

INDICE

O1DESCRIZIONE PROBLEMA

ALGORITMI UTILIZZATI

O3VALUTAZIONE PRESTAZIONI

DESCRIZIONE PROBLEMA

OBIETTIVO PRINCIPALE

Configurare N satelliti (posizione e velocità iniziali) in modo da mantenere una configurazione utile per più orbite sui piani xy xz yz.

PERCHÉ

Per catturare immagini dai corpi celesti lontani, tramite satelliti, ci sono due possibilità:

- Costruire un **unico satellite** con un telescopio di grade diametro
- Utilizzare una costellazione di satelliti più piccoli e, tramite tecniche interferometriche, simularne un unico più grande

CENNI DEL MODELLO FISICO

Circular Restricted 3-Body Problem

DISPOSIZIONE VOLUTA DEI SATELLITI

GOLOMB PATTERN

Un modello di Golomb è definito come un insieme di punti su una griglia tale per cui le distanze a coppie, non nulle, tra i vari punti sono **tutte distinte**;

> La griglia contiene solo pattern unici

PERCHÉ

l'interferometria su un'immagine osservata: $I_r = I_o*IFFT(OTF)$

Optical Transfer Function (OTF) descrive come una «camera» cattura le frequenze spaziali di I_o

Descriviamo l'**OTF** mediante il **piano-uv**: rappresentazione nello spazio delle frequenze spaziali

Il **piano-uv** è collegata all'autocorrelazione del piano di osservazione

FORMALIZZAZIONE

DETTAGLI DEL PROBLEMA

La costellazione di S satelliti deve seguire una nave madre che orbita nel sistema Terra-Luna, cui sono fornite le condizioni iniziali a $\mathbf{t}=0$.

L'obiettivo di questa sfida è trovare le condizioni iniziali dei satelliti, in modo che questi rispettino il pattern di Golomb quanto più possibile per T=3 periodi orbitali del satellite madre.

FUNZIONE OBBIETTIVO

In ogni periodo, le posizioni dei satelliti vengono proiettati su tre piani: XY, XZ e YZ;

Viene poi applicata una griglia $N \times M$ alle posizioni dei satelliti e calcolata l'autocorrelazione;

Viene poi calcolato lo «score» per ogni piano sulla base di quanti elementi non nulli ci sono sulla matrice di correlazione:

$$fip = \frac{K_{ip}}{(2M-1)(2N-1)}$$

Concludendo:

$$\begin{cases} x = [dx_1, \cdots, dx_S, dy_1, \cdots, dy_S, dz_1, \cdots, dz_S, dvx_1, \cdots, dvx_S, dvy_1, \cdots, dvy_S, dvz_1, \cdots, dvz_S] \\ f(x) = -\min_{i \in \{1,2,3\}} \sum_{p \in \{xy, xz, yz\}} f_{ip}(x) \end{cases}$$

^{*} la ricostruzione ottima del in magine è un obbiettivo facoltativo dato dipende anche da atri fattori

*

ALGORITMI UTILIZZATI

DIFFERENTIAL EVOLUTION

Algoritmo **Evolutivo** basato su differenze vettoriali

GREY WOLF

Algoritmo **Collettivo** ispirato alle strategie di caccia dei lupi grigi

NSGA-II

Algoritmo **Genetico** specializzato nei problemi multi-obbiettivo

DIFFERENTIAL EVOLUTION

- Agloritmo Evolutivo basato differenze vettoriali;
- Flessibile ed efficace nella ricerca in spazi ad alta dimensionalità.

Generazione Nuova Popolazione best/1/bin

Per ogni vettore x_i appartenente alla popolazione attuale viene:

- Mutazione:
$$v_i = x_{best} + w(x_j - x_k)$$
 con
$$\begin{cases} i \neq j \neq k \\ w \in [0,2) \end{cases}$$
;

- <u>Clipping</u>: se uno degli elementi di v_i non si trova nello spazio di ricerca, questo viene riportato forzatamente al primo valore utile;
- <u>Crossover</u>: gli elementi del vettore x_i vengono sostituiti con quelli di v_i con probabilita $CR \in [0,1]$ ottenendo così un vettore candidato \hat{v}_i ;
- <u>Selezione</u>: se \hat{v}_i è tale per cui $F(\hat{v}_i) < F(x_i)$, nel caso di problemi di minimizzazione, questo lo sostituisce nella prossima popolazione.

