Colle 22 - MPSI

Dénombrement Probabilité

Dénombrement

Exercice 1

Combien de mots différents peut-on faire avec les lettres des mots suivants :

OBJET POP RESEAU

Exercice 2

Un étudiant possède 6 classeurs : 3 noirs, 1 rouge, 1 blanc et 1 bleu.

S'il tient à placer les noirs les uns derrières les autres, de combien de manières peut-il ranger ses classeurs?

Exercice 3

Pour un jeu de 52 cartes, combien de mains de 5 cartes existe-t-il?

Exercice 4

Un étudiant doit répondre à 7 des 10 questions d'un examen.

- 1. De combien de manière peut-il les choisir?
- 2. Même question s'il est obligé de choisir au moins 3 des 5 premières questions.

Exercice 5

Cinq prix distincts doivent être décernés à des étudiants méritants choisis dans une classe de 30 personnes. Combien de résultats peut-on avoir si :

- 1. le cumul des prix n'est pas possible;
- 2. le cumul est admis.

Exercice 6

Soient E un ensemble fini, F un ensemble quelconque et $f: E \to F$ une application.

Montrer que f est injective si, et seulement si,

Card(f(E)) = Card(E).

Exercice 7

Soient A, B et C trois parties d'un ensemble finie E. Exprimer $\operatorname{Card}(A \cup B \cup C)$ en fonction des cardinaux de $A, B, C, A \cap B, B \cap C$, $A \cap C$ et $A \cap B \cap C$.

Exercice 8 (X MP)

Soit E un ensemble. Montrer que E est infini si, et seulement si, pour toute fonction $f: E \to E$, il existe $A \subset E$ avec $A \neq \emptyset$ et $A \neq E$ telle que $f(A) \subset A$.

Exercice 9

Soient E et F deux ensembles finis de cardinaux respectifs n et p.

Combien y a-t-il d'injections de E dans F?

Exercice 10

Soient $E = \{1, ..., n\}$ et $F = \{1, ..., p\}$ avec $n \le p \in \mathbb{N}$.

Combien y a-t-il d'applications strictement croissantes de E vers F?

Exercice 11

Combien y a-t-il de relation d'ordre total sur un ensemble E à n éléments?

Exercice 12

On trace dans un plan n droites en position générale (*i.e.* deux d'entre elles ne sont jamais parallèles ni trois d'entre elles concourantes).

Combien forme-t-on ainsi de triangles?

Exercice 13

- 1. Quel est le coefficient de $a^2b^5c^3$ dans le développement de $(a+b+c)^{10}$?
- 2. Même question avec $a_1^{k_1} a_2^{k_2} ... a_p^{k_p}$ dans $(a_1 + a_2 + ... + a_p)^n$?

Probabilité

Exercice 14

Déterminer une probabilité sur $\Omega = \{1, 2, ..., n\}$ telle que la probabilité de l'événement $\{k\}$ soit proportionnelle à k.

Exercice 15

Déterminer une probabilité sur $\Omega = \{1, 2, ..., n\}$ telle que la probabilité de l'événement $\{1, 2, ..., k\}$ soit proportionnelle à k^2 .

Exercice 16

A quelle(s) condition(s) sur $x,y\in\mathbb{R}$ existe-t-il une probabilité sur $\Omega=\{a,b,c\}$ vérifiant

$$\mathbb{P}(\{a,b\}) = x$$
 et $\mathbb{P}(\{b,c\}) = y$?

Exercice 17

Soient A,B deux parties d'un ensemble Ω fini vérifiant

$$A \cap B \neq \emptyset, A \cap \overline{B} \neq \emptyset, \overline{A} \cap B \neq \emptyset, \overline{A} \cap \overline{B} \neq \emptyset$$

A quelle condition sur $(a,b,c,d) \in]0;1[^4$ existe-t-il une probabilité $\mathbb P$ sur Ω vérifiant

$$\mathbb{P}(A|B) = a, \mathbb{P}(A|\overline{B}) = b, \mathbb{P}(B|A) = c \text{ et } \mathbb{P}(B|\overline{A}) = d?$$

Dénombrement

Correction de l'exercice 6

Si $E = \emptyset$ alors $f(E) = \emptyset$ et l'équivalence proposée est vraie.

Sinon, on peut écrire $E = \{x_1, ..., x_n\}$ avec des x_i deux à deux distincts et n = CardE.

Si f est injective alors

$$f(E) = \{f(x_1), ..., f(x_n)\}$$

avec les $f(x_i)$ sont deux à deux distincts. On en déduit

$$Card(f(E)) = n.$$

Inversement, si f est non injective alors

$$\operatorname{Card} f(E) < n.$$

Correction de l'exercice 7

$$\operatorname{Card}(A \cup B \cup C) = \operatorname{Card}A + \operatorname{Card}(B \cup C) + \operatorname{Card}(A \cap (B \cup C))$$

donc

$$\operatorname{Card}(A \cup B \cup C) = \operatorname{Card}(A + \operatorname{Card}B + \operatorname{Card}C - \operatorname{Card}(B \cap C) - \operatorname{Card}(A \cap B) - \operatorname{Card}(A \cap C) + \operatorname{Card}(A \cap B \cap C).$$

Correction de l'exercice 8

Si E est l'ensemble vide, il n'existe pas de partie A incluse dans E vérifiant $A \neq \emptyset$ et $A \neq E$.

