

Graphs. Some applications

- Graphs are <u>discrete structures</u> consisting of vertices/nodes and edges that connect these vertices.
- Graphs have many practical applications of computer science.
- For example:
 - In a computer network, we can model how the computers are connected to each other as a graph. The nodes are the individual computers and the edges are the network connections.
 - □ In a (digitalized) **map**, nodes are intersections (or cities), and edges are roads (or highways). We may have directed edges to capture one-way streets, and weighted edges to capture distance.
 - On the **internet**, nodes are web pages, and (directed) edges are links from one web page to another.
 - □ In a **social network**, nodes are people, and edges are friendships. Understanding social networks is a very hot topic of research. For example, how does a network achieve "six-degrees of separation", where everyone is approximately 6 friendships away from anyway else.

. . . .

- From: http://o7planning.org/en/10189/exploring-facebook-graph-api.
- One Trillion Edges: Graph Processing at Facebook-Scale in: http://www.vldb.org/pvldb/vol8/p1804-ching.pdf

.

Graphs. Preliminary definitions

Definition:

- \square A directed graph G is a structure <V,E>, where V is a set of vertices (or nodes), and $E \subseteq V \times V$ is a set of edges.
- □ An **undirected graph** additionally has the property that $(u,v) \in E$ if and only if $(v,u) \in E$.

Note that:

- □ In **directed graphs**, edge (u,v) (starting from node u, ending at node v) is different from edge (v,u).
- □ We also allow "self-loops" (**loops**), i.e., edges of the form (v,v) (say, a web page may link to itself).
- □ In **undirected graphs**, because edge (u,v) and (v,u) must both be present or missing, we often treat a non-self-loop edge as an unordered set of two nodes (e.g., {u,v}).
- □ A common extension is a **weighted graph**, where each edge additionally carries a weight (a real number). The weight can have a variety of meanings in practice: distance, importance, capacity, cost, etc...

Graphs. Preliminary definitions (cont...)

Examples of Graphs:

Undirected Graph

Direct Graph (**Digraph**)

Weighed Graph

5

Graphs. Preliminary definitions (cont...)

• **Vertex Degree**: the degree of a vertex corresponds to the number of edges coming out or going into a vertex.

Definition:

- In a directed graph G = (V,E),
 - $\hfill\Box$ the in-degree (indegree) of a vertex $v\in V$ is the number of edges coming in to it (i.e., of the form (u,v), u $\in V$);
 - $\hfill\Box$ the ${\bf out-degree}$ (outdegree) is the number of edges going out of it (i.e., of the form (v,u), u $\in V$).
 - $\hfill\Box$ The degree of v is the sum of the $in\mbox{-}degree$ and the $out\mbox{-}degree.$
- In an undirected graph
 - $\hfill\Box$ the **degree** of v \in V is the number of edges going out of the vertex (i.e., of the form (v,u), u \in V), with the exception that self loops (i.e., the edge (v,v)) is counted twice.
- We denote the **degree** of vertex $v \in V$ by deg(v).

Graphs. Preliminary definitions (cont...)

- deg(1) = 2
- deg(2) = 3
- \bullet deg(5) = 4 = 2 + 2

- indegree(1) = 2
- outdegree(1) = 1
- \bullet deg(1) = 3 = 2 + 1
- indegree(0) = 0
- outdegree(0) = 2
- deg(0) = 2 = 0 + 2

Graphs. Preliminary results

Theorem:

 \Box Given a (directed or undirected) graph G = (V,E),

$$2|E| = \sum_{v \in V} \deg(v).$$

Corollary:

□ In a graph, the number of vertices with an odd degree is

Examples:

- |E| = 7; 2|E| = 14deg(1) = 2
- deg(2) = 3 $\Sigma = 14$
- deg(3) = 3 deg(4) = 2 deg(5) = 4

- deg(0) = 2 $deg(1) = 3, odd^{-}$ -even
- deg(2) = 2 deg(3) = 2 deg(4) = 3, **odd**

۲

Graphs. Preliminary results (cont...)

