Capítulo 1

GEOMETRIA ANALÍTICA E CONJUNTOS ESPECIAIS

Neste capítulo estabeleceremos os conceitos básicos para o estudo do Cálculo em várias variáveis. Não pretendemos fazer um estudo detalhado de vetores ou de Geometria Analítica, mas recomendamos aos leitores, consultar a bibliografia como complemento necessário deste capítulo.

1.1 Espaços Euclidianos

O espaço euclidiano n-dimensional ($n \in \mathbb{N}$) é o produto cartesiano de n fatores iguais a \mathbb{R} :

$$\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}.$$

- 1. Se n = 1, $\mathbb{R}^1 = \mathbb{R}$ é a reta coordenada.
- 2. Se n = 2, \mathbb{R}^2 é o plano coordenado.
- 3. Se n = 3, \mathbb{R}^3 é o espaço coordenado tridimensional.

1.2 O Espaço Euclidiano Tridimensional

O espaço euclidiano tridimensional é definido pelo conjunto:

$$\mathbb{R}^3 = \{ (x, y, z) / x, y, z \in \mathbb{R} \}.$$

Logo, os elementos de \mathbb{R}^3 são ternos ordenados.

Observação 1.1. Dados $(x, y, z) \in \mathbb{R}^3$ e $(x_1, y_1, z_1) \in \mathbb{R}^3$, tem-se:

$$(x, y, z) = (x_1, y_1, z_1) \iff x = x_1, y = y_1 \text{ e } z = z_1.$$

Em \mathbb{R}^3 podem ser definidas duas operações.

Definição 1.1. Dados (x, y, z), $(x_1, y_1, z_1) \in \mathbb{R}^3$ e $\beta \in \mathbb{R}$, definimos:

1. Adição de elementos de \mathbb{R}^3 :

$$(x, y, z) + (x_1, y_1, z_1) = (x + x_1, y + y_1, z + z_1).$$

2. Multiplicação de elementos de \mathbb{R}^3 por escalares de \mathbb{R} :

$$\beta(x, y, z) = (\beta x, \beta y, \beta z).$$

Estas duas operações satisfazem às seguintes propriedades:

Proposição 1.1. Dados x, y, z e $\mathbf{0} = (0,0,0)$ elementos de \mathbb{R}^3 e α , $\beta \in \mathbb{R}$; então:

1.
$$x + y = y + x$$

5.
$$\beta(\mathbf{x} + \mathbf{y}) = \beta \mathbf{x} + \beta \mathbf{y}$$

2.
$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z})$$

6.
$$(\alpha + \beta) \mathbf{x} = \alpha \mathbf{x} + \beta \mathbf{x}$$

3.
$$x + 0 = 0 + x = x$$
.

4.
$$\alpha(\beta \mathbf{x}) = (\alpha \beta) \mathbf{x}$$

7.
$$1 \cdot \mathbf{x} = \mathbf{x} \cdot 1 = \mathbf{x}$$

8. Existe o elemento: $-\mathbf{x} \in \mathbb{R}^3$ tal que $\mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = 0$.

9. Se
$$\mathbf{x} = (x, y, z)$$
, então $-\mathbf{x} = (-x, -y, -z)$

Observação 1.2.

- 1. Analogamente, estas operações podem ser definidas em \mathbb{R}^2 .
- 2. Em geral, um conjunto onde são definidas as operações de adição e multiplicação por um número real (escalar), como na definição anterior, satisfazendo às propriedades anteriores é chamado **espaço vetorial sobre** \mathbb{R} e seus elementos são chamados vetores.
- 3. Logo, \mathbb{R}^3 é um espaço vetorial (de dimensão 3) sobre $\mathbb{R}.$
- 4. De forma análoga, \mathbb{R}^2 é um espaço vetorial (de dimensão 2) sobre \mathbb{R} .

1.3 Sistema de Coordenadas Ortogonais no Espaço

Escolhamos três retas mutuamente perpendiculares e denotemos por $\vec{0}$ o ponto de interseção das retas, chamado origem.

Estas retas, ditas eixos coordenados, são designadas como o eixo dos x, eixo dos y e eixo dos z, respectivamente.

Os eixos dos x e dos y formam um plano horizontal e o eixo dos z é ortogonal a este plano. Os planos que contem os eixos coordenados, chamados planos coordenados, são: plano xy se contem os eixos dos x e dos y; plano xz se contem os eixos dos x e dos z e plano yz se contem os eixos dos y e dos z.

Os planos coordenados dividem o espaço em oito partes chamadas octantes. Um terno ordenado de números reais (x,y,z) está associado a um único ponto P do sistema de coordenadas.

A distância do ponto P ao plano yz é a coordenada x de P, a distância do ponto P ao plano xz é a coordenada y de P e a distância do ponto P ao plano xy é a coordenada z de z.

Estas três coordenadas são as coordenadas retangulares do ponto P e determinam uma correspondência um a um entre ternos ordenados e pontos do sistema de coordenadas. Ao vetor $\vec{0}$ está associado o terno (0,0,0).

Observação 1.1.

- 1. Os elementos de \mathbb{R}^3 são denominados pontos ou vetores, com o seguinte cuidado: $(x, y, z) \in \mathbb{R}^3$ é um vetor que tem a origem em (0, 0, 0) e extremidade em (x, y, z).
- 2. (x, y, z) e é também chamado **vetor posição** de (x, y, z).
- 3. Para ter uma melhor distinção denotaremos os vetores de forma diferente da dos pontos. Por exemplo $\vec{0} = (0, 0, 0)$ é o vetor nulo.

Figura 1.1:

Dados $P_1=(x_1,y_1,z_1)$ e $P_2=(x_2,y_2,z_2)$, o vetor $\vec{\mathbf{v}}$ determinado por $\overrightarrow{P_1P_2}$ é:

$$\vec{\mathbf{v}} = P_2 - P_1 = (x_2 - x_1, y_2 - y_1, z_2 - z_1)$$

O vetor $\vec{\mathbf{v}} = \overrightarrow{OP}$ é o vetor posição do ponto P.

Exemplo 1.1.

[1] Se $P_1 = (3, 2, 1)$ e $P_2 = (-2, 1, -5)$, determine $\overrightarrow{P_1P_2}$.

Da definição:

$$\overrightarrow{P_1P_2} = (-2, 1, -5) - (3, 2, 1) = (-5, -1, -6).$$

[2] Se $P_1=(\sqrt{2},1,\pi)$ e $P_2=(2,1,2\pi)$, determine $\overrightarrow{P_1P_2}$.

Da definição:

$$\overrightarrow{P_1P_2} = (2, 1, 2\pi) - (\sqrt{2}, 1, \pi) = (2 - \sqrt{2}, 0, \pi).$$

Definição 1.2. Um conjunto de vetores $\vec{v_1}$, $\vec{v_2}$, , $\vec{v_k} \in \mathbb{R}^n$ são **linearmente independentes (l.i.)**, se qualquer combinação:

$$c_1 \vec{v_1} + c_2 \vec{v_2} + \ldots + c_k \vec{v_k} = 0, \quad c_i \in \mathbb{R},$$

implica que $c_1 = c_2 = ... = c_k = 0$.

Caso contrário, são ditos linearmente dependentes (l.d.).

Proposição 1.2.

