## **COMMUNICATION THEORY, Exercise 6, Fall 2023**

1. The instantaneous frequency of an FM-modulated signal varies between  $f_{min} = 99.98$  MHz and  $f_{max} = 100.02$  MHz when the modulating signal is a sine wave with  $f_m = 3$  kHz.

Determine the following:

- a) carrier frequency
- b) carrier swing
- c) frequency deviation

- d) modulation index
- e) general spectrum shape
- f) signal bandwidth
- 2. The spectrum of an FM signal using modulation index  $\beta = 2$  is shown in the picture below.
  - a) Calculate how much of the total signal power lies within the given band  $W_{FM}$
  - b) Compare the given band  $W_{FM}$  with the bandwidth estimations from the Carson's rule and the low-distortion rule

*Hint*: you can use the following Matlab function to find the spectrum lines:

besselj
$$((0:5)',2) =$$

- 0.2239
- 0.5767
- 0.3528
- 0.1289
- 0.0340
- 0.0070



3. A signal with normalized power results in signal-to-noise ratio at the destination equal to  $(S/N)_D = 20$  dB when it is transmitted using AM with modulation index  $\mu = 1$ .

In order to achieve a better (S/N)<sub>D</sub> the modulation is switched to FM, and the bandwidth is adjusted accordingly, while all other transmission parameters are kept the same.

- a) Determine the largest usable deviation ratio D
- b) Calculate the improvement on (S/N)<sub>D</sub> when using FM instead of AM
- 4. A receiver employs the superheterodyne principle to down-convert a received signal with bandwidth W = 250 kHz and center frequency  $f_C$  = 940.2 MHz, using an intermediate frequency  $f_{IF}$  = 70 MHz.
  - a) Calculate the needed local oscillator frequency to perform the first down-conversion
  - b) If the center frequency  $f_C$  is more generally variable between 935-960 MHz, calculate the needed tuning range of the local oscillator
  - c) Find the frequency location of the image band