IP {IP.doc}

IP

1. O valor inicial de TTL (*Time To Live*) no cabeçalho pode ser inferior ao número de saltos (*hops*) na rede, entre originador e destinatário, de um datagrama-IP? Justifique.

R: Não. Se o fôsse, e como ele é decrementado por cada *hop*, ele chegaria a zero (e em consequência seria descartado) antes de atingir o nó destino.

- 2. [09E2.9] Suponha que um datagrama IPv4 contendo um pacote de transporte é fragmentado e que um dos fragmentos se perde na rede.
- 2.1. Na sequência desta perda, diga que acções (se as houver) são executadas ao nível de rede no destinatário do datagrama original.
 - 2.2. Diga se o nível de transporte no destinatário será informado do facto (e de que forma).
 - 2.3. Como será corrigida esta perda de fragmento?

R1: a recomposição do datagrama é abortada e fragmentos já recebidos são descartados, quando for excedido o tempomáximo-de-recomposição;

R2: Não;

R3: No caso do TCP, é feita a retransmissão do pacote em causa, em outro datagrama IPv4. No caso de UDP, a aplicação poderá, ela mesma, provocar essa retransmissão.

(Curiosidade: na especificação original do IP, a RFC791, a recomposição do datagrama será abortada quando for excedido o maior entre 1) o tempo-máximo-de-recomposição (por omissão, 15 seg) após se ter recebido o primeiro fragmento, e 2) o Tempo de vida do segmento que apresentar um maior *tempo de vida* (TTL). Acontece que os nós da Internet *real* utilizam o TTL como número de *hops*, e não como "tempo" - pelo que a decisão de abortar a recomposição considera *apenas* o tempo-máximo-de-recomposição; um valor mínimo realístico para este será da ordem dos 60 segs)

3. [09E3.8] Considere que está envolvido no fabrico de um router para datagramas IPv4...

Recorde os campos de um datagrama-IPv4:

Versão IHL Tipo de Serviço			Comprimento	Total		
Identificação			Flags	Offset		
TTL (Tempo de Vida) Protocolo			Checksun	1		
Endereço de Origem	Endereço de Destino		Opções	Dados		

- 3.1. Quais os campos do cabeçalho de um datagrama que o router deve actualizar antes de o transmitir?
- 3.2. Eventualmente, em alguns datagramas o *router* necessita acrescentar uma opção de 4-bytes; quais os campos do cabeçalho que ele tem que actualizar?
- 3.3. Sucede que a primeira versão do *router* não processa o campo TTL (*TimeToLive*). Quais as consequências? Qual é o modo correcto de lidar com o campo TTL?
- 3.4. Em ordem a poupar nos gastos, decide ignorar a *checksum*: o *router* não a testa, nem a actualiza. E, no laboratório, verifica-se que *os testes até correm bem*. Daí a pergunta: será uma boa decisão?
- 3.5. Com o intuito de acelerar o processamento do datagrama, decide recolher o endereço de destino nos últimos 4 *bytes* do cabeçalho. Mas, de vez em quando, o *router* falha na determinação do endereço correcto. Porquê?
- 3.6. Qual o comprimento *mínimo* do cabeçalho? Se o nível superior passar ao nível IP, para serem enviados, 1 Mbyte de dados, mas cada datagrama não puder exceder 40 *bytes* de comprimento, quantos *bytes*, no total, terá o nível IP que enviar?
- 3.7. Admita que o *router* recebe 5 fragmentos de um datagrama de uma entrada cujo MTU é 60 *bytes*, e que ele decide fazê-los prosseguir por uma saída cujo MTU é 120. Quantos datagramas, no total, deverá transmitir?

R1: TTL e checksum

- R2: TTL, checksum, comprimento do cabeçalho, comprimento total e opções
- R3: Alguns dos datagramas poderão ser retransmitidos indefinidamente. O *router* deveria decrementar de 1 o TTL e, se o resultado fosse 0, descartá-lo e devolver uma mensagem ICMP "*Time exceeded*"
- R4: Não é uma boa ideia. A Internet *real* corrompe mesmos os pacotes! E *routers* de outros fabricantes descartariam os datagramas, pois a *checksum* estaria errada...
- R5: Os datagramas podem ter opções no cabeçalho! Pelo que os tais últimos 4 *bytes* seriam Opções, não endereço! (A solução é utilizar como endereço de destino os bytes 17-20! Ou então somente utilizar os últimos 4 *bytes* do endereço se o comprimento do cabeçalho for 20...)

R6: 20 byte; 2 Mbyte.

R7: 5, pois o router não procede à recomposição (*re-assemble*) dos datagramas.

