Universidade Federal do Paraná - UFPR Centro Politécnico Departamento de Matemática

Disciplina: Introdução a Geometría Analítica e Álgebra Linear Código: CM303

Lista semana 13

- 1. Em cada um dos itens abaixo, determine uma equação da hipérbole desejada.
 - (a) Hipérbole com focos em (-5,0) e (5,0) e vértices reais em (-3,0) e (3,0).
 - (b) Hipérbole vértices reais em (-4,0) e (4,0) passando pelo ponto (8,2).
 - (c) Hipérbole com focos em (0, -5) e (0, 5) e comprimento de eixo imaginário igual a 4. Observação. O eixo imaginário é a distância entre os vértices imaginários. Estes estão posicionados na reta que passa pelo centro da hipérbole e é perpendicular ao eixo real. Cada vértice imaginário está a uma distância b do centro da hipérbole.
 - (d) Hipérbole com vértices reais em (5, -2) e (3, -2) e um foco em (7, -2).
 - (e) Hipérbole com centro em (5,1), um foco em (9,1) e eixo imaginário medindo $4\sqrt{2}$.
 - (f) Hipérbole equilátera com vértices reais em (-3, -4) e (-3, 4).
 - (g) Hipérbole com centro em (-2,1), eixo real paralelo ao eixo x e passando pelos pontos (0,2) e (-5,6).
- 2. Em cada um dos itens abaixo, reescreva a equação na forma padrão, determine os elementos e faça o gráfico. Observação. Quando a curva for uma hipérbole, os elementos são: a, b, c, centro, focos, vértices reais, vértices imaginários, assíntotas e excentricidade.
 - (a) $9x^2 16y^2 = 144$.
 - (b) $9x^2 4y^2 18x 16y 43 = 0$.
 - (c) $9x^2 4y^2 54x + 8y + 113 = 0$.
 - (d) $9x^2 y^2 + 36x + 6y + 63 = 0$.
 - (e) $9x^2 4y^2 36x 24y = 0$.
- 3. Sabendo que a hipérbole $16x^2 + my^2 + nx + py + q = 0$ tem focos em $F_1 = (-2, -6)$ e $F_2 = (-2, 4)$ e excentricidade $e = \frac{5}{4}$, determine m, n, p e q.
- **4.** Sabendo que $P = (2\sqrt{10}, m)$ tem ordenada positiva e pertence à hipérbole com focos em (0, -3) e (0, 3) e um vértice real em (0, -2), determine m.
- 5. Em cada um dos itens abaixo, reescreva a equação na forma padrão, classifique a cônica, determine os elementos e faça o gráfico.
 - (a) $x^2 + 4y^2 4x 24y + 36 = 0$.
 - (b) $x^2 y^2 8x 4y + 11 = 0$.
 - (c) $y^2 8x + 6y + 17 = 0$.
 - (d) $3x^2 + 2y^2 12x + 8y + 19 = 0$.
 - (e) $x^2 + 2x + 8y 15 = 0$.
 - (f) $9x^2 4y^2 54x + 45 = 0$.
 - (g) $9y^2 25x^2 90y 50x = 25$.
- 6. Identifique e faça o gráfico das cônicas determinadas pelas equações abaixo.
 - (a) $21x^2 + 31y^2 10\sqrt{3}xy = 144$.

(b)
$$2xy = 1$$
.

(c)
$$x^2 + y^2 - 2xy - \sqrt{2}x - \sqrt{2}y = 0$$
.

(d)
$$8x^2 + 8y^2 + 8xy + 10\sqrt{2}x + 26\sqrt{2}y + 31 = 0$$
.

(e)
$$3x^2 - 10xy + 3y^2 + 16\sqrt{2}x - 32 = 0$$
.

Respostas:

1. (a)
$$\frac{x^2}{3^2} - \frac{y^2}{4^2} = 1$$
.

