Algoritmos Gulosos

Prof. Daniel Kikuti

Universidade Estadual de Maringá

Visão geral

- ► Técnica de projeto de algoritmos.
- Aplicada em vários problemas de otimização.
- Mais simples e mais eficientes que Programação Dinâmica.
- Escolha míope (melhor escolha no momento).
- Nem sempre produzem soluções ótimas.

Elementos de algoritmos gulosos

Subestrutura ótima

Um subproblema exibe **subestrutura ótima** se uma solução ótima para um problema contém dentro dela soluções ótimas para subproblemas.

Propriedade da escolha gulosa

Podemos construir uma solução ótima global fazendo escolhas ótimas locais (gulosas – sem considerar os resultados dos subproblemas).

Problema de Seleção de Atividades

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. **Introduction to Algorithms**, Third Edition. The MIT Press. Chapter 16.

Seleção de atividades

O problema

Dado um conjunto de n atividades $S=\{a_1,a_2,\cdots,a_n\}$ que requerem o uso exclusivo de um recurso comum (sala de aula, processador, etc.) e os respectivos tempos de início e término para cada atividade $[s_i,f_i)$, selecionar o maior conjunto de atividades mutuamente compatíveis, isto é, atividades a_i e a_j tais que $s_i \geq f_j$ ou $s_j \geq f_i$.

▶ Suponha que as atividades estão ordenadas por tempo de término: $f_1 \le f_2 \le \cdots \le f_{n-1} \le f_n$.

Exemplo

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12 16
f_i	4	5	6	7	9	9	10	11	12	14	16

Exemplo

- ▶ Exemplo de solução viável: $\{a_3, a_9, a_{11}\}$.
- ▶ Exemplo de soluções ótimas: $\{a_1, a_4, a_8, a_{11}\}$ e $\{a_2, a_4, a_9, a_{11}\}$.

Notação

Seja S_{ij} o conjunto de atividades que começam após o término da atividade a_i e terminam antes do início da atividade a_j .

Exemplo: $S_{1,7} = \{a_2, a_4, a_5\}.$

Caracterizando a estrutura ótima

- P Queremos determinar um conjunto máximo de atividades mutuamente compatíveis com S_{ij} e tal subconjunto máximo é A_{ij} , que inclui alguma atividade a_k .
- lncluindo a_k em uma solução ótima, ficamos com dois subproblemas: S_{ik} e S_{kj} .
- ▶ Sejam $A_{ik} = A_{ij} \cap S_{ik}$ e $A_{kj} = A_{ij} \cap S_{kj}$, então $A_{ij} = A_{ik} \cup \{a_k\} \cup A_{kj}$.
- ▶ Portanto, o conjunto de tamanho máximo A_{ij} de atividades mutuamente exclusivas em S_{ij} consiste em $|A_{ij}| = |A_{ik}| + 1 + |A_{kj}|$ e deve ser ótimo (argumento de recortar e colar).

Solução via Programação Dinâmica

Seja c[i,j] o tamanho de uma solução ótima para S_{ij} , ou seja: $c[i,j] = |A_{ij}|$.

$$c[i,j] = \begin{cases} 0 & \text{se } S_{ij} = \emptyset \\ \max_{i \le k \le j} \{c[i,k] + 1 + c[k,j]\} & \text{se } S_{ij} \ne \emptyset. \end{cases}$$

Partindo desta formulação recursiva, poderíamos verificar que há sobreposição de problemas e poderíamos usar Programação Dinâmica.

Pensando na formulação recursiva

$$c[i,j] = \begin{cases} 0 & \text{se } S_{ij} = \emptyset \\ \max_{i \le k \le j} \left\{ c[i,k] + 1 + c[k,j] \right\} & \text{se } S_{ij} \ne \emptyset. \end{cases}$$

- ► E se pudéssemos escolher uma atividade para acrescentar à solução ótima sem ter que resolver primeiro todos os subproblemas?
- Mas qual seria esta escolha?
 - ► Atividade que começa primeiro?
 - Atividade que requer o menor intervalo de tempo?
 - Atividade com menor número de conflitos?
 - Atividade com menor tempo de término?

