PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: C07D 239/94, A61K 31/517, A61P 35/00	A1	(11) International Publication Number: WO 00/56720 (43) International Publication Date: 28 September 2000 (28.09.00
(21) International Application Number: PCT/USC (22) International Filing Date: 16 March 2000 (19) (30) Priority Data: 60/125,177 19 March 1999 (19.03.99) 60/125,145 19 March 1999 (19.03.99) 60/125,338 19 March 1999 (19.03.99) 09/357,404 20 July 1999 (20.07.99) (71) Applicant: PARKER HUGHES INSTITUTE [US/U Long Lake Road, St. Paul, MN 55113 (US). (72) Inventors: UCKUN, Fatih, M.; 12590 Ethan Avenu White Bear Lake, MN 55110 (US). LIU, Xing-Pi 6th Street S.E., Minneapolis, MN 55414 (US). Rama, K.; 1270 Larpenter Avenue, St. Paul, M. (US). (74) Agent: DAIGNAULT, Ronald, A.; Merchant & Go P.O. Box 2903, Minneapolis, MN 55402-0903 (US)	UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), DM, DZ, EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS JP, KE, KG, KP, KR, KR (Utility model), KZ, LC, LK LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE) OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of the second contents.

(57) Abstract

Quinazoline compounds and methods for the treatment of cancer and for the treatment of allergic reactions.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia	
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia	
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal	
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland	
ΑZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad	
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo	
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan	- 1
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan	1
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey	
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago	
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine	1
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda	
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America	
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan	ļ
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam	- 1
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia	
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe	
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand			
CM	Cameroon		Republic of Korea	PL	Poland			
CN	China	KR	Republic of Korea	PT	Portugal			
CU	Cuba	KZ	Kazakstan	RO	Romania			
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation			
DE	Germany	LI	Liechtenstein	SD	Sudan			
DK	Denmark	LK	Sri Lanka	SE	Sweden			
EE	Estonia	LR	Liberia	SG	Singapore			
Í								- 1
								j

QUINAZOLINES AND THERAPEUTIC USE THEREOF

Field of the Invention

This application relates to quinazoline compounds, compositions and therapeutic methods for the treatment of cancers and treatment of allergic disorders by administering quinazoline compounds.

Background of the Invention

Quinazoline compounds have been suggested as useful compounds in the
treatment of cell growth and differentiation characterized by activity of the human
epidermal growth factor receptor type2 (HER2). See, for example, Myers et.al., U.S.
Patent No. 5,721,237. Some quinazoline derivatives have been suggested as useful
as anti-cancer agents for the treatment of specific receptor tyrosine kinase—
expressing cancers, especially those expressing epithelial growth factor (EGF)

receptor tyrosine kinase. See, for example, Barker et. al., U.S. Patent No. 5,457,105.

It is generally taught that quinazolines exert their anti-tumor effects via tyrosine
kinase inhibition. However, while some quinazoline compounds inhibit the growth
of brain tumor cells, others with equally potent tyrosine kinase inhibitory activity fail
to do so (Naria et.al., 1998, Clin.Cancer Res. 4:1405-1414; Naria et.al., 1998,

Clin.Cancer Res. 4:2463-2471).

Several tumors expressing EGF receptors are not killed by quinazoline compounds, whereas some tumors not expressing EGF receptors are. Thus, the cytotoxic activity of quinazoline compounds cannot be attributed to the compound's tyrosine kinase inhibitory activity, and particularly not to the compound's ability to inhibit EGF receptor tyrosine kinase. A chemical structure—activity relationship determining the anti—cancer activity of quinazoline derivatives has not been established.

25

30

35

Novel quinazoline compounds may provide potent new therapeutic molecules for the treatment of disorders such as cancers.. Methods of using both known and novel quinazoline compounds that employ an understanding of structure—function relationships are needed.

Summary of the Invention

A series of quinazoline compounds were synthesized and analyzed for therapeutic activities. including anti-cancer activities, particularly against EGR

5

10

15

25

30

receptor—negative leukemias. Specific quinazoline compounds of the invention were found to possess potent and specific tyrosine kinase inhibitory activities affecting cell proliferation and survival. Quinazoline compounds of the invention are demonstrated as useful for the treatment of specific tumors, including breast tumors, brain tumors, and leukemias, particularly EGF receptor—negative leukemias, and to be particularly useful in the treatment of multi—drug resistant leukemias.

The invention provides novel quinazoline compounds of formula I, as disclosed below, as well as therapeutic methods utilizing these compounds.

Brief Description of the Drawings

Figures 1A-1C are graphs showing cytotoxic activity of fluoro-substituted dimethoxy quinazoline compounds (F-dmQ) against leukemic NALM-6 cells.

Figures 2A-2C are graphs showing cytotoxic activity of F-dmQ on breast cancer BT-20 cells.

Figures 3A-3F are photographs showing induction of apoptosis in cancer cells by F-dmQ.

Figure 4 is a bar graph showing adhesive properties of various cancer cells to extracellular matrix proteins.

Figures 5A-5F are bar graphs showing the effect of F-dmQ on cancer cell-adhesion to extracellular matrix (ECM) proteins.

Figures 6A-6E are photographs showing the effects of HI-P353 and HI-P364 on glioblastoma cell migration from spheroids.

Figures 7A and 7B are bar graphs showing the anti-invasive activity of fluoro-substituted quinazoline compounds (F-dmQ) against glioblastoma U373 and breast cancer MDA-MB-231 cells.

Figures 8A-8D are photographs showing depolymerizaton of actin stress fibers and microtubules by HI-P353.

Figures 9A-9I are photographs showing inhibition of actin stress fiber formation in glioblastoma cells by HI-P154.

Figures 10A-10C are graphs showing the inhibition of cancer cell growth *in vivo* by the quinazolines of the invention.

Detailed Description of the Invention

Definitions:

5

10

15

20

25

30

The terms "quinazoline", "quinazoline compound", and "quinazoline derivative" are used interchangeably in this application to mean compounds of formula I.

All scientific and technical terms used in this application have meanings commonly used in the art unless otherwise specified. As used in this application, the following words or phrases have the meanings specified.

Halo is fluoro, chloro, bromo, or iodo. Alkyl, alkanoyl, etc., denote both straight and branched groups; but reference to an individual radical such as "propyl" embraces only the straight chain radical, a branched chain isomer such as "isopropyl" being specifically referred to. (C₁-C₄)alkyl includes methyl, ethyl, propyl, isopropyl, butyl, iso-butyl, and sec-butyl; (C₁-C₄)alkoxy includes methoxy, ethoxy, propoxy, isopropoxy, butoxy, iso-butoxy, and sec-butoxy; and (C₁-C₄)alkanoyl includes acetyl, propanoyl and butanoyl.

As used herein, "pharmaceutically acceptable carrier" means any material which, when combined with the compound of the invention, allows the compound to retain biological activity, such as the ability to potentiate antibacterial activity of mast cells and macrophages. Examples include, but are not limited to, any of the standard pharmaceutical carriers such as a phosphate buffered saline solution, water, emulsions such as oil/water emulsions, and various types of wetting agents.

Compositions comprising such carriers are formulated by weil known conventional methods (see, for example, Remington's Pharmaceutical Sciences, Chapter 43, 14th Ed., Mack Publishing Co., Easton, PA).

The term "conjugate" means a compound formed as a composite between two or more molecules. More specifically, in the present invention, the quinazoline derivative is bonded, for example, covalently bonded, to cell-specific targeting moieties forming a conjugate compound for efficient and specific delivery of the agent to a cell of interest.

The phrase "targeting moiety" means a molecule which serves to deliver the compound of the invention to a specific site for the desired activity. Targeting moieties include, for example, molecules that specifically bind molecules on a specific cell surface. Such targeting moieties useful in the invention include anticell surface antigen antibodies. Cytokines, including interleukins and factors such as

5

10

entirely.

granulocyte/macrophage stimulating factor (GMCSF) are also specific targeting moieties, known to bind to specific cells expressing high levels of their receptors.

The term "prodrug moiety" is a substitution group which facilitates use of a compound of the invention, for example by facilitating entry of the drug into cells or administration of the compound. The prodrug moiety may be cleaved from the compound, for example by cleavage enzymes *in vivo*. Examples of prodrug moieties include phosphate groups, peptide linkers, and sugars, which moieties can be hydrolyzed *in vivo*.

"inhibit" means to reduce by a measurable amount, or to prevent

"to treat" means to inhibit or block at least one symptom that characterizes a pathologic condition, in a mammal threatened by, or afflicted with, the condition.

15 Compounds of the Invention

Compounds of the invention include quinazolines having the formula:

$$R^{1}O$$
 $R^{1}O$
 R

where:

R^a is iodo; (C₁-C₄)hydroxyalkyl, methylenedioxy, ethylenedioxy, benzyloxy,OCF₃, SCF₃, SO₃H, SO₂F, SO₂NR²R³ in which R² is hydrogen or (C₁-C₄)alkyl and R³ is hydrogen, (C₁-C₄)alkyl, or phenyl, NR²R⁴ in which R² is as defined above and R⁴ is phenyl, or R^a a group of the formula

$$R_{\downarrow 6}^{5}$$

in which R⁵ and R⁶ are each, independently, hydrogen, (C₁-C₄)alkyl, or (C₁-C₄)perfluoroalkyl, and R⁷ is hydrogen, halo, hydroxy, (C₁-C₄)alkyl, (C₁-C₄)alkoxy, (C₁-C₄)hydroxyalkyl, or N(R²)₂ in which R² is as defined above;

n is an integer of 1-4;

5

10

15

25

30

 R^b is each, independently, hydrogen; halo; hydroxy; mercapto; (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) thioalkyl, (C_1-C_4) hydroxyalkyl, nitro, cyano, methylenedioxy, ethylenedioxy, COCH₃, CF₃; OCF₃; SCF₃; COOH; SO₃H; SO₂F; phenyl or phenyl substituted by a group selected from halo, hydroxy, mercapto, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) thioalkyl, (C_1-C_4) hydroxyalkyl, amino, nitro, cyano, CF₃, COOH, SO₃H, SO₂NR²R³ in which R² and R³ are as defined below, and SO₂F. R^a can also be benzyloxy or benzyloxy substituted on the phenyl portion by a group defined above, NR²R³ in which R² is H or (C_1-C_4) alkyl and R³ is H, (C_1-C_4) alkyl, phenyl or phenyl substituted by a group as defined above;

 R^1 is (C_1-C_4) alkyl, preferably methyl, or a pharmaceutically acceptable salt thereof, such as an acid addition salt.

Preferably, R^a is a member selected from the group consisting of I, NHC₆H₅, -OCH₂CH₂O-, -OCH₂O-, OCF₃, SCF₃, CH₂OH, C₂H₄OH, SO₃H, SO₂NH₂, and SO₂F; and more preferably R^a is I, OCF₃ or SO₂F. Most preferably, R^a is I or R^a is OCF₃.

In an alternative preferred compound, n is 1 and R^a is a group of the formula:

$$- \begin{matrix} R^5 \\ C \\ R^6 \end{matrix}$$

Preferably, R⁵ and R⁶ are each, independently, H, CH₃ or CF₃, and most preferably, 20 R⁵ and R⁶ are CF₃ and R⁷ is NH₂.

In another preferred compound, R^b is at least one member selected from the group consisting of F, Cl, Br, I, OH, NH₂, NO₂, CN, COOH, CH₃, and CF₃, and more preferably R^b is at least one member selected from the group consisting of F. Cl, Br, OH, and CF₃.

Additional preferred quinazoline compounds useful in the treatment of tumors are described more fully below and particularly in the Examples. These include:

4-(3',5'-dibromo-4'-methylphenyl)amino-6,7-dimethoxyquinazoline;

4-(2',4',6'-tribromophenyl)amino-6,7-dimethoxyquinazoline;

4-(2',3',5',6'-tetrafluoro-5'-bromophenyl)amino-6,7-dimethoxyquinazoline;

6

4-(4'-fluorophenyl)amino-6,7-dimethoxyquinazoline;

4-(4'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline; and

4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline.

5 Methods of Treatment

10

15

25

30

The compounds of the invention are useful for the treatment of animals, including humans. In particular, the compounds of the invention have been found to be potent inhibitors of tumor cell proliferation and survival, and effective to induce apoptosis of malignant cells.

Compounds of the invention have surprisingly been found to be effective for inducing apoptosis and/or cytotoxicity of leukemia cells. In particular, 4–(4'– hydroxyphenyl)amino–6,7–dimethoxyquinazoline compounds of the invention have been found to effectively induce apoptosis in multi–drug resistant leukemia. A preferred compound for the treatment of multi–drug resistant leukemia is 4–(3'– bromo–4'–hydroxyphenyl)amino–6,7–dimethoxyquinazoline.

Compounds of the invention that are particularly useful for treating leukemia include:

4-(3',5'-dibromo-4'-methylphenyl)amino-6,7-dimethoxyquinazoline,

4-(2',4',6'-tribromophenyl)amino-6,7-dimethoxyquinazoline,

20 4-(2',3',5',6'-tetrafluoro-4'-bromophenyl)amino-6,7-dimethoxyquinazoline,

4-(4'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

4-(3'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

4-(2'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

4-(4'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline.

4-(2'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline, and

4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline.

Compounds of the invention that are particularly useful for treating breast tumors include:

4-(3'-bromophenyl)amino-6,7-dimethoxyquinazoline,

4-(3',5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline.

4-(3'-chloro-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,

4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,

4-(2',3',5',6'-tetrafluoro-4'-bromophenyl)amino-6,7-dimethoxyquinazoline,

4-(4'-fluorophenyl)amino-6,7-dimethoxyquinazoline,

4-(3'-fluorophenyl)amino-6,7-dimethoxyquinazoline, and

4-(2'-fluorophenyl)amino-6,7-dimethoxyquinazoline.

Compositions

5

10

15

20

25

30

35

The compounds of the invention are useful as pharmaceutical compositions prepared with a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier or diluent.

The quinazoline compounds of the invention can be formulated as pharmaceutical compositions and administered to a mammalian host, such as a human patient in a variety of forms adapted to the chosen route of administration, i.e., orally or parenterally, by intravenous, intramuscular, topical or subcutaneous routes.

Thus, quinazoline compounds of the invention may be systemically administered, e.g., orally, in combination with a pharmaceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier, or by inhalation or insufflation. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the quinazoline compounds may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. The quinazoline compounds may be combined with a fine inert powdered carrier and inhaled by the subject or insufflated. Such compositions and preparations should contain at least 0.1% quinazoline compounds. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2 to about 60% of the weight of a given unit dosage form. The amount of quinazoline compounds in such therapeutically useful compositions is such that an effective dosage level will be obtained.

The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, fructose, lactose or aspartame or a flavoring agent

5

10

15

20

25

30

such as peppermint. oil of wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to otherwise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any material used in preparing any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed. In addition, the quinazoline compounds may be incorporated into sustained-release preparations and devices.

The quinazoline compounds may also be administered intravenously or intraperitoneally by infusion or injection. Solutions of the quinazoline compounds can be prepared in water, optionally mixed with a nontoxic surfactant. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical dosage forms suitable for injection or infusion can include sterile aqueous solutions or dispersions or sterile powders comprising the quinazoline compounds which are adapted for the extemporaneous preparation of sterile injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the ultimate dosage form must be sterile, fluid and stable under the conditions of manufacture and storage. The liquid carrier or vehicle can be a solvent or liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the maintenance of the required particle size in the case of dispersions or by the use of surfactants. The prevention of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the

compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the quinazoline compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile—filtered solutions.

5

10

15

20

25

30

35

For topical administration, the quinazoline compounds may be applied in pure form, i.e., when they are liquids. However, it will generally be desirable to administer them to the skin as compositions or formulations, in combination with a dermatologically acceptable carrier, which may be a solid or a liquid.

Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Other solid carriers include nontoxic polymeric nanoparticles or microparticles. Useful liquid carriers include water, alcohols or glycols or water—alcohol/glycol blends, in which the quinazoline compounds can be dissolved or dispersed at effective levels, optionally with the aid of non—toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using pump—type or aerosol sprayers.

Thickeners such as synthetic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, modified celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.

Examples of useful dermatological compositions which can be used to deliver the quinazoline compounds to the skin are known to the art; for example, see Jacquet et al. (U.S. Pat. No. 4,608,392), Geria (U.S. Pat. No. 4,992,478), Smith et al. (U.S. Pat. No. 4,559,157) and Wortzman (U.S. Pat. No. 4,820,508).

Useful dosages of the compounds of formula I can be determined by comparing their *in vitro* activity, and *in vivo* activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see U.S. Pat. No. 4,938,949.

10

Generally, the concentration of the quinazoline compounds in a liquid composition, such as a lotion, will be from about 0.1–25 wt–%, preferably from about 0.5–10 wt–%. The concentration in a semi–solid or solid composition such as a gel or a powder will be about 0.1–5 wt–%, preferably about 0.5–2.5 wt–%.

The amount of the quinazoline compounds required for use in treatment will vary not only with the particular salt selected but also with the route of administration, the nature of the condition being treated and the age and condition of the patient and will be ultimately at the discretion of the attendant physician or clinician.

In general, however, a suitable dose will be in the range of from about 0.5 to about 100 mg/kg, e.g., from about 10 to about 75 mg/kg of body weight per day, such as 3 to about 50 mg per kilogram body weight of the recipient per day, preferably in the range of 6 to 90 mg/kg/day, most preferably in the range of 15 to 60 mg/kg/day.

The quinazoline compounds are conveniently administered in unit dosage form; for example, containing 5 to 1000 mg, conveniently 10 to 750 mg, most conveniently, 50 to 500 mg of active ingredient per unit dosage form.

Ideally, the quinazoline compounds should be administered to achieve peak plasma concentrations of from about 0.5 to about 75 μ M, preferably, about 1 to 50 μ M, most preferably, about 2 to about 30 μ M. This may be achieved, for example, by the intravenous injection of a 0.05 to 5% solution of the quinazoline compounds, optionally in saline, or orally administered as a bolus containing about 1–100 mg of the quinazoline compounds. Desirable blood levels may be maintained by continuous infusion to provide about 0.01–5.0 mg/kg/hr or by intermittent infusions containing about 0.4–15 mg/kg of the quinazoline compounds.

The quinazoline compounds may conveniently be presented in a single dose or as divided doses administered at appropriate intervals, for example, as two, three, four or more sub-doses per day. The sub-dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator or by application of a plurality of drops into the eye.

