МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ УЛЬЯНОВСКОЕ ВЫСШЕЕ АВИАЦИОННОЕ УЧИЛИЩЕ ГРАЖДАНСКОЙ АВИАЦИИ (ИНСТИТУТ)

Кафедра естественно-научных дисциплин

С.П. Никонова

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Учебное пособие

ББК 161 я7

H64

Никонова, С.П. Интегральное исчисление функций нескольких переменных: учеб. пособие / С.П. Никонова. – Ульяновск : УВАУ ГА, 2008. – 83 с.

Представленный материал по разделам математики «Кратные и криволинейные интегралы», «Векторный анализ и элементы теории поля» очень удобно организован для самостоятельной работы курсантов при изучении дисциплины.

Теоретический материал изложен в конспективной форме с выделением основных определений и теорем, приведены примеры решения задач. Для закрепления прочитанного, отработки практических умений и для самоконтроля после каждой главы приведены контрольные вопросы, базовый набор практических заданий и ответы к задачам.

Предназначено для курсантов УВАУ ГА специализаций 160503.65.01 — Летная эксплуатация гражданских воздушных судов, 160505.65.01 — Управление воздушным движением, 280102.65.01 — Поисковое и аварийноспасательное обеспечение ГА, 280102.65.12 — Инженерно-техническое обеспечение авиационной безопасности.

Печатается по решению Редсовета училища.

Рецензенты: кандидат физико-математических наук,

доцент кафедры высшей математики УлГТУ Коноплева И.В.,

кандидат физико-математических наук,

доцент кафедры ЕНД УВАУ ГА Глухов В.П.

ISBN 978-5-7514-0170-2

Содержание

Введение	4
Глава 1. Кратные интегралы	6
§1. Двойной интеграл и его свойства	6
§2. Вычисление двойного интеграла	13
§3. Тройной интеграл	18
Контрольные вопросы к главе 1	23
Задачи к главе 1	24
Глава 2. Криволинейные и поверхностные интегралы	31
§1. Криволинейный интеграл первого рода	31
§2. Поверхностный интеграл первого рода	35
§3. Криволинейный интеграл второго рода	38
§4. Теоремы о связи интегралов различных видов	45
§5. Независимость криволинейного интеграла второго рода	
от пути интегрирования	50
Контрольные вопросы к главе 2	52
Задачи к главе 2	53
Глава 3. Элементы теории поля	58
§1. Векторное поле	58
§2. Поток векторного поля через поверхность	60
§3. Дивергенция векторного поля и её связь с потоком	63
§4. Циркуляция векторного поля вдоль замкнутого контура	65
§5. Ротор векторного поля и его связь с циркуляцией	67
§6. Классификация векторных полей	70
§7. Дифференциальные операции второго порядка над полями	
Контрольные вопросы к главе 3	77
Задачи к главе 3	79
Библиографический список	82

ВВЕДЕНИЕ

Интегральное исчисление – раздел математики, в котором изучаются интегралы различного вида, такие как определенный, двойной, тройной, поверхностный, криволинейный и т.д., их свойства, способы вычисления, а также приложения этих интегралов к решению различных задач естествознания и техники. Возникновение интегрального исчисления связано с проблемами вычисления площадей и объемов геометрических фигур. Некоторые достижения в этом направлении имели место еще в Древней Греции (Евдокс, Архимед и др.). Возрождение интереса к задачам подобного рода возникло в Европе в XVI – XVII веках по причине промышленного развития ряда стран, поставившего перед математикой принципиально новые проблемы. В это время большой вклад в развитие науки внесли И. Кеплер, Б. Кавальери, Э. Торричелли, Дж. Валлис, Б. Паскаль, П. Ферма, Х. Гюйгенс.

Качественным сдвигом в интегральном исчислении явились труды И. Ньютона и Г. Лейбница, создавших ряд общих методов нахождения пределов интегральных сумм. После исследований Ньютона и Лейбница многие задачи интегрального исчисления, ранее требовавшие значительного искусства для своего решения, были сведены до уровня чисто технического.

Двойные и тройные интегралы, введенные во второй половине XVIII века Л. Эйлером и Ж. Лагранжем, быстро получили широкое применение, особенно в механике и математической физике. Общая теория кратных интегралов была создана в XIX веке, выдающийся вклад в нее внесли К. Гаусс, М.В. Остроградский, Дж. Грин и др. Криволинейный интеграл впервые встречается в работе А. Клеро (1743), а в общем виде он был введен французским математиком О. Коши в 1825 году.

Одним из важнейших направлений применения интегрального исчисления функций нескольких переменных является так называемая теория векторных полей, или векторный анализ. Понятие векторного поля ввел физик М. Фарадей, а через 20 лет после появления теории Фарадея с ней познакомился Дж. Максвелл: «Когда я стал углубляться в изучение работ Фарадея, я заметил,

что метод его понимания математичен, хотя и не представлен в условной форме математических символов. Я также нашел, что метод может быть выражен в обычной математической форме и таким образом может быть сопоставлен с методами признанных математиков» 1. Название «векторный анализ» было введено американским ученым Д. Гиббсом, и благодаря работам именно Гиббса, а также О. Хэвисайда, векторный анализ стал самостоятельной ветвью математики.

Кратные, криволинейные, поверхностные интегралы, а также понятия и формулы векторного анализа нашли применение, в частности, и в решении ряда задач аэродинамики и гидродинамики.

© НИЛ НОТ НИО УВАУ ГА(и), 2009 г

¹ Джеймс Максвелл, Трактат по электричеству и магнетизму (Treatise on Electricity and Magnetism), 1873.

Глава 1. КРАТНЫЕ ИНТЕГРАЛЫ

§1. Двойной интеграл и его свойства

1. Задачи, приводящие к понятию двойного интеграла

Задача о нахождении массы (заряда) плоской пластины

 $\Delta (S)$ – плоская пластина площадью S (замкнутая ограниченная об-

ласть на плоскости Oxy) (рис. 1);

2) $\gamma(x, y)$ – поверхностная плотность распределения массы (или заряда) по пластине (непрерывная функция на (S) и неотрицательная, если речь идет о массе).

Требуется найти массу $m_{(S)}$ (заряд $q_{(S)}$) пластины (S).

РЕШЕНИЕ. Если $\gamma(x, y) \equiv \gamma$ (= const) на (S), то $m_{(S)} = \gamma \cdot S$.

Пусть $\gamma(x, y) \neq \text{const на } (S)$.

Разобьем (S) на n частичных непересекающихся пластинок (ΔS_k) (k = 1, 2, ..., n) сетью кривых. Обозначим: ΔS_k – площадь (ΔS_k) , $d(\Delta S_k)$ – диаметр частичной области (ΔS_k), т.е. наибольшее из расстояний между любыми двумя её точками, $\lambda = \max_{\iota} d(\Delta S_{\iota})$ — шаг разбиения.

Выберем на каждом участке (ΔS_k) ($k=1,\,2,\,...,\,n$) произвольную точку M_k ; в силу непрерывности функция $\gamma(x, y)$ незначительно изменяется на малой по диаметру области (ΔS_k), поэтому $m_{(\Delta S_k)} \approx \gamma(M_k) \cdot \Delta S_k$.

Составим сумму $\sum_{k=1}^{n} \gamma(M_k) \cdot \Delta S_k \approx m_{(S)}$. Приближенное равенство становится тем точнее, чем меньше будет шаг разбиения λ.

Перейдем к пределу в приближенном равенстве при $\lambda \to 0$ и получим точное значение массы (или заряда) пластины:

$$m_{(S)}(=q_{(S)}) = \lim_{\lambda \to 0} \sum_{k=1}^{n} \gamma(M_k) \cdot \Delta S_k$$
.

Задача о нахождении объема цилиндрического тела

 \mathcal{L} ано: 1) (V) — цилиндрическое тело, т.е. замкнутая область в трехмерном

пространстве Oxyz, ограниченная снизу областью $(S)\subset (Oxy)$, сверху — участком поверхности, заданной уравнением z = f(x, y) $((x, y)\in (S))$; здесь боковая поверхность — цилиндрическая с образующей, параллельной оси Oz (рис. 2);

2) f(x, y) — непрерывная, неотрицательная функция на (S).

Tребуется найти объём V цилиндрического тела.

Рис. 2

РЕШЕНИЕ. Разбивая цилиндрическое тело на n частичных с основаниями $(\Delta S_k) \left(\bigcup_{k=1}^n (\Delta S_k) = (S) \right)$ и заменяя каждое из них цилиндром с основанием (ΔS_k)

и высотой $f(M_k)$, где точка M_k выбрана произвольно в (ΔS_k) , получим:

$$V = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(M_k) \cdot \Delta S_k,$$

где ΔS_k – площадь (ΔS_k) (k=1,2,...,n), $\lambda=\max_k \mathrm{d}(\Delta S_k)$.

2. Определения

Интегральной суммой для функции f(x, y) по области (S), соответствующей данному разбиению её на частичные, называется сумма вида

$$\sigma_n = \sum_{k=1}^n f(\xi_k, \eta_k) \Delta S_k,$$

где ΔS_k – площади непересекающихся частичных областей (ΔS_k) ($k=1,\,2,\,...,\,n$), на которые разбита данная область (S): $\bigcup_{k=1}^n (\Delta S_k) = (S)$;

 (ξ_k,η_k) — координаты точек M_k (k=1,2,...,n), выбранных произвольным образом на соответствующих участках (ΔS_k) ;

 $\lambda = \max_k d(\Delta S_k)$ — шаг разбиения (S), т.е. максимальный из диаметров частичных областей.

Число J называется *пределом* «последовательности» интегральных сумм при $\lambda \to 0$, если для любого сколь угодно малого числа $\varepsilon > 0$ найдется такое $\delta > 0$, что для любого разбиения области (S) на частичные с шагом $\lambda < \delta$ и при любом выборе точек M_k выполняется условие: $|\sigma_n - J| < \varepsilon$. Обозначение: $J = \lim_{\delta \to 0} \sigma_n$.

Двойным интегралом (от) **функции** f(x, y) **по области** (S) называется предел «последовательности» интегральных сумм, составленных для данной функции и соответствующих различным разбиениям области (S) (если он существует):

$$\iint\limits_{(S)} f(x, y) dS = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k) \Delta S_k.$$

Замечание. Интегральные суммы для функции f(x, y) зависят от способа разбиения заданной области (S) на частичные и от выбора точек M_k . Предел интегральных сумм, а следовательно, и двойной интеграл функции f(x, y) по области (S) не зависят ни от способа разбиения (S), ни от выбора точек M_k .

3. Теорема о достаточных условиях существования двойного интеграла

Если функция f(x, y) непрерывна в замкнутой ограниченной области (S) $((S) \subset (Oxy))$, то она интегрируема по этой области: $\exists \iint_{(S)} f(x, y) dS$.

4. Замечания

1. О физическом смысле двойного интеграла

$$\gamma(x,y)$$
 — плотность распределения массы или заряда по пластине (S)
$$m_{(S)} = q_{(s)} = \iint\limits_{(S)} \gamma(x,y) dS \, .$$

2. О геометрическом смысле двойного интеграла

z = f(x, y) — поверхность, ограничивающая сверху цилиндрическое тело с основанием (S)

объем цилиндрического тела:

$$\Rightarrow V = \iint_{(S)} f(x, y) dS.$$

5. Свойства двойного интеграла

Выражаемые равенствами

$$\boxed{1} \iint_{(S)} 0 \, dS = 0.$$

ДОКАЗАТЕЛЬСТВО:
$$\iint_{(S)} 0 \, dS = \lim_{\lambda \to 0} \sum_{k=1}^{n} 0 \cdot \Delta S_k = \lim_{\lambda \to 0} 0 = 0.$$

$$2 \iint_{(S)} 1 \cdot dS = \iint_{(S)} dS = S$$
, где S – площадь области (S) .

ДОКАЗАТЕЛЬСТВО:
$$\iint\limits_{(S)} 1 \cdot dS = \lim_{\lambda \to 0} \sum_{k=1}^n 1 \cdot \Delta S_k = \lim_{\lambda \to 0} S = S \; .$$

 ${\bf 3}$ Свойство линейности. Если существуют интегралы $\iint\limits_{(S)} f_{\bf 1}(x,y) dS$,

 $\iint\limits_{(S)} f_2(x,y) \mathrm{d}S$, то для любых $\alpha_1,\alpha_2 \in \mathbf{R}$ имеет место равенство:

$$(\exists) \iint_{(S)} \left[\alpha_1 f_1(x, y) + \alpha_2 f_2(x, y) \right] dS = \alpha_1 \iint_{(S)} f_1(x, y) dS + \alpha_2 \iint_{(S)} f_2(x, y) dS.$$

ДОКАЗАТЕЛЬСТВО. По условию $\exists \iint_{(S)} f_1(x, y) dS = \lim_{\lambda \to 0} \sum_{k=1}^n f_1(\xi_k, \eta_k) \Delta S_k$,

 $\exists \iint_{(S)} f_2(x,y) dS = \lim_{\lambda \to 0} \sum_{k=1}^n f_2(\xi_k, \eta_k) \Delta S_k$, где ΔS_k — площади частичных областей (ΔS_k) (k=1,2,...,n), на которые разбивается (S); (ξ_k, η_k) — координаты точек M_k (k=1,2,...,n), выбранных на соответствующих участках (ΔS_k) , $\lambda = \max_k \mathrm{d}(\Delta S_k)$ — шаг разбиения. Тогда, следуя свойствам пределов и конечных сумм, получим:

$$\begin{split} \exists \left[\alpha_1 \iint_{(S)} f_1(x, y) dS + \alpha_2 \iint_{(S)} f_2(x, y) dS\right] &= \alpha_1 \lim_{\lambda \to 0} \sum_{k=1}^n f_1(\xi_k, \eta_k) \Delta S_k + \\ &+ \alpha_2 \lim_{\lambda \to 0} \sum_{k=1}^n f_2(\xi_k, \eta_k) \Delta S_k = \lim_{\lambda \to 0} \left[\alpha_1 \sum_{k=1}^n f_1(\xi_k, \eta_k) \Delta S_k\right] + \\ &+ \lim_{\lambda \to 0} \left[\alpha_2 \sum_{k=1}^n f_2(\xi_k, \eta_k) \Delta S_k\right] &= \lim_{\lambda \to 0} \left[\sum_{k=1}^n \alpha_1 f_1(\xi_k, \eta_k) \Delta S_k + \sum_{k=1}^n \alpha_2 f_2(\xi_k, \eta_k) \Delta S_k\right] = \\ &= \lim_{\lambda \to 0} \sum_{k=1}^n \left[\alpha_1 f_1(\xi_k, \eta_k) + \alpha_2 f_2(\xi_k, \eta_k)\right] \Delta S_k = \iint_{(S)} \left[\alpha_1 f_1(x, y) + \alpha_2 f_2(x, y)\right] dS \,. \end{split}$$

4 Свойство аддитивности. Если существуют интегралы $\iint_{(S_1)} f(x, y) dS$,

 $\iint\limits_{(S_2)} f(x,y) dS$ и области (S_1) и (S_2) не имеют общих внутренних точек, то вы-

полняется равенство:

$$(\exists) \iint_{(S_1) \cup (S_2)} f(x, y) dS = \iint_{(S_1)} f(x, y) dS + \iint_{(S_2)} f(x, y) dS.$$

Выражаемые неравенствами

5 Свойство неотрицательности. Если для любых точек $(x, y) \in (S)$ $f(x, y) \ge 0$ и интеграл $\iint_{(S)} f(x, y) dS$ существует, то $\iint_{(S)} f(x, y) dS \ge 0$.

ДОКАЗАТЕЛЬСТВО:
$$\iint\limits_{(S)} f(x,y) \, dS = \lim_{\lambda \to 0} \sum_{k=1}^n \underbrace{f(\xi_k,\eta_k)}_{\geq 0} \underbrace{\Delta S_k}_{>0} \geq 0 \quad (\text{по теореме o}$$

переходе к пределу в неравенстве).

6 Свойство почленного интегрирования неравенства (свойство сравнения интегралов).

Если в области (S) выполняется неравенство $f_1(x, y) \ge f_2(x, y)$ и интегралы $\iint\limits_{(S)} f_1(x, y) \, dS \, , \, \iint\limits_{(S)} f_2(x, y) \, dS \, \, \text{существуют, то}$

$$\iint\limits_{(S)} f_1(x, y) dS \ge \iint\limits_{(S)} f_2(x, y) dS.$$

Доказательство следует из свойств 3 и 5.

7 Свойство оценки

Если функция f(x, y) интегрируема в области (S) и удовлетворяет неравенству $m \le f(x, y) \le M$ ($\forall (x, y) \in (S)$), то для интеграла выполняется условие:

$$m \cdot S \leq \iint_{(S)} f(x, y) dS \leq M \cdot S.$$

Доказательство следует из свойств [6], [3], [2].

6. Теорема о среднем для двойного интеграла

Если функция f(x, y) непрерывна в замкнутой ограниченной области (S), то в ней найдется хотя бы одна такая точка $C(\xi_0, \eta_0)$, для которой справедливо равенство:

$$\iint\limits_{(S)} f(x, y) dS = f(\xi_0, \eta_0) \cdot S.$$

Замечания: 1. Число $f(C) = \frac{1}{S} \iint_{(S)} f(x, y) dS$ называется *средним значением функции* f(x, y) в области (S).

2. Теорема о среднем для двойного интеграла доказывается аналогично одноименной теореме для определенного интеграла — с использованием

свойств функции, непрерывной в замкнутой ограниченной области, и свойства оценки интеграла.

7. Некоторые физические приложения двойных интегралов

Пусть (S) — плоская пластина, m — ее масса, $\gamma(x, y)$ — поверхностная плотность распределения массы вдоль (S). Тогда:

- статический момент пластины (S) относительно оси Ox:

$$M_x = \iint\limits_{(S)} y \cdot \gamma(x, y) dx dy;$$

- статический момент пластины (S) относительно оси Oy:

$$M_{y} = \iint_{(S)} x \cdot \gamma(x, y) dxdy;$$

- координаты центра тяжести пластины (*S*):

$$\bar{x} = \frac{M_y}{m}, \ \bar{y} = \frac{M_x}{m};$$

- момент инерции пластины (S) относительно оси Ox:

$$I_{x} = \iint_{(S)} y^{2} \cdot \gamma(x, y) dx dy;$$

- момент инерции пластины (S) относительно оси Oy:

$$I_{y} = \iint_{(S)} x^{2} \cdot \gamma(x, y) dx dy;$$

момент инерции пластины (S) относительно начала координат.

$$I_O = \iint_{(S)} (x^2 + y^2) \cdot \gamma(x, y) dx dy = I_x + I_y.$$

§2. Вычисление двойного интеграла

1. Определения

Замкнутая область (S) называется *стандартной* (или *правильной*) ε *направлении оси Оу*, если любая прямая, параллельная Oу и имеющая хотя бы одну общую точку с областью (S), являющуюся внутренней для (S), пересекает границу этой области ровно в двух точках (рис. 3). Аналогично определяется область, *стандартная* ε *направлении оси Ох* (рис. 4).

Область, стандартная как в направлении оси Ox, так и в направлении Oy, называется *стандартной* (или *правильной*) *областью*.

Замечания: 1. Если (S) – *ограниченная, стандартная в направлении оси Оу область*, то её можно задать с помощью системы неравенств (см. рис. 3):

$$(S) = \left\{ (x, y) \middle| \begin{array}{l} a \le y \le b, \\ y_1(x) \le y \le y_2(x) \ (\forall x \in [a, b]) \end{array} \right\},$$

где $y_1(x)$, $y_2(x)$ — элементарные функции, определенные на [a, b].

2. Для ограниченной, стандартной в направлении оси Ох области (S) имеем (см. рис. 4):

$$(S) = \left\{ (x, y) \middle| \begin{aligned} c &\leq y \leq d, \\ x_1(y) &\leq x \leq x_2(y) \ (\forall y \in [c, d]) \end{aligned} \right\}.$$

2. Обозначение

Полагая в двойном интеграле dS = dxdy, получим:

$$\iint_{(S)} f(x, y) dS = \iint_{(S)} f(x, y) dxdy.$$

Обозначение обосновано тем, что наиболее простым разбиением области (S) является разбиение прямыми, параллельными координатным осям (рис. 5), при этом $\Delta S_k = \Delta S_{ij} = \Delta x_i \cdot \Delta y_j \; \begin{pmatrix} i=1,2,...,m,\\ j=1,2,...,\ell \end{pmatrix}$, откуда

при переходе к пределу получим: dS = dxdy.

