

Data Sheet

CN700 North Bridge

with Integrated UniChrome Pro 3D/2D Graphics Controller

Revision 1.10 October 9, 2006

VIA TECHNOLOGIES, INC.

Copyright Notice:

Copyright © 2005-2006 VIA Technologies Incorporated. All Rights Reserved. No part of this document may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise without the prior written permission of VIA Technologies Incorporated. The material in this document is for information only and is subject to change without notice. VIA Technologies Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Copyright © 2005-2006 S3 Graphics Incorporated. All rights reserved. If you have received this document from S3 Graphics Incorporated in electronic form, you are permitted to make the following copies for business use related to products of S3 Graphics Incorporated: one copy onto your computer for the purpose of on-line viewing, and one printed copy. With respect to all documents, whether received in hard copy or electronic form, other use, copying or storage, in whole or in part, by any means electronic, mechanical, photocopying or otherwise, is not permitted without the prior written consent of S3 Graphics Incorporated. The material in this document is for information only and is subject to change without notice. S3 Graphics Incorporated reserves the right to make changes in the product design without reservation and without notice to its users.

Trademark Notices:

VT8237R Plus, VT8251 Version CD/CE and CN700 may only be used to identify products of VIA Technologies.

Windows XP™. Windows 2000™. Windows ME™, Windows 98™ and Plug and Play™ are registered trademarks of Microsoft Corporation. AGP™ is a trademark of the AGP Implementors Forum.

PCI™ is a registered trademark of the PCI Special Interest Group.

VESA™ is a trademark of the Video Electronics Standards Association.

I²C[™] is a trademark of Philips Electronics.

All trademarks are the properties of their respective owners.

Disclaimer Notice:

No license is granted, implied or otherwise, under any patent or patent rights of VIA Technologies or S3 Graphics. VIA Technologies and S3 Graphics make no warranties, implied or otherwise, in regard to this document and to the products described in this document. The information provided by this document is believed to be accurate and reliable as of the publication date of this document. However, VIA Technologies and S3 Graphics assume no responsibility for any errors in this document. Furthermore, VIA Technologies and S3 Graphics assume no responsibility for the use or misuse of the information in this document and for any patent infringements that may arise from the use of this document. The information and product specifications within this document are subject to change at any time, without notice and without obligation to notify any person of such change.

Offices:

VIA Technologies Incorporated Taiwan Office: 1st Floor, No. 531 Chung-Cheng Road, Hsin-Tien Taipei, Taiwan ROC Tel: (886-2) 2218-5452

Fax: (886-2) 2218-5453

Home page: http://www.via.com.tw

VIA Technologies Incorporated USA Office: 940 Mission Court Fremont, CA 94539 USA

Tel: (510) 683-3300

Fax: (510) 683-3301 or (510) 687-4654

Home Page: http://www.viatech.com

S3 Graphics Incorporated **USA Office: 1045 Mission Court** Fremont, CA 94539

USA

Tel: (510) 687-4900 Fax: (510) 687-4901

Home Page: http://www.s3graphics.com

REVISION HISTORY

Document Release	Date	Revision	Initials
1.0	7/28/05	Initial release	JW
1.01	8/1/05	Updated strapping table	JW
1.02	8/24/05	Updated pin lists and ball diagram	JW
		Updated system block diagram	
		Updated ATX layout diagram	
		Updated strap table	
		Updated product name	
		Updated South Bridge name	
		Added AGP 3.5 support	
1.03	8/31/05	Updated FSB information	JW
1.04	9/22/05	Updated MEMDET pin description	JW
1.05	9/29/05	Updated processor support information	JW
		Updated system block diagram	
1.06	10/12/05		JW
1.07	9/28/06	Removed VT8235M and VT8237R information	JW
		Removed FSB 800/533 from product descriptions	
		Removed 1024 MB from DDR and DDR2 descriptions	
1.08	9/29/06	Updated CRT max supported resolution	JW
1.09	10/2/06	Removed 800 MHz from Electrical Specifications	JW
		Changed VT1631 to VT1636 and VT1632 to VT1632A.	
		Removed VT1623 description.	
1.10	10/9/06	Updated display section descriptions according to the system block diagram.	JW
		Removed 1623M and 1622AM description	
		Revised "VT8251" to "VT8251 Version CD / CE"	
		Revised strap pin table South Bridge names	
		Updated mechanical drawings	
		Removed pin list ordered by pin number	

This page is intentionally left blank.

TABLE OF CONTENTS

REVISION HISTORY	II
TABLE OF CONTENTS	IV
LIST OF FIGURES	VI
LIST OF TABLES	VII
PRODUCT FEATURES	1
CN700 SYSTEM OVERVIEW	6
CN700 OVERVIEW	6
System Power Management	7
3D GRAPHICS ENGINE	7
2D GRAPHICS ENGINE	7
MPEG VIDEO PLAYBACK	7
LCD, DVI MONITOR AND TV OUTPUT DISPLAY SUPPORT	7
HIGH SCREEN RESOLUTION DISPLAY SUPPORT	8
PINOUT AND PINLIST	0
PIN DESCRIPTIONS	
CPU Interface Pin Descriptions	
DDR SDRAM Memory Controller Pin Descriptions	
Accelerated Graphics Port Pin Descriptions V-Link Pin Descriptions	
CRT and Serial Bus Pin Descriptions	
Dedicated Digital Video Port 0 (DVP0) Pin Descriptions	
AGP-Multiplexed Digital Video Port 0 (GDVP0) Pin Descriptions	
AGP-Multiplexed Digital Video Port 1 (GDVP1) Signal Descriptions	
AGP-Multiplexed Flat Panel Display Port (FPDP) Pin Descriptions	
Clock, Reset, Power Control, GPIO, Interrupt and Test Pin Descriptions	
Compensation and Reference Voltage Pin Descriptions	
Power Pin Descriptions	
Strap Pin Descriptions	27
REGISTERS OVERVIEW	28
ABBREVIATION	28
REGISTER DESCRIPTIONS	29
I/O PORTS	29
PCI CONFIGURATION SPACE I/O	29
DEVICE 0 FUNCTION 0 (D0F0): AGP CONTROL	30
Header Registers (0-3Fh)	30
AGP Drive Control (40-49h)	33
Miscellaneous Control (4A-4Fh)	
AGP Extended Power Management Control (50-57h)	
AGP 5.0 Configuration (80-AFh)	
AGP Enhanced Control (B0-FFh)	
DEVICE 0 FUNCTION 1 (D0F1): ERROR REPORTING	
Header Registers (0-3Fh)	
V-Link Error Report (50-5Fh)	43

Host Bus Error Report (60-6Fh)	
AGP / PCI2 Non Standard Error Reporting (E0-FFh)	
· · · ·	
Header Registers (0-3Fh)	
Host Interface DRDY# Timing Control (60-6Fh)	
Host AGTL+ I/O Circuit (70-7Fh)	
DEVICE 0 FUNCTION 3 (D0F3): DRAM BUS CONTROL	
Header Registers (0–3Fh)	
DRAM Rank (Row) Ending Address (40–4Fh)	
MA Map / Command Rate (50–53h)	
Physical-to-Virtual Rank Mapping (54–57h)	
Virtual Rank Interleave Address Select / Enable (58–5Fh)	
DRAM Timing (60–64h)	59
DRAM Queue / Arbitration (65–67h)	
DRAM Control (68–69h)	
Refresh Control (6A-6Bh)	
DDR SDRAM Control (6C-6Fh)	
DRAM Signal Timing Control (70–7Fh)	
Read-Only Control (7C-7Fh)	
Shadow RAM Control (80–83h)	
DRAM Clocking Control (90-9F)	
UMA Registers (A0–A5h)	
GMINT and AGPCINT Registers (B0–B8h)	
DDR2 – I/O Pad Control (D0–D3h)	
DDR2 - ODT Control (D4–D7h)	72
DRAM Driving Control(E0-EFh)	74
DEVICE 0 FUNCTION 4 (D0F4): POWER MANAGEMENT CONTROL	76
Header Registers (0-3Fh)	76
Power Management Control (A0-EFh)	76
DEVICE 0 FUNCTION 7 (D0F7): V-LINK NORTH BRIDGE AND SOUTH BRIDGE CONTROL	81
Header Registers (0-3Fh)	81
V-Link Control Interface (40–5Fh)	81
Host-PCI Bridge Control (70-7Fh)	
GART Operation (80-B3h)	
V-Link North Bridge Driving Control (B4-B7h)	90
V-Link South Bridge Driving Control (B8-BBh)	
DRAM Above 4G Support (E4-EFh)	
DEVICE 1 FUNCTION 0 (D1F0): PCI TO PCI BRIDGE	
Header Registers (0-3Fh)	
Second PCI Bus Control (40-6Fh)Power Management Capability (70-77h)	
AGP 3.0 Configuration (80-A3h)	
AGP 4X / AGP 8X Compensation Circuits (B0-B9h)	
Miscellaneous Control (BA-BFh)	
ELECTRICAL SPECIFICATIONS	
Power Characteristics	
DDR	
DDR2	
MECHANICAL SPECIFICATIONS	109

LIST OF FIGURES

FIGURE 1.	SYSTEM BLOCK DIAGRAM	. 6
FIGURE 2.	CN700 BALL DIAGRAM (TOP VIEW).	. 9
FIGURE 3.	MECHANICAL SPECIFICATIONS - 567-PIN HSBGA BALL GRID ARRAY PACKAGE WITH HEAT SPREADER)9
FIGURE 4.	LEAD-FREE MECHANICAL SPECIFICATIONS - 567-PIN HSBGA BALL GRID ARRAY PACKAGE WITH HEAT SPREADER 1	10

LIST OF TABLES

Table 1. Supported CRT Resolutions	8
TABLE 2. PIN LIST – LISTED BY PIN NAME	10
TABLE 3. PIN LIST – LISTED BY PIN NAME (CONTINUED)	11
Table 6. Pin List – Power-Related Pins	12
TABLE 7. GRAPHICS APERTURE BASE ADDRESS TABLE	32
Table 8. Aperture Size	39
TABLE 9. DYNAMIC DEFER SNOOP STALL TABLE	45
Table 10. CPU Write Request Policy	
Table 11. Host / DRAM Bandwidth Setting Policy	49
Table 12. Rank MA Map Type Table	
TABLE 13. DRAM BANK ADDRESS TABLE	
Table 14. Rank Interleave Address Table	56
Table 15. CPU-to-SMRAM Cycle Flow	
TABLE 16. PHYSICAL PIN TO DRIVING GROUP MAPPING TABLE	
Table 17. V-Link Bus Timer Operation	
Table 18. Aperture Size	103

CN700 NORTH BRIDGE

400 MHz FSB VIA C7 Processor
Integrated UniChrome Pro 3D / 2D Graphics & Video Controller
Advanced 64-bit DDR2 and DDR400 SDRAM Controller
533 MB/Sec V-Link Interface
External 8x / 4x AGP Bus

PRODUCT FEATURES

Defines Highly Integrated Solutions for Value Embedded PC Designs

- High Performance UMA North Bridge: Integrated VIA C7 North Bridge with 400 MHz FSB support and UniChrome Pro 3D / 2D Graphics & Video Controllers in a single chip
- Advanced 64-bit SDRAM controller supporting DDR2 and DDR400 / 333 / 266 SDRAM
- Combines with VIA VT8237R Plus / VT8251 Version CD/CE V-Link South Bridge for integrated PCI-Express (VT8251 Version CD/CE), 10 / 100 LAN, HD Audio (VT8251 Version CD/CE), ATA133 IDE, LPC, USB 2.0 and Serial ATA (VT8237R Plus / VT8251 Version CD/CE)
- 37.5 x 37.5mm HSBGA package (Ball Grid Array with Heat Spreader) with 567 balls and 1.27 mm ball pitch

High Performance CPU Interface

- Supports 400 MHz FSB VIA C7 processor
- Supports DBI (Dynamic Bus Inversion)
- Deep In-Order command Queue (IOQ)
- Integrated CPU-to-DRAM write buffers and CPU-to-DRAM read prefetch buffers
- Built-in Phase Lock Loop circuitry for optimal skew control within and between clocking regions

• Full Featured Accelerated Graphics Port (AGP) Controller

- AGP v3.5 compliant 8x / 4x transfer modes with Fast Write support
- 1.5V AGP I/O interface
- Pipelined split-transaction long-burst transfers up to 2.1GB/sec
- Supports Side Band Addressing (SBA) mode
- Supports Flush / Fence commands
- Supports DBI (Dynamic Bus Inversion)
- Pseudo-synchronous AGP and CPU interfaces with optimal skew control
- Eight level read request queue
- Four level posted-write request queue
- Thirty-two level (quad word per level) read and write FIFO, separately
- Graphics Address Relocation Table (GART)
 - One level TLB structure
 - Eight page direct map page table
 - LRU replacement scheme

-1-

Advanced High-Performance DDR2 SDRAM Controller

- DDR2 Mode
 - Supports DDR2 533 / 400 memory
 - Supports mixed 64 / 128 / 256 / 512 Mb SDRAM in x8 or x16 configurations
 - Supports CL 2 / 3 / 4 / 5 for DDR2 533 / 400
 - Supports 2 unbuffered double-sided DIMMs (4 banks) and up to 2 GB of physical memory
- DDR Mode
 - Supports DDR400 / 333 / 266 memory types with 2.5V SSTL-2 DRAM interface
 - Supports mixed 64 / 128 / 256 / 512 Mb SDRAM in x8 or x16 configurations
 - Supports CL 2 / 2.5 for DDR266 / 333 and CL 2.5 / 3 for DDR400
 - Supports 2 unbuffered double-sided DIMMs (4 banks) and up to 2 GB of physical memory
- Programmable I/O drive capability for memory address, data and control signals
- DRAM interface pseudo-synchronous with host CPU for optimal memory performance
- Concurrent CPU, AGP, internal graphics controller and V-Link access for minimum memory access latency
- Rank interleave and up to 16-bank page interleave (i.e., 16 pages open simultaneously) based on LRU to effectively reduce memory access latency
- Seamless DRAM command scheduling for maximum DRAM bus utilization (e.g., precharge other banks while accessing the current bank)
- CPU Read-Around-Write capability for non-stalled operation
- Speculative DRAM read before snoop result to reduce PCI master memory read latency
- Supports Burst Read and Write operations with burst length of 4 or 8
- Optional dynamic Clock Enable (CKE) control for DRAM power reduction during normal system state (S0)
- Supports self-refresh and CAS-before-RAS DRAM refresh with staggered RAS timing

• High Bandwidth 533 MB/Sec 8-bit V-Link Host Controller

- Supports 66 MHz, 4x and 8x transfer modes, V-Link interface with 533 MB/sec total bandwidth
- Half duplex transfers with separate command / strobe for 4x 8-bit mode and full duplex for 8x 4-bit mode
- Request / Data split-transaction
- Transaction assurance for V-Link Host-to-Client access eliminates V-Link Host-Client Retry cycles
- Intelligent V-Link transaction protocol to minimize data wait-state and throttle transfer latency to avoid data overflow
- Highly efficient V-Link arbitration with minimum overhead

• Advanced System Power Management Support

- ACPI 2.0 and PCI Bus Power Management 1.1 compliant
- Supports Suspend-to-DRAM (STR) and DRAM self refresh
- Supports dynamic Clock Enable (CKE) control for DRAM power reduction during normal system state (S0)
- Supports SMI, SMM and STPCLK mechanisms
- Low-leakage I/O pads

Integrated Graphics with 2D / 3D / Video Controllers

- Optimized Unified Memory Architecture (UMA)
- Supports 16 / 32 / 64 MB Frame Buffers size
- Graphics engine clocks up to 200 MHz decoupled from memory clock
- Internal AGP 8x performance
- Two 128-bit internal data paths between North Bridge and graphics core for frame buffer and texture /command access
- PCI v2.2 Host Bus compliant
- AGP v3.5 compliant

2D Acceleration Features

- 128-bit 2D graphics engine
- Supports ROP3, 256 operations
- Supports 8bpp, 15/16bpp and 32bpp color depth modes
- BitBLT (Bit Block Transfer) functions including alpha BLTs
- Color expansion, source Color Key and destination Color Key
- Bresenham line drawing / style line function
- Transparency mode
- Window clipping
- Text function

3D Acceleration Features

3D Graphics Processor

- 128-bit 3D graphics engine
- Dual pixel rendering pipes
- Dual texture units
- Floating-point setup engine
- Internal full 32-bit ARGB format for high rendering quality
- 8K Texture Cache

Capability

- Supports ROP2
- Supports various texture formats, including: 16/32 bbp ARGB, 8 bbp Palletized (ARGB), YUV 422/420 and compressed texture (DXTC)
- Texture sizes up to 2048x2048
- High quality texture filter for Nearest, Linear, Bi-linear, Tri-linear and Anisotropic modes
- Flat and Gouraud shading
- Vertex Fog and Fog Table
- Z-Bias, LOD-Bias, Polygon offset, Edge Anti-aliasing and Alpha Blending
- Bump mapping and cubic mapping
- Hardware Back-Face culling
- Specular Lighting

Performance

- Two textures per pass
- Triangle rate up to 4.5 million polygons per second
- Pixel rate up to 400 million pixels per second for 2 textures each
- Texel bilinear fill rate up to 266 million texels per second
- High quality dithering

Video Acceleration Features

High Quality Video Processor

- RGB555, RGB565, RGB8888 and YUV422 video playback formats
- High quality 5-tap horizontal and 5-tap vertical scaler (up or down) for both horizontal and vertical scaling
 (linear interpolation for horizontal and vertical p-scaling and filtering for horizontal and vertical down-scaling)
- Independent graphics and video gamma tables
- 2 sets of Color and Chroma key support
- Color enhancement for contrast, hue, saturation and brightness
- YUV-to-RGB color space conversion
- Bob, Weave, Median-filter and Adaptive de-interlacing modes
- 3:2 / 2:2 pull-down detection
- De-blocking mode support
- Combining of many special effects such as filter, scaling up or down, sub-picture blending, de-interlacing and de-blocking to one pass process
- Tear-free double / triple buffer flipping
- Input video vertical blanking or line interrupt
- Video gamma correction

Video Overlav

- Simultaneous graphics and TV video playback overlay
- Supports video window overlays
- Supports both YUV and RGB format Chroma key
- Supports 16 operations for Color and Chroma key
- Hardware sub-picture blending

MPEG Video Playback

- MPEG-2 hardware VLD (Various Length Decode), iDCT and motion compensation for full speed DVD and MPEG-2 playback at full D1 resolution
- High quality DVD and streaming video playback
- DVD playback auto-flipping
- DVD sub-picture playback overlay

DuoView+TM Capability

- Supports multi-monitor and extended desktop for Windows 98/ME and XP
- Provides two independent display engines, each of which can display completely different information at different resolutions, pixel depths and refresh rates
- Improved display flexibility with simultaneous CRT / DVI, CRT / TV, DVI / TV and other combined operations

Full Software Support

- Microsoft DirectX 7.0, 8.0 and 9.0 compatible
- Supports OpenGLTM
- Drivers for major operating systems and APIs: Windows[®] 9x/ME, Windows 2000, Windows XP, Direct3D[™],
 DirectDraw[™] and DirectShow[™], and OpenGL[™] ICD for Windows 9x/ME and XP
- Windows NT 4.0 Standard VGA driver support

• Extensive Display Support for External Video Output

- A dedicated CRT interface
- A dedicated Digital Video Port supports TV-Out interface
- An AGP-multiplexed 12-bit interface to external DVI transmitter for driving a DVI monitor
- An AGP-multiplexed 12-bit TV-Out interface to TV encoder

CRT Display

- CRT display interface with 24-bit true-color RAMDAC up to 300 MHz pixel rate with gamma correction capability
- Supports CRT resolutions up to 1920x1440

12-bit DVI Transmitter Interface

- 12-bit, 1.5V low-swing, DVO interface for connecting DVI Monitor through DVI transmitter
- 12-bit DDR and clock rate up to 165 MHz
- Built-in digital phase adjuster to fine tune signal timing between clock and data bus

24-bit Flat Panel Display Interface

- Multiplexed with external AGP port pins
- Supports 18/24-bit FPD interface with external LVDS transmitter chip using single or double-data rate transfer
- Supports panel resolutions up to 1600x1200

Dual 12-bit Flat Panel Display Interface

- Alternate operating mode of FPD interface with external LVDS transmitters
- Single or separate sets of clock and sync signals
- Supports panel resolutions up to 1600x1200

TV-Out Interface

12-bit Interface to an external TV encoder for SDTV and HDTV display

Advanced Graphics Power Management Support

- Built-in reference voltage generator and monitor sense circuits
- Automatic panel power sequencing and VESA DPMS (Display Power Management Signaling) CRT power-down
- External I/O signal controlling enabling graphics accelerator into standby / suspend-off state
- Auto clock gating for each engine to achieve power saving
- I²C Serial Bus and DDC Monitor Communications for CRT Plug-and-Play configuration

CN700 SYSTEM OVERVIEW

The CN700 is a high performance, cost-effective and energy efficient UMA North Bridge with integrated UniChrome Pro graphics / video controller used for the implementation of embedded systems based on 400 MHz FSB VIA C7 super-scalar processor.

Figure 1. System Block Diagram

The complete embedded system chipset consists of the CN700 North Bridge and the VT8237R Plus V-Link South Bridge. The CN700 integrates VIA's most advanced system controller with high-performance UniChrome Pro 3D / 2D graphics and video controller, DVI monitor and TV-Out interfaces. The CN700 provides superior performance between the CPU, DRAM, V-Link and internal or external AGP 8x graphics controller with pipelined, burst and concurrent operation. The VT8237R Plus is a highly integrated peripheral controller which includes V-Link-to-PCI / V-Link-to-LPC controllers. It also integrates Serial ATA, Ultra DMA IDE, USB 2.0, 10/100 MB networking MAC, AC'97 and system power management controllers. For applications that require PCI-Express support, VT8251 Version CD/CE could be paired with CN700 for additional supports of two 1-Lane PCI-E ports, High Definition Audio and four Serial ATA 2.0 ports.

CN700 Overview

The CN700 supports 400 MHz FSB VIA C7 processor. The CN700 implements a deep In-Order Queue to improve system performance for multi-threaded software applications. DBI and V4 bus protocol are supported which effectively reduce overall system power consumption.

The AGP controller is AGP v3.5 compliant with up to 2.1GB/second data transfer rate. It supports pseudo-synchronous AGP and CPU interface to maximize system performance. Deep read and write (256 bytes each) FIFO are integrated for optimal bus utilization and minimum data transfer latency.

The CN700 supports 64-bit memory data bus access and up to 2 double-sided DDR2 533 / 400 or DDR 400 / 333 / 266 SDRAM DIMMs for 2 GB maximum physical memory. The DDR DRAM interface allows zero wait-state data transfer bursting between the DRAM and memory controller's data buffers. The different banks of DRAM can be composed of an arbitrary mixture of 64 / 128 / 256 / 512 Mb SDRAM in x 8 or x16 configurations. The DRAM controller can run either synchronous or pseudo-synchronous with the host CPU bus.

The CN700 North Bridge interfaces to the South Bridge through a high speed (up to 533 MB/sec) 8x 66 MHz Data Transfer interconnect bus called V-Link interface. Deep pre-fetch and post-write buffers are included to allow for concurrent CPU and V-Link operation. The combined CN700 North Bridge and VT8237R Plus South Bridge system supports enhanced PCI bus commands such as "Memory-Read-Line", "Memory-Read-Multiple" and "Memory-Write-Invalid" commands to minimize snoop overhead. In addition, advanced features are supported such as CPU write-back forward to PCI master and CPU write-back merged with PCI post-write buffers to minimize PCI master read latency and DRAM utilization. Delay transaction mechanism is also implemented for further improvement of overall system performance.

System Power Management

For sophisticated power management, the CN700 supports dynamic CKE control to minimize DDR SDRAM power consumption during normal system state (S0). A separate suspend power plane is implemented for the memory control logic for Suspend-to-DRAM state. The CN700 graphics controller implements dynamic clock gating for inactive functions to achieve maximum power saving. The system can be switched to standby or suspend states to further reduce power consumption when idle. VESA DPMS (Display Power Management Signaling) CRT power-down is supported. Coupled with the VT8237R Plus South Bridge chip, a complete power conscious PC main board can be implemented with no external glue logic.

3D Graphics Engine

Featuring an integrated 128-bit 3D graphics engine, the CN700 North Bridge utilizes a single cycle architecture that provides high performance along with superior image quality. Several new features enhance the 3D architecture, including single-pass multitexturing, anisotropic filtering, and an 8-bit stencil buffer. The chip also offers the industry's only simultaneous usage of single-pass multitexturing and single-cycle trilinear filtering – enabling stunning image quality without performance loss. Image quality is further enhanced with true 32-bit color rendering throughout the 3D pipeline to produce more vivid and realistic images. The advanced triangle setup engine provides realistic user experiences in games and other interactive 3D applications. The 3D engine is optimized for AGP texturing from system memory.

2D Graphics Engine

The CN700 North Bridge's advanced 128-bit 2D graphics engine delivers high-speed 2D acceleration for productivity applications. The enhanced 2D architecture with direct access frame buffer capability optimizes UMA performance and provides acceleration of all color depths.

MPEG Video Playback

The CN700 North Bridge provides the ideal architecture for high quality MPEG-2 based video applications. For MPEG playback, the integrated video accelerator offloads the CPU by performing the motion compensation tasks, while its enhanced scaling algorithm delivers incredible full-screen video playback.

LCD, DVI Monitor and TV Output Display Support

The CN700 provides three "Digital Video Port" interfaces: FPDP, GDVP1, and DVP0. The Flat Panel Display Port (FPDP) implements a 24-bit / dual 12-bit interface which is designed to drive a Flat Panel Display via an external LVDS transmitter chip (such as the VIA VT1636). The CN700 can be connected to the external LVDS transmitter chip in either 24-bit or dual-12-bit modes. A wide variety of LCD panels are supported including VGA, SVGA, XGA, SXGA+ and up to UXGA-resolution TFT color panels, in either SDR (1 pixel / clock) or DDR (2 pixels / clock) modes. UXGA and higher resolutions require dual-edge data transfer (DDR) mode, which is supported by the VIA VT1636 LVDS transmitter chip.

One 12-bit "Display Port" interface (GDVP1) is provided (through multiplexing with AGP interface) plus a dedicated 12-bit display port interface. Multiplexing display functions with the AGP bus allows embedded systems to support an external AGP connector for future performance upgrade through the external graphics controller. It also allows add-in cards to be designed with an AGP-compatible connector for implementing the display interface logic to reduce cost in the base (CRT-only) configuration. In the value system configurations, the external AGP upgrade capability is not normally required by the system, allowing all the AGP pins to be used for implementing very flexible display functions.

The multiplexed "Display Port" implements a 12-bit DVI transmitter interface and is normally connected to an external DVI transmitter (such as VIA VT1632A) to drive external DVI monitor. The dedicated 12-bit interface may be configured for support of an external TV encoder (such as VIA VT1622A).

The flexible display configurations of the CN700 allows the support of a Flat Panel Display (FPD) using the LVDS interface, DVI monitor using the DVI Panel interface or TV and CRT display simultaneously. Internally the CN700 North Bridge provides two separate display engines, so if two display devices are connected, each can display completely different information at different resolutions, pixel depths and refresh rates. If more than two display devices are connected, the additional displays must have the same resolution, pixel depth and refresh rate as one of the first two. The maximum display resolutions supported for one display device are listed in the table below. If more than one display is implemented (i.e., if both display engines are functioning at the same time), then available memory bandwidth may limit the display resolutions supported on one or both displays. This will be dependent on many factors including primarily clock rates and memory speeds (contact VIA for additional information).

High Screen Resolution Display Support

Resolutions	Resolution	olution Pixel Depths		System Memory Frame Buffer			
Supported	Name	Supported	16 MB	32 MB	64 MB		
640x480 (4:3)	VGA	8 / 16 / 32	<	>	~		
800x600 (4:3)	SVGA	8 / 16 / 32	>	>	~		
1024x768 (4:3)	XGA	8 / 16 / 32	>	~	~		
1280x1024 (5:4)	SXGA	8 / 16 / 32	>	~	~		
1400x1050 (4:3)	SXGA+	8 / 16 / 32	>	~	~		
1600x1200 (4:3)	UXGA, UXGA+	8 / 16 / 32	>	~	~		
1920x1440 (4:3)	_	8 / 16 / 32	>	>	~		

Table 1. Supported CRT Resolutions

PINOUT AND PINLIST

Figure 2. CN700 Ball Diagram (Top View)

Note: Multiplexed signals are marked in gray. See pin lists and pin descriptions for more information.

