Computergrafik 2014 Oliver Vornberger

Vorlesung vom 02.06.2014

Kapitel 15: Viewing Pipeline

Sequenz von Transformationen

- Modeling
- View Orientation
- View Mapping
- Device Mapping

Die synthetische Kamera

View Reference Coordinate System

View Volume

erforderliche Informationen

- Objekte beschrieben in Modellkoordinaten,
 z.B. Mittelpunkt (0,0,0) und Kantenlänge 1
- Szene beschrieben durch Weltkoordinaten d.h. Objekte platziert durch Translation, Skalierung und Rotation
- Synthetische Kamera beschrieben durch U, V, N, VRP

Viewing Pipeline

- Modeling: MC→ WC
 beschreibe Szene in Weltkoordinaten
- View Orientation: WC→ VRC
 überführe Szene in Kameraperspektive
- View Mapping: VRC→ NPC
 überführe Szene in Einheitswürfel
- Device Mapping: NPC→ DC
 projiziere Szene auf Bildschirm

Modeling

Würfel mit Kantenlänge 1, Mittelpunkt (0,0,0)

(0.71, 0.0, -0.5, 1.0)

(3.53, 0.0, -2.5, 1.0)

(3.53, 0.0, 17.5, 1.0)

Drehe um 45°

Skaliere um Faktor 5 schiebe um 20 nach vorne

View Orientation

Gegeben sei die synthetische Kamera:

Bilde
$$M := \left(egin{array}{cccc} U_x & V_x & N_x & VRP_x \ U_y & V_y & N_y & VRP_y \ U_z & V_z & N_z & VRP_z \ 0 & 0 & 0 & 1 \end{array}
ight)$$

Bilde
$$T := M^{-1}$$

Transformiere jedes Objekt mit T

View Mapping

Ziel: Transformation in den Einheitswürfel

Auge in den Ursprung

schiebe PRP in Ursprung z := z-d

spiegel an x/y-Ebene z := -z

Symmetrischer Pyramidenstumpf

$$y' := k_1 \cdot y + k_2 \cdot z$$

$$Z' := Z$$

$$d := k_1 \cdot y_{max} + k_2 \cdot d$$

$$-d := k_1 \cdot y_{\min} + k_2 \cdot d$$

Skalierungskoeffizienten

Lösung des Gleichungssystems liefert für y:

$$k_1 = \frac{2d}{y_{max} - y_{min}}$$
 $k_2 = -\frac{y_{max} + y_{min}}{y_{max} - y_{min}}$

Analog für x-Werte:

$$k_3 = \frac{2d}{x_{max} - x_{min}}$$
 $k_4 = -\frac{x_{max} + x_{min}}{x_{max} - x_{min}}$

Transformationsmatrix

$$x' := k_3 \cdot x + k_4 \cdot z$$
 $y' := k_1 \cdot y + k_2 \cdot z$ $z' := z$

Pyramide und Einheitswürfel

Überführung in Einheitswürfel

$$y'=k_1+k_2\cdot rac{y}{z}$$
 ,-d,d) $z'=k_3+k_4\cdot rac{1}{z}$

Gleichungssystem

$$y' = k_1 + k_2 \cdot \frac{y}{z}$$
$$z' = k_3 + k_4 \cdot \frac{1}{z}$$

$$1 = k_1 + k_2 \cdot \frac{d_{\text{max}}}{d_{\text{max}}}$$

$$0 = k_1 + k_2 \cdot \frac{-d_{\text{min}}}{d_{\text{min}}}$$

$$1 = k_3 + k_4 \cdot \frac{1}{d_{\text{max}}}$$

$$0 = k_3 + k_4 \cdot \frac{1}{d_{\text{min}}}$$

Skalierungskoeffizienten

Lösung des Gleichungssystems liefert

für y:

$$k_1 = \frac{1}{2}$$
 $k_2 = \frac{1}{2}$

für z:

$$k_3 = \frac{d_{max}}{d_{max} - d_{min}} \qquad k_4 = \frac{-d_{min} \cdot d_{max}}{d_{max} - d_{min}}$$

Skalierungskoeffizienten

Lösung des Gleichungssystems liefert

für x:

$$k_5 = \frac{1}{2}$$

$$k_6 = \frac{1}{2}$$

Vorbereitung der Matrix

geeignet für spätere Division durch z:

$$x' = \frac{1}{2} + \frac{1}{2} \cdot x/z \qquad = (\frac{1}{2} \cdot x + \frac{1}{2} \cdot z)/z$$

$$y' = \frac{1}{2} + \frac{1}{2} \cdot y/z \qquad = (\frac{1}{2} \cdot y + \frac{1}{2} \cdot z)/z$$

$$z' = \frac{d_{max}}{d_{max} - d_{min}} + \frac{-d_{min} \cdot d_{max}}{d_{max} - d_{min}} \cdot \frac{1}{z}$$

$$= (\frac{d_{max}}{d_{max} - d_{min}} \cdot z + \frac{-d_{min} \cdot d_{max}}{d_{max} - d_{min}})/z$$

Transformationsmatrix

Obacht: Stauchung

$$z' := \frac{600}{600 - 200} + \frac{-200 \cdot 600}{600 - 200} \cdot \frac{1}{z} = 1.5 - \frac{300}{z}$$

- Szene wird nichtlinear gestaucht
- Objekte drängeln sich an der back plane
- reicht für Sichtbarkeitsbestimmung aus.

linkshändig - rechtshändig

- spiegel an x/y-Ebene
- verschiebe back plane in x/y-Ebene

Device Mapping (xsize,0) (0,0)(ysize,0) X 300 400 0 0 400

-300

400

300

23

skaliere mit (xsize,-ysize) und verschiebe um +ysize

$\bar{}$ $xsize$	0	0	0]
0	-ysize	0	ysize	z-Werte
0	0	1	0	merken!
0	0	0	1	

Zusammenfassung Viewing Pipeline

Clipping

im NPC:

clippen an sechs "einfachen" Flächen

(6-Bit-Bereichscode)

Vergleich

frühes Clipping:

- Clipping im WC schwierig
- + Transformation ins VPC und NPC mit reduzierter Szene

spätes Clipping:

- Transformation der kompletten Szene ins VPC und NPC
- + Clipping im NPC einfach

Umgebungsclipping

Probleme beim Clipping

