

MATEMATIKA

Valstybinio brandos egzamino užduotis

Pakartotinė sesija

2008 m. birželio 18 d.

Egzamino trukmė – 3 val. (180 min.)

Valstybinio brandos egzamino formulės

Trikampis. $S = \sqrt{p(p-a)(p-b)(p-c)} = rp = \frac{abc}{4R}$; čia a, b, c – trikampio kraštinės, p – pusperimetris,

r ir R – įbrėžtinio ir apibrėžtinio apskritimų spinduliai, S – trikampio plotas.

Skritulio išpjova. $S = \frac{\pi R^2}{360^{\circ}} \cdot \alpha$, $l = \frac{2\pi R}{360^{\circ}} \cdot \alpha$; čia α – centrinio kampo didumas laipsniais,

S – išpjovos plotas, l – išpjovos lanko ilgis, R – apskritimo spindulys.

Nupjautinis kūgis. $S=\pi(R+r)\cdot l$, $V=\frac{1}{3}\pi H(R^2+Rr+r^2)$; čia R ir r-kūgio pagrindų spinduliai,

S – šoninio paviršiaus plotas, V – tūris, H – aukštinė, l – sudaromoji.

Nupjautinės piramidės tūris. $V = \frac{1}{3}H(S_1 + \sqrt{S_1S_2} + S_2)$; čia S_1 , S_2 – pagrindų plotai, H – aukštinė.

Rutulys. $S = 4\pi R^2$, $V = \frac{4}{3}\pi R^3$; čia S – rutulio paviršiaus plotas, V – tūris, R – spindulys.

Rutulio nuopjovos tūris. $V = \frac{1}{3}\pi H^2(3R - H)$; čia R – spindulys, H – nuopjovos aukštinė.

Vektorių skaliarinė sandauga. $\vec{a} \cdot \vec{b} = x_1 x_2 + y_1 y_2 + z_1 z_2 = |\vec{a}| \cdot |\vec{b}| \cos \alpha$;

čia α – kampas tarp vektorių $\vec{a}(x_1; y_1; z_1)$ ir $\vec{b}(x_2; y_2; z_2)$.

Geometrinė progresija. $b_n = b_1 q^{n-1}$, $S_n = \frac{b_1 (1 - q^n)}{1 - q}$.

Begalinė nykstamoji geometrinė progresija. $S = \frac{b_1}{1-q}$

Trigonometrinės funkcijos. $1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$, $1 + ctg^2 \alpha = \frac{1}{\sin^2 \alpha}$, $2\sin^2 \alpha = 1 - \cos 2\alpha$,

 $2\cos^2\alpha = 1 + \cos 2\alpha \;,\; \sin(\alpha \pm \beta) = \sin\alpha\cos\beta \pm \cos\alpha\sin\beta,\;\; \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta, \;\; \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\cos\beta \mp \sin\alpha\cos\beta \pm \cos\alpha\sin\beta, \;\; \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta, \;\; \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \pm \cos\alpha\sin\beta, \;\; \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \pm \cos\alpha\cos\beta, \;\; \cos(\alpha \pm \beta) = \cos\alpha\cos\beta \pm \cos\alpha\cos\beta, \;\; \cos(\alpha \pm \beta) = \cos\alpha\cos\beta, \;\; \cos(\alpha \pm \beta), \;\; \cos(\alpha \pm \beta) = \cos\alpha\cos\beta, \;\; \cos(\alpha \pm \beta), \;$

 $\sin \alpha \pm \sin \beta = 2 \sin \frac{\alpha \pm \beta}{2} \cos \frac{\alpha \mp \beta}{2}, \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2},$

 $\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$, $tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha \cdot tg\beta}$.

 $\begin{cases} \sin x = a, -1 \le a \le 1, \\ x = (-1)^k \arcsin a + \pi k, k \in Z; \end{cases} \begin{cases} \cos x = a, -1 \le a \le 1, \\ x = \pm \arccos a + 2\pi k, k \in Z; \end{cases} \begin{cases} \operatorname{tg} x = a, \\ x = \arctan a + \pi k, k \in Z. \end{cases}$

Deriniai. $C_n^k = C_n^{n-k} = \frac{n!}{k!(n-k)!}$.

