DOMAIN KNOWLEDGE FOR REMOTE SENSING

DR. MARIANA BELGIU

THE FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION (ITC)

- Established in 1950 and became a faculty of the University of Twente since 2010.
- Capacity development is ITC's **mission**, where we apply share and facilitate the effective use of knowledge and tools for tackling global wicked problems. We offer education and conduct research.
- Main domains of expertise include Resource Security, Disaster Resilience, Geo-health and Geo-Artificial Intelligence.

MY PROFILE

Ph.D. in Remote Sensing: "Formal ontologies for extracting information from remotely sensed data"

Assistant Professor at ITC/University of Twente

Machine Learning | Deep learning | Multi-Temporal Image analysis

Agriculture mapping & monitoring | Hidden Hunger

Associate Editor of the ISPRS Journal of Photogrammetry and Remote sensing

UNIVERSITY OF TWENTE

CONTENT

- (Some) Challenges related to remote sensing image analysis
- How can ontologies help?

How do the current machine learning/deep learning-based approaches account for the

identified challenges?

RULE-BASED | MACHINE LEARNING | DEEP LEARNING

DOMAIN KNOWLEDGE FOR REMOTE SENSING ANALYSIS

- Crop semantics
- Agroecological conditions, management practices, and crop calendar
- Types of remote sensing data
- Representative features
- Valid rulesets for the target crops

OR

- Representativeness of the samples
- Spatial and class distribution of labeled samples

IMAGE ANALYSIS = HIGHLY SUBJECTIVE TASK

Classification task:

Vegetation

Water

Impervious areas Bare soil

Data: WorldView-2 image (2 m resolution) 250 500

Four experts carried out the classification

RESULTS

Different features used to define the class rulesets

Different thresholds for the common features

Different allocation of classes to the designed hierarchical classification levels

VAGUENESS OF GEOGRAPHIC CONCEPTS

• Partiality: one identified feature might not be enough to identify a target class

- Threshold vagueness:
 - User-defined/context-specific threshold: extensional uncertainty

AMBIGUITIES OF GEOGRAPHIC CONCEPTS/SEMANTIC GAP

Forest in Brazil = an area greater than 1 hectare, with more than 30% canopy cover and a minimum tree height of 5 meters

Forest in China = land with a minimum area of 0.67 ha, minimum 20% crown cover and a minimum tree height of 2 meters

ESRI 2020 Land cover – 10 m/2020 Trees: Any significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy

FROM-GLC10

Forest: Trees observable in the landscape from the images. Tree cover percentage classification to >15% and tree height classification to >3m

SENSORY GAP

Gap between the entity in the world and the information derived from an image (Smeulders et al. 2000)

SEMANTIC HETEROGENEITY LULC CLASSIFICATIONS

Finer Resolution Observation and Monitoring of Global Land Cover (FROM-GLC): 10 m/2017 Cropland = land that has clear traits of intensive human activity. Pasture could be transitional from croplands to natural grasslands. Lands for rice cultivation, arable and tillage lands, greenhouse farming (build up in WorldCover).

ESRI 2020 Land cover – 10 m/2020

Cropland = human planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land, oil palm plantation

WorldCover 2020

Cropland: land covered with annual cropland that is sowed/planted and harvestable at least once within the 12 months after the sowing/planting date. Greenhouses are considered as built-up. It includes also rice paddies and irrigated /inundated agriculture (flooded vegetation in Esri 2020 Land cover). Oil palm plantations are not included.

DIFFERENT DEFINITIONS -> DIFFERENT CLASSIFICATIONS

WorldCover 2020

Tree cover	
Shrubland	
Grassland	
Cropland	
Built-up	
Bare / sparse vegetation	
Snow and Ice	
Permanent water bodies	
Herbaceous wetland	
Mangroves	
Moss and lichen	

ONTOLOGY FOR REMOTE SENSING APPLICATIONS

Definition: Formal explicit specification of a shared conceptualization (Gruber 1995)

- Simple Knowledge Organization System (SKOS)
- Resource Description Framework (RDF)
- Web Ontology Language

ONTOLOGY FOR REMOTE SENSING APPLICATIONS

- Subjectivity
- Vagueness issue:
 - Threshold vagueness: fuzzy ontology
- Ambiguity: explicit specifications of definitions
- Sensory gap: making it explicit
- Semantic heterogeneity: interoperability

hierarchy relation

Source: Hudelot et al, 2008

ONTOLOGY FOR REMOTE SENSING APPLICATIONS

Content-based image retrieval

Interpretation of satellite images

How to develop an ontology?

- Top-down
- Bottom-up (Janowicz, 2012)

ABOUT V MEMBERSHIP V STANDARDS & RESOURCES V

Observations and Measurements

USING ONTOLOGIES IN THE OBIA FRAMEWORK (I)

Land Information System Austria (LISA)

• Symbolic knowledge extended with numeric knowledge elicited from literature

Source: Belgiu et al., 2014

USING ONTOLOGIES IN THE OBIA FRAMEWORK (II)

UNIVERSITY OF TWENTE

ADVANTAGES OF INTEGRATING ONTOLOGIES IN OBIA

- Reducing subjectivity
- Vagueness issue:
- Ambiguity/Semantic gap: explicit specifications of LULC definitions and their representation in the image
- Sensory gap
- Semantic heterogeneity/reusability across communities

BUILDING TYPE CLASSIFICATION USING AIRBORNE LASER SCANNING DATA

Classification of building types using ontology and Random Forest Classifier

UNIVERSITY OF TWENTE.

BUILDING TYPE CLASSIFICATION USING AIRBORNE LASER SCANNING DATA

Conceptualization

Formalization

ResidentialSmall-Buildings≡Buildings∩hasRoofType.PitchedRoof∩hasArea.Small AreaApartment Buildings≡Buildings∩hasRoof.FlatRoof∩hasHeight.Low Industrial and Factory Buildings≡Buildings∩hasRoof.FlatRoof∩hasArea.LargeArea ∩hasHeight.Low

ADVANTAGES OF BOTTOM-UP APPROACHES

- Reducing subjectivity
- Vagueness issue
- Ambiguity/Sematic gap: explicit specifications of building type definitions and their representation in the image
- Sensory gap: making it explicit
- Semantic heterogeneity/reusability across communities

DOMAIN KNOWLEDGE AND MACHINE LEARNING

Vagueness: partiality

Intra-class heterogeneity = do the annotated labels capture it?

Fairness = are the annotated labels representative of all classes?

Remote Sensing of Environment Volume 233, November 2019, 111375

Needle in a haystack: Mapping rare and infrequent crops using satellite imagery and data balancing methods

François Waldner ^a 💆 🖾, Yang Chen ^b, Roger Lawes ^c, Zvi Hochman ^a

Vagueness: Threshold

Fuzzy Random Forest

Ambiguities/Semantic gap = Do the annotated labels used to train a machine learning/deep learning model matches the semantics of the target class?

DOMAIN KNOWLEDGE AND MACHINE LEARNING

Transferability = where to transfer to?

International Journal of Applied Earth Observation and Geoinformation

Volume 114, November 2022, 103054

Assessing the generalization capability of deep learning networks for aerial image classification using landscape metrics

Caroline M. Gevaert 🖰 🖾, Mariana Belgiu

-•

DO WE (STILL) NEED ONTOLOGIES?

Data-centric AI (Andrew Ng)

- 1. Using the appropriate labels
- 2.Getting rid of the noisy data instances
- 3. Data augmentation
- 4. Analysis of error
- 5. Employing domain experts to identify the accuracy or inaccuracy in data points

