IC105: Probability and Statistics

2021-22-M

Lecture 17: Conditional Expectation, Variance and Covariance

Instructor: Dr. Kuldeep Kumar Kataria

Scribe:

Example 17.1. Let $\underline{X} = (X_1, X_2, X_3)$ have the joint p.d.f.

$$f_{\underline{X}}(x_1, x_2, x_3) = \begin{cases} \frac{1}{x_1 x_2}, & 0 < x_3 < x_2 < x_1 < 1, \\ 0, & otherwise. \end{cases}$$

- (a) Show that $f_{\underline{X}}(\cdot)$ is a proper p.d.f.
- (b) Find the marginal p.d.f. of (X_2, X_3) .
- (c) Find the marginal p.d.f. of X_1 .
- (d) Find the conditional p.d.f. of X_1 given $(X_2, X_3) = (x_2, x_3)$ where $0 < x_3 < x_2 < 1$.
- (e) Are X_1, X_2 and X_3 independent.
- (f) Find the conditional p.d.f. of (X_1, X_3) given $X_2 = x_2$, where $0 < x_2 < 1$.
- (g) Are X_1 and X_3 independent given $X_2 = x_2$, where $0 < x_2 < 1$.

Solution: (a) Clearly, $f_X(\underline{x}) \geq 0 \ \forall \ \underline{x} \in \mathbb{R}^3$. Also,

$$\int_{\mathbb{R}^3} f_{\underline{X}}(\underline{x}) \mathrm{d}\underline{x} = \int_0^1 \int_0^{x_1} \int_0^{x_2} \frac{1}{x_1 x_2} \mathrm{d}x_3 \mathrm{d}x_2 \mathrm{d}x_1 = 1.$$

So, $f_X(\underline{x})$ is a p.d.f.

(b) The marginal p.d.f. of (X_2, X_3) is obtained as,

$$f_{X_2,X_3}(x_2,x_3) = \int_{-\infty}^{\infty} f_{\underline{X}}(\underline{x}) dx_1 = \int_{x_2}^{1} \frac{1}{x_1 x_2} dx_1 = -\frac{\ln x_2}{x_2}, \quad 0 < x_3 < x_2 < 1.$$

So,

$$f_{X_2, X_3}(x, y) = \begin{cases} -\frac{\ln x}{x}, \ 0 < y < x < 1, \\ 0, \text{ otherwise.} \end{cases}$$

(c) For $X_1 \in \mathbb{R}$, the marginal of X_1 is

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{\underline{X}}(\underline{x}) dx_2 dx_3.$$

Now $0 < x_1 < 1$,

$$f_{X_1}(x_1) = \int_0^{x_1} \int_0^{x_2} \frac{1}{x_1 x_2} dx_3 dx_2 = 1.$$

Thus,

$$f_{X_1}(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{otherwise.} \end{cases}$$

(d) The conditional distribution of X_1 given $(X_2, X_3) = (x_2, x_3)$ is

$$f_{X_1|(X_2,X_3)}(x_1|x_2,x_3) = \frac{f_{\underline{X}}(x_1,x_2,x_3)}{f_{X_2,X_3}(x_2,x_3)} = \frac{(1/x_1x_2)}{(-\ln(x_2)/x_2)} = -\frac{1}{x_1\ln x_2}, \ x_2 < x_1 < 1.$$

So, the conditional distribution of X_1 given $(X_2, X_3) = (x_2, x_3)$ is

$$f_{X_1|(X_2,X_3)}(x_1|x_2,x_3) = \begin{cases} -\frac{1}{x_1 \ln x_2}, \ x_2 < x_1 < 1, \\ 0, \text{ otherwise.} \end{cases}$$

- (e) We have $S_{\underline{X}} = \{\underline{x} \in \mathbb{R}^3 : 0 \le x_3 \le x_2 \le x_1 \le 1\} \ne S_{X_1} \times S_{X_2} \times S_{X_3} = [0,1] \times [0,1] \times [0,1]$. So, X_1, X_2 and X_3 are not independent.
- (f) For fixed $x_2 \in \mathbb{R}$, $f_{X_1,X_3|X_2}(x_1,x_3|x_2) \propto f_{X_1,X_2,X_3}(x_1,x_2,x_3)$. For fixed $0 < x_2 < 1$,

$$f_{X_1,X_3|X_2}(x_1,x_3|x_2) = \begin{cases} \frac{c(x_2)}{x_1}, \ 0 < x_3 < x_2, \ x_2 < x_1 < 1, \\ 0, \ \text{otherwise}. \end{cases}$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_1, X_3 \mid X_2}(x_1, x_3 \mid x_2) \mathrm{d}x_1 \mathrm{d}x_3 = 1 \implies c(x_2) = -\frac{1}{x_2 \ln x_2}.$$

Thus, for fixed $0 < x_2 < 1$, $f_{X_1,X_3|X_2}(x_1,x_3|x_2) = g_{x_2}(x_1)h_{x_2}(x_3)$, $(x_1,x_3) \in \mathbb{R}^3$ where for fixed $x_2 \in (0,1)$

$$g_{x_2}(x) = \begin{cases} -\frac{1}{xx_2 \ln x_2}, \ x_2 < x < 1, \\ 0, \ \text{otherwise.} \end{cases}; \quad h_{x_2}(y) = \begin{cases} 1, \ 0 < y < x_2, \\ 0, \ \text{otherwise.} \end{cases}$$

 \implies given $X_2 = x_2$ (0 < x_2 < 1) X_1 and X_3 are independently distributed.