- 1. Qualquer conjunto $V \subset \mathbb{R}^n$ tal que $\vec{0} \in V$, então V é l.d.
- 2. Se V é um conjunto de vetores l.i, então todo $W \subset V$ é um conjunto de vetores l.i.
- 3. Se k > n, conjunto de vetores $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k} \in \mathbb{R}^n$ são l.d.

Prova: Imediata.

Produto Interno ou Escalar 1.4

O produto escalar é uma função linear:

$$: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}, \quad n = 2, 3$$

 $(u, v) \longrightarrow u \cdot v$

Definição 1.3. Sejam $\vec{\mathbf{u}} = (u_1, u_2, u_3)$ e $\vec{\mathbf{v}} = (v_1, v_2, v_3)$ vetores em \mathbb{R}^3 . O produto escalar ou interno de $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}}$, denotado por $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$ (ou $<\vec{\mathbf{u}}, \vec{\mathbf{v}}>$) é definido por:

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = u_1 \, v_1 + u_2 \, v_2 + u_3 \, v_3$$

Analogamente se define o produto escalar de vetores em \mathbb{R}^2 .

Proposição 1.3. Sejam $\vec{\mathbf{v}}$, $\vec{\mathbf{u}}$, $\vec{\mathbf{w}} \in \mathbb{R}^3$ e $\beta \in \mathbb{R}$, então:

- 1. $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}} \geq 0$
- 2. $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}} = 0$ se e somente se, $\vec{\mathbf{v}} = \vec{0}$.
- 3. $\vec{\mathbf{v}} \cdot \vec{\mathbf{u}} = \vec{\mathbf{u}} \cdot \vec{\mathbf{v}}$.
- 4. $\vec{\mathbf{v}} \cdot \vec{0} = 0$.
- 5. $(\beta \vec{\mathbf{u}}) \cdot \vec{\mathbf{v}} = \vec{\mathbf{u}} \cdot (\beta \vec{\mathbf{v}}) = \beta (\vec{\mathbf{u}} \cdot \vec{\mathbf{v}}).$
- 6. $\vec{\mathbf{w}} \cdot (\vec{\mathbf{u}} + \vec{\mathbf{v}}) = (\vec{\mathbf{w}} \cdot \vec{\mathbf{u}}) + (\vec{\mathbf{w}} \cdot \vec{\mathbf{v}}).$

Prova: As provas seguem diretamente da definição.

Definição 1.4. O vetor \vec{v} é **ortogonal** a \vec{w} se e somente se

$$\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = 0$$

Observação 1.3.

- 1. O vetor $\vec{0}$ é o único vetor ortogonal a todos os vetores de \mathbb{R}^3 .
- 2. Se $\vec{\mathbf{w}} \in \mathbb{R}^2$ e $\vec{\mathbf{w}} = (x,y)$, então os vetores (-y,x) e (y,-x) são ortogonais a $\vec{\mathbf{w}}$. medskip
- 3. É comum a seguinte notação para produto escalar:

$$\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = <\vec{\mathbf{v}}, \vec{\mathbf{w}}>$$

1.5 Norma Euclidiana de um Vetor

Definição 1.5. Seja $\vec{\mathbf{v}} = (v_1, v_2, v_3) \in \mathbb{R}^3$.

1. **A norma euclidiana** de \vec{v} é denotada por $||\vec{v}||$ e definida por:

$$\|\vec{\mathbf{v}}\| = \sqrt{\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}} = \sqrt{v_1^2 + v_2^2 + v_3^2}.$$

2. O vetor $\vec{\mathbf{v}}$ é dito unitário se $\|\vec{\mathbf{v}}\| = 1$.

Analogamente se define a norma de vetores em \mathbb{R}^2 .

Proposição 1.4.

1. Se $\vec{\mathbf{w}} \neq \vec{\mathbf{0}}$ não é unitário, então o vetor definido por:

$$\vec{\mathbf{v}} = \frac{\vec{\mathbf{w}}}{\|\vec{\mathbf{w}}\|},$$

é unitário e tem a mesma direção de \vec{w} .

2. Se θ é o ângulo formado pelos vetores $\vec{\mathbf{v}}$ e $\vec{\mathbf{u}}$, então:

$$\vec{\mathbf{v}} \cdot \vec{\mathbf{u}} = \left\| \vec{\mathbf{v}} \right\| \left\| \vec{\mathbf{u}} \right\| \cos(\theta).$$

Prova:

- 1. A propriedade 1, pode ser provada diretamente da definição.
- 2. A segunda, aplicamos a lei dos co-senos ao triângulo da figura, temos:

$$\|\vec{\mathbf{u}} - \vec{\mathbf{v}}\|^2 = \|\vec{\mathbf{u}}\|^2 + \|\vec{\mathbf{v}}\|^2 - 2\|\vec{\mathbf{u}}\|\|\vec{\mathbf{v}}\|\cos(\theta).$$

Figura 1.2:

 $\|\vec{\mathbf{u}}\|^2 = \vec{\mathbf{u}} \cdot \vec{\mathbf{u}}$; temos:

$$\left(\vec{\mathbf{u}} - \vec{\mathbf{v}}\right) \cdot \left(\vec{\mathbf{u}} - \vec{\mathbf{v}}\right) = \vec{\mathbf{u}} \cdot \vec{\mathbf{u}} + \vec{\mathbf{v}} \cdot \vec{\mathbf{v}} - 2 \left\|\vec{\mathbf{u}}\right\| \left\|\vec{\mathbf{v}}\right\| \cos(\theta);$$

logo,

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{u}} - \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} - \vec{\mathbf{v}} \cdot \vec{\mathbf{u}} + \vec{\mathbf{v}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{u}} \cdot \vec{\mathbf{u}} + \vec{\mathbf{v}} \cdot \vec{\mathbf{v}} - 2 \|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\| \cos(\theta);$$

então,

$$\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \|\vec{\mathbf{u}}\| \|\vec{\mathbf{v}}\| \cos(\theta).$$

Corolário 1.1. (Desigualdade de Cauchy-Schwarz): Para todo \vec{u} e \vec{v} em \mathbb{R}^n , temos:

$$|\vec{u}\cdot\vec{v}| \leq \|\vec{u}\| \ \|\vec{v}\|.$$

A igualdade é válida se, e somente se \vec{u} e \vec{v} são l.i. ou um dos vetores é o vetor nulo. Prova Exercício.

Observação 1.4.

1. Três vetores de \mathbb{R}^3 tem um destaque especial, a saber:

$$\vec{i} = (1, 0, 0), \quad \vec{j} = (0, 1, 0) \quad e \quad \vec{k} = (0, 0, 1).$$

Figura 1.3: Os vetores \vec{i} , \vec{j} e \vec{k} .

