Tutorial 3 - MATH 4043

- 1. Would you accept a gamble that offers a 10% chance to win \$95 and a 90% chance of losing \$5?
- 2. Would you pay \$5 to participate in a lottery that offers a 10% chance to win \$100 but a 90% chance to win nothing?
- 3. (Insurance companies) Loss aversion and cost versus loss sustain the insurance industry: people pay more in premiums than they get back in claims on average (otherwise the industry wouldn't be sustainable), but they buy insurance anyway to protect themselves against substantial losses.
 - (a) Suppose you pay \$1 each year to protect yourself against a 1 in 1000 chance of losing \$100 that year. Calculate the expected value of this scheme and interpret your answer?
- 4. We toss a fair coin 3 times. Let X be a random variable that counts the number of heads in 3 coin tosses.
 - (a) Write down the sample space S for this experiment.
 - (b) Show the mapping from the sample space S to the various values of X and tabulate the probability mass function of X.
 - (c) Show the mapping from the sample space S to the various values of X and tabulate the probability mass function of X.
- 5. The random variable X has probability mass function X as given in the table below.

x	-1	1	2
$p_X(x)$	k	2k	k

- (a) Find the value of k.
- (b) Tabulate and sketch the cumulative distribution function $F_X(x)$ of X.
- (c) Compute E[X] and Var[X].
- 6. Two fair dice (with 6 faces each) are tossed together. Let Y denote the sum of the numbers on the top faces of each die.
 - (a) Write down the sample space S. You may use a short cut notation for this.
 - (b) Tabulate all the values in the range of Y and the corresponding probability mass function $p_Y(y)$.

- (c) Compute E[Y] and Var[Y].
- 7. The random variable X has probability mass function X as given in the table below. Let the random variable $Y = X^2$. This means that, e.g., $\{Y = 1\} = \{X = -1\} \cup \{X = 1\}$ and so on.

x	-2	-1	0 1		2
$p_X(x)$	0.1	0.3	0.2	0.3	0.1

- (a) Tabulate the range of Y and its probability mass function $p_Y(y)$.
- (b) Computer E[Y] and Var[Y].

SOLUTIONS

1. We toss a fair coin 3 times. Let X be a random variable that counts the number of heads in 3 coin tosses.

Solution.

(a) Write down the sample space S for this experiment.

$$S = \{TTT, THH, HTH, HHT, TTH, THT, HTT, HHH\}$$

(b) Show the mapping from the sample space S to the various values of X and tabulate the probability mass function of X.

The mappings between the subsets of the sample space to the events $\{X = x\}$ are as follows. where the subsets containing the sample points on the LHS are mapped to the corresponding points on the real line by X (on RHS).

$\{TTT\}$	$\{X=0\}$
HTT, THT, TTH	$\{X=1\}$
${HHT, THH, HTH}$	$\{X=2\}$
${HHH}$	$\{X=3\}$

Since the coin is fair, the probability of each elementary event containing one sample point is $\frac{1}{8}$, and so from the table above, we can tabulate the probability mass function

(c) Compute E[X] and Var[X].

$$E[X] = 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8} = \frac{3}{2}.$$

Now the second moment is

$$E[X^2] = 0^2 \times \frac{1}{8} + 1^2 \times \frac{3}{8} + 2^2 \times \frac{3}{8} + 3^2 \times \frac{1}{8} = 3.$$

Therefore

$$Var[X] = E[X^2] - (E[X])^2 = 3 - \left(\frac{3}{2}\right)^2 = \frac{3}{4}.$$

Note – after Chapter 5, we see that the distribution of X is actually binomial $Bin(3, \frac{1}{3})$ and using the formulas directly for the mean and variance of a binomial distributed random variable, we also get the same answers.

2. The random variable X has probability mass function X as given in the table below.

x	-1	1	2
$p_X(x)$	k	2k	k

Solution.

(a) Find the value of k.

$$1 = k + 2k + k = 4k$$
,

so therefore k = 0.25. Substituting back into the table, we get

x	-1	1	2	
$p_X(x)$	0.25	0.5	0.25	

(b) Tabulate and sketch the cumulative distribution function $F_X(x)$ of X.

x	-1	1	2
$p_X(x)$	0.25	0.5	0.25
$F_X(x)$	0.25	0.75	1

(c) Compute E[X] and Var[X].

$$E[X] = (-1) \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = \frac{3}{4}.$$

Now the second moment is

$$E[X^2] = (-1)^2 \times \frac{1}{4} + 1^2 \times \frac{1}{2} + 2^2 \times \frac{1}{4} = \frac{7}{4}.$$

Thus

$$Var[X] = E[X^2] - (E[X])^2 = \frac{7}{4} - \left(\frac{3}{4}\right)^2 = \frac{19}{16}.$$

3. Two fair dice (with 6 faces each) are tossed together. Let Y denote the sum of the numbers on the top faces of each die.

