2022-2023-2《交通管理与控制实验》单交叉口交通信号配时实验报告

班级:交通四班 姓名:刘欣豪 学号: 2020112921

实验名称: 4.2 基本两相独立交叉口的交通信号配时实验

实验目的: 通过该实验,能运用 Synchro 软件对独立交叉口进行基本两相位配时方案的优化设计,掌握单点信号控制交叉口信号配时方案的基本设计方法和过程,并进一步熟悉 Synchro 软件的各项功能和基本操作。

实验内容:建立交叉口,设置交叉口车道、流量等基本数据,为对象 交叉口设计基本两相信号配时方案,并通过饱和度、延误和服务水平 等参数来评价交叉口运行状况。

(1) 交叉口示意图(包括车道数据、流量数据和相位方案)

图 1: 网络数据

图 2: 流量数据

Options >	PHASING WINDOW	2-EBTL	4-SBTL	6-WBTL	8-NBTL
	Minimum Initial (s)	4.0	4.0	4.0	4.0
Pretimed	Minimum Split (s)	20.0	20.0	20.0	20.0
Cycle Length: 40.0	Maximum Split (s)	20.0	20.0	20.0	20.0
Actuated Cycles	Yellow Time (s)	3.5	3.5	3.5	3.5
90th %: 40.0	All-Red Time (s)	0.5	0.5	0.5	0.5
70th %: 40.0	Lead/Lag	_	_	_	_
50th %: 40.0	Allow Lead/Lag Optimize?	_	_	_	_
30th %: 40.0 10th %: 40.0	Vehicle Extension (s)	3.0	3.0	3.0	3.0
	Minimum Gap (s)	3.0	3.0	3.0	3.0
Quick Reports:	Time Before Reduce (s)	0.0	0.0	0.0	0.0
	Time To Reduce (s)	0.0	0.0	0.0	0.0
<u>G</u> reen Times	Recall Mode	Max	Max	Max	Max
<u>S</u> tarts	Pedestrian Phase	Yes	Yes	Yes	Yes
Dataila	Walk Time (s)	5.0	5.0	5.0	5.0
<u>D</u> etails	Flash Dont Walk (s)	11.0	11.0	11.0	11.0
	Pedestrian Calls (#/hr)	0	0	0	0
	Dual Entry?	Yes	Yes	Yes	Yes
	Inhibit Max?	Yes	Yes	Yes	Yes
	90th %ile Green Time (s)	16 cd	16 mr	16 cd	16 mr
	70th %ile Green Time (s)	16 cd	16 mr	16 cd	16 mr
	50th %ile Green Time (s)	16 cd	16 mr	16 cd	16 mr
	30th %ile Green Time (s)	16 cd	16 mr	16 cd	16 mr
	10th %ile Green Time (s)	16 cd	16 mr	16 cd	16 mr

图 3: 相位方案

(2) Synchro 的 timing windows 的截图

图 4: timing windows

(3) 利用 Create report 生成 report preview,并截图。对 Synchro 仿真结果进行简要分析(如存在交通问题,提出改进建议)

	•	-	*	1	•	*	1	1	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Lane Configurations	7	ተተጉ		ሻ	† †			414		ሻ	^	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Satd. Flow (prot)	1770	4648	0	1770	4912	0	0	3427	0	1770	4912	(
Flt Permitted	0.310			0.250				0.575		0.250		
Satd. Flow (perm)	577	4648	0	466	4912	0	0	1996	0	466	4912	(
Satd. Flow (RTOR)		79			75			49			131	
Volume (vph)	204	413	556	361	592	170	317	741	156	175	726	21
Lane Group Flow (vph)	222	1053	0	392	828	0	0	1320	0	190	1017	(
Turn Type	Perm			Perm			Perm			Perm		
Protected Phases		2			6			8			4	
Permitted Phases	2			6			8			4		
Total Split (s)	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0	0.0	20.0	20.0	0.0
Act Effct Green (s)	16.0	16.0		16.0	16.0			16.0		16.0	16.0	
Actuated g/C Ratio	0.40	0.40		0.40	0.40			0.40		0.40	0.40	
v/c Ratio	0.96	0.89dr		2.11	0.41			1.59		1.02	0.50	
Control Delay	71.7	9.8		534.2	8.5			291.6		95.4	8.8	
Queue Delay	0.0	0.0		0.0	0.0			0.0		0.0	0.0	
Total Delay	71.7	9.8		534.2	8.5			291.6		95.4	8.8	
LOS	Е	Α		F	Α			F		F	Α	
Approach Delay		20.6			177.4			291.6			22.4	
Approach LOS		С			F			F			С	
Intersection Summary												
Cycle Length: 40												
Actuated Cycle Length:												
Offset: 0 (0%), Referen		phase 2	:EBTL	and 6:V	VBTL, S	Start of (Green					
Control Type: Pretimed												
Maximum v/c Ratio: 2.1	-											
Intersection Signal Dela						tion LOS						
Intersection Capacity Ut	tılizatior	า 107 29	½°	l l	CULIev	el of Sei	rvice G					

图 5: 仿真结果

可见,南进口与东进口延误过大,Maximum v/c Ratio=2.11,服务等级为F极低,队列可能堵塞上流交叉口,可采取修改相位,设置左转保护相位,拓宽南进口车道数量,设置右转渠化来解决。

(4) 简要说明本次实验取得的主要收获、体会

收获更深入了解交通信号配时原理和交通规律。通过实验,我更 好地理解交通信号灯的控制机制,了解交通规律,并使用实际数据来 验证这些理论。在单交叉口交通信号配时实验中,从路网的设置、到 流量输入、相位设置,完整地完成了本次信号配时实验。掌握了单点信号控制交叉口信号配时方案的基本设计方法和过程,并进一步熟悉了 Synchro 软件的各项功能和基本操作。能运用 Synchro 软件对独立交叉口进行基本两相位配时方案的优化设计,感觉收获良多。