52

Appendix C. Online Appendix

Table C.1: Regression Results

			Dep	pendent varia	ble:			
		pre-	financialisation perio	od	fina	ancialisation peri	od	
	$h_{Wheat\ 1}$	$h_{Wheat\ 2}$	$h_{Wheat \beta}$	$h_{Wheat 4} h$	Wheat 1	$h_{Wheat\ 2}$	h Wheat 3 h	Wheat 4
$\Upsilon_1 h_{S \& P 500}$	0.00001 (0.0001)	-0.151 (0.100)	-0.054 (0.033)	-0.204** (0.100)	0.105** (0.052)	0.116** (0.054)	0.112** (0.051)	0.127** (0.055)
Υ_0	-0.00000** (0.00000)	** -0.00000 (0.0002)	0.00001 (0.0001)	-0.00001 (0.0002)	-0.00001 (0.0001)	-0.00001 (0.0001)	-0.00001 (0.0001)	-0.00001 (0.0001)
Observations R^2 Adjusted R^2	572 0.0001 -0.002	572 0.004 0.002	572 0.004 0.003	572 0.007 0.006	833 0.005 0.004	833 0.005 0.004	833 0.006 0.005	833 0.006 0.005

This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during pre-Note:financialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h and Wheatrepresent coefficient of equities' conditional volatility, conditional volatility and wheat futures contract respectively.***,**, and * denote statistical significance at 1%, 5%, and 10% level.

Table C.2: Regression Results

				$Dependent\ va$	riable:			
		pre-	financialisation pe	riod	fina	ancialisation per	riod	
h	KC Wheat h 1	KC Wheat 2	h KC Wheat 3	$h_{KC\ Wheat}h_{K}$	KC Wheat 1	h KC Wheat 2	h KC Wheath A	KC Wheat 4
$\Upsilon_1 h_{S \& P 500}$	-0.107	-0.072	-0.032	-0.047	0.055**	0.078**	0.090**	0.120**
	(0.079)	(0.056)	(0.044)	(0.059)	(0.028)	(0.037)	(0.043)	(0.054)
Υ_0	0.00000	0.00000	0.00001	-0.00001	0.00000	0.00000	0.00000	0.00000
	(0.0002)	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0001)
Observations	572	572	572	572	833	833	833	833
\mathbb{R}^2	0.003	0.003	0.001	0.001	0.005	0.005	0.005	0.006
Adjusted R ²	0.001	0.001	-0.001	-0.001	0.004	0.004	0.004	0.005

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h and KCwheat represent coefficient of equities' conditional volatility, conditional volatility and Kansas City wheat futures contract respectively.***,**, and * denote statistical significance at 1%, 5%, and 10% level.

54

Appendix C. Online Appendix

Table C.3: Regression Results

				$Dependent \ va$	riable:			
		pre-f	inancialisation period	financialisation period				
	h $_{Corn\ 1}$	h Corn 2	$h_{Corn\ 3}$	$h_{Corn~4}$	$h_{\ Corn\ 1}$	$h_{Corn\ 2}$	$h_{Corn\ 3}$	h Corn 4
$\Upsilon_1 h_{S\&P500}$	0.014	-0.021	-0.00001	-0.00000	0.199***	0.184***	0.156***	0.145***
	(0.096)	(0.061)	(0.0001)	(0.00001)	(0.063)	(0.055)	(0.042)	(0.034)
Υ_0	-0.00000	-0.00000	0.00000***	-0.00000***	-0.00001	-0.00001	-0.00001	-0.00001
	(0.0002)	(0.0001)	(0.00000)	(0.00000)	(0.0001)	(0.0001)	(0.0001)	(0.0001)
Observation	s 572	572	572	572	833	833	833	833
\mathbb{R}^2	0.00004	0.0002	0.00004	0.00000	0.012	0.013	0.016	0.021
Adjusted R ²	-0.002	-0.002	-0.002	-0.002	0.011	0.012	0.015	0.020

Note: This table represents OLS regressions $h_{j,t}=\Xi_0+\Xi_1h_{S\&P500}+\vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ, h and Corn represent coefficient of equities' conditional volatility, conditional volatility and corn futures contract respectively.***,***, and * denote statistical significance at 1%, 5%, and 10% level.

