоев использовать активационные функции tansig и purelin соответственно.

- 1.8~ При обучении сети использовать разделение обучающего множества на подмножества с помощью функции divideind. Индексы задать задать в соответствии с тем, что подмножества выделяются последовательно.
 - 1.9 Сконфигурировать сеть (configure) под обучающее множество.
- 1.10~Инициализировать (init) весовые коэффициенты и смещения сети с помощью функции, заданной по умолчанию.
- 1.11~3адать параметры обучения: число эпох обучения (net.trainParam.epochs) и число эпох, в течение которых может расти ошибка на контрольном подмножестве

 $(net.trainParam.max_fail)$, равными 600, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .

- 1.12 Произвести обучение сети, инициализировав соответствующие линии задержек. Если необходимо, то произвести обучение несколько раз. Если результаты неудовлетворительные, то увеличить число нейронов сети. Занести в отчет содержимое окон Performance и Neural Network Training.
 - 1.13 Отразить структуру сети и проведенное обучение, заполнив таблицу 1.
- 1.14 Рассчитать выход сети (sim) для обучающего подмножества, инициализировав соответствующие линии задержек (Pi). Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения (на отдельном графике). Графики занести в отчет.
- 1.15 Выполнить многошаговый прогноз: рассчитать выход сети (sim) для тестового подмножества. Сформировать отдельное подмножество для инициализации задержек, выделив последние D элементов контрольного подмножества. Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения (на отдельном графике). Графики занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы. Для каждого варианта задается месяц и год, которые задают начало среднемесячной последовательности чисел Вольфа.

No	Начало временной последовательности
	07/1777
1.	
	10/1860
2.	
	04/1800
3.	
1	10/1848
4.	OF (4 OF 9
5.	05/1873
]	05/1811
6.	09/1011

№	ММ/ГГГ
7.	04/1761
8.	04/1830
9.	03/1902
10.	12/1804
11.	05/1784
	11/1879
12.	04/1761
13.	07/1816
14.	10/1889
15.	10/1787
16.	11/1750
17.	08/1778
18.	10/1868
19.	03/1777
20.	05/1874
21.	02/1859
22.	03/1816
23.	07/1752
24.	
25.	03/1800

No	ММ/ГГГ
	05/1814
26.	
	02/1847
27.	
20	05/1913
28.	00 /1 000
29.	03/1899
2).	01/1850
30.	01/1000

2. Построить и обучить нелинейную авторегрессионную сеть с внешними входами (Non-linear AutoRegressive network with eXogeneous inputs, NARX), которая будет выполнять аппроксимацию траектории динамической системы, также выполнить многошаговый прогноз значений системы. Сеть должна выполнять отображение вида:

$$\hat{y}(n+1) = F[y(n), \dots, y(n-D_y), u(n), \dots, u(n-D_u)]$$

где y(n) — значение выходного сигнала для текущего момента времени, u(n) — значение входного управляющего сигнала для текущего момента времени, D_y , D_u — глубина погружения временного ряда (delays) для y(n) и u(n).

2.1 Построить обучающее множество. Динамическая система задается разностным уравнением вида

$$u(k)=f(k), \quad k\in [0,10]$$
 с шагом $h=0.01$
$$y(0)=0$$

$$y(k+1)=\frac{y(k)}{1+y^2(k)}+u^3(k)$$

Входная последовательность формируется из входного управляющего сигнала u(k) и выходного сигнала y(k). Функция f(k) определяется вариантом задания. Последовательность целевых выходов задает выходной сигнал y(k).

- 2.2 Глубина погружения временного ряда D=3. Выделить часть временной последовательности для инициализации задержек (Pi). Сформировать обучающее, контрольное, тестовое подмножества: задать число временных отсчетов равным 700, 200, и 97 соответственно.
- 2.3 Выделенные подмножества объединить в обучающую выборку последовательно. При формировании эталонной выборки учесть, что сеть по значению на текущем шаге должна предсказывать значения на следующем, т.е. выполнять одношаговый прогноз.
 - 2.4 Преобразовать обучающее множество с помощью функции con2seq.
- 2.5 Создать NARX сеть с последовательно-параллельной архитектурой с помощью функции narxnet. Задать задержки [1:3] для каждого из входов сети. Число нейронов скрытого слоя задать равным 10. Для обучения сети использовать метод Левенберга-Марквардта. Для скрытого и выходного слоев использовать активационные функции tansiq и purelin соответственно.
- 2.6~ При обучении сети использовать разделение обучающего множества на подмножества с помощью функции divideind. Индексы задать в соответствии с тем, что подмножества выделяются последовательно.

