Logical reduction of metarules

Andrew Cropper & Sophie Tourret

ILP

Mode declarations

Progol

ILASP

Aleph

XHAIL

TILDE

• • •

```
Metagol
MIL-Hex

3ILP
ProPPR
Clint
MOBAL
```

. . .

(almost all neural-ILP approaches)

$$P(A,B) \leftarrow Q(A,C),R(C,B)$$

$$P(A,B) \leftarrow Q(A),R(A,B)$$

$$P(A,B) \leftarrow Q(A),R(A,B)$$

Input

% background parent(alice,bob). parent(bob,charlie).

% example grandparent(alice,charlie).

% metarule $P(A,B) \leftarrow \mathbf{Q}(A,C), \mathbf{R}(C,B)$

Output

% subs

Subs = $\{P \setminus grandparent, Q \setminus parent, R \setminus parent\}$

% program

grandparent(A,B) \leftarrow parent(A,C), parent(C,B)

Where do we get metarules from?

Completeness

Cannot learn grandparent/2 with only $P(X) \leftarrow Q(X)$

Efficiency

More metarules = larger hypothesis space

Idea: find logically minimal sets

Entailment redundant metarules [Cropper and Muggleton, ILP14]

The clause C is **entailment redundant** in the clausal theory T \cup {C} when T \models C

Entailment redundancy

C1 =
$$p(A,B) \leftarrow q(A,B)$$

C2 = $p(A,B) \leftarrow q(A,B),r(A)$
C3 = $p(A,B) \leftarrow q(A,B),r(A),s(B,C)$

Entailment redundancy

C1 =
$$p(A,B) \leftarrow q(A,B)$$

C2 = $p(A,B) \leftarrow q(A,B),r(A)$
C3 = $p(A,B) \leftarrow q(A,B),r(A),s(B,C)$

$$\{C1\} \models \{C2,C3\}$$

Entailment reduction

$$P(A,B) \leftarrow Q(A,B)$$

 $P(A,B) \leftarrow Q(B,A)$
 $P(A,B) \leftarrow Q(A,C), R(B,C)$
 $P(A,B) \leftarrow Q(A,C), R(C,B)$
 $P(A,B) \leftarrow Q(B,A), R(A,B)$
 $P(A,B) \leftarrow Q(B,A), R(B,A)$
 $P(A,B) \leftarrow Q(B,C), R(A,C)$
 $P(A,B) \leftarrow Q(B,C), R(C,A)$
 $P(A,B) \leftarrow Q(C,A), R(B,C)$
 $P(A,B) \leftarrow Q(C,A), R(C,B)$
 $P(A,B) \leftarrow Q(C,B), R(A,C)$
 $P(A,B) \leftarrow Q(C,B), R(A,C)$

Entailment reduction

$$P(A,B) \leftarrow Q(A,B)$$

 $P(A,B) \leftarrow Q(B,A)$
 $P(A,B) \leftarrow Q(A,C), R(B,C)$
 $P(A,B) \leftarrow Q(A,C), R(C,B)$
 $P(A,B) \leftarrow Q(B,A), R(A,B)$
 $P(A,B) \leftarrow Q(B,A), R(B,A)$
 $P(A,B) \leftarrow Q(B,C), R(A,C)$
 $P(A,B) \leftarrow Q(B,C), R(C,A)$
 $P(A,B) \leftarrow Q(C,A), R(B,C)$
 $P(A,B) \leftarrow Q(C,A), R(C,B)$
 $P(A,B) \leftarrow Q(C,B), R(A,C)$
 $P(A,B) \leftarrow Q(C,B), R(A,C)$
 $P(A,B) \leftarrow Q(C,B), R(A,C)$

Entailment reduction problem

C1 =
$$P(A,B) \leftarrow Q(A,B)$$

C2 = $P(A,B) \leftarrow Q(A,B),R(A)$
C3 = $P(A,B) \leftarrow Q(A,B),R(A,B)$
C4 = $P(A,B) \leftarrow Q(A,B),R(A,B),S(A,B)$

