TES IV Curve Analysis Results

2025年8月20日

本解析では、TES の I-V 測定で得られたデータから、TES カロリメータの諸パラメータを決定する。 測定では、バイアス電流 $I_{\rm bias}$ に対する出力電圧 $V_{\rm out}$ を調べる。これについて、まずは電流電圧変換係数 Ξ を用いて TES の I-V 特性を得る。さらに、異なる熱浴温度 $T_{\rm bath}$ における I-V 特性を求めることで、フィッティング により熱伝導率 G や温度依存性のべき定数 n、TES の温度 $T_{\rm TES}$ が決定できる。また、TES の R-T 特性を調べることで転移温度 $T_{\rm c}$ がわかり、温度感度 α が計算できる。

Fitting Parameters

フィッティング結果のパラメータをまとめる。

- Tc (TES Temperature): 0.146 K
- G0 (Thermal Conductivity at 1K): 171.490 $\mathrm{nW/K}$
- n (Power Constant): 4.00
- Chi-squared (Minimum): 0.66

Plot Results

IVtes_IVproperty

TES に流れる電流 $I_{\rm TES}$ と TES の両端にかかる電圧 $V_{\rm TES}$ の関係

$$V_{\mathrm{TES}} = \frac{V_{\mathrm{TES}}}{R_{\mathrm{TES}}}$$

をプロットする。 R_{TES} は TES の抵抗である。このとき, I_{TES} は出力電圧 V_{out} と電流電圧変換係数 Ξ を用いて

$$I_{\mathrm{TES}} \simeq \frac{1}{\Xi} V_{\mathrm{out}}$$

で求められる。 Ξ は,SQUID の入力コイル相互インダクタンス $M_{\rm in}$,フィードバックコイル相互インダクタンス $M_{\rm FB}$,フィードバック抵抗値 $R_{\rm FB}$ により

$$\Xi = \frac{M_{\rm in}}{M_{\rm FB}} R_{\rm FB}$$

で表される係数。また, $R_{\rm TES}$ は測定バイアス電流 $I_{\rm bias}$ シャント抵抗 $R_{\rm sh}$ を用いて

$$R_{\mathrm{TES}} = \left(rac{I_{\mathrm{bias}}}{I_{\mathrm{TES}}} - 1
ight) R_{\mathrm{sh}}$$

で書ける。

左上図は各熱浴温度 $T_{\rm bath}$ に対する測定結果の $V_{\rm out}$ と $I_{\rm bias}$ の関係をプロットしたもので、右上図はそのグラフを超伝導転移端付近で拡大したものである。また、左下図は各熱浴温度 $T_{\rm bath}$ に対する計算結果の $V_{\rm TES}$ と $I_{\rm TES}$ の関係をプロットしたもので、右下図はそのグラフを超伝導転移端付近で拡大したものである。

$IVtes_PR$ property

TES の抵抗 $R_{\rm TES}$ と TES の Joule 発熱 $P_{\rm TES}$ の関係をプロットする。ここでの $R_{\rm TES}$ は,正規化した TES の抵抗とする。

左図は R_{TES} と P_{TES} の関係をプロットしたもので、右図はそのグラフを超伝導転移端付近で拡大したものである。

IVtes_fitting

TES の Joule 発熱 P_{TES} と熱浴温度 T_{bath} の関係

$$P_{\rm TES} = \frac{G_0}{n} (T_{\rm TES}^n - T_{\rm bath}^n)$$

をフィッティングする。 $P_{\rm TES}$ は、PR 特性グラフから TES の超伝導転移端の $P_{\rm TES}$ (Joule 発熱が一定の領域)を平均した代表値を使う。フィッティングにより、TES の超伝導転移端 $T_{\rm c}$ 、熱浴温度が 1 K のときの熱伝導度 G_0 、べき定数 n のそれぞれの最適値が得られる。

図は $P_{\rm TES}$ (誤差付き) と $T_{\rm bath}$ の関係をプロットしたものと、そのフィッティング結果。 $P_{\rm TES}$ の誤差は不偏標準偏差で計算した。

IVtes_RTproperty

TES の抵抗 R_{TES} と TES の温度 T_{TES} の関係をプロットする。 T_{TES} は,フィッティング関数を逆算して

$$T_{\rm TES} = \left(T_{\rm bath}^n + \frac{n \cdot P_{\rm TES}}{G_0}\right)^{1/n}$$

で計算できる。

図は R_{TES} と T_{TES} の関係をプロットしたものである。

- $T_{\text{bath}} = 70 \text{mK}$
- $T_{
 m bath} = 90 {
 m mK}$
- $T_{
 m bath} = 110 {
 m mK}$

- $T_{\text{bath}} = 75 \text{mK}$
- $T_{\mathrm{bath}} = 95 \mathrm{mK}$
- $T_{
 m bath} = 115 {
 m mK}$

- \bullet $T_{\mathrm{bath}} = 80 \mathrm{mK}$
- $T_{
 m bath} = 100 {
 m mK}$
- $T_{\mathrm{bath}} = 110 \mathrm{mK}$

- $T_{\text{bath}} = 85 \text{mK}$
- $T_{\mathrm{bath}} = 105 \mathrm{mK}$

IVtes_GTproperty

TES の熱伝導度 G_{TES} と TES の温度 T_{TES} の関係

$$G_{\rm TES} = G_0 T_{\rm TES}^{n-1}$$

をプロットする。 G_0 と n は,フィッティング結果の値を用いる。 図は G_{TES} と T_{TES} の関係をプロットしたものである。

- $T_{\text{bath}} = 70 \text{mK}$
- $T_{
 m bath} = 90 {
 m mK}$
- $T_{
 m bath} = 110 {
 m mK}$

- $T_{\text{bath}} = 75 \text{mK}$
- $T_{
 m bath} = 95 {
 m mK}$
- $T_{
 m bath} = 115 {
 m mK}$

- \bullet $T_{\rm bath} = 80 \, \mathrm{mK}$
- $T_{
 m bath} = 100 {
 m mK}$
- $T_{
 m bath} = 120 {
 m mK}$

- $T_{
 m bath} = 85 {
 m mK}$
- $T_{\mathrm{bath}} = 105 \mathrm{mK}$

IVtes_alpha

TES の感度 α

$$\alpha = \frac{T}{R} \frac{\mathrm{d}R}{\mathrm{d}T}$$

をプロットする。TES の温度と TES の抵抗はともに $T_{\rm bath}=100~{
m mK}$ のときの値を用いた。 図は $T_{
m bath}=100~{
m mK}$ のときの α と $I_{
m bias}$ の関係をプロットしたものである。

IVtes_contour

フィッティングパラメータのコントアをプロットする。信頼範囲の定義として,自由度 2 のカイ二乗分布における 累積確率の値からパーセント点を求める。累積確率は 68.27~%,90~%,99~% の 3 点の P 値を考えることとする。 図は $n,~G_0,~T_c$ のそれぞれを 2 つのパラメータでコントアをプロットしたものである。

