bitcoin-analysis-lstm

September 29, 2021

```
[1]: import tensorflow as tf
     import numpy as np
     import pandas as pd
     from datetime import datetime, timedelta
     import matplotlib.pyplot as plt
     import seaborn as sns
     sns.set()
[2]: df = pd.read_csv('sentiment-bitcoin.csv')
     df = df.rename(columns = {'Unnamed: 0': 'timestamp'})
     df.head()
[2]:
                  timestamp Polarity
                                       Sensitivity
                                                    Tweet_vol
                                                                   Open
                                                                            High \
        2018-07-11 20:00:00
                             0.102657
                                           0.216148
                                                        4354.0
                                                                6342.97
                                                                         6354.19
     1 2018-07-11 21:00:00
                                                        4432.0
                                                                6352.99
                                                                         6370.00
                             0.098004
                                           0.218612
     2 2018-07-11 22:00:00
                             0.096688
                                           0.231342
                                                        3980.0
                                                                6350.85
                                                                         6378.47
     3 2018-07-11 23:00:00
                                                        3830.0
                                                                6362.36
                                                                         6381.25
                             0.103997
                                           0.217739
     4 2018-07-12 00:00:00
                             0.094383
                                           0.195256
                                                        3998.0
                                                                6369.49
                                                                         6381.25
                 Volume_BTC
                             Volume_Dollar
            Low
                                            Close_Price
     0 6291.00
                     986.73
                                6231532.37
                                                 6350.00
     1 6345.76
                     126.46
                                 804221.55
                                                 6356.48
     2 6345.00
                     259.10
                                1646353.87
                                                 6361.93
     3 6356.74
                      81.54
                                 519278.69
                                                 6368.78
     4 6361.83
                     124.55
                                 793560.22
                                                 6380.00
```

0.1 Simple metrics study

```
[3]: df['Polarity'].describe()

[3]: count 294.000000

mean 0.099534

std 0.012114

min 0.051695

25% 0.091489

50% 0.099198

75% 0.106649
```

```
0.135088
     max
     Name: Polarity, dtype: float64
[4]: df['Sensitivity'].describe()
              294.000000
[4]: count
                0.214141
    mean
                0.014940
     std
                0.174330
    min
     25%
                0.203450
     50%
                0.214756
     75%
                0.223910
    max
                0.271796
     Name: Sensitivity, dtype: float64
[5]: df['Tweet_vol'].describe()
[5]: count
                294.000000
     mean
               4691.119048
               1048.922706
     std
    min
               2998.000000
     25%
               3878.750000
     50%
               4452.000000
     75%
               5429.750000
              10452.000000
    max
     Name: Tweet_vol, dtype: float64
[6]: df['Close_Price'].describe()
[6]: count
               294.000000
    mean
              6920.150000
     std
               565.424866
    min
              6149.110000
     25%
              6283.497500
     50%
              7281.975000
     75%
              7424.560000
              7750.090000
    Name: Close_Price, dtype: float64
    0.2
         Detecting outliers / sudden spikes in our close prices
[7]: def detect(signal, treshold = 2.0):
         detected = []
         for i in range(len(signal)):
             if np.abs(signal[i]) > treshold:
                 detected.append(i)
         return detected
```

```
[8]: signal = np.copy(df['Close_Price'].values)
      std_signal = (signal - np.mean(signal)) / np.std(signal)
      s = pd.Series(std_signal)
      s.describe(percentiles = [0.25, 0.5, 0.75, 0.95])
 [8]: count
               2.940000e+02
     mean
               2.223467e-15
      std
               1.001705e+00
     min
              -1.365972e+00
      25%
              -1.127892e+00
     50%
               6.410081e-01
     75%
               8.936113e-01
     95%
               1.375160e+00
               1.470319e+00
     max
      dtype: float64
 [9]: outliers = detect(std_signal, 1.3)
[10]: plt.figure(figsize = (15, 7))
      plt.plot(np.arange(len(signal)), signal)
      plt.plot(
          np.arange(len(signal)),
          signal,
          'Х',
          label = 'outliers',
          markevery = outliers,
          c = 'r',
      plt.xticks(
          np.arange(len(signal))[::15], df['timestamp'][::15], rotation = 'vertical'
      plt.show()
```



```
[11]: from sklearn.preprocessing import MinMaxScaler

minmax = MinMaxScaler().fit(df[['Polarity', 'Sensitivity', 'Close_Price']])
scaled = minmax.transform(df[['Polarity', 'Sensitivity', 'Close_Price']])
```

```
[12]: plt.figure(figsize = (15, 7))
      plt.plot(np.arange(len(signal)), scaled[:, 0], label = 'Scaled polarity')
      plt.plot(np.arange(len(signal)), scaled[:, 1], label = 'Scaled sensitivity')
      plt.plot(np.arange(len(signal)), scaled[:, 2], label = 'Scaled closed price')
      plt.plot(
          np.arange(len(signal)),
          scaled[:, 0],
          'X',
          label = 'outliers polarity based on close',
          markevery = outliers,
          c = 'r',
      plt.plot(
          np.arange(len(signal)),
          scaled[:, 1],
          'o',
          label = 'outliers polarity based on close',
          markevery = outliers,
          c = 'r',
      plt.xticks(
```

```
np.arange(len(signal))[::15], df['timestamp'][::15], rotation = 'vertical'
)
plt.legend()
plt.show()
```


