Europäisches Patentamt

European Patent Office

Office européen des brevets

EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Bulletin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int CI.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(11)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)

(72) Inventors:

 Nakagawa, Satochi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Mizoguchi, Hiroshi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP) Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Hayashi, Mikiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ochiai, Keiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

Yokoi, Haruhiko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

 Tateishi, Naoko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)

(74) Representative: VOSSIUS & PARTNER Siebertstrasse 4 81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

Description

BACKGROUND OF THE INVENTION

.5 1. Field of the Invention

10

25

35

- [0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polyneptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.
 - 2. Brief Description of the Background Art
- [0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.
 - [0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).
 - [0004] The production of amino acids by *Corynebacterium glutamicum* is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus *Corynebacterium* is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (*J. Biochem., 65*: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (*Microbiology, 142*: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.
 - [0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli*, *Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.
- [0006] A chromosomal physical map of Corynebacterium glutamicum ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (Mol. Gen. Genet., 252: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in Corynebacterium glutamicum, and the nucleotide sequences of most genes have not been clarified hitherto.
- [0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli, Mycobacterium tuberculosis*, yeast, and the like, have been determined (*Science, 277*: 1453-62 (1997); *Nature, 393*: 537-544 (1998); *Nature, 387*: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.
 - [0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*,
- 96: 12833-38 (1999); Science, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

. 5

15

20

25

40

45

50

55

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016]. From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:

(a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,

(b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,

- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

10

15

20

25

30

35

40

45

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
- (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

10

15

20

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and

- a solid support adhered thereto.
- (22) A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

- (ii) at least temporarily storing said information;
- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
- (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) a data storing device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
 - (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

5

18

15

20

25

30

35

40

45

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium. (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microor-

ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.

- (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).

(37) The recording medium or storage device according to

- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
- (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
- (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
- (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
- (45) A DNA encoding the polypeptide of any one of (38) to (44).
- (46) A recombinant DNA comprising the DNA of (45).
- (47) A transformant comprising the recombinant DNA of (46).
- (48) A transformant comprising in its chromosome the DNA of (45).
- (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
- (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
- (51) A method for producing L-lysine, comprising:

culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and

recovering the L-lysine from the culture.

- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

5

10

15

20

25

30

35

40

45

50

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

(i) preparing

5

10 .

15

20

25

30

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide 35 sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebaeterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis
- ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like. 55

(1) Preparation of genome DNA of coryneform bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

20

35

50

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning*, *A laboratory Manual*, Second Edition (1989) (hereinafter referred to as "*Molecular Cloning*, 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;

recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:

(i) preparing

5

10

15

20

25

30

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.
- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- 35 [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis
- 55 ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(manufactured by Life Technologies) for Escherichia coli. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed Escherichia coli is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl- β -thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any

(3) Production of cosmid library

5

10

15

20

25

40

45

50

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3AI or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instruc-

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in Molecular Cloning, 2nd ed. and then used in transforming Escherichia coli. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into Escherichia coli XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (Science, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

40

15

20

25

35

40

50

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 µl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 µl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used.

[0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of rnRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

~10

25

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA*, 85: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215:* 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym., 164*: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover; the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

-10

20

25

30

35

40

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

[0107]. Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

-10

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

-10

15

20

25

35

45

50

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] • When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene *pyc* of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of *Corynebacterium glutamicum* free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

to

20

40

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (*Appl. Microbiol. Biotechnol., 32*: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain *Corynebacterium glutamicum* ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

50

5

15

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet.*, 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

30 (2) Use of polynucleotide array

-10

40

45

50

55

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

(i) producing a polynucleotide array by the method of the above (1);

(ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;

(iii) detecting the hybridization; and

(iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science*, 280: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene

expression amount and the expression profile thereof can be analyzed.

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like. mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)) or the like.

- [0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.
 - [0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.
 - [0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)); and the like.
- [0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol., 181*: 6425-40 (1999)).
 - [0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (*Nat. Bioctechnol., 14*: 1675-80 (1996), or the like).
 - [0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.
 - [0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.
- ²⁵ [0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.
 - [0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).
- 90 [0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.
 - [0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.
- 40 (b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria
 - [0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).
- [0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).
- 8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same
 - [0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).
 - [0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like. of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by .SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

- 9. System based on a computer using the recording medium of the present invention which is readable by a computer
- [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.
 - [0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.
 - [0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.
 - [0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994)), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; *Nuc. Acids. Res., 26*: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.
 - [0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.
 - [0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.
- The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural molif data, or the like, and a memory accessing device(s) for accessing the same.
 - [0192] Namely, the system based on a computer according to the present invention comprises the following:
 - (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
 - (ii) a data storage device for at loast temporarily storing the input information;
 - (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.

-10

30

35

40

50

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

[0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

[0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, the DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

[0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from *Escherichia coli* JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured by Novagen), and the like.

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as trp promoter (P_{trp}), lac promoter, P_L promoter, P_R promoter, P_R promoter, P_R promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{trp} \times 2$), tac promoter, lacT7 promoter let promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

[0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

-10

15

25

35

40

mized, in a known manner, depending on the host cells and environmental conditions utilized.

[0207] Examples of the host cell include microorganisms belonging to the genus *Escherichia*, the genus *Serratia*, the genus *Bacillus*, the genus *Brevibacterium*, the genus *Corynebacterium*, the genus *Microbacterium*. the genus *Pseudomonas*, and the like. Specific examples include *Escherichia coli* XL1-Blue, *Escherichia coli* XL2-Blue, *Escherichia coli* XL1-Blue, *Escherichia coli* XL2-Blue, *Escherichia coli* JM109, *Escherichia coli* MC1000. *Escherichia coli* KY3276, *Escherichia coli* W1485, *Escherichia coli* JM109, *Escherichia coli* HB101, *Escherichia coli* No. 49, *Escherichia coli* W3110, *Escherichia coli* NY49, *Escherichia coli* Gl698, *Escherichia coli* TB1, *Serratia ficaria*, *Serratia fonticola*, *Serratia liquefaciens*, *Serratia marcescens*, *Bacillus subtilis*, *Bacillus amyloliquefaciens*, *Corynebacterium ammonia genes*, *Brevibacterium immariophilum* ATCC 14068, *Brevibacterium saccharolyticum* ATCC 14066, *Corynebacterium glutamicum* ATCC 13032, *Corynebacterium glutamicum* ATCC 13869 (prior genus and species: *Brevibacterium lactofermentum*), *Corynebacterium lactofermentum*, or *Corynebacterium lactofermentum*), *Corynebacterium acetoacidophilum* ATCC 13870, *Corynebacterium thermoaminogenes* FERM 9244, *Microbacterium ammoniaphilum* ATCC 15354, *Pseudomonas putida*, *Pseudomonas* sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA, 69*: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in *Genc, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213]. With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; *Cytotechnology, 3*:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (*Nature, 329*: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (*J. Biochem., 101*: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SR α promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like.

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors*, *A Laboratory Manual*, W.H. Freeman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

30

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

- [0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family *Barathra* are infected, and the like.
 - [0222] Examples of the insect cells include *Spodoptera frugiperda* occytes Sf9 and Si21 (*Bacurovirus Expression Vectors, A Laboratory Manual,* W.H. Freeman and Company, New York (1992)), *Trichoplusia ni* occyte High 5 (manufactured by Invitrogen) and the like.
- [0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.
 - [0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.
 - [0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.
 - [0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheal, barley, and the like.
- [0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.
- [0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention *per se* rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.
- [0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.
- [0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.
- [0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.
- [0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.
- [0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.
- [0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose; sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).
- [0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.
 - [0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.
 - [0237] The culturing is carried out under acrobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.
 - [0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.
 - [0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

~10

20

an inducer can be added to the medium, if necessary.

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Blosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

[0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

20

25

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α -casein promoter, a β -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λPL(con), λPL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as G-Sepharose, DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

40

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted. replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, Molecular Cloning, 2nd ed., Current Protocols in Molecular Biology, Nuc. Acids. Res., 10: 6487 (1982), Proc. Natl. Acad. Sci. USA, 79: 6409 (1982), Gene, 34: 315 (1985), Nuc. Acids. Res., 13: 4431 (1985), Proc. Natl. Acad. Sci. USA, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

-10

20

25

30

40

50

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

[0276] proline, 3-hydroxyproline, 4-hydroxyproline; 45

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of *Corynebacterium glutamicum*, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

[0289] A dosage of the antigen is preferably 50 to 100 μ g per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out_3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

⁻10

15

20

25

30

35

40

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

- (2) Production of monoclonal antibody
- (a) Preparation of antibody-producing cell
- [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.

[0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.

[0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.

[0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.

(b) Preparation of myeloma cells

20

30

35

50

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-AgI4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10^{-5} mol/l 2-mercaptoethanol, 10 μ g/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μ g/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10^7 or more of the cells are used for the fusion.

(c) Production of hybridoma

[0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

[0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 108 antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.

[0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

[0302] The suspension is poured into a 96 well culture plate at 100 μ I/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.

[0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

[0304] A specific example of the enzyme immunoassay is described below.

[0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

invention.

10

15

20

25

40

50

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

- (d) Preparation of monoclonal antibody
- [0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.
- [0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.
- [0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.
 - [0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.
- [0311] The antibody obtained in the above is within the scope of the antibody of the present invention.
 - [0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982),
- Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).
 - [0313] The antibody of the present invention can be used as it is or after being labeled with a label.
- [0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem.*, 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.
 - [0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.
 - [0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.
 - 12. Production and use of polypeptide array
 - (1) Production of polypeptide array
- [0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.
 - [0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.
 - [0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.
 - [0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth.*
- Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.
 - [0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polypeptide array

10

15

20

25

30

35

40

50

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

[0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.

- 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

35 Example 1

5

10

15

20

25

45

50

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science*, *269*: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

10

20

25

35

40

50

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Small*/BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of *Corynebacterium glutamicum* ATCC 13032 was partially digested with *Sau*3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the *Bam*HI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into *Escherichia coli* XL-1-BlueMR strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The *Escherichia coli* was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino *et al.* (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

[0352] The double-stranded DNA plasmid as the template was obtained by the following method.

[0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

[0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

10

20

25

30

50

15 [0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (*DNA Research*, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of *Corynebacterium glutamicum* ATCC 13032 (*Mol. Gen. Genet., 252*: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method.
[0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

5

10

30

40

45

50

55

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained. ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO: 1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

J	
•	
- ₁₀	
15	
20	
25	
30	
35	
40	
45	
50	

5

Table 1

ſ		ī	i		i	_		7		_		<u>-</u>	Ī				\neg	$\neg \neg$!	\neg	
	Function	replication initiation protein DnaA		DNA polymerase III beta chain	ONA replication protein (recF protein)	hypothelical protein	ONA topoisomerase (ATP. hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
	Watched 'ength (a.a.)	524		390	392	174	704					422			854	112	329	268		265	155	117
	Similarity (%)	8.66		81.8	79.9	58.1	88.9					50.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1
	Identity (%)	99.8		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
lable 1	Homologous gene	Brevibacterium flavum dnaA		Mycobacterium smegmatis dnaN	Nycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c
	db Match	gsp:R98523	٠	sp:DP3B_MYCSM	Sp:RECF_MYCSM	sp:YREG_STRCO	pir:S44198					sp:YV11_MYCTU			sp:GYRA_MYCTU	pir.E70698	sp:YEIH_ECOLI	gp:AB042619_1		gp:AF156103_2	pir:A49232	pir.F7C664
	ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	420	870	292	369
	Terminal (nt)	1572	1597	3473	4766	5299	7486	8795	8798	10071	9474	10107	11253	11523	14398	14746	15209	17207	17670	17860	18736	20073
	Initial (nt)	-	1920	2292	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
	SEQ NO (a.a.)	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
	SEQ NO.	2	6	4	5	9		60	6	9	Ξ	12	13	14	15	16	17	18	19	50	21	22

10	Function		hypothetical membrane protein	2,5-diketo-D-gluconic acid reductase	5-nucleotidase precursor	5'-nucleotidase family protein	transposase	organic hydroperoxide detoxication	enzyme	ATP-dependent IJNA helicase		glucan 1,4-alpha-glucosidase	lipoprotein		ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP- biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport protein	night original ATA horizont	ribose transport A 17-billeting process	neurofilament subunit Nr 180	peptidyl-prolyl cis-trans isomerase A	hypothetical membrane protein	
15	Natched	(a.a.)	321	26	196	270	51		139	217		449	311	;	266	222	283	312	3 8	236	347	169	226	
20	- A	(%)	50.8	88.5	56.1	56.7	77.6	12:0	79.9	8.09		54.1	63.7	3	74.1	70.3	56.5	68 2	200	76.7	44.4	89.9	53.1	
	Identily 8	(%)	24.9	65.4	27.0	27.0	67.0	32.3	51.8	32.7		26.7	0 00	6.02	34.6	39.2	25.8	3 0 0	30.3	32.2	23.6	79.9	29.2	
30 - Palder Continued (banning		Js gene	prae	sp. ATCC	Micus nutA	odurans	100	Stnatum OKF	mpestris	oxidans recG		cerevisiae	siopathiae		rogenes SF370	K12 fecE	itima MSB8		K12 rbsC	168 rbsA	inus	leprae H37RV	168 yagP	21 ,
30 t dite.	N ONE	Homologous gene	Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC 31090	Vihrio parahaemolyticus nulA	Deinococcus radiodurans)R0505	Corynebacterium stnatum ORF	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae	Ervsinelothrix rhusiopathiae	ewlA	Streptococcus pyogenes SF370 mlsC	Escherichia coli K12 fecE	Thermotoga maritima MSB8	TM0114	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon marinus	Mycobacterium leprae H37RV	Bacillus subtilis 168 yagP	22
35		db Match			1		1			SD RECG THIFE	T	SP. AMYH YEAST		gp:ERU52850_1	6	=			7243B	SD. RBSA BACSU	16	sp:CYPA_MYCTU	USDAN GENY	מההם - אני
40		g	gp:MLCB1788_6	pir:140838	AGGIV OTIVO			prf.2513302C	prf:2413353A	_	_			gp:ERU	gp.AF180520_	SD.FEC		\rightarrow	prf:1207243B		_			
	100	(g 2)	993	180	1	320	1230	165	435	1413	42,	127R		954	849	657	5 6	8	1023	Т	- a	-	+	180
45		Terminal (nt)	21065	21074		b7177	23399	23615	24729	24885	27720	26822	33007	28164	29117	30651	24677	7,015	32699	13757	+	!		35668
50		Initial (nt)	20073	21253		21597	22164	23779	24295	26207	16707	20000	66087	29117	29965	30005		30697	31677	4_	_!_	34280		34982
	0 20	NO (e e)	3523	1524	+	3525	3526	3527	3528	52.5	6700	3530	1333	3532	3533	3	3334	3535	2576	3 5	200	35.38	3	3540
55		NON G			ļ		56	27	28	18	२	30	5	32	: :	3 ;	24	32	3,	8 5	2	<u>۾</u>	2	40

																				\neg	
5 - - 10	Function	ferric enterobactin transport system permease protein		ATPase	vulnibactin utilization protein	hypothetical membrane protein	serine/threonine protein kinase	serineAhreonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
15	Matched length (a.a.)	332		253	260	95	648	486	492	375	469	155	526					117	490	242	262
20	Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	9'59	70.8	66.5	38.8					63.3	78.2	57.0	64.1
	Identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.6					29.9	46.7	27.3	29.0
25 (pancipus	e gene	2 fepG		ر.	36-24 viuB	erculosis	rae pknB	color pksC	eus pbpA	8 spoVE	erculosis	erculosis	erculosis					neum ATCC	12 gabD	£	nnaschii
so o Table 1 (continued)	Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae viuC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coelicolor pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tuberculosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 46490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
35	db Match	ECOLI				sp:YO11_MYCTU	SP. PKNB MYCLE			5								sp.PH2M_TRICU	sp:GA3D_ECOL!	sp:YRKH_BACSU	
40	දි	sp:FEPG_	ļ	gp:VCU52150_9	sp:VIUB_VIBVU	sp:YO11	Sp. PKNE	gp:AF094711_1			pir:H70699	pir.A70700	pir:870700					sp:PH2		-	sp:Y441
	ORF (bp)	978	966	777	822	270	1938	1407	1422	1143	1353	462	864	147	720	219	471	954	1470	1467	789
45	Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46659	48024	48505	49455	49897	50754	99605	54008	51626	55546	55629
50	Initial (nt)	37221	37242	38202	38978	40458	42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	56417
	SEQ.	3541	3542	3543	3544	3545	3546	3547	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
55	SEQ NO.	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	56	57	58	59	09

	_					-			1	7		T		i		i	1	l	1	ĺ				í	
5		tion								shall franchord			rotein	transport	ion-induced				value secondary	(an ional waidii	ystem sensor		gulator	2-hydroxyacid	
10		Function	hypothetical protein		hypothetical protein	hypothetical protein	riotory legitation	nypomencal process		francopul francopul	protein		chloride channel protein	required for NMN transport	phosphate starvation-induced	protein-like protein			Maconday seconday	transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid	dehydrogenase
15		Matched length	†	Ť	179	62	3	310			390		400	241	9,6	340				497	563		229		293
20		Similarity (%)	74.3		70.4	83.9		50.			59.5		64.8	53.1	3	60.0				68.8	9.09		63.3		73.7
		Identity (%)	40.5	200	36.3	53 2		26.8			29.5		30.0	24.1		29.1				42.3	27.2	_	13.7	;	43.3
25	(pənu	ne Pu			6803	losis		58.11			ulosis		M4 clcb	01100	ulocic	Sison					dpiB		di	CIIR	tamicum
30	Table 1 (continued)	Homologous gene		Bacillus subtills yrkr	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zumamanae mobilis 7M4 clcb	Cylindrical tracking policy	Salmonella typulluluu	Mycobacterium tubercurosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		C 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Escherichia coil K.12 crik	Corynebactenum glutamicum unkdh
<i>35</i>		db Match	- i -	Sp:YRKF_BACSU B	sp.YCE1_SYNY3 S	PIT.G70988		gp:LMFL4768_11 L			pir.F70952		1	+	sp:PNUC_SAL 1 Y	sp:PHOL_MYCTU				sp:CITM_BACSU	P. Doia ECOLI			sp.DPIA_ECOLI	gp:AF134895_1
-		RF	(do)	291 sp:\	591 sp.	174 pir.	855	+	711	1653	1119 pir.	· -	44/	_	e30 sp	1122 sp	132	384	765	1467 sp	1663		570	654 5	912 9
45		la la	(ut)	55386 2	56680 5	57651	58941 8		Π	T	T	十	_	\neg	65508	67972	68301	68251	65824	Ī		9517)	71474	72814	72817
50		-	(ut)	56676	57270	57478	58087	59091	59952	60669	63508		64040	64190	66197	66851	68170	68634	09069	70186		70506	72043	72161	73728
		SEO	(a a.)	3561		3563	3564			ᆜ	 -	-	3569	3570	3571	3572	3573	3574	3575	3576	2	3577	3578	3579	3580
55		SEO		. 19	i	63	2	Ť	Ť	1	i		69	70	7.1	72	73	74	75	. 4		11	78	79	8

	Γ			$\neg \tau$			1			T	T	Ī		5					e l		
5 - 10		Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase			SIR2 gene family (silent information regulator)	triacylglycerol lipase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
15		Matched length (a a)	127	334	43	85		42	84	507	394			279	251	262		171	100	162	570
20		Similarity (%)	76.4	7.66	191	63.5		75.0	0.99	59.0	9.66			50.5	59.0	56.1		94.7	100 0	100.0	100.0
		Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2			26.2	30.7	29.4		90.6	100.0	100.0	100.0
25	ntinued)	auaß	olor A3(2)	damicum	rculosis	evisiae		ım Nigg	niae	iae varS				evisiae hst2	senes	acnes		utamicum	lutamicum	lutamicum	lutamicum
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
<i>35</i>		db Match	gp:SCM2_3	sp:BIOB_CORGL	pir.H70542	Sp:YKI4_YEAST		PIR:F81737	GSP: Y35814					sp:HST2_YEAST	prf 2316378A	prf 2316378A		gp:AB029154_1	gp.AB029154_2	gp:CGL251883_2	gp CGL251883_3
		ORF (bp)	429 gp:S	1002 sp:B	237 pir.t	339 sp:Y	117	141 PIR	273 GSF	+=	+	306	615	924 sp.1	972 prf	900 prf.	888	513 gp:/	300 gp.	486 gp.:	1710 gp
45		Terminal OI (h)	74272 4	75491 10	75742 2	76035 3	76469 1	80613	81002	-	+			87241	87561	1_	90445	90461	91473	91988	93701
50		Initial (nt)	73844	74490	75506	75697	76353	80753	01274	83568	84935	85403	86277	86318	88532	89444	89558	90973	91174	91503	91992
		SEO	3581	3582	3583	3584	3585	3586	25.07	35.88	3589	35.90	3591	3592	3593	3594	3595	3596	3597	3598	3599
55		SEO		82	83	84	5			\top	8 8	\top	8 5	92	93	98	95	96	97	98	66

:												 -	$\overline{}$	-, -						$\overline{}$				\neg
5			'n	⊆ .	iù	in			rote:n			ogu-tamily)			arge subunit		/P5C		nase	P	drolase		e protein	
10		Function	urease accessory protein	urease accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase	-	valanımycın resistant protein			heat shock protein (hsp90-family)	AMP nucleosidase		acetolactate synthase large subunit		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase (NADP+)	pump protein (transport)	indole-3-acetyl-Asp hydrolase		hypothelical membrane protein	
15		Matched length (a.a.)	157	226	205	283	279		347			899	481		196		1297		338	513	352		90	
20		Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7	71.4	49.2		70.8	
		Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	
25	intinued)	gene	utamicum	utamicum	utamicum	lutamicum	obacter echA		faciens vlmF			2 htpG	2 amn		K1 APE2509		urium putA		ysosporium	12 ydaH	วาายาลกร		12 yidH	
30	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhimunum putA		Phanerochaete chrysosporium aad	Escherichia coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
35			1	i			A		1								SALTY			_				
40		db Match	gp:CGL251883_4	gp:CGL251883_5	gp.CGL251883_6	gp:CGL251883_7	prf:2318326B		gp:AF148322_			sp:HTPG_ECOLI	sp:AMN_ECOLI		pir.E72483		sp:PUTA_SA		sp:AAD_PHACH	SP:YDAH ECOL	prf 2422424A		sp:YIDH_ECOLI	
		ORF (bp)	471	829	615	849	777	699	1152	675	2775	1824	1416	579	552	099	3455	114	945	1614	1332	669	366	315
45		Terminal (nt)	94199	94879	95513	95365	95368	98189	97319	100493	98808	101612	104909	105173	105841	106630	110890	111274	112318	114083	115478	114564	115943	116263
50		Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	106392	107289	107435	111161	111374	112470		115262		115949
		SEQ NO.	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3512	3613	3614	3515	3616	3617	3618			3621
55		SEQ NO.	100	101	102	103	104	105	106	107	108	109	150	=	112	113	12.4	115	116	117	118	119	120	121

. 5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function		Iranscriptional repressor	methylglyoxalase	hypothetical protein	mannitol dehydrogenase	D-arabinitol transporter		galactitol utilization operon repressor	xylulose kinase		pantoatebeta-alanine ligase	3-methyl-2-oxobutanoate hydroxymethyltransferase		DNA-3-methyladenine glycosylase		esterase		carbonate dehydratase	xylose operan repressor protein	macrolide efflux protein		
	Matched length (a a.)		258	126	162	497	435		260	451		279	27.1		188		270		201	357	418		
	Similarity (%)		59.7	78.6	64.8	70.4	68.3		64.6	68.1		100.0	100.0		97.9		69.3		53.2	49.3	61.2		
	Identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0		100.0	100.0		42.0		39.3		30.9	24.1	21.1		
Table 1 (continued)	Homologous gene		Agrobacterium tumefaciens accR	Bacillus subtilis yurī	Mycobacterium tuberculosis H37Rv Rv1276c	Pseudomonas fluorescens milD	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterium glutamicum ATCC 13032 panB		Arabidopsis thaliana mag		Petroleum-degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis mef214		
	db Match		sp:ACCR_AGRTU	pr.C70019	sp:YC76_MYCTU	prf.2309180A	prf.2321326A		sp:GATR_ECOLI	sp:XYLB_STRRU		gp:CGPAN_2	gp:CGPAN_1		SP:3MG_ARATH		gp:AB029896_1		Sp.CAH_METTE		gp:LLLP:<214_12		
	ORF (bp)	2052		390	510	1509	1335	189	837	1419	822	837	813	951	630	654	924	627	558	1143	1272	804	444
	Terminal (nt)	116548	118810	120410	120413	120951	122507	124030	124965	126353	127992	126353	127192	128099	129489	130798	130815	132424	132981	132971	134207	135519	136122
	Initial (nt)	119500	119589	120021	120922	122459	123841	123842	124130	124932	127171	127189	128004	129049		130145	131738	131798	-		135478	136321	136565
	SEO NO.	7632	3623	3624	3625	3626	3627	3628	3629	3630	3631	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	3543
	SEO	-	123	124		126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	15	142	143

.5	
* 10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function				cellulose synthase	hypothelical membrane protein				chloramphenicol sensitive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent heildase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin biosynthesis enzyme
	Matched length (a.a.)				420	593				303	198			361	248			829		188	219	166	217	55	284
	Similarity (%)				51.2	51.8				60.7	59.1			62.3	70.2			64.3		0.99	2.09	65.1	61.3	727	52 1
	Identity (%)				24.3	25.1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
Table 1 (continued)	Homologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA		-	Escherich:a coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1JI nodL	Escherichia coli 0373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
	db Match				pir 1397 14	sp.HKR1_YEAST				Sp.RARD_PSEAE	sp YADS_ECOLI			Sp. ABRB_ECOLI	sp:YFCA_ECOLI			sp.HRPB_ECOLI		sp NODL_RHILV	sp ALKB_ECOLI	SD:3MG1 ECOLI	SPIRHTC ECOLI		
	ORF (bp)	1941	1539	6.36	1451	-	621	1065	756	979	717	333	1659	1137	798	624	405	2388	315	675	069	525	678	291	852
	Terminal (nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
	Initial (nt)	136804	118791	130861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853		156848	157614			
	SEO NO.	3644	2645	36.46	36.47	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	7664	3555	3666	3667
	SEQ NO.	144	1,45	2 9	2 5	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	161	2 9	166	167

5
·
⁻ 10
15
20
25
30
35
40
45
50

_																	_		- 1	T		-1-	\neg	
	Function	methyltransferasc				ribonuclease			neprilysin-like metallopeptidase 1		transcriptional regulator, GntR family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo.inosital 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		oxidoreductase		
	Matched length (a.a.)	104				118			722	:	238	332	296	498	268	586	290	335	287	457		354		
	Similarity (%)	56.7				76.3			57.2		65.6	63.0	80.7	86.1	58.2	8.69	51.0	72.2	72.1	61.5		65.5		
	Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1		
Table 1 (continued)	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c				Neisseria meningitidis MC58 NMB0662			Mus musculus n11		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis iofB	Bacillus subtilis iolD	Rhizobium meliloti mocC	Bacillus subtilis ich or iolG	Bacillus subtilis iotH	Streptomyces glaucescens tcmA		Bacillus subtilis yvaA		
	db Match	gp:SPAC1250_3				gp:AE002420_13			gp: AF 176569_1		sp.FARR_ECOLI	pir T14544	gp:SC8F11_3	prt.2204281A	Sp.IOLB BACSU	sp:IOLD_BACSU	Sp. MOCC_RHIME	1011 Sp.MIZD BACSU	SP.IOLH BACSU			sp:YVAA_BACSU		
	ORF (bp)	342	930	657	933	405	639	741	2067	953	759	1017	921	1512	888	1728	954	101	870	1374	621	1023	456	
	Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	163991	170916	172444	173355	175275	176272	177318	178203	179658	178461	180711	181297	
	(nt)	160029	160431	161696	162295	162463	162965	165717	165755	166457	168595	168975	1	170933	172468			ᆜ			179081		180842	
	SEQ NO.	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	367A	3679	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689	
	SEO	168	169	170	171	172	173	173	175	176	177	178	1	180	181	182	183	184	185	186	187	88	189	

													_		T		<u> </u>		T		\neg			i	1	- 1	1
5		Function		regulatory protein	oxidoreductase	hypothetical protein			cold shock protein		o a confine de la confine de l	caffeoyl-CoA 3-O-memyin ansierase		glucose-resistance amylase	0		D-xylose proton symporter		6-00:	(ransposase (150g2)	signal-transducing misualitie kinase	glutamine 2-oxoglutarate aminotransferase farge subunit	glutamine 2-oxoglutarate aminotransferase small subunit			hypotnetical protein	
15		Matched tength (a.a.)		331	442	303			64	.		134		338			458			401	145	1510	909]	490	
20		Similarity (%)		61.9	52.5	64.7			92.2			58.2		62.1			70.5	2		100.0	60.7	100 0	93.8			72.8	
		Identity (%)		32.0	24.4	33.7			70.3			30.6		28.7			26.0	200		100.0	27.6	99.9	99.4		-	44.6	
25	ned)	eų.		PR PR	v4hM			10,04	A3(2)											micorn		micum	micum		olo cir	Siscolo	
30	Table 1 (continued)	Homalogous gene		Stanton reticuli cebR	Streptoniyes reflect seek	(IIIZODIUIII SP. 14CIVE)	Bacillus suoriis yiii i		Streptomyces coelicolor A3(2) csp			Stellaria longipes		Bacillus subtilis ccbA				Lactobacillus brevis xyri		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti fixt	Corynebacterium glutamicum	Corynebacterium glutamicum	gitD		Mycobacterium tuber culusis H37Rv Rv3698	
<i>35</i>		db Match			1		Sp YFIH BACSU		sp.CSP_ARTGO			prf.2113413A		110040 4000	\neg		\neg	Sp.XYLT_LACBR		gp:AF189147_1	Sp.FIXL_RHIME	gp:AB024708_1	2 B074708 2	1-00-1-1-10-1-1-10-1-1-10-1-1-10-1-1-10-1-1-10-1		pir.C70793	
•		ORF (tp)	284			23		429	201,	534	306	414		_	086	402	240	1473	98	1203	435	4530	91.21	2	240	1485	369
45		Terminal (nt)	+			_	185087	185642	186708	187302	187607	188100	2000	188300	188/4/	190321	190389	190703	192949	194464	194604	199769	000	697107	201341	201760	205956
50		Initial (nt)		181264	182679	182819	184077	185214	186508	186769	187302	107697	100/01	188725	189736	189920	190628	192175	193248	193262	195038		- !-	71/661	201580	203244	205588
		SEO	9 1	3690	3691	3692	3693	3694	3692	3696	2607		3030	3699	3700	3701	3702	3703	3704	3705	3706	3707		3708	3709	3710	3711
55				8	i	192	193	194	195	196	2	5 6	85	5	200	201	202	203	204	205	200	3 6	3 !	208	508	210	211

EP 1 108 790 A2

O-antigen export system permease protein

262

75.6

31.3

Yersinia enterocolitica rfbD

sp.RFBD_YEREN

804

217943

218746

3728

O-antigen export system ATP-binding protein

236

78.4

47.0

Yersinia enterocolitica rfbE

sp:RFBE_YEREN

789

217141

217929

3727

227

NADPH quinone oxidoreductase

71.5

hypothetical protein

416 302

63.0

36.5 41.1

Mycobacterium tuberculosis 437Rv Rv3778c

pir:F70695

1173

220151

218979

3729

229

Homo sapiens pig3

gp:AF010309_1

954

220154

221107

3730

230

hypothetical membrane protein 5 acetoacetyl CoA reductase Function rhamnosyl transferase arabinosyl transferase proteophosphoglycan hypothetical protein hypothetical protein hypothetical protein oxidoreductase 10 Matched length 15 1122 214 (aa) 223 350 206 302 651 464 124 Similarity 70.6 56.5 83.9 73.8 57.4 66.1 % 85.1 79.1 55.1 20 Identity (%) 39.8 35.0 31.4 66.0 24.3 63.6 31.3 25 Agrobacterium tumefaciens olasmid pTi-SAKURA (forf100 Table 1 (continued) Mycobacterium avium embB Mycobacterium tuberculosis H37Rv Rv3790 Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv Rv3789 Mycobacterium tuberculosis H37Rv Rv1864c Mycobacterium tuberculosis H37Rv Rv3782 rfbE Homologous gene Pseudomonas sp. phbB Leishmania major ppg 1 30 H37Rv Rv3792 35 Sp.Y0GN_MYCTU gp:AB016260_100 gp:LMA243459_1 db Match prf:2224383C prf:2504279B pir:H70666 pir.D70697 pir: B70697 pir.B70696 40 1983 3471 1464 1002 759 396 633 ORF (bp) 318 234 507 453 402 939 342 597 216116 209210 212283 212735 214522 215159 215162 Terminal 206385 203541 207007 209992 211535 213657 214107 216605 45 Ê 213712 216712 209968 216100 208989 211455 211777 212283 214121 214527 216264 211768 207011 212656 206068 Initial t) 50 3715 3716 3718 3719 3725 3712 3713 3717 3720 3721 3723 3724 (a.a) (DNA) 214 225 226 216 218 219 222 212 217 215 223 224

46

	Function		probable electron transfer protein	amino acid carrier protein	and the property besis profein	mce8 (sulfurylase)	mclybdopterin synthase, large subunit	mclybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	maluhdate hinding periplasmic	molybodie-billouing periplesime	melybdopterin converting factor subunit 1	mattose transport protein	hypothetical membrane protein	histidinol-phosphate aminotransferase			
	Matched length (a a)		78	475		368	. 150	158	154	377	227		256	96	365	121	330			
	Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.6	70.5		0.89	70.8	60.8	76.9	65.8			
	Identity (%)		35.0	46.7		43.8	44.7	33.5	61.7	34.5	44.1		34.0	37.5	34.3	36.4	37.3	_	_	
Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotinovorans moaC	Arthrobacter nicotinovorans	Arthrobacter nicolinovorans	modB	Arthrobacter nicotinovorans modA	Mycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malk	Streptomyces coelicolor A3(2)	Zymomonas mobilis hisC			
	db Match		PIR: A70606	sp.ALST_BACSU		gp:SYPCCMOEB_	prf 2403296D	sp.MOCB_SYNP7	prf 2403296C	gp:ANY10817_2	330000000000000000000000000000000000000	pri.z4c3z3or	prf:2403296E	pir.D70816	prf 2518354A		sp.HISB_ZYMMO			
	ORF (bp)	582	297	1476	909	1083	456	471	468	1185	1 5	67/	804	321	912	4	1023	906	294	120
	Terminal (nt)	221131	222207	222210	225244	225242	226312	225760	227218	227703		228891	229711	230928	230931	231848	232260	234818	╀	235409
	Initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	22887		229613	230514	230608		·		233913	_1 _	
	SEO NO (a.a.)	3731	3732	3733	3734	3735	3736	3737	3738	3739		3740	3741	3742	37.43	3744	3745	3746	3747	
	SEO NO.			233	234	235	236	237	238	230	3	240	241	242	5,75	244	245	248	247	248

EP 1 108 790 A2

														Şe	_								
5	_		Se		porter		anspone			ų;			protein	Itransfera	ne proteir				etase				
10	Function	transcript on factor	alcohol dehydrogenase	pulrescine oxidase	magnesium ion transporter	-	Na/dicarboxylate cotransponer	oxidoreductase	hypothetical protein	nitrogen fixation protein	•		membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			ABC transporter	glutamyl-tRNA synthetase		transposase		
15	Matched length (a a)	252	335	451	444		567	317	160	144			266	400	203		1	526	316		360		
20	Similarity (%)	57.1	0.99	38.1	68.5		59.6	69.1	73.8	70.1			45.7	68.0	62.1			49.6	63.3		55.0		
	Identity (%)	29.4	340	215	30.9		33.2	46.1	48.8	45.1			20.7	41.3	28.1			24.3	34.8		34.2		
25 (panuiuned)	gene	Ä	nophilus	ond :	mgtE			erculosis	erculosis	onicum			erculosis npL2	2	дЬ			cescens strW	×		ngae tnpA		
S S Table 1 (continued)	Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
35		-	TS		ш		^	21	-														
40	db Match	gp.BAU8:286_	sp:ADH2_BACST	Sp. PUO_MICRU	pri:2305239A		prf.2320140A	pir.C70800	pir:B70800	gp.RHBNFXP_1			sp:YV34_MYCTU	SP.TGT_ZYMMO	sp:YPDP_BACSU			pir. S65588	sp:SYE_BACSU		gp:PSESTBCBAD_1		
•	ORF (bp)	762		108	_	174	1530	1020	522	417	201	351	2403	1263	738	1090	648	1437	879	990	1110	303	138
45	Terminal (nt)	235451	237342	238145	239525	239945	241515	241883	243431	243910	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	255204
50	Initial (nt)	236212	236326	237345	238176	239772	239986	242902	242910	243494	244015	244466	244902	247310	249294	249428	250369	250503	251952	253819	255438	255794	256067
	SEQ	3749	3750	3751	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3770
55	SEO	(UNA)	+	251	252	·; -	-	255	256	257	258	259	260	761	262	263	264	265	266	267	268	269	270

5		Function	aspartate transaminase	ONA polymerase III holoenzyme tau	sutunit	hycothetical protein	recombination protein	cobvric acid synthase	and N acetylmuramyl tripeptide	synthetase	DNA polymerase III epsilon chain		hypothelical membrane protein	aspartate kinase alpha chain		oviterrolle regions.	extracytopiasmic luncated arctification sigma factor	vegetative catalase			leucine-responsive regulatory	protein	branched-chain amino add transport
15	Matched		432		642	101	216	3.48	047	444	346		270	421			189	492				143	203
20	<u></u>	Similarity (%)	100.0		53.1	74.3	72.7	64.7	01.7	60.6	55.2		100.0	93.8			63.5	76.4				72.0	68.0
		Identity (%)	98.6		31.6	0	0.14	42.5	38.3	31.3	25.7		100.0	99.5			31.2	52 9		-	-	37.1	30.5
25 (panuiju			ofermentum		lus dnaX		¥	2	s cobQ	is murC	erculosis	de de constantes	Jiviamicuini Ivum) ATCC	glutamicum			negmatis sigE		5			oniae Irp	A1 azlC
so Service (Continued)	lable l	Homologous gene	Brevibacterium lactofermentum aspC		Thermus thermophilus dnaX		Bacillus subtilis yaak	Bacillus subtilis recR	Heliobacillus mobilis cobo	Heliobacillus mobilis murC	Mycobacterium tuberculosis	H37Rv dnau	Corynebacterium giutamicuiri (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum			Mycobacterium smegmatis sigE	24 - 104 4 - 11 4	Bacillus subtills kara			Klebsiella pneumoniae Irp	Bacillus subtilis 1A1 azlC
35		db Match	gsp:W69554		gp.AF025391_1 T			Sp. RECR_BACSU			nir.H70794		sp:YLEU_CORGL	sp.AKAB_CORGL			Δ9020102	A606316	sp.CATV_BACSU			SP:LRP_KLEPN	sp.AZLC_BACSU
40								_	Τ-						1053	25.75		2	1506 sp.C	342	291	462 sp:l	753 sp./
		I ORF (bp)	1296	630	2325	717	339	5 654	5 750		1	$\neg \neg$	98 89	13 1263	\neg			رح کا		-			-
45		Terminal (nt)	257894	258529	260875	258596	261295	262055	262546	263298	00450	264599	268258	270633			16/2	273542	275871	276232	275957	┼─	
50		initial (nt)	256599	257900	258551	259312	260987	251402	202296	252532		265578	269124	269371		_		274120	274366	275891	276247		
-		SEO NO.	(a a.)			3774	3775	3776	2777	37.77	2	3779	3780	1781		3782	3783	3784	3785	$\overline{}$	_		
55			(DNA)	\neg	273	274	275	276	273	7/7	0/7	279	280	200	07	282	283	284	285	286	287	2 88	289

																						_
5		Function		dialogy society	metalioregulatory protein	arsenic oxyanion-transpocation portry membrane subbinit	arsenate reductase				Na+/H+ aniporter of muliple resistance and pH regulation related protein D	Na+/H+ antiporter	Na+/H+ antiporter or multiple resistance and pH regulation related protein A				transcriptional activator	two-component system sensor histidine kinase	alkaline phosphatase		phosphoesterase	hypothetical protein
				1	metallo	membra	arsenat				Na+/H+ ar resistance protein D	Na+/H+	Na+/H+ a resistance protein A				transcr	two-co	alkalin		phospi	hypoth
15		Matched length (a a)		8	3	341	119				503	119	824				223	521	180		307	149
20		Similarity (%)			68.9	84.2	689				70.4	70.6	64.3				70.4	56.8	0.09		54.7	71.8
		Identity (%)			34.4	52.2	31.1				32.4	37.0	34.1				38.6	26.7	28.3		26.1	37.6
25	ntinued)	gene			As4 arsR	s4 arsB	sus arsC				тгрО	eus mnhC	тгрА				us CH34	erculosis	MG1363 apl		E	<u>.</u>
30	Table 1 (continued)	Homologous gene			Sinorhizobium sp. A.	Sinorhizobium sp. As4 arsB	Staphylococcus xylosus arsC				Baciilus firmus OF4 mrpD	Staphylococcus aureus mnhC	Bacillus firmus OF4 mrpA				Alcaligenes eutrophus CH34 czcR	Mycobacterium tuberculosis mtrB	Lactococcus lactis MG1363 apl		Bacillus subtilis ykuE	Bacillus subfilis yqeY
35		db Match			gp:AF178758_1	gp. AF178758_2	SP. ARSC_STAXY				gp:AF097740_4	ort 2504285D	gp:AF097740_1				sp:CZCR_ALCEU	prf:2214304B	Sp:APL_LACLA		pir.869865	sp:YQEY_BACSU
		ORF (bp)	324		345 9	1080 g	387 s	318	270	453	1530 g	186		1485	603	864	999	1467	603		915	_
45		Terminal (nt)	277904	277987	278388	279893	280279	280349	280670	280949	281404	760080	283317	287857	287059	287966	289131	289777	292417	291273	292597	293991
50		Initial (nt)	277581	278301	278732	278814	279893	280666	280939	281401	282933	710000	1	286373		288829		291243	291815			•
		SEO NO	<u> </u>	3791	3792	3793	3794			3797	3798	2700	3800	3801	3802	3803	3804	3805	3806	3807	3808	 -
		SEO NO NO		+	1	T	294	295	296	297	298	8	300	301	302	303	304	305	306	2 2	8	308

	Function	class A penicillin-binding	protein(PBF1)	regulatory protein		hypothetical protein	respectintional regulator		shikimate transport protein		long-chain-fatty-acid-CoA ligase		transcriptional regulator	3-oxoacyl-(acyl-carrier-protein)	reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein		hydrolase			cAMP receptor protein		ultraviolet N-qlycosylase/AP lyase		cytochrome c biogenesis protein:
	Matched length (a.a.)	782	\top	7.1		50	440	£	440	_	534		127	1	167	254	394	153	3	272			207		240		211
	Similarity (%)	77.1		63.4		96.0		88.8	689		50.0	3	65.4		(2.5	52.0	66.5	7.7 6	27/	72.4			65.7		77.4		58.3
	Identity (%)	7 87	20.5	40.9		. 84.0		65.1	37.3		24.4	2	33.9		41.0	27.2	38.8	\perp	40.0	41.2			30.9		27.2	5.15	34.6
Table 1 (continued)	Homologous gene		Mycobacterium leprae pon I	Streptomyces coelicolor A3(2) whiB		Streptomyces coelicolor A3(2)	siaclinoscaline in the second	Mycobacterium tubercurosis H37Rv Rv3678c	Escherichia coli K12 shiA			Bacillus subtilis IctA	Streptomyces coelicolor A3(2)	3034.200	Bacillus subtilis fabG	Constitution and alang flug		Arabidopsis trialiana atyo	Rhizobium leguminosarum nodiv	Mycobacterium tuberculosis H37Rv Rv3677c			Vitrio cholorae cin	VIDUO CUDIEI GE CI P		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
	db Match		prf.2209359A	pir.S20912	1	gp.SCH17_10		pir.G70790	SD SHIA ECOLI			sp:LCFA_BACSU	ap SCJ4 28	1	sp:FABG_BACSU		942 Sp.FLUG_EMEINI	prf.2512386A	sp:NODN_RHILV	_			-+	prf:2323349A	_	sp:UVEN_MICLU	pir.870790
	ORF	(dn)	2385	339	50	153		459	1353		609	1536	525	3	933		942	1194	471	843	1173	1	-+	681	192	780	558
	Terminal	(mt)	294004	297402	003500	207783		298250	CLEBBC	200022	300695	299726	201512	310100	303099		304074	305263	305758	306700	305195	2000	307504	306782	307727	308734	
	-	£	296388	297064	100	707631	100/67	297792	F 8 3000	1,00667	300087	301261	90000	307036	191005		303133	304070	305288	305858	206267	١.	306800	307462	307918	307955	
	SEO	(9 9)	3810			3812		3814		3815	3316	<u> </u>		3318	3810	2	3820	3821	2822	3823	100	3824	3825	3826	3827	3828	3829
	SEQ 8	-21	310 3		;		<u></u>	214		315	316	_		318	5		320	321	333	323		324	325	326	327	25	329

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

5	Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical prolein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein			Openitor Oliver	AI P-dependent KINA hencase	cold shock protein		DNA topoisomerase I	
15	Matched length (a.a.)	192	396	280	156	287	349	319	!	262	201	59			,	/64	67		977	
20	Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				66.1	88.1		81.6	
	Identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	
25 · (pan		98	osis	12 cEH	losis		losis			ılosis	llosis	losis					s S155		ulosis	
S Table 1 (continued)	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis 1137Rv Rv3671c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SISS csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
<i>40</i>	db Match	Sp. YEAB ECOLI	6	prf:2411250A	pir:F70789	pir.S72914	pir:E70788	pir.C44020		pir.C70788	pir:870788	pir.A70788				sp:YPRA_BACSU	sp.CSP_ARTGO		pir.G70563	
	ORF (bp)	699	+	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	131
45	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
50	Initial (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318596	318958	318991	321690		322216	322910	325904
	SEO	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846		3848
55	SEQ.	(ONA)	331	332	333	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

•	5
-	10
	15
	20
	25
	30
	35
	40
	45
	50

	Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent		Vimerianis esemetari eta ellete	metallo-pera-lacionidas aspecialina	3-oxoacyl-(acyl-carner-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrolase		
	Matched length (a.a.)	263	423 .		144	172	314	558	101	362		30,	ng.	251	415	320	108	230		260	586	3	
į	Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		!	47.5	55.8	56.4	66.3	88.9	56.5		57.3	5.4.4	75	_
	Identity (%)	32.7	25.3		32 6	39.0	43.6	34.8	38.6	9.99			32.5	25.9	26.3	33.8	59.3	33.9		25.8	7 47	70.	
Table 1 (continued)	Homologous gene	Stigmatella aurantiaca B17R20 cvaB	Bacillus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysanthemi D1 bgxA	Azosnirillum irakense salB	Amycolatopsis methano ica			Rhodococcus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces viridifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Grabatchia coli K12 vef1	Escribilia con 1712 July	Salmonella typnimurium usn.A	
	db Match	sp.CYAB_STIAU	13		gp: AE002103_3	gp: AE001882_8	sp:RLUC_ECOLI	EN'BGLX FRWCH	3p. 3C. 2000430 2	SP. AF USUAZS Z	sp.r.con		Sp:YTH5 RHOSN	sp.FABG_ECOU	on 4F148322 1	ort 2512357B	pir:A70562	sp:YC22_METJA		- 1000	sp. YERJ_ECOLI	sp.USHA_SALTY	
	ORF (bp)	1041	1257	162	7	561	882	1877		1969	-	621	537	699	1230	933	375	759	1079	1020	1035	2082	162
	Terminal (nt)	326695	329539	329909	330376	331533	332433	227,562	204200	334953	336112	335185	336748	337449	92000	336706	340195	340559	347375	-	-	345717	345814
	Initial (nt)	327735	328283	329748	329033	330973	331552	0,000	332819	332965	332009	335805	ᆚ			337339		341327	_!_	L	342417	343636	345975
	SEO	3849	3850	3851	2852	3853	3654		3833	3856	3857	3858	2850	3860		3861	3863	3864		\neg	3866	3867	3868
	NO.	249 249	350	25.1	5 5	353	354		355	355	357	358	250	960		361	363	364		362	366	367	368

5 10	Function		NADB dependent alrohol	dehydrogenase	glucose-1-phosphale Ihymidylyllransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein 1 yr kinase	protein phosphalase		capsular polysaccharide biosynthesis	ORF 3	Ipopolysaccharide biosynthesis / aminofransferase
15	Matched	(a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	96	394
20	Similarity	(%)		74.9	84.9	74.0	83.4	61.2	66.5		68.3	62.5	56.4		46.0	9.92	57.2	68.6		65.7	51.0	68.3
	2	(%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1
25 (panujuo		s dene		erculosis	n M32 rfbA	ans rmlC	tans XC rmlB	s HB8 nox	reus sirA		berculosis	licolor	psulata		licolor A3(2)	TCC 6872	nsonii ptk	nsonii ptp		ureus M capD		ijuni wlaK
& S Table 1 (confinued)		Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans milC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A.19c	Sphingomenas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium annoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
<i>35</i> 40		db Match		SP.ADH_MYCTU H	SP. RFBA_SALAN S	on:D78182 5	TRWU	T			sp:Y17M_MYCTU	gp:SC5F2A_19	prf.2502226A		gp.SCF43_2	gsp W56155	prf.2404346B	prf.2404346A		sp:CAPD_STAAU	PRF:2109288X	prf.2423410L
	 	- 6	-		55 sp:R	0.60					1308 sp:Y	1380 gp:S	2118 prf.2	573	1092 gp. S	1095 gsp	1434 prf. 2	03 prf.	184	 	942 PRF	
45	JAR J		0 351	1059	80	15	=	10		49 639	1		\top					100	10,	1	\vdash	
	Torminal	(ut)	346110	346961	348098	248057	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	 	<u> </u>	367701	369801
50	100	(nt)	346460	348019	348952	010030	351443	251048	351843	354387	355906	357228	359354	360334	361905	363151	363824	365250	_		368642	
	SEO	NO.	┼	3870	3871		30/2		3074	3876	3877	3878	3879	3880	3881	3882	3883	3884	3895	3886	7887	3888
55	SEO	NO.	369	370	371	OE C	37.2	5 5	375	376	377	378	379	380	381	382	383	384	S S	386	700	388

glycosyl transferase acetyltransferase

243 221

62.0 65.0

33.0 32.1

Escherichia coli 0157 wbhl Escherichia coli wbnA

645 gp:AB008676_13 822 gp:AF172324_3

195

387463

406

385374 387200

405 3905 386195

																					_		
5		Function	pilin glycosylation protein	capsular polysaccharide		Spopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1- carboxyvinytransferase		acetylenolpyruvoylglucosamine reductase	erase	a,		organism continue			ıl protein	ferase	hypothetical protein B	July Alucose 6-dehydrogenase	6 10 10 20			ansierase
10			pilin glycosy	capsular pol	biosynthesis	!popolysacch: export protein	UDP-N-acet carboxyviny	UDP-N-	acetylenolp) reductase	sugar transferase	transposase		30.00	(S31831)		hypothetical protein	acetyltransferase	hypothetica	Only Altro	200			glycosyl transferase
15	Matched	length (a.a.)	196	380		504	427		273	356	53			70		404	354	65	200	200			243
20		Identity Similarity (%)	75.0	000	7.60	8.69	64.6		68.5	57.3	79.3			94.3		57.4	60.2	53.0	7 00	08.7		-	65.0
		Identity (%)	54.6	,	4.00	34.3	31.4		34.8	32.0	80.4	S		75.7	_	28.0	34.5	44.0		25.			32.1
25 (Parici	Julillucal	s gene	die nolB		reus M capM	pestris gumJ	ae murA		178	F39x2	di de minimo	Jintalimoniii		glutamicum		berculosis	ruginosa PAO	of the state of the	giutaitiicuiti	gq			Αυψ
30 Souting	n) i aigei	Homologous gene	Alon aibitioning circuitide	200000000000000000000000000000000000000	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA		Bacillus subtilis murB	Wihrin cholerae ORF39x2	Violin charge	Corynebacterium giutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1	Sacd S	Corynepacterium giutaniicum	Escherichia coli ugd			Creborichia coli whnA
<i>35</i>		db Match	+		Sp.CAPM_STAAU	pir:S67859	ENTCL		sp.MURB_BACSU	6		prf 2211295A		pir.S43613		pir.G70539	gsp:W37352		PIR: S60890	sp:UDG8_ECOLI			1 1 1 1 1 1 1 1
		ORF (bp)	十	612 gp.a	1161 sp:C	1491 pir:S	1314 sp k	ī	1005 sp:t			150 prf	135	327 pir.	276	1170 pir.	993 gst		231 PIF	1161 sp.	273	1209	
45		Termina ¹ O (11)		370405 6	371773 1	373419	Ť	\dashv	375837	-;	376876	377832	378227	378511	378287		379850	_	381495	383108	383496	383982	
50		foitial (nt)		369794	370613	371929	373500	333	374833		375842	377683	378093	378185	378562		380842	,	381265	381948	383768	385190	
		SEO	(a.a.)	3889	3890	3891	3802	3005	3893		3894	3895	3896	3897	3808	3899	3800		3901	3902	3903		1
55			(DNA)	389	390		302	356	393		394	395	396	397	308	399	608	<u>_</u>	401	402	403	404	2

