Algebra liniowa 2 R. Lista 3

Zadanie 1. Uzasadnij, że każda podprzestrzeń przestrzeni liniowej *V* jest (a) jądrem pewnego przekształcenia liniowego, którego dziedziną jest *V*; (b) obrazem pewnego przekształcenia liniowego, którego przeciwdziedziną jest *V*.

Zadanie 2. Niech $V = \mathbb{R}[X]$, $W = \{P \in V : P(0) = 0\}$. Uzasadnij, że jeśli Q i S należą do tej samej warstwy W, to Q(0) = S(0). Czy jest też odwrotnie? Uzasadnij, że w każdej warstwie W jest dokładnie jeden wielomian stopnia 0. Wyznacz $\dim(V/W)$.

Zadanie 3. Dokończ "inny dowód" (ze skryptu) faktu o wymiarze dim $(V \oplus W)$, tzn. pokaż że dla baz b_1, b_2, \ldots, b_n oraz c_1, \ldots, c_m przestrzeni V i W odpowiednio, układ $(b_1, 0), \ldots, (b_n, 0), (0, c_1), \ldots, (0, c_m)$ jest bazą $V \oplus W$.

Zadanie 4. Sprawdź że jeżeli $F: V \to W$ jest liniowe, to F jest izomorfizmem wtedy i tylko wtedy gdy istnieje takie $G: W \to V$, że $F \circ G = \mathrm{id}_W$ i $G \circ F = \mathrm{id}_V$.

Zadanie 5. Sprawdź że jeżeli M jest dowolną macierzą $n \times m$, a $e_i \in K^n$, $e_j \in K^m$ to standardowe wektory bazowe, to $e_i^{\mathsf{T}} M e_i$ jest ij-tym wyrazem M.

Zadanie 6. Wywnioskuj z zadania 5, że jeżeli M,N spełniają $v^{\top}Mw = v^{\top}Nw$ dla każdych v,w, to M=N.

Zadanie 7. Uzasadnij że jeżeli F jest "na", to F^* jest 1-1, a jeżeli F jest 1-1, to F^* jest "na". Wywnioskuj stąd, że jeżeli $V \cong W$, to $V^* \cong W^*$.

Zadanie 8. Załóżmy że V jest dowolną przestrzenią liniową, a $A, B \subseteq V$ są rozłączne i $A \cup B$ jest liniowo niezależny. Uzasadnij że $Lin(A) \cap Lin(B) = \{\vec{0}\}$

Zadanie 9. Oblicz wymiary następujących przestrzeni: $\{P \in \mathbf{R}_{50}[X] : P(-X) = P(X)\}, \{P \in \mathbf{R}_{10}[X] : \sum_{i=1}^{0} P(x) dx = P'(-7) = 0\}, \{(x_1, \dots, x_{100})^{\top} \in \mathbf{R}^{100} : \sum_{i=1}^{100} (-1)^{i} x_i = \sum_{i=1}^{100} x_i = \sum_{i=1}^{50} x_{2i} = 0\}, \{P \in \mathbf{R}_{3}[X] : XP'''(X) + P''(X) = 0, P'(-1) + P(0) = 0\}.$

Zadanie 10. Jeśli b_1, \ldots, b_n jest bazą V, zaś $F: V \to W$ jest izomorfizmem, to $F(b_1), \ldots, F(b_n)$ generują W. Jak bardzo potrafisz osłabić założenia tego twierdzenia?

Zadanie 11. Udowodnij lub obal:

- a) Jeśli układ wektorów $v_1, \ldots, v_n \in V$ jest lz, a $F: V \to W$ jest przekształceniem liniowym, to układ wektorów $F(v_1), \ldots, F(v_n)$ też jest lz.
- b) (dla formalistów) Jeśli zbiór $\{v_1,\ldots,v_n\}\subseteq V$ jest lz, a $F:V\to W$ jest przekształceniem liniowym, to zbiór $\{F(v_1),\ldots,F(v_n)\}$ też jest lz.
- c) Jeśli układ wektorów $v_1, \dots, v_n \in V$ jest lnz, a $F: V \to W$ jest przekształceniem liniowym, to układ wektorów $F(v_1), \dots, F(v_n)$ też jest lnz.

Zadanie 12. Udowodnij, że jeśli $W \le V$, zaś $F: W \to U$ jest przekształceniem liniowym, to istnieje przekształcenie liniowe $\bar{F}: V \to U$, takie że F jest obcięciem \bar{F} do W. Znajdź takie \bar{F} dla $V = \mathbf{R}_2[X]$, $W = \{P \in \mathbf{R}_2[X]: P(3) = 0\}, \ U = \mathbf{R}_1[X], \ F(P) = \frac{P(X)}{X-3}$. Ile jest takich \bar{F} ?

Zadanie 13. Udowodnij, że jeśli $F:V\to W$ jest monomorfizmem (tzn. jest liniowe i 1-1), to istnieje przekształcenie liniowe $G:W\to V$, takie że $G\circ F=\mathrm{id}_V$ (Dlaczego nie wynika stąd, że każdy monomorfizm jest izomorfizmem?). Znajdź macierze dwóch różnych takich G dla $F:\mathbf{R}^2\to\mathbf{R}^3$

zadanego macierzą $\begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 1 & 1 \end{pmatrix}$.