Targeting quinazolines to cells

5

10

15

20

25

30

35

In a preferred embodiment, the quinazoline compound is targeted to cells where treatment is desired, for example, to leukemia cells, to breast cells, or to other tumor cells. The compound is targeted to the desired cell by conjugation to a

11

targeting moiety that specifically binds the desired cell, thereby directing administration of a conjugated molecule. Useful targeting moieties are ligands which specifically bind cell antigens or cell surface ligands, for example, antibodies against the B cell antigen, CD19 (such as B43) and the like.

To form the conjugates of the invention, targeting moieties are covalently bonded to sites on the quinazoline compound. The targeting moiety, which is often a polypeptide molecule, is bound to compounds of the invention at reactive sites, including NH₂, SH, CHO, COOH, and the like. Specific linking agents are used to join the compounds. Preferred linking agents are chosen according to the reactive site to which the targeting moiety is to be attached.

Methods for selecting an appropriate linking agent and reactive site for attachment of the targeting moiety to the compound of the invention are known, and are described, for example, in Hermanson, et al., *Bioconjugate Techniques*, Academic Press, 1996; Hermanson, et al., *Immobilized Affinity Ligand Techniques*, Academic Press, 1992; and *Pierce Catalog and Handbook*, 1996, pp. T155-T201.

Administration of quinazolines

According to the invention, quinazoline compounds may be administered prophylactically, i.e., prior to onset the pathological condition, or the quinazoline compounds may be administered after onset of the reaction, or at both times.

EXAMPLES

The invention may be further clarified by reference to the following

Examples, which serve to exemplify some of the preferred embodiments, and not to

limit the invention in any way.

Example 1 Synthesis of Quinazoline Derivatives

30

35

5

10

15

20

All chemicals were purchased from the Aldrich Chemical Company, Milwaukee, Wisconsin, and were used directly for synthesis. Anhydrous solvents such as acetonitrile, methanol, ethanol, ethyl acetate, tetrahydrofuran, chloroform, and methylene chloride were obtained from Aldrich as sure seal bottles under nitrogen and were transferred to reaction vessels by cannulation. All reactions were carried out under a nitrogen atmosphere.

12

The key starting material, 4-chloro-6,7-dimethoxyquinazoline, was prepared according to published procedures (Nomoto, et al., 1990, *Chem. Pharm. Bull.*, 38:1591-1595; Thomas, C. L., 1970, IN:*Catalytic Processes and Proven Catalysts*, Academic Press, New York, NY) as outlined below in Scheme 1.

5 Specifically, 4,5-dimethoxy-2-nitrobenzoic acid (compound 1) was treated with thionyl chloride to form acid chloride, followed by reacting with ammonia to yield 4,5-dimethoxy-2-nitrobenzamide (compound 2). Compound 2 was reduced with sodium borohydride in the presence of catalytic amounts of copper sulphate to give 4,5-dimethoxy-2-aminobenzamide (compound 3), which was directly refluxed with formic acid to yield 6,7-dimethoxyquinazoline-4(3H)-one (compound 4). Compound 4 was refluxed with phosphorus oxytrichloride to give 4-chloro-6,7-dimethoxyquinazoline (compound 5) in good yield.

Scheme 1

15

Substituted quinazoline derivatives were prepared by the condensation of 4-chloro-6,7-dimethoxyquinazoline with substituted anilines as outlined below in Scheme 2:

R = substituent; n = number

5

10

15

20

Scheme 2

Specifically, a mixture of 4-chloro-6,7-dimethoxyquinazoline (448 mg, 2 mmols) and the substituted aniline (2.5 mmols) in EtOH (20 ml) was heated to reflux. After refluxing for 4-24 hours, an excess amount of Et₃N was added, and the solvent was concentrated to give the crude product which was recrystalized from DMF.

As discussed above, the novel hydroxy-substituted quinazoline derivatives of the invention were created by reacting the appropriate substituted anilines with the key starting material, 4-chloro-6,7-dimethoxyquinazoline.

Physical Characteristics:

Melting points are uncorrected. ¹H NMR spectra were recorded using a Varian Mercury 300 spectrometer in DMSO-d₆ or CDCl₃. Chemical shifts are reported in parts per million (ppm) with tetramethylsilane (TMS) as an internal standard at zero ppm. Coupling constants (J) are given in hertz and the abbreviations s, d, t, q, and m refer to singlet, doublet, triplet, quartet and multiplet, respectively. Infrared spectra were recorded on a Nicolet PROTEGE 460-IR spectrometer. Mass spectroscopy data were recorded on a FINNIGAN MAT 95, VG 7070E-HF G.C. system with an HP 5973 Mass Selection Detector. UV spectra were recorded on BECKMAN DU 7400 and using MeOH as the solvent. TLC was performed on a precoated silica gel plate (Silica Gel KGF; Whitman Inc). Silica gel (200-400 mesh, Whitman Inc.) was used for all column chromatography separations. All chemicals were reagent grade and were purchased from Aldrich Chemical Company (Milwaukee, Wis) or Sigma Chemical Company (St. Louis, MO).

25

PCT/US00/06902

14 Example 2 Bromine Substituted Quinazoline Compounds

Bromine substituted quinazoline derivatives were synthesized and
characterized as discussed above in Example 1. The structures and physical data are shown below:

Bromine Substituted Quinazoline Compounds

No	Name	Structure	Formula	MW
1	P-79	H ₃ CO Br	C ₁₆ H ₁₄ BrN ₃ O ₂	360
2	P-88	H ₃ CO N COOH	C ₁₇ H ₁₄ BrN ₃ O ₄	404
3	P-97	H ₃ CO N Br	C ₁₆ H ₁₃ Br ₂ N ₃ O ₃	455
4	P-111	H ₃ CO N Br	C ₁₇ H ₁₆ BrN ₃ O ₂	374
5	P-112	H ₃ CO N Br	C ₁₆ H ₁₃ Br ₂ N ₃ O ₂	439
6	P-154	H ₃ CO N Br	C ₁₆ H ₁₄ BrN ₃ O ₃	376
7	P-160	CH ₃ O N N	C ₂₃ H ₁₈ BrN ₃ O ₂	448

No	Name	Structure	Formula	MW
8	P-164	CH ₃ O	C ₁₇ H ₁₃ BrN ₂ O ₃	373
9	P-190	CH 30 N CH 30	C ₁₇ H ₁₆ BrN ₃ O ₃	389
10	P-210	CH ₃ O N CH ₃ O	C ₁₇ H ₁₅ Br ₂ N ₃ O ₂	453
11	P-211	CH ₃ O N Br	C ₁₇ H ₁₅ Br ₂ N ₃ O ₂	453
12	P-212	CH ₃ O N Br	C ₁₇ H ₁₅ Br ₂ N ₃ O ₂	453
13	P-214	CH ₃ O N N CH ₃ O	C ₁₆ H ₁₃ BrFN ₃ O	378
14	P-222	CH 3O NBr	C ₁₆ H ₁₂ Br ₃ N ₃ O ₂	518
15	P-234	CH ₃ O	C ₁₇ H ₁₇ N ₃ O ₂	295
16	P-241	CH 3O NBr	C ₁₇ H ₁₅ Br ₂ N ₃ O ₂	453
17	P-258	CH 30 N	C ₁₆ H ₁₅ N ₃ O ₂	281
18	P-260	CH 3O N	C ₁₆ H ₁₄ BrN ₃ O ₂	360

No	Name	Structure	Formula	MW
19	P-261	CH ₃ O N	C ₁₆ H ₁₄ BrN ₃ O ₂	360
20	P-262	CH 30 N Br	C ₁₆ H ₁₃ Br ₂ N ₃ O ₂	439
21	P-263	CH ₃ O N N	C ₁₆ H ₁₃ Br ₂ N ₃ O ₂	439

4-(3'-Bromophenyl)-amino-6,7-dimethoxyquinazoline (HI-P79)

Yield 84.17%: m.p.246.0-249.0 °C. ¹H NMR(DMSO-d₆): δ 10.42(br, s, 1H, NH), 8.68(s, 1H, 2-H), 8.07-7.36(m, 5H, 5, 2', 4', 5', 6'-H), 7.24(s, 1H, 8H), 3.98(s, 3H, -OCH₃), 3.73(s, 3H, -OCH₃); IR(KBr)υ_{max}: 3409, 2836, 1632, 1512, 1443, 1243, 1068 cm⁻¹; GC/MS m/z 361(M⁺+1, 61.8), 360(M⁺, 100.0), 359(M⁺ -1, 63.5), 344(11.3), 222(10.9), 140(13.7). Anal. (C₁₆H₁₄BrN₃O₂ HCl) C, H, N.

4-(4'-Bromo-2'-caboxylphenyl)-amino-6,7-dimethoxyquinazoline(HI-P88)

10 Yield 92.82 %; m.p. > 300.0 °C. ¹H NMR(DMSO-d₆ + CF₃CO₂H) : δ 9.95(d, 1H), 8.74(d, 1H, Ar-H), 8.30, 8.28(2d, 2H), 7.95(d, 1H) , 7.83(s, 1H), 4.21(s,3H, -OCH₃), 4.15(s,3H, -OCH₃). UV(MeOH): 205. 229.0 nm. IR(KBr)υ_{max} : 3444(br), 2737, 1592, 1504, 1443, 1273, 1070 cm⁻¹. GC/MS m/z 388(M⁺ + 1 - OH, 18.08), 387(M⁺ - OH,100.00), 386(M⁺ - 1 - OH, 30.84), 385(97.52), 299(4.78). Anal. (C₁₆H₁₄BrN₃O₂ HCl) C, H, N.

4-(3',5'-Dibromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (HI-P97).

Yield 72.80%; m.p.> 300.0 °C. ¹H NMR(DMSO-d₆): δ 9.71(s, 1H, -NH), 9.39(s, 1H, -OH), 8.48(s, 1H, 2-H), 8.07(s, 2H, 2', 6'-H), 7.76(s, 1H, 5-H), 7.17(s, 1H, 8-H), 3.94(s, 3H, -OCH₃), 3.91(s, 3H, -OCH₃). UV(MeOH): 208.0, 210.0, 245.0, 320.0 nm; IR(KBr)υ_{max}: 3504(br), 3419, 2868, 1627, 1512, 1425, 1250, 1155 cm⁻¹; GC/MS m/z 456(M⁺+1, 54.40), 455(M⁺, 100.00), 454(M⁺-1, 78.01), 439(M⁺-OH,

17

7.96), $376(M^{+}+1-Br, 9.76)$, $375(M^{-}-Br, 10.91)$, 360(5.23). Anal. $(C_{16}H_{13}Br_{2}N_{3}O_{3})$ C, H, N.

4-(3'-Bromo-4'-methylphenyl)-amino-6,7-dimethoxyquinazoline (HI-P111):

Yield 82.22 %; m.p.225.0-228°C. ¹H NMR(DMSO-d₆): δ 10.23(s, 1H, -NH), 8.62(s, 1H, 2-H), 8.06(d, 1H, $J_{2',6'} = 2.1$ Hz, 2'-H), 7.89(s, 1H, 5-H), 7.71(dd, 1H, $J_{5',6'} = 8.7$ Hz, $J_{2',6'} = 2.1$ Hz, 6'-H), 7.37(d, 1H, $J_{5',6'} = 8.7$ Hz, 5'-H), 7.21(s, 1H, 8-H), 3.96(s, 3H, -OCH₃), 3.93(s, 3H, -OCH₃). UV(MeOH): 204.0, 228.0, 255.0, 320.0 nm. IR(KBr) ν_{max} : 3431, 3248, 2835, 1633, 1517, 1441, 1281, 1155 cm⁻¹. GC/MS m/z 375(M⁺+1, 76.76), 374(M⁺, 100.00), 373(M⁺-1, 76.91), 358(M⁺+1-OH, 11.15), 357(1.42), 356(6.31). Anal. (C₁₇H₁₆BrN₃O₂.HCl) C, H, N.

4-(2',5'-Dibromophenyl)-amino-6,7-dimethoxyquinazoline (HI-P112):

Yield 70.05%; m.p.>300.0 °C. ¹H NMR(DMSO-d₆): δ 11.51(s, 1H, -NH), 8.76(s, 1H, 2-H), 8.21(s, 1H, 5-H), 7.81(d, 1H, J_{4',6'} = 2.4 Hz, 6'-H), 7.75(d, 1H, J_{3',4'} = 8.7 Hz, 3'-H), 7.55(dd, 1H, J_{4',6'} = 2.4 Hz, J_{3',4'} = 8.7 Hz, 4'-H), 7.33(s, 1H, 8-H), 3.98(s, 3H, -OCH₃), 3.97(s, 3H, -OCH₃). UV(MeOH): 208.0, 238.0, 330.0 nm. IR(KBr)υ_{max}: 3444, 2836, 1628, 1510, 1431, 1277, 1070 cm⁻¹. GC/MS m/z 440(M⁺ +1, 10.12), 439(M⁺, 7.0), 438(M⁺-1, 3.63), 360(M⁺+1-Br, 99.42), 359(M⁺-Br, 20.45), 358(M⁺-1-Br, 100.00), 343(20.80), 299(8.62). Anal. (C₁₆H₁₃Br₂N₃O₂.HCl) C, H, N.

4-[(3'-Bromo-9'-fluorenone)-2'-Jamino-6,7-dimethoxyquinazoline (HI-P119):

Yield 75.23%; m.p.255.0-257.0 °C. ¹H NMR(DMSO-d₆): δ 8.77(s, 1H, -NH), 8.33(s, 1H, 2-H), 7.89(s, 1H, 5-H), 7.40(s, 1H, 8-H), 7.74- 7.26(m, 6H, Ar-H), 4.12(s,3H, -OCH₃), 4.11(s,3H, -OCH₃). UV(MeOH): 205, 229.0 , 251.0, 320.0 nm. IR(KBr)υ_{max}: 3444, 2836, 1628, 1510, 1431, 1277, 1070 cm⁻¹. GC/MS m/z 464(M⁺ + 2 ,40.81), 463(M⁺+1, 7.56), 462(M⁺, 27.26), 384(M⁺+2-Br, 69.56), 383(M⁺+1-30 Br, 35.50), 382(M⁺-Br, 100.00), 352(10.85), 206(26.73), 191(11.31). Anal. (C₂₃H₁₆BrN₃O₃ HCl) C, H, N.

18

4-(2',3',5'.6'-Tetrafluoro-4'-bromolphenyl)-amino-6,7-dime-thoxyquinazoline (HI-P144):

Yield 78.24%; m.p. 180.0-182.0°C. ¹H NMR (DMS O-d₆): δ 7.78(s, 1H, 2-H), 7.53(s, 1H, 5-H), 6.79(s, 1H, 8-H), 3.81(s,3H, -OCH₃), 3.3.79(s,3 H, -OCH₃). Anal (C₁₆H₁₀ BrF₄N₃O₂.HCl) C, H, N.

4-(3'-Bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (HI-P154):

Yield 89.90%; m.p.233.0-233.5 °C, ¹H NMR(DMSO-d₆): δ 10.08(s, 1H, -NH), 9.38(s, 1H, -OH), 8.40(s, 1H, 2-H), 7.89(d, 1H, $J_{2'.6'} = 2.7$ Hz, 2'-H), 7.75(s, 1H, 5-H), 7.55(dd, 1H, $J_{5'.6'} = 9.0$ Hz, $J_{2'.6'} = 2.7$ Hz, 6'-H), 7.14(s, 1H, 8-H), 6.97(d, 1H, $J_{5'.6'} = 9.0$ Hz, 5'-H), 3.92(s, 3H, -OCH₃), 3.90(s, 3H, -OCH₃). UV(MeOH): 203.0, 222.0, 250.0, 335.0 nm. IR(KBr) ν_{max} : 3431(br), 2841, 1624, 1498, 1423, 1244 cm⁻¹. GC/MS m/z 378(M⁺ +2, 90.68), 377(M⁺ +1, 37.49), 376(M⁺, 100.00), 360(M⁺, 3.63), 298(18.86), 282 (6.65). Anal. (C₁₆H₁₄BrN₃O₃.HCl) C, H, N.

4-[(7'-Bromofluorene)-2']-amino-6,7-dimethoxyquinazoline (HI-P160):

Yield 73.21 %; m.p. 254.0–256.0 °C. ¹H NMR(DMSO–d₆): δ 9.69(br, s, 1H, –NH), 8.52(s, 1H, 2–H), 8.12–7.20(m, 9H, 5, 8,1', 3', 4', 5', 6', 8', 9'–H), 3.99(s,3H, – OCH₃), 3.94(s, 3H, –OCH₃). UV(MeOH): 208.0, 223.0 , 348.0 nm. IR(KBr) υ_{max} : 3421, 2820, 1624, 1516, 1431, 1294, 1223 cm⁻¹. GC/MS m/z 450(M⁺ +2, 100), 449(M⁺ +1, 35), 448(M⁺,95), 311(25). Anal. (C₂₃H₁₈BrN₃O₂.HCl) C, H, N.

4-(3'-Bromobenzoyl)-6,7-dimethoxyquinazoline (HI-P164):

20

Yield 81.20%, m.p.258.0–263.0 °C. ¹H NMR(DMSO–d₆): δ 9.25(s, 1H, 2–H), 8.14(s, 1H, 5–H), 7.92–7.43(m, 4H, 2', 4', 5', 6'–H), 7.40(s, 1H, 8–H), 4.11(s, 3H, –OCH₃), 4.00(s, 3H, –OCH₃). UV(MeOH): 203.0, 220.0, 238.0 nm. IR(KBr)υ_{max}: 3432, 1664, 1504, 1431, 1230 cm⁻¹. GC/MS m/z 374(M⁺ +1, 48.96), 373(M⁺, 34.93), 372(M⁺–1, 47.67), 357(58.74), 343(100.00), 293(M⁺–Br, 31.48), 189(26.27). Anal. (C₁₇H₁₃BrN₂O₃) C, H, Br, N.

4-(4'-Bromo-6'-hydroxymethylphenyl)-amino-6,7-dimethoxyquinazoline (HI-P190):

Yield 73.08 %; m.p. 222.0–223.0 °C. ¹H NMR(DMSO–d₆): δ 11.30(s, 1H . –OH), 8.22(s, 1H, –NH), 7.77–7.23(m, 5H, 5, 8, 2', 3', 5'–H), 4.49(s, 2H, PhCH₂–H), 4.01(s, 3H, –OCH₃), 3.90(s, 3H, –OCH₃). UV(MeOH): 207.0, 250.0, 332.0 nm. IR(KBr)υ_{max}: 3446, 2829, 2752, 1652, 1560, 1471, 1365, 1280 cm⁻¹. GC/MS m/z 391(M⁺+1, 29.33), 389(M⁺, 29.82), 360(M⁺–CH₂OH, 50.76), 358(52.39), 311(18.33), 280(43.20), 206(62.80), 191(100.00). Anal. (C₁₇H₁₆BrN₃O₃·HCl) C, H, N.

