

PART 1: USER INPUT

SWAN 1-D / WHAFIS input

station:

-151 ft -70.7132 deg E LON: LAT: 43.0788 deg N
Bottom ELEV: -28.829 ft-NAVD88

TWL: 9.0268 ft-NAVD88 HS: 3.2539 ft 6.2617 sec TP:

Wave Direction bin: 135 deg CCW from East (90 deg sector) Transect Direction: 133.2631 deg CCW from East

TAW/RUNUP input

toe sta:

10 ft 2.774 ft-NAVD88 toe elev:

42 ft top sta:

top elev: 15.0282 ft-NAVD88

Wave and water level conditions at toe to be calculated in SWAN 1-D

PART 1 COMPLETE_

PART 2: SWAN 1-D

swan input grid name: 2_swan/gridfiles/YK-05zmeters_xmeters.grd

2_swan/swanfiles/YK-05.swn 2_swan/swanfiles/YK-05.dat swan file name: swan output name:

Boundary Conditions:

TWL- 2.7514 meters HS- 0.9918 meters PER- 6.2617 seconds

Batch File: 2_swan/swanfiles/runswan.dat

SWAN maximum additional wave setup: 0.0028839 feet

SWAN output at toe: SETUP- -0.040102 feet 3.5425 feet HS-PER-6.337 seconds

PART 2 COMPLETE_

2-D ADCIRC+SWAN and SWAN 1-D results, Transect:

SWAN

SIMULATION OF WAVES IN NEAR SHORE AREAS VERSION NUMBER 41.20A

```
PROJECT '2018FemaAppeal' '1'
  '100-year Wind and Wave conditions'
! -- SET commands ------
SET DEPMIN=0.01 MAXMES=999 MAXERR=3 PWTAIL=4
SET LEVEL 0
SET CARTESIAN
! -- MODE commands ------
MODE STATIONARY ONED
!-- COORDINATES commands-----
COORDINATES CART
!
! -- computational (CGRID) grid commands -----
                            xlenc=length of grid in meters
! mxc = number of mesh cells (one less than number of grid points)
!CGRID REGular [xpc] [ypc] [alpc] [xlenc]
                                   [ylenc] [mxc] [myc] &
     [ CIRcle | SECtor[dir1] [dir2] ] [mdc] [flow] [fhigh] [msc]
                 0 0 52
CGRID REGULAR
                                    0.
                                    0.03
                                         0.8
                               36
Resolution in sigma-space: df/f = 0.1157
! -- READgrid ---- not used in 1-D mode -----
! -- INPgrid commands ------
!INPgrid BOTtom REGular [xpinp] [ypinp] [alpinp] [mxinp] [myinp] [dxinp] [dyinp]
                   0
                         0
                                 0
                                      52 0
INPGRID BOTTOM REGULAR
!READinp BOTtom [fac] 'fname1' [idla] [nhedf] [FREe|FORmat[form]|UNFormatted]
     BOTTOM -1. '../gridfiles/YK-05zmeters_xmeters.grd' 1
1-----
! -- WIND [vel] [dir]
WIND 25.1 0
! -- BOUnd SHAPespec
BOUND SHAPE JONSWAP 3.3 PEAK DSPR POWER
! -- BOUndspec
! BOU SIDE W CCW CON FILE 'swanspec.txt' 1
BOUN SIDE W CCW CONSTANT PAR 0.9918 6.2617
!-- BOUndnest1 - optional for boundary from parent run
!-- BOUndnest2
!-- BOUndnest3
!-- INITial -- usest to specify initial values
!----- P H Y S I C S -----
!-- GEN1 [cf10] [cf20] [cf30] [cf40] [edm1pm] [cdrag] [umin] [cfpm]
!-- GEN2 [cf10] [cf20] [cf30] [cf40] [cf50] [cf60] [edm1pm] [cdrag] [umin] [cfpm]
```

```
GEN3 KOMEN
  whitecapping (on by default)
!-- WCAPping KOMen [cds2] [stpm] [powst] [delta] [powk]
   WCAP KOM
! quadruplet wave interactions
!-- QUADrupl [iquad] [lambda] [Cn14] [Csh1] [Csh2]
! -- BREaking CONstant [alpha] [gamma]
    BREAK
           CON
                     1.
                             0.73
!-- FRICtion JONswap CONstant [cfjon]
           JONSWAP CON
                           0.038
   FRIC
!-- TRIad [itriad] [trfac] [cutfr] [a] [b] [urcrit] [urslim]
                  0.65 2.5 0.95 -0.75 0.2
! TRIAD
 TRIAD
!-- VEGEtation [height] [diamtr] [nstems] [drag]
!-- MUD [layer] [rhom] [viscm]
!- LIMiter [ursell] [qb] deactivates quadruplets with Ursell number exceeds ursell
!-- OBSTacle -- not in 1-D
!-- SETUP [supcor]
  SETUP 0
! ----- N U M E R I C S -----
!-- PROP can use BBST or GSE instead of default
! -- NUMeric -- lots of options
    NUM ACCUR npnts=100. stat 30
    NUMeric STOPC
1
! -----O U T P U T ------
!OUTPut OPTIons "comment' (TABLE [field]) (BLOck [ndec] [len]) (SPEC [ndec])
OUTPUT OPTIONS '%' TABLE 16
$BLOCK 9 1000 SPEC 8
!CURve 'sname' [xp1] [yp1] <[int] [xp] [yp] >
CURVE 'curve' 0
                  0
                         52 52
                                  0
!TABLe 'sname' < HEADer | NOHEADer | INDexed > 'fname' <output parameters> (output time)
Table 'curve'
DSPR DEPTH SETUP
               HEADER 'YK-05.dat' XP YP HSIGN TPS RTP TMM10 DIR &
!QUANTITY XP hexp=99999
|-----
COMPUTE STATIONARY
               COMPUTATIONAL PART OF SWAN
One-dimensional mode of SWAN is activated
Gridresolution
                   : MXC
                                     53 MYC
                                                        1
                    : MCGRD
                    : MSC
                                     31 MDC
                   : MTC
                                     0 ITERMX
1 IREFR
                   : NSTATC
                   : ITFRE
: IBOT
: IWCAP
Propagation flags
                                     1 ISURF
                                                        1
Source term flags
                                      1 IWIND
                                      1 IQUAD
                    : ITRIAD
                    : IVEG
                                      0 ITURBV
```

```
: IMUD
Spatial step
                                    0.1000E+01 DY
                        : DX
                                                          0.1000E+01
                        : df/f
                                    0.1157E+00 DDIR
Spectral bin
                                                           0.1000E+02
                                     0.9810E+01 RHO
Physical constants
                       : GRAV
                                                           0.1025E+04
Wind input
                        : WSPEED
                                    0.2510E+02 DIR
                                                           0.0000E+00
                        : E(f) 0.4000E+01 E(k)
: A(f) 0.5000E+01 A(k)
Tail parameters
                                                           0.2500E+01
                                                          0.3000E+01
                                    0.1000E-01 NPNTS
Accuracy parameters : DREL
                                                           0.9950E+02
                                     0.0000E+00 CURVAT 0.5000E-02
                        : DHABS
                        : GRWMX
                                     0.1000E+00
Drying/flooding
                        : LEVEL
                                    0.0000E+00 DEPMIN 0.1000E-01
The Cartesian convention for wind and wave directions is used
Scheme for geographic propagation is SORDUP Scheme geogr. space : PROPSC 2 1
                                            2 ICMAX
Scheme spectral space: CSS
                                     0.5000E+00 CDD
                                                           0.5000E+00
Current is off
Quadruplets
                         : IQUAD
                        : LAMBDA 0.2500E+00 CNL4
: CSH1 0.5500E+01 CSH2
                                                           0.3000E+08
                         : CSH1
                                                           0.8330E+00
                                    -0.1250E+01
                        : CSH3
Maximum Ursell nr for Snl4 :
                                    0.1000E+02
                                                           0.8000E+00
                        : ITRIAD
                                               1 TRFAC
                         : CUTFR
                                     0.2500E+01 URCRI 0.2000E+00
Minimum Ursell nr for Snl3 :
                                     0.1000E-01
JONSWAP ('73)
                       : GAMMA
                                     0.3800E-01
Vegetation is off
Turbulence is off
Fluid mud is off
                      : EMPCOF (CDS2): 0.2360E-04
: APM (STPM) : 0.3020E-02
: POWST : 0.2000E+01
: DELTA : 0.1000E+01
: POWK : 0.1000F±01
W-cap Komen ('84)
W-cap Komen ('84)
W-cap Komen ('84)
W-cap Komen ('84)
Wind drag is fit
Snyder/Komen wind input
Battjes&Janssen ('78): ALPHA
                                     0.1000E+01 GAMMA 0.7300E+00
Set-up
                       : SUPCOR 0.0000E+00
Diffraction is off
Janssen ('89,'90)
Janssen ('89,'90)
                                    0.1000E-01 KAPPA 0.4100E+00
0.1280E+01 RHOW 0.1025E+04
                        : ALPHA
                        : RHOA
                                    0.1880E+03 CF20 0.5900E+00
0.1200E+00 CF40 0.2500E+03
1st and 2nd gen. wind: CF10
                         : CF30
                         : CF50
                                     0.2300E-02 CF60 -0.2230E+00
                                                         -0.5600E+00
                         : CF70
                                    0.0000E+00 CF80
                                    0.1249E-02 EDMLPM 0.3600E-02
0.1230E-02 UMIN 0.1000E+01
                         : RHOAW
                         : CDRAG
                         : LIM_PM 0.1300E+00
 First guess by 2nd generation model flags for first iteration:
 0.0000E+00
iteration 1; sweep 1
iteration 1; sweep 2
iteration 1; sweep 3
iteration 1; sweep 3
              1; sweep 4
iteration
not possible to compute, first iteration
 Options given by user are activated for proceeding calculation:
 ITER 2 GRWMX 0.1000E+00 ALFA 0.0000E+00
IWIND 3 IWCAP 1 IQUAD 2
ITRIAD 1 IBOT 1 ISURF 1
          1 1BO1
0 ITURBV
                           0 IMUD
                                            0
 IVEG
iteration 2; sweep 1
iteration 2; sweep 2
iteration 2; sweep 3
iteration 2; sweep 4
accuracy OK in 90.39 % of wet grid points (99.50 % required)
               3; sweep 1
iteration
iteration
               3; sweep 2
             3; sweep 2
3; sweep 3
iteration
iteration 3; sweep 4 accuracy OK in 1.93 % of wet grid points ( 99.50 % required)
iteration
               4; sweep 1
iteration
iteration
               4; sweep 2
             4; sweep 3
iteration
iteration 4; sweep 4 accuracy OK in 88.47 % of wet grid points ( 99.50 % required)
               5; sweep 1
iteration
iteration
               5; sweep 2
               5; sweep 3
iteration
iteration
               5; sweep
accuracy OK in 98.08 % of wet grid points (99.50 % required)
iteration
               6; sweep 1
               6; sweep 2
iteration
iteration
              6; sweep 3
```

