• We have been considering estimation of density functions given *iid* samples.

- We have been considering estimation of density functions given iid samples.
- We have studied maximum likelihood estimation and Bayesian estimation of density functions.

- We have been considering estimation of density functions given iid samples.
- We have studied maximum likelihood estimation and Bayesian estimation of density functions.
- Given estimated densities, we can implement Bayes classifier.

- We have been considering estimation of density functions given iid samples.
- We have studied maximum likelihood estimation and Bayesian estimation of density functions.
- Given estimated densities, we can implement Bayes classifier.
- We have also discussed the exponential family of densities and role of sufficient statistics in estimation.

 The last topic we consider under parametric estimation is that of mixture densities.

- The last topic we consider under parametric estimation is that of mixture densities.
- In many cases we may not be able to capture the class conditional density using any standard density model.

- The last topic we consider under parametric estimation is that of mixture densities.
- In many cases we may not be able to capture the class conditional density using any standard density model.
- In such cases, often, modelling the class conditional density as a mixture of densities is helpful.

- The last topic we consider under parametric estimation is that of mixture densities.
- In many cases we may not be able to capture the class conditional density using any standard density model.
- In such cases, often, modelling the class conditional density as a mixture of densities is helpful.
- We look at this and a special technique, called the EM algorithm, for ML estimation of mixture densities in this class.

Mixture density model

Consider a density model

$$f(x) = \sum_{k=1}^K \lambda_k f_k(x), \quad \lambda_k \ge 0, \text{ and } \sum_{k=1}^K \lambda_k = 1$$

where each f_k is a density function.

Mixture density model

Consider a density model

$$f(x) = \sum_{k=1}^K \lambda_k f_k(x), \quad \lambda_k \ge 0, \text{ and } \sum_{k=1}^K \lambda_k = 1$$

where each f_k is a density function.

• Since each f_k is a density, given the conditions on λ_k , f is a convex combination of densities and hence is itself a density.

Mixture density model

Consider a density model

$$f(x) = \sum_{k=1}^K \lambda_k f_k(x), \quad \lambda_k \ge 0, \text{ and } \sum_{k=1}^K \lambda_k = 1$$

where each f_k is a density function.

- Since each f_k is a density, given the conditions on λ_k , f is a convex combination of densities and hence is itself a density.
- Mixture densities are useful when data distribution is multimodal.

Most standard densities are unimodal.

- Most standard densities are unimodal.
- For example, consider the normal density.

This is unimodal.

Now let us consider a mixture of two normal densities

Now let us consider a mixture of two normal densities

This is a multimodal density

Now let us consider a mixture of two normal densities

- This is a multimodal density
- When data density is multi-modal, we can often approximate it with mixture of gaussians.

ML estimation of mixture models

Consider a mixture of normal densities

$$f(x \mid \theta) = \sum_{k=1}^{K} \lambda_k f_k(x)$$

where each f_k is $\mathcal{N}(\mu_k, \Sigma_k)$.

ML estimation of mixture models

Consider a mixture of normal densities

$$f(x \mid \theta) = \sum_{k=1}^{K} \lambda_k f_k(x)$$

where each f_k is $\mathcal{N}(\mu_k, \Sigma_k)$.

• The parameter vector, θ , consists of all λ_k , which are called mixing coefficients, and all the parameters of the constituent densities, namely,

$$\mu_k, \; \Sigma_k, \; k=1,\cdots,K$$
.

• Let $\mathcal{D} = \{x_1, \cdots, x_n\}$ be a sample of n iid data from this density.

- Let $\mathcal{D} = \{x_1, \dots, x_n\}$ be a sample of n iid data from this density.
- Then the likelihood function is

$$L(\theta \mid \mathcal{D}) = \prod_{i=1}^{n} \left[\sum_{k=1}^{K} \lambda_k f_k(x_i) \right]$$

The log likelihood is given by

$$l(\theta \mid \mathcal{D}) = \sum_{i=1}^{n} \ln \left[\sum_{k=1}^{K} \lambda_k f_k(x_i) \right]$$

The log likelihood is given by

$$l(\theta \mid \mathcal{D}) = \sum_{i=1}^{n} \ln \left[\sum_{k=1}^{K} \lambda_k f_k(x_i) \right]$$

• Since there is a sum inside the log function, the densities f_k being from exponential family, does not simplify log likelihood.

The log likelihood is given by

$$l(\theta \mid \mathcal{D}) = \sum_{i=1}^{n} \ln \left[\sum_{k=1}^{K} \lambda_k f_k(x_i) \right]$$

- Since there is a sum inside the log function, the densities f_k being from exponential family, does not simplify log likelihood.
- Maximizing log likelihood could become a difficult optimization problem.

