Предыдущие главы курса

- 1 Введение.
- 2 Предел числовой последовательности.
- 3 Предел функции. Непрерывность функции.
- 4 Дифференциальное исчисление функций одной переменной.
- 5 Интегральное исчисление функций одной переменной.
- 6 Элементы общей топологии и функционального анализа.
- 7 Дифференциальное исчисление функций многих переменных.
- 8 Числовые ряды.
- 9 Функциональные последовательности и ряды.
- 10 Степенные ряды.
- 11 Интегралы, зависящие от параметра.
- 12 Ряды Фурье и преобразование Фурье.

распределены на 3 части, а именно, 1 часть включает главы 1-4, вторая часть - 5-7 и третья часть - 8-12.

- 13 Двойной интеграл.
- 13.1 Определение двойного интеграла для прямоугольной области. Необходимое условие интегрируемости.

Пусть функция двух переменных f(x,y) определена на прямоугольнике $R \equiv \{(x;y): a \leq x \leq b, c \leq y \leq d\}$. Разобьем отрезки [a;b] и [c;d]

следующим образом

$$a = x_0 < x_1 < x_2 < \ldots < x_n = b, \ \Delta x_i = x_i - x_{i-1},$$

$$c = y_0 < y_1 < y_2 < \ldots < y_k = d, \ \Delta y_i = y_i - y_{i-1}.$$

Этим разбиениям соответствует разбиение T прямоугольника R на $n \cdot k$ частичных прямоугольников

$$T = \{R_{ij} \equiv \{(x;y) : x_{i-1} \le x \le x_i, y_{j-1} \le y \le y_j\}, i = 1, \dots, n, j = 1, \dots, k\}.$$

Uзмельчением (продолжением) разбиения T называют разбиение T' полученное добавлением новых прямых, параллельных осям координат Ox и Oy. (Обозначают это следующим образом $T \prec T'$.)

Внутри каждого частичного прямоугольника R_{ij} выберем произвольную точку (ξ_i, η_j) . Введем обозначения $\Delta R_{ij} = \Delta x_i \cdot \Delta y_j$ – площадь прямоугольника $R_{ij}, \sqrt{\Delta x_i^2 + \Delta y_j^2}$ – диагональ прямоугольника R_{ij} , величину $\Delta_T = \max_{i,j} \sqrt{\Delta x_i^2 + \Delta y_j^2}$ – называют мелкостью разбиения T прямоугольника R.

Определение. Выражение вида

$$\sigma = \sigma(f, T, \xi, \eta) = \sum_{i=1}^{n} \sum_{j=1}^{k} f(\xi_i, \eta_j) \Delta R_{ij}$$

называют *интегральной суммой Римана* функции f(x,y), соответствующей данному разбиению T прямоугольника R и данному выбору точек (ξ_i,η_j) на частичных прямоугольниках R_{ij} разбиения T.

Определение. Число I называют npedenom интегральных сумм Pumaha при $\Delta_T \to 0$, если для любого $\epsilon > 0$ существует $\delta_\epsilon > 0$ такое, что для любого разбиения T прямоугольника R мелкость которого $\Delta_T < \delta_\epsilon$ и для любого выбора точек (ξ_i, η_j) на R_{ij} выполняется неравенство $|\sigma - I| < \epsilon$.

Если такой предел существует и конечен, то он называется $\partial soйным$ интегралом от функции f(x,y) по прямоугольнику R и обозначается

$$\int_{R} \int f(x,y) dx dy.$$

Функцию f(x,y) в этом случае называют uhmerpupyemoй по Pumahy на прямоугольнике R.

Теорема (необходимое условие интегрируемости). Если функция f(x,y) интегрируема по Риману на прямоугольнике R, то f(x,y) ограничена на R.

Доказательство. (от противного) Пусть f(x,y) неограничена на R, тогда f(x,y) неограничена на некотором частичном прямоугольнике разбиения R_{ij} . В этом случае соответствующую точку (ξ_i, η_j) можно выбрать такой, что слагаемое $f(\xi_i, \eta_j) \Delta R_{ij}$ будет больше любого наперед заданного числа, а значит и вся интегральная сумма σ оказывается неограниченной, т.е. не будет существовать предела при $\Delta_T \to 0$. Теорема доказана.

Пример. Ограниченность лишь необходимое, но не достаточное условие интегрируемости. Действительно, ограниченная функция

$$f(x,y) = \begin{cases} 1, & x - \text{рационально}, \\ 0, & x - \text{иррационально} \end{cases}$$

неинтегрируема по Риману.

13.2 Верхняя и нижняя интегральные суммы Дарбу и их свойства. Понятие верхнего и нижнего интегралов Дарбу.

В предположении ограниченности функции f(x,y) на R составим для данного разбиения T прямоугольника R верхнюю и ниженюю интегральные суммы Дарбу

$$S = \sum_{i=1}^{n} \sum_{j=1}^{k} M_{ij} \Delta R_{ij}, \quad s = \sum_{i=1}^{n} \sum_{j=1}^{k} m_{ij} \Delta R_{ij},$$

где

$$M_{ij} = \sup_{R_{ij}} f(x, y), \quad m_{ij} = \inf_{R_{ij}} f(x, y).$$

Поскольку для любого R_{ij} выполняется неравенство $m_{ij} \leq f(\xi_i, \eta_j) \leq M_{ij}$, то имеет место

Свойство 1. Для любого разбиения T прямоугольника R и для любого выбора точек (ξ_i, η_j) соответствующая интегральная сумма Римана σ удовлетворяет неравенству $s \leq \sigma \leq S$.

Свойство 2. Для любого разбиения T прямоугольника R и для любого $\epsilon > 0$ точки (ξ_i, η_j) можно выбрать так, что соответствующая интегральная сумма Римана σ удовлетворяет неравенству $0 \le S - \sigma < \epsilon$.

Доказательство. Пусть $\epsilon>0$, тогда если T разбивает прямоугольник R на $n\cdot k$ частичных прямоугольников, то точку (ξ_i,η_j) из R_{ij} можно выбрать такой, чтобы

$$M_{ij}-f(\xi_i,\eta_j)<rac{\epsilon}{\Delta_R},$$
 здесь $\Delta_R=(b-a)(d-c)$ — площадь прямоугольника $R,$ тогда

$$0 \le S - \sigma = \sum_{i=1}^{n} \sum_{j=1}^{k} (M_{ij} - f(\xi_i, \eta_j)) \Delta R_{ij} < \frac{\epsilon}{\Delta_R} \sum_{i=1}^{n} \sum_{j=1}^{k} \Delta R_{ij} = \frac{\epsilon}{\Delta_R} \cdot \Delta_R = \epsilon.$$

Свойство 2 доказано.

Аналогичное свойство справедливо для нижних интегральных сумм Дарбу, а именно

Свойство 2а. Для любого разбиения T прямоугольника R и для любого $\epsilon > 0$ точки (ξ_i, η_j) можно выбрать так, что соответствующая интегральная сумма Римана σ удовлетворяет неравенству $0 \le \sigma - s < \epsilon$.

Свойство 3. Пусть T' - измельчение разбиения T прямоугольника R, тогда $s \leq s'$, $S' \leq S$ (т.е. при добавлении новых прямых разбиения R нижняя интегральная сумма Дарбу может лишь увеличиться, а верхняя лишь уменьшиться).

Доказательство. Для ясности изложения ограничимся случаем добавления лишь одной новой вертикальной прямой разбиения $x_{i-1} < x' < x_i$, тогда частичные прямоугольники R_{ij} , $j=1,\ldots,k$ распадаются на пары $R_{ij} \equiv R'_{ij} \cup R''_{ij}$, где $R'_{ij} = [x_{i-1}, x'] \times [y_{j-1}, y_j]$, $R''_{ij} = [x', x_i] \times [y_{j-1}, y_j]$. Пусть

$$M_{ij} = \sup_{R_{ij}} f(x, y), \ m_{ij} = \inf_{R_{ij}} f(x, y), \ M'_{ij} = \sup_{R'_{ii}} f(x, y),$$

$$m'_{ij} = \inf_{R'_{ij}} f(x, y), \ M''_{ij} = \sup_{R''_{ij}} f(x, y), \ m''_{ij} = \inf_{R''_{ij}} f(x, y),$$

тогда

$$M_{ij} \ge M'_{ij}, \ M_{ij} \ge M''_{ij}, \ m_{ij} \le m'_{ij}, \ m_{ij} \le m''_{ij},$$

поэтому

$$\sum_{j=1}^{k} M_{ij} \Delta R_{ij} = \sum_{j=1}^{k} M_{ij} (\Delta R'_{ij} + \Delta R''_{ij}) =$$

$$= \sum_{j=1}^{k} M_{ij} \Delta R'_{ij} + \sum_{j=1}^{k} M_{ij} \Delta R''_{ij} \ge \sum_{j=1}^{k} M'_{ij} \Delta R'_{ij} + \sum_{j=1}^{k} M''_{ij} \Delta R''_{ij},$$

$$\sum_{j=1}^{k} m_{ij} \Delta R_{ij} \le \sum_{j=1}^{k} m'_{ij} \Delta R'_{ij} + \sum_{j=1}^{k} m''_{ij} \Delta R''_{ij}.$$

Отсюда получаем $s \leq s', \ S' \leq S$ Свойство 3 доказано.

Следствие (из свойства 3). Пусть T' - измельчение разбиения T прямоугольника R, полученное добавлением p штук новых прямых, тогда

$$S - S' \leq (M - m)p \cdot \Delta_T \cdot D, \ s' - s \leq (M - m)p \cdot \Delta_T \cdot D,$$

здесь $M = \sup_{R} f(x,y), \ m = \inf_{R} f(x,y), \ \Delta_{T}$ - мелкость разбиения $T, \ D$ - диагональ прямоугольника R.

Доказательство. Доказательство проведем индукцией по p. Пусть p=1, тогда в обозначениях предыдущего доказательства

$$S - S' = \sum_{j=1}^{k} M_{ij} \Delta R_{ij} - \sum_{j=1}^{k} (M'_{ij} \Delta R'_{ij} + M''_{ij} \Delta R''_{ij}).$$

Поскольку $M \geq M_{ij} \geq M'_{ij} \geq m'_{ij} \geq m_{ij} \geq m$, то

$$S - S' \le \sum_{j=1}^{k} M \Delta R_{ij} - \sum_{j=1}^{k} m(\Delta R'_{ij} + \Delta R''_{ij}) = \sum_{j=1}^{k} (M - m) \Delta R_{ij} =$$

$$= (M - m) \sum_{j=1}^{k} \Delta R_{ij} = (M - m) \sum_{j=1}^{k} \Delta x_i \cdot \Delta y_j = (M - m) \Delta x_i \sum_{j=1}^{k} \Delta y_j =$$

$$= (M - m) \Delta x_i (d - c) \le (M - m) \cdot \Delta_T \cdot D,$$

поскольку диагональ прямоугольника больше любой его стороны.

Пусть p=2 и T' получено из T добавлением одной прямой, а T'' получено из T' добавлением другой прямой, тогда $S-S''=(S-S')+(S'-S'')\leq (M-m)\cdot 2\cdot \Delta_T\cdot D$ и т.д. Для сумм s и s' доказательство проводится аналогично.

Следствие из свойства 3 доказано.

Свойство 4. Пусть T' и T'' любые два разбиения прямоугольника R, S', s' и S'', s'' их верхние и нижние интегральные суммы Дарбу, тогда $s' \leq S''$, $s'' \leq S'$ (другими словами любая нижняя интегральная сумма Дарбу не превосходит любую верхнюю интегральную сумму Дарбу).

Доказательство. Рассмотрим третье разбиение T прямоугольника R образованное объединением прямых разбиений T' и T'', т.е. $T' \prec T$, $T'' \prec T$, тогда по свойству 3 $s' \leq s$, $s'' \leq s$, $S' \geq S$, $S'' \geq S$, поэтому $s' \leq s \leq S \leq S''$, $s'' \leq s \leq S \leq S'$. Свойство 4 доказано.

Свойство 5. Множества $\{S\}$ всех верхних интегральных сумм Дарбу $u \{s\}$ всех нижних интегральных сумм Дарбу данной функции f(x,y) для всевозможных разбиений ограничены снизу и сверху соответственно.

Доказательство. Пусть $M=\sup_R f(x,y),\, m=\inf_R f(x,y),$ тогда для любого разбиения T прямоугольника $\stackrel{R}{R}$

$$m \cdot \Delta_R = m \cdot \sum_{i=1}^n \sum_{j=1}^k \Delta R_{ij} = \sum_{i=1}^n \sum_{j=1}^k m \Delta R_{ij} \le \sum_{i=1}^n \sum_{j=1}^k m_{ij} \Delta R_{ij} = s \le 1$$

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{k} M_{ij} \Delta R_{ij} = S \leq \sum_{i=1}^{n} \sum_{j=1}^{k} M \Delta R_{ij} = M \cdot \sum_{i=1}^{n} \sum_{j=1}^{k} \Delta R_{ij} = M \cdot \Delta_{R},$$

итак $m \cdot \Delta_R \leq s \leq S \leq M \cdot \Delta_R$. Свойство 5 доказано.

Согласно свойству 5 числовое множество $\{S\}$ всех верхних интегральных сумм Дарбу ограничено снизу, а значит существует его точная нижняя грань

$$\overline{I} = \inf_{T} \{S\},\,$$

называемая верхним интегралом Дарбу. Соответственно множество $\{s\}$ всех нижних интегральных сумм Дарбу ограничено сверху и поэтому существует его точная верхняя грань

$$\underline{I} = \sup_{T} \{s\},\,$$

называемая нижним интегралом Дарбу.

Поскольку для любых элементов s и S из множеств $\{s\}$ и $\{S\}$ выполняется свойство 4, то неравенство такого же типа справедливо и для интегралов

Дарбу $s \leq \underline{I} \leq \overline{I} \leq S$, $\forall s \in \{s\}$, $\forall S \in \{S\}$, которое доказывается методом от противного.

Введем два понятия

Определение. Числа α и β называются npedenamu верхних и нижених интегральных сумм Дарбу при $\Delta_T \to 0$, если для любого $\epsilon > 0$ существует $\delta_{\epsilon} > 0$ такое, что для любого разбиения T прямоугольника R мелкость которого $\Delta_T < \delta_{\epsilon}$ выполняются неравенства $|S - \alpha| < \epsilon$, $|s - \beta| < \epsilon$.

Записывают это обычным образом $\alpha = \lim_{\Delta_T \to 0} S, \ \beta = \lim_{\Delta_T \to 0} s.$

Лемма (Дарбу).
$$\overline{I} = \alpha = \lim_{\Delta_T \to 0} S, \ \underline{I} = \overline{\beta} = \lim_{\Delta_T \to 0} s.$$

Доказательство. Докажем первое предельное равенство, второе доказывается аналогично. Пусть $\overline{I}=\inf_T\{S\}$, тогда согласно определению нижней грани числового множества: **a**) для любого разбиения T прямоугольника R выполняется неравенство $S_T \geq \overline{I}$ и **б**) для любого $\epsilon > 0$ существует разбиение T_1 прямоугольника R такое, что $S_{T_1} < \overline{I} + \frac{\epsilon}{2}$ или $0 \leq S_{T_1} - \overline{I} < \frac{\epsilon}{2}$.