(b)
$$\frac{x^2}{4^2} - \frac{y^2}{(2/\sqrt{3})^2} = 1.$$

(c)
$$\frac{y^2}{(\sqrt{21})^2} - \frac{x^2}{2^2} = 1.$$

(d)
$$(x-4)^2 - \frac{(y+2)^2}{(2\sqrt{2})^2} = 1.$$

(e)
$$\frac{(x-5)^2}{(2\sqrt{2})^2} - \frac{(y-1)^2}{(2\sqrt{2})^2} = 1.$$

(f)
$$\frac{y^2}{4^2} - \frac{(x+3)^2}{4^2} = 1$$
.

(g)
$$\frac{(x+2)^2}{91/24} - \frac{(y-1)^2}{91/5} = 1.$$

2. (a) Equação:
$$\frac{x^2}{4^2} - \frac{y^2}{3^2} = 1$$
.

Elementos: a = 4, b = 3, c = 5, C = (0,0), $F_1 = (-5,0)$, $F_2 = (5,0)$, $A_1 = (-4,0)$, $A_2 = (4,0)$, $B_1 = (0,-3)$, $B_2 = (0,3)$, assíntotas y = 3x/4 e y = -3x/4, e = 5/4.

(b)
Equação:
$$\frac{(x-1)^2}{2^2} - \frac{(y+2)^2}{3^2} = 1.$$

Elementos: a = 2, b = 3, $c = \sqrt{13}$, C = (1, -2), $F_1 = (1 - \sqrt{13}, -2)$, $F_2 = (1 + \sqrt{13}, -2)$, $A_1 = (-1, -2)$, $A_2 = (3, -2)$, $B_1 = (1, -5)$, $B_2 = (1, 1)$, assíntotas y = 3x/2 - 7/2 e y = -3x/2 - 1/2, $e = \sqrt{13}/2$.

Observação. Para não sobrecarregar a figura, as medidas não foram colocadas. Elas podem ser obtidas a partir dos elementos. Por exemplo, o centro da figura está na posição (1, -2).

(c) Equação:
$$\frac{(y-1)^2}{3^2} - \frac{(x-3)^2}{2^2} = 1.$$

(c) Equação: $\frac{(y-1)^2}{3^2} - \frac{(x-3)^2}{2^2} = 1.$ Elementos: $a=3,\,b=2,\,c=\sqrt{13},\,C=(3,1),\,F_1=(3,1-\sqrt{13}),\,F_2=(3,1+\sqrt{13}),\,A_1=(3,-2),\,A_2=(3,4),\,B_1=(1,1),\,B_2=(5,1),\,$ assíntotas y=3x/2-7/2 e $y=-3x/2+11/2,\,e=\sqrt{13}/3.$

(d) Equação:
$$\frac{(y-3)^2}{6^2} - \frac{(x+2)^2}{2^2} = 1.$$

(d) Equação: $\frac{(y-3)^2}{6^2} - \frac{(x+2)^2}{2^2} = 1.$ Elementos: $a=6,\ b=2,\ c=2\sqrt{10},\ C=(-2,3),\ F_1=(-2,3-2\sqrt{10}),\ F_2=(-2,3+2\sqrt{10}),\ A_1=(-2,-3),\ A_2=(-2,9),\ B_1=(-4,3),\ B_2=(0,3),\ \text{assíntotas}\ y=3x+9$ e $y=-3x-3,\ e=\sqrt{10}/3.$

(e) Equação: 3|x-2| = 2|y+3|.

Elementos: o gráfico é composto por duas retas.

- **3.** m = -9, n = 64, p = -18 e q = 199.
- **4.** m = 6.
- 5. (a) Equação: $\frac{(x-2)^2}{2^2} + (y-3)^2 = 1.$ Classificação: elipse.

