José A. Perusquía Cortés

Análisis Multivariado Semestre 2023-2

• Decimos que $X \sim N(\mu, \sigma^2)$ si tiene función de densidad

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2\sigma^2}(x-\mu)^2\right]$$

- Donde
 - $\mathbb{E}(X) = \mu \in \mathbb{R}$ (parámetro de localización)
 - $Var(X) = \sigma^2 \in \mathbb{R}^+$ (parámetro de escala)

• Decimos que $\mathbf{x} \sim N_p(\mu, \Sigma)$ (no singular) si tiene función de densidad

$$f(\mathbf{x}) = \frac{1}{|2\pi\Sigma|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu)\right]$$

- Donde
 - $-\mathbb{E}(\mathbf{x}) = \mu$
 - $Var(\mathbf{x}) = \Sigma > 0$ (positiva definida)

· Para variables normales multivariadas en R podemos usar la librería mytnorm

- dmvnorm(): Evaluar la densidad.

- pmvnorm(): Evaluar la distribución.

-qmvnorm(): Obtener los cuantiles.

-rmvnomr(): Obtener una muestra.

· Por ejemplo, para dibujar la densidad

$$\mu = \begin{pmatrix} 3 \\ 3 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

- Creamos un grid expand.grid()
- Evaluamos la densidad en el grid con dmvnorm(grid, mu, sigma)
- Convertimos a una matriz el resultado anterior
- Graficamos con persp()

· Para datos bivariados también se puede crear un scatterplot en 3D con librería scatterplot3d

• Si $ran(\Sigma) = k < p$ podemos definir la densidad (singular) como

$$f(\mathbf{x}) = \frac{(2\pi)^{-\frac{k}{2}}}{(\lambda_1 \cdots \lambda_k)^{\frac{1}{2}}} \exp\left[-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-}(\mathbf{x} - \mu)\right]$$

- Donde
 - \mathbf{x} vive en el híperplano $\mathbf{N}'(\mathbf{x} \mu)$ donde \mathbf{N} es una matriz de tamaño $p \times (p k)$ tal que $\mathbf{N}^T \Sigma = \mathbf{0}, \mathbf{N}^T \mathbf{N} = \mathbf{I}_{\mathbf{p} \mathbf{k}}$
 - Σ^- es la inversa generalizada y $\lambda_1, \ldots, \lambda_k$ son los eigenvalores diferentes de cero.

· Definición.

Decimos que \mathbf{x} tiene una distribución normal p-variada si y solo si $\mathbf{a}^T\mathbf{x}$ tiene una distribución normal univariada para todos los vectores p-variados (no triviales) \mathbf{a}

· Definición.

Decimos que \mathbf{x} tiene una distribución normal p-variada si y solo si $\mathbf{a}^T\mathbf{x}$ tiene una distribución normal univariada para todos los vectores p-variados (no triviales) \mathbf{a}

· Proposición 1

Sea \mathbf{x} un vector normal p-variado y definamos a $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{b}$ donde \mathbf{A} es una matriz de dimensión $q \times p$. Entonces \mathbf{y} tiene una distribución normal q-variada tal que

$$\mathbb{E}(\mathbf{y}) = \mathbf{A}\mu + \mathbf{b}$$

$$Var(\mathbf{y}) = \mathbf{A}\mathbf{\Sigma}\mathbf{A}^T$$

· Corolario 1

Sea
$$\mathbf{x} \sim N_p(\mathbf{0}, \mathbf{I}_p)$$
 y definamos a $\mathbf{y} = \mathbf{\Sigma}^{\frac{1}{2}}\mathbf{x} + \mu$ entonces $\mathbf{y} \sim N_p(\mu, \mathbf{\Sigma})$

· Corolario 1

Sea $\mathbf{x} \sim N_p(\mathbf{0}, \mathbf{I}_p)$ y definamos a $\mathbf{y} = \Sigma^{\frac{1}{2}}\mathbf{x} + \mu$ entonces $\mathbf{y} \sim N_p(\mu, \Sigma)$

· Corolario 2

Sea $\mathbf{x} \sim N_p(\mu, \Sigma)$ ($\Sigma > 0$) y definamos a $\mathbf{y} = \Sigma^{-\frac{1}{2}}(\mathbf{x} - \mu)$ donde $\Sigma^{-\frac{1}{2}}$ es la matrix raíz cuadrada de Σ^{-1} . Entonces $y_1, y_2, ..., y_p$ son variables aleatorias iid N(0,1).

· Corolario 1

Sea $\mathbf{x} \sim N_p(\mathbf{0}, \mathbf{I}_p)$ y definamos a $\mathbf{y} = \Sigma^{\frac{1}{2}}\mathbf{x} + \mu$ entonces $\mathbf{y} \sim N_p(\mu, \Sigma)$

· Corolario 2

Sea $\mathbf{x} \sim N_p(\mu, \Sigma)$ ($\Sigma > 0$) y definamos a $\mathbf{y} = \Sigma^{-\frac{1}{2}}(\mathbf{x} - \mu)$ donde $\Sigma^{-\frac{1}{2}}$ es la matrix raíz cuadrada de Σ^{-1} . Entonces $y_1, y_2, ..., y_p$ son variables aleatorias iid N(0,1).

