CSC311 A2

Benson Li, 1007815376

February 15, 2023

1 Expected Loss and Bayes Optimality.

1.1 (a)

For the policy that keeps every email:

$$E[J(y, t = Spam)] = P(t = Spam) \cdot J(Keep, Spam) + P(t = NonSpam) \cdot J(Keep, NonSpam)$$
$$= 0.2 \cdot 1 + 0.8 \cdot 0$$
$$= 0.2$$

For the policy that removes every email:

$$\begin{split} E[J(y,t=NonSpam)] &= P(t=Spam) \cdot J(Remove,Spam) + P(t=NonSpam) \cdot J(Remove,NonSpam) \\ &= 0.2 \cdot 0 + 0.8 \cdot 100 \\ &= 80 \end{split}$$

1.2 (b)

We will select the decision y that minimizes the expected loss: We denote P(t = Spam|x) as p

$$\begin{split} E[J(y,t)|x] &= P(t = NonSpam|x) \cdot J(y,t = NonSpam) + P(t = Spam|x) \cdot J(y,t = Spam) \\ &= (1-p) \cdot J(y,t = NonSpam) + p \cdot J(y,t = Spam) \end{split}$$

Therefore:

$$\begin{split} E[J(y=Keep,t)|x] &= (1-p) \cdot J(y=Keep,t=NonSpam) + p \cdot J(y=Keep,t=Spam) \\ &= (1-p) \cdot 0 + p \cdot 1 \\ &= p \end{split}$$

$$\begin{split} E[J(y=Remove,t)|x] &= (1-p) \cdot J(y=Remove,t=NonSpam) + p \cdot J(y=Remove,t=Spam) \\ &= (1-p) \cdot 100 + p \cdot 0 \\ &= 100 - 100p \end{split}$$

When $p \ge \frac{100}{101}$, we have $E[J(y = Remove, t)|x] \le E[J(y = Keep, t)|x]$, we choose $y^* = Remove$.

When $p < \frac{100}{101}$, we have E[J(y = Keep, t)|x] < E[J(y = Remove, t)|x], we choose $y^* = Keep$.

1.3 (c)

According to the Baye's Rule:

$$P(t|x_1, x_2) = \frac{P(x_1, x_2|t)P(t)}{P(x_1, x_2)}$$

Then, we are able to calculate that:

$$P(t = Spam | x_1 = 0, x_2 = 0) = \frac{0.45 \cdot 0.2}{0.2 \cdot 0.45 + 0.8 \cdot 0.996} = 0.1015$$

$$P(t = Spam | x_1 = 1, x_2 = 0) = \frac{0.18 \cdot 0.2}{0.2 \cdot 0.18 + 0.8 \cdot 0.002} = 0.9574$$

$$P(t = Spam | x_1 = 1, x_2 = 1) = \frac{0.12 \cdot 0.2}{0.2 \cdot 0.12 + 0.8 \cdot 0} = 1$$

$$P(t = Spam | x_1 = 0, x_2 = 1) = \frac{0.25 \cdot 0.2}{0.2 \cdot 0.25 + 0.8 \cdot 0.002} = 0.9690$$

We will select the decision y that minimizes the expected loss:

$$E[J(y,t)|x_1,x_2] = P(t = NonSpam|x_1,x_2) \cdot J(y,t = NonSpam) + P(t = Spam|x_1,x_2) \cdot J(y,t = Spam)$$

Therefore, according to the given table:

$$E[J(y = Keep, t)|x_1 = 0, x_2 = 0] = 0.8985 \cdot 0 + 0.1015 \cdot 1$$
$$= 0.1015$$

$$E[J(y = Remove, t)|x_1 = 0, x_2 = 0] = 0.8985 \cdot 100 + 0.1015 \cdot 0$$

= 89.85

Given $x_1 = 0 \land x_2 = 0$, since 0.1015 < 89.85, I would keep the email.

$$E[J(y=Keep,t)|x_1=1,x_2=0] = 0.0426 \cdot 0 + 0.9574 \cdot 1$$

= 0.9574

$$E[J(y = Remove, t)|x_1 = 1, x_2 = 0] = 0.0426 \cdot 100 + 0.9574 \cdot 0$$

= 4.26

Given $x_1 = 1 \land x_2 = 0$, since 0.9574 < 4.26, I would keep the email.

$$E[J(y = Keep, t)|x_1 = 1, x_2 = 1] = 0 \cdot 0 + 1 \cdot 1$$
= 1

$$E[J(y = Remove, t)|x_1 = 1, x_2 = 1] = 0 \cdot 100 + 1 \cdot 0$$

Given $x_1 = 1 \land x_2 = 1$, since 0 < 1, I would remove the email.

$$E[J(y = Keep, t)|x_1 = 0, x_2 = 1] = 0.031 \cdot 0 + 0.969 \cdot 1$$

= 0.969

$$E[J(y = Remove, t)|x_1 = 0, x_2 = 1] = 0.031 \cdot 100 + 0.969 \cdot 0$$

$$= 3.1$$

Given $x_1 = 0 \land x_2 = 1$, since 0.969 < 3.1, I would keep the email.

