Chapter 9

Graph

Graph

- นโนโครงสร้างความสัมพันธ์ของข้อมูลที่มีการเชื่อมโยงแบบหลายทิศทาง(n:n) ซึ่งต่าง จากลิงค์ลิสต์(1:1) หรือ ตันไม้ (1:n)
- ุ่♣ กราฟประกอบด้วยเช็ตของโหนด(Nodes หรือ Vertices) ที่เชื่อมต่อกันด้วยเช็ตของ เอดจ์(Edges หรือ Links) ซึ่งแสดงความสัมพันธ์ระหว่างคู่ของโหนด
- ุ่♣ เอดจ์ หรือเส้นเชื่อม ที่แสดงความสัมพันธ์ระหว่างคู่ของโหนด อาจกำหนดให้มีทิศทาง หรือไม่ก็ได้ ถ้ากำหนดให้มีทิศทางเรียกว่าDirected Graphs ถ้าไม่มีทิศทางเรียกว่า Undirected Graphs หรือถ้ามีทั้ง 2 อย่าง เรียกว่า Mixed Graphs
- ุ่♣ กราฟที่กำหนดค่าน้ำหนักของเอดจ์(ความสัมพันธ์) เรียกว่า Weighted Graphs
- 👃 การทราเวิร์ส(Traverse) ในกราฟ คือการเข้าถึงแต่ละโหนดผ่านทางเอดจ์ ที่เชื่อมอยู่
- ปัญหาแรกของกราฟ

สะพานทั้งเจ็ดแห่งเมืองเคอนิกสแบร์ก (Seven Bridges of Königsberg) เมืองเคอนิกสแบร์ก มีเกาะอยู่ 2 เกาะ กลางแม่น้ำเพรเกิล เชื่อมต่อถึงกันด้วย สะพาน 7 สะพาน คำถามคือ เป็นไป ได้หรือไม่ที่จะเดินผ่านให้ครบทุก สะพาน โดยผ่านแต่ละสะพานเพียง ครั้งเดียว และกลับมาที่จุดเริ่มตันได้ เลออนฮาร์ด ออยเลอร์ ได้ตีพิมพ์ บทความพิสูจน์ให้เห็นว่าเป็นไปไม่ได้

• The paper written by <u>Leonhard Euler</u> on the <u>Seven Bridges of Königsberg</u> and published in 1736 is regarded as the first paper in the history of graph theory.

Graph & Mixed Lists

👃 ตัวอย่างการออกแบบโครงสร้างของกราฟโดยใช้ array of linked lists

```
class Edge { int edgeInfo;
                int adjNode; //index
                Edge next_edge;
class Vertex { String label;
                  int status;
                 Edge first_edge;
class GraphArray {
      Vertex [] node;
      public GraphArray(int max) {
             node = new Vertex[max];
}
                             first
                                             next
                     Α
                                        info
                                             edge
                             edge
                             first
                                             next
                                                            next
                      В
                                        info
                                                       info
                                             edae
                                                            edae
                             edge
                             first
             3
                                                            next
                     C
                                        info
                                                     4 info
                                             edge
                             edge
                             first
                                             next
             4
                     D
                                      3 info
                             edge
```

Graph & Matrix (2D-Array)

ุ่**∔** ตัวอย่างการออกแบบโครงสร้างกราฟโดยใช้ Matrices

[0]

[0]

 $\lceil 1 \rceil$

[2]

[3]

vCount = 4

node[0]	Α
node[1]	В
node[2]	С
node[3]	D

AdjMat =

 0
 0
 0
 1

 1
 0
 1
 1

 1
 0
 0
 1

 0
 0
 1
 0

[2]

[3]

[1]

Graph & Matrix Array

```
class Vertex { String label;
              int status ; //status of traverse
     public Vertex(String name) {
              label = name;
              status = 0;
class Graph { Vertex [] node;
    static int [][] adjMat;
     static int vCount = 0;
     public Graph(int max) {
         node = new Vertex[max];
         adjMat = new int[max][max];
         vCount = 0;
         for (int i=0; i<max; i++)
             for (int j=0; j<max; j++)
               adjMat[i][j] = 0; // no link
    void addNode(String name) {
         node[vCount++] = new Vertex (name);
    void addEdge(int fromNode, int toNode) {
         adjMat[fromNode][toNode] = 1;  // directed & undirected graph
         adjMat[toNode][fromNode] = 1;  // add for undirected graph
```

