4. LA SUBCAPA DE CONTROL DE ACCESO AL MEDIO

- 4.1 El problema de la asignación del canal
- 4.2 Protocolos de acceso múltiple: Aloha
- 4.3 Protocolos de acceso múltiple con detección de portadora
- 4.4 Protocolos libres de colisiones

Canales de difusión

- Tipos de redes:
 - Conexiones punto a punto
 - □ Canales de difusión

 Un canal de difusión es un único medio de comunicación compartido entre múltiples usuarios

Red P2P

Red de difusión

- La clave es determinar quien utiliza el canal
- Hay muchas maneras de hacerlo: protocolos
- Los protocolos pertenecen a la subcapa MAC: Medium Access Control
- MAC: parte inferior de la capa 2

- LANs utilizan canales de difusión
 - ☐ MAC es fundamental en las LANs
- WANs usan canales Punto a Punto, excepto las redes satelitales

4.1 El problema de la asignación del canal

- Dos tipos de asignación del canal:
 - □ Estática
 - □ Dinámica

Asignación estática del canal

- Lo tradicional es FDM
- El ancho de banda se divide en N subcanales
- Es práctico para número pequeño y fijo de usuarios
- A cada usuario se le asigna un subcanal
- No hay interferencia entre usuarios

- No es práctico FDM cuando:
 - □ n de usuarios grande y varía continuamente
 - □ N es el número de subcanales
 - □ Tráfico en ráfagas: desborda el canal
- Si n < N, se desperdician canales
- Si n > N, a algunos de ellos se les negará el acceso

- El tráfico de las redes de computadores es en ráfagas
- Tráfico pico / tráfico promedio = 1.000
- La mayoría de los canales están desocupados casi todo el tiempo

Asignación estática del canal. Desempeño de FDM. Teoría de colas

- T tiempo promedio que necesita la estación para despachar la cola: s./trama
- C capacidad del canal en bps
- lacksquare λ tasa de llegada de tramas a la cola: tramas/s
- $1/\mu$ tamaño promedio de las tramas: bits/trama
- Tasa de salida de tramas de la cola (tasa de servicio de Poisson)
- $Tasa\ de\ salida = \frac{capacidad\ del\ canal}{tamaño\ promedio\ de\ las\ tramas}$
- $Tasa\ de\ salida = \frac{C}{1/\mu} = \mu C\ \left[\frac{bits/s}{bits/trama}\right] = \mu C\ \left[\frac{tramas}{s}\right]$

- Tasa promedio de disminución de la cola:
 - Tasa de salida tasa de llegada = $\mu C \lambda$ = [tramas/s]
- Tiempo para despachar la cola:

$$T = \frac{1}{tasa \ promedio \ de \ disminución \ de \ la \ cola} [s/trama], \ T = \frac{1}{\mu C - \lambda} [s/tramas]$$

- Si $\lambda = 0$, $T = \frac{1}{\mu C} = \frac{1/\mu}{C} = \frac{tamaño\ promedio\ de\ las\ tramas}{capacidad\ del\ canal}$
- Si $\lambda = \mu C$, la cola se mantiene del mismo tamaño
- Si $\lambda > \mu C$, la cola aumenta de tamaño
- En los dos últimos casos, nunca se termina de despachar la cola

Ejemplo

- C capacidad del canal = 100 Mbps
- \bullet λ tasa de llegada = 5.000 tramas/s
- $1/\mu$ tamaño promedio de las tramas = 10.000 bits/trama

$$\mu C = \frac{C}{1/\mu} = \frac{100 \times 10^6 \ bps}{10 \times 10^3 \ b/trama} = 10.000 \ tramas/s$$

- Tiempo para despachar la cola $T = \frac{1}{\mu C \lambda} = \frac{1}{10.000 \frac{tramas}{s} \frac{5.000 tramas}{s}}$
- $T = 200 \,\mu\text{s/trama}$
- Con $\lambda = 0$:
- $T = \frac{1}{\mu C} = 100 \ \mu s/trama$

División del canal en N subcanales: FDM

- Análogo al sistema telefónico
- Capacidad de cada subcanal = $\frac{C}{N}$
- λ tasa de llegada = $\frac{\lambda}{N}$
- Tiempo para despachar la cola $T_{FDM} = \frac{1}{\frac{\mu C}{N} \frac{\lambda}{N}} = \frac{N}{\mu C \lambda}$
- $T_{FDM} = NT$