											-		-	-			7	\top		$\neg \tau$	$\overline{}$
5 - - 10	Function		dihydrolipoamide dehydrogenase	UTPglucose-1-phosphate urdylyltransferase	regulatory protein	Iranscriptional regulator	cytochrcme b subunit	succinate dehydrogenase flavoprotein	succinate dehydrogenase subunit B						hypothetical protein	hypothetical protein			tetracenomycin C transcription repressor		transporter
15	Matched	(a.a.)	469	295	153	477	230	608	258						259	431			197		499
20	Similarity	(%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
	Identity	(%)	9.66	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		36.1
25 (penuituo		gene	lutamicum	pestris	nginosa PAO1	erculosis	color A3(2)	Ą۲	erans sdhB						icolor	12 yjiN			cescens		liae T#2717
So Sapple 1 (Continued)		Homologous gene	Corynebacterium glutamicum ATCC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptamyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA 0 tcmR		Streptomyces fradiae T#2717 urdJ
35 40		db Watch	gp.cGLPD_1 C	pir.JC4985 X	gp:PAU49666_2 0	pir.E70828	gp.SCM10_12	pir.A27763	gp.BMSDHCAB_4						gp:SCC78_5	sp:YJIN_ECOLI			sp:TCMR_STRGA		gp:AF164961_8
	180	(ga)	1407 95	921 pi	498 91	1422 pi	771 91	1875 pi	837 g	336	261	630	96	339	975 9	1251 s	420	303	s 829	204	1647
45		(nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
50		(nt)	387692	389248	390233	392208	392705	393639	395426	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401150
	SEO	NO (a a.)	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926
55	SFO	NO ON O	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426

50		45		40		3 5	30	25		20	15	5	
							Table 1 (continued)	≘					Γ
Initial Terminal	Termina (nt)	=	ORF (bp)	db Match	f ₂	Ĭ	Homologous gene	_	Identity S	Similarity (%)	Matched fength (a.a.)	Function	
402799 404430	40443(1632	gp AF 164961_8	61_8	Streptom urdJ	Streptomyces fradiae T#2717 urdJ	17	39.6	74.6	508	Iransporter	
3928 405419 404508	40450	80	912	sp.PURU_CORSP	CORSP	Coryneb	Corynebacterium sp. P-1 purU	5	40.9	72.7	786	formyltetrahydrofolate deformylase	2
405480	40614	5	999	sp. DEOC_BACSU	BACSU	Bacillus	Bacillus subtilis deoC		38.5	74.0	807	deoxynuose-priospaga	T
	4061	15	150										
3931 406417 405521	4055	121	897					1					
-i	407	116	867	prf.2413441K	ξ	Mycobac mav346	Mycobacterium avium GIR 10 mav346	2	26.8	53.6	280	hypothetical protein	
3933 407708 407409	407	109	300	pir A70907		Mycobacterium H37Rv Rv0190	Mycobacterium tuberculosis H37Rv Rv0190	s	58.7	85.9	92	hypothetical protein	
408546 409	409	409145	900										G
409975	64	407711	2265	SP. CTPB_MYCLE	MYCLE	Mycoba	Mycobacterium leprae ctp8		45.7	75.3	748	cation-transporting r-type of the	2
3936 410476 410	410	410027	450										
410683	1	412545	1863	Sp:AMYH_YEAST	YEAST	Sacchai S288C	Saccharomyces cerevisiae S288C YIR019C sta1		27.3	56.1	626	glucan 1,4-alpha-glucosidase	
3938 412557 41	41	413633	1077	gp:AF109162_1	162_1	Corynet	Corynebacterium diphtheriae hmuT	ae	57.2	83.6	348	hemin-binding periplasmic protein	Ë
3939 413643 41	14	414710	1068	gp:AF109162_2	162_2	Conynet	Corynebacterium diphtheriae hmuU	36	65.2	90.3	330	ABC transporter	
3940 414714 41	i	415526	813	gp.AF109162_3	162_3	Corynel hmuV	Corynebacterium diphtheriae hmuV	iae	63.8	85.0	254	ABC transporter ATP-binding protein	rotein
3941 415643 4		416599	957	gp:SCC75A_17	5A_17	Strepto SCC75,	Streptomyces coelicolor C75A SCC75A.17c	75A	28.6	56.4	266	hypothelical prolein	
3942 416603 41		417439	837	gp:SCC75A_17	5A_17	Strepto SCC75	Streptomyces coelicolor C75A SCC75A.17c	75A	32.6	61.6	258	hypothetical protein	
3943 418354 4		417545	810										
419253	 	418441	813										
419757	<u> </u>	419257	501										
	1												

EP 1 108 790 A2

	Function	UDP-N-acetylpyruvoylglucosamine reductase			Jona-chain-fatty-acidCoA ligase	ביים ליים יום היים ליים ויים ליים ל	Iransferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response requision			ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
	Matched length (a.a.)	356			650	330	416	246	417	3.5	5		921	269	306	302	269	394	55	
	Similarity (%)	58.4			7 60	68.1	58.7	84.2	74.8	9	60.6		60.7	6.99	57.8	57.3	100.0	52.0	94.6	
	Identity (%)	30.1			1	35.5	33.9	7.0.7	49.2	;	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
Table 1 (continued)	Homologous gene	Escherichia colı RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2)	Mycobacterium bovis senX3	Markadorium Pavis BCG	myconacterion cons book		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum	Equine herpesvirus 1 ORF71	Mycobacterium leprae	
	db Match	gp:ECOMURBA_1				sp:LCFA_BACSU	gp.SC2G5_6	Sp. PMGY_STRCO	+		prf.2404434B		gp:SCE25_30	sp:YV21_MYCTU	nef 7512277A	sp:YV23_MYCTU	Sp. PROC_CORGL			
	ORF (bp)		651	735	174	1704	1254	744	1239		969	879	2586	903	720	813	- - 8 10	1122	198	219
	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	CT17C1	7	427867	429439	429438	432126	00000	433800	_ _	39000	435003	
	Initial	- 2	420866	421043	421858	423793	423878	425177	75030	+cecs+	427172	428561		433028		433062			434980	- 1
	SEO NO.	(a.a)	3947				,	2052		285	3954	2055	3955	1057	255	3958	3060	2065	3961	
	SEO	(DNA) 445	447	1	_	1	451	453	435	453	454	155	456	797	<u> </u>	458	8 8	g	461	463

	Function	hypothetical protein			The state of the s	מאוויס שווויס שוויס שווי	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		Tolelines legislicono.	cat operon transcription of	shikimate transport protein	3-dehydroshikimate dehydratase	0.0000000000000000000000000000000000000	shikimate deliyulugerladu	putrescine transport protein		iron(III)-transport system permease	protein	periplasmic-iron-binding protein	uroporphyrin-III C-methyltransferase		
	Matched length (a.a.)	29 hy				250 257	74 h)	\top	455 gl	308 h		Γ	321	417 5	309		282 s	192		Τ	3/8	347	i		
	Similarity (%)	100 C				77.4	66.2		74.3	75.3			57.6	72.2	57.9		98.6	9 0 9	0.00		55.2	50.9	71.6		
	Identity (%)	89.7				51.0	40.5		44.4	50.7			27.1	35.5	28.2		98.2	7	34.		25.1	75.1	2 2	2	
Table 1 (continued)		Streptomyces coelicolor	SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		American lengae hemA	Mycobacterium representations	Mycobactenum leprae riemos		Acinetobacter calcoaceticus	respectable celi K12 shiA	Eschelicina cell 1/12 oring	Neurospora crassa yay	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 polG		Serratia marcescens sfuB		Brachyspira nyodysemenae ouch	Mycobacterium leprae cyso	
	db Match	-	gp:SCE68_25			pir.S72914	sp:YV35_MYCTU.		1 (0)	sp.HEM1_MYCLE	pir.S72887		SP.CATM_ACICA			Sp. 3SHD_NEUCR	gp.AF124518_2		sp:POTG_ECOLI		sp:SFUB_SERMA		9 gp:SHU75349_1	0 pir:S72909	
	ORF (hn)	3	66	192	618	1065	246	350	007	1389	906	372	882		1401	1854	849	273	1050	615	1644	1113	1059		5 426
	Terminal	fund	436561	436764	437850	436980	438424	70000	438037	439904	440814	441591	441501		444158	446038	447386	447398	448130	449100	449183	451961	450837		454875
	Initial	(III)	436463	436573	437233	438044	438179		438294	438516	439909	441220	CRACAA	445405	442758	444185	446538	447670	449179	449714		450849	451895	452661	454450
· ē	SEO	(9 9.)	3964 4	3965	3966			-	3969	3970	3971	-		397.5	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	3984
	SEO		464 3	465	466	T		-+-	469	470	471	472	1-	2/4	474	475	476	477	478	479	480	481	482	483	484

	Function	del:a-am:nolevulinic acid dehydratase			cation-transporting P-type ATPase B		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrorne c biogenesis prolein		transcriptional regulator	Zn/Co transport repressor		hypothelical membrane protein	1,4-dihydroxy-2-naphthoate cctaprenyltransferase
	Matched length (a.a.)	337			858		364	464	425	161	208	245	533	338		144	90		82	301
	Similarity (%)	83.1			56.5		7.92	59.9	83.5	52.7	71.2	35.3	76.0	77.8		69.4	72.2		78.1	61.5
	Identity (%)	60.8			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Nycobacterium leprae hemL	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv3526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
	db Match	sp.HEMZ_STRCO			SP:CTPB_MYCLE		sp:OCUP_STRCO	sp.PPOX_BACSU	sp:GSA_MYCLE	sp:PMG2_ECOLI	pir:A70545	pir:B70545	pir:C70545	pir:D70545		pir.G70790	prf:2420312A		pir.F70545	sp.MENA_ECOLI
	ORF (bp)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	801	471	357	300	333	894
	Terminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	457571	468658	470170	470654	470657	471121	471847	471915
	Initial (nt)	454967	456016	456641	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEQ NO.	3985	3986	3987	3988	3989	3950	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
	SEQ NO. (DNA)		486	487	488	489	i	491		493	494	495	496	497	498	499	200	501	505	503

	Γ		1	\neg	\neg				T			T	T	\top									ase		
5		د ا		oxylase	ne protein	lehyde	ataraca	Ucaraie	r protein			pioe cibos	JAYIIC GCIG				: phosphate						nine dehydraf	nerase	
. 10		Function	glycosyl transferase	malonyl-CoA-decarboxylase	hypothetical membrane protein	ketoglutarate semialdehyde	dehydrogenase	5-dehydro-4-deoxygrucarare dehydratase	als operon regulatory protein	nichard prodein	hypothetical protein	Area is a series of	2-pyrone-4, b-dicar boxy inc acid				low-affinity inorganic phosphate	transporter		of the contract of the contrac	naphinoate symmas	peptidase E	pterin-4a-carbinolamine dehydratase	mirconate cycloisomerase	
15	podotote	length (a.a.)	238	421	139		026	303	293	;	94		267					410			293	202	77	325	22
20		Similarity (%)	62.6	51.5	65.5		76.0	75.6	66.2		64.9		54.7					83.2			703	82.7	68.8	10,00	7.0.
		Identity (%)	32.4	25.4	35.3		50.4	48.5	36.9		33.0		28.1					60.0	1		48.5	57.9	37.7		24.0
25	inued)	ene	86		iñ	3		КОӨОН	IsR	oj a oj .	culosis		LB126 fldB					culosis			89	ırans	SphhB	reulosis	ي
30	Table 1 (continued)	Homologous gene	Racteroides fraqilis wcgB	Rhizohium trifolii matB	Trackarichia coli K12 voiF	Schericina con 3.12.3	Pseudomonas putida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR		Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp. Lf					Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans	Achigan applicate VES phhB	Aquies accining tuberculosis	H37Rv Rv0553 menC
35			ď		-	ECOL	<u>a.</u>	 	_	+	ΣI		6				1	Z <u>T</u>			BACSU				
40		db Match	AP. AE125164	anticore a	242321C	sp:YQJF_EC	pir:S27612	SP:KDGD PSEPU	00 IV.	Sp.ALSR_D	pir:B70547		on SSP277295	200.45				pir:070547			Sp. MENB	qp:AE001957 12		pir.C/0304	pir.D70548
•		ORF (bp)			 -	1	1560	940		S/8	315	444	+-	7~	41/	378	261	1275	222	38	957		-+	38	1014
45		Terminal (nt)		4/3811	473814	474997	475489	477048		478092	478989	480597	470462	419432	480208	480624	481131	481394	483366	483637	┵			485077	487014
50		Initial		472948	475136	475407	477048	477005	١.	478970	479303	480154	2000	480201	480624	481001	481391	482668	483587					485385	486001
		SEQ.	(g g)		4005	4006	4007	000	4008	4009	4010	101	2 3	4012	4013	4014	4015	4016	4017	2,0	_			4021	4022
55			一十	504	505	506	507	1	208 802	509	510	150	0	512	513	514	515	516	517	0 1	5 5	6 6	026	521	522

								 -							1		
. 5	Function	C has confirmed and a second	2-oxogiularate obcarooxylasse and seconocinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase	
15	Matched	(a.a.)	909	148	408	447	237		412	316	13	318	145	236	564	443	
20	Similarity	(%)	54.0	64.9	54.2	89.9	66.7		7.97	67.1	100.0	100.0	100.0	100.0	50.2	82.4	
	Identity	(%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100 0	100.0	100.0	23.1	60.5	
25 1	Table 1 (colliningal)	Homogous gene	menD	tuberculosis	tuberculosis	K12 cycA	K12 ubiE		tuberculosis	hermophilus ap T	m glutamicum ecE	m glutamicum usG	m glutamicum	m glutamicum	coelicolor	i tuberculosis 9 gabT	
30 T	alor	Homory	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rplK	Corynebacterium glutamicum ATCC 13032 rpIA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT	
35		db Match	1629 sp.MEND_BACSÚ	pir.G70548	pir:H70548	sp.CYCA_ECOLI	sp.UBIE_ECOLI		pir.D70549	sp:HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp.SC5H4_2	sp.GABT_MYCTU	
40	380	(dq)	329 sp.M	41 pir.C	239 pir.h	1359 sp:C	690 sp:t	669	+	050 sp:h	333 gp:/	954 gp.	435 gp.	708 gp:	1512 gp.	1344 sp.	
45	Legimor		488656 16	489100 4	490447	491938 1		, 635R3	+-	495110 1	497142	498327	499032	499869	499925	502920	7.
50	1	(rg)	487028	488660	489209	490580	491965	40004	493916	1	496810	497374	498598	499162	501436	501577	
	SEO	NO		4024	4025	4076	4027	900	4020	4030	4031	4032	4033	4034	4035	4036	
55	SFO			524		426		1	529		531	532	533	534	535	536	_

														$\neg \neg$		\neg		
5		Function	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-component regulatory system	tyrosine-specific transport protein	cation-transporting ATPase G	hypothetical protein or dehydrogenase		ssomal protein L10	50S ribosomal protein L7/L12		hypothetical membrane protein	DNA-directed RNA polymerase bela chain	DNA-directed RNA polymerase heta chain	hypothetical protein		DNA-binding protein	hypothetical protein
			succinat dehydro	novel tw system	tyrosine	cation-tr	hypothe dehydro		50S ribosomal	50S ribo	-	hypothe	DNA-di chain	DNA-d: chain	hypoth		DNA-b	hypoth
15		Matched length (a.a.)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
20		Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90.4	88.7	52.0		63.8	57.7
		Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0		39.2	29.3
25	Table 1 (continued)	is gene	12 gabD	ense carR	12 0341#7	berculosis ctpG	jans P49		eus N2-3-11	iberculosis oll.		berculosis	berculosis poB	uberculosis pcC	uberculosis		elicolor A3(2)	uberculosis
30	Table 1 (c	Homologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 0341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tuberculosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpcC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptcmyces coelicolor A3(2) SCJ9A. 15c	Mycobacterium tuberculosis H37Rv RV2908C
35 40		db Match	Sp.GABD_ECOLI	GP.ABCARRA_2	Sp.TYRP_ECOLI	SP.CTPG_MYCTU	sp P49_STRLI		sp.RL10_STRGR	Sp RL7_MYCTU		pir A70962	sp.RPOB_MYCTU	sp.RPOC_MYCTU	GP.AF121004_1		gp:SCJ9A_15	sp:YT08_MYCTU
		ORF (bp)	1359 S	468	1191 8	1950 s	1413 s	603	513	384	138	972	3495	3999	582	180	780	798
45		Terminal (nt)	504283	503272	505569	507647	509081	509696	510510	510974	510989	512507	516407	520492	513696	520850	521644	521679
50		Initial (nt)	502925	503739	504379	505698	507669	509094	509998	510591	511126	511536	512913	516494	519277	520671	1	522476
		SEQ		4038	4039	4040	4041	4042	4043	4044	4045	4046	4047	404B	4049	4050	4051	4052
55			(DINA)	-i -	-	540	541	542	543	544	545	546	547	548	549	550	551	552

5 - 10		Function	30S ribosomal protein S12		30S ribosomal protein 57	elongation factor G			lipoprotein		forsis enterohactin transport ATP-	binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA: acetate coenzyme A	transferase	30S ribosomal protein S10	50S ribosomal protein L3	roc it accomplanation 1.4	SUS fibosofilial protein C4	50S ribosomai protein C23	Clainfaint Landon 13	SUS HOUSOINAL PROCESS CE	30S ribosomal protein S19	
15	1000	Matched length (a.a.)	121	1		209 e			44			258	329	335	1	145	101	212	1	212	96		280	92	
20		Similarity (%)	97.5		94.8	98.9			78.0			83.7	77.8	80.6		79.3	99.0	9.68		90.1	90.6		92.9	98.9	
		Identity 8	90.9	1	81.8	71.7	!		56.0			56.2	45.6	48.1	5	56.6	84.2	66.5		71.2	74.0		80.7	87.0	
25 G	lineu)		illulare		natis	sA			S			epC	GenG	Cual	od :	im actA	\TCC	BCG rplC		BCG rpID	BCG rpIW		s BCG rplB	rculosis	
30 · •	lable i (commined)	Homologous gene	Mycobacterium intracellulare	rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chlamydia trachomatis			Escherichia coli K12 fepC	Ecohorichia coli K12 fenG	Escricina con 112	Escherichia coil N 12 lepu	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rplD	Mycobacterium bovis BCG rpfW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv RvC705 rpsS	
<i>35</i>		db Match	A TIONN COOL		SP.RS7_MYCSM L	SP.EFG_MICLU N			GSP:Y37841			Sp. FEPC_ECOU	+	十	Sp. FEPD_ECOU	gp:CTACTAGEN_1	sp:RS10_PLARO	sp:RL3_MYCBO		Sp:RL4_MYCBO	sp:RL23_MYCBO		Sp.RL2 MYCLE	sp.RS19_MYCTU	
		ORF (bp)		ds cor	465 sp	2115 SF	2160	144	i	153	729	792 s			1035 s	516 9	303 s	654 8	687	654	+-	327	840	+	285
45		Terminal	\dashv	523059	523533	526010	Т	526013	+-	527607	528768	528779	-	\neg	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
50		unitial		522694	523069	523896	525070	526156	527121	527759	528040	529570	210030	530626	531782	532008	533099	533437	534087	534090			•		536183
		SEO		4053	4054				+				-	4062	4063	4064	4065	4066	4067	406	4069	40.70	200	4072	4073
55		SEO NO.	 -	553	554	$\overline{}$	25.	_	558	550	560	2	000	295	563	564	565	566	2 2	000	260			572	573

 •	5		c	122	. S3	n L 16	n L29	7:00				n L14	in L24	in L5		c acid reductase		ase chain o	וועה מווותרובסווסה	lase H or alpha			P-binding protein		
•	10		Function	50S ribosomal protein L22	30S ribosomal protein	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein 5 17				50S ribosomal protein L14	50S ribosomal protein L24	50S ribosomal protein L5		2,5-diketo-D-gluconic acid reductase		formate denyorogenase ciralio	molybdopterin-guanine unincreoride biosynthesis protein	formate dehydrogenase H or alpha chain		-	ABC transporter ATP-binding protein		
	15		Matched length (a.a.)	109	239	137		82				122	105	183		260		298	94	756			524		
	20		Similarity (%)	91.7	91.2	88.3	88.1	89.0				95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.6	<u> </u>	
			Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	75.2	73.6		52.3		28.9	37.2	24.3		_	26.9	_	_
	25	linued)	gene	cutosis	BCG rpsC	s BCG rpIP	s BCG rpmC	s BCG rpsQ				rculosis	rculosis	rplE				nes fdhD	color A3(2)				erculosis opD		
	30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rplP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rplE		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdfF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
	35 40		db Match	SP.RL22_MYCTU M	N OBOWN ESS	1	\top	1	+			sp:RL14_MYCTU	sp:RL24_MYCTU	SP. RLS MICLU		SE:2DKG CORSP (SP. FDHD WOLSU	 	SP:FDHF_ECOLI			sp:YC81_MYCTU		
			ORF (bp)	360 sp.F	744 en.	- -	- a		्रंच	318		99	312 sp:	573 sp	-	-	1	915 sp		2133 sp	756	804	1662 sp	1146	1074
	45		Terminal OR (bp	536576 3	╅	+-	\top	十	+	1	+		540423	5,40008	丅		 	1	1		548084	548187	1_	550699	
	50		Initial (nt)	536217		6/5955	53/328	537077	538267	538698	539413	539741	540112	907073	24042	547808	543412	544320	544670	546889	547329	548990		551844	
			SEO	4074			4076								!_	4085				4090	4091	608	4093	4094	-
	<i>55</i>			(DNA)	-	1	576	\neg	27.0	- - ·			- i		284	585	200	900	589	290	501	3 5	593	594	595

5	
10	
15	
20	
25	continued)
30	Table 1 (co
35	
40	
45	
50	

Communication Communicatio																			7	1	\neg	\neg			\neg	
SEC Initial Terminal ORF db Match Homologous gene (%) (%		Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein L 18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase			reductase	2Ea2S ferredaxin	on contract to the contract of	p-cumic alconol denycrogenase	hypothetical protein	phosphoeno!pyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450	
SEO Initial Terminal ORF db Match Homologous gene (%) 4096 554129 552948 1182 pir.E69424 Archaeoglobus fulgidus AF1398 24.7 4096 554129 552948 1182 pir.E69424 Archaeoglobus fulgidus AF1398 24.7 4096 555126 396 pir.S29865 Micrococcus radiodurans 42.7 4098 555249 556282 534 pir.S29866 Micrococcus radiodurans 42.7 4009 555740 556280 329 pir.S29866 Micrococcus radiodurans 55.8 4100 556280 402 sp.RL19_MICLU Micrococcus luteus 57.8 4101 557565 558008 414 sp.RL15_MICLU Micrococcus luteus 57.8 4103 557566 558008 444 sp.RL15_MICLU Micrococcus luteus 57.8 4104 557568 558008 444 sp.RL15_MICLU Micrococcus luteus 57.8 4105 558806 729 <		Matched length (a a)	405	150	132	179	110	171	55	143		128		125	487			409	107		25/	20	629	378	422	
SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		Similarity (%)	50.4	66.7	5.76	87.7	90.9	88.3	76.4	87.4		68.8		52.0	71.5			71.6	28.4	200.2	70.8	26 0	45.0	2 99	65.2	
SEQ Initial No. Initial (nt) (n		Identity (%)	24.7	42.7	75.8	59.2	67.3	67.8	54.6	66.4		46.9		47.0	41.7			41.1	17.7	47.7	35.8	50.0	22.9	386	348	
SEO Initial (nt) (bp) A096 554129 552948 1182 In 4096 554129 554452 468 4099 555331 555726 396 402 4109 555734 55736 633 4101 555768 55800 402 4101 552905 558007 321 4106 558905 550260 456 4100 558905 558007 363 4107 559805 560260 456 4110 56293 561368 1266 4111 562633 561368 1266 4111 56293 56373 1744 4112 562963 563732 1740	ישחוב ו (במווווומבת)	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus Iuteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rpIO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous blasmid pRTL1 orf5			Cahinanasses en redA2	Spiritigorings sp. 100	Rhodobacter capsulatus toxe	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodccoccus erythropolis thcB	
SEO Initial Terminal ORF (nt) (nt) (bp) (nt) (nt) (nt) (pp) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt		db Match	pir.E69424	gp:AE001931_13	pir. S29885	pir.S29886	SP:RL18 MICLU	Sp:RS5 MICLU	Sp.RL30 ECOLI	sp:RL15_MICLU		prf.2204281A		GP.ABCARRA_2						prf:2313249B	gp:PPU24215_2	PIR:H72754	pir.JC4176	pir.JC4176	1290 prt.2104333G	
SEO Initial Terminal NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)	82	89		_	-		+-	444	729	321	363	456	1491	735	3 8	900	8071	318	744	213	1740	1080	1290	<u> </u>
SEO NO. NO. 4096 54096 54096 54096 54099 54099 54099 54099 54110 54109 54115 54115			1	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	10000	262937	561368	562646	562993	564083	563732	565680	566799	
SEO NO. NO. 4096 4096 4097 4099 4115 4115 4115 4115 4115 4111 4111 41		Initial (nt)	554129	554919	555331	555749	5562R9	556734	557373	557565	557588	558517	558069	559805	560634	561760	30130	562632	562633	562963	563736	563871	565471	566759	SGRORB	
		SEQ NO.					100	4401	2103	4103	4104	4105	4106	4107	4108	90	2	4110	=======================================	4112	4113	4114	4115	4116	4117	-
		SEQ NO.	596 596		_	\neg	7	-		7	- † –			607	809	000	600	610	611	612	613	614	615	616	512	: -

5		Function	transcriptional repressor	adenylate kinase	attioning among philase		translation initiation factor IF-1		30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membranc protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyl-phospholipid synthase	hypothetical membrane protein
15	Matched	length (a a)		184	\top	733	12	\top	122	134	132	311		122	265	786			485	505	423	100
20		Similarity (%)	66.0	81.0	ľ	/4./	6	2.0	91.0	93.3	93.9	77.8		77.1	61.1	51.2			53.8	50.9	26.0	59.0
		Identity (%)	28.5	48.9		43.1	1	0.77	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
30 Foreigner,	(panining)		carotovora	s adk		38 map		Ā	hilus HB8	slicotor A3(2)	iberculosís rpsD	68 rpoA		(12 rplQ	<12 truA	uberculosis			uberculosis	ana CV DIM	K12 cfa	elicolor A3(2)
30 +	lable	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rpIQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana CV DIM	Escherichia coli K12 cfa	Streptomyces coelicolor A3(2) SCL2.30c
35		db Match	prf.2512309A	SP. KAD MICLU		SP. AMPM_BACSU B		pir.F69644 E	pri:25053538	Sp.RS11_STRCO	prf.2211287F	SPOA BACSU		Sp.RL17 ECOLI	1_	. 2			pir.A70836	So:DIM ARATH	sp.CFA_ECOU	gp.SCL2_30
40				 -	+		.B	16 pir.FE	166 prf.25	402 sp:R	503 prf.2	014 SD.R		+-		1	456	303	1257 pir.A	1545 so:C		426 gp:
45	}	al ORF (bp)	2 804	6 543	†	792	,6 828	2	+	-	+-	+=	+	1	+-	+	+-	├	 -	- `	+	
		Terminal (nt)	568272	571316	570756	572267	573176	573622	574181	574588	575217	576351	57521			580429	580436	580919	582362	584228		586248
50		Initial (nt)	569075	570774	571367	571476	572349	573407	573816	574187	574615	E75338	25525	21,0300	577057	578033	580891	581221		!		
		SEO NO.		4110		<u> </u>	4122	4123		4125	4126	44.27	4127	4 150	4129	4131	4132	4133	4134	15.5	4136	
55		SEO		10	1	1	622	623	624	625	626	15		870	629	631	632	633	8		636	637

. 5	
10	0
1.	5
2	0
2	5
3	0
3	5
4	0
4	15
5	50

	Function	high-alkaline serine proteinase	hypothetical membrane protein	hypothetical membrane protein				hypothelical protein	early secretory antigen target ESAT- 6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein	
	Matched length (a.a)	273	516	1260				103	80	145	181	450		318			259	368	154	
	Similarity (%)	58.0	50.6	38.4				6.69	81.3	82 1	72.4	76.4		45.6			72.2	68.5	78.6	
	Identity (%)	31.3	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7	
Table 1 (continued)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 str1753			Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Myccbacterium tuberculosis H37Rv Rv3422c	
	db Match	sp:ELYA_BACAO	pir:T10930	pir.E70977				pir.C70977	prf:2111376A	sp.RL13_STRCO	sp:RS9_STRCO	prl:2320260A		pir:S75138			pir.S73000	sp.ALR_MYCTU	sp.Y097_MYCTU	•
	ORF (bp)	1359	1371	3567	822	663	900	324	288	441	546	1341	303	1509	573	234	855	1083	495	
	Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574	
	Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	598194	599350	669669	600876	600971	602080	
	SEQ NO.	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155	
	SEQ	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	

											7			T			\neg		T			- 1	
5 •. 10		Function	hypothetical membrane protein	proline iminopeptidase	hypothetical profein	In particular in the second particular in the	ribosomal-protein-alanine iv- acetyltransferase	O-sialoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	cia con contrar	regulatory process	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein	
15		Matched length (a.a.)	550	411	. 202	\dashv	132	319	571			100	537	75	138	3	φ ₀	174		116	504	146	
20		Similarity (%)	66.2	77.6	75.7	4.0	59.9	75.2	59.4			94.0	85.1	56.0	45.0	,	23.3	81.6		69.8	93.9	53.0	
		Identity (%)	28.9	51.3	52.2		30.3	46.1	38.4			76.0	63.3	50.0	34.0		64.9	55.2		41.4	80.8	39.0	
25	ned)	o	U	nio ii oe	osis		-		losis			losis 3		losis	locis	afte		losis			6872	PH0308	
<i>30</i> ·	Table 1 (continued)	Homologous gene	Cacharichia coli K12 vidE	richa militare di la	Propionioacienum sueminam pr	H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE A1 gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae	Mucobacterium tuberculosis	Mycobacterium tuberculosis	Mycobacterium tracicularis	whi83	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620 F3 131	Corynebacterium ammoniagenes ATCC 6872	Pyrococcus horikoshii PH0308	
35		db Natch	-		\top			PASHA:	sp.Y115_MYCTU			SP.CH10_MYCTU	Sp.CH61_MYCLE	1-	-, ,	GP:MSGICWPA 3		sp.Y09F_MYCTU		sp:Y09H_MYCLE			,,,,,
40		db A	100%	sp:YIUE_	gp PSJ00161_1	sp:Y098_MYCTU	SP:RIMI_ECOLI	sp:GCP_	sp.Y115			sp:CH10	sp CH61	0.00			gp:AF073300_1	sp.Y09F		sp:Y09		PIR F71456	
		ORF (bp)	1	5	1239	675	507	1032	1722	429	453	297	1614	1	522	1158	297	564	1026	378	1518	627	┪
45		Terminal		604409	605708	606392	606898	607936	609679	610175	609816	610544	612272		610946	611109	612418	613719	614747	614803	616853	645605	01000
50		Initial		602811	604470	605718	606392	606905	607958	609747	81076B	610348	610659			612266	612714	613156	613722			i_	616231
		SEQ.	_	4156	4157	4158	4159	4160	4161	4162	1 6	4163	4165		4166	4167	4168	4169	4170		4172		4173
<i>55</i>		SEO NO.	ONA)	929	657	658	659	. 099	661	667	3	664	565	3	999	667	999	699	670	671	672		673

	Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical memorane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
	Matched length (a.a.)	381	274	262	517			!	513	411	218				201	563		275	288	
	Similarity (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
	Identity (%)	70.9	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
	db Match	gp:AB003154_2	SP.VRIE ECOLI	pri 1516239A	sp.GUAA_CORAM				gp:SCD63_22		sp.DEGU_BACSU				pir B70975	pir.A70975		gp:SC5B8_20	gp:AE001935_7	
	ORF (bp)	1122	921		1569	663	441	189	1176	1140	069	224	757	403	963	1590	990	861	861	390
	Terminal (nt)	618094	640003	619994	621572	620264	622157	622457	622460	624939	625674	000000	020000	010070	628551	630140	630151	631809	631824	632590
	Initial (nt)	616973	0,000	619086	620004	620926	621717	652229	623635	623800	624985	22000	110070	955529	627539	628551	630810		632684	633079
	SEQ NO.	4174	_+_	4176	4177	4178		<u> </u>					4184	4185	4186	4188	4189	4190	4191	4192
	SEO	674	1	675		678	1	1			683		684	685	686	688	989	069	691	692

	Function	hypothetical membrane protein		phytoene desaturase	phytoene synthase	transmembrane transport protein	geranvinerany ovrophosphate	(GGPP) synthase	transcriptional regulator (Mark family)	outer membrane lipoprotein	hypothetical protein		DNA photokyase	glycosyl transferase		ABC transporter	ABC transporter		ABC transporter		ABC transporter		lipoprotein	DNA polymerase III	hanothetical profess	
	Matched length (a.a.)	95		524	288	722		367	188	145	462	-	497	205		897	223		206		346	5	268	1101	150	-
	Similarity (%)	67.4	5	76.2	71.2	75.6		63.8	68.1	62.1	12.2	7,7	63.2	537	3	54.9	722		75.2	-	75.4	+	67.2	57.5	+-	02.3
İ	Identity (%)	a ac	50.4		42.0	48.6		32.7	38.3	33.1	,	48.	40.0	25.0	20.53	24.3	35.4		25.0		15	43.0	28.7	30.2		41.5
Table 1 (continued)	Homologous gene		Mycobacterium mar num	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC	Strentomyces coelicolor A3(2)	SCF43A.29c	Brevibacterium linens crtE	Brevibacterium linens	אלא הפסט בות יודייייים	Citrobacter Ireunali dic Occa dic	Brevibacterium linens	Brevibacterium linens ATCC	9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2)	Crystelle 168 very	Bacillus suoriiis 100 yero		Helicobacter pyron auco		Escherichia coli TAP90 abc	Haemophilus influenzae	טפאס ודר טיייקייי	Thermus aqualicus unac	Streptomyces coencord role)
	db Match		gp;MMU92075_3		ar. AF139916 2		gp:SCF43A_29	ap. AF139916 11			Sp.BLC_CITFR	5 gp.AF139916_1	A 22 AE130016 5	04 gp.Ar 133310_0	gp AF155804_7	15 ap SCE25 30		7 prf.2420410P		6 prf.2320284D	9	30 sp. ABC_ECOU	_		1012 prf.2517386A	447 gp:SCE126_11
		(dq)	396			5	9 2190	7 1146		CBC 90	32 648	57 1425	+	4	78 753	24	4	93 717	15 153	40 666		114 1080	700		<u></u>	
	Terminal	(n)	673070	633532	100	071650	636089	618317		640208	640232	-		642556	644778			647593	648315	648440	650187	┧—	ᆜ	765050	1 654612	6 655122
	Iritial	(Iu)	27774	635474		635089	638278	C30462	039405	639624	640879	t		643959	644026			648309	648467	649105				651288	651601	
	SEQ	(a a)		4193		4195	4196	[4197	4198	4199	2000	1200	4201	4202		4203	4204	1	\neg	1	1	+-	4209	4210	1 4211
	SEQ			693	0.84	695	969		697	698	000	000	3	701	20,	20 3	07	704	705	206	707	0/2	5	709	710	71

e 10

								_						\neg		T						1 1	
5		Function	brane protein		ressor	in	(vilme) Ci2) satelymost to the	מיפוט לטייבי	uie	iron-regulated lipoprotein precursor		drofolate	nbrane protein		ein		homoserine O-acetyltransferase	O-acetylhomoserine sulfhydrylase	n prolein		tein		
		Fun	hypothetical membrane protein		transcriptional repressor	hypothetical protein		transcriptional reg	hypothetical protein	iron-regulated lip	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hynothelical membrane protein	lypomene.	hypothetical protein		homoserine O-a	O-acetylhomose	carbon starvation protein		hypothetical protein		
15	Matchod	length (a.a.)	468		203	264		245	157	357	151	278	8	8	489		379	429	069		20		
20		Similarity (%)	56.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	, ,	70.3	63.2		99.5	76.2	78.4		66.0		
		identity (%)	26.1		503	34.9		42.5	45.2	31.1	67.9	70.9		31.3	34.0		99.5	49.7	53.9		90	}	
<i>25</i>	numned)	gene	color A3(2)		erculosis ?	color A3(2)		jidus AF1676	icolor A3(2)	siphtheriae	serculosis ol I	serculosis	Olic	28.5	licolor A3(2)		glutamicum	metY	12 rstA		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	All yjin	
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCE9.01		Mycobacterium tuberculosis H37Rv Rv2788 sirR	Streptomyces coelicolor A3(2) SCG8A.05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv3356c I	MCB1779.16c	Streptomyces coelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	I entospira meyeri metY	Copposite roli K12 rstA	באכוופוורווופ החוו		Escherichia coii K12 yjiA	
35			8 8		≥±	00.00														7		ECOLI	
40		db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir C60459	gp:SC5H1_34	gp:CDU02617_1	pir.E70971	0.2007.0	DISCOURT OF THE PROPERTY OF TH	gp:MLCB1779_8	gp.SC66T3_18		gp:AF052652_1			Sp.CSIA_ECOL		Sp:YJ:X	
		ORF (bp)	1413	738	699	798	138	17.4		966	471	: 2	709	255	1380	963	 -	+	\neg	2202	609	-	609
45		Terminal (nt)	656534	655007	657215	657205	658147	1000	658928	660538	680850		662017	662374	662382	664126	565183		_	670465	669445		671045
50		Initial	655122	70000	656547	658002	50005	00000	658155 658933	659543	001100	071100	661166	662120	663761	SESORB.				668264	670053	670472	671653
		SEO	(a a.)		4213				4217 4218	4219		4220	4221	4222	4223	12.7	4225		4226	4227	4228	1	4230
55			(DNA)	\neg	718			0 /	717	7.19	2 3	97	721	722	723	101	7.25	3	726	121	728	729	730

. 5

. 10		Function	hypothetical protein	carboxy phosphoenolpyruvate mulase	citrate synthase		hypothetical protein		030000000000000000000000000000000000000	L-malate denydrogenase	regulatory protein		mologic contentition with a second	VIDRIODACIIN Utilizationi proteini	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprolein precursor	chloramphenicol resistance protein	cataboiite repression control protein	hypothetical protein		
15		Matched length (a a)	317	281	380	į	53		600	338	226			284	269	339	330	356	395	303	219		
20		Similarity (%)	86.4	76.2	81.3		62.3			67.5	62.8			54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	-	
		Identity (%)	71.0	41.6	56.1		34.0			37.6	26.1	_		25.4	55.4	56.3	63.0	53.1	32.2	30.4	56.2		
25 (Fairi	lable I (commuco)	is gene	perculosis	roscopicus	negmatis		12 vneC		37C/\	rervidus v.243	ermophilus T-6		200 ANA 20E	1GAVVA 393	diphtheriae	ı diphtheriae	n diphtheriae	n diphtheriae	nezuelae cmlv	eruginosa crc	luenzae Rd		
30	lable 1 (c	Homologous gene	Mycobacterium tuberculosis	Streptomyces hygroscopicus	Mycobacterium smegmatis ATCC 607 gltA		Escherichia coli K12 vneC	a constitution of		Methanothermus reryldus V243 mdh	Bacillus stearothermophilus T-6			Vibrio cholerae OGAVVA 393 viuB	Corynebacterium diphtheriae irp1D	Corynebacterium diphtheriae irp1C	Corynebacterium diphtheriae irp1B	Corynebacterium diphtheriae irp1	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd	H11240	
35			23	5	-		1	\top	+						6					0	n u		7
40		db Match	pir C73539	orf:1902224A	sp.CISY_MYCSM		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sp: YN=C_ECOLI		SP:MOH_METFE	prf:2514353L			sp.VIUB_VIBCH	gp:AF176902_	gp:AF176902_2	gp:AF176902_1	gp:CDIJ02617_1	prf 2202262A		_		
		ORF (bp)				5	25	192	672	1041	720		702	897	907	1059	966	1050	1272		+-	-	195
45		Terminal (nt)	672653	673576	674756		01/2/9	674799	675846	675082	676218		677047	680131	681040	681846	682871	683876	000303				688335
50		Initial	671700	1 9	673608		673639	674990	675175	676122	676937		677748	681027	681846	682904	683866	684925				687351	588141
		SEO.	(a.a.)	4231	4232		4234	4235	4236	4237	47.7A		4239	4240	4241	4242	\neg		$\overline{}$	_		4247	4248
55			_	1	733		734	735	736	737	7.38	3	739	740	741	742	743	744		745	746	747	748

	Function		ferrichrome ABC transporter	hemin permease	- Andrew - I BNA synthetase	(ypropriative control of the control	hypothetical protein	nanicillin-hinding protein 68	precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, lact	family	N-acy!-L-amino acid amidohydrolase or peptidase	phosphomannomutase		dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
1000	Matched length (aa)		244	346	-		278		301	417	323			209	7.7	=	385	561	3	468	1140	263	127
	Similarity (%)		73.8	60.1	03.1	79.8	72.3		57.5	7.0.7	52.6			72.3	0	2 99	80.5	23.0	33.0	65.0	100.0	60.1	6.99
	Identity (%)		45.1	7 00	38.7	54.4	37.1		30.9	34.1	29.4			46.4		41.6	51.4	6	7.7.7	31.6	100.0	26.2	30.7
Table 1 (continued)	Homologous gene		Corynebacterium diphtheriae	hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			200	Lactococous Jacies Cpp	Streptomyces coefficial AN 27 SC1A2.11	Mycobacterium tuberculosis	H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Hatobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium Inberculosis H37Rv Rv1324	Streptomyces coelicolor A3(2) SCF11.30
	db Match	-	1	gp:AF109162_3	pir.S54438	STAN ECOLI	sp:YHJD_ECOLI		SP.DACD_SALTY	pir.F73842	gp.SC6G10_8				Sp.UPP_LACLA	gp.SC1A2_11	77000	pir.H70841	SP.MANB_MYCPI	Sp.DLDH_HALVO	prf.2415454A	sp YD24_MYCTU	
	ORF (bp)	37.0		780	1017	_	_	903	1137	1227	858	105	2	351	633	384	1	1187	1725	1407	3420	870	486
	Terminal (nt)	0.00	916889	689917	690706	9,000	694110	695074	695077	696769	698065	990000	007660	698922	699913	700381		703262	700384	704811	708630	709708	
	Initial (nt)	-	689890	969069	501722	27/160	691882 693078	694177	696213	697995	698922	0.000	2/0669	699272	699281	899998		702081	702108		705211		
	SEO	_	4249	4250	<u>'</u>		4252			4256	4257		4258	4259	4260	4261	750	4262	4263	4264	4265	4266	4267
		(DNA)	749	150	Ť	_	752		755	756	757		758	759	760	761	5	762	767	764	765	76.	767

EP 1 108 790 A2

	Function	hypothetical protein	thioredoxin reductase	ProD protein for propionate	catabolism	carboxy phosphoenolpyruvale	mutase hypothetical protein		citrate synthase		hynothetical protein				thiosultate sulfurtransferase	illosariate Sanska	nypoinetical protein	hypothetical protein		hypothetical membrane protein	hypothetical protein	hypothetical protein	deternent sensitivity rescuer or	carboxyl transferase	detergent sensitivity rescuer or	
-	Matched length (a.a.)	381	305		521	278			383		456	997			725	627	352	133		718	192	63	-	537	543	
	Similarity (%)	69.0	59.3		49.5	74.5		47.U	78.9		1000	0.27			,	0.00	79.8	7.97		63.4	66.2	69.8		100.0	100.0	\dashv
	Identity (%)	44.6	246	21.3	240	42.5	46.0	39.0	.546			40 B			3	100.0	61.1	51.1	1	35.1	31.8	33.3		8.66	966	
Table 1 (continued)	Homologous gene	Cincontilie 168 voi	Sacillus suotines 100 year	Bacillus subtilis 1909 (1xb	Salmonella typhimurium LT2		Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 altA		at the stational tuberculosis	Mycobacterium 1990 H37Rv Rv11290			minimetrile minimeters	Corynebacterium gludalincum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae	MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308-	C3-211	Corynebacterium glutamicum	Corynebacterium glutamicum	AJ11060 dtsR1
	db Match		_	Sp. TRXB_BACSU	SD: PRPD_SALTY	1	prf. 1902224A	PIR:E72779	SSM			pir B70539				Sp:THTR_CORGL	an C.111168X1 62		gp:MLCB4_16	48 pir.G70539	SP. YCFF ECOLI		5 pm.2323303CF	1 an AB018531 2		19 pir.JC4991
	ORF (bb)	 †	1086	924	1494	-	888	378		1	375	1323	1-	\neg	655	7 903	1085		5 414	12	7 501	Ť	0 246	1611		1629
	Terminal		710520	712647	714231	271	715145	714380	716283		716286	716687	710750	1000	720016	720547	1732641	10221	722925	725559	226977	- -	726470	775747		728696
	Initial	(1111)	711605	711724	74273B	06/21/	714258	714757	715102		716660	718009	70401	C018L/	718658	721449	201777	111121	723338	723412	_1.		726715		758327	730324
	SEO	(v v)	4268	4269		4210	4271;	4272	4273	1213	4274	4275		4276	4277	4278		4279	4280	42R1		4282	4283		4284	4285
	SEO		768	1	1	2	77.1	27.2	277	3	774	775		776	777	778		779	780	781		782	783		784	785

		bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)		5'-phosphoribosyl-5-amino-4- imidasol carboxylase	628 K+-uptake protein				5-phosphortbosyl-3-arm 5	152 hypothetical protein		255 hypothetical protein	426 nitrilotriacetale monooxygenase	303 (ransposase (ISA0963-5)	T	256 glucose 1-denydrogenase	96 hypothetical membrane protein	1	175 hypothetical protein	142 hypothetical protein		_
	Similarity Matched (%) (aa)	61.8 293	58.8 165	83.8 394	73.6 62				93.2	60.5	-	70.6 2	73.0 4	525	$\frac{1}{1}$	64.8	68.8	- }	. 66.3	76.8	-	
	Identity Sin	28.7	23.0	69.0	41.1			1	85.7	36.2		42.8	43.2	22.4	43.4	31.3	29.2		28.6	35.9		
Table 1 (continued)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 kup				Corynebacterium ammoniagenes ATCC 6872		Actinosynnema premosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzii ATCC	Zagon may	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408		Bacillus subtilis 168 ywjB	Streptomyces coelicolor A3(2)	SCJ9A.21	
	db Match	sp.BIRA_ECOLI	pir.G70979	sp:PURK_CORAM	ERKLD FCOLL	Sp. No.			sp.PUR6_CORAM		gp: APU33059_5	gp:SCF43A_36	sp.NTAA CHEHE		pir.A69426	sp:DHG2_BACME	pir.A72258		INCOME BACSU		gp:SCJ9A_21	
	ORF		486		1.0		615	357	495		453	792	1314		1500	789	369	342	+	_	420	
	<u>a</u>	731299	731797	733017	67.07.01	/34943	733183	735340	735896		736351	737204			738673	<u> </u>	741765	747405	+	41818	742828	
	Initial	(nt) 730436	731312	731857		733072	733797	734984	735402		735899	736413		1,38529	740172					742384	742409	
	SEO	=1 (0				4289	4290	4291			4293	4294		4295	4206	4297	4798		4299	1300	4301	
	SEO	=		788	1	789	790	701	797		703	79.4		795	705	797	20,0	3	289	8	801	

5 10		Function	trehalcse/maltose-binding protein	trehalose/maltose-binding protein		trehatose/maltose-binding protein		ABC transporter ATP-binding protein	(ABC-type sugar transport protein) or cellobiose/maltose transport protein		OND helicase				hypothetical protein	hypothetical protein	UNA relicase u					RNA helicase		hypothetical protein	RNA polymerase associated protein	(ATP-dependent neurosco)
15		Matched length (a.a.)	27.1	306		417			332		4703	20			240	720	6					2033		969	873	
20		<u>></u>	75.3	70.3	2	62.4			73.9		9	4. D.			59.2	62.5	41.1		_			45.8	25	53.2	48.6	-
		Identity (%)	42.4	37.3	5.10	30.9	200		57.2			25.1			31.7	30.0	20.7					1 5	67.4	24.4	3	3
25	outingen)	s gene	Olem viles	ralls illaid	:alis mair	The state of the s	rails maic		culi msiK		P. B. B.				uberculosis	ori J99 jhp0462	K12 uvrD					pelicolor		sp. NRC-1 no H1130		K12 hepA
<i>30</i>	Table 1 (continued)	Hcmologous gene		Thermococcus inoralis illais	Thermococcus litoralis main		Thermococcus Inoralis main		Streptomyces reticuli msiK			DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia co!i K12 uvrD					C segvinotacito	SCH5.13	Halobacterium sp. NRC-1	DAINING DILLISPING	Escherichia coli K12 nepA
35			-	<u> </u>	Ė	-	F	-	<u> </u>	+		00					T									COLI
40		db Match		prf 2406355C	prf.2406355B		prf.2406355A		prf.2308356A			pir B75633			pir.E70978	nir.C.71929	SALIVED ECOLI						pir.T36671	nir T08313		sp HEPA_ECOLI
•		ORF		834 F	1032	468	1272	423	966		369	4800	372	3699	633	2422	1563	3,5	5 6	25 2	3	825	6207	4506	-	2886
45		<u>a</u>	() ()	743067	743900	745046	745622	748442	747031		748814	748886	757434	753697	757630	A2026	20000	006007	50707	763122	78629/	767367	763237	760547	-+	774150
50		Initial	<u>-</u>	743900	744931	745513	746893	748020	748026		748446	753685	757063	757195	. !				<u> </u>		762977	768191	769443		//4142	777035
		SEO	(a.a)					4307	4308		4309	4310	4311	515	4313	2 -	4314	4315	4316	4317	4318	4319	4320	\neg	4321	4322
55		SEO	-	-		$\overline{}$			i		809	810	4.4		012	2	814	815	816	817	818	819	820		821	822

EP 1 108 790 A2

	Function	hypothetical protein	dTDP-Rha:a-D-GlcNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphale guanylyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase				pheromone-responsive protein	S-adenosyl-1-homocysteine	hydrolase			thymidylate kinase
	Matched length (a.a.)	527	289	353	94	139	136	460	327	420				180		476			209
	Similarity (%)	71.4	77.9	6.99	81.9	74.8	71.3	66.3	56.3	66.2				57.8		83.0		<u> </u>	56.0
	Identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	36.0			-	35.6		29.0	$\frac{1}{1}$		25.8
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40	Mycobacterium tuberculosis	H37Rv Kv3250c	Escherichia coil N 12 mans			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
	db Match	n D70978	50_1	sp:MPG1_YEAST	1		gp SCE34_11	SP MANB SALMO	nir B 70504		sp:MANA_ECOLI			prf. 1804279K		sp:SAHH_TRIVA			sp KTHY_ARCFU
	ORF (bp)	1554		1044		456	390	1374	4006		1182	150	360	564	351	1422	708	720	609
	Terminal (nt)	777158	779910	781171	781875	782162	783101	784557	90000	85058/	786824	787045	787983	787170	788546	790093	788719	789002	790704
	Initial (nt)	778711	779014	78012B	781468	782617	782712	783184		784635	785643	785896	787624	1	788196		789426		790096
	SEQ.		4323		4352	<u> </u>		4330	6704	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
	<u> </u>	<u> </u>	823	- i-	628	\neg			679	830	831	832	833	834	8.35	836	837	838	839

									oplast		ubunit		1				sphate		1	osphate			٥٢	
	Function	two-component system response	regulator	two-component system sensor	histidine kinase	lipoprotein	hypothetical protein		30S ribosomal protein or chloroplast	precursor	SecA subunit	preprotein transfer of		hypothetical protein		hypothetical protein	5-enolpyruvylshikimate 3-phosphate	synthase	hypothetical protein	5-enolpyruvylshikimate 3-phosphate	Synuldse	hypothetical protein	RNA polymerase sigma factor	
Lotokod	matched length (a.a.)	224			484	595	. 213			203		845		170	2	322	46.1	P -	180	23		380	188	
	Similarity (%)	9.00	2		78.9	65.6	72.8			61.6		9.66		78.8	0.00	82.9	9	0.88	63.9	1000	+	42.4	87.2	_
	Identity 8	7.27	23.5		53.1	29.6	38.0			34.5		99.1		13.5	4(.1	64.6		98.0	38.3	001	25	21.6	6	7.10
lable I (commerce)	Homologous gene	Managerium tuberculosis	H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtrB	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv3242c		Spinacia oleracea CV rps22	Drawin actorium flaviim	(Corynebacterium glutarnicum)		secretarium tuberculosis	Mycobacterium tuber conservation 137Rv Rv3231c	Mycobacterium tuberculosis	H37Rv Rv3228	ASO 19 aroA	Mycobacterium tuberculosis	H3/KV NV32200	Corynebacterium glutamicum	Mycobacterium tuberculosis	H37Rv Rv0336	Mycobacterian see
	db Match		prf.2214304A		prf.2214304B	nir F70592		pir.D70592		sp.RB30 SPIOL		gsp:R74093			pir.A70591		pir.r / Uasu	gp:AF114233_1	nir.070590		GP:AF114233_1		pir.c./usua	pri 2515333D
	ORF	(dq)	678 p	684	1497	1704		588	156	1 ~	$\overline{}$	2535		672	504	+-	987	1413	Va V	-	123	+-	1110	618
	Terminal		791409	790738	793008	704711		795301	795292	04.4901	011067	798784		799691	800200		800208	801190	9077.00	803128	802565		803131	805025
	_		790732	791421	791512		/93000	794714	705447	1	795448	796250		799020	799697		801194	802602		802649	802687		804240	007700
		(a a.)	4340 7	1266			4343	4344			4346	4347		4348	4349		4350	4351		4352	4353		4354	
	<u> </u>	NO.	840	┰	24 6		843	844	_	840	846	847		848	949	3	850	851	5	852	853	3	854	

EP 1 108 790 A2

Table 1 (conlinued)	db Match Homologous gene (%) (%) (aa) Homologous gene (%) (%) (aa)	Mycobacterium tuberculosis 78.6 96.4 84 regulatory protein H37Rv Rv3219 whiB1	Mycobacterium tuberculosis 33.3 65.1 129 hypothetical protein H37Rv Rv3217c	0 pir.E70595 Mycobacterium tuberculosis 29.6 62.2 415	2 sp.DEAD_KLEPN Klebsiella pneumoniae CG43 37.3 64.0 458 DEAD box ATP-dependent KNA deaD	2	6 pir.H70594 H37Rv Rv3207c 46.4 69.8 291 hypothetical prolein	g pir.F70594 Mycobacterium tuberculosis 37.0 65.9 249 hypothetical protein H37Rv Rv3205c	48 pir.G70951 Mycobacterium tuberculosis 23.9 48.9 1155 ATP-dependent DNA helicase H37Rv Rv3201c		isolution the property of the second	pir.G70951 Mycobacterium tubercurusis 41.4 65.7 112b	32	05 sp.Y13B_METJA Methanococcus jannaschii JAL- 26.2 64.2 302 potassium channel 1 MJ0138.1.	14 pir.E70951 Mycobacterium tuberculosis 30.4 58.3 230 hypothetical protein H37Rv Rv3199c	34 Sp.UVRD_ECOLI	=	16 pir:B70951 Mycobacterium tuberculosis 26.8 49.3 280 hypothetical protein	03
	db Match				1				pir.G70951			pir.G70951		sp:Y13B_METJA		sp:UVRD_ECOLI		pir:870951	
	ORF (bb)	258	420	1200	1272	225	846	759	3048	100	8	3219	1332	1005	714	2034	591	816	603
	Terminal (nt)	805535	806737	806740	807946	809510	810394	811153	814217	000770	811380	817422	814210	818523	819236	821287	↓		823391
	Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170		812165	814204	R15541	1 _	818523	B 19254			822789
	SEQ.	4356		4358	4359	4360	4361	4362	4363		4364	4365	4366	4367	4368	4360	4370	4371	4377
		(DNA)		1	1	gen C	$\overline{}$	862	863		864	965	990	867	868	000	623	871	872

...

