上海财经大学《高等数学(经管类)》课程考试卷(A)闭卷

课程代码____102561____

2015—2016 学年第二学期(2016年6月14日)

一、填空题(每空格 2 分,共计 20 分)

1. 曲线 $y = \ln(1+x)$ 与 x 轴及直线 x = 1 所围平面图形面积为__2 $\ln 2 - 1$ __

2. 空间曲线
$$\begin{cases} z = \sqrt{4 - x^2 - y^2} \\ z = \sqrt{x^2 + y^2} \end{cases}$$
 在 xOy 平面上的投影曲线方程为____ $\begin{cases} x^2 + y^2 = 2 \\ z = 0 \end{cases}$ ______

3. 己知
$$x^2 + y^2 + z^2 = 3xyz$$
,则 $\frac{\partial z}{\partial x} = \frac{3yz - 2x}{2z - 3xy}$

4. 交换积分次序
$$\int_0^1 dy \int_{\sqrt{y}}^{\sqrt{2-y^2}} f(x,y) dx = \int_0^1 dx \int_0^{x^2} f(x,y) dy + \int_1^{\sqrt{2}} dx \int_0^{\sqrt{2-x^2}} f(x,y) dy$$

5. 若级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{-p^2+5p-5}}$$
 绝对收敛,则 p 满足_____2 < p < 3_____

6. 幂级数
$$\sum_{n=1}^{\infty} \frac{(x+1)^{3n+1}}{n^2 + \ln n}$$
 的收敛域为_____[-2,0]_____

7. 设
$$a_1 = a_2 = 1$$
, $a_{n+1} = a_n + a_{n-1} (n = 2, 3, \cdots)$, $\sum_{n=1}^{\infty} a_n x^{n-1}$ 在收敛域上的和函数是 $S(x)$,

则
$$S(x) = _{---} \frac{1}{1-x-x^2}$$

8. 微分方程
$$y' + y \cos x = e^{-\sin x}$$
 的通解为_ $y = e^{-\sin x}(x + C)$ ____

9. 对
$$y'' = f(y, y')$$
 型二阶微分方程,令 $y' = p$,则 $y'' = __p \frac{dp}{dy}$ ___

$$10. y_x = \sin ax$$
 的一阶差分是____2 \cos a\left(x+\frac{1}{2}\right)\sin\frac{a}{2}\right] \sin\frac{a}{2}\right] \sin\frac{a}{2}\right]

二、选择题(每题 2 分, 共计 10 分)

1. 由 $y = e^x$,及其过原点的切线和y轴所围成的平面图形的面积是(C

(A) e (B) $\frac{e}{2}$ (C) $\frac{e}{2} - 1$ (D) $\frac{e}{2} + 1$

2. 二元函数 $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$ 在点 (0,0) 处(A)

- (A) 不可微,偏导数存在 (B) 连续,偏导数不存在

(C) 连续, 可微

(D) 不连续, 偏导数不存在

3. $f'_{x}(x_0, y_0)$ 与 $f'_{y}(x_0, y_0)$ 均存在是函数f(x, y)在点 (x_0, y_0) 处连续的(D

- (A) 充分非必要条件 (B) 必要非充分条件
- (C) 充分必要条件
- (D) 既非充分也非必要条件
- 4. 下列叙述正确的是(B)

(A) 若 $\lim_{n\to\infty} \frac{b_n}{a_n} = 1$, 则 $\sum_{n=1}^{\infty} a_n$ 和 $\sum_{n=1}^{\infty} b_n$ 同时敛散 (B) 若 $\frac{a_{n+1}}{a_n} > 1$, 则 $\sum_{n=1}^{\infty} a_n$ 发散

(C) 若 $\frac{a_{n+1}}{a}$ < 1,则 $\sum_{n=1}^{\infty} a_n$ 收敛 (D) 若正项级数 $\sum_{n=1}^{\infty} a_n$ 收敛,则 $\lim_{n\to\infty} \sqrt[n]{a_n}$ < 1

5. 设 $a_n > 0$, $\sum_{n=1}^{\infty} a_n$ 收敛,常数 $\lambda > 0$, 则级数 $\sum_{n=1}^{\infty} (-1)^n n \tan \frac{\lambda}{n} a_n$ (A)

- (A) 绝对收敛

- (B) 条件收敛 (C) 发散 (D) 收敛性与 λ 有关

三、计算题(每题 6 分,共计 36 分)

1. 计算 $y = \ln x$, x = 1, x = e, y = 0 所围平面图形分别绕 x, y 轴所得旋转体体积.

解: 绕 x 轴旋转体积: $V_x = \pi \int_1^e (\ln x)^2 dx = \pi (e-2)$.

绕 y 轴旋转体积: $V_y = 2\pi \int_1^e x \ln x dx = \frac{\pi}{2} (\frac{e^2}{2} + 1)$.

