The Lambda Calculus

6CCS3COM Computational Models

Josh Murphy

Contents

- What is the Lambda Calculus?
 - Notation
 - Free and Bound variables
 - α -equivalence
- How does the Lambda Calculus work?
 - β -reductions
 - Normal forms
- Simple examples

The Lambda Calculus and Turing Machines

- The Turing Machine is an **imperative** computational model.
- The Lambda Calculus is a **functional** computational model.
- They are computationally equivalent models.
 - Church-Turing thesis: a function is λ -computable if and only if it is Turing-computable.

Functions in the Lambda Calculus

- Functions are black-boxes.
 - They do not have an internal representation or implementation.
 - They can be seen as pure operations.
- e.g. successor function

• e.g. addition

Applying Lambda functions

- A function can be applied to values.
 - e.g. $(\lambda x.x + 1)2 = 2 + 1 = 3$
 - The value 2 is substituted into x.
 - e.g. $(\lambda x.\lambda y.x + y)$ 5 6 = 5+6 = 11
 - The value 5 is substituted into x.
 - The value 6 is substituted into y.

Lambda Calculus notation

- Terms in the Lambda calculus are built from three components:
 - 1. Variables
 - We assume variables are taken from an infinite set $\{x, y, z, ...\}$
 - 2. Abstractions
 - If x is a variable and M is a term, then $(\lambda x.M)$ is a term.
 - 3. Applications
 - If M and N are terms then (M N) is a term.

Lambda Calculus notation

- Omit brackets where there is no ambiguity
- Application associates to the left
 - Instead of writing ((MN)P) we will simply write MNP
- Abstraction associates to the right
 - Instead of writing $\lambda x.(\lambda y.M)$ we simply write $\lambda x.\lambda y.M$, or just $\lambda xy.M$
- We assume the scope of λ is as wide as possible.
 - $\lambda x.xy = \lambda x.(xy)$
 - $\lambda x.xy \neq (\lambda x.x)y$

Example terms in the Lambda Calculus

- X
- λx.x
- λxy.x
- λxy.y
- λxy.xy
- λx.xx
- λx.y
- λx.yx
- $\lambda xyz.xz(yz)$

Free and Bound variables

- In the context of a given term, a variable can be either free or bound.
- You can think about free and bound variables by relating them to the concept of program scope.
 - Bound variables are similar to local variables (their value is defined by the given context)
 - Free variables are similar to global variables (their value is defined outside of the given context)

Formal definition of free variables

• We define the set of free variables of a term M, FV(M), as a recursive function.

$$FV(x) = \{x\}$$

$$FV(\lambda x.M) = FV(M) - \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

• Terms without free variables are **combinators** or **closed terms**.

Formal definition of bound variables

• We define the set of bound variables of a term M, BV(M), as a recursive function.

$$BV(x) = \emptyset = \{\}$$

 $BV(\lambda x.M) = \{x\} \cup BV(M)$
 $BV(MN) = BV(M) \cup BV(N)$

Exercises

- In the example terms of the Lambda Calculus, which variables are free, and which are bound?
- What are the free and bound variables of the term $x\lambda x.x$

Variable renaming and α -equivalence

- Variables can be renamed.
- We can rename a bound variable in a term without changing its meaning, as long as we rename it consistently.
- For example, $\lambda x.yx$ and $\lambda z.yz$ are computationally identical.
- $\lambda x.yx$ and $\lambda x.zx$ are not computationally identical.
 - We have renamed a free variable!
- $\lambda x.(zx)(zx)$ and $\lambda y.(zy)(zx)$ are not computationally identical.
 - We have to rename consistently!

Variable renaming and α -equivalence

- We will say that terms that differ only in the names of their bound variables are α -equivalent (computationally equivalent).
 - $M =_{\alpha} N$ iff M and N are α -equivalent.
 - ullet Terms that are lpha-equivalent will be considered the same term.

α -equivalence exercises

- ullet Are the following terms lpha-equivalent?
 - $\lambda x.xyx$ and $\lambda z.zyz$ Yes
 - $\lambda y.xy$ and $\lambda z.yz$ No
 - $(\lambda x.zx)(\lambda y.zy)$ and $(\lambda y.zy)(\lambda x.xz)$ No
 - $(\lambda x.x)z$ and $(\lambda z.z)z$ Yes
 - $(\lambda x.x)z$ and $(\lambda z.z)x$ No

Variable capture and α -equivalence

- Variable renaming should preserve the meaning of the term.
- If we rename a variable in such a way that a variable that was free before but is bound after, then we say that variable has been captured.
 - e.g. renaming x as y in the term $\lambda y.xy$ will capture the variable.
- If we capture a variable when renaming then we will not preserve the meaning of the term.
 - Therefore, we aim to avoid capturing variables when renaming.
- ullet Capturing variables can be avoided with lpha-equivalences.
 - e.g. $\lambda y.xy =_{\alpha} \lambda z.xz$, we can now safely rename x as y without captured variables.

