Assignment Project Example Pro

https://eduassistpro.github.ig/ Add WeChat edu_assist_pro

10 Relational Database Design

Anomalies can be removed from relation designs by decomposing them until they are in a normal form.

Several problems should be investigated regarding a decomposition.

A decomposition of a relation scheme R_i is a set of relation schemes $\{R_1, \ldots, R_n\}$ such that $R_i \subseteq R$ for each R_i and $R_i \subseteq R$ for each R_i for each R_i and $R_i \subseteq R$ for each R_i and $R_i \subseteq R$ for each R_i for each $R_$

Note that in a decomphttps://eduassistpro.github.ioi/ of R_i and R_j does not have to be em

Example: R = {A, B, C,A,d,d},WeChatedu_assist_=prop, E}

A naive decomposition: each relation has only attribute.

A good decomposition should have the following two properties.

Dependency Preserving

Definition: Two sets F and G of FD's are equivalent if $F^+ = G^+$.

Given a decomposition $\{R_1, \ldots, R_n\}$ of R:

Assignment: Projects Exam; Help. 3.

https://eduassistpro.github.io/

The decomposition {Add . We Chat edu_assistesprong with respect to Fif

$$F^+ = \left(\bigcup_{i=1}^{i=n} F_i\right)^+$$

Examples

$$F = \{ A \rightarrow BC, D \rightarrow EG, M \rightarrow A \}, R = (A, B, C, D, E, G, M, A)$$

1) Given $R_1 = (A, B, C, M)$ and $R_2 = (C, D, E, G)$,

$$F_1 = \{ A \rightarrow BC, M \rightarrow A \}, F_2 = \{ D \rightarrow EG \}$$

 $F = F_1 U F_2$. thus, dependency preserving

2) Suppose that FA-SSive Mnn ent R motile configuration and elp

Thus, F_1 and F_2 remain

We need to verify if M https://eduassistpro.github.io/

Since $M^+ \mid_{F1 \cup F2} = \{M, A, B, C\}, M \rightarrow D$ is no Thus, R_1 and R_2 are not dependency preservin

3) $F'' = \{A \rightarrow BC, D \rightarrow EG, M \rightarrow A, M \rightarrow C, C \rightarrow D, M \rightarrow D\}$

$$F_1 = \{A \rightarrow BC, M \rightarrow A, M \rightarrow C\}, F_2 = \{D \rightarrow EG, C \rightarrow D\}$$

It can be verified that $M \rightarrow D$ is inferred by F_1 and F_2 .

Thus,
$$F^{"+} = (F_1 U F_2)^+$$

Hence, R_1 and R_2 are dependency preserving regarding F".

Lossless Join Decomposition

A second necessary property for decomposition:

A decomposition $\{R_1, \ldots, R_n\}$ of R is a lossless join decomposition with respect to a set F of FR's if for every reprior instruces that ratisfies F:

https://eduassistpro.githubrio/

If
$$r \subset \pi R_1(r) \bowtie \cdots \bowtie \pi R_n(r)$$
, the decom $x \in \mathbb{R}_n(r)$, the decom $x \in \mathbb{R}_n(r)$.

Lossless Join Decomposition (cont)

Example 2:

Suppose that we decompose the following relation:

With dependencies $\{Name \rightarrow Department, Name \rightarrow Advisor, Advisor \rightarrow Department\}$, into two relations:

Lossless Join Decomposition (cont)

If we join these decomposed relations we get:

Lossless Join Decomposition(cont)

Name	Department	Advisor	
Jones	Comp Sci	Smith	
Jones	Comp Sci	Clark* ←	
Ng	Chemistry	Turner	
Martin	Physics	Bosky	
Assignme	nt Project E	xam⊪Help	
Duke	Mathematics	James	
Jam https:	//eduassist	pro.github.i	0/
Evan EvanAdd	WeChati edu	u_assist_p r	0
Baxter	English	Bronte	

This is not the same as the original relation (the tuples marked with * have been added). Thus the decomposition is <u>lossy</u>.

Useful theorem: The decomposition $\{R_1, R_2\}$ of R is lossless iff the common attributes $R_1 \cap R_2$ form a superkey for either R_1 or R_2 .

Lossless Join Decomposition (cont)

Example 3: Given R(A,B,C) and $F = \{A \rightarrow B\}$. The decomposition into $R_1(A,B)$ and $R_2(A,C)$ is lossless because $A \rightarrow B$ is an FD over R_1 , so the common attribute A is a key of R_1 .

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Testing for the lossless join property

Algorithm TEST_LJ

Step 1: Create a matrix S, each element $s_{i,j} \in S$ corresponds the relation R_i and the attribute A_i , such that:

Assignment, Project Exam Help

Step 2: Repeat t https://eduassistpro.github.io/
made up "a"
Add WeChat edu_assist_pro
Step 2.1: For each $X \rightarrow Y$, choo ere the elements

corresponding to X take the value a.

