Exercise 5.6. Kalman decomposition¹

A linear system can always be decomposed, after a suitable change of basis, into four subsystems \mathcal{S}_1 , \mathcal{S}_2 , \mathcal{S}_3 , \mathcal{S}_4 where \mathcal{S}_1 is controllable and observable, \mathcal{S}_2 is non-controllable and observable, \mathcal{S}_3 is controllable and non-observable and \mathcal{S}_4 is neither controllable nor observable. The dependencies between the subsystems can be summarized in Figure 1

Figure 1: Principle of the Kalman decomposition: C controllable, \overline{C} non-controllable, \overline{O} non-observable.

Let us note that, in the figure, there is no path (respecting the direction of the arrows) leading from the input u to a non-controllable system. Similarly, there is no path leading from a non-observable system to y. We consider the system described by the state equation:

$$\dot{\mathbf{x}}(t) = \begin{pmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & 0 & 0 \\ 0 & \mathbf{A}_{22} & 0 & 0 \\ \mathbf{A}_{31} & \mathbf{A}_{32} & \mathbf{A}_{33} & \mathbf{A}_{34} \\ 0 & \mathbf{A}_{42} & 0 & \mathbf{A}_{44} \end{pmatrix} \mathbf{x}(t) + \begin{pmatrix} \mathbf{B}_1 \\ 0 \\ \mathbf{B}_3 \\ 0 \end{pmatrix} \mathbf{u}(t)
\mathbf{y}(t) = (\mathbf{C}_1 \quad \mathbf{C}_2 \quad 0 \quad 0) \mathbf{x}(t) + \mathbf{D} \mathbf{u}(t)$$

Draw a wiring diagram of the system. Show a decomposition in subsystems S_i corresponding to the Kalman decomposition.

 $^{^{1}} A dapted \ from \ https://www.ensta-bretagne.fr/jaulin/automooc.pdf$

Solution of Exercise 5.6

The requested diagram is represented in Figure 2. We can see the four subsystems: \mathcal{S}_1 (controllable and observable), \mathcal{S}_2 (non-controllable and observable), \mathcal{S}_3 (controllable and non-observable) and \mathcal{S}_4 (neither controllable nor observable).

Figure 2: Kalman decomposition for linear systems.