17.0.1. Expectation and Moments

Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a p-dimensional random vector with p.m.f. / p.d.f. $f(\cdot)$ and support S. Let $g: \mathbb{R}^p \to \mathbb{R}$ be a function.

Definition 17.2. We say that the expected value of $g(\underline{X})$ (denoted by $E(g(\underline{X}))$) is finite and equals

$$\textit{provided} \sum_{\underline{x} \in S} |g(\underline{x})| f(\underline{x}) < \infty \ \bigg(\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} |g(\underline{x})| f(\underline{x}) \mathrm{d}\underline{x} < \infty \bigg).$$

Theorem 17.3. Let $Y = g(\underline{X})$. Then Y has finite expectation iff $\sum_{y \in S_Y} |y| f_Y(y) < \infty$ $\left(\text{or } \int_{-\infty}^{\infty} |y| f_Y(y) \mathrm{d}y < \infty \right)$ and in that case

 $E(g(\underline{X})) = \sum_{y \in S_Y} y f_Y(y) \left(\int_{-\infty}^{\infty} y f_Y(y) dy \right).$

Here, S_Y denotes the support of Y and $f_Y(\cdot)$ denotes the p.m.f. / p.d.f. Y.

Some Special Expectations:

- (a) For non-negative integers $k_1, k_2, \dots, k_p, \mu'_{k_1, k_2, \dots, k_p} = E\left(X_1^{k_1} X_2^{k_2} \dots X_p^{k_p}\right)$, provided it is finite, is called a joint moment of order $k_1 + k_2 + \dots + k_p$ of \underline{X} .
- (b) For non-negative integers k_1, k_2, \ldots, k_p

$$\mu_{k_1,k_2,\ldots,k_p} = E\left((X_1 - E(X_1))^{k_1} (X_2 - E(X_2))^{k_2} \ldots (X_p - E(X_p))^{k_p} \right)$$

provided it is finite, is called a joint central moment of order $k_1 + k_2 + \cdots + k_n$ of \underline{X} .

(c) The quantity $Cov(X_1, X_2) = E((X_1 - E(X_1))(X_2 - E(X_2)))$, provided it is finite, is called covariance between X_1 and X_2 .

Remark 17.4. (a)

$$Cov(X_1, X_2) = E((X_1 - E(X_1))(X_2 - E(X_2)))$$

$$= E((X_1 - \mu_1)(X_2 - \mu_2))$$

$$= E(X_1X_2 - X_1\mu_2 - \mu_2X_1 + \mu_1\mu_2) = E(X_1X_2) - E(X_1)E(X_2).$$

- (b) $Cov(X_1, X_1) = Var(X_1)$.
- (c) $Cov(X_1, X_2) = Cov(X_2, X_1)$

Theorem 17.5. Let a_i , $i=1,2,\ldots,p$ and b_j , $j=1,2,\ldots,r$ are real constants and let X_i , $i=1,2,\ldots,p$, Y_j , $j=1,2,\ldots,r$ be random variables. Then

(a)
$$\mathbb{E}\left(\sum_{i=1}^p a_i X_i\right) = \sum_{i=1}^p a_i E(X_i)$$
, provided the involved expectations are finite.

(b)
$$\operatorname{Cov}\left(\sum_{i=1}^p a_i X_i, \sum_{j=1}^r b_j Y_j\right) = \sum_{i=1}^p \sum_{j=1}^r a_i b_j \operatorname{Cov}(X_i, Y_j)$$
, provided the involved expectations are finite.

$$(c) \operatorname{Var}\left(\sum_{i=1}^{p} a_i X_i\right) = \sum_{i=1}^{p} a_i^2 \operatorname{Cov}(X_i, X_i) + \sum_{i=1}^{p} \sum_{\substack{j=1\\ j \neq i}}^{p} a_i a_j \operatorname{Cov}(X_i, X_j)$$
$$= \sum_{i=1}^{p} a_i^2 \operatorname{Var}(X_i) + 2 \sum_{1 \leq i \leq j \leq n} a_i a_j \operatorname{Cov}(X_i, X_j).$$

Proof. (a) (We will prove for continuous case).

$$E\left(\sum_{i=1}^{p} a_{i} X_{i}\right) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} \left(\sum_{i=1}^{p} a_{i} x_{i}\right) f_{\underline{X}}(\underline{x}) d\underline{x} = \sum_{i=1}^{p} a_{i} \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} x_{i} f_{\underline{X}}(\underline{x}) d\underline{x} = \sum_{i=1}^{p} a_{i} E(X_{i}).$$

