#### (19) World Intellectual Property Organization International Bureau



#### 

### (43) International Publication Date 22 March 2001 (22.03.2001)

#### **PCT**

### (10) International Publication Number WO 01/20003 A2

(51) International Patent Classification<sup>7</sup>: C12N 15/54, 15/11, 9/12, C12Q 1/68, A01K 67/027, G01N 33/68

(21) International Application Number: PCT/EP00/09896

(22) International Filing Date:

11 September 2000 (11.09.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

99402236.6 00401388.4 10 September 1999 (10.09.1999) EP 18 May 2000 (18.05.2000) EP

(71) Applicant (for all designated States except US): INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA) [FR/FR]; 147, rue de l'Université, F-75007 Paris (FR).

(71) Applicants and

(72) Inventors: ANDERSSON, Leif [SE/SE]; Bergagatan 30, S-752 39 Uppsala (SE). LOOFT, Christian [DE/DE]; Mittelweg 3 c, 24802 Bokelholm (DE). KALM, Ernst [DE/DE]; Schmalholt 1, 24239 Achterwehr (DE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MILAN, Denis [FR/FR]; 3 bis, chemin du Tricou, F-31670 Labege (FR). ROBIC, Annie [FR/FR]; 33, rue des Capitouls, F-31650 Saint-Orens-De-Gameville (FR). ROGEL-GAILLARD, Claire [FR/FR]; 156, rue Léon Maurice Nordinam, F-75013 Paris (FR). IANNUCCELLI, Nathalie [FR/FR]; 7, boulevard des Alouettes, F-31320 Castanet-Tolosan (FR). GELLIN, Joël [FR/FR]; 8, allée des Amazones, F-31320 Auzeville (FR). LE ROY, Pascale [FR/FR]; 32, avenue Saint Marc, F-91300 Massy (FR). CHARDON, Patrick [FR/FR]; 17, rue de Petite Fontaine, F-91430 Vauhallan (FR).

(74) Agents: VIALLE-PRESLES, Marie-José et al.; Cabinet Ores, 6, avenue de Messine, F-75008 Paris (FR).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CII, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

Without international search report and to be republished upon receipt of that report.

[Continued on next page]

(54) Title: VARIANTS OF THE GAMMA CHAIN OF AMPK, DNA SEQUENCES ENCODING THE SAME, AND USES THEREOF



(57) Abstract: The invention concerns variants of the gamma chain of vertebrate AMP-activated kinase (AMPK), as well as nucleic acid sequences encoding said variants and use thereof for the diagnosis or treatment of dysfunction of energy metabolisms.



For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

VARIANTS OF THE GAMMA CHAIN OF AMPK, DNA SEQUENCES ENCODING THE SAME, AND USES THEREOF.

1

The present invention relates to new variants of the  $\gamma$  chain of AMP-activated protein kinase (AMPK), to genes encoding said variants and to uses thereof.

AMPK has a key role in regulating the energy metabolism in the eukaryotic cell (HARDIE et al., Annu. Rev. Biochem., 67, 821-855, 1998; KEMP et al., TIBS, 24, 22-25, 1999). Mammalian AMPK is a heterotrimeric complex comprising a catalytic  $\alpha$  subunit and two non-catalytic  $\beta$ 10 and  $\gamma$  subunits that regulate the activity of the  $\alpha$ subunit. The yeast homologue (denoted SNF1) of this enzyme complex is well characterised; it comprises a catalytic chain (Snf1) corresponding to the mammalian  $\boldsymbol{\alpha}$ subunit, and regulatory subunits: Sip1, Sip2 and Gal83 15 correspond to the mammalian  $\beta$ subunit, correspond to the mammalian  $\gamma$  subunit. Sequence data show that AMPK homologues exist also in Caenorhabditis elegans and Drosophila.

It has been observed that mutations in yeast SNF1 and SNF4 cause defects in the transcription of glucose-repressed genes, sporulation, thermotolerance, peroxisome biogenesis, and glycogen storage.

In the mammalian cells, AMPK has been proposed to act as a "fuel gauge". It is activated by an increase 25 in the AMP:ATP ratio, resulting from cellular stresses such as heat shock and depletion of glucose and ATP. Activated AMPK turns on ATP-producing pathways (e.g. fatty acid oxidisation) and inhibits ATP-consuming pathways (e.g. fatty acid and cholesterol synthesis), 30 through phosphorylation of the enzymes acetyl-CoA carboxylase and hydroxymethylglutaryl-CoA reductase. It has also been reported to inactivate in vitro glycogen synthase, the key regulatory enzyme of glycogen synthesis, by phosphorylation (HARDIE et al., 35

15

20

25

30

35

1998, supra); however, whether glycogen synthase is a physiological target of AMPK in vivo remained unclear.

Several isoforms of the three different AMPK subunits are present in mammals. In humans, PRKAA1 on human chromosome (HSA) 5p12 and PRKAA2 on HSA1p31 respectively encode isoforms  $\alpha 1$  and  $\alpha 2$  of the  $\alpha$  subunit, PRKAB1 on HSA12q24.1 and PRKAB2 (not yet respectively encode isoforms  $\beta1$  and  $\beta2$  of the  $\beta$  subunit, and PRKAG1 on HSA12q13.1 and PRKAG2 on HSA7q35-q36 respectively encode isoforms  $\gamma 1$  and  $\gamma 2$  of the  $\gamma$  subunit (OMIM database, http://www.ncbi.nlm.nih.gov/omim/, July 1999). HARDIE et al., [1998, supra] also mention the existence of a third isoform  $(\gamma 3)$  of the  $\gamma$  subunit of AMPK but do not provide any information about it. Analysis of the sequences of these  $\gamma$  subunits shows that they are essentially composed of four cystathione  $\beta$  synthase (CBS) domains whose function is unknown. No phenotypic effect resulting from a mutation in either of the AMPK subunits has yet been documented.

On the other hand, it has been observed that most Hampshire pigs have a high intramuscular glycogen concentration. In these pigs, glycogenolysis which occurs after slaughtering leads to an important decrease of the pH, resulting in acid meat having a reduced water-holding capacity and giving a reduced yield of cured cooked ham.

The locus (named RN) associated with high muscular content of glycogen was first identified by family segregation analysis of phenotypic data from Hampshire pigs (LE ROY et al., Genet. Res., 55, 33-40, 1990). A fully dominant allele, RN, correlated with high glycogen content occurs at a high frequency in most Hampshire populations while pigs from other breeds are assumed to be homozygous for the normal, recessive rn<sup>+</sup> allele. Subsequent studies showed that RN carriers have a large increase (about 70%) of glycogen in skeletal muscle

30

35

but not in liver (MONIN et al., in  $38^{ch}$  ICOMST, Clermont-Ferrand, FRANCE, 1992).

The large difference in glycogen content between RN and rn\* pigs leads to marked differences in meat quality and technological yield (ENFÄLT et al., J. Anim. Sci., 75, 2924-2935, 1997). The RN allele is therefore of considerable economical significance in the pig industry and most breeding companies would like to reduce or eliminate this dominant mutation.

10 The RN phenotype can be determined measuring the glycolytic potential in muscle biopsies from live animals, or after slaughter (MONIN et al., Meat 13, 49-63, 1985). However, this method has Science, severe limitations for application in practical breeding programs. The accuracy of the test is not 100%: as there 15 is some overlap in the phenotypic distribution of RN and rn<sup>+</sup>, the test is not able to distinguish RN/RN and RN/rn heterozygotes. homozygotes Further, sampling of muscle biopsies on live animals is invasive 20 and costly.

Thus, there is a strong need for the development of a simple diagnostic DNA test for the RN locus. Moreover, the dramatic phenotypic effect of the RN gene in pigs implies that this gene has an important role in the regulation of carbohydrate metabolism in skeletal muscle in other vertebrates, in particular mammals.

Skeletal muscle and liver are the two major reservoirs of glycogen in mammals and the observation of an increased muscular glycogen while liver glycogen is normal suggests that the RN phenotype maybe due to a mutation in a gene expressed in muscle but not in liver. The inventors have previously reported that the RN gene is located on pig chromosome 15 (MILAN et al., Mamm. Genome, 7, 47-51, 1996; MARIANI et al., Mamm. Genome, 7, 47-51, 1996; MARIANI et al., Mamm. Genome, 7, 47-54, 1996; LOOFT et al., Genetics Selection Evolution, 28, 437-442, 1996). They have now discovered that the RN

WO 01/20003 PCT/EP00/09896 1

allele is associated with a non-conservative mutation in a gene encoding a new muscle-specific isoform of the AMPactivated protein kinase (AMPK) y chain.

The various aspects of the present invention are based upon the discovery and characterisation of this mutation and the identification and isolation of the mutant gene.

According to the invention it is shown that a mutation in a  $\gamma$  chain of AMPK results in an altered regulation of carbohydrate metabolism, demonstrating that AMPK is an essential component of said metabolism. It is also provided a nucleic acid sequence encoding a musclespecific isoform of the  $\gamma$  chain of AMPK. Thus it provided means to regulate carbohydrate metabolism, more specifically to detect and/or correct potential or actual dysfunctions of the regulation of carbohydrate metabolism, in particular in skeletal muscle.

10

20

30

35

The invention provides a polypeptide comprising an amino acid sequence having at least 70% identity or at least 85% similarity, preferably 80% identity or at least 90% similarity, more preferably at least 90% identity or at least 95% similarity, and still more preferably at least 95% identity or at least 99% similarity, with the polypeptide SEQ ID NO: 2. invention also provides an isolated nucleic acid sequence 25 encoding said polypeptide, as well as the complement of said nucleic acid sequence.

Said polypeptide represents a new musclespecific isoform of the  $\gamma$  chain of AMPK, and will also be hereinafter referred as Prkag3; the gene encoding said polypeptide will also be hereinafter referred as PRKAG3.

According to a preferred embodiment of the said polypeptide comprises an amino acid sequence having at least 75% identity, preferably at least 80% identity with the polypeptide SEQ ID NO: 28.

20

25

30

35

"Identity" of a sequence with a reference sequence refers to the percent of residues that are the same when the two sequences are aligned for maximum correspondence between residues positions. A polypeptide having an amino acid sequence having at least X% identity with a reference sequence is defined herein as a polypeptide whose sequence may include up to 100-X amino acid alterations per each 100 amino acids of the reference amino acid sequence. Amino acids alterations include deletion, substitution or insertion of consecutive or scattered amino acid residues in the reference sequence.

"Similarity" of a sequence with a reference sequence refers to the percent of residues that are the or only differ by conservative amino acid substitutions when the two sequences are aligned for maximum correspondence between residues positions. A conservative amino acid substitution is defined as the substitution of an amino acid residue for another amino acid residue with similar chemical properties (e.g. size, charge or polarity), which generally does not change the functional properties of the protein. A polypeptide having an amino acid sequence having at least X% similarity with a reference sequence is defined herein as a polypeptide whose sequence may include up to (100-X) non-conservative amino acid alterations per each 100 amino acids of the reference amino acid sequence. Nonconservative amino acids alterations include deletion, insertion, non-conservative or substitution consecutive or scattered amino acid residues in the reference sequence.

For instance:

\* searching the "GenBank nr" database using BLASTp (ALTSCHUL et al., Nucleic Acids Res., 25, 3389-3402, 1997) with default settings and the whole sequence

. 30

SEQ ID NO: 2 as a query, the higher percents of identity or similarity with SEQ ID NO: 2 were found for:

- γl subunit of human AMPK: 65% identity or 82% similarity (score: 399);
- γl subunit of rat AMPK: 65% identity or 82% similarity (score: 399);
  - $\gamma l$  subunit of murine AMPK: 64% identity or 80% similarity (score: 390);
- γ subunit of Drosophila AMPK: 53% identity 10 or 75% similarity (score: 332);
  - Yeast Snf4: 33% identity or 56% similarity (score: 173);
- \* searching the "GenBank nr" database using BLASTp with default settings and the whole sequence SEQ ID NO: 28 as a query, the higher percents of identity or similarity were found for:
  - $\gamma 1$  subunit of human AMPK: 64% identity or 80% similarity (score: 403);
- γ2 subunit of human AMPK: 62% identity or 20 83% similarity (score: 425);
  - γ1 subunit of rat AMPK: 61% identity or 77% similarity (score: 404);
  - $\gamma 1$  subunit of murine AMPK: 63% identity or 79% similarity (score: 394);
- γ subunit of Drosophila AMPK: 52% identity or 76% similarity (score: 340).

Polypeptides of the invention include for instance any polypeptide (whether natural, synthetic, semi-synthetic, or recombinant) from any vertebrate species, more specifically from birds, such as poultry, or mammals, including bovine, ovine, porcine, murine, equine, and human, and comprising, or consisting of, the amino acid sequence of either:

- a functional Prkag3; or
- a functionally altered mutant of Prkag3.

20

25

30

"Functional" refers to a protein having a normal biological activity. Such a protein may comprise silent mutations inducing no substantial change in its activity, and having no noticeable phenotypic effects. Non-limitative examples of functional Prkag3 are:

- a porcine Prkag3 comprising at least the sequence represented in the sequence listing under SEQ ID NO: 2; this includes, for instance the polypeptide SEQ ID NO: 28;
- a human Prkag3 comprising at least the sequence represented in the enclosed sequence listing under SEQ ID NO: 4; this includes for instance the polypeptide SEQ 15 ID NO: 30.

The invention also includes splice variants of Prkag3: for instance, the nucleotide sequence SEQ ID NO: 27, and the corresponding amino-acid sequence SEQ ID NO: 28 on one hand, and the nucleotide sequence SEQ ID NO: 31 and the corresponding amino-acid sequence SEQ ID NO: 32 on the other hand represent two different splice variants of porcine Prkag3.

A "functionally altered mutant" of a protein comprises one or several mutations inducing a change in its activity. Such mutations include in particular deletions, insertions, or substitutions of amino acid residues in a domain essential for the biological activity of said protein. They may result for instance in a partial or total loss of activity, or conversely in an increase of activity, or in an impairment of the response to regulatory effectors. Deletions, insertions, or nonconservative substitutions are more likely to result in a critical effect on the biological activity; however conservative substitutions may also induce a noticeable 35 effect, if they occur at an important position of an active site of the protein.

Non-limitative examples of functionally altered mutants of Prkag3 are:

- the R41Q variant resulting from the non-conservative substitution of an arginine residue in position 41 of SEQ ID NO: 2 or SEQ ID NO: 4 by a glutamine residue (this substitution results in an important increase of the glycogen content, inducing an increased glycolytic potential of the skeletal muscle);
- the V40I variant resulting from the substitution of a valine residue in position 40 of SEQ ID NO: 2 or SEQ ID NO: 4 by an isoleucine residue (this substitution results in a decrease of the glycogen content and thus of the glycolytic potential of the skeletal muscle).
- These substitutions occur inside a portion of the first CBS domain that is highly conserved between Prkag3 and the previously known isoforms of the  $\gamma$  subunit of AMPK.
- Residue numbers for Prkag3 refer to the amino acid numbering of SEQ ID NO: 2 or SEQ ID NO: 4. Alignment of human and porcine Prkag3 sequences with previously known 11 and 12 isoforms is shown in Figure 3.

The invention also provides mutants of Prkag3 which may for instance be obtained by deletion of part of 25 a Prkag3 polypeptide. Said mutants are generally functionally altered. They may have an identity with the overall Prkag3 sequence lower than 70%. However, the identity of the non-deleted sequences of said mutants, when aligned with the corresponding Prkag3 sequences and more specifically with the corresponding sequences from SEQU ID NO: 2, should remain higher than 70%. Said mutants may for instance result from the expression of nucleic acid sequences obtained by deletion or insertion of a nucleic acid segment, or by a punctual mutation introducing a nonsense codon, in a nucleic acid sequence 35 encoding a functional Prkag3.

The invention also provides a functionally altered mutant of a  $\gamma$  subunit of AMPK, wherein said mutant comprises at least one mutation responsible for said functional alteration located within the first CBS domain, and preferably within the region thereof aligned with the region spanning from residue 30 to residue 50 of SEQ ID NO:2 or SEQ ID NO:4. Said mutation may result from the insertion, deletion, and/or substitution of one amino-acid or of several amino-acids, adjacent or not. More preferably the mutation is located within the region aligned with the region spanning from residue 35 to residue 45 of SEQ ID NO:2 or SEQ ID NO:4, for instance within the region spanning from residue 65 to residue 75 of the  $\gamma$ 1 isoform.

According to a particular embodiment, said mutation is a non-conservative substitution, preferably a R-Q substitution. According to another particular embodiment, said mutation is a conservative substitution, preferably a V-I substitution.

Advantageously, the mutation is located at a residue corresponding to residue 41 of SEQ ID NO:2 or SEQ ID NO:4, for instance in the case of the γ1 isoform, at residue 70, or at a residue corresponding to residue 40 of SEQ ID NO:2 or SEQ ID NO:4, for instance in the case of the γ1 isoform, at residue 69.

The invention also provides a heterotrimeric AMPK wherein the  $\gamma$  subunit consists of a polypeptide of the invention.

The invention also provides isolated nucleic acid sequences encoding any of the above-defined functional or functionally altered Prkag3 or functionally altered mutants of a  $\gamma$  subunit of AMPK, and nucleic acid sequences complementary of any one of these nucleic acid sequences.

This includes particularly any isolated nucleic acid having the sequence of any of the naturally

occurring alleles of a PRKAG3 gene, as well as any isolated nucleic acid having the sequence of artificial mutant of a PRKAG3 gene, provided that said nucleic acid does not consist of the EST GENBANK AA178898.

This also includes any isolated nucleic acid having the sequence of a natural or artificial mutant of a PRKAG1 or a PRKAG2 gene, wherein said mutant encodes a functionally altered  $\gamma 1$  or  $\gamma 2$  subunit of AMPK as defined above.

10

15

20

25

Nucleic acids of the invention may be obtained by the well-known methods of recombinant DNA technology and/or of chemical DNA synthesis. These methods also allow to introduce the desired mutations in a naturally occurring DNA sequence.

Examples of nucleic acids encoding naturally occurring alleles of a PRKAG3 gene are represented by SEQ ID NO: 1, which encodes a naturally occurring allele of the porcine gene and SEQ ID NO: 3, which encodes a naturally occurring allele of the human gene. These sequences may be used to generate probes allowing the isolation of PRKAG3 from other species or of other allelic forms of PRKAG3 from a same species, by screening a library of genomic DNA or of cDNA.

The invention also includes genomic sequences from any vertebrate species, more specifically from birds, such as poultry, or mammals, including in particular bovine, ovine, porcine, murine, equine, and human, comprising at least a portion of a nucleic acid sequence encoding a polypeptide of the 30 invention. preferably a portion of a PRKAG3 gene, and up to 500 kb, preferably up to 100 kb of a 3' and/or of a 5' adjacent genomic sequence.

Such genomic DNA sequences may be obtained by methods known in the art, for instance by extension of a nucleic acid sequence encoding a polypeptide of the

15

20

25

30

35

invention, employing a method such as restriction-site PCR (SARKAR et al., PCR Methods Applic., 2, 318-322, 1993), inverse PCR (TRIGLIA et al., Nucleic Acids Res., 16, 8186, 1988) using divergent primers based on a Prkag3 coding region, capture PCR (LAGERSTROM et al., PCR Methods Applic., 1, 111-119, 1991), or the like.

The invention also includes specific fragments of a nucleic acid sequence encoding a polypeptide of the invention, or of a genomic DNA sequence of the invention as well as nucleic acid fragments specifically hybridising therewith. Preferably these fragments are at least 15bp long, more preferably at least 20bp long.

"Specific fragments" refers to nucleic acid fragments having a sequence that is found only in the nucleic acids sequences encoding a polypeptide of the invention, and is not found in nucleic acids sequences encoding related polypeptides of the prior art. This excludes the nucleic acid fragments that consist of a sequence shared with one of the known PRKAG1 or PRKAG2 genes.

