Biológia

szighub.com/dolgozatok

Az öröklődés és a fehérjék bioszintézise

A DNS megkettőződése

- Az információ átadásához szükséges, hogy a DNS-ről pontos másolat készüljön
- A DNS-molekula másolata a DNS megkettőződése során jön létre
- Ez biztosítja, hogy az utónemzedékben változatlanul megmaradjon az információ
- A másolás több szakaszon folyik. Két új nukleotidlánc jön létre (1. ábra)
- Az eredeti nukleotidláncok és a mellé létrejövő két új nukleotidlánc kiegészülnek
- A DNS örökítő szerepének igazolása bakteriofággal (2. ábra)

A genetikai kód

- A DNS a tulajdonságokért felelős információkat, a fehérje jelenléte és működése pedig a tulajdonságok megjelenését szabályozza
- Ebből következik, hogy a DNS összetétele és a fehérjék aminosavsorrendje között szoros kapcsolatnak kell lennie
- A DNS-ben csak négyféle nukleotid van, amiből valahogyan 20 kombinációt kell alkotni, hogy mind a húszféle aminosav beépülést meg tudjuk határozni
- A négyféle nukleotid, ami a kódoláshoz kell: adenin, citozin, guanin, uracil Az, hogy miért nem timin kell hozzá uracil helyett azt nem kell tudni
- Ezért a nukleotidok hármasával állnak össze és így alkotnak értelmes jelet, hiszen
 4 × 4 × 4 = 64, ami bőven elég 20 féle különböző aminosav kódolásához
- Ebből következik, hogy bizonyos nukleotid kombinációk ugyanazokat az aminosavat kódolják (pl.: UAA, UAG, UGA mind azt jelenti, hogy STOP)

Ezt nem volt olyan sok idő magrajzolni

A genetikai kód tulajdonságai

- A genetikai kódot a három egymás követő nukleotid (bázis) képezi
- A genetikai kód tulajdonságai:
 - Univerzális (minden élőlényben ezek a genetikai kódok vannak)
 - Degenerált
 - Átfedésmentes

A fordítás és átírás

- A genetikai kód megszerzéséhez a DNS-t át kell alakítani
- A folyamatot, amelyben a DNS-t értelmes szárát mRNS-sé alakítjuk úgy nevezik, hogy TRANSCRIPTION vagy ÁTÍRÁS, amely a sejtmagban történik
- Ezt az mRNS szálat még át kell alakítani genetikai kóddá
- Ez a folyamat a TRANSLATION vagy FORDÍTÁS, amely a citoplazmában lévő riboszómáknak ("fehérjegyárak") köszönhető
- Az mRNS összekapcsolódik egy tRNS-hez, ami szállítja a megfelelő aminosavat
- Majd ezek után az aminosavak FELTEKEREDNEK és működő fehérjék lesz

A gének megváltozásai, mutációi és a genetikai változatosság

Meiózis és mitózis

- Meiózis során két sejt ketté osztódik, így a kromoszóma szám a felére csökken, ezzel négy haploid sejtet létrehozva. Mind a négy sejt különbözik az azt létrehozó alapsejtektől, hiszen az utódsejt keveredés eredménye is. Az kromoszómák karjai a meiózis végén kicserélődnek és az utódkromoszómák (1. ábrán a legalsó sejtekben lévő cuccok) átrendeződnek. Ezt ÁTKERESZTEZŐDÉSNEK nevezik
- Mitózis egyféle sejt duplikáció vagy párosodás, melynek során az alapsejt létrehoz egy önmagával genetikailag megegyező sejtet. A mitózis kifejezést kizárólag a sejtek duplikációjára és eloszlására használjuk
- Ahhoz, hogy a fenti mondatokat feldolgozd itt van kettő ábra