- 2. Os vetores \vec{i} , \vec{j} e \vec{k} são unitários e mutuamente ortogonais.
- 3. O conjunto $\{\vec{\mathbf{i}}, \vec{\mathbf{j}}, \vec{\mathbf{k}}\}$ é dito a base canônica do \mathbb{R}^3 . Para todo $\vec{\mathbf{v}} = (v_1, v_2, v_3) \in \mathbb{R}^3$ temos:

$$\vec{\mathbf{v}} = v_1 \, \vec{\mathbf{i}} + v_2 \, \vec{\mathbf{j}} + v_3 \, \vec{\mathbf{k}}.$$

- 4. Logo, \mathbb{R}^3 é um espaço vetorial sobre \mathbb{R} de dimensão 3.
- 5. Analogamente para \mathbb{R}^2 , temos que os vetores $\vec{\mathbf{i}}=(1,0)$, $\vec{\mathbf{j}}=(0,1)$ são unitários e mutuamente ortogonais.
- 6. O conjunto $\{\vec{\mathbf{i}}, \, \vec{\mathbf{j}}\}$ é a base canônica do \mathbb{R}^2 . Para todo $\vec{\mathbf{v}} = (v_1, v_2) \in \mathbb{R}^2$ temos:

$$\vec{\mathbf{v}} = v_1 \, \vec{\mathbf{i}} + v_2 \, \vec{\mathbf{j}}.$$

7. Logo, \mathbb{R}^2 é um espaço vetorial sobre \mathbb{R} de dimensão 2.

1.6 Ângulos Diretores e Co-senos Diretores

Os ângulos diretores de um vetor não nulo $\vec{\mathbf{v}}=(v_1,v_2,v_3)$ são os ângulos α , β e γ , no intervalo $[0,\pi]$ que $\vec{\mathbf{v}}$ forma com os eixos coordenados.

Figura 1.4:

Os co-senos desses ângulos diretores, $cos(\alpha)$, $cos(\beta)$ e $cos(\gamma)$ são chamados co-senos diretores do vetor $\vec{\mathbf{v}}$. Pelas propriedades do produto escalar, temos:

$$cos(\alpha) = \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{i}}}{\|\vec{\mathbf{v}}\| \|\vec{\mathbf{i}}\|} = \frac{v_1}{\|\vec{\mathbf{v}}\|} = \frac{v_1}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$$

$$cos(\beta) = \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{j}}}{\|\vec{\mathbf{v}}\| \|\vec{\mathbf{j}}\|} = \frac{v_2}{\|\vec{\mathbf{v}}\|} = \frac{v_2}{\sqrt{v_1^2 + v_2^2 + v_3^2}}$$

$$cos(\gamma) = \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{k}}}{\|\vec{\mathbf{v}}\| \|\vec{\mathbf{k}}\|} = \frac{v_3}{\|\vec{\mathbf{v}}\|} = \frac{v_3}{\sqrt{v_1^2 + v_2^2 + v_3^2}}.$$

O vetor \vec{v} fica univocamente determinado conhecendo seu comprimento e seus ângulos diretores. De fato:

$$v_1 = \|\vec{\mathbf{v}}\| \cos(\alpha), \quad v_2 = \|\vec{\mathbf{v}}\| \cos(\beta) \quad \mathbf{e} \quad v_3 = \|\vec{\mathbf{v}}\| \cos(\gamma).$$

Note que:

$$\cos^2(\alpha) + \cos^2(\beta) + \cos^2(\gamma) = 1.$$

Exemplo 1.1.

[1] Sejam $\vec{\mathbf{v}}=(1,2,3)$ e $\vec{\mathbf{w}}=(-2,1,3)$. Determine $\vec{\mathbf{v}}\cdot\vec{\mathbf{w}}$ e os vetores unitários nas direções de $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$, respectivamente.

Primeiramente calculamos $\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = -2 + 2 + 9 = 9$. Agora devemos determinar:

$$\frac{\vec{v}}{\|\vec{v}\|} \quad e \quad \frac{\vec{w}}{\|\vec{w}\|}.$$

 $\|\vec{\mathbf{v}}\| = \sqrt{1+4+9} = \sqrt{14} \,\mathrm{e} \,\|\vec{\mathbf{w}}\| = \sqrt{4+1+9} = \sqrt{14}$; logo:

$$\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$$
 e $\left(-\frac{2}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$,

são os vetores unitários nas direções de v e w, respectivamente.

[2] Sejam $\vec{\mathbf{v}}=(x,-2,3)$ e $\vec{\mathbf{u}}=(x,x,-5)$. Determine o valor de x para que $\vec{\mathbf{v}}$ e $\vec{\mathbf{u}}$ sejam ortogonais.

Da definição $\vec{\mathbf{v}}$ e $\vec{\mathbf{u}}$ são ortogonais se $\vec{\mathbf{v}} \cdot \vec{\mathbf{u}} = 0$; então, $\vec{\mathbf{v}} \cdot \vec{\mathbf{u}} = x^2 - 2x - 15 = 0$, equação que tem soluções x = 5 e x = -3; logo: $\vec{\mathbf{v}} = (5, -2, 3)$ e $\vec{\mathbf{u}} = (5, 5, -5)$ são ortogonais e $\vec{\mathbf{v}} = (-3, -2, 3)$ e $\vec{\mathbf{u}} = (-3, -3, -5)$ são ortogonais.

[3] Sejam $P_1 = (3, -2, -1)$, $P_2 = (1, 4, 1)$, $P_3 = (0, 0, 1)$ e $P_4 = (-1, 1, -1)$. Determine o ângulo formado pelos vetores $\overrightarrow{P_1P_2}$ e $\overrightarrow{P_3P_4}$.

Sejam $\vec{\mathbf{v}} = \overrightarrow{P_1P_2} = (1-3,4+2,1+1) = (-2,6,2)$ e $\vec{\mathbf{w}} = \overrightarrow{P_3P_4} = (-1,1,-2)$. O ângulo formado por $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$ é:

$$cos(\theta) = \frac{\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}}{\|\vec{\mathbf{v}}\| \|\vec{\mathbf{w}}\|} = \sqrt{\frac{2}{33}}.$$

[4] Calcule os co-senos diretores de $\vec{\mathbf{u}} = (-2, 1, 2)$.

Como
$$\|\vec{\mathbf{u}}\| = 3$$
, $cos(\alpha) = -\frac{2}{3}$, $cos(\beta) = \frac{1}{3}$ e $cos(\gamma) = \frac{2}{3}$.

1.6.1 Trabalho

Suponha que uma força constante \vec{F} move uma partícula de um ponto P até um ponto Q. O trabalho realizado pela partícula é dado por:

$$W = \vec{F} \cdot \overrightarrow{PQ}.$$

1.7. PRODUTO VETORIAL

21

Se a unidade de comprimento é dada em metros e a força é dada em Newtons, o trabalho é dado em Joules (J).

Exemplo 1.2. Uma força dada por $\vec{F}=(1,2,3)$ move uma partícula do ponto (1,1,1) ao ponto (4,2,3); logo:

$$W = (1, 2, 3) \cdot (3, 1, 2) = 3 + 2 + 6 = 11 J.$$

1.7 Produto Vetorial

Definição 1.6. Dados $\vec{\mathbf{v}} = (v_1, v_2, v_3)$ e $\vec{\mathbf{w}} = (w_1, w_2, w_3)$ vetores em \mathbb{R}^3 , o produto vetorial de $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$, denotado por $\vec{\mathbf{v}} \times \vec{\mathbf{w}}$ é definido por:

$$\vec{\mathbf{v}} \times \vec{\mathbf{w}} = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \vec{\mathbf{i}} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \vec{\mathbf{j}} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \vec{\mathbf{k}},$$

onde $\begin{vmatrix} - & - \\ - & - \end{vmatrix}$ é um determinante de 2×2 .

