Introduction to Game Theory Two Player Zero Sum Games

Sujit Prakash Gujar

sujit.gujar@iiit.ac.in

Agenda

Recap

Agenda

- Recap
- Two Player Zero Sum Games
 - Mini-max Strategy
 - Saddle Points
 - Mixed Strategies
 - von Neumann Morgenstern Utility Theory
 - von Neumann minimax Theorem

 Gain of one player = Loss to the Other Total sum of utilities = 0.

¹This term is different than Matrix Form Games

- Gain of one player = Loss to the Other Total sum of utilities = 0.
- $\Gamma = <\{1,2\}, S_1, S_2, u_1, -u_1>$. Also called as Matrix Games.¹

¹This term is different than Matrix Form Games

- Gain of one player = Loss to the Other Total sum of utilities = 0.
- $\Gamma = <\{1,2\}, S_1, S_2, u_1, -u_1 >$. Also called as Matrix Games.¹
- We can represent the game by a single $m \times n$ matrix. For Example, game $\Gamma^Z =:$

	L	М	R
Т	1	2	2
М	-3	-1	-2
В	-2	0	1

¹This term is different than Matrix Form Games

- Gain of one player = Loss to the Other Total sum of utilities = 0.
- $\Gamma = <\{1,2\}, S_1, S_2, u_1, -u_1 >$. Also called as **Matrix Games**.¹
- We can represent the game by a single $m \times n$ matrix. For Example, game $\Gamma^Z =:$

	L	М	R
Т	1	2	2
М	-3	-1	-2
В	-2	0	1

• First player as row player and other as column player.

¹This term is different than Matrix Form Games

- Gain of one player = Loss to the Other Total sum of utilities = 0.
- $\Gamma = <\{1,2\}, S_1, S_2, u_1, -u_1>$. Also called as Matrix Games.¹
- We can represent the game by a single $m \times n$ matrix. For Example, game $\Gamma^Z =:$

	L	М	R
Т	1	2	2
М	-3	-1	-2
В	-2	0	1

- First player as row player and other as column player.
- Any dominant strategy for Player 1?Player 2?

¹This term is different than Matrix Form Games

• Consider another game $\Gamma^Z =:$

	L	М	R
Т	1	2	1
М	0	-1	-2
В	-2	0	1

- First player as row player and other as column player.
- Any dominant strategy for Player 1?Player 2?

• Consider another game $\Gamma^Z =:$

	L	М	R
Т	1	2	1
М	0	-1	-2
В	-2	0	1

- First player as row player and other as column player.
- Any dominant strategy for Player 1?Player 2?
- How to analyze this?

• Consider another game $\Gamma^Z =:$

	L	М	R
Т	1	2	1
М	0	-1	-2
В	-2	0	1

- First player as row player and other as column player.
- Any dominant strategy for Player 1?Player 2?
- We need different notion of equilibrium

$$a_{i^*i^*} \leq a_{i^*l} \ \forall l = 1, 2, \ldots, n;$$

$$a_{i^*j^*} \geq a_{kj^*} \ \forall k = 1, 2, \ldots, m;$$

• Saddle Point: Given a matrix A, (i^*, j^*) is a saddle point if

$$a_{i^*j^*} \le a_{i^*l} \ \forall l = 1, 2, \dots, n;$$

 $a_{i^*i^*} \ge a_{ki^*} \ \forall k = 1, 2, \dots, m;$

• $a_{i^*j^*}$: max in the column j^* , min in the row i^*

$$a_{i^*j^*} \le a_{i^*l} \ \forall l = 1, 2, \dots, n;$$

 $a_{i^*j^*} \ge a_{kj_*} \ \forall k = 1, 2, \dots, m;$

- $a_{i^*j^*}$: max in the column j^* , min in the row i^*
- Let $u_R = \max_i \min_j a_{ij}$ and $u_C = \min_j \max_i a_{ij}$.

$$a_{i^*j^*} \le a_{i^*l} \ \forall l = 1, 2, \dots, n;$$

 $a_{i^*j^*} \ge a_{kj^*} \ \forall k = 1, 2, \dots, m;$

- $a_{i^*j^*}$: max in the column j^* , min in the row i^*
- Let $u_R = \max_i \min_j a_{ij}$ and $u_C = \min_j \max_i a_{ij}$.
- Any relation between u_R , u_C and saddle points?