10

5

4-(2',3'-Dibromo-4'-methylphenyl)-amino-6,7-dimethoxyquinazoline (HI-P210):

Yield 81.24%, mp 233.0-236.0 °C, ¹H NMR(DMSO-d₆):δ 8.55(s, 1H, -NH), 8.08(s, 1H, 2-H), 7.33-7.17(m, 4H, 5,8,5',6'-H), 3.89(s, 6H, -OCH₃), 2.35(s,3H, -CH₃). UV(MeOH): 207.0, 232.0, 247.0, 330.0 nm. IR υ_{max} (KBr): 3448, 2840, 1629, 1580, 1525, 1420, 1281 cm⁻¹. GC/MS m/z 454(M⁺+1, 4.45), 453(M⁺, 11.31), 452(M⁺-1,4.45), 375(20.36), 374(97.59), 373(23.55), 372(100.00), 358 (19.61), 356 (18.43). Anal. (C₁₇H₁₅ Br₂N₃O₂·HCl) C, H, N.

20 4-(2',5'-Dibromo-4'-methylphenyl)-amino-6,7-dimethoxyquinazoline (HI-P211):

Yield 83.50 %; m.p. $282.0-284.0^{\circ}$ C. ¹H NMR(DMSO-d₆) : δ 11.30(s, 1H, -NH), 8.58(s, 1H, 2-H), 8.00(s, 1H, 5-H), 7.65(s, 1H, 6'-H), 7.60(s, 1H, 3'-H), 7.13(s, 1H, 8-H), 3.79(s, 3H, -OCH₃), 3.78(s, 3H, -OCH₃), 2.29(s, 3H, -CH₃).

- 25 UV(MeOH): 207.0, 239.0, 330.0 nm. IR(KBr) ν_{max} : 3442, 2620, 1631. 1580, 1514, 1380, 1280 cm⁻¹. GC/MS m/z 454(M⁺+1, 5.86), 453(M⁺, 16.16), 452(M⁺-1, 5.35), 374(92.12), 373(23.66), 372(100.00), 358(17.68), 356(17.35). Anal. (C₁₇H₁₅Br₂N₃O₂.HCl) C, H, N.
- 30 4-(3',5'-Dibromo-4'-methylphenyl)-amino-6,7-dimethoxyquinazoline (HI-P212):

Yield 83.47 %; m.p. 275.0-279.0°C. ¹H NMR(DMSO-d₆): δ 11.30(s, 1H, -NH), 8.58(s, 1H, 2-H), 8.35(s, 1H, 5-H), 7.24(s, 2H, 2', 6'-H), 7.13(s, 1H, 8-H), 3.91(s, 3H, -OCH₃), 3.88(s, 3H, -OCH₃), 2.31(s, 3H, -CH₃). UV(MeOH): 237.0, 307.0.

319.0 nm. IR(KBr) υ_{max} : 3471, 3434, 2640, 1633, 1580, 1504, 1420, 1281 cm⁻¹. GC/MS m/z 454(M⁺+1, 5.34), 453(M⁺, 16.05), 452(M⁺-1, 5.87), 374(99.02), 373(26.20), 372(100.00), 358(20.39), 356(19.98), 32(8.29), 314(8.49), 206(19.02). Anal. (C₁₇H₁₅Br₂N₃O₂ HCl) C, H, N.

5

10

30

- 4–(2'–Fluoro–4'–bromophenyl)–amino–6,7–dimethoxyquinazoline (HI–P214): Yield 77.21 %; m.p. 243.0–245.0°C. ¹H NMR(DMSO–d₆): δ 8.57(s, 1H, 2–H), 7.91(s, 1H, 5–H), 7.57(d, 1H, 3'–H), 7.34 (m, 2H, 5',6'–H), 7.07(s, 1H, 8–H), 3.78(s, 3H, –OCH₃), 3.77(s, 3H, –OCH₃). UV(MeOH): 204.0, 215.0, 250.0, 330.0 nm. IR(KBr) ν_{max} : 3431, 2629, 1633, 1580, 1511, 1420, 1278 cm⁻¹. GC/MS m/z 379(M⁺+1,34.39) , 378(M⁺, 21.33), 377(M⁺–1, 39.08), 360(62.05), 359(31.58), 358(62.57), 357(19.81), 299(19.31), 298(100.00), 282(17.88), 240(28.76). Anal. (C₁₆H₁₃BrFN₃O₂ HCl) C, H, N.

4-(2',6'-Dibromo-4'-methylphenyl)-amino-6,7-dimethoxyquinazoline (HI-25 P241):

Yield 79.47 %, m.p. 235.0–237.0 °C. ¹H NMR(DMSO–d₆): δ 9.77(s, 1H, –HN), 8.20 (s, 1H, 2– H), 7.87(s, 1H, 8–H), 7.61(s, 2H, 3', 5' –H), 7.15(s, 1H, 5–H), 3.93(s, 6H, –OCH₃). UV(MeOH): 208.0, 245.0, 318.0, 339.0 nm. IR(KBr)υ_{max}: 3241, 2839, 2783, 1635, 1580, 1514, 1420, 1360, 1281 cm⁻¹. GC/MS m/z 454(M⁺+1,7.86), 453(M⁺, 56.16), 452(M⁺–1, 15.30), 374(95.12), 373(18.66), 372(100.00), 358(29.64), 356(19.36). Anal. (C₁₇H₁₅Br₂N₃O₂ HCl) C, H, N.

21

4-(4'-Bromophenyl)-amino-6,7-dimethoxyquinazoline (HI-P260):

Yield 75.28%. m.p.270.0-272.0 °C. ¹H NMR(DMSO-d₆): δ 11.30(s, 1H, -NH), 8.85(s, 1H, 2-H), 8.27(s, 1H, 5-H), 7.70(s, 4H, 2',3',5',6'-H), 7.32(s, 1H, 8H), 4.02(s,3H, -OCH₃). 4.00(s,3H, -OCH₃). UV(MeOH):204.0, 218.0, 252.0, 335.0 nm. IR(KBr) υ_{max}: 3431, 3034, 2636,1635, 1589,1514, 1435, 1284 cm⁻¹. GC/MS m/z 361 (M⁺+1,74.00), 360(M⁺, 100.00), 359(M⁺-1,72.00), 358(M⁺-2, 95.00). 329 (3.20), 301 (13.0), 281 (21.0), 207(38.0). Anal. (C₁₆H₁₄BrN₃O₂.HCl) C, H. N.

4-(2'-Bromophenyl)-amino-6,7-dimethoxyquinazoline (HI-P261):

Yield 71.94%; m.p.241.0-243.0 °C. ¹H NMR(DMSO-d₆): δ 11.67 (d, 1H, -NH), 8.79 (s, 1H, 2-H), 8.32 (s, 1H, 5-H), 7.86-7.38 (m, 4H, 3', 4', 5'.6'-H), 7.40 (s, 1H, 8H), 4.01 (s,6H, -OCH₃). UV(MeOH): 204.0, 226.0, 248.0, 330.0 nm. IR(KBr) υ_{max}:3454, 3032, 2638,1630, 1589,1514, 1430, 1281 cm⁻¹. GC/MS m/z 361(M⁴+1, 7.00) , 360(M⁴, 5.00), 359(M⁴-1,6.00), 358(M⁴-2, 5.00), 301(13.0), 281(21.0), 280(100.00), 207(25.00). Anal (C₁₆H₁₄BrN₃O₂.HCl) C, H, N.

4-(2',6'-Dibromophenyl)-amino-6,7-dimethoxyquinazoline (HI-P262):

Yield 69.45%, mp 243.0-246.0 °C, ¹H NMR(DMSO-d₆) : δ 11.91(d, 1H, -NH), 8.80(s, 1H, 2-H), 8.43(s, 1H, 5-H), 7.86(d, 2H, J= 8.4 Hz, 3', 5'-H), 7.49(s, 1H, 8H), 7.35(t, 1H, J= 8.4 Hz, 4'-H), 4.02(s,3H, -OCH₃), 4.01(s,3H, -OCH₃). UV(MeOH): 208.0, 227.0, 245.0, 330.0 nm. IR(KBr)υ_{max}:3454, 3032, 2638.1630, 1589.1514, 1430, 1281 cm⁻¹.

4-(2',4'-Dibromophenyl)-amino-6,7-dimethoxyquinazoline (HI-P263):

Yield 70.62 %; m.p.257.0- 262.0 °C. ¹H NMR(DMSO-d₆): δ 11.91(d, 1H, -NH), 8.79 (s, 1H, 2-H), 8.21(s, 1H, 5-H), 8.12-7.51(m, 3H, 3',5',6'-H), 7.35(s, 1H, 8-H), 4.01(s,3H, -OCH₃), 3.99(s, 3H, -OCH₃). UV(MeOH):208.0, 210.0, 248.0, 330.0 nm. IR(KBr) υ_{max}: 3458, 3028, 2641, 1633, 1594, 1511. 1435, 1277 cm⁻¹.

20

Chlorine Substituted Quinazoline Compounds

Chlorine substituted quinazoline derivatives were synthesized and characterized as discussed above in Example 1. The structures and physical data are shown below:

No	Name	Structure	Formula	MW
1	P-87	II _C CO N	C ₁₆ H ₁₄ ClN ₃ O ₂	316
2	P-93	CHO NO CI	C ₁₆ H ₁₄ ClN ₃ O ₃	331
3	P-189	OHO N CI	C ₁₆ H ₁₃ Cl ₂ N ₃ O ₃	365
4	P-197	аңо—	C ₁₆ H ₁₄ ClN ₃ O ₃	331
5	P-268	CH.O-CH,O-N	C ₁₆ H ₁₄ ClN ₃ O ₂	316
6	P-269	оно— и оно— и оно— и	C ₁₆ H ₁₄ ClN ₃ O ₂	316
7	P-278	D	C ₁₆ H ₁₄ ClN ₃ O ₃	331
8	P-415	180- N	C ₂₀ H ₁₆ CIN ₃ O ₂	365

10 4-(3'-Chlorophenyl)-amino-6,7-dimethoxyquinazoline(HI-P87).

Yield 76.98%; m.p. 242.0–245.0°C. 1 H NMR(DMSO–d₆: δ 10.47(br, s, 1H, NH), 8.69(s, 1H, 2–H), 8.06(s, 1H, 5–H), 7.95–7.23(m, 4H,2', 4', 5'. 6'–H), 7.24(s, 1H, 8–H), 3.98(s, eH, –OCH₃), 3.35(s,3H, 0OCH₃). UV(MeOH): 228.0, 251.0, 332.0 nm.

IR(KBr) ν_{max} : 3406, 2839, 1632, 1516. 1443, 1278, 1068 cm⁻¹. GC/MS m/z 316(M⁺-1, 68.34), 314(M⁺-2,100.00, 344(11.34), 222(4.35), 140(9.86). Found: C. 54.62; H, 4.68; N, 11.93; Cl, 19.23. C₁₆H₁₄CIN₃O₂.HCl requires: C. 54.70; H, 4.28; N, 11.96; Cl, 19.96%.

5

4–(c'–Chloroo–6'–hydroxyphenyl)amino–6,7–dimethoxyquinazoline(HI–P93) Yield 83.08%; m.p.295.0°C.(dec). 1 H NMR9DMSO–d₆: δ 10.14(s, 1H, –OH), 8.37(s, 1H, 2–H), 7.78(s, 1H, 5H), 7.57(d, 1H, $J_{2'.4'}$ =2.4 Hz, 2'–H),), 7.16(s, 1H, 8–H), 7.07(dd, 1H, $J_{2'.4'}$ =2.4 Hz, $J_{4'.5'}$ =8.7 Hz, 4'–H), 6.92(d, 1H, $J_{4'.5'}$ =8.7 Hz, 5'–H),3.93(s,3H, –OCH₃). 3.92(s,3H, –OCH₃). UV(MeOH): 205, 229.0, 251.0, 320.0 nm. IR(KBr) v_{max} : 3500(br), 3430, 2835, 1622, 1512, 1432, 1259 cm⁻¹. GC/MS m/z 333(M⁺ +2, 13.41), 332(M⁺ +1, 9.73, 331(M⁺, 39.47), 314(M⁺ – OH, 100.00), 298(7.64). Found: C, 52.25; H, 4.07; N, 11.39. C₁₆H₁₄CIN₃O₃.HCl requires: C, 52.32; H, 4.09; N, 11.44%.

15

10

4-(4'-Hydroxyl-3',5'-dichlorophenyl)amino-6,7-dimethoxyquinazoline(HI-P189)

Yield 79.45%; m.p. 293.0–295.0°C. 1 HNMR–DMSO–d₆): δ 11.32(s, 1H, –NH), 10.34(s, 1H, –OH), 8.87(s, 1H, 2–H), 8.29(s, 1H, 5–H), 7.90(s, 2H, 2', 6'–H), 7.32(s, 1H, 8–H), 4.01(s, 3H, –OCH₃), 3.99(s, 3H, –OCH₃). UV(MeOH): 213.0, 232.0, 250.0, 335.0 nm. IR(KBr) ν_{max} : 3479, 2564, 1641, 1579, 1429, 1282, 1147 cm⁻¹. GC/MS m/z 367(M⁺ = 2, 66.57), 366(M⁺ = 1, 75.91), 365(M⁺, 100.00), 364(M⁺–1,94.08), 349(M⁺– OH, 11.16). Anal. (C₁₆H₁₃Cl₂N₃O₃) C, H, N. Found: C,48.93; H, 4.51; N, 10.00. C₁₇₀H₁₇Cl₂N₃O₃.Hcl requires: C, 48.80; H, 4.31; N, 10.04. %.

25

30

4-(3'-Chloro-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (HI-P197)

Yield 84.14%; m.p. 245.0°C(dec). ¹H NMR(DMSO-d₆): δ 10.00(s, 1H,-NH), 9.37(s, 1H,-OH), 8.41(s, 1H, 2-H), 7.78(s, 1H, 5-H), 7.49(d, 1H, $J_{2',5}$ =2.7 Hz, 2'-H), 7.55(dd, 1H, $J_{5'6}$ =9.0 Hz, $J_{2',6}$ =2.7 Hz, 6'-H), 7.16(s, 1H, 8-H), 6.97(d, 1H, $J_{5',6}$ =9.0 Hz, 5'-H), 3.93(s, 3H, -OCH₃), 3.91(s, 3H, -OCH₃). UV(MeOH): 209.0, 224.0,249.0, 330.0 nm. IR(KBr) υ_{max} : 3448, 2842, 1623, 1506, 1423, 1241 cm⁻¹. GC/MX m/z: 341 (M⁺, 100.00), 326(M⁺-CH₃, 98.50), 310(M⁺-OCH₃, 12.5),

295(9.0.), 189(13.5), 155(13.8). Found: C,521.35; H, 4.16; Cl, 19.15; N. 11.39. C₁₆H₁₄ClN₃O₃. HCl requires: C,52.32; H, 4.09; Cl, 19.07; N, 11.44%.

4-(2'-Chlorophenyl)-amino-6,7-dimethoxyquinazoline (HI-P268)

Yield 87.28%; m.p. 247.0-279.5°C. ¹H NMR(DMSO-d₆): δ 11.71 (s, 1H, - NH), 8.78 (s, 1H, 2-H), 8.33 (s, 1H, 5-H), 7.67 (s, 1H, 8H), 7.68-7.42 (m, 4H, 3',4,5,6'-H), 4.00 (s, 3H -OCH₃), 3.99(s, 3H, -OCH₃). UV(MeOH): 213.0, 234.0, 251.0, 331.0 mn. IR(KBr)υ_{max}: 3479, 2566, 1643, 1577, 1429, 1282, 1147 cm⁻¹. GC/MX m/z 317 (M⁺+1, 6.60), 316(M⁺, 6.60), 315(M⁺-1, 18.52), 314(M⁺-2, 11.11), 281
(21.22), 280 (M⁺-Cl, 100.00), 264 (29.62). Found: C, 54.51; H, 4.41; N, 11.81. C₁₆H₁₄ClN₃O₂. HCl requires: C, 54.45; H, 4.26; N, 11.93%.

4-(4'-Chlorophenyl)-amino-6,7-dimethoxyquinazoline (HI-P269)

Yield 94.94%. m.p. 248.0–250.0°C. ¹H NMR(DMSO–d₆): δ 11.62 (s, 1H, –NH),
8.85 (s, 1H, 2–H), 8.42 (s, 1H, 5–H), 7.88 (d, 2H, J=8.7 Hz, 3',5',–H), 7.54 (d, 2H, J=8.7 Hz, 2',6',–H), 7.38 (s, 1H, 8–H0, 4.02 (s, 3H, –OCH₃), 3.99(s, 3H, –OCH₃).
UV(MeOH): 215.0, 230.0, 253.0, mn. IR(KBr)υ_{max}: 3477, 2563, 1640, 1578 cm⁻¹.
GC/MX m/z 317 (M⁺+1,18.18), 316(M⁺,29.55), 315 (M⁺–1,48.85), 314 (M⁺–2, 61.36), 281 (32.,95), 207 (100.00). Found: C, 54.65; H, 4.38; N, 11.92.

20 C₁₆H₁₄ClN₃O₂. HCl requires: C, 54.55; H, 4.26; N, 11.93%.

4-(4'-Hydroxyl-2'-chlorophenyl)-amino-6,7-dimethoxy-quinazoline (HI-P278)

Yield 81.44%; m.p. 245.0–247.0°C. ¹H NMR(DMSO–d₆): δ 11.39(s, 1H, –NH), 10.30(s, 1H, –OH), 8.75(s, 1H, 2–H), 8.24(s, 1H, 5–H), 7.38–6.85(m, 3H, 3',5',6'–H), 7.37(s, 1H, 8H), 3.98(s,3H, –OCH₃), 3.96(s,3H, –OCH₃). UV(MeOH): 222.0, 234.0, 239.0, 245.0, 254.0, 348.0 nm. IR(KBr)υ_{max}: 3448, 3242, 3144, 3025, 2917, 2834, 1638, 1591, 1514, 1437, 1365, 1277, 1209 cm⁻¹. GC/MS m/z: 332(M⁺+1, 5.00), 331(M⁺,17.00), 330(M⁺–1, 5.00), 297(17.00), 296(100.00), 281(18.00), 280(29.00), 253(9.00). Found: C,52.17; H,4.06; N,11.32. C₁₆H₁₄ClN₃O₃. HCl requires: C,52.32; H,4.01; N, 11.44%.

