Rooted Trees

- Let G be a directed graph.
- G is a directed tree if its undirected version is a tree.
- A directed tree G is called a **rooted tree** if (1) there is a unique node r, called the root, with an in degree of zero and (2) for all other nodes v, the in degree of v is 1.
- A node with an out degree of zero is called a **leaf**.
- Non-leaf nodes are called **internal** nodes.
- The **level number** of a node in a rooted tree is the length of the path from the root to that node.

A Rooted Tree

- The level number of x is 4.
- Don't ask me why computer scientists plant their trees upside down.

Binary Trees and Beyond

- A rooted tree is called a **binary tree** if the out degree of each node is 0, 1, or 2.
- A rooted tree is called a **complete binary tree** if the out degree of each node is 0 or 2.
- A rooted tree is called an m-ary tree if the out degree of each node is at most m.
- An m-ary tree is called a **complete** m-ary tree if the out degree of each node is 0 or m.

Properties of Complete m-Ary Trees

Theorem 89 For a complete m-ary tree with n nodes, ℓ leaves, and i internal nodes,

1.
$$n = mi + 1$$
.

2.
$$\ell = (m-1)i + 1$$
.

3.
$$i = (n-1)/m = (\ell-1)/(m-1)$$
.

- Need to remove m leaves to "expose" one internal node.
- Now inductively, n m = m(i 1) + 1, proving property 1.
- Observe that $\ell = n i = mi + 1 i = (m 1)i + 1$.
- Property 3 merely restates properties 1 and 2.

A Numerical Example Based on p. 738

- There, m = 2, n = 11, $\ell = 6$, and i = 5.
- We verify the three properties of Theorem 89 below.

$$n = mi + 1$$
: $11 = 2 \times 5 + 1$.
 $\ell = (m - 1)i + 1$: $6 = (2 - 1) \times 5 + 1$.
 $i = (\ell - 1)/(m - 1) = (n - 1)/m$:
 $5 = (6 - 1)/(2 - 1) = (11 - 1)/2$.

• All are satisfied.

Useful Corollaries for Binary Trees

Corollary 90 For a complete binary tree with ℓ leaves and i internal nodes,

$$i = \ell - 1 = (n - 1)/2.$$

• Apply Theorem 89(3) (p. 739) with m = 2.

Useful Corollaries for Binary Trees (concluded)

Corollary 91 For any binary tree with ℓ leaves and i internal nodes, $i \geq (n-1)/2$ and $i \geq \ell - 1$.

- For *every* internal node with an out degree of 1, append a leave node to make its degree 2.
- Suppose $k \geq 0$ leaves are added in the end.
- As the new tree is a complete binary tree with $\ell + k$ leaves,

$$i = (\ell + k) - 1 = \frac{(n+k) - 1}{2}$$

by Corollary 90.

Additional Properties of Complete Trees

Theorem 92 Let T be a complete m-ary tree with n nodes and ℓ leaves. Then

1.
$$n = (m\ell - 1)/(m - 1)$$
.

2.
$$\ell = [(m-1)n+1]/m$$
.

- Let *i* be the number internal nodes.
- By Theorem 89(1) (p. 739), n = mi + 1.
- By Theorem 89(3) (p. 739), $i = (\ell 1)/(m 1)$.
- Combine the two to obtain

$$n = m[(\ell - 1)/(m - 1)] + 1 = (m\ell - 1)/(m - 1).$$

Of Height and Balance

- \bullet Let T be a rooted tree.
- If h is the largest level number achieved by a leaf of T, then T is said to have **height** h.
 - The tree on p. 738 has height 4.
- A rooted tree of height h is said to be **balanced** if the level number of every leaf is h-1 or h.

Height and Number of Leaves

Theorem 93 Consider a complete m-ary tree of height h with ℓ leaves. Then

$$\ell \leq m^h$$

(equivalently, $h \ge \lceil \log_m \ell \rceil$).

- True when h = 1 as T is a tree with a root and $\ell = m$ leaves.
- Assume the theorem holds for trees of height less than h.
- Consider a tree with height h and ℓ leaves.