Observação 1.5.

1. Logo, da definição segue:

$$\vec{\mathbf{v}} \times \vec{\mathbf{w}} = \begin{bmatrix} v_2 w_3 - v_3 w_2 \end{bmatrix} \vec{\mathbf{i}} + \begin{bmatrix} v_3 w_1 - v_1 w_3 \end{bmatrix} \vec{\mathbf{j}} + \begin{bmatrix} v_1 w_2 - v_2 w_1 \end{bmatrix} \vec{\mathbf{k}}.$$

2. O produto vetorial é uma função linear:

$$\times : \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3.$$

Proposição 1.5. Sejam $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$ e $\vec{\mathbf{u}}$ vetores do \mathbb{R}^3 e $\beta \in \mathbb{R}$. Então:

1.
$$\vec{\mathbf{v}} \times \vec{\mathbf{v}} = \vec{0}$$
.

2.
$$\vec{0} \times \vec{\mathbf{v}} = \vec{\mathbf{v}} \times \vec{0} = \vec{0}$$
.

3.
$$\vec{\mathbf{v}} \times \vec{\mathbf{w}} = -\vec{\mathbf{w}} \times \vec{\mathbf{v}}$$
.

4.
$$\vec{\mathbf{v}} \times (\vec{\mathbf{w}} + \vec{\mathbf{u}}) = \vec{\mathbf{v}} \times \vec{\mathbf{w}} + \vec{\mathbf{v}} \times \vec{\mathbf{u}}$$
.

5.
$$\beta \vec{\mathbf{v}} \times \vec{\mathbf{w}} = \vec{\mathbf{v}} \times \beta \vec{\mathbf{w}} = \beta (\vec{\mathbf{v}} \times \vec{\mathbf{w}}).$$

- 6. $\|\vec{\mathbf{v}} \times \vec{\mathbf{w}}\| = \|\vec{\mathbf{v}}\| \|\vec{\mathbf{w}}\| \operatorname{sen}(\theta)$, onde θ é o ângulo formado por $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$.
- 7. Os vetores $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$ são paralelos se e somente se $\vec{\mathbf{v}} \times \vec{\mathbf{w}} = \vec{0}$.
- 8. O vetor $\vec{\mathbf{v}} \times \vec{\mathbf{w}}$ é ortogonal aos vetores $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$.
- 9. A área do paralelogramo determinado por \vec{v} e \vec{w} é $\|\vec{v} \times \vec{w}\|$.

Figura 1.5:

10. Identidade de Lagrange: $\|\vec{\mathbf{v}} \times \vec{\mathbf{w}}\|^2 = \|\vec{\mathbf{v}}\|^2 \|\vec{\mathbf{w}}\|^2 - (\vec{\mathbf{v}} \cdot \vec{\mathbf{w}})^2$.

11.

$$\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}}) = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

12. O volume do paralelepípedo determinado pelos vetores \vec{u} , \vec{v} e \vec{w} é dado por

$$V = |\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}})|.$$

Prova: As provas seguem diretamente das definições. De fato, vejamos por exemplo:

- 7. Se $\vec{v} \times \vec{w} = \vec{0}$ o ângulo formado pelos vetores é zero ou π ; logo, os vetores são paralelos.
- 9. A base do paralelogramo é $\|\vec{\mathbf{v}}\|$ e sua altura é $\|\vec{\mathbf{w}}\|$ $sen(\theta)$, onde θ é o ângulo entre $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$.

1.7. PRODUTO VETORIAL

23

10.
$$\|\vec{\mathbf{v}} \times \vec{\mathbf{w}}\|^2 = \|\vec{\mathbf{v}}\|^2 \|\vec{\mathbf{w}}\|^2 sen^2(\theta) = \|\vec{\mathbf{v}}\|^2 \|\vec{\mathbf{w}}\|^2 (1 - cos^2(\theta)) = |\vec{\mathbf{v}}|^2 \|\vec{\mathbf{w}}\|^2 - (\vec{\mathbf{v}} \cdot \vec{\mathbf{w}})^2$$
.

12. A área da base é $A = \|\vec{\mathbf{v}} \times \vec{\mathbf{w}}\|$; seja θ o ângulo formado por $\vec{\mathbf{u}}$ e $\vec{\mathbf{v}} \times \vec{\mathbf{w}}$; logo, a altura do paralelepípedo é $h = \|\vec{\mathbf{u}}\| |cos(\theta)|$; então:

$$V = |\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}})|.$$

Exemplo 1.3.

[1] Sejam $\vec{\mathbf{v}} = (-3, -2, 2)$ e $\vec{\mathbf{w}} = (-1, 1, 2)$. Calcule $\vec{\mathbf{v}} \times \vec{\mathbf{w}}$, $(\vec{\mathbf{w}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{v}}$ e $(\vec{\mathbf{w}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{u}}$. Da definição e das propriedades temos:

$$\vec{\mathbf{v}} \times \vec{\mathbf{w}} = (-6, 4, -5) \ \mathbf{e} \ (\vec{\mathbf{w}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{v}} = (2, -27, -24) \ \mathbf{e} \ (\vec{\mathbf{w}} \times \vec{\mathbf{v}}) \times \vec{\mathbf{w}} = (-13, -18, 2).$$

[2] Calcule $\vec{i} \times \vec{j}$, $\vec{i} \times \vec{k}$, $\vec{j} \times \vec{k}$ e $(\vec{i} \times \vec{j}) \times (\vec{j} \times \vec{k})$.

Da definição temos: $\vec{\mathbf{i}} \times \vec{\mathbf{j}} = (0,0,1) = \vec{\mathbf{k}}, \vec{\mathbf{i}} \times \vec{\mathbf{k}} = (0,-1,0) = -\vec{\mathbf{j}}, \vec{\mathbf{j}} \times \vec{\mathbf{k}} = (1,0,0) = \vec{\mathbf{i}}$ $e(\vec{i} \times \vec{j}) \times (\vec{j} \times \vec{k}) = \vec{k} \times \vec{i} = \vec{j}.$

[3] Calcule a área do triângulo determinado por P=(2,2,0), Q=(-1,0,2) e R=(-1,0,2)(0,4,3).

A área do triângulo é a metade da área do paralelogramo determinado por $\vec{\mathbf{u}} = \overrightarrow{PQ}$ e $\vec{\mathbf{v}} = \overrightarrow{PR}$; logo:

$$A = \frac{\|\vec{\mathbf{u}} \times \vec{\mathbf{v}}\|}{2} = \frac{\|(-10, 5, -10)\|}{2} = \frac{15}{2}.$$

[4] Calcule o volume do paralelepípedo determinado pelos vetores $\vec{\mathbf{u}}=(2,-3,4), \vec{\mathbf{v}}=$ (1,2,-1) e $\vec{\mathbf{w}}=(3,-1,2)$.

Como $\vec{\mathbf{v}} \times \vec{\mathbf{w}} = (3, -5, -7)$, temos $V = |\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}})| = |-7| = 7$.

[5] Determine o valor de k tal que $\vec{\mathbf{u}}=(2,-1,1)$, $\vec{\mathbf{v}}=(1,2,-3)$ e $\vec{\mathbf{w}}=(3,k,5)$ sejam coplanares.

