## Random Convex Programs with $L_1$ -Regularization Sparsity and Generalization

Campi & Carè, SIAM J. Contr. Optim, 50(5), 3532-3357, 2013.

D2 Zhicheng Zhang

Division of Operations Research

November 16, 2021

## Random Convex Program

## Random Convex Program

Consider a standard random convex program (min-max)

RCP 
$$\min_{x \in \mathcal{X} \subset \mathbb{R}^d} \max_{i=1,\dots,N} L(x, \delta^{(i)}),$$

where  $\delta^{(i)}$ ,  $i=1,\cdots,N$  are N scenarios sampled from  $\Delta$  in an i.i.d. fashion according to probability  $\mathbb{P}$ .

RCP is equivalent to a epigraphic form

$$\min_{L \in \mathbb{R}, x \in \mathcal{X}} \ L \quad \text{ subject to } \ L(x, \delta^{(i)}) \leq L, \ i = 1, \cdots, N.$$

The optimization is to take worst-case minimization w.r.t. scenarios  $\delta^{(i)}$ .

## Generalization Property ( $\epsilon$ -level Performance Robustness)

There is a set  $\Delta_{\epsilon}$  with  $\mathbb{P}\{\Delta_{\epsilon}\} \geq 1 - \epsilon$  such that  $\max_{\delta \in \Delta_{\epsilon}} L(x_{N}^{*}, \delta) \leq L_{N}^{*}$ . where  $L_{N}^{*} = \max_{i=1,\cdots,N} L(x, \delta^{(i)})$ , and  $x_{N}^{*}$  is the optimal solution of RCP.

## RCP with $L_1$ -Regularization

### Random Convex Program with $L_1$ -Regularization

$$L_1\text{-RCP} \qquad \min_{x \in \mathcal{X} \in \mathbb{R}^d} \max_{i=1,\cdots,N} \ L(x,\delta^{(i)}) \quad \textit{subject to} \quad \|Ax - b\|_1 \leq r,$$

where  $A \in \mathbb{R}^{p \times d}$ ,  $b \in \mathbb{R}^p$ ,  $\|\cdot\|_1$  is the  $L_1$  norm (e.g.,  $\|z\|_1 = \sum_{j=1}^p |z_j|$ ), and  $r \in \mathbb{R}$  is the constraining parameter to tune the level of sparsity.

 $\clubsuit$   $L_1$ -RCP is equivalent to a epigraphic form

$$\min_{L \in \mathbb{R}, x \in \bar{\mathcal{X}}} \ L \quad \text{ subject to } \quad L(x, \delta^{(i)}) \leq L, \ i = 1, \cdots, N,$$

where 
$$\bar{\mathcal{X}} = \{x \in \mathcal{X} : \|Ax - b\|_1 \le r\}.$$

• Reduce the effective dimension of decision variable (i.e., dim(x) = d).

### Assumption 1 (Convexity)

Function  $L(x, \delta)$  is convex in x, while it has an arbitrary dependence on  $\delta$ , and the optimization domain  $\mathcal{X}$  is a convex and closed set.

## Examples (lasso and basalt column constraints)

### Example (lasso constraint)

Letting A = I and b = 0, then the generalized constraint in  $L_1$ -RCP reduces to the following lasso constraint

$$||x||_{1} \le r$$

### Example (basalt column constraint)

Letting A be a total variation matrix and b=0, then the generalized constraint in  $L_1$ -RCP reduces to the following basalt column constraint

$$\begin{bmatrix} 1 & -1 & 0 & 0 & \cdots \\ 0 & 1 & -1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 1 & -1 \\ -1 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{d-1} \\ x_d \end{bmatrix} \implies \begin{bmatrix} x_2 - x_1 \\ x_3 - x_2 \\ \vdots \\ x_{d-1} \\ x_{d-1} \end{bmatrix}_{1} \le r$$

Moderate the number of jumps or switches for piecewise functions.