 \cdot En $m{R}$ la librería expm proporciona la función requerida para obtener $m{\Sigma}^{-\frac{1}{2}}$ con sqrtm()

$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 $\mu = \begin{pmatrix} 3 \\ 3 \end{pmatrix}$ $\Sigma = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$

$$\mathbf{y} = \mathbf{\Sigma}^{-\frac{1}{2}}(\mathbf{x} - \mu)$$

Observación

La distribución normal multivariada tiene densidad constante en elipses (elipsoides)

$$(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) = k$$

Observación

La distribución normal multivariada tiene densidad constante en elipses (elipsoides)

$$(\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) = k$$

- · En R podemos graficar las curvas mediante la función contour()
 - Generar vectores x, y donde evaluar la densidad (e.g. x=seq(0,6,length.out=40)), y=seq(0,6,length.out=40))
 - Evaluar la densidad en estos puntos con z=dmvnorm()
 - Usar la función contour(x,y,z)

- · Otra alternativa es usar la librería plotly para una gráfica más interactiva
 - Generar vectores x, y donde evaluar la densidad (e.g. x=seq(0,6,length.out=40)), y=seq(0,6,length.out=40))
 - Evaluar la densidad en estos puntos con z=dmvnorm()
 - Usar la función plot_ly(x,y,z,type = "contour")

· Proposición 2

Sea
$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 entonces $U = (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \sim \chi_p^2$.

· Proposición 2

Sea
$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 entonces $U = (\mathbf{x} - \mu)^T \Sigma^{-1} (\mathbf{x} - \mu) \sim \chi_p^2$.

Observación

Podemos fácilmente evaluar la probabilidad de que x este en un elipsoide, i.e.

$$\mathbb{P}[(\mathbf{x} - \mu)^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \mu) < k]$$

· Proposición 3 (Otras propiedades)

Sea
$$\mathbf{x} \sim N_p(\mu, \Sigma)$$
 y sea

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \qquad \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Entonces

1. Cualquier subconjunto de ${\bf x}$ se distribuye normal multivariado. En particular ${\bf x}^{(1)} \sim N_p(\mu^{(1)}, \Sigma_{11})$.

· Proposición 3 (Otras propiedades)

Sea $\mathbf{x} \sim N_p(\mu, \Sigma)$ y sea

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \qquad \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Entonces

- 1. Cualquier subconjunto de ${\bf x}$ se distribuye normal multivariado. En particular ${\bf x}^{(1)} \sim N_p(\mu^{(1)}, \Sigma_{11})$.
- 2. $\mathbf{x}^{(1)}$ y $\mathbf{x}^{(2)}$ son independientes si y solo si $Cov(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \mathbf{O}$.

· Proposición 3 (Otras propiedades)

Sea $\mathbf{x} \sim N_p(\mu, \Sigma)$ y sea

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \qquad \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Entonces

- 1. Cualquier subconjunto de ${\bf x}$ se distribuye normal multivariado. En particular ${\bf x}^{(1)} \sim N_p(\mu^{(1)}, \Sigma_{11})$.
- 2. $\mathbf{x}^{(1)}$ y $\mathbf{x}^{(2)}$ son independientes si y solo si $Cov(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \mathbf{O}$.
- 3. $\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} \sim \chi_p^2 (\mu^T \mathbf{\Sigma}^{-1} \mu)$ (Tarea)

· Proposición 3 (Otras propiedades)

Sea $\mathbf{x} \sim N_p(\mu, \Sigma)$ y sea

$$\mathbf{x} = \begin{pmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \end{pmatrix} \qquad \mu = \begin{pmatrix} \mu^{(1)} \\ \mu^{(2)} \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

Entonces

- 1. Cualquier subconjunto de ${\bf x}$ se distribuye normal multivariado. En particular ${\bf x}^{(1)} \sim N_p(\mu^{(1)}, \Sigma_{11})$.
- 2. $\mathbf{x}^{(1)}$ y $\mathbf{x}^{(2)}$ son independientes si y solo si $Cov(\mathbf{x}^{(1)}, \mathbf{x}^{(2)}) = \mathbf{O}$.
- 3. $\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} \sim \chi_p^2 (\mu^T \mathbf{\Sigma}^{-1} \mu)$ (Tarea)

4.
$$\mathbf{x}^{(2)} | \mathbf{x}^{(1)} \sim N_{p-k} (\mu^{(2)} + \Sigma_{21} \Sigma_{11}^{-1} [\mathbf{x}^{(1)} - \mu^{(1)}], \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12})$$

· Teorema (Teorema Central del Límite)

Sean $\mathbf{x}_1, \mathbf{x}_2, \ldots \in \mathbb{R}^p$ vectores aleatorios independientes e idénticamente distribuidos con media μ y matriz (finita) de varianza Σ . Entonces se tiene que

$$\sqrt{n}(\bar{\mathbf{x}} - \mu) \to N_p(\mathbf{0}_p, \Sigma)$$

Definición

Sea ${f x}$ un vector p-variado. Entonces la función característica está definida para ${f t} \in \mathbb{R}^p$ como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

Definición

Sea ${f x}$ un vector p-variado. Entonces la función característica está definida para ${f t} \in \mathbb{R}^p$ como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

· Propiedades (algunas)

 $-\phi(\mathbf{t})$ siempre existe, $\phi(\mathbf{0}) = 1$ y $|\phi(\mathbf{t})| \le 1$.

