MIE-ARI (Computer arithmetics)

Pavel Kubalík
Department of Digital Design
Faculty of Information Technology
Czech Technical University in Prague

Introduction I.

- Ing. Pavel Kubalík, Ph.D.
- Office Room: A-1037
- Email: <u>Pavel.Kubalik@fit.cvut.cz</u>
- Research Interests
 - Fault-tolerant design in FPGA
 - Digital design
 - Self testing circuits based on FPGA
 - HW design of networks
 - High-speed wireless networks

Introduction II.

- Course type: 2+1, (lecture+ seminar), course end: assessment + exam
- Lecture: ones per two weeks
- Seminar: every week
- Assessment:
 - homeworks (50 points), minimum is 25 points
- Exam:
 - Test (50 points). (A, B, C, D, E, F)

Motivation

- Arithmetic
 - Every common processor
 - Used in telecommunication
 - Used in embedded processor
 - Data processing (hardware and software)
 - Used in Cryptography

Literature

- Computer Arithmetic
 - Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, 1999.
 ISBN 0195125835.
 - Koren, I.: Computer Arithmetic Algorithms (2nd edition). A K Peters, 2001. ISBN 1568811608.
 - Muller, J. M.: Elementary Functions: Algorithms and Implementation (2nd edition). Birkhäuser Boston, 2005. ISBN 0817643729.

First Lecture contents - Recapitulation

 Recapitulation of previous courses (BIE-CAO = Digital and Analog Circuits, BIE-SAP = Computer Structures and Architectures, BIE-JPO=Computer units) – lecture + tutorial

Lecture contents

- Introduction and recapitulation.
- Number systems and basic operations.
- Decimal codes.
- Multiplication I.
- Division I.
- Floating point.
- Problem with carry and its accelerating.
- Multiplication II.
- Division II.
- Elementar functions I.
- Elementar functions II.
- Non standard number system.

Specification levels

- Behavioral (functional) specification
 - Black-box view: describes what is the function of the device (input – output dependence),
 - device implementation is not included.
- Structure specification
 - white-box view: describes the device implementation (interconnection of building elements).
- Physical specification
 - describes physical properties of each partial block (size, power consumption, propagation delays, voltage ranges, available temperature limits,....).

BIE-SAP: Jiří Douša, Hana Kubátová

Abstraction levels of various views of digital devices

Abstraction Levels	Functional Description	Structure Description	Physical Description
Transistor Level	Differential equation, transistor volt-ampere characteristics.	Transistors, resistances.	Analog and digital cells; layout.
Gate Level	Boolean equation, finite automaton.	Gates, flip-flops	Module, blocks.
Register Level	Algorithm, flow- chart, set of functions (load, increment,)	Adders, registers, comparators.	Microchips.
System Level	Functional specification, programs.	Processor, memories, convertors,	Printed circuit boards, systems on chip, racks.

BIE-SAP: Jiří Douša, Hana Kubátová

INV (NOT)

$$\overline{A} = Y$$

Α	Υ
0	1
1	0

AND

$$AB = A\&B = Y$$

Α	В	Υ
0	0	0
0	1	0
1	0	0
1	1	1

OR

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	1

XOR

$$A + B = Y$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Multiplexor

$$AS + B\overline{S} = Y$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

Register, flip-flop (D type)

D	CLK	Q _{i-1}	Q _i
0	0/1	0	0
1	0/1	1	1
0	<u>_</u>	х	0
1	<u>_</u>	х	1

 $Q_i \le D$ when rising edge of clk else Q_{i-1}

Gate level - other functions

- INV, AND, OR, NOR, XOR, Register, Multiplexor
- NAND, NOR, XNOR,

Used conventions

z number system radix (base of radix system)

n most significant position

• -m least significant position

• $Z = z^{n+1}$ format module

• $\varepsilon = z^{-m}$ format unit

MSB most significant bit

• LSB least significant bit

over overflow

Binary digit system

- radix (base) r = 2 number record is a sequence of binary digits (zeroes or ones)
- Example:

$$v_i \dots 2^4 \ 2^3 \ 2^2 \ 2^1 \ 2^0 \ 2^{-1} \ 2^{-2} \ 2^{-3}$$

$$1 \ 0 \ 0 \ 1 \ 1, \ 1 \ 0 \ 1_2$$

$$v (A) = 2^4 + 2 + 1 + 1/2 + 1/8 = 19,625$$

this is decimal value of the number

 there are separate methods for converting the integer part and the fractional part of a number

Conversion of number integer part (from decimal to binary)

 repeated dividing of the integer part of the number by radix 2 and putting together all remainders

Note: remainders are recorded in opposite order

Conversion of number fractional part (from decimal to binary)

repeated multiplying of the fractional part of the number by radix 2

Example: convert the number 0,6562510 into the binary system.