Введем обозначения: p - количество прямых разбиения T_1 (без учета сторон прямоугольника R), $M = \sup_R f(x,y), m = \inf_R f(x,y), \delta_\epsilon = \frac{\epsilon}{2p(M-m)D}, D$ - диагональ прямоугольника R.

Пусть T произвольное разбиение мелкости $\Delta_T < \delta_\epsilon$ и S_T его верхняя интегральная сумма Дарбу. Построим теперь разбиение $T' = T \cup T_1$. Очевидно разбиение T' является измельчением для T, поэтому для его верхней интегральной суммы Дарбу S' по следствию из свойства 3 имеем оценку

$$0 \le S_T - S' \le (M - m) \cdot p \cdot \Delta_T \cdot D < \frac{\epsilon}{2}.$$

С другой стороны T' является измельчением и для разбиения T_1 , поэтому

$$\overline{I} \leq S' \leq S_{T_1} \Rightarrow 0 \leq S' - \overline{I} \leq S_{T_1} - \overline{I} < \frac{\epsilon}{2},$$

таким образом

$$S_T - \overline{I} = S_T - S' + S' - \overline{I} < \epsilon.$$

Лемма Дарбу доказана.

13.3 Критерии интегрируемости Дарбу и Римана. Классы функций интегрируемых по Риману.

Теорема (критерий интегрируемости Дарбу). Для того, чтобы ограниченная на прямоугольнике R функция f(x,y) была интегрируемой на этом прямоугольнике, необходимо и достаточно, чтобы выполнялось равенство $\overline{I} = I$.

Доказательство. Heo 6xo dumocm b. Пусть f(x,y) интегрируема на прямоугольнике R, тогда существует предел

$$I = \lim_{\Delta_T \to 0} \sigma(f, T, \xi, \eta),$$

т.е. для любого $\epsilon>0$ существует $\delta_{\epsilon}>0$ такое, что для любого разбиения T прямоугольника R мелкость которого $\Delta_T<\delta_{\epsilon}$ и для любого выбора точек (ξ_i,η_j) выполняется неравенство $|\sigma(f,T,\xi,\eta)-I|<\frac{\epsilon}{4}$. По свойству 2 интегральных сумм Дарбу для $\epsilon>0$ и разбиения T можно так осуществить выбор точек (ξ_i',η_j') и (ξ_i'',η_j'') , чтобы выполнялись неравенства

$$S - \sigma(f, T, \xi', \eta') < \frac{\epsilon}{4}, \quad \sigma(f, T, \xi'', \eta'') - s < \frac{\epsilon}{4},$$

здесь S и s интегральные суммы Дарбу для разбиения T, причем очевидно

$$\left|I - \sigma(f, T, \xi', \eta')\right| < \frac{\epsilon}{4}, \quad \left|I - \sigma(f, T, \xi'', \eta'')\right| < \frac{\epsilon}{4}.$$

Отсюда получаем

$$S - s = \left(S - \sigma(f, T, \xi', \eta')\right) + \left(\sigma(f, T, \xi', \eta') - I\right) +$$
$$+ \left(I - \sigma(f, T, \xi'', \eta'')\right) + \left(\sigma(f, T, \xi'', \eta'') - s\right),$$

т.е.

$$|S - s| < \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon.$$

Поскольку для произвольного разбиения T справедливо тройное неравенство $s \leq \underline{I} \leq \overline{I} \leq S$, то $0 \leq \overline{I} - \underline{I} \leq S - s < \epsilon$, а значит в силу произвольности выбора $\epsilon > 0$ получаем $\overline{I} = \underline{I}$.

Достаточность. Пусть $\overline{I}=\underline{I}=I,$ $\overline{I}=\lim_{\Delta_T\to 0}S,$ $\underline{I}=\lim_{\Delta_T\to 0}s,$ тогда для любого $\epsilon>0$ существует $\delta_\epsilon>0$ такое, что для любого разбиения T прямочугольника R мелкость которого $\Delta_T<\delta_\epsilon$ выполняются неравенства

$$0 < \underline{I} - s = I - s < \epsilon, \quad 0 < S - \overline{I} = S - I < \epsilon.$$

Отсюда получаем $I - \epsilon < s, \ S < I + \epsilon$. Поскольку для любого выбора точек (ξ_i, η_j) выполняется неравенство

$$I - \epsilon < s \le \sigma(f, T, \xi, \eta) \le S < I + \epsilon,$$

то $|\sigma(f,T,\xi,\eta)-I|<\epsilon$, т.е. существует предел $I=\lim_{\Delta_T\to 0}\sigma(f,T,\xi,\eta)$, а значит f(x,y) интегрируема на прямоугольнике R. **Теорема доказана.**

Как следствие из критерия Дарбу, получаем следующее утверждение

Теорема (критерий интегрируемости Римана). Для того, чтобы ограниченная на прямоугольнике R функция f(x,y) была интегрируемой на этом прямоугольнике, необходимо и достаточно, чтобы для любого $\epsilon > 0$ существовало разбиение T прямоугольника R такое, что $S - s < \epsilon$.

Доказательство. Необходимость. Пусть f(x,y) интегрируема на прямоугольнике R. При доказательстве критерия Дарбу (необходимости) было показано, что для любого $\epsilon > 0$ существует $\delta_{\epsilon} > 0$ такое, что для любого разбиения T прямоугольника R мелкость которого $\Delta_T < \delta_{\epsilon}$ выполняется неравенство $S - s < \epsilon$. Необходимость доказана.

Выделим теперь некоторые классы функций интегрируемых по Риману.

Теорема 1. Если функция f(x,y) непрерывна (по совокупности переменных) на прямоугольнике R, то f(x,y) интегрируема на этом прямоугольнике R.

Доказательство. Пусть функция f(x,y) непрерывна (по совокупности переменных) на прямоугольнике R, тогда (по теореме Кантора) f(x,y) равномерно непрерывна на R, т.е. для любого $\epsilon>0$ существует $\delta_\epsilon>0$ такое, что для любых двух точек $(x_1,y_1),(x_2,y_2)\in R$ таких что $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}<\delta_\epsilon$ выполняется неравенство

$$|f(x_1, y_1) - f(x_2, y_2)| < \frac{\epsilon}{(b-a)(d-c)}.$$

Рассмотрим произвольное разбиение T прямоугольника R мелкости $\Delta_T < \delta_\epsilon$, тогда для интегральных сумм Дарбу S и s соответствующих этому T справедливо неравенство

$$S - s = \sum_{i=1}^{n} \sum_{j=1}^{k} (M_{ij} - m_{ij}) \Delta R_{ij} < \frac{\epsilon}{(b-a)(d-c)} \cdot (b-a)(d-c) = \epsilon.$$

Отсюда в силу критерия Римана теорема 1 доказана.

Для выделения еще одного класса интегрируемых функций потребуются следующие понятия.

Определение. Элементарной фигурой (множеством) плоскости называется множество точек, представляющее собой объединение конечного числа прямоугольников со сторонами параллельными осям координат Ox и Oy.

Определение. Говорят, что функция f(x,y) обладает в прямоугольнике R (в замкнутой области D) I-свойством, если:

- а) f(x,y) ограничена на R (на D);
- б) для любого $\epsilon > 0$ существует элементарная фигура площади меньшей ϵ , содержащая все точки и линии разрывов функции f(x,y) (т.е. множество точек разрывов функции f(x,y) в R (в D) имеет меру ноль).

Теорема 2. Если функция f(x,y) обладает в прямоугольнике R I-свойством, то f(x,y) интегрируема на этом прямоугольнике R.

Доказательство. Пусть $\epsilon > 0$ произвольно и $M = \sup_{R} f(x,y), m = \inf_{R} f(x,y), M > m$, покроем все линии и точки разрыва элементарной фигурой площади меньше $\epsilon_1 = \frac{\epsilon}{2(M-m)}$. Элементарная фигура разбила R на непересекающиеся сегменты, на каждом из которых функция f(x,y) непрерывна,

а значит и равномерно непрерывна на них, т.е. существует такое $\delta_{\epsilon} > 0$, что если точки $(x_1,y_1),(x_2,y_2)$ принадлежат одному сегменту и

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}<\delta_{\epsilon}$$
, to

$$|f(x_1, y_1) - f(x_2, y_2)| < \frac{\epsilon}{2(b-a)(d-c)}.$$

Рассмотрим разбиения *сегментов* с мелкостью не превосходящей $\delta_{\epsilon} > 0$. Эти разбиения в совокупности с элементарным множеством индуцирует разбиение прямоугольника R, для которого

$$S - s = \sum_{i=1}^{\dots} \sum_{j=1}^{\dots} (M_{ij} - m_{ij}) \Delta R_{ij} = \left(\sum_{i=1}^{\prime} \sum_{j=1}^{\prime} + \sum_{i=1}^{\prime\prime} \sum_{j=1}^{\prime\prime}\right) (M_{ij} - m_{ij}) \Delta R_{ij},$$

здесь $\sum_{i=1}'\sum_{j=1}'$ — суммирование осуществляется по R_{ij} из элементарного множества, $\sum_{i=1}''\sum_{j=1}''$ — суммирование по R_{ij} из сегментов. Рассмотрим эти блоки слагаемых в отдельности

$$\sum_{i=1}^{\prime} \sum_{j=1}^{\prime} (M_{ij} - m_{ij}) \Delta R_{ij} \le (M - m) \sum_{i=1}^{\prime} \sum_{j=1}^{\prime} \Delta R_{ij} < \frac{\epsilon}{2},$$

$$\sum_{i=1}^{"} \sum_{j=1}^{"} (M_{ij} - m_{ij}) \Delta R_{ij} < \frac{\epsilon}{2(b-a)(d-c)} \sum_{i=1}^{'} \sum_{j=1}^{'} \Delta R_{ij} \le \frac{\epsilon}{2},$$

тогда $S-s<\epsilon$, что в силу критерия Римана и означает интегрируемость функции f(x,y) на прямоугольнике R. **Теорема 2 доказана.**

Пример. Пусть $R \equiv [-1;1] \times [-1;1], \ f(x,y) = sgn \sin \frac{1}{y}$. Эта функция имеет конечные скачки по линиям $y_k = \frac{1}{\pi k}$. Зафиксируем произвольное $\epsilon > 0$ и покроем ось Ox полосой ширины $\frac{\epsilon}{2}, \ \left(-\frac{\epsilon}{4} < y < \frac{\epsilon}{4}\right)$ вне ее находится конечное число линий разрыва функции f(x,y) - обозначим их количество n_{ϵ} . Покроем каждую из этих линий полосой ширины $\frac{\epsilon}{2n_{\epsilon}}, \ \left(\frac{1}{\pi k} - \frac{\epsilon}{4n_{\epsilon}} < y < \frac{1}{\pi k} + \frac{\epsilon}{4n_{\epsilon}}\right)$. Тогда все точки и линии разрыва функции f(x,y) покрыты элементарным множеством площади $\frac{\epsilon}{2} + n_{\epsilon} \frac{\epsilon}{2n_{\epsilon}} = \epsilon$, что согласно теореме 2 и означает интегрируемость функции f(x,y) на квадрате $R \equiv [-1;1] \times [-1;1]$.

13.4 Определение двойного интеграла для произвольной области. Свойства двойного интеграла.

Предварительно введем несколько терминов. Простой замкнутой кривой на плоскости называется множество точек M(x,y), координаты которых определяются парой функций $x = \varphi(t), y = \phi(t), t \in [\alpha, \beta]$, удовлетворяющих условиям: а) $\varphi(\alpha) = \varphi(\beta), \phi(\alpha) = \phi(\beta)$; б) при $\alpha < t_1 < t_2 < \beta, \varphi(t_1) \neq \varphi(t_2)$ либо $\phi(t_1) \neq \phi(t_2)$, т.е. разным значениям параметра t соответствуют разные точки кривой. Верхней площадью плоской фигуры, ограниченной простой замкнутой кривой, называется нижняя грань площадей всех многоугольников, содержащих фигуру, а пиженей площадью — верхняя грань площадей всех многоуру называют квадрируемой, если равны между собой ее верхняя и нижняя площади, а их общее значение называют площадью плоской фигуры. Все эти понятия можно перенести без каких-либо изменений на произвольные ограниченные множества точек плоскости. Говорят, что кривая Γ имеет площадь нуль (меру нуль), если для любого $\epsilon > 0$ существует элементарная фигура, содержащая кривую Γ и имеющая площадь меньше ϵ .

Пусть D – замкнутая ограниченная область, граница Γ которой имеет площадь нуль, f(x,y) – ограниченная функция, определенная на D,R – прямоугольник со сторонами параллельными осям координат, содержащий область D. Определим в R новую функцию по правилу

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in D, \\ 0, & (x,y) \in R \setminus D. \end{cases}$$

Определение. Функцию f(x,y) называют *интегрируемой* в области D, если F(x,y) интегрируема на прямоугольнике R, при этом число $I=\int_R\int F(x,y)dxdy$ называют $\partial soйным$ интегралом от функции f(x,y) по области D и обозначают

$$I = \int_{D} \int f(x, y) dx dy = \int_{R} \int F(x, y) dx dy.$$

Из этого определения вытекает следующая

Лемма (геометрический смысл двойного интеграла). Пусть $f(x,y) \geq 0$ на D и обладает I-свойством на D, тогда значение интеграла $\int_D \int f(x,y) dx dy$ равно объему тела ограниченного поверхностью z = f(x,y), цилиндрической поверхностью c направляющей ∂D и плоскостью $X \circ Y$.

Доказательство. Пусть $D \subset R$, осуществим разбиение R, тогда верхние интегральные суммы Дарбу представляют собой сумму объемов параллелепипедов полностью содержащую в себе тело, а нижние интегральные суммы Дарбу — сумму объемов параллелепипедов либо полностью содержащихся внутри тела, либо "выступающих" за его пределы, к последним относятся те, у которых основание R_{ij} содержит часть границы ∂D , или точки, или линии разрыва функции f(x,y), но в силу I-свойства суммы этих объемов не превосходит $M \cdot \epsilon$, $M = \sup_R f(x,y)$. Интегрируемость F(x,y) следует из I-свойства этой функции, т.к. к линиям разрыва функции f(x,y) в D добавилась граница области ∂D , а значит двойной интеграл $\int_D \int f(x,y) dx dy$ существует и равен общему пределу верхних и нижних интегральных сумм Дарбу, геометрический смысл которых описан выше. Лемма доказана.

Следствие 1. Значение интеграла $\int_D \int dxdy$ равно площади D.

Следствие 2. Если функция f(x,y) интегрируема в ограниченной квадрируемой области на D, T - разбиение области D, R_{ij}^* - прямоугольники разбиения целиком содержащиеся в D, тогда интегральные суммы

$$\sum_{R_{ij}^*} f(\xi_i, \eta_j) \Delta R_{ij}, \quad \sum_{R_{ij}^*} m_{ij} \Delta R_{ij}, \quad \sum_{R_{ij}^*} M_{ij} \Delta R_{ij},$$

 $npu \ \Delta_T \to 0 \$ имеют общий предел равный $\int_D \int f(x,y) dx dy$.