Table 2. Pin List – Listed by Pin Name

l 	1	II	I		2. PIII LISt –	1		<u> </u>	T=	<u> </u>	I
Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name
B05	AB	A11	DVP0D11	R06	GD15	D02	GSBA6#	A29	HD2#	D22	HDSTB2N#
M29	ADS#	B10	DVPODE	J02	GD16	D03	GSBA7#	J26	HD20#	D23	HDSTB2P#
A05	AG	B09	DVPODET	H03	GD17	C01	GSBSTBF	J29	HD21#	C16	HDSTB3N#
C05	AGP8XDET#	E10	DVPOHS	H01	GD18	C02	GSBSTBS	J25	HD22#	C17	HDSTB3P#
T01	AGPBUSY#	C10	DVP0VS	K04	GD19	M06	GSERR	J27	HD23#	L27	HIT#
A04	AGPCOMPN	F05	ENABLT	R03	GD2	E04	GST0	F28	HD24#	U29	HITM#
A03	AGPCOMPP	E03	ENAVDD	G01	GD20	E03	GST1	G29	HD25#	L29	HLOCK#
B06	AR	E04	ENAVEE	G02	GD21	F05	GST2	G27	HD26#	G25	HRCOMP
AF12	BAO	R03	FP1CLK	K05	GD22	MO4	GSTOP	D29	HD27#	W27	HREQ0#
AJ13	BA1	MO4	FP1CLK#	G03	GD23	K03	GTRDY	E27	HD28#	V28	HREQ1#
M28	BNR#	M06	FP1DE	J06	GD24	B03	GWBF	F27	HD29#	V26	HREQ2#
T29	BPRI#	MO3	FP1DET	K06	GD25	AB27	HA10#	C26	HD3#	W29	HREQ3#
K26	BREQ0#	MO1	FP1HS	J04	GD26	AA27	HA11#	E28	HD30#	V29	HREQ4#
AF21	CKE0	P06	FP1VS	F02	GD27	AC29	HA12#	F29	HD31#	B08	HSYNC
AF23	CKE1	G02	FPCLK	J05	GD28	AB29	HA13#	E23	HD32#	M24	HTRDY#
							1				
AE22	CKE2	B03	FPCLK#	F03	GD29	AB28	HA14#	B24	HD33#	A09	INTA#
AF24	CKE3	L01	FPD00	R04	GD3	AC26	HA15#	C24	HD34#	AF13	MAO
D14	CPURST#	NO4	FPD01	H04	GD30	AD29	HA16#	A24	HD35#	AD15	MA1
AD09	CS0#	N03	FPD02	E01	GD31	T28	HA17#	A23	HD36#	AJ14	MA10
AF08	CS1#	M02	FPD03	R01	GD4	R28	HA18#	B23	HD37#	AF20	MA11
AG07	CS2#	N01	FPD04	N02	GD5	N29	HA19#	A22	HD38#	AE21	MA12
AF07	CS3#	R02	FPD05	P01	GD6	N28	HA20#	C23	HD39#	AD07	MA13
M25	DBSY#	P01	FPD06	R02	GD7	P29	HA21#	C28	HD4#	AJ15	MA2
U27	DEFER#	N02	FPD07	M03	GD8	P27	HA22#	F21	HD40#	AJ16	MA3
C08	DISPCLKI	R01	FPD08	M01	GD9	R27	HA23#	C22	HD41#	AJ17	MA4
C09	DISPCLKO	R04	FPD09	G05	GDBIH	N26	HA24#	E21	HD42#	AF16	MA5
AE05	DMCOMP	P03	FPD10	H06	GDBIL	T26	HA25#	C21	HD43#	AG15	MA6
W03	DNCMD	P04	FPD11	J03	GDEVSEL	P26	HA26#	D20	HD44#	AE18	MA7
V03	DNSTB-	G04	FPD12	D02	GDVP1CLK	R25	HA27#	D21	HD45#	AF17	MA8
V02	DNSTB+	K05	FPD13	D03	GDVP1CLK#	N27	HA28#	F20	HD46#	AE19	MA9
K24	DPWR#	G01	FPD14	B01	GDVP1D00	N25	HA29#	E20	HD47#	AD26	MCLKIA
	DQM0#	G03		C01		Y29	HA3#	B19	HD48#	AE26	
AF28			FPD15		GDVP1D01		1				MCLKO-
AJ27	DQM1#	H01	FPD16	C02	GDVP1D02	R29	HA30#	C19	HD49#	AF26	MCLKO+
AJ23	DQM2#	H03	FPD17	D04	GDVP1D03	T27	HA31#	D28	HD5#	AD28	MD0
AJ19	DQM3#	J02	FPD18	F02	GDVP1D04	U26	HA32#	B20	HD50#	AE27	MD1
AG11	DQM4#	J01	FPD19	D01	GDVP1D05	T25	HA33#	B18	HD51#	AG25	MD10
AH07	DQM5#	R06	FPD20	F03	GDVP1D06	V27	HA4#	C20	HD52#	AJ25	MD11
AJ03	DQM6#	K02	FPD21	J05	GDVP1D07	AA29	HA5#	A20	HD53#	AJ28	MD12
AF01	DQM7#	N05	FPD22	H04	GDVP1D08	Y27	HA6#	C18	HD54#	AH27	MD13
AF29	DQS0#	L03	FPD23	J06	GDVP1D09	Y26	HA7#	B17	HD55#	AH26	MD14
AG26	DQS1#	K04	FPDE	J04	GDVP1D10	AC27	HA8#	B16	HD56#	AJ26	MD15
AH22	DQS2#	F01	FPDET	L06	GDVP1D11	AA28	HA9#	A17	HD57#	AJ24	MD16
AG19	DQS3#	L04	FPHS	A02	GDVP1DE	W28	HADSTB0#	C14	HD58#	AG24	MD17
AH10	DQS4#	J03	FPVS	E01	GDVP1DET	R26	HADSTB1#	C15	HD59#	AJ22	MD18
AG06	DQS5#	N01	GADSTBF0	C03	GDVP1HS	N24	HAPO#	A27	HD6#	AG21	MD19
AH03	DQS6#	G04	GADSTBF1	A01	GDVP1VS	W26	HAP1#	A18	HD60#	AF27	MD2
AE03	DQS7#	NO3	GADSTBS0	L04	GFRAME	W23	HCLK-	B15	HD61#	AH24	MD20
M26	DRDY#	F01	GADSTBS1	C04	GGNT	Y23	HCLK+	B14	HD62#	AG23	MD21
D11	DVP0CLK	M02	GC#BE0	M05	GIRDY	D27	HD0#	A15	HD63#	AG22	MD22
C13	DVP0D00	K01	GC#BE1	P06	GPAR	D26	HD1#	B29	HD7#	AJ21	MD23
				E11	GPO0	D26 D25	HD1# HD10#	A26	HD7# HD8#	AJZ I AH21	
B13	DVP0D01	J01	GC#BE2	l					•		MD24
A13	DVP0D02	L06	GC#BE3	C11	GPOUT	E24	HD11#	B26	HD9#	AJ20	MD25
D13	DVP0D03	R05	GCLK	F04	GRBF	A25	HD12#	C29	HDBIO#	AG18	MD26
E13	DVP0D04	P03	GD0	D05	GREQ	A28	HD13#	H27	HDBI1#	AH18	MD27
D12	DVP0D05	P04	GD1	A01	GSBA0#	D24	HD14#	B21	HDBI2#	AG20	MD28
C12	DVP0D06	NO4	GD10	A02	GSBA1#	C25	HD15#	A21	HDBI3#	AH19	MD29
A12	DVP0D07	L03	GD11	B01	GSBA2#	K28	HD16#	C27	HDSTB0N#	AG28	MD3
B12	DVP0D08	L01	GD12	C03	GSBA3#	K29	HD17#	B27	HDSTB0P#	AJ18	MD30
E12	DVP0D09	N05	GD13	D01	GSBA4#	J28	HD18#	G28	HDSTB1N#	AG17	MD31

Note: Multiplexed signals are marked in gray.

Table 3. Pin List – Listed by Pin Name (continued)

Pin #	Pin Name										
AG12	MD33	AH04	MD48	AE01	MD62	D05	SBDDCCLK	B13	TVD01	W02	UPSTB+
AJ10	MD34	AJ04	MD49	AD02	MD63	C04	SBDDCDAT	A13	TVD02	U03	VBE#
AJ09	MD35	AE29	MD5	AG29	MD7	M05	SBPLCLK	D13	TVD03	V01	VD0
AH12	MD36	AJ02	MD50	AH29	MD8	K01	SBPLDAT	E13	TVD04	U02	VD1
AJ11	MD37	AH01	MD51	AJ29	MD9	AF09	SCAS#	D12	TVD05	Y02	VD2
AG10	MD38	AG04	MD52	AE24	MEMDET	D09	SPCLK1	C12	TVD06	Y03	VD3
AH09	MD39	AF04	MD53	AE09	ODT0	E09	SPCLK2	A12	TVD07	T02	VD4
AD27	MD4	AG03	MD54	AE10	ODT1	D10	SPD1	B12	TVD08	T03	VD5
AG08	MD40	AJ01	MD55	AF06	ODT2	E08	SPD2	E12	TVD09	AA02	VD6
AJ07	MD41	AG01	MD56	AD06	ODT3	AE12	SRAS#	B11	TVD10	AA01	VD7
AJ06	MD42	AF02	MD57	AB02	PWROK	AB03	SUSST#	A11	TVD11	T04	VLCOMPP
AH06	MD43	AD03	MD58	AC01	RESET#	AF11	SWE#	B10	TVDE	80A	VSYNC
AG09	MD44	AD01	MD59	L26	RS0#	AF25	TESTIN#	E10	TVHS	A07	XIN
AJ08	MD45	AG27	MD6	M27	RS1#	D11	TVCLK	C10	TVVS		
AG05	MD46	AG02	MD60	K25	RS2#	A10	TVCLKR	AA03	UPCMD		
AJ05	MD47	AF03	MD61	A06	RSET	C13	TVD00	W01	UPSTB-		

Note: Multiplexed signals are marked in gray.

Table 4. Pin List – Power-Related Pins

Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name						
N06	AGPVREF1	M17	GND	T17	GND	AE25	GND	K11	VCC15	W12	VCC18MEM
G06	AGPVREF2	M18	GND	T18	GND	AE28	GND	K12	VCC15	W13	VCC18MEM
A14	GND	N12	GND	U01	GND	AF05	GND	K13	VCC15	W14	VCC18MEM
A16	GND	N13	GND	U04	GND	AH02	GND	K15	VCC15	W15	VCC18MEM
A19	GND	N14	GND	U12	GND	AH05	GND	K17	VCC15	W16	VCC18MEM
B02	GND	N15	GND	U13	GND	80HA	GND	K19	VCC15	W17	VCC18MEM
B04	GND	N16	GND	U14	GND	AH11	GND	K20	VCC15	W18	VCC18MEM
B22	GND	N17	GND	U15	GND	AH14	GND	L10	VCC15	W19	VCC18MEM
B25	GND	N18	GND	U16	GND	AH17	GND	M20	VCC15	L12	VCC33GFX
B28	GND	P02	GND	U17	GND	AH20	GND	N10	VCC15	L13	VCC33GFX
D15	GND	P05	GND	U18	GND	AH23	GND	P20	VCC15	L14	VCC33GFX
D16	GND	P12	GND	U25	GND	AH25	GND	R10	VCC15	E07	VCCA33DAC1
D19	GND	P13	GND	U28	GND	AH28	GND	T20	VCC15	D07	VCCA33DAC2
E02	GND	P14	GND	V12	GND	E06	GNDADAC1	V20	VCC15	AA25	VCCA33HCK
E05	GND	P15	GND	V13	GND	D06	GNDADAC2	W10	VCC15	AD25	VCCA33MCK
E22	GND	P16	GND	V14	GND	AA26	GNDAHCK	Y10	VCC15	D08	VCCA33PLL1
E25	GND	P17	GND	V15	GND	AD24	GNDAMCK	Y12	VCC15	C07	VCCA33PLL2
E26	GND	P18	GND	V16	GND	B07	GNDAPLL1	Y14	VCC15	V04	VLVREF
E29	GND	P25	GND	V17	GND	C06	GNDAPLL2	Y16	VCC15	AB01	VSUS15
H02	GND	P28	GND	V18	GND	L24	GTLVREF	Y18	VCC15	AC25	VSUS15
H05	GND	R12	GND	Y01	GND	R24	HAVREF0	Y20	VCC15	L15	VTT
H26	GND	R13	GND	Y25	GND	V24	HAVREF1	M11	VCC15AGP	L16	VTT
H29	GND	R14	GND	Y28	GND	G26	HCOMPVREF	N11	VCC15AGP	L17	VTT
L02	GND	R15	GND	AC28	GND	F22	HDVREF0	P11	VCC15AGP	L18	VTT
L05	GND	R16	GND	AE02	GND	G24	HDVREF1	R11	VCC15AGP	L19	VTT
L25	GND	R17	GND	AE08	GND	F19	HDVREF2	T11	VCC15AGP	M19	VTT
L28	GND	R18	GND	AE11	GND	F16	HDVREF3	U10	VCC15VL	N19	VTT
M12	GND	T12	GND	AE14	GND	AD23	MEMVREF1	U11	VCC15VL	P19	VTT
M13	GND	T13	GND	AE16	GND	AD17	MEMVREF2	V10	VCC15VL	R19	VTT
M14	GND	T14	GND	AE17	GND	AD11	MEMVREF3	V11	VCC18MEM	T19	VTT
M15	GND	T15	GND	AE20	GND	AD08	MEMVREF4	V19	VCC18MEM	U19	VTT
M16	GND	T16	GND	AE23	GND	K10	VCC15	W11	VCC18MEM		

PIN DESCRIPTIONS

CPU Interface Pin Descriptions

	CPU Interface								
Signal Name	Pin #	I/O	Signal Description						
HA[33:3]#	(see pin lists)	IO	Host Data Address. (V4 Host Protocol) Host data addresses are transferred in 4X rate. On beat 0 and 2, address bits HA[30, 16:3]# are transferred on signal balls HA[30, 16:3]#. On beat 1 and 3, address bits HA[31, HAP, 29:17]# are transferred on signal balls HA[30, 16:3]#.						
HADSTB0P# (muxed with HADSTB0#)	W28	Ю	Host Address Strobe. (V4 Host Protocol) HADSTB0P# / HADSTB0N# (ball locations: W28, W26) are differential synchronous strobes used to transfer HA[31:3]# and HREQ[4:0]# at a 4x						
HADSTB0N# (muxed with HAP1#)	W26		transfer rate.						
HADSTB1#	R26								
HAP[1:0]#	W26, N24	Ю	Host Address Parity.						
HD[63:0]#	(see pin lists)	IO	Host CPU Data. These signals are connected to the CPU data bus.						
HDBI[3:0]#	A21, B21, H27,	IO	Host CPU Dynamic Bus Inversion. Driven along with HD[63:0]# to indicate if the						
	C29		associated signals are inverted or not. Used to limit the number of simultaneously						
			switching signals to 8 for the associated 16-bit data pin group (HDBI3# for						
			HD[63:48]#, HDBI2# for HD[47:32]#, HDBI1# for HD[31:16]#, and HDBI0# for						
			HD[15:0]#). HDBIn# is asserted such that the number of data bits driven low for the corresponding group does not exceed 8.						
HDSTB[3:0]P#	, , ,	IO	Host CPU Differential Data Strobes. Source synchronous strobes used to transfer						
	B27		HD[63:0]# and HDBI[3:0]# at a 4x transfer rate. HDSTB3P# / HDSTB3N# are the						
	G1 (DAA G==		strobes for HD[63:48]# & HDBI3#; HDSTB2P# / HDSTB2N# are the strobes for						
HDSTB[3:0]N#	C16, D22, G28, C27		HD[47:32]# & HDBI2#; HDSTB1P# / HDSTB1N# are the strobes for HD[31:16]# & HDBI1#; and HDSTB0P# / HDSTB0N# are the strobes for HD[15:0]# & HDBI0#.						

	CPU Interface (continued)							
ADS#	M29	IO	Address Strobe. The CPU asserts ADS# in T1 of the CPU bus cycle.					
DBSY#	M25	IO	Data Bus Busy . Used by the data bus owner to hold the data bus for transfers requiring more than one cycle.					
DRDY#	M26	Ю	Data Ready. Asserted for each cycle that data is transferred.					
HIT#	L27	IO	Hit . Indicates that a caching agent holds an unmodified version of the requested line. Also driven in conjunction with HITM# by the target to extend the snoop window.					
HITM#	U29	I	Hit Modified . Asserted by the CPU to indicate that the address is modified in the L1 cache and needs to be written back.					
HLOCK#	L29	I	Host Lock . All CPU cycles sampled with the assertion of HLOCK# and ADS# until the negation of HLOCK# must be atomic.					
HREQ[4:0]#	V29, W29,	Ю	Host Request Command.					
	V26, V28, W27		(V4 Host Protocol) Host request commands are transferred in 4X rate. On beat 0 and					
			2, host request bits HREQ[2:0]# on transferred on signal balls HREQ[2:0]#. On beat					
			1 and 3, host request bits HREQ[4:3]# are transferred on signal balls HREQ[1:0]#.					
HTRDY#	M24	IO	Host Target Ready . Indicates that the target of the processor transaction is able to enter the data transfer phase.					

Note: Clocking of the CPU interface is performed with HCLK+ and HCLK- (see clock pin description group).

Note: Internal pullup resistors are provided on all AGTL+ interface pins. If the CPU does not have internal pullups, these North

Bridge internal pullups may be enabled to allow the interface to meet AGTL+ bus interface specs (see VD3 strap).

Note: I/O pads for the above pins are powered by VTT. Input voltage levels are referenced to HAVREF, HDVREF &

GTLVREF.

	CPU Interface (continued)										
Signal Name	Pin#	I/O	Signal Desc	cription							
RS[2:0]#	K25, M27, L26	IO	Response S	ignals. Indicates the t	type of respons	e per the table below:					
			RS[2:0]#	Response type	RS[2:0]#	Response type					
			000	Idle State	100	Hard Failure					
			001	Retry Response	101	Normal Without Data					
			010	Defer Response	110	Implicit Writeback					
			011	Reserved	111	Normal With Data					
DPWR#	K24	О	Data Bus I	Data Bus Power Reduction. Request to reduce power on the mobile CPU data bus							
			input buffer	. Connect to mobile C	CPU if used.						
BREQ0#	K26	О	Bus Reques	st 0. Bus request outp	ut to CPU.						
BPRI#	T29	Ю	Priority Ag	gent Bus Request.	The owner of t	this signal will always be the next bus					
			owner. Th	is signal has priority	over symmetr	ic bus requests and causes the current					
			symmetric	owner to stop issuir	ng new transa	ctions unless the HLOCK# signal is					
			asserted. Tl	he CN700 drives this s	signal to gain c	ontrol of the processor bus.					
BNR#	M28	IO				nt request bus owner from issuing new					
			requests. T	his signal is used to dy	namically con	trol the processor bus pipeline depth.					
DEFER#	U27	IO				policy to optimize system performance.					
			The CN700	The CN700 also uses the DEFER# signal to indicate a processor retry response.							
CPURST#	D14	О	CPU Reset.	. Reset output to CPU	. External pul	lup and filter capacitor to ground					
			should be pr	rovided per CPU manı	ufacturer's reco	ommendations.					

Note: I/O pads for the above pins are powered by VTT. Input voltage levels are referenced to HAVREF, HDVREF, & GTLVREF.

The pinouts were defined assuming the ATX PCB layout model shown below (and general pin layout shown) as a guide for PCB component placement. Other PCB layouts (AT, LPX, and NLX) were also considered and can typically follow the same general component placement.

DDR SDRAM Memory Controller Pin Descriptions

	DRAM Interface									
Signal Name	Pin #	I/O	Signal Description							
MD[63:0]	(see pin lists)	IO	Memory Data. These signals are connected to the DRAM data bus.							
MA[13:0]	(see pin lists)	О	Memory Address. DRAM address lines.							
SRAS#, SCAS#, SWE#	AE12, AF9, AF11	О	Row Address, Column Address and Write Enable Command Indicator Set.							
CS[3:0]#	AF7, AG7, AF8, AD9	О	Chip Select. Chip select of each bank.							
DQM[7:0]#	AF1, AJ3, AH7, AG11, AJ19, AJ23, AJ27, AF28	О	DDR Data Mask. Data mask of each byte lane.							
DQS[7:0]#	AE3, AH3, AG06, AH10, AG19, AH22, AG26, AF29	Ю	DDR Data Strobe. Data strobe of each byte.							
CKE[3:0]	AF24, AE22, AF23, AF21	O	Clock Enables. Clock enables for each DRAM bank for powering down the SDRAM or clock control for reducing power usage and for reducing heat / temperature in high-speed memory systems.							
ODT[3:0]	AD6, AF6, AE10, AE9	О	On Die Termination. Enables termination resistance internal to the DDR2 SDRAM							
MEMDET	AE24	I	Memory Detect: Strap low for DDR and high for DDR2.							
BA[1:0]	AF12, AJ13	О	DRAM Bank Address. Defines which bank will receive an ACTIVE, READ, WRITE or PRECHARGE command.							

Note: I/O pads for all SDRAM pins are powered by VCC18MEM. MD / DQS input voltage levels are referenced to MEMVREF.

Accelerated Graphics Port Pin Descriptions

			AGP 3.5 Bus Interface
Signal Name	Pin #	I/O	Signal Description
GD[31:0]	(see pin list)	IO	Address / Data Bus. Address is driven with GADSTB assertion for AGP-style transfers and with GFRAME assertion for PCI-style transfers.
GC#BE[3:0]	L6 J1 K1 M2	Ю	Command / Byte Enable. For AGP cycles these pins provide command information (different commands than for PCI) driven by the master (graphics controller). These pins provide valid byte information during AGP write transactions and are driven by the master. The target (this chip) drives these lines to "0000" during the return of AGP read data. For PCI cycles, commands are driven with GFRAME assertion. Byte enables corresponding to supplied or requested data are driven on following clocks.
GPAR	P6	IO	AGP Parity. A single parity bit is provided over GD[31:0] and GC#BE[3:0].
GDBIH / GDBIL	G5 H6	IO	Dynamic Bus Inversion High / Low. AGP 8x transfer mode only. Driven by the source to indicate whether the corresponding data bit group (GDBIH for GD[31:16] and GDBIL for GD[15:0]) needs to be inverted on the receiving end (1 on GDBIx indicates that the corresponding data bit group should be inverted). Used to limit the number of simultaneously switching outputs to 8 for each 16-pin group.
GADSTBF0 GADSTBS0	N1 N3	IO	Bus Strobe 0. Source synchronous strobes for GD[15:0] (the agent that is providing the data drives these signals). For 8x transfer mode, GADSTB0 is interpreted as GADSTBF0 ("First" strobe) and GADSTB0# as GADSTBS0 ("Second" strobe).
GADSTB50 GADSTBF1	G4	Ю	Bus Strobe 1. Source synchronous strobes for GD[31:16] (i.e., the agent that is providing the data drives these signals). For 8x transfer mode, GADSTB1 is interpreted as
GADSTBS1	F1		GADSTBF1 ("First" strobe) and GADSTB1# as GADSTBS1 ("Second" strobe).
GFRAME	L4	IO	Frame. Assertion indicates the address phase of a PCI transfer. Negation indicates that one more data transfer is desired by the cycle initiator.
GDEVSEL	J3	IO	Device Select (PCI transactions only). Driven by the North Bridge when a PCI initiator is attempting to access main memory. Input when the chip is acting as PCI initiator. Not used for AGP cycles.
GIRDY	M5	IO	Initiator Ready. For AGP write cycles, the assertion of this pin indicates that the master is ready to provide all write data for the current transaction. Once this pin is asserted, the master is not allowed to insert wait states. For AGP read cycles, the assertion of this pin indicates that the master is ready to transfer a subsequent block of read data. The master is <i>never</i> allowed to insert a wait state during the initial block of a read transaction. However, it may insert wait states after each block transfers. For PCI cycles, asserted when initiator is ready for data transfer.
GTRDY	К3	IO	Target Ready. For AGP cycles, indicates that the target is ready to provide read data for the entire transaction (when the transaction can complete within four clocks) or is ready to transfer a (initial or subsequent) block of data when the transfer requires more than four clocks to complete. The target is allowed to insert wait states after each block transfer for both read and write transactions. For PCI cycles, asserted when target is ready for data transfer.

Note: I/O pads for all pins on this page are powered by VCC15AGP. Input voltage levels are referenced to AGPVREF.

Note: The AGP interface pins can be optionally configured as additional interfaces for connecting to external display devices. For simplification of the AGP pin description tables above and on the next page, that multiplexing is not shown.

	AGP 3.5 Bus Interface (continued)							
Signal Name	Pin #	I/O	Signal Description					
AGP8XDET#	C5	I	AGP 8x Transfer Mode Detect. Low indicates that the external graphics card can support 8x transfer mode.					
GRBF	F4	I	Read Buffer Full. Indicates if the master (graphics controller) is ready to accept previously requested low priority read data. When GRBF is asserted, the North Bridge will not return low priority read data to the graphics controller.					
GWBF	В3	I	Write Buffer Full.					
GSBA[7:0]#	D3, D2, D4, D1, C3, B1, A2, A1	I	Side Band Address. Provides an additional bus to pass address and command information from the master (graphics controller) to the target (North Bridge). These pins are ignored until enabled.					
GSBSTBF GSBSTBS	C1 C2	Ι	Side Band Strobe. Driven by the master to provide timing for GSBA[7:0]. 8x mode uses GSBSTBF ("First" strobe) and GSBSTBS ("Second" strobe).					
GST[2:0]	F5, E3, E4	O	 Status (AGP only). Provides information from the arbiter to a master to indicate what it may do. Only valid while GGNT is asserted. 000 Indicates that previously requested low priority read or flush data is being returned to the master (graphics controller). 001 Indicates that previously requested high priority read data is being returned to the master. 010 Indicates that the master is to provide low priority write data for a previously enqueued write command. 011 Indicates that the master is to provide high priority write data for a previously enqueued write command. 100 Reserved. (arbiter must not issue, may be defined in the future). 101 Reserved. (arbiter must not issue, may be defined in the future). 110 Reserved. (arbiter must not issue, may be defined in the future). 111 Indicates that the master (graphics controller) has been given permission to start a bus transaction. GST[2:0] are always outputs from the target (North Bridge) & inputs to the master (graphics controller). 					
GREQ	D5	I	Request. Master (graphics controller) request for use of the AGP bus.					
GGNT	C4	О	Grant. Permission is given to the master (graphics controller) to use the AGP bus.					
GSERR	M6	Ю	System Error.					
GSTOP	M4	Ю	Stop. Asserted by the target to request the master to stop the current transaction.					

Note: I/O pads for all pins on this page are powered by VCC15AGP. Input voltage levels are referenced to AGPVREF.

Note: The AGP interface pins can be optionally configured as additional interfaces for connecting to external display devices. For simplification of the AGP pin description tables above and on the next page, that multiplexing is not shown here. Note: Separate system interrupts are not provided for AGP. The AGP connector provides interrupts via PCI bus INTA#. Note: A separate reset is not required for the AGP bus (RESET# resets both PCI and AGP buses)

Note: The AGP bus to uses the GSBA port to enqueue master requests (send addresses unmultiplexed). AGP masters implements it at the time of initialization. GRBF has an internal pullup to maintain it in the de-asserted state in case it is not implemented on the master device.

Note: AGP 8x signal levels are 0V and 0.8V. AGP 8x mode maintains most signals at a low level when inactive resulting in no current flow.

V-Link Pin Descriptions

	V-Link Interface										
Signal Name	Pin #	I/O	Signal Description								
VD7,	AA1	IO	V-Link Data Bus. During system initialization, VD[7:0] are used to transmit strap								
VD6,	AA2	IO	information from the South Bridge (the straps are not on the VD pins but are on the								
VD5,	T3	IO	indicated pins of the South Bridge chip). Check the strap pin table for details.								
VD4,	T2	IO									
VD3,	Y3	IO									
VD2,	Y2	IO									
VD1,	U2	IO									
VD0	V1	IO									
VBE#	U3	IO	V-Link Byte Enable.								
UPCMD	AA3	I	V-Link Command from Client (South Bridge) to Host (North Bridge).								
UPSTB+	W2	I	V-Link Strobe from Client to Host.								
UPSTB-	W1	I	V-Link Complement Strobe from Client to Host.								
DNCMD	W3	О	V-Link Command from Host (North Bridge) to Client (South Bridge).								
DNSTB+	V2	О	V-Link Strobe from Host to Client.								
DNSTB-	V3	О	V-Link Complement Strobe from Host to Client.								

Note: I/O pads for the pins in the above table are powered by VCC15VL. Input voltage levels are referenced to VLVREF.

CRT and Serial Bus Pin Descriptions

CRT Interface						
Signal Name	Pin#	I/O	Signal Description			
AR	B6	AO	Analog Red. Analog red output to the CRT monitor.			
AB	B5	AO	Analog Blue. Analog blue output to the CRT monitor.			
AG	A5	AO	Analog Green. Analog green output to the CRT monitor.			
HSYNC	B8	О	Horizontal Sync. Output to CRT.			
VSYNC	A8	О	Vertical Sync. Output to CRT.			
RSET	A6	AI	Reference Resistor. Tie to GND through an external 80.6Ω 1% resistor to control the RAMDAC full-scale current value.			

I/O pads for the pins in the above table are powered by VCC33GFX (i.e., 3.3V I/O).

	SMB / I ² C Interface							
Signal Name	AGP Name	Pin#	I/O	Signal Description				
SBPLCLK	GIRDY	M5	IO	I ² C Serial Bus Clock for Panel (Muxed on AGP Bus Pins).				
SBPLDAT	GC#BE1	K1	IO	I ² C Serial Bus Data for Panel (Muxed on AGP Bus Pins).				
SBDDCCLK	GREQ	D5	IO	I ² C Serial Bus Clock for CRT DDC (Muxed on AGP Bus Pins).				
SBDDCDAT	GGNT	C4	IO	I ² C Serial Bus Data for CRT DDC (Muxed on AGP Bus Pins).				
SPCLK2	n/a	E9	IO	Serial Port (SMB/I ² C) Clock and Data. The SPCLKn pins are the clocks for				
SPCLK1	n/a	D9		serial data transfer. The SPDn pins are the data signals used for serial data transfer.				
				SPxxx1 is typically used for DVI monitor communications and SPxxx2 is typically				
SPD2,	n/a	E8		used for DDC for CRT monitor communications.				
SPD1	n/a	D10						

I/O pads for SPCLK[2:1] / SPDAT[2:1] above are powered by VCC33GFX (i.e., 3.3V I/O).

All other pins in the above table are powered by VCC15AGP (i.e., 1.5V I/O).

Dedicated Digital Video Port 0 (DVP0) Pin Descriptions

The DVP0 dedicated Digital Video Port can be configured as a TV Encoder interface port, selectable via strap pins DVP0D[6:4] (see the TV Encoder Interface pin descriptions for details)..

Dedicated Digital Video Port 0 (DVP0)							
Signal Name	Pin#	I/O	Signal Description				
DVP0D11 / TVD11,	A11	О	Digital Video Port 0 Data. Default output drive is 8 mA.				
DVP0D10 / TVD10,	B11						
DVP0D9 / TVD9,	E12		NOTE: DVP0D[6:0] are also used for power-up reset straps for the				
DVP0D8 / TVD8,	B12		embedded graphics controller. Check the Strap Pin table for details.				
DVP0D7 / TVD7,	A12						
DVP0D6 / TVD6,	C12						
DVP0D5 / TVD5,	D12						
DVP0D4 / TVD4,	E13						
DVP0D3 / TVD3,	D13						
DVP0D2 / TVD2,	A13						
DVP0D1 / TVD1,	B13						
DVP0D0 / TVD0	C13						
DVP0HS / TVHS	E10	О	Digital Video Port 0 Horizontal Sync. Internally pulled down.				
DVP0VS / TVVS	C10	О	Digital Video Port 0 Vertical Sync. Internally pulled down.				
DVP0DE / TVDE	B10	0	Digital Video Port 0 Data Enable. Internally pulled down.				
DVP0DET	В9	I	Digital Video Port 0 Display Detect.				
DVP0CLK / TVCLK	D11	О	Digital Video Port 0 Clock. Internally pulled down.				

The terminology "3C5.nn" above refers to the VGA "Sequencer" registers at I/O port 3C5 index "nn"

Dedicated Dig	Dedicated Digital Video Port 0 (DVP0) - TV Encoder Interface						
Signal Name	Pin#	I/O	Signal Description				
TVD11 / DVP0D11	A11	О	TV Encoder 0 Data.				
TVD10 / DVP0D10,	B11						
TVD9 / DVP0D9,	E12		To configure DVP0 as a TV Out interface port, pins DVP0D[6:5]				
TVD8 / DVP0D8,	B12		must be strapped high.				
TVD7 / DVP0D7,	A12						
TVD6 / DVP0D6,	C12		Note: The CN700 North Bridge supports one TV Encoder interface				
TVD5 / DVP0D5,	D12		through DVP0.				
TVD4 / DVP0D4,	E13						
TVD3 / DVP0D3,	D13						
TVD2 / DVP0D2,	A13						
TVD1 / DVP0D1,	B13						
TVD0 / DVP0D0	C13						
TVHS / DVP0HS	E10	O	TV Encoder 0 Horizontal Sync. Internally pulled down.				
TVVS / DVP0VS	C10	О	TV Encoder 0 Vertical Sync. Internally pulled down.				
TVDE / DVP0DE	B10	О	TV Encoder 0 Display Enable. Internally pulled down.				
TVCLKR	A10	I	TV Encoder 0 Clock In. Input from TV encoder. Internally				
			pulled down.				
TVCLK / DVP0CLK	D11	О	TV Encoder 0 Clock Out. Output to TV encoder. Internally				
			pulled down.				

