PREDICT USED CAR PRICE

Capstone project

Problem Statement

- Due to the reduction of COE quota, we had seen an increase in the COE premium. As a result, more buyers are turning to the used car market. But the prices for a particular make and model can have a lot of difference in the used car market due to the a few reasons like:
 - How old is the car
 - Mileage
 - Number of owners etc
- For this project, we would like to train a model to predict the price of the car so as
 to let buyers have a guide on how much is the car that they are looking at

Work Flow

Sourcing for dataset and perform data cleaning

Understand the dataset and perform data cleaning

Exploratory Data Analysis

Exploratory Data Processing and Feature Engineering

Model selection and training hyperparameters

• Using the data that scrape from <a>STCars website

Price	\$115,800	
Registration Date	29-Jul-2016	
COE Remaining	5yrs 1mth 25days	
Manufactured	2015	0
Mileage	87,600 km	
No. of Owners	2	
Transmission	Auto	
Engine Capacity	1,984 cc	
COE	\$57,508	
OMV	\$40,292	
Paper Value	\$65,943	0
Depreciation	\$17,770 / year	0
Туре	Sports Car	

Price	\$69 <mark>,800</mark>	
Registration Date	15-Aug-2017	
COE Remaining	6yrs 2mths 11days	
Manufactured	2016	0
Mileage	47,000 km	
No. of Owners	1	
Transmission	Auto	
Engine Capacity	1,498 cc	
Engine Capacity Fuel Type	1,498 cc Diesel	
	THE CONTRACTOR	
Fuel Type	Diesel	
Fuel Type COE	Diesel \$42,801	0
Fuel Type COE OMV	Diesel \$42,801 \$25,671	0

As can see that there is another row "Fuel Type" if the car is using diesel or petrol-electric.
 We have to take note of that when scraping the data.

• A sample of our dataset

	0	1	2	3	4
make_model	MERCEDES-BENZ C-CLASS C200K (COE TILL 10/2028)	NISSAN X-TRAIL 2.0A PREMIUM 7-SEATER SUNROOF	NISSAN ELGRAND 2.5A HIGHWAY STAR	MERCEDES-BENZ CLS-CLASS CLS450 MILD HYBRID AMG	TOYOTA HARRIER 2.4A G (COE TILL 09/2029)
Price	\$63,800	\$81,800	\$88,000	\$367,988	\$58,500
Registration Date	19-Dec-2008	21-Mar-2017	03-Aug-2016	30-Oct-2020	23-Sep-2009
COE Remaining	7yrs 5mths 13days	5yrs 10mths 2days	5yrs 2mths 15days	9yrs 5mths 11days	8yrs 4mths 4days
Manufactured	2008	2016	2016	2020	2008
Mileage	165,000 km	74,000 km	82,225 km	652 km	174,000 km
No. of Owners	4	1	1	1	5
Transmission	Auto	Auto	Auto	Auto	Auto
Engine Capacity	1,796 cc	1,997 cc	2,488 cc	2,999 cc	2,362 cc
fuel_type	NaN	NaN	NaN	Petrol-Electric	NaN
COE	\$32,279	\$53,300	\$57,501	\$32,801	\$37,941
OMV	\$43,106	\$23,955	\$34,974	\$83,552	\$27,778
Paper Value	\$24,081	\$50,286	\$60,687	\$122,808	\$31,694
Depreciation	\$8,550 / year	\$11,810 / year	\$12,950 / year	\$32,440 / year	\$7,000 / year
Туре	Luxury Sedan	SUV	MPV	Luxury Sedan	SUV

- Consist of 7244 rows and 15 features:
 - 1. make_model brand and model of the car
 - 2. Price price of the car (our label)
 - 3. Registration Date first registration date of the car
 - 4. COE Remaining remaining COE of the car
 - 5. Manufactured year the car is manufactured
 - 6. Mileage mileage of the car in km
 - 7. No. of Owners car is owned by how many owner before

- 8. Transmission auto or manual gear
- 9. Engine Capacity engine capacity of the car in c.c
- 10. fuel_type petrol, diesel, petrol electric
- 11. COE COE premium paid for the car when first registered
- 12. OMV open market value of the car
- 13. Paper Value the amount you get if the car is deregistered
- 14. Depreciation how much the car depreciate per year
- 15. Type type of the car (luxury sedan, MPV, SUV etc)

Features that we think could be important:

Registration Date

 It can tell us how old is the car

Mileage

 It can tell us how often the car is been driven

COE Remaining

 It can tell us how long more can the car be driven on road

Depreciation

 It can tell us how much we will lose per year

Questions to ask ourself

- Exploratory Data Analysis:
 - I. What car brand are advertised on the website
 - II. The car age distribution of each brand
 - III. The average car age
 - IV. Which car type are more popular
 - V. What can OMV tell us about the car
 - VI. Does mileage and age affect the car pricing

Questions to ask ourself

- Machine Learning (Supervised Regression Model):
 - Are we going to create or remove any features that may affect the model performance
 - II. How are we going to deal with the outliers and missing values
 - III. What to do if the feature distribution is skewed
 - IV. Which encoding method to use for categorical features
 - V. How many baseline models are we going to train and perform hyperparameter tuning

Data Cleaning

1. Any duplicate

Duplicated data: 2015

2. "NaN" values

Price Registration Date 9 COE Remaining Manufactured 0 Mileage No. of Owners 0 Transmission Engine Capacity fuel_type 4700 COE OMV 9 9 9 Paper Value Depreciation Type

- 1. Drop all and keep first
- 2. Replace with "Petrol"

1. After dropping

df.shape

(5229, 15)

2. After replacing

make_model 000000000000000 Price Registration Date COE Remaining Manufactured Mileage No. of Owners Transmission Engine Capacity fuel_type COF OMM Paper Value Depreciation 0 Туре

3. Convert features dtype

make model object Price object Registration Date object COE Remaining object Manufactured int64 Mileage object No. of Owners object Transmission object Engine Capacity object object fuel_type COE object object Paper Value object Depreciation object object Type

Convert these features to integer

make_model object Price int64 Registration Date object COE Remaining Manufactured int64 Mileage int64 No. of Owners int64 Transmission object Engine Capacity int64 fuel_type object COE int64 OMV int64 Paper Value int64 Depreciation int64 Type object electric object

Data Cleaning

4. Engine Capacity

177 2149 Electric Electric 829 Electric 2475 Electric 850 Electric 1,193 cc 3365 3599 1,193 cc 1175 1,086 cc 2373 1,086 cc 4960 1,086 cc Engine Capacity Create new feature "electric" to show if the car is electric driven

0 No 1 No 2 No 3 No 4 No Name: electric

5. make_model

MERCEDES-BENZ C-CLASS
C200K (COETILL
10/2028)
NISSAN X-TRAIL 2.0A
PREMIUM 7-SEATER
SUNROOF

Create another feature "make" to show the brand

 make
 model

 MERCEDES-BENZ C-CLASS C200K (COETILL 10/2028)

 NISSAN X-TRAIL 2.0A PREMIUM 7-SEATER SUNROOF

6. Registration Date

19-Dec-2008
21-Mar-2017

Replace with new feature "car_age"

13 4 5

1. What car brand are advertised on the website

Left - Mercedes, Honda, Toyota and BMW combined to have more than half of the total cars advertised

- Right These 4 brands already had a huge market shares since 2005
 - Statistics from data.gov.sg: Annual car population by make

2. Car age distribution of each brand

- Left The age distribution of most brand are very wide. There are even vintage cars (more than 20 years)
 - The average age of the cars on the website are below 6 year

Right - Most of them are below the average.

3. Which car type are more popular

Left - SUV is the second most common type of car on the website (Luxury Sedan and Mid-Size Sedan are still sedan car. Difference is just the brand)

- Demand for SUV went up?
- Right Due to the brand (like Roll-Royces), price of some car types can go as high as over \$1 millions (for a used car?!)
 - The highest price for Mid-Sized Sedan is above \$500k (Seems like some of the car type are mixed up)

4. What can OMV tell us about the car

- We can see that those cars with **OMV** of \$100k and above are those exotic brands like Rolls-Royce, Ferari, Lamborghini etc
- In some way **OMV** can roughly tell us if the car is from an exotic brand
- We can see that car price is about at least 1.5 times the OMV of the car.

5. Does mileage and age affect the car pricing (using 1 brand and model)

- We can see that most of the car price is highly affected by car age and mileage
- The price is lower if the car is older or with higher mileage.

- "make"
 - We have 50 classes in this feature and we will have extra 49 columns if we use Dummy Encoding
 - We will group them in 2 groups, europe and others so that we have only 2 classes in this feature

- We will drop "model" (2193 classes) since "OMV", "Engine Capacity" and "fuel_type" can somehow describe the car (is it exotic? is it petrol, diesel, elctric driven?)
- Split the dataset into X (features) and y (label)

There are a lot of outliers in "Mileage",
 "COE", "OMV", "Paper Value" and
 "Depreciation". All these outliers are
 related to the car usage and brands and
 we will keep them.