Table C.4: Regression Results

				Dependent vo	ıriable:			
		pre-	financialisation period		fina	ncialisation peri	od	
	h Soybean 1 h Soybean 2 h Soybean 3			h Soybean 4	h _{Soybean 1}	h Soybean 2	h Soybean 3 h	Soybean 4
$\Upsilon_1 h_{S \otimes P 500}$	-0.123*	-0.067	-0.0001	-0.00002	0.172**	0.129**	0.132***	0.130***
	(0.074)	(0.050)	(0.0001)	(0.00001)	(0.087)	(0.051)	(0.051)	(0.041)
Υ_0	-0.00000	0.00000	0.00000***	0.00000**	* -0.00001	-0.00001	-0.00001	-0.00001
	(0.0002)	(0.0001)	(0.00000)	(0.00000)	(0.0002)	(0.0001)	(0.0001)	(0.0001)
Observation	ıs 572	572	572	572	833	833	833	833
\mathbb{R}^2	0.005	0.003	0.004	0.003	0.005	0.008	0.008	0.012
Adjusted R ⁵	2 0.003	0.001	0.002	0.001	0.003	0.006	0.007	0.011

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h and Soybean represent coefficient of equities' conditional volatility, conditional volatility and soybean futures contract respectively.***,***, and * denote statistical significance at 1%, 5%, and 10% level.

56

Note:

Appendix C. Online Appendix

Table C.5: Regression Results

			De	ependent varia	ble:			
		pre-	financialisation per	iod	fina	ancialisation per	iod	
	h Soybean oil 1	h Soybean oil 2	h Soybean oil 3	h Soybean oil h	Soybean oil 1	$h_{Soybean\ oil\ 2}$	h Soybean oil & S	Soybean oil 4
$\Upsilon_1 h$ supsoo	-0.00000 (0.00000)	-0.00001 (0.00001)	-0.0001 (0.0001)	-0.077 (0.047)	0.065*** (0.021)	0.069*** (0.021)	0.068*** (0.020)	0.071*** (0.020)
Υ_0	0.00000*** (0.000)	0.00000*** (0.00000)	0.00000*** (0.00000)	-0.00000 (0.0001)	-0.00000 (0.00005)	-0.00000 (0.00005)	-0.00000 (0.00005)	-0.00000 (0.00005)
Observations R^2 Adjusted R^2	0.003	572 0.003 0.001	572 0.003 0.001	572 0.005 0.003	833 0.011 0.010	833 0.013 0.012	833 0.014 0.012	833 0.015 0.013

This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h and Soybeanoil represent coefficient of equities' conditional volatility, conditional volatility and soybean oil futures contract respectively.***,**, and * denote statistical significance at 1%, 5%, and 10% level.

Table C.6: Regression Results

			Depe	endent variable:		
		pre-f	inancialisation peri	iod		financialisation period
	h Oats 1	h Oats 2	$h_{Oats\ 3}$	$h_{Oats\ 1}$	h Oats 2	$h_{Oats\ 3}$
$\Upsilon_1 h_{S\&P500}$	0.171*	0.130	0.098	0.004	0.022	0.031**
	(0.090)	(0.111)	(0.078)	(0.005)	(0.014)	(0.014)
Υ_0	-0.00001	-0.00001	-0.00001	-0.00000	-0.00001	-0.00001
	(0.0002)	(0.0002)	(0.0001)	(0.00001)	(0.00003)	(0.00003)
Observations	5 572	572	572	833	833	833
\mathbb{R}^2	0.006	0.002	0.003	0.001	0.003	0.006
Adjusted R ²	0.005	0.001	0.001	-0.001	0.002	0.005

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h and Oats represent coefficient of equities' conditional volatility, conditional volatility and oats futures contract respectively.***,** and * denote statistical significance at 1%, 5%, and 10% level.