The above pins may be connected to an external TV Encoder chip such as a VIA VT1622A for driving a TV set. I/O pads for the pins on this page are powered by VCC33GFX (3.3V I/O).

AGP-Multiplexed Digital Video Port 0 (GDVP0) Pin Descriptions

The GDVP0 Digital Video Port is supported through multiplexing its interface signal pins with AGP pins. It is used as a TV Encoder interface port.

	AGP-Multiplexed Digital Video Port 0 (GDVP0) - TV Encoder Interface							
Signal Name	AGP Name	Pin#	I/O	Signal Description				
GTVD11,	GD11	L3	О	TV Encoder Data.				
GTVD10,	GD13	N5						
GTVD9,	GD14	K2		The CN700 North Bridge supports one TV Encoder interface through either				
GTVD8,	GD15	R6		GDVP0 or DVP0.				
GTVD7,	GC#BE2	J1						
GTVD6,	GD16	J2						
GTVD5,	GD17	Н3						
GTVD4,	GD18	H1						
GTVD3,	GD23	G3						
GTVD2,	GD20	G1						
GTVD1,	GD22	K5						
GTVD0	GADSTB1F	G4						
GTVHS	GFRAME	L4	O	TV Encoder Horizontal Sync.				
GTVVS	GDEVSEL	J3	О	TV Encoder Vertical Sync.				
GTVDE	GD19	K4	0	TV Encoder Data Enable.				
GTVCLKIN	GADSTBS1	F1	I	TV Encoder Clock In. Input from TV encoder. Internal pull down.				
GTVCLK	GD21	G2	О	TV Encoder Clock Out. Output to TV encoder. Internally pulled down.				
GTVCLK#	GWBF	В3	О	TV Encoder Clock Out Complement. Output to TV encoder. Internally				
				pulled down.				

AGP-Multiplexed Digital Video Port 1 (GDVP1) Signal Descriptions

The GDVP1 Digital Video Port is supported through multiplexing its interface signals with AGP signals. It is used as a DVI Transmitter interface port.

	AGP-Multiplexed Digital Video Port 1 (GDVP1) – DVI Interface							
Signal Name	AGP Name	Ball #	I/O	Signal Description				
GDVP1D11,	GC#BE3	L06	О	Data.				
GDVP1D10,	GD26	J04						
GDVP1D9,	GD24	J06						
GDVP1D8,	GD30	H04						
GDVP1D7,	GD28	J05						
GDVP1D6,	GD29	F03						
GDVP1D5,	GSBA4#	D01						
GDVP1D4,	GD27	F02						
GDVP1D3,	GSBA5#	D04						
GDVP1D2,	GSBSTBS	C02						
GDVP1D1,	GSBSTBF	C01						
GDVP1D0,	GSBA2#	B01						
GDVP1HS	GSBA3#	C03	О	Horizontal Sync.				
GDVP1VS	GSBA0#	A01	О	Vertical Sync.				
GDVP1DE	GSBA1#	A02	О	Data Enable.				
GDVP1DET	GD31	E01	I	Display Detect.				
GDVP1CLK	GSBA6#	D02	О	Clock.				
GDVP1CLK#	GSBA7#	D03	О	Clock Complement.				

I/O pads for all signals on this page are powered by VCC15AGP (1.5V I/O).

AGP-Multiplexed Flat Panel Display Port (FPDP) Pin Descriptions

The FPDP Flat Penel Display Port is supported through multiplexing flat panel display interface signal pins with AGP pins.

	24-Bit / Dual 12-Bit Flat Panel Display Interface							
Signal Name	AGP Name	Pin #	I/O	Signal Description				
FPD23 / GTVD11,	GD11	L3	О	Flat Panel Data. For 24-bit or dual 12-bit flat panel display modes.				
FPD22 / GTVD10,	GD13	N5		Two FPD interface modes, 24-bit and dual 12-bit, are supported.				
FPD21 / GTVD09,	GD14	K2		Strapping pin DVP0D4 is used to select the interface mode to the				
FPD20 / GTVD08,	GD15	R6		LVDS transmitter chip:				
FPD19 / GTVD07,	GC#BE2	J1		-				
FPD18 / GTVD06,	GD16	J2		Strap High (3C5.12[4]=1): 24-bit				
FPD17 / GTVD05,	GD17	Н3		Strap Low (3C5.12[4]=0): Dual 12-bit				
FPD16 / GTVD04,	GD18	H1		In "24-bit" mode, only one set of control pins is required. However, in				
FPD15 / GTVD03,	GD23	G3		dual 12-bit mode, the cCN700 provides two sets of control signals that				
FPD14 / GTVD02,	GD20	G1		are required for certain LVDS transmitter chips.				
FPD13 / GTVD01,	GD22	K5		· · · · · · · · · · · · · · · · · · ·				
FPD12 / GTVD00,	GADSTB1F	G4		In 24-bit mode, two operating modes are supported:				
FPD11 / NC,	GD1	P4		3C5.12[4]=1 & 3x5.88[2]=0 & 3x5.88[4]=0				
FPD10 / NC,	GD0	P3		Double data rate: each rising & falling clock edge transmits a				
FPD09 / NC,	GD3 GD4	R4		complete 24-bit pixel				
FPD08 / NC,	GD4 GD5	R1 N2						
FPD07 / NC, FPD06 / NC,	GD5 GD6	N2 P1		3C5.12[4]=1 & 3x5.88[2]=0 & 3x5.88[4]=1				
FPD05 / NC,	GD6 GD7	R2		Single data rate: each clock rising edge transmits a complete 24-bit				
FPD04/NC,	GADSTB0F	N1		pixel				
FPD03/NC,	GC#BE0	M2		In dual 12-bit mode,				
FPD02/NC,	GADSTB0S	N3		3C5.12[4]=0 & 3x5.88[2] = 1				
FPD01/NC,	GD10	N4		Double data rate: each rising and falling clock edge transmits half (12)				
FPD00 / NC	GD10	L1		bits) of two 24-bit pixels				
FPHS / GTVHS	GFRAME	L4	0	Flat Panel Horizontal Sync. 24-bit mode or port 0 in dual 12-bit				
	OFRAME	LŦ		mode.				
FPVS / GTVVS	GDEVSEL	J3	О	Flat Panel Vertical Sync. 24-bit mode or port 0 in dual 12-bit mode.				
FPDE / GTVDE	GD19	K4	О	Flat Panel Data Enable. 24-bit mode or port 0 in dual 12-bit mode				
FPDET / GTVDET	GADSTB1S	F1	Ι	Flat Panel Detect. 24-bit mode or port 0 in dual 12-bit mode				
FPCLK / GTVCLK	GD21	G2	О	Flat Panel Clock. 24-bit mode or port 0 in dual 12-bit mode				
FPCLK# / NC	GWBF	В3	О	Flat Panel Clock Complement. 24-bit mode or port 0 in dual 12-bit				
				mode. For double-data-rate data transfers.				
FP1HS / NC	GD9	M1	О	Flat Panel Horizontal Sync. For port 1 in dual 12-bit mode.				
FP1VS / NC	GPAR	P6	О	Flat Panel Vertical Sync. For port 1 in dual 12-bit mode.				
FP1DE / NC	GSERR	M6	О	Flat Panel Data Enable. For port 1 in dual 12-bit mode.				
FP1DET / NC	GD8	M3	I	Flat Panel Detect. For port 1 in dual 12-bit mode.				
FP1CLK / NC	GD2	R3	О	Flat Panel Clock. For port 1 in dual 12-bit mode.				
FP1CLK# / NC	GSTOP	M4	О	Flat Panel Clock Complement. For port 1 in dual 12-bit mode. For				
				double-data-rate data transfers.				

Flat Panel Power Control (Muxed with AGP)								
Signal Name	AGP Name	Pin#	I/O	Signal Description				
ENAVDD / NC	ST1	E3	IO	Enable Panel VDD Power.				
ENAVEE / NC	ST0	E4	IO	Enable Panel VEE Power.				
ENABLT / NC	ST2	F5	IO	Enable Panel Back Light.				

Note: I/O pads for all pins on this page are powered by VCC15AGP (i.e., 1.5V I/O).

Clock, Reset, Power Control, GPIO, Interrupt and Test Pin Descriptions

Clocks, Resets, Power Control, General Purpose I/O, Interrupts and Test					
Signal Name	Pin #	I/O	Signal Description	Power Plane	
HCLK+	Y23	I	Host Clock. This pin receives the host CPU clock (100 / 133 / 200 MHz). This clock is used by all CN700 logic that is in the host CPU domain.	VTT	
HCLK-	W23	I	Host Clock Complement. Used for Quad Data Transfer on host CPU bus.	VTT	
MCLKO+	AF26	О	Memory (SDRAM) Clock. Output from internal clock generator to external memory interface clock buffer (if required for fanout)	VCC18MEM	
MCLKO-	AE26	О	Memory (SDRAM) Clock Complement.	VCC18MEM	
MCLKIA	AD26	I	Memory (SDRAM) Clock Feedback. Input from MCLKO.	VCC18MEM	
DISPCLKI	C8	I	Dot Clock (Pixel Clock) In. Used for external EMI reduction circuit if used. Connect to GND if external EMI reduction circuit not implemented.	VCC33GFX	
DISPCLKO	С9	О	Dot Clock (Pixel Clock) Out. Used for external EMI reduction circuit if used. NC if external EMI reduction circuit not implemented.	VCC33GFX	
GCLK	R5	I	AGP Clock. Clock for AGP logic.	VCC15AGP	
XIN	A7	I	Reference Frequency Input. External 14.31818 MHz clock source. All internal graphics controller clocks are synthesized on chip using this frequency as a reference.	VCC33GFX	
RESET#	AC1	I	Reset. Input from the South Bridge chip. When asserted, this signal resets the CN700 and sets all register bits to the default value. The rising edge of this signal is used to sample all power-up strap options	VCC18MEM	
PWROK	AB2	I	Power OK. Connect to South Bridge and Power Good circuitry.	VCC18MEM	
SUSST#	AB3	I	Suspend Status. For implementation of the Suspend-to-DRAM feature. Connect to an external pull-up to disable.	VCC18MEM	
AGPBUSY#	T1	О	AGP Interface Busy. Connect to a South Bridge GPIO pin for monitoring the status of the internal AGP bus. See Design Guide for details.	VCC15AGP	
GPOUT	C11	О	General Purpose Output. This pin reflects the state of SRD[0].	VCC33GFX	
GPO0	E11	О	General Output Port. When SR1A[4] is cleared, this pin reflects the state of CR5C[0].	VCC33GFX	
INTA#	A9	О	Interrupt. PCI interrupt output (handled by the interrupt controller in the South Bridge)	VCC33GFX	
TESTIN#	AF25	I	Test In. This pin is used for testing and must be connected to VTT through a 1K-4.7K ohm resistor for all board designs.	VCC18MEM	

Compensation and Reference Voltage Pin Descriptions

Compensation				
Signal Name	Pin#	I/O	Signal Description	Power Plane
HRCOMP	G25	AI	Host CPU Compensation. Connect a 20.5 Ω 1% resistor to ground. Used for Host CPU interface I/O buffer calibration.	VTT
VLCOMPP	T4	ΑI	V-Link Compensation. Connect a 402 Ω 1% resistor to ground.	VCC15VL
DMCOMP	AE5	AI	DRAM Compensation. Memory interface IO buffer calibration.	VCC18MEM
AGPCOMPP AGPCOMPN	A3, A4	AI	AGP Compensation.	VCC15AGP

Reference Voltages					
Signal Name	Pin#	I/O	Signal Description	Power Plane	
GTLVREF	L24	P	Host CPU Interface AGTL+ Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See Design Guide.	VTT	
HDVREF[3:0]	F16, F19, G24, F22	P	Host CPU Data Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See Design Guide.	VTT	
HAVREF[1:0]	V24, R24	P	Host CPU Address Voltage Reference. 2/3 VTT ±2% typically derived using a resistive voltage divider. See Design Guide.	VTT	
HCOMPVREF	G26	P	Host CPU Compensation Voltage Reference. $1/3$ VTT $\pm 2\%$ typically derived using a resistive voltage divider. See Design Guide.	VTT	
MEMVREF [4:1]	AD8, AD11, AD17, AD23	P	Memory Voltage Reference. ½ VCC18MEM ±2% typically derived using a resistive voltage divider. See Design Guide.	VCC18MEM	
VLVREF	V4	P	V-Link Voltage Reference. 0.625V ±2% derived using a resistive voltage divider. See Design Guide.	VCC15VL	
AGPVREF[2:1]	G6, N6	P	AGP Voltage Reference. ½ VCC15AGP (0.75V) for AGP 2.0 (4x transfer mode) and 0.23 VCC15AGP (0.35V) for AGP 3.5 (8x transfer mode). See the Design Guide for additional information and circuit implementation details.	VCC15AGP	

Power Pin Descriptions

Analog Power / Ground				
Signal Name	Pin#	I/O	Signal Description	
VCCA33HCK	AA25	P	Power for Host CPU Clock PLL (3.3V ±5%). 400 MHz for CPU / DRAM frequencies of multiples of 100, 133, and 200 MHz.	
GNDAHCK	AA26	P	Ground for Host CPU Clock PLL. Connect to main ground plane through a ferrite bead.	
VCCA33MCK	AD25	P	Power for Memory Clock PLL (3.3V ±5%)	
GNDAMCK	AD24	P	Ground for Memory Clock PLL. Connect to main ground plane through a ferrite bead.	
VCCA33PLL1	D8	P	Power for Graphics Controller PLL1 (3.3V ±5%).	
GNDAPLL1	В7	P	Ground for Graphics Controller PLL1. Connect to main ground plane through a ferrite bead.	
VCCA33PLL2	C7	P	Power for Graphics Controller PLL2 (3.3V ±5%).	
GNDAPLL2	C6	P	Ground for Graphics Controller PLL2. Connect to main ground plane through a ferrite bead.	
VCCA33DAC[2:1]	D7, E7	P	Power for DAC. $(3.3V \pm 5\%)$	
GNDADAC[2:1]	D6, E6	P	Ground for DAC. Connect to main ground plane through a ferrite bead.	

Digital Power / Ground				
Signal Name	Pin #	I/O	Signal Description	
VTT	(see pin lists)	P	Power for CPU I/O Interface Logic. Voltage is CPU dependent. See Design Guide for details.	
VCC18MEM	(see pin lists)	P	DDR2: Power for Memory I/O Interface Logic. 1.8V ±5%. DDR: Power for Memory I/O Interface Logic. 2.5V ±5%.	
VCC15VL	U10-11, V10	P	Power for V-Link I/O Interface Logic. 1.5V ±5%	
VCC15AGP	(see pin lists)	P	Power for AGP Bus I/O Interface Logic. $1.5V \pm 5\%$	
VCC33GFX	(see pin lists)	P	Power for Graphics Display I/O Logic. 3.3V ±5%	
VCC15	(see pin lists)	P	Power for Internal Logic. 1.5V ±5%	
VSUS15	AB1, AC25	P	Suspend Power. 1.5V ±5%	
GND	(see pin lists)	P	Digital Ground. Connect to main ground plane.	

Strap Pin Descriptions

	Strap Pins							
(External pullup / pulldown straps are required to select "H" / "L")								
	Actual							
Signal	Strap Pin	Function	Description	Status Bit				
DVP0D[10,9,7]		-reserved-	Always pulled down					
DVP0D8	AGP: TYPEDET#	VIA AGP Riser	L: VIA AGP Riser not installed H: VIA AGP Riser installed	3C5.13[3]				
DVP0D6	DVP0D6	Dedicated DVI Port Selection	L: Disable H: Enable	3C5.12[6]				
DVP0D5	DVP0D5	Dedicated DVI Port Configuration	L: DVI Transmitter H: TV Encoder	3C5.12[5]				
DVP0D4	DVP0D4	AGP Port Muxing	L: Two 12-bit DVI interface H: One 24-bit Panel interface	3C5.12[4]				
DVP0D[3:0]	DVP0D[3:0]	OEM Panel Type	Reserved for customer definition	3C5.12[3:0]				
VD7	VT8237R Plus, VT8251 CD/CE: PDCS3#	Reference Voltage	L: 0.75 V H: 0.90 V Reference voltage for VKCOMP at VLINK 4X mode	_				
VD6	VT8237R Plus, VT8251 CD/CE: PDA2	V4 Capability	L: Disable H V4 Capability	_				
VD5	VT8237R Plus, VT8251 CD/CE: PDA1	V4-lite Capability	L: Disable H V4-lite Capability	_				
VD3	VT8237R Plus, VT8251 CD/CE: GPIOD	AGTL+ Pullups	L: Enable internal AGTL+ Pullups H: Disable internal AGTL+ Pullups	_				
VD2	VT8237R Plus, VT8251 CD/CE: GPIOB	IOQ Depth	L: 8-Level deep H: 1-Level deep	_				
VD1	VT8237R Plus, VT8251 CD/CE: GPIOA	V-Link Compensation	L: Auto Compensation H: Manual Compensation	_				
VD0	VT8237R Plus, VT8251 CD/CE: GPIOC	FSB Frequency	Must pull high for Auto Mode	-				

Note: VD[7:0] signals are sampled during system initialization. The actual strapping pins are located on the South Bridge chip.

REGISTERS OVERVIEW

In the register descriptions, column "Default" indicates the default value of register bit(s). While column "Attribute" indicates access type of register bit(s).

Abbreviation

Attribute definitions are

RW: Read / Write.
RO: Read Only.
RZ: Read as Zero.
R1: Read as 1.

W1: Write Once then Read Only after that.

W1C: Write of "1" clears bit to zero.

ROS: Sticky-Read Only. Registers will not be set or altered by hot reset.
RWS: Sticky-Read/Write. Registers will not be set or altered by hot reset.
RW1CS: Sticky-Write-1-to-Clear. Registers will not be set or altered by hot reset.

IW: Ignore Write.

MW: Must Write back what is read.

XW: Backdoor Write.

"—": Reserved (essentially the same as RO).

Bit default value indicated as "dip" means the default value is set by dip switch or strapping.

Note: The graphics registers are described in a separate document.

There are two PCI devices, device 0 and device 1, and up to 7 PCI functions are implemented in this chip. To specifically identify a PCI function, the following abbreviations will be applied in subsequent sections.

D0F0: Device 0, Function0 – Host and AGP Control

D0F1: Device 0, Function1 – Error Reporting

D0F2: Device 0, Function2 – Host Bus Control

D0F3: Device 0, Function3 – DRAM Control

D0F4: Device 0, Function4 – Power Management Control

D0F7: Device 0, Function7 – V-Link Control

D1F0: Device 1, Function0 – PCI-to-PCI Bridge

REGISTER DESCRIPTIONS

I/O Ports

IO Port Address: 022h

PCI Arbiter Control

Default Value: 00

Bit	Attribute	Default	Description
1	RW	0	AGP / PCI2 Arbiter Control
			0: Enable AGP / PCI2 Bus Arbiter
			1: Disable AGP / PCI2 Bus Arbiter
0	RW	0	PCI Arbiter Control
			0: Enable PCI Bus Arbiter (arbiter will respond to REQ# assertion)
			1: Disable PCI Bus Arbiter (arbiter will not respond to PCI-1 REQ# and PREQ# assertion)

PCI Configuration Space I/O

The chip's PCI space registers are addressed via configuration mechanism #1.

Mechanism #1

The I/O ports respond only to double-word accesses. Byte or word accesses will be passed on unchanged.

I/O Port Address: 0CFB-0CF8h

PCI Configuration Address

Default Value: —

Bit	Attribute	Default	Description
31	RW	0	Configuration Space Enable
			0: Disabled
			1: Convert configuration data port writes to configuration cycles on the PCI bus
30:24	RO	0	Reserved (always reads 0)
23:16	RW	0	PCI Bus Number
			Used to choose a specific PCI bus in the system
15:11	RW	0	Device Number
			Used to choose a specific device in the system
10:8	RW	0	Function Number
			Used to choose a specific function if the selected device supports multiple functions
7:2	RW	0	Register Number (also called the "Offset")
			Used to select a specific DWORD in the configuration space
1:0	RW	0	Fixed (always reads 0)

I/O Port Address: 0CFF-0CFCh

PCI Configuration Data

Default Value: —

Bit	Attribute	Default	Description
31:0	RW	0	PCI Configuration Data

Note. Refer to PCI Bus Specification Version 2.3 for further details on operation of the above configuration registers.

Device 0 Function 0 (D0F0): AGP Control

Header Registers (0-3Fh)

Offset Address: 1-0h (D0F0)

Vendor ID Default Value: 1106h

Bit	Attribute	Default	Description
15:0	RO	1106h	VIA Technologies ID Code

Offset Address: 3-2h (D0F0)

Device ID Default Value: 0314h

Bit	Attribute	Default	Description
15:0	RO	0314h	Device ID Code

Offset Address: 5-4h (D0F0)

PCI Command Default Value: 0006h

Bit	Attribute	Default	Description
15:10	_	0	Reserved
9	RO	0	Fast Back-to-Back Cycle Enable
			Hardwired to 0. (Disable)
8	RO	0	SERR# Enable
			Hardwired to 0 (Disable)
7	RO	0	Address / Data Stepping
			Hardwired to 0 (Not supported).
6	RW	0	Parity Checking
			0: Ignore parity errors
			1: Perform parity check and take normal action on detected parity errors
5	RO	0	VGA Palette Snooping
			Hardwired to 0 (Not implemented)
4	RO	0	Memory Write and Invalidate
			Hardwired to 0 (Not supported)
3	RO	0	Respond To Special Cycle
			Hardwired to 0 (Does not monitor special cycles)
2	RO	1	PCI Master Function
			Hardwired to 1 (May behave as a bus master)
1	RO	1	Memory Space Access
			Hardwired to 1 (Responds to memory space access)
0	RO	0	I/O Space Access
			Hardwired to 0 (Does not respond to I/O space)

Offset Address: 7-6h (D0F0)

PCI Status Default Value: 0210h

Bit	Attribute	Default		Description
15	RW1C	0	Detect Parity Error	
			0: No parity error detected	1: Error detected in either address or data phase
14	RO	0	Signaled System Error (SERR#)	·
			Hardwired to 0	
13	RW1C	0	Set when terminated with Master-Abort, except sp	ecial cycle
			0: No abort received	1: Transaction aborted by the master
12	RW1C	0	Set when received a Target-Abort	
			0: No abort received	1: Transaction aborted by the target
11	RO	0	Set when signaled a Target-Abort	
			NB never signals Target Abort	
10-9	RO	01	DEVSEL# Timing	
			00: Fast	01: Medium (default)
			10: Slow	11: Reserved
8	RW1C	0	Set when set or observed SERR# and Parity Error	(Rx04[6])
			0: Disable	1: Enable
7	RO	0	Capable of Accepting fast back-to-back as a target	
			Hardwired to 0 (Not implemented)	
6	RO	0	User Definable Features	
			Hardwired to 0	
5	RO	0	66 MHz Capable	
			Hardwired to 0 (Not implemented)	
4	RO	1	Support New Capability List	
3:0	_	0	Reserved	

Offset Address: 8h (D0F0)

Revision ID Default Value: 0nh

Bit	Attribute	Default	Description
7:0	RO	0nh	North Bridge Chip Revision Code

Offset Address: 0B-9h (D0F0)

Class Code Default Value: 060000h

Bi	t	Attribute	Default	Description
2	3:0	RO	060000h	Class Code

Offset Address: 0Ch (D0F0)

Cache Line Size Default Value: 00h

Bi	it	Attribute	Default	Description
	7:0	RO	0	Cache Line Size

Offset Address: 0Dh (D0F0)

PCI Master Latency Timer

Bit	Attribute	Default	Description
7:3	RW	0	PCI Bus Time Slice for CPU as a Master (in unit of PCI clocks)
2:0	RO	0	Reserved MLT[2:1] is programmable; however, it's read as 0

Offset Address: 0Eh (D0F0)

Header Type Default Value: 00h

Bit	Attribute	Default	Description
7	RO	_	Multi-Function Device 0: if MFUNC (Rx4F[0], the multiple function control bit) is set to 0 1: if MFUNC is set to 1
6:0	RO	0	Reserved

Default Value: 00h

Default Value: 00000008h

Offset Address: 0Fh (D0F0)

Built In Self Test (BIST)

Default Value: 00h

Bit	Attribute	Default	Description	
7	RO	0	BIST Support Hardwired to 0 (Not supported)	
6:0	_	0	leserved	

Offset Address: 13-10h (D0F0)

Graphic Aperture Base Configuration

Bit	Attribute	Default	Description			
31:22	RW	0	Programmable Base Address These bits behave as if hardwired to 0 if GTSZ (Rx94[11:0]) is set to 0. See the following table for details. (Note: this range is defined as prefetchable)			
21:4	_	0	Reserved—Hardwired to 0			
3	RO	1	Prefetchable 0: Non-Prefetchable 1: Prefetchable (hardwired)			
2:1	RO	0	Type Indicates that the address range is in the 32-bit address space			
0	RO	0	Memory Space Indicates that the address range is in the memory address space.			

Table 5. Graphics Aperture Base Address Table

		1 4	DIC C		PIIIC	9 1 - P 1	or corr	Dus	U I I G	TE COO	Table		
Aperture Base Rx10[31:22]	31	30	29	28			27	26	25	24	23	22	Amoutumo Ciao
Aperture Size Rx94[11:0]	11	10	9	8	7	6	5	4	3	2	1	0	Aperture Size
	RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	RW	4M
	RW	RW	RW	RW	0	0	RW	RW	RW	RW	RW	0	8M
	RW	RW	RW	RW	0	0	RW	RW	RW	RW	0	0	16M
	RW	RW	RW	RW	0	0	RW	RW	RW	0	0	0	32M
	RW	RW	RW	RW	0	0	RW	RW	0	0	0	0	64M
	RW	RW	RW	RW	0	0	RW	0	0	0	0	0	128M
	RW	RW	RW	RW	0	0	0	0	0	0	0	0	256M
	RW	RW	RW	0	0	0	0	0	0	0	0	0	512M
	RW	RW	0	0	0	0	0	0	0	0	0	0	1G
	RW	0	0	0	0	0	0	0	0	0	0	0	2G <= Max
	0	0	0	0	0	0	0	0	0	0	0	0	4G

Offset Address: 2D-2Ch (D0F0)

Subsystem Vendor ID Default Value: 00h

Bit	Attribute	Default	Description
15:0	RW1	0	Subsystem Vendor ID

Offset Address: 2F-2Eh (D0F0)

Subsystem ID Default Value: 00h

Bit		Attribute	Default	Description
15	:0	RW1	0	Subsystem ID

Default Value: 80h

Default Value: 63h

Default Value: 08h

Offset Address: 37-34h (D0F0)

Capability Pointer Default Value: 00000080h

Bit	Attribute	Default	Description	Mnemonic
31:0	RO	80h	AGP Capability List Pointer An offset address from the start of the configuration space	CAPPTR[7:0]

Capability Link List

Rx34	Rx80	Rx50	
80	50	NULL	Rx34 -> Rx80 AGP/AGP8X -> Rx50 PMU -> NULL

AGP Drive Control (40-49h)

Offset Address: 40h (D0F0)

AGP Pad Compensation Control / Status

Bit	Attribute	Default	Description						
7	RW	1	AGP4X Strobe's Reference Voltage	RSTBVREF					
			0: Strobe signals do not use AGPVREF as input reference voltage (i.e. STB VREF is STB# and vise versa).						
			1: Strobe signals use AGPVREF as input reference voltage.						
			(Note: this bit is valid only when internal signal, RX4EN or RX8EN, is set to 1; otherwise always use						
			AGPVREF as Strobe signals' reference voltage)						
			RSTBVREF Input Reference Voltage						
			1: $0.5\text{VPP} = 0.5 * 1.5\text{v}$						
			0: NADSTB0, NADSTB1						
6	RW	0	AGP4X Strobe and GD Pad Driving Strength Control						
			0: Driving strength is set to the compensation circuit defaults						
			1: Driving strength is controlled by Rx41[7:0]						
5:3	RO	_	AGP Compensation Circuit N Control Output						
2:0	RO	_	AGP Compensation Circuit P Control Output						

Offset Address: 41h (D0F0)

AGP Driving Strength Control

Bit	Attribute	Default	Description			
7:4	RW	6h	AGP Output Buffer Driving Strength N Control			
3:0	RW	3h	AGP Output Buffer Driving Strength P Control			

Offset Address: 42h (D0F0)

AGP Pad Driving and Delay Control

Bit	Attribute	Default			Description	Mnemonic				
7	RW	0	GD / GADST	GD / GADSTBx / GC#BE and GSBSTBx / GSBA# Pad Control						
				GSBSTBx, GSBA#	GD, GC#BE, GADSTBx					
			0	No Cap	No Cap					
			1	Cap	Cap					
6:5	_	0	Reserved		•					
4	RW	0	GD[31:16] O	utput Staggered Delay (1	ns)	RGDLY				
			0: No delay		1: GD[31:16] is delayed 1 ns					
3	RW	1	GD, GADST	Bx Slew Rate Control						
			0: Disable		1: Enable					
2	_	0	Reserved							
1:0	RW	00	GADSTBx O	utput Delay						
			00: No delay	-	01: Delayed by 150 ps					
			10: Delay by	300 ps	11: Delay by 450 ps					
			Note: GADST	B1 and GADSTB1# will b	be delayed 1 ns more if RGDLY (bit-4) is set to 1.					

Default Value: 00h

Default Value: 1Fh

Default Value: C4h

Offset Address: 43h (D0F0)

AGP Strobe Drive Strength Control

Bit	Attribute	Default	Description
7:4	RW	0	AGP Strobe Output Buffer Driving Strength N Control
3:0	RW	0	AGP Strobe Output Buffer Driving Strength P Control

Offset Address: 44h (D0F0)

AGP GSBA Pads Control Default Value: 00h

Bit	Attribute	Default	Description
7:6	_	0	Reserved
5:0	RW	0	GSBA Pads Control

Offset Address: 45h (D0F0)

AGP Data Delay Default Value: 00h

Bit	Attribute	Default		Description
7:6	_	0	Reserved	
5:3	RW	000	RDS[2] control GD data delay for receiving 0: 400ps RDS[1:0] control GD strobe delay for receiving 00: 0ps 01: 100ps	1: 0ps 10: 200ps 11: 300ps
2:0	RW	000	RSS[2] Control GSBA data delay for receiving 0:400ps RSS[1:0] Control GSBA strobe delay for receiving 00:0ps 01:100ps	1: 0ps 10:200ps 11:300ps

Miscellaneous Control (4A-4Fh)

Offset Address: 4Ah (D0F0)

AGP Hardware Support I – VPX Mode

Bit	Attribute	Default	Description
7:0	RW	1Fh	AGP Request Queue Size The value in this register is valid and effective if RAGPHW (Rx4D[1]) is set to 1.