Mixture of two one dimensional densities

• Consider one dimensional case with K=2. Let, for j=1,2,

$$\phi(x \mid \theta_j) = \frac{1}{\sigma_j \sqrt{2\pi}} \exp\left(-\frac{(x - \mu_j)^2}{2\sigma_j^2}\right), \quad \theta_j = (\mu_j, \, \sigma_j)$$

Mixture of two one dimensional densities

• Consider one dimensional case with K=2. Let, for j=1,2,

$$\phi(x \mid \theta_j) = \frac{1}{\sigma_j \sqrt{2\pi}} \exp\left(-\frac{(x - \mu_j)^2}{2\sigma_j^2}\right), \quad \theta_j = (\mu_j, \, \sigma_j)$$

The density model is

$$f(x \mid \theta) = \lambda_1 \phi(x \mid \theta_1) + \lambda_2 \phi(x \mid \theta_2)$$

where
$$\theta = (\theta_1, \ \theta_2, \ \lambda_1, \ \lambda_2)$$

$$l(\mathcal{D} \mid \theta) = \sum_{i=1}^{n} \ln(\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2))$$

$$l(\mathcal{D} \mid \theta) = \sum_{i=1}^{n} \ln(\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2))$$

• We need to maximize this with respect to θ .

$$l(\mathcal{D} \mid \theta) = \sum_{i=1}^{n} \ln(\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2))$$

- We need to maximize this with respect to θ .
- Let us calculate the partial derivatives of l.

$$l(\mathcal{D} \mid \theta) = \sum_{i=1}^{n} \ln(\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2))$$

- We need to maximize this with respect to θ .
- Let us calculate the partial derivatives of l.
- First note that

$$\frac{\partial \phi(x \mid \theta_j)}{\partial \mu_s} = \frac{\partial \phi(x \mid \theta_j)}{\partial \sigma_s} = 0, \text{ if } j \neq s.$$

By differentiation we get, for j = 1, 2,

$$\frac{\partial \phi(x \mid \theta_j)}{\partial \mu_j} = \phi(x \mid \theta_j) \frac{(x - \mu_j)}{\sigma_j^2}$$

$$\frac{\partial \phi(x \mid \theta_j)}{\partial \sigma_j} = \phi(x \mid \theta_j) \left[\frac{(x - \mu_j)^2}{\sigma_j^3} - \frac{1}{\sigma_j} \right]$$

By differentiation we get, for j = 1, 2,

$$\frac{\partial \phi(x \mid \theta_j)}{\partial \mu_j} = \phi(x \mid \theta_j) \frac{(x - \mu_j)}{\sigma_j^2}$$

$$\frac{\partial \phi(x \mid \theta_j)}{\partial \sigma_j} = \phi(x \mid \theta_j) \left[\frac{(x - \mu_j)^2}{\sigma_j^3} - \frac{1}{\sigma_j} \right]$$

Now we have

$$\frac{\partial l(\mathcal{D} \mid \theta)}{\partial \mu_{j}} = \sum_{i=1}^{n} \frac{\lambda_{j} \phi(x_{i} \mid \theta_{j}) \frac{(x_{i} - \mu_{j})}{\sigma_{j}^{2}}}{\lambda_{1} \phi(x_{i} \mid \theta_{1}) + \lambda_{2} \phi(x_{i} \mid \theta_{2})}$$

• Define γ_{ij} , $i=1, \cdots, n$, j=1,2,

$$\gamma_{ij} = \frac{\lambda_j \phi(x_i \mid \theta_j)}{\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2)}$$

• Define γ_{ij} , $i = 1, \dots, n$, j = 1, 2,

$$\gamma_{ij} = \frac{\lambda_j \phi(x_i \mid \theta_j)}{\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2)}$$

Then we get

$$\frac{\partial l(\mathcal{D} \mid \theta)}{\partial \mu_j} = \sum_{i=1}^n \gamma_{ij} \frac{(x_i - \mu_j)}{\sigma_j^2}$$

• Define γ_{ij} , $i=1,\cdots, n$, j=1,2,

$$\gamma_{ij} = \frac{\lambda_j \phi(x_i \mid \theta_j)}{\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2)}$$

Then we get

$$\frac{\partial l(\mathcal{D} \mid \theta)}{\partial \mu_{j}} = \sum_{i=1}^{n} \gamma_{ij} \frac{(x_{i} - \mu_{j})}{\sigma_{j}^{2}}$$

$$\frac{\partial l(\mathcal{D} \mid \theta)}{\partial \sigma_{j}} = \sum_{i=1}^{n} \gamma_{ij} \left[\frac{(x_{i} - \mu_{j})^{2}}{\sigma_{j}^{3}} - \frac{1}{\sigma_{j}} \right]$$

• Hence the ML estimates satisfy, for j = 1, 2,

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

• Hence the ML estimates satisfy, for j = 1, 2,

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

 First, we like to note that these are not really estimates. The RHS in the above equations depends on the unknown parameter values. • Hence the ML estimates satisfy, for j = 1, 2,

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

- First, we like to note that these are not really estimates. The RHS in the above equations depends on the unknown parameter values.
- However, there is an interesting structure here.

