Two betweenness centrality measures based on Randomized Shortest Paths

Prova Integrativa - Complessità nei Sistemi e nelle Reti

Matteo Bonfadini

Politecnico di Milano

21 Febbraio 2024

Obiettivo

Vogliamo rispondere alla seguente domanda:

П

Table of Contents

1 Centralities

- 2 RSP betweenness centralities
- 3 Experiments

Dataset: The Economics of Happiness (TEH) 2019

Fonte:

https://www.kaggle.com/datasets/the-economics-of-happiness-teh

Covariate presenti

- Country
- Happiness.rank
- Happines.Score
- GDP.per.capita
- Social.support
- Healthy.life
- Freedom
- Generosity
- Corruption
- Year

con 156 osservazioni.

Iniziamo rimovuendo le variabili superflue:

Country

Sono presenti 'Not Available'?

	Country	GDP.per.capita	Social.support	Healthy.life	Freedom	Generosity	Corruption
71	Moldova	0.685	1.328	0.739	0.245	0.181	NA
82	Greece	1.181	1.156	0.999	0.067	NA	0.034
112	Somalia	NA	0.698	0.268	0.559	0.243	0.270
135	Swaziland	0.811	1.149	NA	0.313	0.074	0.135
154	Afghanistan	0.350	0.517	0.361	NA	0.158	0.025
155 Central	African Republic	0.026	NA	0.105	0.225	0.235	0.035

Dato che la distribuzione dei *missing values* è uniforme tra le covariate, possiamo procedere con l'eliminazione delle soprastanti righe.

Generiamo il modello lineare con risposta Happiness.Score:

```
Call:
lm(formula = Happiness.Score ~ ., data = Data)
Residuals:
   Min
            10 Median
                                Max
-1.7416 -0.3528 0.0511 0.3726 1.2817
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
              1.6813
                         0.2341 7.182 3.46e-11 ***
GDP.per.capita 0.8016
                         0.2314 3.464 0.000702 ***
Social.support 1.2245 0.2541 4.819 3.64e-06 ***
Healthy.life 1.0472
                     0.3773 2.776 0.006249 **
            1.4086 0.3939 3.576 0.000477 ***
Freedom
Generosity
            0.4812 0.5077
                                 0.948 0.344802
Corruption
          0.9547
                         0.5585 1.709 0.089561
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.5368 on 143 degrees of freedom
Multiple R-squared: 0.7705, Adjusted R-squared: 0.7609
F-statistic: 80.01 on 6 and 143 DF, p-value: < 2.2e-16
```

Influential Plot

Eliminiamo i tre punti influenti e ripetiamo il modello:

```
Call:
lm(formula = Happiness.Score ~ ., data = Data)
Residuals:
    Min
              10
                Median
                               30
                                      Max
-1.76513 -0.33250 0.04344 0.32367 1.15855
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
               1.7936
                          0.2249
                                  7.976 4.69e-13 ***
GDP.per.capita 0.6859
                          0.2231
                                  3.075 0.00253 **
Social.support 1.1086
                          0.2440
                                  4.544 1.18e-05 ***
Healthv.life
               1.1303
                          0.3609
                                  3.132 0.00211 **
Freedom
               1.5624
                          0.3776 4.138 5.99e-05 ***
               0.3489 0.4880 0.715 0.47578
Generosity
Corruption
              1.4853
                          0.5553
                                  2.675 0.00836 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.5115 on 141 degrees of freedom
Multiple R-squared: 0.7829, Adjusted R-squared: 0.7737
F-statistic: 84.76 on 6 and 141 DF, p-value: < 2.2e-16
```

Selezione manuale

Per quanto osservato prima, proviamo a costruire un modello senza la variabile Generosity:

```
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)
            1.8484
                         0.2110 8.759 5.35e-15 ***
GDP.per.capita 0.6654
                        0.2208 3.013 0.00306 **
Social.support 1.1047 0.2435 4.537 1.21e-05 ***
Healthy.life 1.1276 0.3602 3.130 0.00212 **
            1.6184 0.3687
Freedom
                                 4 389 2 20e-05 ***
Corruption 1.6081
                        0.5272 3.050 0.00273 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.5107 on 142 degrees of freedom
Multiple R-squared: 0.7822, Adjusted R-squared: 0.7745
F-statistic: 102 on 5 and 142 DF, p-value: < 2.2e-16
```

 R_{adj}^2 passa da 0.7737 a 0.7745, il p-value dello Shapiro test è pari a 0.09742

Ripetiamo il processo, eliminando GDP.per.capita:

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.6118 0.2013 8.005 3.74e-13 ***

Social.support 1.3655 0.2339 5.838 3.41e-08 ***

Healthy.life 1.8270 0.2831 6.453 1.59e-09 ***

Freedom 1.5896 0.3788 4.196 4.75e-05 ***

Corruption 1.8512 0.5355 3.457 0.000719 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '* '0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5249 on 143 degrees of freedom

