UNIVERSIDADE DO ESTADO DE MATO GROSSO FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE BACHARELADO EM SISTEMAS DE INFORMAÇÃO

Hellielton Santos Dos Reis Julio Cesar Colli Marcos Junior da Silva

Análise Estatística de Altitudes em Aeroportos dos Estados de Mato Grosso São Paulo

Probabilidade e Estatística

UNEMAT – Campus de Sinop 2024/02

Hellielton Santos Dos Reis Julio Cesar Colli Marcos Junior da Silva

Análise Estatística de Altitudes em Aeroportos dos Estados de Mato Grosso São Paulo

Atividade Avaliativa Final da disciplina de Probabilidade e Estatística do Curso de Bacharelado em Sistemas de Informação – UNEMAT, Campus Universitário de Sinop – MT, como pré-requisito para obtenção da disciplina.

Prof ^a. Katherine Elizabeth Coaguila Zavaleta

SUMÁRIO

1	INTRODUÇÃO 3
1	.2 TEMA
2	ATIVIDADE X2 4
	2.1 Calculo da Média
	2.2 Calculo da Mediana
	2.3 Calculo da Moda
	2.4 Calculo da Variancia
	2.5 Desvio Padrão
	2.6 Resumo dos Resultados
	2.7 Conclusões
3	ATIVIDADE X3 - A 8
	3.1 Distribuição de Frequência Absoluta
	3.1 Distribuição de Frequência Relativa
	3.1 Frequência Acumulada9
	3.1 Resumo Final
4	ATIVIDADE X3 - C
	4.1 Dados da Tabela
	4.2 Etapa 1 - Tabela 1: Tabela de distribuição de Frequências
	4.3.1 Etapa 2 - Calculo Media
	4.3.2 Etapa 2 - Calculo Mediana
	4.3.3 Etapa 2 - Calculo Moda
	4.3.4 Etapa 2 - Conclusões das Simetria dos Dados
	4.4.1 Etapa 3 - Calculo dispersão
	4.4.2 Etapa 3 - Calculo variância
	4.4.3 Etapa 3 - Desvio Padrão
	4.4.4 Etapa 3 - Coeficiente da variação
	4.4.5 Etapa 4 - Analise Box-Plot
	4.4.6 Etapa 4 - Conclusões das analises

Tema

Análise Estatística de Altitudes, Comprimentos e Tipos de Solo em Aeroportos dos Estados de Mato Grosso e São Paulo.

Introdução

A análise estatística é uma ferramenta essencial para compreender e interpretar dados em diversos contextos, incluindo o setor aéreo. No Brasil, os aeroportos desempenham um papel estratégico no desenvolvimento socioeconômico, conectando regiões e promovendo a integração nacional. Nos estados de São Paulo e Mato Grosso, a infraestrutura aeroportuária possui características distintas que refletem as necessidades e as particularidades regionais.

São Paulo, com uma malha aérea densa e altamente desenvolvida, possui aeroportos com altitudes variadas e pistas projetadas para atender a uma ampla gama de aeronaves. Por outro lado, Mato Grosso, com sua relevância como polo agrícola, conta com aeroportos que suportam operações logísticas cruciais para o escoamento de produtos do agronegócio, em especial grãos. Nesse contexto, características como comprimento das pistas e tipo de solo utilizado em sua construção desempenham um papel importante para garantir a eficiência operacional e a segurança.

Este trabalho realiza uma análise estatística detalhada sobre as altitudes, comprimentos e tipos de solo das pistas de aeroportos desses estados. A partir de dados coletados, calculamos medidas estatísticas descritivas, como média, mediana, moda, dispersão, variância e desvio padrão, além de utilizarmos gráficos, como o box-plot, para identificar padrões, visualizar distribuições e detectar dados atípicos (outliers).

No caso de Mato Grosso, a presença de pistas de diferentes tipos de solo, como concreto e pavimentação asfáltica, apresenta um desafio adicional para as operações, especialmente em regiões com clima variável e alta incidência de chuvas. Por outro lado, a análise dos comprimentos das pistas oferece insights sobre as limitações e adaptações necessárias para suportar diferentes tipos de aeronaves, especialmente em aeroportos regionais.