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

• These are similar to the 'sample mean estimates'.

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

- These are similar to the 'sample mean estimates'.
- It is a sample mean with 'weight' γ_{ij} for x_i . γ_{ij} are sometimes called responsibility coefficients.

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

- These are similar to the 'sample mean estimates'.
- It is a sample mean with 'weight' γ_{ij} for x_i . γ_{ij} are sometimes called responsibility coefficients.
- If there is only one component in the mixture, these become the usual ML estimates.

• Let us also find maximizers of log likelihood with respect to λ_j .

- Let us also find maximizers of log likelihood with respect to λ_i .
- Since we have a constraint $\lambda_1 + \lambda_2 = 1$, this is a constrained optimization.

- Let us also find maximizers of log likelihood with respect to λ_i.
- Since we have a constraint $\lambda_1 + \lambda_2 = 1$, this is a constrained optimization.
- So, we need to equate to zero, the partial derivatives of

$$l(\mathcal{D} \mid \theta) + \eta(\lambda_1 + \lambda_2 - 1)$$

where η is the Lagrange multiplier.

- Let us also find maximizers of log likelihood with respect to λ_i .
- Since we have a constraint $\lambda_1 + \lambda_2 = 1$, this is a constrained optimization.
- So, we need to equate to zero, the partial derivatives of

$$l(\mathcal{D} \mid \theta) + \eta(\lambda_1 + \lambda_2 - 1)$$

where η is the Lagrange multiplier.

• By equating to zero the partial derivative of the above with respect to λ_1 , we get

$$\sum_{i=1}^n \frac{\phi(x_i \mid \theta_1)}{\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2)} + \eta = 0$$
 or
$$\sum_{i=1}^n \frac{\gamma_{i1}}{\lambda_1} + \eta = 0$$

$$\sum_{i=1}^{n} \frac{\phi(x_i \mid \theta_1)}{\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2)} + \eta = 0$$
 or
$$\sum_{i=1}^{n} \frac{\gamma_{i1}}{\lambda_1} + \eta = 0$$

• we get a similar equation for derivetive w.r.t. λ_2 .

$$\sum_{i=1}^{n} \frac{\phi(x_i \mid \theta_1)}{\lambda_1 \phi(x_i \mid \theta_1) + \lambda_2 \phi(x_i \mid \theta_2)} + \eta = 0$$
 or
$$\sum_{i=1}^{n} \frac{\gamma_{i1}}{\lambda_1} + \eta = 0$$

- we get a similar equation for derivetive w.r.t. λ_2 .
- Now, using $\lambda_1 + \lambda_2 = 1$, we get

$$\eta = \eta(\lambda_1 + \lambda_2) = -\sum_{i=1}^{n} (\gamma_{i1} + \gamma_{i2}) = -n$$

• Hence, the ML estimates for λ_j satisfy

$$\hat{\lambda}_j = \frac{1}{n} \sum_{i=1}^n \gamma_{ij}$$

• Hence, the ML estimates for λ_j satisfy

$$\hat{\lambda}_j = \frac{1}{n} \sum_{i=1}^n \gamma_{ij}$$

Putting all these together we get

• The ML estimates for $\mu_j, \sigma_j, \lambda_j$, j=1,2, satisfy

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}, \quad \hat{\lambda}_{j} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{ij}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

• The ML estimates for $\mu_j, \sigma_j, \lambda_j$, j=1,2, satisfy

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}, \quad \hat{\lambda}_{j} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{ij}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

The structure of equations is interesting.

• The ML estimates for $\mu_j, \sigma_j, \lambda_j$, j=1,2, satisfy

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}, \quad \hat{\lambda}_{j} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{ij}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

- The structure of equations is interesting.
- These are not expressions for estimates.

• The ML estimates for $\mu_j, \sigma_j, \lambda_j, j = 1, 2$, satisfy

$$\hat{\mu}_{j} = \frac{\sum_{i=1}^{n} \gamma_{ij} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}}, \quad \hat{\lambda}_{j} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{ij}$$

$$\hat{\sigma}_{j}^{2} = \frac{\sum_{i=1}^{n} \gamma_{ij} (x_{i} - \mu_{j})^{2}}{\sum_{i=1}^{n} \gamma_{ij}}$$

- The structure of equations is interesting.
- These are not expressions for estimates.
- However, we can solve for estimates using, e.g.,
 Gauss-Siedel iteration.

$$\mu_{j}^{(k+1)} = \frac{\sum_{i=1}^{n} \gamma_{ij}^{(k)} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}^{(k)}}, \quad \lambda_{j}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{ij}^{(k)}$$

$$(\sigma_{j}^{2})^{(k+1)} = \frac{\sum_{i=1}^{n} \gamma_{ij}^{(k)} (x_{i} - \mu_{j}^{(k)})^{2}}{\sum_{i=1}^{n} \gamma_{ij}^{(k)}}$$

$$\gamma_{ij}^{(k+1)} = \frac{\lambda_{j}^{(k+1)} \phi(x_{i} \mid \theta_{j}^{(k+1)})}{\sum_{j=1}^{2} \lambda_{j}^{(k+1)} \phi(x_{i} \mid \theta_{j}^{(k+1)})}$$

It is easy to generalize this to mixture of K Gaussians.

