Lesson 10-1 – Internal Rate of Return

Introduction

 Building on the analysis of different cash flows, we can combine them to do worth or value analysis

- Net Present Value/Net Present Worth
- Equivalent Annual Cash Flow
 - What do they represent?
 - When can we use one vs. the other?

The Challenge of NPV

- Two main issues with NPV
 - Need to assume or get an interest rate
 - Only concerned with 'absolute value,' doesn't consider how much 'bang for your buck' you're getting.
- Consider two alternatives at 10% interest.
 - Alternative A: Invest \$1,000,000, receive \$1,190,000 at the end of year 1.
 - Alternative B: Invest \$100,000, receive \$200,000 at the end of year 1.
 - Both have the same NPV: \$81,818 and only take one year
 - Which is the better alternative?

Overview

- Introduce Internal Rate of Return (IRR) method of evaluating cashflows
 - Widely used in industry
 - Provides a measure of a project's desirability in terms that are easily understood.
- Relate IRR to Net Present Value
- Make decisions to proceed based on comparison to a
 - Minimum Attractive Rate of Return (MARR)

Rate of Return Example

Problem:

Your investment of \$5,000 into a Biotech startup's common stock proved to be very profitable. At the end of three years you sold the stock for \$25,000. What was the rate of return?

Rate of Return Example

Solution:

$$F = P(1 + i)^n$$

$$$25,000 = $5,000(1 + i)^3$$

$$(1 + i) = ($25,000/$5,000)^{1/3} = 1.71$$

i = 0.71 and thus the rate of return was 71%

Internal Rate of Return (IRR)

- This measure of a project's return is called the IRR.
 - Internal Rate of Return (IRR): the interest rate at which the PV and EACF are equal to zero.
 - In other words: the interest rate that causes the unpaid balance on a loan to equal zero when the final payment has been made (from the borrower's perspective)
 - From the investor's perspective: the IRR is the interest rate that causes the unrecovered investment to equal zero at the end of the life of the investment.
 - The IRR is the interest rate at which the present worth of the benefits are equivalent to the present worth of the costs.

Calculating Internal Rate of Return

- Given a cash flow, there are five forms of equations that can be used to solve for the unknown interest rate:
 - PV of benefits PV of costs = 0
 - PV of benefits/PV of costs = 1
 - PV of costs = PV of benefits
 - Present worth = Net present worth = 0
 - EUCF = EUAB EUAC = 0

Solving for i

- The base formula to solve for i is very simple: $P_{benefits} = P_{costs}$
- Actually solving it analytically is challenging with all the exponential terms
- How can we solve for i?
 - Analytically (for very simple cases, typically single payments)
 - Trial and error: guess an i, solve for NPV, and if not zero, iterate
 - Graphical: Plot NPV vs. i for various values, read i intercept
 - Spreadsheets can speed up the trial and error and graphical methods

Internal Rate of Return Example

Problem:

You spend \$1000 and in return receive two payments of \$1,094.60; one at the end of three years and the other at the end of six years. Calculate the resulting rate of return.

• Solution:

PW of costs = PW of benefits

 $$1,000 = $1094.60 ((P/F, i\%, 3) + (P/F, i\%, 6))_{$1,000}$

Using the single payment formula: $P = F(1+i)^{-1}$

Solve for i use trial and error to pick i

Guess i = 10%:

$$P_{benefits} = $1440.26 = P_{costs}$$

Guess i = 20%

 $P_{benefits} = $1094.60(0.5787 + 0.3349) = $1000 = P_{costs}$

Rate of Return is 20%

Calculating Internal Rate of Return

	Plan				
Year	A	В	С	D	
0	\$5,000.00	\$5,000.00	\$5,000.00	\$5,000.00	
1	-\$1,400.00	-\$400.00	-\$1,252.28	\$0.00	
2	-\$1,320.00	-\$400.00	-\$1,252.28	\$0.00	
3	-\$1,240.00	-\$400.00	-\$1,252.28	\$0.00	
4	-\$1,160.00	-\$400.00	-\$1,252.28	\$0.00	
5	-\$1,080.00	-\$5,400.00	-\$1,252.28	-\$7,346.64	
IRR=	8.00%	8.00%	8.00%	8.00%	

