Метод наименьших квадратов

Эконометрика. Лекция 1

Эконометрика на одном слайде:)

Вопросы:

- Как устроен мир? Как переменная x влияет на переменную y?
- Что будет завтра? Как спрогнозировать переменную у?

Ответ:

Модель — формула для объясняемой переменной

Например:

• $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$

Основные типы данных:

- Временные ряды
- Перекрёстные данные
- Панельные данные

Есть много-много других!

Временные ряды

Данные по России:

2010 142962 7.4 2011 142914 6.5			
2011 142914 6.5	Год	Население	Безработица
	2010	142962	7.4
	2011	142914	6.5
2012 143103 5.5	2012	143103	5.5
2013 143395 5.5	2013	143395	5.5

Перекрёстная выборка

Результаты зимних Олимпийских игр 2014:

Страна	Золото	Серебро	Бронза
Россия	13	11	9
Норвегия	11	5	10
Канада	10	10	5
США	9	7	12

Панельные данные

Сочетание первых двух: данные по нескольким переменным для множества объектов в разные моменты времени

Данные — обозначения

- Одна зависимая, объясняемая, переменная: у
- \bullet Несколько регрессоров, объясняющих, переменных: $x,\,z,\,\dots$
- По каждой переменной n наблюдений: y_1, y_2, \ldots, y_n

Данные — пример

Исторические данные 1920-х годов:)

Длина тормозного пути (м), y_i	Скорость машины (км/ч), x_i
0.6	6.44
3.0	6.44
1.2	11.27

Всегда изображайте данные!

Модель:

Пример: $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$

- Наблюдаемые переменные: у, х
- Неизвестные параметры: β_2 , β_2
- ullet Случайная составляющая, ошибка: arepsilon

План действий

- придумать адекватную модель
- ullet получить оценки неизвестных параметров: $\hat{eta}_1,\,\hat{eta}_2$
- прогнозировать, заменив неизвестные параметры на оценки:

$$\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$$

Метод наименьших квадратов

• Способ получить оценки неизвестных параметров модели исходя из реальных данных.

Ошибка прогноза: $\hat{\varepsilon}_i = y_i - \hat{y}_i$.

Сумма квадратов ошибок прогноза:

$$Q(\hat{\beta}_1, \hat{\beta}_2) = \sum_{i=1}^n \hat{\varepsilon}_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Суть МНК: В качестве оценок взять такие $\hat{\beta}_1$, $\hat{\beta}_2$, при которых сумма квадратов ошибок прогноза, Q, минимальна.

Пример с машинами:

Фактические данные:

$$x_1 = 6.68, x_2 = 6.68, \ldots,$$

$$y_1 = 0.6, y_2 = 3, \dots$$

Модель: $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$. Формула для прогнозов: $\hat{y}_i = \hat{\beta}_1 + \hat{\beta}_2 x_i$

Сумма квадратов ошибок прогнозов: $Q = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$

$$Q = (0.6 - \hat{\beta}_1 - \hat{\beta}_2 6.68)^2 + (3 - \hat{\beta}_1 - \hat{\beta}_2 6.68)^2 + \dots$$

Точка минимума, найдена в R: $\hat{\beta}_1 = -5.3, \ \hat{\beta}_2 = 0.7$:

Формула для прогнозов: $\hat{y}_i = -5.3 + 0.7 x_i$

Простой пример [у доски]

Имя	$\mathrm{Bec}\ (\mathrm{kr}),\ y_i$	Poct (см), x_i
Вася	60	170
Коля	70	170
Петя	80	181

Оцените модели:

$$y_i = \beta + \varepsilon_i,$$

 $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$

Маленькая подготовка: $n\bar{x} = \sum_i x_i = \sum_i \bar{x}, \sum_i (x_i - \bar{x}) = 0.$

Готовые формулы МНК. Регрессия на константу

В модели $y_i = \beta + \varepsilon_i$

$$\hat{\beta} = \bar{y}$$

Интерпретация:

В модели без объясняющих переменных наилучший прогноз — это среднее значение зависимой переменной

Готовые формулы МНК. Парная регрессия

В модели $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$

$$\hat{\beta}_2 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
$$\hat{\beta}_1 = \bar{y} - \hat{\beta}_2 \bar{x}$$

Интерпретация:

Точка (\bar{x}, \bar{y}) лежит на линии регрессии $\hat{y} = \hat{\beta}_1 + \hat{\beta}_2 x$

Терминология и обозначения:

*у*_і — зависимая, объясняемая, переменная

 x_i — регрессор, объясняющая переменная

 ε_i — ошибка, ошибка модели, случайная составляющая

 \hat{y}_i — прогноз, прогнозное значение

 $\hat{\varepsilon}_i = y_i - \hat{y}_i$ — остаток, ошибка прогноза

 $RSS = \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2}$ — сумма квадратов остатков

Регрессия проходит через среднюю точку [у доски]

Много объясняющих переменных [у доски]

$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$

Выпишем систему уравнений для оценок $\hat{\beta}_1$, $\hat{\beta}_2$, $\hat{\beta}_3$

$$\begin{cases} \sum \hat{\varepsilon}_i \cdot 1 = 0 \\ \sum \hat{\varepsilon}_i \cdot x_i = 0 \\ \sum \hat{\varepsilon}_i \cdot z_i = 0 \end{cases}$$