 Lo mismo ocurre si reemplazamos una red de 100 Mbps por diez de 10 Mbps

- Dos estrategias básicas de adquisición del canal:
 - Métodos por contienda
 - □ Métodos libres de colisión

4.2 Protocolos de Acceso Múltiple: Aloha

- Asignación dinámica del canal
- Década de 1970
- Universidad de Hawaii
- Dos versiones: continuo y ranurado
- Ranurado divide el tiempo en ranuras discretas en las que cabe una trama
- Ranurado sincroniza el tiempo

Aloha continuo o puro

- Los usuarios transmiten en cualquier momento que tengan datos para enviar
- Puede haber colisiones
- Tramas que colisionan se dañan
- La estación escucha el canal para saber si hay colisión después de transmitir la trama
- En una LAN la retroalimentación es inmediata (distancias cortas)
- Vía satélite hay un retardo promedio de ¼ segundo
- Si la trama colisiona, el emisor espera un tiempo aleatorio y lo reenvía
- Estos sistemas se llaman de contienda

Figura 4-1. En ALOHA puro, las tramas se transmiten en momentos completamente arbitrarios.

Aloha continuo

- Es más eficiente con tramas de longitud uniforme
- Si en una colisión sólo se daña un bit de una trama, hay que volver a transmitir

Eficiencia del canal Aloha (1/7)

- ¿Qué fracción de tramas transmitidas no colisionan?
- ¿Cuál es la velocidad real o efectiva de transporte S?
- C capacidad del canal: bps
- Tiempo de trama T: tiempo para transmitir una trama de tamaño fijo
- $T = \frac{tamaño de la trama}{velocidad de la luz}$
- $T = \frac{L}{C} = \left[\frac{bits/trama}{bits/segundo}\right] = \left[segundos/trama\right]$

Eficiencia del canal Aloha (2/7)

- $N = \frac{nuevas tramas generadas por los usuarios}{en 1 tiempo de trama} = \frac{n}{1T}$
- Si N = 1, se genera n = 1 trama nueva en 1T
- $1 = \frac{1}{T}$
- $T = 1 = \frac{L}{C}; L = C$
- Es equivalente a generar una trama nueva de tamaño L = C en un segundo
- Esto equivale a que las estaciones generen, en conjunto, un total de C bits en un segundo (bps)
- Si N > 1, es como generar una trama de tamaño L > C en un segundo
- Lo deseable es 0 < N < 1

٠,

Eficiencia del canal Aloha (3/7)

- lacktriangle Todas las estaciones en conjunto, y en promedio transmiten G tramas nuevas más la retransmisión de tramas colisionadas en el tiempo de trama T
- $\blacksquare \ G = \frac{transmisi\'{o}n\ de\ tramas\ nuevas + retransmisi\'{o}n\ detramas\ colisionadas}{tiempo\ de\ trama}$
- *G* es la frecuencia promedio de la ocurrencias en un intervalo de tiempo
- Vemos que $G \ge N$
- Con carga baja ($N \approx 0$) hay pocas colisiones y retransmisiones: $G \approx N$
- lacktriangle Con carga alta G > N hay much as colisiones y retransmisiones

Eficiencia del canal Aloha (4/7)

- Una trama no choca si no se envían otras tramas en el tiempo de trama
- P₀ = probabilidad de que la transmisión de una trama no colisione

$$P_0 \le 1$$

Velocidad efectiva de transporte es:

$$S = P_0 * G$$

Figura 4-2. Periodo vulnerable para la trama sombreada.

Eficiencia del canal Aloha (5/7)

- Vulnerabilidad de trama = 2 * (tiempo de trama)
- Probabilidad P(k) de que se generen k tramas en el tiempo de trama T
- $P(k) = \frac{G^k e^{-G}}{k!}$; distribución de probabilidad de Poisson
- Esta es una distribución discreta que expresa, a partir de una frecuencia de ocurrencia promedio G (promedio de tramas transmitidas y retransmitidas en T), la probabilidad de que ocurra un determinado número de eventos k (tramas generadas) en cierto intervalo de tiempo (tiempo de trama T)
- k es una variable aleatoria, independiente de cualquier intervalo anterior
- El promedio de tramas generadas en el tiempo de vulnerabilidad es: 2*G*

Eficiencia del canal Aloha (6/7)

Probabilidad de que no haya colisiones ocurre cuando no se generen tramas (k = 0) en el tiempo de trama es

$$P(0) = \frac{G^0 e^{-G}}{0!} = e^{-G}$$

- Probabilidad de que no haya colisiones en el tiempo de vulnerabilidad es:
- $P_0 = e^{-2G}$
- Si la velocidad efectiva de transporte es $S = P_0G$, entonces
- $S = e^{-2G}G$
- Velocidad efectiva de transporte máxima: S_{max} = ?