Доказательство. Так как граница области D имеет меру нуль, то рассматриваемые суммы отличаются от обычных сумм Римана и Дарбу отсутствием слагаемых по квадратам, имеющим общие точки с границей области D, причем сумма отсутствующих слагаемых по модулю не превосходит величины $M \cdot \epsilon$, $M = \sup_{R} f(x,y)$, где $\epsilon > 0$ суммарная площадь квадратов покрывающих границу области ∂D . Следствие 2 доказана.

Теорема. Если функция f(x,y) обладает I-свойством в области D, то

она интегрируема в этой области.

Доказательство. Функция F(x,y) обладает I-свойством, т.к. ее множество точек и линий разрыва состоит из объединения такого множества функции f(x,y) и границы области ∂D , имеющей нулевую меру. Поэтому согласно теореме 2 предыдущего параграфа F(x,y) интегрируема на R, т.е. f(x,y) интегрируема на R. Теорема доказана.

Следствие 1. Если функция f(x,y) обладает I-свойством в области D, а функция g(x,y) ограничена и совпадает с f(x,y) всюду на D, за исключением множества точек меры нуль, то g(x,y) также интегрируема на D и

$$\int_{D} \int g(x,y) dx dy = \int_{D} \int f(x,y) dx dy.$$

Замечание. В сформулированном определении интегрируемости функции по области имеется некоторый произвол, а именно, зависимость от выбранной системы координат и выбора прямоугольника R, поэтому необходимо доказать независимость значения двойного интеграла от такого выбора. Доказывается это с использованием следующего (более общего) определения двойного интеграла.

Пусть D — замкнутая ограниченная область с границей ∂D имеющей площадь (меру) нуль. Разобьем область D при помощи конечного числа произвольных кривых площади нуль на конечное число n частичных областей D_1, D_2, \ldots, D_n . Каждая из частичных областей D_i имеет границу меры нуль и поэтому квадрируема, пусть ΔD_i — ее площадь, $(\xi_i, \eta_i) \in D_i$, число

$$\tilde{\sigma} = \tilde{\sigma}(f, T, \xi, \eta) = \sum_{i=1}^{n} \sum_{j=1}^{k} f(\xi_i, \eta_j) \Delta D_i$$

называют интегральной суммой Римана функции f(x,y), соответствующей данному разбиению T области D и данному выбору точек (ξ_i,η_i) на частичных областях D_i . Диаметром разбиения T (или его мелкостью) называют

величину

$$\tilde{\Delta}_T = \max_{1 \le i \le n} \sup_{(x_1, y_1), (x_2, y_2) \in D_i} \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.$$

В этих терминах дадим общее определение

Определение. Число \tilde{I} называют пределом интегральных сумм Римана $\tilde{\sigma}$ при $\tilde{\Delta}_T \to 0$, если для любого $\epsilon > 0$ существует $\delta_\epsilon > 0$ такое, что для любого разбиения T области D на частичные области D_i , мелкость которого $\tilde{\Delta}_T < \delta_\epsilon$ и для любого выбора точек (ξ_i, η_i) на D_i выполняется неравенство $|\tilde{\sigma} - \tilde{I}| < \epsilon$, это число называют двойным интегралом от функции f(x, y) по области D, а саму функцию интегрируемой по Риману на этой области.

Теорема. Сформулированные определения интегрируемости эквивалентны.

Доказательство. Здесь докажем только, что из общего определения следует первое. Пусть f(x,y) интегрируема в области D согласно общему определению и ее двойной интеграл равен I. Заключим область D в прямоугольник R, введем на R функцию F(x,y), осуществим разбиение T прямоугольника R на частичные прямоугольники и составим для F(x,y) интегральную сумму $\sigma(F,T,\xi,\eta)$. Рассмотрим теперь интегральную сумму $\tilde{\sigma}(f,T,\xi,\eta)$ для f(x,y) (соответствующую тому же разбиению T). Суммы $\sigma(F,T,\xi,\eta)$ и $\tilde{\sigma}(f,T,\xi,\eta)$ отличаются слагаемыми, соответствующими частичным прямоугольникам разбиения, имеющими общие точки с границей области ∂D площади (меры) нуль, т.е. в силу ограниченности f(x,y) их отличие не превосходит величины $M \cdot \epsilon$, $M = \sup_R f(x,y)$, где $\epsilon > 0$ суммарная площадь частичных прямоугольников покрывающих границу области ∂D . Таким образом суммы $\sigma(F,T,\xi,\eta)$ и $\tilde{\sigma}(f,T,\xi,\eta)$ имеют общий предел I при стремлении к нулю мелкости разбиения, что и означает интегрируемость функции f(x,y) в смысле первого определения. Теорема доказана.

Свойства двойного интеграла.

Свойства двойного интеграла аналогичны свойствам однократного интеграла. Приведем их опустив доказательства.

Свойство 1 (аддитивность). Если функция f(x,y) интегрируема в области D и область D при помощи кривой Γ меры (площади) нуль разбивается на две связные области и не имеющие общих внутренних точек области D_1 и D_2 , то функция f(x,y) интегрируема на кажедой из областей D_1 и D_2 , причем

$$\int_{D} \int f(x,y) dx dy = \int_{D_1} \int f(x,y) dx dy + \int_{D_2} \int f(x,y) dx dy.$$

Справедливо и обратное утверждение: из интегрируемости функции f(x,y) в каждой из областей D_1 и D_2 следует ее интегрируемость в области D и справедливость приведенной формулы.

Свойство 2 (линейность). Если функции f(x,y) и g(x,y) интегрируемы в области D, α и β – произвольные вещественные числа, то функция $\alpha f(x,y) + \beta g(x,y)$ интегрируема в области D, причем

$$\int_{D} \int (\alpha f(x,y) + \beta g(x,y)) dx dy = \alpha \int_{D} \int f(x,y) dx dy + \beta \int_{D} \int g(x,y) dx dy.$$

Свойство 3. Если функции f(x,y) и g(x,y) интегрируемы в области D, то их произведение $f(x,y) \cdot g(x,y)$ интегрируемо в области D.

Свойство 4. Если функции f(x,y) и g(x,y) интегрируемы в области D и в этой области выполняется неравенство $f(x,y) \leq g(x,y)$, то

$$\int_{D} \int f(x,y) dx dy \le \int_{D} \int g(x,y) dx dy.$$

Свойство 5. Если функция f(x,y) интегрируема в области D, то в этой области интегрируема функция |f(x,y)| и выполняется неравенство, причем

$$\left| \int_{D} \int f(x,y) dx dy \right| \leq \int_{D} \int |f(x,y)| dx dy.$$

Пример. Обратное утверждение не верно. Действительно, функция

$$f(x,y) = \begin{cases} 1, & x - \text{рационально}, \\ -1, & x - \text{иррационально} \end{cases}$$

не интегрируема, тогда как $|f(x,y)| \equiv 1$ интегрируема по любой области D.

Свойство 6. Если функция f(x,y) интегрируема в области D, функция g(x,y) ограничена и совпадает с f(x,y) всюду в области D, за исключением множества точек меры (площади) нуль, то g(x,y) интегрируема в области D.

Свойство 7 (теорема о среднем значении). Если функции f(x,y) и g(x,y) интегрируемы в области D, функция g(x,y) неотрицательна (неположительна) всюду в области D, $M = \sup_{D} f(x,y)$, $m = \inf_{D} f(x,y)$, то найдется число $\mu \in [m,M]$ такое, что выполняется равенство

$$\int_{D} \int f(x,y) \cdot g(x,y) dx dy = \mu \int_{D} \int g(x,y) dx dy.$$

Если при этом функция f(x,y) непрерывна в связной области D, то в области найдется такая точка (ξ,η) , что $\mu=f(\xi,\eta)$.

13.5 Сведение двойного интеграла к повторному.

Для вычисления двойных интегралов естественно используют не определение. Для этого очень эффективным является его сведение к повторному (однократному) интегралу. Как и выше рассмотрим случаи прямоугольной и произвольной областей.

Теорема 1. Если функция f(x,y) интегрируема в прямоугольнике $R \equiv \{(x;y): a \leq x \leq b, \ c \leq y \leq d\}$ и при любом $x \in [a,b]$ существует однократный интеграл (зависящий от параметра) $\mathcal{I}(x) = \int\limits_{c}^{d} f(x,y) dy$, тогда существует (повторный) интеграл

$$\int_{a}^{b} \mathcal{I}(x)dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y)dy \right) dx$$

и справедливо равенство

$$\int_{R} \int f(x,y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx.$$

Доказательство. Осуществим разбиение прямоугольника на частичные $R_{ij}, i=1,\ldots,n, j=1,\ldots,k,$ Δ_T – мелкость разбиения, $m_{ij}=\inf_{R_{ij}}f(x,y),$ $M_{ij}=\sup_{R_{ij}}f(x,y),$ тогда для любого $(x,y)\in R_{ij}$ выполняется неравенство $m_{ij}\leq f(x,y)\leq M_{ij},$ поэтому для любого $\xi_i\in[x_{i-1},x_i]$ выполнено неравенство

$$m_{ij}\Delta y_j \le \int_{y_{j-1}}^{y_j} f(\xi_i, y) dy \le M_{ij}\Delta y_j,$$

из которого, в свою очередь, следует оценка

$$s = \sum_{i=1}^{n} \sum_{j=1}^{k} m_{ij} \Delta x_i \Delta y_j \le \sum_{i=1}^{n} \sum_{j=1}^{k} \int_{y_{i-1}}^{y_j} f(\xi_i, y) dy \Delta x_i \le \sum_{i=1}^{n} \sum_{j=1}^{k} M_{ij} \Delta x_i \Delta y_j = S,$$

где

$$\sum_{i=1}^{n} \sum_{j=1}^{k} \int_{y_{j-1}}^{y_j} f(\xi_i, y) dy \Delta x_i = \sum_{i=1}^{n} \int_{c}^{d} f(\xi_i, y) dy \Delta x_i = \sum_{i=1}^{n} \mathcal{I}(\xi_i) \Delta x_i$$

интегральная сумма Римана функции $\mathcal{I}(x)$. В силу интегрируемости функции f(x,y) в прямоугольнике существуют и равны пределы интегральных сумм Дарбу при $\Delta_T \to 0$, т.е.

$$\lim_{\Delta_T \to 0} s = \lim_{\Delta_T \to 0} S = \int_R \int f(x, y) dx dy.$$

Поэтому существует предел интегральной суммы Римана функции $\mathcal{I}(x)$ равный этому же значению, т.е. справедливо равенство

$$\int_{R} \int f(x,y) dx dy = \lim_{\Delta_{T} \to 0} \sum_{i=1}^{n} \mathcal{I}(\xi_{i}) \Delta x_{i} = \int_{a}^{b} \mathcal{I}(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x,y) dy \right) dx.$$

Теорема 1 доказана.

Теорема 2. Пусть область D проецируется на ось Ox в отрезок $[x_1, x_2]$, любая прямая x = const, $x \in [x_1, x_2]$ параллельная оси Oy пересекает область D по отрезку $[y_1(x), y_2(x)]$, функция f(x, y) интегрируема в области

 $D\ u\ d$ ля любого $x\in [x_1,x_2]\ cyществует\ однократный интеграл <math>\int\limits_{y_1(x)}^{y_2(x)}f(x,y)dy,$ тогда существует (повторный) интеграл $u\ cnpased$ ливо равенство

$$\int_{D} \int f(x,y) dx dy = \int_{x_1}^{x_2} \left(\int_{y_1(x)}^{y_2(x)} f(x,y) dy \right) dx.$$

Доказательство. Пусть прямоугольник R содержит область D, введем функцию

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in D, \\ 0, & (x,y) \in R \setminus D. \end{cases}$$

Для этой функции выполнены все условия теоремы 1, поэтому

$$\int_{D} \int f(x,y) dx dy \stackrel{\text{def}}{=} \int_{R} \int F(x,y) dx dy =$$

$$= \int_{x_{1}}^{x_{2}} \left(\int_{c}^{d} F(x,y) dy \right) dx = \int_{x_{1}}^{x_{2}} \left(\int_{y_{1}(x)}^{y_{2}(x)} f(x,y) dy \right) dx.$$

Теорема 2 доказана.

13.6 Замена переменных в двукратном интеграле.

Пусть D квадрируемая область плоскости и функция f(x,y) интегрируема в области D. Предположим, что от переменных (x,y) требуется перейти к новым переменным (x_1,y_1) с помощью обратимого преобразования $\Psi:(x_1,y_1)\to(x,y)$, задаваемого координатными функциями

$$x = x(x_1, y_1), \quad y = y(x_1, y_1).$$
 (1)

Обозначим через D' область плоскости, которая этим преобразованием переводится в D.

Теорема. Пусть выполнены следующие условия:

а) преобразование $\Psi: D' \to D$, задаваемого координатными функциями (1), является взаимнооднозначным,

- б) координатные функции (1) являются гладкими, т.е. $x(x_1, y_1), y(x_1, y_1) \in C^1(D'),$
- в) отображение Ψ локально обратимо (см. §7.7), т.е. $\det \frac{\partial(x,y)}{\partial(x_1,y_1)} \neq 0$, тогда для любой интегрируемой в области D функции f(x,y) справедлива формула замены переменных

$$\int_{D} \int f(x,y) dx dy = \int_{D'} \int f(x(x_1, y_1), y(x_1, y_1)) \left| \det \frac{\partial(x, y)}{\partial(x_1, y_1)} \right| dx_1 dy_1.$$
 (2)

Доказательство. Доказательство проведем в два этапа. В начале докажем формулу (2) для линейного преобразования, а затем в общем случае.

1 (линейный случай). Пусть преобразование (1) линейное невырожденное, т.е. координатные функции (1) имеют вид

$$\begin{vmatrix}
x = a_{11}x_1 + a_{12}y_1 \\
y = a_{21}x_1 + a_{22}y_1
\end{vmatrix}, \quad \begin{vmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{vmatrix} \neq 0, \tag{3}$$

тогда якобиан отображения (3) совпадает с его матрицей

$$T = \frac{\partial(x,y)}{\partial(x_1,y_1)} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \det T \neq 0.$$

Наряду с T рассмотрим элементарные преобразования, задаваемые матрицами,

$$T_{12} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad T_{21} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \quad \det T_{12} = \det T_{21} = 1 \neq 0$$

И

$$T_1^{\lambda} = \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix}, \quad T_2^{\lambda} = \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}, \quad \lambda \neq 0, \quad \det T_1^{\lambda} = \det T_2^{\lambda} = \lambda \neq 0.$$

Известно, что всякое невырожденное линейное преобразование T представимо (вообще говоря не единственным образом) в виде конечной суперпозиции элементарных преобразований указанного типа (см., например, А.И. Кострикин "Введение алгебру", М., Наука, 1977, Глава 2, $\S4$, следствие к теореме 5, стр. 100), поэтому достаточно доказать теорему для элементарных преобразований.

Лемма 1. Пусть функция f(x,y) непрерывна в замкнутой области \overline{D} , тогда для преобразований T_{ij} и T_i^{λ} формула (2) справедлива.

Доказательство. Пусть $\overline{D}\subset R\equiv\{(x;y):a\leq x\leq b,\ c\leq y\leq d\}\equiv[a,b]\times[c,d]$ и

$$F(x,y) = \begin{cases} f(x,y), & (x,y) \in \overline{D}, \\ 0, & (x,y) \in R \setminus \overline{D}, \end{cases}$$

тогда

$$\int_{D} \int f(x,y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} F(x,y) dy \right) dx = \left\{ \begin{array}{c} \text{для } T_{2}^{\lambda}, \ \lambda > 0, \\ x = x_{1}, \\ y = \lambda y_{1} \end{array} \right\} =$$

$$= \int_{a}^{b} \left(\int_{\frac{c}{\lambda}}^{\frac{d}{\lambda}} F(x_{1}, \lambda y_{1}) \lambda dy_{1} \right) dx_{1} = \lambda \int_{a}^{b} \left(\int_{\frac{c}{\lambda}}^{\frac{d}{\lambda}} F(x_{1}, \lambda y_{1}) dy_{1} \right) dx_{1} =$$

$$= \lambda \int_{D'} \int f(x_{1}, \lambda y_{1}) dy_{1} dx_{1}.$$

Здесь $\lambda>0$ — модуль определителя якобиана преобразования T_2^λ . Преобразование $T_2^\lambda:R'\to R$ переводит прямоугольник $R'\equiv [a,b]\times \left[\frac{c}{\lambda},\frac{d}{\lambda}\right]$ в R, осуществляя растяжение вдоль оси Oy с коэффициентом растяжения $\lambda>0$. Если $\lambda<0$, то преобразование T_2^λ осуществляет растяжение вдоль оси Oy с коэффициентом растяжения $|\lambda|$ в суперпозиции с осевой симметрией относительно оси Ox. В этом случае после перестановки пределов интегрирования во внутреннем интеграле, множитель $(-\lambda)$ совпадет с модулем определителя якобиана преобразования T_2^λ . Для преобразования T_1^λ проводятся аналогичные рассуждения.

Для элементарных преобразований второго типа имеем

$$\int_{D} \int f(x,y) dx dy = \int_{a}^{b} \left(\int_{c}^{d} F(x,y) dy \right) dx = \begin{cases} \text{для } T_{21}, \\ x = x_{1}, \\ y = x_{1} + y_{1} \end{cases} =$$

$$= \int_{a}^{b} \left(\int_{c-x_{1}}^{d-x_{1}} F(x_{1}, x_{1} + y_{1}) \lambda dy_{1} \right) dx_{1} = \int_{D'} \int f(x_{1}, x_{1} + y_{1}) dy_{1} dx_{1},$$

т.е. формула (2) справедлива и для элементарных преобразований второго типа. Здесь преобразование $T_{21}: R' \to R$ переводит параллелограмм R', ограниченный прямыми $x_1 = a, x_1 = b, x_1 + y_1 = c, x_1 + y_1 = d$, в прямо-угольник R. Итак, для элементарных преобразований формула (2) полностью доказана. Лемма 1 доказана.

Отсюда, как следствие, вытекает

Лемма 2. Для любого невырожденного линейного преобразования T и непрерывной функции f(x,y) формула (2) справедлива.

Действительно, поскольку формула (2) справедлива для элементарных преобразований и любое невырожденное линейное преобразование T представимо в виде суперпозиции элементарных, то формула (2) справедлива и для T, т.к. модуль определителя якобиана $|\det T|$ равен (в силу теоремы о дифференцировании сложной функции см. §7.2) произведению модулей якобианов элементарных преобразований.

Следствие. Если область D квадрируема и T произвольное невырожденное линейное преобразование, то площади области D и ее образа T(D) связаны равенством $S_{T(D)} = |\det T|S_D$.

Для доказательства необходимо подставить в формулу (2) $f(x,y) \equiv 1$ и вспомнить геометрический смысл двойного интеграла (см. следствие 1 из леммы §13.4).

2 (нелинейный случай). Далее будем обозначать через:

 $J_{\Psi}(x_1,y_1) = \frac{\partial(x,y)}{\partial(x_1,y_1)}$ якобиан отображения (1) в точке (x_1,y_1) ,

$$\left\| \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} \right\| = \|(x_1, y_1)\| = \max(|x_1|, |y_1|) - \text{норму вектора},$$

 $||A|| = \max(|a_{11}| + |a_{12}|, |a_{21}| + |a_{22}|)$ – норму матрицы, которые связаны между собой неравенством

$$\left\| A \left(\begin{array}{c} x_1 \\ y_1 \end{array} \right) \right\| \le \|A\| \cdot \|(x_1, y_1)\|.$$

Лемма 3 (о площади образа). Пусть выполнены условия теоремы, тогда

а) площадь образа $S_{\Psi(C)}$ квадрата $C \subset D'$ с центром в точке (x_0, y_0) при отображении Ψ удовлетворяет неравенству

$$S_{\Psi(C)} \le \left(\max_{(x_1, y_1) \in C} \|J_{\Psi}(x_1, y_1)\| \right)^2 \cdot S_C;$$

б) площадь образа $S_{\Psi(G)}$ квадрируемой области $G \subset D'$ при отображении Ψ удовлетворяет неравенству

$$S_{\Psi(G)} \le \int_G \int |\det J_{\Psi}(x_1, y_1)| \, dx_1 dy_1.$$

Доказательство. а) Пусть длина стороны квадрата $C \subset D'$ равна 2l, тогда для любой точки $(x_1,y_1) \in C$ выполняется неравенство $\|(x_1,y_1) - (x_0,y_0)\| \le l$. В силу формулы Тейлора для функций многих переменных с остаточным членом в форме Лагранжа (см. §7.5) имеем для приращений координатных функций преобразования Ψ следующее представление

$$x(x_{1}, y_{1}) - x(x_{0}, y_{0}) = dx(\bar{c})\Big|_{d\bar{x} = \Delta \bar{x}} = \frac{\partial x(\bar{c})}{\partial x_{1}}(x_{1} - x_{0}) + \frac{\partial x(\bar{c})}{\partial y_{1}}(y_{1} - y_{0}),$$

$$y(x_{1}, y_{1}) - y(x_{0}, y_{0}) = dy(\bar{c}_{1})\Big|_{d\bar{x} = \Delta \bar{x}} = \frac{\partial y(\bar{c}_{1})}{\partial x_{1}}(x_{1} - x_{0}) + \frac{\partial y(\bar{c}_{1})}{\partial y_{1}}(y_{1} - y_{0}),$$

где

$$\bar{c} = (x_0, y_0) + \theta((x_1, y_1) - (x_0, y_0)),$$

$$\bar{c}_1 = (x_0, y_0) + \theta_1((x_1, y_1) - (x_0, y_0)), \quad 0 < \theta, \theta_1 < 1.$$

Отсюда получаем оценки

$$|x(x_1, y_1) - x(x_0, y_0)| \le \left(\left| \frac{\partial x(\bar{c})}{\partial x_1} \right| + \left| \frac{\partial x(\bar{c})}{\partial y_1} \right| \right) \cdot l \le ||J_{\Psi}(\bar{c})|| \cdot l \le \max_{C} ||J_{\Psi}|| \cdot l,$$

$$|y(x_1, y_1) - y(x_0, y_0)| \le \left(\left| \frac{\partial y(\bar{c}_1)}{\partial x_1} \right| + \left| \frac{\partial y(\bar{c}_1)}{\partial y_1} \right| \right) \cdot l \le ||J_{\Psi}(\bar{c}_1)|| \cdot l \le \max_{C} ||J_{\Psi}|| \cdot l.$$
Taking a fraction

Таким образом

$$\|\Psi(x_1,y_1) - \Psi(x_0,y_0)\| =$$

$$= \max(|x(x_1, y_1) - x(x_0, y_0)|, |y(x_1, y_1) - y(x_0, y_0)|) \le \max_{C} ||J_{\Psi}|| \cdot l,$$

т.е. если точка (x_1, y_1) находится в квадрате C с центром в точке (x_0, y_0) , то ее образ точка $\Psi(x_1, y_1)$ находится в квадрате с центром в точке $\Psi(x_0, y_0)$

и ребром $2l \cdot \max_{C} \|J_{\Psi}\|$. Но множество $\Psi(C)$ вложено в этот новый квадрат, поэтому его площадь удовлетворяет неравенству

$$S_{\Psi(C)} \leq S_{\text{HOB. KBaJp.}} = 4l^2 \left(\max_C \|J_{\Psi}(x_1, y_1)\| \right)^2 = \left(\max_C \|J_{\Psi}(x_1, y_1)\| \right)^2 \cdot S_C.$$

б) Пусть C квадрат в D' и T – произвольное невырожденное линейное преобразование, тогда для его образа $\Psi(C)$ справедливо представление $\Psi(C) = TT^{-1}\Psi(C)$, поэтому в силу следствия из леммы 2 и первой части доказываемой леммы 3 последовательно получаем

$$S_{\Psi(C)} = S_{TT^{-1}\Psi(C)} = |\det T| S_{T^{-1}\Psi(C)} \le |\det T| \left(\max_{C} ||J_{T^{-1}\Psi}(x_1, y_1)|| \right)^2 \cdot S_C =$$

$$= |\det T| \left(\max_{C} ||J_{T^{-1}} \cdot J_{\Psi}(x_1, y_1)|| \right)^2 \cdot S_C = |\det T| \left(\max_{C} ||T^{-1} \cdot J_{\Psi}(x_1, y_1)|| \right)^2 \cdot S_C.$$

Осуществим разбиение плоскости квадратами со стороной h — достаточно малой, чтобы в области $G \subset D'$ могло бы уместиться некоторое (конечное) количество таких квадратов. Обозначим их $C_1, C_2, \ldots, C_{m(h)}, G_h = \bigcup_{i=1}^{m(h)} C_i \subset G \subset D'$. В каждом таком квадрате выберем точку $(\tilde{x}_i, \tilde{y}_i) \in C_i$ и запишем для каждого квадрата C_i полученное выше неравенство, в котором положим $T \equiv J_{\Psi}(\tilde{x}_i, \tilde{y}_i)$, получим

$$S_{\Psi(C_i)} \le |\det J_{\Psi}(\tilde{x}_i, \tilde{y}_i)| \cdot \left(\max_{C_i} ||J_{\Psi}^{-1}(\tilde{x}_i, \tilde{y}_i) \cdot J_{\Psi}(x_1, y_1)|| \right)^2 \cdot S_{C_i}.$$

По условиям теоремы элементы якобиана $J_{\Psi}(x_1,y_1)$ являются функциями непрерывными по совокупности переменных в области D', поэтому непрерывными в G будут как определитель $\det J_{\Psi}(x_1,y_1)$, так и функция $\|J_{\Psi}^{-1}(\tilde{x}_i,\tilde{y}_i)\cdot J_{\Psi}(x_1,y_1)\|^2$. Поскольку $\|J_{\Psi}^{-1}(\tilde{x}_i,\tilde{y}_i)\cdot J_{\Psi}(\tilde{x}_i,\tilde{y}_i)\|^2 = \|I\|^2 = 1$, то для любого $\epsilon>0$ найдется $\delta_{\epsilon}>0$ такое, что для любой точки $(x_1,y_1)\in G$ удовлетворяющей условию $\sqrt{(x_1-\tilde{x}_i)^2+(y_1-\tilde{y}_i)^2}<\delta_{\epsilon}$ выполняются неравенства $\leq \|J_{\Psi}^{-1}(\tilde{x}_i,\tilde{y}_i)\cdot J_{\Psi}(x_1,y_1)\|^2 < 1+\epsilon \ \forall i=1,\ldots,m(h)$. Выбирая теперь $h<\delta_{\epsilon}$ для всех $i=1,\ldots,m(h)$ получаем $\max_{C_i} \|J_{\Psi}^{-1}(\tilde{x}_i,\tilde{y}_i)\cdot J_{\Psi}(x_1,y_1)\|^2 \leq 1+\epsilon$ или $S_{\Psi(C_i)}\leq |\det J_{\Psi}(\tilde{x}_i,\tilde{y}_i)|\cdot (1+\epsilon)\cdot S_{C_i}$. Просуммировав все эти неравенства по

 $i=1,\ldots,m(h)$, получим

$$S_{\Psi(G_h)} \le (1+\epsilon) \sum_{i=1}^{m(h)} |\det J_{\Psi}(\tilde{x}_i, \tilde{y}_i)| \cdot S_{C_i},$$

но при h o 0 $S_{\Psi(G_h)} o S_{\Psi(G)}$ и

$$\sum_{i=1}^{m(h)} |\det J_{\Psi}(\tilde{x}_i, \tilde{y}_i)| \cdot S_{C_i} \to \int_G \int |\det J_{\Psi}(x_1, y_1)| \, dx_1 dy_1.$$

Лемма 3 доказана.

Приступим теперь к доказательству собственно теоремы.

Лемма 4. Если выполнены условия теоремы и $f(x,y) \ge 0$, то формула (2) справедлива.

Доказательство. Осуществим разбиение плоскости квадратами со стороной h – достаточно малой, чтобы в области D уместилось некоторое (конечное) количество таких квадратов $C_1, C_2, \ldots, C_{m(h)}$. Пусть $G_i \equiv \Psi^{-1}(C_i) \subset D'$ их прообразы при отображении Ψ . Для каждого из квадратов запишем неравенство из леммы 3

$$S_{C_i} \le \int_{G_i} \int |\det J_{\Psi}(x_1, y_1)| \, dx_1 dy_1.$$

Пусть $0 \le m_i = \inf_{C_i} f(x, y) = \inf_{G_i} f(\Psi(x_1, y_1))$, тогда

$$\sum_{i=1}^{m(h)} m_i \cdot S_{C_i} \le \sum_{i=1}^{m(h)} m_i \cdot \int_{G_i} \int |\det J_{\Psi}(x_1, y_1)| \, dx_1 dy_1.$$

Но по теореме о среднем для двойного интеграла (см. свойство 7 из §13.4)

$$\int_{G_i} \int f(\Psi(x_1, y_1)) |\det J_{\Psi}(x_1, y_1)| dx_1 dy_1 = \mu_i \int_{G_i} \int |\det J_{\Psi}(x_1, y_1)| dx_1 dy_1,$$

где $0 \le m_i \le \mu_i \le M_i = \sup_{C_i} f(x,y) = \sup_{G_i} f(\Psi(x_1,y_1))$, поэтому

$$\sum_{i=1}^{m(h)} m_i \cdot S_{C_i} \le \sum_{i=1}^{m(h)} \mu_i \cdot \int_{G_i} \int |\det J_{\Psi}(x_1, y_1)| \, dx_1 dy_1 =$$

$$= \sum_{i=1}^{m(h)} \int_{G_i} \int f(\Psi(x_1, y_1)) |\det J_{\Psi}(x_1, y_1)| dx_1 dy_1.$$

По следствию 2 из леммы о геометрическом смысле двойного интеграла (см. $\S13.4$) при $h \to 0$

$$\sum_{i=1}^{m(h)} m_i \cdot S_{C_i} \to \int_D \int f(x, y) dx dy,$$

$$\sum_{i=1}^{m(h)} \int_{G_i} \int f(\Psi(x_1, y_1)) |\det J_{\Psi}(x_1, y_1)| dx_1 dy_1 \to$$

$$\to \int_{D'} \int f(\Psi(x_1, y_1)) |\det J_{\Psi}(x_1, y_1)| dx_1 dy_1$$

поэтому

$$\int_{D} \int f(x,y) dx dy \le \int_{D'} \int f(x(x_1,y_1),y(x_1,y_1)) \left| \det J_{\Psi}(x_1,y_1) \right| dx_1 dy_1.$$

Поменяв теперь в этих рассуждениях области D и D' ролями и рассмотрев функцию $f(x(x_1,y_1),y(x_1,y_1)) | \det J_{\Psi}(x_1,y_1)|$, получим неравенство обратного знака, что и завершает доказательство формулы (2) для неотрицательной функции. Лемма 4 доказана.

Пусть теперь f(x,y) произвольная интегрируемая на области D функция, а значит в силу необходимого условия интегрируемости ограничена на D, т.е. существует $M \geq 0$ такая, что $|f(x,y)| \leq M$. Рассмотрим 2 вспомогательные неотрицательные функции $f_1(x,y) \equiv M$ и $f_2(x,y) = M - f(x,y) \geq 0$, для которых формула (2) уже доказана в лемме 4, откуда в силу свойства линейности интеграла и получаем формулу (2) для функции $f(x,y) = f_1(x,y) - f_2(x,y)$. Теорема доказана.

Изложенная теория двойного интеграла без каких-либо осложнений и новых идей переносится на случай тройного и n-кратного интегралов.

14 Криволинейные и поверхностные интегралы.

14.1 Определения криволинейных интегралов первого и второго рода.

Рассмотрим на плоскости R^2 (в пространстве R^3) некоторую гладкую кривую L, не имеющую точек самопересечения или участков самоналегания. Предположим, что кривая определяется параметрическими уравнени-

ями $x = \varphi(t), y = \phi(t), (z = \chi(t)), a \le t \le b, \varphi(t), \phi(t), \chi(t) \in C^1[a, b],$ точки $A(\varphi(a), \phi(a))$ и $B(\varphi(b), \phi(b))$ являются ее началом и концом соответственно (в R^3 эти точки естественно имеют 3 координаты).

Пусть на плоской кривой L определены три функции f(x,y), P(x,y), Q(x,y) (на пространственной кривой четыре функции f(x,y,z), P(x,y,z), Q(x,y,z), R(x,y,z)), каждая из которых непрерывна вдоль L.

Осуществим разбиение отрезка [a,b] точками $a=t_0 < t_1 < t_2 < \ldots < t_n=b$, тогда кривая L распадается на частичные дуги $M_0M_1,\ M_1M_2,\ \ldots,\ M_{n-1}M_n,$ где $M_k(x_k,y_k),\ x_k=\varphi(t_k),\ y_k=\phi(t_k)$. Длина дуги $M_{k-1}M_k$ равна

$$\Delta l_k = \int_{t_{k-1}}^{t_k} \sqrt{(\varphi'(t))^2 + (\phi'(t))^2} dt.$$

 \mathcal{A} иаметром разбиения кривой L называют число $\Delta = \max_{1 \leq k \leq n} \Delta l_k$. Выберем на каждой частичной дуге $M_{k-1}M_k$ точку $N_k(\xi_k,\eta_k), \, \xi_k = \varphi(\tau_k), \, \eta_k = \phi(\tau_k),$ $t_{k-1} \leq \tau_k \leq t_k$ и составим интегральные суммы:

$$\sigma_{1} = \sum_{k=1}^{n} f(\xi_{k}, \eta_{k}) \Delta l_{k}, \ \sigma_{2} = \sum_{k=1}^{n} P(\xi_{k}, \eta_{k}) \Delta x_{k}, \ \sigma_{3} = \sum_{k=1}^{n} Q(\xi_{k}, \eta_{k}) \Delta y_{k},$$
$$\Delta x_{k} = x_{k} - x_{k-1}, \ \Delta y_{k} = y_{k} - y_{k-1}.$$

В случае пространственной кривой мы можем составить 4 таких суммы, при этом

$$\Delta l_k = \int_{t_{k-1}}^{t_k} \sqrt{(\varphi'(t))^2 + (\varphi'(t))^2 + (\chi'(t))^2} dt, \ \sigma_4 = \sum_{k=1}^n R(\xi_k, \eta_k, \zeta_k) \Delta z_k.$$

Определение. Числа I_i называют npedenamu интегральных сумм σ_i , i=1,2,3,4 при $\Delta\to 0$, если для любого $\epsilon>0$ существует $\delta_\epsilon>0$ такое, что для любого разбиения кривой L мелкости $\Delta<\delta_\epsilon$ и для любого выбора точек $N_k(\xi_k,\eta_k)$ (или $N_k(\xi_k,\eta_k,\zeta_k)$) выполняется неравенство $|\sigma_i-I_i|<\epsilon$.

Если такие пределы существуют и конечны, то предел $I_1 = \lim_{\Delta \to 0} \sigma_1$ называют криволинейным интегралом первого рода и обозначают

$$\int\limits_{L}f(x,y)dl$$
 или $\int\limits_{AB}f(x,y)dl,$

пределы $I_i = \lim_{\Delta \to 0} \sigma_i$, i=2,3,4 называют криволинейными интегралами второго рода и обозначают

$$\int\limits_{L}P(x,y)dx$$
 или $\int\limits_{AB}P(x,y)dx,$ $\int\limits_{L}Q(x,y)dy$ или $\int\limits_{AB}Q(x,y)dy,$ $\int\limits_{L}R(x,y,z)dz$ или $\int\limits_{AB}R(x,y,z)dz.$

Сумму интегралов

$$\int\limits_{AB}P(x,y)dx+Q(x,y)dy \ \text{ или } \int\limits_{AB}P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz$$

называют общим криволинейными интегралами второго рода.

Замечание 1. Из определения криволинейных интегралов вытекает, что криволинейный интеграл первого рода не зависит от направления обхода кривой AB, а для интеграла второго рода изменение направления обхода кривой приводит к изменению знака, т.е.

$$\int_{AB} P(x,y)dx + Q(x,y)dy = -\int_{BA} P(x,y)dx + Q(x,y)dy,$$

T.K.
$$x_k - x_{k-1} = -(x_{k-1} - x_k), \ y_k - y_{k-1} = -(y_{k-1} - y_k).$$

Замечание 2. Значения криволинейных интегралов не зависят от параметризации кривой, т.к. от нее не зависят интегральные суммы.

Замечание 3. Если вдоль кривой L одна из координат постоянна, например $x=\varphi(t)\equiv Const$, то $\int\limits_L P(x,y)dx=0$, т.к. в этом случае все приращения $\Delta x_k=0$.

Замечание 4. Физически криволинейный интеграл первого рода представляет массу кривой L с линейной плотностью распределения массы вдоль кривой $\rho = f(x,y,z) \geq 0$, общий же интеграл второго рода представляет собой работу силового векторного поля $\vec{a} = (P,Q,R)$ при перемещении точки единичной массы из A в B вдоль кривой L.

Замечание 5. Если кривая L замкнута, т.е. A=B, то для криволинейных интегралов принято использовать обозначения

$$\oint\limits_L f(x,y)dl$$
 или
$$\oint\limits_L P(x,y)dx + Q(x,y)dy,$$

при этом nonoж umen b ным направлением кривой называют обход, при котором область, лежащая внутри кривой, остается слева при движении вдоль L.

Замечание 6. Если $f(x,y)\equiv 1$, то $\int\limits_{L}dl=\mu(L)$ – длина кривой L.

Свойства криволинейных интегралов

1 (линейность). Если для функций f(x,y) и g(x,y) существуют криволинейные интегралы по кривой L, то для любых постоянных α и β для функции $\alpha f(x,y) + \beta g(x,y)$ существует криволинейный интеграл по кривой L, причем

$$\int_{I} (\alpha f(x,y) + \beta g(x,y)) dl = \alpha \int_{I} f(x,y) dl + \beta \int_{I} g(x,y) dl.$$

2 (аддитивность). Если дуга AB состоит из двух дуг AC и CB, не имеющих общих внутренних точек, и для функции f(x,y) существует криволинейные интегралы по кривой AB, то для нее существует криволинейный интеграл по каждой из дуг AC и CB, причем

$$\int_{AB} f(x,y)dl = \int_{AC} f(x,y)dl + \int_{CB} f(x,y)dl.$$

3 (интегрирование неравенств). Если для любой точки (x,y) кривой L выполняется неравенство $f_1(x,y) \leq f_2(x,y)$ и для обеих функций $f_1(x,y), f_2(x,y)$ существуют криволинейные интегралы по кривой L, то

$$\int_{L} f_1(x,y)dl \le \int_{L} f_2(x,y)dl.$$

4 (оценка модуля). Если существует криволинейный интеграл по кривой L от функции f(x,y), то существует криволинейный интеграл по кривой L и от функции |f(x,y)|, причем

$$\left| \int_{L} f(x,y) dl \right| \le \int_{L} |f(x,y)| dl.$$

5 (формула среднего значения). Если функция f(x,y) непрерывна на кривой L, то существует точка $(\xi,\eta) \in L$ такая, что

$$\int_{L} f(x,y)dl = f(\xi,\eta)\mu(L),$$

 $здесь\ \mu(L)$ — длина кривой L.

Теорема (о вычислении криволинейных интегралов). Если кривая L является гладкой и не имеет особых точек (т.е. $(\varphi'(t))^2 + (\varphi'(t))^2 \neq 0$), функции f(x,y), P(x,y), Q(x,y) непрерывны вдоль кривой L, то криволинейные интегралы можно вычислить по формулам

$$I_{1} = \int_{L} f(x,y)dl = \int_{a}^{b} f(\varphi(t),\phi(t))\sqrt{(\varphi'(t))^{2} + (\phi'(t))^{2}}dt,$$

$$I_{2} = \int_{L} P(x,y)dx = \int_{a}^{b} P(\varphi(t),\phi(t)) \cdot \varphi'(t)dt,$$

$$I_{3} = \int_{L} Q(x,y)dy = \int_{a}^{b} Q(\varphi(t),\phi(t)) \cdot \phi'(t)dt.$$

Доказательство. Условия теоремы обеспечивают существование римановских интегралов, фигурирующих в формулах. Докажем первые две из них, третья доказывается так же, как и вторая.

Осуществим разбиение отрезка [a,b] точками $a=t_0 < t_1 < t_2 < \ldots < t_n = b$ и составим интегральные суммы

$$\sigma_1 = \sum_{k=1}^n f(\xi_k, \eta_k) \Delta l_k = \sum_{k=1}^n f(\varphi(\tau_k), \phi(\tau_k)) \int_{t_{k-1}}^{t_k} \sqrt{(\varphi'(t))^2 + (\phi'(t))^2} dt,$$

$$\sigma_2 = \sum_{k=1}^n P(\xi_k, \eta_k) \Delta x_k = \sum_{k=1}^n P(\varphi(\tau_k), \phi(\tau_k)) \int_{t_{k-1}}^{t_k} \varphi'(t) dt.$$

Римановские интегралы для вычисления I_1 и I_2 представим в виде следующих сумм

$$I_{1} = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} f(\varphi(t), \phi(t)) \sqrt{(\varphi'(t))^{2} + (\phi'(t))^{2}} dt,$$

$$I_{2} = \sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} P(\varphi(t), \phi(t)) \varphi'(t) dt.$$

Составим и оценим разности

$$\sigma_1 - I_1 = \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \left(f(\varphi(\tau_k), \phi(\tau_k)) - f(\varphi(t), \phi(t)) \right) \sqrt{(\varphi'(t))^2 + (\phi'(t))^2} dt,$$

$$\sigma_2 - I_2 = \sum_{k=1}^n \int_{t_k}^{t_k} \left(P(\varphi(\tau_k), \phi(\tau_k)) - P(\varphi(t), \phi(t)) \right) \varphi'(t) dt.$$

В условиях теоремы функции $f(\varphi(t), \phi(t)), P(\varphi(t), \phi(t))$ непрерывны на отрезке [a,b], а значит и равномерно непрерывны на нем. Из стремления к нулю мелкости разбиения Δ кривой L следует стремление к нулю мелкости разбиения отрезка [a,b], что вытекает из следующих наблюдений: по условию теоремы функции $\varphi'(t), \varphi'(t) \in C[a,b]$ и не обращаются одновременно в нуль, поэтому

$$m = \min_{[a,b]} \sqrt{(\varphi'(t))^2 + (\phi'(t))^2} > 0 \implies \Delta l_k \ge m \int_{t_{k-1}}^{t_k} dt = m \Delta t_k \Leftrightarrow \Delta t_k \le \frac{1}{m} \Delta l_k.$$

Таким образом для любого положительного $\epsilon>0$ существует $\delta_\epsilon>0$ такое, что для любого разбиения кривой L, мелкость которого $\Delta<\delta_\epsilon$ выполняются неравенства

$$|f(\varphi(\tau_k), \phi(\tau_k)) - f(\varphi(t), \phi(t))| < \frac{\epsilon}{\mu(L)},$$

$$|P(\varphi(\tau_k), \phi(\tau_k)) - P(\varphi(t), \phi(t))| < \frac{\epsilon}{M(b-a)},$$

здесь $\mu(L)$ – длина кривой $L,\ M=\max_{[a,b]}|\varphi'(t)|.$ Из этих оценок получаем

$$|\sigma_1 - I_1| \le \frac{\epsilon}{\mu(L)} \cdot \sum_{k=1}^n \int_{t_{k-1}}^{t_k} \sqrt{(\varphi'(t))^2 + (\varphi'(t))^2} dt = \frac{\epsilon}{\mu(L)} \cdot \sum_{k=1}^n \Delta l_k = \epsilon,$$

$$|\sigma_2 - I_2| \le \frac{\epsilon}{M(b-a)} \cdot \sum_{k=1}^n \int_{t_{k-1}}^{t_k} |\varphi'(t)| dt \le \frac{\epsilon}{M(b-a)} \cdot M \sum_{k=1}^n \Delta t_k = \epsilon,$$

что означает предельные равенства $\lim_{\Delta \to 0} \sigma_1 = I_1$, $\lim_{\Delta \to 0} \sigma_2 = I_2$ и завершение доказательства. **Теорема доказана.**

Замечание 7. Как следствие из доказанной теоремы можно получить формулу связи криволинейных интегралов первого и второго рода. Действительно, общий интеграл второго рода можно преобразовать следующим образом

$$\int_{L} P(x,y)dx + Q(x,y)dy = \int_{a}^{b} \left(P(\varphi(t),\phi(t)) \cdot \varphi'(t) + Q(\varphi(t),\phi(t)) \cdot \varphi'(t) \right) dt =$$

$$= \int_{a}^{b} \left(P(\varphi(t), \phi(t)) \cdot \frac{\varphi'(t)}{\sqrt{(\varphi'(t))^{2} + (\phi'(t))^{2}}} + \right)$$

$$+Q(\varphi(t),\phi(t))\cdot\frac{\phi'(t)}{\sqrt{(\varphi'(t))^2+(\phi'(t))^2}}\right)\sqrt{(\varphi'(t))^2+(\phi'(t))^2}dt.$$

Здесь $\bar{e} = \left(\frac{\varphi'(t)}{\sqrt{(\varphi'(t))^2 + (\phi'(t))^2}}, \frac{\phi'(t)}{\sqrt{(\varphi'(t))^2 + (\phi'(t))^2}}\right)$ – единичный касательный вектор кривой L. Если $\bar{i} = (1,0)$ и $\bar{j} = (0,1)$ единичные орты координатных осей, то

$$\frac{\varphi'(t)}{\sqrt{(\varphi'(t))^2 + (\phi'(t))^2}} = (\bar{e}, \bar{i}) = \cos \alpha, \quad \frac{\phi'(t)}{\sqrt{(\varphi'(t))^2 + (\phi'(t))^2}} = (\bar{e}, \bar{j}) = \cos \beta,$$

здесь $\cos \alpha$ и $\cos \beta$ направляющие косинусы касательного вектора \bar{e} . Отсюда получаем искомую формулу

$$\int_{L} P(x,y)dx + Q(x,y)dy =$$

$$= \int_{a}^{b} (P(\varphi(t), \phi(t)) \cdot \cos \alpha + Q(\varphi(t), \phi(t)) \cdot \cos \beta) \sqrt{(\varphi'(t))^{2} + (\phi'(t))^{2}} dt =$$

$$= \int_{L} (P(x, y) \cos \alpha + Q(x, y) \cos \beta) dl.$$

14.2 Поверхности в \mathbb{R}^3 . Поверхностные интегралы первого и второго рода.