4. [04E1] Quais são os campos, do cabeçalho de um datagrama-IP, que são *alterados* pelo procedimento de *fragmentação*? Explique o que acontece com cada um deles.

Recorde os campos de um datagrama-IP:

Versão	Versão IHL Tipo de Servi			Total
Identificação			Flags	Offset
TTL (Tempo de Vida)	TTL (Tempo de Vida) Protocolo			ı
Endereço de Origem	Endereço de Destino		Opções	Dados

R: Offset: reflectindo a posição do fragmento no datagrama original

Flags: excepto o último fragmento da segmentação dum datagrama com MF=0, será MF=1

Opções: algumas das opções podem ser copiadas para os fragmentos

IHL: tem que ficar de acordo com o comprimento do Header do fragmento

Comprimento total: tem que ficar de acordo com o comprimento do fragmento

Checksum: tem que ficar de acordo com o novo conteúdo do fragmento

Tempo de Vida: decrementado 1

- 5. Quais deverão ser os valores da flag **MF** (*More Fragments*) e do *Offset do Fragmento* num datagrama-IP completo, não-fragmentado?
 - R: MF=0, Offset do Fragmento=0
- 6. [08E3.6] Considere a fragmentação de datagramas no protocolo IP v4.
 - 6.1. Teoricamente, qual o valor máximo de fragmentos que podem resultar de um único datagrama IP?
 - 6.2. Qual o maior datagrama que não pode ser fragmentado?
 - R1: $\geq 65535 / 8 \Rightarrow 2^{13} = 8192$ fragmentos

(Recorde: são aceites datagramas com comprimento até, em teoria, 65535 octetos; e os dados são repartidos em porções terminando em fronteiras de 8 octetos)

- R2: Datagrama com 60 octetos de cabeçalho e 8 octetos de dados (É aceitável a resposta 20 de cabeçalho + 8 de dados)
- 7. Suponha que um segmento TCP tem 2048 *bytes* de dados e 20 *bytes* de cabeçalho. Este segmento tem que atravessar duas ligações para chegar ao destino. A primeira ligação tem um MTU de 1024 *bytes* e a segunda um MTU de 512 *bytes*. Assuma que o cabeçalho de qualquer diagrama IP tem 20 *bytes*.
 - 7.1. Indique os comprimentos e *offsets* de todos os fragmentos entregues ao nó após a primeira ligação.
 - 7.2. Indique os comprimentos e offsets de todos os fragmentos entregues à camada IP do destino
 - 7.3. Como é que o destinatário sabe que já recebeu o último fragmento do datagrama?

Resolução:

Relativamente ao segmento TCP em causa, é passado à camada rede um total de 2068 (=20+2048) bytes.

Procedimentos relativos à *primeira* ligação: sendo MTU=1024 *bytes*, e havendo que reservar, em cada datagrama-IP, 20 *bytes* para o cabeçalho, sobram **1004** bytes (=1024-20) para os *dados* - o que é menos que os **2068** bytes do segmento a transmitir. Há, pois, que o fragmentar... As regras a observar são: *tentar encher cada datagrama o mais possível*, e *operar a fragmentação em fronteiras de 8 bytes*.

Quantos *bytes* de dados é que cada datagrama irá carregar? Repare-se que 1004/8=125,5; por conseguinte, o maior múltiplo de 8 que não excede 1004 é 8*125=1000. Pelo que as regras acima ficarão cumpridas vertendo, no campo *dados* de cada datagrama (exceptuando o último), 125 blocos de 8 *bytes*.

- numeram-se 0, 1, 2,... os blocos de 8 bytes dos dados do segmento; inicializa-se offset=0, cfr IP01.a;
- constroi-se um primeiro datagrama, com 125 blocos de 8 *bytes* do segmento-TCP, contados a partir de *offset*=0; *offset* incrementa de 125; ficam sobrando 2068-1000=1068 bytes...
- constroi-se um segundo datagrama, com 125 blocos de 8 *bytes* do segmento-TCP, contados a partir de *offset=125; offset* incrementa de 125; ficam sobrando 1068-1000=68 bytes...

- constroi-se o terceiro, e último datagrama, com os últimos 68 bytes do segmento-TCP, contados a partir de offset=250...

Sumarizando, as características dos datagramas despachados para a primeira ligação são:

Cabeçalho	Dados	Offset	MF-Flag	Comprimento do datagrama
20	1000	0	1	1020
20	1000	125	1	1020
20	68	250	0	88

Procedimentos relativos à *segunda* ligação: sendo MTU=512 *bytes*, e havendo que reservar, em cada datagrama-IP, 20 *bytes* para o cabeçalho, sobram **492** bytes para os *dados*.