Com essa abordagem, o trabalho busca não apenas descrever as características físicas e estruturais dos aeroportos de São Paulo e Mato Grosso, mas também entender como os fatores locais impactam o planejamento e a operação aeroportuária. Essas informações são essenciais para identificar oportunidades de melhorias e subsidiar decisões que promovam a eficiência e a segurança na aviação regional.

ATIVIDADE X2:

Procurar um conjunto de dados sendo uma amostra de tamanho pequeno, n < 30. Calcular as respectivas medidas como média, mediana, moda, variancia e desvio padrao, alem de mostrar as conclusoes.

Utilizaremos os dados da coluna "Comprimento" para a resolução das atividades.

1	Atualizado em:	2024-11-1			
2	Código OACI	CIAD ~	Municĺpio	UF ~	Comprimento =
3	SWDM	MT0015	DIAMANTINO	Mato Grosso	1630
4	SWKC	MT0017	CÁCERES	Mato Grosso	1850
5	SWBG	MT0009	PONTES E LACERDA	Mato Grosso	1500
6	SWXM	MT0014	MATUPÁ	Mato Grosso	1858
7	SBBW	MT0008	BARRA DO GARÇAS	Mato Grosso	1598
8	SBSO	MT0005	SORRISO	Mato Grosso	1700
9	SWTS	MT0012	TANGARÁ DA SERRA	Mato Grosso	1500
10	SBSI	MT0002	SINOP	Mato Grosso	1630
11	SDNM	MT0047	NOVA MUTUM	Mato Grosso	1541
12	SIZX	MT0018	JUARA	Mato Grosso	1200
13	SWHP	MT0006	ÁGUA BOA	Mato Grosso	1627
14	SWVC	MT0016	VILA RICA	Mato Grosso	1350
15	SWXV	MT0013	NOVA XAVANTINA	Mato Grosso	1300
16	SWFX	MT0022	SÃO FÉLIX DO ARAGUAIA	Mato Grosso	1450
17	SILC	MT0025	LUCAS DO RIO VERDE	Mato Grosso	1730
18	SWJN	MT0007	JUÍNA	Mato Grosso	1550
19	SWPK	MT0021	POCONÉ	Mato Grosso	1150
20	SWEK	MT0024	CANARANA	Mato Grosso	685
21	SWPY	MT0023	PRIMAVERA DO LESTE	Mato Grosso	1330
22	SDH2	MT0662	PORTO ALEGRE DO NORTE	Mato Grosso	1600
23	SBCY	MT0001	CUIABÁ	Mato Grosso	2300
24	SBRD	MT0004	RONDONÓPOLIS	Mato Grosso	1850
25	S168	MT0612	CAMPO NOVO DO PARECIS	Mato Grosso	1600
26	SBAT	MT0003	ALTA FLORESTA	Mato Grosso	2500
27	SWPG	MT0010	PORTO DOS GAÚCHOS	Mato Grosso	1500

1. Cálculo da Média

Somamos todos os valores da amostra.

Dividimos pelo número de pistas/elementos (25).

2. Cálculo da Mediana

Procuramos o valor do meio em toda a amostra.

Como 25 é um número impar, a mediana é o valor na posição (n+1)/2 = 13. O valor que está na posição 13 da amostra é o 1300.

3. Cálculo da Moda

A moda é o valor que mais aparece. O valor 1500 aparece 3 vezes, sendo a moda.

4. Cálculo da Variância

Primeiro calculamos a média, que já temos, sendo o valor 1565,16.

Depois, subtraimos a média de cada valor da amostra para obter a diferença:

(e assim por diante).

Elevamos cada diferença ao quadrado.

$$(64,84)^2 = 4206,66$$

$$(284,84)^2 = 81134,38$$

$$(-65,16)^2 = 4245,83$$

$$(292,84)^2 = 85755,26$$

$$(32,84)^2 = 1078,14$$

Somamos todos os quadrados das diferenças obtidas.

= 2428771,06

Com o valor total sendo: 2428.771,06.

Por fim, calculamos a variancia, dividindo o valor total por n - 1 (24).

