Fundamentals of Math Thought Final Review

by Jonas Smith

May 5, 2019

Definitions

- 1. For integers a and b, define a divides b.
 - \circ Definition— there exists a b such that $b = a \cdot k$, where $k \in \mathbb{Z}$
- 2. Define a **proposition**.
 - Definition— A proposition is a sentence that has exactly one truth value.
- 3. Define a conditional sentence.
 - \circ Definition—For propositions P and Q, the Conditional sentence $P \implies Q$ is the proposition "If P, then Q". Proposition P is called the **antecednet** and Q is the **consequent**.
- 4. The **power set** of a set A.
 - \circ Definition— Let A be a set. The **power set** of A is the set whoe elements are the subsets of A and is denoted by $\mathscr{P}(A)$. Thus

$$\mathscr{P}(A) = \{B : B \subseteq A\}$$

- 5. The **intersection** of sets A and B.
 - ∘ Definition The intersection of A and B is the set $A \cap B = \{x : x \in A \text{ and } x \in B\}$.
- 6. The **union** of sets A and B.
 - ∘ *Definition* The **union of A and B** is the set $A \cup B = \{x : x \in A \text{ or } x \in B\}$.
- 7. State one of **Demorgan's Laws** for two sets.
 - $\circ Definition (A \cup B)^c = A^c \cap B^c$. or $(A \cap B)^c = A^c \cup B^c$.
- 8. An indexed family of sets \mathscr{A} is **pairwise disjoint**.
 - o Definition The indexed family $\mathscr{A} = \{A_{\alpha} : \alpha \in \delta\}$ of sets is **pairwise disjoint** iff for all α and β in δ , either $A_{\alpha} = A_{\beta}$ or $A_{\alpha} \cap A_{\beta} = \varnothing$.
- 9. State the Principle of Mathematical Induction.
 - (i) $1 \in S$,
 - (ii) for all $n \in \mathbb{N}$, if $n \in S$ then $n + 1 \in S$.

Then $S = \mathbb{N}$

- 10. State the Well-Ordering Principle.
 - \circ Definition—Every nonempty subset of \mathbb{N} has a smallest element.

- 11. A **relation** from A to B, for sets A and B.
 - \circ Definition—R is a relation from a to b iff R is a subset of A X B
- 12. The **domain** of a relation R from A to B.
 - \circ Definition Dom(R)={ $x \in A$: there exists $y \in B$ such that xRy}
- 13. The **range** of a relation R from A to B.
 - \circ Definition Rng(R)={ $y \in A$: there exists $x \in B$ such that xRy}
- 14. The composite $S \circ R$ where R is a relation from A to B and S is a relation from B to C.
 - \circ Definition $-S \circ R = \{(a, c) : \text{there exists } b \in B \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$
- 15. A relation R on A is **reflexive**.
 - \circ Definition— iff for all $x \in A$, xRx
- 16. A relation R on A is **symmetric**.
 - \circ Definition iff for all $x, y \in A$, xRy then yRx
- 17. A relation R on A is **transitive**.
 - \circ Definition— iff for all $x, y, z \in A$, xRy and yRz, then xRz
- 18. A **partition** \mathscr{P} of a nonempty set A.
 - \circ Definition $-\mathscr{P}$ is a partition of a nonempty set A.
 - (i) if $x \in \mathscr{P}$, then $x \neq \varnothing$
 - (ii) if $x \in \mathcal{P}$ and $y \in \mathcal{P}$, then x = y or $x \cap y = \emptyset$
 - (iii) $\bigcup_{x=\mathscr{P}} x = A$
- 19. A **function** from A to B, for sets A and B.
 - ∘ Definition is a relation $f: A \to B$ such that the Dom(f) = A, and if $(x, y) \in f$ and $(x, z) \in f$, then y = z
- 20. $f: A \to B$ is surjective
 - o Definition A function $f: A \to B$ is onto B or surjective iff Rng(f) = B
- 21. $f: A \to B$ is **injective**
 - \circ Definition A function $f: A \to B$ is one-to-one or is injective iff when f(x) = f(y), then x = y.
- 22. $f: A \to B$ and $Y \subseteq B$. Define $f^{-1}(Y)$.
 - $\circ Definition f^{-1}(Y) = \{x \in A : y = f(x) \in Y\}$

True False

1.

Part 3 Problems

1.

Part 4 Problems

1.

Proofs

1. Prove that $\sqrt{2}$ is irrational.

Proof: Assume $\sqrt{2}$ is rational.

Thus $\sqrt{2} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$ and a, b have no common factors.

Now let us write $2 = \frac{a^2}{b^2}$, or $b^2 = 2a^2$. Thus b^2 is even, the only way this can be true is that b itself is even.

hence b^2 is divisible by 4. This contradicts our assumption that a,b have no common factors Therefore $\sqrt{2}$ cannot be rationalized.

