1 Топологічні простори

§1.1 Нагадування: метрична топологія

В курсі математичного аналізу [1, c. 26] уже розглядалися поняття околу точки, відкритої та замкненої множин, точки дотику, граничної точки, границі послідовності в просторі $\mathbb R$ тощо. Всі ці поняття визначалися за допомогою метрики простору $\mathbb R$ і відбивали певні властивості, притаманні множинам, за допомогою яких ми могли описувати основну концепцію цієї теорії — близькість між точками. Адже саме поняття близькості між точками (в розумінні малої відстані) є базовим для таких головних понять математичного аналізу як збіжність послідовностей і неперервність функцій.

Відносним недоліком цього підходу є очевидна залежність від метрики, уведеної в просторі. Тому постало питання, чи не можна побудувати більш абстрактну конструкцію, за допомогою якої можна було б описати ідеї, згадані вище. Серед дослідників цієї проблеми слід відзначити французьких математиків М. Фреше (1906), М. Рісса (1907–1908), німецького математика Ф. Хаусдорфа (1914), польського математика К. Куратовського (1922) і радянського математика П. Александрова (1924). В результаті досліджень цих та багатьох інших математиків виникла нова математична дисципліна — загальна топологія, предметом якої є вивчення ідеї про неперервність на максимально абстрактному рівні.

В цій та наступній лекціях ми введемо в розгляд ряд важливих топологічних понять. Це дозволить нам вийти на вищий рівень абстракції та опанувати ідеї, що пронизують майже всі розділи математики. Не буде великим перебільшенням сказати, що в певному розумінні топологія разом з алгеброю є скелетом сучасної математики, а функціональний аналіз — це розділ математики, головною задачею якого є дослідження нескінченновимірних просторів та їх відображень.

§1.2 Основні означення

Означення 1.1. Нехай X — множина елементів, яку ми будемо називати носієм. **Топологією** в X називається довільна система τ його підмножин, яка задовольняє таким умовам (аксіомам Александрова):

A1.
$$\varnothing, X \in \tau$$
.

А2. $G_{\alpha} \in \tau, \ \alpha \in A \implies \bigcup_{\alpha \in A} G_{\alpha} \in \tau, \ \text{де } A -$ довільна множина.

A3.
$$G_{\alpha} \in \tau$$
, $\alpha = 1, 2, ..., n \implies \bigcap_{\alpha=1}^{n} G_{\alpha} \in \tau$.

Інакше кажучи, топологічною структурою називається система множин, замкнена відносно довільного об'єднання і скінченого перетину.

Означення 1.2. Пара $T = (X, \tau)$ називається **топологічним простором**.

Приклад 1.1 (топологічного простору)

Нехай X — довільна множина, $\tau = 2^X$ — множина всіх підмножин X. Пара $(X,2^X)$ називається простором з дискретною (максимальною) топологією.

Приклад 1.2 (топологічного простору)

Нехай X — довільна множина, $\tau = \{\emptyset, X\}$. Пара (X, τ) називається простором з тривіальною (мінімальною, або антидискретною) топологією.

Зрозуміло, що на одній і тій же множині X можна ввести різні топології, утворюючи різні топологічні простори. Припустимо, що на носії X введено дві топології — τ_1 і τ_2 . Вони визначають два топологічні простори: $T_1 = (X, \tau_1)$, і $T_2 = (X, \tau_2)$.

Говорять, що топологія τ_1 є **сильнішою**, або **тонкішою**, ніж топологія τ_2 , якщо $\tau_2 \subset \tau_1$. Відповідно, топологія τ_2 є **слабкішою**, або **грубішою**, ніж топологія τ_1 . Легко бачити, що найслабкішою є тривіальна топологія, а найсильнішою — дискретна

Зауваження 1.1 — Множина всіх топологій не є цілком упорядкованою, тобто не всі топології можна порівнювати одну з одною. Наприклад, наступні топології (зв'язні двокрапки) порівнювати не можна: $X = \{a,b\}, \ \tau_1 = \{\varnothing,X,\{a\}\}, \ \tau_2 = \{\varnothing,X,\{b\}\}.$

Означення 1.3. Множини, що належать топології τ , називаються **відкритими**. Множини, які є доповненням до відкритих множин, називаються **замкненими**.