Definición

Sea ${f x}$ un vector p-variado. Entonces la función característica está definida para ${f t} \in \mathbb{R}^p$ como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

- $-\phi(\mathbf{t})$ siempre existe, $\phi(\mathbf{0}) = 1$ y $|\phi(\mathbf{t})| \le 1$.
- (Teorema de unicidad) $F(\mathbf{x}) = F(\mathbf{y}) \Leftrightarrow \phi_{\mathbf{x}}(\mathbf{t}) = \phi_{\mathbf{y}}(\mathbf{t})$

Definición

Sea ${f x}$ un vector p-variado. Entonces la función característica está definida para ${f t} \in \mathbb{R}^p$ como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

- $-\phi(\mathbf{t})$ siempre existe, $\phi(\mathbf{0}) = 1$ y $|\phi(\mathbf{t})| \le 1$.
- (Teorema de unicidad) $F(\mathbf{x}) = F(\mathbf{y}) \Leftrightarrow \phi_{\mathbf{x}}(\mathbf{t}) = \phi_{\mathbf{y}}(\mathbf{t})$
- _(Teorema de inversión) Si $\phi(\mathbf{t})$ es absolutamente integrable entonces $f(\mathbf{x}) = \frac{1}{(2\pi)^p} \int_{\mathbb{R}} \exp[-i\mathbf{t}^T\mathbf{x}]\phi(\mathbf{t})d\mathbf{t}$

· Definición

Sea ${f x}$ un vector p-variado. Entonces la función característica está definida para ${f t} \in \mathbb{R}^p$ como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

- $-\phi(\mathbf{t})$ siempre existe, $\phi(\mathbf{0}) = 1$ y $|\phi(\mathbf{t})| \le 1$.
- (Teorema de unicidad) $F(\mathbf{x}) = F(\mathbf{y}) \Leftrightarrow \phi_{\mathbf{x}}(\mathbf{t}) = \phi_{\mathbf{y}}(\mathbf{t})$
- _(Teorema de inversión) Si $\phi(\mathbf{t})$ es absolutamente integrable entonces $f(\mathbf{x}) = \frac{1}{(2\pi)^p} \int_{\mathbb{R}} \exp[-i\mathbf{t}^T\mathbf{x}]\phi(\mathbf{t})d\mathbf{t}$
- $-\mathbf{x}^{(1)},\mathbf{x}^{(2)}$ son independientes si y solo si $\phi_{\mathbf{x}}(\mathbf{t})=\phi_{\mathbf{x}^{(1)}}(\mathbf{t}^{(1)})\phi_{\mathbf{x}^{(2)}}(\mathbf{t}^{(2)})$

Definición

Sea ${f x}$ un vector p-variado. Entonces la función característica está definida para ${f t} \in \mathbb{R}^p$ como

$$\phi(\mathbf{t}) = \mathbb{E}[\exp(i\mathbf{t}^T\mathbf{x})] = \int \exp(i\mathbf{t}^T\mathbf{x})f(\mathbf{x})d\mathbf{x}$$

- $-\phi(\mathbf{t})$ siempre existe, $\phi(\mathbf{0}) = 1$ y $|\phi(\mathbf{t})| \le 1$.
- (Teorema de unicidad) $F(\mathbf{x}) = F(\mathbf{y}) \Leftrightarrow \phi_{\mathbf{x}}(\mathbf{t}) = \phi_{\mathbf{y}}(\mathbf{t})$
- _(Teorema de inversión) Si $\phi(\mathbf{t})$ es absolutamente integrable entonces $f(\mathbf{x}) = \frac{1}{(2\pi)^p} \int_{\mathbb{R}} \exp[-i\mathbf{t}^T\mathbf{x}]\phi(\mathbf{t})d\mathbf{t}$
- $-\mathbf{x}^{(1)},\mathbf{x}^{(2)}$ son independientes si y solo si $\phi_{\mathbf{x}}(\mathbf{t})=\phi_{\mathbf{x}^{(1)}}(\mathbf{t}^{(1)})\phi_{\mathbf{x}^{(2)}}(\mathbf{t}^{(2)})$

$$-\phi_{\mathbf{x}^{(1)}}(\mathbf{t}^{(1)}) = \phi_{\mathbf{x}}(\mathbf{t}^{(1)}, \mathbf{0})$$

Función Característica

· Teorema (Crámer-Wold)

La distribución de un vector aleatorio p-variado \mathbf{x} está completamente determinado por el conjunto de todas las distribuciones de combinaciones lineales $\mathbf{t}^T\mathbf{x}$, con $\mathbf{t} \in \mathbb{R}^p$

· Proposición 4

Sea $\mathbf{x} \sim N_p(\mu, \Sigma)$ entonces

$$\phi(\mathbf{t}) = \exp\left(i\mathbf{t}^T \mu - \frac{1}{2}\mathbf{t}^T \Sigma \mathbf{t}\right)$$

· Proposición 5 (Asimetría y Curtosis)

Sea $\mathbf{x} \sim N_p(\mu, \Sigma)$ entonces los coeficientes de asimetría y curtosis están dados respectivamente por

$$\beta_{1,p} = 0$$

$$\beta_{2,p} = p(p+2)$$

- Todas las distribuciones univariadas son normales
 - * applot
 - * histogramas
 - * Pruebas de normalidad (e.g. Anderson-Darling, Shapiro-Wilk, Lilliefors, etc.)

