

· Hausdergg
· Archise connected

· Locally arowise connected -

Vx,y ∈ X ∋ 2:[0,1] → X 2(0) = x , 2(1) = y Vx ∈ X ∀ Neighbourhoods of x ∋ areuise connected heighbourhood reside.

p: X -> Y is a covering ⇔ Yyey BUET, with

Maximal averise connected subset.

p-1(U) = 11 Vx

The Va we path components of p'(u) \$ plv :s a homeomorphism

<u>Lifting Theorems</u>

Path Lifting.

E03 > X

JP

T

Y ·p:X-y cover · f: I >> 4 path · x = x = f(0) ⇒ FF: I→X f(0)=x0, f=pof

·W locally connected Covering Humotopy: W×E03 + X W×I + Y • P: X → 4 cover

· f: Wx 803 - X a lifting of F Wx 803 If F is a homotopy red W'CW so is F

Alternitively:

If $\exists \omega \in \mathbb{N}$. $f_1(\omega) = f_2(\omega)$ t in then $\widetilde{f}_{i} = \widetilde{f}_{i}$ (uniqueness of ets maps lift)

Corrollerie 5:

• fo \$\figstyre{f_1}\$ paths in \$Y\$ the lifts unique.

• fo \$\sigma_{\{0,1\\3}} \frac{f_1}{f_1}\$ • \$\frac{f_0}{c_0,1\\3} \frac{f_1}{f_1}\$

\$\int \frac{f_0}{c_0,1\\3} \frac{f_1}{f_1}\$

Echidna:

Any cts vector field on S2 has a zero:

Invarience of Dimension:

M, N manifolds of dim m & n respectively UCM, VCN open (roneurpty) If \exists a homeomorphism $\mathcal{U} \longrightarrow V$ then m=n. $f: S' \longrightarrow Y \quad f \stackrel{\sim}{=}_{\xi * 3} id$ $\Rightarrow \tilde{f} \quad also \quad \sim loop \quad \sharp \quad \tilde{f} \stackrel{\sim}{=}_{\xi i} id$

 $\beta_{\mathbf{x}}: \mathcal{T}_{\mathbf{x}}(\mathbf{x}, \mathbf{x}_{\mathbf{0}}) \longrightarrow \mathcal{T}_{\mathbf{x}}(\mathbf{y}, \mathbf{p}(\mathbf{x}_{\mathbf{0}}))$ is injective ker (Pre) = 203 · In (pm) = \$ loops in V that lift to }

Lifting to a loop is a property loop in \times true of the class $[f] = \pi_1(Y, y_0)$ everything in [f] does

y has nontrivial covering space SRP" . T2 · S1 · KIEIN

Tr. (RP2) by Covering: from either a loop in 52

or a peta from or a peth from x to -x. So up to homotopy there are p x=-x only two different paths. So TI.(IRP2)=至±13学及2 To make this firmal need the theory of universal covers.

T, (RP2) by SYK:

Rp2 = MUs. D2 Note we have Mobius band gland along bandy already use homotopy here to reduce the open overlappoing sets to simpler equivilent sets. $SVK \stackrel{!}{=} T_{i}(\mathbb{RP}^{2}) = \pi_{i}(M) \bigstar_{\pi_{i}(S^{i})} \pi_{i}(\mathbb{D}^{2})$

= Z/2Z .

For a coner X - Y: The fiber over a point y ∈ Y is p'(y). TP.(4,40) acts on the fiber. 9 Epily) [x] en (4,40) => 4. [x] = 36 (1) Where To is the (unique) lift of I starting at P. This action is transitive (one orbit = F) Its stabilizer (if x eX) | (\pi,(X,zo)) \lefta \pi,(Y,yo) = [F] = [π, (4,40): p, π.(x,x0)] ut GAX Orbit of x EX is G.x = Eg.x: ge G.3 stabilizer of xeX Gz= {g: g·x=x} Recall the orbits partition X. Deck Transformations: $X \xrightarrow{D} X$ A map D: X -> X that poD=p. · Deck(p) = Aut(X/y) . D' & Deck(p) D is always invertible. · If Bx (x) D(n)=> D=id. D & Deck(p), [X] = TT, (4, y.), x & p'(y.) $\Rightarrow \mathcal{D}(x \cdot [\alpha]) = \mathcal{D}(x) \cdot [\alpha]$ Dach to commute with the action of $T_1(4, y_0) \cap F$ on the fibor. The action of a discrete group G on a top' space X is progresly discontinuous (HREX JUEX open (x. ∀g∈G gunu≠Ø ⇒ g=e/ GAX povup Disc Then p: X --- ax = orbits with quotient the quetient map p :s a cover · (f in addition X is simply connected Till ax) = a Normalizers: H C G , N(H) = {n+G: n+n-'= H3 JDe Dech(p) D(x0)=x Sn covered by A,..., Ann. close sets
⇒ 3i, 3x x,-x. €A;