Eficiencia del canal Aloha (7/7)

$$S = e^{-2G}G$$

- Velocidad máxima efectiva de transporte: S_{max}
- $\frac{dS}{dG} = \frac{d}{dG}(e^{-2G}G) = e^{-2G} 2Ge^{-2G} = (1 2G)e^{-2G} = 0$
- 1 2G = 0
- G = 0.5

- Reemplazando G = 0.5 en $S = e^{-2G}G$
- $S_{max} = 0.5e^{-2(0.5)} = 0.184$
- La eficiencia máxima S_{max} de un canal Aloha puro es del 18,4%

Figura 4-3. Velocidad real de transporte contra tráfico ofrecido en los sistemas ALOHA.

Aloha ranurado

- No se envían tramas en cualquier momento
- Se divide el tiempo en intervalos discretos o ranuras
- Cada intervalo es igual al tiempo de trama
- Se espera el inicio de la siguiente ranura para enviar una trama
- Se necesita sincronizar los límites de cada ranura
- Para ello una estación central emite señales de reloj
- Se logra duplicar la capacidad del Aloha puro

Aloha ranurado

- Período vulnerable = 1 tiempo de trama
- G = número medio de tramas nuevas y retransmitidas en 1 tiempo de trama
- $P(k) = \frac{G^K e^{-G}}{k!}$ Distribución de probabilidad de Poisson
- Probabilidad de que la trama no colisione en el período vulnerable: $P(k = 0) = P_0 = e^{-G}$
- Velocidad efectiva de transporte: $S = P_0G = Ge^{-G}$
- $\frac{dS}{dG} = \frac{d}{dG}(Ge^{-G}) = e^{-G} Ge^{-G} = (1 G)e^{-G} = 0$
- G = 1
- $S_{max} = e^{-1} = 0.367; S_{max} = 36.7\%$

Figura 4-3. Velocidad real de transporte contra tráfico ofrecido en los sistemas ALOHA.

4.3 Protocolos de acceso múltiple con detección de portadora

- En LANs las estaciones detectan lo que hacen las otras y deciden transmitir sobre esta información
- Esto es «detección de portadora»: CS carrier sense
- Son más eficientes que Aloha puro (estaciones que transmiten en cualquier momento. No detectan lo que hacen las otras estaciones)
- Protocolos que detectan portadora antes de transmitir son:
 - □ CSMA persistente
 - ☐ CSMA no persistente
 - □ CSMA persistente-p
 - □ CSMA/CD

CSMA persistente (1/4)

- CSMA Carrier Sense Multiple Access
- Una estación antes de transmitir escucha el canal para saber si otra está transmitiendo
 - □ Si es así, escucha persistentemente el canal hasta que esté desocupado
 - □ Si no, transmite inmediatamente una trama
- Si hay colisión, espera un tiempo aleatorio y vuelve a escuchar el canal

CSMA persistente (2/4)

- El retardo de propagación del carrier es clave en el desempeño del protocolo
- A mayor retardo de propagación, peor desempeño del protocolo
- Si justo luego de que A empieza a transmitir, B escucha el canal
 - □ El carrier de A no habrá llegado aun a B
 - □ B no detecta ningún carrier
 - □ B transmite
 - □ Habrá una colisión

CSMA persistente (3/4)

- Aun si el tiempo de propagación es cero habrá colisiones
 - □ Si dos estaciones que desean transmitir escuchan que el canal está desocupado: transmitirán
 - □ Se producirá una colisión

CSMA persistente (4/4)

- Persistencia: Dos estaciones listas para transmitir cuando una tercera transmite, esperan hasta que ésta termine y entonces comienzan a transmitir simultáneamente en forma inmediata
- Hay una colisión
- Si no fueran tan impacientes habrían menos colisiones

CSMA no persistente

- La estación escucha el canal, si este está desocupado la estación transmite
- Si el canal está en uso, la estación no lo escucha persistentemente
- Espera un tiempo aleatorio y vuelve a escuchar el canal
- Este algoritmo usa mejor el canal pero produce mayores retardos que CSMA persistente

CSMA persistente-p

- Se aplica a canales ranurados
- Cuando una estación está lista para enviar, escucha el canal
- Si el canal está inactivo:
 - □ La estación transmite con probabilidad p,
 - □ O espera a la siguiente ranura

4.2 PROTOCOLOS DE ACCESO MÚLTIPLE

Figura 4-4. Comparación de la utilización del canal contra la carga para varios protocolos de acceso aleatorio.

