Incop 2012

A Linear-time Algorithm for Reconstructing Zero-Recombinant Haplotype Configuration on a Pedigree

> June En-Yu Lai TIGP Bioinformatics Program of Academia Sinica, **Taiwan**

> > October 3, 2012

Genotype and Haplotype

For an individual,

	marker loci							
		_						$\overline{}$
paternal haplotype		Α	C	Α	Т	G	Т	C
maternal haplotype	+	Α	G	G	C	G	Α	G
genotype		AA	CG	AG	TC	GG	TA	CG

The haplotype structure of a human genome is not available directly from the genotyping and the unordered genotype data does not tell us which allele comes from which parent.

Pedigree + Genotype → Haplotype?

For an individual (son),

		marker loci						
		_			$\overline{}$			
paternal haplotype		Α	G	Α	Т			
maternal haplotype	+	Α	C	G	T			
genotype		A A	GC	AG	T T			

The parent-child relationship provides the information of inheritance that will help to determine haplotype.

Zero-Recombinant Haplotype Configuration (1)

- ► Input: pedigree + genotype
- ▶ Output: haplotype
- ► Assumptions:
 - 1. The input dataset is free of mutation and recombination.
 - 2. The input dataset is free of genotyping errors.
 - 3. All alleles are bi-allelic (denoted by 0 or 1).

Zero-Recombinant Haplotype Configuration (2)

For a locus,

	individuals								
		_						_	
paternal alleles		Α	G	Α	G	G	Α	G	
maternal alleles	+	Α	Α	G	Α	G	G	G	
genotype		AA	AG	AG	GA	GG	AG	GG	
paternal alleles		1	0	1	0	0	1	0	
maternal alleles	+	1	1	0	1	0	0	0	
genotype		1	2	2	2	0	2	0	

Zero-Recombinant Haplotype Configuration (3)

For a locus,

	individuals							
		_						_
paternal alleles		1	0	1	0	0	1	0
maternal alleles	+	1	1	0	1	0	0	0
genotype		1	2	2	2	0	2	0

If the genotype is homozygous or is the children of the homozygous, it is referred to as **predetermined**.

A linear system to represent Mendelian law (1)

$$\mathbf{paternal}_{i}[locus] = \begin{cases} 0 & \text{if paternal allele is 0} \\ 1 & \text{if paternal allele is 1.} \end{cases}$$

$$w_{i}[locus] = \begin{cases} 0 & \text{if } genotype_{i}[locus] \text{ is homozygous} \\ 1 & \text{if } genotype_{i}[locus] \text{ is heterozygous.} \end{cases}$$

The variable **paternal**_i and the constant w_i describe the information of the individual i.

A linear system to represent Mendelian law (2)

What is passed = What is received
$$\mathbf{paternal}_{i}[locus] + w_{i}[locus] \cdot \mathbf{\underline{inheritance}_{i,j}} = \mathbf{paternal}_{j}[locus] + \underline{d_{i,j}[locus]}$$

$$\mathbf{inheritance}_{i,j} = \begin{cases}
0 & \text{if } i \text{ passes its paternal allele to } j \\
1 & \text{if } i \text{ passes its maternal allele to } j.
\end{cases}$$

$$d_{i,j}[locus] = \begin{cases}
0 & \text{if } i \text{ is } j \text{ s father} \\
w_j[locus] & \text{if } i \text{ is } j \text{ s mother.}
\end{cases}$$

The variable **inheritance** $_{i,j}$ and the constant $d_{i,j}$ describe the relationship between the individual i and the individual j.

A linear system to represent Mendelian law (3)

What is passed = What is received $\mathbf{paternal}_{i}[locus] + w_{i}[locus] \cdot \mathbf{inheritance}_{i,j} = \mathbf{paternal}_{j}[locus] + d_{i,j}[locus]$ An example.

$$\mathbf{paternal}_{i}[locus] = 1$$

$$w_{i}[locus] = 1$$

$$\mathbf{inheritance}_{i,j} = 0$$

$$\mathbf{paternal}_{j}[locus] = 0$$

$$d_{i,j}[locus] = w_{i}[locus] = 1$$

The concept of a **constraint** (1)

```
\begin{aligned} & \textbf{paternal}_i[locus] + w_i[locus] \cdot \textbf{inheritance}_{i,j} = \textbf{paternal}_j[locus] + d_{i,j}[locus] \\ & \textbf{paternal}_i[locus] + w_i[locus] \cdot \textbf{inheritance}_{i,j} = paternal_j[locus] + d_{i,j}[locus] \end{aligned}
```

Recall that if the genotype is homozygous or is the children of the homozygous, it is referred to as **predetermined** and the value of **paternal** is also known.

The concept of a **constraint** (2)

$$\begin{aligned} &paternal_{i}[locus] + w_{i}[locus] \cdot \mathbf{inheritance}_{i,j} &= \mathbf{paternal}_{i}[locus] + d_{i,j}[locus] \\ &+ \mathbf{paternal}_{i}[locus] + w_{j}[locus] \cdot \mathbf{inheritance}_{j,k} &= paternal_{k}[locus] + d_{j,k}[locus] \\ &- paternal_{i}[locus] + paternal_{k}[locus] + \sum d &= w_{i}[locus] \cdot \mathbf{inheritance}_{i,j} + w_{j}[locus] \cdot \mathbf{inheritance}_{j,k} \end{aligned}$$

inheritance will be absent in the equation if w = 0. We choose the path along with w = 1 to obtain a constraint in the form \sum **inheritance** = c.

Pedigree traversal: tree edges & non-tree edges

Tree constraints

$$\sum inheritance = paternal_i[locus] + paternal_k[locus] + \sum d$$

Path constraints

$$\sum$$
 inheritance = $paternal_i[locus] + paternal_k[locus] + \sum d$

Cycle constraints

$$\sum inheritance = \underbrace{paternal_{f}[tocus]} + \underbrace{paternal_{f}[tocus]} + \sum d$$

A good property of tree constraints

There is only one path to connect two specific nodes on a tree.

That is, if there are two tree constraints,

tree 1:
$$\sum_{i}^{m}$$
 inheritance = c_1

tree 2:
$$\sum_{i}$$
 inheritance = c_2

Constraint graph

Then we can solve **inheritance** $_{m,n}$ by

$$inheritance_{m,n} = weight[m] + weight[n] = c_1 + c_2$$

Transformation: path constraints into tree constraints

Synthetic cycle constraints

$$\sum$$
 inheritance_{cycle} = \sum weight_{terminal} + \sum C_{path}

Use the constraint graph to solve inheritance

 $inheritance_{m,n} = weight[m] + weight[n] = c_1 + c_2$

Use inheritance to solve paternal

 $paternal_n[locus] + w_i[locus] \cdot inheritance_{m,n} = \mathbf{paternal}_m[locus] + d_{m,n}[locus]$

Overview

- ► Input: genotype + pedigree
 - 1. Find the predetermined.
 - 2. Obtain tree, path, and cycle constraints. (\sum inheritance = c)
 - 3. Use tree constraints to build constraint graph.
 - 3.1 Use cycle constraints to transform path constraints into tree constraints.
 - 3.2 Construct a synthetic cycle constraint if the cycle constraint is absent.
 - 4. Use the constraint graph to solve inheritance.
 - 5. Use *inheritance* to solve **paternal**.
- Output: haplotype

