

David Maykon Krepsky Silva Barbara Sfeir Caio Julio K. Campos

Conversores Boost e Flyback com CI 3525

Data de realização do experimento: $18~{\rm de~janeiro~de~2016}$ Série/Turma: 1000/1011 Prof. Dr. Carlos Henrique Gonçalves Treviso

Londrina, 1 de fevereiro de 2016.

Resumo

Neste trabalho foram analisadas algumas técnicas de sinalização digital, em especial a tecnica com não retorno ao zero (NRZ). Também foi estudado o ruído nas comunicações digitais, e a paridade, utilizada para identificar um bit com erro. Por ultimo, foi visto uma técnica para regeneração de clock (código bi-fase). Foi possível observar que um sinal analógico pode ser transmitido através de um canal digital, através da codificação do mesmo. Para dar mais robustez a transmissão, um bit de paridade pode ser utilizado de modo a detectar erros e que podemos regenerar o clock a partir da codificação bi-fase.

Sumário

R	esumo	1
1	Introdução 1.1 Conversores Boost 1.2 Conversores Flyback 1.3 Circuito integrado 3525	3
2	Revisão da Teoria 2.1 Conversor Boost	5 5
3	Metodologia Experimental 3.1 Materiais	9
4	Resultados	11
5	Discussão e Conclusão	13

1 Introdução

1.1 Conversores Boost

Um conversor do tipo Boost é um conversor DC/DC onde a principal característica é que a tensão de saída é maior que a tensão de entrada. Essa topologia é utilizada por uma grande classe de conversores chaveados e contém no mínimo dois semicondutores (um diodo e um transistor), um elemento de armazenamento de energia (neste caso um indutor) e um filtro (um capacitor para reduzir o ripple na tensão de saída).

A alimentação do conversor Boost poder ser feita através de qualquer fonte DC, tais como baterias, paineis solares, geradores DC ou através da própria rede, depois de retificada e filtrada. Esse conversor é muitas vezes chamado de *step-up converter*, pois ele eleva (*step-up*) a tensão de entrada. Nestes conversores, para que haja à conservação da energia, a corrente de saída é menor que a corrente de entrada, assim, um ganho em tensão representa uma redução da corrente disponível.

Como o objetivos dos conversores chaveados (Switched Mode Power Supply) é a alta eficiência, faz-se necessário o uso de semicondutores de potência de alta frequência. Por isso, tais conversores só se tornaram amplamente utilizados a partir dos anos 50, onde o avanço na industria dos semicondutores tornou prático o emprego do conversor Boost em produtos comerciais, militares e aeroespaciais. Hoje em dia, os conversores do tipo Boost são amplamente utilizados nos mais diversos aparelhos como celulares, televisores, carros e etc.

A figura 1 mostra a topologia básica do conversor boost.

Figura 1: Topologia *Boost*.

Fonte: C. H. G. Treviso, Apostila Eletrônica de Potência [1].

1.2 Conversores Flyback

Os conversores do tipo Flyback possuem topologia semelhante aos conversores Buck-Boost, porém, o mesmo pode ter isolação galvânica, com o uso de um transformador. Sendo assim, é necessário utilizar um elemento que isole a saída de referência do secundário, sendo utilizado, geralmente, um acoplador óptico (fotoacoplador).

Esse conversor é empregado quando há necessidade de elevar ou abaixar a tensão de saída. A figura 2 mostra a topologia básica do conversor *flyback*.

Figura 2: Topologia *Flyback*.

Fonte: C. H. G. Treviso, Apostila Eletrônica de Potência [1].

1.3 Circuito integrado 3525

O circuito integrado 3525 é um circuito de controle com um modulador PWM que oferece uma boa performance e necessita de poucas partes externas para controlar todos os tipos de fonte chaveada.

O CI possui uma tensão de referência de +5.1V on-chip, i.e., dentro do integrado, a qual possui tolerância de 1% e elimina a necessidade de um divisor resistivo externo. Outra característica é que o mesmo possibilita o sincronismo entre várias unidades do CI, eliminando ruídos causados pela diferença de clock.

Uma grande variedade de *deadtimes* (tempo morto) podem ser programados utilizando somente um resistor, entre o pino CT e o pino de descarga.

Para grandes potências, é necessário o uso de um circuito de *softstart*, que no caso ja vem integrado no CI, sendo as funções de *softstart* controladas por um pino de *shutdown*. Esse pino também permite desligar o circuito de PWM instantaneamente, em caso de falha ou outro problema como temperatura muito alta.

A figura mostra o diagrama de blocos do CI SG3525A, fabricado pela ON Semiconductor.

Figura 3: Diagrama de blocos do CI SG3525A.

Fonte: Datasheet SG3525A [2].

2 Revisão da Teoria

2.1 Conversor Boost

O principio de funcionamento do conversor *Boost* é que um indutor cria e destrói um campo magnético para resistir a mudanças bruscas de corrente. Isso permite que a tensão de saída do circuito seja maior que a tensão de entrada. Neste trabalho será analisado somente o caso em que o indutor nunca é descarregado por completo (modo contínuo).

A figura 4 mostra um esquemático do conversor *Boost*. O circuito opera em dois estados, que dependem da chave T. Estes estados são descritos abaixo.

- Chave T Fechada: Quando a chave T está fechada (5), a corrente I_L flui através do indutor L, no sentido horário. Isso faz com que o indutor armazene energia na forma de campo magnético. Enquanto o interruptor carrega, uma tensão V_l aparece sobre o mesmo, tendo como lado positivo o lado esquerdo.
- Chave T Aberta: Ao abrir a chave, a corrente I_L que passava no indutor se manterá (não há variação de corrente instantânea no indutor), porém a tensão em cima do mesmo será diferente, dado que a impedância vista pelo indutor mudou. Para manter a corrente, o campo magnético que havia sido criado previamente, será agora destruído. Isso fará com que a polaridade da tensão em cima do indutor (V_L) mude de sentido. Do ponto de vista da carga, agora são duas fontes de tensão em série, como indicado na figura 6.

Figura 4: Esquemático do conversor *Boost*.

Fonte: Autoria própria.

Vale notar que, para que o conversor opere no modo contínuo, a frequência de chaveamento deve ser alta o suficiente para manter uma carga mínima no indutor.

Um característica importante do conversor *Boost* é que a corrente de entrada é constante, ou seja, há pouco ruído indo para a fonte de alimentação.

2.1.1 Ganho estático

Para os cálculos do ganho de tensão no conversor *Boost*, vamos considerar os componentes ideais, o circuito no regime estático de operação e que a corrente no indutor nunca chega a zero (modo contínuo).

Quando a chave está fechada (figura 5), aparece uma tensão V_i em cima do indutor, a qual causa uma corrente I_L através do indutor durante um período de tempo τ . A corrente e a tensão no indutor estão relacionadas pela equação geral do indutor (1).

$$V_L = L \frac{\Delta I_L}{\Delta t} \tag{1}$$

Ao final do período τ , a corrente I_L é

$$\Delta I_{L_{On}} = \frac{1}{L} \int_0^{DT} V_i dt = \frac{DT}{L} V_i. \tag{2}$$

Onde D é a razão cíclica (fração do período T no qual a chave T fica fechada).

Figura 5: Conversor Boost com a chave T fechada.

Fonte: Autoria própria.

Ao abrir a chave (figura 6), a corrente que passa através do diodo fluirá através da carga. Porém, conforme a energia no indutor é transferida para a carga, a tensão no indutor diminui. Assim, a tensão V_L será

$$V_L = V_i - V_o = L \frac{dI_L}{dt}.$$

Então, a variação de I_L se da por

$$\Delta I_{L_{Off}} = \int_{DT}^{T} \frac{(V_i - V_o) dt}{L} = \frac{(V_i - V_o) (1 - D) T}{L}.$$
 (3)

Figura 6: Conversor Boost com a chave T aberta.

Fonte: Autoria própria.

Para que o indutor não sature, é necessário que a energia armazena durante o período de carregamento seja liberada durante o período de descarregamento do indutor. Ou seja

$$\Delta I_{L_{On}} + \Delta I_{L_{Off}} = 0. (4)$$

Substituindo 2 e 3 em 4, temos que

$$\Delta I_{L_{On}} + \Delta I_{L_{Off}} = \frac{V_{i}DT}{L} + \frac{\left(V_{i} - V_{o}\right)\left(1 - D\right)T}{L} = 0.$$

A qual pode ser reescrita como

$$\frac{V_o}{V_i} = \frac{1}{1 - D}.\tag{5}$$

Esta é a equação do ganho estático para o conversor *Boost* em modo contínuo. Observe que a tensão de saída será sempre maior ou igual a tensão de entrada e que, teoricamente, a tensão de saída sobe até o infinito conforme D se aproxima de 1.

