Report No: CCIS15070053303

FCC REPORT

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 4K Media Player

Model No.: InVision 4K Media Player, 503-HD4KRK328

FCC ID: 2AB6Z-INVISION4K

Applicable standards: FCC CFR Title 47 Part 15 Subpart E Section 15.407

Date of sample receipt: 02 Jul., 2015

Date of Test: 02 Jul., to 10 Aug., 2015

Date of report issued: 10 Aug., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Aug., 2015	Original

Prepared by: Date: 10 Aug., 2015

Report Clerk

Reviewed by: Date: 10 Aug., 2015

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	RSION	2
3	CON	NTENTS	3
4	TES	T SUMMARY	4
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	7
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT	9
	6.2	CONDUCTED EMISSION	
	6.3	CONDUCTED OUTPUT POWER	13
	6.4		
	0.4	OCCUPY BANDWIDTH	
	6.5	OCCUPY BANDWIDTH	
	6.5 6.6	Power Spectral Density Band Edge	31 37
	6.5 6.6 6.7	Power Spectral Density Band Edge Spurious Emission	31 37 40
	6.5 6.6 6.7 6.7.1	Power Spectral Density Band Edge Spurious Emission 1 Restricted Band	
	6.5 6.6 6.7 6.7.1	POWER SPECTRAL DENSITY BAND EDGE SPURIOUS EMISSION 1 Restricted Band 2 Unwanted Emissions in the Restricted Bands	
	6.5 6.6 6.7 6.7.1	Power Spectral Density Band Edge Spurious Emission 1 Restricted Band	
7	6.5 6.6 6.7 6.7.1 6.7.2	POWER SPECTRAL DENSITY BAND EDGE SPURIOUS EMISSION 1 Restricted Band 2 Unwanted Emissions in the Restricted Bands	

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.407 (g)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407 (a)	Pass
26dB Occupied Bandwidth	15.407 (a)	Pass
6dB Emission Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407 (a)	Pass
Band Edge	15.407(b)	Pass
Spurious Emission	15.205/15.209	Pass
Frequency Stability	15.407(g)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2009.

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED	
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong	
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.	
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong	

5.2 General Description of E.U.T.

3.2 General Description	oo		
Product Name:	4K Media Player		
Model No.:	InVision 4K Media Player, 503-HD4KRK328		
Operation Frequency:	Band 1: 5180MHz-5240MHz Band 4: 5745MHz-5825MHz		
Operation mode:	Indoor used		
Channel numbers:	Band 1: 802.11a/802.11n20: 4, Band 4: 802.11a/802.11n20: 5,		
Channel separation:	802.11a/802.11n20: 20MHz		
Modulation technology: (IEEE 802.11a)	BPSK, QPSK,16-QAM, 64-QAM		
Modulation technology: (IEEE 802.11n)	BPSK, QPSK, 16-QAM, 64-QAM		
Data speed(IEEE 802.11a)	6Mbps, 9Mbps,12Mbps,18Mbps, 24Mbps,36Mbps,48Mbps, 54Mbps		
Data speed (IEEE 802.11n20):	MCS0: 6.5Mbps, MCS1:13Mbps, MCS2:19.5Mbps, MCS3:26Mbps, MCS4:39Mbps, MCS5:52Mbps, MCS6:58.5Mbps, MCS7:65Mbps		
Antenna Type:	External Antenna		
Antenna gain:	2 dBi		
AC adapter :	Model No.: PS18C120K1500UD Input:100-240V AC,50/60Hz 0.5A Output:12.0V DC MAX 1500mA		
Remark:	Model No.: InVision 4K Media Player, 503-HD4KRK328 were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different Model Number for customer and for HUNG WAI.		

Operation Frequency each of channel

Band 1			
802.11a/	802.11n20		
Channel	Frequency		
36	5180MHz		
40	5200MHz		
44	5220MHz		
48	5240MHz		
	and 4		
802.11a/	802.11n20		
Channel	Frequency		
149	5745MHz		
153	5765MHz		
157 5785MHz			
161	5805MHz		
165	5825MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Band 1				
802.11a/802	2.11n20			
Channel	Frequency			
The lowest channel	5180MHz			
The middle channel	5200MHz			
The highest channel	5240MHz			
	Bar	nd 4		
802.11a/802	2.11n20			
Channel	Frequency			
The lowest channel	5745MHz			
The middle channel	5785MHz			
The highest channel	5825MHz			

Report No: CCIS15070053303

5.3 Test environment and mode

Operating Environment:			
Temperature:	24.0 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1010 mbar		
Test mode:			
Continuously transmitting mode	Keep the EUT in 100% duty cycle transmitting with modulation.		

