▼ pandas

▼ import libs

```
import pandas as pd
import numpy as np
```

▼ import custom dataset

```
weather = {
    'day':['1/1/2017', '1/2/2017', '1/3/2017', '1/4/2017', '1/5/2017', '1/6/2017'],
    'temperature': [32, 35, 28, 24, 32, 31],
    'windspeed': [6, 7, 2, 7, 4, 2],
    'event': ['Rain', 'Sunny', 'Snow', 'Rain', 'Sunny']
}
reating a dict of weather data
```

▼ pd.DataFrame(dict)

```
pd.DataFrame(weather)

pd.DataFrame(dict)

# using dict to create a DataFrame
```

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain
5	1/6/2017	31	2	Sunny

▼ import dataset

pd.read_csv('filename.csv')

```
1 df = pd.read_csv('nyc_weather.csv')
2 # pd.read_csv('filename.csv')
3 # creating DataFrame by reading csv file
4 df.head()
```

EST	Temperature	DewPoint	Humidity	Sea Level PressureIn	VisibilityMiles	WindSpeedMPH	Pro
0 1/1/2016	38	23	52	30.03	10	8.0	
1 1/2/2016	36	18	46	30.02	10	7.0	
2 1/3/2016	40	21	47	29.86	10	8.0	
3 1/4/2016	25	9	44	30.05	10	9.0	
4 1/5/2016	20	-3	41	30.57	10	5.0	

```
1 # from google.colab import files
2 # uploaded = files.upload()
3 # weather_data1.csv
4
5 import os
6 os.chdir(r'C:\Users\surya\Downloads\PG-DBDA-Mar23\Datasets')
7 os.getcwd()
```

'C:\\Users\\surya\\Downloads\\PG-DBDA-Mar23\\Datasets'

```
1 df = pd.read_csv('weather_data1.csv')
2 df.head()
```

3 # creating DataFrame by reading csv file

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain

¹ df.shape

2 # checking the shape of DataFrame

(6, 4)

1 df.head()

2 # printing first 5 records of DataFrame

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain

1 df.tail()

2 # printing last 5 records of DataFrame

	day	temperature	windspeed	event
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow
3	1/4/2017	24	7	Snow
4	1/5/2017	32	4	Rain
5	1/6/2017	31	2	Sunny

	day	temperature	windspeed	event
1	1/2/2017	35	7	Sunny
2	1/3/2017	28	2	Snow

▼ selective columns

```
1 type(df['day'])
   pandas.core.series.Series

1 df[['day', 'temperature']]
2 # print column day & temperature
```

	day	temperature
0	1/1/2017	32
1	1/2/2017	35
2	1/3/2017	28
3	1/4/2017	24
4	1/5/2017	32
5	1/6/2017	31

▼ condition on temperature column

```
1 # find max temp
2 df['temperature'].max()
   35
1 # find record where temp > 35
2 df[df['temperature'] > 35]
      day temperature windspeed event
1 # print days & temp column of records for which temp > 32
2 # df[['day', 'temperature']]
3 df[['day', 'temperature']][df['temperature'] > 32]
           day temperature
                         35
    1 1/2/2017
1 # print day column of record where temp is max
2 df['day'][df['temperature'] == df['temperature'].max()]
   1 1/2/2017
   Name: day, dtype: object
1 # population S.D.
2 df['temperature'].std(ddof=0)
   3.496029493900505
1 # Sample S.D.
2 df['temperature'].std(ddof=1)
   3.8297084310253524
```

▼ import dataset

```
1 # from google.colab import files
2 # uploaded = files.upload()
3 # weather_datam.csv
```

```
5 import os
6 os.chdir(r'C:\Users\surya\Downloads\PG-DBDA-Mar23\Datasets')
7 os.getcwd()
   'C:\\Users\\surya\\Downloads\\PG-DBDA-Mar23\\Datasets'
1 df = pd.read_csv('weather_datam.csv')
```

2 # reading csv into dataframe 3 df

	day	temperature	windspeed	event
0	1/1/2017	32	6	Rain
1	1/2/2017	-99999	7	Sunny
2	1/3/2017	28	-99999	Snow
3	1/4/2017	-99999	7	0
4	1/5/2017	32	-99999	Rain
5	1/6/2017	31	2	Sunny
6	1/6/2017	34	5	0

▼ df.replace(-99999, value=np.NaN)

```
1 # replacing data value
```

² df.replace(-99999, value=np.NaN)

	day	temperature	windspeed	event
0	1/1/2017	32.0	6.0	Rain
1	1/2/2017	NaN	7.0	Sunny
2	1/3/2017	28.0	NaN	Snow
3	1/4/2017	NaN	7.0	0
4	1/5/2017	32.0	NaN	Rain
5	1/6/2017	31.0	2.0	Sunny
6	1/6/2017	34.0	5.0	0

```
1 df2 = df.replace(to_replace=[-99999,10], value=np.NaN)
```

