NON-REDUCIBILITY OF ISOMORPHISM OF COUNTEREXAMPLES TO VAUGHT'S CONJECTURE TO THE ADMISSIBILITY EQUIVALENCE RELATION

WILLIAM CHAN

ABSTRACT. Let T be a counterexample to Vaught's conjecture. Let E_T denote the isomorphism equivalence relation of T. Let F_{ω_1} be the countable admissible ordinal equivalence relation defined on $^\omega 2$ by x F_{ω_1} y if and only if $\omega_1^x = \omega_1^y$. This note will show that in L and set-generic extensions of L, $\neg (E_T \leq_{\Delta_1^1} F_{\omega_1})$. Using ZFC, if T is a non-minimal counterexample to Vaught's conjecture, then $\neg (E_T \leq_{\Delta_1^1} F_{\omega_1})$.

1. Introduction

An equivalence relation E on a Polish space X is thin if and only if it it does not have a perfect set of E-inequivalent elements.

Burgess showed that Σ_1^1 equivalence relations can either have countably many classes, \aleph_1 -many but not perfectly many classes, or perfectly many classes. Equivalence relations of the second kind are the thin Σ_1^1 equivalence relations with uncountably many classes. There are a few notable examples of such equivalence relations.

Let E_{ω_1} be defined in ${}^{\omega}2$ be

$$x E_{\omega_1} y \Leftrightarrow (x, y \notin WO) \lor (x \cong y)$$

where WO is the Π_1^1 set of reals coding well-orderings and \cong is order-isomorphism. E_{ω_1} is Σ_1^1 thin equvivalence relation with uncountably many classes and has a single Σ_1^1 and not Δ_1^1 class consisting of the non-well-orderings.

The countable admissible ordinal equivalence relation F_{ω_1} is defined on $^{\omega}2$ by

$$x F_{\omega_1} y \Leftrightarrow \omega_1^x = \omega_1^y$$

where ω_1^x is the least ordinal that can not be coded by a real recursive in x. F_{ω_1} is a Σ_1^1 thin equivalence relation with uncountably many classes which are all Δ_1^1 .

If \mathscr{L} is a recursive language and $T \subseteq \mathscr{L}_{\omega_1,\omega}$ is a countable theory, then E_T denotes isomorphism of models of T with a single class consisting of the structures that do not model T. E_T has all Δ_1^1 -classes as a consequence of Scott's isomorphism theorem.

A notable class of thin Σ_1^1 equivalence relations that may or may not exist are the isomorphism relations of counterexamples to Vaught's conjecture: $T \subseteq \mathcal{L}_{\omega_1,\omega}$ is a counterexample to Vaught's conjecture if E_T is a thin equivalence relation with uncountably many classes.

The natural task is to compare these thin Σ_1^1 equivalence relations. A robust means of comparison is through Δ_1^1 reductions: Suppose E and F are two equivalence relations on Polish spaces X and Y, respectively. $E \leq_{\Delta_1^1} F$ if and only if there is a Δ_1^1 function $\Phi: X \to Y$ so that for all $a, b \in X$, $\Phi(a)$ F $\Phi(b)$.

First, since E_{ω_1} has a single Σ_1^1 but not Δ_1^1 class and both F_{ω_1} and E_T have all Δ_1^1 classes, it is impossible that $E_{\omega_1} \leq_{\Delta_1^1} F_{\omega_1}$ and $E_{\omega_1} \leq_{\Delta_1^1} E_T$. Secondly, by the boundedness theorem, $F_{\omega_1} \leq_{\Delta_1^1} E_{\omega_1}$ and $E_T \leq_{\Delta_1^1} E_{\omega_1}$ where T is a counterexample to Vaught's conjecture are also not possible.

The second failure is due to a significant global fact. The first failure seems local due to one E_{ω_1} class being non- Δ_1^1 and this E_{ω_1} class even seems artificially added to ensure E_{ω_1} is defined on all of $^{\omega}2$.

To compare E_{ω_1} with F_{ω_1} and E_T in a meaningful way which disregards this triviality, Zapletal defined the almost Δ_1^1 reducibility: $E \leq_{a\Delta_1^1 F} F$ if only if there is a countable $A \subseteq X$ and a Δ_1^1 function Φ so that

September 11, 2017

for all $x, y \notin [A]_E$, $x \to y$ if and only if $\Phi(x) \to \Phi(y)$. That is, an almost Δ_1^1 reduction is a reduction that ignores at most a countable set of problematic classes.

Zapletal [7] showed that if there is measurable cardinal and E is an Σ_1^1 equivalence relation with infinite pinned cardinal, then $E_{\omega_1} \leq_{a\Delta_1^1} E$. F_{ω_1} has infinite pinned cardinals. If T is a counterexample to Vaught's conjecture then E_T has infinite pinned cardinals. Hence if there is a measurable cardinal, then $E_{\omega_1} \leq_{a\Delta_1^1} E_T$ and $E_{\omega_1} \leq_{a\Delta_1^1} F_{\omega_1}$. In fact, if 0^{\sharp} exists, $E_{\omega_1} \leq_{a\Delta_1^1} F_{\omega_1}$.

The author in [2] showed that in Gödel constructible universe L and set generic extensions of L, $\neg(E_{\omega_1} \leq_{a\Delta_1^1} F_{\omega_1})$. This shows that $E_{\omega_1} \leq_{a\Delta_1^1} F_{\omega_1}$ is not provable in ZFC alone.

It remains to study the relationship between E_T and F_{ω_1} when T is a counterexample to Vaught's conjecture. Sy-David Friedman asked the first such question: If T is a counterexample to Vaught's conjecture, can $E_T \leq_{\Delta_1^+} F_{\omega_1}$?

The author in [2] showed that in L and set-generic extensions of L, $\neg(E_T \leq_{\Delta_1^1} F_{\omega_1})$ whenever T is a counterexample to Vaught's conjecture. There the author put considerable effort into treating isomorphisms of counterexamples to Vaught's conjecture as merely thin equivalence relations and used only one model-theoretic fact about the Vaught's conjecture ([2] Fact 6.5).

