

Professional, Applied and Continuing Education

INTRODUCTION TO MACHINE LEARNING

DIT 45100

Professional, Applied and Continuing Education

Module 3 Linear Classification Techniques

Classification

- Categorical target feature
- Binary classification
- Multinomial classification
- Logistic regression
- Support Vector Machines (SVM)

Professional, Applied and Continuing Education

Scenario

- You work for a power utility company as an Al professional. The company owns a number of power generation stations, where electric generators operate day and night to serve clients uninterrupted. Condition of these generators is continuously monitored by measuring machine features indicative of their "health".
- You are tasked to develop a classification model to predict the status of generators based on historic sensor measurements in order to avoid any unexpected machine breakdown.
- The objective is to classify generators as "good" or "faulty" based on these feature measurements

Generators dataset

ID	RPM	VIBRATION	STATUS	ID	RPM	VIBRATION	STATUS
1	568	585	good	29	562	309	faulty
2	586	565	good	30	578	346	faulty
3	609	536	good	31	593	357	faulty
4	616	492	good	32	626	341	faulty
5	632	465	good	33	635	252	faulty
6	652	528	good	34	658	235	faulty
7	655	496	good	35	663	299	faulty
8	660	471	good	36	677	223	faulty
9	688	408	good	37	685	303	faulty
10	696	399	good	38	698	197	faulty
11	708	387	good	39	699	311	faulty
12	701	434	good	40	712	257	faulty
13	715	506	good	41	722	193	faulty
14	732	485	good	42	735	259	faulty
15	731	395	good	43	738	314	faulty
16	749	398	good	44	753	113	faulty
17	759	512	good	45	767	286	faulty
18	773	431	good	46	771	264	faulty
19	782	456	good	47	780	137	faulty
20	797	476	good	48	784	131	faulty
21	794	421	good	49	798	132	faulty
22	824	452	good	50	820	152	faulty
23	835	441	good	51	834	157	faulty
24	862	372	good	52	858	163	faulty
25	879	340	good	53	888	91	faulty
26	892	370	good	54	891	156	faulty
27	913	373	good	55	911	79	faulty
28	933	330	good	56	939	99	faulty
-							

Generators dataset

Figure: A scatter plot of the RPM and VIBRATION descriptive features from the generators dataset, where 'good' generators are shown as crosses and 'faulty' generators are shown as triangles.

Generators dataset

Figure: A scatter plot of the RPM and VIBRATION descriptive features from the generators dataset, where 'good' generators are shown as crosses and 'faulty' generators are shown as triangles.

 As the decision boundary is a linear separator it can be defined using the equation of the line as:

$$VIBRATION = 830 - 0.667 \times RPM \tag{1}$$

or

$$830 - 0.667 \times RPM - VIBRATION = 0 \tag{2}$$

Applying Equation (2) to the instance RPM = 810,
 VIBRATION = 495, which is **above** the decision boundary, gives the following result:

$$830 - 0.667 \times 810 - 495 = -205.27$$

 By contrast, if we apply Equation (2) to the instance RPM = 650 and VIBRATION = 240, which is below the decision boundary, we get

$$830 - 0.667 \times 650 - 240 = 156.45$$

- All the data points above the decision boundary will result in a negative value when plugged into the decision boundary equation,
- While all data points below the decision boundary will result in a positive value.

Reverting to our previous notation we have:

$$\mathbb{M}_{\mathbf{w}}(\mathbf{d}) = \begin{cases} 1 & \text{if } \mathbf{w} \cdot \mathbf{d} \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (3)

 The surface defined by this rule is known as a decision surface.

Figure: (a) A surface showing the value of Equation (2) for all values of RPM and VIBRATION. The decision boundary given in Equation (2) is highlighted. (b) The same surface linearly thresholded at zero to operate as a predictor.

Professional, Applied and Continuing Education

- The hard decision boundary given in Equation (3) is **discontinuous** so is not differentiable and so we can't calculate the gradient of the error surface.
- Furthermore, the model always makes completely confident predictions of 0 or 1, whereas a little more subtlety is desirable.
- We address these issues by using a more sophisticated threshold function that is continuous, and therefore differentiable, and that allows for the subtlety desired: the logistic function

logistic function

$$Logistic(x) = \frac{1}{1 + e^{-x}} \tag{4}$$

where x is a numeric value and e is **Euler's number** and is approximately equal to 2.7183.

 To build a logistic regression model, we simply pass the output of the basic linear regression model through the logistic function

$$\mathbb{M}_{\mathbf{w}}(\mathbf{d}) = Logistic(\mathbf{w} \cdot \mathbf{d})$$

$$= \frac{1}{1 + e^{-\mathbf{w} \cdot \mathbf{d}}}$$
(5)

A note on training logistic regression models:

- Before we train a logistic regression model, we map the binary target feature levels to 0 or 1.
- The error of the model on each instance is then the difference between the target feature (0 or 1) and the value of the prediction [0, 1].

