Funktionale Programmierung WS 2019/2020 Prof. Dr. Margarita Esponda

Zwischenklausur

Name:	Vorname:	
Matrikel-Nr:		
Die maximale Punktzahl ist 100.		

Aufgabe	A1	A2	А3	A4	A5	A6	A7	A8	A9	Summe	Note
Max. Punkte	8	10	12	10	8	14	16	16	6	100	
Punkte											

Wichtige Hinweise:

- 1) Schreiben Sie in allen Funktionen die entsprechende Signatur.
- 2) Verwenden Sie die vorgegebenen Funktionsnamen, falls diese angegeben werden.
- 3) Die Zwischenklausur muss geheftet bleiben.
- 4) Schreiben Sie Ihre Antworten in den dafür vorgegebenen freien Platz, der unmittelbar nach der Frage steht.

Viel Erfolg!

1. Aufgabe (8 Punkte)

Reduzieren Sie folgende zwei Haskell-Ausdrücke zur **Normalform**. Schreiben Sie mindestens **drei** Reduktionsschritte auf oder begründen Sie Ihre Antwort.

- a) [x | xs<-["zwei", "drei", "vier"], x<-xs, (x/='e'), (x/='i')]
- b) ((foldr (+) 1) . (map (div 4))) [1..5]

Lösung:

a) [x | xs<-["zwei", "drei", "vier"], x<-xs, (x/='e'), (x/='i')]

b) ((foldr (+) 1) . (map (div 4))) [1..5]

```
=> (foldr (+) 1) ( (map (div 4)) [1..5])
=> (foldr (+) 1) [4, 2, 1, 1, 0]
=> (+) 4 ((foldr (+) 1) [2, 1, 1, 0])
=> (+) 4 ((+) 2 (foldr (+) 1 [1, 1, 0]))
=> 9
-- 1 P.
```

2. Aufgabe (10 Punkte)

Definieren Sie eine polymorphe Funktion **subList**, die eine Liste und zwei natürliche Zahlen **n**, **m** als Argument bekommt und die Teilliste der Länge **m** beginnend bei Position **n** berechnet:

Anwendungsbeispiel: **subList** "Beispiel" 2 5 => "ispie"

1. Lösung:

```
subList :: Int -> Int -> [a] -> [a] -- 2P

subList n m [] = []

subList 0 m xs = take m xs

subList (n+1) m (x:xs) = subList n m xs -- 8P
```

2. Lösung:

```
subList :: Int -> Int -> [a] -- 2 P subList n m [] = [] subList n m (x:xs) = take m (drop n (x:xs)) -- 8 P
```

3. Aufgabe (12 Punkte)

Betrachten Sie folgende rekursive Funktion, die die maximale Anzahl der Teilflächen berechnet, die entstehen können, wenn ein Kreis mit **n** geraden Linien geteilt wird.

```
maxSurfaces :: Int -> Int
maxSurfaces 0 = 1
maxSurfaces n = maxSurfaces (n - 1) + n
```

- a) Definieren Sie eine Funktion, die mit Hilfe einer endrekursiven Funktion, genau die gleiche Berechnung realisiert.
- b) Welche Vorteile hat die endrekursive Funktion gegenüber der nicht endrekursiven Lösung?

```
a) Lösung:

end_maxSurfs :: Int -> Int

end_maxSurfs n = end_maxSurfs' 0 n

where

end_maxSurfs' acc 0 = acc + 1

end_maxSurfs' acc n = end_maxSurfs' (acc + n) (n-1)
```

b) Lösung:

-- 4 P

Die Ausdrücke werden nicht großer, weil die Argumente reduziert werden bevor die Berechnung wieder in die Rekursion hinein geht (Pattern-Matching). Dadurch wird zwischendurch weniger Speicherplatz verbraucht.

