Skript Mathe 2

30. April 2018

0.1 Definition: Limes inferior/superior

 (a_n) reelle folge, beschränkt. Dann gibt es einen größten und einen kleinsten Häufungspunkt, den

- Limes superior von (a_n) : $\limsup_{n\to\infty}(a_n)$, $\overline{\lim}_{n\to\infty}(a_n)$
- Limes inferior von (a_n) : $\liminf_{n\to\infty} (a_n)$, $\underline{\lim}_{n\to\infty} (a_n)$

Ist (a_n) nicht beschränkt, setzt man

$$\bullet \underset{n \to \infty}{\overline{\lim}} \left\{ \underbrace{-\infty : (a_n) \text{ nicht nach oben beschränkt}}_{\text{d.h. } a_n \xrightarrow[n \to \infty]{} -\infty} \left\{ \underbrace{-\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \leq -K \ \forall n \geq N}_{\text{d.h. } a_n \xrightarrow[n \to \infty]{} -\infty} \right. \right.$$

$$\bullet \underset{n \to \infty}{\underline{\lim}} \left\{ \underbrace{-\infty : (a_n) \text{ nicht nach oben beschränkt}}_{\text{d.h. } a_n \xrightarrow[n \to \infty]{}} \times \left\{ \underbrace{+\infty : (a_n) \ \forall K > 0 \ \exists N \in \mathbb{N} : a_n \geq K \ \forall n \geq N}_{\text{d.h. } a_n \xrightarrow[n \to \infty]{}} \times \right. \right\}$$

0.2 Bemerkung

- a) $a_n \to \pm \infty$ in obriger Definition bedeutet, dass (a_n) (bestimmt) gegen $\pm \infty$ divergiert. (d.h. es gibt keine weiteren endlichen Häufungspunkte)
 - z.B. divergiert (a_n) mit $a_n = (-1)^n$ nicht bestimmt, aber (a_n) mit $(a_n) = n$ divergiert bestimmt gegen ∞
- b) $-\infty, \infty$ sind keine reellen Zahlen. Man setzt $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty, -\infty\}$ mit $-\infty < x < \infty \quad \forall x \in \mathbb{R}$
- c) In $\overline{\mathbb{R}}$ besitzt jede Folge sowohl lim sup als auch lim inf.

0.3 Beispiel

$$a_n = n \cdot (1 + (-1)^n) = \begin{cases} 2n, & \text{n gerade} \\ 2n + 1, & \text{n ungerade} \end{cases}$$

 $\lim \inf(a_n) = 0 \quad \lim \sup(a_n) = \infty$

0.4 Definition: Cauchy-Folgen

Sei (a_n) eine Folge. (a_n) heißt Cauchy-Folge (C-F) : $\Leftrightarrow \forall \epsilon > 0 \ \exists M \in \mathbb{N} : |a_n - a_k| < \epsilon \ \forall n, k \geq M$

0.5 Satz: Cauchy-Kriterium

Sei (a_n) eine Folge $\underline{\text{in } \mathbb{R}}$ (a_n) konvergiert : $\Leftrightarrow (a_n)$ ist Cauchy-Folge

Beweis: (\Rightarrow) : klar (\Leftarrow) :

1. Zeige (a_n) beschränkt

Sei
$$(a_n)$$
 C-F: $\Rightarrow \exists R \in \mathbb{N} : |a_n - a_k| < 1$
 $\forall n, k \geq R$

$$\underset{k=R}{\Rightarrow} |a_n - a_R| < 1 \quad \forall n \ge \mathbb{R}$$

$$\Rightarrow a_R - 1 < a_n < a_R + 1 \quad \forall n \ge R$$

$$\Rightarrow \min\{a_r - 1, a_1, ..., a_{R-1}\} \le a_n \le \max\{a_R + 1, a_1, ..., a_{R-1}\} \quad \forall n \in \mathbb{N}$$

$$\Rightarrow$$
 (a_n) ist beschränkt und besitzt konvergente Teilfolge (a_{n_j}) (1.35) mit $a=\lim_{j\to\infty}a_{n_j}$

2. (a_n) ist konvergent mit $\lim_{n\to\infty} a_n = a$

Sei $\epsilon > 0$

$$\Rightarrow \bullet \exists M \in \mathbb{N} : |a_n - a_k| < \frac{\epsilon}{2} \forall n, k \ge M$$

•
$$\exists J \in \mathbb{N} : \left| a_{n_j} - a_k \right| < \frac{\epsilon}{2} \forall j \ge J$$

Wähle a_{n_j} so, dass $j \geq J$ und $n_j \geq M$.

$$\Rightarrow |a_n - a| \le \underbrace{\left| a_n - a_{n_j} \right|}_{< \frac{\epsilon}{2}} + \underbrace{\left| a_{n_j} - a \right|}_{< \frac{\epsilon}{2}} < \epsilon \quad \forall n \ge M$$

0.6 Beispiel

$$(a_n)$$
 mit $a_n = (-1)^n$ ist divergent,
denn $|a_{n+1} - a_n| = |(-1)^{n+1} - (-1)^n|$
 $= |(-1)^n| - |-1 - 1| = 2$

z.B ist für $\epsilon = 1 \quad |a_{n+1} - a_n| \ge \epsilon \quad \forall n \in \mathbb{N},$ was im Widerspruch zu 1.39 steht.

0.7 Definition: Kontraktion

Eine Abbildung $f:[a,b] \to [a,b]$ heißt Kontraktion, falls $\alpha \in (0,1)$ existiert, so dass

$$|f(x) - f(y)| \le \alpha |x - y|$$

z.B: $f(x) = \frac{1}{2}x$ ist Kontraktion mit Kontraktionsfaktor $\frac{1}{2}$.

0.8 Banachscher Fixpunktsatz

Sei $f[a,b] \rightarrow [a,b]$ eine Kontraktion. Dann:

- 1. f hat genau einen Fixpunkt $\hat{x} \in \mathbb{R}$, d.h. es git genau ein $\hat{x} \in \mathbb{R} : f(\hat{x} = \hat{x})$
- 2. Für jeden beliebigen Startwert $X_0 \in [a, b]$ konvergiert die durch $X_n := f(X_n + 1)$ definierte Folge (X_n) gegen \hat{x} .

(Ohne Beweis)

1 Reihen

Grundbegriffe und Beispiele

1.1 Definition: Reihe

1. Sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Folge. Die Folge $(S_k)_{k\in\mathbb{N}}$ mit

$$S_k = \sum_{i=1}^k \delta_i = \delta_1 + \ldots + \delta_k$$

heißt (undendliche) Reihe, mit Schreibweise $\sum_{i=1}^{\infty} \delta_i$. Die Zahl $S_k \in \mathbb{R}$ heißt k-te <u>Partialsumme</u> der Reihe.