Tikimybių teorija. Atsitiktinio dydžio X matematinė viltis yra $\mathbf{E} X = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$,

dispersija $\mathbf{D} X = (x_1 - \mathbf{E} X)^2 p_1 + (x_2 - \mathbf{E} X)^2 p_2 + ... + (x_n - \mathbf{E} X)^2 p_n$.

Išvestinių skaičiavimo taisyklės. (Cu)' = Cu'; $(u \pm v)' = u' \pm v'$; (uv)' = u'v + uv'; $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$;

čia u ir v – diferencijuojamos funkcijos, C – konstanta. $(a^x)' = a^x \ln a$, $(\log_a x)' = \frac{1}{x \ln a}$.

Sudėtinės funkcijos h(x) = g(f(x)) išvestinė h'(x) = g'(f(x))f'(x).

Funkcijos grafiko liestinės taške $(x_0; f(x_0))$ lygtis. $y = f(x_0) + f'(x_0)(x - x_0)$.

Logaritmo pagrindo keitimo formulė. $\log_a b = \frac{\log_c b}{\log_c a}$.

Kiekvienas teisingas 1–7 uždavinio atsakymas vertinamas 1 tašku.

- **1.** Lygčių sistemos^I $\begin{cases} (x+0.2)^2 + (y+0.3)^2 = 0, \\ x-y=0.1 \end{cases}$ sprendinys^{II} yra:

- **A** (-0,2;0,3) **B** (-0,2;-0,3) **C** (-0,3;-0,2) **D** (1;0,9) **E** nėra sprendinių

2. Jei β yra stačiojo trikampio kampas^{III} (žr. pav.), tai $\sin(2\beta) =$

- **3.** Funkcijos $f(x) = x^2 + 4x 5$ reikšmių sritis^{IV}, kai $x \in [-3, 1]$, yra:
- **A** $[-9; +\infty)$ **B** (-9; 0) **C** [-3; 1] **D** [-9; 0] **E** [-8; 0]

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

sistema – uklad – система

sprendinys – rozwiązanie – решение

III stačiojo trikampio kampas – kąt trójkąta prostokątnego – угол прямоугольного треугольника IV reikšmių sritis – zbiór wartości – область значений

4. Trikampio ABC kraštinėse AB ir BC taip pažymėti taškai K ir L (žr. pav.), kad BK: KA = 1:1 ir BL: LC = 8:1. Jei trikampio ABC plotas^I lygus 180, tai trikampio BKLplotas lygus:

- 70
- **B** 80
- \mathbf{C} 85
- 90 D
- **E** 100
- **5.** Sekos^{II} bendrojo nario^{III} formulė $a_n = 3^n$. Pirmųjų dešimties iš eilės einančių šios sekos narių sandauga $a_1 \cdot a_2 \cdot ... \cdot a_{10} =$
 - **A** 88 572
- B 3^{3 628 800}

- $10 \cdot 3^n$

6. Žinoma, kad atstumas IV nuo taško A iki apskritimo centro O yra dvigubai ilgesnis už apskritimo spindulį^V. Iš taško A nubrėžtos liestinės VI AB ir AC liečia apskritimą taškuose B ir C (žr. pav.). $\angle BAC$ didumas yra:

- 30°
- \mathbf{B} arcsin 0,6
- C 45°
- 60°
- E 90°

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

plotas – pole – площадь

II seka – сіад – последовательность

III bendrasis narys – wyraz ogólny – общий член

IV atstumas – odległość – расстояние V spindulys – promień – радиус

VI liestinė – styczna – касательная

7. Kiek yra triženklių $^{\rm I}$ natūraliųjų skaičių, kurių bent vienas skaitmuo $^{\rm II}$ 0?

A 162

B 171

C 180

D 189

E 271

JUODRAŠTIS

NEPAMIRŠKITE pasirinktus atsakymus žyminčių raidžių įrašyti lentelėje, esančioje paskutiniame šio sąsiuvinio puslapyje.