iteration $\,$ 6; sweep 4 accuracy OK in 100.00 % of wet grid points (99.50 % required)

STOP

응 ્ર

용

왕

응

PART 3: WHAFIS

WHAFIS input: YK-05.dat WHAFIS output: YK-05.out

PART 3 COMPLETE____

1

WAVE HEIGHT COMPUTATIONS FOR FLOOD INSURANCE STUDIES (WHAFIS VERSION 4.0G, 08_2007) Executed on: Thu Feb 6 16:14:34 2020 Input file: C:\Users\shayward\Desktop\Kittery\T2\3_whafis\whafis4\YK-05.dat Output file: C:\Users\shayward\Desktop\Kittery\T2\3_whafis\whafis4\YK-05.out header

-				BUE FOLLOW		header S A 100-YEAR		IING HGED			
				THE FOLLOW		FAULT WIND SF WINDOF 56.14 PART1 INPUT	WINDVH 6	O.00			
	IE OF	0.000 1.000	-28.829 -28.583	1.000	1.000 9.027	9.027 0.000	5.206 0.000	6.262 0.000	56.140 0.000	0.246 0.245	0.000
	OF OF	2.000	-28.338 -28.093	0.000	9.027 9.027	0.000	0.000	0.000	0.000	0.245 0.245	0.000
	OF OF	4.000	-27.848 -27.603	0.000	9.027 9.027	0.000	0.000	0.000	0.000	0.245	0.000
	OF OF	5.000 6.000 7.000	-27.358 -27.113	0.000	9.027 9.027	0.000	0.000	0.000	0.000	0.245	0.000
	OF OF	8.000 9.000	-26.868 -26.623	0.000	9.027	0.000	0.000	0.000	0.000	0.245	0.000
	OF OF	10.000	-26.378 -26.132	0.000	9.027 9.027	0.000	0.000	0.000	0.000	0.245	0.000
	OF OF	12.000	-25.887 -25.642	0.000	9.027 9.027	0.000	0.000	0.000	0.000	0.245	0.000
	OF OF	14.000 15.000	-25.397 -25.152	0.000	9.027	0.000	0.000	0.000	0.000	0.245	0.000
	OF OF	16.000 17.000	-24.907 -24.662	0.000	9.028	0.000	0.000	0.000	0.000	0.245	0.000
	OF OF	18.000 19.000	-24.417 -24.172	0.000	9.028 9.028	0.000	0.000	0.000	0.000	0.245 0.245	0.000
	OF OF	20.000 21.000	-23.927 -23.681	0.000	9.028 9.028	0.000	0.000	0.000	0.000	0.245 0.245	0.000
	OF OF	22.000 23.000	-23.436 -23.191	0.000	9.028 9.028	0.000	0.000	0.000	0.000	0.245 0.245	0.000
	OF OF	24.000 25.000	-22.946 -22.701	0.000	9.028 9.028	0.000	0.000	0.000	0.000	0.245 0.245	0.000
	OF OF	26.000 27.000	-22.456 -22.211	0.000	9.028 9.028	0.000	0.000	0.000	0.000	0.245 0.245	0.000
	OF OF	28.000 29.000	-21.966 -21.721	0.000	9.028 9.028	0.000	0.000	0.000	0.000	0.245 0.245	0.000
	OF OF	30.000 31.000	-21.476 -21.230	0.000	9.028 9.029	0.000	0.000	0.000	0.000	0.245 0.245	0.000
	OF OF	32.000 33.000	-20.985 -20.714	0.000	9.029 9.029	0.000	0.000	0.000	0.000	0.258 0.301	0.000
	OF OF	35.000 36.000	-20.081 -19.765	0.000	9.029 9.029	0.000	0.000	0.000	0.000	0.316 0.316	0.000
	OF OF	38.000 39.000	-19.133 -18.817	0.000	9.029 9.029	0.000	0.000	0.000	0.000	0.316 0.316	0.000
	OF OF	41.000 42.000	-18.185 -17.869	0.000	9.029 9.029	0.000	0.000	0.000	0.000	0.316 0.316	0.000
	OF OF	44.000 45.000	-17.237 -16.920	0.000	9.029 9.030	0.000	0.000	0.000	0.000	0.316 0.316	0.000
	OF OF	47.000 48.000	-16.288 -15.972	0.000	9.030	0.000	0.000	0.000	0.000	0.316 0.316	0.000
	OF OF	50.000 51.000	-15.340 -15.024	0.000	9.030 9.030	0.000	0.000	0.000	0.000	0.316 0.316	0.000
	OF OF	54.000 56.000	-14.076 -13.443	0.000	9.030 9.030	0.000	0.000	0.000	0.000	0.316 0.316	0.000
	OF OF	57.000 62.000	-13.127 -12.029 -11.928	0.000	9.030 9.031	0.000	0.000 0.000 0.000	0.000	0.000	0.236 0.150	0.000
	OF OF OF	65.000 67.000 68.000	-11.928 -11.909 -11.900	0.000 0.000 0.000	9.031 9.031 9.031	0.000 0.000 0.000	0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.024 0.009 0.156	0.000 0.000 0.000
	IF IF	159.000 167.300	2.425 6.749	0.000	9.031 9.030	0.000	0.000	0.000	0.000	0.188 0.569	0.000
	IF ET	170.600	9.030	0.000	9.030	0.000	0.000	0.000	0.000	0.691	0.000
-	END	END		SURGE ELEV		INITIAL	INITIAL	0.000	BOTTOM	AVERAGE	0.000
IE	STATION 0.000	ELEVATION -28.829	LENGTH 1.000	10-YEAR 1.000		WAVE HEIGHT 5.206	W. PERIOD 6.262	56.140	SLOPE 0.246	A-ZONES 0.000	
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES	
OF	1.000 END	-28.583 END	0.000 NEW SURGE	9.027 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE	
OF	STATION 2.000	ELEVATION -28.338	10-YEAR 0.000	100-YEAR 9.027	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000	
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES	
OF	3.000 END	-28.093 END	0.000 NEW SURGE	9.027 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE	
OF	STATION 4.000	ELEVATION -27.848	10-YEAR 0.000	100-YEAR 9.027	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000	
OF	END STATION	ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000	0.000	0 000	BOTTOM SLOPE	AVERAGE A-ZONES	
OF	5.000 END	-27.603 END	0.000 NEW SURGE	9.027 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE	
OF	STATION 6.000 END	ELEVATION -27.358 END	10-YEAR 0.000 NEW SURGE	100-YEAR 9.027 NEW SURGE	0.000	0.000	0.000	0.000	SLOPE 0.245 BOTTOM	A-ZONES 0.000 AVERAGE	
OF	STATION 7.000	ELEVATION -27.113	10-YEAR 0.000	100-YEAR 9.027	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000	
OF	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES	
OF	8.000 END	-26.868 END	0.000 NEW SURGE	9.027 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE	
OF	STATION 9.000	ELEVATION -26.623	10-YEAR 0.000	100-YEAR 9.027	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000	
01	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES	
OF	10.000 END	-26.378 END	0.000 NEW SURGE	9.027 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE	
OF	STATION 11.000	ELEVATION -26.132	10-YEAR 0.000	100-YEAR 9.027	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000	
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES	
OF	12.000 END	-25.887 END	0.000 NEW SURGE	9.027 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE	
OF	STATION 13.000	ELEVATION -25.642	10-YEAR 0.000	100-YEAR 9.027	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000	
	END	END	NEW SURGE	NEW SURGE					BOTTOM	AVERAGE	

