Измеримые функции. Семинар 18.05.2020

Лемма о вариантах измеримости. Доказательство. Докажем, что если выполнено (1), т.е. если

$$\forall c \in \mathbb{R} \{ x \in X : f(x) > c \}$$

измеримо, то выполнено (2), т.е.

$$\forall c \in \mathbb{R} \{ x \in X : f(x) > c \}$$

измеримо.

Заметим, что множество $\{x \in X : f(x) > \}$ является объединением

$$\cup_i \{x_i \in X : f(x) \ge c_i\},\$$

где $c_i, c_i > c$ монотонно убывающая последовательность, $c_i \to c$. По свойству борелевской σ -алгебры множество $\{x \in X : f(x) > \}$ измеримо. Остальные импликации (2) = >(3), (3) = >(4), (4) = >(1) доказываются аналогично (как именно?)

Докажем, что прообраз любого борелевского множества на прямой измерим. Воспользуемся тем, что любое борелевское подмножество $A \subset \mathbb{R}$ получено в результате операций объединения (счетного или конечного) и доплнения в σ -алгебре, примененных к открытому бесконечному получитервалу $(c, +\infty)$. В результате получится, что и прообраз $f^{-1}(A)$ также измерим, поскольку операция дополнения и объединения коммутируют с функцией, а пересечение через эти две операции выражается.

Задача 1а

Пусть f(x)-измерима. Тогда измеримы множества

$$\{x \in X : f(x) > c\},\$$

$$\{x \in X : f(x) < -c\}.$$

Измеримо множество

$${x \in X : f(x) > c} \cup {x \in X : f(x) < -c}.$$

Но указанное множество определяется неравенством:

$${x \in X : |f(x)| > c}.$$

Для любого c это множество измеримо. По Лемме о вариантах измеримости |f(x)| измеримая функция.

Задача 1б

Пусть f(x)-измерима. Если $f_1(x), f_2(x)$ -измеримы, то $f_1(x)f_2(x)$ -измерима (доказано на лекции). Поскольку $x \mapsto x$ измеримая, то $x \mapsto x \cdot x$ измеримая.

Приведем еще одно доказательство при n=2. Рассмотрим гомеоморфизм луча $[0,+\infty) \mapsto [0,+\infty)$, заданный формулой $x \mapsto \sqrt{x}$. Гомеоморфизм переводит борелевские множества в борелевские. При этом $\sqrt{(x)^2} = |x|$. Функция $x \mapsto |x|$ является измеримой. Поэтому при композиции $x \mapsto x^2 \mapsto |x|$ прообраз любого множества

$$\{x \in X : f(x) > c\}$$

измерим. Но тогда и для x^2 прообраз любого множества

$$\{x \in X : f(x) > \sqrt{|c|}\}$$

измерим. Прообраз

$$\{x \in X : f(x) > -\sqrt{|c|}\}$$

также измерим, поскольку совпадает с \mathbb{R} . По Лемме о вариантах измеримости $x\mapsto x^2$ – измерима. При $n=2s\geq 4$ доказательство аналогично. При $n=2s+1\geq 3$ доказательство аналогично, вместо $x\mapsto^{2s}\sqrt{|x|}$ можно выбрать $x\mapsto^{2s+1}\sqrt{x}$.

Задача 1в

Докажем, что $f_+(x) = max\{f(x),0\}$ измеримая функция. Воспользуемся Леммой о вариантах измеримости. Если c<0, то множество

$$\{x\in X: \max\{f(x),0\}>c\}$$

совпадает со всей прямой \mathbb{R} . Если $c \geq 0$, то

$$\{x\in X: \max\{f(x),0\}>c\}$$

совпадает с

$$\{x \in X : f(x) > c\}$$

поэтому является измеримым.

Задача 2

Пусть $A \subset [0,1]$ – неборелевское множество на прямой. Рассмотрим характеристическую функию множества A:

$$f_A(x) = 1, x \in A, \quad f_A(x) = 0, x \in \bar{A}.$$

Функция $f:[0,1]\to\mathbb{R}$ не является измеримой. Прообраз $f^{-1}(B)$ открытого луча $B=(\frac{1}{2},+\infty)\subset\mathbb{R}$ совадает с A,

$$f^{-1}(B) = A \subset [0,1].$$

Задача 3

Определим функцию $g:[0,1]\to\mathbb{R}$ по формуле: $g(x)=f(x)-\frac{1}{2}$. Получится, что $g(x)=\frac{1}{2}$, если $x\in A$ и $g(x)=\frac{-1}{2}$, если $x\in \bar{A}$. Поскольку f(x) неизмерима, то g(x) неизмерима (почему?). Но $|g(x)|=\frac{1}{2}$. Функция |g(x)| постоянна на [0,1] и измерима.

Задача 4

Пусть f(x) = 0, $x \in \bar{A}$, $\mu(A) = 0$. По Лемме о вариантах измеримости рассмотрим множество

$$\{x \in X : f(x) > c\}.$$

Если ≥ 0 , то это подмножество в A, любое подмножество множества меры нуль измеримо и имеет меру нуль (почему?). Если c < 0, То это множество совпадает с $\bar{A} \cup B$, где $B \subset A$. Подмножество $\bar{A} \cup B \subset A$ - измеримо.

Задача 5

Пусть $f: \mathbb{R} \to \mathbb{R}$ -непрерывна. Тогда $f^{-1}(A)$ - открытое и измеримое, если $A=(c,+\infty)$. По Лемме о вариантах измеримости получим, что f(x)-измеримая.

Пусть $\{x_1, \dots x_n\}$ -точки разрыва функции f(x). Рассмотрим n+1-штук функций $f_0=f_{(-\infty,x_1)}$ на $(-\infty,x_1)$, и т.д. $f_n=f_{(x_n,+\infty)}$ на $(x_n,+\infty)$. Воспользуемся Леммой о вариантахизмеримости. Множество

$$U = \{x \in \mathbb{R} : f(x) > c\}$$

совпадает с объединением подмножеств

$$U(n) = \{x \in \mathbb{R} : f_n(x) > c\},\$$

$$U = \cup_n U(n) \cup X_c.$$

и, быть может с объединением еще нескольких точек $X_c\subset X$ из множества точек разрыва $X=\{x_1,\dots x_n\}$, для которых $f(x_i)>c$. Доказано, что для любого c

$$\{x \in \mathbb{R} : f(x) > c\}$$

является измеримым.