 ∞

Appendix C. Online Appendix

Table C.7: Regression Results

				$Dependent \ vo$	riable:			
		pre	-financialisation pe	riod	fir	ancialisation per	iod	
h	MPLS Wheat h	MPLS Wheat 2	$h_{MPLS\ Wheat\ 3}$	h MPLS Wheath	MPLS Wheat 1	$h_{MPLS\ Wheat\ 2}$	h MPLS Wheath	MPLS Wheat 4
$\Upsilon_1 h_{SP500}$	-0.075	-0.055	-0.035	-0.019	0.154*	0.189**	0.197**	0.216**
	(0.059)	(0.060)	(0.057)	(0.050)	(0.083)	(0.089)	(0.088)	(0.087)
Υ_0	0.00000	0.00001	0.00000	0.00000	-0.00000	-0.00000	-0.00000	-0.00001
	(0.0002)	(0.0002)	(0.0002)	(0.0001)	(0.0002)	(0.0002)	(0.0002)	(0.0002)
Observation	s 463	463	463	463	749	749	749	749
\mathbb{R}^2	0.004	0.002	0.001	0.0003	0.005	0.006	0.007	0.008
Adjusted R	0.001	-0.0004	-0.001	-0.002	0.003	0.005	0.005	0.007

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during pre-financialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and MPLSwheat represent coefficient of equities' conditional volatility, conditional volatility, and Minneapolis wheat futures contract respectively.***,***, and * denote statistical significance at 1%, 5%, and 10% level.

Table C.8: Regression Results

				$Dependent\ va$	riable:			
		pre	-financialisation pe	riod	fin	ancialisation per	iod	
h	Soybean meal h	Soybean meal 2	h Soybean meal 3	h Soybean meal h	Soybean meal 1	h Soybean meal 2	h Soybean meal by S	oybean meal 4
$\Upsilon_1 h_{S \otimes P 500}$	-0.131	-0.063	-0.058	-0.067	0.057	0.039	0.027^{*}	0.025
	(0.084)	(0.045)	(0.037)	(0.042)	(0.073)	(0.028)	(0.016)	(0.015)
Υ_0	-0.00000	0.00000	0.00001	0.00000	-0.00002	-0.00002	-0.00002	-0.00002
	(0.0002)	(0.0001)	(0.0001)	(0.0001)	(0.0002)	(0.0001)	(0.00004)	(0.00003)
Observation	s 572	572	572	572	833	833	833	833
\mathbb{R}^2	0.004	0.003	0.004	0.004	0.001	0.002	0.004	0.003
Adjusted R ²	0.003	0.002	0.002	0.003	-0.0005	0.001	0.002	0.002

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during pre-financialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Soybeanmeal represent coefficient of equities' conditional volatility, conditional volatility, and soybean meal futures contract respectively.***,***, and * denote statistical significance at 1%, 5%, and 10% level.

60

Appendix C. Online Appendix

Table C.9: Regression Results

_			Deper	ndent variable:		
		pre-	financialisation pe	riod		financialisation period
	h Rough rice h	Rough rice 2	h Rough rice 3	h Rough rice h	Rough rice 2	$h_{Rough\ rice\ 3}$
$\Upsilon_1 h_{SP500}$	-0.021	0.026**	0.009	0.026	0.022	0.024
	(0.143)	(0.011)	(0.009)	(0.032)	(0.027)	(0.025)
Υ_0	-0.00000	0.00002	0.00002	-0.00001	-0.00001	-0.00001
	(0.0004)	(0.00003)	(0.00002)	(0.0001)	(0.0001)	(0.0001)
Observatio	ns 481	481	481	833	833	833
\mathbb{R}^2	0.00005	0.012	0.002	0.001	0.001	0.001
Adjusted F	$R^2 -0.002$	0.010	0.0002	-0.0004	-0.0004	-0.0001

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h and Roughrice represent coefficient of equities' conditional volatility, conditional volatility and rough rice futures contract respectively.***,** and * denote statistical significance at 1%, 5%, and 10% level.

