Coherent thermodynamics beyond first-order asymptotics

Kamil Korzekwa

Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Poland

Outline

- I. Statement of the problem
- II. Motivation
- III. How we solve it
- IV. Results
- V. Summary

Patryk Lipka-Bartosik University of Geneva

Joe Renes ETH Zurich

Marco Tomamichel
National University of Singapore

Christopher Chubb ETH Zurich

Statement of the problem

Thermodynamic transformations modelled by **thermal operations***:

$$\mathcal{E}^{\mathbf{T}}(\cdot) = \operatorname{Tr}_{B'}\left(U\left(\cdot \otimes \gamma_{\mathbf{B}}\right) U^{\dagger}\right) \quad \text{with} \quad [U, H + H_B] = 0$$

Thermal bath γ_B

Hamiltonian: H_B

Hamiltonian: H

Hamiltonian: H'

Gibbs state γ of the system at temperature T:

$$\gamma = e^{-\frac{H}{T}}/\mathcal{Z}, \quad \mathcal{Z} = \operatorname{Tr}\left(e^{-\frac{H}{T}}\right)$$

Note: all results with units such that $k_B = 1$.

*M. Horodecki, J. Oppenheim Nature Commun. 4, 2059 (2013)

Statement of the problem

State interconversion:

Initial state ρ , target state σ , background temperature T

Single-shot interconversion: Does there exist \mathcal{E}^T such that $\mathcal{E}^T(\rho) = \sigma$?

(large but finite n)

Many-copies interconversion: Does there exist \mathcal{E}^T such that $\mathcal{E}^T(\rho^{\otimes n}) \approx_{\epsilon} \sigma^{\otimes R_n n}$?

Optimal rate R_n for error ϵ ?

Incoherent interconversion:

$$[\rho, H] = [\sigma, H'] = 0$$

(states represented by: $\mathbf{p} = \operatorname{eig}(\mathbf{p}), \ \mathbf{q} = \operatorname{eig}(\mathbf{\sigma})$)

$$[\gamma, H] = 0$$

(thermal state represented by: $\gamma = eig(\gamma)$)

Motivation

Thermodynamic protocols are various instances of state interconversion problem

Work extraction

Thermodynamically-free communication

Information erasure

Motivation

Coherent thermo beyond 1st order asymptotics

Asymptotic rate for
$$n \to \infty^*$$
: $R_{\infty}(\rho \to \sigma) = \frac{D(\rho \| \gamma)}{D(\sigma \| \gamma)}$

Relative entropy: $D(\rho || \gamma) := \text{Tr} (\rho (\log \rho - \log \gamma))$

Physical $\frac{1}{T} \left[\langle E \rangle_{\rho} - TS(\rho) - (-T \log \mathcal{Z}) \right]$ interpretation:

> Free energy F = U - TS

Free energy of γ

First-order asymptotics (thermodynamic limit): No dissipation of free energy!

> *F. Brandão et al., Phys. Rev. Lett. 111, 250404 (2013)

How we solve it

Incoherent interconversion completely described by **thermomajorisation***:

Lorenz curve segments for the initial state p:

Lorenz curve segments for the target state q:

Form convex Lorenz curves

Interconversion possible iff the initial curve is always above the target curve

*M. Horodecki, J. Oppenheim Nature Commun. 4, 2059 (2013)

How we solve it

Consider a coherent qubit state: $\rho = \begin{pmatrix} p & c \\ c^* & 1-p \end{pmatrix}$

Then, dephasing many copies means:

Incoherent state

$$\rho^{\otimes 3} = \begin{pmatrix} k=0 \\ k=1 \\ k=2 \\ k=3 \end{pmatrix} \xrightarrow{\text{Each block can be diagonalised with}} \begin{pmatrix} \lambda_0^1 \\ \lambda_1^1 \\ \lambda_1^2 \\ \lambda_1^2 \\ \lambda_2^2 \\ \lambda_2^2 \\ \lambda_3^3 \end{pmatrix} =: \boldsymbol{\lambda}$$

As $n \to \infty$ such dephasing pre-processing "kills" only $O(\log n)$ of free energy! (proof using hypothesis testing approach to the interconversion problem)

Results

Optimal conversion rate R_n with constant error ϵ :

Reversibility parameter:

$$R_n(\epsilon) = R_{\infty} + \sqrt{\frac{V(\rho \| \gamma)}{D(\sigma \| \gamma')^2}} \frac{S_{\nu}^{-1}(\epsilon)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$$

$$\nu = \frac{V(\sigma||\gamma)/D(\sigma||\gamma)}{V(\rho||\gamma)/D(\rho||\gamma)}$$

Relative entropy variance:

$$V(\rho \| \gamma) := \operatorname{Tr}\left(\rho \left(\log \rho - \log \gamma\right)^{2}\right) - D(\rho \| \gamma)^{2}$$

Inverse of sesquinormal distribution: $S_{\nu}^{-1}(\epsilon) = \inf_{x \in (\epsilon,1)} \sqrt{\nu} \Phi^{-1}(x) - \Phi^{-1}(x - \epsilon)$

Limiting cases:
$$S_0^{-1}(\epsilon) = \lim_{\nu \to \infty} \frac{1}{\sqrt{\nu}} S_{\nu}^{-1}(\epsilon) = \Phi^{-1}(\epsilon)$$
 $S_1^{-1}(\epsilon) = 2\Phi^{-1}\left(\frac{1+\epsilon}{2}\right)$

Results

Optimal conversion rate R_n with constant error ϵ :

$$R_n(\epsilon) = R_{\infty} + \sqrt{\frac{V(\rho \| \gamma)}{D(\sigma \| \gamma')^2}} \frac{S_{\nu}^{-1}(\epsilon)}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)$$

Optimal performance of thermodynamic protocols employing interference effects:

Extractable work:
$$w \simeq \frac{1}{\beta} \left(D(\rho \| \gamma) + \sqrt{\frac{V(\rho \| \gamma)}{n}} \Phi^{-1}(\epsilon) \right)$$

Work cost of information erasure:
$$w_{\rm cost} \simeq \frac{1}{\beta} \left(S(\rho) - \sqrt{\frac{V(\rho)}{n}} \Phi^{-1}(\epsilon) \right)$$

Coherent thermo beyond 1st order asymptotics

Number of bits that can be communicated without a thermodynamic cost:

$$\frac{\log M(\rho^{\otimes n}, \epsilon)}{n} \simeq D(\rho \| \gamma) + \sqrt{\frac{V(\rho \| \gamma)}{n}} \Phi^{-1}(\epsilon),$$

Results

Predicting coherent resonance phenomenon:

Recall reversibility parameter:

$$\nu = \frac{V(\sigma \| \gamma) / D(\sigma \| \gamma)}{V(\rho \| \gamma) / D(\rho \| \gamma)}$$

Transformation with the asymptotic rate

Summary

- Asymptotic analysis for transformation of quantum dichotomies
- Second-order analysis in all error regimes for trace distance
- Tight for general non-commuting inputs in all-but-one regime
- Opens door to study role of coherence in resource theories like thermodynamics
- New (much faster!) derivation for entanglement transformations

Thank you!