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11a	6 Mbps	
802.11n20	6.5 Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 6 Mbps for 802.11a, 6.5 Mbps for 802.11n20. All test items for 802.11a and 802.11n were performed with duty cycle above 98%, meet the requirements of KDB789033.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

■ FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

● IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 7 of 56

5.6 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi - Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015	
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016	
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016	
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016	
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 E Section 15.203 /407(a)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, § 15.213, § 15.217, § 15.219, or § 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

E.U.T Antenna:

The antenna of EUT is a Reverse-SMA Antenna, which cannot be replaced by end-user. And the antenna gain is 2 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4: 2009				
Test Frequency Range:	150 kHz to 30 MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9 kHz, VBW=30 kHz				
Limit:	[[] [] [] [] [] [] [] [] [] [Limit (d	lBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5 5-30	56 60	46 50		
	* Decreases with the logarithm		50		
Test procedure Test setup:	a line impedance stabili 50ohm/50uH coupling imp 2. The peripheral devices through a LISN that provivith 50ohm termination. Itest setup and photograph 3. Both sides of A.C. line are interference. In order to fin positions of equipment and changed according to ANS measurement.	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). It provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted 			
rest setup.	Reference LISN 40cm AUX Equipment E.U Test table/Insulation plan Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m	EMI Receiver	r — AC power		
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details.				
Test results:	Passed				
<u> </u>		-			

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Trace: 19

CCIS Shielding Room FCC PART15 B QP LISN LINE Site Condition

Job No. 533RF

EUT

4K Media Player InVision 4K Media Player, 503-HD4KRK328 Model

Test Mode : 5GWifi mode
Power Rating : AC120V/60Hz
Environment : Temp: 23 C Huni:56% Atmos:101KPa

Test Engineer: MT Remark :

Kemark	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
55.0	MHz	dBu∜	<u>dB</u>	<u>dB</u>	dBu∀	dBu₹	dB	
1	0.154	49.83	0.27	10.78	60.88	65.78	-4.90	QP
2	0.187	47.80	0.28	10.76	58.84	64.15	-5.31	QP
3	0.226	46.04	0.27	10.75	57.06	62.61	-5.55	QP
1 2 3 4 5 6 7 8	0.277	20.54	0.26	10.74	31.54	50.90	-19.36	Average
5	0.337	38.94	0.27	10.73	49.94	59.27	-9.33	QP
6	0.417	20.98	0.28	10.73	31.99	47.51	-15.52	Average
7	0.601	29.42	0.25	10.77	40.44	56.00	-15.56	QP
8	0.658	14.03	0.23	10.77	25.03	46.00	-20.97	Average
	1.331	12.07	0.25	10.91	23.23	46.00	-22.77	Average
10	2.001	27.42	0.26	10.96	38.64	56.00	-17.36	QP
11	2.346	14.61	0.26	10.94	25.81	46.00	-20.19	Average
12	3.346	13.80	0.27	10.91	24.98	46.00	-21.02	Average

Neutral:

Trace: 21

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL Condition

Job No. 533RF

EUT

4K Media Player InVision 4K Media Player, 503-HD4KRK328 Model

Test Mode : 5GWifi mode Power Rating : AC120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: MT