## Pictorial interpretation



- The contour of lasso is a diamond in  $\mathbb{R}^2$ .
- As r increases, search domain enlarges, optimal value  $(\min_{x \in \mathbb{R}^d} L_N^*)$  improves, optimal solution  $x_N^*$  loses generalization property.
- Recall some constrained optimization problems
  - $\min_{x} \|b Ax\|_2$  s.t.  $\|x\|_0 \le r$  (Best subset selection)  $\Leftrightarrow \min_{x} \|x\|_0$  s.t.  $\|b - Ax\|_2 \le t$
  - $\min_{x} \|b Ax\|_2$  s.t.  $\|x\|_1 \le r$  (Lasso)

## q-dimensional subspace

- ullet q is a user-chosen "complexity barrier" and satisfies q < d.
- Optimal q-dimensional subspace:  $\mathbb{Z}^{opt}$ : Set some rows of Ax - b as zero (i.e.,  $a_h^{\top} - b_h = 0$ ), that is,

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d - b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d - b_2 \\ \vdots \\ a_{p1}x_1 + a_{p2}x_2 + \dots + a_{pd}x_d - b_p \end{bmatrix} = \begin{bmatrix} a_1^\top - b_1 \\ a_2^\top - b_2 \\ \vdots \\ a_p^\top - b_p \end{bmatrix}$$

so that

$$\min_{x \in \mathcal{Z}^{opt} \cap \mathcal{X}} \max_{i=1,\cdots,N} L(x,\delta^{(i)}) \leq \min_{x \in \mathcal{Z} \cap \mathcal{X}} \max_{i=1,\cdots,N} L(x,\delta^{(i)})$$

- Two requirements for a suitable selection of q:
  - Guarantee adequate generalization properties;
  - Allow for a satisfactory optimal cost.

## Algorithm ( $L_1$ -RCA)

#### Random convex algorithm with $L_1$ -regularization ( $L_1$ -RCA).

- (a) Let s be the dimension of the affine subspace of  $\mathbb{R}^d$  identified by relation Ax b = 0. Select an integer q with s < q < d. Initialize r = 0
- (b) Let  $x_N^*(r)$  be the optimal solution path of  $L_1$ -RCP as r is increased. For all values of  $r \geq 0$ , evaluate which components of  $Ax_N^*(r) b$  are zero, and let H(r) be the index set of the zero components of  $Ax_N^*(r) b$ ; thus, if, for example, the first two components of  $Ax_N^*(r) b$  are zero, we have  $H(r) = \{1, 2\}$ . Further, define  $\mathcal{Z}(r) := \{x : a_h^T x b_h = 0, h \in H(r)\}$ , where  $a_h^T x b_h$  is the hth component of Ax b; that is,  $\mathcal{Z}(r)$  is the affine subspace of  $\mathbb{R}^d$  preserving the null components of  $Ax_N^*(r) b$ .

Set  $\bar{r}$  to be the largest r such that  $\dim(\mathcal{Z}(r)) = q$ .

(c) Solve

$$\min_{x \in \mathcal{Z}(\bar{r}) \cap \mathcal{X}} \max_{i=1,...,N} L(x, \delta^{(i)}),$$

and let  $x_N^*$  and  $L_N^*$  be the optimal solution and the optimal value of this problem.

## Assumptions

### Assumption 2 (Existence and Uniqueness)

W.p. 1 w.r.t. the multisample  $\delta$ , any RCP considered here admits a unique solution.

### Assumption 3

W.p. 1 w.r.t. the multisample  $\delta$ , when function  $m(r) = \dim(\mathcal{Z}(r))$  increases, it does so one unit at a time, that is, it does not have jumps up of 2 or more units, and  $m(\infty)$ :  $\lim_{r\to\infty} m(r) = d$ .