- Other the "COE", the rest are all right skewed
- We will adjust them using log

• Convert categorical features to numerical features

Dummy Encoding

- make
- Transmission
- fuel_type,
- electric

Frequency Encoding

• Type

- Split the dataset into train and test set
- Perform Feature Scaling

- Multicollinearity check
 - Highly correlated (> 0.8 or < -0.8):
 - i. "Manufactured", "car_age"
 - ii. "electric_No", "fuel_type_Electric"

Drop "Manufactured" and "electric_No"

Model Selection and Training

- We are using Lazy Predict to see which basic model work the best.
- Extra Trees Regressor and Gradient Boost Regressor are the top 2
- We will train and tune this 2 model and see the performance
- As we are keeping the outliers, we will use *MAE as the metric to evaluate the model since it is robust to outliers

* The average absolute difference between the actual value and predicted value

				V.	
	Adjusted	R-Squared	R-Squared	RMSE	
Model					
ExtraTreesRegressor		0.98	0.98	16064.31	
GradientBoostingRegressor		0.96	0.96	20437.44	
RandomForestRegressor		0.96	0.96	21570.59	
HistGradientBoostingRegressor		0.96	0.96	21659.62	
LGBMRegressor		0.96	0.96	21956.17	
BaggingRegressor		0.95	0.95	22288.95	
XGBRegressor		0.95	0.95	22680.95	
ExtraTreeRegressor		0.95	0.95	23856.94	۱
KNeighborsRegressor		0.94	0.94	26042.92	
DecisionTreeRegressor		0.93	0.93	27339.44	
PoissonRegressor		0.92	0.92	28746.25	
GaussianProcessRegressor		0.81	0.81	45467.47	
AdaBoostRegressor		0.80	0.80	46523.04	
GammaRegressor		0.79	0.79	47498.17	
LarsCV		0.78	0.79	48126.94	
LassoLarsIC		0.78	0.79	48206.95	
LassoCV		0.78	0.78	48401.06	
SGDRegressor		0.78	0.78	48411.37	
LassoLars		0.78	0.78	48420.02	
LassoLarsCV		0.78	0.78	48437.95	
BayesianRidge		0.78	0.78	48443.36	
Ridge		0.78	0.78	48462.16	
RidgeCV		0.78	0.78	48462.16	
Lasso		0.78		48471.19	
Lars		0.78		48472.04	
LinearRegression		0.78		48472.04	
TransformedTargetRegressor		0.78		48472.04	1
ElasticNet		0.75		51449.71	
TweedieRegressor		0.72		54937.84	
GeneralizedLinearRegressor		0.72	0.72		
OrthogonalMatchingPursuitCV		0.71	0.71		
HuberRegressor		0.68	0.68		V
PassiveAggressiveRegressor		0.67	0.67		
RANSACRegressor		0.61 0.56	0.62 0.57		
OrthogonalMatchingPursuit					
ElasticNetCV		0.04 -0.02		101399.82 104449.21	
DummyRegressor NuSVR		-0.02		105612.89	
NUSVR		-0.10		105612.89	
SVR KernelRidge		-0.16		119817.11	
MLPRegressor		-0.82		139940.46	
LinearSVR		-1.05		148469.71	
ETIICAI 24V		-1.65	-1.62	1-0405./1	

Model Selection and Training

Extra Tree Regressor

Train the basic model setting "criterion" to 'mae"

Train with tuned hyperparameters:

- n_estimator: 120
- max_depth: 33
- min_sample_split: 1
- min_sample_leaf: 3
- max_features : "auto"

Gradient Boosting Regressor

Train the basic model setting "criterion" to 'mae"

Train with tuned hyperparameters:

- Learning_rate: 0.1
- max_depth: 5
- n_estimators: 1000
- max_features : "auto"
- min_samples_leaf: 1
- min_samples_split : 6

Model Selection and Training

Metric	Extra Tree (basic)	Extra Tree (tuned)	Gradient Boosting (basic)	Gradient Boosting (tuned)			
RMSE	16218.794	16334.472	21069.259	20454.419			
MAE	4387.097963671	4425.405329827	7033.2142648	5209.739405823			
MAPE	3.25%	3.31%	5.69%	3.36%			
R2	0.975839465280	0.975493594982	0.9592274429	0.961572360203			

 The basic Extra Tree Regressor will be our final model since it has the smallest average difference between the actual and predicted value.

