Calculus

Series Convergence Tests

Test	Series	Converges	Diverges	Remarks
For Divergence (TFD)	$\sum_{n=1}^{\infty} a_n$	CANNOT show convergence	$\lim_{n\to\infty} a_n \neq 0$	always check first!
Geometric	$\sum_{n=1}^{\infty} ar^{n-1}$	r < 1	$ r \ge 1$	$sum = \frac{first term}{1 - r}$
Telescoping	$\sum_{n=1}^{\infty} \left(b_n - b_{n+k} \right)$	$\lim_{n\to\infty} b_{n+k} = L$ L has to be finite	$\lim_{n\to\infty} b_{n+k}$ D.N.E. or inf	write out serval terms then cancel stuff to find paritial sum
P-Series	$\sum_{n=1}^{\infty} \frac{1}{n^p}$	<i>p</i> > 1	<i>p</i> ≤ 1	$ \begin{array}{cc} \text{famous} & \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \end{array} $
Integral	$\sum_{n=1}^{\infty} a_n$ $a_n = f(n) \ge 0$	$\int_{1}^{\infty} f(x) dx$ Converges	$\int_{1}^{\infty} f(x) dx$ Diverges	$f(x)$ has to be positive, continuous & decreasing for $x \ge 1$
Direct Comparison (DCT)	$\sum_{n=1}^{\infty} a_n$ $a_n > 0$	$\sum_{n=1}^{\infty} a_n \le \underset{\text{convergent}}{\text{a known}}$	$\sum_{n=1}^{\infty} a_n \ge a \text{ known}$ divergent	try to use <i>p</i> -series or geometric series to compare
Limit Comparison (LCT)	$\sum_{n=1}^{\infty} a_n$ $a_n > 0$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0 & & \\ \sum_{n=1}^{\infty} b_n & \text{is known to} \\ be convergent}$	$\lim_{n \to \infty} \frac{a_n}{b_n} = L > 0 & & \\ \sum_{n=1}^{\infty} b_n & \text{is known to} \\ be & \text{divergent} & & \\ \end{bmatrix}$	this version of LCT is inconclusive if $L=0$ or $L=\infty$
Alternating (AST)	$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$ $b_n \ge 0$	$(1.) \lim_{n \to \infty} b_n = 0$ $(2.) b_{n+1} \le b_n$	use TFD $\lim_{n\to\infty} (-1)^{n-1} b_n \neq 0$	$(-1)^{n-1}$ $= \cos((n-1)\pi)$
Ratio	$\sum_{n=1}^{\infty} a_n$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L < 1$	$\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right = L > 1$	inconclusive if $L=1$ great for ! and () ⁿ
Root	$\sum_{n=1}^{\infty} a_n$	$\lim_{n\to\infty} \sqrt[n]{ a_n } = L < 1$	$\lim_{n\to\infty} \sqrt[n]{ a_n } = L > 1$	inconclusive if $L=1$ great for $\binom{n}{r}$

If $\sum_{n=1}^{\infty} |a_n|$ converges, then $\sum_{n=1}^{\infty} a_n$ is **absolute convergent** (which implies $\sum_{n=1}^{\infty} a_n$ also converges)

If $\sum_{n=1}^{\infty} a_n$ converges but $\sum_{n=1}^{\infty} |a_n|$ diverges, then $\sum_{n=1}^{\infty} a_n$ is **conditional convergent**