This note will embrace admissible model theory as presented in [6] to give a less technical and more self-contained proof that in L and set-generic extensions of L, $\neg(E_T \leq_{\mathbf{\Delta}_1^1} F_{\omega_1})$ whenever T is a counterexample to Vaught's conjecture. It will also be shown using just ZFC that if T is a non-minimal counterexample to Vaught's conjecture, then $\neg(E_T \leq_{\mathbf{\Delta}_1^1} F_{\omega_1})$.

Assume 0^{\sharp} exists, one has that $E_{\omega_1} \leq_{a\Delta_1^1} F_{\omega_1}$. Hence it is a natural question whether it is consistent, using perhap some large cardinal axioms, that $E_T \leq_{\Delta_1^1} F_{\omega_1}$. There is some remarks on this at the end of the note, but this question remains open.

2. Infinitary Logic and Admissibility

Definition 2.1. Let \mathscr{L} be a countable recursive first order language. Let $S(\mathscr{L})$ denote the set of \mathscr{L} -structures with domain ω .

Under some fixed recursive coding of \mathscr{L} -structures by elements of ${}^{\omega}2$, $S(\mathscr{L})={}^{\omega}2$ but the former notation is used to clearly indicate reals are being considered as \mathscr{L} -structures on ω .

Definition 2.2. Let \mathscr{L} be a recursive language. Let $T \subseteq \mathscr{L}_{\omega_1,\omega}$ be a countable theory (set of sentences). Define the equivalence relation E_T on $S(\mathscr{L})$ by

$$x E_T y \Leftrightarrow (x \not\models T \land y \not\models T) \lor (x \cong y)$$

where \models is the \mathscr{L} -satisfaction relation and \cong is the \mathscr{L} -isomorphism relation.

Let z be any real so that T belong to any admissible set containing z. $\models T$ is a $\Delta_1^1(z)$ relation. \cong is a Σ_1^1 relation. E_{φ} is $\Sigma_1^1(z)$. E_T has all classes Δ_1^1 .

Definition 2.3. Let E be an equivalence relation on a Polish space ${}^{\omega}2$. E is a thin equivalence relation if and only if for all perfect subsets $P \subseteq {}^{\omega}2$, there exist some $x, y \in P$ so that $x \to y$.

Definition 2.4. Let \mathscr{L} be a recursive language. A countable theory $T \subseteq \mathscr{L}_{\omega_1,\omega}$ is a counterexample to Vaught's conjecture if and only if E_T is a thin equivalence relation with uncountably many classes.

Definition 2.5. Let A be a transitive set. A is an admissible set if and only if $(A, \in) \models \mathsf{KP}$. (KP is Kripke-Platek set theory.)

Let x be a set. α is an x-admissible ordinal if and only if there is some admissible set A with $x \in A$ and $\alpha = A \cap ON$. Let $\Lambda(x)$ denote the set of x-admissible ordinals.

Suppose α is an admissible ordinal. Let α^+ denote the least admissible ordinal above α .

If $x \in {}^{\omega}2$, then let ω_1^x be the least x-admissible ordinal.

Definition 2.6. Let F_{ω_1} be the equivalence relation on ${}^{\omega}2$ defined by $x F_{\omega_1} y$ if and only if $\omega_1^x = \omega_1^y$. F_{ω_1} is a Σ_1^1 equivalence relation with all classes Δ_1^1 and uncountably many classes.

Definition 2.7. Let \mathscr{L} be a recursive language. A fragment of $\mathscr{L}_{\omega_1,\omega}$ is a collection \mathcal{F} of formulas of $\mathscr{L}_{\omega_1,\omega}$ with some closure properties (see [1] Definition III.2.1).

Let A be a transitive set. Let $\mathcal{L}_A = \mathcal{L}_{\omega_1,\omega} \cap A$.

- [4] Chapter 4 gives the following succient definition of a fragment: $\mathcal{F} \subseteq \mathcal{L}_{\omega_1,\omega}$ is a fragment if and only if $\mathcal{F} = \mathcal{L}_A$ for some transitive set A such that
- (1) A is closed under pairing, union, and cartesian product. For all $a \in A$, $ON \cap tc(a) \in A$, where tc(a) is the transitive closure of a.
- (2) If $\varphi(x_1,...,x_n) \in \mathcal{L}_{\omega_1,\omega} \cap A$ and $t_1,...,t_n \in A$ are \mathcal{L} -terms, then $\varphi(t_1,...,t_n) \in A$.
- If A is countable, then \mathcal{L}_A is called a countable fragment. If A is admissible, then \mathcal{L}_A is called an admissible fragment.
- [6] showed how to enumerate the extensions of a scattered theory in various fragments and determined what admissible sets this enumeration belong to. These ideas are summarized below:

Definition 2.8. Let \mathscr{L} be a recursive language. Let \mathcal{F} be a countable fragment of $\mathscr{L}_{\omega_1,\omega}$. Let $T \subseteq \mathcal{F}$ be a theory in the fragment \mathcal{F} .

T is finitarily consistent if not contradiction can be proved using the T and the finitary inference rules.

T is ω -complete in \mathcal{F} if and only for all sentences $\varphi \in \mathcal{F}$, either $\varphi \in T$ or $\neg \varphi \in T$ and whenever a sentence of the form $\bigvee_{i \in \omega} \varphi_i \in T$, then there is some $\varphi_i \in T$.

Fact 2.9. If T is finitarily consistent and ω -complete in some fragment $\mathcal{F} \subseteq \mathcal{L}_{\omega_1,\omega}$, then T has a model.