Mutációk és a gének változásai

- Mutáció: A DNS öröklődő egyik nemzedékről a másikra történő megváltozása
- Pontmutáció: A génen belül bekövetkezett molekuláris változás (a nukleotidsorrendben történik változás a DNS szintézise során)
- Kromoszómamutáció: a kromoszómákon, kromoszómákkal bekövetkező, mikroszkóppal megfigyelhető változások
 - Típusai:
 - Kromoszómatörések
 - Kromoszómaszám-változás
- Ezek a kromoszóma-változások nem gyógyíthatók hiszen a testben a legtöbb sejt már a hibás (mutált) DNS láncot tartalmaz, amit, nem tudunk még módosítani
- A mutációk okai:
 - Fizikai mutáció:
 - Elektromágneses sugárzások
 - UV-sugárzások
 - Részecske- és radioaktív sugárzások
 - Kémiai mutáció:
 - Egyes kémiai anyagok a bázispárok helyettesítésével vagy leolvasási keretük elmozdításával mutációt okozhatnak (frame-shift mutáció)
- Az alábbi képen látható, hogy miként mutálódnak a kromoszómák (ábrán lufik)

A vér

A vér jelentőségé

- A vér a legjelentősebb testnedvünk, ami kapcsolatot biztosít a külvilág, valamint az egyes szervrendszereink között
- A táblázat tartalmazza a legfontosabb dolgokat a vérről
- A vérnek több fontos alkotó eleme van
 - o Vérplazma
 - Kb. 90% vizet és 10% oldott ionokat tartalmaz
 - Vérlemezkék
 - Legkisebb sejtje a vérnek
 - Fehérvérsejtek
 - 1 mm³-en száma kb. 7000-9000
 - Legnagyobb sejtje a vérnek
 - Vörösvérsejtek
 - 1 mm³-en száma kb. 5 millió
 - Vöröscsontvelőben keletkeznek

	Vörösvérsejt	Fehérvérsejt	Vérlemezke
	1000		
Felépítés	fánk alakú (oldalnézetben piskóta, felülnézetben kör alakú)	gömbölyded vagy szabálytalan, változó alak	szabálytalan alakú (változó alak)
Sejtmag	éretten nincs	van (gömbölyded vagy karéjos)	nincs
Méret	7–8 μm	5–22 μm	2–4 μm
Mozgás	passzív	passzív vagy aktív (amőboid)	passzív
Szám/mm³	4,5-5,5 millió	6-8 ezer	150-300 ezer
Termelődés helye	vörös csontvelő	vörös csontvelő és a nyirokrendszer	vörös csontvelő
Előfordulás	az érrendszerben	az érrendszerben és a szövetek között	az érrendszerben
Élettartam	120 nap	általában 1-2 hét	8-9 nap
Feladat	a légzési gázok szállítása (O ₂ , CO ₂)	a védekezés ellenanyag- termeléssel vagy bekebelezéssel	a véralvadás
Pusztulás helye	lép, máj	a sérülés, a fertőzés helye vagy a májban	a véralvadás helyén vagy a májban
Betegségek	vérszegénység, hemolízis	fehérvérűség (leukémia)	véralvadási zavarok

Hemoglobin

- Az érett vörösvérsejt már nem tartalmaz sejtmagot
- Ezek helyére a sejtplazmába hemoglobin molekulák épülnek be
- A hemoglobin átmenetileg képes megkötni a légzési oxigént
- Ezek után a megkötött oxigént elszállítja a szövetekig, ahol végül leadja azt
- Az itt leadott oxigén helyére diffundálással szén-dioxid kerül
- Ez innen átszállítódik a tüdőbe, ahol megkezdődik a szén-dioxid diffúzója, melynek során a leadott gáz a kicsi szén-dioxid-gáznyomású léghólyaghoz jut

Vérlemezkék

- Ha egy ér megsérül akkor a vérből vérlemezkék tapadnak a sérült érfalra
- A vérplazmában speciális fehérjék hatására a fibrinogénmolekulák oldhatatlan fibrinszálakká alakulnak és kicsapódnak
- Az így kialakult háló átszövi és véglegesen lezárja a sérülést az érfalon
- Ezt a folyamatot nevezzük véralvadásnak

