APPENDIX E

CONSTRUCTING A STANDARD HEADING

Members

1. Each frame consists of:

Member	Size	Quantity
(a)	(b)	(C)
Groundsills	4 ft 6 in x 9 in x 3 in	1
Topsills	4 ft 6 in x 9 in x 3 in	1
Side trees	5 ft 0 in x 9 in x 3 in	2
Spreaders	4 ft 0 in x 9 in x 1 in	2

Starching Out a Heading from a Shaft (Fig 48E1-1)

- 2. a. Continue the shaft until the floor is about two feet below the calculated depth of the bomb.
 - b. Construct a frame of walings at or near floor level providing support for the walings where they do not rest on the ground.
 - c. Add a fresh frame of walings unless one is already conveniently positioned just over five foot six inches clear of the bottom frame.
 - d. Remove any frames between these two.
 - e. Construct the first heading frame resting it on the bottom waling and hard against the runners. This frame must be nailed together and chocked in position to hold it rigid until the next stage. For this frame only, the spreaders should be two inches thick.
 - f. Construct a frame of walings midway between the bottom two frames. For a standard 9 foot x 8 foot shaft, Figs 48E1-2 and 3 show the method to be used. Different procedures are required depending on the side of the shaft from which the heading is struck. In large or non-standard shafts, similar frames must be improvised. They must give support without cramping the working space in the shaft without cramping the working space in the shaft.

Note: *Stages* (*e*) *and* (*f*) *may be omitted if the ground is very good.*

Fig 48E1-1: Breaking Out a Standard Heading from a 9 ft x 8 ft Shaft (Side Elevation)

48E1-2 RESTRICTED

Fig 48E1-2: Breaking Out a Heading from the Long Side of a 9 ft x 8 ft Shaft.

Plan View Showing Special Frame

48E1-3 RESTRICTED

Fig 48E1-3: Breaking Out a Heading from the Short Side of a 9 ft x 8 ft Shaft

Plan View Showing Special Frame

48E1-4 RESTRICTED

- g. Drive in puncheons between the frames of walings.
 - h. Raise the runners which cover the face of the proposed heading.
 - j. Construct the second frame of the heading bringing the one inch bottom spreaders to the same level as the two inch bottom spreader of the first frame.
 - k. Add further heading frames as required.

Fig 48E1-4: Constructing a Heading Frame

Putting in Frames (Fig 48E1-4)

- 3. a. Set in the groundsill at the required level and the side trees at just less than spreader length (four feet) apart.
 - b. Remove the side trees and set in the top still at a little less than side tree height (five feet) above the groundsill.
 - c. Place in the side trees at a slant and drive outwards to force the top sill firmly against the roof.
 - d. Remove the earth from the center of the frame and drive in the spreaders as soon as possible. Nail or screw the spreaders into position.

Provision of Adequate Support

- 4. a. In extremely firm ground and when time is of vital importance frames may be placed at open spacing. In all other circumstances close spacing must be used.
 - b. If any ground face is left for a period it must be given temporary support (Fig 48E1-5).

Fig 48E1-5: Supporting the Earth Face in a Heading

APPENDIX 1

REPORT OF A UXB

PART 1

(To be completed at CD control)

To:						
	Comm	issioner NoRegion/sub-Region.				
1.	Exact 1	Location				
		Map RefOS ser No				
		Time of fall				
		Date of fall				
2.	Local	contact				
	Name.					
	Addres	SS				
		(This can only be "B", "C" or "D")				
	Tel No)				
3.	Is it ca	moutflet ?				
4.	Estima	tted weight and type of UXB				
5.	Diame	ter of hole entry				
6.	Buried	or unburied?				
7.	Descri	bed:				
	a.	Any Part of UXB if exposed				
	b.	Any portion of UXB found in vicinity				
	c.	Colour and markings found on any part				
8.	State v	where any portion of UXB may be found				
9.	State v	where appropriate safety precaution involve:				
	a.	Evacuation of dwellings giving est no of persons				
	b.	Evacuation of factories				
	Interru	Interruption of public utility services communications etc.				
	giving	details				
	c.	Stoppage of rail traffic				
		SignedRank				
		AppointmentDate				
		••				