Step 2.2: In those chosen rows (must be at least two rows), the elements corresponding to Y also take the value a if one of the chosen rows take the value a on Y.

Testing for the lossless join property(cont)

The decomposition is *lossless* if one row is entirely made up by "a" values.

The algorithm can be found as the Algorithm 15.2 in E/N book.

Note: The correcting namental Project Exeann Helpsumption that no

null values are allo https://eduassistpro.github.io/

If and only if exists an order welchatt edu_assist_pro

a superkey of R_i or M_{i-1}, where M_{i-1} is the join on R₁, R₂, ... R_{i-1}

Testing for the lossless join property (cont)

Example: $R = (A, B, C, D), F = \{A \rightarrow B, A \rightarrow C, C \rightarrow D\}.$

Let
$$R_1 = (A, B, C), R_2 = (C, D).$$

Initially, S is

AAssignment Project Exam Help

^a https://eduassistpro.github.io/

 R_2 b b

Note: rows 1 and 2 of S agree on $\{C\}$, assist_profit hand side of $C \rightarrow D$.

Therefore, change the D value on rows 1 to a, matching the value from row 2.

Now row 1 is entirely a's, so the decomposition is lossless.

(Check it.)

Testing for the lossless join property(cont)

Example 2: R = (A, B, C, D, E),

$$F = \{AB \rightarrow CD, A \rightarrow E, C \rightarrow D\}$$
. Let $R_1 = (A, B, C)$,

 $R_2 = (B, C, D)$ and a serigenment. Project Exam Help

https://eduassistpro.github.io/

Example 3: R = (A, B, A) eChat edu_assist_pro

$$F = \{A \rightarrow B, C \rightarrow DE, AB \rightarrow G\}.$$
 Let $R_1 = (A, B),$

$$R_2 = (C, D, E)$$
 and $R_3 = (A, C, G)$.

Testing for the lossless join property(cont)

Example 4: R = (A, B, C, D, E, G),

$$F = \{AB \to G, C \to DE, A \to B\}.$$

Let $R_1 = (A, B)$ Assignmental Project Lexan Help

https://eduassistpro.github.io/

Algorithm TO_BCNF

```
D := \{R_1, R_2, ...R_n\}
      While \exists a R_i \in D and R_i is not in BCNF Do
                                 \{ \text{ find a } X - A \text{ significant and } A \text{ in the position of the positio
        \cup Y); }
                                                                                                                                  https://eduassistpro.github.io/
F = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, C \rightarrow E, Add WeChat edu_assist_pro
 R1 = (C, D, E, G), R2 = (A, B, C, D)
 R11 = (C, E, G), R12 = (E, D) due E \rightarrow D
 R21 = (A, B, C), R22 = (C, D) because of C \rightarrow D
```

Algorithm TO_BCNF

```
D := \{R_1, R_2, ...R_n\}

While \exists a R_i \in D and R_i is not in BCNF Do

\{ \text{ find a X } Axsing numerate Project repairs <math>i Help (R_i - Y) \text{ and } (X \cup Y); \}
```

https://eduassistpro.github.io/ Since a $X \rightarrow Y$ violating BCNF is not always in F, culty is to veri R_i is in BCNF;

see the approach below: Add WeChat edu_assist_pro

- 1. For each subset X of R_i , computer X^+ .
- 2. $X \rightarrow (X^+|_{Ri} X)$ violates BCNF, if $X^+|_{Ri} X \neq \emptyset$ and $R_i X^+ \neq \emptyset$.

Here, $X^+|_{Ri} - X = \emptyset$ means that each F.D with X as the left hand side is trivial;

 $R_i - X^+ = \emptyset$ means X is a superkey of R_i

Find a BCNF decomposition of the relation scheme below:

SHIPPING(Ship, Capacity, Date, Cargo, Value)

F consists of Assignment Project Exam Help

Ship — Capacity https://eduassistpro.github.io/

{Ship, Date} — Cargo Add WeChat edu_assist_pro
{Cargo, Capacity} — Value

```
Ship → Capacity
  R_1(Ship, Date, Cargo, Value)
 Key: \{Ship, Date\} \{Ship, Date\} \rightarrow Cargo
A nontrivial Assignmente Project \{Cargo, Capacity\} \rightarrow Value
  {Ship, Cargo}
                     https://eduassistpro.github.io/
and
                    Add WeChat edu_assist_pro
  Key: {Ship}
  Only one nontrivial FD in F^+: Ship \rightarrow Capacity
```

R₁ is not in BCNF so we must decompose it further into

```
R_{11}(Ship, Date, Cargo) \\ \text{Key: } \{Ship, Date\} \\ \text{Only one nonconstant Project Extraplic of the right side: } \{Ship, Date\} \\ \rightarrow \text{Cargo} \\ \text{https://eduassistpro.github.io/} \\ R_{12}(Ship, Cargo), \text{Add} \\ \text{WeChat edu\_assist\_pro} \\ \text{Key: } \{Ship, Cargo\} \\ \end{cases}
```

Only one nontrivial FD in F⁺ with single attribute on the right side: $\{Ship, Cargo\} \rightarrow Value$

This is in BCNF and the decomposition is lossless but not dependency preserving (the FD {Capacity, Cargo} $\rightarrow Value$) has been lost.