Doesnt show much from trending, how about covariance correlation?

0.3 Pearson correlation

```
[13]: colormap = plt.cm.RdBu
  plt.figure(figsize = (15, 7))
  plt.title('pearson correlation', y = 1.05, size = 16)

mask = np.zeros_like(df.corr())
  mask[np.triu_indices_from(mask)] = True

sns.heatmap(
    df.corr(),
    mask = mask,
    linewidths = 0.1,
    vmax = 1.0,
    square = True,
    cmap = colormap,
    linecolor = 'white',
    annot = True,
)
```

plt.show()

pearson correlation


```
columns = v
    dfn = pd.DataFrame(data = None, columns = columns, index = df.index)
    i = 1
    for c in columns:
        dfn[c] = df[k].shift(periods = i)
        i += 1
    df = pd.concat([df, dfn], axis = 1, join_axes = [df.index])
    return df

[15]: df_new = df_shift(df, lag = 42, start = 7, skip = 7)
    df_new.shape

[16]: (294, 70)

[16]: colormap = plt.cm.RdBu
    plt.figure(figsize = (30, 20))
    ax = plt.subplot(111)
    plt.title('42 hours correlation', y = 1.05, size = 16)
    selected_column = [
```

42 hours correlation

0.4 How about we check trends from moving average? i chose 7, 14, 30 hours

I think i had too much playing daily trending data

```
[17]: def moving_average(signal, period):
    buffer = [np.nan] * period
    for i in range(period, len(signal)):
        buffer.append(signal[i - period : i].mean())
    return buffer

[18]: signal = np.copy(df['Close_Price'].values)
    ma_7 = moving_average(signal, 7)
    ma_14 = moving_average(signal, 14)
    ma_30 = moving_average(signal, 30)
```

```
[19]: plt.figure(figsize = (15, 7))
  plt.plot(np.arange(len(signal)), signal, label = 'real signal')
  plt.plot(np.arange(len(signal)), ma_7, label = 'ma 7')
  plt.plot(np.arange(len(signal)), ma_14, label = 'ma 14')
  plt.plot(np.arange(len(signal)), ma_30, label = 'ma 30')
  plt.legend()
  plt.show()
```


Trends gonna increase anyway!

