

A Revision of CROSS Security: Proofs and Attacks for Multi-Round Fiat-Shamir Signatures

Edoardo Signorini Joint work with Michele Battagliola, Federico Pintore, Riccardo Longo, and Giovanni Tognolini

CrypTO Conference 2025 - May 23, 2025

The scheme:

- Code-based signature scheme.
- Second round candidate in NIST on-ramp standardization call.
- Zero-Knowledge protocol + Fiat-Shamir transform.
- Well-known protocol based on decoding random oracle (with restricted errors).
- · Standard optimization techniques.
- Competitive public-keys size and fast execution.

The scheme:

- Code-based signature scheme.
- Second round candidate in NIST on-ramp standardization call.
- Zero-Knowledge protocol + Fiat-Shamir transform.
- Well-known protocol based on decoding random oracle (with restricted errors).
- · Standard optimization techniques.
- Competitive public-keys size and fast execution.

Our contribution:

- Formal security proof for CROSS.
 - EUF-CMA security of Fiat-Shamir transform for special-sound multi-round proofs.
- Novel forgery attack.
 - Improves upon previous attack by Kales and Zaverucha.¹
 - · Security loss up to 24% in worst case.

¹Kales and Zaverucha. "An Attack on Some Signature Schemes Constructed from Five-Pass Identification Schemes". CANS 20.

(Multi-Round) Interactive Proofs

A binary relation is a set $R = \{(x, w)\}$ of statement-witness pairs.

Prover(x, w)		Verifier(x)
$com \leftarrow P_0(w)$	com	
	ch ₁	ch ₁ ←\$ Ch[1]
$rsp_1 \leftarrow P_1(w, com, ch_1)$	rsp ₁ →	
	ch ₂	ch ₂ ←\$ Ch[2]
$rsp_2 \leftarrow P_2(w, com, ch_1, rsp_1, ch_2)$	$\xrightarrow{\operatorname{rsp}_2}$	
		$1/0 \leftarrow V(x, com, ch_1, rsp_1, ch_2, rsp_2)$

Goal

Prove the knowledge of a witness \boldsymbol{w} for a public statement \boldsymbol{x} .

Digital Signature

We can obtain a digital signature by applying the Fiat-Shamir transform.

Fiat-Shamir Transform

Transform any public-coin interactive proof into a *non-interactive* proof in the random oracle model.

Fiat-Shamir Transform

Transform any public-coin interactive proof into a *non-interactive* proof in the random oracle model.

Idea: replace the challenge from the verifier with the output of a random oracle on the current transcript (add a message to obtain a signature-scheme).

Properties

Completeness

Honest provers (almost) always succeed in convincing a verifier.

Zero-knowledge

No information about w is revealed. Usually enough to prove Honest-Verifier Zero-Knowledge.

Knowledge Soundness

Given a dishonest prover P^* with a success probability greater than the knowledge error κ , it is always possible to efficiently extract a witness from P^* .

Properties

Completeness

Honest provers (almost) always succeed in convincing a verifier.

Zero-knowledge

No information about w is revealed. Usually enough to prove Honest-Verifier Zero-Knowledge.

Knowledge Soundness

Given a dishonest prover P^* with a success probability greater than the knowledge error κ , it is always possible to efficiently extract a witness from P^* .

Knowledge soundness is hard to prove in general and is often implied by the simpler notion of special soundness.

Special Soundness

There is an extracting algorithm which can compute a witness given enough accepting transcript relative to a true statement.

Fixed-Weight Repetition of Multi-Round Interactive
Proofs

Parallel Repetition

Many protocols have large knowledge error $\kappa \approx 1/2$.

• To build digital signatures, we need the knowledge error to be negligible.

Parallel Repetition

Many protocols have large knowledge error $\kappa \approx 1/2$.

- To build digital signatures, we need the knowledge error to be negligible.
- We can reduce the knowledge error of Π by considering the t-fold parallel repetition Π^t of the protocol.

Parallel Repetition

Many protocols have large knowledge error $\kappa \approx 1/2$.

- To build digital signatures, we need the knowledge error to be negligible.
- We can reduce the knowledge error of Π by considering the *t*-fold parallel repetition Π^t of the protocol.