Or we could have chosen $\{Cargo, Capacity\} \rightarrow Value$, which would give us:

```
R<sub>1</sub> (Ship, Capacity, Date, Cargo)

Key: \{Ship, Date\}

A nontrivial Assignments Project Example Example Example Example 19.
```

Ship → Capacity https://eduassistpro.github.io/

and

Add WeChat edu_assist_pro

R₂ (Cargo, Capacity, Value)

Key: { Cargo, Capacity}

Only one nontrivial FD in F^+ with single attribute on the right side: { Cargo, Capacity} \rightarrow Value

and then from $Ship \rightarrow Capacity$,

 $R_{11}(Ship, Date, Cargo)$

Key: {Ship,Date}

Ship \rightarrow Capacity $\{Ship, Date\} \rightarrow Cargo$ $\{Cargo, Capacity\} \rightarrow Value$

Only one nontrivial FD in F⁺ with single attribute

on the right side: $\{Ship, Date\} \rightarrow Cargo$

And

Assignment Project Exam Help

R₁₂(Ship, Capacity https://eduassistpro.github.io/

Key: {Ship}

Only one nontrivial FD in F^+ : $Ship \rightarrow C$

This is in BCNF and the decomposition is both lossless and dependency preserving.

However, there are relation schemes for which there is no lossless, dependency preserving

decomposition into BCNF.

Lossless and dependency-preserving decomposition into 3NF

A lossless and dependency-preserving decomposition into 3NF is always possible.

More definitions regarding FD's are needed.

A set F of FD's is minimal if

- 1. Every FD AssignmentpProjectisExtarninHeitpribute,
- 2. Every FD $X \rightarrow A$ roper subset https://eduassistpro.github.io/ $Y \subset X$ such that

that is, there is no Add We Chat edu_assist_pro

$$\underline{\mathbf{d}}_{X}$$
 $\underline{\mathbf{v}}_{H}$ $\underline{\mathbf{e}}_{H}$ $\underline{\mathbf{f}}_{H}$ $\underline{\mathbf{f}}_{H}$ $\underline{\mathbf{f}}_{H}$ $\underline{\mathbf{f}}_{H}$ $\underline{\mathbf{f}}_{H}$ $\underline{\mathbf{f}}_{H}$ $\underline{\mathbf{f}}_{H}$ $\underline{\mathbf{f}}_{H}$ $\underline{\mathbf{f}}_{H}$

$$((F - \{X \to A\}) \cup \{Y \to A\})^+ = F^+$$

3. No FD in F can be removed; that is, there is no FD $X \rightarrow A$ in F

Iff
$$X \rightarrow A$$
 is inferred
From $F - \{X \rightarrow A\}$

$$(F - \{X \to A\})^+ = F^+.$$

Computing a minimum cover

F is a set of FD's.

A minimal cover (or canonical cover) for F is a minimal set of FD's F_{min} such that $F^+ = F^+_{min}$.

```
Algorithm Min Cover
```

Input: a set FAssignmenteProject Exam Help

Output: a minimum c

Step 1: Reduce rihttps://eduassistpro.github.io/

Step 2: *Reduce left side*. Apply Algorith e output of Step 2.

Step 3: Remove reachdat We applicate edu_assisted procy to the output of Step

2. The

output is a minimum cover.

Below we detail the three Steps.

Computing a minimum cover (cont)

Algorithm Reduce_right

INPUT: F.

OUTPUT: right side reduced *F* '.

For each FD $X \rightarrow Y \in F$ where $Y = \{A_1, A_2, ..., A_k\}$, we use all $X \rightarrow \{A_i\}$ (for $1 \le i \le k$) to replace $X \rightarrow Y$. Assignment Project Exam Help

Algorithm Reduce_lef

INPUT: right side redu https://eduassistpro.github.io/

OUTPUT: right and left Addrdd We Chat edu_assist_pro

For each $X \to \{A\} \in F$ where $X = \{A_i : 1 \le i \le k\}$, do the following. For i = 1 to k, replace X with $X - \{A_i\}$ if $A \in (X - \{A_i\})^+$.