 What we have done so far is a special case of general procedure.

- What we have done so far is a special case of general procedure.
- In many cases the ML estimation of mixture of densities gives rise to such an iterative optimization procedure.

- What we have done so far is a special case of general procedure.
- In many cases the ML estimation of mixture of densities gives rise to such an iterative optimization procedure.
- We now look at this general procedure.

Our density model was

$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_j \, \phi(x \mid \theta_j)$$

(while we stick to 2-component mixture, it is easily generalized to K components).

Our density model was

$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_j \, \phi(x \mid \theta_j)$$

(while we stick to 2-component mixture, it is easily generalized to K components).

• In our sample each x_i is drawn *iid* according to this distribution.

density model:
$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_j \phi(x \mid \theta_j)$$

density model:
$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_{j} \phi(x \mid \theta_{j})$$

• To generate x_i , we first choose a component density, with probabilities λ_j , and then generate it from the corresponding $\phi(x \mid \theta_j)$.

density model:
$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_j \phi(x \mid \theta_j)$$

- To generate x_i , we first choose a component density, with probabilities λ_j , and then generate it from the corresponding $\phi(x \mid \theta_j)$.
- If we knew which x_i are generated from which component density, then the estimation of all parameters is very easy.

density model:
$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_{j} \phi(x \mid \theta_{j})$$

- To generate x_i , we first choose a component density, with probabilities λ_j , and then generate it from the corresponding $\phi(x \mid \theta_j)$.
- If we knew which x_i are generated from which component density, then the estimation of all parameters is very easy.
- · Let us first formalize this notion.

• Let random variables Z_{ij} , $i=1,\cdots,n,j=1,2,$ denote the information of which component density each sample comes from.

- Let random variables Z_{ij} , $i=1,\cdots,n,j=1,2,$ denote the information of which component density each sample comes from.
- For each i, $Z_{ij}=1$ if x_i came from j^{th} component density.

- Let random variables Z_{ij} , $i=1, \dots, n, j=1,2$, denote the information of which component density each sample comes from.
- For each i, $Z_{ij}=1$ if x_i came from j^{th} component density.
- We would have $\sum_{i} Z_{ij} = 1, \ \forall i.$

- Let random variables Z_{ij} , $i=1, \dots, n, j=1,2$, denote the information of which component density each sample comes from.
- For each i, $Z_{ij}=1$ if x_i came from j^{th} component density.
- We would have $\sum_{j} Z_{ij} = 1, \ \forall i.$
- Also, we have

$$P[Z_{ij}=1]=\lambda_j, \ \forall i; \ \text{and} \ f(x_i \mid Z_{ij}=1)=\phi(x_i \mid \theta_j)$$

- Let random variables Z_{ij} , $i=1, \dots, n, j=1,2$, denote the information of which component density each sample comes from.
- For each i, $Z_{ij}=1$ if x_i came from j^{th} component density.
- We would have $\sum_{i} Z_{ij} = 1, \ \forall i.$
- Also, we have

$$P[Z_{ij}=1]=\lambda_j, \ \forall i; \ \ \text{and} \ f(x_i \mid Z_{ij}=1)=\phi(x_i \mid \theta_j)$$

We can think of Z_{ij} as the 'missing information'.

• Let Z_i denote the vector with components Z_{ij} .

- Let Z_i denote the vector with components Z_{ij} .
- Denote $\mathcal{D}^c = \{(x_1, Z_1), \cdots, (x_n, Z_n)\}.$

- Let Z_i denote the vector with components Z_{ij} .
- Denote $\mathcal{D}^c = \{(x_1, Z_1), \cdots, (x_n, Z_n)\}.$
- Our data consists of only x_i . But suppose the sample data was \mathcal{D}^c .

- Let Z_i denote the vector with components Z_{ij} .
- Denote $\mathcal{D}^c = \{(x_1, Z_1), \cdots, (x_n, Z_n)\}.$
- Our data consists of only x_i . But suppose the sample data was \mathcal{D}^c .
- Then estimation is easy. For example,

$$\hat{\mu}_1 = \frac{\sum_{i=1}^n Z_{i1} x_i}{\sum_{i=1}^n Z_{i1}}, \quad \hat{\mu}_2 = \frac{\sum_{i=1}^n Z_{i2} x_i}{\sum_{i=1}^n Z_{i2}}$$

- Let Z_i denote the vector with components Z_{ij} .
- Denote $\mathcal{D}^c = \{(x_1, Z_1), \cdots, (x_n, Z_n)\}.$
- Our data consists of only x_i . But suppose the sample data was \mathcal{D}^c .
- Then estimation is easy. For example,

$$\hat{\mu}_1 = \frac{\sum_{i=1}^n Z_{i1} x_i}{\sum_{i=1}^n Z_{i1}}, \quad \hat{\mu}_2 = \frac{\sum_{i=1}^n Z_{i2} x_i}{\sum_{i=1}^n Z_{i2}}$$

These are very similar to earlier equations.