The Proof (concluded)

- It has m subtrees T_1, T_2, \ldots, T_m at each of the children of the root.
- Let ℓ_i be T_i 's number of leaves and $h_i \leq h-1$ be T_i 's height.
- $\ell_i \leq m^{h_i} \leq m^{h-1}$ by the induction hypothesis.
- So

$$\ell = \ell_1 + \ell_2 + \dots + \ell_m \le m (m^{h-1}) = m^h.$$

Height and Number of Leaves of Balanced Trees

Corollary 94 Consider a balanced complete m-ary tree with ℓ leaves. Then its height h equals $\lceil \log_m \ell \rceil$.

- $\ell \leq m^h$ by Theorem 93 (p. 745).
- $m^{h-1} < \ell$ because there are already m^{h-1} nodes with a level number of h-1 (prove it!).
- Hence

$$\lceil \log_m \ell \rceil \le h < \log_m \ell + 1 \le \lceil \log_m \ell \rceil + 1.$$

• As h must be an integer, $h = \lceil \log_m \ell \rceil$.

Rings^a

- Let R be a nonempty set endowed with 2 *closed* binary operations "+" and "·".
- $(R, +, \cdot)$ is a **ring** if the following conditions hold for all $a, b, c \in R$.
 - -a+b=b+a (commutative law of +).
 - -a + (b+c) = (a+b) + c (associative law of +).
 - There exists $z \in R$ such that a + z = z + a = a for every $a \in R$ (existence of the **additive identity** or **zero element** for +).

^aNamed by David Hilbert (1862–1943).

Rings (concluded)

- (continued)
 - For each $a \in R$, there is a $b \in R$ with a + b = b + a = z (existence of **additive inverse**).
 - $-a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associative law of ·).
 - $-a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$ for all $a, b, c \in R$ (distributive laws of \cdot over +).
- In addition, the ring is said to be **commutative** if

$$a \cdot b = b \cdot a$$

for all $a, b \in R$.

David Hilbert (1862–1943)

Comments

- It is helpful to think of "+" as addition and "·" as multiplication.
- From the definitions,
 - A ring has an additive identity z (sometimes 0).
 - The additive inverse always exists in a ring.
- A $u \in R$ is called a **multiplicative identity** or simply **unity** if $u \neq z$ and $a \cdot u = u \cdot a = a$ for all $a \in R$.
 - Sometimes, u is denoted by 1.
- The multiplicative identity may not exist in a ring.

Comments (concluded)

- If a ring contains a multiplicative identity, then it is called a **ring with unity**.
- An element $b \in R$ is said to be a's multiplicative inverse if

$$a \cdot b = b \cdot a = 1.$$

- A multiplicative inverse is not guaranteed to exist.
- If $a \in R$ has a multiplicative inverse, it is called a **unit**.

Some Basic Facts

- $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$ are rings.
 - The additive identity is 0.
 - The additive inverse of each number x is written as -x.
- For any ring, the zero element z (i.e., the additive identity) is unique.
 - If z_1 and z_2 are additive identities, then

$$z_1 = z_1 + z_2 = z_2$$
.

^aNote that "—" is not in the language of rings; it is merely a shorthand for the additive inverse.

Some Basic Facts (concluded)

- The additive inverse of a ring element is also unique.
 - For $a \in R$, suppose there are elements $b, c \in R$ where

$$a + \boxed{b} = \boxed{b} + a = z,$$

 $a + \boxed{c} = \boxed{c} + a = z.$

- Then

$$b = b + z = b + (a + c) = (b + a) + c = z + c = c.$$

Useful Shorthands

- Let $(R, +, \cdot)$ be a ring.
- Consider ka, where $k \in \mathbb{Z}^+$ and $a \in R$.
- This is clearly not an operation in R because $k \notin R$.
- Instead, it is a shorthand for

$$(((a+a)+a)+\cdots)+a=\overbrace{a+\cdots+a}^{k}.$$

• We write $a_1 + a_2 + \cdots + a_k$ or $\sum_{i=1}^k a_i$ instead of $((a_1 + a_2) + \cdots) + a_k$ by the associative law of +.

Useful Shorthands (concluded)

• Similarly, we write a^k for

$$\overbrace{a \cdot a \cdot \cdots \cdot a}^{k},$$

where k > 0.

• We write $a_1 \cdot a_2 \cdot \cdots \cdot a_k$ or $\prod_{i=1}^k a_i$ instead of $((a_1 \cdot a_2) \cdot \cdots) \cdot a_k$ by the associative law of \cdot .

