

École des Ponts ParisTech Mars 2018 - Avril 2018

Cours Optimisation et Contrôle Distrib
EauPti - Projet sur les réseaux de distribution d'eau

Marc-Antoine Augé et Matthieu Roux

Table des matières

1	Séar	nce 1 - Définition de l'oracle	2
	1.1	Calculs différentiels	2
2			3

1 Séance 1 - Définition de l'oracle

1.1 Calculs différentiels

On pose

$$F(q) = \frac{1}{3} < q, r \circ q \circ |q| > + < p_r, A_r q >$$

et

$$q(q_c) = q^{(0)} + Bq_c$$

On cherche à calculer $\nabla F(q(q_c))$ et $HF(q(q_c))$ le Hessien.

Remarquons tout d'abord que les matrices sont à coefficients réels donc transposition et adjonction sont deux opérations identiques.

Commencons par $\nabla F(q)$ en écrivant le produit de Hadamard terme à terme et le produit scalaire sous forme de somme :

$$F(q) = \frac{1}{3} \sum_{i=1}^{n} q_i^2 . r_i . |q_i| + \langle p_r, A_r q \rangle$$

On note alors ϵ_i le signe de q_i :

$$F(q) = \frac{1}{3} \sum_{i=1}^{n} \epsilon_i . r_i . q_i^3 + \langle p_r, A_r q \rangle$$

D'où immédiatement, étant donné que le gradient du second terme est $A_r^T.p_r$:

$$\nabla F(q) = (\epsilon_i . r_i . q_i^2)_{1 \le i \le n} + A_r^T . p_r$$

On peut le réécrire sans la notation ϵ_i et en utilisant un produit de Hadamard :

$$\nabla F(q) = (r_i \cdot q_i \cdot |q_i|)_{1 \le i \le n} + A_r^T \cdot p_r = r \circ q \circ |q| + A_r^T \cdot p_r$$

Puis par composition, comme $q(q_c) = q^{(0)} + q_c$, on a, en notant par abus de notation : $F(q_c) = F(q(q_c))$:

$$\nabla F(q_c) = B^T \nabla F(q) = B^T (r \circ q \circ |q| + A_r^T . p_r)$$

Pour calculer le Hessien, on a tout d'abord, en notant diag(X) la matrice diagonale possédant sur sa diagonale les coefficients de X:

$$HF(q) = \operatorname{diag}(r \circ (q + |q|))$$

Par composition, étant donné que le $H(q(q_c)) = 0$:

$$HF(q_c) = HF(q(q_c)) = B^T \cdot \operatorname{diag}(r \circ (q + |q|) \cdot B)$$

2

Références