

VOCATIONAL SCHOOL GRADUATE ACADEMY

Mobile Programmer

Pertemuan 15: Menentukan Mobile Seluler Network

PROFIL PENGAJAR

Jabatan Akademik (Lektor / Kepala LAB Prodi Teknik Komputer)
Latarbelakang Pendidikan Pengajar

- S1 STMIK Budi Darma (Skripsi : Aps Mobile Kompresi SMS)
- S2 Universitas Putra Indonesia YPTK Padang (Tesis : Aps Mobile Security SMS)

Riwayat Pekerjaan

- Dosen Tetap Politeknik Negeri Medan
- Trainer Pemrograman Java dan Mobile, Networking, Cyber Security, OS Server
- Konsultan Bidang Aplikasi , Networking, Cyber Security dan Server
- CEO PT. Nusa Tirta Teknologi

Sertifikat Kompetensi:

- Program : Senior Programmer (BNSP)
- Networking: Mikrotik, CISCO
- Server : Windows Server, Redhat
- Project : Comptia Project +

Contact Pengajar

Ponsel: -

Email: azanuddin@polmed.ac.id

Deskripsi Singkat

Deskripsi Singkat mengenai Topik

Topik ini menjelaskan mobile cellular network, menunjukkan Desain dari hardware sensor yang ada pada teknologi mobile computing, mengidentifikasikan protocol dan fitur-fitur pada mobile cellular network, menjelaskan arsitektur GSM pada mobile cellular network dan menunjukkan aspek security pada mobile sensor

Tujuan Pelatihan

Setelah pertemuan selesai peserta pelatihan mampu:

- 1.Menjelaskan mobile cellular network
- 2.Menunjukkan Desain dari hardware sensor yang ada pada teknologi mobile computing
- 3. Mengidentifikasikan protocol dan fitur-fitur pada mobile cellular network
- 4.Menjelaskan arsitektur GSM pada mobile cellular network

Materi Yang akan disampaikan:

- 1. Mobile Cellular Network
- 2. Protokol dan Fitur-fitur pada Mobile Cellular Network
- 3. Arsitektur GSM pada Mobile Cellular Network
- 4. Mobile Phone Network
- 5. Proses- Proses pada Mobile IP Concept

Generasi Jaringan Telekomunikasi di Indonesia

- 1G Original analog cellular for voice (AMPS, NMT, TACS) 14.4 kbps
- 2G Digital narrowband circuit data (TDMA, CDMA) 9-14.4 kbps
- 2.5G Packet data onto a 2G network (GPRS, EDGE) 20-40 kpbs
- 3G Digital broadband packet data (CDMA, EV-DO, UMTS, EDGE) 500-700 kbps
- 3.5G Replacement for EDGE is HSPA 1-3 mbps and HSDPA up to 7.2Mbps
- 4G Digital broadband packet data all IP (Wi-Fi, WIMAX, LTE) 3-5 mbps
- 5G Gigabit per second

Mobile Cellular Network

- Cellular network atau Mobile network merupakan jaringan nirkabel yang didistribusikan melewati suatu area yang disebut dengan cell bagi semua perangkat yang bersifat bergerak.
- Daerah layanannya dibagi-bagi menjadi daerah yang kecil-kecil yang disebut Sel (Cell).
- Sifat: Pelanggan mampu bergerak secara bebas di dalam area layanan tanpa terjadi pemutusan hubungan.

Mobile Cellular Network

CELL (SEL)

- ◆ Definisi: Area cakupan (coverage area) dari Radio Base Station.
- Ukuran Sel: Macrocell (>5km), Microcell (3-5km), Picocell(<1 km).</p>
- Konsep bentuk sel dalam perencanaan : Sel berbentuk heksagonal (atau bentuk yang lain) hanya digunakan untuk mempermudah penggambaran pada layout perencanaan.

Contoh Konsep Perbandingan Sel GSM dan CDMA

Mobile Cellular Network menawarkan beberapa fitur antara lain :

- Kapasitasnya lebih besar dibandingkan dengan sistem pemancar besar tunggal
- 2. Menggunakan daya lebih sedikit dibandingkan dengan sistem pemancar tunggal
- 3. Area cakupan lebih luas dibandingkan dengan sistem pemancar teresterial tunggal
- 4. Memiliki mekanisme kunci yang memungkinkan komunikasi tidak terputus saat pengguna bergerak menuju cell atau area lain dalam jaringan.