Remark

Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu∜	dB	₫B	dBu₹	dBu₹	dB	
0.154	45.74	0.25	10.78	56.77	65.78	-9.01	QP
0.174	43.30	0.25	10.77	54.32	64.77	-10.45	QP
0.194	42.23	0.25	10.76	53.24	63.84	-10.60	QP
0.249	38.69	0.26	10.75	49.70	61.78	-12.08	QP
0.299	18.19	0.26	10.74	29.19	50.28	-21.09	Average
0.417	32.33	0.26	10.73	43.32	57.51	-14.19	QP
0.417	22.19	0.26	10.73	33.18	47.51	-14.33	Average
0.654	15.45	0.20	10.77	26.42	46.00	-19.58	Average
1.338	14.74	0.25	10.91	25.90	46.00	-20.10	Average
1.671	16.17	0.27	10.94	27.38	46.00	-18.62	Average
2.334	28.55	0.29	10.94	39.78	56.00	-16.22	QP
2.334	20.73	0.29	10.94	31.96	46.00	-14.04	Average
	MHz 0. 154 0. 174 0. 194 0. 249 0. 299 0. 417 0. 417 0. 654 1. 338 1. 671 2. 334	Freq Level MHz dBuV 0.154 45.74 0.174 43.30 0.194 42.23 0.249 38.69 0.299 18.19 0.417 32.33 0.417 22.19 0.654 15.45 1.338 14.74 1.671 16.17 2.334 28.55	Freq Level Factor MHz dBuV dB 0.154 45.74 0.25 0.174 43.30 0.25 0.194 42.23 0.25 0.249 38.69 0.26 0.299 18.19 0.26 0.417 32.33 0.26 0.417 32.33 0.26 0.417 22.19 0.26 0.654 15.45 0.20 1.338 14.74 0.25 1.671 16.17 0.27 2.334 28.55 0.29	MHz dBuV dB dB 0.154 45.74 0.25 10.78 0.174 43.30 0.25 10.77 0.194 42.23 0.25 10.76 0.249 38.69 0.26 10.75 0.299 18.19 0.26 10.74 0.417 32.33 0.26 10.73 0.417 22.19 0.26 10.73 0.654 15.45 0.20 10.77 1.338 14.74 0.25 10.91 1.671 16.17 0.27 10.94 2.334 28.55 0.29 10.94	MHz dBuV dB dB dBuV 0.154 45.74 0.25 10.78 56.77 0.174 43.30 0.25 10.77 54.32 0.194 42.23 0.25 10.76 53.24 0.249 38.69 0.26 10.75 49.70 0.299 18.19 0.26 10.74 29.19 0.417 32.33 0.26 10.73 43.32 0.417 22.19 0.26 10.73 33.18 0.654 15.45 0.20 10.77 26.42 1.338 14.74 0.25 10.91 25.90 1.671 16.17 0.27 10.94 27.38 2.334 28.55 0.29 10.94 39.78	MHz dBuV dB dB dBuV dBuV 0.154 45.74 0.25 10.78 56.77 65.78 0.174 43.30 0.25 10.77 54.32 64.77 0.194 42.23 0.25 10.76 53.24 63.84 0.249 38.69 0.26 10.75 49.70 61.78 0.299 18.19 0.26 10.74 29.19 50.28 0.417 32.33 0.26 10.73 43.32 57.51 0.417 22.19 0.26 10.73 33.18 47.51 0.654 15.45 0.20 10.77 26.42 46.00 1.338 14.74 0.25 10.91 25.90 46.00 1.671 16.17 0.27 10.94 27.38 46.00 2.334 28.55 0.29 10.94 39.78 56.00	MHz dBuV dB dB dBuV dBuV dB 0.154 45.74 0.25 10.78 56.77 65.78 -9.01 0.174 43.30 0.25 10.77 54.32 64.77 -10.45 0.194 42.23 0.25 10.76 53.24 63.84 -10.60 0.249 38.69 0.26 10.75 49.70 61.78 -12.08 0.299 18.19 0.26 10.74 29.19 50.28 -21.09 0.417 32.33 0.26 10.73 43.32 57.51 -14.19 0.417 22.19 0.26 10.73 33.18 47.51 -14.33 0.654 15.45 0.20 10.77 26.42 46.00 -19.58 1.338 14.74 0.25 10.91 25.90 46.00 -20.10 1.671 16.17 0.27 10.94 27.38 46.00 -18.62 2.334 28.55 0.29

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)			
Test Method:	ANSI C63.4: 2009, KDB 789033			
Limit:	Band 1: 1 W (For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi.); Band 4: 1W.			
Test setup:				
	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Band 1

Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result
	Lowest	15.88	30.00	Pass
802.11a	Middle	15.56	30.00	Pass
	Highest	15.52	30.00	Pass
	Lowest	14.23	30.00	Pass
802.11n20	Middle	14.18	30.00	Pass
	Highest	13.91	30.00	Pass

Band 4

Mode	Test CH	Conducted Output power (dBm)	Limit (dBm)	Result
	Lowest	13.48	30.00	Pass
802.11a	Middle	13.43	30.00	Pass
	Highest	13.34	30.00	Pass
	Lowest	12.57	30.00	Pass
802.11n20	Middle	12.52	30.00	Pass
	Highest	12.53	30.00	Pass

Test plot as follows:

Band 1

802.11a

Lowest channel

Middle channel

Highest channel

802.11n20

Lowest channel

Middle channel

Highest channel

Band 4:

Lowest channel

Middle channel

802.11n20

Lowest channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part15 E Section 15.407 (a) (5) and Section 15.407 (e)		
Test Method:	ANSI C63.4:2009 and KDB 789033		
Limit:	Band 1: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: N/A(26dB Emission Bandwidth and 99% Occupy Bandwidth) Band 4: >500kHz(6dB Bandwidth)		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Passed		

Measurement Data

Band 1:

Test Channel	26dB Emission B	Bandwidth (MHz)	Limit	Result
rest Channel	802.11a	802.11n20	LIIIII	Result
Lowest	18.93	19.39		
Middle	18.87	19.33	N/A	N/A
Highest	18.99	19.28		

Test Channel	99% Occupy Ba	y Bandwidth (MHz)		Result
rest Channel	802.11a	802.11n20	LITTIL	Result
Lowest	16.67	17.54		
Middle	16.61	17.54	N/A	N/A
Highest	16.61	17.48		

Band 4:

Toot Channal	26dB Emission B	Bandwidth (MHz)	Limit	Result
Test Channel	802.11a	802.11n20	LIIIIII	Result
Lowest	20.64	19.84		
Middle	20.80	20.80	N/A	N/A
Highest	22.72	20.48		

Toot Channal	99% Occupy Ba	Bandwidth (MHz) Limit F		Dogult
Test Channel	802.11a	802.11n20	LITTIIL	Result
Lowest	16.88	17.76		
Middle	16.88	17.76	N/A	N/A
Highest	16.88	17.68		

Test Channel	6dB Emission B	andwidth (MHz)	Limit	Result
rest Channel	802.11a	802.11n20	LIIIII	Result
Lowest	15.76	16.16		
Middle	15.52	16.24	>500kHz	N/A
Highest	15.68	16.24		

Test plot as follows:

Band 1:

26 dB EBW - 802.11a

ce. J.Rod.2013 14.42.32

Lowest channel

Date: 5.AUG.2015 14:47:05

Middle channel

Date: 5.ANG.2015 14:48:54

Highest channel

802.11n20

Lowest channel

Middle channel

Highest channel

99% OBW - 802.11a

Lowest channel

Middle channel

Highest channel

802.11n20

Lowest channel

Middle channel

Highest channel

Band 4:

26 dB EBW - 802.11a

Date: 1.AUG.2015 11:42:49 Lowest channel

Date: 1.AUG.2015 11:43:28 Middle channel

Date: 1.AUG.2015 11:44:31 Highest channel

802.11n20

Date: 1.AUG.2015 11:45:13

Lowest channel

Date: 1.AUG.2015 11:59:18

Middle channel

Date: 1.AUG.2015 11:59:54

Highest channel

99% OBW - 802.11a

Date: 1.AUG.2015 11:43:41 Middle channel

Date: 1.AUG.2015 11:44:12 Highest channel

802.11n20

Date: 1.AUG.2015 11:54:48 Lowest channel

Date: 1.AUG.2015 11:58:32 Middle channel

Date: 1.AUG.2015 12:00:08

Highest channel

6 dB BW - 802.11a

Date: 1.AUG.2015 12:06:28

Lowest channel

Date: 1.AUG.2015 12:07:56

Middle channel

Date: 1.AUG.2015 12:08:49

Highest channel

802.11n20

Date: 1.AUG.2015 12:05:08 Lowest channel

Date: 1.AUG.2015 12:04:00 Middle channel

Date: 1.AUG.2015 12:02:48

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407 (a) (1) (ii) & (a) (3)			
Test Method:	ANSI C63.4:2009, KDB 789033			
Limit:	Band 1: 17 dBm/MHz (The maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.); Band 4: 30dBm/500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.6 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Band 1

Mode	Test CH	PSD (dBm)	Limit (dBm)	Result
802.11a	Lowest	9.90	17.00	Pass
	Middle	8.61	17.00	Pass
	Highest	9.20	17.00	Pass
802.11n20	Lowest	7.19	17.00	Pass
	Middle	6.70	17.00	Pass
	Highest	6.66	17.00	Pass

Band 4

	Dana 4						
Mode	Test CH	PSD (dBm)	Limit (dBm)	Result			
802.11a	Lowest	6.43	30.00	Pass			
	Middle	5.24	30.00	Pass			
	Highest	4.10	30.00	Pass			
802.11n20	Lowest	5.24	30.00	Pass			
	Middle	4.91	30.00	Pass			
	Highest	3.80	30.00	Pass			

Test plot as follows:

Band 1:

Test mode: 802.11a

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n20

Lowest channel

Middle channel

Highest channel

Band 4:

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n20

Lowest channel

Middle channel

Highest channel

6.6 Band Edge

6.6 Band Edge						
Test Requirement:	FCC Part15 E S	ection 15.4	07 (b)			
Test Method:	ANSI C63.4:200	9 , KDB 78	9033			
Receiver setup:	Detector Quasi-peak RMS	RBW 120kHz 1MHz	VBW 300kHz 3MHz	Remark Quasi-peak Va Average Val		
Limit:	Band	Remark Peak Value Average Value Peak Value Average Value				
	Remark: 1. Band 1 limit:					
Test Procedure:	the ground to determine. The EUT was antenna, who tower. The antenn the ground Both horizo make the make the make the maters and to find the new specified B. If the emiss the limit specified B of the EUT have 10dB.	at a 3 meters of the position as set 3 meters of a meters of the position as set 3 meters of the position and the position of the position	r camber. Ton of the higher saway founted on to waried from the maximatical polarizat. Initial polarizat. In	The table was reghest radiation. Trom the interfer he top of a variation one meter to formum value of the zations of the arranged to heights from 0 degrees to Peak Detect m Hold Mode. peak mode was all do be stopped an erwise the emisted one by one	our meters above e field strength. Intenna are set to aged to its worst from 1 meter to 4 ees to 360 degrees	
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table A A A A A A A A A A A A A A A A A A A					
Test Instruments:	Refer to section	5.6 for deta	nils			
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Band 1:

	802.11a									
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	38.52	32.07	9.13	40.06	39.66	68.20	-28.54	Horizontal		
5150.00	37.64	32.07	9.13	40.06	38.78	68.20	-29.42	Vertical		
				802.11a						
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	29.02	32.07	9.13	40.06	30.16	54.00	-23.84	Horizontal		
5150.00	27.42	32.07	9.13	40.06	28.56	54.00	-25.44	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.76	31.78	9.15	40.18	38.51	68.20	-29.69	Horizontal		
5350.00	37.64	31.78	9.15	40.18	38.39	68.20	-29.81	Vertical		
				802.11a						
Test cl	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	27.59	31.78	9.15	40.18	28.34	54.00	-25.66	Horizontal		
5350.00	27.43	31.78	9.15	40.18	28.18	54.00	-25.82	Vertical		

