计量经济学: 作业三

刘泓尊 2018011446 计84

liu-hz18@mails.tsinghua.edu.cn

2020.12

1. (a)

$$\beta_{IV} = \frac{\sum_{i=0}^{n} (y_i - \bar{y})(z_i - \bar{z})}{\sum_{i=0}^{n} (x_i - \bar{x})(z_i - \bar{z})}$$

设 $z_i = 1$ 的那部分样本有 k 个, 则 $z_i = 0$ 的那部分样本有 n - k 个。 所以分子:

$$\sum_{i=0}^{n} (y_i - \bar{y})(z_i - \bar{z}) = k(y_1 - \bar{y})(1 - \bar{z}) + (n - k)(y_0 - \bar{y})(-\bar{z})$$

$$= k(1 - \frac{k}{n})(y_1 - \frac{k\bar{y}_1 + (n - k)\bar{y}_0}{n}) - (n - k)\frac{k}{n}(\bar{y}_0 - \frac{k\bar{y}_1 + (n - k)\bar{y}_0}{n})$$

$$= k(1 - \frac{k}{n})^2(\bar{y}_1 - \bar{y}_0) + (n - k)(\frac{k}{n})^2(\bar{y}_1 - \bar{y}_0)$$

$$= (\bar{y}_1 - \bar{y}_0)[k(1 - \frac{k}{n})^2 + (n - k)(\frac{k}{n})^2]$$
(1)

同理得到分母:

$$\sum_{i=0}^{n} (x_i - \bar{x})(z_i - \bar{z}) = (\bar{x_1} - \bar{x_0})[k(1 - \frac{k}{n})^2 + (n - k)(\frac{k}{n})^2]$$

所以 IV 估计量可以写成:

$$\beta_{IV} = \frac{\hat{y_1} - \hat{y_0}}{\hat{x_1} - \hat{x_0}}$$

(b) 是一个合理的 IV

设第一胎是否是双胞胎即为 z. OLS 得到误差为 u,儿女数目为 x,那么在满足

$$cov(u, z) = 0$$

$$cov(x, z) \neq 0$$
(2)

的时候,双胞胎可以作为儿女数目的 IV。

从第一问可以得出来,只需要统计第一胎是双胞胎 $(z_i=1)$ 的样本,得到其儿女数目均值 $\bar{x_1}$ 和女性就业率的均值 $\bar{y_1}$,以及第一胎不是双胞胎 $(z_i=0)$ 的样本的儿女数目均值 $\bar{x_0}$ 和女性就业率的均值 $\bar{y_0}$ 。进一步构造 IV 估计量:

$$\beta_{IV} = \frac{\hat{y_1} - \hat{y_0}}{\hat{x_1} - \hat{x_0}}$$

即可。

2. (a) 回归结果为

图 1: OLS 回归结果

同方差下标准误:

hsGPA	0.0924311
ACT	0.0104437
skipped	0.0262494
PC	0.0573115
cons	0.3275021

(b) 残差结果如下:

图 2: 残差图

从数据上看,可能存在异方差性。因为在拟合值较小的区域残差的波动较小,但是在拟合值较大的区域残差波动较大。

(c) 进行 BP 检验得到的结果如下:

图 3:

从图中可以看到 $p = 0.0217 < \alpha = 0.05$. 所以拒绝原假设 H_0 .

(d) 方程的拟合结果如下:

. reg u2 colG	PA colGPA2						
Source	ss	df	MS	Numb	er of obs		141
				- F(2,	138)		44.84
Model	.874631551	2	.437315775	Prob	> F		0.0000
Residual	1.34599908	138	.009753617	R-sc	quared		0.3939
				- Adj	R-squared		0.3851
Total	2.22063063	140	.015861647	7 Root	: MSE		.09876
u2	Coef.	Std. Err.	t	P> t	[95% Con	f.	Interval]
colGPA	-2.856173	.308956	-9.24	0.000	-3.467072		-2.245273
colGPA2	.4631145	.0494299	9.37	0.000	.3653765		.5608525
_cons	4.441601	.4782571	9.29	0.000	3.495942		5.387261

图 4: WLS 权重

求出拟合值之后,通过 countifhhat <= 0 来检验是否存在负的权重。得到的结果是 0,也就是 $\hat{h_i}$ 都是正数。

(e) 用 WLS 估计的回归结果为:

图 5:

同方差下标准误:

hsGPA	0.0757196
ACT	0.0077582
skipped	0.0216791
PC	0.0439480
_cons	0.2702302

(f) skipped 和 PC 的估计值变化如下:

	skipped	PC	p-value
OLS	-0.0710336	0.1244391	0.0
WLS	-0.0438268	0.049237	0.0086

从表中可以看到变化比较大。

p 值变大, 所以显著性水平降低了。

(g) 用 WLS 估计的回归结果为:

图 6:

异方差稳健下的标准误:

hsGPA	0.0698415
ACT	0.0070603
skipped	0.0208148
PC	0.0394494
cons	0.2559692

和 (5) 中标准误的变化不大。

3. (a) 回归结果如下:

. * Estimate OLS . reg lwage educ smsa exper expersq motheduc							
Source	SS	df	MS	Numb	er of obs		2,657
				F(5,	2651)		163.25
Model	123.302306	5	24.6604611	Prob	> F		0.0000
Residual	400.454412	2,651	.15105787	' R-sq	uared	=	0.2354
				- Adj	R-squared		0.2340
Total	523.756718	2,656	.197197559	Root	MSE	=	.38866
lwage	Coef.	Std. Err.	t	P> t	[95% Con-	f.	Interval]
educ	.0813949	.0039528	20.59	0.000	.073644		.0891459
smsa	.1724038	.0171025	10.08	0.000	.1388682		. 2059395
exper	.0879387	.0073632	11.94	0.000	.0735005		.1023769
expersq	0022682	.0003602	-6.30	0.000	0029745		0015619
motheduc	.0143374	.0026633	5.38	0.000	.009115		.0195597
_cons	4.352978	.0720664	60.40	0.000	4.211666		4.49429

图 7: OLS 回归结果

(b) nearc4 对 educ 的回归结果如下:

图 8:

从图中可以看到, nearc4 的系数不为 0 且 F = 63.91 > 10, 所以满足工具变量的相关性。

- (c) 我认为不满足。居住地附近有大学可能会通过影响区域经济等来影响收入。所以可能这个变量和 u 相关。因此这个变量可能是内生的。
- (d) 用 2SLS 来估计上述模型的回归结果:

图 9:

- (e) 2SLS 的估计值中,educ, exper, expersq 的估计值比 OLS 大,其他变量比 OLS 估计值小。 2SLS 估计值的方差都大于 OLS 估计值的方差。 2SLS 和 OLS 估计的 p 值均为 0.0,所以显著性水平一致。 2SLS 的拟合优度降低了。
- (f) 进行内生性检验的结果如下:

```
. * Endogenous test
. estat endogenous

Tests of endogeneity
Ho: variables are exogenous

Durbin (score) chi2(1) = 3.5592 (p = 0.0592)
Wu-Hausman F(1,2650) = 3.55458 (p = 0.0595)
```

图 10:

在 10% 的显著性水平下,因为 $p = 0.0595 < \alpha$, 所以拒绝原假设 H_0 。