- Todas las distribuciones univariadas son normales
 - * applot
 - * histogramas
 - * Pruebas de normalidad (e.g. Anderson-Darling, Shapiro-Wilk, Lilliefors, etc.)
- Prueba basada en los coeficientes de asimetría y curtosis (Prueba de Mardia)

· Checar normalidad

- Todas las distribuciones univariadas son normales
 - * applot
 - * histogramas
 - * Pruebas de normalidad (e.g. Anderson-Darling, Shapiro-Wilk, Lilliefors, etc.)
- Prueba basada en los coeficientes de asimetría y curtosis (Prueba de Mardia)

$$-(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu) \sim \chi_p^2$$

* applot

- Todas las distribuciones univariadas son normales
 - * applot
 - * histogramas
 - * Pruebas de normalidad (e.g. Anderson-Darling, Shapiro-Wilk, Lilliefors, etc.)
- Prueba basada en los coeficientes de asimetría y curtosis (Prueba de Mardia)

$$-(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu) \sim \chi_p^2$$

- * applot
- Otras pruebas de normalidad multivariadas

· En R la librería mvn provee todas las herramientas esto

mvn(multnorm.sample,mvnTest="mardia",multivariatePlot = "qq")

```
$multivariateNormality
                        Statistic
                                            p value Result
             Test
1 Mardia Skewness 3.47421629178296 0.481809628750315
2 Mardia Kurtosis 0.29380065853414 0.768910231846389
                                                       YES
              MVN
$univariateNormality
              Test Variable Statistic
                                      p value Normality
1 Anderson-Darling Column1
                                                   YES
2 Anderson-Darling Column2
                               0.2388
                                         0.7793
                                                   YES
```


mvn(iris[,-5],mvnTest="mardia",univariatePlot = "qqplot")

tistic	pν	alue F	Result
780629 4.757			NO
180775 0.	81800465147	8188	YES
<na></na>		<na></na>	NO
Statistic 0.8892	0.0225	NO	ty
5.1057	<0.001	NO NO	
	780629 4.757 180775 0. <na> Statistic 0.8892 0.9080 1 7.6785</na>	780629 4.75799820400705 180775	780629 4.75799820400705e-07 180775

Distribuciones Asociadas a la Normal Multivariada

Definición

Sea $\mathbf{M}_{p \times p}$ una matriz simétrica de variables aleatorias tal que $\mathbb{P}(\mathbf{M}>0)=1$ y $\Sigma_{p \times p}$ una matriz definida positiva. Si $n \in \mathbb{N}$ tal que $n \geq p$, entonces $\mathbf{M}_{p \times p}$ tiene una distribución Wishart ($\mathbf{M} \sim W_p(n, \Sigma)$) no singular con n grados de libertad si la función de densidad de los $\frac{p(p+1)}{2}$ distintos elementos de $\mathbf{M}_{p \times p}$ está dada por

$$f(m_{11}, m_{12}, ..., m_{pp}) = c^{-1} |\mathbf{M}|^{(n-p-1)/2} \text{etr} \left(-\frac{\Sigma^{-1}\mathbf{M}}{2}\right)$$

Donde

- etr es el operador exptrace
- $c=2^{\frac{np}{2}}|\Sigma|^{\frac{n}{2}}\Gamma_p\left(rac{n}{2}
 ight)$ y $\Gamma_p(\,\cdot\,)$ la función gamma multivariada.

· Definición 2

Sean $\mathbf{x}_1, \dots, \mathbf{x}_n$ vectors aleatorios iid distribuidos como $N_p(\mathbf{0}, \mathbf{\Sigma})$ entonces $\mathbf{M}_{p \times p} = \mathbf{X}^T \mathbf{X}$ tiene una distribución Wishart con n grados de libertad.

· Definición 2

Sean $\mathbf{x}_1, ..., \mathbf{x}_n$ vectors aleatorios iid distribuidos como $N_p(\mathbf{0}, \mathbf{\Sigma})$ entonces $\mathbf{M}_{p \times p} = \mathbf{X}^T \mathbf{X}$ tiene una distribución Wishart con n grados de libertad.

Observación

Si $\Sigma > 0$ y $n \ge p$ entonces se puede probar que $\mathbb{P}(\mathbf{M} > 0) = 1$. De lo contrario se tiene que $\mathbf{M} \ge 0$, por lo que la densidad no existe y se dice que \mathbf{M} tiene una distribución singular.

· Teorema

Sea $\mathbf{M} \sim W_p(n, \Sigma)$ entonces, si $\mathbf{C}_{q \times p}$ tal que $\mathrm{ran}(C) = q$ se tiene que $\mathrm{CMC}^\mathrm{T} \sim W_p(n, C\Sigma C^T)$.

· Teorema

Sea $\mathbf{M} \sim W_p(n, \Sigma)$ entonces, si $\mathbf{C}_{q \times p}$ tal que $\mathrm{ran}(C) = q$ se tiene que $\mathrm{CMC}^\mathrm{T} \sim W_p(n, C\Sigma C^T)$.

· Corolario 1

Si $\mathbf{M} \sim W_p(n, \Sigma)$ y \mathbf{a} es un vector de constantes, entonces $\mathbf{a}^T \mathbf{M} \mathbf{a} \sim \sigma_{\mathbf{a}}^2 \chi_n^2$ donde $\sigma_{\mathbf{a}}^2 = \mathbf{a}^T \Sigma \mathbf{a}$.

· Teorema

Sea $\mathbf{M} \sim W_p(n, \Sigma)$ entonces, si $\mathbf{C}_{q \times p}$ tal que $\mathrm{ran}(C) = q$ se tiene que $\mathrm{CMC}^\mathrm{T} \sim W_p(n, C\Sigma C^T)$.

· Corolario 1

Si $\mathbf{M} \sim W_p(n, \Sigma)$ y \mathbf{a} es un vector de constantes, entonces $\mathbf{a}^T \mathbf{M} \mathbf{a} \sim \sigma_{\mathbf{a}}^2 \chi_n^2$ donde $\sigma_{\mathbf{a}}^2 = \mathbf{a}^T \Sigma \mathbf{a}$.