2. 求 $z = (x^2 + y^2)e^{-(x^2+y^2)}$ 的极值.

$$z = (x + y)e^{-(x^2 + y)}$$

$$z_x = 2x(1 - x^2 - y^2)e^{-(x^2 + y)}$$

解: 由 $\begin{cases} z_x = 2x(1-x^2-y^2)e^{-(x^2+y^2)} = 0\\ z_y = 2y(1-x^2-y^2)e^{-(x^2+y^2)} = 0 \end{cases}$ 解得驻点(0,0)及 $x^2 + y^2 = 1$. 再由 $A = z_{xx}(0,0) = 2$, $B = z_{xy}(0,0) = 0$, $C = z_{yy}(0,0) = 2$,

$$\Delta = B^2 - AC = -4 < 0, A > 0 \text{ 知 } f(0,0) = 0 \text{ 为极小值.}$$

$$\Leftrightarrow x^2 + v^2 = t \cdot \text{ II } z = te^{-t} \cdot \text{ th } z'(t) = 0 \text{ 得驻点} t = 1, \text{ 且有 } z''(1) = -e^{-1} < 0 \text{ 知在 } t = 1$$

令
$$x^2 + y^2 = t$$
,则 $z = te^{-t}$,由 $z'(t) = 0$ 得驻点 $t = 1$,且有 $z''(1) = -e^{-1} < 0$ 知在 $t = 1$

处取的极大值,即函数
$$z = (x^2 + y^2)e^{-(x^2 + y^2)}$$
 在圆周 $x^2 + y^2 = 1$ 上取得极大值 e^{-1} . (2分)

3. 计算二重积分
$$\iint (|x|+y) dx dy$$
, D 为 $|x|+|y| ≤ 1$.

3. 计算二重积分
$$\iint_D (|x|+y) dx dy$$
, $D \mid x \mid + \mid y \mid \le 1$.

(2分)

(2分)

(4分)

(3分)

解: 利用对称性有
$$\iint_{D} (|x| + y) \, dx \, dy = \iint_{D} |x| \, dx \, dy$$

$$= 2 \int_{0}^{1} dx \int_{x-1}^{-x+1} x \, dy = \frac{2}{3}.$$
(4 分)

4. 计算二重积分
$$\iint_{D} \sqrt{\frac{1-x^{2}-y^{2}}{1+x^{2}+y^{2}}} d\sigma$$
,其中 D 是由圆周 $x^{2}+y^{2}=1$ 与坐标轴所围成的

$$\iint_{D} \sqrt{\frac{1 - x^{2} - y^{2}}{1 + x^{2} + y^{2}}} d\sigma = \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{1} \sqrt{\frac{1 - r^{2}}{1 + r^{2}}} r dr$$

$$=\frac{\pi}{8}(\pi-2).$$

5 将
$$f(x) = \ln(1 + x + x^2 + x^3 + x^4)$$
 展开成麦克劳林级数

5. 将
$$f(x) = \ln(1 + x + x^2 + x^3 + x^4)$$
 展开成麦克劳林级数.

A:
$$\ln(1+x+x^2+x^3+x^4) = \ln\left(\frac{1-x^5}{1-x}\right) = \ln(1-x^5) - \ln(1-x)$$

$$= \sum_{n=1}^{\infty} \frac{x^n}{n} - \sum_{n=1}^{\infty} \frac{x^{5n}}{n}, \text{ wath } \text{wath } [-1,1) \ . \tag{3.5}$$

6. 求 $y_{x+2} + \frac{1}{4}y_x = 5$ 满足初始条件 $y_0 = 5, y_1 = 6$ 的解.

解: 特征方程为
$$r^2 + \frac{1}{4} = 0$$
, 特征根为 $r_{1,2} = \frac{1}{2} \left(\cos \frac{\pi}{2} \pm i \sin \frac{\pi}{2} \right)$,

故齐次方程通解为
$$Y_x = (\frac{1}{2})^x \left(C_1 \cos \frac{\pi}{2} x + C_2 \sin \frac{\pi}{2} x \right).$$
 (2 分)

设特解 $y_r^* = A$, 代回原方程可得 A = 4,

故方程通解为
$$y_x = (\frac{1}{2})^x \left(C_1 \cos \frac{\pi}{2} x + C_2 \sin \frac{\pi}{2} x \right) + 4$$
, (2分)

由初始条件得 $C_1 = 1, C_2 = 4$,

故所求解为
$$y_x = (\frac{1}{2})^x \left(\cos\frac{\pi}{2}x + 4\sin\frac{\pi}{2}x\right) + 4.$$
 (2分)

四、(本题 7 分) 设
$$z = z(u,v)$$
, $u = x^2 - y^2$, $v = 2xy$, 将 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} + y \frac{\partial z}{\partial x} + x \frac{\partial z}{\partial x} = 0$ 化

为关于u,v的方程.