OF	STATION 14.000	ELEVATION -25.397	10-YEAR 0.000	100-YEAR 9.027	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	15.000 END	-25.152 END	0.000 NEW SURGE	9.028 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE
OF	STATION 16.000	ELEVATION -24.907	10-YEAR 0.000	100-YEAR 9.028	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000
01	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES
OF	17.000	-24.662 END	0.000 NEW SURGE	9.028 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE
OF	END STATION	ELEVATION	10-YEAR 0.000	100-YEAR	0.000	0.000	0.000	0.000	SLOPE	A-ZONES
OF	18.000 END	-24.417 END	NEW SURGE	9.028 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE
OF	STATION 19.000	ELEVATION -24.172	10-YEAR 0.000	100-YEAR 9.028	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	20.000 END	-23.927 END	0.000 NEW SURGE	9.028 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE
OF	STATION 21.000	ELEVATION -23.681	10-YEAR 0.000	100-YEAR 9.028	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	22.000 END	-23.436 END	0.000 NEW SURGE	9.028 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE
OF	STATION 23.000	ELEVATION -23.191	10-YEAR 0.000	100-YEAR 9.028	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	24.000 END	-22.946 END	0.000 NEW SURGE	9.028 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE
OF	STATION 25.000	ELEVATION -22.701	10-YEAR 0.000	100-YEAR 9.028	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000
OI.	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES
OF	26.000 END	-22.456 END	0.000 NEW SURGE	9.028 NEW SURGE	0.000	0.000	0.000	0.000	0.245	0.000 AVERAGE
OF	STATION	ELEVATION	10-YEAR	100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	A-ZONES
OF	27.000 END	-22.211 END	0.000 NEW SURGE	9.028 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE
OF	STATION 28.000	ELEVATION -21.966	10-YEAR 0.000	100-YEAR 9.028	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	29.000 END	-21.721 END	0.000 NEW SURGE	9.028 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE
OF	STATION 30.000	ELEVATION -21.476	10-YEAR 0.000	100-YEAR 9.028	0.000	0.000	0.000	0.000	SLOPE 0.245	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	31.000 END	-21.230 END	0.000 NEW SURGE	9.029 NEW SURGE	0.000	0.000	0.000	0.000	0.245 BOTTOM	0.000 AVERAGE
OF	STATION 32.000	ELEVATION -20.985	10-YEAR 0.000	100-YEAR 9.029	0.000	0.000	0.000	0.000	SLOPE 0.258	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	33.000 END	-20.714 END	0.000 NEW SURGE	9.029 NEW SURGE	0.000	0.000	0.000	0.000	0.301 BOTTOM	0.000 AVERAGE
OF	STATION 35.000	ELEVATION -20.081	10-YEAR 0.000	100-YEAR 9.029	0.000	0.000	0.000	0.000	SLOPE 0.316	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	36.000 END	-19.765 END	0.000	9.029 NEW SURGE	0.000	0.000	0.000	0.000	0.316 BOTTOM	0.000 AVERAGE
OF	STATION 38.000	ELEVATION -19.133	10-YEAR 0.000	100-YEAR 9.029	0.000	0.000	0.000	0.000	SLOPE 0.316	A-ZONES 0.000
OF	END	END		NEW SURGE	0.000	0.000	0.000	0.000	BOTTOM	AVERAGE
OF	STATION 39.000	ELEVATION -18.817	0.000	100-YEAR 9.029	0.000	0.000	0.000	0.000	SLOPE 0.316	A-ZONES 0.000
0.5	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	0.000	0.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES
OF	41.000 END	-18.185 END		9.029 NEW SURGE	0.000	0.000	0.000	0.000	0.316 BOTTOM	0.000 AVERAGE
OF	STATION 42.000	ELEVATION -17.869	10-YEAR 0.000	100-YEAR 9.029	0.000	0.000	0.000	0.000	SLOPE 0.316	A-ZONES 0.000
	END STATION	END ELEVATION	10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	44.000 END	-17.237 END		9.029 NEW SURGE	0.000	0.000	0.000	0.000	0.316 BOTTOM	0.000 AVERAGE
OF	STATION 45.000	ELEVATION -16.920	10-YEAR 0.000	100-YEAR 9.030	0.000	0.000	0.000	0.000	SLOPE 0.316	A-ZONES 0.000
	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	47.000 END	-16.288 END	0.000 NEW SURGE	9.030 NEW SURGE	0.000	0.000	0.000	0.000	0.316 BOTTOM	0.000 AVERAGE
OF	STATION 48.000	ELEVATION -15.972	10-YEAR 0.000	100-YEAR 9.030	0.000	0.000	0.000	0.000	SLOPE 0.316	A-ZONES 0.000
	END STATION	END ELEVATION		NEW SURGE 100-YEAR					BOTTOM SLOPE	AVERAGE A-ZONES
OF	50.000 END	-15.340 END	0.000	9.030 NEW SURGE	0.000	0.000	0.000	0.000	0.316 BOTTOM	0.000 AVERAGE
OF	STATION 51.000	ELEVATION -15.024	10-YEAR 0.000	100-YEAR 9.030	0.000	0.000	0.000	0.000	SLOPE 0.316	A-ZONES 0.000
O.F	END STATION	END ELEVATION	NEW SURGE 10-YEAR	NEW SURGE 100-YEAR	3.000	3.000	0.000	0.000	BOTTOM SLOPE	AVERAGE A-ZONES
OF	54.000 END	-14.076 END	0.000	9.030 NEW SURGE	0.000	0.000	0.000	0.000	0.316 BOTTOM	0.000 AVERAGE
O.E.	STATION	ELEVATION	10-YEAR	100-YEAR	0.000	0.000	0.000	0 000	SLOPE	A-ZONES
OF	56.000 END	-13.443 END		9.030 NEW SURGE	0.000	0.000	0.000	0.000	0.316 BOTTOM	0.000 AVERAGE
OF	STATION 57.000	ELEVATION -13.127	10-YEAR 0.000	100-YEAR 9.030	0.000	0.000	0.000	0.000	SLOPE 0.236	A-ZONES 0.000
	END STATION	END ELEVATION	10-YEAR	NEW SURGE 100-YEAR		0.00-	0.00-	0.00	BOTTOM SLOPE	AVERAGE A-ZONES
OF	62.000 END	-12.029 END	0.000 NEW SURGE	9.031 NEW SURGE	0.000	0.000	0.000	0.000	0.150 BOTTOM	0.000 AVERAGE
OF	STATION 65.000	ELEVATION -11.928	10-YEAR 0.000	100-YEAR 9.031	0.000	0.000	0.000	0.000	SLOPE 0.024	A-ZONES 0.000

	END	END	NEW SURGE	NEW SURGE					BOTTOM	AVERAGE
	STATION	ELEVATION	10-YEAR	100-YEAR					SLOPE	A-ZONES
OF	67.000	-11.909	0.000	9.031	0.000	0.000	0.000	0.000	0.009	0.000
	END	END	NEW SURGE	NEW SURGE					BOTTOM	AVERAGE
	STATION	ELEVATION	10-YEAR	100-YEAR					SLOPE	A-ZONES
OF	68.000	-11.900	0.000	9.031	0.000	0.000	0.000	0.000	0.156	0.000
	END	END	NEW SURGE	NEW SURGE					BOTTOM	AVERAGE
	STATION	ELEVATION	10-YEAR	100-YEAR					SLOPE	A-ZONES
IF	159.000	2.425	0.000	9.031	0.000	0.000	0.000	0.000	0.188	0.000
	END	END	NEW SURGE	NEW SURGE					BOTTOM	AVERAGE
	STATION	ELEVATION	10-YEAR	100-YEAR					SLOPE	A-ZONES
IF	167.300	6.749	0.000	9.030	0.000	0.000	0.000	0.000	0.569	0.000
	END	END	NEW SURGE	NEW SURGE					BOTTOM	AVERAGE
	STATION	ELEVATION	10-YEAR	100-YEAR					SLOPE	A-ZONES
IF	170.600	9.030	0.000	9.030	0.000	0.000	0.000	0.000	0.691	0.000
					-END OF TRANS	ECT				
NOTE:	:									
SURGE	E ELEVATIC	N INCLUDES	CONTRIBUTIO	NS FROM AST	RONOMICAL AND	STORM TIDE	S.			
1										
	PART2: CONTROLLING WAVE HEIGHTS SPECTRAL									