(b) Note that

$$\operatorname{Cov}\left(\sum_{i=1}^{p} a_{i}X_{i}, \sum_{j=1}^{r} b_{j}Y_{j}\right) = E\left[\left(\sum_{i=1}^{p} a_{i}X_{i} - E\left(\sum_{i=1}^{p} a_{i}X_{i}\right)\right) \left(\sum_{j=1}^{r} b_{j}Y_{j} - E\left(\sum_{j=1}^{r} b_{j}Y_{j}\right)\right)\right] \\
= E\left[\left(\sum_{i=1}^{p} a_{i}X_{i} - \sum_{i=1}^{p} a_{i}E(X_{i})\right) \left(\sum_{j=1}^{r} b_{j}Y_{j} - \sum_{j=1}^{r} b_{j}E(Y_{j})\right)\right] \\
= E\left[\left(\sum_{i=1}^{p} a_{i}(X_{i} - E(X_{i}))\right) \left(\sum_{j=1}^{r} b_{j}(Y_{j} - E(Y_{j}))\right)\right] \\
= E\left[\left(\sum_{i=1}^{p} \sum_{j=1}^{r} a_{i}b_{j}(X_{i} - E(X_{i}))(Y_{j} - E(Y_{j}))\right)\right] \\
= \sum_{i=1}^{p} \sum_{j=1}^{r} a_{i}b_{j}E\left[(X_{i} - E(X_{i}))(Y_{j} - E(Y_{j}))\right] = \sum_{i=1}^{p} \sum_{j=1}^{r} a_{i}b_{j}\operatorname{Cov}(X_{i}, Y_{j}).$$

(c) Note that

$$\operatorname{Var}\left(\sum_{i=1}^{p} a_{i} X_{i}\right) = \operatorname{Cov}\left(\sum_{i=1}^{p} a_{i} X_{i}, \sum_{j=1}^{p} a_{j} X_{j}\right) \\
= \sum_{i=1}^{p} \sum_{j=1}^{p} a_{i} a_{j} \operatorname{Cov}(X_{i}, X_{j}) \\
= \sum_{i=1}^{p} a_{i}^{2} \operatorname{Cov}(X_{i}, X_{i}) + \sum_{i=1}^{p} \sum_{\substack{j=1 \ j \neq i}}^{p} a_{i} a_{j} \operatorname{Cov}(X_{i}, X_{j}) \\
= \sum_{i=1}^{p} a_{i}^{2} \operatorname{Var}(X_{i}) + \sum_{i=1}^{p} \sum_{\substack{j=1 \ j \neq i}}^{p} a_{i} a_{j} \operatorname{Cov}(X_{i}, X_{j}) = \sum_{i=1}^{p} a_{i}^{2} \operatorname{Var}(X_{i}) + 2 \sum_{1 \leq i < j \leq p} \sum_{i=1}^{p} a_{i} a_{j} \operatorname{Cov}(X_{i}, X_{j}).$$

This completes the proof.

Theorem 17.6. Let X_1, X_2, \ldots, X_p be independent random variables, let $\psi_i : \mathbb{R} \to \mathbb{R}$, $i = 1, 2, \ldots, p$ be given functions. Then,

(a)
$$\blacksquare \left(\prod_{i=1}^p \psi_i(X_i)\right) = \prod_{i=1}^p E(\psi_i(X_i)),$$
 provided the involved expectations are finite,

(b) for any $A_1, A_2, \ldots, A_p \in \mathscr{B}_p$,

$$\Pr(X_1 \in A_1, X_2 \in A_2, \dots, X_p \in A_p) = \prod_{i=1}^{p} \Pr(X_i \in A_i)$$

(c) $\psi_1(X_1), \psi_2(X_2), \dots, \psi_n(X_n)$ are independent random variables

Proof. (We will prove for p = 2 in continuous case).

(a)

$$E(\psi_{1}(X_{1})\psi_{2}(X_{2})) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi_{1}(X_{1})\psi_{2}(X_{2})f_{X_{1},X_{2}}(x_{1},x_{2})dx_{1}dx_{2}$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi_{1}(X_{1})\psi_{2}(X_{2})f_{X_{1}}(x_{1})f_{X_{2}}(x_{2})dx_{1}dx_{2} \quad (X_{1} \perp \perp X_{2})$$

$$= \left(\int_{-\infty}^{\infty} \psi_{1}(X_{1})f_{X_{1}}(x_{1})dx_{1}\right) \left(\int_{-\infty}^{\infty} \psi_{2}(X_{2})f_{X_{2}}(x_{2})dx_{2}\right) = E(\psi_{1}(X_{1}))E(\psi_{2}(X_{2})).$$

(b) Take
$$\psi_i(X_i) = \begin{cases} 1, \text{ if } X_i \in A_i, \\ 0, \text{ otherwise,} \end{cases}$$
 in (a). Note that $\psi_1(X_1)\psi_2(X_2) = \begin{cases} 1, \text{ if } X_i \in A_i, \\ 0, \text{ otherwise.} \end{cases}$

 $E(\psi_i(X_i)) = \Pr(X_i \in A_i), i = 1, 2 \text{ and } E(\psi_1(X_1)\psi_2(X_2)) = \Pr(X_1 \in A_1, X_2 \in A_2).$ Now the result follows from (a).