3. Теорема о вычислении двойного интеграла в прямоугольных декартовых координатах

А. Если функция f(x, y) непрерывна в ограниченной, стандартной в направлении оси Oy области

$$(S) = \left\{ (x, y) \middle| \begin{array}{l} a \le x \le b, \\ y_1(x) \le y \le y_2(x) \ (\forall x \in [a, b]) \end{array} \right\},$$

то двойной интеграл от этой функции по (S) сводится к ∂ вукратному интегралу:

$$\iint_{(S)} f(x, y) dxdy = \int_{a}^{b} \left[\int_{y_{1}(x)}^{y_{2}(x)} f(x, y) dy \right] dx = \int_{a}^{o_{03H.}b} dx \int_{y_{1}(x)}^{y_{2}(x)} f(x, y) dy$$

(здесь: $\int_{y_1(x)}^{y_2(x)} f(x, y) dy = \varphi(x) - внутренний интеграл, \int_a^b \varphi(x) dx - внешний интеграл).$

Б. Если функция f(x, y) непрерывна в ограниченной, стандартной относительно оси Ox области

$$(S) = \left\{ (x, y) \middle| \begin{aligned} c &\leq y \leq d, \\ x_1(y) &\leq x \leq x_2(y) \ (\forall y \in [c, d]) \end{aligned} \right\},$$

To
$$\iint_{(S)} f(x, y) dxdy = \int_{c}^{d} \left[\int_{x_{1}(y)}^{x_{2}(y)} f(x, y) dx \right] dy = \int_{c}^{o \circ o_{3H}} \int_{x_{1}(y)}^{d} f(x, y) dx.$$

Доказательство проведем для случая A при дополнительном условии: $f(x) \ge 0$ на (S).

С одной стороны, объём цилиндрического тела (V) с основанием (S) \subset (Oxy), ограниченного сверху поверхностью z = f(x, y) (рис. 6), вычисляется по формуле $V = \iint_{(S)} f(x, y) dx dy$.

С другой стороны, $V = \int_{a}^{b} Q(x) dx$, где Q(x) — площадь сечения тела (V) плоскостью, проходящей через точку $x \in [a, b]$ и перпендикулярной оси Ox. При фиксированном значении $x \in [a, b]$: $y_1(x), y_2(x)$ — числа, f(x, y) — функ-

ция переменной y, а Q(x) – площадь криволинейной трапеции (рис. 7), вычисляемая следующим образом:

Рис. 7

$$Q(x) = \int_{y_1(x)}^{y_2(x)} f(x, y) \, dy.$$

Сравнивая результаты, получим:

$$\iint\limits_{(S)} f(x, y) dxdy = \int\limits_{a}^{b} \left[\int\limits_{y_1(x)}^{y_2(x)} f(x, y) dy \right] dx.$$

Замечание. 1. Если область (S) не является стандартной, то её нужно разбить на стандартные части и применить к интегралу свойство аддитивности.

2. Если область (S) — прямоугольник, определяемый неравенствами $a \le x \le b$, $c \le y \le d$, то формула примет вид:

$$\iint\limits_{(S)} f(x,y)dxdy = \int\limits_a^b dx \int\limits_c^d f(x,y)dy = \int\limits_c^d dy \int\limits_a^b f(x,y)dx.$$

Пример. Вычислим интеграл $\iint_{(S)} (x+y) \, dx dy, \text{ если } (S) = \left\{ (x,y) \middle| \begin{array}{l} 1 \le x \le 2, \\ 1 \le y \le x \end{array} \right\}$ (рис. 8).

Рис. 8

1 способ:

$$\iint_{(S)} (x+y) dx dy = \int_{1}^{2} dx \int_{1}^{x} (x+y) dy = \int_{1}^{2} dx \left[\left(xy + \frac{y^{2}}{2} \right) \Big|_{1}^{x} \right] =$$

$$= \int_{1}^{2} \left[\left(x^{2} + \frac{x^{2}}{2} \right) - \left(x + \frac{1}{2} \right) \right] dx = \int_{1}^{2} \left(\frac{3x^{2}}{2} - x - \frac{1}{2} \right) dx =$$

$$= \left(\frac{x^{3}}{2} - \frac{x^{2}}{2} - \frac{1}{2} x \right) \Big|_{1}^{2} = 1 + \frac{1}{2} = \frac{3}{2}.$$

2 способ:

$$\iint_{(S)} (x+y) \, dx \, dy = \int_{1}^{2} dy \int_{y}^{2} (x+y) \, dx = \int_{1}^{2} dy \left[\left(\frac{x^{2}}{2} + yx \right) \Big|_{y}^{2} \right] =$$

$$= \int_{1}^{2} \left[(2+2y) - \left(\frac{y^{2}}{2} + y^{2} \right) \right] dy = \int_{1}^{2} \left(2 + 2y - \frac{3y^{2}}{2} \right) dy = \left(2y + y^{2} - \frac{y^{3}}{2} \right) \Big|_{1}^{2} = 4 - \frac{5}{2} = \frac{3}{2}.$$

4. Теорема о вычислении двойного интеграла

в полярных координатах

Пусть функция f(x, y) непрерывна в ограниченной области (S), «стандартной» относительно полюса O, т.е. заданной в полярной системе координат следующим образом:

$$(S) = \left\{ (\rho, \varphi) \middle| \begin{matrix} \alpha \le \varphi \le \beta, \\ \rho_1(\varphi) \le \rho \le \rho_2(\varphi) (\forall \varphi \in [\alpha, \beta]) \end{matrix} \right\} (\text{puc. 9}).$$

 $Tor\partial a$ в двойном интеграле возможен переход к полярным координатам:

$$\iint_{(S)} f(x, y) dxdy = \int_{\alpha}^{\beta} d\varphi \int_{\rho_{1}(\varphi)}^{\rho_{2}(\varphi)} f(\rho \cos\varphi, \rho \sin\varphi) \rho d\rho,$$

(здесь: $x = \rho \cos \varphi$, $y = \rho \sin \varphi$, $dS = dxdy = \rho d\rho d\varphi$).

Замечание. Переход к полярным координатам в двойном интеграле применяется в тех случаях, когда (S) – круг или часть круга.

Пример. Вычислим интеграл $\iint_{(S)} (x+y) dx dy$, если (S) – часть круга

 $x^2 + y^2 \le 4$, расположенная в первой четверти (рис. 10).

$$(S) = \left\{ (x, y) \middle| \begin{array}{l} 0 \le x \le 2, \\ 0 \le y \le \sqrt{4 - x^2} \end{array} \right\} =$$

$$= \left\{ (\rho, \varphi) \middle| \begin{array}{l} 0 \le \varphi \le \frac{\pi}{2}, \\ 0 \le \rho \le 2 \end{array} \right\}$$

(т.к.
$$x^2 + y^2 = 4 \Leftrightarrow (\rho \cos \varphi)^2 + (\rho \sin \varphi)^2 = 4 \Leftrightarrow \rho = 2$$
), тогда

$$\iint_{(S)} (x+y) dx dy = \int_{0}^{\frac{\pi}{2}} d\varphi \int_{0}^{2} (\rho \cos\varphi + \rho \sin\varphi) \rho d\rho = \int_{0}^{\frac{\pi}{2}} (\cos\varphi + \sin\varphi) d\varphi \int_{0}^{2} \rho^{2} d\rho =$$

$$= \int_{0}^{\frac{\pi}{2}} (\cos\varphi + \sin\varphi) \cdot \left[\frac{\rho^{3}}{3} \right]_{0}^{2} d\varphi = \frac{8}{3} (\sin\varphi - \cos\varphi) \Big|_{0}^{\frac{\pi}{2}} = \frac{16}{3}.$$

§3. Тройной интеграл

1. Задача, приводящая к понятию тройного интеграла (о нахождении массы или заряда объёмного тела)

 \mathcal{L} ано: 1) (V) — объёмное тело конечного объёма V (замкнутая ограниченная область в координатном пространстве (Oxyz)) (рис. 11);

Рис. 11

 $\lambda = \max_{k} d(\Delta V_k) \ (k = 1, 2, ..., n).$

2) $\gamma(x, y, z)$ — объёмная плотность распределения массы (заряда), непрерывная на (V) функция ($\gamma(x, y, z) \ge 0$ на (V) — для массы).

Tребуется найти $m_{(V)}$ — массу тела (V) (или $q_{(V)}$ — заряд (V)).

РЕШЕНИЕ. Рассуждая аналогично случаю $m_{(S)}$, получим:

$$m_{(V)} = q_{(V)} = \lim_{\lambda \to 0} \sum_{k=1}^{n} \gamma(M_k) \Delta V_k,$$

где ΔV_k – объёмы частичных областей (ΔV_k), на которые разбита область (V), $M_k \in (\Delta V_k)$,

2. Определение

Тройным интегралом (от) **функции** f(x, y, z) **по области** $(V) \subset (Oxyz)$ называется предел интегральных сумм, составленных для f(x, y, z) и соответствующих различным разбиениям области (V) на частичные (если этот предел существует):

$$\iiint\limits_{(V)} f(x, y, z) dV = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta V_k,$$

где
$$\Delta V_k$$
 — объём (ΔV_k) : $\bigcup_{k=1}^n (\Delta V_k) = (V)$,

$$\lambda = \max_{k} d(\Delta V_k) - \text{шаг разбиения}.$$

Замечания: 1. Понятия интегральной суммы и её предела определяются аналогично соответствующим понятиям для двойного интеграла.

2. Формула $m_{(V)} = q_{(V)} = \iiint\limits_{(V)} \gamma(x,\,y,\,z) dV$ характеризует физический смысл тройного интеграла.

3. Теорема о достаточных условиях существования тройного интеграла

Если функция f(x, y, z) непрерывна в ограниченной замкнутой области (V), то интеграл $\iint\limits_{(V)} f(x, y, z) dV$ существует.

4. Свойства тройных интегралов (при условии их существования)

$$\boxed{1} \iiint_{(V)} 0 \, dV = 0.$$

$$\mathbf{Q} \iiint\limits_{(V)} dV = V$$
 , где $V-$ объём области (V) .

3 Свойство линейности

$$\iiint_{(V)} \left[\alpha_1 f_1(x, y, z) + \alpha_2 f_2(x, y, z) \right] dV = \alpha_1 \iiint_{(V)} f_1(x, y, z) dV + \alpha_2 \iiint_{(V)} f_2(x, y, z) dV.$$

4 Свойство аддитивности

$$\iiint_{(V_1)\cup(V_2)} f(x, y, z) dV = \iiint_{(V_1)} f(x, y, z) dV + \iiint_{(V_2)} f(x, y, z) dV.$$

5 Свойство неотрицательности. Если $f(x, y, z) \ge 0$ на (V), то

$$\iiint\limits_{(V)} f(x, y, z) dV \ge 0.$$

6 Свойство интегрирования неравенства. Если $f_1(x, y, z) \ge f_2(x, y, z)$ на (V), то

$$\iiint\limits_{(V)} f_1(x, y, z) dV \ge \iiint\limits_{(V)} f_2(x, y, z) dV.$$

 $\overline{\mathcal{J}}$ Свойство оценки. Если $m \le f(x, y, z) \le M$ на (V), то

$$mV \le \iiint\limits_{(V)} f(x, y, z) dV \le MV.$$

8 Теорема о среднем. Если f(x, y, z) непрерывна на замкнутой ограниченной области (V), то существует такая точка $C(\xi_0, \eta_0, \zeta_0) \in (V)$, что

$$\iiint\limits_{(V)} f(x, y, z) dV = f(C) \cdot V.$$

5. Теорема о вычислении тройного интеграла

Если функция f(x, y, z) непрерывна в ограниченной, стандартной в направлении оси Oz области

$$(V) = \left\{ (x, y, z) \middle| \begin{array}{l} (x, y) \in (S), \\ z_1(x, y) \le z \le z_2(x, y) \big(\forall (x, y) \in (S) \big) \end{array} \right\} \text{(рис. 12)},$$

то тройной интеграл от этой функции по области (V) вычисляется по формуле

$$\iiint_{(V)} f(x, y, z) dV = \iiint_{(V)} f(x, y, z) dx dy dz = \iint_{(S)} \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) dz dx dy =$$

$$= \iint_{(S)} dx dy \int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) dz \text{ (здесь } (S) = \Pi p_{Oxy}(V)).$$

Замечания: 1. Если область (S) можно задать условиями:

$$(S) = \left\{ (x, y) \middle| \begin{array}{l} a \le x \le b, \\ y_1(x) \le y \le y_2(x) \end{array} \right\},\,$$

то тройной интеграл сводится к трехкратному:

$$\iiint\limits_{(V)} f(x, y, z) dx dy dz =$$

$$= \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} \int_{z_{1}(x,y)}^{z_{2}(x,y)} f(x,y,z) dz.$$

2. Если
$$(S_{yz}) = \prod p_{Oyz}(V)$$
, то $\iiint\limits_{(V)} f(x,y,z) dx dy dz = \iint\limits_{(S_{yz})} dy dz \int\limits_{x_1(y,z)}^{x_2(y,z)} f(x,y,z) dx$.

3. Если
$$(S_{xz}) = \prod_{Oxz}(V)$$
, то $\iint_{(V)} f(x, y, z) dx dy dz = \iint_{(S_{xz})} dx dz \int_{y_1(x, z)}^{y_2(x, z)} f(x, y, z) dy$.

4. Если (S) — прямоугольный параллелепипед, заданный условиями $a \le x \le b$, $c \le y \le d$, $p \le z \le q$, то получим:

$$\iiint\limits_{(V)} f(x, y, z) dx dy dz = \int\limits_{a}^{b} dx \int\limits_{c}^{d} dy \int\limits_{p}^{q} f(x, y, z) dz.$$

Пример. Вычислим интеграл $\iiint\limits_{(V)} x dx dy dz$, ес-

ли (V) – область в первом октанте, ограниченная координатными плоскостями и плоскостью 2x+2y+z-4=0 (рис. 13).

$$(V) = \left\{ (x, y, z) \middle| \begin{array}{l} (x, y) \in (S), \\ 0 \le z \le 4 - 2x - 2y \end{array} \right\},$$

$$(S) = \left\{ (x, y) \middle| \begin{array}{l} 0 \le x \le 2, \\ 0 \le y \le 2 - x \end{array} \right\},$$

Рис. 13

отсюда

$$\iiint_{(V)} x dx dy dz = \int_{0}^{2} dx \int_{0}^{4-2x-2y} dy \int_{0}^{4-2x-2y} x dz =$$

$$= \int_{0}^{2} x dx \int_{0}^{2-x} dy \left[z \Big|_{0}^{4-2x-2y} \right] = \int_{0}^{2} x dx \int_{0}^{2-x} (4-2x-2y) dy =$$

$$= \int_{0}^{2} x dx \left[\left(4y - 2xy - y^{2} \right) \Big|_{0}^{2-x} \right] = \int_{0}^{2} x \left[4(2-x) - 2x(2-x) - (2-x)^{2} \right] dx =$$

$$= \int_{0}^{2} x (4-4x+x^{2}) dx = \int_{0}^{2} (4x-4x^{2}+x^{3}) dx = \left(2x^{2} - \frac{4x^{3}}{3} + \frac{x^{4}}{4} \right) \Big|_{0}^{2} = \frac{4}{3}.$$

6. Замечание о замене переменных в тройном интеграле

Переход *к цилиндрическим координатам* в тройном интеграле осуществляется по формуле

$$\iiint\limits_{(V)} f(x,y,z) dx dy dz = \int\limits_{\alpha}^{\beta} d\varphi \int\limits_{\rho_1(\varphi)}^{\rho_2(\varphi)} \int\limits_{z_1(\rho\cos\varphi,\rho\sin\varphi)}^{z_2(\rho\cos\varphi,\rho\sin\varphi)} f(x,y,z) dz.$$

В сферических координатах тройной интеграл примет вид:

$$\iiint\limits_{(V)} f(x, y, z) dx dy dz = \iiint\limits_{(V)} f(r \sin \theta \cos \varphi, r \sin \theta \sin \varphi, r \cos \theta) r^2 \sin \theta \cdot dr \cdot d\theta \cdot d\varphi.$$

7. Физические приложения тройных интегралов

Пусть (V) — тело в трехмерном пространстве, V — его объем, $\gamma(x, y, z)$ — объемная плотность распределения массы. Тогда:

- статический момент тела (V) относительно плоскости Oyz:

$$M_{yz} = \iiint\limits_{(V)} x \cdot \gamma(x, y, z) dx dy dz;$$

- статический момент тела (V) относительно плоскости Oxz:

$$M_{xz} = \iiint\limits_{(V)} y \cdot \gamma(x, y, z) dx dy dz$$
;

- статический момент тела (V) относительно плоскости Oxy:

$$M_{xy} = \iint\limits_{(V)} z \cdot \gamma(x, y, z) dx dy dz$$
;

- координаты центра тяжести тела (V):

$$\overline{x} = \frac{M_{yz}}{m}, \ \overline{y} = \frac{M_{xz}}{m}, \ \overline{z} = \frac{M_{xy}}{m};$$

- момент инерции тела (V) относительно оси Ox:

$$I_x = \iiint\limits_{(V)} (y^2 + z^2) \cdot \gamma(x, y, z) dx dy dz;$$

- момент инерции тела (V) относительно оси Oy:

$$I_{y} = \iiint\limits_{(V)} (x^{2} + z^{2}) \cdot \gamma(x, y, z) dx dy dz;$$

- момент инерции тела (V) относительно оси Oz:

$$I_z = \iiint\limits_{(V)} (x^2 + y^2) \cdot \gamma(x, y, z) dx dy dz;$$

- момент инерции тела (V) относительно начала координат:

$$I_O = \iiint_{(V)} (x^2 + y^2 + z^2) \cdot \gamma(x, y, z) dx dy dz = \frac{1}{2} (I_x + I_y + I_z).$$

Контрольные вопросы к главе 1

- 1. Перечислите задачи, приводящие к понятию двойного интеграла. Каков план их решения?
- 2. Дайте определения интегральной суммы, предела интегральных сумм, двойного интеграла от функции f(x, y) по области (S).
- 3. Сформулируйте теорему о достаточных условиях существования двойного интеграла.
- 4. В чем состоит геометрический и физический смысл двойного интеграла? Укажите возможные физические приложения двойных интегралов.

- 5. Перечислите свойства двойного интеграла.
- 6. Какая область называется стандартной в направлении оси Ox, в направлении оси Oy?
- 7. Запишите формулы для вычисления двойного интеграла в декартовых координатах и укажите условия, определяющие соответствующие области интегрирования.
- 8. Запишите формулы перехода к полярным координатам в двойном интеграле. В каких случаях это удобно делать?
 - 9. Какая задача приводит к понятию тройного интеграла?
- 10. Дайте определение тройного интеграла, укажите его физический смысл и условия существования.
 - 11. Перечислите свойства тройного интеграла.
- 12. Запишите всевозможные модификации формулы, позволяющей свести тройной интеграл к двойному в декартовых координатах.
- 13. Уточните порядок перехода к цилиндрическим и сферическим координатам в тройном интеграле.
- 14. Проведите сравнительный анализ теории двойных и тройных интегралов, выявите имеющиеся сходства и различия.

Задачи к главе 1

1.1 Вычислить двойные интегралы, взятые по прямоугольным областям интегрирования (S):

1)
$$\iint_{(S)} xydxdy$$
,

2)
$$\iint_{(S)} e^{x+y} dxdy$$
,

где (S):
$$0 \le x \le 1$$
, $0 \le y \le 2$.

где (S):
$$0 \le x \le 1, 0 \le y \le 1$$
.

$$3) \iint\limits_{(S)} \frac{x^2}{1+y^2} dx dy,$$

4)
$$\iint_{(S)} \frac{dxdy}{(x+y+1)^2},$$

где (S):
$$0 \le x \le 1, 0 \le y \le 1$$
.

где (S):
$$0 \le x \le 1, 0 \le y \le 1$$
.

5)
$$\iint_{(S)} x \sin(x+y) dx dy,$$

где (S): $0 \le x \le \pi$, $0 \le y \le \pi/2$.

1.2 Указать пределы двукратного интеграла $\iint f(x, y) dx dy$, если область

интегрирования (S) задана условиями:

1) (S):
$$x = 2$$
, $x = 3$, $y = -1$, $y = 5$;

2) (S) — параллелограмм со сторонами x = 3, x = 5, 3x - 2y + 4 = 0,

$$3x - 2y + 1 = 0$$
;

(S) – треугольник со сторонами x = 0, y = 0, x + y = 2;

5) (S):
$$x + y \le 1$$
, $x - y \le 1$, $x \ge 0$;

7) (S):
$$y = \frac{2}{1+x^2}$$
, $y = x^2$;

9) (S):
$$(x-2)^2 + (y-3)^2 \le 4$$
;

5) (S):
$$x + y \le 1$$
, $x - y \le 1$, $x \ge 0$

6) (S): $y \ge x^2$, $y \le 4 - x^2$;

10) **(S)** ограничена параболами $y = x^2$ и $v = \sqrt{x}$:

4) (S): $x^2 + y^2 \le 1$, x > 0, $y \ge 0$;

8) (S): y = 0, y = 3, y = x, y = x - 6;

12) (S): $y-2x \le 0$, $2y-x \ge 0$, $xy \le 2$.