· Corolario 2

Si $\mathbf{M} \sim W_p(n, \Sigma)$ entonces $m_{i,i} \sim \Sigma_{i,i} \chi_n^2$

· (Algunas) Propiedades

Sea
$$\mathbf{M} \sim W_p(n, \Sigma)$$
 entonces

$$1. \mathbb{E}(\mathbf{M}) = n\Sigma$$

· (Algunas) Propiedades

Sea $\mathbf{M} \sim W_p(n, \Sigma)$ entonces

$$\mathbb{L}(\mathbf{M}) = n\Sigma$$

2. (Aditividad) Si
$$\mathbf{M}_i \sim W_p(n_i, \Sigma)$$
 independientes entonces, $\sum_{i=1}^m \mathbf{M}_i \sim W_p\left(\sum_{i=1}^m n_i, \Sigma\right)$

· (Algunas) Propiedades

Sea $\mathbf{M} \sim W_p(n, \Sigma)$ entonces

$$\mathbb{E}(\mathbf{M}) = n\Sigma$$

- 2. (Aditividad) Si $\mathbf{M}_i \sim W_p(n_i, \Sigma)$ independientes entonces, $\sum_{i=1}^m \mathbf{M}_i \sim W_p\left(\sum_{i=1}^m n_i, \Sigma\right)$
- 3. Si partimos a M y a Σ como

$$\mathbf{M} = \begin{pmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22} \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix}$$

entonces $\mathbf{M}_{11} \sim W_k(n, \Sigma_{11})$ y $\mathbf{M}_{22} \sim W_{p-k}(n, \Sigma_{22})$. Más aún si $\Sigma_{12} = 0$, entonces son independientes.

· Teorema (Otras formas cuadráticas)

Sea $\mathbf{M} \sim W_p(n, \Sigma)$, entonces

1. Si
$$\operatorname{ran}(\mathbf{A}_{q \times p}) = q$$
 entonces $(\mathbf{A}\mathbf{M}^{-1}\mathbf{A}^{\mathsf{T}})^{-1} \sim W_q\left(n-p+q,(\mathbf{A}\boldsymbol{\Sigma}^{-1}\mathbf{A}^{\mathsf{T}})^{-1}\right)$ (Tarea)

· Teorema (Otras formas cuadráticas)

Sea $\mathbf{M} \sim W_p(n, \Sigma)$, entonces

1. Si
$$\operatorname{ran}(\mathbf{A}_{q \times p}) = q$$
 entonces $(\mathbf{A}\mathbf{M}^{-1}\mathbf{A}^{\mathsf{T}})^{-1} \sim W_q\left(n-p+q,(\mathbf{A}\boldsymbol{\Sigma}^{-1}\mathbf{A}^{\mathsf{T}})^{-1}\right)$ (Tarea)

2. Si
$$\mathbf{y}_{p \times 1}$$
 independiente de \mathbf{M} tal que $\mathbb{P}(\mathbf{y} = 0) = 0$ entonces $\frac{\mathbf{y^T M y}}{\mathbf{y^T \Sigma y}} \sim \chi_n^2 \, \mathbf{y} \, \frac{\mathbf{y^T \Sigma^{-1} y}}{\mathbf{y^T M^{-1} y}} \sim \chi_{n-p+1}^2$ (Tarea)

· Teorema (Otras formas cuadráticas)

Sea $\mathbf{M} \sim W_p(n, \Sigma)$, entonces

- 1. Si $\operatorname{ran}(\mathbf{A}_{q \times p}) = q$ entonces $(\mathbf{A}\mathbf{M}^{-1}\mathbf{A}^{\mathbf{T}})^{-1} \sim W_q\left(n-p+q,(\mathbf{A}\boldsymbol{\Sigma}^{-1}\mathbf{A}^{\mathbf{T}})^{-1}\right)$ (Tarea)
- 2. Si $\mathbf{y}_{p \times 1}$ independiente de \mathbf{M} tal que $\mathbb{P}(\mathbf{y} = 0) = 0$ entonces $\frac{\mathbf{y^T M y}}{\mathbf{y^T \Sigma y}} \sim \chi_n^2 \, \mathbf{y} \, \frac{\mathbf{y^T \Sigma^{-1} y}}{\mathbf{y^T M^{-1} y}} \sim \chi_{n-p+1}^2$ (Tarea)
- 3. Si $\mathbf{x}_1, \dots, \mathbf{x}_n$ son vectores aleatorios iid $N_p(\mathbf{0}, \mathbf{\Sigma})$ con $\mathbf{z} = \mathbf{X}\mathbf{a}$, $\mathbf{A}_{n \times n}, \mathbf{B}_{n \times n}$ matrices simétricas de rango r, s respectivamente y $\mathbf{b}_{n \times 1}$ un vector de constantes entonces
 - $\mathbf{X}^{T}\mathbf{A}\mathbf{X} \sim W_{p}(r, \Sigma)$ si y solo si $\mathbf{y}^{T}\mathbf{A}\mathbf{y} \sim \sigma_{a}^{2}\chi_{r}^{2}$
 - $\mathbf{X^TAX} \sim W_p(r, \Sigma)$ y $\mathbf{X^TBX} \sim W_p(s, \Sigma)$ si y solo si $\mathbf{y^TAy} \sim \sigma_a^2 \chi_r^2$ y $\mathbf{y^TBy} \sim \sigma_a^2 \chi_r^2$ son independientes
 - $\mathbf{X^Tb} \sim N_p \mathbf{y} \mathbf{X^TAX} \sim W_p(r, \Sigma)$ si y solo si $\mathbf{y^Tb} \sim N_1 \mathbf{y} \mathbf{y^TAy} \sim \sigma_a^2 \chi_r^2$ son independientes

· Definición (Distribución Wishart No Centrada)

