Scientific Computing Coursework 3

Q1)

We are given the following ODE:

$$\frac{dy}{dx} = xe^{3x} - 2y,$$
 $0 \le x \le 1,$ $y(0) = 0.$

By using the Euler method with the following algorithm:

$$\tilde{y}_{i+1} = \tilde{y}_i + hf(x_i, \tilde{y}_i), \qquad i = 0, 1, ..., n-1, \qquad \tilde{y}_0 = \infty,$$

where \tilde{y}_i is an approximation to $y(x_i)$, where $x_i = a + ih$ and h = (b - a)/n is the step size we can integrate the above ODE.

The C++ program below outputs a table which we can use to calculate the approximation to the above problem using the Euler method.

```
#include <iostream>
#include <math.h>
#include <fstream>
#include <vector>
using namespace std;
//Below function uses the Euler method to calculate the integral of an ODE
void eulerMethod(vector<double> &y, vector<double> &xVals, int n, double a, double b)
       //Sets the stepsize
       double stepSize = (b - a) / n;
       //Stores the actual equation (for clarity)
       double eqnVal;
       //Loops through all steps and stores the x and y values at each step
       for (int i = 0; i <= n; i++)
              xVals[i] = a + i*stepSize;
              eqnVal = xVals[i] * exp(3*xVals[i]) - 2*y[i];
              y[i+1] = y[i] + stepSize*eqnVal;
       }
}
int main()
       //Stores value of n
       int nValue = 10;
       //Minmum x value from range of values
       double xMin = 0;
       //Maximum x value from range of values
       double xMax = 1;
       //Stores all values for x in a vector
       vector<double> xValues(nValue + 1);
       //Stores all values for y in a vector (ie. the integration values)
       vector<double> integrationValues(nValue + 2);
       //sets the initial condition ie. y(0) = 0.
       integrationValues[0] = 0;
       //Runs the function which produces and stores the values of the Euler method at each step
       eulerMethod(integrationValues, xValues, nValue, xMin, xMax);
       //variable of type ofsteam called eulerFile
       ofstream eulerFile;
       //Opens specified text document for writing
       eulerFile.open("Euler Approximations Tabulated.txt");
       //if attempt to open file failed, returns 1
       if (!eulerFile) return 1;
```

Below are the tabulated results of running the program above over the range $0 \le x \le 1$.

Value of i (Step Number)	Value of x_i	Value of $ ilde{y}_i$
0	0	0
1	0.1	0
2	0.2	0.0134986
3	0.3	0.0472412
4	0.4	0.111581
5	0.5	0.22207
6	0.6	0.40174
7	0.7	0.684371
8	0.8	1.11913
9	0.9	1.77716
10	1	2.7609

Q2)

By modifying my original program with the following code:

```
//Generates tabulated results of Eulers methods for n = 10 to 50 in steps of 10
while (nValue <= 50)</pre>
{
       eulerMethod(integrationValues, xValues, nValue, xMin, xMax);
       //Incrementing i by 1 results in all values from 1 to nValue
       //Incerementing by nValue/10 allows us to directly compare.
       for (int i = 0; i <= nValue; i += nValue/10)</pre>
              //Write 3 columns to file with values listed below
              eulerFile.width(10); eulerFile << i;</pre>
              eulerFile.width(10); eulerFile << xValues[i];</pre>
              eulerFile.width(15); eulerFile << integrationValues[i] << endl;</pre>
       }
       eulerFile << endl;</pre>
       //Increment nValue by 10
       nValue += 10;
       //Resize all vectors as necessary
       xValues.resize(nValue + 1);
       integrationValues.resize(nValue + 2);
}
```

we can analyse the effect of increasing the value of n (decreasing the step size). Below are tables produced by the above code which we can directly compare with our original table with n=10.

Student ID: 8444507 Name: M. Kashif Hussain

Table for n = 20:

Value of i (Step Number)	Value of x_i	Value of $ ilde{y}_i$
0	0	0
2	0.1	0.00290459
4	0.2	0.0201894
6	0.3	0.059215
8	0.4	0.131178
10	0.5	0.252808
12	0.6	0.448805
14	0.7	0.755304
16	0.8	1.22482
18	0.9	1.93324
20	1	2.98972

Table for n = 30:

Value of i (Step Number)	Value of x_i	Value of $ ilde{y}_i$
0	0	0
3	0.1	0.00386033
6	0.2	0.0224061
9	0.3	0.0631997
12	0.4	0.137717
15	0.5	0.26308
18	0.6	0.464542
21	0.7	0.779026
24	0.8	1.26016
27	0.9	1.98542
30	1	3.06619

Table for n = 40:

Value of i (Step Number)	Value of x_i	Value of $ ilde{y}_i$
0	0	0
4	0.1	0.00433578
8	0.2	0.0235113
12	0.3	0.0651894
16	0.4	0.140985
20	0.5	0.268216
24	0.6	0.472413
28	0.7	0.790891
32	0.8	1.27784
36	0.9	2.01151
40	1	3.10443

Table for n = 50:

Value of i (Step Number)	Value of x_i	Value of $ ilde{y}_i$
0	0	0
5	0.1	0.00462025
10	0.2	0.0241733
15	0.3	0.0663822
20	0.4	0.142945
25	0.5	0.271298
30	0.6	0.477135
35	0.7	0.798011
40	0.8	1.28844
45	0.9	2.02717
50	1	3.12737