Наприклад, множина всіх цілих чисел \mathbb{Z} замкнена в \mathbb{R} .

Зауваження 1.2 — Топологія містить всі відкриті множини. Водночас, треба зауважити, що поняття відкритих і замкнених множин не є взаємовиключними. Одна і та ж множина може бути одночасно і відкритою і замкненою (наприклад, \varnothing або X), або ані відкритою, ані замкненою (множини раціональних та ірраціональних чисел в \mathbb{R}). Отже, топологія може містити й замкнені множини, якщо вони одночасно є відкритими.

Як бачимо, поняття відкритої множини в топологічному просторі постулюється — для того щоб довести, що деяка множина M в топологічному просторі T є відкритою, треба довести, що вона належить його топології.

Означення 1.4. Нехай (X, τ) — топологічний простір, $M \subset X$. Топологія (M, τ_M) , де $\tau_M = \{U_M^{(\alpha)} = U_\alpha \cap M, U_\alpha \in \tau\}$, називається **індукованою**.

Означення 1.5. Топологічний простір (X, τ) називається **зв'язним**, якщо лише множини X і \emptyset є замкненими й відкритими одночасно.

Означення 1.6. Множина M топологічного простору (X, τ) називається **зв'язною**, якщо топологічний простір (M, τ_M) є зв'язним.

Приклад 1.3 (зв'язних просторів)

Тривіальний (антидиск
ретний) простір і зв'язна двокрапка є зв'язними просторами.

Зловживання позначеннями 1.1. Надалі ми будемо часто скорочувати (X, τ) просто як X або T.

Означення 1.7. Довільна відкрита множина $G \in T$, що містить точку $x \in T$, називається її **околом**.

Означення 1.8. Точка $x \in T$ називається **точкою дотику** множини $M \subset T$, якщо кожний окіл O(x) точки x містить хоча б одну точку із $M \colon \forall O(x) \in \tau : O(x) \cap M \neq \emptyset$.

Означення 1.9. Точка $x \in T$ називається **граничною точкою** множини $M \subset T$, якщо кожний окіл точки x містить хоча б одну точку із M, що не збігається з x: $\forall O(x) \in \tau : O(x) \cap M \setminus \{x\} \neq \emptyset$.

§1.3 Замикання

Означення 1.10. Сукупність точок дотику множини $M \subset T$ називається **замиканням** множини M і позначається \overline{M} .

Означення 1.11. Сукупність граничних точок множини $M \subset T$ називається похідною множини M і позначається M'.

Теорема 1.1 (про властивості замикання)

Замикання задовольняє наступним умовам:

- 1. $M \subset \overline{M}$;
- 2. $\overline{\overline{M}} = \overline{M}$ (ідемпотентність);
- 3. $M \subset N \implies \overline{M} \subset \overline{N}$ (монотонність);
- 4. $\overline{M \cup N} = \overline{M} \cup \overline{N}$ (адитивність).
- 5. $\overline{\varnothing} = \varnothing$.

Доведення.

1. $M \subset \overline{M}$.

Нехай $x \in M$. Тоді x — точка дотику множини M. Отже, $x \in \overline{M}$.

2. $\overline{M} = \overline{M}$.

Внаслідок твердження 1) $\overline{M} \subset \overline{\overline{M}}$. Отже, достатньо довести, що $\overline{\overline{M}} \subset \overline{M}$. Нехай $x_0 \in \overline{\overline{M}}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0 \cap \overline{M} \neq \varnothing$ (за означенням точки дотику), то існує точка $y_0 \in U_0 \cap \overline{M}$. Отже, множину U_0 можна вважати околом точки y_0 . Оскільки $y_0 \in \overline{M}$, то $U_0 \cap M \neq \varnothing$. Значить, точка x_0 є точкою дотику множини M, тобто $x_0 \in \overline{M}$.

3. $M \subset N \implies \overline{M} \subset \overline{N}$.