CLEARANCE CERTIFICATE

PART IV

(To be completed by BD Officer)

					Serial	No
	The UXB at:					
s n	ow been					
	a.	Disposed of,	size	Type		
	b.	Discredited: f	ound to be a			
	If came					
	c.	Abandoned, e	est, size	Type		
	Signed			Date		
					_Rank	
					_Bd Coy/PI	
			<u>P</u> .	ART II		
		(To l	oe completed	at Region/su	b-Region)	
	If categ	ory "A" allotte	ed			
					y/PI	

PART III

(To be completed by BD Officer)

1.	Report verified time			Date	
2.	Operations commenced				
	Time			Date	
3.	Operations carried out by				
	To				
4.	Operation carried out by				
				ABD Unit	
5.	Size and type of bomb				
6.	Fuze(s) fitted				
7.	Penetration				
8.	Offset	How Fu	ıze (s)	dealt with	
9.	How bomb disposed of				
10.	Operations completion time				
	Date				
11.	Clearance Certificate handed to				
12.	Special observations				
	(Sketches	of works	to be a	ttached)	
	Returned to OCBD C	Coy/PI Sig	ned		Rank
			Appo	intment	
			Date_		
13.	Returned to				
	(Region/Sub-Region)	Signed		Rank	
			OC_		BD/coy/PI
			Date_		
14.	Sent to Engineer Directorate	Signed		Rar	ık
			Appo	intment	
			Date_		

TABLE 17 - CONVERSION TABLES

Values of Prefixes of Sub-Multiples and Multiples of Metric Units

Prefix	Numerical Va	lue
Milli	0.001	10^{-3}
Centi	0.01	10^{-2}
Deci	0.1	10^{-2}
Deca	10	10
Hecto	100	10^{-3}
Kilo	1000	10^{-3}

Principal Conversion Factors

1 inch = 25.40 millimeters

1 pound = 453.592 grams = 7000 grains

1 tola = 180 grains 1 gallon= 4.54596 Litres

Length

Meters	Yards	Feet	Inches
1	1.09361	3.28084	39.3701
0.9144	1	3	36
0.3048	0.333	1	12
0.0254	0.0277778	0.08333	1
1 Chain= 10	00 links; 1 link= 7.92	inches= 201.168 mm	
Kilometers		Miles	
1		0.62137	
1.609 344		1	

Area

Square Meters	Square Yards	Square Feet	Square Inches	
1	1.595.99	10.763.9	1 550.00	
0.836 13	1	9	1296	
0.092 903	0.111 111	1	144	
0.000 645 16	0.000 771 60	0.006 944 4	1	

1 sq kilometer = 0.38610 square miles

1 sq mile = 640 acres = 2.5899 sq kilometers

1 acre = 10 sq chains

1 sq chain = 184 sq Yards = 404.646 sq meters

NOTE:- 1 'acre' = 100 sq meters =0.0247105 acres

Volume

Cu Meter	Cu yards	Cu Feet	Gallons (Imp)
1	1.30795	35.315	219.969
0.76455	1	27	168.178
0.0045609	0.0059461	0.160544	1
.028317	.03703	1	6.2288
1cu in	= 16.3871 cu cms		
1 cu cm	= .061024 cu inch		
1 liter	= 1000.028 cu cm=0.2199	98 gals	
1 gallon	- 4 54596 liters	-	

