# CIS 3715 Principles of Data Science

Hongchang Gao
Spring 2024
Computer and Information Sciences
Temple University

### Instructor

- Research areas:
  - Machine/Deep Learning

$$L = -\sum_{E_{ij}>0} \log p_{ij}^{M} - \sum_{E_{ij}>0} \log p_{ij}^{Z} + \sum_{i=1}^{n} \|\hat{M}_{i\cdot} - M_{i\cdot}\|_{2}^{2}$$
$$+ \sum_{i=1}^{n} \|\hat{Z}_{i\cdot} - Z_{i\cdot}\|_{2}^{2} - \sum_{i} \{\log p_{ii} - \sum_{E_{ij}=0} \log(1 - p_{ij})\}$$







### Instructor

- Research areas:
  - Large-scale optimization

$$\min_{x \in \mathbb{R}^d} \frac{1}{K} \sum_{k=1}^K \mathbb{E}_{\zeta} \left[ f^{(k)} \Big( \mathbb{E}_{\xi} [g^{(k)}(x;\xi)]; \zeta \Big) \right]$$





### Outline

Course overview

• Introduction to data science

- Lecture section:
  - The class meets at 9:30-10:50am on Tue and Thu
  - BEURY, 00162
- Lab section:
  - The class meets at 9:00-10:50am on Mon
  - TA for Section 001:
    - Xinwen (Ellen) Zhang
    - SERC, 00204
  - TA for Section 002:
    - Mathew Kuruvilla
    - SERC, 00206

- Office hour
  - Instructor: Hongchang Gao, <a href="hongchang.gao@temple.edu">hongchang.gao@temple.edu</a>
    - 11:00am-12:00pm Tuesday,
    - SERC 318
  - Section 001 TA: Xinwen (Ellen) Zhang, ellenz@temple.edu
    - 2:00pm-4:00pm Tuesday,
    - SERC 303
  - Section 002 TA: Mathew Kuruvilla, <u>mathewkuruvilla@temple.edu</u>
    - 11:30am-12:30pm Tuesday and Thursday
    - SERC 357

- Prerequisites
  - CIS 2166 or linear algebra, CIS 1051 or 1057 or 1068
  - Be familiar with basic mathematical knowledge about algebra and statistics. For example, it is expected that you know vector, matrix, mean, variance.
  - Good programming skills in Python. It is expected that you can use Python to preprocess data and implement state-of-the-art data mining methods to analyze data.

- Class Materials
  - No required textbooks, but recommend to read
    - Peter Bruce, "Practical Statistics for Data Scientists: 50 Essential Concepts," 2017.
    - Wes McKinney. "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython." O'Reilly Media, 2012.
    - Foster Provost, Tom Fawcett. "Data Science for Business: What You Need to Know About Data Mining and Data-Analytic Thinking." O'Reilly Media, 2013.
    - Cole Nussbaumer Knaflic, "Storytelling with Data: A Data Visualization Guide for Business Professionals," 2015.

## **Grading Policy**

- Class attendance and participation: 10%
  - Check in for every lab section
- Labs and homework: 25%
  - 10 lab assignments
- Quizzes: 20%
  - Weekly quizzes
- Midterm: 25%
- Final project: 20%

### Lab Assignments

- How to submit?
  - Upload via Canvas
  - Not accept email submission
- Policy
  - NOT accept late submission
  - Do NOT copy others' solutions
  - Feel free to use resources from the web, but make sure to acknowledge the sources.

### Final Project

- A list of potential topics will be given
- Performed individually or in groups of up to 3 students
- You will need to submit
  - A brief proposal:
    - What's topic you plan to work on?
    - Why you choose this topic?
    - Which aspects you will focus on?
  - Final report
    - An entire pipeline of this project: data preprocessing, data understanding, data analysis with machine learning models, result analysis.

### Course Schedule

| Week | Date  | Topic(s)                  | Assignments  | Due              |
|------|-------|---------------------------|--------------|------------------|
| 1    | 01/16 | Course Introduction       |              |                  |
|      | 01/18 | Introduction Python       |              |                  |
| 2    | 01/23 | Mathematics foundation    | Lab 1, 01/22 |                  |
|      | 01/25 |                           |              |                  |
| 3    | 01/30 | Data Preprocessing        | Lab 2, 01/29 |                  |
|      | 02/01 | Exploratory Data Analysis |              | Lab 1 due, 02/06 |
| 4    | 02/06 | Supervised Learning       | Lab 3, 02/05 |                  |
|      | 02/08 |                           |              | Lab 2 due, 02/13 |
| 5    | 02/13 | Supervised Learning       | Lab 4, 02/12 |                  |
|      | 02/15 |                           |              | Lab 3 due, 02/20 |
| 6    | 02/20 | Supervised Learning       | Lab 5, 02/19 |                  |
|      | 02/22 |                           |              | Lab 4 due, 02/27 |
| 7    | 02/27 | Midterm review            |              |                  |
|      | 02/29 | Midterm exam              |              |                  |
| 8    | 03/05 | Spring Break              |              |                  |
|      | 03/07 |                           |              |                  |