Proof. See [6] Proposition 4.1. \Box

Fact 2.10. Let \mathscr{L} be a recursive language. Let γ be an ordinal. Suppose $(\mathcal{F}_{\alpha}: \alpha < \gamma)$ and $(T_{\alpha}: \alpha < \gamma)$ are sequences of fragments and theories so that T_{α} is a finitary consistent and ω -complete theory in the fragment \mathcal{F}_{α} and whenever $\alpha < \beta < \gamma$, $\mathcal{F}_{\alpha} \subseteq \mathcal{F}_{\beta}$ and $T_{\alpha} \subseteq T_{\beta}$. Then $\bigcup_{\alpha < \gamma} T_{\alpha}$ is a finitary consistent and ω -complete theory in the fragment $\bigcup_{\alpha < \gamma} \mathcal{F}_{\alpha}$.

Proof. See [6] Proposition 4.2.

Definition 2.11. Let \mathscr{L} be a recursive language. Let \mathcal{F} be a countable fragment of $\mathscr{L}_{\omega_1,\omega}$ and T be theory in the fragment \mathcal{F} . T is scattered if and only

- (i) For all countable fragments $\mathcal{F}' \supseteq \mathcal{F}$, there are only countably many finitarily consistent and ω -complete theories $T' \subseteq \mathcal{F}'$ which extend T.
- (ii) For all n > 0, fragment $\mathcal{F}' \supseteq \mathcal{F}$, and finitarily consistent and ω -complete theory T' in the fragment \mathcal{F}' , the set of n-types over T', $S_n(T')$, is countable.
- Fact 2.12. Let T be a theory in some countable fragment. T is a counterexample to Vaught's conjecture if and only if T is scattered and has uncountably many countable models up to isomorphism.

Definition 2.13. Let \mathscr{L} be a recursive language. Let T be a countable theory in $\mathscr{L}_{\omega_1,\omega}$. The Morley tree of T, denoted $\mathcal{MT}(T)$, is defined as follows:

Level 0 of $\mathcal{MT}(T)$: Let \mathcal{F}_0 be the smallest countable fragment of T. The nodes on level 0 are those finitary consistent and ω -complete theories T' in \mathcal{F}_0 . For each such T', let $\mathcal{F}_{T'}$ be \mathcal{F}_0 .

Level $\alpha + 1$: The nodes of level α have been defined and for each U on level α , the fragment \mathcal{F}_U have been defined. Let U be a node on level α . If U is ω -categorical, then U will not extend to level $\alpha + 1$. Suppose U is not ω -categorical. U has a non-isolated n-type for some $n \in \omega$. Let \mathcal{F}'_U be the smallest countable fragment containing $\bigwedge p$ for each non-isolated types p in $S_n(U)$. Every finitarily consistent and ω -complete theory U' extending U in the fragment \mathcal{F}'_U is a node on level $\alpha + 1$. Let $\mathcal{F}_{U'} = \mathcal{F}'_U$. The nodes of level $\alpha + 1$ are exactly the objects obtained in this way.

Level α where α is a limit: Suppose levels less than α have been defined and for each node U in such level, \mathcal{F}_U have been defined. For each sequence $(T_{\beta}:\beta<\alpha)$ of nodes with T_{β} on level β and for all $\gamma<\beta<\alpha$, $T_{\gamma}\subseteq T_{\beta}$, then put $T'=\bigcup_{\beta<\alpha}T_{\beta}$ and let $\mathcal{F}_{T'}=\bigcup_{\beta<\alpha}\mathcal{F}_{\beta}$. (Note that T' is an ω -complete and finitary consistent theory in the fragment $\mathcal{F}_{T'}$ by Proposition 2.10.) The nodes on level α are exactly those obtained in this way.

Remark 2.14. In the successor case, note that if U is some theory on level α of $\mathcal{MT}(T)$ in the countable fragment \mathcal{F}_U which is not ω -categorical, then there must be a non-isolated type in U. To see this: Suppose \mathcal{M} and \mathcal{N} are two nonisomorphic models. Let \bar{a} in M and \bar{b} in N so that $\operatorname{tp}^{\mathcal{M}}(\bar{a}) = \operatorname{tp}^{\mathcal{N}}(\bar{b})$ (here the type is taken in the fragment \mathcal{F}). Thus there is a partial isometry of \mathcal{M} to \mathcal{N} taking \bar{a} to \bar{b} . Let $a \in \mathcal{M}$.

 $\operatorname{tp}^{\mathcal{M}}(\bar{a}a)$ is isolated by some formula $\psi(\bar{x}, x)$. $\mathcal{M} \models (\exists x)(\psi(\bar{a}, x))$. So $\mathcal{N} \models (\exists x)(\psi(\bar{b}, x))$. Let $b \in N$ so that $\mathcal{N} \models \psi(\bar{b}, b)$. Then $\bar{b}b$ realizes $\operatorname{tp}^{\mathcal{M}}(\bar{a}a)$. Hence the map $\bar{a}a$ to $\bar{b}b$ is a partial isometry of \mathcal{M} to \mathcal{N} . Using this and a back-and-forth argument, one can show that \mathcal{M} and \mathcal{N} are isomorphic.

Let p be any nonisolated type of U. Pick any $\varphi(\bar{x}) \in p$. There exists some $q \neq p$ so that $\varphi \in q$. So there is some $\psi(\bar{x})$ so that $\psi(\bar{x}) \in p$ and $\neg \psi(\bar{x}) \in q$. Hence $(\exists x)(\bigwedge p)$ and $(\exists x)(\bigwedge q)$ are consistent sentences in the fragment \mathcal{F}'_U . Hence U has at least two incompatible extension on level $\alpha + 1$.

Fact 2.15. For $\alpha < \omega_1$, level α of $\mathcal{MT}(T)$ is countable.