Table C.10: Regression Results

				Dependent	variable:			
		pre-fi	nancialisation perio	$^{ m d}$	fina	ncialisation perio	od	
	h Coffee 1 h	Coffee 2	$h_{Coffee\ 3}$	h Coffee 4	h Coffee 1	$h_{Coffee\ 2}$	$h_{Coffee\ 3}$	h _{Coffee 4}
$\Upsilon_1 h_{S \otimes P 500}$	0.255	0.203	0.216	0.213	0.082***	0.083***	0.088***	0.089***
	(0.173)	(0.177)	(0.174)	(0.160)	(0.014)	(0.015)	(0.016)	(0.016)
Υ_0	0.00000	-0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	(0.0004)	(0.0004)	(0.0004)	(0.0003)	(0.00003)	(0.00004)	(0.00004)	(0.00004)
Observations	572	572	572	572	833	833	833	833
\mathbb{R}^2	0.004	0.002	0.003	0.003	0.039	0.037	0.036	0.034
Adjusted R ²	0.002	0.001	0.001	0.001	0.038	0.036	0.034	0.033

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Coffee represent coefficient of equities' conditional volatility, conditional volatility, and coffee futures contract respectively.***,***, and * denote statistical significance at 1%, 5%, and 10% level.

62

Appendix C. Online Appendix

Table C.11: Regression Results

			$Dep \epsilon$	endent variabl	le:	
	_	pre-	financialisation peri	_		financialisation period
	$h_{Sugar 1}$	h _{Sugar 3}	$h_{Sugar 4}$	$h_{Sugar\ 1}$	h Sugar 3	$h_{Sugar\ 4}$
$\Upsilon_1 h_{S \otimes P500}$	0.029	0.005	0.018	0.034	0.134***	0.108***
	(0.043)	(0.037)	(0.024)	(0.042)	(0.036)	(0.037)
Υ_0	0.0000	1 - 0.00001	-0.00001	-0.00001	-0.00001	-0.00001
	(0.0001)	(0.0001)	(0.00005)	(0.0001)	(0.0001)	(0.0001)
Observations	s 572	572	572	833	833	833
\mathbb{R}^2	0.001	0.00004	0.001	0.001	0.016	0.010
Adjusted R ²	-0.001	-0.002	-0.001	-0.0004	0.015	0.009

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h and Sugar represent coefficient of equities' conditional volatility, conditional volatility and sugar futures contract respectively.***,** and * denote statistical significance at 1%, 5%, and 10% level.

Table C.12: Regression Results

				Dependent	t variable:			
		pre-	financialisation perio	d	fina	ncialisation perio	od	
	h $_{Cocoa\ 1}$	h Cocoa 2	$h_{Cocoa\ 3}$	$h_{Cocoa\ 4}$	h Cocoa 1	$h_{Cocoa\ 2}$	$h_{Cocoa\ 3}$	h Cocoa 4
$\Upsilon_1 h_{S\&P500}$	-0.046	-0.048	-0.040	-0.049	0.017	0.020	0.019	0.020
	(0.049)	(0.048)	(0.044)	(0.042)	(0.017)	(0.017)	(0.017)	(0.017)
Υ_0	0.0000	4 0.00004	0.00004	0.00004	-0.00000	-0.00001	-0.00001	-0.00001
	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.00004)	(0.00004)	(0.00004)	(0.00004)
Observation	s 572	572	572	572	833	833	833	833
\mathbb{R}^2	0.002	0.002	0.002	0.002	0.001	0.002	0.002	0.002
Adjusted R ²	2 -0.0002	0.00003	-0.0002	0.001	-0.00004	0.0005	0.0003	0.001

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Cocoa represent coefficient of equities' conditional volatility, conditional volatility, and cocoa futures contract respectively.***,**, and * denote statistical significance at 1%, 5%, and 10% level.