Zadanie 14. Czy jest prawdą, że dla dowolnych skończenie wymiarowych podprzestrzeni *U*, *V*, *W* dowolnej przestrzeni liniowej zachodzi wzór (udowodnij lub podaj kontrprzykład):

$$\dim(U+V+W) = \dim(U) + \dim(V) + \dim(W) - \dim(U\cap V) - \dim(V\cap W) - \dim(W\cap U) + \dim(U\cap V\cap W)$$

Zadanie 15. Niech $W, U \le V$ spełniają W + U = V. Uzasadnij, że jeśli $W \cap U = \{0\}$, to odzorowanie $W \oplus U \to V$ zadane wzorem $(w, u) \mapsto w + u$ jest izomorfizmem liniowym.

(Przypomnienie: w przypadku jak w zadaniu powyżej mówimy, że V jest sumą prostą W i U, piszemy $V=W\oplus U$.)

Zadanie 16. Niech $V = \{(x, y, z)^{\top} \in \mathbb{R}^3 : x + 2y + z = 0\}, W = \{(x, y, z)^{\top} \in \mathbb{R}^3 : x = \frac{y}{3} = -\frac{z}{7}\}.$ Wykaż, że

- a) \mathbb{R}^3 nie jest sumą prostą V i W, tzn. odwzorowanie $V \times W \ni (v, w) \mapsto v + w \in \mathbb{R}^3$ nie jest izomorfizmem.
- b) $V \oplus W \cong \mathbb{R}^3$.

Zadanie 17. Niech $V = \mathbb{R}^3$, zaś W niech będzie prostą w \mathbb{R}^3 zadaną równaniem $x = \frac{y}{3} = -z$.

- a) Sprawdź, czy wektory $v_1 + W$, $v_2 + W$ są lnz w V/W, dla (i) $v_1 = (1,2,3)^{\mathsf{T}}$, $v_2 = (4,5,6)^{\mathsf{T}}$; (ii) $v_1 = (2,6,-2)^{\mathsf{T}}$, $v_2 = (0,1,2)^{\mathsf{T}}$; (iii) $v_1 = (-1,0,2)^{\mathsf{T}}$, $v_2 = (0,3,1)^{\mathsf{T}}$; (iv) $v_1 = (0,0,1)^{\mathsf{T}}$, $v_2 = (0,1,0)^{\mathsf{T}}$.
- b) Wskaż bazę B przestrzeni V/W i oblicz $[v_1]_B$, $[v_2]_B$ dla wszystkich powyższych v_1, v_2 .
- c) Niech $p: V \to V/W$ będzie naturalnym rzutowaniem (zadanym przez p(v) = v + W). Sprawdź, że $p|_{W^{\perp}}$ jest izomorfizmem liniowym. Czy potrafisz uzasadnić, że to samo będzie prawdą dla dowolnej prostej W przechodzącej przez 0 w $V = \mathbb{R}^3$? $[W^{\perp} = \{v \in V \mid \forall w \in W, \langle v, w \rangle = 0\}]$

Zadanie 18. Sprawdź że:

- a) jeżeli F_1, F_2 są liniowe, to $F_1 \oplus F_2$ jest liniowe.
- b) $F_1 \oplus F_2$ jest "na" lub 1-1 wtedy i tylko wtedy gdy F_1 i F_2 są "na" lub 1-1.
- c) jeżeli $F: V \to W$ jest liniowe, to dla $f \in W^*$ mamy $F^*(f) \in V^*$ i $F^*: W^* \to V^*$ jest liniowe

Zadanie 19. Uzasadnij (na przykład korzystając z poprzedniego zadania), że jeżeli $V_1 \cong V_2$ i $W_1 \cong W_2$, to $V_1 \oplus W_1 \cong V_2 \oplus W_2$.

Zadanie 20. Sprawdź że:

a) dla dowolnych $V_1 \stackrel{F_1}{\rightarrow} W_1 \stackrel{G_1}{\rightarrow} U_1, V_2 \stackrel{F_2}{\rightarrow} W_2 \stackrel{G_2}{\rightarrow} U_2$ zachodzi

$$(G_1 \oplus G_2) \circ (F_1 \oplus F_2) = ((G_1 \circ F_1) \oplus (G_2 \circ F_2)),$$

b) jeżeli $F_1: V_1 \rightarrow V_2$ i $F_2: V_2 \rightarrow V_3$ są liniowe, to $(F_2 \circ F_1)^* = F_1^* \circ F_2^*$.

Zadanie 21. Oblicz wymiar przestrzeni $\{P \in \mathbf{R}_{100}[X] : \int_{-1}^{1} e^{-x^2} P(x) dx = \int_{-2}^{2} e^{-x^2} P(x) dx = 0\}$. Co potrafisz powiedzieć o wymiarze przestrzeni $\{P \in \mathbf{R}_{100}[X] : \int_{-1}^{1} e^{-x^2} P(x) dx = \int_{-2}^{2} e^{-x^2} P(x) dx = 0\}$?

Zadanie 22. Niech dla $i=0,\ldots,n$ funkcja $f_i:V_i\to V_{i+1}$ będzie przekształceniem liniowym, przy czym $\ker(f_{i+1})=\operatorname{im}(f_i)$ (dla $i=0,\ldots,n-1$). Załóżmy ponadto, że $V_0=V_{n+1}=\{0\}$. Udowodnij, że $\sum_{i=1}^n (-1)^i \dim(V_i)=0$.

Zadanie 23. Niech $F: V \to W$ będzie przekształceniem liniowym, U podprzestrzenią $\ker(F)$, zaś $p: V \to V/U$ odwzorowaniem ilorazowym (p(v) = v + U). Uzasadnij, że istnieje jedyne odwzorowanie liniowe $f: V/U \to W$, takie że $f \circ p = F$.