	DECIM. set	DECIM. clear
GAP 4	1 2345.6789 01	1 2345,6789 01
GAP 3	12 345.678 901	12 345,678 901
GAP 2 , GAP 1 , or GAP 0	12345.678901	12345,678901
MULT× set	12.3×10 ⁴⁵⁶	12,3×10 ⁴⁵⁶
MULT× clear	12.3·10 ⁴⁵⁶	12,3·10 ⁴⁵⁶
	123°45'67.89"	123°45'67,89"
MULT× set & CPXj clear	12.3-i×4.56	12,3-i×4,56
MULT× clear & CPXj clear	12.3-i·4.56	12,3-i·4,56
MULT× set & CPXj set	12.3-j×4.56	12,3-j×4,56
MULTx clear & CPXj set	12.3-j·4.56	12,3-j·4,56
	12.3 ₄ -4.56°	12,3∡-4,56°
	1:23:45.678 901	1:23:45,678 901
	1:23:45.678 901 a.m.	1:23:45,678 901 a.m.

Y.MD	D.MY	M.DY
0001-02-03	01.02.0304	01/02/0304

Obviously, your *WP 43S* allows for interpreting and displaying your input very flexibly. And it allows you immediately recognizing the various *data types* and format settings looking at the screen.

Now, how can you use and combine data of various types in calculations? The matrix below lists in its 1^{st} column ten *data types* your *WP 43S* supports; and it shows what will happen when you combine various objects: an object of the *DT* as indicated in one of the lean

Page 70 of 333 -- WP 43S U v0.17

columns at right (y) plus or minus an object of the DT in column 1 (x) will return an object of the DT at the intersection (thus, wherever a DT number is printed at the intersection, the corresponding combination is legal for addition or subtraction⁶⁵).

DT and meaning					•	y				
x	1	2	3	4	5	6	7	8	9	10
1 Z Long integer	1	2	3	4	5	6	7	-	ı	1
2 R Real number	2	2	3	4	5	6	7	-	ı	2
3 € Complex number	თ	3	က	1	1	1	7	-	1	3
4 Angle (in various formats) 66	4	4	-	4	-	-	7	-	-	4
5 Time interval (in H.MS)	5	5	-	-	5	-	7	-	-	-
6 Date (in various formats)	6	6	-	-	-	1 ⁶⁷	7	-	-	-
7 Text string ⁶⁸	•	-	-	-	-	-	7	-	-	-
8 Real matrix or vector	•	-	-	-	-	-	7	8	9	-
9 Complex matrix or vector	-	-	-	-	-	-	7	9	9	-
10 Short integer	1	2	3	4	-	-	7	-	-	10 ⁶⁹

Example:

A complex number (DT3) plus or minus a real number (DT2) will result in a complex number.

WP 43S U v0.17 --- Page 71 of 333

⁶⁵ Else an error Illegal input data type for this operation (24) will be thrown.

⁶⁶ Angular output is tagged according to the current *angular display mode* chosen.

⁶⁷ A *date* minus a *date* returns an integer number of days (there are no other legal arithmetic operations on two *dates*). And a *date* plus a *real number* takes the integer part of that number and adds the respective number of days to said *date*.

⁶⁸ In additive operations on *text strings*, such a string must be present in **Y** at the beginning. One character suffices. Adding corresponds to appending *x* (converted to a string according to the display format set at execution time, if applicable) to string *y*. Adding a matrix to a *text string* appends its abbreviation (e.g. [3×4 ℂ matrix], see the chapters about vectors and matrices below in this section). Subtractions from *text strings* are not allowed.

⁶⁹ If and when *short integers* of different bases are combined by an arithmetic operation, output will be a *short integer* of the base given in **Y**.

The following matrix shows the resulting *data types* of <u>products</u> and <u>ratios</u> in the same way (note that neither *dates* nor *text strings* can be multiplied or divided, and plain numbers cannot be divided by an *angle* or a *time* – cf. footnote 20 on p. 29):

	An object y of DT							
	1	2	3	4	5	8	9	10
times an object <i>x</i> of the <i>DT</i> below returns a product of the <i>DT</i> printed at the intersection.								
1 Z Long integer	1	2	3	4	5	8	9	1
2 R Real number	2	2	3	4	5	8	9	2
3 C Complex number	3	3	3	-	-	9	9	3
4 Angle	4	4	-	-	-	-	-	4
5 Time interval	5	5	-	-	-	-	-	5
8 Real matrix or vector	8	8	9	-	-	8	9	8
9 Complex matrix or vector	9	9	9	-	-	9	9	9
10 Short integer	1	2	3	4	5	8	9	10 ⁶⁹
divided by an object x of the DT below returns a ratio of the DT printed at the intersection.								
1 Z Long integer 70	1/2	2	3	4	5	8	9	10
2 R Real number	2	2	3	4	5	8	9	2
3 C Complex number	3	3	3	-	-	9	9	3
4 Angle	-	•	-	2	-	-	1	-
5 Time interval	•	-	-	-	2	-	-	-
8 Real matrix 71	8	8	9	-	-	8	9	8
9 Complex matrix 71	9	9	9	-	-	9	9	9
10 Short integer	1	2	3	4	5	8	9	10 ⁶⁹

⁷⁰ For example, 15 / 3 returns 5 while 14 / 5 returns 2.8.

