

Ontario High School Grade 11 Chemistry

Summer 2024, Chapter 6 Notes

Welcome to Wizeprep

These notes were created on Jun 6th, 2024

We're always updating our content. Check back for more.

Welcome to Your Course Notes

I'm Dana, your Wizeprep chemistry tutor. I put these notes and the corresponding online course together especially for Grade 11 Chemistry at Ontario High School. It's formulated to tell you everything you need to know, in a quick and easy format so you can get better grades, spend less time studying, and more time living.

Dana 4.4/5 🛨 MSc

Find Your Course Online

These course notes correspond to an online course full of video lectures, practice problems, instructor Q&A and more. Access it with this QR code or at wizeprep.com/in-course-experience/Sch3U-High-School

98%

Of Wizeprep **Students Get Better Grades** 66

After discovering Wizeprep at the beginning of my second semester, my grades have gone up significantly. I feel so much more confident when taking my exams.

Emily, Undergraduate Student

Your Wizeprep Resources

Get Better Grades

98% of students who study with Wizeprep reported higher grades

Really Understand Concepts

Our instructors know how to make complex topics feel simple

Cut Your Study Time in Half

Quick, curated lessons allow you to focus your study time where it matters

Find in These Course Notes

🔀 Relevant Theory

All the theory and expert knowledge you need to fully understand your course.

Practice Questions

Tons of practice problems, similar to those expected on your exam.

Exam Tips

Unique exam writing tips proven to help you score higher.

Find Online

□ Bite-Sized Video Lessons

Each section corresponds to a minutes-long video explanation by your expert instructors.

Solutions to Problems

See the solutions to the practice problems as well as a step-by-step breakdown of the answers.

24/7 Instructor Q&A

Need help clarifying a concept? You have direct access to your instructor.

Not subscribed yet?

Get started for free on Wizeprep.com

Table of Contents

Chapter 6. Stoichiometry

C 4 6				
6.1. 9	stoi	chi	om	etrv

- 6.1.1. Mole Ratios
- 6.1.2. Stoichiometry: Putting it All Together
- 6.1.3. Example: Gravimetric Stoichiometry
- 6.1.4. Practice Level 1
- 6.1.5. Practice Level 2
- 6.1.6. Practice Level 2

6.2. Limiting Reagents

- 6.2.1. Limiting Reagents
- 6.2.2. Example: Determine the Mass of Product in a Limiting Reagent Problem
- 6.2.3. Example: Determine the Amount of Excess Reagent
- 6.2.4. Practice Level 1
- 6.2.5. Practice Level 2

6.3. Percent Yield

- 6.3.1. Percent Yield
- 6.3.2. Example: Percent Yield
- 6.3.3. Practice Level 1
- 6.3.4. Practice Level 2
- 6.3.5. Practice Level 3

6. Stoichiometry

6.1 Stoichiometry

6.1.1

Mole Ratios

• Stoichiometry is the relationship between the amount of reactants used in a chemical reaction and the amount of products made.

- The **stoichiometric coefficient**s tells us that if we wanted to make one grilled cheese sandwich, we need two slices of bread and one slice of cheese
- We can represent this using a mole ratio

$$\frac{\text{2 slices of bread}}{\text{1 slice of cheese}} \text{ or } \frac{\text{1 slice of cheese}}{\text{1 grilled cheese sandwich}} \text{ or } \frac{\text{2 slices of bread}}{\text{1 grilled cheese sandwich}}$$

• Mole ratios can then be used to convert between amounts of any two substances in a chemical reaction

Watch the video tutorial for this lesson (01:31)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=74655&activity_type=CourseLesson

Stoichiometry of a Reaction

- We use the **coefficients** of the **balanced reaction** along with the our equations that convert mass, volume, and concentration into moles to predict the quantities of reactants and products in a chemical reaction.
- To answer any stoichiometry problem, focus on converting to and from moles! Moles are the central unit!

MASS

$$n=\frac{m}{M}$$

m = mass (g)

M = molar mass (g/mol)

PRESSURE

$$n = \frac{PV}{RT}$$

P = pressure (kPa)

V = volume (L)

R = gas constant (8.314 L·kPa·mol⁻¹·K⁻¹

T = temperature (K)

MOLES

n = moles (mol)

SOLUTION

$$n = cV$$

c = concentration (mol/L)

V = volume (L)

NUMBER OF ENTITIES

$$n=\frac{N}{N_A}$$

N = number of entities

 $N_A = Avogadro's number (6.023x10^{23} mol^{-1})$

General Steps to Solving a Stoichiometry Problem:

- 1. Convert the values given in the problem about a reactant or product to a number of moles
- 2. Use the stoichiometric coefficients from the balanced reaction to find the number of moles of the unknown you are being asked for
- 3. Convert the number of moles of your unknown to a mass, or whatever quantity you are being asked for

Watch the video tutorial for this lesson (02:16)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75396&activity_type=CourseLesson

6.1.3 Example: Gravimetric Stoichiometry

Example: Gravimetric Stoichiometry

Silver metal can be recovered from waste silver nitrate solutions by reaction with copper metal. What mass of silver can be obtained using 50 g of copper?

$$2AgNO_3(aq)+Cu(s)
ightarrow 2Ag(s)+Cu(NO_3)_2(aq)$$

Solution available online

2.

