



Problem 10 MINUTE SCHOOL

Biology



**Chapter: 04** 

#### MAIN TOPIC





- ি জীবনীশক্তি ও(ATP এর ভূমিকা
- সালোকসংশ্লেষণ (Photosynthesis)
  - সালোকসংশ্লেষণ প্রক্রিয়া
  - সালোকসংশ্লেষণে ক্লোরোফিলের ভূমিকা
  - সালোকসংশ্লেষণে আলোর ভূমিকা
  - সালোকসংশ্লেষণের প্রভাবক
  - 🗘 জীবজর্গতে সালোকসংশ্লেষণের গুরুত্ব
  - শ্বসন (Respiration)
    - 🔲 শ্বসনের প্রকারভেদ
    - 🛘 শ্বসন প্রক্রিয়ার প্রভাবকসমূহ
    - 🔲 শ্বসনের গুরুত্ব

### জীবনীশক্তি ও ATP এর ভূমিকা





ज्यायित्वरें RNA-এর গাঠনিক উপাদানগুলোর একটি নাইট্রোজেন বেসপি সুগার 🤊 রাইবোজ অণু অ্যাডিনোসিন অণুর সাথে পর্যায়ক্রমে একটি, দুটি এবং তিনটি ফসফেট/ফসফোরিক এসিড গ্রুপ যুক্ত হয়ে যথাক্রমে অ্যাডিনোসিন ডাইফসফেট এবং অ্যাডিনোসিন ট্রাইফসফেট ফসফেট যুক্ত করতে বাইরে থেকে শক্তি দিতে হয়। এই বিক্রিয়ার নাম্ ফসফোরাইলেশন (phosphorylation)। আবার এর বিপরীত প্রক্রিয়ায়, ফসফেট গ্রুপ বিচ্ছিন্ন হলে শক্তি বের হয়ে বিক্রিয়ার নাম (dephosphorylation) I





5 Adenine and No Base

2 Adenosine 9 HONO (06 21 9







# ७ २८५१२०५० भ्रह्म





$$0 = P - \delta H$$

$$\delta H$$





Adenosine Tri-Phosphate







ssc23 শেষ মুহূর্তের প্রস্তুতি কোর্স বিজ্ঞান বিভাগ

a Adenosine Ton-Phosphate 69 - Ribose, Adenine (N2 Base), H3 PDG

Adenosine Ribose + Adenine

64,94



















### জীবনীশক্তি ও ATP এর ভূমিকা

ssc23 শেষ মুহূর্তের প্রস্তুতি কোর্স বিজ্ঞান বিভাগ

10 MINUTE SCHOOL

উল্লেখ্য, প্রতি মোল ATP অণুর প্রান্তীয় ফসফেট গ্রুপে 7.3 কিলোক্যালরি (প্রায়<sup>(30.55)</sup> কিলোজুল) শক্তি জমা থাকতে পারে। আমরা যে খাবার খাই তা জারিত হয়, সেই জারণ থেকে নির্গত দ্বারা ফসফোরাইলেশনের মাধ্যমে আবার সেই ভাঙা দুই জোড়া লেগে ATP তৈরি হয়। শক্তির প্রয়োজন হলে তা ভাঙে। তার<u>পর খাদ্য থেকে শ</u>ক্তি নিয়ে আবার জোড়া লাগে। এ যেন এক রিচার্জেবল ব্যাটারি। ATP শক্তি জমা করে রাখে এবং প্রয়োজন অণুসারে অন্য বিক্রিয়ায় করে। এজন্য ATP-কে অনেক সময় 'জৈবমুদ্রা (Biological coin or energy coin) বলা হয়। DNA এবং RNA-এর গাঠনিক উপাদানগুলোর অ্যাডেনিন। এটি একটি নাইট্রোজেন বেস। এর সাথে পাঁচ

10 MINUTE SCHOOL

Break কার্বনবিশিষ্ট রাইবোজ সুগার অণু যুক্ত হয়ে তৈরি অ্যাডিনোসিন। অ্যাডিনোসিন অণুর সাথে পর্যায়ক্রমে একটি, দুটি এবং তিনটি ফসফেট/ফসফোরিক এসিড গ্রুপ যুক্ত হয়ে যথাক্রমে অ্যাডিনোসিন মনোফসফেট (AMP), অ্যাডিনোসিন ডাইফসফেট (ADP) এবং অ্যাডিনোসিন ট্রাইফসফেট (ATP) গঠন করে। এভাবে ফসফেট যুক্ত করতে বাইরে থেকে শক্তি দিতে হয়। এই বিক্রিয়ার নাম ফসফোরাইলেশন (phosphorylation)। আবার এর বিপরীত প্রক্রিয়ায়, ফসফেট গ্রুপ বিচ্ছিন্ন হলে শক্তি বের হয়ে আসে। এই বিক্রিয়ার নাম ডিফসফোরাইলেশন (dephosphorylation) I

উল্লেখ্য, প্রতি মোল ATP অণুর প্রান্তীয় ফসফেট গ্রুপে 7.3 কিলোক্যালরি (প্রায় 30.55 কিলোজুল) শক্তি জমা থাকতে পারে।

### সালোকসংশ্লেষণ (Photosynthesis) শৈষ মূহূৰ্তের





সবুজ উদ্ভিদের একটি গুরুত্বপূর্ণ বৈশিষ্ট্য হলো যে এরা সূর্যালোকের উপস্থিতিতে কার্বন ডাই-অক্সাইড ( ${\it CO}_2$ ) এবং পানি থেকে কার্বোহাইড্রেট বা <u>শর্করাজা</u>তীয় খাদ্য তৈরি করে। <mark>সবুজ</mark> উদ্ভিদে কার্বোহাইড্রেট জাতীয় খাদ্য তৈরি হওয়ার এ প্রক্রিয়াকে সালোকসংশ্লেষণ (Photosynthesis) বলা হয়।

এই প্রক্রিয়ায় <u>আলোক শক্তি রাসায়নিক শক্তিতে রূ</u>পান্তরিত হয়। সালোকসংশ্লেষণের জন্য প্রয়োজনীয় উপকরণগুলো হলো: ক্লোরোফিল, আলো, পানি এবং কার্বন ভাই অক্সাইড। সালোকসংশ্লেষণ একটি জৈব রাসায়নিক (biochemical) বিক্রিয়া, যেটি এরকম:

তিতে
$$_2$$
 + 12 $_2$ O ক্লারোফিল  $_6H_{12}O_6$  + 6 $_2$  + 6 $_2H_2O_6$ 





- Osloty পাতার/মেসোফিল টিস্যু সালোকসংশ্লেষণ প্রক্রিয়ার প্রধান স্থান। স্থলজ সবুজ উদ্ভিদ মাটি থেকে মূলের মাধ্যমে পানি শোষণ করে পাতার মেসোফিল টিস্যুর ক্লোরোপ্লাস্টে পৌঁছায় এবং স্টোমাটা বা পত্ররন্ধ্রের মাধ্যমে বায়ু থেকে CO<sub>2</sub> গ্রহণ করে, যা মেসোফিল টিস্যুর ক্লোরোপ্লাস্টে পৌঁ<del>ছে। জ</del>লজ উদ্ভিদ প্য<del>ানিতে</del> দ্রবীভূত CO<sub>2</sub> গ্রহণ করে। বায়ুমণ্ডলে (0.03%)এবং পানিতে (0.3%)ত(0.03%)ত। তাই জলজ উদ্ভিদে সালোকসংশ্লেষণের হার স্থলজ উদ্ভিদ থেকে বিশি। অক্সিজেন এবং পানি সালোকসংশ্লেষণের উপজাত দ্রব্য এটি একটি জারণ-বিজারণ (by-product) I (oxidation-reduction process)। এ প্রক্রিয়ায় H₂0 জারিত হয় এবং(CO<sub>2</sub>)বিজারিত হয়।









-> (21 (98 OBMEDIES DE 202176 ->> SEZEMENTER (21/66 201/36 FIRT-> (20100150042 31151)\_\_\_ org (200 (2) a 2000 (200 HO GO) -Delega Obsta (Ma) 1900 20012 े उद्धे प्रमण प्र व योक्ग्री उपण















চিত্র: সালোকসংশ্লেষণ





- সালোকসংশ্লেষণ প্রক্রিয়া
- 1905 সালে ইংরেজ শারীরতত্ত্ববিদ ব্ল্যাকম্যান (Blackman) এ প্রক্রিয়াকে দুটি পর্যায়ে ভাগ করেন। পর্যায় দুটি হলো:
- 1. আলোকনির্ভর পর্যায় (Light dependent phase)
- 2. আলোক নিরপেক্ষ পর্যায় (Light independent phase)।







> আলোকনির্ভর পর্যায় (Light dependent phase)

আলোকনির্ভর পর্যায়ের জন্য আলো অপরিহার্য। এ পর্যায়ে সৌরশক্তি রাসায়নিক শক্তিতে রূপান্তরিত হয়। এ প্রক্রিয়ায় ATP (অ্যাডিনোসিন ট্রাইফসফেট), NADPH (বিজারিত নিকোটিনামাইড অ্যাডনিন ডাইনিউক্লিওটাইড ফসফেট) এবং (হাইড্রোজেন আয়ন বা প্রোটন) উৎপন্ন হয়। এই রূপান্তরিত শক্তি ATP-এর মধ্যে সঞ্চিত হয়। এই বিক্রিয়ায় ক্লোরোফিল গুরুত্বপূর্ণ ভূমিকা পালন করে। ক্লোরোফিল অণু আলোকরশ্মির ফোটন (photon) শোষণ

ক্লোরোফল অণু আলোকরাশ্মর ফোটন (pnoton) শোষণ করে এবং শোষণকৃত ফোটন থেকে শক্তি সঞ্চয় করে ADP (অ্যাডিনোসিন ডাইফসফেট) অজৈব ফসফেট (Pi = inorganic phosphate)-এর সাথে মিলিত হয়ে ATP তৈরি





করে। ATP তৈরির এই প্রক্রিয়াকে ফটোফসফোরাইলেশন (photophosphorylation) বলে।

সূর্যালোক এবং ক্লোরোফিলের সাহায্যে পানি বিয়োজিত হয়ে অক্সিজেন, হাইড্রোজেন আয়ন ও ইলেকট্রন উৎপন্ন হয়। এ প্রক্রিয়াকে পানির ফটোলাইসিস (photolysis) বলা হয়।

> আলোক নিরপেক্ষ পর্যায় বা অন্ধকার পর্যায় (Light independent phase বা dark phase)

আলোক নিরপেক্ষ পর্যায়ে আলোর প্রত্যক্ষ প্রয়োজন পড়ে না, তবে আলোর উপস্থিতিতেও এই প্রক্রিয়া চলতে পারে।

## সালোকসংশ্লেষণ (Photosynthesis) শৈষ মূহুর্তের





বায়ুমণ্ডলের  ${\it CO}_2$  পত্ররন্ধ্রের মধ্য দিয়ে কোষে প্রবেশ করে। আলোক পর্যায়ে তৈরি ATP, NADPH এবং  $H^+$  এর সাহায্যে আলোক নিরপেক্ষ পর্যায়ে  ${\it CO}_2$  বিজারিত হয়ে কার্বোহাইড্রেটে পরিণত হয়। সবুজ উদ্ভিদে  ${\it CO}_2$  বিজারণের তিনটি গতিপথ শনাক্ত করা হয়েছে সেগুলো হচ্ছে ক্যালভিন চক্র, হ্যাচ ও স্লাক চক্র এবং ক্রেসুলেসিয়ান এসিড বিপাক বা CAM প্রক্রিয়া।