50 .

	Γ		T		T				T										_				<u>d</u>	
5		tion		phosphatase	ise factor 2	inding protein		c	SRA-binding	,	.c.					tion protein	ein	brane protein	-binding protei	transporter	transporter		transporter (A	
10		Function		myo-inositol monophosphatase	peptide chain release factor	cell division ATP-binding protein	hypothetical protein	cell division protein	small protein B (SSRA-binding	protein)	hypothetical protein					vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter	ferrichrome ABC transporter	(permease)	rerrichrome ABC transporter (ATP-binding protein)	
15		Matched	(a.a.)	243	359	526	72	301		145	116					272	319	191	325	313		312	250	
20		ıty	(%)	59.3	986	91.2	54.0	748		75.9	73.3					52.9	58.3	71.2	61.5	80.8		76.0	82.0	
		2	(%)	33.7	68.0	70.4	43.0	308	2.01	43.5	44.0					26.8	29.5	36.1	27.7	39.3		35.6	48.4	
25	linued)		ene	rsicus	lor A3(2)	culosis	APE2061	culosis		зтрВ	VeaO	232				(WA 395	eus sirA	36	75 fatB	Now	2	yelO	yclP	
30	Table 1 (continued)		Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicalor A3(2)	Mycobacterium tuberculosis	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis	H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Osav C1 K 12 veaO	Schericina con 1712				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae	Vibrio anguillarum 775 fatB	May 88 thistain and a	Bacillus subtilis 100	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP	
35		-		क्ष छ	₩ E	. ≥ :		2	I		-+-	†	_ <u>-</u> -	\dashv			0)							
40			db Match	gp:U70376_9	sp:RF2_STRCO	pir E70919	0.30540	PIK: 6/2310	pir:D70919	SP. SMPB_ECOL!		sp:YEAO_ECULI				sp:viuB_VIBCH	prf.2510361A	qp MLCB1243_5			pir B69763	pir.C69763		1
		1	수 (함	819	1104	5.8.7		264	006	492		351	537	300	405	825	918	588	1014		666	942	753	}
45		<u> </u>	Terminal C (nt) (842306	844360 1		-+-	844842	846097	846628	3	846982	846269	848026	847718	848499	849326	850412	952364	93530	853616	854724	955476	800410
50		-	initial (nt)	843124	843257	944406	844430	845105	845198	751378	121040	845632	046805	847727	848122					851351	852618	853783		854/54
			NON S	4392	1303		4394	4395	4396	7007	4387	4398	4399	4400	1401	4402		4403	1011	4405	4406	4407		1408
55		_		(DNA)			894	895	968		/68	868	668	i	1	1	202	506	904	905	906	700	g l	806

1: 1:

± 10

EP 1 108 790 A2

		7	T		T	<u> </u>	\neg					Γ	Τ		-T		_		- - -		T			
Function	hypothetical protein	in the face of profession	hypothelica, protein	kynurenine aminotransferase/glutamine	(ransamiliase n		DNA repair helicase	hypothetical protein	hypothetical protein		recite citation-promoting factor		cold shock protein	hypothetical protein		glutamine cyclotransferase				permease	-1. O. Conjourne Layer	methy:transferase		
Matched length (a.a.)			T	442			613	764	57		90,	2	<u>6</u>	159	2	273				477		319		
	72.0	75.0	0.99	64.9			62.3	65.2	62.0		1	04.7	75.4	2 0 2	6	8.79				79.3	-	51.7		
Identity (%)	0 99	0.00	61.0	33.5			30.7	36.1	44.0			39.4	42.6	6	28.3	41.8				43.6		27.9		
Homologous gene	Mamydia muridarum Nigg	C0129	hlamydia pneumoriae	H. C. DOWNING (Rat)	יייין איניין		saccharomyces cerevisiae 5288C YIL 143C RAD25	Aycobacterium tuberculosis 137Rv Rv0862c	Mycobacterium tuberculosis	137Rv Rv0863		Micrococcus Inteus rpf	actococcus factis cspB	Muchaeterium lenfae	MJCB57.27c	Deinococcus radiodurans	DK0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus IsnR		
db Match	1							 												gp:SC6C5_9		SD TSINR STRAZ		
RF bo)			+-			639					843	1	+	_	525	1		669	138	1473	912	878		876
	_	820098	ᆠ			+	1-	-i		867571	868630	067803	500100	86931B	869379		869918	870721	871660	873210	872016	874040	i	874069
<u> </u>	()()	160224	- -		361544	10118	865066	867317		867353	867788	00000	828388	868938	869903		870691	871419	871523	871738	700020			874944
			1_	- 1				'			1	_					4420	4421	4422	4423	3	4424	4472	4426
ļ			寸	910	911 4	- i-				915	+			918	i	\neg	920	921	022	923		926	925	926
	SEQ initial Terminal ORF db Match Homologous gene (%) (%) (aa)	Initial Terminal ORF db Match Homologous gene (%) (%) (aa) (aa) (ab) (ab) (bp) Chlamidianum Nigo con 72.0 48 hypothetical p	SEQ Initial NO. Terminal (nt) (nt) (nt) (a.a.) (DP) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (aa) (aa) (ab) (ab)	SEQ initial NO. (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Imilantly length length length (%) Imilantly length le	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Matched (%)	SEQ NO. (a1) Initial (n1) Terminal (n1) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEQ NO. (a1) Initial (n1) Terminal (n1) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEQ NO. Initial (n1) Terminal (n1) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. (at) Initial (at) Terminal (at) ORF (bp) db Match Homologous gene (mil) Identity (%) Similarity (%) Matched (%) NO. (at) (nt) (nt) (nt) (pt) (pt)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 4409 860224 860078 147 PIR:F81737 Chlamydia muridarum Nigg 66.0 72.0 48 4410 860745 860073 273 GSP:Y35814 Chlamydia pneumoriae 61.0 66.0 84 4410 860745 860473 273 GSP:Y35814 Chlamydia pneumoriae 61.0 66.0 84 4411 861544 862752 1209 pir:S66270 Rattus rowegicus (Rat) 33.5 64.9 442 4412 865066 863396 1671 sp:RA25_YEAST Saccharomyces crevisiae 30.7 62.3 613 4414 867317 865119 pir F70815 H37Rv Rv0862c A4.0 62.0 57 4415 867353 1219 pir G70815 H37Rv Rv0863 44.0 62.0 57	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (a a) (n1) (n1)	SEQ Initial Terminal (bp) GB db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO. (nt) (nt)	SEO Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene (%) (%	SEQ Initial Terrinal ORF db Match Homologous gene (%) (%	SEO Initial Terminal ORF Abatch Homologous gene Identity Similarity Matchinal (3a) Match (3b) Match (3b) Matched (3b)	SEO Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (3a) (a a) (n1) (n2) (n2) </td <td> SEC Initial Terrminal ORF db Match Homologous gene (%) (</td> <td> SEC Initial Terminal ORF</td> <td> SEG Initial Terminal ORF Ab Match Homologous gene (%) Initial Terminal ORF Ab Match Homologous gene (%) Initial Initial</td> <td> SEC Initial Terminal ORF</td> <td> SEC Initial Terrinal ORF db Malch Homologous gene (%) (%</td>	SEC Initial Terrminal ORF db Match Homologous gene (%) (SEC Initial Terminal ORF	SEG Initial Terminal ORF Ab Match Homologous gene (%) Initial Terminal ORF Ab Match Homologous gene (%) Initial Initial	SEC Initial Terminal ORF	SEC Initial Terrinal ORF db Malch Homologous gene (%) (%

Page 12 Page 12 Page 13 Page 14 Page		_						 r	-, -	$\neg r$	<u>-</u>	$\neg \neg$	\neg		\neg		T			Т	\top			
Table 1 (continued) Continued Contin			Finction		hypothetical protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	hypothetical protein	sodium/proline symporter	٠	hypothetical protein	fatty-acid synthase			homoserine U-acetyittaristetase			glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase	
Table 1 (continued)	15		Matched	(a.a.)	316	374	236	103	549		243	3026			332			62	171	261	202	1715	298	
Page 14 Page	20			(%)	55.1			80 6	58 1		77.4	83.4			59.7			72.5	62.0	88.9	56.4	68.1	51.0	
Initial Terminal ORF db Match Homologous gene (nt) (ht)	^				32.6	21.9	36.0	51.5	26.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2	
Initial Terminal ORF db Match (nt) (ht)	25	1 (continued)		ogous gene	m tuberculosis 13c	ans ATCC 21783	oli K12 accD	; coelicolor A3(2)	s fluorescens		ım tuberculosis 25c	rium es fas			leyeri metX			radiodurans	um avium folA	coli K12 thyA	coli K12 cysQ	es coelicolor A3(2)	Synechococcus elongatus	
Initial Terminal ORF db Match (nt) (ht) (hp) db Match (ht) (ht) (ht) db Match (ht) db Match (ht) db Match (ht) db Match		Table		Homo	Mycobacterium H37Rv Rv088	Bacillus circul	Escherichia o	Streptomyces SCI8,08c	Pseudomona		Mycobacteriu H37Rv Rv25	Corynebacter			Leptospira m			Deinococcus DR2085	Mycobacteri	Escherichia	Escherichia	Streptomyce SC7C7 16c	Synechococci	
Pa Pa Pa				db Match		nir.S71439	sp.ACCD_ECOLI	gp:SCI8_8	pir 1C2382		pir.A70657	pir:S55505						gp:AE002044_8	_	_		gp:SC7C7_16	sp:FPG_SYNEN	
8 1000008 899253				(bp)				6			840	8907	489	186	1047	426	267	237	456	202	75.6	4560	768	
Initial (nt) 875883 875883 881114 8811114 881647 885672 885672 895408 8956423 9000008 9000008 9000008 9000008 900000008 90000008 90000008 90000008 90000008 90000008 90000008 90000008 90000008 90000008 90000008 90000008 900000008 900000008 900000008 900000008 900000008 900000008 900000008 9000000008 900000008 90000000000	45		<u> </u>		874951	+		881985	779000	884541	884549	894578	895191	895593	895596	896719	897689	897727	897979	0.0000	990434	904602	905382	
	50		-		875883	277770	881114	881647	300,00	681883	885388	885672	894703	895408	896642	897144	897423		AF 2 8 0 8	1_		1.	1	
SEO NO NO (442) 4429 4432 4433 4433 4436 4436 4439 44439 44439 44439 44439 44440 4440			010	NO NO		19				4431	4433	4434	26.77	4436	4437	4438	4439	4440	1444	7 7	4442	4443		_
927 929 929 933 934 935 938 939 939 939 939 939 939 939 939 939	55		- ⊢			+			-+				925	936	937	938	939	940	15	- 1	942	943	945	

· E

	Function	hypothetical protein	And the second second	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein			hypothetical protein	ATP-dependent helicase		ABC transporter	ABC transporter			peptidase	hypothetical protein		5'-phosphoribosyigiycinamide formyltransferase	5-phosphoribosyt-5-aminoimidazole-	4-carboxamide formyltransferase	citrate lyase (subunit)
	Matched length (a.a.)	128		196	403		557	105	3		78	763		885	217			236	434		189		525	217
	Similarity (%)	86.7	3	71.9	67.0		77.0	67.3	32.3		85.9	73.1		48.6	71.4			73.3	8.09		86.2	<u> </u>	87.8	100.0
	Identify (%)	5.5.5	2.5	38.8	33.8		52.4	,	24.0		29.0	46.1		21.8	43.8			43.6	31.1		64.6	<u>;</u>	74.5	100.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2) SCI28 06c		Escharichia coli JM101 pgi	M. cohacterium tuherculosis	H37Rv Rv0336		Mycobacterium tuberculosis	Bacillus stearothermophilus	NCA 1503 pcrA	Streptomyces coelicolor A3(2)	CLEESTON TO STATE AND VALUE	Bacillas subtilis 100 yello		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium	ammoniagenes puris	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
	db Malch	1	pir.F70816	SD APL LACLA	pir.T36776		C L	pir.NOEC	pir.G70506		sp:YT26_MYCTU		sp:PCRA_BACS1	np.SCE25 30		666 prf.2420410P		pir.D79716	sp:YT19_MYCTU		2 ABOU3159 2		gp.AB003159_3	9 gp:CGL133719_3
	ORF		408	900	1173	,	3	1620	11:76	381	309		2289	2223		999	507	71	1425	2.0g	+-		1560	18
	Terminal	Carry	902206	005700	906559		909328	907759	909521	911223	910855		913514	013/77	1100	915699	916368	916970	919352	700710		918920	921526	922412
	-	(m) :	905389	10000	907731		908612	903378	910696	010843	011163		911226	046600	880016	915364	916874	917680	917928			919330	919967	921594
	SEO	(3.3)	4446		4447	٠,	4449	4450	4451	1.163	4432	3	4454	1	4455	4456	4457	4458	4459		4460	4461	4462	4463
	SEO S	21	946	-	947	- 1	949	950	951	$\overline{}$	705	- i	954		955	926	957	958	959		980	961	962	963

						_,							Γ-	-	\top					$\neg \top$	Т		\top	T.	a)	
5 			Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothetical protein	30S ribosomal protein S18	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosomal protein L28	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31		50S ribosomal protein L32	transport of the transport	regulator	two-component system sensor	proteinase DO precursor	molybdopterin biosynthesis cnx1	protein (molybaenum colacion biosynthesis enzyme cnx1)		large-conductance	mechanosensitive channel	hypothetical protein	5-formyltetrahydrololate cyclo-ligase	
15			Matched length (aa)	222	109	67	100	49	77	. 529	80	78	2	55		227	484	406		188		ļ ;	131	210	191	
20			Similarity (%)	100.0	100.0	76.1	80.0	83.7	81.8	71.1	77.5	85.4	7 00	78.2		73.6	60.1	59.9		54.3			77.1	90.09	59.7	
	^		Identity (%)	100.0	100.0	502	32.2	55.1	52.0	34.4	37.5	57.5	31.2	60.0		48.0	24.4	33.3		27.7	_		50.4	28.6	25.1	
25	· <u>·</u>	nlinued)	gene	utamicum	utamicum	0,1	xa rps18	right 2	romB	Move	on h	reus znik	yı rpme	color A3(2)		rgae copR	12 baeS	12 htrA		a CV cnx1		La confocio	nscL	berculosis	HFS	
30		Table 1 (conlinued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophora paradoxa rps18	Escherichia coli K.12 rpmG	Escherichia coli X12 rpmB	Escribing the work	Sacillus suorins 100	Staphylococcus aureus znik	Haemophilus ducreyi rpme	Streptomyces coelicolor A3(2) SCF51A.14		Pseudomonas syringae copR	Escherichia coli K12 baeS	Escharichia coli K12 htrA		Arabidopsis thaliana CV cnx1			Mycobacterium tuberculosis H37Rv Rv0985c mscL	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS	
35			db Match	gp:CGL133719_2	gp:CGL133719_1	1	CYAPA	_	5			一	Sp.RL31_HAEDU	gp:SC51A_14		Sp.COPR_PSESM	1000	Sp. BAES ECOL	pir.545229	sp.CNX1_ARATH			sp.MSCL_MYCTU	pir A70601	pir.JC4389	
40			ORF		327 gp:C	321	249 sp.F				1611 pir.	312 prf.	264 sp:	171 gp:	447	696 sp.	1		1239 pir	585 sp.		198	405 sp	651 pir	570 pi	
45			Terminal Of	9		923981 3	924159 2		\dashv		925325 1	926931	927737	 	927339	 	-i -	_	931648	932290		932487	932570	933060	933733	
50			Initial	+ =		923661	924407	924727	924895	925134	926935	927242	927474	927752	9277785	028117		928884	930410	931706	1	932290	932974	933710		-
			SEQ			4466	4457	4468	4469	4470	4471	4472	4473	4474	4475	4476	2	4477	4478	4479		4480	4481	4482		
55			SEO	~ ;				996	696	970	971	972	973	974	975	37.0	9/0	977	978	979		980	981	982	983	-

5		Finction
15		Matched
20	•	Identity Similarity
25	~	
30		. Table 1 (continued)
35		
40		<u> </u>
45		
50		; (

SEO S	SEQ	Initial	Terminal	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
(DNA)	(a.a)	934423	935319		pir.JC4985	Xanthomonas campestris	42.2	689	296	UTP-glucose-1-phosphate uridylytransferase
\dashv			036607	1257	nrf 2403296B	Arthrobacter nicotinovorans	31.8	62 6	390	molybdopterin biosynthesis protein
286	4483	933331	937274		12	Escherichia coli K12 rimJ	29 0	549	193	ribosomal-protein-alanine N- acetyltransferase
	4487	937382	938401	1020	İ	Mycobacterium tuberculosis H37Rv Rv0996	30.3	54.8	367	hypothelical membrane protein
	14 B B	038427	939626	1200	Sp.CYNX_ECOLI	Escherichia coli K12 cynX	26.6	62.4	380	cyanate transport protein
	200	030217	937759							
666	4490	939686	940090	405	sp.YG02_HAEIN	Haemophilus influenzae Rd H11602	32.1	60.6	137	hypothetical membrane protein
	4491	940041	940754	714	sp.Y05C_MYCTU	Mycobacterium tuberculosis H37Rv Rv0093c	25.3	59.6	225	hypothetical membrane protein
992	4492	940759	941925	1167	sp:CDAS_BACSH	Bacillus sphaericus E-244 CDase	26.8	53.6	444	cyclomaltodextrinase
993	4493	943940	942381	1560	pir.E70602	Mycobacterium tuberculosis H37Rv	43.0	75.2	488	hypothetical membrane protein
994	4494		944833	825	sp.Y19J_MYCTU	Mycobacterium tuberculosis H37Rv Rv1003	54.0	78.3	272	hypothetical protein
966	4495		948569	1830	sp:SYM_METTH	Methanobacterium thermoautotrophicum Delta H MTH587 metG	33.8	66.7	615	methionyl-IRNA synthelase
9	1406	048791	950839	2049	prf.1306383A	Escherichia coli recQ	26.2	49.0	741	ATP-dependent DNA helicase
980	4497		950828	633		Methanobacterium thermoautotrophicum Delta H MTH796	27.6	53.3	210	hypothetical protein
998	4498	952991	951834	1158	sp.YXAG_BACSU	Bacillus subtilis 168 yxaG	30.0	29.0	363	hypothetical protein
666	4499		953043	531			6	9 0	2	transposase
1000	4500	953973	954266	294	gp.AF029727_1	Enterococcus faecium	33.0	0.80	27	

5		Function	transposase	transposase subunit		D-lactate dehydrogenase	and the second of the second o	lie-specific Oron management		Iransposase	transposase	in the little of the contract	(ranscriptional regulator	cadmium resistance protein		and the state of t	nypotrietical process	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein		hypothetical protein
15		Matched length (a.a.)	139 tr	112 11		565		231	\top	94	139 1		16	205		1	263	362	265	315		478	242	159		108
20		Similarity N	67.6	88 4		75.6		62.8		59.6	67.6		84.6	8.99			70.7	63.5	65.3	67.0		82.8	67.4	58.5		78.7
٠	-	Identity (%)	41.7	73.7	7.5.	46.4		30.8		33.0	41.7		62.6	31.7			46.4	34.8	34.3	42.5		65.5	40.1	27.0		45.4
25	nued)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ruby		0,40	20					sisoina	us cadD			culosis	culosis	ksgA	rculosis		erythraea	pdxK	rculosis		otor A3(2)
30	Table 1 (continued)	Homologous gene	V 100 Pilotic V 10	Schericina con 11.2	Brevibacterium linens inp.	777	Escherichia coli did	Klebsiella pneumoniae Ono kpn!M		Catoroporius faprium	Fried Octobros Tables	-Schericina con N.2	Mycobacterium tuberculosis H37Rv Rv1994c	Stanhylorororus aureus cadD	Otabili procedence		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea	Escherichia coli K12 pdxK	Mycobacterium tuberculosis	1137Rv Rv2874	Streptomyces coelicolor A3(2) SCF1.02
35			1	11	-	\dagger			-	1-	-	<u> </u>		+	1	1	==		ECOLI					3	010	
40		db Match		pir:TQECI3	gp.AF052055_		prf.2014253AE	sp:MTK1_KLEPN			- :1	pir TOECI3	sp:YJ94_MYCTU	V 1000 000	pr. 2314307A		pir.C70603	pir.D73603	sn KSGA EC	pir.F7060		pir.S47441	_	-	sp.YX05_MYC1U	gp:SCF1_2
		ORF (hn)		477		864	1713	840	219		ST .	477	357		621	342	831	1071	A70	933	642		- '	+-	480	321
45		Terminal	(min	954753	955354	956774	955686	957844	050185	333103	960374	960961	961653		962249	961321	963639	964934	065950	966784	085950	968660	2000	969458	969461	970349
50			(w)	954277	954941	955911	957398	958683	2000	959403	960081	960385	961297		961629	961662	962809	963864	10000	965852				968667	969940	970029
		SEO	(a.a.)		4502	4503	4504	4505		4506	4507	4508	4500	3	4510	4511	4512	4513	2	4514		4510	401/	4518	4519	4520
55		SEQ	_	1001		1003			-	1006	1007	1008	+		1010	1011	1	1013	2	1014		9101	101	1018	1019	1020

5			Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR	ramily)	membrane transport protein	S-adenosylmethionine: 2- demethylmenaquinone methyltransferase		hypothetical protein	hypothetical protein		peptide-chain-release factor 3	amide-urea transport protein	
15			Matched length (a.a.)	107	261 -	276	337				440	100		802	157		121	482		546	404	
20			Similarity (%)	69.2	88.1	59.1	70.9				56.8	70.0		70.0	75.8		63.6	48.3		68.0	72.8	
	€		Identity (%)	35.5	64.8	27.2	35.6				27.7	0 00	77.0	42.6	38.2		29.8	24.9		39.2	42.8	
25	-	ontinued)	s gene	icolor A3(2)	icolor A3(2)	8 yxeH	perculosis				glutamicum avum) ATCC	licolor A3(2)		licolor A3(2)	Jenzae Rd		itidis NMA1953	berculosis		K12 prfC	ethylotrophus	
30		Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1.02	Streptomyces coelicolor A3(2) SCJ1.15	Bacillus subtilis 168 yxel4	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC	Streptomyces coelicolor A3(2)	SCF56.06	Streptomyces coelicolor A3(2) SCE87.17c	Haemophilus influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus	
35			-	188	0000	BACSU B	+										491_21					
40			db Match	gp:SCF1_2	gp:SCJ1_15	en.VXFH BA	pir.E70893				sp.CSP1_CORGL		gp:SCF56_6	gp:SCE87_17	Sp.MENG_HAEIN		gp:NMA622491_21	pir.A70539		nr 159305		
			ORF (bp)	321	096		1017	654	777	1212	1385		579	2373	498	999	8	1551	936	1547	1269	
45			Terminat (nt)	970738	971823	440000	974155	973304	974962	974965	977734		977800	978368	981490	782282	982294	984650	085845	_		
50			Initial (nt)	970418	970864	20000	973139	973957	974186	976176	976349		978378	980740	980993	001633			0,00		986739	_
			SEO			1	4524	4525					4529	4530	4531	4633	4533	4534	-		4537	
55				(DNA)	$\overline{}$	-	1023						1029	1030	1031	5	1033	1034		1035	1036	<u>}</u>

5	
10	
15	
20	۰۰ر
25	•
30	
35	
40	
45	
50	

			E	E	hig	Pig aci	be	- -	Ŀ
15		Matched length (a.a.)	17	234	253	236	187	361	
20		identity Similarity (%)	61.0	68.0	0.07	69.1	902	540	
	<i>y</i> •€	Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	
25	· (pand	ine ine	rophus	rophus	osa PAO	osa PAO	Ť.	895	
30	Table 1 (continued)	Homologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	
35	•		Methy	Methy	Pseu	Pseuc	Escl	<u> </u>	1
40		db Match	prf:24063118	1077 prf:2406311C	sp.BRAF_PSEAE	sp:BRAG_PSEAE	SP:PTH_ECOLI	1023 Sp. 2NPD WILMR	
		ORF (bp)	882	1077	726	669	612	1023	
		1	1	1	1	1	1	1 _	

NO.	SEQ NO.	Initial (nt)	Terminal (nl)	ORF (bp)	db Match	Homologeus gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function	
1038	4538	988023	988904	882	prf:2406311B	Methylophilus methylotrophus fmdE	40.8	61.0	7.7	amide-urea transport protein	
1039	4539	988904	989980	1077	prf:2406311C	Methylophilus methylotrophus fmdF	34.6	68.0	234	amide-urea transport protein	
1040	4540	989980	990705	726	sp.BRAF_PSEAE	Pseudomonas aeruginosa PAO braF	37.9	70.0	253	high-affinity branched-chain amino acid transport ATP-binding protein	
1041	4541	990716	991414	669	sp:BRAG_PSEAE	Pseudomonas aeruginosa PAO braG	35.2	69.1	236	high-affinity branched-chain amino acid transport ATP-binding protein	
1042	4542	992028	991417	612	SP. PTH ECOLI	Escherichia coli K12 pth	39.0	902	187	peptidyl-tRNA hydrolase	
1043	4543		993080	1023		Williopsis mrakii IFO 0895	25.2	540	361	2-nitropropane dioxygenase	
1044	4544	!	994613	1065	-	Streptomyces roseofulvus gap	39.5	72.8	342	glyceraldehyde-3-phosphate dehydrogenase	
1045	4545	994474	994106	369	GSP-Y75094	Neisseria meningitid:s	54.0	61.0	51	polypeptides predicted to be useful antigens for vaccines and diagnostics	
1046	4546	995375	994845	531	Sp:PTH ECOLI	Escherichia coli K12 pth	38.5	63.2	174	peptidyl-tRNA hydrolase	
1047			995527	900		Mycobacterium tuberculosis H37Rv rplY	47.0	0.29	194	50S ribosomal protein L25	
1048	4548	996402	996830	429	sp:LGUL_SALTY	Salmonella typhimurium D21 gloA	28.7	546	143	lactoylglutathione lyase	
1049	4549	997456	996833	524	prf.2516401BW	Bacillus cereus ATCC 10987 alkD	38.9	62.5	208	DNA alkylation repair enzyme	
1050	4550	998440	997466	975	sp.KPRS_BACCL	Bacillus subtilis prs	44.0	79.1	316	ribose-phosphale pyrophosphokinase	
1051	4551	606666	998455	1455	5 pir.S66080	Bacillus subtilis gcaD	42.0	71.9	452	UDP-N-acetylglucosamine pyrophosphorylase	
1052	4552	1001242	1000016	1227							
1053		1001332	1002864	1533	3 sp:SUFI_ECOLI	Escherichia coli K12 sufl	30.8	61.7	206	sufl protein precursar	
1054		4554 1003013	1	918	Sp:NODI_RHIS3	Rhizobium sp. N33 nodl	35.8	64.8	310	nodulation ATP-binding protein I	

	Function	brane protein	ystem sensor	anscript:onal mily)		abrane protein				Iranspeptidase					ein fragment	(628 TnpB)				gulator (Tet!તે-	transcription/repair-coupling protein	
	ΡŪ	hypothetical membrane protein	two-component system sensor histidine kinase	two component transcriptional regulator (luxR family)		hypothetical membrane protein	ABC transporter		ABC transporter	gamma-g!utamyltranspeptidase precursor					transposase protein fragment	transposase (IS1628 TnpB)				transcriptional regulator (TetR- family)	transcription/rep	
	Matched length (a.a.)	272	459	202		349	535		573	999					37	236				183	1217	
	Similarity (%)	63.2	48.4	67.3		64.5	57.0		74.0	58.6					72.0	100.0				59.6	65.1	
,	Identity (%)	30.2	24.6	36.6		31.5	28.6		44.0	32.4					64.0	9.66				23.0	36.2	
Table 1 (continued)	Homologous gene	Streptomyces lividans ORF2	Escherichia coli K12 uhpB	Streptomyces peucetius dnrN		Streptomyces coelicolor A3(2) SCF15.07	Streptomyces glaucescens strV		Mycobacterium smegmatis exiT	Fscherichia coli K12 ggt	-				Corynebacterium glutamicum TnpNC	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB				Escherichia coli tetR	Escherichia coli mfd	
	db Natch	pir JN0850	sp:UHPB_ECOLI	pri.2107255A		gp:SCF15_7	pir.S65587		pir.T14180	sp.GGT_ECOL!					GPU:AF164956_23	gp.AF121000_8				sp:TETC_ECOLI	sp.MFD_ECOLI	:
	ORF (bp)	831	1257	609	204	1155	1440	153	1734	1965	249	519	192	606	243	708	462	597	312	651	3627	1224
	Terminal (nt)	1004783	1006085	1006697	1006734	1008152	1010061	1008534	1011790	1011797	1014264	1014343	1015116	1016560	1015450	1015145	1017018	1017274	1018393	1019066	1022715	1019390
	Initial (nt)	1003953	1004829	1006089	1006937	1006998	1008522	1008686	1010057	1013761	1014016	1014861	1014925	1015652	1015692	1015852	1016557	1017870	1018082	1018416	1019090	1020613
	SEQ NO.	4555	4556	4557	4558	4559	4560	4561	4562	4563	4564	4565	4566	4567	4568	4569	4570	4571	4572	4573	4574	4575
	SEQ NO. (DNA)	1055	1056	1057	1958	1059	1060	1001	1062	1063	1064	1065	1066	1067	1068	1069	1070	1071	1072	1073	1074	1075

5 6	
10	
15	
20	, *
25	•
30	
35	
40	
45	
50	

Table 1 (continued)

ORF db Match Homologous gene Identity Similarity (%) Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity Similarity (%) Identity (%)<			Ì		lable I (confined)			10000	
228 GSP.Y75301 Neisseria gonorrhoeae 48.0 69.0 76 1968 sp.MDLB_ECOLI Escherichia coli mdlB 31.3 62.7 632 1731 sp.WDLB_ECOLI Escherichia coli mdlB 31.3 62.7 632 1731 sp.WC73_MYCTU Mycobacterium tuberculosis 50.2 81.9 574 2382 sp.YL13_CORGL Grynebacterium glutamicum 100.0 100.0 368 2382 sp.YL13_CORGL ATCC 13032 ort3 33.4 57.4 183 297 ATC ATCC 13032 ort3 33.4 57.4 183 426 ATC ATCC 13032 ort3 33.4 57.4 183 1786 pir.A70623 Mycobacterium tubercufosis 46.5 68.9 241 1775 sp.ENO_BACSU Bacillus subtilis eno 64.5 66.0 58.0 41 1775 sp.ENO_BACSU Mycobacterium tuberculosis 31.9 55.0 191 540 pir.C70623 Mycobacterium tuberculosis 59	Terminal (nt)	-	ORF (bp)	db Match	Homologous gene			Matched length (a.a.)	Function
1968 sp:MDL B_ECOL1 Escherichia coli mdlB 31.3 62.7 632 1731 sp:VC73_MYCTU Mycobacterium tuberculosis 50.2 81.9 574 2382 sp:VC73_MYCTU Mycobacterium glutamicum 100.0 100.0 368 297 ATCC 13032 orf3 ATCC 13032 orf3 57.4 183 426 ATCC 13032 orf3 46.5 68.9 241 1275 sp:VABN_BACSU Bacillus subtilis eno 64.5 68.9 241 1275 sp:ENO_BACSU Bacillus subtilis eno 64.5 68.0 58.0 41 1275 sp:ENO_BACSU Bacillus subtilis eno 64.5 68.0 58.0 41 1275 sp:ENO_BACSU Bacillus subtilis eno 64.5 68.0 58.0 41 1275 sp:ENO_BACSU Mycobacterium tuberculosis 59.5 77 8 153 540 pir.C70623 Mycobacterium tuberculosis 59.5 77 8 153 548 pir.D70623 Mycobacterium tuberculosis<	1021305 1021078	82	228	GSP:Y75301	Neisseria gonorrhoeae	48.0	0.69	76	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics
1731 sp:YC73_MYCTU Mycobacterium fuberculosis 50.2 81.9 574 2382 sp:YC73_MYCTU H37Rv Rv1273c 100.0 368 1 297 ATCC 13032 orf3 100.0 368 1 426 ATCC 13032 orf3 183.4 57.4 183 1 378 A26 ATCC 13032 orf3 183.4 57.4 183 1 1276 sp:YABN BACSU Bacillus subtilis yabN 33.4 57.4 183 1 1276 pir.A70623 Mycobacterium tuberculosis 46.5 68.9 241 144 PIR:B72477 Aeropyrum pernix K1 APE2459 68.0 58.0 41 540 pir.C70623 Mycobacterium tuberculosis 31.9 55.0 191 546 pir.D70623 Mycobacterium tuberculosis 59.5 77 8 153 963 sp.GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 984 pir.D70623 Escherichia coli tdcB 30.3 64.7	1024666 1022699	66	1968		Escherichia coli mdlB	31.3	62.7	632	multidrug resistance-like ATP- binding protein, ABC-type transport protein
297 Corynebacterium glutamicum 100.0 100.0 368 1 297 ATCC 13032 orf3 100.0 100.0 368 1 585 Sp. YABN_BACSU Bacillus subtilis yabN 33.4 57.4 183 1 426 Mycobacterium tuberculosis 46.5 68.9 241 1 786 pir.A70623 Mycobacterium tuberculosis 46.5 68.9 241 1275 sp:ENO_BACSU Bacillus subtilis eno 64.5 86.0 422 144 PIR:B72477 Aeropyrum pernix K1 APE2459 68.0 58.0 41 540 pir.C70623 Mycobacterium tuberculosis 59.5 77 8 153 963 sp:GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 984 Basillas coli tdcB 30.3 64.7 314 195 sp:THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314	1025396 1024666	999	1731	sp:YC73_MYCTU	Mycobacterium tuberculosis H37Rv Rv1273c	50.2	81.9	574	ABC transporter
297 33.4 57.4 183 1 426 A26 A26 A27 183 1 378 A26 A3.4 57.4 183 1 786 PIT.A70623 Mycobacterium tubercutosis 46.5 68.9 241 1275 Sp.ENO_BACSU Bacillus subtilis eno 64.5 86.0 422 144 PIR.B72477 Aeropyrum pernix K1 APE2459 68.0 58.0 41 540 pir.C70623 Mycobacterium tuberculosis 31.9 55.0 191 546 pir.D70623 Mycobacterium tuberculosis 59.5 77.8 153 963 sp.GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 984 Bacillus coli tdcB 30.3 64.7 314 930 sp.THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314	1028886 1026505	505	2382	sp.YLI3_CORGL	Corynebacterium glutamicum ATCC 13032 orf3	100.0	100.0	368	hypothetical membrane protein
585 sp.YABN_BACSU Bacillus subtilis yabN 33.4 57.4 183 426 37.8	1031885 103	1032181	297						
426 426 378 Mycobacterium tuberculosis 46.5 68.9 241 1275 sp:ENO_BACSU Bacillus subtilis eno 64.5 86.0 422 144 PIR:B72477 Aeropyrum pernix K1 APE2459 68.0 58.0 41 540 pir:C70623 Mycobacterium tuberculosis 31.9 55.0 191 546 pir:D70623 Mycobacterium tuberculosis 59.5 77.8 153 963 sp:GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 984 ECOLI Escherichia coli tdcB 30.3 64.7 314 195 sp:THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314	<u> </u>	1032780	585	SP.YABN_BACSU	Bacillus subtilis yabN	33.4	57.4	183	hypothetical protein
378 Mycobacterium tuberculosis 46.5 68.9 241 786 pir.A70623 Mycobacterium tuberculosis 64.5 68.0 241 1275 sp.ENO_BACSU Bacillus subtilis eno 64.5 86.0 422 144 PIR.B72477 Aeropyrum pernix K1 APE2459 68.0 58.0 41 540 pir.C70623 Mycobacterium tuberculosis 31.9 55.0 191 546 pir.D70623 Mycobacterium tuberculosis 59.5 77.8 153 963 sp.GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 984 Bacherichia coli tdcB 30.3 64.7 314 930 sp.THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314	1033185 103	1032760	426						
786 pir.A70623 Mycobacterium tuberculosis 46.5 68 9 241 1275 sp.ENO_BACSU Bacillus subtilis eno 64.5 86.0 422 144 PIR.B72477 Aeropyrum pernix K1 APE2459 68.0 58.0 41 540 pir.C70623 Mycobacterium tuberculosis 31.9 55.0 191 546 pir.D70623 Mycobacterium tuberculosis 59.5 77 8 153 963 sp.GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 930 sp.THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314 195 sp.THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314	┺.	1033269	378						
1275 sp:ENO_BACSU Bacillus subtilis eno 64.5 86.0 422 144 PIR:B72477 Aeropyrum pernix K1 APE2459 68.0 58.0 41 540 pir:C70623 Mycobacterium tuberculosis 31.9 55.0 191 546 pir:D70623 Mycobacterium tuberculosis 59.5 77 8 153 963 sp:GP:PA_ECOLI Escherichia coli gppA 25.2 55.0 329 930 sp:THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314 195 195		1034739	786	pir.A70623	Mycobacterium tuberculosis H37Rv Rv1022 lpqU	46.5		241	IpqU protein
144 PIR: B72477 Aeropyrum pernix K1 APE2459 68.0 58.0 41 540 pir: C70623 Mycobacterium tuberculosis 31.9 55.0 191 546 pir: D70623 Mycobacterium tuberculosis 59.5 77 8 153 963 sp: GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 930 sp: THD2_ECOLI Escherichia coli tdcB 30.3 64 7 314 195 195 195 195 195 195 195	1034949 103	1036223	1275	1	Bacillus subtilis eno	64.5	86.0	422	enolase (2-phosphoglycerate dehydratase)(2-phospho-D- glycerate hydro-lyase)
540 pir.C70623 Mycobacterium tuberculosis 31.9 55.0 191 546 pir.D70623 Mycobacterium tuberculosis 59.5 77 8 153 963 sp.GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 984 984 55.0 314 195 55.0 314	1036159 103	1036016	+	PIR: B72477	Aeropyrum pernix K1 APE2459	68.0	58.0	41	hypothefical protein
546 pir.D70623 Mycobacterium tuberculosis 59.5 77 8 153 96.3 sp.GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 984 Sp.THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314 195 195 195 31.3 64.7 314		1036855	 	pir:C70623	Mycobacterium tuberculosis H37Rv Rv1024	31.9	55.0	191	hypothelical protein
963 sp.GPPA_ECOLI Escherichia coli gppA 25.2 55.0 329 984 30.3 64.7 314 930 sp.THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314 195 195 30.3 64.7 314	1036900	1037445	┼──	+	Mycobacterium tuberculosis H37Rv Rv1025	59.5		153	hypothetical protein
984 30.3 64.7 314 930 sp. THD2_ECOLI Escherichia coli tdcB 30.3 64.7 314 195 195	1037448 10	1038410		sp:GPPA_ECOLI	Escherichia coli gppA	25.2	92.0	329	guanosine pentaphosphatase or exopolyphosphatase
930 sp. THD2_ECOL1 Escherichia coli tdcB 30.3 64.7 314	1037481 10	1036498	-						
	1039650 10	1038721	930	sp.THD2_ECOLI	Escherichia coli tdcB	30.3	64.7	314	threonine dehydratase
	1039783 10	1039977			_				

τ	J
(υ
-	2
	Ξ
	₽
5	Ξ
5	Ų
3	2
_	
•	
•	υ
3	5
	U
	_

[a)										Ę							
	Function		hypothetical protein	transcription activator of L-rhamnose operon	hypothetical protein		hypothetical protein	transcription elongation factor	hypothetical protein	lincomycin-production		3-deoxy-D-arabino-heptulosonate-7-phosphate synthase		hypothetical protein or undecaprenyl pyrophosphale synthetase	hypothetical protein			pantothenate kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
	Matched length (a a)		56	242	282		. 140	143	140	300		367		26	28			308	434	969	
	Similarity (%)		74.1	55.8	80.1		57.1	60.1	72.1	56.3		99.5		97.3	100.0			79.9	100.C	70.1	
	Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.6	
ומחוב ו (בחווווותבת)	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE	1	Corynebacterium glutamicum aroG		Corynebacterium glutamicum CCRC18310	Corynebacterium glutamicum (Brevibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
	db Match		pir. B72287	sp RHAR_ECOLI	pir:F70893		gp.SCF55_39	sp.GREA_ECOLI	pir.G70894	pir:S44952		sp:AROG_CORGL		sp:YARF_CORGL	SP:YARF_CORGL			sp.COAA_ECOLI	gsp:R97745	1860 sp.PABS_STRGR	
	ORF (bp)	330	189	993	816	387.	450	522	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
,	Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
	Initial (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	.046610	1047452	1047827	1048356	1048525	1049385	1050362	:050624	1052021	1053880
	SEQ NO (a a)	4593	4594	4595	4596	4597	4598	4599	4600	4601	4602	4603	4604	4605	4606	4607	4608	4609	4610	4611	4612
	SEQ NO. (DNA)	1093	1094	1095	1096	1097	1098	1099	1100	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	1111	1112
	•—-																				

EP 1 108 790 A2

EP 1 108 790 A2

																 -				_
	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exadeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted protein PS1 protein precursor	GTP-binding protein	virulence-associated protein	ornithine carbamoylt ansferase	hypothetical protein
	Matched length (a a)	397	325	211	227		82	62	466	311	131		338		552	412	361	75	301	143
	Similarity (%)	73.1	75.7	56.4	66.1		78.1	67.7	55.6	78.8	47.0		63.9		61.4	60.0	88.6	80.0	58.8	6.69
	Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia coli K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
	db Match	gp:ECO237695_3	Sp.GLPX ECOLI	pir: B70897	pir H70062		gp: SCH24_37	sp:EX7S_ECOLI	sp:EX7L_ECOU	sp.1 YTB FCOLI	GSP:Y75421		Sp. PERM_ECOLI		sp:NTPR_RAT	sp:CSP1_CORGL	SD: YYAF BACSU			
	ORF (bp)	1176	963		1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	797	822	201
	Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	<u></u>	1080786	1080972	1082951	1085462	1	i)
	Initial (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077707		1079145	1080540		1082708	1084183	1084380		108609	
	SEO	4635	9634	4637	1638	4639	4640	4641	4642	1643	4644	4645	4646	4647	4648	4649	4650	4654	4652	4653
		1135			1138		1140	1141	1142	,	1144	1115	1146	1147	1148	1149	1150	2 3	15.1	1153

Ì

frenolicin gene cluster protein involved in frenolicin biosynthetic

146

66.4

34.9

Streptomyces roseofulvus frnS

gp.AF058302_19

654

195

4669 1099209 1099015

1169

													1	$\overline{}$	\neg			_
5 } \$ 10			Function	9-cis relinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			Iransposase (insertion sequence IS31831)	transposase	transposase				oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase	
15			Matched length (a a.)	198	396	1153	259			97	125	48				264	108	Ĺ.
20			Similarity (%)	9.09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9	
, :	.		Identily (%)	33 8	42.2	23 0	22.8			82.5	79.2	87.5				37.5	33.3	
25	•	Table 1 (conlinued)	Homologous gene	RDH4	oelicolor	K12 yegE	loti nodC			m glutamicum	Corynebacterium glutamicum (Brevibacterium lactofermenlum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869				Pseudomonas putida M10 norA	calcoaceticus	
30		Table 1	Homolog	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentu ATCC 13869	Corynebacteriu (Brevibacteriun ATCC 13869				Pseudomonas	Acinetobacter calcoaceticus dc4c	
35 40			db Match	gp:AF013289_1	sp:YIS1_STRCO	SD: YEGE ECOLI	SP.NODC_RHIME			pir:S43613	pir.JC4742	pir.JC4742				sp:MORA_PSEPU	sp.DC4C_ACICA	
			ORF (bp)	630	1206	3042		219	333	291	375	144	141	366	498	843	321	
45		•	Terminal (nt)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	
50			Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052		1096093	1096331	1096471	1097111	1097229		1098609	
			SEO	\rightarrow	4655	4656	4657	4658	4659	4660	4661	4662	4663	4664	4665	4666	4667	_
55				(DNA)	1155	1 56		_	1159	1160	1161	1162	1163	1164	1165	1166	1167	

multi-drug resistance efflux pump

transcriptional regulator

alkylphosphonate uptake protein

111 134 134

82.0 62.7 59.4

32.1 22.6

Escherichia coli K12 MG1655 phnA

Sp.PHNA_ECOLI

342

1112230

1184 4684 1111889

hypothetical protein

136

6.99

29.4

Mycobacterium tuberculosis H37Rv RV2923c

sp:Y06C_MYCTU

396

4683 1111820 1111425

1183

transposase (insertion sequence IS31831)

436

99.8

99.5

Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831

1308 pir.S43613

Bacillus subtilis 168 yxaD Streptococcus pneumoniae pmrA

1218 gp:SPN7367_1

1114319

1113102

4686

5 5 3					Function		biolin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	
1	5				Matched length (a.a.)		563						655	329	160	262	248	593	
2	20				Similarity (%)		78.5						80.3	52.6	62.5	60.7	59.3	54.1	
		*			Identity (%)		48.1						57.9	27.7	33.8	38.2	29.4	31.7	
2	25	,		ontinued)	s gene	CAOT 220	. PCC 1342						perculosis	eroides ATCC	thanolica pgm	berculosis	roscopicus	liae thC	
	30			Table 1 (continued)	Homotogous gene		Synechococcus sp. PCC 1342 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus	Streptomyces fradiae ttrC	
	<i>35</i> <i>40</i>				db Match		gp:SPU59234_3						sp:YT15_MYCTU	PSCHI_HD8 ds	gp.AMU73808_1	pir.A70577	gp.STMBCPA_1	1641 Sp.TIRC STRFR	
					ORF (bp)		1737	597	498	345	153	639	1956	1296	642	705	762	1641	:
	45				Terminal (nt)		1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	_!	
	50				Initial (nt)		1099917	1102043	1102695	1,103180	1103951	1104923	•	1107381	1107560	1108201		1100707	76/6011
					SEO	(9.9)	4571	4672	4673	4674	4575	4676	4677	4678	4679	4680	4681	2 0	4097
	55					(DNA)	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180	181		7811

۵	7
9	•

EP 1 108 790 A2

_										-	_	_		-1	- -	$ \tau$		T	$\neg \neg$	$\neg \tau$	\neg
	Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin biosynthesis protein		:			chymotrypsin BII	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin [4Fe-4S]
	Matched length (a.a.)	946	164			318	282					27.1	111	340	147	221	614	506	315		103
	Similarity (%)	58.7	81.7			72.0	49 0					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9		91.3
	Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
Table 1 (continued)	Homologous gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedL	Streptomyces coelicalar A3(2)					Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv 1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
	db Match	Sp. UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_ECOLI	gp:SCF76_2					sp:CTR2_PENVA	sp:ARC2_ECOLI	1200 sp.YYAD_BACSU	pir:F70559	pir.F70555	sp:TYPA_ECOLI	pir:F70874	pir.B70875		sp.FER_STRGR
	ORF (bp)	2340	495	216	1776	954	006	365	297	261	387	834	345	1200	537	714	1911	1506	870	438	315
	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1
	Initial (nt)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140861	1141245	1141273		1143739	1144118	1146097	1147592	1148445	
	SEQ NO.			4708	4709	4710		4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723	4724	
	SEO			1208	1209			1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223	1224	1225

EP 1 108 790 A2

10- FD 110970042 I 5

_		-1-		Т				1	$\neg \neg$		<u></u>	Ī	\neg	1	T I	1		
	Function	aspartate aminotransferase			tetrahydrodipicolinale succinylase or succinylation of piperidine-2,6- dicarboxylate		hypothetical protein	dihydropteroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucosestarch(bacterial glycogen) glucosyltransferase	glucose-1-phosphate adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidative stress	
	Matched length (a.a.)	397			229		211	273	245	66	47	286	524	433	400	93	194	
	Similarity (%)	52.9			100.0		100.0	69.0	73.1	67.7	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
	Identity (%)	25.9			100.0		100.0	29.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
Table 1 (continued)	Hamologous gene	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coelicolor A3(2) dhpS	Mycobacterium leprae u1756l	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora griseorubida myrA	Pediococcus pentosaceus scrB	Escherichia coll K12 MG1655 glgA	Streptomyces coelicalor A3(2) glgC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
	db Match	sp:AAT_BACSP			gp:CGAJ4934_1		pir.S60064	gp:SCP8_4	gp.MLU15180_14	pir.G70609	gsp:W32443	sp:MYRA_MICGR	SP.SCRB_PEDPE	sp.GLGA_ECOLI	sp:GLGC_STRCO	sp:MDMC_STRMY	sp:RPOE_ECOLI	
	ORF (bp)	1101	621	1185	891	663	768	831	729	306	165	864	1494	1227	1215	639	639	492
	Terminal (nt)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1150728	1160738	1162379	1164916	1164974	1166384	1167067
	Initial (nt)	1149279	1150408	1151186	1153263	1156537	1156902	1157694	1158524		1159635	1159865	1162231		1163702	1165612	1165746	1166576
	SEO NO.	4726	4727	4728	4729	4730		4732	4733	4734	4735	4736	4737	4738	4739	4740	4741	4742
		1226	+			1230		1232	1233	1234	1235	1236	1237	1238	1239	1240	1241	1242

																	- 1	i		
5		Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or mutlidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyl esterase				tetracycline resistance protein	metabolite export pump of letracenomycin C resistance	
15		Matched length (aa)	112 hy	257 A	154 h)	434 h)	140 h)			1257 2.	AB 1288 res 2)	240 h	255 s	501 p				409 to	444	
20		Similarity (%)	73.2	72.0	83.8	0.77	87.1			93.8	60.4	72.1	61.2	64.7				61.4	64.2	
	-	Identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
25	rtinued)		rculosis		erculosis	erculosis	erculosis			utamicum	Chinese	erculosis	Ä	Ąc				nsposon	cescens tcmA	
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterlum tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tcmA	
35													÷	1					TRGA	
40		db Match	pir:C70508	SP.MRP ECOLI	pir. B70509	pir.C70509	pir.A70952			prf.2306367A	sp:MDR2_CRIGR	pir:H70953	SP. AROE ECOLI	1611 Sp. PNBA_BA				sp:TCR1_ECOLI	sp.TCMA_STRGA	
		ORF (bp)		1125	579	1290	516	999	594	E	3741	717	804	1611	651	876	525	1215	1347	705
45		Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	1183603	1184257	1185155	1185218	187039	1188389	1190526
50		Initial (nt)	1167110	1158711	1169325	1170610	1170672	1171206	1172462		1180048	1180837	1181675			1184280	1185742		1167043	1260 4760 1189822
		SEQ.	(9.8.)	4744		4746	4747	4778		4750	4751	4752	4753		_	4756	_		4759	4760
55			(DNA) 1243			1246	1247	42,40	1240	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

EP 1 108 790 A2

_																		
	Function	5- methyltetrahydropteroyltriglulamate- -homocysteine S-methyltransferase		thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunil II	cytochrome bd-type menaquinol oxidase subunit I	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine triphosphatase)(8-oxo-dGTPase)(dGTP		profine-specific permease
	Matched fength (a a)	774		444	·					526	551	333	512	402		86		433
	Similarity (%)	72.2		79.5						63.5	58.4	93.0	99.0	55.0		65.6		85.0
	Identity (%)	45.2		55.2						28.7	29.4	92.0	9.66	26.4		36.9		51.3
Table 1 (continued)	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1	A Section of the sect					Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glułamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgaris mut T		Salmonella typhimurium proY
	db Match	5 pir.S57636		gsp: Y29930						sp.cyDc_Ecoli	sp:cYDD_ECOLI	gp:A8035066_2	gp:A8035086_1	sp.YEJH_ECOLI		sp:MUTT_PROVU		1404 SP.PROY_SALTY
	ORF (bp)	2235	455	1398	324	945	792	1647	192	1554	1533	666	1539	2265	342	393	765	1404
	Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657	1206831	1208138	1208212
	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316	1207223	1207374	4777 1209615
	SEQ NO (a a)		4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776	4777
	SEO NO.		1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274		1276	1277