"Specifically hybridising fragments" refers to nucleic acid which can hybridise, fragments under stringent conditions, only with nucleic acid sequences encoding a polypeptide of the invention, hybridising with nucleic acid sequences encoding related polypeptides of the prior art. This excludes the nucleic acid fragments that consist of the complement of a sequence shared with one of the known PRKAG1 or PRKAG2 genes.

Nucleic acid fragments that consist of the EST GENBANK AA178898 or the EST GENBANK W94830 or the complements thereof are also excluded.

Said specific or specifically hybridising nucleic acid fragments may for example be used as primers or probes for detecting and/or amplifying a nucleic acid sequence encoding a polypeptide of the invention. The

invention encompasses set of primers comprising at least one primer consisting of a specific or specifically hybridising nucleic acid fragment as defined above.

The invention also provides 5 vectors comprising a nucleic acid sequence encoding a polypeptide of the invention. Vectors of the invention are preferably expression vectors, wherein a sequence encoding a polypeptide of the invention is placed under control of appropriate transcriptional and translational control elements. These vectors may be obtained and introduced in a host cell by the well-known recombinant DNA and genetic engineering techniques.

10

25

The invention also comprises a prokaryotic or eukaryotic host cell transformed by a vector of the invention, preferably an expression vector. 15

A polypeptide of the invention may be obtained by culturing the host cell containing an expression vector comprising a nucleic acid sequence encoding said polypeptide, under conditions suitable for the expression of the polypeptide, and recovering the polypeptide from the host cell culture.

A heterotrimeric AMPK wherein the  $\gamma$  subunit consists of a polypeptide of the invention may be obtained by expressing, together or separately, a nucleic acid sequence encoding a polypeptide of the invention, a nucleic acid sequence encoding an  $\boldsymbol{\alpha}$  subunit, and a acid sequence nucleic encoding a  $\beta$  subunit, and reconstituting the heterotrimer.

The polypeptides thus obtained, or immunogenic 30 fragments thereof may be used to prepare antibodies, employing methods well known in the art. Antibodies directed against the whole Prkag3 polypeptide and able to recognise any variant thereof may thus be obtained. Antibodies directed against a specific epitope of a particular variant (functional or not) of Prkag3 or 35 antibodies directed against a specific epitope of a

35

functionally altered mutant having a mutation in the first CPS domain of a  $\gamma$  subunit of AMPK, and able to recognise said variant or functionally altered mutant may also be obtained.

5 As shown herein, mutations in a  $\gamma$  subunit of AMPK, and particularly mutations in the first CBS domain of a  $\gamma$  subunit of AMPK are likely to cause disorders in the energy metabolism (e.g. diabetes, obesity) vertebrates, including humans. Further, mutations in the first CBS domain or other parts of the PRKAG3 gene are 10 likely to cause disorders in the muscular metabolism leading to diseases such as myopathy, diabetes and cardiovascular diseases.

The present invention provides means for 15 detecting and correcting said disorders.

More specifically, the present invention is directed to methods that utilise the nucleic acid sequences and/or polypeptidic sequences of the invention for the diagnostic evaluation, genetic testing prognosis of a metabolic disorder.

For example, the invention provides methods for diagnosing of metabolic disorders, more specifically carbohydrate metabolism disorders, and preferably disorders correlated with an altered, in particular an 25 excessive, glycogen accumulation in the cells, resulting from a mutation in a gene encoding a  $\gamma$  subunit of AMPK, wherein said methods comprise detecting and/or measuring the expression of a functionally altered PRKAG3 gene, or of a functionally altered mutant of a  $\gamma$  subunit of AMPK having a mutation within the first CBS domain in a nucleic acid sample obtained from a vertebrate, or detecting a mutation in the PRKAG3 gene or in a sequence encoding the first CBS domain of a  $\gamma$  subunit of AMPK in the genome of a vertebrate suspected of having such a disorder.

15

20

25

30

35

According to a preferred embodiment of the invention, the disorder is correlated with an altered, in particular an excessive, glycogen accumulation in the muscular cells and results from the expression of a functionally altered *PRKAG3* gene.

The expression of a functionally altered Prkag3, or of a functionally altered mutant of a  $\gamma$  subunit of AMPK having a mutation within the first CBS domain may be detected or measured using either polyclonal or monoclonal antibodies specific for the functionally altered polypeptides of the invention, as defined above. Appropriate methods are known in the art. They include for instance enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS).

The nucleotide sequences of the invention may be used for detecting mutations in the *PRKAG3* gene or in a sequence encoding the first CBS domain of a  $\gamma$  subunit of AMPK, by detection of differences in gene sequences or in adjacent sequences between normal, carrier, or affected individuals.

The invention provides a process for detecting a mutation in the <code>PRKAG3</code> gene or in a sequence encoding the first CBS domain of a  $\gamma$  subunit of AMPK wherein said process comprises:

- obtaining a nucleic acid sample from a vertebrate;
- checking the presence in said nucleic acid sample of a nucleic acid sequence encoding a mutant Prkag3, or a mutant of a  $\gamma$  subunit of AMPK having a mutation within the first CBS domain, as defined above.

According to a preferred embodiment of the invention there is provided a method for detecting a nucleic acid sequence comprising a mutation in the PRKAG3 gene or in a sequence encoding the first CBS domain of a  $\gamma$  subunit of AMPK wherein said process comprises:

- obtaining a nucleic acid sample from a vertebrate;

10

15

20

25

- contacting said nucleic acid sample with a nucleic acid probe obtained from a nucleic acid of the invention and spanning said mutation, under conditions of specific hybridisation between said probe and the mutant sequence to be detected;
- detecting the hybridisation complex.

Preferably, the process of the invention further comprises, prior to hybridisation, PCR amplification from the nucleic acid sample, of a sequence comprising at least the portion of the PRKAG3 sequence or of the sequence encoding the first CBS domain of the  $\gamma$  subunit of AMPK wherein the mutation is to be detected.

Methods allowing the specific hybridisation of a probe only with a perfectly matching complementary sequence, and useful for the detection of punctual mutations are known in the art. They include for instance Allele Specific PCR (GIBBS, Nucleic Acid Res., 17, 2427-2448, 1989), Allele Specific Oligonucleotide Screening (SAIKI et al., Nature, 324, 163-166, 1986), and the like.

A mutation in the PRKAG3 gene may also be detected through detection of polymorphic markers closely linked to said mutation.

The invention also provides means for identifying said polymorphic markers, and more specifically polymorphic markers comprised within genomic DNA sequence comprising at least a portion of a PRKAG3 gene, and up to 500 kb, preferably 300 kb, more preferably up to 100 kb of a 3' and/or of a 5' adjacent sequence.

30 Said polymorphic markers may be obtained for instance, by screening a genomic DNA library from a vertebrate with a probe specific for the PRKAG3 gene, in order to select clones comprising said nucleic acid sequence and flanking chromosomal sequences, and 35 identifying a polymorphic marker in said flanking chromosomal sequences. The allele(s) of a polymorphic

marker associated with a given mutant allele of the *PRKAG3* gene may also easily be identified by use of a genomic DNA library from an individual wherein the presence of said mutant allele has previously been detected by hybridisation with a nucleic acid probe of the invention.

Polymorphic markers include for instance, single nucleotide polymorphisms (SNP), microsatellites, insertion/deletion polymorphism and restriction fragment length polymorphism (RFLP). These polymorphic markers may be identified by comparison of sequences flanking the PRKAG3 gene obtained from several individuals. Microsatellites may also be identified by hybridisation with a nucleic acid probe specific of microsatellite motifs.

Once a polymorphic marker has been identified, a DNA segment spanning the polymorphic locus may be sequenced and a set of primers allowing amplification of said DNA segment may be designed.

The invention also encompasses said DNA primers.

Detection of a mutation in the PRKAG3 gene may be performed by obtaining a sample of genomic DNA from a vertebrate, amplifying a segment of said DNA spanning a polymorphic marker by polymerase chain reaction using a set of primers of the invention, and detecting in said amplified DNA the presence of an allele of said polymorphic marker associated with said mutation.

By way of example, polymorphic markers which may be obtained according to the invention, and DNA primers allowing the detection of polymorphic markers closely linked to the RN allele of porcine PRKAG3 gene are listed in Table 1 hereinafter.

According to a preferred embodiment of the invention, the vertebrate is a mammal, preferably a farm animal and more preferably a porcine, and the mutation to

20

25

be detected produces a functionally altered Prkag3. The detection of said mutation allows to predict whether said mammal or the progeny thereof is likely to have an intramuscular glycogen concentration higher or lower than the average. An example of such a mutation produces a functionally altered Prkag3 having a R41Q substitution, and resulting in an increased glycogen content in the skeletal muscle.

Another example of such a mutation produces a functionally altered Prkag3 having a V40I substitution, and resulting in a decreased glycogen content in the skeletal muscle. In farm animals having such a mutation, glycogenolysis which occurs after slaughtering is less important than in normal animals, resulting in a higher pH and in a potential better quality of the meat.

The present invention also includes kits for the practice of the methods of the invention. The kits comprise any container which contains at least one specific fragment of a nucleic acid sequence of the invention, or at least one nucleic acid fragment able to specifically hybridise with a nucleic acid sequence of invention. Said nucleic acid fragment may labelled. The kits may also comprise a set of primers of the invention. They may be used in conjunction with commercially available amplification kits. They may also include positive or negative control reactions markers. molecular weight size markers for gel electrophoresis, and the like.

Other kits of the invention may include 30 antibodies of the invention, optionally labelled, as well as the appropriate reagents for detecting an antigenantibody reaction. They may also include positive or negative control reactions or markers.

The invention further provides means for modulating the expression of vertebrate genes encoding a  $\gamma$  subunit of AMPK, and more specifically of the *PRKAG3* gene

and/or the synthesis or activity of the products of said genes.

A purified AMPK heterotrimer comprising wildtype or mutant Prkag3 subunit, or a functionally altered mutant y subunit having a mutation in the first CBS domain, may be used for screening in vitro compounds able to modulate AMPK activity, or to restore altered AMPK activity. This may be done, for instance, by:

- measuring the binding of the compound to said heterotrimer, using for example high-throughput screening methods; or,
  - measuring changes in AMPK kinase activity, using for example high-throughput screening methods.

High throughput screening methods are disclosed, for instance, in "High throughput screening: The Discovery of Bioactive Substances", J.P. DEVLIN (Ed), MARCEL DEKKER Inc., New York (1997).

Nucleic acids of the invention may be used for therapeutic purposes. For instance, complementary molecules or fragments thereof (antisense oligonucleotides) may be used to modulate AMPK activity, more specifically in muscular tissue.

Also, a nucleic acid sequence encoding a functional Prkag3 may be used for restoring a normal AMPK function.

Transformed cells or animal tissues expressing a wild-type or mutant Prkag3, or a functionally altered mutant of a  $\gamma$  subunit of AMPK as defined above, or expressing an AMPK comprising said mutant Prkag3, or said functionally altered mutant of a  $\gamma$  subunit of AMPK, may be used as *in vitro* model for elucidating the mechanism of AMPK activity or for screening compounds able to modulate the expression of AMPK.

The screening may be performed by adding the compound to be tested to the culture medium of said cells or said tissues, and measuring alterations in energy

recombination.

25

30

metabolism in said cells or said tissues using methods such as measurements of glucose concentrations (levels), glucose uptake, or changes of the ATP/AMP ratio, glycogen or lipid/protein content.

The invention provides animals transformed with a nucleic acid sequence of the invention.

In one embodiment, said animals are transgenic animals having at least a transgene comprising a nucleic acid of the invention.

In another embodiment, said animals are knockout animals. "Knockout animals" refers to animals whose native or endogenous *PRKAG3* alleles have been inactivated and which produce no functional Prkag3 of their own.

In light of the disclosure of the invention of DNA sequences encoding a wild-type or mutant Prkag3, or a functionally altered mutant of a γ subunit of AMPK, transgenic animals as well as knockout animals may be produced in accordance with techniques known in the art, for instance by means of in vivo homologous

Suitable methods for the preparation of transgenic or knock-out animals are for instance disclosed in: Manipulating the Mouse Embryo, 2<sup>nd</sup> Ed., by HOGAN et al., Cold Spring Harbor Laboratory Press, 1994; Transgenic Animal Technology, edited by C. PINKERT, Academic Press Inc., 1994; Gene Targeting: A Practical Approach, edited by A.L. JOYNER, Oxford University Press, 1995; Strategies in Transgenic Animal Science, edited y G.M. MONASTERSKY and J.M. ROBL, ASM Press, 1995; Mouse Genetics: Concepts and Applications, by Lee M. SILVER, Oxford University Press, 1995.

These animals may be used as models for metabolic diseases and disorders, more specifically for diseases and disorders of glycogen metabolism in muscle. For instance they may be used for screening test

molecules. Transgenic animals may thus be used for screening compounds able to modulate AMPK activity. Knockout animals of the invention may be used, in particular, for screening compounds able to modulate energy metabolism, more specifically carbohydrate metabolism, in the absence of functional Prkag3.

The screening may be performed by administering the compound to be tested to the animal, and measuring alterations in energy metabolism in said animal using methods such as glucose tolerance tests, measurements of insulin levels in blood, changes of the ATP/AMP ratio, glycogen or lipid/protein content in tissues and cells.

Transgenic or knock-out farm animals with modified meat characteristics or modified energy metabolism may also be obtained.

The present invention will be further illustrated by the additional description which follows, which refers to examples of obtention and use of nucleic acids of the invention. It should be understood however that these examples are given only by way of illustration of the invention and do not constitute in any way a limitation thereof.

#### EXAMPLE 1: ISOLATING THE PRKAG3 GENE

5

10

20

25 We have screened a porcine Bacterial Artificial Chromosome (BAC) library (ROGEL-GAILLARD et al., Cytogenet and Cell Genet, 851, 273-278, 1999) and constructed a contig of overlapping BAC clones across the region of pig chromosome 15 harbouring the RN gene. These BAC clones were in turn used to develop new genetic 30 markers in the form of single nucleotide polymorphisms (SNPs) or microsatellites (MS) as described in Table 1 below.

|           | Marker Alicles | +-                                                                                        |                                              | 5 114, 140, 142*, 144,                     | $\dagger$                                    |                                            |                                                                                                             | 160                                        | 3 78, 80, 38°, 90                                   | +                                             |                                               |                                             | 94, 100, 108*, 114                                 | 1                                         |                                               | 158G 176A*, 176G | †                                             | P 234A", 234C                                 | +                                           | _                                           | -†                                          |                                              | yl) 2:100+200+1000 bp                       |        | _ |
|-----------|----------------|-------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|----------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------------|-------------------------------------------|-----------------------------------------------|------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|--------|---|
|           | Σ Ş            | MS                                                                                        | -                                            | S<br>N                                     | MS                                           |                                            | WS                                                                                                          | -                                          | SE<br>—                                             | - 19                                          | 2                                             | -                                           | S<br>W                                             | -                                         | NS<br>P                                       |                  | į                                             | <u> </u>                                      | 1                                           | ב<br>ב<br>ב                                 |                                             | 7                                            | (Styl)                                      |        | _ |
|           | Size of PCR    | 114 – 138                                                                                 |                                              | 114 - 15/                                  | 150 - 164                                    |                                            | 138 - 160                                                                                                   |                                            | 06 - 87                                             | 445 405                                       | 140 - 100                                     | , ,                                         | 94 - 108                                           | 900                                       | 802                                           |                  | 400                                           | 200                                           | 220                                         | 0/7                                         | 1300                                        | 1300                                         |                                             |        |   |
| Table 1   |                | F: 5'-GGAATTTCAAGTCAGCCAAC-3' (SEQ ID NO: 5) R: 5'-CTTCAAAAGACCGTGCTACT-3' (SEQ ID NO: 5) | F: 5'-CTGGGAACCTCTATATGCTG-3' (SEC ID NO: 3) | R: 5-TAGGGAATACAAATCACAG-3' (SEQ ID NO: 1) | F: 5'-CTCCAGCTCACAGGATGACA-3' (SEQ ID NO: 9) | F. S. GAAGIATOTOCOCTTOTO C. SEQ ID NO: 10) | 1.3-6846   Alectic Geech   Cligat-3 (SEQ ID NO: 11)<br>  R: 5'-GTTCTCCAGGTTTCCAGACATCCAC-3' (SEQ ID NO: 13) | F. 5'-GCTTCTGTCTCCCTACTT 3' ACC 10 NO. 12) | R; 5'-GTTTCTAAGTTCTACTGTAAGACACC-3' (SEO ID NO: 14) | F; 5'-CCAAGCTGTGGTGGCTGAAT-3' (SEO ID NO. 15) | R; 5'-CAGCACAGCAGTGCCACCTA-3' (SEO ID NO. 16) | F: 5'-CAAACTCTTCTAGGCGTGT 2' VEFO ID NO. 47 | R; 5'-GTTCTGGAACTTCCATATGCCATGG-3' (SEO ID NO: 18) | F: 5'-AGGGTGGTAGGCTTCA-3' (SEO ID NO. 10) | R; 5'-GTCTCGCTCCTGAAGGAAGT.3' (SEC ID NO: 19) |                  | F; 5'-AGTCACGTGGCCATGCTATC-3' (SEO ID NO: 24) | R; 5'-CTCAACTGGATTGAGTCAGT-3' (SEQ ID NO: 22) | F. 5-TTGGCGCAACTGTTATTCT-3' (SEO ID NO: 23) | R; 5'-AGGCAAAGGAAGACACAG-3' (SEO ID NO. 24) | F. 5'-AGCCGTGGGCATCGTTGG-3' (SEO ID NO. 25) | R: 5'-AGAAGGAGACACACACACACA 2' VOED ID IDOOR | (סבים ום מפרים באסטסססססססטסטים וה מסיים וה |        |   |
| BAC clone |                | 11589, 156E6,<br>36184, 90A9                                                              | 982H11                                       |                                            | 479L3, 297D7,<br>852R5 153R5                 | 997F12                                     |                                                                                                             | 482E7                                      |                                                     | 808G10, 947E5,                                | 337G11                                        | 127G6, 134C9                                |                                                    | 128A3, 337G11,                            | 808G10, 947E7,                                | 1110H12          | 127G6, 134C9,                                 | 170D7, 1030A5,                                | 1088F2                                      |                                             | 315F7, 530A6,                               | 651C12.                                      | 1088F2,                                     | 1095H3 |   |
| Name of   | marker         | £                                                                                         | MS982H1                                      |                                            | MS4/9L3                                      | MS997M3                                    | 5                                                                                                           | MS482H6                                    | 5                                                   | MS337H2                                       |                                               | MS12781                                     |                                                    | CMKAR2                                    |                                               |                  | 127G63                                        |                                               | VIL1                                        |                                             | NRAMP1                                      |                                              |                                             |        |   |
|           |                | _                                                                                         | 2                                            |                                            | <del>ب</del>                                 | 4                                          |                                                                                                             | S                                          |                                                     | 9                                             |                                               | 7                                           |                                                    | <b>®</b>                                  |                                               |                  | o<br>o                                        |                                               | 5                                           |                                             | Ξ                                           |                                              |                                             |        |   |

"MS=microsatellite; SNP=single nucleotide polymorphism.

Microsatellite alleles are designated according to the length of the amplified fragment while SNPs are denoted according to the polymorphic nucleotide. Alleles associated with the RN allele are marked with an asterisk.