Escolha gulosa

Após a escolha gulosa da atividade a_k , restará somente um subproblema composto por atividades que começam após o término de a_k .

Substrutura ótima

- ▶ Seja $S_k = \{a_i \in S : s_i \ge f_k\}$ (atividades que começam após o término de a_k).
- Escolhendo a₁, S₁ permanecerá como o único problema a ser resolvido.
- Se a_1 estiver na solução ótima, uma solução ótima para o problema original consistirá de a_1 e todas as atividades em uma solução ótima para o subproblema S_1 .

Demonstrando a escolha gulosa

Teorema

Considere um subproblema qualquer não vazio S_k . Seja a_m uma atividade em S_k com o menor tempo de término. Então, a_m estará incluída em algum subconjunto de tamanho máximo de atividades mutuamente compatíveis de s_k .

Demonstrando a escolha gulosa

Teorema

Considere um subproblema qualquer não vazio S_k . Seja a_m uma atividade em S_k com o menor tempo de término. Então, a_m estará incluída em algum subconjunto de tamanho máximo de atividades mutuamente compatíveis de s_k .

Demonstração

Seja A_k um subconjunto de tamanho máximo de atividades mutuamente compatíveis em S_k , e seja a_j a atividade em A_k que tem o menor tempo de término.

- $a_i = a_m$: não há o que demonstrar.
- ▶ $a_j \neq a_m$: considere o conjunto $A_k' = A_k \{a_j\} \cup \{a_m\}$. As atividades em A_k' são disjuntas, pois a_j é a primeira atividade a terminar em A_k e $f_m \leq f_j$. Visto que $|A_k'| = |A_k|$, concluímos que A_k' é um subconjunto de tamanho máximo de atividades mutuamente compatíveis de S_k e inclui a_m .

Abordagem gulosa

- 1. Escolher uma atividade para colocar na solução ótima.
- 2. Resolver o problema de escolher atividade entre as que são compatíveis com as já escolhidas.

Comparação com a primeira formulação

	# de subproblemas	# de escolhas
Primeira	2	j-i-1
Gulosa	1	1

Algoritmo guloso recursivo

Parâmetros

- As atividades estão ordenadas por tempo de término.
- ightharpoonup s/f contém os tempos de início/término de cada atividade.
- \blacktriangleright k define o subproblema S_k a ser resolvido.
- n é o tamanho do problema original.
- ▶ Inserir uma atividade fictícia a_0 com $f_0 = 0$, tal que o problema S_0 é todo o conjunto de atividades S. A chamada inicial é RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, n).

```
RECURSIVE-ACTIVITY-SELECTOR(s, f, k, n)
```

```
1 m \leftarrow k+1
2 while m \le n and s[m] < f[k] do
3 | m \leftarrow m+1
4 if m \le n then
```

5 | return $\{a_m\} \cup \text{Recursive-Activity-Selector}(s, f, m, n)$

6 else return ∅

Algoritmo guloso recursivo

```
\begin{array}{l} \operatorname{RECURSIVE-ACTIVITY-SELECTOR}(s,f,k,n) \\ \mathbf{1} \ m \leftarrow k+1 \\ \mathbf{2} \ \text{while} \ m \leq n \ \text{and} \ s[m] < f[k] \ \text{do} \\ \mathbf{3} \ \mid \ m \leftarrow m+1 \\ \mathbf{4} \ \text{if} \ m \leq n \ \text{then} \\ \mathbf{5} \ \mid \ \text{return} \ \{a_m\} \cup \operatorname{RECURSIVE-ACTIVITY-SELECTOR}(s,f,m,n) \\ \mathbf{6} \ \text{else} \ \ \text{return} \ \emptyset \end{array}
```

Complexidade

- ▶ Considerando que as atividades já estão ordenadas, a chamada Recursive-Activity-Selector(s, f, 0, n) consome tempo $\Theta(n)$.
- Considerando todas as chamadas recursivas feitas, cada atividade é examinada exatamente uma vez no teste do laço while (linha 2).