Breadth-first Algorithm

กำหนดสถานะของโหนด 1 = ยังไม่เคยเห็น, 2 = อยู่ในคิว 3 = ทำเสร็จแล้ว

- 1. ทำให้ทุกโหนดมีสถานะเป็น 1 (โหนดใหม่ยังไม่เคยเห็น) กำหนด start node เริ่มตัน
- 2. ใส่ start node ไว้ในคิว แล้วเปลี่ยนสถานะเป็น 2 (อยู่ในคิว) // addLast
- 3. ดึงโหนดออกจากคิวไปใช้ และเปลี่ยนสถานะเป็น 3 (ผ่านการ Access) //removeFirst
- 4. ใส่ทุกโหนดที่ต่ออยู่(จาก 3) ไว้ในคิว และเปลี่ยนสถานะเป็น 2 (อยู่ในคิว)
- 5. ทำซ้ำข้อ 3 4 จนกว่าดิวจะว่าง

	A
В	C
E	F

Operation	Queue		
start Add A	Α		
remove A, add B, C	В	С	
remove B, add E, D	С	Е	D
remove C, add F	Е	D	F
remove E	D	F	
remove D	F		
remove F	null		

The order of process is as follow: A, B, C, E, D and F

Depth-first Algorithm

กำหนดสถานะของโหนด 1 = ยังไม่เคยเห็น, 2 = อยู่ในคิว 3 = ทำเสร็จแล้ว

- 1. ทำให้ทุกโหนดมีสถานะเป็น 1 (โหนดใหม่ยังไม่เคยเห็น) กำหนด start node เริ่มตัน
- 2. PUSH start node ไว้ในแสต็ก แล้วเปลี่ยนสถานะเป็น 2 (อยู่ในแสต็ก) // addFirst
- 3. POP โหนดออกจากแสต็กไปใช้ และเปลี่ยนสถานะเป็น 3 (ผ่านการ Access) //removeFirst
- 4. PUSH ทุกโหนดที่ต่ออยู่(จาก 3) ไว้ในแสต็กและเปลี่ยนสถานะเป็น 2 (อยู่ในแสต็ก)
- 5. ทำซ้ำข้อ 3 4 จนกว่าแสต็กจะว่าง

Operation	Stack			
start push A	Α			
pop A, push B, C	С	В		
pop C, push D, F	F	D	В	
pop F, push E	Е	D	В	
pop E	D	В		
pop D	В			
pop B	null			

The order of process is as follow: A, C, F, E, D and B

4. Representing Graph with Matrix

- ุ่♣ ใช้ incidence matrix หรือใช้ Adjacency matrix เพื่อแสดงความสัมพันธ์ระหว่าง โหนดกับ เอดจ์
- ุื่▲ Incidence matrix คือ zero-one matrix ที่แสดงความสัมพันธ์ระหว่างโหนดกับเอดจ์ ซึ่งค่าของ แต่ละอีลีเมนต์ aij มีค่าเป็น

Α

В

 \Box

- 1 ถ้ามีเส้นทาง(Edge) ej ต่ออยู่กับโหนด vi
- 0 ถ้าไม่มีเส้นทาง ej ต่อกับโหนด vi

1	0	0	1	0	1	0 0 1 1	
0	0	1	1	1	0	0	
0	1	1	0	0	1	1	
1	1	0	0	0	0	1	

e1 e2 e3 e4 e5 e6 e7

- ุ่♣ Adjacency matrix คือ zero-one matrix ที่แสดงความสัมพันธ์ระหว่างโหนดกับโหนด ซึ่งค่า ของแต่ละอีลีเมนต์ aij มีค่าเป็น
 - 1 ถ้ามีเส้นทางเดินจาก vi ไปยัง vj
 - 0 ถ้าไม่มีเส้นทางเดิมจาก vi ไปยัง vj