15

20

25

30

The new markers were used together with some previously described markers to construct a resolution linkage map. Standard linkage analysis using pedigree data comprising about 1,000 informative meicses for segregation at the RN locus made it possible to exclude RN from the region proximal to MS479L3 and distal to microsatellite Sw936. Linkage Disequilibrium analysis was done with the same markers and a random sample of 68 breeding boars from the Swedish Hampshire population, scored for the RN phenotype by measuring glycogen content in muscle. The results of LD analysis using the DISMULT program (TERWILLIGER, Am. J. Genet., 56, 777-787, 1995) are shown in Figure 1. They reveal a sharp LD peak around the markers MS127B1 and SNP127G63. These markers appeared to show linkage disequilibrium with the RN allele, i.e. RN was associated with a single allele at these two loci. The most simple interpretation of this finding is that the RN mutation arose on a chromosome carrying these alleles and that the two markers are so closely linked to the RN locus that the recombination frequency is close to 0%. The two markers are both present on the overlapping BAC clones 127G6 and 134C9 suggesting that the RN gene may reside on the same clone or one of the neighbouring clones.

A shot-gun library of the BAC clone 127G6 was constructed and more than 1,000 sequence reads were collected giving about 500,000 base pair random DNA sequence from the clone. The data were analysed and sequence contigs constructed with the PHRED, PHRAP and CONSED software package (University of Washington Genome Center, http://bozeman.mbt.washington.edu). The sequence data were masked for repeats using the REPEATMASKER software (http://ftp.genome.washington.edu/cgi-bin/RepeatMasker) and BLAST searches were carried out using the NCBI web site (http://www.ncbi.nlm.nih.gov).

Three convincing matches to coding sequences were obtained. Two of these were against human CDNA sequences/genes, KIAA0173 described as being similar to pig tubulin-tyrosine ligase and located on HSA2q (UniGene cluster Hs.169910, http://www.ncbi.nlm.nih.gov/UniGene/) and CYP27A1 located on HSA2q33-ter (UniGene cluster Hs. 82568). The results strongly suggested that the pig coding sequences are orthologous to these human genes as it is well established that the RN region is homologous 10 to HSA2q33-36 (ROBIC et al., Mamm. Genome, 10, 565-568, 1999). However, none of these sequences appeared plausible candidate genes for RN. The third sequence identified in BAC 127G6 showed significant sequence similarity to various AMP-activated protein kinase  $\gamma$  sequences including the yeast SNF4 15 sequence. The cDNA sequence of this gene was determined by RT-PCR and RACE analysis using muscle mRNA from an  $rn^{+}/rn^{+}$  homozygote. This sequence is shown in Figure 2 and in the enclosed sequence listing under SEQ ID NO: 1.

20 Legend of Figure 2:

25

5' UTR: 5' untranslated region

3' UTR: 3' untranslated region

CDS: coding sequence

\*\*\*: stop codon

'-': identity to master sequence

'.': alignment gap

The frame of translation was determined on the basis of homology to other members in the protein family and assuming that the first methionine codon in frame is the start codon. The polypeptidic sequence deduced on this basis is shown in the enclosed sequence listing under SEQ ID NO: 2.

The complete nucleotidic sequence of pig PRKAG3 cDNA is shown in the enclosed sequence listing under SEQ ID NO: 27 and the complete polypeptidic

sequence is shown in the enclosed sequence listing under SEQ ID NO: 28 and in Figure 3.

Figure 3 shows an amino acid alignment constructed with the CLUSTAL W program (THOMPSON et al., Nucleic Acids Research, 22, 4673-4680, 1994) with representative AMPK  $\gamma$  sequences in the nucleotide databases.

Legend of Figure 3: Sequences used:

10 HumG1: Genbank U42412

MusGl: Genbank AF036535

HumG2: Human PRKAG2 (Genbank AJ249976)

PigG3: pig PRKAG3 (this study) HumG3: human PRKAG3 (this study)

15 Dros: Drosophila (Genbank AF094764)

SNF4 (yeast): Genbank M30470

Both the PRKAG2 and *Drosophila* sequences have longer aminoterminal regions but they do not show significant homology to the aminoterminal region of PRKAG3 and were not included.

Abbreviations:

\*: stop codon

20

'-': identity to master sequence

'.': alignment gap

The four CBS domains are overlined and the position of the RN mutation is indicated by an arrow.

Table 2 below shows the amino acid (above diagonal) and nucleotide sequence (below diagonal) identities (in %) among mammalian, Drosophila and yeast AMPKG/SNF4 sequences. In the case of pig PRKAG3 and human PRKAG3, the identities were calculated referring to the portions thereof represented respectively by SEQ ID NO: 1 and SEQ ID NO: 3, for the nucleotide sequences, and by SEQ ID NO: 2 and SEQ ID NO: 4, for the amino acid sequences.

TABLE 2

|       | PigG3 | HumG3 | HumG1 | RatG1 | MusG1 | HumG2 | Dros | SNF4 |
|-------|-------|-------|-------|-------|-------|-------|------|------|
| PigG3 | •     | 97.0  | 64.2  | 64.2  | 63.9  | 62.6  | 53.2 | 34.0 |
| HumG3 | 90.7  | -     | 63.6  | 63.6  | 63.6  | 62.6  | 53.5 | 34.4 |
| HumG1 | 64.2  | 64.5  | -     | 96.7  | 96 3  | 75.6  | 60.9 | 33.5 |
| RatG1 | 65.8  | 65.8  | 98.0  | -     | 97.4  | 75.3  | 61,1 | 33.5 |
| MusG1 | 65.3  | 64.8  | 87.2  | 92.8  | -     | 74.6  | 61.7 | 33.5 |
| HumG2 | 61.6  | 61.6  | 68.1  | 67.8  | 65.9  |       | 63.1 | 34.5 |
| Dros  | 58.4  | 58.4  | 59.0  | 59.3  | 59.0  | 60.0  | -    | 36.2 |
| SNF4  | 44.0  | 44.2  | 45.4  | 44.6  | 45.3  | 45.7  | 44.8 |      |

Figure 4 shows a Neighbor-Joining phylogenetic tree constructed with the PAUP software (SWOFFORD, Phylogenetic analysis using parsimony (and other methods), Sinauer Associates, Inc. Publishers, Sunderland, Massachusetts, 1998) using yeast SNF4 outgroup; support for branch orders obtained in bootstrap analysis with 1,000 replicates are indicated, scales of tree is indicated at the bottom. The result showed that the pig gene located in the RN region is distinct from mammalian PRKAG1 and PRKAG2 isoforms and most likely orthologous to a human gene represented by the human EST sequence AA178898 (GenBank) derived from a muscle cDNA library. This gene is herein denoted PRKAG3 since it is the third isoform of a mammalian AMP-activated protein kinase γ characterised so far.

10

15

20

The cDNA sequence of this gene was determined by RT-PCR and 5'RACE analysis using human skeletal muscle cDNA (Clontech, Palo Alto, CA). This sequence is shown in Figure 2 and in the sequence listing under SEQ ID NO: 3. The deduced polypeptidic sequence having 97% identity with the porcine sequence SEQ ID NO: 2 (cf. Table 2) is shown on Figure 2 and in the sequence listing under SEQ ID NO: 4.

The complete cDNA sequence is also shown in the enclosed sequence listing under SEQ ID NO: 29; the deduced polypeptidic sequence is shown in the enclosed sequence listing under SEQ ID NO: 30 and in Figure 3.

Using the high resolution human TNG radiation hybrid panel: (http://shgc-www.stanford.edu/RH/TNGindex.html) we mapped the human homologs of PRKAG3, CYP27A1 and KIAA0173, all present in the porcine BAC127G6. The three genes are also very closely linked in the human genome. PRKAG3 was mapped at a distance of 33  $cR_{50.000}$  from KIAA0173 and 52  $cR_{50.000}$  from CYP27A1, with lod score support of 6.8 and 4.5, respectively.

The established role of AMPK in regulating 10 energy metabolism, including glycogen storage, and its location in the region showing maximum disequilibrium made PRKAG3 a very strong candidate gene for RN. This was further strengthened by hybridisation analysis of a human multiple tissue northern blots 15 (CLONTECH, Palo Alto, CA) using human PRKAG1 (IMAGE clone 0362755 corresponding to GenBank entry AA018675), human PRKAG2 (IMAGE clone 0322735 corresponding to GenBank entry W15439) and a porcine PRKAG3 probe. The results are shown in Figure 5.

20 Legend of Figure 5:

25

30

35

H: Heart, B: Brain, Pl: Placenta, L: Lung, Li: Liver, M: Skeletal muscle, K: Kidney, Pa: Pancreas, S: Spleen, Th: Thymus, P: Prostate, T: Testis, O: Ovary, I: Small intestine, C: Colon (mucosal lining), PBL: Peripheral Blood Leukocyte.

While the PRKAG1 and PRKAG2 probes showed a broad tissue distribution of expression, PRKAG3 showed a distinct muscle-specific expression. This result is also supported by the human EST database where multiple ESTs representing PRKAG1 and PRKAG2 have been identified in various cDNA libraries whereas a single EST (GenBank entry AA178898) representing PRKAG3 has been obtained from a muscle CDNA library. The muscle-specific expression of PRKAG3 and the lack of expression in liver are entirely consistent with the phenotypic effect of RN, namely that glycogen content is altered in muscle but

normal in liver (ESTRADE et al., Comp. Biochem. Physiol. 104B, 321-326, 1993).

PRKAG3 sequences were determined from  $rn^*/rn^*$ and  $RN^-/RN^-$  homozygotes by RT-FCR analysis. A comparison revealed a total of seven nucleotide differences four of which were nonsynonymous substitutions was found between the sequence from  $rn^*$  and  $RN^-$  animals, as shown in Table 3 below. Screening of these seven SNPs with genomic DNA from additional  $\operatorname{rn}^+$  and  $\operatorname{RN}^-$  pigs of different breeds revealed five different PRKAG3 alleles, but only the R41Q 10 missense substitution was exclusively associated with RN. This nonconservative substitution occurs in CBS1 which is the most conserved region among isotypic forms of the AMPK  $\gamma$  chain and arginine at this residue (number 70 in 15 Prkaq1) is conserved among different isoforms mammalian AMPK  $\gamma$  sequences as well as in the corresponding Drosophila sequence (Figure 3). A simple diagnostic DNA test for the R41Q mutation was designed based on the oligonucleotide ligation assay (OLA; LANDEGREN et al., Science, 241, 1077-1080, 1988). Screening a large number 20 of  $RN^-$  and  $rn^+$  animals from the Hampshire breed as well as large number of rn+ animals from other breeds showed that the 41Q allele was present in all RN animals but not found in any rn animals, as shown in Table 4 below. The absence of the 41Q allele from other breeds is consistent 25 with the assumption that the RN allele originated in the Hampshire breed; the allele has not yet been found in purebred animals from other breeds. In conclusion, the results provide convincing evidence that identical to the RN gene and that the R41Q substitution 30 most likely is the causative mutation.

able 3. Comparison of the PRKAG3 sequences associated with the m<sup>+</sup> and RN alleles in different pig populations<sup>a</sup>

| Ago     | D00001        |              |            |    |        |       |     |         |                         |
|---------|---------------|--------------|------------|----|--------|-------|-----|---------|-------------------------|
| 7 , 752 | octated<br>:: |              |            |    | ٩      | Codon |     |         |                         |
| lete    | RN allele     | nt83         | nt83 nt152 | 34 | 35     | 40    | 41  | 213     | Population <sup>b</sup> |
|         | RN            | ACC          | CTC        | သည | crc    | GTC   | CAA | TCT     | <b>=</b>                |
|         |               | ₽.           |            | ∢  | ı      | >     | ø   | w       |                         |
|         | rn•           | !            | !<br>!     | 1  | 1<br>1 | 1 1   | -9- | ;<br>;  | L, LW, WB               |
|         |               | ı            |            | •  | •      | •     | œ   | ı       |                         |
|         | rn•           | 1 1          | ပ္         | L  | Ţ-     | 1     | မှ  | <u></u> | H, L, LW, M, WB         |
|         |               | ı            | Ω,         | •  | •      | ı     | œ   | ı       |                         |
|         | $rn^{\star}$  | - <b>A</b> - | -Ċ         | L  | Ţ-Ţ    | ;     | 9-  | ე       | Д, Н                    |
|         |               | Z            | Ω.         | ı  | ,      | •     | œ   | 1       |                         |
|         | $rn^{\star}$  | 1            | -ر-        | L  | Ţ-     | A     | ဗု  | ე       | H, LW, WB, D. L         |
|         |               |              | Q,         | ı  | ı      | н     | œ   | ı       |                         |
|         |               |              |            |    |        |       |     |         |                         |

ucleotide and codon numbers refer to the numbering of the sequence SEQ ID NO: 1 I=Hampshire, L=Landrace, LW=Large White, M=Meishan, WB=Wild Boar, D=Duroc .D.=not determined, "-" indicates identity to the top sequence.

TABLE 4

|                                             | Genot | pe at nucleotic | de 593° | ]     |
|---------------------------------------------|-------|-----------------|---------|-------|
| RN phenotype                                | A/A   | G/A             | G/G     | Total |
| RN", Hampshire <sup>a</sup>                 | 40    | 87              | 0       | 127   |
| RN, Hampshire <sup>a,b</sup>                | 0     | 13              | 0       | 13    |
| m <sup>+</sup> , Hampshire <sup>a</sup>     | 0     | 0               | 60      | 60    |
| rn <sup>+</sup> , other breeds <sup>c</sup> | 0     | 0               | 488     | 488   |

<sup>a</sup>represent both French and Swedish Hampshire populations <sup>b</sup>heterozygosity *RN/m*<sup>+</sup> deduced using pedigree information

breeds: Angler Saddleback, n=31; Blond Mangalitza, n=2; Bunte Bentheimer, n=16; Duroc, n=160; Göttinger Minipig, n=4; Landrace, n=83; Large White, n=72; Meishan, n=8; Piétrain, n=75; Red Mangalitza, n=5; Rotbunte Husumer, n=15; Schwalbenbauch Mangalitza, n=7; Schwäbisch Hällische, n=2; European Wild Boar, n=5; Japanese Wild Boar, n=3.

10 drefers to the nucleotide numbers of SEQ ID NO: 1

Without being bound to any particular mechanism, it may be hypothesised that the **AMPK** heterotrimer including PRKAG3 is involved in the regulation of glucose transport into skeletal muscle.

15 has recently been reported that AMPK activation induced by the AMP analogue AICAR or by muscle contraction leads to an increased glucose uptake in skeletal muscle (BERGERON et al., Am. J. Physiol., 276, E938-944, 1999; HAYASHI et al., Diabetes, 47, 1369-1373, 20 1998). If this is the function of the AMPK heterotrimer including PRKAG3, R41Q may be a gain-of-function mutation causing a constitutively active holoenzyme, for instance due to the loss of an inactivating allosteric site. If so, the reduced AMPK activity in RN animals is likely to 25 reflect feed-back inhibition due to the high-energy status of the muscle. An increased uptake of glucose to skeletal muscle is expected to lead to an increase in muscle glycogen content as observed in RN animals. It has been shown that overexpression of glucose transporter 4 (GLUT4) in transgenic mice leads to increased uptake of glucose and increased glycogen storage (TREADWAY et al., J. Biol. Chem., 269, 29956-29961, 1994). This type of gain-of-function model is consistent with the dominance

15

20

25

30

of RN as the presence of a single unregulated copy would have a large effect on AMPK enzyme activity.

An alternative hypothesis on the functional significance of the R41Q substitution associated with the RN allele may also be proposed. Based on the established roles of the yeast SNF1 enzyme in utilisation of glycogen and of mammalian AMPK for inhibiting energy-consuming pathways and stimulating energy-producing pathways, activated AMPK is expected to inhibit glycogen synthesis and stimulate glycogen degradation. If this is the functional role of the isoform(s) containing the PRKAG3 product, the R41Q substitution would be a loss-offunction mutation or a dominant-negative mutation locking the AMPK heterotrimer in an inactive state, and thus inhibiting AMP activation and glycogen degradation. these cases the phenotypic effect should be explained by haplo-insufficiency, since RN appears fully dominant.

R41Q may thus be a dominant negative mutation, but only if it interferes with multiple isoforms since the major AMPK activity in muscle appears to be associated with the PRKAG1 and 2 isoforms [CHEUNG, et al. Biochem. J. 346, 659 (2000)].

The distinct phenotype of the RN mutation indicates that PRKAG3 plays a key role in the regulation of energy metabolism in skeletal muscle. For instance, PRKAG3 is likely to be involved in the adaptation to physical exercise, which is associated with increased glycogen storage. It is also conceivable that loss-of-function mutations in PRKAG3 (or other AMPK genes) may predispose individuals to noninsulin-dependent diabetes mellitus, and AMPK isoforms are potential drug targets for treatment of this disorder.

## EXAMPLE 2: DETECTION OF THE R41Q SUBSTITUTION IN PIG PRRAG3

A part of PRKAG3 including codon 41 was amplified in 10 µl reactions containing 100 ng genomic

DNA, 0.2 mM dNTPs, 1.5 mM MgCl<sub>2</sub>, 4.0 pmol of both forward (AMPKG3F3:5'-GGAGCAAATGTGCAGACAAG-3') and reverse (AMPKG3R2:5'-CCCACGAAGCTCTGCTTCTT-3') primer, 10% DMSO, 1 U of Taq DNA polymerase and reaction buffer (ADVANCED BIOTECH, London, UK). The cycling conditions included an initial incubation at 94°C for 5 min followed by 3 cycles at 94°C (1 min), 57°C (1 min) and 72°C (1 min), and 35 cycles of 94°C (20 sec), 55°C (30 sec) and 72°C (30 sec). Allele discrimination at nucleotide position 122 was done using the oligonucleotide ligation assay (OLA, LANDEGREN 10 et al., Science, 241, 1077-1080, 1988). The OLA method was carried out as a gel-based assay. Each 10  $\mu$ l OLA reaction contained 0.5 pmol of each probe SNPRN-A (5'Hex-TGGCCAACGGCGTCCA-3'), SNPRN-G (5'ROX-GGCCAACGGCGTCCG-3') and SNPRN-Common (5'phosphate-AGCGGCACCTTTGTGAAAAAAAA-3'), 1.5 U of thermostable AMPLIGASE and reaction buffer (EPICENTRE TECHNOLOGIES, Madison, WI) and 0.5  $\mu l$  of the AMPKG3F3/AMPKG3R2 PCR product. After an initial incubation at 95°C for 5 min, the following thermocycling 20 profile was repeated 10 times: denaturation at 94°C (30 sec), and probe annealing and ligation at 55°C (90 sec). After OLA cycling, 1 µl of product was heat denatured at (3 min), cooled on ice, and loaded onto polyacrylamide denaturing gel for electrophoresis on an ABI377 DNA sequencer (PERKIN ELMER, Foster City, USA). 25 The resulting fragment lengths and peak fluorescence were analysed using GENESCAN software (PERKIN ELMER, Foster City, USA).

The OLA-based method for the R41Q mutation was used to determine the genotype of DNA samples collected from 68 Swedish Hampshire animals phenotyped as either RN or rn\* based on their glycolytic potential (GP) value. Figure 6 illustrates typical OLA results from the three possible genotypes. All RN animals were scored as homozygous A/A (n=28) or heterozygous A/G (n=36) at

nucleotide position 122 whereas the  $rn^{\star}$  animals were homozygous G/G (n=4) at this position.