Algoritmo guloso iterativo

```
GREEDY-ACTIVITY-SELECTOR(s,f)

1 n \leftarrow s.length

2 A \leftarrow \{a_1\}

3 k \leftarrow 1

4 for m \leq 2 to n do

5 | \mathbf{if} \ s[m] \geq f[k] then

6 | A \leftarrow A \cup \{a_m\}

7 | k \leftarrow m
```

O problema de escalonamento de tarefas

O problema

Dado um conjunto de n tarefas $S=\{1,2,\cdots,n\}$ que requerem o uso exclusivo de um recurso comum (processador, por exemplo). Cada tarefa i possui:

- comprimento t_i (tempo necessário para executá-la);
- **prioridade** p_i (ou peso).

Definimos o tempo de término c_i para a tarefa i como sendo a soma de todos os tempos de término das tarefas antecedentes a i, incluindo t_i .

Objetivo: Minimizar a soma ponderada dos tempos de término:

$$\min \sum_{i=1}^{n} p_i c_i.$$

Exemplo

Suponha que temos 3 tarefas com os seguintes comprimentos e pesos:

- $t_1 = 1, t_2 = 2, t_3 = 3.$
- $p_1 = 3$, $p_2 = 2$, $p_3 = 1$.

Pergunta 1

Se as tarefas são escalonadas na ordem $\{1,2,3\}$, quais são os tempos de término de c_1 , c_2 e c_3 ?

Pergunta 2

Qual o valor da soma ponderada?

Pergunta 3

De quantas maneiras distintas podemos escalonar n tarefas?

Exemplo

Suponha que temos 3 tarefas com os seguintes comprimentos e pesos:

- $t_1 = 1, t_2 = 2, t_3 = 3.$
- $p_1 = 3$, $p_2 = 2$, $p_3 = 1$.

Pergunta 1

Se as tarefas são escalonadas na ordem $\{1,2,3\}$, quais são os tempos de término de c_1 , c_2 e c_3 ?

Resposta: 1, 3 e 6.

Pergunta 2

Qual o valor da soma ponderada?

Resposta: 3*1+2*3+1*6=15.

Pergunta 3

De quantas maneiras distintas podemos escalonar n tarefas? Resposta: n! maneiras.

Analisando a relação tempo vs. prioridade

$$\min \sum_{i=1}^{n} p_i c_i.$$

1. Se todas as tarefas possuem a mesma prioridade, qual a melhor maneira de escalonar as tarefas? Exemplo: $t_1 = 1$, $t_2 = 2$, $t_3 = 3$ e $p_i = 1$.

2. E se todas as tarefas possuem o mesmo comprimento, qual a melhor maneira de escalonar as tarefas? Exemplo: $p_1=3,\;p_2=2,\;p_3=1$ e $t_i=2$.

Analisando a relação tempo vs. prioridade

$$\min \sum_{i=1}^{n} p_i c_i.$$

1. Se todas as tarefas possuem a mesma prioridade, qual a melhor maneira de escalonar as tarefas? Exemplo: $t_1=1,\ t_2=2,\ t_3=3$ e $p_i=1.$ Menor tempo primeiro.

2. E se todas as tarefas possuem o mesmo comprimento, qual a melhor maneira de escalonar as tarefas? Exemplo: $p_1=3,\;p_2=2,\;p_3=1$ e $t_i=2.$ Maior prioridade primeiro.

Resolvendo conflito

Caso geral

E se $p_i > p_j$ e $t_i > t_j$? Qual tarefa deve ser escalonada primeiro?

Ideia

Atribuir uma pontuação para cada tarefa de modo que a tarefa com maior prioridade e menor comprimento receba uma pontuação maior.