25

4-(4'-Chloronaphthy-1')-amino-6,7-dimethoxyquinazoline (HI-P415)
Yield, 85.07%. m.p. 245.0-248.0°C ¹H NMR(DMSO-d₆): δ 11.91(s, 1H. -NH),
8.66(s, 1H, 2-H), 8.45(s, 1H, 5-H), 8.30-7.62(m, 6H, 2', 3', 5', 6', 7', 8'-H), 7.38(s, 1H, 8-H), 4.03(s, 3H, -OCH₃), 4.01(s, 3H, -OCH₃). UV(MeOH): 211.0, 233.0,
250.0, mn. IR(KBr)υ_{max}: 3481, 2567, 1645, 1579cm⁻¹. Found: C, 59.32; H, 4.27;
N, 10.24. C₂₀H₁₆ClN₃O₂. HCl. requires: C, 59.70; H, 4.23; N, 10.48%.

Example 4

Iodine Substituted Quinazoline Compounds

Iodine substituted quinazoline derivatives were synthesized as discussed above in Example 1, and analyzed. The structures and physical data are shown below:

15

10

Iodine Substituted Quinazoline Compounds

No	Name	Structure	Formula	MW
1	P-270	CH ₃ O	C ₁₆ H ₁₄ IN ₃ O ₂	407
2	P-271	CH 30	C ₁₆ H ₁₄ IN ₃ O ₂	407
3	P-300	H ₃ CO	C ₁₆ H ₁₄ IN ₃ O ₂	407
4	P-294	H ₃ CO H ₃ CO	C ₁₆ H ₁₃ I ₂ N ₃ O ₃	549
5	P-299	HN OH H ₃ CO N	C ₁₆ H ₁₄ IN ₃ O ₃	423

20

25

4-(2'-Iodophenyl)-amino-6,7-dimethoxyquinazoline (P-270):

Yield 75.37%; m.p. 225.0–230.0 °C. ¹H NMR(DMSO-d₆): δ 11.74(s, 1H, -NH). 8.79(s, 1H, 2-H), 8.33(s, 1H, 5-H), 8.05–7.13(m, 4H, 3',4,5,6'-H), 7.44(s, 1H, 8H), 4.01(s, 6H, -OCH₃). UV(MeOH): 219.0, 222.0, 253.0, 342.0 nm..

5 IR(KBr)v_{max}:3165, 3027, 2827, 1639, 1572, 1501, 1434, 1275, 1070 cm⁻¹. GC/MS m/z 408(M⁺+1, 3.47), 407(M⁺, 15.28), 406(M⁺-1,3.47), 281 (33.33), 280(M⁺-I, 100.00), 264(50.00), 207(34.72). Found: C, 43.62; H, 3.60; N, 9.42. C₁₆H₁₄IN₃O₂.HCl requires: C, 43.34; H, 3.38; N, 9.48%.

10 4-(3'-Iodophenyl)-amino-6,7-dimethoxyquinazoline (HI-P271):

Yield 79.85%; m.p. 235.0–242.0 °C. ¹H NMR(DMSO–d₆) : δ 11.43 (s, 1H, -NH), 8.88 (s, 1H, 2–H), 8.33 (s, 1H, 5–H), 8.13(s, 1H, 2'–H), 7.80–7.26 (m, 3H, 4',5',6'–H), 7.35 (s, 1H. 8H), 4.02 (s, 3H, –OCH₃), 4.00 (s, 3H, –OCH₃). UV(MeOH):.203.0, 210.0, 228.0, 251.0, 331.0 nm. (KBr) υ_{max} : 3191, 3022, 2940, 2836, 2576, 1629, 1516, 1444, 1276,1153, 1060 cm¹. GC/MS m/z 406(M⁺, 1.52), 405(M⁺–1, 6.22) , 281 (35.33), 207 (100.00). Found: C, 43.55; H, 3.43; N, 9.32. $C_{16}H_{14}IN_3O_2$.HCl requires: C, 43.34; H, 3.38; N, 9.48%.

4-(4'-Hydroxy-3,5-diiodophenyl)-amino-6,7-dimethoxy-quinazoline (HI-P294:

Yield 77.47%; m.p. 259.0–260.0 °C. ¹H NMR(DMSO–d₆): δ 11.13(s, 1H, NH), 9.73(s, 1H, –OH), 8.87(s, 1H, 2–H), 8.16(s, 1H, 5–H), 8.09(s, 2H, 2', 6'–H), 7.28(s, 1H, 8H), 3.98(s, 6H, –OCH₃). UV(MeOH) λ_{max} (ϵ):. 217.0 , 227.0, 252.0 nm. IR(KBr) ν_{max} : 3457,3201, 2934, 2832, 2566, 1629, 1562, 1521, 1439, 1275, 1075 cm⁻¹. GC/MS m/z: GC/MS m/z 422(M⁺–I,33.53), 405(7.50), 281(86.67), 221 (51.80), 207(91.30). Found: C, 32.60; H, 2.50; N, 6.92. C₁₆H₁₃I₂N₃O₃.HCl requires: C, 32.82; H, 2.39; N, 7.18%.

4-(4'-Hydroxy-3'-iodophenyl)-amino-6,7-dimethoxyquinazoline(HI-P299)

Yield 71.59 %; m.p. 248.0–250.0 °C. ¹H NMR(DMSO–d₆): δ 11.32(d, 1H, NH), 10.62(s, 1H, –OH, 8.79(s, 1H, 2–H), 8.26(s, 1H, 5–H), 7.98 – 6.98(m, 3H, 2',3',6'–H), 7.32(s, 1H, 8H), 3.98(s, 3H, –OCH₃), 3.97(s, 3H, –OCH₃). UV(MeOH) λ_{max} (ε): 217.0, 227.0, 252.0 nm. IR(KBr) ν_{max} : 3411, 2975, 2730, 2366, 1634, 1573, 1501, 1429, 1229, 1075 cm⁻¹. GC/MS m/z: 406(M⁺–1,3.33), 405(M⁻–2, 7.50), 281 (M⁺–

15

1–I, 26.67), 253(11.80), 207(100.00). Found: C, 41.96; H, 3.40; N, 8.98. $C_{16}H_{14}\Pi N_3O_3$.HCl requires: C, 41.83; H, 3.26; N, 9.15%.

4-(4'-Iodophenyl)-amino-6,7-dimethoxyquinazoline (HI-P300): Yield 85.24%;

m.p. 240.0-242.0 °C. ¹H NMR(DMSO-d₆): δ 11.51 (s, 1H, NH), 8.82 (s, 1H, 2-H),

8.37 (s, 1H, 5-H), 7.81 (d, 2H, J= 8.4 Hz, 2', 6'- H), 7.55 (d, 2H, J= 8.4 Hz, 3', 5'- H
), 7.35 (s, 1H, 8H), 4.01 (s, 3H, -OCH₃), 3.98(s, 3H, -OCH₃). UV (MeOH):. 217.0 ,

227.0, 252.0 nm. IR (KBr) ν_{max}: 3211, 3032, 2832, 2720, 1629, 1573, 1501, 1434,

1235,1153, 1070 cm⁻¹. GC/MS m/z 406(M⁺-1,3.33), 405(M⁺-2, 7.50), 281 (M⁺-1-I,

26.67), 253(11.80), 207(100.00). Found: C, 43.40; H, 3.39; N, 9.36. C₁₆H₁₄IN₃O₂.HCl. requires: C, 43.34; H, 3.38; N, 9.48%.

Example 5

OH Group Substituted Quinazoline Compounds

OH group substituted quinazoline derivatives were synthesized and characterized as discussed above for Example 1. The structures and physical data are shown below:

No	Name	Structure	Formula	MW
1	P-93	CH ₃ O N CI	C ₁₆ H ₁₄ ClN ₃ O ₃	331
2	P-97	H ₃ CO N N Br	C ₁₆ H ₁₃ Br ₂ N ₃ O ₃	455
3	P-131	H ₃ CO N N N	C ₁₆ H ₁₅ N ₃ O ₃	297

No	Name	Structure	Formula	MW
4	P-132	H3CO N N N N N N N N N N N N N N N N N N N	C ₁₆ H ₁₅ N ₃ O ₃	297
5	P-133	CH ₃ O N OH	C ₁₉ H ₁₆ N ₄ O ₃	348
6	P-150	CH ₃ O N	C ₁₅ H ₁₄ N ₄ O ₃	298
7	P-154	H ₁ CO N N N	C ₁₆ H ₁₄ BrN ₃ O ₃	376
8	P-180	CH ₃ O OH	C ₁₆ H ₁₅ N ₃ O ₃	297
9	P-182	CH ₃ O COOH	C ₁₇ H ₁₅ N ₃ O ₅	341
10	P-189	CH ₃ O OH	C ₁₆ H ₁₃ Cl ₂ N ₃ O ₃	365

No	Name	Structure	Formula	MW
11	P-190	CH ₃ O N N CH ₃ O	C ₁₇ H ₁₆ BrN ₃ O ₃	389
12	P-191	CH ₃ O N	C ₁₇ H ₁₇ N ₃ O ₃	311
13	P-192	CH ₃ O N OH	C ₁₆ H ₁₅ N ₃ O ₄	313
14	P-197	CH ₃ O CH	C ₁₆ H ₁₄ ClN ₃ O ₃	331
15	P-215	CH ₃ O N OH	C ₁₄ H ₁₃ N ₅ O ₄	315
16	P-259	CH ₃ O N	C ₁₇ H ₁₇ N ₃ O ₃	311
17	P-265	CH ₃ O N	C ₁₈ H ₁₉ N ₃ O ₃	325

No	Name	Structure	Formula	MW
18	P-266	CH ₃ O N	C ₁₈ H ₁₉ N ₃ O ₃	325
19	P-274	HN OH H ₃ CO N	C ₂₀ H ₁₇ N ₃ O ₃	347
20	P-275	H ₃ CO N OH	C ₂₀ H ₁₇ N ₃ O ₃	347
21	P-276	H ₃ CO N	C ₁₈ H ₁₉ N ₃ O ₃	325
22	P-277	H ₃ CO N N OH	C ₂₈ H ₂₃ N ₃ O ₃	449
23	P-278	H ₃ CO N N N	C ₁₆ H ₁₄ ClN ₃ O ₃	331

No	Name	Structure	Formula	MW
24	P-289	H ₃ CO N OCH ₃ OCH ₃ OCH ₃	C ₁₈ H ₁₉ N ₃ O ₅	357
25	P-292	H ₃ CO N	C ₂₀ H ₁₇ N ₃ O ₃	341
26	P-293	H ₃ CO N N	C ₂₀ H ₁₇ N ₃ O ₃	341
27	P-294	H ₃ CO N OH	C ₁₆ H ₁₃ I ₂ N ₃ O ₃	549
28	P-229	H ₃ CO N I	C ₁₆ H ₁₄ IN ₃ O ₃	423
29	P-312	H ₃ CO N NO ₂	C ₁₆ H ₁₄ N ₄ O ₅	342
30	P-313	H ₂ CO N NO ₂	C ₁₆ H ₁₄ N ₄ O ₅	342
31	P-315	O ₂ N H ₃ CO N	C ₁₆ H ₁₄ N ₄ O ₅	342

No	Name	Structure	Formula	MW
32	P-323	HO H ₃ CO N N	C ₁₆ H ₁₄ N ₄ O ₅	342

4–(3'–Chlooro–6'–hydroxylphenyl)amino–6,7–dimethoxyquinazoline(HI–P93) yield 93.08%; m.p.295.0°C.(dec). TH NMR–DMSO–d₆: δ 10.14(s, 1H, –NH), 9.16(s, 1H, –OH), 8.37(s, 1H, 2–h), 7.78(s, 1H, 5H), 7.57(d. 1H, $J_{2',2'}$ = 2.4Hz, 2' – H),), 7.16(s, 1H, 8–H), 7.07(dd. 1H, $J_{2',4'}$ =2.4 Hz, $J_{4',5'}$ =8.7 Hz, 4' –H), 6.92(d, 1H, $J_{4',5'}$ – 8.7 Hz, 5'–H), 3.93(s,3H, –OCH₃). 3.92(s,3H, –OCH₃). UV(MeOH): 205, 229.0, 251.0, 320.0 nm. IR(KBr)υ_{max}: 3500(br), 3430, 2835, 1622, 1512, 1432, 1259 cm⁻¹. GC/MS m/z 333(M⁻ =2, 13.41), 332(M⁻ =1, 9.73), 331(M⁺,39.47), 314(M⁺ –OH,100.00). 298(7.64). Found: C, 52.25; H, 4.07; N, 11.39, C₁₆H₁₄CIN₃O₃,HCI requires: C, 52.32; H, 4.09; N, 11.44%.

4–(3',5'–Dibromo–4'–hydroxylphenyl)–amino–6,7–dimethoxyquinazoline–(HI–P97). Yield 72.80%; m.p.> 300.0°C. 1 H NMR(DMSO–d₆): δ 9.71(s, 1H, –NH), 9.39(s, 1H, –OH), 8.48(s, 1H, 2–h), 8.07(s, 2H, 2', 6'–H), 7.76(s, 1H, 5–H), 7.17(s, 1H, 8–H), 3.94(s, 3H, –OCH₃, 3.91(s, 3H, –OCH₃). UV(MeOH): 208.0, 210.0, 245.0, 320.0 nm; IR(KBr)υ_{max}: 3504(br), 3419, 2868, 1627, 1512, 1425, 1250, 1155 cm⁻¹; GC/MS m/z 456(M¹=1, 54.40), 455(M⁻, 100.00), 454(M⁻1, 78.01), 439(M⁻–OH, 7.96), 376(M⁻+1–Br, 9.76), 375(M⁻Br, 10.91), 360(5.23). Anal. (C₁₆H₁₃Br₂N₃O₃) C, H, N.

20

25

10

15

4–(4'–Hydroxylphenyl)—amino–6,7–dimethoxyquinazoline(HI–P131): yield 84.29%; m.p. 245.0– 248.0 °C. IR(KBr) $υ_{max}$: 3428, 2836, 1635, 1516, 1443, 1234 cm: ¹H NMR(DMSO–d₆: δ 11.21(s, 1H, –NH), 9.70(s, 1H, –OH), 8.74(s, 1H, 2–h), 8.22(s, 1H, 5–h), 7.40(d, 2H, J – 8.9 Hz, 2',6'–H), 7.29(s, 1H, 8–H), 6.85(d, 2H, J = 8.9 Hz, 3', 5'–H), 3.98(s, 3H, –OCH₃, 3.97(s, 3H, –OCH₂). GC/MS m/z 298 (M=1, 100.00), 297(M⁻, 26.6), 296(M⁺–1, 12.5). Anal. (C₁₆H₁₅N₃O₃HCl) Cl, H, N.

4-(2'-Hydroxylphenyl)-amino-6,7-dimethoxyquinazoline(HI-P132): yield 82.49%; m.p. 255.0-258.0 °C. IR(KBr)v_{max}: 3500 (br), 3425, 2833, 1625, 1512,

1456, 1251, 1068 cm⁻¹. ¹H NMR(DMSO-d₆): δ 9.78(s, 1H, -NH), 9.29(s, 1H, -OH), 8.33(s, 1H, 2-h), 7.85(s, 1H, 5-H), 7.41-6.83(m, 4H, 3',4', 5', 6'-H), 7.16(s, 1H, 8-H), 3.93(s, 3H, -OCH₃, 3.92(s, 3H, -OCH₃), 280(M⁺-OH, 10.0). Anal. (C₁₆H₁₅N₃O₃, HCl) C, H, N.

5

10

4-[(8'-Hydroxyquiline)-5'-Jamino-6,7-dimethoxyquinazoline(HI-P133) yield 83.51%; m.p. 238.0-239.0°C. 1H NME(DMSO-d₆: δ 10.12(br,s, 1H, -NH), 8.93-7.09 M, 8H, 2, 5, 2, 2', 3', 4', 6', 7'-H), 4.04(s,3H, -OCH₃), 3.96(s,3H, -OCH₃). UV(MeOH): 204.0, 245.0, 332.0 nm. IR(KBr)v_{max}: 3425(br), 2935, 1632, 1510, 1437, 1273 cm⁻¹. GC/MS m/z 349(M⁻ = 1,100.00), 348(m+, 26.56), 307(38.50), 289 (21.00).

4-[(3'-Hydroxylpyridine)-2']-amino-6,7-dimethoxyquinazoline(HI-P150)

Yield 78.65%; m.p. 185.0-187.0 °C. ¹H NMR(DMSO-d₆): δ 10.08(br,s, 1H, -NH), 8.52(s, 1H, 2-H), 7.88-7.86(m, 1H, 6'-H), 7.60(s, 1H, 5-H), 7.39-7.35(m, 15 1H, 4'-H), 7.32(s, 1H, 8-H), 6.63-6.58(m, 1H, 5'-H), 5.96(s, 1H, -OH), 3.97(s,3H, $-OCH_3$), 3.94(s, 3H, $-OCH_3$). UV(MeOH): 204.0, 238.0, 321.0 nm. IR(KBr) υ_{max} : 3500, 3446, 2960, 1475, 1236, 1375, 1182 cm⁻¹. GC/MS m/z 299(M⁻ =1, 100), $298(M^{+}, 34), 289(11), 291(9). \ \ Found: \ C, 60.26; H, 4.81; N, 18.68. \ C_{15}H_{14}N_{4}O_{5},$ requires: C, 60.26; H, 4.81; N, 18.68%.

20

4-(3'-Bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline(HI-P154); yield 89.90%; m.p.233.0-233.5 °C. ¹H NMR(DMSO-d₆): 10.08(s, 1h, -

NH), 9.38(s, 1H, -OH), 8.40(s, 1H 2-H), 7.89(d, 1H, $J_{2',6'} = 2.7$ Hz, 2'-H), 7.75(s, 1H, 5-h), 7.55(dd, 1H, $J_{5'.6'}$ = 9.0 Hz, $J_{2'.6'}$ = 2.7 Hz, 6'-H), 7.14(s, 1H, 8-H), 6.97(d, 25 1H, $J_{5'.6'} = 9.0$ Hz, 5'-H), 3.92(s, 3H, -OCH₃), 3.90(s, 3H, -OCH₃). UV(MeOH): $203.0,\,222.0,\,25.0,\,335.0\;nm.\;\;IR(KBr)\upsilon_{max_}\;\,3431(br),\,2841,\,1624,\,1498,\,1423,$ 1244 cm⁻¹. GC/MS m/z 378(M⁺ =2, 90.68), 377(M⁺ =1, 37.49), 376(M⁺, 100.00), $360(MK^+, 3.63), 298(28.86), 282 (6.65).$ Anal. $(C_{16}H_{14}BrN_3O_3,HCl)$ C, H, N.

