The LLL Algorithm

Liam Hardiman

May 29, 2019

Basis Reduction

- Motivation
- @ Gram-Schmidt
- 4 The LLL algorithm

• Recall that the **lattice**, L, generated by the linearly independent vectors $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ is the \mathbb{Z} -span of these vectors:

Basis Reduction

$$L = \{c_1x_1 + c_2x_2 + \cdots + c_nx_n : c_i \in \mathbb{Z}, 1 \le i \le n\}.$$

• Recall that the **lattice**, L, generated by the linearly independent vectors $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ is the \mathbb{Z} -span of these vectors:

$$L = \{c_1x_1 + c_2x_2 + \cdots + c_nx_n : c_i \in \mathbb{Z}, 1 \le i \le n\}.$$

 Consider the lattices, L and M, generated by the rows of the matrices X and Y, respectively.

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}, \quad Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

• Each row of X is an integer linear combination of the rows of Y, so $L \subseteq M$:

Motivation

00000000

• Each row of X is an integer linear combination of the rows of Y, so $L \subseteq M$:

$$\begin{bmatrix} -168 \\ 602 \\ 58 \end{bmatrix}^T = 14 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}^T + 50 \begin{bmatrix} -1 \\ 8 \\ 6 \end{bmatrix}^T - 29 \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}^T,$$

$$\begin{bmatrix} 157 \\ -564 \\ -57 \end{bmatrix}^T = -13 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}^T - 47 \begin{bmatrix} -1 \\ 8 \\ 6 \end{bmatrix}^T + 26 \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}^T,$$

$$\begin{bmatrix} 594 \\ -2134 \\ -219 \end{bmatrix} = -49 \begin{bmatrix} 4 \\ 2 \\ -9 \end{bmatrix}^T - 178 \begin{bmatrix} -1 \\ 8 \\ 6 \end{bmatrix} + 102 \begin{bmatrix} 6 \\ -6 \\ 4 \end{bmatrix}^T.$$

• In particular, we have the matrix equation

$$UY = X,$$

$$\begin{bmatrix} 14 & 50 & -29 \\ -13 & -47 & 27 \\ -49 & -178 & 102 \end{bmatrix} \begin{bmatrix} 4 & 2 & -9 \\ -1 & 8 & -6 \\ 6 & -6 & 4 \end{bmatrix} = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

• In particular, we have the matrix equation

$$UY = X,$$

$$\begin{bmatrix} 14 & 50 & -29 \\ -13 & -47 & 27 \\ -49 & -178 & 102 \end{bmatrix} \begin{bmatrix} 4 & 2 & -9 \\ -1 & 8 & -6 \\ 6 & -6 & 4 \end{bmatrix} = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

• det U = -1, so U^{-1} is an integer matrix as well. This gives us another matrix equation, $Y = U^{-1}X$.

• In particular, we have the matrix equation

$$UY = X,$$

$$\begin{bmatrix} 14 & 50 & -29 \\ -13 & -47 & 27 \\ -49 & -178 & 102 \end{bmatrix} \begin{bmatrix} 4 & 2 & -9 \\ -1 & 8 & -6 \\ 6 & -6 & 4 \end{bmatrix} = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}.$$

- det U = -1, so U^{-1} is an integer matrix as well. This gives us another matrix equation, $Y = U^{-1}X$.
- Since the entries of U^{-1} are integers, this equation expresses the rows of Y as integer linear combinations of the rows of X, so $M \subseteq L$.

• Even though the rows of *X* and *Y* generate the same lattice, something about the *Y*-basis "feels" nicer.

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}, \quad Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

• Even though the rows of *X* and *Y* generate the same lattice, something about the *Y*-basis "feels" nicer.

$$X = \begin{bmatrix} -168 & 602 & 58 \\ 157 & -564 & -57 \\ 594 & -2134 & -219 \end{bmatrix}, \quad Y = \begin{bmatrix} -6 & 6 & -4 \\ 9 & 4 & 1 \\ -1 & 8 & 6 \end{bmatrix}.$$

- Two qualities that make a basis desirable are:
 - Length: how long are the basis vectors?
 - Orthogonality: are the basis vectors nearly orthogonal to each other?

