WHAT IS CLAIMED IS:

The present invention relates to compounds of formula I:

X Ar a or HAr $(R_{4a})_s$ O $(R_{4c})_r$ $(R_4)_r$ $(R_4)_r$ $(CH_2)_n$ R_3

its enantiomer, diastereomer, or pharmaceutically acceptable salt, hydrate or prodrug thereof wherein:

R₁ and R₂ independently represent

- vi) hydrogen,
- vii) $(CH_2)_n NR_5 R_6$,
- 15 viii) CR7R₈R₉, C(R)₂OR₁₄, CH₂NHR₁₄,
 - ix) $C(=O)R_{13}$, C(=NOH)H, $C(=NOR_{13})H$, $C(=NOR_{13})R_{13}$, $C(=NOH)R_{13}$, $C(=O)N(R_{13})_2$, $C(=NOH)N(R_{13})_2$, $NHC(=X_1)N(R_{13})_2$, $C(=NH)R_7$, $N(R_{13})C(=X_1)N(R_{13})_2$, $COOR_{13}$, SO_2R_{14} , $N(R_{13})SO_2R_{14}$, $N(R_{13})COR_{14}$,
- x) (C₁₋₆alkyl)CN, CN, CH=C(R)₂, (CH₂) $_p$ OH, C(=O)CHR₁₃, C(=NR₁₃)R₁₃, NR₁₀C(=X₁)R₁₃; or
 - vi) C₅₋₁₀ heterocycle optionally substituted with 1-3 groups of R₇, which may be attached through either a carbon or a heteroatom;
- $\begin{array}{lll} 25 & R_{1a} \ represents \ (CH_2)_n NR_5 R_6, \ CR_7 R_8 R_9, \ C(R)_2 OR_{14}, \ CH_2 NHR_{14}, \\ & C(=O)R_{13}, \ C(=NOH)H, \ C(=NOR_{13})H, \ C(=NOR_{13})R_{13}, \ C(=NOH)R_{13}, \ C(=O)N(R_{13})_2, \\ & C(=NOH)N(R_{13})_2, \ NHC(=X_1)N(R_{13})_2, \ (C=NH)R_7, \ N(R_{13})C(=X_1)N(R_{13})_2, \ COOR_{13}, \\ & SO_2R_{14}, \ N(R_{13})SO_2R_{14}, \ N(R_{13})COR_{14}, \ (C_{1-6}alkyl)CN, \ CN, \ CH=C(R)_2, \ (CH_2)_pOH, \\ & C(=O)CHR_{13}, \ C(=NR_{13})R_{13}, \ NR_{10}C(=X_1)R_{13}; \ \ or \ C5-10 \ heterocycle \ optionally \\ \end{array}$

substituted with 1-3 groups of R7, which may be attached through either a carbon or a heteroatom;

5 X is selected from the group consisting of,

Z represents (O)_n, H, OH, or halogen;

A represents C (when --- is present provided $Z = (O)_n$ and n=0), C (when --- is not present provided Z is H, OH or halogen), or N (when --- is not present and $Z = (O)_n$ and n=1);

--- represents a bond;

HAr har represents aryl or heteroaryl, heterocycle, heterocyclyl or heterocyclic, provided that in the case of a heteroaryl, heterocycle, heterocyclyl or heterocyclic, the cyclopropyl is not attached to a nitrogen atom on the ring;

R_x represents hydrogen or C₁₋₆ alkyl;

R₃ represent

15

20

- i) $NR_{13}(C=X_2)R_{12}$,
- ii) $NR_{13}(C=X_1)R_{12}$,
- 25 iii) NR₁₃SO₂R₁₄,
 - iv) N(R₁₃)heteroaryl,
 - v) $NR_{13}(CHR_{13})_{0-4}$ aryl,
 - vi) NR₁₃(CHR₁₃)₀₋₄heteroaryl,
 - vii) S(CHR₁₃)₀₋₄aryl,

