CIRCUITOS LOGICOS DIGITALES

Universidad Peruana de Ciencias Aplicadas

Laureate International Universities®

CICLO ACADÉMICO: 2024-I

¿QUÉ APRENDERÁS AL REVISAR ESTA PRESENTACIÓN?

- □ A describir el funcionamiento del inversor y las puertas lógicas básicas (AND y OR).
- □ A describir el funcionamiento de las puertas NAND, NOR, XOR y XNOR.
- A realizar aplicaciones básicas de las puertas lógicas.
- □ A dibujar cronogramas de tiempo de las entradas y las salidas de las puertas lógicas.

FUNCIONES LÓGICAS – PUERTAS LÓGICAS – PUERTA INVERSORA:

inversora en forma de triangulo.

inversora en forma de caja

rectangular.

TABLA DE VERDAD DE UNA PUERTA INVERSORA:

	Entrada	Salida
0	Bajo (0)	Alto (1)
1	Alto (1)	Bajo (0)

Ecuación booleana: Salida = Entrada

$$X = \overline{A}$$

FUNCIONES LÓGICAS - PUERTAS LÓGICAS CRONOGRAMA DE TIEMPO DE UNA PUERTA

INVERSORA:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS LÓGICAS APLICACIÓN DE UNA PUERTA INVERSORA:

Complemento a 1 de un número binario

FUNCIONES LÓGICAS – PUERTAS LÓGICAS – PUERTA AND:

TABLA DE VERDAD DE UNA PUERTA AND:

_	A	В	Salida (X)
0	Bajo (0)	Bajo (0)	Bajo (0)
1	Bajo (0)	Alto (1)	Bajo (0)
2	Alto (1)	Bajo (0)	Bajo (0)
3	Alto (1)	Alto (1)	Alto (1)

Ecuación booleana: X = AB

CRONOGRAMA DE TIEMPO DE UNA PUERTA AND:

CRONOGRAMA DE TIEMPO DE UNA PUERTA AND:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS LÓGICAS APLICACIÓN DE UNA PUERTA AND:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS LÓGICAS APLICACIÓN DE UNA PUERTA AND:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS – PUERTA OR:

TABLA DE VERDAD DE UNA PUERTA OR:

	A	В	Salida (X)
0	Bajo (0)	Bajo (0)	Bajo (0)
1	Bajo (0)	Alto (1)	Alto (1)
2	Alto (1)	Alto (0)	Alto (1)
3	Alto (1)	Alto (1)	Alto (1)

Ecuación booleana: X = A+B

CRONOGRAMA DE TIEMPO DE UNA PUERTA OR:

CRONOGRAMA DE TIEMPO DE UNA PUERTA OR:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS LÓGICAS APLICACIÓN DE UNA PUERTA OR:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS – PUERTA NAND:

- (a) Símbolo de una puerta NAND de 2 entradas. Una puerta NAND es equivalente a una puerta AND seguida de un INVERSOR.
- (b) Símbolo de una puertaNANDcomo caja rectangular.

TABLA DE VERDAD DE UNA PUERTA NAND:

_	A	В	Salida (X)
0	Bajo (0)	Bajo (0)	Alto (1)
1	Bajo (0)	Alto (1)	Alto (1)
2	Alto (1)	Bajo (0)	Alto (1)
3	Alto (1)	Alto (1)	Bajo (0)

Ecuación booleana: $X = \overline{AB}$

CRONOGRAMA DE TIEMPO DE UNA PUERTA NAND:

CRONOGRAMA DE TIEMPO DE UNA PUERTA NAND:

EQUIVALENCIA DE UNA PUERTA NAND:

NAND

OR NEGATIVA

$$\overline{AB} = \overline{A} + \overline{B}$$

FUNCIONES LÓGICAS – PUERTAS LÓGICAS APLICACIÓN DE UNA PUERTA NAND:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS LÓGICAS APLICACIÓN DE UNA PUERTA NAND:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS – PUERTA NOR:

$$\begin{array}{c|c}
A & \longrightarrow & X \\
B & \longrightarrow & X
\end{array}$$

(a) Símbolo de una puerta NOR de 2 entradas. Una puerta NOR es equivalente a una puerta OR seguida de un INVERSOR.

(b) Símbolo de una puerta NOR como caja rectangular.

TABLA DE VERDAD DE UNA PUERTA NOR:

_	A	В	Salida (X)
0	Bajo (0)	Bajo (0)	Alto (1)
1	Bajo (0)	Alto (1)	Bajo (0)
2	Alto (1)	Bajo (0)	Bajo (0)
3	Alto (1)	Alto (1)	Bajo (0)

Ecuación booleana: $X = \overline{A+B}$

CRONOGRAMA DE TIEMPO DE UNA PUERTA NOR:

PUERTA EQUIVALENTE DE UNA PUERTA NOR:

NOR

AND NEGATIVA

$$\overline{A+B} = \overline{A}\overline{B}$$

FUNCIONES LÓGICAS – PUERTAS LÓGICAS LÓGICAS APLICACIÓN DE UNA PUERTA NOR:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS – PUERTAS PUERTA XOR:

- (a) Símbolo de una puerta XOR de 2 entradas.
- (b) Símbolo de una puerta XOR como caja rectangular.

TABLA DE VERDAD DE UNA PUERTA XOR:

_	A	В	Salida (X)
0	Bajo (0)	Bajo (0)	Bajo (0)
1	Bajo (0)	Alto (1)	Alto (1)
2	Alto (1)	Bajo (0)	Alto (1)
3	Alto (1)	Alto (1)	Bajo (0)

Ecuación booleana: $X = \overline{A} B + \overline{B} A = A \oplus B$

CRONOGRAMA DE TIEMPO DE UNA PUERTA XOR:

FUNCIONES LÓGICAS – PUERTAS LÓGICAS LÓGICAS APLICACIÓN DE UNA PUERTA XOR:

A	В	Σ	
0	0	0	
0	1	1	
1	0	1	
1		Ī	Suma que no considera el acarreo de salida (Cout=1)

FUNCIONES LÓGICAS – PUERTAS LÓGICAS – PUERTAS PUERTA XNOR:

(a) Símbolo de una puerta XNOR de 2 entradas.

(b) Símbolo de una puerta XNOR como caja rectangular.

TABLA DE VERDAD DE UNA PUERTA XNOR:

_	A	В	Salida (X)
0	Bajo (0)	Bajo (0)	Alto (1)
1	Bajo (0)	Alto (1)	Bajo (0)
2	Alto (1)	Bajo (0)	Bajo (0)
3	Alto (1)	Alto (1)	Alto (1)

Ecuación booleana: $X = \overline{A} \ \overline{B} + B A = A \otimes B$

CRONOGRAMA DE TIEMPO DE UNA PUERTA XNOR:

EJEMPLOS DE IC (INTEGRATED CIRCUITS)

RESUMEN:

AHORA SABES:

- □ Describir el funcionamiento de una puerta inversora además de las puertas lógicas básicas (AND y OR).
- □ Describir el funcionamiento de las puertas NAND, NOR, XOR y XNOR.
- Algunas aplicaciones básicas de las puertas lógicas.
- □ Dibujar cronogramas de tiempo de las entradas y salidas de las puertas lógicas.