Title

Stefan Åhman sahman@kth.se

 $\begin{array}{c} {\rm Marcus~Wallstersson} \\ {\rm mwallst@kth.se} \end{array}$

December 3, 2011

KTH Kista, Stockholm

Innehållsförteckning

1	Inledning	3
2	Problem och Syfte	3
3	Genomförande	3
4	Resultat	3
R	eferenser	Δ

1 Inledning

För att kunna kontrollera om en temporallogisk formel "" gäller i ett visst tillstånd "s" i en given modell M kan man använda sig av en modellprovare. Detta programverktyg måste i denna laboration implementeras att hantera följande delmängd CTL-reglerna (Computation tree logic):

formler

För att kunna kontrollera om en temporallogisk formel "" gäller i ett visst tillstånd "s" i en given modell M kan man använda sig av en modellprovare. Detta programverktyg måste i denna laboration implementeras att hantera följande delmängd CTL-reglerna (Computation tree logic):

2 Problem och Syfte

För att kunna kontrollera om en temporallogisk formel "" gäller i ett visst tillstånd "s" i en given modell M kan man använda sig av en modellprovare. Detta programverktyg måste i denna laboration implementeras att hantera följande delmängd CTL-reglerna (Computation tree logic):

- fördjupa förståelsen för CTL och hur temporallogik kan användas för att specicera viktiga systemegenskaper.
- lära sig använda Prologs sökteknik för bevissökning.
- lära sig bygga enkla men nyttiga programverktygverktyg som kan användas till systemverikation.

3 Genomförande

4 Resultat

Referenser