2.2 Conversor Flyback

A análise do conversor *flyback* da figura 7 e dada nas etapas a seguir.

Figura 7: Esquemático do conversor Flyback.

- 1. Etapa $(\mathbf{0}, \mathbf{DT_s})$: S está conduzindo. A fonte V_i fornece energia para a magnetização do enrolamento primário do transformador. O diodo D está reversamente polarizado.
- 2. Etapa $(DT_s, (1-D)T_s)$: S está bloqueado. A energia armazenada no transformador é levada para a saída através do diodo D. A forma de onda da tensão no primário do transformador é mostrada na figura 8.

Figura 8: Tensão no primário.

Fonte: INEP [3].

A relação entre a tensão de saída e a tensão de entrada, utilizando uma aproximação de circuito ideal, é dada pela equação 6.

$$\frac{V_o}{V_i} = \frac{D}{1 - D} \tag{6}$$

Essa equação não leva em consideração o ganho devido ao transformador, que deve ser considerado nos cálculos.

A figura 9 mostra as principais formas de onda do conversor flyback.

Figura 9: Formas de onda no conversor flyback.

Fonte: INEP [3].

3 Metodologia Experimental

3.1 Materiais

O material utilizado para realização do experimento foi:

- 1 Módulo *Boost*;
- 1 Módulo *Flyback*;
- 1 CI 3525;
- 1 Amplificador operacional;
- 1 capacitor de 100uF;
- 1 capacitor de 220uF;
- 1 capacitor de 470nF;
- 1 capacitor de 1nF;
- 1 resistor de $22k\Omega$;
- 2 resistores de $10k\Omega$;
- 1 resistor de $2k2\Omega$;
- 1 resistor de $1k\Omega$;
- 1 resistor de $1M\Omega$;
- 1 reostato de 50Ω ;
- 1 acoplador óptico TIL 111;
- 1 Gerador de função;
- 1 Osciloscópio de 2 canais;
- multimetros.

Para execução do experimento, faz-se necessário executar os passos abaixo, de acordo com o roteiro disponibilizado em sala de aula [4].

- 1. Montar o circuito da figura 1 (do roteiro em [4]) e verificar o funcionamento em malha fechada (Vsaída máximo de 40V). O que observou na variação da tensão de saída com relação à entrada? Explique.
- 2. Após verificar o comportamento do item 1, preencha a tabela 1 utilizando como carga um reostato de 50Ω / 1kW (utilizar a fonte de tensão em paralelo);

Tabela 1: Conversor Boost.

Tensão de	Corrente de	Tensão de	Corrente de	Rendimento [%]
entrada [V]	entrada [A]	saída [V]	saída [A]	
20		40.0	0.60	
20		40.0	1.00	
20		40.0	1.50	
20		40.0	2.00	
20		40.0	2.50	
30		40.0	0.70	
30		40.0	1.00	
30		40.0	1.50	
30		40.0	2.00	
30		40.0	2.50	

Fonte: Roteiro [4].

- 3. Montar o circuito da figura 3 (do roteiro em [4]) e verificar o funcionamento em malha fechada (Vsaída máximo de 40V). O que observou na variação da tensão de saída com relação à entrada no *flyback*? Explique.
- 4. Após montar o circuito da figura 3 (do roteiro em [4]), preencha a tabela 2 utilizando como carga um reostato de de 50Ω / 1kW (utilizar a fonte de tensão em paralelo);

Tabela 2: Conversor Flyback.

Tensão de	Corrente de	Tensão de	Corrente de	Rendimento [%]
entrada [V]	entrada [A]	saída [V]	saída [A]	
20		35.0	0.60	
20		35.0	0.90	
20		35.0	1.30	
20		35.0	1.70	
20		35.0	2.00	
30		35.0	0.60	
30		35.0	1.00	
30		35.0	1.50	
30		35.0	2.00	
30		35.0	2.50	

Fonte: Roteiro [4].

- 5. Explique o motivo pelo qual é necessário utilizar um opto-acoplador no controle. Por que no conversor *Boost* ele não foi necessário?
- 6. Caso ocorra variação na temperatura do circuito de controle, haverá variação na tensão do flyback? Explique.
- 7. Qual conversor obteve major rendimento?
- 8. Cite vantagens e desvantagens do CI 3525 em relação ao CI 3524.

