Teorema: (Modificación de la Integral) Si g'existe en [a,b] y f es g-integrable, entonies foj es Riemann Intégrables $\int_{a}^{b} f dq = \int_{a}^{b} f g' = \int_{a}^{b} f(t) g'(t) dt$ Prue ba: g' existe en [0,b] \Rightarrow g' es uniformemente continua en [a,b]. Para $\varepsilon > 0$ rea $P = \{t_0, ..., t_n\}$ produción tal que P' $\xi_i, \xi_i \in [t_{i-1}, t_i] \Rightarrow [g'(\xi_i) - g'(\xi_i)] \in [f](ba)$ Tomomos la diferencia entre s(f,g,f) y s(fg,p).

$$| p(f,g,P) - p(f,P)| = | \sum_{i=1}^{n} f(\xi_{i})(g(t_{i}) - g(t_{i-1})) - \sum_{i=1}^{n} f(\xi_{i})g'(\xi_{i})(t_{i} - t_{i-1})|$$

$$= | \sum_{i=1}^{n} f(\xi_{i})g'(\xi_{i})(t_{i} - t_{i-1}) - \sum_{i=1}^{n} f(\xi_{i})g'(\xi_{i})(t_{i} - t_{i-1})|$$

$$= | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \cdot (g'(\xi_{i}) - g'(\xi_{i}))|$$

$$= | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \cdot (g'(\xi_{i}) - g'(\xi_{i}))|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \cdot (g'(\xi_{i}) - g'(\xi_{i}))|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \cdot (g'(\xi_{i}) - g'(\xi_{i}))|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \cdot (g'(\xi_{i}) - g'(\xi_{i}))|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \cdot (g'(\xi_{i}) - g'(\xi_{i}))|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) \cdot (g'(\xi_{i}) - g'(\xi_{i}))|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1}) - | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$\leq | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$= | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$= | \sum_{i=1}^{n} f(\xi_{i})(t_{i} - t_{i-1})|$$

$$= |$$

Tomando Strinte criando [P] -so $A(f_1g,P) \longrightarrow \int fdg$, $A(fg',P) \longrightarrow \int^1 fg'$ | D(f,g,P,)- ffdg | LE/3, | D(fg',P2)- ffg' | LE/3 y | A(f,g,P) - A(fgl,P) | L &/3
Tomando un refinamiento & común a PP, y P2

 $\Rightarrow | \wedge (fg', 0) - ffdq | \leq | \wedge (fg', 0) - | fg' | +$ I Sfgl - Sfdgl £/3 + ε/3 = 2ε L ε es Riemann integrable y Sfg! = Sfdg.

wands integration por partes: $\int_{a}^{b} f dg + \int_{a}^{b} g df = f(x)g(x)\Big|_{a}^{b}$

$$\Rightarrow \int_{0}^{1} x \, d(x^{2}) = x \cdot x^{2} \Big|_{0}^{1} - \int_{0}^{1} \chi^{2} dx$$

$$= x^{3} \Big|_{0}^{1} - \frac{1}{3} x^{3} \Big|_{0}^{1} = \frac{2}{3} x^{3} \Big|_{0}^{1} = \frac{2}{3} - 0 = \frac{2}{3}$$

wounds modificación de la integral $\int_0^1 x d(x^2) = \int_0^1 x \cdot 2x dx = \int_0^1 2x^2 dx = \frac{2}{3}x^3 \Big|_0^1 = \frac{2}{3}$

(2)
$$\int_{6}^{\pi/2} \int_{6}^{\pi/2} \int_{6}^{\pi/2}$$

Em ciones de Variación Limitada

Sea f: [a,b] -> IR y P= {to,...,tn} partición de [a,b].

Def: La variation de frespecto de P es $v_f(P) = \sum_{i=1}^{n} |f(t_i) - f(t_{i-i})|$.

Si $\{v_j(p): P \text{ particion}\}$ es limitado decimos que f porce variación limitada. En ese caso, definimos la variación total de f en $[a_jb]$ $V_f[a_jb] = \sup_{p} v_f(p)$.

$$P = \{a,b\}$$
 $v_f(p) = |f(b) - f(a)|$

Propiedades:

• Si
$$P \in Q$$
 (Qrefina a P) $\Rightarrow v_f(P) \leq v_f(Q)$

• Si
$$P \subseteq Q$$
 (Q refine aP) $\Rightarrow v_f(P) \leq v_f(Q)$.

 $t_{i-1} \quad t_i \quad v_f(P) = |f(t_i) - f(t_{i-1})| \leq |f(t_i) - f(t_{i-1})| + |f(t_i) - f(t_{i-1})| \leq |f(Q)|$.

Si fes monotone creciente
$$\Rightarrow f(P) = f(b) - f(a)$$
. $\forall P$.

$$f(P) = \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})| = \sum_{i=1}^{n} (f(t_i) - f(t_{i-1})) = f(b) - f(a).$$

• Si f es monistance decreciente $\Rightarrow v_f(P) = f(a) - f(b)$, $\forall P$.

En consecuencia, f monotona \Rightarrow f es de variación limitada, y $V_{f}[a,b] = \begin{cases} f(b)-f(a), & \text{foreciente} \\ f(a)-f(b), & \text{foreciente}. \end{cases}$

· Sifer constante > fes de varianion limitale y \4[a,b]=0.

Notación Al conjunto de funciones de variación limitada en [a,1] lo denotamos por BV(a,b). f∈BV(a,b) f es BV.

f es Lipschitz, con |f(x)-f(y)| < M|x-y|. Entonnes $\frac{\int_{i=1}^{n} |f(t_i) - f(t_{i-1})|}{\int_{i=1}^{n} |f(t_i) - f(t_{i-1})|} \leq \frac{\int_{i=1}^{n} |f(t_i) - f(t_i)|}{\int_{i=1}^{n} |f(t_i) - f(t_i)|} \leq \frac{$ $\leq M \sum_{i=1}^{n} (t_i - t_{i-i}) =$ ⇒ fes BV.

X=y

• Sif is differentiable y $|f'(x)| \leq M \implies f$ as BV[a,b].