Calculating Internal Rate of Return

Plan C		Discounted Cashflows			
Year	Cashflow	4%	8%	12%	
0	\$ 5,000.00	\$5,000.00	\$5,000.00	\$5,000.00	
1	\$(1,252.28)	(\$1,204.12)	(\$1,159.52)	(\$1,118.11)	
2	\$(1,252.28)	(\$1,157.80)	(\$1,073.63)	(\$998.31)	
3	\$(1,252.28)	(\$1,113.27)	(\$994.10)	(\$891.35)	
4	\$(1,252.28)	(\$1,070.45)	(\$920.46)	(\$795.85)	
5	\$(1,252.28)	(\$1,029.28)	(\$852.28)	(\$710.58)	
	NPV	(\$574.93)	\$0.01	\$485.81	

Plot of NPW versus Interest Rate i

- A typical plot for borrowed money:
 - Viewpoint of the borrower:

Year	Cash Flow
0	+P
1	-A
2	-A
3	-A
4	-A

• The IRR is located where the plot crosses the NPW = 0 point.

Plot of NPW versus Interest Rate *i*, Continued...

- A typical plot for invested money:
 - Viewpoint of the investor:

Year	Cash Flow
0	-P
1	+Benefit A
2	+A
3	+A
4	+A
•	•
	•

Borrow \$5000 Example

Plot of NPW versus Interest Rate *i*, Continued...

- A possible plot for a plant investing in machinery:
 - Viewpoint of the owners:

Year	Ca	ashflow
-	\$	(5,000)
1	\$	1,000
2	\$	1,500
3	\$	(500)
4	\$	2,000
5	\$	2,000

• The IRR is where the plot crosses the NPW = 0 point.

Illustrating the relationship between value and interest—GICs

- Pretend you just got your first job and your first paycheck
- Go the bank and buy a \$1000 five year GIC at 3% per year.
 - Pays \$1,159 at term.
- As you walk out the door, the sign changes drat!
 - Five year GIC's now 5%! (pays \$1276 at term)
- Just now your friend walks up to the bank also wants to buy a \$1000
 GIC should she buy yours for \$1,000?
- How much is your GIC worth now?

With an initial investment of \$6549.32 in a new machine, you will provide your company with \$4000 more incoming dollars per year over the next four years. However, over those four years, the maintenance of the machine will cost \$800 per year. Also, in Year 2 a refit of the machine will cost \$5,100. What is the rate of return?

How would we set this up analytically?

NPV =
$$PV_{cost}$$
+ $PV_{benefits}$ + PV_{maint} + $PV_{overhaul}$
=-\$6549.32 + \$4000(P/A, i, 4) - \$800(P/A, i, 4) - \$5100(P/F, i, 2)

Take a guess at i and solve.

10%	Compound Interest Factors						
	Single Payment		Uniform Payment Series				
n	Compound Amount Factor Find F Given P F/P	Present Worth Factor Find P Given F P/F	Sinking Fund Factor Find A Given F A/F	Capital Recovery Factor Find A Given P A/P	Compound Amount Factor Find F Given A F/A	Present Worth Factor Find P Given A P/A	
1	1.100	.9091	1.0000	1.1000	1.000	0.909	
2	1.210	.8264	.4762	.5762	2.100	1.736	
3	1.331	.7513	.3021	.4021	3.310	2.487	
4	1.464	.6830	.2155	.3155	4.641	3.170	
5	1.611	.6209	.1638	.2638	6.105	3.791	

- =-\$6549.32 + \$4000(P/A, 10%, 4) \$800(P/A, 10%, 4) \$5100(P/F, 10%, 2)
- -\$6549.32 + \$4000*3.17 \$800*3.17 \$5100*.8264 = -\$619.96

Negative NPV. Investor problem, so try a lower interest rate.

