# 通讯网络的设计与抗毁性研究

# 摘要

近几年,军事信息化的建设对于一个国家军队核心战斗力的提升有着重要作用,提高军队信息化作战能力已成为必然趋势。信息战作为一种方式将逐渐步入未来战场,网络通讯的职能需求也随之越来越高。

本文针对通讯网络的设计与抗毁性进行了研究。假设因军事战备需要,在全国范围内建立一个包含 139 个城市节点的有线通讯网络,对该通讯网络进行研讨。首先对通讯网络内的城市节点建立了最优路径的数学模型。其次研究了通信线路最短连接方案、城市节点被摧毁后的备战节点的选择与连接、最优通讯网络连接图的设计方案,并通过MATLAB 编程进行了模拟。最后根据分析结果,从连通性能、经济性能等角度,得出对于军备通讯网络设计与提升抗毁性的合理化建议。

针对问题一,结合所给城市的分布情况,在 MATLAB 中构造最小生成树模拟出通信线路的连接方案,建立城市网络连接模型,得出通信线路总长度最短的连接方案。

针对问题二,我们对通讯网络的抗毁性进行研究,确定当某些城市节点被摧毁后,建立的备战节点可以恢复整个通讯网络的正常运行。首先查询中国全部城市的地理位置,做为备战节点的候选点,把地理坐标转换为笛卡尔坐标,构建中国全部城市地理坐标的模型,以被毁城市节点为圆心及其到最远目标点为半径所构造的圆为最优备选区域,在该范围内进行筛选,得出备战节点的数量和地理坐标,以及修复路线的连接方式。

针对问题三,通过 MTLAB 得出被摧毁城市节点的"地理中心点",以此建立模型,按照问题二的方法,详细研究了建立一个备战点或多个备战点的最优备战情况;另外为确定通讯网络的连通性能,本文引用网络的连通系数 C 作为指标,去度量其连通性能。

针对问题四,在问题一构造的模型基础上进行考虑。由鲁棒控制和连通系数 C 可知,创造回路可以提高网络的抗毁性且网络连通分支数越少越好。综合考虑网络的经济性和抗攻击性,我们在原有的基础上进行了优化,设计的方案在保证网络的高抗毁性的同时仅填加了少许网络线路,并可以使其在随机摧毁 10%网络通讯节点的情况下连通性能仍然高于问题一的模型。

关键词: 最小生成树; 地理中心点; MATLAB; 连通性; 抗毁性研究

# 一、问题重述

#### 1.1 问题的背景

当今世界,军事现代化、信息化的进程逐步加快,军事通讯网络的成熟已经成为一个国家军队实力的直接标志。现为军事演习的需要,在全国范围内构建一个有线通信网络,其选择了139个城市作为节点,将专用网络转接设备安置在每一个城市内,假设每两个城市之间的通信线路以地球上经过这两个城市所在节点位置大圆的劣弧长方式连接,即这两个城市之间的最短距离,以便在战争时期,实现最快最准确地传递军事信息的目的。

#### 1.2 问题的提出

利用数学模型建立模型模拟战争时期通讯网络的建设,解决以下问题:

- (1)求出连接中国 139 个城市节点的通信线路使其总长度达到最短的网络连接方案。
- (2)某城市的通讯网络节点在战争期间遭到破环,将会影响到整个通讯网络的连通性,假设在节点被攻击的过程中,没有办法对其进行即时修复,这将会导致整个通讯网络被分解成许多个连通分支并使其相互独立。为避免延误战机,需启用事先建设在139个城市以外的任意数量、地点的备战节点,并且战备节点将继承距离它最近的被破坏的城市节点的网络职能,使整个通讯网络恢复正常运行。现求出北京市、武汉市、上海市这几个城市节点受到攻击时,战备城市节点的数量、地理坐标和连接路线的修复方式。
- (3)假设包括武汉市、黄石市、岳阳市、沙市、宜昌市、信阳市、南昌市、九江市、安庆市的九个城市节点在战争期间同时被破坏,求出网络恢复所需要启用的战备城市节点的数量、地理坐标,同时指出某指标去衡量这个网络的连通性能。
- (4)在问题一搭建网络通信的前提下,对于一部分重要城市,很有必要去构建高连通性,强抗攻击性的网络通讯。在斟酌网络通讯的抗攻击性和建设网络通讯的经济性的基础上,对其提出最优的设计方案。并在该方案中,模拟出 10%的随机通讯节点被破坏后,其通讯网络的连通性。

# 二、模型假设

- 1、以圆心到最远目标点为半径所构造的圆为最优备选区域,其可以兼顾所有目标点。
  - 2、把地理坐标转换为笛卡尔坐标所做出的图与实际情况一致。
- 3、所生成的任一随机摧毁模型均具有足够的代表性,可以表示所有随机模型的连通性。

# 三、符号说明

#### 3.1 符号说明

表 1 符号说明

| 符号                         | 符号说明            |
|----------------------------|-----------------|
| $R_{\scriptscriptstyle E}$ | 地球半径            |
| R                          | 距离半径            |
| $P_{i}$                    | 圆周率             |
| RadLat                     | 弧度              |
| Lat                        | 东经              |
| Lng                        | 北纬              |
| L                          | 距离              |
| $L_{P_n}$                  | 战备节点到A市距离       |
| $L_{B_n}$                  | 战备节点到 $B_n$ 市距离 |
| M, N                       | 备战节点城市待选集合      |
| C                          | 连通系数            |
| H                          | 网络连通分支          |
| G                          | 网络节点总数目         |
| $G_i$                      | 第 i 个连通分支中节点数目  |

四、问题的分析

#### 4.1 问题一的分析

在问题一中,要求给出连接 139 个通讯城市节点的线路连接方式,并使得其线路总长度最短。由题干已知城市节点为中国国土上给定的一些节点,同时已知 139 个城市节点的地理坐标(lng,lat),其中 lng 为东经,lat 代表北纬,此处可以用连通图体现这 139 个城市节点,以及 139 个城市节点之间的专用网络连接设备的通信线路,其中连通图的顶点代表城市节点,边代表两个城市节点间的通信线路,定义边的权值代表城市节点之间通信线路的长度。对于 139 个城市节点的连通图可构建很多不一样的生成树,各边权值之和最小的生成树,最小生成树门即为问题一所求的最短网络连接方案。

#### 4.2 问题二的分析

通过问题二的叙述,通讯网络中城市节点被摧毁以后,备战节点将被启用并继承其 网络职能。该问题是在地球球面上以经纬度进行讨论分析,为更加直观的进行研究,我 们首先将地球投影到平面上,将经纬度转换为平面直角坐标<sup>[2]</sup>,然后将一个城市节点作 为研究对象,在该城市被摧毁以后,以其为圆心,摧毁城市与其最远连接城市距离为半 径,确定一个备战节点的选择范围,在该范围内对中国城市进行筛选,求出备战节点的 数量和地理坐标。

根据问题一求出的最短网络连接方案,将问题二中北京市,武汉市,上海市三个地理坐标带入讨论,求出其被摧毁时备战节点的数量和地理坐标。

#### 4.3 问题三的分析

由问题三知,在全部 139 个城市节点中,同时有九个城市节点被摧毁,根据问题一建立的最短网络连接方案模型,可将九个摧毁城市节点分为两大部分,我们对以下情况进行讨论:

- (1)在给定摧毁城市节点的部分区域内,充分考虑经济成本,只建立一个距离被摧毁城市节点最近的备战节点。可通过 MTLAB 进行"地理中心点"<sup>[3]</sup>的运算,求得被摧毁城市节点的地理中心点。
- (1.1)以地理中心点为圆心,地理中心点与最远连接城市节点距离为半径,确定一个备战节点的选择范围,在该范围内对中国城市进行筛选,筛选结果中与被摧毁城市节点距离和最短的地理坐标点即为备战节点。
- (1.2)以地理中心点为圆心,地理中心点与其最远连接城市节点距离为半径,确定一个备战节点的选择范围,在该范围内对中国城市进行筛选,筛选结果中与连接的城市节点距离和最短的地理坐标点即为备战节点。
- (1.3)以地理中心点为圆心,地理中心点与其最远连接城市节点距离为半径,确定一个备战节点的选择范围,在该范围内对中国城市进行筛选,筛选结果中与被摧毁城市节点和它连接的城市节点距离总和最短的地理坐标点即为备战节点。
- (2)在给定摧毁城市节点的部分区域内,综合考虑经济成本和网络连通性,需建立与被摧毁城市节点数量相同的备战节点。首先假设九个被摧毁城市中只有某一个城市节点被摧毁,根据问题二的思路,可以求出备战点;之后假设九个点中的另外某点,求出备战点……最终,九个点都被摧毁一遍,选出九个备战点。具体分析:
- (2.1)以被摧毁城市节点为研究对象,以其为圆心,摧毁城市与其最远连接城市距离为半径,确定一个备战节点的选择范围,在距离被摧毁城市节点最近的地理位置点建立备战节点,
- (2.2)以被摧毁城市节点为研究对象,以其为圆心,摧毁城市与其最远连接城市距离为半径,确定一个备战节点的选择范围,在该范围内找与连接城市距离和最短的地理坐标点即为备战节点。
- (2.3)以被摧毁城市节点为研究对象,以其为圆心,摧毁城市与其最远连接城市距离为半径,确定一个备战节点的选择范围,在该范围内找与摧毁城市和其连接城市距离和最短的地理坐标点即为备战节点。
- (3)为确定通讯网络的连通性能<sup>[4]</sup>,我们通过对其进行抗毁性<sup>[5]</sup>的研究进而得出结论。本文我们采取计算网络的连通系数  $\mathbf{C}^{[5]}$ ,衡量出其性能的指标。若连通系数  $\mathbf{C}$  越小,网络连通性越低,若连通系数  $\mathbf{C}$  越大,网络连通性越高。

#### 4.3 问题四的分析

- (1)由于问题四是在问题一所构造的基础上进行考虑,所以不需要备战点。根据鲁棒控制<sup>[6]</sup>可以知道创造回路可以提高网络的抗毁性,通过连通系数 C 的表达式可以知道网络连通分支数越少越好。因为同时需要考虑经济性,所以我们所要构造的环路需要尽量的大,且所添加的线路需要尽量的少、短。而问题三中所给的性能指标,可以演算出所选方案是否合适。
- (2)根据问题中所给的条件,我们创造出被摧毁后的模型,通过分析问题一所构造的模型和被摧毁前、后的模型三者的连通系数 C,进而求得设计后的模型连通性能。

# 五、问题的建立与求解

## 5.1 问题一

#### 5.1.1 模型的建立

将所给的 139 个城市的经纬度数据通过以下公式(5-1)转变为弧度,再计算出两两城市的距离作为权值,具体方程:

利用数据,用 MATLAB 生成连通图的邻接矩阵,再通过普里姆算法构造出最小生成树。

## 5.1.2 模型的求解

通过 MATLAB 绘制出生成的最小生成树:



图 1 总长度最短的网络连接图

图 1 为连接 139 个城市节点通信线路总长度最短的网路连接方案。

#### 5.2 问题二

## 5.2.1 模型的建立

A 市地理坐标(lng,lat),与 A 市连接的城市有  $B_1$  市,  $B_2$  市,……,  $B_n$  市(n<139),记 A 市距其连接城市  $B_1$  市,  $B_2$  市,……,  $B_n$  市距离为  $R_1$ ,  $R_2$ ……, $R_n$  (单位/千米),取  $R_i = \max\{R_1, R_2, \ldots, R_n\}$  为半径做圆,得出备战节点选择的最优备选区域 S,通过 MATLAB 在附件中国城市经纬度中进行筛选:

$$(Lng - Lng_i)^2 + (Lat - Lat_i)^2 \le R_i^2$$
(5-2)

从全国城市中得到一个满足最优备选区域 S 的城市集合 $M = \{P_1, P_2, \dots, P_m\}$ 。设集

 $ext{d} ext{M}$  中的城市 $ext{P}_i$ 地理坐标为 $ext{I}(X_m,Y_m)$ 我们分为三种情况进行考虑:

$$\begin{cases} radLat1 = lat1 * pi / 180.0 \\ radLat2 = lat2 * pi / 180.0 \\ a = radLat1 - radLat2 \\ b = (lng1 - lng2)* pi / 180.0 \\ L = 2 * asin(\sqrt{sin^2(a/2) + cos(radLat1)*cos(radLat2)*sin^2(b/2)}) * R_E \end{cases}$$
 (5-3)

(1)与被摧毁 A 市距离 L 最短,连通性较强

$$L_{1} = \min\{L_{p}, L_{p2}, ..., L_{pn}\}$$
 (5-4)

(2)与 A 市连接的城市  $B_1$ 市,  $B_2$ 市,……,  $B_n$ 市(n<139)的距离和  $L_2$ 最短,经济成本低

$$L_2 = \min\{L_{B_1}, L_{B_2}, ..., L_{B_n}\}$$
 (5-5)

(3)与被摧毁 A 市和城市  $B_1$  市,  $B_2$  市, ......,  $B_n$  市(n<139)的距离和  $L_3$  最短,综合考虑连通性和经济成本

$$L_3 = \min\{L_{P_1} + L_{B_1}, L_{P_2} + L_{B_2}, \dots, L_{P_n} + L_{B_n}\}$$
 (5-6)

## 5.2.2 模型的求解

通过问题一可知,在该通讯网络连通图中,北京市与保定市、天津市、张家口市连接,武汉市与信阳市、黄石市连接,上海市与无锡市连接。

(1)对于北京市,在通讯网络与它连接的城市中,北京市距离张家口市最远,在其被摧毁以后,以北京市为圆心,北京市距离张家口市的长度为半径做圆,在该范围内对中国城市经纬度进行筛选,得到符合备战节点选择的集合 $M_1$ ={遵化,三河,丰南,廊坊,涿州,高碑店,霸州},对 $M_1$ 中七个城市分三种情况进行考虑:



图 2 情况一(北京)

(1.1)在集合范围 $M_1$ ={遵化,三河,丰南,廊坊,涿州,高碑店,霸州}中的城市地理坐标与北京市地理坐标距离进行比较,通过MTLAB计算作图得图 2,由图 2 可直观体现出, $M_1$ 中与北京市距离最短的城市为三河市,故三河市可作为备战节点。



图 3 情况二(北京)

(1.2) 在集合范围  $M_1$  中的城市地理坐标与保定市、天津市、张家口市三市地理坐标 距离和进行比较,通过 MTLAB 计算作图得图 3,由图 3 可直观体现出, $M_1$  中与保定市、 天津市、张家口市三市距离和最短的城市为涿州市,故涿州市可作为备战节点。



图 4 情况三(北京)

(1.3)在集合范围 $M_1$ 中的城市地理坐标与北京市、保定市、天津市、张家口市四市地理坐标距离和进行比较,通过MTLAB计算作图得图 4,由图 4 可直观体现出, $M_1$ 中与北京市、保定市、天津市、张家口市四市距离和最短的城市为廊坊市,故廊坊市可作为备战节点。

(2)武汉市,在通讯网络与它连接的城市中,武汉市距离信阳市最远,在其被摧毁以后,以武汉市为圆心,武汉市距离信阳市的长度为半径做圆,在该范围内对中国城市经纬度进行筛选,得到符合备战节点选择的集合 $M_2$ ={随州,广水,安陆,应城,孝感,仙桃,洪湖,咸宁,潜江,大冶,武穴,瑞昌,麻城,鄂州,黄州,浦圻},对 $M_2$ 中十

六个城市分三种情况进行考虑:



图 5 情况一(武汉)

(2.1)在集合范围 $M_2$ ={随州,广水,安陆,应城,孝感,仙桃,洪湖,咸宁,潜江,大冶,武穴,瑞昌,麻城,鄂州,黄州,浦圻}中的城市地理坐标与武汉市地理坐标距离进行比较,通过 MTLAB 计算作图得图 5,由图 5 可直观体现出, $M_2$ 中与武汉市距离最短的城市为黄州市,故黄州市可作为备战节点。



图 6 情况二(武汉)

(2.2)在集合范围 $M_2$ 中的城市地理坐标与信阳市、黄石市两市地理坐标距离和进行比较,通过MTLAB计算作图得图 6,由图 6 可直观体现出, $M_2$ 中与信阳市、黄石市两市距离和最短的城市为麻城市,故麻城市可作为备战节点。



图 7 情况三 (武汉)

(2.3) 在集合范围 $M_2$  中的城市地理坐标与武汉市、信阳市、黄石市三市地理坐标距离和进行比较,通过MTLAB 计算作图得图 7,由图 7 可直观体现出, $M_2$  中与武汉市、信阳市、黄石市三市距离和最短的城市为黄州市,故黄州市可作为备战节点。

(3)对于上海市,只有无锡市与其连接,在其被摧毁以后,以上海市为圆心,上海市距离无锡市的长度为半径做圆,在该范围内对中国城市经纬度进行筛选,得到符合备战节点选择的集合 $M_3 = \{ 通州,海门,太仓,启乐,常熟,张家港,苏州,吴江,昆山,平湖<math>\}$ ,对 $M_3$ 中十个城市分三种情况进行考虑:



图 8 情况一(上海)

(3.1)在集合范围 $M_3$  = {通州,海门,太仓,启乐,常熟,张家港,苏州,吴江,昆山,平湖}中的城市地理坐标与上海市地理坐标距离进行比较,通过MTLAB计算作图得图 8,由图 8 可直观体现出, $M_3$ 中与上海市距离最短的城市为启乐市,故启乐市可作为备战节点。



图 9 情况二 (上海)

(3.2)在集合范围  $M_3$ 中的城市地理坐标与与无锡市地理坐标距离和进行比较,通过 MTLAB 计算作图得图 9,由图 9 可直观体现出, $M_3$ 中与无锡市距离最短的城市为张家港市,故张家港市可作为备战节点。



图 10 情况三(上海)

(3.3) 在集合范围 $M_3$ 中的城市地理坐标与上海市、无锡市两市地理坐标距离和进行比较,通过MTLAB 计算作图得图十,由图 10 可直观体现出, $M_3$ 中与上海市、无锡市两市距离和最短的城市为太仓市,故太仓市可作为备战节点。

## 5.3 问题三

## 5.3.1 模型的建立

在全部 139 个城市节点中,同时有九个城市节点被摧毁,根据问题一建立的最短网络连接方案模型,截取出九个被摧毁的城市节点的连接图:



图 11 被摧毁城市节点的部分连接图

如图 11,武汉市、黄石市、岳阳市、沙市、宜昌市、信阳市、南昌市、九江市、安 庆市这九个城市被摧毁。

RadLat=Lat\*pi/180.0  
RadLng=Lng\*pi/180.0  
X=cos(RadLat).\*cos(RadLng)  
Y=cos(RadLat).\*sin(RadLng)  
Z=sin(RadLat)  

$$x = \frac{1}{n} \sum_{i=1}^{n} X_i; y = \frac{1}{n} \sum_{i=1}^{n} Y_i; z = \frac{1}{n} \sum_{i=1}^{n} Z_i$$

$$Lng1 = atan2(y,x)*180/pi$$

$$Hyp = \sqrt{(x*x+y*y)}$$

$$Lat1 = atan2(z,Hyp)*180/pi$$

(1)在给定摧毁城市节点的部分区域内,充分考虑经济成本,只建立一个备战节点。可通过 MTLAB 进行运算公式(5-7)求得被摧毁城市节点的"地理中心点",以其为圆心,地理中心点与最远连接城市节点距离为半径,确定一个备战节点的选择范围 N,在 N 中对中国城市进行筛选。

筛选结果可分为三类备战节点:与被摧毁城市节点距离和最短的地理坐标点为备战节点 1;与连接的城市节点距离和最短的地理坐标点为备战节点 2;与被摧毁城市节点和它连接城市节点距离总和最短的地理坐标点为备战节点 3。

(2)在给定摧毁城市节点的部分区域内,综合考虑经济成本和网络连通性,建立与被摧毁城市节点数量相同的备战节点。根据问题二的思路,首先假设只有一个城市节点被摧毁,以其为圆心,摧毁城市与其最远连接城市距离为半径,确定一个备战节点的选择

范围 N', 在N'中对中国城市进行筛选。

这样会出现三类备战节点:与被摧毁城市节点距离和最短的地理坐标点为备战节点 4;与连接的城市节点距离和最短的地理坐标点为备战节点 5;与被摧毁城市节点和它连接城市节点距离总和最短的地理坐标点为备战节点 6。

## 5.3.2 模型的求解

(1)建立一个备战节点时,首先找出被摧毁九个城市的地理中心点,以其点为圆心,地理中心点与最远连接城市节点距离为半径,确定一个备战节点的选择范围 $N_1$ ,在该范围内对全国城市进行筛选。



图 12 战备节点 1

(1.1)在集合范围  $N_1$ 中的城市节点与被摧毁的九座城市地理坐标距离总和进行比较,通过 MTLAB 计算作图得图 12,由图 12 可知,红色标注城市枣阳市和淮北市到被摧毁的九座城市距离总和最短,即为战备节点 1。



图 13 战备节点 2

(1.2) 在集合范围  $N_1$  中的城市节点与连接城市节点地理坐标距离总和进行比较,通过 MTLAB 计算作图得图 13,由图 13 可知,红色标注城市石首市和巢湖市与连接城市节点地理坐标距离总和最短,即为战备节点 2。



图 14 战备节点 3

(1.3) 在集合范围  $N_1$ 中的城市节点与被摧毁城市节点和它连接城市节点距离总和进行比较,通过 MTLAB 计算作图得图 14,由图 14 可知,红色标注城市枣阳市和淮北市与被摧毁城市节点和它连接城市节点距离总和最短,即为战备节点 3。可以发现备战节点 3 与备战节点 1 为同一城市节点。

(2)建立与被摧毁城市节点数量相同的备战节点时,我们首先假设只有一个城市节点被摧毁,以被摧毁城市节点为研究对象,以其为圆心,摧毁城市与其最远连接城市距离为半径,确定一个备战节点的选择范围 $N_2$ ,在该范围内对全国城市进行筛选。



图15 战备节点4

(2.1) 在集合范围  $N_2$  中的城市节点与被摧毁的九座城市地理坐标距离总和进行比较,通过 MTLAB 计算作图得图 15,由图 15 可知,红色标注城市驻马店市、黄州市、武穴市等九个城市与被摧毁城市节点距离总和最短,即为战备节点 4。



图 16 战备节点 5

(2.2) 在集合范围  $N_2$  中的城市节点与其连接的城市节点地理坐标距离总和进行比较,通过 MTLAB 计算作图得图 16,由图 16 可知,红色标注城市广水市、麻城市、武穴市等九个城市与其连接的城市节点距离总和最短的地理坐标点,即为备战节点 5。



图 17 战备节点 6

(2.3) 在集合范围  $N_2$  中的城市节点与被摧毁城市节点和它连接城市节点地理坐标距离总和进行比较,通过 MTLAB 计算作图得图 17,由图 17 可知,红色标注城市驻马店市、石首市、荆门市等七个城市与其连接的城市节点距离总和最短的地理坐标点,即为备战节点 6。其中武汉市和黄石市的战备节点重合,南昌市和九江市的战备节点重合。

(3) 通讯网络中,网络连通性能对于整个网络具有信息传递的及时性、效率性等性

能具有重要影响,我们对其指标根据网络的连通系数进行研究:

$$C = \frac{1}{H \sum_{i=1}^{H} *(G_i / G) * l_i}$$
 (5-8)

我们可以通过网络连通系数 C 衡量所设计的网络连通性能的优劣。当在某网络中的连通系数 C 越小,所设计的网络其连通性越低;连通系数越大,所设计的网络其连通性越高。

## 5.4 问题四

#### 5.4.1 模型的建立

(1)根据鲁棒控制、网络的连通系数 C、抗毁性可知,我们所需要设计的网络需要建立尽量少的回路。对问题一所得模型添加边来建立回路,考虑到经济性同时,我们所添加的边需要尽量的少、短。

通过计算我们可以得到连接和田市,日喀则市,拉萨市,畹町市,个旧市,凭祥市,湛江市,澳门市,福州市,温州市,大连市,营口市,锡林浩特市,满洲里这十四个城市时,我们所需要建设的线路相对较短,所生成的网络连通分支数相对较少。

(2)在上述的基础上,通过对设计好的模型进行随机选取,摧毁 10%的城市通讯节点,计算其网络的连通系数  $C_3$ ,将其与问题一基础上的模型的网络连通系数  $C_1$  和问题四中设计的模型的网络连通系数  $C_2$  进行比较,从而验证设计的模型其网络性能高低和判断设计的模型摧毁后网络性能。

# 5.4.2 模型的求解

(1)通过 MATLAB 绘制出所设计的网络连通图:



图 18 最优设计方案

图 18 为综合考虑后计算所得最优设计方案。

(2)模拟摧毁一部分后网络的连通性能

在该设计方案中,模拟 10%的随机通讯节点被摧毁后,通讯网络的连通性。



图 19 随机摧毁 10%后网路连接方案

如图 19 所示,随机摧毁 10%的通讯节点以后,通过计算问题一、本题设计的优化模型、随机摧毁后的优化模型的网络连通系数,对其进行比较,判断网络的连通性能。

网络的连通系数:

$$C = \frac{1}{H \sum_{i=1}^{H} *(G_i / G) * l_i}$$
 (5-9)

通过计算可得

 $C_1 = 0.000128409660418922$ 

 $C_2 = 0.000130369242452242$ 

 $C_3 = 0.000132501223017047$ 

通过比较网络连通系数,易得 $C_2 > C_1$ , $C_3 > C_1$ ,而网络连通系数越大连通性能越强所以所设计方案成立。

# 六、模型的评价

## 6.1 模型的优点

- 1、通过 MTALAB 建模可以全面考虑各种影响因素,并且所建立模型直观性更强,便于观察与描述。
- 2、在构造最小生成树的 prim 算法中,时间复杂度不仅仅依赖于排序算法,而且主要与点的个数有关,更加适用于密集图。
- 3、鲁棒控制尤其适用于那些不确定因素变化范围大,稳定裕度小的系统,符合我们随机摧毁模型的建立。

## 6.2 模型的缺点

- 1、我们所构建的模型其最小生成树的节点传输能力有限,距离较远的某些节点必须通过多跳的通信方式,才可以进行军事信息的交换,所以必须保证我们所设计的网络在物理链路上的连通性要足够好。
- 2、对于网络连通系数 C 的计算通过定义法计算十分困难,并且不利于应用计算机程序来解决

# 参考文献

- [1] 叶军伟. 普里姆算法和克鲁斯卡尔算法构造最小生成树[J]. 河南科技, 2010(6):22-22.
- [2] 韩忠民. 知经纬度计算两点精确距离[J]. 科技传播, 2011(11):211+233.
- [3] Calculation Methods [2019.5.3],
- http://www.geomidpoint.com/calculation.html?tdsourcetag=s\_pcqq\_aiomsg
- [4] 李玉军. (0). 无线网络连通性及路由关键技术研究. (Doctoral dissertation, 电子科技大学).
- [5] 吴俊, 谭跃进. 复杂网络抗毁性测度研究[J]. 系统工程学报, 2005, 20(2):128-131.
- [6] 杨盐生. (2000). 不确定系统的鲁棒控制及其在船舶运动控制中的应用. (Doctoral dissertation, 大连海事大学).

# 附录

# 附录 1



图 1 插入中国所有城市在地图中的地理位置显示

```
附录 2
```

```
matlab 编写的求解问题一、二、三、四的源代码
%Problem_1.m
clear
clc
load('location.mat');
d=Distance(Ing,lat);
P = zeros(1, 139);
P(1,1) = 1;
V = 1:139;
V_P = V - P;
link = zeros(138,2);
k=1;
Sum1=0;
c=zeros(139);
while k<139
    p = P(P = 0);
    v = V_P(V_{P}=0);
    pv = min(min(d(p,v)));
    [x, y] = find(d==pv);
    for i=1:length(x)
         if any(P==x(i)) && any(V_P==y(i))
             P(1,y(i)) = y(i);

V_P = V - P;
             link(k, :) = [x(i), y(i)];
              Sum1=Sum1+d(x(i), y(i));
              c(x(i), y(i))=d(x(i), y(i));
             k = k+1;
             break;
         end
```

```
end
end
r=[lng,lat];
figure;
gplot(c,r,'- o')
text(Ing,lat,cityName,'fontsize',7,'fontweight','bold');%6
xlabel('经度');
ylabel('纬度');
%Problem 2.m
clear
clc
load('Problem 1.mat');
gplot(c,r,'- .')
hold;
scatter([lng(105),lng(53),lng(56)],[lat(105),lat(53),lat(56)]);
scatter(insLng,insLat);
hold off;
text(Ing,lat,cityName,'fontsize',6,'fontweight','bold');
xlabel('经度');
ylabel('纬度');
%Problem 2 Beijing.m
clear
clc
load('Problem_2.mat');
firedIndex=105:%北京节点索引
connIndex=[find(c(:,firedIndex)),find(c(firedIndex,:))]; %连接点的索引
%连接点的经纬度
coLng=lng(connlndex);
coLat=lat(connIndex);
R=max(max(c(firedIndex,find(c(firedIndex,:)))),max(c(find(c(:,firedIndex)),firedIndex)))
;%求得与被炸点之前连接节点的最远距离
[insIndex,insP1,insP2,insP3]=Alterna(Ing(firedIndex),lat(firedIndex),insLng,insLat,R,c
oLng,coLat);
%备选节点坐标
insX=insLng(insIndex);
insY=insLat(insIndex);
figure;
scatter(Ing(firedIndex),lat(firedIndex),'k');%被炸点
hold;
scatter(coLng,coLat,'b');%连接点
scatter(insX,insY,'g');%备选点
insName=[cityName(firedIndex):cityName(connIndex);insCityName(insIndex);insCity
Name(insP1(3));insCityName(insP2(3));insCityName(insP3(3))];
%标注
text([Ing(firedIndex);coLng;insX;insP1(1);insP2(1);insP3(1)],[lat(firedIndex);coLat;insY
```

```
;insP1(2);insP2(2);insP3(2)],insName,'fontsize',6,'fontweight','bold');
IIndexX1=[insP1(1);coLng];
IIndexY1=[insP1(2):coLat]:
for i=2:length(IIndexX1)
    pointX1=[IIndexX1(i),IIndexX1(1)];
    pointY1=[IIndexY1(i),IIndexY1(1)];
    line(pointX1,pointY1,'color','r');
end
hold off;
xlabel('经度');
ylabel('纬度');
figure;
scatter(Ing(firedIndex),lat(firedIndex),'k');%被炸点
hold;
scatter(coLng,coLat,'b');%连接点
scatter(insX,insY,'g');%备选点
insName=[cityName(firedIndex);cityName(connIndex);insCityName(insIndex);insCity
Name(insP1(3));insCityName(insP2(3));insCityName(insP3(3))];
%标注
text([Ing(firedIndex);coLng;insX;insP1(1);insP2(1);insP3(1)],[lat(firedIndex);coLat;insY
;insP1(2);insP2(2);insP3(2)],insName,'fontsize',6,'fontweight','bold');
IIndexX1=[insP2(1);coLng];
IIndexY1=[insP2(2);coLat];
for i=2:length(IIndexX1)
    pointX1=[IIndexX1(i),IIndexX1(1)];
    pointY1=[IIndexY1(i),IIndexY1(1)];
    line(pointX1,pointY1,'color','r');
end
hold off;
xlabel('经度');
ylabel('纬度');
figure:
scatter(Ing(firedIndex), lat(firedIndex), 'k');%被炸点
hold;
scatter(coLng,coLat,'b');%连接点
scatter(insX,insY,'g');%备选点
insName=[cityName(firedIndex);cityName(connIndex);insCityName(insIndex);insCity
Name(insP1(3));insCityName(insP2(3));insCityName(insP3(3))];
%标注
text([Ing(firedIndex):coLng:insX:insP1(1):insP2(1):insP3(1)],[lat(firedIndex):coLat:insY
;insP1(2);insP2(2);insP3(2)],insName,'fontsize',6,'fontweight','bold');
IIndexX1=[insP3(1);coLng];
IIndexY1=[insP3(2);coLat];
for i=2:length(IIndexX1)
```

```
pointX1=[IIndexX1(i),IIndexX1(1)];
    pointY1=[IIndexY1(i),IIndexY1(1)];
    line(pointX1,pointY1,'color','r');
end
hold off:
xlabel('经度');
ylabel('纬度');
%Problem_2_Wuhan.m
clear
clc
load('Problem_2.mat');
firedIndex=53:%武汉节点索引
connIndex=[find(c(:,firedIndex)),find(c(firedIndex,:))]; %连接点的索引
%连接点的经纬度
coLng=lng(connlndex);
coLat=lat(connIndex);
R=max(max(c(firedIndex,find(c(firedIndex,:)))),max(c(find(c(:,firedIndex)),firedIndex)))
;%求得与被炸点之前连接节点的最远距离
[insIndex,insP1,insP2,insP3]=Alterna(Ing(firedIndex),lat(firedIndex),insLng,insLat,R,c
oLng,coLat);
%备选节点坐标
insX=insLng(insIndex);
insY=insLat(insIndex);
figure;
scatter(Ing(firedIndex), lat(firedIndex), 'k');%被炸点
hold;
scatter(coLng,coLat,'b');%连接点
scatter(insX,insY,'g');%备选点
insName=[cityName(firedIndex):cityName(connIndex):insCityName(insIndex):insCity
Name(insP1(3));insCityName(insP2(3));insCityName(insP3(3))];
%标注
text([Ing(firedIndex);coLng;insX;insP1(1);insP2(1);insP3(1)],[lat(firedIndex);coLat;insY
;insP1(2);insP2(2);insP3(2)],insName,'fontsize',6,'fontweight','bold');
IIndexX1=[insP1(1);coLng];
IIndexY1=[insP1(2):coLat]:
for i=2:length(IIndexX1)
    pointX1=[IIndexX1(i),IIndexX1(1)];
    pointY1=[IIndexY1(i),IIndexY1(1)];
    line(pointX1,pointY1,'color','r');
end
hold off;
xlabel('经度');
ylabel('纬度');
```