Offset Address: 4Bh (D0F0)

AGP Hardware Support II - VPX Mode

This register is used to re-configure the AGP controller. To change the operating mode of the AGP controller, Rx4D[1] must be set to 1.

Bit	Attribute	Default	Description	
7	RW	1	AGP SBA Mode Enable	
			0: Disable 1: Enable	
6	RW	1	AGP Enable	
			0: Disable 1: Enable	
5	_	0	Reserved	
4	RW	0	Fast Write Enable	
			0: Disable 1: Enable	
3	RW	0	AGP8X Mode Enable	
			0: Disable 1: Enable	
2	RW	1	AGP4X Mode Enable	
			0: Disable 1: Enable	
1	RW	0	AGP2X Mode Enable	
			0: Disable 1: Enable	
0	RW	0	AGP1X Mode Enable	
			0: Disable 1: Enable	

Offset Address: 4Dh (D0F0)

AGP Capability Header Control Default Value: 04h

Bit	Attribute	Default	Description	Mnemonic
7:6	_	0	Reserved	
5	RW	0	GART Access Control	RBKGTEN
			0: AGP Aperture is enabled through RGTEN (RxBF[7])	
			1: AGP Aperture is enabled through either D0F0 Rx90[8] or D1F0 Rx90[8] (decided by RAGPCAP1	
			(D1F0 RxBF[0])	
4	_	0	Rx90 RW Function	
			0: Disable 1: Enable	
3	RW	0	AGP Major / Minor Number Control	RBKMJMN
			0: Major / Minor = 35	
2	RW	1	Select Rx80 as the AGP20 or AGP30 Header	
			0: Rx80 is used as the AGP20 capability header even if the chip is powered up in AGP30 mode	
			1: Rx80 is used as the AGP30 capability header when the chip is powered up in AGP30 mode	
1	RW	0	Enable AGP Hardware Registers in Rx4A ~ Rx4B	RAGPHW
			0: AGP hardware is configured by register values defined in AGP header (either 3.0 or 2.0)	
			1: AGP hardware is configured by register values defined in Rx4A ~ Rx4B (used for VPX mode)	
0	RZ-XW	0	Enable AGP Header Status Register Write	RSTATW
			0: Disable (Status registers in the AGP header cannot be modified)	
			1: Enable (Status registers in the AGP header can be modified)	

Offset Address: 4Fh (D0F0)

Multiple Function Control Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:1	_	0	Reserved	
0	RW	0	Multi-Function Support	MFUNC
			0: Disable; functions 1, 2, 3, 4, 7 cannot be accessed, and the value returned will be 0FFFFFFFh when accessed	
			1: Enable; the status will be reflected on Rx0E[7]	

AGP Extended Power Management Control (50-57h)

Offset Address: 50h (D0F0)

Capability ID Default Value: 01h

Bit	Attribute	Default	Description
7:0	RO	01h	Capability ID

Offset Address: 51h (D0F0)

Next Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Next Pointer

Offset Address: 52h (D0F0)

Power Management Capabilities Default Value: 02h

	Bit	Attribute	Default	Description
I	7:0	RO	02h	Power Management Capabilities

Offset Address: 53h (D0F0)

Power Management Capabilities Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	Power Management Capabilities

Default Value: 00h

Offset Address: 54h (D0F0)

Power Management Control / Status

Bit	Attribute	Default	Description
7:2	_	0	Reserved
1:0	RW		Power State 00: D0 11: D3 Hot

Offset Address: 55h (D0F0)

-	Power Ma	anagemen	t Status		Default Value: 00h
	Bit	Attribute	Default	Description	
	7:0	RO	0	Power Management Status	

Offset Address: 56h (D0F0)

PCI to PCI bridge Support Extensions Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	PCI to PCI Bridge Support Extensions

Offset Address: 57h (D0F0)

Power Management Data Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Power Management Data

AGP 3.0 Configuration (80-AFh)

For registers (e.g. AGP status register) with attribute "XW", it is allowed to write-over the default setting by setting the register RSTATW (status write) at Rx4D[0] to 1

Offset Address: CAPPTR (D0F0 83-80h)

AGP Capability Default Value: 003n5002h

Bit	Attribute	Default	Description
31:24	RZ	0	Always Return 0, write no effect
23:20	R-IW	0011	Major Revision
19:16	R-IW	n	Minor Revision
			The value is determined by RBKMJMN (Rx4D[3]).
			0000b: if $Rx4D[3] = 1$ 0101b: if $Rx4D[3] = 0$
15:8	R-IW	50h	Pointer to Next Item
7:0	R-IW	02h	Capability ID

Offset Address: CAPPTR + 04h (D0F0 87-84h)

AGP Status Default Value: 07000A0Bh

Bit	Attribute	Default	Description	Mnemonic
31:24	R-IW	07h	Max # of AGP Command Requests	
23-18	RZ-IW	0	Reserved	
17	RZ-XW	0	Isoch Transaction	RISOCH
			0: Isoch transaction is not supported	
			1: Supports Isoch transaction	
16	RZ-XW	0	Reserved	
15:13	RZ-XW	0	Reserved	
12:10	RZ-XW	010	Calibrating Cycle	
			000 - 4 ms $001 - 16 ms$	
			010 – 64ms 011 – 256ms	
			Valid when RAGP30 (bit-3) is 1.	
9	R1-XW	1	Reserved (SBA support is always ON)	
8	RZ-XW	0	Coherent Support – not implemented	
7	R-XW	0	64-bit GART Entries – only 32-bit GART entry is supported	
6	R-XW	0	Support Host GART Translation	
			0: Support host GART translation 1: Does not support host GART translation	
5	R-XW	0	Over 4GB Support – not implemented	
4	R-XW	0	Reserved	
3	R-XW	0	AGP 3.0 Detected	RAGP30
			0: AGP 2.0 Mode 1: AGP 3.0 Mode	
			Set by strap pin AGP8XDET#	
2:0	R-XW	011	AGP Data Rate	
		111	If RAGP30 (bit3) is 1, the default value is 011: supports 4X and 8X data transfer rate.	
			If RAGP30 (bit3) is 0, the default value is 111: supports 1X, 2X and 4X data transfer rate.	

Note: 0700_0A0Bh when RAGP30 is 1; 1F00_0207h when RAGP30 is 0.

Offset Address: CAPPTR + 08h (D0F0 8B-88h)

AGP Command Default Value: 0000 0000h

Bit	Attribute	Default	Description					
31:24	RZ-IW	0	Max # of AGP Command Requests					
23:16	RZ-IW	0	Reserved					
15:13	RZ-IW	0	Reserved for master devices					
12:10	RW	0	prating Cycle					
9	RW	0	SBA Enable					
			0: Disable 1: Enable					
8	RW	0	AGP Enable					
			0: Disable 1: Enable					
7	RW	0	64-Bit GART					
			Not supported					
6	RZ-MW	0	Reserved					
5	RW	0	Over 4G Support					
			0: Disable 1: Enable					
4	RW	0	Fast Write Enable					
			0: Disable 1: Enable					
3	RZ-MW	0	Reserved					
2:0	RW	0	AGP Data Transfer Rate					
			If RAGP30 (Rx84[3]) = 1					
			001: 4X data transfer rate 010: 8X data transfer rate					
			If RAGP30 $(Rx84[3]) = 0$,					
			001: 1X data transfer rate 010: 2X data transfer rate					
			100: 4X data transfer rate					

Offset Address: CAPPTR + 0Ch (D0F0 8F-8Ch)

AGP Isochronous Status Default Value: 0000 0000h

AGP isochronous transaction is not supported, therefore, this register is read zero.

Bit	Attribute	Default	Description	Mnemonic
31:24	_	0	Reserved	
23:16	R-IW	0	Maximum Bandwidth (in unit of 32 bytes)	
			Used for isochronous transactions	
15:8	R-IW	0	Maximum Number of Isochronus Transactions in a Single Isochronous Period	
7:6	RZ-IW	00	Isochronous Payload Sizes Supported	ISOCH_Y
			00: 32,64,128,256 bytes 01: 64,128,256 bytes	
			10: 128,256 bytes 11: 256 bytes	
5:3	R-IW	0	Isochronous Data Transfer Maximum Latency (in unit of 1 us)	
2	_	0	Reserved	
1:0	R-WIC	00	Isochronous Error Code	
			00: No error	
			01: Isoch Request Overflow	
			1x: Reserved	

Offset Address: CAPPTR + 10h (D0F0 93-90h)

AGP Control Default Value: 0000 0000h

Bit	Attribute	Default	Description	Mnemonic
31:10	_	0	Reserved	
9	RW	0	Disable Calibration Cycle	
8	RW	0	Enable AGP Aperture	APEREN
			Set to 1 to enable AGP Aperture.	
			Note: RBKGTEN (Rx4D[5]) must be 1 to enable this function.	
7	RW	0	GTLB Enable	
			When set to 0, GART TLB entries are invalidated.	
			All AGP aperture access needs to fetch translation table first.	
6:0	_	0	Reserved	

Offset Address: CAPPTR + 14h (D0F0 97-94h)

AGP Aperture Size Default Value: 0001 0F00h

Bit	Attribute	Default	Description	Mnemonic
31:28	RW	0000	Aperture Page Size Select	PAGESZ[15:12]
			The page size is determined by the formula: 2 ^[n+12] .	
			Only 4KB page size, PAGESZ=0h, is supported.	
27	_	0	Reserved	
26:16	R-IW	01h	Page Size Supported	NEPG[10:0]
			If NEPG[N] is one, which indicates support of page size of (2^(N+12)).	
			Currently only 4KB page size is supported.	
15:12	_	0	Reserved	
11:0	RW	F00h	Aperture Size – Default size is 256MB	GTSZ[11:0]
			Refer to	
			Table 6 for detailed setting (Maximum aperture size: 2GB)	
			GTSZ[n]=0 forces APBASE[22+n] to 0 when $0 \le n \le 5$	
			$GTSZ[n]=0$ forces APBASE[22+n-2] to 0 when $8 \le n \le 11$	
			GTSZ[n]=1 allows APBASE[22+n] to be Read/Write-able.	
			GTSZ[11] to 1 and GTSZ[7:6] are hardwired to 0	
			When RAGP30 (Rx84[3]) is 0, only supports $4MB \sim 256MB$.	

Table 6. Aperture Size

Table 6. Aperture Size												
Aperture Size \ Rx94[11:0] (GTSZ)	11	10	9	8	7	6	5	4	3	2	1	0
4MB	1	1	1	1	0	0	1	1	1	1	1	1
8MB	1	1	1	1	0	0	1	1	1	1	1	0
16MB	1	1	1	1	0	0	1	1	1	1	0	0
32MB	1	1	1	1	0	0	1	1	1	0	0	0
64M	1	1	1	1	0	0	1	1	0	0	0	0
128M	1	1	1	1	0	0	1	0	0	0	0	0
256M	1	1	1	1	0	0	0	0	0	0	0	0
512M	1	1	1	0	0	0	0	0	0	0	0	0
1G	1	1	0	0	0	0	0	0	0	0	0	0
2G (Max Aperture Size)	1	0	0	0	0	0	0	0	0	0	0	0
4G	0	0	0	0	0	0	0	0	0	0	0	0

Offset Address: CAPPTR + 18h (D0F0 9B-98h)

AGP GART Table Pointer Default Value: 0000 0000h

Bit	Attribute	Default	Description				
31:12	RW	0	GART Table Base Address [31:12]				
11:0	_	0	Reserved				

Offset Address: CAPPTR + 1Ch (D0F0 9F- 9Ch)

AGP GART Table Pointer High

Bit	Attribute	Default	Description
31:0	RW	0	Base Address [63:32]
			Since OVER4G is not supported, OS should program this register to zero.
			This register is ignored.

Offset Address: CAPPTR + 20h (D0F0 A3-A0h)

AGP Isochronous Command Default Value: 0000 0000h

This register is not accessible since the ISOCH bit is cleared. Read will be return all zeros, write has no effect.

Bit	Attribute	Default	Description			
31:8	_	0	Reserved			
7:6	RW	0	Isochronous Payload Size			
			Default is ISOCH_Y (CAPPTR + 0C[7:6])			
5:0	_	0	Reserved			

Default Value: 0000 0000h

AGP Enhanced Control (B0-FFh)

Offset Address: B5h (D0F0)

AGP Back Door Control Default Value: 00h

Bit	Attribute	Default	Description
7:2	_	0	Reserved
1	RW	0	RAGP30 Software Setup RAGP30 (Rx84[3]) is over-written by the value of this register bit. (i.e. Read Rx84[3] will retrieve the value of RxB5[1])
_			Bit-0 must be set to 1 to enable this feature.
0	RW	0	RAGP30 Software Control
			0: Disable
			1: Enable, allows RAGP30 to be software programmable

Offset Address: B9h (D0F0)

AGP Mixed Control Default Value: 00h

Bit	Attribute	Default	Description
7	_	0	Reserved
6	RW	0	Hold GD Signal Level After De-assertion of RTXRDY
			0: Disable 1: Enable
5:0	_	0	Reserved

Offset Address: BCh (D0F0)

AGP Control Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	AGP Disable	
			0: No 1: Yes, disable AGP	
6	RW	0	AGP Read Synchronization	
			0: Disable 1: Enable	
5	RW	0	AGP Read Snoop DRAM Post-Write Buffer	
			0: Disable 1: Enable	
4	RW	0	PP2REQ (CPU/PCI1-to-PCI2 REQ) / AGP Read Priority	
			1: PP2REQ has higher priority if MGFIFO is not over 24 QW for low priority read,	
			0: Disable the function.	
3	RW	0	GRDY 2T Early Control	
			0: Disable 1: Enable	
2	RW	0	Enable FENCE / FLUSH	RFENCE
			0: LPR will be executed in out-of-order mode	
			1: Enable FENCE / FLUSH. All normal priority AGP operations are executed sequentially.	
1	RW	0	GGNT Parking Policy	RPKGNT
			0: Non-parking GGNT; GGNT is de-asserted after GFRAME or PIPE assertion,	
			1: Parking GGNT; after the assertion of GFRAME or PIPE, GGNT is kept asserted till GREQ de-asserted	
			or timeout.	
0	RW	0	AGP to PMSTR or C2P Turn Around Cycle	RGDARB
			0: 2 or 3T 1: 1T	

Note

- 1. When RPKGNT (RxBC[1]) is set to 1, GGNT will remain asserted until either GREQ de-asserts or data phase ready
- 2. When RGDARB (RxBC[0]) is set to 0, it allow C2P access when the previous PCI master transaction is a delayed transaction.
- 3: RFENCE (RxBC[2]) when enabled will force all requests executed in-order, which automatically enables FENCE/FLUSH function. When disable, FENCE/FLUSH function is not guaranteed.

Offset Address: BDh (D0F0)

AGP Miscellaneous Control Default Value: 02h

Bit	Attribute	Default		Description
7	RW	0	AGP Read Data Phase to GGNT Timing	
			0: Normal	1: 1T earlier
6	RW	0	PIPE to AGP Read Data Phase Timing	
			0: Normal	1: 1T earlier
5	RW	0	Disable Input on AGP GD and GCBE Pads	
			0: Input disable	1: Input enable
4	RW	0	AGP Performance Enhancement	
			0: Disable	1: Enable
3:0	RW	02h	AGP Data Phase Latency Timer (in unit of 4 GCLK	s)

Offset Address: BEh (D0F0)

AGP Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Select NMI / AGPBUSY# Function
			0: NMI 1: AGPBUSY#
6:1	_	0	Reserved
0	RW	0	CPU GART Read and AGP GART Write Coherency Enable
			0: Disable 1: Enable

Offset Address: BFh (D0F0)

AGP 3.0 Control Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	Enable CPU/PMSTR GART Access	RGTEN
			0: Disable 1: Enable	
			This control bit is used differently from APEREN of Rx90. Also, Rx4D[5] must be 0 for this control bit	
			to be effective.	
6	RW	0	AGP Calibration Enable	
			0: Disable 1: Enable	
5	RW	0	Mix Coherent / Non-coherent Access Enable	
			0: Disable 1: Enable	
4	RW	0	DBI/PIPE Pin Function	
			0: DBIH 1: PIPE	
3:0	_	0	Reserved	

Offset Address: C0h (D0F0)

AGPC CKG Control

Default Value: 00h

Bit	Attribute	Default		Description	
7:6	RW	00	CKG Rising-Time Control (R Port)		
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW			· · · ·	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	00	CKG Rising-Time Control (S Port)	· · · ·	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	00	CKG Falling-Time Control (S Port)	· · · ·	
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: C1h (D0F0)

AGPC CKG Control

Default Value: 00h

Bit	Attribute	Default		Description
7:4	_	0	Reserved	
3:2	RW	00	KG Rising-Time Control (D Port)	
			00: Default timing	01: Delay by 100 ps
			10: Delay by 200 ps	11: Delay by 300 ps
1:0	RW	00	CKG Falling-Time Control (D Port)	
			00: Default timing	01: Delay by 100 ps
			10: Delay by 200 ps	11: Delay by 300 ps

Offset Address: C2h (D0F0)

AGP Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default	Description
7	_	0	Reserved
6	RW	0	Sync AGP Data
			0: Disable 1: Enable
5:0	_	0	Reserved

Device 0 Function 1 (D0F1): Error Reporting

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 - 2h	RO	1314h	Device ID –Error Reporting
5 – 4h	RO	0006h	PCI Command
7 – 6h	RO	0200h	PCI Status
8h	RO	0	Revision ID
0B – 9h	RO	060000h	Class Code
0Dh	RO	0	Latency Timer
0Eh	RO	01h	Header Type
0Fh	RO	0	BIST
13 – 10h	_	_	Reserved
2D – 2Ch	RW1	0	Subsystem Vendor ID
2F – 2Eh	RW1	0	Subsystem ID
33 – 30h	RO	0	Reserved
37 – 34h	RO	0	Capability Pointer
3F – 38h	_	_	Reserved

V-Link Error Report (50-5Fh)

Offset Address: 58h (D0F1)

V-Link Error Command Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Parity Error / SERR# Report Through NMI
			0: Disable 1: Enable
6	RW	0	Parity Error / SERR# Report Through V-Link to SB
			0: Disable 1: Enable
5:0	_	0	Reserved

Host Bus Error Report (60-6Fh)

Offset Address: 68h (D0F1)

Host Parity Command Default Value: 00h

Bit	Attribute	Default		Description	
7	RW	0	Host Address Parity Generation / Checking		
			0: Disable	1: Enable	
6	_	0	Reserved		
5	RW	0	Host Response Parity Generation	Host Response Parity Generation	
			0: Disable	1: Enable	
4:0		0	Reserved		

AGP / PCI2 Non Standard Error Reporting (E0-FFh)

Offset Address: E1h (D0F1)

AGP / PCI2 Error Status Default Value: 00h

	Bit	Attribute	Default	Description
I	7:2	_	00	Reserved
I	1:0	RO	00	Isochronous Error Code from Rx8C[1:0]

Offset Address: E8h (D0F1) AGP / PCI2 Error Report Control Default Value: 00h

Bit	Attribute	Default	Description
7:5	_	0	Reserved
4	RW	0	Parity Error Report When AGP Data Parity Error Detected
			0: Disable 1: Enable
3:0	_	0	Reserved

Device 0 Function 2 (D0F2): Host Bus Control

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 – 2h	RO	2314h	Device ID –Host Interface
5 – 4h	RO	0006h	PCI Command
7 – 6h	RO	0200h	PCI Status
8h	RO	00	Revision ID
0B – 9h	RO	060000h	Class Code
0C	RO	00	Cache Line Size
0Dh	RO	00	Latency Timer
0Eh	RO	00	Header Type
0Fh	RO	00	BIST
13 – 10h		_	Reserved
2D – 2Ch	RW1	00	Subsystem Vendor ID
2F – 2Eh	RW1	00	Subsystem ID
33 – 30h	RO	00	Reserved
37 – 34h	RO	00	Capability Pointer
3F - 38h		_	Reserved

Host CPU Control (50-5Fh)

Offset Address: 50h (D0F2) Request Phase Control

Reques	st Phase (Control	—— Defau	ılt Value: 00h
Bit	Attribute	Default	Description	Mnemonic
7	RO	dip	IOQ (In-Order Queue) Depth (Powell) 0: 1 level 1: 8 level Default sets from the inverse of the VD2 signal during system initialization. For strap pin information,	
6	RO	dip	check the Strap Pin table for details. Dual CPU 0: Single CPU 1: Dual CPU	
			Default sets from the VD7 signal during system initialization. For strap pin information, check the Strap Pin table for details.	
5	_	0	Reserved	
4:0	RW	0	Dynamic Defer Snoop Stall Count Value for the Defer Snoop Stall Counter. The timer starts counting at the beginning of the snoop phase of C2P cycle; it increases one for every 2 HCLKs. If the C2P cycle is pending when the timer expires, and there are pending ADS#, a Defer/Retry response will be replied to the host.	
			For medium decoding PCI slave device; the optimal value for DEFTIM is 8.	

Table 7. Dynamic Defer Snoop Stall Table

Timer Expire	New Pending ADS#	PCI Completion	Action
No	-	No	Snoop stall till PCI complete
No	-	Yes	Normal Data Response
Yes	No	No	Snoop stall till either arrival of new pending ADS# or PCI complete
Yes	No	Yes	Normal Data Response
Yes	Yes	No	Defer/Retry Response
Yes	Yes	Yes	Normal Data Response

Offset Address: 51h (D0F2)

CPU Interface Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic		
7	RW	0	Fast Ready for CPU Memory Read Cycle			
			isable, wait until all 8QWs are received before DRDY# assertion			
			1: Enable, DRDY# assertion timing is set up through Rx60-67			
6	RW	0	Read Around Write	RAW		
			0: Disable 1: Enable			
5	RW	0	Host Controller DRAM Request Queue Control (DRQCTL)			
			0: Disable DRQCTL pipeline			
			1: Enable DRQCTL pipeline			
4	RW	0	CPU to PCI Read Defer			
			0: Disable 1: Enable			
3	RW	0	2 Defer/ Retry Entries			
			0: Disable 1: Enable			
2	RW	0	2 Defer / Retry Entries Sharing			
			0: One entry for each processor			
			1: Each entry is shared by the two processors			
1	RW	0	PCI Master Pipelined Access			
			0: Disable 1: Enable			
0	_	0	Reserved			

Offset Address: 52h (D0F2)

CPU Interface Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic			
7	RW	0	Enable CPU Read / Write DRAM 0WS for Back-to-Back Pipeline Access				
			0: Disable 1: Enable				
6	RW	0	HREQ# (Host Continuous DRAM Ownership) / HPRI (Host High Priority DRAM Request)				
			Assertion to DRAM Controller				
			0: Disable				
			1: Enable assertion of HREQ# / HPRI to DRAM Controller for efficient memory utilization / faster data				
			access.				
5	RW	0	AGTL+ Pullup Enable				
			0: Disable 1: Enable				
			Default sets from the inverse of the VD3 signal during system initialization. For strap pin information,				
			check the Strap Pin table for details.				
4	_	0	Reserved				
3	RW	0	Write Retire Policy After 2 Writes	RFRAW			
			0: Disable 1: Enable				
2	_	0	Reserved				
1	RW	0	Consecutive Speculative Read				
			0: Disable 1: Enable				
0	RW	0	Speculative Read				
			0: Disable 1: Enable				

Offset Address: 53h (D0F2)

Arbitration Default Value: 00h

Bit	Attribute	Default	Description	
7:4	RW	0	Host Timer (in unit of 4 HCLKs)	P6TIM[3:0]
			Host Timer guarantees a time slot of P6TIM * 4 HCLK for pipelined CPU's ADS#.	
3:0	RW	0	BPRI# Timer (in unit of 4 HCLKs)	PRITIM[3:0]
			BPRI# timer guarantees a time slot of PRITIM*4 HCLK for pending master requests.	

Offset Address: 54h (D0F2)

Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description		Mnemonic
7:5	RO	00	CPU FSB Frequency (Powell)		
			000: 100MHz		
			001: 133MHz		
			All others: Reserved		
			Default sets from the VD[0] signals during system initialization. For	strap pin information, check the	
			Strap Pin table for details.		
4	RW	0	Burst 8QW Host Memory Access		
			0: Disable 1: Enable		
3	RW	0	Host-Memory DRDY# Assertion Adjustment		RFASTH
			0: Normal mode, no adjustment 1: Special mo	ode	
			This bit's setting should follow RDRDYLPH / RDRDYQPH / RD	RDYPH_WS (Rx60 - Rx67)	
			settings. Check Rx55[1] for details of DRDY# assertion adjustme	nt.	
2	RW	0	PCI Master 8QW Memory Access		
			0: Disable 1: Enable		
1	RW	0	Memory-to-Host Conversion Circuit		
			0: Transparent mode 1: Sync 1T in	certain clock phases	
			Transparent mode, the default operating mode, is faster than Sync m	ode.	
0	RW	0	PCI2 Operating Mode (for EOI message processing)		
			0: AGP mode 1: VPX mode	2	

Offset Address: 55h (D0F2)

Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description	
7	_	0	Warm CPU Reset (CPURST#) Trigger	
			Write 0->1 transition will trigger warm CPURST#	
6	RW	1	Reserved	
5	RW	0	CLK4XEN Assertion Control	
			0: Disable	
			1: Enable; CLK4XEN is asserted on the entire request cycle.	
4	RW	0	Fast Command 8QW Pre-fetch	
			0: Disable 1: Enable	
3	_	0	Reserved	
2	RW	0	Medium Threshold for Write Policy (see ROPTW (Rx56[7:4]) for details)	
			0: Disable medium threshold	
			1: Add a medium threshold in Write Queue to enable earlier memory write.	
			Refers to Rx5D for write policy.	
1	RW	0	DRDY# Early / Late Assertion	
			0: 2T early 1: 2T late	
			This bit is effective when RFASTH (Rx54[3]) is 1.	
0	_	0	Reserved	

Offset Address: 56h (D0F2)

Write Policy Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	0	Medium Threshold for Write Policy	ROPTW[3:0]
3:0	_	0	Reserved	

Offset Address: 57h (D0F2)

Miscellaneous Control Default Value: 00h

Bit	Attribute	Default		Description
7:5	RW	001	DRAM Operating Frequency	
			000: 100MHz	001: 133MHz
			010: 166MHz	011: 200MHz
			100: 266MHz	101: 333MHz
			110/111: Reserved	
4:0	_	0	Reserved	

Offset Address: 59h (D0F2)

CPU Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default	Description
7:1	_	0	Reserved
0	RW	0	Lowest-Priority IPI (Inter-Processor Interrupt) Support
			0: Disable 1: Enable

Offset Address: 5Ch (D0F2)

CPU Miscellaneous Control Default Value: 00h

Bit	Attribute	Default		Description
7:5	_	0	Reserved	
4	RW	0	APIC Data Bit 11 (D11) Mask	
			0: D11 is not masked	1: D11 is masked to 0
3	RW	0	APIC Redirection Hint Information Obtained Fro	m
			0: Address filed	1: Data field
2	RW	0	APIC Destination Mode Information Obtained Fr	om
			0: Address field	1: Data field
1	RW	0	APIC Cluster Mode Support	
			0: Disable	1: Enable
0	RW	0	Redirect Lowest Priority APIC Requests to CPU0	(i.e. CPU0 is treated as the lowest priority processor)
			0: Disable	1: Enable.

Offset Address: 5Dh (D0F2)

Write Policy Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	0	Write Request High Water Mark	RWLM[3:0]
3:0	RW	0	Write Request Low Water Mark	RWBS[3:0]

Table 8. CPU Write Request Policy

RAW (Rx51[6])	RFRAW (Rx52[3])	RWLM (Rx5D[7:4])	RWBS (Rx5D[3:0])	Write Policy
1	0	X	X	Will not handle write request until FIFO is full
1	1	4	2	Will process write request when write request number equals to RWLM, and stop processing write request when write request number drops to RWBS.

Offset Address: 5Eh (D0F2)

Bandwidth Timer Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	0	Host Bandwidth Timer Limit	RHBWTM[3:0]
3:0	RW	0	DRAM Bandwidth Timer Limit	RDBWTM[3:0]

Offset Address: 5Fh (D0F2)

CPU Miscellaneous Control

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	Off Page Definition: Same Bank Different Sub-Bank Considered as Off-Page	
			0: Disable 1: Enable (suggested setting)	
			Set to 1 will reduce burst length of posted-write for better performance	
6	RW	0	Back-to-back Fast Read (Burst C2P and C2M read)	
			0: Disable 1: Enable (suggested setting)	
5:4	_	0	Warm CPU reset(CPURST#) duration control	
			00: 512us 01: 1024us	
			10: 1523us 11: 2048us	
3	RW	0	Pipeline APIC / Master Transaction	
			0: APIC requests will not be pipelined with master requests.	
			1: APIC requests can be pipelined with normal master requests.	
			This bit must be set to 0.	
2	RW	0	Host Bandwidth Timer	RHOSTBW
			0: Disable 1: Enable	
			Host Bandwidth Timer Limit is set up by RHBWTM[3:0] (Rx5E[7:4]).	
1	RW	0	DRAM Bandwidth Timer	RDRAMBW
			0: Disable 1: Enable	
			DRAM Bandwidth Timer Limit is set up by RDBWTM[3:0] (Rx5E[3:0]).	
0	RW	0	CPU Access DRAM Read after Write Enhancement	
			0: Disable 1: Enable	

Table 9. Host / DRAM Bandwidth Setting Policy

RHOSTBW (Rx5F[2])	RDRAMBW (Rx5F[1])	Host / DRAM Bandwidth Setting Policy
0	0	Disable the new DRAM/Host Bandwidth Arbiter
0	1	Refers to the DRAM Bandwidth Timer
1	0	Refers to the HOST Bandwidth Timer
1	1	Dynamically toggles between the two Host/Dram bandwidth timers. Both timers, RHBWTM and RDBWTM are used by the arbitration logic.