Rings with Sets

- \bullet Let U be a finite set.
- Consider $(R, +, \cdot) = (2^U, \Delta, \cap)$.
 - $-A + B = A\Delta B$ for $A, B \subseteq U$.^a
 - $-A \cdot B = A \cap B$ for $A, B \subseteq U$.
- It is not hard to see that $(2^U, \Delta, \cap)$ is a ring with unity.
- The additive identity is \emptyset .
- The multiplicative identity is U.
- So it is incorrect to think of "+" as addition and "·" as multiplication exclusively.

^aRecall Eq. (26) on p. 197 for the symmetric difference.

Generalized Distributive Laws

Lemma 95 Let $(R, +, \cdot)$ be a ring. Then

$$(a_1 + \dots + a_m) \cdot (b_1 + \dots + b_n) = \sum_{i=1}^m \sum_{j=1}^n a_i \cdot b_j$$

for $m, n \in \mathbb{Z}^+$ and $a_1, a_2, \dots, a_m, b_1, b_2, \dots, b_n \in R$.

Proof: By induction, it equals

$$(a_1 + \dots + a_m) \cdot b_1 + \dots + (a_1 + \dots + a_m) \cdot b_n$$

= $a_1 \cdot b_1 + a_2 \cdot b_1 + \dots + a_m \cdot b_n$.

A Practice Run

Lemma 96 Let $(R, +, \cdot)$ be a ring. Then $(kx) \cdot (jy) = (kj)(x \cdot y)$ for $k, j \in \mathbb{Z}^+$ and $x, y \in R$.

Proof:

$$(kx) \cdot (jy) = (x + \dots + x) \cdot (y + \dots + y)$$

$$= x \cdot y + \dots + x \cdot y$$

$$= (kj)(x \cdot y),$$

where the second equality is by Lemma 95 (p. 760).

Another Practice Run

Lemma 97 Let $(R, +, \cdot)$ be a ring. Then $(kx) \cdot (jy) = ((kj)x) \cdot y$ for $k, j \in \mathbb{Z}^+$ and $x, y \in R$.

Proof:

$$(kx) \cdot (jy) = (x + \dots + x) \cdot (y + \dots + y)$$

$$= x \cdot y + \dots + x \cdot y$$

$$= (x + \dots + x) \cdot y$$

$$= ((kj)x) \cdot y,$$

where the third equality is by Lemma 95 (p. 760).

The Cancellation Laws of +

Theorem 98 For all $a, b, c \in R$, (a) a + b = a + c implies b = c, and (b) b + a = c + a implies b = c.

- We focus on (a).
- As $a \in R$, it follows that $-a \in R$.
- Hence

$$a+b=a+c \implies (-a)+(a+b)=(-a)+(a+c)$$

$$\Rightarrow [(-a)+a]+b=[(-a)+a]+c$$

$$\Rightarrow z+b=z+c$$

$$\Rightarrow b=c.$$

Comments

• In the proof, we implicitly used the following property:

if
$$b = c$$
, then $a + b = a + c$.

- This is the opposite of the cancellation law.
- It is true because the left and right sides are identical.

A Corollary

Corollary 99 For any ring $(R, +, \cdot)$ and any $a \in R$,

$$a \cdot z = z \cdot a = z$$
.

- $a \cdot z + a \cdot z = a \cdot (z+z) = a \cdot z = a \cdot z + z$.
- By the left-cancellation property,^a

$$a \cdot z = z$$
.

^aRecall p. 763.

A Criterion for Commutativity^a

Lemma 100 Let $(R, +, \cdot)$ be a ring. It is commutative if and only if $(a + b)^2 = a^2 + 2(a \cdot b) + b^2$ for all $a, b \in R$.

• Note that

$$(a+b)^2 = (a+b) \cdot (a+b) = a^2 + \boxed{a \cdot b + b \cdot a} + b^2.$$

• So if $(a+b)^2 = a^2 + 2(a \cdot b) + b^2$, then

$$2(a \cdot b) = a \cdot b + b \cdot a.$$

- As $2(a \cdot b) = a \cdot b + a \cdot b$, the above and the left-cancellation property imply $a \cdot b = b \cdot a$.
- The other direction is trivial.

^aRecall p. 751.

Additional Properties

Corollary 101 For any ring $(R, +, \cdot)$, for all $a, b \in R$,

1.
$$-(-a) = a$$
.