- 2.7 Сконфигурировать сеть (configure) под обучающее множество. При этом необходимо учитывать, что сеть имеет 2 входа.
- 2.8~Инициализировать (init) весовые коэффициенты и смещения сети с помощью функции, заданной по умолчанию.
- $2.9\,$ Задать параметры обучения: число эпох обучения (net.trainParam.epochs) и число эпох, в течение которых может расти ошибка на контрольном подмножестве

 $(net.trainParam.max_fail)$, равными 600, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-8} .

- 2.10 Произвести обучение сети. Если необходимо, то произвести обучение несколько раз. Занести в отчет содержимое окон Performance и Neural Network Training.
 - 2.11 Отразить структуру сети и проведенное обучение, заполнив таблицу 1.
- 2.12 Рассчитать выход сети (sim) для обучающего подмножества, инициализировав соответствующие линии задержек (Pi). Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения (на отдельном графике). Графики занести в отчет.
- 2.13 Выполнить многошаговый прогноз: рассчитать выход сети (sim) для тестового подмножества. Сформировать отдельное подмножество для инициализации задержек, выделив последние D элементов контрольного подмножества. Сравнить выход сети с соответствующим эталонным подмножеством: рассчитать показатели качества обучения и заполнить таблицу 2. Отобразить на графике эталонные значения и предсказанные сетью, а также ошибку обучения (на отдельном графике). Графики занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы.

№	Управляющий сигнал
	$u(k) = \sin(k^2)$
1.	
2.	$u(k) = \sin(-2k^2 + 7k)$
3.	$u(k) = \sin(-3k^2 + 10k - 5)$
	$u(k) = \sin(k^2 - 7k)$
4.	
5.	$u(k) = \sin(k^2 - 2k + 5)$
6.	$u(k) = \sin(k^2 - 6k + 3)$
0.	$u(k) = \sin(k^2 - 10k + 3)$
7.	
	$u(k) = \sin(k^2 - 2k + 3)$
8.	

№	Управляющий сигнал
9.	$u(k) = \sin(-2k^2 + 7k) - 0.5\sin(k)$
10.	$u(k) = \sin(k^2 - 15k + 3) - \sin(k)$
11.	$u(k) = \cos(k^2)$
12.	$u(k) = \cos(k^2 - 15k + 3) - \cos(k)$
	$u(k) = \frac{1}{7}\sin(k^2 - 2k + \pi)$
13.	$u(k) = \frac{1}{7}\sin(k^2 - 2k + \pi)$ $u(k) = \frac{1}{2}\sin(k^2 - 7k + \frac{\pi}{4})$
14.	$u(k) = \frac{1}{4}\sin(k^2 - 6k - 2\pi)$
15.	$u(k) = \cos(k^2 - 15k + 3) - \cos(k)$
16.	
17.	$u(k) = \cos(-2k^2 + 7k)$ $v(k) = \sin(2k^2 - 6k + 2)$
18.	$u(k) = \sin(2k^2 - 6k + 3)$
19.	$u(k) = \cos(k^2 - 10k + 3)$
20.	$u(k) = \cos(k^2 - 2k + 3)$
21.	$u(k) = \sin(2k^2 - 6k - \pi)$
22.	$u(k) = \sin(-k^2 + 2)$ $u(k) = \sin(-k^2 + 8k) - \sin(2k)$
23.	
24.	$u(k) = \sin(k^2 + 3k) + \sin(k)$
25.	$u(k) = \sin(k^2) - 6\sin(k)$
26.	$u(k) = \sin(k^2) - 6\sin(k)$ $u(k) = \cos(k^2) - \cos(k)$
27.	$u(k) = \cos(k^2) - \cos^2(k)$

