

Matériaux et structures composites

TP3 — Simulation d'un essai DCB

Guillaume Couégnat

couegnat@lcts.u-bordeaux.fr

ESSAI DCB

Eprouvette DCB

L=100, h=1.5, a=30. Dans les calculs, on prendra une épaisseur unitaire B=1.

Matériau **isotrope** E=120 GPa, nu=0.3

Fichiers fournis: calcul-dcb_inp et mesh-dcb-fine.inp

- 1. Ouvrir le fichier calcul-dcb.inp et examiner son contenu.
- 2. Calculer la rigidité initiale K=P/u de l'éprouvette (où P est la réaction pour un déplacement u) pour des rigidités d'interface (*elastic, type=traction) $K_0=10^3$, 10^4 et 10^5 N/mm². (cf. tutoriel pour récupérer les courbes force/déplacement).

Comparer avec la valeur théorique donnée par :

$$K = \frac{P}{u} = \frac{3EI}{a^3} \qquad I = \frac{Bh^3}{12}$$

Pour la suite des calculs vous choisirez une rigidité d'interface appropriée.

ESSAI DCB

- 3. Décommenter les lignes relatives à l'amorçage (*damage initiation) et à la propagation (*damage evolution) de la décohésion. Modifier la définition de *step pour avoir un pas de temps initial et un pas de temps maximal de 0.01
- 4. Relancer le calcul. Il est possible que le calcul diverge avant d'atteindre *t=*1.
- 5. Tracer la courbe force/déplacement du noeud nset=up
- 6. Comparer avec la solution analytique P = f(U). La partie élastique est donnée par l'équation de la planche précédente, la partie propagation par :

$$P = \frac{B^{0.75} (EI)^{0.25}}{\sqrt{3}} \frac{G_c^{0.75}}{\sqrt{u}}$$