• Suppose $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ are pairwise orthogonal.

- Suppose $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ are pairwise orthogonal.
- If $x = c_1x_1 + c_2x_2 + \cdots + c_nx_n$, $c_i \in \mathbb{Z}$, is in the lattice L generated by x_1, \ldots, x_n then

$$|x|^2 = c_1^2 |x_1|^2 + c_2^2 |x_2|^2 + \dots + c_n^2 |x_n|^2.$$

- Suppose $x_1, x_2, \dots, x_n \in \mathbb{R}^n$ are pairwise orthogonal.
- If $x = c_1x_1 + c_2x_2 + \cdots + c_nx_n$, $c_i \in \mathbb{Z}$, is in the lattice L generated by x_1, \ldots, x_n then

$$|x|^2 = c_1^2 |x_1|^2 + c_2^2 |x_2|^2 + \dots + c_n^2 |x_n|^2.$$

This completely solves the shortest vector problem (SVP) since

$$\underset{x \in L}{\arg\min} |x| = \underset{x \in \{\pm x_1, \pm x_2, \dots, \pm x_n\}}{\arg\min} |x|.$$

• Say we want to find a vector in L that is closest to

$$x=t_1x_1+t_2x_2+\cdots+t_nx_n,$$

where the t_i are real numbers.

Motivation

What makes a basis "nice"?

• Say we want to find a vector in L that is closest to

$$x=t_1x_1+t_2x_2+\cdots+t_nx_n,$$

where the t_i are real numbers.

• If $y = c_1x_1 + c_2x_2 + \cdots + c_nx_n$, $c_i \in \mathbb{Z}$, is any vector in L then by the orthogonality of the x_i we have

$$|x-y|^2 = (t_1-c_1)^2|x_1|^2 + (t_2-c_2)^2|x_2|^2 + \cdots + (t_n-c_n)^2|x_n|^2.$$

Motivation

• Say we want to find a vector in L that is closest to

$$x=t_1x_1+t_2x_2+\cdots+t_nx_n,$$

where the t; are real numbers.

• If $y = c_1x_1 + c_2x_2 + \cdots + c_nx_n$, $c_i \in \mathbb{Z}$, is any vector in L then by the orthogonality of the x_i we have

$$|x-y|^2 = (t_1-c_1)^2|x_1|^2 + (t_2-c_2)^2|x_2|^2 + \cdots + (t_n-c_n)^2|x_n|^2.$$

• If we take c; to be the closest integer to t; then we solve the closest vector problem (CVP).

Measuring orthogonality

Definition

Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$. We define the determinant of L, det L to be the volume of the n-dimensional parallelepiped with sides defined by x_1, \ldots, x_n :

$$\det L = |\det X|,$$

where the rows of X are the basis vectors x_1, \ldots, x_n .

Measuring orthogonality

Definition

Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$. We define the determinant of L, det L to be the volume of the n-dimensional parallelepiped with sides defined by x_1, \ldots, x_n :

$$\det L = |\det X|,$$

where the rows of X are the basis vectors x_1, \ldots, x_n .

Theorem

The determinant of L is independent of basis.

Measuring Orthogonality

• The volume of the parallelepiped defined by x_1, \ldots, x_n is maximized when when the basis vectors are pairwise orthogonal to one another.

Measuring Orthogonality

• The volume of the parallelepiped defined by x_1, \ldots, x_n is maximized when when the basis vectors are pairwise orthogonal to one another.

Theorem (Hadamard's Inequality)

Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$. Then

$$\det L \leq |x_1||x_2|\cdots|x_n|.$$

Measuring Orthogonality

• The volume of the parallelepiped defined by x_1, \ldots, x_n is maximized when when the basis vectors are pairwise orthogonal to one another.

