Prospect theory: Insurance

Notes on Behavioural Economics

Jason Collins

Expected utility theory

Risk aversion ⇒ insurance

Expected utility theory

Risk aversion ⇒ insurance

Prospect theory

Overweighting small probabilities ⇒ insurance

Expected utility theory

Risk aversion ⇒ insurance

Prospect theory

Overweighting small probabilities ⇒ insurance

The fourfold pattern of Prospect theory

	Gains	Losses
High probability	Risk aversion	Risk seeking
Low probability	ity Risk seeking Risk av	

Scenario

Value of the house H = \$1 000 000

Probability of fire p = 0.001

Insurance premium R = \$1100

$$u(x) = x$$

$$u(x) = x$$

$$\mathbb{E}[I] = -R$$
$$= -\$1100$$

$$u(x) = x$$

$$\mathbb{E}[\neg I] = p \times (-H)$$

$$u(x) = x$$

$$\mathbb{E}[\neg I] = p \times (-H)$$

$$= -0.001 \times 1000000$$

$$= -\$1000$$

$$u(x) = x$$

$$\mathbb{E}[\neg I] = -\$1000 > -\$1100 = \mathbb{E}[I]$$

$$u(x) = \ln(x)$$
 W = H + \$10 000

$$u(x) = \ln(x)$$
 W = H + \$10 000

$$\mathbb{E}[U(I)] = u(W - R)$$

$$u(x) = \ln(x)$$
 W = H + \$10 000

$$\mathbb{E}[U(I)] = u(W - R)$$

$$= \ln(1\ 010\ 000 - 1100)$$

$$= 13.8244$$

$$u(x) = \ln(x)$$
 W = H + \$10,000

$$\mathbb{E}[U(\neg I)] = p \times u(W - H) + (1 - p) \times u(W)$$

$$u(x) = \ln(x)$$
 W = H + \$10 000

$$\mathbb{E}[U(\neg I)] = p \times u(W - H) + (1 - p) \times u(W)$$

$$= 0.001 \times \ln(1\ 010\ 000 - 1\ 000\ 000) + 0.999 \times \ln(1\ 010\ 000)$$

$$= 13.8208$$

$$u(x) = \ln(x)$$
 W = H + \$10 000

$$\mathbb{E}[U(I)] = 13.8244 > 13.8208 = \mathbb{E}[U(\neg I)]$$

$$v(x) = \begin{cases} x^{0.8} & \text{where } x \ge 0 \\ -(-x)^{0.8} & \text{where } x < 0 \end{cases}$$

$$v(x) = \begin{cases} x^{0.8} & \text{where } x \ge 0 \\ -(-x)^{0.8} & \text{where } x < 0 \end{cases}$$

$$V(I) = v(-R)$$

= $-(1100)^{0.8}$
= -271.1

$$v(x) = \begin{cases} x^{0.8} & \text{where } x \ge 0 \\ -(-x)^{0.8} & \text{where } x < 0 \end{cases}$$

$$V(\neg I) = \sum_{i=1}^{n} p_i v(x_i)$$

$$= p \times v(-H) + (1-p) \times v(0)$$

$$= -0.001 \times (1000000)^{0.8} + 0.999 \times 0$$

$$= -63.1$$

$$v(x) = \begin{cases} x^{0.8} & \text{where } x \ge 0 \\ -(-x)^{0.8} & \text{where } x < 0 \end{cases}$$

$$V(I) = -271.1 < -63.1 = V(\neg I)$$

Decision weights:

Probability (p)	0.001	0.01	0.1	0.25	0.5	0.75	0.90	0.99	0.999
Weight $\pi(p)$	0.01	0.05	0.15	0.3	0.5	0.7	0.85	0.95	0.99

$$v(x) = \begin{cases} x^{0.8} & \text{where } x \ge 0 \\ -(-x)^{0.8} & \text{where } x < 0 \end{cases}$$

$$V(I) = v(-R)$$

= $-(1100)^{0.8}$
= -271

Probability (p)	0.001	0.999
Weight $\pi(p)$	0.01	0.99

$$v(x) = \begin{cases} x^{0.8} & \text{where } x \ge 0 \\ -(-x)^{0.8} & \text{where } x < 0 \end{cases}$$

Probability (p)	0.001	0.999
Weight $\pi(p)$	0.01	0.99

$$V(\neg I) = \sum_{i=1}^{n} \pi(p_i)v(x_i)$$

$$= \pi(p) \times v(-H) + \pi(1-p) \times v(0)$$

$$= \pi(0.001) \times v(-1\ 000\ 000) + \pi(0.999) \times v(0)$$

$$= -0.01 \times (1\ 000\ 000)^{0.8} + 0.99 \times 0$$

$$= -631$$

$$v(x) = \begin{cases} x^{0.8} & \text{where } x \ge 0 \\ -(-x)^{0.8} & \text{where } x < 0 \end{cases}$$

$$V(I) = -271 > -631 = V(\neg I)$$

Probability (p)	0.001	0.999
Weight $\pi(p)$	0.01	0.99