

Below, we fit a simple liner regression model1:

model1: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where $\varepsilon_i \sim normal(0, \sigma^2)$

- > datal <- read.csv("U:\\STAT510\\lizards.csv")</pre>
- > dim(datal)
- [1] 80 3 > head(data1)

	x	У		
1	0.3880	0.1073		
_				

- 0.4003 0.0700
- 3 0.3233 0.0655
- 4 0.3316 0.0716
- 5 0.3254 0.1703
- 6 0.3331 0.0885
- > attach(datal)
- > model1 <- lm(y~x)
- > summary (model1)

Coefficients:

JAWL

Estimate Std. Error t value Pr(>|t|)

0.03109 16.872 < 0.001 ***

---Residual SE: 0.04285 on 78 degrees of freedom

0.52456

R-squared: 0.7849, Adjusted R-squared: 0.7822

F-statistic:284.7 on 1 and 78 DF, p-value:< 0.001

> anova (model1)

Analysis of Variance Table

Response: BVOL

	Df	Sum Sq	Mean Sq	F value	Pr(>F)	
JAWL	1	0.52278	0.52278	284.65	< 0.001	**

Residuals 78 0.14325 0.00184

TOTAL 79 0.66603 #This was added by the instructor.

> plot (model1) #This creates 4 plots. Only the first one is shown.

(a) In the diagnostic plot shown above, y-axis = residuals, x-axis = predicted values. <u>Does the plot look satisfactory</u>? If NOT, explain briefly what the problem is.

no there is a megaphone shape, meaning that it doesn't meet the assumption of homogeneity of variance.

> logLik(model1)

'log Lik.' 139.4926 (df=3)

(b) You must have an assumption about the distribution of the errors in order to calculate (log) Likelihood. What is the default distribution that's being assumed when R calculates the (log) likelihood?

Normal distribution

(c) Calculate the **AIC** value of model1. Showing "set up"

(with numbers) is enough.

Hint: AIC = $-2 \cdot \log Likelihood + 2(p+1)$.

-2. (139.4926)+2(X+1)

(d) Calculate the AIC_c value of model 1. Showing "set up" (with numbers) is enough.

Hint: AICc = $AIC + \frac{2(p+1)(p+2)}{n-p}$

 $-2 \cdot (139,4926) + 2(3+1) + \frac{2(3+1)(3+2)}{80-1}$

(e) Theory says to use AIC_c when $\frac{n}{p+1}$ < 40. With model1,

which one should we use: AIC or AICe?

Quiz #2 (Keys)

- (a) NO it's NOT satisfactory. There is a heterogeneous variance! (* This can be fixed by the Box-Cox- transformation).
- (b) Normal distribution
- (c) AIC = $(-2 \times 139.4926) + (2 \times 3) = -272.9852$

order to calculate (log stribution that's being

(log) likelihood?

e an assumption abou

- (d) AIC_c = $-272.9851+((2\times3\times4)/(80-2)) = -272.67$
- (e) AICc because 80÷3 < 40

s) is enough. $2 \cdot \log Likelihood + 2(p)$ IC value of model1

39.4926)+21

AICc value of model: 's) is enough

Below, we fit a simple liner regression model1: **model1:** $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, where $\varepsilon_i \sim normal(0, \sigma^2)$

- data1 <- read.csv("U:\\STAT510\\sampledata1.csv")
- attach(datal)
- > model1 <- lm(y-x)
- > boxcox(model1)

(a) According to the Box-Cox plot, what kind of "action" is appropriate here?

(b) If you fit a new model after following the advice in (a), what good things are supposed to happen? Explain

the transformation should normative the resids, (homoThe following four curves are plotted on a single graphing window as shown below.

$$y_1 = 88e^{-0.15x}$$

$$y_2 = 90 - 5x$$

$$b y_3 = 0.2x^3$$

$$y_4 = 14e^{0.15x}$$

(4)c) $\lim y_1 = ?$ That is, as $x \to \infty$, where does $88e^{-0.15x}$ go to?

(d) Continuing from (c), which of the four plots would be the graph of y_1 ? Choose one from a, b, c & d.

(e) Which of the four plots would be the graph of y_3 ? Why? Choose one from a, b, c & d.

b, because the line starts at 10.2 & follows a x3 curve

Quiz #3 (Keys)

- (a) Transform y by square root, i.e., y
- (b) Stabilizes the variance of the residuals.
- (c)0
- (d) a
- (e) b because at x=0, y=0.

