Apellido y Nombre:	
Carrera:	DNI:
[Llenar con letra mayúscula de imprenta GRANDE]	

Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática Algoritmos y Estructuras de Datos

Algoritmos y Estructuras de Datos. Recuperatorio. [29 de Noviembre de 2007]

[Ej. 1] [clases (15 pts)]

- a) [parcial-1 lista (15 pts)] Escribir los siguientes métodos del TAD lista: insert(p,x), erase(p), begin().
- b) [parcial-2 arbol-bin (15 pts)] Escribir los siguientes métodos del TAD árbol binario: find(x,p), insert(p,x), clear().
- c) [parcial-3 set (15 pts)] Escribir los siguientes métodos del TAD conjunto por listas ordenadas: insert(x), find(x), clear().

[Ej. 2] [programacion (50 pts)]

a) [map-pre-post (15 pts)] Escribir una función void map_pre_post(tree<int> &T,list<int> &L, int (*fpre)(int),int (*fpost)(int)) que lista los valores nodales del árbol ordenado orientado T en una mezcla de orden previo y posterior, de acuerdo a la siguiente definición

$$\begin{split} & \text{mpp}(\Lambda,f,g) = \text{lista vacía} \\ & \text{mpp}(n,f,g) = f(n), \text{mpp}(n_1,f,g), ..., \text{mpp}(n_m,f,g), g(n) \end{split}$$

donde $n_1...n_m$ son los hijos del nodo n. Por ejemplo, si T=(1 3 (5 6 7 8)), f(x) = x y g(x) = x + 1000, entonces map_pre_post(T,L,f,g) debe dar L=(1,3,1003,5,6,1006,7,1007,8,1008,1005,1001).

b) [maxdev (20 pts)]

Dada una secuencia de números $\{a_1, a_2, ..., a_n\}$, vamos a decir que su "máxima desviación", es la máxima diferencia (en valor absoluto) entre todos sus números: $\max_{dev}(a_1, a_2, ..., a_n) = (\max_{j=1}^n a_j) - (\min_{j=1}^n a_j)$. Escribir una función int $\max_{dev_m(list\leq nt)} \&l$, int m); que retorna el máximo de las máximas desviaciones de las subsecuencias de L de longitud m, es decir

$$\max_{\text{dev}_m(L)} = \max_{\text{max_dev}(a_1, a_2, ..., a_m),$$

 $\max_{\text{dev}(a_2, a_3, ..., a_{m+1}), \max_{\text{dev}(a_3, ..., a_{m+2}), ..., \max_{\text{dev}(a_{n-m+1}, ..., a_n)}}$ (1)

Por ejemplo, si L=(1,3,5,4,3,5), entonces max_dev_m(L,3) debe retornar 4 ya que la máxima desviación se da en la primera subsecuencia (1,3,5) y es 4. Se sugiere el siguiente algoritmo, para cada posición p en la lista hallar la máxima desviación de los m elementos siguientes (incluyendo a p). Hallar la máxima de estas desviaciones.

c) [is-mapped-set (15 pts)] Escribir una función predicado bool is_mapped_set(set<int> &A,set<int> &B,int (*mapfun)(int)); que retorna verdadero si el conjunto B contiene los elementos de A, mapeados vía la función mapfun. Por ejemplo, si $A = \{-5, -3, 5, 10\}$ y $B = \{9, 25, 100\}$ entonces is_mapped_set(A,B,sq)

Carrera:	DNI:	Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática
	a mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos
	. Mientras que si $A=\{-5,-3,2,10\}$ y B ya que el $25=(-5)^2$ no está en B y 130 : Sugerencia: Crear un conjunto temporar	nción que eleva al cuadrado, es decir $sq(x)=x*x$; = $\{4, 9, 100, 130\}$, entonces debe retornar false no es el cuadrado de ningún elemento de A . io conteniendo las imágenes de los elementos de
F: 2] [on	A y compararlo con B . erativos (25 pts)]	
	[t-exec (5 pts)]	
	Dadas las funciones • $T_1(n) = 5n^3 + 2n! + \log n$, • $T_2(n) = 2^{15} + 2 \cdot 5^n + 3 \cdot n^2$, • $T_3(n) = 6! + n^2 + n^{1.7}$, • $T_4(n) = 1.3 \cdot 2^3 + 20n + \log_2 10$.	ordenarlas de menor a mayor. $T_{\square} < T_{\square} < T_{\square} < T_{\square}$
-	[huffman (5 pts)] Dados los caracteres es probabilidades, contruir el código binario $P(C) = 0.2, P(O) = 0.1, P(N) = 0.1, P(A) = 0.1, P(Q) = 0.3$ Calcular la longitud prom	y encodar la palabra CONEXA (1) = $0.05, P(L) = 0.05, P(X) = 0.1, P(E) = 0.05$
•	[abb (10 pts)] Dados los enteros {7,9,1: "árbol binario de búsqueda". Mostrar las elementos 4, 9 y 5, en ese orden.	$\{2,8,4,3,1,2,5,6\}$ insertarlos, en ese orden, en un operaciones necesarias para eliminar los
•	[(/]	s 5, 18, 28, 11, 10, 38, 3, 2 en una tabla de n función de dispersión $h(x) = x \% 8$ y estrategia
Ej. 4] [pro	eguntas (10 pts, 2.5 por pregunta)]	
a)	¿Cuál es el criterio para elegir una buena	función de dispersión?
	Debe tratar de concentrar los elemen	•
	Debe tratar de concentrar los elemen	
	Debe tratar de concentrar los elemen Debe distribuir los elementos en la fo	rma más uniforme posible entre las cubetas.
b)	Dado el árbol binario (x e (d f g)), ¿c Es completo y es lleno. Es completo pero no lleno. Es lleno pero no completo. Ni es completo ni es lleno.	uál de las siguientes opciones es verdadera?
c)	¿Cuál es el número de niveles en un árbo en el árbol? $O(n \log n)$	l binario lleno en función del número n de nodos

Universidad Nacional del Litoral

Apellido y Nombre: ___

Apellido y Nombre: Carrera: DNI:	Universidad Nacional del Litoral Facultad de Ingeniería y Ciencias Hídricas Departamento de Informática	
[Llenar con letra mayúscula de imprenta GRANDE]	Algoritmos y Estructuras de Datos	
*	n cubetas y n elementos. Asumiendo que la te buena como para distribuir los elementos en o medio de inserción de un nuevo elemento es	