AVL Trees

An AVL tree is a binary search tree in which for every internal node the heights of its two subtrees differ by at most 1.

AVL Trees

An AVL tree is a binary search tree in which for every internal node the heights of its two subtrees differ by at most 1.

What is the maximum height of an AVL tree?

Ordered Dictionary Implemented with Binary Search Trees

Operations

```
get(k)
smallest()
largest()
put(k,d)
remove(k)
successor(k)
predecessor(k)
```

O(height of tree) time complexity

What is the Maximum Height of an AVL Tree?

Let n(h) = minimum number of nodes in an AVL tree of height h.

base use

$$n(0) = 1$$

$$h(1) = 3$$

$$n(h) = 1 + n(h-2) + n(h-1)$$

 $n(h) > 1 + 2n(h-2)$


```
Assume h is even
   n(0) = 1
    n(h) > 1 + 2n(h-2), h > 0
  2nlh-2) > 2[1+2nlh-4) ], h) 0.
            > 2+42(4-4)
 2<sup>2</sup>n(h-2x2) > 2<sup>2</sup>(1+2n(h-2x3)) = 2<sup>2</sup>+2<sup>3</sup>n(h-2x3).
2"n(h-2x) > 2 x+2x+1 n(h-2(x+1))
        n(h) > 20+2 + +2 3+2 3+1.
                 =\sum_{i=2}^{j=201} 2^{i} = 2 \frac{1-2^{20+j}}{1-2} = 2^{20+j} = 1.
         n> 2<sup>i+2</sup>-1. じ= -1
         n > 2^{\frac{1}{2}t1} - 1
      log_(nt1) > 2+1.
             h 22/0/2 (nt/) -2.
```

Ordered Dictionary Implemented with AVL Trees

```
Operations
get(k)
smallest()
largest()
successor(k)
predecessor(k)
put(k,d)
remove(k)

O(height of tree) = O(log n)
O(height of tree) = O(log n)?
```

AVL Tree

get (62)

Ordered Dictionary Implemented with AVL Trees

put 40 26 ofter adding (40), the tree is no honger an AVL tree.

Re-Balancing AVL Trees

To re-balance an AVL tree we always rebalance the smallest un-balanced subtree.

Single Rotations

Double Rotations

Re-Balancing AVL Trees

If the tree becomes unbalanced due to an insertion ONE rotation will re-balance the tree.

put (54)

62 50 78 148 54 88.

Algorithm putAVL (r, k, data)

In: Root r of an AVL tree, record (k,data)

Out: {Insert (k,data) and re-balance if needed}

```
Olleghe) p = put (r, k, data) // Algorithm to add information
                                11 to a binary search tree
= O (log n)
locate mhile (p*nnll) and (difference in height between do subtree of p 23 at most 1)

pure of the tree p. purent
Occirloga).
          : 7 ptnull +len
                    Rebulance the tree rooted at p by one romention.
                    the operation Changes at most & links in single rotation.
                                                               in double routation
lognt lognt C.
 fun = Ollogn).
```

Single Rotations Complexity

Double Rotations Complexity

24 54 17 502 | 78 It is not an AUL tree!

Re-Balancing AVL Trees

When a single and a double rotation can be applied to an un-balanced subtree the single rotation always re-balances the subtree.

Re-Balancing AVL Trees

If the tree becomes unbalanced due to a removal SEVERAL rotations might be needed to re-balance the tree.

find the smallest subtree.

Algorithm removeAVL (r, k)

In: Root *r* of an AVL tree, key *k* to remove

Out: {Remove *k* and re-balance if needed}

```
p \leftarrow \text{remove}(r,k) Algorithm for binary search trees p \leftarrow \text{max} : \text{height} = \text{odd} while (p \neq \text{null}) \text{ do } \{: O(\log_n)\}.
      if the two subtrees of p differ in height > 1 then
              rebalance subtree rooted at p by performing
             appropriate rotation
     p = parent of p
```

Ordered Dictionary Implemented with AVL Trees

Operations get(k) smallest() largest() successor(k) predecessor(k) put(k,d) remove(k) O(height of tree) = O(log n) O(height of tree) = O(log n)