Q1. SOLUTION.

$$v(t) = 8(t-t_i)$$

Midterm 11 Solution

0

$$\alpha(C) \leftarrow V(C)$$

$$V(t) \leftrightarrow V(f)$$

 $V(f) = F\{v(t)\} = F\{8(t-t)\} = e^{-j\omega t_1}$

Note
$$\mathcal{F}\{S(t)\}=1. \forall f$$
.

Similarly
$$W(f) = F\{\omega(t)\} = F\{S(t-t_2)\} = e^{-j\omega t_2}$$
.

$$V(f)W(f) = e^{-j\omega(t_1+t_2)}$$

$$v(t)*\omega(t) = \mathcal{F}^{-1}\{V(f)W(f)\}$$

= $\mathcal{F}^{-1}\{e^{-j\omega(t_1+t_2)}\}$
= $S(t-t_1-t_2)$.

Q2. SOLUTION.

$$\chi(t) \longrightarrow \chi(t) \longrightarrow$$

(b)
$$y(t) = \int z(t) dt$$

$$Y(f) = \frac{Z(f)}{j2\pi f}$$

$$\Rightarrow \frac{\Upsilon(f)}{Z(f)} = \frac{1}{j^{2\pi}f}$$

$$y(t) \longleftrightarrow Y(f)$$
 given.
 $z(t) \longleftrightarrow Z(f)$ given.
 $z(t) \longleftrightarrow Z(f)$
 $z(t) \longleftrightarrow Z(f)$
 $z(t) \longleftrightarrow z(f)$

Q2 (c)
$$\omega(t) = \chi(t-T)$$

 $F\{\omega(t)\}=F\{\chi(t-T)\}$
 $W(f)=\chi(f)e^{-j\omega T}$
 $\Rightarrow \frac{W(f)}{\chi(f)}=e^{-j\omega T}$

Q2 (d)
$$\frac{Y(f)}{X(f)} = \frac{Y(f)}{Z(f)} \frac{Z(f)}{X(f)}$$
We know
$$Z(t) = X(t) - \omega(t)$$

$$Z(f) = X(f) - W(f)$$

$$Z(f) = X(f) \left(1 - e^{-j\omega T}\right)$$

$$\frac{Z(f)}{X(f)} = 1 - e^{-j\omega T}$$

$$\Rightarrow \frac{\Upsilon(f)}{\chi(f)} = \frac{1}{j^{2\pi}f} \left(1 - e^{-j\omega T}\right) = T sinc(fT) e^{-j\pi fT}$$

$$\text{You can prove This yourself-}$$

Q3. Given
$$y(t) = x(t) + h(t) = \int x(a)h(t-a)da$$

 $h(t) \longleftrightarrow H(f)$

$$\chi(t) \longleftrightarrow \chi(f)$$

$$\chi(t) = A T (t/\tau)$$

$$Y(f) = TA \tau Sinc(f\tau)$$
 $x Sinc(f\tau)$

3

Y(f) is the product of two sinc functions

When
$$\tau = T$$

$$Y(f) = AT^2 sinc^2(fT)$$

Recall that
$$A\Lambda(t/T) \longleftrightarrow AT sinc^2(fT)$$

$$\Rightarrow y(t) = TA\Lambda\left(\frac{t}{T}\right) = \begin{cases} TA(1-\frac{t}{T}) & |t| < T \\ 0 & |t| > T \end{cases}$$

y(t) is triangular pulse.

When TKT or in otherwords T is very large conjunct to T.

0

if t is very small then I must be very large.
This means that

 $X(f) \approx AT$ (constant) \Rightarrow Sinc $(f\tau) \approx 1$ for the range of frequencies where H(f) is significant.

Or you may notice that $\lim_{\tau \to 0} \sin c \left(f \tau \right) \to 1$

Therefore
$$Y(f) \cong TA\tau sinc(fT)$$

 $\Rightarrow Y(t) \cong TA\tau TT(\frac{t}{T})$

When T>>T

Simlarly when $T \ll \tau$ $\lim_{T \to 0} \operatorname{Sinc}(fT) \to 1$ $Y(f) \cong TATSinc (f\tau)$ $\Rightarrow y(t) \cong TA\tau \prod \left(\frac{t}{\tau}\right).$

$$\alpha(t) = \cos(\omega_0 t) - \frac{1}{3}\cos(3\omega_0 t)$$

where
$$w_0 = 2\pi \Rightarrow f_0 = 1 \text{ Hz}$$

where
$$\omega_0 = 2\pi \Rightarrow f_0 = 1 \text{ Hz.}$$

 $H(f) = e^{-j\omega/3} = e^{-j\omega td}$ (delay).

$$y_{1}(t) = \chi(t) * h(t)$$

$$= \cos(\omega_{0}(t - \frac{1}{3})) - \frac{1}{3}\cos(3\omega_{0}(t - \frac{1}{3}))$$

$$= \cos(\omega_{0}(t - \frac{1}{3})) - \frac{1}{3}\cos(3\omega_{0}(t - \frac{1}{3}))$$

$$= \cos(\omega_{0}(t - \frac{1}{3})) - \frac{1}{3}\cos(3\omega_{0}(t - \frac{1}{3}))$$

Whatever is the plot of signal x(t) y(t) is just a delayed version of x(t) where the delay is $\frac{1}{3}$ seconds. Do MATLAB plots

In contrast

$$y(t) = \cos\left(\omega_0 t - \frac{2\pi}{3}\right) - \frac{1}{3}\cos\left(3\omega_0 t - \frac{2\pi}{3}\right)$$

is not a delayed version. It is rather a rerey distorted version of x(t). No this is not possible to find transfer function for

(a)
$$y(t) = x(t) + \frac{1}{2}x^{2}(t) + \frac{1}{3}x^{3}(t)$$

$$Y(f) = X(f) + \frac{1}{2}X(f) + X(f) + \frac{1}{3}X(f) * X(f) * X(f)$$
"X" denotes Gonvolution.

(b)
$$\chi(t) = Gs(\omega ot)$$

 $y(t) = \frac{1}{12}(3 + 15 Gs(\omega ot) + 3 Gs(2\omega ot) + Gs(3\omega ot))$
prove it Gourself

(c) One sided spedrum of y(t) is.

6)