

Continuous Assessment Test-1 (CAT-1), (November 2022) Programme : Fall 2022-23 B.Tech. Semester Course Engineering Physics : BPHY101L Code Faculty Slot & Class Number : D1 Dr. N. Punithavelan CH2022231700355 Time : 11/2 Hours

Max. Marks

: 50

Q. Vo.	Answer any five Questions Total Marks: 5 x 10 Marks = 50	
10.	Derive way	Marks
2	Derive wave equation for waves produced on a string and confirm its solutions. Derive equation 6	10
3	Derive equation for a standing wave formed on a string tied at both the ends. Express the frequency and wavelength for the first three orders of vibrations in terms of the length of the string.	10
4	 a. A string having length 4 m and mass 0.16 kg, is disturbed to vibrate with a tension force of 400 N. (1) What is the linear density of the string? (2) Predict the wave velocity; 3. Determine the frequency of the wave if it has a wavelength of 0.5 m. (5 marks) b. If a progressive wave equation is written as y(x,t) = 0.1 sin (350t - x/5); where x, y are in meters and t in seconds, then estimate (1) the maximum velocity of the particle in the wave (2) the maximum acceleration of the particle in the wave (3) Wavelength of the wave. (5 marks) 	10
	Derive the equation for electromagnetic waves through empty space using Maxwell's equations in electromagnetism in terms of electric field and magnetic field vectors.	10
5	 Calculate the divergence and curl of \$\vec{A} = 4x^4z\hat{\epsilon} + (3x - 2y)\hat{k}\$ (5 marks) Explain the Hertz experiment in proving the existence of Electromagnetic waves with the necessary experimental diagrams. (5 marks) 	n I
6	Write the differential form of Maxwell's equations and explain the parameters used wit their units. (6 marks)	h