CSMA/CD (1/4)

- Carrier Sense Multiple Access / Collision Detection
- La estación escucha el canal antes de transmitir
- Las estación aborta su transmisión si detecta colisión: CD
- Se ahorra tiempo y ancho de banda
- Es la base de LAN Ethernet

Transmisiones abortadas

Figura 4-5. El CSMA/CD puede estar en uno de tres estados: contención, transmisión o inactivo.

CSMA/CD (2/4)

- En t₀ la estación termina de transmitir su trama
- Cualquier estación con una trama por enviar, ahora puede intentar hacerlo
- Si dos estaciones deciden transmitir simultáneamente, hay colisión
- Las colisiones se detectan comparando la potencia de la señal enviada con la recibida

CSMA/CD (3/4)

- La estación que detecta colisión, aborta la transmisión
- Espera un tiempo aleatorio
- Intenta de nuevo
- Hay períodos de:
 - □ Contienda
 - □ Transmisión
 - Inactividad

Contienda en CSMA/CD (4/4)

- Dos estaciones inician su transmisión en t_0
- Una estación detecta la colisión en el tiempo promedio de propagación τ de la señal
- ullet es la clave para fijar el tiempo de contienda y la tasa de transporte
- El tiempo máximo de detección de colisión es 2τ
- Entonces el tiempo de contienda debe ser 2τ

49

4.4 Protocolos libres de colisiones

- Estos protocolos son:
 - □ Protocolo de mapa de bits
 - □ Conteo descendente binario
- N estaciones, cada una con una dirección única de 0 a N-1

Un protocolo de mapa de bits

- Llamado también protocolo de reserva
- Si la estación j tiene una trama por enviar, transmite un bit 1 en la ranura j
- Cada estación sabe cuáles estaciones quieren transmitir
- Entonces, las estaciones comienzan a transmitir en orden numérico

Conteo descendente binario

- Se usan direcciones de estación binarias
- Las estaciones que van a transmitir difunden su dirección
- Se asume que los retardos son insignificantes
- La estación con dirección más alta tiene derecho a usar el canal

Protocolos de contienda limitada

- Un criterio de desempeño de estos protocolos es el retardo
- Retardo en carga baja es distinto al retardo en carga alta

Protocolo	Rendimiento
De contienda	Mejor rendimiento con carga baja
Libres de colisión	Mejor rendimiento con carga alta
De contienda limitada	Contienda en cargas bajas Libre de colisiones en cargas altas

- Los protocolos de contienda estudiados son simétricos
- Simetría: las estaciones tienen la misma probabilidad p para transmitir
- Un sistema, podría mejorarse dando diferente *p* a cada estación

Desempeño de los protocolos simétricos

- \mathbf{k} = número de estaciones que compiten por acceder al canal
- Cada una tiene una probabilidad p de transmitir en una ranura
- La probabilidad de que alguna estación transmita con éxito en una ranura es:

$$Pe = k*p(1 - p)^{k-1}$$

¿Con qué valor de p se alcanza una probabilidad máxima de transmitir con éxito Pe?

 \blacksquare El valor óptimo de P_e se obtiene derivando e igualando a cero

$$\frac{d}{dp}(P_e) = \frac{d}{dp}[kp(1-p)^{k-1}] = 0$$

$$p = 1/k$$

$$P_e[con \ p \ óptimo] = \left(1 - \frac{1}{k}\right)^{k-1}$$

Pr[éxito con *p* óptimo]

- Para un número pequeño de estaciones la probabilidad de éxito es buena
- Pronto esta probabilidad cae a 1/e = 0,36...

