Exam 2

To avoid any confusion, unless specified otherwise, vector spaces are complex vector spaces, inner-products are complex inner-products, and matrices are complex matrices.

Part I: True/False

Each problem is points for a total of 50 points. (5 points each.)

- (1) _____ A is unitary iff $A^H = A^{-1}$.
- (2) _____ A is unitary iff A preserves inner-products, that is, $\langle x, y \rangle = \langle Ax, Ay \rangle$.
- (3) _____ If A preserves the L^2 -norm, that is, $\|\boldsymbol{x}\|_2 = \|A\boldsymbol{x}\|_2$, then A preserves the inner-product.
- (4) _____ If A is diagonalizable and for all eigenvalues, λ of A, $|\lambda| = 1$, then A is unitary.
- (5) _____ If λ is an eigenvalue of A, then $\bar{\lambda}$ is an eigenvalue of A^H .
- (6) _____ If \boldsymbol{v} is an eigenvector of A, then $\bar{\boldsymbol{v}}$ is an eigenvector of A^H .
- (7) $(A, B) = \operatorname{tr}(B^H A)$ is an inner product on $\mathbb{C}^{n \times n}$.
- (8) _____ For all Hermitian matrices A, there is a matrix B so that $B^HB=A$.
- (9) _____ There are linear maps $L: \mathbb{R}^5 \to \mathbb{R}^4$ such that $\dim(\ker(L)) = 2 = \dim(\operatorname{rng}(L))$.
- (10) _____ For $k \leq \min\{m, n\}$, the space of matrices of rank k is a subspace of $\mathbb{C}^{m \times n}$.

Part II: Computational (45 points)

(1) (30 points) Find (by hand) he singular value decomposition of

$$A = \begin{bmatrix} \sqrt{2} & 1 & -\sqrt{2}/2 \\ -\sqrt{2} & 1 & \sqrt{2}/2 \\ -\sqrt{2}/2 & -1 & \sqrt{2} \\ \sqrt{2}/2 & -1 & -\sqrt{2} \end{bmatrix}$$

You should be able to complete each step by hand.

- (a) Find the eigenvalues of $A^T A$, $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0$.
- (b) Find a complete orthonormal set of eigenvectors $\{v_1, v_2, v_3\}$, where v_i is an eigenvector for λ_i .
- (c) Set up the 4×3 matrix Σ with $\Sigma_{ii} = \sigma_i = \sqrt{\lambda_i}$ (the i^{th} singular value) and all other $\Sigma_{ij} = 0$.
- (d) Find u_i the left singular vectors. Recall $u_i = \frac{1}{\sigma_i} A v_i$ for i = 1, 2, 3 and u_4 is a basis for $NS(A^T)$.
- (e) Let $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 & \mathbf{u}_4 \end{bmatrix}$ and $V = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$.
- (f) Verify that $A = U\Sigma V^T$.

This all works out very nicely for this carefully chosen matrix A.

This page blank (for work)

(2) (15 points) Find the best rank 2 approximation to A from (1) with respect to $\|\cdot\|_F$.

Part III: Theory and Proofs (60 points; 15 points each)

(1) Use the Spectral Theorem to show that for a Hermitian matrix A, A is positive definite iff $A = B^H B$ for some matrix B.

In some sense B is the correct notion of the square-root of A.

- (2) A map $B: V \times V \to \mathbb{R}$ is a sesquilinear form iff
 - $B(\alpha_1 \boldsymbol{x}_1 + \alpha_2 \boldsymbol{x}_2, \boldsymbol{y}) = \alpha_1 B(\boldsymbol{x}_1, \boldsymbol{y}) + \alpha_2 B(\boldsymbol{x}_2, \boldsymbol{y})$
 - $B(x, \beta_1 y_1 + \beta_2 y_2) = \bar{\beta}_1 B(x, y_1) + \bar{\beta}_2 B(x, y_2)$

Show that for any basis of V and bi-linear form $B: V \times V \to \mathbb{C}$, there is a matrix representation of B. In particular let $\mathcal{C} = \{c_1, \dots, c_n\}$ be a basis for V. Define the matrix $[B]_{\mathcal{C}}$ by

$$([B]_{\mathcal{C}})_{i,j} = B(\boldsymbol{c}_j, \boldsymbol{c}_i)$$

Show that

$$B(\boldsymbol{x},\boldsymbol{y}) = [\boldsymbol{y}]_{\mathcal{C}}^{H}[B]_{\mathcal{C}}[\boldsymbol{x}]_{\mathcal{C}}$$

(3) Recall that a complex inner product is a sesquilinear form $B: V \times V \to \mathbb{C}$ that is

(conjugate) symmetric: For all
$$x, y \in V$$
, $B(x, y) = \overline{B(y, x)}$.

positive definite For all
$$x \neq 0$$
, $B(x, x) \in \mathbb{R}^+$.

Usually, we write $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$ instead of $B(\boldsymbol{x}, \boldsymbol{y})$, when we're thinking of the sesquilinear form as an inner product.

Use (2) to show that for any complex inner-product space V with inner-product $\langle x, y \rangle_V$ and any basis $C = \{c_1, \dots, c_n\}$ for V, there is a positive definite Hermitian matrix A so that

$$\langle \boldsymbol{x}, \boldsymbol{y} \rangle_V = [y]_{\mathcal{C}}^H A[\boldsymbol{x}]_{\mathcal{C}}$$

A Hermitian matrix $A \in \mathbb{C}^{n \times n}$ is **positive definite** iff $x^H A x \in \mathbb{R}^+$ for $x \neq 0$.

(4) Use (3) and the spectral theorem to show that for any complex inner-product $\langle \cdot, \cdot \rangle_V$ on a complex vector space V, there is an orthonormal basis $\mathcal{U} = \{ \boldsymbol{u}_1, \dots, \boldsymbol{u}_n \}$ and a diagonal real matrix D with all diagonal entries positive so that

$$\langle oldsymbol{x}, oldsymbol{y}
angle_V = [oldsymbol{y}]_\mathcal{U}^H D[oldsymbol{x}]_\mathcal{U}$$

In other words $D = \text{diag}(d_1, \dots, d_n)$ with $d_i \in \mathbb{R}^+$ and $\boldsymbol{x} = \sum_{i=1}^n \alpha_i \boldsymbol{u}_i$ and $\boldsymbol{y} = \sum_{i=1}^n \beta_i \boldsymbol{u}_i$, then

$$\langle oldsymbol{x}, oldsymbol{y}
angle_V = \sum_{i=1}^n ar{eta}_i lpha_i d_i$$

A standard weighted inner-product.