TRABAJO PRÁCTICO 4

Simulación de Procesos con Simul8

Combes Diego¹, Cicchitti Luciano², Adriano Torresi³ \
¹Universidad Nacional de Cuyo - Cátedra de Técnicas y Herramientas Modernas I \
²Facultad de Ingeniería - Ciudad Universitaria Mendoza, Capital \
³Instituto de Ingeniería Industrial UNCuyo

Contents

1	Intr	roducción	2	
2	¿Qué es Simul8?			
	2.1	Funcionalidades principales	6	
	2.2	Usos frecuentes	2	
3	Elei	mentos del modelo en Simul8	2	
4	Pro	babilidades en Simul8	2	
	4.1	Tiempos de servicio	2	
	4.2	Enrutamiento probabilístico		
	4.3	Llegadas aleatorias	3	
5	Con	nceptos clave: Run In, Run Out y Finanzas	9	
	5.1	Run In	9	
	5.2	Run Time	9	
	5.3	Run Out	9	
	5.4	Análisis financiero	į	
6	Sim	ulación de escenarios	9	
	6.1	Escenario 1: Aeropuerto	9	
		6.1.1 Objetivo		
		6.1.2 Componentes del modelo	9	
		6.1.3 Variables probabilísticas	4	
		6.1.4 Métricas	4	
	6.2	Escenario 2: Bar	4	
		6.2.1 Objetivo	4	
		6.2.2 Componentes del modelo	4	
		6.2.3 Variables probabilísticas	4	
		6.2.4 Finanzas	4	
7	Con	nclusión	4	

1 Introducción

Simul8 es un software de simulación de eventos discretos utilizado para modelar, analizar y optimizar procesos industriales, logísticos y de servicios. Este informe explica en detalle qué es, cómo se utiliza, cómo intervienen las probabilidades, los conceptos clave como *Run In, Run Out* y su relación con las finanzas. Finalmente, se analizan dos casos prácticos: un aeropuerto y un bar.

2 ¿Qué es Simul8?

Simul8 permite construir modelos gráficos de procesos reales, visualizar flujos de trabajo, medir tiempos, identificar cuellos de botella y simular cambios en la operación sin afectar el entorno físico. Se basa en lógica de eventos discretos y procesamiento de entidades a través de recursos, colas y centros de trabajo.

2.1 Funcionalidades principales

- Modelado visual de procesos.
- Análisis de colas, recursos, capacidad y rendimiento.
- Evaluación de escenarios (what-if analysis).
- Optimización con algoritmos incorporados.
- Integración con Excel y bases de datos.

2.2 Usos frecuentes

- Manufactura.
- Servicios de atención al cliente.
- Logística v distribución.
- Salud y aeropuertos.

3 Elementos del modelo en Simul8

- Work Entry Point: punto de entrada de ítems (clientes, productos, etc.).
- Work Centers: estaciones de procesamiento (atención, control, servicio).
- Queues: colas intermedias que almacenan ítems en espera.
- Work Exit Point: punto final donde salen los ítems del sistema.
- Resources: recursos (personas, equipos) asignados a tareas.
- Routing In / Routing Out: lógica de asignación de ítems entre procesos.

4 Probabilidades en Simul8

Simul8 permite incorporar distribuciones de probabilidad para reflejar variabilidad:

4.1 Tiempos de servicio

• Constantes: Ej. 5 minutos.

- Probabilísticos: Ej. distribución triangular, normal, exponencial.
- Históricos: tablas de datos.

4.2 Enrutamiento probabilístico

- Decisión aleatoria basada en porcentajes.
- Ejemplo: 70% va a barra, 30% a mesas.

4.3 Llegadas aleatorias

• Distribución Poisson: llegada aleatoria de clientes/pasajeros.

5 Conceptos clave: Run In, Run Out y Finanzas

5.1 Run In

Período inicial donde no se registran estadísticas. Sirve para estabilizar el sistema (calentamiento).

5.2 Run Time

Duración total de la simulación. Puede ser fija o basada en eventos.

5.3 Run Out

Período adicional para observar efectos posteriores a un cambio o evento.

5.4 Análisis financiero

Simul8 permite asociar costos e ingresos:

- Costo por recurso utilizado.
- Costo de espera o de servicio.
- Ingresos por unidad procesada.
- Evaluación de ROI y rentabilidad.

6 Simulación de escenarios

6.1 Escenario 1: Aeropuerto

6.1.1 Objetivo

Optimizar el proceso de atención a pasajeros en check-in y seguridad.

6.1.2 Componentes del modelo

- Entrada: llegada de pasajeros (distribución Poisson).
- Centros de trabajo:
 - Check-in: 5 estaciones, recurso = agente.
 - Seguridad: 3 escáneres, recurso = personal.
- Colas: una para cada etapa.
- Recursos: agentes y personal de seguridad.

• Routing Out: 90% a embarque, 10% a control adicional.

6.1.3 Variables probabilísticas

- Tiempo de check-in: triangular (3, 5, 8 minutos).
- Tiempo de seguridad: normal (media = 7, sd = 2).
- Pasajeros con equipaje: 60%.

6.1.4 Métricas

- Tiempo total en sistema.
- Tiempo de espera.
- Utilización de recursos.
- Costos operativos por pasajero.

6.2 Escenario 2: Bar

6.2.1 Objetivo

Mejorar tiempos de atención y maximizar ingresos en horario pico.

6.2.2 Componentes del modelo

- Entrada: clientes llegan entre 20:00 y 00:00 (distribución Poisson).
- Centros de trabajo:
 - Atención en barra: 2 bartenders.
 - Preparación de bebidas: tiempos según tipo.
 - Cobro
- Routing: 70% se quedan en barra, 30% en mesas (con camareros).
- Colas: en barra y caja.
- Recursos: bartenders y camareros.

6.2.3 Variables probabilísticas

- Distribución de bebidas: 50% tragos, 30% cerveza, 20% café.
- Tiempo de permanencia: normal (media = 25, sd = 5 minutos).

6.2.4 Finanzas

- Ingreso medio por bebida.
- Costo por hora de empleados.
- Pérdida por abandono (clientes que se retiran por demora).

7 Conclusión

Simul8 permite modelar procesos con gran nivel de detalle y variabilidad. En contextos como el argentino, donde los recursos son limitados y cada inversión debe ser cuidadosamente evaluada, el uso de simulaciones permite:

- Identificar cuellos de botella.
- Evaluar decisiones sin riesgos reales.

- Optimizar operaciones y reducir costos.
- Justificar inversiones mediante análisis financiero.

8 Recomendaciones para implementación

- Comenzar con modelos simples y luego escalar.
- Usar datos reales o adaptados al contexto argentino.
- Aplicar herramientas de análisis de sensibilidad y optimización.
- Documentar todos los supuestos y decisiones.