ATATTOCTORGCTCAGGGAGTGAGGGCCCCACATTTGAGACAGTGAGCCCCAAGAAGAGG	60
GATCCCTGCTCCAGCAGCTGCAAGGTGCAAGAAGAAGAAGATCCCAGGGAGGAAAATGTG	120
CTGGAGACCCCTGTGTCGGTTCCTGTGGCTTTGGTCCTATCTGTCTTATGTTCAAGCAGT	180 22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	240 42
CAATGACATTTCACACACGCAGTCGGTATCCGCCAAGCAGGGGGTCACTGGCTTGGACTT N D I S H T \underline{O} S V S λ K Q R V T G L D F	300 62
CATTCCTGGGCTTCACCCCATTCTGAGTTTGTCCAAGATGGACCAGACTCTGGCAGTCTA I P G L H P I L S L S K H D Q T L A V Y	360 82
TCAACAGGTCCTCACCAGCCTGCCTTCCCAAAATGTGCTGCAGATAGCCAATGACCTGGA Q Q V L T S L P S Q N V L Q I A N D L E	420 102
GANTETECGAGACCTCCTCCATCTGCTGGCCTTCTCCAAGAGCTGCTCCCTGCCTCAGAC N L R D L L H L L A F S K S C S L P Q T	480 122
CAGTGGCCTGCAGAAGCCAGAGAGCCTGGATGCCTCCTGGAAGCCTCACTCTACTCCAC S G L Q K P E S L D G V L E A S L Y S T AGAGGTGGTGGTGCAGGCAGGCTGCAGGGCTCTCTGCAGGACATTCTTCAACAGTTGGA	540 142
E V V A L S R L Q G S L Q D I L Q Q L D TGTTAGCCCTGAATGCTGAAGTTTCAAAGGCCACCAGGCTCCCAAGAATCATGTAGAGGG	600 162 660
ANGANACCTTGGCTTCCAGGGGTCTTCAGGAGAAGAGAGCCATGTGCACACACA	167
TCATTTCTCCCCTCCTGTAGACCACCCATCCAAAGGCATGACTCCACAATGCTTGACTC	720 780
ANGITATICCACACACTICATGAGCACAAGGGGGGCCAGCCTGCAGAGGGGACTCTCAC CTAGTTCTTCAGCAAGTAGAGATAAGAGCCATCCCATC	840 900
GGGTACATGTTCCTCCGTGGGTACACGCTTCGCTGCGGCCCAGGAGAGGGTGAGGTAGGGA	960
TGGGTAGAGCCTTTGGGCTGTCTCAGAGTCTTTGGGAGCACCGTGAAGGCTGCATCCACA CAGAGCTGGAAACTCCCAAGCAGCACACGATGGAAGCACTTATTTAT	1020 1080
TATTTTGGATGGATCTGAAGCAAGGCATCAGCTTTTTCAGGCTTTTGGGGGTCAGCCAGGA	1140
TGAGGAAGGCTCCTGGGGTGCTCCTTTCAATCCTATTGATGGGTCTGCCCGAGGCAAACC	1200
TAATTTTTGAGTGACTGGAAGGAAGGTTGGGATCTTCCAAACAAGAGTCTATGCAGGTAG CGCTCAAGATTGACCTCTGGTGACTGGTTTTGTTTCTATTGTGACTGAC	1260
ACGTTTGCAGCGGCATTGCCGGGAGCATAGGCTAGGTTATTATCAAAAGCAGATGAATTT	1380
TGTCAAGTGTAATATGTATCTATGTGCACCTGAGGGTAGAGGATGTGTTAGAGGGAGG	1440
GGCATTTTCTTACCTCTGTGGCCACATAGTGTGGCTTTGTGAAAAGGACAAAGGAGTTGA	1560
CTCTTTCCGGAACATTTGGAGTGTACCAGGCACCCTTGGAGGGGGCTAAAGCTACAGGCCT TTTGTTGGCATATTGCTGAGCTCAGGGAGTGAGGGCCCCACATTTGAGACAGTGAGCCCC	1620 1680
AAGAAAAGGGTCCCTGGTGTAGATCTCCAAGGTTGTCCAGGGTTGATCTCACAATGCGTT	1740
TCTTAAGCAGGTAGACGTTTGCATGCCAATATGTGGTTCTCATCTGATTGGTTCATCCAA AGTAGAACCCTGTCTCCCACCCATTCTGTGGGGAGTTTTGTTCCAGTGGGAATGAGAAAT	1800
CACTTAGCAGATGGTCCTGAGCCCTGGGCCAGCACTGCTGAGGAAGTGCCAGGGCCCCAG	1920
GCCAGGCTGCCAGAATTGCCCTTCGGGCTGGAGGATGAACAAAGGGGCTTGGGTTTTTCC ATCACCCCTGCACCCTATGTCACCATCAAACTGGGGGGCAGATCAGTGAGAGAGA	1980
ATGGAAAGCAATACACTTTAAGACTGAGCACAGTTTCGTGCTCAGCTCTGTCTG	2100
TGAGCTAGAGAAGCTCACCACATACATATAAAAATCAGAGCCTCATGTCCCTGTGGTTAG ACCCTACTCGCGGCGGTGTACTCCACCACAGCAGCACCGCACCGCTGGAAGTACAGTGCT	2160 2220
GTCTTCAACAGGTGTGAAAGAACCTGAGCTGAGGGTGACAGTGCCCAGGGGAACCCTGCT	.2280
TGCAGTCTATTGCATTTACATACCGCATTTCAGGGCACATTAGCATCCACTCCTATGGTA	2340
GCACACTGTTGACAATAGGACAAGGGATAGGGGTTGACTATCCCTTATCCAAAATGCTTG GGACTAGAAGAGTTTTGGGTTTTAGAGTCTTTTCAGGCATAGGTATATTTGAGTATATAT	2400 2460
AAAATGAGATATCTTGGGGATGGGGCCCAAGTATAAACATGAAGTTCATTTATATTTCAT	2520
NATACCGTATAGACACTGCTTGAAGTGTAGTTTTATACAGTGTTTTAAATAACGTTGTAT SCATGAAAGACGTTTTTACAGCATGAACCTGTCTACTCATGCCAGCACTCAAAAACCTTG	2580 2640
GGTTTTGGAGCAGTTTGGATCTTGGGTTTTCTGTTAAGAGATGGTTAGCTTATACCTAA	2700
NACCATAATGGCAAACAGGCTGCAGGACCAGACTGGATCCTCAGCCCTGAAGTGTGCCCT FCCAGCCAGGTCATACCCTGTGGAGGTGAGCGGGATCAGGTTTTGTGGTGCTAAGAGAGG	2760 2820
ACTTCCACCTACATTTTCCACCATCTCACCCC	2820