# EXAMPLE 3: PREDICTING THE PRESENCE OF THE RN ALLELE USING A CLOSELY LINKED MICROSATELLITE, MS127B1

5 A microsatellite 127B1 (MS127B1) was cloned from BAC 127G7 containing pig PRKAG3. The BAC clone was digested with Sau3AI and the restriction fragments subcloned into the BamHI site of pUC18. The resulting library was probed with a (CA)<sub>15</sub> oligonucleotide probe labelled with  $[\gamma-32P]$ -10 dATP. Strongly hybridising clones were sequenced and primers for PCR amplification of microsatellite loci were designed. Ten  $\mu$ l PCR reactions were performed containing 100 ng genomic DNA, 0.2 mM dNTPs, 1.5 mM MgCl<sub>2</sub>, 4.0 pmol of both forward (MS127B1F:5'-Fluorescein-15 CAAACTCTTCTAGGCGTGT-3') and reverse (MS127B1R:5'-GTTTCTGGAACTTCCATATGCCATGG-3') primers, and 1 U of Taq DNA polymerase and reaction buffer (ADVANCED BIOTECH, London, UK). The cycling conditions included an initial incubation at 94°C for 5 min followed by 3 cycles at 94°C 20 (1 min), 57°C (1 min) and 72°C (1 min), and 35 cycles of  $94^{\circ}\text{C}$  (20 sec),  $55^{\circ}\text{C}$  (30 sec) and  $72^{\circ}\text{C}$  (30 sec). The PCR products (0.3 µl) were separated using 4% polyacrylamide denaturing gel electrophoresis on an ABI377 DNA sequencer (PERKIN ELMER, Foster City, USA). The resulting fragment 25 lengths were analysed using the GENESCAN and GENOTYPER software (PERKIN ELMER, Foster City, USA).

The method was used to determine the genotype of DNA samples collected from 87 Swedish Hampshire animals phenotyped as either RN or rn based on their glycolytic potential (GP) value. Allele 108 (bp) showed a complete association to the RN allele in this material as all RN  $(RN/RN \text{ or } RN/rn^{+})$  animals were homozygous or heterozygous for this allele while no rn  $(rn^{+}/rn^{+})$  animals carried this allele, as shown in Table 5 below.

| TΛ  | o, |   | _ |
|-----|----|---|---|
| 1 A | ~1 | _ | ~ |

| Animals        | n  |       |        | Genotype |         |         |
|----------------|----|-------|--------|----------|---------|---------|
|                |    | 94/94 | 94/108 | 94/114   | 100/108 | 108/108 |
| RN             | 80 | 0     | 37     | 0        | 2       | 41      |
| m <sup>†</sup> | 7  | 3     | 0      | 4        | 0       | 0       |

### EXAMPLE 4: DETECTING THE PRESENCE OF THE RN ALLELE USING A PCR-RFLP TEST

The RN mutation inactivates a BsrBI site GAG^CGG/CTC^GCC (BsrBI RE site is not palindromic). At that site, the RN sequence is AAGCGG instead of GAGCGG.

A 134 bp long fragment of the RN gene is amplified from porcine genomic DNA. The  $rn^+$  allele is identified after BsrBI digestion, by detection of two fragments of 83 and 51 bps.

The test is performed as follows:

#### 1° Primer sequences:

Sequence of primers used to amplify the  $\ensuremath{\mathit{RN}}$  mutation region:

15 RNU: 5' GGGAACGATTCACCCTCAAC 3'

RNL: 5' AGCCCCTCCTCACCCACGAA 3'

To provide an internal control of digestion, a BsrBI site has been added at the extremity of one of the two primers within a 20 bp long tail. The tail permits both creation of a BsrBI site (a shorter tail might be sufficient), and an easy discrimination of uncut fragment from other fragments. The use of tailed primers does not affect efficiency and specificity of amplification.

The sequence of the RNL modified primer 25 including a control tail with a BsrBI site is:

RNLBsrA14: 5'

A<sub>5</sub>C<sub>2</sub>A<sub>7</sub>CCGCTCAGCCCTCCTCACCCACGAA 3

#### 2º PCR reaction mixture used:

50 ng DNA

30 0.5 Unit Taq polymerase (GIBCO BRL)

1.5 mM MqCl<sup>2</sup>

200 mM dNTP

 $0.2 \mu M$  each primer

Total reaction volume: 25  $\mu$ l

# 3° PCR conditions used (on OMNIGENE HYBAID thermocycler):

5 1x (5min 95°C)

35x (45sec 57°C, 45sec72°C, 45sec95°C)

1x (45sec57°C, 15min 72°C)

### 4° Restriction enzyme digestion performed at 37°C for 2 hours:

10  $\mu$ l PCR product

1x BsrBI BIOLABS buffer

5U BsrBI restriction enzyme (BIOLABS)

Total reaction volume: 15  $\mu$ l

# 5° Size of fragments produced after PCR using primers with control tail and digestion with BsrBI:

Uncut fragment from RN or  $rn^*$  allele : 154 bp

After digestion of fragment amplified from RN

allele : 137 bp + 17 bp

After digestion of fragment amplified from rn\*

20 allele : 83 bp + 54 bp + 17 bp

Size difference can be identified either after polyacrylamide, agarose/NUSIEVE or agarose gel electrophoresis.

# EXAMPLE 5: EFFECT OF V401 POLYMORPHISM ON GLYCOLYTIC 25 POTENTIAL.

Further, a set of 181  $rn^*/rn^*$  homozygous animals (R/R at position 41 of SEQ ID NO: 2) were analyzed for the V40I polymorphism (referring to position 40 of SEQ ID NO: 2) by PCR-RFLP using FokI restriction enzyme. The glycolytic potential was determined in parallel according to the method disclosed by MONIN et al., (Meat Science, 13, 49-63, 1985).

The results are shown in Table 6 below:

Table 6

| Genotype at position<br>40 | potential | Standard Deviation | Number of typed animals |
|----------------------------|-----------|--------------------|-------------------------|
| 1/1                        | 178.30    | 31.13              | 13                      |
| V/I                        | 204.15    | 37.73              | 164                     |
| V/V                        | 210.83    | 38.21              | 104                     |

These results show that the V40I polymorphism has a significant effect on the glycolytic potential in skeletal muscle.

5

25

#### CLAIMS

- 1) A gamma subunit of a vertebrate AMP-activated kinase (AMPK), wherein said gamma subunit is a polypeptide comprising at least a sequence having at least 70% identity with the polypeptide SEQ ID NO: 2.
- 2) A polypeptide of claim 1, wherein said polypeptide comprises a sequence having at least 95% identity with the polypeptide SEQ ID NO:2.
- 3) A polypeptide of claim 1, wherein said 10 polypeptide comprises a sequence having at least 75% identity with the polypeptide SEQ ID NO: 28.
  - 4) A polypeptide of any of claims 1 to 3, wherein said polypeptide comprises the sequence SEQ ID NO: 2 or SEQ ID NO:4.
- 5) A polypeptide of claim 4, wherein said polypeptide comprises the sequence SEQ ID NO: 28, SEQ ID NO: 30 or SEQ ID NO: 32.
- 6) A polypeptide which is a functionally altered mutant of a gamma subunit of a vertebrate AMP20 activated kinase, wherein said polypeptide has at least a mutation located within the first CBS domain of said gamma subunit.
  - 7) A polypeptide of claim 6, wherein the mutation is located within the region of the first CBS domain aligned with the region of a polypeptide of SEQ ID NO: 2 spanning from residue 30 to residue 50.
  - 8) A polypeptide of claim 7, wherein the mutation is a  $R \rightarrow Q$  substitution or a  $V \rightarrow I$  substitution.
    - 9) A polypeptide of claim 8 selected among:
- a polypeptide having a sequence resulting from a R→Q substitution at a position corresponding to position 41 in SEQ ID NO: 2;
  - a polypeptide having a sequence resulting from a V→I substitution at the position corresponding to
     position 40 of SEQ ID NO: 2.

- 10) A polypeptide which is a mutant of a gamma subunit of a vertebrate AMP-activated kinase, wherein said polypeptide results from a deletion of a part of a polypeptide of any of claims 1 to 5.
- 11) A nucleic acid sequence encoding a polypeptide of any of claims 1 to 10, or the complement thereof, provided that said nucleic acid sequence does not consist of the EST GENBANK AA178898, or of the EST W94830.
- 12) A nucleic acid sequence of claim 11, having the sequence SEQ ID NO: 1, SEQ ID NO:3, SEQ ID NO: 27, SEQ ID NO: 29, SEQ ID NO: 31, or the complement thereof.
- 13) A nucleic acid sequence comprising at least a portion of a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10, and up to 500 kb of a 3' and/or of a 5' adjacent genomic DNA sequence, or the complement thereof.
  - 14) A nucleic acid fragment selected among:
- 20 a specific fragment of a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10, or of a nucleic acid sequence of claim 13;
  - a nucleic acid fragment which specifically hybridises under stringent conditions with a nucleic acid sequence encoding a polypeptide of any of claims 1 to 8, or of a
- encoding a polypeptide of any of claims 1 to 8, or of a nucleic acid sequence of claim 11;

provided that said nucleic acid fragment does not consist of the EST GENBANK AA178898 or of the EST GENBANK W94830.

- 15) A set of primers for amplifying a nucleic acid sequence of any of claims 11 to 13 or a portion thereof, comprising at least a primer consisting of a nucleic acid fragment of claim 14.
- 16) A recombinant vector comprising a nucleic 35 acid sequence encoding a polypeptide of any of claims 1 to 10.

20

25

- 17) An host cell transformed by a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10.
- 18) A transgenic animal transformed by a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10.
- 19) A knockout animal, wherein the gene encoding a polypeptide of any of claims 1 to 5 is inactive.
- 20) A heterotrimeric AMPK wherein the  $\gamma$  10 subunit consists of a polypeptide of any of claims 1 to 10.
  - 21) A method of detecting a metabolic disorder resulting from a mutation in a gene encoding a  $\gamma$  subunit of AMPK, wherein said process comprises:
- obtaining a nucleic acid sample from a vertebrate;
  - checking the presence in said nucleic acid of a nucleic acid sequence encoding a polypeptide of any of claims 1 to 10, wherein said polypeptide is functionally altered.
  - 22) A method of claim 21 wherein the disorder is correlated with an altered glycogen accumulation in the muscular cells and results from the expression of a functionally altered allele of a polypeptide of any of claims 1 to 5.
  - 23) A method of any of claims 21 or 22 wherein the presence of the nucleic acid sequence encoding said mutant polypeptide is checked by contacting said nucleic acid sample with a nucleic acid probe obtained from a nucleic acid of claim 14 and spanning said mutation, under conditions of specific hybridisation between said probe and the mutant sequence to be detected, and detecting the hybridisation complex.
- 24) A method for obtaining a pair of primers 35 allowing to detect a genetic polymorphic marker linked to

15

a nucleic acid sequence encoding a polypeptide of any of claims 1 to 5, wherein said process comprises:

- screening a genomic DNA library from a vertebrate with a probe specific for a nucleic acid sequence encoding a polypeptide of any of claims 1 to 5, in order to select clones comprising said nucleic acid sequence and flanking chromosomal sequences;
- identifying a polymorphic locus in said flanking chromosomal sequences, and sequencing a DNA
   segment comprising said polymorphic locus;
  - designing primer pairs flanking said polymorphic locus.
  - 25) A method of claim 24 wherein the selected clones comprise at least a portion of a nucleic acid sequence encoding a polypeptide of any of claims 1 to 5, and up to 500 kb of a 3' and/or of a 5' adjacent sequence.
  - 26) A method of any of claims 21 to 25 wherein the vertebrate is a mammal.
- 20 27) A method of claim 26 wherein said mammal is a pig.
  - 28) A pair of primers obtainable by the process of any of claims 24 to 26.
  - 29) A process for detecting a dysfunction of carbohydrate metabolism resulting from the expression of a functionally altered allele of a polypeptide of any of claims 1 to 5 in a vertebrate, wherein said process comprises:
- obtaining a sample of genomic DNA from said 30 vertebrate;
  - contacting said DNA with a pair of primers of claim 28 under conditions allowing PCR amplification;
- analysing the PCR product to detect if an allele of a polymorphic marker linked to a nucleic acid sequence encoding a functionally altered allele of a polypeptide of any of claims 1 to 5 is present.

of

- 30) A process of claim 29, wherein said functionally altered polypeptide results from a R41Q substitution in SEQ ID NO: 2.
- 31) A process of any of claims 29 or 30, 5 wherein said vertebrate is a mammal.
  - 32) A process of claim 31 wherein said mammal is a pig.
  - 33) A process of claim 32 wherein the pair of primers is selected among:
- a pair of primers consisting of SEQ ID NO: 5 and SEQ ID NO: 6;
  - a pair of primers consisting of SEQ ID NO: 7 and SEQ ID NO: 8;
    - a pair of primers consisting of SEQ ID NO: 9
- 15 and SEQ ID NO: 10;
  - a pair of primers consisting of SEQ ID NO: 11 and SEQ ID NO: 12;
  - a pair of primers consisting of SEQ ID NO: 13 and SEQ ID NO: 14;
- a pair of primers consisting of SEQ ID NO: 15 and SEQ ID NO: 16;
  - a pair of primers consisting of SEQ ID NO: 17 and SEQ ID NO: 18;
  - a pair of primers consisting
- 25 SEQ ID NO: 19 and SEQ ID NO: 20;
  - a pair of primers consisting of SEQ ID NO: 21 and SEQ ID NO: 22;
    - a pair of primers consisting of SEQ ID NO: 23 and SEQ ID NO: 24;
- a pair of primers consisting of SEQ ID NO: 25 and SEQ ID NO: 26.
  - 34) Use of a transformed cell of claim 17 to screen compounds able to modulate AMPK activity.
- 35) Use of a transgenic animal of claim 18 to screen compounds able to modulate AMPK activity.

- 36) Use of a knockout animal of claim 19 to screen compounds able to modulate energy metabolism in the absence of a functional polypeptide of any of claims 1 to 5.
- 5 37) Use of an heterotrimeric AMPK of claim 20 to screen compounds able to modulate AMPK activity.



Figure 1

WO 01/20003 PCT/EP00/09896

|        | 5,    | אתו        | 10          | )     |          | 20         |          | 30         |           |              |                 |               |         |          |          |        |        |             |               |                   |
|--------|-------|------------|-------------|-------|----------|------------|----------|------------|-----------|--------------|-----------------|---------------|---------|----------|----------|--------|--------|-------------|---------------|-------------------|
| Pi     |       |            |             |       |          |            | GTTC     |            |           | CCC          | 40              | TYTE A        | 50      | )<br>    |          | 60     |        | 70          | )             | 68<br>GDDADOA     |
| Hu     | .m    |            |             | A     | -A-C     | A          | C        |            |           | -A-C         | :               | C-            | ACCAC   | CAGC     | TCAC     | BAAAC  | SAAGO  | CATO        | :GGG!         | ACCAGGG<br>A-G-A- |
|        |       |            | 30          | ,     | T        | vv         |          | TTO        |           | 1            | .20             |               | 130     | )        | 1        | 40     |        | 150         |               | 1.00              |
| Pi     | g GA  | ACAA       | GGCC        | TCTA  | GATG     | GACA       | AGGC     | AGGA       | GGAT      | GTAG         | AGG             | AAGGG         | יניניני | الملكمار | 2000     | יריריא | יככבא  | 150<br>NGCT |               | 160<br>AGTCCA     |
| Hu     | m −G  | C          | A           | -TG-  |          |            |          | A-         | -TCG      | G-           |                 |               | -A      | -A       | AT       | -A-G   |        |             |               | AGTCCA<br>G       |
|        |       |            | 1/0         |       | ı        | ยบ         |          | 190        |           | 2            | 00              |               | 210     |          | 2        | 20     |        | 720         |               | 242               |
| Pi     | g GG  | CCAG       | TTGC        | TGAG  | TCCA     | CCGG       | GCAG     | GAGG       | CCAC      | ATTC         | CCCA            | VAGGC         | CACA    | CCCT     | TGGC     | CCAA   | .GCCG  | ~~~         | ~~~~          |                   |
| ни     | m     | A          |             |       |          |            | T-       |            |           |              |                 | A-            |         |          |          | r      | T-1    | <b>\</b>    | T             | GCCGAG            |
|        |       |            | 250         |       | 20       | 50         |          | 270        |           | 2            | 80              |               | 290     |          | 3        | OΩ     |        | 310         |               | 220               |
| H11    | 9 61  | GGAC<br>C- | PACC<br>CT- | 7     | AACA     | AGC)       | GGGA     | CATC       | TCC       | CTC          | TGAC            | TGTG          | CAGC    | CTCA     | GCCT     | CCGA   | CTCC   | AACA        | CAGA          | CCATCT            |
| 110    |       |            | 330         | -A    | 3,       | -G-1<br>10 |          | -1G<br>350 | • • • • • |              |                 | A             |         |          |          |        |        |             | '             | IGG-              |
| Pic    | r GG  | ATCT       |             | ATAG  |          |            | بالمالية |            | יייט      | ات دران<br>ا | 60<br>2002      | מירי א כי     | 370     | -        | 3        | 80<br> |        | 390         |               | 400<br>CCCCGT     |
| Hu     | n     | -G         | c-          | -CG-  |          | C          | A        | -A-A-      | · C -     | G1           | ADDE<br>SYT – L | 1 GAG         | 9 - 1   | GC       | 3C1G0    | GIGG.  | AAGA   | GAAG        | CCAG          | CCCCGT<br>T       |
|        |       |            | 410         |       | 4.4      | 20         |          | 430        |           | 44           | 10              |               | 450     |          | 41       | 60     |        | 470         | 5117          |                   |
| Pig    | g GCC | CAT        | CCC         | AGAGO | TGC1     | GTT        | CCC      | \GGC1      | GGGC      | TGG          | SATG            | ATGA          | كلمك    | CAGAZ    | יככע     | بمحمد  | GCCC   |             | יי עידי       | 1 K               |
| Hun    | n     | -1G        |             | 3C    | -cc-c    | 'A1        | r        | A          |           |              |                 | -C- <i>-1</i> | \       | G        | AC       | :C-    |        | -A          |               |                   |
|        | CDS   | 5          |             |       |          |            |          |            |           | 10           | )               |               |         |          |          |        |        |             |               | 20                |
| P10    | Mot   | CAC        | TIC         | ATG   | CAG      | GAC        | CAC      | ACC        | TGC       | TAC          | GA:             | r GC          | ATC     | GCC      | ACC      | AGG    | TC     | : AA        | CI            | GTC               |
|        | 1     | -G-        | Pile        | : Mec | GIN      | GIU        | HIS      | rnr        | Cys       | Tyr          | Ası             | o Ala         | Met     | : Ala    | Thr      | : Sez  | Sex    | Lys         | Lei           | GTC<br>Val        |
|        |       | Arc        |             | _     | -        | _          | _        | _          |           | -            | · ·             |               |         | A        | 1        |        |        | 6           | A             |                   |
|        |       |            | •           |       |          |            |          |            |           | 30           | , -             | -             | -       | -        | -        | -      | -      | -           | -             | -                 |
| Pig    | ATC   | TTC        | GAC         | ACC   | ATG      | CTG        | GAG      | ATC        | AAG       | AAG          | GCC             | TTC           | : पंपाप | GCC      | CTG      | : GTG  | : 600  | . אאר       | CCC           | 40<br>GTC         |
|        | Ile   | Phe        | Asp         | Thr   | Met      | Leu        | Glu      | Ile        | Lys       | Lys          | Ala             | Phe           | Phe     | Ala      | Leu      | Val    | Ala    | Asn         | Glv           | Val               |
| Hum    |       |            |             |       |          |            |          |            |           |              |                 |               |         | T        |          |        |        |             | T             | G                 |
|        | 7     | -          | -           | -     | -        | -          | -        | -          | -         | •            | -               | -             | -       | -        | -        | -      | -      | -           | •             | -                 |
| Dia    | ~~    | 000        | -           | ~~    |          |            |          |            |           | 50           |                 |               |         |          |          |        |        |             |               | 60                |
| Pig    | Ara   | Δla        | Ala         | Dro   | TIG      | TGG        | GAC      | AGC        | AAG       | AAG          | CAG             | AGC           | TTC     | GTG      | GGG      | ATG    | CIG    | ACC         | ATC           | ACA               |
| Hum    | G     | A          | C           |       | C-A      |            |          | 261        | гуя       | гуа          | GIII            | Ser           | Phe     | Val      | GTA      | Met    | Leu    | Thr         | Ile           | Thr               |
|        | _     | -          | _           | _     | -        | _          | -        | -          | -         |              |                 |               | 1       |          |          |        |        |             |               | T                 |
|        |       |            |             |       |          |            |          |            |           | 70           |                 |               |         |          |          | _      | -      | -           | -             | 80                |
| Pig    | GAC   | TTC        | ATC         | TTG   | GTG      | CTG        | CAC      | CGC        | TAT       | TAC          | AGG             | TCC           | CCC     | CTG      | GTC      | CAG    | ATC    | TAC         | GAG           | א טאני            |
|        | Asp   | Pne        | TTE         | ren   | vaı      | Leu        | His      | Arg        | Tyr       | Tyr          | Ara             | Ser           | Pro     | Leu      | Val      | Gln    | Tle    | Tyr         | Glis          | Tle               |
| Hum    |       |            |             | C     |          | 7          | T        |            | C         |              |                 |               |         |          |          |        |        | T           |               |                   |
|        | -     | -          | -           | -     | -        | •          | -        | -          | -         | -            | -               | -             | -       | -        | -        | -      | -      | -           | -             | -                 |
| Piq    | GAA   | GAA        | CAT         | AAG   | ATT      | GAG        | ACC      | TCC        | AGG.      | 90           | 3 77/7          | TAC           | ~       | ~~~      |          |        |        | _:_         |               | 100               |
|        | Glu   | Glu        | His         | Lys   | Ile      | Glu        | Thr      | Trp        | Ara       | Glu          | Tle             | Tyr           | T.Au    | CAA      | GGC      | TGC    | TTC    | AAG         | CCI           | CTG               |
| Hum    |       | C          |             |       |          |            |          |            |           |              |                 |               | G       |          | GLY      | -ys    | LITE   | nys         | PIO           | Leu               |
|        | -     | Gln        | -           | -     | -        | -          | -        | -          | -         | -            | -               | -             | -       | -        | -        | _      |        | •           |               | -                 |
|        | ·     |            |             |       |          |            |          |            |           | 110          |                 |               |         |          |          |        |        |             |               | 120               |
| Pig    | GTC   | TCC        | ATC         | TCT   | CCC      | AAT        | GAC      | AGC        | CIG       | TTC          | GAA             | GCT           | GTC     | TAC      | GCC      | crc    | ATC    | AAG         | AAC           | CCC               |
| Hum    | vai   | ser        | TIE         | ser   | Pro      | Asn        | Asp      | Ser        | Leu       | Phe          | Glu             | Ala           | Val     | Tyr      | Ala      |        |        |             |               | Arg               |
| 114111 | _     |            | -           |       | 1        |            | 1        |            |           | T            |                 |               |         |          |          |        |        |             |               |                   |
|        |       |            |             | _     | _        | •          | -        | -          | -         | -<br>130     | -               | -             | -       | -        | Thr      | -      | -      | -           | -             | -                 |
| Pig    | ATC   | CAC        | CGC         | CTG   | CCG      | GTC        | CTG      | GAC        | CCT       | CLC.         | TCC             | GGG           | CCT     | ~~~      | <b>₩</b> | CAC    | N.T.C. | ~~~         |               | 140               |
| -      | Ile   | His        | Arg         | Leu   | Pro      | Val        | Leu      | Asp        | Pro       | Val          | Ser             | Gly           | Ala     | Val      | Len      | Hie    | TIA    | CIC         | ACA           | CAT               |
| Hum    |       | T          |             |       | <b>T</b> | T          | T        |            | G         | G            | A               | C             | AAC     | A.       |          | ura    | 116    | Leu         | ine           | H16               |
|        | -     | -          | -           | -     | -        | -          | -        | -          | -         | -            |                 |               |         | -        | _        | _      |        | _           |               |                   |
|        |       |            |             |       |          |            |          |            |           | 150          |                 |               | •       |          |          |        |        |             |               | 160               |
| Pig    | AAG   | CCC        | CTT         | CIC   | AAG      | TTC        | CTG      | CAC        | ATC '     | TTT          | GGC             | ACC           | CTG     | CTG      | CCC      | CGG    | ccc    | TCC         | TTC           | CTC               |
| •      | nys   | Mg         | ren         | Leu   | гЛа      | rne        | ren .    | HLS.       | Ile       | Phe          | Gly             | Thr           | Leu     | Leu      | Pro      | Arg    | Pro    | Ser         | Phe           | Leu               |
| num    | A     | 0          | G           |       |          |            |          |            |           |              | <b>T</b>        | T             |         |          |          |        |        |             | <del></del> - |                   |
|        | -     | •          | •           | -     | •        | •          | -        | -          | -         | -            | -               | Ser           | -       | -        | -        | -      | -      | _           | -             | -                 |