Поверхности в R^3 . Пусть в плоскости R^2 переменных (u,v) задана область D и для всех точек этой области определены три функции

$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v),$$
 (1)

которые в совокупности задают в пространстве \mathbb{R}^3 вектор-функцию

$$\bar{r} = \bar{r}(u, v) = (x(u, v), y(u, v), z(u, v)).$$

Относительно координатных функций будем предполагать выполненными условия:

1) $x(u,v), y(u,v), z(u,v) \in C^1(D);$

2)
$$rang \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{pmatrix} = 2 \quad \forall (u, v) \in D.$$

Эти условия означают, что функции (1) задают в R^3 гладкую поверхность Φ , не имеющую особых точек.

Если зафиксировать некоторое значение $v=v_0$, то уравнение $\bar{r}=\bar{r}(u,v_0)=(x(u,v_0),\,y(u,v_0),\,z(u,v_0))$ определяет на Φ кривую, называемую $\kappa oop \partial u ham-$ ной линией, а вектор $\frac{\partial \bar{r}}{\partial u}=\left(\frac{\partial x}{\partial u},\,\frac{\partial y}{\partial u},\,\frac{\partial z}{\partial u}\right)$ – $\kappa acameльный вектор к этой линии. Аналогично при фиксированном <math>u=u_0$ уравнение $\bar{r}=\bar{r}(u_0,v)=(x(u_0,v),\,y(u_0,v),\,z(u_0,v))$ определяет на Φ другую координатную линию с касательным вектором $\frac{\partial \bar{r}}{\partial v}=\left(\frac{\partial x}{\partial v},\,\frac{\partial y}{\partial v},\,\frac{\partial z}{\partial v}\right)$.

Второе условие 2) означает, что касательные векторы не коллинеарны, а значит на них можно натянуть плоскость, называемую *касательной плоскостостью* к Φ , уравнение такой плоскости, проходящей через точку M_0 поверхности Φ с координатами $\bar{r_0} = \bar{r}(u_0, v_0) = (x(u_0, v_0), y(u_0, v_0), z(u_0, v_0))$, имеет

вид $(\bar{r} - \bar{r_0}, \bar{\nu}) = 0$. Здесь $\bar{\nu}$ – единичный нормальный (ортогональный) вектор к касательной плоскости называемый *нормалью* к поверхности Φ , который можно восстановить как векторное произведение по формуле

$$\bar{\nu} = \frac{\bar{n}}{|\bar{n}|} = \frac{\frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v}}{\left|\frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v}\right|} = (\cos \alpha, \, \cos \beta, \, \cos \gamma).$$

В силу первого условия 1) этот вектор непрерывен по u и v в некоторой окрестности произвольной точки поверхности Φ . Говорят, что в окрестности любой точки гладкой поверхности без особых точек существует непрерывное векторное поле нормалей. Такие поверхности принято называть $\partial sycmopon-uumu$. Площадь такой поверхности при сделанных предположениях может быть вычислена по формуле

$$\sigma = \int_{D} \int \left| \frac{\partial \bar{r}}{\partial u} \times \frac{\partial \bar{r}}{\partial v} \right| du dv$$

или в терминах коэффициентов первой квадратичной формы

$$\sigma = \int_D \int \sqrt{EG - F^2} du dv, \ E = \left(\frac{\partial \bar{r}}{\partial u}, \frac{\partial \bar{r}}{\partial u}\right), \ G = \left(\frac{\partial \bar{r}}{\partial v}, \frac{\partial \bar{r}}{\partial v}\right), \ F = \left(\frac{\partial \bar{r}}{\partial u}, \frac{\partial \bar{r}}{\partial v}\right).$$

Выражение $\sqrt{EG-F^2}=|\bar{n}|$ называется дискриминантом первой квадратичной формы.

Понятие поверхностного интеграла первого и второго рода. Пусть Φ – гладкая, двусторонняя поверхность без особых точек, определяемая уравнениями (1) в области D. Предположим, что на Φ определены 4 функции f(x,y,z), P(x,y,z), Q(x,y,z), R(x,y,z), каждая из которых непрерывна на Φ . Осуществим разбиение Φ гладкими (или кусочно-гладкими) кривыми на части Φ_i и обозначим $\Delta = \max_i \sigma(\Phi_i)$ – диаметр разбиения, здесь $\sigma(\Phi_i) = \sigma_i = \int_{G_i} \int \sqrt{EG - F^2} du dv, G_i$ – прообраз Φ_i при отображении (1). Пусть $\bar{\nu} = (\cos \alpha, \cos \beta, \cos \gamma)$ – векторное поле (единичных) нормалей, $M_i \in \Phi_i$ – точки поверхности. Составим четыре интегральные суммы

$$\Sigma_1 = \sum_i f(M_i)\sigma_i,$$

$$\Sigma_2 = \sum_i P(M_i)\sigma_i \cos \alpha, \ \Sigma_3 = \sum_i Q(M_i)\sigma_i \cos \beta, \ \Sigma_4 = \sum_i R(M_i)\sigma_i \cos \gamma.$$

Определение. Числа I_i называют npedenamu интегральных сумм $\Sigma_i, i = 1, 2, 3, 4$ при $\Delta \to 0$, если для любого $\epsilon > 0$ существует $\delta_{\epsilon} > 0$ такое, что для любого разбиения поверхности Φ мелкости $\Delta < \delta_{\epsilon}$ и для любого выбора точек $M_i \in \Phi_i$ выполняется неравенство $|\Sigma_i - I_i| < \epsilon$.

Число I_1 называют *поверхностным интегралом первого рода* и обозначают

$$I_1 = \int_{\Phi} \int f(x, y, z) d\sigma.$$

Числа $I_2,\ I_3,\ I_4$ называют noверхностными интегралами второго poda и обозначают

$$I_{2} = \int_{\Phi} \int P(x, y, z) \cos \alpha d\sigma = \int_{\Phi} \int P(x, y, z) dy dz,$$

$$I_{3} = \int_{\Phi} \int Q(x, y, z) \cos \beta d\sigma = \int_{\Phi} \int Q(x, y, z) dz dx,$$

$$I_{4} = \int_{\Phi} \int R(x, y, z) \cos \gamma d\sigma = \int_{\Phi} \int R(x, y, z) dx dy.$$

Сумму трех последних интегралов называют общим поверхностным интегралом второго рода.

Замечание 1. Из определения поверхностных интегралов вытекает, что поверхностный интеграл первого рода не зависит от ориентации поверхности Φ , а поверхностный интеграл второго рода меняет знак при изменении направления нормали поверхности на противоположное.

Замечание 2. Значения поверхностных интегралов первого и второго рода не зависят от выбора системы координат (т.е. они инвариантны при переходе к новым (криволинейным) координатам (u_1, v_1)).

Замечание 3. Если вдоль поверхности Φ одна из координат постоянна, например $x \equiv Const$, то $\int_{\Phi} \int Q(x,y,z) dz dx = \int_{\Phi} \int R(x,y,z) dx dy = 0$, т.к. в этом случае нормальный вектор имеет координаты $(\cos \alpha, \cos \beta, \cos \gamma) = (1, 0, 0)$.

Замечание 4. Физически поверхностный интеграл первого рода представляет массу нагруженной поверхности Φ с поверхностной плотностью распределения массы $\rho=f(x,y,z)\geq 0,$ а общий поверхностный интеграл второго

рода представляет собой поток векторного поля $\vec{a}=(P,Q,R)$ за единицу времени в направлении вектора нормали.

Замечание 5. Если поверхность Φ замкнута, то для поверхностных интегралов принято использовать обозначения

$$\oint_{\Phi^+} \int f(x,y,z) d\sigma \ \text{ или } \oint_{\Phi^+} \int \left(P(x,y,z) dy dz + Q(x,y,z) dz dx + R(x,y,z) dx dy\right)$$

при этом *положительным* направлением нормали называют внешнее направление к объему, ограниченному поверхностью.

Замечание 6. Если $f(x,y,z) \equiv 1$, то $\int_{\Phi} \int d\sigma = S(\Phi)$ – площадь поверхности Φ .

Для вычисления поверхностных интегралов пользуются следующей

Теорема (о вычислении поверхностных интегралов). Если Φ – гладкая, двусторонняя поверхность без особых точек, определяемая уравнениями (1) в области D, функции f(x,y,z), P(x,y,z), Q(x,y,z), R(x,y,z), непрерывны на Φ , тогда поверхностные интегралы можно вычислить по формулам

$$I_{1} = \int_{\Phi} \int f(x, y, z) d\sigma = \int_{D} \int f(x(u, v), y(u, v), z(u, v)) \sqrt{EG - F^{2}} du dv,$$

$$I_{2} = \int_{\Phi} \int P(x, y, z) \cos \alpha d\sigma =$$

$$= \int_{D} \int P(x(u, v), y(u, v), z(u, v)) \cos \alpha \sqrt{EG - F^{2}} du dv,$$

$$I_{3} = \int_{\Phi} \int Q(x, y, z) \cos \beta d\sigma =$$

$$= \int_{D} \int Q(x(u, v), y(u, v), z(u, v)) \cos \beta \sqrt{EG - F^{2}} du dv,$$

$$I_{4} = \int_{\Phi} \int R(x, y, z) \cos \gamma d\sigma =$$

$$= \int_{D} \int R(x(u, v), y(u, v), z(u, v)) \cos \gamma \sqrt{EG - F^{2}} du dv.$$

Доказательство. Докажем первую из формул, остальные доказываются аналогично. По определению

$$\int_{\Phi} \int f(x,y,z) d\sigma = \lim_{\Delta \to 0} \sum_{i} f(M_i) \sigma_i = \lim_{\Delta \to 0} \sum_{i} f(M_i) \int_{G_i} \int \sqrt{EG - F^2} du dv,$$

тогда по теореме о среднем для двойного интеграла

$$\int_{\Phi} \int f(x, y, z) d\sigma = \lim_{\Delta \to 0} \sum_{i} f(M_i) \sqrt{EG - F^2}(N_i) S_{G_i},$$

где $M_i = \bar{r}(u_i,v_i),\,(u_i,v_i),N_i\in G_i.$ С другой стороны

$$\int_{D} \int f(x(u,v),y(u,v),z(u,v)) \sqrt{EG-F^{2}} du dv =$$

$$= \lim_{\delta \to 0} \sum_{i} f(x(u_{i},v_{i}),y(u_{i},v_{i}),z(u_{i},v_{i})) \sqrt{EG-F^{2}} (u_{i},v_{i}) S_{G_{i}},$$

здесь $\{G_i\}$ – разбиение области D, индуцированное разбиением поверхности Φ . Покажем что эти два предела совпадают. Рассмотрим разности интегральных сумм (соответствующих одному разбиению области D)

$$\sum_{i} f(M_i)(\sqrt{EG - F^2}(N_i) - \sqrt{EG - F^2}(u_i, v_i))S_{G_i}.$$

По условию теоремы f(x,y,z) непрерывна на поверхности Φ , следовательно f(x(u,v),y(u,v),z(u,v)) - непрерывна на \overline{D} , а значит ограничена на \overline{D} , т.е. существует постоянная K>0 такая, что $|f|\leq K$ на \overline{D} . Вектор-функция $\overline{r}=\overline{r}(u,v)$ в силу условия 1) непрерывно дифференцируема, поэтому дискриминант первой квадратичной формы $\sqrt{EG-F^2}$ непрерывен на \overline{D} , а значит по теореме Кантора и равномерно непрерывна на \overline{D} , т.е. для любого положительного $\epsilon>0$ существует $\delta_\epsilon>0$ такое, что для любой пары точек $(u',v'),(u'',v'')\in \overline{D}$ таких, что $\sqrt{(u'-u'')^2+(v'-v'')^2}<\delta_\epsilon$ выполняется неравенство $|\sqrt{EG-F^2}(u',v')-\sqrt{EG-F^2}(u'',v'')|<\epsilon$. Отсюда, для любого разбиения T области \overline{D} достаточной мелкости $\delta_T<\delta_\epsilon$ справедливо неравенство

$$|\sqrt{EG - F^2}(N_i) - \sqrt{EG - F^2}(u_i, v_i)| < \frac{\epsilon}{K \cdot S_D},$$

здесь S_D – площадь области D. Отсюда следует оценка

$$\left| \sum_{i} f(M_i) (\sqrt{EG - F^2}(N_i) - \sqrt{EG - F^2}(u_i, v_i)) S_{G_i} \right| \le K \cdot \frac{\epsilon}{K \cdot S_D} \cdot \sum_{i} S_{G_i} = \epsilon,$$

из которой в силу произвольности выбора $\epsilon>0$ получаем требуемое интегральное равенство. **Теорема доказана.**

Замечание. При вычислении поверхностных интегралов произведения $\cos \alpha \sqrt{EG-F^2}, \cos \beta \sqrt{EG-F^2}, \cos \gamma \sqrt{EG-F^2}$ удобнее находить следующим образом

$$\cos \alpha \sqrt{EG - F^2} = (\bar{\nu}, \bar{i}) \sqrt{EG - F^2} = \left(\frac{\bar{n}}{|\bar{n}|}, \bar{i}\right) |\bar{n}| = (\bar{n}, \bar{i}) =$$

$$= \begin{vmatrix} \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} = \frac{\partial y}{\partial u} \cdot \frac{\partial z}{\partial v} - \frac{\partial z}{\partial u} \cdot \frac{\partial y}{\partial v},$$

$$\cos \beta \sqrt{EG - F^2} = (\bar{\nu}, \bar{j}) \sqrt{EG - F^2} = \left(\frac{\bar{n}}{|\bar{n}|}, \bar{j}\right) |\bar{n}| = (\bar{n}, \bar{j}) =$$

$$= - \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} = - \left(\frac{\partial x}{\partial u} \cdot \frac{\partial z}{\partial v} - \frac{\partial z}{\partial u} \cdot \frac{\partial x}{\partial v}\right),$$

$$\cos \gamma \sqrt{EG - F^2} = (\bar{\nu}, \bar{k}) \sqrt{EG - F^2} = \left(\frac{\bar{n}}{|\bar{n}|}, \bar{k}\right) |\bar{n}| = (\bar{n}, \bar{k}) =$$

$$= \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \cdot \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \cdot \frac{\partial x}{\partial v}.$$

14.3 Формула Грина.