### Termination of $L_1$ -RCA

For r=0,  $\|Ax_N^*(0)-b\|_1=0$  so that  $Ax_N^*(0)-b=0$  which entails that m(0)=s. Thus m(r) goes from s to d, when it increases, it does so one unit at a time. Hence, an r exists where m(r)=q. Moreover, the sup  $\bar{r}$  takes  $m(\bar{r})=q$ . After  $\bar{r}$  is determined in (b), then (c) generates  $x_N^*$  and  $L_N^*$  and terminates the ALGO.

## Theory

#### THEOREM 3.2

For  $L_1$ -RCA algorithm, if it takes sample complexity

$$N \geq rac{2}{\epsilon} igg[ \ln rac{1}{eta} + q + (p-d+q) \ln igg( rac{p \cdot e}{p-d+q} igg) igg].$$

Under Assumptions 1, 2, 3, for all multisample  $\delta$  with the exception of a set whose probability  $\mathbb{P}^N$  is at most  $\beta$ :

There is a set  $\Delta_\epsilon$  with  $\mathbb{P}\{\Delta_\epsilon\} \geq 1 - \epsilon$  such that

$$\max_{\delta \in \Delta_{\epsilon}} L(x_N^*(\boldsymbol{\delta}), \delta) \le L_N^*(\boldsymbol{\delta})$$

• This theorem is equivalent to a more general result, that is,

$$\binom{p}{d-q}\sum_{i=0}^{q} \binom{N}{i} \epsilon^{i} (1-\epsilon)^{N-i} \leq \beta.$$

• Special case: take p = d, then the term w.r.t N is as follows:

$$N \geq rac{2}{\epsilon} igg[ \ln rac{1}{eta} + q igg( 1 + \ln rac{d \cdot e}{q} igg) igg].$$

## Compared with previous results

Table 3.1

Values for N obtained using formula (3.15) (1st line in italic) and formula (3.8) (2nd through 9th lines);  $\beta = 10^{-10}$ , p = d = 2000.

|        | $\epsilon=1\%$ | $\epsilon=2\%$ | $\epsilon = 3\%$ | $\epsilon = 4\%$ | $\epsilon = 5\%$ | $\epsilon=6\%$ | $\epsilon=7\%$ | $\epsilon=8\%$ | $\epsilon = 9\%$ | $\epsilon = 10\%$ |
|--------|----------------|----------------|------------------|------------------|------------------|----------------|----------------|----------------|------------------|-------------------|
|        | 229735         | 114793         | 76478            | 57321            | 45826            | 38163          | 32689          | 28584          | 25390            | 22836             |
| q = 1  | 3403           | 1693           | 1123             | 838              | 668              | 554            | 472            | 411            | 364              | 325               |
| q = 2  | 4427           | 2203           | 1462             | 1091             | 869              | 720            | 614            | 535            | 473              | 424               |
| q = 3  | 5403           | 2689           | 1784             | 1332             | 1060             | 879            | 750            | 653            | 578              | 517               |
| q = 4  | 6346           | 3158           | 2096             | 1564             | 1245             | 1033           | 881            | 767            | 679              | 608               |
| q = 5  | 7264           | 3615           | 2399             | 1791             | 1426             | 1182           | 1009           | 878            | 777              | 696               |
| q = 10 | 11594          | 5771           | 3829             | 2859             | 2276             | 1888           | 1610           | 1402           | 1240             | 1111              |
| q = 15 | 15644          | 7786           | 5167             | 3858             | 3072             | 2548           | 2173           | 1893           | 1674             | 1500              |
| q = 20 | 19506          | 9709           | 6443             | 4810             | 3831             | 3177           | 2711           | 2361           | 2088             | 1870              |

• Previous result:  $\sum\limits_{i=0}^d \binom{N}{i} \epsilon^i (1-\epsilon)^{N-i} \leq \beta$ .

• For example:  $\epsilon = 5\%$ ,  $N_{old} = 45826$ , q = 10,  $N_{new} = 2276$ .