The following fact collects some definability properties of the Morley tree of a scattered theory:

Fact 2.16. Let \mathcal{L} be a recursive language. Let T be a scattered theory in \mathcal{L} . Suppose α is so that $L_{\alpha}(T)$ is admissible. For all $\beta < \alpha$, $\mathcal{MT}(T) \upharpoonright \beta \in L_{\alpha}(T)$. Moreover, there is a Σ_1 relation $\Xi(x,y,z)$ (with no parameters) so that whenever T is scattered, $L_{\alpha}(T)$ is admissible, $b \in L_{\alpha}(T)$, and $\beta \in ON \cap L_{\alpha}(T)$

$$(\mathcal{MT}(T) \upharpoonright \beta) = b \Leftrightarrow L_{\alpha}(T) \models \Xi(T, \beta, b)$$

Proof. See [6] Proposition 4.4.

Fact 2.17. Let \mathcal{L} be a recursive language. The statement "T is a counterexample to Vaught's conjecture" is Σ_1 definable in $L_{\omega_1^{L(T)}} = (H_{\aleph_1})^{L(T)}$. By Schoenfield absoluteness, this statement is absolute to inner models containing T with the same ω_1 .

Definition 2.18. Let α be a limit ordinal. Let T' be a node of $\mathcal{MT}(T)$ in some level $\gamma < \alpha$. T' is unbounded below α if and only if for all β with $\gamma < \beta < \alpha$, there is an extension of T' on level β .

A node $T' \in \mathcal{MT}(T)$ on level γ is uniquely-unbounded below α if and only for all β such that $\gamma < \beta < \alpha$, there is a unique unbounded below α node on level β that extends T'.

Fact 2.19. Let \mathcal{L} be a recursive language. Let T be a counterexample to Vaught's conjecture. Let $\alpha < \omega_1$ be such that $L_{\alpha}(T)$ is admissible. Let $T' \in \mathcal{MT}(T)$ be unbounded below α . Then there is some extension of T'' of T' on some level below α which is uniquely-unbounded below α .

Proof. The following argument appears in the proof of [6] Proposition 4.7:

Let T' belong to level β_0 of $\mathcal{MT}(T)$. Note that for each β with $\beta_0 < \beta < \alpha$, T' has an extension on level β which is unbounded below α : Otherwise, consider the relation

$$R(U, \gamma) \Leftrightarrow (\exists b)(\Xi(T, \gamma, b) \land (\forall L \in b)(\neg(U \subset L))).$$

 Ξ is the Σ_1 relation of Fact 2.16. This is a Σ_1 relation in $L_{\alpha}(T)$. Informally, this states that no nodes on level γ of $\mathcal{MT}(T)$ is an extension of U. $(\mathcal{MT}(T) \upharpoonright \beta + 1) \in L_{\alpha}(T)$ by Fact 2.16. Let $X = \{U \in \mathcal{MT}(T) \upharpoonright \beta + 1 : U \supseteq T'\}$. $X \in L_{\alpha}(T)$ by Δ_1 -separation. By the failure of the claim, one has that $(\forall U \in X)(\exists \gamma)(R(U, \gamma))$. By Σ_1 -replacement, there exists some $\delta < \alpha$ so that $(\forall U \in X)(\exists \gamma < \delta)(R(U, \gamma))$. This then implies T' is not unbounded below α . Contradiction.

Now suppose there is no node U extending T' which is a uniquely-unbounded node below α . Externally in the real universe, define the following map $\Phi: {}^{<\omega}2 \to \mathcal{MT}(T) \upharpoonright \alpha$ as follows with the property that for all s, $\Phi(s) \in \mathcal{MT}(T)$ is an unbounded extension of T' and if $s \subseteq t$ then $\Phi(t)$ extends $\Phi(s)$:

Let $\Phi(\emptyset) = T'$.

Suppose $\Phi(s)$ has been defined for all $s \in {}^{n}2$. Since T' has no uniquely-unbounded below α extension, neither does $\Phi(s)$. Therefore, find some U_0 and U_1 extending $\Phi(s)$, are both unbounded below α , and are incompatible. Let $\Phi(s \circ 0) = U_0$ and $\Phi(s \circ 1) = U_1$.

For each $x \in {}^{\omega}2$, let $U_x = \bigcup_{n \in \omega} \Phi(x \upharpoonright n)$. By Fact 2.10, U_x is a node on level α of $\mathcal{MT}(T)$. If $x \neq y$, then U_x and U_y is incompatible and hence different nodes on that level. Hence level α of $\mathcal{MT}(T)$ is not countable. Contradiction.

Definition 2.20. Let \mathscr{L} be a recursive language. A counterexample to Vaught's conjecture T is a minimal counterexample to Vaught's conjecture if and only if for all $\varphi \in L_{\omega_1,\omega}$, either $T \cup \{\varphi\}$ or $T \cup \{\neg\varphi\}$ has only countably many models.

Corollary 2.21. Let \mathcal{L} be a recursive language. Suppose T is a counterexample to Vaught's conjecture. Then there is an extension T' of T which is a minimal counterexample to Vaught's conjecture.

Proof. This is well known result of Harnik and Makkai. The following is a proof using the above ideas.

Let $G \subseteq \operatorname{Coll}(\omega, \omega_1^V)$ be generic over the real universe V. In V[G], ω_1^V is countable. By Fact 2.17, T is still a counterexample to Vaught's conjecture. $L_{\omega_1^V}(T)$ is admissible. Applying Fact 2.19 in V[G], let $T' \in \mathcal{MT}(T)$ be an extension of T which is uniquely-unbounded below ω_1^V . Since $T' \in \mathcal{MT}(T) \upharpoonright \omega_1^V \in L_{\omega_1^V}(T)$ by Fact 2.16, $T' \in V$. T' is a minimal counterexample to Vaught's conjecture in V.

Fact 2.22. Let \mathcal{L} be a recursive language. Let $T \subseteq L_{\omega_1,\omega}$ be a counterexample to Vaught's conjecture. Suppose $\alpha < \beta$ are two T-admissible ordinals. There are infinitely many terminal nodes of $\mathcal{MT}(T)$ on levels above α and cofinal below β .