Se $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$ são coplanares, então, $\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}}) = \vec{0}$; caso contrário, determinariam um paralelepípedo e, portanto, os vetores não poderiam ser coplanares.

$$\vec{\mathbf{v}} \times \vec{\mathbf{w}} = (10 + 3 \, k, -14, k - 6);$$

logo, $\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}}) = 7k + 28$; resolvendo 7k + 28 = 0, temos k = -4.

1.7.1 Torque

Se uma força \vec{F} age num ponto de um corpo rígido, de vetor posição \vec{r} , então essa força tende a girar o corpo em torno de um eixo que passa pela origem do vetor posição e é perpendicular ao plano de \vec{r} e \vec{F} . O vetor torque (relativo à origem) é dado por;

$$\vec{\tau} = \vec{r} \times \vec{F}.$$

O torque fornece uma medida do efeito de um corpo rígido ao rodar em torno de um eixo. A direção de $\vec{\tau}$ indica o eixo de rotação.

Exemplo 1.4.

[1] Uma força $\vec{F}=(2,5,8)$ age num ponto de um corpo rígido, de coordenadas (1,1,2). Calcule o torque.

Da definição $\vec{r}=(1,1,2)$; logo, $\vec{\tau}=\vec{r}\times\vec{F}=(1,1,2)\times(2,5,8)=(-2,-4,3)$. A direção de (-2,-4,3) indica o eixo de rotação.

[2] Um parafuso é apertado aplicando uma força de $300\,N$ com uma chave de $0.45\,m$ de comprimento fazendo um ângulo de $\frac{\pi}{4}$ como na figura. Determine o módulo do torque em torno do centro do parafuso.

Figura 1.6:

Comos $\|\vec{r}\| = \|\vec{r} \times \vec{F}\| = \|\vec{r}\| \|\vec{F}\| \operatorname{sen}(\alpha)$; temos que $\|\vec{r}\| = 0.45$, $\|\vec{F}\| = 300$ e $\operatorname{sen}\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$, temos, $\|\vec{\tau}\| = 67.5 \sqrt{2} J$.

1.8 Distância em \mathbb{R}^3

Definição 1.7. Sejam $P_1 = (x_1, y_1, z_1)$ e $P_2 = (x_2, y_2, z_2)$ pontos do \mathbb{R}^3 .

1.9. RETAS 25

1. A distância entre P_1 e P_2 é denotada e definida por:

$$d_0(P_1, P_2) = \|\overrightarrow{P_1 P_2}\| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}.$$

2. Em particular, se P = (x, y, z):

$$d_0(\mathbf{0}, P) = \|\overrightarrow{0P}\| = \sqrt{x^2 + y^2 + z^2}.$$

Proposição 1.6. Sejam P_1 , P_2 e P_3 pontos do \mathbb{R}^3 , então:

1.
$$d_0(P_1, P_2) > 0$$

2.
$$d_0(P_1, P_2) = 0 \iff P_1 = P_2$$

3.
$$d_0(P_1, P_2) = d_0(P_2, P_1)$$
,

4. Desiguladade triangular:

$$d_0(P_1, P_3) \le d_0(P_1, P_2) + d_0(P_2, P_3) \iff \|\overrightarrow{P_1P_3}\| \le \|\overrightarrow{P_1P_2}\| + \|\overrightarrow{P_2P_3}\|.$$

Prova: Segue diretamente da definição.

1.9 Retas

Sejam $P=(x_1,y_1,z_1)$ um ponto e $\vec{\mathbf{v}}=(v_1,v_2,v_3)$ um vetor em \mathbb{R}^3 . A reta que passa pelo ponto P e tem direção $\vec{\mathbf{v}}$ é dada, parametricamente, por:

$$P(t) = P + t \vec{\mathbf{v}}, \ t \in \mathbb{R}.$$

Em coordenadas:

$$\begin{cases} x(t) = x_1 + t v_1 \\ y(t) = y_1 + t v_2 \\ z(t) = z_1 + t v_3, \quad t \in \mathbb{R}. \end{cases}$$

Dados $P_1=(x_1,y_1,z_1)$ e $P_2=(x_2,y_2,z_2)$ em \mathbb{R}^3 , vamos obter a equação da reta que passa por P_1 e P_2 .

Figura 1.7: A reta que passa por P_1 e P_2 .

A direção da reta é dada por $\vec{\mathbf{v}} = \overrightarrow{P_1P_2}$; logo, as equações paramétricas são:

$$\begin{cases} x(t) = x_1 + t (x_2 - x_1) \\ y(t) = y_1 + t (y_2 - y_1) \\ z(t) = z_1 + t (z_2 - z_1), \quad t \in \mathbb{R}. \end{cases}$$

Exemplo 1.5.

[1] Determine a equação da reta que passa pelo ponto (1, -1, 1) e tem a direção do vetor (2, 1, 3). Ache outro ponto da reta.

Sejam P = (1, -1, 1) e $\vec{\mathbf{v}} = (2, 1, 3)$; logo,

$$\begin{cases} x(t) = 1 + 2t \\ y(t) = -1 + t \\ z(t) = 1 + 3t, \end{cases}$$

 $t \in \mathbb{R}$. Fazendo, por exemplo, t=1 na equação da reta, temos que (3,0,4) é um ponto da reta.

1.9. RETAS 27

Figura 1.8: A reta do exemplo [1].

[2] Determine a equação da reta que passa pelos pontos $P_1=(-2,-1,3)$ e $P_2=(3,2,7)$. A direção da reta é $\vec{\mathbf{v}}=\overrightarrow{P_1P_2}=(5,3,4)$; logo a equação é:

$$\begin{cases} x(t) = -2 + 5t \\ y(t) = -1 + 3t \\ z(t) = 3 + 4t, & t \in \mathbb{R}. \end{cases}$$

Figura 1.9: A reta do exemplo [2].

1.9.1 Paralelismo e Perpendicularismo

Sejam l_1 e l_2 retas de direções $\vec{\mathbf{v}}_1$ e $\vec{\mathbf{v}}_2$, respectivamente; então:

- 1. \mathbf{l}_1 é paralela a \mathbf{l}_2 se, e somente se, $\vec{\mathbf{v}}_1 \times \vec{\mathbf{v}}_2 = \vec{0}$.
- 2. \mathbf{l}_1 é perpendicular a \mathbf{l}_2 se, e somente se, $\vec{\mathbf{v}}_1 \cdot \vec{\mathbf{v}}_2 = 0$.

A prova segue diretamente das definições.

Exemplo 1.6.

[1] As retas:

$$\begin{cases} x = 1 + 2t \\ y = -3 + 6t \\ z = 1 + 4t \end{cases}$$
 e
$$\begin{cases} x = 4 - t \\ y = -3t \\ z = -5 - 2t \end{cases}$$

são paralelalas. De fato, $\vec{\mathbf{v}}_1=(2,6,4)$, $\vec{\mathbf{v}}_2=(-1,-3,-2)$ e $\vec{\mathbf{v}}_1\times\vec{\mathbf{v}}_2=\vec{0}$.

[2] As retas:

$$\begin{cases} x = 1 + 2t \\ y = -3 + 6t \\ z = 1 + 4t \end{cases}$$
 e
$$\begin{cases} x = 5 - t \\ y = 3 + t \\ z = -5 - t \end{cases}$$

são perpendiculares. De fato, $\vec{\mathbf{v}}_1=(2,6,4)$, $\vec{\mathbf{v}}_2=(-1,1,-1)$ e $\vec{\mathbf{v}}_1\cdot\vec{\mathbf{v}}_2=0$.