EP 1 108 790 A2

													, .					
	Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetন্ন family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothetica! protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypotheticai protein			esterase or lipase		
	Matched length (a.a.)	643	247	595	354	278		185	878		203	395	915			220		
	Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.6			64.6		
	Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7			37.3		
Table 1 (continued)	Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobaderium leprae B1308_C2_181	Sphingomonas flava pcpB	Pseudomonas sp. 813 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) ort2	Mycobacterium tubercutosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
	db Match	sp.DEAD_KLEPN	prf.2323363BT	sp:PCPB_FLAS3	SP.CLCE_FSESB	Sp.CATA_ACICA		pir.A70672	sp:SNF2_YEAST		gp:SCO007731_6	pir:E70755	sp:Y084_MYCTU			gp:AB029896_1		
	ORF (bp)	2196	687	1590	1068	885	471	540	3102	1065	858	1173	2628	306	318	774	378	786
	Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1216904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1229636	1229095	1229935
	Initial (nt)	1209934	1213115	1213269	1214871	1215952	1217374	1217982	1219995	1222905	1222986	1223887	1225066	1227587	1227657	1227863	1228718	1229150
	SEQ NO (a a.)	4778	4779	4780	4781	4782	4783	4784	4785	4786	4787	4788	4789	4790	4791	4792	4793	4794
	SEQ NO. (DNA)	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

· 5

25 -

15		
20		
25	ı	
30		
35		
40		

	Function	short-chain fatty acids transporter	regulatory protein			fumarale (and nitrate) reduction regulatory protein	mercuric fransort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:G1P 3'-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase delta chain	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
	Matched length (a.a.)	122	166			228	81	605	137	601			24			220	175	505	137	83	1271	461
	Similarity (%)	2.69	56.6			57.9	66.7	706	58.4	49.3			98.0			9.69	63.4	83.4	46.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	32.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor SC1C2,14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus sublilis narG	Escherichia coli K12 narK
	db Match	sp:ATOE_ECOLI	SP. PECS_ERWCH			sp.FNR_ECOLI	sp:MERP_SHEPU	sp.ATZN_ECOLI	sp.RELA_VIBSS	1581 gsp:R80504			GSP:P61449			sp:NARI_BACSU	sp:NARJ_BACSU	1593 sp:NARH_BACSU	PIR:072603	PIR:B72603	44 sp:NARG_BACSU	sp:NARK_ECOLI
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	120	108	1260	069	777	732	1593	594	273	3744	1350
	Terminal (nt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	1236545	1241554	1242156	1243728	1243942	1244843	1245720	1246508	.247199	1250444	1251817	1248794	1252557
ļ	Initial (nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125	1242156	1242275	1243621	4807 1245201	1245532	1246496	1247239	1248791	1249851	4813 1251545	1252537	1253906
	SEQ NO. (a.a.)	4795	4796	4797	4798	4799	4800	4801	4802	4803	4804	4805	4806	4807	4808	4809	4810	4811	4812	4813	4814	4815
	SEQ NO. (DNA)	1295	1296	1297	1298	1299	1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315

=
o
മ
_
(pant
,=
(contin
느
9
့ပ
_
_
യ
=
ب
Table
-

						/				
SEQ NO.	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Hamologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
	4816	1254146	1254634	489	sp:CNX1_ARATH	Arabidopsis Ihaliana CV cnx1	32.5	65 0	157	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)
1317	4817	1256602	1254737	1866	sp:PRTS_SERMA	Serratia marcescens strain IFO- 3046 prtS	21.1	45.9	738	ext:acellular serine protease precurosor
1318	4818	1257067	1257750	684					İ	
1319	4619	1257858	1255851	1008	sp:Y0D3_MYCTU	Mycobacterium tuberculosis H37Rv Rv1841c	30.8	62.6	334	hypothelical membrane protein
1320	4820	1259265	1257865	1401	sp.Y0D2_MYCTU	Mycobacterium tuberculosis H37Rv Rv1842c	31.6	60.2	472	hypothetical membrane protein
1321	4621	1259989	1259429	551	gp:PPU242952_2	Pseudomonas putida mobA	27.5	52.3	178	mo'ybdopterin guanine dinucleotide synthase
1322	4822	1261201	1259993	1209	sp:MOEA_ECOL!	Mycobacterium tuberculosis H37Rv Rv0438c moeA	32.8	58.2	366	mo'ybdoptein biosynthesis protein
1323	4823	1262818	1261688	1131	sp:CNX2_ARATH	Arabidopsis thaliana cnx2	51.4	73.7	354	mo'ybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)
1324	4624	1264610	1262886	1725	sp:ALKK_PSEOL	Pseudomonas oleovorans	36.7	65.7	572	edium-chain fatty acid-CoA ligase
1325	4625	1265142	1267427	2286	sp:RHO_MICLU	Micrococcus luteus rho	50.7	73.8	753	Rho factor
1326	4826	1265665	1266267	603						
1327	4627	1266306	1265611	969						
1328	4828	4828 1266449	1265427	1623						
1329	4629	1267430	1268503	1074	1074 sp:RF1_ECOLI	Escherichia coli K12 RF-1	41.9	71.9	363	peptide chain release factor 1
1330	4830	1268507	1269343	837	Sp:HEMK_ECOLI	Escherichia coli K12	31.1	57.9	280	proloporphyrinogen oxidase
1331	4831	1269040	1268267	774						
1332	4832	1269396	1270043	648	sp:YD01_MYCTU	Mycobacterium tuberculosis H37Rv Rv1301	62.3	0.98	215	hypothelical protein
1333	4833	1270047	1271192	1146	1146 Sp.RFE_ECOLI	Escherich a coli K12 rfe	31.1	58.4	322	undecaprenyl-phosphate alpha-N- acetylglucosaminyltransferase
1										

EP 1 108 790 A2

_																	
	Function		hypothelical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase lipid- birding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+transporting ATP synthase delta chain	H+-transporting ATP synthase alpha chain	H+-Iransporling ATP synthase gamma chain	H+-transporting ATP synthase beta chain	H+-transporting ATP synthase epsilon chain	hypothetical protein	hypothelical protein	pulative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	thioredoxin
	Matched length (a.a.)		80	245	1.1	151	274	516	320	483	122	132	230	35	134	101	301
	Similarity (%)		0.66	26.7	85.9	6.99	67.2	88.4	76.6	100.0	73.0	67.4	85.7	26.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	. 54.9	27.8	34.3	6.99	46.3	93.8	41.0	38.6	70.0	45.0	35.8	54 5	37.9
Table 1 (continued)	Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 alpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yqjC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match		GPU:AB046112_1	sp:ATP6_ECOLI	sp.ATPL_STRLI	sp:ATPF_STRLI	sp:ATPD_STRU	sp:ATPA_STRLI	sp:ATPG_STRLI	sp:ATPB_CORGL	sp:ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	sp:YQJC_BACSU	sp:YC20_MYCTU	sp:YD24_MYCTU
	ORF (bp)	486	249	810	240	564	813	1674	975	1449	372	471	069	285	453	312	921
	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967	1281714	1281794	1349 4849 1282194
	SEO NO (a a.)	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
	SEQ NO.	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349

ſ					٥	Jue /			<u>, , </u>				-e	ses		otein		
	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (giycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
	Matched length (a.a.)	366	240	228	311	01.2.	467		211	260	367		244	335		375		397
	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0		64.8	61.8		67.7		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29.5
Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium melilali fixA	Rhizobium meliloti fixB		Azolobacter vinelandii nifS		Rhizobium sp NGR234 plasmid pNGR234a y4mE
	db Match	gp ECO237695_3	sp:SSUC_ECOU	sp.SSUB_ECOLI	SP. SSUA_ECOLI	sp:GLGB_ECOL!	sp AMY3_DICTH		sp.FEPC_ECOLI	pir C70860	pir H70859		sp.FIXA_RHIME	sp:FIXB_RHIME		sp:NIFS_AZOVI		sp Y4ME_RHISN
	ORF (bp)	1143	768	729	957	2193	1494	348	879	804	1056	612	786	951	615	1128	312	1146
	Terminal (nt)	1284466	1285284	1286030	1286999	.1287281	1289514	1291373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
	Initial (nt)	1283324	1284517	4852 -1285302	1286043	1289473	1291007	1291025	1291599	1293222	1294151	1295047		1296253	1296479	1297212	1298653	1300145
	SEQ NO.	4850	4851	4852	4853	4854	4855	4856	4857	4858	4859	4860	4861	4862	4863	4864	4865	4966
	SEQ NO.		1351	1352	1353		1355	1356		1358	1359	1360	1361	1362	1363	1364	1365	1366

· 5

,	
10	
15	
20	-
25	-
30	
35	
40	-
45	
50	

_																		
·	Function	transcriptional regulator	acely!transferase				IRNA (5-methylaminomethyl-2- thioundylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamyl-tRNA(Gln) amidotransferase subunit C	glutamyl-tRNA(Gln) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphatefructose 6- phosphate 1-phosphotransrelase
	Natched length (a a)	59	181				361		332	200		677	220	97	484	263	96	358
	Similarity (%)	76.3	55.3				80.9		66.0	65.8		70.6	70.9	64.0	83.0	54.0	79.2	9.77
	Identity (%)	47.5	34.8				61.8		33.7	30.2		42.8	40.0	53.0	74.0	28.1	46.9	54.8
Table 1 (continued)	Homologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS	-			Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptomyces glaucescens tcmA		Rhodothermus marinus dnlJ	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2) SCE6.24	Amycolatopsis methanolica pfp
	db Match	sp:Y4MF_RHISN	sp:YHBS_ECOU				pir.C70858		pir:870857	sp.TCMA_STRGA		sp:DNLJ_RHOMR	pir:H70856	sp:GATC_STRCO	sp:GATA_MYCTU	ovalua_viavu	gp:SCE6_24	sp PFP_AMYME
	ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735	2040	663	297	1491	849	306	1071
	Terminal (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462		1310435	1311616	1313115	1314118	1314470	1316083
	Initial (nt)	1300369	1300552	1301929	1303123	1303299	4872 1303829	4873 1304536	1304932	1307384	1308196		1311097	1311320	1311625	1313270	1314775	1315013
	SEQ NO		4868	4869	4870	4871	4872	4873	4874	4875	4876	4877	4878	4879	4880	4881	4882	4883
	SEQ NO DNA)	•	1368	1369	1370	1371	1372	1373		1375	1376		1378	1379	1380	1381	1382	1383

5	Function		glucose-resistance amylase regulator (catabolite control protein)	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding prolein	high affinity ribose transport prote:n	hypothetical protein	iron-siderophare binding lipoprotein	Na-dependent bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH reductase	hypothetical protein	hypothetical protein	hypothetical membrane protein		dihydroxy-acid dehydralase	hypothetical protein
15	Matched length (a a)		328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
20	Similarity (%)		31.4	76.2	76.9	77.77	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	68.6
•	Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
Table 1 (continued)	us gene		um ccpA	(12 rbsA	(12 MG1655	(12 MG1655	<12 MG1655	cerevisiae	elicolor	s (Rat) NTCI	aureus WHU 29	annaschii	<12 yajG	uberculosis	uberculosis		n glutamicum J	uberculosis
	Homologous gene		Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coli K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34,13c	Rattus norvegicus (Rat) NTCI	Staphylccoccus aureus WHU 29 ratB	Methanococcus jannaschii MJ1501 f4re	Escherichia coli K12 yqjG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
<i>35</i>	db Match		sp:CCPA_BACME_E	Sp. RBSA_ECOLI	Sp.RBSC_ECOLI	ECOLI	sp RBSD_ECOLI	sp.YIW2_YEAST	gp:SCF34_13	Sp.NTCI_RAT	gsp W61467	sp:F4RE_METJA	sp:YaJG_ECOLI	pir:A70672	pir:H70855		gp:AJ012293_1	pir.G70855
			107 sp.C(572 sp.RI	972 sp.RI	942 sp.RBSB_	369 sp R	636 sp:Y	014 gp:S	1005 Sp.N		672 sp:F-	1077 sp:Y	774 pir.A	1056 pir.H	237	1839 gp:A	564 pir.C
45	inal ORF (bp)	325 630	-	+-	┼	 	1	-	-	╁	-`-	 	-					
	Terminal (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	0 1333442	5 1335412
50	Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	1326378	1330967	1331102	1331953	1333424	1335280	4900 1335975
	SEQ NC.	4884	4885	4886	4887	4888	4889	C681	4891	4892	-	4894	4895	4896	4897	4898	4899	
55	SEQ NO.	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	.400

10	
15	
20	-
25	•
30	
35	
40	
45	
50	

	Function	hypothetical membrane protein	hypothetical protein		nitrate transport ATP-binding potein	mal:ose/maltodextrin transport ATP. binding protein	nitrate transporter protein			actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		D-3-phosphoglycerate dehydrogenase	hypothelica! serine-rich protein			hypothetical protein	
	Matched length (a.a.)	62	99		167	87	324			142	304			642		530	105			620	
	Similarity (%)	100.0	55.0		80.9	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
	identity (%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		93.8	29 0			32.9	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrtD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA		-	Streptomyces coelicolor	Ralstonia eutropha czcD			Methanococcus jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacler capsulatus strain SB1003	
	db Match	sp:YILV_CORGL	GP:SSU18930_26 3		SP NRTD_SYNP7	SP MALK_ENTAE	SP NRTA_ANASP			sp DIM6_STRCO	sp:C2CD_ALCEU			sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			pir. T03476	٠
	ORF (bp)	1473	231	909	498	267	882	447	369	486	954	153	069	1815	1743	1590	327	867	1062	1865	402
	Terminal (nt)	1336095	1338379	1342677	1341960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540	1357554	1356853
	Initial (n1)	1337567	1338609	1342072	1342457	1342727	1343675	1344018	1344440	1344935	1345485	1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601	1355689	1355452
	SEO NO (a.a.)	4901	4902	4933	4924	4935	4906	4937	4938	4939	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	4920
	SEQ NO.	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420

							$\overline{}$	T		т	7	i	1	1		1	1	•	1	١	1	i
5		Function	a the second second	homoprotocatechivate Catabousin bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase(hhdd isomerase): 5- carboxymethyl-2-oxo-hex-3-ene-1,7- dioate decarboxylase(opet	methyltransferase or 3- demethylubiquinone-9 3-O- methyltransferase	le synthase	olutamy-IRNA synthetase	al regulator													thiam'n biosynthesis protein	
				homoprotocated bifunctional isomerase/decar 2-hydroxyhepta- isomerase(hhdd carboxymethyl-2 dioale decarbox decarboxylase)]	methyltransferase or 3- demethylubiquinone-9 : methyltransferase	isochorismate synthase	alutamy-(R)	transcriptional regulator													thiam'n bios	
15	Matched	length (a.a.)		228	192	371	485	67	3												665	,
20		Similarity (%)		59.2	55.7	70.4	60.7		30.0												810	;
÷		Identity (%)		33.3	23.4	28.0	27.5	2, 5			1			-	1		_ -	-	1	-	8. 1	- 1
25 - (panujju		s gene		pcE	2	9	3	γ	icolor A3(2)												0.41	IA or thic
So Tahle 1 (conlinued)	ומסור ו	Homologous gene		Escherichia coli C hpcE	Escherichia coli K12	4 - 104 - 1	Bacillus sublilis onoc	Bacillus subillis gitA	Streptomyces coelicolor A3(2)												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Bacillus subtilis thiA or thic
35	-	·		<u> </u>	w	\neg	_	80	S		1	-	- +		-	\dashv	\dashv	\dashv	1	\dashv		_
40		db Match		sp:HPCE_ECOLI	sp:UBIG_ECOLI			sp:SYE_BACSU	gp.SCJ33_10													sp. THIC_BACSU
	İ	ORF (bp)	654		618		1128	1488	213	516	522	342	621	303	180	330	213	183	318	1152	324	1761
45		Terminat (nt)	1358210		1359669		1360168	1362848	1362926	1363142	1363732	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551		1369877
50		Initial (nt)	1357557	1358259	4923 1359052	į	1361295	1361361	1363138	1363657	1364253	1364915	1364960	1365180	1365396	1365808	1367293	1368070	1368078	1368400	1369551	4939 1371637
		SEQ NO (a,a)	- -		4923		4924	4925	4926	4927	4928	4929	4930	4931	4932	4933	4934	4935	4936	-	4938	4939
55		SEQ NO.	_		1423		1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

· 5	
10	
15	
20	-
25	-
30	
35	
40	
45	
50	

Table 1 (continued)

						(
SEQ NO.	SEO NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similar ty (%)	Matched length (a.a.)	Function
	 -	1372326	1271979	348						
_		1372601	1273131	531						
_		4377708	127.3020	13	GSP-Y37857	Chlamydia trachomatis	61.0	74.0	44	lipoprotein
		0616161	200121	3 8						
1443	4943	13/4556		936		17-03	6 77	24.0	707	alveoden phosphorylase
1444	4944	1375776	1373350	2427	sp.PHS1_RAT	Rattus norvegicus (Kat)	44.6	2.5	16.	
1445	4945	1375987	1375805	183						
1445	4946	1376088	1375933	156						
1447	4947	1377555	1376149	1407	Sp.YRKH_BACSU	Bacillus subtilis yrkH	25.4	52.8	299	hypothetical protein
1448	4948	1378415	1377666	750	Sp. Y441_METJA	Methanococcus jannaschii Y441	25.4	64.8	256	hypothetical membrane protein
1449		1378942	1378466	477						
1450		1379003	1379566	564	sp:SPOT_ECOU	Escherichia coli K12 spoT	29.8	60.1	178	guanosine 3',5'-bis(diphosphate) 3'- pyrophosphatase
1451	1051	1380259	1379555	705	so ICLR ECOLI	Escherichia coli K12 iclR	26.1	60.7	257	acetate repressor protein
1452	4952		1381882	1443	sp.LEU2_ACTTI	Actinoplanes teichomyceticus leu2	68.1	87.5	473	3-isopropylmalate dehydratase large subunit
1453	4953	1381902	1382492	591	sp:LEUD_SALTY	Salmonella typhimurium	67.7	89.2	195	3-isopropylmalate dehydratase small subunit
1454	4954	1382819	1382502	318						
1455			1382845	954	gp:MLCB637_35	Mycobacterium tuberculosis H37Rv MLCB637.35c	45.9	71.4	294	mutator mutT protein ((7,8-dihydro- 8-oxoguanine-triphosphatase)(8- oxo-dGTPase)(dGTP pyrophosphotydrolase)
1456	4956	1383930	1384085	156						
1457		1384130	1	966	sp:GPDA_BACSU	Bacillus subtilis gpdA	45.0	72.2	331	NAD(P)H-dependent dihydroxyacetone phosphate reductase
1458	4958	1385153	1386232	1080	1080 Sp.DDLA_ECOLI	Escherichia coli K12 MG1655 ddIA	40.4	67.4	374	D-alanine-D-alanine ligase

SEO Initial Terminal O'RF db Match (a.a.) (n!) (nt) (bp) 4950 1387270 1386293 978 4960 1387372 1389073 762 sp. UNG_MOUSE 4961 1389312 1389073 762 sp. UNG_MOUSE 4963 1390796 1392916 2121 sp. RECG_ECOLI 4964 1391961 1391638 324 GSP.Y75303 4965 1393154 1393151 213 sp. BCCP_PROFR 4966 1393154 1393735 582 sp. YHHF_ECOLI 4967 1393742 1394221 480 sp. KDTB_ECOLI 4968 1394894 1395933 1080 4969 1394894 1395997 204 GSP.Y75358						_		-								
SEO Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (76)	5		unction		ate kinase	osylase precursor	otein	DNA helicase	edicted to be useful ccines and	carrier protein		ride core biosynthesis		peptides predicted to ens for vaccines and	er or glutamine ABC P-binding protein	
SEO Initial Terminal ORF db Match Homologous gene (%) (%) (%) (4a) (1a) (bp)		ű.		thiamin-phosph	uracil-DNA glyc	hypothetical pro	ATP-dependen	polypeptides pr antigens for vac diagnostics	biotin carboxyl	methylase	lipopolysaccha protein		Neisserial poly be useful antig diagnostics	ABC transporte transporter, AT		
SEC	15		Matched length (a a)		335	245	568	693	108	29	167	155		65	252	1
SEC	20		Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7		74.0	78.6	
SEO Initial Terminal O'RF db Match (a.a.) (n1) (n1) (bp) 4950 1387270 1386293 978 4960 1387372 1389073 762 sp. UNG_MOUSE 4961 1389312 1389073 762 sp. UNG_MOUSE 4963 1390796 1392916 2121 sp. RECG_ECOLI 4964 1391961 1391638 324 GSP.Y75303 4965 1393154 1393151 213 sp. BCCP_PROFR 4966 1393154 1393735 582 sp. YHHF_ECOLI 4967 1393742 1394221 480 sp. KDTB_ECOLI 4968 1394894 1395933 1080 4969 1394894 1395097 204 GSP.Y75358			Identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		67.0	56.4	
SEO Initial Terminal O'RF db Match (a.a.) (n1) (n1) (bp) 4950 1387270 1386293 978 4960 1387372 1389073 762 sp. UNG_MOUSE 4961 1389312 1389073 762 sp. UNG_MOUSE 4963 1390796 1392916 2121 sp. RECG_ECOLI 4964 1391961 1391638 324 GSP.Y75303 4965 1393154 1393151 213 sp. BCCP_PROFR 4966 1393154 1393735 582 sp. YHHF_ECOLI 4967 1393742 1394221 480 sp. KDTB_ECOLI 4968 1394894 1395933 1080 4969 1394894 1395097 204 GSP.Y75358	25	(panu	ane		١		n (SGC3)	ဥ္မ		Jdenreichii	APF	MG1655		Ð	philus	00,00
SEO Initial Terminal O'RF db Match (a.a.) (n1) (n1) (bp) 4950 1387270 1386293 978 4960 1387372 1389073 762 sp. UNG_MOUSE 4961 1389312 1389073 762 sp. UNG_MOUSE 4963 1390796 1392916 2121 sp. RECG_ECOLI 4964 1391961 1391638 324 GSP.Y75303 4965 1393154 1393151 213 sp. BCCP_PROFR 4966 1393154 1393735 582 sp. YHHF_ECOLI 4967 1393742 1394221 480 sp. KDTB_ECOLI 4968 1394894 1395933 1080 4969 1394894 1395097 204 GSP.Y75358		Table 1 (confi	Homologous ge		scherichia coli K12 th	Aus musculus ung	Aycoplasma genitaliur	scherichia coli K12 re	Veisseria meningitidis	Propionibacterium free	Scherichia coli K12 v	Escherichia coli K12 N	KUID	Neisseria gonorrhoea	Bacillus stearothermo	Subjection to manage and a subject of
SEO Initial Terminal O:RF NO. (n1) (n1) (hp) (bp) 4959 1387270 1385293 978 4960 1389312 1389073 762 4962 1389312 1389073 762 4964 1391961 1391638 1354 4964 1391961 1391638 324 4966 1393154 1393742 1395933 1080 4968 1394894 1395097 204 4969 1394894 1395097 204			db Match				1	1		_	丁			SP:Y75358	sp.GLNQ_BACST	
SEO Initial Terminal No. (nt) (a.a.) 4950 1387270 1386293 4960 1387302 1389073 4962 1389208 1390788 4963 1390796 1391961 1391638 4966 1393154 1393735 4966 1393742 1393735 4966 1393742 1393735 4967 1393742 1395097 4969 1394894 1395097	•	-	RF.				Se 1						_		750 sp	+
SEO NO. (a.a.) 4959 4960 4965 4965 4965 4965 4966 4967 4968 4966 4967 4968	45				÷		+-		'	1393151		1394221		1395933	1394800	
SEO NO. NO. 4959 4950 4961 4964 4965 4965 4966 4967 4968 4968 4968 4968 4968 4968 4968	50		Initial	()	138/2/0	138/332	1389208	20000	1391961	1392939		1393154		1394854	1395549	
SEO NO. DNA.) 1459 1465 1465 1466 1467 1469 1469 1469			SEO		4959	4960									4970	
<u> </u>	55		SEO	21					1463	1465	?	1466		1469	1470	

EP 1 108 790 A2

5		lion						S3 related)													protein	u	ogenase	
10		Function						insertion element (IS3 related)		hypothetical protein										DNA polymerase I	cephamycin export protein	DNA-binding protein	morphine-6-dehydrogenase	
15		Matched length (a.a.)			•			26		37										896	456	283	284	
20		Similarity (%)						96.2		97.0										80.8	67.8	65.4	76.1	
•		Identity (%)						88.5		89.0										56.3	33.8	41,3	46.5	
25	ntinued)	gene						ıtamicum		ıtamicum										rculosis	ndurans	olor A3(2)	a morA	
30 ·	Table 1 (continued)	Homologous gene						Corynebacterium glutamicum orf2	,	Corynebacterium glutamicum										Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A, 15c	Pseudomonas putida morA	
<i>35</i>		db Match						pir.S60890		PIR:S60890 (sp:DPO1_MYCTU	Sp.CMCT_NOCLA	gp:SCJ9A_15	sp: MORA_PSEPU R	
		ORF (bp)	744	432	202	864	219	192	855	111	369	315	321	375	948	306	564	222	291	2715	1422	606	873	159
45		Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
50		Initial (nt)	1401333	4978 1402272	4979 1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	1411011	1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	1420036
		SEQ NO. (a.a.)	4977	4978		4980	4981	4982	1983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	1995	4996	4997	4998
55		SEQ NO. (DNA)	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

5		Function	ļ.	rotein S 1		lein				ingeing-uniding preferring nucleoside	hypolase (purine nucleosidase)	ance profein		on repressor,	naio	9	BC subunit B	otein	otein	otein		otein	otein		
10		J.	hypothelical protein	30S ribosomal protein		hypothetical protein				inocine.uridine	hypolase (purin	aniseptic resistance protein	ribose kinase	criptic asc operon repressor,	ranscription regulator		excinuclease ABC suburit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase	- Annual Control
15	Matched	length (a.a.)	163	451		195					310	517	293	337		-	671	152	121	279		939	7	5 5	7
20		Similarity (%)	58.3	71.4		93.9					81.0	53.8	67.6	65.6			83.3	59.2	80.2	77.1		47.2	6	-	38.4
-		Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	, c	90.0		57.4	33.6	38.8	53.8	-	23.2		32.7	30.4
25 Pancis	Juminocal	s gene	color	2 rpsA		tofermentum					ta iunH	ureus	12 rhek		.12 asco		eumoniae uvrB	annaschii	C12 ytfH	K12 VIG		0000	alicolar A3(2)	מוניסוסו - י י י	K12 ycbl.
30 General Foods	na) i aigei	Homologous gene	Streptomyces coelicolor SCHS 13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13859 yacE					Crithidia fasciculata iunH	Ctarbulococcus aureus	Staping to the coli K 12 thek	Eschericina con	Escherichia coli K12 asco		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 ytfH	Escherichia coli K12 yttG		1.00	Bacillus subtilis yago	SC9H11.26c	Escherichia coli K12 ycbL
35		db Match	ECOLI	COLI	T	Sp.YACE_BRELA					Sp.IUNH_CRIFA (1:	$\overline{}$	十	sp.ASCG_ECOLI		Sp: UVRB_STRPN	sp.Y531_METJA	VIEW ECOLI		פֿברערי		0040	gp.SC9H11_26	BL_ECOLI
40		ę	sp.YAFE_	sn RS						_				-				+			Sp. Y I P.G.	一	9 pir H70040		0 sp:YCBL
		ORF (bp)	654	1458	_	7	1098	582	1 246	╀	4 936		+	9 921	5 1038	7 798	1 2097	5 441		+	-	26 684	12 2349	75 912	93 600
45		Terminal (nt)	1420071	477756	1421096	1425878	1427354	1427376	1427804	1429246	1428224		1429194	1430659	1431575	1433547		1436775	_		_	1440026	1438212	1440675	2 1441793
50		Initial (nt)	1420724	0000	142 1099	1425279	1426257	1427957	1428049	5008 1428290	1479159		1430642	1431579	1432612	1432750		5013 1436335		1437249	1437356	1439343	1440560	5018 1441586	5019 1442392
		SEO	(a.a.)			5005	5003				200		5008	5009	50,10	5011				5014	5015	5016	5017		
55						1501	1503		1505	2021	1300	200	1508	1509	1510	1511	1512	1613		1514	1515	1516	1517	1518	1519

phenylalanyl-tRNA synthetase alpha chain

glycerophosphoryl diester phosphodiesterase

244

50.0

26.2

Bacillus subtilis glpQ

sp.GLPQ_BACSU

1455350

1456066

5035

1535

tRNA(guanosine-2'-0-)methlytransferase

153

71.2

34.0

Escherichia coli K12 MG1655 trmH

Sp:TRMH_ECOLI

594

1456948

1456355

5036

Bacillus subtilis 168 syfA

1020 SP:SYFA_BACSU

1458066

1457047

5037

5	Function	3C subunit A	lein 1246 (uvrA	tein 1245 (uvrA			lion factor IF-3	rotein L35	rotein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	ıtein	
10	4	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1245 (uvrA region)			translation initiation factor IF-3	50S ribosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate t system permease protein	sn-glycerol-3-ph system protein	sn-glycerol-3-phosphate system permease proein	sn-glycerol-3-pl ATP-binding pro	hypothetical protein	
15	Matched length (a.a.)	952	100	142			179	09	117			292	270	436	393	74	
20	Identity Similarity (%)	9.08	97.0	47.0			78.2	76.7	92.7			71.6	70.4	57.6	71.3	26.0	
•	Identity (%)	56.2	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	
25 ,	gene	uvrA					oides infC	tans	jae pv.			MG1655	MG1655	MG1655	MG1655	1 APE0042	
s & S Table 1 (continued)	Homologous gene	Escherichia coli K12 uvr.A	Micrococcus Iuteus	Micrococcus luteus			Rhodobacter sphaeroides infC	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coli K12 MG1655 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1655 ugpB	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APE0042	
40	db Match	sp:UVRA_ECOLI	PIR-JQ0406	PIR:JQ0406		•	Sp. IF3_RHOSH	SP:RL35_MYCFE	sp.RL20_PSESY			sp:UGPA_ECOLI	sp:UGPE_ECOLI	sp:UGPB_ECOLI	sp:UGPC_ECULI	PIR.E72756	
	ORF (bp)	2847	306	450	717	2124	567	192	381	822	567	903	834	1314	1224	249	
45	Terminal (nt)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	
50	Initial (nt)	1442487	5021 1444115	1445393	1446158	1447446	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	1454115	1454350	
	SEO NO.	\rightarrow		5022	5023	5024	5025	5026	5027	5028	5029	5030	5031	5032	5033	5034	
55	SEO NO (DNA)	1520	1521	.522	1523	1524	.525	:526	1527	1528	1529	1530	1531	.532	.533	1534	

10		Function	phenylalanyl (RNA synthetase bela chain		esterase	macrolide 3-O-acyltransferase		N-acetytglutamate-5-semialdehyde dehydrogenase	glutamate N-acetyltransferase		acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyese				hypothetical protein	tyrosyl-tRNA synthase (tyrosine	(RNA ligase)	hypothetical protein		hypothetical protein
15	Matched		343		363	423		347	388		391	401		478				20	!	417	149		45
20		Similarity (%)	71.7		55.1	56.3		99.1	99.7		99.2	99.5		6	2			72.0		79.6	64.4		75.0
• .	_	Identity (%)	42.6		26.5	30.0		98.3	99.5		99.0	99.5		3	2.	+		48	2	48.4	26.9	-	71.0
25 ·	(page)	jene	MG1655		s estA	ofaciens		Itamicum	rtamicum		ıtamicum	utamicum		utamicum					Z ycan	-	ınaschii		um Nigg
30 O State of Continued	ign) i aluai	Homologous gene	Escherichia coli K12 MG1655 syfB		Streptomyces scabies estA	Streptomyces mycarofaciens rrdmB		Corynebacterium glutamicum	ASO19 argC Corynebacterium glutamicum	ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Convebacterium alutamicum	ASO19 argH				Escherichia coil K12 year	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
35					+-		-	100				 							SOL	ACSU	ETJA		
40		db Match	sp.SYFB_ECOU		CETA STRSE	Sp. CSIR_SIRSS Sp. MDMB_STRMY		AE005242 1	gracoo in dg	sp.ARGJ_CORGL	sp.ARGD_CORGL	sp. ASSY_CORGL			gp:AF048764_1		! :		sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR-F81737
	.	ORF (bp)		17.6	-;-	1383	7		5	1164	1173	1203	1	1209	1431	1143	1575	612	177	1260	465	390	141
45		Terminal (nt)	1450516	90.00	1436190	1462128		1463934	1465123	1466373	1468548	1471413		1470154	1472907	1474119	1475693	1476294	1476519	1477809	14/7929	1478503	148333
50		Initial	→ <u></u>	 -		5040 1461157		1463533	1464083	1455210	1457376			1471362	5048 1471477	1472977	1474119	1475683	1476343	1476550	5054 1478393	1478892	
		SEQ	(9.9.)		5039	5040			5043	5044	5045		_	5047		5049	5050	5051				5055	
55			2: «	_	1539	1540			1543	1544	1545	1546		1547	1548	1549	1550	1551	1552	1553	1554	1555	1556

· 5

5		Function	hypothetical protein	translation initiation factor IF-2	hypothetical protein		hypothetical protein	hypothetical protein	DNA repair protein	hypothetical protein	hypothelical protein	CTP synthase (UTP-ammonia ligase)	hypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding profein	chromosome partitioning protein or ATPase involved in active	partitioning of diverse parterior plasmids	hypothetical protein		thiosulfate sulfurtransferase	hypothetical protein	ribosomal large subunit pseudouridine synthase B
15	P		hypot	trans	hypo	-	hypo		\neg			i								\neg		
	Matched	fength (a.a.)	84	182	3		260	225	574	394	313	549	157	300	551	258		251		270	172	229
20		Similarity (%)	66.0	67.0	60.1		9.69	31.6	63.4	73.1	68.1	7.97	71.3	71.7	59.7	73.6		64.5		67.0	65.7	72.5
•	<u></u>	Identity (%)	61.0	36.3	29.6		38.5	31.6	31.4	41.9	30.4	55.0	36.3	39.7	30.5	446	2	28.3		35.6	33.1	45.9
25										sis	sis			Cra		A zec	(5					
	lane i (columnació	Homologous gene	Chlamydia pneumoniae	Borrelia burgdorferi 1F2	Bacillus subtilis yzgD		Bacillus subtilis yqxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Nycobacterium tuberculosis H37Rv Rv1697	Mycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG	Davillus subtilis vokG	Cleaning success parcells ver	Streptomyces fradiae thr		Caulobacter crescentus pero	Bacillus subtilis ypuG		Datisca glomerata tst	Bacillus subtilis ypuH	Bacillus subtilis rluB
35				Ī	S		\vdash		1				+	2	Ω		4	BACSU		1-0	ACSU	ACSU
40		db Match	GSP: Y35814	so IF2 BORBU	Sp. YZGD BACSU		sp.YQXC_BACSU	sp:YFJB_HAEIN	SP. RECN ECOLI		pir.A70503	sp.PYRG_ECOLI		Sp. YUNG BACSU	gp Ar U93345_1		gp CCU87804_4	sp. YPUG		an AF 109155	_	
		ORF (bp)	273			162	819	873	1779	1191	963	1662	15	202	912		783	765	-+	┿	+	
45		Terminal (nt)	1487724	1486027	1487025	1487193	1488056	1489018	1490881	1492134	1493109	1495174		1495861	1496772	1490793	1499645	1500695	1500911	1502578	1503176	1504238
50		Initial (nt)	- u	+	-						1492147	1493513		1495205	1495861	1496324	5070 1498863	1400031	1501471			
		SEO NO	(a a.)	-	2000	_	_				5065			2067		5006		5071	200			5075
55			÷	_	020	_÷_							\rightarrow	1567	1568	1569	1570	1571	5 5	2/51	15/3	15/4

												 -		\neg		$-\tau$	-		$\overline{}$		l
5		Function		ein							ubrane protein		36			ein	2-hydroxy-6-oxohepta-2,4-dienoate hydrolase	preprotein translocase SecA subunit	on protein	tein	tein
10		Fun	cytidylate kinase	GTP binding protein			methyltransferase	ABC transporter	ABC transporter		hypothetical membrane protein		Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-oxol hydrolase	preprotein transl	signal transduction protein	hypothetical protein	hypothetical protein
15		Matched length (a a)	220	435			232	499	602		257		499			130	210	805	132	234	133
20		Similarity (%)	736	740			67.2	60 1	56 3		73.2		61.5			57.7	63.8	61.7	93.2	74.4	63.2
•		Identity (%)	38.6	42.8			36.2	29.7	31.2		39.7		25.7			36.9	25.2	35.2	75.8	41.9	30.8
25	ntinued)	gene		U			erculosis	riatum M82B	riatum M82B		2 ygiE		CC 9372			2 o249#9	jidus AF0675	K2	egmatis garA	oerculosis .	oerculosis
30	Table 1 (continued)	Homologous gene	Racillus subtilis cmk	Racillus subtilis vphC			Mycobacterium tuberculosis Rv3342	Corynebacterium striatum M82B tetA	Corynebacterium striatum M828 tet8		Escherichia coli K12 ygiE		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828
40		db Match	BACS11	=	-		813 Sp.YX42_MYCTU R	554 prf.2513302B	prf 2513302A		Sp.YGIE_ECOLI		gp:AB029555_1			sp:YCHJ_ECOLI	pir C69334	SPCA BACSU	qp:AF173844 2	sp:Y0DF_MYCTU	sp.Y0DE_MYCTU
		ORF (bp)	_			6	813	1554	1767	925		189	1548	186	420	375	1164	2289	429	756	633
45		Terminal (nt)	2707077	1504945	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	15 1045R	1526029	1520945	1521589
50		In:tial (nt)		·	1202011	_	1508729	1508813	1510366	1511667	1512189	1514505		1515159	1515396	1515782	1516962				1520957
		SEO	!_		//05	•		5081		60.2				5087	5088	5089	2090	100	5003		5094
55					12/2		1580	1581	1582	603	15.84	1585	1586	1587	1588	1589	1590	1	96.	1593	1594

5	Function		hypothetical protein					hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	6-phosphogluconate dehydrogenasc	thioesterase		nodulation ATP-binding protein I	hypothetical membrane protein	transcriptional regulator	phosphonales transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding prolein		
15	Matched length	(a.a)	178				\top		65	十	374	245	492	121		235	232	277	281	268	250		
20	<u>\$</u>	(R)	84.3					0.69	65.5		69.5	66.1	99.2	8.79		68.1	76.3	63.9	63.4	62.3	72.0		
•	Identity	(<u>8</u>	71.4					33.9	31.4		412	34.3	0.66	39.7		39.6	43.1	26.7	29.9	27.2	44.8		
25 (penuju	gene		rculosis					_	_		lus herA	erculosis	mn	erculosis		lpou	erculosis	2 yfhH	2 phnE	2 phnE	2 phnC		
S Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv1828					Bacilus subtilis yhdP	Bacitlus subtilis yhdT		Thermus thermophilus herA	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1847		Rhizobium sp. N33 nod!	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escherichia coli K12 phnE	Escherichia coli K12 phnC		
<i>35</i>	db Match		sp:Y0DE_MYCTU					sp:YHDP_BACSU	sp:YHDT_BACSU		gp.TTHERAGEN_1	sp YD48_MYCTU	gsp:W27613	pir G70664		sp:NODI_RHIS3	pir E70501	Sp.YFHH_ECOLI	sp.PHNE_ECOLI	sp:PHNE_ECOLI	sp PHNC_ECOLI		
	ORF	(pb)	573 8	510	1449	009	930	1062	1380	219	1344	735	1476	462	675	741	741	873	846	804	804	210	1050
45	Terminal	(nt)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528185	1527987	1530220	1530341	1532394	1532996	1533781	1534521	1534529	1535382	1536227	1537030	1538968	1537870
50	Initial	(nt)	1521771	1522941	1524500	1525374	1525497	1526534	1527913	1527968	1529330		1531816		1532322	1533041		1535401		1537030	1537833	1538759	1538919
	SEQ	(a a.)	5095	5096		5098	5039	5100	5101	5102	5103		5105		5107	5108		5110		5112	5113	5114	5115
55	SEQ	0 (Q)	1595	1596	1597	1598	1599	1600	1601	1602	1603	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615

5		Function		- kanahamathulayrimidine kinase	phosphorneringipy in manne		hydoxyethytthiazofe kinase	
15	Matched	Identity Similarity length (%) (%) (a.a.)		1	707		249	
20		Similarity (%)			70.2		77.5	
*		Identily (%)			47.3		46.6	
25 * E	l				Did		-12	
30 30 Table 1 (Continued)	number of the state of the stat	Homologous gene			Calmonally tynhimitrium thio	Salitioneria typumicus	Salmonella typhimurium LT2	
40		db Match				1584 sp:THID_SALIT	YT IN SAI TY	
	į	ORF (hn)		702				20
45		Terminal	Auna	1538963		617 5117 1541403 1539820		51/46
50		_	(),,,)	5116 1539664		1541403		1100.00
		SEQ.		5116		5117		7
		0 Q	NA)	616	2	617		3

	Function		phosphomethylpyrimidine kinase		hydoxyethylthiazole kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-methyl-o- phthalate/phthalate permease	purine phosphoribosyltransferase	Total profein	hypothetical protein	membrane subunit		hypothetical protein		sulfate permease	hypothetical protein						hypothetical protein	dolichol phosphate mannose synthase	apolipoprotein N-acyltransferase		secretory lipase	
	Matched length (a.a.)		262		249	451	468	156	3	2002	361		222	777	469	97						9	217	527		362	
	Similarity (%)		70.7		77.5	55.C	6.99	50.0	38.0	68.5	54.6		ŝ	83.6	83.6	20.0						87.3	71.0	55.6		55.6	2.5
}	Identity (%)		47.3	2	46.6	. 28 6	32.5	30.6	30.3	39.8	23.3		6	62.2	51.8	39.0						71.8	39.2	25.1		22.7	25
Table 1 (continued)	Homologous gene		Citt	Salmonella typnimurium in in	Salmonella typhimurium LT2 thiM	Mycobacterium tuberculosis	Burkholderia cepacia Pc701	adom	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN	Sinorhizobium sp. As4 arsB		etropomyces coelicular A3(2)	SCI7.33	Pseudomonas sp. R9 ORFA	Da Company	Pseudomonias sp. 13 cm					Mycobacterium tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe	Escherichia coli K12 Int			Candida albicans IIp1
	db Match		1	sp:THID_SALTY	SP.THIM_SALTY	pir.H70830	88		prf 2120352B	SP. YEBN_ECOLI	gp AF178758_2			gp:SCI7_33	an DSTRIFTC1 6		GP.PSTRTEIC1_/					pir.A70945	prf.2317468A	-	Sp Livi _ rudei		224 gp:AF188894_1
	ORF (bp)		795	1584	804	1314		3	474	669	966	483	3	693	1 45.6	2	426	615	207	189	750	396	810	-+`	-+	741	
	Terminal (nt)		1538963	1539820	1542119	1546289	1548207	0000	1547967	1549349	1550398	1550051	- Central	1552237	250077	7786661	1553297	1554070	1555067	1554891	1555086	1556771	1557014		155/859	1559497	1560437
	Initial (nt)		1539664	1541403	1542922	1544076	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	760/161	1548440		1549403		1550409	5125 1551545		5126 1552518	1553722	1554684	5129 1554861	5130 1555079	5131 1555835	1556376			1559493	1560237	1561660
	SEQ.	(9.9)	5116	5117		5	6 . 6	2120	5171		5123		5124		 -		5127	5128		5130	_				5134	5135	5136
	SEQ.	(DNA)	1616	1617				1620	1621	1622	1673		1624	1625		1626	1627	1628	1629	1630	1631	1632	1633	2001	1634	1635	1636

· 5	Function	precorrin 2 methyltransferase	precorrin-6Y C5, 15 methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase protein	hypothetical prote:n	hypothelical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein
15	0	precorri	precorri			oxidore	dipeptic			sec-ind protein	hypoth	hypoth	hypoth	hypoth		hypoth		
	Matched length (a a)	291	411			244	382		1030	268	82	317	324	467		61	516	159
20	Similarity (%)	56.7	60.8			75.4	61.3		55.7	62.7	69.4	61.2	64.8	77.3		80.3	74.2	20.0
•	Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	44.7	31.9	32.4	53.1		54.1	48.6	42.0
25 ⁵ (Pa		Sis	SI			sis	1		ə			sis		sis		sis	sis	E2014
S Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudomonas denitrificans SC510 cobl.			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 tatC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
35		ΣI					_					1				~ 1	<u> </u>	
40	db Match	pir.C70764	sp:COBL_PSEDE			sp:YY12_MYCTU	gp:AF014460_		sp:MTR4_YEAST	sp.TATC_ECOLI	sp.YY34_MYCLE	sp:YY35_MYCTU	sp:YY36_MYCLE	sp:YY37_MYCTU		pir:B70512	pir.C70512	PIR:H72504
	CRF (bb)	774	1278	366	246	738	1137	639	2787	1002	315	981	972	1425	249	192	1542	480
45	Terminal (nt)	1562553	1562525	1564237	1564482	1564565	1565302	156/106	1567117	1569932	1571068	1571506	1572492	1573491	1575205	1574945	1575406	1577805
50	Initial (nt)	1561780	1563802	1563872	1564237	1565302	1566438	1566468	1569903	1570933	1571382	1572486	1573463	1574915	1574957	1575136	1576947	1577327
	SEQ NO	5137	5138	5139	5140		5142	5143	5144	5145	5146	5147	5148	5149	5150	5151	5152	5153
55	SEQ	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648	1649	1650	1651	1652	1653

		rone-like								grase	-		ferase		tase	.9	<u> </u>				L
	Function	AAA family ATPase (chaperone-like function)	protein-beta-aspartate	methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-lyase	ATP phosphar bosyltransferase	gettimonilachered1-	beta-priospriograms and a	5-methylletrahydrololate homocysteine methyltransferase		alkyl hydroperoxide reductase		arsenical-resistance protein	arsenate reductase	arsenate reductase	o actorism Alaca	COLORIDA SANCHERS
	Matched length (a.a.)	545		一	436	269	69	385	526	281		195	1254		366		388	129	123		207
	Similarity (%)	78.5		79.0	67.2	71.4	72.5	61.0	99.8	97.5		63.1	62.4		49.5		63.9	64.3	75.6		643
	Identity (%)	51.6		57.3	38.1	45.4	40.6	21.8	93.8	96.8		30.8	31.6		22.4		33.0	32.6	47.2		
Table 1 (continued)	Homologous gene	Obodococcus endhropolis arc		Mycobacterium leprae pimT	Ното sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198	Staphylococcus aureus norA23	Corynebacterium glutamicum (Brevibacterium flavum) MJ233	Corynebacterium glutamicum	ASO19 nisc	Thermotoga mantima Mobo	Escherichia coli K12 melH		Hade sintegeneral about	Vantinginas campestris cirp	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid p1258 arsC	Mycobacterium tuberculosis		
	db Malch	i	pri 24223020	pir:S72844	dp. AF005050 1	pir.B70513	Sp.VAPI_BACNO			22. AE050166 1	gp	pir:H72277	sp:METH_ECOLI			sp:AHPF_XANCH	sp.ACR3_YEAST	SP.ARSC_STAAU	pir.G70964		
	ORF	: 1	1581	834	1323		264	1000	1578	3	3	693	3663	- 573		1026	1176	420	639	378	-
	Terminal		1576951	1578567	1570440	1581640	1582114	2003.	1583913	2002027	1383003	1586812	1587573	ᆚ	_	1591941	1594512	1594951	1595668		_
	Initial		1578531	1579400	4.00034	1580807	1581851	200	1583481		1586445	1587504			1591343	1592966	1593337	1594532			
	SEO	(3 3.)	5154	5155		5157			5159 5160		5161	5162		 +	5154	5165	5166				5169
	SEO	5	1654	1655		1657	0.20	000	1659		1661	1557	1663		1664	1665	1666	1667	1 69	<u> </u>	1669

5	Function	bacitracin resistance protein	oxidoreductase	lipoprotein	dihydroorotate dehydrogenase			transposase		bio operon ORF I (biotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)transport system kinase	methylmalonyl-CoA mutase alpha subunit
15	Matched length (a.a.)	255	326	359	334			360		152	198		597		535		99	339	741
20	Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		56.4	72.3	87.5
•	Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
55 , Table 1 (continued)	Homologous gene	K12 bacA	umefaciens	uberculosis	ta ura1			yringae tnpA		K12 ybhB	gıtidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		nulatus pac	K12 argK	nnamonensis
32 Table T	Homolog	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae tnpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacteriur tetB		Corynebacteriur tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
40	db Match	SP.BACA_ECOLI	prf.2214302F	pir.F70577	Sp.PYRD_AGRAE		•	gp.PSESTBCBAD_		sp:YBHB_ECOLI	GSP:Y74829		prf 2513302A		prf.2513302B		pir:JU0052	sp:ARGK_ECOLI	sp.MUTB_STRCM
	ORF (bp)	879	948	666	1113	351	807	1110	486	531	729	693	1797	249	1587	351	609	1089	2211
45	Terminal (nt)	1597745	1599614	1600677	1601804	1601931	1603466	1504629	1604830	1505281	1606689	1608248	1605861	1609335	1607661	1609842	1510844	1611150	1612234
50	Initial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	1605315	1605811	1605961	1607645	1607657	1609087	1609247	1610192	1610236	1612238	1614444
	SEO NO (a.a)	5171	5172	5173	5174	5175	5176	5177	5178	5179	5180	5181	5182	5183	5184	5185	5186	5187	5188
55	SEQ NO.	1671	1672	1673	1674	1675	1576	1577	1678	1679	1680	1681	1682	1683	1684	1605	1686	1687	1688

_
Ď
≝
ቜ
Cont
ပ
-
흗
Tabl
-

	Function	methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothelical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
	Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235	221	98		446
	Similarity (%)	68.2	70.1		87.0	78.7	72.8		65.7	56.5		85.9	81.5	51.9	62.0	80.2		86.1
	Identity (%)	41.6	39.7	Ì	64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
(2000) 1 2000	Homologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tubercutosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichil subsp. Shermanii hemH	Streptococcus faecium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ1558		Neisseria meningitidis MC58 NMB1652
	db Match	sp MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	pir B70711	gp SCC77_24		sp HEMZ_PROFR	SP.P54 ENTFC		pir F70873	pir.E70873	pir.F64496	gp:SCD82_4	pir.E64494		gp:AE002515_9
	ORF (bp)	1848	723	597	1296	435	843	783	1110	1800	498	2829	564	756	663	267	393	1392
	Terminal (nt)	1614451	1617300	1617994	1518321	1619672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324
	Initial (nt)	1616298	1616578	1617398	1619616	1620105	1621009	1621056		1624826			1629298	1629913	1631329	1631660	1631745	1631933
	SEO	5189	5190	5191	5192	5193	5194	5195	5196	5197	5198	5199	5200	5201	5202	5203	5204	
		(CINA)	1690	1691	1697	1693	1694	1695	1696	1697	169R	1699	1700	1701	1702	1703	1704	1705

5	
10	
15	
20	
25	į
30	
35	
40	
45	
50	

	Function	antigenic protein	antigenic protein		cation-fransporting ATPase P		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter ATP-binding protein			sialidase	transposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitrogen fixation protein
	Matched length (a.a.)	113	152		883		120					107	154	497			387	236	37	88		107	149
	Similarity (%)	0.09	0.69		73.2		58.3					73.8	60 4	64 4			72.4	100.0	72.0	43.0		70.1	85.2
	Identity (%)	54.0	59.0		42.6		35.8					43.0	34.4	32.8			51.9	9.66	64.0	32.0		32.7	63.8
Table 1 (continued)	Hamologous gene	Noissonia nonomboeae ORF24	delaseria gomenta	Neisseila gonomocac	Synechocystis sp. PCC6803 sl11614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 viiK			Micromonospora vindifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7
	db Match			GSP:Y38838	SP.ATA1_SYNY3		gp:SC3D11_2					prf.2408488H	A42610401A				sp:NANH_MICVI	gp:AF121000_8	GPU:AF164956_23	GP:NT1TNIS_5		pir B75015	pir.S72754
	ORF (bp)		88	456	2676	783	489	1362	357	156	162	375	1937	G 5	8701	1476	1182	708	243	261	585	423	447
	Terminal (nt)		1632109	1632682	1636241	1633781	1635244	1638442	1638776	1639520	1639817	1640155	1001101	1641001	1641046	1642743	1644318	1646368	1646063	1645601		ł	1647651
	Initial		1632588	1633137	1633566	1634563	1636732	1637081	1639132	5213 1639365	1630656	1639781	1	1640546	16426/4	5218 1644218	1645499	1645661	1645821	1645861	1646549		1725 5225 1648097
	SEO	(a.a.)	5206	5207		5209		5211		5213	5214				5217	52,18	5219	5220	5221	5222		5224	5225
		(DNA)	1706	1707			_	1711	4742				-		1717	1718	1719	1720	1721	1777	_	1724	1725

