間率追与数理统计

第 1 0 讲 边缘分布

二维联合分布函数全面地反映了二维随机变量(X,Y)的取值及其概率规律。

而X和Y都是随机变量,各自也有它们的分布函数,分别记为: $F_X(x)$, $F_Y(y)$, 依次称为二维随机变量(X,Y)关于X的边缘分布函数和关于Y的边缘分布函数。 (Marginal Distribution Function)

那么要问: 二者之间有什么关系呢? 可以相互确定吗?

由于联合分布全面反映了二维随机变量作为一个整体的统计规律性,而边缘分布仅仅反映了单个变量的概率规律,单个变量的概率规律包含在整体的统计规律性内,所以由联合分布可以唯一地确定边缘分布,但反之不一定成立。

已知(X, Y)的联合分布,如何确定X的边缘分布?

$$F(x, y)=P\{X\leq x, Y\leq y\}$$

$$F(x, y) = P\{X \le x, Y \le y\}$$
 $F_X(x) = P\{X \le x\} = P\{X \le x, Y < +\infty\}$

(X, Y)关于X的边缘分布函数 $\longleftarrow =F(x, +\infty)$

同理: (X, Y)关于Y的边缘分布函数为 $F(+\infty, y)$

即: (X, Y)关于X和Y的边缘分布函数分别为

$$F_X(x) = F(x, +\infty) = \lim_{y \to +\infty} F(x, y) \qquad F_Y(y) = F(+\infty, y) = \lim_{x \to +\infty} F(x, y)$$

例1设二维随机变量 (X, Y) 的联合分布函数为

$$F(x,y) = \begin{cases} 1 - e^{-x} - e^{-y} + e^{-x - y - \lambda xy} & x > 0, y > 0 \\ 0 & \sharp \dot{\Xi}$$

其中 $\lambda > 0$ 为常数。求(X, Y)的边缘分布函数。

解: 当
$$x \le 0$$
时, $F_X(x) = \lim_{y \to \infty} F(x,y) = \lim_{y \to \infty} 0 = 0$
当 $x > 0$ 时, $F_X(x) = \lim_{y \to \infty} F(x,y) = \lim_{y \to \infty} (1 - e^{-x} - e^{-y} + e^{-x - y - \lambda xy}) = 1 - e^{-x}$
所以 X 的边缘分布函数为 $F_X(x) = \begin{cases} 1 - e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}$

$$F(x,y) = \begin{cases} 1 - e^{-x} - e^{-y} + e^{-x - y - \lambda xy} & x > 0, y > 0 \\ 0 & \text{#$\dot{\mathbf{C}}$} \end{cases}$$

当y**≤**0时,
$$F_Y(y) = \lim_{x \to \infty} F(x, y) = \lim_{x \to \infty} 0 = 0$$

当
$$y>0$$
时, $F_Y(y) = \lim_{x \to \infty} F(x,y) = \lim_{x \to \infty} (1 - e^{-x} - e^{-y} + e^{-x - y - \lambda xy}) = 1 - e^{-y}$

所以Y的边缘分布函数为
$$F_Y(y) = \begin{cases} 1 - e^{-y}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

由此例可以看出,(X,Y)的边缘分布函数与参数 λ 无关,即,多个联合分布函数对应同一对边缘分布函数,说明由联合分布可以唯一确定边缘分布,但反之,不一定成立。

当 (X, Y) 为二维离散型随机变量时,分量X和Y都是一维离散型随机变量,他们各自的分布律称为 (X, Y) 的边缘分布律。

定理1 若二维离散型随机变量 (X, Y) 的联合分布律为

$$p_{ij} = P\{X = x_i, Y = y_j\}, i, j = 1, 2, \dots$$

则X和Y的边缘分布律分别为

$$P\{X = x_i\} = \sum_{j=1}^{\infty} p_{ij} \triangleq p_i$$
. $i = 1, 2, \dots$ $P\{Y = y_j\} = \sum_{i=1}^{\infty} p_{ij} \triangleq p_{i,j}$, $j = 1, 2, \dots$

