

CDMA CELLULAR RADIO TRANSMITTER

Patent number: JP9252266
Publication date: 1997-09-22
Inventor: MIYA KAZUYUKI; WATANABE MASATOSHI; KATO OSAMU
Applicant: MATSUSHITA ELECTRIC IND CO LTD
Classification:
 - international: H04B1/707; H04B7/26; H04J13/04
 - european:
Application number: JP19960059711 19960315
Priority number(s):

Also published as:

EP0795969 (A)
 US6028852 (A)
 EP0795969 (A)
 EP0795969 (B)

Best Available Copy

Abstract of JP9252266

PROBLEM TO BE SOLVED: To reduce interference between other stations provided by a pilot channel onto a communication channel at a base station and to attain synchronization detection in a mobile station in the case of transmission of a communication channel through transmission antenna directivity control.

SOLUTION: A base station sends a pilot channel 101 and also a signal interpolated with a pilot symbol 108 and multiplexed on a communication channel 106. Since it is not required to send the pilot channel 101 with a high respectively power to obtain high reliability as synchronization detection reference signal, a weight 105 is used and the pilot channel 101 is sent at a lower power than that of the communication channel and then interference between other stations is reduced. Furthermore, a mobile station uses a pilot symbol inserted in the communication channel to attain accurate synchronization detection.

Data supplied from the **esp@cenet** database - Patent Abstracts of Japan

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-252266

(43)公開日 平成9年(1997)9月22日

(51)Int.Cl. ⁶	識別記号	序内整理番号	F I	技術表示箇所
H 04 B 1/707			H 04 J 13/00	D
7/26			H 04 B 7/26	P
H 04 J 13/04			H 04 J 13/00	G

審査請求 未請求 請求項の数7 O.L (全9頁)

(21)出願番号 特願平8-59711	(71)出願人 松下電器産業株式会社 大阪府門真市大字門真1006番地
(22)出願日 平成8年(1996)3月15日	(72)発明者 宮和行 神奈川県横浜市港北区綱島東四丁目3番1号 松下通信工業株式会社内
	(72)発明者 渡辺昌俊 神奈川県横浜市港北区綱島東四丁目3番1号 松下通信工業株式会社内
	(72)発明者 加藤修 神奈川県横浜市港北区綱島東四丁目3番1号 松下通信工業株式会社内
	(74)代理人 弁理士 萩合正博

(54)【発明の名称】 CDMAセルラ無線伝送装置

(57)【要約】

【課題】 基地局において、パイロットチャネルが通信チャネルに与える他局間干渉を低減し、また送信アンテナ指向性制御を行って通信チャネルを送信する場合に、移動局における同期検波を可能にする。

【解決手段】 基地局は、パイロットチャネル101に加えて、通信チャネル106においてパイロットシンボル108を内挿した信号を多重して伝送する。パイロットチャネル101は、同期検波用基準信号として高信頼度を得るために高い送信パワーで伝送する必要がないため、ウエイト105により通信チャネルに比べて低パワーで送信でき、他局間干渉が低減できる。また移動局側では、通信チャネルに内挿されたパイロットシンボルから正確な同期検波ができる。

【特許請求の範囲】

【請求項1】 直接拡散CDMA方式を用いるセルラ無線伝送装置において、基地局が、パイロットチャネルを出力する手段と、パイロットシンボルを内挿した通信チャネルを出力する手段と、前記パイロットチャネルおよび通信チャネルを同一周波数に多重して送信する手段とを備えたCDMAセルラ無線伝送装置。

【請求項2】 基地局が、パイロットチャネルを通信チャネルに比べて低パワーで送信することを特徴とする請求項1記載のCDMAセルラ無線伝送装置。

【請求項3】 直接拡散CDMA方式を用いるセルラ無線伝送装置において、移動局が、基地局がパイロットチャネルおよびパイロットシンボルを内挿した通信チャネルを同一周波数に多重して送信した信号に対してチップ同期を取る手段と、通信チャネルに内挿されたパイロットシンボルを用いて同期検波を行う手段とを備えたCDMAセルラ無線伝送装置。

