Franklin Hu, Sunil Pedapudi SID: 20157715SID: 20247144 CS 194-10

2011-09-19 Assignment 2

## $1. \ \, \mathbf{Kernels}$

# (a) Original input



Input mapped onto space consisting of  $x_1$  and  $x_1x_2$ :



The maximum margin separator is the line  $x_1x_2 = 0$ .



The separating line on the original input space is a plane that rests at  $x_1x_2 = 0$ .



(b) Given

$$(x_1 - a)^2 + (x_2 - b)^2 - r^2 = 0$$
$$x_1^2 - 2ax_1 + a^2 + x_2^2 - 2bx_2 + b^2 - r^2 = 0$$

let us pose the following:

$$\mathbf{w} = [-2a, -2b, 1, 1]$$
  

$$\mathbf{x} = [x_1, x_2, x_1^2, x_2^2]$$
  

$$\beta = a^2 + b^2 - r^2$$

 $\mathbf{w^T}\mathbf{x} + \beta > 0$ , if  $\mathbf{x}$  escapes the circle region  $\mathbf{w^T}\mathbf{x} + \beta < 0$ , if  $\mathbf{x}$  occupies the circle region  $\mathbf{w^T}\mathbf{x} + \beta = 0$ , if  $\mathbf{x}$  demarcates the circle region

We then let  $y_i = -1$  if **x** occupies the region inside the circle;  $y_i = 1$  otherwise. Then, to satisfy the separability constraint, we note that

$$y_i(\mathbf{w^T}\mathbf{x} + \beta) > 0, \forall i$$

Thus, we show that in feature space  $(x_1, x_2, x_1^2, x_2^2)$ , the region defined by  $(x_1-a)^2 + (x_2-b)^2 - r^2 = 0$  is linearly separable.

### 2. Logistic Regression

Given:

$$L(w) = -\sum_{i=1}^{N} log(\frac{1}{1 + e^{y_i(w^T x_i + b)}}) + \lambda ||w||_2^2$$

$$\begin{split} \frac{\partial L}{\partial w_j} &= -\sum_{i=1}^N (1 + e^{y_i(w^T x_i + b)}) \cdot -1 \cdot (1 + e^{y_i(w^T x_i + b)})^{-2} (e^{y_i(w^T x_i + b)}) \cdot x_{ij} y_i + \frac{\partial}{\partial w_j} (\lambda ||w||_2^2) \\ &= -\sum_{i=1}^N \frac{-e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} \cdot x_{ij} y_i + 2\lambda w_j \\ &= \sum_{i=1}^N \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} \cdot x_{ij} y_i + 2\lambda w_j \end{split}$$

$$\begin{split} \frac{\partial^2 L}{\partial w_j \partial w_k} &= \frac{\partial L}{\partial w_k} (\sum_{i=1}^N \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})} \cdot x_{ij} y_i + 2\lambda w_j) \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot (1 + e^{y_i(w^T x_i + b)}) \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)}) - e^{y_i(w^T x_i + b)} \cdot \frac{\partial L}{\partial w_k} (1 + e^{y_i(w^T x_i + b)})}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot (1 + e^{y_i(w^T x_i + b)}) \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)}) - e^{y_i(w^T x_i + b)} \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)})}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot (1 + e^{y_i(w^T x_i + b)} - e^{y_i(w^T x_i + b)}) \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)})}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot \frac{\partial L}{\partial w_k} (e^{y_i(w^T x_i + b)})}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} y_i \cdot e^{y_i(w^T x_i + b)} x_{ik} y_i}{(1 + e^{y_i(w^T x_i + b)})^2} \\ &= \sum_{i=1}^N \frac{x_{ij} x_{ik} y_i y_i \cdot e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})^2} \end{split}$$

Since  $y_i^2 = 1$  , we simply rewrite this as

$$\sum_{i=1}^{N} x_{ij} x_{ik} \cdot \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})^2} \tag{1}$$

(c) Then, we wish to show

$$\mathbf{a^THa} \equiv \sum_{j,k} a_j a_k H_{j,k} \ge 0$$

Note that summation (1) indicates the  $j, k^{th}$  element of the Hessian which allows us to rewrite the above inequality as

$$\sum_{j,k} a_{j} a_{k} H_{j,k} = \sum_{j,k} a_{j} a_{k} \sum_{i=1}^{N} x_{ij} x_{ik} \cdot \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}}$$

$$= \sum_{j,k} a_{j} a_{k} \sum_{i=1}^{N} x_{ij} x_{ik} \cdot \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} a_{j} a_{k} x_{ij} x_{ik}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \mathbf{a}_{k} x_{ik}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \mathbf{a}^{T} \mathbf{x}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \sum_{j,k} \mathbf{a}^{T} \mathbf{x} \mathbf{a}^{T} \mathbf{x}$$

$$= \sum_{i=1}^{N} \frac{e^{y_{i}(w^{T} x_{i} + b)}}{(1 + e^{y_{i}(w^{T} x_{i} + b)})^{2}} \cdot (\mathbf{a}^{T} \mathbf{x})^{2} \ge 0$$

