

ORGANIZACIÓN DE COMPUTADORAS

Departamento de Ciencias e Ingeniería de la Computación Universidad Nacional del Sur

Segundo Cuatrimestre de 2017

Segundo Examen Parcial							
Lic. en Ciencias de la Computación – Ing. en Computación – Ing. en Sistemas de Información							
Apellido y Nombre:	LU:	Hojas entregadas:					
(en ese orden)		(sin enunciado)					
Profesor:							
NOTA: Resolver los ejercicios en hojas separadas. Poner n	ombre, LU y núm	ero en cada hoja.					

Ejercicio 1. En el marco de la norma IEEE 754, considerando la representación en punto flotante de media precisión: mantisa fraccionaria en signo magnitud con hidden bit, exponente en exceso y base 2 y la siguiente distribución de bits:

Dados los números:

$$X = (1\ 10010\ 1101001010)$$
 $Y = (0\ 10101\ 0010110110)$

Realizar el producto $X \times Y$ aplicando redondeo hacia $-\infty$ y hacia $+\infty$, explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits G, R y S del resultado y con R y S al redondear. El resultado debe ser expresando según la representación enunciada.

Ejercicio 2. En el marco de la norma IEEE 754, considerando la misma representación y los mismos números que en el ejercicio anterior:

Realizar la suma X+Y aplicando redondeo por proximidad unbiased (hacia los pares), explicando cada uno de los pasos involucrados e indicando claramente qué se hace con los bits G, R y S del resultado y con R y S al redondear. El resultado debe ser expresando según la representación enunciada.

Ejercicio 3. Asumiendo que se cuenta en todos los casos con las instrucciones add y mpy. Encontrar una secuencia de instrucciones que resulte óptima en tiempo de ejecución (es decir, que *minimice la cantidad de accesos a memoria*), y cuya ejecución tenga como resultado la evaluación de la siguiente expresión aritmética:

$$B = A \times A \times A + B \times (D + B)$$

Las etiquetas denotan las direcciones de memoria que contienen los valores sobre los que se quiere operar.

Para cada uno de los siguientes incisos determine:

- el número de instrucciones.
- el número de accesos a memoria realizados tanto para lectura como para escritura de datos.
- el espacio en memoria ocupado teniendo en cuenta que:

- las instrucciones tipo PILA de 1 dirección ocupan 3 bytes y las de 0 direcciones, 1 byte.
- las instrucciones tipo VAX de 0 direcciones ocupan 2 bytes, las de 1 dirección ocupan 4 bytes, las de 2 direcciones ocupan 6 bytes y las de 3 direcciones, 8 bytes.
- a) Asumiendo una arquitectura de 0-direcciones (tipo PILA), con las instrucciones push y pop para acceder a memoria y la instrucción dup que duplica el tope de la pila.
- b) Asumiendo una arquitectura tipo VAX con operaciones que admiten hasta 3 direcciones de memoria, donde las operaciones aritméticas operan con tres operandos (dst, fte, fte).

Ejercicio 4. Considerando el siguiente programa para la arquitectura OCUNS, en la que toda lectura/escritura de/en la dirección FFh es atrapada y redireccionada a la entrada/salida estándar y el registro RF está cableado a 0:

		Op.	Descr.	FMT.	Pseudocódigo	
		0	add	I	$R[d] \leftarrow R[s] + R[t]$	
		1	sub	I	$R[d] \leftarrow R[s] - R[t]$	
	lda R5, FF	2	and	I	$R[d] \leftarrow R[s] \& R[t]$	
	load R1, 0(R5)	3	xor	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} \texttt{R[t]}$	
	jz R1, fin1	4	lsh	I	$\texttt{R[d]} \leftarrow \texttt{R[s]} << \texttt{R[t]}$	
	xor RA, R1, R1	5	rsh	I	$R[d] \leftarrow R[s] >> R[t]$	
loop1:	call R4, rut add RA, RA, RC	6	load	I	$R[d] \leftarrow mem[offset + R[s]]$	
	dec R1	7	store	I	$\texttt{mem[offset + R[d]]} \leftarrow \texttt{R[s]}$	
	jg R1, loop1	8	lda	II	$R[d] \leftarrow addr$	
fin1:	store RA, O(R5)	9	jz	II	if (R[d] == 0) PC \leftarrow PC + offset	
	hlt	\mathbf{A}	jg	II	if (R[d] > 0) PC \leftarrow PC + offset	
rut:	add RC, RF, RF	В	call	II	$R[d] \leftarrow PC; PC \leftarrow addr$	
	add RB, RF, R1	\mathbf{C}	jmp	III	$PC \leftarrow R[d]$	
10.	jz RB, fin2	D	inc	III	$R[d] \leftarrow R[d] + 1$	
loop2:	add RC, RC, R1 dec RB	\mathbf{E}	dec	III	$R[d] \leftarrow R[d] - 1$	
	jg RB, loop2	\mathbf{F}	hlt	III	exit	
fin2:	jmp R4	Formato	15 1	4 13	12 11 10 9 8 7 6 5 4 3 2	1 0
		I	0 >	< ×	× dest. d src. s src. t	/ off.
		II	1 () ×	× dest. d address addr	
		III	1 1	1 ×	× dest. d -	

- a) Ensamblar el programa a partir de la dirección 00h.
- b) Indicar cómo recibe los argumentos de entrada la rutinas 1b1, cómo devuelve el resultado y qué consideraciones debe tener el programa que la invoque en cuanto a registros utilizados.
- c) Describir claramente qué hace la rutina y el programa. A partir del ensamblado del inciso (a), realice una traza considerando que se ingresa por teclado el número 04h.
- d) Reubicar el código máquina obtenido en el inciso (a) a partir de la dirección 23h. Justificar adecuadamente cuáles de las referencias a memoria requieren ser ajustadas y cuáles no.

Ejercicio 5. Considerando la arquitectura OCUNS descripta en el ejercicio anterior, indicar una secuencia de instrucciones de dicha arquitectura equivalente a cada uno de los siguientes códigos:

Ejercicio 6. Asumiendo que en la posición 3502h de la memoria se tiene el valor 123h y en la 2002h el valor 3502h y el PC tiene el valor 5002h, para cada tipo de direccionado indicar el registro $R_{i?}$ correcto o bien el valor ## que corresponda para acceder al operando de valor 123h.

Registros:

 $\begin{array}{c|c} R_0 & Oh \\ R_1 & 3502h \\ R_2 & 123h \\ R_3 & 1502h \end{array}$

a) Modo Registro: OPCODE $\mathbf{R}_{\natural?}$

b) Modo Absoluto Indirecto: OPCODE ##

c) Modo Indexado: OPCODE 2000
h $(R_{\dot{\iota}?})$

d) Modo PC relativo: OPCODE ## (PC)

(Observación: ¡No resolver en la hoja del enunciado!)