PLANNING PHASE Sprint Delivery Plan

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	3 NOVEMBER 2022
Team ID	PNT2022TMID17271
Project Name	AI FOR A Novel Method for Handwritten Digit Recognition System
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Point s		Team Members
Sprint -1	Data Collection	USN-1	As a user, I can collect the dataset from various resources with different handwritings.	10	Low	MOHANASUNDARAM
Sprint -1	Data Preprocessin g	USN-2	As a user, I can load the dataset, handling the missing data,	10	Mediu m	MADHAVAN

Sprint	Functional	User	User Story / Task	Story	Priorit	Team Members
	Requirement	Story		Point	$ \mathbf{y} $	
	(Epic)	Number		S		

			scaling and split data into train and test.			
Sprint -2	Model Building	USN-3	As a user, I will get an application with ML model which provides high accuracy of recognized handwritten digit.	5	High	MADHAN
Sprint -2	Add CNN layers	USN-4	Creating the model and	5	High	MANIKANDAN

Sprint	Functional	User	User Story / Task	Story	Priorit	Team Members	
	Requirement	Story		Point	\mathbf{y}]
	(Epic)	Number		S			

			adding the input, hidden, and output layers to it.			MOHANASUND ARAM
Sprint -2	Compiling the model	USN-5	With both the training data defined and model defined, it's time to configure the learning process.	2	Medium	MANIKANDAN
Sprint -2	Train & test the model	USN-6	As a user, let us train our model with our image	6	Mediu m	MADHAN

Sprint	Functional	User	User Story / Task	Story	Priorit	Team Members
	Requirement	Story		Point	$ \mathbf{y} $	
	(Epic)	Number		S		

			dataset.			
Sprint -2	Save the model	USN-7	As a user, the model is saved & integrated with an android application or web application in order to predict something.	2	Low	MANIKANDAN
Sprint -3	Building UI Application	USN-8	As a user, I will upload the handwritten digit image to	5	High	MOHANASUND ARAM

Sprint	Functional	User	User Story /	Story	Priorit	Team Members
	Requirement	Story	Task	Point	$ \mathbf{y} $	
	(Epic)	Number		S		

		the application by clicking a upload button.			
Sprint -3	USN-9	As a user, I can know the details of the fundamental usage of the application.	5	Low	MADHAVAN
Sprint -3	USN-10	As a user, I can see the predicted / recognized digits in the application.	5	Mediu m	MOHANASUND ARAM

Sprint	Functional	User	User Story / Task	Story	Priorit	Team Members
	Requirement	Story		Point	\mathbf{y}	
	(Epic)	Number		S		

Sprint -4	Train the model on IBM	USN-11	As a user, I train the model on IBM and integrate flask/Django with scoring end point.	10	High	MADHAN
Sprint -4	Cloud Deployment	USN-12	As a user, I can access the web application and make the use of the product from anywhere.	10	High	MANIKANDAN

Sprint	Total Story Points	Duratio n	Sprin t Start Date	Sprint End Date (Planned)	Story Points Complete d (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Average Velocity = 20 / 6 = 3.33

Burndown Chart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