解: 由于
$$z_x = 2xz_u + 2yz_v$$
, $z_y = -2yz_u + 2xz_v$, (2分)

由此得 $z_{xx} = 2z_u + 4x^2z_{uu} + 8xyz_{uv} + 4y^2z_{vv}$,

$$z_{yy} = -2z_u + 4y^2 z_{uu} - 8xy z_{uv} + 4x^2 z_{vv},$$
 (3 \(\frac{1}{2}\))

将它们回代原方程并化简即得所求方程为
$$2\frac{\partial^2 z}{\partial u^2} + 2\frac{\partial^2 z}{\partial v^2} + \frac{\partial z}{\partial v} = 0$$
. (2 分)

五、(本题 7 分) 某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是 $p_1=18-2Q_1, p_2=12-Q_2$,其中 p_1, p_2 为售价 , Q_1, Q_2 为销售量 ,总成本函数为 $C=2(Q_1+Q_2)+5$.如果企业实行价格无差别策略,试确定两个市场上该产品的销售量

和统一的价格, 使该企业总利润最大化, 并求出最大利润是多少?

解: 由于价格无差别,固有 $p_1=p_2$,从而得约束条件 $2Q_1-Q_2=6$. 即求在该约束条件下

总利润函数 $P = R - C = p_1Q_1 + p_2Q_2 - [2(Q_1 + Q_2) + 5] = -2Q_1^2 - Q_2^2 + 16Q_1 + 10Q_2 - 5$ 的极值.

构造 Lagrange 函数 $L(Q_1,Q_2,\lambda)=-2Q_1^2-Q_2^2+16Q_1+10Q_2-5+\lambda(2Q_1-Q_2-6)$,由

$$\begin{cases} \frac{\partial L}{\partial Q_1} = -4Q_1 + 16 + 2\lambda = 0 \\ \frac{\partial L}{\partial Q_2} = -2Q_2 + 10 - \lambda = 0 \\ \frac{\partial L}{\partial \lambda} = 2Q_1 - Q_2 - 6 = 0 \end{cases}$$
 (5 $\frac{\partial L}{\partial \lambda}$)

得 $Q_1 = 5$, $Q_2 = 4$, $\lambda = 2$, 对应的统一价格为 $p_1 = p_2 = 8$, 此时可取得最大利润

$$P = \left(-2Q_1^2 - Q_2^2 + 16Q_1 + 10Q_2 - 5\right)\Big|_{Q_1 = 5, Q_2 = 4} = 49.$$
 (2 $\%$)

六、(本题 7 分) 求幂级数
$$\sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$$
 在收敛域 $(-\infty, +\infty)$ 上的和函数,并求 $\sum_{n=0}^{\infty} \frac{1}{(3n)!}$ 的值.

解: 设
$$S(x) = \sum_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$$
, 则有 $S''(x) + S'(x) + S(x) = e^x$, 且满足 $S(0) = 1, S'(0) = 0$.

由此可解出微分方程通解
$$S(x) = e^{-\frac{1}{2}x} (C_1 \cos \frac{\sqrt{3}}{2} x + C_2 \cos \frac{\sqrt{3}}{2} x) + \frac{1}{2} e^x$$
, (4分)

由
$$S(0) = 1$$
, $S'(0) = 0$ 可得微分方程特解 $S(x) = e^{-\frac{1}{2}x} (\frac{2}{3} \cos \frac{\sqrt{3}}{2} x) + \frac{1}{3} e^x$, (2分)

故所求级数和为
$$\sum_{n=0}^{\infty} \frac{1}{(3n)!} = \frac{1}{3}e + \frac{2}{3}e^{-\frac{1}{2}}\cos\frac{\sqrt{3}}{2}$$
. (1分)

七、(本题 7 分) 讨论级数 $\sum_{n=1}^{\infty} \left(e - (1 + \frac{1}{n})^n\right)^p$ 的敛散性.

解: 当 $p \le 0$ 时,一般项不趋于0,故此时发散;

(5.5)

当 p > 0 时,由 $e - (1 + \frac{1}{n})^n = e(1 - e^{n\ln(1 + \frac{1}{n}) - 1})$,由 $n\ln(1 + \frac{1}{n}) = 1 - \frac{1}{2n} + \frac{1}{3n^2} + o(\frac{1}{n^2})$

知当n充分大时有

$$\left(e - (1 + \frac{1}{n})^n\right)^p \Box \frac{1}{(2n)^p}$$
, 由此知: 当 $0 时, 级数发散, 当 $p > 1$ 时, 级数收敛$

八、(本题 6 分) 设 $a_n > 0$, $S_n = a_1 + a_2 + \cdots + a_n$,

证明: $\sum_{n=1}^{\infty} \frac{a_n}{S^2}$ 收敛.

证明: 因为 $a_n > 0$,故 S_n 单调增.

(2

所以
$$\sum_{k=2}^{n} \frac{a_k}{S_k^2} = \sum_{k=2}^{n} \frac{S_k - S_{k-1}}{S_k^2} \le \sum_{k=2}^{n} \frac{S_k - S_{k-1}}{S_k S_{k-1}} = \sum_{k=2}^{n} \left(\frac{1}{S_{k-1}} - \frac{1}{S_k} \right) = \frac{1}{S_1} - \frac{1}{S_n} \le \frac{1}{a_1}$$

故正项级数 $\sum_{n=1}^{\infty} \frac{a_n}{S^2}$ 有界,从而收敛.

(4