The general situation is as follows.

- The general situation is as follows.
- The data that we have is 'incomplete'

- The general situation is as follows.
- The data that we have is 'incomplete'
- This is because of some 'hidden' or 'missing' data.

- The general situation is as follows.
- The data that we have is 'incomplete'
- This is because of some 'hidden' or 'missing' data.
- If we are given the complete data then ML estimation is easy.

- The general situation is as follows.
- The data that we have is 'incomplete'
- This is because of some 'hidden' or 'missing' data.
- If we are given the complete data then ML estimation is easy.
- In our example, x_i is the incomplete data.

- The general situation is as follows.
- The data that we have is 'incomplete'
- This is because of some 'hidden' or 'missing' data.
- If we are given the complete data then ML estimation is easy.
- In our example, x_i is the incomplete data.
- (x_i, Z_i) constitutes the complete data and Z_i constitute the missing or hidden data/variables.

 The EM algorithm is an efficient iterative procedure for ML estimation in such situations.

- The EM algorithm is an efficient iterative procedure for ML estimation in such situations.
- The algorithm basically has two steps: 'Expectation' and 'Maximization'

- The EM algorithm is an efficient iterative procedure for ML estimation in such situations.
- The algorithm basically has two steps: 'Expectation' and 'Maximization'
- Hence the name of the algorithm.

- The EM algorithm is an efficient iterative procedure for ML estimation in such situations.
- The algorithm basically has two steps: 'Expectation' and 'Maximization'
- Hence the name of the algorithm.
- As per our notation, x_i , $i=1,\cdots,n$ is the incomplete data and (x_i,Z_i) , $i=1,\cdots,n$ is the complete data.

• Let $f(x, Z \mid \theta)$ be the density for the complete data.

• Let $f(x, Z \mid \theta)$ be the density for the complete data. That is, the complete data is n iid samples from this density model.

- Let $f(x, Z \mid \theta)$ be the density for the complete data. That is, the complete data is n iid samples from this density model.
- Thus, the complete data log likelihood is

$$l(\theta \mid \mathcal{D}^c) = \ln \left(\prod_{i=1}^n f(x_i, Z_i \mid \theta) \right)$$

- Let $f(x, Z \mid \theta)$ be the density for the complete data. That is, the complete data is n iid samples from this density model.
- Thus, the complete data log likelihood is

$$l(\theta \mid \mathcal{D}^c) = \ln \left(\prod_{i=1}^n f(x_i, Z_i \mid \theta) \right)$$

• As earlier, we would also denote \mathcal{D}^c by (\mathbf{x}, \mathbf{Z}) .

- Let $f(x, Z \mid \theta)$ be the density for the complete data. That is, the complete data is n iid samples from this density model.
- Thus, the complete data log likelihood is

$$l(\theta \mid \mathcal{D}^c) = \ln \left(\prod_{i=1}^n f(x_i, Z_i \mid \theta) \right)$$

- As earlier, we would also denote \mathcal{D}^c by (\mathbf{x}, \mathbf{Z}) .
- Hence the complete data loglikelihood is also denoted by $\ln(f(\mathbf{x},\mathbf{Z} \mid \theta))$.

E-step: Compute $Q(\theta, \theta^{(k)})$ which is expectation of the complete data loglikelihood w.r.t. the conditional distribution of hidden variables conditioned on incomplete data and current value of θ as $\theta^{(k)}$.

E-step: Compute $Q(\theta, \theta^{(k)})$ which is expectation of the complete data loglikelihood w.r.t. the conditional distribution of hidden variables conditioned on incomplete data and current value of θ as $\theta^{(k)}$.

$$Q(\theta, \theta^{(k)}) = E_{\mathbf{Z}|\mathbf{x},\theta^{(k)}} \ln(f(\mathbf{x}, \mathbf{Z} \mid \theta))$$

E-step: Compute $Q(\theta, \theta^{(k)})$ which is expectation of the complete data loglikelihood w.r.t. the conditional distribution of hidden variables conditioned on incomplete data and current value of θ as $\theta^{(k)}$.

$$Q(\theta, \theta^{(k)}) = E_{\mathbf{Z}|\mathbf{x},\theta^{(k)}} \ln(f(\mathbf{x}, \mathbf{Z} \mid \theta))$$

M-step : Compute next value of θ as $\theta^{(k+1)}$ by maximizing $Q(\theta, \theta^{(k)})$ over θ .

