Homework 4: Report

Dante Buhl

Feb. 26^{th} 2024

2 Cholesky Solution of the least-squares problem

1.

3 QR Solution of the least-squares problem

1.

4 Theory Problems

1. Show that is P is an orthogonal projector, then I - 2P is unitary.

Proof. We begin with the definition of a unitary matrix. We have a unitary matrix Q is a matrix such that $Q^*Q = I$. We now look for this quality in (I - 2P).

$$(I - 2P)^*(I - 2P) = (I - 2P^T)(I - 2P) = (I - 2P)(I - 2P)$$

The above quality $P^T = P$ is from the fact that P is an orthogonal projector. We also have the quality that $P^2 = P$.

$$(I - 2P)(I - 2P) = I(I - 2P) - 2P(I - 2P) = I - 2P - 2P + 4P^2$$

= $I - 4P + 4P = I$

We have recovered the condition for unitary matrices. We can therefore declare (I-2P) a unitary matrix.

- 2. Let $P \in \mathbb{R}^{m \times m}$ be a nonzero projector.
 - (a) Show that $||P||_2 \ge 1$, with equality if and only if P is an orthogonal projector.
 - (b) Show that if P is an orthogonal projector, then P is semi-positive deinite with its eigenvalues either zero or 1.

Proof. We look at the vector product definition of P. $P = xx^T$ for a unit vector x.

$$(v, Pv) = v^T x x^T v = (v, x)(x, v) = (x, v)^2 \ge 0$$

Since our choice of v was arbitary we have that P is semi-positive definite.

Next we look at the eigenvalues of P. Say that we have an arbitary eigenvalue-eigenvector pair (λ, v) for P such that $v \neq \vec{0}$ (obviously). We have,

$$Pv = \lambda v$$

$$Pv = xx^Tv = (x, v)x = \lambda v$$

Notice that (x, v) and λ are scalars. This implies that x and v are colinear but this was not an assumption made. Therefore we are left with two cases: v and x are colinear, or v and x are orthogonal. Let's look at the first case, $v = \alpha x$.

$$(x, v)x = \alpha x = \alpha \lambda x$$

$$x = \lambda x \implies \lambda = 1$$

We find that for all vectors colinear to x are eigenvectors with eigenvalue 1. We look at the other case. If x and v are orthogonal we have (x, v) = 0.

$$\vec{0} = \lambda v \implies \lambda = 0$$

Therefore all vectors orthogonal to x will be eigenvectors with $\lambda = 0$.

- 3. Let $A \in \mathbb{R}^{m \times m}$ with $m \geq n$, and let $A = \hat{Q}\hat{R}$ be a reduced QR factorization.
 - (a) Show that A has rank n if and only if all the diagonal entries of \hat{R} are nonzero.
 - (b) Suppose \hat{R} has k nonzero diagonal entries for some k with $0 \le k < n$. What does this imply about the rank of A? Exacktly k? At least k? At most k? Give a precise answer and prove it.
- 4. Determine the (i) eigenvalues, (ii) determinant, and (iii) singular values of a Householder reflector. For the eigenvalues, give a geometric argument as well as an algebraic proof.

Proof. (i) Eigenvalues

We start with the definition of a householder reflector for a unit vector x. Take $H = I - 2xx^T$ with an eigenvalue-eigenvector pair (λ, v) such that $Hv = \lambda v$.

$$Hv = (I - 2xx^T)v = v - 2xx^Tv = v - 2(x, v)x = \lambda v$$

 $-2(x, v)x = (\lambda - 1)v$

We again have a case where x and v are vectors connected by scalar arguments. We must have that x and v are colinear. We take the two cases, x and v are colinear, x and v are orthogonal.

$$v = \alpha x, \quad -2(x, v) = -2\alpha$$

 $-2\alpha = (\lambda - 1)\alpha$
 $\lambda = -1$

Therefore if x and v are colinear we have that v is an eigenvector of H and that its eigenvalue is $\lambda = -1$. We look at the next case, x and v are orthogonal, therefore (x, v) = 0.

$$-2(0)x = (\lambda - 1)v \implies \lambda - 1 = 0$$
$$\lambda = 1$$

Therefore we have that if x and v are orthogonal that the eigenvalue corresponding to v is equal to 1.

(ii) Determinant

Next we look at the determinant of H. We have that from exercise one that H is unitary (orthogonal) and symmetric. Therefore (going in one direction) that $H^{-1} = H^*$. This is because $H^*H = I = H^{-1}H$. Next we also have that for any matrix A, $\det(A^*) = \overline{\det(A)}$. We also have that, $\det(A) \det(A^{-1}) = 1$.

$$\det(H^{-1}H) = \det(H^{-1})\det(H) = 1$$
$$\overline{\det(H)}\det(H) = 1$$
$$\det(H)^2 = 1 \implies \det(H) = \pm 1$$

(iii) Singular Values

We have from the proof in exercise one, we have that $H \in \mathbb{R}^{m \times m}$ is a unitary (orthogonal) matrix. We have therefore that H preserves the length of vectors under transformation. We also look at the singular value decomposition of H.

$$H = U\Sigma V^T, \quad ||Hv|| = ||v||, \forall v \in \mathbb{R}^m$$

Let us look at a specific vector v_i now such that v_i is i-th column vector of V.

$$||Hv|| = ||U\Sigma V^T v_i|| = ||u_i \sigma_{ii}||$$

We recover the scalar-vector product, $u_i\sigma_{ii}$ where u_i is the i-th column vector of U and σ_{ii} is the i-th diagonal element of Σ . We return to the fact that by the Singular Value Decomposition Theorem, that U, V are unitary, that is they are composed of orthogonal column vectors with norm of 1. Therefore we have,

$$||Hv|| = ||v_i|| = ||\sigma_{ii}u_i|| = |\sigma_{ii}|||u_i||$$

 $1 = |\sigma_{ii}|1, \implies \sigma_{ii} = \pm 1$

Therefore since our choice of v was arbitrary among the column vectors of V we have that this example exhausts all singular values for H. Thus the singular values of H are ± 1 . It can even be argued that the plus minus in this context does not matter. Since singular values are scalars which in a transformation from one vector basis to another scale the vector in the resulting basis. The vectors in the output basis are orthogonal so scaling one vector say by -1 would not make that basis linearly dependent. Therefore we claim that any u_i will absorb the sign of σ_{ii} (Also because of the fact that singular values are always positive). So it is as simpler to claim that,

$$\sigma_{ii}=1.$$

Therefore the singular values of H are such that, $\sigma_{ii} = \sigma_i = 1$.

5. Let $A \in \mathbb{R}^{m \times n}$. Show that $\operatorname{cond}(A^T A) = (\operatorname{cond}(A))^2$.

We start with