Appendix C. Online Appendix

Table C.13: Regression Results

				Dependent	variable:				
	pre-financialisation period financialisation period								
	h Cotton 1 h	Cotton 2	$h_{Cotton 3}$	h Cotton 4 h	Cotton 1	$h_{Cotton\ 2}$	$h_{Cotton\ 3}$	h Cotton 4	
Υ ₁ h _{S&P500}	-0.002	0.040	0.042	-0.015	0.180***	0.195***	0.202***	0.283***	
	(0.062)	(0.052)	(0.048)	(0.048)	(0.067)	(0.044)	(0.043)	(0.056)	
Υ_0	0.00003	0.00002	0.00004	0.0001	-0.00001	-0.00001	-0.00001	-0.00001	
	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0002)	(0.0001)	(0.0001)	(0.0001)	
Observation	s 572	572	572	572	833	833	833	833	
\mathbb{R}^2	0.00000	0.001	0.001	0.0002	0.009	0.024	0.026	0.029	
Adjusted R ²	2 -0.002	-0.001	-0.0004	-0.002	0.007	0.022	0.025	0.028	

Note:This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Cottonrepresent coefficient of equities' conditional volatility, conditional volatility, and cotton futures contract respectively.***,**, and * denote statistical significance at 1%, 5%, and 10% level.

Table C.14: Regression Results

	Dependent variable:									
		pre-	-financialisation period		financialisation period					
h	Orange juice by (Orange juice 3	h Orange juice 4	h Orange juice h C	range juice 2	h Orange juice 3	h Orange juice 14 (Orange juice 5		
$\Upsilon_1 h_{S \& P 500}$	0.006	0.014	-0.001	-0.002	0.055*	0.050*	0.040	0.044*		
	(0.018)	(0.020)	(0.019)	(0.019)	(0.031)	(0.029)	(0.026)	(0.026)		
Υ_0	-0.00001	-0.00002	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001	-0.00001		
	(0.00004)	(0.00004)	(0.00004)	(0.00004)	(0.0001)	(0.0001)	(0.0001)	(0.0001)		
Observations	572	572	572	572	833	833	833	833		
\mathbb{R}^2	0.0002	0.001	0.00000	0.00001	0.004	0.004	0.003	0.003		
Adjusted R ²	-0.002	-0.001	-0.002	-0.002	0.003	0.002	0.002	0.002		

This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during pre-financialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Orangejuice represent coefficient of equities' conditional volatility, conditional volatility, and Orange juice futures contract respectively.***,**, and * denote statistical significance at 1%, 5%, and 10% level.

Note:

Appendix C. Online Appendix

Table C.15: Regression Results

			$Dependent\ vari$	able:	
		pre-f	inancialisation period		
	$h_{Lumber\ 1}\ h$	Lumber 2	$h_{\ Lumber\ 1}$	$h_{\ Lumber\ 2}$	
Υ ₁ h _{S&P500}	0.039	0.051	0.028	0.099***	
	(0.043)	(0.032)	(0.035)	(0.027)	
Υ_0	0.00000	0.00000	0.00000	0.0000	
	(0.0001)	(0.0001)	(0.0001)	(0.0001)	
Observations	s 572	572	833	833	
\mathbb{R}^2	0.001	0.004	0.001	0.016	
Adjusted R ²	2 -0.0003	0.003	-0.0005	0.014	

Note:This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h and Lumberrepresent coefficient of equities' conditional volatility, conditional volatility and lumber futures contract respectively.***,** and * denote statistical significance at 1%, 5%, and 10% level.

Table C.16: Regression Results

				Dependent va	riable:			
		pre-	financialisation per	riod	fina	ancialisation peri	iod	
h	Live cattle 1h	Live cattle 2	$h_{\ Live\ cattle\ 3}$	h Live cattle 4h	Live cattle 1	h Live cattle 2	h Live cattle 3h	Live cattle 4
$\Upsilon_1 h_{S \otimes P500}$	-0.020	-0.021	-0.003	0.004	0.017	0.031**	0.032***	0.023***
	(0.019)	(0.019)	(0.008)	(0.005)	(0.014)	(0.015)	(0.010)	(0.007)
Υ_0	0.00002	0.00001	0.00001	0.00001	0.00000	0.00000	0.00000	0.00000
	(0.00004)	(0.00004)	(0.00002)	(0.00001)	(0.00003)	(0.00003)	(0.00002)	(0.00002)
Observations	572	572	572	572	833	833	833	833
\mathbb{R}^2	0.002	0.002	0.0002	0.001	0.002	0.005	0.011	0.013
Adjusted R ²	0.0002	0.0004	-0.002	-0.001	0.001	0.004	0.010	0.012

