*nix Security

1. SELinux (Security-Enhanced Linux)

- What It Is
 - A Linux kernel security module that provides Mandatory Access Control (MAC) to enforce strict security policies.
- Key Features
 - Labels and Policies
 - Every file, process, and resource has a security context (e.g., user_u:role_r:type_t).
 - Enforcing Modes
 - Enforcing: Policies are applied, and violations are blocked.
 - Permissive: Violations are logged but not blocked (useful for debugging).
 - Disabled: SELinux is turned off.
 - Fine-Grained Controls
 - Restricts processes to only the actions defined in the security policy.
- Use Cases
 - Isolating services (e.g., confining web servers to specific files and ports).
 - Preventing privilege escalation through misconfigured or vulnerable applications.

2. Kernel, Userspace, and Permissions

- Kernel
 - The core component of Unix/Linux responsible for managing hardware and system resources.
 - o Provides an interface for user applications to interact with hardware via system calls.
- Userspace
 - Non-kernel processes and applications running on the system.
 - o Includes user applications, libraries, and daemons.
- Permissions
 - Unix uses a three-level permission model:
 - Owner: The user who owns the file or directory.
 - **Group**: A group of users who can access the file.
 - Others: Everyone else.
 - Modes
 - Read (r), Write (w), Execute (x).
 - Permissions are displayed as a 10-character string (e.g., -rw-r--r--).
 - o Command: chmod, chown, Is -I.

3. MAC vs DAC

Aspect	Mandatory Access Control (MAC)	Discretionary Access Control (DAC)
Control	Enforced system-wide by administrators.	Decentralized; owners control permissions.
Flexibility	Less flexible; predefined policies.	More flexible but less secure.
Example	SELinux, AppArmor	Standard Unix permissions (chmod, chown).

Use Case High-security environments (e.g., servers) General-purpose systems.

4. /proc

- What It Is
 - A virtual filesystem that provides information about processes and system resources.
- Common Directories
 - o /proc/: Contains details about a specific process.
 - cmdline: Command-line arguments used to start the process.
 - status: Process status and memory usage.
 - /proc/cpuinfo: Information about the CPU.
 - o /proc/meminfo: Information about system memory.
 - /proc/net: Network statistics.
- Forensic Uses
 - Monitoring running processes and their behavior.
 - o Identifying rogue processes by inspecting cmdline and fd.

5. /tmp

- Purpose
 - o A directory for storing temporary files. It's world-writable, meaning any user can create files here.
- Security Concerns
 - Code Execution
 - Attackers can save malicious scripts or binaries in /tmp and execute them.
 - Symbolic Link Attacks
 - Creating symbolic links in /tmp to sensitive files for privilege escalation.
- Mitigations
 - Mount /tmp with the noexec option to prevent execution of binaries
 - Regularly clean /tmp to remove potentially harmful files.

mount -o remount, noexec /tmp

6. /shadow

- What It Is
 - A file that stores hashed passwords for user accounts.
 - Located at /etc/shadow and readable only by the root user.
- Structure
 - Each line corresponds to a user:

username:hashed_password:last_change:min_days:max_days:warn_days:inactive_ days:expire

- Security Concerns:
 - If compromised, attackers can use tools like **John the Ripper** or **Hashcat** to crack the hashes.
 - Common hash formats:
 - \$6\$: SHA-512.
 - \$5\$: SHA-256.
 - \$1\$: MD5.
- Best Practices:
 - Use strong password policies and hashing algorithms (e.g., SHA-512).
 - Limit access to /etc/shadow.

7. LDAP (Lightweight Directory Access Protocol)

- What It Is
 - A protocol for accessing and managing directory information.
 - Commonly used for authentication and user management in Unix environments.
- How It Works
 - Centralized management of user credentials and information.
 - Users can authenticate across multiple services (e.g., email, VPN) using a single password.
- LDAP vs. Active Directory
 - LDAP is a protocol, while Active Directory is a Microsoft directory service that uses LDAP.
 - LDAP is more lightweight and platform-agnostic, making it ideal for Unix systems.
- Security Considerations
 - Encrypt LDAP traffic using LDAPS or StartTLS.
 - Implement access controls to restrict unauthorized access.

Summary

Concept	Details	
SELinux	Provides MAC, enforcing strict security policies.	
Kernel/Userspace	Kernel manages resources; userspace includes applications and user-level processes.	
MAC vs DAC	MAC offers stricter security; DAC provides more flexibility.	
/proc	Virtual filesystem for process and system information.	
/tmp	Temporary file storage; vulnerable to code execution without noexec.	
/shadow	Stores hashed passwords; critical for system security.	
LDAP	Centralized authentication protocol similar to AD for Unix systems.	

Unix/Linux systems rely on robust security mechanisms like SELinux, file permissions, and secure configuration of directories like /tmp and /shadow. By understanding these components and implementing best practices, administrators can build resilient systems that resist common attacks while maintaining operational flexibility.