

Exercise 10A

Question 13:

Given: ABCD is a quadrilateral in which through D, a line is drawn parallel to AC which meets BC produced in P.

To Prove : $ar(\triangle ABP) = ar(quad.ABCD)$

Proof: Δ ACP and Δ ACD have same base AC and lie between parallel lines AC and DP.

 $\therefore \qquad \operatorname{ar}(\Delta \mathsf{ACP}) = \operatorname{ar}(\Delta \mathsf{ACD})$

Adding $ar(\Delta ABC)$ on both sides, we get;

 $ar(\Delta ACP) + ar(\Delta ABC) = ar(\Delta ACD) + ar(\Delta ABC)$

 \Rightarrow ar(\triangle ABP) = ar(quad.ABCD)

Question 14:

Given: Two triangles, i.e. \triangle ABC and \triangle DBC which have same base BC and points A and D lie on opposite sides of BC and ar(\triangle ABC) = ar(\triangle BDC)

To Prove: OA = OD

Construction: Draw AP \(\text{BC} \) and DQ\(\text{BC} \)

Proof: We have

ar
$$(\triangle ABC) = \frac{1}{2} \times BC \times AP$$
 and
ar $(\triangle BCD) = \frac{1}{2} \times BC \times DQ$

So,
$$\frac{1}{2} \times BC \times AP = \frac{1}{2} \times BC \times DQ$$
 [from (1)]
 $\Rightarrow AP = DO \dots (2)$

Now, in $\triangle AOP$ and $\triangle QOD$, we have

$$\angle APO = \angle DQO = 90^{\circ}$$

and

$$\angle AOP = \angle DOQ$$
 [vertically opp. angles]

$$AP = DQ$$
 [from (2)]

Thus, by Angle-Angle-Side criterion of congruence, we have

$$\triangle AOP \cong \triangle QOD$$
 [AAS]

The corresponding parts of the congruent triangles are equal.

$$\therefore$$
 OA = OD [CP.C.T.]

********* END *******