

Graphentheorie I

Martin Thoma | 2. Juli 2013

INSTITUT FÜR STOCHASTIK

Contents

- Grundlagen
- 2 Spezielle Graphen
- 3 Königsberger Brückenproblem
- 4 Ende

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K\subseteq E\times E$ die Kantenmenge bezeichnet.

Graph

Graph

Ein Graph ist ein Tupel (E,K), wobei $E\neq\emptyset$ die Eckenmenge und $K\subseteq E\times E$ die Kantenmenge bezeichnet.

2. Juli 2013

Synonyme

Knoten ⇔ Ecken

Isomorphe Graphen

martin-thoma.de/uni/graph.html

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{e_1, e_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Inzidenz

Inzidenz

Sei $e \in E$ und $k = \{e_1, e_2\} \in K$. e heißt **inzident** zu $k :\Leftrightarrow e = e_1$ oder $e = e_2$

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt **vollständig** : $\Leftrightarrow = E \times E \setminus \{e \in E : \{e, e\}\}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Vollständige Graphen

Vollständiger Graph

Sei G = (E, K) ein Graph.

G heißt **vollständig** : $\Leftrightarrow = E \times E \setminus \{e \in E : \{e, e\}\}$

Ein vollständiger Graph mit n Ecken wird als K_n bezeichnet.

Bipartite Graphen

Bipartite Graphen

Sei G = (E, K) ein Graph und $A, B \subset V$ zwei disjunkte Eckenmengen $mit E \setminus A = B.$

G heißt bipartit

 $\Leftrightarrow \forall_{k=\{e_1,e_2\}\in K}: (e_1\in A \text{ und } e_2\in B) \text{ oder } (e_1\in B \text{ und } e_2\in A)$

Vollständig bipartite Graphen

Vollständig bipartite Graphen

Sei G=(E,K) ein bipartiter Graph und $\{\,A,B\,\}$ bezeichne die Bipartition.

 $G \text{ heißt vollständig bipartit} :\Leftrightarrow \{ \; \{ \; a,b \; \} \; | \; a \in A \land b \in B \; \} = K$

Vollständig bipartite Graphen

Bezeichnung: Vollständig bipartite Graphen mit der Bipartition $\{A,B\}$ bezeichnet man mit $K_{|A|,|B|}$.

Kantenzug

Kantenzug

Sei G = (E, K) ein Graph.

Dann heißt eine Folge k_1, k_2, \ldots, k_s von Kanten, zu denen es Ecken $e_0, e_1, e_2, \ldots, e_s$ gibt, so dass

- $k_1 = \{e_0, e_1\}$
- $k_2 = \{e_1, e_2\}$
- $k_s = \{e_{s-1}, e_s\}$

gilt ein **Kantenzug**, der e_0 und e_s verbindet und s seine **Länge**.

Geschlossener Kantenzug

Geschlossener Kantenzug

Sei G=(E,K) ein Graph und $A=(e_0,e_1,\ldots,e_s)$ ein Kantenzug. A heißt **geschlossen** : $\Leftrightarrow e_s=e_0$.

Weg

Weg

Sei G = (E, K) ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.

A heißt $\mathbf{Weg}:\Leftrightarrow \forall_{i,j\in 1,...,s}: i\neq j \Rightarrow k_i\neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Weg

Weg

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in 1,...,s} : i \neq j \Rightarrow k_i \neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Weg

Weg

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Weg** : $\Leftrightarrow \forall_{i,j \in 1,...,s} : i \neq j \Rightarrow k_i \neq k_j$.

Salopp

Ein Kantenzug, bei dem man keine Kante mehrfach abläuft, ist ein Weg.

Achtung: Knoten dürfen mehrfach abgelaufen werden!

Kreis

Kreis

Sei G = (E, K) ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.

A heißt **Kreis** : $\Leftrightarrow A$ ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Kreis

Kreis

Sei G=(E,K) ein Graph und $A=(k_1,k_2\ldots,k_s)$ ein Kantenzug.

A heißt **Kreis** : $\Leftrightarrow A$ ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Kreis

Kreis

Sei G = (E, K) ein Graph und $A = (k_1, k_2 \dots, k_s)$ ein Kantenzug.

A heißt **Kreis** : $\Leftrightarrow A$ ist geschlossen und ein Weg.

Manchmal wird das auch "einfacher Kreis" genannt.