Sean $\mathbf{x}_1, \dots, \mathbf{x}_n$ vectors aleatorios independientes y distribuidos como $N_p(\mu_{\mathbf{i}}, \Sigma)$ entonces $\mathbf{M}_{p \times p} = \mathbf{X}^T \mathbf{X}$ tiene una distribución Wishart no centrada, $\mathbf{M} \sim W_p(n, \Sigma, \Delta)$, con n grados de libertad y matriz de no centralidad Δ definida como

$$\Delta = \sum_{i=1}^{n} (\Sigma^{-\frac{1}{2}} \mu_i) (\Sigma^{-\frac{1}{2}} \mu_i)^T = \Sigma^{-\frac{1}{2}} \Lambda^T \Lambda \Sigma^{-\frac{1}{2}}$$

Donde

$$-\Lambda = (\mu_1, \mu_2, ..., \mu_n)^T$$

- · En R existe el comando rWishart(n,df,Sigma) que permite simular matrices aleatorias Wishart
- · Para entender su aleatoriedad podemos graficar las elipses generadas $\mathbf{a}^{\mathrm{T}}\mathbf{M_{i}a} = c$

$$n = 4$$

$$df = 2$$

$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Distribución T^2 de Hotelling

· Teorema (Distribución Centrada)

Sean $\mathbf{x} \sim N_p(\mu, \Sigma)$ y $\mathbf{M} \sim W_p(n, \Sigma)$ independientes y no singulares

$$T^2 = n(\mathbf{x} - \mu)^T \mathbf{M}^{-1}(\mathbf{x} - \mu) \sim \frac{np}{n - p + 1} F_{p,n-p+1} = T_{p,n}^2$$

· Teorema (Distribución Centrada)

Sean $\mathbf{x} \sim N_p(\mu, \Sigma)$ y $\mathbf{M} \sim W_p(n, \Sigma)$ independientes y no singulares

$$T^2 = n(\mathbf{x} - \mu)^T \mathbf{M}^{-1}(\mathbf{x} - \mu) \sim \frac{np}{n - p + 1} F_{p,n-p+1} = T_{p,n}^2$$

· Corolario (Distribución No Centrada)

Sean $\mathbf{x} \sim N_p(\mu, \Sigma)$ y $\mathbf{M} \sim W_p(n, \Sigma)$ independientes y no singulares y denotemos por $\delta = \mu^T \Sigma^{-1} \mu$ (parámetro de no centralidad)

$$T^2 = n\mathbf{x}^T \mathbf{M}^{-1} \mathbf{x} \sim \frac{np}{n-p+1} F_{p,n-p+1,\delta} = T_{p,n,\delta}^2$$

Estimación

Estimación

· Función de verosimilitud

Sean
$$\mathbf{x}_1, \dots, \mathbf{x}_n \stackrel{\text{iid}}{\sim} N_p(\mu, \Sigma)$$

$$L(\mu, \Sigma) = |2\pi\Sigma|^{-\frac{n}{2}} \exp\left[-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu)\right]$$

· Función de verosimilitud

Sean
$$\mathbf{x}_1, ..., \mathbf{x}_n \stackrel{\text{iid}}{\sim} N_p(\mu, \Sigma)$$

$$L(\mu, \Sigma) = |2\pi\Sigma|^{-\frac{n}{2}} \exp\left[-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \mu)^T \Sigma^{-1} (\mathbf{x}_i - \mu)\right]$$

· Función de log-verosimilitud

$$\log(L(\mu, \Sigma)) = -\frac{n}{2}\log(|2\pi\Sigma|) - \frac{1}{2}\sum_{i=1}^{n} (\mathbf{x}_i - \mu)^T \Sigma^{-1}(\mathbf{x}_i - \mu)$$

Estimación

· Proposición (EMV)

Sean $\mathbf{x}_1,\dots,\mathbf{x}_n \overset{\text{iid}}{\sim} N_p(\mu,\Sigma)$ con $n \geq p+1$ entonces los estimadores máximo verosímiles están dados por

$$\hat{\mu} = \bar{x} \quad \hat{\Sigma} = \mathbf{S}$$

Estimación

· Proposición (EMV)

Sean $\mathbf{x}_1, ..., \mathbf{x}_n \stackrel{\text{iid}}{\sim} N_p(\mu, \Sigma)$ con $n \geq p+1$ entonces los estimadores máximo verosímiles están dados por

$$\hat{\mu} = \bar{x} \quad \hat{\Sigma} = \mathbf{S}$$

· Teorema

Sean $\hat{\mu} = \bar{x}$ y $\hat{\Sigma} = \mathbf{S}$ los estimadores máximo verosímiles de $\mathbf{x}_1, ..., \mathbf{x}_n \stackrel{\text{iid}}{\sim} N_p(\mu, \Sigma)$, entonces

$$-\hat{\mu} = \bar{x} \sim N_p(\mu, n^{-1}\Sigma)$$

$$-\hat{\Sigma} = \mathbf{S} \sim W_p(n-1,\Sigma)$$

 $-\hat{\mu} = \bar{x} \, y \, \hat{\Sigma} = S$ son independientes

· Teorema de Cochran

Suponer que \mathbf{P} una matriz de proyección con $\mathrm{ran}(\mathbf{P}) = r$ y asumir que $\mathbf{X}_{n \times p}$ es una matriz con renglones $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{iid}}{\sim} N_p(\mathbf{0}, \Sigma)$ con $\mathrm{ran}(\mathbf{\Sigma}) = p$ entonces notar que

$$\mathbf{X}^T \mathbf{X} = \mathbf{X}^T \mathbf{P} \mathbf{X} + \mathbf{X}^T (\mathbf{I_n} - \mathbf{P}) \mathbf{X}.$$

