Deliverable 4

Charles Carver, Mingi Jeong, Sam Lensgraf

Feature Description: Text-Based Features

Old

- Found scikit-learn's feature_extraction library & used TfldfVectorizer
- Stop words become down-weighted
- Used with ngram range = (1, 2)

New!

- Increased ngram_range to (1, 4)
- Implemented min_df and set to 2
- Used PorterStemmer as preprocessor

Hyperparameter optimization

- Could not do hyperparameter optimization with large text matrix
- Selected 7000 best features using kbest w/ chi^2 metric.
 - ~2,000,000 columns to 7000!
 - 7000 was sweet spot size. Larger and smaller both reduce performance.
- Trimmed data allowed large grid searches!
 - Logistic Regression (1039 configurations)
 - Gradient Boosting (180 configurations)
 - Support Vector Machine (288 configurations)
 - Random forest (2520 configurations)
- Logistic Regression / SVM were best
- Logistic Regression
 - o I2 loss function and C=6.97 were the best choice
- SVM
 - Best config: C = 5.5, kernel = linear
 - Performance highly dependent on C

Feature Description: Numerical Features

Old

Included numerical fields based on correlation values:
 Helpful

New!

- Included two new fields: first-release-year (if >1990 base year: 1, else: 0), review_count (for each product)
- Found error in preprocessing step:
 - Retained helpful column in training, validation phase
 - Accidently retained UnixReviewTime, Price, SalesRank in actual testing phase
- However, F1 was higher on actual data (0.73 on training / 0.74 on actual test)
- Led us to reconsider all combinations of textual fields with powerset of numerical features
 - unixReviewTime, price, salesRank, helpful, first-release-year, review_count
 - 2⁶ * classifier model * 10-Kfold
- Found first-release-year and review_count worked with the best for Logistic Regression in conjunction with textual features

Results: Combined Analysis

Old

- o Random Forest: F1 (10-fold mean) = 0.69
- K-Nearest Neighbors: F1 (10-fold mean) = 0.58
- Logistic Regression: F1 (10-fold mean) = 0.73

New!

- SVM
 - Hyperparameter optimization using grid search
 - C=5.5
 - Best F1 (10-fold mean) = 0.7860
- Logistic Regression
 - Hyperparameter optimization using grid search
 - C=6.97, class_weight='balanced', max_iter=100000, multi_class='multinomial'
 - Best F1 (10-fold mean) = 0.7905
- Voting Ensemble
 - Voting classifier (HARD): Logistic Regression + SVM
 - Best F1 (10-fold mean) = 0.7891

Figure 7-2. Hard voting classifier predictions

Results: Final Implementation

- After hyperparameter optimization, LR achieved best mean 10-fold F1 scores
- Considers the most useful numerical features to be first-release-year, review count
- **KBest** feature selector for classifier
- Mean = 0.790, STDV = 0.0131, 1.7% RSD
- Large improvement from D3 (mean = 0.730 using same model)

Min	0.771
Max	0.810
Mean	0.790

Fold	F1
1	0.786
2	0.797
3	0.807
4	0.782
5	0.778
6	0.798
7	0.792
8	0.777
9	0.810
10	0.771

Credits

Charles Carver
Mingi Jeong
Sam Lensgraf

✓ Slides
✓ Slides

✓ Deliverable code
✓ Numerical feature analysis
✓ Text-based feature analysis

✓ Had even more fun!
✓ Had even more fun!