	EW SUI	EAR	0.000	0.000	0.00	20	0.000	BO S
	9.0	END	O.UUU OF TRANS	ECT	0.00			0
NS	FROM	ASTRONO	MICAL AND	STORM T	IDES.			
		PART2	: CONTROL	LING WAV	E HEIGHTS D, AND WAY SPECTRAL WAVE PER: 6.26 6.26 6.26 6.26 6.26 6.26 6.26 6.2	, SPECTE	RAL	
	LOCA	ATION	PEAK WA'	VE PERIO ROLLING	D, AND WAY SPECTRAL	/E CREST PEAK	ELEVATI WAVE CRE	ONS
	IE	0.00	WAVE	HEIGHT 5 21	WAVE PER	IOD	ELEVATION 12 67	N
	OF	1.00		5.21	6.26		12.67	
	OF OF		 	5.20	6.26		12.67	
	OF OF	4.00	 	5.20 5.20	6.26 6.26		12.67	
	OF	6.00		5.20	6.26		12.67	
	OF OF	8.00		5.20	6.26		12.67	
	OF OF	6.00 7.00 8.00 9.00 10.00 11.00	 	5.20 5.20	6.26 6.26		12.67 12.67	
	OF	11.00		5.20	6.26		12.67	
	OF OF	13.00	! 	5.20	6.26		12.67	
	OF OF	12.00 13.00 14.00 15.00 16.00	 	5.20 5.20	6.26 6.26		12.67 12.67	
	OF OF	16.00	l I	5.20	6.26		12.67	
	OF	18.00		5.20	6.26		12.67	
	OF OF	18.00 19.00 20.00 21.00 22.00 23.00	 	5.20 5.20	6.26 6.26		12.67 12.67	
	OF OF	21.00	 	5.20	6.26		12.67	
	OF	23.00		5.20	6.26		12.67	
	OF OF	24.00 25.00 26.00 27.00 28.00 29.00 30.00	 	5.20 5.20	6.26 6.26		12.67 12.67	
	OF OF	26.00	l	5.21	6.26		12.67	
	OF	28.00		5.21	6.26		12.67	
	OF OF	30.00	 	5.21 5.21	6.26		12.67	
	OF OF	31.00 32.00	 	5.21	6.26		12.68	
	OF	33.00		5.22	6.26		12.68	
	OF OF	35.00 36.00	l 	5.22 5.22	6.26		12.68	
	OF OF	38.00 39.00	 	5.23 5.23	6.26 6.26		12.69	
	OF	41.00		5.24	6.26		12.70	
	OF OF	42.00 44.00	l 	5.25 5.26	6.26		12.70	
	OF OF	45.00 47.00	 	5.26 5.27	6.26 6.26		12.71 12.72	
	OF	48.00		5.28	6.26		12.72	
	OF OF	50.00 51.00		5.29	6.26		12.73	
	OF OF	54.00 56.00	 	5.32 5.34	6.26 6.26		12.76 12.77	
	OF	57 00		5.35	6.26		12.77	
	OF OF	62.00 65.00		5.39	6.26		12.80	
	OF OF	67.00 68.00	 	5.39 5.39	6.26 6.26		12.80 12.80	
	IF	159.00 167.30		4.90 1.75	6.26 6.26		12.46 10.25	
	IF IF	170.60		0.01	6.26		9.04	
					100-YEAR S IN THIS TH			
	STATIO			ON OF SU AR SURGE	RGE CHANGI		R SURGE	
	15.00	0	10 12	1.00		9.0	13	
	45.00	0		1.00		9.0	13	
	62.00 167.30			1.00		9.0		
			PART5 OF GUTTER	LOCATION	OF V ZONE	ES		
			164.00		WINDV	VARD		
	STATIO				NES AND V ZONE DESIG		FHF	
		0.00	1	2.67	V22 I	EL=13	120	
		14.00		2.67		EL=13	120	
		15.00	1	2.67	V22 I	EL=13	120	
		30.00		2.68	V22 I	EL=13	120	
		31.00		2.68	V22 I	EL=13	120	
		44.00		2.71	V22 I	EL=13	120	
					V22 I	EL=13	120	
		57.00		2.77	V22 I	EL=13	120	
		62.00	1	2.80				

148.23	12.50	V22	EL=13	120
148.23	12.50	V22	EL=12	120
159.00	12.46			
162.61	11.50	V22	EL=12	120
		V22	EL=11	120
164.00	11.13	A18	EL=11	90
166.37	10.50	AIO	PD-11	90
167.30	10.25	A18	EL=10	90
167.30	10.25	A18	EL=10	90
169.34	9.50	-10	0	0.0
170.60	9.04	A18	EL= 9	90

ZONE TERMINATED AT END OF TRANSECT
PART 7 POSTSCRIPT NOTES
PS# 1 START(360535.9213,4770987.724)
PS# 2 END(360385.9926,4771214.8466)

