1 Week 3

- If f(n) = O(g(n)), there exist constants c_1 and c_2 such that $f(n) \le c_2 \cdot g(n)$ holds for all $n \ge c_2$.
- If f(n) = O(g(n)), we have $\lim_{n\to\infty} \frac{f_1(n)}{g_1(n)} = c$ for some constant c.

2 Week 3 - Extra

- When using 'Direction 1: Constant Finding' setting c_1 , always set it to match the coefficient on the LHS so that you can cancel.
- When trying to get a contradiction, try and isolate an $x \cdot c_1$ on the RHS, where $x \in \mathbb{Z}$, such that an expression that contains n is $\leq x \cdot c_1$
- Make judicious use of the *max* function when adding functions together
- If $f_1(n) + f_2(n) \leq c_1 \cdot g_1(n) + c'_1 \cdot g_2(n) \leq \max\{c_1, c'_1\} \cdot (g_1(n) + g_2(n))$, for all $n \geq \max\{c_2, c'_2\}$.

3 Week 4

3.1 The Master Theorem

Let f(n) be a function that returns a positive value for every integer n > 0. We know:

$$f(1) \leqslant c_1$$

 $f(n) \leqslant \alpha \cdot f(\lceil n/\beta \rceil) + c_2 \cdot n^{\gamma} \text{ for } n \geqslant 2$

where $\alpha, \beta, \gamma, c_1$ and c_2 are positive constants. Then:

- If $log_b \alpha < \gamma$ then $f(n) = O(n^{\gamma})$
- If $log_b\alpha = \gamma$ then $f(n) = O(n^{\gamma} \cdot log(n))$
- If $log_b \alpha > \gamma$ then $f(n) = O(n^{log_\beta(a)})$

4 Week 5

TODO

5 RAM Model

5.1 Memory

Infinite sequence of cells, contains w bits. Every cell has an address starting at 1

5.2 CPU

32 registers of width w bits.

5.2.1 Operations

Set value to register (constant or from other register). Take two integers from other registers and store the result of; a+b, a-b, $a \cdot b$, a/b. Take two registers and compare them; a < b, a = b, a > b. Read and write from memory.

5.3 Definitions

An algorithm is a set of atomic operations. It's cost is is the number of atomic operations. A word is a sequence of w bits

6 Worst-case

Worst-case cost of an algorithm is the longest possible running time of input size n

7 Dictionary search

let n be register 1, and v be register 2 register $left \rightarrow 1$, $right \rightarrow 1$ while $left \leq right$

register $mid \rightarrow (left + right)/2$ if the memory cell at address mid = vthen

return ves

else if memory cell at address mid > v then

$$\begin{aligned} right &= mid - 1\\ \text{else} & \\ left &= mid + 1\\ \text{return no} \end{aligned}$$

Worst-case time: $f_2(n) = 2 + 6 \log_2 n$

8 Big-O

We say that f(n) grows asymptotically no faster than g(n) if there is a constant $c_1 > 0$ such that $f(n) \leq c_1 \cdot g(n)$ and holds for all n at least a constant c_2 . This is denoted by f(n) = O(g(n)).

8.1 Example

 $1000 \log_2 n = O(n), n \neq O(10000 \log_2 n)$ $\log_{b_1} n = O(\log_{b_2} n)$ for any constants $b_1 > 1$ and $b_2 > 1$. Therefore $f(n) = 2 + 6 \log_2 n$ can be represented; $f(n) = O(\log n)$

9 Big- Ω

If g(n) = O(f(n)), then $f(n) = \Omega(g(n))$ to indicate that f(n) grows asymptotically no slower than g(n). We say that f(n) grows asymptotically no slower than g(n) if $c_1 > 0$ such $f(n) \ge c_1 \cdot g(n)$ for $n > c_2$; denoted by $f(n) = \Omega(g(n))$

10 Big-⊖

If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then $f(n) = \Theta(g(n))$ to indicate that f(n) grows asymptotically as fast as g(n)

11 Sort

11.1 Merge Sort

Divide the array into two parts, sort the individual arrays then combine the arrays together. $f(n) = O(n \log n)$.

This is the fastest sorting time possible (apart from $O(n \log \log n)$

11.2 Counting Sort

A set S of n integers and every integer is in the range [1, U]. (all integers are distinct)

Step 1: Let A be the array storing S. Create array B of length U. Set B to zero. **Step 2:** For $i \in [1, n]$; Set x to A[i], Set B[x] = 1

Step 3: Clear A, For $x \in [1, U]$; If B[x] = 0 continue, otherwise append x to A

11.2.1 Analysis

Step 1 and 3 take O(U) time, while Step 2 O(n) time. Therefore running time is O(n + U) = O(U).

12 Random

 $\operatorname{RANDOM}(x, y)$ returns an integer between x and y chosen uniformly at random

13 A Universal Function

- Pick a prime number p such that
- $p \geqslant m$ and $p \geqslant$ any possible integer k
- Choose a number α uniformly at random from 1, ..., p-1
- Choose a number β uniformly at random from 1, ..., p-1
- Construct a hash function: $h(k) = 1 + ((\alpha k + \beta) \cdot mod(p)) \cdot mod(m)$

14 SE Set 3

 Find out how many times a recurrence takes to terminate, and then proceed to eyeball the time complexity