

2022 / 09 / 20 D&A 부학회장 김정하

CONTENTS.

01 선형회귀

02 다항회귀

선형회귀분석 # 경사하강법 # SGD

03 규제가 있는 선형회귀

04 로지스틱 회귀

01. 선형회귀분석

2022 / 09 / 20 D&A 부학회장 김정하

01. 선형 회귀분석

회귀분석이란?

$$\hat{y} = f(x) \approx y$$

회귀분석은 독립변수 x에 대응하는 종속변수 y와 가장 비슷한 값 \hat{y} 를 출력하는 함수 f(x)를 찾는 과정을 말함

선형회귀분석이란?

$$\hat{y} = heta_0 + heta_1 \cdot x_1 + \dots + heta_n \cdot x_n$$

f(x)가 선형함수인 회귀모형이면 선형회귀분석이다.

- y_hat : 예측값
- x_i: 회귀모델의 i번째 독립변수
- θ_0 : 편향
- θ_i : i 번째 특성에 대한 (가중치) 파라미터, 단 i>0.

벡터식으로 표현

회귀분석의 목적

-> 독립변수 x에 대응하는 종속변수 y와 가장 비슷한 값 \hat{y} 를 출력하는 θ 를 찾는다

01. 선형 회귀분석

-	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422
20635	1.5603	25.0	5.045455	1.133333	845.0	2.560606	39.48	-121.09	0.781
20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21	0.771
20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22	0.923
20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32	0.847
20639	26	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24	0.894

 θ 는 각 독립변수 x에 곱해지는 가중치로, 학습을 통해 찾아야하는 값

$$\mathbf{x} = egin{bmatrix} 1 \ x_1 \ dots \ x_n \end{bmatrix},$$

에어떤

$$heta = egin{bmatrix} heta_0 \ heta_1 \ dots \ heta_n \end{bmatrix}$$

를 곱해야 y(벡터)와 가장 비슷할까?

01. 선형 회귀분석

									ı	١,
	Medinc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	target	
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526	-
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585	
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521	
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413	
	0.0400	50.0	0.004050	4 004004	505.0	0.404.407	07.05	400.05	0.400	

-> 1. y ⁷	ㅏ있는 데이터로 γ 를 가상 살 설명하는
식	$\hat{y} = heta_0 + heta_1 \cdot x_1 + \dots + heta_n \cdot x_n$ \equiv
완성	시켜 최적의 θ를 찾는다.

20638 1.8672 18.0 5.329513 1.171920 741.0 2.123209 39.43 -121.32	20636	2.5568	18.0	6.114035	1.315789	356.0	3.122807	39.49	-121.21
	20637	1.7000	17.0	5.205543	1.120092	1007.0	2.325635	39.43	-121.22
20639 2.3886 16.0 5.254717 1.162264 1387.0 2.616981 39.37 -121.24	20638	1.8672	18.0	5.329513	1.171920	741.0	2.123209	39.43	-121.32
	20639	2.3886	16.0	5.254717	1.162264	1387.0	2.616981	39.37	-121.24

-> 2. 1에서 찾은 회귀식에 x값만 있는데이터를 적용시켜 y를 예측한다.

$$\hat{y} = heta_0 + heta_1 \cdot x_1 + \dots + heta_n \cdot x_n$$

-> y를 잘 나타내는 θ를 찾아 다른 x값을 넣어도 y를 잘 예측할 수 있게 만든다!

Loss function

________________ 한며, 실제값과 예측값의 차이를 특정 함수로 나타내어 이 함수를 최소화 시키는 방향으로 모델의 학습이 진행됨 ___________ 회귀모델에서는 MSE를 Loss function으로 주로 사용

MSE

평균 제곱 오차로, 각 실제값과 예측값의 오차를 제곱한 값들을 평균한 값

$$ext{MSE}(heta) := ext{MSE}(\mathbf{X}, h_{ heta}) = rac{1}{m} \sum_{i=1}^m \left(heta^T \, \mathbf{x}^{(i)} - y^{(i)}
ight)^2$$

이론적인 경사하강법

-> Loss의 미분값이 음수일 때는 θ가 커지게, 양수일 때는 θ가 작아지게 학습!

-> θ를 업데이트할 때, Loss의 미분값을 활용

실제 모델 속 경사하강법

-> θ를 대입해봐야 Loss를 구할 수 있기 때문에, 그래프 상에서 한 점씩 알아가며 수치미분을 <u>통해 경사하강법 진행</u> 수치미분

$$\frac{df(\theta)}{d\theta} = \lim_{\alpha \to 0} \frac{f(\theta + \alpha) - f(\theta)}{\alpha}$$

- a는 아주 작은 값으로 , 10e-4가 좋다고 알려져있다.

