Bayesova statistika - zapiski s predavanj prof. Smrekarja

Tomaž Poljanšek

študijsko leto 2023/24

Kazalo

Povzetek			1
1	$\mathbf{U}\mathbf{vod}$		1
	1.1	Elementarna Bayesova statistika	1
	1.2	Proučevani slučajni vektor (vzročni) parametrični model	2
	1.3	Apriorna in "robna" porazdelitev	3
	1.4	Disperzija aposteriornih porazdelitev	6
Li	terat	sura	8
D	Dodatki		

Seznam uporabljenih kratic

kratica	pomen
s.v.	slučajni vektor
В	binomska porazdelitev
NEP	neodvisen in enako porazdeljen
s.s.	slučajna spremenljivka
p.v.	pričakovana vrednost

Povzetek

Poglavje 1

$\mathbf{U}\mathbf{vod}$

Bayesova statistika je formalni okvir za "osveževanje" vedenja/znanja o porazdelitvi nekega slučajnega vektorja.

 $Zgled.~1000, \approx 400 \text{\center} \rightarrow 600 \text{\center}$ B (apriorno znanje).

Izvedemo (statistični) poskus: izvlečemo 10, dobimo 6 črnih in 4 bele

1.1 Elementarna Bayesova statistika

Privzamemo popoln sistem dogodkov $E_1, E_2 \dots E_m : E_i \cap E_j = \emptyset$ za $i \neq j$ in $E_1 \cup E_2 \cup \dots \cup E_m = \Omega$.

Če imamo še neki dogodek A, velja t.i. zakon o popolni verjetnosti $P(A) = \sum_{i=1}^{m} P(A \mid E_i) \cdot P(E_i)$ (interpretacija: 2-fazni poskus).

V Bayesovem okviru nas zanimajo $P(E_j \mid A)$ (verjetnost, da se je v "1. fazi" zgodil E_j , če se je "2. fazi" zgodil A). Ker je

$$P(E_j \mid A) = \frac{P(E_j \cap A)}{P(A)}$$

jе

$$P(E_j \mid A) = \frac{P(A \mid E_j) \cdot P(E_j)}{P(A)}$$
 - elementarna pogojna verjetnost

oziroma

$$P(E_j \mid A) = \frac{P(A \mid E_j) \cdot P(E_j)}{\sum_{i=1}^m P(A \mid E_i) \cdot P(E_i)} - \text{elementarna Bayesova formula}.$$

Nadaljujemo zgled. V Bayesovi statistiki predhodno ("apriorno") vedenje formaliziramo kot realizacijo slučajnega eksperimenta. V našem primeru vpeljemo fukcijo, da smo število črnih frnikul θ (- realizacija) dobili kot rezultat slučajne spremenljivke $\Theta \in \{0, 1, 2 \dots 1000\}$.

Informacijo $\theta \approx 400$ zakodiramo kot $E(\Theta) = 400$.

Privzamemo (kar!)
$$\Theta \sim B\left(1000, \frac{4}{10}\right)$$

$$\implies P(\Theta = \theta) = \binom{1000}{\theta} \left(\frac{4}{10}\right)^{\theta} \left(1 - \frac{4}{10}\right)^{1000 - \theta}.$$

$$P(k \text{ črnih od 10 izvlečenih}|\Theta = \theta) = \frac{\binom{\theta}{k}\binom{1000 - \theta}{10 - k}}{\binom{10}{k}} \ (*)$$
(*) pri omejitvah (k omejimo).

Osvežena porazdelitev - novo vedenje

$$\begin{split} &P(\Theta=\theta\mid 6\text{ črnih od }10\text{ izvlečenih}) = \\ &\frac{P(6\text{ črnih od }10\text{ izvlečenih}\mid \Theta=\theta)\cdot P(B(1000,\frac{4}{10})=\theta)}{\sum_{i=0}^{1000}P(6\text{ črnih od }10\text{ izvlečenih}\mid \Theta=i)\cdot P(B(1000,\frac{4}{10}))=i}. \end{split}$$

Pravimo ji aposteriorna porazdelitev.

1.2 Proučevani slučajni vektor (vzročni) parametrični model

Naj bo $X=(X_1,X_2...X_n)\in\mathbb{R}^n$ preučevani slučajni vektor. Pogosto so neodvisni in enako porazdeljeni (NEP) realizacija danega slučajnega eksperimenta. S pomočjo statistike lahko "ocenjujemo" porazdelitev slučajnega vektorja X. Zanjo privzamemo, da pripada nekemu modelu, t.j. neki množici dopustnih rešitev. Privzamemo, da je ta množica parametrizirana s parametričnim prostorom $\Theta \subset \mathbb{R}^r$. Tu si mislimo, da parameter $\theta \in \Theta$ dobimo kot realizacijo slučajnega vektorja (s.v.) Θ z vrednostmi v Θ (večinoma $r \geq 2$).