1 gallon = 4.54596 liters

Weight

Kilogram	Pound	Oz
1	2.20462	35.2740
.04535924	1	16
.0283495	.0625	1

1 Metric tonne = 1000 kilogram = .9842 tons

1 Ton = 2240 pounds = 1.01605 metric tones

Speed

Kilometers per	Centimeters per Miles per hour	Feet per	
Hour	Second	S	Second
1	27.777 8	0.621 37	0.911 34
0.036 000 1	1	0.022 369 4	0.032
8084			
1.609 34	44.704 0	1	1.466 67
1.097 28	30.48	0.681 82	1

Density and Concentration

	* Gram per cubic	Hundredweight	Pounds per	Pounds
oer				
	Centimeter	per cubic yard	Cubic foot	Cubic
nch				
	1	15.0496	62.428	
	-	13.0470	02.420	
	0.0361273			
	0.066447	1	4.14815	0.0024
	0.0160 185	0.24107 1	1	0.0005
	7870			
	27.6799	4616.571	1728	1

Stress and Pressure

Kilograms per	pounds per sq	Tons per sq	Tons pe	er sq
sq Millimeter	Inch		Inch	Foot
1	1 422.3	3	0.634 97	91.436
0.000703 07	1		0.000446 429	0.064
286				
1.574 88	2 240		1	144
0.010 936 6	5.555 6		0.006 944 4	1
0.010 936 6	5.555 6		0.006 944 4	

^{*} Grams per cubic centimeter ate equal to tonnes per cubic meter and kilograms per cubic decimeter.

Weight and Strength of Materials

	Existing	Metric	
Conversion			
	PracticeUnits to be		factor
	Used		
Simpler weights of materials	Ton	Metric	1.016
		Tonne	
	Cwt	q (quintal)	0.508
	oz (ounces)	g (grams)	28.350
	Ib	Kg	0.454
Weight per unit length	Ibs/yd	Kg/m	0.496
	Ibs/ft	kg/m	1.488
Density	Ibs/cu in	g/cu/ m	27.680
	Ibs/cu ft	Kg/cu in	16.019
	cwt/cu yd	q/cu m	0.664
Concentration	oz/imp/gal	g/litre	6.236
	Ibs/cft/	g/litre	16.019
Compressive strength			
requirements of materials	Ibs/sq in	kg/sq cm	0.0703
Tensile strength requirement			
of material	tons/sq/in	kg/sq cm	1.5749
Breaking loads of materials	Ib	kg	0.454

48E1-13 RESTRICTED

stresses (tensile, con	npressive	,			
bearing or shear)			Ib/sq in	kg/sq cm	0.070.
Hydraulic pressure (l	head)		ft	m	0.305
Other pressers			Ibs/sq/in	kg/sq cm	0.0703
Bearing pressures			Tons or Ib	Metric	10.9366
			per sq ft	tonne or kg	4.8824
				per sq m	
Atmospheric pressur	e in head				
of water	••	••	ft	m	0.305

		Existing	Metric	
Conversion				_
		Practice Units	to be	factor
-	Used			
Atmospheric pressure	in head			
of mercury		 in	mm	25.4
Moment of inertia		 in4	cm4	41.62
Section modulus		 in3	cm3	16.39
Radius of gyration	••	 in	cm	2.54
Bending moment and		in Ib	kg cm	1.152
Moments		ft Ib	kg cm	13.83
		In tons	kg m	25.803
Forces		Ib/sq ft	kg/sq m	4.88
		tons/sq ft	tonne/sq m	10.931
		tons/rft	tons/m	3.33
		Ibs/rft	kg/m	1.488
Speed, Velocity		MPH or	km PH	1.609
		FPS	m PS	0.3048
Acceleration		 ft per	Metre per	0.3048
		Second per	second per	
		second	second	
Discharge in rivers, ch	annels			
etc		 cusec	cubic metre	0.0283
			per second	
Velocity head		ft	m	0.3048
Work and energy		 foot pound	kilogram	0.1383
		•	Metre	
Power		 HP	Metric HP	0.1383
			Kilowatts	0.746