Algorithm Reduce_redundancy

INPUT: right and left side reduced *F*.

OUTPUT: a minimum cover F 'of F.

For each FD $X \to \{A\} \in F$, remove it from F if: $A \in X^+$ with respect to $F - \{X \to \{A\}\}$.

Example:

$$R = (A, B, C, D, E, G)$$

$$F = \{A \rightarrow BCD, B \rightarrow CDE, AC \rightarrow E\}$$

Step 1:
$$F' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, B \rightarrow C, B \rightarrow D, B \rightarrow E, AC \rightarrow E\}$$

Step 2: AC \rightarrow E

 $C^+ = \{C\}$; thus $C \rightarrow E$ is not inferred by F'.

Hence, $AC \rightarrow E$ cannot be replaced by $A \rightarrow E$. Assignment Project Exam Help $A^+ = \{A, B, C, D, E\}$; thus, $A \rightarrow E$ is inferred by F'.

Hence, AC→ E can be re https://eduassistpro.github.io/

$$F'' = \{A \rightarrow B, A \rightarrow C, A \rightarrow D, A \rightarrow E, B \rightarrow C, B \\ Step 3: A + |_{F'' - \{A \rightarrow B\}} = \{A, C, D, E\}; thus A \rightarrow edu_assist_p, roughly by F'' - \{A \rightarrow B\}.$$

That is, $A \rightarrow B$ is not redundant.

 $A+|_{F''-\{A\rightarrow C\}}=\{A, B, C, D, E\}$; thus, $A\rightarrow C$ is redundant.

Thus, we can remove $A \rightarrow C$ from F" to obtain F".

Iteratively, we can $A \rightarrow D$ and $A \rightarrow E$ but not the others.

Thus, $F_{min} = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, B \rightarrow E\}.$

3NF decomposition algorithm

Algorithm 3NF decomposition

- 1. Find a minimum cover F' of F.
- 2. For each left side X that appears in F, do:
 Assignment Project Exam Help
 create a relati A_m where $X \to \{A_1\}, ..., X \to \{A_m\}$ are all the https://eduassistpro.github.io/

dependencies in add with et edu_assist_pro

3. if none of the relation schemas contains a key of *R*, create one more relation schema that contains attributes that form a key for *R*. See E/N Algorithm 15.4.

Example:

$$R = (A, B, C, D, E, G)$$

 $F_{min} = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, B \rightarrow E\}.$
Candidate key: (A, G)
 $R_1 = (A, B), R_2 = (B, C, D, E)$
Project Exam Help
 $R_3 = (A, G)$ https://eduassistpro.github.io/
Add WeChat edu_assist_pro

3NF decomposition algorithm (cont)

Example: (From Desai 6.31)

Beginning again with the *SHIPPING* relation. The functional dependencies already form a canonical cover.

- From Ship Assignimeriv Project Exaity Help
- From $\{Ship, Date \}$ https://eduassistpro.github.io/
- From $\{Capacity, Cargo, Value\}$ We Chat edu_assist_pro $R_3(Capacity, Cargo, Value)$.
- There are no attributes not yet included and the original key $\{Ship, Date\}$ is included in R_2 .

3NF decomposition algorithm(cont)

Another Example: Apply the algorithm to the LOTS example given earlier.

A minimal cover is

```
{ Property_Id→Lot_No,

Property_Id → Area, {City,Lot_No} → Property_Id,

Assignment Project Exam Help

Area → Price, Area → City, City → Tax_Rate }.
```

This gives the decomphttps://eduassistpro.github.io/

```
R_1(\underline{\textit{Property\_Id}}, \underline{\textit{Lot\_No}}, \underline{\textit{Area}})
Add We Chat \ edu\_assist\_pro
R_2(\underline{\textit{City}}, \underline{\textit{Lot\_No}}, \underline{\textit{Property\_Id}})
R_3(\underline{\textit{Area}}, \underline{\textit{Price}}, \underline{\textit{City}})
R_4(\underline{\textit{City}}, \underline{\textit{Tax\_Rate}})
```

Exercise 1: Check that this is a lossless, dependency preserving decomposition into 3NF.

Exercise 2: Develop an algorithm for computing a key of a table R with respect to a given F of FDs.

Summary

Data redundancies are undesirable as they create the potential for update anomalies,

One way to remove such redundancies is to normalise a design, guided by FD's.

Assignment Project Exam Help
BCNF removes all redundancies due to FD's, but a dependency
preserving decomp https://eduassistpro.github.io/

A dependency preserving, lossless de to 3NF can always be found, but some readdla Wie Chaptredu_assist_pro

Even where a dependency preserving, lossless decomposition that removes all redundancies can be found, it may not be possible, for efficiency reasons, to remove all redundancies.