^I triženklis – trzycyfrowa – трёхзначное ^{II} skaitmuo – cyfra – цифра

0	N	Cia ra	išo verti	ntojai
0.	Naujas automobilis kainuoja 56 000 Lt. Per pirmus naudojimo metus	I	II	III
	automobilio vertė ^I sumažėja 30 proc., o per kiekvienus kitus metus – 15 proc. paskutinių praėjusių metų vertės. Kiek šis automobilis kainuotų:			
	8.1. po 1 metų? (1 taškas)			
	8.2. po 7 metų? (Atsakymą pateikite šimtų litų tikslumu ^{II} .) (2 taškai)			_
	Taškų suma			

 $^{^{\}rm I}~$ vertė – wartość – стоимость $^{\rm II}~$ šimtų litų tikslumu – z dokładnoscią do setek litów – с точностью до сотен литов

9. Išspręskite lygtis:

9.1.
$$5^{x-2} = 1$$
.

9.2.
$$(6-3x)\sqrt{0.2^x-25}=0.$$

	Čia rašo vertintojai					
	I	II	III			
(1 taškas)						
(3 taškai)						

Taškų suma		

1Λ	0. Duota nelygybė ^I $\log_{0.5}(2x-5) \le \log_{0.5}(3x+1)$.			Cia raso vertintojai		
10.				I	II	III
	10.1.	Parodykite, kad nelygybės apibrėžimo sritis ^{II} yra $x > 2$	5.			
	10.2. Raskite nelygybės sprendinius.	(1 taškas)				
	10.2.	reaserie nerygyoes sprenumus.	(2 taškai)			
			Taškų suma			

nelygybė – nierówność – неравенство аpibrėžimo sritis – dziedzina – область определения

11.	Staliui Simui buvo užmokėta 480 Lt, o staliui Arūnui, dirbusiam 6 val. mažiau nei Simas, – 270 Lt. Jei Simas būtų dirbęs tiek valandų, kiek ir Arūnas, o Arūnas tiek, kiek Simas, tai jie būtų uždirbę po lygiai. Po kiek valandų dirbo staliai?	Cia ra	šo verti II	ntojai III
	(4 taškai)			

10	Nustatykite, su kuriomis x reikšmėmis lygybė $ 1-x =x-1$ yra teisinga.			Čia rašo vertintojai			
12.				III			
	(2 taškai)	l					

I lygybė – równość – равенство

13. Paveiksle pavaizduota kreivė $y = -x^2 + 7x - 10$ ir jos liestinė II, nubrėžta per taška (3; 2).

Čia rašo vertintojai

II

Ш

13.1. Parodykite, kad šios liestinės lygtis ^{III} yra y = x - 1.

(1 taškas)

13.2. Raskite taškų A ir B koordinates.

(2 taškai)

13.3. Apskaičiuokite figūros, kurią riboja parabolė^{IV}, jos liestinė ir ašis *Ox*, plotą (žr. pav.).

Taškų suma

[|] kreivė – krzywa – кривая | liestinė – styczna – касательная | liestinės lygtis – równanie stycznej – уравнение касательной | parabolė – parabola – парабола

	2008 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS
JUODRAŠTIS	

14. Statant pirties stogą, 6 m ilgio gegnė turėjo būti padalyta į dvi dalis taip, kad tos dalys su atrama sudarytų 45° ir 30° kampus (žr. 1 pav.). Raskite trumpesniosios dalies ilgį. Atsakymą suapvalinkite iki dešimtųjų metro dalių^I. Laikykite, kad $\sqrt{2} = 1,41$.

1 pav.

Gegnė^{II} – šlaitinio stogo^{III} laikantysis konstrukcinis elementas, kurio vienas galas remiasi į atramą IV (mūrtašį) (žr. 2 pav.).

(3 taškai)

Čia rašo vertintojai

Ш

II

metro dešimtosios dalys – dziesiąte części metra – десятые части метра

II gegnė – krokiew – стропилина III šlaitinis stogas – dach spadowy – скатная крыша

