

Graduação em Engenharia - Núcleo Comum

Disciplina: Mecânica dos Sólidos (Estática)

Professor: Tiago Toitio (tiago.toitio@uniube.br)

PROVA P1

Aluno:		RA:
Valor:	Nota:	Data:
Prova P1 – 15,0 p	ontos	
Capítulo 1 – Princí	pios Gerais (Questão 01)	
Capítulo 2 – Vetoro	es Força (Questão 02)	
Capítulo 3 – Equil	brio de uma Partícula (ponto ma	terial) (Questões 03 e 04)

Questão 01 (3,0 pontos). Duas partículas têm massa m1 e m2. As partículas estão separadas por uma distância d. Ver dados de entrada na Tabela 1.

- a) Utilizando a Lei de Newton para atração gravitacional, calcular a força de atração gravitacional entre as partículas.
- b) Calcular a força peso de cada partícula.

Data de Entrega: <u>04-10-2023</u>

Tabela 1 – Dados de entrada em função do RA.

	m1 (kg)	m2 (kg)	d (cm)		m1 (kg)	m2 (kg)	d (cm)
5149766	250	400	200	5152439	380	530	265
6108933	260	410	205	5161622	390	540	270
5147523	270	420	210	5154807	400	550	275
5165094	280	430	215	5122056	410	560	280
5147793	290	440	220	5152587	420	570	285
5156171	300	450	225	5159181	430	580	290
5154828	310	460	230	5138032	440	590	295
5156079	320	470	235	5162308	450	600	300
5156139	330	480	240	5148249	460	610	305
5157071	340	490	245	5149843	470	620	310
5159212	350	500	250	5155661	480	630	315
5157629	360	510	255	5153344	490	640	320
5157832	370	520	260				

Questão 02 (4,0 pontos) Para o sistema de três forças mostrado, onde $\theta = 30^{\circ}$, pede-se:

- a) Determinar as componentes retangulares de cada vetor.
- b) Determinar o vetor força resultante.

Tabela 2 – Dados de entrada em função do RA.

	F1 (N)	F2 (N)	F3 (N)		F1 (N)	F2 (N)	F3 (N)
5149766	800	1000	850	5152439	1060	1260	2010
6108933	820	1020	870	5161622	1080	1280	2030
5147523	840	1040	890	5154807	1100	1300	2050
5165094	860	1060	910	5122056	1120	1320	2070
5147793	880	1080	930	5152587	1140	1340	2090
5156171	900	1100	950	5159181	1160	1360	2110
5154828	920	1120	970	5138032	1180	1380	2130
5156079	940	1140	990	5162308	1200	1400	2150
5156139	960	1160	1010	5148249	1220	1420	2170
5157071	980	1180	1030	5149843	1240	1440	2190
5159212	1000	1200	1050	5155661	1260	1460	2210
5157629	1020	1220	1070	5153344	1280	1480	2230
5157832	1040	1240	1090				

Questão 03 (4,0 pontos) Seja o sistema de quatro forças mostrado abaixo. As forças F1, F2 e F3 são conhecidas (Tabela 3).

Calcular a força F4 e o ângulo θ de modo que o sistema esteja em equilíbrio.

Tabela 3 – Dados de entrada em função do RA.

	F1 (kN)	F2 (kN)	F3 (kN)		F1 (kN)	F2 (kN)	F3 (kN)
5149766	8,80	5,50	4,40	5152439	30,38	18,99	15,19
6108933	9,68	6,05	4,84	5161622	33,42	20,89	16,71
5147523	10,65	6,66	5,32	5154807	36,76	22,97	18,38
5165094	11,71	7,32	5,86	5122056	40,44	25,27	20,22
5147793	12,88	8,05	6,44	5152587	44,48	27,80	22,24
5156171	14,17	8,86	7,09	5159181	48,93	30,58	24,46
5154828	15,59	9,74	7,79	5138032	53,82	33,64	26,91
5156079	17,15	10,72	8,57	5162308	59,20	37,00	29,60
5156139	18,86	11,79	9,43	5148249	65,12	40,70	32,56
5157071	20,75	12,97	10,37	5149843	71,63	44,77	35,82
5159212	22,82	14,27	11,41	5155661	78,80	49,25	39,40
5157629	25,11	15,69	12,55	5153344	86,68	54,17	43,34
5157832	27,62	17,26	13,81				

Questão 04 (4,0 pontos). Determine as forças de tração desenvolvidas nos cabos CA e CB de modo que o sistema esteja em equilíbrio. A massa m do cilindro e o ângulo θ são dados na Tabela 4.

Tabela 4 – Dados de entrada em função do RA.

	m (kg)	θ (°)			m (kg)	θ (°)
5149766	100,0	35,5	5	5152439	165,0	38,1
6108933	105,0	35,7	5	5161622	170,0	38,3
5147523	110,0	35,9	5	5154807	175,0	38,5
5165094	115,0	36,1	5	5122056	180,0	38,7
5147793	120,0	36,3	5	5152587	185,0	38,9
5156171	125,0	36,5	5	5159181	190,0	39,1
5154828	130,0	36,7	5	5138032	195,0	39,3
5156079	135,0	36,9	5	5162308	200,0	39,5
5156139	140,0	37,1	5	5148249	205,0	39,7
5157071	145,0	37,3	5	5149843	210,0	39,9
5159212	150,0	37,5	5	5155661	215,0	40,1
5157629	155,0	37,7	5	5153344	220,0	40,3
5157832	160,0	37,9				