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Livecattle represent coefficient of equities' conditional volatility, conditional volatility, and live cattle futures contract respectively.***,***, and * denote statistical significance at 1%, 5%, and 10% level.

83

Note:

Appendix C. Online Appendix

Table C.17: Regression Results

				Dependent va	riable:			
		pre-	financialisation pe	riod	fin	ancialisation per	iod	
h	Feeder cattle h 1	Feeder cattle 2	$h_{Feeder\ cattle\ 3}$	h Feeder cattle h	Feeder cattle 1	h Feeder cattle 2	h Feeder cattle h F	eeder cattle 4
$\Upsilon_1 h$ supsoon	-0.010 (0.020)	-0.014 (0.033)	0.001 (0.025)	-0.010 (0.021)	0.019 (0.025)	0.060** (0.029)	0.081*** (0.024)	0.080*** (0.024)
Υ_0	0.00002 (0.00004)	0.00002 (0.0001)	0.00002 (0.0001)	0.00001 (0.00004)	-0.00000 (0.0001)	-0.00000 (0.0001)	-0.00000 (0.0001)	-0.00000 (0.0001)
Observations R ² Adjusted R ²	572 0.0005 -0.001	572 0.0003 -0.001	572 0.00000 -0.002	572 0.0004 -0.001	833 0.001 -0.0005	833 0.005 0.004	833 0.013 0.012	833 0.014 0.012

This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during pre-financialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Feedercattle represent coefficient of equities' conditional volatility, conditional volatility, and feeder cattle futures contract respectively.***,**, and * denote statistical significance at 1%, 5%, and 10% level.

Table C.18: Regression Results

				Dependent vo	ıriable:			
		pre-	financialisation per	riod	fina	ancialisation per	iod	
h	Heating oil h	Heating oil 2	$h_{Heating\ oil\ 3}$	h Heating oil h	Heating oil 1	$h_{Heating\ oil\ 2}$	$h_{Heating\ oil}\ f_{h}$	Heating oil 4
$\Upsilon_1 h_{S \otimes P 500}$	0.170	0.029*	0.024*	0.025^{*}	0.183***	0.187***	0.188***	0.192***
	(0.109)	(0.017)	(0.014)	(0.014)	(0.032)	(0.031)	(0.032)	(0.032)
Υ_0	0.00000	0.00002	0.00002	0.00002	-0.00001	-0.00001	-0.00001	-0.00001
	(0.0002)	(0.00003)	(0.00003)	(0.00003)	(0.0001)	(0.0001)	(0.0001)	(0.0001)
Observations	572	572	572	572	833	833	833	833
\mathbb{R}^2	0.004	0.005	0.005	0.006	0.037	0.041	0.040	0.041
Adjusted R ²	0.003	0.003	0.004	0.004	0.036	0.040	0.039	0.040

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ, h , and Heatingoil represent coefficient of equities' conditional volatility, conditional volatility, and Heating oil futures contract respectively.***,***, and * denote statistical significance at 1%, 5%, and 10% level.

