PATENT ABSTRACTS OF JAPAN

(11)Publication number:

08-293671

(43)Date of publication of application: 05.11.1996

(51)Int.CI.

HO5K HO1R 9/09 HO5K 1/02 H05K 13/04

(21)Application number: 07-120690

(71)Applicant: NIPPONDENSO CO LTD

(22)Date of filing:

21.04.1995

(72)Inventor: KAMIYA ARIHIRO

TANAKA YASUMITSU

OTANI YUJI

(54) CONNECTION OF CIRCUIT BOARD

(57)Abstract:

PURPOSE: To conduct positioning of boards easily and accurately and then connect them electrically. CONSTITUTION: On the surface 10a of an upper board 10, a plurality of IC's 11 are mounted by wire-bonding. Along four sides of the surface 10a, alignment marks 12 are formed. On a rear face 10b, copper or silver connection electrodes 13 of 0.3mm square and about 100µm thick are formed in a specified number and positioning electrodes of about 100µm thick are also formed. On a lower board 20, a plurality of components 21 are mounted. On the right and the left of the components 21, connection electrodes 24b are formed. At the center of the lower board 20, a specified number of connection electrodes 24a, alignment electrodes, and positioning electrodes are formed. The upper board 10 is located nearly on the center of the surface of the lower board 20, with its surface 10a being faced upward. Then, the alignment marks 12 are aligned to the alignment electrodes 22 and the connection electrodes 24a and

the connection electrodes 13 are positioned. After that, the connection electrodes 24a and the connection electrodes 13 are electrically connected by soldering.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-293671

(43)公開日 平成8年(1996)11月5日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ				ŧ	技術表示箇所	F
H05K	3/36			H05K	3/3	36		В		
H01R	9/09		6901 - 5B	H01R	9/	09		С		
H05K	1/02			H05K	1/	02		R		
	13/04				13/	04	M			
				審査請求	求 🧦	未請求	請求項の数4	FD	(全 6 頁))
(21)出願番号		特願平7 -120690	(71) 出願/	•	000004260 日本電装株式会社					
(22)出願日		平成7年(1995)4		į	愛知県ソ	川谷市昭和町1	丁目1看	驰		
				(72)発明報	替 1	神谷 7	有弘			
					2	爱知県	切谷市昭和町 1	丁目1番	地 日本電	â
					į	技株式 统	会社内			
				(72)発明和	者 E	田中 春	秦充	٠		
						愛知県)	机谷市昭和町 1	丁目1看	地 日本電	Î
					¥	技株式 会	会社内			
				(72)発明和	者:	大谷 神	佑司			
					2	愛知県)	川谷市昭和町1	丁目1種	計地 日本電	Ē
					Ž	装株式 :	会社内			
				(74)代理/	人:	弁理士	藤谷 修			

(54) 【発明の名称】 回路基板の接続方法

(57)【要約】

【目的】基板間の位置決めを容易にかつ正確に行い、電 気的に接続すること。

【構成】上側基板10の表面10a には、ワイヤボンディングされた複数のIC11が搭載され、表面10a の四辺に沿って位置合わせマーク12が設けられている。裏面10b には0.3mm 角で厚さが約100 μm の銅或いは銀から成る接続電極13が所定の個数だけ設けられると共に、厚さが約100 μm の位置決め電極14が設けられている。図示しない下側基板20には、複数の搭載部品21が組み付けられ、その右側と左側には接続電極24b が形成され、その中央部には所定の個数の接続電極24a、位置合わせ電極22及び位置決め電極25が設けられている。表面10a を上にして上側基板10を下側基板20のほぼ表面中央に配置し、位置合わせ電極22に位置合わせマーク12を位置合わせして、接続電極24a と接続電極13とを電気的に接続する。

10

【特許請求の範囲】

【請求項1】第一の回路基板上に、該第一の回路基板よ り小さい第二の回路基板を電気的に接続する回路基板の 接続方法であって、

1

前記第一の同路基板と前記第二の回路基板のうち少なく とも前記第一の回路基板の所定の位置にマークを設け、 前記第一の回路基板の前記マークと、前記第二の回路基 板の縁部或いはマークとを位置合わせすることにより、 前記第一の回路基板と前記第二の回路基板との位置決め を行い、

前記第一の回路基板の上面に形成された接続ランドと、 前記第二の回路基板の下面に形成された接続電極とを電 気的に接続することを特徴とする回路基板の接続方法。

【請求項2】前記第一の回路基板の前記マーク及び前記 第二の回路基板の前記マークは電極で構成され、互いに はんだ付けされて電気的に接続されたことを特徴とする 請求項1 に記載の回路基板の接続方法。

【請求項3】前記第二の回路基板の前記接続電極の厚さ は、10μm以上100μm以下であることを特徴とす る請求項1または請求項2に記載の回路基板の接続方

【請求項4】前記第二の回路基板の電極から成る前記マ ークの厚さは、10μm以上100μm以下であること を特徴とする請求項3 に記載の回路基板の接続方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、回路基板の接続方法に 関し、特に、ハイブリッドIC等の厚膜回路基板を回路 基板にフェイスダウンボンディング法により電気的に接 続する方法に関する。

[0002]

【従来の技術】近年、車載用電子制御製品は、髙機能小 型化が求められている。特に、マイクロコンピュータを 搭載した製品では、機能が向上するに伴い、回路基板が 大型化する傾向にある。との回路基板の小型化のため に、多層基板が用いられているが、従来の単層基板に比 べてコストが非常に高く、周辺回路を含めた大型基板で は製品のコストアップを招いてしまう。そこで、低コス ト化のために、多層配線の必要な部分のみ多層基板と し、周辺回路部はコストの低い単層基板で回路基板を構 成する方法が用いられている。

[0003]

【発明が解決しようとする課題】しかしながら、上記方 法では、基板間の位置決めを行う手段が確立されていな いために、多層基板の多数の電気的接続簡所を正確に接 続することができず、電気的接続箇所に接続不良が発生 したり、また、その位置決めのために多くの時間を要す るという問題がある。

【0004】従って、本発明の目的は、目視にて容易に 基板間の位置決めを行うことのできる回路基板の接続方 50 ことであり、その効果は、接続電極及びマークの厚さを

法を提供することである。

に接続することを特徴とする。

[0005]

【課題を解決するための手段】上記の課題を解決するた め、本発明の構成は、第一の回路基板上に、該第一の回 路基板より小さい第二の同路基板を電気的に接続する回 路基板の接続方法であって、第一の回路基板と第二の回 路基板のうち少なくとも第一の回路基板の所定の位置に マークを設け、第一の回路基板のマークと、第二の回路 基板の縁部或いはマークとを位置合わせすることによ り、第一の回路基板と第二の回路基板との位置決めを行 い、第一の回路基板の上面に形成された接続ランドと、 第二の回路基板の下面に形成された接続電極とを電気的

【0006】また、第二の発明の構成は、第一の回路基 板のマーク及び第二の回路基板のマークは電極で構成さ れ、互いにはんだ付けされて電気的に接続されたことを 特徴とする。

【0007】第三の発明の構成は、第二の回路基板の接 続電極の厚さは、10μm以上100μm以下であると 20 とを特徴とする。

【0008】第四の発明の構成は、第二の回路基板の電 極から成るマークの厚さは、10μm以上100μm以 下であることを特徴とする。

[0009]

【作用及び効果】上記構成から成る本発明の第一の作用 は、第一の回路基板のマークと第二の回路基板の縁部或 いはマークとを位置合わせすることにより、第一の回路 基板と第二の回路基板との位置決めを行うことであり、 その効果は、第一の回路基板と第二の回路基板とを容易 に位置決めすることができ、第一の回路基板の接続ラン ドと第二の回路基板の接続電極との電気的接続を良好に 行えることである。(請求項1)

【0010】また、第二の作用は、第一の回路基板のマ ーク及び第二の回路基板のマークを電極で構成し、互い にはんだ付けにより電気的に接続することであり、その 効果は、はんだ付けの際のセルフアライメント性が高ま り、回路基板間のより正確な電気的接続を行うことがで きると共に、その電極で構成されたマークを電気的接続 箇所として用いれば回路基板の髙密度実装も実現できる 40 ととである。(請求項2)

【0011】第三の作用は、第二の回路基板の接続電極 の厚さを10μm以上100μm以下とすることであ り、その効果は、回路基板間に空隙を形成することがで きるため、その空隙に洗浄液を浸入させて空隙内を洗浄 し、回路基板間の残渣フラックスを確実に除去すること ができ、隣接する電極間の短絡や耐電圧の低下を防止で きることである。(請求項3)

【0012】第四の作用は、第二の回路基板の電極から 成るマークの厚さを10μm以上100μm以下とする 3

均一にすることができるため、第一の回路基板と第二の回路基板との電気的接続を良好に行えることである。 (請求項4)

[0013]

【実施例】以下、本発明を具体的な実施例に基づいて説 明する。図1は、本発明の第一実施例に用いられる上側 基板10 (第二の回路基板に相当) の構成を示したもの であり、(a)はその表面10a(上面に相当)の構成 を、(b)はその裏面10b(下面に相当)の構成を、 (c)はそのA-A断面の構成をそれぞれ示している。 上側基板10は、矩形状を成し、その組成は白色不透明 のセラミックから構成されている。上側基板 10 の表面 10aには、ワイヤボンディングされた複数(図1では 4個) の I C 1 1 が搭載されており、また、表面 1 O a の四辺に沿って、複数(図1では7個)の矩形状の位置 合わせマーク12 (第二の回路基板のマークに相当)が 設けられている。上側基板10の裏面10bには、0. 3mm角で厚さが約100 μmの銅或いは銀から成る接 続電極13 (接続電極に相当) が所定の個数だけ設けら れており、位置合わせマーク12の位置に該当する裏面 20 10bの位置に矩形状で厚さが約100μmの位置決め 電極14 (電極から成るマークに相当)が設けられてい る。この位置決め電極14の表面積は、接続電極13の 表面積より大きく形成されている。

【0014】図2は、第一実施例に用いられる下側基板20の表面の構成を示した構造図である。下側基板20には、複数の搭載部品21が組み付けられ、その右側と左側には複数の接続電極24bが形成されている。下側基板20の中央部には、接続電極24a(接続ランドに相当)が所定の個数だけ形成されている。接続電極24aの周囲の一点鎖線は、上側基板10の形状を示しており、その一点鎖線を挟んで、矩形状の位置合わせ電極22と位置決め電極25とが、所定の位置に所定の個数だけ対向して設けられている。ここで、接続電極24aの表面積は、ほぼ上側基板10の接続電極13の表面積に等しく、また、位置決め電極25の表面積は、ほぼ上側基板10の位置決め電極14の表面積に等しく構成されている。

決めできると共に、下側基板20の位置決め電極25と 上側基板10の位置決め電極14とを位置決めすること ができる

【0016】上記のように上側基板10と下側基板20 とを位置決めした後に、接続電極24aと接続電極13 及び位置決め電極25と位置決め電極14とをはんだ付 けを行うと、はんだが溶融している状態では、セルフア ライメント作用がはたらき、溶融はんだの表面張力がそ の表面積が小さくなる方向に作用する。この溶融はんだ の表面積が最も小さくなる時は、位置決め電極25と位 置決め電極14とが正確に位置決めしている時である。 従って、仮に位置決め電極25と位置決め電極14とが 微小量でもずれていたとしても、溶融はんだの表面張力 により、位置決め電極25と位置決め電極14とは正し く位置決めされる。このように、位置決め電極14、2 5間に作用する溶融はんだの表面張力により、上側基板 10と下側基板20とをより正確に位置決めして電気的 に接続することができると共に、位置決め電極14、2 5を電気的接続箇所として用いれば上側基板10及び下 側基板20の高密度実装を実現できる。図3は、上側基 板10と下側基板20とを電気的に接続した状態を示し た図である。

【0017】また、上側基板10の位置決め電極14及び接続電極13の厚さを約100μmとしているために、上側基板10と下側基板20とを電気的に接続すれば、上側基板10と下側基板20との間に空隙を形成することができる。この空隙に洗浄液を浸入させて洗浄することにより、基板間の残渣フラックスを確実に除去することができ、隣接する電極間の短絡や耐電圧の低下を防止することができる。

【0018】尚、本実施例では、上側基板10の位置合わせマーク12と位置決め電極14、下側基板20の位置合わせ電極22と位置決め電極25を矩形状で統一した構成としたが、それら形状は位置決めするに足る形状であれば、円形形状や三角形形状など他の形状でもよく、それぞれ異なる形状でもよい。また、本実施例では、位置合わせ電極22と位置決め電極25とは連続した構成としてもよい。

【0019】続いて、本発明に係わる第二実施例について説明する。図4は、本発明の第二実施例に用いられる上側基板10の構成を示したものであり、(a)はその表面10aの構成を、(b)はその裏面10bの構成を、(c)はそのB-B断面の構成をそれぞれ示している。第一実施例と本実施例との相違は、第一実施例では上側基板10に位置合わせマーク12及び位置決め電極14が設けられているが、第二実施例ではそのいずれも上側基板10に設けられていない点が特徴である。第二実施例における上側基板10のその他の構成は、第一実施例における上側基板10のその他の構成は、第一実施例における上側基板10のその他の構成は、第一実施例に同様の機成である。

1

【0020】図5は、第二実施例で用いられる下側基板20の表面の構成を示した構造図である。第一実施例と本実施例との相違は、第一実施例では下側基板20に位置合わせ電極22及び位置決め電極25が設けられているが、第二実施例ではそのいずれも上側基板10に設けられてなく、新たに位置合わせマーク23が設けられている点が特徴である。この位置合わせマーク23は、上側基板10の外形形状とほぼ等しく、或いはやや大きめに四隅にカギ型に形成されている。第二実施例における下側基板20のその他の構成は、第一実施例と同様の構成である。