(one of the closed sets contains a pair
of antipolal points). $\Leftrightarrow \beta_{n}\pi_{1}(X,x_{0}) = \beta_{n}\pi_{1}(X,x)$ P. TT. (X,xo) & TT. (4,yo) \Rightarrow p is regular > Deck(p) O.F.

 $-\beta_{k}(\pi_{1}(Y_{1}^{r_{k}})) \times \in X$ ranges over all conjugates of $\beta_{k}(\pi_{1}Y_{1}x) \subseteq T_{1}(Y_{1}y_{0})$

Vx,y € F 3! d € Deck(p) p (n) = y Thm: $\beta_{\infty} \pi_{\infty}(X, x_{\bullet} \cdot [\alpha]) = [\alpha]^{-1} \beta_{\infty} \pi_{\infty}(X, x_{\bullet})[\alpha]$ We have the following short exact sequence: $(\longrightarrow)^{\sharp} \coprod_{i} (\chi_{i} \chi_{o}) \longrightarrow N()^{\sharp} (\coprod_{i} (\chi_{i} \chi_{o}))) \longrightarrow Dech() \longrightarrow 1$ p regular \Rightarrow Deck $(p) \stackrel{\sim}{=} T, (4, y_0)$ p: X-14 a cover \$ 17, (X, x.) = 1 ⇒ Deck(p) = TT.(4,y.) In this case p is a "universal cover". Y has simply connected covering 9 => Equivilence classes of covering spaces of 4 (buse point preserving coner) Are bijutively related to Subgroups of T, (41,40) clusses without buscopint are given by conjugacy classes of subgroups TT, (4140) Recall |G|=|G:H||H|. X semilocally I connected relatively stri connected = KeX JUSX open T,(U,2)= 813 X has universal \iff × relatively cover simply connected Lous Space: Let S^2n-1 C Cn (n22)
Then for p prime, J=e2ni/p the primitive pth root of 1 \$ 1,..., gn EZ rel' prime top. Then G= < 1> = cycic group of p elements = C and we can embed T -diag (Th, ..., Th) = 52n-1 $\pi_{i}(C_{i})^{2^{2^{i-1}}} = \langle 1 \rangle$

Co/Homology:

Homology is a functor satisfying the Axioms: → Ci* (X, P) -

(contravariant)

Ham-Sandwhich:

tiven a closed subsets of Rn ∃ a hyperplane outling each into

two equal points simultaneously.

⇒ 32 f(2)= f(-2)

f:5°→R° ds

avaded obelian group with homomorphisms.

Pairs of top spaces
ACX with morphisms ots maps $f:(X,A) \rightarrow (Y,B)$ $f(A) \subseteq B$

 $f:(X,A) \longrightarrow (Y,B)$ morphism in O

Then $H_*(f) = f_* : H_*(\times,A) \longrightarrow H_*(Y,TS)$ (covariant) $H^*(f)=f^*: H^*(Y,B) \longrightarrow H^*(X,A)$ $(fg)_* = f_*g_*$, $(fg)^* = g^*f^*$ $id_* = id_{H_*(-)}$, $id^* = id_{H^*(-)}$

T: It follows from the axioms that if f:X -> 4 is a homotopy equivilence then fx &f* are isomorphisms.

Determining Which Functors: (Axioms)

There is more than one functor $\mathcal{D} \longrightarrow \mathcal{C}$, however we require co/homology to satisfy the Eilenberg-Steenrod Axioms, which uniquely ditermines a functor H. H. H.

·Natural transformation & (Bounday map)

We require a map $\delta: \overset{\vee}{H}_{*}(X,A) \longrightarrow \overset{\vee}{H}_{*-1}(A) = H(A,\emptyset)$ such that the following commutes $\forall n \ge 1 \ \forall f:(X,A) \longrightarrow (Y,B)$

- Homotopy: $f,g:(X,A) \longrightarrow (Y,B)$ homotopic $(f \simeq g)$ $f_{*} = g_{*}$, $f^{*} = g^{*}$
- · Excision: U⊆A open, U⊆A (interior) $\Rightarrow i:(X/U,A/U) \longleftrightarrow (X,A)$ (inclusion) induces isomorphism ix: H*(x/2, A/21) -> H*(x,A) $i^*: H^*(X,A) \longrightarrow H^*(X\backslash U, A\backslash U)$
- · long Exact sequence: Recall this means the hernel of each map is the image of the previous map.

 $H_{o}(A) \xrightarrow{k(b)} H_{o}(X) \xrightarrow{k(b)} H_{o}(A)$ Hn. (A) Hn. (X) Hn. (X,A) $H_n(A) \longrightarrow H_n(x) \longrightarrow H_n(x,A)$ الاره) کن (Xره)

- · Coproducts: Both H* & H* preserve arbitrary coproducts i.e. ILAX = Hn(Xa) \mapsto $H^n(\frac{1}{\alpha \epsilon A} \times_{\alpha}) = \coprod_{n \in A} H^n(X_{\alpha})$

 $f: X \longrightarrow Y$ a homotopy equivilence of spaces $\Rightarrow f^* \Leftrightarrow f_*$ are isomorphisms.

Reduced Homology: H*(X) ≅ H*(X) ⊕ H*(pt)

Reduced Homology

H* (XIA) = H* (X UA (one(X), pt)

Mapping one of ALX

Mayer-Vietoris: (x,x.) and X= AUB, x. E(ANB) $\stackrel{\sim}{\longrightarrow} \widetilde{H}_{i}(A \cap B) \xrightarrow{(\mu_{*}, l_{*})} \widetilde{H}_{i}(A) \oplus \widetilde{H}_{i}(B) \xrightarrow{i_{*}-j_{*}} \widetilde{H}_{i}(X) \xrightarrow{s} \cdots$ A B Exact seguence

Axiomatic Reduced Homology:

Florited top spaces anded abelian grays

① Humotopy: $f \simeq g \Rightarrow f_* = g_*$ $(f(x_0) = g(x_0) = y_0)$

 \bigcirc Abbitivity: $\bigvee_{n \in A} X_n \longmapsto \coprod_{n \in A} \widetilde{H}_n(X_n)$

(Sequence exists)

⊕ Suspension: H_{*}(∑X;pt) ≅ H_{*-1}(X,x₀)

5 Dimension: $\tilde{H}_n(\S^\circ) \overset{\sim}{\simeq} \begin{cases} \frac{72}{2}, & n=0 \\ 0, & n\geqslant 1 \end{cases}$

For a CW complex: $X^{(n)}/X^{(n-1)} \cong \bigvee_{\substack{n \text{ shelden}}} S^n$

S Hu(X(N1) $\widetilde{H}_{N+1}\big(\stackrel{\chi_{(n+1)}}{\chi_{(n+1)}}\Big) \xrightarrow{q_{N+1}} \widetilde{H}_{\nu}\big(\stackrel{\chi_{(n)}}{\chi_{(n+1)}}\Big) \xrightarrow{q_{\nu}} \widetilde{H}_{\nu-1}\big(\stackrel{\chi_{(n-1)}}{\chi_{(n-1)}}\Big)$ $\frac{\widetilde{H}_{n}(X^{(n)})}{\widetilde{X}^{(n-1)})} \stackrel{\cong}{=} C_{n}(X) \qquad \qquad H_{n-1}(X^{(n-1)}) \qquad \qquad H_{n-1}(X^{(n-1)})$ $\stackrel{\cong}{=} \mathbb{Z}^{**} cf_{n} cells_{in} X$

 $H_n(x) = \frac{\ker(d_n)}{\operatorname{Im}(d_{n+1})}$

 $J_n(\text{cell in } X) = \underset{\text{wedge sumands of } X^{(n-1)} \times (n-2)}{\text{degree cp attaching map}}$ $a \hookrightarrow X^{(n)} \xrightarrow{\rho} X^{(n-1)}_{X(n-2)}$

adular Approx: Given X \$4 CW complexes) ⇒ · f ~ cellular map . Any two allular maps are related by a cumular homotopy

> X cm > Y cm) An

Tells us converted in some independent of the particular all structure chosen.