(c) Let $Y_i = \psi_i(X_i)$, i = 1, 2. For fixed $y = (y_1, y_2) \in \mathbb{R}^2$, define

$$g_i(X_i) = \begin{cases} 1, \text{ if } Y_i = \psi_i(X_i) \leq y_i, \ i = 1, 2, \\ 0, \text{ otherwise.} \end{cases}$$

Then by (a) $E(g_1(X_1)g_2(X_2)) = E(g_1(X_1))E(g_2(X_2))$. Also,

$$\begin{split} g_1(X_1)g_2(X_2) &= \begin{cases} 1, \text{ if } \psi_1(X_1) \leq y_1, \ \psi_2(X_2) \leq y_2, \\ 0, \text{ otherwise,} \end{cases} \\ &= \begin{cases} 1, \text{ if } Y_1 \leq y_1, \ Y_2 \leq y_2, \\ 0, \text{ otherwise.} \end{cases} \end{split}$$

So, $E(g_1(X_1)g_2(X_2)) = \Pr(Y_1 \leq y_1, Y_2 \leq y_2)$ and $E(g_i(X_i)) = \Pr(Y_i \leq y_i)$, i = 1, 2. Consequently, $\Pr(Y_1 \leq y_1, Y_2 \leq y_2) = \Pr(Y_1 \leq y_1) \Pr(Y_2 \leq y_2) \ \forall \ (y_1, y_2) \in \mathbb{R}^2 \implies Y_1 = \psi_1(X_1)$ and $Y_2 = \psi_2(X_2)$ are independent random variables.

Corollary 17.7. Let X_1, X_2, \ldots, X_p are independent random variables. Then

(a) $Cov(X_i, X_i) = 0 \ \forall \ i \neq j$

(b) For real constants a_1, a_2, \ldots, a_n , we have

$$\operatorname{Var}\left(\sum_{i=1}^{p} a_i X_i\right) = \sum_{i=1}^{p} a^2 \operatorname{Var}(X_i).$$

Proof. (a) For
$$i \neq j$$
, $Cov(X_i, X_j) = E(X_i X_j) - E(X_i) E(X_j) = E(X_i) E(X_j) - E(X_i) E(X_j) = 0$.
(b) $Var(\sum_{i=1}^p a_i X_i) = \sum_{i=1}^p a^2 Var(X_i) + \sum_{i=1}^p \sum_{\substack{j=1 \ j \neq i}}^p a_i a_j Cov(X_i, X_j) = \sum_{i=1}^p a^2 Var(X_i)$, (using (a)).

Definition 17.8. (a) The correlation between random variables X_1 and X_2 is defined by

$$\rho(X_1, X_2) = \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\operatorname{Var}(X_1)\operatorname{Var}(X_2)}},$$

provided $0 < Var(X_i) < \infty$, i = 1, 2.

(b) Random variables X_1 and X_2 are said to be uncorrelated if $\rho(X_1, X_2) = 0$ (or equivalently $Cov(X_1, X_2) = 0$).

Remark 17.9. If X_1 and X_2 are independent random variables $\implies X_1$ and X_2 are uncorrelated, converse may not be true.

Example 17.10 (Uncorrelated random variables may not be independent). Let (X,Y) have joint p.m.f.

$$f(x,y) = \begin{cases} \frac{1}{2}, & \text{if } (x,y) = (0,0), \\ \frac{1}{4}, & \text{if } (x,y) = (1,-1), (1,1), \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$f_X(x) = \begin{cases} \frac{1}{2}, & \text{if } x = 0, 1, \\ 0, & \text{otherwise}, \end{cases} f_Y(y) = \begin{cases} \frac{1}{4}, & \text{if } y = -1, 1, \\ \frac{1}{2}, & \text{if } y = 0, \\ 0, & \text{otherwise}. \end{cases}$$

Clearly, there exists $(x,y) \in \mathbb{R}^2$ such that $f_{X,Y}(x,y) \neq f_X(x)f_Y(y) \implies X$ and Y are not independent (in fact $\Pr(X = Y^2) = 1$).

However,
$$E(XY) = E(Y) = 0$$
 and $E(X) = \frac{1}{2} \implies Cov(X,Y) = 0 \implies \rho(X,Y) = 0$.

Theorem 17.11 (Cauchy-Schwarz Inequality). For random variables X and Y

$$(E(XY))^2 < E(X^2)E(Y^2) \tag{17.1}$$

provided involved expectations are finite. The equality is attained iff Pr(Y = cX) = 1 or Pr(X = cY) = 1, for some real constant c.

Proof. Case I: $E(X^2) = 0$. In this case Pr(X = 0) = 1. Therefore Pr(XY = 0) = 1 and E(XY) = 0. We have inequality in (17.1).

Case II: $E(X^2) > 0$. Then

$$\begin{split} &E((Y-cX)^2) \geq 0 \ \forall \ c \in \mathbb{R} \\ &\Longrightarrow \ c^2 E(X^2) - 2c E(XY) + E(Y^2) \geq 0 \ \forall \ c \in \mathbb{R} \\ &\Longrightarrow \ \text{Discriminant} \leq 0 \ \Longrightarrow \ (2E(XY))^2 - 4(E(X^2)) E(Y^2) \leq 0 \ \Longrightarrow \ (E(XY))^2 \leq E(X^2) E(Y^2). \end{split}$$

Clearly, equality is attained iff $E((Y-cX)^2)=0$ for some $c\in\mathbb{R}\implies \Pr(Y=cX)=1$ for some $c\in\mathbb{R}$. By symmetry $\Pr(X=cY)=1$ for some $c\in\mathbb{R}$.

