

Semester 1 2017

Artificial Intelligence, Assignment 2 COMPSCI 3007, 7059

Instructions and submission guidelines:

- Answer all questions in a report.
- Make sure that your writing is legible and clear, and the mathematical symbols are consistent.
- You must sign an assessment declaration coversheet to submit with your assignment. The assessment declaration coversheet is included in the zip file.
- Submit via myuni.

Questions Due day Marks
Answer all 2 questions See myuni 100 marks
100 Total

Probabilities

Question 1

(a) John enjoys a repeated random game of taking a ball from one of three containers. He always randomly picks a container (uniformly) first. Then he randomly picks a ball from that container. Assuming the first draw has 1 blue ball and 1 red ball, the second drawer has 1 blue ball and 2 red balls, and the third drawer has 2 red balls. Let $D \in \{1, 2, 3\}$ be the random variable that represents which container that John would pick, and let $C \in \{b, r\}$ (b for blue, r for red) be the random variable representing the colour of the ball that John would pick.

Table 1: P(D) (Left) and P(C|D) (Right) tables

				b	$\mid r \mid$	
1	2	3	D=1			1
			D=2			ĺ
			D=3			

i. Please write down P(D) in the same table format in Table 1.

[3 marks]

ii. Please write down P(C|D) in the same table format in Table 1.

[6 marks]

iii. What is P(C = r, D = 2)?

[2 marks]

- (b) Independence $X \perp \!\!\! \perp Y$ means P(X,Y) = P(X)P(Y), and Conditional Independence $X \perp \!\!\! \perp Y|Z$ means P(X,Y|Z) = P(X|Z)P(Y|Z). Prove the following properties of independence:
 - i. Symmetry: $X \perp \!\!\!\perp Y|Z \Rightarrow Y \perp \!\!\!\perp X|Z$,

[10 marks]

ii. Decomposition: $X \perp \!\!\!\perp Y, W|Z \Rightarrow X \perp \!\!\!\perp Y|Z$ and $X \perp \!\!\!\perp W|Z$.

[10 marks]

iii. Weak union: $X \perp \!\!\!\perp Y, W|Z \Rightarrow X \perp \!\!\!\perp Y|Z, W$.

[10 marks]

[Total for Question 1: 41 marks]

Inference

Ouestion 2

(a) A Bayesian network with 3 boolean variables A, B, C has a graph in Figure 1 with the local (conditional) distributions provided in the Table 2.

Figure 1: Bayesian Network

Table 2: Local (conditional) distributions P(A), P(B|A), P(C|A,B)

					c	$\neg c$
		b	$\neg b$	a, b	0.8	0.2
$\begin{array}{ c c c c } \hline a & \neg a \\ \hline 0.4 & 0.6 \\ \hline \end{array}$	a	0.6	0.4	$a, \neg b$	0.4	0.6
0.4 0.0	$\neg a$	0.3	0.7	$\neg a, b$		
				$\neg a, \neg b$	0.1	0.9

i. What is $P(A = a, B = b, C = \neg c)$? Please write down the derivation and intermediate result instead of the final number.

[6 marks]

ii. What is $P(B = b, C = \neg c)$? Please write down the derivation and intermediate result instead of the final number.

[6 marks]

iii. What is $P(A = a|B = b, C = \neg c)$? Please write down the derivation and intermediate result instead of the final number.

[6 marks]

iv. If the edge from A to B is deleted, will the local distribution tables be changed? If not, why? If yes, which one will be changed and becomes what?

[6 marks]

v. If the edge from *A* to *B* is deleted, is *A* independent to *B*? Prove it.

[6 marks]

vi. Which one of the following two inference methods can also be used to compute P(C): max-product or sum-product?

[2 marks]

(b) Given a Bayesian Network in Figure 2, please answer the following questions.

Figure 2: a Bayesian Network modelling student performance

i. Write down the factorisation of the joint distribution.

[3 marks]

ii. Write down variable elimination for marginal inference to compute P(G).

[6 marks]

iii. Write down variable elimination for MAP inference.

[6 marks]

(c) You are given a Markov Random Field represented by Figure 3. Please answer the following questions.

Figure 3: Markov Random Field

i. Is *B* independent to *D*?

[3 marks]

ii. Is *B* independent to *D* conditioned on *C*?

[3 marks]

iii. What messages are needed to compute message $m_{C\to B}(B)$ (i.e. the message from C to B)?

[3 marks]

iv. What messages are needed to compute message $m_{C\to D}(D)$ (i.e. the message from C to D)?

[3 marks]

[Total for Question 2: 59 marks]