Host Interface DRDY# Timing Control (60-6Fh)

Offset Address: 60h (D0F2)

Line DRDY# Timing Control 1 Default Value: 00h

Bit	Attribute	Default	Description
7:6	RW	0	Read Line Phase 4 Wait State
5:4	RW	0	Read Line Phase 3 Wait State
3:2	RW	0	Read Line Phase 2 Wait State
1:0	RW	0	Read Line Phase 1 Wait State

Offset Address: 61h (D0F2)

Line DRDY# Timing Control 2 Default Value: 00h

Bit	Attribute	Default	Description
7:6	RW	0	Read Line Phase 8 Wait State
5:4	RW	0	Read Line Phase 7 Wait State
3:2	RW	0	Read Line Phase 6 Wait State
1:0	RW	0	Read Line Phase 5 Wait State

Offset Address: 62h (D0F2)

Line DRDY# Timing Control 3 Default Value: 00h

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:2	RW	0	Read Line Phase 10 Wait State
1:0	RW	0	Read Line Phase 9 Wait State

Default Value: 00h

Offset Address: 63h (D0F2) QW DRDY# Timing Control 1

Bit	Attribute	Default	Description
7:6	RW	0	Read QW Phase 4 Wait State
5:4	RW	0	Read QW Phase 3 Wait State
3:2	RW	0	Read QW Phase 2 Wait State
1:0	RW	0	Read QW Phase 1 Wait State

Offset Address: 64h (D0F2) QW DRDY# Timing Control 2

Bit	Attribute	Default	Description
7:6	RW	0	Read QW Phase 8 Wait State
5:4	RW	0	Read QW Phase 7 Wait State
3:2	RW	0	Read QW Phase 6 Wait State
1:0	RW	0	Read QW Phase 5 Wait State

Offset Address: 65h (D0F2) QW DRDY# Timing Control 3

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3:2	RW	0	Read QW Phase 10 Wait State
1:0	RW	0	Read OW Phase 9 Wait State

Offset Address: 66h (D0F2)

Read Line Burst DRDY# Timing Control 1

Bit	Attribute	Default	Description		
7	RW	0	Phase 8 Wait State		
6	RW	0	Phase 7 Wait State		
5	RW	0	Phase 6 Wait State		
4	RW	0	Phase 6 Wait State		
3	RW	0	Phase 4 Wait State		
2	RW	0	Phase 3 Wait State		
1	RW	0	Phase 2 Wait State		
0	RW	0	Phase 1 Wait State		

Offset Address: 67h (D0F2)

Read Line Burst DRDY# Timing Control 2

Bit	Attribute	Default	Description	
7	_	0	Turnomg on this register will turn off the pad not used and it will also turn off HD[63:32]# pad when operate	
			in V4-lite mode.	
6			Disable BREQ0# control of Host Interface dynamic clock wakeup.	
5	RW	0	Phase 10 Wait State	
4	RW	0	Phase 9 Wait State	
3:0		0	Reserved	

Note: Check BIOS Porting Guide for RDRDY register settings.

Default Value: 00h

Default Value: 00h

Default Value: 00h

Offset Address: 6F-68h (D0F2)

APIC CPU Priority

Default Value: 00h

Offset Address	Attribute	Default	Description
6Fh	RO	0	Priority of CPU ID#7
6Eh	RO	0	Priority of CPU ID#6
6Dh	RO	0	Priority of CPU ID#5
6Ch	RO	0	Priority of CPU ID#4
6Bh	RO	0	Priority of CPU ID#3
6Ah	RO	0	Priority of CPU ID#2
69h	RO	0	Priority pf CPU ID#1
68h	RO	0	Priority of CPU ID#0

Host AGTL+ I/O Circuit (70-7Fh)

Offset Address: 70h (D0F2)

Host Address Pad (2x) Pullup Driving

Bit	Attribute	Default	Description	
7	_	0	Reserved	
6:4	RW	0	X Address Strobe Pad Pullup Driving – (HADSTB1#, HADSTB0#)	
3	_	0	eserved	
2:0	RW	0	2X Address Pad Pullup Driving – (HA[31:3]#, HREQ[4:0]#)	

Offset Address: 71h (D0F2)

Host Address Pad (2x) Pulldown Driving

Bit	Attribute	Default	Description	
7	_	0	Reserved	
6:4	RW	0	X Address Strobe Pad Pulldown Driving – (HADSTB1#, HADSTB0#)	
3	_	0	Reserved	
2:0	RW	0	2X Address Pad Pulldown Driving – (HA[31:3]#, HREQ[4:0]#)	

Offset Address: 72h (D0F2)

Host Data Pad (4x) Pullup Driving

Bit	Attribute	Default	Description	
7	_	0	Reserved	
6:4	RW	0	X Data Strobe Pad Pulldown Driving – (HDSTB[3:0]N#, HDSTB[3:0]P#)	
3	_	0	Reserved	
2:0	RW	0	4X Data Pad Pulldown Driving – (HD[63:0]#, HDBI[3:0]#)	

Offset Address: 73h (D0F2)

Host Data (4x) Pulldown Driving

Default Value: 00h

Bit	Attribute	Default	Description	
7	_	0	eserved	
6:4	RW	0	X Data Strobe Pad Pulldown Driving – (HDSTB[3:0]N#, HDSTB[3:0]P#)	
3	_	0	eserved	
2:0	RW	0	4X Data Pad Pulldown Driving - (HD[63:0]#, HDBI[3:0]#)	

Offset Address: 74h (D0F2)

Miscellaneous Control Default Value: 00h

Bit	Attribute	Default		Description	
7:6	_	0	Reserved		
5	RW	0	HD[63:48]#, HD[31:16]#, HDBI[3,1]# Output Stagger Delay 1ns		
			0: No delay	1: 1ns delay	
4	RW	0	HA[31:17]# Output Stagger Delay		
			0: No delay	1: 1ns delay	
3:2	RW	00	HDSTB[3:0]N#, HDSTB[3:0]P# Extra Output	Delay	
			00: No delay	01: 150 ps	
			10: 300 ps	11: 450 ps	
1:0	RW	00	HADSTB1#, HADSTB0# Extra Output Delay		
			00: No delay	01: 150 ps	
			10: 300 ps	11: 450 ps	

Offset Address: 75h (D0F2)

AGTL+ I/O Circuit Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	AGTL+ 4X Input: Add Delay to Filter Noise (TR3 Control)		
			0: Disable 1: Enable		
6	RW	0	AGTL+ 2X Input: Add Delay to Filter Noise (TR3 Control)		
			0: Disable 1: Enable		
5	RW	0	AGTL+ Slew Rate		
			0: Disable 1: Enable		
4	RW	0	Relative Input Delay Between Data And Strobe Signals		
			This bit, together with Rx74[7:6], is used to fine tune the relative input delay between data and strobe signals.		
3	RW	0	Input Always Pullup (PULLUP)		
			0: Disable 1: Enable		
2	RW	0	AGTL+ TR Function (always pullup) for STROBE		
			0: Disable 1: Enable		
1	RW	0	AGTL+ TR Function (always pullup) for DATA		
			0: Disable 1: Enable		
0	RW	0	AGTL+ Dynamic Compensation		
			0: Disable 1: Enable		

Offset Address: 76h (D0F2)

AGTL+ Compensation Status Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic		
7	RW	0	Auto-compensation Driving			
			1: Enable Auto mode			
6:4	RO	0	AGTL+ Compensation Result	RPOSDRV[2:0]		
3	RW	0	AGTL+ POS Function			
			1: Power-down AGTL+ input when not in input mode			
2		0	Reserved			
1	RW	0	Disable DBI Function			
			b: Enable DBI			
			1: Disable DBI (DBI always high including DBI double-check)			
0	RW	0	BI Function SI Function			
			0: Minimize data change count (through data comparison with previous data)			
			1: Minimize AGTL+ pulldown count			

Offset Address: 77h (D0F2)

AGTL+ Auto Compensation Offset

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	0	2X AGTL+ IO Pad Driving Offset to Compensation Result (Rx76[6:4])	RGTLOST2X[3:0]
3:0	RW	0	4X AGTL+ IO Pad Driving Offset to Compensation Result (Rx76[6:4])	RGTLOST4X[3:0]
			Note: The actual driving to GTL pad is RPOSDRV+RGTLOST2X or RPOSDRV+RGTLOST4X.	
			RGTLOST2X/RGTLOST4X can be either positive or negative offset; negative offset is represented in	
			2's complement, so the driving offset value ranges from -8 to +7.	

Default Value: 00h

Default Value: 00h

Default Value: AAh

Default Value: 1Bh

Offset Address: 78h (D0F2) Host FSB CKG Control

Bit	Attribute	Default		Description	
7:6	RW	00	CKG Falling-Time Control for Host Interface (S port)		
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
5:4	RW	00	CKG Rising-Time Control for Host Interface (S port)		
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
3:2	RW	00	CKG Falling-Time Control for Host Interface		
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	
1:0	RW	00	CKG Rising-Time Control for Host Interface		
			00: Default timing	01: Delay by 100 ps	
			10: Delay by 200 ps	11: Delay by 300 ps	

Offset Address: 79h (D0F2)

Address / Address Clock Output Delay Control

Bit	Attribute	Default	Description						
7:6	RW	10	Group 0 Address Output Delay						
			00: Delay = Td - 0.3ns	01: Delay = Td - 0.15ns					
			10: Delay = Td	11: Delay = $Td + 0.15ns$					
			Delay (Td) = 650ps (min), 750ps (typ)	, 850ps (max) from CK to CKO0~CKO18					
5:4	RW	10	Group 0 Address Clock Output Dela	ny					
			00: Delay = $Td - 0.3ns$	01: Delay = $Td - 0.15ns$					
			10: Delay = Td	11: Delay = $Td + 0.15ns$					
			Delay (Td) = 650ps (min), 750ps (typ)	Delay (Td) = 650ps (min), 750ps (typ), 850ps (max) from CK to CKO0~CKO18					
3:2	RW	10	Group 1 Address Output Delay	Group 1 Address Output Delay					
			00: Delay = $Td - 0.3ns$	01: Delay = $Td - 0.15ns$					
			10: Delay = Td	11: Delay = $Td + 0.15ns$					
			Delay (Td) = 650ps (min), 750ps (typ)	Delay (Td) = 650ps (min), 750ps (typ), 850ps (max) from CK to CKO0~CKO18					
1:0	RW	10	Group 1 Address Clock Output Dela	Group 1 Address Clock Output Delay					
			00: Delay = $Td - 0.3ns$	01: Delay = Td - 0.15ns					
			10: Delay = Td	11: Delay = $Td + 0.15ns$					
			Delay (Td) = 650ps (min), 750ps (typ)	, 850ps (max) from CK to CKO0~CKO18					

Offset Address: 7Ah (D0F2)

Address Strobe Input Delay Control

Bit	Attribute	Default	Description
7:6	_	0	Reserved
<5:3>	RW	011	HASTB0 Address Strobe Input Delay
			Default value 011 will let HASTB0 balance with address group0 data.
			Value greater than 011 will delay HASTB0 about 50ps per scale.
			Value less than 011 will early HASTB0 about 50ps per scale.
2:0	RW	011	HASTB1 Address Strobe Input Delay
			Default value 011 which should let HASTB1 balance with address group1 data.
			Value greater than 011 will delay HASTB1 about 50ps per scale.
			Value less than 011 will early HASTB1 about 50ps per scale.

Default Value: 55h

Default Value: 55h

Offset Address: 7Bh (D0F2)

Address CKG Rising / Falling Time Control

Bit	Attribute	Default		Description					
7:6	RW	01	Group 0 Address CKG Falling-Time Control						
			00: Default timing	01: Delay by 100 ps					
			10: Delay by 200 ps	11: Delay by 300 ps					
5:4	RW	01	Group 0 Address CKG Rising-Time Control						
			00: Default timing	01: Delay by 100 ps					
			10: Delay by 200 ps	11: Delay by 300 ps					
3:2	RW	01	Group 1 Address CKG Falling-Time Control						
			00: Default timing	01: Delay by 100 ps					
			10: Delay by 200 ps	11: Delay by 300 ps					
1:0	RW	01	Group 1 Address CKG Rising-Time Control						
			00: Default timing	01: Delay by 100 ps					
			10: Delay by 200 ps	11: Delay by 300 ps					

Offset Address: 7Ch (D0F2)

Address CKG Clock Rising / Falling Time Control

Bit	Attribute	Default		Description				
7:6	RW	01	Group 0 Address Clock CKG Falling-Time Control	l				
			00: Default timing	01: Delay by 100 ps				
			10: Delay by 200 ps	11: Delay by 300 ps				
5:4	RW	01	Group 0 Address Clock CKG Rising-Time Control					
			00: Default timing	01: Delay by 100 ps				
			10: Delay by 200 ps	11: Delay by 300 ps				
3:2	RW	01	Group 1 Address CKG Falling-Time Control					
			00: Default timing	1				
			10: Delay by 200 ps	11: Delay by 300 ps				
1:0	RW	01	Group 1 Address CKG Rising-Time Control					
			00: Default timing	01: Delay by 100 ps				
			10: Delay by 200 ps	11: Delay by 300 ps				

Default Value: 0100 0000h

Default Value: 0000 0000 h

Device 0 Function 3 (D0F3): DRAM Bus Control

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description		
1 – 0h	RO	1106h	Vendor ID		
3 – 2h	RO	3314h	Device ID – DRAM Control		
5 – 4h	RO	0006h	PCI Command		
7 – 6h	RO	0200h	PCI Status		
8h	RO	00	Revision ID		
0B – 9h	RO	060000h	Class Code		
0Dh	RO	00	Latency Timer		
0Eh	RO	00	Header Type		
0Fh	RO	00	BIST		
13-10h	_	_	Reserved		
2D – 2Ch	RW1	00	Subsystem Vendor ID		
2F – 2Eh	RW1	00	Subsystem ID		
33 – 30h	RO	00	Reserved		
37 – 34h	RO	00	Capability Pointer		
3F – 38h			Reserved		

Note: All Function 3, DRAM Controller, registers are implemented in Powell.

DRAM Rank (Row) Ending Address (40-4Fh)

Offset Address: 47-40h (D0F3)
DRAM Rank Ending Address

Offset Address	Attribute	Default	Description
40h	RW	01h	Virtual Rank 0 Ending Address (HA[31:26]#)
41h	RW	00h	Virtual Rank 1 Ending Address (HA[31:26]#)
42h	RW	00h	Virtual Rank 2 Ending Address (HA[31:26]#)
43h	RW	00h	Virtual Rank 3 Ending Address (HA[31:26]#)

Offset Address: 4F-48h (D0F3)
DRAM Rank Beginning Address

Offset Address	Attribute	Default	Description
48h	RW	00h	Virtual Rank 0 Beginning Address (HA[31:26]#)
49h	RW	00h	Virtual Rank 1 Beginning Address (HA[31:26]#)
4Ah	RW	00h	Virtual Rank 2 Beginning Address (HA[31:26]#)
4Bh	RW	00h	Virtual Rank 3 Beginning Address (HA[31:26]#)

Default Value: 0022h

Default Value: 11h

Default Value: 10h

MA Map / Command Rate (50-53h)

Offset Address: 51-50h (D0F3)

DRAM MA Map Type

Bit	Attribute	Default	Description				
15: 8	_	0	Reserved				
7:5	RW	001	Rank 0/1 MA Map Type				
4	RW	0	Rank 0/1 1T Command Rate				
			0: Disable (2T command)	1: 1T command			
3:1	RW	001	Rank 2/3 MA Map Type				
0	RW	0	Rank 2/3 1T Command Rate				
			0: Disable (2T command)	1: 1T command			

Table 10. Rank MA Map Type Table

ı	Rank MA Map Type	0	1	2	3	4	5	6	7
	Bank Address Bits	2	2	2	2		3	3	3
	Row Address Bits	13-12	14-12	15-12	15-13	Rsvd	15-12	15-12	15-13
	Column Address Bits	9	10	11	12	KSVU	10	11	12
	DRAM Size (Byte)	128M-64M	512M-128M	2G-256M	4G-1G		2G-256M	4G-512M	8G-2G

Offset Address: 52h (D0F3)

Bank Interleave Address Select

Bit	Attribute	Default	Description	Mnemonic
7	_	0	Reserved	_
6:4	RW	001	BA0 Address Select	RBA0SEL_[2:0]
3	_	0	Reserved	_
2:0	RW	001	BA1 Address Select	RBA1SEL_[2:0]

Note: Refer to Bank Interleave Address Table below.

Offset Address: 53h (D0F3)

Bank / Rank Interleave Address Select

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	BA2 Support (turn on if any 8BK-device exists)	
6:4	RW	001	BA2 Address Select	RBA2SEL_[2:0]
3:2	RW	000	Rank Interleave Address Bit 1 (RA1) Select	RINLV1SEL_[1:0]
1:0	RW	00	Rank Interleave Address Bit 0 (RA0) Select	RINLV0SEL_[1:0]

Table 11. DRAM Bank Address Table

RBAxSEL_[2:0] where x=0, 1, 2	0	1	2	3	4	5	6	7
BA2 RBA2SEL_[2:0] (Rx53[6:4])	A14	A15	A18	A19	rsvd	rsvd	rsvd	rsvd
BA1 RBA1SEL_[2:0] (Rx52[2:0])	A12	A14	A16	A18	A20	rsvd	rsvd	rsvd
BA0 RBA0SEL_[2:0] (Rx52[6:4])	rsvd	A13	A15	A17	A19	rsvd	rsvd	rsvd

Table 12. Rank Interleave Address Table

RINLVxSEL_[1:0] where x=0, 1	0	1	2	3
Rank Interleave Address Bit 1 RINLV1SEL_[1:0] (Rx53[3:2])	A14	A16	A18	A20
Rank Interleave Address Bit 0 RINLV0SEL [1:0] (Rx53[1:0])	A15	A17	A19	A21

Notes. 1. Rank Interleave Address Bit 2 is fixed at A6.

- 2. BA2, BA1, BA0, INLV1, INLV0 should select 5 different address bits for Rx53[7] =1
- 3. BA1, BA0, INLV1, INLV0 should select 4 different address bits for Rx53[7]=0 $\,$

Default Value: 81h

Default Value: 23h

Default Value: C5h

Default Value: 67h

Physical-to-Virtual Rank Mapping (54–57h)

Offset Address: 54h (D0F3)

Physical-to-Virtual Rank Mapping 1

Bit	Attribute	Default	Description	
7	RW	1	Enable Physical Rank 0	
			0: Disable 1: Enable the rank	
6:4	RW	000	Virtual Rank Number of Physical Rank 0	
3	RW	0	Enable Physical Rank 1	
			0: Disable 1: Enable the rank	
2:0	RW	001	Virtual Rank Number of Physical Rank 1	

Offset Address: 55h (D0F3)

Physical-to-Virtual Rank Mapping 2

Bit	Attribute	Default		Description	
7	RW	0	Enable Physical Rank 2		
			0: Disable	1: Enable the rank	
6:4	RW	010	Virtual Rank Number of	Virtual Rank Number of Physical Rank 2	
3	RW	0	Enable Physical Rank 3		
			0: Disable	1: Enable the rank	
2:0	RW	011	Virtual Rank Number of	f Physical Rank 3	

Offset Address: 56h (D0F3)

Physical-to-Virtual Rank Mapping 3

Bit	Attribute	Default		Description	
7	RW	1	Enable Physical Rank 4		
			0: Disable	1: Enable the rank	
6:4	RW	100	Virtual Rank Number of	Virtual Rank Number of Physical Rank 4	
3	RW	0	Enable Physical Rank 5		
			0: Disable	1: Enable the rank	
2:0	RW	101	Virtual Rank Number of	Physical Rank 5	

Offset Address: 57h (D0F3)

Physical-to-Virtual Rank Mapping 4

Bit	Attribute	Default		Description	
7	RW	0	Enable Physical Rank 6		
			0: Disable	1: Enable the rank	
6:4	RW	110	Virtual Rank Number of P	hysical Rank 6	
3	RW	0	Enable Physical Rank 7		
			0: Disable	1: Enable the rank	
2:0	RW	111	Virtual Rank Number of Physical Rank 7		

Default Value: 00h

Default Value: 00h

Default Value: 00h

Default Value: 00h

Virtual Rank Interleave Address Select / Enable (58–5Fh)

Offset Address: 58h (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 0

Bit	Attribute	Default	Description	Mnemonic
7	_	0	Reserved	
6:4	RW	000	Rank #0 Interleave Address Select (RINLV0AS[2:0]) This 3-bits field determines the Rank Interleave Address of Rank #0. If RINLV0ASn is 1 (where n = 0, 1, 2), the corresponding Rank Interleave Address bit of Rank 0 is 1, and vice versa.	RINLV0AS[2:0]
3	_	0	Reserved	
2:0	RW	000	Rank #0 Interleave Address Enable (RINLV0AEN[2:0]) 0: Mask 1: Enable This 3-bits field determines if the Rank Interleave Address of Rank #0 to be masked (used) or not. If RINLV0AENn is 0 (where n = 0, 1, 2), the corresponding Rank Interleave Address bit will be masked (ignored), and vice versa.	RINLV0AEN[2:0]

Offset Address: 59h (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 1

Bit	Attribute	Default	Description	Mnemonic
7	_	0	Reserved	
6:4	RW	000	Rank #1 Interleave Address Select	RINLV1AS[2:0]
			See the description on Rank 0 (Rx58).	
3	_	0	Reserved	
2:0	RW	000	Rank #1 Interleave Address Enable	RINLV1AEN[2:0]
			See the description on Rank 0 (Rx58).	

Offset Address: 5Ah (D0F3)

Virtual Rank Interleave Address Select / Enable - Rank 2

Bit	Attribute	Default	Description	Mnemonic
7	_	0	Reserved	
6:4	RW	000	Rank #2 Interleave Address Select	RINLV2AS[2:0]
			See the description on Rank 0 (Rx58).	
3		0	Reserved	
2:0	RW	000	Rank #2 Interleave Address Enable	RINLV2AEN[2:0]
			See the description on Rank 0 (Rx58).	

Offset Address: 5Bh (D0F3)

Virtual Rank Interleave Address Select / Enable – Rank 3

Bit	Attribute	Default	Description	Mnemonic
7	_	0	Reserved	
6:4	RW	000	Rank #3 Interleave Address Select See the description on Rank 0 (Rx58).	RINLV3AS[2:0]
3	—	0	Reserved	
2:0	RW	000	Rank #3 Interleave Address Enable See the description on Rank 0 (Rx58).	RINLV3AEN[2:0]

Following is an example, which shows a possible register settings for a system with 2 double-sided DIMM installed.

(1) Rx53[3:2] (RINLV1SEL_[1:0]) = 2 and Rx53[1:0] (RINLV0SEL_<1:0>)=2 selects A6, A18, A19 as the Rank Interleave Address for the system.

(2) If the settings on the Rank Interleave Address Selection of Rank 0, 1, 2, 3 (Rx58-5B[6:4]) are

Rx58[6:4] (RINLV0AS) = 001b

Rx59[6:4] (RINLV1AS) = 000b

Rx5A[6:4] (RINLV2AS) = 010b

Rx5B[6:4] (RINLV3AS) = 011b

And if the Rank Interleave Address Enable of Rank 0, 1, 2, 3 (Rx58-5B[2:0]) are

Rx58[2:0] (RINLV0AEN) = 011b

Rx59[2:0] (RINLV1AEN) = 011b

Rx5A[2:0] (RINLV2AEN) = 011b

Rx5B[2:0] (RINLV3AEN) = 011b

With the above register settings, Rank Interleave Address 2, A6, is ignored for the system, and the four ranks of the system are decided by A18 and A19 as shown in the following table.

A18	A19	Selected Rank
0	0	Rank#1
0	1	Rank#0
1	0	Rank#2
1	1	Rank#3

DRAM Timing (60-64h)

Offset Address: 60h (D0F3)

DRAM Pipeline Turn-Around Setting

Bit	Attribute	Default		Description	
7	RW	0	0ws Back-to-Back Write to	Different DDR Rank	
			0: Disable	1: Enable	
6	RW	0	Fast Read-to-Read Turn A	round	
			0: Disable		
			1: Enable (DQS post-amble of	overlap with preamble)	
5	RW	0	Fast Read-to-Write Turn A	round	
			0: Disable	1: Enable	
4	RW	0	Fast Write-to-Read Turn A	round	
			0: Disable	1: Enable	
3:2	_	00	Reserved		
1	RW	0	0ws DRAM Channel Switch	hing Between Read Cycles	
			0: Disable	1: Enable	
			This function is valid in 64-F	Bit mode.	
0	RW	0	0ws DRAM Channel Switching Between Write Cycles		
			0: Disable	1: Enable	
			This function is valid in 64-b	it mode.	

Offset Address: 61h (D0F3)

DRAM Timing for All Ranks

Bit	Attribute	Default		Description
7:6	RW	01b	Write Recovery Time (tWR) –	
			00: 2T	01: 3T
			10: 4T	11: 5T
5:0	RW	04h	Refresh-to-Active or Refersh-to-Re	efresh (tRFC)
			00: 8T	01h: 9T
				0nh: (8+n)T
			3eh: 70T	3f:h: 71T

Default Value: 44h

Default Value: 00h

Offset Address: 62h (D0F3) DRAM Timing for All Ranks

AM Timing for All Ranks Default Value: 21h

Bit	Attribute	Default	Description			
7:4	RW	0010b	Active-to-Precha	rge (tRAS)		
			0000: 5T		0001: 6T	
					0nh: (5+n)T	
			1110: 19T		1111: 20T	
3	RW	0	Enable DDR2 8-1	Bank Device Tin	ning Constraint (tRRD and tRP).	
2:0	RW	001	CAS Latency			
				<u>DDR</u>	DDR2	
			000	1.5	2	
			001	2	3	
			010	2.5	4	
			011	3	5	
			1xx	reserved	reserved	

Offset Address: 63h (D0F3) DRAM Timer for All Ranks

DRAM Timer for All Ranks Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00	Active-to-Active Period (tRRD)		
			00: 2T 01: 3T		
			10: 4T 11: 5T		
5:4	_	00	Reserved		
3	RW	0	Read-to-Precharge Delay (tRTP)		
			0: 2T 1: 3T		
2	_	0	Reserved		
1	RW	0	Write to Read Command Delay (tWTR)		
			DDR DDR2 0 1T 2T 1 2T 3T		
0	_	0	Reserved		

Offset Address: 64h (D0F3)

DRAM Timer for All Ranks

Default Value: 04h

Bit	Attribute	Default	Description
7:6	RW	00	Active to Read or Write Delay (tRCD)
			00: 2T 01: 3T
			10: 4T 11: 5T
5		0	Reserved
4	RW	0	CKE Minimum Pulse Width
			0: 2T 1: 3T
			This function is valid when RDYNCKE=1 (F4RXA1[6])
3:2	RW	01	Precharge Period (tPR)
			00: 2T 01: 3T
			10: 4T 11: 5T
1		0	Reserved
0	RW	0	Exit Precharge/Active Power Down to Any Command Delay
			0: 1T 1: 2T
			This function is valid when RDYNCKE=1 (F4RXA1[6])

DRAM Queue / Arbitration (65-67h)

Offset Address: 65h (D0F3)

DRAM Arbitration Timer Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	AGP Timer (unit of 4 DCLKS)
			DRAMC time slot allocated for AGP device.
3:0	RW	0	Host Timer (unit of 4 DCLKS)
			DRAMC time slot allocated for Host.

Offset Address: 66h (D0F3)

DRAM Queue / Arbitration Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7	RW	0	DRAMC Queue Size Greater Than 2	
			0: No 1: Yes	
6	RW	0	DRAMC Queue Size Not Equal To 4	
			0: No 1: Yes	
			To setup DRAMC queue size of 2, set Rx66[7:6] to 2'b00; sets Rx66[7:6] to 2'b11 for queue size of 3; sets Rx[7:6] to 2'b10 for queue size of 4.	
5:4	RW	00	Arbitration Parking Policy	
			00: Park at the last bus owner 01: Park at CPU	
			10: Park at AGP 11: Reserved	
3:0	RW	0000	Priority Promotion Timer (in unit of 4 DCLKs)	PTIM[3:0]
			A DRAM request is promoted to become a high priority request when it is pending over	
			PTIM*4 DRAM cycles.	

Offset Address: 67h (D0F3)

DIMM Command / Address Selection Default Value: 00h

Bit	Attribute	Default	Description
7:4	_	00	Reserved
3:2	RW	0	DIMM 1 Command / Address Selection
1:0	RW	0	DIMM 0 Command / Address Selection

DRAM Control (68-69h)

Offset Address: 68h (D0F3)

DDR Page Control Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0000	Page Register Life Timer (in unit of 16 DCLKs)
			When timer expired, the expired page will be closed.
3:0	RW	0000	DRAM Expired Page Threshold
			Close expired pages with precharge-all command when the number of expired pages exceeds the value.

Offset Address: 69h (D0F3)

DDR Page Control

Default Value: 00h

Bit	Attribute	Default	Description
7:6	RW	0	Bank Interleave
			00: No interleave 01: 2-bank
			10: 4-bank 11: 8 bank
5	RW	0	Enable Bank Address Scramble
			When set to 1, BA0=A13^A15^A17^A19, BA1=A12^A14^A16^A18^A20
4	RW	0	Auto-Precharge for TLB Read and CPU Write-Back
			0: Disable 1: Enable
3:2	_	0	Reserved
1	RW	0	Keep Page Active When Cross Bank
			0: Disable 1: Enable
0	RW	0	Multiple Page Mode
			0: Disable 1: Enable

Refresh Control (6A-6Bh)

Offset Address: 6Ah (D0F3)

Refresh Counter Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Refresh Counter (in unit of 16 DRAM CLKs)
			When set to 00, DRAM refresh is disabled

Offset Address: 6Bh (D0F3)

DRAM Miscellaneous Control Default Value: 10h

Bit	Attribute	Default		Description
7	RW	0	DQS Input DLL Adjus	stment
			0: Disable	1: Enable
6	RW	0	DQS Output DLL Adj	ustment
			0: Disable	1: Enable
5	RW	0	Burst Refresh	
			0: Disable	1: Enable
4	RW	1	DLL Manual Reset	
			0: Disable	1: Enable
3	RW	0	Enable Memory Size I	Detection, MA 32/16 33/17 Swap
			0: Disable	1: Enable
2:0	RW	0	SDRAM Operation Mo	ode Select
			000: Normal SDRAM N	Mode
			001: NOP Command Er	nable
			010: All-Banks-Prechar	ge Command Enable.
			011: MRS to SCMD	
			100: CBR, CAS-before-	RAS refresh, Cycle Enable
			101: Reserved	
			11x: Reserved	

DDR SDRAM Control (6C-6Fh)

Offset Address: 6Ch (D0F3)

DRAM Type Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	DDR2 DRAM Support
			0: Disable DDR2
6	RO	_	Memory Type Detected (through pin: MEMDET)
			0: DDR 1: DDR2
5		0	Reserved
4	RW	0	Disable DQM pins
3	RW	0	SDRAM Effective Burst Length
			For 64-bit mode ranks, SDRAM MRS
			0: BL4 1: BL8
2:0		0	Reserved

Offset Address: 6Dh (D0F3)

Reserved Default Value: C0h

Bit	Attribute	Default	Description
7:6	_	11	Reserved
5:0	_	00	Reserved

Note: If ODT is not supported, the registers can be programmed, i.e. the function of MD/CS mapping can work.

Offset Address: 6Fh (D0F3)

Miscellaneous Control Default Value: 40h

Bit	Attribute	Default	Description	
7	RW	0	Non-ONBD Protection for GART Table Fetching	
			0: Disable 1: Enable	
6	RW	1	DRAM-Side-Input-Pointer Non-Return-Zero Mode	
			0: Disable 1: Enable	
			Enable to avoid overwrite data	
5	RW	0	Disallow the 2nd Cycle of a 2T Command Overlapped with Command of Different Type on a Different	
			MA/SCMD Bus	
			0: Allow 1: Not allow	
			Sets this bit to 1 when read-modify-write mode is enabled (for example, ECC mode).	
4	RW	0	Read-Modify-Write (RMW) Option	
			When enabled, RMW is processed in relaxed mode.	
3	RW		Applying Same-Channel IO Turn-Around Constraints between Different Channels	
2	RW	0	Exclusive SCMD Buses	
			When enabled, the two SCMD buses are exclusive, do not have commands in the same cycle.	
1	_	0	Reserved	
0	RW	0	GART Table Access Option	
			When enabled, GART Table accessing is in relaxed mode.	
			Set this bit to 1 in DDR400 mode.	

DRAM Signal Timing Control (70–7Fh)

Offset Address: 73 - 70h (D0F3)

MD / DQS Output Delay Control Default Value: 0000 0000h

Offset Address	Attribute	Default	Description
71h	RW	0	Channel A MD Output Delay
70h	RW	0	Channel A DQS Output Delay

Note: these delay registers are in unsigned binary format.

Default Value: 00h

Default Value: 00h

Offset Address: 74h (D0F3)

DQS Output Clock Phase Control

Bit	Attribute	Default	Description	
7:3	_	0	Reserved	
2:0	RW	0	Initial Phase of Internal Clocks for DQS Output on Channel A	
			Each steps increase a phase of 1/8 T	

Offset Address: 75h (D0F3)

DQ Output Clock Phase Control

Bit	Attribute	Default	Description	
7:3	_	0	Reserved	
2:0	RW	0	Initial Phase of Internal Clocks for DQ Output on Channel A	
			Each steps increase a phase of 1/8 T	

Offset Address: 76h (D0F3)

Write Data Phase Control Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic	
7	RW	0	1 More Pipeline Stage on Write Data Path	_	
			Will provide safer timing margin but lower performance.		
6	_	0	Reserved	_	
5	RW	0	DQ/DQS output clocks bypass delay component (RX70-73 functionless)	_	
4	_	0	Reserved	_	
3:2	RW	00	Advance Write Phase Signals to Make Room for the Long Bus Delay	_	
			00: Normal mode 01: Advance 1 cycle		
			10: Advance 2 cycle 11: Forbidden		
			The 2 bits must be used with Bit [1:0] (RDWPH[1:0]).		
1:0	RW	00	Write MD/DQS/CAS Output Timing Range Control RDWPH[1:0]		
			Each increased step delays the output range by 1/4 T.		

Offset Address: 77h (D0F3)

DQS Input Delay Calibration Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Manual DQS Input Delay Setting	
			0:Auto 1: Manual	
6		0	Reserved	
5:0	RW	0	DDR DQS Input Delay This is the base delay value of DQS input signal in unsigned binary format. The reading value depends on Rx77[7]. If Rx77[7] = 0 (auto mode), DLL calibration result is returned when read.	

Offset Address: 78h (D0F3)

Channel A DQS Input Capture Range Control Default Value: 80h

Bit	Attribute	Default	Description		
7	RW	1	Manual DQS Input Capture Range Setting for Channel A		
			0: Auto	1: Manual	
6	RW	0	Enable DQS Input Capture Range De	etection for Channel A	
5:0	RW	00	DQS Input Capture Range for Channel A		
			Bit [5:4]		
			00: 1T prior to 1st DQS rising edge	01: at 1st DQS rising edge	
			10: 1T after	11: Reserved	
			Bit [3:1] 1/8T delay		
			Bit [0] 0.35ns fine tune delay		

Default Value: 00h

Offset Address: 7Ah (D0F3)

DQS Input Capture Range Control

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3	RW	0	Select DQS Input Pin as Input Capture Range Detection Signal
			0: DQSA0 1: DQSA4
2:0	RW	000	DQS Input Capture Range Offset Value for Channel A
			1/8T per step, 2's complement

Offset Address: 7Bh (D0F3)

Read Data Phase Control

Default Value: 00h

Bit	Attribute	Default	Description
7	_	0	Reserved
6:4	RW	000	MD Input Data Push Timing Control 00: Start moving data into internal buffer 1T after the 1st DRAM strobe 01: 1.5T 10: 2T 11: 2.5T
3:1	_	0	Reserved
0	RW	0	Extend DQS Input Capture Range 1/2T Earlier

Read-Only Control (7C-7Fh)

Offset Address: 7Ch (D0F3)

Channel A DQS Input Delay Offset Control

Bit	Attribute	Default	Description
7	RW	0	Reserved
6:0	RW	0	Channel A DQS Input Delay Offset (In two's complement)
			This is the offset values (in 2's complement format) from the base delay value (Rx77[5:0]) for Channel A
			DIMM.

Shadow RAM Control (80-83h)

Offset Address: 80h (D0F3)

Page-C ROM Shadow Control Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00	CC000-CFFFFh Memory Space	e Access Control	
			00: Read / Write Disable	01: Write Enable	
			10: Read Enable	11: Read / Write Enable	
5:4	RW	00	C8000-CBFFFh Memory Spac	e Access Control	
3:2	RW	00	C4000-C7FFFh Memory Space Access Control		
1:0	RW	00	C0000-C3FFFh Memory Space	e Access Control	

 $\underline{Offset\ Address:\ 81h\ (D0F3)}$

Page-D ROM Shadow Control Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00	DC000-DFFFFh Memory Space	e Access Control	
			00: Read / Write Disable	01: Write Enable	
			10: Read Enable	11: Read / Write Enable	
5:4	RW	00	D8000-DBFFFh Memory Space Access Control		
3:2	RW	00	D4000-D7FFFh Memory Space Access Control		
1:0	RW	00	D0000-D3FFFh Memory Space	Access Control	

Offset Address: 82h (D0F3)

Page-E ROM Shadow Control Default Value: 00h

Bit	Attribute	Default	Description		
7:6	RW	00	EC000-EFFFFh Memory Space Access Control		
			00: Read / Write Disable 01: Write Enable		
			10: Read Enable 11: Read / Write Enable		
5:4	RW	00	E8000-EBFFFh Memory Space Access Control		
3:2	RW	00	24000-E7FFFh Memory Space Access Control		
1:0	RW	00	E0000-E3FFFh Memory Space Access Control		

Offset Address: 83h (D0F3)

Page-F ROM, Memory Hole and SMI Decoding

Bit	Attribute	Default	Description	Mnemonic
7:6	_	0	Reserved	
5:4	RW	00	F0000-FFFFFh Memory Space Access Control	
			00: Read / Write Disable 01: Write Enable	
			10: Read Enable 11: Read / Write Enable	
3:2	RW	00	Memory Hole	
			00: None 01: 512K – 640K	
			10: 15M – 16M (1M) 11: 14M – 16M (2M)	
I	RW	0	Disable Data Access on SMRAM (Page A, B) in SM Mode 0: In SM mode, page A,B CPU Data R/W cycles are forwarded to the memory controller. 1: In SM mode, page A,B CPU Data R/W cycles are forwarded to the PCI bus Notes: 1. This bit is effective when Rx83[0] is set to 0. 2. SMRAM page A,B Code R/W cycles are always forwarded to the memory controller in SM mode.	RABKDOFF
0	RW	0	Enable Page A, B DRAM Access In Normal Mode 0: Page A, B CPU R/W cycles could be forwarded to memory controller or PCI bus depends on the setting of RABKDOFF (bit 1), the CPU operating mode (Normal or SM mode) as well as the type (Code or Data) of the CPU cycle. 1: Page A, B CPU R/W cycles (Code and Data) are always (in either Normal or SM mode) forwarded to the memory controller. Check the following table for details.	RRWABK

Table 13. CPU-to-SMRAM Cycle Flow

RABKDOFF (Rx83[1])	RRWABK (Rx83[0])	CPU MODE	Target of CODE Acces Cycle	Target of DATA Access Cycle
X	0	Normal	PCI	PCI
0	0	SMM	DRAM	DRAM
1	0	SMM	DRAM	PCI
X	1	Normal / SMM	DRAM	DRAM

DRAM Above 4G Support (84-8D)

Offset Address: 84h (D0F3)

Low Top Address - Low Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0000	Low Top Address - A[23:20]
3:0		0000	Reserved

Offset Address: 85h (D0F3)

Low Top Address - High Default Value: FFh

Bit	Attribute	Default	Description	
7:0	RW	FFh	Low Top Address - A[31:24]	

Offset Address: 86h (D0F3)

SMM and APIC Decoding Default Value: 01h

Bit	Attribute	Default	Description	Mnemonic			
7:6	_	0	Reserved				
5	RW	0	APIC Lowest Interrupt Arbitration				
			0: Disable 1: Enable				
4	RW	0	IO APIC Decoding				
			0: Cycles accessing FECx_xxxxh are passed to PCI1				
			1: Cycles accessing FEC7_FFFFh - FEC0_0000h are passed to PCI1; cycles accessing				
			FECF_FFFFh - FEC8_0000h access cycles are passed to PCI2.				
3	RW	0	MSI Support (Processor Message Enable)				
			Cycles accessing FEEx_xxxxh from masters are passed to PCI1 (PCIC will not claim)				
			: Cycles accessing FEEx_xxxxh from masters are passed to the Host side for snooping				
2	RW	0	Top 1MB SM Memory Enable	RTSMMEN			
			0: Disable 1: Enable				
			$SMMA[31:20] = \{LOWTOPA[31:24],4'h0\} - \{FBSZ[2:0],1'b0\};$				
			OSLOWTOPA[31:20] = TSMMA[31:20] - RTSMMEN				
1	_	0	Reserved				
0	RW	1	Compatible SMM Enable				
			0: Disable 1: Enable				

Offset Address: 89-88h (D0F3)

Misc. DRAM Address Setting Default Value:0000h

Bit	Attribute	Default	Description
15:11	_	0	Reserved
10:0	RW	0	The Address Next to the Last Valid DRAM Address

Offset Address: 8Ch (D0F3)

DQS Output Control Default Value: 00h

Bit	Attribute	Default	Description
7:2	_	0	Reserved
1	RW	0	MD/DQS Earlier Output Enable MDOE 1/2T earlier DOSOE 1/2T earlier if RDSOLNGPRE=0
0	RW	0	DQSOE 1/21 earlier if RDSOENGFRE=0 DQSOE 1/4T earlier if RDSOENGPRE2=1

Default Value: 00h

Default Value: 00h

Default Value: 01h

DRAM Clocking Control (90-9F)

Offset Address: 90h (D0F3)

DRAM Clock Operation Mode and Frequency

Bit	Attribute	Default		Description	
7:3	_	00h	Reserved		
2:0	RW	001	DRAM Operating Frequen	cy	
			000: 100MHz	001: 133MHz	
			010: 166MHz	011: 200MHz	
			100: 266MHz	101: 333MHz	
			110/111: Reserved		

Offset Address: 92h (D0F3)

CS/CKE Clock Phase Control

Bit	Attribute	Default	Description
6:3	RW	00	Reserved
2:0	RW	0	Channel A Sampling Clock Phase Select for CS/CKE
			Each step increases a phase of 1/8 T

Offset Address: 93h (D0F3)

SCMD/MA Clock Phase Control

Bit	Attribute	Default	Description
7:3	_	00	Reserved
2:0	RW	0	Channel A Sampling Clock Phase Select for SCMD/MA
			Each step increases a phase of 1/8 T

Offset Address: 94h (D0F3)

DCLKO Feedback Mode Output Control

Bit	Attribute	Default	Description
7:3	_	00	Reserved
2:0	RW	001	DCLKO Feedback Mode Output Control
			For Rx90[6] (RNODCLKIN) = 0 mode, if DCLKOA is fed back to DCLKIA, each increased step makes
			DCLKOB earlier; if DCLKOB is fed back to DCLKIA, each increased step delays DCLKOA (1/8T per step).

UMA Registers (A0-A5h)

Offset Address: A1-A0h (D0F3)

CPU Direct Access Frame Buffer Control

Bit	Attribute	Default	Description
15	RW	0	VGA enable
14:12	RW	0	Frame buffer size selection
			000/001/010/011/100/101/110 - None/2M/4M/8M/16M/32M/64M
11:1	RW	0	A<31:21>
0			CPU direct access frame buffer enable

Offset Address: A2h (D0F3)

VGA Timer I Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	VGA high priority timer (unit of 16 DCLK)
3:0	RW	0	VGA Timer (unit of 16 DCLK)

Offset Address: A3h (D0F3)

VGA Timer II Default Value: 00h

Bit	Attribute	Default	Description
7:2	_	0	Reserved
1:0	RW	0	Probing signal select

Offset Address: A5-A4h (D0F3)

GFX Misc. Default Value: 00h

Bit	Attribute	Default	Description
15:14	_	0	Reserved
13	RW	0	Reset internal GFX by BIOS
12		0	Reserved
11:10	RW	0	Fine tune GFX PCICLK
			00: default; 01: delay 0.1 ns; 10: early 0.15 ns; 11: early 0.3 ns
9:8	RW	0	Fine tune GFX MCK
			00: default; 01: delay 0.1 ns; 10: early 0.15 ns; 11: early 0.3 ns
7:5		0	Reserved
4	RW	0	GRLD delay 1 cycle (GFX low priority read data 1T delay)
			0: no delay; 1: delay 1T
3:2	_	0	Reserved
1			Enable AGP DIO (PAD) clock
0			GFX data delay to sync with clock (0:no sync, 1:sync with clock)

GMINT and AGPCINT Registers (B0-B8h)

Offset Address: B1-B0h (D0F3)

GMINT Misc. Default Value: 00h

Bit	Attribute	Default	Description
15:12	RW	0	Switching timer from high channel to low channel (unit of 16 DCLK)
11:8	RW	0	Switching timer from low channel to high channel (unit of 16 DCLK)
7	RW	0	Disable synced registers for GFX request-related signals to GMINT
			0: sync 1T, 1: bypass sync logic
6	RW	0	Allow GMINT low channel issue 8QW request
			(Coordinate with f2rx54<4>)
5	RW	0	Allow GMINT high channel issue 8QW request
			(Coordinate with f2rx54<4>)
4:3		0	Reserved
2:0	RW	0	Frame buffer rank

Offset Address: B8h (D0F3)

AGPCINT Misc.

Default Value: 00h

Bit	Attribute	Default	Description
7:4	_	0	Reserved
3	RW	0	Allow AGPCINT issue 8QW request (Coordinate with f2rx54<4>)
2	RW	0	GFX AGP read data sync 1T
1	RW	0	Disable AGPCINT pipe mode
0	RW	0	Reserved

Default Value: 00h

DDR2 - I/O Pad Control (D0-D3h)

Offset Address: D0h (D0F3)

DQ / DQS Termination Strength Manual Control

Bit	Attribute	Default	Description
7:4	RW	0	DQ/DQS Pull-up Termination Strength Manual Setting
3:0	RW	0	DQ/DQS Pull-down Termination Strength Manual Setting

Offset Address: D1h (D0F3)

DQ / DQS Termination Strength Status

Bit	Attribute	Default	Description
7:4	RO	0	DQ/DQS Pull-up Termination Strength Auto-comp Value
3:0	RO	0	DO/DOS Pull-down Termination Strength Auto-comp Value

Offset Address: D2h (D0F3)

DQ Driving Strength Status Default Value: 00h

Bit	Attribute	Default	Description
7:4	RO	0	DQ Pull-up Driving Strength Auto-comp Value
3:0	RO	0	DQ Pull-down Driving Strength Auto-comp Value

Offset Address: D3h (D0F3)

Compensation Control Default Value: 00h

Bit	Attribute	Default	Description	
7:2	_	0	Reserved	
1	RW	0	DDR Compensation Auto Mode	
			1: Disable Auto Mode 0: Enable Auto Mode	
			If DDR Compensation and DDR Auto Compensation are both enabled, the ODT settings for all DRAM pads are	
			from auto-comp circuit (RxD1); otherwise, if Auto Compensation is disabled, the ODT settings are from manual	
			setting (RxD0).	
0	RW	0	DDR Compensation	
			1: Enable 0: Disable	
			Disable DDR Compensation provides a power saving mode, however, the values of RxD1 and RxD2 should be	
			ignored.	

Note: The DQ driving bits of RxD2 is the result of the auto-comp circuit; however, there is no "auto-mode" for the DQ/DQB driving control since it depends on the actual number of ranks in the DRAM data channel

Default Value: 00h

DDR2 - ODT Control (D4-D7h)

Offset Address: D4h (D0F3) ODT Pullup / Pulldown Control

Bit	Attribute	Default	Description	
7	RW	0	Enable NB pad ODT	
			1: Enable ODT when reading data	
			0: Disable ODT unless RxD4[3:0] is not equal to 0	
6:4	_	0	Reserved	
3	RW	0	ODT Pullup Enable	
2	_	0	Reserved	
1	RW	0	ODT Pulldown Enable	
0	_	0	Reserved	

Offset Address: D5h (D0F3) ODT Driving and Range Select

Bit	Attribute	Default	Description		
7	RW	0	Channel-A DQ ODT Driving Select		
			0: Weak driving, for DDR or DDR2 without series resistance on MB		
			1: Strong driving for DDR2 with series resistance on MB		
6	_	0	Reserved		
5	RW	0	Channel-A DQS ODT Driving Select		
4	_	0	Reserved		
3	RW	0	Channel-A DQ ODT Range Select		
			1: 75 ohm 0: 150 ohm		
2	_	0	Reserved		
1	RW	0	Channel-A DQS ODT Range Select		
			1: 75 ohm 0: 150 ohm		
0	_	0	Reserved		

Offset Address: D6h (D0F3)

ODT Driving and Range Select Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	DCLKOA ODT Driving Select (DS)	
6		0	Reserved	
5	RW	0	SCMD/MAA Driving Select	
4	_	0	Reserved	
3	RW	0	CKEA Driving Select	
2		0	Reserved	
1	RW	0	CKEA ODT Range Select (RS)	
0	_	0	Reserved	

Offset Address: D8h (D0F3)

ODT Lookup Table for Channel A

Bit	Attribute	Default	Description			
7:6	RW	0	Rank 3 ODT Signal Selection			
			00:ODTA0 01: ODTA1			
			10:ODTA2 11: ODTA3			
5:4	RW	0	Rank 2 ODT Signal Selection			
3:2	RW	0	Rank 1 ODT Signal Selection			
1:0	RW	0	Rank 0 ODT Signal Selection			

Offset Address: DAh (D0F3)

SDRAM ODT Control Default Value: 00h

Bit	Attribute	Default	Description				
7	RW	0	DDR2 SDRAM ODT Control				
			0: Disable 1: Enable				
6:1	_	0	Reserved				
0	RW	0	Channel A Differential DQS Input				
			0: Disable 1: Enable				

Offset Address: DCh (D0F3)

Channel A DQ/DQS CKG Output Delay Control Default Value: 00h

Bit	Attribute	Default	Description			
7:6	RW	00	DQ/DQS Delay Control for Group A3			
			00: Default 01: Delays100ps			
			10: Delays 200ps 11: Delays 300ps			
5:4	RW	00	DQ/DQS Delay Control for Group A2			
3:2	RW	00	DQ/DQS Delay Control for Group A1			
1:0	RW	00	DQ/DQS Delay Control for Group A0			

Offset Address: DDh (D0F3)

Channel A DQ/DQS CKG Output Delay Control Default Value: 00h

Bit	Attribute	Default	Description			
7:6	RW	00	DQ/DQS Delay Control for Group A7			
			00: Default 01: Delays100ps			
			10: Delays 200ps 11: Delays 300ps			
5:4	RW	00	DQ/DQS Delay Control for Group A6			
3:2	RW	00	DQ/DQS Delay Control for Group A5			
1:0	RW	00	DQ/DQS Delay Control for Group A4			

Default Value: 00h

Default Value: 00h

Default Value: 00h

Default Value: 00h

DRAM Driving Control(E0-EFh)

Table 14. Physical Pin to Driving Group Mapping Table

Physical Pins	DCLKA	CKEA	CSA	MAA	DQA	DQSA	MPD/DQMA
Driving Group	DCLKA	CSA	CSA	MAA	DQA	DQSA	DQA

Offset Address: E0h (D0F3)
DRAM Driving – Group DQSA

Bit	Attribute	Default	Description
7:4	RW	0	DQSA - PMOS Driving
3:0	RW	0	DQSA - NMOS Driving

Offset Address: E2h (D0F3)

DRAM Driving - Group DQA (MD, MPD, DQS, DQM)

Bit	Attribute	Default	Description
7:4	RW	0	DQA - PMOS Driving
3:0	RW	0	DOA - NMOS Driving

Offset Address: E4h (D0F3)

DRAM Driving - Group CSA (CS, DQM, MPD)

Bit	Attribute	Default	Description
7:4	RW	0	CSA – PMOS Driving
3:0	RW	0	CSA – NMOS Driving

Offset Address: E6h (D0F3)

DRAM Driving – Group DCLKA

Bit	Attribute	Default	Description
7:4	RW	0	DCLKA – PMOS Driving
3:0	RW	0	DCLKA – NMOS Driving

Offset Address: E8h (D0F3)

DRAM Driving – Group MAA Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	MAA – PMOS Driving
3:0	RW	0	MAA – NMOS Driving

Offset Address: EAh (D0F3)

DRAM Driving – Group SCMDA

Bit	Attribute	Default	Description
7:4	RW	0	SCMDA – PMOS Driving
3:0	RW	0	SCMDA – NMOS Driving

Offset Address: ECh (D0F3)

Channel-A DQS / DQ CKG Duty Cycle Control

Bit	Attribute	Default		Description
7:6	RW	00	DQS CKG Falling Edge Control	
			00: Default	01: Falling edge delays 100 ps
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps
5:4	RW	00	DQS CKG Rising Edge Control	
			00: Default	01: Rising edge delays 100 ps
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps
3:2	RW	00	DQ CKG Falling Edge Control	
			00: Default	01: Falling edge delays 100 ps
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps
1:0	RW	00	DQ CKG Rising Edge Control	
			00: Default	01: Rising edge delays 100 ps
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps

Offset Address: EEh (D0F3)
DCLK Output Duty Control

Default Value: 00h

Default Value: 00h

Bit	Attribute	Default		Description
7:6	RW	00	Duty Control for DCLKA	
			00: Default	01: Falling edge delays 100 ps
			10: Falling edge delays 200 ps	11: Falling edge delays 300 ps
5:4	RW	00	Duty Control for DCLKA	
			00: Default	01: Rising edge delays 100 ps
			10: Rising edge delays 200 ps	11: Rising edge delays 300 ps
3:0	_	0	Reserved	

Offset Address: EFh (D0F3)

DQS CKG Input Delay Control

Bit	Attribute	Default		Description
7:6	_	0	Reserved	
5:4	RW	00	Duty Control for DQSA	
			00: -150 ps	01: 0 ps
			10: 150 ps	11: 300 ps
3:0	_	0	Reserved	

Default Value: 00h

Device 0 Function 4 (D0F4): Power Management Control

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description
1 – 0h	RO	1106h	Vendor ID
3 – 2h	RO	4314h	Device ID -Power Management Control
5 – 4h	RO	0006h	PCI Command
7 – 6h	RO	0200h	PCI Status
8h	RO	00	Revision ID
0B – 9h	RO	060000h	Class Code
0Dh	RO	00	Latency Timer
0Eh	RO	00	Header Type
0Fh	RO	00	BIST
13 – 10h	_	_	Reserved
2D – 2Ch	RW1	00	Subsystem Vendor ID
2F – 2Eh	RW1	00	Subsystem ID
33 – 30h	RO	00	Reserved
37 – 34h	RO	00	Capability Pointer
3F – 38h	_	_	Reserved

Power Management Control (A0-EFh)

Offset Address: A0h (D0F4) Power Management Mode

Bit	Attribute	Default		Description
7	RW	0	Dynamic Power Management	
			0: Disable	1: Enable
6	RW	0	Power Management during HALT / SHUTDOW	V
			0: Disable	1: Enable
5	RW	0	Power Management during STPCLK	
			0: Disable	1: Enable
4	RW	0	Power Management during SUSSTAT	
			0: Disable	1: Enable
3:0	_	0	Reserved	

Offset Address: A1h (D0F4) DRAM Power Management

Bit	Attribute	Default	Description
7	_	0	Reserved
6	RW	0	Dynamic CKE When DRAM Idle
			0: Disable 1: Enable
5	RW	0	Dynamic DRAM I/O Pad Power-Down (i.e. Float)
			0: Disable 1: Enable
4:0	_	0	Reserved

Note: The DRAM power management mode is defined as HALT/SHUTDOWN, STPCLK and SUSSTAT triggered

Offset Address: A2h (D0F4) Dynamic Clock Stop Control

Dynamic Clock Stop Control

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Host Interface Power Management	
			0: Disable 1: Enable	
6	RW	0	DRAM Interface Power Management	
			0: Disable 1: Enable	
5	RW	0	V-Link Interface Power Management	
			0: Disable 1: Enable	
4	RW	0	AGP Interface Power Management	
			0: Disable 1: Enable	
3	RW	0	PCI2 Interface Power Management	
			0: Disable 1: Enable	
2	RW	0	Graphics Interface (GMINT) Power Management	
			0: Disable 1: Enable	
1	RW	0	VKCFG Interface Power Management	
			0: Disable 1: Enable	
0	RW	0	Host Fast Power-Management (DADS Fast Timing)	
			0: Disable 1: Enable	

Offset Address: A3h (D0F4)

Clock Gathering Control 1 Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	Using BREQ0# to predict CPU transaction and do more aggressive dynamic clock, basic this clock replace nearly all free-		
			running clock inside CPU Interface		
6	RW	0	Wait up RRDY clock for DRAM controller		
5	RW	0	Host C2P Clock Gating		
			0: Disable 1: Enable		
4	RW	0	Dynamic Clock Gating for C2P1 Transaction inside CPU Interface		
			0: Disable 1: Enable		
3	RW	0	Enable dynamic clock gating for C2P2 transaction inside CPU Interface		
			0: Disable 1: Enable		
2	RW	0	Host P2C Clock Gating		
			0: Disable 1: Enable		
1:0	_	0	Reserved		

Offset Address: A4h (D0F4)

Clock Gathering Control 2 Default Value: 00h

Bit	Attribute	Default		Description		
7	RW	0	Dynamic Read Clock Gating			
			0: Disable	1: Enable		
6	RW	0	Dynamic Write Clock Gating			
			0: Disable	1: Enable		
5	RW	0	Dynamic Page Table Clock Gating			
			0: Disable	1: Enable		
4	RW	0	Dynamic GART Table Clock Gating			
			0: Disable	1: Enable		
3	RW	0	Latch queue write-enable dynamic clock gating inside P6IF, include IOQ, PWQ, PAQ			
			0: Disable	1: Enable		
2	RW	0	DIO, PAD Related Dynamic Clock Gating, include	2X in/out CCLK, 1X clock for PAD		
			0: Disable	1: Enable		
1	RW	0	Dynamic MA/SCMD Clock on MA/SCMD Pads			
			0: Disable	1: Enable		
0	_	0	Reserved			

Offset Address: A5h (D0F4)

Clock Gathering Control 3 Default Value: 00h

Bit	Attribute	Default	t Description	
7	RW	0	V-Link Dynamic Clock	
			0: Disable 1: Enable	
6	RW	0	Pcic P2C Clock Gating	
			0: Disable 1: Enable	
5	RW	0	Pcic P2P Clock Gating	
			0: Disable 1: Enable	
4	RW	0	Pcic C2P Clock Gating	
			0: Disable 1: Enable	
3:0	_	0	Reserved	

Offset Address: A6h (D0F4)

Clock Gathering Control 4 Default Value: 00h

Bit	Attribute	Default	Description			
7	RW	0	GMINT Dynamic Clock			
			0: Disable 1: Enable			
6	RW	0	GMINT Read Clock Gating			
			0: Disable 1: Enable			
5	RW	0	GMINT Write Clock Gating			
			0: Disable 1: Enable			
4	RW	0	1'b1 -> power down the AGP PADs' input differential comparator when idle			
3		0	Reserved			
2	RW	0	AGPCINT Dynamic Clock			
			0: Disable 1: Enable			
1	RW		PCIC Dynamic Clock			
			0: Disable 1: Enable			
0			DBX Dynamic Clock			
			0: Disable 1: Enable			

Offset Address: A7h (D0F4)

Clock Gathering Control 5 Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	Graphics DCLK Clock Gating
			0: Disable 1: Enable
6	RW	0	GFX GCLK Clock Gating
			0: Disable 1: Enable
5:4	RW	0	Reserved
3	RW	0	System memory self-refresh with frame buffer being pre-charged.
			0: Disable 1: Enable
2:0	_	0	Reserved

Offset Address: A8h (D0F4)

COT State Control

Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	C0 Throttling State		
6	RW	0	DIMM self-refresh in C0T state with GFX in D3 state		
			0: Disable 1: Enable		
5	RW	0	DIMM self-refresh in C0T state with GFX in vertical blanking		
			0: Disable 1: Enable		
4	RW	0	Non-page Mode in C0T		
			0: Disable 1: Enable		
3	RW	0	DRAM throttle in C0T		
2	_	0	Disableg PLL in C0T state with GFX_ENGC3ST GFX_VBLANK		
1	RW	0	PLL at COT state when internal GFX enters D3 state		

Offset Address: A9h (D0F4)

C1 State Control

Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	C1 state		
			0: Disable 1: Enable		
6	RW	0	DIMM self-refresh in C1 state with GFX in D3 state		
			0: Disable 1: Enable		
5	RW	0	DIMM self-refresh in C1 state with GFX in vertical blanking		
			0: Disable 1: Enable		
4	RW	0	Non-page Mode in C1		
			0: Disable 1: Enable		
3	RW	0	DRAM throttle in C1		
			0: Disable 1: Enable		
2	RW	0	Disable PLL in C2 state with GFX_ENGC3ST GFX_VBLANK		
			0: Enable 1: Disable		
1	RW	0	Disable PLL at C1 state when internal GFX enters D3 state		
			0: Enable 1: Disable		
0	_	0	Reserved		

Offset Address: AAh (D0F4)

C2 State Control

Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	C2 State
			0: Disable 1: Enable
6	RW	0	DIMM self-refresh in C2 state with GFX in D3 state
			0: Disable 1: Enable
5	RW	0	DIMM self-refresh in C2 state with GFX in vertical blanking
			0: Disable 1: Enable
4	RW	0	Non-page Mode in C2
			0: Disable 1: Enable
3	RW	0	DRAM throttle in C2
			0: Disable 1: Enable
2	RW	0	Disable PLL in C2 state with GFX_ENGC3ST GFX_VBLANK
			0: Enable 1: Disable
1	RW	0	Disable PLL at C2 state when internal GFX enters D3 state
			0: Enable 1: Disable
0	_	0	Reserved

Offset Address: ABh (D0F4)

C3 State Control Default Value: 00h

Bit	Attribute	Default		Description	
7	RW	0	C3 state		
			0: Disable	1: Enable	
6	RW	0	DIMM self-refresh in C3 state with GF	X in D3 state	
			0: Disable	1: Enable	
5	RW	0	DIMM self-refresh in C3 state with GF	X in vertical blanking	
			0: Disable	1: Enable	
4	RW	0	Non-page Mode in C3		
			0: Disable	1: Enable	
3	RW	0	DRAM throttle in C3		
			0: Disable	1: Enable	
2	RW	0	Disable PLL in C3 state with GFX_EN	GC3ST GFX_VBLANK	
			0: Enable	1: Disable	
1	RW	0	Disable PLL at C3 state when internal	GFX enters D3 state	
			0: Enable	1: Disable	
0	_	0	Reserved		

Offset Address: ACh (D0F4)

C3D State Control

Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	C3d State		
			0: Disable 1: Enable		
6	RW	0	DIMM self-refresh in C3D state with GFX in D3 state		
			0: Disable 1: Enable		
5	RW	0	DIMM self-refresh in C3D state with GFX in vertical blankin		
			0: Disable 1: Enable g		
4	RW	0	Non-page Mode in C3D		
			0: Disable 1: Enable		
3	RW	0	DRAM throttle in C3D		
			0: Disable 1: Enable		
2	RW	0	Disable PLL in C3D state with GFX_ENGC3ST GFX_VBL ANK		
			0: Enable 1: Disable		
1	RW	0	Disable PLL at C3D state when internal GFX enters D3 state		
			0: Enable 1: Disable		
0	_	0	Reserved		

Offset Address	Attribute	Default	Description
ADh	RW	00h	ACPI IO Base Register
			CPU Interface knows LVL2 (RPMIOBA + 'h14) register is read
AEh	RW	00h	ACPI IO Base Register
			CPU Interface knows LVL2 (RPMIOBA + 'h14) register is read

Offset Address: AFh (D0F4)

V-Link / Graphics Control Default Value: 00h

Bit	Attribute	Default	Description
7	RW	0	New V-Link Reconnecting Protocol.
6:0	_	0	Reserved

Offset Address: DF-D0h (D0F4)

BIOS Extended Scratch Registers D

Offset Address	Attribute	Default	Description	
DF – D0h	RW	0	BIOS Extended Scratch Registers D	

Offset Address: EF-E0h (D0F4)

BIOS Extended Scratch Registers E Default Value: 00h

Offset Address	Attribute	Default	Description	
EF – E0h	RW	0	BIOS Extended Scratch Registers E	

Default Value: 00h

Default Value: 1nh

Device 0 Function 7 (D0F7): V-Link North Bridge and South Bridge Control

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description	
1 – 0h	RO	1106h	Vendor ID	
3 - 2h	RO	7314h	Device ID –V-Link Control	
5 – 4h	RO	0006h	PCI Command	
7 – 6h	RO	0200h	PCI Status	
8h	RO	00	Revision ID	
0B – 9h	RO	060000h	Class Code	
0Dh	RO	00	Latency Timer	
0Eh	RO	00	Header Type	
0Fh	RO	00	BIST	
13 – 10h	_	_	Reserved	
2D – 2Ch	RW1	00	Subsystem Vendor ID	
2F – 2Eh	RW1	00	Subsystem ID	
33 – 30h	_	00	Reserved	
37 – 34h	RO	00	Capability Pointer	
3F - 38h	_	_	Reserved	

V-Link Control Interface (40-5Fh)

Offset Address: 40h (D0F7)

V-Link Specification ID

Bit	Attribute	Default	Description	Mnemonic
7:0	RO	1nh	Revision ID	NVRID
			The value of NVRID[3:0] depends on the type of SB which is paired with this chip.	