证明:由二维随机变量的定义可知,事件 $\{Y = y_j\}$, $j = 1, 2, \cdots$ 为样本空间的划分。

即样本空间
$$S = \bigcup_{j=1}^{\infty} \{Y = y_j\}$$
 且 $\{Y = y_j\}$, $j = 1, 2, \cdots$ 两两互斥。

所以有

$$P\{X = x_i\} = P\left\{ \{X = x_i\} \cap \left\{ \bigcup_{j=1}^{\infty} \{Y = y_j\} \right\} \right\} = P\left\{ \bigcup_{j=1}^{\infty} \left\{ \{X = x_i\} \cap \{Y = y_j\} \right\} \right\}$$

$$= \sum_{j=1}^{\infty} P\{X = x_i, Y = y_j\} = \sum_{j=1}^{\infty} p_{ij}$$

同样的方法可得,事件 $\{X = x_i\}, i = 1, 2, \cdots$ 也构成样本空间的划分。

即样本空间
$$S = \bigcup_{i=1}^{\infty} \{X = x_i\}$$
 且 $\{X = x_i\}, i = 1, 2, \cdots$ 两两互斥。

所以有

$$P\{Y = y_{j}\} = P\left\{\{Y = y_{j}\} \cap \left\{\bigcup_{i=1}^{\infty} \{X = x_{i}\}\right\}\right\} = P\left\{\bigcup_{i=1}^{\infty} \left\{\{Y = y_{j}\} \cap \{X = x_{i}\}\right\}\right\}$$
$$= \sum_{i=1}^{\infty} P\{X = x_{i}, Y = y_{j}\} = \sum_{i=1}^{\infty} p_{ij}$$

此是	定理	的结	課	可用
如清	長格	的开	过	表示

由上表可见,求X的边缘分布律就是对联合分布律的行求和,而求Y的边缘分布律就是对联合分布律的列求和。

同时也可以看出,(X, Y)的联合分布律位于表的中央部分,而X和Y的分布律位于表的边缘部分,由此得出"边缘分布"这个名称.

例2.袋中有二个白球,三个黑球,从中取两次球

求(X,Y)的联合分布及边缘分布,分有放回和无放回讨论。

解: 有放回情形
$$P\{X=0,Y=0\}=P\{X=0\}P\{Y=0 | X=0\}=\frac{3}{5}\cdot\frac{3}{5}=\frac{9}{25}$$

$$P{X = 0, Y = 1} = P{X = 0}P{Y = 1 | X = 0} = \frac{3}{5} \cdot \frac{2}{5} = \frac{6}{25}$$

例2.袋中有二个白球,三个黑球,从中取两次球

求(X,Y)的联合分布及边缘分布,分有放回和无放回讨论。

$$P\{X=1,Y=0\} = P\{X=1\}P\{Y=0 | X=1\} = \frac{2}{5} \cdot \frac{3}{5} = \frac{6}{25}$$
$$P\{X=1,Y=1\} = P\{X=1\}P\{Y=1 | X=1\} = \frac{2}{5} \cdot \frac{2}{5} = \frac{4}{25}$$

所以有放回时(X,Y)的联合分布律为:

0 9/25 6/25 3/5 1 6/25 4/25 2/5	VY		
	A		
1 6/25 2/5	0	9/25 6/25 3/5	
1 6/25 4/25 2/3		~ / A = ^ / 5	
		6/25 4/25 2/3	
3/5		3/5	

所以X和Y的边缘分布律分别为:

4 4	 			 100	 	 	 	 	 	 				 		 	 	 	 	 		 				 	4.0		 	 	 							
	 	· •		 	 	 	 	 	 	 		_	 	 		 	 		 		•	 		. ^		 	-		 	 	 	 						
	 	/		 - 4	 	 	 	 	 	 		. "		 		 	 	 	 	 	/	 		44		 			 	 	 							
	 			 	 	 	 	 	 	 			 	 		 	 		 	 . •		 				 			 	 	 	 7						
	 . /.			 	 	 	 	 	 	 			 	 		 	 		 	 . 🔳		 				 			 	 	 	 						
				 . •	 	 	 	 	 	 		. —		 		 	 	 	 	 -		 				 			 	 	 	 . 7						
	 		. 1.	 	 	 	 	 	 	 			 	 ٠.٠.	1.1	 	 1.1.	 	 	 		 				 			 	 	 	 7						
																					1.1																	
																																						- 1
				 								100								-					_									- ' '				- 1
				 •		 	 	 	 	 	_		 	 		 	 	 	 			 	-		_	 	 	 	 	 	 		_		 	 	 	
1,1,1		.) / L	 	 		 	 				.			, ,	_	 	 	 	 	 					 	 	 	
4 4 4						 	 	 	 	 	. /	. 1		 		 	 		 				4 4 5			 	 	 	 	 	 	 /			 	 	 	
4 4				 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	 	 	 	 	 	•	"	 	 		 	 	 	 	 		 	-	,,,		 	 	 	 	 	 				 	 	 	
				 		 	 	 	 	 				 		 	 		 			 			_	 	 	 	 	 	 				 	 	 	
10.0	 			 	 	 	 	 	 	 				 		 	 	 	 	 		 				 			 	 	 							
									$\overline{}$																													_

例2.袋中有二个白球,三个黑球,从中取两次球

$$X = \begin{cases} 1, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} = \begin{cases} 1, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} = \begin{cases} 1, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \\ 0, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \end{cases}$$

求(X,Y)的联合分布及边缘分布,无放回。

$$P{X = 0, Y = 0} = P{X = 0}P{Y = 0 | X = 0} = \frac{3}{5} \cdot \frac{2}{4} = \frac{3}{10}$$

$$P{X = 0, Y = 1} = P{X = 0}P{Y = 1 | X = 0} = \frac{3}{5} \cdot \frac{2}{4} = \frac{3}{10}$$

例2.袋中有二个白球,三个黑球,从中取两次球

$$X = \begin{cases} 1, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} = \begin{cases} 1, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} = \begin{cases} 1, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \\ 0, & \hat{\mathbf{x}} - \hat{\mathbf{x}} \mathbf{y} \mathbf{y} \mathbf{y} \mathbf{y} \end{cases}$$

求(X,Y)的联合分布及边缘分布,无放回。

$$P{X = 1, Y = 0} = P{X = 1}P{Y = 0 | X = 1} = \frac{2}{5} \cdot \frac{3}{4} = \frac{3}{10}$$

$$P{X = 1, Y = 1} = P{X = 1}P{Y = 1 | X = 1} = \frac{2}{5} \cdot \frac{1}{4} = \frac{1}{10}$$

所以有放回时(X,Y)的联合分布律为:

<u> </u>	 	
1 	· · · · · · · · · · · · · · · · · · ·	
<u> </u>	1	
		1.1.1.1.1
	1	
l 	• • • • •	
	<u> </u>	
<u> </u>	4	
	· · · · · · · · · · · · · · · · · · ·	
	1	
	I	
l		
<u> </u>		
•		
•	· · · · · · · · · · · · · · · · · · ·	
• • • • • • • • • • • • • • • • • • • •	1 · · · · · · · · · · · · · · · · · · ·	
I		
I	dana da kala da kana ana ana ana ana ana ana ana ana a	
.		
		1.1.1.1
	1	
•	• • • • • • • • • • • • • • • • • • • •	
•	4	
1		
· · · · · · · · · · · · · · · · · · ·	1	
• · · · · · · · · · · · · · · · · · · ·	1.51 (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974) (1974)	
 	<u></u>	
•		
•	• • • • • • • • • • • • • • • • • • • •	
•	4	
1	· · · · <u>. · · . · · · · · · · · · · · </u>	
• • • • • • • • • • • • • • • • • • • •	1	
•		
1	 	
•		