Protocolos de contienda limitada

- Se reúnen las estaciones en grupos pequeños para aumentar la probabilidad de éxito en la transmisión
- Estaciones del grupo 0 compiten en la ranura 0, estaciones del grupo 1 compiten en la ranura 1, así sucesivamente . . .
- Hay 2 extremos:
 - □ Todas las estaciones en un solo grupo: Aloha ranurado
 - □ 1 estación en cada grupo. Protocolo libre de colisiones

Protocolo de recorrido de árbol adaptable

- Es una forma dinámica de asignar estaciones a una ranura
- Ideado por el ejército de US para hacer pruebas de sífilis a los soldados en la II Guerra Mundial
- Se toma una muestra de sangre de N soldados
- Se vacía una parte de cada muestra en un solo tubo de ensayo

- La muestra se examina
 - □ Si no hay anticuerpos todos los soldados están sanos
 - □ Si hay anticuerpos se preparan dos muestras: una de los soldados de 1 a
 N/2 y la otra muestra del resto de soldados
- El proceso se repite hasta dar con los soldados infectados

Fig. 4-9. The tree for eight stations.

2

- Las estaciones son hojas de un árbol binario
- Todas las estaciones pueden competir para conseguir el canal en la ranura 1
- Si hay colisión, entonces sólo las estaciones que están debajo del nodo 2 pueden competir por el canal en la primera ranura
- Si una estación consigue el canal, la ranura 2 se reserva para las estaciones que están debajo de nodo 3
- Si ocurre una colisión, se examina todo el árbol con los hijos izquierdo y derecho en forma recursiva para localizar las estaciones listas
- Si vuelve a ocurrir una colisión, continúa la búsqueda

- A más carga, se inicia la búsqueda de la estación a transmitir desde un nivel i más abajo
- Un nodo en nivel i tiene una fracción 2^{-i} estaciones por debajo de él, expresado en por unidad
- El nivel 0 tiene $2^{-0} = 1$ estaciones
- El nivel 1 tiene $2^{-1} = 0.5$ estaciones
- El nivel 2 tiene $2^{-2} = 0.25$ estaciones

- q es el número de estaciones que desean transmitir distribuidas uniformemente en el árbol
- Un nodo de nivel i tiene una fracción de q que es $2^{-i}q$
- Si q = 4
- El nodo de nivel 0 tiene $2^{-0}4 = 4$ estaciones que desean transmitir
- Un nodo de nivel 1 tiene $2^{-1}4 = 2$ estaciones que desean transmitir, etc.

El nivel óptimo para comenzar a analizar el árbol es aquel cuyo número de estaciones que desean transmitir sea 1

$$2^{-i}q = 1$$

- $q = 2^i$
- $i = log_2q$
- Si q = 4, i = 2

Protocolos de acceso múltiple por división de longitud de onda

- El canal se divide en sub-canales con FDM y/o TDM
- Se permite muchas conversaciones simultaneas
- Esquema usado en LANs de fibra óptica
- Se fusionan dos fibras de cada estación a un cilindro de vidrio

Multiplexión

 Se divide el espectro en bandas de longitud de onda

- La estación A solo recibe información en λ_1 , B en λ_2 , etc.
- Si la estación A desea enviar información a C, usa λ_3
- Hay un canal estrecho para control, y un canal ancho para el envío de datos
- El canal de control se usa para solicitar y recibir solicitudes de conexión

Protocolos de LANs inalámbricas

- Laptops requieren de un lugar fijo para trabajar. Ellas son portátiles, no móviles
- Un sistema móvil implica que puede trabajar mientras se desplaza
- La movilidad necesita de un sistema de comunicación inalámbrico
- Una WLAN requieren de estaciones base o puntos de acceso colocados adecuadamente
- Las estaciones base se interconectan con cobre o fibra

- La potencia de la señal de APs y portátiles es baja
- Así se evita que una WLAN interfiera a otra WLAN
- El alcance es de pocas decenas de metros
- Cada oficina es una celda y el edificio un sistema celular
- A diferencia de telefonía celular, cada celda sólo tiene un canal que cubre todo el ancho de banda disponible
- 11 a 54 Mbps

- WLANs requieren protocolos MAC especiales
- El problema en WLAN es la limitación de alcance
- Un enfoque equivocado es usar CSMA: oír si hay transmisiones y transmitir si nadie más lo hace
- Pero lo que importa es la interferencia en el receptor no en el emisor

.

