# TEMASEK POLYTECHNIC SCHOOL OF INFORMATICS & IT VIRTUAL DESKTOP TECHNOLOGY

# Practical 1

#### Dear students,

- Please ensure to complete these Labs as they will be part of your final project report and POC.
- Please remember to take all **important screen shots** of each Lab to build up your final project report and POC.
- Please also remember to use virtual box **clone feature** to back up your Ravada VM after each Lab to prevent any corruption.
- Please copy all Linux commands in these Labs to **notepad** first, **ensure all syntax is correct** before copying to Linux Command prompt.

#### **Hardware requirements**

- Windows 10 or 11 Notebook
- At least 150 GB of free space in internal hard disk or external portable disk
- Preferably 16GB RAM
- Preferably 8 vCores CPU or higher

#### VRDT Labs - High Level Design:

| VND1 Labs - High Level Design.  |                   |  |  |  |  |  |
|---------------------------------|-------------------|--|--|--|--|--|
| Windows 10 VDI Client           | Ubuntu VDI Client |  |  |  |  |  |
| Ravada (Ubuntu) VDI Hypervisor  |                   |  |  |  |  |  |
| Virtual Box (nested VM enabled) |                   |  |  |  |  |  |
| Windows 10                      |                   |  |  |  |  |  |
| Laptop                          |                   |  |  |  |  |  |

#### **Setting up Ravada VM**

Before you start, you need to make sure you have the correct environment being setup. This lab assumption – using a computer that runs on Intel or AMD x86 – 64bit platform that supports Virtualization Technology (VT-x or AMD-v) and Windows 10.

Step 1
Enable Intel VT-x or AMD-v from the Notebook BIOS
Disable Sleep Mode on Notebook

| Change settings for the plan: Power Saver Choose the sleep and display settings that you want your computer to use. |       |            |          |       |            |           |  |
|---------------------------------------------------------------------------------------------------------------------|-------|------------|----------|-------|------------|-----------|--|
|                                                                                                                     |       | On battery |          | 4     | Plugged in |           |  |
| Turn off the display:                                                                                               | Never |            | 2~2      | Never |            | <b>XX</b> |  |
| Put the computer to sleep:                                                                                          | Never |            | <b>*</b> | Never |            | ¥         |  |
| Change advanced power settings                                                                                      | s     |            |          |       |            |           |  |

#### Step 2

#### Download the following software from MS Team VRDT Software file folder

- Ubuntu 22.04.1 LTS iso
- VirtualBox-6.1.40 (Do not install Version 7)
- VirtualBox-6.1.40 Oracle VM VirtualBox Extension Pack (Do not install Version 7)
- Windows 10 iso
- virt-viewer 11.0
- WinSCP-5.21.6

#### Step 3

# Install VirtualBox 6.1.40 and VirtualBox 6.1.40 Oracle VM VirtualBox Extension Pack Create a Ravada VM in VirtualBox

Configure Ravada VM specs as below:

CPU: 6 CPUsRAM: 10GB

• Hard disk space: 150GB

# Note: For Windows 11 Disable Hyper-v:

Run CMD as administrator bcdedit /set hypervisorlaunchtype off DISM /Online /Disable-Feature:Microsoft-Hyper-V

#### **Disable Windows 11 memory integrity:**

Goto windows security  $\rightarrow$  Device security  $\rightarrow$  Core isolation Memory integrity  $\rightarrow$  **OFF** 

#### Create Virtual Machine



#### Create Virtual Hard Disk





# Step 4

#### **Enable Nested Virtualization for Ravada**

On your Windows 10 Notebook:

- Goto command prompt as administrator
- Type in the commands as below
- cd C:\Program Files\Oracle\VirtualBox
- VBoxManage modifyvm "Ravada" --nested-hw-virt on
- Make sure Nested VT-x+AMD-V is checked



Step 5 Mount Ubuntu 22.04.1 LTS iso





Step 6
Power on Ravada VM and Start Ubuntu 22.04.1 OS installation











# Configure your login and remember your own password



Ubuntu 22.04.1 OS installation in progress



After Ubuntu 22.04.1 OS installation is completed.

#### **Press Enter and Reboot**



If you see this screen, select Don't Upgrade



If you see this screen, select Remind Me Later



#### **Install Virtual Box Guest Additions**

sudo apt install gcc sudo apt-get install build-essential gcc make perl dkms Click Insert **Guest Additions CD image** 



Run it from the CD icon as shown below



Ensure VBOX additions is installed properly After VBOX additions installation is completed Press Enter to exit command prompt



**Reboot Ravada VM** 

# **Resize the Guest Display**



#### **Enable Bidirectional Shared Clipboard**



Step 7
Perform Ubuntu update and upgrade

\$ sudo apt update \$ sudo apt upgrade

Shutdown Ravada VM after update and upgrade is completed

Step 8

# Perform Backup clone of your successful LABs



Clone Virtual Machine

# New machine name and path

Please choose a name and optionally a folder for the new virtual machine. The new machine will be a clone of the machine **RAVADA VM**.





# Clone type

Please choose the type of clone you wish to create.

If you choose **Full clone**, an exact copy (including all virtual hard disk files) of the original virtual machine will be created.

If you choose **Linked clone**, a new machine will be created, but the virtual hard disk files will be tied to the virtual hard disk files of original machine and you will not be able to move the new virtual machine to a different computer without moving the original as well.

If you create a **Linked clone** then a new snapshot will be created in the original virtual machine as part of the cloning process.

