PMATH351 - Real Analysis (Class Notes)

Johnson Ng

October 2, 2017

Contents

1	Lecture 1: Sep 8, 2017	7				
	1.1 Logistics	7				
	1.2 Brief Introduction to the Course	7				
	1.2.1 Set Theory (Naive, for Real Analysis)	7				
	1.3 Relations, Ordering and Zorn	10				
2	Lecture 2: Sep 11, 2017					
	2.1 More on Relations	11				
	2.2 Construction of the Real Numbers	12				
	2.3 Dyadic representation of \mathbb{R}	14				
3	Lecture 3: Sep 13, 2017					
	3.1 Last Time	15				
	3.2 Bounds and Completeness	15				
	3.3 Chains and Zorn's Lemma	17				
4	Lecture 4: Sep 15, 2017	19				
	4.1 Logistics	19				
	4.2 Cardinal arithmetic	19				
5	Lecture 5: Sep 18, 2017					
	5.1 Continuing CBS with examples	24				
	5.2 Comparison Theorem	25				
6	Lecture 6: Sep 20, 2017 27					
	6.1 Continuing ordinal arithmetic	27				
7	Lecture 7: Sep 22, 2017	31				
	7.1 Metric Spaces	31				
8	Lecture 8: Sep 25, 2017	36				

CONTENTS	2
----------	---

	8.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36			
9	Lecture 9: Sep 27, 2017 41					
	9.1	Last Time	41			
	9.2	Continuing with ℓ_p	41			
	9.3	Topology of metric spaces	44			
10	Lect	ture 10: Sep 27, 2017	46			
	10.1	Continuing with Balls	46			
11	Lect	ture 11: Oct 2, 2017	51			
	11.1	Last time	51			
	11.2	Continuing with Accumulation Points	51			
	11.3	Continuous Functions	53			

List of Definitions

1.2.1 Inclusion	7
1.2.2 Power Set	8
1.2.3 Unions and Intersections	8
1.2.4 Difference Set	8
1.2.5 Product Sets	9
1.2.6 Function	9
1.3.1 Relation	10
2.1.1 More on Relations	11
2.1.2 Total Order	11
3.1.1 Partial Order	15
3.2.1 Upper Bound, Supremum	15
3.2.2 Complete	16
3.2.3 Maximum	16
3.2.4 Lower Bound, Infimum, Minimum	16
3.3.1 Chain	17
3.3.2 Maximal	17
3.3.3 Linearly Independent, Spanning, Basis	17
4.2.1 Injection, Surjection, Bijection	19
4.2.2 Precedence	21
7.1.1 Metric and Metric Space	R 1

CONTENTS	4
----------	---

7.1.2 Norm, Normed Vector Space $\dots \dots \dots$	3
9.2.1 The space $C[a,b]$	2
9.3.1 Open and Closed Balls	4
9.3.2 Open and Closed Sets $\dots \dots \dots$	4
10.1. Boundary	8
10.1. I nterior	8
10.1.3Convergence	9
10.1.4 Accumulation points/Cluster Points and Isolated Points	0
11.2.1Closure	1
11.3.1Continuity	3
11.3.2 Neighbourhood	3

List of Theorems

Proposition 1.2.1	De Morgan's Laws	8
Axiom 1.2.1	Axiom of Choice	9
Proposition 1.2.2	AC'	9
Proposition 3.2.1	Infimum of a subset of a space	16
Axiom 3.3.1	Zorn's Lemma	17
Theorem 3.3.1	Vector space over \mathbb{K} has a basis	17
Theorem 4.2.1	Cantor-Bernstein-Schröder	21
Proposition 5.2.1	Surjectivity	25
Theorem 5.2.1	Comparison Theorem	25
Proposition 5.2.2	Alternative Definitions of an Infinite Set	26
Corollary 6.1.1	A set is either finite or denumerable	28
Theorem 6.1.1	Cantor	28
Theorem 6.1.2	Cantor's Continuum Hypothesis	29
Theorem 6.1.3	Generalized Continuum Hypothesis	29
Theorem 6.1.4	Cantor's Paradox	29
Axiom 6.1.1	Well-Ordering	29
Lemma 7.1.1	$\alpha \beta \leqslant \frac{\alpha^p}{p} + \frac{\beta^q}{q}$	34
Theorem 7.1.1	Holder's Inequality	35
Theorem 8.2.1	Minkowski's Inequality	37
Corollary 8 2 1	∥.∥. is a norm	38

CONTENTS	6
----------	---

Theorem 8.3.1	ℓ_p is a \mathbb{R} -subspace	38
Theorem 8.3.2	$(\ell_{\infty}, \ \cdot\ _{\infty})$ is a normed vector space	39
Theorem 9.2.1	Extreme Value Theorem	42
Theorem 9.2.2	$(C[a,b], \ \cdot\ _p)$ as a normed vector space	42
Proposition 9.3.1	Open/Closed Balls are Open/Closed Sets	44
Proposition 10.1.1		47
Proposition 10.1.2	Characterizations of the Interior	48
Proposition 10.1.3		50
Theorem 11.2.1	Characterization of the Closure	51
Theorem 11.3.1	Characterization of continuity at a point	53

Lecture 1: Sep 8, 2017

1.1 Logistics

Course Website: http://www.math.uwaterloo.ca/~nspronk/math351/math351.html

1.2 Brief Introduction to the Course

1.2.1 Set Theory (Naive, for Real Analysis)

Sets whose existence that we shall take for granted:

$$\mathbb{N} = \{1, 2, 3, ...\}$$

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

$$\mathbb{Q} = \{\frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}, \gcd(m, n) = 1\}$$

Definition 1.2.1 (Inclusion)

Given two sets A, B, write

$$A \subseteq B$$
, $A \subset B$ or $B \supseteq A$, etc. (1.1)

for "B contains A", i.e. $\forall x \in A \implies x \in B$. We shall write

$$A \subsetneq B \text{ if } A \subset B \land A \neq B \tag{1.2}$$

Definition 1.2.2 (Power Set)

Let X be a set. Let

$$\mathcal{P}(X) := \{ A : A \subseteq X \} \tag{1.3}$$

Note that if $X = \{1, ..., n\}$, notice that $\mathcal{P}(X)$ has 2^n elements.

Definition 1.2.3 (Unions and Intersections)

Let $A, B \in \mathcal{P}(X)$ where X is the universe, and $\{A_i\}_{i \in I} \subseteq \mathcal{P}(X)$ where $I \neq \emptyset$.

$$A \cup B = \{x \in X : x \in A \lor x \in B\} \qquad \bigcup_{i \in I} A = \{x \in X : x \in A \text{ for some } u \in I\}$$

$$A \cap B = \{x \in X : x \in A \land x \in B\} \qquad \bigcap_{i \in I} A = \{x \in X : x \in A \forall i \in I\}$$

If we do not have A, B in a common universe, we let the "external union" be

$$A \sqcup B = \{x : x \in A \subseteq x \in B\} \tag{1.4}$$

Example 1.2.1

Suppose $I \neq \emptyset$. What is the meaning of

$$\bigcup_{i \in I} A_i, \quad \bigcap_{i \in I} A_i? \tag{1.5}$$

Definition 1.2.4 (Difference Set)

If $A, b \in \mathcal{P}(X)$. Let

$$A \backslash B = \{ x \in X : x \in A \land x \notin B \}$$
 (1.6)

In particular

$$X \backslash B = \{ x \in X : x \notin B \} \ (complement) \tag{1.7}$$

Proposition 1.2.1 (De Morgan's Laws)

If X is a set, with $\{A_i\} \in \mathcal{P}(X)$, then

$$X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X \setminus A_i), \quad X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (X \setminus A_i)$$
 (1.8)

The proof is straightforward and should be done in two lines.

Definition 1.2.5 (Product Sets)

Let A, B be sets.

$$A \times B = \{(a, b) : a \in A, b \in B\} \quad (ordered \ pairs) \tag{1.9}$$

Definition 1.2.6 (Function)

 $f \subseteq A \times B$ is called a function if

$$\forall a \in A \quad \exists! b = f(a) \in B \tag{1.10}$$

so that $(a,b) \in f$.

In practice, we write $f: A \to B$ and the ordered pairs are all denoted (a, f(a)).

If $X_1, ..., X_n$ are sets, where $n \in \mathbb{N}$, then

$$X_1 \times ... \times X_n = \prod_{j=1}^n X_j = \{(x_1, ..., x_n) : x_j \in X_j \forall j \in \{1, ..., n\}\}$$
 (1.11)

is called the n-tuples of X.

IF $\{X_i\}_{i\in I, I\neq\emptyset}$, is a (or an infinite) family of sets

$$\prod_{i \in I} X_i \{ (x_i)_{i \in I} : x_i \in X \forall i \in I \}$$

$$\tag{1.12}$$

Axiom 1.2.1 (Axiom of Choice)

Given any non empty collection of nonempty sets $\{A_i\}_{i\in I}$, we have $\prod_{i\in I} A_i \neq \emptyset$.

Remark (B. Russell)

- 1. $\forall n \in \mathbb{N}$, let $S_n = \{l_n, r_n\}$ be a pair of shoes. Surely, $\prod_{i \in I}^{\infty} S_i \neq \emptyset$.
- 2. $\forall n \in \mathbb{N}$, let $T_n = \{s_n, s'_n\}$ be a pair of socks. Why do we expect $\prod_{i \in I}^{\infty} T_i \neq \emptyset$?

Proposition 1.2.2 (AC')

The AC is equivalent to (AC') given any nonempty set A,

$$\exists f: \mathcal{P}(A) \setminus \{\emptyset\} \to A \qquad \forall B \in P(A) \setminus \{\emptyset\} \quad f(B) \in B \tag{1.13}$$

Proof

$$(AC) \implies (AC')$$

We assume there is

$$(x_B)_{B \in P(A) \setminus \{\emptyset\}} \in \prod_{B \in P(A) \setminus \{\emptyset\}} B$$
(1.14)

(which is nonempty by assumption).

Then we simply have to let $f(B) = x_B$ for each B.

$$(AC') \implies (AC)$$

Given a non-empty collection of nonempty sets $\{A_i\}_{i\in I}$, let

$$A = \bigsqcup_{i \in I} A_i \quad (external \ product) \tag{1.15}$$

We have a choice function $f: \mathcal{P}(A) \setminus \{\emptyset\} \to A, f(B) \in B$ for each B. Then

$$(f(A_i))_{i \in I} \in \prod_{i \in I} A_i \tag{1.16}$$

1.3 Relations, Ordering and Zorn

Definition 1.3.1 (Relation)

Let X be a nonempty set. A relation on X is any subset

$$R \subseteq X \times X \tag{1.17}$$

We write xRy provided that $(x, y) \in R$.

Example 1.3.1

- 1. A function $f \subseteq X \times X$ is a relation.
- 2. In $\mathbb{N} \times \mathbb{N}$, consider

$$mRn \iff \exists p \in \{0\} \cup \mathbb{N} \quad n = m + p$$
 (1.18)

We write $m \le n \iff mRn$.