E-step: Compute $Q(\theta, \theta^{(k)})$ which is expectation of the complete data loglikelihood w.r.t. the conditional distribution of hidden variables conditioned on incomplete data and current value of θ as $\theta^{(k)}$.

$$Q(\theta, \theta^{(k)}) = E_{\mathbf{Z}|\mathbf{x},\theta^{(k)}} \ln(f(\mathbf{x}, \mathbf{Z} \mid \theta))$$

M-step : Compute next value of θ as $\theta^{(k+1)}$ by maximizing $Q(\theta, \theta^{(k)})$ over θ .

$$\frac{\theta^{(k+1)}}{\theta} = \underset{\theta}{\operatorname{arg\,max}} \ Q(\theta, \ \theta^{(k)})$$

 Let us consider the example of estimating a two component Gaussian density.

$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_j \phi(x \mid \theta_j)$$

 Let us consider the example of estimating a two component Gaussian density.

$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_j \, \phi(x \mid \theta_j)$$

• The x_i , $i = 1, \dots, n$, is the given data which is the incomplete data here.

 Let us consider the example of estimating a two component Gaussian density.

$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_j \, \phi(x \mid \theta_j)$$

- The x_i , $i = 1, \dots, n$, is the given data which is the incomplete data here.
- The Z_{ij} , $i=1,\cdots,n$, j=1,2, that we defined earlier are the hidden variables or the missing data.

 Let us consider the example of estimating a two component Gaussian density.

$$f(x \mid \theta) = \sum_{j=1}^{2} \lambda_j \, \phi(x \mid \theta_j)$$

- The x_i , $i=1,\cdots,n$, is the given data which is the incomplete data here.
- The Z_{ij} , $i=1,\cdots,n$, j=1,2, that we defined earlier are the hidden variables or the missing data.
- Recall that Z_{ij} is the indicator whether or not x_i came from the j^{th} component of the mixture.

• By definition of Z_{ij} , we have

$$P[Z_{ij} = 1] = \lambda_j, \ \forall i; \ \ \text{and} \ f(x_i | Z_{ij} = 1) = \phi(x_i | \theta_j)$$

• By definition of Z_{ij} , we have

$$P[Z_{ij} = 1] = \lambda_j, \ \forall i; \ \text{and} \ f(x_i | Z_{ij} = 1) = \phi(x_i | \theta_j)$$

• Recall $Z_i = (Z_{i1}, Z_{i2})$.

• By definition of Z_{ij} , we have

$$P[Z_{ij} = 1] = \lambda_j, \ \forall i; \ \ \text{and} \ f(x_i | Z_{ij} = 1) = \phi(x_i | \theta_j)$$

• Recall $Z_i = (Z_{i1}, Z_{i2})$. Hence

$$f(Z_i|\theta) = \prod_{j=1}^2 (\lambda_j)^{Z_{ij}}, \quad \text{and} \quad f(x_i|Z_i,\theta) = \prod_{j=1}^2 (\phi(x_i|\theta_j))^{Z_{ij}}$$

Hence density of complete data is

$$f(x_i, Z_i | \theta) = \prod_{j=1}^{2} (\lambda_j \phi(x_i | \theta_j))^{Z_{ij}}$$

Hence density of complete data is

$$f(x_i, Z_i | \theta) = \prod_{j=1}^{2} (\lambda_j \phi(x_i | \theta_j))^{Z_{ij}}$$

Thus complete data likelihood is

$$f(\mathbf{x}, \mathbf{Z} \mid \theta) = \prod_{i=1}^{n} \left[\prod_{j=1}^{2} (\lambda_j \phi(x_i \mid \theta_j))^{Z_{ij}} \right]$$

The complete data log likelihood is

$$\ln(f(\mathbf{x}, \mathbf{Z} \mid \theta)) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} Z_{ij} \ln(\lambda_j \phi(x_i \mid \theta_j)) \right]$$

The complete data log likelihood is

$$\ln(f(\mathbf{x}, \mathbf{Z} \mid \theta)) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} Z_{ij} \ln(\lambda_j \phi(x_i \mid \theta_j)) \right]$$

 Note that we now have 'sum of log' rather than 'log of sum' The complete data log likelihood is

$$\ln(f(\mathbf{x}, \mathbf{Z} \mid \theta)) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} Z_{ij} \ln(\lambda_j \phi(x_i \mid \theta_j)) \right]$$

- Note that we now have 'sum of log' rather than 'log of sum'
- It is easy to see how knowledge of the 'hidden' variables makes the ML estimation easy.

Example: E-step

• For the E-step, we have to take expectation of \mathbf{Z} w.r.t. distribution conditioned on \mathbf{x} at a given value of θ .

