

计算机网络实验

CONTENHS

員表

1

本学期实验总体安排

02

第一次实验说明

03

作业提交

- > 计算机网络实验做什么?
 - 实现一套网络协议栈
 - 交换机和路由器配置实验

■ socket编程

Lab9 Lab8 Lab7 邮件客 户端能 Lab6 路由器 够发送 UDP的 Lab5 NAT的 和接收 发送、 ICMP的 配置 Lab4 邮件 发送、 接收, IP的发 接收, 通过测 接 送、 路由器 试 通过测 收、IP RIP协议 试 分片及 配置及

选做部分: TCP 实现 → Web服务器

> 实验成绩: 共20分

■ 5个协议栈编程实验、1个socket编程实验、3个验证型实验

课次	序号	实验	实验类型	提交	分数	课时
1	1	VLAN 与接口模式配置	配置验证实验	实验报告	2	2
2	2	协议栈之Eth协议实现	协议栈编程实验	代码及实验报告	2	2
	3	协议栈之ARP协议实现	协议栈编程实验	代码及实验报告	2	2
3	4	RIP 路由配置及协议分析	配置验证实验	实验报告	2	2
4	5	协议栈之IP协议实现	协议栈编程实验	代码及实验报告	2	
	6	协议栈之ICMP协议实现	协议栈编程实验	代码及实验报告	2	2
	7	协议栈之UDP协议实现	协议栈编程实验	代码及实验报告	3	
5	8	NAT 组网实验	配置验证实验	实验报告	2	2
6	9	邮件客户端的设计与实现	socket编程实验	代码及实验报告	3	2

> 附加题

序号	实验	实验类型	加分	提交	
1	排除网络故障	组网实验	0.5	实验报告	
2	ping实现		1	代码及实验报告	
3	IP重组		1	代码及实验报告	
4	简易TCP协议	协议栈编程实验	完成所有基础实验的情况下, 实验分给予20分满分	代码及实验报告	
5	搭建Web服务器		可替代Lab9邮件客户端的设计与实现 (前提先做完TCP实验)	代码及实验报告	
6	邮件客户端的进阶任务 socket应用编程 每完成1个进阶任务, 实验分加0.5分,总共加1分		代码及实验报告		

所有加分不会超过最高分: 20分

▶ 课程主页及指导书地址: https://hitsz-cslab.gitee.io/comp-network

➤ 协议栈编程实验仓库: https://gitee.com/hitsz-cslab/net-lab.git

> 实验提交地址 (校内网/VPN): http://grader.tery.top:8000/#/login

实验目的

➤ Lab1 VLAN与接口模式配置

- ➤ 了解VLAN(虚拟局域网)的作用;
- ➤ 掌握跨交换机的VLAN的配置方法;
- ➤ 掌握trunk端口的配置方法;
- > 了解VLAN数据帧的格式、VLAN标记添加和删除的过程。

本实验模拟某公司网络场景。该公司规模较大,内部放置了两台接入交换机(SW2和SW3)负责员工的网络接入,而且在交换机上划分不同VLAN来隔离广播域。由于员工较多,相同部分的员工通过不同交换机接入。为了保证在不同交换机下相同部门的员工能相互通信,需要配置交换机之间的链路为干道(trunk)模式,以实现相同VLAN跨交换机通信。

1 交换机的工作原理

> 交换机基于MAC地址进行数据转发,工作在数据链路层,用于在多个计算机或者网段之间交换数据。

1 交换机的工作原理

> 交换机内部有一个MAC地址表,记录MAC地址与端口的对应关系。

源MAC: 11-11-11-11-11 目标MAC: 22-22-22-22-22

MAC地址	端口
11-11-11-11-11	1
22-22-22-22-22	2
33-33-33-33-33	3
44-44-44-44-44	4

1 交换机的工作原理

> 当发送广播报文时,交换机会无脑将数据包转发到所有出口。

MAC地址	端口
11-11-11-11-11	1
22-22-22-22-22	2
33-33-33-33-33	3
44-44-44-44-44	4

1 交换机的工作原理

你所知道的广播报文有哪些?