Offset Address: 41h (D0F7)

NB V-Link Capability

Default Value: 19h

Bit	Attribute	Default		Description	
7:6	_	0	Reserved		
5	RO	0	16-Bit Bus Width		
			0: Not supported	1: Supported	
4	RO	1	8-Bit Width		
			0: Not supported	1: Supported	
3	RO	1	4X Rate		
			0: Not supported	1: Supported	
2	RO	0	2X Rate		
			0: Not supported	1: Supported	
1	_	0	Reserved		
0	RO	1	8X Rate		
			0: Not supported	1: Supported	

Offset Address: 42h (D0F7)

NB Downlink (C2P) Configuration

Bit	Attribute	Default	Description	
7:4	RW	8h	C2P, DNCMD, Maximum Request Depth 0000: depth of 1 1111: depth of 16	
3:0	RW	8h	C2P Maximum Write Buffer Size (from 1 to 16 DW)	

Default Value: 88h

Offset Address: 43h (D0F7)

NB Uplink (P2C) Status I Default Value: 80h

Bit	Attribute	Default	Description	
7:4	RO	8h	P2C, UPCMD, Maximum Pending Request Depth	
3:0		0	Reserved	

Offset Address: 44h (D0F7)

NB Uplink (P2C) Status II Default Value: 82h

Bit	Attribute	Default	Description	
7:4	RO	8h	P2C Write Buffer Size (max # of lines)	
3:0	RO	2h	P2P Write Buffer Size (max # of lines)	

Offset Address: 45h (D0F7) NB V-Link Arbiter Timer

NB V-Link Arbiter Timer Default Value: 44h

Bit	Attribute	Default	Description	Mnemonic
7:4	RW	4h	V-Link Arbiter Timer for Normal Priority Request from SB	RNNTM[3:0]
			0000: 0 VCLK 1000: 8*4 VCLK	
			0001: 1*4 VCLK 1001: 16*4 VCLK	
			0010: 2*4 VCLK 1010: 32*4 VCLK	
			0011: 3*4 VCLK 1011: 64*4 VCLK	
			0100: 4*4 VCLK 11: NB holds the bus as long as there is pending downstream request	
3:0	RW	4h	V-Link Arbiter Timer for High Priority Request from SB	RNHTM[3:0]
			0000: 0 VCLK 1000: 8*2 VCLK	
			0001: 1*2 VCLK 1001: 16*2 VCLK	
			0010: 2*2 VCLK 1010: 32*2 VCLK	
			0011: 3*2 VCLK 1011: 64*2 VCLK	
			0100: 4*2 VCLK 11: NB holds the bus as long as there is pending downstream request	
			N	
			Note: see Table 15 for more details	

Offset Address: 46h (D0F7)

NB V-Link Miscellaneous Control Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic		
7	RW	0	Down Stream High Priority			
			0: Disable high priority down command			
			: Enable high priority down command			
6	RW	0	C2P Request Priority			
			ormal priority for C2P request			
			1: High priority for C2P request			
5:4	RW	0	Options of Combining Multiple STPGNT Cycles Into a V-Link Command			
			00: Compatible mode: a V-Link command per STPGNT cycle			
			: Combines 2 STPGNT cycles into a V-Link command			
			ombines 3 STPGNT cycles into a V-Link command			
			: Combines 4 STPGNT cycles into a V-Link command			
3:2	RW	0	Link Master Read/Write Access Ordering Rules RI			
			h Priority Read allows to pass Normal Read (but not pass Write)			
			ad (High/Normal) allows to pass Write (High Priority R>Normal Priority R>Write)			
			Read / Write are executed in order			
1	RW	0	Read Around Write			
			Read always pass Write, if RINORDER (bit3) is 0			
			1: Allows up to 8 Read-Around-Write cycles before flushing the pending write, if bit 3 (RINORDER) is 0			
			Read Around Write is disabled if bit3,(RINODER) is set to 1			
0	_	0	Reserved			

Default Value: 18h

Offset Address: 47h (D0F7)

NB V-Link Control Default Value: 00h

Bit	Attribute	Default		Description	
7:6	_	0	Reserved		
5	RW	0	C2P Read Acknowledge Return Priority		
			0: V-Link decodes C2P Read ACK command right w	hen it's received	
			1: C2P Read ACK waits till pending P2C write cycle	s are all flushed	
4	_	0	Reserved		
3	RW	0	Dynamic STOP on Down Strobe		
			0: Disable	1: Enable	
2	RW	0	Auto-Disconnect		
			0: Disable	1: Enable	
1	RW	0	V-Link Disconnect Sequence for STPGNT Cycle		
			0: Disable	1: Enable	
0	RW	0	V-Link Disconnect Sequence for HALT cycle		
			0: Disable	1: Enable	

Offset Address: 48h (D0F7)

V-Link Configuration – NB / SB

This register is used to configure V-Link bus controller on both North and South bridge chips.

Bit	Attribute	Default		Description	Mnemonic
7	RW	0	Parity Check		
			0: Disable	1: Enable	
6:5	_	0	Reserved		
4	RW	1	8-Bit Width		
			0: Disable	1: Enable	
3	RW	1	4X Rate		
			0: Disable	1: Enable	
2	_	0	Reserved		
1	RW	0	V-Link Split Bus		RVKSPLT
			0: Disable	1: Enable	
			Always set this bit to 1.		
0	RW	0	8X Rate		R8XVK
			0: Disable	1: Enable	

	X: Multiples of 66MHz cycle	Bus Width	R8XVK – 8X (Rx48 bit-0)	RVKSPLT – Split Bus (Rx48 bit-1)
Mode0 - 8-bit VD Half Duplex	4X	8-bit ♦	0	0
Mode1 – 8-bit VD Full Duplex	8X	4-bit ▲ ▼	1	1

Procedure to Enable / Disable V-Link-8X Mode:

- 1. BIOS sets Rx48[0] to 1
- 2. Hardware will automatically enter a disconnect sequence, and then both NB/SB will start V-LINK 8X mode. Then normal operation is then resumed.
- 3. To return to V-Link 4X mode, BIOS sets Rx48[0] to 0
- 4. Step 2. is then repeated.

Default Value: 82h

Offset Address: 49h (D0F7)

SB V-Link Capability Default Value: 19h

Bit	Attribute	Default		Description	
7:6	_	0	Reserved		
5	RO	0	16-Bit Width		
			0: Not supported	1: Supported	
4	RO	1	8-Bit Width		
			0: Not supported	1: Supported	
3	RO	1	4X Rate		
			0: Not supported	1: Supported	
2	RO	0	2X Rate		
			0: Not supported	1: Supported	
1		0	Reserved		
0	RO	1	8X Rate		
			0: Not supported	1: Supported	

Offset Address: 4Ah (D0F7)

SB Downlink (C2P) Status Default Value: 88h

Bit	Attribute	Default	Description	
7:4	RO	8h	C2P, DNCMD, Maximum Request Depth 0000: depth of 1 1111: depth of 16	
3:0	RO	8h	C2P Maximum Write Buffer Size (from 1 to 16 DW)	

Offset Address: 4Bh (D0F7)

SB Uplink (P2C) Configuration I

Bit	Attribute	Default	Description
7:4	RW	8h	P2C, UPCMD, Maximum Pending Request Depth
3:0	_	0	Reserved

Offset Address: 4Ch (D0F7)

SB Uplink (P2C) Configuration II

Bit	Attribute	Default	Description
7:4	RW	8h	P2C Write Buffer Size (max # of lines)
3:0	RW	2h	P2P Write Buffer Size (max # of lines)

Offset Address: 4Dh (D0F7)

SB V-Link Arbiter Timer Default Value: 44h

Bit	Attribute	Default	Description		
7:4	RW	0100	V-Link Arbiter Timer for Normal Priority Request from NB 0000: 0 VCLK 1000: 8*4 VCLK 0001: 1*4 VCLK 1001: 16*4 VCLK 0010: 2*4 VCLK 1010: 32*4 VCLK		
			0011: 3*4 VCLK 0100: 4*4 VCLK 11: SB holds the bus as long as there is pending upstream request		
3:0	RW	0100	V-Link Arbiter Timer for High Priority Request from NB 0000: 0 VCLK 1000: 8*2 VCLK 0001: 1*2 VCLK 1001: 16*2 VCLK 0010: 2*2 VCLK 1010: 32*2 VCLK 0011: 3*2 VCLK 1011: 64*2 VCLK 0100: 4*2 VCLK 11: SB holds the bus as long as there is pending upstream request		

Default Value: 00h

Default Value: 01h

Table 15. V-Link Bus Timer Operation

RNNTM[3:0] (Rx45[7:4])	RNHTM[3:0] (Rx45[3:0])	SB Request Priority	When to Relinquish the Occupied V-Link Bus
0000	0000	Normal/high	Immediately
0000	0001,0010,	Normal/high	Immediately
0000	11xx	Normal/high	Immediately
0001,0010,	0000	High	Immediately
0001,0010,	0000	Normal	Wait for Normal timer expired
0001,0010,	0001,0010,	High	Wait for either Normal or high timer expired
0001,0010,	0001,0010,	Normal	Wait for Normal timer expired
0001,0010,	11xx	Normal/high	Wait for Normal timer expired
11xx	0000	High	Immediately
11xx	0000	Normal	Wait until there is no internal request
11xx	0001,0010,	High	Wait for High timer expired
11xx	0001,0010,	Normal	Wait until there is no internal request
11xx	11xx	Normal/high	Wait until there is no internal request

Offset Address: 4Eh (D0F7)

SB Peripheral Device's Bus Priority

Bit	Attribute	Default		Description	
7	RW	0	1394 Priority		
			0: Low Priority	1: High Priority	
6	RW	0	NIC Priority	•	
			0: Low Priority	1: High Priority	
5	_	0	Reserved	-	
4	RW	0	USB Priority		
			0: Low Priority	1: High Priority	
3	_	0	Reserved	-	
2	RW	0	IDE Priority		
			0: Low Priority	1: High Priority	
1	RW	0	AC97-ISA Priority	•	
			0: Low Priority	1: High Priority	
0	RW	0	PCI1 Priority	•	
			0: Low Priority	1: High Priority	

Offset Address: 4Fh (D0F7)

SB V-Link Miscellaneous Control

Bit	Attribute	Default	Description
7	RW	0	Upstream High Priority Command
			0: Disable 1: Enable high priority up command
6:4	_	0	Reserved
3	RW	0	Dynamic STOP on Up Strobe
			0: Disable 1: Enable
2:1	_	0	Reserved
0	RW	0	C2P Cycle Wait Till P2C Write Flushed (except C2P Post-Write)
			0: Disable 1: Enable

Offset Address: 57h (D0F7)

DRAM Last Rank Ending Address (HA[31:24]#)

Bit	Attribute	Default	Description
7:0	RO	01	The Ending Address, HA[31:24]#, of the Last DRAM Rank

Shadow RAM Control (61-6Fh)

Offset Address: 61h (D0F7)

Page-C ROM Shadow Control Default Value: 00h

Bit	Attribute	Default		Description
7:6	RW	0	CC000-CFFFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
5:4	RW	0	C8000-CBFFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
3:2	RW	0	C4000-C7FFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
1:0	RW	0	C0000-C3FFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable

Offset Address: 62h (D0F7)

Page-D ROM Shadow Control Default Value: 00h

Bit	Attribute	Default		Description
7:6	RW	0	DC000-DFFFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
5:4	RW	0	D8000-DBFFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
3:2	RW	0	D4000-D7FFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
1:0	RW	0	D0000-D3FFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable

Offset Address: 63h (D0F7)

Page- F ROM, Memory Hole and SMM Cycle Decoding

Bit	Attribute	Default	Description	Mnemonic		
7:6	_	0	Reserved			
5:4	RW	0	F0000-FFFFFh			
			00: Read / Write Disable 01: Write Enable			
			10: Read Enable 11: Read / Write Enable			
3:2	RW	0	Memory Hole			
			00 - None 01 - 512K - 640K			
			10 - 15M - 16M (1M) 11 - 14M - 16M (2M)			
1	RW	0	Disable Data Access on SMRAM (Page A, B) in SM mode			
			0: In SM mode, page A,B CPU Data R/W cycles are forwarded to NB memory controller.			
			In SM mode, page A,B CPU Data R/W cycles are forwarded to PCI bus (SMRAM page A,B Code			
			R/W cycles are always forwarded to memory controller).			
0	RW	0	Enable Page A, B DRAM Access In Normal Mode	RRWABK		
			0: Page A, B CPU R/W cycles could be forwarded to memory controller or PCI bus depends on the setting			
			of RABKDOFF (bit[1]) and the CPU operating mode (Normal or SM mode) as well as the type (Code or			
			Data) of the CPU cycle			
			1: Page A, B CPU R/W cycles (Code and Data) are always (in either Normal or SM mode) forwarded to			
			NB memory controller.			
			Check the following table for details.			

Default Value: 00h

Offset Address: 64h (D0F7)

Page-E ROM Shadow Control Default Value: 00h

Bit	Attribute	Default		Description
7:6	RW	0	EC000-DFFFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
5:4	RW	0	E8000-DBFFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
3:2	RW	0	E4000-D7FFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable
1:0	RW	0	E0000-D3FFFh	
			00: Read / Write Disable	01: Write Enable
			10: Read Enable	11: Read / Write Enable

RABKDOFF (Rx63[1])	RRWABK (Rx63[0])	CPU MODE	Target of CODE Access Cycle	Target of DATA Access Cycle
X	0	Normal	PCI	PCI
0	0	SMM	DRAM	DRAM
1	0	SMM	DRAM	PCI
X	1	Normal / SMM	DRAM	DRAM

Host-PCI Bridge Control (70-7Fh)

Offset Address: 70h (D0F7)

PCI Buffer Control

Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	CPU to PCI Post-Write (SB/NB)	
			0: Disable 1: Enable	
6	_	0	Reserved	
5:4	RW	0	PCI Master to DRAM Prefetch Control x0: Always prefetch x1: Prefetch disabled	
3:2	_	0	Reserved	
1	RW	0	Delayed Transaction 0: Disable 1: Enable	
0	_	0	Reserved	

Offset Address: 71h (D0F7)

CPU to PCI Flow Control I Default Value: 48h

Bit	Attribute	Default	Description	
7	RW1C	_	Retry Status	
			0: No retry occurred	1: Retry occurred (write 1 to clear)
6	RW	1	Action When Retry Timeout	
			0: No action taken except recoding status	1: Flush buffer (write) or return FFFFFFFh (read)
5:4	RW	0	Retry Count and Retry Back off	
			00: Retry up to 2 times, back off CPU	01: Retry up to 16 times, back off CPU
			10: Retry up to 4 times, back off CPU	11: Retry up to 64 times, back off CPU
3	RW	1	PCI Burst Enable	
			0: Disable	1: Enable
2	_	0	Reserved	
1	RW	0	Compatible TYPE#1 Configuration Cycle	
			0: Disable (Fixed AD31)	1: Enable
0	RW	0	IDSEL for NB and SB	
			0: AD11(NB), AD12 (SB)	1: AD30 (NB), AD31(SB)

Offset Address: 73h (D0F7)

PCI Master Control Default Value: 00h

Bit	Attribute	Default		Description
7	_	0	Reserved	
6	RW	0	PCI Master 1-Wait-State Write	
			0: Zero wait state	1: One wait state
5	RW	0	PCI Master 1-Wait-State Read	
			0: Zero wait state	1: One wait state
4	RW	0	WSC#	
			0: Disable	1: Enable
3:1	_	0	Reserved	
0	RW	0	PCI Master Broken Timer Enable	
			0: Disabled	
			1: Enabled, PCI Controller will reenter arbitration	state if FRAME# is not asserted 16 PCICLKs after bus is granted.

Offset Address: 75h (D0F7)

PCI Arbitration Default Value: 00h

Bit	Attribute	Default	Description	
7	RW	0	Arbitration Mode	
			0: REQ-based (arbitrate when REQ# is de	e-asserted)
			1: Frame-based (arbitrate when FRAME#	is asserted)
6:4	RW	0	CPU Latency MLT2, MLT1, MLT0	
3	_	0	Reserved	
2:0	RW	000	PCI Master Bus Time-out	
			000 - Disable	001 – 1 x16 PCLK
			010 - 2x16 PCLK	011 – 3 x16 PCLK
			•••	111 – 7 x16 PCLK

Offset Address: 76h (D0F7)

PCI Arbitration Default Value: 00h

Bit	Attribute	Default	Description		
7	RW	0	Port 22 IO Cycle Control (SB)		
			0: CPU port 22 IO cycles are forwarded to the PCI bus		
			1: CPU port 22 IO cycles are processed internally		
6	_	0	Reserved		
5:4	RW	00	Master / CPU Priority Rotation Policy		
			00 - Disable		
			01 - Grant to CPU after every PCI master grant		
			10 - Grant to CPU after every 2 PCI master grants		
			11 - Grant to CPU after every 3 PCI master grants		
3:2	RW	00	REQx# to RQ4 Mapping Scheme		
			00 - REQ4# as RQ4		
			10 - REQ1# as RQ4		
1	_	0	Reserved		
0	RW	0	Enable RQ4 as the High Priority Master		
			0: Disable 1: Enable		

GART Operation (80-B3h)

Offset Address: 84h (D0F7)

Graphic Aperture Size Default Value: 00h

Bit	Attribute	Default		Description
7:0	RW	000h	Graphics Aperture Size AGP20 mode: Bit[7:0] 00111111 00111110 00111100 00111000 00110000 00100000 000000	Aperture Size 4M 8M 16M 32M 64M 128M
			When GART is enabled, Rx Bridge is set to 0.	k77[1] of the South Bridge is set to 1; if AGP20 mode is enabled, Rx77[2] of the South

Offset Address: 88h (D0F7)

Graphic Aperture Translation Look-Aside Table Base Register

Bit	Attribute	Default	Description
7:2	_	0	Reserved
1	RW	0	GART Window Access
			0: Disable 1: Enable
0	_	0	Reserved

Offset Address: 95-94h (D0F7)

AGP30 Graphic Aperture Size Default Value: 0000h

Bit	Attribute	Default		Description
15:12	_	0	Reserved	
11:0	RW	000h	Graphics Aperture Size	
			AGP30 mode:	
			Bit[11:0]	Aperture Size
			111100111111	4M
			111100111110	8M
			111100111100	16M
			111100111000	32M
			111100110000	64M
			111100100000	128M
			111100000000	256M
			111000000000	512M
			110000000000	1 G
			100000000000	2 G ← maximum supported size
			000000000000	4 G
			When GART is enabled, Rx77 Bridge is set to 1.	7[1] of the South Bridge is set to 1; if AGP30 mode is enabled, Rx77[2] of the South

Offset Address: B0h (D0F7)

V-Link CKG Control Default Value: 00h

Bit	Attribute	Default	Description	
7:6	RW	00	Rising-Time Control for V-Link (R-Port)	
5:4	RW	00	Falling-Time Control for V-Link (R-Port)	
3:2	RW	00	Rising-Time Control for V-Link (S-Port)	
1:0	RW	00	Falling-Time Control for V-Link (S-Port)	

Default Value: 00h

Default Value: 00h

Default Value: 00h

Offset Address: B1h (D0F7)

V- Link CKG Control Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	_	Reserved
3:2	RW	00	Rising-Time Control for V-Link (D-Port)
1:0	RW	00	Falling-Time Control for V-Link (D-Port)

Offset Address: B3h (D0F7)

V-Link Auto Compensation Transmation Resistor Status

Bit	Attribute	Default	Description
7	RO	0	P resistor checking flag for the termination Resistor in the NB. 0: abnormal condition occurred.
			1: normal operation.
6	RO	0	N resistor checking flag for the termination Resistor in the NB.
			0: abnormal condition occurred.
			1: normal operation.
5	RO	0	P Pull down driving checking flag for the termination Resistor in the NB.
			0: abnormal condition occurred.
			1: normal operation.
4	RO	0	N Pull down driving checking flag for NB.
			0: abnormal condition occurred.
			1: normal operation.
3	_	0	Reserved
2:0	RO	0	NB V-Link Autocomp termination Resistor Value of the NB.
			000: largest Resistor
			111: smallest Resistor

V-Link North Bridge Driving Control (B4-B7h)

Offset Address: B4h (D0F7)

NB V-Link Compensation Control

Bit	Attribute	Default	Description
7:5	RO	0	V-Link Auto-compensation PMOS Output Value
4	RW	0	VKCOMP Reference Voltage for VLINK at 4X Mode
			0: VREF4X = 0.75V
			1: VREF4X = 0.9V
3:1	RO	0	V-Link Auto-compensation NMOS Output Value
0	RW	0	Compensation Option
			0: Use Auto Compensation (value is kept in bits 7:5)
			1: Use Manual setting (use the values of RxB5 and RxB6)

Offset Address: B5h (D0F7)

NB V-Link Driving Control - Strobe

Bit	Attribute	Default	Description	
7:5	RW	0	Manual Setting - NB V-Link Strobe Pullup (PMOS)	
4	_	0	Reserved	
3:1	RW	0	Manual Setting - NB V-Link Strobe Pulldown (NMOS)	
0	_	0	Reserved	

Offset Address: B6h (D0F7)

NB V-Link Driving Control - Data

Bit	Attribute	Default	Description	
7:5	RW	0	Manual Setting - NB V-Link Data Pullup (PMOS)	
4	_	0	Reserved	
3:1	RW	0	Manual Setting - NB V-Link Data Pulldown (NMOS)	
0	_	0	Reserved	

Default Value: 00h

Default Value: 00h

Offset Address: B7h (D0F7)

NB V-Link Receiving Strobe Delay

Bit	Attribute	Default	Description		
7:5	_	0	V-Link manual termination resistor value		
			000: Largest Resister.		
			111: Smallest Resister		
4:3	_	00	Reserved		
2:0	RW	000	NB V-Link Receiving Strobe Delay		
			000: No delay	001: Delay 0.3 ns	
			010: Delay 0.2 ns	101: Delay 0.1 ns	
			110: Delay more than 0.2 ns		

V-Link South Bridge Driving Control (B8-BBh)

Offset Address: B8h (D0F7)

SB V-Link Compensation Control

For 8X Capable South Bridges (VT8237R Plus):

Bit	Attribute	Default	Description
7:5	RO	0	V-Link Auto Compensation PMOS Output Value
4:1	_	0	Reserved
0	RW	0	Compensation Selection
			0: Use Auto Compensation (value is kept in bits 7:5)
			1: Use Manual setting (use the values of RxB9 - RxBB)

For 4X-Only South Bridges (VT8233):

Bit	Attribute	Default	Description	
7:6	RO	0	V-Link Auto Compensation Output Value	
5	RW	0	Pull Up Compensation Selection	
			0: Auto Compensation (value is kept in bits 7:6)	
			1: Manual Setting (use the value defined in bits 3:2)	
4	RW	0	Pull Down Compensation Selection	
			0: Auto Compensation (value is kept in bits 7:6)	
			1: Manual Setting (use the values defined in bits 1:0)	
3:2	RW	0	Manual Setting - Pull Up Compensation Value	
1:0	RW	0	Manual Setting - Pull Down Compensation Value	

Offset Address: B9h (D0F7)

SB V-Link Driving Control – Strobe

For 8X Capable South Bridges (VT8237R Plus):

Bit	Attribute	Default	Description
7:5	RW	0	Manual Setting - SB V-Link Strobe Pullup (PMOS)
4	_	0	Reserved
3:1	RW	0	Manual Setting - SB V-Link Strobe Pulldown (NMOS)
0		0	Reserved

For 4X-Only South Bridges (VT8233):

Bit	Attribute	Default	Description			
7:6	RW	0	Manual Setting - SB V-Link Strobe Pullup			
5:4	RW	0	Manual Setting - SB V-Link Strobe Pulldown			
3:1	RO	_	Reserved			
0	RW	0	V-Link Slew Rate Control			
			0: Disable	1: Enable		

DRAM Above 4G Support (E4-EFh)

Offset Address: E4h (D0F7)

Low Top Address - Low Default Value: 00h

Bit	Attribute	Default	Description			
7:4	RW	0	Low Top Address – A[23:20]			
3:0	RW	0	DRAM Granular	rity (Powell)		
			RMEMUNIT 0 1 2 3 4	Total DRAM less than 4G 8G 16G 32G 64G	Granularity 16M 32M 64M 128M 256M	

Offset Address: E5h (D0F7)

Low Top Address - High Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	0	Low Top Address – A[31:24]

Offset Address: E6h (D0F7)

SMM and APIC Decoding Default Value: 01h

Bit	Attribute	Default	Description
7:6	_	0	Reserved
5	RW	0	APIC Lowest Interrupt Arbitration
			0: Disable 1: Enable
4	RW	0	IO APIC Decoding
			0: Cycles accessing FECx_xxxx are passed to PCI1
			1: Cycles accessing FEC7_FFFF - FEC0_0000 are passed to PCI1; cycles accessing FECF_FFFF - FEC8_0000 are passed
			to PCI2.
3	RW	0	MSI Support (Processor Message Enable)
			0: Cycles accessing FEEx_xxxx from masters are passed to PCI1 (PCIC will not claim)
			1: Cycles accessing FEEx_xxxx from masters are passed to the Host side for snooping
2	RW	0	Top SMM Enable
			0: Disable 1: Enable
			$TSMMA[31:20] = \{LOWTOPA[31:24],4'h0\} - \{FBSZ[2:0],1'b0\};$
			OSLOWTOPA[31:20] = TSMMA[31:20] – RTSMMEN
1	_	0	High SMM
0	RW	1	Compatible SMM Enable
			0: Disable 1: Enable

Device 1 Function 0 (D1F0): PCI to PCI Bridge

This configuration is provided to facilitate the configuration of the second PCI bus (AGP) without requiring new enumeration code. This function is represented as device number 1, function 0.

Header Registers (0-3Fh)

Offset Address	Attribute	Default	Description
1-0h	RO	1106h	Vendor ID
3-2h	RO	B198h	Device ID

Offset Address: 5-4h (D1F0)

PCI Command Default Value: 0007h

Bit	Attribute	Default	Description
15:10	_	0	Reserved
9	RO	0	Fast Back-to-Back Cycle Enable
			Hardwired to 0. (Disable)
8	RO	0	SERR# Enable
			Hardwired to 0 (Disable)
7	RO	0	Address / Data Stepping
			Hardwired to 0 (Not supported)
6	RW	0	Parity Checking
			0: Ignore parity errors
			1: Perform parity check and take normal action on detected parity errors
5	RO	0	VGA Palette Snooping
			Hardwired to 0 (Not supported).
4	RO	0	Memory Write and Invalidate
			Hardwired to 0 (Not supported)
3	RO	0	Respond To Special Cycle
			Hardwired to 0 (Does not monitor special cycles)
2	RW	1	Bus Master
			0: Never behaves as a bus master
			1: Enable to operate as a bus master on the secondary interface
1	RW	1	Memory Space Access
			0: Does not respond to memory space access 1: Responds to memory space access
0	RW	1	I/O Space Access
			0: Does not respond to I/O space access 1: Responds to I/O space access

Offset Address: 7-6h (D1F0)

PCI Status Default Value: 0230h

Bit	Attribute	Default	Description
15	RO	0	Parity Error Detected
			Reserved
14	RO	0	SERR# Detected
			Reserved
13	RO	0	Set When Terminated with Master-Abort, Except Special Cycle
			0: No abort received 1: Transaction aborted by the master
12	RO	0	Set When Received a Target-Abort
			0: No abort received 1: Transaction aborted by the target
11	RO	0	Set When Signaled a Target-Abort
			NB never signals Target Abort
10-9	RO	01	DEVSEL# Timing
			00: Fast 01: Medium (default)
			10: Slow 11: Reserved
8	RO	0	Set When Set or Observed SERR# and Parity Error
			Reserved
7	RO	0	Capable of Accepting Fast Back-to-Back as a Target
			Reserved
6	RO	0	User Definable Features
			Reserved
5	RO	1	66 MHz Capable
4	RO	1	Support New Capability List
3:0	_	0	Reserved

Offset Address: 8h (D1F0)

Revision ID Default Value: 00h

	Bit	Attribute	Default	Description
ı	7:0	RO	00h	Revision ID

Offset Address: 0B-9h (D1F0)

Class Code Default Value: 060400h

Bit	Attribute	Default	Description
23.0	RO	060400h	Class Code

Offset Address: 0Eh (D1F0)

Header Type Default Value: 01h

Bit	Attribute	Default	Description
7:0	RO	01h	Header Type It adheres to the PCI-PCI Bridge Configuration

Offset Address: 0Fh (D1F0)

Built In Self Test (BIST)

Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	0	BIST Support

Default Value: 0000 0008h

Offset Address: 13-10h (D1F0)

Graphic Aperture Base Configuration

Bit	Attribute	Default	Description
31:22	RW	0	Programmable Base Address The aperture base address bit acts as if hardwired to 0 if the corresponding GTSZ1[11:0] (Rx94[11:0]) bit is 0. If RAGPCAP1 (RxBF[0]) is set to 0, this register is forced to zero.
			Note: this range is defined as prefetchable
21:4	_	0	Reserved (Hardwire to 0)
3	RO	1	Prefetchable
2:1	RO	0	Type
			Indicates that the address range is in the 32-bit address space
0	RO	0	Memory Space

Offset Address: 18h (D1F0)

Primary Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	00	Primary Bus Number
			Primary Bus Number is fixed at 0 internally; this register setting is ignored.