[3] As retas

$$\begin{cases} x = 1 + 2t \\ y = -2 + 3t \\ z = 4 + t \end{cases}$$
 e
$$\begin{cases} x = 5t \\ y = 3 + 2t \\ z = -3 + 3t \end{cases}$$

não são paralelas nem perpendiculares e não se intersectam. Tais retas são ditas reversas.

1.9.2 Forma Simétrica da Equação da Reta

Eliminando o parâmetro t na equação da reta, obtemos a forma simétrica da equação da reta:

$$\frac{x - x_1}{v_1} = \frac{y - y_1}{v_2} = \frac{z - z_1}{v_3}.$$

sendo os $v_i \neq 0$ ($1 \leq i \leq 3$).

1.10. PLANOS 29

Se, por exemplo, $v_1 = 0$, obtemos:

$$x = x_1, \quad \frac{y - y_1}{v_2} = \frac{z - z_1}{v_3};$$

os outros casos são análogos.

1.10 Planos

Definição 1.8. Sejam o vetor $\vec{\mathbf{n}} \neq \vec{\mathbf{0}}$ e o ponto $P_0 = (x_0, y_0, z_0) \in \mathbb{R}^3$, fixado. O conjunto de todos os pontos $P = (x, y, z) \in \mathbb{R}^3$ tais que:

$$\vec{\mathbf{n}} \cdot \overrightarrow{P_0 P} = 0.$$

é chamado plano passando por P_0 e tendo normal $\vec{\mathbf{n}}$.

Em particular, se $\vec{\bf n}=(a,b,c)$, o plano passando por P_0 e de normal $\vec{\bf n}$, tem a equação em coordenadas:

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0.$$

Exemplo 1.7.

[1] Determine a equação do plano que passa pelo ponto (1, -1, 1) e é normal ao vetor (-1, 2, 3).

Sejam $P_0 = (1, -1, 1)$ e $\vec{\mathbf{n}} = (-1, 2, 3)$; então:

$$-1(x-1) + 2(y+1) + 3(z-1) = -x + 2y + 3z.$$

A equação é -x + 2y + 3z = 0.

Figura 1.10: Exemplo [1].

[2] Ache a equação do plano que passa pelo ponto (1,-1,-1) e é normal ao vetor (3,2,-3).

Sejam $P_0 = (1, -1, -1)$ e $\vec{\mathbf{n}} = (3, 2, -3)$; então: 3(x - 1) + 2(y + 1) - 3(z + 1) = 3x + 2y - 3z - 4. A equação é 3x + 2y - 3z = 4.

Figura 1.11: Exemplo [2].

Observação 1.6. Considerando a equação do primeiro grau nas variáveis x, y e z:

$$ax + by + cz + d = 0,$$

onde a, b e $c \in \mathbb{R}$ não são todas nulas, o subconjunto do \mathbb{R}^3 :

$$\mathbf{P} = \{(x, y, z) \in \mathbb{R}^3 / ax + by + cz + d = 0\}$$

é o plano com vetor normal $\vec{\mathbf{n}} = (a, b, c)$.

Por simplicidade usaremos a expressão plano $a\,x+b\,y+c\,z+d=0$ em lugar de, o plano de equação $a\,x+b\,y+c\,z+d=0$.

Exemplo 1.8. Determine a equação do plano que passa pelos pontos $P_1 = (1, 1, 1)$, $P_2 = (2, 0, 0)$ e $P_3 = (1, 1, 0)$.

Qualquer vetor normal ao plano deve ser ortogonal aos vetores $\vec{\mathbf{v}} = \overrightarrow{P_1P_2}$ e $\vec{\mathbf{w}} = \overrightarrow{P_2P_3}$, que são paralelos ao plano.

Logo, o vetor normal ao plano é $\vec{\bf n}=\vec{\bf v}\times\vec{\bf w}$, donde $\vec{\bf n}=(1,1,0)$; logo, a equação do plano é:

$$x + y + d = 0;$$

como (2,0,0) pertence ao plano, temos: d=-2 e a equação é

$$x + y - 2 = 0.$$

Figura 1.12:

1.11 Paralelismo e Perpendicularismo entre Planos

Definição 1.9.

1. Dois planos são paralelos se, e somente se, seus vetores normais, respectivamente \vec{n}_1 e \vec{n}_2 , são paralelos, isto é:

$$\vec{\mathbf{n}}_1 \times \vec{\mathbf{n}}_2 = \vec{0}.$$

2. Dois planos são perpendiculares se, e somente se, seus vetores normais, respectivamente \vec{n}_1 e \vec{n}_2 , são ortogonais, isto é:

$$\vec{\mathbf{n}}_1 \cdot \vec{\mathbf{n}}_2 = 0.$$

Proposição 1.7. Os planos ax + by + cz = d e $a_1x + b_1y + c_1z = d_1$ são:

1. paralelos, se existe $k \in \mathbb{R}$ tal que $a = k a_1$, $b = k b_1$ e $c = k c_1$;

2. perpendiculares, se $a a_1 + b b_1 + c c_1 = 0$.

Prova: A prova segue das definições.

Exemplo 1.9. Determine a equação do plano paralelo ao plano 3x + y - 6z + 8 = 0 e que passa pelo ponto P = (0,0,1).

O vetor normal ao plano é $\vec{\mathbf{n}}=(3,1,-6)$; logo, a equação do plano é:

$$3x + y - 6z + d = 0;$$

como o ponto P pertence ao plano temos -6+d=0, logo, a equação do plano é

$$3x + y - 6z + 6 = 0.$$

Observação 1.2.

1. O plano: ax + by + d = 0 é perpendicular ao plano xy.

2. O plano: by + cz + d = 0 é perpendicular ao plano yz.

3. O plano: ax + cz + d = 0 é perpendicular ao plano xz.

Figura 1.13: Planos coordenados.

1.12 Conjuntos Especiais

Lembremos que nos conceitos estudados no Cálculo de uma variável, os intervalos, fechados, abertos, tem um papel fundamental nas definições e teoremas sobre continuidade e diferenciabilidade.

A continuação apresentaremos alguns conceitos sobre certos tipos de conjuntos em várias variáveis, que tem um papel análogo aos intervalos em uma variável.

1.13 Bolas Abertas

Definição 1.10. Sejam r > 0 e $\mathbf{x}_0 \in \mathbb{R}^n$. A bola aberta de centro \mathbf{x}_0 e raio r é denotada por $B(\mathbf{x}_0, r)$ e definida por:

$$B(\mathbf{x}_0, r) = {\mathbf{x} \in \mathbb{R}^n / ||\mathbf{x} - \mathbf{x}_0|| < r}.$$

Observação 1.3.