30

4-(3'-Hydroxyphenyl)-amino-6,7-dimethoxyquinazoline(HI-P180) Yield 71.55%; m.p. 256.0-258.0 °C. IR(KBr)v_{max}: 3394, 2836, 1626, 1508, 1429, 1251 cm⁻¹. ¹H NMR(DMSO-d₆): 9.41(s, 1H, -NH), 9.36(s, 1H, -OH), 8.46(s, 1H, 2H), 7.84(s, 1H, 5-H), 7.84-6.50(m, 4H, 2', 4', 5', 6'-H), 7.20(s, 1H, 8-H), $3.96(s, 3H, -OCH^3)$, $3.93(s, 3H-OCH_3)$. GC/MS m/z: $(C_{16}H_{15}N_3O_3.HCl)$ C, H, N.

4-(4'-Hydroxyl-3'-Carboxyphenyl)-amino-6,7-dimethoxyquinazoline (HI-P182) Yield 79.25%; m.p. > 300.0 °C. ¬H NMR(DMSO-d₆)I: δ 10.53(s, 1H, -NH), 8.53(s, 1H, 2-H), 8.10-78.2(m, o3H, 2', 5', 6', -H), 7.26(s, 1H, 5-H), 6.9(s. 1H, 80H), 4.01(s,3H, -OCH₃), 3.99(s, 3H, -OCH₃). UV(MeOH): 210.0, 239.0, 335.0 nm. IR(KBr)υ_{max} 3421, 2839, 1686, 1631, 1508, 1491, 1280 cm⁻¹. GC/MS m/z 341(M⁺, 7.91), 323(M⁺ - OH, 12.19), 297(M⁺ - COOH, 12.35), 296(M⁺ - COOH - 1.1760), 295(M⁺ - COOH - 2, 28.65), 206 (11.28).

4-(4'-Hydroxyl-3',5'-dicholophenyl-6,7-dimethoxyquinazoline(HI-P189)
Yield 79.45%; m.p. 293.0-295.0 °C. ¹H NMR(DMSO-d₆): 11.32(s, 1H, -NH),
10.34(a, 1H, -OH), 8.87(s, 1H, 2-H), 8.29(s, 1H, 5-H), 7.90(s, 2H, 2', 6'-H),
7.32(s, 1H, 8-H), 4.01(s, 3H, -OCH₃), 3.99(s, 3H, -OCH₃). UV(MeOH): 213.0,
232.0, 250.0, 335.0 nm. IR(KBr)υ_{max}: 3479, 2564, 1641, 1579, 1429, 1282, 1147
cm⁻¹. GC/MS m/z 367(M⁺ + 2, 66.57), 366(M⁺ + 1, 75.91), 365(M⁺, 100.00),
364(M⁺-1, 94.08), 349(M⁻OH, 11.16. Anal. (C₁₆H₁₃Cl₂N₃O₃) C, H, N. Found: C,
48.93; H, 4.51; N, 10.00. -H₁-Cl₂N₃O₃. HCl requires: C, 48.80; H, 4.31; N,
10.04%.

4-(4'-Bromo-6'-hydroxymethylphenyl)-amino-6,7-dimethoxyquinazoline(HI-P190) Yield 7o3.08%; m.p. 222.0-223.0 °C. ¹H NMR(DMSO-d₆): δ 11.30(s, 1H, -OH), 8.22(s, 1H, -NH)O, 7.77.7.23(m, 5H, 5, 8, 2', 3', 5'-H), 4.49(s, 2H, PhCH₂-H), 4.01(s, 3H, -OCH₃), 3.90(s, 3H, -OCH₃). UV(MeOH): 207.0, 250.0, 332.0 nm. IR(KBr)υ_{max}: 3446, 2829, 2752, 1652, 1560, 1471, 1365, 1280 cm⁻¹. GC/MS m/z 391(M⁻=1, 29.33), 389(M⁻, 29.82), 360(M⁻⁻CH²OH, 50.76), 358(52.39), 311(18.33). 280(43.20), 206(62.80), 191(100.00). Anal. (C¹⁷H¹⁶BrN₃O₃HCl) C, H, N.

30 **4–(6'–Hydroxymethylphenyl)–amino–6,7–dimethosyquinazoline(HI–P191)**Yield 78.45%; m.p. 215.0–218.0 °C. ¹H NMR(DMSO–d₆): δ 11.54(s, 1H, –NH)O, 8.70(s, 1H, 2–H), 8.34(s, 1H, 5–H), 7.62–7.33(m, 4H, 3', 4', 5', 6'–H), 7.39(s, 1H, 8–H), 4.49(s, 2H, Ph<u>CH</u>₂OH), 3.99(s, 3H, –OCH₃), 3.98(s, 3H, –OCH₃).
UV9MeOH): 209.0, 224.0, 246.0, 335.0 nm. IR(KBr)υ_{max}: 3421, 2941, 1675,

2606, `128, 1508, 1437o, 1244 cm⁻¹. GC/MS m/z 311(M⁻, 38.07), 310(M⁻ -1, 27.04), 2800 (M⁻CH₂OH, 100.00), 206(17.24), 191(51.34).

4-(2',4'-Dihydroxyphenyl)-amino-6,7-dimethoxyquinazoline (HI-P192) Yield 86.25%; m.p. 240.0 °C(dec). ¹H NMR(DMSO-d₆): 10.92(s, 1H. -NH), 976(s, 1H, -OH), 9.59(s, 1H, -OH), 8.67(s, 1H, 20H), 81.9(s, 1H, 8-H), 7.36(s, 1H, 50H), 705(d, 1H, J - 8.7 Hz, 1'-H), 6.51(s, 1H, 5'-H), 6.31(d, 1H, J - 8.7 Hz, 3'-H), 3.98(s,6H, -OCH₃). UV(MeOH): 206.0, 209.0, 223.0, 250.0, 342.0, 486 nm. IR(KBR)υ_{max}: 3391, 3139, 2938, 2850, 1633, 1607, 1567, 1509, 1447, 1359, 1220, 1189, 1055 cm⁻¹. GC/MS m/z: 314 (M⁻=1, 13.00), 313 (m⁻, 72.80), 312(m⁺-1, 10.20), 296 (5.24), 206(17.50).

4–(2',3'–Dihydroxyphenyl)–amino–6,7–dimethoxyquinazoline (HI–P192) Yield 86.25%; m.p 240.0 °C(dec). ¹H NMR(DMSO–d₆): 10.00(s, 1H, –NH), 9.37(s, 1H, –OH), 8.41(s, 1H, 2–H), 7.78(s, 1H, 5–H), 7.49(d, 1H, $J_{2',3'}$ = 2.7 Hz. 2'–H), 7.55(dd, 1H, $J_{5',6'}$ = 9.0 Hz, $J_{2',6'}$ = 2.7 Hz, 6'–H), 7.16(s, 1H, 8–H), 6.97(d, 1H, $J_{5',6'}$ = 9.0 Hz, 5'–h), 3.93(s, 3H, –OCH₃), 3.91(s, 3H, –OCH₃). UV9MeOH): 209.0, 224.0, 249.0, 330.0 nm. IR(KBr) υ_{max} : 3448, 2842, 1623, 1506, 1423, 1241 cm⁻¹. GC/MS m/z: 341(M⁺, 100.00), 326(M⁻CH₃, 98.50), 310(M⁺–OCH₃, 12.5), 295(9.0), 189(13.5), 155(13.8). Found: C, 52.35; H, 4.16; Cl, 19.15; N, 11.39. C₁₆H₁₄CIN₃O₃HCl requires: C, 52.32; H, 4.09; Cl, 19.07; N, 11.44%.

20 4-(2',4'-Dihydroxyl-1',3'-diazine-5')-amino-6,7-dime-thoxyquinazoline
(HI-P215) (Yield 89.23%, m.p. > 300.0 °C) ¹H NMR(DMSO-d₆): δ 8.59(s, 1H, 2-H), 7.89(s, 1H, 5-H), 7.60(d, 1H, 6'-H), 7.09(s, 1H, 8-H), 3.78(s, 3H, -OCH₃), 3.76(s, 3H, -OCH₃). UV(MeOH): 222.0, 246.0, 331.0 nm. IR(KBr)υ_{max}: 3446, 3212, 3057, 1750, 1682, 1620, 1590, 1511, 1420, 1265 cm⁻¹. GC/MS m/z: 315(M⁻ .57.52), 206(46.50), 191(18.21), 127(100.00).

4-(3'-Hydroxymethylphenyl)-amino-6,7-dimethoxyquina-zoline(HI-P259)
Yield 74.28%; m.p. 230.0-232.0 °C. ¹H NMR(DMSO-d₆): δ11.29(s, 1H, -NH),
8.83(s, 1H, 2-H)I, 8.28(s, 1H, 5-H), 7.61-7.25(m, 4H, 2',4',5',6'-H). 7.36(s, 1H,
8H)O, 4.57(s, 2H,- CH2OH), 4.02(s, 3H, -OCH₃), 4.00(s, 3H, -OC₃). UV(MeOH):
207.0, 224.0, 251.0, 334.0 nm. IR(KBr)υ_{max}: 3500, 3029, 1639, 1589, 1514, 1456,
1284 cm⁻¹. GC/MS m/z: 281(M-+1- CH₂OH, 54.00), 280(M⁻CH2OH, 100.00).

Found: C, 58.68; H;, 5.30; N, 12.02. $C_{16}H_{15}N_3O_2$. HCl requires: C. 58.79; H, 5.19; N, 12.10%.

- 4-[4'-(2"-Hydroxylethylphenyl)]-amino-6,7-dimethoxyqui-nazoline (HI-P265) Yield 92.30%; m.p. 235.0-240.0 °C. ¹H NMR(DMSO-d₆): δ 11.44(s, 1H, -NH), 8.79(s, 1H, 2-H), 8.34(s, 1H, 5-h)I, 7.56(d, 2H, J=8.1 Hz, 2',6'-H), 7.34(d, 2H, J-8.1 Hz, 3',5'-H), 7.31(s, 1H, 8H), 4.00(s, 3H, -OCH₃), 3.99(s, 3H, -OCH₃), 3.64(t, 2H, j=6.9 Hz, 1"-H)I, 2.77(t, 2H, J=6.9 Hz, 2"-H). UV(MeOH): 204.0, 226.0, 251.0, 335.0 m. IR(KBr)υ_{max}: 3361, 3015, 270607, 1628, 1581, 1514, 1432, 1282 cm⁻¹. GC/MS m/z: 281(17.00), 253(10.00), 207(100.00).
- 4-[2'-(2"-Hydroxylethylphenyl)]-amino-6,7-dimethoxyqui-nazoline(HI P266)
 Yield 87.69%; m.p/ 228.0-230.0 °C. ¹H NMR-DMSO-d₆): δ 11.32(s, 1H, -NH),
 8.74(s, 1H, 2'-H), 8.13(s, 1H, 5-H), 7.46-7.34(m, 4H, 3',4',5,6'-H), 7.32(s, 1H, 8H),
 4.00(s, 3H, -OCH₃), 3.99(s, eH, -OCH₃), 3.58(t, 2H, J- 7.2 Hz, 1"-H), 2.75(t, 2H,
 J= 7.2 Hz, 2"-H). UV(MeOH): 210.0, 226.0, 249.0, 332.0 nm. IR(KBr)υ_{max}:
 3366, 3226, 3056, 2917ο, 2685, 21638, 1571, 1514, 1467, 1277 cm⁻¹. GC/MS m/z:
 281(20.00), 253(9.00), 207(100.00).
- 4-(1'-Naphthol-4')-amino-6,7-edimethoxyquinazoline(HI-P274) Yield 79.26; m.p. 205.0-208.0 °C. ¹H NMR-DMSO-d₆): δ 11.64(s, 1H, -NH), 10.61(s, 1H, -OH), 8.59(s, 1H, 2-h), 8.41(s, 1H, 5-H), 8.22-6.98(m, 5H, 3', 5', 6', 7',8'-H), 7.40(s, 1H, 8H), 4.00(s, 3H, -OCH₃), 3.99(s, 3H, -OCH₃). UV9MeOH): 208.0, 215.0, 225.0, 240.0, 330.0 nm. IR(KBr)υ_{max}: 3438, 3211, 3061, 2932, 2834, 1633, 1576, 1509, 1437, 1380, 1276, 1215 cm⁻¹. GC/MS m/z: 281(51.00), 253(22.00), 207(88.00). Found: C, 62.26; H, 4.87; N, 10.77. C₂₀H₁₇N₃O₃.HCl requires: C, 62.66; H, 4.70; N, 10.96%.

253(12.00), 207(49.00). Found: C. 62.91; H. 4.76; N, 10.75. C₂₀H₁N₃O₃.HCl requires: C, 62.66; H, 4,70; N, 10.96%.

4-[3'-(1"-Hydroxyethyl)]-amino-6,7-dimethoxyquinazoline (HI-P276) Yield 79.21%; m.p. 215.0-218.0 °C. ¹H NMR(DMSO-d₆): δ 11.40(s, 1H, -NH), 8.81(s, 1H, 20H), 8.31(s, 1H, 5-H)O, 7.60-7.26(m, 4H, 2',4',5',6'-H), 7.41(s, 1H, 8H), $4.65(q, 1H, J=6.6Hz, -CH(OH)CH_3), 4.00(s, 3H, -OCH_3), 3.98(s, 3H, -OCH_3),$ $1.350(d, 3H, J=6.6 Hz, -CH_3)$. UV9MeOH): 204.0, 216.0, 220.0, 224.0, 250.00, 348.0 nm. IR(KBr)v_{max}: 3407, 3030, 2977, 2840, 1643, 1591 1514, 1463, 1370, 1282, 1230 cm⁻¹. GC/MS m/z: 325(M⁻+1, 67.00), 324(M⁻,100.00), 323(M⁻ $1.22.00),\,308(17.00),\,307(56.00),\,306(21.00),\,281(2.00),\,280(8.00),\,264(6.00).$ 10

4-(4'-Hydroxy-3',5'-diphenylphenyl)-amino-6,7-dime-hoxyquinazoline (HI-P277) Yield 76.11%; m.p. 255.0–257.0 °C. ¹H NMR_DMSO-d₆): δ 11.50(s, 1H, -NH), 8.80(d, d, 2H, 2',6'-H), 8.58(s, 1H, 5-H), 7.60-7.30(m, 10H, 3', 5', Ph-H), 7.39(s, 1H, 8H), $4.00(s, 3H, -OCH_3)$, $3.97(s, 3H, -OCH_3)$, $1.350(d, eH, J= 6.6 Hz, -OCH_3)$ CH₃). UV(MeOH): 210.0, 214.0, 229.0, 239.0, 345.0, 248.0, 352.0 nm.15 IR(KBr)v_{max}: 3520, 3218, 3023, 2935, 1630, 1562, 1518, 1457, 1281, 1234 cm⁻¹. GC/MS m/z: 281(35.00), 267(6.00), 253(10.00), 207(100.00).

4-(4'-Hydroxyl-2'-chlorophenyl)-amino-6,7-dimethoxy-quinazoline(HI-P2878) Yield 81.44%; m.p. 245.0-247.0 °C. ¹H NMR(DMSO-d₆): δ 11.39(s, 1H, -NH)O, 10.30(s, 1H, -OH), 8.75(s, 1H, 2-H), 8.24(s, 1H, 5-H), 7.38-6.85(m, 3H, 20 3',5',6'-H), 7.37(s, 1H, 8H), 3.98(s, 3H, -OCH₃), 3.96(s, H₃, -OCH₃). UV(MeOH): 222.0, 234.0, 239.0, 245.0, 254.0 348.0 nm. (R(KBr)v_{max}: 3448, 3242, 3144, 3025, 2917, 2834, 1638, 1591, 1514, 1437, 1365, 1277, 1209 cm⁻¹. GC/MS c/z: 332(M⁻ +1, 5.00), 331(M⁻, 17.00), 330(M⁻-1, 5.00), 297(17.00), 296(100.00), 281(18.00), 280o(29.00), 253(9.00). 25

4-(2'-Hydroxy-naphthyl-3')-amino-6,7-dimethoxyquinazolin(HI-P292)Yield 87.41%; m.p. 277.0-279.0 °C. ¹H NMR(DMSO-d₆): δ 11.38(s, 1H, -NH)O, 10.35(s, 1H, -OH), 8.73(s, 1H, 2-H), 8.25(s, 1H, 5-H), 7.93-7.30(m, 6H, 1', 4', 5', 6', 7', 8'-H), 7.37(s, 1H, 8H)O, 4.00(s, 6H, -OCH₃). UV(MeOH): 204.0, 221.0, 224.0, 230.0, 256.0, 344.0 nm. IR(KBr)v_{max}: 3479, 3386, 3036, 2901, 1632, 1581. 1504, 1437, 1281 cm⁻¹. GC/MS m/z: 281(41.00), 253(11.00), 207(100.00). Found:

C, 62.87; H;, 4.83; N, 100.78. C₂₀H₁N₃O₃. HCl requires: C, 62.66; H, 4.70, N, 10.96%.

4-(1'-Hydroxy-naphthyl-5')-amino-6,70-dimethoxyquina-zoline(HI-P293)

Yield 87.21%; m.p. 204.0-205.0 °C. ¹H NMR(DMSO-d₆): δ 11.73(s, 1H, -NH), 10.43(s, 1H, -OH), 8.65(s, 1H, 2-H, 8.38(s, 1H, 5-H), 8.21-6.95(m, 6H, 2', 3', 4', 6', 7', 8'-H), 7.33(s, 1H, 8H)O, 4.00(s, 6H, -OCH₃). UV9MeOH): 204.0, 214.0, 224.0, 229.0, 235.0 348 nm. IR(KBromax: 3449, 3335, 3102, 29270, 1633, 1571, 1509, 1437, 1287 cm⁻¹. Found: C, 62.23; H, 4.96; N, 10.89. C₂₀H₁₇N₃O₃.HCl requires. C, 62.66; H, 4.70; N, 10.96%.