Multiple R-squared: 0.7682, Adjusted R-squared: 0.7617

F-statistic: 118.5 on 4 and 143 DF, p-value: < 2.2e-16
```

 R_{adj}^2 passa da 0.7745 a 0.7617, ora il p-value dello Shapiro test sale a 0.6547

Infine, eliminiamo Corruption:

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (
Intercept) 1.5828 0.2087 7.585 3.76e-12 ***
Social.support 1.2698 0.2410 5.270 4.88e-07 ***
Healthy.life 2.0744 0.2842 7.300 1.79e-11 ***
Freedom 2.0075 0.3725 5.390 2.82e-07 ***
---
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
Residual standard error: 0.5445 on 144 degrees of freedom
```

Residual standard error: 0.5445 on 144 degrees of freedom Multiple R-squared: 0.7489, Adjusted R-squared: 0.7436 F-statistic: 143.1 on 3 and 144 DF, p-value: < 2.2e-16

 R_{adi}^2 passa da 0.7617 a 0.7436, p-value dello Shapiro test: 0.5452

RECAP

Ripercorriamo il processo di selezione, andando ad osservare anche il relativo indice di Akaike per ogni modello:

R_{adj}^2	AIC	Shapiro test p-value
0.7737	230.4169	0.1128

R_{adj}^2	AIC	Shapiro test p-value
0.7745	228.9526	0.09742

R_{adj}^2	AIC	Shapiro test p-value
0.7617	236.1244	0.6547

R^2_{adj}	AIC	Shapiro test p-value
0.7436	246.0049	0.5452

Non siamo per niente contenti dell'evoluzione del nostro modello.

Tuttavia, ostinati nell'intento di semplificare il modello senza però intaccarne la validità, proviamo ad approfondire quanto osservato prima sulla correlazione tra le variabili:

Osserviamo subito che GDP.per.capita e Healthy.life correlano notevolmente.

Dato che il modello senza GDP.per.capita lo abbiamo già testato, proviamo quello senza Healthy.life:

R_{adj}^2	AIC	Shapiro test p-value
0.7494	234.9733	0.01736

Tutti gli indici analizzati peggiorano notevolmente rispetto al caso precedente.

Selezione automatica

Proviamo allora ad utilizzare dei metodi di selezione automatica delle covariate:

Criterio d'Informazione di Akaike (AIC)

RSP betweenness centralities

```
Start: ATC=-191.59
Happiness.Score ~ GDP.per.capita + Social.support + Healthy.life + Freedom + Generosity + Corruption
                Df Sum of Sa
                             RSS

    Generosity

                      0.1338 37.030 -193.05
<none>
                             36.896 -191.59
- Corruption
                    1.8723 38.768 -186.26
- GDP.per.capita 1 2.4739 39.370 -183.98
- Healthy.life
              1 2.5667 39.463 -183.63
- Freedom
                    4 4808 41 377 -176 63
- Social.support 1 5.4021 42.298 -173.37
Step: AIC=-193.05
Happiness.Score ~ GDP.per.capita + Social.support + Healthy.life + Freedom + Corruption
                Df Sum of Sq
                               RSS
                                       ATC
<none>
                             37 030 -193 05
- GDP.per.capita 1
                    2.3674 39.397 -185.88
- Corruption
                    2.4265 39.456 -185.66
- Healthy.life 1 2.5549 39.584 -185.18
- Freedom
                   5.0241 42.054 -176.22
- Social.support 1
                   5.3669 42.397 -175.02
Coefficients:
   (Intercept) GDP.per.capita Social.support
                                                Healthv.life
                                                                                 Corruption
                                                                    Freedom
                       0.6654
                                                      1.1276
                                                                    1.6184
                                                                                    1.6081
       1.8484
                                      1.1047
```

Criterio d'Informazione Bayesiano (BIC)

```
Start: ATC=-170.61
Happiness.Score ~ GDP.per.capita + Social.support + Healthy.life + Freedom + Generosity + Corruption
                Df Sum of Sa
                             RSS

    Generosity

                      0.1338 37.030 -175.07
<none>
                             36.896 -170.61
- Corruption
                    1.8723 38.768 -168.28
- GDP.per.capita 1 2.4739 39.370 -166.00
- Healthy.life
              1 2.5667 39.463 -165.65
- Freedom
                    4 4808 41 377 -158 64
- Social.support 1 5.4021 42.298 -155.38
Step: AIC=-175.07
Happiness.Score ~ GDP.per.capita + Social.support + Healthy.life + Freedom + Corruption
                Df Sum of Sq
                               RSS
                                       ATC
<none>
                             37 030 -175 07
- GDP.per.capita 1
                    2.3674 39.397 -170.90
- Corruption
                    2.4265 39.456 -170.67
- Healthy.life 1 2.5549 39.584 -170.19
- Freedom
                   5.0241 42.054 -161.24
- Social.support 1
                   5.3669 42.397 -160.04
Coefficients:
   (Intercept) GDP.per.capita Social.support
                                                Healthv.life
                                                                                 Corruption
                                                                    Freedom
                       0.6654
                                                      1.1276
                                                                    1.6184
                                                                                    1.6081
       1.8484
                                      1.1047
```

Abbiamo ottenuto una doppia conferma del fatto che il modello migliore è quello che descrive l'Happines. Score di un paese in funzione di

Questo risultato non è sorprendente: infatti, quando consideriamo la possibilità di trasferirci in un altro paese per stabilirci e creare una famiglia, questi sono i fattori a cui prestiamo maggiore attenzione.