$$a_{i^*j^*} \le a_{i^*l} \ \forall l = 1, 2, \dots, n;$$

 $a_{i^*j^*} \ge a_{kj^*} \ \forall k = 1, 2, \dots, m;$

- $a_{i^*j^*}$: max in the column j^* , min in the row i^*
- Let $u_R = \max_i \min_j a_{ij}$ and $u_C = \min_j \max_i a_{ij}$.
- Any relation between u_R , u_C and saddle points?
- Exercise: $u_R \le u_C$

$$a_{i^*j^*} \le a_{i^*l} \ \forall l = 1, 2, \dots, n;$$

 $a_{i^*j^*} \ge a_{kj^*} \ \forall k = 1, 2, \dots, m;$

- a_{i*j*}: max in the column j*, min in the row i*
- Let $u_R = \max_i \min_i a_{ij}$ and $u_C = \min_i \max_i a_{ij}$.
- Any relation between u_R , u_C and saddle points?
- Exercise: $u_R \le u_C$
- If saddle point exists show that $u_R = u_C$. If $u_R = u_C$, show that saddle point exists.

 If saddle point exists, then for row player: she is maximizing her min assured gain.

For column player: she is minimizing her worst loss (same as maximizing her min assured gain).

- If saddle point exists, then for row player: she is maximizing her min assured gain.
 - For column player: she is minimizing her worst loss (same as maximizing her min assured gain).
- Let (i^*, j^*) be a saddle point: What can we say if row player is playing i^* ?

- If saddle point exists, then for row player: she is maximizing her min assured gain.
 - For column player: she is minimizing her worst loss (same as maximizing her min assured gain).
- Let (i^*, j^*) be a saddle point: What can we say if row player is playing i^* ?

- If saddle point exists, then for row player: she is maximizing her min assured gain.
 - For column player: she is minimizing her worst loss (same as maximizing her min assured gain).
- Let (i^*, j^*) be a saddle point: What can we say if row player is playing i^* ? The column player cannot reduce her loss by deviating from j^* .

- If saddle point exists, then for row player: she is maximizing her min assured gain.
 - For column player: she is minimizing her worst loss (same as maximizing her min assured gain).
- Let (i^*, j^*) be a saddle point: What can we say if row player is playing i^* ? The column player cannot reduce her loss by deviating from j^* . Convince yourself that same holds true for row player
- If such saddle point exists, it is called an equilibrium.
 The strategy that achieves this is mini-max strategy.

Game Γ^Z :

AB	L	М	R
Т	1	2	1
М	0	-1	2
В	-1	0	-2

What is u_R ? u_C ?What is equilibrium?

Game Γ^Z :

AB	L	М	R
T	1	2	1
M	0	-1	2
В	-1	0	-2

 $u_R = 1$, $u_C = 1$. Hence (T,L) is an equilibrium.

Game Γ^Z :

AB	L	М	R
Т	1	2	1
М	0	-1	2
В	-1	0	-2

 $u_R = 1$, $u_C = 1$. Hence (T,L) is an equilibrium.

	L	М	R
Т	0	2	0
М	-1	5	-2
В	0	5	0

What is u_R ? u_C ?What is equilibrium?

Game Γ^Z :

AB	L	М	R
Т	1	2	1
М	0	-1	2
В	-1	0	-2

 $u_R = 1$, $u_C = 1$. Hence (T,L) is an equilibrium.

	L	М	R
Т	0	2	0
М	-1	5	-2
В	0	5	0

 $u_R = 0 = u_C$ (T,L) and (B,R) are equilibrium

Game Γ^Z :

AB	L	М	R
Т	1	2	1
М	0	-1	2
В	-1	0	-2

 $u_R = 1$, $u_C = 1$. Hence (T,L) is an equilibrium.

	L	М	R
Т	0	2	0
М	-1	5	-2
В	0	5	0

 $u_R=0=u_C$ (T,L) and (B,R) are equilibrium Did we list all saddle points?

Game Γ^Z :

AB	L	М	R
Т	1	2	1
М	0	-1	2
В	-1	0	-2

 $u_R = 1, u_C = 1$. Hence (T,L) is an equilibrium.