> 随着接入的硬件设备越多,一旦有广播就会产生大量流量,导致带宽利用率降低,影响整个网络性能

2 VLAN技术

- > 划分广播域,有效地控制域内广播通信的规模。
- > VLAN的划分
 - 交换机端口划分
 - 基于MAC地址划分
 - 基于协议划分
 - 基于子网划分

1920 HIT

3 VLAN帧格式

▶ IEEE802.1Q 标准描述了VLAN的框架、VLAN提供的服务和VLAN涉及的协议和算法。

TPID: Tag Protocol Identifier (标签协议标识) TCI: Tag Control Information (标签控制信息)

▶ Tag: 4个字节

▶TPID: 2个字节, 标签协议标0x8100

▶TCI: 2个字节, 标签控制信息

➤ Prority: 3bit, 优先级

▶ CFI: 1bit, 0为标准帧, 1为非标准帧

▶ VLAN ID: 12bit, 指明属于哪个VLAN, 范围0~4095

2

VLAN技术 -- VLAN的端口类型

- access (访问接口): 一般接主机、服务器等终端设备
- trunk (干道接口/汇聚接口): 一般用于交换机之间连接的端口

pvid

交换机每个端口都有pvid(缺省vlan id),默认都属于VLAN1(pvid=1),也可人为设置

4 VLAN端口:access端口 — 接收

4 VLAN端口:access端口 — 发送

Access端口发出的数据帧都是Untagged

4 VLAN端口: trunk端口 — 接收

VLAN端口: trunk端口 — 发送

为什么要剥离vid标签再发出?

Trunk端口发出的数据帧,只有缺省VLAN是Untagged,除了缺省VLAN外,所有VLAN都是Tagged

4 VLAN端口

Access端口

access端口			
发送	带有tag	vid = pvid,剥离vid标签,发送; vid != pvid,丢弃	
	不带tag	不可能出现	
接收	带有tag	若该tag等于该access端口的pvid,则可以接收,进入交换机内部	
	不带tag	添加该access端口的pvid,进入交换机内部	

≻ Trunk端口

trunk端口			
发送	带有tag	如果vid在允许列表,若vid = pvid,剥离vid标签,若vid !=pvid,直接发出 如果vid不在允许列表,丢弃	
	不带tag	不可能出现	
接收	带有tag	若vid在允许列表,进入,不在允许列表,丢弃	
	不带tag	添加该trunk端口的pvid,如果pvid在允许列表,进入交换机内部,否则丢弃	

4 VLAN端口

4 VLAN端口

> 划分VLAN后,广播包只在同一个VLAN中传播。

实验组网图

> 跨交换机相同部门的互联

实验步骤

- 1. 在Cisco Packet Tracer上搭建网络拓扑
- 2. 在交换机上配置VLAN2并观察连通性
- 3. 在交换机上配置VLAN3并观察连通性
- 4. 配置Trunk端口并验证连通性

请打开 "Cisco Packet Tracer Student" 软件

实验思考题

➤ Sw0的F0/1和F0/4属于同一个VLAN 2, Sw1的F0/1和F0/4属于同一个VLAN 3, 试验结果PC0和PC1能互通,请问属于不同VLAN中的PC0和PC1为什么也能通,当把Sw0的F0/4和Sw1的F0/4改成trunk模式(其pvid==1,默认值)反而不通?请分析其原因,并写入实验报告中。

✓ PC0无法ping通网关, PC1和PC2可以ping通它们自己的网关, 找出PC0不能ping通网 关的原因, 并重构除拓扑图, 使得PC0、PC1和PC2都能ping通它们自己的网关, 也就 是都能上网。

提交内容:实验设计报告(有模板)

截止时间:

实验课后一周内提交至HITsz Grader 作业提交平台,具体截止日期参考平台发布。

• 登录网址:: http://grader.tery.top:8000/#/login

• 推荐浏览器: Chrome

• 初始用户名、密码均为学号,登录后请修改

注意

上传后可自行下载以确认是否正确提交

同学们 请开始实验吧!