[Campi & Garatti, SIAM J. Optim., 2008]

## Role of Probability $\mathbb{P}$ , confidence $\beta$ and risk $\epsilon$

#### Role of Probability $\mathbb{P}$ :

- $\bullet$  Training samples  $\{\delta^{(i)}\}_{i=1}^N$  are generated according to probability  $\mathbb{P}.$
- Generalization property refers to sampling a new scenario  $\delta$  again according to probability  $\mathbb{P}$ ;
- Verify whether  $L(x_N^*(\delta), \delta) \leq L_N^*(\delta)$ .
- ♠ QUES:
- What happens if the testing probability and the verification probability do not coincide?
  - Ambiguity set (ACCP: ambiguous chance-constrained program)
  - Prohorov metric [Erdoğan & Iyengar, Math. Program., 2006]
  - Wasserstein metric (DRO: distributionally robust optimization)

[Esfahani & Kuhn, Math. Program., 2017]

#### Role of confidence $\beta$ and risk $\epsilon$ :

- ullet For practical appeal of method, confidence eta should take small.
- As scenarios N tends to infinity, the risk  $\epsilon$  tends to zero.

## Example: Minimax Regression

### Minimax Regression

A signal s(t) is obtained as the composition of 200 sinusoids,

$$s(t) = \sum_{j=1}^{200} \alpha_j \sin(jt), \ \hat{s}(t) = \sum_{j=1}^{200} x_j \sin(jt) \ \rightarrow \ \hat{s}(t) = \sum_{k=1}^{7} x_{j_k} \sin(j_k t)$$

- Take  $\alpha_1 = \alpha_5 = \alpha_8 = \alpha_{45} = 0.2$ ,  $\sum_{j \neq 1,5,8,45} \alpha_j = 1$  and  $\sum_{j=1}^{200} \alpha_j = 1$ .
- Gather N=332 samples of  $(t^{(i)},s(t^{(i)}))$ , where  $t^{(i)}\sim U(-\pi,\pi)$ .
- Select q = 7 nonzero coefficients  $x_{j_k}$  with frequencies  $j_1 = 1$ ,  $j_2 = 5$ ,  $j_3 = 8$ ,  $j_4 = 41$ ,  $j_5 = 45$ ,  $j_6 = 109$ ,  $j_7 = 127$ .

Consider  $L_1$ -RCP ALGO as follows

$$\min_{x \in \mathbb{R}^{200}} \max_{i=1,\cdots,332} |s(t^{(i)}) - \hat{s}(t^{(i)})|, \quad \text{s.t. } \|x\|_1 \leq r, \\ \text{(reduced order)} \ \Rightarrow \ \min_{x_{j_1},\cdots,x_{j_7}} \max_{i=1,\cdots,332} |s(t^{(i)}) - \sum_{k=1}^{7} x_{j_k} \sin(x_{j_k} t^{(i)})|,$$

The obtained optimal solutions are:  $x_{j_1}^* = 0.1909$ ,  $x_{j_2}^* = 0.1964$ ,  $x_{j_3}^* = 0.2033$ ,  $x_{j_4}^* = 0.0187$ ,  $x_{j_5}^* = 0.2059$ ,  $x_{j_6}^* = 0.0271$ ,  $x_{j_7}^* = 0.0184$ , and cost  $L_{332}^* = 0.0649$ .

# Numerical Experiments



### A posterior evaluation

#### PROPOSITION 4.1

Let  $x_N^*$  be the solution obtained with  $L_1$ -RCA. Take

$$M \geq rac{1}{\epsilon'} \ln rac{1}{eta'}$$

i.i.d. samples  $\delta^{(N+1)}, \cdots, \delta^{(N+M)}$  distributed according to  $\mathbb P$  and independent of  $\delta^{(1)}, \cdots, \delta^{(N)}$  and let

$$L^* = \max_{i=N+1,\cdots,N+M} L(x_N^*, \delta^{(i)}).$$

Then, with confidence  $1 - \beta'$  w.r.t. the multisample  $\delta^{(N+1)}, \dots, \delta^{(N+M)}$ , relation

$$L(x_N^*,\delta) \leq L^*$$

holds with probability at least  $1-\epsilon'$  w.r.t. random choices of  $\delta$ .

