High precision perturbative QCD predictions for Higgs boson production at the LHC

Jesús Urtasun Elizari Milan, December 2020

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

Outline

- QCD and collider physics
 - QCD Factorization
 - Partonic cross section and perturbative QCD
- The N3PDF project
 - Parton Distribution Functions
 - Machine Learning for PDFs
- 3 All order perturbative resummation
 - Higher orders radiative corrections
 - Resummation of large logarithmic corrections
- Precise and fast predictions for Higgs boson physics
 - Higgs production at the LHC
 - HTurbo numerical code
 - Preliminary results & Conclusions

QCD and collider physics

QCD LHC physics

QCD

Factorization theorem

Compute hadronic cross sections is a hard problem \longrightarrow QCD Factorization

$$\sigma^{\mathrm{F}}(p_1, p_2) = \int_0^1 dx_1 dx_2 \ f_{\alpha}(x_1, \mu_F^2) * f_{\beta}(x_2, \mu_F^2) * \hat{\sigma}_{\alpha\beta}^{\mathrm{F}}(x_1 p_1, x_2 p_2, \alpha_s(\mu_R^2), \mu_F^2)$$

QCD

Partonic cross section

- Parton densities (PDFs) $f_{\alpha}(x_i, \mu_F^2)$: non perturbative but universal
- Partonic cross section $\hat{\sigma}_{\alpha\beta}^{F}$: process dependent but computable as perturbative series in α_s

QCD

Perturbative QCD

- Born cross section is the leading-order (LO) term of the perturbative series
- $\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}$ are the NLO, NNLO, N3LO corrections

$$\hat{\sigma} = \sigma^{\text{Born}} \Big(1 + \alpha_s \sigma^{(1)} + \alpha_s^2 \sigma^{(2)} + \alpha_s^3 \sigma^{(3)} + \dots \Big)$$

Lower order predictions strongly depend on the auxiliary and unphysical renormalization and factorization scales \longrightarrow Need higher order corrections to increase theoretical accuracy!

The N3PDF project

Checking computation

DIS:

	TensorFlow	Custom	Ratio
	1.9207904	1.9207904	1.0000000
Convolution	2.4611666	2.4611664	0.9999999
	1.3516952 1.3516952	1.0000000	
	1.8794115	1.8794115	1.0000000
Gradient	1.505316	1.505316	1.0000000
	2.866085	2.866085	1.0000000

Checking computation

Hadronic:

	TensorFlow	Custom	Ratio
	8.142365	8.142366	1.0000001
Convolution	8.947762	8.947762	1.0000000
	7.4513326 7.45133	7.4513316	0.9999999
	18.525095	18.525095	1.0000000
Gradient	19.182995	19.182993	0.9999999
	19.551006	19.551004	0.9999999

Memory saving

Hadronic only:

	TensorFlow	Custom Convolution	Diff
Virtual	17.7 GB	13.8 GB	3.9 GB
RES	12.1 GB	8.39 GB	3.2 GB

Global:

	TensorFlow	Custom Convolution	Diff
Virtual	23.5 GB	19.7 GB	3.8 GB
RES	18.4 GB	12.5 GB	5.9 GB

[&]quot;Towards hardware acceleration for parton densities estimation", https://arxiv.org/abs/1909.10547

All orders perturbative resummation

Higher order corrections

- Calculation of higher order corrections is not an easy task due to infrared (IR) soft and collinear singularities
- Final state singularities cancel by combining real and virtual contributions
- Initial state collinear singularities factorized inside the PDFs

 q_{\perp} resummation

Study the differential q_{\perp} distribution

$$h_1(p_1) + h_2(p_2) \longrightarrow F(M, \mathbf{q}_{\perp}) + X$$

$$\int_0^{Q_\perp^2} dq_\perp^2 \frac{d\hat{\sigma}}{dq_\perp^2} \sim c_0 + \alpha_s (c_{12}L^2 + c_{11}L + c_{10}) + ..., \quad \text{where} \quad L = \ln(q_\perp/M^2)$$

$\alpha_{S}L^{2}$	$\alpha_{\mathcal{S}}L$	 $\mathcal{O}(lpha_{\mathcal{S}})$
$\alpha_S^2 L^4$	$\alpha_S^2 L^3$	 $\mathcal{O}(\alpha_S^2)$
$\alpha_S^n L^{2n}$	$\alpha_S^n L^{2n-1}$	 $\mathcal{O}(\alpha_S^n)$
dominant logs		

