Questions

Hui Sun

May 3, 2025

Problem 0.1. To see whether a polynomial is irreducible over \mathbb{Q} , is it sufficient to test whether $f \mod p$ is irreducible over any prime p?

For example, $x^5 - 5x^3 + 1$.

Proof. Yes. The converse is not true, consider the minimal polynomial for $\sqrt{2} + \sqrt{3}$.

Problem 0.2. In the above example, how do we know that the Galois group contains an element of order 5? (It is clear why it contains a transposition because there exists complex roots).

Proof. This is because the Galois group G acts transitively on the set of roots, by the Orbit stabilizer theorem, we know

$$|G| = |\mathsf{Orbit}(\alpha)| \cdot |\mathsf{Stab}(\alpha)| = 5 \cdot |\mathsf{Stab}(\alpha)|$$

i.e., 5 divides |G|. By Cauchy's theorem, there exists an element of order 5 in G, i.e., a 5-cycle.

Problem 0.3. The Galois action on the set of roots implies for any root r of the irreducible polynomial (where G is the splitting field of), we must have

$$Orbit(r) = \{ \text{ set of all roots} \}$$

Proof. Yes, by defiition of a transitive action.

Problem 0.4. Is it true that if I, J are ideals of a ring R, then

$$\frac{R}{I} \otimes_R \frac{R}{J} = \frac{R}{(I+J)}$$

in the case where $R = \mathbb{Q}[x]$, and I, J are irreducible polynomials, we have

$$\frac{R}{(f)} \otimes_R \frac{R}{(g)} = \frac{R}{(f) + (g)} = \frac{R}{\gcd(f, g)}$$

Problem 0.5. Fall 2014 Q2, $\text{Hom}_{R}(M, N)$.

Problem 0.6. $\mathbb{Z}/55\mathbb{Z}$.

Proof. We have $n_{11} = 1$, and we can write G as a semidirect product

$$G = \frac{\mathbb{Z}}{11\mathbb{Z}} \rtimes_{\theta} \frac{\mathbb{Z}}{5\mathbb{Z}}$$

where $\theta: \frac{\mathbb{Z}}{5\mathbb{Z}} \to \left(\frac{\mathbb{Z}}{11\mathbb{Z}}\right)^{\times}$. We know $\theta(1)$ needs to be sent to an element of order 5, which includes 3, 4.

$$G=\langle g,h:g^{11}=h^5=e,hgh^{-1}=g^3\rangle$$

and

$$G = \langle g, h : g^{11} = h^5 = e, hgh^{-1} = g^4 \rangle$$

Problem 0.7. Is cyclotomic extension cyclic.

Proof. No, consider $\mathbb{Q}(\zeta_8)$, then the Galois group is $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Problem 0.8. If an intermediate field extension of a Galois extension has order $a, k \subset E \subset K$ has [E:k]=a, then the subgroup that fixes E has index a.

Problem 0.9. Find all intermediate fields when the Galois group is $\mathbb{Q}(\zeta_9)$.

Problem 0.10. Find all the intermediate fields when the Galois group is D_8 .

Problem 0.11. S2013-Q6(b)(c), S2016-Q3

Problem 0.12. Solvable by radicals, f2014-Q1 (polynomial), f2006-Q2 (field)

Problem 0.13. F2010-Q3

Problem 0.14. Review orbit-stabilizer theorem.

Problem 0.15. Map S_4 onto S_3 first for the irreducible rep.

Problem 0.16. Relationship between abelianization and z(G). Why is p^3 nonabelian group has [G,G]=p.

Problem 0.17. Irreducible rep of a cyclic group over \mathbb{R} is ≤ 2 .