Cognitive Computer Vision

Computer Exercise
Tuesdays 14.15-15.45, Room D-118/119

Dr. Mikko Lauri Email: lauri@informatik.uni-hamburg.de

SS 2018

Contents

1 Task 4 from Exercise 1

Exercise sheet 2

 Sliding window (kernel) over image, calculate inner product with contents of input.

¹Image credit: http://jeanvitor.com/convolution-parallel-algorithm-python/

```
tf.nn.conv2d(
   input,
   filter,
   strides,
   padding,
   use_cudnn_on_gpu=True,
   data_format='NHWC',
   dilations=[1, 1, 1, 1],
   name=None)
```

- input the input images: tensor of shape [N H W C]:
 N images, height H, width W, C channels.
- Example: one grayscale image, shape of input is $\begin{bmatrix} 1 & H & W & 1 \end{bmatrix}$

```
1 tf.nn.conv2d(
2 input,
3 filter,
4 ...)
```

- filter the filtering kernels, tensor of shape $[F_h \ F_w \ N_i \ N_o]$: filter height F_h , width F_w , N_i input channels, N_o output channels.
- F_h and F_w typically odd, the middle element is the origin of the kernel.
- Example: one filter operating on single-channel input: $\begin{bmatrix} F_h & F_w & 1 & 1 \end{bmatrix}$
- filter[i,j,k,1] is the weight of relative location (i,j) for the kth input channel to produce the lth output channel.

```
tf.nn.conv2d(...,
    strides, ...)
```

• stride: number of units the filter shifts in each dimension. 1-D tensor with 4 elements: S_h , S_h , S_w , S_c

Figure: Stride 2 for height and width

²Image credit: https://adeshpande3.github.io

```
tf.nn.conv2d(...,
padding, ...)
```

- padding How to pad image around the edges?
- "SAME": Pad the input with zeros around the edges to ensure output is of same shape as input.
- "VALID": no padding. Output shape will be smaller than input depending on the kernel shape.

- input the input images: tensor of shape [N H W C]:
 N images, height H, width W, C channels.
- filter the filtering kernels, tensor of shape $[F_h \ F_w \ N_i \ N_o]$: filter height F_h , width F_w , N_i input channels, N_o output channels.
- tf.reshape, tf.expand_dims, or NumPy equivalents.

Static and dynamic shape of a tensor x

- The static shape is known at graph construction time and can be accessed by x.shape. Print it out anywhere!
- The *dynamic shape* can be partly or completely known only at runtime. Access by the operation tf.shape(x). Use sess.run!
- The symbol ? is shown for static shape where shape is unknown statically.

Figure: Left: original, Right: Smoothed with $\sigma=10$

- You will need OpenCV + Python bindings to generate the filter kernel
- Use a classroom computer if you do not have OpenCV on your laptop
- If you have OpenCV on your laptop, to install Python bindings: sudo apt-get install python-opency

1. Variables

- Values of tensors "live" only during a single Session.run()
 call, and are lost afterwards.
- Exception: tf.Variable stores data that persists over multiple runs
 - Model parameters
 - Bookkeeping: running averages and other statistics, number of iterations, . . .
- Shape specified via tf.initializer; some variables are trainable (e.g., model parameters), others are not (e.g., number of iterations)

```
tf.Variable(initial_value=None,
trainable=True,
name=None,
...)
```

2. Fully-connected layer

Convenience function for creating a fully-connected (dense)
 neural network (NN) layer: tf.layers.dense

$$y = h(Wx + b)$$

- Input $x \in \mathbb{R}^m$, weights $W \in \mathbb{R}^{m \times k}$, bias $b \in \mathbb{R}^k$, output $y \in \mathbb{R}^k$, activation function $h : \mathbb{R} \to \mathbb{R}$
- Creates variables for W and b, adds ops to calculate y
- Infers the shape of W and b according to static shape of x and user-specified number of output neurons k

2. Fully-connected layer

- All layers in TF optimized to operate over several inputs at once (batch processing).
- tf.layers.dense expects an input of shape [N m]: number of inputs is N, each with dimensionality m - take this into account when defining the input!
- Same weight W and bias b will be applied to each of the N inputs.

- Problem: minimize real-valued $F(\theta)$ where θ is a vector of parameters.
- Gradient descent idea:
 - Given the current parameters θ_n , calculate gradient of F at θ_n .
 - Gradient is a vector that points in the direction of the *steepest* increase of F: update θ_n by moving towards the direction of the negative gradient (direction of steepest decrease)
 - Repeat until convergence
- Gradient denoted by ∇F , step size $\gamma \in \mathbb{R}$, also called the *learning rate*.

$$\theta_{n+1} = \theta_n - \gamma \nabla F(\theta_n)$$

• There is no guarantee of finding a global optimum!

Figure: Gradient at (x, y) illustrated by arrows originating from (x, y).

• Linear regression. Given training data (x_i, y_i) for i = 1, ..., N,

$$\min_{a,b\in\mathbb{R}}\sum_{i=1}^N\left(ax_i+b-y_i\right)^2$$

• a and b make up our parameter vector θ . The expression above is the *loss function* to be minimized with respect to the parameters.

- Tensorflow recipe for optimization:
 - Choose a model architecture.
 - ② Set up a computation graph to compute a prediction \hat{y}_i for given input x_i using the chosen architecture.
 - **3** Define a loss function that compares the prediction to the ground truth y_i : $L(\hat{y}_i, y_i)$
 - Create an optimizer instance, e.g., tf.train.GradientDescentOptimizer
 - Oreate a training op by calling the minimize(loss) method of the optimizer
 - **1** Iteratively run the training op while feeding training data.