

Trading com Dados

Sócios Fundadores

Victor Gomes, CEO

Engenheiro Mecânico pela UFRN, Engenheiro Industrial pela Northeastern University e MBA em Investimentos e Private Banking pelo Ibmec, com passagens por Itaú e XP Inc.

Gustavo Abud, CMO

Pós-Graduado em análise de dados e métodos quantitativos pela FIA, com solida experiência em autorregulação no mercado de capitais, tesouraria e corretora de valores, trabalhou em projetos de PLD, Treasury Business Control e Op Risk passando por empresas como B3, IBBA e XP Inc.

Lucas Corrêa, CFO

Profissional da área de dados e analytics, com passagens pela Embraer e Itaú Unibanco. Atualmente faz parte do time de data science da B3 e faz parte do quadro de professores do LABDATA na FIA.

Yago Luz, UX/Designer

Graduando em Engenharia de Gestão pela UFABC. Atualmente está na XP Investimentos, onde trabalha com Gestão de Metas. Possui experiência com UX, Marketing e Gestão de Mídias Sociais.

Nossos produtos educacionais

Cursos e workshops presenciais e online

TD Academy, nosso portal de cursos online

E-books

Artigos Premium

Mentoria

Nosso podcast

O que é Machine Learning?

Classe de algoritmos

CLASSICAL MACHINE LEARNING

Modelos supervisionados - classificação

Algoritmos de classificação

- Regressão Logística
- Árvore
- Random Forest
- Gradient Boosting
- Redes Neurais
- Deep Learning

Modelos supervisionados - classificação

Característica:

Precisa ter uma variável resposta

Estrutura:		Variáv	Variáveis independentes / explicativas				Variável dependente / Target		
X1	x2	х3	x 4	x5	x6	x7	•••	xi	Target
23	H	22	11	С	345	78,9		3	0/1

Modelos supervisionados - regressão

Característica:

- Precisa ter uma variável resposta
- A variável queremos prever é contínua (Ex.: R\$27mil) Reg Linear

Estrutura:		Variáv	Variáveis independentes / explicativas				Variável dependente / Target		
X1	x2	x 3	x4	x 5	x6	x7		xi	Target
23	H	22	11	С	345	78,9		3	293

Modelos não supervisionados

Tipos de modelos:

- Agrupamento
- Redução de dimensionalidade
- Associação

Modelos não supervisionados

Agrupamento:

Famílias de algoritmos de agrupamento

Particionamento Hierárquicos Density-based

K-means

Aglomerativo

DBSCAN

Um modelo busca sempre a melhor generalização

Framework de Modelagem de dados

A fase de EDA é sempre feita duas vezes no ciclo de modelagem:

- 1. Fase de entendimento dos dados em n bases;
- 2. Fase de entendimento dos dados na ABT;

Primeiros passos na análise descritiva estão ligados a entender o tipo variável que estamos trabalhando.

Os dados podem ser:

Qualitativos:

Qualitativo **nominal**

- 1. defeito no ar condicionado;
- 2. defeito no vidro;
- 3. defeito no freio de mão;

Qualitativo **ordinal**:

E - excelente;

MB - muito bom;

B-bom;

R - ruim;

Temos também as variáveis quantitativas:

Quantitativas discretas:

X - número de pessoas;

Y - número de compras;

Z - número de casos de coronavírus;

Quantitativas contínuas:

X - valor da compra;

Y - preço do imóvel;

Z - valor monetário no banco;

Terminologia usada:

Parâmetro - medida usada para descrever uma característica da população;

Estatística - característica da amostra.

	Parâmetros Populacionais	Estatísticas Amostrais
Media	μ	\bar{x}
Variância	σ ²	s ²
Desvio Padrão	σ	S

Como podemos extrair significado dos dados?

- medidas de posição;
- medidas de dispersão;
- análise gráfica;
- medidas de assimetria;
- medidas de associação;

Interquartile Range - IQR

Assimetria dos dados

Mostra o quanto e como a distribuição de frequências se distancia de uma forma simétrica.