Figure 2

```
170
 Pig TAC CGC ACC ATC CAA GAT TTG GGC ATC GGC ACA TTC CGA GAC TTG GCC GTG GTG CTG GAA
    Tyr Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val Val Leu Glu
 - - - - - - - - -
                              190
 Pig ACG GCG CCC ATC CTG ACC GCA CTG GAC ATC TTC GTG GAC CGG CGT GTG TCT GCG CTG CCT
                                                           200
    Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp Arg Arg Val Ser Ala Leu Pro
 - - - - - - - - - - . . . . . .
                             210
 Pig GTG GTC AAC GAA ACT GGA CAG GTA GTC GGC CTC TAC TCT CGC TTT GAT GTG ATC CAC CTG
   Val Val Asn Glu Thr Gly Gln Val Val Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu
 Hum --- -- TG- --T --- -- T --C --- -- T --C
    230
Pig GCT GCC CAA CAA ACA TAC AAC CAC CTG GAC ATG AAT GTG GGA GAA GCC CTG AGG CAG CGG
   Ala Ala Gln Gln Thr Tyr Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg
Hum --- -- -- A--
            - - - - - - Ser - - - -
                             250
                                                          260
Pig ACA CTG TGT CTG GAA GGC GTC CTT TCC TGC CAG CCC CAC GAG ACC TTG GGG GAA GTC ATT
   Thr Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu Val Ile
- - - - - - - - - - - Ser - - - -
                             270
Pig GAC CGG ATT GTC CGG GAA CAG GTG CAC CGC CTG GTG CTC GTG GAT GAG ACC CAG CAC CTT
   Asp Arg Ile Val Arg Glu Gln Val His Arg Leu Val Leu Val Asp Glu Thr Gln His Leu
- - Ala - - - - - . . . .
                             290
Pig CTG GGC GTG GTG TCC CTC TCT GAC ATC CTT CAG GCT CTG GTG CTC AGC CCT GCT GGA ATT
   Leu Gly Val Val Ser Leu Ser Asp Ile Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile
CDS
Pig GAT GCC CTC GGG GCC TGA
   Asp Ala Leu Gly Ala ***
Hum --- --- --- ---
   3'UTR 10
                     30 40 50
                                           60
Pig GAACCTTGGAACCTTTGCTCTCAGGCCACCTGGCACACCTGGAAGCCAGTGAAGGGAGCCGTGGACTCAGCTCTCACTTC
Hum ---GA-CT--GT-C-CAA--C--A----A-----A-T...--AGAA-----T---
     90 100 110 120 130 140 150
Pig CCCTCAGCCCCACTTGCTGGTCTGGCTCTTGTTCAGGTAGGCTCCGCCCGGGGC.....CCCTGGCCTCAGCATCAGCCC
Hum ---A.-C---A-T-----TCA---A-GA------CTTCT--A---TTCCAAAATTG--T-T----T-.-T-GT--T-
            180
                     190
                           200
                                  210
                                        220
                                               230
Pig CTCAGTCTCCCT.GGGCACCCAGATCTCAGACTGGGGCACCCTGAAGATG.GGAGTGGCCCAGCTTATAGCTGAGCAG.C
Hum -.---AAC--T-C----TG-CC-GTG--CCA----.-TGA----AT-AA----AACAG-T-AG-CA----TG-AG-T-
      250 260 270 280 290 300 310
Pig CTTGTG...AAATCTACCAGCATCAAGACT...CACTGTGGGACCACTGCTTTG...TCCCATTCTCAGCTGAAATGAT.G
Hum -C--AACC-G-GGC--T--G--T-CCC-AGGG-CA-C--T-CT-CA---CCGCCCA----C-GC-GC----CTG-G-C-
       330
            340
                  350 360
                                   370
                                           380
Pig GAGGGCCTCATAAGAGGGGTGGACAGGGC..CTGGAGTAGAGGCCAGATCAGTGACGT..GCCTTCAGG....ACCTCCG
Hum --T----C--GTG-..-TT-A-T-----T-CCTC-GTTTC-GG-CT--C-AT-G-----CCTTC-G----T
```

Figure 2 (cont.)

|     | 410            | 420         | 430                   | 440                                   | 450        | 460         | 470         | 480            |
|-----|----------------|-------------|-----------------------|---------------------------------------|------------|-------------|-------------|----------------|
| Pig | GGGAGT1'AGAGCT | rgccctctctc | AGTT                  | . CAGT'ICCCC                          | CCTGCTGAGA | ATG. TCCCTG | SAACCA ACCC | ישיע עינבניט י |
| Hum | CCC            | TTGC-       | CAACGTCG              | CC-GT                                 | ACTCC      | -G-C-TTG-C  | ATTTCG-1    | C-C-           |
|     | 490            | 500         | 510                   | 520                                   | 530        | 540         | 550         | 560            |
| Pig | AAACCTTGGTTGG  | ATGGAATTTC  | CACACTCG              | • • • • • • • • • • • • • • • • • • • | <b>.</b>   |             |             |                |
| Hum | TGGCATC        | :-GG        | CA-G-AG               | CAGCCGTTAT                            | TATAGAACTY | CCTGTTGGAC  | GTGGGGAGTC  |                |
|     | 570            | 580         | 590                   | 600                                   | 610        | 620         | 630         | 640            |
| Pig |                |             | • • • • • • • • · · · |                                       |            |             |             | 940            |
| Hum | CCATTCTTGTCCA  | GAAAACTCCT  | PAGCTCTCGC            | AGTGAGCCATO                           | TTCTTAGTCT | CCAGGGATGG  | ATGGCCTTGT  | ביייים ביייים  |
|     | 650            | 660         | 570                   | 680                                   | 690        | 700         | 710         | 720            |
| Pig |                |             |                       | . <b>.</b> . <i></i>                  |            |             |             |                |
| Hum | ACCCCTGAGAATG  | AGCAATTGAG  | <b>AAAACAAAAC</b>     | AAAAGGAACAA                           | TCCATGAACT | TAGATTTTAT  | TGGTTTCACT  | СААААТ         |
|     |                |             |                       |                                       |            |             |             |                |
|     | 730            | 740         |                       |                                       |            |             |             |                |
| _   | GCTGCAGTCATTT  |             |                       |                                       |            |             |             |                |

Figure 2 (cont.)

| 1903   HIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pigga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Pigga<br>Humga<br>Bros<br>Snf4<br>Snf4<br>Pigga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Humga<br>Hum |

Figure 3



Figure 4



Figure 5

rn+/rn+; G/G homozygote



RN-/rn+; A/G heterozygote



RN-/RN-; A/A homozygote



Figure 6

SUBSTITUTE SHEET (RULE 26)

### SEQUENCE LISTING

<110 > INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE MILAN, Denis ANDERSSON, Leif LOOFT, Christian ROBIC, Annie ROGEL-GAILLARD, Claire IANNUCCELLI, Nathalie GELLIN, Joël KALM, Ernst LE ROY, Pascale CHARDON, Patrick <120> VARIANTS OF THE GAMMA CHAIN OF AMPK, DNA SEQUENCES ENCODING THE SAME, AND USES THEREOF <130> MJPcb539-99 <140> <141> <150> EP 99402236.3 <151> 1999-09-10 <150> EP 00401388.4 >151> 2000-05-18 <1.60> 32 <210> 1 <211> 1867 <212> DNA <213> Sus scrofa <220> <221> CDS <222> (472)..(1389) <400> 1 ttcctagagc aaggagagag ccgttcatgg ccatcccgag ctgtaaccac cagctcagaa 60 agaagccatg gggaccaggg gaacaaggcc tctagatgga caaggcagga ggatgtagag 120 gaagggggc ctccgggccc gagggaaggt ccccagtcca ggccagttgc tgagtccacc 180 gggcaggagg ccacattece caaggecaca ceettggeec aageegetee ettggeegag 240 gtggacaacc ccccaacaga gcgggacatc ctcccctctg actgtgcagc ctcagcctcc 300 gactccaaca cagaccatct ggatctgggc atagagttct cagcctcggc ggcgtcgggg 360 gatgagettg ggetggtgga agagaageea geeeegtgee cateeceaga ggtgetgtta 420 cccaggctgg gctgggatga tgagctgcag aagccggggg cccaggtcta c atg cac 477 Met His ttc atg cag gag cac acc tgc tac gat gcc atg gcg acc agc tcc aaa Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser Lys 5

| cto<br>Le         | g gt<br>u Va<br>2 | 1 11              | c tto<br>e Pho    | e Asp             | aco<br>The        | ato<br>Met        | : Leu             | gag<br>Glu        | g ato<br>1 Ile    | aaq<br>Lys        | g aag<br>s Lys<br>30 | Ala               | tto<br>Phe        | ttt<br>Phe        | gcc<br>Ala        | 573  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|-------------------|-------------------|-------------------|------|
| cto<br>Let        | ı Val             | g gc              | c aad<br>a Asi    | c ggd<br>n Gly    | gto<br>Val        | Arg               | gcg<br>Ala        | gca<br>Ala        | cct<br>Pro        | ttg<br>Leu<br>49  | ı Trp                | gac<br>Asp        | ago<br>Ser        | aag<br>Lys        | aag<br>Lys<br>50  | 621  |
| cag<br>Gl:        | g ago             | c tto             | e gtg             | 999<br>Gly<br>55  | Met               | ctg<br>Leu        | acc<br>Thr        | ato<br>Ile        | aca<br>Thr        | Asp               | tto<br>Phe           | : atc             | t t g<br>Leu      | gtg<br>Val<br>65  | Leu               | 669  |
| cac<br>His        | cgo<br>Arg        | tat<br>y Ty:      | tac<br>Tyr<br>70  | agg<br>Arg        | tcc<br>  Ser      | Pro               | ctg<br>Leu        | gtc<br>Val<br>75  | Gln               | atc<br>Ile        | tac<br>Tyr           | gag<br>Glu        | att<br>Ile<br>80  | Glu               | gaa<br>Glu        | 717  |
| cat<br>His        | aag<br>Lys        | att<br>Ile<br>89  | Glu               | acc<br>Thr        | tgg<br>Trp        | agg<br>Arg        | gag<br>Glu<br>90  | atc<br>Ile        | tac<br>Tyr        | ctt<br>Leu        | caa<br>Gln           | ggc<br>Gly<br>95  | tgc<br>Cys        | ttc<br>Phe        | aag<br>Lys        | 765  |
| cct<br>Pro        | Leu<br>100        | Val               | tcc<br>Ser        | atc<br>Ile        | tct<br>Ser        | ccc<br>Pro<br>105 | aat<br>Asn        | gac<br>Asp        | agc<br>Ser        | ctg<br>Leu        | ttc<br>Phe<br>110    | gaa<br>Glu        | gct<br>Ala        | gtc<br>Val        | tac<br>Tyr        | 813  |
| gcc<br>Ala<br>115 | Leu               | atc<br>Ile        | aag<br>Lys        | aac<br>Asn        | cgg<br>Arg<br>120 | atc<br>Ile        | cac<br>His        | cgc<br>Arg        | ctg<br>Leu        | ccg<br>Pro<br>125 | gtc<br>Val           | ctg<br>Leu        | gac<br>Asp        | cct<br>Pro        | gtc<br>Val<br>130 | 861  |
| tcc<br>Ser        | Gly               | gct<br>Ala        | gtg<br>Val        | ctc<br>Leu<br>135 | cac<br>His        | atc<br>Ile        | ctc<br>Leu        | aca<br>Thr        | cat<br>His<br>140 | aag<br>Lys        | cgg                  | ctt<br>Leu        | ctc<br>Leu        | aag<br>Lys<br>145 | ttc<br>Phe        | 909  |
| ctg<br>Leu        | cac               | atc<br>Ile        | ttt<br>Phe<br>150 | ggc               | acc<br>Thr        | ctg<br>Leu        | ctg<br>Leu        | ccc<br>Pro<br>155 | cgg<br>Arg        | ccc<br>Pro        | tcc<br>Ser           | ttc<br>Phe        | ctc<br>Leu<br>160 | tac<br>Tyr        | cgc<br>Arg        | 957  |
| acc<br>Thr        | atc<br>Ile        | caa<br>Gln<br>165 | gat<br>Asp        | ttg<br>Leu        | ggc<br>Gly        | atc<br>Ile        | ggc<br>Gly<br>170 | aca<br>Thr        | ttc<br>Phe        | cga<br>Arg        | gac<br>Asp           | ttg<br>Leu<br>175 | gcc<br>Ala        | gtg<br>Val        | gtg<br>Val        | 1005 |
| ctg<br>Leu        | gaa<br>Glu<br>180 | acg<br>Thr        | gcg<br>Ala        | ccc<br>Pro        | atc<br>Ile        | ctg<br>Leu<br>185 | acc<br>Thr        | gca<br>Ala        | ctg<br>Leu        | gac<br>Asp        | atc<br>Ile<br>190    | ttc<br>Phe        | gtg<br>Val        | gac<br>Asp        | cgg<br>Arg        | 1053 |
| cgt<br>Arg<br>195 | gtg<br>Val        | tct<br>Ser        | gcg<br>Ala        | ctg<br>Leu        | cct<br>Pro<br>200 | gtg<br>Val        | gtc<br>Val        | aac<br>Asn        | gaa<br>Glu        | act<br>Thr<br>205 | gga<br>Gly           | cag<br>Gln        | gta<br>Val        | gtg<br>Val        | ggc<br>Gly<br>210 | 1101 |
| ctc<br>Leu        | tac<br>Tyr        | tct<br>Ser        | cgc<br>Arg        | ttt<br>Phe<br>215 | gat<br>Asp        | gtg<br>Val        | atc<br>Ile        | cac<br>His        | ctg<br>Leu<br>220 | gct<br>Ala        | gcc<br>Ala           | caa<br>Gln        | caa<br>Gln        | aca<br>Thr<br>225 | tac<br>Tyr        | 1149 |
| aac<br>Asn        | cac<br>His        | ctg<br>Leu        | gac<br>Asp<br>230 | atg<br>Met        | aat<br>Asn        | gtg<br>Val        | Gly               | gaa<br>Glu<br>235 | gcc<br>Ala        | ctg<br>Leu        | agg<br>Arg           | Gln               | cgg<br>Arg<br>240 | aca<br>Thr        | ctg<br>Leu        | 1197 |
| tgt<br>Cys        | ctg<br>Leu        | gaa<br>Glu<br>245 | ggc<br>Gly        | gtc<br>Val        | ctt<br>Leu        | Ser               | tgc<br>Cys<br>250 | cag<br>Gln        | ccc<br>Pro        | cac<br>His        | Glu                  | acc<br>Thr<br>255 | ttg<br>Leu        | gly<br>ggg        | gaa<br>Glu        | 1245 |

| Val Ile Asp Arg Ile Val Arg Glu Gln Val His Arg Leu Val Leu Val 260 265 270                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| gat gag acc cag cac ctt ctg ggc gtg gtg tcc ctc tct gac atc ctt 1341<br>Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile Leu<br>275 280 295 290                                                                                                                                                                                             |
| cag gct ctg gtg ctc agc cct gct gga att gat gcc ctc ggg gcc tga 1389<br>Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala<br>295 300 305                                                                                                                                                                                                     |
| gaacettgga acetttgete teaggeeace tggeacacet ggaageeagt gaagggagee 1449                                                                                                                                                                                                                                                                                 |
| gtggactcag ctctcacttc ccctcagccc cacttgctgg tctggctctt gttcaggtag 1509                                                                                                                                                                                                                                                                                 |
| geteegeeeg gggeeeetgg ceteageate ageceeteag teteeetggg cacceagate 1569                                                                                                                                                                                                                                                                                 |
| tcagactggg gcaccctgaa gatgggagtg gcccagctta tagctgagca gccttgtgaa 1629                                                                                                                                                                                                                                                                                 |
| atctaccage atcaagacte actgtgggae cactgetttg teccattete agetgaaatg 1689                                                                                                                                                                                                                                                                                 |
| atggagggcc tcataagagg ggtggacagg gcctggagta gaggccagat cagtgacgtg 1749                                                                                                                                                                                                                                                                                 |
| cetteaggae eteeggggag ttagagetge eeteteteag tteagtteee eeetgetgag 1809                                                                                                                                                                                                                                                                                 |
| aatgtccctg gaaggaagcc agttaataaa ccttggttgg atggaatttc cacactcg 1867                                                                                                                                                                                                                                                                                   |
| <210> 2 <211> 305 <212> PRT <213> Sus scrofa <400> 2                                                                                                                                                                                                                                                                                                   |
| Met His Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser<br>1 5 10 15                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                        |
| Ser Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe<br>20 25 30                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                        |
| Phe Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser 35 40 45  Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu 50 55 60                                                                                                                                                                                                     |
| Phe Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser 35 40 45  Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu                                                                                                                                                                                                              |
| Phe Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser  35 40 45  Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu  50 55 60  Val Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile                                                                                                                                  |
| Phe Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser  Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu  50  Val Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile 65  Glu Glu His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys 85  Phe Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala 100  105 |
| Phe Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser  Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu  50  Val Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile 65  70  Glu Glu His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys 85  Phe Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala      |

