

Predicting song popularity

Artists: Abeda Salsabil, Han Yu, Khevana Patel, Sumaiya Nathani

Overview

- Goal: To create a model that predicts the popularity of a song in June based on audio features
- Research Question
- Data collection and Cleaning
- Analysis and Visualizations
- Our models
- Model optimization
- Summary of findings
- Limitations and future directions

Research question

What audio features make a song popular within current times?

Audio features

- Acousticness: a confidence measure of how acoustic a track is
- **Danceability**: how suitable a track is for dancing depending on tempo, beat strength, rhythm stability and overall regularity
- **Energy**: a perceptual measure of intensity and activity
- **Instrumentalness**: whether a track contains no vocals
- Key: values represent the key/pitch a track is in
- Liveness: probability of whether an audience is present in a track
- Loudness: overall loudness of a track in decibels
- **Speechiness**: presence of spoken words in a track
- **Tempo**: speed/pace of track in beats per minute
- Valence: the musical positiveness conveyed by a track

Data collection and cleaning

- Dataset obtained from Kaggle
- Small dataset: 3000+ songs from the official Spotify playlists
- Across 63 countries for the month of May, 2023
- Once the data was cleaned, it was read in using Spark

Visualizations and exploratory data analysis

https://public.tableau.com/views/proj4_16866329241620/Dashboard1?:language= en-US&publish=yes&:display_count=n&:origin=viz_share_link

Determining correlation between variables

- Energy and loudness
- No significant correlation between any 2 variables

Data Overview

- Mean Popularity:63.281999324552515
- Median Popularity: 65.0
- To binarizing the popularity column,considered 65.0 as cutoff value
- Popular_song :>=65
- Not Popular_song:<65

Model 1: Logistic Regression

With original data

• Training Data Score: 60.1%

• Testing Data Score: 61.7%

• Balanced Accuracy Score: 61.4%

	Precision	Recall	F1-Score	Accuracy
Class 0	0.64	0.50	0.56	61.7%
Class 1	0.60	0.73	0.66	

With resampled data

Training Data Score: 59.8%

• Testing Data Score: 61.9%

Balanced Accuracy Score: 61.7%

	Precision	Recall	F1-Score	Accuracy
Class 0	0.63	0.54	0.58	61.9%
Class 1	0.61	0.69	0.65	

Model 2: Neural Networks

Model 3: Random Forest

Accuracy: 57.7%

Summary of findings

- Best model from logistic regression
 - Resampled data
 - Test accuracy of 61.9%
- Best neural network model
 - 2 hidden layers, relu and tanh activation functions
 - Test accuracy of 60.6%
- Best random forest model
 - Optimised model
 - Test accuracy of 59%

Limitations and future directions

- Use more data (Jan-April spotify data), to increase accuracy
- Considering further measures of popularity such as YouTube views/likes and Billboard chart rankings
- Considering further audio parameters like genre and artists to overcome underfitting

References

Dataset:

 https://www.kaggle.com/datasets/bwandowando/daily-spotify-top-50-of-60-co untries?datasetId=2691244

 https://developer.spotify.com/documentation/web-api/reference/get-audio-feat ures Thank you for watching!