| 9  | 03/12 | Unsupervised Learning      | Lab 6, 03/11      |                             |
|----|-------|----------------------------|-------------------|-----------------------------|
|    | 03/14 |                            |                   | Lab 5 due, 03/19            |
| 10 | 03/19 | Unsupervised Learning      | Lab 7, 03/18      |                             |
|    | 03/21 |                            | Final project out | Lab 6 due, 03/26            |
| 11 | 03/26 | Document analysis          | Lab 8, 03/25      |                             |
|    | 03/28 |                            |                   | Lab 7 due, 04/02            |
| 12 | 04/02 | Recommendation system      | Lab 9, 04/01      |                             |
|    | 04/04 |                            |                   | Lab 8 due, 04/09            |
| 13 | 04/09 | Deep neural networks       | Lab 10, 04/08     |                             |
|    | 04/11 |                            |                   |                             |
| 14 | 04/16 | Deep neural networks       |                   | Lab 9 due, 04/16            |
|    | 04/18 |                            |                   |                             |
| 15 | 04/23 | Final project presentation |                   | Final project due,<br>04/23 |
|    | 04/25 |                            |                   |                             |
| 16 | 04/30 | Study days                 |                   | Lab 10 due, 04/30           |

### Outline

Course overview

• Introduction to data science

### Introduction to Data Science

- What is data science?
  - Extract knowledge from data





https://library.osu.edu/site/it/where-does-data-science-fit-in/

### • Step 1: load data

```
message_data = pd.read_csv("spam.csv",encoding = "latin")
message_data.head()
```

|   | v1   | v2                                             | Unnamed: 2 | Unnamed: 3 | Unnamed: 4 |
|---|------|------------------------------------------------|------------|------------|------------|
| 0 | ham  | Go until jurong point, crazy Available only    | NaN        | NaN        | NaN        |
| 1 | ham  | Ok lar Joking wif u oni                        | NaN        | NaN        | NaN        |
| 2 | spam | Free entry in 2 a wkly comp to win FA Cup fina | NaN        | NaN        | NaN        |
| 3 | ham  | U dun say so early hor U c already then say    | NaN        | NaN        | NaN        |
| 4 | ham  | Nah I don't think he goes to usf, he lives aro | NaN        | NaN        | NaN        |

- Step 2: data preprocessing
  - Some features are missing or not important
  - Transform words to numerical values

Build a dictionary | [world, Hello, computer, math, PA, Temple, campus]

Hello Temple (0, 1, 0, 0, 0, 1, 0)

• Step 3: build the classifier

#### **LOGISTIC REGRESSION**



https://medium.com/analytics-vidhya/understanding-logistic-regression-b3c672deac04

• Step 4: evaluation



- Internet search
  - Autocomplete feature





- Internet search
  - Autocomplete feature
  - Ranking results





(Photo coutesy: Catarina Moreira)

- Recommendation system
  - Recommend products to users





- Target advertising
  - Deciding which ads to show
  - How to show them





Social network analysis



https://learningnets.github.io/KDD19 Tutorial/1 Motivations.pdf



Node Classification
https://slideplayer.com/slide/3131845/

Natural language processing



**Chat Robot** 

https://www.analyticsinsight.net/nlp-augments-the-power-of-chatbots-and-voice-in-2019/



Machine Translation

https://finance.yahoo.com/news/google-ceo-sundar-pichai-revealed-004138550.html

Self-driving cars



Autonomous Driving
https://medium.com/@webanalytics 31234/

• Sequential decision: robotics



https://arxiv.org/pdf/1504.00702.pdf



https://www.bostondynamics.com/atlas

### Exciting Success 1

- Image classification
  - ImageNet competition







### Exciting Success 2

- Stanford Question Answering Dataset (SQuAD):
  - a reading comprehension dataset,
  - questions posed by crowd workers on a set of Wikipedia articles
  - the answer to every question is a segment of text, or span

#### SQuAD1.1 Leaderboard

| Rank         | Model                                    | EM     | F1     |
|--------------|------------------------------------------|--------|--------|
|              | Human Performance<br>Stanford University | 82.304 | 91.221 |
|              | (Rajpurkar et al. '16)                   |        |        |
| 1            | BERT (ensemble)                          | 87.433 | 93.160 |
| Oct 05, 2018 | Google Al Language                       |        |        |
|              | https://arxiv.org/abs/1810.04805         |        |        |
| 2            | nInet (ensemble)                         | 85.356 | 91.202 |
| Sep 09, 2018 | Microsoft Research Asia                  |        |        |
| 3            | QANet (ensemble)                         | 84.454 | 90.490 |
| Jul 11, 2018 | Google Brain & CMU                       |        |        |



## Exciting Success 3

• Alpha Go



### Conclusion

• Data Science is everywhere

Data Science is interesting

Data Science is powerful