	L	М	R
Т	0	2	0
М	-1	5	-2
В	0	5	0

 $u_R=0=u_C$ (T,L) and (B,R) are equilibrium Have you observed that all equilibrium utilities are the same

Game Γ^Z :

AB	L	М	R
Т	1	2	1
М	0	-1	2
В	-1	0	-2

 $u_R = 1$, $u_C = 1$. Hence (T,L) is an equilibrium.

	L	М	R
Т	0	2	0
М	-1	5	-2
В	0	5	0

 $u_R = 0 = u_C$ (T,L) and (B,R) are equilibrium (Exercise: Show that all the saddle of a matrix have same value)

Matching Coins without Observations

A B	Н	Т
Н	10,-10	-10,10
Т	-10,10	10,-10

$$u_R = -10, u_C = 10.$$

Matching Coins without Observations

A B	Н	Т
Н	10,-10	-10,10
Т	-10,10	10,-10

 $u_R = -10, u_C = 10.$ No pure strategy equilibrium.

Mixed Strategies

- In matching pennies game, row player tosses a coin and if H, then play H, else T.
- Similarly column player plays her action.
- Row player expected payoff = Pr(H,H) Pr(H,T) Pr(T,H) + Pr(T,T) = 0
- Column Player expected utility = -Pr(H,H) + Pr(H,T) + Pr(T,H) Pr(T,T)
- Such randomization over across is called as mixed strategy

Mixed Strategies

- Say for player i, there are i_k actions, $a_{i_1}, a_{i_2}, \ldots, a_{i_k}$.
- She decides to play these actions with probabilities $p_{i_1}, p_{i_2}, \ldots, p_{i_k}$ with $p_{i_1} + p_{i_2} + \ldots + p_{i_k} = 1$
- $\sigma_i = (p_{i_1}, p_{i_2}, \dots, p_{i_k})$ is mixed strategy of the player i.
- Mixed strategy space $\Delta S_i = i_k 1$ dimensional simplex
- Examples of simplex: $1-\Delta$, $2-\Delta$.

Expected Utility

• For Player i, expected payoff

$$U_{i}(\sigma_{i}, \sigma_{-i}) = \sum_{s_{-i} \in S_{-i}} p_{i_{1}} * p(s_{-i}) * U(a_{i_{1}}, s_{-i}) + p_{i_{2}} * p(s_{-i}) * U(a_{i_{2}}, s_{-i})$$

$$+ \ldots + p_{i_{k}} * p(s_{-i}) * U(a_{i_{k}}, s_{-i})$$

- For two-player zero sum games, we refer mixed strategies as $p = (p_1, \dots, p_m), q = (q_1, \dots, q_n)^T$
- Mixed strategies leads to Utility Theory

Utility Theory (1)

Let X be the set of outcomes. \succ be the preference of a player over the set of outcomes.

Axioms

- Completeness: every pair of outcomes is ranked
- Transitivity: If $x_1 \succ x_2$ and $x_2 \succ x_3$ then $x_1 \succ x_3$.
- Substitutability: If $x_1 \sim x_2$ then any lottery in which x_1 is substituted by x_2 is equally preferred.
- Decomposability: two different lotteries assign same probability to each outcome, then player is indifferent between these two lotteries
- Monotonicity: If $x_1 > x_2$ and p > q then $[x_1 : p, x_2 : 1 p] > [x_1 : q, x_2 : 1 q]$
- Continuity: If $x_1 \succ x_2 \succ x_3$, $\exists p \ni x_2 \sim [x_1 : p, x_3 : 1 p]$

Utility Theory (2)

Von Neumann and Morgenstern

Theorem

Given a set of outcomes X and a preference relation on X that satisfies above six axioms, there exists a utility function $u: X \to [0,1]$ with the following properties:

1
$$u(x_1) \ge u(x_2) iff x_1 > x_2$$

$$U([x_1:p_1;x_2:p_2;\ldots;x_m:p_m]) = \sum_{j=1}^m p_j u(x_j)$$

Zero Sum Games

- Recall: Zero sum games where one player's gain = other player's loss.
- We studied saddle points and pure strategy equilibrium
- X Matching coins without observation: no pure strategy equilibrium
- Can it have a mixed strategy equilibrium?
- $\sqrt{\text{Yes}}$.
- Let p and q be the mixed strategies of row and column player respectively.