NO NO NO NO NO NO NO NO		lable I (commuco)			Pod atak	
18.20	let let	lomologous gene		Similarity (%)	matched tength (a.a.)	Function
5226 1648548 1648709 162 PIRC/Z200 Archylopacterium leprae nifS 64.7 8 5227 1649362 1648100 1253 pir.S72781 Mycobacterium leprae nifS 64.7 8 5228 1650122 1649367 756 gp.SCC22_4 Sireptomyces coelicolor A3(2) 70.2 8 5229 1651424 1176 pir.A70872 Hyrobacterium luberculosis 55.2 E 5229 1652875 1651433 1443 sp.Y074_SYNY3 Streptomyces coelicolor A3(2) 46.1 76.0 5230 1652876 1652894 693 gp.SCC22_8 SCC22.08c 36.3 41.0 77.0 5231 1653671 1629 pir.F70871 Hyrobacterium luberculosis 36.3 41.0 5232 1654043 1655671 1629 pir.F70871 Mycobacterium luberculosis 36.3 5233 1655681 1657515 804 pir.S72783 Mycobacterium luberculosis 30.2 5234 1656712 1657515 <td></td> <td>nyrium pernix K1 APE2025</td> <td>48.0</td> <td>57.0</td> <td>52 h</td> <td>hypothetical protein</td>		nyrium pernix K1 APE2025	48.0	57.0	52 h	hypothetical protein
5227 1649362 1648100 1263 pir.S72761 Mycobacterium tuberculosis 55.2 6 5229 1651424 1650249 1176 pir.A70872 Mycobacterium tuberculosis 55.2 6 5229 1651424 1650249 1176 pir.A70872 Mycobacterium tuberculosis 55.2 6 5229 1652875 1651433 1443 5pi.A7074_SYNY3 Synechocystis sp. PCC6803 41.0 7 5230 1652875 1651433 1443 5pi.A7074_SYNY3 Synechocystis sp. PCC6803 41.0 7 5231 1652875 1651433 1443 5pi.A7074_SYNY3 Synechocystis sp. PCC6803 41.0 7 5231 1652875 1651436 1629 pir.F70871 Mycobacterium tuberculosis 36.3 4 5231 1656781 1656715 804 pir.S72783 Mycobacterium tuberculosis 43.0 41.0 5232 165781 1658675 804 pir.S7278 Mycobacterium tuberculosis 43.0 5234		Profesium lensae nifS	64.7	84.4	411	nitrogen fixation protein
5228 1650122 1649367 756 gp:SCC22_4 Siteptunycs common strength 70.2 5229 1651424 1650249 1176 pir.A70872 Mycobacterium luberculosis 55.2 8 5229 1651424 1650249 1176 pir.A70872 Mycobacterium luberculosis 41.0 7 5230 1652875 1651433 1443 sp:Y074_SYNY3 sird074 46.1 46.1 5231 1653886 1655871 1629 pir.F70871 Mycobacterium leprae 50.2 5 5232 1656712 1629 pir.F70871 Mycobacterium leprae 50.2 4 5234 1656712 1657515 804 pir.S72778 Mycobacterium leprae 41.0 5 5235 1657677 1658675 999 pir.C70871 Mycobacterium tuberculosis 43.0 5 5236 1659508 1661136 1629 pir.C70871 Mycobacterium tuberculosis 43.0 8 5238 1661578 1662530 975 pir.C71156 Pyrococcus horikoshii PH0450 </td <td>Myc</td> <td>obacceroni reproduct A3(2)</td> <td>5</td> <td>۲ 08</td> <td>252</td> <td>ABC transporter ATP-binding proteir</td>	Myc	obacceroni reproduct A3(2)	5	۲ 08	252	ABC transporter ATP-binding proteir
5229 1651424 1650249 1176 pir.A70872 Mycobacterium tuberculosis 55.2 65.2 5230 1652875 1651424 1650249 1176 pir.A70872 Synechocystis sp. PCC6803 41.0 7 5230 1652875 1651433 1443 sp.Y074_SYNY3 Streptomyces coelicolor A3(2) 46.1 7 5231 1652864 1652894 693 gp:SCC22_8 Streptomyces coelicolor A3(2) 46.1 40.1 5232 1654043 1655671 1629 pir.F70871 Mycobacterium tuberculosis 36.3 1 5234 1656712 1657515 804 pir.S72783 Mycobacterium tuberculosis 41.0 5 5235 1656717 1658675 809 pir.C70871 Mycobacterium tuberculosis 43.0 5 5236 1658496 1659140 35 pir.C70871 Mycobacterium tuberculosis 43.0 5 5236 1659508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 23.4		22.04c	70.7		T	Sieden III.
5230 1652875 1651433 1443 sp:Y074_SYNV3 Synechocystis sp. PCC6803 41.0 5231 1652875 1651433 1443 sp:Y074_SYNV3 sin0074 46.1 5231 165386 1652894 693 gp:SCC22_8 Scc22.08c 36.3 5232 1654043 165671 1629 pir.F70871 Mycobacterium leprae 50.2 5233 1656712 1657515 804 pir.S72778 Mycobacterium leprae 41.0 5234 1656712 1658675 804 pir.S72778 Mycobacterium tuberculosis 43.0 5234 1656712 1658675 804 pir.S72778 Mycobacterium tuberculosis 43.0 5234 1656712 1658675 809 pir.C70871 Hyrobacterium tuberculosis 43.0 5235 1653508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 23.4 5237 1659508 1661136 1622 975 sp:QOR_ECOLI Escherichia coli K12 qor 37.6		obacterium tuberculosis Rv Rv1462	55.2	83.0	377	hypothetical protein
5231 1653586 1652894 693 gp:SCC22_8 Streptomyces coelicolor A3(2) 46.1 5232 1654043 1655671 1629 pir.F70871 Mycobacterium tuberculosis 36.3 5232 1654043 1655671 1629 pir.F70871 Mycobacterium tuberculosis 36.2 5234 1656712 1657515 804 pir.S72778 Mycobacterium tuberculosis 41.0 5235 1656712 1657515 804 pir.C70871 Mycobacterium tuberculosis 43.0 5236 1659486 1651136 1629 pir.C71156 Pytrococcus horikoshii PH0450 23.4 5236 1661578 1662552 975 sp:GOR_ECOLI Escherichia coli K12 qor 37.5 9 5236 1663508 1662552 975 sp:GOR_ECOLI Escherichia coli K12 qor 37.6 9 5230 1664403 1666502 2100 gp:NVVCOXABC_3 Nitrohacterium glutamicum 100.0 0 5241 1666502 2100 gp:AMCLS33377_1	-	echocystis sp. PCC6803	41.0	73.0	493	ABC transporter
5232 1654043 1655671 1629 pir F70871 Mycobacterium tuberculosis 36.3 5232 1655681 1655671 1629 pir F70871 Mycobacterium tuberculosis 50.2 5233 1655681 1656700 1020 pir.S72783 Mycobacterium leprae 41.0 5234 1656712 1657515 804 pir.S72778 Mycobacterium leprae 41.0 5235 1659140 357 Mycobacterium tuberculosis 43.0 5236 1659496 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 23.4 5236 1661578 1662532 975 sp.QOR_ECOLI Escherichia coli K12 qor 37.5 9 5236 1663508 1662630 969 pir.NVCOXABC_3 Nitrohacter winogradskyi coxC 37.6 9 5240 1664403 1666502 2100 gp.NVCOXABC_3 Nitrohacterium glutamicum 100.0 1 5241 1666672 1080 sp.TAL_MYCLE Mycobacterium leprae 62.0 <td></td> <td>eptomyces coelicolor A3(2) C22.08c</td> <td>46.1</td> <td>71.4</td> <td>217</td> <td>DNA-binding protein</td>		eptomyces coelicolor A3(2) C22.08c	46.1	71.4	217	DNA-binding protein
5233 1655681 1656700 1020 pir.S72783 Mycobacterium leprae 50.2 5234 1656712 1657515 804 pir.S72778 Mycobacterium leprae 41.0 5235 1656712 1658675 999 pir.C70871 Mycobacterium luberculosis 43.0 5236 1659140 357 Mycobacterium tuberculosis 43.0 5237 1659508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 23.4 5237 1659508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 23.4 5239 1661578 1662630 969 pp:NWCOXABC_3 Nitrohacter winogradskyi coxC 37.6 9 5240 1664403 1665502 2100 gp:NWCOXABC_3 Nitrohacterium glutamicum 100.0 1 5241 1666573 16607752 1080 sp:TAL_MYCLE Mycobacterium leprae 62.0		cobacterium tuberculosis 7Rv Rv1459c	36.3	67.8	518	hypothelical membrane protein
5234 1656712 1657515 804 pir.S72778 Mycobacterium leprae 5234 1656712 1657515 804 pir.S72778 Mycobacterium tuberculosis 5235 1659496 1659140 357 H37Rv Rv1436c 5236 1659496 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 5237 1659508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 5238 1661578 1662552 975 sp. GOR_ECOLI Escherichia coli K12 qor 5239 1663598 1662630 969 gp:NVVCOXABC_3 Nitrohacter winogradskyi coxC 5240 1664403 1666502 2100 gp:AB023377_1 ATCC 31833 lkt 5241 16665752 1080 sp. TAL_MYCLE Mycobacterium leprae		cobacterium leprae	50.2	77.3	317	ABC transporter
5234 1656712 1657515 804 PILSTORY MLCL530.32 5235 1657677 1658675 999 PIC 70871 Mycobacterium tuberculosis 5236 1659496 1659140 357 PIC 71156 Pyrococcus horikoshii PH0450 5237 1659508 1661136 1629 975 sp. QOR_ECOLI Escherichia coli K12 qor 5239 1663598 1662552 975 sp. QOR_ECOLI Escherichia coli K12 qor 5239 1663598 1662530 969 gp:NWCOXABC_3 Nitrohacter winogradskyi coxC 5240 1664403 1666502 2100 gp:AB023377_1 ATCC 31833 ikt 5241 16665752 1080 sp. TAL_MYCLE Mycobacterium leprae		cobacterium leprae	41.0	74.8	566	hypothetical protein
5235 1658496 1658140 357 H37Rv Rv1456c 5236 1659496 1659 pir.C71156 Pyrococcus horikoshii PH0450 5237 1659508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 5238 1661578 1662552 975 sp:GOR_ECOLI Escherichia coli K12 qor 5239 1663598 1662563 969 gp:NWCOXABC_3 Nitrohacter winogradskyi coxC 5240 1664403 1666502 2100 gp:AB023377_1 ATCC 31833 lkt 5241 16667752 1080 sp:TAL_MYCLE Mycobacterium leprae		CL530.32	13.0	746	291	hypothetical protein
5236 1659496 1659140 357 Pyrococcus horikoshii PH0450 5237 1659508 1661136 1629 pir.C71156 Pyrococcus horikoshii PH0450 5238 1661578 1662552 975 sp.OOR_ECOLI Escherichia coli K12 qor 5239 1663598 1662630 969 gp.NWCOXABC_3 Nitrohacter winogradskyi coxC 5240 1664403 1666502 2100 gp.AB023377_1 ATCC 31833 lkt 5241 16665752 1080 sp.TAL_MYCLE Mycobacterium leprae		7Rv Rv1456c	5.5			
5237 1659508 1661136 1629 pir.C71156 Pyrococcus notivosmin 1 10 20 5238 1661578 1662552 975 sp. QOR_ECOLI Escherichia coli K12 qor 5239 1663598 1662630 969 gp:NWCOXABC_3 Nitrohacter winogradskyi coxC 5240 1664403 1666502 2100 gp:AB023377_1 ATCC 31833 lkt 5241 16665752 1080 sp.TAL_MYCLE Mycobacterium leprae		DHO450	73.4	51.0	418	helicase
5238 1661578 1662552 975 sp:GOR_ECOLI Escherichia coli N.2 qui 5239 1663598 1662630 969 gp:NWCOXABC_3 Nitrohacter winogradskyi coxC 5240 1664403 1666502 2100 gp:A8023377_1 ATCC 31833 lkt 5241 16665752 1080 sp:TAL_MYCLE Mycobacterium leprae		recoccus notikusini i i i i i i i i i i i i i i i i i i	37.5	70.9	323	quinone oxidoreductase
5239 1663598 1662630 969 gp:NWCOXABC_3 Nitrohacter winogradskyi coxC 5240 1664403 1666502 2100 gp:AB023377_1 ATCC 31833 lkt Mycobacterium leprae Mycobacterium leprae Mycobacterium leprae MLCL536.39 tal		scherichia coli N 12 qui				cytochrome o ubiquinol oxidase
5240 1664403 1665502 2100 gp:AB023377_1 ATCC 31833 lkt Mycobacterium glutamicum ATCC 31833 lkt Mycobacterium leprae Mycobacterium leprae		itrohacter winogradskyi coxC	37.6	8.99	295	synthase
5241 1666573 1667752 1080 sp.TAL_MYCLE MLCL536.39 tal		orynebacterium glutamicum TCC 31833 lkt	100.0	100.0	675	transketolase
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ycobacterium leprae ILCL536.39 tal	62.0	85.2	358	transaldolase

5		Function	glucose-6-phosphale dehydrogenase	oxppcycle protein (glucose 6- phosphale dehydrogenase assembly protein)	6-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphale dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclease ABC subunit C
15	Matched	length (a.a.)	484	318	258	128	200	205				259	128	405	333	324	309	281	701
20		Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0				9.66	51.0	98.5	99.7	87.4	82.5	76.2	61.5
•		Identity (%)	8.66	40.6	28.7	35.2	24.6	100.0				99.2	37.0	98.0	99.1	63.9	56.3	52.0	34.4
25	(na			Sis	ae ae		S	ıcum				icum	ae	nicum K	nicum P	osis	osis	osis	6803
30	lable 1 (continued)	Hornologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W sol3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterium glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium fuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechacystis sp. PCC6803 uvrC
40		db Match	gsp:W27612	pir.A70917	sp.SOL3_YEAST	SP. SAOX BACSN	gp. AF 126281_1	gp:CGL007732_5				sp:TPIS_CORGL	SP.YCQ3_YEAST	sp.PGK_CORGL	sp.G3P_CORGL	pir:D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	sp.UVRC_PSEFL
		ORF (bp)	1452 g	957 р	705	405			174	687	981	777	408	1215	1002	981	1023	927	2088
45		Terminal (nt)	1669401	1670375	1671099	1671273	1673123	1673266	1677384	1678070	1580128	1690332	1681670	1681190	1682624	1684117	1585110	1586152	1687103
50		Initial (In)	1667950		1670395	1671677	1671773	1674105	1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097	1686132	1687078	1689190
		SEO	(a.a.)		5245				5249	5250	5251	5252	5253	5254	5255	5256	5257	5258	5259
55			(DNA)		17.45		17.47	1748	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759

	Ĭ.								Τ-			\neg	Т		T	T								i		
·5					nazine	y rib operon	protein	hy rih operon	and 3 A	4-phosphate ynthesis)	nta chain	olla Cilalli	minase	-epimerase	L1/NOP2		yltransferase	ase	٠.	ne synthetase	netabolism				ō	
10		Function		hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin hiosvnthetic protein	nosecon in second por rib operon	olypepilde ellouco	GTP cyclonydrolase il ariu 3, 4. dihydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	100000000000000000000000000000000000000	riboflavin synthase alpita citari	riboflavin-specific deaminase	ribulose-phosphate 3-epimerase	nicipalar protein NOL 1/NOP2	(eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosomal protein n	S-adenosylmethionine synthetase	DNA/pantothenate metabolism	flavoprotein	hypothetical protein	guanylate kinase	integration host factor	
15		Matched	length (a.a.)	150 h	154 6	72		1	92	404	1	211	365	234		448	308	150	725	407	9	409	81	186	103	
20		Similarity	(%)	68.7	72.1	0 00	000	48.0	52.0	84.7		79.2	62.7	73.4		60.7	67.9	727	46.3	99.5		80.9	87.7	74.7	8	
•		Vitanti		32.7	43.5	6	0.80	26.0	44.0	65.6		47.4	37.3	3 67	0.53	30.8	41.6	7 44 7	3 5	200	33.5	58.0	70.4	39.8	9 6	90.0
25	(par			sis						losis ribA		.178 ribE	c	siae		Ę	ful coo	1111 BCO		200	MJ-233	ulosis	ulosis	risiae auk1	ulosis	
30	Table 1 (continued)		Homologous gene	Mycobacterium tuberculosis	H3/KV KV1417		Bacillus subtilis	Bacillus subtilis	Bacillus subfilis	Mycobacterium tuberculosis ribA		Actinobacillus	I opiredinomica car	Escherichia con N.2 1100	S288C YJL121C rpe1	Escherichia coli K12 sun		Pseudomonas aeruginosa min	Bacillus subtilis 168 dei	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis	H3/KV KV 1390	accidatoring tabelo	H37Rv Rv1388 mIHF
35				Myc	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Baci	Bac	Bac	. 2	,	Act	1	ESC	828	ı,		S	8	<u>~</u>	ă	ΣÏ	1	1	ñ	<u> </u>
40			db Match	MYCTU		sp:Risa_ecoci	GSP. Y83273	GSP-Y83272	CCD: V83273	0301 103210 22 AGON1020 1	3p.Ar.001323_1	en RISA ACTPL		Sp.RIBD_ECOLI	sp.RPE_YEAST	1000 1410	sp.son_ecor.	Sp:FMT_PSEAE	sp.DEF_BACSU		gsp:R80060	sp:DFP_MYCTU	WCTU	o de	pir:KIBYGU	pir.B70899
		-	ORF (bp)	1	2	27	228 : 0	+-	-+-		997	123	-	984	657		1332	945	507	2064	1221	1260	3	23	627	318
45			Terminal O	+-		1689869 4	1690921	+	+		1690360 1	000000	\dashv	1692275	1693262	+-	1693967	1695499	1596466	1697084	1699177	1700508		1/02032	1702411	1702991
50			Initial T		1689779 1	1690345 1	1500604				1691625		1692271	1693258	1693918		1695298	1696443	1696972	1699147	1700397	1701767		1702322	1703337	5277 1703308
				(a a)	5260 1	5261 1				5264 1	5265		2266	5267	5268		5269	5270	5271	_		5274		5275	5276	
55			SEQ SI	<u>-</u> 1	1760 5	1761 5	_	-	1763 5	1764 5	1765 5		1766	1767	1768	_	1769	1770		1777	1777	1776		1775	1776	1777

5		Function	phosphate sse	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	ase	asparlate carbamoytransferase
15			orotidine-5'-phosphate decarboxylase	carbamoyl-r large chain	carbamoyl-g small chain	dihydroorotase	aspartate ca
15		Matched length (a a)	276	1122	381	402	311
20		identity Similarity (%)	73.6	77.5	70.1	2.78	7.8.7
	-	Identity (%)	51.8	53.1	45.4	42.8	48.6
25	Table 1 (continued)	ana gene	uberculosis	arB	eruginosa A	cus DSM 405	eruginosa
<i>30</i> <i>35</i>	Table 1	Homologous gene	Mycobacterium to H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692
40		db Match	834 sp.DCOP_MYCTU Mycobacterium tuberculosis	3339 pir.SYECCP	1179 Sp.CARA_PSEAE	1341 Sp.PYRC_BACCL	936 SP.PYRB_PSEAE
		ORF (bp)	34 sp.[339 pir.	179 Sp.(341 sp:I	936 sp.!
45		Terminal O	1703517 8	1704359 3:	1707706	1709071	1710413 9
50		Initial (nt)	1704350	1707697	1708884	1710357	1711348
		SEQ NO (a a)	5278	5279	5280	5281	5282
		003	- 80	62	1 8	1 =	32

Function	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	dihydroorotase	asparlate carbamoyltransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance protem B (regulation of rRNA biosynthesis by transcriptional antitermination)	elongation factor P	cytoplasinic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepilin-like protein specific leader peptidase
Matched length (a a)	276	1122	381	402	311	176	297				137	187	217	361	166	142
Similarity (%)	73.6	77.5	70.1	67.7	79.7	80.1	73.4				69.3	98.4	100.0	99.7	100.0	54.9
Identity (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
Homologous gene	Mycobacterium fuberculosis H37Rv uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2216				Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13859 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 aroK	Aeromonas hydrophila tapD
db Match	sp.DCOP_MYCTU	pir.SYECCP	sp.CARA_PSEAE	sp:PYRC_BACCL	sp.PYRB_PSEAE	Sp.PYRR_BACCL	sp:Y00R_MYCTU				sp:NUSB_BACSU	sp:EFP_BRELA	gp:AF124600_4	gp:AF124600_3	gp AF124600_2	sp.LEP3_AERHY
ORF (bp)	834	3339	1179	1341	936	576	1164	477	462	210	681	561	1089	1095	492	411
Terminal (nt)	1703517	1704359	1707706	1709011	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716132	1716780	1717938	1719107	1720971
Initial (nt)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1711299	1714741	1716062	1716692	1717868	1719032	1719598	1721381
SEQ NO (a a)	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5292	5293
SEQ NO.		1779	1780	1781	1782	1783	1784	1785	1786	1787	1783	1789	1790	1791	1792	1793

																		
	Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyl-tRNA synthetase	hypothelical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
	Matched length (a a)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
	Similarity (%)	68.7	73.2		50.7	71.7	0.09	70.1	9.69	71.8	84.8		89.2	74.1	53.6	54.0		62.0
	Identity (%)	45.8	35.9		23.6	38.3	20.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU	-	Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
	db Match	gp:SC1A2_22	gp:AF109162_2		pir.A75169	sp FHUC_BACSU	pir.D70660	pir.E70660	pir:F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		SP.SYD_MYCLE	sp:Y08Q_MYCTU	SP.AMYH_YEAST	sp:YHGE_BACSU		gp:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1725625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
	Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740539	1741219	1741313
	SEO NO	5294	5295	5296		5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	5309	5310
	SEQ NO.		1795	1796		1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

5			Function	-	oxidoreductase		NADH-dependent FMN reducta
15			Identity Similarity Hength (%) (%)		37.1		116
20			Similarity (%)		88.1		77.6
	-		Identity (%)		72.8		37.1
25 30	٠	Table 1 (continued)	Homologous gene		Streptomyces coeficolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1
35					30 SS		
40			db Match		1113 gp.SCE15_13		495 SP.SLFA_PSEAE
			inal ORF (bp)	714	1113	126	495
45			Terminal (nt)	1742606	1743813	1743968	14 5314 1744025 1744519
50		!	Initial (nt)	1741893	12 5312 1742701	1743843	1744025
			SEQ NO (a a.)	5311	5312	3 5313	5314
			0,0€	=	12	<u>ت</u>	14

			· —			_	_												
Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydratase		alpha-glycerolphosphate oxidase	hislidyl-IRNA synthetase	hydrolase	cyclophilin		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
Matched length (a.a.)		37.1		116	462		598	421	211	175		128		760	185	49	558	332	
Identity Similarity (%)		1.88		9'22	71.4		53.9	72.2	62.1	61.1		100.0		6.66	100.0	98.8	6.09	57.2	
fdentity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		99.9	99.5	98.0	30.7	25.9	
Homologous gene		Streptomyces caeticolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 slfA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium giutamicum ATCC 13032 rel	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis H37Rv RV2585c	Escherichia coli K12 secF	
db Match		gp.SCE15_13		sp:SLFA_PSEAE	sp:SDHL_ECOLI		prf:2423362A	sp:SYH_STAAU	gp.CJ11168X3_12 7	prf:2313309A		gp:AF038651_4		gp:AF038651_3	gp:AF038651_2	gp:AF038651_1	SP Y08G_MYCTU	sp SECF_ECOLI	
ORF (bp)	714	1113	126	495	1347	861	1695	1287	629	507	237	555	342	2280	555	150	1743	1209	630
Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
Initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755/48	1757228	1758797	1759707
SEO NO (a a.)	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	5321	5322	5323	5324	5325	532E	5327	5328	5329
SEQ NO (DNA)	1811	1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1879

										 -	1	7			—-г	-;-	-	
	Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transponer, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyl-tRNA synthetase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
	Matched Iength (a a)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
	Similarity (%)	68.7	73.2		50.7	71.7	0.09	70.1	9.69	71.8	84.8		89.2	74.1	53.6	54.0		62.0
	Identity (%)	45.8	35.9		23.6	38.3	50.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU	-	Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerevisiae \$288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
	db Match	gp:SC1A2_22	gp: AF109162_2		pir.A75169	sp.FHUC_BACSU	pir:D70660	pir.E70660	pir:F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		SP.SYD_MYCLE	sp:Y08Q_MYCTU	SP. AMYH_YEAST	sp:YHGE_BACSU		gp:SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
	Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1725625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
	Initial (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811		1738679	1740559	1741219	
	SEO	5294	5295	5296		5299	5299	5300	5301	5302	5303	5304			5307	5308	5309	
		1794	1795	1796		1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

·5

5	Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or N- acetylglucosaminyl- phosphatidylinositol biosynthetic protein	acytransferase	CDP-diacylglycerol-glycerol-3- phosphate phosphalidyltransferase	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical protein		
15	Matched length (a.a.)	616	106	331	210	180	250	283	111	170	414	295	78	194	647	400		
20	Similarity (%)	52.0	66.0	81.9	74.3	63.3	78.4	68.6	61.3	612	49.3	67.8	78.0	78.4	68.9	51.8		
•	Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3		_
50 50 50 Table 1 (continued)	Homologous gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streptomyces coelicolor A3(2) SC10A5.09c	Mycobaclerium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C sp114	Streptomyces coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN		
<i>35</i>	db Match	prf.2313285A Rh	SD. YOBD_MYCLE ML	SD:RUVB_ECOLI ES	SP.RUVA_MYCLE My		Sp.YEBC_ECOLI Es	SP. TESB ECOLI ES		M) pir H70570 H3	sp:GP13_YEAST Sa	gp:SCL2_16 St	pir.C70571 H3	pir:D70571 HC	Sp. SYT2 BACSU Ba	Sp. YWBN_BACSU Ba		
•	ORF (bp)	1932 pi	363 81	1080	618 5	663	753 8	846 s	474 9	462 p	1083 s	963	657 p	099	2058 s		564	
45	Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990	1765015	1766442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	
50	Initial (n1)	1760734	1761367	1762498	1763134		1764742	1765860		1766948	1768030	1768996	1769678	1770340	1772384	1	1773881	
	SEO NO	5330	5331	5332	5333	5334	5335	5336	5337	5338	5339	5340	5341	5342	5343			
55	SEQ	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842	1843	1844	1845	

EP 1 108 790 A2

	_			-,		-			_	 -	_	$\overline{}$	$\neg \neg$	$\overline{}$	T	_	7	T		$\overline{}$		1				7
5		Function					vitransferase												ferric transport ATP-binding protein					stabolism		
10		Fun					Automorio Alacetylkans (erase	na filliand						ŀ					ferric transport A					pantothenate metabolism flavoprotein		
15		Matched length (a.a.)					2	GE -											202					129		
20		Similarity (%)					15	04.2											28.7					66.7		
-		Identity (%)						36.3											28.7					27.1		
25 -	ntinued)	gene						tus pac											afuC					djp s		
30	Table 1 (continued)	Homologous gene						Streptomyces anulatus pac											Actinobacillus pleuropneumoniae afuC					Zymomonas mobilis díp		
35		db Match					1	SP. PUAC_STRLP											SP AFIJC_ACTPL					gp:AF088896_20		
		ORF (bp)	378	594	1407	615	399	567 s	1086	1101	669	2580	1113	1923	483	189	312	429	287	666	159	1107	420	591	864	420
45		Terminat (nt)	1777646	1778037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1786907	1789562	1789768	1790057	1790461	1792438	1793426	1793496	1794820	1795621	1796181	1797049	1797769
50		Initial (nl)	1777269	1777444	1779508	1780168	1780905	1781585	1781705	1783281	1784080	1785473	1786944	1788329	1789080	1789580	1789746	1790889	5364 1791842	1792428	1793654	1793714	1795202		1796186	1797350
		SEO NO.		_	5350	5351	5352	5353	5354	5355	5356	5357	5358	5359	5360	_	5362	5363		5365	_	5367	5368		5370	5371
55		SEO			_	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

			\neg	T	T		T	T	\top	\neg	Т	1	1	1	- 1	1	1	- 1		ł	١	1	-		1		
5		Function																				transposon INZ I resolvase			protein-tyrosine phosphatase		
15		Matched	(a.a.)		-																T	186			164		
20		Similarity (%)																				78.0	 -		51.8		
	•	Identity (%)																				51.1	- - -		29.3		
25	بر (pen	·																			i				siae		
30	Table 1 (continued)	Homologous gene												1	-							Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		
35		db Match								-												sp:TNP2_ECOL!			sp:PVH1_YEAST		
40												<u> </u>		ļ 													
		ORF	(do)	120	/35	225	894	156	474	753	423	687	429	465	-	681	960	480	681	$\neg \neg$	375	_	-	375	477	726	423
45		Terminal	(ut)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806586	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1813606	1812460
50		Initial	(ut)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	5389 1808458	1809761	1810541	1811564	1812215	1812881	1812882
		SEQ	(a a.)	5372	5373	5374		5376		5378				5382	5383	5384	5385	5386	5387	5388		5390	5391	5392		5394	5395
55		0.0		872	873	874	875	876						882	883	884	1885	988	1887	1888	1889	1890	1891	1892	1893	1894	1895

5	
10	
15	
20	٠
25	÷,
30	
35	
40	
45	
50	

	Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
	Matched length (a.a.)	216									545					166	298	101			622		381
	Identity Similarity (%)	65.7									55.2					75.0	92.6	84.2			50 6		64.3
	Identity (%)	34.3									22.6					63.0	87.9	72.3			24.0		31.8
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermotoga maritima MSB9 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-01205 ORF13
	db Match	gp:SCA32WHIH_6									pir.C72285					PIR.S60891	pir:S60890	pir.S60889			sp:RECJ_ERWCH		pir.T13302
	ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
	Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
	Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1917 5417 1836675
	SEO NO. (a.a.)	5395	5397	5399	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
	SEQ NO. (DNA)	1896	1897	1898	1899	1900	1901	1902	1903	1904	1905	1906	1907	1908	1909	1910	1911	1912	1913	1914	1915	1916	1917

5		Function					
15		Matched length (a.a.)					
20		Identity Similarity Matched (%) (%) (94)					
•		Identity (%)					
25 Fairi	- [
30 September 1	ומחוב ו (הח	Homologous gene					
35		atch					+
40		db Match					
		ORF (bp)	2780	20.00	447	5	3
45		Terminal (nt)		1047131	1842681	1043377	1040001
50		Initiat (nt)		1030349	1842235	· •	1842014
		SEO NO.		24 18	5419	2	2470
			-1-	2	10	٠ ا د	ا د

_									Matched	
SEQ NO (DNA)	SEQ NO.	Initiat (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	(%)	Similarity (%)	length (a.a.)	Function
	5418	1838349	1842137	3789						
1919	5419	1842235	1842681	447						
_		1842804	1843337	534						
		1843518	1845356	1839	sp:Y018_MYCPN	Mycoplesma pneumoniae ATCC 29342 yb95	22.1	44.7	620	helicase
1922	5422	1845483	1845857	375						
 -		1845872	1846207	336	pir.T13144	Bacteriophage N15 gene57	36.7	64.2	109	phage N15 protein gp57
1924	5424	1846698	1846333	366						
1925	5425	1847315	1847932	618						
1926	5426	1847938	1848474	537						
1927	5427	1848509	1849036	528						
1928	5428	1848988	1849785	798	·					
1929	5429	1849781	1849966	186						
1930	5430	1850035	1850406	372						
1931	5431	1850415	1849978	438						
1932	5432	1851049	1850474	576						2.00
1933	5433	1851220	1852440	1221	gp:SPAPJ760_2	Schizosaccharomyces pombe SPAPJ760.02c	28.7	49.8	422	actin binding protein with SH3 domains
1934	5434	1851473	1852324	852						
1935	5435	1852479	1853873	1395						
1936	5436	1854261	1854854	594						
1937	5437	1855058	1855237	180						
1938	5438		1856788	1257	gp:SC5C7_14	Streptomyces coelicolor SC5C7.14	23.6	52.5	347	ATP/GTP binding protein
1939	5439	1856885	1858738	1854						
1940	5440		1860727	1965	1965 sp:CLPA_ECOLI	Escherichia coli K12 clpA	30.2	61.0	630	ATP-dependent Clp proteinase ATP-binding subunit

																	_						
5		Function					ATP-dependent helicase					hypothelical protein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical protein	
15		Matched length (a.a.)					693					224	208					363	358			504	
20		Similarity (%)					45.9					47.8	61.5					99.7	99.7			45.8	
,		Identity (%)					21.4					25.9	31.7					99.2	99.7			24.6	
25 °	Table 1 (continued)	auab si					reus SA20					licolor A3(2)	-C31 gp52					glutamicum A	glutamicum 3			licolor A3(2)	
30	Table 1 (C	Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52					Corynebaclerium glutamicum ATCC 13032 cgllM	Corynebaclerium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
35										!		ळ ळ	, and			_		OA	O A				
40		db Match					sp.PCRA_STAAU					gp:SCH17_7	prf.2514444Y					prf.2403350A	pir.A55225			gp:SC1A2_16	
		ORF (bp)	474	156	324	312	2355	558	378	465	264	777	702	225	2166	273	6507	1089	1074	1521	717	1818	186
45		Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671	1868927	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50		Initial (nt)	1860752	1861320		1862088	5445 1862945	1855265	1855842	1866328	1866832	1867098	1867886	1868895	1871092	1871373	1877886	1878312	1879412	1883990	1884936	1885230	1887405
		SEQ NO.	+			5444	5445	5446	5447	5448	5449	5450	5451	5452	5453	5454	5455		5457	5458	5459		5461
55		SEQ NO.		_			1945	1946	1947		1949	1950	1951	1952	1953	1954	1955	1955	1957	1958	1959	1960	1961

																				_
· 5			Function	case-related	ein		sin				Ip ATP-binding							pparatus protein		
10			.p.	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein		
15	ī		Matched length (a a.)	90	163		537				724							1004		
20)		Similarity (%)	70.0	56.4		47.9				52.5							49.1		_
	•		Identity (%)	46.7	33.1		20.7				25.3							20.1		
25	5	Table 1 (continued)	s gene	durans	je phi-gle		pXO2-16				рВ							шА		
3	o	Table 1 (Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coli clpB							Homo sapiens numA		
3	15		<u> </u>	مَ مَ	ية ش								_					I	+	_
4	40		db Match	gp:AE001973_4	pir.T13226		gp:AF188935_16				sp.CLPB_ECOLI			,				pir.S23647		_
			ORF (bp)	351	864	330	1680	1206	1293	2493	1785	621	1113	846	981	879	198	2766	900	1261
•	45		Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	,00000
	50		Initial (nt)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900916	1901911	1901975	1902883	1903028	1905878	1906572	
			SEO NO	5462	5463	5464	5465	5456	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	
	55		SEQ NO (DNA)		1963	1964	_	1966	1967	1968		1970	1971	1972	1973	1974	1975	1976	1977	

399

5481 1910508 1909501

1251 696

5																									
10	Function										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
15	Matched length (a.a.)										1408			61					114			328			
20	Similarity (%)										49.2			65.6					58.8			54.6			
•	Identity (%)		_				_				23.2			42.6			_		38.6			27.1			
55 Sapple 1 (continued)	us gene										stica			coR1					berculosis			annaschii			
o Salaria Table 1 (Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
35	db Match										pir. T03099			sp:MTE1_ECOLI					pir.H70638			sp:Y137_METJA			
40	ORF (bp)	360	222	312	645	759	549	930	306	29	4464 pir. 7	579	945	171 sp:A	375	1821	201	468	381 pir.	1	17	942 sp:)	624	210	534
	-	-	-		-					38 357		-	-	-		· 1			-	73 507	22 837		-		\dashv
45	Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1930990	1931421	1931935	1932373	1933522		1936849	1937411	1937486
50	Initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
	SEQ NO.	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496	5497	5498	5499	5530	5501	5502	5503	5504	5505	5506	5507	5508	5509
55	SEQ NO (DNA)	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

							_																		
5			Function										surface protein				major secreted protein PS1 protein precursor			DNA topoisomerase III					major secreted protein PS1 protein pracursor
15			Matched length (a.a.)										304				270			597					344
20			Similarity (%)										44 1				54.4			50.9					54.7
,	•		Identity (%)										23.0				30.7			23.8					29.7
25	-	Table 1 (continued)	us gene										calis esp				glutamicum lavum) ATCC			вдо					glutamicum lavum) ATCC
30		Table 1 (Homologous gene				·						Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1
35 40			db Match								-		prf:2509434A				sp.CSP1_CORGL			sp:TOP3_ECOLI					887 sp.CSP1_CORGL
	•		ORF (bp)	1911	534	588	444	753	303	216	309	885	828 p	297	381	429	1581 s	2430	867	2277 s	2085	891	432	744	1887
45			Terminal (nt)	1940135	-	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021	1951619	1952546	1956203	1958450	1959765	1960371	1961114
50			Initial (nt)	1938945	-		1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	5523 1948650	1951450	1952485	1954922	1958287	1959340	1960196	1961114	5531 1963000
			SEQ NO.	5510		5512		5514	5515	5516	5517	5518		5520	5521	5522		2024 5524	5525	5526		5528	5529	5530	5531
55			SEQ			_					2017	2018	2019		2021		2023	2024	2025	2026	2027	2028	2029	2030	2031

EP 1 108 790 A2

5	ion														A-binding protein												
10	Function				thermonuclease	l							i		single stranded DNA-binding protein								serine protease				
15	Matched length (a.a.)				227										225								249				
20	Similarity (%)				57.7										59.1								52.6				
•	Identity (%)				30.4										24.9								25.7				
Table 1 (continued)	us gene				ureus nuc										q,								se AgSP24D				
Table 1	Hamologous gene				Staphyiococcus aureus nuc										Shewanella sp. ssb								Ancpheles gambiae AgSP24D				
<i>35</i>	db Malch				sp NUC_STAAU						,				prf.2313347B								sp.S24D_ANOGA				
	ORF (bp)	1230	1176	357	684 s	147	564	1452	459	1221	1419	591	396	237	624 p	579	462	202	588	333	258	270	912 s	693	366	747	180
45	Terminal (nt)	1963514	1964727	1965911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979809	1980885	1981657	1982028	1982817	1981912
50	Initial (nt)	1964743	1965902	1966267	1966301	1967435	1967604	1968264	1969745	1970254	1971672	1973147	1973809	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663	1982071	1982091
	SEQ NO (a a.)	5533	5534	5535	5536	5537	5538	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	
55	SEQ NO. (DNA)	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	202	2053	2054	2055	2056	2057	2050

EP 1 108 790 A2

5		Function								integrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein precursor	integrase
15	Matched	lergth (a.a.)								406	124	117		31	63	270					153	223
20		Similarity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
		Identity (%)								29.6	83.9	70.9		80.7	74.4	31.1					25.0	28.7
25 Sec. 25	(continued)	Homologous gene								phage L5 int	lactofermentum I	Brevibacterium lactofermentum CGL 2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	m glutamicum	oelicolor A3(2)					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	phage L5 int
30 <u>.</u> 1	lane i	Homolog								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL 2005 ISaB1	Brevibacterium la CGL 2005 1SaB1		Brevibacterium la CGL2005 ISaB1	Corynebacterium glutamicum ort1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATC(17965 csp1	Mycobacterium phage L5 int
35 40		db Match								SP.VINT_BPML5	gsp:R23011	gsp:R23011		gsp:R21601	pir:S60889	gp:SCJ11_12					sp.CSP1_CORGL	687 Sp. VINT BPML5
		ORF (bb)	363	273	264	234	342	273	303	1149 S	390	417	207	_	135	828	354	891	432	744	1584	189
45		Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985354	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
50		Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373		1987896	1988303	1088383		1988664	1989605	1990667	1990764	1991620	1992538		1995294
		SEO NO (a a.)	+	5560	5561	5562	5563	5564				5568	5560		5571	5572	5573					5578
55		SEQ NO (DNA)				2062	. 2063			2066	2067	2068	2060	2070	2071	2072	2073	2074	2075	2076	2077	2078

EP 1 108 790 A2

5	Function	sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothelical protein	ribonuclease D	1-deoxy-D-xylulose-5-phosphate synthase	RNA methyltransferase		hypothetical protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein	
15	Matched length (a.a.)	88	92			233	384	126		232	201	371	618	472		268	140	150	
20	Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2	786	528	78.5	52.3		62 7	82.1	70.7	
•	Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	55.3	25.4		38.1	55.0	46.0	
25 , (2011) Table 1 (continued)	ar gene	26695	аА			berculosis D	berculosis	rdonii msrA		berculosis	berculosis	Jenzae Rd	CL 190 dxs	tima MSB8		berculosis	elicolor A3(2)	uberculosis	:
30 Table 1 (0	Homologous gene	Helicobacter pylon 26595 HP0214	Bacillus subtilis yxaA	i		Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd KW20 H10390 md	Streptomyces sp. CL 190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium tuberculosis H37Rv Rv2698	
35	db Match		sp.YXAA_BACSU					gp:AF128264_2				SP.RND_HAEIN	gp:AB026631_1	pir:E72298		pir.C70530	sp.DUT_STRCO	ptr:E70530	
40		pir.F64546	-			pir.C70968	pir.E70968			pir:H70968	pir:C70528				1	+		+	7
	ORF (bp)	306	432	345	336	969	1254	408	426	969	624	1263	1908	1236	3 282	961	3 447	3 549	5 207
45	Terminal (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1999707	2900521	2002112	2003334	2003402	2005452	2006979		2007738	2008798	2008876
50	Initial (nt)	1996088	1996106	1996768	1997168	1997545	1998289	1999542	2000132		2001489	2002072	2005309	2006697	2006698	-	2008184	2008250	2009082
	SEO		5580	5581	5582	5583	5584	5585	5586	5587	5588	5589		5591	5592		5594	5835	5596
55	SEO	(DNA) (a.a.) 2079 5579	2080		2082	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096

EP 1 108 790 A2

	Function	hypothetical protein	extranenic suppressor protein		polyphosphate glucokinase	sigma factor or KNA polymerase transcription factor	hypothetical membrane prolein		hypothetical protein	hypothetical membrane prolein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
	Matched length (a.a.)	9	108	2	248	200	422		578	127	76	523	144	228	7.7	329		305	- 661
	Similarity (%)	81.0	602	7.00	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	9.66	64.0	,		79.0	50.7
	Identity (%)	58.0	7 00	38.4	54.4	0.86	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1	-	45.3	24.4
Table 1 (continued)	Homologous gene	Mycobacterium Luberculosis	H3/KV KV2089C	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium tactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
	db Match	nir F 70530		Sp. SUHB_ECOLI	Sp PPGK_MYCTU	prt.2204286A	SP YRKO BACSU.		sp Y065_MYCTU	pir H70531	pir.G70531	gp SCH5_8	prf.2204286C	pir 140339				pir.E70532	2550 sp:MTR4_YEAST
	ORF (bp)	201		816	828	1494	1335	537	1710	636	237	1533	432	684	 -		1323	_	
	Terminal (nt)	OBCOUNT	70035007	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313		2023948		2029043
	Initial (nt)		0/66007	2010539	2010555	2011863	2015496		2017966	2018119	2018202	2018744	2020293		2022202	2022959	2025270		2026494
	SEO NO.		2287	5598 2		2600	. 1093		5603	5604	5605	9095	5607	000		5610	5611		
		_	2002	2098				\neg			2105	2106	2107	3	901.	2110		2112	2113

EP 1 108 790 A2

5	Function	hydrogen peroxide-inducible genes activator	ATD dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	giycerol-3-phosphate regulon repressor	1-phosphofructokinase or 6- phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding protein			diaminopimelate epimerase
15	Matched length (a a)	299	8000	1		222	245	320	265	262	345	549	81		407	419			569
20	Similarity (%)	65.6	10.2	86.2		71.6	67.8	55.6	64.0	62.6	55.7	9.69	71.6		70.5	80.C			64.7
•	Identity (%)	35.8	5	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			33.5
55	us gere	жуR		rrpA		linR	<12 gatR	elicolor A3(2)	ermophilus ptsl	K12 glpR	sulatus fruK	K12 fruA	ermophilus XL-		cus pyrP	idiae orf11*			luenzae Rd apF
	Homologous gere	Escherichia coli oxyR		Escherichia coli firpA		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			Haemophilus influenzae Rd KW20 HI0750 dapF
<i>35</i>	db Match	SP OXYR_ECOLI		SP HRPA ECOLI		SP.LEXA_BACSU	SPICATR ECOLI	1	sp.PT1_BACST	sp:GLPR_ECOU	sp:K1PF_RHOCA	Sp.PTFB_ECOLI	Sp.PTHP_BACST		sp:PYRP_BACCL	gp:AF145049_8			831 Sp.DAPF_HAEIN
-	ORF (bp)	981 sp		3906 sp	_	+	777 Sp	960	1704 SF	792 sp	38 066	1836 sp	267 54	582	1287 SF	1458 9	785	537	831 5
45	Terminal (nt)	2030157	1	2035383	+-	 	2038591	2039550	2039619	2042519	2043508	2045571	2046028	2946714	2047320	2048650		2051842	2051845
50	Initial (nt)	72029177	2031365	2031478	2035609	2036812	2037815	2038591	2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	2052675
	SEO	5614	5615		551B	5519		5621	5622	5623	5624	5625	5625	5627				5631	5632
55	SEO	2114	2115	2116	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	2132

																			_ 1		- 1	1
5		Function	phosphate		ıtein				hypothetical membrane protein	otein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to	be useful antigens for vaccines and diagnostics	sport system ein	sport system ein	ein	otein		g,	putrescine transport ATP-binding	protein	
10		นี	tRNA delta-2- isopentenylpyrophosphate transferase		hypothetical protein				hypothetical me	hypothetical protein	glutamate trans protein	Neisserial poly	be useful antig diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine tran	protein	llypoureucu
15		Matched length (a a)	300		445				190	494	242		71	225	273	142	67		197	223		977
20		Similarity (%)	68.7		75.7				63.7	86.4	9.66		73.0	100.0	9.66	6.99	71.6		61.4	5 0 5	4	28.8
•		Identity (%)	40.0		. 48.5				29.0	68.4	9.66		0.99	100.0	99.3	34.5	40.3	_	33.0	33.7	3.00	24.6
25 25	inca)	9.	AA		losis				llosis		micum			micum	Imicum n) ATCC	recX	ulosis		>		5)0(6	
30 5145T	lable I (coluin	Homologous gene	Escherichia coli K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731		-		Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae	Corynebacterium glutamicum	41 CC 13032 gray	Neisseria gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glulamicum (Brevibacterium flavum) ATCC 13032 aluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Your Subsections biox	Dacinus spinacione	Escherichia coil N.12 pulo	Bacillus subtilis ybaF
35			<u> </u>	-				.,	21			1		+		+	1		1	BACSH	כסרו	1
40		db Match	sp MIAA_ECOLI		pir:870506				pir.C70506	Sp.Y195_MYCLE	Su GLUA CORGL		GSP:Y75358	sp:GLUC_CORGL	sp:GLUD_CORGL	SU RECX MYCLE	pir:A70878				sp.POTG_ECOLI	pir:F69742
		ORF (bp)	903	675	1359		1020	1023	699	1566	726	1	219	684	819	507	+	÷	+	576	669	60
45		Terminal	2052684	0000000	2055761		2054724	2056787	2057120	2057855	2080499	25.0007	2060196	2062312	2063259	2061208		 -	-+	2067141	2067866	2068474
50		luitial	2053586	000	2054203		2055743	2055765		2059420			2060414	2061629		700000	2065627			2066566	3 2067 168	5649 2067866
		SEO	(a.a.) 5633		5635		5636	5637	5638			3540	5641	5642			5645		5646	5647	5648	
55		SEQ	(DNA)		2134	2	2136	2137	2138	2130		2140	2141	2142	2143		2144		2146	2147	2148	2149

	ſ			Γ	T				Т	—Т	\neg	\top	ī		\neg		Т			П	\neg
5				kD protein)		protein)	panpi	sphate		coccal		ein	otein E						hate	\$15	
10		Function	hypothetical protein	hypothetical protein (35kD protein)		regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein	nucleoside hydrolase
15		Matched length (a.a.)	228	269	3	83	165	160	117	30		358	845	216	645	250			742	89	319
20		Similarity (%)	78.5	80 8	0.50	78.3	68.5	72.5	52.1	70.0		59.8	64.6	61.0	99.4	9.66			85.3	88.8	63.3
	•	Identity (%)	417	3.05	(2.3	54.2	41.8	38.8	24.8	90.0		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
25	inued)	ene	udocie	culosis		culosis	noniae R6X	nes pgsA		noniae			spollE	olor A3(2)	tamicum	tamicum ofermentum)			oticus gpsl		
30	Table 1 (continued)	Homologous gene	at the state of the bost of the second second	Mycobacterium tuberculosis	H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptacoccus pyagenes pgsA	Arabidopsis thaliana ATSP: T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spolllE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gps1	Bacillus subtilis rpsO	Leishmania major
35				\neg		ΣI	1		44				ns							-	
40		db Match		pir:B601/6	sp:35KD_MYCTU	pir:H70878	sp.CINA_STRPN	pri:2421334D	pir:T10688	gp.AF071810_1		prf 2119295D	sp:SP3E_BA	gp:SC4G6_14	sp.YOR4_CORGL	sp:YDAP_BRELA			prf:2217311A	pir:F69700	
		ORF (bb)			828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	+
45		Terminal		2069392	2068556	2069616	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813	2082105	!	2085435	2085879
50		Initial		2068703	2069383	2069936	2070512	2071121	2071315	2071624	2072066			2077024	2079275	2081136	2082115			2085702	
		SEO	(a a.)	2650	5651	5652	5653	5654	5655	5656	5657	5658	5659		5661	5662	5663			5666	
55		SEQ	(DNA)	2150	2151	2152	2153	2154	2155	2155	2457	215R	2159	2160	2161	2162	2163	2164	2165	2166	2167

	Function	bifunctional protein (riboflavin kinase and FAD synthetase)	IRNA pseudouridine synthase B	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	ribosome-binding factor A	translation initiation factor IF-2		hypothetical protein	n-utilization substance protein (transcriptional termination/antitermination factor)		hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC-	- Caraca
	Matched length (a a)	329	303	47	237	273	433	308	108	1103	3	83	352		165	534	337	292	552	
	Similarity (%)	79.0	61.7	73.0	62.5	68.9	78.8	708	70.4	62.0	070	66 3	710		65 5	609	69 4	69 2	813	4
	Identity (%)	56.2	32.7	65.0	42.2	46.9	51.0	36.7	12.4	27.7	2.75	44.6	42.3		34.6	25.3	37.7	38.4	57.6	
Table 1 (continued)	Homologous gene	Corynebacterium	Bacillus subtilis 168 truB	Corynebacterium ammoniagenes	Streptomyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis	131 No 1825 200 2010	Bacillus subtilis 100 fold	Stigmatella aurantiaca DW4 infB	Streptomyces coelicolor A3(2) SC5H4.29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis	Dacillus subtilis 168 dopE	Pro-training society of the R	Eschelicina con 172 appe	Mycobacterium tuberculosis	H37Rv Rv3663c dppD
	db Match	Sp. RIBF CORAM	TOUR BACSII	PIR:PC4007	gp:SC5A7_23	pir.B70885	pir:G70693	pir.H70693	-	sp:RBFA_BACSU	2 sp:IF2_STIAU	gp:SC5H4_29			4 pir.E70588			-+	g pri:1/09239C	1731 pir.H70788
	ORF (bp)	_ ;		228	651	804	1305	966		5 447	2 3012	4 336	966 0	5 1254	4-			- 		-
	Terminal (nt)	2086019	200007	2087954	2089218	2089861	2090751	2002051	_	2093055	2093712		_	2100000			2101841		<u>-</u> -	3 2105703
	Initial	10000	2000 700134	5669 2087973	2089966	2090664	2092055	2002046	0400607	2093501		2097179	2098375	20000	7069607	2680 2036343	2100240	2102023	2102975	2103973
	SEO	(e e)		5669	5671	5672			20/4	5675		5677	5678				5681	5682.	5683	5684
	SEQ S		2168	2169					21/4	2175	2176	2477	2178		2179	2180	2181	2182	2183	2184

	Function	prolyl-IRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunil	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein		glutathione reductase				methionine aminopeotidase	posicilia kindina profein	permenun omenug Processi	system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
	Matched length (a.a.)	578	243	37	342	237	488	151	338		466				253	202	030	216	424	360
	Similarity (%)	84.6	65.0	60.7	9.69	73.8	68.7	62.3	65.7		76.6				9 2 5	0.07	29.2	72.2	56.8	58 1
	Identity (%)	67.0	39.5	32.4	45.5	49.0	41.2	35.1	37.6		53.0					+	27.3	44.0	29.5	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii	Clostridium perfringens NCIB	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis	H37Rv Rv2854	Burkholderia cepacia AC 1 100 gor					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae	Corynebacterium diphtheriae chrS	Deinococous radiodurans DRA0279
	db Match	sp:SYP_MYCTU	1	SP. BCHD_RHOSH	- 4.0503483AA	pri.2303402.PG	J. P.	an SC5H1 10		pir.A/usao	SP.GSHR_BURCE					Sp. AMPM_ECOLI	5 prf.2224268A		9 prf.2518330A	gp AE001863_70
	ORF (bp)	1764	735	759	3	יטרו אַ	1422	Ş		1014	1395	942	474	357	729	789	1866	630	1149	957
	Terminal	2105801	2108386	2108389		2109155	2112659	7177117	13113	2116//4	2118310	2117015	2119080	2119495	2120356	2120359				
	Initial	2107564	2107652	2109147		2110255	2111183	7177117	0105.12	2115761	2116916	2117956		2119139			2123161		2124996	
	SEQ.						5689	0800	200	5695	5693	5694	5695	9699	5697	5698	5699			
	SEQ								1612	2192	2193	2194	2195	2196	2197	2198	318	2200	2201	2202