Proof. Since T is a counterexample to Vaught's conjecture, there is some unbounded node U of $\mathcal{MT}(T)$ on some level between α and β . By Fact 2.19, there is some R extending U on some level below β so that R is an uniquely-unbounded node.

Suppose R is on level δ . For each γ with $\delta < \gamma < \beta$, let R_{γ} be the unique unbounded extension of R on level γ .

Fix γ between δ and β . Since R_{γ} has an extension, it is not ω -categorical. By the Remark 2.14, there are at least two incompatible nodes on level $\gamma + 1$. Since R is uniquely unbounded, one of those nodes is bounded. Let S_{γ} be some terminal node below level β which extends this bounded node.

Hence $\{S_{\gamma} : \alpha < \gamma < \beta\}$ is an infinite set of terminal nodes of $\mathcal{MT}(T)$ which belong to some level above α and cofinally below β .

Infinitary logic in countable admissible fragments will be used to produce useful models of KP.

Fact 2.23. (Jensen's Model Existence Theorem) Let $A = (A, \in)$ be a countable admissible set. Let \mathscr{J} be a language which is Δ_1 definable in A and contains a distinguished binary relation symbol \in and constants \hat{a} for each $a \in A$. Let H be a consistent theory in the countable admissible fragment \mathscr{J}_A which is Σ_1 definable over A and contains the following sentences:

(I) ZFC - P

(II) For each $a \in A$, $(\forall v)(v \in a \Leftrightarrow \bigvee_{z \in a} v = \hat{z})$

Then there is a \mathscr{J} -structure $\mathcal{B} \models H$ so that $WF(\mathcal{B})$ is transitive, \mathcal{B} end-extends \mathcal{A} , and $ON \cap B = ON \cap A$.

Proof. See [3] Section 4, Lemma 11.

Fact 2.24. (Truncation Lemma) Suppose $\mathcal{B} = (B, \in)$ is a model of KP. Then WF(\mathcal{B}) is also a model of KP.

Proof. See [1], Lemma II.8.4.

Fact 2.25. (Sacks' Theorem) Let $z \in {}^{\omega}2$. Let $\alpha \in \Lambda(z) \cap \omega_1$. Then there exists some $y \in {}^{\omega}2$ with $z \leq_T y$ and $\omega_1^y = \alpha$.

Proof. See [5]. See [2] Theorem 2.16 for a proof of this result using Fact 2.23.

Fact 2.26. Let α be a countable admissible ordinal and $z \in {}^{\omega}2$ be such that $\alpha < \omega_1^z$. Then the set $\{y \in {}^{\omega}2 : \omega_1^y = \alpha\}$ is $\Delta_1^1(z)$.

Proof. See [2] Proposition 2.38 for the computations.

3. Nonreducibility Results

Fact 3.1. Let \mathscr{L} be a recursive language. Let $T \subseteq \mathscr{L}_{\omega_1,\omega}$ be a counterexample to Vaught's conjectures. Let $y \in {}^{\omega}2$ so that $T \in L_{\omega_1^y}(y)$. Suppose U is a terminal node of $\mathcal{MT}(T)$ on some level above $\omega_1^y + 1$. Then the E_T equivalence class $\{x \in S(\mathscr{L}) : x \models U\}$ is not $\Sigma_1^1(y)$.

Proof. This result is analogous to [2] Theorem 6.4. The proof is as follows:

Let $B = \{x \in S(\mathcal{L}) : x \models U\}$. Suppose B is $\Sigma_1^1(y)$. Let R be a y-recursive tree on $2 \times \omega$ so that

$$x \in B \Leftrightarrow (\exists f)(f \in [R^x]).$$

Let \mathscr{J} be a language which is Δ_1 in $L_{\omega_1^y}(y)$ consisting of:

- (i) A binary relation symbol *\(\delta\)*.
- (ii) For each $a \in L_{\omega_1^y}(y)$, a new constant symbol \hat{a} .

(iii) Two distinct constant symbols, \dot{c} and \dot{d} .

Let H be a theory in the countable admissible fragment $\mathcal{J}_{L_{\omega_1^y}(y)}$ which is Σ_1 definable in $L_{\omega_1^y}(y)$ defined consisting of the following sentences:

- (I) ZFC P.
- (II) For each $a \in L_{\omega_1^y}(y)$, $(\forall v)(v \in \hat{a} \Leftrightarrow \bigvee_{z \in a} v = \hat{z})$.
- (III) $\dot{c} \subseteq \hat{\omega}$. $\dot{d} : \hat{\omega} \to \hat{\omega}$.
- (IV) $\dot{d} \in [R^{\dot{c}}].$

H is consistent: Let x be any model of U. Then $x \in B$ so there is some $f : \omega \to \omega$ so that $f \in [R^x]$. Let \mathcal{B} be the \mathscr{J} -structure defined by: The domain is $B = H_{\aleph_1}$. $\dot{\in}^{\mathcal{B}} = \in \uparrow H_{\aleph_1}$. For each $a \in L_{\omega_1^y}(y)$, let $\hat{a}^{\mathcal{B}} = a$. Let $\dot{c}^{\mathcal{B}} = x$. Let $\dot{d}^{\mathcal{B}} = f$. Then $\mathcal{B} \models H$.

By Fact 2.23, let $\mathcal{C} \models H$ so that $L_{\omega_1^y}(y) \subseteq C$, WF(\mathcal{C}) is transitive, and WF(\mathcal{C}) \cap ON $= \omega_1^y$. Let $c = \dot{c}^{\mathcal{C}}$ and $d = \dot{d}^{\mathcal{C}}$. By (III), $c \subseteq \omega$ and $d : \omega \to \omega$. Hence $c, d \in \text{WF}(\mathcal{C})$. By Δ_1 -absoluteness from \mathcal{C} down to WF(\mathcal{C}) and then up to the real universe V, one has that $d \in [R^c]$. Hence $c \models U$. By Fact 2.24, WF(\mathcal{B}) is an admissible set. c then belongs to an admissible set of ordinal height ω_1^y . By a result of Nadel (see [6] Section 2), c is a model of a terminal node of $\mathcal{MT}(T)$ (i.e. ω -categorical theory) on level no higher than $\omega_1^y + 1$. But $c \models U$ and U is an ω -categorical theory on level above $\omega_1^y + 1$. Contradiction.