figure;

```
scatter(Ing(firedIndex), lat(firedIndex), 'k');%被炸点
hold;
scatter(coLng,coLat,'b');%连接点
scatter(insX,insY,'g');%备选点
insName=[cityName(firedIndex);cityName(connIndex);insCityName(insIndex);insCity
Name(insP1(3));insCityName(insP2(3));insCityName(insP3(3))];
%标注
text([Ing(firedIndex):coLng:insX:insP1(1):insP2(1):insP3(1)],[lat(firedIndex):coLat:insY
;insP1(2);insP2(2);insP3(2)],insName,'fontsize',6,'fontweight','bold');
IIndexX1=[insP2(1);coLng];
IIndexY1=[insP2(2);coLat];
for i=2:length(IIndexX1)
    pointX1=[IIndexX1(i),IIndexX1(1)];
    pointY1=[IIndexY1(i),IIndexY1(1)];
    line(pointX1,pointY1,'color','r');
end
hold off;
xlabel('经度');
ylabel('纬度');
figure:
scatter(Ing(firedIndex), lat(firedIndex), 'k');%被炸点
hold:
scatter(coLng,coLat,'b');%连接点
scatter(insX,insY,'g');%备选点
insName=[cityName(firedIndex);cityName(connIndex);insCityName(insIndex);insCity
Name(insP1(3));insCityName(insP2(3));insCityName(insP3(3))];
%标注
text([Ing(firedIndex);coLng;insX;insP1(1);insP2(1);insP3(1)],[lat(firedIndex);coLat;insY
;insP1(2);insP2(2);insP3(2)],insName,'fontsize',6,'fontweight','bold');
IIndexX1=[insP3(1);coLng];
IIndexY1=[insP3(2);coLat];
for i=2:length(IIndexX1)
    pointX1=[IIndexX1(i),IIndexX1(1)];
    pointY1=[IIndexY1(i),IIndexY1(1)];
    line(pointX1,pointY1,'color','r');
end
hold off;
xlabel('经度');
ylabel('纬度');
%Problem 2 Shanghai.m
clear
clc
load('Problem_2.mat');
firedIndex=56:%上海节点索引
```

```
connIndex=[find(c(:,firedIndex)),find(c(firedIndex,:))]; %连接点的索引
%连接点的经纬度
coLng=lng(connlndex);
coLat=lat(connIndex);
R=c(find(c(:,firedIndex)),firedIndex)%求得与被炸点之前连接节点的最远距离
[insIndex,insP1,insP2,insP3]=Alterna(Ing(firedIndex),lat(firedIndex),insLng,insLat,R,c
oLng,coLat);
%备选节点坐标
insX=insLng(insIndex);
insY=insLat(insIndex);
figure:
scatter(Ing(firedIndex), lat(firedIndex), 'k');%被炸点
scatter(coLng,coLat,'b');%连接点
scatter(insX,insY,'g');%备选点
insName=[cityName(firedIndex);cityName(connIndex);insCityName(insIndex);insCity
Name(insP1(3));insCityName(insP2(3));insCityName(insP3(3))];
%标注
text([Ing(firedIndex);coLng;insX;insP1(1);insP2(1);insP3(1)],[lat(firedIndex);coLat;insY
;insP1(2);insP2(2);insP3(2)],insName,'fontsize',6,'fontweight','bold');
IIndexX1=[insP1(1);coLng];
IIndexY1=[insP1(2);coLat];
for i=2:length(IIndexX1)
    pointX1=[IIndexX1(i),IIndexX1(1)];
    pointY1=[IIndexY1(i),IIndexY1(1)];
    line(pointX1,pointY1,'color','r');
end
hold off;
xlabel('经度');
ylabel('纬度');
figure;
scatter(Ing(firedIndex), lat(firedIndex), 'k');%被炸点
hold:
scatter(coLng,coLat,'b'):%连接点
scatter(insX,insY,'g');%备选点
insName=[cityName(firedIndex);cityName(connIndex);insCityName(insIndex);insCity
Name(insP1(3)):insCityName(insP2(3)):insCityName(insP3(3))]:
%标注
text([Ing(firedIndex);coLng;insX;insP1(1);insP2(1);insP3(1)],[lat(firedIndex);coLat;insY
:insP1(2);insP2(2);insP3(2)],insName,'fontsize',6,'fontweight','bold');
IIndexX1=[insP2(1);coLng];
IIndexY1=[insP2(2);coLat];
for i=2:length(IIndexX1)
```

```
pointX1=[IIndexX1(i),IIndexX1(1)];
    pointY1=[IIndexY1(i),IIndexY1(1)];
    line(pointX1,pointY1,'color','r');
end
hold off;
xlabel('经度');
ylabel('纬度');
figure;
scatter(Ing(firedIndex), lat(firedIndex), 'k');%被炸点
hold;
scatter(coLng,coLat,'b');%连接点
scatter(insX,insY,'g');%备选点
insName=[cityName(firedIndex);cityName(connIndex);insCityName(insIndex);insCity
Name(insP1(3));insCityName(insP2(3));insCityName(insP3(3))];
%标注
text([Ing(firedIndex);coLng;insX;insP1(1);insP2(1);insP3(1)],[lat(firedIndex);coLat;insY
;insP1(2);insP2(2);insP3(2)],insName,'fontsize',6,'fontweight','bold');
IIndexX1=[insP3(1);coLng];
IIndexY1=[insP3(2);coLat]:
for i=2:length(IIndexX1)
    pointX1=[IIndexX1(i),IIndexX1(1)];
    pointY1=[IIndexY1(i),IIndexY1(1)];
    line(pointX1,pointY1,'color','r');
end
hold off;
xlabel('经度');
ylabel('纬度');
%Problem 3.m
clear
clc
load('Problem_2.mat');
%领接矩阵
pThrMat=zeros(15);
pThrMat(1,2)=1;
pThrMat(1,6)=1;
pThrMat(2,8)=1;
pThrMat(3,12)=1;
pThrMat(3,13)=1;
pThrMat(3,4)=1;
pThrMat(4.5)=1:
pThrMat(5,14)=1;
pThrMat(6,15)=1;
pThrMat(7.8)=1:
pThrMat(8,9)=1;
pThrMat(8,11)=1;
```

```
pThrMat(9,10)=1:
pThrMat(14,15)=1;
%武汉, 黄石, 岳阳, 沙市, 宜昌, 信阳, 南昌, 九江, 安庆 Ⅲ 合肥 景德镇 长沙 常
德 襄樊 南阳
%53,49,43,51,55,63,37,46,52,60,42,34,39,61,67 城市索引
pThrMatIndex=[53,49,43,51,55,63,37,46,52,60,42,34,39,61,67];
pThrMatCo=[Ing(pThrMatIndex),lat(pThrMatIndex)];
gplot(pThrMat,pThrMatCo,'- o');
text(pThrMatCo(:,1),pThrMatCo(:,2),cityName(pThrMatIndex),'fontsize',10,'fontweight'
,'bold');
%被炸点黑色
hold
scatter(pThrMatCo(1:9,1),pThrMatCo(1:9,2),'k','*');
hold off;
xlabel('经度');
ylabel('纬度');
%Problem 3 1.m
clear
clc
load('Problem 3.mat');
cityListIndex1=[53,49,63,37,46,52];%被炸城市节点索引集合 1
cityListIndex2=[43,51,55];%被炸城市节点索引集合 2
centerP1=Center(cityListIndex1,lat,lng);%被炸城市节点集合的中心点 1
centerP2=Center(cityListIndex2,lat,lng);%被炸城市节点集合的中心点 2
%被炸点集合的坐标
fList1=[Ing(cityListIndex1),lat(cityListIndex1)];
fList2=[Ing(cityListIndex2),lat(cityListIndex2)];
%part1 的连接点
coLng1=lng([67,60,42]);
coLat1=lat([67,60,42]);
%part2 的连接点
coLng2=lng([34,39,61]);
coLat2=lat([34,39,61]);
R1=max([GetDistance(Ing(67),lat(67),centerP1(1),centerP1(2)),GetDistance(Ing(60),I
at(60),centerP1(1),centerP1(2)),GetDistance(Ing(42),lat(42),centerP1(1),centerP1(2))
R2=max([GetDistance(lng(34),lat(34),centerP2(1),centerP2(2)),GetDistance(lng(39),l
at(39),centerP2(1),centerP2(2)),GetDistance(Ing(61),lat(61),centerP2(1),centerP2(2))
[insIndex1,insP11,insP21,insP31]=AlternaP3(fList1,centerP1(1),centerP1(2),insLng,in
sLat,R1,coLng1,coLat1);
[insIndex2,insP12,insP22,insP32]=AlternaP3(fList2,centerP2(1),centerP2(2),insLng,i
nsLat,R2,coLng2,coLat2);
```