6 %	Compound Interest Factors						
	Single Pa	yment	Uniform Payment Series				
n	Compound Amount Factor Find F Given P F/P	Present Worth Factor Find P Given F P/F	Sinking Fund Factor Find A Given F A/F	Capital Recovery Factor Find A Given P A/P	Compound Amount Factor Find F Given A F/A	Present Worth Factor Find P Given A P/A	
1	1.060	.9434	1.0000	1.0600	1.000	0.943	
2	1.124	.8900	.4854	.5454	2.060	1.833	
3	1.191	.8396	.3141	.3741	3.184	2.673	
4	1.262	.7921	.2286	.2886	4.375	3.465	
5	1.338	.7473	.1774	.2374	5.637	4.212	

- =-\$6549.32 + \$4000(P/A, 6%, 4) \$800(P/A, 6%, 4) \$5100(P/F, 6%, 2)
- -\$6549.32 + \$4000*3.465 \$800*3.465 \$5100*.890 = -\$0.32
- How can we set this up in a spreadsheet?

	Interest rate	0.06	Time	4		
	Initial Cost	\$ (6,549.20)	Year	Net Cashflow	Discount Rate	NPV
А	nnual Benefits	\$13,860.42	0	\$ (6,549.20)	0%	\$1,150.80
Mair	ntenance costs	(\$2,772.08)	1	\$ 3,200.00	1%	\$ 937.58
	Overhaul	(\$4,538.98)	2	\$(1,900.00)	2%	\$ 733.57
			3	\$ 3,200.00	3%	\$ 538.28
	NPV	\$ 0.16	4	\$ 3,200.00	4%	\$ 351.23
					5%	\$ 171.99
			NPV	\$0.16	6%	\$ 0.16
					7%	\$ (164.66
1,400.00			IRR	6.0%	8%	\$ (322.82
1,200.00				_	9%	\$ (474.66
					10%	\$ (620.51
1,000.00						
\$800.00						
\$600.00						
\$400.00						
\$200.00						
\$-				_		
	0% 1% 2%	3% 4% 5% 6%	7% 8% 9% 10	%_		
5(400.00)						
\$(600.00)						
\$(800.00)						

Evaluating Projects based on IRR

- Once we calculate a projects IRR, what does that tell us?
- Generally, higher is better, but what is the minimum acceptable?
- "Minimum Acceptable Rate of Return" or MARR
 - Often comes from our Weighted Average Cost of Capital or other sources of interest rates
- If IRR > MARR, project is worth doing
- How is this relate to an NPV analysis? If IRR = MARR, what is the NPV of our project?

Evaluation

- You're bootstrapping a small tech startup out of your garage, and have developed potential sales to three different clients.
- You are financing this off your credit card at 24.99% interest, and only have enough credit limit to cover the costs of developing for one client.

Client A	Client B	Client C
IRR: 28.5%	IRR: 23.2%	IRR: 32.3%

- Which is your preferred client?
- Is there any client you would not work with?

Interest Rates When There Are Fees or Discounts

- The internal rate of return is affected by fees or discounts.
 - An electronics retailer offers a 2% interest rate on purchases. However, they charge a financing fee of \$200.00 to provide the service.
 - The fee increases the true internal interest rate of the purchase.
 - Example 7-6 demonstrates a good example (Pg. 235)

IRR Limitations

- Comparing projects strictly on IRR can disagree with value or worth assessments
- The IRR technique does not distinguish between investing and borrowing; the criterion for acceptance depends on which it is.
- Uses the same rate for financing and reinvesting not usually realistic
- We have other methods to address these limitations
 - Δ IRR or incremental IRR allows us to account for values
 - Modified Internal Rate of Return, or MIRR, addresses different financing rates