-1.000000e+00

YK-05 100-year WHAFIS Output Zero Station: -70.71351846, 43.07910583


```
diary on
                      % begin recording
% FEMA appeal for The Town of Harpswell, Cumberland county, Maine
% TRANSECT ID: YK-05
% calculation by SJH, Ransom Consulting, Inc. 06-Feb-2020
% 100-year wave runup using TAW methodology
% including berm and weighted average with foreshore if necessary
% chk nld 20181015
\mbox{\ensuremath{\upsigma}} This script assumes that the incident wave conditions provided
% as input in the configuration section below are the
% appropriate values located at the end of the foreshore
% or toe of the slope on which the run-up is being calculated
% the script does not attempt to apply a depth limit or any other % transformation to the incident wave conditions other than
% conversion of the peak wave period to the spectral mean wave
% as recommended in the references below
% references:
% Van der Meer, J.W., 2002. Technical Report Wave Run-up and % Wave Overtopping at Dikes. TAW Technical Advisory Committee on
% Flood Defence, The Netherlands.
% FEMA. 2007, Atlantic Ocean and Gulf of Mexico Coastal Guidelines Update
% CONFIG
% third columm is 0 for excluded points
imgname='logfiles/YK-05-runup';
SWEL=9.0268; % 100-yr still water level including wave setup.
H0=3.5425; % significant wave height at toe of structure
Tp=6.337; % peak period, 1/fma,
\bar{\text{T0}} = \text{Tp}/1.1;
gamma_berm=0.98213; % this may get changed automatically below
gamma_rough=0.75;
gamma_beta=1;
gamma_perm=1;
setupAtToe=-0.040102;
maxSetup=0.0028839;
                           % only used in case of berm/shallow foreshore weighted average
plotTitle='Iterative TAW for YK-05'
plotTitle =
Iterative TAW for YK-05
% END CONFIG
SWEL=SWEL+setupAtToe
SWEL =
                       8.986698
SWEL fore=SWEL+maxSetup
SWEL_fore =
                      8.9895819
% FIND WAVELENGTH USING DEEPWATER DISPERSION RELATION
% using English units
L0=32.15/(2*pi)*T0^2
T<sub>1</sub>O =
            169.817777542363
% Find Hb (Munk, 1949)
%Hb=H0/(3.3*(H0/L0)^(1/3))
%Db=-Hb/.78+SWEL; % depth at breaking
% The toe elevation here is only used to determine the average
% structure slope, it is not used to depth limit the wave height.
% Any depth limiting or other modification of the wave height
% to make it consitent with TAW guidance should be performed
% prior to the input of the significant wave height given above.
Ztoe=SWEL-1.5*H0
```

```
% read the transect
[sta,dep,inc] = textread(fname,'%n%n%n%*[^\n]','delimiter',',','headerlines',0);
% remove unselected points
k=find(inc==0);
sta(k)=[];
dep(k)=[];
sta_org=sta; % used for plotting purposes
dep_org=dep;
% initial guess at maximum run-up elevation to estimate slope
Z2=SWEL+1.5*H0
Z_{2} =
                    14.300448
% determine station at the max runup and -1.5*H0 (i.e. the toe)
top_sta=-999;
toe_sta=-999;
for kk=1:length(sta)-1
    if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                        % here is the intersection of z2 with profile
        top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
     end
         ((Ztoe > dep(kk)) & (Ztoe <= dep(kk+1)))
                                                              % here is the intersection of Ztoe with profile
        toe_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Ztoe)
    end
end
toe_sta =
            11.6106776745786
top sta =
            37.4384359160029
dy = \overline{dep(1)} - Ztoe;
   toe_sta=sta(1)-dy/S(1)
end
if top_sta==-999
   dy=Z2-dep(end);
   top_sta=sta(end)+dy/S(end)
% just so the reader can tell the values aren't -999 anymore
top_sta
top sta =
            37.4384359160029
toe_sta
toe sta =
            11.6106776745786
% check for case where the toe of slope is below SWL-1.5*H0 \,
% in this case interpolate setup from the setupAtToe(really setup as first station), and the max setup % also un-include points seaward of SWL-1.5*HO
if Ztoe > dep(1)
   dd=SWEL_fore-dep;
   k=find(\overline{dd}<0,1); % k is index of first land point
    staAtSWL=interp1(dep(k-1:k),sta(k-1:k),SWEL_fore);
   dsta=staAtSWL-sta(1);
   dsetup=maxSetup-setupAtToe;
   dsetdsta=dsetup/dsta;
   sprintf('-!!- Setup is interpolated between setup at toe of slope and max setup') sprintf('-!!- setup is adjusted to %4.2f feet'.setup)
   setup=setupAtToe+dsetdsta*(toe_sta-sta(1));
   SWEL=SWEL-setupAtToe+setup;
   sprintf('-!!- SWEL is adjusted to %4.2f feet', SWEL) k=find(dep < SWEL-1.5*H0)
   sta(k)=[];
   dep(k)=[];
else
   ser sprintf('-!!- The User has selected a starting point that is %4.2f feet above the elevation of SWEL-1.5H0\n',desprintf('-!!- This may be reasonable for some cases. However the user may want to consider:\n') sprintf('-!!- 1) Selecting a starting point that is at or below %4.2f feet elevation, or\n', Ztoe) sprintf('-!!- 2) Reducing the incident wave height to a depth limited condition.\n')
```

```
end
ans =
-!!- Location of SWEL-1.5*HO is 9.6 ft landward of toe of slope
ans =
-!!- Setup is interpolated between setup at toe of slope and max setup
ans =
-!!-
           setup is adjusted to -0.03 feet
ans =
-!!-
           SWEL is adjusted to 8.99 feet
k =
     1
     2
\mbox{\ensuremath{\upsigma}} now iterate converge on a runup elevation
tol=0.001;
            % convergence criteria
R2del=999;
R2_new=3*H0; %initial guess
R2=R2_new;
iter=\overline{0};
R2_all=[];