figure;

```
scatter(pThrMatCo(1:9,1),pThrMatCo(1:9,2),'k','*');%被炸点
hold;
scatter([insP11(1),insP12(1)],[insP11(2),insP12(2)],'r');%备战点
scatter([coLng1;coLng2],[coLat1;coLat2],'b');%连接点
scatter([centerP1(1),centerP2(1)],[centerP1(2),centerP2(2)],'m','*')%中心点
text([centerP1(1),centerP2(1)],[centerP1(2),centerP2(2)],'中心点');
text([lng(pThrMatIndex);insP11(1);insP12(1)],[lat(pThrMatIndex);insP11(2);insP12(2)],
[cityName(pThrMatIndex);insCityName(insP11(3));insCityName(insP12(3))],'fontsize',
10, 'fontweight', 'bold');
for i=1:length(coLng1)
    lx1=[coLng1(i);insP11(1)];
    ly1=[coLat1(i);insP11(2)];
    Ix2=[coLng2(i);insP12(1)];
    ly2=[coLat2(i);insP12(2)];
    line(lx1,ly1,'color','r');
    line(lx2,ly2,'color','r');
end
line([lng(61),lng(67)],[lat(61),lat(67)],'color','b');
hold off:
xlabel('经度');
ylabel('纬度');
%
figure;
scatter(pThrMatCo(1:9,1),pThrMatCo(1:9,2),'k','*');%被炸点
hold;
scatter([insP21(1),insP22(1)],[insP21(2),insP22(2)],'r');%备战点
scatter([coLng1;coLng2],[coLat1;coLat2],'b');%连接点
scatter([centerP1(1),centerP2(1)],[centerP1(2),centerP2(2)],'m','*')%中心点
text([centerP1(1),centerP2(1)],[centerP1(2),centerP2(2)],'中心点'):
text([lng(pThrMatIndex);insP21(1);insP22(1)],[lat(pThrMatIndex);insP21(2);insP22(2)]
,[cityName(pThrMatIndex);insCityName(insP21(3));insCityName(insP22(3))],'fontsize'
,10,'fontweight','bold');
for i=1:length(coLng1)
    Ix1=[coLng1(i);insP21(1)];
    ly1=[coLat1(i);insP21(2)];
    Ix2=[coLng2(i);insP22(1)];
    ly2=[coLat2(i);insP22(2)];
    line(lx1,ly1,'color','r');
    line(lx2,ly2,'color','r');
end
line([lng(61),lng(67)],[lat(61),lat(67)],'color','b');
hold off;
xlabel('经度');
ylabel('纬度');
%
figure;
```

```
scatter(pThrMatCo(1:9,1),pThrMatCo(1:9,2),'k','*');%被炸点
hold;
scatter([insP31(1),insP32(1)],[insP31(2),insP32(2)],'r');%备战点
scatter([coLng1;coLng2],[coLat1;coLat2],'b');%连接点
scatter([centerP1(1),centerP2(1)],[centerP1(2),centerP2(2)],'m','*')%中心点
text([centerP1(1),centerP2(1)],[centerP1(2),centerP2(2)],'中心点');
text([lng(pThrMatIndex);insP31(1);insP32(1)],[lat(pThrMatIndex);insP31(2);insP32(2)]
,[cityName(pThrMatIndex);insCityName(insP31(3));insCityName(insP32(3))],'fontsize'
,10,'fontweight','bold');
for i=1:length(coLng1)
    lx1=[coLng1(i);insP31(1)];
    ly1=[coLat1(i);insP31(2)];
    lx2=[coLng2(i);insP32(1)];
    ly2=[coLat2(i);insP32(2)];
    line(lx1,ly1,'color','r');
    line(lx2,ly2,'color','r');
end
line([lng(61),lng(67)],[lat(61),lat(67)],'color','b');
hold off:
xlabel('经度');
ylabel('纬度');
%Problem 3 2.m
clear
clc
load('Problem 3 1.mat');
%返回参数列表%返回参数 维度难处理成 object,无法用循环解决
%被炸节点集合索引,按分布顺序
reserveListIndex=[cityListIndex1,cityListIndex2];
RR=max(max(c(reserveListIndex(1),find(c(reserveListIndex(1),:)))),max(c(find(c(:,res
erveListIndex(1))),reserveListIndex(1))));
connIndexP3=[find(c(:,reserveListIndex(1))),find(c(reserveListIndex(1),:))];
coLngP3=lng(connlndexP3);
coLatP3=lat(connIndexP3);
[reserveListAlterIndex1,reserveList11,reserveList12,reserveList13]=Alterna(Ing(reser
veListIndex(1)),lat(reserveListIndex(1)),insLng,insLat,RR,coLngP3,coLatP3);
%
RR=max(max(c(reserveListIndex(2),find(c(reserveListIndex(2),:)))),max(c(find(c(:,res
erveListIndex(2))),reserveListIndex(2))));
connIndexP3=[find(c(:,reserveListIndex(2))),find(c(reserveListIndex(2),:))];
coLngP3=lng(connlndexP3);
coLatP3=lat(connIndexP3):
[reserveListAlterIndex2,reserveList21,reserveList22,reserveList23]=Alterna(lng(reser
veListIndex(2)),lat(reserveListIndex(2)),insLng,insLat,RR,coLngP3,coLatP3);
RR=max(max(c(reserveListIndex(3),find(c(reserveListIndex(3),:)))),max(c(find(c(:,res
erveListIndex(3))),reserveListIndex(3))));
connIndexP3=[find(c(:,reserveListIndex(3))),find(c(reserveListIndex(3),:))];
```

```
coLnqP3=lnq(connlndexP3):
coLatP3=lat(connIndexP3);
[reserveListAlterIndex3,reserveList31,reserveList32,reserveList33]=Alterna(Ing(reser
veListIndex(3)),lat(reserveListIndex(3)),insLng,insLat,RR,coLngP3,coLatP3);
RR=115.4634;%特殊点
connIndexP3=[find(c(:,reserveListIndex(4))),find(c(reserveListIndex(4),:))];
coLngP3=lng(connIndexP3);
coLatP3=lat(connIndexP3);
[reserveListAlterIndex4,reserveList41,reserveList42,reserveList43]=Alterna(Ing(reser
veListIndex(4)),lat(reserveListIndex(4)),insLng,insLat,RR,coLngP3,coLatP3);
%
RR=max(max(c(reserveListIndex(5),find(c(reserveListIndex(5),:)))),max(c(find(c(:,res
erveListIndex(5))),reserveListIndex(5))));
connIndexP3=[find(c(:,reserveListIndex(5))),find(c(reserveListIndex(5),:))];
coLngP3=lng(connlndexP3);
coLatP3=lat(connIndexP3);
IreserveListAlterIndex5.reserveList51.reserveList52.reserveList53l=Alterna(Ing(reser
veListIndex(5)),lat(reserveListIndex(5)),insLng,insLat,RR,coLngP3,coLatP3);
%
RR=max(max(c(reserveListIndex(6),find(c(reserveListIndex(6),:)))),max(c(find(c(:,res
erveListIndex(6))),reserveListIndex(6))));
connIndexP3=[find(c(:,reserveListIndex(6))),find(c(reserveListIndex(6),:))];
coLngP3=lng(connlndexP3);
coLatP3=lat(connIndexP3);
[reserveListAlterIndex6,reserveList61,reserveList62,reserveList63]=Alterna(Ing(reser
veListIndex(6)),lat(reserveListIndex(6)),insLng,insLat,RR,coLngP3,coLatP3);
%
RR=max(max(c(reserveListIndex(7),find(c(reserveListIndex(7),:)))),max(c(find(c(:,res
erveListIndex(7))),reserveListIndex(7))));
connIndexP3=[find(c(:,reserveListIndex(7))),find(c(reserveListIndex(7),:))];
coLngP3=lng(connlndexP3);
coLatP3=lat(connIndexP3):
[reserveListAlterIndex7,reserveList71,reserveList72,reserveList73]=Alterna(Ing(reser
veListIndex(7)),lat(reserveListIndex(7)),insLng,insLat,RR,coLngP3,coLatP3);
%
RR=max(max(c(reserveListIndex(8),find(c(reserveListIndex(8),:)))),max(c(find(c(:,res
erveListIndex(8))),reserveListIndex(8))));
connIndexP3=[find(c(:,reserveListIndex(8))),find(c(reserveListIndex(8),:))];
coLnqP3=lng(connlndexP3);
coLatP3=lat(connIndexP3);
[reserveListAlterIndex8,reserveList81,reserveList82,reserveList83]=Alterna(Ing(reser
veListIndex(8)),lat(reserveListIndex(8)),insLng,insLat,RR,coLngP3,coLatP3);
%
RR=max(max(c(reserveListIndex(9),find(c(reserveListIndex(9),:)))),max(c(find(c(:,res
erveListIndex(9))),reserveListIndex(9))));
connIndexP3=[find(c(:,reserveListIndex(9))),find(c(reserveListIndex(9),:))];
coLngP3=lng(connlndexP3);
coLatP3=lat(connIndexP3);
[reserveListAlterIndex9,reserveList91,reserveList92,reserveList93]=Alterna(Ing(reser
```

```
veListIndex(9)),lat(reserveListIndex(9)),insLng,insLat,RR,coLngP3,coLatP3);
%画图
figure;
scatter(pThrMatCo(1:9,1),pThrMatCo(1:9,2),'k','*');%被炸点
scatter([coLng1;coLng2],[coLat1;coLat2],'b');%连接点
scatter([reserveList11(1),reserveList21(1),reserveList31(1),reserveList41(1),reserveLi
st51(1),reserveList61(1),reserveList71(1),reserveList81(1),reserveList91(1)],[reserve
List11(2),reserveList21(2),reserveList31(2),reserveList41(2),reserveList51(2),reserve
List61(2),reserveList71(2),reserveList81(2),reserveList91(2)],'r');
%不改索引的情况下 直接连接
line([lng(61),lng(67)],[lat(61),lat(67)],'color','b');
line([lng(67),reserveList31(1)],[lat(67),reserveList31(2)],'color','r');
line([reserveList11(1),reserveList31(1)],[reserveList11(2),reserveList31(2)],'color','r');
line([reserveList11(1),reserveList21(1)],[reserveList11(2),reserveList21(2)],'color','r');
line([reserveList51(1),reserveList21(1)],[reserveList51(2),reserveList21(2)],'color','r');
line([reserveList51(1),reserveList61(1)],[reserveList51(2),reserveList61(2)],'color','r');
line([reserveList51(1),reserveList41(1)],[reserveList51(2),reserveList41(2)],'color','r');
line([reserveList51(1),lng(42)],[reserveList51(2),lat(42)],'color','r');
line([reserveList61(1),lng(60)],[reserveList61(2),lat(60)],'color','r');
line([reserveList91(1),lng(61)],[reserveList91(2),lat(61)],'color','r');
line([reserveList91(1),reserveList81(1)],[reserveList91(2),reserveList81(2)],'color','r');
line([reserveList71(1),reserveList81(1)],[reserveList71(2),reserveList81(2)],'color','r');
line([reserveList71(1),lng(39)],[reserveList71(2),lat(39)],'color','r');
line([reserveList71(1),lng(34)],[reserveList71(2),lat(34)],'color','r');
text([lng(pThrMatIndex);reserveList11(1);reserveList21(1);reserveList31(1);reserveLis
t41(1);reserveList51(1);reserveList61(1);reserveList71(1);reserveList81(1);reserveList
91(1)],[lat(pThrMatIndex);reserveList11(2);reserveList21(2);reserveList31(2);reserveL
ist41(2);reserveList51(2);reserveList61(2);reserveList71(2);reserveList81(2);reserveLi
st91(2)],[cityName(pThrMatIndex);insCityName(reserveList11(3));insCityName(reserv
eList21(3));insCityName(reserveList31(3));insCityName(reserveList41(3));insCityNa
me(reserveList51(3));insCityName(reserveList61(3));insCityName(reserveList71(3));i
nsCityName(reserveList81(3));insCityName(reserveList91(3))],'fontsize',8,'fontweight'
,'bold');
hold off;
xlabel('经度');
ylabel('纬度');
%
figure;
scatter(pThrMatCo(1:9,1),pThrMatCo(1:9,2),'k','*');%被炸点
scatter([coLng1;coLng2],[coLat1;coLat2],'b');%连接点
scatter([reserveList12(1),reserveList22(1),reserveList32(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(1),reserveList42(
st52(1),reserveList62(1),reserveList72(1),reserveList82(1),reserveList92(1)],[reserve
List12(2),reserveList22(2),reserveList32(2),reserveList42(2),reserveList52(2),reserve
List62(2),reserveList72(2),reserveList82(2),reserveList92(2)],'r');
```

```
%不改索引的情况下 直接连接
line([lng(61),lng(67)],[lat(61),lat(67)],'color','b');
line([lng(67),reserveList32(1)],[lat(67),reserveList32(2)],'color','r');
line([reserveList12(1),reserveList32(1)],[reserveList12(2),reserveList32(2)],'color','r');
line([reserveList12(1),reserveList22(1)],[reserveList12(2),reserveList22(2)],'color','r');
line([reserveList52(1),reserveList22(1)],[reserveList52(2),reserveList22(2)],'color','r');
line([reserveList52(1),reserveList62(1)],[reserveList52(2),reserveList62(2)],'color','r');
line([reserveList52(1),reserveList42(1)],[reserveList52(2),reserveList42(2)],'color','r');
line([reserveList52(1),lng(42)],[reserveList52(2),lat(42)],'color','r');
line([reserveList62(1),lng(60)],[reserveList62(2),lat(60)],'color','r');
line([reserveList92(1),lng(61)],[reserveList92(2),lat(61)],'color','r');
line([reserveList92(1),reserveList82(1)],[reserveList92(2),reserveList82(2)],'color','r');
line([reserveList72(1),reserveList82(1)],[reserveList72(2),reserveList82(2)],'color','r');
line([reserveList72(1),lng(39)],[reserveList72(2),lat(39)],'color','r');
line([reserveList72(1),lng(34)],[reserveList72(2),lat(34)],'color','r');
text([lng(pThrMatIndex):reserveList12(1):reserveList22(1):reserveList32(1):reserveList
t42(1);reserveList52(1);reserveList62(1);reserveList72(1);reserveList82(1);reserveList
92(1)],[lat(pThrMatIndex);reserveList12(2);reserveList22(2);reserveList32(2);reserveL
ist42(2);reserveList52(2);reserveList62(2);reserveList72(2);reserveList82(2);reserveLi
st92(2)],[cityName(pThrMatIndex);insCityName(reserveList12(3));insCityName(reser
veList22(3));insCityName(reserveList32(3));insCityName(reserveList42(3));insCityNa
me(reserveList52(3));insCityName(reserveList62(3));insCityName(reserveList72(3));i
nsCityName(reserveList82(3));insCityName(reserveList92(3))],'fontsize',8,'fontweight'
.'bold'):
hold off;
xlabel('经度');
vlabel('纬度');
%
figure;
scatter(pThrMatCo(1:9,1),pThrMatCo(1:9,2),'k','*');%被炸点
hold;
scatter([coLng1;coLng2],[coLat1;coLat2],'b');%连接点
scatter([reserveList13(1),reserveList23(1),reserveList33(1),reserveList43(1),reserveLi
st53(1),reserveList63(1),reserveList73(1),reserveList83(1),reserveList93(1)],[reserve
List13(2),reserveList23(2),reserveList33(2),reserveList43(2),reserveList53(2),reserve
List63(2),reserveList73(2),reserveList83(2),reserveList93(2)],'r');
%不改索引的情况下 直接连接
line([lng(61),lng(67)],[lat(61),lat(67)],'color','b');
line([lng(67),reserveList33(1)],[lat(67),reserveList33(2)],'color','r');
line([reserveList13(1),reserveList33(1)],[reserveList13(2),reserveList33(2)],'color','r');
line([reserveList13(1),reserveList23(1)],[reserveList13(2),reserveList23(2)],'color','r');
line([reserveList53(1),reserveList23(1)],[reserveList53(2),reserveList23(2)],'color','r');
line([reserveList53(1),reserveList63(1)],[reserveList53(2),reserveList63(2)],'color','r');
line([reserveList53(1),reserveList43(1)],[reserveList53(2),reserveList43(2)],'color','r');
line([reserveList53(1),lng(42)],[reserveList53(2),lat(42)],'color','r');
line([reserveList63(1),lng(60)],[reserveList63(2),lat(60)],'color','r');
%下一部分
```

```
line([reserveList93(1),lng(61)],[reserveList93(2),lat(61)],'color','r');
line([reserveList93(1),reserveList83(1)],[reserveList93(2),reserveList83(2)],'color','r');
line([reserveList73(1),reserveList83(1)],[reserveList73(2),reserveList83(2)],'color','r');
line([reserveList73(1),lng(39)],[reserveList73(2),lat(39)],'color','r');
line([reserveList73(1),lng(34)],[reserveList73(2),lat(34)],'color','r');
text([lng(pThrMatIndex);reserveList13(1);reserveList23(1);reserveList33(1);reserveLis
t43(1);reserveList53(1);reserveList63(1);reserveList73(1);reserveList83(1);reserveList
93(1)],[lat(pThrMatIndex);reserveList13(2);reserveList23(2);reserveList33(2);reserveL
ist43(2);reserveList53(2);reserveList63(2);reserveList73(2);reserveList83(2);reserveLi
st93(2)],[cityName(pThrMatIndex);insCityName(reserveList13(3));insCityName(reser
veList23(3));insCityName(reserveList33(3));insCityName(reserveList43(3));insCityNa
me(reserveList53(3));insCityName(reserveList63(3));insCityName(reserveList73(3));i
nsCityName(reserveList83(3));insCityName(reserveList93(3))],'fontsize',8,'fontweight'
,'bold');
hold off;
xlabel('经度');
vlabel('纬度');
%Problem 4.m
%随机摧毁 10%的节点
clear
clc
load('Problem_1.mat');
figure:
qplot(c,r,'-o')
text(lng,lat,cityName,'fontsize',7,'fontweight','bold');%6
hold:
line([lng(90),lng(41)],[lat(90),lat(41)],'color','r');
line([lng(45),lng(12)],[lat(45),lat(12)],'color','r');
line([lng(11),lng(3)],[lat(11),lat(3)],'color','r');
line([lng(1),lng(4)],[lat(1),lat(4)],'color','r');
line([lng(22),lng(33)],[lat(22),lat(33)],'color','r');
line([lng(100),lng(112)],[lat(100),lat(112)],'color','r');
line([lng(127),lng(138)],[lat(127),lat(138)],'color','r');
hold off:
xlabel('经度');
ylabel('纬度');
c(90.41)=GetDistance(lng(90),lat(90),lng(41),lat(41));
c(45,12) = GetDistance(Ing(45),Iat(45),Ing(12),Iat(12));
c(11,3)=GetDistance(Ing(11),Iat(11),Ing(3),Iat(3));
c(1,4)=GetDistance(Ing(1),Iat(1),Ing(4),Iat(4));
c(22,33)=GetDistance(lng(22),lat(22),lng(33),lat(33));
c(100,112)=GetDistance(lng(100),lat(100),lng(112),lat(112));
c(127,138)=GetDistance(Ing(127),lat(127),lng(138),lat(138));
z=c:
fPointList=zeros(1);
for i=1:14
    fPointList(i)=round(unifrnd(1,139));
    while(length(unique(fPointList))<i)</pre>
```

```
fPointList(i)=round(unifrnd(1,139));
    end
end
%导入保存数据 Problem_4.mat 还原当时随机点
load('Problem_4.mat');
c(fPointList,:)=0;
c(:,fPointList)=0;
figure;
gplot(c,r,'- o');
text(Ing,lat,cityName,'fontsize',6,'fontweight','bold');
scatter(Ing(fPointList), lat(fPointList), '*', 'r');
hold off;
xlabel('经度');
ylabel('纬度');
%Alterna.m
%insIndex 在范围内的节点索引
%insP1 1.与被炸点距离最短 Ing lat 索引
%insP2 2.与连接点距离最短 参数同上
%insP3 3.被炸和连接距离最短 参数同上
function [insIndex,insP1,insP2,insP3]=Alterna(Ing0,lat0,lng,lat,R,coLng,coLat)
insP1=-inf;
insP2=-inf;
insP3=-inf;
insIndex=zeros(1);
count=1;
vlu1=inf;
vlu2=inf;
vlu3=inf:
for i=1:length(lng)
    temp1=GetDistance(lng(i),lat(i),lng0,lat0);
    if(temp1 <= R)
        insIndex(count)=i;
        count=count+1;
        temp2=0;
        for j=1:length(coLng)
            %计算备战节点与之前连接节点的距离
            temp2=temp2+GetDistance(coLng(j),coLat(j),lng(i),lat(i));
        end
        temp3=temp1+temp2;
        %最小值 1.与被炸 2.与连接 3.被炸和连接
        if(vlu1>temp1)
            vlu1=temp1;
            insP1=[lng(i),lat(i),i];
        end
        if(vlu2>temp2)
            vlu2=temp2;
            insP2=[Ing(i),lat(i),i];
```

```
end
       if(vlu3>temp3)
            vlu3=temp3;
            insP3=[Ing(i),lat(i),i];
        end
    end
end
end
%AlternaP3.m
%insIndex 在范围内的节点索引
%insP1 1.与被炸点的集合距离最短 Ing lat 索引
%insP2 2.与连接点距离最短 参数同上
%insP3 3.被炸点集合和连接距离最短 参数同上
%Ing0 lat0 中心点坐标
%R 中心点与连接点的最长距离
%coLng coLat 连接点坐标
%fList 被炸点集合
function [insIndex,insP1,insP2,insP3]=AlternaP3(fList,lng0,lat0,lng,lat,R,coLng,coLat)
insP1=-inf;
insP2=-inf;
insP3=-inf;
insIndex=zeros(1);
count=1;
vlu1=inf;
vlu2=inf;
vlu3=inf;
for i=1:length(lng)
    temp=GetDistance(Ing(i),lat(i),Ing0,lat0);
    if(temp<=R)
       insIndex(count)=i;
       count=count+1;
       temp1=0;
       temp2=0;
       for k=1:length(fList)
            temp1=temp1+GetDistance(fList(1),fList(2),lng(i),lat(i));
        end
       for j=1:length(coLng)
            %计算备战节点与之前连接节点的距离
            temp2=temp2+GetDistance(coLng(j),coLat(j),lng(i),lat(i));
        end
        temp3=temp1+temp2;
        %最小值 1.与被炸 2.与连接 3.被炸和连接
       if(vlu1>temp1)
           vlu1=temp1;
            insP1=[Ing(i),lat(i),i];
        end
        if(vlu2>temp2)
           vlu2=temp2;
```

```
insP2=[Ing(i),Iat(i),i];
         end
         if(vlu3>temp3)
             vlu3=temp3;
             insP3=[Ing(i),lat(i),i];
         end
    end
end
end
%Center.m
function pThr=Center(cityListIndex,lat,lng)
%将 Lat1 和 Lon1 从度转换为弧度。
latList=lat(cityListIndex)*pi/180;
IngList=Ing(cityListIndex)*pi/180;
%将第一个位置的 lat/lon 转换为笛卡尔坐标。
X=cos(latList).*cos(lngList);
Y=cos(latList).*sin(lngList);
Z=sin(latList);
%计算加权平均 x, y 和 z 坐标
x=sum(X)/length(X);
y=sum(Y)/length(Y);
z=sum(Z)/length(Z);
%将平均 x、y、z 坐标转换为纬度和经度。
lnqList1 = atan2(y,x);
Hyp = sqrt(x * x + y * y);
latList1 = atan2(z,Hyp);
pThr=[IngList1*180/pi,latList1*180/pi];
end
%Distance.m
function d=Distance(Ing,lat)
d=zeros(length(lat));
d(logical(eye(size(d))))=inf;
for i=1:length(lat)-1
    for j=i+1:length(lng)
         d(i,j)=GetDistance(Ing(i),lat(i),Ing(j),lat(j));
         d(j,i)=d(i,j);
    end
end
end
%GetDistance.m
function s=GetDistance(Ing1,lat1,lng2,lat2)
         radLat1 = lat1 * pi / 180.0;
         radLat2 = lat2 * pi / 180.0;
         a = radLat1 - radLat2;
         b = (lng1 - lng2)* pi / 180.0;
         s = 2 * asin(sqrt(power(sin(a/2),2) +
cos(radLat1)*cos(radLat2)*power(sin(b/2),2)));
         s = s * 6378.137;
end
```

