

Exercise 11A

Question 16:

In the given AP, let the first term = a, and common difference = d Then, $T_n = a + (n-1) d$ \Rightarrow T₇ = a + (7 - 1)d, and T₁₃ = a + (13 - 1)d \Rightarrow T₇ = a + 6d, T₁₃ = a + 12d Now, $T_7 = -4 \Rightarrow a + 6d = -4 - - - (1)$ $T_{13} = -16 \Rightarrow a + 12d = -16 - - - (2)$ Subtracting (1) from (2), we get \Rightarrow 6d = -12 \Rightarrow d = -2 Putting d = -2 in (1), we get a + 6 (-2) = -4 \Rightarrow a - 12 = -4

 \Rightarrow a = 8

Tthus, a = 8, and d = -2

So the required AP is 8, 6, 4, 2, 0.....

Question 17:

In the given AP let the first term = a, And common difference = d Then, $T_n = a + (n-1) d$

 \Rightarrow T₁₀ = a + (10 - 1)d, T₁₇ = a + (17 - 1)d, T₁₃ = a + (13 - 1)d

 \Rightarrow T₁₀ = a + 9d, T₁₇ = a + 16d, T₁₃ = a + 12d

Now, $T_{10} = 52 \Rightarrow a + 9d = 52 - - - (1)$ and $T_{17} = T_{13} + 20 \Rightarrow a + 16d = a + 12d + 20$

 \Rightarrow 4d = 20 \Rightarrow d = 5

Putting d = 5 in (1), we get

 $a + 9 \times 5 = 52 \Rightarrow a = 52-45 \Rightarrow a = 7$

Thus, a = 7 and d = 5

So the required AP is 7, 12, 17, 22....

Question 18:

Let the first term of given AP = a and common difference = d

Then, $T_n = a + (n-1) d$

$$\Rightarrow$$
 T₄ = a + (4 - 1)d, T₂₅ = a + (25 - 1)d, T₁₁ = a + (11 - 1)d

$$\Rightarrow$$
 T₄ = a + 3d, T₂₅ = a + 24d, T₁₁ = a + 10d

Now, $T_4 = 0 \Rightarrow a + 3d = 0 \Rightarrow a = -3d$

∴
$$T_{25} = a + 24d = (-3d + 24d) \Rightarrow 21d$$

and
$$T_{11} = a + 10d = (-3d + 10d) \Rightarrow 7d$$

$$T_{25} = 21d = 3 \times 7d = 3 \times T_{11}$$

Hence 25th term is triple its 11th term.

Question 19:

The given AP is 3, 8, 13, 18.....

First term a = 3, common difference a = 8 - 3 = 5

$$T_n = a + (n-1)d = 3 + (n-1)x5 = 5n-2$$

$$T_{20} = 3 + (20-1)5 = 3 + 19 \times 5 = 98$$

Let nth term is 55 more than the 20th term

$$Or 5n = 100 + 55 = 155$$

$$n = 155/5 = 31$$

 \therefore 31st term is 55 more than the 20th term of given AP.

Question 20: The given AP is 5, 15, 25.... a = 5, d = 15 - 5 = 10We have, $T_n = 130 + T_{31}$ $\Rightarrow a + (n-1) d = 130 + 5 + (31 - 1) \times 10$ $\Rightarrow 5 + (n-1) 10 = 130 + 5 + (31 - 1) \times 10$ $\Rightarrow 5 + 10n - 10 = 135 + 300$ $\Rightarrow 10n - 5 = 435 \text{ or } 10n = 453 + 5$ $\therefore n = 440/10 = 44$ Thus, the required term is 44^{th} .

******* END *******