CN-Advanced L32

Distance Vector Routing

Dr. Ram P Rustagi rprustagi@ksit.edu.in http://www.rprustagi.com https://www.youtube.com/rprustagi

Distance Vector Routing

- Assumption
 - Each node knows cost of its directly connected link
 - A down (or non-existent) link cost is taken as infinity
- Distributed
 - Each node receives info from neighbors
 - Computes routing and distributes to neighbors
 - No central computation
- Iterative
 - Routing computation stops when no more info exchange
 - It is self terminating no external control
- Asynchronous
 - Each node does not work in sync with others

Distance Vector Routing

- Does not allows a router to know exact topology
- Uses router as signposts along the path to dstⁿ
- Sends periodic updates
- Core of the DV protocol
 - Bellman Ford Algorithm
- Works best in following type of situations
 - Network is simple and flat
 - Does not require hierarchical design
 - Administrators do not have enough knowledge
 - Configure/troubleshoot link state protocols
 - Worst case convergence time is not a concern

DV Routing - Example

Initial Network

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	S0/0/0	0

Network	Interface	Нор
10.2.0.0	\$0/0/0	0
10.3.0.0	S0/0/1	0

Network	Interface	Нор
10.3.0.0	S0/0/0	0
10.4.0.0	Fa0/0	0

Src: CCNA Module 2

DV Routing - Example

After the exchange of routing packets

Network	Interface	Нор
10.1.0.0	Fa0/0	0
10.2.0.0	\$0/0/0	0
10.3.0.0	\$0/0/0	1
10.4.0.0	S0/0/0	2

Network	Interface	Нор
10.2.0.0	S0/0/0	0
10.3.0.0	S0/0/1	0
10.1.0.0	S0/0/0	1
10.4.0.0	S0/0/1	1

Network	Interface	Нор
10.3.0.0	S0/0/1	0
10.4.0.0	Fa0/0	0
10.2.0.0	S0/0/1	1
10.1.0.0	S0/0/1	2

Src: CCNA Module 2

Bellman-Ford equation (dynamic programming)

```
let
  d_{x}(y) := cost of least-cost path from x to y
then
  d_{x}(y) = min_{v}\{c(x,v) + d_{v}(y)\}
                          cost from neighbor v to destination y
                    cost to neighbor v
               min taken over all neighbors v of x
```

Bellman-Ford example

Compute D_u(z):

For u's neighbors: v, x, w, we have

$$d_v(z) = ?, d_x(z) = ?, d_w(z) = ?$$

$$d_v(z) = 5$$
, $d_x(z) = 3$, $d_w(z) = 3$

B-F equation says:

equation says:

$$d_{u}(z) = \min \{ c(u,v) + d_{v}(z), c(u,x) + d_{x}(z), c(u,w) + d_{w}(z) \}$$

$$= \min \{ 2 + 5, 1 + 3, 5 + 3 \}$$

$$= 4$$

node achieving minimum is next hop in shortest path, used in forwarding table

- $D_{x}(y) = estimate of least cost from x to y$
 - actual least cost from x to y is represented as d_x(y)
 - node x maintains distance vector for all nodes
 - $\mathbf{D}_{\mathsf{x}} = [\mathsf{D}_{\mathsf{x}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$
- Node x:
 - knows cost to each neighbor v: c(x,v)
 - maintains its neighbors' distance vectors.
 - For each neighbor v, it maintains

$$\mathbf{D}_{\mathsf{v}} = [\mathsf{D}_{\mathsf{v}}(\mathsf{y}): \mathsf{y} \in \mathsf{N}]$$

key idea:

- From time-to-time, each node sends its own distance vector estimate to neighbors
- When x receives new DV estimate from neighbor v, it updates its own DV using B-F equation:

$$D_x(y) \leftarrow min_v\{c(x,v) + D_v(y)\}\$$
for each node $y \in N$

• Under minor, natural conditions, the estimate $D_x(y)$ converges to the actual least cost $d_x(y)$

iterative, asynchronous: each local iteration caused by:

- Local link cost change
- DV update message from neighbor

distributed:

- Each node notifies neighbors only when its DV changes
 - Neighbors then notify their neighbors if necessary

```
each node:
initialize D_x(y) = c(x,y)
= \infty, when no edge (x,y)
```

wait for (change in local link cost or msg from neighbor)

recompute estimates

if DV to any dest has changed, *notify* neighbors

DV Algorithm

/* Initialisation - for each node x */
for all destinations y in N: $D_x(y) = c(x,y) / * c(x,y) = \infty \text{ for non neighbour */}$ for each neighbor w $D_w(y) = ? \text{ for all destinations y in N}$ for each neighbour w $\text{send distance vector } D_x = [D_x(y): y \text{ in N}] \text{ to w}$

DV Algorithm

Loop /* for each node x */
wait for (change in local link cost
or msg from neighbor)

for each y in N: $D_x(y) = \min_{v \in C(x,v)} + D_v(y)$ #for neighbours v

if Dx(y) changed for any destination y send $D_x = [D_x(y): y \text{ in } N]$ to all neighbour Forever

time -

_time

DV Routing

- Issues
 - Routing Loop
 - Count to Infinity
 - Slow Convergence
 - link cost changes (increases)

Summary

- Each node knows only its neighbours
- Each node knows cost to all nodes
 - A node does not know the topology of the network
- A node receives cost of all nodes from its neighbours