IV atrama – podpora – подпора

	2008 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS
JUODRAŠTIS	

15	T¥1i1 ¥i111'1'			išo verti	ntojai	
19.	Iš sugedusio vandens čiaupo per pirmą valandą nuo geo	-	I	II	III	
	prilašėjo 200 mililitrų vandens. Buto savininkas pastel	bėjo, kad per		:		
	kiekvieną kitą valandą prilaša 100 mililitrų vandens daugiau nei per					
	ankstesniąją.					
	15.1. Kiek mililitrų vandens prilašės per pirmąsias 5 valandas?					
		(1 taškas)	l			
	15.2. Jei savininkas nepašalintų gedimo, tai per kiek valand pradžios prilašėtų 6,003 m³ vandens?	dų nuo gedimo				
		(3 taškai)				
				1	1	
		Taškų suma				

			išo vertii	
16.	Išspręskite lygtį	$(\sin(2x) - 2)(\cos x - 1) = 0.$	II	
		(3 taškai)	 ı	

Čia rašo vertintojai **17.** Duoti du statmeni¹ plokštumos vektoriai $\vec{m}\left(\frac{1}{3}; \frac{1}{4}\right)$ ir $\vec{n}\left(x; \frac{1}{12}\right)$. Ш **17.1.** Apskaičiuokite *x* reikšmę. (2 taškai) **17.2.** Su kuriomis skaičiaus a reikšmėmis vektoriaus $\vec{p} = a\vec{m}$ ilgis^{II} lygus vienetui? (2 taškai)

Taškų suma		

 $^{^{\}mathrm{I}}$ statmenas – prostopadły – перпендикулярный ilgis – długość – длина

10	Pašte yra 7 skirtingi siuntiniai, kuriuos du kurjeriai Lukas ir Andrius turi				Cia rašo vertintojai			
10.	•	ir išvežioti į skirtingas vietas.	r Andrius turi	I	II	III		
	18.1.	Parodykite, kad Lukas ir Andrius šiuos 7 siuntinius g 112 skirtingų būdų ^I , jei kiekvienas iš jų turi par siuntinius.						
			(2 taškai)		<u> </u>			
	18.2.	Apskaičiuokite tikimybę ^{II} , kad pagal 18.1 dalyje nur Lukas paims tris, o Andrius keturis siuntinius.	rodytą sąlygą,					
		_	(1 taškas)	l	l	l		
			Taškų suma					

 $^{^{\}rm I}$ skirtingų būdų – różnych sposobów – разных способов tikimybė – prawdopodobieństwo – вероятность

19. Iš cirko arenos centro O pastoviu 1 m/s greičiu tiesia linija pradeda eiti 1,8 m ūgio artistas. Tuo pačiu metu virš arenos centro 3 m aukštyje (taške A) kabojęs šviečiantis prožektorius 3 m/s greičiu kyla vertikaliai aukštyn. Po 3 sekundžių ir artistas (taške C), ir prožektorius (taške B) nustoja judėti.

19.1. Parodykite, kad artisto šešėlio ilgis I l laiko momentu t yra

$$l(t) = \frac{1.8t}{1.2 + 3t}, \ \ 0 \le t \le 3.$$

(3 taškai)

19.2. Kuriuo laiko momentu $(0 \le t \le 3)$ artisto šešėlis yra ilgiausias^{II}?

(3 taškai)

Tašku suma	•		

Čia rašo vertintojai

Ш

^I ilgis – długość – длина ^{II} ilgiausias – najdłuższy – самый длинный

	2008 M. MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO UŽDUOTIS
JUODRAŠTIS	

20.	Merga	itė lentoje rašo įvairius skaičius.		Čia rašo vertintojai		
	20.1.	Kiek daugiausia skirtingų sumų ^I ji gali gauti natūraliuosius ^{II} skaičius sudėjusi po 2 visais galimais Ar skaičiai 17, 18, 20, 21, 23, 26 gali būti 20.1 klaus sumos? Atsakymą pagrįskite.	(1 taškas)		<i>II</i>	
			Taškų suma			

 $^{^{\}mathrm{I}}$ suma – suma – сумма $^{\mathrm{II}}$ natūralusis – naturalna – натуральное

21.	Taškai A, B, C ir D nepriklauso ^I vienai plokštumai ^{II} . Įrodykite, kad	Cia rašo vertinto		ntojai 111
	atkarpų AB , BC , CD ir DA vidurio taškai $^{\rm III}$ priklauso vienai plokštumai.	1	11	Ш
	(3 taškai)			

nepriklauso – nie nalaży – не принадлежит plokštuma – плоскость – płaszczyzna vidurio taškas – środek – середина