Definition A function F is called an **antiderivative** of f on an interval I if F(x) = f(x) for all x in I.

Screen clipping taken: 14/05/2025 12:19 am

1 Theorem If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

Screen clipping taken: 14/05/2025 12:20 am

FIGURE 1

Members of the family of antiderivatives of $f(x) = x^2$

EXAMPLE 2 Find all functions g such that

$$g'(x) = 4\sin x + \frac{2x^5 - \sqrt{x}}{x}$$

$$g'(x) = 4 \sin x + \frac{2x^5}{x} - \frac{\sqrt{x}}{x} = 4 \sin x + 2x^4 - \frac{1}{\sqrt{x}}$$

$$q'(x) = 4 \sin x + 2x^4 - x^{-1/2}$$

$$g(x) = 4(-\cos x) + 2\frac{x^5}{5} - \frac{x^{1/2}}{\frac{1}{2}} + C$$
$$= -4\cos x + \frac{2}{5}x^5 - 2\sqrt{x} + C$$

EXAMPLE 3 Find f if $f'(x) = e^x + 20(1 + x^2)^{-1}$ and f(0) = -2.

$$f'(x) = e^x + \frac{20}{1 + x^2}$$

$$f(x) = e^x + 20 \tan^{-1} x + C$$

To determine C we use the fact that f(0) = -2:

$$f(0) = e^0 + 20 \tan^{-1} 0 + C = -2$$

Thus we have C = -2 - 1 = -3, so the particular solution is

$$f(x) = e^x + 20 \tan^{-1} x - 3$$

EXAMPLE 4 Find f if $f''(x) = 12x^2 + 6x - 4$, f(0) = 4, and f(1) = 1.

SOLUTION The general antiderivative of $f''(x) = 12x^2 + 6x - 4$ is

$$f'(x) = 12\frac{x^3}{3} + 6\frac{x^2}{2} - 4x + C = 4x^3 + 3x^2 - 4x + C$$

Using the antidifferentiation rules once more, we find that

$$f(x) = 4\frac{x^4}{4} + 3\frac{x^3}{3} - 4\frac{x^2}{2} + Cx + D = x^4 + x^3 - 2x^2 + Cx + D$$

To determine C and D we use the given conditions that f(0) = 4 and f(1) = 1. Since f(0) = 0 + D = 4, we have D = 4. Since

$$f(1) = 1 + 1 - 2 + C + 4 = 1$$

we have C = -3. Therefore the required function is

$$f(x) = x^4 + x^3 - 2x^2 - 3x + 4$$

displacement =
$$\int_{t_1}^{t_2} v(t) dt = A_1 - A_2 + A_3$$

distance =
$$\int_{t_1}^{t_2} |v(t)| dt = A_1 + A_2 + A_3$$

V EXAMPLE 6 A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (measured in meters per second).

- (a) Find the displacement of the particle during the time period $1 \le t \le 4$.
- (b) Find the distance traveled during this time period.

SOLUTION

(a) By Equation 2, the displacement is

$$s(4) - s(1) = \int_{1}^{4} v(t) dt = \int_{1}^{4} (t^{2} - t - 6) dt$$
$$= \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t \right]_{1}^{4} = -\frac{9}{2}$$

(b) Note that $v(t) = t^2 - t - 6 = (t - 3)(t + 2)$ and so $v(t) \le 0$ on the interval [1, 3] and $v(t) \ge 0$ on [3, 4]. Thus, from Equation 3, the distance traveled is

$$\int_{1}^{4} |v(t)| dt = \int_{1}^{3} [-v(t)] dt + \int_{3}^{4} v(t) dt$$

$$= \int_{1}^{3} (-t^{2} + t + 6) dt + \int_{3}^{4} (t^{2} - t - 6) dt$$

$$= \left[-\frac{t^{3}}{3} + \frac{t^{2}}{2} + 6t \right]_{1}^{3} + \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t \right]_{3}^{4}$$

$$= \frac{61}{6} \approx 10.17 \text{ m}$$