중앙차분

$$\frac{df(\theta)}{d\theta} = \lim_{\alpha \to 0} \frac{f(\theta + \alpha) - f(\theta - \alpha)}{2\alpha}$$

- 실제 기울기와 수치미분값의 오차를 줄이기 위해 중앙차분 사용

<u>학습률</u> - θ를 얼마나 업데이트 시킬지 정하는 하이퍼파라미터

학습률이 너무 작을 때

-> 최솟값에 너무 느리게 수렴함

학습률이 너무 클 때

-> 손실함수가 수렴하지 않음

01. 선형 회귀분석 - 경사하강법_SGD

SGD란?

확률적 경사하강법(Stochastic gradient descent)으로, 회귀 모델이 가중치를 한 번 업데이트할 때 사용하는 데이터를 무작위로 한 개의 샘플을 선택해 경사하강법을 진행함

- -> 매 반복에서 하나의 샘플을 사용해 속도가 빠름
- -> 확률적(무작위)로 샘플을 선택해 알고리즘을 수행하기 때문에 일반 경사하강법보다 불안정함
- -> Loss function이 불규칙한 특성을 띄고 있을 때 지역 최솟값(local minimum)을 뛰어넘을 수 있기 때문에 전역 최솟값(global minimum)을 찾을 가능성이 큼

01. 선형 회귀분석 - 경사하강법_SGD

경사하강법의 학습 진행 과정

-> SGD는 샘플마다의 편차로 불규칙적으로 움직이며 Loss 최솟값을 찾는 중

02. 다항회귀

2022 / 09 / 20 D&A 부학회장 김정하

02. 다항 회귀

비선형적인 데이터셋에 선형 회귀 모델 적용 결과

|선형 회귀 모델로 학습시킨 결과|

-> 독립변수의 일차항만을 가진 선형함수는 곡선의 비선형적인 실제값들을 잘 나타낼 수 없음

비선형적인 데이터셋에 2차 다항식 모델 적용 결과

 x_1^2 에 해당하는 특성 x_2 를 새로이 추가한 후에 선형 회귀 모델을 학습시킨 결과

-> 변수의 차수가 늘어남에 따라 실제값과의 오차가 줄어듬

02. 다항 회귀

Scikit-learn의 PolynomialFeatures 모듈

PolynomialFeatures(degree=d, include_bias=False)

- -> 다항식에 포함되어야하는 특성(독립변수)들을 생성해주는 변환기
- -> degree는 다항식의 차수를 뜻한다.

Example) x1과 x2 두 개의 독립변수에 대해 degree = 3으로 다항회귀식을 생성하면? $(x_1+x_2)^2$ 과 $(x_1+x_2)^2$ 의 항들을 새로운 특성으로 추가하여

$$m{x}_1^2, \ m{x}_1m{x}_2, \ m{x}_2^2, \ m{x}_1^3, \ m{x}_1^2m{x}_2, \ m{x}_1m{x}_2^2, \ m{x}_2^3$$
 -> 이 같은 항들을 추가!

03. 규제가 있는 선형회귀

2022 / 09 / 20 D&A 부학회장 김정하

03. 회귀모델의 규제

전역 최솟값을 찾더라도, 이는 학습데이터에 맞춰진 전역 최솟값임..!

Overfitting

3번 그래프의 Loss의 값이 제일 적지만, 학습데이터에 과도하게 학습되어 검증데이터나 실제 적용할 데이터에 맞지 않을 가능성이 큼

03. 회귀모델의 규제

규제를 통한 과적합 줄이기

- -> 모든 독립변수들의 영향력이 존재(가중치가 0 초과)할 때 overfitting
- -> 독립변수의 개수를 줄이거나(해당 가중치가 0) 영향력을 줄이면 overfitting감소

03. 회귀모델의 규제

규제를 통한 과적합 줄이기

기존의 손실함수 MSE

$$ext{MSE}(heta) := ext{MSE}(\mathbf{X}, h_{ heta}) = rac{1}{m} \sum_{i=1}^m \left(heta^T \, \mathbf{x}^{(i)} - y^{(i)}
ight)^2$$

목적 => 이 손실함수를 최소화 시키자!

$$min(MSE(\theta) + penalty)$$

최소화시키고자하는 손실함수에 규제(penalty)를 추가해 독립변수에 규제를 주어 Overfitting을 감소시키자!

