

AMENDMENT TO THE CLAIMS**IN THE CLAIMS:**

Please **AMEND** claim 6; and

Please **ADD** new claims 9-20.

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Original) A hardware implementation of a crypto-function comprising:
a first register storing data to be encrypted or decrypted;
a second register for receiving data which has been encrypted or decrypted; and
combinational logic performing computation iterations of the crypto-function on
data stored in the first register and outputting data to said second register in a single
hardware cycle.

2. (Original) The hardware implementation of a crypto-function recited in claim 1,
wherein the crypto-function is a block cipher algorithm.

3. (Original) The hardware implementation of a crypto-function recited in claim 2,
wherein the crypto-function is the Data Encryption Standard (DES) algorithm.

4. (Original) The hardware implementation of a crypto-function recited in claim 2,
wherein the crypto-function is the CHAIN algorithm.

5. (Original) The hardware implementation of a crypto-function recited in claim 2, wherein the combinational logic performs an invertible key-dependent round function iterated a predetermined number of times.

6. (Currently Amended) The hardware implementation of a crypto-function recited in claim 5, wherein the ~~combination~~ combinational logic performs mixing, permutation and key-dependent substitution in each round.

7. (Original) The hardware implementation of a crypto-function recited in claim 5, wherein the combinational logic enciphers a block by performing an initial permutation of a block to be enciphered and then a complex key-dependent computation followed by a permutation which is an inverse of the initial permutation.

8. (Original) The hardware implementation of a crypto-function recited in claim 7, wherein the combinational logic deciphers a block by performing deciphering using the same key as used to encipher the block in a process that is an inverse of the enciphering process.

9. (New) The hardware implementation of a crypto-function recited in claim 1, wherein the one hardware cycle is approximately ten clock cycles.

10. (New) The hardware implementation of a crypto-function recited in claim 1, wherein the hardware implementation of the crypto-function uses only the combinational logic without having to store intermediate results in registers.

11. (New) The hardware implementation of a crypto-function recited in claim 1, wherein the hardware implementation of the crypto-function computes an iterated round function in one clock cycle.

12. (New) The hardware implementation of a crypto-function recited in claim 1, wherein the combinational logic utilizes a Data Encryption Standard (DES) algorithm that is implemented in the combinational logic.

13. (New) The hardware implementation of a crypto-function recited in claim 1, wherein the combinational logic utilizes logic functions whose outputs depend solely on their inputs.

14. (New) The hardware implementation of a crypto-function recited in claim 1, wherein the combinational logic utilizes logic circuits without memory, whereby no registers are used to store intermediate results or iterations of enciphering or deciphering computations.

15. (New) The hardware implementation of a crypto-function recited in claim 1, wherein the crypt-function is implemented in the combinational logic without intermediate registers that require loading and settling time before contents of the intermediate registers can be read.

16. (New) A hardware implementation of a crypto-function comprising:
a first register that stores data to be encrypted or decrypted;
a second register that receives data which has been encrypted or decrypted; and
combinational logic that performs computation iterations of the crypto-function on data stored in the first register and outputting data to said second register in a single hardware cycle,

wherein the crypt-function is implemented in the combinational logic without intermediate registers that require loading and settling time before contents of the intermediate registers can be read.

17. (New) The hardware implementation of a crypto-function recited in claim 16, wherein the single hardware cycle is approximately ten clock cycles.

18. (New) The hardware implementation of a crypto-function recited in claim 16, wherein the hardware implementation of the crypto-function computes an iterated round function in just one clock cycle.

19. (New) A hardware implementation of a crypto-function comprising:
a first register that stores data to be encrypted or decrypted;
a second register that receives data which has been encrypted or decrypted; and
combinational logic that performs computation iterations of the crypto-function on
data stored in the first register and outputting data to said second register in a single
hardware cycle,
wherein the single hardware cycle comprises several clock cycles.

20. (New) The hardware implementation of a crypto-function recited in claim 19,
wherein the crypt-function is implemented in the combinational logic without
intermediate registers that require loading and settling time before contents of the
intermediate registers can be read.