- viii) S(CHR₁₃)₀₋₄heteroaryl,
- ix) $O(CHR_{13})_{0-4}$ aryl,
- x) $O(CHR_{13})_{0-4}$ heteroaryl,
- xi) $NOH(C=X_1)R_{12}$,
- xii) -OC=N(OCOaryl) C₁₋₆ alkyl
- xiii) -OC=N(OH) C₁₋₆ alkyl
- xiv) C5-10 heteroaryl which may be attached through either a carbon or a heteroatom; said aryl and heteroaryl optionally substituted with 1-3 groups of R7,
- R4, R4a, R4b, and R4c independently represent
 - v) hydrogen,
 - vi) halogen,
 - vii) C₁₋₆ alkoxy, or
 - viii) C₁₋₆ alkyl

15

5

r and s independently are 1-3, with the provision that when $(R_{4a})_s$ and $(R_4)_{r \text{ or }}(R_{4b})$ and $(R_{4c})_s$ are attached to an Ar or HAr ring the sum of r and s is less than or equal to 4;

R5 and R6 independently represent

- 20 xiii) hydrogen,
 - xiv) C₁₋₆ alkyl optionally substituted with 1-3 groups of halogen, CN, OH, C₁₋₆ alkoxy, amino, imino, hydroxyamino, alkoxyamino, C₁₋₆ acyloxy, C₁₋₆ alkylsulfenyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylsulfonyl, aminosulfonyl, C₁₋₆ alkylaminosulfonyl, C₁₋₆ dialkylaminosulfonyl, 4-morpholinylsulfonyl,
- phenyl, pyridine, 5-isoxazolyl, ethylenyloxy, or ethynyl, said phenyl and pyridine optionally substituted with 1-3 halogen, CN, OH, CF3, C₁₋₆ alkyl or C₁₋₆ alkoxy;
- C1-6 acyl optionally substituted with 1-3 groups of halogen, OH, SH, C1-6 alkoxy, naphthalenoxy, phenoxy, amino, C1-6 acylamino, hydroxylamino, alkoxylamino, C1-6 acyloxy, aralkyloxy, phenyl, pyridine, C1-6 alkylamino, C1-6 dialkylamino, C1-6 hydroxyacyloxy, C1-6 alkylsulfenyl, phthalimido, maleimido, succinimido, said phenoxy, phenyl and pyridine optionally substituted with 1-3 groups of halo, OH, CN, C1-6 alkoxy, amino, C1-6 acylamino, CF3 or C1-6 alkyl;

- C1-6 alkylsulfonyl optionally substituted with 1-3 groups of halogen, OH, C1-6 alkoxy, amino, hydroxylamino, alkoxylamino, C1-6 acyloxy, or phenyl; said phenyl optionally substituted with 1-3 groups of halo, OH, C1-6 alkoxy, amino, C1-6 acylamino, CF3 or C1-6 alkyl;
- 5 xvii) arylsulfonyl optionally substituted with 1-3 of halogen, C₁-6 alkoxy, OH or C₁-6 alkyl;
 - xviii) C1-6 alkoxycarbonyl optionally substituted with 1-3 of halogen, OH, C1-6 alkoxy, C1-6 acyloxy, or phenyl, said phenyl optionally substituted with 1-3 groups of halo, OH, C1-6 alkoxy, amino, C1-6 acylamino, CF3 or C1-6 alkyl;
- aminocarbonyl, C1-6 alkylaminocarbonyl or C1-6 dialkylaminocarbonyl, said alkyl groups optionally substituted with 1-3 groups of halogen, OH, C1-6 alkoxy or phenyl
- five to six membered heterocycles optionally substituted with 1-3 groups of halogen, OH, CN, amino, C1-6 acylamino, C1-6 alkylsulfonylamino, C1-6 alkoxycarbonylamino, C1-6 alkoxy, C1-6 acyloxy or C1-6 alkyl, said alkyl optionally substituted with 1-3 groups of halogen, or C1-6 alkoxy;
 - C3-6 cycloalkylcarbonyl optionally substituted with 1-3 groups of halogen, OH, C1-6 alkoxy or CN;
- benzoyl optionally substituted with 1-3 groups of halogen, OH, C1-6 alkoxy, C1-6 alkyl, CF₃, C1-6 alkanoyl, amino or C1-6 acylamino;
 - xxiii) pyrrolylcarbonyl optionally substituted with 1-3 of C1-6 alkyl;
 - C1-2 acyloxyacetyl where the acyl is optionally substituted with amino, C1-6 alkylamino, C1-6 dialkylamino, 4-morpholino, 4-aminophenyl, 4-(glycylamino)phenyl; or
- R5 and R6 taken together with any intervening atoms can form a 3 to 7 membered heterocyclic ring containing carbon atoms and 1-2 heteroatoms independently chosen from O, S, SO, SO₂, N, or NR₈;