03. Ridge 회귀모형

Ridge 회귀모형의 손실함수

$$J(heta) = ext{MSE}(heta) + lpha \sum_{i=1}^n heta_i^2$$

기존의 손실함수 MSE

규제의 정도를 조절하는 하이퍼 파라미터 α가 0이면? 기존의 선형회귀모델의 손실함수 θ에 대한 L2규제 추가

θ의 제곱합에 대한 규제를 추가하여 θ의 전체적인 크기에 제약을 줌

03. Ridge 회귀모형

α 는 규제의 정도를 조절하는 하이퍼 파라미터

α 가 커질수록 회귀계수에 대한 규제가 커짐 -> 더 일반화된(overfitting감소) 회귀식으로 변화

03. Lasso 회귀모형

θ에 대한 L1규제 추가

Lasso 회귀모형의 손실함수

$$J(heta) = ext{MSE}(heta) + lpha \, \sum_{i=1}^n \mid heta_i \mid$$

기존의 손실함수 MSE

θ의 절대값합에 대한 규제를 추가하여 θ의 전체적인 크기에 제약을 줌

의 미분값이 1 또는 -1이 되어

규제의 정도를 조절하는 하이퍼 파라미터 α 가 0이면? 기존의 선형회귀모델의 손실함수

03. Lasso 회귀모형

α 는 규제의 정도를 조절하는 하이퍼 파라미터

- α 가 커질수록 회귀계수에 대한 규제가 커짐
- -> 더 일반화된(overfitting감소) 회귀식으로 변화
- -> 중요하지 않은 특성에 대해 θ가 0에 빠르게 수렴함

03. Elastic Net

a는 규제의 정도를 조절하는 하이퍼 파라미터

$$J(\theta) = \text{MSE}(\theta) + r\alpha \sum_{i=1}^{n} |\theta_i| + \frac{1-r}{2} \alpha \sum_{i=1}^{n} \theta_i^2$$

Lasso회귀와 Ridge회귀의 규제항을 동시에 사용 하이퍼파라미터 r을 사용해 두 규제항의 혼합비율을 조절

기존의 손실함수 MSE

θ에 대한 L2규제(Ridge)

θ에 대한 L1규제(Lasso)

03. 규제가 있는 회귀모델

언제 어떤 규제 사용 모델을 쓸까?

- 일반적으로는 회귀 모델에 규제를 사용할 때는 Ridge가 추천됨
- 유용한 특성이 그렇게 많지 않다고 판단되면, Lasso 또는 ElasticNet 사용 -> Lasso의 규제항이 유용하지 않은 특성을 없애 주기 때문

2022 / 09 / 20 D&A 부학회장 김정하

로지스틱회귀 (Logistic Regression)

회귀를 사용하여 데이터가 어떤 범주에 속할 확률을 0에서 1 사이의 값으로 예측하고 그 확률에 따라 가능성이 더 높은 범주에 속하는 것으로 분류해주는 지도 학습 알고리즘

ex) 스팸 메일일 확률이 0.5 이상이면 스팸메일로, 그 미만이면 일반 메일로 분류

선형회귀로 확률값을 예측한다면?

공부시간이 2시간 미만이면 합격확률이 음수가 됨

로지스틱 회귀로 확률값을 예측한다면?

시험에 합격할 확률이 0과 1사이의 값으로 정해짐

sigmoid 함수

회귀 모델의 최종값을 sigmoid함수에 넣어 0~1의 확률값으로 만듬

결과값 분류

$$\hat{p} = h_{ heta}(\mathbf{x}) = \sigma(heta^T \mathbf{x}) = \sigma(heta_0 + heta_1 \, x_1 + \dots + heta_n \, x_n)$$
 일때,

$$\hat{y} = egin{cases} 0 & ext{if } \hat{p} < 0.5 \ 1 & ext{if } \hat{p} \geq 0.5 \end{cases}$$

0.5를 기준으로 두 개의 클래스로 분류

로지스틱 회귀의 Loss function – log loss

$$J(heta) = -rac{1}{m} \, \sum_{i=1}^m (y^{(i)} \, \log(\,\hat{p}^{(i)}\,) + (1-y^{(i)}) \, \log(\,1-\hat{p}^{(i)}\,))$$

실제 분류가 1일 때 첫 번째 항만!

-> log(p)가 커지도록, 즉 p가 커지게 학습됨

실제 분류가 0일 때 두 번째 항만! -> log(1-p)가 커지도록, 즉 p가 작아지게 학습됨

로지스틱 회귀 정리

1. 선형회귀의 결과값을 시그모이드 함수에 적용해 확률값(0~1)로 계산

$$\hat{p} = h_{\theta}(\mathbf{x}) = \sigma(\theta^T \mathbf{x}) = \sigma(\theta_0 + \theta_1 x_1 + \dots + \theta_n x_n)$$
 확률값 시그모이드 함수 선형회귀 결과값

- 2. Log Loss (로그 손실)을 Loss function으로 사용, 예측 확률값을 실제값과 비슷해지도록 학습
 - -> 경사하강법을 위한 손실함수의 미분 과정은 직접 해보기^^(재미있음)

첨부자료 출처

폰트

네이버 글꼴 모음 _ 나눔 스퀘어 사용 출처 : https://hangeul.naver.com/font

D&A ML session 3차시 회귀모델 Thank You

2022 / 09 / 20 D&A 부학회장 김정하