		v1	v2	 vj
	v1	a11	a12	a1j
	v2	a11 a21	a22	
M =	v3			
	vi	ai1		aij

Adjacency matrix of directed graph

find Adjacency matrix of directed graph

	, ,		· ·	
Α	0	0 0 0 0	0	1
В	1	0	1	1
C	1	0	0	1
D	0	0	1	0

AA = 0	BA = 1
AB = 0	BB = 0
AC = 0	BC = 1
AD = 1	BD = 1
CA = 1	DA = 0
CB = 0	DB = 0
CC = 0	DC = 1
CD = 1	DD = 0

•

Adj with Path matrix of length 2 or M²

ื่∔ Adjacency matrix ที่มี Path length = 2

$$M^{2} = \begin{array}{c|ccccc} & A & B & C & D \\ A & 0 & 0 & 1 & 0 \\ B & 1 & 0 & 1 & 1 \\ C & 0 & 0 & 1 & 1 \\ D & 1 & 0 & 0 & 1 \end{array}$$

$$AA = 0$$
 $AB = 0$
 $AC = A \rightarrow D \rightarrow C = 1$
 $AD = 0$
 $CA = 0$
 $CB = 0$
 $CC = CDC = 1$
 $CD = CAD = 1$

BA = B
$$\rightarrow$$
C \rightarrow A = 1
BB = 0
BC = B \rightarrow D \rightarrow C = 1
BD = B \rightarrow C \rightarrow D = 1
DA = D \rightarrow C \rightarrow A = 1
DB = 0
DC = 0
DD = DCD = 1

Adjacency Matrix with path length=n-1

M^k is Adjacency Matrix of graph with path length = k กราฟที่มีจำนวน n nodes จะมี path length ไดู้ไม่เกิน k = n – 1

> เส้นทางที่เดินไปยังโหนดอื่นๆ ได้โดยไม่เดินกลับมาหาตัวเอง ถ้ามีค่าเกินแสดงว่าเดินวนรอบมาที่เดิม

$$M = \begin{bmatrix} A & 0 & 0 & 0 & 1 \\ B & 1 & 0 & 1 & 1 \\ C & 1 & 0 & 0 & 1 \\ D & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$M^{2} = \begin{bmatrix} A & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ C & 0 & 0 & 1 & 1 \\ D & 1 & 0 & 0 & 1 \end{bmatrix} \qquad M^{3} = \begin{bmatrix} A & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ C & 0 & 0 & 1 \\ D & 0 & 0 & 0 \end{bmatrix}$$

Transitive Closure (Path Matrix)

- ุ่♣ Transitive Closure คือ ความสัมพันธ์ที่ใช้บอกว่ามีเส้นทางเชื่อมระหว่างโหนดในกราฟหรือไม่
- 👃 สมมุติให้ MP คือเมทริกซ์ที่แสดงว่ามีเส้นทางที่เชื่อมระหว่างโหนดในกราฟ

$$MP = M^1 \mid \mid M^2 \mid \mid M^3 \dots \mid \mid M^{n-1}$$

Example Graph with 3 node
 $MP = M^1 \mid \mid M^2 \mid \mid M^3$

$$MP = \begin{bmatrix} A & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$D = \begin{bmatrix} A & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Transitive Closure

👃 สมมุติให้ ML คือเมทริกซ์ที่แสดงจำนวนเส้นทางที่เป็นไปได้ทั้งหมดในกราฟ

$$ML = M^1 + M^2 + M^3 \dots + M^{n-1}$$

Example

$$ML = M^1 + M^2 + M^3$$

Warshall's Algorithm

- ุ่∔ ใช้หา MP จาก path เริ่มต้นได้ โดยไม่ต้องสร้างทีละ path ของ Mk
- 🖶 แนวคิด ทางเดินใหม่(k)จากโหนด i ไปยังโหนด j (path[i][j]) จะมีค่าเท่ากับ 1(true) ก็ต่อเมื่อ
 - 1) มีทางเดินเก่าจากโหนด i ไปยังโหนด j (path_{k-1} [i][j] = 1) หรือ
 - 2) มีทางเดินเก่าจากโหนด i อ้อมไปยังโหนด m (path_{k-1} [i][m] = 1) และ มีทางเดินจาก โหนด m กลับไปยังโหนด j (path_{k-1}[m][j] = 1)

```
path_{k}[i,j] = path_{k-1}[i,j] | | (path_{k-1}[i,m] && path_{k-1}[m,j]);
```

ต้องวนรอบทำที่ path length [k]ตั้งแต่ 2 จนถึง n-1 จึงจะได้ครบทุกเส้นทาง for (k = 2; k<n; k++)