1. Se
$$n=2$$
; $\mathbf{x}_0=(x_0,y_0)$ e $\mathbf{x}=(x,y)$; logo: $\|\mathbf{x}-\mathbf{x}_0\|=\sqrt{(x-x_0)^2+(y-y_0)^2}$ e:

$$B(\mathbf{x}_0, r) = \{(x, y) \in \mathbb{R}^2 / (x - x_0)^2 + (y - y_0)^2 < r^2 \}$$

2. O conjunto $B(\mathbf{x}_0,r)$ é o "interior" de um círculo centrado em (x_0,y_0) e raio r, ou equivalentemente, o conjunto dos vetores no plano de origem em (x_0,y_0) e norma menor que r. Neste caso, o conjunto $B(\mathbf{x}_0,r)$ é chamado disco aberto de centro (x_0,y_0) e raio r.

Figura 1.14: Disco aberto

3. Analogamente, se n = 3; $\mathbf{x}_0 = (x_0, y_0, z_0)$ e $\mathbf{x} = (x, y, z)$:

$$B(\mathbf{x}_0, r) = \{(x, y, z) \in \mathbb{R}^3 / (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 < r^2 \}$$

4. O conjunto $B(\mathbf{x}_0, r)$ é o "interior" de uma esfera "sólida" centrada em (x_0, y_0, z_0) e raio r, ou equivalentemente, o conjunto dos vetores no espaço de origem em (x_0, y_0, z_0) e norma menor que r.

Figura 1.15: Bola aberta

5. Observe que em ambos os casos a desigualdade é estrita.

1.14 Conjuntos Abertos

Definição 1.11. $A \subset \mathbb{R}^n$ é dito aberto em \mathbb{R}^n se para todo $\mathbf{x} \in A$, existe $B(\mathbf{x}, r)$ tal que $B(\mathbf{x}, r) \subset A$.

Figura 1.16: Conjunto aberto

Estes conjuntos são a generalização natural de intervalos abertos em \mathbb{R} . Por definição, o conjunto vazio e \mathbb{R}^n são conjuntos abertos em \mathbb{R}^n .

Exemplo 1.10.

[1] Pela definição, $\{x\}$ não é aberto em \mathbb{R}^n , pois toda bola ou disco aberto de centro x não está contido em $\{x\}$.

Em geral, os conjuntos do tipo $\{x_1, x_2, x_3,, x_n / x_i \in \mathbb{R}^n\}$ não são abertos.

[2] \mathbb{R} "pensado"como a reta $\{(x,0)\,/\,x\in\mathbb{R}\}\subset\mathbb{R}^2$ não é aberto no plano, pois qualquer disco aberto centrado em (x,0) não está contido em \mathbb{R} .

Figura 1.17: Exemplo [2]

[3] $A = (a, b) \times (c, d)$ é aberto em \mathbb{R}^2 .

De fato, para todo $(x,y) \in A$, a < x < b e c < y < d, denote por ε o menor número do conjunto $\{|x-a|, |x-b|, |y-c|, |y-d|\}$, onde $|\ |$ é a distância entre números reais. Então, por exemplo, considerando $r = \frac{\varepsilon}{6}$, temos, $B((x,y),r) \subset A$. Logo A é um conjunto aberto.

Figura 1.18: Exemplo [3]

[4] $A=\mathbb{R}^2\subset\mathbb{R}^3$ não é aberto no espaço, pois qualquer bola aberta centrada em (x,y,0) não está contida em \mathbb{R}^2 .

Será útil dar um nome especial para um conjunto aberto que contenha um ponto dado x. A tal conjunto chamaremos de **vizinhança** do ponto x.

1.15 Conjunto Fronteira

Definição 1.12. Seja $A \subset \mathbb{R}^n$.

- 1. Um ponto $\mathbf{x} \in \mathbb{R}^n$ é dito ponto da fronteira ou do bordo de A se toda vizinhança de \mathbf{x} intersecta A e $\mathbb{R}^n A$.
- 2. Denotamos o conjunto dos pontos da fronteira do conjunto A por ∂A . Um conjunto é aberto se $A \cap \partial A = \phi$.

Figura 1.19: Bordo de A

Exemplo 1.11.

[1] Se $A=B(\mathbf{x},r)$ então $\partial A=\{\mathbf{y}/d(\mathbf{x},\mathbf{y})=r\}$; logo o conjunto $C=\{\mathbf{y}/d(\mathbf{x},\mathbf{y})\leq r\}$ não é aberto.

Figura 1.20: Exemplo [1]

[2] Seja $A = \{(x,y) \in \mathbb{R}^2/x > 0\}$; este conjunto corresponde ao primeiro e ao quarto quadrantes sem incluir a reta x = 0 e é aberto no plano; de fato, seja $(x,y) \in A$ e escolhamos r = x > 0; se $(x_1, y_1) \in B((x,y), r)$ temos:

$$|x - x_1| = \sqrt{(x - x_1)^2} \le \sqrt{(x - x_1)^2 + (y - y_1)^2} < r = x.$$

Logo $x_1 > 0$ e $B((x, y), r) \subset A$; note que $\partial A = \{(0, y)/y \in \mathbb{R}\}.$

Figura 1.21: Exemplo [2]

1.16 Conjuntos Fechados

Definição 1.13. Um conjunto $A \subset \mathbb{R}^n$ é dito fechado em \mathbb{R}^n se $\partial A \subset A$.

Exemplo 1.12.

[1] \mathbb{R}^n é também um conjunto fechado.

[2] $A = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 < r^2, r > 0\}$ não é fechado, pois sua fronteira é :

$$\partial A = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 = r^2, r > 0\}.$$

Logo $\partial A \not\subset A$.

[3] O sólido $W=\{(x,y,z)\in\mathbb{R}^3/\,x^2+y^2+z^2\leq r^2,\,r>0\}$ é fechado pois sua fronteira é:

$$\partial W = \{(x, y, z) \in \mathbb{R}^3 / x^2 + y^2 + z^2 = r^2, \, r > 0\}.$$

Logo $\partial W \subset W.$ Em geral, todos os sólidos são fechados.

[4] $A = [a, b] \times [c, d]$ é um conjunto fechado, pois ∂A é o retângulo formado pelas retas x = a, x = b, y = c e y = d.

1.17 Exercícios

38

1. Determine $\vec{\mathbf{v}} = \overrightarrow{P_1} \overrightarrow{P_2}$, se:

(a)
$$P_1 = (1, 2, 1), P_2 = (-5, 3, 1)$$

(a)
$$P_1 = (1, 2, 1), P_2 = (-5, 3, 1)$$
 (c) $P_1 = (12, 222, 1), P_2 = (5, 23, 11)$

(b)
$$P_1 = (-3, 2, -1), P_2 = (15, 2, 6)$$

(b)
$$P_1 = (-3, 2, -1), P_2 = (15, 2, 6)$$
 (d) $P_1 = (4, 24, 18), P_2 = (-25, 23, 11)$

2. Determine $\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}$ e os vetores unitários nas direções de $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}}$, se:

(a)
$$\vec{\mathbf{v}} = (1, 2, 1), \ \vec{\mathbf{w}} = (-5, 3, 1)$$

(c)
$$\vec{\mathbf{v}} = (2, -2, 2), \ \vec{\mathbf{w}} = (-2, 2, 1)$$

(b)
$$\vec{\mathbf{v}} = (-3, 2, -1), \ \vec{\mathbf{w}} = (1, 2, -6)$$

(a)
$$\vec{\mathbf{v}}=(1,2,1), \ \vec{\mathbf{w}}=(-5,3,1)$$
 (c) $\vec{\mathbf{v}}=(2,-2,2), \ \vec{\mathbf{w}}=(-2,2,1)$ (b) $\vec{\mathbf{v}}=(-3,2,-1), \ \vec{\mathbf{w}}=(1,2,-6)$ (d) $\vec{\mathbf{v}}=(4,1,8), \ \vec{\mathbf{w}}=(-2,-23,-1)$

