Reg. No.								

B.Tech. / M.Tech. (Integrated) DEGREE EXAMINATION, MAY 2024

Fourth Semester

21MAB202T - NUMERICAL METHODS

(For the candidates admitted during the academic year 2021-2022, 2022-2023 & 2023-2024)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over (i) to hall invigilator at the end of 40th minute.

(ii)	Part – B and Part - C should be answered i	n an	swer booklet.				
Time:	3 Hours		M	ax. Ma	ırks:	: 75	
	$PART - A (20 \times 1)$	= 20	Marks)	Mark	s BL	€O	PC
	Answer ALL Q						
1.	In solving simultaneous equations by Gamatrix is reduced to			ıt 1	1	1	1
	(A) Upper triangular matrix	(B)	Diagonal matrix				
			Identity matrix				
. 2.	Gauss-Seidel method converges roughly to	wice	e faster than	1	1	1	1
	(A) Newton's method	(B)	Gauss elimination method				
	(C) Gauss Jacobi method	(D)	Regula Falsi method				
3.	Newton Raphson method is also called			1	.1	1	1
		(B)	Method of chords				
	(C) Method of secant	(D)	Method of successive approximation				
4.	To determine numerically largest eigen va	alue	and the corresponding eigen vecto	r ¹	1	1	1
	of a square matrix A we use						
	` '	. /	Gauss Seidel method				
	(C) Regula Falsi method	(D)	Power method				
5.	The second order divided difference for th	e fo	llowing data is	1	2	2	1
	x 1 2 4 y 4 5 13						
		(B)	3				
		(D)	7				
6.	The first divided difference of $f(x)$ for the			1	1	2	1
	(A) $\underline{f(x_1) - f(x_0)}$	(B)	$\frac{f(x_1)-f(x_0)}{}$				
	$x_1 - x_0$		$x_0 - x_1$				
		(D)	$\underline{f(x_0)+f(x_1)}$				
	$x_0 + x_1$		$x_0 + x_1$				

7.	When the values of the independent variable	s are not equally spaced, then we use	1	1	2	1
	(A) Newton's forward interpolation (B formula) Newton's backward interpolation formula				
	(C) Lagrange's interpolation formula (D) Central difference interpolation formula				
8.	·		I	1	2	1
9.	Newton's forward difference formula to com	example $\frac{dy}{dx}$ at $x = x_0$ is	1	1	3	1
	(A) $\frac{dy}{dx} = \frac{1}{h} \left[\Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \dots \right]$ (B)					
	(C) $\frac{dy}{dx} = \frac{1}{h} \left[\nabla y_0 + \frac{1}{2} \nabla^2 y_0 + \frac{1}{3} \nabla^3 y_0 + \dots \right]$ (D)	$\frac{dy}{dx} = \frac{1}{h} \left[\nabla y_0 - \frac{1}{2} \nabla^2 y_0 + \frac{1}{3} \nabla^3 y_0 - \dots \right]$				
10.	Find $\frac{dy}{dx}$ at $x = 1$ from the following table.		1	1	3	1
	y 1 8 27 (A) 8 (B)	9) 4				
	(C) 3 (D	0) 1				
11.		when the number of intervals is Even Multiple of 3	1	1	4	1
12	The error in the trapezoidal formula is of the	order	1	1	4	1
L 2.	(A) h2 (B	h^3				
	(C) h^4 (D)) h ⁵				
13.		3) 4	1	1	4	1
	(C) 5 (D	0) 2				
14.	Use Runge-Kutta method $k_1 = 0.2, k_2 = 0.1967, k_3 = 0.1967, k_4 = 0.1891$		1	2	4	1
		3) 0.19598 3) 0.2110				
15.	Which of the following is a multi step method	od?	1	1	4	1
		B) Euler's method				
		Milne's method				

