CAPÍTULO 4. NÚMEROS REAIS

Intuitivamente, um número real é uma sequência infinita de dígitos, por exemplo

1,414213562737...

que representa $\sqrt{2}$,

ou

3, 141592653...

que representa π ,

ou

2,71828...

que representa o número e, e etc.

Os racionais são incluídos, por exemplo

$$\frac{1}{2} = 0,5000...$$

$$\frac{4}{3} = 1,333...$$

Vamos definir \mathbb{R} , o conjunto de números reais, de uma maneira abstrata, como um corpo $ordenado \ completo.$

Lembre-se que todo corpo ordenado contém Q como subconjunto, então

$$\mathbb{Q} \subset \mathbb{R}$$
.

Definição 0.1. Um corpo ordenado K se chama completo se todo subconjunto limitado superiormente possui um supremo.

Proposição 0.1. Num corpo ordenado completo todo conjunto limitado inferiormente possui ínfimo.

Demonstração. Sejam K um corpo ordenado completo e $X \subset K$ um subconjunto limitado inferiormente, isto é, seja $b \in K$ tal que

$$b \le x$$
 para todo $x \in X$.

Então o conjunto

$$-X = \{-x : x \in K\}$$

é limitado superiormente por -b, já que

$$-x \le -b$$
 para todo $x \in X$.

Como K é completo, existe $\sup(-X)$. Seja

$$b := -\sup(-X)$$
, então $\sup(-X) = -b$

Vamos mostrar que b é o ínfimo de X. De fato, como

$$-x \le -b \quad \forall x \in X,$$

tem-se

$$b \le x \quad \forall x \in X$$

 $\log b$ é uma cota inferior de X.

Se $c \in K$ é qualquer cota inferior de X, então

$$c \le x$$
 para todo $x \in X$

$$\Rightarrow -x \le -c \text{ para todo } x \in X$$
$$\Rightarrow -c \text{ \'e cota superior de } -X$$
$$\Rightarrow -c \ge -b,$$

já que -b, como supremo de -X, é a menor cota superior de -X.

Então $c \leq b$, portanto b é a maior cota inferior de X, ou seja, $b = \inf X$.

Proposição 0.2. Todo corpo ordenado completo K é arquimediano, isto é, para todo $x \in K$ existe $n \in \mathbb{N}$ tal que n > x.

Demonstração. Suponha por contradição que exista $x \in K$ tal que $n \le x$ para todo $n \in \mathbb{N}$. Então \mathbb{N} é limitado superiormente por este elemento x.

Como K é completo, existe o supremo de \mathbb{N} , seja ele b.

Como b-1 < b, segue que b-1 não é uma cota superior de \mathbb{N} , então existe $k \in \mathbb{N}$ tal que

$$k > b - 1$$
.

Logo $k+1 \in \mathbb{N}$ e k+1 > b, contradição com o fato de b ser o supremo, então uma cota superior de \mathbb{N} .

Acontece que existe um corpo completo ordenado. Além disso, se K e K' são dois corpos ordenados completos, então existe uma bijeção $f \colon K \to K'$ que preserva a estrutura algébrica e de ordem, no sentido que para todo $x, y \in K$,

$$f(x+y) = f(x) + f(y)$$

$$f(x \cdot y) = f(x) \cdot f(y)$$

se $x \le y$ então $f(x) \le f(y)$.

Portanto K' é uma cópia (ou imagem espelhada) de K, em outras palavras, podemos identificar K' com K.

Em conclusão (via esta identificação) existe um único corpo ordenado completo, denotado por \mathbb{R} e chamado de corpo dos números reais.

Portanto \mathbb{R} é arquimediano e $\mathbb{Q} \subset \mathbb{R}$.

Proposição: Existe um único número $b \in \mathbb{R}$, com b > 0, tal que $b^2 = 2$.

Chamamos este único número de $\sqrt{2}$.

Demonstração. Seja

$$A = \{x \in \mathbb{R} : x > 0 \text{ e } x^2 < 2\}.$$

Então A é claramente limitado superiormente porque se $c^2>2$ (por exemplo se c=2) então $c^2>x^2$ para todo $x\in A$

 $\Rightarrow c > x$ para todo $x \in A$

 $\Rightarrow c$ é uma cota superior de A.

Como \mathbb{R} é completo, A possui um supremo. Seja $b = \sup A$.

Vamos mostrar que $b^2 = 2$.

 \blacksquare Se $b^2 < 2$ então existe $\varepsilon > 0$ tal que $(b + \varepsilon)^2 < 2$.

De fato, dado um $\varepsilon > 0$ (a ser escolhido em breve),

$$(b+\varepsilon)^2 = b^2 + 2b\varepsilon + \varepsilon^2$$

$$< b^2 + 2b\varepsilon + \varepsilon^2$$

$$= b^2 + \varepsilon(2b+1) < 2,$$

$$\varepsilon < \frac{2-b^2}{2b+1}.$$

se

Observe que $\frac{2-b^2}{2b+1} > 0$, já que $b^2 < 2$.

