Elettronica T 13-9-2024	Ritirato	A	D	Totale
cognome	matricola			
nome	firma			

A1 Si consideri il circuito a OPAMP di figura. Nell' ipotesi che l'OPAMP sia ideale ed in alto guadagno, si calcoli la relazione $i_{\rm O}\text{-}i_{\rm IN}.$ Esplicitare i passaggi

$$i_0 = 1.2 \text{ mA} - 1.1 i_{IN}$$

Si calcolino ora i valori minimo e massimo della corrente i_{IN} che garantiscono il funzionamento in alto guadagno dell' OPAMP. Esplicitare i passaggi

$$I_{INMAX}$$
=10.2 mA
 I_{INMIN} =-8mA

Si analizzi il circuito in figura.

- 1. Ricavare l'espressione al punto O
- 2. Dimensionare i transistori nMOS in modo che il tempo di discesa, al nodo F, sia inferiore o uguale a 100pS. Si ottimizzi il progetto per minimizzare l'area occupata da tutti i transistori.
- 3. Disegnare la rete di PUN

Si tenga conto che i transistori dell'inverter di uscita hanno le seguenti geometrie : Sp=500, Sn= 300. Esplicitare i passaggi

Parametri tecnologici:

Rrif p = 10Kohm

Rrif n= 5Kohm

 $Cox = 7 \text{ fF/}\mu\text{m}^2$

 $Lmin = 0.25 \mu m$

 $V_{CC} = 3.3V$