- 3. On \mathbb{Z} , $m \leq n \iff n m \in \{0\} \cup \mathbb{N}$.
- 4. On \mathbb{Q} , $\frac{m}{n} \leqslant \frac{\mu}{\nu} \iff m\nu \leqslant \mu n \text{ in } (\mathbb{Z}, \leqslant).$
- 5. On $\mathcal{P}(X)$, we have relations

$$A \subseteq B$$

$$A \supseteq B$$

Lecture 2: Sep 11, 2017

2.1 More on Relations

Definition 2.1.1 (More on Relations)

A relation R on X is

- 1. Symmetric if $xRy \implies yRx$.
- 2. **Reflexive** if $\forall x \in X \ xRx$
- 3. Transitive if $xRy \wedge yRz \implies xRz$
- 4. Anti-Symmetric if $xRy \wedge yRx \implies x = y \in X$
- (i), (ii) and (iii) makes up the **Equivalence Relation**. We usually use notations like \sim, \approx .
- (ii), (iii) and (iv) makes up the **Partial Order** definition. We usually use notations like \leq, \geq

In Example 1.3.1, (ii), (iii), (iv) and (v) are all partial orders. In (i), f is an equivalence relation only if f is an identity function.

Definition 2.1.2 (Total Order)

A total order is a partial order where for x, y we have at least one of

$$x \leqslant y \quad or \quad y \leqslant x$$
 (2.1)

holds.

Notice that in Example 1.3.1, (ii), (iii) and (iv) are total orders. However, (v) is not if X has at least two elements.

If \sim is an equivalence relation on X, then we denote the equivalence class by $[x] = \{y \in X : y \sim x\}$

Example 2.1.1

On $\mathbb{Z} \times \mathbb{N}$, let $(m,n) \sim (\mu,v)$ if $m\nu = \mu n$ in \mathbb{Z} . Then equivalence classes [(m,n)] are elements of \mathbb{Q} . Generally,

$$\frac{m}{n} = [(m,n)] \tag{2.2}$$

2.2 Construction of the Real Numbers

We provide a sketch of Cantor's construction:

Notation: On
$$\mathbb{Q}$$
, define $\left|\frac{m}{n}\right| = \begin{cases} \frac{m}{n} & m > 0 \\ -\frac{m}{n} & m < 0 \end{cases}$, $n \in \mathbb{Z}$

We have the usual properties (triangle inequalities): for $p, q \in \mathbb{Q}$

$$|p+q| \le |p|+|q| \tag{2.3}$$

$$||p| - |q|| \le |p - q| \tag{2.4}$$

Let $\mathbb{Q}_+ = \{ q \in \mathbb{Q} : q > 0 \}$

$$X = \{ (q_n) = (q_n)_{n=1}^{\infty} \in \mathbb{Q}^{\mathbb{N}} : \forall \epsilon \in \mathbb{Q}_+ \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n, m \geqslant n_{\epsilon} \ |q_n - q_m| < \epsilon \}$$

(X is set of Cauchy sequences of rationals)

On X we define

$$(q_n) \sim (r_n) \text{ if } \forall \epsilon \in \mathbb{Q} \ \exists n_{\epsilon} \in \mathbb{N} \ |q_n - r_n| < \epsilon \text{ whenever } n \geqslant n_{\epsilon}$$
 (2.5)

(tails become closer together)

Then \sim is an equivalence relation (verify yourselves).

We let

$$\mathbb{R} = \{ [(q_n)] : (q_n) \in X \}$$
 (2.6)

Note

 \mathbb{R} is a field.

$$(q_n) \sim (s_n), (r_n) \sim (t_n) \implies (q_n + r_n) \sim (s_n + t_n), (q_n r_n) \sim (s_n t_n)$$
 (2.7)

(Check! To check for multiplication, observe that elements of X form bounded sets in \mathbb{Q}). $(r_n) \not\sim (0,0,...) \implies r_n = 0$ for at most finitely many $n \implies define$

$$t_n = \begin{cases} 1 & if \ r_n = 0\\ \frac{1}{r_n} & otherwise \end{cases}$$

$$\implies (r_n)(t_n) \sim (1, 1, 1, ...)$$

We can define mutliplication, addition, etc. on \mathbb{R} and it follows that \mathbb{R} is a field.

Note (Properties)

1. \mathbb{Q} is a subfield:

$$\mathbb{Q} \hookrightarrow \mathbb{R}, \quad q \mapsto [(q, q, \dots)] \tag{2.8}$$

(eq. class of const. seq.)

2. Total order: On X let $(q_n) \leq (r_n)$ if

$$\forall \epsilon \in \mathbb{Q}_+ \ \exists n_{\epsilon} \in \mathbb{N} \ \forall n \geqslant n_{\epsilon} \ q_n \leqslant r_n + \epsilon \tag{2.9}$$

$$(Eq. (1 - \frac{1}{n}) \le (1, 1, ...))$$

Then
$$(q_n) \leq (r_n), (q_n) \sim (s_n), (r_n) \sim (t_n) \implies (s_n) \leq (t_n)$$
 (check)

Hence, let

$$[(q_n)] \leqslant [(r_n)] \text{ if } (q_n) \leqslant (r_n).$$

3. Density of \mathbb{Q} : (HW 1)

If $[(q_n)] < [(r_n)]$ then there is q in \mathbb{Q} s.t.

$$\lceil (q_n) \rceil < \lceil (q, q, \dots) \rceil < \lceil (r_n) \rceil \tag{2.10}$$

4. Absolute value: $|[(q_n)]| = [(|q_n|)]$

This is the usual absolute value (check)

2.3 Dyadic representation of \mathbb{R}

Like the density of $\mathbb{Q} \in \mathbb{R}$, we can show that for $[(q_n)] \in \mathbb{R}$ there is q in \mathbb{Q} s.t. $[(q_n)] \leq [(q,q,\ldots)]$ (HW 1).

Let $X = [(q_n)] \in \mathbb{R}$. Suppose $x \ge 0$. Then there is unique $m \in \mathbb{N}$ s.t.

$$[(m, m, ...)] \le x < [(m+1, m+1, ...)]$$
(2.11)

Call m = |x|.

Define

$$x_1 = \begin{cases} 0 & \text{if } x - \lfloor x \rfloor < \frac{1}{2} = \left[\left(\frac{1}{2} \right) \right] \\ 1 & \text{if } x - \lfloor x \rfloor \geqslant \frac{1}{2} \end{cases}$$
 (2.12)

$$\vdots (2.13)$$

$$x_{n+1} = \begin{cases} 0 & \text{if } x - (\lfloor x \rfloor - \sum_{k=1}^{n} \frac{x_k}{2^k} < \frac{1}{2^{k+1}}) \\ 1 & \text{if } x - (\lfloor x \rfloor - \sum_{k=1}^{n} \frac{x_k}{2^k} \ge \frac{1}{2^{k+1}}) \end{cases}$$
 (2.14)

Then, check that

$$x \sim \left(\lfloor x \rfloor + \sum_{k=1}^{2^n} \frac{x_k}{2^k} \right)_{n=1}^{\infty} \tag{2.15}$$

Write $x = |x| . x_1 x_2 x_3 ...$

Similarly, we have decimal (base 10) or ternary representation (base 3).

Lecture 3: Sep 13, 2017

3.1 Last Time

Definition 3.1.1 (Partial Order)

A partial order is a relation \leq on X which is

- reflexive
- transitive
- ullet anti-symmetric

We write (X, \leq) as a "partially ordered set" or a poset.

3.2 Bounds and Completeness

Definition 3.2.1 (Upper Bound, Supremum)

Let X, \leq) be a partially ordered set (aka poset). Given $A \subset X$,

- an upper bound is any $u \in X$ s.t. $\forall x \in A \ x \leq u$
- a supremum (aka least lower bound) is an upper bound s s.t. $s \le u$ for any upper bound u.

Note

1. A supremum need not exist.

For example, in (\mathbb{Q}, \leq) ,

• N is not bounded above

- $A = \{q \in \mathbb{Q} : q^2 \leq 2\}$ is bounded above (e.g. 2 is an upper bound) but admits so supremum.
- 2. If a supremum exists, then it is unique (appeal to the anti-symmetry property of \leq), so we write $s = \sup A$.

Definition 3.2.2 (Complete)

We say that (X, \leq) is complete if any set $A \subset X$ which admits an upper bound has a supremum, $\sup A$.

Example 3.2.1

- 1. $X \neq \emptyset$, consider $(\mathcal{P}(X),\subseteq)$. Given $A = \{A_i\}_{i\in I} \subseteq \mathcal{P}(X)$, we have $\sup A = \bigcup_{i\in I} A_i$, so $\mathcal{P}(X),\subseteq)$ is complete.
- 2. (\mathbb{R}, \leq) is complete.

(Sketch proof) Suppose $\emptyset \neq A \subset \mathbb{R}$ is bounded above. Based on (HW1), we can find $q_0, r_0 \in \mathbb{Q} \ [\mathbb{Q} \hookrightarrow \mathbb{R}, q \hookrightarrow [(q, q, ...)] \ s.t.$

- q₀ is not an upper bound for A
- r_0 is an upper bound for A

Inductively, define for $n \in \{0\} \cup \mathbb{N}, (q_{n+1}, r_{n+1}) \in \mathbb{Q}^2$.

$$(q_{n+1}, r_{n+1}) = \begin{cases} (q_n, \frac{1}{2}(q_n + r_n)) & \frac{1}{2}(q_n + r_n) \text{ is an upper bound for } A\\ (\frac{1}{2}(q_n + r_n), r_n) & \text{otherwise} \end{cases}$$
(3.1)

Fact (check): $[(q_n)_{n=1}^{\infty}] = [(r_n)_{n=1}^{\infty}]$ and is $\sup A$.

Definition 3.2.3 (Maximum)

Further, we call $m \in A(A \subset X, (X, \leq))$ poset a maximum of A if

- $m = \sup A$
- m ∈ A

Definition 3.2.4 (Lower Bound, Infimum, Minimum)

We have symmetric definition for lower bounds, infimums (greatest lower bound) and minimums.

Note: The infimum of A is unique if it exists, denoted as inf A

Proposition 3.2.1 (Infimum of a subset of a space)

If (X, \leq) is a complete partially ordered space, then any $A \subseteq X$ which is bounded below, admits an infimum.

Proof

Let $L = \{x \in X : \forall a \in A \ x \leq a\}$. Notice that $L \neq \emptyset$ (by assumption on A). Also, L is bounded above, since any element of A is an upper bound.

Then $\sup L = \inf A$.

3.3 Chains and Zorn's Lemma

Definition 3.3.1 (Chain)

Let (X, \leq) be a poset. A chain is any subset $C \subseteq X$ s.t. (C, \leq) is totally ordered.

(Note: Strictly, we should have $(C, \leq \upharpoonright_{C \times C})$.

Definition 3.3.2 (Maximal)

We say an element $m \in X$ is maximal if we have that $\forall x \in X \ m \leq x \implies x = m$.

