CODE No.: 19BT40202 SVEC-19

SREE VIDYANIKETHAN ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to JNTUA, Ananthapuramu)

II B.Tech II Semester (SVEC-19) Regular Examinations August – 2021

ELECTRICAL MACHINES-II[Electrical and Electronics Engineering]

		[Electrical and Electronics Engineering]												
T	Max. Marks: 60													
UNIT-I														
1.	a)	Describe the construction of a 3-phase cage-type induction motor with neat sketches.	6 Marks	L1	CO1	PO1								
	b)	A 3-phase, 50Hz, 4 pole slip ring induction motor gives a reading of 120V across slip rings on open circuit, when at rest and supplied with normal supply voltage. The rotor impedance per phase is $0.3 + j1.5\Omega$. Find the rotor current and torque when machine is running at 5 % slip.	6 Marks	L3	CO1	PO4								
		(OR)												
2.	a) b)	Explain Torque-Slip characteristics of Induction motor. If an 8-pole induction motor running from a supply of 50HZ has	8 Marks	L1	CO1	PO1								
		an emf in the rotor of frequency 1.5HZ, compute the slip and speed of the motor.	4 Marks	L2	CO1	PO5								
		(UNIT-II)												
3.	a)	Explain, why the speed of 3-phase induction motor cannot be equal to synchronous speed.	4 Marks	L1	CO1	PO1								
	b)	A 3-phase, 4-pole, 50Hz, induction motor has a star connected wound rotor. The rotor emf is 50V between the slip rings at standstill. The rotor resistance and standstill reactance are 0.4Ω and 2.0Ω respectively. Calculate: i) Rotor current per phase at starting when slip rings are short	8 Marks	L3	CO1	PO4								
		circuited.												
		ii) Rotor current per phase at starting if 50Ω per phase												
		resistance is connected between slip rings.												
		iii) Rotor emf when the motor us running at full load at 1440 r.p.m.												
		iv) Rotor current at full load and Rotor power factor at full load												
		(OR)												
4.	a)	Explain the principle of induction generator operation	6 Marks	L1	CO1	PO1								
	b)	Discuss in detail about Crawling and Cogging.	6 Marks	L2	CO1	PO7								
		UNIT-III												
5.	a)	Why is a rotating field system used in preference to a stationary field?	6 Marks	L2	CO2	PO1								
	b)	A star connected 3-phase 4-pole 50Hz alternator has a single												
		layer winding in 24 stator slots. There are 50 turns in each coil and the flux per pole is 0.05 Wb. Find the open circuit voltage. (OR)	6 Marks	L3	CO2	PO4								

6.	a) b)	Explain the principle of operation of a synchronous generator. A 220V, 50Hz, 6-pole star-connected alternator with ohmic resistance of 0.06Ω per phase are the following data for open circuit and full load ZPF characteristics:													6 Marks	L1	CO2	PO1
		Field Current(A) 0.2 0.4 0.6 0.8 1.00 1.2 1.4 1.8 2.2 2.6 3.0 3.4							3.4									
		Open circuit Voltage (Volts)	29.0	58.0	87.0	116	146	172	194	232	261.5	284	300	310	6 Marks	L3	CO2	PO4
		ZPF voltage (Volts)	-	-	-	•	-	0	29	88	140	177	208	230				
		Find the percentage voltage regulation at full load current of 40Amps at power factor of 0.8 lagging.																
7.	a) b)	alternator is connected to infinite bus-bar. Two alternators A and B operate in parallel and supply a load of										-	6 Marks	L2	CO3	PO1		
		 i) By adjusting steam supply of A, its power output is adjusted to 6,000KW and by changing its excitation, its P.F is adjusted to 0.92 lag. Find the Power Factor of alternator B. ii) If steam supply of both machines is left unchanged, but excitation of B is reduced so that it's P.F becomes 0.92 lead. Find new P.F of A. 											P.F is r B. d, but	6 Marks	L3	CO3	PO7	
8.	a)	(OR) Discuss and state the conditions necessary for paralleling												leling	6 Marks	L2	CO3	PO7
	b)	,										?	6 Marks	L1	CO3	PO1		
9.	a) b)	Derive the expression for the maximum torque developed per phase of a synchronous motor. A 75KW, 400V, 4-pole, 3-phase, 50Hz, star connected										nected	6 Marks	L2	CO4	PO1		
	synchronous motor has a resistance and synchronous reactance of 0.04Ω and 0.4Ω respectively. Compute for full load 0.8 pt lead the open circuit emf per phase and gross mechanical power developed. Assume an efficiency of 92.5%. (OR)										0 . 8pf	6 Marks	L3	CO4	PO7			
10	a) b)	What is hunting and discuss briefly various causes for hunting. Discuss in detail about Synchronous condenser.												6 Marks 6 Marks	L2 L2	CO4 CO4	PO7 PO5	

(A) (B) (B)