2020년도 1학기 캡스톤 디자인 (융합프로덕트종합설계) 강화학습을 이용한 이미지 기반 밸런싱 로봇 제어 시스템

지도교수 송진우

팀:독수리

무인이동체공학과 17011794 권영서 무인이동체공학과 17011855 강산희 스마트기기공학과 17011832 김남훈 무인이동체공학과 17011811 엄단경 무인이동체공학과 18011880 박진현

목차

- 개요
- 개발 동기 및 목적
- 개발목표
- 개발 내용
- 결과 활용 방안 및 기대효과
- 개발일정

개발 동기

학부 과정에서 습득한 전공 지식의 융합(제어+전자+sw)을 프로젝트에 활용하여 지능기전공학부 관련한 여러가지의 연구주제 중, 현재 활발하게 연구중인 밸런싱 로봇에 관한 프로젝트를 수행하고자 함.

Sense tilt and drive wheels to make robot erect

개발 동기

기존 밸런싱 로봇의 한계점

- 기존 밸런싱 로봇에 사용되는 센서의 단점
 - o IMU센서로 정확하게 각도를 측정하는 알고리즘의 한계
 - 자이로 센서에서 각도를 얻기위한 적분 과정에서 생기는 오차가 누적되면서 각도가 기울어짐
 - **가속도 센서**는 외란에 의한 관성력에 대해서 민감하게 반응함
 - o 위치 추정을 위한 측정치가 필요함
 - IMU+GPS : 일반적으로 항법을 하기 위해 IMU와 GPS를 사용하지만 실내에서는 GPS를 사용하지 못한다는 환경적 제한 존재
 - IMU + 거리 센서 : 추가적인 맵이 필요

도출된 목적: IMU+카메라를 이용한 밸런싱 로봇 고안

프로젝트 차별성

- 센서 및 카메라 측정치의 융합으로 정확한 자세 추정 및 제어 가능
 - 칼만필터 등 복잡한 필터를 이용하지 않아도 자세 측정이 가능함
- 강화학습을 통해 모델이 최적의 값에 도달하도록 조정됨
 - 정해진 한도 내에서 더 많은 시간을 유지할 수 있을수록 더 많은 보상을 축적함
 - 균형을 유지하기 위한 최선의 동작을 학습하기 위함

프로젝트 목표

- 카메라 및 IMU를 이용한 자세측정 및 보정 알고리즘 개발
- 강화학습을 이용한 이미지 기반 밸런싱 로봇 제어 알고리즘 개발
 - Matlab 기반 시뮬레이션을 통해 제어기의 성능 검증
 - 경험 축적을 통해서 맞춤화(customized)된 제어 가능
- 밸런싱 로봇의 임베디드 보드 제작
 - 아두이노와 Jetson을 이용한 로봇 제어시스템 개발
- 모니터링용 사용자 인터페이스(UI) 개발

시스템 구조

시스템 구조 -SW

시스템 구조 -SW

개발 환경

- Tool
 - Matlab
 - Arduino
 - Android Studio
 - Eclipse
- Language
 - Python
 - Java
 - (

내용 구성1 - IMU

mpu6050은 가속도계와 자이로센서가 1개의 센서에 모두 포함하고 있는 6DOF(Degrees of Freedom)센서이다.

- IMU와 영상정보를 이용한 자세측정
 - 1축(y)에 대해 자세 측정
 - 영상 속 타겟의 위치에 따라 로봇의 기울어진 정도 파악
 - 상보필터를 이용하여 정확한 자세 측정

Complementary Filter

내용구성1 - MARKER DETECTION AND POSE ESTIMATION

• 카메라로 마커를 찍어 opencv이용 후 각도 추출

• IMU센서 데이터와 영상정보 융합 알고리즘

내용구성2 - PID제어

- PID 제어(Proportional-Integral-Differential controller)
 - 현재 자세와 목표하는 자세 사이의 오차를 이용하여 제어에 필요한 제어값 계산
- PID 파라미터는 시스템 응답에 영향을 미침
 - 비례항: 출력의 크기 조절
 - 적분항 : 정상상태오차(steady-state error) 줄임
 - 미분항: 급격한 변화에 반응, 오버슛을 줄이고 안정성 향상

