Epidemic Modeling and Simulations

Madhab Barman Visiting Researcher @ FOREML Lab madhabbrmn@gmail.com

Under the Supervision of Dr. Tanujit Chakraborty
Sorbonne University
Abu Dhabi

November 26, 2024

What are infectious diseases?

- Caused by: harmful agents (pathogens) that get into your body.
- Most common causes: viruses, bacteria and other microorganisms.
- Usually spread from person to person, through contaminated food or water and through bug bites.
- Some infectious diseases are minor and some are very serious.

Viruses
common cold, measles, influenza

Credit: Dr. Cynthia Goldsmidth/CDC

Bacteria

coccus, bacillus, vibrio

Credit: The National Academics

Other Microbes

fungi, protozoa, helminths

Credit: Dr. Libero Ajjelo/CDC

Types of infectious diseases

Туре	Descriptions
Virus	• a piece of information (DNA or RNA).
	• no way to reproduce on their own.
	• get inside our cells and use our cells' machinery to make copies of themselves.
	(Common cold, Flu, COVID-19, Stomach flu, Hepatitis, RSV)
Bacteria	• single-celled organisms.
	• all around us, including inside of our body and on our skin.
	• Many bacteria are harmless or even helpful,
	but certain bacteria release toxins that can make you sick.
	(Strep throat, Salmonella, Tuberculosis, Whooping cough (pertussis))
Fungal	• like bacteria, there are many different fungi.
	• live on and in your body.
	•when your fungi get overgrown or when harmful fungi get into your body
	through your mouth, your nose or a cut in your skin, you can get sick.
	(Ringworm (like athlete's foot), Fungal nail infections)
Parasitic sorbonne university abu dhabi	• use the bodies of other organisms to live and reproduce.
	•include worms (helminths) and some single-celled organisms (protozoa).
	(Giardiasis, Toxoplasmosis, Hookworms, Pinworms)

Preventing Spread

- ► Vaccination Programs, Antiviral and Antibiotic Treatments, Public Health Campaigns, Isolation and Quarantine, etc..
- While these interventions are effective in controlling outbreaks, they can become costly during widespread epidemics
- ▶ However, leveraging mathematical modeling allows us to:
 - understand the dynamics
 - early prediction
 - scenario simulations
 - optimizing resources
 - global spread analysis, etc.

Epidemic, Endemic, Pandemic

Epidemic:

- an unexpected increase in the number of disease cases in a specific geographical area.
- Yellow fever, smallpox, measles, and polio

Pandemic:

- a disease's growth is exponential. This means the growth rate skyrockets, and each day cases grow more than the day prior.
- covers a wide area, affecting several countries and populations.

Endemic:

- consistently present but limited to a particular region.
- Malaria is infectious disease that is endemic to Africa.
- Caribbean Dengue is still present due to a failure to eradicate the Aedes aegypti mosquito

Credit: www.shutterstock.com

Modeling Epidemics: Questions?

- ▶ What is the risk of an epidemic to occur?
- ► How long will it last?
- ▶ Are all individuals at risk of becoming infected?
- ► How far will it spread?
- What impact does a particular intervention have on the risk and duration of the epidemic?

Compartmental Model

Difference Equations

$$\begin{cases} A(t+1) = A(t) - \mathsf{Flow} \ \mathsf{A-B} \\ B(t+1) = B(t) + \mathsf{Flow} \ \mathsf{A-B} - \mathsf{Flow} \ \mathsf{B-C} \\ C(t+1) = C(t) + \mathsf{Flow} \ \mathsf{B-C} \end{cases}$$

Differential Equations

$$\begin{cases} A'(t) = -aA \\ B'(t) = aA - bB \end{cases}$$
$$C'(t) = bB$$

- ▶ Introduced by Kermack and McKendrick in 1927²
- ▶ Divides the population into three compartments: S, I and R
- \triangleright S(t) := the number of susceptibles at time t
 - those individuals who are healthy and can be infected
- I(t) := the number of infectives at time t
 - those individuals who are infected and are able to transmit the disease
- ightharpoonup R(t) :=the number of immune at time t
 - those individuals who are immune because have been infected and now have recovered

S
$$\beta$$

$$I$$

$$S'(t) = -(\text{rate out})S$$

$$I'(t) = (\text{rate in})S - (\text{rate out})I$$

$$R'(t) = (\text{rate in})I$$

- (rate out): (infectiousness)× P(contact with infectious person) = $\beta \times \frac{I}{N}$
- Assumption: S + I + R = N = constant
- $\beta := \text{infectiousness}, \ \gamma := \text{recovery rate}$

$$\begin{cases} S'(t) = -\beta \frac{I}{N} S \\ I'(t) = \beta \frac{I}{N} S - \gamma I \\ R'(t) = \gamma I \end{cases}$$

Will there be an outbreak?

$$I'(t) = \beta \frac{I}{N} S - \gamma I$$

An epidemic starts if the number of infected individuals increases.

$$I'(t) > 0$$
$$\beta \frac{I}{N} S - \gamma I > 0$$

▶ at the beginning of an epidemic $S(t) \approx N$,

$$\beta I - \gamma I > 0$$

$$\left(\frac{\beta}{\gamma} - 1\right) \gamma I > 0$$

$$(\mathcal{R}_0 - 1) \gamma I > 0$$

► Where $\mathcal{R}_0 = \frac{\beta}{\gamma}$ is called **basic reproduction number**.

sorbonic For an epidemic to start: $\mathcal{R}_0 > 1$.

Basic reproduction number

Basic reproduction number

Definition

The average number of secondary cases that would be generated by a primary case in a totally susceptible population.

