

Calcolo integrale — Scheda di esercizi n. 6 21 Aprile 2023 — Compito n. 00048

 $\label{eq:caselle} \textbf{Istruzioni:} \ \ \text{le prime due caselle } (\mathbf{V} \ / \ \mathbf{F}) \\ \text{permettono di selezionare la risposta vero/falso.} \\ \text{La casella "C" serve a correggere eventuali errori invertendo la risposta data.}$

Per selezionare una casella, annerirla completamente: \blacksquare (non \boxtimes 0 \boxtimes).

Nome:					
Cognome:					
Matricola:					

Punteggi: 1 punto per ogni risposta esatta, 0 punti per risposte sbagliate o lasciate in bianco.

	1 A	1B	1C	1D	2A	$^{2}\mathrm{B}$	$^{2}\mathrm{C}$	^{2}D	3A	3B	3C	3D	4A	4B	4C	4D
\mathbf{V}																
\mathbf{F}																
\mathbf{C}																

3C)

1) Sia

$$F(t) = \int_{-6}^{t} \left[\cos^2(2x^2) + 2x^2\right] dx.$$

- **1A)** Si ha F(0) < 0.
- **1B)** La funzione F(t) è decrescente su \mathbb{R} .
- 1C) La funzione F(t) è una funzione dispari.
- **1D)** Si ha

$$\lim_{t \to +\infty} F(t) = +\infty.$$

2) Dire se le seguenti affermazioni sono vere o false

2A)
$$\int_{5}^{5} \left[x^{9} + \sin(4x) \right] dx = 0.$$

2B)
$$\int_{-3}^{3} \left[x^{10} + x^{3} \right] dx = 0.$$

2C)
$$\int_{8}^{14} \frac{dx}{x-2} = \int_{14}^{26} \frac{dx}{x-2}.$$

2D)
$$\int_0^{\pi/9} \sin(9x) \, dx = \frac{1}{9} \int_0^{\pi} \sin(x) \, dx \, .$$

3) Dire se le seguenti affermazioni sono vere o false

$$\int_0^\pi \sin(3x) \, dx = \frac{2}{3}$$

3B)
$$\int_0^{1/\sqrt{2}} x e^{2x^2} dx = 4 (e - 1).$$

$$\int_{0}^{1} 2 x e^{x} dx = 1.$$
3D)

$$\int_0^{3\pi} \sin^2(x) \, dx = \frac{3}{2} \, \pi \, .$$

 ${\bf 4)}$ Dire se le seguenti affermazioni sono vere o false

4A)
$$\int_{5}^{6} \frac{dx}{|x-4|} = -\ln(2).$$

4B)
$$\int_{7}^{8} \frac{dx}{(x-6)^2} = -\frac{1}{2}.$$

4C)
$$\int_{6}^{12} \frac{dx}{x^2 + 6x} = \ln(4/3).$$

4D)
$$\int_0^8 \frac{x}{x^2 + 225} dx = \frac{1}{2} \ln \left(\frac{17}{15} \right).$$

$\mathbf{Docente}$
DelaTorre Pedraza
)nain a

5) Calcolare una primitiva delle funzioni $f(x),\,g(x),\,h(x)$ e k(x) e calcolare gli integrali.

a12)
$$f(x) = \frac{1}{x+5}$$
, $\int_{1}^{1} f(x) dx$

b12)
$$g(x) = \frac{1}{x^2 - 4x}$$
, $\int_{8}^{12} g(x) dx$

a12)
$$f(x) = \frac{1}{x+5}$$
, $\int_0^1 f(x) dx$, **b12)** $g(x) = \frac{1}{x^2 - 4x}$, $\int_8^{12} g(x) dx$, **c12)** $h(x) = \frac{4x+10}{x^2 + 5x + 1}$, $\int_0^1 h(x) dx$, **d12)** $k(x) = \frac{x^3}{x^2 - 16}$, $\int_{-1}^1 k(x) dx$,

d12)
$$k(x) = \frac{x^3}{x^2 - 16}$$
, $\int_{-1}^1 k(x) dx$,

6) Calcolare una primitiva delle funzioni $f(x),\,g(x),\,h(x)$ e k(x) e calcolare gli integrali.