																	-								
5					cpE protein)			ne protein	ısed äs ımydia	-phosphale					-binding prolein	se 1 activating		ne protein	lyltransferase	actor				in S2	
10		Function	ABC transporter		hypothetical protein (gcpE protein)			hypothetical membrane protein	polypeplides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphale	reductoisomerase				ABC transporter ATP-binding prolein	pyruvate formate-lyase 1 activating		hypothetical membrane protein	phosphatidate cytidylyltransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2	
15		Matched length (a a)	225		359	1		405	147	55	312				245	356		94	294	185	109		280	254	
20		Similarity (%)	71.1		73.8			73.6	43.0	00,	42.0				75.1	78.0		74.5	56.5	84.3	43.1		76.8	83.5	
•		Identity (%)	37.3		7 44 7	2		43.0	36.0		22.8				37.1	0.99		41.5	33.3	47.0	28.4		49.6	54.7	
25	led)							Sis							SB8	losis		losis	sa		sa pyrH		r A3(2)		
30 :	Table 1 (continued)	Homologous gene	Orw 168 office 168 or	מכווות פתחנווו ומס לבים		Escherichia coil N 12 gcpc		Mycobacterium tuberculosis H37Rv Rv2869c	Cnlamydia trachomatis		Escherichia coli K12 dxr				Thermotoga maritima MSB8	Mycobacterium tuberculosis	H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2)	Bacillus subtilis rosB	ביבוות המחור ביבווות הביבווות הביבוות ביבות הביבות הביבות הביבות הביבות הביבות הביבות הביבות הביבות הביבות הביבות הביבות הביבו
35		atch				ECOLI				+					i	1	sp. r sau_mi ci c		sp:CDSA_PSEAE	BACSU	3550		SP. EFTS STRCO	9	660
40		db Match		pr(2420410P		sp.GCPE		pir.G70885	GSP: Y37145		176 sp. DXR_ECOLI				pir:B72334			pir A70801	sp:CDS/	sp.RRF	orf 2510				pir. Abyoyy
		ORF (bp)	-+-	069	162	1134	612	1212	645		1176	441	480	1578	+	+-	860	258	855	5,5,5	+			-	816
45		Terminal (nt)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2126753	2126926	2127350	2129461	2128669	2130950		2129903	2131762	2131247		2133406		2134454	2136141	2136235	307701C	_		2139003		2140896 2140071
50		Initial	1	2126064	2127087	2128483	2128850	2129880	2130306		2131078	2131322	2131726	2113402	2134260 2133406		2135551	2135884	2137089				2138994		
		SEO	(a a)	5703	5704	5705	5706				5709	5710					5714	5715	5716				5719	-	5721
55		SEQ	2	2203	2204		2206				2209	2210	_		22.12	1	2214	2215	2216		2217	2218	2219	2250	2221
			-		1	1				_				_											

EP 1 108 790 A2

	Function	hypothetical protein	i de la companya de l	site-specific reconfigurase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII			signal pepudase	Fe-regulated protein	on interconstruction 19	thismine phosphate	pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme thiS (thiG1) protein	thiamine biosynthetic enzyme thiG	protein	molybdopterin biosynthesis prote in
	Matched length (a.a.)	120		297	395	504	119	101	190			782 782	323	;		225	376	62		251	437
	Similarity (%)	58.0	233	68.7	66.B	75.8	72.3	ე.მ6	69.5			61 1	59 1		88.3	6.09	64.1	74.2		76.9	26.8
	Identity (%)	46.0	P.	40.1	39.8	46.6	40.3	68.3	42.6			32.3	25.4		70.3	28.4	34.0	37.1		48.2	30.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculósis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd H11059 rnhB		1071	Streptomyces lividans 1821 sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rp!S	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2)	Escherichia coli K12 thiS		Escherichia coli K12 thiG	Emericella nidulans cnxF
	db Match	1	sp:YS91_MYCTU	prf.2417318A	UTO	sp:YX28_MYCTU	sp:YX29_MYCTU	Sp:YT01_MYCTU	sp:RNH2_HAEIN			prf.2514288H	prf.2510361A		sp.RL19_BACST	Sp:THIE_BACSU	gp:SC6E10_1	EN THIS ECOLI	ap. 11.0	sp:THIG_ECOL!	prf.2417383A
	ORF (bp)	-	504	924		1521	366	303	627	- 1	792	786	936	213	339	663	1080	10 A	6	780	1134
	Terminal (nt)		2141760	2141763		2144066	2145576	2146264	2146566		2148022	2147261	2149166	2149359	2149634	2150997	2152118		6767617	2153113	2154191
	Initial		2141257	2147686		2145586	2145941	2146566	2147192		2147231	5730 2148046	2148231	2149571		5734 2150335	2151039		2152135	5737 2152334	2153058
	SEO	(a a)	5722 2	5333			5726		 -		5729			-	5733	5734			5736	-	5738
		(DMA)	2222		2224		2226		2228	227	2229	2230	2231	2232	2233	2234	7235	7,635	2236	2237	2238

Matched length (aa,) 776 334 456 65 350 273 273 273 172 196 256 318 318	Similarity (%) 78.7 65.3 78.3 80.0 66.3 66.3 66.7 66.7 79.5 61.7 69.5 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8	(%) (%) 56.6 55.6 40.0 40.0 39.1 39.1 252.3 252.3 252.3 25.5 558.7 58.7 58.7 58.7	Table 1 (continued) Homologous gene Bordetella pertussis TOHAMA I tex Bacillus subtilis 168 degA Chlamydophila pneumoniae CWLG29 ybhl Spinacia oleracea chloroplast Pseucomonas putida pcaB Pseucomonas putida pcaB Recherichia coli K12 tmD Streptomyces coelicolor A3(2) SCF81.27 Mycobacterium leprae MLCB250.34 rimM Helicobacter pylori J99 jhp0839 Bacillus subtilis 168 rpsP Mus musculus inv Streptococcus agalactiae cylB Pyrococcus horikoshii OT3 mtr. Bacillus subtilis 168 fth	db Malch sp TEX_BORPE pir.A36940 pir.H72105 prt.2108268A sp:PCAB_PSEPU sp.TRMD_ECOL1 gp:SCF81_27 gp:SCF81_27 sp.RIMM_MYCLE pir.B71881 prt.2512328G prt.2512328G prt.2512328G prt.2512328G sp.SR54_BACSU	0 2 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -			023 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	SEO S NO I NO I SEO S SEO >S SEO S S S S S S S S S S S S S S S S S S S
					7 669	7172877	E759 2172703	_	175B
		_					1/1/1/2	_	225/
		`			╁		. 2271746	_	
ļ	+						3 2170425		775B
	<u>;</u>	3	Bacillus subtilis 100 iiii		_		2169584		2255
559	78.2	587	Troccore	_	-+				2254
318	63.8	35.5	Pyrococcus horikoshii OT3 mtr/		+		666017	2,2	2253
256	69.1	26.6	Streptococcus agalactiae cylB	1	┿		00000	_	3 3
2 0	5 6	32.1	Mus musculus inv	_		ŀ	2165523		2252
196	617	33.4		-+	-				2251
83	79.5	47.0	Barillis subtilis 168 rosP	_	÷	_:	2164390	5750	2250
69	96.7	29.0	Helicobacter pylori J99 jhp0839	-	Ť			!;	:
711	(2.1	52.3	MLCB250.34. rimM						2249
					_	بــ			0.73
210	57.6	30.5	Streptomyces coelicolor A3(2)		+				07.0
273	64.8	34.8	Escherichia coli K12 trmD				•		247
					069				246
						2161111			
								5744	
			,		1	•		2	543
350	66.3	39.1	Pseucomonas putida pcaB	sp:PCAB_PSEPU	1251	2159287	2160537	5743	1 5
60	80.0	40.0	Spinacia oleracea chloroplast	prf 2108268A	219	2159019			
,			CWL029 ybhl	pir.m/zius	1428	2157754		5741	
456	78.3	45.8	Chlamydophila pneumoniae	nir H72105	1428	2157754		11.1	
	65.3	27.0	Bacillus subtilis 168 degA	pir.A36940	975	2156747		5740	
			tex	Sp IEA_BURFE	22.14	2154460		5739	
	78.7	56.6	Bordetella pertussis TOHAMA I	SHITEX BORPE	707	0977360		(33)	
length (a.a.)		Identity (%)	Homologous gene	db Match	ORF (bp)	Terminal (nt)	Initial (nt)	SEO.	
			Table 1 (continued)						
Function transcriptional accessory protein sporulation-specific degradation regulator protein dicarboxylase translocator 2-oxoglutarate/malate translocat 3-carboxy-cis, cis-muconate cycloisomerase hypothetical protein 16S rRNA processing protein 16S rRNA processing protein 30S ribosomal protein hypothetical protein ABC transporter signal recognition particle prote		Similarity Matched (%) (aa.) 78.7 776 65.3 334 78.3 456 80.0 65 80.0 65 66.3 350 64.8 273 57.6 210 72.1 172 66.7 69 79.5 83 61.7 196 65.1 256 65.1 256 65.1 256 65.1 256	1dentity Similarity Hatched (%) (%) (4a) length (56.6 78.7 776 27.0 65.3 334 456 40.0 80.0 65 339.1 66.3 350 39.1 66.3 350 27.3 30.5 57.6 210 25.3 32.1 61.7 196 26.6 69.1 256 35.5 63.8 318 58.7 78.2 55.9	1dentity Similarity Hatched (%) (%) (4a.) 56.6 78.7 776 27.0 65.3 334 45.8 78.3 456 40.0 80.0 65 39.1 66.3 350 39.1 66.3 350 30.5 57.6 210 52.3 72.1 172 52.3 72.1 172 52.3 72.1 196 172 52.3 72.1 196 173.1 61.7 196 174.0 79.5 83 26.6 69.1 256 174 35.5 63.8 318	apir A3E940 Table 1 (continued) sp TEX_BORPE Homologous gene Identity Similarity Matched (a) pir.A3E940 Bacillus subtilis 168 degA 27.0 65.3 334 pir.A3E940 Bacillus subtilis 168 degA 27.0 65.3 334 pir.H721085 Chlamydophila pneumoniae 45.8 78.3 456 prf.2108268A Spinacia oleracea chloroplast 40.0 60.0 65 sp.PCAB_PSEPU Pseucomonas putida pcaB 39.1 66.3 350 sp.TRMD_ECOLI Escherichia coli K12 trmD 34.8 64.8 273 sp.TRMD_ECOLI Escherichia coli K12 trmD 34.8 64.8 273 sp.TRMD_MAYCLE Mycobacterium leprae 52.3 72.1 172 sp.RIMM_MYCLE Mycobacterium leprae 52.3 72.1 172 sp.R144151 Mus musculus inv 32.1 66.7 69 prt.2512238G Streptococcus agalactiae cylB 26.6 69.1 26 prt.25122328G Streptococcus agalactiae cylB </td <td> Table 1 (continued) Homologous gene</td> <td> Table 1 (continued)</td> <td> Table 1 (continued) Table 1 (continued) Identity Similarity Matched (nt) (nt) (nt) (hp) > <td> Table 1 (continued) Continued Contin</td>	Table 1 (continued) Homologous gene	Table 1 (continued)	Table 1 (continued) Table 1 (continued) Identity Similarity Matched (nt) (nt) (nt) (hp) able 1 (continued) Continued Contin	

10	
15	
20	
25	•
30	
35	
40	
45	
50	

Table 1 (conlinued)

_									\neg	 -										$\neg \neg$	\neg
	Function			glucan 1,4-alpha-glucosidase or glucoamylase S1/S2 precursor		chromosome segregation protein	acylphosphatase		transcriptional regulator	hypothetical membrane protein			cation efflux system protein	formamidopyrimidine-DNA glycosylase	ribonuclease III	hypothetical protein	hypothelical profein	fransport protein	ABC transporter	hypothetical protein	
	Matched length (a a)			1144		1206	92		305	257			188	285	221	176	238	559	541	388	
	Similarty (%)			46.2		72.6	73.9		0.09	73.5			76.6	66.7	76.5	62.5	76.9	55.6	58.8	62.6	
	Identity (%)			22.4		48.3	51.1		23.9	39.3			46.8	36.1	40.3	35.8	50.0	28.3	26.6	35.3	
lable 1 (confinued)	Homologous gene			Saccharomyces cerevisiae S288C YIR019C sta1		Mycobacterium tuberculosis H37Rv Rv2922c smc	Mycobacterium tuberculosis H37Rv RV2922.1C		Escherichia coli K12 yfeR	Mycobacterium leprae MLCL581.28c			Dichelobacter nodosus gep	Escherichia coli K12 mutM or fpg	Bacillus subtilis 168 rncS	Mycobacterium tuberculosis H37Rv Rv2926c	Mycobacterium tuberculosis H37Rv Rv2927c	Streptomyces verticillus	Escherichia coli K12 cydC	Streptomyces coelicolor A3(2) SC9C7.02	
	db Match			sp.AMYH_YEAST		sp:Y06B_MYCTU	sp:ACYP_MYCTU		Sp:YFER_ECOLI	pir:S72748			gp.DNINTREG 3	sp.FPG_ECOLI	pir:869693	sp:Y06F_MYCTU	sp:Y06G_MYCTU	prf.2104260G	sp:CYDC_ECOLI	gp:SC9C7_2	
	ORF (bp)	159	702	3393	963	3465	282	1854	858	831	183	447	615	858	741	534	789	1644	1530	1122	441
	Terminal (nt)	2175888	2177103	2176110	2181880	2179628	2183110	2183405	2185351	2187129	2187342	2187233	2187692	2188313	2189166	2189906	2190540	2193165	2194694	2198004	2198007
	In tial (nt)	2176046	2176402	2179502	2180918	2183092	2183391	2185258			2187160	5770 2187679	2271 5771 2188306	2189170	2189906	2190439	2191328	2191522		2196883	2198447
	SEQ NO	5760	5761	5762	5763	5764	5765	5766	5767		5769	5770	5771	5772	5773	5774	5775	5776			5779
	SEQ NO.	2260	2261	2262	2263	2264	2265	2266	2267	2268	2269	2270	2271	2272	2273	2274	2275	2276	2277	2278	2279

	Function	hypothelical protein	peptidase	sucrose transport protein			maltodextrin phosphorylase / glycogen phosphorylase	hypothelical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
	length (a a)	405	353	133			814	295	264	169	228	88	258	241	245	210	402
	Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	97.7	94.0	97.6	92.4	54.0
	Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	52 8	97.3	94.0	95.9	86.7	25.6
 Table 1 (continued)	Homologous giene	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 FisH	Streptomyces lividans 66 cmIR
	db Match	pir A72322	sp:HIPO_CAMJE	pir:S38197			prf.2513410A	Sp.YFIE BACSU	sp.LGT_STAAU	sp.TRPG_EMENI	pir:H70556	sp.HIS3_RHOSH	sp.HIS6_CORG	prf.2419176B	gp:AF051846_1	gp:AF060558_1	266 sp.CMLR_STRLI
	CRF (bp)	1284	1263	336	135	276	2550	900	948	801	657	354	774	825	738	633	+
	Terminal (nt)	2199758	2291070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
	Initial (nt)	2198475	2199808	2201408	<u> </u>	2201869	2204541	2205493	2208249	2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
	SEO No 3	5780	5781	5782		•		57BG		5788	5789	5790	5791	5792	5793	5794	5795
	SEQ	2280	2281	2282	-:				2287		2289	2290	2291	2292	2293	2294	2295

·5	ion		nosphate		nase	protein			scid phosphatase		ng enzyme			drogenase	operon repressor	nt ATP-binding ne ABC				
10	Function		imidazoleglycerol-phosphate dehydratase	histidinci-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein
15	Matched length (a.a.)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
20	Similarity (%)		81.8	79.3	85.7	54.4			59.7	60.8	75.5	76.0	55.2	60.9	64.4	68.3	71.1	0.89	9'29	73.5
_	Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
25 (pa			(3(5)	(3)	S	mbe			cP-1	3 P1	treX	sis	43(2)	Υı	~					
s s Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 ytfH
<i>35</i>	db Match		sp:HIS7_STRCO	sp:HISB_STRCO	sp.HISX_MYCSM	gp:SPBC215_13	-		pri:2321269A	pir.RPECR1	prf:2307203B	pir.E70572	gp:SC2G5_27	prf.2503399A	Sp.GALR_ECOLI	sp:FHUC_BACSU	prf.2423441E	pir:G70046	pir:G70046	sp:YTFH_ECOLI
	ORF (bp)	225	909	1098	1326	1200	651	309	642	561	2508	801	774	101	966	798	1038	348	594	441
45	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
50	Initial (1r)	2215863	2216474	2217591	2218925	2219159	2221109	2221611	2221828		2222528		2226763	2227779			2230937			2232455
	SEO NO.	5796		5793	5799	2800	5801	5802	5803	5804	5805		5807	5808			5811			
55	SEQ NO.	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

_
_
\mathbf{c}
w
_
_
nued
-
conti
=
_
_
_
5
_
_
_
-
w
_
\sim
=
Table
_

					,		- 1		_ i	1	ı		- t	1	- 1	1	6	- 1	- 1	- 1	1
Function	DNA polymerase III epsilon chain		maltooligosyl trehalose syrthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		maltooligosyltrehalose trehalohydrolase	hypothetical protein	threonine dehydratase			Corynebacterium glutamicum AS019	DNA polymerase III	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein
Matched length (a.a.)	355		814	322					375	120		268	214	436			415	1183	279	149	198
Similarity (%)	50 1		58.6	52.E					54.4	79.2		72.4	72.4	99.3			49.6	80.5	73.8	55.7	64.7
Identity (%)	23.4		42.0	27.6			,		20.5	58.3		46.3	36.5	99.3			22.7	53.3	37.6	21.5	22.7
Homologous gene	Streptomyces coelicolar A3(2) SCI8.12		Arthrobacter sp. Q36 treY	Deinocccus radiodurans DR1631					Photorhabdus luminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.05		Arthrobacter sp. Q36 treZ	Bacillus subtilis 168	Corynetacterium glutamicum ATCC 13032 ilvA			Catharanthus roseus metE	Streptomyces coelicolor A3(2) dnaE	Escherichia coil K12 rarD	Campylobacter jejuni DZ72 hisJ	Archaeoglobus fulgidus AF2388
db Match	gp:SCI8_12		pir S65769	gp:AE002006_4					sp:LXA1_PHOLU	gp:SC7H2_5		pir:S65770	sp:YVYE_BACSU	sp:THD1_CORGL			pir:S57636	prf 2508371A	sp:RARD_ECOLI	sp:HISJ_CAMJE	pir:D69548
ORF (bp)	1143	909	2433	1023	399	198	189	1056	1044	378	231	1785	651	1308	507	156	1203	3582	940	468	918
Terminal (nt)	2234070	2234763	1	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892	2246295	2247006	2248358	2252856	2253659	2254642
Initial (nt)	2232928	2234158	2234852	2237331	2539092	2240042	2240246	2240563	2240681	2242115	2242359	2243035	2243043	2246171	2246386	2246450	2248208	2251939	2252017	2253192	5835 2253725
SEO NO (a a.)	5815	5816	5817	5818	5819	5820	5821	5822	5823	5824	5825	5826	5827			5830	5831				5835
SEQ NO (DNA)	2315	2315			2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (a.a.)	SEQ Initiat (a.s.) Terminal (bp) CRF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) S815 2232928 2234070 1143 gp:SCI8_12 Streptomyces coelicolor A3(2) 23.4 50 1 355	SEQ Initial NO (a.s.) Terminal (bp) CRF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5815 2232928 2234070 1143 gp:SCI8_12 Streptomyces coelicolor A3(2) 23.4 50.1 355 5816 2234158 2234763 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 605 6	SEO Notice (a.a.) Initial (in) Terminal (bp) CRF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 58 15 2232928 2234070 1143 gp:SCI8_12 Streptomyces coelicolor A3(2) 23.4 50 1 355 58 16 2234158 2234763 605 Arthrobacter sp. Q36 trey Arthrobacter sp. Q36 trey 42.0 58.6 814	SEQ Initial NO. (a. i.t.) Terminal (bp) CRF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 5815 2232928 2234076 1143 gp.SCI8_12 Streptomyces coelicolor A3(2) 23.4 50.1 355 5816 2234158 2234763 605 Arthrobacter sp. Q36 trey 42.0 58.6 814 5817 2234852 2237284 2433 pir.S65769 Arthrobacter sp. Q36 trey 42.0 58.6 814 5818 2237331 2238353 1023 gp.AE0020c6_4 Deinocccous radiodurans 27.6 52.E 322	SEQ NO (a a .) Initial (nt) Terminal (nt) CRF (bp) db Match Homologous gene (9%) Identity (9%) Similarity (9%) Matched (9%) Matche	SEQ NO (a a .) Initial (nl) Terminal (nl) CRF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Match	SEO Initial NO Initial NO Initial (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	SEQ NO (a a .) Initial (nt) Terminal (nt) CRF (bp) db Match (bp) Homologous gene (cb) Identity (cb) Similarity (cb) Matched (cb) Matched (cb) 815 2232928 2234070 1143 gp:SCIB_12 SCIB.12 SCIB.12 23.4 50.1 355 5816 2234158 2234763 606 Arthrobacter sp. Q36 trey 42.0 58.6 814 5817 2234852 2237331 2238694 399 Arthrobacter sp. Q36 trey 27.6 52.6 322 5819 2239092 2238694 399 DR1631 1 1 1 5820 2240042 2230865 189 1 1 1 1 1 5821 2240046 189 1 1 1 1 1 1 1 5821 2240566 189 1 1 1 1 1 1 1 5821 2240566 1 1 1 1 1 1	SEQ NO Initial (a a.) Initial (nt) Terminal (nt) ORF (b) db Match (b) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEO Initial (a.1) Terminal (n) (bp) CRF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) <th< td=""><td>SED (int) Intitial (int) Terminal (int) CRF (int) db Match (bp) Homologous gene (%) Indentity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <th< td=""><td>SEO Initial (a) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Ini</td><td>SEO NO. (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int)</td><td>SEQ Intital (a) (int) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b</td><td>SEC Initial (a.a.) Infinitial (m) (m) CRF (m) db Malch Homologous gene (%) Identify (%) Similarity (m) (m) (m) Malched (m) 5815 2234078 2234070 1143 gp.SCIB_12 Streptomyces coelicolor A3(2) 23.4 50.1 355 5816 2234158 2234763 605 Arthrobacter sp. Q36 trey 42.0 58.6 814 5817 2234852 2237331 2238694 399 Arthrobacter sp. Q36 trey 42.0 58.6 814 5819 2237331 2238894 399 Arthrobacter sp. Q36 trey 27.6 52.6 322 5820 2240042 2239895 189 Arthrobacter sp. Q36 trey 42.0 58.6 814 5821 2240046 399 Arthrobacter sp. Q36 trey 46.3 72.4 375 5822 2240066 7241734 1044 5p.CXA1_PHOLU Arthrobacter sp. Q36 trez 46.3 72.4 56.8 5824 2242139 2241738 378 3p.3 72.4 37</td><td>SEC Intial India Intial Intial Intial Intial Intial Intial Intial Intential d><td>SEO Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SED (a.m.) Terminal (m.) CRF (m.) CRP (m.) Ab Match Homologous gene (m.) Identity (m.) Abit (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) <t< td=""><td>SEO Initial (a.a.) (in) (bp) CRF (bb) db Match Homologous gene (ge,) (ge,) (ge) Identity (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge,) (ge) Matched (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (</td><td>SEO Initial in (mi) (mi) (bp) CRF (mi) (bp) db Match Homologous gene (gs) (sp) (sp) (sp) (mi) (sm) (sm) (mi) (sm) (sm) (sm) (sm) (sm) (sm) (sm) (sm</td></t<></td></th<></td></th<>	SED (int) Intitial (int) Terminal (int) CRF (int) db Match (bp) Homologous gene (%) Indentity (%) Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <th< td=""><td>SEO Initial (a) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Ini</td><td>SEO NO. (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int)</td><td>SEQ Intital (a) (int) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b</td><td>SEC Initial (a.a.) Infinitial (m) (m) CRF (m) db Malch Homologous gene (%) Identify (%) Similarity (m) (m) (m) Malched (m) 5815 2234078 2234070 1143 gp.SCIB_12 Streptomyces coelicolor A3(2) 23.4 50.1 355 5816 2234158 2234763 605 Arthrobacter sp. Q36 trey 42.0 58.6 814 5817 2234852 2237331 2238694 399 Arthrobacter sp. Q36 trey 42.0 58.6 814 5819 2237331 2238894 399 Arthrobacter sp. Q36 trey 27.6 52.6 322 5820 2240042 2239895 189 Arthrobacter sp. Q36 trey 42.0 58.6 814 5821 2240046 399 Arthrobacter sp. Q36 trey 46.3 72.4 375 5822 2240066 7241734 1044 5p.CXA1_PHOLU Arthrobacter sp. Q36 trez 46.3 72.4 56.8 5824 2242139 2241738 378 3p.3 72.4 37</td><td>SEC Intial India Intial Intial Intial Intial Intial Intial Intial Intential d><td>SEO Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SED (a.m.) Terminal (m.) CRF (m.) CRP (m.) Ab Match Homologous gene (m.) Identity (m.) Abit (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) <t< td=""><td>SEO Initial (a.a.) (in) (bp) CRF (bb) db Match Homologous gene (ge,) (ge,) (ge) Identity (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge,) (ge) Matched (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (</td><td>SEO Initial in (mi) (mi) (bp) CRF (mi) (bp) db Match Homologous gene (gs) (sp) (sp) (sp) (mi) (sm) (sm) (mi) (sm) (sm) (sm) (sm) (sm) (sm) (sm) (sm</td></t<></td></th<>	SEO Initial (a) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Initial (b) Ini	SEO NO. (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int) (int)	SEQ Intital (a) (int) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	SEC Initial (a.a.) Infinitial (m) (m) CRF (m) db Malch Homologous gene (%) Identify (%) Similarity (m) (m) (m) Malched (m) 5815 2234078 2234070 1143 gp.SCIB_12 Streptomyces coelicolor A3(2) 23.4 50.1 355 5816 2234158 2234763 605 Arthrobacter sp. Q36 trey 42.0 58.6 814 5817 2234852 2237331 2238694 399 Arthrobacter sp. Q36 trey 42.0 58.6 814 5819 2237331 2238894 399 Arthrobacter sp. Q36 trey 27.6 52.6 322 5820 2240042 2239895 189 Arthrobacter sp. Q36 trey 42.0 58.6 814 5821 2240046 399 Arthrobacter sp. Q36 trey 46.3 72.4 375 5822 2240066 7241734 1044 5p.CXA1_PHOLU Arthrobacter sp. Q36 trez 46.3 72.4 56.8 5824 2242139 2241738 378 3p.3 72.4 37	SEC Intial India Intial Intial Intial Intial Intial Intial Intial Intential SEO Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SED (a.m.) Terminal (m.) CRF (m.) CRP (m.) Ab Match Homologous gene (m.) Identity (m.) Abit (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) Match (m.) <t< td=""><td>SEO Initial (a.a.) (in) (bp) CRF (bb) db Match Homologous gene (ge,) (ge,) (ge) Identity (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge,) (ge) Matched (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (</td><td>SEO Initial in (mi) (mi) (bp) CRF (mi) (bp) db Match Homologous gene (gs) (sp) (sp) (sp) (mi) (sm) (sm) (mi) (sm) (sm) (sm) (sm) (sm) (sm) (sm) (sm</td></t<>	SEO Initial (a.a.) (in) (bp) CRF (bb) db Match Homologous gene (ge,) (ge,) (ge) Identity (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge) Matched (ge,) (ge,) (ge) Matched (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (ge,) (SEO Initial in (mi) (mi) (bp) CRF (mi) (bp) db Match Homologous gene (gs) (sp) (sp) (sp) (mi) (sm) (sm) (mi) (sm) (sm) (sm) (sm) (sm) (sm) (sm) (sm	

EP 1 108 790 A2

Table 1 (continued)	Terminal ORF db Match Homologous gene (%) (%) (bp) (bp)	58 2254683 876 sp.GS39_BACSU Eacillus subtilis 168 ydaD 48.2 80.0 280 general stress protein	124 2255739 1287 sp.DCDA_PSEAE Pseudomonas aeruginosa lysA 22.9 47.6 445 diaminopimelate (DAP)	12 2258362 951 sp.CYSM_ALCEU Alcaligenes eutrophus CH34 32.8 64.3 314 cysteine synthase	99 2259421 579	31 2260002 930 sp.RLUD_ECOLI Escherichia coli K12 rluD 36.5 61.0 326 ribosomal large subunit	167 2260934 534 sp.LSPA_PSEFL Pseudomonas fluorescens NCIB 33.8 61.7 154 lipoprotein signal peptidase	188 2262689 1032	150 2264499 1650 pir S67863 Streptomyces antibioticus oleB 36.4 64.0 550 oleandomycin resistance protein	2265298 303	108 2264509 600 prf.2422382P Rhodococcus erythropolis orf17 36.7 57.6 158 hypothetical protein	120 2266394 975 sp.ASPG_BACLI Bacillus licheniformis 31.2 62.0 321 L-asparaginase	197 2266897 1401 sp.DINP_ECOLI Escherichia coli K12 dinP 31.8 60.7 371 DNA-damage-inducible protein P	45 2268388 858 sp.YBIF_ECOLI Escherichia coli K12 ybiF 31.5 61.5 286 hypothetical membrane protein	2269260 1002 gp:SCF51_6 Streptomyces coelicolor A3(2) 44.3 73.1 334 transcriptional regulator SCF51.06	504 2270435 132	884 2270258 627 gp:SCF51_5 Streptomyces coelicolor A3(2) 42.0 67.0 212 hypothetical protein	49 2270988 3162 sp:SYIC_YEAST Saccharomyces cerevisiae 38.5 65.4 1066 isoleucyl-IRNA synthetase	888 2274473 216	961 2274767 1095
			-	 "	-	<u> </u>	-	-	-	-	-	-	-	-		<u> </u>		<u> </u>		+
	Initial T	2255558 2	2257024 2	2259312 2	2259999 2	2260931 2	2261467 2	2261688 2	2262850 2	5844 2264996 2	2265108 2	2265420	5847 2268297 2	2269245 2	2270261	2270304	2270884	2274149	2274688 2	5854 2275861 2
	SEO NO (3.3)	5836	5837	5838	5839	5840	5841	5842	5843		5845	5846		5848	2349 5849	0 5850	5851	5852	5853	4 5854
	SEQ NO.	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2345	2347	2348	234	2350	2351	2352	2353	2354

- 1	ļ					Table 1 (conlinued)			Matched	
出え e	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	length (a.a.)	Function
		2276637	2276353	285	pir:F70578	Mycobacterium tuberculosis H37Rv Rv2146c	46.3	73.2	82	hypothetical membrane protein
	5856	2277336	2276981	456	gp.BLFTSZ_6	Brevibacterium lactofermentum orf6	99.3	99.3	152	hypothetical protein (putative YAK 1 protein)
	5857	2276078	2277416	663	sp YFZ1_CORGL	Corynebacterium glutamicum	97.7	9.66	221	hypothetical protein
		2278859	2278122	738	prf:2420425C	Brevibacterium lactofermentum yfih	99.2	100.0	246	hypothetical protein
	5859	2279155	2279640	486	GP AB028868_1	Mus musculus P4(21)n	39.0	51.0	117	hypothetical protein
	2860	2280215	2278890	1326	sp.FTSZ_BRELA	Brevibacterium lactofermentum	98.6	98.6	442	cell division protein
1	5861	2281135	2280470	999	gsp.W70502	Corynebacterium glutamicum ttsQ	93.6	100.0	222	cell division initiation protein or cell division protein
, .	5862	2282623	2281166	1458	gp:AB015023_1	Corynebacterium glutamicum murC	99.4	93.8	486	UDP-N-acetylmuramatealanine ligase
	5863	2283775	2282661	1116	gp:BLA242646_3	Brevibacterium lactofermentum ATCC 13869 murG	98.9	99.5	372	UDP-N-acetylglucosamine-N- acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N- acetylglucosamine pyrophosphoryl- undecaprenol N-acetylglucosamine
	5864	2285431	2283782	1650	1650 gp:BLA242646_2	Brevibacterium lactofermentum ATCC 13969 flsW	99.4	9.66	490	cell division protein
2365	5865	2285904	2285437	468	gp:BL/\242646_1	Brevibacterium lactofermentum ATCC 13869 murD	99.1	99.1	110	UDP-N-acetylmuramoylalanine-D- glutamate ligase
2355	5866	5866 2286272	2286655	384						
		2286499	2286831	333						
2358	5868	2287959		1098	Sp.MRAY_ECOLI	Escherichia coli K12 mraY	38.6	63.8	365	phospho-n-acetylmuramoyl- pentapeptide
2369	5869	2289510	2287969	1542	sp.MURF_ECOLI	Escherichia coli K12 murF	35.0	64.2	494	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase
_				-						

5	
10	
15	
20	•
25	-
30	
35	
40	
45	
50	

	Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-bınding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothelical protein	5, 10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
	Matched length (a.a.)	491	57	650		323	143	137		190	303	329	484		125	684		411
	Similarity (%)	9'.29	100.0	58.8		79 3	88.8	69.3		65.3	70.6	62.0	69.6		68.8	62.4		58.4
	Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2		30.7
Table 1 (continued)	Homologous gene	Bacilus subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium feprae MLCB268, 11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
	db Match	sp.MURE_BACSU	GSP:Y33117	pir:S54872		pir.A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	sp.METF_STRU	pir.S32168	9p:MLCB268_16		pir.A70936	gp:AB019394_1		gp:MLCB268_21
	ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	207	369	2148	651	1236
	Termina! (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	2306218
	initial (nt)	2291073	2291197	2293164	2294117	2295127	2295804	2296898	2297653		2299428	2299524	2300706	2302179	2302619	2302833	2303690	2304983
	SEO NO.	5870	5871	5872	5873	5874	5875	5876	5877	5878	5879	5880	5881	5882	5883	5884	5885	5886
	SEQ.	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386

ubiquinol-cylochrome c reductase iron-sulfur subunit (Rieske (eFe-2S) fron-sulfur protein cyoß

203

57.1

37.9

Streptomyces lividans qcrA

gp:AF107888_1

672

2323088

5900 2323759

2400

ubiquinol-cytochrome c reductase cytochrome c

278

83.1

58.6

Mycobacterium tuberculosis H37Rv Rv2194 qcrC

sp:Y005_MYCTU

2401 | 5901 | 2325195 | 2324311 | 885

5	u C	ne protein	eptulosonate-7-		ine protein	in PS1 protein			ane protein			or (invasion-	or (invasion-	ie c reductase
10	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P50 precursor (invasion- associated-protein)	protein P60 precursor (invasion- associated-protein)	ubiquinol-cytochrome c reductase cytochrome b subunit
15	Matched length (a.a.)	434	462	166	428	440			249	245	383	296	191	201
20	Similarity (%)	62.0	87.9	7.77	64.5	57.1			100.0	100.0	75.7	60.8	61.3	64.7
	Identity (%)	30.4	6.99	58.4	35.1	28 2			100.0	100.0	50.1	26.4	33.0	34.3
25 (Po		sis	ei.		sis	oum VTCC			cum	cum	43(2)			
S S Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB268.21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacillus mobilis petB
35	-	Myc H37	Amy	MAY	My H37		_		ATC	A	S St	Lis	List	분
40	db Match	pir G70936	gp:AF260581_2	gp:MLCB268, 20	pir:G70936	sp:CSP1_CORGL			gp:AF096280_3	gp:AF096280_2	gp:SC6G10_5	Sp:P60_LISIV	sp.P60_LISGR	prf.2503462K
	ORF (bp)	1308	1386	504	2418	1449	204	\div	1188	735	1143	1047	627	1602
45	Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314036	2313915	2314235	2315678	2317633	2318804	2319968	2321472
50	Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833			2316412	2318775	2319850	2320594	5899 2323073
	SEQ.		5888	5889	5890	5891	5892	5893	5894	5895	5896	5897	5898	
55	SEO NO.		2388	2389	2390	2391	2302	7393	2394	2395	2396	2397	2398	2399

5	
10	
15	
20	
25	-
<i>30</i> -	
"÷ 35	
40	
45	
50	

	Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical prote:n	hypothetical membrane protein	cobinamide kinase	nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acety!transferase		lipoyltransferase
	Matched length (a a)	188		145	317	. 640	114	246	172	341	305		241	364	493	97	691		210
	Similarity (%)	70.7		71.0	53.9	8.66	100.0	60.2	64.0	6.99	49.8		68.5	70.3	62.9	67.0	68.5		65.7
	Identity (%)	36.7		38.6	28.7	99.7	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
Table 1 (continued)	Homologous gene	Syncchococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 ItsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seoulensis pdhB		Arabidopsis thaliana
	db Match	sp.COX3_SYNVU		sp:Y00A_MYCTU	sp.COX2_RHOSH	gp:AB029550_1	gp.AB029550_2	gp:MLCB22_2	pir. S52220		sp.COBV_PSEDE		prf 2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	pri:2110282A	gp:AF047034_2		gp:AB020975_1
	ORF (bp)	615	153	429	1077	1920	342	768	522	1089	921	237	714	1137	1500	393	2025	1365	753
	Terminal (nt)	2325273	2325121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	234.293	2339440	2342164
	Initial (nt)	2325887	2326273	2326900	2327997		2330927	5908 2331200	2331974	2332512	5911 2333615	2334717	2335741	2337051	2337235	2339140	2339269	2340804	2419 5919 2341412
	SEQ NO.	-	5903	5904	5905	2906	5907	8065	5909	5910	5911	5912	5913	5914	5915	5916	5917	5918	5919
	SEQ NO.		2403		2405		2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419

EP 1 108 790 A2

	_				 -					-					-	_		т	—т		_
5		ion	36	ane protein	ane protein	(3)		ane protein		in protein			nase alpha chain: alpha chain)	hibitor inhibitor)			etate permease	nsport protein	nsport protein		
10		Function	ipoic acid synthetase	hypothetical membrane protein	hypothetical membrane protein	transposase (ISCg2)		hypothelical membrane protein		mutator mutT domain protein	hypothetical protein		alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)	protein synthesis inhibitor (translation initiation inhibitor)			4-hydroxyphenylacelale permease	transmembrane transport protein	transmembrane transport protein		
15		Matched length (a.a.)	285	257	559	401	.	157		145	128		220	111			433	158	118		
20		Similarity (%)	6.07	76 7	67.8	100.0		63.7		44.0	65.6		6.09	73.0			53.4	72.8	66.1		
-		Identily (%)	44.6	45.5	32.9	100.0		41.4		31.0	36.7		25.0	40.5			21.9	42.4	31.4		
25	Ninued)	gene	us GRA BD	culosis	yidE	ıtamicum		olor A3(2)			a MSB8			a MSB8			×	olor A3(2)	olor A3(2)		
30 - - 35	Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA 1 lipA	Mycobacterium tuberculosis H37Rv Rv2219	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolor A3(2) SC5F7.04c			Thermotoga maritima MSB8 TM1010		Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3.10c	Streptomyces coelicolor A3(2) SCGD3, 10c		
40		db Match	sp.LIPA_PELCA	sp Y00U_MYCTU	sp YIDE_ECOLI	gp.AF189147_1		gp:SC5F7_34			pir.872308		sp:LUXA_VIBHA	pir:A72404			prf:2203345H	gp:SCGD3_10	gp.SCGD3_10		
		ORF (bp)	1044	780	1617	1203	300	471	213	975	399	900	849	393	243	261	1323	561	444	195	405
45		Terminal (nt)	2343347	2344258	2346047	2346289	2347804	2348078	2350408	2351996	2350912	2351310	2352828	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
50		Initial (nt)	2342304	2343479	2344431		2347505		2350620	2351022		2351909	2351980	2352833	2355156	2355440	2355521	2356794	2357264	2357484	2357726
		SEQ NO.	5920	5921	5922		5924		5926	-	5928	5929		5931	5932	5933	5934	5935	5936	5937	5938
55		SEO NO.	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438

_			—-т	1				 !	T	T	\neg				T	\top		$\neg \neg$	\neg
	Function		heme oxygenase	glutamate-ammonia-ligase adenylyttransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokınase	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	insertion element (IS402)
	Matched length (a.a.)		214	809	441	392	601	54	374	358		382		249	378	204	156	281	129
	Similarity (%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	56.6
	Identity (%)		57.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	.49.2	26.0	46.2	40.9	32.6
Table 1 (conlinued)	Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) glnE	Thermotoge maritima MSB8 glnA	Streptomyces coelicolor A3(2) SCE9 39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galk1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
	db Match		sp:HMUO_CORDI	gp:SCY17736_4	sp.GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	SD GAL1 HUMAN			sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	Sp.GPH_ECOLI	sp:PTPA_STRCO	sp:Y01G_MYCTU	sp:YI21_BURCE
	ORF (bp)	543	1	3135	1338	1104	1827	180	1293	1266	486	1146	729	717	1140	654	47.1	954	393
	Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
	Initial (nt)	2358695	2359416	2362748	2364155	2364352	7365587	2367652	1.62.796.0				2372561	2373289	2374462	2374544		2375767	2456 5956 2377390
	SEO	5939	5940	5941	5942	5943	5944	5945	5046	5947	5948		5950	5951	5952	5953	5954	5955	5956
	SEO			2441	2442	2443	2444	2445	2446	2447	244R	2449	2450	2451	2452	2453	2454	2455	2456

-

0

5		Function		transcriptional regulator		hypothetical protein		pyruvate dehydrogenase component		ABC transporter or glutamine transport ATP-binding protein		ribose transport system permease	protein	hypothetical protein	calcium binding protein		lipase or hydrolase	acyl carier protein	N-acetylglucosamine-6-phosphate deacetylase	hypothetical protein	
15		Matched length (a.a.)		135 tr		134 h	1	910 P		261		782	7	286	125		352	75	253	289	
20		Simitarity (%)		57.8		77.6		78.9		62.8		202	58./	62.9	55.2		55.7	80.0	75.5	65.7	
-		Identity (%)		30.4		55.2		55.9		33.7		1	25.4	26.2	41.6		29.6	42.7	43.9	33.6	
25	ed)			A3(2)		osis		s pdhA		ø			0	adrid E	E AX2		A3(2)	22	B	us	
30	Table 1 (continued)	Homologous gene		Streptornyces caelicolor A3(2) SC8F4.22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyces seculensis pdhA		Escherichia coli K12 glnQ			Bacillus subtilis 168 rbsC	Rickettsia prowazekii Madrid E RP367	Dictyostelium discoideum AX2 cbpA		Streptomyces coelicolor A3(2) SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagD	Deinococcus radiodurans DR 1192	
35				Strep				Stre	-	Esch	-	+		Rickett: RP367	Dictyo cbpA		Stre			Dei.	<u>; </u>
40		db Match		gp:SC8F4_22		sp:Y01K_MYCTU		gp:AF047034_4		sp:GLNQ_ECOLI			sp:RBSC_BACSU	pir.H71693	sp:CBFA_DICDI		gp:SCEG4_24	SP.ACP_MYXXA	sp:NAGD_ECOL!	gp:AEC01968_4	
		ORF (bp)	243	378	198	429	345	2712	1 2	~	963	3	888	939	8 650	372	1014	291	825	1032	
45		Terminal (nt)	2377484	2378276	2378489	2378884	2379770	2382744	2380765	2382827	2285426	0240057	2383622	2384509	2386580	2385913	2386614	2387957	2388821	2389869	1
50		Initial (nt)	2377726		2378292	+	9770426	- -			7304464	7384404	2384509	2385447	2385771	2386284		2387667		2388838	
		SEG			5959		rae 1		i		1000	2000	5966	5967	5968	5969		5971		5973	_
55		SEQ		+	2459		246				100	2465	2466	2467	2468	2469	2470	2471	2472	2473	· -

			_													· ———						
10		Function	hypothetical protein						alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine. D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
15		Matched length (a.a.)	271						530		594	68		633	98			929			414	171
20		Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	•	Identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
25 30	Table 1 (continued)		Streptomyces coelicolor A3(2) SC4A7.08		-				Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
35 40		db Match	gp:SC4A7_8						sp:PPBD_BACSU		gp:SCI51_1/	pir:G70661 ·		prf:2413330B	gp:XXU39467_1			gp:AF058788_1			prf 2413330A	gp:NMA1Z2491_23
		ORF (bp)	825	492	17.1	546	465	342	1560	714	1836	240	675	1899	462	243.	929	1869	324	1152	1272	675
45		Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
50		Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405571		5994 2406936
		SEQ NO.	5975	5976	2265	5978	5979	5980	5981	5982	5983	5984	5985	5986	5987	5988	5989	2990	5991	5992		
55		SEQ NO.	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

					Υ	_				_		. 1			Т		- 1		l	- 1			
5	Function	iin		Li	netase	py profein arsR		lation protein	hypothetical protein (conserved in		nbrane protein	undecaprenyl diphosphale synthase	.:	ein	Iding protein	mbrane protein	tein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ation inducible		otein		
10	Pun-A	hypothetical protein		hypothetical protein	atucul 4DNA synthetase	gifeji manjatan profein arsR	family	ferric uptake regulation protein	hypothetical prot	C. giutamicum ?)	hypothetical membrane protein	undecaprenyl dip		hypothetical protein	Era-like GTF-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polyp be useful antige dragnostics	phosphate starvation inducible	protein	hypothetical protein		
15	Matched length	692		138	002	900	83	132	529		224	233		245	296	432	157	85	-	344	248		
20	Similarity (%)	63.6		54.4	000	63.8	73.0	70.5	46.7		0.79	71.2		74.3	70.3	82.4	86.0	50.0		84.6	75.4		
*.	Identity (%)	31.1	;	24.6		46.1	49.4	34.9	24.8	24.0	40.6	43.4	_	45.7	39.5	52.8	65.0	45.0		61.1	44.0		
25 (bei	s gene	erculosis	-	gaster		s HB8	serculosis B	12 fur	berculosis		licolor A3(2)	e R.P 26 uppS	2 1-0 c	berculosis	eumoniae era	berculosis	berculosis	itidis		sperculosis phoH	elicolor A3(2)		
s & & & & & & & & & & & & & & & & & & &	Homologous gene	Mycobacterium tuberculosis	H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis	Escherichia coli K12 fur	Mycobacterium tuberculosis	H37Rv Rv1128c	Streptomyces coelicolor A3(2)	inou	MICLOCOCCUS INICE	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis	Neisseria meningitidis		Mycobacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.		
35	5		エ			_	≥ I	1				1:	1			1	1				-19		
40	db Match		pir.B70662	gp.AE003565_26		pir. S58522	pir E70585	יונט בנינו	Spr Ok	pir.A70539	qp:AF162938_1		sp UPPS MICLU	pir.A70586	dp. AF072811 1		SD: YN67 MYCTU			sp:PHOL_MYCTU	gp:SCC77_19		
	ORF		2037	486	582	1383	369		432	1551	792		729	726	915	1320	588	264		1050	723	+	942
45	-F0	(T)	2409029	2409779	2410280	2410956	2412948		2413423	2415118	2415298	20701	2416371	2417222	2417060		2420313			2420900	2421975	!_	2423791
50	Initial	(In)	2406993	5996 2410264	2410961	2412338	2412580	2027117	2412992	6001 2413568	2416089		2417099	6004 2417947	0440003	2420309	2420000	2420903	0100313	2421949	2422697		2511 6011 2422850
	SEO	(a.a.)	5995	5996	5997		1 000	CEEC	0009	6001	6003		6003			5006		0000		6009	6010	- 	601
55	-	(DNA)	2495	2496	2497		_		2500	2501	0000	7007	2503	2504		2505	2007	7200	9067	2509	2510		2511

	_	
3	Ç	į
1	:	
1		
-	Ē	
	ċ	
	Č	
_	`	
`	_	
_	Q	ŀ
-	9	
•		

SEC	_																		
SEO Initial Terminal ORF db Match Homologous gene (%) (%		Function	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acidCoA ligase	4-aipha-glucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypothetical protein
SEO		Matched length (a.a.)	380	334	320	134			611	738	604	68	107			069	453	594	449
SEO		Similarity (%)	77.4	79.6	64.1	64.9			75.1	55.4	64.4	51.0	53.0			68.3	45.7	84.9	58.8
SEO (nt) (nt) (nt) (bp) db Match (a a) (nt) (nt) (bp) (bp) db Match (a a) (nt) (nt) (nt) (pp) db Match (a a) (a 2423845 2422700 1146 prf.24213428 (a) 2424937 2423915 1023 prf.2421342A (a) 2426181 2426699 519 sp.AGA1_YEAST (a) 2426181 2426699 519 sp.AGA1_YEAST (a) 2438184 2427807 378 (a) 2430028 2432413 2118 sp.MALQ_ECOLI (a) 2430296 2432413 2118 sp.MALQ_ECOLI (a) 2430296 2432414 255 GSP:Y74827 (a) 2434207 2433875 333 GSP:Y74829 (a) 2434776 243450 1179 gp.AF064523_1 (a) 2438813 2434805 2034 sp.DCP_SALTY (a) 2438813 24338049 1179 gp.AF064523_1 (a) 2438813 2433806 1794 pir.G70983 2438906 2440994 1089 pir.H70983		Identity (%)	47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
SEO Initial Terminal ORF (a a) (nt) (bp) (bp) (bo) (012 2423845 2422700 1146 (6013 2424937 2423915 1023 (6014 242894 2427807 2428184 1845 (6016 2427468 2427807 378 (6018 2430028 2434370 1863 (6020 2434207 2433875 333 (6022 2434207 2433875 2434805 2034 (6026 2436871 2439906 1794 (6026 2436871 2439906 1794 (6028 2438913 2439906 1794 (6028 2438913 2439906 1794 (6028 2438913 2439906 1794 (6028 2438913 2439906 1794	lable (confined)	Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10.04	Escherichia coli K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisseria meningitidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
SEO Initial Terminal ORF (a a) (nt) (bp) (bp) (bp) (6012 2423845 2422700 1146 6013 2424937 2423915 1023 6014 2425954 2424965 990 6015 2426181 2426699 519 6016 2427468 2426776 693 6017 2428184 2427807 378 6018 2430296 2432413 2118 6020 2432508 2433875 333 6021 2433619 2433875 333 6022 2434776 2433805 2433805 1179 6025 2436871 2439906 11794 6028 2439906 2440994 1089		db Malch			prf.2318256A					sp:MALQ_ECOL!		GSP:Y74827	GSP:Y74829						pir:H70983
SEO (nt) (a a) (nt) (b) (nt) (a a) (nt) (a b) (nt) (a b) (nt) (a b) (nt) (a b) (a b) (nt) (a b) (nt) (a b) (nt) (a b) (nt) (a b) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt		ORF (bp)	1116	1023	066	519	693	378	1845		1863	55	333	180	204	2034	1179	1794	1089
SEO NO. (a a) 6012 6013 6014 6015 6016 6020 6020 6022 6023 6022 6023 6026 6026		Terminal (nt)	2422700	2423915	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614	2433875	2434440	2434573		2438049	2439906	2440994
SEO NO. (a a) 6012 6012 6013 6013 6014 6015 6015 6015 6022 6022 6022 6025 6026 6027 6028 6028 6028 6028 6028 6028		Initiat (nt)				2426181	2427468	2428184				2433868		2434619	2434776	2436838	2436871	2438113	2439906
SEQ NO. (DNA) 2512 2513 2514 2517 2518 2517 2518 2520 2520 2520 2520 2522 2522 2522 252			6012		6014	6015	6016	6017	6018	6019	6020	6021	6022	6023		6025	6026	6027	6029
		SEQ NO. (DNA)	2512	2513	2514			2517	2518	2519	2520	2521	2522		2524	2525		2527	2528

