Chapter 8 Random-Variate Generation Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose & Overview

- ۲
- Develop understanding of generating samples from a specified distribution as input to a simulation model.
- Illustrate some widely-used techniques for generating random variates.
 - □ Inverse-transform technique
 - □ Acceptance-rejection technique
 - □ Special properties

Inverse-transform Technique

- The concept:
 - \Box For cdf function: r = F(x)
 - ☐ Generate r from uniform (0,1)
 - ☐ Find x:

$$x = F^{-1}(r)$$

Exponential Distribution

[Inverse-transform]

- Exponential Distribution:
 - □ Exponential cdf:

$$r = F(x)$$
= 1 - e^{-\lambda x} for $x \ge 0$

□ To generate X_1 , X_2 , X_3 ...

$$X_i = F^{-1}(R_i)$$

= $-(1/\lambda) \ln(1-R_i)$ [Eq'n 8.3]

Figure: Inverse-transform technique for $exp(\lambda = 1)$

Exponential Distribution

[Inverse-transform]

- Example: Generate 200 variates X_i with distribution exp(λ= 1)
 - □ Generate 200 Rs with U(0,1) and utilize eq'n 8.3, the histogram of Xs become: □

□ Check: Does the random variable X_1 have the desired distribution? $P(X_1 \le x_0) = P(R_1 \le F(x_0)) = F(x_0)$

.

Other Distributions

[Inverse-transform]

- Examples of other distributions for which inverse cdf works are:
 - □ Uniform distribution
 - □ Weibull distribution
 - ☐ Triangular distribution

Empirical Continuous Dist'n

[Inverse-transform]

- When theoretical distribution is not applicable
- To collect empirical data:
 - □ Resample the observed data
 - □ Interpolate between observed data points to fill in the gaps
- For a small sample set (size *n*):
 - □ Arrange the data from smallest to largest

$$X_{(1)} \le X_{(2)} \le ... \le X_{(n)}$$

 $\hfill \Box$ Assign the probability 1/n to each interval $X_{(i\text{--}1)} \leq X \leq X_{(i)}$

$$X = \hat{F}^{-1}(R) = x_{(i-1)} + a_i \left(R - \frac{(i-1)}{n} \right)$$

where
$$a_i = \frac{x_{(i)} - x_{(i-1)}}{1/n - (i-1)/n} = \frac{x_{(i)} - x_{(i-1)}}{1/n}$$

7

Empirical Continuous Dist'n

[Inverse-transform]

Example: Suppose the data collected for 100 brokenwidget repair times are:

Interval			Relative	Cumulative	Slope,
i	(Hours)	Frequency	Frequency	Frequency, ci	a _i
1	$0.25 \le x \le 0.5$	31	0.31	0.31	0.81
2	$0.5 \le x \le 1.0$	10	0.10	0.41	5.0
3	$1.0 \le x \le 1.5$	25	0.25	0.66	2.0
4	$1.5 \le x \le 2.0$	34	0.34	1.00	1.47

Discrete Distribution

[Inverse-transform]

- All discrete distributions can be generated via inverse-transform technique
- Method: numerically, table-lookup procedure, algebraically, or a formula
- Examples of application:
 - □ Empirical
 - □ Discrete uniform
 - □ Gamma

9

Discrete Distribution

[Inverse-transform]

- Example: Suppose the number of shipments, x, on the loading dock of IHW company is either 0, 1, or 2
 - $\hfill\Box$ Data Probability distribution:

X	p(x)	F(x)
0	0.50	0.50
1	0.30	0.80
2	0.20	1.00

□ Method - Given R, the generation scheme becomes:

$$x = \begin{cases} 0, & R \le 0.5 \\ 1, & 0.5 < R \le 0.8 \\ 2, & 0.8 < R \le 1.0 \end{cases}$$

Acceptance-Rejection technique

- Useful particularly when inverse cdf does not exist in closed form, a.k.a. thinning
- Illustration: To generate random variates, *X* ~ U(1/4, 1)

Procedures:

Step 1. Generate R ~ U[0,1]

Step 2a. If $R \ge 1/4$, accept X=R.

Step 2b. If R < 1/4, reject R, return to Step 1

- R does not have the desired distribution, but R conditioned (R') on the event { $R \ge \frac{1}{4}$ } does.
- Efficiency: Depends heavily on the ability to minimize the number of rejections.

11

NSPP

- Non-stationary Poisson Process (NSPP): a Possion arrival process with an arrival rate that varies with time
- Idea behind thinning:
 - □ Generate a stationary Poisson arrival process at the fastest rate, $\lambda^* = \max \lambda(t)$
 - □ But "accept" only a portion of arrivals, thinning out just enough to get the desired time-varying rate

NSPP

[Acceptance-Rejection]

Example: Generate a random variate for a NSPP

Data: Arrival Rates

t (min)	Mean Time Between Arrivals (min)	Arrival Rate λ(t) (#/min)
0	15	1/15
60	12	1/12
120	7	1/7
180	5	1/5
240	8	1/8
300	10	1/10
360	15	1/15
420	20	1/20
480	20	1/20

Procedures:

Step 1. $\lambda^* = \max \lambda(t) = 1/5$, t = 0 and i = 1. **Step 2.** For random number R = 0.2130, $E = -5\ln(0.213) = 13.13$ t = 13.13

Step 3. Generate *R* = 0.8830

 $\lambda(13.13)/\lambda^* = (1/15)/(1/5) = 1/3$

Since R>1/3, do not generate the arrival

Step 2. For random number R = 0.5530,

E = -5ln(0.553) = 2.96t = 13.13 + 2.96 = 16.09

Step 3. Generate R = 0.0240

 $\lambda(16.09)/\lambda^* = (1/15)/(1/5) = 1/3$ Since R < 1/3, $T_1 = t = 16.09$, and i = i + 1 = 2

13

Special Properties

- Based on features of particular family of probability distributions
- For example:
 - □ Direct Transformation for normal and lognormal distributions
 - □ Convolution
 - □ Beta distribution (from gamma distribution)

Direct Transformation

[Special Properties]

- Approach for normal(0,1):
 - □ Consider two standard normal random variables, Z_1 and Z_2 , plotted as a point in the plane:

In polar coordinates:

$$Z_1 = B \cos \phi$$
$$Z_2 = B \sin \phi$$

- □ $B^2 = Z_1^2 + Z_2^2$ ~ chi-square distribution with 2 degrees of freedom = $Exp(\lambda = 2)$. Hence, $B = (-2 \ln R)^{1/2}$
- \Box The radius *B* and angle ϕ are mutually independent.

$$Z_1 = (-2 \ln R)^{1/2} \cos(2\pi R_2)$$
$$Z_2 = (-2 \ln R)^{1/2} \sin(2\pi R_2)$$

15

Direct Transformation

[Special Properties]

- Approach for normal(μ , σ^2):
 - □ Generate $Z_i \sim N(0,1)$

$$X_i = \mu + \sigma Z_i$$

- Approach for lognormal(μ , σ^2):
 - □ Generate $X \sim N((\mu, \sigma^2))$

$$Y_i = e^{X_i}$$

Summary

- Principles of random-variate generate via
 - □ Inverse-transform technique
 - □ Acceptance-rejection technique
 - □ Special properties
- Important for generating continuous and discrete distributions