Parameter vector containing the parameters x_i , j=0,1,..., D-1

Ispirazione naturale:

Simula il comportamento di caccia dei lupi grigi, dove i lupi alfa, beta e delta guidano il branco verso la preda

Gerarchia sociale:

I lupi sono organizzati in una gerarchia sociale rigida:

- 1. Alfa: Leader, determina la direzione della caccia.
- 2. Beta: Aiuta l'alfa, influenza gli altri membri del branco.
- 3. Delta: Sottomesso all'alfa e al beta, dominano gli omega
- Omega: Sono i capri espiatori, non prendono decisioni, sono gli ultimi a mangiare

Fasi principali della caccia:

- 1. Tracciare, inseguire ed approcciare la preda
- 2. Circondare e molestare la preda
- 3. Attaccare

Inizializzo la popolazione X_i (i = 1,2,...,n)Inizializzo $\vec{a}, \ \overrightarrow{A}, \ \overrightarrow{C}$

Gerarchia sociale iniziale:

Calcolo la fitness per ogni agente (lupo):

 X_{α} = II miglior agente (fitness migliore)

 X_{β} = il secondo miglior agente

 X_{δ} = il terzo miglior agente

Inizio ciclo di caccia:

1. Ogni agente aggiorna la sua posizione seguendo $\alpha,\,\beta,\,\delta$

$$\vec{X}(t+1) = \frac{\left(\vec{X}_{\alpha} - \vec{A}_{1} \cdot \left| \vec{C}_{1} \cdot \vec{X}_{\alpha} - \vec{X} \right| \right) + \left(\vec{X}_{\beta} - \vec{A}_{2} \cdot \left| \vec{C}_{2} \cdot \vec{X}_{\beta} - \vec{X} \right| \right) + \left(\vec{X}_{\delta} - \vec{A}_{3} \cdot \left| \vec{C}_{3} \cdot \vec{X}_{\gamma} - \vec{X} \right| \right)}{3}$$

- **2.** Aggiorniamo \vec{a} , \vec{A} , \vec{C}
- **3.** Calcoliamo la fitness per ogni agente ed aggiorniamo la gerarchia
- 4. Il ciclo di ripete per ogni iterazione

NON-DOMINATED SORTING GENETIC ALGORITHM v2

1. Algoritmo evolutivo multiobiettivo basato su popolazioni

- **2.** Efficiente nel trovare soluzioni non dominate e diversificate nel fronte di Pareto
- 3. Robusto nella gestione di obiettivi in conflitto e nella conservazione della diversità.

• NSGA-İ

NSGA-II: Evoluzione della Popolazione

Popolazione iniziale: Generata casualmente nello spazio di ricerca.

Ordinamento Pareto: Classificazione individuale in fronti non dominati basata sugli obiettivi.

$$\forall i \quad f_i(x_1) \le f_i(x_2) \quad \land \quad \exists j, f_j(x_1) < f_j(x_2)$$

Crowding Distance: Distanza tra soluzioni nel fronte di Pareto per preservare la diversità.

$$D_{i} = \sum_{i=1}^{N} \frac{f_{i}^{k+1} - f_{i}^{k-1}}{f_{i}^{max} - f_{i}^{min}}$$

Generazione Nuova Popolazione

Selezione: Individui migliori (rank basso, alta distanza di affollamento) selezionati.

Crossover: Combina coppie di individui per generare soluzioni figlie.

Mutazione: Introduce variazione casuale per esplorare lo spazio di ricerca.

