

TABLE OF CONTENTS

- About the Project 01
- 05
- **Process Explanation**
- And Equations

CAD Models

- 06
- Data Analysis

Types of Fins

Validation of data 07

Initial Setup 04

08 Simulation

4444

About the project

The objective of our project is to determine the optimal shape of fins that would yield the highest efficiency in heat transfer. We aim to analyze temperature profiles and identify the most efficient shape among three variations: cylindrical pin fin, tapered profile pin fin, and concave parabolic pin fin, Variable area straight fin. The aim of this project is to find a balance between convection heat transfer coefficient and surface area, considering the practical constraints associated with fluid motion and the potential drawbacks of excessive fin density.

CYLINDRICAL FIN

CONCAVE FIN

CONICAL FIN

TYPES OF FINS

Material used for the fin: Aluminium

- Cylindrical Fin
- Concave Pin Fin
- Conical Pin Fin

INITIAL SETUP

For Detailed Explanation about the setup scan this:

https://drive.google.com/file/d/1ZPNPWyrJ22aRa a_fqXbGqNzLX2Acu_Mq/view?usp=drivesdk

EQUIPMENTS OF EXPERIMENTAL SETUR

Voltage Controller

Data Acquisition
System

Software Used: Keysight-BenchVue

Process Explanation

We place the object with its extruded surface on the heater. We have made the base of the object with 30mm diameter so that it could fit properly on the heater. We then use the polyimide tape to stick the K type thermocouple on the tip or the starting part of the fin. Then, we set the voltage to 80V and fix the duration of 20 minutes. In the BenchVue Keysight software, we have the 3 second time interval of temperature recording and recorded 400 scans of each fin. We have also recorded the temperature of the heater at 3 points at distance of 0.5mm each.

We will be plotting the graph of each fin with all the four temperatures i.e. the surface temperature and the heater temperatures. Then, we will be doing a comparative analysis of all the graphs to see the maximum temperature loss from the surface.

Equations

On evaluation we get the temperature profile equation for:

Infinitely Long Fin

$$\frac{T(x) - T_{\infty}}{T_b - T_{\infty}} = e^{-ax} = e^{-x\sqrt{hp/kA_c}}$$

Adiabatic Tip

$$\frac{T(x) - T_{\infty}}{T_b - T_{\infty}} = \frac{\cosh a(L - x)}{\cosh aL}$$

Fin Effeciency

$$\eta_{\text{fin}} = \frac{\dot{Q}_{\text{fin, max}}}{Q_{\text{fin, max}}} = \frac{\text{Actual heat transfer rate from the fin}}{\text{Ideal heat transfer rate from the fin}}$$
if the entire fin were at base temperature

Raw Data

Address	USB0::0x2A8D::0x8601::MY59005419::0::INSTR								
Model	DAQ973A								
Serial Number:	MY59005419								
Firmware Version	A.02.02-01.00-0	2.01-00.02-02.00)-03-03						
Start Time	2024-03-21 17:4								
Stop Time	2024-03-21 18:0								
Data Log Stoppe	ed								
Instrument Confi	guration								
Modules	4	Slot 0	SCD	Slot 1	DAQM901A	Slot 4			
Total Channels	5								
Channel Configu	ration								
Channels	Name	Function	Range/Arg1	Res/Arg2	NPLC	Channel Delay (
101		Temp (Type K)	None	С	1	0.0006			
102		Temp (Type K)	None	С	1	0.0006			
103		Temp (Type K)	None	С	1	0.0006			
104		Temp (Type K)	None	С	1	0.0006			
105		Temp (Type K)	None	С	1	0.0006			

