Optimization in Machine Learning

First order methods GD on quadratic forms

Learning goals

- Eigendecomposition of quadratic forms
- GD steps in eigenspace

QUADRATIC FORMS & GD

- We consider the quadratic function $q(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} \mathbf{b}^{\top} \mathbf{x}$.
- We assume that Hessian $\mathbf{H} = 2\mathbf{A}$ has full rank
- Optimal solution is $\mathbf{x}^* = \frac{1}{2}\mathbf{A}^{-1}\mathbf{b}$
- As $\nabla q(\mathbf{x}) = 2\mathbf{A}\mathbf{x} \mathbf{b}$, iterations of gradient descent are

$$\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} - \alpha (2\mathbf{A}\mathbf{x}^{[t]} - \mathbf{b})$$

The following slides follow the blog post "Why Momentum Really Works", Distill, 2017. http://doi.org/10.23915/distill.00006

EIGENDECOMPOSITION OF QUADRATIC FORMS

- We want to work in the coordinate system given by q
- Recall: Coordinate system is given by the eigenvectors of H = 2A
- ullet Eigendecomposition of ${f A} = {f V} {f \Lambda} {f V}^{ op}$
- V contains eigenvectors \mathbf{v}_i and $\mathbf{\Lambda} = \operatorname{diag}(\lambda_1,...,\lambda_n)$ eigenvalues
- ullet Change of basis: $\mathbf{w}^{[t]} = \mathbf{V}^{\top} (\mathbf{x}^{[t]} \mathbf{x}^*)$

GD STEPS IN EIGENSPACE

With $\mathbf{w}^{[t]} = \mathbf{V}^{\top}(\mathbf{x}^{[t]} - \mathbf{x}^*)$, a single GD step

$$\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} - \alpha (2\mathbf{A}\mathbf{x}^{[t]} - \mathbf{b})$$

becomes

$$\mathbf{w}^{[t+1]} = \mathbf{w}^{[t]} - 2\alpha \mathbf{\Lambda} \mathbf{w}^{[t]}.$$

Therefore:

$$w_i^{[t+1]} = w_i^{[t]} - 2\alpha \lambda_i w_i^{[t]}$$

$$= (1 - 2\alpha \lambda_i) w_i^{[t]}$$

$$= \cdots$$

$$= (1 - 2\alpha \lambda_i)^{t+1} w_i^{[0]}$$

GD STEPS IN EIGENSPACE / 2

Proof (for $\mathbf{w}^{[t+1]} = \mathbf{w}^{[t]} - 2\alpha \Lambda \mathbf{w}^{[t]}$):

A single GD step means

$$\mathbf{x}^{[t+1]} = \mathbf{x}^{[t]} - \alpha (2\mathbf{A}\mathbf{x}^{[t]} - \mathbf{b})$$

• Then:

$$\mathbf{V}^{\top}(\mathbf{x}^{[t+1]} - \mathbf{x}^*) = \mathbf{V}^{\top}(\mathbf{x}^{[t]} - \mathbf{x}^*) - \alpha \mathbf{V}^{\top}(2\mathbf{A}\mathbf{x}^{[t]} - \mathbf{b})$$

$$\mathbf{w}^{[t+1]} = \mathbf{w}^{[t]} - \alpha \mathbf{V}^{\top}(2\mathbf{A}\mathbf{x}^{[t]} - \mathbf{b})$$

$$\mathbf{w}^{[t+1]} = \mathbf{w}^{[t]} - \alpha \mathbf{V}^{\top}(2\mathbf{A}(\mathbf{x}^{[t]} - \mathbf{x}^*) + 2\mathbf{A}\mathbf{x}^* - \mathbf{b})$$

$$= \mathbf{w}^{[t]} - 2\alpha \Lambda \mathbf{V}^{\top}(\mathbf{x}^{[t]} - \mathbf{x}^*)$$

$$= \mathbf{w}^{[t]} - 2\alpha \Lambda \mathbf{w}^{[t]}$$

GD ERROR IN ORIGINAL SPACE

• Move back to original space:

$$\mathbf{x}^{[t]} - \mathbf{x}^* = \mathbf{V}\mathbf{w}^{[t]} = \sum_{i=1}^d (1 - 2\alpha\lambda_i)^t w_i^{[0]} \mathbf{v}_i$$

- **Intuition:** Initial error components $w_i^{[0]}$ (in the eigenbasis) decay with rate $1 2\alpha\lambda_i$
- Therefore: For sufficiently small step sizes α , error components along eigenvectors with large eigenvalues decay quickly

GD ERROR IN ORIGINAL SPACE / 2

We now consider the contribution of each eigenvector to the total loss

$$q(\mathbf{x}^{[t]}) - q(\mathbf{x}^*) = \frac{1}{2} \sum_{i}^{d} (1 - 2\alpha \lambda_i)^{2t} \lambda_i (\mathbf{w}_i^{[0]})^2$$