1.4 (d)

$$P(x_1 = 0, x_2 = 0) = 0.2 \cdot 0.45 + 0.8 \cdot 0.996 = 0.8868$$

$$P(x_1 = 1, x_2 = 0) = 0.2 \cdot 0.18 + 0.8 \cdot 0.002 = 0.0376$$

$$P(x_1 = 1, x_2 = 1) = 0.2 \cdot 0.12 + 0.8 \cdot 0 = 0.024$$

$$P(x_1 = 0, x_2 = 1) = 0.2 \cdot 0.25 + 0.8 \cdot 0.002 = 0.0516$$

The expectation loss is:

$$E[J(y^*,t)] = \sum_{x_1,x_2} P(x_1,x_2) E[J(y^*,t)|x_1,x_2]$$

$$= 0.8868 \cdot 0.1015 + 0.0376 \cdot 0.9574 + 0 \cdot 0.024 + 0.0516 \cdot 0.969$$

$$= 0.176$$

2 Feature Maps.

2.1 (a)

Assume this data-set is linear separable:

Let $x_0 = 1, w_0 = b(bias)$, X is design matrix.

Then $\bar{y} = w^T X$, we will make decision based on the boundary 0.

Therefore, we got following equations:

$$w_0 + w_1(-1) + w_2(0) \ge 0 \tag{1}$$

$$w_0 + w_1(1) + w_2(2) < 0 (2)$$

$$w_0 + w_1(2) + w_2(3) \ge 0 \tag{3}$$

We will try to find solution for these equations:

From (3) - (2), we get $w_1 + w_2 > 0$, we denote this as (4)

We plus 2*(4) to (1), we then get that $w_0 + w_1 + 2w_2 > 0$.

This contradicts with equation(2), which proves that there is no solution for these equations.

Therefore, this data-set is not linearly separable.

2.2 (b)

Let $x_0 = 1$, X is design matrix.

We will make decision based on the boundary 0.

Therefore, we got following equations:

$$w_0 + w_1(-1) + w_2(0) + w_3(0) \ge 0 \tag{1}$$

$$w_0 + w_1(1) + w_2(2) + w_3(4) < 0 (2)$$

$$w_0 + w_1(2) + w_2(3) + w_3(9) \ge 0 \tag{3}$$

Equivalently:

$$w_0 - w_1 \ge 0 \tag{1}$$

$$w_0 + w_1 + 2w_2 + 4w_3 < 0 (2)$$

$$w_0 + 2w_1 + 3w_2 + 9w_3 \ge 0 \tag{3}$$

These are the constraints that w_0, w_1, w_2, w_3 need to satisy.

Even though I don't need to solve w_0, w_1, w_2, w_3 , I list my solution below just for practise.

From (1), we can have $w_0 = 2, w_1 = 1$.

We plug this in (2), we need to satisfy $3 + 2w_2 + 4w_3 < 0$, we can have $w_2 = -6$, $w_3 = 2$.

We plug this in (3), we check that $2 + 2 + (-18) + 18 = 4 \ge 0$.

Therefore, we have the following solution:

$$w_0 = 2$$

$$w_1 = 1$$

$$w_2 = -6$$

$$w_3 = 2$$

3 kNN vs. Logistic Regression

- 3.1 (a)
- 3.1.1 (i)

Figure 1: The plot for accuracy vs. k

3.1.2 (ii)

Figure 2: Test and validation accuracies change as we change the value of k

As we change the value of k, we can see that the accuracy don' have a big change in this question. However, we expect the accuracy to decrease when we change the value of k. When k is smaller than 5, the model would more likely to underfit the data. When k is larger than 5, the model would more likely to overfit the data.

3.2 (b)

3.2.1 (i)

Please refer to python files.

3.2.2 (ii)

The following result (for question (ii) and (iii)) is collected under hyperparameters (best hyperparameter settings):

```
learning_rate: 0.01;
weight_regularization = 0;
num_iterations: 1000
```

The output result for small training set:

Figure 3: Gradient checking and Test result for small dataset

The output result for large training set:

Figure 4: Gradient checking and Test result for large dataset

Figure 5: Cross Entropy Loss

Figure 6: Classification Accuracy

3.2.4 (iv)

We run our program for three times with the same hyper-parameters on the large dataset and got the following result.

Result				
	Train_Loss	Train_Accuracy	Val_Loss	Val_Accuracy
1st	0.0244	1.0000	0.7140	0.6600
2nd	0.1307	1.0000	0.2538	0.8800
3rd	0.1308	1.0000	0.2536	0.8800

To choose the best hyper-parameters, we can run the code multiple times and calculate the average validation accuracy error. This will help to ensure that the results are not simply due to chance.