Komponen – Komponen dalam Jaringan Seluler Bergerak adalah :

- 1.Public Telecommunication Switching Network (PSTN)
- 2. Mobile Switching Center (MSC)
- 3. Base Transceiver Station (BTS
- 4. Mobile Station (MS)

Evolusi Mobile Seluler Berdasarkan Generasi

1G ☐ AMPS (Advanced Mobile Phone Service)

2G
GSM (Global System for Mobile Communication)

2.5G ☐ GPRS (General Packet Radio Services)

2.00 - Of the (Contoral Factor Radio Convictor)

3G □ EVDO (Evolution Data Optimized)

3.75G
HSUPA (High Speed Uplink Packet Access)

EDGE (Enhanced Data rates for GSM Evolution)

HSDPA (High Speed Downlink Packet Access)

OTS 2024 G □ LTE (Long Term Evolution)

#JADIJAGOANDIGITAL

Technology	1G	2G/2.5G	3G	4G	5G
Deployment	1970/1984	1980/1999	1990/2002	2000/2010	2014/2015
Bandwidth	2kbps	14-64kbps	2mbps	200mbps	>1gbps
Technology	Analog cellular	Digital cellular	Broadbandwidth/ cdma/ip technology	Unified ip & seamless combo of LAN/WAN /WLAN/PAN	4G+WWWW
Service	Mobile telephony	Digital voice, short messaging	Integrated high quality audio, video & data	Dynamic information access, variable devices	Dynamic information access, variable devices with AI capabilities
Multiplexing	FDMA	TDMA/CDMA	CDMA	CDMA	CDMA
Switching	Circuit	Circuit/circuit for access network & air interface	Packet except for air interface	All packet	All packet
Core network	PSTN	PSTN	Packet network	Internet	Internet
Handoff	Horizontal	Horizontal	Horizontal	Horizontal&Vertical	Horizontal&Vertical

1G

- Merupakan generasi pertama yang digunakan pada ponsel klasik – "brick phones" dan "bag phones" – sebelum hadirnya smartphone.
- Jaringan 1G merupakan sinyal radio yang ditransmisikan secara analog sehingga hanya digunakan untuk telepon dalam bentuk suara
- Kecepatannya hanya mencapai 2,4 kbps
- Contoh: Analog Mobile Phone System (AMPS), TACS

Cleared spectrum for exclusive use

by mobile technologies

Operator-deployed base stations provide access for subscribers

IANCV PAUSA

Frequency Reuse

Reusing frequencies without interference through geographical separation

Neighboring **cells** operate on different frequencies to avoid interference

Mobile Network

Coordinated network for seamless access and seamless mobility

Integrated, transparent backhaul network provides seamless access

Keterbatasan 1G

Limited Scalability

Analog devices are large/heavy, power inefficient, and high cost

2G

- Contoh: D-AMPS, GSM
- Diperuntukkan pada ponsel digital

Time Division Multiple Access (TDMA)

Allows multiple users per radio channel with each user talking one at a time

Scalable Technology

Digital components cost/weight far less plus deliver more secure signal

2G CDMA

CDMA enables users to share the same frequency and communicate at the same time

3G

3G EVDO

Data Optimized Channel

Splits channel into time intervals enabling a single user to get all the resources at once

Enables richer content

Adaptive Modulation

Uses higher order modulation to get more bps per Hz for users with good signal quality

Increases peak data rates

Opportunistic Scheduling

Optimizes channel by scheduling users at the time instances when users have good radio signal conditions (with fairness)

Increases overall capacity

3G EVDO dan HSPA

CDMA2000/EV-DO

WCDMA/HSPA

Keuntungan 3G

4G LTE

LTE adalah lanjutan dan evolusi 2G dan 3G sistem dan juga untuk menyediakan layanan tingkat kualitas yang sama dengan jaringan wired. LTE ini merupakan pengembangan dan teknologi sebelumnya, yaitu UMTS (3G) dan HSPA (3.5G) yang mana LTE disebut sebagai generasi ke-4 (4G).