O *primeiro* datagrama recebido da primeira ligação transporta **1000** *bytes* de dados - o que excede esses 492 bytes. Há, pois, que o fragmentar...

Quantos *bytes* de dados é que cada fragmento irá carregar? Repare-se que 492/8=61,5. Pelo que em cada fragmento (exceptuando o último), deverão ser colocados 61 blocos de 8 bytes.

- constroi-se um primeiro fragmento, com 61 blocos de 8 *bytes* do datagrama, contados a partir de *offset=0*; offset incrementa de 61; ficam sobrando 1000-488=512 bytes...
- constroi-se um segundo fragmento, com 61 blocos de 8 *bytes* do datagrama, contados a partir de *offset=61; offset* incrementa de 61; ficam sobrando 512-488=24 bytes...
- constroi-se o terceiro fragmento, com os últimos 24 *bytes* do datagrama, contados a partir de *offset=122...*

Para o segundo datagrama proveniente da primeira ligação, o

procedimento é análogo. Sumarizando, tem-se o seguinte, à chegada à camada rede do destino, cfr IP01.b:

Cabeçalho	Dados	Offset	MF-Flag	Comprimento do fragmento
20	488	0	1	508
20	488	61	1	508
20	24	122	1	44
20	488	125	1	508
20	488	186	1	508
20	24	247	1	44
20	68	250	0	88

Nota: em cada fragmentação, são também alterados os campos TTL e checksum.

8. © [2007/09] Considere que uma *gateway-IP* recebeu um datagrama-IP com os campos seguintes:

Id: 314

TL (Total Length)=132

FO (Offset do Fragmento)=29

MF (More Fragments)=0

e que ele deve ser re-enviado, para uma rede cujo MTU_{Max}=128.

Em quantos datagramas-IP deve aquele ser segmentado? Quais os valores que aqueles campos deverão passar a deter, em cada um deles?

Nota: Admita que o campo Opções do cabeçalho do datagrama-IP está vazio

R: IHL= $20 \Rightarrow [(128-20) / 8] * 8=104$ octetos por fragmento; 132 = 20+112

 \Rightarrow 112 / 104 \approx 2 datagramas-IP, com os seguintes campos:

Id	TL	FO	MF
314	20+104	29	1
314	20+8	42	0

IP

9. [07T2] Considere que um computador *fonte* gerou um datagrama IPv4 em que, no respectivo cabeçalho, *Id*=345 e o campo *Opções* está vazio. No caminho até ao computador *destino*, o datagrama IP sofreu várias fragmentações. Suponha que os nós, quando segmentam os pacotes, agem por forma a *encher o mais possível* os fragmentos resultantes. Suponha também que, a certa altura, já chegaram ao destino três fragmentos, pela ordem seguinte e com os seguintes campos no cabeçalho:

	DG1:	DG2:	DG3:
Id	345	345	345
Total Length	140	50	140
Fragment Offset	15	60	30
Flag More Fragments	1	0	1

- 9.1. Com base na informação contida nos fragmentos já recebidos, qual o número de octetos de dados do datagrama original na fonte?
- 9.2. Qual o valor mais elevado de MTU (*Maximum Transfer Unit*) que a Rede mais restritiva (visitada por aqueles três fragmentos) pode ter?
- 9.3. Qual o Fragment Offset do fragmento que contém o 400° octeto do datagrama original?

R1: (60*8)+(50-20)=510 bytes (Nota: como o campo *Opções* está vazio, o *IP-Header* tem apenas 20 bytes)

R2: $MTU_{Max}=140+(8-1)=147$ bytes (Nota: a segmentação faz-se em fronteiras de 8 bytes) R3: FO=int (400/(15*8))*15=45 (Nota: cada fragmento comporta 140-20=120=15*8 bytes)

10.[07E2.5] Um emissor envia um datagrama com 900 *bytes* de dados e com o campo Opções vazio. No caminho até ao destino, o datagrama original foi fragmentado. Suponha que todas as redes atravessadas pelos datagramas (fragmentos) possuem o mesmo MTU (*Maximum Transfer Unit*). Suponha também que, neste cenário, todos os *routers* que decidem fragmentar datagramas escolhem sempre o máximo tamanho possível para os fragmentos. Considere que chegaram ao receptor os seguintes datagramas, pela ordem indicada e com o seguinte conteúdo:

	DG1:	DG2:
Id	345	345
Total Length (TL)	180	180
Fragment Offset (FO)	80	20
Flag More Fragments (MF)	1	1

Quais os campos FO, MF e TL dos fragmentos que ainda não chegaram?