【請求項4】 移動局が、異なる位相のパイロットチャネルの受信レベルを検索する手段を備えた請求項3記載のCDMAセルラ無線伝送装置。

【請求項5】 直接拡散CDMA方式を用いるセルラ無線伝送装置において、基地局が、パイロットチャネルを出力する手段と、パイロットシンボルを内挿した通信チャネルを出力する手段と、前記パイロットチャネルおよび通信チャネルを同一周波数に多重して送信する手段とを備え、移動局が、基地局がパイロットチャネルおよびパイロットシンボルを内挿した通信チャネルを同一周波数に多重して送信した信号に対してチップ同期を取る手段と、通信チャネルに内挿されたパイロットシンボルを用いて同期検波を行う手段とを備えたCDMAセルラ無線伝送装置。

【請求項6】 基地局が、パイロットチャネルを通信チャネルに比べて低パワーで送信することを特徴とする請求項5記載のCDMAセルラ無線伝送装置。

【請求項7】 移動局が、異なる位相のパイロットチャネルの受信レベルを検索する手段を備えた請求項5または6記載のCDMAセルラ無線伝送装置。

【発明の詳細な説明】**【0001】**

【発明の属する技術分野】 本発明は、ディジタルセルラ移動体通信等に用いられるCDMAセルラ無線伝送装置に関する。

【0002】

【従来の技術】 ディジタルセルラ移動体通信において、多元アクセス方式とは、同一の帯域で複数の局が同時に通信を行う際の回線接続方式のことである。CDMA(Code Division Multiple Access)とは、符号分割多元接続のことで、情報信号のスペクトルを、本来の情報帯域幅に比べて十分に広い帯域に拡散して伝送するスペクトル拡散通信によって多元接続を行う技術であり、ス

ペクトル拡散多元接続(SSMA)という場合もある。直接拡散方式とは、拡散において拡散系列符号をそのまま情報信号に乗じる方式である。

【0003】 ディジタル通信における検波方式のうち、同期検波方式は遅延検波方式に比べて優れた静特性を有し、ある平均ビット誤り率(BER)を得るために必要なEb/Ioが最も低い方式である。また、フェージングによる伝送信号の歪みを補償する方式として、内挿型同期検波方式が提案されている(三井政一, "陸上移動通信用16-QAMのフェージングひずみ補償方式" 信学論B-II Vol.J72-B-II No.1 pp.7-15, 1989)。この方式では、図7に示すように、送信すべき情報シンボルの中に周期Tごとにパイロットシンボル701を挿入し、チャネルの伝達関数すなわち回線の状態を推定して検波を行うものである。また、上記方式を直接拡散CDMAに適用した方が提案されている(東、太口、大野, "DS/CDMAにおける内挿型同期検波RAKEの特性" 信学技報 RCS 94-98, 1994)。一方、直接拡散CDMAにおいて同期検波を可能にする方式として、パイロットチャネルがある。これは、図8に示すように、1つのパイロットチャネル801を検波用基準信号として、情報データを伝送するチャネルとは独立に常時送信する方式である。

【0004】 パイロットチャネルを用いた従来のCDMA方式セルラ無線伝送装置の基地局の構成を図4に示す。下り回線において、m-1局(1<m)の各移動局の送信データ(2)～(m)は異なる拡散符号(2)～(m)によって拡散されウェイトを乗じた後、多重される。各移動局の情報データ・制御データ等の送信データを伝送するチャネルを以後「通信チャネル」と呼ぶ。上記ウェイトは、下り回線の送信電力制御に用いるものであり、通信チャネル間の送信電力に重み付けを行うものである。一方、パイロットチャネル401では、送信データ(1)402は、拡散符号(1)403によって拡散回路404において拡散され、ウェイトW(1)405を乗じた後、上記通信チャネル406から411と多重回路412において多重され、無線送信部413によってアップコンバートされ、アンテナ414から送信される。このとき、送信データ(1)402では情報を伝送する必要はないので、無変調データ(全て0または1)でもよい。

【0005】 図5はパイロットチャネルを用いた従来のCDMA方式セルラ無線伝送装置の移動局の構成を示す。図5において、アンテナ501から受信した信号は、無線受信部502においてダウンコンバートされる。そして、パイロットチャネル503は、相関回路505による出力から位相推定回路511により位相情報512を検出し、通信チャネル513の検波回路516に伝える。通信チャネル513では、相関回路515で拡散符号i(i=2～m)で逆拡散した信号を、上記位相情報512を基に検波回路516で同期検波し、2値判定回路517で判定して受信データ518を出力する。

