Синолитические сети в классификации мозговой активности

Власенко Даниил

Научные руководители: Заикин Алесей, Захаров Денис

6 марта 2023 г.

Определение

Функциональная магнитно-резонансная томография или фМРТ — разновидность магнитно-резонансной томографии, которая проводится с целью измерения изменений в токе крови, вызванных нейронной активностью головного мозга.

Рис.: фМРТ сканер.

Введение о•ооо

Рис.: МРТ скан.

Цель работы

Будем считать, что мозг может функционировать в двух режимах.

Цель работы

Реализация и тестирование метода классификации режимов мозговой активности на основе фМРТ данных, в основе которого будут лежать синолитические сети..

Классификация

Вероятностная постановка задачи классификации

Пусть есть с.в. $\xi:\Omega\to X$ и с.в. $\eta:\Omega\to Y$. Рассмотрим с.в. $(\xi,\eta):\Omega\to (X,Y)$ с распределением p(x,y).

Задача классификации сводится к оценке p(y|x) по выборке $(\widetilde{X},\widetilde{Y})=\{(x_n,y_n)\}_n.$

Алгоритмическая постановка задачи классификации

Пусть X — множество описаний объектов, Y — множество номеров классов. Существует функция $f: X \to Y$, значения которой известны только на объектах выборки $(\widetilde{X},\widetilde{Y}) = \{(x_n,y_n)\}_n$.

Требуется построить алгоритм-оценку $\widehat{f}:X o Y$.

Векторизация

NiBabel — библиотека предоставляющая возможность читать различные форматы файлов нейровизуализации.

Рис.: Векторизация фМРТ данных.

Основная идея (Zaikin Alexey 2022)

Рис.: Классификация на основе построения графов отражающих входные данные.

Пусть X — множество фМРТ, а $Y = \{I, II\}$ — режимы когнитивной активности. $(\widetilde{X}, \widetilde{Y}) = \{(x_n, y_n)\}_n$ — конечная выборка из (X, Y).

 $x_k \in X$ конвертируется в массив a^k , на основе которого строится граф $g_k = (V_k, E_k, R_k, W_k)$, где

- $V_k = \{v_i^k\}_i$ множество вершин,
- ullet $E_k = \{e_{ij}^k\}_{ij}$ множество неориентированных ребер,
- $R_k = \{r_i^k\}_i$ множество значений вершин,
- $W_k = \{w_{ii}^k\}_{ij}$ множество весов ребер,
- v_i^k вершина, отражающая область мозга i,
- e_{ii}^{k} ребро, отражающее связь между областями i и j,
- r_i^k значение вершины v_i^k ,
- w_{ii}^k вес ребра e_{ii}^k .

Подсчет весов ребер w_{ij}^{k}

Вероятностное определение w_{ii}^k

$$w_{ij}^{k} = P(y_{k} = II | r_{i}^{k}, r_{j}^{k}) - P(y_{k} = I | r_{i}^{k}, r_{j}^{k})$$

Пусть $Cl_{ij}:\{y_k|(r_i^k,r_j^k),\{(r_i^n,r_j^n)\}_n,\{y_n\}_n\}_k \to [0,1]$ вероятностный классификатор.

Алгоритмическое определение w_{ij}^k

$$w_{ij}^{k} = Cl_{ij}(y_{k} = II | (r_{i}^{k}, r_{j}^{k}), \{(r_{i}^{n}, r_{j}^{n})\}_{n}, \{y_{n}\}_{n}) - Cl_{ij}(y_{k} = I | (r_{i}^{k}, r_{i}^{k}), \{(r_{i}^{n}, r_{i}^{n})\}_{n}, \{y_{n}\}_{n})$$

Рис.: Эмпирическая плотность распределения (r_i, r_j) для двух режимов, вычисленная по $\{(r_i^n, r_i^n)\}_n$.

Увеличение размеров вокселя

Увеличение размера шага решетки ϕ MPT в n раз уменьшает число вокселей в n^3 раза.

