§1.5 Solution Sets of Linear Systems

A system of linear equations is said to be homogeneous if it can be written in the form $A\mathbf{x} = \mathbf{0}$, where A is an $m \times n$ matrix and $\mathbf{0}$ is the zero vector in \mathbb{R}^m . A homogeneous system always has at least one solution, namely, $\mathbf{x} = \mathbf{0}$ (the zero vector in \mathbb{R}^n). The zero solution is referred to as the trivial solution. A nontrivial solution to $A\mathbf{x} = \mathbf{0}$ is a nonzero vector \mathbf{x} that satisfies $A\mathbf{x} = \mathbf{0}$.

The homogeneous equation $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution if and only if the equation has at least one free variable.

Writing a Solution Set (of a consistent system) in Parametric Vector Form

- 1. Row reduce the augmented matrix to reduced echelon form.
- 2. Express each basic variable in terms of any free variables appearing in an equation.
- 3. Write a typical solution \mathbf{x} as a vector whose entries depend on the free variables, if any.

4. Decompose **x** into a linear combination of vectors (with numeric entries) using the free variables as parameters.