Суммы квадратов

• Сумма квадратов остатков

$$RSS = \sum \hat{\varepsilon}_i^2$$

• Общая сумма квадратов

$$TSS = \sum (y_i - \bar{y})^2$$

• Объясненная сумма квадратов

$$ESS = \sum (\hat{y}_i - \bar{y})^2$$

Абсолютный ликбез по линейной алгебре

Вектора: $y, x, \hat{y}, \varepsilon, \dots$

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \ x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \ \hat{\varepsilon} = \begin{pmatrix} \hat{\varepsilon}_1 \\ \hat{\varepsilon}_2 \\ \vdots \\ \hat{\varepsilon}_n \end{pmatrix} \ \vec{1} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

В нашей модели: $\hat{y} = \hat{\beta}_1 \cdot \vec{1} + \hat{\beta}_2 \cdot x + \hat{\beta}_3 \cdot z$

Матрица всех регрессоров

$$X = egin{pmatrix} 1 & x_1 & z_1 \ 1 & x_2 & z_2 \ dots & & & \ 1 & x_n & z_n \end{pmatrix}$$

Длина вектора

Длина вектора,
$$|y| = \sqrt{y_1^2 + y_2^2 + \ldots + y_n^2}$$

Квадрат длины вектора,
$$|y|^2 = y_1^2 + y_2^2 + \ldots + y_n^2 = \sum_i y_i^2$$

Примеры:

$$RSS = \sum \hat{\varepsilon}_i^2$$
 — квадрат длины вектора $\hat{\varepsilon}$ $TSS = \sum (y_i - \bar{y})^2$ — квадрат длины вектора $(y - \bar{y} \cdot \vec{1})$

$$\begin{pmatrix} y_1 - \bar{y} \\ y_2 - \bar{y} \\ \vdots \\ y_n - \bar{y} \end{pmatrix} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} - \bar{y} \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = y - \bar{y} \cdot \vec{1}$$

Скалярное произведение двух векторов:

$$(x,y) = |x| \cdot |y| \cdot cos(x,y)$$

$$(x,y) = x_1y_1 + x_2y_2 + \ldots + x_ny_n = \sum_i x_iy_i$$

Условие перпендикулярности:

$$x \perp y \Leftrightarrow \sum_{i} x_{i} y_{i} = 0$$

т.к. $cos(90^{\circ}) = 0$.

Иллюстрация для регрессии на константу [у доски]

Модель: $y_i = \beta + \varepsilon_i$

Прогнозы: $\hat{y}_i = \hat{\beta} = \bar{y}$

Геометрическая интерпретация условий первого порядка

$$\begin{cases} \sum \hat{\varepsilon}_{i} \cdot 1 = 0 \\ \sum \hat{\varepsilon}_{i} \cdot x_{i} = 0 \\ \sum \hat{\varepsilon}_{i} \cdot z_{i} = 0 \end{cases} \Leftrightarrow \begin{cases} \hat{\varepsilon} \perp \vec{1} \\ \hat{\varepsilon} \perp x \\ \hat{\varepsilon} \perp z \end{cases}$$

Иллюстрация для множественной регрессии [у доски]

Если в регрессию включён свободный член β_1

Если в регрессию включён свободный член, $y_i = \beta_1 + \dots$, и оценки МНК единственны, то:

- $\sum \hat{\varepsilon}_i = 0$
- $\sum y_i = \sum \hat{y}_i$
- \bullet $\bar{y} = \bar{\hat{y}}$
- TSS = RSS + ESS

Коэффициент детерминации — простой показатель качества

В моделях со свободным членом $R^2 = ESS/TSS$

TSS — общий разброс у

ESS — объясненный регрессорами разброс

 R^2 — доля объясненного разброса в общем разбросе

Теорема. Если в регрессию включён свободный член, $y_i = \beta_1 + \ldots$, и оценки МНК единственны, то R^2 равен выборочной корреляции между y и \hat{y} , т.е.

$$R^{2} = (sCorr(y, \hat{y}))^{2} = \left(\frac{\sum (y_{i} - \bar{y})(\hat{y}_{i} - \bar{y})}{\sqrt{\sum (y_{i} - \bar{y})^{2}}\sqrt{\sum (\hat{y}_{i} - \bar{y})^{2}}}\right)^{2}$$

Явная формула для оценок коэффициентов

Модель: $y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$

$$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \quad X = \begin{pmatrix} 1 & x_1 & z_1 \\ 1 & x_2 & z_2 \\ \vdots & & \\ 1 & x_n & z_n \end{pmatrix}$$

Линейная алгебра позволяет получить явные формулы:

$$\hat{\beta} = (X'X)^{-1}X'y$$

Мораль

УРА!!! МНК позволяет оценивать модели!!!

Предположив
$$y_i = \beta_1 + \beta_2 x_i + \beta_3 z_i + \varepsilon_i$$

Получаем $\hat{\beta}_1,\,\hat{\beta}_2,\,\hat{\beta}_3$

Вопросы

- Как выбрать форму модели?
- А будет ли решение задачи минимизации единственным?
- А будет ли решение задачи минимизации вообще существовать?
- А почему сумма квадратов остатков, а не, скажем, модулей?
- А насколько точны полученные оценки?
- . . .