Zadania z Analizy Matematycznej I.1 - seria II

Zadanie 1. Zapisać za pomocą wartości bezwzględnej

- $\bullet \max(x,y)$
- min(x, y)
- $f(x) = \begin{cases} 0 & \text{dla } x \le 0, \\ x & \text{dla } x > 0. \end{cases}$

Zadanie 2. Wykazać, że dla dowolnych $a,b\in\mathbb{R}$ zachodzi $|a+b|\leq |a|+|b|$ oraz $||a|-|b||\leq |a-b|$.

Zadanie 3. Zbadać ograniczoność oraz wyznaczyć kresy zbiorów

- $A = \{x \in \mathbb{R} : |2x+3| + |x+3| x < 6\};$
- $B = \{x \in \mathbb{R} : ||x 1| 1| < 1\}.$

Zadanie 4. Niech $A \subset \mathbb{R}$ będzie niepustym zbiorem. Definiujemy $-A = \{x : -x \in A\}$. Wykazać, że

$$\sup(-A) = -\inf A,$$

$$\inf(-A) = -\sup A.$$

Zadanie 5. Niech $A, B \neq \emptyset, A, B \subset \mathbb{R}_+$. Definiujemy

$$A \cdot B = \{z = x \cdot y : x \in A, y \in B\},$$
$$\frac{1}{A} = \left\{z = \frac{1}{x} : x \in A\right\}.$$

Wykazać, że wówczas

$$\sup(A \cdot B) = \sup A \cdot \sup B.$$

Ponadto pokazać, że jeśli założyć dodatkowo infA>0wówczas

$$\sup\left(\frac{1}{A}\right) = \frac{1}{\inf A}.$$

Zadanie 6. Wykazać, że $\sup\{x \in \mathbb{Q} : x > 0, x^2 < 2\} = \sqrt{2}$.

Zadanie 7. Udowonić, że liczba $\sqrt{n+1} - \sqrt{n}$ jest niewymierna dla każdego $n \in \mathbb{N}$.

Zadanie 8. Udowodnić, że następujące zbiory są ograniczone:

$$A = \left\{ \left(1 + \frac{1}{n} \right)^n : n \in \mathbb{N} \right\};$$

$$B = \left\{ \left(1 - \frac{1}{n} \right)^n : n \in \mathbb{N} \right\};$$

$$C = \left\{ \left(1 + \frac{(-1)^n}{n} \right)^n : n \in \mathbb{N} \right\};$$

$$D = \left\{ \frac{1}{2} + \frac{2}{2^2} + \dots + \frac{n}{2^n} : n \in \mathbb{N} \right\};$$

$$E = \left\{ \sqrt{2}, \sqrt{2 + \sqrt{2}}, \sqrt{2 + \sqrt{2} + \sqrt{2}}, \dots \right\}.$$

Zadanie 9. Udowodnić, że dla $n \in \mathbb{N}$ zachodzi

$$\sqrt{n} \le \sqrt[n]{n!} \le \frac{n+1}{2}.$$

Zadanie 10. Znaleźć kresy zbiorów

$$A = \left\{ \frac{m}{n} + \frac{4n}{m} : m, n \in \mathbb{N} \right\};$$

$$B = \left\{ \frac{m^2 + n^2}{2mn} : 0 < m < n, m, n \in \mathbb{N} \right\}.$$

Zadanie 11. Niech $x \in \mathbb{R} \setminus \mathbb{Z}$. Definiujemy ciąg $\{x_n\}$ poprzez $x = \lfloor x \rfloor + \frac{1}{x_1}, \ x_1 = \lfloor x_1 \rfloor + \frac{1}{x_2}, \ \dots, x_{n-1} = \lfloor x_{n-1} \rfloor + \frac{1}{x_n}$. Wówczas

$$x = \lfloor x \rfloor + \frac{1}{\lfloor x_1 \rfloor + \frac{1}{\lfloor x_2 \rfloor + \frac{1}{\lfloor x_{n-1} \rfloor + \frac{1}{x_n}}}}.$$

Wykazać, ze x jest wymierna wtedy i tylko wtedy gdy istnieje $n \in \mathbb{N}$ dla którego x_n jest liczbą całkowitą.

Zadanie 12 (dla chętnych). Znaleźć rozwinięcie w ułamek okresowy liczb $\sqrt{2}$, $\frac{\sqrt{5}-1}{2}$, $\sqrt{k^2+k}$ dla dowolnego $k \in \mathbb{N}$.