Correlation Analysis (for Categorical Data)

☐ X² (chi-square) test:

observed
$$\chi^{2} = \sum_{i}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$
expected

- □ Null hypothesis: The two distributions are independent
- ☐ The cells that contribute the most to the X² value are those whose actual count is very different from the expected count
 - ☐ The larger the X² value, the more likely the variables are related
- Note: Correlation does not imply causality
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (X1)	200 (X2)	450
Not like science fiction	50 (X3)	1000 (X4)	1050
Sum(col.)	300	1200	1500

- Null hypothesis: The two distributions are independent
 - What does that mean?
 - ☐ The ratio between people who play chess vs not play chess is the same for both groups of like science fiction and not like science fiction
 - □ X1:X2=X3:X4=300:1200
 - X1:X3=X2:X4=450:1050
 - □ X1+X2=450 X3+X4=1050
 - X1+X3=300 X2+X4=1200

	Play chess	Not play chess	Sum (row)	
Like science fiction	250 (90)	200 (360)	450	
Not like science fiction	50 (210)	1000 (840)	1050	
Sum(col.)	300	1200	1500	

How to derive 90? 450/1500 * 300 = 90

□ X² (chi-square) calculation (numbers in parenthesis are expected counts calculated based on the data distribution in the two categories)

We can reject the null hypothesis of independence at a confidence level of 0.001

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

It shows that like_science_fiction and play_chess are correlated in the group

	А	В	С	D	Sum (row)
1					200
0					1000
Sum(col.)	300	300	300	300	1200

- Degree of freedom
 - (#categories_in_variable_A -1)(#categories_in_variable_B -1)
 - number of values that are free to vary

	Play chess	Not play chess	Sum (row)
Like science fiction	250 (90)	200 (360)	450
Not like science fiction	50 (210)	1000 (840)	1050
Sum(col.)	300	1200	1500

$$\chi^2 = \frac{(250 - 90)^2}{90} + \frac{(50 - 210)^2}{210} + \frac{(200 - 360)^2}{360} + \frac{(1000 - 840)^2}{840} = 507.93$$

Degree of freedom =?

We can reject the null hypothesis of independence at a confidence level of 0.001

Values of the Chi-squared distribution

	P										
DF	0.995	0.975	0.20	0.10	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	0.0000393	0.000982	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.550	10.828
2	0.0100	0.0506	3.219	4.605	5.991	7.378	7.824	9.210	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.860	16.924	18.467
5	0.412	0.831	7.289	9.236	11.070	12.833	13.388	15.086	16.750	18.907	20.515
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458

Variance for Single Variable (Numerical Data)

☐ The variance of a random variable *X* provides a measure of how much the value of *X* deviates from the mean or expected value of *X*:

$$\sigma^{2} = \operatorname{var}(X) = E[(X - \mu)^{2}] = \begin{cases} \sum_{x} (x - \mu)^{2} f(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

- where σ^2 is the variance of X, σ is called *standard deviation* μ is the mean, and μ = E[X] is the expected value of X
- ☐ That is, variance is the expected value of the square deviation from the mean
- □ It can also be written as: $\sigma^2 = \text{var}(X) = E[(X \mu)^2] = E[X^2] \mu^2 = E[X^2] [E(X)]^2$
- Sample variance

$$s^{2} = \frac{1}{N} \sum_{i}^{n} (x_{i} - \hat{\mu})^{2}$$

$$s^{2} = \frac{1}{n-1} \sum_{i}^{n} (x_{i} - \hat{\mu})^{2}$$

Covariance for Two Variables

 \square Covariance between two variables X_1 and X_2

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1] E[X_2]$$

where $\mu_1 = E[X_1]$ is the respective mean or **expected value** of X_1 ; similarly for μ_2

 \square Sample covariance between X_1 and X_2 :

$$\hat{\sigma}_{12} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \widehat{\mu_1})(x_{i2} - \widehat{\mu_2})$$

- Positive covariance: If $\sigma_{12} > 0$
- Negative covariance: If $\sigma_{12} < 0$

Covariance for Two Variables

- Independence: If X_1 and X_2 are independent, $\sigma_{12} = 0$ but the reverse is not true
 - Some pairs of random variables may have a covariance 0 but are not independent
 - Only under some additional assumptions (e.g., the data follow multivariate normal distributions) does a covariance of 0 imply independence

Example: Calculation of Covariance

- \square Suppose two stocks X_1 and X_2 have the following values in one week:
 - **(2, 5), (3, 8), (5, 10), (4, 11), (6, 14)**
- Question: If the stocks are affected by the same industry trends, will their prices rise or fall together?
- Covariance formula

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E[X_1 X_2] - \mu_1 \mu_2 = E[X_1 X_2] - E[X_1] E[X_2]$$

- Its computation can be simplified as: $\sigma_{12} = E[X_1X_2] E[X_1]E[X_2]$
 - $E(X_1) = (2 + 3 + 5 + 4 + 6)/5 = 20/5 = 4$
 - $E(X_2) = (5 + 8 + 10 + 11 + 14) / 5 = 48 / 5 = 9.6$
 - $\sigma_{12} = (2 \times 5 + 3 \times 8 + 5 \times 10 + 4 \times 11 + 6 \times 14)/5 4 \times 9.6 = 4$
- □ Thus, X_1 and X_2 rise together since $\sigma_{12} > 0$