Challenges Encounter

Doing web scrapping to get the dataset

- Need to solve "Stale Element Reference Exception" error which means the element we are looking for is no longer in the DOM
- Make sure the data we scraped are correctly stored in their respective Features

Cleaning the dataset as it is a raw data

- "Error" values in the features like "Electric" in feature Engine Capacity
- Wrongly classifying of the car type by the advertiser

How to do encoding for feature "make" as there are 50 classes inside

- May run into "curse of dimensionality" if using One Hot Encoding
- Frequency Encoding will cause 2 or more brands with the same frequency to have the same encoded values

Top 5 Overvalued and Undervalued

Overvalued

make	model	car_age	COE Remaining	Manufactured	Mileage	No. of Owners	Transmission	Engine Capacity	fuel_type	COE	OMV	Paper Value	Depreciation	Туре	electric	Price	Predict	diff
PORSCHE	PORSCHE 911 C2 COUPE (COE TILL 03/2025)	26	46	1995	113792	6	Manual	3600	Petrol	73035	108671	28254	11632	Sports Car	No	450000	104840.59	345159.41
FERRARI	FERRARI 575M MARANELLO (COE TILL 08/2024)	17	38	2004	55584	4	Auto	5748	Petrol	66834	259435	21607	12992	Sports Car	No	420000	188632.93	231367.07
MAZDA	MAZDA RX7 EFINI (COE TILL 04/2029)	28	95	1992	69000	6	Manual	1308	Petrol	26175	52183	20825	42480	Sports Car	No	338000	269112.28	68887.72
MCLAREN	MCLAREN 720S	3	86	2018	39000	1	Auto	3994	Petrol	32551	213158	290165	79860	Sports Car	No	751988	708055.64	43932.36
ROLLS- ROYCE	ROLLS- ROYCE DAWN	2	94	2016	14000	1	Auto	6592	Petrol	32909	417109	567902	11817	Sports Car	No	1288000	1251975.36	36024.64

- The top 5 overvalued cars are all sports car
- The top 3 are so called "collector items".

Top 5 Overvalued and Undervalued

Undervalued

	make	model	car_age	COE Remaining	Manufactured	Mileage	No. of Owners	Transmission	Engine Capacity	fuel_type	COE	OMV	Paper Value	Depreciation	Туре	electric	Price	Predict	diff
2162	BENTLEY	BENTLEY CONTINENTAL FLYING SPUR 4.0A V8	4	67	2015	23000	2	Auto	3993	Petrol	54901	185514	260580	57310	Luxury Sedan	No	478000	568942.16	-90942.16
1290	ROLLS- ROYCE	ROLLS- ROYCE PHANTOM (COE TILL 11/2027)	14	78	2007	66000	6	Auto	6749	Petrol	50168	461079	32754	57410	Luxury Sedan	No	375000	463541.96	-88541.96
49	LAMBORGHINI	LAMBORGHINI HURACAN LP580-2	4	68	2016	2300	2	Auto	5204	Petrol	53106	202240	282462	80600	Sports Car	No	630000	713209.64	-83209.64
1942	BMW	BMW M SERIES M8 COMPETITION CONVERTIBLE	1	112	2020	5000	1	Auto	4395	Petrol	35001	177705	251716	58990	Sports Car	No	699000	782132.04	-83132.04
757	MCLAREN	MCLAREN 650S SPIDER	5	62	2014	23000	3	Auto	3798	Petrol	57508	290157	400616	67470	Sports Car	No	598000	678814.68	-80814.68

- The top 5 undervalued cars are all european make
- 4 out of the 5 are exotic brand
- Seem worth if buyers are into exotic brand as they are undervalued by an average of around \$85k (which is quite a huge sum!)

Conclusion

- We got a model that can predict the selling price with Mean Absolute Percentage Error (MAPE, which is MAE in percentage term) of 3.25% which we are quite satisfied
- As having a car is a costly expenses in Singapore with lots of hidden cost like insurance, road tax and maintenance. With this model, buyers can estimate the price of the car that they are interested in to decide if the car is worth the price that are advertised and work their budget from there
- Other approach that we might want to try:
 - Scrape the data after current COE premium is release
 - Add features for COE premium and COE category for each car
 - Try using Neural Network and see if the result is better
- https://github.com/andychew8015/Capston_Project-Predict_Used_Car_Selling_Price

QUESTION?