2. Prove that there are infinitely many prime numbers.

Proof: Assume there exists a finite number of primes $\{p_1, p_2, ..., p_n\}$

Let $N = p_1 \cdot p_2 \cdot p_3 \cdot \cdots \cdot p_{n+1}$

N is not divisible by any of the known primes since it will leave a remainder of one upon division by any one of them.

Thus, N must be a divisible by some other prime not in our list

which contradicts the assumption that there is a finite number of primes.

Therefore There are an infinite number of prime numbers

3. Let x be an integer. Prove that if x^2 is not divisible by 4, then x is odd.

Proof: by contrapositive

Assume x is not even.

Then x = 2k + 1 for some $k \in \mathbb{Z}$

And if x = 2k + 1, it follows that

$$x^{2} = (2k+1)^{2} = 4k^{2} + 4k + 1 = 4(k^{2} + k) + 1$$

Clearly, 4 does not divide $x^2 = 4(k^2 + k) + 1$, because 4 does not divide 1.

Thus if x is not even $\implies x^2$ is not divisible by 4.

Clearly, if x is even $\implies x^2$ is divisible by 4.

4. When any integer n is divided by 3, it has a remainder of 0, 1, or 2 (by the division algorithm). This means that for any integer n

n=3k for some integer k, or

n = 3k + 1 for some integer k, or

n = 3k + 2 for some integer. use this fact to prove that for any integer n, 3 divides $n^3 - n$.

Proof: Let n = 3k where $k \in \mathbb{Z}$. Then

$$n^{3} - n = (3k)^{3} - 3k$$

= $27k^{3} - 3k$
= $3(9k^{3} - k), 9k^{3} - k \in \mathbb{Z}$, and is divisible by 3

Now let n = 3k + 1

Then,
$$n^3 - n = (3k+1)^3 - (3k+1)$$

$$= (9k^2 + 6k + 1)(3k+1) - (3k+1)$$

$$= 27k^3 + 18k^2 + 2k + 9k^2 + 6k + 1 - 9k - 1$$

$$= 27k^3 + 27k^2 + 6k$$

$$= 3(9k^3 + 9k^2 + 2k)$$

$$= (9k^3 + 9k^2 + 2k) \in \mathbb{Z}, \text{ and}$$

$$= 3(9k^3 + 9k^2 + 2k) \text{ is divisible by 3.}$$

Now let n = 3k + 2

Then,
$$n^3 - n = (3k+2)^3 + (3k+2)$$

$$= (9k^2 + 12k + 4)(3k+2) - (3k+2)$$

$$= (27k^3 + 36k^2 + 12k + 18k^2 + 24k + 9 - 3k - 2)$$

$$= 27k^3 + 54k^2 + 33k + 6$$

$$= 3(9k^3 + 18k^2 + 11k + 2)$$

$$= (9k^3 + 18k^2 + 11k + 2) \in \mathbb{Z}, \text{ and}$$

$$= 3(9k^3 + 18k^2 + 11k + 2) \text{ is divisible by } 3.$$

Therefore for any integer n = 3k, n = 3k + 1, or n = 3k + 2, n is divisible by 3.

5. For integers a, b, c, x and y, prove that if c divides a and c divides b, then c divides ax + by.

Proof:

Let
$$a, b, c, x$$
, and $y, \in \mathbb{Z}$,
Let c divide b such that $b = c \cdot k$, where $k \in \mathbb{Z}$, and
Let c divide a such that $a = c \cdot m$, where $m \inf \mathbb{Z}$
now let $\frac{ax + by}{c} = \frac{(ck)x + (cm)y}{c} = \frac{c}{c}(kx + my) = (kx + my)$
Therefore c divides $ax + by$

6. For real numbers x and y, prove that if x is rational and y is irrational, then x + y is irrational.

Proof:

Let x be rational, and y be irrational

Let x + y be rational, then $x + y = \frac{a}{b}$. Let $x = \frac{c}{d}$. Then

$$\mathbf{y} = \frac{a}{b} - x = \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$$

Thus y is rational which contradicts our first assumption that y is irrational.

Hence it follows that x + y is irrational

7. Let A, B, and C be sets. Prove that if $A \subseteq B$, $B \subseteq C$, and $C \subseteq A$, then A = B and B = CProof:

Let
$$A \subseteq B, B \subseteq C$$
, and $C \subseteq A$, and let $x \in A$, then by the definition of \subseteq , $x \in B$, and $x \in C$.
Thus $A \subseteq B \subseteq C$.
and in order for $A \subseteq B$, and $B \subseteq C$, and $C \subseteq A$.
Therefore $A = B = C$.

8. Let A and B be sets. Prove that A = B if and only if $\mathscr{P}(A) = \mathscr{P}(B)$

Proof.