	802.11n-HT20									
Test cl	hannel		Lowest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	38.01	32.07	32.07 9.13 40.06			68.20	-29.05	Horizontal		
5150.00	37.12	32.07	9.13	40.06	38.26	68.20	-29.94	Vertical		
			8	302.11n-HT20						
Test cl	hannel		Lowest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5150.00	27.58	32.07	9.13	40.06	28.72	54.00	-25.28	Horizontal		
5150.00	27.63	32.07	9.13	40.06	28.77	-25.23	Vertical			
			8	302.11n-HT20						
Test cl	hannel		Highest		Le	vel	F	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	37.02	31.78	9.15	40.18	37.77	68.20	-30.43	Horizontal		
5350.00	36.86	31.78	9.15	40.18	37.61	68.20	-30.59	Vertical		
			8	302.11n-HT20						
Test cl	hannel		Highest		Le	vel	Av	erage		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
5350.00	27.23	31.78	9.15	40.18	27.98	54.00	-26.02	Horizontal		
5350.00	26.15	31.78	9.15	40.18	26.90	54.00	-27.10	Vertical		

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

				802.11a				
Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	40.25	32.27 9.30 40.54			41.28	78.20	-36.92	Horizontal
5725.00	40.11	32.27	9.30	40.54	41.14	78.20	-37.06	Vertical
				802.11a				
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	30.47	32.27	9.30	40.54	31.50	54.00	-22.50	Horizontal
5725.00	30.62	32.27	9.30	40.54	31.65	54.00	-22.35	Vertical
				802.11a				
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	40.35	32.71	9.37	40.69	41.74	78.20	-36.46	Horizontal
5850.00	39.55	32.71	9.37	40.69	40.94	78.20	-37.26	Vertical
				802.11a				
Test c	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	29.65	32.71	9.37	40.69	31.04	54.00	-22.96	Horizontal
5850.00	30.21	32.71	9.37	40.69	31.60	54.00	-22.40	Vertical

			8	302.11n-HT20				
Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	40.12	32.27	9.30	40.54	41.15	78.20	-37.05	Horizontal
5725.00	40.14	32.27	9.30	40.54	41.17	78.20	-37.03	Vertical
			8	302.11n-HT20				
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	30.85	32.27	9.30	40.54	31.88	54.00	-22.12	Horizontal
5725.00	30.24	32.27	9.30	40.54	31.27	54.00	-22.73	Vertical
			8	302.11n-HT20				
Test cl	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	40.12	32.71	9.37	40.69	41.51	78.20	-36.69	Horizontal
5850.00	39.66	32.71	9.37	40.69	41.05	78.20	-37.15	Vertical
			8	302.11n-HT20				
Test cl	hannel		Highest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	30.21	32.71	9.37	40.69	31.60	54.00	-22.40	Horizontal
5850.00	29.87	32.71	9.37	40.69	31.26	54.00	-22.74	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.7 Spurious Emission

6.7.1 Restricted Band

<u>6.7.1</u>	Restricted Band									
	Test Requirement:	FCC Part15 E Section 15.407(b) ANSI C63.4: 2009								
	Test Method:									
	Test Frequency Range:	Band 1: 4.5 GH Band 4: 5.35 G			z to 5.46GH	-lz				
	Test site:	Measurement [Distance: 3m							
	Receiver setup:	Frequency Detector RBW VBW Remark Above 1GHz Peak 1MHz 3MHz Peak Value RMS 1MHz 3MHz Average Value								
	Limit:				0	, ritorage raide				
		Freque	ency	Limit (dBuV		Remark				
		Above 1	GHz	74.0		Peak Value				
				54.0	10	Average Value				
	Test setup:	the ground to determine to determine antenna, we tower. 9. The antenna Both horize make the result of find the specified If the emist the limit specified EUT have 10dE	I at a 3 meter the the position was set 3 meter which was mount and height is value to determine the portal and vertime as a surement. The suspected emishen the antened the rota table maximum read t	camber. The of the highers away from unted on the taried from one the maximum cal polarizations was turned was turned ding. In was set to Fin Maximum Fine EUT in peace ting could lorted. Otherwal be re-tested.	table was rest radiation. In the interfectop of a variation of a variation of the automatic form of the automatic formatic for	rence-receiving able-height antenna our meters above he field strength. Intenna are set to hanged to its worst from 1 meter to 4 rees to 360 degrees				
	Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier								
	Test Instruments:	Refer to section 5.6 for details								
	Test mode:	Refer to section	5.3 for detail	s						
	Test results:	Passed								

Band 1:

802.11a

Test cl	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)			Over Limit (dB)	Polarization
4500.00	37.15	30.72 8.54 40.67		35.74	74.00	-38.26	Horizontal	
4500.00	37.62	30.72	8.54	40.67	36.21	74.00	-37.79	Vertical
Test cl	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	27.41	30.72	8.54	40.67	26.00	54.00	-28.00	Horizontal
4500.00	26.86	30.72	30.72 8.54 40.67		25.45	54.00	-28.55	Vertical
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	37.14	31.99	9.16	40.23	38.06	74.00	-35.94	Horizontal
5460.00	37.41	31.99	9.16	40.23	38.33	74.00	-35.67	Vertical
Test cl	hannel		Highest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	27.42	31.99	9.16	40.23	28.34	54.00	-25.66	Horizontal
5460.00	27.32	31.99	9.16	40.23	28.24	54.00	-25.76	Vertical

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n-HT20

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	37.12	30.72 8.54 40.67		35.71	74.00	-38.29	Horizontal	
4500.00	37.31	30.72	8.54	40.67	35.90	74.00	-38.10	Vertical
Test c	hannel	Lowest		Le	vel	Av	erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4500.00	27.14	30.72	8.54	40.67	25.73	54.00	-28.27	Horizontal
4500.00	26.68	30.72	8.54	40.67	25.27	54.00	-28.73	Vertical
Test c	hannel		Highest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	37.25	31.99	9.16	40.23	38.17	74.00	-35.83	Horizontal
5460.00	37.89	31.99	9.16	40.23	38.81	74.00	-35.20	Vertical
Test c	hannel		Highest		Level		Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5460.00	27.00	31.99	9.16	40.23	27.92	54.00	-26.08	Horizontal
5460.00	27.41	31.99	9.16	40.23	28.33	54.00	-25.67	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Band 4:

802.11a

Test c	hannel		Lowest		Le	vel	F	Peak
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	42.58	31.78	9.15	40.18	43.33	74.00	-30.67	Horizontal
5460.00	43.36	31.99	9.16	40.23	44.28	74.00	-29.72	Horizontal
5350.00	43.23	31.78	9.15	40.18	43.98	74.00	-30.02	Vertical
5460.00	42.85	31.99	9.16	40.23	43.77	74.00	-30.23	Vertical
Test c	hannel		Lowest		Le	vel	Av	erage
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5350.00	33.32	31.78	9.15	40.18	34.07	54.00	-19.93	Horizontal
5460.00	32.54	31.99	9.16	40.23	33.46	54.00	-20.54	Horizontal
5350.00	32.45	31.78	9.15	40.18	33.20	54.00	-20.80	Vertical
5460.00	32.63	31.99	9.16	40.23	33.55	54.00	-20.45	Vertical

802.11n-HT20

Test c	hannel		Lowest		Le	vel	Peak		
Frequency (MHz)	Read Level (dBuV/m)	Antenna Cable Preamp Factor (dB) Loss (dB) Factor (dB)			Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	42.36	31.78	9.15	40.18	43.11	74.00	-30.89	Horizontal	
5460.00	42.15	31.99	9.16	40.23	43.07	74.00	-30.93	Horizontal	
5350.00	43.62	31.78	9.15	40.18	44.37	74.00	-29.63	Vertical	
5460.00	42.15	31.99	9.16	40.23	43.07	74.00	-30.93	Vertical	
Test c	hannel		Lowest		Le	vel	Av	/erage	
Frequency (MHz)	Read Level (dBuV/m)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
5350.00	32.54	31.78	9.15	40.18	33.29	54.00	-20.71	Horizontal	
5460.00	31.52	31.99	9.16	40.23	32.44	54.00	-21.56	Horizontal	
5350.00	32.23	31.78	9.15	40.18	32.98	54.00	-21.02	Vertical	
5460.00	32.74	31.99	9.16	40.23	33.66	54.00	-20.34	Vertical	

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7.2 Unwanted Emissions in the Restricted Bands

Test Requirement:	FCC Part15 C S	Section 15.209 a	and 15.205								
Test Method:	FCC Part15 C Section 15.209 and 15.205 ANSI C63.4:2009										
Test Frequency Range:	30MHz to 40GHz										
Test site:	Measurement Distance: 3m										
Receiver setup:											
·	Frequency	Detector	RBW	VBW	Remark						
	30MHz-1GHz	Quasi-peak	100kHz	300kHz	Quasi-peak Value						
	Above 1GHz Peak 1MHz 3MHz Peak Value										
Limit:											
	Freque	ncy	Limit (dBuV/	m @3m)	Remark						
	30MHz-8	8MHz	40.0)	Quasi-peak Value						
	88MHz-21	6MHz	43.5	5	Quasi-peak Value						
	216MHz-9		46.0		Quasi-peak Value						
	960MHz-	1GHz	54.0)	Quasi-peak Value						
	Freque	ncv	Limit (dBn	n/MHz)	Remark						
			68.2		Peak Value						
	Above 1	GHz									
Test Procedure:	 Remark: Above 1GHz limit: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBuV/m, for EIPR[dBm]=-27dBm. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 										

Below 1GHz

Horizontal:

Site Condition 3m chamber FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL

Job No. : 533RF

EUT

: 4K Media Player : InVision 4K Media Player, 503-HD4KRK328 Model

Test mode : 5GWifi Mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

EMAKK	:	Read	Antenna	Cable	Preamn		Limit	Over		
	Freq		Factor						Remark	
-	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBu√/m	₫B		
1	56.001	35.62	12.97	0.66	29.79	19.46	40.00	-20.54		
2	99.878	39.17	13.16	0.96	29.53	23.76	43.50	-19.74		
3	147.404	41.12	8.24	1.30	29.23	21.43	43.50	-22.07		
4	298.268	34.58	13.00	1.76	28.45	20.89	46.00	-25.11		
4 5	360.448	40.12	14.43	1.98	28.61	27.92	46.00	-18.08		
6	463.970	39.60	15.71	2.30	28.89	28.72	46.00	-17.28		

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

Job No. EUT

: 533RF : 4K Media Player : InVision 4K Media Player, 503-HD4KRK328 Model

Test mode : 5GWifi Mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55%

Test Engineer: MT REMARK :

minim									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
=	MHz	dBu∀	dB/m	<u>dB</u>	dB	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	99.878	40.50	13.16	0.96	29.53	25.09	43.50	-18.41	QP
2	146.888	41.60	8.24	1.30	29.24	21.90	43.50	-21.60	QP
3	199.286	38.48	10.57	1.38	28.83	21.60	43.50	-21.90	QP
4	361.714	37.34	14.43	1.98	28.61	25.14	46.00	-20.86	QP
5	454.310	39.62	15.58	2.27	28.88	28.59	46.00	-17.41	QP
6	480.528	39.51	16.07	2.35	28.92	29.01	46.00	-16.99	QP

Above 1GHz:

Band 1:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	46.23	39.23	13.84	41.34	57.96	68.20	-10.24	Vertical			
10360.00	45.12	39.23	13.84	41.34	56.85	68.20	-11.35	Horizontal			
		802.11	a mode Lowe	est channe	I (Average V	'alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	35.27	39.23	13.84	41.34	47.00	54.00	-7.00	Vertical			
10360.00	35.62	39.23	13.84	41.34	47.35	54.00	-6.65	Horizontal			

	802.11a mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	44.27	39.36	13.85	41.27	56.21	68.20	-11.99	Vertical			
10400.00	44.17	39.36	13.85	41.27	56.11	68.20	-12.09	Horizontal			
		802.11	a mode Mido	dle channe	l (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10400.00	34.52	39.36	13.85	41.27	46.46	54.00	-7.54	Vertical			
10400.00	35.68	39.36	13.85	41.27	47.62	54.00	-6.38	Horizontal			

	802.11a mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	44.68	39.56	13.90	41.06	57.08	68.20	-11.12	Vertical			
10480.00	43.25	39.56	13.90	41.06	55.65	68.20	-12.55	Horizontal			
		802.11a	a mode High	est channe	l (Average \	/alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	34.58	39.56	13.90	41.06	46.98	54.00	-7.02	Vertical			
10480.00	33.67	39.56	13.90	41.06	46.07	54.00	-7.93	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	45.36	39.23	13.84	41.34	57.09	68.20	-11.11	Vertical			
10360.00	44.17	39.23	13.84	41.34	55.90	68.20	-12.30	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10360.00	35.62	39.23	13.84	41.34	47.35	54.00	-6.65	Vertical			
10360.00	34.85	39.23	13.84	41.34	46.58	54.00	-7.42	Horizontal			

		802.11	n20 mode M	liddle chan	nel (Peak Va	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	45.62	39.36	13.85	41.27	57.56	68.20	-10.64	Vertical
10400.00	44.23	39.36	13.85	41.27	56.17	68.20	-12.03	Horizontal
		802.11n	20 mode Mic	dle chann	el (Average	Value)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
10400.00	35.62	39.36	13.85	41.27	47.56	54.00	-6.44	Vertical
10400.00	34.85	39.36	13.85	41.27	46.79	54.00	-7.21	Horizontal

	802.11n20 mode Highest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	43.35	39.56	13.90	41.06	55.75	68.20	-12.45	Vertical			
10480.00	44.01	39.56	13.90	41.06	56.41	68.20	-11.79	Horizontal			
		802.11n2	20 mode Higl	hest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
10480.00	33.85	39.56	13.90	41.06	46.25	54.00	-7.75	Vertical			
10480.00	35.26	39.56	13.90	41.06	47.66	54.00	-6.34	Horizontal			

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Band 4:

	802.11a mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	42.23	40.25	13.82	40.75	55.55	68.20	-12.65	Vertical			
11490.00	41.28	40.25	13.82	40.75	54.60	68.20	-13.60	Horizontal			
		802.11	a mode Lowe	est channe	I (Average V	alue)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	31.14	40.25	13.82	40.75	44.46	54.00	-9.54	Vertical			
11490.00	30.25	40.25	13.82	40.75	43.57	54.00	-10.43	Horizontal			

