POSSESSION OF MOBILE IN EXAMINATION IS UFM PRACTICE

Name of Student	Enrolment No
Department	EATED MOVE
BENNETT UNIVERSITY, GRI Supplementary Examination, A	
COURSE CODE: ECSE104L	MAX. DURATION: TWO HOUR
COURSE NAME: DIGITAL DESIGN	water betation, Iwo Hook
COURSE CREDIT: 5	MAX. MARKS: <u>50</u>
Note:	
 All the questions are compulsory. 	
 Please write precisely and neatly. Please make clear d 	iagram wherever required.
 Design a Decimal to seven-segment display decominimized Boolean expression for one of the outp Design a 4-to-16-line decoder with 2-to-4-line decoder 	ut using K-Map for this problem. (10 Marks s with enable. (5 Marks)
Please give details of the following steps: a. Develop state diagram b. Create excitation table c. Identify function using k maps d. Design counter circuit	count numbers as follows: (10 Marks
4. Design a combined register which have capability in and serial out (PISO) together.	of serial in serial out(SISO) and parallel (5 marks)
5. Simply the following Boolean expressions using the a) F=AB'CD+A'BC'D+AB'CD'+A'B'C'D b) F=A'B'C'D+A'BC'D+A'BC'D+AB'C'D'+A	,
6. Multiple choice questions.	(5*2=10 marks)
i. What is the result when a decimal 5238 is conva. 1388	erted to base 16?
b. 12166	
c. 327.375	
d. 1476	

Convert the binary number 1001.0010 to decimal. (1 Mark)

ii.

- a. 12.5
- b. 125
- c. 90.125
- d. 9.125
- iii. Consider the following Boolean expression for F:

$$F(P, Q, R, S) = PQ + P'QR + P'QR'S$$

The minimal sum-of-products form of F is

- a. PQ + QR + QS
- b. P+Q+R+S
- c. P' + Q' + R' + S'
- d. P'R + P'R'S + P
- iv. In an SR latch made by cross-coupling two NAND gates, if both S and R inputs are set to 1, then it will result in
 - a. Q = 0, Q' = 1
 - b. Q = 1, Q' = 0
 - c. Memory
 - d. Not allowed
- v. Equation of carry in full adder is (a, b are inputs, and c is carry input).
 - a. carry = ab + bc + ca
 - b. $carry = ab + (a \oplus b) c$
 - c. Both a and b
 - d. None of the above