附录 3

| 序号 | 城市  | 东经      | 北纬     | 序号 | 城市  | 东经      | 北纬     |
|----|-----|---------|--------|----|-----|---------|--------|
| 1  | 北流  | 110.21  | 22.42  | 54 | 鹤壁  | 114.11  | 35. 54 |
| 2  | 百色  | 106.36  | 23. 54 | 55 | 辉县  | 113.47  | 35. 27 |
| 3  | 防城港 | 108. 2  | 21. 37 | 56 | 焦作  | 113. 12 | 35. 14 |
| 4  | 贵港  | 109.36  | 23.06  | 57 | 济源  | 112.35  | 35.04  |
| 5  | 桂平  | 110.04  | 23. 22 | 58 | 灵宝  | 110. 52 | 34. 31 |
| 6  | 河池  | 108.03  | 24. 42 | 59 | 林州  | 113.49  | 36.03  |
| 7  | 合山  | 108. 52 | 23. 47 | 60 | 漯河  | 114.02  | 33. 33 |
| 8  | 赁祥  | 106. 44 | 22. 07 | 61 | 平顶山 | 113. 17 | 33.44  |
| 9  | 钦州  | 108. 37 | 21. 57 | 62 | 濮阳  | 115.01  | 35. 44 |
| 10 | 梧州  | 111.2   | 23. 29 | 63 | 沁阳  | 112. 57 | 35.05  |
| 11 | 玉林  | 110.09  | 22. 38 | 64 | 汝州  | 112.5   | 34.09  |
| 12 | 宜州  | 108.4   | 24. 28 | 65 | 三门峡 | 111.12  | 34. 47 |
| 13 | 安顺  | 105. 55 | 26. 14 | 66 | 商丘  | 115.38  | 34. 26 |
| 14 | 毕节  | 105. 18 | 27. 18 | 67 | 卫辉  | 114.03  | 35. 24 |
| 15 | 赤水  | 105. 42 | 28. 34 | 68 | 舞钢  | 113.3   | 33. 17 |
| 16 | 凯里  | 107. 58 | 26. 35 | 69 | 项城  | 114.54  | 33. 26 |
| 17 | 清镇  | 106. 27 | 26. 33 | 70 | 荥阳  | 113. 21 | 34.46  |
| 18 | 铜仁  | 109. 12 | 27. 43 | 71 | 新密  | 113. 22 | 34.31  |
| 19 | 兴义  | 104. 53 | 25.05  | 72 | 新乡  | 113.52  | 35. 18 |
| 20 | 海口  | 110.2   | 20.02  | 73 | 新郑  | 113.43  | 34. 24 |
| 21 | 儋州  | 109. 34 | 19.31  | 74 | 许昌  | 113.49  | 34.01  |
| 22 | 琼海  | 110. 28 | 19.14  | 75 | 偃师  | 112.47  | 34. 43 |
| 23 | 琼山  | 110. 21 | 19.59  | 76 | 义马  | 111.55  | 34. 43 |
| 24 | 通什  | 109. 31 | 18.46  | 77 | 禹州  | 113. 28 | 34.09  |
| 25 | 安国  | 115. 2  | 38. 24 | 78 | 周口  | 114. 38 | 33. 37 |
| 26 | 霸州  | 116. 24 | 39.06  | 79 | 驻马店 | 114.01  | 32. 58 |
| 27 | 泊头  | 116. 34 | 38.04  | 80 | 阿城  | 126. 58 | 45. 32 |
| 28 | 沧州  | 116. 52 | 38. 18 | 81 | 安达  | 125. 18 | 46. 24 |
| 29 | 定州  | 115     | 38. 3  | 82 | 北安  | 126.31  | 48. 15 |
| 30 | 丰南  | 118.06  | 39. 34 | 83 | 大庆  | 125.01  | 46.36  |
| 31 | 高碑店 | 115. 51 | 39. 2  | 84 | 富锦  | 132.02  | 47. 15 |
| 32 | 蒿城  | 114.5   | 38. 02 | 85 | 海林  | 129. 21 | 44. 35 |
| 33 | 河间  | 116.05  | 38. 26 | 86 | 海伦  | 126. 57 | 47. 28 |
| 34 | 黄骅  | 117. 21 | 38. 21 | 87 | 鹤岗  | 130.16  | 47. 2  |
| 35 | 晋州  | 115.02  | 38.02  | 88 | 密山  | 131.5   | 45. 32 |
| 36 | 冀州  | 115.33  | 37. 34 | 89 | 讷河  | 124. 51 | 48. 29 |
| 37 | 廓坊  | 116. 42 | 39. 31 | 90 | 宁安  | 129. 28 | 44. 21 |
| 38 | 鹿泉  | 114. 19 | 38.04  | 91 | 七台河 | 130.49  | 45. 48 |
| 39 | 南宫  | 115. 23 | 37. 22 | 92 | 双城  | 126. 15 | 45. 22 |
| 40 | 任丘  | 116.07  | 38. 42 | 93 | 尚志  | 127. 55 | 45. 14 |
| 41 | 三河  | 117.04  | 39. 58 | 94 | 双鸭山 | 131.11  | 46.38  |
| 42 | 沙河  | 114.3   | 36. 51 | 95 | 绥芬河 | 131.11  | 44. 25 |
| 43 | 深州  | 115.32  | 38.01  | 96 | 绥化  | 126. 59 | 46.38  |
| 44 | 武安  | 114. 11 | 36. 42 | 97 | 铁力  | 128.01  | 46. 59 |