0.5 Now deep learning LSTM

```
[20]: num_layers = 1
learning_rate = 0.005
size_layer = 128
timestamp = 5
epoch = 500
dropout_rate = 0.6
```

```
[21]: dates = pd.to_datetime(df.iloc[:, 0]).tolist()
```

```
[22]: class Model:
    def __init__(
        self, learning_rate, num_layers, size, size_layer, forget_bias = 0.8
):
    def lstm_cell(size_layer):
        return tf.nn.rnn_cell.LSTMCell(size_layer, state_is_tuple = False)

    rnn_cells = tf.nn.rnn_cell.MultiRNNCell(
```

```
[lstm_cell(size_layer) for _ in range(num_layers)],
                  state_is_tuple = False,
              )
              self.X = tf.placeholder(tf.float32, (None, None, size))
              self.Y = tf.placeholder(tf.float32, (None, size))
              drop = tf.contrib.rnn.DropoutWrapper(
                  rnn_cells, output_keep_prob = forget_bias
              )
              self.hidden layer = tf.placeholder(
                 tf.float32, (None, num_layers * 2 * size_layer)
              self.outputs, self.last_state = tf.nn.dynamic_rnn(
                  drop, self.X, initial_state = self.hidden_layer, dtype = tf.float32
              )
              self.logits = tf.layers.dense(
                  self.outputs[-1],
                  size,
                  kernel_initializer = tf.glorot_uniform_initializer(),
              )
              self.cost = tf.reduce_mean(tf.square(self.Y - self.logits))
              self.optimizer = tf.train.AdamOptimizer(learning_rate).minimize(
                  self.cost
              )
[23]: minmax = MinMaxScaler().fit(
         df[['Polarity', 'Sensitivity', 'Tweet_vol', 'Close_Price']].astype(
              'float32'
         )
      df_scaled = minmax.transform(
         df[['Polarity', 'Sensitivity', 'Tweet_vol', 'Close_Price']].astype(
              'float32'
         )
      df_scaled = pd.DataFrame(df_scaled)
      df_scaled.head()
[23]:
                                   2
                         1
      0 0.611105 0.429055 0.181916 0.125479
      1 0.555312 0.454335 0.192380 0.129527
      2 0.539534 0.584944 0.131741 0.132931
      3 0.627175 0.445375 0.111618 0.137210
      4 0.511893 0.214693 0.134156 0.144218
[24]: tf.reset_default_graph()
      modelnn = Model(
         learning_rate, num_layers, df_scaled.shape[1], size_layer, dropout_rate
```

```
)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
```

WARNING:tensorflow:<tensorflow.python.ops.rnn_cell_impl.LSTMCell object at 0x7fda6e020828>: Using a concatenated state is slower and will soon be deprecated. Use state_is_tuple=True.

We need to scale our data between 0 - 1 or any scaled you wanted, but must not less than -1 and more than 1, because LSTM is using tanh function, squashing high values can caused gradient vanishing later

```
[25]: for i in range(epoch):
          init_value = np.zeros((1, num_layers * 2 * size_layer))
          total_loss = 0
          for k in range(0, (df_scaled.shape[0] // timestamp) * timestamp, timestamp):
              batch x = np.expand dims(
                  df_scaled.iloc[k : k + timestamp].values, axis = 0
              batch_y = df_scaled.iloc[k + 1 : k + timestamp + 1].values
              last_state, _, loss = sess.run(
                  [modelnn.last_state, modelnn.optimizer, modelnn.cost],
                  feed_dict = {
                      modelnn.X: batch_x,
                      modelnn.Y: batch_y,
                      modelnn.hidden_layer: init_value,
                  },
              )
              init_value = last_state
              total_loss += loss
          total_loss /= df.shape[0] // timestamp
          if (i + 1) % 100 == 0:
              print('epoch:', i + 1, 'avg loss:', total_loss)
```

```
epoch: 100 avg loss: 0.009472558752569402
epoch: 200 avg loss: 0.007681161466311535
epoch: 300 avg loss: 0.006072720400346765
epoch: 400 avg loss: 0.005432833451777697
epoch: 500 avg loss: 0.0048205173004354385
```

```
def predict_future(future_count, df, dates, indices = {}):
    date_ori = dates[:]
    cp_df = df.copy()
    output_predict = np.zeros((cp_df.shape[0] + future_count, cp_df.shape[1]))
    output_predict[0] = cp_df.iloc[0]
    upper_b = (cp_df.shape[0] // timestamp) * timestamp
    init_value = np.zeros((1, num_layers * 2 * size_layer))
    for k in range(0, (df.shape[0] // timestamp) * timestamp, timestamp):
```

```
out_logits, last_state = sess.run(
        [modelnn.logits, modelnn.last_state],
        feed_dict = {
            modelnn.X: np.expand_dims(
                cp_df.iloc[k : k + timestamp], axis = 0
            modelnn.hidden_layer: init_value,
        },
    )
    init_value = last_state
    output_predict[k + 1 : k + timestamp + 1] = out_logits
out_logits, last_state = sess.run(
    [modelnn.logits, modelnn.last_state],
    feed_dict = {
        modelnn.X: np.expand_dims(cp_df.iloc[upper_b:], axis = 0),
        modelnn.hidden_layer: init_value,
    },
init_value = last_state
output_predict[upper_b + 1 : cp_df.shape[0] + 1] = out_logits
cp_df.loc[cp_df.shape[0]] = out_logits[-1]
date_ori.append(date_ori[-1] + timedelta(hours = 1))
if indices:
    for key, item in indices.items():
        cp_df.iloc[-1, key] = item
for i in range(future_count - 1):
    out_logits, last_state = sess.run(
        [modelnn.logits, modelnn.last_state],
        feed_dict = {
            modelnn.X: np.expand_dims(cp_df.iloc[-timestamp:], axis = 0),
            modelnn.hidden_layer: init_value,
        },
    )
    init_value = last_state
    output_predict[cp_df.shape[0]] = out_logits[-1]
    cp_df.loc[cp_df.shape[0]] = out_logits[-1]
    date_ori.append(date_ori[-1] + timedelta(hours = 1))
    if indices:
        for key, item in indices.items():
            cp_df.iloc[-1, key] = item
return {'date_ori': date_ori, 'df': cp_df.values}
```