ক্যালভিন চক্ৰ বা  $C_3$  গতিপথ (Calvin cycle বা  $C_3$  cycle):  ${\it CO}_2$  আত্তীকরণের এ গতিপথকে আবিষ্কারকদের নামানুসারে ক্যালভিন-বেনসন ও ব্যাশাম চক্র বা সংক্ষেপে ক্যালভিন চক্র বলা হয়। ক্যালভিন তার এ আবিষ্কারের জন্য 1961 সালে নোবেল পুরস্কার পান। অধিকাংশ উদ্ভিদে এই প্রক্রিয়ায় শর্করা তৈরি হয় এবং প্রথম স্থায়ী পদার্থ 3-কার্বনবিশিষ্ট





ফসফোগ্লিসারিক এসিড বলে এই ধরনের উদ্ভিদকে বলে  $\mathcal{C}_3$ 

উদ্ভিদ।



চিত্র: C<sub>3</sub> উদ্ভিদে সালোকসংশ্লেষণের দুটি ধাপ – আলোকনির্ভর পর্যায় ও ক্যালভিন চক্র





(ii) হ্যাচ ও স্লাক চক্ৰ বা  $C_4$  গতিপথ (Hatch and Slack cycle বা  $C_4$  cycle): অস্ট্রেলীয় বিজ্ঞানী M.D. Hatch ও C.R. Slack (1966 সালে)  ${\it Co}_2$  বিজারণের আর একটি গতিপথ আবিষ্কার করেন। এই গতিপথের প্রথম স্থায়ী পদার্থ হলো 4 কার্বনবিশিষ্ট অক্সালো এসিটিক এসিড তাই, একে  $\mathcal{C}_{A}$ গতিপথ বলে।

C4 উদ্ভিদে একই সাথে হ্যাচ ও স্ল্যাক চক্র এবং ক্যালভিন চক্র পরিচালিত হতে দেখা যায়।  $C_3$  উদ্ভিদের তুলনায়  $C_4$  উদ্ভিদে সালোকসংশ্লেষণের হার বেশি এবং উৎপাদন ক্ষমতাও বেশি। সাধারণত ভুট্টা, আখ, অন্যান্য ঘাসজাতীয় উদ্ভিদ, মুথা ঘাস, অ্যামারন্যথাস (Amaranthus-অ্যামারান্থাস) ইত্যাদি উদ্ভিদে পরিচালিত হয়।





#### সালোকসংশ্লেষণে ক্লোরোফিলের ভূমিকা

পাতার ক্লোরোফিলের পরিমাণের সাথে সালোকসংশ্লেষণের হারের সরাসরি সম্পর্ক রয়েছে, কারণ একমাত্র ক্লোরোফিলই আলোকশক্তি গ্রহণ করতে পারে। পুরাতন ক্লোরোপ্লাস্ট নষ্ট হয়ে যায় এবং তখন নতুন ক্লোরোপ্লাস্ট সংশ্লেষিত হয়। নতুন ক্লোরোপ্লাস্ট এবং ক্লোরোপ্লাস্টের উপাদান সৃষ্টির হারের উপর সালোকসংশ্লেষণের হার নিভর্রশীল। সালোকসংশ্লেষণ ক্ষমতা রক্ষা করার জন্য ক্লোরোপ্লাস্টের বিভিন্ন উপাদান দ্রুত এবং প্রচুর পরিমাণে পুনর্গঠিত হওয়া প্রয়োজন। তবে কোষে খুব বেশি পরিমাণ ক্লোরোফিল থাকলে এনজাইমের অভাব দেখা দেয় এবং সালোকসংশ্লেষণ কমে যায়।





🛘 সালোকসংশ্লেষণে আলোর ভূমিকা

সালোকসংশ্লেষণ প্রক্রিয়ায় আলোর গুরুত্ব অপরিসীম। পানি এবং  ${oldsymbol CO}_2$  থেকে শর্করা তৈরির জন্য প্রয়োজনীয় শক্তির উৎস আলো। সূর্যালোক ক্লোরোফিল সৃষ্টিতে অংশগ্রহণ করে। সূর্যালোকের প্রভাবেই পত্ররন্ধ্র উন্মুক্ত হয়,  $co_2$  পাতার অভ্যন্তরে প্রবৈশ করতে পারে এবং খাদ্য প্রস্তুতকরণে অংশগ্রহণ করে। কিন্তু পাতায় যেটুকু আলো পড়ে, তার অতি সামান্য অংশই সালোকসংশ্লেষণ প্রক্রিয়ায় ব্যবহৃত হয়। আবার আলোক বর্ণালির লাল, নীল, কমলা এবং বেগুনি অংশটুকুতেই সালোকসংশ্লেষণ ভালো হয়। সবুজ কিংবা হলুদ আলোতে সালোকসংশ্লেষণ ভালো হয় না। একটি নির্দিষ্ট সীমা পর্যন্ত আলোর পরিমাণ বাড়লে সালোকসংশ্লেষণের হারও বেড়ে যায়। কিন্তু আলোর পরিমাণ অত্যধিক বেড়ে গেলে পাতার





ভিতরকার এনজাইম নষ্ট হয়ে যায়, ক্লোরোফিল উৎপাদন কম হয়। ফলে সালোকসংশ্লেষণের হারও কমে যায়।

সাধারণত 400 nm থেকে 480nm এবং 680nm (ন্যানোমিটার) তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে সালোকসংশ্লেষণ সবচেয়ে ভালো হয়।

- সালোকসংশ্লেষণের প্রভাবক
- > বাহ্যিক প্রভাবকসমূহ
  - (i) আলো: সালোকসংশ্লেষণ প্রক্রিয়ায় আলোর গুরুত্ব অপরিসীম। পানি এবং  ${
    m CO}_2$  থেকে শর্করা তৈরির জন্য প্রয়োজনীয় শক্তির উৎস আলো। সূর্যালোক ক্লোরোফিল সৃষ্টিতে অংশগ্রহণ করে। সূর্যালোকের প্রভাবেই পত্ররন্ধ্র উন্মুক্ত হয়, CO2 পাতার অভ্যন্তরে প্রবেশ করতে পারে এবং খাদ্য প্রস্তুতকরণে অংশগ্রহণ করে। কিন্তু পাতায় যেটুকু আলো পড়ে,



10 MINUTE SCHOOL

তার অতি সামান্য অংশই সালোকসংশ্লেষণ প্রক্রিয়ায় ব্যবহৃত হয়। আবার আলোকবর্ণালির লাল, নীল, কমলা এবং বেগুনি অংশটুকুতেই সালোকসংশ্লেষণ ভালো হয়। সবুজ কিংবা হলুদ আলোতে সালোকসংশ্লেষণ ভালো হয় না।

(ii) কার্বন ডাই-অক্সাইড: কার্বন ডাই-অক্সাইড ছাড়া সালোকসংশ্লেষণ প্রক্রিয়া চলতে পারে না। এ প্রক্রিয়ায় যে খাদ্য প্রস্তুত হয় তা কার্বন ডাই-অক্সাইড বিজারণের ফলেই হয়ে থাকে। বায়ুমণ্ডলে কার্বন ডাই-অক্সাইডের পরিমাণ 0.03 ভাগ, কিন্তু এ প্রক্রিয়ায় উদ্ভিদ শতকরা এক ভাগ পর্যন্ত কার্বন ডাই-অক্সাইড ব্যবহার করতে পারে। তাই বায়ুমণ্ডলে কার্বন ডাই-অক্সাইডের পরিমাণ বৃদ্ধি পাওয়ার সাথে সামঞ্জস্য রেখে সালোকসংশ্লেষণের পরিমাণও বেড়ে যায়। তবে কার্বন ডাই-

# সালোকসংশ্লেষণ (Photosynthesis) শৈষ মূহুৰ্তির



10 MINUTE SCHOOL

অক্সাইডের পরিমাণ খুব বেশি মাত্রায় বেড়ে গেলে পাতার মেসোফিল টিস্যুর কোষের অম্লত্বও বেড়ে যায় এবং পত্ররন্ধ্র বন্ধ হয়ে সালোকসংশ্লেষণের হার কমে যায়।

(iii) তাপমাত্রা: সাধারণত অতি নিম্ন তাপমাত্রা (0° সেলসিয়াস এর কাছাকাছি) এবং অতি উচ্চ তাপমাত্রায় সেলসিয়াসের উপরে) এ প্রক্রিয়া চলতে পারে না। সালোকসংশ্লেষণ প্রক্রিয়ার জন্য পরিমিত (optimum) তাপমাত্রা হলো 22° সেলসিয়াস থেকে 35° সেলসিয়াস পর্যন্ত তাপমাত্রা। 22° সেলসিয়াসের কম বা 35° সেলসিয়াসের বেশি হলে সালোকসংশ্লেষণের হার কমে যায়।

(iv) পানি: সালোকসংশ্লেষণ প্রক্রিয়ায় শর্করা তৈরির উদ্দেশ্যে CO2 কে বিজারণের জন্য প্রয়োজনীয় H<sup>+</sup> (হাইড্রোজেন

# সালোকসংশ্লেষণ (Photosynthesis) শৈষ মুহূর্তর প্রস্তৃতির বিস্তৃতির





আয়ন) পানি থেকেই আসে। পানির ঘাটতি হলে পত্ররন্ধের রক্ষীকোষেও স্ফীতি হারিয়ে রন্ধ্র বন্ধ হয়ে যায়। ফলে বাতাস থেকে CO2 অণুপ্রবেশ বাধাগ্রস্ত হয়। অতিরিক্ত পানি ঘাটতির ফলে এনজাইমের সক্রিয়তা বিনষ্ট হয়ে সালোকসংশ্লেষণ বাধাগ্রস্থ হতে পারে।

- (v) অক্সিজেন: বাতাসে অক্সিজেনের ঘনত্ব বেড়ে গেলে সালোকসংশ্লেষণের হার কমে যায় আর অক্সিজেনের ঘনত্ন কমে গেলে সালোকসংশ্লেষণের হার বেড়ে অক্সিজেনবিহীন পরিবেশে সালোকসংশ্লেষণ সম্পূর্ণ থাকে।
- (vi) খনিজ পদার্থ: ক্লোরোফিলের প্রধান উপকরণ হচ্ছে নাইট্রোজেন এবং ম্যাগনেসিয়াম। লোহার অণুপস্থিতিতে পাতা

# সালোকসংশ্লেষণ (Photosynthesis) শৈষ মূর্তের





ক্লোরোফিল সংশ্লেষণ করতে পারে না, ফলে পাতা হলুদ হয়ে কাজেই মাটিতে এসব খনিজের অভাব সালোকসংশ্লেষণের হার কমে যায়।

(vii) রাসায়নিক পদার্থ: বাতাসে ক্লোরোফর্ম, হাইড্রোজেন সালফাইড, মিথেন বা কোনো বিষাক্ত গ্যাস থাকলে সালোকসংশ্লেষণে ব্যাঘাত ঘটে বা একেবারেই বন্ধ হয়ে যায়।

## > অভ্যন্তরীণ প্রভাবকসমূহ

(i) ক্লোরোফিল: পাতার ক্লোরোফিলের পরিমাণের সাথে সালোকসংশ্লেষণের হারের সরাসরি সম্পর্ক রয়েছে, কারণ একমাত্র ক্লোরোফিলই আলোকশক্তি গ্রহণ করতে পারে। পুরাতন ক্লোরোপ্লাস্ট নষ্ট হয়ে যায় এবং তখন নতুন ক্লোরোপ্লাস্ট সংশ্লেষিত হয়। নতুন ক্লোরোপ্লাস্ট এবং