Theorem (Hadamard's Inequality)

Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$. Then

$$\det L \leq |x_1||x_2|\cdots |x_n|.$$

• If the basis vectors are closer to being orthogonal, then Hadamard's inequality is closer to an equality.

Basis Reduction

- @ Gram-Schmidt
- Basis Reduction
- 4 The LLL algorithm

Definition

Let $x_1, \ldots, x_m \in \mathbb{R}^n$ be a basis for a nonzero subspace, H. The **Gram-Schmidt process** produces an orthogonal basis for H:

$$x_{1}^{*} = x_{1}$$

$$x_{2}^{*} = x_{2} - \mu_{2,1}x_{1}^{*}$$

$$x_{3}^{*} = x_{3} - \mu_{3,1}x_{1}^{*} - \mu_{3,2}x_{2}^{*}$$

$$\vdots$$

$$x_{m}^{*} = x_{m} - \mu_{m,1}x_{1}^{*} - \dots - \mu_{m,m-1}x_{m-1}^{*},$$

where $\mu_{i,j} = \frac{x_i \cdot x_j^*}{x_j^* \cdot x_j^*}$. We call $\{x_1^*, \dots, x_m^*\}$ the **Gram-Schmidt** orthogonalization (GSO) of $\{x_1, \dots, x_m\}$.

Figure: The first step of the Gram-Schmidt process. Image modified from https://en.wikipedia.org/wiki/Gram-Schmidt_process

Figure: The second step of the Gram-Schmidt process. Image modified from D. Lay, S. Lay, and J. McDonald. *Linear Algebra and its Applications*. Fifth Edition. 2016.

Proposition

Let $x_1, x_2, ..., x_n$ be a basis for the lattice $L \subset \mathbb{R}^n$ and let $x_1^*, x_2^*, ..., x_n^*$ be its Gram-Schmidt orthogonalization. For any nonzero $y \in L$ we have

$$|y| \ge \min\{|x_1^*|, |x_2^*|, \dots, |x_n^*|\}.$$

That is, any nonzero lattice vector is at least as long as the shortest vector in the Gram-Schmidt orthogonalization.

Proof

We can write

$$y = \sum_{i=1}^n c_i x_i, \quad c_i \in \mathbb{Z}.$$

Basis Reduction

Proof

We can write

$$y=\sum_{i=1}^n c_i x_i, \quad c_i \in \mathbb{Z}.$$

Basis Reduction

• Since $y \neq 0$, at lease one c_i is nonzero. Let k be the largest index with $c_k \neq 0$.

Proof

We can write

$$y=\sum_{i=1}^n c_i x_i, \quad c_i \in \mathbb{Z}.$$

Basis Reduction

• Since $y \neq 0$, at lease one c_i is nonzero. Let k be the largest index with $c_k \neq 0$.

$$y = \sum_{i=1}^{k} \sum_{j=1}^{i} c_{i} \mu_{ij} x_{j}^{*} = \sum_{j=1}^{k} \left(\sum_{i=j}^{k} c_{i} \mu_{ij} \right) x_{j}^{*}$$
$$= c_{k} x_{k}^{*} + \sum_{j=1}^{k-1} \nu_{j} x_{j}^{*},$$

for some real ν_i .

Proof contd...

• Take the norm-squared on both sides.

$$|y|^{2} = \left| c_{k} x_{k}^{*} + \sum_{j=1}^{k-1} \nu_{j} x_{j}^{*} \right|^{2}$$

$$= c_{k}^{2} |x_{k}^{*}|^{2} + \sum_{j=1}^{k-1} \nu_{j}^{2} |x_{j}^{*}|^{2}$$

$$\geq |x_{k}^{*}|^{2}$$

$$\geq \min\{|x_{1}^{*}|^{2}, |x_{2}^{*}|^{2}, \dots, |x_{n}^{*}|^{2}\}.$$

A useful equality

Proposition

If x_1, \ldots, x_n is a basis for the lattice $L \subset \mathbb{R}^n$ and x_1^*, \ldots, x_n^* is its GSO then

$$\det L = \prod_{i=1}^{n} |x_i^*|.$$

Proof

• We have that $\det L = \det X$, where the rows of X are the basis vectors x_1, \ldots, x_n .