## SUBSTITUTE SHEET (RULE 26)

Lys Phe Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala 165 170 Val Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val 185 Asp Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln 210 215 Thr Tyr Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg 230 Thr Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly Glu Val Ile Asp Arg Ile Val Arg Glu Gln Val His Arg Leu Val Leu Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp 275 280 Ile Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly 295 300 Ala 305 <210> 3 <211> 2109 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (472)..(1389) <400> 3 ttcctagage aagaaaacag cagetcatgg ccatcaccag etgtgaccag cagetcagaa 60 agaatccgtg ggaaacggag ggccaaagcc ttgagatgga caaggcagaa gtcggtggag 120 gaagggagc caccaggtca gggggaaggt ccccggtcca ggccaactgc tgagtccacc 180 gggctggagg ccacattccc caagaccaca cccttggctc aagctgatcc tgccggggtg 240 ggcactccac caacagggtg ggactgcctc ccctctgact gtacagcctc agctgcaggc 300 tecageacag atgatgtgga getggeeacg gagtteecag ecacagagge etgggagtgt 360 gagetagaag geetgetgga agagaggeet geeetgtgee tgteeeegea ggeeecattt 420 cccaagetgg getgggatga egaactgegg aaacceggeg eccagateta e atg ege 477

|                   |                   |            |            |                   |                   |                   |            |            |                   |                   |                   |            |            | Ме                | t Arg<br>1        |      |
|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|-------------------|------------|------------|-------------------|-------------------|------|
|                   |                   |            | Glu        |                   |                   |                   |            |            |                   | atg<br>Met        |                   |            |            |                   | aag<br>Lys        | 525  |
| cta<br>Leu        | gtc<br>Val<br>20  | atc<br>Ile | ttc<br>Phe | gac<br>Asp        | acc<br>Thr        | atg<br>Met<br>25  | ctg<br>Leu | gag<br>Glu | atc<br>Ile        | aag<br>Lys        | aaq<br>Lys<br>30  | gcc<br>Ala | ttc<br>Phe | ttt<br>Phe        | gct<br>Ala        | 573  |
|                   |                   |            |            |                   |                   |                   |            |            |                   | cta<br>Leu<br>45  |                   |            |            |                   |                   | 621  |
|                   |                   |            |            |                   |                   |                   |            |            |                   | gac<br>Asp        |                   |            |            |                   |                   | 669  |
|                   |                   |            |            |                   |                   |                   |            |            |                   | atc<br>Ile        |                   |            |            |                   |                   | 717  |
|                   |                   |            |            |                   |                   |                   |            |            |                   | ctg<br>Leu        |                   |            |            |                   |                   | 765  |
|                   |                   |            |            |                   |                   |                   |            |            |                   | ctg<br>Leu        |                   |            |            |                   |                   | 813  |
|                   |                   |            |            |                   |                   |                   |            |            |                   | cct<br>Pro<br>125 |                   |            |            |                   |                   | 861  |
|                   |                   |            |            |                   |                   |                   |            |            |                   | aaa<br>Lys        |                   |            |            |                   |                   | 909  |
|                   |                   |            |            |                   |                   |                   |            |            |                   | ccc<br>Pro        |                   |            |            |                   |                   | 957  |
|                   |                   |            |            |                   |                   |                   |            |            |                   | cga<br>Arg        |                   |            |            |                   |                   | 1005 |
| ctg<br>Leu        | gag<br>Glu<br>180 | aca<br>Thr | gca<br>Ala | ccc<br>Pro        | atc<br>Ile        | ctg<br>Leu<br>185 | act<br>Thr | gca<br>Ala | ctg<br>Leu        | gac<br>Asp        | atc<br>Ile<br>190 | ttt<br>Phe | gtg<br>Val | gac<br>Asp        | cgg<br>Arg        | 1053 |
| cgt<br>Arg<br>195 | gtg<br>Val        | tct<br>Ser | gca<br>Ala | ctg<br>Leu        | cct<br>Pro<br>200 | gtg<br>Val        | gtc<br>Val | aac<br>Asn | gaa<br>Glu        | tgt<br>Cys<br>205 | ggt<br>Gly        | cag<br>Gln | gtc<br>Val | gtg<br>Val        | ggc<br>Gly<br>210 | 1101 |
| ctc<br>Leu        | tat<br>Tyr        | tcc<br>Ser | cgc<br>Arg | ttt<br>Phe<br>215 | gat<br>Asp        | gtg<br>Val        | att<br>Ile | cac<br>His | ctg<br>Leu<br>220 | gct<br>Ala        | gcc<br>Ala        | cag<br>Gln | caa<br>Gln | acc<br>Thr<br>225 | tac<br>Tyr        | 1149 |

PCT/EP00/09896 6/20

aac cac ctg gac atg agt gtg gga gaa gcc ctg agg cag agg aca cta 1197 Asn His Leu Asp Met Ser Val Gly Glu Ala Leu Arg Gln Arg Thr Leu 235 tgt ctg gag gga gtc ctt tcc tgc cag ccc cac gag agc ttg ggg gaa 1245 Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Ser Leu Gly Glu gtg atc gac agg att gct cgg gag cag gta cac agg ctg gtg cta gtg 1293 Val Ile Asp Arg Ile Ala Arg Glu Gln Val His Arg Leu Val Leu Val 265 gac gag acc cag cat ctc ttg ggc gtg gtc tcc ctc tcc gac atc ctt 1341 Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile Leu 280 285 cag gca ctg gtg ctc age cct gct ggc atc gat gcc ctc ggg gcc tga 1389 Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala 295 gaagatetga gteeteaate eeaageeaae tgeacaetgg aageeaatga aggaattgag 1449 aacagettea ttteeccaae eccaatttge tggtteaget atgatteagg ettetteage 1509 cttccaaaat tgcctttgcc ttacttgtgc tcccagaacc cttcgggcat gcccagtgca 1569 ccatgggatg atgaaattaa ggagaacagc tgagtcaagc ttggaggtcc ctgaaccaga 1629 ggcactagga ttaccccagg gccatctgtg ctccatgccc gcccatcccc ttgccgcctg 1689 actgggtcgg atggccccag tgggtttagt cagggcttct ggattcctcg gtttctgggc 1749 tacctatggc ttcagccttc agctcctggg agtcccagct gttgttccca gcaacgtcgc 1809 cactgoooto otactotoca ggotttgtoa tttcaaggot gotgaaatgo tgcattcag 1869 gggccaccat ggagcagccg ttatttatag aactgcctgt tggaggtggg gagtcctccc 1929 tecattettg tecagaaaac teettagete tegeagtgag ceatgttett agtetecagg 1989 gatggatggc cttgtatatg gacccctgag aatgagcaat tgagaaaaca aaacaaaagg 2049 aacaatccat gaacttagat tttattggtt tcactcaaaa tgctgcagtc atttgacctg 2109

<210> 4

<211> 305

<212> PRT

<213> Homo sapiens

<400> 4

Met Arg Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser

Ser Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe

Phe Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser

WO 01/20003 PCT/EP00/09896

7/20

Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu Gln His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val Tyr Thr Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp 120 Pro Val Ser Gly Asn Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys Phe Leu His Ile Phe Gly Ser Leu Leu Pro Arg Pro Ser Phe Leu 155 Tyr Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala 165 Val Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp·Ile Phe Val Asp Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Cys Gly Gln Val Val Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln 215 Thr Tyr Asn His Leu Asp Met Ser Val Gly Glu Ala Leu Arg Gln Arg 235 Thr Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Ser Leu 250 Gly Glu Val Ile Asp Arg Ile Ala Arg Glu Gln Val His Arg Leu Val 260 Leu Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp 280 Ile Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly 295 Ala 305

<210> 5

<211> 20

<212> DNA

<213> Sus scrofa

<400> 5

ggaatttcaa gtcagccaac

| <210> 6 <211> 20 <212> DNA    |    |
|-------------------------------|----|
| <213> Sus scrofa              |    |
| <400> 6                       |    |
| cttcaaaaga ccgtgctact         | 20 |
|                               |    |
| <210> 7                       |    |
| <211> 20                      |    |
| <212> DNA<br><213> Sus scrofa |    |
| <213> Sus scrota              |    |
| <400> 7                       |    |
| ctgggaacct ctatatgctg         | 20 |
|                               |    |
| <210> 8                       |    |
| <211> 20<br><212> DNA         |    |
| <213> Sus scrofa              |    |
| 33.57                         |    |
| <400> 8                       |    |
| tagggaaata caaatcacag         | 20 |
|                               |    |
| <210> 9                       |    |
| <211> 20                      |    |
| <212> DNA                     |    |
| <213> Sus scrofa              |    |
| <400> 9                       |    |
| ctccagctca caggatgaca         | 20 |
|                               |    |
| <210> 10                      |    |
| <211> 26                      |    |
| <212> DNA                     |    |
| <213> Sus scrofa              |    |
| <400> 10                      |    |
| gtttctgcag ctttagcatc tattcc  | 26 |
|                               |    |
| <210> 11                      |    |
| <211> 20                      |    |
| <212> DNA                     |    |
| <213> Sus scrofa              |    |
| <400> 11                      |    |
| gaagtateet gggettetga         | 20 |
|                               |    |
| <210> 12                      |    |
| <211> 26                      |    |
| 212> DNA                      |    |
| 213> Sus scrofa               |    |
| :400> 12                      |    |

| gtttctccag gtttccagac atccac      | 26 |
|-----------------------------------|----|
|                                   |    |
| <210> 13                          |    |
| <211> 20                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
| <400> 13                          |    |
| gcttctgtct gcccctactt             | 20 |
|                                   |    |
| <210> 14                          |    |
| <211> 26                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
| <400> 14                          |    |
| gtttctaagt tctactgtaa gacacc      | 26 |
| ,                                 |    |
| <210> 15                          |    |
| <211> 20                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
| <400> 15                          |    |
| ccaagctgtg gtggctgaat             | 20 |
|                                   |    |
| <210> 16                          |    |
| <211> 20                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
| <400> 16                          |    |
| cagcacagca gtgccaccta             | 20 |
|                                   | 20 |
| <210> 17                          |    |
| <211> 19                          |    |
| <212> DNA                         |    |
| <pre>&lt;213&gt; Sus scrofa</pre> |    |
| ×400> 17                          |    |
| caaactcttc taggcgtgt              | 19 |
|                                   | 19 |
| :210> 18                          |    |
| 2211> 26                          |    |
| 2212> DNA                         |    |
| 2213> Sus scrofa                  |    |
| 400> 18                           |    |
| tttctggaa cttccatatg ccatgg       | 36 |
|                                   | 26 |
| 210> 19                           | •  |
| 211> 20                           |    |
| 212> DNA                          |    |
| 213> Sus scrofa                   |    |

| <400> 19<br>agggtggatg gtaggcttca | 20 |
|-----------------------------------|----|
| <210> 20                          |    |
| <211> 20                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
| (213) 343 SCIOIA                  |    |
| <400> 20                          |    |
| gtctcgctcc tgaaggaagt             | 20 |
| 3                                 | 20 |
|                                   |    |
| <210> 21                          |    |
| <211> 20                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
|                                   |    |
| <400> 21                          |    |
| agtcacgtgg ccatgctatc             | 20 |
|                                   |    |
| <210> 22                          |    |
| <211> 20                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
|                                   |    |
| <400> 22                          |    |
| ctcaactgga ttgagtcagt             | 20 |
| •                                 |    |
| •••                               |    |
| <210> 23                          |    |
| <211> 20                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
| <400> 23                          |    |
| ttggcgcaac tgttatttct             | 20 |
| 23-3-3-4-4                        | 20 |
|                                   |    |
| <210> 24                          |    |
| <211> 19                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
| 444                               |    |
| <400> 24                          |    |
| aggcaaagga agagcacag              | 19 |
|                                   |    |
| <210> 25                          |    |
| <211> 18                          |    |
| <212> DNA                         |    |
| <213> Sus scrofa                  |    |
|                                   |    |
| <400> 25                          |    |
| agccgtgggc atcgttgg               | 18 |
|                                   |    |
| <210× 26                          |    |
| <210> 26<br><211> 21              |    |
| THAT WA                           |    |

| <212> DNA<br><213> Sus scrofa                                                                                                                                       |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <400> 26 agaaggagac agacagggcga                                                                                                                                     | 21  |
| <210> 27<br><211> 1873<br><212> ADN<br><213> Sus scrofa                                                                                                             |     |
| <220> <221> CDS <222> (1)(1395)                                                                                                                                     |     |
| <pre>&lt;400&gt; 27 atg agc ttc cta gag caa gga gag agc cgt tca tgg cca tcc cga gct Met Ser Phe Leu Glu Gln Gly Glu Ser Arg Ser Trp Pro Ser Arg Ala 1 5 10 15</pre> | 48  |
| gta acc acc agc tca gaa aga agc cat ggg gac cag ggg aac aag gcc<br>Val Thr Thr Ser Ser Glu Arg Ser His Gly Asp Gln Gly Asn Lys Ala<br>20 25 30                      | 96  |
| tct aga tgg aca agg cag gag gat gta gag gaa ggg ggg cct ccg ggc<br>Ser Arg Trp Thr Arg Gln Glu Asp Val Glu Glu Gly Gly Pro Pro Gly<br>35 40 45                      | 144 |
| ccg agg gaa ggt ccc cag tcc agg cca gtt gct gag tcc acc ggg cag<br>Pro Arg Glu Gly Pro Gln Ser Arg Pro Val Ala Glu Ser Thr Gly Gln<br>50 55 60 .                    | 192 |
| gag gcc aca ttc ccc aag gcc aca ccc ttg gcc caa gcc gct ccc ttg<br>Glu Ala Thr Phe Pro Lys Ala Thr Pro Leu Ala Gln Ala Ala Pro Leu<br>65 70 75 80                   | 240 |
| gcc gag gtg gac aac ccc cca aca gag cgg gac atc ctc ccc tct gac<br>Ala Glu Val Asp Asn Pro Pro Thr Glu Arg Asp Ile Leu Pro Ser Asp<br>85 90 95                      | 288 |
| tgt gca gcc tca gcc tcc gac tcc aac aca gac cat ctg gat ctg ggc<br>Cys Ala Ala Ser Ala Ser Asp Ser Asn Thr Asp His Leu Asp Leu Gly<br>100 105 110                   | 336 |
| ata gag ttc tca gcc tcg gcg gcg tcg ggg gat gag ctt ggg ctg gtg<br>Ile Glu Phe Ser Ala Ser Ala Ala Ser Gly Asp Glu Leu Gly Leu Val<br>115 120 125                   | 384 |
| gaa gag aag cca gcc ccg tgc cca tcc cca gag gtg ctg tta ccc agg<br>Glu Glu Lys Pro Ala Pro Cys Pro Ser Pro Glu Val Leu Leu Pro Arg<br>130 135 140                   | 432 |
| ctg ggc tgg gat gat gag ctg cag aag ccg ggg gcc cag gtc tac atg<br>Leu Gly Trp Asp Asp Glu Leu Gln Lys Pro Gly Ala Gln Val Tyr Met<br>145 150 155 160               | 480 |
| cac ttc atg cag gag cac acc tgc tac gat gcc atg gcg acc agc tcc<br>His Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser<br>165 170 175                   | 528 |