 $³ df_2$

	day	temperature	windspeed	event
0	1/1/2017	32.0	6.0	Rain
1	1/2/2017	NaN	7.0	Sunny
2	1/3/2017	28.0	NaN	Snow
3	1/4/2017	NaN	7.0	0
4	1/5/2017	32.0	NaN	Rain
5	1/6/2017	31.0	2.0	Sunny
6	1/6/2017	34.0	5.0	0

```
1 df.replace(0, value=111)
```

```
0 32
1 -99999
2 28
3 -99999
4 32
5 31
6 34
```

Name: temperature, dtype: int64

HW

- replace 0 with -8
- replace -numeric values with NaN

matplotlib library

▼ import libs

^{2 #} replacing data value -99999, 10 with NaN

^{2 #} replace in column

³ df['temperature']

```
1 import matplotlib.pyplot as plt
2 %matplotlib inline
3 import numpy as np
```

▼ create X & Y

```
1 x = np.arange(0, 10)
2 y = np.arange(11, 21)
3 # creating ndarrays
```

scatter plots

plt.scatter(x, y)

```
1 plt.scatter(x, y)
2 # plot a scatter graph
```

<matplotlib.collections.PathCollection at 0x1b20c49bc10>

▼ plt.scatter(x, y, c='g')

```
1 plt.scatter(x, y, c='g')
2 # plot a scatter graph with color
```

<matplotlib.collections.PathCollection at 0x1b20c663760>


```
1 plt.scatter(x, y, c='g')
2 plt.xlabel('X axis')
3 plt.ylabel('Y axis')
4 plt.title('Graph in 2-D')
5 # plot a scatter graph with color xlabel, ylabel & title
```

```
Text(0.5, 1.0, 'Graph in 2-D')
```


plt.plot(x, y, format, linestyle)

```
1 # x=np.arange(1000)
2 y=y**2
3 plt.plot(x, y, 'r*', linestyle='dashed')
```

[<matplotlib.lines.Line2D at 0x1b20ae952b0>]

plt.subplot(int, int, index)

```
1 plt.subplot(2, 2, 1)
2 plt.plot(x, y, 'r--')
3 plt.subplot(2, 2, 2)
4 plt.plot(x, y, 'g*--')
5 plt.subplot(2, 2, 3)
6 plt.plot(x, y, 'r--')
7 plt.subplot(2, 2, 4)
8 plt.plot(x, y, 'g--')
```

[<matplotlib.lines.Line2D at 0x1b20ac384f0>]


```
1 y=3*x + 5
2 plt.plot(x, y, 'y*--')
```

[<matplotlib.lines.Line2D at 0x1b20c2f2d00>]

30 25 20 15
1 np.pi

3.141592653589793

L x = np.arange(1, 4*np.pi, 0.1)
2 y = np.sin(x)
3 plt.plot(x, y, 'r*--')
4 # plots sin-wave

```
[<matplotlib.lines.Line2D at 0x1b20c33ebb0>]
```

```
1 x = np.arange(1, 4*np.pi, 0.1)
2 y = np.cos(x)
3 plt.plot(x, y, 'r*--')
4 # plots cos-wave
```

[<matplotlib.lines.Line2D at 0x1b20c406df0>]

▼ Distribution plots

```
1 # from google.colab import files
2 # uploaded = files.upload()
3 # # tips.csv
4
5 import os
6 os.chdir(r'C:\Users\surya\Downloads\PG-DBDA-Mar23\Datasets')
7 os.getcwd()
```

'C:\\Users\\surya\\Downloads\\PG-DBDA-Mar23\\Datasets'

1 df = pd.read_csv('tips.csv')
2 df

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4
239	29.03	5.92	Male	No	Sat	Dinner	3
240	27.18	2.00	Female	Yes	Sat	Dinner	2
241	22.67	2.00	Male	Yes	Sat	Dinner	2
242	17.82	1.75	Male	No	Sat	Dinner	2
243	18.78	3.00	Female	No	Thur	Dinner	2

244 rows × 7 columns

1 df.describe()

	total_bill	tip	size
count	244.000000	244.000000	244.000000
mean	19.785943	2.998279	2.569672
std	8.902412	1.383638	0.951100
min	3.070000	1.000000	1.000000
25%	13.347500	2.000000	2.000000
50%	17.795000	2.900000	2.000000
75%	24.127500	3.562500	3.000000
max	50.810000	10.000000	6.000000

1 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
    Column
               Non-Null Count Dtype
               _____
    total_bill 244 non-null float64
               244 non-null float64
 1
    tip
               244 non-null object
 2
               244 non-null object
    smoker
    day
               244 non-null
                            object
               244 non-null
 5
    time
                             object
               244 non-null
                             int64
    size
dtypes: float64(2), int64(1), object(4)
memory usage: 13.5+ KB
```

▼ seaborn library

▼ import libs