A useful equality

Motivation

Proof contd...

• By the definition of the GSO we have $X = MX^*$ where the rows of X^* are the vectors x_1^*, \ldots, x_n^* and M consists of the GSO coefficients:

$$M = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ \mu_{2,1} & 1 & 0 & \cdots & 0 & 0 \\ \mu_{3,1} & \mu_{3,2} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mu_{n,1} & \mu_{n,2} & \mu_{n_3} & \cdots & \mu_{n,n-1} & 1 \end{bmatrix}.$$

A useful equality

Proof contd...

• By the definition of the GSO we have $X = MX^*$ where the rows of X^* are the vectors x_1^*, \ldots, x_n^* and M consists of the GSO coefficients:

$$M = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ \mu_{2,1} & 1 & 0 & \cdots & 0 & 0 \\ \mu_{3,1} & \mu_{3,2} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \mu_{n,1} & \mu_{n,2} & \mu_{n_3} & \cdots & \mu_{n,n-1} & 1 \end{bmatrix}.$$

Since M has determinant 1 we have

$$\det L = |\det X| = |\det M| |\det X^*| = \prod_{i=1}^n |x_i^*|.$$

• Given a basis x_1, \ldots, x_n for a lattice $L \subset \mathbb{R}^n$, the GSO vectors x_1^*,\dots,x_n^* need not live in L since the coefficients $\frac{x_i\cdot x_j^*}{x_i^*\cdot x_i^*}$ need not be integers.

- Given a basis x_1, \ldots, x_n for a lattice $L \subset \mathbb{R}^n$, the GSO vectors x_1^*, \ldots, x_n^* need not live in L since the coefficients $\frac{x_i \cdot x_j^*}{x_j^* \cdot x_j^*}$ need not be integers.
- Can we salvage the Gram-Schmidt process and come up with a (nearly) orthogonal basis for *L*?

Basis Reduction

•0000000

@ Gram-Schmidt

Basis Reduction

4 The LLL algorithm

Basis reduction

Definition

Let α , $\frac{1}{4} < \alpha < 1$ be a real number. Let x_1, \ldots, x_n be a basis for the lattice $L \subset \mathbb{R}^n$ and let x_1^*, \ldots, x_n^* be its Gram-Schmidt orthogonalization. We say that the basis x_1, \ldots, x_n is α -reduced if

- (size condition) $|\mu_{ij}| \leq \frac{1}{2}$ for all $i \leq j < i \leq n$,
- ② (Lovász condition) $|x_i^*|^2 \ge (\alpha \mu_{i,i-1}^2)|x_{i-1}^*|^2$ for $2 \le i \le n$.

Size condition

• $x_2 - \mu_{2,1}x_1$ is orthogonal to x_1 , but might not be in the lattice spanned by x_1, x_2, \dots, x_n .

Size condition

- $x_2 \mu_{2,1}x_1$ is orthogonal to x_1 , but might not be in the lattice spanned by x_1, x_2, \dots, x_n .
- $x_2 \lceil \mu_{2,1} \rfloor x_1$, where $\lceil x \rfloor$ is the integer closest to x (rounded down when $x = \frac{1}{2}$), is in the lattice and is nearly orthogonal to x_1 .