【0006】一方、上記バイロットチャネルを同期検波以外の情報として利用する方法がある。図5において、上記バイロットチャネル503の相関器出力から、パワ検出回路506において各サンプリング（位相）ごとの受信パワを演算し、チップ同期回路507において、ある時定数で積分する（フィルタリング）することにより、チップ同期信号508を出力する。このチップ同期信号508を用いて、通信チャネル513の相関回路515における拡散符号(i) 514との逆拡散の位相を決定する。また、他セルが同じ拡散符号(1) 504を使用し、かつ位相をずらしてバイロットチャネルを伝送するシステムの場合には、パワ検出回路506の出力から、他セルモニタ回路509により、他セル信号レベル情報510を得ることができる。このとき、チップ同期信号508および他セル信号レベル情報510を得るために必要なバイロットチャネルの送信パワは、チップ同期回路507および他セルモニタ回路509でパワ検出回路506の出力を積分するため、同期検波に必要なパワに比べて低くても良い。

【0007】また、他局間干渉抑制の対策として、基地局において各通信チャネルごとに送信アンテナの指向性を制御して送信する方式がある（特開平7-76049号公報）。図6は指向性制御をしたときの様子を示している。基地局601は、3台の移動局602、60、604に対して、通信チャネルをA、B、Cの3方向に指向性を制御して送信している。これに対し、同期検波用基準信号として送信するバイロットチャネルは、各通信チャネル共通に使用するため無指向性で送信する必要がある。このとき、バイロットチャネル信号が伝搬した経路と、通信チャネル信号が伝搬した経路とは異なる。即ち、図6において、バス605と606は、無指向性で送信したバイロットチャネルが、通信チャネル信号とは異なる経路で伝搬した様子を示しており、Aの指向性を持って送信された通信チャネルでは通過しないバスである。したがって、バイロットチャネル信号の位相情報と通信チャネル信号の位相情報とは異なることになる。

【0008】

【発明が解決しようとする課題】上記従来のバイロットチャネルの多重伝送においては、バイロットチャネルの信頼性を高くし、同期検波性能を向上するためには、干渉となる他の通信チャネルに対して、相対的に強い電力で送信する必要がある。即ち、図4において、ウェイトW(1) 405は、通信チャネルに対して大きい値(W1>Max W2…Wm)となる。しかしながら、W(1)を大きくすると、同期検波用基準信号としての信頼性が高くなる一方、通信チャネル信号に与える干渉（他局間干渉）が大きくなるため、通信チャネル品質を結果的に下げるという問題点があった。

【0009】また、基地局において、各通信チャネルごとに送信アンテナの指向性を制御して送信する場合、パ

イロットチャネルから得た位相情報と、通信チャネルの検波位相とは異なるため、バイロットチャネルの位相情報を用いて通信チャネルの同期検波を行うことは不可能であるという問題点があった。

【0010】本発明は、このような従来の問題点を解決するものであり、基地局において、バイロットチャネルが通信チャネルに与える他局間干渉を低減し、また送信アンテナの指向性制御を行って通信チャネルを送信する場合に、移動局における同期検波を可能とする優れたCDMAセルラ無線伝送装置を提供することを目的とする。

【0011】

【課題を解決するための手段】本発明は、上記目的を達成するために、基地局側が、バイロットチャネルを出力する手段と、バイロットシンボルを内挿した通信チャネルを出力する手段と、バイロットチャネルおよび通信チャネルを同一周波数に多重して送信する手段とを備え、また移動局が、基地局から送信してきたバイロットチャネルと通信チャネルとの多重信号に対してチップ同期を取る手段と、通信チャネルに内挿されたバイロットシンボルを用いて同期検波を行う手段を備えたものであり、これにより、基地局において、バイロットチャネルが通信チャネルに与える他局間干渉を低減し、また通信チャネルの送信アンテナ指向性制御を行って送信する場合でも、移動局における同期検波を可能とすることができる。

