1. 环境配置

```
conda create -n NLP_homework1 python=3.8
activate NLP_homework1

pip install numpy
pip install math
pip install jieba
pip install matplotlib
pip install logging
pip3 install multiprocessing
pip3 install opencc-python-reimplemented
```

2. 运行

```
|--data/
|--util/
| |--tools.py
|--CN_stopwords/
| |--cn_stopwords.txt
| |--cn_punctuation.txt
|--figs/
|--test.py
```

```
cd ./NLP/Homework1/DLNLP2023
python test.py
```

3. 中文信息熵计算结果

	小说名 称	语料字数	分词个数	平均词长	1-gram	2- gram	3- gram	Average Entropy	平均运 行时间
1	三十三	27398	15523	1.7650	12.4196	1.4006	0.1607	4.6603	0.3092 s
2	书剑恩 仇录	215458	215458	1.7841	12.9941	3.5019	0.5026	5.6662	2.2351 s
3	侠客行	138000	78317	1.7621	12.6135	3.1879	0.5604	5.4539	1.7394 s
4	倚天屠 龙记	392821	219497	1.7896	13.2114	3.9723	0.6782	5.9540	4.1519 s
5	天龙八 部	474427	267627	1.7727	13.4500	3.9611	0.6653	6.0255	5.5103 s
6	射雕英 雄传	377964	212082	1.7822	13.2815	3.9054	0.5102	5.8990	4.0681 s
7	白马啸西风	25942	15084	1.7198	11.1289	2.3833	0.2703	4.5942	0.2802 s
8	碧血剑	203908	113788	1.7920	13.0251	3.4451	0.4520	5.6407	2.9422 s
9	神雕侠	402542	237730	1.6933	12.8229	4.1433	0.7912	5.9191	3.8287 s
10	笑傲江 湖	369800	210133	1.7598	13.0726	3.9301	0.8444	5.9490	3.6403 s
11	越女剑	6924	4036	1.7156	10.0099	1.5652	0.5575	4.0442	0.0738 s
12	连城诀	87089	50135	1.7371	12.3949	2.8637	0.4076	5.2221	0.9475 s
13	雪山飞狐	52964	30345	1.7454	12.1144	2.5544	0.3165	4.9951	0.5276 s
14	飞狐外 传	179486	100682	1.7827	12.8401	3.3577	0.5476	5.5818	1.7443 s
15	鸳鸯刀	14263	8271	1.7245	10.9532	1.7207	0.2418	4.3052	0.1396 s
16	鹿鼎记	471579	268857	1.7540	13.0667	4.1419	0.7544	5.9877	4.7403 s
17	ALL	3440565	1952872	1.7618	14.3238	5.3787	0.9819	6.8948	24.6830 s

4. 图片绘制

4.1 1-gram

4.2 2-gram

4.3 3-gram

4.4 Average-Entropy

5. 理论原理推导

5.1 信息熵

<u>熵</u>在信息论中是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量。依据 Boltzmann's H-theorem,香农把随机变量X的熵值H定义如下,其值域为 x_1, x_2, \ldots, x_n :

$$\mathrm{H}(X) = \mathrm{E}[\mathrm{I}(X)] = \mathrm{E}[-\ln{(\mathrm{P}(X))}]$$

其中,P(X)为 X的概率质量函数(probability mass function),E为期望函数,而I(X)是X的信息量(又称为自信息)。I(X)本身是个随机变量。

当取自有限的样本时,熵的公式可以表示为:

$$\operatorname{H}(X) = \sum_{i} \operatorname{P}\left(x_{i}\right) \operatorname{I}\left(x_{i}
ight) = -\sum_{i} \operatorname{P}\left(x_{i}
ight) \log_{b} \operatorname{P}\left(x_{i}
ight)$$

在这里b是对数所使用的底,通常是 2, 自然常数 e,或是 10。当 b=2,熵的单位是 bit;当 b=e,熵的单位是 nat;而当 b=10,熵的单位是 Hart。

当 $p_i=0$ 时,对于一些 i值,对应的被加数 $0\times log_b0$ 的值将会是 0,与极限一致:

$$\lim_{p o 0+}p\log p=0$$

还可以定义事件 X与Y分别取 x_i 和 y_i 时的条件熵为:

$$\operatorname{H}(X \mid Y) = -\sum_{i,j} p\left(x_i, y_j
ight) \log rac{p\left(x_i, y_j
ight)}{p\left(y_j
ight)}$$

其中 $p(x_i,y_j)$ 为 $X=x_i$ 且 $Y=y_j$ 时的概率。这个量应当理解为知道Y的值前提下随机变量X的随机件的量。

5.2 分词模型

5.2.1 一元模型 (1-gram)

$$H(X) = -\sum_{x \in X} p(x) \log p(x)$$

5.2.2 n元模型 (n-gram)

将自然语言句子视作N-1阶马尔可夫模型,即规定句子中某词出现的概率只同它前面出现的 N-1个词有关。常见的二元模型、三元模型:

$$egin{aligned} H(X \mid Y) &= -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log p(x \mid y) \ H(X \mid Y, Z) &= -\sum_{x \in X} \sum_{y \in Y} \sum_{z \in Z} p(x,y,z) \log p(x \mid y,z) \end{aligned}$$

本文计算到3元模型,计算16本小说各自的1元、2元、3元信息熵,并计算其平均信息熵。

6. 参考链接

参考链接1

参考链接2