Weighted Graph

- ุ่**∔ กราฟที่มี information ของ edge**
- **Implementations of a weighted graph with Matrices**

node[0]	A
node[1]	В
node[2]	С
node[3]	D

	[0]	0	0	0	7
Adj =	[1]	1	0	3	2
	[2]	4	0	0	6
	[3]	0	0	5	0

[0] [1] [2] [3]

Floyd's Algorithm

- 👃 ใช้คำนวณหา Shortest Path ทุกคู่ ของโหนดทั้งหมดที่มีอยู่ในกราฟ
- ุ่∔ ใช้หา weighted กราฟของ MP จาก M โดยพิจารณาเลือกเส้นทางที่มี weight น้อยที่สุด (Shortest Path) เพื่อให้ได้เส้นทางที่ดีที่สุด
 - แนวคิด เส้นเดินใหม่(k)จากโหนด vi ไปยังโหนด vj (path[i][j]) สามารถหาได้จากทางเดิน เก่า(k-1) โดยเลือกค่าดีที่สุดระหว่าง
 - 1) weight ของทางเดินเก่าจาก i ไป j หรือ

}

2) ผลรวมของ weight ที่ได้จากโหนด i อ้อมไปยังโหนด m และ จากโหนด m กลับไปยัง โหนด j นั่นคือ path_k[i,j] = Min (path_{k-1} [i,j] , path_{k-1}[i,m] + path_{k-1} [m,j])

Weighted Graphs n=4 (find w3)

R

S

U

	R	S	Т	U
R	0	5	0	0 2 0
S	7	0	0	2
T	0	3	0	0
U	0 7 0 4	0	1	0

		R	S	T	U
	R	∞	5	∞	∞
W1 =	S	7	∞	œ	2
	Т	œ	3	∞	∞
	U	4	∞	1	∞ 2 ∞ ∞

R	S	T	U
-	RS	-	-
SR	-	-	SU
-	TS	-	-
UR	-	UT	-

ไม่มีเส้นทางต้อง 0 คือ ∞

Floyd with path length = 2

	R	S	T	U			
	_ _			RU = Min(RU,RS+SU)	= Min(∞,5+2)	= 7	
R	∞	5	∞	œ	SR = Min(SR,SU+UR)	= Min(7,2+4)	= 6
S	7	00	00	2	SS = Min(SS,SR+RS)	= Min(∞,7+5)	= 12
•	_				ST = Min(ST,SU+UT)	= Min(∞,2+1)	= 3
T	œ	3	∞	œ	TR = Min(TR, TS + SR)	= Min(∞,3+7)	= 10
			4	œ	TU = Min(TU,TS+SU)	= Min(∞,3+2)	= 5
U 4	4	∞	1	w	US = Min(US,UT+TS)	$= Min(\infty, 1+3)$	= 4

								S		
	R	_∞	5	∞	7	R	-	RS	-	RSU
W2 =	s	6	12	3	2	S	SUR	SRS	SUT	RSU SU TSU
	Т	10	3	∞	5	T	TSR	TS	-	TSU
	U	4	4	1	œ	U	UR	UTS	UT	-

path length = 3

```
TR = TS + SR = TSR
                                                             TU = TS + SU = TSU
            S
                       U
      R
                 Т
                                                             US = UT + TS = UTS
            5
R
     \infty
                             RT = Min(RT,RU+UT)
                                                          = Min(\infty, 7+1)
                                                                              = 8
S
                             SS = Min(SS,SU+US)
                                                          = Min(12,2+4)
      6
           12
                 3
                       2
                                                                              = 6
                             TR = Min(TR, TS + SR)
                                                          = Min(10,3+6)
                                                                              = 9
                       5
            3
T
     10
                 \infty
                             TT = Min(TT,TU+UT)
                                                          = Min(\infty, 5+1)
                                                                              = 6
U
      4
                             UU = Min(UU,US+SU)
                       \infty
                                                          = Min(\infty, 4+2)
                                                                              = 6
```

				T	_			S		
	R	12	5	8	7	R	RSR	RS	RSUT	RSU
W3 =	S	6	6	3	2	S	SR	SUTS	SUT	SU
	Т	9	3	6	5	Т	TSUR	RS SUTS TS	TSUT	TSU
	U	4	4	1	6	U	UR	UTS	UT	UTSU

```
RT = RSU + UT = RSUT
SS = SU + UTS = SUTS
TR = TS + SUR = TSUR
TT = TSU + UT = TSUT
UU = UTS + SU = UTSU
```