Нехай $x_0 \in \overline{M}$ і U_0 — довільний окіл точки x_0 . Оскільки $U_0 \cap M \neq \emptyset$ (за означенням точки дотику) і $M \subset N$ (за умовою), то $U_0 \cap N \neq \emptyset$. Отже, x_0 — точка дотику множини N, тобто $x_0 \in \overline{N}$. Таким чином, $\overline{M} \subset \overline{N}$.

4. $\overline{M \cup N} = \overline{M} \cup \overline{N}$.

3 очевидних включень $M\subset M\cup N$ і $N\subset M\cup N$ внаслідок монотонності операції замикання випливає, що $\overline{M}\subset \overline{M\cup N}$ і $\overline{N}\subset \overline{M\cup N}$. Отже, $\overline{M}\cup \overline{N}\subset \overline{M\cup N}$. Отже, $\overline{M}\cup \overline{N}\subset \overline{M\cup N}$. Отже, іншого боку, припустимо, що $x\not\in \overline{M}\cup \overline{N}$, тоді $x\not\in \overline{M}$ і $x\not\in \overline{N}$. Отже, існує такий окіл точки x, у якому немає точок з множини $M\cup N$, тобто $x\not\in \overline{M\cup N}$. Таким чином, за законом заперечення, $x\in \overline{M\cup N}\Longrightarrow x\in \overline{M\cup N}$, тобто $\overline{M\cup N}\subset \overline{M}\cup \overline{N}$.

5. $\overline{\varnothing} = \varnothing$.

Припустимо, що замикання порожньої множини не є порожньою множиною: $x \in \overline{\varnothing} \implies \forall O(x) : O(x) \cap \varnothing \neq \varnothing$. Але $\forall N \subset X : N \cap \varnothing = \varnothing$. Отже, $\overline{\varnothing} = \varnothing$. \square

Теорема 1.2 (критерій замкненості)

Множина M топологічного простору X є замкненою тоді й лише тоді, коли $M = \overline{M}$, тобто коли вона містить всі свої точки дотику.

Доведення. Необхідність. Припустимо, що M — замкнена множина, тобто $G = X \backslash M$ — відкрита множина. Оскільки, $M \subset \overline{M}$, достатньо довести, що $\overline{M} \subset M$. Дійсно, оскільки G — відкрита множина, вона є околом кожної своєї точки. До того ж $G \cap M = \emptyset$. Звідси випливає, то жодна точка $x \in G$ не може бути точкою дотику для множини M, отже всі точки дотику належать множині M, тобто $\overline{M} \subset M$.

$$G = X \setminus M \in \tau \implies G \cap M = \varnothing \implies \overline{M} \subset M.$$

Достатність. Припустимо, що $\overline{M}=M$. Доведемо, що $G=X\setminus M$ — відкрита множина (звідси випливатиме замкненість множини M). Нехай $x_0\in G$. З цього випливає, що $x_0\not\in M$, а значить $x_0\not\in \overline{M}$. Тоді за означенням точки дотику існує окіл U_{x_0} такий, що $U_{x_0}\cap M=\varnothing$. Значить, $U_{x_0}\subset X\setminus M=G$, тобто $G=\bigcup_{x\in G}U_x\in \tau$. \square

Наслідок 1.1

Замикання \overline{M} довільної множини M із простору X є замкненою множиною в X

Теорема 1.3

Замикання довільної множини M простору (X, τ) збігається із перетином всіх замкнених множин, що містять множину M.

$$\forall M \subset X : \overline{M} = \bigcap_{\alpha} F_{\alpha}, \quad F_{\alpha} = \overline{F}_{\alpha}, M \subset F_{\alpha}.$$

Доведення. Нехай M — довільна множина із (X,τ) і $N=\bigcap_{\alpha}F_{\alpha}$, де $F_{\alpha}=\overline{F}_{\alpha}$, $M\subset F_{\alpha}$.

