OS_페이지 교체 알고리즘

페이지 교체 알고리즘

- FIFO
- OPT
- LRU

FIFO (First In First Out)

메모리에 먼저 로드된 페이지를 먼저 내보낸다(victim으로 선택한다)

- Simplest
 - o idea: 초기화 코드는 더 이상 사용되지 않을 것
- 예제
 - 페이지 참조열 70120304230321201701
 - o number of frames = 3 (메모리 프레임 3개)
 - o 15 page faults

- 裙 Power on ⇒ 번메외烙肌,
- Q 国内对整理=7 当 UMEU NENEL Page fault 발생 => 計红型的份 page TX phru
 (Page fault (count=1) 时空间 定 및 phru
- ② 图的外弦型 = 0 → 메配的 Se, page fault 性似 (page fault count = 2)
- ③ 正的以处理=1 => 如即的 智多, PF 好以 (PF count == 3)
- ④ 斯山 对望2 ⇒ 메配的器, PF 발ky (pr count = 4), 마配斯 1 tonic 2 器(FIFO) =

:

실제 프레임은 위 표의 같이 오래된 가는 아래쪽으로 밀리지 않는데다!! 가장 먼저로드된 도비지 변환 찾기 편하도록 표현하기 위해 규처임 나타면 꼬빕니다.

- Belady's Anomaly
 - 프레임 수 (= 메모리 용량) 증가에 PF(page fault) 회수 증가?

OPT (Optimal)

- 규칙: 가장 오랫동안 쓰이지 않을 페이지를 victim으로 선택 => page fault가 가장 적다
- 예제
 - 페이지 참조열: 70120304230321201701
 - ㅇ 프레임수: 3
 - o page fault: 9

				_	_	_					_			1			_	_		
page	η	0	ı	2	0	3	0	4	2	3	0	3	2	1	2	٥	1	ク	D	1
Frame	٦	ገ	٦	2	2	2	2	2	1	2	2	2	2	2	2	٧	7	η	1	ካ
		0	0	o	0	۵	o	4	4	4	0	0	0	o	o	0	ρ	0	٥	0
			ι	ı	{	ტ	3	3	3	3	3	3	3	l	ı	١	(l	١	
₽F	0	ø	б	0	χ	0	¥	0	¥	Ϋ́	0	X	X	0	X	Х	X	0	χ	χ
日 Page 三 短										Fl page 4201 /Urbs	계		४1-출X 3€०1				사용			

P: 44:9

- Unrealistic => 뒤에 오는 page(미래) 알수 없음
 - o cf) SJF CPU 스케줄링 알고리즘 (shortest job first) => 어떤 작업이 얼마나 걸릴지 모름, 비현 실적

LRU (Least Recently Used)

- 규칙: 가장 오랫동안 사용되지 않은 페이지를 victime으로 선택
 - o idea: 쵝ㄴ에 사용되지 않으면 나중에도 사용되지 않을 것
- 예제
 - 페이지 참조열: 70120304230321201701
 - 프레임수: 3page fault: 12

Dag 2			,					,,	,	,			اء	١,	2	٥	,	2	0	
page	η	0	1	2	0	3	0	4	2	3	٥	3	2	1	_	۳	<u> </u>	 ′	۳	,
Frame	٣	ь	ı	2	0	3	0	4	2	3	0	3	2	1	2	o	1	٦	0	(
		η	٥	(2	0	3	Q	4	2	3	0	3	2	ı	2	Q	ı	٦	٥
			٦	0	١	2	2	3	0	4	2	2	0	3	3	(2	0	i	٦
ÞF	0	ø	0	ļ	X	0	χ	0	o	0	0	X	×	0	¥	0	ታ	ซ	¥	Υ
nol 48年2日 の かり からとがら 3元4名 いでででいって 1 かまらなり スペンという いではいこ 1																				
					,	sioti	m=													

Global vs Local Replacement

- Global Replacement
 - ㅇ 메모리 상의 모든 프로세스 페이지에 대해 교체

- Local Replacement
 - ㅇ 메모리 상의 자기 프로세스 페이지에 대해 교체
- 성능 비교
 - ㅇ Global replacement가 더 효율적일 수 있다.