Distribuição Simétrica Média = Mediana = Moda

Assimetria à direita ou positiva

Assimetria >0

Cauda à direita mais pesada (valores acima da média)

Assimetria à esquerda ou negativa

Assimetria < 0

Cauda à esquerda mais pesada (valores abaixo da média)

Feature engineering

Passos:

- Juntar os dados das diversas bases em uma tabela única;
- Criar a target, se aplicável;
- Fazer o tratamento de missing;
- Binning de variáveis;
- Seleção de atributos;

Feature engineering

Criar um pipeline de tratamento dos dados

Tratamento de variáveis

Identificar os tipos de variáveis:

Tipo da Variável

data.dtypes	
ID	int64
Target	int64
GrupoEconomico	int64
Sexo	object
Idade	int64
GrupoRisco	int64
ValorCompraAnual	float64
GastoMax	float64
GastoMedio	float64
UF	object
CidadeResidencia	object
RegiaodoPais	object
NumeroComprasOnline dtype: object	float64

BA BA RO PI data.tail(5)

2	ID	Target	GrupoEconomico	Sexo	Idade	GrupoRisco	١
886	887	0	2	homem	27	0	
887	888	1	1	mulher	19	0	
888	889	0	3	mulher	35	1	
889	890	1	1	homem	26	0	
890	891	0	3	homem	32	0	

Tratamento de missings

Para categórica:

```
data['Sexo'] = data['Sexo'].fillna('MISS')
```

- Criar uma nova classe "MISS" que sinalize o missing.

Para numérica:

```
data['ValorCompraAnual'].fillna(data['ValorCompraAnual'].mean(), inplace=True)
```

Imputar a média, mediana, moda ou rodar um modelo de regressão.

Criando as variáveis dummy

Depois de tratado o missing, precisamos agora transformar as categóricas em variáveis dummy.

Observar cardinalidade da variável e realizar o get_dummies ou label_enconder *

Para isso usaremos a função do pandas: pd.get_dummies() e a função do sklearn: LabelEncoder()

* Cuidado no uso do label enconder, var pode tornar-se ordinal

Criando as variáveis dummy

Analisando a cardinalidade:

data.nunique()	
ID	891
Target	2
GrupoEconomico	3
Sexo	2
Idade	65
GrupoRisco	7
ValorCompraAnual	261
GastoMax	261
GastoMedio	261
UF	26
CidadeResidencia	851
RegiaodoPais	5
NumeroComprasOnline dtype: int64	704

Para cardinalidade <=10:

pd.get_dummies

Cardinalidade >10:

LabelEncoder

get_dummies / LabelEncoder

Cardinalidade <=10:

Cardinalidade >10:

```
from sklearn import preprocessing
le = preprocessing.LabelEncoder()

le_tkt = le.fit_transform(dum['UF'])
le_tkt_df1 = pd.DataFrame(le_tkt, columns=['LE_UF'])
```

Normalizar variável?

Depende do contexto do problema; Não é algo necessário sempre;

Prós:

Melhora o custo computacional;

Contras:

Perde a sensibilidade do dado;

Tipos de normalização

Standardization:

$$z = \frac{x - \mu}{\sigma}$$

with mean:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} (x_i)$$

and standard deviation:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Min-Max scaling:

$$X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}$$

Cross validation

As técnicas existentes para cross validation são:

- Hold out;
- k-folds;
- Leave one out;

Cross validation

Hold out

Hold-out validation

Data

K-fold

Cross validation

Leave one out

```
from sklearn.model_selection import LeaveOneOut
X = [1, 2, 3, 4]
loo = LeaveOneOut()
for train, test in loo.split(X):
    print("%s %s" % (train, test))

[1 2 3] [0]
[0 2 3] [1]
[0 1 3] [2]
[0 1 2] [3]
```

Quanto o modelo está acertando?

Métricas de qualidade e ajuste

```
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2
```


Obrigado!