11) (S) – треугольник со сторонами
$$y = x$$
, $y = 2x$ и $x + y = 6$;

1)
$$\int_{1}^{2} dx \int_{3}^{4} f(x, y) dy$$
;

2)
$$\int_{0}^{1} dx \int_{x^{3}}^{\sqrt{x}} f(x, y) dy$$
;

1)
$$\int_{1}^{2} dx \int_{3}^{4} f(x, y) dy$$
; 2) $\int_{0}^{1} dx \int_{x^{3}}^{\sqrt{x}} f(x, y) dy$; 3) $\int_{0}^{1} dy \int_{y}^{\sqrt{y}} f(x, y) dx$;

4)
$$\int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy;$$
 5) $\int_{0}^{1} dy \int_{-\sqrt{1-y^2}}^{1-y} f(x, y) dx;$ 6) $\int_{1}^{2} dx \int_{x}^{2x} f(x, y) dy;$

5)
$$\int_{0}^{1} dy \int_{-\sqrt{1-y^2}}^{1-y} f(x, y) dx$$
;

6)
$$\int_{1}^{2} dx \int_{x}^{2x} f(x, y) dy$$

7)
$$\int_{0}^{2} dx \int_{2x}^{6-x} f(x, y) dy;$$

7)
$$\int_{0}^{2} dx \int_{2x}^{6-x} f(x, y) dy$$
; 8) $\int_{0}^{1} dx \int_{0}^{x} f(x, y) dy + \int_{1}^{2} dx \int_{0}^{2-x} f(x, y) dy$;

9)
$$\int_{0}^{1} dx \int_{0}^{x^{2}} f(x, y) dy + \int_{1}^{3} dx \int_{0}^{(3-x)/2} f(x, y) dy.$$

1.4 Вычислить двукратные интегралы:

1)
$$\int_{0}^{a} dx \int_{0}^{\sqrt{x}} dy$$
;

$$2) \int_{2}^{4} dx \int_{x}^{2x} \frac{y}{x} dy;$$

$$3) \int_{1}^{2} dy \int_{0}^{\ln y} e^{x} dx.$$

1.5 Вычислить двойные интегралы:

- 1) $\iint_{(S)} (x^2 + y) dx dy$, (S) область, ограниченная параболами $y = x^2$ и $y^2 = x$;
- 2) $\iint_{(S)} x^3 y^2 dx dy$, (S) $\text{круг } x^2 + y^2 \le R^2$;
- 3) $\iint_{(S)} \frac{x^2}{y^2} dx dy$, (S) область, ограниченная прямыми x = 2, y = x и гипербо-

лой xy = 1;

- 4) $\iint_{(S)} \cos(x+y) dx dy$, (S) область, ограниченная прямыми x = 0, $y = \pi$ и y = x.
- 1.6 С помощью двойного интеграла найти площади следующих областей:
- 1) (S) область, ограниченная прямыми x = 0, y = 0, x + y = 1;
- 2) (S) область, ограниченная прямыми y = x, y = 5x, x = 1;
- 3) (S) область, заключенная между параболой $y^2 = \frac{b^2}{a}x$ и прямой $y = \frac{b}{a}x$.
- 4) (S) область, ограниченная параболами $y = \sqrt{x}$, $y = 2\sqrt{x}$ и прямой x = 4;
- 5) (S) область, ограниченная линиями $y = \sin x$, $y = \cos x$ и прямой x = 0.
- 1.7 Найти среднее значение функции z = 12 2x 3y в области, ограниченной прямыми 12 2x 3y = 0, x = 0, y = 0.
 - 1.8 В двойном интеграле $\iint_{(S)} f(x, y) dx dy$ перейти к полярным координатам р

и φ ($x = \rho \cos \varphi$, $y = \rho \sin \varphi$) и расставить пределы интегрирования:

- 1) (S) $\kappa p v \Gamma x^2 + v^2 \le R^2$;
- 2) (S) $\kappa pyr x^2 + y^2 \le ax$;
- 3) (S) $\kappa p y r x^2 + y^2 \le b y$;
- 4) (S) область, ограниченная окружностями $x^2 + y^2 = 4x$, $x^2 + y^2 = 8x$ и прямыми y = x и y = 2x;
 - 5) (S) область ограниченная прямыми y = x, y = 0 и x = 1;

6) (S) — меньший из двух сегментов, на которые прямая x+y=2 рассекает круг $x^2+y^2\leq 4$.

1.9 Преобразовать двойные интегралы к полярным координатам:

1)
$$\int_{0}^{R} dx \int_{0}^{\sqrt{R^{2}-x^{2}}} f(x, y)dy$$
; 2) $\int_{R/2}^{2R} dy \int_{0}^{\sqrt{2Ry-y^{2}}} f(x, y)dx$; 3) $\int_{0}^{R} dx \int_{0}^{\sqrt{R^{2}-x^{2}}} f(x^{2} + y^{2})dy$.

1.10 С помощью перехода к полярным координатам вычислить двойные интегралы:

$$1) \iint\limits_{(S)} (x^2 + y^2) dx dy,$$

$$(S): \begin{cases} x^2 + y^2 \le R^2, \\ y \ge 0; \end{cases}$$

$$2) \iint\limits_{(S)} e^{x^2+y^2} dx dy,$$

$$(S): \begin{cases} x^2 + y^2 \le 1, \\ x \ge 0; \end{cases}$$

3)
$$\iint_{(S)} \sqrt{1-x^2-y^2} \, dx \, dy$$
,

(S):
$$\begin{cases} x^2 + y^2 \le 1, \\ x \ge 0, y \ge 0; \end{cases}$$

4)
$$\iint_{(S)} \ln(1+x^2+y^2) dx dy$$
,

(S):
$$\begin{cases} x^2 + y^2 \le 9, \\ x \ge 0, y \ge 0; \end{cases}$$

5)
$$\iint_{(S)} (5-2x-3y) dx dy$$
,

(S):
$$x^2 + y^2 \le R^2$$
;

6)
$$\iint_{(S)} \sqrt{R^2 - x^2 - y^2} dx dy$$
,

$$(S): x^2 + y^2 \le Rx;$$

7)
$$\iint_{(S)} \arctan \frac{y}{x} dx dy,$$

(S):
$$\begin{cases} x^2 + y^2 \ge 1, x^2 + y^2 \le 9, \\ y \ge \frac{x}{\sqrt{3}}, y \le x\sqrt{3}; \end{cases}$$

1.11 Вычислить трехкратные интегралы:

1)
$$\int_{0}^{1} dx \int_{0}^{2} dy \int_{0}^{3} dz;$$

2)
$$\int_{0}^{a} dx \int_{0}^{b} dy \int_{0}^{c} (x + y + z) dz;$$

3)
$$\int_{0}^{a} dx \int_{0}^{x} dy \int_{0}^{y} xyzdz;$$

4)
$$\int_{0}^{a} dx \int_{0}^{x} dy \int_{0}^{xy} x^{3} y^{2} z dz;$$

5)
$$\int_{0}^{1} dx \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{a} dz;$$

6)
$$\int_{0}^{2} dx \int_{0}^{\sqrt{2x-x^{2}}} dy \int_{0}^{a} z \sqrt{x^{2}+y^{2}} dz.$$

1.12 Вычислить тройные интегралы:

1)
$$\iint_{(V)} \frac{dxdydz}{(x+y+z+1)^3}$$
, где (V) – область, ограниченная плоскостями $x=0$,

$$y = 0$$
, $z = 0$, $x + y + z = 1$;

2) $\iiint_{(V)} xydxdydz$, где (V) – область, ограниченная гиперболическим парабо-

лоидом z = xy и плоскостями x + y = 1 и z = 0 ($z \ge 0$);

3)
$$\iint_{(V)} y \cos(z+x) dx dy dz$$
, где (V) – область, ограниченная цилиндром

$$y = \sqrt{x}$$
 и плоскостями $y = 0$, $z = 0$ и $x + z = \pi/2$.

- 1.13 Найти объемы тел (V), ограниченных данными поверхностями:
- 1) (V) ограничено плоскостями координат, плоскостями x = 4 и y = 4 и параболоидом вращения $z = x^2 + y^2 + 1$;
- 2) (V) ограничено плоскостью $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ и координатными плоскостями (пирамида);
- 3) (V) ограничено плоскостями y = 0, z = 0, 3x + y = 6, 3x + 2y = 12 и x + y + z = 6;
- 4) (*V*) ограничено параболоидом вращения $z = x^2 + y^2$, координатными плоскостями и плоскостью x + y = 1;
 - 5) (*V*) ограничено цилиндром $x^2 + y^2 = 1$ и плоскостями z = 0 и x + y + z = 3;
- 6) (V) ограничено цилиндрами $y = \sqrt{x}$, $y = 2\sqrt{x}$ и плоскостями z = 0 и x + z = 6:
- 7) (V) ограничено цилиндрами $z=4-y^2, z=y^2+2$ и плоскостями x=-1 и x=2;
- 8) (V) ограничено параболоидами $z=x^2+y^2, z=x^2+2y^2$ и плоскостями y=x, y=2x и x=1.
- 1.14 В следующих задачах считаем поверхностную плотность распределения массы постоянной и равной единице.
- 1. Вычислить координаты центра тяжести равностороннего треугольника, принимая его высоту за ось Ox, а вершину треугольника за начало координат.

- 2. Найти координаты центра тяжести верхней половины круга $x^2 + y^2 = a^2$.
- 3. Вычислить момент инерции прямоугольной пластины, ограниченной прямыми x = 0, x = a, y = 0, y = b относительно начала координат.
- 4. Вычислить координаты центра тяжести и моменты инерции пирамиды, ограниченной плоскостями $x=0, y=0, z=0, \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$.

Ответы к задачам

1.1 1) 1; 2)
$$(e-1)^2$$
; 3) $\frac{\pi}{12}$; 4) $\ln \frac{4}{3}$; 5) $\pi - 2$.

$$\boxed{1.2} \ 1) \int_{2}^{3} dx \int_{-1}^{5} f(x, y) dy; \ 2) \int_{0}^{2} dx \int_{0}^{2-x} f(x, y) dy; \ 3) \int_{3}^{5} dx \int_{3x+\frac{1}{2}}^{3x+\frac{4}{2}} f(x, y) dy;$$

4)
$$\int_{0}^{1} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y)dy; \ 5) \int_{0}^{1} dx \int_{x-1}^{1-x} f(x,y)dy; \ 6) \int_{-\sqrt{2}}^{\sqrt{2}} dx \int_{x^{2}}^{4-x^{2}} f(x,y)dy;$$

7)
$$\int_{-1}^{1} dx \int_{x^2}^{2/1+x^2} f(x, y) dy$$
; 8) $\int_{0}^{3} dy \int_{y}^{y+6} f(x, y) dx$; 9) $\int_{0}^{4} dx \int_{2-\sqrt{4x-x^2}}^{3+\sqrt{4x-x^2}} f(x, y) dy$;

$$10)\int_{0}^{1} dx \int_{x^{2}}^{\sqrt{x}} f(x, y) dy; \ 11)\int_{0}^{2} dx \int_{x}^{2x} f(x, y) dy + \int_{2}^{3} dx \int_{x}^{6-x} f(x, y) dy;$$

12)
$$\int_{0}^{1} dx \int_{\frac{x}{2}}^{2x} f(x, y) dy + \int_{1}^{2} dx \int_{\frac{x}{2}}^{2/x} f(x, y) dy.$$

$$\boxed{1.3} \ 1) \int_{3}^{4} dy \int_{1}^{2} f(x, y) dx; \ 2) \int_{0}^{1} dy \int_{y^{2}}^{3\sqrt{y}} f(x, y) dx; \ 3) \int_{0}^{1} dx \int_{x^{2}}^{x} f(x, y) dy;$$

4)
$$\int_{0}^{1} dy \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} f(x,y)dx; \ 5) \int_{-1}^{0} dx \int_{0}^{\sqrt{1-x^{2}}} f(x,y)dy + \int_{0}^{1} dx \int_{0}^{1-x} f(x,y)dy;$$

6)
$$\int_{1}^{2} dy \int_{1}^{y} f(x, y) dx + \int_{2}^{y} dy \int_{\frac{y}{2}}^{2} f(x, y) dx; 7) \int_{0}^{4} dy \int_{0}^{\frac{y}{2}} f(x, y) dx + \int_{4}^{6} dy \int_{0}^{6-y} f(x, y) dx;$$

8)
$$\int_{0}^{1} dy \int_{y}^{2-y} f(x, y) dx$$
; 9) $\int_{0}^{1} dy \int_{\sqrt{y}}^{3-2y} f(x, y) dx$.

$$1.41$$
) $\frac{2}{3}a\sqrt{a}$; 2) 9; 3) $\frac{1}{2}$.

$$1.5 \ 1) \ \frac{33}{140}$$
; 2) 0; 3) $\frac{9}{4}$; 4) -2.

$$1.6 \ 1) \ \frac{1}{2}$$
; 2) 2; 3) $\frac{ab}{6}$; 4) $\frac{16}{3}$; 5) $\sqrt{2} - 1$.

$$\boxed{1.8} \ 1) \int_{0}^{2\pi} d\varphi \int_{0}^{R} f(\rho \cos\varphi, \rho \sin\varphi) \rho d\rho; \qquad \qquad 2) \int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{a \cos\varphi} f(\rho \cos\varphi, \rho \sin\varphi) \rho d\rho;$$

2)
$$\int_{-\pi/2}^{\pi/2} d\varphi \int_{0}^{a\cos\varphi} f(\rho\cos\varphi, \rho\sin\varphi) \rho d\rho$$

3)
$$\int_{0}^{\pi} d\varphi \int_{0}^{b \sin \varphi} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho;$$

3)
$$\int_{0}^{\pi} d\varphi \int_{0}^{b\sin\varphi} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho;$$
 4)
$$\int_{\pi/4}^{arctg2} \int_{4\cos\varphi}^{8\cos\varphi} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho;$$

5)
$$\int_{0}^{\frac{\pi}{4}} d\varphi \int_{0}^{\frac{1}{\cos\varphi}} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho;$$

5)
$$\int_{0}^{\frac{\pi}{4}} d\varphi \int_{0}^{\frac{1}{\cos\varphi}} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho;$$
 6)
$$\int_{0}^{\frac{\pi}{2}} d\varphi \int_{-2\cos\varphi+\sin\varphi}^{2} f(\rho\cos\varphi, \rho\sin\varphi)\rho d\rho.$$

$$\boxed{1.9} \ 1) \int_{0}^{\pi/2} d\varphi \int_{0}^{R} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho; \ 2) \int_{\pi/6}^{\pi/2} d\varphi \int_{R/2 \sin \varphi}^{2R \sin \varphi} f(\rho \cos \varphi, \rho \sin \varphi) \rho d\rho;$$

3)
$$\frac{\pi}{2} \int_{0}^{R} f(\rho^2) \rho d\rho$$
.

$$\underline{[1.10]} \ 1) \ \frac{\pi R^4}{4}; 2) \ \frac{\pi}{2}(e-1); 3) \ \frac{\pi}{6}; 4) \ \frac{\pi}{4}(10 \ln 10 - 9); 5) \ \frac{\pi R^2}{5}; 6) \ \frac{R^3}{3}(\pi - \frac{4}{3}); 7) \ \frac{\pi^2}{6}.$$

$$\boxed{1.11} \ 1) \ 6; \ 2) \ \frac{1}{2} abc(a+b+c); \ 3) \ \frac{a^6}{48}; \ 4) \ \frac{a^{11}}{110}; \ 5) \ \frac{\pi a}{2}; \ 6) \ \frac{8a^2}{9}.$$

$$1.12 \cdot 1) \cdot \frac{1}{2} (\ln 2 - \frac{5}{8}); \ 2) \cdot \frac{1}{180}; \ 3) \cdot \frac{\pi^2}{16} - \frac{1}{2}.$$

$$1.13 \ 1) \ 186 \frac{2}{3}; \ 2) \ \frac{abc}{6}; \ 3) \ 12; \ 4) \ \frac{1}{6}; \ 5) \ 3\pi; \ 6) \ \frac{48\sqrt{6}}{5}; \ 7) \ 8; \ 8) \ \frac{7}{12}.$$

1.14 1)
$$x_C = \frac{a\sqrt{3}}{3}$$
, $y_C = 0$; 2) $x_C = 0$, $y_C = \frac{4a}{3\pi}$; 3) $\frac{ab(a^2 + b^2)}{3}$;

4)
$$x_C = \frac{a}{4}$$
, $y_C = \frac{b}{4}$, $z_C = \frac{c}{4}$; $I_x = \frac{a^3bc}{60}$, $I_y = \frac{ab^3c}{60}$, $I_z = \frac{abc^3}{60}$,

$$I_O = \frac{abc}{60}(a^2 + b^2 + c^2).$$

Глава 2. КРИВОЛИНЕЙНЫЕ И ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ

§1. Криволинейный интеграл первого рода

1. Задача о нахождении массы (заряда) изогнутого стержня

 \mathcal{L} ано: 1) (ℓ) — изогнутый стержень (или материальная дуга) длиной ℓ (рис. 14);

2) γ (x, y, z) — линейная плотность распределения массы (заряда) вдоль (ℓ), γ (x, y, z) — непрерывная функция на дуге (ℓ) (неотрицательная — при вычислении массы).

 $\mathit{Требуется}$ найти массу $\mathit{m}_{(\ell)}$ (или заряд $\mathit{q}_{(\ell)}$).

РЕШЕНИЕ. Если $\gamma(x, y, z) \equiv \gamma$ (= const) на (ℓ) , то $m_{(\ell)} = \gamma \cdot \ell$.

В общем случае разобьём дугу (ℓ) на n частичных дуг ($\Delta \ell_k$) ($k=1,\,2,\,...,\,n$), $\Delta \ell_k$ – длина ($\Delta \ell_k$), $\lambda = \max_k \Delta \ell_k$.

Выберем на каждом участке ($\Delta \ell_k$) произвольно точку M_k ($k=1,\,2,\,...,\,n$), тогда

$$m_{(l)} \approx \sum_{k=1}^{n} \gamma(M_k) \cdot \Delta \ell_k$$
.

Переходя к пределу при $\lambda \to 0$, получим:

$$m_{(l)} = q_{(l)} = \lim_{\lambda \to 0} \sum_{k=1}^{n} \gamma(M_k) \cdot \Delta \ell_k.$$

2. Определение

Криволинейным интегралом первого рода (по длине дуги) от функции f(x, y, z) вдоль дуги (ℓ) называется предел интегральных сумм, составленных для f(x, y, z) и соответствующих различным разбиениям дуги (ℓ) на частичные (если этот предел существует):

$$\int_{(\ell)} f(x, y, z) d\ell = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta \ell_k,$$

где
$$\Delta \ell_k$$
 – длина $(\Delta \ell_k)$: $\bigcup_{k=1}^n (\Delta \ell_k) = (\ell)$;

$$M_k(\xi_k, \eta_k, \zeta_k) \in (\Delta \ell_k) \ (k = 1, 2, ..., n);$$

$$\lambda = \max_{k} \Delta \ell_{k} -$$
шаг разбиения.

Замечание о физическом смысле криволинейного интеграла первого рода.

Если $\rho(x, y, z)$ – плотность распределения массы (заряда) вдоль (ℓ), то

$$m_{(l)} = q_{(l)} = \int_{(\ell)} \gamma(x, y, z) d\ell$$
.

3. Теорема о достаточных условиях существования криволинейного интеграла первого рода

Если функция f(x, y, z) непрерывна на ограниченной, кусочно-гладкой дуге (ℓ) , то интеграл $\int_{(\ell)} f(x, y, z) d\ell$ существует.

Замечания: 1. Линия (дуга) (ℓ), заданная параметрическими уравнени-

ями
$$\begin{cases} x = x(t), \\ y = y(t), \ t \in [\alpha, \beta], \end{cases}$$
 называется *гладкой*, если производные $x'(t), \ z = z(t),$

y'(t), z'(t) непрерывны на промежутке [α , β].

2. Линия называется *кусочно-гладкой*, если её можно разбить на конечное число гладких частей.

3. Дуга (
$$\ell$$
): $\begin{cases} x = x(t), \\ y = y(t), & t \in [\alpha, \beta] \end{cases}$ называется **простой**, если она не имеет $z = z(t)$,

самопересечений, т.е. для $\forall t_1, t_2 \in (\alpha, \beta), t_1 \neq t_2$ выполняется условие: $M_1(x(t_1), y(t_1), z(t_1)) \neq M_2(x(t_2), y(t_2), z(t_2)).$

4. Свойства криволинейных интегралов первого рода (при условии их существования)

$$\boxed{1} \int_{\ell} 0 d\ell = 0.$$

$$\mathbf{Q} \int_{(\ell)} d\ell = \ell$$
 , где ℓ – длина дуги (ℓ).

3 Свойство линейности

$$\int_{(\ell)} [\alpha_1 f_1(x, y, z) + \alpha_2 f_2(x, y, z)] d\ell = \alpha_1 \int_{(\ell)} f_1(x, y, z) d\ell + \alpha_2 \int_{(\ell)} f_2(x, y, z) d\ell.$$

4 Свойство аддитивности

$$\int_{(\ell_1)\cup(\ell_2)} f(x, y, z) d\ell = \int_{(\ell_1)} f(x, y, z) d\ell + \int_{(\ell_2)} f(x, y, z) d\ell.$$

5 Свойство неотрицательности. Если $f(x, y, z) \ge 0$ на (ℓ) , то

$$\int_{(\ell)} f(x, y, z) d\ell \ge 0.$$

6 Если
$$f_1(x, y, z) \ge f_2(x, y, z)$$
 на (ℓ) , то $\int_{(\ell)} f_1(x, y, z) d\ell \ge \int_{(\ell)} f_2(x, y, z) d\ell$.