R7 represent

- 30 iii) hydrogen, halogen, CN, CO₂R, CON(R)₂, CHO, (CH₂)₀₋₃NHAc, C(=NOR), OH, C₁-6 alkoxy, C₁-6 alkyl, alkenyl, hydroxy C₁-6 alkyl, (CH₂)₁.

 3NHC(O)C₁-6 alkyl, (CH₂)₀₋₃N(C₁-6 alkyl)₂
 - iv) (CH₂)_namino, (CH₂)_nC1-6 alkylamino, C1-6 dialkylamino, hydroxylamino or C1-2 alkoxyamino all of which can be optionally substituted on the nitrogen

with C₁₋₆ acyl, C₁₋₆ alkylsulfonyl or C₁₋₆ alkoxycarbonyl, said acyl and alkylsulfonyl optionally substituted with 1-2 of halogen or OH;

R8 and R9 independently represents

- 5 iv) H, CN,
 - v) C1-6 alkyl optionally substituted with 1-3 halogen, CN, OH, C1-6 alkoxy, C1-6 acyloxy, or amino,
 - vi) phenyl optionally substituted with 1-3 groups of halogen, OH, C1-6 alkoxy; or

10

R7 and R8 taken together can form a 3-7 membered carbon ring optionally interrupted with 1-2 heteroatoms chosen from O, S, SO, SO2, NH, and NR8;

X1 represents O, S or NR13, NCN, NCO₂R₁₆, or NSO₂R₁₄

15

X₂ represents O, S, NH or NSO₂R₁₄;

R₁₀ represents hydrogen, C₁₋₆ alkyl or CO₂R₁₅;

- R₁₂ represents hydrogen, C₁₋₆ alkyl, NH₂, OR, CHF₂, CHCl₂, CR₂Cl, (CH₂)_nSR, (CH₂)_nCN, (CH₂)_nSO₂R, (CH₂)_nS(O)R, C₁₋₆ alkylamino, C₅₋₁₀ heteroaryl or C₁₋₆ dialkylamino, where said alkyl may be substituted with 1-3 groups of halo, CN, OH or C₁₋₆ alkoxy, said heteroaryl optionally substituted with 1-3 groups of R₇;
- Each R₁₃ represents independently hydrogen, C₁₋₆ alkyl, C₆₋₁₀ aryl, NR₅R₆, SR₈, S(O)R₈, S(O)₂ R₈, CN, OH, C₁₋₆ alkylS(O)R, C₁₋₆ alkoxycarbonyl, hydroxycarbonyl, -OCOaryl, C₁₋₆ acyl, C₃₋₇ membered carbon ring optionally interrupted with 1-4 heteroatoms chosen from O, S, SO, SO₂, NH and NR₈ where said C₁₋₆ alkyl, aryl or C₁₋₆ acyl groups may be independently substituted with 0-3
- halogens, hydroxy, N(R)2, CO₂R, C₆₋₁₀ aryl, C ₅₋₁₀ heteroaryl, or C₁₋₆ alkoxy groups;

When two R₁₃ groups are attached to the same atom or two adjacent atoms they may be taken together to form a 3-7 membered carbon ring optionally interrupted with 1-2 heteroatoms chosen from O, S, SO, SO₂, NH, and NR₈;

R represents hydrogen or C1-6 alkyl;

