Д
Д
m
IJ
i i
· Fre
Ш
[<u>.</u>

	1	<u>CLAIMS</u>	
	2		
	3	What is claimed is:	
	4		
	5	Claim 1. A process for determining a proteomic	
	6	basis for development and progression of abnormal	
	7	physiological conditions comprising:	
	8	obtaining a patient sample containing proteomic	
	9	material;	
	10	preparing said patient sample to facilitate proteomic	
	11	investigation thereof;	
	12	isolating one or more patient specific proteomic	
	13	materials from said patient/sample; and	
	14	comparing said one or more isolated patient specific	
	15	proteomic materials against a library of proteomic materials	
	16	having characteristics identifiable with both normal and	
	17	abnormal physiological conditions or predictive hallmarks	
	18	thereof;	
	19	wherein said one or more isolated patient specific	
	20	proteomic materials are characterized as being positively or	
	21	negatively indicative of one or more abnormal physiological	
	22	conditions or predictive hallmarks thereof.	
	23		
	24	Claim 2. A process in accordance with claim 1, further	
	25	including the step of:	

:L
11)
T
إيا
ŧi
1 (1) 1 (1) 1 (1)
1 200
1_1

1	sequencing said one or more isolated patient specific
2	proteomic materials.
3	
4	Claim 3. A process in accordance with claim 1, further
5	including the step of:
6	developing at least one antibody to said isolated
7	patient specific proteomic material.
8	
9	Claim 4. A process in accordance with claim 3, further
10	including the step of:
11	expressing at least one protein marker specific to said
12	at least one antibody to said isolated patient specific
13	proteomic material.
14	
15	Claim 5. A process in accordance with claim 3, further
16	including the step of:
17	performing at least one interactive mapping step to
18	characterize said at least one antibody.
19	
20	Claim 6. A process in accordance with claim 5 wherein
21	said interactive mapping step includes one or more steps
22	selected from the group consisting of creation of engineered
23	antibodies, directly determining the three-dimensional
24	structure of said antibody directly from an amino acid
25	sequence thereof; cellular localization, sub-cellular

l =#
:D
П
n
Į.
Į.Į
\$1
i fine des
ليا
=

1	localization, protein-protein interaction, receptor-ligand
2	interaction, and pathway delineation.
3	
4	Claim 7. A process in accordance with claim 6 wherein
5	said engineered antibodies are antibodies tagged with a
6	material selected from the group consisting of GFP, colloidal
7	gold, streptavidin, avidin and biotin.
8	
9	Claim 8. A process in accordance with claim 4, further
10	including the step of:
11	performing at least one interactive mapping step to
12	characterize said at least one protein marker.
13	
14	Claim 9. A process in accordance with claim 8 wherein
15	said interactive mapping step includes one or more steps
16	selected from the group consisting of creation of engineered
17	proteins, directly determining the three-dimensional
18	structure of said protein directly from an amino acid
19	sequence thereof; cellular localization, sub-cellular
20	localization, protein-protein interaction, receptor-ligand
21	interaction, and pathway delineation.
22	
23	
24	

	1	Claim 10. A process in accordance with claim 9 wherein
	2	said engineered proteins are proteins tagged with a material
	3	selected from the group consisting of GFP, colloidal gold,
	4	streptavidin, avidin and biotin.
	5	
	6	
	7	
	8	
	9	
	10	
	11	
w M	12	
	13	
W	14	
	15	
	16	
	17	
	18	
	19	•
	20	
	21	
	22	
	23	
	24	
	25	