No.	Управляющий сигнал
20	$u(k) = \cos(-k^2 - 8k) + \cos^2(k)$
28.	(1) (12 (1) (1)
29.	$u(k) = \sin(-k^2 + k) + \sin(2k)$
2).	$u(k) = \sin(k^2) + \sin^2(k)$
30.	$a(n) = \sin(n + \sin(n))$

- 3. Построить и обучить сеть Элмана, которая будет выполнять распознавание динамического образа. Проверить качество распознавания.
- 3.1 Входная последовательность обучающего множества состоит из комбинации основного сигнала (p_1) и сигнала, подлежащего распознаванию (p_2) . Каждому значению основного сигнала соответствует -1 целевого выхода, каждому значению сигнала p_2 соответствует 1 целевого выхода.

$$p_1(k)=\sin(4\pi k),\quad t_1(k)=-1,\quad k\in[0,1]$$
 с шагом $h=0.025$ $p_2(k)=g(k),\quad t_2(k)=1,\quad k\in[a_2,b_2]$ с шагом $h=0.025$

Функция g(k) определяется вариантом задания. Длительность основного сигнала задается набором чисел $R=\{r_1,r_2,r_3\}$. Значения R также определяются вариантом задания. Входное множество формируется по формуле

$$P = [repmat(p_1, 1, r_1), p_2, repmat(p_1, 1, r_2), p_2, repmat(p_1, 1, r_3), p_2]$$

$$T = [repmat(t_1, 1, r_1), t_2, repmat(t_1, 1, r_2), t_2, repmat(t_1, 1, r_3), t_2]$$

Преобразовать обучающее множество с помощью функции con2seq. Не выделять из обучающего множества контрольное и тестовое подмножества.

- 3.2 Создать сеть с помощью функции layrecnet. Задать задержки 1:2. Число нейронов скрытого слоя задать равным 8. Для обучения сети использовать одношаговый метод секущих (trainoss). Для скрытого и выходного слоев использовать tansig в качестве активационной функции $(net.layers\{i\}.transferFcn)$. Сконфигурировать сеть (configure) под обучающее множество
- $3.3~\mathrm{C}$ помощью функции preparets сформировать массивы ячеек для функции обучения, содержащие обучающее множество и значения для инициализации задержек обратной связи (P,T,Pi,Ai) соответственно). Если при выполнении заданий используется версия MATLAB, которая не поддерживает эту функцию, то обучать и выполнять расчет выходов сети без инициализации задержек.
- 3.4 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) равным 100, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .
- 3.5 Произвести обучение сети. Если необходимо, то произвести обучение несколько раз. Если результаты неудовлетворительные, то увеличить число нейронов сети. Занести в отчет содержимое Performance и Neural Network Training.
 - 3.6 Отразить структуру сети и проведенное обучение, заполнив таблицу 1.
- 3.7 Рассчитать выход сети (sim) для обучающего подмножества. Отобразить на графике эталонные значения и предсказанные сетью. С помощью функции legend подписать кривые.
 - 3.8 Преобразовать значения по правилу

$$o_{ij} = \begin{cases} 1, & a_{ij} \geqslant 0; \\ -1, & a_{ij} < 0; \end{cases}$$

Сравнить выход сети с эталонными значениями. Занести в отчет количество правильно классифицированных точек.

- 3.9 Для проверки качества распознавания сформировать новое обучающее множество, изменив одно из значений $R=\{r_1,r_2,r_3\}$. Рассчитать выходы сети для измененной входной последовательности.
- 3.10 Рассчитать выход сети (sim) для обучающего подмножества. Отобразить на графике эталонные значения и предсказанные сетью. С помощью функции legend подписать кривые.
- 3.11 Преобразовать значения по правилу. Сравнить выход сети с эталонными значениями. Занести в отчет количество правильно классифицированных точек.

Варианты заданий:

Номер варианта соответствует номеру студента в списке группы.