Az emberi keringési rendszer

A szív

- Az anyagszállítási folyamatokat szervezetünkben a vérkeringés látja el
- Az ember vérkeringése zárt, két vérkörből áll
 - Kis vérkör (szív tüdő szív)
 - Nagy vérkör (szív egész test szív)
- A keringési rendszer központja a szív
- A vért a szívizom ritmikus összehúzódása mozgatja
- A szívizomszövet izomrostokból áll (akárcsak a harántcsíkolt izomszövet) és az izmok egymással összeköttetésbe lépnek és hálózatot alkotnak
- Az egészséges szív négy rétegű (két pitvarból és két kamrából áll)
- A kamrákat és a pitvarokat szívbillentyűk határolják el
- A szívbillentyűk biztosítják a vér egyirányú áramlását
- A kamrában hirtelen megnő a nyomás és a vér a verőerek felé préselődik
- A nagyvérkörben az artéria szállítja az oxigéndús és a véna a szén-dioxidos vért
- A kisvérkörben az artéria szállítja a szén-dioxidos és az artéria az oxigéndús vért
- A pulzus a percenkénti szívösszehúzódásokat jelenti
- Egy felnőtt ember átlagpulzusa kb. 72 BPM

Szívbetegségek

- A szív helytelen működése akadályozhatja a keringést, amely súlyosabb helyzetekben azonnali halállal is végződhez
- Tanult szívbetegségek
 - Pitvarfibrilláció
 - A szív nem ritmikusan, hanem véletlenszerűen ver
 - Kamrafibrilláció
 - A kamra gyorsan és szabálytalanul ver, de nem pumpálja a vért
 - A létfontosságú szervek oxigén nélkül maradnak hirtelen halál
 - o Tachycardia
 - A szív túl gyorsan ver, gyakran szívinfarktus utóhatása
 - A beteg pulzusa elérheti az akár 200 BPM-et

23.5. ábra. A pulzusszám és a keringési perctérfogat változása terhelés hatására edzett és edzetlen ember szervezetében

Az immunrendszer és a keringési rendszer egészségtana

Az immunrendszer működése

- Az életünk során rengeteg idegen anyaggal találkozunk
- A szervezetnek meg kell különböztetnie a nem kívánatos és a létfontosságú anyagokat egymástól és az idegenektől védekezni kell. Ez az immunrendszer
- · Az immunrendszer megakadályozza a hibás vagy beteg sejtek osztódását
- Az immunrendszer a test minden pontját behálózza
- Legfőbb eleme a nyirokkeringés (nyirokszerver, nyirokerek, nyirokcsomók)
- Nyirokszervek: orr, csecsemőmirigy, torok- és garatmandulák és a lép
- Azokat az anyagokat, amelyek védelmi reakciót váltanak ki antigénnek hívjuk
- Az idegrendszer az idegen anyagokra két féle képen reagálhat
 - o speciális immunválasz
 - o nem speciális immunválasz
- Az antitest az antigéneket felismerő és hatástalanító fehérje

Egészségtan

- A szívműködés zavarai
 - Többnyire örökölt rendellenességek
 - Kiváltó ok: egészségtelen táplálkozás, dohányzás, túlzott alkoholfogyasztás
 - o Egy részük idővel megszűnik, de van, ami orvosi beavatkozást igényel
- Az EKG
 - Más néven: elektrokardiográf
 - o Az EKG-görbe mutatja meg a szív összehúzódásait és elernyedéseit
 - Fentiről elektromos impulzusok árulkodnak
- Pacemaker
 - Apró elektromos eszköz, amely szabályozza a szív ritmusát
 - o Hátránya, hogy évente cserélni kell, mert le tud merülni
- Az érrendszer megbetegedései
 - Magas vérnyomás
 - Az artériás vérnyomás tartós emelkedése
 - Következménye: érelmeszesedés, agyvérzés, veseelégtelenségek
 - Szívmegnagyobbodás
 - Erőteljes munkavégzés váltja ki (a szív alkalmazkodik)
 - Idővel szívelégtelenséghez vezethet

Vércsoportok

- Manapság rutineljárás a vérpótlás vagy vérátömlesztés
- Beteg viszont, csak olyan vért kaphat, amely megfelelő, ezért a vérátömlesztés csak a vércsoport felismerését követően válik lehetővé
- Az emberi vörösvérsejtek egyes membránfehérjéjükhöz kapcsolódó szénhidrátmolekulák szerkezeti különbsége szerint A és B típusra különíthetők el
- Vannak, akiknek a vörösvérsejtjeik csak az egyik (A) vagy másik (B) típusú szénhidrátláncot tartalmazzák
- Vannak olyanok, akiknek mindkét (AB) típusú szénhidrátlánc vagy egyik sem (0) található meg