Solution.

(a) Write down the sample space S. You may use a short cut notation for this.

$$S = \{(1,1), (1,2), (1,3), \cdots, (6,6)\}$$

If you list out every possible combination, you will have 36 sample points in total. Alternatively

$$S = \{(i, j) : i, j \in \{1, 2, 3, 4, 5, 6\}\}.$$

(b) Tabulate all the values in the range of Y and the corresponding probability mass function $p_Y(y)$.

The mappings between the subsets of the sample space to the events $\{X = x\}$ are as follows. where the subsets containing the sample points on the LHS are mapped to the corresponding points on the real line by X (on RHS).

{(1.1)}	$\{Y=2\}$
$\{(1.2),(2,1)\}$	$\{Y=3\}$
$\{(1.3), (2,2), (3,1)\}$	$\{Y=4\}$
$\{(1.4), (2,3), (3,2), (4,1)\}$	$\{Y=5\}$
$\{(1.5), (2,4), (3,3), (4,2), (5,1)\}$	$\{Y = 6\}$
$\{(1.6), (2,5), (3,4), (4,3), (5,2), (6,1)\}$	$\{Y=7\}$
$\{(2.6), (3,5), (4,4), (5,3), (6,2)\}$	$\{Y = 8\}$
$\{(3.6), (4,5), (5,4), (6,3)\}$	$\{Y = 9\}$
$\{(4.6), (5,5), (6,4)\}$	$\{Y = 10\}$
$\{(5.6), (6,5)\}$	$\{Y = 11\}$
$\{(6,6)\}$	$\{Y = 12\}$

Now note that the probability of any elementary event is $P\{(i,j)\} = \frac{1}{36}$ since any elementary event containing any single sample point are equally likely. So based on the table above, the probability mass function of Y is

У	2	3	4	5	6	7	8	9	10	11	12
$p_Y(y)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$\frac{4}{36}$	$\frac{5}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$
$p_Y(y)$	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

The 3rd row is just the probability mass function of Y expressed in fractions reduced to the lowest terms.

(c) Compute E[Y] and Var[Y].

$$E[Y] = 2 \times \frac{1}{36} + 3 \times \frac{2}{36} + 4 \times \frac{3}{36} + 5 \times \frac{4}{36} + 6 \times \frac{5}{36} + 7 \times \frac{6}{36} + 8 \times \frac{5}{36} + 9 \times \frac{4}{36} + 10 \times \frac{3}{36} + 11 \times \frac{2}{36} + 12 \times \frac{1}{36} = 7.$$

Now the second moment is

$$E[Y^2] = 2^2 \times \frac{1}{36} + 3^2 \times \frac{2}{36} + 4^2 \times \frac{3}{36} + 5^2 \times \frac{4}{36} + 6^2 \times \frac{5}{36} + 7^2 \times \frac{6}{36} + 8^2 \times \frac{5}{36} + 9^2 \times \frac{4}{36} + 10^2 \times \frac{3}{36} + 11^2 \times \frac{2}{36} + 12^2 \times \frac{1}{36} = \frac{329}{6}.$$

Thus

$$Var[Y] = E[Y^2] - (E[Y])^2 = \frac{329}{6} - 7^2 = \frac{35}{6}.$$

4. The random variable X has probability mass function X as given in the table below. Let the random variable $Y = X^2$. This means that, e.g., $\{Y = 1\} = \{X = -1\} \cup \{X = 1\}$ and so on.

x	-2	-1	0	1	2
$p_X(x)$	0.1	0.3	0.2	0.3	0.1

(a) Tabulate the range of Y and its probability mass function $p_Y(y)$.

First note the equivalence of the following events involving Y and X in the table below.

$\{Y=0\}$	$\{X=0\}$
${Y=1}$	${X = -1} \cup {X = 1}$
Y = 4	${X = -2} \cup {X = 2}$

Hence we calculate the probability mass function of Y as in the table below.

y		$p_Y(y)$
0	$P\{Y = 0\} = P\{X = 0\}$	0.2
1	$P\{Y = 1\} = P\{X = -1\} + P\{X = 1\}$	0.6
4	$P\{Y = 4\} = P\{X = -2\} + P\{X = 2\}$	0.2

(b) Computer E[Y] and Var[Y].

$$E[Y] = 0 \times 0.2 + 1 \times 0.6 + 4 \times 0.2 = 1.4.$$

$$E[Y^2] = 0^2 \times 0.2 + 1^2 \times 0.6 + 4^2 \times 0.2 = 3.8.$$

Thus

$$Var[Y] = 3.8 - (1.4)^2 = 1.84.$$