Size condition

- $x_2 \mu_{2,1}x_1$ is orthogonal to x_1 , but might not be in the lattice spanned by x_1, x_2, \dots, x_n .
- $x_2 \lceil \mu_{2,1} \rfloor x_1$, where $\lceil x \rfloor$ is the integer closest to x (rounded down when $x = \frac{1}{2}$), is in the lattice and is nearly orthogonal to x_1 .
- The size condition, $|\mu_{ij}| \leq \frac{1}{2}$, then says that $\lceil \mu_{ij} \rfloor = 0$: x_i is already nearly orthogonal to x_j .

Lovász condition

• Assuming the size condition is met, the Lovász condition, $|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2$ for all $i \ge 2$, says that x_i^* isn't isn't "too much" shorter than x_{i-1} .

Lovász condition

- Assuming the size condition is met, the Lovász condition, $|x_i^*|^2 \ge (\alpha \mu_{i,i-1}^2)|x_{i-1}^*|^2$ for all $i \ge 2$, says that x_i^* isn't isn't "too much" shorter than x_{i-1} .
- Rearranging gives $|x_i^* + \mu_{i,i-1}x_{i-1}^*|^2 \ge \alpha |x_{i-1}^*|^2$. This says

|Projection of
$$x_i$$
 onto $Span\{x_1, \dots, x_{i-2}\}|$
 $\geq \alpha |Projection of x_{i-1} onto $Span\{x_1, \dots, x_{i-2}\}|.$$

• Let x_1, x_2, \ldots, x_n be an α -reduced basis and let $\beta = \frac{1}{\alpha - 1/4}$.

- Let x_1, x_2, \ldots, x_n be an α -reduced basis and let $\beta = \frac{1}{\alpha 1/4}$.
- Combining the size and Lovász conditions gives

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

- Let x_1, x_2, \ldots, x_n be an α -reduced basis and let $\beta = \frac{1}{\alpha 1/4}$.
- Combining the size and Lovász conditions gives

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

• Repeatedly applying this to $x_1^* = x_1$ gives

$$|x_1|^2 \le \beta |x_2^*|^2 \le \beta^2 |x_3^*|^2 \le \dots \le \beta^{n-1} |x_n^*|^2.$$

• For any $2 \le i \le n$ we have $|x_i^*|^2 \ge \beta^{-(i-1)}|x_1|^2$.

- For any $2 \le i \le n$ we have $|x_i^*|^2 \ge \beta^{-(i-1)}|x_1|^2$.
- If we let y be any nonzero vector in the lattice spanned by x_1, \ldots, x_n we then have

$$|y| \ge \min\{|x_1^*|, \dots, |x_n^*|\} \ge \beta^{-(n-1)/2}|x_1|.$$

- For any $2 \le i \le n$ we have $|x_i^*|^2 \ge \beta^{-(i-1)}|x_1|^2$.
- If we let y be any nonzero vector in the lattice spanned by x_1, \ldots, x_n we then have

$$|y| \ge \min\{|x_1^*|, \dots, |x_n^*|\} \ge \beta^{-(n-1)/2}|x_1|.$$

• This gives a bound on the first vector in an α -reduced basis in terms of the shortest nonzero vector y in L:

$$|x_1| \leq \beta^{(n-1)/2}|y|.$$

• If x_1, \ldots, x_n is α -reduced, the Lovász condition gives us

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

• If x_1, \ldots, x_n is α -reduced, the Lovász condition gives us

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

• Repeated application gives $|x_i^*|^2 \le \beta^{i-j} |x_i^*|^2$.