a12)
$$f(x) = x^3 \cos(x^2)$$
, $\int_0^{\sqrt{5}\pi} f(x) dx$, **b12)** $g(x) = (x^2 + 2x - 16) e^x$, $\int_0^4 g(x) dx$, **c12)** $h(x) = \cos^3(x)$, $\int_0^{\frac{17}{2}\pi} h(x) dx$, **d12)** $k(x) = \frac{4x - 6}{6} \ln(x)$, $\int_1^6 k(x) dx$,

b12)
$$g(x) = (x^2 + 2x - 16) e^x$$
, $\int_0^4 g(x) dx$,

c12)
$$h(x) = \cos^3(x)$$
, $\int_0^{\frac{17}{2}\pi} h(x) dx$

d12)
$$k(x) = \frac{4x-6}{6} \ln(x), \quad \int_{1}^{6} k(x) dx,$$

Soluzioni del compito 00048

1) Sia

$$F(t) = \int_{-6}^{t} \left[\cos^2(2x^2) + 2x^2\right] dx.$$

1A) Si ha F(0) < 0.

Falso: Si ha

$$F(0) = \int_{-6}^{0} \left[\cos^2(2x^2) + 2x^2\right] dx > 0,$$

dato che la funzione integranda è positiva.

1B) La funzione F(t) è decrescente su \mathbb{R} .

Falso: Per il teorema fondamentale del calcolo integrale si ha

$$F'(t) = \cos^2(2t^2) + 2t^2 > 0$$

e quindi la funzione F(t) è crescente.

1C) La funzione F(t) è una funzione dispari.

Falso: Se la funzione F(t) fosse dispari, si avrebbe

$$F(-6) = -F(6).$$

Tuttavia,

$$F(-6) = \int_{-6}^{-6} \left[\cos^2(2x^2) + 2x^2\right] dx = 0,$$

e quindi (se la funzione F(t) fosse dispari), dovrebbe essere F(6) = 0. Dato però che la funzione F(t) è strettamente crescente, si ha F(6) > F(-6) = 0, e quindi F(t) non è dispari.

1D) Si ha

$$\lim_{t \to +\infty} F(t) = +\infty.$$

Vero: Si ha, per $t \ge -6$,

$$F(t) = \int_{-6}^{t} \left[\cos^2(2x^2) + 2x^2\right] dx \ge \int_{-6}^{t} 2x^2 dx = \frac{2}{3}t^3 - 144.$$

Pertanto,

$$\lim_{t\to +\infty}\,F(t)\geq \lim_{t\to +\infty}\,\frac{2}{3}\,t^3-144=+\infty\,.$$

2A)

$$\int_{-5}^{5} \left[x^9 + \sin(4x) \right] dx = 0.$$

Vero: Dal momento che le funzioni $x \mapsto x^9$ e $x \mapsto \sin(4x)$ sono funzioni dispari, e che l'intervallo di integrazione è simmetrico rispetto all'origine, l'integrale vale zero.

2B)

$$\int_{-3}^{3} \left[x^{10} + x^3 \right] dx = 0.$$

Falso: Dal momento che la funzione $x \mapsto x^3$ è una funzione dispari, e che l'intervallo di integrazione è simmetrico rispetto all'origine, l'integrale di x^3 vale zero; d'altra parte, dato che la funzione $x \mapsto x^{10}$ è una funzione pari, e che l'intervallo è simmetrico rispetto all'origine, si ha

$$\int_{-3}^{3} x^{10} dx = 2 \int_{0}^{3} x^{10} = \frac{2}{11} 3^{11} > 0.$$

2C)

$$\int_{8}^{14} \frac{dx}{x-2} = \int_{14}^{26} \frac{dx}{x-2}.$$

Vero: Infatti si ha

$$\int_{8}^{14} \frac{dx}{x-2} = \ln(|x-2|) \Big|_{8}^{14} = \ln(12) - \ln(6) = \ln(2),$$

 \mathbf{e}

$$\int_{14}^{26} \frac{dx}{x-2} = \ln(|x-2|) \Big|_{14}^{26} = \ln(24) - \ln(12) = \ln(2),$$

e quindi i due integrali sono uguali.

