Motivation

- Funktionen mit komplexen Argumenten und komplexen Werten untersuchen
- Analysis neu entwickeln

Neue Definitionen

- U ist ein ein Gebiet (U \subseteq \mathbb{C})
 - offen
 - zusammenhängend

• f: U \rightarrow C ist stetig, wenn

Differenzierbarkeit in $\mathbb C$

- differenzierbar, wenn Grenzwert existiert
 - einmal differenzierbar ==> beliebig oft differenzierbar

• mehrere Möglichkeiten der Annäherung, da zweidimensional

\$ (x+iy)- (x,y) = (x,y)+; (y-y-) = (xy-(x,y) - (x,y) - (x,y) - (x,y))

\$ (x+iy)- (x,y) = (x,y)+; (y-y-) = (xy-(x,y) - (x,y) - (x,y))

\$ (x+iy)-(x,y) = (x,y)+; (y-y-) = (xy-(x,y) - (x,y) - (x,y))

\$ (x+iy)-(x,y) = (x,y)+; (y-y-) = (xy-(x,y) - (x,y) - (x,y))

\$ (x+iy)-(x,y) = (x,y)+; (y-y-) = (xy-(x,y) - (x,y) - (x,y))

\$ (x+iy)-(x,y) = (x,y)+; (y-y-) = (xy-(x,y) - (x,y) - (x,y))

\$ (x+iy)-(x,y) = (x,y)+; (y-y-) = (xy-(x,y) - (x,y) - (x,y))

\$ (x+iy)-(x,y) = (x,y)+; (y-y-) = (xy-(x,y) - (x,y) - (x,y))

\$ (x+iy)-(x,y) = (x,y)+; (y-y-) = (xy-(x,y) - (x,y) - (x,y))

\$ (x+iy)-(x,y) = (xy-(x,y) - (x,y) - (x,y) - (x,y))

\$ (x+iy)-(xy-(x,y) - (x,y) - (x,y) - (x,y) - (x,y))

\$ (x+iy)-(xy-(x,y) - (x,y) - (x,y)

\$ (x+iy)-(xy-(x,y) - (x,y) - (x,y)

\$ (x+iy)-(xy-(x,y) - (x,y) - (x,y) - (x,y) - (x,y) - (x,y) - (x,y) - (x,y)

\$ (x+iy)-(xy-(x,y) - (x,y) - (x,y) - (x,y) - (x,y) - (x,y) - (x,y) - (x,y)

\$ (x+iy)-(xy-(xy-(x,y) - (x,y) - (x,y)

\$ (x+iy)-(xy-(xy-(x,y) - (x,y) -

• Grenzwert

• Jaco<u>bi-Matrix</u>

- Multiplikation führt zu Drehstreckung
 - * [[Spezielle Abbildungen]]
- Cauchy-Riemann-Gleichungen
 - seien u und v Real- und Imaginäranteil einer komplex differenzierbaren Funktion

- erfüllt Laplace/Potentialgleichung
- Gradient von v senkrecht auf Gradient von u
 - * Niveaulinien von u senkrecht auf Niveaulinien von v

- \bullet f ist holomorph <==> f in jedem Punkt von U komplex differenzierbar
 - auf ganz $\mathbb C$ holomorph <==> ganz holomorph

Komplexe Differenzierbarkeit bekannter Funktionen

- Potenzfunktionen
 - holomorph

- somit sind auch Polynomfunktionen und Potenzreihen holomorph
- Potenzreihen

• Exponentialfunktionen

* nimmt jeden Wert $(\neq 0)$ unendlich oft an

• Logarithmus

– nicht auf ganz $\mathbb C$ definiert

- Winkelfunktionen
- Beispiel

Rechenregeln für Ableitungen

• Rechenregeln bleiben erhalten

[[test/a.md/Analysis]] [[Komplexe Zahlen]]