Sheet 4 - From A Different Angle

(Due: 22.11.2021, 18:00)

Exercise 1 - Tricks of the Trade IV (12 points)

On this sheet - just like in the lecture - we denote the three cartesian components of an angular momentum operators for a general spin-j system by $\hat{J}_x^{(j)}$, $\hat{J}_y^{(j)}$, and $\hat{J}_z^{(j)}$. As it is often done in the literature, we use the word "spin" in this context for both integer and noninteger values of j. The canonical basis for the Hilbert space \mathcal{H}_j of a spin-j system is given by the states $|j;m_j\rangle$ where $\hbar m_j$ is the eigenvalue of the state $|j;m_j\rangle$ with respect to the $\hat{J}_z^{(j)}$ operator.

(a) The y component of angular momentum for $j=1, \hat{J}_y^{(1)}$, takes on the following form in the canonical basis $\{|1;1\rangle, |1;0\rangle, |1,-1\rangle\}$,

$$\hat{J}_y^{(1)} = \frac{\hbar}{\sqrt{2}} \left(\begin{array}{ccc} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{array} \right) \,.$$

Show that [6P]

$$e^{-\frac{i}{\hbar}\beta\hat{J}_y^{(1)}} = \begin{pmatrix} \frac{1+\cos\beta}{2} & -\frac{\sin\beta}{\sqrt{2}} & \frac{1-\cos\beta}{2} \\ \frac{\sin\beta}{\sqrt{2}} & \cos\beta & -\frac{\sin\beta}{\sqrt{2}} \\ \frac{1-\cos\beta}{2} & \frac{\sin\beta}{\sqrt{2}} & \frac{1+\cos\beta}{2} \end{pmatrix}.$$

Hint: The eigenstates $\{\ket{+},\ket{0},\ket{-}\}$ of $\hat{J}_{y}^{(1)}$, corresponding to the eigenvalues $\{\hbar,0,-\hbar\}$, are given by

$$|\pm\rangle = \frac{1}{2} \left(|1;1\rangle \pm \sqrt{2}i \, |1,0\rangle - |1;-1\rangle \right), \qquad |0\rangle = \frac{1}{\sqrt{2}} \left(|1;1\rangle + |1;-1\rangle \right) \, .$$

(b) Using the formula for the matrix elements $D_{mm'}^{(1)}(\alpha,\beta,\gamma) = \langle 1;m'|e^{-\frac{i}{\hbar}\alpha\hat{J}_z^{(1)}}e^{-\frac{i}{\hbar}\beta\hat{J}_y^{(1)}}e^{-\frac{i}{\hbar}\gamma\hat{J}_z^{(1)}}|1;m\rangle$ of the rotation matrix $D^{(1)}(\alpha,\beta,\gamma)$, show that the following relation holds, [2P]

$$D^{(1)}(\alpha,\beta,\gamma) = \begin{pmatrix} \frac{1+\cos\beta}{2} & -\frac{\sin\beta}{\sqrt{2}}e^{i(\gamma-\alpha)} & \frac{1-\cos\beta}{2}e^{2i(\gamma-\alpha)} \\ \frac{\sin\beta}{\sqrt{2}}e^{-i(\gamma-\alpha)} & \cos\beta & -\frac{\sin\beta}{\sqrt{2}}e^{i(\gamma-\alpha)} \\ \frac{1-\cos\beta}{2}e^{-2i(\gamma-\alpha)} & \frac{\sin\beta}{\sqrt{2}}e^{-i(\gamma-\alpha)} & \frac{1+\cos\beta}{2} \end{pmatrix}.$$
 (1)

(c) Prove the following statement: "A state $|\psi\rangle \in \mathcal{H}$ is an eigenstate to the observable $\hat{A}: \mathcal{H} \mapsto \mathcal{H}$ if and only if the expectation value of the standard deviation in this state, $\langle \Delta \hat{A} \rangle_{|\psi\rangle}$, vanishes." [4P]

Exercise 2 - The Sum of its Parts (28 points)

For the first part of this exercise, we consider the Hilbert space of two spin- $\frac{1}{2}$ particles, which is given by the tensor product Hilbert space $\mathcal{H}_{\frac{1}{2}}\otimes\mathcal{H}_{\frac{1}{2}}$. Furthermore, we use the popular notation $|\frac{1}{2};\frac{1}{2}\rangle\equiv|\uparrow\rangle$ and $|\frac{1}{2};-\frac{1}{2}\rangle=|\downarrow\rangle$ for the canonical basis of $\mathcal{H}_{\frac{1}{2}}$. We use the small letter s for the angular momentum operators on an individual spin- $\frac{1}{2}$ system, i.e., $\hat{J}_{x/y/z}^{\left(\frac{1}{2}\right)}\equiv \hat{s}_{x/y/z}$, and the capital letter S for operators on the two-particle system.

