泛函分析(省身班)试题

(南开大学2025年春)

1. 设 $T: L^1([a,b]) \to C([a,b])$ 定义为:

$$(Tf)(x) = \int_{a}^{x} f(s) \, ds.$$

证明 T 是有界算子并求出 T 的范数.

- 2. 设 $(X, \|\cdot\|)$ 是赋范线性空间,若对任意 $x, y \in X$, $x \neq y$ 且 $\|x\| = \|y\| = 1$ 必有 $\|x + y\| < 2$,则称 $(X, \|\cdot\|)$ 是一致凸空间.证明 $(X, \|\cdot\|)$ 是一致凸空间当且仅当 对任意 $x, y \in X$, $\|x + y\| = \|x\| + \|y\|$,必有 $x = \alpha y$, $\alpha \geq 0$.
- 3. 设 $(X, \|\cdot\|)$ 是赋范线性空间, $E \subseteq X$. 证明 E 有界当且仅当对任意 $x^* \in X^*, x^*(E)$ 有界.
- 4. 设 X 是自反 Banach 空间, $M\subseteq X$ 是闭子空间. 证明 X/M 也是自反 Banach 空间.
- 5. 设 H 是 Hilbert 空间, $\{x_n\} \subseteq H$, 若 $\|x_n\| \to \|x_0\|$ 且 $x_n \to x_0$, 证明 $x_n \to x_0$.
- 6. 设 X,Y 是 Banach 空间, $T:X\to Y$ 是线性算子, 且满足对任意 $\{x_n\}\subseteq X,\ x_n\to 0,\ f\in Y^*,\ 有$

$$f(Tx_n) \to 0.$$

证明 T 是连续的.

- 7. 设 X,Y 是赋范线性空间, $X \neq \{0\}$. 若 B(X,Y) 是 Banach 空间, 证明 Y 也是 Banach 空间.
- 8. 设 X 是赋范线性空间, $x,y \in X$,证明存在 $f^* \in X^*$,使得 $\|f\| = 1$ 且

$$|f^*(x)| \ge \frac{1}{5}, \quad |f^*(y)| \ge \frac{1}{5}.$$