7 Свойство оценки. Если $m \le f(x, y, z) \le M$ на (ℓ) , то

$$m\ell \leq \int_{(\ell)} f(x, y, z) d\ell \leq M\ell.$$

8 Теорема о среднем. Для непрерывной на ограниченной гладкой дуге (ℓ) функции f(x, y, z) найдется такая точка $C(\xi_0, \eta_0, \zeta_0) \in (\ell)$, что $\int_{(\ell)} f(x, y, z) d\ell = f(C) \cdot \ell$.

5. Теорема о вычислении криволинейного интеграла первого рода

Если функция f (x, y, z) непрерывна на гладкой, простой дуге $\begin{cases} x = x(t), \\ y = y(t), \ t \in [\alpha, \beta], \ \text{где } \alpha < \beta, \ \text{то криволинейный интеграл первого рода} \\ z = z(t), \end{cases}$

от этой функции вдоль дуги (ℓ) вычисляется по формуле

$$\int_{(\ell)} f(x, y, z) d\ell = \int_{\alpha}^{\beta} f(x(t), y(t), z(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt.$$

ДОКАЗАТЕЛЬСТВО. Разобьём отрезок $[\alpha, \beta]$ на n произвольных частей точками: $\alpha = t_0 < t_1 < t_2 < ... < t_n = \beta$; обозначим $\Delta t_k = t_k - t_{k-1}$ (k = 1, 2, ..., n), $\lambda_{[\alpha,\beta]} = \max_k \Delta t_k$ — шаг разбиения $[\alpha, \beta]$. Тогда простая дуга (ℓ) окажется разбитой на n частей точками $N_k \big(x(t_k), y(t_k), z(t_k) \big) \in (\ell)$ (k = 0, 1, 2, ..., n); $(\Delta \ell_k) = N_{k-1} N_k$ — частичные дуги, $\lambda_\ell = \max_k \Delta \ell_k$ — шаг разбиения (ℓ) , причем из условия $\lambda_\ell \to 0$ следует, что $\lambda_{[\alpha,\beta]} \to 0$.

Согласно известной формуле можно найти длину каждого участка ($\Delta \ell_k$):

$$\Delta \ell_k = \int_{t_{k-1}}^{t_k} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt.$$

Так как функция $\sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2}$ непрерывна на $[t_{k-1}, t_k]$, по теореме о среднем для определенного интеграла найдется точка $\tau_k \in [t_{k-1}, t_k]$, для которой

$$\int_{t_{k-1}}^{t_k} \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} dt = \sqrt{[x'(\tau_k)]^2 + [y'(\tau_k)]^2 + [z'(\tau_k)]^2} \cdot \Delta t_k.$$

В качестве $M_k \in (\Delta \ell_k)$ выберем точки с координатами $(x(\tau_k), y(\tau_k), z(\tau_k))$.

Тогда, следуя определениям криволинейного и определенного интегралов, получим:

$$\int_{(\ell)} f(x, y, z) d\ell = \lim_{\lambda_{\ell} \to 0} \sum_{k=1}^{n} f(M_{k}) \Delta \ell_{k} =$$

$$= \lim_{\lambda_{[\alpha,\beta]} \to 0} \sum_{k=1}^{n} f(x(\tau_{k}), y(\tau_{k}), z(\tau_{k})) \sqrt{[x'(\tau_{k})]^{2} + [y'(\tau_{k})]^{2} + [z'(\tau_{k})]^{2}} \Delta t_{k} =$$

$$= \int_{\alpha}^{\beta} f(x(t), y(t), z(t)) \sqrt{[x'(t)]^{2} + [y'(t)]^{2} + [z'(t)]^{2}} dt.$$

Пример. Найдем массу отрезка прямой от точки A(0, 0, 0) до B(1,-2,1), если $\gamma(x, y, z) = x - 2y + 3z$.

Составим параметрические уравнения участка линии:

$$(\ell): \begin{cases} x = t, \\ y = -2t, \ t \in [0, 1]; \\ z = t, \end{cases}$$

тогда

$$m = \int_{(\ell)} (x - 2y + 3z) d\ell = \int_{0}^{1} [t - 2(-2t) + 3t] \cdot \sqrt{1^{2} + (-2)^{2} + 1^{2}} dt = \sqrt{6} \cdot \int_{0}^{1} 8t \, dt = 4\sqrt{6}.$$

Замечание. Если (ℓ) — плоская дуга, заданная уравнением y = y(x), $x \in [a, b]$, то получим следующую формулу:

$$\int_{(\ell)} f(x, y) d\ell = \int_{a}^{b} f(x, y(x)) \sqrt{1 + [y'(x)]^{2}} dx.$$

§2. Поверхностный интеграл первого рода

1. Определение

Поверхностным интегралом первого рода (по площади поверхности) для функции f(x, y, z) по ограниченному участку поверхности (σ) \subset (Oxyz) называется предел интегральных сумм, составленных для f(x, y, z) и соответ-

ствующих различным разбиениям поверхности (σ) на непересекающиеся части (если этот предел существует):

$$\int_{(\sigma)} f(x, y, z) d\sigma = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta \sigma_k,$$

где $\Delta \sigma_k$ – площадь $(\Delta \sigma_k)$: $\bigcup_{k=1}^n (\Delta \sigma_k) = (\sigma)$;

$$M_k(\xi_k, \eta_k, \zeta_k) \in (\Delta \sigma_k) \ (k = 1, 2, ..., n);$$

 $\lambda = \max_k d(\Delta \sigma_k) -$ шаг разбиения (рис. 15).

Рис. 15

2. Теорема о достаточных условиях существования поверхностного интеграла первого рода

Если функция f(x, y, z) непрерывна на кусочно-гладкой поверхности (σ), ограниченной замкнутой кусочно-гладкой линией, то поверхностный интеграл $\iint_{\sigma} f(x, y, z) d\sigma$ существует.

Замечания: 1. Поверхность (σ) , заданная уравнением z = z(x, y), $(x, y) \in (S)$ (т.е. $(S) = \prod_{Oxy}(\sigma)$), называется гладкой, если частные производные z'_x , z'_y непрерывны в каждой точке области (S).

2. Поверхность называется *кусочно-гладкой*, если её можно разбить на конечное число гладких частей.

3. Если $\gamma(x, y, z)$ – поверхностная плотность распределения массы (заряда) по пластине (σ), то массу (заряд) этой пластины можно вычислить по формуле, характеризующей физический смысл поверхностного интеграла первого рода

$$m_{(l)}(=q_{(l)}) = \iint_{(\sigma)} \gamma(x, y, z) d\sigma.$$

4. Для поверхностного интеграла справедливы все свойства, аналогичные свойствам криволинейного интеграла первого рода.

3. Теорема о вычислении поверхностного интеграла первого рода

Если функция f(x, y, z) непрерывна на участке гладкой поверхности (σ), заданной уравнением z = z(x, y), где $(x, y) \in (S) = \prod_{Oxy}(\sigma)$, и ограниченной замкнутой кусочно-гладкой линией, то поверхностный интеграл первого рода от этой функции по поверхности (σ) вычисляется по формуле

$$\iint_{(\sigma)} f(x, y, z) d\sigma = \iint_{(S)} f(x, y, z(x, y)) \sqrt{1 + [z'_x]^2 + [z'_y]^2} dx dy.$$

Замечания: 1. Если (σ): y = y(x, z), где $(x, z) \in (S_{xz}) = \prod p_{Oxz}(\sigma)$, то

$$\iint_{(\sigma)} f(x, y, z) d\sigma = \iint_{(S_{xz})} f(x, y(x, z), z) \sqrt{1 + [y'_x]^2 + [y'_z]^2} dx dz.$$

2. Если (σ): x = x(y, z), где $(y, z) \in (S_{yz}) = \prod p_{Oyz}(\sigma)$, то

$$\iint_{(\sigma)} f(x, y, z) d\sigma = \iint_{(S_{yz})} f(x(y, z), y, z) \sqrt{1 + [x'_y]^2 + [x'_z]^2} dy dz.$$

Пример. Вычислим интеграл $\iint_{(\sigma)} (x+4y+2z-5)d\sigma$, если (σ) – треугольник

плоскости 2x + 2y + z - 4 = 0, расположенный в первом октанте (см. рис. 13):

$$\iint_{(\sigma)} (x+4y+2z-5)d\sigma = \begin{vmatrix} (S) = \prod_{Oxy}(\sigma) \Rightarrow (\sigma) : z = 4 - 2x - 2y; \\ z'_x = -2, z'_y = -2; \\ d\sigma = \sqrt{1 + (z'_x)^2 + (z'_y)^2} dxdy = \\ = \sqrt{1 + (-2)^2 + (-2)^2} dxdy = 3dxdy \end{vmatrix} =$$

$$= \iint_{(S)} [x+4y+2(4-2x-2y)-5] \cdot 3dxdy = 3\iint_{(S)} (3-3x)dxdy =$$

$$= 9 \int_{0}^{2} dx \int_{0}^{2-x} (1-x) dy = 9 \int_{0}^{2} (1-x)(2-x) dx = 9 \int_{0}^{2} (x^2 - 3x + 2) dx =$$

$$= 9 \left(\frac{x^3}{3} - \frac{3x^2}{2} + 2x \right) \Big|_{0}^{2} = 6.$$

§3. Криволинейный интеграл второго рода

1. Задача о нахождении работы силового поля

Дано: 1) $\overline{F}(M)$ – силовое поле, заданное на объёмной области $(V) \subset (Oxyz)$;

2) $\overline{\mathrm{F}}(M) = P(M)\overline{\mathrm{i}} + Q(M)\overline{\mathrm{j}} + R(M)\overline{\mathrm{k}}$, где $P(M) = \mathrm{пр}_{Ox}\overline{\mathrm{F}}(M)$,

 $Q(M) = \operatorname{пр}_{O_{V}} \overline{\mathsf{F}}(M), \ R(M) = \operatorname{пр}_{O_{Z}} \overline{\mathsf{F}}(M)$ – непрерывные функции на (V);

3) (ℓ) — гладкая дуга, соединяющая точки B и C и целиком лежащая в (V).

Требуется найти $A_{(\ell)}$ – работу силового поля по перемещению материальной точки вдоль дуги (ℓ) из положения B в положение C.

РЕШЕНИЕ. 1. Если $\overline{F} = P\overline{i} + Q\overline{j} + R\overline{k} (= \overline{\text{const}})$, а (ℓ) – отрезок прямой от точки B до точки C, то $A = |\overline{F}| \cdot |\overline{BC}| \cos(\overline{F}, \overline{BC}) = (\overline{F}, \overline{BC})$, где $(\overline{F}, \overline{BC})$ – скалярное произведение векторов \overline{F} и \overline{BC} .

2. В общем случае разобьем (ℓ) на n частей точками $N_k(x_k, y_k, z_k) \in (\ell)$ (k = 1, 2, ..., n) в направлении от $B \kappa C$ (рис. 16).

Рис. 16

Обозначим:

$$\bar{\mathbf{r}}_{k} = \overline{\mathbf{ON}}_{k} = x_{k} \bar{\mathbf{i}} + y_{k} \bar{\mathbf{j}} + z_{k} \bar{\mathbf{k}}, \ \Delta \bar{\mathbf{r}}_{k} = \overline{\mathbf{N}_{k-1} \mathbf{N}_{k}} = (x_{k} - x_{k-1}) \bar{\mathbf{i}} + (y_{k} - y_{k-1}) \bar{\mathbf{j}} + (z_{k} - z_{k-1}) \bar{\mathbf{k}} = \Delta x_{k} \cdot \bar{\mathbf{i}} + \Delta y_{k} \cdot \bar{\mathbf{j}} + \Delta z_{k} \cdot \bar{\mathbf{k}} \ (k = 1, 2, ..., n),$$

 $\lambda = \max_{k} |\Delta \bar{\mathbf{r}}_{k}| -$ шаг разбиения.

На каждой частичной дуге $N_{k-1} N_k$ выберем произвольно точку M_k $(k=1,\,2,\,...,\,n)$, тогда можно вычислить приближенно работу, затраченную на перемещение точки вдоль частичной дуги $N_{k-1} N_k$, по формуле

$$A_k = (\overline{F}(M_k), \Delta \overline{r}_k),$$

где $\overline{\mathbf{F}}(\boldsymbol{M}_k) = P(\boldsymbol{M}_k)\overline{\mathbf{i}} + Q(\boldsymbol{M}_k)\overline{\mathbf{j}} + R(\boldsymbol{M}_k)\overline{\mathbf{k}}$.

Составим сумму:
$$\sum_{k=1}^{n} A_k = \sum_{k=1}^{n} (\overline{F}(M_k), \Delta \overline{r}_k) \approx A_{(\ell)}$$
.

Переходя к пределу при $\lambda \to 0$, получим:

$$A_{(\ell)} = \lim_{\lambda \to 0} \sum_{k=1}^{n} \left(\overline{F}(M_k), \Delta \overline{r}_k \right) = \lim_{\lambda \to 0} \sum_{k=1}^{n} \left[P(M_k) \Delta x_k + Q(M_k) \Delta y_k + R(M_k) \Delta z_k \right].$$

2. Определения

Пусть (ℓ^+) — ориентированная дуга (т.е. на (ℓ) выбрано направление); функции P(x,y,z), Q(x,y,z), R(x,y,z) заданы на (ℓ^+) (по-другому: на (ℓ^+) задана векторная функция $\overline{F}(x,y,z) = P(x,y,z)\overline{i} + Q(x,y,z)\overline{j} + R(x,y,z)\overline{k}$).

Разобьем (ℓ^+) на части $(\Delta \ell_k)$ (от начала) точками $N_k(x_k,y_k,z_k) \in (\ell^+)$ (k=1, 2, ..., n). Обозначим: $\Delta \bar{\mathbf{r}}_k = \overline{\mathbf{N}_{k-1}} \overline{\mathbf{N}_k} = \Delta x_k \cdot \bar{\mathbf{i}} + \Delta y_k \cdot \bar{\mathbf{j}} + \Delta z_k \cdot \bar{\mathbf{k}}$, $\lambda = \max_k |\Delta \bar{\mathbf{r}}_k|$.

Выберем произвольно точки $M_k(\xi_k,\eta_k,\zeta_k)$ \in $(\Delta\ell_k)(k=1,2,...,n)$. Суммы вида

$$\sum_{k=1}^{n} P(\xi_k, \eta_k, \zeta_k) \Delta x_k, \sum_{k=1}^{n} Q(\xi_k, \eta_k, \zeta_k) \Delta y_k, \sum_{k=1}^{n} R(\xi_k, \eta_k, \zeta_k) \Delta z_k$$

называются интегральными суммами для функций P(x,y,z), Q(x,y,z), R(x,y,z) вдоль ориентированной дуги (ℓ^+) по координатам x,y,z соответственно, а сумма $\sum_{k=1}^n (\overline{F}(\xi_k,\eta_k,\zeta_k),\Delta \overline{r}_k) = \sum_{k=1}^n [P(\xi_k,\eta_k,\zeta_k)\Delta x_k + Q(\xi_k,\eta_k,\zeta_k)\Delta y_k + R(\xi_k,\eta_k,\zeta_k)\Delta z_k]$ — интегральной суммой общего вида вдоль (ℓ^+) по координатам.

Криволинейным интегралом второго рода (по координатам) называется предел интегральных сумм общего вида, составленных для функций P(x, y, z), Q(x, y, z), R(x, y, z) и соответствующих различным разбиениям дуги (ℓ^+) на части (если этот предел существует):

$$\int_{(\ell^+)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \lim_{\lambda \to 0} \sum_{k=1}^{n} [P(\xi_k, \eta_k, \zeta_k) \Delta x_k + Q(\xi_k, \eta_k, \zeta_k) \Delta y_k + R(\xi_k, \eta_k, \zeta_k) \Delta z_k].$$

По-другому:
$$\int\limits_{(\ell^+)} \left(\overline{\mathbf{F}}(x,y,z), d\overline{\mathbf{r}} \right) = \lim_{\lambda \to 0} \sum_{k=1}^n \left(\overline{\mathbf{F}}(\xi_k, \eta_k, \zeta_k), \Delta \overline{\mathbf{r}}_k \right).$$

Замечание о физическом смысле криволинейного интеграла второго рода. Работа силового поля \overline{F} по перемещению материальной точки вдоль дуги (ℓ^+) вычисляется по формуле

$$A_{(\ell)} = \int_{(\ell^+)} (\overline{\mathbf{F}}, d\overline{\mathbf{r}}) = \int_{(\ell^+)} Pdx + Qdy + Rdz.$$

3. Теорема о достаточных условиях существования криволинейного интеграла второго рода

Если функции P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны на ограниченной кусочно-гладкой дуге (ℓ^+), то интеграл

$$\int_{(\ell^+)} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz$$

существует.

4. Свойства криволинейного интеграла второго рода, выражаемые равенствами, аналогичны соответствующим свойствам любого другого ранее рассмотренного интеграла, в частности, справедливы свойства линейности и аддитивности. Дополнительно отметим два свойства, характерных только для криволинейного интеграла второго рода.

1 При изменении ориентации дуги криволинейный интеграл второго рода меняет знак на противоположный:

$$\int_{(\ell^-)} Pdx + Qdy + Rdz = -\int_{(\ell^+)} Pdx + Qdy + Rdz.$$

2 Криволинейный интеграл второго рода вдоль замкнутой линии (контура) $\oint Pdx + Qdy + Rdz$ не зависит от того, какая точка на линии (ℓ^+) выбрана за ℓ^+)

начало обхода.

Доказательство. Пусть A и B — две различные точки контура (ℓ^+), задающие начало обхода (рис. 17).

Получим:
$$\int\limits_{(A\ell_1B\ell_2A)} Pdx + Qdy + Rdz =$$

$$= \int\limits_{(A\ell_1B)} Pdx + Qdy + Rdz + \int\limits_{(B\ell_2A)} Pdx + Qdy + Rdz = \int\limits_{(B\ell_2A)} Pdx + Qdy + Rdz + \int\limits_{(A\ell_1B)} Pdx + Qdy + Rdz = \int\limits_{(B\ell_2A\ell_1B)} Pdx + Qdy + Rdz .$$

Рис. 17

5. Теорема о вычислении криволинейного интеграла второго рода

Пусть функции P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны на гладкой, простой, ориентированной дуге

$$(\ell^+):\begin{cases} x=x(t),\\ y=y(t),\ t\in [\alpha,\beta] \text{ (если }\alpha<\beta)\text{ или }t\in [\beta,\alpha]\text{ (если }\beta<\alpha),\\ z=z(t), \end{cases}$$

причем точка $A(x(\alpha), y(\alpha), z(\alpha))$ — начало, а точка $B(x(\beta), y(\beta), z(\beta))$ — конец дуги (ℓ^+).

Tогда имеет место формула $\int_{(\ell^+)} P(x,y,z) dx + Q(x,y,z) dy + R(x,y,z) dz =$

$$= \int_{\alpha}^{\beta} [P(x(t), y(t), z(t))x'(t) + Q(x(t), y(t), z(t))y'(t) + R(x(t), y(t), z(t))z'(t)]dt.$$

ДОКАЗАТЕЛЬСТВО. Пусть для определенности $\alpha < \beta$.

Докажем сначала, что
$$\int\limits_{(\ell^+)} P(x,y,z) dx = \int\limits_{\alpha}^{\beta} P(x(t),y(t),z(t)) x'(t) dt.$$

Разобьём отрезок $[\alpha, \beta]$ на n частей точками: $\alpha = t_0 < t_1 < t_2 < ... < t_n = \beta$, обозначив $\Delta t_k = t_k - t_{k-1}$ (k = 1, 2, ..., n), $\lambda_{[\alpha, \beta]} = \max_k \Delta t_k$. Тогда точки $N_k \big(x(t_k), y(t_k), z(t_k) \big)$ разобьют на n частей дугу (ℓ^+), при этом $\Delta \bar{\mathbf{r}}_k = \overline{N_{k-1} N_k} = \{ \Delta x_k, \Delta y_k, \Delta z_k \}$, где $\Delta x_k = x(t_k) - x(t_{k-1})$ (k = 1, 2, ..., n); $\lambda_\ell = \max_k |\Delta \bar{\mathbf{r}}_k|$.

Функция x(t) непрерывна на отрезке $[t_{k-1},t_k]$ (это следует из того, что (ℓ^+) – гладкая дуга). По теореме Лагранжа 2 найдется такая точка $\tau_k \in (t_{k-1},t_k)$, что $\Delta x_k = x(t_k) - x(t_{k-1}) = x'(\tau_k) \cdot \Delta t_k \ (k=1,2,...,n)$.

В качестве точек M_k (k=1, 2, ..., n) выберем точки с координатами $(x(\tau_k), y(\tau_k), z(\tau_k)) \in (\ell)$. Тогда согласно определениям криволинейного второго рода и определенного интегралов получим:

$$\int_{(\ell^+)} P(x, y, z) dx = \lim_{\lambda_\ell \to 0} \sum_{k=1}^n P(M_k) \Delta x_k =$$

$$= \lim_{\lambda_{[\alpha, \beta]} \to 0} \sum_{k=1}^n P(x(\tau_k), y(\tau_k), z(\tau_k)) x'(\tau_k) \Delta t_k = \int_{\alpha}^{\beta} P(x(t), y(t), z(t)) x'(t) dt.$$

Аналогично можно доказать, что $\int\limits_{(\ell^+)} Q(x,y,z) dy = \int\limits_{\alpha}^{\beta} Q(x(t),y(t),z(t)) y'(t) dt,$

$$\int_{\alpha} R(x, y, z) dz = \int_{\alpha}^{\beta} R(x(t), y(t), z(t)) z'(t) dt.$$

Почленно складывая полученные равенства и применяя свойство линейности интегралов, получим формулу для вычисления криволинейного интеграла общего вида.