In beide Funktionen ist die Komplexität linear O(n), weil nur n Rekursive

Aufrufe und 2*n Additionen/Subtraktionen stattfinden. Aber endrekursive Definitionen können im Haskell optimiert werden, indem die Kette der rekursiven Aufrufen mit einer while-Schleife ersetzt wird.

4. Aufgabe (10 Punkte)

Definieren Sie eine rekursive, polymorphe Funktion **mapUntil**, die als Argumente eine Funktion **f** (f :: a -> b), eine Prädikat-Funktion **p** (p :: a->Bool) und eine Liste bekommt und solange die Elemente der Liste das Prädikat **nicht** erfüllen, die Funktion **f** auf die Elemente der Liste anwendet und diese in der Ergebnisliste einfügt.

Anwendungsbeispiel: **mapUntil** (*3) (>5) [1,5,5,7,1,5] => [3,15,15]

1. Lösung:

```
mapUntil :: (a -> b) -> (a -> Bool) -> [a] -> [b] -- 2 P

mapUntil f p [] = [] -- 1 P

mapUntil f p (x:xs) | not (p x) = f x : mapUntil f p xs -- 7 P

| otherwise = []
```

2. Lösung:

```
mapUntil :: (a \rightarrow b) \rightarrow (a \rightarrow Bool) \rightarrow [a] \rightarrow [b]
-- 2 P
mapUntil f p xs = map f (takeWhile (not.p) xs)
-- 8 P
```

5. Aufgabe (8 Punkte)

Definieren Sie eine Funktion **sumPowerTwo**, die die Summe der Quadrate aller Zahlen zwischen **1** und **n** unter Verwendung der **foldl** und **map**-Funktionen berechnet. Sie dürfen in Ihrer Definition keine Listengeneratoren verwenden.

1. Lösung

```
sumPowerTwo :: Int -> Int -- 1 P
sumPowerTwo n = foldl (+) 0 (map (^2) (take n (iterate (+1) 1))) -- 7 P
```

2. Lösung

```
sumPowerTwo:: Integer -> Integer -- 1 P
sumPowerTwo n = foldl (+) 0 (map (^2) [1..n]) -- 7 P
```

3. Lösung

4. Lösung

```
sumPowerTwo :: Integer \rightarrow Integer \rightarrow 1 P sumPowerTwo n = foldl (+) 0 (map (\a -> a*a) [1..n]) - - 7 P
```

5. Lösung

```
sumPowerTwo:: Integer -> Integer -- 1 P
sumPowerTwo n = (foldl (+) 0 . map (^2)) [1..n] -- 7 P
```

6. Lösung

```
sumPowerTwo :: Integer -> Integer -- 1 P sumPowerTwo n = let ns = [1..n] in (foldl (+) 0 . map (^2)) ns -- 7 P
```

7. Lösung

```
sumPowerTwo :: Integer -> Integer -- 1 P sumPowerTwoWhere n = (foldl (+) 0 . quads) n where quads \ n = map \ (^2) \ [1..n] -- 7 \ P
```

6. Aufgabe (14 Punkte)

Ein Element einer Liste von \mathbf{n} Objekten stellt die absolute Mehrheit der Liste dar, wenn das Element mindestens $\left(\frac{n}{2}+1\right)$ mal in der Liste vorkommt.

Definieren Sie eine **majority** Funktion, die mit **linearem** Aufwand das Majority-Element der Liste findet, wenn eines existiert oder sonst **Nothing** zurückgibt.

Die Signatur der Funktion soll wie folgt aussehen:

```
majority :: (Eq a) => [a] -> Maybe a
```

Begründen Sie Ihre Antwort bezüglich der Komplexität.

