1. Nanomaterials

23 November 2023 09:49

NANOMATERIALS

· Nano -> Greek word "dwang"

· 1 nm = 10-9 m

• 1 nm = 10 "H" atoms (0x) 5 "Si" atoms

SEM: Scanning Electron Microscope

TEM: Transmission Electron Microscope

A FM: Atomic Fosice Microscope

NANOSCIENCE, NANOTECHNOLOGY

- · Design
- · Structure
- · Characterization
- · Brajunties
- · Applications

BULK MATERIALS & NANOMATERIALS : PROPERTIES

METAL PROPERTY	Burk	NANO
Gold (Au)	Yellow	Red
Aluminium (Al)	Non-combustible	Combustible
Melting point	HIGH	Low
Conductivity	HIGH	Loω

CLASSIFICATION OF NANOMATERIALS

Zoro dimensional

Eg: Nano clustors Quantum dot One (1°) dimensional

Eg: Nano wine Nano tube Jwo (29) dimensional

Eg: Nano films Nano coating Those (3°) dimensional

Eg: Bundles of nano wine

4: Ivano constant	Eq: Naro wine	Eg: Nano films	Eq = bunades of
Quantum dot	Nano tube	Nano coating	nano wine
	111		
		H	
= C8	≡ (8		, = (B
	1	1	no goh e [= (B
L L	= 40		

WHY DO NANOMATERIALS EXHIBIT DIFFERENT

- Large surface area
 Shatial confinement / Quantum confinement
 Energy gape
 Reduced imperfections

Surface atoms

NANDMATERIALS PROPERTIES

PROPERTY	BULK	NANDMAT	erials
O Surface area	less surface asea	Mosic surface area	4
			[defende on _
		2D ID	OD
2 spatial confinement/	No energy gap - "30"		J
Quantum confinement	No energy gap - 3D	Less energy	
	conductors	tess energy slightly more energy gap	More energy gap
		Semiconductors	Insulator
3 Energy gap ox 1 alom size	No energy gap	Some energy gap	Mose energy
1 Imperfections	More crystal imperfections	Reduced crystal impe	rfections
SURFACE AREA DEPENDEN	T PROPERTIES		
Paggery	Bull	Nandma	FOIDIC

More

Less

Surface atoms	Mone	Les
Surface assea	dess	Mose
Weight	More	leis
Catalytic activity	Less reactive	Moru reactive
Combustion	Non-combustible	Combrestible
Chemical reactivity	less reactivity	More reactivity

PROPERTIES

- · Electrical
- · Optical
- Mechanical
- · Thermal
- Magnetic

ELECTRICAL PROPERTIES

Depends on spatial/quantum confinement, surface scattering

PROPERTY	BULK	NANOMATI	erials
		2) ID	ОЪ
Spatial confinement/	ε E CB		
Quantum confinement	No energy gap - "3D"		
		less energy slightly more	1
	exhibits conductivity	tess energy slightly more energy	More energy gap
			Insulator
		Semiconductors	JAGULANDA
		less conductivity	
Surface scattering	Conductivity increases	ELASTIC SCATTERING	INELASTIC SCATTERING
0	0	Conductivity increases	Conductivity
		0	devienses.
			· free e path
			· scattered e loses

OPTICAL PROPERTIES

Depends on Surface Plasmon Resonance (SPR), and energy gap,

MECHANICAL PROPERTIES

PROPERTY	вик	Nanomaterials
Surface area	Les surface area	More surface area
urface area	Les surface area	More surface area

durface area	Less surface area	More surface area
Strength	Less strength	Morre Strength
		Morre strength >50 nm Cu → super hard material
Physical characteristics	Shows malleability,	Does not show malleability,
Energy gah	Energy gap = 0	2D, 1D → less energy gap semiconductors DD → more energy gap → insulator
		DD → more energy gap → insulator

THERMAL PROPERTIES

Property	вик	NANO MATERIALS
Thermal conductivity	Increases	Thound conductivity -> less
		Thornal conductivity → less Latrice due to congress latrice Monon scattering
		quantily 8' vibrational mechanical energy
Number of bands	More no of bounds	dess no. of bands
Surface area	Less	More

MAGNETIC PROPERTIES

Property	Bulk	NANOMATERIALS
Magnetic characteristics	Fe, (o, Ni feronomagnetism	Fe , Co , Ni superfromamagnetism
	ferro magnetism	superporamagnetism
	Pt, Au non-magnetic	Pt, Au exhibits magnetism
	non-magnetic	euhibits magnetism
burface area	how surface onea	High surface onca
Catalyst (Au, Ag)	hers catalytic activity	Moore catalytic activity
Energy goh	No energy gah	SEMICONDUCTORS: Sess energy 94

curago (na, ng	was caracynic activity	ruste caracytic activity
Energy goh	No energy gala	SEMICONDUCTORS: Sess energy gap
00 01	ω σι	INSULATORS: More energy gap

APPLICATIONS

M: Medical applications -> Nonomedicine, nanobots

E: Energy Storage Device -> Batteries, fuel cells

E: Environment -> (02, NO2, NO3, CO

E: Electronics - Cd8, ZnS

C: Cosmetics -> ZnO, TiO2

C: Catalyst -> Au, Ag (more catalytic activity)