 $^{^{2}}$ Ж.Л. Лагранж (1736–1813) – французский математик и физик.

Пример. Вычислим интеграл $\int_{(\ell^+)} yzdx + (x+z)dy + (x-y)dz$, если (ℓ^+) – от-

резок прямой с началом в точке A(3,1,-2) и концом в точке B(1,-2,1):

$$\int yzdx + (x+z)dy + (x-y)dz = \begin{cases} (\ell): \frac{x-3}{1-3} = \frac{y-1}{-2-1} = \frac{z+2}{1+2} (=t) \Rightarrow \\ (\ell^+): \begin{cases} x = 3-2t, \\ y = 1-3t, & t \in [0,1]; \\ z = -2+3t \end{cases} \end{cases}$$

$$\Rightarrow dx = -2dt, dy = -3dt, dz = 3dt$$

$$= \int_0^1 [(1-3t)(-2+3t)(-2) + (3-2t-2+3t)(-3) + (3-2t-1+3t)3] dt =$$

$$= \int_0^1 (18t^2 - 18t + 7) dt = (6t^3 - 9t^2 + 7t) \Big|_0^1 = 4.$$

Замечание. Если линия (ℓ^+) – плоская (ℓ^+) с (Oxy): z = 0 и задана декартовым уравнением y = y(x), где $x \in [a,b]$, то формула для вычисления интеграла будет иметь вид:

$$\int_{(\ell^+)} P(x,y)dx + Q(x,y)dy = \int_a^b \left[P(x,y(x)) + Q(x,y(x))y'(x) \right] dx.$$

§4. Теоремы о связи интегралов различных видов

1. Теорема Грина³ о связи между криволинейным второго рода и двойным интегралами

Если функции P(x, y), Q(x, y) и их частные производные $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$ непрерывны в замкнутой ограниченной области (S), а (ℓ) – кусочно-гладкая граница этой области, то имеет место формула Γ рина:

$$\oint_{(\ell^+)} P(x,y)dx + Q(x,y)dy = \iint_{(S)} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dxdy = \iint_{(S)} (Q'_x - P'_y) dxdy$$

(здесь положительным считается направление обхода (ℓ) против часовой стрелки).

ДОКАЗАТЕЛЬСТВО проводится для случая стандартной области (S).

Докажем, что
$$\oint_{(\ell^+)} P(x,y) dx = -\iint_{(S)} \frac{\partial P}{\partial y} dx dy$$
.

Так как область (S) — стандартная в направлении оси Oy, то её можно задать системой неравенств:

$$(S) = \left\{ (x, y) \middle| \begin{array}{l} a \le x \le b, \\ y_1(x) \le y \le y_2(x) \end{array} \right\},$$

причем точки A с абсциссой a и B с абсциссой b разбивают границу (ℓ) области (S) на две части, где (ℓ_1^+): $y = y_1(x), x \in [a,b]$ (A — начало, B — конец) и (ℓ_2^+): $y = y_2(x), x \in [a,b]$ (B — начало, A — конец) (рис. 18).

Рис. 18

 $^{^3}$ Д. Грин (1793 – 1841) – английский математик и физик

Тогда по свойствам и теореме о вычислении криволинейного интеграла получим:

$$\oint_{(\ell^{+})} P(x,y)dx = \int_{(\ell_{1}^{+})} P(x,y)dx + \int_{(\ell_{2}^{+})} P(x,y)dx = \int_{a}^{b} P(x,y_{1}(x))dx + \int_{b}^{a} P(x,y_{2}(x))dx = \int_{a}^{b} \left[P(x,y_{1}(x)) - P(x,y_{2}(x))\right]dx,$$

а по одноименной теореме для двойного интеграла:

$$\iint_{(S)} \frac{\partial P}{\partial y} dx dy = \int_{a}^{b} dx \int_{y_{1}(x)}^{y_{2}(x)} \frac{\partial P}{\partial y} dy = \int_{a}^{b} \left[P(x, y) \Big|_{y_{1}(x)}^{y_{2}(x)} \right] dx = \int_{a}^{b} \left[P(x, y_{2}(x)) - P(x, y_{1}(x)) \right] dx.$$

Сравнивая полученные результаты, видим, что $\int\limits_{(\ell^+)} P(x,y) dx = -\iint\limits_{(S)} \frac{\partial P}{\partial y} dx dy$.

Аналогично, в условиях стандартности (S) в направлении оси Ox, можно доказать, что $\int_{(\ell^+)} Q(x,y) dy = \iint_{(S)} \frac{\partial Q}{\partial x} dx dy$.

Складывая полученные равенства почленно и применяя свойство линейности интегралов, придем к формуле Грина.

Пример. Используя формулу Грина, вычислим интеграл $\oint y dx - x dy$, если (ℓ^+)

$$(\ell)$$
 – окружность $(x-2)^2 + (y+3)^2 = 9$:

$$\oint_{(\ell^+)} y dx - x dy = \begin{vmatrix} P = y, Q = -x, \\ P'_y = 1, Q'_x = -1 \end{vmatrix} = \iint_{(S)} (-1 - 1) dx dy = -2 \iint_{(S)} dS = -2S =$$

$$= -2 \cdot 9\pi = -18\pi.$$

2. Определение

Пусть (σ) : z = z(x, y), где $(x, y) \in (S)$, — незамкнутая поверхность, ограниченная замкнутой кусочно-гладкой линией (ℓ) .

Верхней стороной (σ^+) поверхности (σ)

относительно оси Oz называется та её сторона, которая видна из конца нормального вектора $\overline{\mathbf{n}}_{(\sigma^+)}$, образующего острый угол с осью

$$Oz: 0 \le \left(\overline{n}_{(\sigma^+)}^{\quad \land}, \overline{k}\right) \le \frac{\pi}{2}$$
, нижняя сторона (σ^-)

поверхности (σ) определяется условием:

$$\frac{\pi}{2} \le \left(\overline{n}_{(\sigma^{-})}, \overline{k}\right) \le \pi \text{ (рис. 19)}.$$

Замечания: 1. Аналогично можно определять верхнюю и нижнюю стороны поверхности относительно других осей координат.

2. Для замкнутой поверхности (σ) логично рассматривать *внешнюю* (σ^+) и *внутреннюю* (σ^-) *стороны*.

3. Теорема Стокса⁴ о связи между криволинейным второго рода и поверхностным интегралами

Пусть:

1) функции P(x, y, z), Q(x, y, z), R(x, y, z) и их частные производные $\frac{\partial P}{\partial y}$, $\frac{\partial P}{\partial z}$, $\frac{\partial Q}{\partial x}$, $\frac{\partial Q}{\partial z}$, $\frac{\partial R}{\partial x}$, $\frac{\partial R}{\partial y}$ непрерывны на ограниченном замкнутой кусочногладкой линией (ℓ) участке гладкой поверхности (σ) , заданной одним из уравнений вида z = z(x, y), или y = y(x, z), или x = x(y, z);

2) $\overline{\mathbf{n}}_{(\sigma^*)}(x, y, z)$ – вектор нормали к выбранной стороне (σ^*) поверхности

(
$$\sigma$$
) в точке $M(x,y,z) \in (\sigma) \begin{pmatrix} (\sigma^*) \equiv (\sigma^+) \\ \text{или } (\sigma^*) \equiv (\sigma^-) \end{pmatrix};$

 $^{^4}$ Д. Стокс (1819 — 1903) — английский физик и математик.

3)
$$\alpha(x,y,z) = \left(\overline{n}_{(\sigma^*)},\overline{i}\right), \ \beta(x,y,z) = \left(\overline{n}_{(\sigma^*)},\overline{j}\right), \ \gamma(x,y,z) = \left(\overline{n}_{(\sigma^*)},\overline{k}\right) - \text{He-}$$

прерывные на (σ) функции, задающие углы между нормалью $\overline{n}_{(\sigma^*)}(x, y, z)$ и осями координат.

Тогда справедлива формула Стокса:

$$\int_{(\ell^{+})} P dx + Q dy + R dz = \iint_{(\sigma)} \left[\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right] d\sigma.$$

Замечания: 1. Положительное направление обхода границы (ℓ) выбирается так, чтобы при движении вдоль (ℓ) в этом направлении по выбранной стороне (σ^*) поверхности (σ) сама поверхность оставалась *слева* (рис. 20).

Рис. 20

2. Если обозначить $\cos \alpha \cdot d\sigma = dy \, dz$, $\cos \beta \cdot d\sigma = dx \, dz$, $\cos \gamma \cdot d\sigma = dx \, dy$ (это проекции ($d\sigma$) на координатные плоскости), то формулу Стокса можно записать в следующем виде:

$$\oint_{(\ell^+)} Pdx + Qdy + Rdz = \iint_{(\sigma^*)} \left(R'_y - Q'_z\right) dydz + \left(P'_z - R'_x\right) dxdz + \left(Q'_x - P'_y\right) dxdy,$$

последний интеграл является поверхностным интегралом второго рода.

3. Для нахождения направляющих косинусов нормали к поверхности (σ): z = z(x, y) применяются формулы

$$\overline{\mathbf{n}}_{(\sigma)} = \pm \{ -z'_x, -z'_y, 1 \},$$

причем знак (+) или (-) определяется в зависимости от выбора стороны поверхности (σ) .

4. Формула Грина — частный случай формулы Стокса, когда $(\sigma) \equiv (S) \subset (Oxy)$: z=0, $\overline{\mathbf{n}}_{(S)}=\{0,0,1\}$, поэтому $\cos\alpha=0$, $\cos\beta=0$, $\cos\gamma=1$, $d\sigma=dS$.

4. Теорема Остроградского⁵ – Гаусса⁶ о связи между поверхностным и тройным интегралами

Пусть:

1) функции P(x, y, z), Q(x, y, z), R(x, y, z) и их частные производные $\frac{\partial P}{\partial x}$, $\frac{\partial Q}{\partial y}$, $\frac{\partial R}{\partial z}$ непрерывны в замкнутой ограниченной области (V);

2) $\overline{\mathbf{n}}_{(\sigma^+)}(x,y,z)$ – вектор внешней нормали к поверхности (σ) , являющейся кусочно-гладкой границей области (V);

3)
$$\alpha(x,y,z) = \left(\overline{n}_{(\sigma^+)}^{\hat{}},\overline{i}\right), \ \beta(x,y,z) = \left(\overline{n}_{(\sigma^+)}^{\hat{}},\overline{j}\right), \ \gamma(x,y,z) = \left(\overline{n}_{(\sigma^+)}^{\hat{}},\overline{k}\right)$$
 — непрерывные функции во всех точках $(x,y,z) \in (\sigma)$.

Тогда справедлива формула Остроградского – Гаусса:

$$\iint_{(\sigma)} (P\cos\alpha + Q\cos\beta + R\cos\gamma) d\sigma = \iiint_{(V)} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dV.$$

Замечание. Формулу Остроградского – Гаусса можно записать в другом виде, используя понятие поверхностного интеграла второго рода:

$$\iint_{(\mathfrak{T})} Pdydz + Qdxdz + Rdxdy = \iiint_{(Y)} (P'_x + Q'_y + R'_z) dxdydz.$$

 $^{^{5}}$ М.В. Остроградский (1801 - 1861) - российский математик.

 $^{^{6}}$ К. Ф. Гаусс (1777 - 1855) – немецкий математик.

§5. Независимость криволинейного интеграла второго рода от пути интегрирования

1. Теорема об условиях независимости криволинейного интеграла второго рода от формы линии интегрирования

Пусть функции P(x, y, z), Q(x, y, z), R(x, y, z) и их частные производные P'_y , P'_z , Q'_x , Q'_z , R'_x , R'_y непрерывны в так называемой поверхностно односвязной области (V), т.е. такой, где для любого замкнутого контура $(\ell) \subset (V)$ можно построить поверхность (σ) , целиком лежащую в области (V) и имеющую границу (ℓ) .

Тогда следующие утверждения эквивалентны:

 $\boxed{1}$ Криволинейный интеграл $\int\limits_{(A\ell B)} Pdx + Qdy + Rdz$ не зависит от формы ли-

нии интегрирования $(\ell) \subset (V)$.

 $\boxed{2}$ В области (V) существует функция u(x,y,z), для которой du = Pdx + Qdy + Rdz, т.е. подынтегральное выражение является полным дифференциалом функции u(x,y,z).

$$\[] R'_{y} \equiv Q'_{z}, \ P'_{z} \equiv R'_{x}, \ Q'_{x} \equiv P'_{y} \$$
в области (V).

$$\biguplus Pdx + Qdy + Rdz = 0$$
, если (ℓ) – любой кусочно-гладкий контур, цели-

ком лежащий в области (V).

Доказательство. 1) $4 \Rightarrow 1$

Дано:
$$\oint Pdx + Qdy + Rdz = 0$$
.

 \mathcal{A} оказать: $\int_{A\ell_1 B} = \int_{A\ell_2 B} \operatorname{для} \, \forall (\ell_1), (\ell_2) \subset (V) \text{ (рис. 21)}.$

$$\oint_{(A\ell_1B\ell_2A)} = 0 \underset{\text{аддитивности}}{\overset{\text{свойство}}{\Rightarrow}} \int_{A\ell_1B} + \int_{B\ell_2A} = 0 \Rightarrow$$

$$\Rightarrow \int_{(A\ell_1B)} - \int_{(A\ell_2B)} = 0 \Rightarrow \int_{(A\ell_1B)} = \int_{(A\ell_2B)}$$

для $\forall (\ell_1), (\ell_2) \subset (V)$.

Рис. 21

2. Замечания

- 1. Равенства $\boxed{3}$ являются необходимыми и достаточными условиями того, что подынтегральное выражение Pdx + Qdy + Rdz является полным дифференциалом некоторой функции u(x, y, z).
 - 2. Имеет место формула:

$$u(x, y, z) = \int_{(M_0M)} Pdx + Qdy + Rdz + C,$$

где $M_0(x_0, y_0, z_0)$ — фиксированная точка области (V); M(x, y, z) — текущая точка области (V); C — произвольная постоянная. Линия интегрирования (ℓ) , соединяющая точки M_0 и M, выбирается произвольно, поскольку от ее формы интеграл не зависит. Удобнее всего брать ломаную со звеньями, параллельными координатным осям, соединяющую точки M_0 и M.

Пример. Проверим, является ли выражение (yz + 2)dx + (xz - 3)dy + (xy + 5)dz полным дифференциалом какой-либо функции? Для этого найдем частные производные заданных функций P = yz + 2, Q = xz - 3, R = xy + 5:

$$P'_{y} = Q'_{x} = z$$
, $P'_{z} = R'_{x} = y$, $Q'_{z} = R'_{y} = x$,

откуда согласно условиям 3 следует положительный ответ на вопрос.

Восстановим функцию по ее полному дифференциалу, выбрав в качестве линии интегрирования ломаную $(M_0M_1M_2M)$ со звеньями, параллельными координатным осям, соединяющую фиксированную точку M_0 (0,0,0) с текущей точкой M(x,y,z) пространства: M_0M_1 $|Ox,M_1M_2|$ $|Oy,M_2M|$ |Oz. Указанные отрезки прямых задаются следующими уравнениями:

$$M_0 M_1: \begin{cases} x = t(t \in [0, x]), \\ y = 0 (\Rightarrow dy = 0), & M_1 M_2: \\ z = 0 (\Rightarrow dz = 0); \end{cases} \begin{cases} x = x = \operatorname{const}(\Rightarrow dx = 0), \\ y = t(t \in [0, y]), \\ z = 0 (\Rightarrow dz = 0); \end{cases}$$
$$M_2 M: \begin{cases} x = x = \operatorname{const}(\Rightarrow dx = 0), \\ y = y = \operatorname{const}(\Rightarrow dy = 0), \\ z = t(t \in [0, z]). \end{cases}$$

Используя свойство аддитивности интеграла, получим:

$$u(x, y, z) = \int_{(M_0M)} (yz + 2)dx + (xz - 3)dy + (xy + 5)dz + C =$$

$$= \int_{(M_0M_1)} + \int_{(M_1M_2)} + \int_{(M_2M)} + C = \int_{0}^{x} (0 \cdot 0 + 2)dt + \int_{0}^{y} (x \cdot 0 - 3)dt +$$

$$+ \int_{0}^{z} (xy + 5)dt + C = xyz + 2x - 3y + 5z + C.$$

Контрольные вопросы к главе 2

- 1. Сформулируйте условия задач, приводящих к понятиям криволинейного первого рода и поверхностного интегралов.
- 2. Дайте определение криволинейного интеграла первого рода и укажите его физический смысл.
- 3. Каковы достаточные условия существования криволинейного интеграла первого рода?
 - 4. Перечислите свойства криволинейного интеграла первого рода.
- 5. Сформулируйте теорему о вычислении криволинейного интеграла первого рода.

- 6. Проведите сравнительный анализ криволинейного и поверхностного интегралов первого рода.
- 7. Сформулируйте теорему о вычислении поверхностного интеграла первого рода.
- 8. Как найти работу силового поля по перемещению материальной точки вдоль заданной дуги?
- 9. Дайте определения интегральной суммы общего вида по координатам, составленной для данных функций вдоль дуги кривой, и криволинейного интеграла второго рода.
- 10. Перечислите свойства, характерные только для криволинейного интеграла второго рода.
- 11. Сформулируйте теорему о вычислении криволинейного интеграла второго рода.
- 12. Проведите сравнительный анализ криволинейных интегралов первого и второго рода.
- 13. Сформулируйте теорему Грина о связи между криволинейным и двойным интегралами.
- 14. Запишите и поясните формулу Стокса, связывающую поверхностный и криволинейный интегралы.
- 15. Сформулируйте теорему Остроградского Гаусса о связи между поверхностным и тройным интегралами.
- 16. Каковы условия независимости криволинейного интеграла второго рода от формы линии интегрирования?
- 17. Запишите формулу, позволяющую восстановить функцию по заданному ее полному дифференциалу.

Задачи к главе 2

2.1 Вычислить криволинейные интегралы первого рода:

$$1) \int\limits_{(l)}\!\! \frac{dl}{x-y}, \, \mathrm{гдe} \,\, (l) - \mathrm{отрезок} \,\, \mathrm{прямой} \,\, y = \frac{1}{2} x - 2 \,, \, \mathrm{заключенный} \,\, \mathrm{между} \,\, \mathrm{точка-}$$
 ми $A(0,-2)$ и $B(4,0)$.

2) $\int xydl$, где (l) — контур прямоугольника с вершинами A(0,0), B(4,0), C(4,2)

и D(0, 2).

- 3) $\int_{(l)} y dl$, где (l) дуга параболы $y^2 = 2px$, отсеченная параболой $x^2 = 2py$.
- 4) $\int_{(l)} (x^2 + y^2)^n dl$, где (l) окружность $x = a\cos t$, $y = a\sin t$.
- 5) $\int_{(l)} \sqrt{2y} dl$, где (l) первая арка циклоиды $x = a(t \sin t)$, $y = a(1 \cos t)$.
- 2.2 1. Найти массу участка линии $y = \ln x$ между точками с абсциссами $x_1 = 1$ и $x_2 = 3$, если плотность линии в каждой точке равна квадрату абсциссы точки.
- 2. Найти массу участка цепной линии $y = a \cosh \frac{x}{a}$ между точками с абсциссами $x_1 = 0$ и $x_2 = a$, если плотность линии в каждой ее точке обратно пропорциональна ординате точки, причем плотность в точке (0, a) равна δ .
 - 2.3 Вычислить криволинейные интегралы второго рода:
 - 1) $\int_{(l)} x dy$, где (l) отрезок прямой $\frac{x}{a} + \frac{y}{b} = 1$ от точки пересечения ее с осью

абсцисс до точки пересечения ее с осью ординат.

- 2) $\int_{(l)} (x^2 y^2) dx$, где (l) дуга параболы $y = x^2$ от точки (0, 0) до точки (2, 4).
- 3) $\int_{(l)} -x\cos y dx + y\sin x dy$, где (l) отрезок, соединяющий точки (0,0) и $(\pi,2\pi)$.
- 4) $\int_{(0,0)}^{(1,1)} xy dx + (y-x) dy$ вдоль линий (l_1) : y = x, (l_2) : $y = x^2$, (l_3) $y^2 = x$, (l_4) : $y = x^3$.
- 5) $\int_{(0,0)}^{(1,1)} 2xydx + x^2dy$ вдоль линий (l_1) : y = x, (l_2) : $y = x^2$, (l_3) $y^2 = x$, (l_4) : $y = x^3$.
- 6) $\int_{(l)} y dx + x dy$, где (l) четверть окружности $x = R \cos t$, $y = R \sin t$ от $t_1 = 0$

до
$$t_2 = \frac{\pi}{2}$$
.