O(n) Lösung:

Begründung:

```
T_{majority}(n) = T_{local\_maj}(n) + T_{freq}(n) + T_{half}(n)
= c_1*n + c_2*n + c_3
= (c_1 + c_2)*n + c_3
= O(n)
```

O(n2) Lösungsbeispiele:

Korrekte Komplexitätsanalyse:

--4P

7. Aufgabe (16 Punkte)

Betrachten Sie folgende algebraische Datentypen und Funktionen:

```
data B = F | T deriving Show
data Nat = Zero | S Nat deriving Show
data ZInt = Z Nat Nat deriving Show
succN :: Nat -> Nat
succN n = S n

addN :: Nat-> Nat-> Nat
addN n Zero = n
addN n (S m) = succN (addN n m)

multN :: Nat -> Nat -> Nat
multN _ Zero = Zero
multN n (S m) = addN n (multN n m)

foldn :: (Nat -> Nat) -> Nat -> Nat
foldn h c Zero = c
foldn h c (S n) = h (foldn h c n)
```

- a) Definieren Sie damit eine (<) und eine (==) Funktion für den Datentyp Nat.
- b) Definieren Sie die Potenzfunktion (^) für den Datentyp **Nat** (natürliche Zahlen) unter Verwendung der **foldn** Funktion.
- c) Definieren Sie die (/=) und (Funktion für den Datentyp **ZInt** (ganze Zahlen).

Wenn Sie zusätzliche Funktionen für Ihre Definitionen in a), b) und c) brauchen, müssen Sie diese auch selber definieren.

Lösung a):

$$(<<)$$
 Zero $(S_) = T$

$$(<<) (S a) (S b) = (<<) a b$$

$$(<<)$$
 _ = F -- 3 P

eqN Zero Zero = T

$$eqN(Sa)(Sb) = eqNab$$

$$eqN _ = F$$
 $--3P$

Lösung b):

powN' :: Nat -> Nat -> Nat -- the case
$$0^0$$
 is not defined! -- 1 P.
powN' b = foldn (multN b) (S Zero) -- 3 P.

Lösung c):

$$notB T = F$$

$$notB F = T --1 P$$

$$eqZ(Z a b)(Z c d) = eqN(addN b c)(addN a d)$$
 -- 1 P

$$neqZ \ a \ b = notB \ (eqZ \ a \ b)$$
 -- 2 P

2. Lösung c):

$$notB T = F$$

$$notB F = T --1 P$$

neqZ :: ZInt -> ZInt -> B

$$neqZ(Zab)(Zcd) = notB(eqN(addNbc)(addNad))$$
 -- 3 P

8. Aufgabe (16 Punkte)

Betrachten Sie folgenden algebraischen Datentyp für binäre Suchbäume:

```
data BSearchTree a = Nil | Node a (BSearchTree a) (BSearchTree a)
```

Definieren Sie eine Funktion **insert**, die einen Baum **t** :: BSearchTree a und ein Element **x** :: a, als Argument bekommt und **x** im Baum eingefügt wird.

```
insert :: (Ord a) => a -> BSearchTree a -> BSearchTree a
```

Lösung:

Definieren Sie eine Funktion **oneChild**, die entscheidet, ob der Baum Knoten mit nur einem Kind beinhaltet, wobei **Nil** nicht als Kind zählt.

```
oneChild :: (Ord a) => BSearchTree a -> Bool
```

Lösung:

```
oneChild :: (Ord a) => BSTree a -> Bool
oneChild Nil = False
oneChild (Node _ Nil (Node _ lt rt)) = True
oneChild (Node _ (Node _ lt rt) Nil) = True
oneChild (Node _ lt rt) = oneChild lt || oneChild rt
```

9. Aufgabe (6 Punkte)

Wann können Sie eine einstellige Funktion als **strikt** bezeichnen? Geben Sie die formale Definition, die in der Vorlesung besprochen worden ist, an.

Lösung:

f ist strikt \Leftrightarrow f $\perp = \perp$ -- 6 P.

Lösung: Eine Funktion *f ist* nach einem ihrer Argumente *a* strikt, wenn für die

Auswertung der Funktion die Auswertung von a notwendig ist.

- - nur 4 P.