Iterazioni

Ripeti per un numero predefinito di generazionoi o fino al raggiungimento di un criterio di arresto

• NSGA-İ

SCELTA DELLE FITNESS

Abbiamo analizzato i dati sia per un problema semplice che per un problema di complessità media, utilizzando due approcci principali:

Metodo con 3 fitness: dove gli obiettivi erano basati sui fattori di riempimento ai tre istanti temporali specifici.

- f1: Fattore di riempimento relativo al primo istante temporale.
- f2: Fattore di riempimento relativo al secondo istante temporale.
- f3: Fattore di riempimento relativo al terzo istante temporale.

Metodo con 4 fitness: che, oltre ai fattori di riempimento, includeva come obiettivo aggiuntivo la minimizzazione della distanza media negativa tra i satelliti,

$$f_i = -\frac{1}{N} \sum_{i < j}^{N} \left| x_i - y_j \right|$$

GENERAZIONI: 100

POPOLAZIONE: Proporzionale al numero di satelliti (n.sat*6*4)

LIBRERIA: pygmo

VALUTAZIONE PRESTAZIONI

CONFRONTO DEGLI ALGORITMI

- NSGA-II è il <u>più costoso</u> in termini di risorse, ma offre una solida gestione per problemi multi-obiettivo.
- **DE** è meno costoso di NSGA-II ma può soffrire di <u>inefficienze</u> in spazi di ricerca ad alta dimensione.
- GWO è il più efficiente in termini di memoria e operazioni per popolazione, mentre, ha difficoltà nei problemi ad alta dimensione.

IMMAGINI USATE PER LA RICOSTRUZIONE

CASO NON OTTIMIZZATO

A solo scopo illustrativo, mostriamo le prestazioni di una soluzione generata casualmente con distribuzione uniforme

PROBLEMA SEMPLICE

no	ostriamo	le prestaz	zioni di un	a soluzion	e generat	a casuain	nente con	distribuz	ione unifoi	rme	
				of satellites (red ocorrelation mati		spect to mothersh ding fill factors.	nip (M)				
	1st measurement t = 0 XY plane 5 satellites remaining!	1st measurement t = 0 XZ plane 5 satellites remaining !	1st measurement t = 0 YZ plane 5 satellites remaining!	2nd measurement t = 1 period XY plane 0 satellites remaining!	2nd measurement t = 1 period XZ plane 0 satellites remaining!	2nd measurement t = 1 period YZ plane 0 satellites remaining!	3rd measurement t = 2 periods XY plane 0 satellites remaining!	3rd measurement t = 2 periods XZ plane 0 satellites remaining!	3rd measurement t = 2 periods YZ plane 0 satellites remaining!		
	- _M -	M .	M	М	М	М	М	М	M	nage	Reconstruction
ľ	fill factor = 0.047619	fill factor = 0.047619	fill factor = 0.043084	fill factor = 0.000000	fill factor = 0.000000	fill factor					
		35	8								
				of satellites (red ocorrelation matı		spect to mothersh ding fill factors.	nip (M)				
•	1st measurement t = 0 XY plane 38 satellites remaining!	1st measurement t = 0 XZ plane 38 satellites remaining!	1st measurement t = 0 YZ plane 36 satellites remaining!	2nd measurement t = 1 period XY plane 0 satellites remaining!	2nd measurement t = 1 period XZ plane 0 satellites remaining!	2nd measurement t = 1 period YZ plane 0 satellites remaining!	3rd measurement t = 2 periods XY plane 0 satellites remaining!	3rd measurement t = 2 periods XZ plane 0 satellites remaining!	3rd measurement t = 2 periods YZ plane 0 satellites remaining!		
				М	М	М	М	М	M In	nage	Reconstruction
	fill factor = 0.518144	fill factor = 0.509816	fill factor = 0.462225	fill factor = 0.000000	fill factor = 0.000000	fill factor	At				

PROBLEMA MEDIO

PROBLEMA 1 (S = 5, N = M = 11)

