Importing the libraries openCV and Matplotlib for reading and plotting images

Downloading the MNIST data

Reading greyscale image

Loading first sample from MNIST dataset. Resizing the image to 18x18.

The dimension of x is 2D matrix as (28, 28)

```
In [7]: # selecting the first sample
x = x_train[1]
print("The dimension of x is 2D matrix as ", x.shape)
# Resizing the image
x = cv2.resize(x, (18,18))
```

Plotting the image using Matplotlib

```
In [8]: plt.imshow(x, cmap='gray')
```

Out[8]: <matplotlib.image.AxesImage at 0x26effd258d0>

You can see that height and width of the matrix is 18x18, same as height and width of above image. So, each pixel is represented by number.

```
In [9]: print("The range of pixel varies between 0 to 255")
print("The pixel having black is more close to 0 and pixel which is white is m
  ore close to 255")
print(x)
```

The range of pixel varies between 0 to 255 The pixel having black is more close to 0 and pixel which is white is more cl ose to 255 Π 0] 0] 0] 96 244 250 228 0] 9 108 243 247 110 0] 2 181 252 0] 2 112 247 220 84 159 0] 68 223 201 103 252 160 0] 21 232 166 252 184 0] [0 116 248 253 172 0] 167 223 2 107 0] 168 182 16 111 219 0] 30 207 169 208 0] 0 169 248 162 130 202 234 0] [0 108 245 253 251 229 0] 0] 0] 0]]

Reading colour image

```
In [13]: # Reading color image
   cat = cv2.imread('cat.jpg')
   plt.imshow(cv2.cvtColor(cat, cv2.COLOR_BGR2RGB))
```

Out[13]: <matplotlib.image.AxesImage at 0x26effde8588>


```
In [14]: print('The shape of image is ', cat.shape)
```

The shape of image is (600, 1200, 3)

Plotting the RGB channels of the image.

```
In [15]: cat_r = cv2.imread('cat.jpg')
    cat_r[:,:,1:2] = 0
    plt.imshow(cat_r)
```

Out[15]: <matplotlib.image.AxesImage at 0x26e82d2e748>


```
In [16]: cat_g = cv2.imread('cat.jpg')
    cat_g[:,:,(0,2)] = 0
    plt.imshow(cat_g)
```

Out[16]: <matplotlib.image.AxesImage at 0x26e82d81ba8>


```
In [22]: cat_b = cv2.imread('cat.jpg')
    cat_b[:,:,0:1] = 0
    plt.imshow(cat_b)
```

Out[22]: <matplotlib.image.AxesImage at 0x26e846d9828>


```
In [25]: cat_bg = cv2.imread('cat.jpg')
    cat_bg[:,:,0] = 0
    plt.imshow(cat_bg)
```

Out[25]: <matplotlib.image.AxesImage at 0x26e847dde10>

Out[21]: <matplotlib.image.AxesImage at 0x26e846825c0>


```
In [24]: cat_rb = cv2.imread('cat.jpg')
    cat_rb[:,:,2] = 0
    plt.imshow(cat_rb)
```

Out[24]: <matplotlib.image.AxesImage at 0x26e84785c18>