Entonces se tiene que

 $\mathbf{X}^T \mathbf{P} \mathbf{X} \sim W_p(r, \Sigma)$ es independiente de $\mathbf{X}^T (\mathbf{I_n} - \mathbf{P}) \mathbf{X} \sim W_p(n-r, \Sigma)$

Pruebas de hipótesis para µ

Σ conocida

Sean $\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{iid}}{\sim} N_p(\mu, \Sigma)$ queremos hacer el siguiente contraste

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu \neq \mu_0$

Σ conocida

Sean $\mathbf{x}_1, \dots, \mathbf{x}_n \stackrel{\text{iid}}{\sim} N_p(\mu, \Sigma)$ queremos hacer el siguiente contraste

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu \neq \mu_0$

· Usamos el estadístico de prueba

$$\xi^2 = n(\bar{\mathbf{x}} - \mu_0)^T \Sigma^{-1}(\bar{\mathbf{x}} - \mu_0)$$

Σ conocida

Sean $\mathbf{x}_1, \dots, \mathbf{x}_n \stackrel{\text{iid}}{\sim} N_p(\mu, \Sigma)$ queremos hacer el siguiente contraste

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu \neq \mu_0$

· Usamos el estadístico de prueba

$$\xi^2 = n(\bar{\mathbf{x}} - \mu_0)^T \Sigma^{-1}(\bar{\mathbf{x}} - \mu_0)$$

• Bajo H_0

$$\xi^2 \sim \chi_p^2$$

Σ conocida

Sean $\mathbf{x}_1, \dots, \mathbf{x}_n \stackrel{\text{iid}}{\sim} N_p(\mu, \Sigma)$ queremos hacer el siguiente contraste

$$H_0: \mu = \mu_0$$
 vs $H_a: \mu \neq \mu_0$

· Usamos el estadístico de prueba

$$\xi^2 = n(\bar{\mathbf{x}} - \mu_0)^T \Sigma^{-1}(\bar{\mathbf{x}} - \mu_0)$$

• Bajo H_0

$$\xi^2 \sim \chi_p^2$$

• Región de confianza $100(1-\alpha)$ % son las elipsoides

$$\{\mathbf{x}: \xi^2 \le \chi_{p,1-\alpha}^2\}$$

• Ejemplo (Σ conocida)

$$\mathbf{x}_1, ..., \mathbf{x}_{203} \sim N_2(\mu, \Sigma)$$
 $\mu = \begin{pmatrix} 64.1 \\ 64.7 \end{pmatrix}$ $\Sigma = \begin{pmatrix} 191 & 155.6 \\ 155.6 & 313.5 \end{pmatrix}$

Queremos contrastar

$$H_0: \mu = 60$$
 vs $H_a: \mu \neq 60$

· El estadístico de prueba

$$\xi^2 = 5.971581 < 5.991465 = \chi^2_{2,.95}$$

• No rechazamos H_0

Σ desconocida (una muestra)

Utilizamos S para construir el estadístico de prueba

$$\gamma^2 = \frac{n-p}{p} (\bar{\mathbf{x}} - \mu_0)^T \mathbf{S}^{-1} (\bar{\mathbf{x}} - \mu_0)$$

Σ desconocida (una muestra)

Utilizamos S para construir el estadístico de prueba

$$\gamma^2 = \frac{n-p}{p} (\bar{\mathbf{x}} - \mu_0)^T \mathbf{S}^{-1} (\bar{\mathbf{x}} - \mu_0)$$

• Bajo H_0

$$\gamma^2 \sim F_{p,n-p}$$

Σ desconocida (una muestra)

Utilizamos S para construir el estadístico de prueba

$$\gamma^2 = \frac{n-p}{p} (\bar{\mathbf{x}} - \mu_0)^T \mathbf{S}^{-1} (\bar{\mathbf{x}} - \mu_0)$$

• Bajo H_0

$$\gamma^2 \sim F_{p,n-p}$$

• Región de confianza $100(1-\alpha)$ % son las elipsoides

$$\{\mathbf{x}: \gamma^2 \le F_{p,n-p,1-\alpha}\}$$

· Ejemplo (Σ desconocida)

· El estadístico de prueba

$$\gamma^2 = 3.851315 > 3.013826 = F_{2,201,.95}$$

• Rechazamos H_0

Σ desconocida (dos muestras)

Sean
$$\mathbf{x}_1, \dots, \mathbf{x}_n \mathbf{y} \mathbf{y}_1, \dots, \mathbf{y}_m$$

Σ desconocida (dos muestras)

Sean
$$\mathbf{x}_1, \dots, \mathbf{x}_n \mathbf{y} \mathbf{y}_1, \dots, \mathbf{y}_m$$

• Caso I: m = n y existe una conexión entre ellas tenemos el caso pareado y nos fijamos en

$$\mathbf{z}_i = \mathbf{x}_i - \mathbf{y}_i \sim N_p(\mu, \Sigma)$$

Σ desconocida (dos muestras)

Sean
$$\mathbf{x}_1, \dots, \mathbf{x}_n \mathbf{y} \mathbf{y}_1, \dots, \mathbf{y}_m$$