4-(4'-Hydroxy-3.5-diiodophenyl)-amino-6,7-dimethoxy-quinazoline(HI-P294) Yield 77.47&; m.p. 259.0-260.0 °C. ¹H NMR(DMSO-d₆): δ 11.13(s, 1H, NH), 9.73(s, 1H, -OH), 8.87(s, 1H, 2-H), 8.16(s, 1H, 5-H), 8.09(s, 2H, 1', 6'-H), 7.28(s, 1H, 8H), 3.98(s, 6H, -OCH₃), UV(MeOH)λ_{max}): 217.0, 227.0, 252.00 nm. IR(KBro_{max}: 3457, 3201, 2934, 2832, 2566, 1629, 1562, 1521, 1439, 1275, 1075 cm⁻¹. GC/MS m/z: GC/MS m/z 422(M⁻I.33.53), 405(7.50), 281(86.67), 221 (51.80), 207(91.30). Found: C, 32.60; H, 2.50; N, 6.92. C₁₆H₁₃I₂N₃O₃.HCl requires: C. 32/82.' J. 2.39; N, 7.18%.

4-(4'-Hydroxy-3'-iodophenyl)-amino-6,7-dimethoxyquinazoline(HI-P299)

Yield 71.59%; m.p. 248.0-250.0 °C. ¹H NMR(DMSO-d₆): δ 11.32(d, 1H, NHO), 10.62(s, 1H, -OH, 8.79(s, 1H, 2-H), 8.26(s, 1H, 5-H), 7.98 - 6.98(m, 3H, 2',3',6'-H), 7.32(s, 1H, 8H), 3.98(s, 3H, -OCH₃), 3.97(s, 3H, -OCH₃). UV(MeOH) λ_{max} (ε):. 217.0, 227.0, 252.0 nm. IR(KBr)υ_{max}: 3411, 2975, 2730, 2366, 1634, 1573, 1501, 1429, 1229, 1075 cm⁻¹. GC/MS m/z: 406(M⁻¹.3.33), 405(M⁻², 7.50), 281(M⁺-1-I, 26.67), 253(11.80), 207(100.00). Found: C, 41.96; H, 3.40; N, 8.98. C₁₆H₁₄IN₃O₃.HCl requires: C, 41.83; H, 3.26; N, 9.15%.

Table 5 Fluoroquinazoline Derivatives

(HI-P352)

(*HI*-P353)

No	R	Formular	MW
		C ₁₆ H ₁₀ BrF ₄ N ₃ O ₂	432
HI-P144	2-F, 3-F, 5-F, 6-	C 161110D11 411302	
	F, 4-Br	6 W B B I O	378
HI-P214	2-F, 4-Br	$C_{16}H_{13}BrFN_3O_2$	
HI-P218	3-CF ₃	$C_{17}H_{14}F_3N_3O_2$	349
HI-P219	4-OCF ₃	$C_{17}H_{14}F_3N_3O_3$	365
HI-P221	4-F	$C_{16}H_{14}FN_3O_2$	299
HI-P223	4-CF ₃	$C_{17}H_{14}F_3N_3O_2$	349
HI-P224	3-F	$C_{16}H_{14}FN_3O_2$	299
HI-P228	2-CF ₃	$C_{17}H_{14}F_3N_3O_2$	349
HI-P232	4-SO ₂ F	$C_{16}H_{14}FN_3O_4S$	363
HI-P264	2-F	$C_{16}H_{14}FN_3O_2$	299
HI-P352	*	$C_{25}H_{20}F_6N_4O_2$	522
HI-P353	*	$C_{25}H_{20}F_6N_4O_2$	522
HI-P364	3-OCF ₃	$C_{17}H_{14}F_3N_3O_3$	365
HI-P365	2-OCF ₃	$C_{17}H_{14}F_3N_3O_3$	365
HI-P366	3-CF ₃ , 5-CF ₃ ,	$C_{18}H_{13}F_6N_3O_2$	417
HI-P367	2-CF ₃ , 5-CF ₃ ,	$C_{18}H_{13}F_6N_3O_2$	417
HI-P369	3-F, 4-OH	$C_{16}H_{14}FN_3O_3$	315
HI-P408	3-F, 5-F, 4-OH	$C_{16}H_{13}F_2N_3O_3$	333

HI-P353

$$F_3C$$
 CF_3
 NH_2
 NH_2

HI-P352

10

Example 6

Fluorine Substituted Quinazoline Compounds

Fluorine substituted quinazoline derivatives were synthesized and characterized as discussed above for Example 1. The structures and physical data are shown below:

No	Name	Structure	Formula	MW
1	P-144	H ₃ CO N F F	C ₁₆ H ₁₀ BrF ₄ N ₃ O ₂	432
2	P-214	CH ₃ O N	C ₁₆ H ₁₃ BrFN ₃ O ₂	378

No	Name	Structure	Formula	MW
3	P-218	CH ₃ O CF ₃	C ₁₇ H ₁₃ F ₄ N ₃ O ₂	367
4	P-219	CH ₃ O N N CH ₃ O N	C ₁₇ H ₁₄ F ₃ N ₃ O ₃	365
5	P-221	CH ₃ O N	C ₁₆ H ₁₄ FN ₃ O ₂	299
6	P-223	CH ₃ O N CH ₃ O	C ₁₇ H ₁₄ F ₃ N ₃ O ₂	349
7	P-224	CH ₃ O N F	C ₁₆ H ₁₄ FN ₃ O ₂	299
8	P-228	CH ₃ O N	C ₁₇ H ₁₄ F ₃ N ₃ O ₂	349
9	P-232	CH ₃ O N O S-F	C ₁₆ H ₁₄ F ₂ SN ₃ O ₄	363

No	Name	Structure	Formula	MW
	P-264	CH ₃ O N	C ₁₆ H ₁₄ FN ₃ O ₂	299
11	P-352	H,CO N N N N N N N N N N N N N N N N N N N	C ₂₅ H ₂₀ F ₆ N ₄ O ₂	522
12	P-353	H,CO NH ₂	C ₂₅ H ₂₀ F ₆ N ₄ O ₂	522
13	P-364	H ₃ CO N N N	C ₁₇ H ₁₄ F ₃ N ₃ O ₃	365
14	P-365	F ₃ CO HN HN H ₃ CO N	C ₁₇ H ₁₄ F ₃ N ₃ O ₃	365
15	P-366	H ₃ CO N CF ₃	C18H13F6N3O2	417
16	P-367	H ₃ CO N CF ₃	C ₁₈ H ₁₃ F ₆ N ₃ O ₂	417

No	Name	Structure	Formula	MW
17	P-369	HN—OH H ₃ CO N F	C ₁₆ H ₁₄ FN ₃ O ₃	315
18	P-408	HN—OH H ₃ CO N F	C ₁₆ H ₁₃ F ₂ N ₃ O ₃	333

4-(2',3',5',6'-Terrafluoro-4'-bromophenyl)-amino-6,7-dimethoxyquinazoline (HI-P144) The yield 78.24%: m.p. 180.0-182.0 0°C. ¹H NMR (DMS O-d₋): δ 7.78(s. 1H. 2-H), 7.53(s. 1H, 5-H), 6.79(s. 1H, 8-H), 3.81(s.3H, - OCH₃), 3.3.79(s.3 H, -OCH₃). Found: C, 41.12; H, 2.41: N, 9.89, C₁₀H₁₀ BrF₋ N₃O₂.HCl. requires: C, 41.11; H, 2.36; N, 9.93%.

5

15

20

25

4-(2'-Fluoro-4'-bromophenyl)-amino-6,7-dimethoxyquina-zoline (HI-P214)
The yield 77.21%; m.p. 247.0-252.0 0°C. ¹H NMR(DMSO-d₆) : δ 8.57(s. 1H. 2-10 H), 7.91(s. 1H, 5-H), 7.57 (d. 1H, 3'-H), 7.34(m. 2H. 5',6'-H). 7.07(s. 1H, 8-H), 3.78(s. 3H. -OCH₃), 3.77(s. 3H. -OCH₃). UV(MeOH):.204.0, 215.0, 250.0, 330.0 nm.. IR(KBr) υ_{max}: 3431, 2629, 1633, 1580, 1511, 1420, 1278 cm⁻¹. GC/MS m/z 379(M⁺+1,34.39), 378(M⁻,31.33). 377(M⁻-1,39.08), 360(62.05), 359 (31.58), 358(62.57), 357(19.81), 299(19.31), 298(100.00), 282(17.88), 240(28.76).

4–(3'–Trifluoromethylphenyl)–amino–6,7–dimethoxyquinazo–line (HI–P218) The yield 85.61%: m.p. 242.0–245.0 0°C. 1 H NMR(DMSO–d₆) : δ 11.09(s. 1H. – NH). 8.67(s. 1H. 2–H), 8.03(s, 1H, 5–H) , 7.92 –7.43(m, 4H, 2'4'5',6'–H). 7.10(s. 1H. 8–H). 3.81(s, 3H, –OCH₃), 3.79(s,3H, –OCH₃). UV(MeOH):. 206.0. 276.0, 349.0 nm.. IR υ_{max} (KBr) : 3372, 3257, 2935, 1626, 1512, 1380, 1225 cm⁻¹. GC/MS m/z 350(M⁺+1, 10.5) , 249(M⁻.85.5). 173(M⁻–1,100.0), 332(10.5), 290 (8.8).

4-(4'-Trifluoromethoxylphenyl)-amino-6,7-dimethoxyqui-nazoline (HI-P219) The yield 83.14%: m.p. 228.0-230.0 °C. 1 H NMR(DMSO-d₆): δ 11.39(s, 1H, -

HN), 8.63(s, 1H, 2-H), 8.18(s, 1H, 5-H), 7.63(t, 2H, 3', 5'-H). 7.27(t, 2H, 2', 6'-H). 7.15(s, 1H, 8-H), $3.81(s, 3H, -OCH_3)$, $3.78(s, 3H, -OCH_3)$. UV(MeOH):. 209.0, 216.0, 251.0, 332.0 nm.. IR(KBr) v_{max} : 3207, 2839, 2762, 1633, 1508. 1480. 1276 cm⁻¹. GC/MS m/z $366(M^++1, 12.50)$. $365(M^-, 75.00)$. $364(M^--1, 100.00)$, 348(17.50), 319(19), 306(8.00). 207(15.00).

4-(4'-Fluorophenyl)-amino-6,7-dimethoxyquinazoline(HI-P221) The yield 84.25%:. ¹H NMR(DMSO-d₆): δ 11.19(s. 1H, -HN). 8.60(s. 1H, 2-H). 8.08(s. 1H, 5-H)). 7.50(t, 2H, 3'-H), 7.13(s. 1H, 8-H), 7.12(t. 2H, 2', 6'-H). 3.79(s. 3H. -OCH₃), 3.78(s, 3H, -OCH₃). UV (MeOH):. 225.0, 251.0, 333.0 nm.. IR (KBr)υ_{max}: 3205, 3007, 2837, 1633, 1580, 1508, 1470. 1220 cm⁻¹. GC/MS m/z 300(M⁺+1, 10.76), 299(m⁻, 76.92), 398(M⁻-1, 100.00), 282(20.00).. 253(13.08), 207(3.80). Found: C, 57.17; H, 4.37; N, 12.47, C₁₆H₁₄FN₃O₂.HCl requires C. 57,31: H, 4.48; N, 12.54%.

15

20

4–(4'–Trifluoromethylphenyl)–amino–6,7–dimethoxyquinazoline (HI–P223) The yield 91.70%: m.p. 243.0–245.0 0°C. 1 H NMR(DMSO–d₆) : δ 11.47(s. 1H. – NH), 8.67(s. 1H, 2–H), 8.23(s. 1H, 5–H), 7.79(d. 2H, J = 8.4 Hz. 3'5'–H). 7.61(d. 2H. J = 8.4 Hz. 2'6'–H), 7.17(s. 1H, 8–H), 3.82(s. 3H. – OCH₃), 3.78(s. 3H, – OCH₃). GC/MS m/z 350(M⁺+1, 11.00). 349(M⁻, 65.00), 348(M⁻–1, 100.00), 332(18.50), 303(10.00), 207(18.50). Found: C, 53.01; H. 3.94; N, 10.88. C₁– 1 H₁₄F₃N₃O₂HCl requires C. 52.98; H. 3.90: N, 10.91%.

4-(4'-Flurophenyl)-amino-6,7-dimethoxyquinazoline(HI-P224) The yield 88.69%; m.p. 254.0-255.0 0°C. ¹H NMr(DMSO-d₆): δ 11.16(s, 1H, -HN), 8.67(s, 1H, 2-H), 8.09(s, 1H, 5-H), 7.13(s, 1H, 8-H), 7.51-6/94(m, 4H, 2',3',5',6'-H)O, 3.80(s, 3H, -OCH₃), 3.79(s, 3H, -OCH₃). UV(MeOH): 206.0, 226.0, 251.0, 333.0, 343 nm.. IR(KBr)υ_{max}: 3437, 3211, 2619, 1637, 1580, 1500, 1448, 1281 cm⁻¹. GC/MS m/z (300(M⁺+1, 8.00), 299(M⁻, 68.00), 398(M⁻⁻1, 100.00), 282(21.60), 253(25.00), 207 (80.00),. Found: C, 57.25; H, 4.58; N, 12.42. C₁₆H₁₄FN₃O₂.Hcl requires C, 57.31; H, 4.48; N, 12.54%.

4-(2'-Trifluoromethylphenyl)-amino-6,7-dimethoxyquinazoline(HI-P228). The yield 83.57%; m.p. 242.0-245.0 °C. 1 H NMR(DMSO-d₆): δ 11.58(s, 1H, -

Je w manage

HN), o8.76(s, 1H, 2–H), 8.25(s, 1H, 5–H), 7.95–7.62(m, 4H, 3', 4', 5', 6'–H), 7.38(s. 1H, 8–H), 4.01(s, 3H, -OCH₃), 3.00(s, 3H, -OCH₃). GC/MS m/z 350(M $^-$ +1. 8.50), 349(M $^-$,32.00), 348(M $^+$ -1.31.50), 328(18.50), 207(5.0)I, 280(M $^+$ -CF₃, 100.00), 264(18.50), 207(32.50). Found: C, 52.71; H, 4.26; N, 10.91%.

- 5 4-[4'-benzenesulfanilyl fluoride]-amino-6,7-dimethoxyquinazoline (HI-P232)
 Yield 84.02%; m.p. 228.0-230.0 °C. ¹H NMR9DMSO-d₆): δ 11.62(s, 1H, -HN),
 8.78(s, 1H, 2-H), 8.29(s, 1H, 5-H), 8.12-8.02(m, 4H, 2",3",5",6"-H), 7.21(s, 1H,
 8-H), 3.86(s, 3H, -OCH₃), 3.81(s, 3H, -OCH₃). UV(MeOH): 208.0, 215.0, 253.0,
 278.0, 338.0 nm.. IR(KBr)υ_{max}: 3440, 3277, 2571, 1635, 1580, 1516, 1435, 1209
 10 cm⁻¹. GC/MS m/z: 281(43.00), 253(12.00), 207(100.00). Found: C, 48.13; H,
 3.73; N, 10.53. C₁₆H₁₄FN₃O₄S.HCl requires: C, 48.12; H, 3.76; N, 10.53%.
- 4-(2'-Fluorophenyl)-amino-6,7-dimethoxyquinazoline(HI-P264) Yield
 73.58%; m.p. 233.0-235.0 0°C. ¹H NMR(DMSO-d₆): δ 11.69(d, 1H, -NH),
 8.82(s, 1H, 2-H), 8.37(s, 1H,k 50H), 7.59-7.32(m, 4H 3', 4' 5', 6'-H), 7.41(s, 1H, 8H)O, 4.02(s, 3H, -OCH₃), 4.01(s, 3H, -OCH₃). UV(MeOH): 204.0, 226.0, 248.0, 330.0 nm. IR(KBro_{max}: 3454, 3032, 2638, 1630, 1589, 1514, 1430, 1291 cm⁻¹.
 GC/MS m/z 300(M⁺=1, 7.00), 299(M⁻.38.00), 298(M⁻-1.22.00), 280(M⁻F, 100.00), 264(15.00), 207(35.00). Found: C, 57.12; H, 4.57; N, 12.45.
 C₁₆H₁₄FN₃O₂.HCl requires: C, 57.31; H, 4.48; N, 12.54%.
- 4-{4'-[2"-(4"'-Aminophenyl)-hexafluoropropyl]phenyl}-amino-6,7dimethoxyquinazoline(HI-P352) Yield, 80.41%, m.p. 280.0-282.0 °C. ¹H
 NMR(DMSO-d₆): δ 11.87(s, 1H, -NH), 8.91(s, 1H, 2-H)I, 8.55-7.18(m, 10H, 5, 8, 2', 3', 5', 6', 2"', 3"', 5"', 6"'-H), 4.05(s, 3H, -OCH₃), 4.00(s, 3H, -OCH₃). ¹⁹F
 NMR(DMSO-d₆): 128.76. Found: C, 50.33; H, 3.87; N, 9.57.
 C₂₅H₂₀F₆N₄O₂.2HCl requires: C, 50.50; H, 3.70; N, 9.42%
- 4-{3'-[2''-(3'''-Aminophenyl)-hexafluoropropyl]phenyl}-amino-6,7-dimethoxyquinazoline(HI-P353) Yield, 83.11%,. m.p. 292.0-284.0°C. ¹H

 NMR(DMSO-d₆): δ 11.68(s. 1H. -NH). 8.81(s. 1H. 2-H). 8.44-7.09(m. 10H. 5, 8, 2', 4', 5', 6', 2''', 4''', 5''', 6'''-H). 4.00(s. 3H. -OCH₃). 3.97(s. 3H. -OCH₃). ¹⁹F

 NMR(DMSO-d₆): 129.21. Found: C, 53.96: H,3.93; N,9.77. C₂₅H₂₀F₆N₄O₂.HCl requires: C. 53.76: H.3.76: N. 10.03%

4–(3'–Trifluoromethoxylphenyl)–amino–6,7–dimethoxyquinazoline (HI–P364)
Yield. 83.25%. m.p. 233.0–235.0°C. ¹H NMR(DMSO–d₆): δ 11.65(s, 1H. –NH),
8.88(s. 1H. 2–H), 8.41(s. 1H, 5–H), 7.86–7.29(m, 4H, 2', 4', 5', 6' –H). 7.36(s. 1H,
8–H), 4.02(s. 3H, –OCH₃). 3.98(s. 3H, –OCH₃). ¹9F NMR(DMSO–d₆):135.37.
GC/MS m/z: 366(M⁺+1, 11.0), 365(M⁺, 67.0), 364(M⁺–1, 100.0). Found: C, 50.93:
H,3.75; N,10.61. C₁₇H₁₄F₃N₃O₃.HCl requires: C, 50.97; H.3.74; N, 10.47%.

