Properties of the Derivative

Note that $c \in \mathbb{R}$ is a constant and $f, g: \mathbb{R} \to \mathbb{R}$ are functions.

Linearity

$$\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)] \qquad \frac{d}{dx}[c \cdot f(x)] = c \cdot \frac{d}{dx}[f(x)]$$

Product Rule

$$\frac{d}{dx}[f(x)\cdot g(x)] = \frac{d}{dx}[f(x)]\cdot g(x) + f(x)\cdot \frac{d}{dx}[g(x)]$$

Chain Rule

$$\frac{d}{dx}[f(g(x))] = \frac{d}{dg}[f(g(x))] \cdot \frac{d}{dx}[g(x)]$$

Common Derivatives

Note that $a, c \in \mathbb{R}$ and $n \in \mathbb{Z}$ are constants.

Polynomials

$$\frac{d}{dx}[c] = 0 \qquad \qquad \frac{d}{dx}[x^n] = nx^{n-1}$$

Exponentials and Logarithms

$$\frac{d}{dx}\left[a^x\right] = \ln(a) \cdot a^x \qquad \qquad \frac{d}{dx}\left[\log_a(x)\right] = \frac{1}{\ln(a)} \cdot \frac{1}{x}, \text{ (for } x > 0)$$

Trigonometric Functions

$$\frac{d}{dx}[\sin(x)] = \cos(x) \qquad \qquad \frac{d}{dx}[\cos(x)] = -\sin(x)$$

Inverse Trigonometric Functions

$$\frac{d}{dx} \left[\sin^{-1}(x) \right] = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx} \left[\cos^{-1}(x) \right] = -\frac{1}{\sqrt{1 - x^2}}
\frac{d}{dx} \left[\tan^{-1}(x) \right] = \frac{1}{1 + x^2} \qquad \frac{d}{dx} \left[\cot^{-1}(x) \right] = -\frac{1}{1 + x^2}
\frac{d}{dx} \left[\sec^{-1}(x) \right] = \frac{1}{|x|\sqrt{x^2 - 1}} \qquad \frac{d}{dx} \left[\csc^{-1}(x) \right] = -\frac{1}{|x|\sqrt{x^2 - 1}}$$

Hyperbolic Functions

$$\frac{d}{dx}[\sinh(x)] = \cosh(x)$$
 $\frac{d}{dx}[\cosh(x)] = \sinh(x)$