所以X和Y的边缘分布律分别为:

		 	 .	
		 	 1	
	🔨	 🚄	 . 1	
		 	 1	
		 	 	<mark>.</mark>
		 	 I	
		 	 •	
<u> </u>				
		 	 .	
		 	 1 · · · · · · · · · · · · · · · · · · ·	
	er er er fil 😈 er 🚾 er er er er er er	 	 	
		 	 1 · · · · • · · · · · · · · · · · · · ·	
		 	 1 · · · • · 1/4 · • · / · · · · · · · · · · · · · · · ·	
		 	 1	
		 	 . 1	
		 	 1	

+	4-	
泪	加	ш

0 9/25 6/25 3/5 1 6/25 4/25 2/5 3/5 2/5	$X \sim Y$	0
1 0/23	I	
		U/23

边缘分布相 同,但联合 分布不同。

不放回

	· · · · · · · · · · · · · · · · · · ·
	<u> </u>
<u> </u>	
	· · · · · · · · · · · · · · · · · · ·
■	
■	
	· · · · · · · · · · · · · · · · · · ·
<u> </u>	
<u> </u>	
	<u> </u>
	•

说明:由边缘分布一般不能确定联合分布。

例3. 设试验E只有3种可能的结果 A_1 , A_2 , A_3 , 对试验E进行n次独立重复试验,用 X_i 表示这n次试验中事件 A_i 发生的次数, $P(A_i)=p_i$, i=1,2,3. 求 (X_1,X_2) 的联合分布律与边缘分布律。

解:上一节中已求得(X1,X2)的联合分布律为

$$P\{X_{1} = k_{1}, X_{2} = k_{2}\} = \frac{n!}{k_{1}!k_{2}!(n-k_{1}-k_{2})!} p_{1}^{k_{1}} p_{2}^{k_{2}} (1-p_{1}-p_{2})^{n-k_{1}-k_{2}}$$

$$k_{1}, k_{2} = 0, 1, 2, \dots, n, \quad k_{1} + k_{2} \leq n.$$

$易知X_1$ 可能的取值为0,1,...,n,且由定理1知

$$P\{X_1 = k_1\} = \sum_{k_2} P\{X_1 = k_1, X_2 = k_2\} = \sum_{k_2 = 0}^{n - k_1} P\{X_1 = k_1, X_2 = k_2\}$$

$$\begin{split} P\{X_1 = k_1\} &= \sum_{k_2 = 0}^{n-k_1} P\{X_1 = k_1, X_2 = k_2\} \\ &= \sum_{k_2 = 0}^{n-k_1} \frac{n!}{k_1! k_2! (n - k_1 - k_2)!} p_1^{k_1} p_2^{k_2} (1 - p_1 - p_2)^{n - k_1 - k_2} \\ &= \frac{n!}{k_1! (n - k_1)!} p_1^{k_1} \sum_{k_2 = 0}^{n-k_1} \frac{(n - k_1)!}{k_2! (n - k_1 - k_2)!} p_2^{k_2} (1 - p_1 - p_2)^{n - k_1 - k_2} \\ &= C_n^{k_1} p_1^{k_1} \sum_{k_2 = 0}^{n-k_1} C_{n - k_1}^{k_2} p_2^{k_2} (1 - p_1 - p_2)^{n - k_1 - k_2} = C_n^{k_1} p_1^{k_1} [p_2 + (1 - p_1 - p_2)]^{n - k_1} \\ &= C_n^{k_1} p_1^{k_1} (1 - p_1)^{n - k_1} \end{split}$$