Example

$$\mathbb{M}_{\mathbf{w}}(\langle \mathsf{RPM}, \mathsf{Vibration} \rangle)$$

$$= \frac{1}{1 + e^{-(-0.4077 + 4.1697 \times \mathsf{RPM} + 6.0460 \times \mathsf{Vibration})}}$$

Figure: The decision surface for the example logistic regression model.

$$P(t = 'faulty'|\mathbf{d}) = \mathbb{M}_{\mathbf{w}}(\mathbf{d})$$

$$P(t = 'good'|\mathbf{d}) = 1 - \mathbb{M}_{\mathbf{w}}(\mathbf{d})$$

Figure: A selection of the logistic regression models developed during the gradient descent process for the machinery dataset. The bottom-right panel shows the sum of squared error values generated during the gradient descent process.

 To repurpose the gradient descent algorithm for training logistic regression models the only change that needs to be made is in the weight update rule.

The new weight update rule is:

$$\mathbf{w}[j] \leftarrow \mathbf{w}[j] + \alpha \times \sum_{i=1}^{n} \left((t - \mathbb{M}_{\mathbf{w}}(\mathbf{d}_i)) \times \mathbb{M}_{\mathbf{w}}(\mathbf{d}_i) \times (1 - \mathbb{M}_{\mathbf{w}}(\mathbf{d}_i)) \times \mathbf{d}_i[j] \right)$$

 ID	RPM	VIBRATION	STATUS		ID	RPM	VIBRATION	STATUS
1	498	604	faulty	•	35	501	463	good
2	517	594	faulty		36	526	443	good
	541	574			37	536		
3	555	587	faulty faulty		38	564	412 394	good
4								good
5	572	537	faulty		39	584	398	good
6 7	600	553 482	faulty		40	602	398 428	good
	621		faulty		41	610		good
8 9	632	539	faulty		42	638	389	good
	656	476	faulty		43	652	394	good
10	653	554	faulty		44	659	336	good
11	679	516	faulty		45	662	364	good
12	688	524	faulty		46	672	308	good
13	684	450	faulty		47	691	248	good
14	699	512	faulty		48	694	401	good
15	703	505	faulty		49	718	313	good
16	717	377	faulty		50	720	410	good
17	740	377	faulty		51	723	389	good
18	749	501	faulty		52	744	227	good
19	756	492	faulty		53	741	397	good
20	752	381	faulty		54	770	200	good
21	762	508	faulty		55	764	370	good
22	781	474	faulty		56	790	248	good
23	781	480	faulty		57	786	344	good
24	804	460	faulty		58	792	290	good
25	828	346	faulty		59	818	268	good
26	830	366	faulty		60	845	232	good
27	864	344	faulty		61	867	195	good
28	882	403	faulty		62	878	168	good
29	891	338	faulty		63	895	218	good
30	921	362	faulty		64	916	221	good
31	941	301	faulty		65	950	156	good
32	965	336	faulty		66	956	174	good
33	976	297	faulty		67	973	134	good
34	994	287	faulty		68	1002	121	good

THE UNIVERSITY OF WINNIPEG

Logistic Regression

Figure: A scatter plot of the extended generators dataset, which results in instances with the different target levels overlapping with each other. 'good' generators are shown as crosses, and 'faulty' generators are shown as triangles.

For logistic regression models we recommend that descriptive feature values always be normalized.

In this example, before the training process begins, both descriptive features are normalized to the range [-1, 1].

For this example let's assume that:

- Learning rate:
 - $\alpha = 0.02$
- Initial Weights:
 - $\mathbf{w}[0] = -2.9465$
 - w[1] = -1.0147
 - $\mathbf{w}[2] = 2.1610$

Iteration 1

Target				Squared	erro	$rDelta(\mathcal{D}, v)$	w[i])
ID	LEVEL	Pred.	Error	Error	w [0]	w [1]	w [2]
1	1	0.5570	0.4430	0.1963	0.1093	-0.1093	0.1093
2	1	0.5168	0.4832	0.2335	0.1207	-0.1116	0.1159
3	1	0.4469	0.5531	0.3059	0.1367	-0.1134	0.1197
4	1	0.4629	0.5371	0.2885	0.1335	-0.1033	0.1244
					'		
65	0	0.0037	-0.0037	0.0000	0.0000	0.0000	0.0000
66	0	0.0042	-0.0042	0.0000	0.0000	0.0000	0.0000
67	0	0.0028	-0.0028	0.0000	0.0000	0.0000	0.0000
68	0	0.0022	-0.0022	0.0000	0.0000	0.0000	0.0000
			Sum	24.4738	2.7031	-0.7015	1.6493
Sum of squared errors (Sum/2)				12.2369			

$$\mathbf{w}[j] \leftarrow \mathbf{w}[j] + \alpha \times \sum_{i=1}^{n} \left((t_i - \mathbb{M}_{\mathbf{w}}(\mathbf{d}_i)) \times \mathbb{M}_{\mathbf{w}}(\mathbf{d}_i) \times (1 - \mathbb{M}_{\mathbf{w}}(\mathbf{d}_i)) \times \mathbf{d}_i[j] \right)$$

