AIMS AND SCOPE

- Tumor tissue segmentation utilizing the newly released OCELOT dataset
- Counting cells in tumor tissue segmentation
- Applying multitask learning later

DATASET

Sample from OCELOT dataset [1]

- The OCELOT dataset was recently released publicly to help improve cell detection through using tissue context when analyzing cells
- Contains overlapping cell and tissue annotations of whole slide images stained with Hematoxylin and Eosin from multiple organs
- OCELOT aims to draw parallels between traditional histopathology and deep learning with tissue context
- The process is zooming out of a stained WSI to first analyze the tissue, then zooming in to analyze the cells.

KAHLERT SCHOOL OF COMPUTING

THE UNIVERSITY OF UTAH

Tumor Segmentation for Computational Histopathology Using Deep Learning (OCELOT Dataset)

Authors: Josef Liem (<u>jliem@middlebury.edu</u>), Christa Tsao (<u>cltsao@ucsd.edu</u>), Advisors: Tushar Kataria, Shireen Elhabian(tushar.kataria,shireen@sci.utah.edu), Ganesh Gopalakrishnan (<u>ganesh@cs.utah.edu</u>)

Training and Validation IOU and Loss Graphs

METHODS

- UNet
- DiceCE loss from MONAI
- Binary segmentation
- Augmentations
 - Vertical / Horizontal Flip, ToGray, Color Jitter, Rotate Scale,
- IOU as testing metric

OBSERVATIONS

- Uncertainty between different types of cells (cancerous / noncancerous), either due to the data or the model itself
- Sometimes the model goes into more detail than the ground truth

FUTURE WORK

- Cell counting
- Multi-task learning
- Combining tissue segmentation and cell segmentation and counting to improve cell detection with OCELOT

ACKNOWLEDGMENTS/CITATIONS

This research was supported by the Trust and Reproducibility of Intelligent Computation REU Site, funded by the National Science Foundation Award #2244492. We would like to thank The NSF, the Kahlert School of Computing, the University of Utah, and our mentors Tushar Kataria and Dr. Shireen Elhabia for supporting our research.

[1] Ryu, J., Puche, A. V., Shin, J., Park, S., Brattoli, B., Lee, J., Jung, W., Cho, S. I., Paeng, K., Ock, C.-Y., Yoo, D., & Pereira, S. (2023). OCELOT: Overlapped cell on tissue dataset for histopathology. In arXiv [eess.IV]. http://arxiv.org/abs/2303.13110