Using the following MATLAB code, we can generate graphs to compare the tables above:

```
function compareExp()
%Split one file into 5 with the respective tables
data1 = load('Euler Approximations Tabulated 50 - 1.txt');
data2 = load('Euler Approximations Tabulated 50 - 2.txt');
data3 = load('Euler Approximations Tabulated 50 - 3.txt');
data4 = load('Euler Approximations Tabulated 50 - 4.txt');
data5 = load('Euler Approximations Tabulated 50 - 5.txt');
x = 0:0.1:1;
%Actual Solution:
y = 1/25.*exp(-2.*x).*(5.*exp(5.*x).*x - exp(5.*x) + 1);
%Graphs:
plot(data1(:,2), y, 'k--');
hold on;
plot(data1(:,2), data1(:,3), 'g-o');
plot(data2(:,2), data2(:,3), 'r-*');
plot(data3(:,2), data3(:,3), 'b-s');
plot(data4(:,2), data4(:,3), 'c-d');
plot(data5(:,2), data5(:,3), 'm-+');
legend('Exact Solution', 'n = 10', 'n = 20', 'n = 30', 'n = 40', 'n = 50');
xlabel('Values of x');
ylabel('Values for y (approximations)');
```

end

The graphs below shows that as n increases, our approximation for \tilde{y}_n grows closer to the true solution. This is because our value for $h = \frac{b-a}{n}$ gets closer and closer to 0. As a result we have the following:

$$\tilde{y}_i \rightarrow y(x_e)$$
 as $h \rightarrow 0$

Where $x_e = ih$ for the ith step.

Remembering that the Taylor series approximation is the following:

$$\tilde{y}_{i+1} = \tilde{y}_i + hf(x_i, \tilde{y}_i) + O(h^2),$$

We can see that as $h \to 0$, all terms of $O(h^2)$ and higher become very small and negligible and we are left with $\tilde{y}_{i+1} = \tilde{y}_i + hf(x_i, \tilde{y}_i)$

The above graphs display the results of the table as listed.

Q3)

By editing our initial program with the following:

```
//Stores value of n
int nValue = 100;
//Minmum x value from range of values
double xMin = 0;
//Maximum x value from range of values
double xMax = 1;
//Stores all values for x in a vector
vector<double> xValues(nValue + 1);
//Stores all values for y in a vector (ie. the integration values)
vector<double> integrationValues(nValue + 2);
ofstream eulerFile;
//Opens specified text document for writing
eulerFile.open("Euler Approximations Tabulated Q3.txt");
//if attempt to open file failed, returns 1
if (!eulerFile) return 1;
//Number of values for y(0)
int noOfInitialValues = 5;
//Setting y(0) = -1
integrationValues[0] = -1;
for (int i = 1; i <= noOfInitialValues; i++)</pre>
       eulerMethod(integrationValues, xValues, nValue, xMin, xMax);
       for (int i = 0; i <= nValue; i += nValue/10)</pre>
              //Write 3 columns to file with values listed below
              eulerFile.width(10); eulerFile << i;</pre>
              eulerFile.width(10); eulerFile << xValues[i];</pre>
              eulerFile.width(15); eulerFile << integrationValues[i] << endl;</pre>
       eulerFile << endl;</pre>
       // Resize all vectors as necessary
       xValues.resize(nValue + 1);
       integrationValues.resize(nValue + 2);
       //Increment value for y(0) by 0.5
       integrationValues[0] += 0.5;
}
```

we can generate a table showing how the approximations vary for differing initial values for y(0) in the range $-1 \le y \le 1$.

Below is a plot of the results choosing n = 100 (to achieve a result very close to the exact solution)

As you can see, setting y = 0 sets the approximation almost exactly onto the exact solution. Further, setting y to the above specified range, we can see that it converges to the true solution as expected no matter what we set the initial condition as.

The above plot was produced using the following MATLAB code:

```
function compareExp()
%Split one file into 5 with the respective tables
data1 = load('Euler Approximations Tabulated Q3 - 1.txt');
data2 = load('Euler Approximations Tabulated Q3 - 2.txt');
data3 = load('Euler Approximations Tabulated Q3 - 3.txt');
data4 = load('Euler Approximations Tabulated Q3 - 4.txt');
data5 = load('Euler Approximations Tabulated Q3 - 5.txt');
x = 0:0.1:1;
%Actual Solution:
y = 1/25.*exp(-2.*x).*(5.*exp(5.*x).*x - exp(5.*x) + 1);
%Graphs:
plot(data1(:,2), y, 'k--');
hold on;
plot(data1(:,2), data1(:,3), 'g-o');
plot(data2(:,2), data2(:,3), 'r-*');
plot(data3(:,2), data3(:,3), 'b-s');
plot(data4(:,2), data4(:,3), 'c-d');
plot(data5(:,2), data5(:,3), 'm-+');
legend('Exact Solution','y = -1', 'y = -0.5', 'y = 0', 'y = 0.5', 'y = 1');
xlabel('Values of x');
ylabel('Values for y (approximations)');
```

end