2.
$$a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$$
.

3.
$$(-a) \cdot (-b) = a \cdot b$$
.

- By definition -(-a) is the additive inverse of -a.
- As (-a) + a = z, a is also the additive inverse of -a.
- By the uniqueness of the additive inverse, a (-a) = a, establishing (1).

^aRecall p. 755.

The Proof (concluded)

- By definition $-(a \cdot b)$ is the additive inverse of $a \cdot b$.
- But by Corollary 99 (p. 765),

$$a \cdot b + \boxed{a \cdot (-b)} = a \cdot [b + (-b)] = a \cdot z = z.$$

- By the uniqueness of the additive inverse,^a $a \cdot (-b) = -(a \cdot b)$.
- Similarly, $(-a) \cdot b = -(a \cdot b)$, establishing (2).
- From (2), $(-a) \cdot (-b) = -[a \cdot (-b)] = -[-(a \cdot b)].$
- Part (3) follows from (1).

^aRecall p. 755 again.

The Uniqueness of Unity^a

Theorem 102 Let $(R, +, \cdot)$ be a ring with unity. b (a) The unity is unique. (b) If x is a unit of R, then the multiplicative inverse of x is unique.

- As a result, u (or 1) is the unity of a ring with unity.
- Furthermore, the multiplicative inverse of each unit x will be denoted by x^{-1} .

^aProve it!

^bRecall p. 753.

Proper Divisor of Zero

- A ring may contain **proper divisors of zero**.
- a is a proper divisor of zero if $a \neq z$ and there exists a $b \neq z$ such that $a \cdot b = z$ or $b \cdot a = z$.
 - The set of 2×2 integral matrices with matrix addition and multiplication is a ring.^a
 - But

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

^aIt is not commutative, however.

Units Are Not Proper Divisors of Zero

Lemma 103 A unit in a ring R cannot be a proper divisor of zero.

- Let $x \in R$ be a unit.^a
- So there exists a $y \in R$ such that $x \cdot y = y \cdot x = 1$.
- Suppose $x \cdot w = z$ for some $w \in R$.
- By Corollary 99 (p. 765),

$$y \cdot (x \cdot w) = y \cdot z = z.$$

• But

$$y \cdot (x \cdot w) = (y \cdot x) \cdot w = 1 \cdot w = w.$$

• Hence w = z, and x is not a proper divisor of zero.

^aRecall p. 754.

Integral Domains and Fields^a

- Let $(R, +, \cdot)$ be a commutative ring with unity.
- R is called an **integral domain** if R has no proper divisors of zero.
- R is called a **field** if every nonzero element is a unit.

^aDue to Evariste Galois.

Evariste Galois (1811–1832)

Some Examples

- $(\mathbb{Z}, +, \cdot)$ is an integral domain but not a field.
- $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, and $(\mathbb{C}, +, \cdot)$ are integral domains and fields.

Fields Are Integral Domains

Theorem 104 If $(F, +, \cdot)$ is a field, then it is an integral domain.

- Let $a, b \in F$ with $a \cdot b = z$.
- If a = z, then we are done.
- So assume $a \neq z$.
- Then a has a multiplicative inverse a^{-1} as F is a field.
- Now, $a \cdot b = z$ implies

$$a^{-1} \cdot (a \cdot b) = a^{-1} \cdot z = z$$

by Corollary 99 (p. 765).

The Proof (concluded)

• But

$$a^{-1} \cdot (a \cdot b) = (a^{-1} \cdot a) \cdot b = u \cdot b = b.$$

- Hence b = z.
- \bullet We conclude that F has no proper divisors of zero.

Finite Integral Domains Are Fields

Theorem 105 A finite integral domain $(D, +, \cdot)$ is a field.

- Assume $D = \{ d_1, d_2, \dots, d_n \}.$
- For $d \in D$ such that $d \neq z$,

$$dD \stackrel{\Delta}{=} \{ d \cdot d_1, d \cdot d_2, \dots, d \cdot d_n \} \subseteq D$$

because D is closed under \cdot .

- Suppose |dD| < n.
- Then

$$d \cdot d_i = d \cdot d_i$$

for some distinct i, j.

The Proof (concluded)

• As D is an integral domain and $d \neq z$, it follows that

$$d_i = d_j$$

by the cancellation law, a contradiction.