Equilibrium in Zero Sum Games

Von Neumann and Morgenstern showed:

Theorem (Mini-Max Theorem)

For every $(m \times n)$ matrix A, there is a stochastic row vector $p^* = (p_1^*, \dots, p_n^*)$ and a stochastic column vector $q^{*T} = (q_1^*, \dots, q_n^*)$ such that

$$\min_{q \in \Delta(S_2)} p^* A q = \max_{p \in \Delta(S_1)} p A q^*$$

 (p^*, q^*) is equilibrium.

Equilibrium in Zero Sum Games

Von Neumann and Morgenstern showed:

Theorem (Mini-Max Theorem)

For every $(m \times n)$ matrix A, there is a stochastic row vector $p^* = (p_1^*, \dots, p_n^*)$ and a stochastic column vector $q^{*T} = (q_1^*, \dots, q_n^*)$ such that

$$\min_{q \in \Delta(S_2)} p^* A q = \max_{p \in \Delta(S_1)} p A q^*$$

 (p^*, q^*) is equilibrium.

What is equilibrium of Matching Coins without Observation game?

Equilibrium in Zero Sum Games

Von Neumann and Morgenstern showed:

Theorem (Mini-Max Theorem)

For every $(m \times n)$ matrix A, there is a stochastic row vector $p^* = (p_1^*, \dots, p_n^*)$ and a stochastic column vector $q^{*T} = (q_1^*, \dots, q_n^*)$ such that

$$\min_{q \in \Delta(S_2)} p^* A q = \max_{p \in \Delta(S_1)} p A q^*$$

 (p^*, q^*) is equilibrium.

What is equilibrium of Matching Coins without Observation game?

$$p^* = (0.5, 0.5) = q^{*T}$$

Important Lemmas

Lemma 1

For any matrix A,

$$\min_{q \in \Delta S_2} pAq = \min_j \sum_i a_{ij} p_i$$

Lemma 2

For any matrix A,

$$\max_{p \in \Delta S_1} pAq = \max_i \sum_j a_{ij} q_j$$

Proof: Mini-Max Theorem

Row Player's Objective:

$$\max_{p} \min_{q} pAq$$

s.t.

$$\sum_{i} p_{i} = 1$$

$$p_{i} \geq 0 \ \forall i = 1, 2, \dots, m$$

Column Player's Objective:

$$\min_{q} \max_{p} pAq$$

s.t.

$$\sum_{j} q_{j} = 1$$
 $q_{j} \geq 0 \; \forall j = 1, 2, \dots, n$

Proof: Mini-Max Theorem

Row Player's Objective:

$$max_p min_i \sum_i a_{ii} p_i$$

s.t.

$$\sum_{i} p_{i} = 1$$

$$p_{i} \geq 0 \ \forall i = 1, 2, \dots, m$$

Column Player's Objective:

$$min_q max_i \sum_i a_{ij} q_j$$

s.t.

$$\sum_{j} q_{j} = 1$$
 $q_{j} \geq 0 \ \forall j = 1, 2, \dots, n$

Proof: Mini-Max Theorem Cntd...

Row Player's Objective:

Column Player's Objective:

max z

min w

s.t.

s.t.

$$z-\sum_{i}a_{ij}p_{i}\leq 0\;\forall j=1,2,\ldots,n$$

$$w-\sum_{j}a_{ij}q_{j}\geq 0\;\forall j=1,2,\ldots,m$$

$$\sum_{i} p_{i} = 1$$

$$p_i > 0 \ \forall i = 1, 2, \ldots, m$$

$$\sum_j q_j = 1$$

$$q_j \geq 0 \; \forall j = 1, 2, \dots, n$$

Mini-max Theorem then follows from strong duality of LP The above problems can be solved in polynomial time

Further Reading

- Game Theory and Mechanism Design, Y Narahari. World Scientific Publishing Company, 2014.
- Multiagent systems: Algorithmic, game-theoretic, and logical foundations, Shoham, Yoav, and Kevin Leyton-Brown. Cambridge University Press, 2008. (Free download).
- Game Theory by Roger Myerson. Harvard University press, 2013.
- Algorithmic Game Theory, edited by Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay Vazerani. (Non-printable version available online).

```
http://gametheory.net/
```

http://lcm.csa.iisc.ernet.in/gametheory/lecture.html

