Livestock Breeding and Genomics

Peter von Rohr

20 September 2019

Content

- Course administration
- Linear Algebra
- ► R/RStudio
- ▶ Introduction to Livestock Breeding and Genomics

Who Is Who

- Your name
- Study Major
- ▶ Why this course
- ▶ Previous experiences in animal breeding / R / statistics / . . .

Goals

Official goals: http:

//www.vorlesungsverzeichnis.ethz.ch/Vorlesungsverzeichnis/lerneinheit.view?lang=en&lerneinheitld=131686&semkez=2019W&ansicht=KATALOGDATEN&

- Understanding basic concepts such as
 - selection
 - breeding value
 - selection response
- ▶ Be able to exlpain certain phenomena (see next slide)
- Better understanding of statistics
- Exercises in R

Comments from farmers

- "Deep cow families" (Schweizer Bauer https://www.schweizerbauer.ch/tiere/milchvieh/einekomplette-kuh-zuechten-17854.html)
- ► "I have not met anybody who can explain the concept of a breeding value. My cow has a breeding value of -900 and still gives milk." (Leserbrief im Schweizer Bauer)

Information

- ► Website: https://charlotte-ngs.github.io/LBGFS2019/
- ► Credit points: Written exam on 20.12.2019

Lecture plan

- ► Type G
- ▶ Plan from next week:
 - exercise hour: 9-10
 - ▶ lecture: 10-12

Course program

Week	Date	Topic
1	20.09	Introduction to Livestock Breeding and Genomics
2	27.09	Quantitative Genetics/Single Locus
3	04.10	Genetic Evaluation with Different Sources of Information
4	11.10	Genetic Covariance Between Relatives
5	18.10	Best Linear Unbiased Prediction - Univariate Analysis
6	25.10	Best Linear Unbiased Prediction - Multivariate Analysis
7	01.11	Models with Random Environmental Effects
8	08.11	Analysis of Longitudinal Data
9	15.11	Variance Components Estimation
10	22.11	Linkage Disequilibrium
11	29.11	Genomic Selection
12	06.12	Genom-Wide Association Studies
13	13.12	Questions, Test Exam
14	20.12	Exam

Exercises

- ▶ Topics of each lecture are repeated in exercise
- Exercise hours can be used to work on problems
- ► Solutions are presented one week later
- Exercise platform: (will be available soon)

Your experiences

- in quantitative genetics, statistics, linear algebra
- ▶ Do you know any programming languages, if yes which one?
- What tools are you using when you work with data (projects, BSc thesis, MSc thesis)
- ▶ Were there any lectures in which you got in contact with programming languages, which ones?
- Are you interested in learning how to program?

Prerequisites

- None
- ▶ all concepts will be explained
- ► Helpful are
 - quantitative genetics
 - statistics
 - ▶ linear algebra
 - R

Introduction to Livestock Breeding

- Terminology
 - Livestock breeding
 - Animal breeding
 - Ambiguous use
- History
 - Traditional breeding
 - Genomics

Fundamental Questions

- ▶ What is the best animal?
- ► How to find it?

Phenotypes and Genotypes

$$P = G + E$$

where P and E are observed and G is unknown

Improving Animal Populations

- ▶ Improvement via breeding \rightarrow long-term
- Two tools

1. selection

- process to determine parents of next generation
- natural selection in wildlife and livestock
- artificial selection in livestock: fix a goal and rank

mating

- which animal is bred to which
- extreme
- complementary
- heterosis crossbreeding

Statistics

- ▶ BLUP
- ► Bayesian methods

Computer Science

- ▶ Methods have been developed in 1940's 1950's
- Progress occured later
- Development of cheap computing power

Milk Yield

Milk Performance per Cow

(Source: https://hoards.com/article-20808-what-will-dairy-cows-andfarms-look-like-in-50-years.html)

Computer Performance

Moore's Law - The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are strongly linked to Moore's law.

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Licensed under CC-BY-SA by the author Max Roser.

Source: https://en.wikipedia.org/wiki/Moore%27s_law