Problema de estación oculta

- En el gráfico, no importa cuáles son AP ni cuáles son portátiles
- A puede alcanzar a B pero no a C
- B puede alcanzar a A y C pero no a D
- Si A transmite a B, C no podrá escuchar a A por problema de limtación de alcance
- C deducirá falsamente que puede transmitir a B
- Si C transmite se colisionará en B con A

Problema de estación expuesta

- Ahora B transmite a A
- C escucha la transmisión
- C concluye erradamente que no puede transmitir a D (?!)
- Pero la trama de C que se envía a D colisiona con la trama de B que se envía a A, porque B sí alcanza a C (RMOG). No hay tal "problema de estación expuesta"

- Antes de transmitir, una estación necesita saber si hay portadora alrededor del receptor
- CSMA indica si hay actividad alrededor de la estación que detecta la portadora
- Con cable, las señales se propagan y llegan a todas las estaciones
- En sistemas de radio de corto alcance se pueden aceptar transmisiones simultaneas

MACA

- Multiple Access with Carrier Avoid. 1990
- Acceso Múltiple con Prevención de Portadora
- Uno de los primeros protocolos hechos para WLAN
- El emisor pide al receptor enviar una trama corta, para que las estaciones cercanas al **receptor** no transmitan

- A envía una trama corta de 30 bytes RTS (Request to send) a B.
- RTS contiene la longitud de la trama de datos que se enviará luego
- 3. B contesta con CTS (Clear to Send) con la longitud de la trama que recibirá de A
- A inicia la transmisión a B

2

- Las estaciones que escuchan RTS enviada por A permanecen en silencio hasta que CTS se transmite hacia A
- Las estaciones que escuchan CTS enviada por B permanecen en silencio hasta que la trama de datos se transmita hacia B
- Pero aún pueden ocurrir colisiones. A y D pueden enviar RTS a B al mismo tiempo

- MACA Wireless
- Es una mejora a MACA (Multiple Access with Carrier Avoid)
- Se introduce la trama ACK tras una trama exitosa
- Se agregó la detección de portadora para evitar que una estación transmita un RTS al mismo tiempo que otra

4.5 Ethernet

7

- Existen dos tipos muy diferentes de Ethernet: Ethernet clásica y Ethernet conmutada.
- Ethernet clásica resuelve el problema del acceso múltiple con el uso de técnicas que hemos estudiado. Opera hasta a 10 Mbps. Ya no se utiliza
- Ethernet conmutada que utiliza switches para conectar varias computadoras.
 Opera a 100 Mbps, 1 Gbps, 10 Gbps
- 100 Mbps Fast Ethernet
- 1 Gbps Gigabit Ethernet
- 10 Gbps 10 Gigabit Ethernet
- Ethernet se recoge en la norma IEEE 802.3

Capa física de Ethernet clásica

- La primera LAN fue construida por Bob Metcalfe y David Boggs en 1976 en la empresa Xerox PARC (Ciudad de Palo Alto - California)
- Utilizaba un cable coaxial grueso
- Operaba inicialmente a 3 Mbps y luego a 10 Mbps
- Usaba la codificación Manchester
- Antes se pensaba que el espacio estaba lleno de ether por medio del cual se propagaban las ondas electromagnéticas
- En 1983 se convirtió en el estándar IEEE 802.3

Protocolo de la subcapa MAC de Ethernet clásica

Figura 4-14. Formatos de trama. (a) Ethernet (DIX). (b) IEEE 802.3.

- Cada byte del Preámbulo contiene el patrón 10101010
- Los dos últimos bits del último byte del Preámbulo se establecen en 11 para indicar el inicio de la trama SOF
- El primer bit de la dirección destino es:
 - □ 0 para direcciones ordinarias
 - □ 1 para direcciones de grupo: Multidifusión (multicast)

100

- La dirección que consiste únicamente de bits 1 es para difusión (broadcast)
- Las direcciones origen (48 bits) son únicas a nivel mundial
- Los primeros 3 bytes de la dirección NIC Network Interface Card identifican a su fabricante
- En el 3er. Campo, todo valor mayor a 1536 identifica el *tipo*: protocolo de cada de red (ejemplo IPv4)
- Todo valor menor o igual a 1536 indica *longitud* de los datos
- Después están los datos de hasta 1500 bytes, límite establecido por la cantidad de RAM del transceptor de aquella época (año 1978)