EP 1 108 790 A2

				_																
Function	intenyl-diphosphate Delta- erase						C-S iyase (degradation of loethylcysteine)	ched-chain amino acid transport em carrier protein (isoleucine ke)	nal monooxygenase alpha chain		male transporter	plate oxidase subunit	scriptional regulator		sthetical protein		e-binding protein A precursor nin-binding lipoprotein)	ppeptide ABC transporter mease)	ptide transport system nease protein	oligopeptide transport ATP-bindirg protein
	isope isom						beta amin	bran syste upta	alka		mag	glyc	tran		ğ		hed (hed	oligo (per	dipe pern	oligope protein
Matched length (a.a.)	189						325	426	343		324	483	203		467		546	315	27.1	372
	57.7						100 0	100 0	49.0		60.5	55.1	65.0		57.6		55.5	73.3	74.5	66.4
Identity (%)	318						99.4	8.66	21.6		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
jene	ihardii ipi1						tamicum	ıtamicum			iti mdcF	glcD	ydfH		ium ygiK		zae Rd	аррВ	dppC	Oddo
Homologous	hlamydomonas rein						Sorynebacterium glu VTCC 13032 aecD	Corynebacterium glu ATCC 13032 brnQ	Jibrio harveyi luxA		Sinorhizobium melilo	scherichia coli K12	scherichia coli K12	•	Salmonella typhimur		Haemophilus influen H10853 hbpA	Bacillus subtilis 168	Escherichia coli K12	Escherichia coli K12 oppD
ے	0							<u> </u>				_						<u> </u>	 	T
db Matc	pir. T07979						gp:CORCSL	sp:BRNQ_CC	Sp.LUXA_VIE		gp:AF15577		Sp:YDFH_EC		sp:YGIK_SA		sp:HBPA_H/	sp:APPB_B/		prf 2306258:MR
ORF (bp)	585	222	438	1755	099	519	975	1278	978	522	927	2844	711	282	1347	423	1509	996	828	1437
		+	-	_		2444033	2445709	1	2447998	2450323	2450859	•	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
Initial (nt)		-	├ ──	I	1			2445716	 -	2450844				<u> </u>	2457066	2457759	2457863	2459371	2460340	2461163
NO.		3030		3032	3033	3034	3035	3036		1		3040	5041	6042		6044	6045	6046		6048
			2531 6					2536						_	2543 (2546	2547	2548
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp) db Match	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (aa) length (aa.) (nt) (nt) (bp) Spir.T07979 Chlamydomonas reinhardiii ipi1 31 8 57 7 189 isopenlenyl-di	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity length (ngth (as)) Matched (ngth (as)) 6029 2441589 2441605 585 pir.T07979 Chlamydomonas reinhardii ipi1 31 8 57 7 189 6030 2441669 2441890 222 189 189	SEQ (nt) a) Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) (a.a.) (nt) (nt) (bp) (bp) (chlamydomonas reinhardiii ipi1 31 B 57 7 189 6030 2441669 2441890 222 2441890 222 189 6031 2442355 2442792 438 2442355 2442792 438	SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) (a.a.) (nt) (nt) (hp) (h	SEQ (nt) a) Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (hp) db Match Chlamydomonas reinhardtii ipi1 31 B 57 7 189 6029 2441669 2441890 222 Chlamydomonas reinhardtii ipi1 31 B 57 7 189 6031 2441669 2441890 438 Chlamydomonas reinhardtii ipi1 189 6031 2443356 2441602 1755 Chlamydomonas reinhardtii ipi1 Chlamydomonas reinhardtii ipi1 189 6033 2444015 2443356 660 Chlamydomonas reinhardtii ipi1 Chlamydomonas reinhardtii ipi1 Chlamydomonas reinhardtii ipi1	SEQ (nt) a) Initial (nt) (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) (a.a.) (nt) (nt) (hp) (hp)	SEQ (nt) a) Initial (nt) (nt) (hp) Terminal (nt) (hp) Ab Match (homologous gene (hg)) Identity (hg) (hg) Similarity (hg) (hg) Matched (hg) (hg) Matched (hg) Matched (hg) Initial (hg)	SEO (nt) (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Malch (bp) Homologous gene (rogth (rd)) Identity (similarity (bg)) Matched (raa) 6029 2441589 2441605 585 pir.T07979 Chlamydomonas reinhardtii ipi1 31 8 57 7 189 in (raa) 6031 2441689 2441890 222 Chlamydomonas reinhardtii ipi1 31 8 57 7 189 in (raa) 6031 2441689 2441602 1755 Chlamydomonas reinhardtii ipi1 31 8 57 7 189 in (raa) 6031 2441669 1755 Chlamydomonas reinhardtii ipi1 31 8 57 7 189 in (raa) 6032 2443056 660 Chlamydomonas reinhardtiii ipi1 31 8 32 8 6033 2444015 2444033 519 Coynebacterium glutamicum 99.4 100 0 325 6035 2445716 2446993 1278 sp. BRNQ_CORCLYS_1 Coynebacterium glutamicum 99.8 100 0 426 6037 2447998 978 sp. UNA_VIBHA Vibino harveyi luxA 21.6 <t< td=""><td>SEQ (a.a.) Initial (a.b.) Terminal (bp) GB (bb) db Match Homologous gene (96) Identity (96) Similarity (96) Matched (96) NO (int) (int)</td></t<> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%) Homologous gene Identity (%) Similarity (%) Matched (%) Homologous gene Identity (%) Similarity (%) Homologous gene Identity (%) Identity (%) Similarity (%) Homologous gene Identity (%) Identity (</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) NO. (Int) (Int)</td> <td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Smilarity (%) Hamphatth NO. (11) (12)</td> <td>SEQ Initial Terminal ORF db Malch Homologous gene Identity (%) Smilarity (%) Matched (%) NO. (nt) (nt) (hp) db Malch Homologous gene (%) <td< td=""><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%b) Matched (%b)</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity (%) Smilarily (%) Matched (%) NO. (nt) (nt) (pt) (pt</td></td<></td>	SEQ (a.a.) Initial (a.b.) Terminal (bp) GB (bb) db Match Homologous gene (96) Identity (96) Similarity (96) Matched (96) NO (int) (int)	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%) Homologous gene Identity (%) Similarity (%) Matched (%) Homologous gene Identity (%) Similarity (%) Homologous gene Identity (%) Identity (%) Similarity (%) Homologous gene Identity (%) Identity (SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEC Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) NO. (Int) (Int)	SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Smilarity (%) Hamphatth NO. (11) (12)	SEQ Initial Terminal ORF db Malch Homologous gene Identity (%) Smilarity (%) Matched (%) NO. (nt) (nt) (hp) db Malch Homologous gene (%) <td< td=""><td>SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%b) Matched (%b)</td><td>SEC Initial Terminal ORF db Match Homologous gene Identity (%) Smilarily (%) Matched (%) NO. (nt) (nt) (pt) (pt</td></td<>	SEC Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%b) Matched (%b)	SEC Initial Terminal ORF db Match Homologous gene Identity (%) Smilarily (%) Matched (%) NO. (nt) (nt) (pt) (pt

10	
15	
20	
25	•
30 -	
35	
40	
45	
50	
55	

	Function	hypothetical protein	hypothetical protein:	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine biosynthesis protein x	hypothetical protein	glycine betaine transporter				large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin l	GTP-binding protein	
	Matched length (a.a.)	106	157	300	466		284	295		133	197	601				448	118	227	46	603	
	Similarity (%)	44.0	58.0	0 59	64.6		61.6	51.2		100.0	65.5	7.17				71.9	73.7	59.0	73.0	83.6	
	identity (%)	35.0	29.3	410	39.9		31.3	28.5		100.0	42.6	39.8				346	33.9	28.2	63.0	58.7	
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium elli rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA	
	db Match	PIR:G72536	pir:D70367	prf:2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		sp:THIX_CORGL	sp:VG66_BPMD	sp.8ETP_CORGL				prf:2320266C	gp:AF186091_1	sp:DCTP_RHOCA	PRF:1806416A	845 sp.LEPA_BACSU	
	ORF (bp)	507	549	903	1425	303	972	846	366	570	588	1890	966	1508	384	1311	480	747	243	1845	
•	Terminal (nt)	2461543	2462602	2464143	2465768	2465465	2456038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548	
	tnitial (nt)	2462049	2463150	2463241	2464344	2465767	2467009	2467077	2470313	2472250	2473480	2473653	2476497	2477644	2479379	2481208	2481692	6065 2482480	6066 2483845	2567 6067 2484392	
	SEQ NO. (a a.)	6049	6050	6051	6052	6053	6054	6055	6056	6057	6058	6028	0909	6061	6062	6063	6064	6065		2909	
:	SEQ NO. (DNA)	2549	2550	2551	2552	2553	2554	2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567	

Table 1 (continued)	db Match Homologous gene (%) (%) (aa)	H70683 Mycobacterium tuberculosis 41.5 69.7 185 hypothetical protein H37Rv Rv2405			SC6D7_25 SC6D7.25 SC6D7.25 SC6D7.25	Mycobacterium tuberculosis 46.9 74.1 313 H37Rv Rv2413c	Bacillus subtilis 168 comEC 21.4 49.7 527	CME1_BACSU Bacillus subtilis 168 comEA 30.8 63.6 195 DNA binding and uptake		Scc123_7 Streptomyces coelicolor A3(2) 34.8 66.3 273 hypothetical protein scc123.07c.	Mycobacterium tuberculosis 46.8 66.4 235 phosphoglycerate mutase H37Rv Rv2419c	Mycobaclerium tuberculosis 55.5 86.3 117 hypothetical protein H37Rv Rv2420c	Streptomyces coelicolor A3(2) 68.0 85.3 197 hypothetical protein SCC123_17 SCC123_17		Corynebacterium glutamicum 99.1 99.8 432 reductase or glutamate-5- semialdehyde dehydrogenase	p:YPRA_CORGL ATCC 17965 unkdh 99.3 100.0 304 dehydrogenase		
		Mycoba H37Rv	sn.RS20 ECOLI Escheri	1_		pir:H70684 Mycobs	sp.CME3_BACSU Bacillus	sp.CME1_BACSU Bacillu		gp:SCC123_7 Strepte	pir.F70685 Mycob	pir:G70685 Mycob	gp:SCC123_17 Strept		sp:PROA_CORGL ATCC	sp:YPRA_CORGL ATCC		503 qp:D87915 1
	ORF (bp)	d 609	281	_	2	975 p	1539 s	582 s	822	822 g	708	471	678	1023	1296	912	711	
	Terminal (nl)	2485269	572242	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009
	Initial (nt)	61			! ——	2487884	2489450	2490154	2490911	2491111	2491858	2492343	2493178	2494237	6081 2495634	2496607	2496803	7499511
	SEQ	6068 2		5069 2		6072 2	6073	6074	6075	9209	2,09	8209	6209	6080		6082	6083	608.4
		(UNA)		2569	_	2572	2573		2575		722	2578	2579	25R0	2581	2582	2583	2584

						,-							\neg						1			
5					acid reductase			1.27	1.21						n sequence			ate kinase				
10			Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein.	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
15			Matched length (a a)	422	276			81	101	986				195	436	117	143	134		92	112	118
20			Similarity (%)	77.3	81.9			92.6	82.2	56.6				82.6	100 0	76.9	67.8	89.6		67.4	64.3	68.6
	•.		Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9		34.8	36.6	33.9
25	•	Table 1 (continued)	us gene	38 pbuX	sp. ATCC			eus IFO13189	seus IFO13189	.12 rne				elicolor A3(2)	glutamicum	elicolor A3(2)	elicolor A3(2)	megmatis ndk		iodurans R1	uberculosis	uberculosis
30 -		Table 1 (c	Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
35 40			db Match	Sp. PBUX_BACSU B				Sp.RL27_STRGR	prf:2304263A	Sp. RNE ECOLI				gp:SCF76_8	pir:S43613	gp:SCF76_8	gp:SCF76_9	gp. AF 069544_1		gp:AE002024_10	pir.H70515	pir.E70863
			ORF (bp)	1887 sp		621	396	264 sp	303 pr	2268 sp		573	747	609	1308 pi	378 91	450 91	408	390	342 g	455 p	423 p
45			Terminal (nt)	2501669		2503355	2504265	2503984	2504300	2504831	Т.	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
50			Initial (nt)	2499783	<u> </u>	2502735	2503870	2504247	2504602	250709E	—		2508094	2508922	2510830	2511046	2511427	2512356			2513618	2514114
			SEO	-+-		6087	6088		0609	609			5094	6095	9609	2609	6098	6609	6100	6101	6102	2603 6103
55				(DNA)		2587	_		2590	2501			_		2596	2597	2598	2599	2600	2601	2602	2603

5	Function	folyl-polyglutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP- dependent protease	hypothetical protein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
15	Matched length (a a)	451				915	.521	508	170	319	207	208	357	338	444	286	430	366	210	251
20	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	85.8	73.0	85.7	84.5
•	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
55	us gene	elicolor A3(2)				68 balS	68 oppA	68 dnaK	ens ATCC	Thermus aquaticus ATCC 33923 mdh	elicolor A3(2)	aphA	, vanA	lava ATCC	o. vanK	noniae mdcF	clpX	selicolor A3(2)	2065 pcaJ	o. 2065 pcal
Table 1	Hamologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquatic mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces caelicolor A3(2) SCF55.28c	Streptomyces sp	Streptomyces sp. 2065 pcal
<i>35</i>	db Malch	prf.2410252B				sp:SYV_BACSU	pir:A38447	sp:DNAK_BACSU	gp:ECU89166_1	SP MDH_THEFL	gp:SC4A10_33	gp.AF065442_1	prf.2513416F	gp:FSU12290_2	prf:2513416G	gp:KPU95087_7	prf:2303274A	gp:SCF55_28	gp.AF109386_2	gp:AF109386_1
	ORF (bp)	1374 pr	512	714	563	2700 sr	1575 pi	1452 SI	585	984 S	g 777	576 g	1128 p	975 9	1425 p	930 g	1278 p	1086 g	633 9	750 g
45	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
50	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209		2523248	2523561	2524915	2525099		2527135	2529480		2530891	2532601	2533353
	SEQ NO.		6105	6106	6107	6108	6109	6110	6111	6112	6113	6114			6117	5118		6120	6121	2622 6122
<i>55</i>	SEQ.		2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

_
=
$\boldsymbol{\sigma}$
continued
_
=
_
.=
•
_
0
$\overline{}$
u
_
-
نه
_
Tab
~
,,,,
•

.

	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolacione decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuale dioxygenase alpha subunit	protocatechuale dioxygenase beta subunit	hypothelical protein	muconolactone isomerase		muconale cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
	Matched length (a.a.)	251	406		256	825	115		437	214	217	273	92		372		285		437
	Similarity (%)	82 5	71.9		9.92	43.0	9.68		63.4	9.07	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		8.09		72.3		62.2
lable i (confined)	Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcal.	Streptcmyces coelicolor A3(2) SCM1.10	Rhodococcus opacus pcal		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP calB		Rhodococcus rhodochrous catA		Pseudcmonas putida plasmid pDK1 xylX
	db Malch	prf:2408324F	prf 2411305D		prf.2408324E	gp:SCM1_10	prf.2408324E		prf.2408324D	prt:2408324C	prf.2408324B	pir.G70506	prf.2515333B		sp.CATB_RHOOP		prf:2503218A		470 gp:AF134348_1
	ORF (bp)	792	1224	912	753	2061	366	678	1116	612	069	1164	291	177	1119	909	855	141	1470
	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
	Initial (nt)	2533391	2534201	2535168		2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544976	2545069	2640 6140 2545315
	SEQ NO.		6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135	6136	6137	6138	6139	6140
	SEO NO.	2623		2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

									1					<u></u>	$\neg \tau$	\neg	Т	T	\neg
5	vo	ase subunit	ase subunit	exa-3,5-diene genase	nily with ATP-	sport protein or ransporter	transport :	protease	protease		isomerase)		otein						
10	Function	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5-ciene carboxylate dehydrogenase	regulator of LuxR family with ATP- binding site	transmembrane transport protein 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Cip protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothelical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
15	Matched length (aa)	161	342	277	979	435	388	197	198	42	417	160	336	115		142		35	75
20	Similarity (%)	83.2	81.0	61.4	48.6	64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	78.7
•	Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
25 (Continue) 1 older	is gene	ida plasmid	ida plasmid	ida plasmid	hropolis thcG	oaceticus	oaceticus	licolor M145	licolor M145	cus CRF154	38 tig	licolor A3(2)	urans LC411	la1		striatum ORF 1		striatum ORF 1	striatum ORF1
30 16	Homologous gene	Pseudomonas putida plasmid	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 xyIL	Rhodocaccus erythropolis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptcmyces coelicolor M145 clpP2	Streptcmyces coelicolor M145 clpP1	Sulfolobus islandicus CRF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1		Corynebacterium striatum ORF1	Corynebaclerium strialum ORF1
35	- Jg	. 2	3	4			ACICA	2.		4									
40	db Match	gp:AF134348_	gp:AF134348_	gp:AF134348_	gp.REU95170_1	Sp:PCAK_ACICA	sp:BENE_	gp:AF071885_	gp:AF071885_1	gp:SIS243537_	sp:TIG_BACSU	gp:SCD25_17	sp:PBP4_NOCLA	prf:2301342A		prf:2513302C		pri.2513302C	prf.2513302C
	ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
45	Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
50	Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599	2558106	2558609	2559157	2560131	2561115	2561920			2562341
	SEQ NO.		5142	6143	6144	6145	6145	5147	6148	6149		6151	6152	6153	6154	6155	6156	_	6158
<i>55</i>	SEO	2641	2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

_		-		- 								
	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Clp protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothelical protein	penicillin-binding protein	hypothetical protein		transposase		hypothetical protein	transposase
	197	198	42	417	160	336	115		142		35	75
	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	78.7
	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
	Streptcmyces coelicolor M145 clpP2	Streptcmyces coelicolor M145 ctpP1	Sulfolobus islandicus CRF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1		Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
	gp:AF071885_2	603 gp:AF071885_1	qp:SIS243537 4	7 sp.TIG_BACSU	gp:SCD25_17	975 sp.PBP4_NOCLA	456 prf.2301342A		438 prf:2513302C		prf.2513302C	prf.2513302C
	624	603	150	1347	495	975	456	249	438	150	126	264
	2555317	2555978	2556748	2556760	2559103		2560586	2561363	2561483	2562242	2561990	2562078
	2555940	6148 2556580	2556599		2558609	6152 2559157 2560131	6153 2560131	6154 2561115	6155 2561920	2562093	2562115	6158 2562341
	6147	6148	6149	6150	6151	6152	6153	6154	6155	6156	6157	6158
_		~	1	$T = \overline{}$	Ţ -	1 2		1 -	150	6	1~	100

٦	
	3
	=
7	
	3
	<u>"</u>
- 4	_
-	_
-	2
1	_
	_

'

SEQ NO (DNA)	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2659	61159	2562776	2562387	360						
2660	6160	2562963	2563847	985						
2661	6161	2564402	2563932	471	sp:LACB_STAAU	Staphylococcus aureus NCTC 8325-4 lacB	40.0	71.4	140	galactose-6-phosphate isomerase
2992	6162	2565245	2564550	969	sp:YAMY_BACAD	Bacilius acidopullulyticus ORF2	26.2	58.1	248	hypothetical protein
2663	6163	2566231	2565623	609	pir A70866	Mycobacterium tuberculosis H37Rv Rv2466c	56.8	80.9	199	hypothetical protein
2664	6164	2565345	2568945	2601	SP. AMPN_STRLI	Streptomyces lividans pepN	47.5	70.5	890	aminopeptidase N
2665	6165	2569211	2570293	1083	pir.B70206	Borrelia burgdorferi BB0852	25.1	58.1	358	hypothetical protein
2666	6166	2571460	2570309	1152						
2667	6167	2571510	2572175	999					 	
2568	6168	2572193	2572348	156						
2669	6169	2572677	2572351	327	gp.AF139916_3	Brevibacterium linens ATCC 9175 cntl	61.5	81.7	104	phytoene desaturase
2670	6170	2572977	2572807	171						
2671	6171	2573770	2573393	378						
2672	6172	6172 2573864	2572659	1206	206 sp.CRTJ_MYXXA	Myxococcus xanthus DK1050 carA2	31.2	63.8	381	phytoene dehydrogenase
2573	6173	2574718	2573843	876	sp:CRTB_STRGR	Streptomyces griseus JA3933 crtB	31.4	58.6	. 290	phytoene synthase
2674	6174	2575898	2574780	1119	gp:LMAJ9627_3	Listeria monocytogenes IItB	25 8	47.7	392	multidrug resistance transporter
2675	6175	2577213	2575981	1233						
2676	6176	2578872	2577232	1641	gp:SYOATPBP_2	Synechococcus elongatus	41.3	71.6	538	ABC transporter ATP-binding protein
2677	6177	2579760	2578879	882	sp:DPPC_BACFI	Bacillus firmus OF4 dppC	38.8	73.8	286	dipeptide transport system permease protein
2678	6178	2580707	2579769	939	pir S47696	Escherichia coli K12 nikB	33.2	62.0	316	nickel transport system permease protein
2679	6.79	6:79 2582417	2580711	1707						

5	
10	
15	
20	-
25	-
30	
35	
40	
45	
50	

	Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
	Matched length (a a)		411	482	218	235	240	94	238	126	396	196	127		55	563	172	200	536
	Similarity (%)		63.5	47.9	79.4	0.09	55.0	47.0	65.1	77.0	60.4	68.9	61.4		0.09	79.6	62.2	26.7	52.6
	Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.C	28.C
Table 1 (continued)	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces ccelicolor actil	Neisser.a meningitidis	Pseudomonas putida GM73 ttg2A.	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10.19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yjjK	Mycobacterium tuberculosis H37Rv RV2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
	db Match		sp:ARGD_CORGL	pir:A70539	sp:YA26_MYCTU	Sp. PHBB_CHRVI	pir:A40046	GSP.Y74375	gp.AF106002_1	gp:MLCB1610_9	sp:CHRA_PSEAE	pir A70867	gp:SC6D10_19		pir.B72589	sp:YJJK_ECOLI	pir.E70867	Sp:Y05L_MYCLE	pir.C69676
	ORF (bp)	1941	1314	1584	747	708	738	44	792	393	1128	627	465	621	162	1668	615	2103	
	Terminal (nt)	2584504	2585926	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188			2597869	2598662	┼─┤
	Initial (n1)	2582564	2584613	2586180	2587976	2589432			2592365	2592402	2592838	2594594	2595061	2595808				2600764	2601461
	SEQ NO.	6180	6181	6182	6183	6184	6185		6187	6188	6189	6190	6191	6192				6196	
	SEQ NO.			2682	2683	2684	2685		2687	2688	2689	2690	2691	2692	2603	2694	2695	2696	2697

10	
15	
20	,
25	-
30	
35	
40	
45	
50	

Table 1 (continued)

	,							,	_			,						
Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maltose-binding protein	_	ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced protein	ketoacy: reductase	oligoribonuclease
Matched length (a.a.)			279	292		462		386		154		207	183		412	255	258	179
Similarity (%)			76.3	67.5		63.2		79.8		72.7		89.4	73.8		64.6	69.4	57.0	78.8
Identity (%)			39.1	27.4		28.8		59.1		37.7		67.2	48.6		35.0	41.2	40.0	48.0
Hamologous gene			Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK		Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermologa maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
db Match			sp:MSMG_STRMU	sp.MSMF_STRMU		prf.2206392C		28 prf.2308356A		prf.2317468A		prf:2516398E	prf.2513418A		pir:A72312	sp.GIP_ECCLI	pir.E70761	sp:ORN_ECOLI
ORF (bp)	930	639	912	843	1674	1329	1242	1128	750	684	069	789	762	345	1182	750	798	657
Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2518869	2619538
Initial (nt)	2604573	2604583	2605520	2606369	2606444	2607889	2609426	2610639	2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	2618072	2618882
SEQ NO.	6198	6199	6200	6201	6202	6203	6204	6205	6206	5029	6208	6029	6210	6211	6212	6213	6214	6215
SEQ NO (DNA)	2698	2699	2700	2701	2702		2704	2705	2706	2707	2708	2709	2710	2711	2712	2713	2714	2715

	Function	ferric enterochelin esterase		lipoprotein				transposase (IS1207)			transcriptional regulator	glutaminase	constitution specific degradation	sporulation protein	aseranosi ofercon-			hypothetical protein	pyrazinamidase/nicotinamidase	hypothe:ical protein	bacteriolerritin comigratory protein	bacterial regulatory protein, tetR
Matched	length (a a)	454	9	398				436			131	358		97	226	3		291	185	75	141	114
	Similarity (%)	50.9		719				8.66			63.4	69.3		72.2	3	8.0		45.0	74.6	80.0	73.8	61.4
-	Identity (%)	26 0		48.5			Ţ	99.5			32.8	35.2		42.3		29.0		32.0	48.1	42.7	46.8	32.5
	Homologous gene	Satmonella enterica iroO	213011011110	Mycobacterium tuberculosis H37Rv Rv2518c lppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001	Rattus norvegicus SPRAGUE-	DAWLEY KIDNEY	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Fscherichia coli K12 bcp	Streptomyces coelicolor A3(2)
	db Match	A9700040.2.	PU 2403210A	pir:C7C870				gp.SCU53587_1			gp. AF085235_1		Sp. GLSN_NAI	pir.A36940		sp:UXAC_ECOL!		prf. 1814452C	prf:232444A			
	ORF (bp)	18	1188	1209	645	150	246	1308	207	630	453	$\neg \neg$	1629	477	555	1554	501	1197	558	+	704	-
	Terminal (nt)		2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625800	2628376		2626493	2628852	2628324	2630479	2631136	2632466	2633100			6233 2633600 2634064
	Initial (nt)		2620728	2622181	2622961		6213 3023113 61301 2623803	2625358	วลวรุธกก	2020202	2627924		2628121	2628376	2628878		2630636	2631270	2632543	2633418		2633600
	SEO.		6216	6217	871B	5 10	6120	6221	6333	2220	6224		6225	6229	6227		6229		6231			6233
		_	2716	2717	27.18		91.72	2721	27.7.7		27.23		2725	2726	7275	2728	2729	2730	37.24	27.37	7017	2733

	_
τ	,
a	2
-	٦
=	5
- 1	=
•=	-
7	=
-	Ξ
֖֖֓֞֞֞֝֓֓֓֡֓֞֜֝	٦
- 7	٦
٠,٠	,
٠.	•
•	-
-	٠
q	,
-	5
-	2
Tahi	١
	٠
_	

	Function	phosphopantethiene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypotheticai protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		arylsuffatase
	Matched Jength (a.a)	145	473	113		3029	404	230	112	113	202	236				428	175		250
	Similarity (%)	75.9	85 6	54.0		83.6	55.2	6.09	67.9	0.69	76.7	81.4				58.2	97.2		74.4
	(%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		46.0
lable I (colullaco)	Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A6.09c	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB		Mycobacterium leprae ats
	db Match	gp:BAY15081_1	gp.AF237667_1	pir.S76537		pir:S2047	gp:SC4A7_14	pir:D70716	sp:Y077_MYCT	354 sp:Y076_MYCLE	sp:Y03Q_MYCTU	735 SP.RNPH_PSEAE				1362 sp:Y029_MYCTU	gp:AF121000_8		sp.Y03O_MYCLE
	ORF (bp)	405	1425	324	414	8979	1182	615	462	354	618	735	245	693	285	1362	534	660	765
	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	2657736
	Initial (nt)	2635151	2636589	2636845	2637653	2647627	6240 2649416	2649550	2650441	2650986	2652037	6245 2652801	2653254	2654018	2654660	2656236	2656452	2657633	6252 2658500
	SEQ NO. (a.a.)	6235	6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246	5247	6248	6249	6250	6251	6252
	SEQ NO. (DNA)	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	27.2

10	
15	
20	
25	
<i>30</i> -	
- 35	
40	
45	
50	

٢			$\neg \tau$			1	T		1				T		Т	$\neg \Gamma$		Т	_
	Function	D-glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	hypothetical protein	hypothetical protein		hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain I	
	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	
	Similarity (%)	99.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
	Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
Table 1 (continued)	Homologous gene	Corynebacterium glutarricum ATCC 13869 murl		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
	db Match	prf.2516259A		gp:SCE22_22	sp Y03M_MYCTU		pir.A47039	sp Y03H_MYCTU	sp:Y03G_MYCTU		sp.Y03F_MYCTU		prf.1816252A	sp:Y0A8_MYCTU	pir:T34684	sp.SERB_ECOLI		pir:D45335	
	ORF (bp)	852	636	492	1	891	960	537	300	624	1338	306	1740	891	723	1017	1596	1743	306
	Terminal (nt)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
	Initial (nt)	2659457	2659496	2660638 2660147	2661417	2661565		2662867	6260 2663182	2663437	2664060	2665687	2666115	2668760	2669561	2670573	2671126	2672805	2672950
	SEO NO (a a.)	6253	6254		6256	6257	6258	6229	6260	6261	6262	6263	6264	6265	9929	6267	6268	6569	6270
	SEO NO.		2754		2755	2757		2759	2760	2761	-	2763	2764	2765	2766	2767	2768	2769	2770

EP 1 108 790 A2

						Table 1 (continued)				
SEO	SEO	Initial	la la	ORF	db Malch	Homologous gene	Identity (%)	Simitarity (%)	Matched length (a.a.)	Function
(DNA)		E	(1111)	(40)		Corvnebacterium glutamicum	7 00	7 00	334	ribonucleotide reductase beta-chain
2771	6271	2674339	2673338	1002	gp:AF112536_1	ATCC 13032 nrdF	3.0	i i		
	15	70077.50	2675280	486	SD FTNA ECOU	Escherichia coli K12 fln&	31.5	64.2	159	ferrun
2772	5773	2675401	2676240	750	4	Streptomyces coelicolor A3(2)	32.8	60.2	256	sporulation transcription factor
2774		2676902	2676243	099	 	Corynebacterium glutamicum ATCC 13869 dtxR	27.6	60.4	225	iron dependent repressor or diptheria toxin repressor
4		טפיפר	7277790	438	SD:TIR2 YEAST	Saccharomyces cerevisiae	24.2	62.1	124	cold shock protein TIR2 precursor
0//7	2/70	0160107			1 00000	Archaeoglobus fulgidus AF0251	20.0	96.0	20	hypothetical membrane protein
2776	6276	2677193	2676918	276	pir.Coaza	Consepacterium dutamicum	9	0 00 4	707	ribonucleotide reductase alphe-
7777	723	2679598	2677478	2121	gp:AF112535_3	ATCC 13032 nrdE	n n n	9.00	2	chain
27.78	R2278	2680470	2680784	315					!	rocalismontal 36
2770		2681363	1 .	141	SP.RL36_RICPR	Rickettsia prowazekii	58.0	79.0	41	503 Housefiles Process Co.
27B0		2681546	┛	831	sp.NADE_BACSU	Bacillus subtilis 168 nadE	55.6	78.1	617	יייייייייייייייייייייייייייייייייייייי
2781	6281			93						
2707			_	498			_}			
2783		2683125		747	pir.S76790	Synechocystis sp. PCC6803 slr1563	30.7	56.4	257	hypothetical protein
2784		6284 2683418	2683131	288	pir.G70922	Mycobacterium tuberculosis H37Rv Rv3129	41.7	68.8	96	hypothetical protein '
2785		2684646	2683627	1020	sp:ADH2_BACST	Bacillus stearothermophilus DSM 2334 adh	26.1	52.8	337	alcohol dehydrogenase
0,7				1371	SP. MMGE BACSU	Bacillus subtilis 168 mmgE	27.0	96.0	459	Bacillus subtilis mmg (for mother cel metabolic genes)
2785			_			Arahidonsis thaliana T6K22.50	33.8	66.2	284	hypothetical protein
2787	7 6287	7 2686315		-+	pir.1031/4				! : -	
2788	8 6288	8 2688240	2687449			Casharichia coli K12 nam	61.7	80.6	556	phosphoglucomutase
2789	9 628	9 2690050	6289 2690050 2688389	1662	2 sp.PGMU_ECOLI	ESCRETCING CON 13 to PB'				

EP 1 108 790 A2

	Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)		major secreted protein PS1 protein precursor				1S1876)	Italispusase (is is is)	Tours of the second second	protein			ABC transporter		ABC transponer ATP-binding process	hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase
	Matched length (a a)	84	122	254	406	200	355				1	200		438		-	873		218	84	42		196
	Similarity (%)	64.3	61.5	79.1	201	70.0	49.6				١	46.6		66.2			0.69		79.8	0.79	75.0		54.1
	Identity (%)	41.7	25.4	51.2	5	74.7	24.8				1	24.6		30.8			33.0		45.4	60.0	71.0		28.1
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis	Helicobacter pylori J99 jhp1146	Danilling emblilis 168 vest	Dacinus subtinis	Rhodococcus erythropolis	Corynebaclerium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Rhodococcus erythropolis		Bacillus subtilis 168		(0)04111-	Streptomyces coelicolor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129		Streptomyces collinus Tu 1892 ansG
	db Match	pir.F70650	.ie.D71843	2501.07.114	sp:YCSI_BACSU	gp:AF126281_1	1620 sp.CSP1_CORGL					gp:AF126281_1		sp:GLTT_BACCA			gp:SCE25_30		gp:SAU18641_2	PIR:F81516	PIR:F81737		prf.2509388L
	ORF (bp)	288	_		792	1365	1620	354	165	3	447	1401	768	1338	69	250	2541	168	703	273	141	678	672
	Terminal (nt)	2690437	001000	7690760	2691564	2693053	2694918	9695279	2606749	- 1	2695320	2697212	2697383	2698194	2704613	7101017	2699926	2703356			2704975	2710555	I
	Initial (nt)	6290 2690150		_	2690773	2691689	2693299	2694926	200 000	7093334	2695766	2695812	2698150		000000	2/00920	2702466	2702466	2703194	2704314	2704835	2709878	
	SEO	6290	25	6291	6292	6293	6294	6205	0230	9539	6297	6298	5200			6301	6302	6303	_		6306	6307	
		27 gO	36.7	2791	2792	2793	2794	2706	617	2796	2797	2798	2700	2800		2801	2802	2803	2804	2805	2806	7007	2808

5 .	Function	methyltransferase	hypothetical protein	hypothetical protein		UDP-N-acetylglucosamine 1- carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-acetylserine synthase	hypothetical protein	succinyl-CoA synthetase alpha chain	hypothetical protein	succinyl-CoA synthetase beta chain		frenolicin gene E product		succinyl-CoA coenzyme A transferase	transcriptional regulator	
15	Matched length (a a)	205	84	42		417	190	281		305	172	83	291	75	400		213		501	321	
20	Similarity (%)	51.2	0.99	75.0		75.3	84.2	0.69		84.6	79.7	65.1	79.4	43.0	73.0		71.8		77.8	68.5	
•	Identity (%)	25.9	61.0	71.0		44.8	66.3	45.9		57.1	61.1	36.1	52.9	42.0	39.8		38.5		47.9	38.6	
30 t elder (Continued)	Homologous gene	tuberculosis	ımoniae	darum Nigg		alcoaceticus A	tubercutosis c	coelicolor A3(2)		, 168 cysK	nelandii cysE2	adiodurans R1	Coxiella burnetii Nine Mile Ph I sucD	Aeropyrum pernix K1 APE1069	s 168 sucC		Streptomyces roseofulvus frnE		Clostridium kluyveri cat 1 cat 1	Azospirillum brasilense ATCC 29145 rtrC	
30	Homolog	Mycobacterium tuberculosis H37Rv Rv0089	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		Bacillus subtilis 168 cysK	Azotobacter vinelandii cysE2	Deinoccccus radiodurans R1 DR1844	Coxiella burnel sucD	Aeropyrum per	Bacillus subtilis 168 sucC		Streptomyces		Clostridium klu	Azospirillum bi 29145 rtrC	
40	db Match	Sp.Y089_MYCTU	GSP:Y35814	PIR-F81737		sp:MURA_ACICA	sp:Y02Y_MYCTU	gp:SC2G5_15		SD.CYSK BACSU	prf:2417357C	gp:AE002024_10	ons.co_coxe	PIR:F72706			gp:AF058302_5		sp:CAT1_CLOKL	1143 sp.NIR3_AZOBR	
	ORF (bp)	~ } —	273	141	195	1254	570	843	408	924	546	288	882	225	1194	360	735	819	1539		
45	Terminal (nt)	2712374	2713453	2713842	2717993	2718436	2720319	2720385	2721295	2727857	2723609	2723770	2724478	2725843	2725384		<u> </u>	2728207		2732518	
50	Initial	2711850	2713181	2713702	2718187	2719689	2719750	2721272	2721702	2271277	2723064		2725359	2725619	2726577		2728133	2729025	2730916	2731376	
	SEO NO.	(a a.) 6309			6312		5314	6315	87.5				6320	6321	6322	6323	6324	6325		6327	
<i>55</i>		(DNA)			7817	-	2814	2815		20107			2820	2824	2822	2823	2824	2825	2826	2827	

EP 1 108 790 A2

							_												
	Function		phosphate transport system	nhosphate-specific transport	component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hundhelical profein	nypomencal process	hypothetical profein	branched-chain amino acid aminotransferase		hypothetical protein	hypothetical protein	5-phosphoribosyl-5-aminoimidazole synthelase	amidophosphoribosyl transferase
A de de de de de	Matched length (a.a.)		213		255	292	325	369	315		17.6	344	225	259		352	58	347	482
	Similarity (%)		81.7		82.8	82.2	78.5	26.0	0.09			55.2	74.2	26.0		79.0	81.0	94.2	89.0
	Identity (%)		46.5	2	58.8	51.4	50.2	40.0	34.3			24.7	44.9	28.6		58.5	58.6	81.0	70.3
Table 1 (continued)	Homologous gene		Mycobacterium tuberculcsis	H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2)	SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2		Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebaclerium ammoniagenes ATCC 6872 purF
	db Match			pir.E70810	pir. S68595	gp:MTPSTA1_1	1	pir.H70583	AD SCD84 18	2 200.45		SP. BMRU_BACSU	pir.E70809	ap: AF193846 1	1	gp:AB003158_6	pir.B70809	gp:AB003158_5	gp.AB003158_4
	ORF (bp)		807	732	168	921	1014	1125	976	0.70	783	1095	687	942		1101	213	1074	1482
	Terminal (nt)	1	2731424	2733367	2733455	2734264		2736414	2777676	0001017	2739553	2739556	2741356	3741636	2001417	2743785	2744222	2744881	2746083
,	Initial	-	2732230	2732636	2734351	2735184	27.15.215	2737538		27.38/11	2738771	2740650			1167417	2742685	2744010	2745954	2747564
	SEO.	(a.a.)	6328	6329	6330					6334	6335	6736	6337		£338	6339	6340		2842 6342
	SEO.	(DNA)	2828	2829	2830					2834	2835	2836	28.37	207	2838	2839	2840	2841	2842

	_				Т			T		Т	Т	T		\top	$\overline{}$	—Т	_
5 ·		uc.			ane protein		synthetase		synthetase			3se	Se			nsporter	olidase
10		Function	hypothelical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synlhetase		5'-phosphoribosyl-N- formylglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothelical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15		Matched length (a.a.)	124	315	217	42	763		223	79		158	965		211	414	697
20		Similarity (%)	75.8	94.0	87.1	71.0	89 5		93.3	93.7		77.9	51.5		68.7	81.6	70.5
•		Identity (%)	57.3	75.9	67.7	64.0	77.6		80.3	81.0		46.2	28.0		37.4	49.0	41.8
25	ed)		sis	. 27	2.2		72		72	72			AP636		sis	LT2	dapb1
30	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF 1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purl.		Corynebacterium ammoniagenes ATCC 6972 purQ	Corynebacterium ammoniagenes ATCC 6972 purorf	-	Lactococcus tactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
35			Mycol H37R	Coryne ammol ORF2	Coryne ammo ORF1	Sulfol	Coryr amm purl		Cory Purd Durd	Coryne ammo purorf		Lacto	Aeron		Mycg H37F	Salm	Pseu
40		db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP SSU18930_21	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf.2420329A	prf.2216389A		pir.C70709	sp.DCTA_SALTY	prf:2408266A
		ORF (bp)	375	1017	741	186	2286	720	699	243	522	477	2748	276	. 687	1338	2118
45		Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
50		Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402		2753237	2753298	2753804	2753992	2756851	2757815	2759200	2761649
		SEQ NO.	6343	6344	6345	6346	6347	6348	6349	6350	6351	6352		6354		6356	6357
55		SEQ NO.	2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2855	2857

10
15
20
25
<i>30</i> -
35
40
45
50

Table 1 (continued)

							ڃ				e or			ory		1
	Function	•	5-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoale aminotransferase or 7,8-diaminopelargonic ac:d aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	to a contract land between the day it a last a
			5-ph succi	aden	asba	5-ph synt	histi	_	h y p	di-/III	ade oxo 7,8-	te !	two hist	two-cor protein	tran	1
	Matched length (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	_
	Similarity (%)		89.1	95.0	62.3	.86.4	80.2		56.4	67.6	98.8	9.66	70.5	72.7	69.5	
	(%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	98.7	31.3	42.0	37.4	
lane i (colullaca)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynetaclerium ammoniagenes ATCC 6372 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutarricum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermologa marilima drrA	Streptomyces lividans tipA	
	db Match		gp:AB003161_3	gp.AB003161_2	sp:AAT_SULSO	gp:AB00316'_1	SP.YHIT_MYCLE	-	pir:S62195	sp:DTPT_LACLA	1269 sp.BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prf.2222216A	SD:TIPA STRLI	
	ORF (bp)	62.4	_	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	
	Terminal (nl)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	
	Initial (nt)	2762452		2764931	2766135	2767420	2767580	2768137			5367 2770714	2771989	2774098	2774814	2775689	
	SEO	÷		6350	6361	6362	6363	6364	6365	5366	5367	6368	6369	6370		3
	SEO SEO			2860	2861	2862	2863				2867	2868	2869	2870	7071	07

10	
15	
20	
25	•
30 -	
35	
40	
45	
50	

	Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, LysR family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphale synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uplake system protein
	Matched length (a.a.)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
	Similarity (%)	758	68.9	68.5	78.4		62.1	0.69	52.9	55.6		50.7	64.0	50.3	1.99		57.6	60.2	46.7
	Identity (%)	463	33.3	30.4	45.6		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8		27.4	24.7	22.4
Table 1 (conlinued)	Homologous gene	Escherichia coli K12 pox9	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c ipqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrd8	Schizosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterium ccpA	Haemophilus influenzae Rd H10119 znuA
	db Match	gp:ECOPOXB8G_	prf.2212334B	sp.YCDC_ECOLI			gp:AF096929_2	SP. ALSR_BACSU	pir.C70982	pir.C69862		pir.A45264	pir:B70798	pir:S41307	sp:TPS1_SCHPO		sp.OTSB_ECOLI	sp:CCPA_BACME	sp:ZNUA_HAEIN
	ORF (5p)	1737	1482	531	1320	2142	096	705	813	813	459	399	1503	327	1455	513	768	1074	942
	Terminal (nt)	2776768	2780446	2780959	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795637		2797806
	Initial (nt)	2778504	2778965	2780439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531		2794300			2796865
	SEO	6373	6374	6375		6377		6379		6381	 -		6384	6385	6386	6387	6388	6389	6390
		2873	2874	2875	_	77,80		2879	$\dot{-}$				2884	2885	2886	7887	2888	2889	2890

5		Function	ABC transporter	hypothelical membrane protein	transposase (ISA0963-5)		3-ketosteroid dehydrogenase		lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-inositol 2-	shikimate transport protein	chikimate transport protein		transcriptional regulator	ribosomal RNA ribose methylase or IRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolase or sucrase	glucosamine-6-phosphale isomerase	N-acetylglucosamine-6-phosphate deacetylase	
15	Marchod	length (a a)	223 A		303		561		204	128	292	Ť	7	212	334	464	899	473	248	368	
20		Similarity (%)	63.2	87.4	52.5		62 0		56.4	69.5	67.5	3	80.8	55.7	47.3	8 89	77.0	56.9	69.4	60.3	
•		Identity (%)	31.4	0.09	23.4		32.1		34.3	35.2	30.5	200	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2	
25 G	Conmin	gene	eus 8325-ả	erculosis	qus		rapolis SQ1		na MSB8	3 idh or iolG	7 - F. P.	Z SIIIA	2 shiA	color A3(2)	revisiae	2 cysS	sacB	utylicum	12 nagB	1514 manD	
30 - Sidet	na) i ainei	Hamologaus gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSB8 bplA	Racillus subtilis 168 idh or iolG	22 2	Escherichia coii N 12 siilA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coli K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD	
35				ZI	Ā				<u> </u>		1	7							ECOLI		1
40		db Match	gp:AF121672_2	pir.E70507	pir. A69426		gp:AF096929_2		pir. B72359	I SOUR COMPA	aprier de	Sp. SHIA_ECOLI	SP.SHIA_ECOLI	gp:SC5A7_19	sp:PT56_YEAST	sp.SYC ECCLI	prf 2511	gp.AF205034_4	sp:NAGB_EC	sp NAGA_VIBFU	
		ORF (bp)	069	555	1500	201	1689	747	618	367		855	426	654	939	1380	1983	1299	759	1152	
45		Terminal (nt)	2798509	2799391	2901034	2801313	2801558	2803250	2804074	0107000	204070	2805113	2806016	2806599	2807426	2008300		2811960			
50		Initial (nt)	2797820	2798837	2799535	-		2803996			7802110	2805967	2806441	2807252	2808364		2811806	2813258			_
		SEO NO	- ļ -	6392	6393			9619		;	6398	6388	6400		6402		6404	6405			_
55		SEQ NO.		. 2892	2893	2894	2895	2806	2897		2898	2899	2900	2901	2902	1	2903	2905	2906	2907	

5	Function	dihydrodipicolinate synthase		N-acetylmannosamine-6-phosphate epimerase		ecursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator
		dihydrodipic	glucokinase	N-acetylmar epimerase		sialidase precursor	L-asparagin repressor	dipeptide transporter heme-binding protein	dipeptide transpor permease protein	aligopeptide protein	oligopeptide protein	homoserine efflux proteil translocator
15	Matched length (a a)	298	321	220		439	222	260	342	314	258	193
20	Similarity (%)	62.1	57.6	68 6		50.3	57.2	51.4	64.3	78.3	78.7	62.7
	Identity (%)	28.2	28.7	35.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5
25 (panuju	auab	dapA	olor A3(2)	ns NCTC		difaciens		dppA	dappB	Oddo	ppF	.rhtB
Table 1 (continued)	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10 20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB
<i>35</i>	db Match	sp:DAPA_ECOLI	09 Sp.GLK_STRCO	prf.2516292A		sp:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:OPPB_BACFI	sp:OPPD_BACSU	sp OPPF_LACLA	621 Sp:RHTB_ECOU
	ORF (bp)	936	606	969	17.1	1215	729	1608	951	1068	816	621
45	Terminal (nt)	2816393	2817317	2818058	2818137	2918350	2819557	2822191	2823337	2825341	2826156	2826215
50	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835
	SEQ NO	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418
55	SEQ NO.	2908		2910	2911	2912	2913	2914	2915	2916	2917	2918

leucine-responsive regulatory protein

hypothetical protein

transcription factor

hypothelical protein

EP 1 108 790 A2

5	Function	two-component system response regulator	two-component system sensor histidine kinase	DNA renair protein RadA	hypothetical protein		hypothefical protein	p-hydroxybenzaldenyde dehydrogenase		mitochondrial carbonate dehydralase bela	A/G-specific adenine glycosylase		a section of the sect	L-Z.3-Dulanedion octifici og street				hypothelical protein	virulence factor	virulence factor
15	Matched length (a.a.)	223	341	463	345		231	471		210	283		1	967				97	66	72
20	Similarity (%)	70.0	67.7	74.7	733		53.3	85.1		66.2	70.7		1	9.66				69.1	63.0	55.0
•	Identity (%)	43.5	29.3		41.3	2	29.4	59.5		36.7	48.4			99.2		!		48.5	57.0	54.0
25		sis	S].	SIS	IMB		rdtii ca 1	is IMRU			olyticum				losis	828	esc
So	Hcmologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 100 yach	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca 1	Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
40	db Match	prf:2214304A	sp:BAES_ECOLI		sp.RADA_ECOLI	sp. YACK_BACSU	pir.D70804	gp.PPU96338_1		pir.T08204	gp:AF121797_1			gp: AB009078_1				pir:E70552	GSP:Y29188	GSP:Y29193
	ORF (bb)	1 2	1116	582	1392	1098	687	1452	147	621	879	1155	306	774	324	741	312	291	420	213
45	Terminal	2630779	2831894	2832666	2834181	2835285	2835283	2836048	2837591		2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2646101
<i>50</i>	Initial	2830057	2830779	2832085	2832790	2834188	2835969	2837499	7877780		2838643	2839562			2842130	2842493	6439 2843405	2843722	2845139	2845889
	SEO	(a a.) 6424		6426	6427	6428		6430	6431		6433	6434	-		6437		-		6441	6447
55	SEQ	(DNIA)		2926	2927	2928		2930	2021	2932	2933	2934	2935	2936	2937	2938	2939	2940	2941	2942

												_												٦ .
	·5					sphatase /	ə		ase					protein			e ligase			ie protein	pteridine	lase	ase	
	10			Function	vırulence factor	CIpC adenosine triphosphatase / ATP-binding proteinase	inosine monophosphate dehydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance protein	hypothetical protein	lysyl-tRNA synthelase	pantoatebeta-alanine ligase			hypothetical membrane protein	2-arrino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase	dihydroneopterin aldolase	dihydropteroate synthase	
	15		Matched	length (a.a)	55	832	469	316	680					481	240	511	268			138	158	118	258	
	20			Similarity (%)	75.0	86 2	70 2	62.7	6 09					100.0	55.8	71.2	52.6			9.69	0.69	69.5	75.0	
		•		Identily (%)	74.0	58.5	37.1	247	33.5					100.0	26.7	41.7	29.9			29.0	42.4	38.1	51 5	5
	25	,	/nanumu	gene	iginosa	з тесв	l impdh	ochrous nitR	eum ATCC					jlutamicum	oerculosis	maphilus lysS	glutamicum			prae	extorquens	SR folk	Gleberr	prae loir
•	30	5) 4	lable 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtilis 168 mecB	Bacillus cereus ts-4 impdh	Rhodocaccus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folk	Plus emblile 168 folk	Sacinds subtins	Mycobacterium leprae ioir
	35 40			db Match	GSP:Y29193	sp.MECB_BACSU B	+		rRICU			-		gp:AF237667_1	pir.G70807	qp:AB012100 1				gp:MLCB2548_4	sp.HPPK_METEX	\top	5	gp:AB028656_1
				ORF (bp)	321 G	2775	1431 a			1716	1941	1722	162	1443 g	951	1578		693	798	465	477	<u> </u>	-	837
	45			Terminal (nt)	2846506	2844166			2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867			2865731
	50			Initial (nt)	2846186	2846940	0477780	2231107	2850031	2852017	2853769		2859044		2860145			2863621	2864421				2865735	2866567
				SEO NO.				2	6446	6448	6449	6450	_		6453			6456					6460	6461
	55			SEQ NO.	2943	2044	2046	2943	2946	2948	2949	2950	2951	2952	2953	7,000	2955	2956	7957	2958	2959	ļ	2960	2961

	Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine	phospheribosyltransferase	deaminase-related protein	D-alanyl-D-alanine carboxypeplidase	inorganic pyrophosphatase		() () () () () () () () () ()	Spermid:ne syninase	hypothetical membrane protein		hypothelical protein	hypothetical protein		hypothetical protein	P1S system, pera-glocusiussi permease II ABC component		ferredoxin reductase	niotory profesion	hypometical protein	bacterial regulatory protein, marik family	
	Matched length (a a)	188		782	100	60	310	459	159			207	132		144	173		202	68		411	;	<i>)</i> 6	135	
	Similarity (%)	86.2		69.0	0 00	83.0	66.8	51.4	73.6			80.7	86.4		63.2	60.1		72.3	59.6		9.69	+	73.2	59.3	
•	dentity (%)	80.6	2	56.0		51.5	41.0	27.2	49.7			26.0	38.6		36.8	36.4		44.6	30.3		38.0		46.4	26.7	
Table 1 (continued)	Homologous gene	Arjan 000 - 10111 - 11	Bacillus subtilis 100 min		C. S. C. B. C. Brimining C. DEGO	Salmonella typillinunum Si Soo hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Cacherichia coli K12 opa			Mycobacterium tuberculosis H37Rv_speE	Mycobacterium tuberculosis	H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis	H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtilis 168 bglP		Ch4# 50%	Nocardioides sp. NP7 pillad	Streptomyces coeffcolor Au(2)	Burkholderia pseudomallei ORF	<u>я</u> -
	db Match	T	sp.GCH1_BACSU			gp:AF008931_1	sp. vZC5_MYCTU	sp.DAC ACTSP		Spill TR_ECULI		pir:H70886		sp:YUB1_MYC10	sp:Y0B2_MYCTU	LITOWN COOK		sp:Y084_MYCTU	Sp. PTBA BACSU			3 gp:AB017795_2	9 dp:SCH69_9		t pil.co.iococo
	ORF		588	915	2580	582	891	1233	-+	474	219	1539		399	411		493	609 2	249		5 264	8 1233	2 288		
	Terminal	1	2866586	2868385	2867169	2869863	2870499	2071445	Cht. /97	2873399	2873393			2875434	2875870		2876280	2876777			2877595	2878478	280252		7880387
	Initial		6462 2867173	 	2869748	2870444	2466 2871389	2001	787787	2872926	2873611	2875/63		2875832	2876280		2876777	2877385	2077700	28///03	2877858	2879710	7870065	2000 107	6479 2880544
	SEO	(a.a)	6462	6463	6464	6465	6466	1	6467	6468	6469			6471	6472		5473	6474		6475	6476	6477			
	SEQ	$\overline{}$		2963	2964	2965			2967	2968	2969	200	0/67	2971	2072	7	2973	2074		2975	2976	2977	100	8/67	2979

5		Function	peptide synthase		phenylacetaldehyde dehydrogenase		hypothelical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or	groEL protein						rio de la citation de	nypomestas process			peptidase			Na+/H+ antiporter of multiple resistance and pH regulation related protein A or NADH dehydrogenase
15	Matched	tength (a a)	1241		488	3	241	54	3	548	2						100	GF71			447			797
20		Similarity (%)	51.6		63.7	3	79.7	63 0	80.0	000	0.00						!	42.3			68.0			68.3
•		Identity (%)	28.4		26.0	33.0	57.3	62.0	74.0	g	C.88.							21.7			37.1			35.6
25	lable I (commune)	Homologous gene	Strentomyces roseosporus cpsB		4 7 7 6 7 7 1	II K12 padA	Campylobacter jejuni Cj0604	n tuberculosis	n tuberculosis		Brevibacterium flavum MJ-233							s MUC5B			Mycobacterium tuberculosis H37Rv Rv2522c			Staphylococcus aureus mnhA
	lable	Homolo	Strantomyces	and and		Escherichia coli K12 padA		Mycobacterium tuberculosis	Murcharterium tuberculosis		Brevibacteriun							Homo sapiens MUC5B			Mycobacteriu H37Rv Rv252			Staphylococo
40		db Match	-4.044333EA	pri 24 1333371		prf.2310295A	gp:CJ11168X2_25	GP MSGTCWPA 1	T VOINCTCIVION 1	י ביייטוטפועישט	gsp:R94368							prf.2309326A			pir.G70870			3057 prf:2504285B
		ORF (bp)	1	2	1461	1563	918	16.7	11:		1644	180	1209	963	1986	2454	2799	3591	2775	612	1371	579	909	1
45		Terminal (nt)		2884882	2881844	2884935	2886916	3450090	01.00607	2890553	2888897	2890751	2890930	2892138	2893100	2895072	2897528	2500330	2903964	2906639	2908885	2909788	2909231	1
50		Initial (nt)	_	_	2883304	2886497	I	200000		2890377	2890540	2890930	2892138	6499 2893100	2895085	2897525	2900326	2903920	2906738	2907250		2909210	2909830	
		SEO NO.		6480	6481	6482			0404	6485	6485	6487				6491		6493	6494	6495		6497	649R	
55			_	2980	2981	2982		_		2985	2986	2987	208B	2969	2990	2991	2992	2993	2994	2995	2996	2997	2998	2999

EP 1 108 790 A2

	Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein	a separate deformation	polypepade described	hypothetical protein	acetyltransferase (GNA I) iamily or N terminal acetylating enzyme		The state of the s	exonuclease in or	cardiolipin synthase
	Matched الا اوngt (a.a.)	104	523	161	77	121	178	334	,	184	7.	339			31	513
	Similarity (%)	81.7	72.1	60.9	66.2	63.6	54.5	61.7	3	6.09	70.4	54.2			59.9	62.0
	dentity (%)	44.2	35.2	26.7	32.5	25.6	24.7	27.0	1	37.5	47.9	31.3			30.8	27.9
Table 1 (continued)	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacıllus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacillus firmus OF4 cls
	db Match	gp. AF097740_3	gp.AF097740_4	441 gp AF097740_5	prf.2416476G	prf.2504285H	pir.D70594	sp:YBDK_ECOLI		sp.DEF_BACSU	pir.D70631	pir:B70631			gp:AF108767_1	gp.BFU88888_2
	ORF (bp)		1668	441	273	378	594	1128	663	579	252	1005	699	630	789	1500
	Terminal (nt)		2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293		2921290	2919808	2920220		2923617
	Initial (nt)	- v	2913749	2915482	2915929	2916205	2917617	2918757			2919741	2920286	2920476	2920849		6514 2922118
	SEO	(a.a.)	6501	6502	6503	6504	6505			6508	6209	6510	6511			
	SEO.		3001	3005	3003	3004	3005			3008	3009	3010	3011	3012	3013	3014

·5

5			Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothelical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyltransferase	
15			Matched length (a.a.)		393	382	289		255	309	168	423	270	805		457	156				379	
20			Similarity (%)		67.2	68.9	56.4		60.8	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
•			Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	41.2		37.2	34.0				59.1	
30	Table 1 (continued)	(Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30- 84 phzC		Streptomyces coelicalor A3(2) SCE8.16c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos faurus	Escherichia coli K12 elaA			100	Bacillus subtilis 168 pur	
40			db Match	:	sp:3CR_ECOLI	gp VCAJ10968_1			gp:SCE8_16	sp:BCRA_BACI.I	pir.C70629	pir.B70629	sp:GLNH_BACST	pir.H70628		sp:ADRO_BOVIN	sp:ELAA_ECOLI				sp.PURT_BACSU	
			ORF (bp)	654	1194	1164	840	633	768	936	501	1366	1032	2253	747	1365	545	1062	1029	366	1194	888
45			Terminal (nt)	2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929256	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
50			Initial (nt)	2924191		2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	2941508	2942500	2943007	2944205	2946526
			SEQ NO			6517	6518	6519		6521	6522	6523	6524	5525	5526		6528	6259	6530	6531		6533
55			SEQ	2015	3016	3017		3019	3020	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033

							-					Т		$\neg \neg$			Π		T	T					
5			related)	10000	related	Dellas II	0		thetase				ne protein		e aldolase			evitransferase	3						
		Function	insertion element (IS3 related)		insertion element (153 related)	two-component system sensor histidine kinase	transcriptional regulator		edepute surcinate synthetase	d and a second upon	hypothetical protein		hynothetical membrane protein	nypomena n	fructose-bisphosphate aldolase	hypothetical protein		methyltransferase	orotate prospiror	hypothetical protein	3-mercaptopyruvate	Sulfuttansierase			
15		Maiched length (a.a.)	295	-	68	349	218		T	174	204		250	800	344	304		182	1/4	250	294				
20		Similarity (%)	0.00	90.9	84.3	51.3	65.6			95.3	59.3		9	100.0	100.0	100.0		91.2	65.5	60.0	44	3	-		
•		Identity 8	1	0.//	67.4	22.4	31.7			89 7	34.3			100.0	99.7	100.0		76.9	39.1	27.6	200	- 1		-	-
25	ined)	9	micum		nicum	olaceus	don!	Office			ulasis		mi ju	DRF3	amicum da	amicum	ORF1	culosis	Ę.	culosis					
	Table 1 (confinued)	Homologous gene	michaeterium atetamicum	yneoacterium grace	Corynebacterium glutamicum orf1	Streptomyces thermoviolaceus	-520 cilis	Bacilius previs ALNOO dego		Corynebacterium ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		of the construction of	Corynebacterium giutarincum AS019 ATCC 13059 ORF3	Corynebacterium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum	S019 ATCC 13059 (Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis	3/47 4703035	Homo sapiens mps I			
35				ortz	Cory of 1			-	1		¥£		+		ŏ ¥	Ö	Ä	ΣI			_	$\overline{}$			
40		db Match		pir.S60890	pir S60989	AP. AB015841 1		sp DEGU_BACBR		gp: AB003160_1	pir.G70575			sp:YFDA_CORGL	pir. S09283		gp:CGFDA_1	pir:G70833	ar. AF058713 1	nir B70834		SP.THTM_HUMAN			
		ORF	1	894 p	267	94,		618	225	1290	759		264	1167	1032		951	618	553			852	720	 	333
45		Terminal		2946698	2947620	0	2948049	2949265	2950431	2950434	2952691		2952972	2952975	2954241		2955523	2956830	3047300		SC19067	2959520	2960468	 	2963198
50		-	(mr)	2947591 2	2947886		2949188	2949882	2950207		2951933	j	2952709	2954141	2955272		2956473	2957447			2959110	2960371	2961187		2963596
		SEO.	(a a.)	6534 2	6535		6536	6537		6539			6541				6544	6545			6547	6548	6549		6551
55		SEO	_	3034	2000	<u> </u>	3036	3037				2500	3041	3042	2043	-	3044	3045	3	3046	3047	3048	3049	3020	3051

										-					$-\tau$	T		
	Function	virulence factor	viru'ence factor	virulence factor	sodium/glutamate symport carner protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-lyase	bacterial regulatory protein, fact family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase	
	Matched length (a a)	59	200	132	489	108	283	476	399		375	184	89	99	361	204	386	
	Similarity (%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	56.2	64.7	9.09	
	Identity (%)	760	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9	
Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF25110	Synechocystis sp. PCC6803 slr0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhodococcus rhodochrous IFO3338	Kryptophanaron alfredi symbionl IuxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicalor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0385	
	db Match	GSP v29188	GSP Y29182	GSP.Y29193	pir.S76683	SO CADE STAAU	pir.H75109	gp:AB010439_1	sp.LUXA_KRYAS		SP. METB ECOLI	gp:SC1A2_11	gp.SCE20_34	gp:SCE20_34	pir:E70812	pir:D70812	pir D70834	
	ORF (bp)	177	762	396	1347	387	58	1170	1041	762	1146	567	240	183	1125	732	1179	
	Terminal (nt)	2964434	2965837	2965583	2966458	2068780	2969808	2971003	2972057	2971338	2972060		2974200	2974382	2975591	2976360	2977774	
	Initial (nt)	2964258	2965076	2965188	2967804	2060403	2958951	2969834	2971017	2972099	2073205	2973796	2973961	2974200	2974467	2975629	2976596	
	SEQ		6553	6554	6555		6557	6558	6559	65.60	8581		6563	6564	6565	6566	655/	_:
	SEO		3053	3254	3055	_	3057	3058	3059	3060	900	3062	3063	3064	3065	3066	3067	!