4-(2'-Trifluoromethoxylphenyl)-amino-6,7-dimethoxyquinazoline (HI-P365)
Yield. 77.85%. m.p. 235.0-237.0°C. ¹H NMR(DMSO-d₆): δ 11.68(s. 1H, -NH),
8.80(s. 1H. 2-H). 8.32(s. 1H, 5-H), 7.64-7.53(m, 4H, 3', 4', 5', 6' -H). 7.40(s. 1H,
8-H), 3.99(s, 6H, -OCH₃). ¹⁹F NMR(DMSO-d₆):135.71. GC/MS m/z: 366(M⁻+1,
2.0), 365(M⁺, 15.0), 364(M⁺-1, 4.0), 281(21.0), 280(M⁻-OCF₃ 100). Found: C,
50.83; H.3.79; N,10.52. C₁-H₁₄F₃N₃O₃.HCl requires: C, 50.87; H,3.74; N, 10.47%.

4-(3', 5'-Ditrifluoromethylphenyl)-amno-6, 7-dimethoxyquinazoline (HI-P366) Yield. 82.88% m.p. 270.0-272.0°C. ¹H NMR(DMSO-d₆): δ 11.87(s. 1H, -NH), 8.97(s. 1H, 2-H), 8.60)s. 2H, 2', 6'-H). 8.43(s. 1H, 5-H), 7.98(s. 1H, 4'-H), 7.35(s. 1H, 8-H), 4.03(s. 3H, -OCH₃). 3.99(s. 3H, -OCH₃). ¹⁹F NMR (DMSO-d₆): XX GC/MS m/z: 418(M⁻+1. 19.0), 417(M⁻, 100.0), 416(M⁻-1, 73.0), 398(M⁻-F, 16.0), 398(M⁻-CF₃. 16.0). Found: C, 47.78; H.3.20; N.9.26. C₁₈H₁₃F₆N₃O₂.HCl requires: C. 47.68; H.3.09; N.9.27%.

- 4-(4'-Hydroxyl-3'-fluorophenyl)-amino-6,7-dimethoxyquinazoline (HI-P369)
 Yield. 84.28%. m.p. 268.0-270.0°C ¹H NMR(DMSO-d₆: δ 11.36(s, 1H, -NH).
 10.13(s, 1H, -OH). 8.80(s. 1H, 2-H), 8.30(s. 1H, 5-H), 7.60-7.02(m. 3H. 2', 5', 6'-H).
 7.31(s. 1H, 8-H). 3.99(s. 3H, -OCH₃), 3.97(s. 3H, -OCH₃).
 NMR(DMSO-d₆): δ 57.38. Found: C, 54.90: H, 4.28; N.11.91.
 C₁₆H₁₄FN₃O₃.HCl requires C. 54.70; H, 4.27; N.11.97%.
 - 4-(4'-Hydroxyl-3',5'-difluorophenyl)-amino-6,7-dimethoxy-quinazoline (HI-P408) Yield. 83.15%, m.p.228.0-230.0 0°C. ¹H NMR(DMSO-d₆): δ 11.46(s. 1H, -NH), 10.39(s. 1H, 2-H), 8.36(s. 1H, 5-H). 7.56, 7.54 (s. s. 2H. 2', 6'-H), 7.33(s. 1H. 8-H), 4.00)s. 3H, -OCH₃), 3.98(s. 3H, -OCH₃). ¹⁹F NMR(DMSO-d₆: δ60.25. 60.22. Found: C, 52.04; H, 4.17; N.11.10. C₁₆H₁₃F₂N₃O₃.HCl. requires C, 52.03; H. 3.79; N.11.38%.

47 Example 7

Anti-Tumor Activities of Specific Quinazoline Compounds

5

10

15

20

25

30

35

The cytotoxicity of the substituted quinazoline derivative compounds against a variety of human tumor cells was evaluated. The relative importance of particular substituent groups on the compounds was also studied. The substituted quinazoline derivative compounds, prepared as described above, were tested, along with DMSO as a control.

Cytotoxicity Assay

The cytotoxicity assay of various compounds against human tumor cell lines was performed using the MTT (3–[4,5–dimethylthiazol–2–yl]–2,5–diphenyl tetrazolium bromide) assay (Boehringer Mannheim Corp., Indianapolis, IN). Briefly, exponentially growing tumor cells were seeded into a 96–well plate at a density of 2.5 x 10^4 cells/well and incubated for 36 hours at 37°C prior to drug exposure. On the day of treatment, culture medium was carefully aspirated from the wells and replaced with fresh medium containing the quinazoline compounds at concentrations ranging from 0.1 to 250 μ M. Triplicate wells were used for each treatment.

Human cell lines were obtained from American Type Culture Collection (Rockville, MD) and maintained as a continuous cell line in Dulbecco's modified Eagles' medium supplemented with 10% fetal bovine serum and antibiotics. Cells used in this study include human leukemia cells (NALM-6 and MOLT-3), human breast cancer cells (BR20), human prostate cancer cells (PC3), and human brain tumor cells (U373).

The cells were incubated with the various compounds for 24–36 hours at 37°C in a humidified 5% CO₂ atmosphere. To each well, 10 μl of MTT (0.5 mg/ml final concentration) was added and the plates were incubated at 37°C for 4 hours to allow MTT to form formazan crystals by reacting with metabolically active cells. The formazan crystals were solubilized overnight at 37°C in a solution containing 10% SDS in 0.01 M HCl. The absorbance of each well was measured in a microplate reader (Labsystems) at 540 nm and a reference wavelength of 690 nm. To translate the OD 540 values into the number of live cells in each well, the OD 540 values were compared to those on standard OD 540 – versus – cell number curves

48

generated for each cell line. The percent survival was calculated using the formula:

% Survival =
$$\frac{\text{live cell number [test]}}{\text{live cell number [control]}} X 100$$

The IC₅₀ values were calculated by non-linear regression analysis.

5

10

15

20

25

30

Detection of Apoptosis

The demonstration of apoptosis was performed by the *in situ* nick-end-labeling method using ApopTag *in situ* detection kit (Oncor, Gaithersburg, MD) according to the manufacturer's recommendations. Exponentially growing cells were seeded in 6-well tissue culture plates at a density of 50x10⁴ cells/well and cultured for 36 hours at 37°C in a humidified 5% CO₂ atmosphere. The supernatant culture medium was carefully aspirated and replaced with fresh medium containing unconjugated EGF or EGF-P154 at a concentration of 10, 25, or 50 μg/ml. After a 36 hour incubation at 37°C in a humidified 5% CO₂ incubator, the supernatants were carefully aspirated and the cells were treated for 1-2 minutes with 0.1% trypsin. The detached cells were collected into a 15 ml centrifuge tube, washed with medium and pelleted by centrifugation at 1000 rpm for 5 minutes. Cells were resuspended in 50 μl of PBS, transferred to poly-L-lysine coated coverslips and allowed to attach for 15 minutes. The cells were washed once with PBS and incubated with equilibration buffer for 10 minutes at room temperature.

After removal of the equilibration buffer, cells were incubated for 1 hour at 37°C with the reaction mixture containing terminal deoxynucleotidyl transferase (TdT) and digoxigenin–11–UTP for labeling of exposed 3'–hydroxyl ends of fragmented nuclear DNA. The cells were washed with PBS and incubated with anti–digoxigenin antibody conjugated to FITC for 1 hour at room temperature to detect the incorporated dUTP. After washing the cells with PBS, the coverslips were mounted onto slides with Vectashield containing propidium iodide (Vector Labs, Burlingame, CA) and viewed with a confocal laser scanning microscope. Non–apoptotic cells do not incorporate significant amounts of dUTP due to lack of exposed 3–hydroxyl ends, and consequently have much less fluorescence than apoptotic cells which have an abundance of exposed 3'–hydroxyl ends. In control reactions, the TdT enzyme was omitted from the reaction mixture.

Results:

The cytotoxicity results for each tested group of compounds is shown in Tables 1-5 below:

Table 1

Cytotoxic Activity of Bromo Substituted Quinazoline Compounds against Leukemic (NALM-6 & MOLT-3) and Breast Cancer (BT-20)

Drug	NALM-6 IC50	MOLT-3 IC50	BT20 IC50
	(μ M)	(μ M)	(μ M)
HI-P79	142.1	194.9	201.5 .
HI-P88	>250	>250	>250
HI-P97	>250	>250	26.1
HI-P111	200.6	>250	>250
HI-P154	12.5	9.1	>250
HI-P160	135.2	240.7	25.5
HI-P164	>250	>250	39.2
HI-P190	>250	>250	>250
HI-P210	>250	>250	>250
HI-P211	>250	>250	>250
HI-P212	52.7	54.5	>250
HI-P214	>250	>250	>250
HI-P222	34.0	48.3	>250
HI-P234	>250	>250	>250
HI-P241	>250	>250	>250
HI-P258	>250	>250	>250
HI-P260	32.4	51.3	82.1
HI-P261	72.6	148.5	218.6
HI-P262	>250	>250	>250

Table 2

Cytotoxic Activity of Chloro Substituted Quinazoline Compounds against
Leukemic (NALM-6 & MOLT-3) and Breast Cancer (BT-20)

Drug	NALM-6 IC50	MOLT-3 IC50	BT20 IC50
	(μ m)	(μ m)	(μ m)
HI-P87	95.9	>104.6	>250
HI-P93	>250	>250	>250
HI-P189	>250	>250	>250
HI-P197	39.3	68.0	136.9
HI-P239	29.6	28.7	25.7
HI-P246	>250	>250	>250
HI-P268	215.2	227.4	121.5
HI-P269	>250	>250	>250
HI-P415	67.9	>250	38.1

<u>Table 3</u>

Cytotoxic Activity of Iodide Substituted Quinazoline Compounds against
Leukemic (NALM-6 & MOLT-3), Breast Cancer (BT-20) and Brain Tumor

(U373) cells

Drug	NALM-6 IC50 (μM)	MOLT-3 IC50 (μM)	BT20 IC50 (μM)	U373 IC50 (μM)
HI-P270	>250	78.9	>250	>250
HI-P271	6.1	9.6	>250	>250
HI-P294	>250	>250	>250	>250
HI-P299	15.4	60.1	>250	>250
HI-P300	58.0	59.1	72.6	116.2

Table 4

Cytotoxic Activity of OH Substituted Quinazokline Compounds against
Leukemic (NALM-6 & MOLT-3), Breast Cancer (BT-20) and Brain Tumor
(U373) cells

Drug	NALM-6	MOLT-3	BT20	U373
J	IC50	IC50	IC50	IC50
	(μ M)	(μ M)	(μ M)	(μ M)
HI-P93	>250	>250	>250	>250
HI-P97	>250	>250	26.1	161.2
HI-P131	32.1	38.6	>250	>250
HI-P154	12.5	9.1	>250	167.4
HI-P189	>250	>250	>250	>250
HI-P190	>250	>250	>250	>250
HI-P192	>250	>250	>250	>250
HI-P197	68.5	63.8	71.5	>250
HI-P294	>250	>250	>250	>250
HI-P299	66.3	51.2	>250	>250

10

15

<u>Table 5</u>
Cytotoxic activity of fluoro-substituted dimethoxy quinazolines on cancer cells.

	- 1401 m 3	11252	DTO	PC3
				IC50
-				
<u>(μM)</u>	<u>(μM)</u>			(μΜ)
28.1 ± 2.6	24.9 ± 3.7			>250
>250	>250	>250		>250
37.0 ± 5.8	33.2 ± 3.3	29.9 ± 7.3		126.1 ± 5.8
22.3 ± 3.0	41.3 ± 4.4	83.6 ± 6.5		58.3 ± 3.2
100.5 ±	98.73 ± 3.8	28.8 ± 12.7	30.67 ± 7.9	>250
4.8				
39.5 ± 8.0	40.8 ± 15.1	32.1 ± 3.9	27.56 ± 8.6	>250
20.15 ±	23.3 ± 7.7	22.4 ± 5.9	58.33 ± 5.8	>250
8.1				
57.3 ±	237.1 ± 4.8	>250	>250	>250
24.8				
41.4 ± 6.9	43.6 ± 2.3	207.7 ±	70.54 ± 8.2	88.9 ± 17.2
		18.1		•
47.0 ±	70.9 ± 17.3	53.3 ± 6.7	33.33 ± 7.5	>250
19.5				
7.1 ± 1.8	21.8 ± 1.7	65.5 ± 11.2	50.3 ± 14.8	72.6 ± 2.5
6.1 ± 1.4	17.4 ± 1.5	14.5 ± 7.6	14.1 ± 3.3	64.9 ± 11.9
	25.3 ± 9.1	27.7 ± 1.2	40.1 ± 8.6	>250
	110.7 ± 7.5	>250	>250	>250
•	137.2 ±	55.5 ± 13.2	61.7 ± 12.1	>250
	10.3			
	>250	>250	>250	>250
	228.5 ±	>250	>250	>250
	20.8			
	>250 37.0 ± 5.8 22.3 ± 3.0 $100.5 \pm$ 4.8 39.5 ± 8.0 $20.15 \pm$ 8.1 $57.3 \pm$ 24.8 41.4 ± 6.9 $47.0 \pm$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IC50 (μM) IC50 (μM) IC50 (μM) IC50 (μM) IC50 (μM) 28.1 ± 2.6 24.9 ± 3.7 49.5 ± 11.3 63.4 ± 5.5 >250 >250 >250 >250 37.0 ± 5.8 33.2 ± 3.3 29.9 ± 7.3 37.62 ± 5.2 22.3 ± 3.0 41.3 ± 4.4 83.6 ± 6.5 44.2 ± 10.9 100.5 ± 98.73 ± 3.8 28.8 ± 12.7 30.67 ± 7.9 4.8 39.5 ± 8.0 40.8 ± 15.1 32.1 ± 3.9 27.56 ± 8.6 20.15 ± 23.3 ± 7.7 22.4 ± 5.9 58.33 ± 5.8 8.1 57.3 ± 237.1 ± 4.8 >250 >250 24.8 41.4 ± 6.9 43.6 ± 2.3 207.7 ± 70.54 ± 8.2 19.5 19.5 71. ± 1.8 21.8 ± 1.7 65.5 ± 11.2 50.3 ± 14.8 6.1 ± 1.4 17.4 ± 1.5 14.5 ± 7.6 14.1 ± 3.3 7.9 ± 1.9 25.3 ± 9.1 27.7 ± 1.2 40.1 ± 8.6 86.5 ± 3.4 110.7 ± 7.5 >250 >250 52.8 ± 137.2 ± 55.5 ± 13.2 61.7 ± 12.1

The compounds were tested for activity against various cancer cells. For example, NALM-6 cells were incubated with HI-P144, HI-P214, HI-P221, HI-P224, HI-P258, HI-P264, HI-P218, HI-P223, HI-P228, HI-P366, HI-P367, HI-P219, HI-P352, HI-P353, HI-P364 or HI-P365 for 24 hours in 96-well plates and cell survival was determined by MTT assay. The data points represent the means (±SE) values from 3 independent experiments.

BT-20 breast cancer cells were incubated with HI-P144, HI-214, HI-P221, HI-P224, HI-P258, HI-P264, HI-P218, HI-P223, HI-P228, HI-P366, HI-P367. HI-P219, HI-P352, HI-P353, HI-P364, or HI-P365 for 24 hours in 96-well plates and cell survival was determined by MTT assay. The data points represent the mean (± SE) values from 3 independent experiments.

Apoptosis was induced by the compounds. The cells were incubated with HI-P353 or HI-P219 for 24 hours, fixed, permeabilized, and visualized for DNA degradation in a TUNEL assay using digoxigenin-UTP-labeling kit. In the color photographs, red fluorescence represents nuclei stained with propidium iodide.

Green or yellow (i.e., superimposed red plus green) represents the apoptotic nuclei.

Shown are control NALM-6 (Figure 3A) and BT-20 (Figure 3B) cells: HI-P353 treated NALM (Figure 3D) and BT-20 cells (Figure 3E); and control (Figure 3C) and HI-P219 treated PC3 cells (Figure 3F).

Example 8

5

35

Pharmacokinetic Studies:

In pharmacokinetic studies, mice were injected either intravenously (i.v.) via the tail vein or intraperitoneally (i.p.) with a bolus dose of 300 µg/mouse (~12.5 10 $mg/kg = 34 \mu mols/kg$) of HI-P131. Blood samples were obtained from the ocular venous plexus by retroorbital venupuncture prior to and at 3 minutes, 5 minutes, 10 minutes, 15 minutes, 30 minutes, 45 minutes and 1 hour, 2 hours, 4 hours, and 8 hours after administration of HI-P131. All collected blood samples were heparinized and centrifuged at 7,000 xg for 10 minutes in a microcentrifuge to 15 obtain plasma. The plasma samples were stored at -20°C until analysis. Aliquots of plasma were used for extraction and HPLC analysis. Pharmacokinetic modeling and pharmacokinetic parameter calculations were carried out using the pharmacokinetics software, WinNonline Program, Version 1.1. (Scientific Consulting Inc., Cary, NC). Concentration data were weighted by 1/concentration. An appropriate 20 pharmacokinetic model was chosen on the basis of lowest weighted squared residuals, lowest Schwartz criterion (SC), lowest Akaike's Information Criterion (AIC) value, lowest standard errors of the fitted parameters, and dispersion of the residuals. The elimination half-life was estimated by linear regression analysis of the terminal phase of the plasma concentration profile. The area under the 25 concentration time curve (AUC) was calculated by the trapezoidal rule between first (0 h) and last sampling time plus C/k, where C is the concentration of last sampling and k is the elimination rate constant. Systemic clearance (CL) was determined by dividing the dose by the AUC. The apparent volume of distribution at steady-state was calculated using the following equation, $V_{ss} = Dose \cdot AUMC / (AUC)^2$. 30 Bioavailability (F) was estimated using the equation F(%) = AUC_{ip} x Dose_{iv} / AUC_{iv} x Doseip.