4G LTE

- LTE menggunakan teknologi OFDM (Orthogonal Frequency Division Multiplexing)
- OFDM: teknik transmisi yang menggunakan beberapa buah frekuensi yang saling tegak lurus (orthogonal)
- Mirip seperti FDM dengan membagi beberapa kanal yang dialokasikan tiap user, tetapi OFDM menggunakan spektrum yang lebih efisien dengan channel spacing antar pengguna lebih dekat

Keuntungan 4G LTE

Download, browse, stream, and game faster than ever with faster and better connectivity

Wider Channels

Flexible support for channels up to 20 MHz enabled with OFDMA

More Antennas

Advanced MIMO techniques to create spatially separated paths; 2x2 MIMO mainstream

Carrier Aggregation

Aggregate up to 100 MHz for higher data rates - 2 carrier (2C) commercial: 3C announced1

Connect **Real-time**

Simplified Core Network

All IP network with flattened architecture resulting in less equipment per transmission

Low Latencies

Optimized response times for both user and control plane improves user experience

Compare the speed of the Gs below...if kbps were mph

Protokol dan Fitur-fitur pada Mobile Cellular Network

Yang termasuk teknologi dan protokol pada 1G yakni:

- AMPS (Advanced Mobile Phone Service) atau IS-136
- NMT (Nordic Mobile Telephony)
- HICAP 3.
- TACS
- 5. C 450
- C-Netz 6.

DTS 2021 8.

Mobitex 7.

Yang termasuk teknologi dan protokol pada 2G yakni:

- 1. Global System for Mobile (GSM)
- 2. General Packet Radio Service (GPRS)
- 3. Enhanced Data Rates for GSM Evolution (EDGE)

Yang termasuk teknologi dan protokol pada 3G yakni:

- EDGE (Enhanced Data Rates for Global/GSM Evolution) atau E-GPRS (Enhanced -General Packet Radio Services).
- 2. W-CDMA (Wideband Coded Division Multiple Access) atau UMTS (Universal Mobile Telecommunication System).
- System).

 3. CDMA2000-1X EV/DV (Evolution/Data/Voice) dan CDMA2000-1X EV-DO (Data Only)/ (Data Optimized)
- 3. CDMA2000-1X EV/DV (Evolution/Data/Voice) dan CDMA2000-1X EV-DO (Data Only)/ (Data Optimized) atau IS-856.
- 4. TD-CDMA (Time Division Code Division Multiple Access) atau UMTS-TDD (Universal Mobile Telecommunication System Time Division Duplexing)
- 5. GAN (Generic Access Network) atau UMA (Unlicensed Mobile Access)
 - HSPA (High-Speed Packet Access)
- 7. HSDPA (High Speed Downlink Packet Access)
- 8. HSUPA (High Speed Uplink Packet Access)
- o. Tioor // (riight opeca of

6.

- 9. HSPA+ (HSPA Evolution)
- 10. FOMA (Freedom of Mobile Multimedia Access)
- 11. HSOPA (High Speed OFDM Packet Access)

Yang termasuk teknologi dan protokol pada 4G yakni:

- 1. 4G Revolusioner (4G-R)
- 2. 4G Evolusioner (4G-E)
- 3. IP-Media Subsystem (IMS)

Arsitektur GSM pada Mobile Cellular Network

- Global System for Mobile Communication (GSM) merupakan sistem teknologi seluler generasi ke-2 (2G).
- Teknologi ini mengadopsi sistem modulasi digital, kapasitas lebih besar, kualitas suara dan sekuritas yang lebih baik jika dibandingkan teknologi seluler generasi pertama AMPS (1G) yang masih analog

Generasi Jaringan Telekomunikasi di Indonesia

- G stands for Generation and is related to data transmission speed
- 1G Original analog cellular for voice (AMPS, NMT, TACS) 14.4 kbps
- 2G Digital narrowband circuit data (TDMA, CDMA) 9-14.4 kbps
- 2.5G Packet data onto a 2G network (GPRS, EDGE) 20-40 kpbs
- 3G Digital broadband packet data (CDMA, EV-DO, UMTS, EDGE) 500-700 kbps
- 3.5G Replacement for EDGE is HSPA 1-3 mbps and HSDPA up to 7.2Mbps
- 4G Digital broadband packet data all IP (Wi-Fi, WIMAX, LTE) 3-5 mbps
- 5G Gigabit per second in a few years (?) 1+ gbps

Arsitektur Jaringan GSM terdiri dari 3 bagian utama :

- Switching Subsystem (SSS) = Network Switching Subsystem (NSS)
- 2. Radio Subsystem (RSS) = BaseStation Subsystem (BSS)& Mobile Station (MS)
- 3. Operation & Maintenance System (OMS) = Operation and Support System (OSS)

Sistem GSM memiliki tiga buah antarmuka standar yang terdiri dari :

- Antarmuka udara (Um-interface) yang menghubungkan perangkat MS dan BTS,
- 2. Antarmuka Abis (Abis-interface) yang menghubungkan BTS dan BSC, serta
- 3. Antarmuka A (A-interface) berupa PCM line yang menghubungkan BSC dan MSC