Theorem²

If Π is special-sound and has knowledge error κ , then Π^t has knowledge error κ^t .

²Attema and Fehr. "Parallel Repetition of (k₁,...,k_U)-Special-Sound Multi-round Interactive Proofs". CRYPTO 2022, Part I.

Fixed-Weight Repetition

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- $\bullet\,$ Some challenges may be matched by much smaller responses.

Fixed-Weight Repetition

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:

(t, ω) -Fixed-Weight Repetition

Repeat the protocol t times, with the last challenge sampled from a space with a fixed large weight ω of favorable challenges.

Fewer large responses to be sent \implies smaller signature.

More repetitions \implies less efficient signing and verification.

Fixed-Weight Repetition

- When we build signature schemes from interactive protocols, the size of the signature is typically dominated by the length of the responses.
- Some challenges may be matched by much smaller responses.

There is a standard optimization for this scenario:

(t, ω) -Fixed-Weight Repetition

Repeat the protocol t times, with the last challenge sampled from a space with a fixed large weight ω of favorable challenges.

Fewer large responses to be sent \implies smaller signature.

More repetitions \implies less efficient signing and verification.

Theorem³

The (t, ω) -fixed-weight repetition of a special-sound multi-round interactive proof Π is knowledge sound.

³Battaqliola, Longo, Pintore, S., and Tognolini. Security of Fixed-Weight Repetitions of Special-Sound Multi-Round Proofs.

EUF-CMA Security Proof for CROSS

Theorem

The Fiat-Shamir transform of a knowledge-sound interactive proof is EUF-CMA secure.

Key steps in the proof:

- 1. Prove security against impersonation under passive attack
- 2. Show that this implies EUF-CMA security with a security loss of at most $\binom{Q}{\mu}$.
 - Q is the number of signature queries.
 - 2μ + 1 is the number of rounds.

Since the fixed-weight repetition of a special-sound protocol is knowledge sound, we can apply this result to CROSS.

Attacking the Parallel Repetition

Piecewise Simulatability

Critical property required for the attack:

- An adversary can win by guessing only one of the two challenges.
- Somewhat surprising but true for most protocols.

Piecewise Simulatability

Critical property required for the attack:

- An adversary can win by guessing only one of the two challenges.
- Somewhat surprising but true for most protocols.

Can be formalized with the notion of Piecewise Simulatability:

- Stronger property than HVZK.
- Split the simulator in two algorithms.
- Allows one of the two challenges to be randomly chosen, while the simulator can choose the other challenge and produce a valid transcript.

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:

1. Generates new commitment until t^* first challenges α_1 are correctly guessed.

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:

- 1. Generates new commitment until t^* first challenges α_i are correctly guessed.
- 2. Generates responses rsp_1 until the second challenges β are correctly guessed for the remaining $t-t^*$ repetitions.

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:

- 1. Generates new commitment until t^* first challenges α_i are correctly guessed.
- Generates responses rsp₁ until the second challenges β are correctly guessed for the remaining t t* repetitions.

In the signature, the lack of interaction and piecewise simulatability can be exploited to split the attack in two independent phases:

- 1. Generates new commitment until t^* first challenges α_i are correctly guessed.
- 2. Generates responses rsp_1 until the second challenges β are correctly guessed for the remaining $t t^*$ repetitions.

Compute final responses rsp_2 .

Commitments i	com(α ₁ *)	com(α ₂ *)	com(α ₃ *)	com(α ₄ *)	• • • • • • • • • • • • • • • • • • •	$com(\alpha_t^*)$	→ H
First challenges	α_1^*	α ₂	α ₃	α_4^*	•••	α_t^{\star}	
First responses	$rsp_1(\beta_1)$	$rsp_1(\beta_2^*)$	$rsp_1(\beta_3^*)$	$rsp_1(\beta_4)$	•••	$rsp_1(\beta_t)$	→ H
Second challenges	β_1	β ₂ *	$oldsymbol{eta_3^*}$	β ₄	•••	β_t	
Second responses	rsp ₂ *	rsp ₂ *	rsp ₂ *	rsp ₂ *	•••	rsp ₂ *	

Attacking t	he Fixed-Weig	ht Repetition	

In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2.

