Notes

David Wiedemann

Contents

1	Lie Algebras of Algebraic Groups									2										
	1.1	Borel and Parabolic subgroups																		2

1 Lie Algebras of Algebraic Groups

Throughout, G is an algebraic group over $k = \overline{k}$ of char. 0.

Definition 1 (Lie Algebra of algebraic group) We define

$$\mathfrak{g}=\text{Lie}(G)=T_eG=\text{Der}(\mathcal{O}_{G,e})=\text{Der}_G(\mathcal{O}_G).$$

Where $Der_G(\mathcal{O}_G)$ are the G-invariant derivations.

Let's see that these identifications make sense, first we show the identification

$$T_eG = Der_G(\mathcal{O}_G)$$

Let $\delta \in \text{Der}_G(\mathcal{O}_G)$ and $f \in \mathcal{O}(G)$, consider the map $f \mapsto \delta f(e) \in k$, we get an induced map $\text{Der}_G(\mathcal{O}_G) \to T_e(G)$ by mapping $\delta \mapsto (\text{Id} + \delta(-)(e)) \cdot \epsilon)$.

Given Id $+\alpha\epsilon \in T_eG$, define a derivation $\delta_\alpha \colon A \to A$ defined by $\delta_\alpha(f)(g) = g \cdot \delta_\alpha(f)(e)$

$$Der_{G}(\mathcal{O}_{G}) = Der(\mathcal{O}_{G,e})$$

Given $f \in Der_G(\mathcal{O}_G)$, there is a natural map on stalks $f \in Der(\mathcal{O}_{G,e})$.

The other way, let $\delta \colon \mathcal{O}_{G,e} \to \mathcal{O}_{G,e}$ be a derivation. Define a derivation $\delta \colon A \mapsto A$ by $\delta(f)(g) = g \cdot \delta f(g)$.

The association $G \mapsto Lie(G)$ extends to a functor.

Theorem 1

$$\{ H \subset G \text{ closed connected } \} \rightarrow \{ \mathfrak{h} \subset \mathfrak{g} \}$$

is injective.

1.1 Borel and Parabolic subgroups

Let G be an algebraic and B \subset G a Borel subgroup.

Theorem 2 G/B is projective and all Borel subgroups are conjugate.

Proof Let $H \subset G$ be a Borel subgroup of maximal dimension. Let V be a G-vector space and $L \subset V$ a line such that $G_L = H$.

Now $H \curvearrowright \mathcal{F}\ell(V/L)$ and because $\mathcal{F}\ell(V/L)$ is complete, there is a fixed point.

Extend this fixed point to a full flag of V by L, denote this flag $F \in \mathcal{F}\ell(V)$, then $G/H \to \mathbb{P}(V)$ sending $gH \mapsto gF$ is bijective, denote the image by GF.

We claim GF is projective, indeed, since H is of maximal dimension, it suffices to show that GF is an orbit of minimal dimension. If $L \subset G$ stabilises a flag, then L is solvable and hence dim $G/H \ge \dim G/L$. Now GF is an orbit of minimal dimension and hence is closed.

B acts on G/H by left multiplication, since G/H is projective, there is a class gH such that BgH = gH, thus $g^{-1}Bg \subset H$, since both groups are Borel, they are equal.

Theorem 3 For any parabolic subgroup $P \subset G$, we have $N_G(P) = P$.