Base Station Subsystem (BSS), BSS terdiri dari tiga perangkat yaitu

- 1. BaseTransceiver Station (BTS)
- 2. Base Station Controller (BTC)
- 3. Transcoder (TRC)

Base Station System

Komponen NSS pada jaringan GSM terdiri dari :yaitu :

- 1. Mobile Switching Center (MSC)
- 2. Home Location Register (HLR)
- 3. Visitor Location Register (VLR)
- 4. Authentication Center (AuC)
- 5. Equipment Identity Register (EIR)
- 6. Gateway MSC (GMSC)

Komponen OSS pada jaringan GSM terdiri dari:

- Operation and Maintenance Center (OMC), OMC sebagai pusat pengontrolan operasi dan pemeliharaan jaringan. Fungsi utamanya mengawasi alarm perangkat dan perbaikan terhadap kesalahan operasi.
- 2. Network Management Centre (NMC), NMC berfungsi untuk pengontrolan operasi dan pemeliharaan jaringan yang lebih besar dari OMC.

Operation Support Subsystem

Mobile Phone Network

- Contoh paling umum dari jaringan seluler adalah jaringan telepon seluler (telepon seluler)
- Ponsel adalah telepon portabel yang menerima atau melakukan panggilan melalui BTS
- Jaringan mobile phone modern menggunakan cell karena keterbatasan frekuensi radio

Struktur dari mobile phone cellular network terdiri dari :

- Jaringan Radio Base Station atau base station subsystem.
- Core circuit switched network yang menangani panggilan suara dan teks.
- 3. Packet switched network yang menangani mobile data
- Public switched telephone network yang menghubungkan antar bagian subscribers dengan jaringan telepon besar lainnya.

Handover

Handover (HO) adalah pengalihan panggilan dari satu sel ke sel lain ketika sebuah telepon seluler bergerak melewati wilayah cakupan layanan lintas sel.

Proses Handover terjadi karena kualitas atau daya ratio turun di bawah nilai yang dispesifikasikan dalam BSC. Penurunan level sinyal ini dideteksi dari pengukuran yang dilakukan MS maupun BTS.

Proses Handover

Frekuensi Seluler

- 1. Pada perkembangan teknologi mobile phone network generasi pertama kali menggunakan teknologi analog circuit-switched dengan berbasis frequency division multiple access (FDMA), bekerja pada pita frekuensi 800–900 MHz.
- 2. Pada teknologi mobile phone network generasi kedua menggunakan frekuensi yang dipakai dalam teknologi GSM yaitu 890–960 MHz dan 1710–1880 MHz.
- 3. Pada teknologi mobile phone network generasi ketiga sampai sekarang menggunakan frekuensi 1710–2170 MHz.

Proses- Proses pada Mobile IP Concept

Kondisi Mobile Network Sekarang?

Perangkat Mobile

Vs

Perangkat Non Mobile

Perilaku User Pada Perangkat Mobile

Low Mobility

High Mobility

Medium Mobility

Masalah Pada TCP?

Host harus berada di lokasi atau jangkauan wilayah yang tetap

Mengandalkan Routing Untuk mengirim data

Bagaimana Jika User Berpindah Ke ruangan atau area lain?

Solusi?

Mobile IP

Protokol komunikasi yang di desain untuk perangkat mobile agar memiliki ip address permanen walaupun berpindah network

Mobile Node

Semua bentuk perangkat mobile yang terhubung ke Home Network.

Mobile node pada protocol Mobile IP memiliki 2 ip addres yaitu : Permanent Address dan Care Off Address

Home Agent

Router yang memiliki kemampuan khusus yang sedang melayani jaringan dimana

Mobile Node sedang terhubung.

Home Agent dianggap menjadi "rumah" permanen dimana Mobile Node terhubung pertama kali.

Permanent Addres di dapatkan oleh Mobile Node pada Router ini.

Permanent Address

Alamat IP yang didapat oleh Mobile Node pada jaringan Home Agent nya, alamat ip ini tidak berubah walaupun Mobile Node berpindah jaringan.

Care Off Address

Alamat IP dari router yang menjadi "rumah" baru bagi Mobile Node, alamat ip ini merupakan tambahan terhadap IP permanent address

Visited Network

Jaringan Baru yang menjadi rumah bagi Mobile Node.

