Nom:

I) Soit f une fonction définie sur [-10; 10] telle que f(-5)=f(4)=0 et dont le tableau de variations est ci-dessous :

х	-10	-7	0	6	10
var f	0	2	_5	3	2

Pour chacune des questions ci-dessous, entourez lisiblement la ou les bonne(s) réponse(s) :

Question	Réponse 1	Réponse 2	Réponse 3	
f est strictement croissante sur :	[-10;-7]	$[-10; -7] \cup [0; 6]$	[1;5]	
Le maximum de f sur $[-10; 10]$ est :	6	3	10	
Cf coupe l'axe des abscisses au point de coordonnées :	(-5;0)	(0;-5)	(4;0)	
L'équation $f(x) = k$ a trois solutions distinctes si :	<i>k</i> = 1	<i>k</i> = 2	k = 0	
L'inéquation $f(x) \le 0$ a pour solutions :	[-10;0]	{−10} ∪ [−5; 4]	$\{-10\} \cap [-5;4]$	
L'équation $f(x+1) = 0$ a pour solutions :	{-10;-5;4}	{-11;-6;3}	{-9;-4;5}	
Si $a \in [2; 4]$, on a:	f(a) > f(a-1)	f(a) < f(a-1)	$f(a) \ge f(a-1)$	
(P): $x \in [-10; -7]$ et (Q): $f(x) \in [0; 2]$	$(P) \Rightarrow (Q)$	$(Q) \Rightarrow (P)$	$(P) \Leftrightarrow (Q)$	

II) Soit f la fonction définie sur \mathbb{R} par : $x \mapsto x^3 - 3x^2 - 2x + 6$. On exécute alors l'algorithme ci-dessous :

Saisir un entier naturel N
Saisir deux réels A et B tels que A < B < 0
Pour I allant de 1 à N: $\frac{A+B}{2} \rightarrow M$ $A^3-3 A^2-2 A+6 \rightarrow F$ $M^3-3 M^2-2 M+6 \rightarrow K$ Si $F \times K < 0$ $M \rightarrow B$ Sinon $M \rightarrow A$ Fin du Si
Fin du Pour
Afficher A et B

- Soit (E) l'équation : f(x) = 0.
 En traçant Cf avec une calculatrice, peut-on voir si
 (E) admet une solution comprise entre -3 et -1?
- 2) On admet que f est strictement croissante sur [-3; -1]. En déduire un encadrement de f(x) sur cet intervalle.
- 3) Tester l'algorithme en prenant : A = -3; B = -1 et N = 5.

On résumera chacune des étapes dans un tableau avec une ligne par variable.

Que renvoie cet algorithme et quel est le lien entre ces valeurs et la question 1 ?

4) Que se passe-t-il si on augmente la valeur de N?

III)Partie A : Étude de fonction.

Soit f la fonction définie sur \mathbb{R} par : $x \mapsto 2x^2 - 4x + 4$

- 1) Montrer que pour tout x de \mathbb{R} , $f(x)=2(x-1)^2+2$
- 2) Étudier le signe de f sur \mathbb{R} .
- 3) Montrer que f admet un minimum que l'on précisera.
- 4) Étudier les variations de f sur \mathbb{R} et conclure par un tableau de variations.
- 5) Tracer la représentation graphique de f appelée Cf dans un repère orthogonal. (échelle : 2 cm en abscisses ; 0,5 cm en ordonnées)
- 6) Résoudre graphiquement puis algébriquement l'inéquation : $f(x) \le \frac{5}{2}$

<u>Partie B</u>: Cas d'une pierre « okaré » de 2 grammes.

Les pierres « okaré » sont des pierres précieuses dont la valeur en euros est égale au carré de leur masse en grammes. On a malencontreusement laissé choir une pierre « okaré » de 2 grammes qui s'est alors brisée en deux morceaux. Soit x la masse en grammes de l'un des deux morceaux.

- 7) Quelles sont les valeurs en grammes que *x* peut prendre dans cette partie ? Quelle est la masse de l'autre morceau ?
- 8) Quelle était, en euros, la valeur initiale de la pierre avant de tomber ?
- 9) Montrer que la valeur totale en euros des deux morceaux est égale à f(x) (cf partie A).
- 10) Justifier à partir des variations de f que cette valeur totale est comprise entre 2 et 4 euros.
- 11) Exprimer le résultat de la question 6 dans le contexte d'une pierre « okaré » (une phrase suffira).

<u>Partie C</u>: Cas d'une pierre « okaré » de masse quelconque.

Dans cette partie, la pierre « okaré » qui s'est cassée en deux morceaux a une masse quelconque que l'on appellera a en grammes. x est toujours la masse en grammes de l'un des deux morceaux.