We show this summation is non-negative by showing each component of the summation is non-negative. Consider

$$\sum_{i=1}^{N} \frac{\alpha}{\beta} \cdot \epsilon = \sum_{i=1}^{N} \frac{e^{y_i(w^T x_i + b)}}{(1 + e^{y_i(w^T x_i + b)})^2} \cdot (\mathbf{a^T x})^2 \ge 0 \text{ Then, we realize that}$$

$$\alpha = e^{y_i(w^T x_i + b)} > 0, \text{since } e^z \text{ is always positive}$$

$$\beta = (1 + e^{y_i(w^T x_i + b)})^2 > 0$$

$$\epsilon = (\mathbf{a^T x})^2 \ge 0$$

Therefore, L is convex.

- 3. Training data
  - (a) Yes the classes {+,-} are linearly separable. The class is represented by circles in the graph below.



(b) The best hyperplane by inspection is:

$$x_{2} = -x_{1} + 1.5$$

$$x_{1} + x_{2} - 1.5 = 0$$

$$\begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} - 1.5 = 0$$

So therefore  $w = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$  and b = -1.5. The support vectors are (1,0), (0,1), (2,0), (1,1).

- (c) If we remove a support vector, then the optimal margin will increase since there are fewer constraints.
- (d) The answer for (c) is not always true. Consider if we have a class + with points (0,0), (0,1), (0,2) and a class with points (1,0), (1,1), (1,2). If we remove either (0,1) or (1,1), the best hyperplane does not change and thus the optimal margin remains the same.



### 4. 3 point dataset

- (a) No
- (b) 4b.

$$\phi(x_1) = [1, 0, 0]^T$$
  

$$\phi(x_2) = [1, -\sqrt{2}, 1]^T$$
  

$$\phi(x_3) = [1, \sqrt{2}, 1]^T$$

Yes, this is linearly separable with the hyperplane  $x^2 = \frac{1}{2}$ 

(c) Let

$$\begin{split} x_1 &= 0 \\ x_2 &= -1 \\ x_3 &= 1 \\ y_1 &= 1 \\ y_2 &= -1 \\ y_3 &= -1 \\ \Lambda(w_1, w_2, w_3, b, \lambda, \mu, \varepsilon) &= \frac{1}{2} \|w\|_2^2 \\ &+ \lambda(y_1(w_1 + b) - 1) \\ &+ \mu(y_2(w_1 - \sqrt{2}w_2 + w_3 + b) - 1) \\ &+ \varepsilon(y_3(w_1 + \sqrt{2}w_2 + w_3 + b) - 1) \end{split}$$

Then, using the method of Lagrange multipliers,

$$\frac{\partial \Lambda}{\partial w_1} = \frac{1}{2}w_1^2 + \lambda - \mu - \varepsilon = 0 \tag{2}$$

$$\frac{\partial \Lambda}{\partial w_2} = \frac{1}{2}w_2^2 + \sqrt{2}\mu - \sqrt{2}\varepsilon = 0 \tag{3}$$

$$\frac{\partial \Lambda}{\partial w_3} = \frac{1}{2}w_3^2 - \mu - \varepsilon = 0 \tag{4}$$

$$\frac{\partial \Lambda}{\partial b} = \lambda - \mu - \varepsilon = 0 \tag{5}$$

$$\frac{\partial \Lambda}{\partial \lambda} = w_1 + b - 1 = 0 \tag{6}$$

$$\frac{\partial \lambda}{\partial \mu} = -(w_1 - \sqrt{2}w_2 + w_3 + b) - 1 = 0 \tag{7}$$

$$\frac{\partial \Lambda}{\partial \varepsilon} = -(w_1 + \sqrt{2}w_2 + w_3 + b) - 1 = 0 \tag{8}$$

We inspect these equations to arrive at the following conclusions:

From (4), we know  $\lambda - \mu - \varepsilon = 0$  so in (1), we realize that  $\frac{1}{2}w_1^2 + \lambda - \mu - \varepsilon = \frac{1}{2}w_1^2 = 0$ , therefore  $w_1 = 0$ . Then, in (5),  $w_1 + b - 1 = 0 + b - 1 = 0$ , therefore b = 1. Then, (6) and (7) render a system of simple equations.

$$-(0 - \sqrt{2}w_2 + w_3 + 1) - 1 = 0$$
$$-(0 + \sqrt{2}w_2 + w_3 + 1) - 1 = 0$$

Solving this system of equations renders  $w_3 = -1$  and  $w_2 = 0$ .

(d) Generalizing the solution to 4c. renders that  $b = \rho$  from (5). Given  $\rho_1$  and  $\rho_2$ , let us say that 4c. expresses b,  $\mathbf{w}$  for some  $\rho_1$ . Then, for some  $\rho_2$ , we find  $b = \rho_2$ ,  $\mathbf{w} = [0, 0, -2\rho_2]$ . We realize that our function classifies according to the sign of  $\rho(\mathbf{w^Tx} + b)$  instead of simply  $\mathbf{w^Tx} + b$ . Knowing that  $\rho \geq 1$ , we realize that  $sign(\mathbf{w^Tx} + b) = sign(\rho(\mathbf{w^Tx} + b))$  so the classification remains the same for all such  $\rho$ .