ক্লোরোপ্লাস্টের উপাদান সৃষ্টির হারের উপর সালোকসংশ্লেষণের হার নিভর্রশীল। সালোকসংশ্লেষণ ক্ষমতা রক্ষা করার জন্য ক্লোরোপ্লাস্টের বিভিন্ন উপাদান দ্রুত এবং প্রচুর পরিমাণে পুনর্গঠিত হওয়া প্রয়োজন। তবে কোষে খুব বেশি পরিমাণ ক্লোরোফিল থাকলে এনজাইমের অভাব দেখা দেয় এবং সালোকসংশ্লেষণ কমে যায়।

- (ii) পাতার বয়স ও সংখ্যা: মধ্যবয়সী পাতায় সবচেয়ে বেশি সালোকসংশ্লেষণ ঘটে। পাতার সংখ্যা বেশি হলে সালোকসংশ্লেষণ বেশি হয়।
- (iii) শর্করার পরিমাণ: সালোকসংশ্লেষণ চলাকালীন শর্করার পরিবহন কম হলে তা সেখানে জমা হয়ে থাকে। বিকেলে পাতায় বেশি শর্করা জমা হয় বলে সালোকসংশ্লেষণের গতি





#### মন্থর হয়।

- (iv) পটাশিয়াম: পটাশিয়ামের অভাবে সালোকসংশ্লেষণের পরিমাণ বেশ কমে যেতে দেখা যায়।
- (v) এনজাইম: সালোকসংশ্লেষণের জন্য বিভিন্ন ধরনের এনজাইমের প্রয়োজন হয়।
- 🛘 জীবজগতে সালোকসংশ্লেষণের গুরুত্ব

সমস্ত শক্তির উৎস হলো সূর্য। একমাত্র সবুজ উদ্ভিদই সালোকসংশ্লেষণ প্রক্রিয়ায় সৌরশক্তিকে রাসায়নিক শক্তিতে পরিণত করে খাদ্যের মধ্যে আবদ্ধ করতে পারে। কোনো প্রাণীই তার নিজের খাদ্য প্রস্তুত করতে পারে না। আমরা খাদ্য হিসেবে ভাত, রুটি, ফলমূল, মাছ, মাংস, দুধ, ডিম ইত্যাদি যা-ই গ্রহণ করি না কেন, তার সবই প্রত্যক্ষ বা পরোক্ষভাবে সবুজ উদ্ভিদ থেকে

## সালোকসংশ্লেষণ (Photosynthesis) শৈষ মুহূৰ্ত্তর





পেয়ে থাকি। কাজেই খাদ্যের জন্য সমগ্র প্রাণিকুল সবুজ উদ্ভিদের উপর সম্পূর্ণভাবে নির্ভরশীল, আর সবুজ উদ্ভিদ এ খাদ্য প্রস্তুত করে সালোকসংশ্লেষণ প্রক্রিয়ায়।

কাজেই বলা যায়, পৃথিবীর সকল উদ্ভিদ এবং প্রাণীর খাদ্য প্রস্তুত হয় সালোকসংশ্লেষণের মাধ্যমে।

পরিবেশের ভারসাম্য রক্ষায়, বিশেষ করে  $\mathbf{0}_2$  ও  $\mathbf{C}\mathbf{0}_2$ -এর সঠিক অণুপাত রক্ষায় সালোকসংশ্লেষণ প্রক্রিয়া এক বিশেষ ভূমিকা পালন করে থাকে। বায়ুতে অক্সিজেন গ্যাসের পরিমাণ 20.95 ভাগ এবং CO2 গ্যাসের পরিমাণ 0.033 ভাগ।

পৃথিবীতে উদ্ভিদ ও প্রাণীর স্বাভাবিক বৃদ্ধি এবং জীবনযাপনের জন্য বায়ুতে এ দুটি গ্যাসের পরিমাণ স্বাভাবিক পর্যায়ে থাকতে হয়। এ পরিমাণের তারতম্য ঘটলে বায়ুমণ্ডল জীবজগতের জন্য





#### ক্ষতিকর হয়ে উঠবে।

আমরা জানি, সব জীবেই (উদ্ভিদ ও প্রাণী) সব সময়ের জন্য শ্বসনক্রিয়া চলতে থাকে। শ্বসন প্রক্রিয়ায় জীব  $oldsymbol{o}_2$  গ্রহণ করে এবং  ${\it CO}_2$  ত্যাগ করে। কেবল শ্বসন প্রক্রিয়া চলতে থাকলে বায়ুমণ্ডলে  $O_2$  গ্যাসের স্বল্পতা এবং  $CO_2$  গ্যাসের আধিক্য দেখা দিত। কিন্তু সবুজ উদ্ভিদ সালোকসংশ্লেষণ প্রক্রিয়ায় বায়ুমণ্ডল থেকে  ${\it CO}_2$  গ্রহণ করে এবং  ${\it O}_2$  ত্যাগ করে বলে এখনও বায়ুমণ্ডলে  ${\it O}_2$  ও  $co_2^-$  গ্যাসের সঠিক অণুপাত রক্ষিত হচ্ছে। তবে বর্তমানে অধিক হারে বন-জঙ্গল ধ্বংস করার ফলে বায়ুমণ্ডলে এ দুটি গ্যাসের অণুপাত নষ্ট হওয়ার আশঙ্কা দেখা দিয়েছে, কাজেই আমাদেরকে অবশ্যই অধিক হারে গাছ লাগাতে হবে।

মানবসভ্যতার অগ্রগতি অনেকাংশে সালোকসংশ্লেষণের উপর

# সালোকসংশ্লেষণ (Photosynthesis) শৈষ মূহুৰ্তির





প্রত্যক্ষ বা পরোক্ষভাবে নির্ভরশীল। অন্ন, বস্ত্র, শিল্পসামগ্রী (যেমন নাইলন, রেয়ন, কাগজ, সেলুলোজ, কাঠ, রাবার), ঔষধ (যেমন কুইনাইন, মরফিন), জ্বালানি কয়লা, পেট্রল, গ্যাস প্রভৃতি উদ্ভিদ থেকে পাওয়া যায়। তাই সালোকসংশ্লেষণ না ঘটলে মানবসভ্যতা ধ্বংস হবে, বিলুপ্ত হবে জীবজগৎ।

সুতরাং সালোকসংশ্লেষণ জীবজগতের সবচেয়ে গুরুত্বপূর্ণ জৈব রাসায়নিক প্রক্রিয়া।





জীবের জীবন ধারণ অর্থাৎ চলন, ক্ষয়পুরণ, বৃদ্ধি, জনন প্রভৃতি জৈবিক কাজগুলো সুষ্ঠুভাবে সম্পন্ন করার জন্য শক্তির প্রয়োজন হয়। আমরা আগেই জেনেছি এ শক্তির প্রধান উৎস হলো সূর্যালোক। সালোকসংশ্লেষণের সময় উদ্ভিদ সৌরশক্তিকে শর্করা জাতীয় খাদ্যবস্তুর মধ্যে স্থিতি শক্তিরূপে (Potential energy) সঞ্চয় করে রাখে। শ্বসনের সময় জীবদেহে এই স্থিতি শক্তি রাসায়নিক শক্তি (ATP) হিসেবে তাপরূপে মুক্ত হয় এবং জীবের বিভিন্ন শারীরবৃত্তীয় কাজের জন্য প্রয়োজনীয় শক্তি যোগায়। শকর্রাজাতীয় খাদ্যবস্তু ছাড়াও প্রোটিন, ফ্যাট এবং বিভিন্ন জৈব এসিড শ্বসনিক বস্তুরূপে ব্যবহৃত হয়। জীবদেহে এই জটিল যৌগগুলো প্রথমে ভেঙে সরল যৌগে পরিণত হয় এবং পরে জারিত হয়ে রাসায়নিক শক্তিতে (ATP) রূপান্তরিত হয়।





সাধারণ তাপমাত্রায় জীবদেহের প্রতিটি কোষে দিবারাত্রি 24 ঘণ্টাই শ্বসন চলতে থাকে। তবে উদ্ভিদের বর্ধিষ্ণু অঞ্চলে (ফুল ও পাতার কুঁড়ি, অঙ্কুরিত বীজ, মূল ও কাণ্ডের অগ্রভাগ) শ্বসন ক্রিয়ার হার অনেক বেশি। সজীব কোষের সাইটোপ্লাজম ও মাইটোকন্ট্রিয়াতে শ্বসন প্রক্রিয়া সম্পন্ন হয়।

- ☐ শ্বসনের প্রকারভেদ শ্বসনের সময় অক্সিজেনের প্রয়োজনীয়তার ভিত্তিতে শ্বসনকে দুভাগে ভাগ করা হয়। সেগুলো হচ্ছে
  - i. সবাত শ্বসন
  - ii. অবাত শ্বসন



10 MINUTE SCHOOL

সবাত শ্বসন (Aerobic respiration): যে শ্বসন প্রক্রিয়ায় অক্সিজেনের প্রয়োজন হয় এবং শ্বসনিক বস্তু (শর্করা, প্রোটিন, লিপিড, বিভিন্ন ধরনের জৈব এসিড) সম্পূর্ণভাবে জারিত হয়ে  $CO_2$ ,  $H_2O$  এবং বিপুল পরিমাণ শক্তি উৎপন্ন করে, তাকে সবাত শ্বসন বলে। সবাত শ্বসনই হলো উদ্ভিদ ও প্রাণীর স্বাভাবিক শ্বসন প্রক্রিয়া।

$$C_6H_{12}O_6 + 6O_2 \longrightarrow 6O_2 + 6H_2O +$$
শক্তি এনজাইম  $(686 \text{ kCal/Mole})$ 

সবাত শ্বসন প্রক্রিয়ায় এক অণু গ্লুকোজ সম্পূর্ণরূপে জারিত হয়ে সর্বমোট 6 অণু  $\mathcal{CO}_2$ , 6 অণু পানি এবং 38টি ATP উৎপন্ন করে।





অবাত শ্বসন (Anaerobic respiration): যে শ্বসন প্রক্রিয়া <mark>অক্সিজেনের অণুপস্থিতিতে হয়, তাকে অবাত শ্বসন বলে</mark>। অর্থাৎ যে শ্বসন প্রক্রিয়ায় কোনো শ্বসনিক বস্তু অক্সিজেনের সাহায্য ছাড়াই কোষের ভিতরকার এনজাইম দিয়ে আংশিকরূপে জারিত হয়ে বিভিন্ন প্রকার জৈব যৌগ (ইথাইল অ্যালকোহল, ল্যাকটিক এসিড ইত্যাদি),  $CO_2$  এবং সামান্য পরিমাণ শক্তি উৎপন্ন করে, তাকে অবাত শ্বসন বলে।

$$C_6H_{12}O_6$$
 বিভিন্ন এনজাইম  $2C_2H_5OH + 2CO_2 +$ শক্তি যুকোজ ইথাইল (56k Cal / Mole) অ্যালকোহল





