南京理工大学

2010年硕士学位研究生入学考试试题

试题编号: 201001003

考试科目: 机械原理 (满分 150 分)

考生注意: 所有答案(包括填空题)按试题序号写在答题纸上,写在试卷上不给分

一、计算下列机构自由度;指出机构中何处有复合铰链、局部自由度、虚约束;列出机构具有确定运动的条件。 (18分)

二、图示曲柄滑块机构: (1)列出曲柄存在的条件; (2)用作图法作出机构的极位夹角 θ ,标出C点的压力角 α 。(构件尺寸从图中直接量取) (12分)

- 三、(1) 找出下列两机构中的所有速度瞬心。
 - (2) 应用瞬心法作图求解(a) 图机构中构件 2 的速度 ν_2 。 (10 分)

四、(1) 图示渐开线标准齿轮的模数 m=6mm,压力角 $\alpha=20^\circ$,齿数 z=26。 求当测量销柱正好在分度圆处与齿廓接触时销柱的半径 r_p 和两个对称布置的销柱之间的距离 L 。

(2)有一标准斜齿轮, $m_n = 5mm$, $z_1 = 14$, $\alpha_n = 20^\circ$, $h_{an}^* = 1$, $c_n^* = 0.25$, $\beta = 15^\circ$,求齿轮分度圆直径 d_i ;齿顶圆直径 d_a ;齿根圆直径 d_f ;基圆直径 d_b ;并指出该齿轮是否根切?

五、一偏心圆盘凸轮机构如图所示,(1) 画出凸轮机构的基圆和理论轮廓曲线。

(2) 用图解法在图中标出从构件 2 最低位置开始,凸轮按图示方向转过 45° , 90° , 180° 时从动件 2 的角位移。(3) 在图中标出从构件 2 最低位置开始,凸轮按图示方向转过 90° 时从动件 2 在C 点处的压力角 α 。(解题时,尺寸从图中直接量取,作图过程及图线应保留完整。) (10 分)

六、图示轮系,已知齿轮 4、5 的齿数分别为 z_4 , z_5 ,且 $z_3 = z_1$, $z_2 = z_2$,试求 传动比 i_{AH} ,并判断齿轮 4 与轴 H 的转向关系。 (10 分)

七、圆盘回转件内有三个分布质量, $m_1 = 4kg$, $m_2 = 5kg$, $m_3 = 2kg$,回转件绕 z 轴等角速度旋转,转速 $n = 300r/\min$, $r_1 = 120mm$, $r_2 = 100mm$, $r_3 = 200mm$,a = 200mm ,b = 120mm 。(1) 由于不平衡惯性力而在轴承 A 和 B 处产生的动压力 R_A 和 R_B ,试求 R_A 和 R_B 的大小、方向。(2) 应在回转件上什么方位加多大的平衡质量 m_b ($r_b = 200mm$)才能平衡掉轴承 A 和 B 上的动压力。(用矢量作图求解) (20 分)

九、图示四杆机构, $l_{AB}=150mm$, $l_{BC}=l_{CD}=300mm$, $l_{AD}=400mm$,各构件质量分别为: $m_1=10kg$ (质心 S_1 在 A 点), $m_2=20kg$ (质心 S_2 在 BC 的中点), $m_3=20kg$ (质心 S_3 在 D 点)。驱动矩 $M_3=300Nm$, $\theta=60^\circ$ 。求:(1) M_3 换算到曲柄 1 的等效力矩 M 。(提示:用速度多边形杠杆法)。(2)当各构件转动惯量 $J_{S_1}=0.1kgm^2$, $J_{S_2}=J_{S_3}=0.2kgm^2$,求:整个机构折算到主轴 A 上的等效转动惯量。 (20 分)

十、图示机构中构件长度 $l_{OA}=20mm$, $l_{OB}=40mm$,其余尺寸如图,构件 1 等角速度顺时针转动 $\omega_1=50rad/s$,试用相对运动图解法求从动件 2 的角速度 ω_2 和角加速度 ε_2 (其余方法求解不给分) (20 分)

