

MITx: 14.310x Data Analysis for Social Scientists

Heli

Bookmarks

- Module 1: The Basics of R and Introduction to the Course
- Entrance Survey
- Module 2: Fundamentals of Probability, Random Variables, Distributions, and Joint Distributions
- Module 3: Gathering and Collecting Data, Ethics, and Kernel Density Estimates
- Module 4: Joint,
 Marginal, and
 Conditional
 Distributions &
 Functions of Random
 Variable

Module 9: Single and Multivariate Linear Models > The Linear Model > Comparative Statics - Quiz

Comparative Statics - Quiz

☐ Bookmark this page

Question 1

1/1 point (graded)

If the error variance (σ^2) of our estimates is larger, we can estimate the linear relationship between Y and X more precisely.

- a. True
- b. False

Explanation

A higher error variance means that the variance of our $\hat{\beta}$ s is higher, meaning that we should be less sure of our estimates. This means we should have less confidence in our ability to estimate the linear relationship precisely.

Submit

You have used 1 of 1 attempt

- Module 5: Moments of a Random Variable,
 Applications to Auctions,
 Intro to Regression
- Module 6: Special
 Distributions, the
 Sample Mean, the
 Central Limit Theorem,
 and Estimation
- Module 7: Assessing and Deriving Estimators - Confidence Intervals, and Hypothesis Testing
- Module 8: Causality,
 Analyzing Randomized
 Experiments, &
 Nonparametric
 Regression
- Module 9: Single and Multivariate Linear Models

The Linear Model

due Nov 28, 2016 05:00 IST

Question 2

1/1 point (graded)

Greater variance in $X(\sigma_x^2)$ means greater variance in our estimates $\hat{\beta}$.

a. True

b. False

Explanation

As the variance in X decreases, the variance in our estimates increases because we don't have a lot of variation in X to identify the effect we are interested in. Remember that the limit (when there is no variance in X), we cannot estimate the linear regression coefficients $\hat{\beta}$ at all.

Submit

You have used 1 of 1 attempt

✓ Correct (1/1 point)

Question 3

1/1 point (graded)

The Multivariate Linear Model

due Nov 28, 2016 05:00 IST

Module 9: Homework due Nov 21, 2016 05:00 IST

- Module 10: Practical
 Issues in Running
 Regressions, and
 Omitted Variable Bias
- Exit Survey

Professor Ellison discusses a mechanical relationship between the two estimates β_0 and β_1 . Which of the following is true about the relationship between \bar{X} , estimates of β_0 and β_1 ?

- lacksquare a. If $ar{X}>0$, an overestimate of $\hat{eta_0}$ will likely lead to an overestimate of $\hat{eta_1}$.
- $^{f arphi}$ b. If ar X>0, an underestimate of \hateta_0 will likely lead to an overestimate of \hateta_1 .
- $^{\square}$ c. If $ar{X}>0$, an underestimate of $\hat{eta_0}$ will likely lead to an underestimate of $\hat{eta_1}$.
- ullet d. If $ar{X}>0$, an overestimate of \hat{eta}_0 will likely lead to an underestimate of \hat{eta}_1 .

Explanation

We know that $\hat{\beta}_0$ and $\hat{\beta}_1$ are related as follows: $\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$. Therefore, if we overestimate or underestimate the intercept β_0 , then the slope β_1 will have to make up for it (by doing the opposite).

Submit

You have used 1 of 2 attempts

Correct (1/1 point)

Discussion

Show Discussion

Topic: Module 9 / Comparative Statics - Quiz

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