RU = RS + SU = RSUSR = SU + UR = SUR

SS = SR + RS = SRSST = SU + UT = SUT

Greedy 's Algorithm

Greedy 's Algorithm

 หลักการหาคำตอบ(การแก้ปัญหา) โดยการเลือกสิ่งที่ดีที่สุดที่เกิดขึ้นในปัจจุบัน แล้วทำต่อเนื่อง ไปเรื่อยๆ จนกระทั่งเจอคำตอบที่ดีที่สุด (หรือคำตอบที่ต้องการ) แต่บางปัญหาที่ไม่สามารถ สำรวจได้ครบทุกทางเลือกที่เป็นไปได้ อาจหาคำตอบได้ไม่ถูกต้อง

Spanning Tree

• Tree ที่สร้างจากกราฟแบบไม่มีทิศทาง โดยประกอบด้วยโหนดทุกโหนดของกราฟนั้น และ จะต้องไม่เกิดการวนรอบ Tree ที่สร้างขึ้นแล้วมีผลรวมของระยะทาง ทั้งหมดสั้นที่สุด เรียกว่า minimum spanning tree

Kruskal 's Algorithm

 สร้าง minimum spanning tree โดยเลือกจาก edge ที่สั้นที่สุดที่เชื่อมระหว่างโหนด และ ไม่ทำให้เกิดวนรอบไปเรื่อยๆตามลำดับ จนกระทั่งครบทุกโหนด

Prim 's Algorithm

 สร้าง minimum spanning tree โดยเลือกโหนดเริ่มตัน(2 โหนด) จากที่ edge ที่สั้นที่สุด ก่อน แล้วจึงเลือกโหนดถัดๆไปที่ต่ออยู่และมี edge สั้นที่สุด เพิ่มทีละโหนด โดยไม่ให้เกิด การวนรอบ จนกระทั่งครบทุกโหนด

♣ Shotest path หาเส้นทางที่สั้นที่สุดจากจุดเริ่มต้นไปยังจุดหมาย

Dijkstra 's Algorithm

 ใช้สำหรับหาเส้นทางที่สั้นที่สุดระหว่างโหนด 2 โหนด โดยกำหนดจุดเริ่มต้นจากโหนดที่ ต้องการ แล้วหาเส้นทางที่สั้นที่สุดที่ออกจากโหนดที่เลือกไว้ เพื่อให้ได้โหนดใหม่ ไปเรื่อยๆ จนกระทั่งครบทุกโหนด (หรือเจอคำตอบของโหนดที่ต้องการ)

Kruskal 's Algorithm

- ุ่∔ Kruskal 's Algorithm ใช้สำหรับสร้าง minimum spanning tree โดยเลือก edge ที่สั้นที่สุด ตามลำดับไปเรื่อยๆที่ไม่ทำให้เกิดวนรอบ จนกระทั่งเส้นทางเดินครบทุกโหนด
 - สร้างตารางสำหรับเก็บค่าระยะทางระหว่างจุด 2 จุดที่เชื่อมต่อในกราฟทั้งหมด
 - ดึงข้อมูลจากกราฟลงในตาราง แล้วเรียงลำดับข้อมูลในตาราง (หรือสร้างตาราง เรียงลำดับด้วย Priority Queue)
 - สร้างตารางสำหรับเก็บคำตอบ MST
 - วนรอบทำซ้ำ
 - เลือกเส้นทางที่ดีที่สุด(สั้นที่สุด) นำออกจากตารางลำดับ
 - ตรวจสอบเส้นทางที่เลือกกับตารางคำตอบ ถ้าทำให้เกิดวนรอบให้ตัดทิ้ง
 - ถ้าไม่เกิดการวนรอบให้เก็บ Edge นั้นไว้เป็นคำตอบ MST ซึ่งจะได้โหนดใหม่และเส้นทาง ที่เป็นคำตอบ
 - วนรอบทำซ้ำจนกระทั่งเลือกได้ครบทุกจุด(เลือกจนหมดตารางลำดับ)