Sugestões de funções de pontuação

Resolvendo conflito

Caso geral

E se $p_i > p_j$ e $t_i > t_j$? Qual tarefa deve ser escalonada primeiro?

Ideia

Atribuir uma pontuação para cada tarefa de modo que a tarefa com maior prioridade e menor comprimento receba uma pontuação maior.

Sugestões de funções de pontuação

- 1. Colocar as tarefas em ordem decrescente conforme a pontuação p_i-t_i .
- 2. Colocar as tarefas em ordem decrescente conforme a pontuação p_i/t_i .
- 3. ???

Analisando funções de pontuação

Suponha $t_1 = 5$, $p_1 = 3$ e $t_2 = 2$, $p_2 = 1$.

A soma ponderada dos tempos de conclusão produzidos pelas funções de pontuação são:

Analisando funções de pontuação

Suponha $t_1 = 5$, $p_1 = 3$ e $t_2 = 2$, $p_2 = 1$.

A soma ponderada dos tempos de conclusão produzidos pelas funções de pontuação são:

1. Função $p_i - t_i$

- ▶ pontuação da tarefa 1: 3-5=-2.
- ▶ pontuação da tarefa 2: 1-2=-1.

Portanto, executar tarefa 2 antes da tarefa 1. Custo total será 2*1+7*3=23.

Analisando funções de pontuação

Suponha $t_1 = 5$, $p_1 = 3$ e $t_2 = 2$, $p_2 = 1$.

A soma ponderada dos tempos de conclusão produzidos pelas funções de pontuação são:

1. Função $p_i - t_i$

- ▶ pontuação da tarefa 1: 3-5=-2.
- ▶ pontuação da tarefa 2: 1-2=-1.

Portanto, executar tarefa 2 antes da tarefa 1. Custo total será 2*1+7*3=23.

2. Função p_i/t_i

- ▶ pontuação da tarefa 1: 3/5 = 0.6.
- pontuação da tarefa 2: 1/2 = 0.5.

Portanto, executar tarefa 1 antes da tarefa 2. Custo total será 5*3+7*1=22.

Escolha gulosa

Teorema

A escolha de tarefas ordenadas em ordem decrescente conforme a razão p_i/t_i está sempre correta.

Demonstração

- lacktriangle Seja δ o escalonamento guloso e δ^* um escalonamento ótimo.
- Assumiremos que todos p_i/t_i são distintos e renomearemos as tarefas de forma que:

$$p_1/t_1 > p_2/t_2 > \cdots > p_{n-1}/t_{n-1} > p_n/t_n.$$

▶ Então o escalonamento guloso será: $\delta = \{1, 2, ..., n\}$.

Escolha gulosa

Demonstração - continuação

Suponha que $\delta \neq \delta^*$, então existem tarefas consecutivas i e j com i>j com posições invertidas. Se trocarmos a ordem de i e j em δ^* (mantendo as outras tarefas inalteradas), percebemos que:

- o tempo de conclusão de qualquer outra tarefa k permanece inalterado;
- ightharpoonup o tempo de conclusão da tarefa i aumenta t_j unidades;
- ightharpoonup o tempo de conclusão da tarefa j diminui t_i unidades;

Então o tempo de conclusão ponderado seria:

$$\sum_{k=1}^{i-1} p_k c_k + p_i(c_i + t_j) + p_j(c_j - t_i) + \sum_{k=j+1}^{n} p_k c_k.$$

Mas $i>j\Rightarrow \frac{p_i}{t_i}<\frac{p_j}{t_j}\Rightarrow p_it_j< p_jt_i$, ou seja, o benefício é maior que o custo e portanto é possível melhorar δ^* , o que contradiz a otimalidade de δ^* .

Concluindo

Subestrutura ótima

Se a tarefa com maior p_i/t_i for removida da solução ótima, então a solução restante para n-1 tarefas é ótima.

Exercícios

- Mostre que o problema possui subestrutura ótima.
- Escrever o algoritmo para este problema e analisar sua complexidade.