- We conclude that |dD| = n and thus dD = D.
- As a result, $d \cdot d_k = u$, the unity of D, for some $1 \le k \le n$.
- This implies d is a unit of D.
- Because this is true for all $d \neq z$, $(D, +, \cdot)$ is a field.

The Integers Modulo n

- Let $n \in \mathbb{Z}^+$, n > 1.
- For $a, b \in \mathbb{Z}$, we say a is **congruent**^a **to** b **modulo** n, written $a \equiv b \mod n$, if $n \mid (a b)$.
- n is the **modulus**.
- Congruence modulo n is an equivalence relation on \mathbb{Z} .
- Let \mathbb{Z}_n be the equivalence classes:

$$\mathbb{Z}_n = \{0, 1, \dots, n-1\}.$$

$$-\mathbb{Z}_n = \{ [0], [1], \dots, [n-1] \}$$
 is more precise.

^aCarl Friedrich Gauss.

^bOr a and b are congruent modulo n.

^cRecall p. 395.

Carl Friedrich Gauss (1777–1855)

 $a \equiv b \bmod n \text{ vs. } a = b \bmod n$

- $a \equiv b \mod n$ is about a relation between a and b.
- $a = b \mod n$ means a is the remainder of b when divided by n.
- So $-3 \equiv 9 \mod 6$.
- But $-3 \neq 9 \mod 6$.
- Instead, $3 = 9 \mod 6$.

Elementary Facts about Arithmetics in \mathbb{Z}_n

- In \mathbb{Z}_n , all arithmetics are modulo n.
 - $-5+6 \equiv 2 \mod 3$, and $5 \times 7 \equiv 2 \mod 3$.
- If $f(x_1, x_2, ..., x_n)$ is a polynomial with integer coefficients and $a_j \equiv b_j \mod m$ for $1 \leq j \leq n$, then

$$f(a_1, a_2, \ldots, a_n) \equiv f(b_1, b_2, \ldots, b_n) \bmod m.$$

 $-9^9 \mod 4 \equiv (9 \mod 4)^9 \equiv 1 \mod 4.$

A Key Algorithm

- We are given two integers m, n.
- In many important applications, we need to find integers m' and n' such that

$$mm' + nn' = \gcd(m, n).$$

• This is called the **extended Euclidean algorithm** or **Bézout's identity**.^a

^aBézout (1779).

Extended Euclidean Algorithm

```
1: (u_1, u_2, u_3) := (1, 0, m);
 2: (v_1, v_2, v_3) := (0, 1, n);
 3: while v_3 \neq 0 do
 4: q := \lfloor u_3/v_3 \rfloor;
 5: (t_1, t_2, t_3) := (u_1 - qv_1, u_2 - qv_2, u_3 - qv_3);
 6: (u_1, u_2, u_3) := (v_1, v_2, v_3);
 7: (v_1, v_2, v_3) := (t_1, t_2, t_3);
 8: end while
 9: m' := u_1;
10: n' := u_2;
11: gcd := u_3;
12: return (m', n', \text{gcd});
```

An Example: n=100 and m=17

q	u_1	u_2	u_3	v_1	v_2	v_3
_	1	0	100	0	1	17
5	0	1	17	1	-5	15
1	1	-5	15	-1	6	2
7	-1	6	2	8	-47	1
2	8	-47	1	-17	100	0

We conclude that

$$100 \times 8 + 17 \times (-47) = 1,$$

which is true.

Inverses in (\mathbb{Z}_n, \times)

- The x that solves $ax \equiv 1 \mod n$ is a's **inverse**.
- It is often denoted by $a^{-1} \mod n$.
- gcd(a, n) = 1 is necessary to solve $ax \equiv 1 \mod n$.
 - $-\gcd(a,n) > 1 \text{ implies } \gcd(ax,n) > 1 \text{ for } x \not\equiv 0 \bmod n.$
 - That makes $ax \equiv 1 \mod n$ unsolvable.^a

^aProve it.

Inverses in (\mathbb{Z}_n, \times) (continued)

- It is also sufficient to solve $ax \equiv 1 \mod n$.
 - The extended Euclidean algorithm yields two integers a' and n' such that

$$aa' + nn' = 1.$$

- This implies $aa' \equiv 1 \mod n$.
- Thus x = a' is a solution.