topStaAll=[];
Berm_Segs=[];
TAW_ALWAYS_VALID=1;
while(abs(R2del) > tol && iter <= 25)</pre>
    iter=iter+1;
    sprintf ('!--
                      -----!',iter
    % elevation of toe of slope
    Ztoe
    % station of toe slope (relative to 0-NAVD88 shoreline
    toe sta
    % station of top of slope/extent of 2% run-up
    top_sta
    % elevation of top of slope/extent of 2% run-up
    Z_2
    % incident significant wave height
    HΩ
    % incident spectral peak wave period
    Τp
    % incident spectral mean wave period
    Т0
    R2=R2_new
    Z2=R2+SWEL
    % determine slope for this iteration
    top_sta=-999;
    for kk=1:length(sta)-1
       if ((Z2 > dep(kk)) & (Z2 <= dep(kk+1)))
                                                     % here is the intersection of z2 with profile
           top_sta=interp1(dep(kk:kk+1),sta(kk:kk+1),Z2)
          break;
       end
    end
    if top_sta==-999
       dy=Z2-dep(end);
       top_sta=sta(end)+dy/S(end)
    end
    % get the length of the slope (not accounting for berm)
    Lslope=top_sta-toe_sta
    % loop over profile segments to determine berm factor
    \mbox{\ensuremath{\upsigma}} re-calculate influence of depth of berm based on this run-up elevation
    % check for berm, berm width, berm height
    berm_width=0;
    rdh sum=0;
    Berm_Segs=[];
    Berm_Heights=[];
    for kk=1:length(sta)-1
       ddep=dep(kk+1)-dep(kk);
       dsta=sta(kk+1)-sta(kk);
       s=ddep/dsta;
       if (s < 1/15) % count it as a berm if slope is flatter than 1:15 (see TAW manual) sprintf ('Berm Factor Calculation: Iteration %d, Profile Segment: %d',iter,kk)
           berm_width=berm_width+dsta;
                                          % tally the width of all berm segments
           % compute the rdh for this segment and weight it by the segment length
           dh=SWEL-(dep(kk)+dep(kk+1))/2
           if dh < 0
               chi=R2;
           else
               chi=2* H0;
```

```
end
       if (dh \le R2 \& dh = -2*H0)
          rdh=(0.5-0.5*cos(3.14159*dh/chi));
       else
          rdh=1;
       end
      rdh_sum=rdh_sum + rdh * dsta
       Berm_Segs=[Berm_Segs, kk];
       Berm_Heights=[Berm_Heights, (dep(kk)+dep(kk+1))/2];
   if dep(kk) >= Z2 % jump out of loop if we reached limit of run-up for this iteration
   end
end
sprintf ('!----- End Berm Factor Calculation, Iter: %d -----!',iter)
berm_width
rB=berm_width/Lslope
if (berm_width > 0)
   rdh_mean=rdh_sum/berm_width
else
   rdh mean=1
end
gamma_berm=1- rB * (1-rdh_mean)
if gamma_berm > 1
   gamma_berm=1
end
if gamma_berm < 0.6
   gamma_berm =0.6
end
% Iribarren number
slope=(Z2-Ztoe)/(Lslope-berm_width)
Irb=(slope/(sqrt(H0/L0)))
% runup height
gamma_berm
gamma perm
gamma_beta
gamma=gamma_berm*gamma_perm*gamma_beta*gamma_rough
% check validity
TAW_VALID=1;

if (Irb*gamma_berm < 0.5 | Irb*gamma_berm > 10 )
    sprintf('!!! - - Iribaren number: %6.2f is outside the valid range (0.5-10), TAW NOT VALID - - !!!\n', Irb*
   sprintf('!!! - - Iribaren number: %6.2f is in the valid range (0.5-10), TAW RECOMMENDED - - !!!\n', Irb*gar
end
islope=1/slope;
if (slope < 1/8 | slope > 1)
   sprintf('!!!
                   - slope: 1:%3.1f V:H is outside the valid range (1:8 - 1:1), TAW NOT VALID - - !!!\n', islop
   TAW_VALID=0;
else
   sprintf('!!! - slope: 1:%3.1f V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!\n', islope)
end
if TAW_VALID == 0
   TAW_ALWAYS_VALID=0;
end
if (Irb*gamma_berm < 1.8)
   R2_new=gamma*H0*1.77*Irb</pre>
else
   R2_new=gamma*H0*(4.3-(1.6/sqrt(Irb)))
end
\mbox{\%} check to see if we need to evaluate a shallow foreshore if berm_width > 0.25 * LO;
   disp ('! Berm_width is greater than 1/4 wave length')
disp ('! Runup will be weighted account...
               Runup will be weighted average with foreshore calculation assuming depth limited wave height on
   % do the foreshore calculation
   fore_H0=0.78*(SWEL_fore-min(Berm_Heights))
   % get upper slope
   fore_toe_sta=-999;
   fore_toe_dep=-999;
for kk=length(dep)-1:-1:1
       ddep=dep(kk+1)-dep(kk);
       dsta=sta(kk+1)-sta(kk);
       s=ddep/dsta;
       if s < 1/15
          break
       end
       fore_toe_sta=sta(kk);
       fore_toe_dep=dep(kk);
       upper_slope=(Z2-fore_toe_dep)/(top_sta-fore_toe_sta)
   end
   fore_Irb=upper_slope/(sqrt(fore_H0/L0));
   fore_gamma=gamma_perm*gamma_beta*gamma_rough;
   if (fore_Irb < 1.8)
       fore_R2=fore_gamma*fore_H0*1.77*fore_Irb;
       fore_R2=fore_gamma*fore_H0*(4.3-(1.6/sqrt(fore_Irb)));
   end
   if berm width >= L0
      R2_new=fore_R2
       disp ('berm is wider than one wavelength, use full shallow foreshore solution');
```

```
w2=(berm_width-0.25*L0)/(0.75*L0)
        w1 = 1 - w2
        R2_new=w2*fore_R2 + w1*R2_new
     end
   end % end berm width check
   % convergence criterion
R2del=abs(R2-R2_new)
   R2_all(iter)=R2_new;
   end
   end
   if top_sta==-999
  dy=Z2-dep(end);
  top_sta=sta(end)+dy/S(end);
   topStaAll(iter)=top_sta;
end
ans =
!-----!
Ztoe =
             3.672948
toe_sta =
       11.6106776745786
top_sta =
       37.4384359160029
Z2 =
             14.300448
H0 =
                3.5425
Tp =
                 6.337
T0 =
       5.76090909090909
R2 =
               10.6275
Z2 =
       19.6214318644647
top_sta =
       70.2660422428596
Lslope =
        58.655364568281
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 24
dh =
```