Scan Sweep Tim Scan Number	101Time (Sec)	101 (°C)	102Time (Sec)	102 (°C)	103Time (Sec)	103 (°C)	104Time (Sec)	104 (°C)	105Time (Sec)	105 (°C)
2024-03-21 17:4	1 2024-03-21 17:4	31.4297315	2024-03-21 17:4	31.4337365	2024-03-21 17:4	31.4402183	2024-03-21 17:4	27.7819205	2024-03-21 17:	4 36.5048152
2024-03-21 17:4	2 2024-03-21 17:4	31.4374626	2024-03-21 17:4	31.4412355	2024-03-21 17:4	31.4303429	2024-03-21 17:4	27.8720677	2024-03-21 17:	4 -14.1808515
2024-03-21 17:4	3 2024-03-21 17:4	31.4277856	2024-03-21 17:	31.4368945	2024-03-21 17:4	31.4182776	2024-03-21 17:4	27.8320321	2024-03-21 17:	9.82479036
2024-03-21 17:4	4 2024-03-21 17:4	31.4048545	2024-03-21 17:4	4 31.3990895	2024-03-21 17:4	31.419124	2024-03-21 17:4	27.9261955	2024-03-21 17:	4 25.7202195
2024-03-21 17:4	5 2024-03-21 17:4	31.4034525	2024-03-21 17:	31.4084252	2024-03-21 17:4	31.42742	2024-03-21 17:4	28.0331779	2024-03-21 17	41.1582572
2024-03-21 17:4	6 2024-03-21 17:4	31.4862703	2024-03-21 17:4	4 31.4969736	2024-03-21 17:4	31.5097408	2024-03-21 17:4	27.9871284	2024-03-21 17:	4 19.6310181
2024-03-21 17:4	7 2024-03-21 17:4	31.6849608	2024-03-21 17:4	4 31.6642853	2024-03-21 17:4	31.6920012	2024-03-21 17:4	27.901627	2024-03-21 17:	4 6.63085233
2024-03-21 17:4	8 2024-03-21 17:4	31.8821616	2024-03-21 17:4	31.8649094	2024-03-21 17:4	31.906613	2024-03-21 17:4	27.788043	2024-03-21 17:	4 -2.93938631
2024-03-21 17:4	9 2024-03-21 17:4	32.0858889	2024-03-21 17:4	32.0764439	2024-03-21 17:4	32.107026	2024-03-21 17:4	27.7630174	2024-03-21 17:	4 3.96282039
2024-03-21 17:4	0 2024-03-21 17:4	32.3127466	2024-03-21 17:4	32.2979426	2024-03-21 17:4	32.3292472	2024-03-21 17:4	27.6973399	2024-03-21 17:	4 32.8791492
2024-03-21 17:4	1 2024-03-21 17:4	32.5151597	2024-03-21 17:4	32.5086616	2024-03-21 17:4	32.5387855	2024-03-21 17:4	27.7091059	2024-03-21 17:	4 41.7827602
2024-03-21 17:4	2 2024-03-21 17:4	32.7320367	2024-03-21 17:4	32.7071911	2024-03-21 17:4	32.7461784	2024-03-21 17:4	27.679833	2024-03-21 17	4 36.4685393
2024-03-21 17:4	3 2024-03-21 17:4	32.9309769	2024-03-21 17:4	32.9254747	2024-03-21 17:4	32.9572745	2024-03-21 17:4	27.6761083	2024-03-21 17:	4 14.5104151
2024-03-21 17:4	4 2024-03-21 17:4	33.1534034	2024-03-21 17:4	33.1222411	2024-03-21 17:4	33.1664978	2024-03-21 17:4	27.7816822	2024-03-21 17:	4 0.691888507
2024-03-21 17:4	5 2024-03-21 17:4	33.3445916	2024-03-21 17:4	33.3299031	2024-03-21 17:4	33.3573053	2024-03-21 17:4	30.3933124	2024-03-21 17:	7.54894626
2024-03-21 17:4	6 2024-03-21 17:4	33.5302868	2024-03-21 17:4	33.5239696	2024-03-21 17:4	33.5507242	2024-03-21 17:4	31.4614278	2024-03-21 17	4 12.1043451
2024-03-21 17:4	7 2024-03-21 17:4	33.734551	2024-03-21 17:4	33.7192121	2024-03-21 17:4	33.7486336	2024-03-21 17:4	31.9443615	2024-03-21 17:	4 39.0407825
2024-03-21 17:4	8 2024-03-21 17:4	33.945977	2024-03-21 17:4	33.9228908	2024-03-21 17:4	33.9537504	2024-03-21 17:4	30.3289062	2024-03-21 17:	4 30.9746237
2024-03-21 17:4	9 2024-03-21 17:4	34.1522494	2024-03-21 17:4	4 34.1147363	2024-03-21 17:4	34.149786	2024-03-21 17:4	29.6856321	2024-03-21 17:	4 37.9520063
2024-03-21 17:4 2	0 2024-03-21 17:4	34.3150733	2024-03-21 17:4	34.2920416	2024-03-21 17:4	34.3329564	2024-03-21 17:4	29.335449	2024-03-21 17:	4 26.9394409
2024-03-21 17:4 2	1 2024-03-21 17:4	34.5146585	2024-03-21 17:4	34.4839741	2024-03-21 17:4	34.5353603	2024-03-21 17:4	29.3480409	2024-03-21 17:	8.42453009
2024-03-21 17:4	2 2024-03-21 17:4	34.6982737	2024-03-21 17:4	34.6779899	2024-03-21 17:4	34.7172897	2024-03-21 17:4	29.3902862	2024-03-21 17:	4 -4.24587047
2024-03-21 17-4	3 2024-03-21 17:4	34 8738042	2024-03-21 17-	34.850320	2024-03-21 17:4	34 9047316	2024-03-21 17-4	29 5544714	2024-03-21 17:	4 0.338924346

TEMP VS TIME PLOTS FOR ALL FINS

TEMP VS TIME PLOTS FOR ALL FINS (Done Again)

Simulations: Concave fin

40 mm

Simulations: Cylindrical fin

60 mm

50 mm

Efficiency

Real Experiments

Concave fin:

With Length 50 mm: 70%

Cylindrical fin:

With Length 50 mm: 45%

Conical fin:

With Height 50 mm : 68.75%

Ideal

Concave fin:

With Length 50 mm: 82.5% With Length 40 mm: 97%

Cylindrical fin:

With Length 50 mm : 69% With Length 60 mm : 80.3%

Conical fin:

Could not do due to error

Acknowledgements

We would like to thank Prof.Soumyadip Sett and Prof.Biswajit Saha for their guidance. We would like to thank the machine shop IITGN for their essential help. We would also like to thank the

Teaching Assistants for their guidance and support.

Purva Shah 22110207

22110244

Vedant Chichmalkar

22110282