【0012】

【発明の実施の形態】本発明の請求項1に記載の発明は、基地局が、バイロットチャネルを出力する手段と、バイロットシンボルを内挿した通信チャネルを出力する手段と、バイロットチャネルおよび通信チャネルを同一周波数に多重して送信する手段とを備えたものであり、バイロットチャネルに加えて、各通信チャネルに内挿型同期検波を目的としたバイロットシンボル（既知シンボル）を周期的に挿入することにより、バイロットチャネルは、同期検波用基準信号として高い信頼度を得るために通信チャネルに比べてより高いパワで送信する必要がなくなり、通信チャネルに与える他局間干渉を低減することができる。また、送信アンテナ制御を行って通信チャネルを送信する場合でも、移動局側において、通信チャネルに内挿されたバイロットシンボルを用いることにより同期検波を行うことができる。

【0013】また、請求項2に記載の発明は、請求項1記載のCDMAセルラ無線伝送装置において、基地局が、バイロットチャネルを通信チャネルに比べて低パワーで送信することを特徴とするものであり、バイロットチャネルは、同期検波用基準信号として高い信頼度を得る必要がなくなるので、通信チャネルに比べて低いパワーで送信することにより、バイロットチャネルによる他局間干渉量をより低減することができ、通信チャネル品質を

向上させることができる。

【0014】また、請求項3に記載の発明は、直接拡散CDMA方式を用いるセルラ無線伝送装置において、移動局が、基地局がパイロットチャネルおよびパイロットシンボルを内挿した通信チャネルを同一周波数に多重して送信した信号に対してチップ同期を取る手段と、通信チャネルに内挿されたパイロットシンボルを用いて同期検波を行う手段とを備えたものであり、基地局から通信チャネルよりも低いパワーで送信されてきたパイロットチャネルからチップ同期信号を検出することにより、通信チャネルにおける逆拡散符号の位相を求めることが可能とともに、基地局が各通信チャネルごとに送信アンテナ指向性を制御して送信する場合でも、通信チャネルに内挿されたパイロットシンボルから正確な同期検波を行うことができる。

【0015】また、請求項4に記載の発明は、請求項3記載のCDMAセルラ無線伝送装置において、移動局が、異なる位相のパイロットチャネルの受信レベルを検索する手段を備えたものであり、他セルが同じ拡散符号を使用し、かつ位相をずらしてパイロットチャネルを伝送するシステムの場合でも、他セルの信号情報を得ることにより、自セルにおける同期検波を正確に行うことができる。

【0016】また、請求項5に記載の発明は、直接拡散CDMA方式を用いるセルラ無線伝送装置において、基地局が、パイロットチャネルを出力する手段と、パイロットシンボルを内挿した通信チャネルを出力する手段と、パイロットチャネルおよび通信チャネルを同一周波数に多重して送信する手段とを備え、移動局が、基地局がパイロットチャネルおよびパイロットシンボルを内挿した通信チャネルを同一周波数に多重して送信した信号に対してチップ同期を取る手段と、通信チャネルに内挿されたパイロットシンボルを用いて同期検波を行う手段とを備えたものであり、基地局において、パイロットチャネルに加えて、各通信チャネルに内挿型同期検波を目的としたパイロットシンボル（既知シンボル）を周期的に挿入することにより、パイロットチャネルは、同期検波用基準信号として高い信頼度を得るために通信チャネルに比べてより高いパワーで送信する必要がなくなり、通信チャネルに与える他局間干渉を低減することができる。また、移動局において、基地局から送信されてきた多重信号からチップ同期信号を検出することにより、通信チャネルにおける逆拡散符号の位相を求めることが可能さらに、基地局が各通信チャネルごとに送信アンテナ指向性を制御して送信する場合でも、通信チャネルに内挿されたパイロットシンボルから正確な同期検波を行うことができる。

【0017】また、請求項6に記載の発明は、請求項5記載のCDMAセルラ無線伝送装置において、基地局が、パイロットチャネルを通信チャネルに比べて低パワー

で送信することを特徴とするものであり、パイロットチャネルは、同期検波用基準信号として高い信頼度を得る必要がなくなるので、通信チャネルに比べて低いパワーで送信することにより、パイロットチャネルによる他局間干渉量をより低減することができ、通信チャネル品質を向上させることができる。