Foreign Agent

Correspondent

Mobile Node lain yang sedang berkomunikasi dengan Mobile Node yang berpindah jaringan

Proses Mobile IP

Agent Discovery

Mobile Node Registration

Direct Routing

Agent Discovery

Home Agent dan Foreing Agent, Melakukan broadcast paket ICMP untuk memberi tahu seluruh

Mobile Node yang ada pada jaringannya.

Mobile Node akan selalu mendengarkan (listen) terhadap broadcast dari Home Agent / Foreign Agent, jika mendapatkan broadcast Mobile Network Menginisiasi Proses Registrasi.

Proses Registrasi Selalu di inisiasi oleh Mobile Node baik ke Home Agent atau Foreign Agent

Di Home_Network

Mobile Node Registrasi Ke Home Agent

Hanya Mengisi Permanent Address, Tanpa Mengisi Care Off Address

* Registrasi terjadi setiap kali Mobile Node berpindah jaringan

Di Foreign Network

Mobile Node Registrasi Ke Foreign Agent

Mempertahankan Permanent Address

Menambahkan Care Off Address

Mobile Node Mengirim Care Off Access ke Home Agent melalui Foreign Agent

Data ini di lanjutkan dengan Direct Routing / Indirect Routing ke Mobile Node

Jika ada Paket data masuk dari Correspondend Data di intercept oleh Home Agent

Home Agent Bertindak sebagai Mobile Node Palsu

Indirect Routing

Direct Routing

IP

Referensi

- 1. Efraim Turban, D. K.-P. (2012). Electronic commerce (Seventh Edition ed.). Pearson.
- 1. Gottapu Sasibhushana Rao, 2013. Mobile Cellular Communication (First Edition). Pearson.
- Guowang Miao, Jens Zander, Ki Won Sung, and Ben Slimane, Fundamentals of Mobile Data Networks, Cambridge University Press, <u>ISBN</u> <u>1107143217</u>, 2016.
- 1. Irwanto, A. (2013, September 7). area teknik. Retrieved Oktober 25, 2017, from http://area-teknik.blogspot.co.id/2013/09/perbedaan-teknologi-1g-2g-25g-3g-35g-4g.html
- Wulan. (2015, November 2015). Srydari. Retrieved Oktober 25, 2017, from http://srydari.blogspot.co.id/2015/11/perkembangan-teknologi-dari-1g-sampai-5g.html

Tim Pengajar

- Alif Akbar Fitrawan, S.Pd, M. Kom (Politeknik Negeri Banyuwangi);
- Anwar, S.Si, MCs. (Politeknik Negeri Lhokseumawe);
- Eddo Fajar Nugroho (BPPTIK Cikarang);
- Eddy Tungadi, S.T., M.T. (Politeknik Negeri Ujung Pandang);
- Fitri Wibowo (Politeknik Negeri Pontianak);
- Ghifari Munawar (Politeknik Negeri Bandung);
- Hetty Meileni, S.Kom., M.T. (Politeknik Negeri Sriwijaya);
- I Wayan Candra Winetra, S.Kom., M.Kom (Politeknik Negeri Bali);
- Irkham Huda (Vokasi UGM);
- · Josseano Amakora Koli Parera, S.Kom., M.T. (Politeknik Negeri Ambon);
- I Komang Sugiartha, S.Kom., MMSI (Universitas Gunadarma);
- Lucia Sri Istiyowati, M.Kom (Institut Perbanas);
- Maksy Sendiang, ST, MIT (Politeknik Negeri Manado);
- · Medi Noviana (Universitas Gunadarma);
- Muhammad Nashrullah (Politeknik Negeri Batam);
- Nat. I Made Wiryana, S.Si., S.Kom., M.Sc. (Universitas Gunadarma);
- Rika Idmayanti, ST, M.Kom (Politeknik Negeri Padang);
- Rizky Yuniar Hakkun (Politeknik Elektronik Negeri Surabaya);
- Robinson A.Wadu, ST., MT (Politeknik Negeri Kupang);
- · Roslina. M.IT (Politeknik Negeri Medan);
- Sukamto, SKom., MT. (Politeknik Negeri Semarang);
- Syamsi Dwi Cahya, M.Kom. (Politeknik Negeri Jakarta);
- Syamsul Arifin, S.Kom, M.Cs (Politeknik Negeri Jember);
- Usmanudin (Universitas Gunadarma);
- Wandy Alifha Saputra (Politeknik Negeri Banjarmasin);

#JADIJAGOANDIGITAL TERIMA KASIH

digitalent.kominfo

DTS_kominfo

digitalent.kominfo 🚮 digital talent scholarship