No	Динамический образ	Длительность $p_1(k)$
1.	$g(k) = \sin(-3k^2 + 10k - 5), k \in [0.62, 3.14]$	[0, 8, 6]
2.	$g(k) = \cos(-2k^2 + 7k), k \in [0.92, 4.07]$	[2, 4, 7]
3.	$g(k) = \sin(k^2 - 15k + 3) - \sin^2(k) + 0.5, k \in [0.9, 3.1]$	[3, 5, 2]
	$g(k) = \sin(\sin(k)k^3 - 10), k \in [1.56, 3.12]$	[0, 1, 5]
4.	$g(k) = 1.5\sin(\sin(k)k^2) - 0.5, k \in [0.74, 3.14]$	[3, 3, 4]
5.	$g(k) = \sin(k^2 - 5k + 6), k \in [0.67, 4.98]$	[2, 6, 5]
6.	$g(k) = \cos(\cos(k)k^2 - k), k \in [2.16, 4.04]$	[1, 4, 7]
7.	$g(k) = \cos(\cos(k)k^2 + 5k), k \in [2.38, 4.1]$	[1, 3, 5]
8.	$g(k) = \sin(\sin(k)k^2 - k), k \in [1.13, 3.6]$	[7, 0, 7]
9.	$g(k) = \sin(-3k^2 + 5k + 10) + 0.8, k \in [0.46, 3.01]$	[0, 2, 2]
10.	$g(k) = \cos(-\cos(k)k^2 + k), k \in [2.9, 4.55]$	[6, 7, 1]
11.		
12.	$g(k) = \sin(\sin(k)k^2 + 5k), k \in [1.86, 3.86]$	[4, 3, 0]
13.	$g(k) = \sin(2k^2 - 6k + 3), k \in [-0.02, 2.36]$	[2, 5, 6]

№	G	R
14.	$g(k) = \sin(\sin(k)k^2 + 3k - 10), k \in [4.45, 5.86]$	[6, 5, 7]
15.	$g(k) = \cos(-2k^2 + 7k), k \in [0.92, 3.25]$	[0, 4, 2]
16.	$g(k) = \sin(\sin(k)k^2) - 0.1, k \in [0.48, 2.71]$	[7, 0, 3]
17.	$g(k) = \sin(2.5k^2 - 5k), k \in [-1.14, 1.16]$	[5, 5, 4]
18.	$g(k) = \cos(-5k^2 + 10k - 5), k \in [0.45, 2.48]$	[2, 1, 4]
19.	$g(k) = \sin(-\sin(k)k^2 + k), k \in [0.01, 2.77]$	[3, 1, 3]
20.	$g(k) = 1.5\sin(-5k^2 + 10k - 5) + 0.4, k \in [0.78, 2.35]$	[2, 2, 5]
21.	$g(k) = \sin(\sin(k)k^2 - k), k \in [1.12, 3.6]$	[3, 0, 5]
	$g(k) = \cos(-3k^2 + 5k + 10), k \in [0.24, 2.7]$	[2, 4, 4]
22.	$g(k) = \sin(-2k^2 + 7k), k \in [0.01, 2.96]$	[3, 4, 6]
23.	$g(k) = \cos(k^2 - 10k + 3), k \in [2.84, 6.25]$	[3, 4, 6]
24.	$g(k) = 1.5\sin(k^2 - 6k + 3) - 0.8, k \in [1.49, 3.52]$	[5, 3, 3]
25.	$g(k) = \sin(k^2 - 10k + 3), k \in [2.5, 4.84]$	[1, 2, 3]
26.	$g(k) = \sin(k^2 - 2k + 3), k \in [-0.05, 4.25]$	[0, 1, 6]
27.	$g(k) = \cos(\cos(k)k^2), k \in [2.47, 4.26]$	[7, 1, 3]
28.	$g(k) = \sin(-2\sin(k)k^2 + 7), k \in [1.41, 3.1]$	[2, 3, 8]
29.	$g(k) = \sin(-2k^2 + 7k) - 0.5\sin(k), k \in [0.01, 2.98]$	[4, 5, 2]
30.		