#1. Which of the following is the same expression as $y = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$?

(a)
$$y = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$$

(a)
$$y = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$$
 (b) $y = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$ (c) $y = \frac{1}{e^{\beta_0 + \beta_1 x} - 1}$ (d) $y = \frac{1}{e^{-(\beta_0 + \beta_1 x)} - 1}$

(c)
$$y = \frac{1}{e^{\beta_0 + \beta_1 x} - 1}$$

(d)
$$y = \frac{1}{e^{-(\beta_0 + \beta_1 x)} - 1}$$

#2. In $y = \frac{1}{1 + e^{-x}}$, what's the value of y when x = 0?

#3. In $y = \frac{1}{1 + e^{-x}}$, what's the value of y when $x = \infty$?

#4. In $y = \frac{1}{1 + e^{-x}}$, what's the value of y when $x = -\infty$ (i.e., minus infinity)?

#5. Putting #2, #3, & #4 together, roughly "sketch" the graph of $y = \frac{1}{1+e^{-x}}$.

#6. Consider $\log \left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$. Rewrite this expression in terms of p.

#1. Which of the following is the same expression as $y = \frac{e^{\beta_0 + \beta_1 x}}{1 + e^{\beta_0 + \beta_1 x}}$?

(3)
$$(a) y = \frac{1}{1 + e^{\beta_0 + \beta_1}}$$

(a)
$$y = \frac{1}{1 + e^{\beta_0 + \beta_1 x}}$$
 (b) $y = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$ (c) $y = \frac{1}{e^{\beta_0 + \beta_1 x}}$

(c)
$$y = \frac{1}{e^{\beta_0 + \beta_1 x}}$$

- #2. In $y = \frac{1}{1 + e^{-x}}$, what's the value of y when x = 0?
- #3. In $y = \frac{1}{1 + e^{-x}}$, what's the value of y when $x = \infty$?
- #4. In $y = \frac{1}{1 + e^{-x}}$, what's the value of y when $x = -\infty$ (i.e., minus infinity)?

Quiz #4 [Keys]

- #1 (b) Divide both top and bottom by $e^{\beta_0 + \beta_1 x}$
- #2 ½ Because $e^0 = 1$
- #3 1 Because $e^{-\infty} = 0$
- #4 0 Because $e^{\infty} = \infty$

#5. Putting #2, #3, & #4 together, roughly "sketch" the graph of $y = \frac{1}{1 + e^{-x}}$. #6 $p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$ (4)

#6
$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x)}}$$

#6. Consider $\log \left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$. Rewrite this expression in terms of p.

Consider the following R codes and printout.

- > library (faraway)
- > data(bliss)
- > bliss

dead alive cond

T	2	28	U
2	- 8	22	1
3-	15	15	2
4	23	7	3
5	27	3	4

> attach (bliss)

> Y <- cbind(dead, alive)

> model1 <- glm(Y~conc, family=binomial(link=logit))

> summary (model1)

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-2.3238	0.4179		2.69e-08
conc	1.1619	0.1814	6.405	1.51e-10
COIIC	1.1019	0.1014	0.105	(

Dispersion parameter for binomial family taken to be 1 Null deviance: 64.76327 on 4 degrees of freedom Residual deviance: 0.37875 on 3 degrees of freedom AIC: 20.854

> pl = (dead/(dead+alive))

> p2 = predict(model1, type="response")

> r1 = p1-p2

>	> round(cbind(pl,p2,r1),4)						
	pl	p2	rl				
1	0.0667	0.0892	-0.0225				
2	0.2667	0.2383	0.0283				
3	0.5000	0.5000	0.0000				
4	0.7667	0.7617	0.0050				
5	0.9000	0.9108	-0.0108				

#1. Look at the p-value for "conc", i.e., 1.51e-10. Explain briefly what this p-value means in plain terms. No points if you just write "reject H_0 " or "do not reject H_0 ".

the p-value of 1 sie-10 for con the parameter conc. spredicts by a should e kept in the model

#2. Explain what this calculation $e^{1.1619} = 3.196$ tells you. Oh, 1.1619 is the coefficient of "conc" in the printout.

It tells you the odds ratio been where

become 3, 196 x higher

#3. According to the printout, how would you estimate the "odds" for "dead" at conc=1? Just write the set up, you do NOT need to finish calculation.

R code

exp (-2.3238+1.1619)

#4. According to the printout, how would you estimate the "probability" for "dead" at conc=1? Just write the set up, you do NOT need to finish calculation.

