

				Sub	ject	Coc	le: F	KCE	2601
Roll No:									

Printed Page: 1 of 2

BTECH (SEM VI) THEORY EXAMINATION 2021-22 DESIGN OF CONCRETE STRUCTURES

Time: 3 Hours Total Marks: 100

Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly. IS 456:2000 ALLOWED

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)				
Q1(a)	What are the	e disadvantages of R.C.C. structures?		1			
Q1(b)	Write the da	ata required for Design mix concrete.		1			
Q1(c)	Draw crack pattern in simply supported beams.						
Q1(d)	Where bond stress developed in a steel bar and concrete?						
Q1(e)	Draw the neat sketch of reinforcement in one way slab.						
Q1(f)	Define landing and riser.						
Q1(g)	With neat sketch define axially loaded column.						
Q1(h)	Why all colu	umns shall be designed for minimum eccentricity?		4			
Q1(i)	Write the pu	urpose of foundation in a structure?		5			
Q1(j)	Which cases	s retaining walls constructed?		5			

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)					
Q2(a)	Find the n	noment of resistance of a R.C.C. beam 300 mm wide	and 500 mmm	1				
	effective of	lepth is required is reinforced with 3 bars of 16 mm.	. Use M20 concrete					
	and Fe415 steel. By Working stress method.							
Q2(b)	(b) An R.C.C beam 200 mm x 400 mm effective carries a uniformly distribute load of							
	70 kN/m o	over a clear span of 6m. The beam is reinforced with	1% steel on tension					
	side comment on the shear design of the beam. Using m20 concrete and load factor							
	=1.5							
Q2(c)	Write the	design steps of one way slab.		3				
Q2(d)	Classify tl	ne columns for material of construction. Why R.C.C.	column are used	4				
	instead of	plain cement concert?						
Q2(e)	A brick m	asonry wall 230 mm thick carries a load of 370 kN/r	n incusive of its own	5				
	weight . D	Design the footing of the wall, take bearing capacity	of soil as 150 kN/m ² at					
	1 m depth	. Use M20 concrete. For strip footing.						

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)		
Q3(a)	A simply supported R.C.C. beam 250 mm wide and 450 mm deep (effective) is				
	reinforced with 4-18 mm diameter bars. Design shear reinforcement if M20 grade of				
	concrete and Fe415 steel is used and beam is subjected to a shear force of 150 kN at				
	service loa	ad.			
Q3(b)	Write the	design steps of simply supported beam . check all co	dal regirements.	1	

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)		
Q4(a)	Write the	design procedure of RCC beam subjected to equival	ent shear force and	2	
	equivalent bending moment.				
	An RCC beam 250 mm x 500 mm has a clear span of 5.5 m. The beam has 2-20			2	
	mm dia bars going on supports, Factored shear force is 140 kN. Check for				
	developm	ent length if Fe415 and M20 grade of concrete is use	ed. Take effective		
	cover 30 1	nm.			

	Printed Page: 2 of 2												
				Subject Code: KCE601									
Roll No:													

BTECH (SEM VI) THEORY EXAMINATION 2021-22 DESIGN OF CONCRETE STRUCTURES

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)		
		simply supported roof slab for a room 7.5 m x 3.5 m		3	
	is carrying an imposed load of 5 kN/m ² . Use M20 Concrete and Fe415 steel. And				
	also check for deflection				
Q5(b)	Calculate the long term deflection of a simply supported beam 300 mm x 600 mm				
	spanning of	over 5 m. It is reinforced with 4 bars of 20 mm dian	neter on tensile side. It		
	is subjected to an imposed service load of 20 kN/m including its self. The effective				
	cover to tension steel is mm. Use M 20 and Fe415 . $I_{eff} = 3.6187 \times 10^9 \text{ mm}^4$,				
	$\Delta e = 2.011$				

SECTION-C		Attempt ANY ONE following Question	Marks (1X10=10)		
Q6(a)	Design a s	short RCC column to carry an axial load of 160 kN.	It is 4 m long,	4	
	effectively held in position and restrained against rotation at both ends. Use M20				
	concrete and Fe415 steel. Show the reinforcement detail.				
Q6(b)	Find the u	niform depth of rectangular footing of uniform thick	ness for an axially	5	
	loaded col	lumn of size 300 mm x 600 mm load on column is 1	150 kN. Safe bearing		
	capacity o	of the soil is 200 kiN/m^2 . Use M20 concrete and Fe4	15 steel. (i) By one		
	way shear	criteria (ii) By B.M. criteria.			

SECTION-C		Attempt ANY ONE following Question	Marks (1 X10=10)		
Q7(a)	With neat	sketch explain the deflected shape of a cantilever re	etaining wall under	5	
	loading for Stem, Heel slab, Toe slab.				
Q7(b)	Check for stability condition of cantilever retaining wall to retain horizontal				
	earthen embankment of height 4 m above the ground level. The earthen backfill is				
		lensity of 18 Kn/m^3 and angle of repose is 30^0 . The s			
	of soil is 180 kN/m ² . The coefficient of friction between soil and concrete is 0.45.				
	Use M20	and Fe415.			