New Weights (after Iteration 1)

$$w[0] = -2.8924$$

$$w[1] = -1.0287$$

$$w[2] = 2.1940$$

Iteration 2

	Target			Squared	erro	$rDelta(\mathcal{D},v)$	w[i])
ID	LEVEL	Pred.	Error	Error	w [0]	w [1]	w [2]
1	1	0.5817	0.4183	0.1749	0.1018	-0.1018	0.1018
2	1	0.5414	0.4586	0.2103	0.1139	-0.1053	0.1094
3	1	0.4704	0.5296	0.2805	0.1319	-0.1094	0.1155
4	1	0.4867	0.5133	0.2635	0.1282	-0.0992	0.1194
					ı		
65	0	0.0037	-0.0037	0.0000	0.0000	0.0000	0.0000
66	0	0.0043	-0.0043	0.0000	0.0000	0.0000	0.0000
67	0	0.0028	-0.0028	0.0000	0.0000	0.0000	0.0000
68	0	0.0022	-0.0022	0.0000	0.0000	0.0000	0.0000
			Sum	24.0524	2.7236	-0.6646	1.6484
Sum of squared errors (Sum/2)				12.0262			

$$\mathbf{w}[j] \leftarrow \mathbf{w}[j] + \alpha \times \sum_{i=1}^{n} \left((t_i - \mathbb{M}_{\mathbf{w}}(\mathbf{d}_i)) \times \mathbb{M}_{\mathbf{w}}(\mathbf{d}_i) \times (1 - \mathbb{M}_{\mathbf{w}}(\mathbf{d}_i)) \times \mathbf{d}_i[j] \right)$$

New Weights (after Iteration 2)

$$w[0] = -2.8380$$

$$w[1] = -1.0416$$

$$w[2] = 2.2271$$

Figure: A selection of the logistic regression models developed during the gradient descent process for the extended generators dataset. The bottom-right panel shows the sum of squared error values generated during the gradient descent process.

• The final model found is:

$$\mathbb{M}_{\mathbf{w}}(\langle \mathsf{RPM}, \mathsf{Vibration} \rangle)$$

$$= \frac{1}{1 + e^{-(-0.4077 + 4.1697 \times \mathsf{RPM} + 6.0460 \times \mathsf{Vibration})}}$$

Performance Measures

- Accuracy
- Confusion matrix
- Recall
- Precision
- F1 Score
- ...

Confusion Matrix

CLASS		Predicted			
		Positive	Negative		
A c t	Positive	TP	FN		
a I	Negative	FP	TN		

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Percision = \frac{TP}{TP + FP}$$

$$F1 \ Score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Professional, Applied and Continuing Education

Modeling Non-Linear Relationships

Table: A dataset showing participants' responses to viewing 'positive' and 'negative' images measured on the EEG P20 and P45 potentials.

ID	P20	P45	TYPE	ID	P20	P45	TYPE
1	0.4497	0.4499	negative	26	0.0656	0.2244	positive
2	0.8964	0.9006	negative	27	0.6336	0.2312	positive
3	0.6952	0.3760	negative	28	0.4453	0.4052	positive
4	0.1769	0.7050	negative	29	0.9998	0.8493	positive
5	0.6904	0.4505	negative	30	0.9027	0.6080	positive
6	0.7794	0.9190	negative	31	0.3319	0.1473	positive
							-
		:				:	

Figure: A scatter plot of the P20 and P45 features from the EEG dataset. *'positive'* images are shown as crosses, and *'negative'* images are shown as triangles.

Figure: A scatter plot of the P20 and P45 features from the EEG dataset. *'positive'* images are shown as crosses, and *'negative'* images are shown as triangles.

 A logistic regression model using basis functions is defined as follows:

$$\mathbb{M}_{\mathbf{w}}(\mathbf{d}) = \frac{1}{-\left(\sum_{j=0}^{b} \mathbf{w}[j]\phi_{j}(\mathbf{d})\right)}$$
(6)

 We will use the following basis functions for the EEG problem:

```
\phi_0(\langle P20, P45 \rangle) = 1 \phi_4(\langle P20, P45 \rangle) = P45^2

\phi_1(\langle P20, P45 \rangle) = P20 \phi_5(\langle P20, P45 \rangle) = P20^3

\phi_2(\langle P20, P45 \rangle) = P45 \phi_6(\langle P20, P45 \rangle) = P45^3

\phi_3(\langle P20, P45 \rangle) = P20^2 \phi_7(\langle P20, P45 \rangle) = P20 \times P45
```


Figure: A selection of the models developed during the gradient descent process for the EEG dataset. The final panel shows the decision surface generated.