Axiom 3.3.1 (Zorn's Lemma)

Suppose in a poset (X, \leq) every chain $C \subseteq X$ admits an upper bound, i.e.

$$\exists u \in X \ \forall x \in C \ x \leqslant u \tag{3.2}$$

Then (X, \leq) admits a maximal element.

Definition 3.3.3 (Linearly Independent, Spanning, Basis)

Let V be a vector space over a field \mathbb{K} ($\mathbb{K} = \mathbb{R}$ or \mathbb{Q}). A subset $L \subseteq V$ is **linearly** independent (aka lin. ind.) if for each finite $\{v_1, ..., v_n\} \subseteq L$,

$$\forall \alpha_n \in \mathbb{K} \ 0 = \sum_{i=1}^n \alpha_i v_i \implies \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$$

A subset $S \subset V$ is **spanning** if for each $v \in V$ there are finite $\{v_1, ..., v_n\} \subseteq S, \{\alpha_1, ..., \alpha_n\} \subseteq \mathbb{K}$ s.t.

$$v = \sum_{i=1}^{n} \alpha_i v_i$$

A basis is a set $B \subset V$ which is both linearly independent and spanning.

Theorem 3.3.1 (Vector space over \mathbb{K} has a basis)

A vector space V over \mathbb{K} always admits a basis.

Proof

Let $\mathcal{L} = \{L \subset V : L \text{ is linearly independent}\}$. We note that (\mathcal{L}, \subseteq) is a poset.

Furthermore, $\{\{v\}: v \in V \setminus \{0\}\} \subseteq \mathcal{L}$. So $\mathcal{L} \neq \emptyset$.

Let $C = \{L_i\}_{i \in I}$ be a chain in \mathcal{L} , and consider $L = \bigcup_{i \in I} L_i$. If $\{v_1, ... v_n\} \subseteq L$, we have $v_k \in L_{i_k}$ for some $k \in [0, n]$, and since C is a chain, we may relate so $L_{i_1} \subseteq L_{i_2} \subseteq ... \subseteq L_{i_k}$. Thus $\{v_1, ..., v_n\} \subseteq L_{i_n}$ and is lin. ind. It follows L is lin. ind. Hence, Axiom 3.3.1 tells us that \mathcal{L} admits a maximal element B.

WTP B is spanning. Suppose B is not spanning. Then there is $v_o \in V$ which cannot be written as a linear combination of finitely many vectors from B. Consider

$$0 = \alpha_0 v_0 + \sum_{i=1}^{n} \alpha_i v_i \tag{3.3}$$

for $\{v_1,...,v_n\}\subseteq B$, and $\alpha_1,...,\alpha_n\in\mathbb{K}$. If we can have $\alpha_n\neq 0$, then

$$v_0 = \sum_{i=1}^n \left(-\frac{\alpha_i}{\alpha_n} v_i \right) \tag{3.4}$$

which contradicts our assumption on v_o . Hence $\alpha_n = 0$, and thus $0 = \sum_{i=1}^n \alpha_i v_i$, so $\alpha_1 = \ldots = \alpha_n = 0$, as well. Hence $B \cup \{v_o\} \in \mathcal{L}$. But $B \subseteq B \cup \{v_o\}$, contradicting maximality.

Remark

An easy modification of the proof shows that any $L = \mathcal{L}$ is a subset of a basis.

Lecture 4: Sep 15, 2017

4.1 Logistics

Office Hours

• today: 1430 - 1520

• Wed, next week: 1430 - 1630

4.2 Cardinal arithmetic

Definition 4.2.1 (Injection, Surjection, Bijection)

Given nonempty sets X, Y, a function $f: X \to Y$ is called a(n)

- injection $x_1 \neq x_2 \in X \implies f(x_1) \neq f(x_2)$
- *surjection* $\forall y \in Y \ \exists x \in X \ f(x) = y$
- bijection if it is both an injection and a surjection (aka invertible)

Of course, if $f: X \to Y$ is a bijection then we can define $f^{-1}: Y \to X$ by $f^{-1}(f(x)) = x$.

We write $X \sim Y$ if there exists a bijection $f: X \to Y$.

Sometimes, we write

$$X \sim Y$$

Note (\sim as an equivalence relation)

• (reflexitivity) $X \underset{id}{\sim} X$ (id: $X \to X$ is the identity function)

- (symmetry) $X \sim Y \implies Y \sim X$
- $(transitivity) \ X \sim Y \wedge Y \sim Z \implies X \sim Z_{gf} Z$

Hence \sim is an equivalence relation on any given family of sets. We let |X| denote the equivalence class. We call this cardinality of X.

Note:
$$|\emptyset| = 0$$
, $|\{1, ..., n\}| = n \in \mathbb{N}$

Example 4.2.1

1.

$$\mathbb{N} \sim \mathbb{Z}$$
 : $f(n) = \begin{cases} \frac{n}{2} & n \text{ is even} \\ \frac{1}{n}(1-n) & n \text{ is odd} \end{cases}$

2.

$$\mathbb{R} \underset{f}{\sim} (-1,1) \quad \therefore f(x) = \frac{x}{|x|+1}$$

Execise: exhibit f^{-1}

Answer: $f^{-1}(x) = \frac{x}{1-|x|}$

3.
$$a < b \in \mathbb{R} (0,1) \sim_{q} (a,b), g(x) = a + x(b-a)$$

Note (Notation)

$$\aleph_0 = |\mathbb{N}|$$
 ("aleph-naught") $c = |\mathbb{R}|$ ("continuum")

Note (Arithmetic)

Let A, B be sets.

$$\begin{split} |A|+|B|&=|A\sqcup B|\\ |A||B|&=|A\times B| \end{split}$$

$$|A|^{|B|}=|A^B|\quad (B\neq\varnothing,\ A^B=\{f:B\to A\mid f\ is\ a\ fucntion\})$$

Note (Properties)

• (commutativity)

$$|A| + |B| = |B| + |A|$$

 $|A||B| = |B||A|$

• (distributivity)

$$|A|(|B| + |C|) = |A||B| + |A||C|$$

 $(A \times (B \sqcup C) \sim (A \times B) \sqcup (A \times C))$

• (exponential laws)

$$(B \neq \emptyset \neq C)$$
(1) $|A|^{|B|+|C|} = |A|^{|B|}|A|^{|C|}$ (2) $|A|^{|B||C|} = (|A|^{|B|})^{|C|}$

(1)
$$(A^{B \sqcup C} \sim A^B \times A^C \text{ via } \phi \mapsto (\phi|_B, \phi|_C))$$

(2) $A^{B \times C} \sim (A^B)^C \text{ via } \phi \mapsto (\phi(b, \cdot) : C \to A)_{b \in B}$

Definition 4.2.2 (Precedence)

For sets A, B, define

$$A \leq B$$
 if there is an injection $f: A \rightarrow B$

We sometimes write the above as $A \leq B$.

- $(reflexivity) A \leq A$
- $(transitivity) A \leq B, B \leq C \implies A \leq C$

We are one property short of making \leq as an order relation.

Note

It seems reasonable to write $|A| \leq |B|$, in this case, our question is: Is \leq in cardinal numbers anti-symmetric?

Theorem 4.2.1 (Cantor-Bernstein-Schröder)

If, for non-empty sets A, B, we have

$$A \le B \land B \le A \implies A \sim B$$
 (4.1)

i.e.

$$|A| \leqslant |B| \land |B| \leqslant |A| \implies |A| = |B| \tag{4.2}$$

Proof

Our assumption is that we have injections

$$A \leq B, \quad B \leq A \tag{4.3}$$

To avoid triviality, let us suppose that neither ϕ or ψ is surjective. Thus

$$\phi(A) \subsetneq B \quad \psi \circ \phi(A) \subsetneq \psi(B) \subsetneq A \tag{4.4}$$

Let $A_0 = A$, $A_1 = \psi(B)$, $A_2 = \psi \circ \phi(A)$ and we inductively define

$$A_{n+1} = g(A_n) \text{ where } g = \psi \circ \phi$$
 (4.5)

Then $A_2 \subsetneq A_1 \subsetneq A_0$, so by applying injection g,

$$A_4 \subsetneq A_3 \subsetneq A_2$$

$$\vdots$$

$$A_{n+1} \subsetneq A_n \subsetneq A_{n-1}$$

Hence, we may decompose

$$A = A_0 = (A_0 \backslash A_1) \cup A_1$$

$$= (A_0 \backslash A_1) \cup (A_1 \backslash A_2) \cup A_2$$

$$\vdots$$

$$= \bigcup_{n=1}^{\infty} (A_{n-1} \backslash A_n) \cup A_{\infty}$$

where $A_{\infty} = \bigcap_{n=1}^{\infty} A_n = \bigcap_{n=2}^{\infty} A_n$, we likewise observe

$$A_i = \bigcup_{n=2}^{\infty} (A_{n-1} \backslash A_n) \cup A_{\infty}$$

Using definitions of the sets A_n $(n \ge 2)$ we have

$$g(A_{n=1}\backslash A_n) = A_{n+1}\backslash A_{n+2}$$

Define

$$h: A_0 \to A_1 \quad h(x) = \begin{cases} g(x) & x \in A_{n-1} \backslash A_n \text{ is odd} \\ x & \text{otherwise} \end{cases}$$
 (4.6)

Then h is a bijection.

Thus
$$A = A_0 \sim_h A_1 - \phi(B)$$
, $B \sim_\phi \psi(B)$ so we conclude that $A \sim B$.

Example 4.2.2

1. Let $a < b \in \mathbb{R}$. Then

$$[a,b) \le \mathbb{R}$$
 obvious $\mathbb{R} \sim (-1,1) \sim (0,1) \sim (a,b) \le [a,b)$

i.e.
$$[a,b) \leq \mathbb{R}$$
 and $\mathbb{R} \leq [a,b)$ so $\mathbb{R} \sim [a,b)$.

Lecture 5: Sep 18, 2017

5.1 Continuing CBS with examples

Example 5.1.1

2. $\mathcal{P}(\mathbb{N}) \sim \mathbb{R}$, i.e. $|\mathcal{P}(\mathbb{N})| = c$

$$\mathcal{P}(\mathbb{N}) \sim \{0, 1\}^{\mathbb{N}} \ via \ A \mapsto \chi(A) \tag{5.1}$$

where

$$\chi_A(n) = \begin{cases} 1 & n \in A \\ 0 & n \notin A \end{cases} \tag{5.2}$$

is the "characteristic indicator".

$$\{0,1\}^{\mathbb{N}} \le [0,1) \ via \ (x_k)_{k=1}^{\infty} \mapsto \sum_{k=1}^{\infty} \frac{x_k}{3^k} = 0.x_1 x_2 x_3...$$
 is the ternary rep'n (5.3)

which is injective.