GGTTG CAAGGCCCAA GAAGCCCATCCTGGGAA GGAAAATGCA	50
TTGGGGAACC CTGTG-CGGA TTCTTGTGGC TTTGGCCCTA TCTTTTCTAT	100
GTCCAAGCTG TGCCCATCCA AAAAGTCCAA GATGACACCA AAACCCTCAT	150
CAAGACAATT GTCACCAGGA TCAATGACAT TTCACACACG CAGTCAGTCT	~ 200
CCTCCAAACA GAAAGTCACC GGTTTGGACT TCATTCCTGG GCTCCACCCC	250
ATCCTGACCT TATCCAAGAT GGACCAGACA CTGGCAGTCT ACCAACAGAT	300
CCTCACCAGT ATGCCTTCCA GAAACGTGAT CCAAATATCC AACGACCTGG	350
AGAACCTCCG GGATCTTCTT CACGTGCTGG CCTTCTCTAA GAGCTGCCAC	400
TTGCCCTGGG CCAGTGGCCT GGAGACCTTG GACAGCCTGG GGGGTGTCCT	450
GGAAGCTTCA GGCTACTCCA CAGAGGTGGT GGCCCTGAGC AGGCTGCAGG	500
GGTCTCTGCA GGACATGCTG TGGCAGCTGG ACCTCAGCCC TGGGTGCTGA	550
GGCCTTGAAG GTCACTCTTC CTGCAAGGAC T-ACGTTAAG GGAAGGAACT	600
CTGGTTTCCA GGTATCTCCA GGATTGAAGA GCATTGCATG GACACCCCTT	
ATCCAGGACT CTGTCAATTT CCCTGACTCC TCTAAGCCAC TCTTCCAAAG	650
G	700
	701