Рис.: Воксель 2 мм³ Рис.: Воксель 4 мм³ Рис.: Воксель 10 мм³

Понижение размерности по времени

Пусть T — некоторая статистика,

$$a^{kT}=T(a^k),$$

т.е. для $\forall x, y, z$

$$a_{xyz}^{kT} = T(\{a_{xyzt}^k : \forall t\}).$$

Рис.: Значения вокселя.

мена структуры графа

Построение вместо полного графа графа-сетки снижает время вычисления и требуемую память с $O(n^2)$ до O(n), где n- число вершин графа.

Рис.: Смена структуры графа.

Алгоритм

Обучение модели

Входные данные:

- выборка $(\widetilde{X}, \widetilde{Y})$,
- новый размер шага решетки фМРТ s,
- статистики вокселей { T_m}_m,
- минимальное значение вершины r, для которого инцидентные с ним ребра не удаляются из графа,
- минимальное абсолютное значение ребра w, для которого ребро не удаляется из графа,
- характеристики графов $\{F_{\mu}\}_{\mu}$, на которых будет учиться модель.

Обучение модели

Алгоритм:

Введение

- lacktriangle изменение шага решетки фМРТ на s для $\forall x_n \in X$;
- \bigcirc построение $\{a^n\}_n$;
- **3** вычисление $\{\{a^{nT_m}\}_m\}_n$;
- **①** обучение $\{Cl_{ij}\}_{ij}$ на выборке $(\{\{a^{nT_m}\}_m\}_n, Y)_i$
- ullet подсчет $\{W_n\}_n=\{\{w_{ij}^n\}_{ij}\}_n$ с помощью $\{\mathit{Cl}_{ij}\}_{ij}$ и $\{\{a^{nT_m}\}_m\}_n;$
- **©** построение графов $\{g_n\}_n$;
- $m{0}$ удаление ребер $\{e_{ij}^n: r_i^n < r | r_j^n < r | w_{ij}^n < w\}_{ij}$ для $\forall g_n;$
- ullet вычисление $\{\{f_u^n\}_u\}_n = \{\{F_u(g_n)\}_u\}_n;$
- $oldsymbol{0}$ обучение CI на выборке $\{\{f_u^n\}_u\}_n$.

Алгоритм

Классификация

Входные данные:

• фМРТ *х_k*.

Алгоритм:

- lacktriangle изменение шага ϕ MPT x_k решетки на s;
- \bigcirc построение a^k ;
- **3** вычисление $\{a^{kT_m}\}_m$;
- lacktriangle подсчет $W_k = \{w_{ii}^k\}_{ij}$ с помощью $\{\mathit{Cl}_{ij}\}_{ij}$ и $\{a^{kT_m}\}_{m}$;
- \odot построение графа g_k ;
- ullet удаление из g_k ребер $\{e_{ij}^k : r_i^k < r | r_i^k < r | w_{ij}^k < w\}_{ij};$
- $m{0}$ вычисление $\{f_u^k\}_u = \{F_u(g)\}_u$;
- ullet классификация $\{f_u^k\}_u$ с помощью CI.

Данные

Рис.: Наблюдение или воображение объекта.

	seen		imagined		
	training	test	training	test	
sub-01	17	7	14	6	44
sub-02	17	7	14	6	44
sub-03	17	7	14	6	44
sub-04	17	7	14	6	44
sub-05	16	8	14	6	44
	84	36	70	30	220
	120		100		220

Таблица: Разделение выборки.

Характеристики графов

Рис.: Распределения некоторых характеристик графов при $\{T_i\}_i = T_1$, где T_1 — среднее значение вокселя.

Характеристики графов

Рис.: Распределения некоторых характеристик графов при $\{T_i\}_i = T_1$, где T_1 — среднее значение вокселя.

	seen	imagined
seen	32	4
imagined	0	30

Таблица: $\{T_m\}_m = T_1 = mean$, точность 93.9%.

Таблица: $\{T_m\}_m = T_1 = min$, точность 90.9%.

	seen	imagined
seen	34	2
imagined	1	29

Таблица: $\{T_m\}_m = T_1 = quantile(0.9) - quantile(0.1)$, точность 95.5%.