TP - Pointnet pour la classification de nuages de points

Master ID3D - Julie Digne

21 Novembre 2024

Dans ce TP nous verrons comment reconnaitre des formes géometriques, définies par des nuages de points.

1 Librairies - logiciels

La programmation se fait en python, en utilisant les librairies suivantes

- Numpy
- Matplotlib (pour visualiser l'évolution des fonctions de coût)
- Pytorch (pour la partie neuronale)
- scikitlearn (pour la matrice de confusion si besoin)

Un environnement conda tp ml.yml se trouve sur la page du cours.

2 Données

Un script prepare_data.py est fourni et génère des données de test et de train.Vous pouvez les visualiser avec matplotlib, le label 0 correspond à des cylindres, le label 1 correspond à des parallélépipèdes rectanges, le label 2 correspond à des tores. Cela crée un dossier data divisé en train et test.

3 Architecture

Nous avons besoin de 2 réseaux un 'Tnet' et un 'pointnet'.

TNet qui va sortir une matrice de rotation:

- Entrée : nuage de points nD sous forme batch sizexnDx2048
- 3 couches de convolution 1D de tailles 64, 128, 1024 suivies chacune de batchnorm puis relu
- un max par canal (torch.max)
- 2 couches linéaires de taille 512, 256, suivies chacune de batchnorm puis relu
- une couche linéaire passant de 256 à nD*nD

PointNet:

- Un Thet avec nD=3 (aligne les données)
- Appliquer la matrice à la donnée d'entrée (torch.bmm)
- convolution (64) + batchnorm +relu
- Thet avec nD=64 (aligne les features)
- convolution (128) + batchnorm +relu

- convolution (1024) + batchnorm +relu
- un max par canal (torch.max)
- 2 couches linéaires de taille 512, 256, suivies chacune de batchnorm puis relu
- une couche linéaire passant de 256 à 3 (3 classes) avec log softmax

La loss est la negative log likelihood (nll_loss), et vous pouvez prendre une sg
d avec un learning rate de 1e-3

4 Tester sur les données test

Vous pouvez sortie les taux de vrais/faux positifs/négatifs, de bonne reconnaissance, ou la matrice de confusion (scikitlearn)

5 Robustesse au bruit

Rajouter du bruit aux données et tester la robustesse de l'algorithme. On poura aussi réentrainer avec du bruit aléatoire (augmentation de données).