সবাত শ্বসনের সংক্ষিপ্ত বর্ণনা



চিত্র: সবাত শ্বসন প্রক্রিয়া





সবাত শ্বসন প্রক্রিয়া সাধারণত চারটি ধাপে সম্পন্ন হয়। ধাপগুলো এরকম-

## ধাপ 1: গ্লাইকোলাইসিস (Glycolysis)

- i. এই প্রক্রিয়ায় এক অণু গ্লুকোজ ( $C_6H_{12}O_6$ ) বিভিন্ন রাসায়নিক বিক্রিয়ায় জারিত হয়ে দুই অণু পাইরুভিক এসিড ( $C_3H_4O_3$ ) উৎপন্ন করে।
- ii. এই ধাপে চার অণু ATP (এর মাঝে দুই অণু খরচ হয়ে যায়) এবং দুই অণু NADH + H<sup>+</sup> উৎপন্ন হয়।
- iii. এই প্রক্রিয়ার জন্য কোনো অক্সিজেনের প্রয়োজন হয় না।
- iv. গ্লাইকোলাইসিস সবাত ও অবাত উভয় প্রকার শ্বসনের প্রথম পর্যায়।



v. গ্লাইকোলাইসিসের বিক্রিয়াগুলো কোষের সাইটোপ্লাজমে ঘটে থাকে।

#### ধাপ 2: অ্যাসিটাইল কো-এ সৃষ্টি

- i. গ্লাইকোলাইসিস পর্যায়ে সৃষ্ট প্রতি অণু পাইরুভিক এসিড পর্যায়ক্রমিক বিক্রিয়া শেষে 2 কার্বনবিশিষ্ট এক অণু অ্যাসিটাইল কো এনজাইম-এ (Acetyl Co-A) সৃষ্টি।
- ii. এক অণু  ${\it Co}_2$  ৷
- iii. এক অণু NADH  $+ H^+$  (অথবা NAD $H_2$ ) উৎপন্ন করে ।
- iv. এই ধাপটি সাইটোপ্লাজমে ঘটে।

Note: দুই অণু পাইরুভিক এসিড থেকে দুই অণু অ্যাসিটাইল কো এনজাইম-এ, দুই অণু  $CO_2$  এবং দুই অণু NADH  $+\ H^+$  উৎপন্ন হয়।





#### ধাপ 3: ক্রেবস চক্র (Krebs cycle)

- i. ইংরেজ প্রাণরসায়নবিদ Sir Hans Krebs এ চক্রটি আবিষ্কার করেন বলে একে ক্রেবস চক্র বলা হয়।
- ii. এ পর্যায়ে অ্যাসিটাইল Co-A মাইটোকন্ড্রিয়াতে প্রবেশ করে এবং ক্রেবস চক্রে অংশগ্রহণ করে।
- iii. এ চক্রের সকল বিক্রিয়াই মাইটোকন্ড্রিয়াতে সংঘটিত হয়।
- iv. এই চক্রে এক অণু অ্যাসিটাইল Co-A থেকে দুই অণু কার্বন ডাইঅক্সাইড, [তিন অণু NADH  $+ H^+$ , এক অণু  $FADH_2$  এবং এক অণু GTP (গুয়ানোসিন ট্রাইফসফেট) উৎপন্ন হয়।

Note: দুই অণু অ্যাসিটাইল কো-এ থেকে চার অণু  $CO_2$ , ছয় অণু  $NADH + H^+$ , দুই অণু  $FADH_2$  এবং দুই অণু GTP উৎপন্ন হয়।



## ধাপ 4: ইলেকট্রন প্রবাহতন্ত্র (Electron transport system)

- i. উপরোক্ত তিনটি ধাপে যে NADH + H<sup>+</sup> (বিজারিত NAD), FADH<sub>2</sub> (বিজারিত FAD) উৎপন্ন হয়, এই ধাপে সেগুলো জারিত হয়ে ATP, পানি, উচ্চশক্তির ইলেকট্রন এবং প্রোটন উৎপন্ন হয়।
- ii. উচ্চ শক্তিসম্পন্ন ইলেকট্রনগুলো ইলেকট্রন প্রবাহতন্ত্রের মধ্য দিয়ে প্রবাহিত হওয়ার সময় যে শক্তি প্রদান করে সেই শক্তি ATP তৈরিতে ব্যবহৃত হয়।
- iii. ইলেকট্রন প্রবাহতন্ত্র মাইটোকন্ড্রিয়ায় সংঘটিত হয়।





|         | - · /. |
|---------|--------|
| শ্বসনের | পয়ায় |
|         |        |

#### উৎপাদিত বস্তু

#### ব্যয়িত বস্তু

#### নিট উৎপাদন

গ্লাইকোলাইসিস

2 অণু পাইরুভিক এসিড 2 অণু NADH + H<sup>+</sup> 4 অণু ATP

1 অণু গ্লুকোজ 2 অণু ATP

6 অণু ATP 2 অণু ATP

অ্যাসিটাইল Co-A 2 অণু অ্যাসিটাইল Co-A 2 অণু  $CO_2$ 

2 অণু NADH + H<sup>+</sup>

2 অণু পাইরুভিক এসিড

2 অণু *CO*<sub>2</sub>

6 অণু ATP

ক্রেবস চক্র

4 অণু  $CO_2$ 6 অণু NADH +  $H^+$ 2 অণু FAD $H_2$ 2 অণু GTP

2 অণু অ্যাসিটাইল Co-A 4 অণু  $CO_2$ 18 অণু ATP 4 অণু ATP 2 অণু ATP

মোট

38 অণু ATP + 6 অণু *CO*<sub>2</sub>





- 1 অণু NADH  $+ H^+$  বা NAD $H_2 \rightarrow 3$  অণু ATP
- 1 অণু  $FADH_2 o 2$  অণু ATP
- 1 আণু GTP  $\rightarrow 1$  আণু ATP
- 🗲 অবাত শ্বসনের সংক্ষিপ্ত বর্ণনা

দুটি ধাপে অবাত শ্বসন হয়ে থাকে। ধাপ দুটি হলো:

ধাপ 1: গ্লুকোজের অসম্পূর্ণ জারণ: এই ধাপে এক অণু গ্লুকোজ থেকে দুই অণু পাইরুভিক এসিড, চার অণু ATP (এর মধ্যে দুই অণু ব্যবহার হয়ে যায়) এবং দুই অণু NADH +  $H^+$  উৎপন্ন হয়। অর্থাৎ আপাতদৃষ্টিতে এ পর্যন্ত বিক্রিয়া সবাত শ্বসনের গ্লাইকোলাইসিসের অণুরূপ। তবে উৎপন্ন পাইরুভিক এসিড পরবর্তী ধাপে বিজারিত হয়ে যায় বলে অবাত শ্বসনে গ্লুকোজের





অসম্পূর্ণ জারণ ঘটে- এমনটা বিবেচনা করা হয়।

ধাপ 2: পাইরুভিক অ্যাসিডের বিজারণ: সাইটোপ্লাজমে অবস্থিত এনজাইমের কার্যকারিতায় পাইরুভিক অ্যাসিড বিজারিত হয়ে CO2 এবং ইথাইল অ্যালকোহল অথবা শুধু ল্যাকটিক অ্যাসিড উৎপন্ন করে। এক্ষেত্রে গ্লাইকোলাইসিসে উৎপন্ন বিজারিত NAD (অর্থাৎ NADH+H+) জারিত হয়ে যে ইলেকট্রন, প্রোটন ও শক্তি নির্গত করে, তা ব্যবহৃত হয় পাইরুভিক অ্যাসিড থেকে ল্যাকটিক অ্যাসিড বা ক্ষেত্রবিশেষে ইথানল উৎপাদনের জন্য। অন্যদিকে, অক্সিজেনের অভাবে তখন অক্সিডেটিভ ফসফোরাইলেশনও চলে না। তাই অবাত শ্বসনের ক্ষেত্রে এক অণু গ্লুকোজের গ্লাইকোলাইসিসে নিট মাত্র 2 অণু ATP পাওয়া যায়।





- 🛘 শ্বসন প্রক্রিয়ার প্রভাবকসমূহ
- > বাহ্যিক প্রভাবক:
  - (i) তাপমাত্রা: 20° সেলসিয়াসের নিচে এবং 45° সেলসিয়াসের উপরের তাপমাত্রায় শ্বসন হার কমে যায়। শ্বসনের জন্য উত্তম তাপমাত্রা 20° সেলসিয়াস থেকে 45° সেলসিয়াস।
  - (ii) অক্সিজেন: সবাত শ্বসনে পাইরুভিক এসিড জারিত হয়ে  $CO_2$  ও  $H_2O$  উৎপন্ন করে। কাজেই অক্সিজেনের অভাবে সবাত শ্বসন কোনোক্রমেই চলতে পারে না।
  - (iii) পানি: পরিমিত পানি সরবরাহ শ্বসন ক্রিয়াকে স্বাভাবিক রাখে। কিন্তু অত্যন্ত কম কিংবা অতিরিক্ত পানির উপস্থিতিতে শ্বসন প্রক্রিয়া ব্যাহত হয়।
  - (iv) আলো: শ্বসন কার্যে আলোর প্রয়োজন পড়ে না সত্যি





কিন্তু দিনের বেলা আলোর উপস্থিতিতে পত্ররন্ধ্র খোলা থাকায়  $O_2$  গ্রহণ ও  $CO_2$  ত্যাগ করা সহজ হয় বলে শ্বসন হার একটু বেড়ে যায়।

- (v) কার্বন ডাই-অক্সাইড: বায়ুতে  ${\it CO}_2$ -এর ঘনত্ব বেড়ে গেলে শ্বসন হার একটুখানি কমে যায়।
- 🕨 অভ্যন্তরীণ প্রভাবক
  - (i) খাদ্যদ্রব্য: শ্বসন প্রক্রিয়ায় খাদ্যদ্রব্য (শ্বসনিক বস্তু) ভেঙ্গে শক্তি, পানি এবং  $CO_2$  নির্গত করে, তাই কোষে খাদ্যদ্রব্যের পরিমাণ ও ধরন শ্বসন হার নিয়ন্ত্রণ করে।
  - (ii) উৎসেচক: শ্বসন প্রক্রিয়ায় অনেক ধরনের এনজাইম বা উৎসেচক সক্রিয়ভাবে অংশগ্রহণ করে। কাজেই এনজাইমের ঘাটতি শ্বসনের হার কমিয়ে দেয়।



- (iii) কোষের বয়স: অল্পবয়স্ক কোষে, বিশেষ করে ভাজক কোষে প্রোটোপ্লাজম বেশি থাকে বলে সেখানে বয়স্ক কোষ থেকে শ্বসনের হার বেশি।
- (iv) অজৈব লৰণ: কোনো কোনো লবণ শ্বসন প্রক্রিয়াকে ব্যাহত করলেও কোষের সুষ্ঠু ও স্বাভাবিক কাজের জন্য এবং স্বাভাবিক শ্বসন প্রক্রিয়া পরিচালনার জন্য কোষের ভিতরে অজৈব লবণ থাকতে হয়।
- (v) কোষমধ্যস্থ পানি: বিভিন্ন শ্বসনিক বস্তু দ্রবীভূত করতে এবং এনজাইমের কার্যকারিতা প্রকাশের জন্য পানির প্রয়োজন।





#### 🔲 শ্বসনের গুরুত্ব

- শ্বসন প্রক্রিয়ায় উৎপন্ন শক্তি দিয়ে জীবের সব ধরনের ক্রিয়া-বিক্রিয়া এবং কাজকর্ম পরিচালিত হয়।
- শ্বসনে নির্গত CO<sub>2</sub> জীবের প্রধান খাদ্য শর্করা উৎপন্নের জন্য সালোকসংশ্লেষণে ব্যবহৃত হয়।
- এ প্রক্রিয়া উদ্ভিদে খনিজ লবণ পরিশোষণে সাহায্য করে, যা পরোক্ষভাবে উদ্ভিদের বৃদ্ধি এবং অন্যান্য জৈবিক প্রক্রিয়া চালু রাখে।
- কোষ বিভাজনের প্রয়োজনীয় শক্তি ও কিছু আনুষঙ্গিক পদার্থ শ্বসন প্রক্রিয়া থেকে আসে।
- 💠 এ প্রক্রিয়া জীবের দৈহিক বৃদ্ধি নিয়ন্ত্রণ করে।