	FITNESS	DISTANZE UNICHE	SATELLITI IN GRIGLIA
GWA	-0.1428	95%	100%
DE	-0.1390	84%	99%
NSGA-2	-0.1428	36%	99%

PROBLEMA 1 (S = 5, N = M = 11)

	FITNESS	DISTANZE UNICHE	SATELLITI IN GRIGLIA
GWA	-0.1428	95%	100%
DE	-0.1390	84%	99%
NSGA-2	-0.1428	36%	99%

Placement of satellites (red squares) with respect to mothership (M) Autocorrelation matrix and corresponding fill factors.								
1st measurement t = 0 XY plane 5 satellites remaining!	1st measurement t = 0 XZ plane 5 satellites remaining!	1st measurement t = 0 YZ plane 5 satellites remaining!	2nd measurement t = 1 period XY plane 5 satellites remaining!	2nd measurement t = 1 period XZ plane 5 satellites remaining!	2nd measurement t = 1 period YZ plane 5 satellites remaining!	3rd measurement t = 2 periods XY plane 5 satellites remaining!	3rd measurement t = 2 periods XZ plane 5 satellites remaining!	3rd measurement t = 2 periods YZ plane 5 satellites remaining!
			- ·			м .	M.	м
fill factor = 0.047619	fill factor = 0.047619	fill factor = 0.047619	fill factor = 0.047619	fill factor = 0.047619	fill factor = 0.047619	fill factor = 0.047619	fill factor = 0.047619	fill factor = 0.047619
266	estiliste.	ridge.	e di s	-69%		MARK.	8	0.000

PROBLEMA 1 (S = 5, N = M = 11)

	FITNESS	DISTANZE UNICHE	SATELLITI IN GRIGLIA
GWA	-0.1428	95%	100%
DE	-0.1390	84%	99%
NSGA-2	-0.1428	36%	99%

PROBLEMA 2 (S = 40, N = M = 21)

	FITNESS	DISTANZE UNICHE	SATELLITI IN GRIGLIA
GWA	-0.6980	2.6%	67%
DE	-0.5817	6.1%	71%
NSGA-2	-1.4229	11.2%	60%

PROBLEMA 2 (S = 40, N = M = 21)

	FITNESS	DISTANZE UNICHE	SATELLITI IN GRIGLIA
GWA	-0.6980	2.6%	67%
DE	-0.5817	6.1%	71 %
NSGA-2	-1.4229	11.2%	60%

Placement of satellites (red squares) with respect to mothership (M) Autocorrelation matrix and corresponding fill factors.								
1st measurement t = 0 XY plane 35 satellites remaining!	1st measurement t = 0 XZ plane 38 satellites remaining!	1st measurement t = 0 YZ plane 38 satellites remaining!	2nd measurement t = 1 period XY plane 18 satellites remaining!	2nd measurement t = 1 period XZ plane 19 satellites remaining!	2nd measurement t = 1 period YZ plane 19 satellites remaining!	3rd measurement t = 2 periods XY plane 16 satellites remaining!	3rd measurement t = 2 periods XZ plane 17 satellites remaining!	3rd measurement t = 2 periods YZ plane 17 satellites remaining!

fill factor = 0.453896	fill factor = 0.494349	fill factor = 0.528852	fill factor = 0.145747	fill factor = 0.145747	fill factor = 0.168352	fill factor = 0.124331	fill factor = 0.108864	fill factor = 0.131469
i gib							*	

PROBLEMA 2 (S = 40, N = M = 21)

	FITNESS	DISTANZE UNICHE	SATELLITI IN GRIGLIA
GWA	-0.6980	2.6%	67%
DE	-0.5817	6.1%	71%
NSGA-2	-1.4229	11.2%	60%

QUALE È IL NUMERO GIUSTO DI S? (N=M=21)

QUALE È IL NUMERO GIUSTO DI S?

DE:

- o Di Lorenzo Giuseppe
- o **Esposito Raffaele**
- o Vallefuoco Agostino

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