| aaa<br>Lys        | ctg<br>Leu        | gto<br>Val        | ato<br>Ille<br>180 | Phe               | gac<br>Asp        | acc<br>Thr        | atg<br>Met        | ctg<br>Leu<br>185 | Glu               | atc<br>Ile        | aag<br>Lys        | aag<br>Lys        | gcc<br>Ala<br>190 | Phe               | ttt<br>Phe        | 576  |
|-------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| gcc<br>Ala        | ctg<br>Leu        | gtg<br>Val        | . Ala              | aac<br>Asn        | ggc<br>Gly        | gtc<br>Val        | cga<br>Arg<br>200 | Ala               | gca<br>Ala        | cct<br>Pro        | ttg<br>Leu        | tgg<br>Trp<br>205 | gac               | agc<br>Ser        | aag<br>Lys        | 624  |
| aag<br>Lys        | cag<br>Gln<br>210 | Ser               | tto<br>Phe         | gtg<br>Val        | Gly               | atg<br>Met<br>215 | Leu               | acc<br>Thr        | atc<br>Ile        | aca<br>Thr        | gac<br>Asp<br>220 | Phe               | atc<br>Ile        | ttg<br>Leu        | gtg<br>Val        | 672  |
| ctg<br>Leu<br>225 | cac<br>His        | cgc<br>Arg        | tat<br>Tyr         | tac<br>Tyr        | agg<br>Arg<br>230 | tcc<br>Ser        | ccc<br>Pro        | ctg<br>Leu        | gtc<br>Val        | cag<br>Gln<br>235 | atc<br>Ile        | tac<br>Tyr        | gag<br>Glu        | att<br>Ile        | gaa<br>Glu<br>240 | 720  |
| gaa<br>Glu        | cat<br>His        | aag<br>Lys        | att<br>Ile         | gag<br>Glu<br>245 | acc<br>Thr        | tgg<br>Trp        | agg<br>Arg        | gag<br>Glu        | atc<br>Ile<br>250 | tac<br>Tyr        | ctt<br>Leu        | caa<br>Gln        | ggc               | tgc<br>Cys<br>255 | ttc<br>Phe        | 768  |
| aag<br>Lys        | cct<br>Pro        | ctg<br>Leu        | gtc<br>Val<br>260  | tcc<br>Ser        | atc<br>Ile        | tct<br>Ser        | ccc<br>Pro        | aat<br>Asn<br>265 | gac<br>Asp        | agc<br>Ser        | ctg<br>Leu        | ttc<br>Phe        | gaa<br>Glu<br>270 | gct<br>Ala        | gtc<br>Val        | 816  |
| tac<br>Tyr        | gcc<br>Ala        | ctc<br>Leu<br>275 | atc<br>Ile         | aag<br>Lys        | aac<br>Asn        | cgg<br>Arg        | atc<br>Ile<br>280 | cac<br>His        | cgc<br>Arg        | ctg<br>Leu        | ccg<br>Pro        | gtc<br>Val<br>285 | ctg<br>Leu        | gac<br>Asp        | cct<br>Pro        | 864  |
| gtc<br>Val        | tcc<br>Ser<br>290 | gly<br>ggg        | gct<br>Ala         | gtg<br>Val        | ctc<br>Leu        | cac<br>His<br>295 | atc<br>Ile        | ctc<br>Leu        | aca<br>Thr        | cat<br>His        | aag<br>Lys<br>300 | cgg<br>Arg        | ctt<br>Leu        | ctc<br>Leu        | aag<br>Lys        | 912  |
| ttc<br>Phe<br>305 | ctg<br>Leu        | cac<br>His        | atc<br>Ile         | ttt<br>Phe        | ggc<br>Gly<br>310 | acc<br>Thr        | ctg<br>Leu        | ctg<br>Leu        | ccc<br>Pro        | cgg<br>Arg<br>315 | ccc<br>Pro        | tcc<br>Ser        | ttc<br>Phe        | ctc<br>Leu        | tac<br>Tyr<br>320 | 960  |
| cgc<br>Arg        | acc<br>Thr        | atc<br>Ile        | caa<br>Gln         | gat<br>Asp<br>325 | ttg<br>Leu        | ggc<br>Gly        | atc<br>Ile        | ggc<br>Gly        | aca<br>Thr<br>330 | ttc<br>Phe        | cga<br>Arg        | gac<br>Asp        | ttg<br>Leu        | gcc<br>Ala<br>335 | gtg<br>Val        | 1008 |
| gtg<br>Val        | ctg<br>Leu        | gaa<br>Glu        | acg<br>Thr<br>340  | gcg<br>Ala        | ccc<br>Pro        | atc<br>Ile        | ctg<br>Leu        | acc<br>Thr<br>345 | gca<br>Ala        | ctg<br>Leu        | gac<br>Asp        | atc<br>Ile        | ttc<br>Phe<br>350 | gtg<br>Val        | gac<br>Asp        | 1056 |
| cgg<br>Arg        | cgt<br>Arg        | gtg<br>Val<br>355 | tct<br>Ser         | gcg<br>Ala        | ctg<br>Leu        | cct<br>Pro        | gtg<br>Val<br>360 | gtc<br>Val        | aac<br>Asn        | gaa<br>Glu        | act<br>Thr        | gga<br>Gly<br>365 | cag<br>Gln        | gta<br>Val        | gtg<br>Val        | 1104 |
| ggc<br>Gly        | ctc<br>Leu<br>370 | tac<br>Tyr        | tct<br>Ser         | cgc<br>Arg        | ttt<br>Phe        | gat<br>Asp<br>375 | gtg<br>Val        | atc<br>Ile        | cac<br>His        | ctg<br>Leu        | gct<br>Ala<br>380 | gcc<br>Ala        | caa<br>Gln        | caa<br>Gln        | aca<br>Thr        | 1152 |
| tac<br>Tyr<br>385 | aac<br>Asn        | cac<br>His        | ctg<br>Leu         | gac<br>Asp        | atg<br>Met<br>390 | aat<br>Asn        | gtg<br>Val        | gga<br>Gly        | gaa<br>Glu        | gcc<br>Ala<br>395 | ctg<br>Leu        | agg<br>Arg        | cag<br>Gln        | cgg<br>Arg        | aca<br>Thr<br>400 | 1200 |
| ctg<br>Leu        | tgt<br>Cys        | ctg<br>Leu        | gaa<br>Glu         | ggc<br>Gly<br>405 | gtc<br>Val        | ctt<br>Leu        | tcc<br>Ser        | Сув               | cag<br>Gln<br>410 | ccc<br>Pro        | cac<br>His        | gag<br>Glu        | acc<br>Thr        | ttg<br>Leu<br>415 | Gly<br>aaa        | 1248 |

| gaa<br>Glu | a gto<br>ı Val    | at<br>l Il        | t gad<br>e Asp<br>420 | Arg        | att<br>Ile   | gtc<br>Val        | cgg<br>Arg        | Glu                  | ı Glı      | g gte<br>n Va  | g cad          | c cgc               | Le        | u Val          | g ctc<br>l Leu | 1296 |
|------------|-------------------|-------------------|-----------------------|------------|--------------|-------------------|-------------------|----------------------|------------|----------------|----------------|---------------------|-----------|----------------|----------------|------|
|            |                   |                   | 720                   | ,          |              |                   |                   | 425                  | •          |                |                |                     | 43        | 0              |                |      |
| gto<br>Val | gat<br>Asp        | gaq<br>Gl:<br>435 | ı Thr                 | cag<br>Gln | cac<br>His   | ctt<br>Leu        | ctg<br>Leu<br>440 | ggo                  | gto<br>Val | g gto<br>L Val | g tco<br>i Sei | c cto<br>Lew<br>445 | Se:       | t gad<br>r Asp | atc<br>Ile     | 1344 |
| ctt        | caç<br>Glr<br>450 | ı Ala             | ctg<br>Leu            | gtg<br>Val | ctc<br>Leu   | agc<br>Ser<br>455 | cct<br>Pro        | gct<br>Ala           | gga<br>Gly | att<br>/ Ile   | gat<br>Asp     | Ala                 | cto<br>Le | ggg<br>Gly     | gcc<br>Ala     | 1392 |
| +~-        | <i>a</i>          |                   |                       |            |              |                   |                   |                      |            |                |                |                     |           |                |                |      |
| Lya        | yac               | icci              | :gga                  | acct       | ccgc         | בכ בו             | agg               | ccac                 | יכ ככ      | gcac           | acct           | gga                 | agco      | agt            |                | 1445 |
| 465        |                   |                   |                       |            |              |                   |                   |                      |            |                |                |                     |           |                |                |      |
| gaa        | ggga              | gcc               | gtgg                  | actc       | ag c         | tctca             | actt              | c cc                 | ctca       | gccc           | cac            | ttgc                | tgg       | tctg           | gctctt         | 1505 |
| gtt        | cagg              | tag               | gctc                  | cgcc       | cg g         | ggcc              | ctg               | g cc                 | tcag       | cato           | ago            | ccct                | cag       | tctc           | cctggg         | 1565 |
| cac        | ccag              | atc               | tcag                  | actg       | gg go        | cacco             | tgaa              | a ga                 | tggg       | agtg           | qcc            | cage                | tta       | tage           | tgagca         | 1625 |
|            |                   |                   |                       |            |              |                   |                   |                      |            |                |                |                     |           |                | attctc         |      |
|            |                   |                   |                       |            |              |                   |                   |                      |            |                |                |                     |           |                |                |      |
|            |                   |                   |                       |            |              |                   |                   |                      |            |                |                |                     |           |                | ccagat         |      |
| cag        | tgac              | gtg               | cctt                  | cagga      | ac ct        | ccgg              | ggag              | , tt                 | agag       | ctgc           | cct            | ctct                | cag       | ttca           | gttccc         | 1805 |
| CCC        | tgct              | gag               | aatg                  | tacai      | tg ga        | agga              | agco              | : ag                 | ttaa       | taaa           | cct            | tggt                | tgg       | atgg           | aatttg         | 1865 |
| gag        | agtc              | g                 |                       |            |              |                   |                   |                      |            |                |                |                     |           |                |                | 1873 |
|            |                   |                   |                       |            |              |                   |                   |                      |            |                |                |                     |           |                |                |      |
|            | 0> 2              |                   |                       |            |              |                   |                   |                      |            |                |                |                     |           |                |                |      |
|            | l> 4:<br>2> Pi    |                   |                       |            |              |                   |                   |                      |            |                |                |                     |           |                |                |      |
|            | -                 |                   | crofa                 | 3          |              |                   |                   |                      |            |                |                |                     |           |                |                |      |
| <400       | )> 21             | В                 |                       |            |              |                   |                   |                      |            |                |                |                     |           |                |                |      |
| Met<br>1   | Ser               | Phe               | Leu                   | Glu        | Gln          | Gly               | Glu               | Ser                  |            | Ser            | Trp            | Pro                 | Ser       | Arg            | Ala            |      |
| _          | Thr               | Thr               | Ser                   | 5<br>Ser   | Glu          | Arg               | Ser               | His                  | 10<br>Gly  | Asp            | Gln            | Gly                 | Asn       | 15<br>Lys      | Ala            |      |
| Ser        | Ara               | Tro               | 20<br>Thr             | Ara        | Gln          | Gl 11             | Aan               | 25<br>Val            | Glu        | G1 v           | C1             | <b>C</b> 1          | 30        | D              | G1             |      |
|            |                   | 35                |                       |            |              |                   | 40                |                      |            |                |                | 45                  |           |                |                |      |
| Pro        | Arg<br>50         | Glu               | Gly                   | Pro        | Gln          | Ser :             | Arg               | Pro                  | Val        | Ala            | Glu<br>60      | Ser                 | Thr       | Gly            | Gln            |      |
| Glu<br>65  | Ala               | Thr               | Phe                   | Pro        |              | Ala '             | Thr               | Pro                  | Leu        |                | Gln            | Ala                 | Ala       | Pro            |                |      |
|            | Glu               | Val               | Asp                   | Asn        | 70<br>Pro    | Pro '             | Thr               | Glu                  | Arg        | 75<br>Asp      | Ile            | Leu                 | Pro       | Ser            | 80<br>Asp      |      |
|            |                   |                   | Ser                   | 85         |              |                   |                   |                      | 90         |                |                |                     |           | 95             |                |      |
|            |                   |                   | 100                   |            |              |                   |                   | 105                  |            |                |                |                     | 110       |                |                |      |
|            |                   | 115               | Ser                   |            |              |                   | 120               |                      |            |                |                | 125                 |           |                |                |      |
| 3lu        | Glu<br>130        | Lys               | Pro                   | Ala        | Pro (        | Cys 1             | Pro :             | Ser                  | Pro        | Glu            |                | Leu                 | Leu       | Pro            | Arg            |      |
| Leu        |                   | Trp               | Asp                   | Asp        | Glu 1        |                   | 3ln 1             | Lys                  | Pro        |                | 140<br>Ala     | Gln                 | Val       | Tyr            | Met            |      |
| l45<br>His | Phe               | Met               | Gln                   |            | 150<br>His ' | Thr (             | ve '              | <b>ľ</b> 1/ <b>~</b> | λes        | 155            | Mos            | <b>31</b> -         | ጥኤ        | C==            | 160            |      |
|            |                   |                   | J                     | 165        |              | -114              | - y = '           |                      | 170        | ATG            | 146C           | AIA                 | Thr       | Ser<br>175     | ser            |      |
|            |                   |                   |                       |            |              |                   |                   |                      |            |                |                |                     |           |                |                |      |

```
Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe Phe
                                185
Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser Lys
        195
                            200
                                                205
Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val
                        215
                                            220
Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu
                    230
                                        235
Glu His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe
                245
                                   250
Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val
           260
                                265
                                                    270
Tyr Ala Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro
                           280
                                               285
Val Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys
                       295
                                          300
Phe Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe Leu Tyr
                   310
                                      315
Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val
               325
                                    330
                                                    335
Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp
                               345
Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln Val Val
                           360
                                               365
Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr
                      375
                                           380
Tyr Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln Arg Thr
                   390
                                       395
Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr Leu Gly
               405
                                   410
Glu Val Ile Asp Arg Ile Val Arg Glu Gln Val His Arg Leu Val Leu
           420
                               425
Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile
       435
                           440
                                              445
Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala
                       455
```

<210> 29

| _ |   | gaa<br>Glu          |   |   |   |   |   |   |   | _ |   |   |   |   | _ | 192 |
|---|---|---------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|-----|
|   |   | aca<br>Thr          |   |   |   |   |   |   |   |   |   |   |   |   |   | 240 |
|   |   | ggc<br>Gly          |   |   |   |   |   |   | _ | - |   |   |   | - | - | 288 |
|   | - | tca<br>Ser          | _ | _ |   |   | - |   | _ | _ |   |   | - | _ | _ | 336 |
|   |   | cca<br>Pro<br>115   | _ |   |   | _ |   |   | _ |   |   | - |   | _ | _ | 384 |
|   |   | agg<br>Arg          |   |   |   |   |   |   |   |   |   |   |   |   |   | 432 |
| _ |   | tgg<br>Trp          | _ | _ | - | _ |   |   |   |   | _ | _ |   |   | _ | 480 |
| - |   | atg<br>Met          | _ |   |   |   | _ |   | _ | _ | _ | _ |   | _ |   | 528 |
|   |   | gtc<br>Val          |   |   |   |   |   |   |   |   |   |   |   |   |   | 576 |
| _ | _ | gtg<br>Val<br>195   | - |   |   |   |   | _ | _ |   |   |   | _ | _ | - | 624 |
| - | _ | agc<br>Ser          |   |   |   | _ | _ |   |   |   | _ |   |   | _ |   | 672 |
|   |   | cgc<br>Arg          |   |   |   |   |   |   |   |   |   |   |   |   |   | 720 |
|   |   | aag<br>Lys          |   |   |   |   |   |   |   |   |   |   |   |   |   | 768 |
| _ |   | ctg<br>L <b>e</b> u | _ |   |   |   |   |   | - | • | _ |   | _ | - | _ | 816 |
|   |   | ctc<br>Leu<br>275   |   |   |   |   |   |   |   |   |   |   |   |   |   | 864 |

| gtg<br>Val        | tca<br>Ser<br>290 | ggc<br>Gly        | aac<br>Asn        | gta<br>Val        | ctc<br>Leu        | cac<br>His<br>295 | atc<br>Ile        | ctc<br>Leu        | aca<br>Thr        | cac<br>His        | aaa<br>Lys<br>300 | cgc<br>Arg        | ctg<br>Leu        | ctc<br>Leu        | aag<br>Lys        | 912  |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------|
| ttc<br>Phe<br>305 | ctg<br>Leu        | cac<br>His        | atc<br>Ile        | ttt<br>Phe        | ggt<br>Gly<br>310 | tcc<br>Ser        | ct.g<br>Leu       | ctg<br>Leu        | ccc<br>Pro        | cgg<br>Arg<br>315 | ccc<br>Pro        | tcc<br>Ser        | ttc<br>Phe        | ctc<br>Leu        | tac<br>Tyr<br>320 | 960  |
| cgc<br>Arg        | act<br>Thr        | atc<br>Ile        | caa<br>Gln        | gat<br>Asp<br>325 | ttg<br>Leu        | ggc<br>Gly        | atc<br>Ile        | ggc<br>Gly        | aca<br>Thr<br>330 | ttc<br>Phe        | cga<br>Arg        | gac<br>Asp        | ttg<br>Leu        | gct<br>Ala<br>335 | gtg<br>Val        | 1008 |
| gtg<br>Val        | ctg<br>Leu        | gag<br>Glu        | aca<br>Thr<br>340 | gca<br>Ala        | ccc<br>Pro        | atc<br>Ile        | ctg<br>Leu        | act<br>Thr<br>345 | gca<br>Ala        | ctg<br>Leu        | gac<br>Asp        | atc<br>Ile        | ttt<br>Phe<br>350 | gtg<br>Val        | gac<br>Asp        | 1056 |
| cgg<br>Arg        | cgt<br>Arg        | gtg<br>Val<br>355 | tct<br>Ser        | gca<br>Ala        | ctg<br>Leu        | cct<br>Pro        | gtg<br>Val<br>360 | gtc<br>Val        | aac<br>Asn        | gaa<br>Glu        | tgt<br>Cys        | ggt<br>Gly<br>365 | cag<br>Gln        | gtc<br>Val        | gtg<br>Val        | 1104 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | caa<br>Gln        |                   | 1152 |
| tac<br>Tyr<br>385 | aac<br>Asn        | cac<br>His        | ctg<br>Leu        | gac<br>Asp        | atg<br>Met<br>390 | agt<br>Ser        | gtg<br>Val        | gga<br>Gly        | gaa<br>Glu        | gcc<br>Ala<br>395 | ctg<br>Leu        | agg<br>Arg        | cag<br>Gln        | agg<br>Arg        | aca<br>Thr<br>400 | 1200 |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ttg<br>Leu<br>415 |                   | 1248 |
| gaa<br>Glu        | gtg<br>Val        | atc<br>Ile        | gac<br>Asp<br>420 | agg<br>Arg        | att<br>Ile        | gct<br>Ala        | cgg<br>Arg        | gag<br>Glu<br>425 | cag<br>Gln        | gta<br>Val        | cac<br>His        | agg<br>Arg        | ctg<br>Leu<br>430 | gtg<br>Val        | cta<br>Leu        | 1296 |
| gtg<br>Val        | gac<br>Asp        | gag<br>Glu<br>435 | acc<br>Thr        | cag<br>Gln        | cat<br>His        | ctc<br>Leu        | ttg<br>Leu<br>440 | ggc<br>Gly        | gtg<br>Val        | gtc<br>Val        | tcc<br>Ser        | ctc<br>Leu<br>445 | tcc<br>Ser        | gac<br>Asp        | atc<br>Ile        | 1344 |
| Leu               | cag<br>Gln<br>450 | gca<br>Ala        | ctg<br>Leu        | gtg<br>Val        | Leu               | agc<br>Ser<br>455 | cct<br>Pro        | gct<br>Ala        | ggc<br>Gly        | atc<br>Ile        | gat<br>Asp<br>460 | gcc<br>Ala        | ctc<br>Leu        | Gly<br>999        | gcc<br>Ala        | 1392 |
| tga               | gaag              | atct              | ga g              | tcct              | caat              | c cc              | aago              | caac              | tgo               | acac              | tgg               | aagc              | caat              | ga                |                   | 1445 |
| 465               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |      |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | tcagg             |      |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ggcat             |      |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | ggtcc             |      |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | tcccc             |      |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | cctcg             |      |
|                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | tccca<br>aatgc    |      |
| •                 | •                 |                   | - 3               |                   |                   |                   |                   | 220               | 9                 |                   |                   | 23                | 3                 | 34                | 30                | -555 |

tgcatttcag gggccaccat ggagcagccg ttatttatag aactgcctgt tggaggtggg 1925
gagtcctccc tccattcttg tccagaaaac tccttagctc tcgcagtgag ccatgttctt 1985
agtctccagg gatggatggc cttgtatatg gacccctgag aatgagcaat tgagaaaaca 2045
aaacaaaagg aacaatccat gaacttagat tttattggtt tcactcaaaa tgctgcagtc 2105
atttgacctg