Si E est un ensemble à 1 élément, idem.

Si E est un ensemble fini contenant au moins deux éléments, on peut indexer les éléments de E pour écrire $E = \{x_1, x_2, ..., x_n\}$ avec $n = \text{Card}E \ge 2$. Considérons alors l'application $f: E \to E$ définie par $f(x_1) = x_2, f(x_2) = x_3, ..., f(x_{n-1}) = f(x_n)$ et $f(x_n) = x_1$.

Soit une partie A de E vérifiant $f(A) \subset A$. Si A est non vide alors il existe $i \in [[1;n]]$ tel que $x_i \in A$ mais alors $f(x_i) \in A$ i.e. $x_{i+1} \in A$ et reprenant ce processus, on obtient $x_i, x_{i+1}, ..., x_n, x_1, ..., x_{i-1} \in A$ et donc A = E.

Ainsi, si E est un ensemble fini, il existe une application $f: E \to E$ pour laquelle les seules parties A de E vérifiant $f(A) \subset A$ sont \emptyset et E.

Inversement, soit E un ensemble infini et $f: E \to E$.

Soit $x \in E$ et considérons la suite des éléments $x, f(x), f^2(x), ..., f^n(x), ...$

S'il existe $n \in \mathbb{N}^*$ tel que $f^n(x) = x$ alors la partie $A = \{x, f(x), ..., f(^n(x))\} \subset E$ est non vide, distincte de E (car A finie) et vérifie $f(A) \subset A$.

Sinon, la partie $A = \{f^n(x) | n \in \mathbb{N}^*\} \subset E$ est non vide, distincte de E (car $x \notin A$) et vérifie $f(A) \subset A$.

Correction de l'exercice 9

Si n > p, il n'y a pas d'injections possibles.

Si n = 0, il y a une injection : l'application vide.

Si $0 < n \le p$ alors on peut écrire $E = \{x_1, ..., x_n\}$ avec les x_i deux à deux distincts.

Pour former une injection de E dans F:

- on choisit $f(x_1)$ dans F: p choix
- on choisit $f(x_2)$ dans $F \{f(x_1)\} : p 1$ choix
- ...
- on choisit $f(x_n)$ dans $F \{f(x_1), ..., f(x_{n-1})\} : p n + 1$ choix

Au total, il y a $p \times (p-1) \times ... \times (p-n+1) = \frac{p!}{(p-n)!}$ choix.

Correction de l'exercice 10

Une application $f: E \to F$ strictement croissante est entièrement déterminée par son image qui est une partie formée de n éléments de F. Il y a $\binom{p}{n}$ parties à n éléments dans F et donc autant d'applications strictement croissantes de E dans F.

Correction de l'exercice 11

Une relation d'ordre total sur E permet de définir une bijection de $\{1,...,n\}$ vers E et inversement.

Par suite, il y a exactement n! relations d'ordre total possibles.

Correction de l'exercice 12

Notons t_n le nombre de triangles formés.

$$t_0 = t_1 = t_2 = 0.$$

Pour $n \geq 3$, former un triangle revient à choisir les trois droites définissant ses côtés : il y a $\binom{n}{3}$ possibilités.

Chacune de ses possibilités définit un véritables triangle (car il y a ni concourance, ni parallélisme) et les triangles obtenus sont deux à deux distincts. Finalement

$$t_n = \binom{n}{3}$$
.

Correction de l'exercice 13

1. Dans le développement de $(a+b+c)^{10}$ on obtient un terme $a^2b^5c^3$ en choisissant deux a, cinq b et trois c. Il y a $\binom{10}{2}$ choix possibles pour les facteurs dont seront issues les a.

Une fois ceux-ci choisis, il y a $\binom{8}{5}$ choix possibles pour les facteurs fournissant les b.

Une fois ces choix faits les trois derniers facteurs fournissent les c.

Au total

$$\binom{10}{2} \binom{8}{5} = \frac{10!}{2!5!3!} = 2\ 520$$

termes $a^2b^5c^3$ apparaissant lors du développement de $(a+b+c)^{10}$.

2.

$$\frac{n!}{k_1!k_2!...k_p!}.$$

si $k_1 + k_2 + ... + k_p = n$ et 0 sinon.

Probabilité

Correction de l'exercice 14

Par hypothèse, il existe $\alpha \in \mathbb{R}$ tel que $\mathbb{P}(\{k\}) = \alpha k$. Or par additivité

$$\sum_{k=1}^{n} \mathbb{P}(\{k\}) = \mathbb{P}(\Omega) = 1$$

Donc

$$\alpha = \frac{2}{n(n+1)}.$$

Correction de l'exercice 15

Si \mathbb{P} est une probabilité solution alors, par hypothèse, il existe $\alpha \in \mathbb{R}$ tel que

$$\mathbb{P}(\{1, 2, ..., k\}) = \alpha k^2.$$

En particulier, $\mathbb{P}(\Omega) = 1$ donne $\alpha = \frac{1}{n^2}$.