Claim $[0,1) \leq \{0,1\}^{\mathbb{N}}$, $0.x_1x_2x_3... = \sum_{k=1}^{\infty} \frac{x_k}{2^k} \mapsto (x_k)_{k=1}^{\infty}$ which is the binary rep'n. Note that this representation doesn't allow 0.1111... = 1 (see Lecture 2).

$$\mathcal{P}(\mathbb{N}) \sim \{0,1\}^{\mathbb{N}} \leq [0,1) \leq \{0,1\}^{\mathbb{N}} \sim \mathcal{P}(\mathbb{N})$$

Thus by Theorem 4.2.1,

$$|\mathcal{P}(\mathbb{N})| = |[0,1)| = c = |\mathbb{R}| \tag{5.4}$$

3. $\mathbb{N} \sim \mathbb{Q} \sim \mathbb{N}^2$

• $\mathbb{N} \leq \mathbb{Q}$ (obvious)

- $\mathbb{Q} \leq \mathbb{Z} \times \mathbb{N}$, which we pick $\frac{m}{n} \mapsto (m, n)$ with gcd(m, n) = 1 where $m \in \mathbb{Z}, n \in \mathbb{N}$.
- $\mathbb{Z} \times \mathbb{N} \sim \mathbb{N}^2 = \mathbb{N} \times \mathbb{N} \text{ as } \mathbb{Z} \sim \mathbb{N}$
- $\mathbb{N}^2 \sim \mathbb{N} \ via \ (m,n) \mapsto 2^m 3^n$

Therefore

$$\mathbb{N} \le \mathbb{Q} \le \mathbb{Z} \times \mathbb{N} \sim \mathbb{N}^2 \le \mathbb{N} \tag{5.5}$$

Thus by Theorem 4.2.1, $\mathbb{N} \sim \mathbb{Q} \sim \mathbb{N}^2$.

Note (Notation)

We say that a set A is

- countable if $A \leq \mathbb{N}$, i.e. $|A| \leq \aleph_0$
- denumerable if $A \sim \mathbb{N}$, i.e. $|A| = \aleph_0$

5.2 Comparison Theorem

Proposition 5.2.1 (Surjectivity)

Suppose X and Y are non-empty sets and there is a surjection $g: X \to Y$. Then $Y \leq X$.

Proof

Let $f: \mathcal{P}(X)\setminus\{\emptyset\} \to X$ be a choice function (by Axiom 1.2.1 AC). For each $y \in Y$, we have $g^{-1}(\{y\}) = \{x \in X : g(x) = y\} \neq \emptyset$, as g is surjective. Define $h: Y \to X$ be given by $h(y) = f(g^{-1}(\{y\}))$ and h is injective, as if $y_1 \neq y_2, \{y_1\} \cap \{y_2\} = \emptyset$, so we see that

$$g^{-1}(\{y_1\}) \cap g^{-1}(\{y_2\}) = \emptyset$$
(5.6)

too.

Theorem 5.2.1 (Comparison Theorem)

Let X and Y be sets. Then either $X \leq Y$ or $Y \leq X$.

Proof

If $X = \emptyset$ then $X \leq Y$; likewise if $Y = \emptyset$. Hence, assume $X \neq \emptyset \neq Y$. Let

$$\Delta = \{ (A, f) : A \in \mathcal{P}(X) \setminus \{ \emptyset \}, \ f \in Y^A \ is \ an \ injection \}$$
 (5.7)

We observe that $\Delta \neq \emptyset$. If $x \in X, y \in Y$, then $(\{x\}, x \mapsto y) \in \Delta$.

On Δ let

$$(A, f) \le (B, g) \iff \frac{A \subseteq B \subseteq X}{g|_A = f}$$
 (5.8)

Notice that \leq is reflexive, anti-symmetric, and transitive. Thus \leq is a partial order on Δ . Let $\Gamma = \{(A_i, f_i)\}_{i \in I}$ be a chain in (Δ, \leq) . We let

$$A = \bigcup_{i \in I} A_i \tag{5.9}$$

and $f \in Y^A$ be given by $f(x) = f_i(x)$ provided $x \in A_i$.

Notice that f is well-defined. Say $x \in A_i$ and $x \in A_j$, then since Γ is a chain, without loss of generality, $A_i \subseteq A_j$, and $f_j|_{A_i} = f_i$.

Furthermore, if $x_1 \neq x_2 \in A$, then $x_1 \in A_{i_1}, x_2 \in A_{i_2}$, and we may suppose $A_{i_1} \subseteq A_{i_2}$. Then $f(x_1) = f_{i_1}(x_1) = f_{i_2}(x_1) \neq f_{i_2}(x_2) = f(x_2)$.

So f is an injection. Thus $(A, f) \in \Delta$ and is an upper bound for Γ .

Thus there is a maximal element $(M, g) \in \Delta$, by Axiom 3.3.1 Zorn's Lemma.

- 1. Case 1: M = X. Then $X = M \leq Y$.
- 2. Case 2: $M \subseteq X$. We wish to see that g is surjective.

Suppose not, i.e. $\exists y_0 \in Y \backslash g(M)$. Since $M \subsetneq X$, $\exists x_0 \in X \backslash M$. Define $h : M \cup \{x_0\} \rightarrow Y$ by

$$h(x) = \begin{cases} g(x) & x \in M \\ y_0 & x = x_0 \end{cases}$$
 (5.10)

which is injective.

Then $(M \cup \{x_0\}, h) \in \Delta$, and $(M, g) \leq (M \cup \{x_0\}, h)$, contradicting the maximality of $(M, g) \in \Delta$. Thus g is surjective as desired.

Therefore,
$$Y \leq X$$
.

Proposition 5.2.2 (Alternative Definitions of an Infinite Set)

Let A be a set. Then TFAE:

- 1. $n \leq |A|$ for all $n \in \mathbb{N}$.
- 2. $\aleph_0 \leq |A|$, i.e. A is infinite
- $\exists B \subseteq A \text{ s.t. } |B| = |A|.$
- 4. 1 + |A| = |A| (Hilbert hotel)
- 5. $\aleph_0 + |A| = |A|$

Lecture 6: Sep 20, 2017

6.1 Continuing ordinal arithmetic

Proof

 $1. 1 \implies 2$

We have that for each $n \in \mathbb{N}$ there is an injection $\phi_n : \{1, ..., n\} \to A$. Inductively, define $f : \mathbb{N} \to A$ by

$$f(1) = \phi_1(1)$$

:

$$f(n+1) = \phi_{n+1}(k) \quad where \ k = \min\{j \in \{1, ..., n+1\} : \phi_{n+1}(j) \notin \{f(1), ..., f(n)\}\}$$

The f is injective by construction, i.e. $\mathbb{N} \leq A$ or $\aleph_0 \leq |A|$

 $2. 2 \implies 3$

We have $\mathbb{N} \leq A$. Let $B = A \setminus \{f(1)\}$.

Define $g: A \to B$ by

$$g(x) = \begin{cases} f(n+1) & x = f(n), \ n \in \mathbb{N} \\ x & otherwise \end{cases}$$
 (6.1)

Then $A \sim_g B$, i.e. |A| = |B|.

 $3. \ 3 \implies 4$

We suppose that there is $x_0 \in A \backslash B$ and $B \sim A$. Thus,

$$A \sim B \le B \cup \{x_0\} \le A \tag{6.2}$$

Then by Theorem 4.2.1, $A \sim B$ and furthermore $A \sim B \cup \{x_0\} \sim A \sqcup \{1\}$, i.e. |A| = |A| + 1.

 $4.4 \implies 5$

We have $\{1\} \sqcup A \underset{\phi}{\sim} A$. Then $\phi(A) \subsetneq A$. Thus $\phi \circ \phi(A) \subsetneq \phi(A) \subsetneq A$, and by induction

$$\oint \phi^{\circ n} \qquad (A) \subsetneq \phi^{\circ (n-1)}(A) \subsetneq \ldots \subsetneq A \qquad (6.3)$$

$$\phi \text{ composed with itself } n \text{ times}$$

Hence $|A| \ge |A \setminus \phi^{\circ n}(A)| \ge n$ (at each stage above, we gain at least one point).

 $5. 2 \implies 5$

We have $\mathbb{N} \leq A$. Let

$$g: \mathbb{N} \sqcup A \to A, \ g(x) = \begin{cases} f(2n) & x = n, \ n \in \mathbb{N} \\ f(2n+1) & x = f(n) \in A, \ n \in \mathbb{N} \\ x & otherwise \end{cases}$$
(6.4)

 $6.5 \implies 2$

$$\aleph_0 \leqslant \aleph_0 + |A| = |A|$$

Note

Any set satisfying 1 to 5 of the above is called infinite.

Corollary 6.1.1 (A set is either finite or denumerable)

If $A \in \mathcal{P}(\mathbb{N})$, then either A is finite or denumerable.

Proof

Either $n \leq |A|$ for all $n \in \mathbb{N}$, or |A| < n for some $n \in \mathbb{N}$.

Theorem 6.1.1 (Cantor)

For any set X

$$|X| \le |\mathcal{P}(X)|, i.e. \ X \le \mathcal{P}(X) \land X \ne \mathcal{P}(X)$$
 (6.5)

Proof

If
$$X = \emptyset$$
, $0 = |\emptyset| \le 1 = |\{\emptyset\}|$.

If $X \neq \emptyset$, then $x \mapsto \{x\} : X \to \mathcal{P}(X)$ shows $X \leq \mathcal{P}(X)$.

Now suppose $X \neq \emptyset$, $f: X \to \mathcal{P}(X)$. We will show that f cannot be surjective. Let

$$E = \{x \in X : x \notin f(x)\}\tag{6.6}$$

i.e. E is a set that is not in the range of f.

If we had $E \subseteq f(X)$, i.e. E = f(x) for some $x \in X$, then either

- $x \in E$, i.e. $x \notin f(x)$, which means that $E \neq f(x)$, or
- $x \notin E = f(x)$, so $x \in E$.

These contradictions show that $E \not\subset f(X)$.

Hence there is no surjection $f: X \to \mathcal{P}(X)$.

Example 6.1.1

$$\aleph_0 = |\mathbb{N}| < |\mathcal{P}(bbN)| = |\mathbb{R}| = c$$

Theorem 6.1.2 (Cantor's Continuum Hypothesis)

This is no set A such that

$$\aleph_0 < |A| < c \tag{6.7}$$

Remark

This theorem has recently been proven (about a month ago from Sep 20, 2017). This theorem is independent of ordinary set theory.

Theorem 6.1.3 (Generalized Continuum Hypothesis)

Given an infinite set C, there is no set A such that

$$|C| < |A| < |\mathcal{P}(C)| \tag{6.8}$$

Theorem 6.1.4 (Cantor's Paradox)

There is no "set" of all sets.

Suppose there was a universal set \mathcal{U} , i.e. any set $A \subseteq \mathcal{U}$. But then,

$$|\mathcal{U}| < |\mathcal{P}(\mathcal{U})|, \text{ so } \mathcal{P}(\mathcal{U}) \le \mathcal{U}$$
 (6.9)

so U cannot exist.

Axiom 6.1.1 (Well-Ordering)

Given a non-empty set X, a **well-order** is a partial order on X such that any $\emptyset \neq A \subseteq X$ admits a minimal element, i.e.

$$\exists m_A \in A \ \forall a \in A \ m_A \leqslant a \tag{6.10}$$

Remark

Well-order VS total order: $x, y \in X$ consider $A = \{x, y\}$.