Porazelitvi s.v. X_i pogojno na $\Theta = \theta$ pravimo vzorčna porazdelitev. Privzeli bomo, da imamo gostote $f(x \mid \theta)$ ali verjetnostne funkcije

$$P(X = x \mid \theta) = f(x \mid \theta),$$

torej da velja

$$P(X \in B \mid \Theta = \theta) = \int_{B} f(x \mid \theta) d\nu(x)$$

(v Lebesgueovi meri) ali

$$P(X \in B \mid \Theta = \theta) = \sum_{x \in B} f(x \mid \theta).$$

Modelu pogojnih porazdelitev $(X \mid \Theta = \theta)$ pravino vrorčni model.

1.3 Apriorna in "robna" porazdelitev

Porazdelitvi fiktivnega slučajnega vektorja Θ pravimo apriorna porazdelitev, brezpogojni (robni) porazdelitvni slučajnega vektorja X pa pravimo "robna" porazdelitev

(*) v resnici sta obe porazdelitvi robni porazdelitvi družne porazdelitve vektorja (X,Θ) z vrednostmi v \mathbb{R}^{n+r} .

Zgled. Ocenjujemo Bernoullijevo porazdelitev. Predhodno vedenje je podano z apriorno prazdelitvijo na (0,1); mislimo si, da je p realizacija slučajne spremenljivke (s.s.) Π z vrednostmi v (0,1). Možnosti:

- nimamo apriornega mnenja o (dejanskem) p: tedaj bi (morda) vzeli zvezno porazdelitev z gostoto enakomerna porazdelitve,
- smo "zelo" prepričani, da je (dejanski) $p \approx \frac{1}{2}$.

Recimo, da je f(p) gostota apriorne porazdelitve. Tedaj so apriorne verjetnosti

$$P(\Pi \in (a,b)) = \int_{a}^{b} f(p)dp$$

in apriorna pričakovana vrednost

$$E(\Pi) = \int_0^1 p f(p) dp.$$

Pripomnimo, da pri $\Pi \sim U(0,1)$ dobimo $E(U(0,1)) = \frac{1}{2}$.

Privzemimo, da smo "vzorčili" p, potem pa "neodvisno" n-krat vržemo p-kovanec (P(cifra=p)), gre za slučajne spremenljivke $X_1, X_2 \dots X_n$, za katere je ($X_i \mid \Pi = p$) ~ Bernoulli(p) in so $X_1 \dots X_n$ neodvisne pogojno na p. To ne pomeni, da do $X_1 \dots X_n$ brezpogojno neodvisne.

Za $i \neq j$ je

$$P(X_{i} = 1 \land X_{j} = 1) = \int_{0}^{1} P(X_{i} = 1 \land X_{j} = 1 \mid \Pi = p) f(p) dp =$$

$$\stackrel{\text{pogojno neodvisne}}{=} \int_{0}^{1} P(X_{i} = 1 \mid \Pi = p) P(X_{j} = 1 \mid \Pi = p) f(p) dp =$$

$$= \int_{0}^{1} p^{2} f(p) dp =$$

$$= E(\Pi^{2}).$$

Ker je
$$P(X_i = 1) = \int_0^1 P(X_i = 1 \mid p) f(p) dp = \int_0^1 p f(p) dp = E(\Pi)$$
, je
$$Cov(X_i, X_j) = E(\Pi^2) - E(\Pi)^2 = D(\Pi)$$

za $i \neq j$, torej so X_i brezpogojno neodvisne $\iff \Pi = \text{konstantna (slučajna spremenljivka)}.$

Tvorimo $X = X_1 + \cdots + X_n \in \{0, 1 \dots n\}$. To je "preučevana" slučajna spremenljivka. Velja $(X \mid \Pi = p) \sim B(n,p)$. To je vzorčna porazdelitev; vzročni model je parametriziran s prostorom parametrov $(0,1) = \Theta$. Robna porazdelitev je podana z verjetnostmi

$$P(X = k) = \int_0^1 P(X = k \mid p) f(p) dp =$$

$$= \int_0^1 \binom{n}{k} p^k (1 - p)^{n-k} f(p) dp.$$

Recimo, da "opazimo" X=k. Aposteriorna porazdelitev (osveženo vedenje o p) je sestavljeno iz verjetnosti

$$P(X \in (a,b) \mid X = k) = \frac{P(X = k \land \Pi \in (a,b))}{P(X = k)} =$$

$$= \frac{\int_0^1 P(X = k \land \Pi \in (a,b) \mid \Pi = p) f(p) dp}{P(X = k)} =$$

$$= \int_a^b \frac{P(X = k \mid \Pi = p)}{P(X = k)} f(p) dp.$$

Opazimo, da ima aposteriorna porazdelitev ($\Pi \mid X = k$) gostoto

$$f_{(\pi|X)}(p \mid k) = \frac{P(X = k \mid p)f(p)}{P(X = k)}.$$

Zgornji formuli pravimo Bayesova formula.