Aussi

$$\mathbb{P}(\{k\}) = \mathbb{P}(\{1, 2, ..., k\}) - \mathbb{P}(\{1, 2, ..., k-1\}) = \frac{2k-1}{n^2}$$

Inversement, on définit bien une probabilité en posant

$$\mathbb{P}(\{k\}) = \frac{2k-1}{n^2}$$

car ces valeurs sont positives de somme égale à 1.

On vérifie aussi par additivité

$$\mathbb{P}(\{1,2,...,k\}) = \sum_{i=1}^{k} \frac{2i-1}{n^2} = \frac{k^2}{n^2}$$

et la probabilité déterminée est bien solution.

Correction de l'exercice 16

Une probabilité solution \mathbb{P} sera entièrement déterminée par les valeurs de $p = \mathbb{P}(\{a\}), q = \mathbb{P}(\{b\})$ et $r = \mathbb{P}(\{c\})$ sous les conditions

$$p, d, r \ge 0$$
 et $p + q + r = 1$

Nous aurons $\mathbb{P}(\{a,b\}) = x$ et $\mathbb{P}(\{b,c\}) = y$ si

$$n + a = r$$
 et $a + r = n$

Le système

$$\begin{cases} p+q &= x \\ q+r &= y \\ p+q+r &= 1 \end{cases}$$

a pour solution

$$p = 1 - y, q = x + y - 1$$
 et $r = 1 - x$

Cette solution vérifie $p, q, r \ge 0$ si, et seulement si,

$$x \le 1, y \le 1$$
 et $x + y \ge 1$

ce qui fournit les conditions nécessaires et suffisantes que doivent respecter x et y.

Correction de l'exercice 17

Soit \mathbb{P} une probabilité solution. Posons

$$x = \mathbb{P}(A \cap B), y = \mathbb{P}(A \cap \overline{B}), z = \mathbb{P}(\overline{A} \cap B) \text{ et } t = \mathbb{P}(\overline{A} \cap \overline{B})$$

On a $x, y, z, t \ge 0$ et par additivité

$$x + y + z + t = \mathbb{P}(A) + \mathbb{P}(\overline{A}) = 1$$

Inversement, si x, y, z, t sont quatre réels positifs de somme égale à 1, on peut déterminer une probabilité \mathbb{P} sur Ω vérifiant les conditions ci-dessus : il suffit d'introduire un élément de chacun des ensembles disjoints $A \cap B, A \cap \overline{B}, \overline{A} \cap B$ et $\overline{A} \cap \overline{B}$, de poser la probabilité de l'événement élémentaire associé égale à x, y, z et t respectivement, puis les probabilités des autres événements élémentaires égaux à 0.

Le problème revient alors à déterminer sous quelle condition, il existe $x, y, z, t \ge 0$ de somme égale à 1 tels que

$$\mathbb{P}(A|B) = a, \mathbb{P}(A|\overline{B}) = b, \mathbb{P}(B|A) = c \text{ et } \mathbb{P}(B|\overline{A}) = d$$

Par additivité

$$\mathbb{P}(A) = x + y$$
 et $\mathbb{P}(B) = x + z$

On a alors $\mathbb{P}(A|B) = a$ si, et seulement si, x = a(x+z). De même, les autres conditions fournissent les équations

$$y = b(1 - (x + z)), x = c(x + y)$$
 et $z = (1 - (x + y))$

ce qui nous conduit à un système linéaire de quatre équations et trois inconnues.

$$\begin{cases} (1-a)x - az &= 0\\ bx + y + bz &= b\\ (1-c)x - cy &= 0\\ dx + dy + z &= d \end{cases}$$

Les trois premières équations conduisent à la solution

$$x = \frac{abc}{a(1-c)+bc}$$
 $y = \frac{ab(1-c)}{a(1-c)+bc}$ $z = \frac{(1-a)bc}{a(1-c)+bc}$

avec le dénominateur commun non nul car somme de quantités strictement positives.

La quatrième équation dud système est alors vérifiée si, et seulement si,

$$ad(1-b)(1-c) = bc(1-a)(1-d)$$

La solution (x, y, z) alors obtenue vérifie $x, y, z \ge 0$ et $x + y + z \le 1$ de sorte qu'on peut encore déterminer $t \ge 0$ tel que x + y + z + t = 1.

Finalement, il existe une probabilité telle que voulue si, et seulement si,

$$ad(1-b)(1-c) = bc(1-a)(1-d)$$

ce qui, en divisant par abcd, peut encore d'énoncer

$$\left(1 - \frac{1}{b}\right)\left(1 - \frac{1}{c}\right) = \left(1 - \frac{1}{a}\right)\left(1 - \frac{1}{d}\right)$$