即 $X_1 \sim b(n, p_1)$ 同样的方法可以求得 $X_2 \sim b(n, p_2)$

例3. 设试验E只有3种可能的结果 A_1 , A_2 , A_3 , 对试验E进行n次独立重复试验,用 X_i 表示这n次试验中事件 A_i 发生的次数, $P(A_i)=p_i$, i=1,2,3. 求 (X_1,X_2) 的联合分布律与边缘分布律。

另外,根据二项分布的应用背景,可以直接得出 X_1 和 X_2 的边缘分布. 例如, X_1 表示在n次试验中 A_1 发生的次数,此时可以将 A_2 和 A_3 两个结果,看作 A_1 不发生,因此就可以将试验E看作n重的伯努利试验,所以 $X_1 \sim b(n, p_1)$ 。

 X_2 表示在n次试验中 A_2 发生的次数,此时可以将 A_1 和 A_3 两个结果,看作 A_2 不发生,因此就可以将试验E看作n重的伯努利试验,所以 $X_2 \sim b(n, p_2)$ 。

当 (X, Y) 为二维连续型随机变量时,关于X和Y的边缘分布有如下定理。

定理 2 设二维连续型随机变量 (X, Y) 的联合概率密度函数为f(x,y), 则X 和Y也是连续型随机变量,且X和Y的密度函数分别为

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy \quad \text{TI} \quad f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

证明: 设X的分布函数为 $F_X(x)$,则有:

$$F_X(x) = F(x, +\infty) = \int_{-\infty}^{x} \int_{-\infty}^{+\infty} f(u, v) du dv = \int_{-\infty}^{x} \left[\int_{-\infty}^{+\infty} f(u, v) dv \right] du$$

$$F_X(x) = \int_{-\infty}^{x} \left[\int_{-\infty}^{+\infty} f(u, v) dv \right] du \qquad g(u) = \int_{-\infty}^{+\infty} f(u, v) dv$$

$$F_X(x) = \int_{-\infty}^{x} \left[\int_{-\infty}^{+\infty} f(u, v) dv \right] du = \int_{-\infty}^{x} g(u) du$$

故得: X为连续型随机变量,并且得 $f_X(x) = g(x) = \int_{-\infty}^{+\infty} f(x,y)dy$

同理可得Y为连续型随机变量,其概率密度 $f_Y(y)$ 为 $f_Y(y) = \int_{-\infty}^{\infty} f(x,y)dx$

在很多情况下,联合密度函数往往在某个区域是非零的,因此得到的边缘密度函数往往是分段函数,所以在求解边缘密度函数时,要注意该函数的非0区间以及积分限的确定。

例4.设连续型随机变量(X,Y)的概率密度是

$$f(x,y) = \begin{cases} \frac{24}{5}y(2-x), 0 \le x \le 1, 0 \le y \le x \\ 0, \quad \text{其他} \end{cases}$$

解:
$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy$$

当x < 0或x > 1时, $\forall y \in (-\infty, +\infty)$,都有f(x, y) = 0

$$\therefore f_X(x)=0$$

例4.设连续型随机变量(X,Y)的概率密度是

$$f(x,y) = \begin{cases} \frac{24}{5}y(2-x), 0 \le x \le 1, 0 \le y \le x \\ 0, \quad \text{其他} \end{cases}$$

暂时固定

当
$$0 \le x \le 1$$
时

$$f_X(x) = \int_{-\infty}^0 f(x,y) dy + \int_0^x f(x,y) dy + \int_x^{+\infty} f(x,y) dy = \int_0^x \frac{24}{5} y(2-x) dy - O$$

解:
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$

当
$$y<0$$
或 $y>1$ 时, $\forall x\in (-\infty,+\infty)$,都有 $f(x,y)=0$

$$f_{Y}(y)=0$$

当0≤y≤1时

$$f_{Y}(y) = \int_{-\infty}^{y} f(x,y)dx + \int_{y}^{1} f(x,y)dx + \int_{1}^{+\infty} f(x,y)dx$$

$$= \int_{y}^{1} \frac{24}{5} y(2-x) dx = \frac{24}{5} y(\frac{3}{2} - 2y + \frac{y^{2}}{2})$$