Kruskal 's Algorithm

Delete CF

Select EG = 6

Delete DE, DF, BE

Success

Total weight =1+1+2+2+4+6=16

Prim's Algorithm

- ุ่♣ Prim 's Algorithm ใช้สำหรับสร้าง minimum spanning tree โดยเลือก edge ที่สั้นที่สุดก่อน เพื่อให้ได้โหนดเริ่มต้น(2 โหนด) แล้วจึงเลือก edge ถัดๆไป ที่ต่ออยู่กับโหนดที่เลือกไว้แล้วทำซ้ำไป เรื่อยๆ โดยไม่ให้เกิดการวนรอบจนกระทั่งครบทุกโหนด
 - สร้างตารางสำหรับเก็บค่าระยะทางระหว่างจุด 2 จุดที่เชื่อมต่อในกราฟทั้งหมด
 - แปลงข้อมูลจากกราฟลงตาราง
 - สร้างตารางผังลำดับรอการเลือก ที่สามารถดึงข้อมูลตัวที่ดีที่สุดออกมาได้ (Priority Queue)
 - สร้างตารางสำหรับเก็บคำตอบ MST
 - เลือก Edge ที่สั้นที่สุดจากตาราง(นำออกจากตาราง) นำมาใส่ในผังลำดับรอการเลือก ซึ่งจะได้ คำตอบเริ่มตัน 2 โหนด
 - วนรอบทำซ้ำ (พิจารณาจากผังลำดับรอการเลือก)
 - เลือก Edge ที่สั้นที่สุดจากผังลำดับรอการเลือก เพื่อพิจารณาโหนดที่ต่ออยู่
 - ถ้าทั้ง 2 โหนดของ Edge นั้นเป็นโหนดที่ถูกเลือกไว้แล้วใน MST แสดงว่าทำให้เกิดลูป ให้ ตัดทิ้ง
 - ถ้ามีโหนดใหม่ที่ต่ออยู่กับ Edge นั้นยังไม่ถูกเลือก ให้เลือกโหนดและ Edge นั้นเป็นคำตอบเก็บ ใน MST
 - เลือก Edge ทั้งหมดที่เชื่อมอยู่กับโหนดใหม่ที่เลือก(ดึง Edge จากตาราง) มาใส่ในผังลำดับ
 รอการเลือก
 - ทำช้ำจนกระทั่งเลือกได้ครบทุกโหนด

Prim's Algorithm

10

Ε

Dijkstra 's Algorithm

- ุ่ Dijkstra 's Algorithm ใช้หาเส้นทางที่มี weight น้อยที่สุดระหว่างจุด 2 จุด ที่ต้องการโดยใช้ หลักการของ greedy algorithm
 - สร้างตารางสำหรับเก็บค่าระยะทางระหว่างจุด 2 จุดที่เชื่อมต่อในกราฟทั้งหมด
 - แปลงข้อมูลจากกราฟลงตาราง
 - สร้างตารางลำดับสำหรับเก็บเส้นทางที่รอการพิจารณา (Priority Queue)
 - สร้างตารางสำหรับเก็บเส้นทางที่ดีที่สุด(Shortest Path) ที่เลือกไว้เป็นคำตอบ
 - เลือกจุดเริ่มต้นที่ต้องการเป็นต้นทาง (ค่าเริ่มต้นระยะทาง = 0) สร้างผังเส้นทาง
 - วนรอบทำซ้ำ
 - ดึง Edge ที่มีจุดเริ่มตันออกจากโหนดที่เลือกทั้งหมด(จากตารางเริ่มตัน) นำมาใส่ใน
 ตารางที่รอการพิจารณา (ต้องคำนวณระยะทางใหม่ที่เริ่มจากจุดตันทาง) มายังโหนดนั้น
 - ลบ Edge ที่มีจุดปลายทางชี้มายังโหนดที่เลือกไว้ทั้งหมด ทั้งจากตารางเริ่มต้นและตาราง รอพิจารณา (เพื่อทำให้ไม่เกิดการวนรอบ)
 - ดึงโหนดต่อไปที่มีระยะทางรวมสั้นที่สุด(ต้องนับจากจุดตันเริ่มตัน) จากตารางรอการ
 พิจารณา เพื่อนำมาใช้เป็นคำตอบของเส้นทางที่ดีที่สุด(Shortest path) ของโหนดใหม่
 - ทำซ้ำจนกระทั่งครบทุกโหนด หรือเจอโหนดที่ต้องการ

Dijkstra from node A