Procediamo ora con l'ANOVA, siamo interessati a capire se la felicità di un paese sia influenzata dal continente di appartenenza:

Eliminiamo l'Oceania perché ha solo tre paesi.

Ipotesi di normalità

Lo Shapiro test rifiuta la normalità dei dati relativi al Nord e Sud America, a causa della presenza di due outliers: Haiti e Venezuela.

Africa Asia Europe North America South America 0.996474247 0.939561611 0.252837512 0.007775108 0.036730078

Dopo aver rimosso i due *outliers*, ripetiamo lo Shapiro test e osserviamo che l'ipotesi di normalità non è rifiutata.

Africa Asia Europe North America South America 0.9964742 0.9395616 0.2528375 0.3774236 0.4662204

Il Bartlett test ci porta a rifiutare l'omoschedasticità tra i gruppi:

Bartlett test of homogeneity of variances

data: Data2\$Happiness.Score and Data2\$Continent Bartlett's K-squared = 18.019, df = 4, p-value = 0.001224

Trasformazione Box-Cox

Otteniamo $\lambda = 0.85$

Il Bartlett test rifiuta ancora l'omoschedasticità.

Bartlett test of homogeneity of variances

data: Data2\$Happiness.Score^best and Data2\$Continent
Bartlett's K-squared = 17.45, df = 4, p-value = 0.00158

Proviamo a considerare l'America come un unico continente:

Ipotesi di normalità

Lo Shapiro test restituisce:

Africa America Asia Europe 0.996474247 0.002951138 0.939561611 0.252837512

Eliminando Haiti:

Shapiro test

Africa America Asia Europe 0.9964742 0.1770519 0.9395616 0.2528375

Bartlett test of homogeneity of variances

data: Data3\$Happiness.Score and Data3\$Continent
Bartlett's K-squared = 8.8849, df = 3, p-value = 0.03086

Con la trasformazione Box-Cox otteniamo $\lambda = 0.81$, che ci porta a:

Bartlett test of homogeneity of variances

data: Data3\$Happiness.Score^best and Data3\$Continent
Bartlett's K-squared = 7.8773, df = 3, p-value = 0.04862

Rifiutiamo dunque la modifica.

Generiamo ora il modello:

```
Call:
lm(formula = Happiness.Score ~ Continent, data = Data3)
Residuals:
    Min
             10 Median
                                      Max
                               30
-1.93134 -0.47923 -0.02652 0.56282 1.82766
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 4.4167
                           0.1201 36.771 < 2e-16 ***
ContinentAmerica 1.7829 0.2080 8.570 1.58e-14 ***
                 0.8947 0.1709 5.235 5.82e-07 ***
ContinentAsia
                1.8072 0.1699 10.639 < 2e-16 ***
ContinentEurope
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1
Residual standard error: 0.7784 on 142 degrees of freedom
Multiple R-squared: 0.4897. Adjusted R-squared: 0.4789
```

F-statistic: 45.43 on 3 and 142 DF, p-value: < 2.2e-16

Osserviamo che R_{adj}^2 è pari a 0.4789, non altissimo, ma procediamo comunque con l'ANOVA.

Il p-value 2.2e-16 è basso e ci porta a rifiutare l'ipotesi nulla che le medie siano tutte uguali.

Ripetiamo l'ANOVA senza il continente Africa:

Shapiro test

America Asia Europe 0.1770519 0.9395616 0.2528375

Bartlett test of homogeneity of variances

data: Data4\$Happiness.Score and Data4\$Continent
Bartlett's K-squared = 5.9516, df = 2, p-value = 0.05101

Le ipotesi di normalità e omoschedasticità sono verificate.

```
Call:
```

lm(formula = Happiness.Score ~ Continent, data = Data4)

Residuals:

Min 1Q Median 3Q Max -1.93134 -0.50823 -0.05734 0.64421 1.82766

Coefficients:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. 0.1 ' 1

Residual standard error: 0.8241 on 101 degrees of freedom Multiple R-squared: 0.2286, Adjusted R-squared: 0.2133 F-statistic: 14.96 on 2 and 101 DF, p-value: 2.032e-06

Il p-value 2.032e-06 è basso e ci porta a rifiutare l'ipotesi nulla che le medie siano tutte uguali.

Sviluppiamo ulteriormente il modello eliminando anche l'Asia:

Analysis of Variance Table

Response: Happiness.Score

Df Sum Sq Mean Sq F value Pr(>F) Continent 1 0.008 0.00826 0.0126 0.9109

Residuals 61 39.896 0.65404

Il p-value 0.9109 è alto e ci porta a non rifiutare l'ipotesi nulla che le medie siano uguali.

Conclusione