Покажемо включення $\bigcap_{\alpha} F_{\alpha} \subset \overline{M}$.

$$N = \bigcap_{\alpha} F_{\alpha} \implies N \subset F_{\alpha} \forall \alpha \implies N \subset \overline{F}_{\alpha} \forall \alpha.$$

Оскільки $\{F_{\alpha}\}$ — множина усіх замкнених множин, серед них є множина \overline{M} : $\exists \alpha_0: F_{\alpha_0} = \overline{M}$. Отже,

$$N \in \overline{F}_{\alpha} \forall \alpha \implies N \in F_{\alpha_0} = \overline{M} \implies \bigcap_{\alpha} F_{\alpha} \subset \overline{M}.$$

Тепер покажемо включення $\overline{M} \subset \bigcap_{\alpha} F_{\alpha}$. Розглянемо довільну замкнену множину F, що містить $M \colon F = \overline{F}, M \subset F$. Внаслідок монотонності замикання маємо:

$$\overline{F} = F, M \subset F \implies \overline{M} \subset \overline{F} = F \implies \overline{M} \subset F_{\alpha}, F_{\alpha} = \overline{\forall} \alpha \implies \overline{M} \subset \bigcap_{\alpha} F_{\alpha}.$$

Порівнюючи обидва включення, маємо

$$\overline{M} = \bigcap_{\alpha} F_{\alpha}.$$

Наслідок 1.2

Замикання довільної множини M простору X є найменшою замкненою множиною, що містить множину M.

§1.4 Щільність

Означення 1.12. Нехай A і B — дві множини в топологічному просторі T. Множина A називається щільною в B, якщо $\overline{A} \supset B$.

Приклад 1.4 (щільних множин)

В топології числової прямої множина всіх раціональних чисел \mathbb{Q} є щільною в множині всіх ірраціональних чисел $\mathbb{R} \setminus \mathbb{Q}$, і навпаки.

Зауваження 1.3 — Множина A не обов'язково міститься в B: множина раціональних чисел є щільною в множині ірраціональних чисел і навпаки.

Означення 1.13. Якщо $\overline{A} = X$, множина A називається **скрізь щільною**.

Означення 1.14. Множина A називається **ніде не щільною**, якщо вона не є щільною в жодній непорожній відкритій підмножині множини X.

Приклад 1.5 (ніде не щільних множин)

Найпростішими прикладами ніде не щільних множин є цілі числа просторі \mathbb{R} і пряма в просторі \mathbb{R}^2 .

Множина A є щільною в кожній непорожній відкритій множині, якщо $\forall U \in \tau, U \neq \varnothing$: $\overline{A} \supset U$, тобто кожна точка множини U є точкою дотику множини A. Отже, $\forall x \in U \forall O(x) \in \tau O(x) \cap A \neq \varnothing$. Заперечення цього твердження збігається з означенням ніде не щільної множини. Формальний запис означення має такий вигляд:

$$\exists U_0 \in \tau, U_0 \neq \varnothing : \overline{A} \not\supset U_0 \implies \exists x_0 \in U_0 \exists O(x_0) \in \tau : O(x_0) \cap A = \varnothing$$

Означення 1.15. Простір T, що містить скрізь щільну зліченну множину, називається **сепарабельним**.

Приклад 1.6 (сепарабельного простору)

Зліченна множина всіх раціональних чисел \mathbb{Q} є скрізь щільною у просторі \mathbb{R} , отже простір \mathbb{R} є сепарабельним.

3 того, що $\overline{\mathbb{Q}} = \mathbb{R}$ і $\overline{\mathbb{R} \setminus \mathbb{Q}} = \mathbb{R}$, зокрема, випливає, що \mathbb{Q} і $\mathbb{R} \setminus \mathbb{Q}$ є ані відкритими, ані замкненими множинами.

Приклад 1.7 (сепарабельного простору)

Зліченна множина всіх поліномів з раціональними коефіцієнтами за теоремою Вейєрштрасса є скрізь щільною в просторі неперервних функцій C[a,b]. Отже, простір C[a,b] є сепарабельним.

§1.5 Література

- [1] **Ляшко И. И.** Основы классического и современного математического анализа / И. И. Ляшко, В. Ф Емельянов, А. К. Боярчук. К.: Вища школа, 1988 (стр. 26–27).
- [2] **Александрян Р.А.** Общая топология / Р. А. Александрян, Э. А. Мирзаханян М.: Высшая школа, 1979 (стр. 10–20).
- [3] **Энгелькинг Р.** Общая топология / Р. Энгелькинг. М.: Мир, 1986 (стр. 32—50).