

Lineare Algebra 1
Prof. Dr. R. Dahlhaus
Dr. S. Richter, N. Phandoidaen
Wintersemester 2018/2019

4. Abgabeblatt

Aufgabe 13	Aufgabe 14	Aufgabe 15	Aufgabe 16	Summe:

Übungsgruppe:	Tutor(in):
Namen:	

Aufgabe 13 (Beispiele / Gegenbeispiele für (Unter-) Vektorräume, 4=2+2 Punkte).

Beantworten Sie die folgenden Fragen entweder durch einen Nachweis oder durch Angabe der verletzten Eigenschaft mit einem expliziten Gegenbeispiel:

(a) Sind die folgenden Mengen Untervektorräume des Standardvektorraums \mathbb{R}^3 über \mathbb{R} (mit komponentenweiser Multiplikation und Addition)?

(i)
$$U_1 := \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 3y = 0 \text{ oder } 3y + 4z = 0\},\$$

(ii)
$$U_2 := \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 3y + z = 5\},\$$

(iii)
$$U_3 := \{(x, y, z) \in \mathbb{R}^3 \, | \, x^2 + y^2 + z^2 = 0\},\$$

(iv)
$$U_4 := \{(2\lambda, \lambda, \lambda^2) \mid \lambda \in \mathbb{R}\}.$$

(b) Sind die folgenden Strukturen $(V, +_V)$ Vektorräume über dem jeweils angegebenen Körper K und der angegebenen skalaren Multiplikation \cdot_V ? Hierbei bezeichnen "+" stets die normale (bzw. komponentenweise) Addition und "·" die normale Multiplikation.

(i)
$$(V, +_V) = (\mathbb{Z}, +)$$
 über $K = F_5$ mit $\cdot_V : F_5 \times \mathbb{Z} \to \mathbb{Z}, (a, z) \mapsto a \cdot z,$

(ii)
$$(V, +_V) = (\mathbb{R}^2, +)$$
 über $K = \mathbb{R}$ mit $\cdot_V : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, (a, (x, y)) \mapsto (a \cdot x, 0),$

(iii)
$$(V, +_V) = (\mathbb{R}^2, +)$$
 über $K = \mathbb{R}$ mit $\cdot_V : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2, (a, (x, y)) \mapsto (a^2 \cdot x, a^2 \cdot y),$

(iv) $(V, +_V) = (\mathbb{R}_+, \cdot)$ über $K = \mathbb{R}$ mit $\cdot_V : \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}_+, (a, x) \mapsto x^a$. Hinweis: Sie dürfen ohne Nachweis nutzen, dass (\mathbb{R}_+, \cdot) eine abelsche Gruppe bildet.

Aufgabe 14 (Rechnen im Standardvektorraum \mathbb{R}^n , 4 = 2 + 2 Punkte).

Wir betrachten den Standardvektorraum \mathbb{R}^n über \mathbb{R} mit der üblichen komponentenweisen Addition und Multiplikation. Die Elemente von \mathbb{R}^n werden hier als Spalten anstelle von Zeilen dargestellt.

(a) Schreiben Sie die folgenden Untervektorräume U_i (i = 1, 2, 3) des \mathbb{R}^3 als lineare Hülle von möglichst wenig Vektoren aus \mathbb{R}^3 :

$$U_{1} := \left\{ \begin{pmatrix} x_{1} - 2x_{2} + 4x_{3} \\ 2x_{1} + x_{2} + 3x_{3} \\ x_{1} + 3x_{2} - x_{3} \end{pmatrix} \middle| x_{1}, x_{2}, x_{3} \in \mathbb{R} \right\}$$

$$U_{2} := \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \in \mathbb{R}^{3} \middle| \forall x_{1}, x_{2}, x_{3} \in \mathbb{R} : x_{1} + 2x_{2} - 3x_{3} = 0 \right\}$$

$$U_{3} := \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} \in \mathbb{R}^{3} \middle| \forall x_{1}, x_{2}, x_{3} \in \mathbb{R} : x_{1} - x_{2} = 0, x_{3} - 2x_{2} = 0 \right\}$$

(b) Zeigen Sie, dass der Vektor $v = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$ in U_1 und U_2 liegt, indem Sie ihn als Linearkombination der Vektoren der in (a) bestimmten linearen Hüllen darstellen.

Aufgabe 15 (Eigenschaften von Untervektorräumen und linearer Hülle, 4 = 1.5 + 1.5 + 1 Punkte).

Sei V ein K-Vektorraum.

(a) Seien U_1, U_2 Untervektorräume von V. Zeigen Sie:

$$U_1 \cup U_2$$
 ist Untervektorraum von $V \iff U_1 \subset U_2$ oder $U_2 \subset U_1$

(b) Seien $v_0, v_1, ..., v_r \in V$. Zeigen Sie:

$$\operatorname{Lin}(\{v_0, ..., v_r\}) = \operatorname{Lin}(\{v_0, v_1 - v_0, v_2 - v_0, ..., v_r - v_0\}).$$

(c) Seien $M, M' \subset V$ Mengen. Beweisen oder widerlegen Sie die Aussage:

$$\operatorname{Lin}(M) \cap \operatorname{Lin}(M') = \operatorname{Lin}(M \cap M')$$

Aufgabe 16 (Vektorraum der Folgen, 4 = 2 + 1 + 1 Punkte).

Wir betrachten den Raum der reellen Folgen

$$\mathbb{R}^{\mathbb{N}} := \{ (a_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} : a_n \in \mathbb{R} \}.$$

Für $\lambda \in \mathbb{R}$, $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ definieren wir die Addition und skalare Multiplikation durch

$$(a_n)_{n\in\mathbb{N}} + (b_n)_{n\in\mathbb{N}} := (a_n + b_n)_{n\in\mathbb{N}},$$

$$\lambda \cdot (a_n)_{n\in\mathbb{N}} := (\lambda \cdot a_n)_{n\in\mathbb{N}},$$

womit $\mathbb{R}^{\mathbb{N}}$ ein \mathbb{R} -Vektorraum wird, wobei das Nullelement durch die Folge $o := (0)_{n \in \mathbb{N}}$ gegeben ist. Für $D \in \mathbb{N}$ seien

$$U_1 := \{(a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \exists N \in \mathbb{N} : \forall n \ge N : a_n = 0\},$$

$$U_2 := \{(a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \exists c_0, ..., c_D \in \mathbb{R} : \forall n \in \mathbb{N} : a_n = \sum_{k=0}^{D} c_k \cdot n^k\},$$

der Raum der abbrechenden Folgen und der polynomialen Folgen vom Grad höchstens D. Zeigen Sie:

- (a) U_1 und U_2 sind Untervektorräume von $\mathbb{R}^{\mathbb{N}}$.
- (b) Es gibt keine endliche Menge $M \subseteq U_1$, so dass $U_1 = \text{Lin}(M)$.
- (c) Geben Sie eine Menge $M \subseteq U_2$ mit D+1 Elementen an, so dass $U_2 = \text{Lin}(M)$.

Abgabe:

In Zweiergruppen, bis spätestens Donnerstag, den **15. November 2018, 09:15 Uhr**. (Die Zettelkästen für das Abgabeblatt sind im 1. OG, INF 205, vor dem Dekanat.)

Homepage der Vorlesung:

https://ssp.math.uni-heidelberg.de/la1-ws2018/index.html