Theorem 3.2. Let \mathscr{L} be a recursive language. Let $T \subseteq \mathscr{L}_{\omega_1,\omega}$ be a counterexample to Vaught's conjecture. Suppose there is a Δ_1^1 function $\Phi: S(\mathscr{L}) \to {}^{\omega}2$ which witnesses $E_T \leq_{\Delta_1^1} F_{\omega_1}$. Then there is some real z so that for all $\alpha \in \Lambda(z)$, $\alpha^+ \notin \Lambda(z)$.

Proof. This is [2] Theorem 6.9:

Let $z \in {}^{\omega}2$ be so that Φ is $\Delta_1^1(z)$ and $T \in L_{\omega_1^z}(z)$.

First, this result will be shown for any $\alpha \in \Lambda(z) \cap \omega_1$. By Schoenfield absoluteness, Φ continues to witness $E_T \leq_{\Delta_1^1} F_{\omega_1}$. Hence to conclude this theorem for all $\alpha \in \Lambda(z)$, one should apply the countable case to a $\operatorname{Coll}(\omega, \alpha)$ -extension.

So suppose there is some $\alpha \in \Lambda(z) \cap \omega_1$ so that $\alpha^+ \in \Lambda(z)$. Use Fact 2.22 to find three distinct terminal nodes A, B, and C on $\mathcal{MT}(T)$ on levels above $\alpha + 1$ and below α^+ . Let M, N, and P be some countable models of A, B, and C, respectively. Since Φ is a reduction of E_T to F_{ω_1} , there is at most one $X \in \{M, N, P\}$ so that $\omega_1^{\Phi(X)} = \alpha$. If such an X exists, then without loss of generality suppose X = P.

Claim: $\omega_1^{\Phi(M)} \ge \alpha^+$ and $\omega_1^{\Phi(N)} \ge \alpha^+$.

To prove the claim: Suppose $\omega_1^{\Phi(M)} < \alpha^+$. M and P are not isomorphic since A and C are distinct terminal nodes on the $\mathcal{MT}(T)$. Since Φ is a reduction and $\omega_1^{\Phi(P)} = \alpha$, $\omega_1^{\Phi(M)} \neq \alpha$. Since there are no admissible ordinals between α and α^+ , $\omega_1^{\Phi(M)} < \alpha$. Since A is a terminal node, for all $X \in S(\mathcal{L})$,

$$X \models A \Leftrightarrow X \cong M \Leftrightarrow \Phi(X) \in [\Phi(M)]_{F_{\omega_1}}$$
.

Using Fact 2.25, find some $y \in {}^{\omega}2$ so that $z \leq_T y$ and $\omega_1^y = \alpha$. Then $[\Phi(M)]_{F_{\omega_1}}$ is $\Delta_1^1(y)$ by Fact 2.26. This observation and the above, shows that $\{X \in S(\mathscr{L}) : X \models A\}$ is $\Sigma_1^1(y,z) = \Sigma_1^1(y)$. However, this contradicts Fact 3.1. This proves the claim.

By Fact 2.16, for all $\beta < \alpha^+$, $\mathcal{MT}(T) \upharpoonright \beta \in L_{\alpha^+}(z)$. Hence $A, B \in L_{\alpha^+}(z)$. Since Φ is $\Delta_1^1(z)$, let R be a z-recursive tree on $2 \times 2 \times \omega$ so that

$$\Phi(x) = y \Leftrightarrow (\exists f)(f \in [R^{(x,y)}])$$

Let \mathscr{J} be a language which is Δ_1 in $L_{\alpha^+}(z)$ consisting of:

- (i) A binary relation symbol $\dot{\in}$.
- (ii) For each $a \in L_{\alpha^+}(z)$, a new constant symbol \hat{a} .
- (iii) Six distinct constant symbols \dot{M} , \dot{N} , \dot{c} , \dot{d} , \dot{f} , and \dot{g} .

Let H be the theory in the countable admissible fragment $\mathscr{J}_{L_{\alpha^+}(z)}$ which is Σ_1 definable in $L_{\alpha^+}(z)$ consisting of the following sentences:

- (I) ZFC P.
- (II) For each $a \in L_{\alpha^+}(z)$, $(\forall v)(v \in \hat{a} \Leftrightarrow \bigvee_{b \in a} v = \hat{b})$.
- (III) $\dot{M}, \dot{N}, \dot{c}, \dot{d} \subseteq \hat{\omega}. \ \dot{f}, \dot{g}: \hat{\omega} \to \hat{\omega}.$

- (IV) $\dot{f} \in [R^{(\dot{M},\dot{c})}]$ and $\dot{g} \in [R^{(\dot{N},\dot{d})}]$.
- (V) $\dot{M} \models \hat{A}$ and $\dot{N} \models \hat{B}$.
- (VI) For each $\beta < \alpha^+$, β is not \dot{c} -admissible and β is not \dot{d} -admissible.

H is consistent: Let $f, g \in {}^{\omega}\omega$ so that $f \in [R^{(M,\Phi(M))}]$ and $g \in [R^{(N,\Phi(N))}]$. Let \mathcal{B} be the \mathscr{J} -structure defined by: The domain is $B = H_{\aleph_1}$. $\dot{\in}^{\mathcal{B}} = \in \upharpoonright H_{\aleph_1}$. $\dot{M}^{\mathcal{B}} = M$, $\dot{N}^{\mathcal{B}} = N$, $\dot{c}^{\mathcal{B}} = \Phi(M)$, $\dot{d}^{\mathcal{B}} = \Phi(N)$, $\dot{f}^{\mathcal{B}} = f$, $\dot{g}^{\mathcal{B}} = g$. $\mathcal{B} \models H$. Note that the claim is used to verify (VI).

By Fact 2.23, let $\mathcal{C} \models H$ so that $L_{\alpha^+}(z) \subseteq C$, WF(\mathcal{C}) is transitive, and WF(\mathcal{C}) \cap ON = α^+ . Let $M' = \dot{M}^{\mathcal{C}}$, $N' = \dot{N}^{\mathcal{C}}$, $c = \dot{c}^{\mathcal{C}}$, $d = \dot{d}^{\mathcal{C}}$, $f' = \dot{f}^{\mathcal{C}}$, and $g' = \dot{g}^{\mathcal{C}}$. Since all the objects above are either subsets of ω or functions from ω to ω , they all belong to WF(\mathcal{C}). By Fact 2.24, WF(\mathcal{C}) is an admissible set of ordinal height α^+ . Hence $\omega_1^c, \omega_1^d \leq \alpha^+$. By Δ_1 -absoluteness, each $\beta < \alpha^+$ is not c-admissible or d-admissible. Hence $\omega_1^c = \omega_1^d = \alpha^+$. By Δ_1 -absoluteness, $f' \in [R^{M',c}]$, $g' \in [R^{N',d}]$, $M' \models A$, and $N' \models B$. In particular $c = \Phi(M')$ and $d = \Phi(N')$. Thus $\omega_1^{\Phi(M')} = \omega_1^{\Phi(N')} = \alpha^+$. Therefore $\Phi(M')$ F_{ω_1} $\Phi(N')$. $\Phi(M') \models A$ and $\Phi(N') \models B$ implies that $\neg(M' \cong N')$. Thus $\neg(\Phi(M'))$ E_T $\Phi(N')$. Φ is not a reduction. Contradiction. \square

Corollary 3.3. In L and set-generic extensions of L, $\neg(E_T \leq_{\Delta_1^1} F_{\omega_1})$ whenever T is a counterexample to Vaught's conjecture.

Proof. For any real $z \in {}^{\omega}2$, $z \in L_{\beta}$ for some $\beta < \omega_1$. Above β , every admissible ordinal is z-admissible. Hence no real satisfying the condition of Theorem 3.2 can exists.

Given that $E_{\omega_1} \leq_{a\Delta_1^1} F_{\omega_1}$ holds if 0^{\sharp} exists and $\neg (E_{\omega_1} \leq_{a\Delta_1^1} F_{\omega_1})$ in set-generic extensions of L, a natural question is whether it is consistent (possible relative to some large cardinal axiom) that $E_T \leq_{\Delta_1^1} F_{\omega_1}$ where T is a counterexample to Vaught's conjecture. The following result is provable in ZFC:

Recall that an ordinal α is x-recursive inaccessible if and only if it is x-admissible and a limit of x-admissible ordinals.

Theorem 3.4. Let \mathscr{L} be a recursive language. Let $T \subseteq L_{\omega_1,\omega}$ be a counterexample to Vaught's conjecture. Suppose there is a $z \in {}^{\omega}2$ so that there is a countable z-recursively inaccessible ordinal α with $T \in L_{\alpha}(z)$ and $\mathcal{MT}(T)$ has two nodes on level α . Then there is no $\Delta_1^1(z)$ function $\Phi: S(\mathscr{L}) \to {}^{\omega}2$ witnessing $E_T \leq_{\Delta_1^1} F_{\omega_1}$.

Proof. Let A and B be two distinct theory on level α of $\mathcal{MT}(T)$. For $\gamma < \alpha$, let A_{γ} and B_{γ} be the unique node on level γ which A and B extends, respectively. For some $\beta < \alpha$, $A_{\beta} \neq B_{\beta}$. By Fact 2.16, for each $\gamma < \alpha$, $\mathcal{MT}(T) \upharpoonright \gamma \in L_{\alpha}(z)$. So $A_{\beta}, B_{\beta} \in L_{\alpha}(T)$. Let $M, N \in S(\mathcal{L})$ be so that $M \models A$ and $N \models B$. In particular, $M \models A_{\beta}$ and $N \models B_{\beta}$.

Since Φ is $\Delta_1^1(z)$, let R be a z-recursive tree on $2 \times 2 \times \omega$ so that

$$\Phi(x) = y \Leftrightarrow (\exists f) (f \in [R^{(x,y)}].$$

Let \mathscr{J} be a language which is Δ_1 in $L_{\alpha}(z)$ consisting of:

- (i) A binary relation symbol *\(\delta\)*.
- (ii) For each $a \in L_{\alpha}(z)$, a new constant symbol \hat{a} .
- (iii) Six distinct constant symbols M, N, \dot{c} , and \dot{d} , \dot{f} and \dot{g} .

Let H be the theory in the countable admissible fragment $\mathscr{J}_{L_{\alpha}(z)}$ which is Σ_1 -definable in $L_{\alpha}(z)$ consisting of the following sentences:

- (I) ZFC P
- (II) For each $a \in L_{\alpha}(z)$, $(\forall v)(v \in \hat{a} \Leftrightarrow \bigvee_{b \in a} v = \hat{b})$.
- (III) $\dot{M}, \dot{N}, \dot{c}, \dot{d} \subseteq \hat{\omega}. \ \dot{f}, \dot{g}: \hat{\omega} \to \hat{\omega}.$
- (IV) $\dot{f} \in [R^{\dot{M},\dot{c}}]. \ \dot{g} \in [R^{\dot{N},\dot{c}}].$
- (V) $M \models \hat{A}_{\beta}$ and $N \models \hat{B}_{\beta}$.
- (VI) For each $\gamma < \alpha$, γ is not \dot{c} -admissible and γ is not \dot{d} -admissible.

