3ª Avaliação – 2018.1

Nome: _____ Data: 10/07/2018

1. 4,0 **Problema:** Faça um programa para inserir e remover elementos inteiros de uma árvore binária de busca e em seguida calcule a altura de alguns nós da árvore. Lembre-se que a altura é dada pelo comprimento do caminho mais longo do nó sendo analisado até uma das folhas, sendo que a altura de uma árvore com um único nó raiz é zero e a altura de uma árvore vazia é -1. Considere que um elemento removido é substituído pelo seu sucessor, ou seja, pelo elemento de valor imediatamente superior ao valor do elemento removido.

Entrada:

A primeira linha contém 3 inteiros N, M e K, sendo N o número de elementos a serem inseridos na árvore, M o número de elementos a serem removidos da árvore e, K o número de elementos para checar em qual nível da árvore o elemento se encontra. A segunda linha apresenta N valores a serem inseridos na árvore. A terceira linha apresenta M valores a serem removidos da árvore. A quarta linha apresenta K valores para checar os níveis.

Saída: Você deverá imprimir os níveis dos K elementos separados por espaço. Quando um elemento não se encontrar na árvore imprimir a palavra "IMP".

Exemplos

Entrada1	Saida1
3 2 2	IMP 1
4 3 5	
1 2	
1 4	

Entrada2	Saida2
10 4 5	3 IMP 1 2 IMP
5834210796	
3 5 2 9	
1 3 6 4 9	

2. 2,0 **Problema:** Faça um programa para inserir elementos inteiros em uma árvore binária de busca. Em seguida, determine a quantidade de nós em cada nível (mesma altura) da árvore.

Entrada:

A primeira linha contém os elementos inteiros separados por espaço a serem inseridos na árvore.

Saída: Você deve imprimir a quantidade de nós em cada nível da árvore.

Exemplos:

Entrada1	Saida1
5 6 7 3 4 2	1 2 3

Entrada2	Saida2
5 9 7 8 6 3 1	1 2 2 2

Boa Prova!