TD2: TRACTION/COMPRESSION

EXERCICE 1

Un poteau en béton de section circulaire reposant en position verticale sur une fondation rigide est soumis à une force \vec{F} passant par son axe.

- 1) A quel type de sollicitation est soumis le poteau ?
- 2) Calculer la contrainte normale dans le poteau
- 3) Vérifier la résistance du poteau
- 4) Calculer la déformation axiale du poteau
- 5) Calculer la variation de la longueur ΔL

On donne : $|\overrightarrow{F}|$ =10⁶N, D=30cm, L=3m, σ_e =25Mpa, E=10⁴N/mm²

Exercice 2

Un câble de diamètre 8 mm et de longueur 300m réalisé en acier de module d'élasticité E=200GPa et Re = 295 MPa est soumis à une contrainte de 40MPa.

- 1- Vérifier que le coefficient de sécurité appliqué à ce câble est supérieur à 4.
- 2- 2- Calculer la force appliquée à ce câble.
- 3- 3- Calculer l'allongement de ce câble.
- 4- 4- Calculer l'allongement relatif.
- 5- 5- Déterminer le diamètre que devrait avoir ce câble si le coefficient de sécurité est supérieur ou égal à 10.

Exercice3

Une barre en fer plat de 3 m de longueur et 10 mm d'épaisseur est soumise à un effort de traction de 80 kN.

Déterminer sa largeur pour que son allongement ne dépasse pas 2 mm. E=2.1*10⁵ MPa et $[\sigma]$ =144 MPa.

Exercice 4

Une remorque est tirée au moyen d'une barre d'attelage en acier de section carrée, elle est soumise à la force \vec{F} .

- 1) A quel type de sollicitation est soumise la barre?
- 2) Trouver la section minimale de la barre pour qu'elle résiste à la force F
- 3) Calculer la variation de la longueur ΔL

On donne: $|\vec{F}|$ =8000N, L=2m, σ_e =36daN/mm², E=2.10⁵N/mm², Coefficient de sécurité=3.

EXERCICE 5

Le plancher d'un local repose sur certain nombre de poteaux tubulaires. Les poteaux ont une hauteur h = 3m chacun supporté une charge verticale $F = 18.10^4$ N. On suppose que le poteau est encastré en deux extrémités.

On donne les caractéristiques mécaniques de la fonte utilisée R_e (en compression 600 MPa). Le coefficient de sécurité vaut 5.

Les tubes doivent être choisis parmis les séries ci-dessous :

(Extrait d'un catalogue, on notera que l'épaisseur e du poteau tubulaire e≅ D/40

е		2		2,5		3,5		4	
D		80	100	100	140	140	160	160	200

- 1. Calculer la section minimale de poteau et choisir la dimension de celui-ci.
- 2. Quel est le raccourcissement de poteau ?

EXERCICE 6

Un câble en acier de longueur L, composé de 7 fils torsadés de diamètre d chacun, soulève une charge Q

- 1) A quel type de sollicitation est soumis le câble ?
- 2) Calculer la contrainte dans le câble
- 3) Vérifier la résistance du câble
- 4) Calculer la déformation axiale du câble
- 5) Calculer la variation de la longueur du câble

On donne : Q= 1,2 t, d=2,5 mm, L= 10 m,

E= 210000Mpa, σ_e=420 Mpa, coefficient de sécurité=1,2