Inverses in (\mathbb{Z}_n, \times) (continued)

- The solution to $ax \equiv 1 \mod n$ is unique modulo n.^a
 - Suppose there are two solutions x', x''.
 - Then

$$ax' \equiv 1 \mod n,$$

 $ax'' \equiv 1 \mod n.$

- This implies that $a(x' x'') \equiv 0 \mod n$.
- Hence $n \mid a(x' x'')$.
- Because gcd(a, n) = 1, we have $n \mid (x' x'')$.
- It must be that $x' \equiv x'' \mod n$.

^aRecall also Theorem 102 (p. 769).

Inverses in (\mathbb{Z}_n, \times) (concluded)

- The inverse $a^{-1} \mod n$ is hence unique.
- $a^{-1} \mod n$ has nothing to do with $1/a \in \mathbb{Q}$.
 - Indeed, 1/a is in general not even an integer.

The Chinese Remainder Theorem

- Let $n = n_1 n_2 \cdots n_k$, where n_i are pairwise relatively prime.
- Then for any integers a_1, a_2, \ldots, a_k , the set of simultaneous equations

$$x \equiv a_1 \mod n_1,$$
 $x \equiv a_2 \mod n_2,$
 \vdots
 $x \equiv a_k \mod n_k,$

has a unique solution modulo n for the unknown x.

The Chinese Remainder Theorem (concluded)

- The solution can be expressed as a formula.
- Let $m_i = n/n_i$ for i = 1, 2, ..., k.^a
- The desired solution is

$$x = a_1c_1 + a_2c_2 + \dots + a_kc_k \mod n,$$

(remainder after division by n), where

$$c_i = m_i(m_i^{-1} \bmod n_i)$$

for
$$i = 1, 2, ..., k$$
.

aAs $m_i = n_1 \cdots n_{i-1} n_{i+1} \cdots n_k$, we have $m_i \equiv 0 \mod n_j$ for $i \neq j$.

An Example

• Let $n = 5 \times 13 = 65$.

• Hence $n_1 = 5, n_2 = 13, m_1 = 13, m_2 = 5.$

• Consider the equations

 $x \equiv 2 \mod 5,$

 $x \equiv 3 \mod 13.$

• Hence $a_1 = 2, a_2 = 3$.

An Example (continued)

• Now verify that

$$13^{-1} \equiv 2 \mod 5,$$

$$5^{-1} \equiv 8 \mod 13.$$

- Indeed,

$$13 \cdot 2 \equiv 1 \mod 5,$$
$$5 \cdot 8 \equiv 1 \mod 13.$$

An Example (concluded)

• Hence the solution is

$$2 \times [13 \times (13^{-1} \mod 5)] + 3 \times [5 \times (5^{-1} \mod 13)]$$

$$= 2 \times (13 \times 2) + 3 \times (5 \times 8)$$

$$= 2 \times 26 + 3 \times 40$$

$$= 172$$

$$= 42 \mod 65.$$

• It is easy to confirm that

$$42 \equiv 2 \mod 5,$$

$$42 \equiv 3 \mod 13.$$

Groups, Coding Theory, and Polya's Method of Enumeration

Group Theory^a

- Let $G \neq \emptyset$ be a set and \circ be a binary operation on G.
- (G, \circ) is called a **group** if it satisfies the following.
 - 1. For all $a, b \in G$, $a \circ b \in G$ (closure).
 - 2. For all $a, b, c \in G$, $a \circ (b \circ c) = (a \circ b) \circ c$ (associativity).
 - 3. There exists $e \in G$ with $a \circ e = e \circ a = a$ for all $a \in G$ (identity or unit element).
 - 4. For each $a \in G$, there is an element $b \in G$ such that $a \circ b = b \circ a = e$ (inverse).
- G is **commutative** or **abelian** if $a \circ b = b \circ a$ for all $a, b \in G$.

^aNiels Henrik Abel (1802–1829) and Evariste Galois. This formal definition is by Cayley (1854).

Niels Henrik Abel (1802–1829)

A Loose End in Item 4?^a

- Can a "right" inverse be different from a "left" inverse?
- Suppose $a \circ b = e$ and $b' \circ a = e$.
 - -b is a right inverse of a.
 - -b' is a left inverse of a.
- Then

$$b' = b' \circ e = b' \circ (a \circ b) = (b' \circ a) \circ b = e \circ b = b.$$

• They are identical.

