

金融科技導論

陳君明

jmchen@crypto.tw

國立臺灣大學 National Taiwan University

Threshold Cryptography Multi-Party Computation

Introduction to Threshold Signature

- Goal: (with parameter (t, n))
 - A group of *n* people wants to collectively sign a message
 - Each member can create his signature
 - Any one can calculate the signature of the group upon receiving any *t* signatures of the *n* members

Before dealing with signatures, we deal with secrets

Introduction to Threshold Secret Sharing

- Goal: (with parameter (t, n))
 - A group of *n* people wants to collectively own a group secret
 - Each member owns his share of secret
 - Any one can calculate the group secret upon knowing any t secret shares

This can be done by polynomial interpolation

Lagrange Interpolation

• Problem: Construct a quadratic polynomial p(x) with p(1) = 5, p(2) = 9, and p(3) = 7.

• Solution: p(x)

$$= 5 \cdot \frac{(x-2)(x-3)}{(1-2)(1-3)} + 9 \cdot \frac{(x-1)(x-3)}{(2-1)(2-3)} + 7 \cdot \frac{(x-1)(x-2)}{(3-1)(3-2)}$$
$$= -3x^2 + 13x - 5$$

Lagrange Interpolation

Lagrange Interpolation Formula

$$p(x) = \sum_{i=0}^{k} p_i(x) = \sum_{i=0}^{k} y_i \prod_{j \neq i} \frac{x - x_j}{x_i - x_j}$$

is the unique polynomial of degree $\leq k$ passing through the k+1 points (x_i, y_i) , where $x_i \neq x_i$ for $i \neq j$

- Note that $p(x_i) = y_i$ since $p_i(x_i) = y_i$ and $p_j(x_i) = y_j \prod_{k \neq j} \frac{X_i X_k}{X_j X_k} = 0$
- Denote the factor of recovery $\prod_{j \neq i} \frac{x x_j}{x_i x_j}$ by $r_i(x; x_0, ..., x_k)$

Adi Shamir's Scheme (1979)

- Suppose there is a trusted secret distributor with trusted channels
- Set $p(x) = a_0 + a_1 x + ... + a_{t-1} x^{t-1}$ of degree t-1
 - Let a_0 be the secret
 - Choose $a_1, ..., a_{t-1}$ randomly
- Distribute p(1), p(2), ..., p(n) to n participants
- t of the n points (1, p(1)), (2, p(2)), ..., (n, p(n)) can recover p(x), hence the secret $a_0[=p(0)]$
- t-1 of the m points can not obtain any information about a_0
- The coefficient of recovery is $r_i(0; x_1, ..., x_t)$ in \mathbb{Q} or \mathbb{F}_q

Feldman's Verifiable Secret Sharing

- Participant i can verify if the value v_i received is equal to p(i)
- The distributor has to make commitments to the polynomial p
 - Assuming discrete logarithm problem is hard on additive cyclic group
 G = <g>
 - Publish $c_0 = a_0 \cdot g$, ..., $c_{t-1} = a_{t-1} \cdot g$ as elements of G before distribution
- Participant i verifies if $v_i \cdot g = c_0 + (i \cdot c_1) + ... + (i^{t-1} \cdot c_{t-1})$ holds LHS = $p(i) \cdot g = a_0 \cdot g + (i \cdot a_1) \cdot g + ... + (i^{t-1} \cdot a_{t-1}) \cdot g = \text{RHS}$
- If no participants fail the examination, this guarantees that the distributor did not cheat
- Note that the distributor knows the secret a_0

Curve25519, EdDSA

Curve25519

- $p = 2^{255} 19$ 是質數
- 定義橢圓曲線

$$E: y^2 = x^3 + 486662x^2 + x$$

- Montgomery Curve
- Birationally Equivalent to a Twisted Edward Curve
- ▶ 考慮橢圓曲線群 $E(\mathbb{F}_{p^2})$, 即允許座標 $x,y \in \mathbb{F}_{p^2}$
 - ▶ 代入任意 $x \in \mathbb{F}_p$,都可以開根號解出 $y \in \mathbb{F}_{p^2}$
- Base point

$$Q = (9, \sqrt{39420360})$$

Curve equation

$$E: ax^2 + y^2 = 1 + dx^2y^2$$

- Special case a = 1, called Untwisted
- In Ed25519, a = -1
- Addition and Doubling

$$(x_1, y_1) + (x_2, y_2) = \left(\frac{x_1 y_2 + y_1 x_2}{1 + dx_1 x_2 y_1 y_2}, \frac{y_1 y_2 - ax_1 x_2}{1 - dx_1 x_2 y_1 y_2}\right)$$