Note:

Appendix C. Online Appendix

Table C.19: Regression Results

				Dependent vo	riable:			
		pre-	financialisation pe	riod	fin	ancialisation per	riod	
h	Natural gas h	Natural gas 2	$h_{Natural\ gas\ 3}$	$h_{Natural\ gas}h_{\!\!\!/}$	Natural gas 1	$h_{\ Natural\ gas\ 2}$	h Natural gash	Natural gas 4
$\Upsilon_1 h_{S\&P500}$ Υ_0	-0.201 (0.125) 0.00002	-0.045 (0.043) 0.00002	$-0.021 \\ (0.043) \\ 0.00001$	-0.031 (0.041) -0.00001	0.028 (0.115) -0.00000	0.084 (0.074) 0.00000	0.072 (0.081) -0.00000	0.012 (0.079) -0.00000
Ol	(0.0003)	(0.0001)	(0.0001)	(0.0001)	(0.0003)	(0.0002)	(0.0002)	(0.0002)
Observations R ² Adjusted R ²	0.005	572 0.002 0.0001	572 0.0004 -0.001	572 0.001 -0.001	833 0.0001 -0.001	833 0.002 0.0003	833 0.001 -0.0003	833 0.00003 -0.001

This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during pre-financialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Naturalgas represent coefficient of equities' conditional volatility, conditional volatility, and natural gas futures contract respectively.***,**, and * denote statistical significance at 1%, 5%, and 10% level.

Table C.20: Regression Results

	$Dependent\ variable:$									
		pre-f	inancialisation per	iod	financialisation period					
	$h_{Gold\ 1}$	$h_{Gold\ 2}$	$h_{Gold 3}$	$h_{\ Gold\ 4}$	h Gold 1	$h_{Gold\ 2}$	$h_{Gold\ 3}$	$h_{Gold\ 4}$		
$\Upsilon_1 h_{S \otimes P 500}$	0.003	0.003	-0.001	0.007	0.010	0.018	0.021	0.018		
	(0.029)	(0.032)	(0.032)	(0.044)	(0.020)	(0.022)	(0.023)	(0.022)		
Υ_0	0.0000	0.00000	0.00000	0.00000	-0.00001	-0.00001	-0.00001	-0.00001		
	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.00004)	(0.00005)	(0.00005)	(0.00005		
Observation	s 572	572	572	572	833	833	833	833		
\mathbb{R}^2	0.00002	0.00002	0.00000	0.00004	0.0003	0.001	0.001	0.001		
Adjusted R ²	-0.002	-0.002	-0.002	-0.002	-0.001	-0.0004	-0.0002	-0.0004		

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Gold represent coefficient of equities' conditional volatility, conditional volatility, and gold futures contract respectively.***,***, and * denote statistical significance at 1%, 5%, and 10% level.

Appendix C. Online Appendix

Table C.21: Regression Results

	$Dependent\ variable:$										
	pre-financialisation period financialisation period										
	h Copper 1	$h_{Copper\ 2}$	$h_{Copper 3}$	$h_{Copper\ 4}$	h Copper 1	$h_{Copper\ 2}$	h Copper 3 h	Copper 4			
$\Upsilon_1 h_{S\&P500}$	0.003	0.007	0.006	0.007	0.171***	0.167***	0.165***	0.158***			
	(0.007)	(0.015)	(0.014)	(0.015)	(0.028)	(0.031)	(0.030)	(0.024)			
Υ_0	0.00000	0.00000	0.00000	0.00000	-0.00001	-0.00001	-0.00001	-0.00001			
	(0.00001)	(0.00003)	(0.00003)	(0.00003)	(0.0001)	(0.0001)	(0.0001)	(0.0001)			
Observations	572	572	572	572	833	833	833	833			
\mathbb{R}^2	0.0004	0.0004	0.0003	0.0003	0.042	0.034	0.036	0.048			
Adjusted R ²	-0.001	-0.001	-0.001	-0.001	0.041	0.032	0.035	0.046			

Note: This table represents OLS regressions $h_{j,t} = \Xi_0 + \Xi_1 h_{S\&P500} + \vartheta_{i,t}$ that examines how conditional volatility of equities impacts on the conditional volatility of commodity futures during prefinancialisation and financialisation period. Standard errors $\vartheta_{i,t}$ in parentheses. Ξ , h, and Copper represent coefficient of equities' conditional volatility, conditional volatility, and copper futures contract respectively.***,***, and * denote statistical significance at 1%, 5%, and 10% level.