^aContributed by Mr. Bao (B90902039) on December 23, 2002.

Examples of Groups

- Under ordinary +, $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{R}, +)$, and $(\mathbb{C}, +)$ are groups.
 - The inverse of a is simply -a, which exists.
- Under ordinary +, $(\mathbb{N}, +)$ is not a group.
 - The inverse of $a \in \mathbb{Z}^+$ does not exist.
- Under ordinary \times , none of (\mathbb{Z}, \times) , (\mathbb{Q}, \times) , (\mathbb{R}, \times) , and (\mathbb{C}, \times) are groups.
 - The number 0 has no inverses.

Examples of Groups (concluded)

- Under ordinary \times , (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) , and (\mathbb{C}^*, \times) are groups if A^* denotes the *nonzero* elements of A.
- Under ordinary –, none of $(\mathbb{Z}, -)$, $(\mathbb{Q}, -)$, and $(\mathbb{R}, -)$ are groups.
 - The associative axiom fails: $a (b c) \neq (a b) c$.
- $(\mathbb{Z}_n, +)$ is an abelian group for n > 1.
- For all $n \in \mathbb{Z}^+$, $|(\mathbb{Z}_n, +)| = n$.
- But (\mathbb{Z}_n, \times) may not be a group for n > 1.^a

^aSee pp. 803–804.

The Group (\mathbb{Z}_n^*, \times)

- Let \mathbb{Z}_n^* stand for the set of positive integers between 1 and n-1 that are relatively prime to n.
- (\mathbb{Z}_n^*, \times) is a (multiplicative) abelian group.
 - Here, \times is done modulo n.^a
- By definition,^b

$$\phi(n) \stackrel{\Delta}{=} |(\mathbb{Z}_n^*, \times)|. \tag{105}$$

- $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}.$
- Hence $\phi(12) = 4$.

^aReview pp. 786ff for the inverses modulo n.

^bRecall p. 424.

The Group (\mathbb{Z}_n^*, \times) (concluded)

- In particular, (\mathbb{Z}_p^*, \times) is a (multiplicative) abelian group for prime p.
- For all prime p,

$$|\left(\mathbb{Z}_p^*,\times\right)|=p-1.$$

- Note that p-1 is not a prime unless p=3.

Rings Redefined

- $(R, +, \cdot)$ is a ring if the following conditions hold.
 - -(R,+) is an abelian group.
 - $-a \cdot b \in R$ for all $a, b \in R$ (closure).
 - $-a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a, b, c \in R$ (associativity).
 - $-a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$ for all $a, b, c \in R$ (distributive laws of \cdot over +).

Properties of Groups^a

- The identity of G is unique.^b
 - If e_1, e_2 are both identities, then

$$e_1 = e_1 \circ e_2 = e_2$$

by the identity condition.

- The inverse of each element of G is unique.^c
 - Suppose b, c are both inverses of $a \in G$.
 - Then $b = b \circ e = b \circ (a \circ c) = (b \circ a) \circ c = e \circ c = c$.

^aProperties must be proved using only the four axioms or their logical corollaries.

^bRecall p. 755.

^cRecall p. 756.

The Cancellation Properties^a

The left-cancellation property: If $a, b, c \in G$ and

$$a \circ b = a \circ c$$
, then $b = c$.

•
$$b = (a^{-1} \circ a) \circ b = a^{-1} \circ (a \circ b) = a^{-1} \circ (a \circ c) = (a^{-1} \circ a) \circ c = c.$$

The right-cancellation property: If $a, b, c \in G$ and $b \circ a = c \circ a$, then b = c.

^aRecall Theorem 98 (p. 763).

Inverses^a

• $(a^{-1})^{-1} = a$.

- Both are inverses of a^{-1} .
- But inverse is unique.^b
- $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$.
 - The identity claims $b^{-1} \circ a^{-1}$ is the inverse of $a \circ b$.
 - Indeed,

$$(b^{-1} \circ a^{-1}) \circ (a \circ b) = b^{-1} \circ (a^{-1} \circ a) \circ b = b^{-1} \circ b = e.$$

^aContrast them with Corollary 101 (p. 767).

^bRecall p. 806.