Theorem:

☐ Given a (directed or undirected) graph G = <V,E>,

$$2|E| = \sum_{v \in V} \deg(v).$$

- **Exercise:** How many edges are there in a graph with 12 vertices each of degree five?
- Solution:
 - \Box Because the sum of the degrees of the vertices is 5 x 12 = 60, it follows that 2|E| = 60
 - \Box where |E| is the number of edges. Therefore, |E| = 30.

ç

Graphs. Preliminary results (cont...)

Theorem:

 \Box Given a directed graph G = (V,E),

$$|\mathbf{E}| = \sum_{v \in V} outdegree(v) = \sum_{v \in V} indegree(v).$$

Example:

- |E| = 6
- indegree(0) = 0
- outdegree(0) = 2
- indegree(1) = 2
- outdegree(1) = 1
- indegree(2) = 1
- outdegree(2) = 1
- indegree(3) = 1
- outdegree(3) = 1
- indegree(4) = 2
- outdegree(4) = 1 $\Sigma = 6$

 $\Sigma = 6$

Some classes of simple graphs

- Simple graph A graph with NO loops
- Complete Graphs graph on n vertices, denoted by K_n, is a simple graph that contains <u>exactly one edge between each</u> pair of distinct vertices.

■ Cycle graphs – a cycle C_n , $n \ge 3$, consists of n vertices v_1 , v_2 , . . . , v_n and edges (v_1, v_2) , (v_2, v_3) , . . . , (v_{n-1}, v_n) , and (v_n, v_1) .

11

Some classes of simple graphs (cont...)

12

■ Wheel graphs – we obtain a wheel W_n when we add an additional vertex to a cycle C_n , for $n \ge 3$, and connect this new vertex to each of the n vertices in C_n , by new edges.

 n-Cubes - an n-dimensional hypercube, or n-cube, denoted by Q_n, is a graph that has vertices representing the 2ⁿ bit strings of length n. Two vertices are adjacent if and only if the bit strings that they represent differ in exactly one bit position

ч

Representing Graphs. Adjacency matrices

- Let a simple **graph** G = (V,E) and assume that |V|= n
- In the adjacency matrix representation, each graph of n nodes is represented by an n x n matrix A, that is, a twodimensional array A
- The **nodes** are (re)-labeled 1, 2,..., n
 - \Box A_{ii} = **1** if the edge (i,j) is an edge in the graph
 - \Box $A_{ij} = \mathbf{0}$ if the edge (i,j) is **not** an edge in the graph
- Remember that, in a matrix, the first index represents the row-position, and the second the col-position.

Example:

adjacency matrix

J	uc	٠.	••	, .		•
	0	1	1	0	0	
	1	0	1	0	1	
	1	1	0	1	0	
	0	0	1	0	1	
	0	1	0	1	0	

13

Representing Graphs. Adjacency matrices

Example:

adiacency matrix

adjacency matrix								
	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0	0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

- The adjacency matrix of a simple undirected graph is symmetric, that is, $a_{ij} = a_{ji}$, because both of these entries are 1 when v_i and v_j are adjacent, and both are 0 otherwise.
- Furthermore, because a simple graph has <u>no loops</u>, each entry a_{ii} , i = 1, 2, 3, ..., n, is 0.

٧

Representing Graphs. Adjacency matrices

- Adjacency matrix representation for **digraphs**??
- Adjacency matrix representation for weighted digraph?

15

Ŋ

Representing Graphs. Adjacency list

- Another way to represent a simple graph is to use adjacency lists, which specify the vertices that are adjacent to each vertex of the graph.
- Example:

adjacency list

Vertex	Adjacent vertices
1	2, 3
2	1, 3, 5
3	1, 2, 4
4	3, 5
5	2, 4

Representing Graphs. Adjacency list (cont...)

Example (digraph):

adjacency list (indegree)

Vertex	Adjacent vertices
1	
2	1
3	1, 4
4	1, 2 ,5
5	2
6	3, 4, 7
7	4 5

adjacency list (outdegree)

Vertex	Adjacent vertices
1	2, 3, 4
2	4, 5
3	6
4	3, 6, 7
5	4, 7
6	
7	6