Elementos: $a=2,\,b=1,\,c=\sqrt{3},\,C=(2,3),\,A_1=(0,3),\,A_2=(4,3),\,B_1=(2,2),\,B_2=(2,4),\,F_1=(2-\sqrt{3},3),\,F_2=(2+\sqrt{3},3),\,e=\sqrt{3}/2.$

(b) Equação: $(x-4)^2 - (y+2)^2 = 1$.

Classificação: hipérbole.

Elementos: $a = 1, b = 1, c = \sqrt{2}, C = (4, -2), F_1 = (4 - \sqrt{2}, -2), F_2 = (4 + \sqrt{2}, -2), A_1 = (3, -2), A_2 = (5, -2), B_1 = (4, -3), B_2 = (4, -1), assíntotas <math>y = x - 6$ e $y = -x + 2, e = \sqrt{2}$.

(c) Equação: $8(x-1) = (y+3)^2$.

Classificação: parábola.

Elementos: p=4, V=(1,-3), F=(3,-3), reta diretriz x=-1, eixo de simetria y=-3.

(d) Equação: $\frac{(x-2)^2}{(1/\sqrt{3})^2} + \frac{(y+2)^2}{(1/\sqrt{2})^2} = 1.$

Classificação: elipse.

Elementos: $a = 1/\sqrt{2}, b = 1/\sqrt{3}, c = 1/\sqrt{6}, C = (2, -2), A_1 = (2, -2 - 1/\sqrt{2}), A_2 = (2, -2 + 1/\sqrt{2}), B_1 = (2 - 1/\sqrt{3}, -2), B_2 = (2 + 1/\sqrt{3}, -2), F_1 = (2, -2 - 1/\sqrt{6}), F_2 = (2, -2 + 1/\sqrt{6}), e = 1/\sqrt{3}.$

(e) Equação: $-8(y-2) = (x+1)^2$.

Classificação: parábola.

Elementos: p = -4, V = (-1, 2), F = (-1, 0), reta diretriz y = 4, eixo de simetria x = -1.

(f) Equação: $\frac{(x-3)^2}{12^2} - \frac{y^2}{3^2} = 1$.

Classificação: hipérbole.

Elementos: a = 2, b = 3, $c = \sqrt{13}$, C = (3,0), $F_1 = (3 - \sqrt{13}, 0)$, $F_2 = (3 + \sqrt{13}, 0)$, $A_1 = (1,0)$, $A_2 = (5,0)$, $B_1 = (3,-3)$, $B_2 = (3,3)$, assintotas y = 3x/2 - 9/2 e y = -3x/2 + 9/2, $e = \sqrt{13}/2$.

(g) Equação: $\frac{(y-5)^2}{5^2}-\frac{(x+1)^2}{3^2}=1.$ Classificação: hipérbole.

Elementos: a = 5, b = 3, $c = \sqrt{34}$, C = (-1,5), $F_1 = (-1,5 - \sqrt{34})$, $F_2 = (-1,5 + \sqrt{34})$, $A_1 = (-1,0)$, $A_2 = (-1,10)$, $B_1 = (-4,5)$, $B_2 = (2,5)$, assintotas y = 5x/3 + 20/3 e y = -5x/3 + 10/3, $e = \sqrt{34}/5$.

6. (a) Cônica: Elipse.

Àngulo de rotação:
$$30^{\circ}$$
.
Equação: $\frac{(x')^2}{3^2} + \frac{(y')^2}{2^2} = 1$.

(b)Cônica: Hipérbole.

Ângulo de rotação: 45°.

Equação: $(x')^2 - (y')^2 = 1$.

(c) Cônica: Parábola.

Ângulo de rotação: 45°.

Equação: $x' = (y')^2$.

(d) Equação: $(x'+3/2)^2 + \frac{(y'+2)^2}{3} = 1$. Classificação: elipse.

(e) Equação: $\frac{(x'-1)^2}{12} - \frac{(y'+4)^2}{2^2} = 1.$

Classificação: hipérbole.