- 4. Построить и обучить сеть прямого распространения с распределенным запаздыванием (Distributed Time-Delay Neural Network, TDNN), которая будет выполнять распознавание динамического образа. Проверить качество распознавания.
- 4.1 Обучающее множество взять из Этапа работы №3. Входная последовательность обучающего множества состоит из комбинации основного сигнала (p_1) и сигнала, подлежащего распознаванию (p_2) . Каждому значению основного сигнала соответствует -1 целевого выхода,

каждому значению сигнала p_2 соответствует 1 целевого выхода.

$$p_1(k)=\sin(4\pi k),\quad t_1(k)=-1,\quad k\in[0,1]$$
 с шагом $h=0.025$ $p_2(k)=g(k),\quad t_2(k)=1,\quad k\in[a_2,b_2]$ с шагом $h=0.025$

Функция g(k) определяется вариантом задания. Длительность основного сигнала задается набором чисел $R = \{r_1, r_2, r_3\}$. Значения R также определяются вариантом задания. Входное множество формируется по формуле

$$P = [repmat(p_1, 1, r_1), p_2, repmat(p_1, 1, r_2), p_2, repmat(p_1, 1, r_3), p_2]$$

$$T = [repmat(t_1, 1, r_1), t_2, repmat(t_1, 1, r_2), t_2, repmat(t_1, 1, r_3), t_2]$$

Преобразовать обучающее множество с помощью функции con2seq.

- 4.2 Создать сеть с помощью функции dist delaynet. Задать задержки [0:4] для входного и скрытого слоев. Число нейронов скрытого слоя задать равным 8. Для обучения сети использовать одношаговый метод секущих (trainoss). Для скрытого и выходного слоев использовать tansig в качестве активационной функции $(net.layers\{i\}.transferFcn)$. При обучении сети не использовать разделение обучающего множества на подмножества (net.divideFcn=").
 - 4.3 Сконфигурировать сеть (configure) под обучающее множество.
- $4.4~\mathrm{C}$ помощью функции preparets сформировать массивы ячеек для функции обучения, содержащие обучающее множество и значения для инициализации задержек скрытого и выходного слоев (P,T,Pi,Ai) соответственно). Если при выполнении заданий используется версия MATLAB, которая не поддерживает эту функцию, то обучать и выполнять расчет выходов сети без инициализации задержек.
- 4.5 Задать параметры обучения: число эпох обучения (net.trainParam.epochs) равным 100, предельное значение критерия обучения (net.trainParam.goal) равным 10^{-5} .
- 4.6 Произвести обучение сети. Если необходимо, то произвести обучение несколько раз. Если результаты неудовлетворительные, то увеличить число нейронов сети. Занести в отчет содержимое окон Performance и Neural Network Training.
 - 4.7 Отразить структуру сети и проведенное обучение, заполнив таблицу 1.
- 4.8 Рассчитать выход сети (sim) для обучающего множества, инициализировав соответствующие линии задержек. Отобразить на графике эталонные значения и предсказанные сетью. С помощью функции legend подписать кривые.
 - 4.9 Преобразовать значения по правилу

$$o_{ij} = \begin{cases} 1, & a_{ij} \geqslant 0; \\ -1, & a_{ij} < 0; \end{cases}$$

Сравнить выход сети с эталонными значениями. Занести в отчет процент правильно классифицированных точек.

- 4.10~Для проверки качества распознавания сформировать новое обучающее множество, изменив одно из значений $R=\{r_1,r_2,r_3\}$. Рассчитать выходы сети для измененной входной последовательности.
- 4.11 Рассчитать выход сети (sim) для обучающего множества, инициализировав соответствующие линии задержек. Отобразить на графике эталонные значения и предсказанные сетью. С помощью функции legend подписать кривые.
- 4.12 Преобразовать значения по правилу. Сравнить выход сети с эталонными значениями. Занести в отчет процент правильно классифицированных точек.

- 5. Построить сеть Хопфилда, которая будет хранить образы из заданного набора. Эталонными образами являются двоичные изображения цифр 0, 1, 2, 3, 4, 6, 9 (рис. 3) размером 12x10. Проверить работу сети с зашумленными образами.
- 5.1 Создать сеть с помощью функции newhop. Аттракторами построенной сети должны быть 3 образа, которые определяются вариантом задания. Каждый эталонный образ задается матрицей. Цветам точек соответствуют -1 и 1. Для синтеза сети необходимо объединить эталонные образы по формуле T = [p1(:), p2(:), p3(:)].
- 5.2 Подать в сеть первый образ, рассчитать выход сети. Число итераций задать равным 600. Результат распознавания занести в отчет. Для этого с помощью функции reshape(p1,12,10) преобразовать выход сети и заменить в полученной матрице значения по правилу

$$x_{ij} = \begin{cases} 2, & a_{ij} \geqslant 0; \\ 1, & a_{ij} < 0; \end{cases}$$

Для отображения результата распознавания использовать вызов следующих функций:

```
map = [1, 1, 1; 0, 0, 0];
image(X); colormap(map)
axis off
axis image
```

5.3 Произвести зашумление второго образа на 20%, полученный образ занести в отчет. Рассчитать выход сети. Результат распознавания занести в отчет.

