Rambat Ralat dan Analisis Dimensi

B-Bolt Fisika — SMA Negeri 3 Malang

1. Sebuah kuantitas X didefinisikan oleh variabel-variabel a, b, c, dan d sebagai

$$X = \frac{a^4 \cdot \sqrt[3]{b^2}}{cd^5}$$

Untuk tiap kuantitas, X_0 , a_0 , b_0 , c_0 , dan d_0 adalah nilai benarnya sedangkan ΔX , Δa , Δb , Δc , dan Δd adalah ketidakpastiannya.

(a) [7 poin] Buktikan bahwa

$$\frac{\Delta X}{X_0} = 4\frac{\Delta a}{a_0} + \frac{2}{3} \cdot \frac{\Delta b}{b_0} + \frac{\Delta c}{c_0} + 5\frac{\Delta d}{d_0}$$

- (b) [7 poin] Jika besaran a adalah kecepatan, b adalah volume, serta c dan d adalah massa jenis, tentukan dimensi dari X.
- (c) [4 poin] Jika nilai a dan d dibuat dua kali lipat sedangkan nilai c menjadi empat kali lipat, berapa perbandingan nilai X sekarang dengan nilai X sebelumnya?
- 2. [10 poin] Energi mekanik suatu benda adalah penjumlahan energi kinetik dan energi potensialnya. Misalkan seekor burung ($m=8\pm0,004$ kg) bergerak lurus konstan dengan kecepatan $v=16\pm0,006$ m/s dari ketinggian $h=5\pm0,01$ m. Energi yang bekerja adalah energi kinetik translasi (= $\frac{1}{2}mv^2$) dan energi potensial gravitasi (= mgh). Laporkan besar energi mekanik burung tersebut beserta dengan ketidakpastiannya. (g=10 m/s²)
- 3. Misalkan kecepatan linear dari sebuah bandul yang berayun dinyatakan sebagai fungsi waktu (t):

$$v_{(t)} = a + \sqrt{b}t + \frac{1}{c^2 + d}t^2$$

- (a) [8 poin] Tentukan dimensi dari a, b, c, dan d.
- (b) [2 poin] Tentukan nilai α jika pada saat t = 0, v = 15 m/s.
- 4. Pada 1899, fisikawan Max Planck mengusulkan seperangkat satuan pengukuran yang hanya menggunakan konstanta-konstanta fisika universal sebagai alternatif dari Satuan Internasional (SI). Ambil contoh tiga konstanta berikut: konstanta Planck, $h = 6,63 \cdot 10^{-34}$ Js; konstanta gravitasi universal, $G = 6,67 \cdot 10^{-11}$ m³/(kg s²); dan kecepatan cahaya, $c = 3 \cdot 10^8$ m/s. Ketiga konstanta tersebut dapat dikombinasikan menjadi kuantitas berdimensi massa, panjang, dan waktu (dikenal sebagai massa Planck (m_p) , dst). Dengan analisis dimensi,
 - (a) [9 poin] Tentukan ekspresi/rumus untuk massa Planck (m_p) , panjang Planck (ℓ_p) , dan waktu Planck (t_p) yang menyatakan ketergantungannya terhadap h, c, dan G.
 - (b) [3 poin] Hitung nilai numerik dari ketiga kuantitas tersebut.

Petunjuk

Misalkan kita punya tiga kuantitas (panjang, massa, dll) yang dituliskan sebagai berikut:

$$A = A_0 \pm \Delta A$$
$$B = B_0 \pm \Delta B$$

$$C = C_0 \pm \Delta C$$

di mana A_0 , B_0 , dan C_0 adalah nilai benar sedangkan ΔA , ΔB , dan ΔC adalah ketidakpastian mutlak dari tiap kuantitas tersebut. Maka,

- Jika $C = A \pm B$ maka $\Delta C = \Delta A + \Delta B$
- Jika $C = A \times B$ atau $C = A \div B$ maka $\frac{\Delta C}{C_0} = \frac{\Delta A}{A_0} + \frac{\Delta B}{B_0}$

Besaran	Dimensi	Satuan SI
Panjang	L	m
Massa	M	kg
Waktu	T	S
Volume	L^3	m^3
Kecepatan	LT^{-1}	m/s
Percepatan	LT^{-2}	$ m m/s^2$
Gaya	MLT^{-2}	$N = kg \cdot m/s^2$
Energi dan Usaha	ML^2T^{-2}	$J = kg \cdot m^2/s^2$

Solusi