Example: E-step

- For the E-step, we have to take expectation of \mathbf{Z} w.r.t. distribution conditioned on \mathbf{x} at a given value of θ .
- We have, for any θ' ,

$$E[Z_{ij} | \mathbf{x}, \theta'] = P[Z_{ij} = 1 | \mathbf{x}, \theta'] = P[Z_{ij} = 1 | x_i, \theta']$$

Example: E-step

- For the E-step, we have to take expectation of \mathbf{Z} w.r.t. distribution conditioned on \mathbf{x} at a given value of θ .
- We have, for any θ' ,

$$E[Z_{ij} \mid \mathbf{x}, \theta'] = P[Z_{ij} = 1 \mid \mathbf{x}, \theta'] = P[Z_{ij} = 1 \mid x_i, \theta']$$

$$= \frac{f(x_i \mid Z_{ij} = 1, \theta') P[Z_{ij} = 1]}{\sum_{j=1}^{2} f(x_i \mid Z_{ij} = 1, \theta') P[Z_{ij} = 1]}$$

Example: E-step

- For the E-step, we have to take expectation of \mathbf{Z} w.r.t. distribution conditioned on \mathbf{x} at a given value of θ .
- We have, for any θ' ,

$$E[Z_{ij} \mid \mathbf{x}, \theta'] = P[Z_{ij} = 1 \mid \mathbf{x}, \theta'] = P[Z_{ij} = 1 \mid x_i, \theta']$$

$$= \frac{f(x_i \mid Z_{ij} = 1, \theta') P[Z_{ij} = 1]}{\sum_{j=1}^{2} f(x_i \mid Z_{ij} = 1, \theta') P[Z_{ij} = 1]}$$

$$= \frac{\lambda_j \phi(x_i \mid \theta'_j)}{\sum_{j=1}^{2} \lambda_j \phi(x_i \mid \theta'_j)}$$

$$\gamma_{ij}(\theta') = \frac{\lambda_j \, \phi(x_i \mid \theta'_j)}{\sum_{j=1}^2 \, \lambda_j \, \phi(x_i \mid \theta'_j)}$$

$$\gamma_{ij}(\theta') = \frac{\lambda_j \, \phi(x_i \mid \theta'_j)}{\sum_{j=1}^2 \, \lambda_j \, \phi(x_i \mid \theta'_j)}$$

• This is the same γ_{ij} that we defined earlier.

$$\gamma_{ij}(\theta') = \frac{\lambda_j \, \phi(x_i \mid \theta'_j)}{\sum_{j=1}^2 \, \lambda_j \, \phi(x_i \mid \theta'_j)}$$

- This is the same γ_{ij} that we defined earlier.
- This notation emphasizes the fact that the value of γ_{ij} depends on the parameter vector.

$$\gamma_{ij}(\theta') = \frac{\lambda_j \, \phi(x_i \mid \theta'_j)}{\sum_{j=1}^2 \, \lambda_j \, \phi(x_i \mid \theta'_j)}$$

- This is the same γ_{ij} that we defined earlier.
- This notation emphasizes the fact that the value of γ_{ij} depends on the parameter vector.
- Now we need to do this expectation on the complete data log likelihood which is

$$\ln(f(\mathbf{x}, \mathbf{Z} \mid \theta)) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} Z_{ij} \ln(\lambda_j \phi(x_i \mid \theta_j)) \right]$$

$$\ln(f(\mathbf{x}, \mathbf{Z} \mid \theta)) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} Z_{ij} \ln(\lambda_j \phi(x_i \mid \theta_j)) \right]$$

• Thus, under the E-step, we get

$$Q(\theta, \, \theta^{(k)}) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} E[Z_{ij} \mid \mathbf{x}, \, \theta^{(k)}] \ln(\lambda_{j} \, \phi(x_{i} \mid \theta_{j})) \right]$$

$$\ln(f(\mathbf{x}, \mathbf{Z} \mid \theta)) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} Z_{ij} \ln(\lambda_j \phi(x_i \mid \theta_j)) \right]$$

Thus, under the E-step, we get

$$Q(\theta, \theta^{(k)}) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} E[Z_{ij} \mid \mathbf{x}, \theta^{(k)}] \ln(\lambda_{j} \phi(x_{i} \mid \theta_{j})) \right]$$
$$= \sum_{i=1}^{n} \left[\sum_{j=1}^{2} \gamma_{ij}(\theta^{(k)}) \ln(\lambda_{j} \phi(x_{i} \mid \theta_{j})) \right]$$

• In the M-step, we find $\theta^{(k+1)}$ that maximizes (over θ),

• In the M-step, we find $\theta^{(k+1)}$ that maximizes (over θ),

$$Q(\theta, \theta^{(k)}) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} \gamma_{ij}(\theta^{(k)}) \ln(\lambda_j \phi(x_i \mid \theta_j)) \right]$$