Zusammenhängender Graph

Zusammenhängender Graph

Sei G = (E, K) ein Graph.

G heißt **zusammenhängend** : $\Leftrightarrow \forall e_1,e_2 \in E$: Es ex. ein Kantenzug, der e_1 und e_2 verbindet

Grad einer Ecke

Grad einer Ecke

Der **Grad** einer Ecke ist die Anzahl der Kanten, die von dieser Ecke ausgehen.

Isolierte Ecken

Hat eine Ecke den Grad 0, so nennt man ihn isoliert.

Grundlagen 0000 Spezielle Graphen 000000000● Königsberger Brückenproblem 00000000000

Ende 0 16/28

Königsberg heute

Königsberger Brückenproblem

Übersetzung in einen Graphen

Übersetzung in einen Graphen

Eulerscher Kreis

Sei G ein Graph und A ein Kreis in G.

A heißt eulerscher Kreis : $\Leftrightarrow \forall_{e \in E} : e \in A$.

Eulerscher Graph

Ein Graph heißt eulersch, wenn er einen eulerschen Kreis enthält.

Eulerscher Kreis

Eulerscher Kreis

Eulerscher Kreis

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jede Ecke von ${\cal G}$ geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jede Ecke von ${\cal G}$ geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch.

Satz von Euler

Satz von Euler

Wenn ein Graph ${\cal G}$ eulersch ist, dann hat jede Ecke von ${\cal G}$ geraden Grad.

 \Rightarrow Wenn G eine Ecke mit ungeraden Grad hat, ist G nicht eulersch.

Umkehrung des Satzes von Euler

Umkehrung des Satzes von Euler

Wenn in einem zusammenhängenden Graphen G jede Ecke geraden Grad hat, dann ist G eulersch.

Beweis per Induktion TODO

Offene eulersche Linie

Sei G ein Graph und A ein Weg, der kein Kreis ist.

A heißt **offene eulersche Linie** von $G:\Leftrightarrow$ Jede Kante in G kommt genau ein mal in A vor.

Ein Graph kann genau dann "in einem Zug" gezeichnet werden, wenn er eine offene eulersche Linie besitzt.

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einer

Eulerkreis in G^*

 $\xrightarrow{\mathsf{Satz}\ \mathsf{von}\ \mathsf{Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad lacksquare

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G = (E, K) ein zusammenhängender Graph und $L = (e_0, \dots, e_s)$ eine offene eulersche Linie. Sei $G^* = (E, K \cup \{e_s, e_0\})$. Es gibt einen

Eulerkreis in G^st

 $\xrightarrow{\text{Satz von Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad lacktriangle

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen

Eulerkreis in G^st

 $\xrightarrow{\text{Satz von Euler}}$ In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad lacktriangle

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie : $\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{\ e_s,e_0\ \})$. Es gibt einen Eulerkreis in G^*

 G^* hat jede Ecke geraden Grad Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht G haben genau 2 Ecken ungeraden Grad

Satz 8.2.3

Sei G ein zusammenhängender Graph.

G hat eine offene eulersche Linie : $\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G = (E, K) ein zusammenhängender Graph und $L = (e_0, \ldots, e_s)$ eine offene eulersche Linie. Sei $G^* = (E, K \cup \{e_s, e_0\})$. Es gibt einen

Eulerkreis in G^*

Satz von Euler In G^* hat jede Ecke geraden Grad

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup\{e_s,e_0\})$. Es gibt einen

Eulerkreis in G^*

Satz von Euler In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad lacktriangle

Satz 8.2.3

Sei ${\cal G}$ ein zusammenhängender Graph.

G hat eine offene eulersche Linie $:\Leftrightarrow G$ hat genau zwei Ecken ungeraden Grades.

Beweis "⇒ "

Sei G=(E,K) ein zusammenhängender Graph und $L=(e_0,\ldots,e_s)$ eine offene eulersche Linie. Sei $G^*=(E,K\cup \{\,e_s,e_0\,\})$. Es gibt einen

Eulerkreis in G^*

Satz von Euler In G^* hat jede Ecke geraden Grad

Der Grad von nur zwei Kanten wurde um jeweils 1 erhöht

 \Rightarrow in G haben genau 2 Ecken ungeraden Grad \blacksquare

Bildquelle

- http://commons.wikimedia.org/wiki/File:Konigsberg_bridges.png
- Google Maps (Grafiken ©2013 Cnes/Spot Image, DigitalGlobe)