2D)

$$\int_0^{\pi/9} \sin(9x) \, dx = \frac{1}{9} \int_0^{\pi} \sin(x) \, dx \, .$$

Vero: Si ha

$$\int_0^{\pi/9} \sin(9x) \, dx = -\frac{1}{9} \cos(9x) \Big|_0^{\pi/9} = -\frac{\cos(9 \cdot \pi/9) - \cos(0)}{9} = \frac{2}{9},$$

e

$$\int_0^{\pi} \sin(x) dx = -\cos(x) \Big|_0^{\pi} = -\cos(\pi) + \cos(0) = 2,$$

e quindi

$$\int_0^{\pi/9} \sin(9x) \, dx = \frac{2}{9} = \frac{1}{9} \cdot 2 = \frac{1}{9} \int_0^{\pi} \sin(x) \, dx$$

3A)

$$\int_0^\pi \sin(3x) \, dx = \frac{2}{3}$$

Vero: Si ha infatti

$$\int_0^\pi \sin(3\,x)\,dx = -\frac{\cos(3\,x)}{3}\Big|_0^\pi = -\frac{\cos(3\,\pi) - \cos(0)}{3} = \frac{2}{3}\,.$$

3B)

$$\int_0^{1/\sqrt{2}} x e^{2x^2} dx = 4 (e - 1).$$

Falso: Si ha, con la sostituzione $y = 2x^2$, da cui dy = 4x dx e quindi $x dx = \frac{dy}{4}$,

$$\int_0^{1/\sqrt{2}} x e^{2x^2} dx = \frac{1}{4} \int_0^1 e^y dy = \frac{e-1}{4} \neq 4 (e-1).$$

3C)

$$\int_{0}^{1} 2x e^{x} dx = 1.$$

Falso: Si ha, integrando per parti (derivando 2 x e integrando l'esponenziale),

$$\int_0^1 2x e^x dx = 2x e^x \Big|_0^1 - 2 \int_0^1 e^x dx = 2e - 2e^x \Big|_0^1 = 2e - 2e + 2 = 2 \neq 1.$$

3D)

$$\int_0^{3\pi} \sin^2(x) \, dx = \frac{3}{2} \, \pi \, .$$

Vero: Iniziamo con il calcolare una primitiva di $\sin^2(x)$; ricordando la formula

$$\sin^2(x) = \frac{1 - \cos(2x)}{2} \,,$$

si ha

$$\int \sin^2(x) dx = \frac{1}{2} \int [1 - \cos(2x)] dx = \frac{x}{2} - \frac{\sin(2x)}{4}.$$

Si ha pertanto

$$\int_0^{3\pi} \sin^2(x) \, dx = \left[\frac{x}{2} - \frac{\sin(2x)}{4} \right] \Big|_0^{3\pi} = \frac{3}{2} \pi \, .$$

dato che $\sin(6\pi) = 0 = \sin(0)$.

4A)

$$\int_{5}^{6} \frac{dx}{|x-4|} = -\ln(2).$$

Falso: Iniziamo con l'osservare che si ha $x-4 \ge 0$ sull'intervallo [5,6]; su tale intervallo si ha pertanto |x-4| = x-4. Si ha allora

$$\int_{5}^{6} \frac{dx}{|x-4|} = \int_{5}^{6} \frac{dx}{x-4} = \ln(|x-4|) \Big|_{5}^{6} = \ln(2) - \ln(1) = \ln(2) \neq -\ln(2).$$

Alternativamente, si poteva osservare che, essendo la funzione integranda positiva, l'integrale non poteva venire un numero negativo.

4B)

$$\int_{7}^{8} \frac{dx}{(x-6)^2} = -\frac{1}{2} \,.$$

Falso: Infatti si ha

$$\int_{7}^{8} \frac{dx}{(x-6)^2} = -\frac{1}{x-6} \Big|_{7}^{8} = -\frac{1}{2} + 1 = \frac{1}{2} \neq -\frac{1}{2}.$$

Alternativamente, si poteva osservare che, essendo la funzione integranda positiva, l'integrale non poteva venire un numero negativo.

4C)

$$\int_{6}^{12} \frac{dx}{x^2 + 6x} = \ln(4/3).$$

Falso: Il polinomio al denominatore si scompone come

$$x^2 + 6x = x\left(x + 6\right),$$

che ha come radici $x_1 = -6$ e $x_2 = 0$. Ricordando che

$$\int \frac{dx}{(x-x_1)(x-x_2)} = \frac{1}{x_2 - x_1} \ln \left(\left| \frac{x - x_2}{x - x_1} \right| \right),$$

si ha quindi

$$\int_{6}^{12} \frac{dx}{x^2 + 6x} = \int_{6}^{12} \frac{dx}{x(x+6)} = \frac{1}{6} \ln \left(\left| \frac{x}{x+6} \right| \right) \Big|_{6}^{12} = \frac{1}{6} \left[\ln \left(\frac{12}{18} \right) - \ln \left(\frac{6}{12} \right) \right] = \frac{1}{6} \ln(4/3) \neq \ln(4/3).$$

