

Numerator= sum of rms amplitudes of distortion terms, Denominator = desired component But this design is not protected against Q-Point variation with β . So R_E is required for that.

3. The base to collector voltage gain is reduced by $1/(1+g_{m}R_{E})$

4. For the same nonlinear distortion the input can be increased by factor of $(1+g_{m}R_{E})$

5. The frequency response in significantly improved.

As a particular example for $\beta=100$, $R_L=4.12k\Omega$, $R_E=300\Omega$, and a $C_{Emitter-Collector}=0.5pF$ Without R_E the values are:

 $A_{mid\ freq}$ = -153, f_{H} = 1.56 MHz (~Bandwidth), GBWP (Gain Bandwidth Product) =239MHz.

With R_E the values are :

 $A_{mid freq}$ = -11.0, f_{H} = 13.9 MHz, GBWP = 153 MHz.

And R_{in} must have increased by approximately a ratio of (153/11)=14 times.

ESc201, Lecture 20: BJT Amplifier (Small signal Model)

4-Resistor Bias Network for BJT - V_{cc}/3 Rule of Thumb

$$I_{E} = \frac{V_{BB} - V_{BE} - R_{B}I_{B}}{R_{E}} \cong \frac{V_{BB} - V_{BE}}{R_{E}} \text{ for } R_{B}I_{B} << (V_{BB} - V_{BE})$$
This implies that $I_{B} << I_{2}$. So that $I_{1} = I_{2}$. So base current

doesn't disturb voltage divider action. Thus, Q-point is R_2 independent of base current as well as current gain.

Design Guidelines

1. Choose Thevenin equivalent base voltage
$$V_{CC} \le V_{BB} \le \frac{V_{CC}}{2}$$

2. Select
$$R_1$$
 to set $I_1 = 9I_B$. $R_1 = \frac{v_{BB}}{9I_B}$

3. Select
$$R_2$$
 to set $I_2 = 10I_B$. $R_2 = \frac{V_{CC}^B - V_{BB}}{10I_-}$

1. Choose Thevenin equivalent base voltage
$$\frac{V_{CC}}{4} \le V_{BB} \le \frac{V_{CC}}{2}$$
2. Select R_1 to set $I_1 = 9I_B$.

 $R_1 = \frac{V_{BB}}{9I_B}$
3. Select R_2 to set $I_2 = 10I_B$.

 $R_2 = \frac{V_{CC} - V_{BB}}{10I_B}$
4. R_E is determined by V_{BB} and desired I_C .

 $R_E = \frac{V_{BB} - V_{BE}}{I_C}$

5.
$$R_C$$
 is determined by desired V_{CE} .
($V_{cc}/3$ or $\sim V_{cc}/2$ in the absence of R_E , as the case may be) $R_C \cong \frac{V_{CC}-V_{CE}}{I_C}-R_E$

ESc201, Lecture 20: BJT Amplifier (Small signal Model)

Example: Design 4-resistor bias circuit with given parameters.

Given data: $I_C = 750 \text{ mA}$, $\beta_F = 100$, $V_{CC} = 15 \text{ V}$, $V_{CE} = 5 \text{ V}$.

Assumption: Forward-Active operation region, $V_{BE} = 0.7 \text{ V}$

Rule of thumb ($V_{cc}/3$): Divide (V_{CC} - V_{CE}) equally between R_E & R_C . or V_E =5V & V_C =10V.

$$\begin{split} R_{C} &= \frac{V_{CC} \cdot V_{C}}{I_{C}} = 6.67 k\Omega \quad R_{E} = \frac{V_{E}}{I_{E}} = 6.60 k\Omega \quad \therefore \quad V_{B} = V_{E} + V_{BE} = 5.7 V \\ I_{B} &= \frac{I_{C}}{\beta_{F}} = 7.5 \mu A \quad I_{2} = 9I_{B} = 67.5 \mu A, \quad I_{1} = 10I_{B} = 75 \mu A \\ A_{\nu} &= \frac{\nu_{O}}{\nu_{i}} = \left(\frac{\nu_{O}}{\nu_{b}}\right) \left(\frac{\nu_{b}}{\nu_{i}}\right) = -\frac{\alpha i_{e} R_{L}}{i_{e} (r_{e} + R_{E})} \left(\frac{\nu_{b}}{\nu_{i}}\right) \\ &= -\frac{\alpha i_{e} R_{L}}{i_{e} (r_{e} + R_{E})} \frac{i_{i} [R_{B} || (\beta + 1) (r_{e} + R_{E})]}{i_{i} \{R_{i} + [R_{B} || (\beta + 1) (r_{e} + R_{E})]\}} \\ &\cong -\frac{(\beta / (\beta + 1)) R_{L}}{(r_{e} + R_{E})} \frac{(\beta + 1) (r_{e} + R_{E})}{\{R_{i} + (\beta + 1) (r_{e} + R_{E})\}} \\ &= -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \cong -\frac{\beta R_{L}}{\{(\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta R_{L}}{\{R_{i} + r_{\pi} + (\beta + 1) R_{E}\}} \\ &\cong -\frac{\beta$$

ESc201, Lecture 19: Bipolar Junction Transistor (Small signal Model)

Signifies short for all A.C. to ground.

ESc201, Lecture 20: BJT Amplifier (Small signal Model)

Class Average:

 $MiniQ1 \rightarrow 4.35/10$

MiniQ2→ **5.91/10**

MiniQ3 → **1.57/10**

 $MajQ1 \rightarrow 3.23/10$