Corollary 17.12. Let X_1 and X_2 be random variables with $E(X_i) = \mu_i \in (-\infty, \infty)$ and $Var(X_i) = \sigma_i^2 \in (0, \infty)$, i = 1, 2. Then

(a) $|\rho(X_1, X_2)| \leq 1$.

(b)
$$|\rho(X_1, X_2)| = 1$$
 iff $\Pr\left(\frac{X_1 - \mu_1}{\sigma_1} = c\frac{X_2 - \mu_2}{\sigma_2}\right) = 1$ or $\Pr\left(\frac{X_2 - \mu_2}{\sigma_2} = c\frac{X_1 - \mu_1}{\sigma_1}\right) = 1$, for some real constant c .

$$\begin{aligned} \textit{Proof.} \ \ \text{Let} \ X &= \frac{X_1 - \mu_1}{\sigma_1} \ \text{and} \ Y &= \frac{X_2 - \mu_2}{\sigma_2}. \ \text{Using Cauchy-Schwarz inequality} \ (E(XY))^2 \leq E(X^2)E(Y^2) \ \text{but} \\ E(X^2) &= \frac{E(X_1 - \mu_1)^2}{\sigma_1^2} = 1 \ \ \text{and} \ \ E(Y^2) &= \frac{E(X_2 - \mu_2)^2}{\sigma_2^2} = 1. \end{aligned}$$

Thus

$$\left(\frac{E((X_1 - \mu_1)(X_2 - \mu_2))}{\sigma_1 \sigma_2}\right)^2 \le 1 \implies \rho^2(X_1, X_2) \le 1 \implies |\rho(X_1, X_2)| \le 1$$

and equality is attained iff $\Pr(X = cY) = 1$, for some real constants $c \implies \Pr\left(\frac{X_1 - \mu_1}{\sigma_1} = c\frac{X_2 - \mu_2}{\sigma_2}\right) = 1$ for some real constants c.

17.0.2. Conditional Expectation, Conditional Variance and Conditional Covariance

Definition 17.13. (a) Let \underline{X} be a p-dimensional random vector and \underline{Y} be a q-dimensional random vector. Let $\underline{y} \in \mathbb{R}^q$ be such that $f_{\underline{Y}}(\underline{y}) > 0$ and let $\psi : \mathbb{R}^p \to \mathbb{R}$ be a given function. Here $f_{\underline{Y}}(\cdot)$ is the p.d.f. / p.m.f. of random vector \underline{Y} . Then

- (i) The conditional expectation of $\psi(\underline{X})$ given $\underline{Y} = \underline{y}$ (denoted by $E(\psi(\underline{X})|\underline{Y} = \underline{y})$) is the expectation of $\psi(\underline{X})$ under the conditional distribution of \underline{X} given $\underline{Y} = \underline{y}$.
- (ii) The conditional variance of $\psi(\underline{X})$ given $\underline{Y} = \underline{y}$ (denoted by $\operatorname{Var}(\psi(\underline{X})|\underline{Y} = \underline{y})$) is the variance of $\psi(\underline{X})$ under the conditional distribution of \underline{X} given $\underline{Y} = \underline{y}$.
- (b) Let X_1 and X_2 be two random variables and \underline{Y} be a q-dimensional random vector. Then the conditional covariance between X_1 and X_2 given $\underline{Y} = \underline{y}$, (denoted by $\operatorname{Cov}(X_1, X_2 | \underline{Y} = \underline{y})$) is the covariance between X_1 and X_2 under the conditional distribution of (X_1, \overline{X}_2) given $\underline{Y} = y$.

Notation Let for $\underline{y} \in \{\underline{t} \in \mathbb{R}^q : f_{\underline{Y}}(\underline{t}) > 0\}$, $\psi_1(\underline{y}) = E(\psi(\underline{X})|\underline{Y} = \underline{y})$ and $\psi_2(\underline{y}) = \operatorname{Var}(\psi(\underline{X})|\underline{Y} = \underline{y})$ and $\psi_3(\underline{y}) = \operatorname{Cov}(X_1, X_2|\underline{Y} = \underline{y})$. We denote $\psi_1(\underline{Y}) = E(\psi(\underline{X})|\underline{Y})$ and $\psi_2(\underline{Y}) = \operatorname{Var}(\psi(\underline{X})|\underline{Y})$ and $\psi_3(\underline{Y}) = \operatorname{Cov}(X_1, X_2|\underline{Y})$.

Theorem 17.14. *Under the above notation*

- $(a) E(\psi(X)) = E(E(\psi(X)|Y)).$
- (b) $\operatorname{Var}(\psi(X)) = \operatorname{Var}(E(\psi(X)|Y)) + E(\operatorname{Var}(\psi(X)|Y))$
- (c) $Cov(X_1, X_2) = Cov(E(X_1|Y), E(X_2|Y)) + E(Cov(X_1, X_2|Y))$

Proof. (We will prove for p = q = 1 continuous case).

