- **3289.** Медианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке M. Известно, что AC = 3MB.
- а) Докажите, что треугольник АВС прямоугольный.
- б) Найдите сумму квадратов медиан AA_1 и CC_1 , если известно, что AC = 30.
- **3293.** Медианы AA_1 , BB_1 и CC_1 треугольника ABC пересекаются в точке M. Точки A_2 , B_2 и C_2 середины отрезков MA, MB и MC соответственно.
 - а) Докажите, что площадь шестиугольника $A_1B_2C_1A_2B_1C_2$ вдвое меньше площади треугольника ABC.
 - б) Найдите сумму квадратов всех сторон этого шестиугольника, если известно, что AB = 4, BC = 8 и AC = 10.
- **3328.** Площадь трапеции ABCD равна 405. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции вдвое больше другого.
- **3964.** Дан равнобедренный треугольник ABC с основанием AC. На продолжении стороны CB за точку B отмечена такая точка D, что угол CAD равен углу ABD.
 - а) Докажите, что AB биссектриса угла CAD.
 - б) Найдите AD, если боковая сторона треугольника ABC равна 5, а его основание равно 6.
- **4911.** Точки E, H и F лежат на сторонах соответственно PQ, QR и PR треугольника PQR, причём PEHF параллелограмм, площадь которого составляет $\frac{12}{25}$ площади треугольника PQR. Найдите диагональ EF параллелограмма, если известно, что PQ = 10, PR = 15 и $\cos \angle QPR = \frac{2}{9}$.
- **4914.** Точка касания окружности, вписанной в равнобедренную трапецию, делит боковую сторону на отрезки 1 и 4. Прямая, проходящая через центр окружности и вершину трапеции, отсекает от трапеции треугольник. Найдите его площадь.
- **4917.** Окружность вписана в равнобедренную трапецию, основания которой равны 18 и 50. Прямая, проходящая через центр окружности и вершину трапеции, отсекает от трапеции треугольник. Найдите отношение площади этого треугольника к площади трапеции.
- **5527.** Окружности радиусов $5\sqrt{3}$ и $8\sqrt{3}$ с центрами соответственно O_1 и O_2 касаются в точке L. Прямая, проходящая через точку L, вторично пересекает меньшую окружность в точке K, а большую в точке M. Найдите площадь треугольника KMO_1 , если $\angle LMO_2 = 30^\circ$.