

ARE YOU READY?

Cutting Plane Algorithm

Integer Programming models

Formulating a linear programming model

The Oakfield Corporation manufactures tables and chairs. A table requires 1 hour of labour and 9 square board metres of wood, and a chair requires 1 hour of labour and 5 square board metres of wood. Currently, 6 hours of labour and 45 square board metres of wood are available. Each table contributes R8 to profit, and each chair contributes R5 to profit.

- 1. Formulate an Integer Programming Model to maximise Oakfield's profit.
- 2. Solve the formulated Integer Programming Model using the Branch & Bound Simplex Algorithm.

Formulating a linear programming model

$$x_i = The \ number \ of \ i \ manufactured. \ i = 1 = Tables, 2 = Chairs$$

$$\max z = 8x_1 + 5x_2$$

$$s.t. x_1 + x_2 \le 6$$

$$9x_1 + 5x_2 \le 45$$

$$x_1, x_2 \ge 0$$

$$x_1, x_2 \ integers$$

Integer Programming Model: Relaxed									
Max z =	8x1	+	5x 2						
s.t	X 1	+	X 2	≤	6				
	9x1	+	5x 2	≤	45				
	X 1, X 2	≥		0					

Canonical Form

•	Canonical Form: Branch & Bound Algorithm											
(z)	-	8x1	-	5x2	=		0					
	X 1	+	X2	+	S1	=	6					
	9x1	+	5x2	+	S2	=	45					

Initial

T-i	X1	X2	S1	S2	rhs	θ
Z	-8	-5	0	0	0	
1	1	1	1	0	6	6
2	9	5	0	1	45	5

T-2	X1	X2	S1	S2	rhs	θ
Z	0	- 5/9	0	8/9	40	
1	0	4/9	1	- 1/9	1	2 1/4
2	1	5/9	0	1/9	5	9

T-3*	X1	X2	S1	S2	rhs
Z	0	0	1 1/4	3/4	41 1/4
1	0	1	2 1/4	- 1/4	2 1/4
2	1	0	-1 1/4	1/4	3 3/4

Cut on x1

Same with B&B simplex algorithm, choose the one closest to 0.5

3/4

1/4

If both are the same distance, choose the lower subscript.

Found in the document called 'Cutting Plane Algorithm Exercises'

T-3*	X1	X2	S1	52	rhs
Z	0	0	1 1/4	3/4	41 1/4
1	0	1	2 1/4	- 1/4	2 1/4
2	1	0	-1 1/4	1/4	3 3/4

x 1	-1,25s1	+0,25s2	=	3 3/4

T-3*	x 1	x2	s 1	52	53	rhs
Z	0	0	1 1/4	3/4	0	41 1/4
1	0	1	2 1/4	- 1/4	0	2 1/4
2	1	0	-1 1/4	1/4	0	2 1/4 3 3/4
3	0	0	- 3/4	- 1/4	1	- 3/4
θ			1 2/3	3		

T-4*	x1	x2	s1	52	53	rhs
Z	0	0	0	1/3	1 2/3	40
1	0	1	0	-1	3	0
2	1	0	0	2/3	-1 2/3	5
3	0	0	1	1/3	-1 1/3	1

x 1	-2s1	+0,75s1	+0s2	+0,25s2	= 3 +0,),75
x1	-2s1	+0s2	-3	=	-0,75s1	-0,25s2	+0,75
-0,75s1	-0,25s2	+0,75	≤		0		

info@belgiumcampus.ac.za

+27 10 593 5368

+27 (0) 12 543-1617

PO Box 60327, Karenpark 0118, South Africa

@BelgiumCampusSA

@BelgiumCampus

/Belgium Campus

Ekurhuleni Campus 45A Long Street **Kempton Park**

Nelson Mandela Bay Campus 6 Uitenhage Road North End, Port Elizabeth,