1	Met	His	Trp	Gly	Thr	Leu	Cys	Gly	Phe	Leu	Trp	Leu	Trp	Pro	Tyr
16	Leu	Phe	Tyr	Val	Gln	Ala	Val	Pro	Ile	Gln	Lys	Val	Gln	Asp	Asp
31	Thr	Lys	Thr	Leu	Ile	Lys	Thr	Ile	Val	Thr	Arg	Ile	Asn	Asp	Íle
46	Ser	His	Thr	Gln	Ser	Val	Ser	Ser	Lys	Gln	Lys	Val	Thr	Gly	Leu
61	Asp	Phe	Ile	Pro	Gly	Leu	His	Pro	Ile	Leu	Thr	Leu	Ser	Lys	Met
76	Asp	Gln	Thr	Leu	Ala	Val	Tyr	Gln	Gln	Ile	Leu	Thr	Ser	Met	Pro
91	Ser	Arg	Asn	Val	Ile	Gln	Ile	Ser	Asn	Asp	Leu	Glu	Asn	Leu	Arg
L06	Asp	Leu	Leu	His	Val	Leu	Ala	Phe	Ser	Lys	Ser	Cys	His	Leu	Pro
.21	Trp	Ala	Ser	Gly	Leu	Glu	Thr	Leu	Asp	Ser	Leu	Gly	Gly	Val	Leu
.36	Glu	Ala	Ser	Gly	Tyr	Ser	Thr	Glu	Val	Val	Ala	Leu	Ser	Arg	Leu
51	Gln	Gly	Ser	Leu	Gln	Asp	Met	Leu	Trp	Gln	Leu	Asp	Leu	Ser	Pro
66	Gly	Cys	End				•								

Mouse	MCWRPLCRFL	WLWSYLSYVQ	AVPIQKVQDD	TKTLIKTIVT	RINDISHTQS	50
Human	MHWGTLCGFL	WLWPYLFYVQ	AVPIQKVQDD	TKTLIKTIVT	RINDISHTQS	
Mouse	VSAKORVTGL	DFIPGLHPIL	SLSKMDQTLA	VYQQVLTSLP	SONVLQIAND	100
Human	VSSKOKVTGL	DFIPGLHPIL	TLSKMDQTLA	VYQQILTSMP	SRNVIQISND	
Mouse	LENLRDLLHL	LAFSKSCSLP	QTSGLQKPES	LDGVLEASLY	STEVVALSRL	150
Human	LENLRDLLHV	LAFSKSCHLP	WASGLETLDS	LGGVLEASGY	STEVVALSRL	
Mouse	QGSLQDILQQ	LDVSPEC				167
Human	OGST.ODMT.WO	LDLSPGC			•	

1	Me	t Cyr	s Tr	Arg	Pro	Leu	ı Cys	Arg	y Pho	a Lei	ı Tre	Leu	i Tro	961	- Тъ
16	Let	ı Ser	Tyr	• Val	Gln	Ala	. Val	L Pro	- 5 Tle	a Gir	Tien	. v-7	<u>.</u>		
31	Thr	Lys	Thr	Leu	Ile	LVe	ጥከተ	· Tle	101	- O1.	. Lys	· val	. Gin	ASP) Asy
46	Ser	His	Thr	Ser	Val	Ser	21-	***	- Val	. 1111	Arg	TTG	Aen	Asp	Ile
61	Phe	710	Pro	Ser	T	561	~14	гуз	GTP	Arg	Val	Thr	Gly	Leu	Asp
76	C1-			Cly	Leu	HIS	Pro	Ile	Leu	Ser	Leu	Ser	Lys	Met	Asp
	GIII	THE	Len	Ala	Val	Tyr	Gln	Gl'n	Val	Leu	Thr	Ser	Leu	Pro	Ser
91	Gln	Asn	Val	Leu	Gln	Ile	Ala	Asn	Asp	Leu	Glu	Asn	Leu	Arg	: Aisto
106	Leu	Leu	His	Lau	Leu	Ala	Phe	Ser	Lys	Ser	Суз	Ser	Leu	Pro	din
131	Thr	Ser	Gly	Leu	Gln	Lys	Pro	Glu	Ser	Leu	Asn	Glar	1707		
.36	Ala	Ser	Leu	Tyr :	Ser	Thr	Glu	Va I	Val	310	T	GLy	- var	_ 	gra
51	Gly	Ser	Leu	Gln	Agn '	Tla	T.a	74 <u>1</u>	71.	A 14	rea	ser .	Arg	Leu	Gln
66	G1y Cys	End			. نورت		ned	GTD	GIN	Leu	yeb .	Val :	Ser :	Pro	d1u
	4 -														

Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr Leu Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp Thr Lys Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile Ser His Thr Ser Val Ser Ser Lys Gln Lys Val Thr Cly Leu Asp Phe Ile Pro Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met Asp Gln Thr Leu Ala Val Tyr Gln Gln Ile Leu Thr Ser Met Pro Ser 76 Arg Asn Val Ile Gln Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys Ris Leu Pro Trp 106 121 Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Cly Val Leu Glu Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg Leu Gln 136 Gly Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro Gly 166 Cys End

Figure 9

Figure 11A

Figure 11B

18S 1

white fat

brain

small intestine

stomach

pancreas

lung

testis

heart

spleen

liver

Figure 12 B

brain SM/Ckc-+*Dac*-+/+ fat SM/Ckc-+*Dac-ob^{2J}/ob^{2J}* fat C57BL/6J +/+ fat C57BL/6J ob/ob fat

2G7

- 285

- 18S

Actin

- 18S

Figure 12A

Figure 13

2G7

ap2

Figure

Figure 15A

Figure 15B

obese special control control

LES SAME SAME SAME SAME SAME

Figure 16

T7 promoter primer #69348-1

T7 terminator primer #89337-1

Figure 18 A

Soluble
in soluble
Thou Thr.
5 mm

20 mm

20 mm

300 mm

stripping

143-

Figure 18B

Soluble
insoluble
insoluble
Flow thr.
5 mm
20 mm
300 mm
300 mm

. •

Figure 19A

Figure 19B

Figure 20A

			<i>'</i>			
	10	2	0 3 L	30 L	40	50
	GGTTGCAAGG	CCCAAGAAG	C CCATCCTGG	G AAGGAA	ATG CATTO	GGGAA
	60	HOBLE 7	O 8	80	इत्सृहर	-190
	CCCTGTGCGG	ATTCTTGTG	G CTTTGGCCC	T ATCTTT	CTA TGTCC	AAGCT
	110		_	30	140	150
	GTGCCCATCC	AAAAAGTCC	A AGATGACAC	C AAAACCC	TCA TCAAG	ACAAT
	160	17	0 1	80 1 5'0	190st 127	をひ 200
	TGTCACCAGG	ATCAATGAC	A TTTCACACA	C GETAAGG	AGA GTATG	CGGGG
	1. 270			30	240	250
	ACAAAGTAGA	ACTGCAGCC	GCCCAGCAC	T GGCTCCT	AGT GGCAC	TGGAC
ĺ	260	27			290 WOS	
٦	CCAGATAGTC	CAAGAAACAT	TTATTGAAC	G CCTCCTG	AAT GCCAG	GCACC
-	310	32			340	350
7	TACTGCAAGC	TGAGAAGGAT	TTTGGATAG	CACAGGGC	TCC ACTCT	TCTG
	360	371	- 1		390	490
1	GTTGTTTCTT	NTGGCCCCCT	CTGCCTGCTG	G AGATNCC	AGG GGTTAC	NGGT
	410	420) 43		440	450
1	TCTTAATTCC	TAAA	AP DESERV	ENCE (2	7727635	CT
١	460	470			490	500
7	GGTTCTTTCA	GAAGAGGCC	ATGTAAGAGA	AAGGAAT	GA CCTAGO	GAAA
1	510	520	,		540	550
7	ATTGGCCTGG (GAAGTGGAGG	GAACGGATGG	TGTGGGA	AA GCAGGA	ATCT
	560	570			590	600
1	GGAGACCAG (TTAGAGGCT	TGGCAGTCAC	CTGGGTGC	AG GANACA	AGGG
	610	620	630	• •	640	650
1	CTGAGCCAA A	GTGGTGAGG	GAGGGTGGAA	GGAGACAG	CC CAGAGA	ATGA
	နေဝ	670	680		690	700
]5	CCTCCATGC C	CACGGGGAA	GGCAGAGGGC	TCTGAGAG	CG ATTCCT	CCCA
	710	720	3 of 15' 730	OIRON.	740	750
]	ATGCTGAGC A	CTTGTTCTC	CCTCTTCCTC	CTNCATAG	CA GTCAGT	CTCC
	HOB 28 7 760	770	780	•	790	800
Ī	CCAAACAGA A	AGTCACCGG	TTTGGACTTC	ATTCCTGG	GC TCCACC	CAT
	810	820	830		840	850
ĮĈ	CTGACCTTA T	CCAAGATGG .	ACCAGACACT	GGCAGTCT.	AC CAACAG	TCC
_	860	870	880		890	900
T	CACCAGTAT G	CCTTCCAGA	AACGTGATCC	AAATATCC	AA CGACCTO	GAG