R₁₄ represents amino, C₁₋₆ alkyl, C₁₋₆ haloalkyl, five to six membered heterocycles or phenyl, said phenyl and heterocycles optionally substituted with 1-3 group of halo, C₁₋₆ alkoxy, C₁₋₆ acylamino, or C₁₋₆ alkyl, hydroxy and/or amino, said amino and hydroxy optionally protected with an amino or hydroxy protecting group;

R₁₅ is C₁₋₆ alkyl or benzyl said benzyl optionally substituted with 1-3 groups of halo, OH, C₁₋₆ alkoxy, amino, C₁₋₆ acylamino, or C₁₋₆ alkyl;

R₁₆ is hydrogen, C₅₋₁₀heteroaryl, C₆₋₁₀aryl, said heteroaryl and aryl optionally substituted with 1-3 groups of R₇;

p represents 0-2 and

n represents 0-1.

2. A compound according to claim 1 wherein R_1 and R_2 independently represent H, NR₅R₆, CN, OH, C(R)₂OR₁₄, NHC(=X1)N(R₁₃)₂, C(=NOH)N(R₁₃)₂, NR₁₀C(=X₁)R₁₃ or CR₇R₈R₉ and R_{1a} represents NR₅R₆, CN, OH, C(R)₂OR₁₄, NHC(=X1)N(R₁₃)₂, C(=NOH)N(R₁₃)₂, NR₁₀C(=X₁)R₁₃ or CR₇R₈R₉.

3. A compound according to claim 2 wherein

25 Ar b or HAr

independently are phenyl, pyridine, pyrimidine, or piperidine.

4. A compound according to claim 3 wherein when X is

30

WDC99 937458-1.050193.0173

5. A compound according to claim 3 wherein X is

- 6. A compound according to claim 5 wherein A is C, --- is present and Z=(O)_n where n=0, A is C, --- is not present and Z=H, OH or halogen, or A is N, -- is not present and Z=(O)_n where n=1.
- 7. A compound according to claim 6 wherein one of R_1 and R_2 is H and the other is NR_5R_6 , or H and the other is $NR_{10}C(=X_1)R_{13}$
 - 8. A compound according to claim 4 wherein one of R_{1a} is CN, $NR_{10}C(=X_1)R_{13}$, or $NR_{5}R_{6}$.
- 9. A compound according to claim 1 wherein R₃ is NR(C=X₁)R₁₂, C₅₋₁₀ heteroaryl, NH(CH₂)₀₋₄aryl, NH(CH₂)₀₋₄heteroaryl, said aryl and heteroaryl optionally substituted with 1-3 groups of Ra
- 10. A compound according to claim 9 wherein R₃ is a C₅₋₁₀

 N which represents an optionally substituted aromatic

heterocyclic group containing 1 to 4 nitrogen atoms and at least one double bond, and which is connected through a bond on any nitrogen.

- 11. A compound according to claim 1 wherein the structural
- 25 formula is II:

$$X = N$$

$$(R_{4a})_s$$

$$(R_4)_r$$

$$R_3$$

Formula II

Wherein:

X is selected from the group consisting of,

5 Z represents (O)_n, H, OH, or halogen;

A represents C (when --- is present provided $Z = (O)_n$ and n=0), C (when --- is not present provided Z is H, OH or halogen), or N (when --- is not present and $Z = (O)_n$ and n=1); and R_{1a} , R_1 , R_2 , R_3 , R_4 , R_{4a} , and R_3 are as previously described herein.

10

12. A compound according to claim 11 wherein R_{1a} is CN or NR₅R₆.

13. A compound which is:

- N-[5(S)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
 - N-[5(S)-3-[4-[5-(1-cyanocyclopropan-1-yl)pyridin-2-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
 - N-[5(S)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-
- 20 oxooxazolidin-5-ylmethyl]acetamide,
 - N-[5(S)-3-[4-[2-(1-(t-butoxycarbonyl)aminocyclopropan-1-yl)pyridin-5-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
 - N-[5(S)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
- N-[5(S)-3-[4-[2-(1-(t-butoxycarbonyl)aminocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
 - N-[5(S)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
 - N-[5(S)-3-[4-[2-(1-(dimethylamino)methylcyclopropan-1-yl)pyridin-5-yl]-3-
- 30 fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
 - N-[5(S)-3-[4-[2-(1-(dimethylamino)methylcyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,