• In the M-step, we find $\theta^{(k+1)}$ that maximizes (over θ),

$$Q(\theta, \theta^{(k)}) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} \gamma_{ij}(\theta^{(k)}) \ln(\lambda_j \phi(x_i \mid \theta_j)) \right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{2} \gamma_{ij}(\theta^{(k)}) \left[\ln(\lambda_j) - \ln(\sigma_j \sqrt{2\pi}) - \frac{(x_i - \mu_j)^2}{2\sigma_i^2} \right]$$

• In the M-step, we find $\theta^{(k+1)}$ that maximizes (over θ),

$$Q(\theta, \, \theta^{(k)}) = \sum_{i=1}^{n} \left[\sum_{j=1}^{2} \gamma_{ij}(\theta^{(k)}) \, \ln(\lambda_{j} \, \phi(x_{i} \, | \, \theta_{j})) \right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{2} \gamma_{ij}(\theta^{(k)}) \left[\ln(\lambda_{j}) \, - \, \ln(\sigma_{j} \sqrt{2\pi}) \right]$$

$$- \frac{(x_{i} - \mu_{j})^{2}}{2\sigma_{i}^{2}} \right]$$

This is now a simple optimization problem.

• For example, $\frac{\partial Q}{\partial \mu_1} = 0$ gives us

$$\sum_{i=1}^{n} \gamma_{i1}(\theta^k) \frac{(x_i - \mu_1)}{\sigma_1^2} = 0$$

• For example, $\frac{\partial Q}{\partial \mu_1} = 0$ gives us

$$\sum_{i=1}^{n} \gamma_{i1}(\theta^k) \frac{(x_i - \mu_1)}{\sigma_1^2} = 0$$

Hence we get

$$\mu_1^{k+1} = \frac{\sum_{i=1}^n \gamma_{i1}(\theta^{(k)}) x_i}{\sum_{i=1}^n \gamma_{i1}(\theta^k)}$$

• For example, $\frac{\partial Q}{\partial \mu_1} = 0$ gives us

$$\sum_{i=1}^{n} \gamma_{i1}(\theta^k) \frac{(x_i - \mu_1)}{\sigma_1^2} = 0$$

Hence we get

$$\mu_1^{k+1} = \frac{\sum_{i=1}^n \gamma_{i1}(\theta^{(k)}) x_i}{\sum_{i=1}^n \gamma_{i1}(\theta^k)}$$

This is same as the iterative algorithm we derived earlier.

• Similarly, $\frac{\partial Q}{\partial \sigma_1} = 0$ gives

$$\sum_{i=1}^{n} \gamma_{i1}(\theta^{(k)}) \left[-\frac{1}{\sigma_1} + \frac{(x_i - \mu_1)^2}{\sigma_1^3} \right] = 0$$

• Similarly, $\frac{\partial Q}{\partial \sigma_1} = 0$ gives

$$\sum_{i=1}^{n} \gamma_{i1}(\theta^{(k)}) \left[-\frac{1}{\sigma_1} + \frac{(x_i - \mu_1)^2}{\sigma_1^3} \right] = 0$$

Hence we get

$$(\sigma_1^2)^{(k+1)} = \frac{\sum_{i=1}^n \gamma_{i1}(\theta^{(k)}) (x_i - \mu_1^{(k)})^2}{\sum_{i=1}^n \gamma_{i1}(\theta^k)}$$

• Similarly, $\frac{\partial Q}{\partial \sigma_1} = 0$ gives

$$\sum_{i=1}^{n} \gamma_{i1}(\theta^{(k)}) \left[-\frac{1}{\sigma_1} + \frac{(x_i - \mu_1)^2}{\sigma_1^3} \right] = 0$$

Hence we get

$$(\sigma_1^2)^{(k+1)} = \frac{\sum_{i=1}^n \gamma_{i1}(\theta^{(k)}) (x_i - \mu_1^{(k)})^2}{\sum_{i=1}^n \gamma_{i1}(\theta^k)}$$

Once again same as earlier algorithm.

$$\mu_{j}^{(k+1)} = \frac{\sum_{i=1}^{n} \gamma_{ij}^{(k)} x_{i}}{\sum_{i=1}^{n} \gamma_{ij}^{(k)}}, \quad \lambda_{j}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \gamma_{ij}^{(k)}$$

$$(\sigma_{j}^{2})^{(k+1)} = \frac{\sum_{i=1}^{n} \gamma_{ij}^{(k)} (x_{i} - \mu_{j}^{(k)})^{2}}{\sum_{i=1}^{n} \gamma_{ij}^{(k)}}$$

$$\gamma_{ij}^{(k+1)} = \frac{\lambda_{j}^{(k+1)} \phi(x_{i} \mid \theta_{j}^{(k+1)})}{\sum_{j=1}^{2} \lambda_{j}^{(k+1)} \phi(x_{i} \mid \theta_{j}^{(k+1)})} = \gamma_{ij}(\theta^{(k+1)})$$

So, this is actually the EM algorithm.