5. Desvio Padrão

Apenas fazemos a raiz quadrada da variancia:

$$\sqrt{101.198,79} = 318,01$$

6. Resumo dos Resultados

Média: 1565,16 metros **Mediana:** 1300 metros

Moda: 1500 metros

Variância: 101.198,79 metros Desvio Padrão: 318,01 metros

7. Conclusões

O desvio padrão foi de 318,01 metros, isso significa que, em média, os comprimentos das pistas variam cerca de 318 metros para mais ou para menos em relação à média (1565,16).

Os comprimentos das pistas dos aeroportos em Mato Grosso refletem o tamanho e a importância de cada cidade:

- Cidades pequenas, como Juína e Porto dos Gaúchos, têm pistas mais curtas, adequadas para aviões menores e menos tráfego aéreo.
- Cidades médias, como Tangará da Serra e Barra do Garças, têm pistas próximas da média (1565 metros), suficientes para voos regionais frequentes.
- Cidades maiores, como Cuiabá (2300 metros), têm pistas mais longas, que suportam aviões maiores e maior fluxo de passageiros.

Ou seja, o tamanho da pista está ligado à demanda de cada cidade: cidades pequenas atendem voos locais, e as maiores têm aeroportos preparados para operações mais intensas e importantes.

ATIVIDADE X3 - A:

Dados

SUPERFÍCIE					
Asfalto	Concreto	Asfalto	Asfalto		
Asfalto	Asfalto	Concreto	Asfalto		
Concreto	Asfalto	Asfalto	Concreto		
Asfalto	Asfalto	Asfalto	Grama		
Grama	Asfalto	Terra	Terra		

DISTRIBUIÇÃO DE FREQUENCIAS VARIAVEL QUALITATIVA

SUPERFÍCIE	Frequncia Absoluta Simples	Frequencia Acumulada	Frequencia Relativa Simples	Frequencia Acumulada Simples
Asfalto	12	12	60%	60%
Concreto	4	16	20%	80%
Grama	2	18	10%	90%
Terra	2	20	10%	100%
Total	20		100%	

Conclusão:

1. Distribuição de Frequência Absoluta:

Asfalto é o tipo de superfície mais utilizado, com 12 ocorrências (60% do total).

Concreto vem em segundo lugar com 4 ocorrências (20%).

Grama e Terra têm uma frequência de 2 ocorrências cada (10% cada uma).

2. Distribuição de Frequência Relativa:

A frequência relativa de Asfalto é de 60%, o que significa que mais da metade dos casos observados utilizam essa superfície.

Concreto, com uma frequência relativa de 20%, representa uma parte significativa, mas menor em comparação com o Asfalto.

Tanto Grama quanto Terra têm uma frequência relativa de 10%, indicando que essas superfícies são muito menos utilizadas.

3. Frequência Acumulada:

A frequência acumulada simples indica que após contabilizar as ocorrências de Asfalto (12), 60% dos dados já estão cobertos.

Com a adição de Concreto, a frequência acumulada chega a 80%, e ao incluir Grama, alcança 90%.

Por fim, a frequência acumulada de 100% mostra que todas as 20 observações foram contabilizadas.

4. Resumo Final:

A maior parte das observações se concentra no Asfalto (60%).

Concreto e Grama representam uma parte menor, enquanto Terra tem a menor frequência absoluta e relativa.

A análise de frequências acumuladas ajuda a entender como as diferentes superfícies se distribuem ao longo dos dados, com 90% das observações concentradas nas três primeiras superfícies (Asfalto, Concreto e Grama).

Atividade X3 – C:

Neste Topico, analisaremos as **altitudes** de **75 aeroportos públicos localizados no estado de São Paulo**. A variável estudada, **altitude**, é uma variável **quantitativa contínua**, pois pode assumir infinitos valores dentro de um intervalo. No caso das altitudes, podemos ter valores como 500 metros, 500.3 metros, 500.75 metros, entre outros, o que demonstra sua natureza contínua e a possibilidade de medições precisas. A altitude de um aeroporto reflete a distância vertical entre o nível do mar e o aeroporto, sendo uma variável crucial para a aviação, já que afeta diversos fatores como a performance das aeronaves e as condições meteorológicas.

A partir do conjunto de dados coletado para os 75 aeroportos, serão calculadas diversas medidas estatísticas, como a média, mediana, moda, variância, desvio padrão e coeficiente de variação. Além disso, será realizada uma análise visual através do gráfico **Box-Plot**, que permitirá identificar a dispersão dos dados, a presença de outliers e as características gerais das distribuições de altitude.

Através dessa análise, buscamos compreender melhor as variações nas altitudes dos aeroportos, identificar quaisquer padrões ou discrepâncias significativas e tirar conclusões sobre a simetria e a dispersão dos dados. A partir dos cálculos e gráficos apresentados, será possível identificar as principais tendências e padrões que caracterizam a distribuição das altitudes dos aeroportos paulistas.

Dados

ALTITUDE	MUNICÍPIO ATENDIDO	UF	ALTITUDE	MUNICÍPIO ATENDIDO	UF
3 m	UBATUBA	SP	612 m	CAMPINAS	SP
4 m	ITANHAÉM	SP	617 m	BAURU	SP
25 m	REGISTRO	SP	617 m	LEME	SP
297 m	PRESIDENTE EPITÁCIO	SP	621 m	LENÇÓIS PAULISTA	SP
365 m	TUPI PAULISTA	SP	623 m	ITUVERAVA	SP
372 m	DRACENA	SP	625 m	JABOTICABAL	SP
380 m	ANDRADINA	SP	633 m	SOROCABA	SP
400 m	GUARARAPES	SP	635 m	MATÃO	SP
415 m	ARAÇATUBA	SP	635 m	TATUÍ	SP
418 m	PENÁPOLIS	SP	640 m	VERA CRUZ	SP
425 m	ADAMANTINA	SP	647 m	SÃO JOSÉ DOS CAMPOS	SP
445 m	PRESIDENTE VENCESLAU	SP	650 m	MARÍLIA	SP
450 m	LUCÉLIA	SP	651 m	MOCOCA	SP
452 m	PRESIDENTE PRUDENTE	SP	651 m	SÃO JOAQUIM DA BARRA	SP
465 m	NOVO HORIZONTE	SP	661 m	CAMPINAS	SP

467 m	OURINHOS	SP	664 m	GARÇA	SP
476 m	PARAGUAÇU PAULISTA	SP	683 m	PIRASSUNUNGA	SP
480 m	LINS	SP	685 m	ARARAS	SP
493 m	BARIRI	SP	693 m	MOGI MIRIM	SP
500 m	FERNANDÓPOLIS	SP	711 m	ARARAQUARA	SP
501 m	TIETÊ	SP	712 m	CASA BRANCA	SP
508 m	VOTUPORANGA	SP	714 m	CAPÃO BONITO	SP
536 m	PEDERNEIRAS	SP	722 m	SÃO PAULO	SP
537 m	GUARATINGUETÁ	SP	730 m	SÃO MANUEL	SP
542 m	IBITINGA	SP	750 m	GUARULHOS	SP
544 m	SÃO JOSÉ DO RIO PRETO	SP	750 m	MONTE ALTO	SP
550 m	RIBEIRÃO PRETO	SP	757 m	JUNDIAÍ	SP
550 m	TUPÃ	SP	762 m	SÃO JOÃO DA BOA VISTA	SP
564 m	ASSIS	SP	777 m	SÃO ROQUE	SP
566 m	SÃO PEDRO	SP	797 m	ATIBAIA	SP
580 m	BARRETOS	SP	802 m	SÃO PAULO	SP
584 m	MIRASSOL	SP	807 m	SÃO CARLOS	SP
584 m	PIRACICABA	SP	810 m	AVARÉ	SP
585 m	PINDAMONHANGABA	SP	881 m	BATATAIS	SP
592 m	BEBEDOURO	SP	893 m	BRAGANÇA PAULISTA	SP
594 m	BAURU E AREALVA	SP	918 m	BOTUCATU	SP
600 m	RIO CLARO	SP	1003 m	FRANCA	SP
611 m	AMERICANA	SP			

1ª Etapa:

Tabela 1: Tabela de distribuição de Frequências

1. Dados básicos:

• Total de observações (n): 75

• Valor mínimo: 3

• Valor máximo: 1003

• Amplitude (*A*): 1003 - 3 = 1000

• Número de classes (k): $\left[\sqrt{75}\right] = 9$ • Tamanho do intervalo (h): $\left[\frac{A}{k}\right] = \left[\frac{1000}{9}\right] = 112$

2. Intervalos de Classe: Os intervalos de classe terão tamanho $\hbar=112$

Intervalo de Classe	$\int i$ (Frequencia)	F_i (Freq. Acumulada)
3 - 115	9	9
116 - 227	6	15
228 - 339	5	20
340 - 451	9	29

452 - 563	12	41
564 - 675	13	54
676 - 787	8	62
788 - 899	7	69
900 - 1003	6	75

Observações:

- $\int i$: Numero de valore em cada intervalo.
- F_i : Soma acumulada das frequências.

2ª Etapa:

Cálculos das medidas: de média, mediana e moda.

1.Média:

$$M\acute{e}dia = \frac{\sum X_i}{n}$$

Cálculo:

Soma dos dados =
$$711 + 415 + 893 + ... + 777 = 43991$$

Número de elementos = 75
Média = $\frac{43991}{75} \approx 586.55$
Média= 586.55

2. Mediana:

Mediana = Elemento na posição $\left(\frac{n+1}{2}\right)$ = Elemento na posição $\frac{75+1}{2}$ = 38 Dados ordenados:

3, 4, 25, 297, 365, 372, 380, 400, 415, 418, 425, 445, 450, 452, 465, 467, 476, 480, 493, 500, 501, 508, 536, 542, 544, 550, 550, 564, 566, 580, 584, 584, 585, 592, 594, 600, 611, 612, 617, 617, 621, 623, 625, 633, 635, 635, 640, 647, 650, 651, 651, 661, 664, 685, 693, 711, 712, 714, 722, 730, 750, 750, 757, 762, 777, 797, 802, 807, 810, 881, 893, 918, 1003

Valor na posição 38:

Mediana = 611

3.Moda

3, 4, 25, 297, 365, 372, 380, 400, 415, 418, 425, 445, 450, 452, 465, 467, 476, 480, 493, 500, 501, 508, 536, 542, 544, 550, 550, 564, 566, 580, 584, 584, 585, 592, 594, 600, 611, 612, 617, 617, 621, 623, 625, 633, 635, 635, 640, 647, 650, 651, 651, 661, 664, 685, 693, 711, 712, 714, 722, 730, 750, 757, 762, 777, 797, 802, 807, 810, 881, 893, 918, 1003

Frequência dos dados:

• 500, 584, 617, 635, 651 e 750: Aparecem 2 vezes cada.

Moda: O conjunto de dados é multimodal com modas:

Modas = {550, 584, 617, 635, 651 e 750}

Conclusão sobre a Simetria dos Dados:

1. Média:

• **Média:** $\mu = 586,55$

• Mediana (Q2): Q2 = 611

• Moda: 550, 584, 617, 635, 651, 750

2. Simetria:

- A *média* é 586,55, a *mediana* é 611 e temos *6 modas*: {550, 584, 617, 635, 651, 750}.
- A média sendo menor que a mediana sugere que a distribuição tem uma leve assimetria à esquerda, com uma cauda mais longa para valores menores.

Conclusões sobre as Modas:

- Múltiplas Modas: A presença de várias modas (550, 584, 617, 635, 651, 750) indica que há várias altitudes que ocorrem com a mesma frequência.
- Concentração em torno de 550: Embora 550 seja a *moda* mais baixa, outras altitudes, como 584, 617, 635, 651 e 750, também são comuns e se destacam na distribuição.

Conclusões Finais:

- **Distribuição assimétrica à esquerda:** A diferença entre a *média* (586,55) e a mediana (611) sugere uma leve assimetria à esquerda. A distribuição não é perfeitamente simétrica, mas os dados estão razoavelmente concentrados em torno da média.
- Várias Modas: A distribuição possui *múltiplas modas* (550, 584, 617, 635, 651, 750), indicando que essas altitudes são as mais frequentes entre os aeroportos analisados. Isso pode sugerir que os aeroportos com essas altitudes têm características semelhantes ou estão localizados em regiões com características altimétricas semelhantes.
- **Possíveis outliers:** Para detectar outliers, é interessante calcular os limites superior e inferior com base no *IQR*, que podem ajudar a identificar valores extremos na distribuição.