- Si la trama no transporta datos, el campo de datos es de 0 bytes
- La trama debe tener una longitud mínima de 64 bytes considerando desde el campo destino hasta el campo de suma de verificación
- Para ello se incluye el campo de relleno de 46 bytes para alcanzar el tamaño mínimo

Bytes	8	6	6	2	0-1500	0-46	4
(a)	Preámbulo	Dirección de destino	Dirección de origen	Tipo	Datos	Relleno	Suma de verificación

- La razón más importante de tener una trama mínima es evitar que el emisor termine de transmitir la trama antes de que el primer bit llegue a la estación más lejana
- Un emisor sabe que se produjo una colisión cuando escucha el ruido de la colisión mientras está transmitiendo la trama
- Si el emisor no escuchó ruido mientras transmitió la trama, este supondrá que la transmisión fue exitosa
- Pero podría ocurrir que luego de terminar la transmisión haya una colisión
- \blacksquare Para evitar esto, las tramas deberán tardar más de 2τ en transmitirse
- \blacksquare 2 τ : tiempo de propagación de ida y vuelta para el peor caso en el cable

Figura 4-15. La detección de una colisión puede tardar hasta 2τ.

■ El campo *suma de verificación* utiliza el polinomio generador ya estudiado

CSMA/CD

- Ethernet clásica usa CSMA/CD persistente-1
- Si hay una colisión la estación aborta la transmisión y vuelven a transmitir luego de un intervalo aleatorio
- El modelo sigue siendo el de la figura 4.5

Figura 4-5. El CSMA/CD puede estar en uno de tres estados: contención, transmisión o inactivo.

.

- \blacksquare Tras la colisión, el tiempo se divide en ranuras de 2τ
- El algoritmo a seguir se llama retroceso exponencial binario
- Después de la primera colisión, las estaciones esperan 0 o 1 ranura al azar antes de intentarlo de nuevo
- Si vuelven a colisionar, cada una escoge entre 0, 1, 2 o 3 ranuras al azar
- De haber una tercera colisión, el número de ranuras a esperar es desde 0 hasta 2³ 1
- Después de i colisiones se elige entre 0 y $2^i 1$ ranuras
- CSMA/CD ni Ethernet proveen confirmaciones de recepción ya que el canal tiene tasas de error bajas
- Si ocurre un error se detecta con CRC y se recupera en las capas superiores
- En canales inalámbricos en donde hay más errores se usan ACKs

Ethernet conmutada

- Ethernet dejó de usar un solo cable extenso por problemas en las conexiones
- Ahora cada estación tiene un cable dedicado que llega a un hub
- Un hub conecta eléctricamente todos los cables como si estuvieran soldados
- En esta configuración es más fácil agregar o quitar una estación
- También las cables rotos afectan a una estación y se pueden detectar con facilidad

- Pero los hubs no incrementan la capacidad debido a que son lógicamente iguales a un solo cable extenso de antes
- A medida que se agrega una nueva estación, se tiene que compartir la capacidad de transmisión con un número mayor de estaciones
- Entonces surgió Ethernet conmutada
- El corazón del sistema es un switch
- Un switch se ve como un hub

м

- Hubs y switches cuentan con puertos para conectores RJ-45 para cable de par trenzado
- Con un switch también es fácil añadir o quitar una estación
- Un switch solo envía la trama a los puertos para los cuales están destinadas
- Los demás puertos ni siquiera saben de que existe la trama
- Para ello, el switch verifica la dirección Ethernet de la estación destino
- Al interno el switch opera a muchos Gbps con un protocolo propietario oculto
- Si más de una estación desea trasmitir tramas al mismo tiempo, incluso a un mismo destino, no habrá colisión porque el switch encola las tramas
- Además, una estación puede transmitir y recibir tramas al mismo tiempo porque el cable es full-duplex

Fast Ethernet

- Con el pasar de los años, 10 Mbps se hizo insuficiente
- Hubo la necesidad de crear una versión de Ethernet mucho más rápida
- La nueva versión se recogió en la norma IEEE 802.3u
- Totalmente compatible con Ethernet clásica IEEE 802.3
- Básicamente lo que se hizo fue reducir los tiempo de bit de 100 nseg. a 10 nseg.
- Así que la velocidad inicial se multiplicó por 10, alcanzando 100 Mbps
- Se reemplazó el cable coaxial por el cable UTP Cat 3 existente ya en los edificios, más hubs y switches