Offset Address: 19h (D1F0)

Secondary Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	00	Secondary Bus Number
			Secondary Bus Number is used when converting Type#1 configuration cycles to TYPE#0 configuration cycles.

Offset Address: 1Ah (D1F0)

Subordinate Bus Number Default Value: 00h

Bit	Attribute	Default	Description
7:0	RW	00	Subordinate Bus Number
			PCI2 uses Subordinate Bus Number to decide if Type#1 command passing is allowed

Offset Address: 1Ch (D1F0)

IO Base Default Value: F0h

Bit	Attribute	Default	Description	
7:4	RW	1111	IO Address Bit[15:12] – inclusive	
3:0	RO	0	IO Addressing Capability	

Offset Address: 1Dh (D1F0)

IO Limit Default Value: 00h

Bit	Attribute	Default	Description	
7:4	RW	0	IO Address Bit[15:12] - inclusive	
3:0	RO	0	IO Addressing Capability	

Offset Address: 1F-1Eh (D1F0)

Secondary Status Default Value: 0000h

Bit	Attribute	Default	Description	
15:8	_	0	Reserved	
7:4	RW	0	Secondary Status If R2NDSTAT = 0 (Rx44[4]): Read this register has 0 returned If R2NDSTAT = 1: Read this register has contents of Rx7-Rx6 (PCI Status Register) returned	
3:0	_	0	Reserved	

Offset Address: 21-20h (D1F0)

Memory Base Default Value: FFF0h

Bit	Attribute	Default	Description	
15:4	RW	0FFFh	Memory Address Bit [31:20] – inclusive (address [19:0] is not decoded)	
3:0	_	0	Reserved	

Offset Address: 23-22h (D1F0)

Memory Limit Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RW	0	Memory Address Bit [31:20] – inclusive (address [19:0] is not decoded)
3:0	_	0	Reserved

Offset Address: 25-24h (D1F0)

Prefetchable Memory Base Default Value: FFF0h

Bit	Attribute	Default	Description	
15:4	RW	0FFFh	Memory Address Bit [31:20] – inclusive	
3:0	_	0	Reserved	

Offset Address: 27-26h (D1F0)

Prefetchable Memory Limit Default Value: 0000h

Bit	Attribute	Default	Description
15:4	RW	0	Memory Address Bit [31:20] – inclusive
3:0	_	0	Reserved

Offset Address: 34h (D1F0)

Capability Pointer Default Value: 70h

Bit	Attribute	Default	Description
7:0	RO	70h	AGP Capability List Pointer

Offset Address: 3F-3Eh (D1F0)

PCI-to-PCI Bridge Control Default Value: 0000h

Bit	Attribute	Default	Description	Mnemonic
15:14	_	0	Reserved	
3	RW	0	Enable VGA Compatible I/O and Memory Address Range 0: Do not forward VGA compatible memory and I/O cycles to PCI2 1: Forward VGA compatible memory and I/O cycles to PCI2	RVGA2
2	RW	0	Block ISA I/O Cycles 0: Forward all I/O cycles with address in the range defined by the I/O base and I/O Limit to PCI2 1: Do not forward ISA I/O cycles with address in the top 768 bytes of each 1Kbyte block	RISA2
1:0	RO	0	Reserved	

If RVGA2 is set to 1, the following VGA compatible I/O and memory access will be forwarded to PCI2

If RISA2 is set to 1, NB will not forward cycles to AGP if A[9:0] is in the range of 3ffh-100h even if address are within the range defined by the RIOBS and RIOLM.

⁻ Memory: in the range of A0000h to BFFFFh

⁻ I/O: where A[9:0] in the ranges of 3BBh-3B0h and 3DFh-3C0h; A[15:10] are not decoded

Second PCI Bus Control (40-6Fh)

Offset Address: 40h (D1F0) CPU to PCI Flow Control I

CPU to PCI Flow Control I

Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic			
7	RW	0	CPU to PCI Post-Write				
			0: Disable 1: Enable				
			C2P posted cycle could be delayed by PCI master cycles (i.e. PCI master access is allowed even if C2P				
			buffer is not flushed).				
6	RW	0	CPU to PCI One Wait State Burst Write				
			0: Disable 1: Enable				
5:4	RW	0	Read Prefetch Control				
			x0: Always prefetch x1: Disable prefetch				
3	_	0	Reserved				
2	RW	0	MDA Resource Location (Note: the setting on this register bit overwrites the settings on the IO/Memory's				
			Base and Limit of the other devices)				
			0: AGP/PCI2; forward MDA access cycles to AGP/PCI2				
			1: PCI1; forward MDA access cycles to PCI1				
			-				
			MDA Resources include: Memory : B0000h-B7FFFFh, I/O : 3B4h, 3B5h, 3B8h, 3B9h, 3BAh, 3BFh.				
			Check the following table for the function of register bits, RVGA2 and RMDA.				
1	RW	0	PCI2 Master Read Caching				
			0: Disable 1: Enable				
0	RW	0	PCI2 Delay Transaction				
			0: Disable 1: Enable				

Address	RVGA2 Rx3E[3]	RMDA Rx40[2]	Cycle Destination
Memory: AFFFFh-A0000h	0	-	PCI1
	1	-	PCI2
Memory: MDA (BFFFFh-B0000h)	1	0	PCI2
	1	1	PCI1
	0	=	PCI1
IO:[3BBh,3B0h] except MDA	0	-	PCI1
	1	-	PCI2
IO: MDA	1	0	PCI2
	0	-	PCI1
	1	1	PCI1
IO: [3DFh,3C0h]	1	-	PCI2
	0	-	PCI1

Notes:

- 1. If RISA2 is set to 1, NB will not forward cycles to AGP if A[9:0] is in the range of 3ffh-100h even if address are within the range defined by the RIOBS and RIOLM.
- 2. If both RVGA2 and RMDA are set to 1, VGA is on PCI2 and MDA is put on PCI1. VGA palette snooping is not supported in PCI2.

Offset Address: 41h (D1F0)

CPU to PCI Flow Control II

Default Value: 08h

Bit	Attribute	Default	Description		
7	RO	0	Retry Status		
			0: No retry occurred	1: Retry occurred (write 1 to clear)	
6	RW	0	Action When Retry Timeout	•	
			0: No action taken except recording status		
			1: Flush buffer (write) or return FFFFFFFFh (read)		
5:4	RW	0	Retry Count		
			00: Retry 2 times, back off CPU	01: Retry 4 times, back off CPU	
			10: Retry 16 times, back off CPU	11: Retry 64 times, back off CPU	
3	RW	1	C2P Burst Timeout Enable		
			0: Disable	1: Enable	
2	_	0	Reserved		
1	RW	0	Invalidate PCI2 Read Buffer Data (read caching data) when C2P Cycle Arrived		
			0: Disable	1: Enable	
0	RW	0	Read Burst on PCI2		
			0: Disable	1: Enable	

Offset Address: 42h (D1F0)

PCI Master Control Default Value: 00h

Bit	Attribute	Default		Description
7	RW	0	Reserved (must be set to 1)	
6	RW	0	PCI Master 1-Wait State Write	
			0: Disable	1: Enable
5:	RW	0	PCI Master 1-Wait State Read	
			0: Disable	1: Enable
4	RW	0	Break Consecutive PCI Master Access	
			0: Disable	1: Enable
3	_	0	Reserved	
2	RW	0	Claim the IO R/W and Memory Read Cycles	
			0: Disable	1: Enable
1	RW	0	Claim the Local APIC FEEx_xxxx Cycles	
			0: Disable	1: Enable
0	_	0	Reserved	

Offset Address: 43h (D1F0)

PCI2 Timer Default Value: 22h

Bit	Attribute	Default	Description
7:4	RW	2h	Host to PCI2 Time Slot
			0: Disable (no timer)
			1: 16 GCLKs
			2: 32 GCLKs
			0Fh: 128GCLKs
3:0	RW	2h	PCI2 Master Time Slot
			0: Disable (no timer)
			1: 16 GCLKs
			2: 32 GCLKs
			0Fh: 128 GCLKs

Default Value: 00h

Offset Address: 44h (D1F0)

PCI2 Miscellaneous Control Default Value: 20h

Bit	Attribute	Default	Description	Mnemonic
7:6	_	0	Reserved	
5	RW	1	Power Management Capability Support 0: Read Rx34 as 00 1: Read Rx34 as 80h	
4	RW	0	Rx1F-Rx1E Read Returned Value	R2NDSTAT
			0: Rx1F-Rx1E always read as 00 1: Rx1F-Rx1E read will receive the values in Rx07-Rx06	
3:0	_	0	Reserved	

Offset Address: 45h (D1F0)

Fast Write Control Default Value: 72h

Bit	Attribute	Default		Description
7	RW	0	Force Fast Write Cycle QW Aligned (if	Rx45[6] = 0
			0: Disable (DW aligned)	1: Enable (force QW aligned)
6	RW	1	Merge Multiple Host Transactions into	A Fast Write Transaction (Burst)
			0: Disable	1: Enable (QW aligned)
5:3		110	Reserved	
2	RW	0	Fast Write Burst Length Limit: 4T	
			0: Disable	1: Enable
1	RW	1	Fast Write: Fast Back to Back	
			0: Disable	1: Enable
0	RW	0	Fast Write Initial Block: 1-Wait State	
			0: Disable	1: Enable

Offset Address: 46h (D1F0)

PCI-to-PCI Bridge Device ID (Low Byte)

Bit	Attribute	Default	Description
7:0	RW	0	Device ID for P2P Bridge Low Byte (ID[7:0])

Offset Address: 47h (D1F0)

PCI-to-PCI Bridge Device ID (High Byte)

ĺ	Bit	Attribute	Default	Description
ı	7:0	RW	0	Device ID for P2P Bridge High Byte (ID[15:8])

Power Management Capability (70-77h)

Offset Address: 70h (D1F0)

Capability ID Default Value: 01h

Bit	Attribute	Default	Description
7:0	RO	01	Capability ID

Offset Address: 71h (D1F0)

Next Pointer Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	00	Next Pointer
			If RAGPCAP1 $(RxBF[0]) = 0$, Next Pointer is 00 ;
			If RAGPCAP1 (RxBF[0]) = 1, Next Pointer is 80h

Default Value: 00h

Default Value: 00h

Offset Address: 72h (D1F0)

Power Management Capabilities

Bit	Attribute	Default	Description
7:0	RO	2h	Power Management Capabilities

Offset Address: 73h (D1F0)

Power Management Capabilities Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	00	Power Management Capabilities

Offset Address: 74h (D1F0)

Power Management Control / Status

Bit	Attribute	Default	Description
7:2	_	00	Reserved
1:0	RW	_	Power State 00: D0

Offset Address: 75h (D1F0)

Power Management Status Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	00	Power Management Status

Offset Address: 76h (D1F0)

PCI to PCI Bridge Support Extensions

Bit	Attribute	Default	Description		
7:0	RO	00	CI to PCI Bridge Support Extensions		

Offset Address: 77h (D1F0)

Power Management Data Default Value: 00h

Bit	Attribute	Default	Description
7:0	RO	00	Power Management Data

AGP 3.0 Configuration (80-A3h)

New AGP Capability Header

The original AGP capability is stored in Device 0, Function 0. For adapting the new AGP capability header for multiple AGP devices, the AGP capability header is moved to Device 1, Function 0 (D1F0). The related registers are also moved including RX10~RX13, the AGP Aperture base address, and RX40~RX43, the hardware settings for the AGP pads. To be backward compatible, the default of AGP capability location will remain the same, in D0F0, as it was before. However, if D1F0 RXBF[0], RAGPCAP1, is set to 1, the AGP settings will be controlled by D1F0. See the following table for the function of RXBF[0].

	RAGPCAP1=0	RAGPCAP1=1
D0F0 Rx13~Rx10	GTBS[31:22]	00000000
D0F0 Rx34	->Rx80->Rx50->NULL	->Rx50->NULL
D1F0 Rx13~Rx10	00000000	GTBS[31:22]
D1F0 Rx34	->Rx70->NULL	->Rx70->Rx80->NULL
AGP Pads Hardware Setting	D0F0 Rx40~Rx43	D1F0 RxB0~RxB3

Rx80 is the AGP pointer, however, it could be associated with AGP2.0 header or AGP 3.0 header depends on the setting on system mode selection register bit, RAGP30, from strapping. For all of the read-only registers (e.g. AGP status registers, major/minor ID, Capability ID), the default settings could be over written through the register bit RSTATW (Rx4D[0]) in device0, function0 for the original AGP capability header, or through the register bit RSTATW1 (RxBD[0]) in device1, function 0 for the new AGP capability header. And for software backward compatible, there are RAGPCAP30 and RAGP30 to control certain bits in Rx80-Rx8B, which are reserved in AGP20 mode.

Depends on the settings on RAGP30CAP and RAGP30, the controller could be connected to the registers described in either AGP30 or AGP20 header; however, to support AGP fanout mode in VPX mode, the controller must be operated at a different mode than what has been described in the AGP header; register D0F0 Rx4D[1], RAGPHW, and D1F0 RxBD[1], RAGPHW1, are used to support this mode.

Offset Address: CAPPTR (D1F0 83-80h)

AGP Identifier Default Value: 0035 000Eh

Bit	Attribute	Default	Description
31:24	RZ	0	Always Return 0, write has no effect
23:20	R-IW	3h	Major Revision
19:16	R-IW	5h	Minor Revision
			If RBKMJMN1 (RxBD[3]) is 0: 'b0101
			If RBKMJMN1 (RxBD[3]) is 1: 'b0000.
15:8	R-IW	00	Pointer to Next Item
7:0	R-IW	0Eh	Capability ID

Offset Address: CAPPTR + 04h (D1F0 87-84h)

AGP Status Default Value: 0700 0A0Bh

Bit	Attribute	Default	Description	Mnemonic
31:24	R-IW	07	Max # of AGP Command Requests	
23-18	RZ-IW	0	Reserved	
17	RZ-XW	0	Isoch Transaction	RISOCH1
			0: Does not support Isoch transaction. 1: Support Isoch transaction	
16	_	0	Reserved (for future 64-bit AGP)	
15:13	RZ-XW	0	Reserved	
12:10	RZ-XW	010	Calibrating Cycle	
			000 - 4 ms $001 - 16 ms$	
			010 – 64ms 011 – 256ms	
			Valid when RAGP30 (bit-3) is 1.	
9	R1-XW	1	SBA Support	
			Always on.	
8	RZ-XW	0	Coherent Support	
			Not supported	
7	R-XW	0	64-bit GART Entry	
			Support 32-bit GART entry only.	
6	R-XW	0	Host GART Translation	
			0: Support host GART translation 1: Do not do host GART translation	
5	R-XW	0	Over 4GB Support	
			Not Supported	
4	R-XW	0	Fast Write Support	
3	R-XW	0	AGP 8x Detected	RAGP30
			Set by strap pin AGP8XDET#	
			0: AGP 2.0 Mode	
			1: AGP 3.0 Mode	
2:0	R-XW	011	AGP Data Rate	
		111	If RAGP30 (bit-3) is 1, default is 011: supports 4X and 8X data transfer rate.	
			If RAGP30 (bit-3) is 0, default is 111: supports 1X, 2X and 4X data transfer rate.	

Offset Address: CAPPTR + 08h (D1F0 8B-88h)

AGP Command Default Value: 0000 0000h

Bit	Attribute	Default	Description
31:24	RZ-IW	0	Max # of AGP Command Requests
23:13	_	0	Reserved
12:10	RW	0	Calibrating Cycle
9	RW	0	SBA Enable
			Always on.
8	RW	0	AGP Enable
			0: Disable 1: Enable
7	RW	0	64-bit GART
			Not supported
6	RZ-MW	0	Reserved
5	RW	0	Over 4G Support
			Not Supported
4	RW	0	Fast Write Enable
			0: Disable 1: Enable
3	_	0	Reserved
2:0	RW	0	Data Rate
			If RAGP30 (D1F0 Rx87-84[3]) = 1,
			001: 4X data transfer rate
			010: 8X data transfer rate
			If RAGP30 (D1F0 Rx87-84[3]) = 0 ,
			001: 1X data transfer rate
			010: 2X data transfer rate
			100: 4X data transfer rate

Offset Address: CAPPTR + 0Ch (D1F0 8F-8Ch)

AGP Isochronous Status Default Value: 000000000h

Isochronous is not supported, therefore, this register is read zero.

Bit	Attribute	Default		Description			
31:24	_	0	eserved				
23:16	R-IW	0	Maximum Bandwidth (in unit of 32 bytes)				
			Used for isochronous transactions.	for isochronous transactions.			
15:8	R-IW	0	Maximum Number of Isochronous Transaction	in a Single Isochronous Period			
7:6	RZ-IW	0	Isochronous Payload Sizes Supported				
			00: 32,64,128,256 bytes	01: 64,128,256 bytes			
			10: 128,256 bytes	11: 256 bytes			
5:3	R-IW	00	Maximum Isochronous Data Transfer Latency	(in unit of 1 us)			
2	_	0	Reserved				
1:0	R-WIC	0	Isochronous Error Code				
			00: No error	01: Isoch Request Overflow			
			1x: Reserved	-			

Offset Address: CAPPTR + 10h (D1F0 93-90h)

AGP Control Default Value: 0000 0000h

Bit	Attribute	Default	Description				
31:10	_	0	erved				
9	RW	0	able Calibration Cycle				
8	RW	0	able AGP Aperture				
			et to 1 to enable AGP Aperture.				
			ote: Both RBKGTEN (D0F0 Rx4D[5]) and RAGPCAP1 (RxBF[0]) must be 1 to enable this function.				
7	RW	0	TLB Enable				
			nen set to 0, GART TLB entries are invalidated.				
			All AGP aperture access needs to fetch the translation table first.				
6:0	_	0	Reserved				

Offset Address: CAPPTR + 14h (D1F0 97-94h)

AGP Aperture Size Default Value: 0001 0F00h

Bit	Attribute	Default	Description	Mnemonic
31:28	RW	0	Aperture Page Size Select	PAGESZ1[15:12]
			Where n is the value of this register. Only 4KB page size, PAGESZ1=0000h, is supported.	
27	_	0	Reserved	
26:16	R-IW	01	Page Size Supported	NEPG1[10:0]
			If NEPG1[N] is 1, which indicates support of page size of (2^(N+12)).	
			Currently only 4KB page size is supported.	
15:12	_	0	Reserved	
11:0	RW	0F00h	Aperture Size (Default size is 256M)	
			For 0<=n=<5	
			APSIZE[n]=0 forces Aperture Base Address [22+n] to 0	
			APSIZE[1]=1 allows Aperture Base Address [22+n] R/W	
			For 8<=n=<11	
			APSIZE[n]=0 forces Aperture Base Address [22+n-2] to 0	

Table 16. Aperture Size

Aperture Size \ GTSZ1[11:0]	11	10	9	8	7	6	5	4	3	2	1	0
4MB	1	1	1	1	0	0	1	1	1	1	1	1
8MB	1	1	1	1	0	0	1	1	1	1	1	0
16MB	1	1	1	1	0	0	1	1	1	1	0	0
32MB	1	1	1	1	0	0	1	1	1	0	0	0
64M	1	1	1	1	0	0	1	1	0	0	0	0
128M	1	1	1	1	0	0	1	0	0	0	0	0
256M	1	1	1	1	0	0	0	0	0	0	0	0
512M	1	1	1	0	0	0	0	0	0	0	0	0
1G	1	1	0	0	0	0	0	0	0	0	0	0
2G (Maximum Aperture Size)	1	0	0	0	0	0	0	0	0	0	0	0
4G	0	0	0	0	0	0	0	0	0	0	0	0

Default Value: 0000 0000h

Default Value: 80h

Default Value: 63h

Offset Address: CAPPTR + 18h (D1F0 9B-98h)

AGP GART Table Pointer Default Value: 0000 0000h

Bit	Attribute	Default	Description			
31:12	RW	0	RT Table Base Address [31:12]			
11:0	_	0	Reserved			

Offset Address: CAPPTR + 1Ch (D1F0 9F-9Ch)

AGP GART Table Pointer High

Bit	Attribute	Default	Description
31:0	RW	0	Base Address [63:32] Since OVER 4G is not supported, OS should write all zeros to this register. This register is ignored.

Offset Address: CAPPTR + 20h (D1F0 A3-A0h)

AGP Isochronous Command Default Value: 0000 0000h

Isochronous is not supported, therefore, this register is read zero

Bit	Attribute	Default	Description	
31:8	_	0	Reserved	
7:6	RW	0	Isochronous Pay Load Size	
5:0	_	0	Default is ISOCH_Y Reserved	

AGP 4X / AGP 8X Compensation Circuits (B0-B9h)

Offset Address: B0h (D1F0)

AGP PAD Compensation Control / Status

Bit	Attribute	Default	Description	Mnemonic	
7	RW	1	AGP4X Strobe's Reference Voltage		
			0: Strobe signals, GADSTB[1:0]; do not use AGPVREF as input reference voltage.		
			1: Strobe signals use AGPVREF as input reference voltage.		
			(Note: this bit is valid only when internal signal, RX4EN or RX8EN, is set to 1; otherwise always use		
			AGPVREF as Strobe signals' reference voltage)		
			RSTBVREF1 Input Reference Voltage		
			1 $0.5\text{VPP} = 0.5 * 1.5\text{v}$		
			0 NADSTB0, NADSTB1		
6	RW	0	AGP4X Strobe and GD Pad Driving Strength Control		
			0: Driving strength is set to compensation circuit defaults		
			1: Driving strength is controlled by RxB1[7:0]		
5:3	RO	XXX	AGP Compensation Circuit N Control Output		
2:0	RO	XXX	AGP Compensation Circuit P Control Output		

Offset Address: B1h (D1F0)

AGP Compensation Driving Strength Control

Bit	Attribute	Default	Description
7:4	RW	6h	AGP Output Buffer Driving Strength N Control
3:0	RW	3h	AGP Output Buffer Driving Strength P Control

Offset Address: B2h (D1F0)

AGP Pad Driving and Delay Control

Bit	Attribute	Default		Description	Mnemonic
7	RW	0	GD / GADSTBx / GC#BE and GSB	STBx / GSBA# Pad Control	
			GSBSTBx, GSBA G		
			0 No Cap	No Cap	
6:5	RW	0	1 Cap GD, GC#BE Receive Strobe Delay	Cap	
			00: Delay by –150 ps 10: Delay by 150 ps	01: No delay 11: Delay by 300 ps	
4	RW	0	GD[31:16] Output Staggered Delay 0: No delay	1: GD[31:16] is delayed by 1 ns	RGDLY1
3	RW	1	GD, GADSTBx Slew Rate Control 0: Disable	1: Enable	
2	RW	0	GSBA Receive Strobe Delay 0: No Delay	1: Delay by 150 ps	
1:0	RW	0	63. ADSTBx Output Delay 0: No delay 0: Delay by 300 ps 11: Delay by 450 ps 11: Delay by 450 ps 10te: GADSTB1 and GADSTB1# will be delayed 1 ns more if RGDLY1 (bit-4) is set to 1.		

Offset Address: B3h (D1F0)

AGP Strobe Drive Strength Default Value: 00h

Bit	Attribute	Default	Description
7:4	RW	0	AGP Strobe Output Buffer Driving Strength N Control
3:0	RW	0	AGP Strobe Output Buffer Driving Strength P Control

Offset Address: B4h (D1F0)

AGP GSBA Pads Control Default Value: 00h

Bit	Attribute	Default	Description
7:3	_	0	Reserved
2:0	RW	0	GSBA Pads Control

Offset Address: B5h (D1F0)

AGP Back Door Control Default Value: 00h

Bit	Attribute	Default	Description
7:2	_	0	Reserved
1	RW	0	RAGP30 Software Setup RAGP30 (Rx84[3]) is over-written by the value of this register bit. (i.e. Read Rx84[3] will retrieve the value of RxB5[1]) Bit-0 must be set to 1 to enable this feature.
0	RW	0	RAGP30 Software Control 0: Disable 1: Enable, allows RAGP30 to be software programmable

Miscellaneous Control (BA-BFh)

Offset Address: BAh (D1F0)

AGP Hardware Support I – VPX Mode

Bit	Attribute	Default	Description	
7:0	RW	1Fh	AGP Request Queue Size This register is effective if RxBD[1] is set to 1.	

Default Value: 1Fh

Default Value: C4h

Default Value: 04h

Offset Address: BBh (D1F0)

AGP Hardware Support II - VPX Mode

This register is used to re-configure the AGP controller. To reconfigure the AGP controller, RxBD[1] must be set to 1.

Bit	Attribute	Default		Description	
7	RW	1	AGP SBA Mode Enable		
			0: Disable	1: Enable	
6	RW	1	AGP Enable		
			0: Disable	1: Enable	
5	_	0	Reserved		
4	RW	0	Fast Write Enable		
			0: Disable	1: Enable	
3	RW	0	AGP8X Mode Enable		
			0: Disable	1: Enable	
2	RW	1	AGP4X Mode Enable		
			0: Disable	1: Enable	
1	RW	0	AGP2X Mode Enable		
			0: Disable	1: Enable	
0	RW	0	AGP1X Mode Enable		
			0: Disable	1: Enable	

Offset Address: BDh (D1F0)

AGP Capability Header Control

Bit	Attribute	Default	Description	Mnemonic
7:5	_	0	Reserved	
4	RW	0	Enable Rx90[31:10] and Rx90[6:0] RW Attribute	
			0: Disable, read only 1: Enable	
3	RW	0	AGP Major / Minor number Control	RBKMJMN1
			0: Major/Minor = 35h 1: Major/Minor = 20h	
2	RW	1	Select Rx80 as the AGP20 or AGP30 Header	
			0: Rx80 is used as the AGP20 capability header even if the chip is powered up in a AGP30 mode	
			1: Rx80 is used as the AGP30 capability header when the chip is powered up in AGP30 mode	
1	RW	0	Enable AGP Hardware Registers in RxBA ~ RxBB	
			0: AGP hardware is configured by register values defined in the AGP header (either 3.0 or 2.0)	
			1: AGP hardware is configured by register values defined in RxBA ~ RxBB (used in VPX mode)	
0	RW	0	Enable AGP Header Status Register Write	
			0: Disable (Status registers in the AGP header cannot be modified).	
			1: Enable (Status registers in the AGP header can be modified).	

Offset Address: BFh (D1F0)

Miscellaneous Default Value: 00h

Bit	Attribute	Default	Description	Mnemonic
7:1	_	0	Reserved	
0	RW	0	AGP Capability Header 0: AGP capability header is in device0 function0; D1F0 Rx80 ~ RxA0 will be hidden. 1: AGP capability header is as described in D1F0 Rx80 ~ RxA0.	RAGPCAP1

RAGPCAP1's Effects on The Other Parts of The Design

	RAGPCAP1 = 0	RAGPCAP1=1
D0F0 Rx13~Rx10	GTBS[31:22]	00000000
D0F0 Rx34	->Rx80->Rx50->NULL	->Rx50->NULL
D1F0 Rx13~Rx10	00000000	GTBS[31:22]
D1F0 Rx34	->Rx70->NULL	->Rx70->Rx80->NULL
AGP Pad Hardware Setting	D0F0 Rx40~Rx43	D1F0 RxB0~RxB3

ELECTRICAL SPECIFICATIONS

Power Characteristics

DDR

 $T_C = 0-85^{\circ}C$, $V_{RAIL} = V_{CC} + /-5\%$, $V_{CORE} = 1.5V + /-5\%$, GND=0V

Condition: DDR400 and Power Management On

Symbol	Parameter	Тур	Max	Unit
I _{CC33}	Power Supply Current - Internal Logic & I/O Interface	98	100	mA
I_{CCSUS}	Power Supply Current - Suspend Power	1.95	2	mA
I _{CCTT}	Power Supply Current - CPU Interface Termination	80	106	mA
I _{CCCORE}	Power Supply Current – Core Logic	867	1016	mA
I _{CCMCK}	Power Supply Current - DRAM Clock Logic	747	860	mA
I_{CCQ}	Power Supply Current - AGP 1.5V Power	17	19	mA
I_{CCVL}	Power Supply Current – Vlink I/O Power	10	11	mA
P_{D}	Power Dissipation	2.6	3.6	W

DDR2

 $_{C}$ = 0-85°C, V_{RAIL} = V_{CC} +/- 5%, V_{CORE} = 1.5V +/- 5%, GND=0V Condition: DDR2-533 and Power Management On

Symbol	Parameter	Тур	Max	Unit
I _{CC33}	Power Supply Current - Internal Logic & I/O Interface	109	112	mA
I_{CCSUS}	Power Supply Current - Suspend Power	2	2.1	mA
I_{CCTT}	Power Supply Current - CPU Interface Termination	37	95	mA
I_{CCCORE}	Power Supply Current – Core Logic	796	1104	mA
I _{CCMCK}	Power Supply Current - DRAM Clock Logic	389	526	mA
I_{CCQ}	Power Supply Current - AGP 1.5V Power	17	22	mA
I_{CCvL}	Power Supply Current – Vlink I/O Power	9	12	mA
P_{D}	Power Dissipation	2.4	3.2	W

MECHANICAL SPECIFICATIONS

HSBGA-567 Ball Grid Array with Heat Spreader 37.5 x 37.5 x 2.33 mm With 1.27 mm Ball Pitch

Figure 3. Mechanical Specifications - 567-Pin HSBGA Ball Grid Array Package with Heat Spreader

HSBGA-567 Ball Grid Array with Heat Spreader 37.5 x 37.5 x 2.33 mm With 1.27 mm Ball Pitch

Figure 4. Lead-Free Mechanical Specifications - 567-Pin HSBGA Ball Grid Array Package with Heat Spreader