- N-[5(S)-3-[4-[2-(1-t-butoxycarbonylcyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
- N-[5(S)-3-[4-[2-(1-hydroxymethylcyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
- N-[5(S)-3-[4-[2-(1-hydroxycarbonylcyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide hydrochloride,
 - N-[5(S)-3-[4-[2-(1-(t-butoxycarbonyl)aminocyclopropan-1-yl)pyridin-5-yl]-3,5-difluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
 - N-[5(S)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]-3,5-difluorophenyl]-2-
- oxooxazolidin-5-ylmethyl]acetamide, N-[5(S)-3-[4-[2-(1-aminomethylcyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2
 - oxooxazolidin-5-ylmethyl]acetamide, 1-[5(R)-3-[4-[2-[$(1\alpha,5\alpha,6\alpha)$ -6-(N-t-butoxycarbonyl)amino-3-azabicyclo[3.1.0]hexan-3-yl]pyridyl-5-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,
- 1-[5(R)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,
 - 1-[5(R)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,
 - 1-[5(R)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]phenyl]-2-oxooxazolidin-5-
- 20 ylmethyl]-1,2,3-triazole,
 - 1-[5(R)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,
 - N-[5(R)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]-3,5-difluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
- 5(R)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]phenyl]-5-[(isoxazol-3-yl)oxy]methyloxazolidin-2-one,
 - 5(R)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]phenyl]-5-[N-(t-butoxycarbonyl)-N-(isoxazol-3-yl)]aminomethyloxazolidin-2-one,
 - 5(R)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]phenyl]-5-[N-(isoxazol-3-
- 30 yl)]aminomethyloxazolidin-2-one,
 - 5(R)-3-[4-[2-(1-t-butoxycarbonylaminocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-5-[N-(t-butoxycarbonyl)-N-(isoxazol-3-yl)]aminomethyloxazolidin-2-one,
 - 5(R)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-5-[N-(t-
- butoxycarbonyl)-N-(isoxazol-3-yl)]aminomethyloxazolidin-2-one,

```
5(R)-3-[4-[2-(1-t-butoxycarbonylaminocyclopropan-1-yl)pyridin-5-yl]phenyl]-5-[(isoxazol-3-yl)oxy]methyloxazolidin-2-one,
```

- 5(R)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]phenyl]-5-[(isoxazol-3-yl)oxy]methyloxazolidin-2-one,
- 5 5(R)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-5-[N-(t-butoxycarbonyl)-N-(isoxazol-3-yl)]aminomethyloxazolidin-2-one,
 5(R)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-5-[N-(isoxazol-3-yl)]aminomethyloxazolidin-2-one,
- 5(R)-3-[4-[2-(1-cyanocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-5-[(isoxazol-3-yl)oxy]methyloxazolidin-2-one,
 - 1-[5(R)-3-[4-[2-[(1α ,5 α ,6 α)-6-(N-t-butoxycarbonyl)amino-3-azabicyclo[3.1.0]hexan-3-yl]pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole, 1-[5(R)-3-[4-[2-[(1α ,5 α ,6 α)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,
- 5(R)-3-[4-[2-[(1α , 5α , 6α)-6-(N-t-butoxycarbonyl)amino-3-azabicyclo[3.1.0]hexan-3-yl]pyridin-5-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide, 5(R)-3-[4-[2-[(1α , 5α , 6α)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]pyridin-5-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide, 5(R)-3-[4-[2-[(1α , 5α , 6α)-6-(N-t-butoxycarbonyl)amino-3-azabicyclo[3.1.0]hexan-3-
- yl]pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide, 5(R)-3-[4-[2-[(1 α ,5 α ,6 α)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide, 1-[5(R)-3-[4-[2-[(1 α ,5 α ,6 α)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]pyridin-5-yl]phenyl]-2-oxooxazolidin-5-ylmethyl]-1,2,3-triazole,
- 1-[5(R)-3-[4-[2-(1-t-butoxycarbonylaminocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]-4-methyl-1,2,3-triazole, 1-[5(R)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]-4-methyl-1,2,3-triazole,
- N-[5(S)-3-[4-[4-(1-(t-butoxycarbonyl)aminocyclopropan-1-yl)phenyl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
 N-[5(S)-3-[4-[4-(1-aminocyclopropan-1-yl)phenyl]-3-fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,
 N-[5(S)-3-[4-[4-(1-(t-butoxycarbonyl)aminocyclopropan-1-yl)phenyl]phenyl]-2-
- oxooxazolidin-5-ylmethyl]acetamide, N-[5(S)-3-[4-[4-(1-aminocyclopropan-1-yl)phenyl]phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,