Example 6.1.2

- 1. (\mathbb{N}, \leq) is well-ordered (principle of mathematical induction).
- 2. \mathbb{N}^2 . Let us consider two well-orders.

$$(pyramid) (m,n) \leq (\mu,\nu) \iff$$

$$\begin{cases} either \ m+n < \mu + \nu \\ m+n = \mu + \nu \ and \ m \leq \mu \end{cases}$$
 (6.11)

(lexicographic) $(m,n) \leqslant (\mu,\nu) \iff$

$$\begin{cases} either \ m < \mu \ or \\ m = \mu \ and \ n \leqslant \nu \end{cases}$$
 (6.12)

Notice that $(m,n) \leqslant (\mu,\nu) \iff 2m - \frac{1}{n} \leqslant 2\mu - \frac{2}{\nu} \in (\mathbb{Q},\leqslant)$

Lecture 7: Sep 22, 2017

7.1 Metric Spaces

Note

We can use \mathbb{R} in any reasonable manner.

Definition 7.1.1 (Metric and Metric Space)

Let X be a nonempty set. A metric $d: X \times X \to \mathbb{R}$ is a function which satisfies, for $x, y, z \in X$

- (non-negativity) $d(x,y) \ge 0$
- (non-degeneracy) $d(x,y) = 0 \iff x = y$
- (symmetry) d(x,y) = d(y,x)
- (triangle inequality) $d(x,z) \leq d(x,y) + d(y,z)$

We often call the pair (X, d) a metric space.

Example 7.1.1

- 1. $On \mathbb{R}, d(x, y) = |x y|$
- 2. Let $X \neq \emptyset$ any set. Define the "discrete" metric

$$d: X \times X \to \{0, 1\} \subseteq \mathbb{R}, \quad d(x, y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$
 (7.1)

Note that non-degeneracy and symmetry are obvious. The triangle inequality is sat-

isfied since

Case:
$$x \neq y \neq z \neq x$$

$$1 = d(x, z) \leq 2 = d(x, y) + d(y, z)$$

3. Let $f: \mathbb{R} \to \mathbb{R}$ be strictly increasing. Let

$$d_f: \mathbb{R}^2 \to [0, \infty) \ d_f(x, y) = |f(x) - f(y)|$$
 (7.2)

E.g. $f(x) = \frac{x}{|x|+1}$.

Exercise: check for its properties.

Proof

By definition of d_f , it is non-negative and symmetric. If x = y, then $d_f(x, y) = |f(x) - f(y)| = |f(x) - f(x)| = 0$. Suppose $x \neq y$. Since f is strictly increasing, without loss of generality, suppose f(x) < f(y).

Then $d_f(x,y) > 0$ since f(y) - f(x) > 0. Thus d_f is non-degenerate. Let $x, y, z \in \mathbb{R}^2$.

$$d_f(x, z) = |f(x) - f(z)|$$

$$= |f(x) - f(y) + f(y) - f(z)|$$

$$\leq |f(x) - f(y)| + |f(y) - f(z)|$$

$$= d_f(x, y) + d_f(y, z)$$

4. (French railroad metric) Suppose we have a set $X \neq \emptyset$, and a function $f: X \rightarrow [0, \infty)$ which satisfies $f^{-1}(\{0\}) = \{p_0\}$. Notice that f(x) > 0 if $x \in X \setminus \{p_0\}$.

$$d_f: X \times X \to [0, \infty) \ d_f(x, y) = \begin{cases} 0 & x = y \\ f(x) + f(y) & x \neq y \end{cases}$$
 (7.3)

Easy exercise: This is a metric.

Proof

Non-negativity and non-degeneracy are embedded in the function, since $\forall x, y \in X$, since $f(x), f(y) \in [0, \infty)$, we have that $d_f(x, y) = f(x) + f(y) \ge 0$, and if x = y, $d_f(x, y) = 0$.

The function is also symmetric, since

$$\forall x, y \in X$$

$$x \neq y \implies d_f(x, y) = f(x) + f(y) = f(y) + f(x) = d_f(y, x)$$

$$x = y \implies d_f(x, y) = 0 = d_f(y, x)$$

To prove the triangle inequality, let $x, y, z \in X$. If x = y = z, d_f is trivially a metric. Without loss of generality, suppose $x = y \neq z$, then $d(x, z) = f(x) + f(z) \stackrel{(1)}{=} f(y) + f(z) = d(x, y) + d(y, z)$, where (1) is since f(x) = f(y), and d(x, y) = 0. Suppose $x \neq y \neq z$, then

$$d_f(x,z) = f(x) + f(z)$$

$$\leq f(x) + f(y) + f(y) + f(z) \quad since \ f(y) \geq 0$$

$$= d_f(x,y) + d_f(y,z)$$

Definition 7.1.2 (Norm, Normed Vector Space)

Let V be a vector space over \mathbb{R} . A **norm** is a function $\|\cdot\|: V \to \mathbb{R}$ which satisfies, for $x, y \in V$, $\alpha \in \mathbb{R}$

- 1. (non-negativity) $||x|| \ge 0$
- 2. (non-degeneracy) $||x|| = 0 \iff x = 0$
- 3. ($\|\cdot\|$ -homogeneity) $\|\alpha x\| = |\alpha| \|x\|$
- 4. (subadditivity) $||x + y|| \le ||x|| + ||y||$

We call the pair $(V, ||\cdot||)$ a normed vector space.

Note

If $(V, \|\cdot\|)$ is a normed vector space, then

$$d: V \times V \to [0, \infty) \ d(x, y) = ||x - y|| \tag{7.4}$$

is always a metric on V. Everything is easy to check; subadditivity of $\|\cdot\| \implies$ triangle inequality of d.

Example 7.1.2

1. $(\mathbb{R}, |\cdot|)$ is a normed vector space.

2. On \mathbb{R}^n , for $x = (x_1, ..., x_n)$

$$||x||_2 = \sqrt{x_1^2 + \ldots + x_n^2} \tag{7.5}$$

This is the Euclidean norm.

Consider, also

$$||x||_1 = |x_1| + \ldots + |x_n|$$

 $||x||_{\infty} = \max\{|x_1|, \ldots, |x_n|\}$

Note

non-degeneracy and $|\cdot|$ -homogeneity are obvious for $\|\cdot\|_1, \|\cdot\|_{\infty}$

Let us consider subadditivity

$$||x + y||_1 = |x_1 + y_1| + \ldots + |x_n + y_n|$$

$$\leq |x_1| + |y_1| + \ldots + |x_n| + |y_n|$$

$$= |x_1| + \ldots + |x_n| + |y_1| + \ldots + |y_n|$$

$$= ||x||_1 + ||y||_1$$

$$\begin{split} \|x+y\|_{\infty} &= \max\{|x_i+y_i|: i=1,...,n\} \\ &= \max\{|x_i|+|y_i|: i=1,...,n\} \\ &= \max\{|x_i|+|y_j|: i,j=1,...,n\} \\ &= \max\{|x_i|: i=1,...,n\} + \max\{|y_j|: j=1,...,n\} \\ &= \|x\|_{\infty} + \|y\|_{\infty} \end{split}$$

Now for 1*consider*

$$x^p = \begin{cases} e^{p\log x} & x > 0\\ 0 & x = 0 \end{cases} \tag{7.6}$$

$$||x||_p = (|x_1|^p + \ldots + |x_n|^p)^{\frac{1}{p}}$$

Remark (Cauchy-Bunyakovsky-Schwartz)

 $|x \cdot y| \le ||x||_2 ||y||_2$

Lemma 7.1.1 $(\alpha \beta \leqslant \frac{\alpha^p}{p} + \frac{\beta^q}{q})$ Let $\alpha, \beta \leqslant 0 \in \mathbb{R}$, 1 and <math>q is chosen such that $\frac{1}{p} + \frac{1}{q} = 1$ (i.e. $q = \frac{p}{p-1}$) then

$$\alpha\beta \leqslant \frac{\alpha^p}{p} + \frac{\beta^q}{q} \tag{7.7}$$

with the equality when $\alpha^p = \beta^q$.

Proof

Consider the graph of $y = x^{p-1}$ (assume $p \ge 2$). Then

$$\alpha\beta \leqslant \int_0^\alpha x^{p-1} dx + \int_0^b y^{q-1} dy$$
$$= \frac{\alpha^p}{p} \frac{\beta^q}{q}$$

Equality holds only if $\beta = \alpha^{p-1} \implies \beta^{\frac{1}{p-1}} = \alpha \implies \beta^q = \alpha^p$

Theorem 7.1.1 (Holder's Inequality) Let $x, y \in \mathbb{R}^n$, 1 and <math>q be so $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\left| \sum_{j=1}^{n} x_j y_j \right| \leqslant \sum_{j=1}^{n} |x_j| |y_j| \leqslant \left(\sum_{j=1}^{n} |x_j|^p \right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |y_j|^q \right)^{\frac{1}{q}} = \|x\|_p \|y\|_q$$
 (7.8)

Lecture 8: Sep 25, 2017

8.1 Logistics

Expect assignment 2 to be up tonight!

8.2 Continuing Normed Vector Space

Proof (Holder's Inequality)

 $||x||_p ||y||_q = 0 \implies (x = 0 \lor y = 0) \land \text{ the inequality is trivial. Let us assume } ||x||_p ||y||_q \neq 0.$ For j = 1, ..., n

$$\alpha_j = \frac{|x_j|}{\|x\|_p}, \quad \beta_j = \frac{|y_j|}{\|y\|_q}$$

Then

$$\begin{split} \frac{1}{\|x\|_p \|y\|_q} \sum_{j=1}^n |x_j| |y_j| &= \sum_{j=1}^n \alpha_j \beta_j \overset{(1)}{\leqslant} \sum_{j=1}^n \left(\frac{\alpha_j^p}{p} + \frac{\beta_j^q}{q} \right) \\ &= \frac{1}{p} \sum_{j=1}^n \alpha_j^p + \frac{1}{q} \sum_{j=1}^n \beta_j^q \\ &= \frac{1}{p \|x\|_p^p} \sum_{j=1}^n |x_j|^p + \frac{1}{q \|y\|_q^q} \sum_{j=1}^n |y_j|^q \\ &= \frac{1}{p \|x\|_p^p} \|x\|_p^p + \frac{1}{q \|y\|_q^q} \|y\|_q^q = \frac{1}{p} + \frac{1}{q} \overset{(2)}{=} 1 \end{split}$$

where (1) is by Lemma 7.1.1 and (2) is by choice of q.