| 序号  | 城市  | 东经      | 北纬     | 序号  | 城市       | 东经      | 北纬     |
|-----|-----|---------|--------|-----|----------|---------|--------|
| 45  | 邢台  | 114.3   | 37.04  | 98  | 五常       | 127.11  | 44. 55 |
| 46  | 辛集  | 115. 12 | 37. 54 | 99  | 五大连<br>池 | 126. 07 | 48. 38 |
| 47  | 新乐  | 114.41  | 38. 2  | 100 | 伊春       | 128.56  | 47. 42 |
| 48  | 涿州  | 115. 59 | 39. 29 | 101 | 肇东       | 125. 58 | 46.04  |
| 49  | 遵化  | 117. 58 | 40.11  | 102 | 安陆       | 113.41  | 31. 15 |
| 50  | 长葛  | 113. 47 | 34. 12 | 103 | 当阳       | 111.47  | 30. 5  |
| 51  | 登封  | 113.02  | 34. 27 | 104 | 丹江口      | 108.3   | 32. 33 |
| 52  | 邓州  | 112.05  | 32. 42 | 105 | 大冶       | 114. 58 | 30.06  |
| 53  | 巩义  | 112. 58 | 34. 46 | 106 | 恩施       | 109. 29 | 30.16  |
| 107 | 鄂州  | 114. 52 | 30. 23 | 160 | 珲春       | 130. 22 | 42. 52 |
| 108 | 广水  | 113. 48 | 31. 37 | 161 | 集安       | 126.11  | 41.08  |
| 109 | 洪湖  | 113. 27 | 29. 48 | 162 | 蛟河       | 127. 21 | 43. 42 |
| 110 | 黄州  | 114. 52 | 30. 27 | 163 | 九台       | 125. 51 | 44.09  |
| 111 | 荆门  | 112. 12 | 31.02  | 164 | 辽源       | 125.09  | 42.54  |
| 112 | 荆沙  | 112. 16 | 30. 18 | 165 | 临江       | 126.53  | 41.49  |
| 113 | 老河口 | 111.4   | 32. 23 | 166 | 龙井       | 129. 26 | 42.46  |
| 114 | 利川  | 108.56  | 30. 18 | 167 | 梅河口      | 125. 4  | 42. 32 |
| 115 | 麻城  | 115.01  | 31.1   | 168 | 舒兰       | 126. 57 | 44. 24 |
| 116 | 浦圻  | 113.51  | 29. 42 | 169 | 松原       | 124. 49 | 45.11  |
| 117 | 潜江  | 112.53  | 30. 26 | 170 | 洮南       | 122.47  | 45. 2  |
| 118 | 石首  | 112. 24 | 29. 43 | 171 | 延吉       | 129.3   | 42.54  |
| 119 | 随州  | 113. 22 | 31.42  | 172 | 愉树       | 126. 32 | 44. 49 |
| 120 | 天门  | 113. 1  | 60.39  | 173 | 常熟       | 120.43  | 31.39  |
| 121 | 武穴  | 115.33  | 29. 51 | 174 | 常州       | 119.58  | 31.47  |
| 122 | 咸宁  | 114. 17 | 29. 53 | 175 | 丹阳       | 119.32  | 32     |
| 123 | 仙桃  | 113. 27 | 30. 22 | 176 | 东台       | 120.19  | 32.51  |
| 124 | 孝感  | 113.54  | 30. 56 | 177 | 高邮       | 119. 27 | 32.47  |
| 125 | 宜城  | 112. 15 | 31.42  | 178 | 海门       | 121.09  | 31.53  |
| 126 | 应城  | 113.33  | 30. 57 | 179 | 淮安       | 119.09  | 33. 3  |
| 127 | 枣阳  | 112.44  | 32. 07 | 180 | 淮阴       | 119.02  | 33. 36 |
| 128 | 枝城  | 111.27  | 30. 23 | 181 | 江都       | 119.32  | 32. 26 |
| 129 | 钟祥  | 112. 34 | 31.1   | 182 | 姜堰       | 120.08  | 32. 34 |
| 130 | 洪江  | 109.59  | 27. 07 | 183 | 江阴       | 120. 17 | 31.54  |
| 131 | 津市  | 111.52  | 29. 38 | 184 | 靖江       | 120.17  | 32.02  |
| 132 | 吉首  | 109. 43 | 28. 18 | 185 | 金坛       | 119.33  | 31.46  |
| 133 | 耒阳  | 112.51  | 26. 24 | 186 | 昆山       | 120. 57 | 31.23  |
| 134 | 冷水江 | 111. 26 | 27. 42 | 187 | 连去港      | 119.1   | 34. 36 |
| 135 | 冷水滩 | 111.35  | 26. 26 | 188 | 溧阳       | 119. 29 | 31.26  |
| 136 | 涟源  | 111.41  | 27.41  | 189 | 南通       | 120. 51 | 32.01  |
| 137 | 醴陵  | 113.3   | 27.4   | 190 | 邳州       | 117. 59 | 34. 19 |
| 138 | 临湘  | 113. 27 | 29. 29 | 191 | 启乐       | 121.39  | 31.48  |
| 139 | 浏阳  | 113. 37 | 28. 09 | 192 | 如皋       | 120. 33 | 32. 23 |
| 140 | 娄底  | 111.59  | 27. 44 | 193 | 宿迁       | 118. 18 | 33. 58 |
| 141 | 汨罗  | 113.03  | 28. 49 | 194 | 苏州       | 120.37  | 31. 19 |
| 142 | 韶山  | 112. 29 | 27. 54 | 195 | 太仓       | 121.06  | 31.27  |

| 序号  | 城市  | 东经      | 北纬     | 序号  | 城市  | 东经      | 北纬     |
|-----|-----|---------|--------|-----|-----|---------|--------|
| 143 | 邵阳  | 111.28  | 27. 14 | 196 | 泰兴  | 120.01  | 32. 1  |
| 144 | 武冈  | 110.37  | 26. 43 | 197 | 泰州  | 119.54  | 32. 3  |
| 145 | 湘潭  | 112.53  | 27. 52 | 198 | 通州  | 121.03  | 32.05  |
| 146 | 湘乡  | 112. 31 | 27. 44 | 199 | 吴江  | 120.39  | 31. 1  |
| 147 | 益阳  | 112.2   | 28. 36 | 200 | 兴化  | 119.5   | 32. 56 |
| 148 | 永州  | 111. 37 | 26. 13 | 201 | 新沂  | 118.2   | 34. 22 |
| 149 | 沅江  | 112. 22 | 28. 5  | 202 | 盐在  | 120.08  | 33. 22 |
| 150 | 张家界 | 110. 29 | 29.08  | 203 | 扬中  | 119.49  | 32.14  |
| 151 | 株洲  | 113.09  | 27. 51 | 204 | 宜兴  | 119.49  | 31.21  |
| 152 | 资兴  | 113. 13 | 25. 58 | 205 | 仪征  | 119.1   | 32. 16 |
| 153 | 白山  | 126. 26 | 41.56  | 206 | 张家港 | 120. 32 | 31. 52 |
| 154 | 大安  | 124. 18 | 45. 3  | 207 | 镇江  | 119. 27 | 32.11  |
| 155 | 德惠  | 125. 42 | 44. 32 | 208 | 德兴  | 117. 35 | 28. 57 |
| 156 | 敦化  | 128. 13 | 43. 22 | 209 | 丰城  | 115.48  | 28. 12 |
| 157 | 公主岭 | 124. 49 | 43. 31 | 210 | 高安  | 115. 22 | 28. 25 |
| 158 | 和龙  | 129     | 42. 32 | 211 | 吉安  | 114. 58 | 27. 07 |
| 159 | 桦甸  | 126. 44 | 42. 58 | 212 | 井冈山 | 114. 1  | 26. 34 |
| 213 | 乐平  | 117.08  | 28. 58 | 266 | 菏泽  | 115. 26 | 35. 14 |
| 214 | 临川  | 116. 21 | 27. 59 | 267 | 胶南  | 119. 58 | 35. 53 |
| 215 | 瑞昌  | 115. 38 | 29.4   | 268 | 胶州  | 120     | 36. 17 |
| 216 | 瑞金  | 116.01  | 25. 53 | 269 | 即墨  | 120. 28 | 36. 22 |
| 217 | 上饶  | 117. 58 | 25. 27 | 270 | 莱芜  | 117. 4  | 36. 12 |
| 218 | 新余  | 114. 56 | 27. 48 | 271 | 莱西  | 120. 31 | 36. 52 |
| 219 | 宜春  | 114. 23 | 27. 47 | 272 | 莱阳  | 120. 42 | 36. 58 |
| 220 | 樟树  | 115. 32 | 28. 03 | 273 | 莱州  | 119. 57 | 37. 1  |
| 221 | 北票  | 120. 47 | 41. 48 | 274 | 乐陵  | 117. 12 | 37. 44 |
| 222 | 本溪  | 123.46  | 41. 18 | 275 | 聊城  | 115. 57 | 36. 26 |
| 223 | 朝阳  | 120. 27 | 41. 34 | 276 | 临清  | 115. 42 | 36. 51 |
| 224 | 大石桥 | 122. 31 | 40. 37 | 277 | 临沂  | 118.2   | 35. 03 |
| 225 | 东港  | 124. 08 | 39. 53 | 278 | 龙口  | 120. 21 | 37. 39 |
| 226 | 凤城  | 124. 02 | 40. 28 | 279 | 蓬莱  | 120.45  | 37. 48 |
| 227 | 抚顺  | 123. 54 | 41.51  | 280 | 平度  | 119.58  | 36. 47 |
| 228 | 阜新  | 121.39  | 42.01  | 281 | 青州  | 118. 28 | 36. 42 |
| 229 | 盖州  | 122. 21 | 40. 24 | 282 | 曲阜  | 116. 58 | 35. 36 |
| 230 | 海城  | 122. 43 | 40.51  | 283 | 日照  | 119.32  | 35. 23 |
| 231 | 葫芦岛 | 120. 51 | 40.45  | 284 | 乳山  | 121.31  | 36. 54 |
| 232 | 开原  | 124.02  | 42. 32 | 285 | 寿光  | 118.44  | 36. 53 |
| 233 | 辽阳  | 123. 12 | 41.16  | 286 | 泰安  | 117.08  | 36.11  |
| 234 | 凌海  | 121. 21 | 41.1   | 287 | 滕州  | 117.09  | 35.06  |
| 235 | 凌源  | 119. 22 | 41.14  | 288 | 威海  | 122.07  | 37. 31 |
| 236 | 盘锦  | 122.03  | 41.07  | 289 | 文登  | 122.03  | 37. 12 |
| 237 | 普兰店 | 121. 58 | 39. 23 | 290 | 新泰  | 117. 45 | 35. 54 |
| 238 | 铁法  | 123. 32 | 42. 28 | 291 | 兖州  | 116.49  | 35. 32 |
| 239 | 铁岭  | 123. 51 | 42. 18 | 292 | 禹城  | 116. 39 | 36. 56 |
| 240 | 瓦房店 | 122     | 39. 37 | 293 | 枣庄  | 117. 33 | 34. 52 |