Então escolhido $\varepsilon > 0$ tal que

$$\varepsilon < 1 \text{ e } \varepsilon < \frac{b^2 - 2}{2b + 1},$$

temos que

$$(b+\varepsilon)^2 < 2,$$

ou seja, $b + \varepsilon \in A$.

Mas $b + \varepsilon > b$, então b não pode ser uma cota superior de A. Isso mostra que a desigualdade $b^2 < 2$ não é possível.

■ Se $b^2 > 2$ então existe $\varepsilon > 0$ tal que

$$(b-\varepsilon)^2 > 2.$$

De fato, dado um $\varepsilon > 0$ (a ser escolhido em breve),

$$(b - \varepsilon)^2 = b^2 - 2b\varepsilon + \varepsilon^2$$
$$> b^2 - 2b\varepsilon > 2,$$
$$\varepsilon < \frac{b^2 - 2}{2b}.$$

se

Então escolhendo $\varepsilon > 0$ tal que

$$\varepsilon < \frac{b^2 - 2}{2b}$$
 (o que é possível porque $b^2 - 2 > 0$)

temos que $(b-\varepsilon)^2 > 2$ e, em particular, $b-\varepsilon > x$ para todo $x \in A$, logo $b-\varepsilon$ é uma cota superior de A.

Mas $b - \varepsilon < b$, então b não pode ser o supremo de A (ou seja, a menor cota superior).

Portanto, este caso em que $b^2 < 2$ também é impossível.

A única opção possível é que $b^2 = 2$. Então existe um número positivo b tal que $b^2 = 2$.

Vamos provar que ele é único. Se c > 0, $c^2 = 2$

então
$$b^2 = c^2 \Rightarrow (b - c)(b + c) = 0$$

$$\Rightarrow b - c = 0$$
 ou $b + c = 0$

 $\Rightarrow b = c$ ou b = -c (esse segundo caso é impossível, b > 0 e c > 0).

Logo b = c, ou seja, provamos também a unicidade.

Observação 0.1. Um argumento similar (mas um pouco mais técnico) mostra que dado qualquer número a > 0 e $n \in \mathbb{N}$ existe um único $x \in \mathbb{R}$, x > 0 t.q.

$$x^n = a$$

Denotamos este número por $\sqrt[n]{a}$ (a raíz de ordem n de a).

Observação 0.2. Lembre-se que $\mathbb{Q} \subset \mathbb{R}$, isto é, todo número racional é real. Chamamos números reais que não são racionais de números irracionais. Por exemplo $\sqrt{2}$ é irracional, como já vimos.

Similarmente, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{11}$, e etc são números irracionais.

Representamos o conjunto de números reais por uma reta, chamada a reta real.

Definição 0.2. Um subconjunto $X \subset \mathbb{R}$ é denso em \mathbb{R} se para todo $a, b \in \mathbb{R}$ com a < b, existe $x \in X$ tal que a < x < b.

Teorema 0.1. O conjunto \mathbb{Q} de números racionais é denso em \mathbb{R} . Além disso, o conjunto $\mathbb{R} \setminus \mathbb{Q}$ de números irracionais também é denso em \mathbb{R} .

Demonstração. Sejam $a, b \in \mathbb{R}$ com a < b.

Então b-a>0, e como \mathbb{R} é arquimediano, existe $n\in\mathbb{N}$ tal que

$$n(b-a) > 1$$

 $\Rightarrow nb > na + 1.$

Usando de novo o fato de que \mathbb{R} é arquimediano, existe $k \in \mathbb{N}$ tal que

Seja

$$S = \{k \in \mathbb{N} : k > na\}.$$

Então $S \subset \mathbb{N}$ e S não é vazio. Pelo princípio da boa ordenação, existe min S = m.

Então $m \in S$, logo m > na, mas $m - 1 \notin S$, logo

$$m-1 \le na$$

$$\Rightarrow m \leq na+1 < nb$$

Portanto $na \leq m \leq nb$, e daí,

$$a < \frac{m}{n} < b$$
,

provando a primeira afirmação, já que $\frac{m}{n} \in \mathbb{Q}.$

Vamos provar a segunda afirmação. Sejam $a, b \in \mathbb{R}$, com a < b.

Então $\frac{a}{\sqrt{2}} < \frac{b}{\sqrt{2}}$, e pela densidade de $\mathbb Q$ em $\mathbb R$ (já provada acima), existem $m,n\in\mathbb Z,\,n>0$ tal que

$$\frac{a}{\sqrt{2}} < \frac{m}{n} < \frac{b}{\sqrt{2}}$$

$$\Rightarrow a < \frac{m}{n}\sqrt{2} < b.$$

Temos que

$$\frac{m}{n}\sqrt{2} \notin \mathbb{Q}.$$

Caso contrário, se $\frac{m}{n}\sqrt{2} = \frac{p}{q}$, $q \neq 0$, então

$$\sqrt{2} = \frac{pn}{qm}$$

 $\Rightarrow \sqrt{2} \in \mathbb{Q}, \text{ contradição}.$ Logo $\frac{m}{n}\sqrt{2}$ é irracional e está entre a e b.