Correlation between Two Numerical Variables

 \square Correlation between two variables X_1 and X_2 is the standard covariance, obtained by normalizing the covariance with the standard deviation of each variable

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_{1}\sigma_{2}} = \frac{\sigma_{12}}{\sqrt{\sigma_{1}^{2}\sigma_{2}^{2}}}$$

Sample correlation for two attributes
$$X_1$$
 and X_2 :
$$\hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_1\hat{\sigma}_2} = \frac{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1) \left(x_{i2} - \hat{\mu}_2\right)}{\sqrt{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)^2 \sum_{i=1}^n (x_{i2} - \hat{\mu}_2)^2}}$$
 where n is the number of tuples, μ_1 and μ_2 are the respective means of X_1 and X_2 ,

 σ_1 and σ_2 are the respective standard deviation of X_1 and X_2

- If $\rho_{12} > 0$: A and B are positively correlated (X_1 's values increase as X_2 's)
 - The higher, the stronger correlation
- If ρ_{12} = 0: independent (under the same assumption as discussed in co-variance)
- \square If ρ_{12} < 0: negatively correlated

Visualizing Changes of Correlation Coefficient

- □ Correlation coefficient value range: [-1, 1]
- A set of scatter plots shows sets of points and their correlation coefficients changing from −1 to 1

Covariance Matrix

The variance and covariance information for the two variables X₁ and X₂ can be summarized as 2 X 2 covariance matrix as

$$\Sigma = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^{T}] = E[(\frac{X_{1} - \mu_{1}}{X_{2} - \mu_{2}})(X_{1} - \mu_{1} \quad X_{2} - \mu_{2})]$$

$$= \begin{pmatrix} E[(X_{1} - \mu_{1})(X_{1} - \mu_{1})] & E[(X_{1} - \mu_{1})(X_{2} - \mu_{2})] \\ E[(X_{2} - \mu_{2})(X_{1} - \mu_{1})] & E[(X_{2} - \mu_{2})(X_{2} - \mu_{2})] \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{1}^{2} & \sigma_{12} \\ \sigma_{21} & \sigma_{2}^{2} \end{pmatrix}$$

Generalizing it to d dimensions, we have,

$$D = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ x_{d1} & x_{d2} & \cdots & x_{dd} \end{pmatrix} \quad \mathbf{\Sigma} = E[(\mathbf{X} - \mu)(\mathbf{X} - \mu)^T] = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{pmatrix}$$

Graphic Displays of Basic Statistical Descriptions

- Boxplot: graphic display of five-number summary
- ☐ **Histogram**: x-axis are values, y-axis repres. frequencies
- **Quantile plot**: each value x_i is paired with f_i indicating that approximately 100 f_i % of data are $\leq x_i$
- Quantile-quantile (q-q) plot: graphs the quantiles of one univariant distribution against the corresponding quantiles of another
- Scatter plot: each pair of values is a pair of coordinates and plotted as points in the plane

Measuring the Dispersion of Data: Quartiles & Boxplots

- □ Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
- □ Inter-quartile range: $IQR = Q_3 Q_1$
- \square Five number summary: min, Q_1 , median, Q_3 , max
- Boxplot: Data is represented with a box

 - \square Median (Q₂) is marked by a line within the box
 - Whiskers: two lines outside the box extended to Minimum and Maximum
 - Outliers: points beyond a specified outlier threshold, plotted individually
 - □ Outlier: usually, a value higher/lower than 1.5 x IQR

Histogram Analysis

- ☐ Histogram: Graph display of tabulated frequencies, shown as bars
- Differences between histograms and bar charts
 - Histograms are used to show distributions of variables while bar charts are used to compare variables
 - Histograms plot binned quantitative data while bar charts plot categorical data
 - Bars can be reordered in bar charts but not in histograms
 - □ Differs from a bar chart in that it is the area of the bar that denotes the value, not the height as in bar charts, a crucial distinction when the categories are not of uniform width

Bar chart

Histograms Often Tell More than Boxplots

- The two histograms shown in the left may have the same boxplot representation
 - □ The same values for: min, Q1, median, Q3, max
- But they have rather different data distributions

Quantile Plot

- Displays all of the data (allowing the user to assess both the overall behavior and unusual occurrences)
- Plots quantile information
 - For a data x_i data sorted in increasing order, f_i indicates that approximately 100 f_i % of the data are below or equal to the value x_i

Quantile-Quantile (Q-Q) Plot

- Graphs the quantiles of one univariate distribution against the corresponding quantiles of another
- □ View: Is there is a shift in going from one distribution to another?
- Example shows unit price of items sold at Branch 1 vs. Branch 2 for each quantile.
 Unit prices of items sold at Branch 1 tend to be lower than those at Branch 2

Scatter plot

- Provides a first look at bivariate data to see clusters of points, outliers, etc.
- Each pair of values is treated as a pair of coordinates and plotted as points in the plane

Positively and Negatively Correlated Data

Uncorrelated Data