- এ প্রক্রিয়া বিভিন্ন উপক্ষার ও জৈব এসিড সৃষ্টিতে সহায়তা করার মাধ্যমে জীবনের অন্যান্য জৈবিক কাজেও সহায়তা করে।
- কিছু কিছু ব্যাকটেরিয়া অক্সিজেনের উপস্থিতিতে বাঁচতে পারে না। এদের শক্তি উৎপাদনের একমাত্র উপায় হলো অবাত শ্বসন।
- এ প্রক্রিয়ায় ইথাইল অ্যালকোহল তৈরি হয়, যা বিভিন্ন শিল্পে
   ব্যবহৃত হয়।
- ল্যাকটিক এসিড ফার্মেন্টেশনের মাধ্যমে এ প্রক্রিয়ায় দই, পনির ইত্যাদি উৎপাদিত হয়। রুটি তৈরিতে এ প্রক্রিয়া ব্যবহৃত হয়। ইস্টের অবাত শ্বসনের ফলে অ্যালকোহল এবং CO<sub>2</sub> গ্যাস তৈরি হয়। এই CO<sub>2</sub> গ্যাসের চাপে রুটি ফুলে গিয়ে ভিতরে ফাঁপা হয়।



বিকেলে খেলাধুলা করে ক্লান্ত ও পরিশ্রান্ত হয়ে মাহমুদ বাসায় এলে তার মা তাকে শরবত পান করতে দেন। শরবতটি দ্রুত শক্তি উৎপাদনকারী উপাদান বিশিষ্ট। দ্রুত শক্তি উৎপাদনকারী এজন্য যে উপাদানটি সরল এবং কোষ সরাসরি গ্রহণ করতে পারবে। (ক) উদ্ভিদ কোন প্রক্রিয়ায় খাদ্য প্রস্তুত করে?

- (খ)  $C_3$  উদ্ভিদ বলতে কী বুঝায়?
- (গ) মাহমুদের গৃহীত খাদ্য উপাদানটির ১ অনু হতে কী পরিমাণ ATP পাওয়া যাবে তা ছক আকারে দেখাও।
- (ঘ) উদ্দীপকে উল্লিখিত খাদ্য উপাদানটি তৈরির প্রক্রিয়াতে ক্লোরোফিল ও আলোর ভূমিকা বিশ্লেষণ করো।







# উদ্ভিদ কোন প্রক্রিয়ায় খাদ্য প্রস্তুত করে?







উদ্ভিদ কোন প্রক্রিয়ায় খাদ্য প্রস্তুত করে? উদ্ভিদ সালোকসংশ্লেষণ প্রক্রিয়ায় খাদ্য প্রস্তুত করে।

১ (খ)





# $oldsymbol{\mathcal{C}}_3$ উদ্ভিদ বলতে কী বুঝায়?

#### ১ (খ)





# $\overline{c_3}$ উদ্ভিদ বলতে কী বুঝায়?

যেঁসব উদ্ভিদে ক্যালভিন চক্রের সাহায্যে শর্করা জাতীয় খাদ্য তৈরি হয় এবং প্রথম স্থায়ী পদার্থ ও কার্বন বিশিষ্ট তাদেরকে  $C_3$  উদ্ভিদ বলে।

ক্যালভিন চক্রের প্রথম স্থায়ী পদার্থ ৩ কার্বন বিশিষ্ট ৩ ফসফোগ্লিসারিক এসিড। এ কারণে একে  $C_3$  চক্র বলে। আর যেসকল উদ্ভিদে  $C_3$  চক্র চলে তাদেরকে  $C_3$  উদ্ভিদ বলে।

১ (গ)





## মাহমুদের গৃহীত খাদ্য উপাদানটির ১ অনু হতে কী পরিমাণ ATP পাওয়া যাবে তা ছক আকারে দেখাও।





## মাহমুদের গৃহীত খাদ্য উপাদানটির ১ অনু হতে কী পরিমাণ ATP পাওয়া যাবে তা ছক আকারে দেখাও।

মাহমুদের গৃহীত খাদ্য উপাদানটি হলো গ্লুকোজ। এক অনু গ্লুকোজ হতে ৩৮ অনু ATP পাওয়া যায়। যার হিসাব নিচের ছকের মাধ্যমে দেওয়া

#### হলো-

| শ্বসনের পর্যায় | উৎপাদিত<br>বস্তু                   | ব্যয়িত বস্তু | নিট উৎপাদন             |
|-----------------|------------------------------------|---------------|------------------------|
| গ্লাইকোলাইসিস   | 2 অণু<br>পাইরুভিক<br>এসিড<br>2 অণু | 2 অণু ATP     | 6 অণু ATP<br>2 অণু ATP |





|                     | NADH₂<br>4 অণু ATP                                                                        |                             |                                           |
|---------------------|-------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------|
| অ্যাসিটাইল Co-<br>A | 2 অণু<br>অ্যাসিটাইল<br>Co-A<br>2 অণু <i>CO</i> <sub>2</sub><br>2 অণু<br>NADH <sub>2</sub> | 2 অণু<br>পাইরুভিক<br>এসিড   | 2 অণু <i>CO</i> <sub>2</sub><br>6 অণু ATP |
| ক্রেবস চক্র         | 4 অণু <i>CO</i> <sub>2</sub><br>6 অণু<br>NADH <sub>2</sub>                                | 2 অণু<br>অ্যাসিটাইল<br>Co-A | 4 অণু $CO_2$<br>18 অণু ATP<br>4 অণু ATP   |

#### ১ (গ)





| 2 অণু<br>FADH <sub>2</sub><br>2 অণু GTP |     | 2 অণু ATP                                    |
|-----------------------------------------|-----|----------------------------------------------|
|                                         | মোট | 38 অণু ATP +<br>6 অণু <i>CO</i> <sub>2</sub> |

#### এক্ষেত্রে:

- ১ অনু NADH +  $H^+$ = ৩ অনু ATP
- ১ অনু  $FAD/T_2 = ২$  অনু ATP
- ১ অনু GTP = ১ অনু ATP

১ (ঘ)





উদ্দীপকে উল্লিখিত খাদ্য উপাদানটি তৈরির প্রক্রিয়াতে ক্লোরোফিল ও আলোর ভূমিকা বিশ্লেষণ করো।



উদ্দীপকে উল্লিখিত খাদ্য উপাদানটি তৈরির প্রক্রিয়াতে ক্লোরোফিল ও আলোর ভূমিকা বিশ্লেষণ করো। উদ্দীপকে উল্লিখিত খাদ্য উপাদানটি তৈরির সালোকসংশ্লেষণ। সালোকসংশ্লেষণে ক্লোরোফিল ও আলোর ভূমিকা নিচে বিশ্লেষণ করা হলো-সালোকসংশ্লেষণে ক্লোরোফিলের ভূমিকাঃ-পাতার ক্লোরোফিলের পরিমানের সাথে সালোকসংশ্লেষণের হারের সরাসরি সম্পর্ক বিদ্যমান। কারন একমাত্র ক্লোরোফিলই আলোকশক্তি গ্রহণ করতে সক্ষম। আমরা জানি, পুরাতন ক্লোরোপ্লাস্ট নষ্ট হয়ে যায় এবং নতুন ক্লোরোপ্লাস্টে সংশ্লেষিত হয়। নতুন ক্লোরোপ্লাস্ট এবং ক্লোরোপ্লাস্টের উপাদান সৃষ্টির হারের উপর সালোকসংশ্লেষণের হার নির্ভরশীল। সালোকসংশ্লেষণ





ক্ষমতা রক্ষা করার জন্য ক্লোরোপ্লাস্টের বিভিন্ন উপাদান দ্রুত ও প্রচুর পরিমানে পুনর্গঠিত হওয়া প্রয়োজন। তবে কোষে খুব বেশি পরিমাণ ক্লোরোফিল থাকলে এনজাইমের অভাব দেখা দেয় এবং সালোকসংশ্লেষণ হ্রাস পায়।



সালোকসংশ্লেষণে আলোর ভূমিকাঃ-সালোকসংশ্লেষণ প্রক্রিয়ায় আলোর গুরুত্ব অপরিসীম। পানি ও





CO<sub>2</sub> থেকে শর্করা তৈরির জন্য প্রয়োজনীয় শক্তির উৎস আলো। সূর্যালোক ক্লোরোফিল সৃষ্টিতে অংশগ্রহন করে। সূর্যালোকের প্রভাবেই পত্ররন্ধ্র উন্মুক্ত হয়। CO<sub>2</sub> পাতার অভ্যন্তরে প্রবেশ করতে পারে এবং খাদ্য প্রস্তুতকরনে অংশগ্রহণ করে। কিন্তু পাতায় যেটুকু আলো পড়ে তার অতি সামান্য অংশই সালোকসংশ্লেষণ প্রক্রিয়ায় ব্যবহৃত হয়।



#### ১ (ঘ)





আবার, আলোক বর্ণালীয় লাল, নীল, কমলা ও বেগুনি অংশটুকুতেই সালোকসংশ্লেষণ ভালো হয়। সবুজ ও হলুদ আলোতে সালোকসংশ্লেষণ ভালো হয় না।

> 400 nm 500 nm 600 nm

একটি নির্দিষ্ট সীমা পর্যন্ত আলোর পরিমাণ বাড়লে সালোকসংশ্লেষণের হারও বেড়ে যায়। কিন্তু আলোর পরিমাণ





অত্যধিক বেড়ে গেলে পাতার অভ্যন্তরস্থ এনজাইম নষ্ট হয়ে যায় ক্লোরোফিল উৎপাদন কম হয়। ফলে সালোকসংশ্লেষণের হারও কমে যায়। সাধারণত 400nm থেকে 480nm এবং 680nm তরঙ্গ দৈর্ঘ্যবিশিষ্ট আলোতে সালোকসংশ্লেষণ সবচেয়ে ভালো হয়।





জীববিজ্ঞানের অধ্যাপক মোসাব্বের হোসেন মুয়ীদ তার ছাত্র-ছাত্রীদের সাথে জীবজগতের অত্যন্ত গুরুত্বপূর্ণ এক শারীরতাত্ত্বিক প্রক্রিয়া নিয়ে আলোচনা করেন যেখানে কার্বনডাই অক্সাইড আত্ত্বীকরণের মাধ্যমে শর্করা জাতীয় খাদ্য প্রস্তুত হয়। (ক) ATP এর পূর্ণরূপ কী?

- (খ) ক্যালভিন চক্রকে  $C_3$  চক্র বলা হয় কেন?
- (গ) উদ্দীপকের প্রক্রিয়ায় প্রভাবক সম্পর্কে আলোচনা কর।
- (ঘ) জীবজগতের ভারসাম্য রক্ষায় উদ্দীপকের প্রক্রিয়ার গুরুত্ব আলোচনা কর ।







# ATP এর পূর্ণরূপ কী ?







ATP এর পূর্ণরূপ কী ? ATP এর পূর্ণরূপ হলো Adenosine triphosphate.