N-[5(S)-3-[4-[4-(1-(t-butoxycarbonyl)aminocyclopropan-1-yl)-3-fluorophenyl]-3fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide, N-[5(S)-3-[4-[4-(1-aminocyclopropan-1-yl)-3-fluorophenyl]-3-fluorophenyl]-2-

oxooxazolidin-5-ylmethyl]acetamide,

N-[5(S)-3-[4-[4-(1-(t-butoxycarbonyl)aminocyclopropan-1-yl)-3fluorophenyl]-2-oxooxazolidin-5-ylmethyl]acetamide, N-[5(S)-3-[4-[4-(1-aminocyclopropan-1-yl)-3-fluorophenyl]phenyl]-2-oxooxazolidin-5-ylmethyl]acetamide,

N-[5(S)-3-[4-[2-(1-aminocyclopropan-1-yl)-3-fluoropyridin-5-yl]-3-fluorophenyl]-2-

oxooxazolidin-5-ylmethyl]acetamide,

N-[5(S)-3-[4-[4-(1-aminocyclopropan-1-yl)phenyl]-3,5-difluorophenyl]-2oxooxazolidin-5-ylmethyl]acetamide. N-[5(S)-3-[4-[2-(1-aminocyclopropan-1-yl)pyrimidin-5-yl]-3-fluorophenyl]-2-

oxooxazolidin-5-ylmethyl]acetamide.

1-[5(R)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]-3,5-difluorophenyl]-2-15 oxooxazolidin-5-ylmethyl]-4-methyl-1,2,3-triazole, 1-[5(R)-3-[4-[2-(1-aminocyclopropan-1-yl)-3-fluoropyridin-5-yl]-3,5-difluorophenyl]-2-oxooxazolidin-5-ylmethyl]-4-methyl-1,2,3-triazole,

1-[5(R)-3-[4-[2-(1-aminocyclopropan-1-yl)pyridin-5-yl]-3,5-difluorophenyl]-2-

20 oxooxazolidin-5-ylmethyl]-1,2,3-triazole, or

> its enantiomer, diastereomer, or pharmaceutically acceptable salt, hydrate or prodrug thereof.

25

14. A pharmaceutical composition comprised of a compound in accordance with claim 1 in combination with a pharmaceutically acceptable carrier and optionally a in combination with a vitamin selected from the group consisting vitamin B2, vitamin B6, vitamin B12 and folic acid.

30

- A method of treating or preventing a bacterial infection in a 15. mammalian patient in need thereof, comprising administering to said patient an effective amount of a compound of claim 1.
- A method of treating or preventing bacterial infection or an 16. oxazolidinone-associated side effect by administering an effective amount of a · 35 compound of formula I of claim 1 and an effective amount of one or more of a vitamin selected from the group consisting of vitamin B2, vitamin B6, vitamin B12 and folic acid to a patient in need thereof.

17. A method according to claim 16 for treating or preventing oxazolidinone-associated normocyctic anemia, peripheral sensory neuropathy, sideroblastic anemia, peripheral sensory neuropathy, optic neuropathy, seizures, thrombocytopenia, cheilosis, hypo-regenerative anemia, megaloblastic anemia and seborrheic dermatitis by administering an effective amount of vitamin B2 to a patient in need thereof.

10

5