Sustainable Optics for Scaling Al

Andreas Bechtolsheim

Arista Networks

OCT 15-17, 2024 SAN JOSE, CA

Expected AI Fabric Bandwidth Growth

	2022	2024	2026	2028
Bandwidth/XPU	3200	6400	12800	25600
1600 Ports / XPU	2	4	8	16
XPUs Shipped [M]	3	5	8	10
Total 1600 Ports [M]	6	20	64	160

Note: Bandwidth numbers shown are Uni-directional. For Bi-Directional numbers multiply by 2X

Nearly a 10-fold increase in bandwidth from 2024 to 2028

Passive Copper Cables in the Rack

Passive Copper Cables have many advantages

Lower power, lower cost and higher reliability than optics Main limitation is 1m reach at 224G-PAM4

High performance SERDES is the key enabler

Passive copper cables is a very important use case This will not change for the foreseeable future

Copper cables within the rack are well proven

Example: Nvidia NVL72 Rack 72 GB200

PHY	PHY Pwr / Port [W]	PHY Pwr / Rack [W]	Total Rack Power [W]	Relative Power [%]
Passive Copper	0	0	120,000	100%
DSP Optics	30	19,440	139,440	116.2%

Copper backplane substituted 648 1600G Optics DSP Optics would have added 20KW in power, the equivalent of 12 GB200 chips

One Big Problem: Power for 1600G Optics

Measured Power per Prototype 1600W-DR8 Modules

Next-Gen Scale-Up Domains: 256 to 512 XPUs

Multi-Rack Designs, even with next-gen 400KW Racks

4 Racks with 128 3KW XPUs per Rack Passive Copper cables cannot meet reach

Need Lower Power Interconnects for Scale-Up

Reach of at least 10 meter for 512 node cluster Includes "slow-and-wide" Optics, uLEDs, uWave

Need lower-power solutions in particular for Scale-Up

Sustainable Optics for Next-generation AI Clusters

Interconnect	Reach	Power per Side [W]	Power per XPU [W]	Power per 1M XPU [MW]	% of XPU Power
DSP Optics	10km	30	960	960	32.0%
LRO Optics	1km	20	640	640	21.3%
LPO Optics	500m	10	320	320	10.7%
uLED/uWave	10m	8	256	256	8.5%
Active Copper	3m	5	160	160	5.3%
Passive Copper	1m	0	0	0	0.0%

Assumes single-tier Scale-Up fabric with 3KW 2027 XPU with 25.6T Fabric I/F = 32 1600G Optics per XPU

Stargate Size Al Datacenter with 1M XPUs

Configuration	DSP Optics	LPO Optics	Delta	LPO/DSP %
1M XPUs	3 GW	3 GW	0	
32M Optics	960 MW	320 MW	640 MW	-66.7%
TOTAL Power	3960 MW	3320 MW	640 MW	-16%
Optics Power/XPU %	32%	11%		-66%
Power/Y @ 0.25/kWh	\$8.67B	\$7.27B	\$1.4B	-16%
Power over 5 Years	\$43.35B	\$36.35B	\$7B	-16%

\$70B in power savings over 5 years per 10M XPUs

Call to Action: Solve the Interconnect Power Problem!

- Need to accelerate adoption of Linear Optics
 - Power consumption of 1600G DSP Optics not practical for AI
- Need lower-power interconnect technologies for Scale-Up
 - A large % of the volume will be 10m reach
- Timeline for qualifying 1600G solutions is 2025
 - 1600G will be ramp to high volume in 2026
- All 224G Switch and System Designs in-flight
 - No realistic opportunity for CPO
- 448G SERDES Transition is next
 - Electrical Channel extremely challenging
- Nobody said it was going to be easy
 - No one ever said it would be this hard

Thank you!