16. Milne's predictor formula is

(A)
$$y_{n+1,p} = y_{n-3} + \frac{4h}{3} (2y_{n-2} - y_{n-1} + 2y_n)$$

(B)
$$y_{n+1,p} = y_{n-1} + \frac{h}{3} (y_{n-1} + 4y_n + y_{n+1})$$

(C)
$$y_{n+1,p} = y_{n-3} + \frac{h}{3} (2y'_{n-2} + y'_{n-1} + 2y'_n)$$

(D)
$$y_{n+1,p} = y_{n-1} + \frac{4h}{3} (4y'_{n-1} + 4y'_n + y'_{n+1})$$

- 17. If $B^2 4AC = 0$, the second order PDE $Af_{xx} + Bf_{xy} + Cf_{yy} + \phi(x, y, f_x, f_y) = 0$ is
 - (A) Elliptic

(B) Parabolic

(C) Hyperbolic

- (D) Laplace equation
- 18. In Crank Nicholson scheme, if $\lambda=1$, then the choice of the value of k is
 - (A) $k = ah^2$

(B) $k = \frac{ah^2}{2}$

(C) k = ah

- (D) k = 1
- 19. To solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ we use
 - (A) Crank-Nicholson scheme
- (B) Bender Schmidt scheme
- (C) Leibmann's method
- (D) Poisson's difference scheme
- 20. To use Bender Schmidt recurrence equation, with explicit formula $u_{i,j+1} = \lambda u_{i+1,j} + (1-2\lambda)u_{i,j} + \lambda u_{i-1,j}$ the choice of the λ should be
 - (A) $\lambda=1$

(B) $\lambda = 1/2$

(C) $\lambda=0$

(D) $\lambda=2$

PART - B (5 × 8 = 40 Marks) Answer ALL Ouestions

Marks BL CO PO

1 5 1

1 5 1

21. a. Find a positive root of $x^3 - 4x + 1 = 0$ by Regula Falsi method correct to 3 decimal $x^3 - 4x + 1 = 0$ by Regula Falsi method correct to 3 decimal $x^3 - 4x + 1 = 0$ by Regula Falsi method correct to 3 decimal

(OR)

- b. Solve by Gauss elimination method the equations 2x+y+4z=12, 8x-3y+2z=20, 4x+11y-z=33.
- 22. a. Calculate the sum of squares of residuals in the case of straight line fit for the 8 4 2 2 following data.

1	LVI	LVI	AYT	5 4	····		
-	X	0	1	2	3	4	THE P. SPECTOR
	y	1	5	10	22	38	

(OR)

b. Using Lagrange's interpolation formula, find the value of y when x=8.

8 3 2 2

 x
 3
 7
 9
 10

 y
 168
 120
 72
 63

23. a. Find the value of f'(4) and f''(4) from the following table.

Х	0	1	2	3
f(x)	1	2	9	28

(OR)

- b. Evaluate $\int_0^6 \frac{1}{1+x} dx$ using Trapezoidal rule and Simpson's one third rule, taking h=1.
- 24. a. Using Taylor method, compute y(0.2) and y(0.4) correct to 3 decimal places given $\frac{dy}{dx} = 1 2xy$ and y(0) = 0.

(OR)

- b. Using improved Euler method find the value of y at x=0.1, given $y' = x^2 y$, y(0) = 1.
- 25. a. Solve $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$, u(0,t) = 0, u(4,t) = 0 and u(x,0) = x(4-x) choosing h=k=1 and using Bender Schmidt formula find the values upto t=5.

(OR)

b. Solve by Crank Nicholson method, $16u_t = u_{xx}$, 0 < x < 1, t > 0, given that 0 < x < 1, t > 0, given that 0 < x < 1, t > 0, given that 0 < x < 1, t > 0, t > 0

PART – C $(1 \times 15 = 15 \text{ Marks})$ Answer ANY ONE Questions

Marks BL CO PO

2 2

26.i. Solve the following equations by Gauss-Seidel method.

$$27x + 6y - z = 85$$

$$6x + 15y + 2z = 72$$

$$x + y + 54z = 110$$

ii. Estimate the value of f(42) from the following table.

			~~~~		,	
x	20	25	30	35	40	45
f(x)	354	332	291	260	231	204

27. Apply fourth order Runge-Kutta method to find an approximate value of y when x=0.2 given that y'=x+y, y(0)=1, taking h=0.1.

* * * *