<210> 30 <211> 464 <212> PRT <213> Homo sapiens <400> 30 Met Ser Phe Leu Glu Gln Glu Asn Ser Ser Ser Trp Pro Ser Pro Ala 10 Val Thr Ser Ser Ser Glu Arg Ile Arg Gly Lys Arg Arg Ala Lys Ala 20 Leu Arg Trp Thr Arg Gln Lys Ser Val Glu Glu Gly Glu Pro Pro Gly 35 4.0 Gln Gly Glu Gly Pro Arg Ser Arg Pro Thr Ala Glu Ser Thr Gly Leu 55 60 Glu Ala Thr Phe Pro Lys . Thr Thr Pro Leu Ala Gln Ala Asp Pro Ala 70 75 Gly Val Gly Thr Pro Pro Thr Gly Trp Asp Cys Leu Pro Ser Asp Cys 90 Thr Ala Ser Ala Ala Gly Ser Ser Thr Asp Asp Val Glu Leu Ala Thr 100 105 110 Glu Phe Pro Ala Thr Glu Ala Trp Glu Cys Glu Leu Glu Gly Leu Leu 115 120 125 Glu Glu Arg Pro Ala Leu Cys Leu Ser Pro Gln Ala Pro Phe Pro Lys 135 140 Leu Gly Trp Asp Asp Glu Leu Arg Lys Pro Gly Ala Gln Ile Tyr Met 150 155 Arg Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser 170 Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe Phe 180 185 Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser Lys 200 205 Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val 215 220 Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu Ile Glu 230 235 Gln His Lys Ile Glu Thr Trp Arg Glu Ile Tyr Leu Gln Gly Cys Phe 245 250 Lys Pro Leu Val Ser Ile Ser Pro Asn Asp Ser Leu Phe Glu Ala Val 260 265 270 Tyr Thr Leu Ile Lys Asn Arg Ile His Arg Leu Pro Val Leu Asp Pro 280 Val Ser Gly Asn Val Leu His Ile Leu Thr His Lys Arg Leu Leu Lys 295 Phe Leu His Ile Phe Gly Ser Leu Leu Pro Arg Pro Ser Phe Leu Tyr 310 315 320 Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu Ala Val

325

```
Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe Val Asp
            340
                                345
Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Cys Gly Gln Val Val
                            360
                                                 365
Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln Gln Thr
                        375
Tyr Asn His Leu Asp Met Ser Val Gly Glu Ala Leu Arg Gln Arg Thr
                    390
Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Ser Leu Gly
                405
                                    410
Glu Val Ile Asp Arg Ile Ala Arg Glu Gln Val His Arg Leu Val Leu
            420
                                425
Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser Asp Ile
       435
                            440
Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu Gly Ala
   450
                        455
```

<210> 31 <211> 2022 <212> ADN <213> Sus scrofa

<400> 31

```
atggagettg eegagetaga geaggeactg egeagggtee egggggteeeg ggggggetgg 60
gagetggage aactgaggee agagggeaga gggeecacea etgeggatae teceteetgg 120
agcagecteg ggggacetaa geateaagag atgagettee tagageaagg agagageegt 180
tcatggccat cccgagctgt aaccaccagc tcagaaagaa gccatgggga ccaggggaac 240
aaggcctcta gatggacaag gcaggaggat gtagaggaag gggggcctcc gggcccgagg 300
gaaggteece agtecaggee agttgetgag tecaceggge aggaggeeae attececaag 360
gccacaccct tggcccaagc cgctcccttg gccgaggtgg acaacccccc aacagagcgg 420
gacatectee cetetgactg tgcageetea geeteegact ceaacacaga ceatetggat 480
ctgggcatag agttctcagc ctcggcggcg tcgggggatg agcttgggct ggtggaagag 540
ctgcagaagc cgggggccca ggtctacatg cacttcatgc aggagcacac ctgctacgat 660
gccatggcga ccagctccaa actggtcatc ttcgacacca tgctggagat caagaaggcc 720
ttctttgccc tggtggccaa cggcgtccga gcggcacctt tgtgggacag caagaagcag 780
agettegtgg ggatgetgae cateacagae tteatettgg tgetgeaceg etattacagg 840
teccecctgg tecagateta egagattgaa gaacataaga ttgagacetg gagggagate 900
taccttcaag gctgcttcaa gcctctggtc tccatctctc ccaatgacag cctgttcgaa 960
gctgtctacg ccctcatcaa gaaccggatc caccgcctgc cggtcctgga ccctgtctcc 1020
ggggctgtgc tccacatcct cacacataag cggcttctca agttcctgca catctttggc 1080
accetgetge eceggeeete etteetetae egeaceatee aagatttggg categgeaca 1140
ttccgagact tggccgtggt gctggaaacg gcgcccatcc tgaccgcact ggacatcttc 1200
giggaccggc gigtgicigc gcigccigig gicaacgaaa ciggacaggi agigggccic 1260
tactctcgct ttgatgtgat ccacctggct gcccaacaaa catacaacca cctggacatg 1320
aatgtgggag aagccctgag gcagcggaca ctgtgtctgg aaggcgtcct ttcctgccag 1380
ccccacgaga ccttggggga agtcattgac cggattgtcc gggaacaggt gcaccgcctg 1440
gtgctcgtgg atgagaccca gcaccttctg ggcgtggtgt ccctctctga catccttcag 1500
getetggtge teagecetge tggaattgat gecetegggg cetgagaace ttggaacett 1560
tgctctcagg ccacctggca cacctggaag ccagtgaagg gagccgtgga ctcagctctc 1620
actteccete agececaett getggtetgg etettgttea ggtaggetee geeeggggee 1680
cotggectea geatcagece etcagtetee etgggeacec agateteaga etggggeace 1740
ctgaagatgg gagtggccca gcttatagct gagcagcctt gtgaaatcta ccagcatcaa 1800
gactcactgt gggaccactg ctttgtccca ttctcagctg aaatgatgga gggcctcata 1860
agaggggtgg acagggcctg gagtagaggc cagatcagtg acgtgccttc aggacctccg 1920
gggagttaga gctgccctct ctcagttcag ttcccccctg ctgagaatgt ccctggaagg 1980
aagccagtta ataaaccttg gttggatgga atttggagag tc
                                                                2022
```

WO 01/20003

19/20

PCT/EP00/09896

<210> 32 <211> 514 <212> PRT <213> Sus scrofa <400> 32 Met Glu Leu Ala Glu Leu Glu Gln Ala Leu Arg Arg Val Pro Gly Ser Arg Gly Gly Trp Glu Leu Glu Gln Leu Arg Pro Glu Gly Arg Gly Pro Thr Thr Ala Asp Thr Pro Ser Trp Ser Ser Leu Gly Gly Pro Lys His Gln Glu Met Ser Phe Leu Glu Gln Gly Glu Ser Arg Ser Trp Pro Ser Arg Ala Val Thr Thr Ser Ser Glu Arg Ser His Gly Asp Gln Gly Asn Lys Ala Ser Arg Trp Thr Arg Gln Glu Asp Val Glu Glu Gly Pro Pro Gly Pro Arg Glu Gly Pro Gln Ser Arg Pro Val Ala Glu Ser Thr 105 Gly Gln Glu Ala Thr Phe Pro Lys Ala Thr Pro Leu Ala Gln Ala Ala Pro Leu Ala Glu Val Asp Asn Pro Pro Thr Glu Arg Asp Ile Leu Pro 135 Ser Asp Cys Ala Ala Ser Ala Ser Asp Ser Asn Thr Asp His Leu Asp Leu Gly Ile Glu Phe Ser Ala Ser Ala Ala Ser Gly Asp Glu Leu Gly Leu Val Glu Glu Lys Pro Ala Pro Cys Pro Ser Pro Glu Val Leu Leu 185 Pro Arg Leu Gly Trp Asp Asp Glu Leu Gln Lys Pro Gly Ala Gln Val Tyr Met His Phe Met Gln Glu His Thr Cys Tyr Asp Ala Met Ala Thr Ser Ser Lys Leu Val Ile Phe Asp Thr Met Leu Glu Ile Lys Lys Ala Phe Phe Ala Leu Val Ala Asn Gly Val Arg Ala Ala Pro Leu Trp Asp Ser Lys Lys Gln Ser Phe Val Gly Met Leu Thr Ile Thr Asp Phe Ile Leu Val Leu His Arg Tyr Tyr Arg Ser Pro Leu Val Gln Ile Tyr Glu

280

WO 01/20003 PCT/EP00/09896

20/20

| Ile        | Glu<br>290 | Glu | His | FÀa        | Il∈        | Glu<br>295 | Thr | Trp | Arg        | Glu        | Ile<br>300 | Tyr | Leu | Gln        | Gly        |
|------------|------------|-----|-----|------------|------------|------------|-----|-----|------------|------------|------------|-----|-----|------------|------------|
| Cys<br>305 | Phe        | Lys | Pro | Leu        | Val<br>310 | Ser        | Ile | Ser | Pro        | Asn<br>315 | Asp        | Ser | Leu | Phe        | Glu<br>320 |
| Ala        | Val        | Tyr | Ala | Leu<br>325 | Ile        | Lys        | Asn | Arg | Ile<br>330 | His        | Arg        | Leu | Pro | Val<br>335 | Leu        |

- Asp Pro Val Ser Gly Ala Val Leu His Ile Leu Thr His Lys Arg Leu 340 345 350
- Leu Lys Phe Leu His Ile Phe Gly Thr Leu Leu Pro Arg Pro Ser Phe . 355 360 365
- Leu Tyr Arg Thr Ile Gln Asp Leu Gly Ile Gly Thr Phe Arg Asp Leu 370 380
- Ala Val Val Leu Glu Thr Ala Pro Ile Leu Thr Ala Leu Asp Ile Phe 385 390 395 400
- Val Asp Arg Arg Val Ser Ala Leu Pro Val Val Asn Glu Thr Gly Gln 405 410 415
- Val Val Gly Leu Tyr Ser Arg Phe Asp Val Ile His Leu Ala Ala Gln 420 425 430
- Gln Thr Tyr Asn His Leu Asp Met Asn Val Gly Glu Ala Leu Arg Gln 435 440 445
- Arg Thr Leu Cys Leu Glu Gly Val Leu Ser Cys Gln Pro His Glu Thr 450 455 460
- Leu Gly Glu Val Ile Asp Arg Ile Val Arg Glu Gln Val His Arg Leu 465 470 475 480
- Val Leu Val Asp Glu Thr Gln His Leu Leu Gly Val Val Ser Leu Ser 485 490 495
- Asp Ile Leu Gln Ala Leu Val Leu Ser Pro Ala Gly Ile Asp Ala Leu 500 505 510

Gly Ala

# (19) World Intellectual Property Organization International Bureau



## 

(43) International Publication Date 22 March 2001 (22.03.2001)

**PCT** 

# (10) International Publication Number WO 01/20003 A3

- (51) International Patent Classification?: C12N 15/54, 15/11, 9/12, C12Q 1/68, A01K 67/027, G01N 33/68
- (21) International Application Number: PCT/EP00/09896
- (22) International Filing Date:

11 September 2000 (11.09.2000)

(25) Filing Language:

00401388.4

English

(26) Publication Language:

English

(30) Priority Data: 99402236.6 10 September

10 September 1999 (10.09.1999) E 18 May 2000 (18.05.2000) E

- (71) Applicant (for all designated States except US): INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE (INRA) [FR/FR]; 147, rue de l'Université, F-75007 Paris (FR).
- (71) Applicants and
- (72) Inventors: ANDERSSON, Leif [SE/SE]; Bergagatan 30, S-752 39 Uppsala (SE). LOOFT, Christian [DE/DE]; Mittelweg 3 c, 24802 Bokelholm (DE). KALM, Ernst [DE/DE]; Schmalholt 1, 24239 Achterwehr (DE).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): MILAN, Denis [FR/FR]; 3 bis, chemin du Tricou, F-31670 Labege (FR).

RORIC, Annie [FR/FR]; 33, rue des Capitouls, F-31650 Saint-Orens-De-Gameville (FR). ROGEL-GAILLARD, Claire [FR/FR]; 156, rue Léon Maurice Nordmann, F-75013 Paris (FR). IANNUCCELLI, Nathalie [FR/FR]; 7, boulevard des Alouettes, F-31320 Castanet-Tolosan (FR). GELLIN, Joël [FR/FR]; 8, allée des Amazones, F-31320 Auzeville (FR). LE ROY, Pascale [FR/FR]; 32, avenue Saint Marc, F-91300 Massy (FR). CHARDON, Patrick [FR/FR]; 17, rue de Petite Fontaine, F-91430 Vauhallan (FR).

- (74) Agents: VIALLE-PRESLES, Marie-José et al.; Cabinet Ores, 6, avenue de Messine, F-75008 Paris (FR).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published:

With international search report.

[Continued on next page]

(54) Title: VARIANTS OF THE GAMMA CHAIN OF AMPK, DNA SEQUENCES ENCODING THE SAME, AND USES THEREOF



(57) Abstract: The invention concerns variants of the gamma chain of vertebrate AMP-activated kinase (AMPK), as well as nucleic acid sequences encoding said variants and use thereof for the diagnosis or treatment of dysfunction of energy metabolisms.





WO 01/20003 A3



 Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(88) Date of publication of the international search report: 17 May 2001

International Application No PC./EP 00/09896

|                                                                                                                         |                                                                                                                                                                                                                        |                                                                                                                                                                                                                       | C./EP 00/09896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IPC 7                                                                                                                   | GIFICATION OF SUBJECT MATTER C12N15/54 C12N15/11 C12N9/ G01N33/68                                                                                                                                                      | 12 C12Q1/68                                                                                                                                                                                                           | A01K67/027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| According                                                                                                               | to International Patent Classification (IPC) or to both national class                                                                                                                                                 | ification and IPC                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B. FIELDS                                                                                                               | SEARCHED                                                                                                                                                                                                               |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Minimum d<br>IPC 7                                                                                                      | ocumentation searched (classification system followed by classific C12N C12Q A01K G01N                                                                                                                                 | ation symbols)                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Documenta                                                                                                               | ation searched other than minimum documentation to the extent the                                                                                                                                                      | at such documents are included                                                                                                                                                                                        | in the fields searched                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                         | data base consulted during the international search (name of data $oldsymbol{O}$ , $oldsymbol{EMBL}$                                                                                                                   | base and, where practical, sea                                                                                                                                                                                        | urch terms used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C. DOCUM                                                                                                                | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                         |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Category •                                                                                                              | Citation of document, with indication, where appropriate, of the                                                                                                                                                       | relevant passages                                                                                                                                                                                                     | Relevant to claim No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| X                                                                                                                       | HILLIER ET AL.: "WashU-NCI hum<br>project"<br>EMBL DATABASE ACC NO: AA178898,                                                                                                                                          | an EST                                                                                                                                                                                                                | 1-5,<br>11-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                         | 1 January 1997 (1997-01-01), XI cited in the application abstract                                                                                                                                                      | P002130593                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| X                                                                                                                       | ROBIC ET AL.: "A radiation hybrounder the RN region in pigs demonstrated conserved gene order compared whoman and mouse genomes"  MAMMALIAN GENOME,                                                                    | tes                                                                                                                                                                                                                   | 29-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A                                                                                                                       | vol. 10, no. 6, June 1999 (1999-<br>565-568, XP000876695<br>cited in the application<br>page 565                                                                                                                       | -06), pages                                                                                                                                                                                                           | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ·                                                                                                                       | page 567; figure 1; table 1                                                                                                                                                                                            |                                                                                                                                                                                                                       | 1-28,<br>32-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                         |                                                                                                                                                                                                                        | -/<br>                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u> </u>                                                                                                                | er documents are listed in the continuation of box C.                                                                                                                                                                  | X Patent family mem                                                                                                                                                                                                   | bers are listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| "A" documer<br>consider<br>"E" earlier di<br>filing da<br>"L" documer<br>which is<br>citation<br>"O" documer<br>other m | nt which may throw doubts on priority claim(s) or<br>s cited to establish the publication date of another<br>or other special reason (as specified)<br>nt referring to an oral disclosure, use, exhibition or<br>leans | or priority date and not cited to understand the invention  "X" document of particular recannot be considered in involve an inventive ste  "Y" document of particular recannot be considered to document is combined. | d after the international titing date in conflict with the application but principle or theory underlying the observance; the claimed invention over or cannot be considered to p when the document is taken alone levance; the claimed invention o involve an inventive step when the with one or more other such docunities of the claimed invention of the such docunities of the claimed inventive step when the with one or more other such docunities of the claim of |
| ialer the                                                                                                               | an the phomy date claimed                                                                                                                                                                                              | "&" document member of the                                                                                                                                                                                            | same patent family                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                         | ctual completion of the international search  March 2001                                                                                                                                                               | Date of mailing of the in                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| lame and ma                                                                                                             | alling address of the ISA  European Patent Office, P.B. 5818 Patentiaan 2                                                                                                                                              | Authorized officer                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                         | NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.<br>Fax: (+31-70) 340-3016                                                                                                                          | van Klompe                                                                                                                                                                                                            | nburg, W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

1

International Application No
PC., EP 00/09896

| C.(Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                              | PC./EP 00/09896       |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Category ~ |                                                                                                                                                                                                                                                                         | Relevant to claim No. |
| X          | WO 97 25341 A (ST VINCENTS INST MED RES; DARTMOUTH COLLEGE (US); KEMP BRUCE E (AU) 17 July 1997 (1997-07-17) page 18, line 21 - line 34                                                                                                                                 | 13-15                 |
| A          | page 25, line 1 -page 28, line 5<br>claims 16-21                                                                                                                                                                                                                        | 1-12,<br>16-37        |
| X          | WO 98 58052 A (INCYTE PHARMA INC ;CORLEY NEIL C (US); BANDMAN OLGA (US); GOLI SUR) 23 December 1998 (1998-12-23) SEQ ID NOS 7 & 14 page 18, line 21 -page 19, line 8                                                                                                    | 13-15                 |
| A          | page 38, line 6 -page 44, line 29 claims 1-24; figure 7                                                                                                                                                                                                                 | 1-12,<br>16-37        |
| X          | WATERSTON: "Homo sapiens chromosome unknown clone NH0459I19" EMBL DATABASE ACC NO: AC009974, 9 September 1999 (1999-09-09), XP002130594 abstract                                                                                                                        | 11-16                 |
| (          | HILLIER ET AL.: "The WashU-Merck EST<br>Project"<br>EMBL DATABASE ACC NO: W94830,<br>17 July 1996 (1996-07-17), XP002130595<br>abstract                                                                                                                                 | 11-16                 |
|            | MILAN ET AL.: "Accurate mapping of the "acid meat" RN gene on genetic and physical maps of pig chromosome 15" MAMMALIAN GENOME, vol. 7, no. 1, January 1996 (1996-01), pages 47-51, XP000876743 cited in the application page 50, column 2 -page 51, column 1; figure 1 | 1-35                  |
|            |                                                                                                                                                                                                                                                                         |                       |
|            |                                                                                                                                                                                                                                                                         |                       |

International Application No
PC., EP 00/09896

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PC./EP 00 | 37 G 3 G 3 G            |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|
|            | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                          |           |                         |
| Category * | Cilation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                  |           | Relevant to claim No.   |
| Ρ,Χ        | CHEUNG ET AL.: "Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding" BIOCHEMICAL JOURNAL, vol. 346, no. 3, 15 March 2000 (2000-03-15), pages 659-669, XP002162237 figures 2,3,5; tables 1,2 -& DATABASE EMBL 'Online! EBI; ACC. NO.: AJ249977, 7 January 2000 (2000-01-07) CARLING: "Homo sapiens mRNA for AMP-activated protein kinase gamma 3 subunit (AMPK gamma 3 gene)" XP002162239 abstract |           | 1-4,<br>11-17,<br>20,37 |
| P, X       | MILAN ET AL.: "A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle" SCIENCE, vol. 288, 19 May 2000 (2000-05-19), pages 1248-1251, XP002162238 figures 1,2; tables 1-3                                                                                                                                                                                                                                               |           | 1-33                    |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                         |

1

iformation on patent family members

International Application No
PC., EP 00/09896

| Patent document<br>cited in search repor | t | Publication date | Patent family member(s)                                                                        | Publication date                                                                 |  |
|------------------------------------------|---|------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| WO 9725341                               | A | 17-07-1997       | AU 714905 B<br>AU 1693697 A<br>CA 2241786 A<br>EP 0873354 A<br>JP 2000503202 T<br>US 6124125 A | 13-01-2000<br>01-08-1997<br>17-07-1997<br>28-10-1998<br>21-03-2000<br>26-09-2000 |  |
| WO 9858052                               | A | 23-12-1998       | US 5885803 A<br>AU 8154798 A<br>EP 1007692 A                                                   | 23-03-1999<br>04-01-1999<br>14-06-2000                                           |  |