Prof. Amador Martin-Pizarro Übungen: Michael Lösch

Lineare Algebra I

Blatt 5

Abgabe: 14.12.2020, 10 Uhr Gruppennummer angeben!

Aufgabe 1 (7 Punkte).

Sei $\mathbb{R}[T]$ der Polynomring mit Koeffizienten aus \mathbb{R} (siehe Appendix D im Skript). Beachte, dass $\mathbb{R}[T]$ insbesondere ein reeller Vektorraum ist. Wir wählen ein festes Element r aus \mathbb{R} .

(a) Zeige, dass die Familie $((T-r)^n)_{n\in\mathbb{N}}$ linear unabhängig ist.

Hinweis: Für ein Polyom $P = \sum_{0 \le k \le D} a_k T^k$ vom Grad D ist die formale Ableitung

$$\frac{\partial P}{\partial T} = \sum_{1 \le k \le D} a_k k T^{k-1}.$$

(b) Zeige, dass die Familie $((T-r)^n)_{n\in\mathbb{N}}$ eine Basis von $\mathbb{R}[T]$ bildet.

Hinweis: Zeige induktiv über den Grad D des Polynoms P, dass $P = b_D(T - r)^D + Q$, wobei Q Grad höchstens D - 1 hat.

Aufgabe 2 (5 Punkte). Betrachte folgende Vektoren im \mathbb{R} -Vektorraum \mathbb{R}^3

$$v_1 = (1, 5, 4)$$

 $v_2 = (1, 5, 3)$
 $v_3 = (17, 85, 56)$
 $v_4 = (1, 5, 2)$
 $v_5 = (3, 16, 13)$

- (a) Zeige, dass $\{v_1, \ldots, v_5\}$ ein Erzeugendensystem ist. Ist es linear unabhängig?
- (b) Finde mit der Gauß-Eliminationsmethode eine Teilmenge von $\{v_1, \ldots, v_5\}$, welche eine Basis von \mathbb{R}^3 ist.

Aufgabe 3 (5 Punkte). Sind die Vektoren

$$u_1 = (1, 4, 0, -5, 1)$$
, $u_2 = (1, 3, 0, -4, 0)$ und $u_3 = (0, 4, 1, 1, 4)$

linear unabhängig im \mathbb{R} -Vektorraum \mathbb{R}^5 ?

Wenn ja, finde eine Basis von \mathbb{R}^5 , welche $\{u_1, u_2, u_3\}$ ergänzt.

Aufgabe 4 (3 Punkte).

Wir nehmen an, dass sich der K-Vektorraum V als eine direkte Summe $V=U_1\oplus U_1$ zweier transversaler Unterräume U_1 und U_2 schreiben lässt. Gegeben einen Unterraum W von V, ist $W=W_1\oplus W_2$ mit $W_1=W\cap U_1$ und $W_2=W\cap U_2$?

Abgabe in ILIAS als eine einzige PDF-Datei einreichen.