Université de Tours-L2-Arithmétique 2021-2022

Leçon 1 : Divisibilité, factorisation et algorithme d'Euclide sur $\mathbb N$ et $\mathbb Z$

Conventions

• Les nombres suivants $a, b, c, d, m, n, p, q, \alpha, \beta, \lambda$ seront tous supposés être des entiers de \mathbb{N} dans la section 1 et des entiers rationnels -i.e. \mathbb{Z} - dans les sections suivantes (sauf mention du contraire).

1 Divisibilité

Définition 1.1. le nombre d divise n- noté d|n- $ssi \exists c : n = dc$.

Théorème 0.

La relation "divise" vérifie les propriétés suivantes :

- 1. | est une relation d'ordre partiel sur N; plus généralement sur Z-
 - \bullet n|n
 - m|n et $n|m \implies m = \pm n$
 - $m|n \ et \ n|p \implies m|p$
- 2. linéarité :
 - $d|m \ et \ d|n \implies d|am + bn$
- 3. multiplicativité:
 - $\bullet \ d|n \implies d|an$
- 4. diviseur conjugué:
 - $d|n \implies \frac{n}{d}|n$

5.

• $1|n\ et\ n|\ 0$ ($1\ (resp.\ 0)\ est\ le\ plus\ petit\ élément\ (resp.\ plus\ grand\ élément\)\ pour\ la\ relation\ d'ordre\ |)$.

Définition 1.2. d est diviseur commun de a et b si d|a et d|b

Théorème 1. Pour tout a, b il existe un diviseur commun d de la forme $d = \alpha a + \beta b$ et tel que tout autre diviseur commun de a et b divise d

1

Théorème 2. (pgcd)

Pour tout a, b il existe un seul d tel que

d > 0

- \bullet d|a et d| b
- \bullet $q|a \ et \ q|b \implies q|d$

d - not'e (a,b) ou pgcd(a,b) est le plus grand commun diviseur de a et b. (a,b) est le plus grand des minorants pour la relation d'ordre |.

Remarque 1.1. Nous verrons au chapitre suivant un algorithme qui permet de calculer le pgcd de 2 nombres. Cet algorithme fournit une autre démonstration du théorème précédent et se traduit par la fonction récursive suivante en Python :

```
def reste(a,b):
    if a < b:
        (a,b) = (b,a)
    a -=b
    return a

def pgcd(a,b):
    while b>0:
        (a,b) = (b, reste(a,b))
    return a
```

Remarque 1.2. La plus petite valeur positive de xa + yb où $x, y \in \mathbb{Z}$ est égale à (a, b)

Définition 1.3. Si (a,b) = 1 a et b sont dits premiers entre eux.

Proposition 1.1. 1. (a,b) = (b,a)

```
2. (a,(b,c)) = ((a,b),c)
```

3.
$$(1,a) = (a,1) = 1$$

4.
$$(0,a) = (a, 0) = a$$

5.
$$(ab,ac) = |a| (b,c)$$

Théorème 3 (Euclide-Gauss). $a|bc|et(a,b) = 1 \implies a|c|$

Remarque 1.3. * Les notions précédentes : définition de la relation |, nombre premier,... ont un sens dans tout anneau. Il est utile de connaître quelques anneaux de nombre plus exotiques par exemple l'anneau des entiers de Gauss $\mathbb{Z}[i] := \{m + in : m; n \in \mathbb{Z}\}. \subset \mathbb{C}$ ou quadratiques $\mathbb{Z}[\sqrt{d}] := \{m + \sqrt{d}n : m; n \in \mathbb{Z}\}. \subset \mathbb{R}$ où d n'est pas un carré, ou encore des anneaux de polynomes $\mathbb{Q}[X]$ ou $\mathbb{R}[X]$.

2 Nombres premiers

Définition 2.1. n est premier si

• n > 1

• les seuls diviseurs de n sont ± 1 et $\pm n$ (n et les éléments inversibles).

Théorème 4. Tout nombre positif est soit 1, soit premier, soit produit de nombres premiers

Théorème 5 (Euclide). Il y a une infinité de nombres premiers

Théorème 6. Si p est premier et $p \nmid a$ alors (p, a) = 1

Théorème 7. Si p premier est tel que $p|a_1 \cdot a_2 \cdots a_n$ alors $p|a_i$ pour au moins un $i \in \{1, \dots n\}$

3 Théorème fondamental de l'arithmétique

Théorème 8. Tout entier > 1 se décompose de façon unique en produit de nombres premiers à l'ordre des facteurs près.

Corollaire 3.1. Tout entier

$$n = \pm \prod_{1}^{\infty} p_k^{\alpha_k}$$

où p_k est le k-ième nombre premier, et où $\alpha_k=0$ sauf pour un nombre fini de k où $\alpha_k\geq 1$

Corollaire 3.2. Si

$$a = \pm \prod_{1}^{\infty} p_k^{\alpha_k}, b = \pm \prod_{1}^{\infty} p_k^{\beta_k}$$

alors

$$(a,b) = \prod_{1}^{\infty} p_k^{min(\alpha_k,\beta_k)}, ppcm(a,b) = \prod_{1}^{\infty} p_k^{max(\alpha_k,\beta_k)}$$

Exercice 3.1. Calculer

$$(a,b) \cdot ppcm(a,b)$$

4 Nombres Pythagoriciens (voir note 1)

Définition 4.1. un nombre est pythagoricien si son carré est la somme de deux autres carrés positifs. Un triplet pythagoricien est un triplet (a,b,c) terl que $a^2 + b^2 = c^2$. On dira qu'un triplet est primitif s'ils n'ont pas de diviseur commun.

Example 4.1. (3,4,5); (5,12,13); (11,60,61); (15,8,17); (16,63,65)....

Théorème 9. Toute solution entière de

$$x^2 + y^2 = z^2$$

est (en permutant éventuellement x et y) de la forme

$$x = \lambda ab, y = \lambda(a^{2} - b^{2}), z = \lambda(a^{2} + b^{2})$$

où $a > b \ge 1$ sont impairs et premiers entre eux.

Réciproquement, pour tout a, b, λ , et en permutant éventuellement x et y, le triplet

$$(x, y, z) := (\lambda 2ab, \lambda(a^2 - b^2), \lambda(a^2 + b^2))$$

est solution de $x^2 + y^2 = z^2$.

Example 4.2. 2019 est un nombre Pythagoricien (on mettra à profit un petit programme Python)

Remarque 4.1. Tout entier plus grand que 1 est somme de deux carrés si et seulement si chacun de ses facteurs premiers de la forme 4k + 3 intervient à une puissance paire (Théorème des 2 carrés de Fermat). Mais tout entier plus grand que 1 est somme de quatre carrés (théorème des 4 carrés, Lagrange).