H is shown to be consistent like in Theorem 3.2. In the model used to show the consistency of H, \dot{c} and \dot{d} will be interpreted as M and N. Only the argument to show of (VI) is somewhat different than the situation in Theorem 3.2: (VI) would follow from that fact that $\omega_1^{\Phi(M)} \geq \alpha$ and $\omega_1^{\Phi(N)} \geq \alpha$. Suppose not, then $\omega_1^{\Phi(M)} < \alpha$. Since α is z-recursively inaccessible, there is some z-admissible ordinal γ so that $\omega_1^{\Phi(M)} < \gamma < \alpha$. Using Fact 2.25, find some $y \in {}^{\omega}2$ so that $z \leq_T y$ and $\omega_1^y = \gamma$. Let A_M be the terminal

node extending A for which M is the unique model of M up to isomorphism. A_M is on level α or higher of $\mathcal{MT}(T)$. Since Φ is a reduction, one has for all $X \in S(\mathscr{L})$

$$X \models A_M \Leftrightarrow X \ E_T \ M \Leftrightarrow \Phi(X) \in [\Phi(M)]_{F_{\omega_1}}.$$

Since $\omega_1^{\Phi(M)} < \gamma = \omega_1^y$, Fact 2.26 implies that $[\Phi(M)]_{F_{\omega_1}}$ is $\Delta_1^1(y)$. Hence $[M]_{E_T}$ is $\Delta_1^1(z,y) = \Delta_1^1(y)$. This contradicts Fact 3.1.

Let $\mathcal{C} \models H$, M', and N' be as in the proof of Theorem 3.2. As in that proof, $\omega_1^{\Phi(M')} = \omega_1^{\Phi(N')} = \alpha$. So $\Phi(M')$ F_{ω_1} $\Phi(N')$. However, $M' \models A_{\beta}$ and $N' \models B_{\beta}$. Hence M' and N' can not be isomorphic. So $\neg (M' E_T N')$. This contradicts Φ being a reduction.

Corollary 3.5. Suppose T is a non-minimal counterexample to Vaught's conjecture. Then $\neg (E_T \leq_{\Delta_1^1} F_{\omega_1})$.

Proof. Suppose Φ witnesses $E_T \leq F_{\omega_1}$. If T is a non-minimal counterexample to Vaught's conjecture. Let $z \in {}^{\omega}2$ be so that $T \in L_{\omega_1^z}(z)$ and Φ is $\Delta_1^1(z)$. $\mathcal{MT}(T)$ has two distinct nodes U and V on some level γ which are unbounded below ω_1 . Let α be any z-recursive ordinal greater than γ . Since U and V are both unbounded below ω_1 , there must be U' and V' on level α which extends U and V. Then this contradicts Theorem 3.4.

A natural question is whether it is consistent assuming large cardinals and there exist counterexamples to Vaught conjecture T and some real z so that all the z-recursively inaccessible levels of $\mathcal{MT}(T)$ has only one node. Montalbán informed the author that this is possible using Turing determinacy. The following is an argument using sharps.

Fact 3.6. Suppose T is a minimal counterexample to Vaughts conjecture. Suppose $T \in L_{\gamma}(z)$, for some countable ordinal γ , and z^{\sharp} exists. Then $\mathcal{MT}(T)$ has a unique node on each z^{\sharp} -admissible level above γ .

Proof. Let $\Psi(\alpha)$ be the statement

$$1_{\operatorname{Coll}(\omega,\alpha)} \Vdash_{\operatorname{Coll}(\omega,\alpha)} \check{T}$$
 is uniquely-unbounded below $\check{\alpha}$.

Since T is a minimal counterexample to Vaught's conjecture, $\psi(\omega_1)$ holds. Since $\mathcal{MT}(T) \subseteq L(z)$ by Fact 2.16 and by absoluteness, $L(z) \models \psi(\omega_1^V)$. However ω_1^V is a Silver's indiscernible for L(z). Therefore, for any Silver indiscernible α for L(z) above γ , $L(z) \models \psi(\alpha)$. All z^{\sharp} -admissible ordinals are Silver's indiscernibles for L(z). Hence for all z^{\sharp} -admissible ordinals above γ , $L(z) \models \psi(\alpha)$. Then by absoluteness, T is uniquely-unbounded below α for each countable z^{\sharp} -admissible ordinal above γ . This implies for all z^{\sharp} -admissible ordinal above γ , $\mathcal{MT}(T)$ has a unique node on level α .

This result seems to suggests that perhaps if T is a minimal counterexample in L and 0^{\sharp} exists, then $E_T \leq_{\Delta_1^1} F_{\omega_1}$ may be possible.

Question 3.7. If T is a minimal counterexample to Vaught's conjecture in L and 0^{\sharp} exists, then does $E_T \leq_{\Delta_1^1} F_{\omega_1}$ hold?

References

- Jon Barwise, Admissible sets and structures, Springer-Verlag, Berlin-New York, 1975, An approach to definability theory, Perspectives in Mathematical Logic. MR 0424560 (54 #12519)
- William Chan, The countable admissible ordinal equivalence relation, Ann. Pure Appl. Logic 168 (2017), no. 6, 1224–1246.
 MR 3628272
- 3. R. Björn Jensen, Admissible sets, http://www.mathematik.hu-berlin.de/~%20raesch/org/jensen.html.
- 4. H. Jerome Keisler, Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers, North-Holland Publishing Co., Amsterdam-London, 1971, Studies in Logic and the Foundations of Mathematics, Vol. 62. MR 0344115
- 5. Gerald E. Sacks, Countable admissible ordinals and hyperdegrees, Advances in Math. 20 (1976), no. 2, 213–262. MR 0429523 (55 #2536)
- 6. ______, Bounds on weak scattering, Notre Dame J. Formal Logic 48 (2007), no. 1, 5–31. MR 2289894
- Jindřich Zapletal, Reducibility invariants in higher set theory, http://people.clas.ufl.edu/zapletal/files/turbulence7. pdf.

Department of Mathematics, California Institute of Technology, Pasadena, CA 91125 E-mail address: wcchan@caltech.edu