【0018】請求項7に記載の発明は、請求項5または6記載のCDMAセルラ無線伝送装置において、移動局が、異なる位相のパイロットチャネルの受信レベルを検索する手段を備えたものであり、他セルが同じ拡散符号を使用し、かつ位相をずらしてパイロットチャネルを伝送するシステムの場合でも、他セルの信号情報を得ることにより、自セルにおける同期検波を正確に行うことができる。

【0019】以下、本発明の実施の形態について、図1から図3を用いて説明する。

（実施の形態1）図1は本発明の第1の実施の形態におけるCDMA方式セルラ無線伝送装置の基地局の構成を示すものである。図1において、101はパイロットチャネル、102は送信データ(1)、103は拡散信号(1)、104は拡散回路、105はウェイトW(1)、106は通信チャネル(1)、107は送信データ(2)、108はパイロットシンボル（既知シンボル）、109はスイッチ、110は拡散符号(2)、111は拡散回路、112はウェイトW(2)、113は通信チャネル(m-1)、114は多重回路、115は無線送信部、116はアンテナである。

【0020】次に、本実施の形態における動作について説明する。パイロットチャネル101では、送信データ(1)102が拡散符号(1)103により拡散回路104で拡散され、ウェイトW(1)105を乗じて出力される。このとき、送信データ(1)102は特に情報を伝送する必要はない、無変調データ（全て0または1のデータ）でもよい。図1では、通信チャネルとして(m-1)チャネルあるとしており、通信チャネル106は、送信データ(2)107を伝送する一方、ある周期Tごとにパイロットシンボル108をスイッチ109で切り替えて出力し、拡散符号(2)110により拡散回路111で拡散され、ウェイトW(2)112を乗じて出力される。通信チャネル(m-1)までの他の通信チャネルにおいても同様な動作を行う。各チャネルの出力は、多重回路114により多重され、無線送信部115によってアップコンバートされ、アンテナ116から送信される。

【0021】以上のように、本実施の形態1によれば、パイロットチャネルに加えて、各通信チャネルに内挿型同期検波を目的としたパイロットシンボル（既知シンボル）を周期的に挿入することにより、パイロットチャネルは、同期検波用基準信号として高い信頼度を得るために通信チャネルに比べてより高いパワーで送信する必要が

なくなるので、通信チャネルに与える他局間干渉を低減することができる。また送信アンテナ制御を行って通信チャネルを送信する場合でも、移動局側において、通信チャネルに内挿されたパイロットシンボルを用いて同期検波を行うことができるので、静特性の優れた無線伝送を行うことができる。

【0022】(実施の形態2) 本発明の第2の実施の形態におけるCDMA方式セルラ無線送信装置の基地局の構成は上記実施の形態1と同様である。図1において、通信チャネルにおけるウェイトW(2)からW(m)は、送信電力制御に用いるものであり、通信チャネル間の送信電力に重み付けを行う。これに対して、本実施の形態では、パイロットチャネルのウェイトW(1)105を他の通信チャネルのウェイトよりも低い値、例えばウェイトW(2)からW(m)の最小値Min W2…Wmに対して、W1 < Min W2…Wmの重み付けをして伝送する。

【0023】本実施の形態におけるチャネルフォーマットを図2に示す。各通信チャネルでは、送信データに加えて、周期Tごとにパイロットシンボル201が挿入されている。図2において、各チャネルの高さ寸法は送信パワを表すものとする。本実施の形態では、通信チャネルのウェイトW(2)からW(m)を全て等しくしているのに対し、パイロットチャネル203は、通信チャネルに比べて低いパワーで送信している。

【0024】なお、図2はパイロットチャネルと通信チャネルとを多重した信号を連続的に送信した状態を示しているが、時間的に送信をON/OFFするバースト送信または間欠送信、または同一の無線周波数を送信／受信に時間分割して通信を行う方式であるTDD(Time Division Duplex)方式においても、同様に上記チャネルを多重送信することができる。

【0025】以上のように、本実施の形態2によれば、パイロットチャネルは、同期検波用基準信号として高い信頼度を得る必要はなく、通信チャネルに比べて低いパワーで送信することができるので、パイロットチャネルによる他局間干渉量をより低減することができ、通信チャネル品質を向上させることができる。