Computation

- Computation in the Lambda Calculus is composed of a series of substitution rewritings, known as β -reductions.
- A **redex** is a term of the form $(\lambda x.M)N$.
- Redexes can be β -reduced.

The β -reduction rule

• The β -reduction rule:

$$(\lambda x.M)N \rightarrow_{\beta} M\{x \mapsto N\}$$

where $M\{x \mapsto N\}$ is the term obtained when we substitute x by N taking into account bound variables.

- We can apply the β -reduction rule to any redex in a term, it does not have to be at the start. The redex can be a subterm.
- If $M \to_{\beta} M_1 \to_{\beta} M_2 \to_{\beta} ... \to_{\beta} M_n$ then we write $M \to_{\beta}^* M_n$

β -reduction exercises

- Apply a single β -reduction to the following terms.
 - $(\lambda x.x)y$ **y**
 - $\bullet \ (\lambda x.xx)(\lambda xyz.(xy)(xz)(yx)(yz)) \ \textbf{(\lambda xyz.(xy)(xz)(yx)(yz))} \ \textbf{(\lambda xyz.(xy)(xz)(yx)(yz))}$
 - $(\lambda z.yz)(\lambda x.xz)$ **y(\lambda x.xz)**
 - $(\lambda x.xxx)((\lambda y.y)z)$ (($\lambda y.y$)z)(($\lambda y.y$)z)(($\lambda y.y$)z) weak head?

Checked

Normal forms

- When should we stop applying β -reductions?
- Normal form: stop when there are no more redexes left to reduce.
- Weak-head normal form: stop when all redexes are under an abstraction.
- β -reductions are **confluent**.
 - If $M \to_{\beta} M_1$ and $M \to_{\beta} M_2$ then there exists a term M_3 such that $M_1 \to_{\beta} * M_3$ and $M_2 \to_{\beta} * M_3$.
 - It doesn't matter which order you apply β -reductions, you will always reach the same normal form or weak-head normal form.

Normal form exercises

- β-reduce the following terms to their normal forms and weak-head normal forms.
 - $(\lambda x.xxx)((\lambda y.y)z)$
 - $\lambda abc.(\lambda x.a(\lambda y.xy))bc$ already in weak head normal form $\lambda abc.a(bc)$ normal form
 - $(\lambda x.xx)(\lambda x.xx)$ ($\lambda x.xx$)($\lambda x.xx$) infinite loop

Arithmetic in Lambda Calculus: numbers

- To represent numbers and arithmetic we don't need to introduce digits or additional operators.
- The natural numbers can be represented with the Church Numerals

$$\begin{array}{ll} \overline{0} & = \lambda x. \lambda y. y \\ \overline{1} & = \lambda xy. xy \\ \overline{2} & = \lambda xy. x(xy) \\ \overline{3} & = \lambda xy. x(x(xy))y \\ \dots & \text{this y shouldn't be here} \end{array}$$

We use \overline{n} to denote the Church Numeral representing the number n

Arithmetic in Lambda Calculus: successor function

• We can define the successor function — the function that takes a number \overline{n} and returns $\overline{n+1}$.

$$S = \lambda xyz.y(xyz)$$

- e.g. $S(\overline{0})$
 - $(\lambda xyz.y(xyz))(\lambda xy.y) \rightarrow_{\beta}$ $\lambda yz.y((\lambda xy.y)yz) \rightarrow_{\beta}$ $\lambda yz.y(z) =_{\alpha} \lambda xy.x(y) = \overline{1}$

Arithmetic in Lambda Calculus: addition

• We can define addition.

$$ADD = \lambda xyab.(xa)(yab)$$

• Exercise: check this works for 2+3 and 1+0.

Booleans in Lambda Calculus

 Boolean values and operators can also be encoded in pure Lambda Calculus.

$$FALSE = \lambda xy.y$$
$$TRUE = \lambda xy.x$$

We can define the NOT operation as follows:

$$NOT = \lambda x.x$$
 FALSE TRUE

- Exercise: check NOT works for the terms NOT TRUE and NOT FALSE.
- Challenge: define AND in the Lambda Calculus

Functional programming

- The Lambda Calculus is the theoretical basis for functional programming.
 - e.g. Haskel, Lisp, WolframAlpha.
 - Java Lambdas!
- The Lambda Calculus and Turing Machines are computationally equivalent
 - Proof: they can simulate each other.
- Next, we look at another model of computation, this time based on interaction.