Chapter 5: Object Detection

Object localization

What are localization and detection?

Image classification

" Car"

Classification with localization

"Car

bjert

Detection

Classification with localization

4 - background

Defining the target label y

- 1 pedestrian
- 2 car <
- 3 motorcycle
- 4 background \leftarrow

$$\begin{cases}
(\dot{y}_{1}, y_{1})^{2} + (\dot{y}_{2} - y_{2})^{2} \\
+ \dots + (\dot{y}_{8} - y_{8})^{2} & \text{if } y_{1} = 1 \\
(\dot{y}_{1} - y_{1})^{2} + (\dot{y}_{2} - y_{2})^{2}
\end{cases}$$

Need to output b_x , b_y , b_h , b_w , class label (1-4)

Andrew Ng

Landmark detection

Landmark detection

 b_x , b_y , b_h , b_w

ConvNet ConvNet

129

deeplearning.ai

Object Detection

Object detection

Car detection example

Training set:

Sliding windows detection Corportation cost

Convolutional implementation of sliding windows

Turning FC layer into convolutional layers

Convolution implementation of sliding windows

[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

Andrew Ng

Convolution implementation of sliding windows

Intersection over union

Evaluating object localization

More generally, IoU is a measure of the overlap between two bounding boxes.

Non-max suppression

Non-max suppression example

Non-max suppression example

19x19

Non-max suppression example

Pc

Non-max suppression algorithm

19× 19

Each output prediction is:

Discard all boxes with $p_c \leq 0.6$

- ->> While there are any remaining boxes:
 - Pick the box with the largest p_c Output that as a prediction.
 - Discard any remaining box with $IoU \ge 0.5$ with the box output in the previous step

Anchor boxes

Overlapping objects:

$$\mathbf{y} = \begin{bmatrix} b_c \\ b_x \\ b_y \\ b_h \\ b_w \\ c_1 \\ c_2 \\ c_2 \end{bmatrix}$$

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Anchor box algorithm

Previously:

Each object in training image is assigned to grid cell that contains that object's midpoint.

With two anchor boxes:

Each object in training image is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU.

(grid cell, chihor box)

(Support
$$9:$$
 $3 \times 3 \times 16$
 $3 \times 3 \times 2 \times 8$

Andrew Ng

Anchor box example

Anchor box 1: Anchor box 2:

Andrew Ng

YOLO — You Only Look Once

YOLO — You Only Look Once

- Original paper (CVPR 2016. OpenCV People's Choice Award) https://arxiv.org/pdf/1506.02640v5.pdf
- YOLOv2: https://arxiv.org/pdf/1612.08242v1.pdf
- YOLOv3: https://arxiv.org/pdf/1804.02767.pdf
- Open source: https://pjreddie.com/darknet/yolo/