## Performance robustness cost $\epsilon_\ell$

#### Assessment of Robustness-loss curve

Let  $\ell=q+1,\cdots,q+h$ ,  $\alpha=p-d+q$ , and

$$\epsilon_{\ell} = \frac{\ell}{\mathit{N}} + \frac{\mathit{g} - 1 + \sqrt{\mathit{g}^2 + 2(\ell - 1)\mathit{g}}}{\mathit{N}}, \quad \mathit{g} = \ln\left[\frac{1}{\beta} \cdot \left(\frac{\mathit{p} \cdot \mathit{e}}{\alpha}\right)^{\alpha}\right],$$

where h is an arbitrary integer chosen by the user such that  $q + h \leq N$ . To easy notation, denote  $x^*$  as  $x_N^*(\delta)$ . Define

$$L_{\epsilon_\ell}^* = \max\{L \text{ such that } L(x^*, \delta^{(i)}) \ge L \text{ for } \ell \text{ scenarios } \delta^{(i)}\}.$$

Thus,  $L^*_{\epsilon_\ell}$  are the values  $L(x^*, \delta^{(i)})$  listed in decreasing order of magnitude.

- The first term of  $\epsilon_\ell$  is the *empirical probability* of the scenarios that greater than or equal to  $L_{\epsilon_\ell}^*$ .
- The second term  $\frac{g+\sqrt{g^2+2(\ell-1)g}}{N}$  of  $\epsilon_\ell$  is the adjustment term accounting for the mismatch between empirical and real probability.

### Results

#### THEOREM 5.1

The statement  $L(x^*, \delta) \leq L_{\epsilon_{\ell}}^*$  holds with probability at least  $1 - \epsilon_{\ell}$  is true simultaneously for all  $\ell = q + 1, \dots, q + h$  with confidence  $1 - h\beta$ .

$$\Leftrightarrow \quad \mathbb{P}^{N}\{\boldsymbol{\delta}: \mathbb{P}\{L(\boldsymbol{x}^{*},\boldsymbol{\delta}) > L_{\epsilon_{\ell}}^{*}\} > \epsilon_{\ell}\} \leq \left(\begin{smallmatrix} \rho \\ d-q \end{smallmatrix}\right) \Sigma_{i=0}^{\ell-1} \left(\begin{smallmatrix} N \\ i \end{smallmatrix}\right) \epsilon_{\ell}^{i} (1-\epsilon_{\ell})^{N-i}.$$



Fig. 5.1. Visualization of  $L_{\epsilon_{\ell}}^{*}$  for q=1. Each constraint represents the region where  $L(x, \delta^{(i)})$  for some  $\delta^{(i)}$ .



Fig. 5.3. Robustness-loss curve:  $L_{\epsilon_{\ell}}^{*}$  (vertical axis) vs.  $\epsilon_{\ell}$  (horizontal axis).  $\ell$  is in the range  $8, \ldots, 6007$ .

### Conclusions

#### Take home messages:

- $L_1$ -regularization shrinks the number of optimization variables.
- Induce a  $L_1$ -RCP algorithm.
- Enhance the generalization properties of the RCP.
- Perform a novel finite-sample guarantee:

$$\mathbb{P}^{N}\{\boldsymbol{\delta}: \mathbb{P}\{L(\boldsymbol{x}^{*},\boldsymbol{\delta}) > L^{*}\} > \epsilon\} \leq \binom{p}{d-q} \sum_{i=0}^{q} \binom{N}{i} \epsilon^{i} (1-\epsilon)^{N-i}.$$

ullet Does not require any knowledge of probability measure  ${\mathbb P}$  (unknown).

### Improvement

- Even use  $L_1$ -RCA, N scales as  $\frac{1}{\epsilon} \cdot d$ .
- Fast algorithm gives the form of sample complexity N as  $\frac{1}{\epsilon} + d$ .

[Carè, Garatti and Campi, Operations Research, 2014]