PH20107 MMfP2

Problem Sheet 2 - Differentiation of Scalar and Vector Fields

The idea of this sheet is to get you used to finding various derivatives of scalar and vector fields, using Cartesian coordinates.

- 1. Find grad ϕ for the following scalar fields
 - (a) $\phi = x + y + z$
 - (b) $\phi = xyz$
- 2. Throughout this question, the scalar field $\phi = x^2y + y^2z + z^2x$.
 - (a) Write down an expression for ϕ if z = 0. Use this to sketch equipotential contours $(\phi = \text{constant})$ in the plane z = 0 for some constants of your choice.
 - (b) Find grad ϕ .
 - (c) Find the magnitude and direction of the steepest gradient of ϕ at (1,1,2).
 - (d) Find the gradient of ϕ at (1,1,2) in the (0,1,1) direction.
 - (e) Find the equation of the plane which is tangential to the equipotential surface of ϕ at (1,1,2). [Recall that a plane can be defined as the set of position vectors \mathbf{r} for which $\mathbf{r} \cdot \mathbf{n} = \mathbf{a} \cdot \mathbf{n}$, where \mathbf{n} is a vector normal to the plane, and \mathbf{a} the position vector of a point in the plane. Expand the scalar products to write the plane in the more familiar form ax + by + cz = d where a, b, c and d are constants.]
- 3. Find $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$ for the following vector fields
 - (a) $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$
 - (b) $\mathbf{F} = yz\mathbf{i} + zx\mathbf{j} + xy\mathbf{k}$
- 4. If $\psi(\mathbf{r}) = \exp[i(2x+3y-z)]$, find the value of $\nabla^2 \psi$ at the general point (x,y,z).
- 5. Show that the triple product $\nabla \cdot (\nabla \times \mathbf{a})$ is zero for every "well-behaved" vector field \mathbf{a} . [HINT: Write \mathbf{a} in component form (a_x, a_y, a_z) . By "well-behaved" I mean that all components of \mathbf{a} are everywhere differentiable as many times as needed.]