Пусть D – область в R^2 , γ^+ – положительно ориентированный замкнутый контур, ограничивающий область D.

Теорема (формула Грина). Пусть γ^+ – гладкая (кусочно-гладкая) кривая, на \overline{D} задана пара функций P(x,y) и Q(x,y) таких, что $P,Q,\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}\in C(\overline{D})$ (т.е. непрерывны по совокупности переменных), тогда

$$\oint\limits_{\gamma^+} P dx + Q dy = \int_D \int \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Доказательство. Предположим, что границу γ^+ можно представить как объединение графиков двух кусочно непрерывных функций двумя способами:

$$y = \varphi(x), y = \phi(x), a < x < b, \varphi(x) < \phi(x)$$

$$x = \alpha(y), \quad x = \beta(y), \quad c \le y \le d, \quad \alpha(y) \le \beta(y),$$

тогда по теореме о сведении двойного интеграла к повторному получаем следующие две цепочки равенств

$$\int_{D} \int \frac{\partial P}{\partial y} dx dy = \int_{a}^{b} \left[\int_{\varphi(x)}^{\phi(x)} \frac{\partial P}{\partial y} dy \right] dx = \int_{a}^{b} \left[P(x, \phi(x)) - P(x, \varphi(x)) \right] dx =$$

$$= -\int_{B\check{D}A} P(x, y) dx - \int_{A\check{C}B} P(x, y) dx = -\oint_{\gamma^{+}} P dx,$$

$$\int_{D} \int \frac{\partial Q}{\partial x} dx dy = \int_{c}^{d} \left[\int_{\alpha(y)}^{\beta(y)} \frac{\partial Q}{\partial x} dx \right] dy = \int_{c}^{d} \left[Q(\beta(y), y) - Q(\alpha(y), y) \right] dy =$$

$$= \int_{C\check{B}D} Q(x, y) dy + \int_{D\check{A}C} Q(x, y) dy = \oint_{\gamma^{+}} Q dy.$$

Вычитая теперь из второго равенства первое, получим требуемое. **Теорема** доказана.

Замечание (о вычислении площадей). Если в формуле Грина положить $Q=x,\,P=0,\,{
m To}$

$$S_D = \int_D \int dx dy = \oint_{\gamma^+} x dy,$$

а если положить Q = 0, P = -y, то

$$S_D = \int_D \int dx dy = -\oint_{\gamma^+} y dx,$$

складывая теперь оба эти равенства, получим

$$S_D = \frac{1}{2} \oint_{\gamma^+} \left(x dy - y dx \right).$$

14.4 Условие независимости криволинейного интеграла 2-го рода от пути интегрирования.

Пусть $D \subset R^2$ – область (связное открытое множество), функции P(x,y), Q(x,y) непрерывны на D.

Лемма (вспомогательная). В сделанных предположениях криволинейный интеграл 2-го рода $\int_{AB} (Pdx + Qdy)$, где $AB \subset D$ – кривая соединяющая точки A и B, не зависит от пути интегрирования AB тогда и только тогда, когда интеграл $\int_{AB} (Pdx + Qdy)$ по любому замкнутому контуру $\gamma \subset D$ равен нулю.

Доказательство. Достаточность. Пусть для любого замкнутого контура $\gamma \subset D$ справедливо равенство $\oint_{\gamma} (Pdx + Qdy) = 0$. Рассмотрим две различные кривые $(\breve{AB})_1$ и $(\breve{AB})_2$, соединяющие точки A и B, из которых построим замкнутый контур $(\breve{AB})_1 \cup (\breve{BA})_2$, здесь $(\breve{BA})_2$ получен из $(\breve{AB})_2$ заменой ориентации на противоположную, тогда

$$0 = \oint_{(\breve{AB})_1 \cup (\breve{BA})_2} (Pdx + Qdy) = \left(\int_{(\breve{AB})_1} + \int_{(\breve{BA})_2} \right) (Pdx + Qdy) =$$
$$= \left(\int_{(\breve{AB})_1} - \int_{(\breve{AB})_2} \right) (Pdx + Qdy),$$

т.е.

$$\int_{(\breve{AB})_1} (Pdx + Qdy) = \int_{(\breve{AB})_2} (Pdx + Qdy),$$

а значит интеграл $\int\limits_{\widetilde{AB}} \left(Pdx + Qdy \right)$ не зависит от пути интегрирования.

Heoбxoдимость. Пусть интеграл $\int\limits_{\check{AB}}(Pdx+Qdy)$ не зависит от пути интегрирования и $\gamma\subset D$ – произвольный замкнутый контур. Выберем на γ

произвольные 4 различные точки A, C, B, E, тогда

$$\oint_{\gamma} (Pdx + Qdy) = \left(\int_{A\check{C}B} + \int_{B\check{E}A} \right) (Pdx + Qdy) =$$

$$= \left(\int_{A\check{C}B} - \int_{A\check{E}B} \right) (Pdx + Qdy) = 0.$$

Лемма доказана.

Теорема 1. Пусть функции P(x,y), Q(x,y) непрерывны на D. Для того, чтобы криволинейный интеграл 2-го рода $\int\limits_{AB} (Pdx + Qdy), A, B \in D$ не зависел от пути интегрирования $AB \subset D$, необходимо и достаточно, чтобы выражение (Pdx + Qdy) (первая дифференциальная форма) являлось бы полным дифференциалом некоторой функции двух переменных u = u(x,y), определенной в области D, т.е. du = Pdx + Qdy или $\frac{\partial u}{\partial x} = P, \frac{\partial u}{\partial y} = Q$ на D, при этом $\int\limits_{AB} (Pdx + Qdy) = u(B) - u(A)$.

Доказательство. Heoбxoдumocmь. Пусть интеграл не зависит от пути интегрирования, а лишь от его начала и конца. Зафиксируем точку-начало $M_0(x_0,y_0)\in D$ и выберем любую другую точку $M(x,y)\in D$, затем соединим эти точки кусочно-гладкой кривой $M_0M \subset D$. Введем функцию точки области D по правилу

$$u(x,y) = u(M) \stackrel{\text{def}}{=} \int_{M_0 M} (Pdx + Qdy),$$

это однозначная функция точки M, т.к. интеграл не зависит от пути интегрирования, а лишь от начала и конца кривой $M_0M \subset D$. Вычислим частные производные этой функции (по определению см. §7.2). Составим разностное отношение для функции u(x,y) в точке M(x,y)

$$u(x+h,y) - u(x,y) = \left(\int_{M_0 M_h} - \int_{M_0 M} \right) \left(Pdx + Qdy\right) \stackrel{y=Const}{=}$$

$$= \int_{[MM_h]} Pdx = \int_{x}^{x+h} P(x,y)dx.$$

По теореме о среднем для определенного интеграла (см. §5.10)

$$u(x+h,y) - u(x,y) = \int_{x}^{x+h} P(x,y)dx = P(x+\theta h, y) \cdot h, \quad 0 < \theta < 1$$

ИЛИ

$$\frac{u(x+h,y) - u(x,y)}{h} = P(x+\theta h, y).$$

Отсюда в силу непрерывности функции P(x,y) находим предел разностного отношения и частную производную

$$\frac{\partial u(x,y)}{\partial x} = \lim_{h \to 0} \frac{u(x+h,y) - u(x,y)}{h} = \lim_{h \to 0} P(x+\theta h,y) = P(x,y).$$

Аналогично находим $\frac{\partial u(x,y)}{\partial y} = Q(x,y)$, тем самым доказано существование функции двух переменных u = u(x,y) такой, что du = Pdx + Qdy.

Пусть $x=x(t),\,y=y(t),\,t\in[a,b]$ – некоторая параметризация кривой, соединяющей точки A и $B,\,A(x(a),y(a)),\,B(x(b),y(b)),$ тогда

$$\int_{AB} (Pdx + Qdy) = \int_{a}^{b} (P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)) dt =$$

$$= \int_{a}^{b} \left(\frac{\partial u(x(t), y(t))}{\partial x}x'(t) + \frac{\partial u(x(t), y(t))}{\partial y}y'(t)\right) dt =$$

$$= \int_{a}^{b} \frac{du(x(t), y(t))}{dt} dt = u(x(b), y(b)) - u(x(a), y(a)) = u(B) - u(A).$$

Достаточность. Пусть для любой кривой $\Breve{AB} \subset D, \int\limits_{\Breve{AB}} (Pdx + Qdy) = u(B) - u(A),$ тогда для любого замкнутого контура $\gamma \subset D$, начинающегося и заканчивающегося в точке A, справедливо равенство $\int\limits_{\gamma} (Pdx + Qdy) = u(A) - u(A) = 0$, что согласно вспомогательной лемме и означает независимость значения интеграла $\int\limits_{\Breve{AB}} (Pdx + Qdy)$ от пути интегрирования. **Теорема**

1 доказана.

Определение. Область D называется $o\partial$ носвязной, если для любого замкнутого контура $\gamma \subset D$ ограниченная им подобласть D_1 полностью находится внутри D (т.е. область D "без дырок").

Теорема 2. Пусть функции $P(x,y), Q(x,y), \frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}$ непрерывны на D. Для того, чтобы криволинейный интеграл 2-го рода $\int\limits_{\breve{AB}} (Pdx + Qdy), A, B \in D$ не зависел от пути интегрирования $\breve{AB} \subset D$, необходимо, а в случае односвязности области D и достаточно, чтобы в D выполнялось равенство $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$.

Доказательство. Здесь докажем только необходимость этой теоремы. Пусть интеграл $\int_{AB} (Pdx + Qdy)$, A, $B \in D$ не зависел от пути интегрирования $AB \subset D$, тогда согласно теоремы 1 существует функция двух переменных u = u(x,y), такая, что в области D du = Pdx + Qdy, т.е. $\frac{\partial u}{\partial x} = P$, $\frac{\partial u}{\partial y} = Q$ на D. Так как $\frac{\partial P}{\partial y} = \frac{\partial^2 u}{\partial y \partial x}$, $\frac{\partial Q}{\partial x} = \frac{\partial^2 u}{\partial x \partial y}$ и $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x} \in C(D)$, то $\frac{\partial^2 u}{\partial y \partial x}$, $\frac{\partial^2 u}{\partial x \partial y} \in C(D)$, поэтому по теореме Шварца (см. §7.4) $\frac{\partial^2 u}{\partial y \partial x} = \frac{\partial^2 u}{\partial x \partial y}$ или $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$. Теорема 2 доказана.

Замечание. Условие $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ называют критерием полного дифференциала в односвязной области, т.к. это условие необходимое и достаточное чтобы выражение (Pdx + Qdy) было бы в области D дифференциалом некоторой функции двух переменных u(x,y)

14.5 Скалярные и векторные поля. Градиент, дивергенция, циркуляция, ротор (вихрь), поток.

Скалярным полем называют любую числовую функцию точки пространства u=u(x,y,z), а вектор-функцию точки пространства $\bar{a}=\bar{a}(x,y,z)$ называют векторным полем. Если скалярное поле u=u(x,y,z) определено и дифференцируемо в некоторой области $D\subset R^3$, тогда оно порождает векторное поле своих градиентов по правилу

$$\bar{a} = \operatorname{grad} u \stackrel{\text{def}}{=} \left(\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial z} \right).$$

Если же векторное поле $\bar{a} = \bar{a}(x,y,z)$ заданное в некоторой области $D \subset R^3$ таково, что для него существует определенная в D числовая функция u = u(x,y,z) такая, что $\bar{a} = \operatorname{grad} u$, то эту функцию u = u(x,y,z) называют потенциалом векторного поля $\bar{a} = \bar{a}(x,y,z)$.

Рассмотрим векторное поле $\bar{a}=(P,Q,R)$ заданное в области $D\subset R^3$, координатные функции $P(x,y,z),\,Q(x,y,z),\,R(x,y,z)$ которого дифференцируемы в $D\subset R^3$, тогда дивергенцией такого векторного поля называют выражение (скалярное поле)

$$\operatorname{div} \bar{a} \stackrel{\text{def}}{=} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z},$$

соответственно euxpem (или $\mathit{pomopom}$) векторного поля $\bar{a} = (P, Q, R)$ называют новое векторное поле определяемое следующим образом

$$rot \, \bar{a} \stackrel{\text{def}}{=} \left| \begin{array}{ccc} \bar{i} & \bar{j} & \bar{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{array} \right| = \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right).$$

Вводя векторный оператор $\bar{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ – "набла" можно записать введенные операции над полями следующим образом:

$$grad u = \bar{\nabla} u, \ div\bar{a} = (\bar{\nabla}, \bar{a}), \ rot \ \bar{a} = \bar{\nabla} \times \bar{a}.$$

Если γ – замкнутая кусочно-гладкая кривая в области $D\subset R^3$, то *циркуля-* $uue\ddot{u}$ векторного поля $\bar{a}=\bar{a}(x,y,z)$ по контуру γ называется криволинейный интеграл 2-го рода общего вида

$$\oint_{\gamma} \bar{a}d\bar{r} \stackrel{\text{def}}{=} \oint_{\gamma} \left(Pdx + Qdy + Rdz \right).$$

Векторное поле, циркуляция которого по любому замкнутому кусочно-гладкому контуру лежащему в области $D \subset R^3$ равна нулю, называется nomenuuanb-ным.

Во вспомогательной лемме предыдущего параграфа было показано, что условие равенства нулю интеграла $\oint_{\gamma} (Pdx + Qdy)$ по любому замкнутому

контуру $\gamma\subset D$ равносильно независимости значения криволинейного интеграл 2-го рода $\int\limits_{AB} (Pdx+Qdy)$ от пути интегрирования $AB\subset D$. При доказательстве леммы нигде не использовалось что кривая γ плоская, поэтому приведенное там доказательство полностью переносится на случай пространственной кривой. Таким образом справедлива следующая

Лемма. Циркуляция векторного поля $\bar{a} = (P, Q, R)$

$$\oint_{\gamma} \bar{a}d\bar{r} = \oint_{\gamma} \left(Pdx + Qdy + Rdz\right)$$

равна нулю по любому замкнутому контуру $\gamma \subset D \subset R^3$ тогда и только тогда, когда интеграл $\int\limits_{\check{AB}} (Pdx + Qdy + Rdz)$ не зависит от пути интегрирования $\check{AB} \subset D \subset R^3$.