(a)

$$\begin{split} E(E(\psi(\underline{X})|\underline{Y})) &= \int_{-\infty}^{\infty} E(\psi(\underline{X})|\underline{Y} = \underline{y}) f_{\underline{Y}}(\underline{y}) \mathrm{d}\underline{y} \\ &= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \psi(\underline{x}) f_{X|Y}(x|y) \mathrm{d}x \right] f_{\underline{Y}}(\underline{y}) \mathrm{d}\underline{y} \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi(x) f_{X|Y}(x|y) f_{Y}(y) \mathrm{d}x \mathrm{d}y = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi(x) f_{X,Y}(x,y) \mathrm{d}x \mathrm{d}y = E(\psi(X)). \end{split}$$

- (b) Follows from (c).
- (c) From (a), we have

$$Cov(X_1, X_2) = E((X_1 - E(X_1))(X_2 - E(X_2))) = E[E[(X_1 - E(X_1))(X_2 - E(X_2))]\underline{Y}]].$$

Now,

$$E[(X_{1} - E(X_{1}))(X_{2} - E(X_{2}))|\underline{Y}]$$

$$= E[(X_{1} - E(X_{1}|\underline{Y}) + E(X_{1}|\underline{Y}) - E(X_{1}))(X_{2} - E(X_{2}|Y) + E(X_{2}|Y) - E(X_{2})|\underline{Y})]$$

$$= E[(X_{1} - E(X_{1}|Y))(X_{2} - E(X_{2}|\underline{Y}))|\underline{Y}] + (E(X_{1}|\underline{Y}) - E(X_{1}))(E(X_{2}|\underline{Y}) - E(X_{2}))$$

$$= Cov(X_{1}, X_{2}|\underline{Y}) + (E(X_{1}|\underline{Y}) - E(X_{1}))(E(X_{2}|Y) - E(X_{2})).$$

$$\implies Cov(X_{1}, X_{2}) = E(Cov(X_{1}, X_{2}|\underline{Y})) + E[(E(X_{1}|\underline{Y}) - E(X_{1}))(E(X_{2}|Y) - E(X_{2}))]$$

$$= Cov(E(X_{1}|Y), E(X_{2}|Y)) + E(Cov(X_{1}, X_{2}|Y)).$$

This completes the proof.

17.0.3. Joint Moment Generating Function

Let $\underline{X} = (X_1, X_2, \dots, X_p)$ be a p-dimensional random vector with p.d.f. /p.m.f. $f_{\underline{Y}}(\cdot)$. $A = \{\underline{t} = (t_1, t_2, \dots, t_p) \in \mathbb{R}^p : E\left(e^{\sum_{i=1}^p t_i X_i}\right) < \infty\}$.

Definition 17.15. (a) The function $M_X: A \to \mathbb{R}$ defined by

$$M_{\underline{X}}(\underline{t}) = E\left(e^{\sum_{i=1}^{p} t_i X_i}\right), \ \underline{t} = (t_1, t_2, \dots, t_p) \in A$$

is called the joint moment generating function (m.g.f.) of random vector $X = (X_1, X_2, \dots, X_p)$.

Notation: For $\underline{a}=(a_1,a_2,\ldots,a_p)\in\mathbb{R}^p, \ -\underline{a}=(-a_1,-a_2,\ldots,-a_p)$ and $(-\underline{a},\underline{a})=(-a_1,a_1)\times\cdots\times(-a_p,a_p), \ \underline{a}=(a_1,a_2,\ldots,a_p)>0 \iff a_i>0, \ i=1,2,\ldots,p.$

Remark 17.16. (i) As $M_X(\underline{0}) = 1$, we have $A \neq \phi$. Moreover $M_X(\underline{t}) > 0 \ \forall \ \underline{t} \in A$.

(ii) If X_1, X_2, \ldots, X_p are independent then

$$M_{\underline{X}}(\underline{t}) = E\left(e^{\sum_{i=1}^{p} t_i X_i}\right) = E\left(\prod_{i=1}^{p} e^{t_i X_i}\right) = \prod_{i=1}^{p} E\left(e^{t_i X_i}\right) = \prod_{i=1}^{p} M_{X_i}(t_i) \ \forall \ \underline{t} \in A.$$

Conversely, suppose that $A \subseteq (-\underline{a},\underline{a})$ for some $\underline{a} > 0$ and $M_X(\underline{t}) = \prod_{i=1}^p M_{X_i}(t_i) \ \forall \ \underline{t} \in A$, then it can be shown that X_1, X_2, \dots, X_p are independent.

(iii) Let X_1, X_2, \dots, X_p be independent random variables and let $Y = \sum_{i=1}^p X_i$, then

$$M_Y(t) = E\left(e^{t\sum_{i=1}^p X_i}\right) = E\left(\prod_{i=1}^p e^{tX_i}\right) = \prod_{i=1}^p E\left(e^{tX_i}\right) = \prod_{i=1}^p M_{X_i}(t), \ t \in A.$$

In particular, if X_1, X_2, \dots, X_p are independent and identically distributed (iid) with common m.g.f. M(t), then $M_Y(t) = (M(t))^p$, $t \in A$.