Entailment reduction problem

C1 =
$$P(A,B) \leftarrow Q(A,B)$$

 $C2 = P(A,B) \leftarrow Q(A,B),R(A)$
C3 = $P(A,B) \leftarrow Q(A,B),R(A,B)$
 $C4 = P(A,B) \leftarrow Q(A,B),R(A,B),S(A,B)$

$$\{C1\} \models \{C2,C3,C4\}$$

Entailment reduction problem

C1 =
$$P(A,B) \leftarrow Q(A,B)$$

C2 = $P(A,B) \leftarrow Q(A,B),R(A)$
C3 = $P(A,B) \leftarrow Q(A,B),R(A,B)$
C4 = $P(A,B) \leftarrow Q(A,B),R(A,B),S(A,B)$

$$\{C1\} \models \{C2,C3,C4\}$$

 $father(A,B) \leftarrow parent(A,B), male(A) *$

Derivation redundancy [Cropper and Tourret, ILP18, JELIA19]

The clause C is **derivationally redundant** in the theory T \cup {C} when T \vdash C

Derivation redundancy

The clause C is **derivationally redundant** in the theory T \cup {C} when T \vdash C

SLD-resolution in this work

Derivation redundancy

C1 =
$$P(A,B) \leftarrow Q(A,B)$$

C2 = $P(A,B) \leftarrow Q(A,B),R(A)$
C3 = $P(A,B) \leftarrow Q(A,B),R(A,B)$
C4 = $P(A,B) \leftarrow Q(A,B),R(A,B),S(A,B)$

Derivation redundancy

C1 =
$$P(A,B) \leftarrow Q(A,B)$$

C2 = $P(A,B) \leftarrow Q(A,B),R(A)$
C3 = $P(A,B) \leftarrow Q(A,B),R(A,B)$
 $C4 = P(A,B) \leftarrow Q(A,B),R(A,B),S(A,B)$

$$\{C1,C2,C3\} \vdash \{C4\}$$

father(A,B) \leftarrow parent(A,B), male(A) \checkmark

MLJ Paper

We compare subsumption, entailment, and derivation reduction

We theoretically show whether infinite fragments of metarules can be logically reduced to finite sets

We run the reduction algorithms on finite sets of metarules to identify minimal sets

We experimentally compare the learning performance of Metagol when supplied with reduced sets of metarule

Theoretical questions

- **Q**. Can we reduce M to a fragment with only two body literals?
- **Q**. Can we reduce M to a fragment with finitely many body literals?
- Q. If M has a finite reduction, what is that fragment?

Idea

- 1. Generate big sets of metarules
- 2. Run the reduction algorithms on the sets
- 3. Study the results.

 H^{a}_{m}

maximum arity **a** maximum body literals **m**

Arity	S	E	D
1	√	\checkmark	\checkmark
2	\checkmark	\checkmark	×
>2	\checkmark	\checkmark	×

Arity	S	Е	D
1	√	\checkmark	✓
2	\checkmark	\checkmark	×
>2	\checkmark	\checkmark	×

C²_∞ cannot be derivationally reduced to C²₂

Arity	S	Е	D
1	\checkmark	\checkmark	√
2	\checkmark	\checkmark	×
>2	\checkmark	\checkmark	×

 \mathbb{C}^{2}_{∞} cannot be derivationally reduced to a finite fragment!

Derivation reduction of connected fragment

$$P(A) \leftarrow Q(B,A)$$

$$P(A,A) \leftarrow Q(B,A)$$

$$P(A,B) \leftarrow Q(B)$$

$$P(A,B) \leftarrow Q(B,A)$$

$$P(A,B) \leftarrow Q(B,B)$$

$$P(A,B) \leftarrow Q(A,B), R(A,B)$$

$$P(A,B) \leftarrow Q(A,C), R(B,C)$$

$$P(A,B) \leftarrow Q(A,C), R(A,D), S(B,C), T(B,D), U(C,D)$$

Why not?