Зашумление произвести следующим образом: для каждой точки изображения изменить цвет по правилу

 $if \ r_{ij} < M \ then \ uнвертировать цвет точки$ где M — степень зашумления, r —реализация случайной величины, распределенной по равномерному закону (функция rand).

5.4 Произвести зашумление третьего образа на 30%, полученный образ занести в отчет. Рассчитать выход сети. Число итераций задать равным 600. Если необходимо, то произвести обучение несколько раз. Если результаты распознавания неудовлетворительные, то увеличить число итераций. Результат распознавания занести в отчет.

Варианты заданий:

Номер варианта соответствует номеру в списке группы.

No	Цифры
	[1,0,6]
1.	
2.	$\left[1,6,4\right]$
	$ \left[[4,3,2] \right] $
3.	[6 2 0]
4.	[6,3,9]
_	[9,0,4]
5.	

Рис. 3. Эталонные образы

№	Цифры
6.	[9, 2, 3]
7.	[3, 1, 0]
8.	[2, 4, 1]
9.	[0, 9, 2]
10.	[4, 3, 0]
11.	[9, 6, 1]
12.	[2, 1, 6]
13.	[0, 1, 4]
14.	[6, 2, 3]
15.	[4, 2, 9]

№	Цифры
16.	[3, 6, 0]
17.	$\left[0,1,3\right]$
18.	[1,4,2]
19.	[9, 3, 0]
20.	[6, 2, 9]
21.	[3,0,4]
22.	[9, 1, 3] $[6, 9, 2]$
23.	[6, 1, 0]
24.	[0,2,3]
25.	[4,0,6]
26. 27.	[3,4,2]
28.	2,1,6]
29.	$\left[9,3,2\right]$
30.	[1,4,0]

Литература

- 1. *Beale M., Hagan M., Demuth H.* Neural Network Toolbox User's guide R2011b. The MathWorks, 2011. –pp. 3-2–3-31, 9-34–9-41.
- 2. *Круглов В. В., Дли М. И., Голунов Р. Ю.* Нечеткая логика и искусственные нейронные сети. М.: Физматлит, 2001. с. 90–94.
- 3. *Медведев В. С., Потемкин В. Г.* Нейронные сети. МАТLAB 6/Под общ. ред. к. т. н. В. Г. Потемкина М.: ДИАЛОГ-МИФИ, 2006. с. 175–188, 258–260.
- 4. *Осовский С.* Нейронные сети для обработки информации. М.: Финансы и статистика, 2002. с. 200–219.

Таблицы № 1 и № 2

Таблица 1. Информация о структуре сети и проведенном обучении

Функция создания сети	Ex: newp
Входной слой	размерность входного вектора
Скрытый слой	число нейронов
Выходной слой	размерность выходного вектора
Активационные функции	указать для каждого слоя
Динамика	обратные связи, величины TDL
Функция разделения обучающего	Ex: divideind
множества	
Число примеров в подмножествах	Ex: 170-20-10
Метод обучения	Ex: trainlm
Параметры обучения	Ex: lr = 0.01
Метод инициализации сети	Ex: rands
Критерий окончания обучения	Ex: epochs = 1000 , goal = 10^{-8}
Причина окончания обучения	Ех: достигнуто предельное значение крите-
	рия обучения
Число эпох обучения	Ex: 723

Таблица 2. Информация о качестве работы сети на заданном наборе данных

R квадрат	
MSE	
RMSE	
Относительная СКО, %	
MAE	
min absolute error	
max absolute error	
MAPE, %	
Доля с ошибкой менее 5%, %	
Доля с ошибкой от 5% до 10%, %	
Доля с ошибкой от 10% до 20%, %	
Доля с ошибкой от 20% до 30%, %	
Доля с ошибкой более 30%, %	