3^a Etapa:

Calculo das medidas de: dispersão, variância, desvio padrão e coeficiente de variação.

Resultado da Média:

 $\bar{X} = 586,55$

1.Dispersão:

Soma de todos os quadrados:

x_i	$x_i - \overline{X}$	$(x_i - \overline{X})^2$
711	711 - 586,55 = 124,45	$124,45^2 = 1546,20$
415	415 - 586,55 = -171,55	$(-171,55)^2 = 29430,80$
893	893 - 586,55 = 306,45	$306,45^2 = 93898,80$
617	617 - 586,55 = 30,45	$30,45^2 = 926,95$
452	452 - 586,55 = -134,55	$(-134,55)^2 = 18106,80$
750	750 - 586,55 = 163,45	$163,45^2 = 26713,30$
537	537 – 586,55 = -49,55	$(-49,55)^2 = 2455,05$
757	757 – 586,55 = 170,45	$170,45^2 = 29053,80$
661	661 - 586,55 = 74,45	$74,45^2 = 5542,80$
650	650 - 586,55 = 63,45	$63,45^2 = 4025,80$

Somatório dos Quadrados

Após calcular $(x_i - \bar{X})^2$ para todos os 75 valores, somamos os resultados.

$$\sum_{i=1}^{75} (x_i - \overline{X})^2 = 2467757, 98$$

2. Variância:

$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1}$$

Substituindo:

- n = 75
- $\sum (x_i \bar{X})^2 = 2467757,98$

$$S^2 = \frac{2467757,98}{75-1} = \frac{2467757,98}{74} \approx 33577,46$$

$$S^2 = 33.577,46$$

3.Desvio Padrão:

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n-1}}$$

$$S = \sqrt{33.577,46} = 183,24$$

$$S = 183,24$$

4. Coeficiente de Variação:

$$CV = \frac{S}{\overline{X}} \times 100$$

$$CV = \frac{183,24}{586,55} \times 100 = 31,24\%$$

$$CV = 31,24\%$$

4ª Etapa:

Análise Box-Plot

1. Cálculo dos Quartis e Limites:

• Dados ordenados:

 $\{3,4,25,297,365,372,380,400,415,418,425,445,450,452,465,467,476,480,\ldots,1003\}$

• Q1 (25%):

$$Q1 = 494,75$$

• Q2 (50%):

$$Q2 = 611,50$$

• Q3 (75%):

$$Q3 = 691,00$$

• IQR (Intervalo Interquartil):

$$IQR = Q3 - Q1 = 691 - 494 = 196,25$$

$$IQR = 196,25$$

• Limite Inferior (LI):

$$LI = Q1 - 1.5 \times IQR = 494,74 - 1.5 \times 196,25 = 200,36$$

$$\boxed{LI = 200,36}$$

• Limite Superior (LS):

$$LS = Q3 + 1.5 \times IQR = 691 + 1.5 \times 196,25 = 985,37$$

 $LS = 985,37$

2. Identificação de Outliers

- Outliers identificados:
 - o Abaixo de LI: 3, 4, 25
 - o Acima de LS:1003

Gráfico Box-Plot

- **Bolinha vermelha:** Indica o Limite Inferior (LI).
- Bolinha azul: Indica o Limite Superior (LS).
- Bolinha verde: Representa Q1.
- Bolinha laranja: Representa a mediana Q2.
- Bolinha magenta: Representa Q3.

Conclusões

- Caixa: A caixa é bastante ampla, indicando uma grande dispersão entre os dados, com a maior parte dos valores concentrados entre Q1=494,75 e Q3=691.
- Mediana: A mediana (Q2) está no meio da caixa, indicando que os dados estão relativamente equilibrados, com uma distribuição simétrica.
- **Bigodes**: Os bigodes se estendem de Q1=494,75 para o limite inferior (200,38) e de Q3=691,00 para o limite superior (985,38), o que mostra que a maior parte dos dados está entre esses valores.

• Outliers: Se houverem valores abaixo de 200,38 ou acima de 985,38, eles serão identificados como outliers e marcados fora dos bigodes.

O gráfico Box-Plot é uma ótima maneira de entender visualmente a distribuição dos dados, identificar outliers e perceber a dispersão central dos dados.