3.

Watch the video tutorial for this lesson (04:04)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75436&activity_type=CourseLesson

6.1.4

How many moles of H_2 and N_2 can be formed by the decomposition of 12.7mol of ammonia, NH_3 ? Do not include units in your answer.

$$2NH_3
ightarrow N_2 + 3H_2$$

		-		_
mo	100	O.t	N	٠)٠
IIIU	100	O1	1.7	∠ .

moles of H2:

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113140&activity_type=QuizQuestion

6.1.5

Practice: Stoichiometry

Calculate the mass of iron (III) oxide (rust), in grams, produced by the reaction of 250 g of iron with oxygen from the air. Round your answer to the nearest integer; do not include units.

Answer

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113752&activity_type=QuizQuestion

6.1.6

The thermite reaction is used for welding railroad rails. The reaction is:

$$Fe_3O_3(s)+2Al(s)
ightarrow 3Fe(s)+Al_2O_3({
m s})$$

If 25g of iron, Fe(s), are produced from a reaction how many grams of aluminum oxide are generated?

15g	0
23g	0
27g	0
55g	0
57g	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=108736&activity_type=QuizQuestion

6.2 Limiting Reagents

6.2.1

Limiting and Excess Reagents

- Anytime reactant species are in limited supply and not present in perfectly proportional amounts, a chemical reaction will have a limiting reagent
- The limiting reagent will be totally consumed before any other reactant
- The quantity of the limiting reagent available directly determines the maximum number of product molecules that can be formed
- Excess reagents are reactants that remain after the reaction is complete

How to find Limiting and Excess Reagents

• When making smores the "reaction" looks something like:

- If I had 10 graham crackers, 6 chocolate squares, and 6 marshmallows, what would be the limiting reagent?
- One way to find the limiting reagent is to use the mole ratio to figure out how much product each reagent would give you

The questions you are asking yourself are:
o how many s'mores can I make with 10 graham crackers?
Solution available online
o how many s'mores can I make with 6 chocolate squares?
Solution available online
o how many s'mores can I make with 6 marshmallows?
Solution available online
 Now, to figure out the limiting reagent, look at which of reagent gives you the least amount of s'mores
Solution available online

- We say that the graham crackers and marshmallow are excess reagents. There will be leftover graham crackers and marshmallows.
 - o how many graham crackers will be used up and how many will be left over?

Solution available online

o how many marshmallows will be used up and how many will be left over?

Solution available online

Watch the video tutorial for this lesson (05:43)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=74657&activity_type=CourseLesson

6.2.2

Example: Determine the Mass of Product in a Limiting Reagent Problem

Iron and chlorine gas react to form iron (III) trichloride. If 110 g of iron and 105 g of chlorine gas are reacted, which species is the limiting reagent? What is the maximum mass of FeCl₃ that can be formed?

$$2Fe(s) + 3C\ell_2(g)
ightarrow 2FeC\ell_3(s)$$

Solution available online

- •
- •
- lacktriangle

Watch the video tutorial for this lesson (06:03)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75439&activity_type=CourseLesson

6.2.3

Example: Determine the Amount of Excess Reagent

The reaction between P_4 and Br_2 is very exothermic and results in PBr_5 as the only product. If 7.0 g of P_4 react with 12.0 g of Br_2 how many grams of the excess reagent will remain?

$$P_4(s) + 10Br_2(\ell)
ightarrow 4PBr_5(s)$$

Solution available online

Watch the video tutorial for this lesson (06:37)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75440&activity_type=CourseLesson

Practice: Finding Limiting Reagents

Hydrogen gas reacts with oxygen gas to produce water. When 0.20g H_2 are mixed with 0.50g $O_{2,}$ which gas is the limiting reagent?

$$2H_2(g) + O_2(g)
ightarrow 2H_2O(\ell)$$

(hydrogen gas	0
(oxygen gas	0
(water	0
(we do not have enough information to determine the limiting reagent	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113756&activity_type=QuizQuestion

6.2.5

What is the maximum mass of $Ca(CN)_2$ that can be obtained from 1.56 g of HCN and 2.58 g of $Ca(OH)_2$? The balanced chemical equation is shown below.

$$2HCN(aq) + Ca(OH)_2(aq) \rightarrow Ca(CN)_2(aq) + 2H_2O(\ell) \ 27.03g/mol \ 74.10g/mol \ 92.12g/mol \ 18.02g/mol$$

5.31g	0
2.20g	0
2.66g	0
1.37g	0
3.21g	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=108737&activity_type=QuizQuestion