Hence, we multiply by $||x||_p ||y||_q$ and see that

$$\sum_{j=1}^{n} |x_j| |y_j| \le ||x||_p ||y||_q \tag{8.1}$$

Theorem 8.2.1 (Minkowski's Inequality)

Let $x, y \in \mathbb{R}^n$ and 1 . Then

$$||x + y||_p \le ||x||_p + ||y||_p \tag{8.2}$$

Proof

If x + y = 0, this is trivial, hence suppose $x + y \neq 0$. Compute

$$\begin{split} \|x+y\|_p^p &= \sum_{j=1}^n |x_j+y_j|^p = \sum_{j=1}^n |x_j+y_j||x_j+y_j|^{p-1} \\ &= \sum_{j=1}^n \left(|x_j|+|y_j|\right)|x_j+y_j|^{p-1} \\ &= \sum_{j=1}^n |x_j||x_j+y_j|^{p-1} + \sum_{j=1}^n |y_j||x_j+y_j|^{p-1} \\ &\leqslant \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}} \left(\sum_{j=1}^n |x_j+y_j|^{(p-1)q}\right)^{\frac{1}{q}} \\ &+ \left(\sum_{j=1}^n |y_j|^p\right)^{\frac{1}{p}} \left(\sum_{j=1}^n |x_j+y_j|^{(p-1)q}\right)^{\frac{1}{q}} \\ &= (\|x\|_p + \|y\|_p) \left(\sum_{j=1}^n |x_j+y_j|^{(p-1)q}\right)^{\frac{1}{q}} \end{split}$$

We have $\frac{1}{p} + \frac{1}{q} = 1 \implies \frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p} \implies p = q(p-1)$, and thus

$$||x + y||_p^p \le (||x||_p + ||y||_p) \left(\sum_{j=1}^n |x_j + y_j|^p\right)^{\frac{1}{q}}$$
$$= (||x||_p + ||y||_p)||x + y||_p^{\frac{p}{q}}$$

Now divide $||x + y||_p^{\frac{p}{q}} \neq 0$, we get

$$||x+y||_p = ||x+y||_p^{p-\frac{p}{q}} \le ||x||_p + ||y||_p \quad (since \ p - \frac{p}{q} = p(1 - \frac{1}{q}) = \frac{p}{p} = 1)$$
 (8.3)

Corollary 8.2.1 ($\|\cdot\|_p$ is a norm)

Given $1 , <math>\|\cdot\|_p$ is a norm on \mathbb{R}^n .

Proof

Clearly, $\|\cdot\|_p$ is non-negative and non-degenerate. If $\alpha \in \mathbb{R}, x \in \mathbb{R}^n$ then

$$\|\alpha x\|_{p} = \left(\sum_{j=1}^{n} |\alpha x_{j}|_{p}^{p}\right)^{\frac{1}{p}} = \left(\sum_{j=1}^{n} |\alpha|^{p} |x_{j}|^{p}\right)^{\frac{1}{p}}$$
$$= |\alpha| \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}} = |\alpha| \|x\|_{p}$$

Finally, subadditivity is provided by Theorem 8.2.1.

8.3 ℓ_p -spaces

Consider $\mathbb{R}^n = \{x = (x_k)_{k=1}^{\infty} : x_k \in \mathbb{R} \}$ which is a \mathbb{R} -vector space:

$$(x_k)_{k=1}^{\infty} + (y_k)_{k=1}^{\infty} = (x_k + y_k)_{k=1}^{\infty}, \quad \alpha(x_k)k = 1^{\infty} = (\alpha x_k)k = 1^{\infty}$$
(8.4)

We let, for $1 \leq p < \infty$,

• $\ell_p = \{x = (x_k)_{k=1}^{\infty} \in \mathbb{R}^{\mathbb{N}} : \sum_{k=1}^{\infty} |x_k|^p = \lim_{n \to \infty} \sum_{k=1}^n |x_k|^p < \infty \}$

$$\ell_{\infty} = \{ x = (x_k)_{k=1}^{\infty} : \sup_{k \in \mathbb{N}} |x_k| < \infty \}$$

On ℓ_p we define

$$||x||_p = \begin{cases} \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} & 1 \leq p < \infty \\ \sup_{k \in \mathbb{N}} |x_k| & p = \infty \end{cases}$$

$$(8.5)$$

Theorem 8.3.1 $(\ell_p \text{ is a } \mathbb{R}\text{-subspace})$

Let $1 \leq p < \infty$. Then ℓ_p is a \mathbb{R} -subspace of $\mathbb{R}^{\mathbb{N}}$ and $\|\cdot\|_p$ is a norm.

Proof

We shall prove these statements together. Suppose that $x, y \in \ell_p$. Then

$$||x + y||_{p} = \left(\sum_{k=1}^{\infty} |x_{k} + y_{k}|^{p}\right)^{\frac{1}{p}} \quad (may \ be \ \infty, \infty^{\frac{1}{p}} = \infty)$$

$$= \left(\lim_{n \to \infty} \sum_{k=1}^{n} |x_{k} + y_{k}|^{p}\right)^{\frac{1}{p}}$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} |x_{k} + y_{k}|^{p}\right)^{\frac{1}{p}} \quad \left(x \mapsto x^{\frac{1}{p}} \text{ is cts on } [0, \infty) \atop x \to \infty \implies x^{\frac{1}{p}} \to \infty\right)$$

$$\leqslant \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n} |x_{k}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |y_{k}|^{p}\right)^{\frac{1}{p}}\right] \quad by \ Theorem \ 8.2.1 \ on \ each \ n$$

$$= \left(\lim_{n \to \infty} \sum_{k=1}^{n} |x_{k}|^{p}\right)^{\frac{1}{p}} + \left(\lim_{n \to \infty} \sum_{k=1}^{n} |y_{k}|^{p}\right)^{\frac{1}{p}} \quad cty \ again$$

$$= \left(\sum_{k=1}^{\infty} |x_{k}|^{p}\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} |y_{k}|^{p}\right)^{\frac{1}{p}} = ||x||_{p} + ||y||_{p} < \infty$$

Thus $x + y \in \ell_p$, and we get subaddivity of $\|\cdot\|_p$.

We note that non-negativity and non-degeneracy of $\|\cdot\|_p$ are obvious properties. Liekwise, the $|\cdot|$ -homogeneity is straightforward.

Theorem 8.3.2 $((\ell_{\infty}, \|\cdot\|_{\infty}))$ is a normed vector space) $(\ell_{\infty}, \|\cdot\|_{\infty})$ is a normed vector space.

Proof

$$x, y \in \ell_{\infty} \implies$$

$$\begin{split} \|x+y\|_{\infty} &= \sup_{k \in \mathbb{N}} |x_k+y_k| \leqslant \sup_{k \in \mathbb{N}} (|x_k|+y_k|) \\ &\leqslant \sup_{j,k \in \mathbb{N}} (|x_j|+|y_k|) \\ &= \sup_{j \in \mathbb{N}} |x_j| + \sup_{k \in \mathbb{N}} |y_k| = \|x\|_{\infty} + \|y\|_{\infty} \end{split}$$

Other properties are easy (exercise).

```
Note that the norm must be non-negative since \forall x \in \ell_{\infty}, \|x\|_{\infty} = \max\{|x_1|, |x_2|, ..., |x_n|\} > 0.
The norm is also non-degenerate, since if x = 0, then \|x\|_{\infty} is trivially zero, and if \|x\|_{\infty} = 0, then each |x_k| = 0 for all k, thus x = 0.
The norm is clearly \|\cdot\|-homogenous, since given \alpha x \in \ell_{\infty},
\|\alpha x\|_{\infty} = \max\{|\alpha x_1|, |\alpha x_2|, ..., |\alpha x_n|\}
= \alpha \max\{|x_1|, |x_2|, ..., |x_n|\}
= \alpha \|x\|_{\infty}
```

п

Lecture 9: Sep 27, 2017

9.1 Last Time

Note

$$1 \leq p < \infty$$

$$\ell_p = \left\{ x = (x_k)_{k=1}^{\infty} \in \mathbb{R}^{\mathbb{N}} : ||x||_p = \left(\sum_{k=1}^n |x_k|^p \right)^{\frac{1}{p}} \right\}$$

$$\ell_{\infty} = \left\{ x = (x_k)_{k=1}^{\infty} \in \mathbb{R}^{\mathbb{N}} : ||x||_{\infty} = \sup_{k \in \mathbb{N}} |x_k| \right\}$$

9.2 Continuing with ℓ_p

Define

$$c_0 = \{x = (x_k)_{k=1}^{\infty} \in \mathbb{R}^{\mathbb{N}} : \lim_{k \to \infty} x_k = 0\}$$

Note that c_0 is a \mathbb{R} -subspace of $\mathbb{R}^{\mathbb{N}}: x, y \in c_0$ and $\alpha \in \mathbb{R}$, then

$$x + y = (x_k + y_k)_{k=1}^{\infty} \in c_0 \left[x_k + y_k \stackrel{k \to \infty}{\to} 0 \right], \ \alpha x \in c_0$$

Also $(0) = (0, 0, ...) \in c_0$. Also, $c_l \subset \ell_{\infty}$. Indeed, let $n_1 \in \mathbb{N}$ such that

$$n \geqslant n_1 \implies |x_n - 0| = |x_k| < 1 \quad \text{(here, } \epsilon = 1\text{)}$$

Then for $h \in \mathbb{N}$,

$$|x_k| \le \max\{x_1|, ..., |x_{n_1-1}|, 1\} = M$$

i.e. $||x||_{\infty} = \sup_{h \in \mathbb{N}} |x_k| \leq M$.

Definition 9.2.1 (The space C[a,b])

Let $a < b \in \mathbb{R}$, and

$$C[a,b] = \{ f \in \mathbb{R}^{[a,b]} : f \text{ is continuous } \}$$

$$(9.1)$$

Note that C[a,b] is a \mathbb{R} -vector space $f,g\in C[a,b],\ \alpha\in\mathbb{R},\ define\ f+g,\alpha f\in\mathbb{R}^{[a,b]}$ by

$$(f+g)(t) = f(t) + g(t), \ (\alpha f)(t) = \alpha f(t)$$
 (9.2)

for all $t \in [a, b]$

Theorem 9.2.1 (Extreme Value Theorem)

if $f \in C[a,b]$ then there exists $t_{\min}, t_{\max} \in [a,b]$ for which

$$f(t_{\min}) \le f(t) \le f(t_{\max}) \quad \text{for all } t \in [a, b]$$
 (9.3)

Consequently from the Extreme Value Theorem (Theorem 9.2.1), if $f \in C[a, b]$, $|f(\cdot)| \in C[a, b]$ and there is $t_{\max} \in [a, b]$ for which $|f(t)| \leq |f(t_{\max})|$ for $r \in [a, b]$. Define, for $f \in C[a, b]$, $||f||_{\infty} = \max_{t \in [a, b]} |f(t)|$.

Just like for $(\ell_{\infty}, \|\cdot\|_{\infty})$, we have that $(C[a, b], \|\cdot\|_{\infty})$ is a normed vector space.

We note that $\|\cdot\|_{\infty}$ is not the only norm on C[a,b]. Let $1 \leq p < \infty$ and let, for $f \in C[a,b]$

$$||f||_p = \left(\int_a^b |f(t)|^p dt\right)^{\frac{1}{p}} \quad \text{(good ol' Riemann integral)} \tag{9.4}$$

Theorem 9.2.2 (($C[a,b], \|\cdot\|_p$) as a normed vector space) ($C[a,b], \|\cdot\|_p$), $(1 \le p < \infty)$ is a normed vector space.