내용 구성2 - 강화학습

- 밸런싱로봇에 장착된 카메라에서 실시간으로 영상을 입력받음
 - Target 마커 인식 및 visual servoing(시각기반제어)

- 강화학습을 이용한 제어기를 설계
 - Deep Q Network(DQN) 적용

Reinforcement Learning Setup

내용 구성3 - 아두이노 & JETSON

- 아두이노와 JETSON을 이용한 제어 시스템 개발
- IMU 센서 인터페이스
 - MPU-6050
 - I2C 통신
 - Processing 프로그램 활용
- 모터 구동 sw
 - Android App(+Bluetooth)을 이용한 기본 조작(전원/정지)
- 아두이노와 JETSON 통신을 위한 sw개발
 - UART/SPI/I2C/GPIO 중 하나를 이용하여 JETSON과 통신

내용 구성4- 시뮬레이션

- 기본 PID제어기와 강화학습을 이용한 제어기 비교 및 분석을 통해 제어기 성능 확인
 - 안정도, 반응 속도 등 확인
- 융합한 자세의 성능검증
 - 고성능 센서를 기준으로 성능 비교
- 비교 분석을 위한 툴로 Matlab 이용

<시뮬레이터 예시

내용 구성5 - 모니터링 시스템

- 로봇 모니터링 용 윈도우 SW, 앱 개발
- 간단한 제어를 위한 UI 구성
- 제어기를 변경하여 제어기에 따른 로봇의 움직임을 시각화하여 실시간으로 확인해 볼 수 있음

팀원 별 역할

이름	역할
강산희	젯슨-아두이노 통신(signal), PID 전체 자세 제어, 시뮬레이터 개발
권영서	젯슨-아두이노 통신(signal), PID 전체 자세 제어, 시뮬레이터 개발
김남훈	강화학습 구현, 젯슨&카메라로 영상정보 처리, 모니터링 웹 개발
박진현	IMU로 자세정보 받기, 강화학습 구현, 자세와 영상 정보를 통합하여 웹과 통신 방법 고안
엄단경	IMU로 자세정보 받기, 젯슨&카메라로 영상정보 처리, 모니터링 앱 개발

개발 일정

활동	계획 시작	기간 계획	실제 시작	실제 기간	완료율	기간 1	3	4 !	5 6	7	8	9	10	11	12	13	14	15
관련 사례 조사	2	2	2	2	100%													
시스템 설계	3	2	3	2	100%													
역할 분담 및 일정 수립	3	1	2	2	100%													
장비(카메라) 구매	3	2	4															
IMU 센서	4	3																
카메라	4	6																
장치 간 통신	5	5																
강화학습	4	6																
PID 제어	7	3																
비교 분석	10	2																
시뮬레이터	10	2																
웹 / 앱	10	2																
최종 구현	12	2																
보고서 작성	12	2																
발표 및 시연	14	2																

활용 가능성

- 기존 대비 안정성 향상으로 무인이동체에 적용
 - 밸런싱 로봇 휠체어

활용 가능성

- 실시간 영상 정보가 요구되는 현장에 투입 가능
 - 탐사 로봇

활용 가능성

- 다양한 산업 현장 및 연구에 응용
 - 건설 로봇

참고 문헌RELATED WORKS

- Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." *Nature* 518.7540 (2015): 529-533.
- Rahman, MD Muhaimin, SM Hasanur Rashid, and M. M. Hossain. "Implementation of Q learning and deep Q network for controlling a self balancing robot model." *Robotics and biomimetics* 5.1 (2018): 8.
- Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep reinforcement learning with double q-learning." Thirtieth AAAI conference on artificial intelligence. 2016.