Powers

- The associative property implies that $a_1 \circ a_2 \circ \cdots \circ a_n$ is well-defined.
- For n > 0, define

$$a^n = \overbrace{a \circ a \circ \cdots \circ a}^n.$$

• For n < 0, define

$$a^{n} = \overbrace{a^{-1} \circ a^{-1} \circ \cdots \circ a^{-1}}^{-n} = (a^{-1})^{-n}.$$
 (106)

- Note that $(a^{-1})^n = a^{-n}$.
- Define $a^0 = e$.

Powers (concluded)

- $(a^n)^{-1} = (a^{-1})^n$.
 - When n > 0,

$$a^{n} \circ (a^{-1})^{n} = a^{n-1} \circ \boxed{a \circ a^{-1}} \circ (a^{-1})^{n-1}$$
$$= a^{n-1} \circ (a^{-1})^{n-1}$$
$$= \cdots = e$$

- When n < 0, by Eq. (106) on p. 809,

$$a^n \circ (a^{-1})^n = (a^{-1})^{-n} \circ ((a^{-1})^{-1})^{-n}$$

which equals e by the same argument above.

Operations on Powers

Lemma 106 $a^n \circ a^m = a^{n+m}$ for $n, m \in \mathbb{Z}$.

• For $n, m \geq 0$,

$$a^n \circ a^m = \overbrace{a \circ \cdots \circ a}^n \circ \overbrace{a \circ \cdots \circ a}^m = \overbrace{a \circ \cdots \circ a}^{n+m} = a^{n+m}.$$

• For $n \geq 0, m < 0, \text{ and } -m \leq n,$

$$a^{n} \circ a^{m} = \overbrace{a \circ \cdots \circ a}^{n} \circ \overbrace{a^{-1} \circ \cdots \circ a^{-1}}^{-m} = \overbrace{a \circ \cdots \circ a}^{n-1} \circ \overbrace{a^{-1} \circ \cdots \circ a^{-1}}^{-m-1}$$

$$= \cdots = \overbrace{a \circ \cdots \circ a}^{n-(-m)} = \overbrace{a \circ \cdots \circ a}^{n+m} = a^{n+m}.$$

• The other cases are similar.

Subgroups

- Let (G, \circ) be a group.
- Let $\emptyset \neq H \subseteq G$.
- If H is a group under \circ , we call it a **subgroup** of G.
- For example, the set of even integers is a subgroup of $(\mathbb{Z}, +)$.^a
- H "inherits" \circ from G: It produces the same results as in G.
- $\{e\}$ and G are the two **trivial** subgroups of G.

^aProve it.

Criteria for Being a Subgroup

Only two axioms out of four need to be checked.

Theorem 107 Let H be a nonempty subset of a group (G, \circ) . Then H is a subgroup of G if and only if (1) for all $a, b \in H$, $a \circ b \in H$ (closure), and (2) for all $a \in H$, $a^{-1} \in H$ (inverse).

Proof (\Rightarrow) :

- Assume that H is a subgroup of G.
- Then H is a group.
- So H satisfies, among other things, the closure axiom (1) and the inverse axiom (2).

The Proof (concluded)

Proof (\Leftarrow) :

- Let $H \neq \emptyset$ satisfy (1) and (2).
- We need to verify the associative axiom and the existence of identity for H.
 - **Associativity:** For all $a, b, c \in H$, $(a \circ b) \circ c = a \circ (b \circ c) \in G$, hence in H by (1).
 - **Identity:** For any arbitrary $a \in H$, $a^{-1} \circ a \in H$ by (1) and (2) and is the identity.

Simpler Criterion for Being a Subgroup

Theorem 108 Let H be a nonempty subset of a group (G, \circ) . Then H is a subgroup of G if and only if $a \circ b^{-1} \in H$ for all $a, b \in H$.

Proof (\Rightarrow) :

• Obvious by the axioms of group theory.

Proof (\Leftarrow) :

- First, $a \circ a^{-1} \in H$ for any $a \in H$.
- Hence

$$e = a \circ a^{-1} \in H$$
.

The Proof (concluded)

- By Theorem 107 (p. 813), we only need to prove the closure and inverse axioms hold.
- Closure: For any arbitrary $a, b \in H$,

$$a \circ b = a \circ (b^{-1})^{-1} \in H.$$

• Inverse: For any $b \in H$,

$$b^{-1} = e \circ b^{-1} \in H.$$