and by Proposition A.4 (1), we have

$$g(f((\lambda_k)_{k\in K})) = (\lambda_k)_{k\in K},$$

and thus $g \circ f = \text{id}$ and $f \circ g = \text{id}$. By Proposition A.4 (2), the linear map g is an isometry. Therefore, f is a linear bijection and an isometry between $\ell^2(K)$ and E, with inverse g. \square

Remark: The surjectivity of the map $g: E \to \ell^2(K)$ is known as the *Riesz-Fischer* theorem.

Having done all this hard work, we sketch how these results apply to Fourier series. Again we refer the readers to Rudin [140] or Lang [111, 112] for a comprehensive exposition.

Let $\mathcal{C}(T)$ denote the set of all periodic continuous functions $f: [-\pi, \pi] \to \mathbb{C}$ with period 2π . There is a Hilbert space $L^2(T)$ containing $\mathcal{C}(T)$ and such that $\mathcal{C}(T)$ is dense in $L^2(T)$, whose inner product is given by

$$\langle f, g \rangle = \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx.$$

The Hilbert space $L^2(T)$ is the space of Lebesgue square-integrable periodic functions (of period 2π).

It turns out that the family $(e^{ikx})_{k\in\mathbb{Z}}$ is a total orthogonal family in $L^2(T)$, because it is already dense in $\mathcal{C}(T)$ (for instance, see Rudin [140]). Then the Riesz–Fischer theorem says that for every family $(c_k)_{k\in\mathbb{Z}}$ of complex numbers such that

$$\sum_{k\in\mathbb{Z}}|c_k|^2<\infty,$$

there is a unique function $f \in L^2(T)$ such that f is equal to its Fourier series

$$f(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx},$$

where the Fourier coefficients c_k of f are given by the formula

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt}dt.$$

The Parseval theorem says that

$$\sum_{k=-\infty}^{+\infty} c_k \overline{d_k} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} dt$$

for all $f, g \in L^2(T)$, where c_k and d_k are the Fourier coefficients of f and g.