3076 6575 3077 6577 3078 6578 3080 6580 3081 6581	6571 2980881 6572 2981698 6573 2982452 6575 2984522 6575 2986337 6577 2986833 6578 2988846 6579 2990045 6580 2991718 6581 2993286	297 (847) 297 8979 2980115 2981216 2982495 2982495 2988887 29888846 2992602 8 2992602	798 11134 11134 11185 11185 11185 11332 1333 8855 8855	db Match oir. B69109 pp. SC4A7_3 GP. ABCARRA_2 gp. SAU43295_2 sp. CRPE_STRCO sp. GRPE_STRCO sp. CF5_8 sp. FFS_HELPY sp. CU13_SCHPO	Homologous gene Methanobacterium thermoautotrophicum Detta H MTH 1811 Streptomyces coelicolor A3(2) SC4A7.03 Azospirillum brasilense carR Rhodococcus erythropolis thcA Streptomyces albus G hspR Mycobacterium tuberculcsis H37Rv RV0352 dnaJ Streptomyces coelicolor grpE Streptomyces coelicolor A3(2) SCF6.09 Helicobacter pylori HP0089 mtn Helicobacter pylori HP0089 mtn Schizosaccharomyces pombe cut3	1dentity (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(%) (%) 67.3 67.3 67.3 70.4 80.1 80.1 80.1 66.5 66.5 66.5	Amatched length (a.a.) 275 275 289 136 397 397 135 195 195 1311	N-carbamoyl-D-amino acid amidohydrolase hypothetical protein novel two-component regulatory system aldehyde dehydrogenase heat shock transcription regula:or heat shock protein dnaJ nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK heat shock protein dna A nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK heat shock protein dnaK heat shock protein dnaK andleosidase and S- adenosylhomocysteine nucleosidase adenosylhomocysteine protein chromosome segregation protein
				10 110		ŀ			
3083 6583	2995405			5 - - - - - - - - - -	Bacillus stearothermophilus	50.0	81.7	334	alcohol dehydrogenase
30B4 6584	1 2996781	1 2995747	1035	5 sp ADH2_BACST	DSM 2334 adh	<u>;</u>			

EP 1 108 790 A2

	_					_			_													
5		uc					ine protein			ferase, subunit	adenylyltranslerase small	ohosphosulfate	ductase	-NADP				stake protein by		enase		
10		Function					hypothetical membrane protein	hypothetical protein		sulfate adenylyltransferase, subunit 1	sulfate adenylyltrans chain	phosphoadenosine phosphosullate reductase	ferredoxinnitrate reductase	ferredoxin/ferredoxin-NADP reductase	huntingtin interactor			alkylphosphonate uptake protein and C-P lyase activity	hypothelical protein	ammonia monooxygenase		
15		Matched length (a a)					301	252		414	308	212	505	487	144			142	80	161		
20		Similarity (%)					70.1	53.2		78.3	70.1	64.2	65.5	61.4	59.7			59.9	66.3	76.4		
		identity (%)					43.5	32.5		47.3	46.1	39.2	34.5	30.8	32.6			26.8	50.0	39.1		
25	eq)							(3(5)					7942	e e				æ	43(2)	MZ ID		
30	lable 1 (continued)	Homologous gene					Bacillus subtilis ytnM	Streptomyces coelicolor A3(2) SC7A8 ' 0c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH	Synechococcus sp. PCC 7942	Saccharomyces cerevisiae FL200 arh1	Homo sapiens hypE			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
35							Ba	SC				1	S	1.	포				<u>18 88</u>	P.88		
40		db Match					pir:F69997	gp.SC7A8_10		sp:CYSN_ECOL!	sp.cysp_Ecou	sp:CYH1_BACSU	SP:NIR_SYNP7	<u> </u>	prf:2420294J			sp:PHNB_ECOL!	gp:SCE68_10	gp:PPAMOA_1		
		ORF (bp)	216	207	189	261	927	723	915	1299	912	693	1683	1371	1083	237	534	414	366	522	321	486
45		Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3002453	3003480	3006915	3008376	3008453	3009303	3008749	3009607	3009710	3010979	3010441
50		Initial (1c)	2997151	2997687	2997688	2998223	2999454	3000200	3001512	·	3002453	3003145	3005162		3007294	3008689	3008770	3009162	3009242	3010231	3010659	3010926
		SEO NO (a.a)	6585	6586	6587	6288	6889		6591		6593	6594	6595	$\overline{}$	6597	8559	629		6601	6602	6603	5604
55		SEQ NO. (DNA)	3085	3086	3087	3088	3089	3090	3091	3092	3093	3094	3095	3096	3097	3098	3099	3100	3101	3102	3103	3104

continued)
Table 1 (

Table Committee																								
Table 1 (continued) Continued) Continued) Continued) Continued) Continued) Continued) Continued) Continued) Continued Continued) Continued		Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP- binding protein		cobalt transport protein	NADPH-flavin oxidoreduclase	inosine-undine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein	
SEC		Matched length (a a)	99		337	199	211	416			466				114	373		179	231	317	276	179	406	
SEG		Similarity (%)	580			648	73.0	67.8			48.5				46.0	50.1		9'29	71.4	59.3	59.4	78.8	63.8	
SEQ (a.a.) Initial (nt) Terminal (nt) ORF (nt) db Match (bp) 6605 3010989 3011273 285 SP YTZ3_AGRVI 6606 3011805 3011242 564 SP YTZ3_AGRVI 6607 3011805 3011242 564 SP YTZ3_AGRVI 6608 3011805 3011808 1002 sp:YGB7_ALCEU 6609 3013937 714 gp:HIU68399_3 1 6610 3014616 3013837 714 gp:HIU68399_3 1 6611 3014616 3013824 1203 pir.A69778 1 6612 3016238 3016924 687 A A 6613 3017349 3018327 774 A A A 6614 3017539 301832 774 A A A A 6616 3017539 3018123 954 1 A A A A A A A A A A A <td< td=""><td></td><td>Identity (%)</td><td>41.0</td><td></td><td>26.1</td><td>35.7</td><td>39.3</td><td>30.8</td><td></td><td></td><td>21.5</td><td></td><td></td><td></td><td>33.0</td><td>24.9</td><td></td><td>30.2</td><td>37.2</td><td>28.4</td><td>31.2</td><td>50.3</td><td>33.5</td><td></td></td<>		Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5	
SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match db Match 6605 3010989 3011273 285 SP·YTZ3_AGRVI 6606 3011805 3011242 564 SP·YTZ3_AGRVI 6606 3011805 3011808 1002 sp·YTZ3_AGRVI 6607 3012809 3011808 1002 sp·YTZ3_AGRVI 6608 3011805 3011808 1002 sp·YGB7_ALCEU 6609 3014550 3013837 714 gp·HIU68399_3 661 6611 3014569 3015824 1203 pr·HIU68399_3 3 6612 3014569 3015924 687 Accolor 661 6613 3017316 3019527 1323 sp·DAPE_ECOLI 6614 3017316 3018327 774 Accolor 6615 3016181 3017420 762 Accolor 6616 3018183 3018123 954 Accolor 6618 3021602 3021208 618 sp·HU	Table 1 (continued)	Homologous gene	Agrobacterium vitis ORF23		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.C8c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp	
SEQ Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		db Match			sp:YGB7_ALCEU		gp:HIU68399_3	pir.A59778							GPU.DCA297422_			gp:AF036485_6	Sp.FRP_VIBHA	sp:IUNH_CRIFA	gp:SCE20_8		SP. HMPA_ALCEU	
SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)	285	564	1002	693	714	1203	822	687	1323	1905	774	762	954	1069	642	618	816	903	975	588	1158	
SEQ NOE 6605 6605 6606 6607 6610 6610 6611 6611 6612 6613 6623 6623 6623 6623			3011273	3011242		3013106	3013837	3015924	3014648	3016924	3015827	3019220	3018312		1	3019542	3020561	3021208	3022113	3022998	3025353			
SEQ NOC (a.a.) 6605 6605 6607 6610 6610 6611 6611 6612 6619 6619 6610 6610 6610 6611 6611 6611		Initial (nt)	3010989	3011805	3012809	3013798			3015469					3018181	3019075							3025552	3027299	
SEO NO. O. O. O. O. O. O. O. O. O. O. O. O. O		SEQ NO	6605	9099	6607					6612	6613			6616	6617	6618		_			6623	6624	6625	 - -
			3105	3106	3107	3108	3109	3110		3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125	

3	
10	
15	
20	
25	•
30 -	
35	
40	
45	
50	

·5

6	֭֡֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
Contin	
1	
4	

10	Function			hypothetical protein			hypothetical membrane protein	acyltransferase or macrolide 3-0- acyltransferase		hypothetical membrane protein		hexosyltransferase	methyl transferase	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein	mebrane transport protein	
15	Matched length (a.a.)			1416 hy			363 hy	408		529 h		369 h	251 m	601 p	332 C	241 h	207 h	768 1	
20	Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	85.0	72.3	
•	Identily (%)			29.6		·	24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
25 (panuitu				92			36	γA		эе		rculosis	ercutosis	alis pepck	Orsay	2 yggH	erculosis	erculosis mpL3	
S &	Homologous gene			Mycobacterium leprae MLCB1883.13c	-		Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLC91883.046		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichia coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	
40	db Match			gp:MLCB1883_7			gp:MLCB1883_4	pir.JC4001		gp:MLCB1883_3		pir.G70961	pir:F70961	sp:PPCK_NEOFR	pir.E75125	Sp.YGGH_ECOLI	pir.E70959	pir:C70839	
	ORF (bp)	444	201	3129	621	195	903	1068	208	1422	699	1137	771	1830	1011	765	 	2316	1422
45	Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062	3055769	3056531		3059643	3058096
50	Initial (nt)	3041994	3042503	3042660	3043642		3047146	3047189	3047904		3050522		3051194	3053891	3054759	3055867		3057328	3059517
	SEQ NO		6646	6647	5548	6649	6550	6651	6652		5654		9599		6658	6859		1999	5 6662
55	SEQ NO.	3145	3145	3147	3148	3149	3150	3151	3150	3153	2154	3155	3156	3157	3158	2150	3160	3161	3162

5		Function	hypothetical membrane protein	hypothelical membrane proteir	propionyl-CoA carboxylase complex B subunt	synthase	ynthase	al protein		major secreted protein PS1 protein precursor			Ų	hypothelical membrane protein	protein	al protein	al protein		phosphatidic acid phosphatase
			hypothetics	hypothetics	propionyl-C B subunt	polyketide synthase	acyl-CoA synthase	hypothetical protein		major sect precursor			antigen 85-C	hypothetic	nodulation protein	hypothetical protein	hypothetical protein		phosphatic
15		Matched length (3 a)	364	108	523	1747	592	319		657			331	667	295	168	656		170
20		Similarity (%)	6 7 9	69.4	76.9	542	62.3	67.4	ļ	99.5			62.5	61.2	51.5	75.0	74.7		56.5
- -		Identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
30	YOURINGED)	us gene	berculosis	berculosis	licolor A3(2)	hraeus eryA	vis BCG	berculosis		glutamicum avum) ATCC			berculosis 29C fbaC	berculosis	linodans	berculosis	berculosis		mis ATCC
30) lane	Homologous gene	Mycobacterium tuberculosis H37Rv Fv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces coelicolor A3(2) pccB	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fbaC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Bacillus licheniformis ATCC 9945A bcrC
40		db Match	pir.A70839	pir:H70633	gp:AF113605_1	Sp.ERY1_SACER	prf:2310345A	pir.F70887		sp.CSP1_CORGL			sp:A85C_MYCTU	pir.A70888	sp:NOEC_AZOCA	pir:C70888	pir:D70888		sp:BCRC_BACLI
		ORF (bp)	1083	363	1548	4832	1798	927	498	1971	1401	219	1023	2058	966	504	1968	1494	477
45		Terminal (nt)	3060733	3061095	3051380	3052951	3068143	3070214	3071147	3071650	3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	3083935
50		Initial (n1)	3059651	3060733	3052927	3067780	3069930	3071140	3071644	3073620	3074047	3074075	3076562	3078772	3079848	3080351	3082311	3082467	3084411
		SEQ NO (a a.)	6663	6664	9999	9999	2999	6668	6999	6670	6671	6672	6673	6674	6675	9299	6677	6678	6679
55		SEQ NO (DNA)	3163	3164	3165	3166	3167	3168	3169	3170	3171	3172	3173	3174	3175	3176	3177	3178	3179

															_		_			T	T	1
	Function			dimethylaniline monooxygenase (N-	oxide-forming)	asettim asonerundente och	UUF-galaciopyiailose induse	hypothetical protein	glycerol kinase	hypothetical protein	acyltransferase	seryl-IRNA synthelase	transcriptional regulator, GntR family or fatty acyl-responsive regulator	hypothetical protein		hypothetical protein		2,3-PDG dependent	phosphoglycerate mutase	niratinamidase or pyrazinamidase		
	Matched length (a a)			1	377	1	3//	629	499	279	261	419	235	356		113		218	617	460	P	
	Similarity (%)				50 4		72.9	47.8	78.8	70.3	72.0	87.6	61.7	61.2		7.67		9 0	0.2.0	9	95.9	
	identity (%)				24.4		43.2	29.6	51.7	41.6	46.7	70.2	27.72	32.6		46.0		27.0	3/.2		7.17	
Table 1 (continued)	Homologous gene				Sus scrofa fmo1		Escherichia coii K12 glf	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aeruginosa ATCC 15692 glpK	Mycobacterium tuberculosis H37Rv Rv3813c	Mycobacterium tuberculosis H37Rv Rv3816c	Mycobacterium tuberculosis	Escherichia coli K12 farR	Mycobacterium tuberculosis	H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836			Amycolatopsis methanolica pgm		Mycobacterium smegmatis pzaA	
	db Match				sp:FMO1_PIG		Sp. GLF ECOLI	pir.G70520	sp:GLPK_PSEAE	pir.A70521	pir D70521	gsp:W26465	SD:FARR ECOLI		pir.H/0652	pir:A70653			gp:AMU73808_1		prf:2501285A	
	ORF (bp)	Ť	777	510	1302	612	1203	49	1527	834	876	1266	714		1113	342	g	<u>}</u>	699	630	1143	729
	Terminal (nl)		3084424	3085218	3087048	3088276			3090760	3092342	3093175	3094078	3096287		3097423	3097764	0827005	2027.000	3097904	3099454	3100698	3101426
	Initial (nt)		3085200	3085727	3085747	3087665	+-		3092286	3093175	3094050	3095343			3096311	3097423		3097870	3098572	3098825	3099556	6697 3100698
	SEO NO.	(a.a)	0899	6681	6682	6683		6685	9899	6687	6688	6689	6600	200	6691	2699		6693	6694	6695		
			1180	181	182	183	_				3188	7189) 	3191	3192		3193	3194	3195	3196	3197

.

	10	ס	
	15	5	
	20	0	•
	2:	5	•
•	3	0	
	3	5	
	4	0	
	4	5	
	5	o	

	Function	transcriptional regulator				hypothetical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconale permease			pyruvale kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport protein
	Matched length (a.a.)	380				107	432		259	456			491	314	526	224	188	221	255	422
	Similarity (%)	57.1				81.3	55.3		54.1	71.9		!	47.7	7.66	64.8	58.5	9'29	57.0	68.6	74.4
	Identity (%)	31.6				43.9	28.7		29.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis glpQ	Bacillus subtilis gntP			Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum lctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
	db Match	gp:SC6G4_33				pir: B26872	sp:AMYH_YEAST		sp:GLPQ_BACSU	SP.GNTP_BACSU			sp:KPYK_CORGL	gsp:Y25997	pir:C70893	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	pir:870885	1299 sp:SHIA_ECOLI
	ORF (bp)	1035	120	552	870	327	1314	918	819	1389	642	159	1617	942	1776	636	543	693	786	1299
	Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
	Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970	3107769	3108131		3109845		3113390	3113619	3115407	3116079	3116640	3117336	6716 3118284
	SEQ NO.	8699	6699	6700	6701	6702	6703	6704	6705	6706	6707	6708		6710		6712	6713	6714	6715	6716
	SEQ NO.		3199	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216

·5	
10	
15	
20	•
25	•
30 ÷	
5° 35	
40	-
45	
50	

	Function	L-lactate dehydrogenase or FMN- dependent dehydrogenase		immunity repressor protein			phosphalase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	mullidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
	Matched length (a.a)	376		55			569		122		210	164	292	384	! : 			216	447	137	212
	Similarity (%)	689		80 0			51.3		63 1		69 1	92 7	658	49.0				648	59.3	65.0	75.5
	identity (%)	4 0 4		45.5			29 5		36 9		47.6	82.3	32.5	23.4				33.8	27.3	37.2	50.9
Table 1 (continued)	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1	-		Caenorhabditis elegans Y51B11A.1		Arabidcpsis thaliana ill 1		Escherichia coli 8 msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gitC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus land	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
	db Match	prf 2219306A		sp:RPC_BPPH1			gp CELY51B11A_1		Sp:ILL1_ARATH		SP PMSR_ECOLI	pir.140858	sp:GLTC_BACSU	gp AF121000_10				pir.G70654	prf 2508244AB	sp.YXAD_BACSU	
	ORF (bp)	1215	405	312	138	711	1617	546	402	150	651	9009	924	1134	1611	Ë	1521	633	1491	456	636
	Terminal (nt)	3120379	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
	In:tial (nt)	3119665	3120909	3121598	3122129	3123222	3124172	3124885	3125298	2125143	3126145	3126392	3128417		3129785	3132920	3133028	3133115	3135268	3135297	
	SEO NO.	6717	6718	6719	6720	6721	6722	6723	6724	5775		6727	6728		6730	6731	6732	6733	6734	6735	
	SEQ		3218	3219	3220	3221		3223		3225		3227	3228	3229	3230	3231	3232	3233	22.74	3735	3236

	Function			two-comporent system sensor histidine kinase	hypothetical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor	transglycosylase-associated protein	hypothelical protein	hypothetical protein		hypothetical protein	hypothetical protein		bacterial regulatory protein, gntR family or glc operon transcriptional activator	hypothetical protein	hypothetical protein
	Matched length (a.a.)			408	48	277	265	192	87	296	314	334	28	42	-	109	488	267
-	Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	69 G	73.9	51.2	0 99	75.0		56.0	48.2	78.7
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4	61.0	71.0		30.3	26.0	48.3
Table 1 (continued)	Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69,22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spolliJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Myccbacterium tuberculosis H37Rv Rv2005c	Escherichia coil K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Ch!amydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC466.31c	Mycobacterium tuberculosis H37Rv Rv2744c
	db Match			prf.2518330A	gp:SCH69_22	gp:SCH69_20	sp:SP3J_BACSU	pir:C70948	sp:TAG1_ECOLI	sp.YW12_MYCTU	sp:YHBW_ECOLI	sp. YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp GLCC_ECOLI	gp.SC4G6_31	sp.35KD_MYCTU
	ORF (bp)	639	588	1311	150	822	1302	639	261	903	186	996	273	141	207	363	1416	873
	Terminal (nt)	3137558	3138471	3136593	3138481	3138634	3140952	3140885	3141709	3142454	3143496	3145626	3146841	3147230	3151369	3151842	3153828	3153894
	Initial (nl)	3136920	3137884	3137903	6740 3138630	3139455	3139651	3141523	3141969	3143356	3144482	3144661	3146569	3147090	3151575	<u> </u>	3152413	3154766
	SEQ NO.	6737	6738		6740	6741	6742	6743	6744	6745	6746	6747	6748	6749	6750	6751	6752	6753
	SEQ NO.	3237			3240	3241	3242		3244	3245	3246	3247	3248	3249	3750	3251	3252	3253

EP 1 108 790 A2

5	Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphale dehydrogenase (pseudogene)	Ipoprotein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
15	Matched length (aa)						217	:241				99		62	55	27	46	_	38	180	717	
20	Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	90.0		84.2	59.4	73.4	
•	Identity (%)						32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
so so so so so so so so so so so so so s	Homologous gene						Streptomyces coelicolor A3(2) SCD35, 11c	1				Pseudomonas aeruginosa TNP5	:	Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		oesei gap	Synechocystis sp. PCC6803 sll0788	Archaeoglobus fulgidus AF0152	
. Table	Ното						Streptomyces SCD35.11c	soybean NO21				Pseudomona		Saccharopoly	Streptomyces	Corynebacter Tnp1673	Corynebacter		Pyrococcus woesel gap	Synechocysti sil0788	Archaeoglobu	
<i>35</i> 40	db Match						gp:SCU35_11	sp:NO21_SOYBN				sp.TNP5_PSEAE		Sp.FER_SACER	gp.SCD31_14	GPU AF164956_8	GPU:AF164956_23		sp.G3P_PYRWO	pir.S77018	pir.H69268	
	ORF (bp)	153	1452	1068	249	309	11.	720	204	378	186	216	483	321	333	11.	162	1038	126	099	2217	171
45	Te:minal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161055	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
50	Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	6761 3160216	3160688	3160816	3160938	3161219	3161407	3267 6767 3162014	6768 3162694	3162710	3162852	3162983	3163733	3166005	3165437
	SEQ NO.	6754	6755	6756	6757	67.58	6759	929	6761	6762	6763	6764	6765	3266 6766	6767		6929	6770	6771	6772	6773	6774
55	SEQ NO.	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274

10	
15	
20	•
25	•
30 -	
; 35	
40	
45	
50	

	Function		two-component system sensor h-stidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol:disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)-translocating p-type ATPase	hypothetical protein		transposase	transposase
	ed (
	Matched !ength (a.a.)		301		233		630	101	322		78			909	72		73	70
	Similarity (%)		71.4		72.1		47.9	63.4	6.09		66 7			68.5	54.0		73.0	77.0
	Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum IlpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tno1673
	db Match		sp.BAES_ECOL!		sp:PHOP_BACSU		sp COPA_PSESM	sp TLPA_BRAJA	sp.QOR_MOUSE		sp.ATZN_SYNY3			1875 SP.ATZN_ECOLI	PIR:E72491		GPU.AF164956_B	GPU AF164956_8
	ORF (bp)	192	1197	828	756	672	1479	363	918	471	234	315	207	1875	390	309	216	258
	Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170992	3171616	3171619	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
	Initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172536	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
	SEQ NO (a a.)	6775	9229	7779	6778	6779	6780	6781	6782	6783	6784	6785	6786	6787	6788	62.89	0629	6791
	SEO NO. (DNA)	3275	3276	3277		3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

EP 1 108 790 A2

	_																							
5	the state of the s	Function	transposase (1S1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothelical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		hypothetical protein		penicillin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
15		Matched length (a.a.)	53	100	:	421		208	461		154	229	92		480		647	107	137	296		7.1	298	433
20		Similarity (%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		683		60.1	72.0	65.0	61.8		70.4	63.8	64.0
*		Identity (%)	92.5	39.0		27.1		35.1	37.7		42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
• 25	Table 1 (continued)	Homologous gene	n glutamicum 8 pAG1 tnpB	K 12 tni2		utida pcaK		K12 yaji	K12 cnaB		K12 RL9	K12 ssb	K12 RS6		smegmətis		ponA	uberculosis	uberculosis	uberculosis yofF		yhgC	K12 yceA	K12 ybjZ
<i>30</i>	Table 1	Homolog	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 tni2		Pseudomonas putida pcaK		Escherichia colı K12 yqil	Escherichia coli K12 cnaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv RV2319c yoff		Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
<i>35</i>		db Match	gp:AF121000_8	sp.THI2_ECOLI		sp.PCAK_PSEPU		sp:YQJI_ECOLI	sp:DNAB_ECOLI		sp:RL9_ECOLI	sp.SSB_ECOLI	sp.RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	sp:Y0HC_MYCTU	pir:B70912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	sp:YCEA_ECOLI	sp:YBJZ_ECOLI
		ORF (bp)	159 9	447 S	264	1344 SI	159	576 s	1530 s	516	450 \$	675 s	285 s	189	1458 g	882	2160 s	357 s	471 p	942 s	495	321 \$	936 s	1263 s
45		Terminal (nl)	3177525	3178112	3178872	3180392	3180945	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192266	3193252
50		Initial (nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184661	3184985	3185536	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
		SEQ NO.	6792	6793	6794	6795	6796	6797	6798	6239	6800	6801	6802	6803	6804	6805	9089	6807	6808	6889	6810	6811	6812	6813
55		SEQ NO.	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306	3307	3308	3309	3310	3311	3312	3313

	Function	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			DNA protection duning starvation protein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylaled-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase [NAD] (malic enzyme)	gluconokinase or gluconate kinase	feicoplanin resistance protein	teicoplanin resistance protein
	Matched length (a.a.)	221	237	360			154	268	404			166	231		398	392	486	169	159
	Similarity (%)	1.08	42.0	90.0			64.9	55.6	9.99			63.3	63.5		66.3	99.5	53.7	60.4	159.0
	Identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			sp:MGMT_HUMAN Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faecium vanZ	Enterococcus faecium vanZ
	db Match	sp:YBJZ_ECOU	pir.E81409	pir:F70912			sp.DPS_ECOLI	sp:FPG_ECOLI	SP.RTCB_ECOLI			sp:MGMT_HUMAN	011 sp:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_1	Sp.GNTK_BACSU	SP:VANZ_ENTFC	525 sp.VANZ_ENTFC
	ORF (bp)	069	1977	1089	909	1485	495	813	1149	1089	573	474	1011	111	1176	1176	1482	591	525
	Terminal (n)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206756	3208024	3209454	3209705	3211246	3211904
	Initial (nt)	3195203	3197186	3197412	3199187	3200686	3201754	3201900	3202952		3204156		3206232	3206646	3206849	6828 3208279	3211186	3211836	3212428
	SEQ NO.		6815	6816	6817	6818	6819	6820	6821		6823		6825	6826	6827		6829		
	SEQ NO.		3315		3317	3318	3319	3320	3321	7-	3323	3324	3325	3326	3327	3328	3329	3330	3331

EP 1 108 790 A2

	Function	mercury(II) reductase	D-amino acid dehydrogenase small subunit				NALI(P)H miroreduciase			leucyl-tRNA synthetase	hypothetical membrane protein	virulence-associated protein			hypothetical protein	bifunctional protein (homoprotocatechuale catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7 dioate decarboxylase)	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase	bacterial regulatory protein, lact family or peclin degradation repressor protein	transmembrane transport protein or 4-hydroxybenzoale transporter
	Matched length (a.a.)	448	444				194			943	104	98			247	298	339	229	454
	Similarity (%)	65.6	54.5				55.2			68.1	40 4	81.4			53.8	50.3	64.3	60.7	60.8
	Identity (%)	29.9	27.3				25.8			47.7	40.4	55.8			31.6	28.5	34.2	25.3	27.5
Table 1 (conlinued)	Homologous gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syl	Escherichia coli K12	Dichelobacter nodosus vapl			Streptomyces coelicolar SCC54.19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xInE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
	db Malch	SP. MFRA STAAU	Sp. DADA_ECOLI				Sp:NOX_THETH			Sp:SYL_BACSU	Sp YBAN ECOLI	CD.VAPI BACNO	Sp. va. de		gp:SCC54_19	sp:HPCE_ECOLI	gp:AF173167_1	sp.KDGR_ERWCH	1356 Sp.PCAK_PSEPU
	ORF (bp)	1344		1503	330	321	609	924	1452	2856	429	157	5	//4	723	837	1125	780	
	Terminal (nt)	1213031	3213934	3215257	3215886	3217457	3218601	3219700	3222495	3219778	3223150	0000000	3223009	3225374	3223992	3224718	3225563	3226910	3229079
	Initial (nt)	337175		3216759		3217777	3217993	6938 3218777	3221044	3722633	2070705	2777000		3224601	3224714	6845 3225554	3226687	3227689	6848 3227724
	SEO		6833	6834		6836	6837	6838	6839					6843	6844		6846	6847	6848
	SEO NO.	2223	3333	3334	_	_	3337	+		_			3342	3343	3344	3345	3346	3347	3348

. 20

[
	Function	salicylate hydroxylase	proton/glutamate symporter or excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component I		anthranilate synthase component II	anthranilate phosphoribosyttransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5'- phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophan synthase alpha chain	hypothetical membrane protein	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
	Matched length (a.a.)	476	507	170	515		208	348	474		417	283	521	152	305	547
	Similarity (%)	49.4	54.4	99.4	99.8		100.0	99.4	98.3		97.9	96.5	86.8	71.7	63.6	57.2
	Identity (%)	28.2	25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	9.99	30.3	32.5	25.2
Table 1 (continued)	Homologous gene	Pseudomonas putida	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF 1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum trpG	Corynebacterium glulamicum ATCC 21850 trpD	Brevibacterium lactofermentum trpC		Brevibacterium lactofermentum trpB	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21, 17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicolor A3(2) SCH10.12
	db Match	prf.1706191A		pir.JC2326	sp TRPE_BRELA		TRPG_BRELA	sp_TRPD_CORGL	1422 sp.TRPC_BRELA		sp.TRPB_BRELA	sp.TRPA_BRELA	gp SCJ21_17	sp.PTXA_ECOLI	SP:NOSF_PSEST	gp:SCH10_12
	ORF (bp)	1325	1251	510	1554	171	624	1044	1422	969	1251	840	1539	810	906	1584
	Terminal (nt)	3230444	3231054	3233105	3234956	3233250	3235579	3236645	3238062	3236518	3239332	3240171	3240313	3241879	3243759	3245342
	Initial (nt)	3229119		6851 3232596	6852 3233403	3233420	3234956	3235602	6856 3236641	3237213	3238082	3239332	3241851	3242688	3242854	
	SEO NO.	6849	6850	6851	6852	6853	6854	6855		6857		6859	6860	6861	6862	
	SEQ NO.	3349		3351	3352	3353	3354	3355	3356	3357	3358	3359	3360	3361	3362	3363

EP 1 108 790 A2

.

,30 ,

_									_			$\overline{}$				$\overline{}$		
	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein	di-/tripeptide transpo:er		bacterial regulatory protein, tetR family	hydroxyquinol 1,2-dioxygenase
	Matched length (a.a.)	305	336	328	262	102	347	226					238	58	469		188	246
	Identity Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5	71.6		50.5	62.2
	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					56.9	53.5	34.5		26.1	31.7
Table 1 (continued)	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SC111.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis dlpT		Escherichia coli K12 acrR	Acinetobacter calcoaceticus catA
	db Match	sp.UCRI_CHLLT	sp.NADO_THEBR	SP. YFEH_ECOLI	gp:SC111_36	pir.A29606	092 Sp:NADO_THEBR	sp YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU	SP.DTPT_LACLA		sp:ACRR_ECOLI	sp:CATA_ACICA
	ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	171	555	903
	Terminat (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	6870 3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549		6880 3257373
	SEQ NO.	-	6865	6866	6867	6868	6989	6870	6871	6872	6873	6874	6875	6876	6877	6878	6879	
	SEO		3365	3366	7	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3380

EP 1 108 790 A2

, 30 ,

_									_											
	Function	maleylacetate reductase	sugar transporter or O-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase or streptomycin biosyntnesis protein	phosphoesterase				stomatin		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ion-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
	Watched length (aa)	351	513	280	357	270	332	343	1242				206		1660	141		125	67	297
	Similarity (%)	75.5	58.3	60.7	55.7	58.2	59.6	62.4	62.7				57.3		80.2	61.0		76.8	70.1	62.3
	Identity (%)	43.0	31.4	25.7	27.2	25.9	26.5	34.1	33.3				28.6		58.4	34.8		50.4	46.3	29.9
lable 1 (conlinued)	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium iclR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizobium meliloti idhA	Streptomyces griseus strl	Bacillus subtilis yvnB				Caenorhabditis elegans unc1		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacillus subtilis thiO	Bacillus subtilis yvgY	Corynebacterium glutamicum proP
	db Match	sp:TCBF_PSESQ	sp:XYLE_ECOLI	sp:ICLR_SALTY	sp.YDGJ_ECOLI	gsp.W61761	sp:MI2D_BACSU	sp:STRI_STRGR	pir.C70044				sp.UNC1_CAEEL		gp:MBO18605_3	prt:2323363AAM		sp.THIO_BACSU	. pir.F70041	pif.2501295A
	ORF (bp)	1089		861	1077	879	1005	1083	4032	645	618	1086	744	696	4929	507	360	909	243	837
	Terminal (nt)	3257403	3258561	3261969	3263221	3264115	3265146	3266266	3271093	32679.3	3268618	3272477	3274488	3275602	3276671	3281666	3283101	3282347	3283383	3283473
	Initial (nt)	3258491		3261129	3262145	3263237	3264142	3265184	3267062	3268557	3269235	3271392	3275231	3276570	3281599	3282172	3282742	3282946	3283141	3284309
	SEQ NO.	6881	6882	6883	6884	6885	6886	6887	6888	6889	0689	6891	6892	6893	6894	6895	9689	6897	6898	6899
	SEQ NO.	3331		3383	3384		3336	3337	3388	3399	3390		3392	3393	3394	3395	3396	3397	3398	3399

			ပမ							7	5	- 1		-	1		ļ		_		
5		on	ding periplasmit Iron(III) dicitrati rmease protein	atory function ng JADPH quinone			nidine kinase		g protein or iated domain	ino acid transp	ino acid transp		ınsferase	in		rane protein	rane protein		igma-H factor c CF subfamily)	ase	
10		Function	iron(III) dicitrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thiorecoxin reductase	
15	Matched	tength (a.a.)	279	324			249		29	102	212	169	471	234		858	1201		189	308	
20		Similarity (%)	9.09	58.0			75.5	!	70.1	65.7	67.0	56.2	51.8	69.2		543	60.1		6.09	82.5	
*		Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	26.8	436		25.8	35.7		30.2	60.4) .
25 (penuj		ene	ecB	s pombe								yage	cca	rculosis		rculosis	rculosis		Jinosa algU	igerus trxB	
Table 1 (continued)		Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe	:		Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis aztD	Bacillus subtilis aziO	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Ry Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus trxB	
35			·		!	T	1			1	\top								EAE		1
40 ·		db Match	sp:FECB_ECOU	sp MRF1_SCHPO			sp. THID_BACSU		pir.F70041	LISUVE O IZV	Sp. AZLC_BACSI	SO YOGE ECOLI				pir.F70600	pir:G70600		SP RPSH_PSEAE	Sp.TRXB_STRCL	
		ORF (bp)	957	1122	384	3 3	798	345	201	345	744	567	1320	996	273	2511	3249	723		951	∹
45		Terminal (nt)	3284399	3286576	3287005	2501000	3287393	3288609	3288885	1200024	320097 1	320005	3290623	3293497	3292610		3299404	3298428		3301321	
50		Initial (nt)	3285355	3285455	220000		3287297					3290021			3292882		3296156	3297706		3417 6917 3300371	2
	ļ	SEO	6900	6901			6903			_			6903		6912		6914	F015		6917	:
55		SEO	3400	3401	000	3402	3403	3405	3406		3407	3408	3410	3411	3412	3413	3414	27.15	3416	3417	<u>-</u>
J.J	-																				

	Function		Ihioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-aipha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartale-semialdehyde dehydrogenase	3-dehydroquinase
	Matched length (a.a.)		119	196			212	367	272	153	313	123	47			136	616	85	344	149
	Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
•	Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene		Chlamydomonas reinharotii thi2	Bacillus subtilis cwlB			Mycobacterium tubercutosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glufarnicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glulamicum asd	Corynebacterium glutamicum ASO19 aroD
	db Match		Sp:THI2_CHLRE	sp:CWLB_BACSU			pir.D70851	sp. YGI2_PSEPU	sp.YGI1_PSEPU	sp:GIDB_ECOLI	pir.A70852	sp:RNPA_BACSU				gp:AF116184_1	sp.LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
	ORF (bp)	1185	372	1242	777	1041	618	1152	837	699	951	399	336	294	222	408	1848	255	1032	447
	Terminal (nt)	3300119	3301729	3302996	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307971	3308412	3309321	3308822	147573	266154	268814	271691	446521
	Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	3306532	3307632	3308369		3309028	3309043	147980	268001	269068	270660	446075
	SEO NO.	6918	6169		6921	6922	6923	6924	6925	6926	6927	6928	6269	6930	6931	6932	6933	6934	6935	6936
	SEQ NO. (CNA)	3418	3419		3421	3422		3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

EP 1 108 790 A2

_															
	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or biotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
	Matched length (a a)	396	440	738	591	437	118	595	426	501	463	316	369	524	550
	Similarity (%)	100.0	100 0	100.0	100.0	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13059 luf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 RbA	Corynebacterium glutarnicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
	db Match	sp.EFTU_CORGL	sp SECY_CORGL	214 Sp.IDH_CCRGL	773 prf.2223173A	sp CISY_CORGL	sp.FKBP_CORGL	sp.BETP_CORGL	sp:YLI2_CORGL	503 sp:LYSI_CORGL	389 SP.AROP_CORGL	pir.S52753	prf.2106301A	gp.CGPUTP_1	1650 sp:SYR_CORGL
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	1650
	Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
	fritial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	6946 1154683	1155676	6948 1155731	1219602	3450 6950 1238274 1239923
	SEO NO (a a)	6937	6938	6633	6940	6941	6942	6943	6944	6945	6946	6947		6948	6950
	SEQ NO (DNA)		3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

.30 -

	Function	diaminopimelate (DAP) decarboxylase (meso- diamiropimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglutamate kinase	ornithine carbamoy!transferase	arginine repressor
	Matched length (a.a.)	445	445	309	216	236	290	929	172	338	340	683	294	319	171
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutarnicum ATCC 13032 argF	Corynebacterium glutamicum ASO 19 argR
	db Match	1335 sp.DCDA_CORGL	sp:DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp:ILVB_CORGL	pir.B48648	pir.C48648	sp:LEU3_CORGL	2049 prf.2014259A	sp:ARGB_CORGL	sp.OTCA_CORGL	gp.AF041436_1
	ORF (bp)	1335	1335	927	627	708	870	1878	516	1014	1020	2049	882	957	513
	Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	1469528
	SEQ		6952	6953	6954	6955	9569	6957	6958	6989	0969	6961	6962	6963	3464 6964
	SEO.		3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

EP 1 108 790 A2

						Table 1 (continued)				
SEO	SEO	Initial	Terminal	ORF	db Match		Identity (%)	Similarity (%)	Matched length	Function
.0 KG	(a a.)	(z)	(ut)	(dq)					137	MADE debydrodenase
	6965	1544554	1543154	1401	gp:CGL238250_1	Corynebacterium gluramicum ATCC 13032 ndh	100.0	190.0	4D/	Securitary House
			1586465	261		Corynebacterium glutamicum ASO19 hisE	100.0	100.0	87	phosphoribosyl-A! P- pyrophosphohydrolase
	6967	1675208	1674123	1086	gp.CGL007732_4	Conynebacterium glutamicum ATCC 13032 ocd	100.0	100.0	362	ornithine-cyclodecarboxylase
2468	6068		1675268	1356	1	Corynebacterium glutamicum ATCC 13032 amt	100.0	100.0	452	ammonium uptake protein, riigii affinity
			1677049	231		Corynebacterium glutamicum ATCC 13032 secG	100.0	100 0	77	protein-export membrane protein secG
2409				2757	p:f:1509267A	Corynebacterium glutamicum	100.0	100.0	919	phosphoenolpyruvate carboxylase
3470				1230		Corynebacterium glutamicum AS019 aroC	100.0	100.0	410	chorismate synthase (5- enotpyruvylshikimate-3-phosphate phospholyase)
1 1				_		Corynebacterium glutamicum	100.0	100.0	632	restriction endonuclease
3472	6972	1880490	1882385	1896	pir:855225	ATĆC 13032 cglIIR				Sigma factor of RNA polymerase
3473	6973	2020854	2021846	993	prf.2204286D	Corynebacterlum glutamicum ATCC 13869 sigB	100.0	100.0	331	transcription factor
77.76			2061504	888	sp.GLUB_CORGL	Corynebacterium glutamicum ATCC 13032 gluB	100.0	100.0	295	glutamate-binding protein
				1128		Corynebacterium glutamicum	100.0	100.0	376	recA protein
3476				903		Corynebacterium glufamicum (Brevibacterium factofermentum) ATCC 13869 dapA	100.0	100.0	301	dihydrodipicolinate synthase
3477	7 6977	7 2081934	4 2081191	1 744	sp:DAPB_CORGL	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dap8	100.0	100.0	248	dihydrodipicolinate reductase
87.75	8 6978	8 2115363	3 211386	1 -	1500 gp:CGA224945_1	Corynebacterium glutamicum R127 mgo	100 11	100 0	200	L-malale dehydrogenase (acceptor)
<u>.</u>	_		_							

EP 1 108 790 A2

·

	Function	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
	Matched length (a a)	692	112	438	447	475	323	477	481	615	739	432	369	386	148	77
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	identity (%)	100.C	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Conynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
	db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp.CAJ10319_2	pir:S32227	Sp:KPYK_CORGL	gp:AF096280_1	prt.2322244A	sp. THRC_CORGL	prf.2501295B	pir:140715	pir:140713	sp:PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
	ORF (bp)	2076	336	1314	1341	1425	696	1431	1443	1845	2217	1296	1107	1158	444	231
	Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467525	2472035	2496670	2590312	2679684	2580419
	initial (nt)	1 =	2172086	2173467	2196082	2207022	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	6993 2680649
	SEO	(a a.) 6979	6980	1869	6982	6983	6984	6985	9869	1869	8869	6869	0669	1669	2669	
		3479 E	3480	3481	3482	3483	3484	3485	3486		3468	3489	3490	3491	3492	3493

EP 1 108 790 A2

_				_				_	$-\tau$			7'''					- 1	
		Function	meso-diaminopimelate D.	dehydrogenase	porin or cell wall channel forming	protein	acetate kinase		phosphate acetyltransterase	multidrug resistance protein or	macrolide-efflux pump of	arug proton annipones	ATP-dependent protease regulatory subunit	and and and and and	prephenale deliyaratase		ectoine/proline uptake protein	
	Matched	length (a.a.)	900	320	45		397		329		459		852	;	315		504	
	Matched	(%)		0.001	1000	200	100.0		100.0		100.0		100.0		100.0		100.0	
	100	Identity (%)		100.0	000	2.00	100.0		100.0		100.0		100.0		100.0		100.0	
Table 1 (continued)		Homologous gene	Transfer of the second of the	Corynepacterium gradamica KY10755 ddh	Corvnehacterium alutamicum	MH20-22B porA	Corynebacterium glutamicum	AICC 13032 dCKA	Corynebacterium glutamicum	200 DOIN	Corynebacterium glutamicum	ATCC 13032 cmr	Corynebacterium glutamicum	A1CC 13032 cipe	Corynebacterium giutamicurii	pneA	Corynebacterium glutamicum	ALCC 13032 prof
		db Match		Sp. DDH_CCRGL		gp:CGL238703_1	1101 cm ACKA CORGL		prf.2516394A		77.7 5.4.0300322A	JII. 2003022F	See Fr.C. Pa CORG	ap. de	945 Inf 1210266A		1512 nd 2501295A	
		ORF (bo)		096		135	101	2	987		4377	25	3000	2330	945	<u> </u>	1512	;
		Terminal		2786756		2887944		C100067	2938508	20000		2967/18		0005687	2008578		1277563	
			(1111)	GODA 2787715 2786756		6995 2888078		3496 6996 29365US	7000			2961342		2966101	00000	7703606 0007	1701700	7001 3274074
		SEO.	(9.9)	8008	5	9995	: !	9669	200	7660		8669	-	6669	300	000/		20/
		SEO		2404		3495	İ	3496	_	3497		3498		3499		3200		3501
			_	1	1					_		_						

Example 2

10

15

20

25

30

45

55

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and lysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in lysE, lysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet.*, 196: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology*, 6: 1195-1204 (1992)) were each digested with *Pst*1. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using LIgation KIt ver. 2 (manufactured by Takara Shuzo), Introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters*, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*1 site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, *hom* and *pyc*, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with *Bam*HI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

5

10

15

20

30

40

50

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of Ikeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144*: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated hom gene and pyc gene, respectively.

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the *hom* gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the *pyc* gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β-alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biolin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331Ile in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

10

20

30

35

55

45 Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in *hom*, a mutation, Thr311Ile, in *lysC*, a mutation, Pro458Ser, in *pyc* and a mutation, Ala213Thr, in *zwf* were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacement having mutated gene

10

15

20

30

45

- [0389] The plasmid for gene replacement, pChom59, having the mutated *hom* gene and the plasmid for gene replacement, pCpyc458, having the mutated *pyc* gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated *lysC* and *zwf* were produced as described below.
- [0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.
- [0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwl* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.
- (3) Introduction of mutation, Thr311lle, in IysC into one point mutant HD-1
- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311Ile, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.
 - (4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2
 - [0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.
 - (5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3
- [0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

5

10

15

20

25

30

35

45

50

55

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 51 jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a

[0405] As the oligo DNA primers used for the PCR,

20

DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEO ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

[0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

as the respective primer set.

5

10

20

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer). TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/µl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 "mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 μl of 0.1 mol/l DTT, 1.5 μl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/l I dTTP), 1.5 μI of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μI of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 µl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μl.

(3) Hybridization

[0433] UltraHyb (110 µl) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 µl) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's Instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table	e 5
-------	-----

	lable 5					
ļ	SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5		
	207	5248	3240	1.62		

40

45

Table 5 (continued)

vasio e (beriamete)					
SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5		
3433	2239	2694	0.83		
281	2370	2595	0.91		
3435	2566	2515	1.02		
3439	5597	6944	0.81		
765	6134	4943	1.24		
3455	1169	1284	0.91		
1226	1301	1493	0.87		
1229	1168	1131	1.03		
3448	1187	1594	0.74		
3451	2845	3859	0.74		
3453	3498	1705	2.05		
3455	1491	1144	1.30		
1743	1972	1841	1.07		
3470	4752	3764	1.26		
2132	1173	1085	1.08		
3476	1847	1420	1.30		
3477	1284	1164	1.10		
3485	4539	8014	0.57		
3488	34289	1398	24.52		
3489	43645	1497	29.16		
3494	3199	2503	1.28		
3496	3428	2364	1.45		
3497	3848	3358	1.15		

[0436]. The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology, 168*: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

5

10

15

20

25

30

40

45

50

55

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swissprot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

5

10

20

25

30

35

40

45

50

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

*(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from *Corynebacterium glutamicum* ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)	
ATCC 13032	0	
FERM BP-7134	45	
FERM BP-158	60	

[0444]: After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmol/ITris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445]. The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged $(5,000 \times g, 15 \text{ minutes}, 4^{\circ}\text{C})$ to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at 12,000 × g for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

5

30

35

45

55

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 µg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

10

20

25

35

40

45

50

5 [0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis*, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.

[0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

- (4) In-gel digestion of detected protein spot
- [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μl of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μl of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/μl) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μl of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μl of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μl of α-cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
 - (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.

[0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.

[0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.

[0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.

[0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.

- (6) Identification of protein spot
- [0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.

[0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.

- (a) Search and identification of gene encoding high-expression protein
- [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

 [0468] As a result, it was found that Spot-1 corresponded to enolase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

[0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).

[0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.

[0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.

(b) Search and identification of modified protein

[0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.

[0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.

[0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

(c) Search and identification of expressed protein effective in lysine production

[0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.

[0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

[0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.

[0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

Claims

50

55

5

15

20

30

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

5

10

15

20

25

30

35

45

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- 2. The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 3. The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- 7. A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- **8.** A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 50 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recovering the polypeptide from the medium.

- 5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
 - 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
 - 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
 - 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- 22. A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information;
 - (li) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information:

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.

5

10

20

30

35

40

45

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:
 - culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.
 - 52. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
 - 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 50 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- **30**. A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

5

10

15

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - **32.** The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
 - 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - **38.** A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- **56.** The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- **57.** The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431; (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway:
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 35 60. A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - **61.** The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - **63.** A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional electrophoresis;

5

10

20

25

30

35

40

45

50

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 15 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium um melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).

F1G. 3

FIG. 4