Proof

First, let us recall right endpoint Riemann sums: $f, g \in C[a, b]$, then

$$\int_{a}^{b} g(t)dt = \lim_{n \to \infty} \sum_{k=1}^{n} g\left(a + \frac{k}{n}(b-a)\right) \frac{b-a}{n}$$

$$(9.5)$$

Hence if $f \in C[a, b]$, then

$$||f||_p = \left(\lim_{n \to \infty} \sum_{k=1}^n |f(b_k)|^p \frac{b-a}{n}\right) \quad \text{where } b_k = a + \frac{k}{n}(b-a)$$
$$= \lim_{n \to \infty} \left(\sum_{k=1}^n |f(b_k)|^p\right)^{\frac{1}{p}} \left(\frac{b-a}{n}\right)^{\frac{1}{p}}$$

Now, suppose, $f, g \in C[a, b]$

$$||f + g||_{p} = \lim_{n \to \infty} \left(\sum_{k=1}^{n} |f(b_{k}) + g(b_{k})|^{p} \right) \left(\frac{b - a}{n} \right)^{\frac{1}{p}}$$

$$\leq \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n} |f(b_{k})|^{p} \right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |g(b_{k})|^{p} \right)^{\frac{1}{p}} \right] \left(\frac{b - s}{n} \right)^{\frac{1}{p}}$$

$$= \lim_{n \to \infty} \left(\sum_{k=1}^{n} |f(b_{k})|^{p} \right)^{\frac{1}{p}} \left(\frac{b - a}{n} \right)^{\frac{1}{p}} + \lim_{n \to \infty} \left(\sum_{k=1}^{n} |g(b_{k})|^{p} \right)^{\frac{1}{p}} \left(\frac{b - a}{n} \right)^{\frac{1}{p}}$$

$$= ||f||_{p} + ||g||_{p}$$

hence we have subadditivity of $\|\cdot\|_p$. It is routine to verify that for $\alpha \in \mathbb{R}$, $f \in C[a,b]$ we have

$$\|\alpha f\|_p = |\alpha| \|f\|_p \tag{9.6}$$

and $||f||_p \ge 0$ as $|f(\cdot)|^p \ge 0$ and finally

$$||f||_p = 0 \iff \int_a^b |f(t)|^p dx = 0 \iff |f(t)|^p = 0 \text{ for all } t \in [a, b] \iff f = 0$$

$$((1) \text{ as } |f(t)|^p \ge 0 \text{ for all } t).$$

Note (Summary thus far about Normed Vector Spaces)

$$(\mathbb{R}, |\cdot|)$$

$$(\mathbb{R}^{\mathbb{N}}, \|\cdot\|_p), \ 1 \leq p < \infty$$

$$(\ell_p, \|\cdot\|_p), \ 1 \leq p < \infty$$

$$(c_0, \|\cdot\|_{\infty})$$

$$(C[a, b], \|\cdot\|_p), \ 1 \leq p < \infty$$

9.3 Topology of metric spaces

Definition 9.3.1 (Open and Closed Balls)

Let (X,d) be a metric space, $x_0 \in X$, and $\epsilon > 0$. We define

- (open ball) $B(x_0, \epsilon) = \{x \in X : d(x_0, x) < \epsilon\}$
- (closed ball) $B[x, \epsilon] = \{x \in X : d(x_0, x) \le \epsilon\}$

Example 9.3.1

In \mathbb{R} we have for a < b

$$(a,b) = B\left(\frac{1}{2}(a+b), \frac{1}{2}(b-a)\right)$$
$$[a,b] = B\left[\frac{1}{2}(a+b), \frac{1}{2}(b-a)\right]$$

Definition 9.3.2 (Open and Closed Sets)

Let X, d be a metric space.

• $A \ set \ U \subseteq X \ is \ open \ if$

$$\forall x \in U \ \exists \epsilon_x > 0 \ B(x, \epsilon_x) \subseteq U \tag{9.8}$$

• A set $F \subseteq X$ is closed if $X \setminus F$ is open.

Proposition 9.3.1 (Open/Closed Balls are Open/Closed Sets)

Let $(X, d), x_0, \epsilon$ as above.

- 1. $B(x_0, \epsilon)$ is open.
- 2. $B[x_0, \epsilon]$ is closed.

Proof

1. Let $x \in B(x_0, \epsilon)$. Let $\epsilon_x = \epsilon - d(x_0, x) > 0$. Then for $y \in B(x, \epsilon_x)$ and we have

$$d(x_0, y) \le d(x_0, x) + d(y, x) < d(x_0, x) + \epsilon_x$$

= $d(x_0, x) + \epsilon - d(x_0, x) = \epsilon$

So $y \in B(x_0, \epsilon)$, i.e. $B(x, \epsilon_x) \subseteq B(x_0, \epsilon)$.

2. Let $x \in X \setminus B[x_0, \epsilon]$, and let $\epsilon_x = d(x, x_0) - \epsilon > 0$. Now if $y \in B(x, \epsilon_x)$ then

$$d(x, x_0) \leq d(x, y) + d(y, x_0)$$
$$< \epsilon_x + d(y, x_0)$$
$$= d(x, x_0) - \epsilon + d(y, x_0)$$

 $\implies \epsilon < d(y, x_0), i.e. \ y \notin B[x_0, \epsilon], i.e. \ y \in X \setminus b[x_0, \epsilon], so \ B(x, \epsilon_x) \subseteq X \setminus B[x_0, \epsilon].$

Remark

We may let

$$B[x_0, 0] = \{x \in X : d(x_0, x) \le 0\} = \{x_0\}$$

$$(9.9)$$

As above, singleton sets $\{x_0\}$ are closed.

Lecture 10: Sep 27, 2017

10.1 Continuing with Balls

Note (Recall)

(X,d) be a metric space, $x_0 \in X$, $\epsilon > 0$

$$B(x_0, \epsilon) = \{x \in X : d(x_0, x) < \epsilon\}$$

$$B[x_0, \epsilon] = \{x \in X : d(x_0, x) \le \epsilon\}$$

Example 10.1.1

1. $X \neq \emptyset$, $|X| \geqslant 2$, the discrete metric

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

We have for $x_0 \in X$,

$$B(x_0\epsilon) = \begin{cases} \{x_0\} & 0 < \epsilon \le 1 \\ X & \epsilon > 1 \end{cases}$$
$$B[x_0, \epsilon] = \begin{cases} \{x_0\} & 0 < \epsilon < 1 \\ X & \epsilon \geqslant 1 \end{cases}$$

2. (Geometry of balls in \mathbb{R}^2)

$$1 \le p < \infty$$
, $B_p(0,1) = \{x \in \mathbb{R}^2, d_p(0,x) = ||x||_p < 1\}$

Pictures

 $B_1(0,1): x_1 + x_2 = 1$ is a diamond-shaped "ball"

 $B_2(0,1)$ is a round "ball"

 $B_{\infty}(0,1)$ is a squared "ball"

 $B_p(0,1)$ 1 < p < 2 the "ball" is inscribed inside the circle

 $B_p(0,1)$ 2 < $p < \infty$: circle is inscribed within (a square with rounded corners)

Proposition 10.1.1

Let (X, d) be a metric space.

- 1. X, \emptyset are both open and closed.
- 2. If $\{U\}_{i\in I}$ is a family of open sets, then

$$\bigcup_{i \in I} U_i \quad is \ open \tag{10.1}$$

3. If $\{U_1, ..., U_n\}$ is a finite family of open sets, then

$$\bigcap_{i=1}^{n} U_{i} \quad is \ open \tag{10.2}$$

4. If $\{F_i\}_{i\in I}$ is a family of closed sets, then

$$\bigcap_{i \in I} F_i \quad is \ closed \tag{10.3}$$

5. Of $\{F_1, ..., F_n\}$ is a finite family of closed sets, then

$$\bigcup_{i=1}^{n} F_i \quad is \ closed \tag{10.4}$$

[Recall that singleton sets are closed, hence (5) implies that finite sets are closed]

Proof

1. Let $x \in X$. Then $x \in B(x,1) \subseteq X$, so X is open. The test for openness of \emptyset is vacuously true (i.e. there are no points to speak of: there are no $x \in \emptyset$ at all, hence for any such x, we have x is "contained" in a ball in \emptyset).

We have $\emptyset = X \backslash X$, $X = X \backslash \emptyset$ are closed.

2. Let $x \in U = \bigcup_{i \in I} U_i$. Then there is some $i_0 \in I$ so $x \in U_{i_0}$, which is open, so there is an $\epsilon_x > 0$ such that

$$x \in B(x, \epsilon_x) \subseteq U_{i_0} \subseteq U \tag{10.5}$$

3. Let $x \in V = \bigcap_{i=1}^n U_i$. Then for each i = 1, ..., n, there is $\epsilon_i > 0$ so $B(x, \epsilon_i) \subseteq U_i$. Let $\epsilon = \min\{\epsilon_1, ..., \epsilon_n\} > 0$ and $B(x, \epsilon) \subseteq \bigcap_{i=1}^n B(x, \epsilon_i) \subseteq V$

For (4) and (5), use De Morgan's Laws and (2) & (3) from above.

Definition 10.1.1 (Boundary)

Given a metric space (X,d), $A \subseteq X$, we define the boundary of A as

$$\partial A = \{ x \in X : \forall \epsilon > 0 \ B(x, \epsilon) \cap A \neq \emptyset, \ \underbrace{B(x, \epsilon) \setminus A}_{B(x, \epsilon) \cap (X \setminus A)} \neq \emptyset \}$$
 (10.6)

Remark

 $\partial A = \partial (X \backslash A)$

Definition 10.1.2 (Interior)

We let the interior of A

$$A^{\circ} = \bigcup \{ U \subseteq X : U \subseteq A \land U \text{ is open} \}$$
 (10.7)

Proposition 10.1.2 (Characterizations of the Interior)

If (X,d), A are as above, then

$$A^{\circ} = \{ x \in X : \exists \epsilon_x > 0 \ B(x, \epsilon_x) \subseteq A \}$$
 (10.8)

$$= A \backslash \partial A \tag{10.9}$$

Proof

Let $x \in A$. Then we have either

- for some $\epsilon_x > 0$, $x \in \underbrace{B(x, \epsilon_x)}_{open} \subseteq A \implies x \in A^\circ$; or
- $\forall \epsilon > 0$, $B(x.\epsilon) \setminus A \neq \emptyset \implies since \ x \in A \cap B(x,\epsilon)$, we have $x \in \partial A$. Since $A^{\circ} \subseteq A$, we see that the two equalities in Equation 10.9 coincide.