-5.14946813553532

```
0.475727240324892
ans =
Berm Factor Calculation: Iteration 1, Profile Segment: 25
dh =
     -5.21381813553532
rdh_sum =
      0.960958320952088
ans =
!----- End Berm Factor Calculation, Iter: 1 -----!
berm_width =
rB =
    0.0340974779497243
rdh_mean =
      0.480479160476044
gamma_berm =
        0.98228564962991
slope =
      0.281499977733681
Irb =
        1.94901423819125
gamma_berm =
       0.98228564962991
gamma_perm =
1
gamma_beta =
gamma_rough =
                  0.75
gamma =
 0.736714237222432
!!! - - Iribaren number: 1.91 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.6 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
```

rdh_sum =

```
R2del =
       2.39635053812676
Z2 =
     17.2250813263379
ans =
!-----!
Ztoe =
             3.672948
toe_sta =
       11.6106776745786
top_sta =
        55.519269700541
Z2 =
       17.2250813263379
H0 =
                3.5425
Tp =
                 6.337
T0 =
       5.76090909090909
R2 =
       8.23114946187324
Z2 =
       17.2250813263379
top_sta =
        55.519269700541
Lslope =
       43.9085920259624
Berm Factor Calculation: Iteration 2, Profile Segment: 24
dh =
     -5.14946813553532
rdh_sum =
      0.692222097484545
ans =
Berm Factor Calculation: Iteration 2, Profile Segment: 25
dh =
```

-5.21381813553532

```
rdh_sum =
       1.39572158279274
ans =
!----- End Berm Factor Calculation, Iter: 2 -----!
berm_width =
  2
rB =
     0.0455491717615867
rdh_mean =
      0.697860791396368
gamma_berm =
       0.986237809291403
slope =
      0.323373625101563
Irb =
       2.23893374575942
gamma_berm =
      0.986237809291403
gamma_perm =
   1
gamma_beta =
   1
gamma_rough =
                  0.75
gamma =
      0.739678356968552
ans =
!!! - - Iribaren number: 2.21 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.1 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
        8.46543871363766
R2del =
      0.234289251764425
Z2 =
       17.4593705781023
ans =
!----- STARTING ITERATION 3 -----!
```

```
Ztoe =
               3.672948
toe_sta =
   11.6106776745786
top_sta =
        56.9610497113991
Z2 =
     17.4593705781023
H0 =
                  3.5425
Tp =
                  6.337
T0 =
        5.76090909090909
R2 =
       8.46543871363766
Z2 =
        17.4593705781023
top_sta =
        56.9610497113991
Lslope =
       45.3503720368205
ans =
Berm Factor Calculation: Iteration 3, Profile Segment: 24
dh =
      -5.14946813553532
rdh_sum =
      0.666843125112442
Berm Factor Calculation: Iteration 3, Profile Segment: 25
dh =
      -5.21381813553532
rdh_sum =
       1.34489362697038
ans =
!----- End Berm Factor Calculation, Iter: 3 -----!
berm_width =
```

```
0.0441010715055695
rdh_mean =
        0.67244681348519
gamma_berm =
       0.985554553499633
slope =
      0.318023166361585
Irb =
     2.20188891062648
gamma_berm =
       0.985554553499633
gamma_perm =
  1
gamma_beta =
   1
gamma_rough =
                 0.75
gamma =
  0.739165915124725
ans =
!!! - - Iribaren number: 2.17 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.1 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
     8.43611879326975
R2del =
     0.0293199203679073
Z2 =
    17.4300506577344
!----- STARTING ITERATION 4 -----!
Ztoe =
              3.672948
toe_sta =
     11.6106776745786
top_sta =
```

rB =

```
17.4300506577344
H0 =
                  3.5425
Tp =
                   6.337
T0 =
      5.76090909090909
R2 =
        8.43611879326975
Z2 =
        17.4300506577344
top_sta =
        56.7806194322119
Lslope =
        45.1699417576333
Berm Factor Calculation: Iteration 4, Profile Segment: 24
       -5.14946813553532
rdh_sum =
 0.669969958416942
ans =
Berm Factor Calculation: Iteration 4, Profile Segment: 25
dh =
      -5.21381813553532
rdh_sum =
       1.35115837256487
!----- End Berm Factor Calculation, Iter: 4 -----!
berm_width =
  2
rB =
     0.0442772322074561
rdh_mean =
      0.675579186282436
gamma_berm =
        0.985635544298096
```

Z2 =

```
0.318673180866682
Irb =
       2.20638939952764
gamma_berm =
  0.985635544298096
gamma_perm =
1
gamma_beta =
  1
gamma_rough =
                 0.75
gamma =
 0.739226658223572
!!! - - Iribaren number: 2.17 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
!!! - - slope: 1:3.1 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
      8.43969329239713
R2del =
    0.00357449912737451
Z2 =
       17.4336251568618
ans =
!-----!
Ztoe =
             3.672948
toe_sta =
 11.6106776745786
top_sta =
       56.8026163499189
Z2 =
      17.4336251568618
H0 =
                3.5425
Tp =
```

slope =

```
5.76090909090909
R2 =
        8.43969329239713
Z2 =
        17.4336251568618
top_sta =
        56.8026163499189
Lslope =
        45.1919386753402
ans =
Berm Factor Calculation: Iteration 5, Profile Segment: 24
dh =
      -5.14946813553532
rdh_sum =
      0.669587991433597
Berm Factor Calculation: Iteration 5, Profile Segment: 25
       -5.21381813553532
rdh_sum =
 1.35039312106405
ans =
!----- End Berm Factor Calculation, Iter: 5 -----!
berm_width =
  2
rB =
     0.0442556805178914
rdh_mean =
      0.675196560532024
gamma_berm =
      0.985625602751793
slope =
        0.31859364452928
Irb =
      2.20583871581072
gamma_berm =
        0.985625602751793
```