In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2. **Previous strategy**:

- CROSS adapted KZ's attack by taking extra advantage of the fixed-weight challenge of the second round.
 - The second challenge is guessed with the same weight as the actual challenge.

Example with t = 10, $\omega = 9$:

In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2. **Previous strategy**:

- CROSS adapted KZ's attack by taking extra advantage of the fixed-weight challenge of the second round.
 - The second challenge is guessed with the same weight as the actual challenge.

Example with t = 10, $\omega = 9$:

In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2. **Previous strategy**:

- CROSS adapted KZ's attack by taking extra advantage of the fixed-weight challenge of the second round.
 - The second challenge is guessed with the same weight as the actual challenge.
- This strategy is optimal only when $\omega \approx t/2$.

Example with t = 10, $\omega = 9$:

In the following we will restrict to q2-interactive proofs. In particular |Ch[1]| = q and |Ch[2]| = 2.

Previous strategy:

- CROSS adapted KZ's attack by taking extra advantage of the fixed-weight challenge of the second round.
 - The second challenge is guessed with the same weight as the actual challenge.
- This strategy is optimal only when $\omega \approx t/2$.

Improved strategy:

- Select at least $\omega^* \ge \omega$ positions where attacker expects the special challenge.
- When $\omega \approx t$, choosing more than ω positions gives better results.
 - Making mistakes in a few positions is more efficient than trying to guess perfectly.

Example with t = 10, $\omega = 9$, $\omega^* = 10$:

Novel Forgery

Two phases in our improved attack:

- 1. Try to guess the first challenges α_i for at least t^* parallel executions.
- 2. Try to guess the second challenge for remaining fixed-weight executions.
 - **Key improvement**: Select $\omega^* \ge \omega$ positions for the fixed-weight element.

Still requires piecewise simulatability (similar to Kales-Zaverucha attack).

Novel Forgery

Two phases in our improved attack:

- 1. Try to guess the first challenges α_i for at least t^* parallel executions.
- 2. Try to guess the second challenge for remaining fixed-weight executions.
 - **Key improvement**: Select $\omega^* \ge \omega$ positions for the fixed-weight element.

Still requires piecewise simulatability (similar to Kales-Zaverucha attack).

Choosing attack parameters:

- The choice of t^* depends on the size of the challenge sets.
 - Ideally, phase 1 should have a similar cost to phase 2.
- The choice of ω^* depends on the choice of ω relative to t.
 - $\boldsymbol{\cdot}$ The attack is most effective for very unbalanced parameters.

Impact on CROSS Parameters

Significant security reduction for balanced and small parameter sets!

Parameter Set		t	ω	Forgery Cost	Loss
CROSS-R-SDP 1	balanced	252	212	120	6%
	small	960	938	97	24%
CROSS-R-SDP 3	balanced	398	340	180	6%
	small	945	907	156	19%
CROSS-R-SDP 5	balanced	507	427	241	6%
	small	968	912	217	15%
CROSS-R-SDP(G) 1	balanced	243	206	123	4%
	small	871	850	108	15%
CROSS-R-SDP(G) 3	balanced	255	176	190	1%
	small	949	914	168	13%
CROSS-R-SDP(G) 5	balanced	356	257	253	1%
	small	996	945	229	11%

Detailed cost analysis: https://github.com/edoars/revise-cross-parameters.

Conclusions

Main results:

- Proved EUF-CMA security of CROSS.
- Presented a novel forgery attack for the fixed-weight repetition of q2-identification schemes.
- Showed significant security reductions for CROSS parameter sets.
 - Fast variant: $\omega \approx t/2$, maintains security.
 - Balanced and small variants: ω close to t, vulnerable.
 - · For small variant, security loss up to 24%.

Implications:

- Fixed-weight parameters for CROSS re-chosen for round 2.
- The underlying hard problem is not affected.

Future work:

- Proving optimality of our attack.
- Investigating alternative schemes with different security properties (e.g., early abort).

Full paper:

