Kodlama

Kodlama

- İki küme arasında karşılığı kesin olarak belirtilen kurallar bütünüdür.
- Kodlama, iki küme elemanları arasında karşılıklığı kesin olarak belirtilen kurallar bütünüdür diye tanımlanabilir.
- Diğer bir deyişle, görünebilen, okunabilen yazı, sayı ve işaretlerin değiştirilmesi işlemine 'kodlama' denir.

- 'Morse' alfabesi kodlamaya iyi bir örnektir. Kodlama işlemine diğer bir örnek, bilgisayarın çevresel birimleri ile merkezi işlem ünitesi arasındaki bilgi iletişimidir.
- Bilgisayarlarda, bir alfabetik-sayısal kaynak olan klavyeden gönderilen bilgi, 7
 veya 8 bitlik ikili sayılar şeklinde kodlandıktan sonra ilgili birime gönderilir.
- Kodlama işlemi yalnızca onluk sistemdeki sayıları (0, 1, 2,....,9) içerebileceği gibi, alfabetik ve alfasayısal bilgilerin kodlanmasını içerebilir.

Kodlama işleminin avantajları:

- Aritmetik işlemlerde kolaylık sağlar
- Hataların bulunmasını kolaylaştırır
- Hataların düzeltilmesi işlemini basitleştirir
- Bellek işlemlerinde verimliliği artırır
- Bilgilerin işlenmesi işleminin insanlarca kolayca anlaşılmasını sağlar.

- İki çeşit kodlama yöntemi vardır.
 - Yalnızca sayıların kullanıldığı yönteme sayısal yöntem,
 - alfabetik ve sayısal değerlerin kullanıldığı yönteme de alfasayısal yöntem denir.

Sayısal Kodlar

- Sayısal kodların kullanıldığı çok geniş uygulama alanları olduğundan çok sayıda sayısal kod bulunmaktadır.
- Bunlardan bazıları:
 - BCD Kodu
 - Gray kodu
 - +3 Kodu
 - A iken kodu
 - 5 te 2 kodu
 - Bar kodu

BCD Kodu (Binary Coded Decimal Code) - 8421 Kodu

• Onlu sayı sistemindeki bir sayının her bir basamağının 4-bit ikili sayı sistemi ile ifade edilmesinden oluşturulan koddur.

Onluk Tabanda	BCD	Onluk Tabanda	BCD
0	0000	10	0001 0000
1	0001	11	0001 0001
2	0010	12	0001 0010
3	0011	13	0001 0011
4	0100	14	0001 0100
5	0101	15	0001 0101
6	0110	16	0001 0110
7	0111	17	0001 0111
8	1000	18	0001 1000
9	1001	19	0001 1001

Onlu	BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

Örnek 1: (125)₁₀ sayısını BCD kodu nedir?

Her bir basamaktaki sayının ikili karşılığı 4 bit olarak yazılırsa;

1 2 5

0001 0010 0101 sayıları bulunur.

Sayıların birleştirilmesiyle;

 $(125)_{10} = (000100100101)_{BCD}$

eşitliği elde edilir.

ÖRNEK: (263)₁₀ sayısını BCD kodu ile ifade ediniz

ÖRNEK: (100100110110)_{BCD} kodunun onlu karşılığını yazınız

1001 0011 0110
9 3 6

$$(100100110110)_{BCD} = (936)_{10}$$

BCD Kodlanmış Sayıyı Onlu Sayıya Dönüştürme

Örnek 2: (1001 0011 0110)_{BCD} sayısını onlu sisteme çevirelim.

Sayı dörderli gruplara ayrılarak her bir gruptaki ikili sayıların onlu karşılığı yazılırsa;

 $(1001\ 0011\ 0110)_{BCD}$

sayıları bulunur. Bulunan sayıların bir arada yazılmasıyla sonuç olarak;

$$(100100110110)_{BCD} = (936)_{10}$$

sayısı elde edilir.

Gray Kodu

- Gray kodlama yöntemi, basamak ağırlığı olmayan bir kodlama yöntemidir.
- Basamak ağırlığının olmaması, her bir basamaktaki sayıların basamak ağırlıklarına göre karşılıklarının olmamasıdır.
- Gray kodlanmış sayılarda basamak değeri olmadığından, bu kodlama yönteminin aritmetik işlemlerin olduğu yerlerde kullanılması mümkün değildir.
- Ancak sütun esasına göre çalışan cihazlardaki hatayı azalttığından, giriş / çıkış birimlerinde ve analog -dijital çeviricilerde tercih edilirler.

- Gray kodlanmış sayılarla aritmetiksel işlemler yapılmaz.
- Bu sayılarla aritmetiksel işlem yapılması gerektiğinde bu sayılar önce ikili sayılara dönüştürülür. Bu bölümde ikili sayıların gray koduna ve gray kodlanmış sayıların ikili sayılara dönüştürülmesi ele alınacaktır. GrayKodu:
- Gray kodlama yönteminde değerler katsayıya bağlı değildir.
- Bu yöntemde ardışıl değerler arasında bitlerden sadece biri değişir.

Binary'i Gray'e Dönüştürme

Örnek: (1000101)2 Binary sayısını Gray koduna çevirelim.

0 1 0 0 0 1 0 1

Binary Sayı

Gray kodlu sayı

Sonuçta;

$$(1000101)_2 = (1100111)$$

eşitliği bulunur.

ÖRNEK: (101110101)₂ sayısını gray koda dönüştürünüz

Gray Kodlu sayıların ikili sayılara çevrilmesi

ÖRNEK: (1100111)_{gray} kodlu sayıyı ikili sayıya çeviriniz

+3 Kodu (Excess 3 Code)

- +3 Kodu onlu sayıların sayısal çözümünde kolaylık sağlayan bir kodlama yöntemidir.
- Sayının BCD koduna 3 (11) eklemek suretiyle bulunur.
- Bir onlu sayının Artı 3 kodundaki karşılığı, onlu sayının karşılığı olan ikili sayıya 3 eklenmiş halidir.
- Bu nedenle bu kodlama yöntemi, '3 fazlalık kodu' olarak ta isimlendirilir.

 Artı 3 kodundaki sayılar, BCD kodunda olduğu gibi dört bitlik ikili sayılar şeklinde ifade edilir

Decimal	BCD	Fazlalık
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Onlu Sayı -> +3 Kodu

```
Örnek: (59)<sub>10</sub> sayısının +3 koduna çevrilmesi:
       1000 1011
(59)_{10} = (10001011)_{+3}
```

+3 Kodu -> Onlu Sisteme

Örnek: +3 kodu ile kodlanmış (10100110)₊₃ sayısının onlu sistemde karşılığının bulunması:

5'te 2 Kodu(74210)

- Her onlu sayı için içerisinde sadece 2 tane 1 bulunduran
 5 basamaklı kod sistemidir.
- Basamak ağırlığı 74210 şeklinde ilerler. 0 sayısının temsili için 11 değerini (11000), 2,4,7 sayısı içinde fazladan sıfır basamağını kullanır

On Tabanlı Sayı	5' te 2 Kodu
0	11000
1	00011
2	00101
3	00110
4	01001
5	01010
6	01100
7	10001
8	10010
9	10100

Örneğin 7 sayısının 5'te 2 kodu:

7 4 2 1 0 ←basamak değeri 1 0 0 0 1 8 sayısının 5'te 2 kodu: 7 4 2 1 0 ←basamak değeri 1 0 0 1 0 3 sayısının 5'te 2 kodu: 7 4 2 1 0 ←basamak değeri

AİKEN KODU

- Basamak değeri(ağırlığı) 2421 olan koddur.
- 0-4 arasındaki sayıların ikili kod sistemine göre 5-9 arasındaki sayılar ile

simetriktir.