R: O número de bytes de dados em cada fragmento é de 180-20=160. Então, a recomposição do datagrama será:

		DG2			DG1	
TL-20:	160	160	160	160	160	100=900-5*160
FO:	0	20	40	60	80	100

 $\rightarrow \! DG3: FO=0, MF=1, TL=180; DG4: \{40,1,180\}; DG5: \{60,1,180\}; DG6: \{100,0,120\}$

- 11. [08T2.3] Considere que entre dois computadores, X e Y, existem várias Redes, com a topologia
 - esquematizada na figura ao lado, onde se indicam os respectivos MTU (Maximum Transfer Unit). X gera um datagrama IPv4 com 512 bytes de Dados. Esse datagrama é sujeito a uma primeira fragmentação na rede W. O primeiro fragmento é encaminhado pela Gateway Gnw e os restantes são encaminhados para a Gateway Gsw. Assuma que se enche o mais possível os fragmentos resultantes. Especifique os campos TotalLength, FragmentOffset e MoreFragment dos fragmentos que chegarão a Y.

[Nota: Suponha que não haverá perdas nem duplicados, nem os datagramas sofrem loops no trânsito entre \mathbf{X} e \mathbf{Y}].

R: (Reparo: 256 cobre 20+29*8, 128 cobre 20+13*8)

TotalLength	124	124	44	252	68
FragmentOffset	0	13	26	29	58

12.[09T2.2] Considere que entre dois computadores, X e Y, existem várias Redes, com a topologia esquematizada na figura IP05.d, onde se indicam os respectivos MTU (*Maximum Transfer Unit*). X gera um datagrama IPv4 com 1024 bytes de Dados (e em cujo

cabeçalho o campo Opções está vazio). Os fragmentos resultantes de uma primeira fragmentação em X são encaminhados pelas Gateways *Gs* ou *Gnw* (e *Gen*). Ao destino Y, chegam no total cinco fragmentos. Na tabela abaixo, sumarizam-se os dados (*TotalLength*, *FragmentOffset* e *MoreFragment*) já recolhidos desses datagramas. Preencha as quadrículas ainda vazias. Assuma que, no processo de fragmentação, se enche o mais possível os fragmentos resultantes.

[Nota: Suponha que não há perdas nem duplicados, nem os datagramas sofrem *loops* no trânsito entre X e Y].

TotalLength	300	292	172
FragmentOffset	0		
MoreFragment		0	

R: A fragmentação em \mathbf{X} origina três datagramas, $\{D_{x1}, D_{x2}, D_{x3}\}$, com, sucessivamente, 376 (=(400-20)/8*8), 376 e 272 (=1024-2*376) bytes de dados. A fragmentação de D_{x1} em G_{x} origina dois datagramas, com 280 (=(300-20)/8*8) e 96 bytes (=376-280) de dados: são o primeiro e segundo (ou quarto) datagramas recebidos; os FragmentOffset são 0 e 280/8=35. A fragmentação de D_{x2} em G_{x} origina dois datagramas, com 224 (=(250-20)/8*8) e 152 bytes (=376-224) de dados são o quarto (ou segundo) e quinto datagramas recebidos. Os respectivos FragmentOffset são 47 (=376/8) e 75 (=47+28). D_{x3} detém MoreFragment=0; é o terceiro datagrama recebido, o seu FragmentOffset será 2*376/8=94.

1ª Fragmentação	1024 = 376 + 376 + 272				
2ª Fragmentação	$D_{x1}:37$	76=280+9	D _{x3} :272	D _{x2} :376=224+15	
		6		2	
TotalLength	300	116	292	244	172
FragmentOffset	0	0 35		47	75
MoreFragment	1	1 1		1	1

(Repare-se: O primeiro datagrama (cujo FragmentOffset=0) e o terceiro (cujo MoreFragment=0) contém respectivamente o primeiro e último bytes de dados do datagrama original. Pois que esses datagramas têm comprimentos que excedem o MTU de N (=256), deduz-se que esses bytes $n\~ao$ podem ter transitado por N: o seu trajecto foi $X \rightarrow W \rightarrow E \rightarrow Y$. Isto é: D_{x1} e D_{x3} foram, ambos, encaminhados por Gs. E, quanto a D_{x2} , a sua fragmentação origina um datagrama com 152 bytes de dados – valor distinto daqueles {280 e 96} associados à fragmentação de D_{x1} ; i.e.: a Gateway por que transitou não foi aquela, Gs, por onde viajou D_{x1} , mas Gn.

O número de bytes de dados é o valor do TotalLength decrescido de 20, o comprimento do header)

13. Explique os conceitos, e compare as respectivas vantagens e desvantagens, de fragmentação *intranet* versus fragmentação *internet*.