4 Resultados

A seguir são apresentados os resultados obtidos de acordo com os itens apresentados na seção 3.

- 1. o circuito foi montado e observamos que a tensão de saída se mantém constante, independente da variação na tensão de entrada. Isso é possível graças ao circuito de controle que utiliza uma realimentação para corrigir o valor da tensão de saída de forma rápida.
- 2. A tabela 3 apresenta os dados obtidos durante o experimento.

Tabela 3: Rendimento Boost.

Tensão de	Corrente de	Tensão de	Corrente de	Rendimento [%]
entrada [V]	entrada [A]	saída [V]	saída [A]	
20	0.85	40.0	0.60	88.2867
20	1.10	40.0	1.00	87.8898
20	1.63	40.0	1.50	87.2083
20	2.26	40.0	2.00	86.4318
20	2.71	40.0	2.50	85.4747
30	0.82	40.0	0.60	84.6284
30	0.70	40.0	1.00	84.6284
30	1.04	40.0	1.50	84.6284
30	1.38	40.0	2.00	84.6284
30	1.76	40.0	2.50	84.6284

- 3. De modo semelhante ao circuito com conversor *Boost*, o circuito com flyback também mantém a tensão de saída constante, contudo o mesmo utiliza um acoplador óptico para realizar o *feedback* para o circuito de controle.
- 4. A tabela 4 mostra os dados obtidos para o experimento.

Tabela 4: Rendimento *Flyback*.

Tensão de	Corrente de	Tensão de	Corrente de	Rendimento [%]
entrada [V]	entrada [A]	saída [V]	saída [A]	
20	0.64	35.0	0.60	88.2867
20	0.92	35.0	0.90	87.8898
20	1.31	35.0	1.30	87.2083
20	1.74	35.0	1.70	86.4318
20	2.11	35.0	2.00	85.4747
30	0.46	35.0	0.60	84.6284
30	0.65	35.0	1.00	84.6284
30	0.96	35.0	1.50	84.6284
30	1.35	35.0	2.00	84.6284
30	1.72	35.0	2.50	84.6284

- 5. No conversor *Boost* podemos usar um divisor resistivo porque não há isolação galvânica entre o primário e o secundário. Já no conversor *Flyback*, é necessário utilizar um acoplador óptico, pois o transformador isola o primário do secundário.
- 6. Sim. Isso acontece porque o acoplador óptico, assim como a maioria dos semicondutores, é bastante sensível a variações de temperatura. Neste caso o conversor *boost* apresenta um erro menor, pois os resistores variam menos com a variação da temperatura do que os acopladores ópticos.
- 7. De acordo com os dados obtidos, o conversor Flyback obteve um melhor rendimento.
- 8. As vantagens são:
 - possui *soft-start* integrado;
 - permite sincronismo;
 - proteção contra subtensão.

As desvantagens são:

- não tem operacional para realimentação de corrente;
- para K_c próximo de 1, é necessário utilizar elementos externos.

5 Discussão e Conclusão

Com base nos resultados obtidos nas tabelas 3 e 4, podemos concluir que a eficiência com que o circuito converte uma tensão de entrada Vi, para uma tensão de saída Vo, é maior no conversor do tipo Flyback. É notório também que, os conversores Boost e Flyback possuem uma perda considerável, diferente do resultado da equação (5), onde foi calculado o ganho para um circuito ideal. Este fato se deve a perda inerente dos componentes do sistema. Notamos que há um pequeno transiente na forma de onda de saída e na chave. Isso se deve ao fato de que os componentes e cabos utilizados possuem características parasitas (como a esr e lsr do capacitor de filtro), que provocam oscilações em alta frequência.

Referências

- [1] C. H. G. Treviso, Apostila Eletrônica de Potência, Londrina, 2015.
- [2] SG3525A Datasheet, http://www.onsemi.com/pub_link/Collateral/SG3525A-D.PDF, ON Semiconductors, January 2005, rev. 5. Acesso em 31/01/2016, 8:30 am.
- [3] C. A. Petry, Introdução aos Conversores CC-CC, 2001.
- [4] C. H. G. Treviso, "Roteiro da atividade prática, laboratório 12," 2015.