• Caso I: m = n y existe una conexión entre ellas tenemos el caso pareado y nos fijamos en

$$\mathbf{z}_i = \mathbf{x}_i - \mathbf{y}_i \sim N_p(\mu, \Sigma)$$

· Podemos probar fácilmente

$$H_0: \mu = 0$$
 vs $H_a: \mu \neq 0$

· Caso 2: no existe una conexión entre ellas tenemos el caso no pareado

- · Caso 2: no existe una conexión entre ellas tenemos el caso no pareado
- · Proposición

$$\operatorname{Sean} \mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{iid}}{\sim} N_p(\mu_1, \Sigma_1) \ \mathbf{y} \ \mathbf{y}_1, \dots, \mathbf{y}_m \overset{\text{iid}}{\sim} N_p(\mu_2, \Sigma_2) \ \text{si} \ \mu_1 = \mu_2 \ \mathbf{y} \ \Sigma_1 = \Sigma_2 \ \text{entonces}$$

$$\frac{nm}{n+m}(\bar{\mathbf{y}}-\bar{\mathbf{x}})^T \mathbf{S}_u^{-1}(\bar{\mathbf{y}}-\bar{\mathbf{x}}) \sim T^2(p,n+m-2)$$

Donde

$$\mathbf{S}_u = \frac{n\mathbf{S}_1 + m\mathbf{S}_2}{n + m - 2}$$

- · Caso 2: no existe una conexión entre ellas tenemos el caso no pareado
- · Proposición

Sean
$$\mathbf{x}_1, \dots, \mathbf{x}_n \overset{\text{iid}}{\sim} N_p(\mu_1, \Sigma_1) \ \mathbf{y} \ \mathbf{y}_1, \dots, \mathbf{y}_m \overset{\text{iid}}{\sim} N_p(\mu_2, \Sigma_2) \ \text{si} \ \mu_1 = \mu_2 \ \mathbf{y} \ \Sigma_1 = \Sigma_2 \ \text{entonces}$$

$$\frac{nm}{n+m} (\bar{\mathbf{y}} - \bar{\mathbf{x}})^T \mathbf{S}_u^{-1} (\bar{\mathbf{y}} - \bar{\mathbf{x}}) \sim T^2(p, n+m-2)$$

Donde

$$\mathbf{S}_u = \frac{n\mathbf{S}_1 + m\mathbf{S}_2}{n + m - 2}$$

Utilizamos el estadístico de prueba

$$\delta^{2} = \frac{(n+m-p-1)nm}{(n+m-2)(n+m)} (\hat{\mathbf{y}} - \hat{\mathbf{x}})^{T} \mathbf{S}_{u}^{-1} (\hat{\mathbf{y}} - \hat{\mathbf{x}}) \sim F_{p,n+m-p-1}$$

Pruebas de hipótesis para Σ

Sean $\mathbf{x}_1,\ldots,\mathbf{x}_n \stackrel{\text{iid}}{\sim} N_p(\mu,\Sigma)$ con $n \geq p+1$ se pueden hacer las siguiente pruebas para Σ

· Independencia por bloques

$$\Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} & \cdots & \Sigma_{1q} \\ \Sigma_{21} & \Sigma_{22} & \cdots & \Sigma_{2q} \\ \vdots & \vdots & & \vdots \\ \Sigma_{q1} & \Sigma_{q2} & \cdots & \Sigma_{qq} \end{pmatrix}$$

$$H_0: \Sigma_{rs} = \mathbf{0}$$

Esfericidad

- Caso I: $\Sigma = \sigma^2 \mathbf{I}$ con σ^2 desconocida (esta prueba incluye a $\Sigma = \sigma^2 \Sigma_0$)

- $Caso\ 2$: $\Sigma=\mathbf{I}$ (esta prueba incluye a $\Sigma=\Sigma_0$)

Esfericidad

- Caso I : $\Sigma = \sigma^2 \mathbf{I}$ con σ^2 desconocida (esta prueba incluye a $\Sigma = \sigma^2 \Sigma_0$)

- Caso 2: $\Sigma = \mathbf{I}$ (esta prueba incluye a $\Sigma = \Sigma_0$)

• Igualdad en los bloques diagonales, i.e., $\Sigma_{11}=\Sigma_{22}=\cdots=\Sigma_{qq}$

- Esfericidad
 - Caso 1: $\Sigma = \sigma^2 \mathbf{I}$ con σ^2 desconocida (esta prueba incluye a $\Sigma = \sigma^2 \Sigma_0$)
 - Caso 2: $\Sigma = \mathbf{I}$ (esta prueba incluye a $\Sigma = \Sigma_0$)
- Igualdad en los bloques diagonales, i.e., $\Sigma_{11}=\Sigma_{22}=\cdots=\Sigma_{qq}$
- · Igualdad de varianzas y correlaciones

$$\Sigma = \begin{pmatrix} 1 & \rho & \cdots & \rho \\ \rho & 1 & \cdots & \rho \\ \vdots & \vdots & & \vdots \\ \rho & \rho & \cdots & 1 \end{pmatrix}$$

· Comparar dos poblaciones normales

Sean
$$\mathbf{x}_1, ..., \mathbf{x}_n \stackrel{\text{iid}}{\sim} N_p(\mu_1, \Sigma_1)$$
 y $\mathbf{y}_1, ..., \mathbf{y}_m \stackrel{\text{iid}}{\sim} N_p(\mu_2, \Sigma_2)$

$$H_0: \Sigma_1 = \Sigma_2$$

· El estadístico de prueba

$$\frac{(n+m)^{\frac{(n+m)p}{2}}}{n^{\frac{np}{2}}m^{\frac{mp}{2}}} |\mathbf{S}_1|^{\frac{n}{2}}|\mathbf{S}_2|^{\frac{m}{2}}$$

$$|\mathbf{S}_1|^{\frac{n}{2}}|\mathbf{S}_2|^{\frac{m}{2}}$$

$$|\mathbf{S}_1|^{\frac{n}{2}}|\mathbf{S}_2|^{\frac{n+m}{2}}$$