4 ve 5

3 ve 6

2 ve 7

1 ve 8

0 ve 9.

Sayı	Aiken	Kodu		Sayı
0	0000	***	1111	9
1	0001	simetrik	1110	8
2	0010		1101	7
3	0011		1100	6
4	0100		1011	5

- Aiken kodlama simetrik kodlamaya iyi bir örnektir.
- Bu kodlamada (0-4) arasındaki rakamlarbulunurken BCD kodlama yapılır. (5-9) arasındaki rakamlar bulunurken ise (0-4) arasındakirakamların Aiken kodu karşılığının tümleyeni alınır.
- Örneğin 5'in Aiken kodu, 4'ün Aiken kod karşılığının tümleyenidir.

On Tabanlı Sayı	Aiken Kodu
0	0000
1	0001
2	0010
3	0011
4	0100
5	1011
6	1100
7	1101
8	1110
9	1111

Bar-Kare Kod

- Bar Kodlamada veriler, farklı kalınlıktaki paralel çizgiler ve boşluklar ile kodlanır.
- Barkodların en iyibilinen ve en yaygın kullanımı tüketici ürünlerindedir.

Alfa Sayısal Kodlar

- Temel Olarak kodlama, iki küme arasında karşılığı tanımlanmış kurallar dizisidir.
- Tüm karakterler bilgisayarda kullanılırken Bazı Kodlama Sistemlerine göre kodlanmaları gerekmektedir.
- A'dan Z'ye karakterleri, O'dan9'a sayısal karakterleri ve#, &vb. karakterleri bilgisayarlarda temsil etmek için bu kodlama sistemleri kullanılır.

ASCII Kodlama Sistemi

• İlk oluşturulan karakter setlerinden biridir ve bu yüzden günümüzde en yaygın olarak kullanılan karaktersetidir.

• İlk hali 7 bit sayılarla kodlanmıştı ve 128 karakterden oluşuyordu.

Karakter	8-bit	Onluk	Onaltılık	Karakter	8-bit	Onluk	Onaltılık
boşluk	00100000	032	020	P	01010000	080	050
!	00100001	033	021	Q	01010001	081	051
"	00100010	034	022	R	01010010	082	052
#	00100011	035	023	S	01010011	083	053
\$	00100100	036	024	T	01010100	084	054
%	00100101	037	025	U	01010101	085	055
&	00100110	038	026	V	01010110	086	056
•	00100111	039	027	W	01010111	087	057
(00101000	040	028	X	01011000	088	058
)	00101001	041	029	Y	01011001	089	059
*	00101010	042	02A	Z	01011010	090	05A
0	00110000	048	030	`	01100000	096	060
1	00110001	049	031	a	01100001	097	061
2	00110010	050	032	b	01100010	098	062
3	00110011	051	033	С	01100011	099	063
4	00110100	052	034	d	01100100	100	064
5	00110101	053	035	е	01100101	101	065
6	00110110	054	036	f	01100110	102	066
7	00110111	055	037	g	01100111	103	067
8	00111000	056	038	h	01101000	104	068
9	00111001	057	039	i	01101001	105	069
:	00111010	058	03A	j	01101010	106	06A
;	00111011	059	03B	k	01101011	107	06B

EBCDIC KODU

- Extended Binary Coded Decimal Interchange Code = Genişletilmiş İkilik kodlu
 Ondalık Değişim Kodu
- ASCII koduna benzer 8 bitlik bir koddur. Fakat ASCII kadar yaygın değildir
- IBM, bu kodu, o sırada var olan İkili Kodlanmış Ondalığı uzatmak için icat etti. Tüm IBM bilgisayarları ve çevre birimleri bu kodu kullanır. 8 bitlik bir koddur ve bu nedenle 256 karakter alabilir.

Kaynakça

 KODLAMA SİSTEMLERİNİN TANIMI ,January 8, 2017 | Author: Berker Özcan | Category: N/A