Ecole Polytechnique d'Abomey Calavi (EPAC)

Contrôle d'accès par carte RFID

Arduino, MFRC522, MPR121

Etudiants

AKAKOTO M. Boris

AMOUSSOU Z. Kenneth

Professeur

Dr SOGBOHOSSOU Médésu

Plan

- Introduction
- Problématique
- La carte Arduino
- La technologie RFID
- LabVIEW
- Réalisation
- Conclusion

Introduction

• L'homme a besoin de se sentir en sécurité

• Les systèmes de vidéo surveillance contribuent à la sécurité d'un lieu et réduisent les risques d'infraction

• La sécurité est une chose, le contrôle d'accès apporte un petit plus.

Problématique

 Les registres tenus par des gardiens à l'entrée des sociétés ou d'un lieu à sécuriser sont compliqué à exploiter.

La gestion de l'accès par empreinte digital devient un goulot d'étranglement lorsque la fréquence d'utilisation est élevée

La technologie RFID offre une solution efficace au problème

La carte Arduino

Catégorie	Valeur
Microcontrôleur	ATmega 328
Fréquence d'horloge	16 MHz
Tension de service	5 V
Tension d'entrée (recommandée)	7–12 V
Tension d'entrée (limites)	6-20 V
Ports numériques	14 entrées et sorties (6 sorties commutables en MLI)
Ports-analogiques	6 entrées analogiques
Courant maxi. par broche d'E/S (c.c.)	40 mA
Courant maxi. par broche 3,3 V	50 mA
Mémoire	32 Ko Flash, 2 Ko SRAM, 1 Ko EEPROM
Chargeur d'amorçage	0,5 Ko (en mémoire Flash)
Interface	USB
Dimensions	6,86 cm × 5,3 cm

AVANTAGES

- ✓ Disponibilité d'exemple sur internet
- ✓ Nombre de broche suffisant pour des projets simples
- ✓ Vaste choix de shield
- ✓ Bon marché

La technologie RFID

LabVIEW (1/2)

 LabVIEW (Laboratory Virtual Instrument Engineering Workbench) est un langage de programmation dédié au contrôle d'instruments et à l'analyse de données.

LabVIEW et la carte Arduino sont connectés par liaison sériel (COM)

A travers sa boîte à outils « Database » sous la section « Connectivity »,
 LabVIEW offre la possibilité de communiquer avec une base de données
 Access.

LabVIEW (2/2)

Photo 1: Face avant d'un Instrument Virtuel

Photo 2: Diagramme d'un Instrument Virtuel

Test

Connecteur – Gâche électrique

Sortie régulée 3,3V ~ >200 mA

Conclusion

- La technologie RFID est facile d'utilisation
- La technologie RFID offre une grande traçabilité
- Accès facile aux archives (historique des mouvements)

Amélioration

Exploitation des microcontrôleurs PIC (Microchip), famille **18F**, pour réduire la taille de la carte électronique.

