

Experimento 3

INTRODUÇÃO ÀS MÁQUINAS DE ESTADOS SÍNCRONAS

	Turmas A e C	Turmas B e D
Pré Relatório	15/09/2015	17/09/2015
Visto	15/09/2015	17/09/2015
Relatório	22/09/2015	24/09/2015

I. OBJETIVO

Projetar e implementar um contador Gray síncrono de 3 bits. O circuito básico deve contar com entradas de /RESET (assíncrona, ativa em nível baixo) e /ENABLE (ativa em nível baixo), além de uma entrada UP/DOWN que deve controlar a direção do contador. Na segunda parte do projeto, deve-se também projetar e implementar uma variação desse contador, para que ele conte com uma entrada de dados paralela e assíncrona.

II. DESCRIÇÃO DO PROBLEMA

II.1 - Contador Gray Síncrono

Implemente um contador Gray síncrono de 3 bits, com entradas de /RESET (assíncrona) e /ENABLE, usando flip-flops JK. A sequência de contagem do $000 \leftrightarrow 001 \leftrightarrow 011 \leftrightarrow$ contador deve ser: $010 \leftrightarrow 110 \leftrightarrow 111 \leftrightarrow 101 \leftrightarrow 100 \leftrightarrow 000 \leftrightarrow \dots$ A entrada UP/DOWN deve selecionar se o contador conta para cima $(000 \rightarrow 001 \rightarrow 011$...) ou para baixo $(000 \rightarrow 100 \rightarrow 101...)$.

A entrada /RESET é ativa em nível baixo, e deve levar o contador de volta ao estado inicial (000) de forma assíncrona, isto é, independentemente do sinal de clock. A entrada /ENABLE, também ativa em nível baixo, habilita a contagem.

Recomenda-se não incluir as entradas /ENABLE e /RESET na tabela de transição de estados. Isto é, as tabelas de transição de estados e os mapas de Karnaugh das entradas J e K dos flip-flops não devem levar em conta essas entradas. Ao invés disso, recomenda-se projetar uma lógica combinacional para as entradas Clock, Preset e Clear de cada flip-flop.

Para os flip-flops, utilize circuitos integrados com entradas de preset e clear independentes para cada flip-flop (ex: 7476 ou 74112). Se você não possui esse circuito integrado em seu kit, ele lhe será disponibilizado durante a aula para a montagem do circuito.

Uma dica importante para a simplificação das equações booleanas das entradas J e K é lembrar das equações da porta XOR e XNOR:

$$\frac{A \oplus B}{A \oplus B} = \overline{AB} + A\overline{B}$$
$$\overline{A \oplus B} = \overline{AB} + AB$$

II.2 - Contador com entrada paralela de dados

Modifique o contador descrito acima, de modo a implementar uma entrada paralela e assíncrona de dados. Tal entrada paralela permitirá levar o contador para um determinado estado, de maneira forçada.

Uma entrada /PE (parallel enable), ativa em nível baixo, habilitará ou não a entrada paralela de dados. A entrada paralela de dados deve funcionar de forma assíncrona, isto é, independentemente do sinal de clock. Portanto, as tabelas de transição de estados e os mapas de Karnaugh das entradas J e K dos flip-flops não devem levar em conta essa entrada. Ao invés disso, use portas lógicas nas entradas de preset e clear dos flip-flops.

III. INSTRUÇÕES PARA A REALIZAÇÃO DO EXPERIMENTO

III.1 – Pré Relatório

Devem ser projetados os dois contadores descritos na seção 2.

Para o projeto do circuito descrito na seção 2.1, deverão ser apresentados:

- 1. A definição das entradas e saídas;
- O diagrama de estados que representa o contador;
- 3. Os mapas de Karnaugh para as entradas J e K dos flip-flops;
- 4. As equações de excitação, obtidas a partir dos mapas de Karnaugh;
- O esquemático completo do circuito, com as pinagens das portas lógicas e flip-flops devidamente indicadas.

Para o projeto do circuito descrito na seção 2.2, deve ser apresentado o esquemático completo do circuito, com as pinagens das portas lógicas e flip-flops devidamente indicadas. A pinagem deve ser escolhida de modo a aproveitar o máximo possível da montagem do primeiro circuito.

IV. PARTE EXPERIMENTAL

O experimento será realizado **em apenas uma aula** e terá dois vistos (um para cada circuito). O visto do primeiro circuito valerá 6 pontos e o visto do segundo circuito valerá 3 pontos.

V. RELATÓRIO

O relatório é individual, deve ser feito à mão. Consiste em responder as seguintes questões:

- Apresente o projeto completo do sistema (definição de entradas e saídas, diagrama de estados, tabela de transição de estados, mapas de Karnaugh, equações booleanas e esquemáticos dos dois circuitos).
 - O aluno que não apresentar o esquemático terá a pontuação desta questão bastante reduzida. Apresente também uma explicação descritiva e detalhada do comportamento dos dois circuitos, explique a lógica utilizada para que as entradas /RESET, /ENABLE e /PE funcionem. (5 pontos)
- 2) O circuito projetado é bastante flexível, podendo ser utilizado como componente de projeto para outros circuitos. Para que outros projetistas possam utilizar o seu circuito, desenhe a tabela de estados de seu circuito, mostrando todas as entradas (de forma resumida) e desenhe a pinagem de um suposto circuito integrado que utilizaria o seu circuito. (2 pontos)
- 3) No experimento 2, foi projetada uma fechadura digital com 6 estados. Uma particularidade da fechadura é que o diagrama de estados é bastante simples: em cada estado, ou se avança um estado ou se retorna ao estado inicial, conforme mostra a figura:

Mostre como você poderia utilizar o seu CI para implementar a máquina de estados da fechadura digital que segue a tabela de estados seguinte:

Estado Atual	Próximo Estado	Próximo Estado
	se $Z = 0$	se $Z = 1$
000	000	001
001	000	011
011	000	010
010	000	110
110	000	111
111	000	111

Desenhe o circuito completo utilizando o seu CI como se fosse uma caixa preta. Lembre-se que, no circuito do contador Gray projetado neste experimento, as entradas RESET e PE são assíncronas. (3 pontos)