```
1 import seaborn as sns
```

▼ import dataset from seaborn

```
1 df = sns.load_dataset('tips')
2 df.head()
```

	total_bill	tip	sex	smoker	day	time	size	
0	16.99	1.01	Female	No	Sun	Dinner	2	
1	10.34	1.66	Male	No	Sun	Dinner	3	
2	21.01	3.50	Male	No	Sun	Dinner	3	
3	23.68	3.31	Male	No	Sun	Dinner	2	
4	24.59	3.61	Female	No	Sun	Dinner	4	

```
1 df.shape
```

(244, 7)

1 df.describe()

	total_bill	tip	size
count	244.000000	244.000000	244.000000
mean	19.785943	2.998279	2.569672
std	8.902412	1.383638	0.951100
min	3.070000	1.000000	1.000000
25%	13.347500	2.000000	2.000000
50%	17.795000	2.900000	2.000000
75%	24.127500	3.562500	3.000000
max	50.810000	10.000000	6.000000

1 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 244 entries, 0 to 243
Data columns (total 7 columns):
    Column
               Non-Null Count Dtype
               -----
    total_bill 244 non-null float64
               244 non-null float64
1
    tip
 2
    sex
               244 non-null
                            category
               244 non-null
 3
    smoker
                            category
               244 non-null
 4
    day
                             category
               244 non-null
    time
                              category
    size
               244 non-null
                             int64
dtypes: category(4), float64(2), int64(1)
memory usage: 7.4 KB
```

- ▼ relations / correlations
- ▼ df.corr()

```
1 df.iloc[ : , [0, 1, 6]].corr()
2 # correlation matrix
```

	total_bill	tip	size
total_bill	1.000000	0.675734	0.598315
tip	0.675734	1.000000	0.489299

▼ heatmap(correlation)

1 sns.heatmap(df.iloc[: , [0, 1, 6]].corr())
2 # heatmap

▼ pairplot

1 sns.pairplot(df)

```
c:\users\surya\appdata\local\programs\python\python39\lib\site-packages\seaborn\axisgrid.p
         self._figure.tight_layout(*args, **kwargs)
       <seaborn.axisgrid.PairGrid at 0x1b212063460>
           50
           40
         total_bill
           10
           10
            8
         tip
            6
            5
▼ jointplot
                        wcai_biii
                                                        uр
                                                                                    SIZE
   1 sns.jointplot(x='tip', y='total_bill', data=df)
   2 # sns.jointplot(x, y, data=df)
```

<seaborn.axisgrid.JointGrid at 0x1b212949cd0>

1 sns.jointplot(x='tip', y='total_bill', data=df, kind='hex')

2 # sns.jointplot(x, y, data=df, kind='hex')

<seaborn.axisgrid.JointGrid at 0x1b212df8e50>

1 sns.pairplot(df, hue='sex')

C:\Users\surya\AppData\Local\Temp\ipykernel_31444\3837117233.py:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

```
sns.distplot(df['tip'])
<Axes: xlabel='tip', vlabel='Densitv'>
```

▼ displot

1 # displot 2 sns.displot(df['tip'])

c:\users\surya\appdata\local\programs\python\python39\lib\site-packages\seaborn\axisgrid.p
 self._figure.tight_layout(*args, **kwargs)
<seaborn.axisgrid.FacetGrid at 0x1b212e03190>

Categorical plots

▼ countplot()

1 sns.countplot(x='sex', data=df)

<Axes: xlabel='sex', ylabel='count'>

1 sns.countplot(y='sex', data=df)

<Axes: xlabel='count', ylabel='sex'>

▼ boxplot()

Sex

Female -

```
1 # box plot
2 sns.boxplot(x='smoker', y='total_bill', data=df)
3 # sns.boxplot(x='a', y='b', data=df)
```

<Axes: xlabel='smoker', ylabel='total_bill'>


```
1 sns.boxplot(x='day', y='total_bill', data=df)
2 # sns.boxplot(x='c', y='b', data=df)
```

<Axes: xlabel='day', ylabel='total_bill'>


```
1 sns.boxplot(x='day', y='total_bill', data=df, palette ='rainbow')
2 # sns.boxplot(x='a', y='b', data=df, palette ='rainbow')
```

```
<Axes: xlabel='day', ylabel='total_bill'>
50 -
40 -
```

```
1 sns.boxplot(data=df, orient='v')
2 # sns.boxplot(data=df, orient='v')
```


▼ violinplot()

```
1 sns.violinplot(x='day', y='total_bill', data=df, palette='rainbow')
2 # sns.violinplot(x='a', y='b', data=df, palette='rainbow')
```

<Axes: xlabel='day', ylabel='total_bill'>
60
50
40
10
10

1 sns.violinplot(x='total_bill', y='day', data=df, palette='rainbow')
2 # sns.violinplot(x='b', y='a', data=df, palette='rainbow')

<Axes: xlabel='total_bill', ylabel='day'>

HW

barplot

HW

• bar graph , pie chart, box plot, on character data

- HW

• analyse the iris dataset with different plots

1

