Laws of Indices

The first rule: The second rule: $(a^n)^m = a^{mn}$ The third rule: $a^m \div a^n = a^{m \cdot n}$ The fourth rule: $a^{\circ} = 1$ $a^{-1} = \frac{1}{a}$ $a^{-m} = \frac{1}{a^{-m}}$ The fifth rule: The sixth rule: $a^{\frac{1}{10}} = \sqrt{a}$ $a^{\frac{1}{m}} = \sqrt[m]{a}$

 $a^n \times a^m = a^{m+n}$

 $a^{\frac{n}{m}} = (a^{\frac{1}{m}})^n = (\sqrt[m]{a})^n$

Indices is a number with the power. For example: a^m; a is called the base and m is the power. These laws only apply to expression with the same base.

Index help to write a product of numbers very compactly. Index help to show how many times to use the number in a multiplication. It is shown in the top right of the number in small number.

In this example: $4^3 = 4x4x4 = 64$

Rule1: $a^{\circ} = 1$

Any number, except 0, whose index is 0 is always equal to 1.

An example:

 $2^{\circ} = 1$

Rule 2: $a^{-m} = \frac{1}{a^m}$

An example:

$$2^{-3} = \frac{1}{2^3}$$
 (using $a^{-m} = \frac{1}{a^m}$)

Rule 3: $a^m x a^n = a^{m+n}$

In case of multiplication of same base, copy the base and add the indices.

An example:

 $3^2 \times 3^4 = 3^{2+4}$ (using $a^m \times a^n = a^{m+n}$) $=3^{6}$ $= 3 \times 3 \times 3 \times 3 \times 3 \times 3$ = 729

Rule 4: $a^m \div a^n = a^{m-n}$

In case of division of same base, copy the base and subtract the indices.

An example:

$$w^{10} \div w^6 = w^{10\text{-}6} = w^4$$

Rule 5: $(a^{m})^{n} = a^{mn}$

To raise an expression to the nth index, Copy the base and multiply the indices.

An example:

$$(x^2)^4 = x^{2\times 4} = x^8$$

Rule 6: $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$

An example:

$$125^{\frac{2}{3}} = (\sqrt[3]{125})^2 = (5)^2 = 25$$