Credit: www.mat.uab.cat/matmat

Values of R_0 of well-known diseases		
Disease	R ₀	
Measles	12-18 ^{[1][2]}	
Chickenpox	10-12 ^[3]	
COVID-19 (Delta variant)	5-9.5 ^[4]	
Polio	5-7 ^[a]	
Whooping cough	5.5 ^[9]	
Smallpox	3.5-6.0 ^[10]	
HIV/AIDS	2-5 ^[11]	
COVID-19 (ancestral strain)	2-3 ^[12]	
Common cold	2-3 ^[13]	
Flu (2009 pandemic strain)	1.6 (1.3-2.0)[14]	
Seasonal flu	1.3 (1.2–1.4)[15]	

Credit: www.wikipedia.org

Diekmann et al, The construction of next-generation matrices for compartmental epidemic models (2009)

Can we prevent the outbreak?

- IDEA! Vaccination!!!
- ▶ What proportion, p, should we vaccinate such that I'(t) < 0

$$I'(t) < 0 \implies \beta \frac{I}{N} S - \gamma I < 0$$

$$\implies \beta \frac{I}{N} S < \gamma I$$

At initially, p portion vaccination of N is pN, thus

$$S_0 \approx N - pN = (1 - p)N$$

Therefore,

$$\begin{split} \beta \frac{I}{N} (1-p) N < \gamma I &\implies \beta (1-p) I < \gamma I \\ &\implies 1-p < \frac{\gamma}{\beta} \\ &\implies 1-p < \frac{1}{\mathcal{R}_0} \\ &\implies p > 1 - \frac{1}{\mathcal{R}_0} \end{split}$$
Orbonne iniversity

Credit: S. Kissler, UCB

(Critical vaccination threshold)

Extensions of the SIR model

We can increase model complexity and realism by:

- adding vital dynamics (birth rate and death rate)
- adding disease states (compartments)
- changing transitions (flows), or
- splitting compartments to account for population heterogeneity

With more compartments

Adding Exposed compartment (E)

► Adding Symptomatic (I) and Asymptomatic (A)

Othres: Quarantine (Q), Disease-related death (D), Hospitalization (H), Vaccination (V), etc.

With vital dynamics and loss of immunity

- $\lambda := \text{natural birth rate}$
- \blacktriangleright $\mu := natural death rate$

 \uparrow := rate of loss of immunity (SIRS model)

Comparison:

With transitions

- Incorporating Delays: Introduce time delays to represent incubation periods or delayed recovery
- Dynamic or Time-Dependent Transition Rates: Allow parameters like β or γ rates to change over time, reflecting interventions (e.g., lockdowns, vaccination campaigns) or seasonal effects.
- Probabilistic or Stochastic Flows: Introduce randomness into to model variability in real-world dynamics:

$$\beta \to \beta + \sigma B'(t),$$

where B describes a Brownian motion, etc.

Introducing Nonlinear Incidence Rates: Replace simple standard bilinear incidence with saturation functions:

$$\frac{\beta SI}{N} \to \frac{\beta SI}{1+\alpha I}.$$

Parameter Estimation

- ▶ With confirmed cases of COVID19-India data⁴ from 31-Jan to 29-March
- lacktriangle Fit with SIR model and estimate the parameters: eta and γ
- python: optimize.curve_fit(fit_odeint, Time, I_data, p0=p0)

Spatial disease spread

- ▶ Consider: S(x,t) := susceptible individuals at time t and space x
- Consider: I(x, t) := infected individuals at time t and space x
- ▶ Consider: R(x,t) := recovered individuals at time t and space x

Classical Method

$$\begin{cases} \frac{\partial S}{\partial t} = -\beta \frac{I}{N} S + \frac{\partial^2 S}{\partial x^2} \\ \frac{\partial I}{\partial t} = \beta \frac{I}{N} S - \gamma I + \frac{\partial^2 I}{\partial x^2} \\ \frac{\partial R}{\partial t} = \gamma I + \frac{\partial^2 R}{\partial x^2} \end{cases}$$

Network-based Method

$$\begin{cases} \frac{\partial S}{\partial t} = -\beta \frac{I}{N} S + \Delta S \\ \frac{\partial I}{\partial t} = \beta \frac{I}{N} S - \gamma I + \Delta I \\ \frac{\partial R}{\partial t} = \gamma I + \Delta R \\ \Delta F(x) = \sum_{y \sim x, y \in \mathbf{V}} \left[F(y) - F(x) \right] \end{cases}$$

In network model, consider $G := \langle V, E \rangle$ be a standard connected undirected finite graph with |V| = n

Reform of the network model

- Let S_i , I_i , R_i at node i and time t
- \triangleright Let N_i is constant population of node i
- ► The Laplacian matrix associated with G: L = A D, where A, D are adjacent matrix and degree matrix, respectively.
- ▶ Then, we can reform the network model⁵ as follows:

$$\begin{cases} \frac{dS_i}{dt} = -\beta \frac{I_i}{N_i} S_i + \sigma \sum_{j=1}^n \mathbf{L}_{ij} S_j, & S_i(0) = S_{i0} \\ \frac{dI_i}{dt} = \beta \frac{I_i}{N_i} S_i - \gamma I_i + \sigma \sum_{j=1}^n \mathbf{L}_{ij} I_j, & I_i(0) = I_{i0} \\ \frac{dR_i}{dt} = \gamma I_i + \sigma \sum_{j=1}^n \mathbf{L}_{ij} R_j, & R_i(0) = R_{i0} \end{cases}$$

where i = 1, 2, ..., n.

Plots

References

Thank You!

Scan for Slide, Python Code, and Data.