Theorem 17.17. Suppose that the joint m.g.f. $M_{\underline{X}}(\underline{t})$ is finite on a rectangle $(-\underline{a},\underline{a}) \in \mathbb{R}^p$, $\underline{a} > 0$. Then $M_{\underline{X}}(\underline{t})$ posseses partial derivatives of all order in $(-\underline{a},\underline{a})$. Furthermore, for non-negative integers k_1,k_2,\ldots,k_p

$$E\left(X_1^{k_1}X_2^{k_2}\dots X_p^{k_p}\right) = \left[\frac{\partial^{k_1+k_2+\dots+k_p}}{\partial t_1^{k_1}\partial t_2^{k_2}\dots \partial t_p^{k_p}}M_{\underline{X}}(\underline{t})\right]_{t=0}.$$

Proof. (We give an outline of the proof).

$$M_{\underline{X}}(t_1, t_2, \dots, t_p) = E\left(e^{\sum_{i=1}^p t_i X_i}\right) = \int_{\mathbb{R}^p} e^{\sum_{i=1}^p t_i x_i} f_{\underline{X}}(\underline{x}) d\underline{x},$$

$$\frac{\partial^{k_1 + \dots + k_p}}{\partial t_1^{k_1} \cdots \partial t_p^{k_p}} M_{\underline{X}}(\underline{t}) = \int_{\mathbb{R}^p} x_1^{k_1} \cdots x_p^{k_p} e^{\sum_{i=1}^p t_i X_i} f_{\underline{X}}(\underline{x}) d\underline{x},$$

$$\left[\frac{\partial^{k_1 + \dots + k_p}}{\partial t_1^{k_1} \cdots \partial t_p^{k_p}} M_{\underline{X}}(\underline{t})\right]_{t=0} = \int_{\mathbb{R}^p} x_1^{k_1} \cdots x_p^{k_p} f_{\underline{X}}(\underline{x}) d\underline{x} = E\left(X_1^{k_1} X_2^{k_2} \dots X_p^{k_p}\right).$$

This completes the proof.

Let $\psi_X(\underline{t}) = \ln M_X(\underline{t}), \underline{t} \in (-\underline{a},\underline{a}).$ Then

$$\begin{split} E(X_i) &= \left[\frac{\partial}{\partial t_i} M_{\underline{X}}(\underline{t})\right]_{\underline{t}=\underline{0}} = \left[\frac{\partial}{\partial t_i} \psi_{\underline{X}}(\underline{t})\right]_{\underline{t}=\underline{0}}, \\ E(X_i^m) &= \left[\frac{\partial^m}{\partial t_i^m} M_{\underline{X}}(\underline{t})\right]_{\underline{t}=\underline{0}}, \ m = 1, 2, \dots, \ i = 1, 2, \dots, p, \end{split}$$
$$\operatorname{Var}(X_i) &= \left[\frac{\partial^2}{\partial t_i^2} M_{\underline{X}}(\underline{t})\right]_{\underline{t}=\underline{0}} - \left(\left[\frac{\partial}{\partial t_i} M_{\underline{X}}(\underline{t})\right]_{\underline{t}=\underline{0}}\right)^2 = \left[\frac{\partial^2}{\partial t_i^2} \psi_{\underline{X}}(\underline{t})\right]_{\underline{t}=\underline{0}}, \ i = 1, 2, \dots, p, \end{split}$$

provided $M_X(\underline{t})$ is finite on $(-\underline{a},\underline{a})$, for some $\underline{a}>0$. For $i\neq j$, if $M_X(\underline{t})$ is finite on $(-\underline{a},\underline{a})$, for some $\underline{a}>0$,

$$Cov(X_i, X_j) = E(X_i X_j) - E(X_i) E(X_j) = E((X_i - E(X_i))(X_j - E(X_j)))$$

$$= \left[\frac{\partial^2}{\partial t_i \partial t_j} M_{\underline{X}}(\underline{t})\right]_{t=0} - \left[\frac{\partial}{\partial t_i} M_{\underline{X}}(\underline{t})\right]_{t=0} \left[\frac{\partial}{\partial t_j} M_{\underline{X}}(\underline{t})\right]_{t=0} = \left[\frac{\partial^2}{\partial t_i \partial t_j} \psi_{\underline{X}}(\underline{t})\right]_{t=0}.$$

Moreover,

$$M_{\underline{X}}(0,\ldots,0,t_i,0,\ldots,0) = E(e^{t_iX_i}) = M_{X_i}(t_i), \ i = 1,2,\ldots,p,$$

$$M_{X}(0,\ldots,0,t_i,0,\ldots,0,t_j,0,\ldots,0) = E(e^{t_iX_i+t_jX_j}) = M_{X_i,X_i}(t_i,t_j),$$

provided the m.g.f. is finite.

17.0.4. Equality in Distribution

Definition 17.18. Two p-dimensional random vectors \underline{X} and \underline{Y} are said to have the same distribution (written as $\underline{X} \stackrel{d}{=} \underline{Y}$) if $F_{\underline{X}}(\underline{x}) = F_{\underline{Y}}(\underline{x}) \ \forall \ \underline{x} \in \mathbb{R}^p$.

Theorem 17.19. (a) Let \underline{X} and \underline{Y} be discrete random vectors with p.m.f.s $f_{\underline{X}}(\cdot)$ and $f_{\underline{Y}}(\cdot)$, respectively. Then

$$X \stackrel{d}{=} Y \iff f_X(\underline{x}) = f_Y(\underline{x}) \ \forall \ \underline{x} \in \mathbb{R}^p.$$

(b) Let X and Y be continuous random vectors. Then

$$X \stackrel{d}{=} Y \iff f_X(\underline{x}) = f_Y(\underline{x}) \ \forall \ \underline{x} \in \mathbb{R}^p,$$

for some versions $f_X(\cdot)$ and $f_Y(\cdot)$ of p.d.f.s of \underline{X} and \underline{Y} , respectively.