910	920	930	940	950
AACCTCCGGG ATCT	TCTTCA CGT	GCTGGCC TTCT	CTAAGA GCT	GCCACTT
960	970	980	990	1000
SCCCTGGGCC AGTC	GCCTGG AGA	CCTTGGA CAGO	CTGGGG GGT	GTCCTGG
1010	1020	1030	10,40	1050
AGCTTCAGG CTAC	CCACA GAG	STGGTGG CCCT	GAGCAG GCT	GCAGGGG
1060	10,70	1080	10,90	1100
CTCTGCAGG ACATO	CTGTG GCA	CTGGAC CTCA	GCCCTG GGT	CTGAGG
1110	1120	1130	1140	1150
CTTGAAGGT CACTO	TTCCT GCAA	GGACTA CGTT.	AAGGGA AGGA	ACTOTG
1160	1170	1180	11,50	1200
CTTCCAGGT ATCTC	CAGGA TIGA	AGAGCA TTGC	ATGGAC ACCO	CTTATC
1210 HG	2520	1230	1240	1250
AGGACTCTG TCAAT	TTCCC TGAC	TCCTCT AAGCC	ACTOT TOCA	AAGG

figure 20B

MOUS	SE OB STRUCTURE		-		
!st ex	!st intr 2nd ex	2nd intr	3rd exon		
	_///////ATG			TGA	
	start			stop	
			,		; ;

Figure 20c

HUMAN OB STUCTURE			
1st exon	1st intr	2nd exon	
ATG			TGA
start			stop

figure 21A

Figure 21 B

KEX-2 STE-13 CLEAVAGE CLEAVAGE ? GLU-ACA-GLU-ACA. Ob	· ARG · GLU·ALA·G	LU · ACA ·	06	
CLEAVAGE CLEAVAGE GLU-ACA-GLU-ACA. Ob		.		
GLU-ACA-GLU-ACA. Ob		STE-13		
	CLEAVAGE	CLETIVAGE	1.00	
· · · · · · · · · · · · · · · · · · ·	•	,	<i>y</i> •	
· · · · · · · · · · · · · · · · · · ·				
	GLU•ACA•G	CU · ACA · L	<u>ob</u>	
and the second s	GLU-ACA-G	cu · ACA ·	ob	
		KEX-2 CLEAVAGE	CLEAVAGE CLEAVAGE	KEX-2 STE-13 CLEAVAGE CLEAVAGE GLU-ACA-GLU-ACA- GLU-ACA-GLU-ACA- Ob

Figure 21c

XLEU. GLU. LY S . ARG .		
KEX-2 CLEAVAGE		
	ob	

Figure 22A

100-1-087 CIP (eet 30 of 31)

Figure 22B

d-mf sig sea.	HIS.TAG	THEOMBEN CLOSUACE	
	CLENVAGE CLENVAGE		(FOLIOSING THROMBIN CLEAVAGE)
· · · · · · · · · · · · · · · · · · ·			
		GLY · SER · PRO ·	<i>o</i> b

Figure 23A.

Figure 23B