【0021】 ことで、第二実施例における上側基板10と下側基板20との位置決め方法について説明する。まず、表面を上にして下側基板20を配置し、表面10aを上にして上側基板10を下側基板20のほぼ表面中央に配置する。この時、下側基板20の位置合わせマーク23は上側基板10の外形形状とほぼ等しく、或いはやや大きめに形成されているため、上側基板10の四隅の縁部を位置合わせマーク23に位置合わせする際に、目視にて十分に確認することができる。よって、下側基板20の位置合わせマーク23と上側基板10の四隅の縁部とを合わせることにより、下側基板20の接続電極24aと上側基板10の接続電極24aと上側基板10の接続電極24aと上側基板10の接続電極24aと上側基板10の接続電極13とを容易に位置決めすることができる。

【0022】上記のように上側基板10と下側基板20とを位置決めした後に、接続電極24aと接続電極13とのはんだ付けを行うことにより、上側基板10と下側基板20とを正確に位置決めして電気的に接続することができる。図6は、上側基板10と下側基板20とを電気的に接続した状態を示した図である。

【0023】尚、上記実施例において、下側基板20の 位置合わせマーク23は、上側基板10の形状の四隅に カギ型に形成する構成としたが、必ずしも位置合わせマ ーク23を四隅にカギ型に形成する必要はなく、各辺に 沿って線状にマーキングする構成としてもよく、或い は、下側基板20に形成された配線パターンを位置合わ せマーク23として用いてもよい。また、本実施例で は、上側基板10の四隅の縁部を下側基板20の位置合 わせマーク23に合わせる構成としたが、必ずしも上側 基板10の四隅の縁部を位置合わせマーク23に合わせ 40 る必要はなく、例えば、上側基板10の所定の位置に所 定のマークを設け、そのマークを下側基板20の位置合 わせマーク23に合わせる構成としてもよい。本実施例 では、上側基板10及び下側基板20に位置決め電極を 設けていないが、上側基板10及び下側基板20に位置 決め電極を設けて、溶融はんだによるセルフアライメン ト作用がはたらく構成としてもよく、その位置決め電極 を電気的接続箇所として用いる構成としてもよい。

【0024】上記に示されるように、本発明によれば、

第一の回路基板のマークと第二の回路基板の縁部或いは マークとを位置合わせし、第一の回路基板と第二の回路 基板との位置決めを行うことにより、第一の回路基板と 第二の回路基板とを容易に位置決めすることができると 共に、第一の回路基板の接続ランドと第二の回路基板の 接続電極との電気的接続を良好に行える。また、第一の 回路基板のマーク及び第二の回路基板の下面に形成され たマークを電極で構成し、互いにはんだ付けにより電気 的に接続することにより、はんだ付けの際のセルフアラ イメント性が髙まり、回路基板間のより正確な電気的接 続を行うことができると共に、その電極で構成されたマ ークを電気的接続簡所として用いれば回路基板の高密度 実装を実現できる。さらに、第二の回路基板の接続電極 の厚さを、10μm以上100μm以下とすることによ り、回路基板間に空隙を形成することができるため、そ の空隙に洗浄液を浸入させて空隙内を洗浄し、回路基板 間の残渣フラックスを確実に除去することができ、隣接 する電極間の短絡や耐電圧の低下を防止できる。第二の 回路基板の下面に形成された電極から成るマークの厚さ を10μm以上100μm以下とすれば、接続電極及び マークの厚さを均一にすることができるため、第一の回 路基板と第二の回路基板との電気的接続を良好に行え

【図面の簡単な説明】

る。

- 【図1】本発明に係わる第一実施例の表面(a)、裏面(b)及びA-A断面(c)を示した構造図。
- 【図2】本発明に係わる第一実施例の下側基板の表面の 構成を示した構造図。
- 【図3】本発明に係わる第一実施例の上側基板と下側基 30 板とを電気的に接続した状態を示した構造図。
 - 【図4】本発明に係わる第二実施例の表面(a)、裏面(b)及びB-B断面(c)を示した構造図。
 - 【図5】本発明に係わる第二実施例の下側基板の表面の 構成を示した構造図。

【図6】本発明に係わる第二実施例の上側基板と下側基板とを電気的に接続した状態を示した構造図。

【符号の説明】

- 10 上側基板
- 11 上側基板搭載 I C
-) 12 位置合わせマーク
 - 13 接続電極
 - 14 裏面位置決め電極
 - 20 下側基板
 - 21 下側基板搭載部品
 - 22 下側基板位置合わせ電極
 - 23 下側基板位置合わせマーク
 - 24 下側基板接続電極
 - 25 下側基板位置決め電極

20 下側基板 21 搭載部品 23 位置合わせマーク 24a 24b 接続電極

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.