Práctica 2 del tema 5

Ángel Rodríguez Revuelta

24 de mayo de 2016

Antes de realizar el diseño en logisim hay que realizar los cálculos correspondientes:

1. Chips de memoria:

1. ¿Cuántas direcciones tienen los chips de memoria proporcionados?

Cada chip tiene 8 Kilobytes de memoria, lo que pasado a bits son: 2^{16} bits. Si lo dividimos entre la unidad mínima direccionable por cada chip de memoria (4 bits), resultará el número de direcciones:

$$\frac{2^{16}}{2^2} = 2^{14}$$

Donde podemos ver que el número de direcciones de los chips es $2^{14} = 16384$.

2. ¿Cuántos bits se necesitan para acceder a un dato de estos chips?

El número de bits necesario para acceder a un dato es el exponente de la potencia calculada anteriormente, por lo tanto, se necesitan 14 bits.

2. Memoria a diseñar:

1. ¿Cuántos bits tendrá el bus de direcciones?

Para averiguarlo, hacemos el mismo cálculo que en el primer apartado de los chips de memoria pero con los datos de la memoria a diseñar:

$$\frac{96 \cdot 2^{13}}{2^4} \simeq 2^{16}$$

De donde se deduce que habrá 16 bits en el bus de direcciones.

2. ¿Cuántos chips necesitaremos para formar la memoria?

Dado que la memoria tiene un total de 96 Kilobytes y cada chip tiene una memoria de 8 Kilobytes, tenemos:

$$\frac{96}{8} = 12$$

Lo que es igual a 12 chips de memoria.

3. Después de enviar una palabra a memoria...¿Cuántos chips se verán afectados?

Debido a que la palabra está formada por 16 bits y la unidad mínima direccionable por los chips es de 4 bits, tenemos:

$$\frac{16}{4} = 4$$

Por lo cual, se verán afectados 4 chips, lo que significa que los módulos de RAM deberán estar formados por 4 chips cada uno. Lo que a su vez significa que tenemos tres módulos de RAM de 4 chips cada uno.

4. ¿Se puede ampliar la memoria sin ampliar el número de bits en el bus de direcciones? Razona la respuesta.

La diferencia entre los bits del bus de direcciones y los bits de direccionamiento de la memoria es de dos bits, lo que implica que habrá dos bits de direccionamiento. Tenemos tres módulos de RAM y la capacidad de direccionar hasta un máximo de 4 módulos (debido a que hay dos bits de direccionamiento), por lo tanto, podemos añadir un módulo más (4 chips) sin alterar el número de bits del bus de direcciones.

3. Mapa de memoria:

Componente	Rango de direcciones															
Componente	A00	A01	A02	A03	A04	A05	A06	A07	A08	A09	A10	A11	A12	A13	A14	A15
Módulo RAM 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0
Módulo RAM 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Módulo RAM 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
LIBRE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
LIDRE	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1