T0 =

```
gamma_perm =
   1
gamma_beta =
gamma\_rough =
                   0.75
gamma =
 0.739219202063845
ans =
!!! - - Iribaren number: 2.17 is in the valid range (0.5-10), TAW RECOMMENDED - - !!!
ans =
!!! - - slope: 1:3.1 V:H is in the valid range (1:8 - 1:1), TAW RECOMMENDED - - !!!
R2\_new =
        8.43925609246532
R2del =
  0.000437199931813126
Z2 =
          17.43318795693
% final 2% runup elevation
Z2=R2_new+SWEL
Z2 =
          17.43318795693
diary off
```

```
PART 5: RUNUP2
        for transect: YK-05
Station locations shifted by: -3.09 feet from their
original location to set the shoreline to
elevation 0 for RUNUP2 input
              _RUNUP2 INPUT CONVERSIONS_
        for transect: YK-05
Incident significant wave height: 3.25 feet
Peak wave period: 6.26 seconds
Mean wave height: 2.04 feet
Local Depth below SWEL: 37.86 feet
Mean wave height deshoaled using Hunt approximation for
celerity assuming constant wave energy flux.
 References: R.G. Dean and R.A. Dalrymple. 2000.
             Wave Mechanics for Engineers and Scientists. World
             Scientific Publishing Company, River Edge New Jersy
             USACE (1985), Direct Methods for Calculating Wavelength, CETN-1-17
             US Army Engineer Waterways Experiment Station Coastel Engineering
             Research Center, Vicksburg, MS
             also see Coastal Engineering Manual Part II-3
             for discussion of shoaling coefficient
Deep water wavelength, L0 (m)
    L0 = g*T*T/twopi
    L0 = 32.17*5.32*5.32/6.28 = 145.06
Deep water wave celerity, CO (ft/s)
    C0 = L0/T
    C0 = 145.06/5.32 = 27.25
Angular frequency, sigma (rad/s)
    sigma = twopi/T
    sigma = 6.28/5.32 = 1.18
Hunts (1979) approximation for Celerity C1H (ft/s) at Depth D (ft)
    y = sigma.*sigma.*D./g
    y = 1.18*1.18*37.86/32.17 = 1.64
    C1H = sqrt(g.*D./(y+1./(1 + 0.6522.*y + 0.4622.*y.^2 + 0.0864.*y.^4 + 0.0675.*y.^5)))
    C1H = 25.65
Shoaling Coefficient KsH
    KsH = sqrt(C0/C1H)
    KsH = sqrt(27.25/25.65) = 1.03
Deepwater Wave Height HO_H (ft)
    HO H = H/KsH
    H0_H = 2.04/1.03 = 1.98
Deepwater mean wave height: 1.98 feet
              _END RUNUP2 CONVERSIONS_
              RUNUP2 RESULTS
        for transect: YK-05
RUNUP2 SWEL:
9.00
9.00
9.00
9.00
9.00
9.00
9.00
9.00
```

1.88

RUNUP2 deepwater mean wave heights:

```
1.88
1.88
1.98
1.98
1.98
2.08
2.08
2.08
RUNUP2 mean wave periods:
5.06
5.32
5.59
5.06
5.32
5.59
5.06
5.32
5.59
RUNUP2 runup above SWEL:
5.33
5.49
5.66
5.66
5.85
6.01
5.96
6.14
6.34
RUNUP2 Mean runup height above SWEL: 5.83 feet
RUNUP2 2-percent runup height above SWEL: 12.82 feet
RUNUP2 2-percent runup elevation: 21.82 feet-NAVD88
RUNUP2 Messages:
No Messages
             END RUNUP2 RESULTS
          ____ACES BEACH RUNUP____
Incident significant wave height: 3.25 feet
Significant wave height deshoaled using Hunt equation
Deepwater significant wave height: 2.77 feet
Peak wave period: 6.26 seconds
Average beach Slope: 1:4.40 (H:V)
ACES RUNUP CALCULATED USING 'Aces_Beach_Runup.m'
ACES Beach 2-percent runup height above SWEL: 8.23 feet
ACES Beach 2-percent runup elevation: 17.23 feet-NAVD88
!!!ACES BEACH RUNUP is NOT valid
          ___END ACES BEACH RESULTS___
PART 5 COMPLETE
```

FEMA
RUNUP2 transect: YK-05
8.00
-28.83 -147.9 1.0
-20.99 -115.9 1.0
-20.71 -114.9 1.0
-12.18 -87.9 1.0
-12.06 -86.9 1.0
-11.93 -82.9 1.0
0.46 3.1 1.0
0.75 4.1 1.0
1.67 8.1 1.0
2.43 11.1 1.0
2.77 13.1 1.0
4.48 16.1 1.0
2.77 13.1 1.0
4.48 16.1 1.0
9.98 24.1 1.0
10.84 26.1 1.0
11.81 28.1 1.0
12.47 31.1 1.0
13.95 37.1 1.0
14.24 40.1 1.0
15.03 45.1 1.0
9.0 1.88 5.32
9.0 1.88 5.32
9.0 1.98 5.59
9.0 1.98 5.59
9.0 2.08 5.59

sjh

job 2 1

CROSS SECTION PROFILE

	CRUSS	SECTION	PROFILE		
	LENGTH	ELEV.	SLOPE	ROUGHNESS	
1	-147.0	-28.8	.00	1.00	
2	-115.0	-20.9			
3	-114.0	-20.7	5.00	1.00	
4	-87.9	-12.1	3.03	1.00	
5	-86.9	-12.0	10.00	1.00	
6	-82.9	-11.9	40.00	1.00	
7	-79.9	-11.9	FLAT	1.00	
8	3.1	.5	6.72	1.00	
9			3.45	1.00	
	4.1	.8	4.35	1.00	
10	8.1	1.7	3.95	1.00	
11	11.1	2.4	5.88	1.00	
12	13.1	2.8	1.75	1.00	
13	16.1	4.5	1.45	1.00	
14	24.1	10.0	2.33	1.00	
15	26.1	10.9			
16	28.1	11.8	2.06	1.00	
17	31.1	12.5	4.55	1.00	
18	37.1	14.0	4.05	1.00	
19	40.1	14.3	10.34	1.00	
20	45.1	15.0	6.33	1.00	
20		T SLOPE	8.00	I ACT DOMOUNDES	1.00
	LAS	I STORE	0.00	LAST ROUGHNESS	1.00

CLIENT- FEMA ** WAVE RUNUP-VERSION 2.0 ** ENGINEERED BY sjh JOB job 2
PROJECT-RUNUP2 transect: YK-05

** WAVE RUNUP-VERSION 2.0 **

RUN 1 PAGE 2

OUTPUT TABLE

INPUT PARAMETERS RUNUP RESULTS

WATER LEVEL ABOVE DATUM (FT.)	DEEP WATER WAVE HEIGHT (FT.)	WAVE PERIOD (SEC.)	BREAKING SLOPE NUMBER	RUNUP SLOPE NUMBER	RUNUP ABOVE WATER LEVEL (FT.)	BREAKER DEPTH (FT.)
9.00	1.88	5.06	11	19	5.33	2.56
9.00	1.88	5.32	11	19	5.49	2.60
9.00	1.88	5.59	11	19	5.66	2.64
9.00	1.98	5.06	11	19	5.66	2.68
9.00	1.98	5.32	11	19	5.85	2.72
9.00	1.98	5.59	11	19	6.01	2.76
9.00	2.08	5.06	11	19	5.96	2.79
9.00	2.08	5.32	11	20	6.14	2.83
9.00	2.08	5.59	11	20	6.34	2.87