 $P_0(x_1, x_2) \leftarrow P_1(x_1, x_3), P_2(x_1, x_4), P_3(x_2, x_3), P_4(x_2, x_4), P_5(x_3, x_4)$

Can the Datalog D_{∞}^2 fragment be reduced to two body literals?

Can the Datalog D_{∞}^2 fragment be reduced to two body literals?

Arity	S	E	D
1	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	×
>2	×	\checkmark	×

D_∞ cannot be derivationally reduced to a finite fragment

Reduction summary

Arities		\mathscr{C}^a_∞		\mathscr{D}^a_∞		\mathscr{K}^a_∞		\mathscr{U}^a_∞				
а	S	E	D	S	E	D	S	E	D	S	E	D
1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
2	\checkmark	\checkmark	×	\checkmark	\checkmark	×	×	\checkmark	×	×	\checkmark	×
>2	\checkmark	\checkmark	×	×	\checkmark	×	×	\checkmark	×	×	\checkmark	×

Does it matter?

Is there any difference in learning performance when using different reduced sets of metarules?

Trains

1. TRAINS GOING EAST

2. TRAINS GOING WEST

Accuracies

Task	S	E	D	\mathbf{D}^*
$\overline{T_1}$	100 ± 0	100 ± 0	100 ± 0	100 ± 0
T_2	100 ± 0	100 ± 0	100 ± 0	100 ± 0
T_3	68 ± 5	62 ± 5	100 ± 0	100 ± 0
T_4	75 ± 6	75 ± 6	100 ± 0	100 ± 0
T_5	92 ± 4	78 ± 6	78 ± 6	100 ± 0
T_6	52 ± 2	50 ± 0	70 ± 6	100 ± 0
T_7	95 ± 3	65 ± 5	82 ± 5	100 ± 0
T_8	55 ± 3	52 ± 2	72 ± 6	98 ± 2
mean	80 ± 1	73 ± 2	88 ± 2	100 ± 0

Learning times

Task	S	E	D	\mathbf{D}^*
T1	0 ± 0	0 ± 0	0 ± 0	0 ± 0
T2	0 ± 0	0 ± 0	0 ± 0	0 ± 0
Т3	424 ± 59	461 ± 56	0 ± 0	0 ± 0
T4	322 ± 64	340 ± 61	0 ± 0	0 ± 0
T5	226 ± 48	320 ± 59	361 ± 59	5 ± 2
Т6	583 ± 17	600 ± 0	429 ± 51	7 ± 2
T7	226 ± 44	446 ± 55	243 ± 61	6 ± 1
T8	550 ± 35	570 ± 30	361 ± 64	183 ± 40
mean	292 ± 16	342 ± 17	174 ± 16	25 ± 5

String transformations

Input	Output
Arthur Joe Juan	AJJ
Jose Larry Scott	JLS
Kevin Jason Matthew	KJM
Donald Steven George	DSG
Raymond Frank Timothy	RFT

String transformations

	S	E	D	\mathbf{D}^*
Mean predictive accuracy (%)	22 ± 0	22 ± 0	32 ± 0	56 ± 1
Mean learning time (seconds)	467 ± 1	467 ± 1	407 ± 3	270 ± 3

Inducing game rules

GT attrition GT chicken

GT prisoner Minimal decay

Minimal even Multiple buttons and lights

Scissors paper stone Untwisty corridor

Inducing game rules

	S	E	D	\mathbf{D}^*
Balanced accuracy (%)	66	66	72	73
Learning time (seconds)	316	316	327	296

Conclusions

New form of logical reduction

Negative theoretical results (especially for MIL)

Little impact on practical performance

Todo

Overcome negative theoretical result

Expand results to higher-arities

Identify domain-specific sets of metarules

Identify optimal sets of metarule

Logically reduce BK