1.True or False, and give your reasons

- (1) $\forall \mathbf{b} \in \mathbb{R}^n$, $A\mathbf{x} = \mathbf{b}$ is consistent, then A is invertible.
- (2) Given a vector $\mathbf{b} \in \mathbb{R}^n$, if $A\mathbf{x} = \mathbf{b}$ is consistent, then A is invertible.
- (3) Given a vector $\mathbf{b} \in \mathbb{R}^n$, if $A\mathbf{x} = \mathbf{b}$ has a unique solution, then A is invertible.
- 2. Proof that if AB is invertible, then A and B are both invertible (*Hints: using determinant*).
- 3. Given three vectors $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^3$, we define matrix $A = [\alpha_1, \alpha_2, \alpha_3]$ and $B = [\alpha_3 2\alpha_1, 3\alpha_2, \alpha_1]$. If |A| = 3, compute |B|.

4.
$$\begin{vmatrix} b+c & c+a & a+b \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} =$$

5. If the equation
$$\begin{cases} \lambda x_1+x_2+x_3=0\\ x_1+\mu x_2+x_3=0\\ x_1+2\mu x_2+x_3=0 \end{cases}$$
 has non-zero solution, compute the λ and μ . (Hints:

using determinant).

- 6. If $\{\alpha_1, \alpha_2, \cdots, \alpha_m\}$ are linear independent vectors, $\{\alpha_1, \alpha_2, \cdots, \alpha_m, \beta\}$ are linear dependent. Proof that β is a combination of $\{\alpha_1, \alpha_2, \cdots, \alpha_m\}$.
- 7. If $\{\alpha_1, \alpha_2, \cdots, \alpha_m\}$ are linear independent vectors, β is not a combination of $\{\alpha_1, \alpha_2, \cdots, \alpha_m\}$. Proof that $\{\alpha_1, \alpha_2, \cdots, \alpha_m, \beta\}$ are independent dependent.