3. Determine o valor k tal que os seguintes vetores sejam ortogonais:

(a)
$$\vec{\mathbf{v}} = (3, -2k, 4), \ \vec{\mathbf{w}} = (1, 2, 5)$$

(a)
$$\vec{\mathbf{v}} = (3, -2k, 4), \ \vec{\mathbf{w}} = (1, 2, 5)$$
 (c) $\vec{\mathbf{v}} = (-k, -1, -1), \ \vec{\mathbf{w}} = (3, 0, 1)$

(b)
$$\vec{\mathbf{v}} = (-1, 1, k), \ \vec{\mathbf{w}} = (1, -1, 1)$$
 (d) $\vec{\mathbf{v}} = (k, 1, k), \ \vec{\mathbf{w}} = (-2, k, -k)$

(d)
$$\vec{\mathbf{v}} = (k, 1, k), \ \vec{\mathbf{w}} = (-2, k, -k)$$

4. Determine $\vec{\mathbf{v}} \times \vec{\mathbf{w}}$, se:

(a)
$$\vec{\mathbf{v}} = (-1, 2, -1), \ \vec{\mathbf{w}} = (-5, 3, 1)$$
 (c) $\vec{\mathbf{v}} = (2, -2, -2), \ \vec{\mathbf{w}} = (-1, 2, 1)$

(c)
$$\vec{\mathbf{v}} = (2, -2, -2), \ \vec{\mathbf{w}} = (-1, 2, 1)$$

(b)
$$\vec{\mathbf{v}} = (-1, -2, -1), \ \vec{\mathbf{w}} = (1, -2, -6)$$
 (d) $\vec{\mathbf{v}} = (1, 1, -8), \ \vec{\mathbf{w}} = (-2, -3, -1)$

(d)
$$\vec{\mathbf{v}} = (1, 1, -8), \ \vec{\mathbf{w}} = (-2, -3, -1)$$

5. Determine o valor de k tais que os seguintes vetores sejam coplanares:

(a)
$$\vec{\mathbf{u}} = (1, 2, -3), \vec{\mathbf{v}} = (1, k, 1) e \vec{\mathbf{w}} = (3, 2, 1)$$

(b)
$$\vec{\mathbf{u}} = (-1, k, 2), \vec{\mathbf{v}} = (3, 2, 5) \text{ e } \vec{\mathbf{w}} = (-1, 0, 1)$$

(c)
$$\vec{\mathbf{u}} = (1, k, 0)$$
, $\vec{\mathbf{v}} = (1, 2, 1)$ e $\vec{\mathbf{w}} = (1, 0, k)$

(d)
$$\vec{\mathbf{u}} = (0, 1, -1), \vec{\mathbf{v}} = (k, 0, 1) e \vec{\mathbf{w}} = (1, 1, 2k)$$

6. Determine a área do triângulo PQR, se:

(a)
$$P = (1, -1, 2), Q = (0, 3, -1), R = (3, -4, 1)$$

(b)
$$P = (-3, 0, 5), Q = (2, -1, -3), R = (4, 1, -1)$$

1.17. EXERCÍCIOS 39

(c)
$$P = (4,0,0), Q = (0,5,0), R = (0,0,2)$$

(d)
$$P = (-1, 2, 0), Q = (0, 2, -3), R = (5, 0, 1)$$

7. Determine o volume do paralelepípedo formado por \overrightarrow{PQ} , \overrightarrow{PR} e \overrightarrow{PT} :

(a)
$$P = (0,0,0)$$
, $Q = (1,-1,2)$, $R = (0,3,-1)$, $T = (3,-4,1)$

(b)
$$P = (2, 1, -1), Q = (3, 0, 2), R = (4, -2, 1), T = (5, -3, 0)$$

8. Determine $d(P_1P_2)$, se:

(a)
$$P_1 = (1, 2, 1), P_2 = (-5, 3, 1)$$
 (c) $P_1 = (12, 222, 1), P_2 = (5, 23, 11)$

(b)
$$P_1 = (-3, 2, -1), P_2 = (15, 2, 6)$$
 (d) $P_1 = (4, 24, 18), P_2 = (-25, 23, 11)$

9. Verifique que para todo $\vec{\mathbf{v}}$ e $\vec{\mathbf{w}} \in \mathbb{R}^n$; tem-se:

(a)
$$|\vec{\mathbf{v}} \cdot \vec{\mathbf{w}}| \leq ||\vec{\mathbf{v}}|| ||\vec{\mathbf{w}}||$$

(b)
$$\|\vec{\mathbf{v}} + \vec{\mathbf{w}}\| \le \|\vec{\mathbf{v}}\| + \|\vec{\mathbf{w}}\|$$

(c)
$$2 \|\vec{\mathbf{u}}\|^2 + 2 \|\vec{\mathbf{v}}\|^2 = \|\vec{\mathbf{u}} + \vec{\mathbf{v}}\|^2 + \|\vec{\mathbf{u}} - \vec{\mathbf{v}}\|^2$$

(d)
$$\|\vec{\mathbf{u}} + \vec{\mathbf{v}}\| \|\vec{\mathbf{u}} - \vec{\mathbf{v}}\| = \|\vec{\mathbf{u}}\|^2 + \|\vec{\mathbf{v}}\|^2$$

(e)
$$4 \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \|\vec{\mathbf{u}} + \vec{\mathbf{v}}\|^2 - \|\vec{\mathbf{u}} - \vec{\mathbf{v}}\|^2$$

10. Determine a equação do plano passando pelos pontos P_1 , P_2 e P_3 , sendo:

(a)
$$P_1 = (-3, 0, 2), P_2 = (6, 1, 4), P_3 = (-5, 1, 0)$$

(b)
$$P_1 = (2, 1, 4), P_2 = (1, -1, 2), P_3 = (4, -1, 1)$$

(c)
$$P_1 = (1, 1, 1), P_2 = (0, -1, 1), P_3 = (2, -1, -1)$$

(d)
$$P_1 = (1, -1, 1), P_2 = (1, -1, -1), P_3 = (3, -1, 1)$$

11. Determine a equação do plano passando pelo ponto P=(3,-1,2), perpendicular à reta determinada por $P_1=(2,1,4)$ e $P_2=(-3,-1,7)$. Ache a distância do ponto P ao plano.

- 12. Verifique que a interseção dos planos x + y 2z = 1 e x + 3y x = 4 é uma reta. Ache a distância do ponto P = (1, 0, 1) a essa reta.
- 13. Determine a equação do plano paralelo ao plano 2x + 3y 6z = 3 e que passa pelo ponto P = (1, 1, 1).
- 14. Determine o plano perpendicular à reta $\frac{x}{2} = \frac{y-2}{2} = z+1$ e que passa pelo ponto P = (1, 3, -1).
- 15. Determine a equação do plano perpendicular aos planos x + 2y 7z = 0 e x y z = 5 e que passa pela origem.
- 16. Determine a equação do plano ortogonal ao vetor (2,3,6) e que passa pelo ponto (1,5,3).