Показатели качества обучения

Коэффициент множественной детерминации $(R^2, R \text{ квадрат})$ — статистический индикатор, применяемый при анализе методом множественной регрессии. Позволяет оценить точность

модели по отношению к тривиальной модели, т. е. среднему значению выхода по всем примерам. При хорошем совпадении предсказаний будет стремиться к 1. При очень плохом коэффициент будет равен 0. Если предсказания нейросетевой модели хуже, чем предсказания тривиальной модели, то коэффициент будет меньше 0. R квадрат вычисляется по формуле:

$$R^{2} = 1 - \frac{SSE}{SSyy},$$

$$SSE = \sum (y - \hat{y})^{2},$$

$$SSyy = \sum (y - \bar{y})^{2}.$$

где y — истинное значение, \hat{y} — предсказанное значение, $\bar{y} = E[y] = mean(y)$ — среднее значение для $y.\ SSE$ — сумма квадратов ошибок.

Средний квадрат ошибки (mean squared error, MSE) вычисляется по формуле

$$E[(y-\hat{y})^2].$$

Средняя квадратичная ошибка (СКО, RMSE) вычисляется по формуле \sqrt{MSE} . *Относительная СКО к диапазону* вычисляется по формуле

$$\frac{RMSE}{\max(y) - \min(y)} \cdot 100\%.$$

Средняя абсолютная ошибка (mean absolute error, MAE) вычисляется по формуле

$$E(|y - \hat{y}|).$$

Минимальная абсолютная ошибка (minimal absolute error) вычисляется по формуле

$$\min(|y - \hat{y}|).$$

Максимальная абсолютная ошибка вычисляется по формуле

$$\max(|y - \hat{y}|).$$

Средняя относительная ошибка (mean absolute percentage error, MAPE) вычисляется по формуле

$$E\left(\frac{|y-\hat{y}|}{y}\right) \cdot 100\%.$$

Для вычисления показателей долей (*доля с ошибкой менее/более N*) необходимо вычислить относительную ошибку в каждой точке, т.е. последовательность

$$\left\{\frac{|y-\hat{y}|}{y}\cdot 100\%\right\}.$$

Далее нужно пересчитать значения, лежащие в соответствующих диапазонах.

Рекомендации по оформлению лабораторных работ

Общие требования к оформлению

- Лабораторная работа распечатывается на бумаге формата A4 (210 мм × 297 мм).
- Поля: верхнее -20 мм, нижнее -20 мм, левое -30 мм, правое -15 мм.
- Шрифт Times New Roman, междустрочный интервал одинарный, основной размер шрифта 14 пт., отступы первой строки абзаца 1,25 см, выравнивание по ширине.
- Номер страницы указывать снизу по центру страницы.
- Основные разделы выделять полужирным шрифтом.

Разделы отчета

Цель работы: см. задание

Основные этапы работы:

- этап № 1 см. задание
- этап № 2
- этап № 3

Оборудование:

Указать характеристики процессора и объем оперативной памяти.

Программное обеспечение:

Указать версию и разрядность MATLAB.

Сценарий выполнения работы:

В разделе содержатся числовые данные и графики. Размер каждого изображения не должен превышать одной трети листа. Изображения сопровождаются краткими подрисуночными подписями.

Шаблон для отображения графиков:

```
hold on
plot(t, Target, '-r', t, netOutput, '-b'),
xlabel('t'), ylabel("),
title("),
legend('Target', 'Net output'), grid
hold off
close:
```

Код программы:

Вставить код программы, выполняющей этапы задания лабораторной работы. Рекомендуется сделать размер шрифта равным 10 пт. и убрать пустые строки.

Выводы:

Краткие выводы о содержании лабораторной работы.

Оформления титульного листа отчета

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра вычислительной математики и программирования

Лабораторная работа № 1 по спецкурсу «Нейроинформатика»

Персептроны. Процедура обучения Розенблатта

Выполнил: Иванов И.И. Группа: 08-40_, вариант 1 Преподаватели: Тюменцев Ю.В. Козлов Д.С.

Москва, 20___