7) $\int_{(l)} y dx - x dy$, где (l) – эллипс $x = a \cos t$, $y = b \sin t$, пробегаемый в положи-

тельном направлении (против часовой стрелки).

8)
$$\int_{(l)} \frac{ydx + xdy}{x^2 + y^2}$$
, где (l) – отрезок прямой $y = x$ от $x_1 = 1$ до $x_2 = 2$.

9)
$$\int_{(l)} \frac{y^2 dx - x^2 dy}{x^2 + y^2}$$
, где (l) – полуокружность $x = R\cos t$, $y = R\sin t$ от $t_1 = 0$ до

 $t_2 = \pi$.

10) $\int_{(l)} (2a - y) dx - (a - y) dy$, где (l) – первая (от начала координат) арка цик-

лоиды $x = a(t - \sin t), y = a(1 - \cos t).$

11)
$$\int_{(l)} x dy - y dx$$
, где (l) – петля декартова листа $x = \frac{3at}{1+t^3}$, $y = \frac{3at^2}{1+t^3}$.

12)
$$\int_{(l)} \frac{x^2 dy - y^2 dx}{x^{5/3} + y^{5/3}}$$
, где (l) – четверть астроиды $x = R \cos^3 t$, $y = R \sin^3 t$ от

точки (R, 0) до точки (0, R).

13) $\int_{(l)} x dx + y dy + (x + y - 1) dz$, где (l) – отрезок прямой от точки (1, 1, 1) до

точки (2, 3, 4).

14)
$$\int_{(l)} yzdx + zxdy + xydz$$
, где (l) – дуга винтовой линии $x = R\cos t$, $y = R\sin t$,

z=at при изменении параметра от $t_1=0$ до $t_2=2\pi$.

2.4 Вычислить криволинейные интегралы по замкнутым контурам (l), пробегаемым в положительном направлении (против движения часовой стрелки), двумя способами — непосредственно и по формуле Грина:

1)
$$\int_{(l)} y^2 dx + 2xy dy$$
, если (l) – окружность $x^2 + y^2 = R^2$.

2)
$$\int \frac{x}{(l)x^2 + y^2} dx - \frac{y}{x^2 + y^2} dy$$
, если (*l*) – окружность $x^2 + y^2 = R^2$.

3)
$$\int_{(l)} (1-x^2)ydx + x(1+y^2)dy$$
, если (l) – окружность $x^2 + y^2 = R^2$.

4) $\int_{(l)} x dy$, если (l) — контур треугольника, образованного осями координат и

прямой
$$\frac{x}{2} + \frac{y}{3} = 1$$
.

5) $\int_{(l)} (x^2 + y^2) dy$, если (l) – контур четырехугольника с вершинами в точках

A(0,0), B(2,0), C(4,4) и D(0,4).

6)
$$\oint_{(l)} (x-y)dx + (x+y)dy$$
, если (l) – окружность $x^2 + y^2 = R^2$.

7)
$$\int_{(l)} y^2 dx + (x+y)^2 dy$$
, если (*l*) – контур треугольника с вершинами $A(a, 0)$,

B(a, a), C(0, a).

8)
$$\oint_{(l)} (x+y)^2 dx - (x^2+y^2) dy$$
, если (l) – контур треугольника ABC с верши-

нами A(1, 1), B(3, 2), C(2, 5).

- 2.5 1. В каждой точке плоскости на материальную точку действует сила \overline{F} , проекции которой на оси координат равны X = xy, Y = x + y. Вычислить работу силы \overline{F} при перемещении точки из начала координат в точку M(1, 1): a) по прямой y = x; δ) по параболе $y = x^2$; ϵ) по двухзвенной ломаной, стороны которой параллельны осям координат (два случая).
- 2. Проекции силы \overline{F} на оси координат задаются формулами X=2xy и $Y=x^2$. Показать, что работа силы \overline{F} при перемещении точки зависит только от начального и конечного ее положения и не зависит от формы пути. Вычислить величину работы при перемещении из точки M(1,0) в точку N(0,3).
- 3. Сила по величине обратно пропорциональна расстоянию точки ее приложения от плоскости Oxy и направлена к началу координат. Вычислить работу при движении точки под действием этой силы по прямой x = at, y = bt, z = ct от точки M(a, b, c) до точки N(2a, 2b, 2c).

Ответы к задачам

$$2.1 \cdot 1 \cdot \sqrt{5} \ln 2$$
; 2) 24; 3) $\frac{p^2}{3} (5\sqrt{5} - 1)$; 4) $2\pi a^{2n+1}$; 5) $4\pi a \sqrt{a}$.

$$2.2 \ 1) \ \frac{1}{3} (10\sqrt{10} - 2\sqrt{2}); 2) \ a\delta.$$

$$2.3 \ 1) \ \frac{ab}{2}$$
; 2) $-\frac{56}{15}$; 3) 4π ; 4) $\frac{1}{3}$; $\frac{1}{12}$; $\frac{17}{30}$; $-\frac{1}{20}$; 5) 1 – во всех случаях; 6) 0;

7)
$$-2\pi ab$$
; 8) $\ln 2$; 9) $-\frac{4a}{3}$; 10) πa^2 11) $\frac{3}{2}a^2$; 12) $\frac{3\pi R\sqrt[3]{R}}{16}$; 13) 13; 14) 0.

$$2.4100; 200; 3) \frac{\pi R^4}{2}; 4) 3; 5) \frac{112}{3}; 6) 2\pi R^2; 7) \frac{a^3}{3}; 8) -\frac{111}{4}$$

$$\boxed{2.5}$$
 1): a) $\frac{4}{3}$; б) $\frac{17}{12}$; в) $\frac{3}{2}$ и 1; 2) 0; 3) $\frac{k\sqrt{a^2+b^2+c^2}}{c} \ln 2$.

Глава 3. ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ

§1. Векторное поле

1. Определение

Говорят, что в области (V) пространства или (S) на плоскости задано *век- торное поле* $\overline{F}(M)$, если каждой точке M этой области поставлен в соответствие по некоторому закону вектор \overline{F} .

Замечание. Если $(V) \subset (Oxyz)$, то можно записать выражение $\overline{F}(M)$ в координатной форме:

$$\overline{F}(x,y,z) = \{P(x,y,z), Q(x,y,z), R(x,y,z)\}$$

или разложить $\overline{\mathbf{F}}(M)$ по ортонормированному базису:

$$\overline{F}(x, y, z) = P(x, y, z) \cdot \overline{i} + Q(x, y, z) \cdot \overline{j} + R(x, y, z) \cdot \overline{k}.$$

Для
$$(S)$$
 $\subset (Oxy)$ получим: $\overline{F}(x,y) = \{P(x,y), Q(x,y)\} = P(x,y) \cdot \overline{i} + Q(x,y) \cdot \overline{j}$.

Примеры векторных полей:

1) $\overline{V}(M)$ — поле скоростей частиц движущейся жидкости;

2)
$$\overline{E} = kq \frac{x\overline{i} + y\overline{j} + z\overline{k}}{\sqrt{(x^2 + y^2 + z^2)^3}}$$
 – поле вектора напряженности, создаваемое то-

чечным положительным зарядом q, помещенным в начало координат; $(V) = \{(x, y, z) | (x, y, z) \neq (0, 0, 0)\};$

3)
$$\overline{\mathbf{B}} = \frac{kJ(-y\overline{\mathbf{i}} + x\overline{\mathbf{j}})}{x^2 + y^2}$$
 – поле вектора магнитной индукции, создаваемое бес-

конечным проводником с током, направленным вдоль оси Oz; $(V) = \{(x, y, z) | (x, y, z) \neq (0, 0, z)\}.$

2. Определение

Векторной линией поля $\overline{F}(M)$ называется линия, в каждой точке которой направление вектора касательной совпадает с направлением поля (рис. 22).

Рис. 22

3. Теорема об уравнениях векторных линий

Для того чтобы уравнения $\begin{cases} x = x(t), \\ y = y(t), \, (t \in T) \end{cases}$ задавали векторную линию z = z(t),

 (ℓ) поля $\overline{F} = P(x, y, z) \cdot \overline{i} + Q(x, y, z) \cdot \overline{j} + R(x, y, z) \cdot \overline{k}$, необходимо и достаточно, чтобы функции x(t), y(t), z(t), заданные на числовом промежутке T, были решением системы дифференциальных уравнений:

$$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R} \,.$$

Доказательство.

1. *Необходимость*. Пусть (ℓ) : $\begin{cases} x = x(t), \\ y = y(t), (t \in T) - \end{cases}$ векторная линия поля z = z(t),

 $\overline{\mathbf{F}}=P\overline{\mathbf{i}}+Q\overline{\mathbf{j}}+R\overline{\mathbf{k}}$, любой точке M которой соответствует некоторое значение $t\in T$, т.е. $M\big(x(t),y(t),z(t)\big)\in (\ell)$ и вектор $\overline{\mathbf{F}}(M)=P\big(x(t),y(t),z(t)\big)\cdot \overline{\mathbf{i}}+Q\big(x(t),y(t),z(t)\big)\cdot \overline{\mathbf{j}}+R\big(x(t),y(t),z(t)\big)\cdot \overline{\mathbf{k}}$ коллинеарен направляющему вектору $\overline{\mathbf{s}}_{\ell}$ касательной к линии (ℓ) в точке M, причем $\overline{\mathbf{s}}_{\ell}=x'(t)\overline{\mathbf{i}}+y'(t)\overline{\mathbf{j}}+z'(t)\overline{\mathbf{k}}$.

Согласно условию коллинеарности векторов равенства

$$\frac{x'(t)}{P(x(t), y(t), z(t))} = \frac{y'(t)}{Q(x(t), y(t), z(t))} = \frac{z'(t)}{R(x(t), y(t), z(t))}$$

выполняются при $\forall t \in T$, тогда

$$\frac{x'(t)dt}{P(x(t),y(t),z(t))} = \frac{y'(t)dt}{Q(x(t),y(t),z(t))} = \frac{z'(t)dt}{R(x(t),y(t),z(t))} \ (\forall t \in T),$$

ИЛИ

$$\frac{d[x(t)]}{P(x(t), y(t), z(t))} = \frac{d[y(t)]}{Q(x(t), y(t), z(t))} = \frac{d[z(t)]}{R(x(t), y(t), z(t))} \ (\forall t \in T),$$

откуда следует, что функции x(t), y(t), z(t), заданные на T, являются решением системы дифференциальных уравнений $\frac{dx}{P(x,y,z)} = \frac{dy}{Q(x,y,z)} = \frac{dz}{R(x,y,z)}$.

2. Доказательство *достаточности* можно получить при обращении рассуждений пункта 1.

Пример. Найдем векторные линии поля
$$\overline{B} = \frac{kJ(-y\overline{i} + x\overline{j})}{x^2 + y^2} \begin{pmatrix} x \neq 0, \\ y \neq 0 \end{pmatrix}$$
.

Для этого решим систему уравнений:
$$\frac{dx}{\frac{-kJy}{x^2+y^2}} = \frac{dy}{\frac{kJx}{x^2+y^2}} = \frac{dz}{0} \Rightarrow \begin{cases} \frac{dx}{-y} = \frac{dy}{x}, \Rightarrow \\ \frac{dz}{z} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} xdx = -ydy, \\ z = c_2 \ (\forall c_2 \in \mathbf{R}) \end{cases} \Rightarrow \begin{cases} x^2 + y^2 = c_1^2 \ (c_1 > 0), \\ z = c_2 \ (c_2 \in \mathbf{R}). \end{cases}$$

Получили, что векторными линиями индукции прямого тока являются охватывающие проводник (ось O_Z) концентрические окружности.

§2. Поток векторного поля через поверхность

1. Определение

Потоком векторного поля \overline{F} через выбранную сторону (σ^*) ограниченного, кусочно-гладкого участка поверхности (σ) называется число, равное

поверхностному интегралу по (σ) от скалярного произведения вектора \overline{F} , задающего поле, на единичный вектор нормали к выбранной стороне поверхности (σ) :

$$\Pi_{\sigma}(\overline{F}) = \iint_{(\sigma)} (\overline{F}, \overline{n}_0) d\sigma (\overline{n}_0 \perp (\sigma^*)).$$

Замечания: 1. От *векторной формы* можно перейти к *координатной* форме записи потока:

$$\overline{\mathbf{F}} = P\overline{\mathbf{i}} + Q\overline{\mathbf{j}} + R\overline{\mathbf{k}} \,,$$

$$\overline{\mathbf{n}}_0 = \cos\alpha \cdot \overline{\mathbf{i}} + \cos\beta \cdot \overline{\mathbf{j}} + \cos\gamma \cdot \overline{\mathbf{k}}$$

$$(\cos\alpha, \cos\beta, \cos\gamma - \text{направля-}$$
 ющие косинусы вектора $\overline{\mathbf{n}}_{\sigma^*}$)

2. Для нахождения орта нормали $\bar{\mathbf{n}}_0$ к поверхности (σ) : $\Phi(x, y, z) = 0$ применяется формула

$$\overline{\mathbf{n}}_0 = \frac{1}{\mid \overline{\mathbf{n}}_{\sigma^*} \mid} \cdot \overline{\mathbf{n}}_{\sigma^*} \,, \, \text{где} \,\, \overline{\mathbf{n}}_{\sigma^*} \, = \pm \left\{\! \Phi_x', \Phi_y', \Phi_z' \right\} \! = \pm \overline{\text{grad}} \Phi \,.$$

- 3. Из свойств поверхностного интеграла можно получить *свойства по- тока*:
 - $\boxed{1}$ $\Pi_{(\sigma^{-})} = -\Pi_{(\sigma^{+})}$, где (σ^{+}) , (σ^{-}) различные стороны поверхности (σ) ;
 - $\boxed{2}\ \Pi_{(\sigma_1)\cup(\sigma_2)} = \Pi_{(\sigma_1)} + \Pi_{(\sigma_2)}$ (свойство аддитивности).

Пример. Вычислим поток поля $\overline{F} = x \cdot \overline{i} + xy \cdot \overline{j} + z \cdot \overline{k}$ через нижнюю сторону (относительно (Oz)) треугольника плоскости x + y + z - 2 = 0.

1. Найдем
$$\overline{\mathbf{n}}_0$$
: $\overline{\mathbf{n}}_{\sigma} = \pm \overline{\operatorname{grad}} \Phi$, где $\Phi = x + y + z - 2$; тогда $\overline{\mathbf{n}}_{(\sigma^-)} = -\{1, 1, 1\} = \{-1, -1, -1\}$, $|n_{\sigma^-}| = \sqrt{3}$, откуда $\overline{\mathbf{n}}_0 = \left\{-\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right\}$.

2. Вычислим $(\overline{\mathbf{F}}, \overline{\mathbf{n}}_0)$: $(\overline{\mathbf{F}}, \overline{\mathbf{n}}_0) = x \cdot \left(-\frac{1}{\sqrt{3}}\right) + xy \cdot \left(-\frac{1}{\sqrt{3}}\right) + z \cdot \left(-\frac{1}{\sqrt{3}}\right) = = -\frac{1}{\sqrt{3}}(x + xy + z)$.

3. Найдем поток:
$$\Pi_{\sigma}(\overline{F}) = \iint_{(\sigma)} (\overline{F}, \overline{n}_0) d\sigma = -\frac{1}{\sqrt{3}} \iint_{(\sigma)} (x + xy + z) d\sigma =$$

$$= \begin{vmatrix} (S) = \prod_{Oxy}(\sigma) \Rightarrow (\sigma) : z = 2 - x - y, \\ d\sigma = \sqrt{1 + (-1)^2 + (-1)^2} dx dy = \sqrt{3} dx dy \end{vmatrix} = -\frac{1}{\sqrt{3}} \iint_{(\sigma)} (x + xy + 2 - x - y) \sqrt{3} dx dy =$$

$$= -\iint_{(S)} (xy + 2 - y) dx dy = -\int_{0}^{2} dx \int_{0}^{2 - x} (xy + 2 - y) dy = -\int_{0}^{2} \left[\left(x \frac{y^2}{2} + 2y - \frac{y^2}{2} \right) \right]_{0}^{2 - x} dx =$$

$$= -\frac{1}{2} \int_{0}^{2} [x(2 - x)^2 + 4(2 - x) - (2 - x)^2] dx = -\frac{1}{2} \int_{0}^{2} (x^3 - 5x^2 + 4x + 4) dx =$$

$$= -\frac{1}{2} \left(\frac{x^4}{4} - \frac{5x^3}{3} + 2x^2 + 4x \right) \Big|_{0}^{2} = -\frac{10}{3}.$$

2. Замечания о физическом смысле потока векторного поля

- 1. Если \overline{V} поле скоростей частиц движущейся жидкости, то поток $\Pi_{\sigma}(\overline{V})$ через поверхность (σ) есть количество жидкости, протекающей через поверхность (σ) за единицу времени.
- 2. Если (σ) незамкнутая поверхность, ограниченная линией (ℓ), то число $\left|\Pi_{\sigma}(\overline{F})\right|$ характеризует *интенсивность поля* \overline{F} *на поверхности* (σ), т.е. задает количество векторных линий, пронизывающих (σ) (рис. 23): $K_{(\sigma)} = \left|\Pi_{\sigma}(\overline{F})\right|$.
- 3. Если (σ) замкнутая поверхность (рис. 24), то число $\prod_{\sigma}(\overline{F})$ характеризует *производительность поля* \overline{F} *на области* (V), ограниченной поверхностью (σ) , т.е. разность между количествами выходящих из (V) и входящих в (V) векторных линий: $\prod_{\sigma}(\overline{F}) = K_{\text{вых}} K_{\text{вх}} = = \left|\prod_{(\sigma_{\text{max}})} \left| \left|\prod_{(\sigma_{\text{max}})} \right|$, откуда получим:
 - а) $\prod_{\sigma} > 0 \Rightarrow \mathrm{K}_{\scriptscriptstyle \mathrm{BMX}} > \mathrm{K}_{\scriptscriptstyle \mathrm{BX}} \Rightarrow$ на (V) есть источники поля;
 - б) $\prod_{\sigma} < 0 \Rightarrow K_{\text{вых}} < K_{\text{вх}} \Rightarrow$ на (V) есть стоки поля;
- в) $\prod_{\sigma} = 0 \Rightarrow K_{\text{вых}} = K_{\text{вх}} \Rightarrow$ суммарная мощность источников и стоков равна нулю.

§3. Дивергенция векторного поля и её связь с потоком

1. Определения

Дивергенцией (или **расходимостью**) векторного поля $\overline{\mathbf{F}} = P\overline{\mathbf{i}} + Q\overline{\mathbf{j}} + R\overline{\mathbf{k}}$ в точке M_0 называется число

$$\operatorname{div} \overline{F}\big|_{M_0} = \frac{\partial P}{\partial x}\Big|_{M_0} + \frac{\partial Q}{\partial y}\Big|_{M_0} + \frac{\partial R}{\partial z}\Big|_{M_0} \Big(= P_x'(M_0) + Q_y'(M_0) + R_z'(M_0) \Big).$$

Дивергенцией векторного поля $\overline{\mathbf{F}} = P\overline{\mathbf{i}} + Q\overline{\mathbf{j}} + R\overline{\mathbf{k}}$ в области (V) называется скалярное поле div $\overline{\mathbf{F}} = P_x' + Q_y' + R_z'$ $(\forall M \in (V))$.

Замечание. Если рассмотреть символ $\overline{\nabla} = \frac{\partial}{\partial x}\overline{i} + \frac{\partial}{\partial y}\overline{j} + \frac{\partial}{\partial z}\overline{k}$ (т.н. оператор Гамильтона⁷), то div $\overline{F} = (\overline{\nabla}, \overline{F})$.

2. Свойства дивергенции

$$\mathbf{1}$$
 div $(\overline{F}_1 + \overline{F}_2) = \text{div } \overline{F}_1 + \text{div } \overline{F}_2$.

$$2 \operatorname{div}(c\overline{F}) = c \cdot \operatorname{div} \overline{F}.$$

 $^{^{7}}$ У. Гамильтон (1805 – 1865) – ирландский математик.

 $\overline{\mathbf{3}}$ Если Φ – скалярное, а $\overline{\mathbf{F}}$ – векторное поля, то

$$\operatorname{div}(\Phi \cdot \overline{F}) = \Phi \cdot \operatorname{div} \overline{F} + (\overline{\operatorname{grad}} \Phi, \overline{F}).$$

ДОКАЗАТЕЛЬСТВО. Так как $\Phi \cdot \overline{F} = \Phi P \cdot \overline{i} + \Phi Q \cdot \overline{j} + \Phi R \cdot \overline{k}$, то

$$\operatorname{div}(\Phi \cdot \overline{F}) = (\Phi P)'_{x} + (\Phi Q)'_{y} + (\Phi R)'_{z} = (\Phi'_{x} \cdot P + \Phi \cdot P'_{x}) + (\Phi'_{y} \cdot Q + \Phi \cdot Q'_{y}) + (\Phi'_{z} \cdot R + \Phi \cdot R'_{z}) = (\Phi'_{x} \cdot P + \Phi'_{y} \cdot Q + \Phi'_{z} \cdot R) + (\Phi \cdot P'_{x} + \Phi \cdot Q'_{y} + \Phi \cdot R'_{z}) = (\overline{\operatorname{grad}}\Phi, \overline{F}) + \Phi \cdot \operatorname{div}\overline{F}.$$

3. Теорема (локальная) о связи между потоком и дивергенцией

Дивергенция векторного поля \overline{F} в точке M_0 равна истинной плотности потока поля в этой точке:

$$\operatorname{div} \overline{\mathbf{F}}\big|_{M_0} = \lim_{\operatorname{diam}(V) \to 0} \frac{\iint (\overline{\mathbf{F}}, \overline{\mathbf{n}}_0) d\sigma}{V},$$

где V– объем окрестности (V) точки M_0 ;

diam(V) – диаметр (V);

 (σ) – граница (V) (замкнутая поверхность).

