1	NO:DATE:						
	$y=e^{\alpha}$ $sin^2\theta + (0s^2\theta = 1)$ $sin(A+B) = sinA(0sB + (0sA)sinB$						
	$y = e^{x}$ $\sin^{2}\theta + (0s^{2}\theta = 1)$ $\sin(A+B) = \sin A(0s B + (0s A sin B)$ $\frac{dy}{dx} = e^{x}$ $\tan^{2}\theta + 1 = se(^{2}\theta)$ $(0s(A+B) = (0sA (0sB - sin A sin B)$						
	$\int \frac{1}{\lambda} dx = \ln x + C$ $\sin 2A = 2 \sin A \cos A$						
	$\int \frac{f(X)}{f_1(X)} dX \qquad \frac{dX}{q}(2JMX) = co2(X) \qquad co2 5 H = co25 H - 2JM_5 H$						
	$= \ln(f(x)) + C \qquad \frac{d}{dx}(\tan x) = \frac{1}{(0!^2(x))} = \sec^2(x) \qquad = 1 - 2\sin^2 A$						
	Il = 180 0						
- 1	Area of sector: \frac{1}{2}8r = \frac{1}{2}8r^2 . approximate CHANGE in y \Rightarrow Sy = \frac{dy}{dx} \times SX						
	· approximate VALUE of y => Ynew=Yord + &y						
	$y = mx + C$ $\frac{dy}{dx} \approx \frac{Sy}{Sx}$ • approximate PERCENTAGE ERROR / CHANGE of y $m = \frac{y - y_1}{x - x_1} = \frac{y_1 S_C}{run}$ $Sy = \frac{dy}{dx} \times Sx$ $\Rightarrow \frac{Sy}{y} = \frac{dy}{dx} \times \frac{Sx}{y}$						
<u> </u>	$y-y_1=m(x-x_1)$						
	mix m2=-1 tangent gradient x normal gradient =-1						
	$d = J(\chi_1 - \chi_2)^2 + (y_1 + y_2)^2 $ (AS \rightarrow menu $\rightarrow 4 \rightarrow 9 \rightarrow$ tangent line $(\chi^2 + \chi_1, \chi_1)$						
	A -> normal line (x2+2, x12)						
x + x x y x +	(OST [C(X)]; revenue [R(X)]; profit [P(X)]						
- V	P(x) = R(x) - C(x) area under curve						
	marginal cost $\begin{bmatrix} \frac{dC}{dx} \end{bmatrix}$ average cost $\begin{bmatrix} \frac{C(X)}{X} \end{bmatrix}$ \Rightarrow if graph area falls						
	marginal revenue [dx] average revenue [R(x)] below x-axis, add						
	marginal posit [dx] average posit [p(x)] modulus "11"						
	Displacement total change $\frac{d}{dx} \int_{a}^{x} f(t) dt = f(x)$ Sat $\int_{a}^{b} \frac{dv}{dt} = \int_{a}^{b} \frac{dv}{dt}$ $\int_{a}^{b} \frac{dv}{dt} = \int_{a}^{b} \frac{dv}{dt}$						
1	velocity rate of change						
	$\int_{5}^{2} f(x) dx = -\int_{2}^{5} f(x) dx$						
	Acceleration Special formulas: $\int_{a}^{a} f(x) dx = 0$						
	7) $\int f'(x) e^{f(x)} dx = e^{f(x)} + C$						
, 8 11 2	Distance ii) $\int f'(x) [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + C$ average change find $\int \frac{f'(x)}{f(x)} dx = \ln(f(x)) + C$ = $\frac{\text{total change}}{\text{fime}}$						
	speed $x = \sqrt{\frac{1}{x}} dx = \ln(x) + C$						
* 1,	f(b)-f(a)						
10 m	t=0 when particle at rest constant acceleration b-a						
	x changing direction = \uparrow velocity $\int_{0}^{b} f'(x) dx = f(b) - f(a)$						

POP bazic™

1	NO:						
type	shape	f'(X)	f"(X)	stationary point	turning point		
maximum	max		f"(X) < 0	A	, &		
		f1(x)=0 3 x = 0	** tu(x) < 0	✓	✓		
			sub a		ran altija		
minimum		1 .1 - "	fu(X) > 0	8 77 A		5	
		f((X)=0 => X = b	* f"(x) >0	V	1 √ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	พ้าท		1 sub b				
Honzontal	H.POI		f"(X) = 0				
point of	*	f(1)=0; x=C	tu(()=0	✓	×		
Inflection	2.7		Comment is		(* (* 5)		
Oblique	0.P01	t'(x)>0 / t'(x) <0	$f''(\chi) = 0$				
Point of	1	BUT never = 0	L> x = 6	×	×	~	
Inflection	f,(x)<0 f,(x)>0		· · · · · · · · · · · · · · · · · · ·		A. 1. 131	$\gamma iii \cdot \frac{d}{dx} (ini+(x))$	
	Optimisation	x 4 7 + 2 - 2	s. We get the	Logarithms	x Indices:	$=\frac{f(\chi)}{f(\chi)}$	
			function	an=x ; 109			
 find variables x optimized function an=x; loga(x)=n relationship function loga(xy) = loga(x) + loga(y) 						+ 10(1a(4)	
		A points $(f'(x) = 0)$			= 10ga(x) -	0 0	
1.5		f"(x) >0 ⇒ min ;		0.0	•		
	Ju 3 3						
		al max / min	$iv. \log_{\mathbf{x}}(\mathbf{y}) = \frac{\log_{\mathbf{a}}(\mathbf{y})}{\log_{\mathbf{a}}(\mathbf{x})}$				
	V 100 (12 5 0 5 100 (02 5)					2	
	f(x) =	$\int_{a}^{c} f(x) dx =$: A1+(-A2)	vi. log _e (x)			
	Ai	J	= h ₁ - h ₂	VII. dx (logal		P ₀	
	Area = displacement Area = Velocity					าดนา	
	In f(x) dx + Ic f(x) dx yelocity) acceleration						
STATEMENT STATEMENT CONTROL OF CO							
	Area (shaded) = $\int_{a}^{b} f(x) dx$						
	ti to time to to time						
	g f(x) prog (chaded) "top - hottom"						
	u		///	1 t(x) -g(x) d			
	a b x y i i g(x) Area (shaded)						
	Mills	area (snaded) = $-\int_0^b f(x) dx$ = $\int_0^b f(x) - g(x) dx$					
		y=f(x)		1	+ 1691	xb(x) - $f(x)dx$	
			POP bazic™ a	b c 2			

	NO:	DATE:
		8
		· ·
	*	
p)		
	•	7
		,
	,	
		1;
		ş.
	· · · · · · · · · · · · · · · · · · ·	
	e a	