4D)

$$\int_0^8 \frac{x}{x^2 + 225} \, dx = \frac{1}{2} \ln \left(\frac{17}{15} \right).$$

Falso: Si ha, facendo comparire al numeratore la derivata del denominatore,

$$\int_0^8 \frac{x}{x^2 + 225} \, dx = \frac{1}{2} \int_0^8 \frac{2x}{x^2 + 225} \, dx = \frac{1}{2} \ln(|x^2 + 225|) \Big|_0^8.$$

Svolgendo i calcoli, si ha allora

$$\int_0^8 \frac{x}{x^2 + 225} \, dx = \frac{\ln(289) - \ln(225)}{2} = \frac{1}{2} \ln\left(\frac{17^2}{15^2}\right) = \ln\left(\frac{17}{15}\right) \neq \frac{1}{2} \ln\left(\frac{17}{15}\right).$$

5) Calcolare una primitiva delle funzioni f(x), g(x), h(x) e k(x) e calcolare gli integrali.

a12)
$$f(x) = \frac{1}{x+5}$$
, $\int_0^1 f(x) dx$, **b12)** $g(x) = \frac{1}{x^2 - 4x}$, $\int_8^{12} g(x) dx$, **c12)** $h(x) = \frac{4x+10}{x^2 + 5x + 1}$, $\int_0^1 h(x) dx$, **d12)** $k(x) = \frac{x^3}{x^2 - 16}$, $\int_{-1}^1 k(x) dx$,

Soluzione:

a12) Ricordando che si ha

$$\int \frac{dx}{x+a} = \ln(|x+a|),$$

si ha

$$\int \frac{dx}{x+5} = \ln(|x+5|),$$

e quindi

$$\int_0^1 \frac{dx}{x+5} = \ln(|x+5|) \Big|_0^1 = \ln(6) - \ln(5) = \ln\left(\frac{6}{5}\right).$$

b12) Ricordando che si ha

$$\int \frac{dx}{\left(x-x_2\right)\left(x-x_1\right)} = \frac{1}{x_2-x_1} \ln \left(\left| \frac{x-x_2}{x-x_1} \right| \right),$$

ed essendo $x^2 - 4x = x(x - 4) = (x - 0)(x - 4)$, si ha

$$\int \frac{dx}{x^2 - 4x} = \frac{1}{4} \ln \left(\left| \frac{x - 4}{x} \right| \right).$$

Pertanto,

$$\int_{8}^{12} \frac{dx}{x^2 - 4x} = \frac{1}{4} \ln \left(\left| \frac{x - 4}{x} \right| \right) \Big|_{8}^{12} = \frac{1}{4} \left[\ln \left(\frac{8}{12} \right) - \ln \left(\frac{4}{8} \right) \right] = \frac{1}{4} \ln \left(\frac{4}{3} \right).$$

c12) La derivata del denominatore è:

$$[x^2 + 5x + 1]' = 2x + 5$$

mentre il numeratore si può scrivere come:

$$4x + 10 = 2(2x + 5)$$
.

Si ha allora

$$\int \frac{4x+10}{x^2+5x+1} dx = 2 \int \frac{2x+5}{x^2+5x+1} dx = 2 \ln(|x^2+5x+1|),$$

da cui segue che

$$\int_0^1 \frac{4x+10}{x^2+5x+1} dx = 2 \ln(|x^2+5x+1|) \Big|_0^1 = 2 \left[\ln(7) - \ln(1)\right] = 2 \ln(7).$$

d12) Si ha

$$x^3 = x^3 - 16x + 16x = x(x^2 - 16) + 16x$$

e quindi

$$\frac{x^3}{x^2 - 16} = \frac{x\left(x^2 - 16\right) + 16x}{x^2 - 16} = x + \frac{16x}{x^2 - 16} = x + 8\frac{2x}{x^2 - 16} \,.$$

Ne segue che

$$\int \frac{x^3}{x^2 - 16} dx = \int \left[x + 8 \frac{2x}{x^2 - 16} \right] dx = \frac{x^2}{2} + 8 \ln(|x^2 - 16|),$$

e quindi che

$$\int_{-1}^{1} \frac{x^3}{x^2 - 16} dx = \left[\frac{x^2}{2} + 8 \ln(|x^2 - 16|) \right]_{-1}^{1} = \frac{1}{2} + 8 \ln(15) - \frac{1}{2} - 8 \ln(15) = 0.$$

Si noti che, essendo la funzione integranda dispari e l'intervallo simmetrico rispetto all'origine, si poteva concludere che l'integrale valeva zero senza calcolare la primitiva.