| 序号  | 城市   | 东经      | 北纬     | 序号  | 城市 | 东经      | 北纬     |
|-----|------|---------|--------|-----|----|---------|--------|
| 241 | 兴城   | 120. 41 | 40. 37 | 294 | 章丘 | 117. 32 | 36. 43 |
| 242 | 新民   | 122.49  | 41.59  | 295 | 招远 | 120. 23 | 37. 21 |
| 243 | 庄河   | 122. 58 | 39. 41 | 296 | 诸城 | 119.24  | 35. 59 |
| 244 | 赤峰   | 118. 58 | 42. 17 | 297 | 淄博 | 118.03  | 36. 48 |
| 245 | 东胜   | 109. 59 | 39. 48 | 298 | 邹城 | 116.58  | 35. 24 |
| 246 | 额尔古纳 | 120. 11 | 50.13  | 299 | 高平 | 112.55  | 35. 48 |
| 247 | 丰镇   | 113.09  | 40. 27 | 300 | 古交 | 112.09  | 37. 54 |
| 248 | 根河   | 121. 29 | 50.48  | 301 | 河津 | 110.41  | 35. 35 |
| 249 | 霍林郭勒 | 119. 38 | 45. 32 | 302 | 侯马 | 111.21  | 35. 37 |
| 250 | 集宁   | 113.06  | 41.02  | 303 | 霍州 | 111.42  | 36. 34 |
| 251 | 临河   | 107. 22 | 40.46  | 304 | 介休 | 111.55  | 37. 02 |
| 252 | 通辽   | 122. 16 | 43. 37 | 305 | 晋城 | 112.51  | 35. 3  |
| 253 | 乌兰浩特 | 122. 03 | 46.03  | 306 | 潞城 | 113. 14 | 36. 21 |
| 254 | 乌海   | 106. 48 | 39.4   | 307 | 朔州 | 112. 26 | 39. 19 |
| 255 | 牙克石  | 120.4   | 49. 17 | 308 | 孝义 | 111.48  | 37. 08 |
| 256 | 扎兰屯  | 122. 47 | 48     | 309 | 忻州 | 112. 43 | 38. 24 |
| 257 | 石嘴山  | 106. 22 | 39. 02 | 310 | 阳泉 | 113. 34 | 37. 51 |
| 258 | 吴忠   | 106. 11 | 37. 59 | 311 | 永济 | 110. 27 | 34. 52 |
| 259 | 安丘   | 119. 12 | 36. 25 | 312 | 原平 | 112. 42 | 38. 43 |
| 260 | 滨州   | 118. 02 | 37. 22 | 313 | 榆次 | 112. 43 | 37. 41 |
| 261 | 昌邑   | 119. 24 | 39. 52 | 314 | 安康 | 109.01  | 32. 41 |
| 262 | 德州   | 116. 17 | 37. 26 | 315 | 韩城 | 110. 27 | 35. 28 |
| 263 | 东营   | 118.3   | 37. 27 | 316 | 华阴 | 110.05  | 34. 34 |
| 264 | 肥城   | 116. 46 | 36. 14 | 317 | 商州 | 109.57  | 33. 52 |
| 265 | 高密   | 119. 44 | 36. 22 | 318 | 铜川 | 109.07  | 35. 06 |
| 319 | 渭南   | 109.3   | 34. 3  | 372 | 富阳 | 119.57  | 30.03  |
| 320 | 咸阳   | 108. 43 | 34. 2  | 373 | 海宁 | 120. 42 | 30. 32 |
| 321 | 兴平   | 108. 29 | 34. 18 | 374 | 湖州 | 120.06  | 30. 52 |
| 322 | 巴中   | 106. 43 | 31. 51 | 375 | 建德 | 119.16  | 29. 29 |
| 323 | 崇州   | 103.4   | 30. 39 | 376 | 江山 | 118. 37 | 28. 45 |
| 324 | 达川   | 107. 29 | 31. 14 | 377 | 嘉兴 | 120.45  | 30.46  |
| 325 | 德阳   | 104. 22 | 31.09  | 378 | 兰溪 | 119.28  | 29.12  |
| 326 | 都江堰  | 103. 37 | 31.01  | 379 | 临海 | 121.08  | 28. 51 |
| 327 | 峨眉山  | 103. 29 | 29. 36 | 380 | 丽水 | 119.54  | 28. 27 |
| 328 | 涪陵   | 107. 22 | 29. 42 | 381 | 龙泉 | 119.08  | 28.04  |
| 329 | 广汉   | 104. 15 | 30. 58 | 382 | 平湖 | 121.01  | 30. 42 |
| 330 | 广元   | 105. 51 | 32. 28 | 383 | 衢州 | 118.52  | 28. 58 |
| 331 | 华蓥   | 106. 44 | 30. 26 | 384 | 瑞安 | 120.38  | 27. 48 |
| 332 | 简阳   | 104. 32 | 30. 24 | 385 | 上虞 | 120. 52 | 30.01  |
| 333 | 江油   | 104. 42 | 31.48  | 386 | 绍兴 | 120. 34 | 30     |
| 334 | 阆中   | 105. 58 | 31. 36 | 387 | 台州 | 121. 27 | 28. 41 |
| 335 | 乐山   | 103.44  | 29. 36 | 388 | 桐乡 | 120. 32 | 30. 38 |
| 336 | 泸州   | 105. 24 | 28. 54 | 389 | 温岭 | 121. 21 | 28. 22 |
| 337 | 南充   | 106.04  | 30. 49 | 390 | 温州 | 120.39  | 28. 01 |
| 338 | 内江   | 105. 02 | 29. 36 | 391 | 萧山 | 120.16  | 30.09  |

| 序号  | 城市   | 东经      | 北纬     | 序号  | 城市  | 东经      | 北纬     |
|-----|------|---------|--------|-----|-----|---------|--------|
| 339 | 彭州   | 103. 57 | 30. 59 | 392 | 义乌  | 120.04  | 29. 18 |
| 340 | 邛崃   | 103. 28 | 30. 26 | 393 | 乐清  | 120.58  | 28.08  |
| 341 | 遂宁   | 105. 33 | 30.31  | 394 | 余杭  | 120.18  | 30. 26 |
| 342 | 万县   | 108. 21 | 30.5   | 395 | 余姚  | 121. 1  | 30.02  |
| 343 | 万源   | 108. 03 | 32.03  | 396 | 永康  | 120.01  | 29. 54 |
| 344 | 雅安   | 102. 59 | 29. 59 | 397 | 舟山  | 122.06  | 30.01  |
| 345 | 自贡   | 104. 46 | 29. 23 | 398 | 诸暨  | 120. 14 | 29.43  |
| 346 | 资阳   | 104. 38 | 30.09  | 399 | 合川市 | 106. 15 | 30.02  |
| 347 | 台北市  | 121.3   | 25.03  | 400 | 江津  | 106.16  | 29. 18 |
| 348 | 阿图什  | 76. 08  | 39. 42 | 401 | 南川  | 107.05  | 29. 1  |
| 349 | 博乐   | 82.08   | 44. 57 | 402 | 永川  | 105. 53 | 29. 23 |
| 350 | 昌吉   | 87. 18  | 44.02  | 403 | 兰浩特 | 122.08  | 46.07  |
| 351 | 阜康   | 87. 58  | 44.09  | 404 | 郑州  | 113.65  | 34. 77 |
| 352 | 克拉玛依 | 84. 51  | 45. 36 | 405 | 三亚  | 109.50  | 18. 20 |
| 353 | 库尔勒  | 86. 07  | 41.46  | 406 | 海口  | 110.35  | 20.02  |
| 354 | 奎屯   | 84. 56  | 44. 27 | 407 | 蚌埠  | 117. 21 | 32. 56 |
| 355 | 石河子  | 86      | 44. 18 | 408 | 亳州  | 115. 47 | 33. 52 |
| 356 | 吐鲁番  | 89. 11  | 42. 54 | 409 | 巢湖  | 117. 52 | 31.36  |
| 357 | 伊宁   | 81.2    | 43. 55 | 410 | 滁州  | 118. 18 | 32. 18 |
| 358 | 保山   | 99. 1   | 25.08  | 411 | 阜阳  | 115.48  | 32. 54 |
| 359 | 楚雄   | 101.32  | 25.01  | 412 | 贵池  | 117. 28 | 30.39  |
| 360 | 东川   | 103. 12 | 26.06  | 413 | 淮北  | 116.47  | 33. 57 |
| 361 | 景洪   | 100.48  | 22.01  | 414 | 淮南  | 116.58  | 32. 37 |
| 362 | 开远   | 103. 13 | 23. 43 | 415 | 黄山  | 118. 18 | 29.43  |
| 363 | 曲靖   | 103. 48 | 25. 3  | 416 | 界首  | 115. 21 | 33. 15 |
| 364 | 瑞丽   | 97. 5   | 24     | 417 | 马鞍山 | 118. 28 | 31.43  |
| 365 | 思茅   | 100. 58 | 22.48  | 418 | 明光  | 117. 58 | 32.47  |
| 366 | 宣威   | 104. 06 | 26. 13 | 419 | 宿州  | 116.58  | 33. 38 |
| 367 | 玉溪   | 102. 32 | 24. 22 | 420 | 天长  | 118.59  | 32.41  |
| 368 | 昭通   | 103. 42 | 27.2   | 421 | 铜陵  | 117. 48 | 30. 56 |
| 369 | 慈溪   | 121. 15 | 30.11  | 422 | 宣州  | 118.44  | 30. 57 |
| 370 | 东阳   | 120. 14 | 29. 16 | 423 | 长乐  | 119.31  | 25. 58 |
| 371 | 奉化   | 121. 24 | 29. 39 | 424 | 福安  | 119.39  | 27.06  |
| 425 | 福清   | 119. 23 | 25. 42 | 460 | 鹤山  | 112. 57 | 22.46  |
| 426 | 建瓯   | 118.2   | 27. 03 | 461 | 河源  | 114.41  | 23. 43 |
| 427 | 建阳   | 118.07  | 27. 21 | 462 | 花都  | 113. 12 | 23. 23 |
| 428 | 晋江   | 118. 35 | 24. 49 | 463 | 化州  | 110. 37 | 21. 39 |
| 429 | 龙海   | 117. 48 | 24. 26 | 464 | 惠阳  | 114. 28 | 22. 48 |
| 430 | 南安   | 118. 23 | 24. 57 | 465 | 惠州  | 114. 22 | 23.05  |
| 431 | 南平   | 118. 1  | 26. 38 | 466 | 江门  | 113.04  | 22. 35 |
| 432 | 宁德   | 119.31  | 26. 39 | 467 | 揭阳  | 116. 21 | 22. 32 |
| 433 | 莆田   | 119.01  | 24. 26 | 468 | 开平  | 112.4   | 22. 22 |
| 434 | 泉州   | 118.36  | 24. 56 | 469 | 乐昌  | 113. 21 | 25. 09 |
| 435 | 三明   | 117. 36 | 26. 13 | 470 | 雷州  | 110.04  | 20. 54 |
| 436 | 邵武   | 117. 29 | 27. 2  | 471 | 廉江  | 110. 17 | 21. 37 |

| 序号  | 城市  | 东经      | 北纬     | 序号  | 城市 | 东经      | 北纬     |
|-----|-----|---------|--------|-----|----|---------|--------|
| 437 | 石狮  | 118.38  | 24. 44 | 472 | 连州 | 112. 23 | 24.48  |
| 438 | 武夷山 | 118.02  | 27.46  | 473 | 罗定 | 111.33  | 22.46  |
| 439 | 永安  | 117. 23 | 25. 58 | 474 | 茂名 | 110.53  | 21.4   |
| 440 | 漳平  | 117. 24 | 25. 17 | 475 | 梅州 | 116.07  | 24. 19 |
| 441 | 漳州  | 117. 39 | 24. 31 | 476 | 南海 | 113.09  | 23.01  |
| 442 | 白银  | 104. 12 | 36. 33 | 477 | 番禺 | 113. 22 | 22.57  |
| 443 | 嘉峪关 | 98.14   | 39. 48 | 478 | 普宁 | 116.1   | 23. 18 |
| 444 | 金昌  | 102.1   | 38. 28 | 479 | 清远 | 113.01  | 23.42  |
| 445 | 酒泉  | 98. 31  | 39. 44 | 480 | 三水 | 112.52  | 23. 1  |
| 446 | 临夏  | 103. 12 | 35. 37 | 481 | 汕尾 | 115. 21 | 22.47  |
| 447 | 平凉  | 106.4   | 35. 32 | 482 | 顺德 | 113. 15 | 22. 5  |
| 448 | 武威  | 102.39  | 37. 56 | 483 | 四会 | 112.41  | 23. 21 |
| 449 | 西峰  | 107.4   | 35. 45 | 484 | 台山 | 112.48  | 22.15  |
| 450 | 潮阳  | 116.36  | 23. 16 | 485 | 吴川 | 110.47  | 21.26  |
| 451 | 潮州  | 116.38  | 23.4   | 486 | 新会 | 113.01  | 22.32  |
| 452 | 澄海  | 116.46  | 23. 28 | 487 | 兴宁 | 115.43  | 24.09  |
| 453 | 从化  | 113.33  | 23. 33 | 488 | 阳春 | 111.48  | 22. 1  |
| 454 | 东莞  | 113.45  | 23.02  | 489 | 阳江 | 111.58  | 21.5   |
| 455 | 恩平  | 112. 19 | 22. 12 | 490 | 英德 | 113. 22 | 24. 1  |
| 456 | 佛山  | 113.06  | 23.02  | 491 | 云浮 | 112.02  | 22. 57 |
| 457 | 高明  | 112.5   | 22. 53 | 492 | 增城 | 113.49  | 23. 18 |
| 458 | 高要  | 112.26  | 23.02  | 493 | 中山 | 113. 22 | 22.31  |
| 459 | 高州  | 110.5   | 21.54  | 494 | 珠海 | 113.34  | 22. 17 |