

Distributed Algorithms - 83453 - Homework 3

due: 20/01/2024

1) Define the *k-set consensus problem* as follows. Each processor starts with an input $x_i \in \mathbb{Z}$, and outputs a value y_i and it holds that:

a. Validity: $y_i \in \{x_1, ..., x_n\}$

b. k-Agreement: $\left| \{ y_i \mid 1 \le i \le n \} \right| \le k$,

that is, the set of outputs has at most k different values Prove that the following algorithm is **f-resilient** to crash-failures.

Algorithm 18 k-set consensus algorithm in the presence of crash failures: code for processor p_i , $0 \le i \le n-1$.

Initially $V = \{x\}$

1: round $r, 1 \le r \le \frac{f}{k} + 1$: // assume that k divides f

1: round $r, 1 \le r \le \frac{f}{k} + 1$: 2: send V to all processors

3: receive S_j from p_j , $0 \le j \le n-1$, $j \ne i$

4: $V := V \cup \bigcup_{j=0}^{n-1} S_j$

- 5: if r = f/k + 1 then $y := \min(V)$ // decide
- 2) Assume a byzantine-consensus with n=4 parties and f=1 byzantines. Assume the inputs of the parties belong to the set $\{0,1,2,3\}$.
 - a. Show that no consensus algorithm satisfies "non-faulty-node input Validity" (as defined in Slide 37 in Presentation 6)
 - b. Now assume that the inputs and outputs must be form the set {0,1}. Prove that "non-faulty-node input Validity" (as defined in Slide 37 in Presentation 6) is equivalent to "all-same validity" (Slide 38, Presentation 6).

- 3) Assume a <u>ring</u> network with $n \gg 10$ nodes. We would like to "split" the ring into <u>consecutive</u> segments, where each segment contains at least 5 neighboring nodes, but no more than 10 nodes.
 - Specifically, nodes have no inputs (but have IDs), and each node needs to end up at one "segment" and know to which segment it belongs to.
- a. Design a synchronous deterministic algorithm that solves the above task in $O(\log^* n)$ time. Explain why your algorithm works correctly and analyze its time complexity.
- b. Prove that without IDs, this task cannot be solved by a synchronous deterministic algorithm.