- (a) Show, that the product states $\{|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\downarrow\rangle\}$ are eigenstates to the total spin operator \hat{S}_z in z-direction given by $\hat{S}_z = \hat{s}_z \otimes \mathbb{1}_2 + \mathbb{1}_2 \otimes \hat{s}_z$. Determine the corresponding eigenvalues. [2P] Hint: The \hat{s}_i operators for a spin- $\frac{1}{2}$ system are rescaled Pauli matrices, $\hat{s}_x = \frac{\hbar}{2}\hat{\sigma}_x$, $\hat{s}_y = \frac{\hbar}{2}\hat{\sigma}_y$, and $\hat{s}_z = \frac{\hbar}{2}\hat{\sigma}_z$.
- (b) Check, whether the four product states from exercise (a) are eigenstates to the total spin operator $\hat{S}^2 = \hat{S}_x^2 + \hat{S}_y^2 + \hat{S}_z^2$, where \hat{S}_x and \hat{S}_y are defined analogously to \hat{S}_z . [6P]
- (c) Consider a basis of $\mathcal{H}_{\frac{1}{2}} \otimes \mathcal{H}_{\frac{1}{2}}$ given by the following four states,

$$|\mathfrak{s}\rangle \equiv \frac{1}{\sqrt{2}} \left[|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle \right], \qquad |\mathfrak{t}_{+}\rangle \equiv |\uparrow\uparrow\rangle \,, \qquad |\mathfrak{t}_{0}\rangle \equiv \frac{1}{\sqrt{2}} \left[|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle \right] \,, \qquad |\mathfrak{t}_{-}\rangle = |\downarrow\downarrow\rangle \,.$$

Check, whether these four states are eigenstates to the operators \hat{S}^2 and \hat{S}_z and determine the corresponding eigenvalues. [4P]

(d) The action of a general spin-j operator is given by

$$\hat{J}_{z}^{(j)}\left|j;m_{j}\right\rangle \ = \ \hbar m_{j}\left|j;m_{j}\right\rangle \; , \qquad \left[\hat{\bar{J}}^{(j)}\right]^{2}\left|j;m_{j}\right\rangle = \hbar^{2}j\left(j+1\right)\left|j;m_{j}\right\rangle \; . \label{eq:eq:constraint}$$

Compare the action of the operators \hat{S}^2 and \hat{S}_z on the basis $\{|\mathfrak{s}\rangle, |\mathfrak{t}_+\rangle, |\mathfrak{t}_0\rangle, |\mathfrak{t}_-\rangle\}$ to the action of the operators $[\hat{J}^{(1)}]^2 \oplus [\hat{J}^{(0)}]^2$ and $\hat{J}_z^{(1)} \oplus \hat{J}_z^{(0)}$ on the basis $\{|\mathfrak{s}\rangle, |\mathfrak{t}_+\rangle, |\mathfrak{s}\rangle, |\mathfrak{s}\rangle$ in the Hilbert space $\mathcal{H}_1 \oplus \mathcal{H}_0$. [6P]

A combined system of a spin- j_1 and a spin- j_2 particle allows for several possible values for the total spin quantum number j_{tot} of the two-particle system, namely all integers with $|j_1 - j_2| \le j_{\text{tot}} \le j_1 + j_2$.

(e) Compare the dimension of the Hilbert space given by the tensor sum of all spin- j_{tot} spaces, $\bigoplus_{j_{\text{tot}}} \mathcal{H}_{j_{\text{tot}}}$, to the dimension of the tensor product space formed by the spin- j_1 Hilbert space for the first particle and the spin- j_2 Hilbert space for the second particle, i.e., $\mathcal{H}_{j_1} \otimes \mathcal{H}_{j_2}$. [4P]

Consider now a three-particle system consisting of a spin- j_1 , a spin- j_2 and a spin- j_3 particle. Analogously to exercise (e), the corresponding tensor product Hilbert space $\mathcal{H}_{j_1} \otimes \mathcal{H}_{j_2} \otimes \mathcal{H}_{j_3}$ can be decomposed into a tensor sum of Hilbert spaces $\mathcal{H}_{j_{\text{tot}}}$.

(f) Provide an expression for the permissable values for j_{tot} as a function of j_1 , j_2 and j_3 and explain how you arrived at your result. Compare the dimension of the tensor product Hilbert space with the dimension of the tensor sum space $\bigoplus_{j_{\text{tot}}} \mathcal{H}_{j_{\text{tot}}}$. [6P]

Hint: Be wary - this exercise is a little tricky!

Exercise 3 - H 🚯 🌣 🛱 🗗 🗱 H (20 points)

An experimental device \mathcal{P} prepares hydrogen atoms in a state $|\psi\rangle$. Measurements show, that hydrogen atoms coming out of this aparatus are in a state with principal quantum number n=2 and the following expectation values are obtained with respect to a laboratory-fixed coordinate system,

$$\left\langle \hat{\vec{L}}^2 \right\rangle_{|\psi\rangle} = 2\hbar^2, \qquad \left\langle \Delta \hat{\vec{L}}^2 \right\rangle_{|\psi\rangle} = 0, \qquad \left\langle \hat{L}_z \right\rangle_{|\psi\rangle} = \hbar, \qquad \left\langle \Delta \hat{L}_z \right\rangle_{|\psi\rangle} = 0.$$

Remark: In the following, we use $|nlm\rangle$ to indicate a state with principal quantum number n, orbital quantum number l and magnetic quantum number m.