1/(1+exp-(-2.3238+1.1619)

#5. What do the two "deviance" numbers (i.e., 64.76327 & 0.37875) tell you? Explain briefly where/how these two numbers are used. hese It's are used to compare

the deviance between the nul model 3 18 the actual obs deviance

null dev. - resid dev.

#6. Shown under p1, p2 and r1 are "actual" probability, "predicted" probability and "residual", respectively. Which of the following is the most ideal case for the "residuals"?

- (a) mostly positive residuals
- (b) mostly negative residuals
- (c) fandom mixture of positive and negative residuals
 - [d] residuals that change signs constantly, i.e., +, -, +, -,

+, -, etc

#3. According to the printout, how "odds" for "dead" at conc=1?] do NOT need to finish calculat R code exp (-2.3238+1.16)

logit))

z]) -08

to be 1 freedom freedom

#4. According to the printout, how "probability" for "dead" at con up, you do NOT need to finish a

1/(1+exp-(-2.323

xplain s. No points

c.conc

uld del

tells you. Oh, itout.

#6. Shown under p1, p2 and r1 are "predicted" probability and "res Which of the following is the mc "residuals"?

#5. What do the two "deviance" nu

the deviance betwee model & 18the act

null dev. - resid dev

numbers are used.

0.37875) tell you? Explain brief

These #'s are

(a) mostly positive residuals (b) mostly negative residuals

 $e^{-2.3238+(1.1619\times1)} = 0.3128911$ $1 + e^{-\{-2.3238 + (1.1619 \times 1)\}} = 0.238322$ conc" is highly significant, i.e., it's a very significant variable in modeling the probability of "dead"

#5 They are used to test if the model is valid, i.e., $(64.76327-0.37875) \sim \chi_{df=1}^2$

It's the odds ratio for 1 unit increase of conc, i.e., as conc increases by 1 unit, odds for dead become 3.196 times bigger

R.

Let X be the number of "failures" before the rth "success" in binomial trials. We say X has a <u>negative binomial</u> distribution with (r, p) parameters. The pdf of X is given by

$$f(x) = {x+r-1 \choose r-1} p^r (1-p)^x$$
, where $x = 0, 1, 2, 3, ...$

The mean & variance of X are $\mu = \frac{r(1-p)}{p}$, $\sigma^2 = \frac{r(1-p)}{p^2}$.

#1. Let X ~ negative binomial (r=3, p=0.5). Find the probability that X=1. Set up is enough, you do NOT need to finish calculation.

#2. Let $X \sim$ negative binomial (r=3, p=0.5). Find the **mean** / \(\chi\) and the **variance** of X. Finish calculation!

$$M = \frac{3(1-0.5)}{0.5} = 3$$

$$\sigma^2 = \frac{3(1-0.5)}{0.5^2} = 6$$

#3. Let $X \sim$ negative binomial (r=3, p=0.5). The R command for the negative binomial distribution is nbinom. Write R codes to compute the probability that X=1.

#4. Let $X \sim$ negative binomial (r=3, p=0.5). Write R codes to simulate 1,000 random numbers from a negative binomial distribution with (r=3, p=0.5).

- #5. Suppose we have a dataset with "survival" time for men and women. The three variables used are:
- 3) time = time until death
 - status = alive(1), dead (2)
 - sex = male (1), female (2)

Which of the following are the commonly used distributions for "time"? Just <u>circle</u> all the popular <u>distribution name(s)</u> that can handle such a variable as "time" here.

- (a) lognormal distribution (b) exponential distribution
- (c) Poisson distribution
- (d) Weibull distribution

#6. (Continued from #5.)

R codes and plot:

- > surv_time <- Surv(time, status==2)
- > model1 <- survfit(surv_time~sex)
- > plot(model1,col=c(2,4),lwd=2,lty=1:2)
- > legend(locator(1),c("male","female"),lwd=2,
 col=c(2,4),lty=1:2)

According to the plot, whose median survival time is greater: male or female. Just circle your answer -- answer alone is enough.

ave a dataset with he three variables ne until death alive(1), dead(2) le (1), female (2) following are the c for "time"? Just cir name(s) that can ha

mal distribution ential distribution on distribution ill distribution

rom #5.)

,lty=1:2)

lot: <- Surv(time, stati survfit(surv time 1, col=c(2,4), lwd=: ator(1),c("male",

mean=3; var=6