Za številsko oceno za p bi lahko vzeli pričakovano vrednost aposteriorne porazdelitve

$$\hat{p} = E(\Pi \mid X = k) = \int_0^1 p \cdot f(p \mid k) dp.$$

Pravimo ji aposteriorna pričakovana vrednost.

Posebej priročna družina apriornih porazdelitev (za binomske vzorčne porazdelitev) je t.i. $Beta = \{Beta(a,b) \mid a,b \in (0,\infty)\}$

$$f_{Beta(a,b)}(p) = \frac{1}{B(a,b)} p^{a-1} (1-p)^{b-1} 1_{(0,1)}(p)$$

(tu je $B(a,b) = \int_0^1 p^{a-1} (1-p)^{b-1} dp$).

$$E(Beta(a,b)) = \frac{a}{a+b}$$

$$D(Beta(a,b)) = \frac{ab}{(a+b)^2(a+b+1)}.$$

D(Beta(a,b)) predstavlja "težo" apriornega prepričanja; večji - manj sigurni smo.

$$E(Beta(a,b)) = 0.7.$$

Aposteriorna porazdelitev ima gostoto (če je $f(p) = f_{Beta(a,b)}(p)$)

$$f(p \mid k) = \frac{\binom{n}{k} p^k (1-p)^{n-k} \cdot \frac{1}{B(a,b)} p^{a-1} (1-p)^{b-1}}{P(X=k)} = \text{konst.} \cdot p^{a+k-1} (1-p)^{b+n-k-1}.$$

Vidimo, da je $(\Pi \mid X = k) \sim Beta(a + k, b + n - k)$.

Aposteriorna pričakovana vrednost (p.v.) je

$$\frac{a+k}{a+b+n} = \frac{(a+b)\frac{a}{a+b} + n\frac{k}{n}}{a+b+n} =$$

$$= \frac{a+b}{a+b+n} \cdot \frac{a}{a+b} + \frac{n}{a+b+n} \cdot \frac{k}{n}.$$

Tukaj je

- $\frac{a}{a+b}$ apriorna ocena,
- $\frac{k}{n}$ vzorčna ocena in
- $\frac{a+b}{a+b+n}$ in $\frac{n}{a+b+b}$ faktorja pri konveksni kombinaciji obeh ocen.

Vzorec velik \rightarrow prevlada mnenje vzorca.

1.4 Disperzija aposteriornih porazdelitev

Gre pravzaprav za disperzijo pogojnih porazdelitev. Naj bosta $X: \Omega \to \mathbb{R}^m$ in $Y: \Omega \to \mathbb{R}^n$ in naj ima (X,Y) gostoto $f_{(X,Y)}$ glede na $\mu \times \nu$ Sledita gostoti $f_X(x) = \int f_{(X,Y)}(x,y) d\nu(y)$ za X glede na μ in $f_Y(y) = \int f_{(X,Y)}(x,y) d\mu(x)$ za Y glede na ν . Dalje definiramo pogojni porazdelitvi $(Y \mid X = x)$ in $(X \mid Y = y)$ preko gostot

$$f_{(Y|X)}(y \mid x) = \frac{f_{(X,Y)}(X,Y)}{f_{X}(x)}$$

glede na ν : gostota v $X \to \mu$ in simetrično za $f_{(X|Y)}(x \mid y)$. $P(Y \in B) \mid X = x = \int_B f_{(Y|X)}(y \mid x) d\nu(y)$ - porazdelitev, opremljena z gostoto.

Definicija 1.4.1.

$$E(Y \mid X = x) = \int y f_{(Y|X)}(y \mid x) d\nu(y).$$

y lahko zamenjamo s h(y).

Pišemo $E(Y \mid X = x) = u(X)$ - h je identiteta.

Definicija 1.4.2.

$$E(Y \mid X) = u(X) : \Omega \to \mathbb{R}^n.$$

Slučajni vektor \rightarrow pogojna pričakovana vrednost, oz.

$$E(Y \mid X)(\omega) = u(X(\omega)) = E(Y \mid X = X(\omega)).$$

 $E(Y \mid X)(\omega)$: funkcija na X, kompozitum.

 $X(\omega)$: vrednost.

Definicija 1.4.3. Pogojno varianco slučajnega vektorja Y, pogojno na X=x definiramo kot varianco pogojne porazdelitve $(Y\mid X=x)$, t.j.

$$E((Y - u(X))(Y - u(X))^T \mid X = x) =: Var(Y \mid X = x).$$

Ker je E aditivna, velja

$$E((Y-u(X))(Y-u(X))^T \mid X=x) = E(YY^T \mid X=x) - u(X)u(X)^T =: v(X).$$

v(X) je $n \times n$ matrika.

Definicija 1.4.4. Pogojna varianca slučajnega vektorja Y pogojno na slučajni vektor X je

$$Var(Y \mid X) = v(X).$$

Literatura

Dodatki