⁷¹ The matrix x must be invertible. Dividing by x is equivalent to multiplying times x^{-1} . (see the chapter *Vectors and Matrices: Calculating* below).

The following matrices are for powers (|x| < 1 may correspond to roots):

	A numb	oer y > 0 c	of <i>DT</i>
	1	2	10
raised to a power of $x > 0$ of the DT below returns a result of the DT printed at the intersection.			
1 Z Long integer	1	2	10
2 R Real number	2 72	2	10 ⁷³
10 Short integer	1	2	10 ⁶⁹
raised to a power of $x < 0$ of the DT below			
1 ℤ, 2ℝ, and 10		2	-

	A number $y < 0$ of $DT \dots$			
	1	2	10	
raised to a power of $x > 0$ of the DT below returns a result of the DT printed at the intersection.				
1 Z Long integer	1	2	10	
2 R Real number FP(x) = 0	2	2	10 ⁷³	
else	3	3	-	
10 Short integer	1	2	10 ⁶⁹	
raised to a power of $x < 0$ of the DT below				
1 Z Long integer and 10 short integer	2	2	-	
2 R Real number $P(x) = 0$	2	2	-	
2 K Real number else	(3	-	

Any number of *DT* 1 or 2 raised to *complex* power will return a *complex number*, as well as any *complex number* raised to arbitrary power. Raising a *short integer* to *complex* power is not supported.

Other powers – involving DTs 4, 5, 6, 7, 8, or 9 – are not supported.

WP 43S U v0.17 --- Page 73 of 333

⁷² For x < 1, results will be *long integer* if possible (e.g. **625** $\boxed{\text{ENTER} \, \mathbf{t}}$ **.25** $\boxed{\mathbf{y}^{\text{x}}}$ returns 5).

⁷³ The result will be the (*short*) *integer* part of y^x here.

And this is for logarithms:

	A numb	er y > 0	of <i>DT</i>
	1	2	10
combined in $log_x y$ with a number $x > 0$ of the DT below results in a DT printed at the intersection.			
1 Z Long integer	1 ⁷²	2	10 ⁷⁴
2 R Real number	272	2	10 ⁷⁴
10 Short integer	1 ⁷²	2	10 ⁶⁹

And for y < 0 of DT 1 or 2, $\log_x y$ will return a *complex* result if such results are allowed (see the chapters about *complex numbers* below); $\log_x y$ of negative *short integers* is not supported.

As the DTs for results of \sqrt{x} , $\sqrt[3]{x}$, and $\sqrt[3]{y}$ can be derived easily from the generic power table on previous page, also the DTs for results of [9], [1, 2], and [1] can be derived from the table for $\log_x y$ above.

This is for integer divisions and remainders:

	An ob	oject y of I	DT
	1	2	10
IDIVR-divided by an object x of the DT below returns an integer ratio in X and a remainder in Y of the <i>data types</i> printed at the intersection.			
1 Z Long integer	1; 1	1; 2	1; 10
2 R Real number	1; 2	1; 2	1; 2
10 Short integer	1; 1	1; 2	10; 10 ⁶⁹

Additionally, explicit *DT* conversions are available where necessary:

_

⁷⁴ The result will be the (*short*) *integer* part of $log_x y$ here.

A clos	ed objec	\mathbf{x} of D				
1	2	4 angle	5 time	6 date	10	will be converted in an object x of the DT below by the command printed at the intersection.
-	IP	-	1	-	-	1 Z Long integer
	\rightarrow	REAL (2 R Real number			
	<u></u>			-	-	4 Angle
	NT s <mark>#</mark>)	-	-	-	→INT	10 Short integer (of the base specified)

Recognizing Calculator Settings and Status

Some settings are obvious: as seen above, radix marks and gap settings are recognized in the numeric display immediately; so are date and time display modes (Y.MD / D.MY / M.DY and CLK24 / CLK12) in the time string top left in the *status bar*. Also *program-entry mode* (*PEM*) is easily recognized (see pp. 205ff).

Further modes and system states as well as many settings for specific data types are indicated in the status bar. The following specific characters may appear trailing the date and time string there, listed below from left to right in various sets – indicators shown in startup default are printed in a light blue field again: ⁷⁵

Indicator	Set by	Deleted by	Explanation, remarks
C	CPXRES	¬ CPXRES	With CPXRES set, <i>complex</i> results of <i>real number</i> calculations are
R	¬ CPXRES	CPXRES	allowed, like $\sqrt{-1}$. Else a domain error would be thrown in such a case (see the <i>ReM</i> , <i>App. C</i>).

⁷⁵ The symbol ¬ means "not", i.e. the trailing *system flag* cleared, while "&" denotes a logical "and" and a comma a logical "or" in this table.

WP 43S U v0.17 --- Page 75 of 333