三. 二维连续型随机变量的边缘密度函数

注意: 自变量的取值范围

例5.设
$$(X,Y)$$
的概率密度是 $f(x,y) =$
$$\begin{cases} 6, x^2 \le y \le x \\ 0, & \text{其他} \end{cases}$$
 求边缘概率密度 $f_X(x)$ 和 $f_Y(y)$ 。

解: f(x,y)的非零区域如右图所示,将其写为如下形式:

$$D = \{(x, y): 0 \le x \le 1, x^2 \le y \le x \}$$

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_{x^2}^{x} 6 dy, 0 \le x \le 1 \\ 0, & \text{if } t \end{cases} = \begin{cases} 6(x - x^2), 0 \le x \le 1 \\ 0, & \text{if } t \end{cases}$$

例5.设
$$(X,Y)$$
的概率密度是 $f(x,y) = \begin{cases} 6, x^2 \le y \le x \\ 0, & \text{其他} \end{cases}$ 求边缘概率密度 $f_X(x)$ 和 $f_Y(y)$ 。

解: f(x,y)的非零区域如右图所示,将其写为如下形式:

$$D = \{(x, y): 0 \le y \le 1, y \le x \le \sqrt{y}\}$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x,y) dx = \begin{cases} \int_{y}^{\sqrt{y}} 6 dx, 0 \le y \le 1 \\ 0, & \text{if } t \end{cases} = \begin{cases} 6(\sqrt{y} - y), 0 \le y \le 1 \\ 0, & \text{if } t \end{cases}$$

求X的边缘密度。

解: f(x,y)的非零区域G为 $|x| \le y, 0 \le y \le 1$

可表示为
$$\begin{cases} -1 < x < 0 \\ -x \le y \le 1 \end{cases} + \begin{cases} 0 \le x < 1 \\ x \le y \le 1 \end{cases}$$

$$\therefore f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} \int_{-x}^{1} 1 dy, -1 < x < 0 \\ \int_{-x}^{1} 1 dy, 0 \le x < 1 \\ 0, & \text{ 其他} \end{cases} = \begin{cases} 1 + x, -1 < x < 0 \\ 1 - x, 0 \le x < 1 \\ 0, & \text{ 其他} \end{cases}$$

若(X,Y)服从二维正态分布,即 $(X,Y) \sim N(\mu_1,\sigma_1^2,\mu_2,\sigma_2^2,\rho)$

则有: $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$

即二维正态分布(X,Y)的边缘分布是一维正态分布。

反之未必成立。

反例见例7

对这个现象的解释是:边缘概率密度只考虑了单个分量的情况,而未涉及X与Y之间的关系。

例7.设二维随机向量(X,Y)的联合概率密度为

$$f(x,y) = \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} (1 + xy) \quad (-\infty < x, y < +\infty)$$

 $\bar{X}(X,Y)$ 关于X,Y的边缘概率密度。

$$\mathbf{\hat{H}Z}: f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-\frac{x^2 + y^2}{2}} (1 + xy) dy = \frac{1}{2\pi} \left(\int_{-\infty}^{+\infty} e^{-\frac{x^2 + y^2}{2}} dy + \int_{-\infty}^{+\infty} e^{-\frac{x^2 + y^2}{2}} (xy) dy \right)$$

$$= \frac{1}{2\pi} e^{-\frac{x^2}{2}} \left(\int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy + x \int_{-\infty}^{+\infty} y e^{-\frac{y^2}{2}} dy \right) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

同理可得
$$f_{Y}(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^{2}}{2}}$$

同理可得 $f_Y(y) = \frac{1}{\sqrt{2\pi}}e^{-\frac{y^2}{2}}$ X, Y 的边缘概率密度为一维正态分布,但其联合分布不是二维正态分布。

第10讲