【0026】(実施の形態3) 図3は本発明の第3の実施の形態におけるCDMA方式セルラ無線伝送装置の移動局の構成を示すものである。図3において、301はアンテナ、302は無線受信部、303はパイロットチャネル、304は拡散符号(1)、305は相関回路、306はパワ検出回路、307はチップ同期回路、308はチップ同期信号、309は他セルモニタ回路、310は他セル信号レベル情報、311は通信チャネル、312は拡散符号(i)、313は相関回路、314は検波回路、315は2値判定回路、316は受信データである。

【0027】次に、本実施の形態における動作について説明する。アンテナ301により受信された信号は、無

線受信部302でダウンコンバートされる。そして、パイロットチャネル303では、拡散符号(1)304により相関回路305で逆拡散され、パワ検出回路306において各サンプリング(位相)ごとの受信パワを演算し、チップ同期回路307において、ある時定数で積分する(フィルタリング)することにより、チップ同期信号308を出力する。このチップ同期信号308を用いて、通信チャネル311の相関回路313における拡散符号(i)312との逆拡散の位相を決定する。また、他セルが同じ拡散符号(1)304を使用し、かつ位相をずらしてパイロットチャネルを伝送するシステムの場合は、パワ検出回路306の出力から他セルモニタ回路309により、異なる位相のパイロットチャネルの受信レベルを検索することにより、他セル信号レベル情報310を得ることができる。

【0028】また、通信チャネル311では、相関回路313で拡散符号(i)312で逆拡散した信号を、検波回路314において、内挿されたパイロットシンボルを用いて同期検波し、2値判定回路315で判定して復調し、受信データ316を出力する。

【0029】なお、チップ同期信号308に関しては、必ずしもパイロットチャネル信号を用いる必要はなく、通信チャネルの相関器をデジタルマッチドフィルタや複数のスライディング相関器で構成することにより、その相関器出力を用いて、チップ同期情報を得ることができる。また、チップ同期信号308を得るのに、必ずしもパワ検出を行う必要はない。さらに、他セルが同じ拡散符号(1)304を使用し、かつ位相をずらしてパイロットチャネルを伝送するシステムを探らない場合には、他セル信号レベル情報310を得るために構成は不要である。

【0030】以上のように、本実施の形態3によれば、移動局に、パイロットチャネルからチップ同期を取り手段307と、他セルの信号情報を得る手段309と、通信チャネルから同期検波を行う手段314を備えているので、基地局から通信チャネルよりも低いパワーで送信されてきたパイロットチャネルから、チップ同期信号および他セル信号情報を検出することにより、通信チャネルにおける逆拡散符号の位相を求めることができ、さらに、基地局が各通信チャネルごとに送信アンテナ指向性を制御して送信する場合でも、通信チャネルに内挿されたパイロットシンボルから正確な同期検波を行うことができる。

【0031】(実施の形態4) 本発明の第4の実施の形態におけるCDMA方式セルラ無線伝送装置は、図1に示した実施の形態1における基地局と、図3に示した実施の形態3における移動局とを組み合わせたものである。

【0032】本実施の形態によれば、基地局側では、パイロットチャネルに加えて、内挿型同期検波を目的とし

たパイロットシンボル（既知シンボル）を周期的に挿入した通信チャネルを送出することにより、パイロットチャネルは、同期検波用基準信号として高い信頼度を得るために通信チャネルに比べてより高いパワーで送信する必要がなくなるので、通信チャネルに与える他局間干渉を低減することができ、移動局側では、通信チャネルに内挿されたパイロットシンボルを用いて同期検波を行うことができる。また、基地局側において、各通信チャネルごとに送信アンテナの指向性を制御して送信する場合でも、移動局側において、パイロットチャネルからチップ同期信号を検出することにより、通信チャネルにおける逆拡散符号の位相を求めることができ、他セル信号情報を検出することにより、自セルにおける同期検波を正確に行うことができる。

【0033】(実施の形態5) 本発明の第5の実施の形態におけるCDMA方式セルラ無線伝送装置は、図2で説明した実施の形態2における基地局と、図3で説明した実施の形態3における移動局とを組み合わせたものである。