২ (খ)





# ক্যালভিন চক্রকে $C_3$ চক্র বলা হয় কেন?

## ২ (খ)





## ক্যালভিন চক্রকে $C_3$ চক্র বলা হয় কেন?

কার্বন ডাইঅক্সাইড বিজারণের মাধ্যমে শর্করা জাতীয় খাদ্য প্রস্তুতকালে কেলভিন চক্রের প্রথম স্থায়ী পদার্থ তিন কার্বন বিশিষ্ট ফসফোগ্লিসারিক এসিড। তাই, ক্যালভিন চক্রকে C\_3 চক্র বলা হয়। ২ (গ)





## উদ্দীপকের প্রক্রিয়ায় প্রভাবক সম্পর্কে আলোচনা কর।



#### উদ্দীপকের প্রক্রিয়ায় প্রভাবক সম্পর্কে আলোচনা কর।

উদ্দীপকের (i) নং বিক্রিয়াটি হচ্ছ সালোকসংশ্লেষণ। প্রাণীর শ্বাসকার্যে সালোকসংশ্লেষণ প্রক্রিয়া গুরুত্বপূর্ণ ভূমিকা পালন করে। সালোকসংশ্লেষণ যেভাবে প্রাণীর শ্বাসকার্যে সাহায্য করে তা নিচে ব্যাখ্যা করা হলো-

উদ্দীপকের প্রক্রিয়াটি হলো সালোকসংশ্লেষণ। এই প্রক্রিয়ার প্রভাবক নিম্নরূপ-

- ১. আলো: সালোকসংশ্লেষণে আলোর ভূমিকা অনস্বীকার্য। আলো ছাড়া এই প্রক্রিয়া অচল।
- ২. অক্সিজেন:  $O_2$  ঘনত্ব বাড়লে সালোকসংশ্লেষণ কমে,  $O_2$  ঘনত্ব কমলে সালোকসংশ্লেষণ বাড়ে।
- ৩. কার্বন ডাই অক্সাইড: বাতাসে  ${\it CO}_2$  এর পরিমাণ বাড়লে





সালোকসংশ্লেষণ বাড়ে আর কমলে সালোকসংশ্লেষণ কমে।

৪. পানি:  ${\it CO}_2$  বিভাজনের জন্য অত্যাবশ্যকীয়  ${\it H}^+, {\it H}_2{\it O}$  হতে আসে।

অভ্যন্তরীণ প্রভাবক:

- ১. ক্লোরোফিল: পাতায় ক্লোরোফিলের পরিমাণ সালোকসংশ্লেষণকে প্রভাবিত করে।
- ২. পাতার বয়স: মাঝবয়সি পাতায় সালোকসংশ্লেষণের হার বেশি থাকে।
- ৩. শর্করার পরিমাণ: শর্করার পরিমাণ বেশি হলে সালোকসংশ্লেষণের গতি মন্থর হয়।
- ৪. পটাশিয়াম: সালোকসংশ্লেষণে পটাশিয়াম অণুঘটক হিসেবে কাজ করে।

২ (ঘ)





### জীবজগতের ভারসাম্য রক্ষায় উদ্দীপকের প্রক্রিয়ার গুরুত্ব আলোচনা কর ।



#### জীবজগতের ভারসাম্য রক্ষায় উদ্দীপকের প্রক্রিয়ার গুরুত্ব আলোচনা কর ।

জীবজগতের ভারসাম্য রক্ষায় সালোকসংশ্লেষণ এর অত্যন্ত তাৎপর্যপূর্ণ। নিচে আলোচনা করা হলো-পরিবেশের ভারসাম্য রক্ষায়, বিশেষ করে  $oldsymbol{o}_2$  ও  $oldsymbol{colored} oldsymbol{o}_2$ -এর সঠিক অনুপাত রক্ষায় সালোকসংশ্লেষণ প্রক্রিয়া এক বিশেষ ভূমিকা পালন করে থাকে। বায়ুতে অক্সিজেন গ্যাসের পরিমাণ 20.95 ভাগ এবং  $\mathcal{CO}_2$  গ্যাসের পরিমাণ 0.033 ভাগ । পৃথিবীতে উদ্ভিদ ও প্রাণীর স্বাভাবিক বৃদ্ধি এবং জীবনযাপনের জন্য বায়ুতে এ দুটি গ্যাসের পরিমাণ স্বাভাবিক পর্যায়ে থাকতে হয়। এ পরিমাণের

তারতম্য ঘটলে বায়ুমণ্ডল জীবজগতের জন্য ক্ষতিকর হয়ে

উঠবে।





আমরা জানি, সব জীবেই (উদ্ভিদ ও প্রাণী) সব সময়ের জন্য শ্বসক্রিয়া চলতে থাকে। শ্বসন প্রক্রিয়ায় জীব  $O_2$  গ্রহণ করে এবং  $CO_2$  ত্যাগ করে। কেবল শ্বসন প্রক্রিয়া চলতে থাকলে বায়ুমণ্ডলে  $O_2$  গ্যাসের স্বল্পতা এবং  ${\it CO}_2$  গ্যাসের আধিক্য দেখা দিত। কিন্তু সবুজ উদ্ভিদ সালোকসংশ্লেষণ প্রক্রিয়ায় বায়ুমণ্ডল থেকে  $CO_2$  গ্রহণ করে এবং  $O_2$  ত্যাগ করে বলে এখনও  $o_2$  ও  $co_2$  গ্যাসের সঠিক অনুপাত রক্ষিত হচ্ছে।







তবে বর্তমানে অধিক হারে বন-জঙ্গল ধ্বংস করার ফলে বায়ুমণ্ডলে এ দুটি গ্যাসের অনুপাত নষ্ট হওয়ার আশঙ্কা দেখা দিয়েছে, কাজেই আমাদেরকে অবশ্যক অধিক হারে গাছ লাগাতে হবে।

মানবসভ্যতার অগ্রগতি অনেকাংশে সালোকসংশ্লেষণের ওপর প্রত্যক্ষ বা পরোক্ষভাবে নির্ভরশীল। অন্ন, বস্ত্র, শিল্পসামগ্রী (যেমন নাইলন, রেয়ন, কাগজ, সেলুলোজ, কাঠ, রাবার), ঔষধ (যেমন কুইনাইন, মরফিন), জ্বালানি কয়লা, পেট্রল, গ্যাস প্রভৃতি উদ্ভিদ থেকে পাওয়া যায়। তাই সালোকসংশ্লেষণ না ঘটলে মানবসভ্যতা ধ্বংস হবে, বিলুপ্ত হবে জীবজগৎ। সুতরাং সালোকসংশ্লেষণ জীবজগতের সবচেয়ে গুরুত্বপূর্ণ জৈব রাসায়নিক প্রক্রিয়া।



#### নিচের উদ্দীপকটি লক্ষ কর–

(i) 
$$6CO_2 + 12H_2 + 6O_2 \xrightarrow{\mathcal{P}_2(1)} C_6H_{12}O_6 + 6H_2O$$
্ক্লোরোফিল  $+6O_2$ 

#### এনজাইম

- (ক) অ্যাম্বিলিকাল কর্ড কী?
- (খ) আদর্শ খাদ্য পিরামিড কী? ব্যাখ্যা কর।
- (গ) উদ্দীপকের (i) এবং বিক্রিয়াটি প্রাণীর শ্বাসকার্যে কীভাবে সাহায্য করে? ব্যাখ্যা কর।
- (ঘ) প্রাকৃতিক ভারসাম্য রক্ষায় উদ্দীপকে উল্লিখিত বিক্রিয়া দুটির ভূমিকা বিশ্লেষণ করো।







## অ্যাম্বিলিকাল কর্ড কী?





#### অ্যাম্বিলিকাল কর্ড কী?

অ্যাম্বিলিকাল কর্ড মূলত একটি নালি যার ভিতর দিয়ে মাতৃদেহের সাথে ভ্রূণের বিভিন্ন পদার্থের বিনিময় ঘটে।



৩ (খ)





## আদর্শ খাদ্য পিরামিড কী? ব্যাখ্যা কর।





#### আদর্শ খাদ্য পিরামিড কী? ব্যাখ্যা কর।

শর্করা জাতীয় খাবারকে নিচের স্তরে রেখে পর্যায়ক্রমে পরিমাণগত দিক বিবেচনা করে শাকসবজি, ফলমূল, আমিষ, স্নেহ ও চর্বিজাতীয় খাদ্যকে সাজালে যে কাল্পনিক পিরামিড তৈরি হয় তাকে আদর্শ খাদ্য পিরামিড বলে।



## ৩ (খ)





আদর্শ খাদ্য পিরামিডের অংশগুলো তার আকার অনুযায়ী নিচের দিকে বড় এবং উপরের দিকে ছোট অর্থাৎ আদর্শ খাদ্য পিরামিড অনুযায়ী একজন প্রাপ্তবয়স্ক ব্যক্তিকে সবচেয়ে বেশি শর্করা জাতীয় খাদ্য গ্রহণ করতে হবে। এরপর শাকসবজি ফলমূল, মাছ, মাংস, ডিম আরও কম এবং চর্বি জাতীয় খাদ্য সবচেয়ে কম গ্রহণ করতে হবে।

৩ (গ)





## উদ্দীপকের (i) এবং বিক্রিয়াটি প্রাণীর শ্বাসকার্যে কীভাবে সাহায্য করে? ব্যাখ্যা কর।





# উদ্দীপকের (i) এবং বিক্রিয়াটি প্রাণীর শ্বাসকার্যে কীভাবে সাহায্য

#### করে? ব্যাখ্যা কর।

উদ্দীপকের (i) নং বিক্রিয়াটি হচ্ছে সালোকসংশ্লেষণ। প্রাণীর শ্বাসকার্যে সালোকসংশ্লেষণ প্রক্রিয়া গুরুত্বপূর্ণ ভূমিকা পালন করে। সালোকসংশ্লেষণ যেভাবে প্রাণীর শ্বাসকার্যে সাহায্য করে তা নিচে ব্যাখ্যা করা হলো-সালোকসংশ্লেষণ প্রক্রিয়ায় সবুজ উদ্ভিদ সূর্যের আলোর উপস্থিতিতে কার্বন ডাইঅক্সাইড ( $CO_2$ ) ও পানি থেকে শর্করা জাতীয় খাদ্য প্রস্তুত করে।







এই বিক্রিয়ায় উপজাত হিসেবে অক্সিজেন ( $O_2$ ) নির্গত হয়। সকল প্রাণী এই  $(0_2)$  শ্বসন প্রক্রিয়ায় গ্রহণ করে। আবার প্রাণী নিঃশ্বাসের মাধ্যমে  $\mathcal{C}\mathcal{O}_2$  ত্যাগ করে যা উদ্ভিদ গ্রহণ করে। অর্থাৎ প্রাণীর নির্গত  $\mathcal{C}\mathcal{O}_2$ উদ্ভিদ। সালোকসংশ্লেষণ প্রক্রিয়ায় গ্রহণ করে। ফলে বায়ুমণ্ডলে  $O_2$  ও  $CO_2$  এর সঠিক অনুপাত বজায় থাকে।



অতএব ,উপরোক্ত আলোচনা থেকে বুঝা যায়, সালোকসংশ্লেষণ প্রক্রিয়ায় উদ্ভিদ 02 ভাগ করে যা প্রাণী গ্রহণ করে এবং প্রাণী যে CO2 ত্যাগ করে তা উদ্ভিদ সালোকসংশ্লেষণ প্রক্রিয়ায় গ্রহণ করে প্রাণীর শ্বাসকার্যে সাহায্য করে।

৩ (ঘ)