- 12) Exprimer les valeurs en euro de la pierre avant ET après être tombée en fonction de x et de a.
- 13) Montrer que pour tout x de]0; a[on a : $x^2+(a-x)^2 < a^2$.
- 14) Que peut-on en déduire concernant la valeur d'une pierre « okaré » de masse quelconque quand elle se casse en deux morceaux ?

IV)Soit ABCD un rectangle tel que AB = 6 et BC = 4.

On appelle I le milieu de [BC], J le point tel que $\overrightarrow{DJ} = \frac{1}{3} \overrightarrow{DC}$ et L l'intersection de (AI) et (BJ).

- 1) Justifier que le triplet $(A; \overrightarrow{AB}; \overrightarrow{AD})$ forme un repère.
- 2) Déterminer les coordonnées de A, B, C et D dans ce repère (justifier succinctement).
- 3) Calculer les coordonnées de I et J dans ce repère.
- 4) a) Justifier qu'il existe un réel k tel que $\overrightarrow{AL} = k \overrightarrow{AI}$.
 - b) Déterminer les coordonnées de L en fonction de k.
- 5) Justifier que le vecteur \overrightarrow{BL} est colinéaire à \overrightarrow{BJ} et en déduire la valeur de k.
- 6) Déterminer les coordonnées de L dans le repère $(A; \overline{AB}; \overline{AD})$.

NOM:

- I) Soient les points A(-3;3); B(5;-1); C(7;a) et D(3;4) dans un repère $(O;\vec{i},\vec{j})$, où a est un nombre réel.
- Classe:
- 1) Déterminer les coordonnées de \overline{AB} et de \overline{DC} .
- 2) Pour quelle(s) valeur(s) de a, le quadrilatère ABCD est-il un trapèze de bases [AB] et [CD] ?
- II) Soient quatre points A, B, C et D distincts deux à deux. Pour chacune des lignes ci-dessous, compléter la colonne « Réponse » avec l'un des choix suivants : « $P \Leftrightarrow Q$ », « $P \Rightarrow Q$ » ou « $Q \Rightarrow P$ ».

P	Q	Réponse
$\overrightarrow{AB} = -2\overrightarrow{AC}$	A, B et C sont alignés	
AB=2AC	$\overrightarrow{AB} = 2 \overrightarrow{AC}$	
C est l'image de D par la translation de vecteur \overrightarrow{AB}	ABCD est un parallélogramme	
Il existe un réel k tel que : $\overrightarrow{AB} = k \overrightarrow{CD}$	(AB) et (CD) sont parallèles	

- III) Soit un triangle ABC tel que : AB = 4cm, BC = 5cm, et AC = 7cm.
 - 1) Construire le point D vérifiant l'égalité : $3\overline{DA} + \overline{DB} + \overline{DC} = 0$
 - 2) Montrer qu'il n'existe pas de point E vérifiant l'égalité : $2\overline{EA} + \overline{EB} 3\overline{EC} = \vec{0}$
- IV) Soit ABCD un parallélogramme. E est le milieu du segment [CD], F est le symétrique de E par rapport à D, et G est le point défini par $\overline{BG} = 2\overline{CB}$. On considère le repère $(A; \overline{AB}; \overline{AD})$
 - 1) Donner en justifiant les coordonnées de tous les points de la figure.
 - 2) Montrer que A est sur la droite (FG).
 - 3) Montrer que les droites (FG) et (BE) sont parallèles.
- V) 1) Factoriser pour tout réel x: $A(x) = x^2 13x + 40$
 - 2) Résoudre dans \mathbb{R} l'inéquation : $(I): \frac{-1}{3(x-5)} + \frac{2}{x-8} < \frac{1}{x^2-13x+40}$
- VI) On veut savoir combien d'heures par semaine les français regardent la télévision. On a interrogé pour cela un échantillon représentatif de 4860 français de tous âges et voici le résultat de l'enquête.

Nombre d'heures hebdomadaire	[0;10[[10; 15[[15; 20[[20;30[[30;55[
Effectif	972	924	824	1120	1020
Fréquence (%)					
Fréquence cumulée (%)					

- 1) Faire un histogramme.
- 2) Compléter le tableau ci-dessus (arrondir à l'unité) puis tracer le polygone des **fréquences** cumulées croissantes et en déduire graphiquement une approximation du temps médian et des 1^{er} et 3^{ème} quartiles.
- 3) Calculer une approximation du temps moyen (arrondir à l'unité). Comment expliquer l'écart entre le temps moyen et le temps médian trouvé dans la question précédente ?
- 4) Finalement, la personne qui a fait le tableau ci-dessus se rend compte qu'elle a fait une erreur : le maximum n'est pas de 55 heures hebdomadaire mais est un peu inférieur. Quel est ce nouveau maximum, sachant qu'en recalculant la moyenne cette personne trouve 20h30 ?