Define some smoothing, using previous value as an anchor

```
[27]: def anchor(signal, weight):
    buffer = []
    last = signal[0]
```

```
for i in signal:
    smoothed_val = last * weight + (1 - weight) * i
    buffer.append(smoothed_val)
    last = smoothed_val
return buffer
```

```
[30]: predict_30 = predict_future(30, df_scaled, dates)
predict_30['df'] = minmax.inverse_transform(predict_30['df'])
```


What happen if polarity is double from the max? Polarity is first index

[32]: 2.6198966986921897

```
[38]: plt.figure(figsize = (15, 7))

for retry in range(3):
    plt.subplot(3, 1, retry + 1)
    predict_30 = predict_future(
        30, df_scaled, dates, indices = {0: scaled_polarity}
    )
    predict_30['df'] = minmax.inverse_transform(predict_30['df'])
    plt.plot(
        np.arange(len(predict_30['date_ori'])),
        anchor(predict_30['df'][:, -1], 0.5),
        label = 'predict signal',
    )
    plt.plot(np.arange(len(signal)), signal, label = 'real signal')
    plt.legend()
plt.show()
```


I retried for 3 times just to study how fitted our model is, if every retry has big trend changes, so we need to retrain again.

What happen if polarity is quadriple from the max? Polarity is first index

[41]: 5.8596900960765685

```
[42]: plt.figure(figsize = (15, 7))

for retry in range(3):
    plt.subplot(3, 1, retry + 1)
    predict_30 = predict_future(
        30, df_scaled, dates, indices = {0: scaled_polarity}
    )
    predict_30['df'] = minmax.inverse_transform(predict_30['df'])
    plt.plot(
        np.arange(len(predict_30['date_ori'])),
        anchor(predict_30['df'][:, -1], 0.5),
        label = 'predict signal',
    )
    plt.plot(np.arange(len(signal)), signal, label = 'real signal')
    plt.legend()
plt.show()
```


What happen if polarity is quadriple from the min? polarity is first index

[44]: -0.46492252401914214

```
[49]: plt.figure(figsize = (15, 7))

for retry in range(3):
    plt.subplot(3, 1, retry + 1)
```


The second graph is skewed, but we got 2 graphs represented positive trends

As you can see, the model learnt that, polarity gives negative correlation to the model. If polarity is increase, the trend is decreasing, vice versa

What happen if sentiment volume is double from the max? Volume is third index

```
[39]: 2.4022001609873893
```

```
[40]: plt.figure(figsize = (15, 7))

for retry in range(3):
    plt.subplot(3, 1, retry + 1)
```


What happen if sentiment volume is double from the min? Volume is third index

[51]: -0.20110008049369466

As you can see, volume does not brings any impact the learning so much

[]: