HEALTHDRONES

A PLATFORM

HealthDrones

www.ines.org.br CNPq/573964/2008-4

Programação Linear

- Coletar as melhores amostras consumindo o mínimo de recursos;
- Otimização para apoiar a tomada de decisão de forma autônoma;
- Sistema que possa ser usado de forma embarcada;

Innovation? 300 BC!! ©

$$\phi = \text{Atan2}\left(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2}\right)$$

$$\psi = -\text{Atan2}\left(\frac{r_{21}}{\cos(\phi)}, \frac{r_{11}}{\cos(\phi)}\right)$$

$$\theta = \text{Atan2}\left(\frac{r_{32}}{\cos(\phi)}, \frac{r_{33}}{\cos(\phi)}\right)$$

Programação Aplicada

- Módulo de navegação via Android ®, por geometria euclidiana, para controlar mecanismos automatizados;
 - Operar dispositivos microcontrolados por meio de smartphones Android.
 - Realizar controle remoto local e em qualquer parte do globo.
 - Possibilitar a indivíduos portadores de necessidades especiais (PNE), condições de operarem mecanismos.

Projeto MAX PLANC I

http://bit.ly/VideosPlanc

PROJETO CHANNON

- Planejamento de trajetória e controle autônomo de missão para drones;
- Abordagem evolucionária (NSGA-II);
- Modelo de estudo: Parrot Ar Drone 2.0:

Plataformas: YaDrone, AutoFlight, Node-JS

QUADRADO OK!

STATUS

- Master thesis (dec)
- Reports (jan)
- o Startup (CPRH) ☺

TEAM

EPITRACK

www.epischisto.org