- ▶ Neural point (0,1)
- ▶ <u>Theorem</u>. Every twisted Edwards curve is birationally equivalent to an Montgomery curve

2018/12/24

Montgomery curve

$$M:Bv^2=u^3+Au^2+u$$

Twisted Edwards curve

$$E: ax^2 + y^2 = 1 + dx^2y^2$$

▶ The birational map is defined by

$$x = \frac{u}{v}, y = \frac{u-1}{u+1}$$

With the coefficients

$$a = \frac{A+2}{B}$$
, $d = \frac{A-2}{B}$

• Curve25519

$$M: v^2 = u^3 + 486662u^2 + u$$

 $A = 486662, B = 1$

▶ The coefficients of the twisted Edwards curve

$$a = \frac{A+2}{B} = 486664, d = \frac{A-2}{B} = 486660$$

Twisted Edwards curve

$$E:486664x^2 + y^2 = 1 + 486660x^2y^2$$

▶ Changing variable $x \mapsto \sqrt{-486664} \cdot x$

$$E: -x^2 + y^2 = 1 - \frac{121665}{121666}x^2y^2$$

▶ Base point for Curve25519

$$Q = \left(9, \sqrt{39420360}\right)$$

- ▶ The coordinate u = 9
- ▶ The corresponding point on twisted Edwards curve

$$x = \frac{u}{v}, y = \frac{u-1}{u+1} = \frac{4}{5}$$

 \triangleright The coordinate x is chosen to be positive

Public Parameters

- 1. Odd prime p, and base field \mathbb{F}_p
- 2. Encoding length b such that $2^{b-1} > p$
- 3. Cryptographic hash function H(x) has 2b bits output
- 4. A non-square element $d \in \mathbb{F}_p$
- 5. A non-zero square element $a \in \mathbb{F}_p$
- 6. Elliptic curve $E: ax^2 + y^2 = 1 + dx^2y^2$ over \mathbb{F}_p
- 7. Base point $B \neq (0,1)$ on E of prime order L
- 8. Integer c = 2 or 3, the base 2 logarithm of cofactor
- 9. Integer n with $c \le n < b$
 - Secret scalar $s = 2^n + \sum_{i=c}^{n-1} 2^i h_i$

KeyGen

- 1. Master private key: b bits string k
- 2. Compute hash value $H(k) = (h_0, h_1, ..., h_{2b-1})$
- 3. Compute secret scalar with least significant *b* bits

$$s = 2^n + \sum_{i=c}^{n-1} 2^i h_i$$

- 4. Compute EC scalar multiplication A = [s]B
- 5. Public key: EC point *A*
- 6. Private key: s, most significant b bits $(h_b, ..., h_{2b-1})$

16

Sign

- 1. Input message M and secret key s, $(h_b, ..., h_{2b-1})$
- 2. Compute $r = H(h_b, ..., h_{2b-1}, M)$
- 3. Compute EC scalar multiplication R = [r]B
- 4. Compute scalar for verify $S \equiv r + s \cdot H(R, A, M) \mod L$
- 5. Signature: (R, S)

17

Verify

- 1. Input message M, signature (R, S) and public key A
- 2. Compute EC scalar multiplication $P = [2^c S]B$
- 3. Compute EC operation $Q = [2^c]R + [2^cH(R, A, M)]A$
- 4. Accept the signature if P = Q

Correctness

$$[2^{c}S]B = [2^{c}(r + sH(R, A, M))]B$$

= $[2^{c}r]B + [2^{c}sH(R, A, M)]B$
= $[2^{c}]R + [2^{c}H(R, A, M)]A$

9 2018/12/24

Ed25519 vs ECDSA NIST P-256

- According to Ed25519 Web site (https://ed25519.cr.yp.to/)
 - Westmere CPU (Intel Xeon E5620, hydra2)
 - ▶ Signing: 87548 cycles (109000 messages per second)
 - Verification: 273364 cycles
- According to the eBACS
 - ▶ ECRYPT Benchmarking of Cryptographic Systems
 - ▶ Ed25519 takes at range (time on real computer)
 - ▶ 524288 1048576 for optimized implementation for AMD 64
 - ▶ 1048576 4194304 for reference implementation
 - ECDSA with NIST P-256 takes at range
 - ▶ 1048576 8388608 for openssl implementation