4. Замечание о физическом смысле дивергенции

Если div $\overline{\mathbb{F}}|_{M_0} \ge 0$, то точка M_0 является ucmoчником поля $\overline{\mathbb{F}}$.

Если div $\overline{\mathbb{F}}|_{M_0} \leq 0$, то точка $M_0 - cmo\kappa$ поля $\overline{\mathbb{F}}$.

Это следует из локальной теоремы о связи потока и дивергенции.

5. Теорема (интегральная) Остроградского – Гаусса о связи между потоком и дивергенцией

Поток векторного поля \overline{F} через внешнюю сторону замкнутой поверхности (σ) равен тройному интегралу по области (V), ограниченной поверхностью (σ), от дивергенции этого поля:

$$\iint_{(\sigma)} (\overline{F}, \overline{n}_0) d\sigma = \iiint_{(V)} \operatorname{div} \overline{F} \cdot dV$$

(здесь \bar{n}_0 – орт внешней нормали к поверхности (σ)).

Замечание. Теорема является векторной формой одноименной теоремы о связи между криволинейным и тройным интегралами и выполняется при условии существования указанных интегралов.

Пример. Вычислим поток поля $\overline{F} = yz\overline{i} + (3x + 2y)\overline{j} + (5z - x^2)\overline{k}$ через внешнюю сторону полной поверхности пирамиды, образованной координатными плоскостями и плос- z костью 2x + 2y + z - 4 = 0 (рис. 25):

$$\Pi_{\sigma}(\overline{F}) = \iint_{(\sigma)} (\overline{F}, \overline{n}_{0}) d\sigma =
= \iiint_{(V)} \operatorname{div} \overline{F} \cdot dV = \begin{vmatrix} \operatorname{div} \overline{F} = P'_{x} + Q'_{y} + R'_{z} = \\ = (yz)'_{x} + (3x + 2y)'_{y} + \\ + (5z - x^{2})'_{z} = 0 + 2 + 5 = 7 \end{vmatrix} =
= \iiint_{(V)} 7 dV = 7V = \frac{7}{6} 2 \cdot 2 \cdot 4 = \frac{56}{3}.$$

Рис. 25

§4. Циркуляция векторного поля вдоль замкнутого контура

1. Определение

Циркуляцией векторного поля вдоль замкнутой, кусочно-гладкой, ориентированной линии (ℓ^+) или (ℓ^-) называется число, равное криволинейному интегралу второго рода по контуру (ℓ) от скалярного произведения вектора \overline{F} ,

задающего поле, на дифференциал радиус-вектора произвольной точки линии (ℓ):

$$\Gamma_{\ell}(\overline{\mathbf{F}}) = \oint_{(\ell^+)} (\overline{\mathbf{F}}, d\overline{\mathbf{r}}).$$

Замечание. От векторной формы можно перейти к координатной форме записи циркуляции:

$$\overline{\mathbf{F}} = P\overline{\mathbf{i}} + Q\overline{\mathbf{j}} + R\overline{\mathbf{k}} \,,$$

$$\overline{\mathbf{r}} = \overline{\mathbf{r}}(M) = x\overline{\mathbf{i}} + y\overline{\mathbf{j}} + z\overline{\mathbf{k}} \Rightarrow$$

$$\Rightarrow d\overline{\mathbf{r}} = dx \cdot \overline{\mathbf{i}} + dy \cdot \overline{\mathbf{j}} + dz \cdot \overline{\mathbf{k}}$$

$$(\text{вектор } d\overline{\mathbf{r}} \text{ направлен } no \ \kappa acameль-$$

$$\text{ной } \mathbf{k} \ (\ell) \text{ в } \forall M \in (\ell)).$$

Пример. Найдем циркуляцию векторного поля $\overline{\mathbf{F}} = x\overline{\mathbf{i}} + xy\overline{\mathbf{j}} + z\overline{\mathbf{k}}$ вдоль

окружности
$$(\ell^+)$$
: $\begin{cases} x = 3\cos t, \\ y = 3\sin t, & t \in [0, 2\pi] \text{ (рис. 26):} \\ z = 2, \end{cases}$

Рис. 26

$$\Gamma_{\ell}(\overline{F}) = \int_{(\ell^{+})} x dx + xy dy + z dz =$$

$$\begin{vmatrix} x = 3\cos t \Rightarrow dx = -3\sin t dt, \\ y = 3\sin t \Rightarrow dy = 3\cos t dt, \\ z = 2 \Rightarrow dz = 0 \end{vmatrix}$$

$$= \int_{0}^{2\pi} [3\cos t \cdot (-3\sin t) + 3\cos t \cdot 3\sin t \cdot 3\cos t] dt =$$

$$= \int_{0}^{2\pi} (-9\sin t \cos t + 27\cos^2 t \sin t) dt =$$

$$= -9 \int_{0}^{2\pi} \sin t \, d(\sin t) - 27 \int_{0}^{2\pi} \cos^{2} t \, d(\cos t) = \left(\frac{-9 \sin^{2} t}{2} - 9 \cos^{3} t \right) \Big|_{0}^{2\pi} = 0.$$

2. Замечания о физическом смысле циркуляции

- 1. Если $\overline{F}(M)$ силовое поле ($|\overline{F}| = H$), то циркуляция $\Gamma_{\ell}(\overline{F})$ задает *работу силового поля* по перемещению материальной точки вдоль контура (ℓ) в заданном направлении ($[\Gamma_{\ell}] = H \cdot M = J$ ж).
- 2. Если \overline{F} (M) сила, приходящаяся на единицу длины контура, или т.н. «погонная сила» ($[\overline{F}] = H/M$), то циркуляция $\Gamma_{\ell}(\overline{F})$ есть суммарная сила, действующая на весь контур в целом и направленная так, что она каждую точку контура стремится сдвинуть по касательной к контуру в этой точке, а весь контур в целом заставляет скользить по самому себе, вращаться ($[\Gamma_{\ell}] = H$), т.е. $\Gamma_{\ell}(\overline{F})$ характеризует *вращательную способность поля* \overline{F} на контуре (ℓ).

§5. Ротор векторного поля и его связь с циркуляцией

1. Определения

Ротором (или **вихрем**) векторного поля $\overline{\mathbf{F}}$ $\overline{\mathbf{F}} = P\overline{\mathbf{i}} + Q\overline{\mathbf{j}} + R\overline{\mathbf{k}}$ в точке M_0 называется вектор

$$\overline{\operatorname{rot}} \, \overline{F}\Big|_{M_0} = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right)\Big|_{M_0} \cdot \overline{i} + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right)\Big|_{M_0} \cdot \overline{j} + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)\Big|_{M_0} \cdot \overline{k} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}_{M_0}$$

Ротором векторного поля $\overline{\mathbf{F}}$ в области (V) называется векторное поле

$$\overline{\operatorname{rot}}\,\overline{F} = (R'_{v} - Q'_{z})\overline{i} + (P'_{z} - R'_{x})\overline{j} + (Q'_{x} - P'_{y})\overline{k} \ (\forall M \in (V)).$$

Замечание. $\overline{\operatorname{rot}}\,\overline{\operatorname{F}} = \left[\overline{\nabla},\,\overline{\operatorname{F}}\right]$, где $\overline{\nabla} = \frac{\partial}{\partial x}\overline{\operatorname{i}} + \frac{\partial}{\partial y}\overline{\operatorname{j}} + \frac{\partial}{\partial z}\overline{\operatorname{k}}$ – оператор Гамильтона.

Пример. Если
$$\overline{F} = xyz \cdot \overline{i} + (x + 2y + 3z) \cdot \overline{j} + (x^2 + y^2) \cdot \overline{k}$$
, то

$$\overline{\operatorname{rot}} \overline{F} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (xyz) & (x+2y+3z) & (x^2+y^2) \end{vmatrix} = \overline{\mathbf{i}} \cdot \left[\frac{\partial (x^2+y^2)}{\partial y} - \frac{\partial (x+2y+3z)}{\partial z} \right] - \overline{\mathbf{j}} \cdot \left[\frac{\partial (x^2+y^2)}{\partial x} - \frac{\partial (xyz)}{\partial z} \right] + \overline{\mathbf{k}} \cdot \left[\frac{\partial (x+2y+3z)}{\partial x} - \frac{\partial (xyz)}{\partial y} \right] = (2y-3)\overline{\mathbf{i}} + (xy-2x)\overline{\mathbf{j}} + (1-xz)\overline{\mathbf{k}}; \ \overline{\operatorname{rot}} \overline{F} \Big|_{M_0(-2,1,3)} = -\overline{\mathbf{i}} + 2\overline{\mathbf{j}} + 7\overline{\mathbf{k}}.$$

2. Свойства ротора

$$\boxed{1} \ \overline{\text{rot}} [c_1 \overline{\mathbf{F}}_1 + c_2 \overline{\mathbf{F}}_2] = c_1 \cdot \overline{\text{rot}} \, \overline{\mathbf{F}}_1 + c_2 \cdot \overline{\text{rot}} \, \overline{\mathbf{F}}_2.$$

Доказательство.

Так как
$$c_1\overline{\mathbf{F}}_1+c_2\overline{\mathbf{F}}_2=(c_1P_1+c_2P_2)\overline{\mathbf{i}}+(c_1Q_1+c_2Q_2)\overline{\mathbf{j}}+(c_1R_1+c_2R_2)\overline{\mathbf{k}}$$
, то

$$\overline{\operatorname{rot}}(c_{1}\overline{F}_{1}+c_{2}\overline{F}_{2}) = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ c_{1}P_{1}+c_{2}P_{2} & c_{1}Q_{1}+c_{2}Q_{2} & c_{1}R_{1}+c_{2}R_{2} \end{vmatrix} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ c_{1}P_{1} & c_{1}Q_{1} & c_{1}R_{1} \end{vmatrix} + \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ c_{2}P_{2} & c_{2}Q_{2} & c_{2}R_{2} \end{vmatrix} = c_{1} \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{vmatrix} = c_{1} \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \end{vmatrix} = c_{1} \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial z} & \frac{\partial}{\partial$$

 $\overline{\mathbf{2}}$ Если Φ – скалярное, а $\overline{\mathbf{F}}$ – векторное поля, то

$$\overline{\text{rot}}(\Phi \cdot \overline{F}) = \Phi \cdot \overline{\text{rot}} \overline{F} + [\overline{\text{grad}}\Phi, \overline{F}].$$

$$\mathbf{\overline{3}}$$
 div $[\overline{F}_1, \overline{F}_2] = (\overline{rot}\,\overline{F}_1, \overline{F}_2) - (\overline{F}_1, \overline{rot}\,\overline{F}_2).$

3. Теорема (локальная) о связи между циркуляцией и ротором

Проекция ротора поля \overline{F} в точке M_0 на фиксированное направление \overline{n} задает истинную (поверхностную) плотность циркуляции в этой точке в плоскости, перпендикулярной выбранному направлению \bar{n} :

где σ – площадь замкнутой ограниченной области (σ) ($M_0 \in (\sigma)$), лежащей на плоскости, проходящей через точку M_0 и перпен-

diam (σ) – диаметр (σ);

дикулярной \overline{n} ;

 (ℓ) – граница (σ) (рис. 27). Замечание о физическом смысле ротора. Если \overline{F} – «погонная сила», то пр \overline{n} $\overline{\text{rot}}$ $\overline{F}\Big|_{M_{\Omega}}$ задает Рис. 27

величину «вращательной способности» поля в точке M_0 в плоскости, перпендикулярной заданному направлению $\overline{\mathbf{n}}$. Тогда в плоскости, перпендикулярной $\overline{\operatorname{rot}}\,\overline{F}\Big|_{M_0}(\overline{n}=\overline{\operatorname{rot}}\,\overline{F}\Big|_{M_0})$, «вращательная способность» поля в точке M_0 будет наибольшей, равной $\overline{|\text{rot }\overline{F}|}_M$.

4. Теорема (интегральная) Стокса о связи между циркуляцией и ротором

Циркуляция векторного поля \overline{F} вдоль контура (ℓ) равна потоку ротора этого поля через поверхность (σ), «натянутую» на контур (ℓ):

$$\oint_{(\ell^+)} (\overline{F}, d\overline{r}) = \iint_{(\sigma)} (\overline{\operatorname{rot}} \overline{F}, \overline{n}_0) d\sigma,$$

(здесь \bar{n}_0 – орт нормали к той стороне поверхности (σ), которая соответствует положительному направлению обхода контура (ℓ)).

Замечание. Теорема является векторной формой одноименной теоремы о связи между криволинейным и поверхностным интегралами и выполняется при условии существования указанных интегралов.

Пример. Вычислим по формуле Стокса циркуляцию поля $\overline{F} = x\overline{i} + xy\overline{j} + z\overline{k}$

вдоль окружности
$$(\ell^+)$$
: $\begin{cases} x = 3\cos t, \\ y = 3\sin t, \ t \in [0, 2\pi] \end{cases}$ (см. рис. 26). $z = 2,$

1. Найдем ротор
$$\overline{\mathbf{F}}$$
: $\overline{\mathrm{rot}}\,\overline{\mathbf{F}} = \begin{vmatrix} \overline{\mathbf{i}} & \overline{\mathbf{j}} & \overline{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & xy & z \end{vmatrix} = \overline{\mathbf{i}}\cdot\left[\frac{\partial z}{\partial y} - \frac{\partial(xy)}{\partial z}\right] -$

$$-\overline{\mathbf{j}} \cdot \left[\frac{\partial z}{\partial x} - \frac{\partial x}{\partial z} \right] + \overline{\mathbf{k}} \cdot \left[\frac{\partial (xy)}{\partial x} - \frac{\partial x}{\partial y} \right] = y \cdot \overline{\mathbf{k}} = \{0, 0, y\}.$$

2. (σ): z = 2 — плоская область $\Rightarrow \overline{\mathbf{n}}_0 = \{0, 0, 1\}$, поэтому ($\overline{\text{rot}}\,\overline{\mathbf{F}}\,, \overline{\mathbf{n}}_0$) = y.

3.
$$\Gamma_{\ell}(\overline{F}) = \iint_{(\sigma)} y d\sigma = \begin{vmatrix} (S) = \prod_{Oxy}(\sigma) \Rightarrow (\sigma) : z = 2, \\ z'_{x} = z'_{y} = 0; \\ d\sigma = \sqrt{1 + 0^{2} + 0^{2}} dx dy \end{vmatrix} = \iint_{(S)} y dx dy = 0$$

$$\begin{vmatrix} x = \rho \cos \varphi, \\ y = \rho \sin \varphi, \\ dxdy = \rho d\rho d\varphi, \\ (S) : \begin{cases} 0 \le \varphi \le 2\pi; \\ 0 \le \rho \le 3 \end{cases} = \int_{0}^{2\pi} d\varphi \int_{0}^{3} \rho \sin \varphi \cdot \rho d\rho = \int_{0}^{2\pi} \sin \varphi \cdot \left[\frac{\rho^{3}}{3} \right]_{0}^{3} d\varphi = -9 \cos \varphi \Big|_{0}^{2\pi} = 0.$$

§6. Классификация векторных полей

1. Определение

Векторное поле \overline{F} , заданное в области (V), называется *потенциальным* (или *безвихревым*), если его ротор тождественно равен нуль-вектору на (V): $\overline{\text{rot}}\,\overline{F}\equiv\overline{0}$.

Примеры. 1.
$$\overline{E} = kq \frac{x\overline{i} + y\overline{j} + z\overline{k}}{\sqrt{(x^2 + y^2 + z^2)^3}}$$
 — потенциальное поле на $(V) =$

$$= \{(x, y, z) \mid (x, y, z) \neq (0, 0, 0)\}.$$

2. $\overline{F} = (y+z)\overline{i} + (x+z)\overline{j} + (x+y)\overline{k}$ – потенциальное поле в трёхмерном пространстве, т.к.

$$\overline{\operatorname{rot}} \, \overline{F} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y + z & x + z & x + y \end{vmatrix} = \overline{i} \cdot \left[\frac{\partial (x + y)}{\partial y} - \frac{\partial (x + z)}{\partial z} \right] - \frac{\overline{j}}{\overline{j}} \cdot \left[\frac{\partial (x + y)}{\partial x} - \frac{\partial (y + z)}{\partial z} \right] + \overline{k} \cdot \left[\frac{\partial (x + z)}{\partial x} - \frac{\partial (y + z)}{\partial y} \right] = \overline{0}.$$

2. Теорема о свойствах потенциального поля (или об условиях потенциальности векторного поля)

Пусть векторное поле $\overline{F} = P\overline{i} + Q\overline{j} + R\overline{k}$ задано в поверхностно односвязной области (V) (т.е. такой, в которой на каждый контур (ℓ) можно «натянуть» поверхность $(\sigma)\subset(V)$, причем функции $P,\ Q,\ R$ имеют непрерывные частные производные первого порядка на (V).

Тогда следующие утверждения эквивалентны:

- $\overline{1}$ \overline{F} потенциальное поле: $\overline{\text{rot}}\,\overline{F}\equiv\overline{0}$ на (V).
- $\boxed{2}$ Циркуляция поля \boxed{F} вдоль любого контура $(\ell) \subset (V)$ равна нулю: $\Gamma_\ell(\overline{F}) = \oint\limits_{(e^\pm)} (\overline{F}, d\overline{r}) = 0.$

линии (ℓ) \subset (V), соединяющей точки $A, B \in (V)$:

$$\int_{(A/R)} (\overline{F}, d\overline{r}) = \text{const} (\forall (\ell) \subset (V)).$$

 $\boxed{4}$ В области (*V*) существует такое скалярное поле Φ , градиент которого совпадает с \boxed{F} : $\boxed{\text{grad}}\Phi = \boxed{F}$.

ДОКАЗАТЕЛЬСТВО перехода $\boxed{1}\Rightarrow\boxed{2}$ следует из теоремы Остроградского – Гаусса, а $\boxed{4}\Rightarrow\boxed{1}$ – из теоремы о независимости смешанных производных от порядка дифференцирования.

Замечания: 1. Теорема о свойствах потенциального поля есть векторная форма теоремы об условиях независимости криволинейного интеграла второго рода от формы линии интегрирования.

- 2. Скалярное поле Φ , для которого векторное поле \overline{F} является градиентом, называется *скалярным потенциалом* поля \overline{F} .
 - 3. Скалярный потенциал векторного поля \overline{F} можно находить по формуле

$$\Phi(x, y, z) = \int_{(M_0M)} (\overline{F}, d\overline{r}) \begin{pmatrix} {}_{\text{обозн}}{}^{M} \\ {}_{\text{off}} & {}_{\text{off}} \end{pmatrix} + c ,$$

где $M_0(x_0, y_0, z_0)$ – фиксированная точка области (V);

M(x, y, z) – текущая (произвольная) точка (V).

Так как интеграл не зависит от формы линии, соединяющей точки M_0 и M, то (ℓ) удобно выбрать в виде *поманой* со звеньями, параллельными координатным осям, целиком лежащей в области (V).

4. Справедлива обобщенная формула Ньютона 8 – Лейбница 9 :

$$\int_{M_1(x_1,y_1,z_1)}^{M_2(x_2,y_2,z_2)} (\overline{F}, d\overline{r}) = \Phi(M_2) - \Phi(M_1).$$

Доказательство:

$$\Phi(M_2) = \int_{M_0}^{M_2} (\overline{F}, d\overline{r}) = \int_{M_0}^{M_1} (\overline{F}, d\overline{r}) + \int_{M_1}^{M_2} (\overline{F}, d\overline{r}) = \Phi(M_1) + \int_{M_1}^{M_2} (\overline{F}, d\overline{r}).$$

 $^{^{8}}$ И. Ньютон (1643–1727) – английский физик и математик.

 $^{^9}$ Г. Лейбниц (1646—1716) — немецкий философ и математик.