## প্রাকৃতিক ভারসাম্য রক্ষায় উদ্দীপকে উল্লিখিত বিক্রিয়া দুটির ভূমিকা বিশ্লেষণ করো।



## প্রাকৃতিক ভারসাম্য রক্ষায় উদ্দীপকে উল্লিখিত বিক্রিয়া দুটির ভূমিকা বিশ্লেষণ করো।

উদ্দীপকের (i) নং বিক্রিয়াটি হচ্ছে সালোকসংশ্লেষণ এবং (ii) নং বিক্রিয়াটি হচ্ছে শ্বসন। সালোকসংশ্লেষণ ও শ্বসন উভয় প্রক্রিয়াই প্রাকৃতিক ভারসাম্য রক্ষায় গুরুত্বপূর্ণ ভূমিকা পালন করে। নিচে তা ব্যাখ্যা করা হলো—

সালোকসংশ্লেষণ প্রক্রিয়ায় প্রকৃতিতে  $O_2$  বিযুক্ত হয় আর শ্বসন প্রক্রিয়ায় প্রকৃতিতে  $CO_2$  বিমুক্ত হয়। শ্বসন প্রক্রিয়ায় বিমুক্ত  $CO_2$  শ্বসন প্রক্রিয়ায় উৎপাদ হিসেবে ব্যবহৃত হয়। কেবল মাত্র শ্বসন প্রক্রিয়া চলতে থাকলে বায়ুমণ্ডলে  $O_2$  গ্যাসের স্বল্পতা এবং  $CO_2$  গ্যাসের আধিক্য দেখা দিত।

আবার কেবল সালোকসংশ্লেষণ প্রক্রিয়া চলতে থাকলে বায়ুমণ্ডল

## ৩ (ঘ)





( $O_2$ ) গ্যাসের আধিক্য এবং  $CO_2$  গ্যাসের স্বল্পতা দেখা দিত । শ্বসন ও সালোকসংশ্লেষণ প্রক্রিয়া অনবরত চলতে থাকায় বায়ুমণ্ডলে  $O_2$  ও  $CO_2$  গ্যাসের সঠিক অনুপাত রক্ষিত হচ্ছে। বায়ুতে অক্সিজেন গ্যাসেরপরিমাণ ২০.৯৫ ভাগ এবং  $CO_2$  গ্যাসের পরিমাণ ০.০৩৩ ভাগ বজায় থাকছে। অতএব উপরোক্ত আলোচনা থেকে বলা যায়, প্রাকৃতিক ভারসাম্য রক্ষায় সালোকসংশ্লেষণ ও শ্বসন উভয় প্রক্রিয়াই গুরুত্বপূর্ণ ভূমিকা পালন করে।





কোনটিকে জৈবমুদ্রা বলা হয়? [দি.বো. ২০১৭; দি. বো. ২০১৬; দি., য. বো. ২০১৫]

- (ক) NAD
- (খ) **ADP**
- (গ) **ATP**
- (ঘ) **AMP**





কোনটিকে জৈবমুদ্রা বলা হয়? [দি.বো. ২০১৭; দি. বো. ২০১৬; দি., য. বো. ২০১৫]

(ক) NAD

(খ) **ADP** 

**ATP** 

**AMP** (ঘ)





### কোনটিকে জৈবমুদ্রা বলা হয়? [দি.বো. ২০১৭; দি. বো. ২০১৬; দি., য. বো. ২০১৫]

#### ব্যাখ্যাঃ

ATP শক্তি জমা রাখে এবং প্রয়োজন অনুসারে অন্য বিক্রিয়ায় শক্তি সরবরাহ করে। এজন্য ATP কে জৈবমুদ্রা বা শক্তিমুদ্রা বলে।





### কোথায় আমরা সালোকসংশ্লেষণ ও শ্বসন উভয়ই দেখতে পাই? [পাবনা ক্যাডেট কলেজ]

- (ক) ছত্ৰাক
- (খ) ভাইরাস
- (গ) ব্যাকটেরিয়া
- (ঘ) সবুজ উদ্ভিদ





### কোথায় আমরা সালোকসংশ্লেষণ ও শ্বসন উভয়ই দেখতে পাই? [পাবনা ক্যাডেট কলেজ]

- (ক) ছত্ৰাক
- (খ) ভাইরাস
- (গ) ব্যাকটেরিয়া
- (সু সবুজ উদ্ভিদ





## $C_3$ উদ্ভিদের প্রথম স্থায়ী যৌগ কোনটি?

[চ. বো. ২০১৯; কু. বো. ২০১৭]

- (ক) ল্যাকটিক এসিড
- (খ) পাইরুভিক এসিড
- (গ) ফসফোগ্লিসারিক এসিড
- (ঘ) অক্সালো এসিটিক এসিড





## $C_3$ উদ্ভিদের প্রথম স্থায়ী যৌগ কোনটি?

[চ. বো. ২০১৯; কু. বো. ২০১৭]

- (ক) ল্যাকটিক এসিড
- (খ) পাইরুভিক এসিড
- ( ফসফোগ্লিসারিক এসিড
- (ঘ) অক্সালো এসিটিক এসিড





## $C_3$ উদ্ভিদের প্রথম স্থায়ী যৌগ কোনটি?

[চ. বো. ২০১৯; কু. বো. ২০১৭]

#### ব্যাখ্যাঃ

 $C_3$  উদ্ভিদের প্রথম স্থায়ী পদার্থটি হলো ফসফোগ্লিসারিক এসিড।  $C_4$  উদ্ভিদের প্রথম স্থায়ী পদার্থ অঞ্চলে এসিটিক এসিড।





# পানিতে শতকরা কত ভাগ ${\it Co}_2$ থাকে?

[য. বো. ২০১৯]

| (ক) | 0.000% |
|-----|--------|
| (খ) | 0.00%  |





# পানিতে শতকরা কত ভাগ ${\it Co}_2$ থাকে?

[য. বো. ২০১৯]

| (ক) | 0.000%      |
|-----|-------------|
| (খ) | o.ov%       |
|     | 0.0%        |
| (ঘ) | <b>৩.0%</b> |





# পানিতে শতকরা কত ভাগ ${\it CO}_2$ থাকে?

[য. বো. ২০১৯]

#### ব্যাখ্যাঃ

CO2 এর পরিমাণঃ বায়ুতে ০.০৩% পানিতে ০.৩%





 $C_3$  গতিপথে ৬ অনু  $CO_2$  থেকে এক অণু  $C_6H_{12}O_6$  তৈরি করতে ক্যালভিন চক্র কতবার ঘুরবে? [সি. বো. ২০১৭ ]

(ক) ৫

(খ) ৬

(গ) ৭

(ঘ) ৮





 $C_3$  গতিপথে ৬ অনু  $CO_2$  থেকে এক অণু  $C_6H_{12}O_6$  তৈরি করতে ক্যালভিন চক্র কতবার ঘুরবে? [সি. বো. ২০১৭ ]







 $C_3$  গতিপথে ৬ অনু  $CO_2$  থেকে এক অণু  $C_6H_{12}O_6$  তৈরি করতে ক্যালভিন চক্র কতবার ঘুরবে? [সি. বো. ২০১৭ ]

#### ব্যাখ্যাঃ

 ${\it CO}_2$  এক কার্বনবিশিষ্ট, গ্লুকোজ ( ${\it C}_6{\it H}_{12}{\it O}_6$ ) ৬ কার্বনবিশিষ্ট, তাই এক অণু গ্লুকোজ তৈরি করতে কালিতিন চক্র ৬ বার ঘুরবে।





আত্মীকরণ শক্তি হলো-

(i) NADP

(ii) ATP

(iii) NADPH<sub>2</sub>

নিচের কোনটি সঠিক?

[রা. বো. ২০১৭]

(ক) i ও ii

(খ) ii ও iii

(গ) i ও iii

(ঘ) i, ii ও iii





আত্মীকরণ শক্তি হলো-(i) NADP

(ii) ATP

(iii) NADPH<sub>2</sub> নিচের কোনটি সঠিক?

[রা. বো. ২০১৭]

(ক) i ও ii



(গ) i ও iii

(ঘ) i, ii ও iii





আত্মীকরণ শক্তি হলো(i) NADP
(ii) ATP
(iii) NADPH<sub>2</sub>
নিচের কোনটি সঠিক?

[রা. বো. ২০১৭]

#### ব্যাখ্যাঃ

 ${\it CO}_2$  আত্মীকরণের মাধ্যমে শর্করা প্রস্তুত করতে ATP ও  ${\it NADPH} + {\it H}^+$  এর শক্তি ব্যাবহৃত হয় বলে এদেরকে আত্মীকরণের শক্তি বলা হয়।





## নিচের কোনটিতে সালোকসংশ্লেষণের হার বেশি?

## [সকল বোর্ড ২০১৮ ]

- (ক) মুথা ঘাস
- (খ) অ্যামারেনথাস
- (গ) দুর্বাঘাস
- (ঘ) কচুরিপানা





## নিচের কোনটিতে সালোকসংশ্লেষণের হার বেশি?

[সকল বোর্ড ২০১৮ ]

- (ক) মুথা ঘাস
- (খ) অ্যামারেনথাস
- (গ) দুর্বাঘাস
- (১) কচুরিপানা





### নিচের কোনটিতে সালোকসংশ্লেষণের হার বেশি?

[সকল বোর্ড ২০১৮ ]

#### ব্যাখ্যাঃ

 $C_4$  উদ্ভিদের সালোকসংশ্লেষণের হার এবং উৎপাদন ক্ষমতাও বেশী ( $C_4$  উদ্ভিদের তুলনায়)

 $C_4$  উদ্ভিদের উদাহরণ- ভুট্টা, আখ, ঘাস জাতীয় উদ্ভিদ, মুখা ঘাস, অ্যানারোমাস, কচুরিপানা ইত্যাদি।





## নিচের কোনটি পাইরুভিক এসিডের সংকেত?

[ঢা. বো, ২০১৬;ব. বো. ২০১৬]

(本) 
$$C_2H_4O_3$$

(খ) 
$$C_3H_4O_2$$

$$(\mathfrak{I})$$
  $C_3H_2O_3$ 

(ঘ) 
$$C_3H_4O_3$$





## নিচের কোনটি পাইরুভিক এসিডের সংকেত?

[ঢা. বো, ২০১৬;ব. বো. ২০১৬]

(本) 
$$C_2H_4O_3$$

(খ) 
$$C_3H_4O_2$$

$$(\mathfrak{I}) \quad C_3H_2O_3$$

$$C_3H_4O_3$$





## কোনটি $\mathcal{C}_4$ উদ্ভিদ?

[দি.বো. ২০১৬]

- (ক) আম গাছ
- (খ) কাঠাঁল গাছ
- (গ) পিঁয়াজ
- (ঘ) আখ





## কোনটি $\mathcal{C}_4$ উদ্ভিদ?

[দি.বো. ২০১৬]

- (ক) আম গাছ
- (খ) কাঠাঁল গাছ
- (গ) পিঁয়াজ
- (ব) আখ





## কোনটি $C_4$ উদ্ভিদ?

[দি.বো. ২০১৬]

#### ব্যাখ্যাঃ

 $C_4$  উদ্ভিদের উদাহরণ- ভুট্টা, আখ, ঘন জাতীয় উদ্ভিদ, মুথা ঘাস, অ্যানারেখাস, কচুরিপানা ইত্যাদি। এছাড়া বেশিরভাগ একবীজপত্রী, দ্বিবীজপত্রী, নগ্নবীজি উদ্ভিদ, শৈবাল, ব্রায়োফাইট, টেরিডোফাইট এ  $C_3$  চক্র ব্যবহৃত হয়।





## কোন শক্তিটি সালোকসংশ্লেষণের সময় ADP গ্রহণ করে?

[চ. বো. ২০১৬]

- (ক) বায়ু
- (খ) বিদ্যুৎ
- (গ) আলোক
- (ঘ) তাপ





## কোন শক্তিটি সালোকসংশ্লেষণের সময় ADP গ্রহণ করে?

[চ. বো. ২০১৬]

(ক) বায়ু

(খ) বিদ্যুৎ

(ব) আলোক

(ঘ) তাপ





সালোকসংশ্লেষণ ভালো হয়-

- (i) ৪০০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে
- (ii) ৬৮০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে
- (iii) ৪৮০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে

নিচের কোনটি সঠিক?