【0034】本実施の形態によれば、基地局側では、パイロットチャネルは、同期検波用基準信号として高い信頼度を得る必要がないので、通信チャネルに比べて低いパワーで送信するためのウェイトを設定することにより、パイロットチャネルによる他局間干渉をより低減することができる。また移動局側では、通信チャネルよりも低いパワーで送信されたパイロットチャネルに対して、パイロットシンボルを内挿された通信チャネルから同期検波を行うことにより、正確な同期検波を行うことができる。

【0035】

【発明の効果】以上のように、本発明は、直接拡散CDMA方式を用いるセルラ無線伝送装置において、基地局が、パイロットチャネルを出力する手段と、パイロットシンボルを内挿した通信チャネルを出力する手段と、パイロットチャネルおよび通信チャネルを同一周波数に多重して送信する手段とを備えることにより、パイロットチャネルは同期検波用基準信号として高い信頼度を得る必要はなく、通信チャネルに比べて低いパワーで送信することにより、パイロットチャネルによる他局間干渉量を低減することができる。また、基地局において、各通信チャネルごとに送信アンテナ指向性を制御して送信する場合に、通信チャネルに内挿されたパイロットシンボルから同期検波を行うため、正確な同期検波を行うことができるという効果が得られる。

【図面の簡単な説明】

【図1】本発明の実施の形態1、2、4および5におけるCDMA方式セルラ無線伝送装置の基地局の構成を示すブロック図

【図2】本発明の実施の形態2および5におけるパイロットチャネル多重およびパイロットシンボル内挿の一例

を示すチャネルフォーマット図

【図3】本発明の実施の形態3、4および5におけるCDMA方式セルラ無線伝送装置の移動局の構成を示すブロック図

【図4】従来のCDMA方式セルラ無線伝送装置の基地局の構成を示すブロック図

【図5】従来のCDMA方式セルラ無線伝送装置の移動局の構成を示すブロック図

【図6】送信アンテナ指向性制御および無指向性送信における伝搬経路の一例を示す模式図

【図7】従来におけるパイロットシンボル内挿の一例を示すチャネルフォーマット図

【図8】従来におけるパイロットチャネル多重の一例を示すチャネルフォーマット図

【符号の説明】

- 101 パイロットチャネル
- 102 送信データ(1)
- 103 拡散符号(1)
- 104 拡散回路
- 105 ウェイトW(1)
- 106 通信チャネル
- 107 送信データ(2)
- 108 パイロットシンボル
- 109 スイッチ
- 110 拡散符号(2)
- 111 拡散回路
- 112 ウェイトW(2)
- 113 通信チャネル
- 114 多重回路
- 115 無線送信部
- 116 アンテナ
- 201 パイロットシンボル
- 301 アンテナ
- 302 無線受信部
- 303 パイロットチャネル
- 304 拡散符号(1)
- 305 相関回路
- 306 パワ検出回路
- 307 チップ同期回路
- 308 チップ同期信号
- 309 他セルモニタ回路
- 310 他セル信号レベル情報
- 311 通信チャネル
- 312 拡散符号(i)
- 313 相関回路
- 314 検波回路
- 315 2値判定回路
- 316 受信データ
- 401 パイロットチャネル
- 402 送信データ(1)

403	拡散符号(1)	508	チップ同期信号
404	拡散回路	509	他セルモニタ回路
405	ウェイトW(1)	510	他セル信号レベル情報
406	通信チャネル	511	位相推定回路
407	送信データ(2)	512	位相情報
408	拡散符号(2)	513	通信チャネル
409	拡散回路	514	拡散符号(i)
410	ウェイトW(2)	515	相関回路
411	通信チャネル	516	検波回路
412	多重回路	517	2値判定回路
413	無線送信部	518	受信データ
414	アンテナ	601	基地局
501	アンテナ	602	移動局(1)
502	無線受信部	603	移動局(2)
503	パイロットチャネル	604	移動局(3)
504	拡散符号(1)	605	バス
505	相関回路	606	バス
506	パワ検出回路	701	パイロットシンボル
507	チップ同期回路	801	パイロットチャネル

【図1】

【図2】

【図3】

【図4】

【図6】

【図5】

【図7】

【図8】

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.