tarpit notes

October 9, 2015

1 The game

Let Q_n be the words of length n in the alphabet $\{A, B, C\}$. For $w \in Q_n$, let w_i be the i-th letter of w; that is, $w = w_1 w_2 \cdots w_n$. For $w \in Q_n$ and $x \in \{A, B, C\}$, let $\mathcal{I}_x(w) = \{i \mid w_i = x\}$. A 2-partition of a set S is a partition of S into sets of size two and at most one set of size one.

A game is specified by a tuple (W, n) where $W \subseteq Q_n$ is the set of won positions. The (W, n)-game is played as follows. At the start of the game, Player 1 picks an initial $w \in Q_n$. After that, the players alternate turns (with Player 1 going first) until $w \in W$ at the start of Player 1's turn. Player 2 wins if the game ends and Player 1 wins otherwise.

Player 1 Move. For each $x \in \{A, B, C\}$, choose a 2-partition \mathcal{P}_x of $\mathcal{I}_x(w)$.

Player 2 Move. Pick $x \in \{A, B, C\}$ as well as $p \in \mathcal{P}_x$ and for each $i \in p$, change w_i to the letter in $\{A, B, C\} \setminus \{x, w_i\}$.

Question. For what pairs (W, n) does Player 2 have a winning strategy?

2 Tarpits

We say that $T \subseteq \mathcal{Q}_n$ is a *tarpit* if for each $w \in T$, Player 1 can move such that all of Player 2's possible modifications of w still lie in T. Tarpits are great for Player 1, if T is a tarpit in \mathcal{Q}_n disjoint from \mathcal{W} , then Player 1 can just pick the initial w to be in T to guarantee a win. In fact, if we know the minimal tarpits in \mathcal{Q}_n then we know exactly which pairs (\mathcal{W}, n) Player 2 wins on. For $n \in \mathbb{N}$, let \mathcal{T}_n be the set of minimal tarpits in \mathcal{Q}_n .

Lemma 2.1. Player 2 wins the (W, n)-game if and only if $W \cap T \neq \emptyset$ for every $T \in \mathcal{T}_n$.

Proof. If there is $T \in \mathcal{T}_n$ for which $\mathcal{W} \cap T = \emptyset$, then Player 1 wins by definition. For the other direction, suppose $\mathcal{W} \cap T \neq \emptyset$ for every $T \in \mathcal{T}_n$. Then Player 2 should play by the strategy: choose $x \in \{A, B, C\}$ and $p \in \mathcal{P}_x$ such that, after modification, w is the word seen least recently (with words that have never been seen being top choice, breaking ties arbitrarily). Suppose there is a game where Player 2 plays by this strategy, but Player 1 wins. Say the sequence of words Player 1 encounters at the start of his turns is w^1, w^2, w^3, \ldots Since $|Q_n|$ is finite, there is k such that each word appearing in $w^k, w^{k+1}, w^{k+2}, \ldots$ appears infinitely many times. Let $S = \{w^k, w^{k+1}, w^{k+2}, \ldots\}$. Going out far enough in the sequence, the words

in S have been seen more recently than any other word in Q_n . So, by Player 2's strategy, he would escape S if he could. Since each word in S is encountered infinitely many times, Player 2 has the opportunity to escape S from any word in S. That means that S must be a tarpit. But, $S \cap W = \emptyset$ since Player 2 does not win and hence S contains a minimal tarpit disjoint from W, contradicting our assumption.

The strategy for Player 2 in the proof of Lemma 2.1 has the interesting property that it is a winning strategy whenever a winning strategy exists.

3 Transversal hypergraphs

A transversal of \mathcal{T}_n is a subset S of \mathcal{Q}_n such that $S \cap T \neq \emptyset$ for all $T \in \mathcal{T}_n$. Let \mathcal{H}_n be the hypergraph with vertex set \mathcal{Q}_n and edge set the minimal transversals of \mathcal{T}_n . As an immediate consequence of Lemma 2.1, we have the following.

Lemma 3.1. Player 2 wins the (W, n)-game if and only if W contains an edge of \mathcal{H}_n .

Conjecture 3.2. If $n \in \mathbb{N}$, then \mathcal{H}_n is k-uniform for some k.