Пусть $\Phi \subset D \subset \mathbb{R}^3$ – некоторая поверхность, $\bar{\nu}$ – единичный вектор нормали к поверхностиости Φ , задающий на Φ ориентацию, через Φ^+ будем обозначать поверхность Φ с фиксированной ориентацией (задаваемой векторным полем нормалей $\bar{\nu}$), тогда общий поверхностный интеграл 2-го рода вида

$$\int_{\Phi^+} \int \bar{a} \, d\bar{\sigma} \stackrel{\text{def}}{=} \int_{\Phi^+} \int (\bar{a}, \bar{\nu}) d\sigma$$

называется *потоком* векторного поля $\bar{a} = \bar{a}(x,y,z)$ через поверхность Φ в направлении нормали $\bar{\nu}$. Если $\bar{a} = (P,Q,R)$, то

$$\int_{\Phi^+} \int \bar{a} \, d\bar{\sigma} = \int_{\Phi^+} \int \left(P \cos \alpha + Q \cos \beta + R \cos \gamma \right) d\sigma =$$

$$= \int_{\Phi^+} \int \left(P dy dz + Q dz dx + R dx dy \right).$$

14.6 Теорема Остроградского-Гаусса. Соленоидальные векторные поля.

Пусть замкнутый пространственный объем $V \subset R^3$ проецируется на плоскость XoY в некоторую область D, причем объем ограничен следующими кусочно-гладкими поверхностями: снизу Φ_1 , задаваемой функцией $z=\varphi(x,y),\,(x,y)\in D,$ сверху $-\Phi_2,\,z=\phi(x,y),\,(x,y)\in D,\,\phi(x,y)\geq\varphi(x,y)$ и цилиндрической поверхностью Φ_0 . Относительно координатных плоскостей XoZ и YoZ объем $V\subset R^3$ имеет такую же конфигурацию. Пусть

 $\bar{\nu}=(\cos\alpha,\cos\beta,\cos\gamma)$ векторное поле единичных внешних нормалей к поверхности $\partial V\equiv\Phi\equiv\Phi_2\cup\Phi_1\cup\Phi_0.$

Теорема (Остроградского-Гаусса). Пусть функции $P, Q, R, \frac{\partial P}{\partial x}, \frac{\partial Q}{\partial y}, \frac{\partial R}{\partial z} \in C(\overline{V}), \ mor\partial a$

$$\int_{\Phi^+} \int (\bar{a}, \bar{\nu}) d\sigma = \int \int_V \int div \, \bar{a} \, dx dy dz,$$

u n u

$$\int_{\Phi^+} \int \left(P\cos\alpha + Q\cos\beta + R\cos\gamma\right) d\sigma = \int \int \int \int \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx dy dz,$$

m.e. поток векторного поля $\bar{a}=(P,Q,R)$ через замкнутую поверхность Φ в направлении внешней нормали $\bar{\nu}$ равен тройному интегралу от дивергенции этого векторного поля по объему, ограниченному замкнутой поверхностью Φ .

Доказательство. Преобразуем тройной интеграл, перейдя к повторному,

$$\int \int \int \frac{\partial R}{\partial z} dx dy dz = \int_{D} \int \left(\int_{\varphi(x,y)}^{\phi(x,y)} \frac{\partial R}{\partial z} dz \right) dx dy =$$

$$= \int_{D} \int \left(R(x,y,\phi(x,y)) - R(x,y,\varphi(x,y)) \right) dx dy.$$

С другой стороны

$$\begin{split} &\int_{\Phi^+} \int R \cos \gamma d\sigma = \int_{\Phi_2^+ \cup \Phi_1^+ \cup \Phi_0^+} \int R \cos \gamma d\sigma = \\ &= \int_{\Phi_2^+} \int R \cos \gamma d\sigma + \int_{\Phi_1^+} \int R \cos \gamma d\sigma + \int_{\Phi_0^+} \int R \cos \gamma d\sigma. \end{split}$$

Вычислим каждый из этих интегралов в отдельности. Поверхность Φ_2^+ допускает следующую параметризацию $\bar{r}=\bar{r}(x,y)=(x,y,\phi(x,y)),\,(x,y)\in D,$ тогда вектор внешней нормали восстанавливается по формуле $\bar{n}=\bar{r}_x\times\bar{r}_y,$ поэтому (см. замечание к теореме о вычислении поверхностных интегралов $\S14.2)\,\cos\gamma\sqrt{EG-F^2}=(\bar{n},\bar{k})=1$ и значит

$$\int_{\Phi_2^+} \int R \cos \gamma d\sigma = \int_D \int R(x, y, \phi(x, y)) \cos \gamma \sqrt{EG - F^2} dx dy =$$

$$= \int_{D} \int R(x, y, \phi(x, y)) dx dy.$$

Параметризуем поверхность Φ_1^+ : $\bar{r}=\bar{r}(x,y)=(x,y,\varphi(x,y)),\,(x,y)\in D$ и находим вектор ее внешней нормали $\bar{n}=\bar{r}_y\times\bar{r}_x$, тогда $\cos\gamma\sqrt{EG-F^2}=(\bar{n},\bar{k})=-1$ и значит

$$\int_{\Phi_1^+} \int R \cos \gamma d\sigma = \int_D \int R(x, y, \varphi(x, y)) \cos \gamma \sqrt{EG - F^2} dx dy =$$

$$= -\int_D \int R(x, y, \varphi(x, y)) dx dy.$$

Наконец на цилиндрической поверхности Φ_0^+ (параллельной оси Oz) $\cos \gamma = 0$, поэтому

$$\int_{\Phi_0^+} \int R \cos \gamma d\sigma = 0.$$

Таким образом

$$\int\int\limits_V\int\frac{\partial R}{\partial z}dxdydz = \left(\int_{\Phi_2^+}\int + \int_{\Phi_1^+}\int + \int_{\Phi_0^+}\int\right)R\cos\gamma d\sigma = \int_{\Phi^+}\int R\cos\gamma d\sigma.$$

Аналогично доказываются равенства

$$\int\int\limits_V\int\frac{\partial P}{\partial x}dxdydz=\int_{\Phi^+}\int P\cos\alpha d\sigma,\ \int\int\limits_V\int\frac{\partial Q}{\partial y}dxdydz=\int_{\Phi^+}\int Q\cos\beta d\sigma.$$

Складывая все три полученных равенства, получим формулу Остроградского-Гаусса. **Теорема доказана.**

Замечание 1. Векторное поле $\bar{a}=(P,Q,R),\,P,Q,R\in\in C^1(\overline{V})$ называется соленоидальным в объеме $V\subset R^3$, если $div\,\bar{a}=0$ в V, т.е. как следствие из теоремы Остроградского-Гаусса получаем, что поток соленоидального векторного поля через замкнутую поверхность Φ в направлении внешней нормали $\bar{\nu}$ равен нулю.

Замечание 2. Формулу Остроградского-Гаусса можно переписать в виде

$$\int_{\Phi^+} \int \left(P dy dz + Q dz dx + R dx dy \right) = \int \int \limits_V \int \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx dy dz.$$

Замечание 3 (о вычислении объемов). Для векторного поля $\bar{a}=(x,y,z)$ формула Остроградского-Гаусса имеет вид

$$\int_{\Phi^+} \int (x \cos \alpha + y \cos \beta + z \cos \gamma) d\sigma =$$

$$= \int_{\Phi^+} \int (x dy dz + y dz dx + z dx dy) = \int \int_V \int 3 dx dy dz = 3V,$$

откуда вытекают следующие две формулы для вычисления объемов

$$V = \frac{1}{3} \int_{\Phi^+} \int (x \cos \alpha + y \cos \beta + z \cos \gamma) d\sigma =$$
$$= \frac{1}{3} \int_{\Phi^+} \int (x dy dz + y dz dx + z dx dy).$$

14.7 Теорема Стокса. Потенциальные векторные поля.

Пусть $\Phi \subset V \subset R^3$ является поверхностью класса $C^2(\overline{D_1}), D_1 \subset R^2$, т.е. координатные функции ее параметризации $\bar{r} = \bar{r}(u,v) = (x(u,v),y(u,v),z(u,v)),$ $(u,v) \in D_1 \subset R^2$ принадлежат классу дважды непрерывно-дифференцируемых функций $x(u,v),y(u,v),z(u,v) \in C^2(\overline{D_1})$. Пусть замкнутый контур γ_0 , ограничивающий область $D_1 \subset R^2$, ориентирован положительно и параметризован $\bar{\rho} = \bar{\rho}(t) = (u(t),v(t)), a \leq t \leq b$. Говорят, что поверхность Φ натянута на контур $\gamma = \bar{r}(\bar{\rho}(t)) = \bar{r}(u(t),v(t)), a \leq t \leq b$, направление обхода которого согласовано с направлением векторного поля нормалей к Φ .

Теорема (Стокса). Пусть функции $P, Q, R \in C^1(\overline{V}), mor \partial a$

$$\oint\limits_{\gamma} \bar{a}d\bar{r} = \int_{\Phi^+} \int (rot\bar{a},\bar{\nu})d\sigma$$

 $(m.e.\ циркуляция\ векторного\ поля\ \bar{a}\ по\ замкнутому\ контуру\ \gamma\ равна\ пото-ку вихря этого поля через поверхность <math>\Phi$, натянутую на этот контур в направлении векторного поля нормалей к Φ) или в другой форме записи

$$\oint_{\gamma} (Pdx + Qdy + Rdz) = \int_{\Phi^{+}} \int \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} d\sigma.$$

Доказательство. Преобразуем криволинейный интеграл следующим образом

$$\oint_{\gamma} P dx = \int_{a}^{b} P(x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))) \cdot x'_{t}(u(t), v(t)) dt =$$

$$= \int_{a}^{b} P(x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))) \left(\frac{\partial x}{\partial u} \frac{du}{dt} + \frac{\partial x}{\partial v} \frac{dv}{dt} \right) dt =$$

$$= \oint_{\gamma_{0}} P \frac{\partial x}{\partial u} du + P \frac{\partial x}{\partial v} dv.$$

Отсюда по формуле Грина

$$\oint_{\gamma} P dx = \int_{D_{1}} \int \left[\frac{\partial}{\partial u} \left(P \frac{\partial x}{\partial v} \right) - \frac{\partial}{\partial v} \left(P \frac{\partial x}{\partial u} \right) \right] du dv =$$

$$= \int_{D_{1}} \int \left[\left(\frac{\partial P}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial P}{\partial y} \frac{\partial y}{\partial u} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial u} \right) \frac{\partial x}{\partial v} + P \frac{\partial^{2} x}{\partial u \partial v} -$$

$$- \left(\frac{\partial P}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial P}{\partial y} \frac{\partial y}{\partial v} + \frac{\partial P}{\partial z} \frac{\partial z}{\partial v} \right) \frac{\partial x}{\partial u} - P \frac{\partial^{2} x}{\partial v \partial u} \right] du dv =$$

$$= \int_{D_{1}} \int \left[\frac{\partial P}{\partial z} \left(\frac{\partial z}{\partial u} \frac{\partial x}{\partial v} - \frac{\partial x}{\partial u} \frac{\partial z}{\partial v} \right) - \frac{\partial P}{\partial y} \left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \right) \right] du dv =$$

$$= \int_{D_{1}} \int \left[\frac{\partial P}{\partial z} (\bar{n}, \bar{j}) - \frac{\partial P}{\partial y} (\bar{n}, \bar{k}) \right] du dv,$$

здесь $\bar{n} = \bar{r}_u \times \bar{r}_v$ – вектор нормали к поверхности Φ . Отсюда по формуле вычисления поверхностных интегралов получаем

$$\oint_{\gamma} P dx = \int_{\Phi^{+}} \int \left(\frac{\partial P}{\partial z} \cos \beta - \frac{\partial P}{\partial y} \cos \gamma \right) d\sigma.$$

Аналогично доказываются равенства

$$\oint_{\gamma} Q dy = \int_{\Phi^{+}} \int \left(\frac{\partial Q}{\partial x} \cos \gamma - \frac{\partial Q}{\partial z} \cos \alpha \right) d\sigma,$$

$$\oint_{\gamma} R dz = \int_{\Phi^{+}} \int \left(\frac{\partial R}{\partial y} \cos \alpha - \frac{\partial R}{\partial x} \cos \beta \right) d\sigma.$$

Складывая почленно эти равенства, получим формулу Стокса. Теорема доказана.

Следствие. Пусть функции $P, Q, R \in C^1(\overline{V})$, тогда следующие три утверждения эквивалентны:

- а) векторное поле $\bar{a}=(P,Q,R)$ потенциально в объеме V, т.е. для любого замкнутого контура $\gamma\subset V$ циркуляция поля $\bar{a}=(P,Q,R)$ по этому контуру равна нулю $\oint_{\gamma} \bar{a}d\bar{r}=0$, что в свою очередь означает независимость интеграла $\int_{\gamma} \bar{a}d\bar{r}$ от пути интегрирования AB;
- б) существует потенциал векторного поля $\bar{a}=(P,Q,R)$, т.е. существует функция u(x,y,z) такая, что $\bar{a}=\operatorname{grad} u(x,y,z)$, тогда $\bar{a}d\bar{r}=du$ и $\int\limits_{AB}\bar{a}d\bar{r}=u(B)-u(A);$
 - eta = (P,Q,R) безвихревое в объеме V, m.e. rot ar a = 0 или $rac{\partial P}{\partial y} = rac{\partial Q}{\partial x}, \ rac{\partial Q}{\partial z} = rac{\partial R}{\partial y}, \ rac{\partial R}{\partial x} = rac{\partial P}{\partial z}.$

Доказательство. Импликация а) \Rightarrow б) доказывается так же, как вспомогательная лемма и теорема из §14.4. Докажем импликацию б) \Rightarrow в). Так как $\bar{a} = \operatorname{grad} u(x,y,z)$, то функция $u(x,y,z) \in C^2(\overline{V})$, поэтому ее смешанные частные производные равны между собой. Если векторное поле $\bar{a} = (P,Q,R)$ безвихревое в объеме V, т.е. $\operatorname{rot} \bar{a} = 0$, тогда по формуле Стокса $\oint \bar{a}d\bar{r} = \int_{\Phi^+} \int (\operatorname{rot} \bar{a}, \bar{\nu}) d\sigma = 0$ что и означает потенциальность векторного поля \bar{a} . Следствие доказано.

15 Теория меры. Измеримые функции. Интеграл Лебега.

С материалами этой главы можно ознакомиться, например, в 5 главе книги: А.Н. Колмогоров, С.В. Фомин "Элементы теории функций и функционального анализа" (любое издание)

- 15.1 Теория меры.
- 15.2 Лебеговское продолжение меры.
- 15.3 Измеримые функции.
- 15.4 Понятие интеграла Лебега.
- 15.5 Свойства интеграла Лебега.
- 15.6 Предельный переход под знаком интеграла Лебега.
- 15.7 Связь интегралов Римана и Лебега.
- 15.8 Пространство L^p .
- 15.9 Абсолютно непрерывные функции множеств. Теорема Радона-Никодима.
- 15.10 Прямое произведение мер. Теорема Фубини.