Examples of number conversion

- 1. 11010001,11₂
- 2. 1111111₂
- 3. 1,011001₂
- 4. 147,15625₁₀
- 5. 1345,125₁₀

- → 209,75₁₀
- \rightarrow 127₁₀
- → 1,390625₁₀
- \rightarrow 1001 0011,0010 1₂
- \rightarrow 101 0100 0001,001₂

Most important values of power of 2

n	2 ⁿ	Dec.
0	20	1
1	2 ¹	2
2	2 ²	4
3	2 ³	8
4	24	16
5	2 ⁵	32
6	2 ⁶	64
7	2 ⁷	128

n	2 ⁿ	Dec.
8	2 ⁸	256
9	2 ⁹	512
10	2 ¹⁰	1 024
11	211	2 048
12	212	4 096
13	2 ¹³	8 192
14	214	16 384
15	2 ¹⁵	32 768
16	2 ¹⁶	65 536

n	2 ⁿ	Dec.
20	2 ²⁰	1 M
30	2 ³⁰	1 G
32	2 ³²	4 G
40	2 ⁴⁰	1 T
-1	2-1	0,5
-2	2 -2	0,25
-3	2-3	0,125
-4	2-4	0,0625

This is very useful to remember!

Binary addition

• Basic principle:

sum of two one-digit numbers:

Carry to the higher order.

Example: adding binary numbers 0101₂ and 1110₂.

$$\begin{array}{r} 0101 \\ + 1110 \\ \hline 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{array}$$

The carry generated during adding digits of the order i is added to digits of the order (i+1).

Note: addition of two n-digit numbers can produce (n+1)-digit number.

Signed numbers

1. sign and magnitude	P(X)
2. radix complement	D(X)
– 2's complement z = 2	
10's complement z = 10	
3. diminished radix complement	I(X)
1's complement z = 2	
9's complement z = 10	
4. biased code	A(X)

Sign and magnitude code

$$P(X) = \begin{cases} X & for X \ge 0 \\ 2^n + |X| & for X < 0 \end{cases}$$

$$-\frac{1}{2}Z < X < \frac{1}{2}Z$$
 symmetric range

$$MSB = 0 \leftrightarrow X \ge 0$$

 $MSB = 1 \leftrightarrow X < 0$

Sign bit=
$$\begin{cases} 0 & for X \ge 0 \\ 1 & for X \le 0 \end{cases}$$

2 zero representations (positive and negative)

Sign and magnitude - example

\boldsymbol{X}	$\mathcal{P}(X)$
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-0	1000
-1	1001
-2	1010
-3	1011
-4	1100
-5	1101
-6	1110
-7	1111

Biased code – type 0

$$A_0(X) = X + \frac{1}{2}Z$$

$$-\frac{1}{2}Z \le X < \frac{1}{2}Z$$
 asymmetric range

$$MSB = 1 \leftrightarrow X \ge 0$$

$$MSB = 0 \leftrightarrow X < 0$$

$$A_0(X) \equiv D(X) \; (\; mod \; \frac{1}{2}Z \;)$$

Biased code type 0 – example

X	$\mathcal{A}_{0}(X)$
-8	0000
-7	0001
-6	0010
-5	0011
-4	0100
-3	0101
-2	0110
-1	0111
0	1000
1	1001
2	1010
3	1011
4	1100
5	1101
6	1110
7	1111

2's complement code

$$D(X) = \begin{cases} X, & X \ge 0 \\ Z + X = Z - |X|, & X < 0 \end{cases}$$

$$-\frac{1}{2}Z \le X < \frac{1}{2}Z \qquad \text{asymmetric range}$$

$$MSB = 0 \leftrightarrow X \ge 0$$

 $MSB = 1 \leftrightarrow X < 0$

$$MSB = 1 \leftrightarrow X < 0$$

$$D(X) \equiv X \pmod{Z}$$

2's complement code - example

z=2:

\boldsymbol{X}	$\mathcal{D}(X)$
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111

Opposite value in 2's complement code

- Algorithm:
 - 1. Record the number in binary system.
 - 2. Negate all number bits.
 - 3. Add the value 1 ("hot one")
- Example: Compute image of the number -5 $(r = 2, M = 16, \epsilon = 1)$.

Subtraction of signed numbers 2's complement code

- Solution:
 - addition of opposite number
- Example:
 - compute difference of following numbers: 10_{10} 6_{10}

$$6_{10} = 00110_2$$

 $10_{10} = 01010_2$

$$-6_{10} = 11010_2$$

$$-6_{10} = 11010_2$$

 $+10_{10} = 01010_2$

$$4_{10} = {}^{1}00100_{2}$$