		802.1	1a mode Mid	ddle chann	el (Peak Val	ue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	41.11	40.17	13.78	40.91	54.15	68.20	-14.05	Vertical
11570.00	42.03	40.17	13.78	40.91	55.07	68.20	-13.13	Horizontal
		802.11	a mode Mido	lle channe	l (Average V	alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	30.45	40.17	13.78	40.91	43.49	54.00	-10.51	Vertical
11570.00	30.11	40.17	13.78	40.91	43.15	54.00	-10.85	Horizontal

		802.1	1a mode Hig	hest chanr	nel (Peak Va	lue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	40.23	39.89	13.74	41.06	52.80	68.20	-15.40	Vertical
11650.00	41.11	39.89	13.74	41.06	53.68	68.20	-14.52	Horizontal
		802.11a	a mode High	est channe	l (Average \	/alue)		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	31.12	39.89	13.74	41.06	43.69	54.00	-10.31	Vertical
11650.00	31.25	39.89	13.74	41.06	43.82	54.00	-10.18	Horizontal

Remark:

Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

	802.11n20 mode Lowest channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	40.23	40.25	13.82	40.75	53.55	68.20	-14.65	Vertical			
11490.00	41.12	40.25	13.82	40.75	54.44	68.20	-13.76	Horizontal			
		802.11n2	20 mode Lov	vest chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11490.00	30.42	40.25	13.82	40.75	43.74	54.00	-10.26	Vertical			
11490.00	30.56	40.25	13.82	40.75	43.88	54.00	-10.12	Horizontal			

	802.11n20 mode Middle channel (Peak Value)										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	41.11	40.17	13.78	40.91	54.15	68.20	-14.05	Vertical			
11570.00	40.05	40.17	13.78	40.91	53.09	68.20	-15.11	Horizontal			
		802.11n	20 mode Mid	ddle chann	el (Average	Value)					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization			
11570.00	30.47	40.17	13.78	40.91	43.51	54.00	-10.49	Vertical			
11570.00	30.35	40.17	13.78	40.91	43.39	54.00	-10.61	Horizontal			

802.11n20 mode Highest channel (Peak Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	40.23	39.89	13.74	41.06	52.80	68.20	-15.40	Vertical
11650.00	41.02	39.89	13.74	41.06	53.59	68.20	-14.61	Horizontal
802.11n20 mode Highest channel (Average Value)								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	30.23	39.89	13.74	41.06	42.80	54.00	-11.20	Vertical
11650.00	30.17	39.89	13.74	41.06	42.74	54.00	-11.26	Horizontal

Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
 The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.8 Frequency stability

Test Requirement:	FCC Part15 E Section 15.407 (g)		
Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.		
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector		
Test procedure:	 The EUT is installed in an environment test chamber with external power source. Set the chamber to operate at 50 centigrade and external power source to output at nominal voltage of EUT. A sufficient stabilization period at each temperature is used prior to each frequency measurement. When temperature is stabled, measure the frequency stability. The test shall be performed under -30 to 50 centigrade and 85 to 115 percent of the nominal voltage. Change setting of chamber and external power source to complete all conditions. 		
Test Instruments:	Refer to section 5.6 for details		
Test mode:	Refer to section 5.3 for details, and all channels have been tested, only shows the worst channel data in this report.		
Test results:	Passed		

Measurement Data (the worst channel):

Band 1:

Voltage vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions				
Temp(℃)	Voltage(AC /60Hz)	Frequency(MHz)	Max. Deviation (ppm)	
	138	5179.985700	2.76	
20	120	5179.986300	2.64	
	102	5179.984600	2.97	

Temperature vs. Frequency Stability (Lowest channel=5180MHz)

Test conditions		Fragues av/MU=)	May Deviation (nom)	
Voltage(AC /60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)	
	-20	5179.986800	2.55	
	-10	5179.985200	2.86	
120	0	5179.983700	3.15	
	10	5179.986200	2.66	
	20	5179.989600	2.01	
	30	5179.982800	3.32	
	40	5179.983200	3.24	
	50	5179.984700	2.95	

Band 4:

Voltage vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		Francisco (MIII-)	Mary Davistian (room)	
Temp(℃)	Voltage(AC /60Hz)	Frequency(MHz)	Max. Deviation (ppm)	
	138	5744.986557	2.34	
20	120	5744.988763	1.96	
	102	5744.987596	2.16	

Temperature vs. Frequency Stability (Lowest channel=5745MHz)

Test conditions		Fragueray/MH=\	May Deviation (nom)	
Voltage(AC /60Hz)	Temp(°C)	Frequency(MHz)	Max. Deviation (ppm)	
	-20	5744.993574	1.12	
	-10	5744.998452	0.27	
120	0	5744.989833	1.77	
	10	5744.997862	0.37	
	20	5744.988874	1.94	
	30	5744.998508	0.26	
	40	5744.986795	2.30	
	50	5744.990285	1.69	