• If x_1, \ldots, x_n is α -reduced, the Lovász condition gives us

$$|x_i^*|^2 \ge (\alpha - \mu_{i,i-1}^2)|x_{i-1}^*|^2 \ge \frac{1}{\beta}|x_{i-1}^*|^2.$$

- Repeated application gives $|x_i^*|^2 \le \beta^{i-j}|x_i^*|^2$.
- Writing x_i in terms of the GSO, x_1^*, \dots, x_n^* and applying the above inequality gives

$$|x_i|^2 \le \beta^{i-1} |x_i^*|^2.$$

• Multiplying this inequality by itself for $1 \le i \le n$ gives

$$\prod_{i=1}^{n} |x_i|^2 \le \beta^{n(n-1)/2} \prod_{i=1}^{n} |x_i^*|^2 = \beta^{n(n-1)/2} (\det L)^2.$$

• Multiplying this inequality by itself for $1 \le i \le n$ gives

$$\prod_{i=1}^{n} |x_i|^2 \le \beta^{n(n-1)/2} \prod_{i=1}^{n} |x_i^*|^2 = \beta^{n(n-1)/2} (\det L)^2.$$

Taking the square root and using Hadamard's inequality we have

$$\det L \le \prod_{i=1}^n |x_i| \le \beta^{n(n-1)/4} \det L.$$

Basis Reduction

2 Gram-Schmidt

Basis Reduction

4 The LLL algorithm

Can we find a reduced basis?

 Reduced bases are nice. Their vectors are short and nearly orthogonal.

Can we find a reduced basis?

- Reduced bases are nice. Their vectors are short and nearly orthogonal.
- Does every lattice admit a reduced basis? If it does, can we compute it efficiently?

The LLL algorithm

Algorithm 1 The LLL Algorithm

Input: A basis $\{x_1, \ldots, x_n\}$ of the lattice $L \subset \mathbb{R}^n$ and a reduction parameter $\alpha \in (\frac{1}{4}, 1)$.

Output: An α -reduced basis $\{y_1, \ldots, y_n\}$ of the lattice L.

- 1: Copy $x_1, ..., x_n$ into $y_1, ..., y_n$.
- 2: Set $k \leftarrow 2$
- 3: while $k \leq n$ do
- 4: **for** $j = k 1, k 2, \dots, 2, 1$ **do**
- 5: Set $y_k \leftarrow y_k \lceil \mu_{k,j} \rfloor y_j$.
- 6: **if** $|y_k^*|^2 \ge (\alpha \mu_{k,k-1}^2)|y_{k-1}^*|^2$ then
- 7: Set $k \leftarrow k + 1$.
- 8: **else**
- 9: Swap y_{k-1} and y_k .
- 10: Set $k \leftarrow \max(k-1,2)$.
 - return $\{y_1,\ldots,y_n\}$.

• If we let L_k be the lattice spanned by y_1, \ldots, y_k , then swapping y_k and y_{k-1} changes the sublattices L_k and L_{k-1} .

- If we let L_k be the lattice spanned by y_1, \ldots, y_k , then swapping y_k and y_{k-1} changes the sublattices L_k and L_{k-1} .
- If the Lovász condition isn't met then

$$|y_k^*|^2 < (\alpha - \mu_{k,k-1}^2)|y_{k-1}^*|^2.$$

- If we let L_k be the lattice spanned by y_1, \ldots, y_k , then swapping y_k and y_{k-1} changes the sublattices L_k and L_{k-1} .
- If the Lovász condition isn't met then

$$|y_k^*|^2 < (\alpha - \mu_{k,k-1}^2)|y_{k-1}^*|^2.$$

• Since $\det L_{k-1} = |y_1^*| \cdots |y_{k-1}^*|$, replacing y_{k-1}^* with the shorter y_k^* will decrease $\det L_{k-1}$.

- If we let L_k be the lattice spanned by y_1, \ldots, y_k , then swapping y_k and y_{k-1} changes the sublattices L_k and L_{k-1} .
- If the Lovász condition isn't met then

$$|y_k^*|^2 < (\alpha - \mu_{k,k-1}^2)|y_{k-1}^*|^2.$$

- Since $\det L_{k-1} = |y_1^*| \cdots |y_{k-1}^*|$, replacing y_{k-1}^* with the shorter y_k^* will decrease $\det L_{k-1}$.
- The swapping step attempts to order the vectors y_i so that the determinants of the sublattices, det L_i , are minimized.