6.3 Percent Yield

6.3.1

Percent Yield

- Often, during chemical reactions in a laboratory, we cannot recover 100% of the product expected. This could be because:
 - o Reactants or products are lost when they are being transferred
 - You may have undesirable side reactions
 - o Your reaction may be incomplete
- The amount of product that we expect from a stoichiometric calculation is known as the theoretical yield
- We refer to the product amount that is weighed and recovered as the actual yield
- We get the **percent yield** of a reaction by comparing the actual yield to the theoretical yield of a reaction

$$\% ext{ yield} = rac{ ext{actual yield}}{ ext{theoretical yield}} imes 100\%$$

Watch the video tutorial for this lesson (01:23)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75197&activity_type=CourseLesson

Example: Calculating Percent Yield

When 49.00g of a hydrocarbon fuel with formula $C_7H_{10}O_2$ is reacted with excess oxygen, a total of 21.56g of water is collected. What was the percent yield of the reaction?

$$2C_7H_{10}O_2 + 17O_2 \rightarrow 10H_2O + 14CO_2$$

Solution available online

Watch the video tutorial for this lesson (05:53)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75441&activity_type=CourseLesson

6.3.3

The balanced equation for the complete combustion of butane is as follows:

$$4C_4H_10 + 13O_2 \rightarrow 8CO_2 + 10H_2O$$

In an experiment, 12.37 g of carbon dioxide was produced when 14.25 g was predicted. What is the percentage yield? Round your answer to the nearest integer; do not include the % symbol.

Answer

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113757&activity_type=QuizQuestion

6.3.4

Consider the following reaction:

$$PC\ell_3 + C\ell_2 \rightarrow PC\ell_5$$

If the yield of the reaction is 76.5 %, what is the mass of PCl_5 , in grams, obtained from the reaction of 27.0 g of PCl_3 with excess Cl_2 ? Give your answer to one decimal place; do not include units in your answer.

Answer

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113759&activity_type=QuizQuestion

6.3.5

In the balanced reaction below, a student reacts 1.25g of copper with 5.0mL of 12.0mol/L HCl.

$$Cu(s) + 2HC\ell(aq) \rightarrow CuC\ell_2(aq) + H_2(q)$$

Part 1

Calculate the theoretical yield of hydrogen gas produced in grams. Give your answer to four decimal points; do not include units.

Answer

In the balanced reaction below, a student reacts 1.25g of copper with 5.0mL of 12.0mol/L HCl.

$$Cu(s) + 2HC\ell(aq) o CuC\ell_2(aq) + H_2(g)$$

Part 2

Determine the percent yield of this reaction if a student collected 0.0321g of hydrogen gas. Round your answer to the nearest whole integer; do not include symbols.

Answer

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=108738&activity_type=QuizQuestion

Find this, and much, much more on Wizeprep.com

Bite-Sized Video Lessons

Each section corresponds to a minutes-long video explanation by your expert instructors.

Solutions to Problems

See the solutions to the practice problems as well as a step-by-step breakdown of the answers.

24/7 Instructor Q&A

Need help clarifying a concept? You have direct access to your instructor.

Also on Wizeprep.com

Crash Courses

A live review of all testable concepts, exam-like practice problems, tips & tricks, and Q&A. Led by an instructor who is an expert on your course.

✓ Live Online Session ✓ Booklet ✓ Solutions ✓ Recording

Weekly Tutorials

A weekly, live review of lecture topics led by an instructor who knows your course inside and out.

✓ Live Online Session
✓ Booklet
✓ Solutions
✓ Recording

First week free!

Mock Exam Walkthroughs

A realistic practice exam based on past exams from your course. An instructor experienced with your course will walk through the solutions.

✓ Live Online Session ✓ Booklet ✓ Solutions ✓ Recording

Wizeprep MCAT

Chemistry

Org Chem

Biochem

Physics

Psych

Two Plans

ELITE 515 LIVE

Flexible live schedules, face-time with our MCAT instructors.

515+ performance guarantee

SELF-PACED

Watch 144 hours of expert MCAT instruction whenever you have time.

Both Plans Include...

- 144 hrs of expert instruction
- 15 full-length practice exams
- ✓ 100+ practice passages
- 405+ passage-based questions

- All AAMC materials
- Personalized study plan
- 6 top-quality textbooks
- Unlimited Q&A with MCAT experts

Performance Guarantee

The Elite 515 program promises you a score of at least 515 on the MCAT or money back. A 515 puts you within the top 2% of scores!

Find Free MCAT Resources on Wizeprep.com/MCAT

Free Live Events

Learn about the med school application process and more.

Free Diagnostic Exam

Predict your MCAT score and assesses strengths and weaknesses.

Free Trial

Don't just take our word for it. Try out the first few lessons vourself.

Other Courses at Ontario High **School**

Grade 12 **Chemistry**

Resource for SCH4U

Grade 12 Calculus & Vectors

Resource for MCV4U

Grade 12 Biology

Resource for SBI4U

Grade 10 **Principles of Mathematics**

Resource for MPM2D

Grade 12 Data Management

Resource for MDM4U

Grade 12 Advanced

Functions

Resource for MHF4U

Grade 11 **Functions**

Resource for MCR3U

Grade 12 Physics

Resource for SPH4U

Grade 11 Biology

Resource for SBI3U

Grade 9 Math (De-streamed)

Resource for MTH1W