Definition 10.1.3 (Convergence)

Let (X,d) be a metric space, $(x_n)_{n=1}^{\infty} \subseteq X$ and $x_0 \in X$. Then we say that $(x_n)_{n=1}^{\infty}$ converges to the limit x_0 , written

$$x_0 = \lim_{n \to \infty} x_n \tag{10.10}$$

or

$$x_n \underset{n \to \infty}{\longrightarrow} x_0 \tag{10.11}$$

if

$$\forall \epsilon > 0 \ \exists n_{\epsilon} \in \mathbb{N}$$
$$n \geqslant n_{\epsilon} \implies d(x_0, x_n) < \epsilon$$

Remark

The limit, if it exists, is unique. Indeed, since

$$x_0 = \lim_{n \to \infty} x_n \wedge y_0 = \lim_{n \to \infty} x_n$$

then

$$\forall \epsilon > 0 \; \exists n_{\epsilon}, n'_{\epsilon} \in \mathbb{N}$$

$$n \geqslant n_{\epsilon} \implies d(x_{0}, x_{n}) < \frac{\epsilon}{2}$$

$$n \geqslant n'_{\epsilon} \implies d(y_{0}, x_{n}) < \frac{\epsilon}{2}$$

But then if $n \ge \max\{n_{\epsilon}, n'_{\epsilon}\}$ we have

$$d(x_0, y_0) \leqslant d(x_0, x_n) + d(x_n, y_0) < \epsilon$$

If this holds for all $\epsilon > 0$, $d(x_0, y_0) = 0$ so $x_0 = y_0$.

Example 10.1.2

Let $(V, \|\cdot\|)$ be a normed vector space. A subset $\{e_n\}_{n=1}^{\infty} \subseteq V$ is a **Schauder basis** provided that

$$\forall x \in V \exists ! \{x_n\}_{n=1}^{\infty}$$
$$x = \lim_{n \to \infty} \sum_{k=1}^{n} x_k e_k \in V$$

Example: In ℓ_p $(1 \le p < \infty)$, let $e_n = (0, ..., 0, \frac{1}{n\text{-th place}}, 0, ..)$

Definition 10.1.4 (Accumulation points/Cluster Points and Isolated Points)

We let (X, d) is a metric space, $A \subseteq X$ as above, the set of accumulation points (or cluster points) be given

$$A' = \{ x \in X : \forall \epsilon > 0 \ (B(x, \epsilon) \setminus \{x\}) \cap A \neq \emptyset \}$$
 (10.12)

(aka a punctured ball).

Furthermore, we call elements of $A \setminus A'$ as isolated points.

Proposition 10.1.3

Given (X,d) as a metric space, $A \subseteq X$ as above, the set of all accumulation points

$$A' = \{x \in X : x = \lim_{n \to \infty} x_n, \text{ where } (x_n)_{n=1}^{\infty} \subseteq A \setminus \{x\}\}$$

Proof

If $x \in A'$, let $x_1 \in (B(x,1)\setminus\{x\}) \cap A$, and inductively let

$$x_{n+1} \in (B(x, \epsilon_n) \setminus \{x\}) \cap A$$

where $\epsilon + m = \min\{\frac{1}{n}, d(x, x_n).$

Then we have (exercise) that $x = \lim_{n\to\infty} x_n$, while $(x_n)_{n=1}^{\infty} \subseteq A \setminus \{x\}$. [Notice the points $x_1, x_2, ..., x_n$ are distinct]

The converse inclusion just uses the definition of limits.

Lecture 11: Oct 2, 2017

11.1 Last time

Note (3 Descriptions of interior A°)

$$\bigcup \{U \subseteq A : U \text{ open in } X\}, \{x \in X : \exists \epsilon_x > 0, \ B(x, \epsilon_x) \subseteq A\}$$

11.2 Continuing with Accumulation Points

$$A' = \{x \in X : \forall \epsilon > 0, (B(x\epsilon) \setminus \{x\}) \cap A \neq \emptyset\}$$

Also
$$A' = \{x \in X : x = \lim_{n \to \infty} x_n, (x_n)_{n=1}^{\infty} \subset A \setminus \{x\}\}$$

Definition 11.2.1 (Closure)

Given a metric space (X,d) and $A \subseteq X$, define the closure of A by

$$\bar{A} = \bigcap \{ F \subseteq X : A \subseteq F, F \text{ is closed in } X \}$$
 (11.1)

Of course, $A^{\circ} \subseteq A \subseteq \bar{A}$.

Theorem 11.2.1 (Characterization of the Closure)

Given a metric space (X,d), $A \subseteq X$, the following sets are the same

$$\bar{A} \quad A \cup \partial A \quad A \cup A'$$
 (11.2)

("meet" set) $A_m = \{x \in X : \forall \epsilon > 0, \ B(x, \epsilon) \cap A \neq \emptyset\}.$

("limit" set)
$$A_L = \{x \in X : x = \lim_{n \to \infty} x_n, \text{ where } (x_n)_{n=1}^{\infty} \subseteq A\}$$

[The notations A_L , A_m will not be used afterwards, we shall use \bar{A} .]

Proof

We have

$$\begin{split} \bar{A} &= \bigcap \{F \subseteq X : A \subseteq F, \ F \ closed\} \\ &= \bigcap \{X \backslash U : U \subseteq X \backslash A, \ U \ open \ in \ X\} \\ &= X \backslash \bigcup \{U : U \subseteq X \backslash A \ U \ open \ in \ X\} \quad De \ Morgon's \ Law \\ &= X \backslash [(X \backslash A)^{\circ}] \quad (complement \ of \ interior) \\ &= X \backslash [(X \backslash A) \backslash \partial (X \backslash A)] \quad (definition \ of \ (X \backslash A)^{\circ}) \\ &= X \backslash [(X \backslash A) \backslash \partial A] \\ &= A \cup \partial A \end{split}$$

We thus have that $\bar{A} = A \cup \partial A$.

Now if $x \in A \cup \partial A$, then $\forall \epsilon > 0, B(x, \epsilon) \cap A \neq \emptyset$ [i.e. either $x \in A \cap B(x, \epsilon)$, or $x \in \partial A$, so that $B(x, \epsilon) \cap A \neq \emptyset$]. Thus $A \cup \partial A \subseteq A_m$. Conversely, if $x \in A_m$, then, either

- $\exists \epsilon > 0, \ B(x, \epsilon) \subset A \implies x \in A^{\circ} \subseteq A, \ or$
- $\forall \epsilon > 0$, $B(x, \epsilon) \cap A \neq \emptyset$, in which case $x \in \partial A$.

Hence, $x \in A_m \implies x \in A \cup \partial A \text{ so } A_m \subseteq A \cup \partial A$.

If $x \in A \cup A'$, then $\forall \epsilon > 0$, $B(x,\epsilon) \cap A \neq \emptyset$. Indeed, as above, either $x \in A$, so $\forall \epsilon > 0, x \in B(x,\epsilon) \cap A$, or $x \in A'$ so that $B(x,\epsilon) \cap A \supseteq (B(x,\epsilon) \setminus \{x\}) \cap A \neq \emptyset$. Hence $A \cup A' \subseteq A_m$.

The definition of a limit of a sequence shows that $A_m = A_L$.

Finally, consider

$$X \setminus (A \cup A') \subseteq \{x \in X : \exists \epsilon_x > 0, \ B(x, \epsilon_x) \cap A = \emptyset (\Longrightarrow B(x, \epsilon_x) \subseteq X \setminus A) \}$$
$$= (X \setminus A)^\circ \Longrightarrow X \setminus [(X \setminus A)^\circ] \subseteq X \setminus [X \setminus (A \cup A')]$$

Hence

$$\bar{A} = X \setminus [(X \setminus A)^{\circ}] \subseteq X \setminus [X \setminus (A \cup A')]$$
$$= A \cup A'$$

Hence $\bar{A} \subseteq A \cup A' \subseteq A_m = \bar{A}$, so $\bar{A} = A \cup A'$.

Note

The "limit" set is going to help in A2

11.3 Continuous Functions

Definition 11.3.1 (Continuity)

Let (X, d_X) and (Y, d_Y) be metric spaces. Let $f: X \to Y$ and $x_0 \in X$. We say that f is continuous at x_0 if

$$\forall \epsilon > 0 \quad \delta > 0$$

$$d_X(x, x_0) < \delta \implies d_Y(f(x), f(x_0)) < \epsilon$$
(11.3)

We say that f is continuous at the domain X if it is continuous at each point in X.

Note

Equation 11.3
$$\iff f(B(x,\delta) \subseteq B(f(x),\epsilon))$$

 $\iff B(x,\delta) \subseteq f^{-1}B((f(x),\epsilon))$

Definition 11.3.2 (Neighbourhood)

In a metric space, a set N is a **neighbourhood** of a point x_0 , if $x_0 \in N^{\circ}$ (interior).

Theorem 11.3.1 (Characterization of continuity at a point)

If $(X, d_X), (Y, d_Y), f: X \to Y, x \in X$ are as above, then TFAE:

- 1. f is continuous at x_0
- 2. $\forall N \text{ of } f(x_0) \in (Y, d_Y), \text{ we have } f^{-1}(N) \text{ is a neighbourhood of } x_0 \text{ in } (X, d_X).$
- 3. $x_0 = \lim_{n \to \infty} x_n \in (X, d_X) \implies f(x_0) = \lim_{n \to \infty} f(x_n) \in (Y, d_Y)$

Proof

$$(1) \implies (2)$$

Given a neighbourhood N of $f(x_0)$, $\exists \epsilon > 0$, $B(f(x_0), \epsilon) \subseteq N$. By assumption of (1), $\exists \delta > 0$, $B(x_0, \delta) \subseteq f^{-1}(B(f(x_0), \epsilon) \subseteq f^{-1}(N)$. Thus $f^{-1}(N)$ is a neighbourhood of x_0 .

$$(2) \implies (1) \implies (3)$$

Given $\epsilon > 0$, $B(f(x_0), \epsilon)$ is a neighbourhood of $f(x_0)$, so $f^{-1}(B(f(x_0), \epsilon))$ is a neighbourhood of x_0 , and hence $\exists \delta > 0$, $B(x_0, \delta) \subseteq f^{-1}(B(f(x_0), \epsilon))$, which proves (1).

Now if $x_0 = \lim_{n\to\infty} x_n \in (X, d_X)$, then by definition, $\exists n_\delta \in \mathbb{N}$ such that if $n \ge n_\delta$, $x_n \in B(x_0, \delta)$. But then for $n \ge n_\delta$, we have

$$f(x_n) \in f(B(x,\delta)) \subseteq B(f(x_0),\epsilon)$$

and hence $f(x_0) = \lim_{n \to \infty} f(x_n)$.

(3) \Longrightarrow (1) which we shall prove by contrapositive, i.e. $\neg(1) \Longrightarrow \neg(3)$ If $\neg(1)$, then $\exists \epsilon > 0, \ \forall \delta > 0$

$$B(x_0, \delta) \subset f^{-1}(B(f(x_0), \epsilon)).$$

Hence for each $n \in \mathbb{N}$, we may find

$$x_n \in B(x_0, \frac{1}{n}) \backslash f^{-1}(B(f(x_0), \epsilon))$$

Given $\epsilon' > 0$, $\exists n_{\epsilon'} \in \mathbb{N}$, $\forall n_{\epsilon'} \geqslant \frac{1}{\epsilon'}$. Then for $n \geqslant n_{\epsilon'}$, $x_n \in B(x_0, \epsilon')$ thus $\lim_{n \to \infty} x_n = x_0$. However, each $f(x_n) \notin B(f(x_0), \epsilon)$, so $f(x_n) \underset{n \to \infty}{+} f(x_0)$.