[রা. বো. ২০১৭]

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii





সালোকসংশ্লেষণ ভালো হয়-

- (i) ৪০০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে
- (ii) ৬৮০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে
- (iii) ৪৮০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে

নিচের কোনটি সঠিক?

[রা. বো. ২০১৭]

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii







সালোকসংশ্লেষণ ভালো হয়-

(i) ৪০০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে

(ii) ৬৮০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে

(iii) ৪৮০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে

নিচের কোনটি সঠিক?

[রা. বো. ২০১৭]

#### ব্যাখ্যাঃ

সাধারণত ৪০০ থেকে ৪৮০ এবং ৬৮০ nm তরঙ্গদৈর্ঘ্য বিশিষ্ট আলোতে সালোকসংশ্লেষণ সবচেয়ে ভালো হয়।



## CO2 এর পরিমাণ খুব বেশি বৃদ্ধি পেলে সালোকসংশ্লেষণের হার-[ময়মনসিংহ জিলা স্কুল]

- (ক) অনেক বেড়ে যায়
- (খ) কমে যায়
- (গ) বন্ধ হয়ে যায়
- (ঘ) অপরিবর্তিত থাকে



## CO2 এর পরিমাণ খুব বেশি বৃদ্ধি পেলে সালোকসংশ্লেষণের হার-[ময়মনসিংহ জিলা স্কুল]

- (ক) অনেক বেড়ে যায়
- (া) কমে যায়
- (গ) বন্ধ হয়ে যায়
- (ঘ) অপরিবর্তিত থাকে



## $CO_2$ এর পরিমাণ খুব বেশি বৃদ্ধি পেলে সালোকসংশ্লেষণের হার-[ময়মনসিংহ জিলা স্কুল]

#### ব্যাখ্যাঃ

 ${\it CO}_2$  এর পরিমাণ খুব বেশি বেড়ে গেলে মেসোফিল টিস্যুতে কোষের অম্লত্ব বেড়ে গিয়ে পত্ররন্ধ্র বন্ধ হয়ে যায়। তখন সালোকসংশ্লেষণ এর হার কমে যায়।





### সালোকসংশ্লেষণ এর জন্য উত্তম তাপমাত্রা কোনটি?

[ঢা. বো. ২০১৯]

(**本**) 
$$22^{\circ}C - 35^{\circ}C$$

$$(\mathfrak{I})$$
  $22^{\circ}C - 50^{\circ}C$ 





### সালোকসংশ্লেষণ এর জন্য উত্তম তাপমাত্রা কোনটি?

[ঢা. বো. ২০১৯]

$$(\checkmark) 22^{\circ}C - 35^{\circ}C$$

$$(\mathfrak{I})$$
  $22^{\circ}C - 50^{\circ}C$ 





### সালোকসংশ্লেষণ এর জন্য উত্তম তাপমাত্রা কোনটি?

[ঢা. বো. ২০১৯]

#### ব্যাখ্যাঃ

উত্তম তাপমাত্রাঃ সালোকসংশ্লেষণঃ  $22^{\circ}C - 35^{\circ}C$  শ্বসনঃ  $20^{\circ}C - 45^{\circ}C$ 





### ক্রেবস চক্রে কোনটির জারণ ঘটে?

[সি. বো. ২০১৯]

- (ক) গ্লুকোজ
- (খ) পাইরুভিক এসিড
- (গ) এডিনোসিন ট্রাইফসফেট
- (ঘ) অ্যাসিটাইল Co-A





### ক্রেবস চক্রে কোনটির জারণ ঘটে?

[সি. বো. ২০১৯]

- (ক) গ্লুকোজ
- (খ) পাইরুভিক এসিড
- (গ) এডিনোসিন ট্রাইফসফেট
- আ্যাসিটাইল Co-A





### ক্রেবস চক্রে কোনটির জারণ ঘটে?

[সি. বো. ২০১৯]

#### ব্যাখ্যাঃ

ফোবস চক্র মাইটোকন্ড্রিয়াতে অ্যাসিটাইল কো-এ এর জারণ ঘটে এবং ২ অণু  $CO_2$ , তিন অণু  $NADH + H^+$ ,এক অনু GTP তৈরি হয়।





## নিচের ছকটি লক্ষ করো এবং ১৫ ও ১৬ নং প্রশ্নের উত্তর দাও :

| P- ক্লোরোফিল  | R- পটাশিয়াম   |
|---------------|----------------|
| Q- ক্লোরোফর্ম | S- ক্যালসিয়াম |

উদ্দীপকের কোন অংশের উপাদানগুলোর উপস্থিতিতে সালোকসংশ্লেষণ বন্ধ হয়ে যেতে পারে? [ঢা. বো. ২০১৯]

(ক) P

(খ) Q

(গ) R

(ঘ) S





## নিচের ছকটি লক্ষ করো এবং ১৫ ও ১৬ নং প্রশ্নের উত্তর দাও :

| P- ক্লোরোফিল  | R- পটাশিয়াম   |
|---------------|----------------|
| Q- ক্লোরোফর্ম | S- ক্যালসিয়াম |

উদ্দীপকের কোন অংশের উপাদানগুলোর উপস্থিতিতে সালোকসংশ্লেষণ বন্ধ হয়ে যেতে পারে? [ঢা. বো. ২০১৯]

(ক) P



(গ) R

(ঘ) S





# নিচের ছকটি লক্ষ করো এবং ১৫ ও ১৬ নং প্রশ্নের উত্তর দাও :

| P- ক্লোরোফিল  | R- পটাশিয়াম   |
|---------------|----------------|
| Q- ক্লোরোফর্ম | S- ক্যালসিয়াম |

উদ্দীপকের কোন অংশের উপাদানগুলোর উপস্থিতিতে সালোকসংশ্লেষণ বন্ধ হয়ে যেতে পারে? [ঢা. বো. ২০১৯]

#### ব্যাখ্যাঃ

বাতাসে ক্লোরোফর্ম, হাইড্রোজেন সালফাইড, মিথেন বা কোন বিষাক্ত গ্যাস থাকলে সালোকসংশ্লেষণে ব্যাঘাত ঘটে বা একেবারেই বন্ধ হয়ে যায়।





### নিচের ছকটি লক্ষ করো এবং ১৫ ও ১৬ নং প্রশ্নের উত্তর দাও :

| P- ক্লোরোফিল  | R- পটাশিয়াম   |
|---------------|----------------|
| Q- ক্লোরোফর্ম | S- ক্যালসিয়াম |

P এর খুব বেশি উপস্থিতিতে থাকলে কী হতে পারে?

- (i) এনজাইম এর অভাব দেখা যায়
- (ii) এনজাইম এর আধিক্য দেখা দেয়
- (iii) সালোকসংশ্লেষণের হার হ্রাস পায়

নিচের কোনটি সঠিক?

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii





### নিচের ছকটি লক্ষ করো এবং ১৫ ও ১৬ নং প্রশ্নের উত্তর দাও :

| P- ক্লোরোফিল  | R- পটাশিয়াম   |
|---------------|----------------|
| Q- ক্লোরোফর্ম | S- ক্যালসিয়াম |

P এর খুব বেশি উপস্থিতিতে থাকলে কী হতে পারে?

- (i) এনজাইম এর অভাব দেখা যায়
- (ii) এনজাইম এর আধিক্য দেখা দেয়
- (iii) সালোকসংশ্লেষণের হার হ্রাস পায়

নিচের কোনটি সঠিক?

(ক) i ও ii



(গ) ii ও iii

(ঘ) i, ii ও iii





# অবাত শ্বসনে কোনটি উৎপন্ন হয়?

# [সকল বোর্ড ২০১৮]

(本) 
$$C_3H_4O_3$$

(খ) 
$$C_2H_5OH$$

(গ) 
$$C_6H_{12}O_6$$





# অবাত শ্বসনে কোনটি উৎপন্ন হয়?

# [সকল বোর্ড ২০১৮]

(本) 
$$C_3H_4O_3$$

$$C_2H_5OH$$

(1) 
$$C_6H_{12}O_6$$





# অবাত শ্বসনে কোনটি উৎপন্ন হয়?

### [সকল বোর্ড ২০১৮]

#### ব্যাখ্যাঃ

অবাত শ্বসনে পাইরুভিক এসিডের অসম্পূর্ণ কারণ এর ফলে ইথাইল অ্যালকোহল ও  $CO_2$  অথবা ল্যাক্টিক এসিড এবং ২টি ATP তৈরি হয়।





# ১ অণু $FADH_2$ = কত অণু ATP? [ঢা বো. ২০১৭; দি. বো. ২০১৬]

(ক) ২

(খ) 8

(গ) ৬

(ঘ) ৮





# ১ অণু $FADH_2$ = কত অণু ATP? [ঢা বো. ২০১৭; দি. বো. ২০১৬]

(1) 2

(খ) 8

(গ) ৬

(ঘ) ৮





১ অণু  $FADH_2$  = কত অণু ATP? [ঢা বো. ২০১৭; দি. বো. ২০১৬]

ব্যাখ্যাঃ

এক অণু  $FADH_2$  থেকে পরবর্তীতে ২ অণু ATP পাওয়া যায়।





শ্বসনিক বস্তুরূপে ব্যবহৃত হয়-

- (i) প্রোটিন
- (ii) ফ্যাটি এসিড
- (iii) জৈব এসিড

নিচের কোনটি সঠিক?

[রাজউক উত্তরা মডেল কলেজ, ঢাকা]

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii

(ঘ) i, ii ও iii





শ্বসনিক বস্তুরূপে ব্যবহৃত হয়-

- (i) প্রোটিন
- (ii) ফ্যাটি এসিড
- (iii) জৈব এসিড

নিচের কোনটি সঠিক?

[রাজউক উত্তরা মডেল কলেজ, ঢাকা]

(ক) i ও ii

(খ) i ও iii

(গ) ii ও iii







# কোথায় শ্বসন হার অনেক বেশি?

[রা. বো. ২০১৯]

- (ক) মূলের গোড়ায়
- (খ) কাণ্ডের নিম্নভাগে
- (গ) কচি পাতায়
- (ঘ) অঙ্কুরিত বীজে





# কোথায় শ্বসন হার অনেক বেশি?

[রা. বো. ২০১৯]

- (ক) মূলের গোড়ায়
- (খ) কাণ্ডের নিম্নভাগে
- (গ) কচি পাতায়
- অঙ্কুরিত বীজে





### কোথায় শ্বসন হার অনেক বেশি?

[রা. বো. ২০১৯]

#### ব্যাখ্যাঃ

উদ্ভিদের বর্ধিষ্ণু অঞ্চলে ফুল ও পাতার কুড়ি, অঙ্কুরিত বীজ, মূল ও কাণ্ডের অগ্রভাগ এ শ্বসন ক্রিয়ার হার বেশি থাকে।