6) Calcolare una primitiva delle funzioni f(x), g(x), h(x) e k(x) e calcolare gli integrali.

a12)
$$f(x) = x^3 \cos(x^2)$$
, $\int_0^{\sqrt{5\pi}} f(x) dx$, **b12)** $g(x) = (x^2 + 2x - 16) e^x$, $\int_0^4 g(x) dx$, **c12)** $h(x) = \cos^3(x)$, $\int_0^{\frac{17}{2}\pi} h(x) dx$, **d12)** $k(x) = \frac{4x - 6}{6} \ln(x)$, $\int_1^6 k(x) dx$,

Soluzione:

a12) Con la sostituzione $y=x^2$, da cui $dy=2x\,dx$, e quindi $x\,dx=\frac{dy}{2}$, si ha

$$\int x^3 \cos(x^2) \, dx = \int x^2 \cos(x^2) \, x \, dx = \frac{1}{2} \int y \, \cos(y) \, dy \, .$$

Integrando per parti (al solito, derivando y ed integrando il coseno), si ha

$$\int y \cos(y) dy = y \sin(y) - \int \sin(y) dy = y \sin(y) + \cos(y),$$

da cui segue (ricordando la sostituzione) che

$$\int x^3 \cos(x^2) \, dx = \frac{x^2 \sin(x^2) + \cos(x^2)}{2} \, .$$

Si ha dunque

$$\int_0^{\sqrt{5\pi}} x^3 \cos(x^2) = \frac{x^2 \sin(x^2) + \cos(x^2)}{2} \Big|_0^{\sqrt{5\pi}} = \frac{\cos(5\pi) - \cos(0)}{2} = -1.$$

b12) Ricordiamo che se P(x) è un polinomio, si ha

$$\int P(x) e^x dx = Q(x) e^x,$$

dove Q(x) è un polinomio dello stesso grado di P(x) e tale che

$$P(x) = Q(x) + Q'(x).$$

Considerando un generico polinomio di secondo grado $Q(x) = a x^2 + b x + c$, si ha dunque

$$Q(x) + Q'(x) = x^2 + (2a + b)x + (b + c) = x^2 + 2x - 16$$

da cui si deduce che deve essere $a=1,\ 2a+b=2$ e b+c=-16; da queste tre equazioni si ricava facilmente che $a=1,\ b=0$ e c=-16, cosicché si ha

$$\int (x^2 + 2x - 16) e^x dx = (x^2 - 16) e^x.$$

Se ne deduce che

$$\int_0^4 (x^2 + 2x - 16) e^x dx = (x^2 - 16) e^x \Big|_0^4 = 16.$$

c12) Iniziamo a scrivere

$$\cos^3(x) = \cos^2(x) \, \cos(x) = (1 - \sin^2(x)) \, \cos(x) \,,$$

cosicché si tratta di calcolare

$$\int (1 - \sin^2(x)) \cos(x) \, dx \, .$$

Con la sostituzione $y = \sin(x)$, da cui $dy = \cos(x) dx$, si ha

$$\int (1 - \sin^2(x)) \cos(x) \, dx = \int (1 - y^2) \, dy = y - \frac{y^3}{3} = \sin(x) - \frac{\sin^3(x)}{3} \, .$$

Se ne deduce che

$$\int_0^{\frac{17}{2}\pi} \cos^3(x) \, dx = \left[\sin(x) - \frac{\sin^3(x)}{3} \right] \Big|_0^{\frac{17}{2}\pi} = 1 - \frac{1}{3} = \frac{2}{3} \, .$$

d12) Integrando per parti (derivando il logaritmo e integrando il polinomio) si ha

$$\int \frac{4x - 6}{6} \ln(x) dx = \frac{2x^2 - 6x}{6} \ln(x) - \int \frac{2x^2 - 6x}{6} \frac{1}{x} dx = \frac{2x^2 - 6x}{6} \ln(x) - \int \frac{2x - 6}{6} dx$$
$$= \frac{2x^2 - 6x}{6} \ln(x) - \frac{x^2 - 6x}{6}.$$

Ne segue che

$$\int_{1}^{6} \frac{4x - 6}{6} \ln(x) \, dx = \left[\frac{2x^2 - 6x}{6} \ln(x) - \frac{x^2 - 6x}{6} \right] \Big|_{1}^{6} = 6 \ln(6) - 0 - 0 + \frac{1 - 6}{6} = 6 \ln(6) - \frac{5}{6}.$$