Truncated fixed order predictions \rightarrow enhanced $\alpha_s^n \ln^m(M^2/q_\perp^2)$ appear

 q_{\perp} resummation

Separate partonic q_{\perp} distribution as follows

$$\frac{d\hat{\sigma}_{ab}}{dq_{\perp}^2} = \left[\frac{d\hat{\sigma}_{ab}^{(\rm res.)}}{dq_{\perp}^2}\right]_{\rm l.a.} + \left[\frac{d\hat{\sigma}_{ab}^{(\rm fin.)}}{dq_{\perp}^2}\right]_{\rm f.o.} \quad , \quad \text{such that}$$

$$\begin{split} &\int_0^{q_\perp^2} dq_\perp^2 \frac{d\hat{\sigma}_{ab}^{(\mathrm{res.})}}{dq_\perp^2} \sim \sum \alpha_s^n \log^m \frac{M^2}{q_\perp^2} \quad \mathrm{for} \quad q_\perp \to 0 \\ &\lim_{q_\perp \to 0} \int_0^{q_\perp^2} dq_\perp^2 \frac{d\hat{\sigma}_{ab}^{(\mathrm{fin.})}}{dq_\perp^2} = 0 \end{split}$$

Resummed and finite components can be matched (LL+LO, NLL+NLO, NNLO+NNLL, ...) to have uniform accuracy in a wide range of q_{\perp}

 q_{\perp} resummation

Resummation holds in impact parameter space b

$$rac{d\hat{\sigma}_{\mathsf{a}\mathsf{b}}^{(\mathrm{res.})}}{dq_{\perp}^{2}} = rac{\mathsf{M}^{2}}{\hat{\mathsf{s}}} \int db \; rac{\mathsf{b}}{2} \; J_{0}(\mathit{b}q_{\perp}) \; \mathcal{W}_{\mathsf{a}\mathsf{b}}(\mathit{b}, \mathsf{M})$$

with \mathcal{W}_{ab} also expressed in Mellin space (with respect to $z=M^2/\hat{s}$)

$$\mathcal{W}_N(b, M) = \mathcal{H}_N(\alpha_s) \times \exp\{\mathcal{G}_N(\alpha_s, L)\}$$
 being $L \equiv \log(M^2 b^2)$

- Large logarithms exponentiated in the universal Sudakov form factor $\mathcal{G}_N(\alpha_s, L)$
- Constant (b-independent) terms factorized in the process dependent hard factor $\mathcal{H}_N(\alpha_s)$

Precise and fast predictions for Higgs boson physics

HqT and HRes

Predictions for Higgs q_{\perp} distribution

- q⊥ resummation implemented in numerical codes HqT and HRes [Catani, de Florian, Ferrera, Grazzini, Tommasini]
- Higher order accuracy require high computation times
- Codes producing fast and accurate predictions are needed for precision era of the LHC

HTurbo

Starting point DYTurbo

Numerical code **DYTurbo** [Camarda et al.] ref. at 1910.07049, fast and precise q_{\perp} resummation and several improvements for Drell-Yan $(h_1h_2 \rightarrow V + X \rightarrow I^+I^- + X)$

- First goal: set up a numerical code for Higgs boson production starting from DYTurbo
- Set LO amplitude $gg \rightarrow H$
- Set Sudakov and Hard coefficients for Higgs production
- Compare with HRes and HqT

Final goal: extend theoretical accuracy up to N³LL+N³LO

HTurbo

Starting point DYTurbo

$$\mathcal{G}_{N}(\alpha_{s},L) = L g^{(1)}(\alpha_{s}L) + g^{(2)}(\alpha_{s}L) + \frac{\alpha_{s}}{\pi}g^{(3)}(\alpha_{s}L) + \dots$$
$$\mathcal{H}_{N}(\alpha_{s}) = 1 + \alpha_{s}\mathcal{H}^{(1)} + \alpha_{s}^{2}\mathcal{H}^{(2)} + \dots$$

$$\begin{aligned} & \text{LL}(\sim \alpha_s^n L^{n+1}) : g^{(1)}, \hat{\sigma}^{(0)} \\ & \text{NLL}(\sim \alpha_s^n L^n) : g^{(2)}, \mathcal{H}^{(1)} \\ & \text{NNLL}(\sim \alpha_s^n L^{n-1}) : g^{(3)}, \mathcal{H}^{(2)} \end{aligned}$$

Start by building predictions up to NNLO+NNLL, then add N^3LO+N^3LL

Comparison HTurbo and HqT - LL

- HTurbo q_{\perp} distribution vs HRes and HqT at LL
- ullet Excellent numerical agreement up to the 0.1% level

Comparison HTurbo and HqT - NLL

- HTurbo q_{\perp} distribution vs HRes and HqT at NLL
- Excellent numerical agreement up to the 0.1% level

Comparison HTurbo and HqT - NNLL

- ullet HTurbo q_{\perp} distribution vs HRes and HqT at NNLL
- ullet Excellent numerical agreement up to the 0.1% level

Comparison HTurbo and HqT - all orders

- Higher orders lead to more accurate predictions √
- Agreement up to NNLL \longrightarrow ready for N³LL

Summary & Conclusions

- Fast and accurate predictions are required towards the precision era of the LHC
- ② Developing a novel numerical code, **HTurbo**, which implements q_{\perp} resummation for Higgs boson production
- 4 HTurbo is faster than any of the existing codes
- Next steps:
 - Validate results at NNLO
 - Add N³LO prediction
 - Perform phenomenological studies comparing with LHC data

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.