#### 5. Seismic waves

- (a) phase, iphase frequencies
  - phase

| phase               | absolute frequency  | relative frequency                                                                                                    |
|---------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|
| Lg                  | 1594                | 0.017811                                                                                                              |
| P                   | 61779               | 0.690322                                                                                                              |
| PKP                 | 5974                | 0.066754                                                                                                              |
| Pg                  | 403                 | 0.004503                                                                                                              |
| Pn                  | 10762               | 0.120255                                                                                                              |
| Rg                  | 11                  | 0.000123                                                                                                              |
| S                   | 4685                | 0.052350                                                                                                              |
| $\operatorname{Sn}$ | 4285                | 0.047881                                                                                                              |
|                     | Lg P PKP Pg Pn Rg S | Lg     1594       P     61779       PKP     5974       Pg     403       Pn     10762       Rg     11       S     4685 |

• iphase

|   | iphase        | absolute frequency | relative frequency |
|---|---------------|--------------------|--------------------|
|   | Lg            | 2171               | 0.024259           |
|   | N             | 10683              | 0.119372           |
|   | P             | 50815              | 0.567810           |
|   | Pg            | 5291               | 0.059122           |
| _ | Pn            | 12610              | 0.140905           |
|   | Px            | 365                | 0.004079           |
|   | Rg            | 444                | 0.004961           |
|   | Sn            | 318                | 0.003553           |
|   | Sx            | 4179               | 0.046696           |
|   | $\mathrm{tx}$ | 2617               | 0.029243           |

### (b) Confusion matrix (empty cells are zero)

| [ |        | phase               |     |      |       |      |     |      |      |     |       |              |
|---|--------|---------------------|-----|------|-------|------|-----|------|------|-----|-------|--------------|
| ĺ |        |                     | Lg  | PKP  | P     | S    | Rg  | Sn   | Pn   | Pg  | Total | Accuracy (%) |
|   |        | Lg                  | 293 | 2    | 114   | 860  | 5   | 859  | 34   | 4   | 2171  | 13.496       |
|   |        | Sx                  | 297 | 61   | 971   | 1257 | 3   | 1191 | 393  | 6   | 4179  | 58.579       |
|   |        | $\mathrm{tx}$       | 17  | 383  | 2039  | 26   |     | 18   | 111  | 23  | 2617  | 0            |
|   |        | Px                  | 30  | 13   | 101   | 46   |     | 68   | 61   | 46  | 365   | 60.548       |
|   | iphase | N                   | 431 | 564  | 6097  | 1278 | 1   | 1133 | 1149 | 30  | 10683 | 0            |
|   |        | Р                   | 105 | 4586 | 42600 | 336  |     | 153  | 2993 | 42  | 50815 | 83.834       |
|   |        | Rg                  | 83  |      | 8     | 182  | 2   | 169  |      |     | 444   | 0.450        |
|   |        | Pg                  | 218 | 120  | 2716  | 318  |     | 303  | 1509 | 107 | 5291  | 2.022        |
|   |        | Pn                  | 95  | 244  | 7123  | 243  | 256 |      | 4504 | 145 | 12610 | 35.717       |
|   |        | $\operatorname{Sn}$ | 25  | 1    | 10    | 139  |     | 135  | 8    |     | 318   | 42.453       |

### (c) Top stations

i. 7: 8751 detections

ii. 24: 5794 detections

iii. 3: 2677 detections

iv. 80: 2528 detections

v. 19: 2478 detections

vi. 38: 2429 detections

vii. 63: 2411 detections

viii. 12: 2343 detections

ix. 74: 2265 detections

x. 65: 2227 detections

# (d) Data munging

|   | station | iphase accuracy (%) | classifier accuracy (%) |
|---|---------|---------------------|-------------------------|
|   | 7       | 97.75               | 88.08                   |
|   | 24      | 87.23               | 92.15                   |
|   | 3       | 83.86               | 92.02                   |
|   | 80      | 95.64               | 88.10                   |
| • | 19      | 67.56               | 88.87                   |
|   | 38      | 94.74               | 90.69                   |
|   | 63      | 91.09               | 88.18                   |
|   | 12      | 82.33               | 88.77                   |
|   | 74      | 81.44               | 89.56                   |
|   | 65      | 81.56               | 92.51                   |

## (e) Optimal c

8

|   | station | c      | accuracy |
|---|---------|--------|----------|
|   | 7       | 0.42   | 93.23    |
|   | 24      | 0.5    | 86.64    |
|   |         | 0.1    | 87.43    |
|   |         | 0.2    | 87.03    |
| • |         | 0.05   | 87.98    |
|   |         | 0.01   | 89.79    |
|   |         | 0.001  | 92.04    |
|   |         | 0.0001 | 92.20    |
|   |         | 0      | 92.15    |
|   |         |        |          |