Università degli Studi di Firenze

Facoltà d' Ingegneria Dipartimento di Elettronica e Telecomunicazioni

Ethernet

Massimiliano Pieraccini

Ethernet

Bus seriale per LAN (Local Area Network)

Ethernet fu inventata nel 1970 allo Xerox Palo Alto Research Center

Lo standard è stato formalizzato nel 1980

10 Mb/s 100 Mb/s

(1 Gb/s)

Bus Seriale

Un unico doppino connette tutti i dispositivi

Connettore a 8 pin, detto RJ-45, simile al connettore telefonico

Pin Number	Signal	
1	TD+	
2	TD-	
3	RD+	
4	Unused	
5	Unused	
6	RD-	
7	Unused	
8	Unused	
	Number 1 2 3 4 5 6	Number Signal 1 TD+ 2 TD- 3 RD+ 4 Unused 5 Unused 6 RD- 7 Unused

Bus Seriale "anarchico"

Non c'è un controllore centrale, tutti i dispositivi possono operare come master, ovvero decidono autonomamente quando e cosa trasmettere

Come si evitano i conflitti?

II protocollo CSMA/CD

"dinner party in a dark room"

CS MA: Carrier Sense Multple Access

Il tx si accorge se qualcuno trasmette e quindi attende a trasmettere fino a quando il canale è libero

CD: Collision Detection

Il tx interrompe la comunicazione e invia un segnale di jam (ingorgo) se sente qualcun altro trasmettere, dopo un tentativo fallito (abort) attende un tempo random e riprova

Il protocollo Ethernet **non** prevede:

Handshake

Chi trasmette non sa se chi riceve è collegato

Acknowledgment

Chi trasmette non sa se chi riceve ha ricevuto il messaggio

Codifica di Manchester

Codice autosincronizzante

Manchester

7 byte +	1 byte
----------	--------

Preambolo 10101010 10101011

Indirizzi Destinazione Source

Tipo Protocollo (IP)

Payload 46-1500 byte

CRC Controllo, se è rivelato un errore il pacchetto è scartato

Gestione degli indirizzi

MAC address (48 bit)

è come il codice fiscale, ogni individuo (dispositivo) ne ha uno dalla nascita (dal costruttore)

IP address (32 bit)

è come l'indirizzo postale, dipende da dove si trova il dispositivo e può essere modificato dall'utente.

L'indirizzo IP è incapsulato dentro il payload

Come fa il dispositivo (o il router) a sapere a quale indirizzo MAC corrisponde un indirizzo IP?

Ogni circa 20 minuti chiede a tutti (con un indirizzo broadcasting): se a qualcuno corrisponde questo indirizzo IP mi comunichi il suo indirizzo MAC

Questa procedura è detta ARP (Address Resolution Protocol)

Gestione degli indirizzi

La comunicazione avviene tra indirizzi IP gli indirizzi MAC sono trasparenti all'utente

Hub

(ripetitori)

Gli hub ritrasmettono ciò che ricevono da una porta a tutte le altre porte rispettando il protocollo CSMA/CD.

Quindi i nodi che fanno capo a un hub appaiono come un unico nodo e si riducono gli ingorghi

Switch

Gli switch memorizzano leggono gli indirizzi e trasmettono (rispettando il protocollo CSMA/CD) solo nella porta relativa all'indirizzo

I bridge sono switch con due sole porte

Switch

Router

Come gli switch, ma leggono anche l'indirizzo IP è inviano il payload al router di pertinenza