(c) Let \underline{X} and \underline{Y} be p-dimensional random vectors and let $\psi: \mathbb{R}^p \to \mathbb{R}^q$ be a given function. Then

$$X \stackrel{d}{=} Y \iff \psi(X) \stackrel{d}{=} \psi(Y)$$

(d) Let \underline{X} and \underline{Y} be p-dimensional random vectors with finite m.g.f.s $M_{\underline{X}}(\underline{t})$ and $M_{\underline{Y}}(\underline{t})$ on a rectangle $(-\underline{a},\underline{a})$, for some a>0. Then

$$M_{\underline{X}}(\underline{t}) = M_{\underline{Y}}(\underline{t}) \ \forall \ (-\underline{a},\underline{a}) \implies \underline{X} \stackrel{d}{=} \underline{Y}.$$

17.0.5. Some Generalizations

Let \underline{X}_i : a p_i - dimensional random vector, $i=1,2,\ldots,m$. $F_{\underline{X}_i}$: d.f. of \underline{X}_i , $i=1,2,\ldots,m$, $f_{\underline{X}_i}$: p.m.f. / p.d.f. of \underline{X}_i , $i=1,2,\ldots,m$, $\sum_{i=1}^p p_i=p$, $\underline{X}=(\underline{X}_1,\underline{X}_2,\ldots,\underline{X}_m)$: p-dimensional random vector with d.f. $F_{\underline{X}_i}(\cdot)$ and p.m.f. / p.d.f. $f_{\underline{X}_i}(\cdot)$.

Definition 17.20. The random vectors $\underline{X_1}, \underline{X_2}, \dots, \underline{X_m}$ are said to be independent if for any subcollection $\{\underline{X_{i_1}}, \underline{X_{i_2}}, \dots, X_{i_q}\}$ of $\{\underline{X_1}, \underline{X_2}, \dots, \underline{X_m}\}$ $(2 \le q \le m)$

$$F_{\underline{X_{i_1}},\underline{X_{i_2}},\dots,\underline{X_{i_q}}}(\underline{x_1},\underline{x_2},\dots,\underline{x_q}) = \prod_{i=1}^q F_{\underline{X_{i_1}}}(\underline{x_j}) \ \forall \ \underline{x} = (\underline{x_1},\underline{x_2},\dots,\underline{x_q}) \in \mathbb{R}^{\sum_{j=1}^q p_{i_j}}.$$

Remark 17.21. $\underline{X_1}, \underline{X_2}, \dots, \underline{X_m}$ are independent \implies random variables in any subset of $\{\underline{X_1}, \underline{X_2}, \dots, \underline{X_m}\}$ are independent.

Theorem 17.22. (a) The following statements are equivalent:

- (i) X_1, X_2, \ldots, X_m are independent random vectors.
- (ii) $F_{X_1,X_2,...,X_m}(x_1,x_2,...,x_m) = \prod_{i=1}^m F_{X_i}(x_i) \ \forall \ \underline{x} = (x_1,x_2,...,x_m) \in \mathbb{R}^p$
- (iii) $f_{X_1,X_2,\dots,X_m} = \prod_{i=1}^m f_{X_i}(x_i) \ \forall \ x = (x_1,x_2,\dots,x_m) \in \mathbb{R}^p$

(iv) $f_{\underline{X_1},\underline{X_2},...,\underline{X_m}}(x_1,x_2,...,x_m) = \prod_{i=1}^m g_i(x_i) \ \forall \ \underline{x} = (\underline{x_1},\underline{x_2},...,\underline{x_m}) \in \mathbb{R}^p$ for some non-negative real valued function $g_i : \mathbb{R}^p \to \mathbb{R}$, i = 1,2,...,m.

- (v) $\Pr(X_i \in A_i, i = 2, ..., m) = \prod_{i=1}^m \Pr(X_i \in A_i) \ \forall \ A_i \in \mathcal{B}_{p_i}, i = 1, 2, ..., m.$
- (b) If X_1, X_2, \ldots, X_m are independent random vectors, then
- (i) $E\left(\prod_{i=1}^m \psi_i(X_i)\right) = \prod_{i=1}^m E\left(\psi_i(X_i)\right)$ for any functions ψ_i , $i=1,2,\ldots,m$.
- (ii) $\psi_1(X_1), \psi_2(X_2), \ldots, \psi_m(X_m)$ are independent random vectors for any functions $\psi_1, \psi_2, \ldots, \psi_m$

Definition 17.23. Let Δ be an arbitrary index set. The random vectors $\{\underline{X}_{\lambda} : \lambda \in \Delta\}$ are said to be independent if random variables in any finite subcollection of $\{\underline{X}_{\lambda} : \lambda \in \Delta\}$ are independent.

Theorem 17.24. Under the notation of Theorem 17.22, $\underline{X_1}, \underline{X_2}, \dots, \underline{X_m}$ are independent random vectors \iff for some $\underline{a} > 0$ and $\forall \underline{t} = (\underline{t_1}, \underline{t_2}, \dots, \underline{t_m}) \in (-\underline{a}, \underline{a}),$