HPLC Analysis of Plasma HI-P131 Levels:

A highly sensitive quantitative HPLC detection method (Chen et. al., 1998, J. Chromatography B (Biomedical sciences), in press) was used to determine the

WO 00/56720 PCT/US00/06902 53

pharmocokinetics of HI–P131. In brief, the HPLC system consisted of a Hewlett Packard (HP) series 1100 equipped with an automated electronic degasser, a quaternary pump, an autosampler, an automatic thermostatic column compartment, diode array detector and a computer with a Chemstation software program for data analysis. A 250 x 4 mm Lichrospher 100, RP–18 (5 μm) analytical column and a 4 x 4 mm Lichrospher 100, RP–18 (5 μm) guard column were obtained from Hewlett Packard Inc. (San Fernando, CA). Acetonitrile/water containing 0.1% of trifluoroacetic acid (TFA) and 0.1% triethylamine (TEA) (28:72, v/v) was used as the mobile phase. The wavelength of detection was set at 340 nm. Peak width, response time and slit were set at >0.03 minutes, 0.5 seconds and 8 nm. respectively.

5

10

15

20

25

30

For determination of HI–P131 levels, $10~\mu L$ of internal standard HI–P154 (50 μM) was added to a $100~\mu L$ plasma sample. For extraction, 7 ml chloroform was then added to the plasma sample, and the mixture was vortexed thoroughly for 3 minutes. Following centrifugation (300 xg, 5 minutes), the aqueous layer was frozen using acetone/dry ice and the organic phase was transferred into a clean test tube. The chloroform extracts were dried under a slow steady stream of nitrogen. The residue was reconstituted in $100~\mu L$ of methanol: water (9:1) and $50~\mu L$ aliquot of this solution was used for HPLC analysis. Under the described chromatographic separation conditions, the retention times for HI–P131 and HI–P154 were 5.1 minutes and 9.5 minutes, respectively. At the retention time, HI–P131 and its internal standard HI–P154 were eluted without any interference peaks from the blank plasma.

HI-P131 was not toxic to mice at intraperitoneal single bolus doses ranging from 0.5 mg/kg to 250 mg/kg. None of the 50 mice treated with HI-P131 experienced side effects or died of toxicity during the 30 day observation period. In particular, we observed no hematologic side effects such as neutropenia, lymphopenia, or anemia at the tested dose levels. No histopathologic lesions were found in the organs of HI-P131 treated mice that were selectively killed at 30 days and there was no bone marrow hypoplasia or lymphoid cell depletion in spleen and lymph nodes. Thus, the maximum tolerated dose (MTD) of HI-P131 was not reached at 250 mg/kg. We next examined the pharmacokinetic features of HI-P131 in mice. A two-compartment pharmacokinetic model was fit to the pharmacokinetics data obtained following the intravenous (i.v.) or intraperitoneal (i.p.) administration of a single non-toxic 12.5 mg/kg bolus dose of HI-P131. The

54

estimated maximum plasma concentrations (C_{max}) of HI-P131 were 85.6 μM after i.v. administration.

Example 9

Antitumor Activity of Quinazolines In vivo

To test the anti-tumor activity of quinazolines in vivo, cancer cells were implanted and grown in mice in the presence of quinazoline.

Inhibition of breast cancer cells

5

10

15

20

25

30

The left hind legs of CB.17 SCID mice were inoculated subcutaneously with 0.75 x 10⁶ MDA-MB-231 human breast cancer cells in 0.1 ml PBS. Twenty-four hours after inoculation, the mice were treated with HI-P353 (10 mg/kg/day x 5 days/week, N=7), or HI-P364 (10 mg/kg/day x 5 days/week, N=8), or vehicle (50% DMSO in PBS, N=7) for four weeks. The mice were monitored daily for health status and tumor growth. Measurements were taken on the tumors 3 times a week using a Vernier caliper. Tumor volumes were calculated using the following formula: (width)² x (length/2). Comparisons of the outcomes of the three groups were done using the log-rank test.

The data are shown in Figure 10A, and demonstrate that treatment of animals with the quinazolines of the invention (HI-P353 and HI-P364) inhibited the growth of breast cancer cell tumors as compared with untreated controls.

Inhibition of brain tumor cells

An analogous experiment was done implanting brain tumor cells into mice. The right hind legs of CB.17 SCID mice were inoculated subcutaneously with 1 x 10⁶ of U373 human glioblastoma cells in 0.1 ml of PBS. Twenty four hours after inoculation, mice were treated with HI-P353 (10 mg/kg/day x 5 days/week, N=7), or HI-P364 (10 mg/kg/day x 5 days/week, N=8), or vehicle (50% DMSO in PBS, N=7) for four weeks. Mice were monitored daily for health status and tumor growth. Tumors were measured 3 times a week using a Vernier caliper. Tumor volumes were calculated using the following formula: (width)² x (length/2). Comparisons of outcome between groups were done using the log-rank test.

The data are shown in Figure 10B and demonstrate that treatment of animals with the quinazolines of the invention (HI-P353 and HI-P364) inhibited the growth of brain tumors as compared with untreated controls.

5 Inhibition of intracranial brain tumors

10

15

20

25

The anti-tumor activity of the quinazolines of the invention was also studied with intracranial tumors. Nude mice were first anesthetized with Avertin. Under aseptic conditions in a laminar flow hood, a small hole was drilled at 2 mm to the right of the midline and 2 mm posterior to the bregma. An amount of 4×10^5 U87 glioblastoma cells in $10 \, \mu L$ of PBS were intracranially implanted using a Hamilton syringe into the right cerebral hemisphere of mice and a stereotaxic apparatus according to the method described in Huang, H.J.S. et al., *J. Biol. Chem.* 272:2927–2935, 1997.

Twenty-four hours after inoculation, mice were treated with HI-P353 (20 mg/kg/day x 10 days, n=10), HI-P364 (20 mg/kg/day x 10 days, n=10), or vehicle (50% DMSO in PBS, n=10). The mice were monitored twice daily for health status.

Figure 10C shows the survival rate of mice inflicted with intracranial tumors. Treatment of mice with quinazolines (HI-P353 and HI-P364) resulted in prolonged survival as compared with mice treated with vehicle alone.

All publications, patents, and patent documents described herein are incorporated by reference as if fully set forth. The invention described herein may be modified to include alternative embodiments. All such obvious alternatives are within the spirit and scope of the invention, as claimed below.

WE CLAIM:

1. A compound of the formula:

wherein:

 R^a is iodo, (C_1-C_4) hydroxyalkyl, methylenedioxy, ethylenedioxy, benzyloxy, OCF₃, SCF₃, SO₃H, SO₂F, SO₂NR²R³ where R² is hydrogen or (C_1-C_4) alkyl and R³ is hydrogen, (C_1-C_4) alkyl, or phenyl, NR²R⁴ where R² is hydrogen or (C_1-C_4) alkyl and R⁴ is phenyl; or a group of the formula

$$\begin{array}{c|c}
R^5 \\
C \\
R^6
\end{array}$$

wherein R^5 and R^6 are each independently, hydrogen, (C_1-C_4) alkyl, or (C_1-C_4) perfluoroalkyl, and R^7 is hydrogen, halo, hydroxy, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) hydroxyalkyl, or $N(R^2)_2$, where R^2 is hydrogen or (C_1-C_4) alkyl;

n is an integer of 1-4;

 R^b is each, independently, hydrogen, halo, hydroxy, mercapto, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) thioalkyl, (C_1-C_4) hydroxyalkyl, nitro, cyano. methylenedioxy, ethylenedioxy, COCH₃. CF₃. OCF₃. SCF₃. COOH, SO₃H. SO₂F, phenyl, or phenyl substituted by a group selected from halo, hydroxy, mercapto, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_1-C_4) thioalkyl, (C_1-C_4) hydroxyalkyl, amino, nitro, cyano, CF₃, COOH, SO₃H, SO₂NR²R³, SO₂F where R² is H or (C_1-C_4) alkyl and R³ is H, (C_1-C_4) alkyl, phenyl, or phenyl substituted by a group as defined above; benzyloxy or benzyloxy substituted on the phenyl portion by a group defined above; NR²R³ where R² is H or (C_1-C_4) alkyl and R³ is H, (C_1-C_4) alkyl, phenyl, or phenyl substituted by a group as defined above; and

 R^{1} is (C_1-C_4) alkyl or a pharmaceutically acceptable salt thereof.

2. The compound of claim 1 wherein the pharmaceutically acceptable salt is an acid addition salt.

- 3. The compound of claim 1, wherein R¹ is methyl.
- 4. The compound of claim 3, wherein R^a is a member selected from the group consisting of I, NHC₆H₅, $-OCH_2CH_2O^-$, $-OCH_2O^-$, OCF₃, SCF₃, CH₂OH. C₂H₄OH, SO₃H, SO₂NH₂, and SO₂F.
 - 5. The compound of claim 4, wherein R^a is I, OCF_{3.} or SO₂F.
 - 6. The compound of claim 5, wherein R^a is I.
 - 7. The compound of claim 5 wherein R^a is OCF₃.
- The compound of claim 3, wherein n is 1 and R^a is a group of the formula

$$- \begin{matrix} R^5 \\ C \\ R^6 \end{matrix}$$

- 9. The compound of claim 8, wherein R^5 and R^6 are each, independently, H, CH_3 or CF_3 .
 - 10. The compound of claim 9, wherein R⁵ and R⁶ are CF₃ and R⁷ is NH₂.
- 11. The compound of claim 3, wherein R^b is at least one member selected from the group consisting of F. Cl, Br, I, OH, NH₂, NO₂, CN, COOH, CH₃ and CF₃.
- 12. The compound of claim 11, wherein R^b is at least one member selected from the group consisting of F, Cl, Br, OH and CF₃.
- 13. A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 and a pharmaceutically acceptable carrier or diluent.

- A method of treating tumors in a subject comprising administering to 14. said subject an anti-tumor effective amount of a compound of claim 1.
- A method of treating leukemia in a subject comprising administering 15. to said subject a compound of claim 1 in an amount effective for inducing apoptosis of leukemia cells.
- A method of inhibiting cancer cell growth in a subject comprising 16. administering to said subject a cytotoxic effective amount of a compound of claim 1.
- A method of treating leukemia in a subject comprising administering 17. to said subject a compound selected from the group consisting of:
 - 4-(3',5'-dibromo-4'-methylphenyl)amino-6,7-dimethoxyquinazoline.
 - 4-(2'.4'.6'-tribromophenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(2'.3'.5'.6'-tetrafluoro-4'-bromophenyl)amino-6,7dimethoxyquinazoline,
 - 4-(4'-fluorophenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(3'-fluorophenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(2'-fluorophenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(4'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(2'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline, and pharmaceutically acceptable acid addition salts thereof.
- A method of treating breast tumors in a subject comprising 18. administering to said subject a compound selected from the group consisting of
 - 4-(3'-bromophenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(3',5'-dibromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline.
 - 4-(3'-chloro-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline,
 - 4-(2',3',5',6'-tetrafluoro-4'-bromophenyl)amino-6,7dimethoxyquinazoline,
 - 4-(4'-fluorophenyl)amino-6.7-dimethoxyquinazoline.
 - 4-(3'-fluorophenyl)amino-6.7-dimethoxyquinazoline.
 - 4-(2'-fluorophenyl)amino-6,7-dimethoxyquinazoline, and

pharmaceutically acceptable acid addition salts thereof.

- 19. A method of treating multi-drug resistant leukemia in a subject comprising administering to said subject 4-(4'-hydroxyphenyl)amino-6.7-dimethoxyquinazoline or a pharmaceutically acceptable salt thereof, in an amount effective for inducing apoptosis of multi-drug resistant leukemia cells.
- 20. A method of treating multi-drug resistant leukemia in a subject comprising administering to said subject 4–(3'-bromo-4'-hydroxyphenyl)amino-6,7-dimethoxyquinazoline or a pharmaceutically acceptable acid addition salt thereof, in an amount effective for inducing apoptosis of multi-drug resistant leukemia cells.
- 21. The compound 4-(3',5'-dibromo-4'-methylphenyl)amino-6,7-dimethoxyquinazoline or a pharmaceutically acceptable acid addition salt thereof.
- 22. The compound 4-(2',4',6'-tribromophenyl)amino-6,7-dimethoxyquinazoline or a pharmaceutically acceptable acid addition salt thereof.
- 23. The compound 4-(2',3',5',6'-tetrafluoro-5'-bromophenyl)amino-6,7-dimethoxyquinazoline or a pharmaceutically acceptable acid addition salt thereof.
- 24. The compound 4-(4'-fluorophenyl)amino-6,7-dimethoxyquinazoline or a pharmaceutically acceptable acid addition salt thereof.
- 25. The compound 4-(4'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline or a pharmaceutically acceptable acid addition salt thereof.
- 26. The compound 4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxy-quinazoline or a pharmaceutically acceptable acid addition salt thereof.
- 27. A pharmaceutical composition comprising an effective amount of a compound selected from the group consisting of:
 - 4-(3',5'-bis-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline.

- 4-(2',4',6'-tribromophenyl)amino-6,7-dimethoxyquinazoline.
- 4-(2',3',5',6'-tetrafluoro-4'-bromophenyl)amino-6,7-dimethoxyquinazoline,
- 4-(3',5'-dibromo-4'-methylphenyl)amino-6,7-dimethoxyquinazoline,
- 4-(4'-fluorophenyl)amino-6,7-dimethoxyquinazoline,
- 4-(4'-trifluoromethylphenyl)amino-6,7-dimethoxyquinazoline, and pharmaceutically acceptable acid addition salts thereof; and a pharmaceutically acceptable carrier or diluent.

Cytotoxicity of F-dmQ in Leukemic Cells

PCT/US 0 0

Figure 4 ECM proteins primite adhesion

Figures SA - F F-dmQ inhibit achiesion

Figs 6 A-F

ANTI-INVASIVE ACTIVITY OF FLORA

Fig 8

(6B

(OC

Int. Jonal Application No PCT/US 00/06902

A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 C07D239/94 A61K31/517 A61P35/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) $\begin{array}{ccc} IPC & 7 & CO7D & A61K & A61P \end{array}$ Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages 1-6,13,WO 95 21613 A (SUGEN) X 17 August 1995 (1995-08-17) 14 page 0 -page 41; claim 8 1-3,13, X EP 0 566 226 A (ZENECA) 20 October 1993 (1993-10-20) 14 claims; table II & US 5 457 105 A X 10 October 1995 (1995-10-10) cited in the application 1-3,8, X WO 95 15758 A (RHONE POULENC) 13,14 15 June 1995 (1995-06-15) page 15 -page 17; claims & US 5 721 237 A X 24 February 1998 (1998-02-24) cited in the application Further documents are listed in the continuation of box C. Patent family members are listed in annex. X Special categories of cited documents : "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 19/07/2000 10 July 2000 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Francois, J

Inti Jonel Application No PCT/US 00/06902

		101/03 00/00902
Category *	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 96 09294 A (WELLCOME) 28 March 1996 (1996-03-28) claims; examples 84,116-119,124,127,128,131	1-3,8, 13,14
X	WO 98 10767 A (SUGEN) 19 March 1998 (1998-03-19) page 61 -page 67; claims; table 1	1-3,13, 14,18
X .	NARLA ET AL.: "4-(3'-BROMO-4' HYDRXYPHENYL)AMINO-6,7-DIMETHOXYQUINAZOLIN E" CLINICAL CANCER RESEARCH., vol. 4, no. 6, June 1998 (1998-06), pages 1405-14, XP002113201 THE AMERICAN ASSOCIATION FOR CANCER RESEARCH., US ISSN: 1078-0432 cited in the application page 1404 -page 1407	1-3,13, 14,20
A	WO 97 32856 A (ZENECA) 12 September 1997 (1997-09-12) claims	1-3,13
P,X	WO 99 61428 A (WAYNE HUGHES) 2 December 1999 (1999-12-02) the whole document	1-3,13, 14,18-20

information on patent family members

Inth Jonal Application No PCT/US 00/06902

WO 9521613	A	17-08-1995			
MO 3721VI3	п		AU	1842395 A	29-08-1995
		1, 00 1333	CA	2182949 A	17-08-1995
			EP	0748219 A	18-12-1996
				000026393 A	25-01-2000
			JP -	. 9508642 T	02-09-1997
			US	5712395 A	27-01-1998
			US	5851999 A	22-12-1998
			US	5763441 A	09-06-1998
			US	5792771 A	11-08-1998
				5981569 A	09-11-1999
			US US	5849742 A	15-12-1998
		20-10-1993	AT	130000 T	15-11-1995
EP 566226	A	20-10-1993	AU	661533 B	27-07-1995
			AU	3101093 A	22-07-1993
					21-07-1993
			CA	2086968 A,C	16-04-1997
			CZ	282038 B	
			DE	69300754 D	14-12-1995
			DE	69300754 T	28-03-1996
			DK	566226 T	18-03-1996
			ES	2078798 T	16-12-1995
			FI	930208 A	21-07-1993
			GR	3018143 T	29-02-1996
			HK	36497 A	04-04-1997
			HU	63153 A	28-07-1993
			HU	9500185 A	28-07-1995
			MX	9300277 A	30-06-1994
			NO	301541 B	10-11-1997
			NZ	245662 A	26-09-1995
			RU	2127263 C	10-03-1999
			SK	1693 A	09-09-1993
			ÜS	5457105 A	10-10-1995
			ÜS	5616582 A	01-04-1997
			ZA	9300015 A	20-07-1993
			JP	2994165 B	27-12-1999
			JP	6073025 A	15-03-1994
WO 9515758	Α	15-06-1995	US	5480883 A	02-01-1996
	•		US	5710158 A	20-01-1998
			AU	1305095 A	27-06-199
			EP	0871448 A	21-10-1998
			SG	54172 A	16-11-1998
			ÜS	5795889 A	18-08-1998
			ÜŠ	5646153 A	08-07-1997
			ÜS	5721237 A	24-02-1998
			US	5714493 A	03-02-1998
			US	6057320 A	02-05-2000
			US	RE36256 E	20-07-1999
WO 9609294		28-03-1996	AU	3482495 A	09-04-1990
MU 3003634	A	20 03 1990	EP	0782570 A	09-07-199
			JP	10505600 T	02-06-199
			TR	960233 A	21-06-199
WO 9810767	Α	 19-03-1998	AU	4342997 A	02-04-199
HO 3010/0/	,,	15 05 1550	EP	0954315 A	10-11-199
			นิร	6004967 A	21-12-199

Information on patent family members

Inte Ional Application No PCT/US 00/06902

Patent document cited in search report		Publication date	Patent family member(s)		Publication date	
WO 9732856	Α	12-09-1997	AU	719327	В	04-05-2000
110 37 02000	••	44 44 544	AU	1866497	Α	22-09-1997
			CA	2244897	A	12-09-1997
			CN	1212684	A	31-03-1999
			EP	0885198	A	23-12-1998
			NO	984085	A	04-09-1998
			ZA	9701747	A	27-08-1998
WO 9961428	Α	02-12-1999	AU	4317399	A	13-12-1999