## Lecture 23. Expectation Maximization.

**COMP90051 Statistical Machine Learning** 

Semester 2, 2020 Lecturer: Ben Rubinstein



#### This lecture

- EM intuition by GMM with recap
- Lower-bound  $\log p(\pmb{X}|\pmb{\theta})$  by  $\mathbb{E}_{\pmb{Z}}[\log p(\pmb{X},\pmb{Z}|\pmb{\theta})] \mathbb{E}_{\pmb{Z}}[\log p(\pmb{Z})]$ 
  - \* Holds for any  $\theta$ ,  $p(\mathbf{Z})$
  - Uses Jensen's inequality (concavity of log)
- Maximise not  $\log p(X|\theta)$  but lower bound, alternating:
  - \* E-Step: choose  $p(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^*)$  raises lower bound up to log-likelihood, for any  $\boldsymbol{\theta}^*$
  - \* M-Step:  $\theta^*$  by max'ing "completed" log-likelihood; ideally, easy MLE
- Proving the E-step
- Applying EM to GMM MLE-based training
  - Coming full circle back to comparison to k-means

#### Recap: EM for fitting the GMM

- Initialisation Step:
  - \* Initialize K clusters:  $C_1$ , ...,  $C_K$   $(\mu_i, \Sigma_i)$  and  $P(C_i)$  for each cluster j.
- Iteration Step:
  - Estimate the cluster of each datum



$$p(C_i \mid x_i)$$
 Calculating the probability for each point that for each cluster

Re-estimate the cluster parameters



$$(\mu_j, \Sigma_j), p(C_j)$$
 for each cluster j

#### MLE vs EM

- MLE is a frequentist principle that suggests that given a dataset, the "best" parameters to use are the ones that maximise the probability of the data
  - \* MLE is a way to formally pose the problem
- EM is an algorithm
  - \* EM is a way to solve the problem posed by MLE
  - Especially convenient under unobserved latent variables
- MLE can be found by other methods such as gradient descent (but gradient descent is not always the most convenient method)

#### EM for GMM and generally

- EM is a general approach, goes beyond GMMs
  - Purpose: Implement MLE under latent variables Z
     ('latent' is fancy for 'missing')
- What are variables, parameters in GMMs?
  - Variables: Point locations X and cluster assignments Z
    - let  $z_i$  denote true cluster membership for each point  $x_i$ , computing the likelihood with known values z is simplified (see next section)
  - \* Parameters: θ are cluster locations and scales
- What is EM really doing?
  - Coordinate ascent on a lower bound on the log-likelihood

    - E-step: ascent in the marginal likelihood P(Z) Ascending on the membership for each point
  - Each step moves towards a *local* optimum
  - Can get stuck, can need random restarts

#### Using convexity: Jensen's inequality

- Compares effect of averaging before and after applying a convex function:  $f(Average(x)) \le Average(f(x))$
- Example:
  - \* Let f be some convex function, such as  $f(x) = x^2$
  - \* Consider x = [1,2,3,4,5]', then f(x) = [1,4,9,16,25]'
  - \* Average of input Average(x) = 3
  - \* f(Average(x)) = 9
  - \* Average of output Average(f(x)) = 12.4
- Proof follows from the definition of convexity
  - Proof by induction

#### General statement:

- \* If X random variable, f is a convex function
- \*  $f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$



#### Putting the latent variables to use

We want to maximise  $\log p(X|\theta)$ . We don't observe Z (here discrete), but can (re)introduce it nonetheless.

$$\log p(X|\theta) = \log \sum_{Z} p(X, Z|\theta)$$

$$= \log \sum_{Z} \left( p(X, Z|\theta) \frac{p(Z)}{p(Z)} \right)$$
definition of expectation

$$= \log \sum_{\mathbf{Z}} \left( p(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{p(\mathbf{Z})} \right)$$

$$= \log \mathbb{E}_{\mathbf{Z}} \left[ \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{p(\mathbf{Z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{p(\mathbf{Z})} \right]$$

$$= \left[ \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})] - \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{Z})] \right]$$

 $\leftarrow$  Marginalisation (here  $\sum_{Z}$  ... iterates over all possible values of Z)

 $\leftarrow$  Need Z to have non-zero marginal

Example of an marginal probability

| YX                    | <i>x</i> <sub>1</sub> | <b>x</b> <sub>2</sub> | <b>x</b> <sub>3</sub> | <b>x</b> <sub>4</sub> | <i>p</i> <sub>Y</sub> ( <i>y</i> ) ↓ |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------------------------|
| <i>y</i> <sub>1</sub> | 4/32                  | 2/32                  | 1/32                  | 1/32                  | 8/32                                 |
| <i>y</i> <sub>2</sub> | 3/32                  | 6/32                  | 3/32                  | 3/32                  | 15/32                                |
| <i>y</i> <sub>3</sub> | 9/32                  | 0                     | 0                     | 0                     | 9/32                                 |
| $p_X(x) \rightarrow$  | 16/32                 | 8/32                  | 4/32                  | 4/32                  | 32/32                                |

← Jensen's inequality holds in this direction since log(...) is a concave function

#### Maximising the lower bound (1/2)

- $\log p(X|\theta) \ge \mathbb{E}_{Z}[\log p(X,Z|\theta)] \mathbb{E}_{Z}[\log p(Z)]$
- The right hand side (RHS) is a lower bound on the original log likelihood
  - \* This holds for any  $\theta$  and any non zero p(Z)
- Intuitively, we want to push the lower bound up
- This lower bound is a function of two "variables"  $\theta$  and  $p(\mathbf{Z})$ . We want to maximise the RHS as a function of these two "variables"
- It is hard to optimise with respect to both at the same time, so EM resorts to an iterative procedure

#### Maximising the lower bound (2/2)

- $\log p(X|\theta) \ge \mathbb{E}_{Z}[\log p(X,Z|\theta)] \mathbb{E}_{Z}[\log p(Z)]$
- EM is essentially coordinate ascent:
  - \* Fix  $\boldsymbol{\theta}$  and optimise the lower bound for  $p(\boldsymbol{Z})$
  - \* Fix  $p(\mathbf{Z})$  and optimise for  $\boldsymbol{\theta}$

we will prove this shortly

- The convenience of EM comes from the following
- For any point  $\theta^*$ , it can be shown that setting  $p(Z) = p(Z|X,\theta^*)$  makes the lower bound tight
- For any  $p(\boldsymbol{Z})$ , the second term does not depend on  $\boldsymbol{\theta}$
- When  $p(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^*)$ , the first term can usually be maximised as a function of  $\boldsymbol{\theta}$  in a closed-form
  - If not, then probably don't use EM

## Example (1/3)

$$\log p(\boldsymbol{X}|\boldsymbol{\theta}) \ge \mathbb{E}_{\boldsymbol{Z}}[\log p(\boldsymbol{X},\boldsymbol{Z}|\boldsymbol{\theta})] - \mathbb{E}_{\boldsymbol{Z}}[\log p(\boldsymbol{Z})]$$





## Example (2/3)

 $\log p(\mathbf{X}|\boldsymbol{\theta}) \ge \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})] - \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{Z})]$  $\equiv G(\boldsymbol{\theta}, p(\boldsymbol{Z}))$  $\log p(X|\boldsymbol{\theta})$  $G\left(\theta, p(\mathbf{Z}|\mathbf{X}, \theta^{(t)})\right)$  $\theta$  $\theta^{(t)}$  $\theta^{(t+1)}$ 

## Example (3/3)

 $\log p(X|\boldsymbol{\theta}) \ge \mathbb{E}_{\mathbf{Z}}[\log p(X, \mathbf{Z}|\boldsymbol{\theta})] - \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{Z})]$  $\equiv G\big(\boldsymbol{\theta},p(\boldsymbol{Z})\big)$  $\log p(X|\boldsymbol{\theta})$  $G\left(\theta, p(\mathbf{Z}|\mathbf{X}, \theta^{(t+1)})\right)$  $\theta$  $\theta^{(t)}$  $\theta^{(t+1)}$ 

#### Mini Summary

- EM intuition by GMM with recap
- Lower-bound  $\log p(\pmb{X}|\pmb{\theta})$  by  $\mathbb{E}_{\pmb{Z}}[\log p(\pmb{X},\pmb{Z}|\pmb{\theta})] \mathbb{E}_{\pmb{Z}}[\log p(\pmb{Z})]$ 
  - \* Holds for any  $\theta$ ,  $p(\mathbf{Z})$
  - Uses Jensen's inequality (concavity of log)



- Maximise not  $\log p(X|\theta)$  but lower bound, alternating:
  - \* E-Step: choose  $p(Z)=p(Z|X, \theta^*)$  raises lower bound up to log-likelihood, for any  $\theta^*$  assign probability to each point
  - \* M-Step:  $\theta^*$  by max'ing "completed" log-likelihood; ideally, easy MLE
- The E- and M-steps implement coordinate ascent

Next: Proving the E-step

#### EM as iterative (coordinate) ascent

- 1. Initialisation: choose (random) initial values of  $\boldsymbol{\theta}^{(1)}$
- 2. <u>Update</u>:
  - \* E-step: compute  $Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \equiv \mathbb{E}_{\boldsymbol{Z}|\boldsymbol{X}, \boldsymbol{\theta}^{(t)}}[\log p(\boldsymbol{X}, \boldsymbol{Z}|\boldsymbol{\theta})]$
  - \* M-step:  $\boldsymbol{\theta}^{(t+1)} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)})$
- 3. Termination: if no change then stop
- 4. Go to Step 2

This algorithm will eventually stop (converge), but the resulting estimate can be only a local maximum

## Maximising the lower bound (2/2)

- $\log p(X|\theta) \ge \mathbb{E}_{Z}[\log p(X,Z|\theta)] \mathbb{E}_{Z}[\log p(Z)]$
- EM is essentially coordinate descent:
  - \* Fix  $\theta$  and optimise the lower bound for p(Z)
  - \* Fix p(Z) and optimise for  $\theta$

we will prove this now

- The convenience of EM follows from the following
- For any point  $\theta^*$ , it can be shown that setting  $p(Z) = p(Z|X,\theta^*)$  makes the lower bound tight
- For any  $p(\mathbf{Z})$ , the second term does not depend on  $\boldsymbol{\theta}$
- When  $p(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^*)$ , the first term can usually be maximised as a function of  $\boldsymbol{\theta}$  in a closed-form
  - If not, then probably don't use EM

#### Putting the latent variables in use

We want to maximise  $\log p(X|\theta)$ . We don't know Z, but consider an arbitrary non-zero distribution p(Z)

$$\log p(X|\boldsymbol{\theta}) = \log \sum_{\boldsymbol{Z}} p(X, \boldsymbol{Z}|\boldsymbol{\theta})$$

$$= \log \sum_{\mathbf{Z}} \left( p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta}) \frac{p(\mathbf{Z})}{p(\mathbf{Z})} \right)$$

$$= \log \sum_{\mathbf{Z}} \left( p(\mathbf{Z}) \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z})} \right)$$

$$= \log \mathbb{E}_{\mathbf{Z}} \left[ \frac{p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})}{p(\mathbf{Z})} \right]$$

$$\geq \mathbb{E}_{\mathbf{Z}}\left[\log \frac{p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})}{p(\mathbf{Z})}\right]$$

$$= \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})] - \mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{Z})]$$

 $\leftarrow$  Rule of marginal distribution (here  $\sum_{Z}$  ... iterates over all possible values of Z)

← Jensen's inequality holds since log(...) is a concave function

## Setting a tight lower bound (1/2)

• 
$$\log p(X|\theta) \ge \mathbb{E}_{Z} \left[\log \frac{p(X|Z|\theta)}{p(Z)}\right]$$

$$= \mathbb{E}_{Z} \left[\log \frac{p(Z|X,\theta)p(X|\theta)}{p(Z)}\right] \qquad \leftarrow \text{Chain rule of probability}$$

$$= \mathbb{E}_{Z} \left[\log \frac{p(Z|X,\theta)}{p(Z)} + \log p(X|\theta)\right]$$

$$= \mathbb{E}_{Z} \left[\log \frac{p(Z|X,\theta)}{p(Z)}\right] + \mathbb{E}_{Z} [\log p(X|\theta)] \qquad \leftarrow \text{Linearity of } \mathbb{E}[.]$$

$$= \mathbb{E}_{Z} \left[\log \frac{p(Z|X,\theta)}{p(Z)}\right] + \log p(X|\theta) \qquad \leftarrow \mathbb{E}[.] \text{ of a constant since this part does not depending on Z at all.}$$

• 
$$\log p(X|\theta) \ge \mathbb{E}_{Z} \left[ \log \frac{p(Z|X,\theta)}{p(Z)} \right] + \log p(X|\theta)$$

## Setting a tight lower bound (2/2)

Ultimate aim: Lower bound of what maximise this we want to maximise

$$\log p(X|\boldsymbol{\theta}) \ge \mathbb{E}_{\mathbf{Z}} \left[ \log \frac{p(\mathbf{Z}|X,\boldsymbol{\theta})}{p(\mathbf{Z})} \right] + \log p(X|\boldsymbol{\theta})$$

First, note that this term\*  $\leq 0$ 

Second, note that if  $p(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$ , then

$$\mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}\left[\log\frac{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}\right] = \mathbb{E}_{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta})}[\log 1] = 0$$

For any  $\theta^*$ , setting  $p(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \theta^*)$  maximises the lower bound on  $\log p(\mathbf{X}|\theta^*)$  and makes it tight

#### Mini Summary

• We're wanting to maximise the lower bound  $v(X, Z|\theta)$ 

$$\log p(X|\boldsymbol{\theta}) \ge \mathbb{E}_{\boldsymbol{Z}} \left[ \log \frac{p(X, \boldsymbol{Z}|\boldsymbol{\theta})}{p(\boldsymbol{Z})} \right]$$

- We've shown RHS is  $\mathbb{E}_{\pmb{Z}}\left[\log \frac{p(\pmb{Z}|\pmb{X},\pmb{\theta})}{p(\pmb{Z})}\right] + \log p(\pmb{X}|\pmb{\theta})$
- And that setting  $p(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$ 
  - Makes this RHS as big as possible
  - \* Makes this RHS equal to  $\log p(X|\theta)$
  - \*  $\rightarrow$  maximises the lower bound as desired!

Next: Application of EM to GMM learning

# Estimating Parameters of Gaussian Mixture Model

Classical application of the Expectation-Maximisation algorithm. Completes previous lecture.

#### Latent variables of GMM

- Let  $z_1, ..., z_n$  denote true origins of the corresponding points  $x_1, ..., x_n$ . Each  $z_i$  is a discrete variable that takes values in 1, ..., k, where k is a number of clusters
- Now compare the original log likelihood

$$\log p(\mathbf{x}_1, \dots, \mathbf{x}_n) = \sum_{i=1}^n \log \left( \sum_{c=1}^k w_c \mathcal{N}(\mathbf{x}_i | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c) \right)$$

With complete log likelihood (if we knew z)

$$\log p(\mathbf{x}_1, \dots, \mathbf{x}_n, \mathbf{z}) = \sum_{i=1}^n \log \left( w_{z_i} \mathcal{N} \left( \mathbf{x}_i | \boldsymbol{\mu}_{z_i}, \boldsymbol{\Sigma}_{z_i} \right) \right)$$

Recall that taking a log of a normal density function results in a tractable expression

## Handling uncertainty about Z

- We cannot compute complete log likelihood because we don't know Z
- EM algorithm handles this uncertainty replacing  $\log p(\pmb{X},\pmb{z}|\pmb{\theta})$  with expectation  $\mathbb{E}_{\pmb{Z}|\pmb{X},\pmb{\theta}^{(t)}}[\log p(\pmb{X},\pmb{Z}|\pmb{\theta})]$
- This in turn requires the distribution of  $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{(t)})$  given current parameter estimates
- Assuming that  $Z_i$  are pairwise independent, we need  $P(Z_i = c | \mathbf{x}_i, \boldsymbol{\theta}^{(t)})$
- E.g., suppose  $x_i = (-2, -2)$ . What is the probability that this point originated from Cluster 1



x1

#### E-step: Cluster responsibilities

 Setting latent Z as originating cluster, yields (via Bayes rule)

$$P(z_i = c | \boldsymbol{x}_i, \boldsymbol{\theta}^{(t)}) = \frac{w_c \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_c, \boldsymbol{\Sigma}_c)}{\sum_{l=1}^k w_l \mathcal{N}(\boldsymbol{x}_i | \boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)}$$

• This probability is called responsibility that cluster c takes for data point i

$$r_{ic} \equiv P(z_i = c | \boldsymbol{x}_i, \boldsymbol{\theta}^{(t)})$$



#### **Expectation step for GMM**

To simplify notation, we denote  $x_1, ..., x_n$  as X

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) \equiv \mathbb{E}_{\boldsymbol{z}|\boldsymbol{X},\boldsymbol{\theta}^{(t)}}[\log p(\boldsymbol{X},\boldsymbol{z}|\boldsymbol{\theta})]$$

$$= \sum_{\boldsymbol{z}} p(\boldsymbol{z}|\boldsymbol{X},\boldsymbol{\theta}^{(t)}) \log p(\boldsymbol{X},\boldsymbol{z}|\boldsymbol{\theta})$$

$$= \sum_{\boldsymbol{z}} p(\boldsymbol{z}|\boldsymbol{X},\boldsymbol{\theta}^{(t)}) \sum_{i=1}^{n} \log w_{z_{i}} \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{\mu}_{z_{i}},\boldsymbol{\Sigma}_{z_{i}})$$

$$= \sum_{i=1}^{n} \sum_{\boldsymbol{z}} p(\boldsymbol{z}|\boldsymbol{X},\boldsymbol{\theta}^{(t)}) \log w_{z_{i}} \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{\mu}_{z_{i}},\boldsymbol{\Sigma}_{z_{i}})$$

$$= \sum_{i=1}^{n} \sum_{c=1}^{k} r_{ic} \log w_{z_{i}} \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{\mu}_{z_{i}},\boldsymbol{\Sigma}_{z_{i}})$$

$$= \sum_{i=1}^{n} \sum_{c=1}^{k} r_{ic} \log w_{z_{i}}$$

$$+ \sum_{i=1}^{n} \sum_{c=1}^{k} r_{ic} \log \mathcal{N}(\boldsymbol{x}_{i}|\boldsymbol{\mu}_{z_{i}},\boldsymbol{\Sigma}_{z_{i}})$$

#### Maximisation step for GMM

• In the maximisation step, take partial derivatives of  $Q(\theta, \theta^{(t)})$  with respect to each of the parameters and set the derivatives to zero to obtain new parameter estimates

• 
$$w_c^{(t+1)} = \frac{1}{n} \sum_{i=1}^n r_{ic}$$

• 
$$\mu_c^{(t+1)} = \frac{\sum_{i=1}^n r_{ic} x_i}{r_c}$$
  
• Here  $r_c \equiv \sum_{i=1}^n r_{ic}$ 

• 
$$\boldsymbol{\Sigma}_{c}^{(t+1)} = \frac{\sum_{i=1}^{n} r_{ic} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'}{r_{c}} - \boldsymbol{\mu}_{c}^{(t)} \left(\boldsymbol{\mu}_{c}^{(t)}\right)'$$

• Note that these are the estimates for step (t+1)

#### Example of fitting Gaussian Mixture model



#### k-means as a EM for a restricted GMM

- Consider a GMM model in which all components have the same fixed probability  $w_c = 1/k$ , and each Gaussian has the same fixed covariance matrix  $\Sigma_c = \sigma^2 I$ , where I is the identity matrix
- In such a model, only component centroids  $oldsymbol{\mu}_c$  need to be estimated
- Next approximate a probabilistic cluster responsibility  $r_{ic} = P\left(z_i = c | \boldsymbol{x}_i, \boldsymbol{\mu}_c^{(t)}\right)$  with a deterministic assignment  $r_{ic} = 1$  if centroid  $\boldsymbol{\mu}_c^{(t)}$  is closest to point  $\boldsymbol{x}_i$ , and  $r_{ic} = 0$  otherwise (E-step)
- Such a formulation results in a M-step where  $\mu_c$  should be set as a centroid of points assigned to cluster c
- In other words, k-means algorithm is a EM algorithm for the restricted GMM model described above!!!

#### Summary

- EM as MLE algorithm under latent variables
- Maximise not  $\log p(X|\boldsymbol{\theta})$  but lower bound, alternating:
  - \* E-Step: choose  $p(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^*)$  raises lower bound up to log-likelihood, for any  $\boldsymbol{\theta}^*$
  - \* M-Step:  $\theta^*$  by max'ing "completed" log-likelihood; ideally, easy MLE
- Applying EM to GMM MLE-based training
  - \* "New" interpretation of k-means as MLE with constraints