Пример. Найдем скалярный потенциал векторного поля $\overline{F} = (y + z)\overline{i} + (x + z)\overline{j} + (x + y)\overline{k}$:

$$\Phi(x,y,z) = \int_{O(0,0,0)}^{M(x,y,z)} (y+z)dx + (x+z)dy + (x+y)dz = \int_{O(0,0,0)}^{M_1(x,0,0)} (...) + \int_{O(0,0,0)}^{M_2(x,y,0)} (...) + \int_{O(0,$$

$$(\ell_1): \begin{cases} x = t, \\ y = 0, t \in [0, x] \Rightarrow dx = dt, \\ dy = dz = 0; \end{cases}$$

$$+ \int_{M_2(x, y, 0)}^{M(x, y, z)} (\dots) = \begin{cases} x = x = \text{const}, \\ y = t, t \in [0, y] \Rightarrow dx = dz = 0, \\ z = 0, \end{cases}$$

$$(\ell_2): \begin{cases} x = x = \text{const}, \\ y = t, t \in [0, y] \Rightarrow dy = dt; \end{cases}$$

$$(\ell_3): \begin{cases} x = x = \text{const}, \\ y = y = \text{const}, \\ y = y = \text{const}, \Rightarrow dz = dy = 0, \\ z = t, t \in [0, z] \end{cases}$$

$$+\int_{0}^{y}(x+0)\,dt+\int_{0}^{z}(x+y)\,dt+c=0+xt\Big|_{0}^{y}+(x+y)t\Big|_{0}^{z}+c=xy+xz+yz+c.$$

$$\Pi \text{POBEPKA: } \overline{\text{grad}} \Phi = \Phi'_x \cdot \overline{\mathbf{i}} + \Phi'_y \cdot \overline{\mathbf{j}} + \Phi'_z \cdot \overline{\mathbf{k}} = (xy + xz + yz + c)'_x \cdot \overline{\mathbf{i}} + (xy + xz + yz + c)'_y \cdot \overline{\mathbf{j}} + (xy + xz + yz + c)'_z \cdot \overline{\mathbf{k}} = (y + z) \cdot \overline{\mathbf{i}} + (x + z) \cdot \overline{\mathbf{j}} + (x + y) \cdot \overline{\mathbf{k}} = \overline{\mathbf{F}}.$$

3. Определение

Векторное поле \overline{F} , заданное в области (V), называется *соленоидальным* (или *трубчатым*), если его дивергенция тождественно равна нулю на (V): $\operatorname{div} \overline{F} \equiv 0$.

Примеры: 1)
$$\overline{B} = \frac{kJ(-y\overline{i} + x\overline{j})}{x^2 + y^2}$$
 — соленоидальное поле на $(V) = = \{(x, y, z) | (x, y, z) \neq (0, 0, z)\}$, т.к. $\operatorname{div} \overline{B} = kJ \cdot \left[\left(\frac{-y}{x^2 + y^2} \right)_x' + \left(\frac{x}{x^2 + y^2} \right)_y' + (0)_z' \right] = kJ \cdot \left[\frac{2xy}{\left(x^2 + y^2\right)^2} - \frac{2xy}{\left(x^2 + y^2\right)^2} \right] \equiv 0$;

2) $\overline{F} = (y+z)\overline{i} + (x+z)\overline{j} + (x+y)\overline{k}$ – соленоидальное поле в трёхмерном пространстве, т.к. div $\overline{F} = (y+z)'_x + (x+z)'_y + (x+y)'_z \equiv 0$.

Замечания: 1. По определению соленоидального поля $\operatorname{div} \overline{F} \equiv 0$ на (V), т.е. $\forall M \in (V)$ не является ни источником, ни стоком \overline{F} , а поэтому векторные линии соленоидального поля или замкнутые, или имеют начало и конец за пределами области (V).

- 2. Векторные линии соленоидального поля не пересекаются.
- 3. Совокупность векторных линий соленоидального поля, проходящих через точки поверхности (σ), принято называть *векторной трубкой* с основанием (σ).

4. Теорема о свойствах соленоидального поля (или об условиях соленоидальности векторного поля)

Пусть векторное поле $\overline{F} = P\overline{i} + Q\overline{j} + R\overline{k}$ задано в пространственно односвязной области (V) (т.е. такой, в которой любая замкнутая поверхность $(\sigma) \subset (V)$ ограничивает объемную область (v), целиком лежащую в (V): $(v) \subset (V)$, причем функции P, Q, R имеют непрерывные частные производные первого порядка на (V).

Тогда следующие утверждения эквивалентны:

- $\overline{|1|}$ \overline{F} соленоидальное поле: div \overline{F} \equiv 0 на (V).
- $\boxed{2}$ Поток поля \boxed{F} через любую замкнутую поверхность $(\sigma) \subset (V)$ равен нулю: $\Pi_{\sigma}(\overline{F}) = \oiint_{(\sigma)}(\overline{F}, \overline{n}_0) \, d\sigma = 0.$
 - $\overline{3}$ Поток поля \overline{F} через любое сечение данной векторной трубки постоянен:

$$\iint_{(\sigma^+)} (\overline{\mathbf{F}}, \overline{\mathbf{n}}_0) \, d\sigma = \text{const}$$

(здесь (σ) – любое сечение векторной трубки в (V)).

 \blacksquare В области (V) существует такое векторное поле $\overline{\Phi}$, ротор которого совпадает с \overline{F} : $\overline{\text{rot}}\,\overline{\Phi}=\overline{F}$.

ДОКАЗАТЕЛЬСТВО. 1. $\boxed{1} \Rightarrow \boxed{2}$: *Пусть* div $\overline{F} \equiv 0$ на (V), (σ) – замкнутая поверхность в (V), ограничивающая объёмное тело $(v) \subset (V)$. Тогда по теореме Остроградского – Гаусса получим:

$$\Pi_{\sigma}(\overline{F}) = \iint_{(v)} \operatorname{div} \overline{F} dV = \iint_{(v)} 0 \cdot dV = 0.$$

2. $\boxed{2} \Rightarrow \boxed{3}$: Пусть $\Pi_{\sigma}(\overline{F}) = 0$ для \forall замкнутой поверхности $(\sigma) \subset (V)$, (σ_1) , (σ_2) – два произвольных сечения векторной трубки с одним и тем же основанием (рис. 28).

Рассмотрим замкнутую поверхность (σ), образованную сечениями (σ_1), (σ_2) и боковой поверхностью векторной трубки:

$$(\sigma_{\text{внеш.}}) = (\sigma_1^-) \cup (\sigma_2^+) \cup (\sigma_{\text{бок.}}),$$
 тогда $\Pi_{\sigma}(\overline{F}) = 0 = \Pi_{(\sigma_1^-)} + \Pi_{(\sigma_2^+)} + \Pi_{(\sigma_{\text{бок.}})},$ причем $\Pi_{(\sigma_1^-)} = -\Pi_{(\sigma_1^+)},$
$$\Pi_{(\sigma_{\text{бок.}})} = \iint_{(\sigma_{\text{fow.}})} (\overline{F}, \overline{n}_0) d\sigma = 0,$$

т.к. $\overline{F} \perp \overline{n}_0$. Получили: $\Pi_{(\sigma_1^+)} = \Pi_{(\sigma_2^+)}$.

3. Переход $\boxed{4} \Rightarrow \boxed{1}$ следует из теоремы о независимости смешанных производных от порядка дифференцирования.

Замечание. Векторное поле $\overline{\Phi}$, для которого данное поле \overline{F} является ротором, называется векторным потенциалом \overline{F} .

5. Определение

Векторное поле \overline{F} , заданное в области (V), называется *гармоническим*, если оно одновременно является и потенциальным, и соленоидальным.

Пример: $\bar{F} = (y+z)\bar{i} + (x+z)\bar{j} + (x+y)\bar{k}$ – гармоническое поле.

6. Теорема о необходимых и достаточных условиях гармоничности векторного поля

Для того чтобы потенциальное поле \overline{F} было гармоническим, необходимо и достаточно, чтобы скалярный потенциал Φ этого поля был решением так называемого *уравнения Лапласа*¹⁰:

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0.$$

Замечание. Любое решение уравнения Лапласа называется *гармонической функцией*. Скалярный потенциал гармонического поля является гармонической функцией.

§7. Дифференциальные операции второго порядка над полями

1. Обозначения

Оператор Гамильтона («набла») – символическое выражение

$$\overline{\nabla} = \frac{\partial}{\partial x}\overline{i} + \frac{\partial}{\partial y}\overline{j} + \frac{\partial}{\partial z}\overline{k}.$$

Оператор Лапласа — символическое выражение $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

Замечание. С помощью оператора Гамильтона можно выразить дифференциальные операции первого порядка над скалярными и векторными полями, причем

$$\overline{\text{grad}} \Phi = \overline{\nabla} \Phi - \text{векторное поле,}$$

$$\operatorname{div} \overline{F} = (\overline{\nabla}, \overline{F}) - \text{скалярное поле,}$$

$$\overline{\text{rot}} \overline{F} = [\overline{\nabla}, \overline{F}] - \text{векторное поле.}$$

Кроме того, $\Delta = (\overline{\nabla}, \overline{\nabla})$ — дифференциальная операция второго порядка.

 $^{^{10}}$ П.-С. Лаплас (1749—1827) — французский математик и астроном.

2. Замечание о дифференциальных операциях второго порядка над скалярными и векторными полями

Возможные варианты дифференциальных операций второго порядка над полями и их представления с помощью операторов $\overline{\nabla}$ и Δ удобно разместить в таблице:

	grad Φ	div F	rot F
grad		grad div F=	
		$=\overline{\nabla}\left(\overline{\nabla},\overline{\mathrm{F}}\right)$	
div	$\operatorname{div} \overline{\operatorname{grad}} \Phi =$		$\operatorname{div} \overline{\operatorname{rot}} \overline{\operatorname{F}} =$
	$= (\overline{\nabla} , \overline{\nabla} \Phi) = \Delta \Phi$		$=(\overline{\nabla},[\overline{\nabla},\overline{F}])\equiv 0$
rot	$rot \overline{grad}\Phi =$		$\overline{\text{rot rot }}\overline{\text{F}} =$
	$=(\overline{\nabla}, \overline{\nabla}\Phi) \equiv \overline{0}$		$=[\overline{ abla},[\overline{ abla},\overline{ abla}]]$

Указанные дифференциальные операции можно выразить в координатной форме, например:

$$\begin{aligned} \operatorname{div} & \overline{\operatorname{grad}} \Phi = \operatorname{div} \left(\frac{\partial \Phi}{\partial x} \overline{\mathbf{i}} + \frac{\partial \Phi}{\partial y} \overline{\mathbf{j}} + \frac{\partial \Phi}{\partial z} \overline{\mathbf{k}} \right) = \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} + \frac{\partial^2 \Phi}{\partial z^2}; \\ \overline{\operatorname{grad}} & \operatorname{div} \overline{\mathbf{F}} = \overline{\operatorname{grad}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) = \frac{\partial}{\partial x} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \cdot \overline{\mathbf{i}} + \\ + \frac{\partial}{\partial y} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \cdot \overline{\mathbf{j}} + \frac{\partial}{\partial z} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \cdot \overline{\mathbf{k}} = \left(\frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 Q}{\partial y \partial x} + \frac{\partial^2 R}{\partial z \partial x} \right) \cdot \overline{\mathbf{i}} + \\ + \left(\frac{\partial^2 P}{\partial x \partial y} + \frac{\partial^2 Q}{\partial y^2} + \frac{\partial^2 R}{\partial z \partial y} \right) \cdot \overline{\mathbf{j}} + \left(\frac{\partial^2 P}{\partial x \partial z} + \frac{\partial^2 Q}{\partial y \partial z} + \frac{\partial^2 R}{\partial z^2} \right) \cdot \overline{\mathbf{k}}. \end{aligned}$$

Контрольные вопросы к главе 3

1. Дайте определение векторного поля и приведите примеры физических векторных полей.

- 2. Дайте определение векторной линии поля.
- 3. Сформулируйте теорему об уравнениях векторных линий.
- 4. Дайте определение потока векторного поля через поверхность и запишите координатную форму формулы.
 - 5. Укажите простейшие свойства потока.
- 6. В чем состоит физический смысл потока через незамкнутую и замкнутую поверхности?
- 7. Дайте определение дивергенции векторного поля в точке или на области и перечислите основные свойства дивергенции.
- 8. Сформулируйте локальную теорему о связи между потоком и дивергенцией, поясните физический смысл дивергенции.
 - 9. Сформулируйте теорему Остроградского Гаусса в векторной форме.
- 10. Дайте определение циркуляции векторного поля вдоль замкнутой линии и запишите формулу в координатной форме.
- 11. В чем состоит физический смысл циркуляции векторного поля вдоль контура?
 - 12. Дайте определение ротора векторного поля и укажите его свойства.
- 13. Сформулируйте локальную и интегральную (Стокса) теоремы о связи между циркуляцией и ротором, сравните их.
- 14. Дайте определения потенциального, соленоидального, гармонического полей. Приведите примеры.
- 15. Сформулируйте теоремы о свойствах потенциального и соленоидального полей и сравните их.
- 16. Дайте определение скалярного потенциала поля \overline{F} и запишите формулу для его нахождения.
- 17. В чем состоит отличие скалярного потенциала поля от векторного потенциала?
 - 18. Сформулируйте теорему об условиях гармоничности векторного поля.
 - 19. Запишите символические выражения операторов Гамильтона и Лапласа.

20. Перечислите все возможные дифференциальные операции первого и второго порядков над скалярными и векторными полями и запишите их представления с помощью операторов Гамильтона и Лапласа.

Задачи к главе 3

3.1 Найти дивергенцию векторного поля:

1)
$$\overline{F} = xy^2\overline{i} + x^2y\overline{j} + z^3\overline{k}$$
 в точке $M_0(1, -1, 3)$,

2)
$$\overline{F} = 2xy^2\overline{i} + yz\overline{j} + zx\overline{k}$$
 в точке M_0 (1, 0, 3),

3)
$$\overline{F} = \overline{\text{grad}}\Phi$$
, где $\Phi = xy^2z^3$,

4)
$$\overline{F} = \frac{\overline{i} + \overline{j} + \overline{k}}{\sqrt[3]{(x + y + z)^2}}$$
.

Для указанных полей указать примеры точек, являющихся источниками или стоками.

- 3.2 1. Найти поток векторного поля $\overline{F} = (x-2z)\overline{i} + (3z-4x)\overline{j} + (5x+y)\overline{k}$ через верхнюю сторону треугольника плоскости x+y+z=1, лежащего в первом октанте.
- 2. Найти поток векторного поля $\overline{\mathbf{F}} = (x-y)\overline{\mathbf{i}} + (3y-z)\overline{\mathbf{j}} + (2z-x)\overline{\mathbf{k}}$ через нижнюю сторону треугольника плоскости 6x+2y+3z-6=0, лежащего в первом октанте.
- 3.3 1. Найти поток векторного поля $\overline{F} = yz\overline{i} + xz\overline{j} + xy\overline{k}$ через внешнюю сторону поверхности пирамиды с вершиной S(0, 0, 2) и основанием OAB, где O(0, 0, 0), A(2, 0, 0), B(0, 1, 0).
- 2. Найти поток векторного поля $\overline{F} = x\overline{i} + y\overline{j} + z\overline{k}$ через внешнюю сторону полной поверхности цилиндра, заданного условиями: $x^2 + y^2 \le R^2$, $-H \le z \le H$.
- $\boxed{3.4}$ Вычислить поток векторного поля \boxed{F} через замкнутую поверхность (σ) двумя способами непосредственно и с помощью формулы Остроградского Гаусса, если:

- 1) $\overline{F} = (x 2z)\overline{i} + (3z 4x)\overline{j} + (5x + y)\overline{k}$, (σ) полная поверхность треугольной пирамиды с вершинами O(0, 0, 0), A(1, 0, 0), B(0, 1, 0), C(0, 0, 1);
- 2) $\overline{F} = x\overline{i} + y\overline{j} + z\overline{k}$, (σ) полная поверхность куба, заданного условиями: $-a \le x \le a, -a \le y \le a, -a \le z \le a.$
 - 3.5 Найти ротор векторного поля:
 - 1) $\overline{F} = y^2 \overline{i} x^2 \overline{j} + z^2 \overline{k}$;
 - 2) $\overline{F} = (y x)\overline{i} + (2x y)\overline{j} + z\overline{k}$;
 - 3) $\overline{F} = xyz(x\overline{i} + y\overline{j} + z\overline{k})$ в точке $M_0(1, 2, 3)$;
 - 4) $\overline{F} = xyz\overline{i} + (x + y + z)\overline{j} x^2y^2\overline{k}$ в точке M_0 (2, 1, 3);
 - 5) $\overline{F} = \overline{\text{rot}}\overline{F_i}$, если $\overline{F_i} = z^2 y\overline{i} + x^2 z\overline{j} + y^2 x\overline{k}$.
- $\overline{3.6}$ Вычислить циркуляцию векторного поля \overline{F} вдоль контура (l) двумя способами непосредственно и с помощью формулы Стокса, если:
 - 1) $\overline{F} = (zx + y)\overline{i} + (zy x)\overline{j} + (x^2 + y^2)\overline{k}$, (*l*) окружность $x^2 + y^2 = 1$, z = 3;
- 2) $\overline{\mathbf{F}} = (y^2 z^2)\overline{\mathbf{i}} + (z^2 x^2)\overline{\mathbf{j}} + (x^2 y^2)\overline{\mathbf{k}}$, (l) треугольник с вершинами A(1, 0, 0), B(0, 1, 0), C(0, 0, 1);
- 3) $\overline{\mathbf{F}} = (x y + 3z)\overline{\mathbf{i}} + (y 3x + z)\overline{\mathbf{j}} + (x 3y + z)\overline{\mathbf{k}}$, (l) линия пересечения плоскости 2x + 3y + 6z 3 = 0 с координатными плоскостями;
- 4) $\overline{\mathbf{F}} = xyz\overline{\mathbf{i}} + (x+y+z)\overline{\mathbf{j}} x^2y^2\overline{\mathbf{k}}$, (l) квадрат на плоскости Oxy, стороны которого лежат на прямых, заданных уравнениями x+y=a, x-y=a, x-y=-a.
 - $\overline{3.7}$ Доказать, что векторное поле \overline{F} является потенциальным, если:
 - 1) $\bar{F} = (v + z)\bar{i} + (x + z)\bar{i} + (x + v)\bar{k}$:
 - 2) $\overline{F} = 6xy\overline{i} + (3x^2 2y)\overline{j}$;
 - 3) $\overline{F} = \overline{\text{grad}}\Phi$, где $\Phi = xy^2z^3$.
 - 3.8 Доказать, что векторное поле \overline{F} является соленоидальным, если:
 - 1) $\overline{F} = (y+z)\overline{i} + (x+z)\overline{j} + (x+y)\overline{k}$;

2)
$$\overline{F} = (x^2 + xy)\overline{i} - (xy + \frac{1}{2}y^2)\overline{j} - xz\overline{k};$$

3)
$$\overline{F} = yz(4x\overline{i} - y\overline{j} + z\overline{k});$$

4)
$$\overline{F} = \overline{\text{rot}}\overline{F_1}$$
, если $\overline{F_1} = zy\overline{i} + xz\overline{j} + yx\overline{k}$.

Ответы к задачам

3.1 1) 29; 2) 4; 3)
$$2xz(z^2+3y^2)$$
; 4) $-\frac{2}{\sqrt[3]{(x+y+z)^5}}$.

$$\boxed{3.2} \ 1) \ \frac{2}{3}; \ 2) \ -\frac{11}{6}.$$

$$\boxed{3.3}\ 1)\ 0;\ 2)\ 6\pi R^2 H.$$

$$\boxed{3.4} \ 1) \ \frac{1}{6}$$
; 2) $24a^3$.

$$\overline{[3.5]}$$
 1) - 2(x + y) \overline{k} ; 2) \overline{k} ; 3) 5 \overline{i} - 16 \overline{j} + 9 \overline{k} ; 4) - 9 \overline{i} + 6 \overline{j} - 2 \overline{k} ; 5) - 2(y \overline{i} + z \overline{j} + x \overline{k}).

$$\boxed{3.6}\ 1)\ -2\pi;\ 2)\ -2;\ 3)\ -\frac{7}{4};\ 4)\ 2a^2.$$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Бермант, А.Ф. Краткий курс математического анализа / А.Ф. Бермант, И.Г. Араманович. М.: Наука, 1974.
- 2. Пискунов, Н.С. Дифференциальное и интегральное исчисления. В 2 т. Т. 2 / Н.С. Пискунов. М.: Наука, 2001.
- 3. Бутузов, В.Ф. Математический анализ в вопросах и задачах. Функции нескольких переменных / В.Ф. Бутузов, Н.Ч. Крутицкая, Г.Н. Медведев. М. : Высшая школа, 1988.
- 4. Берман, Г.Н. Сборник задач по курсу математического анализа / Г.Н. Берман. М.: Наука, 1995.
- 5. Лавров, Ю.К. Краткий курс высшей математики / Ю.К. Лавров, М.А. Улановский.— М.: Воениздат, 1990.
- 6. Краснов, М.Л. Векторный анализ / М.Л. Краснов, А.И. Киселев, Г.И. Макаренко. – М.: Наука, 1978.
- 7. Никонова, С.П. Математика. В. 3 ч. Ч. 3 / С.П. Никонова. Ульяновск : УВВИУС, 2005.
- 8. Никонова, С.П. Сборник задач прикладного характера по математике / С.П. Никонова, Л.В. Миронова. Ульяновск : УФВУС, 2000.

Учебное пособие

НИКОНОВА

Светлана Павловна

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

ISBN 978-5-7514-0170-2

Редактор Е.С. Дергилёва Компьютерная верстка Н.П. Яргункина

Подписано в печать

.2008. Формат 60×90/16. Бумага офсетная.

Печать офсетная. Усл. печ. л. 5,13. Уч.-изд. л. 4,09.

Тираж

Заказ

РИО и УОП УВАУ ГА. 432071, Ульяновск, ул. Можайского, 8/8.