- (a) Explain, how one can conclude from these measurement results with certainty, that the hydrogen atom prepared by the device \mathcal{P} are in the eigenstate $|\psi\rangle = |211\rangle$. [2P]
- (b) The hydrogen atoms obtained from device \mathcal{P} now go through another device $\mathcal{R}_{\alpha\beta\gamma}$ where a set of Euler angles (α, β, γ) is provided and the atoms will be rotated accordingly. Provide an expression for the state $|\psi_{\alpha\beta\gamma}\rangle$ of the hydrogen atoms after going through the device \mathcal{P} followed by device $\mathcal{R}_{\alpha\beta\gamma}$ ("setup A", see figure at the bottom left) as a function of the three Euler angles. [4P]

 Hint: Write the state $|\psi\rangle$ as a vector and use the rotation matrix from Eq. (1).
- (c) Show that measurement of the rotated hydrogen atoms in setup A yields the expectation values [5P]

$$\left\langle \hat{\vec{L}}^2 \right\rangle_{|\psi_{\alpha\beta\gamma}\rangle} = 2\hbar^2, \qquad \left\langle \hat{L}_z \right\rangle_{|\psi_{\alpha\beta\gamma}\rangle} = \hbar\cos\beta.$$
 (2)

(d) Imagine a situation where the device $\mathcal{R}_{\alpha\beta\gamma}$ is broken and instead rotates the atoms by a completely random set of Euler angles (which can be different every time an atom passes the aparatus). We call this broken device $\mathcal{R}_{????}$. Show that for hydrogen atoms going through the device \mathcal{P} followed by $\mathcal{R}_{????}$ ("setup B", see figure at the bottom right) the following relations hold for the average measurement results for \hat{L}^2 and \hat{L}_z , [4P]

$$\left[\left\langle \hat{\vec{L}}^2 \right\rangle_{|\psi_{\alpha\beta\gamma}\rangle} \right]_{\text{avg}} = 2\hbar^2, \qquad \left[\left\langle \hat{L}_z \right\rangle_{|\psi_{\alpha\beta\gamma}\rangle} \right]_{\text{avg}} = 0. \tag{3}$$

 $\textit{Hint: The average } \llbracket f \rrbracket_{avg} \textit{ of a function } f \left(\alpha,\beta,\gamma\right) \textit{ is given by } \llbracket f \rrbracket_{avg} = \tfrac{1}{8\pi^2} \int_0^{2\pi} d\alpha \int_0^{\pi} d\beta \sin\beta \int_0^{2\pi} d\gamma \textit{ } f \left(\alpha,\beta,\gamma\right) \textit{ .}$

(e) Show, that in setup B the averages $[\hat{L}_x]_{avg}$ and $[\hat{L}_y]_{avg}$ also vanish. Explain how it is possible that $[\hat{L}]_{avg} = \vec{0}$ but $[\hat{L}^2]_{avg} \neq 0$. [5P]

[Bonus] Exercise X - From a Different Angle (5 extra points)

An alternative way to describe the hydrogen atoms from exercise 3 is to use the density matrix formalism. The state of the hydrogen atoms is then described by a density matrix $\hat{\rho}$. Expectation values of observables \hat{A} are calculated via $\langle \hat{A} \rangle_{\hat{\rho}} = \text{Tr}[\hat{A}\hat{\rho}]$.

- (a) The hydrogen atoms from setup A can be represented by a pure density matrix, $\hat{\rho}_A = |\psi_{\alpha\beta\gamma}\rangle\langle\psi_{\alpha\beta\gamma}|$. Show that the results for $\langle \hat{L}_z \rangle_{\hat{\rho}_A}$ and $\langle \hat{L}^2 \rangle_{\hat{\rho}_A}$ agree with Eqs. (2). [1XP]
- (b) The hydrogen atoms from setup B can be represented by a mixed density matrix,

$$\hat{\rho}_{B} = \frac{1}{8\pi^{2}} \int_{0}^{2\pi} d\alpha \int_{0}^{\pi} d\beta \sin\beta \int_{0}^{2\pi} d\gamma \ D^{(1)}(\alpha, \beta, \gamma) |211\rangle \langle 211| \left[D^{(1)}(\alpha, \beta, \gamma) \right]^{\dagger}.$$

Calculate the matrix representation of the density matrix $\hat{\rho}_B$ for the n=2, l=1 subspace and show that the results for $\langle \hat{\vec{L}}_z \rangle_{\hat{\rho}_B}$ and $\langle \hat{\vec{L}}^2 \rangle_{\hat{\rho}_B}$ agree with Eqs. (3). [4XP]