Let A and B be sets

Suppose A = B

Since $\mathscr{P}(A)$ is the set of all subsets of A and $\mathscr{P}(B)$ is the set of all subsets of B

Then $\mathscr{P}(A) = \mathscr{P}(B)$

Conversally suppose $\mathcal{P}(A) = \mathcal{P}(B)$

 $\mathscr{P}(A)$ is the set of all subsets of A, and $\mathscr{P}(B)$ the set of all subsets of B

Therefore A = B

9. Let A and B be sets. Prove that $(A^c \cup B)^c = A \cup B^c$

Proof:

Let A and B be sets Using Demorgan's Law
$$(A^c \cap B)^c = (A^c)^c \cup B^c = A \cup B^c$$

Thus $(A^c \cap B)^c = A \cup B^c$

10. Let A, B, C, and D be sets. Prove that if $C \subseteq A$ and $D \subseteq B$, then $D - A \subseteq B - C$.

Proof:

11. Use the Principle of Mathematical Induction to prove the following: For all $n \in \mathbb{N}$

$$1 \cdot 1 + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! - 1$$

Proof: Let n = 1

so
$$1 \cdot 1! = (1+1)! - 1$$

 $1 = 2! - 1$
 $1 = 1$, this is true!

Now assume truth for any $n \in \mathbb{N}$ we will show proof for n + 1:

so,
$$((n+1)+1)! - 1 = 1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! + (n+1) \cdot (n+1)!$$

 $(n+2)! - 1 = (n+1)! - 1 + (n+1) \cdot (n+1)!$
 $= (n+1)!(1+(n+1)) - 1$
 $= (n+1)!(n+2) - 1$, by the definition of factorial
 $= (n+2)! - 1$

Thus for all $n \in \mathbb{N} \ 1 \cdot 1 + 2 \cdot 2! + 3 \cdot 3! + \dots + n \cdot n! = (n+1)! - 1$

12. Use the principle of Mathematical Induction to prove the following: For all $n \in \mathbb{N}$:

8 divides
$$5^{2n} - 1$$

Proof: Let n = 1

thus
$$5^n - 1 = 24$$
, which is divisible by 8

Now assume $n \in \mathbb{N}$ is true, we will show n+1 is true:

Thus,
$$5^{2(n+1)} - 1 = 5^{(2n+2)} - 1$$

 $= 5^n \cdot 5^2 - 1$
 $= 5^n \cdot 25 - 1$
 $= 5^n \cdot 25 - 25 + 24$
 $= 25(5^n - 1) + 24$
 $= 25(5^n - 1) \in \mathbb{N}$ and is divisible by 8 because $(5^n - 1)$ is divisible by 8 and, 24 is divisible by 8.
Therefor for all $n \in \mathbb{N}$, $5^n - 1$, is divisible by 8.

13. We have the common differentiation formulas $\frac{d}{dx}x = 1$ and $\frac{d}{dx}(fg) = f(\frac{d}{dx}g) + (\frac{d}{dx}f)g$. Use these formulas and the Principle of Mathematical Induction to prove that $\frac{d}{dx}x^n = nx^{n-1}$ for all $n \in \mathbb{N}$.

	Proof:
14.	Let $a_1 = 2$, $a_2 = 4$, and $a_{n+2} = 5a_{n+1} - 6a_n$, for all $n \le 1$. Prove that $a_n = 2^n$ for all $n \in \mathbb{N}$
	Proof:
15.	Let R be a relation from A to B and S be a relation from B to C. Prove that $Rng(S \circ R) \subseteq Rng(S)$.
	Proof.
16.	Prove that if R is a symmetric, transitive relation on A and the domain of R is A, then R is reflexive on A.
	Proof:
17.	Let A be a nonempty set, \mathscr{P} a partition of A, and B be a nonempty subset of A. Prove that $\mathscr{A} = \{X \cap B \mid X \in \mathscr{P} \ and \ X \cap B \neq \varnothing\}$ is a partition of B.
	Proof:
18.	Let R be an antisymmetric relation on the set A. Prove that if R is symmetric and $Dom(R) = A$, then $R = I_A$
	Proof:
19.	Define a relation R on \mathbb{R} by $aRb \iff a^3 = b^5$. Prove that R is a function from \mathbb{R} to \mathbb{R} .
	Proof:
20.	Prove that, if f and g are functions, then $f \cap g$ is a function by showing that $f = g _A$ where $A = \{x : g(x) = f(x)\}.$
	Proof:
21.	Prove that if $f: A \xrightarrow{\text{onto}} B$ and $g: B \xrightarrow{\text{onto}} C$, then $g \circ f: A \xrightarrow{\text{onto}} C$.
	Proof:
22.	Let $f: A \to B$. Prove that if f^{-1} is a function, then f is injective.
	Proof:
23.	Prove that $g:(-\infty,-4)\to(-\infty,0)$, defined by $g(x)=- x+4 $ is a one-to-one correspondence.
	Proof:
24.	Let $f: A \to B$ and $Y \subseteq B$. Prove that $f(f^{-1}(Y)) \subseteq Y$.

Proof:

25. Let $f:A\to B$ be injective and $X\subseteq A$. Prove that $X=f^{-1}(f(X))$

Proof: