

Stein Variational Gradient Descent: Main ideas

Gaëtan Serré

École Normale Supérieure Paris-Saclay Master Mathématiques, Vision, Apprentissage gaetan.serre@ens-paris-saclay.fr

1 Goal

Given a smooth probability density π supported on $\mathcal{X} \subseteq \mathbb{R}^d$, find μ on \mathcal{X} as close as possible to π .

2 Stein framework

Stein identity: Let A_{π} a Stein operator s.t.

$$\mathcal{A}_{\pi}\phi = \nabla \log \mu(\cdot)^{\top}\phi(\cdot) + \nabla \cdot \phi(\cdot)$$

with $\phi(x) = [\phi_1(x), ..., \phi_d(x)]^{\top}$. Then, if ϕ is in the Stein class of π i.e. $\phi(x)\pi(x) = \vec{0}$ for all $x \in \partial \mathcal{X}$ if \mathcal{X} is compact or $\lim_{\|x\| \to \infty} \phi(x)\pi(x) = \vec{0}$ if $\mathcal{X} = \mathbb{R}^d$, we have:

$$\mathbb{E}_{x \sim \pi} [\mathcal{A}_{\pi} \phi(x)] = 0 \tag{1}$$

Proof.

$$\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\mu}\phi(x)] = \int_{\mathcal{X}} (\nabla \log \mu(\cdot)^{\top} \phi(\cdot) + \nabla \cdot \phi(\cdot)) \mu(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \mu(\cdot)^{\top} \phi(\cdot) \mu(x) dx + \int_{\mathcal{X}} \sum_{k=1}^{d} \frac{\partial \phi_{k}}{\partial x_{k}} \mu(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \mu(\cdot)^{\top} \phi(\cdot) \mu(x) dx + \int_{\mathcal{X}} \sum_{k=1}^{d} \frac{\partial \phi_{k}}{\partial x_{k}} \mu(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \mu(\cdot)^{\top} \phi(\cdot) \mu(x) dx + \sum_{k=1}^{d} \left(\int_{\partial X} (\pi(x) \phi_{k}(x)) \cdot n dn - \int_{\mathcal{X}} \frac{\partial \mu(x)}{\partial x_{k}} \phi_{k}(x) dx \right)$$

$$= \int_{\mathcal{X}} \nabla \log \mu(\cdot)^{\top} \phi(\cdot) \mu(x) dx - \int_{\mathcal{X}} \sum_{k=1}^{d} \frac{\partial \mu(x)}{\partial x_{k}} \phi_{k}(x) dx$$

$$= \int_{\mathcal{X}} \mu(x) \sum_{k=1}^{d} \frac{\partial \log \mu(x)}{\partial x_{k}} \phi_{k}(x) - \mu(x) \sum_{k=1}^{d} \frac{\partial \log \mu(x)}{\partial x_{k}} \phi_{k}(x) dx \text{ (log trick)}$$

$$= 0$$

Now, let μ a smooth density supported on \mathcal{X} different from π . Now, Eq. 1 do not hold anymore with \mathcal{A}_{π} . However, we can use $\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)]$ as a discrepancy measure between μ and π , as its magnitude relates to how different μ and π are (see Liu and Wang [2016] & Liu [2017]). Indeed, we

2 Serré

have:

$$\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)] = \int_{\mathcal{X}} \left(\nabla \log \pi(x)^{\top} \phi(x) + \nabla \cdot \phi(x)\right) \mu(x) dx$$

$$= \int_{\mathcal{X}} \nabla \log \pi(x)^{\top} \phi(x) \mu(x) dx + \sum_{k=1}^{d} \left(\mathcal{R}_{k} - \int_{\mathcal{X}} \frac{\partial \mu(x)}{\partial x_{k}} \phi_{k}(x) dx\right)$$

$$= \sum_{k=1}^{d} \mathcal{R}_{k} + \int_{\mathcal{X}} \mu(x) \sum_{k=1}^{d} \frac{\partial \log \pi(x)}{\partial x_{k}} \phi_{k}(x) - \mu(x) \sum_{k=1}^{d} \frac{\partial \log \mu(x)}{\partial x_{k}} \phi_{k}(x) dx \text{ (log trick)}$$

$$= \sum_{k=1}^{d} \mathcal{R}_{k} + \sum_{k=1}^{d} [\mu(x) \phi_{k}(x)]_{\mathcal{X}} + \int_{\mathcal{X}} \mu(x) \left[\sum_{k=1}^{d} \phi_{k}(x) \left(\frac{\partial \log \pi(x)}{\partial x_{k}} - \frac{\partial \log \mu(x)}{\partial x_{k}}\right)\right] dx$$

$$= \sum_{k=1}^{d} \mathcal{R}_{k} + \sum_{k=1}^{d} [\mu(x) \phi_{k}(x)]_{\mathcal{X}} + \int_{\mathcal{X}} \mu(x) \left[\sum_{k=1}^{d} \phi_{k}(x) \left(\frac{\partial \log \pi(x)}{\partial x_{k}} - \frac{\partial \log \mu(x)}{\partial x_{k}}\right)\right] dx,$$

Where $\mathcal{R}_k = \int_{\partial X} (\pi(x)\phi_k(x)) \cdot n dn$ is the first term of the integration by parts. As expected, the scale of $\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)]$ increases w.r.t. the difference between μ and π .

Therefore, one can define an objective to find a density μ^* close to π :

$$\mu^* = \arg\min_{\mu} \, \mathbb{S}(\mu, \pi) = \arg\min_{\mu} \, \max_{\phi \in \mathcal{H}} \{ \mathbb{E}_{x \sim \mu} [\mathcal{A}_{\pi} \phi(x)] \}, \tag{3}$$

as $\mathbb{S}(\mu, \pi) = 0$ iff $\mu = \pi$ and $\mathbb{S}(\mu, \pi) > 0$ otherwise with \mathcal{H} sufficiently large. The choice of \mathcal{H} is therefore crucial. One way to ensure it is both rich enough and computationally tractable is to let \mathcal{H} be a RKHS.

2.1 Kernelized Stein Discrepancy

Let \mathcal{H}_0 be a RKHS with a kernel k(x, x') in the Stein class of π . Let $\mathcal{H} = (\mathcal{H}_0^{(1)}, \dots, \mathcal{H}_0^{(d)})$. The KSD maximizes ϕ in the unit ball of \mathcal{H} . The objective in (3) is then:

$$\mathbb{S}(\mu, \pi) = \max_{\phi \in \mathcal{H}} \{ \mathbb{E}_{x \sim \mu} [\mathcal{A}_{\pi} \phi(x)], \ s.t. \ \|\phi\|_{\mathcal{H}} \le 1 \}. \tag{4}$$

Within this framework, one can show that the optimal solution of (4) is given by:

$$\phi(x) = \frac{\phi^*(x)}{\|\phi^*\|_{\mathcal{H}}}, \text{ where } \phi^*(.) = \mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi} \otimes k(x, \cdot)] = \int_{\mathcal{X}} k(x, \cdot) \nabla \log \pi(x) + \nabla k(x, \cdot) d\mu(x),$$
 (5)

where $\mathcal{A}_{\pi} \otimes f(x) = f(x) \nabla \log \pi(x) + \nabla f(x)$, is a variant of Stein operator. We also know that ϕ^* is in the Stein class of π as k is. Moreover, $\mathbb{S}(\mu, \pi) = \|\phi^*\|_{\mathcal{H}}$.

Proof. We first need to prove that

$$\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi} f(x)] = \langle f, \phi^* \rangle_{\mathcal{H}}, \ \forall f \in \mathcal{H} :$$

$$\langle f, \phi^* \rangle_{\mathcal{H}} = \sum_{l=1}^{d} \left\langle f^{(l)}, \mathbb{E}_{x \sim \mu} \left[k(x, \cdot) \nabla \log \pi(x)^{(l)} + \nabla k(x, \cdot)^{(l)} \right] \right\rangle_{\mathcal{H}^{0}}$$

$$= \mathbb{E}_{x \sim \mu} \left[\sum_{l=1}^{d} \left\langle f^{(l)}, k(x, \cdot) \nabla \log \pi(x)^{(l)} + \nabla k(x, \cdot)^{(l)} \right\rangle_{\mathcal{H}^{0}} \right]$$

$$= \mathbb{E}_{x \sim \mu} \left[\sum_{l=1}^{d} \nabla \log \pi(x)^{(l)} \left\langle f^{(l)}, k(x, \cdot) \right\rangle_{\mathcal{H}^{0}} + \left\langle f^{(l)}, \nabla k(x, \cdot)^{(l)} \right\rangle_{\mathcal{H}^{0}} \right]$$

$$= \mathbb{E}_{x \sim \mu} \left[\sum_{l=1}^{d} \nabla \log \pi(x)^{(l)} f^{(l)}(x) + \nabla_{x_{l}} f(x)^{(l)} \right] \text{ (see Zhou [2008])}$$

$$= \mathbb{E}_{x \sim \mu} \left[\nabla \log \pi(x)^{\top} f(x) + \nabla \cdot f(x) \right]$$

$$= \mathbb{E}_{x \sim \mu} [\mathcal{A}_{\pi} f(x)].$$

Moreover, $\langle f, \phi * \rangle_{\mathcal{H}} \leq ||f||_{\mathcal{H}} ||\phi^*||_{\mathcal{H}}$. Thus,

$$\mathbb{S}(\mu, \pi) = \max_{f \in \mathcal{H}} \{ \mathbb{E}_{x \sim \mu} [\mathcal{A}_{\pi} f(x)] = \langle f, \phi^* \rangle_{\mathcal{H}}, \text{ s.t. } \|f\|_{\mathcal{H}} \leq 1 \} \leq \|\phi^*\|_{\mathcal{H}}.$$

Let $f = \frac{\phi^*}{\|\phi^*\|_{\mathcal{H}}}$, then $\|f\|_{\mathcal{H}} = 1$ and

$$\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)] = \langle f, \phi^* \rangle_{\mathcal{H}} = \|\phi^*\|_{\mathcal{H}},$$

ending the proof.

3 Link with Kullback-Leibler Divergence

Let $T: \mathcal{X} \to \mathcal{X}$, $x \mapsto (I + \gamma \phi)(x)$. One can show that (see Liu and Wang [2016] Theorem 3.1):

$$\nabla_{\gamma} K L(T_{\#} \mu || \pi) = -\mathbb{E}_{x \sim \mu} [\mathcal{A}_{\pi} \phi(x)]. \tag{7}$$

Therefore, assuming $\phi \in \mathcal{H}$ with \mathcal{H} as defined as in Section 2.1, using (5), we know that:

$$\phi^*(.) = \int_{\mathcal{X}} k(x, \cdot) \nabla \log \pi(x) + \nabla k(x, \cdot) d\mu(x)$$
 (8)

minimizes $\nabla_{\gamma} KL(T_{\#}\mu||\pi)$. Furthermore, if k is also in the Stein class of μ (this is mild condition as π and μ are two densities on \mathcal{X} , one can choose ϕ to be in the Stein class of all distribution on \mathcal{X} . E.g. if $\mathcal{X} = \mathbb{R}^d$, one can pick $\phi(x) = \exp[-\|x - y\|^2]$), one can show that:

$$P_{\mu}\nabla\log\frac{\mu}{\pi}(\cdot) = \int_{\mathcal{X}} k(x,\cdot)\nabla\log\mu(x)d\mu(x) - \int_{\mathcal{X}} k(x,\cdot)\nabla\log\pi(x)d\mu(x)$$

$$= \int_{\mathcal{X}} k(x,\cdot)\nabla\mu(x)dx - \int_{\mathcal{X}} k(x,\cdot)\nabla\log\pi(x)d\mu(x)$$

$$= -\int_{\mathcal{X}} \nabla k(x,\cdot)d\mu(x) - \int_{\mathcal{X}} k(x,\cdot)\nabla\log\pi(x)d\mu(x)$$

$$= -\int_{\mathcal{X}} k(x,\cdot)\nabla\log\pi(x) + \nabla k(x,\cdot)d\mu(x)$$

$$= -\phi^*(\cdot)$$
(9)

The Stein Variational Gradient Descent (SVGD) algorithm consists in an iterative procedure where one apply successive transformations to an initial density μ_0 towards the "direction" ϕ^* that minimizes the gradient of the Kullback-Leibler divergence:

$$\mu_{n+1} = (I + \gamma \phi^*)_{\#} \mu_n = \left(I - \gamma P_{\mu} \nabla \log \frac{\mu}{\pi}\right)_{\#} \mu_n.$$
 (10)

4 Not understood yet

- Link with Wasserstein distance?
- Why did they defined so much about their RKHS?

Bibliography

Qiang Liu. Stein variational gradient descent as gradient flow, 2017. URL https://arxiv.org/abs/1704.07520.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose bayesian inference algorithm, 2016. URL https://arxiv.org/abs/1608.04471.

Ding-Xuan Zhou. Derivative reproducing properties for kernel methods in learning theory. *Journal of Computational and Applied Mathematics*, 220(1-2):456-463, October 2008. doi: 10.1016/j.cam. 2007.08.023. URL https://doi.org/10.1016/j.cam.2007.08.023.

A Lemmas

Lemma 1. Let two distributions μ and π on $\mathcal{X} \subseteq \mathbb{R}^d$. Let $\phi : \mathcal{X} \to \mathbb{R}^d$ be in the Stein class of μ and $\mathcal{A}_{\pi}\phi(x) = \nabla \log \pi(x)^{\top}\phi(x) + \nabla \cdot \phi(x)$ Then,

$$\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)] = \mathbb{E}_{x \sim \mu}\left[\left(\nabla \log \pi(x) - \nabla \log \mu(x)\right)^{\top}\phi(x)\right]$$

Proof.

$$\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x)] = \mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi}\phi(x) - \mathcal{A}_{\mu}\phi(x)]$$

$$= \mathbb{E}_{x \sim \mu}\left[\nabla \log \pi(x)^{\top}\phi(x) - \nabla \cdot \phi(x) - \nabla \log \mu(x)^{\top}\phi(x) + \nabla \cdot \phi(x)\right]$$

$$= \mathbb{E}_{x \sim \mu}\left[\left(\nabla \log \pi(x) - \nabla \log \mu(x)\right)^{\top}\phi(x)\right]$$

Lemma 2. Let two distributions μ and π on $\mathcal{X} \subseteq \mathbb{R}^d$. Let $\phi : \mathcal{X} \to \mathbb{R}$ be in the Stein class of μ and $\mathcal{A}_{\pi} \otimes \phi(x) = \phi(x) \nabla \log \pi(x) + \nabla \phi(x)$ Then,

$$\mathbb{E}_{x \sim \mu}[\mathcal{A}_{\pi} \otimes \phi(x)] = \mathbb{E}_{x \sim \mu}[(\nabla \log \pi(x) - \nabla \log \mu(x))\phi(x)]$$

Proof. Same as Lemma 1.

B Detailed proofs

Proposition 1. Let \mathcal{H}_0 the RKHS of continuous function on \mathcal{X} with kernel $k(\cdot,\cdot)$ and $\mathcal{H} = (\mathcal{H}_0^{(1)}, \dots, \mathcal{H}_0^{(d)})$. If $\int_{\mathcal{X}} k(x,x) d\mu(x) < \infty$, then $\mathcal{H} \subset L^2(\mu)$.

Proof. We want to prove that, $\forall f \in \mathcal{H}, \int_{\mathcal{X}} f(x)^2 d\mu(x) < \infty$.

$$\int_{\mathcal{X}} f(x)^{2} d\mu(x) = \int_{\mathcal{X}} \sum_{l=1}^{d} \left\langle f^{(l)}, k(x, \cdot) \right\rangle_{\mathcal{H}_{0}}^{2} d\mu(x)$$

$$\leq \sum_{l=1}^{d} \int_{\mathcal{X}} \left\| f^{(l)} \right\|_{\mathcal{H}_{0}}^{2} \|k(x, \cdot)\|_{\mathcal{H}_{0}}^{2} d\mu(x) \text{ (by C.S)}$$

$$= \sum_{l=1}^{d} \left\| f^{(l)} \right\|_{\mathcal{H}_{0}}^{2} \int_{\mathcal{X}} \|k(x, \cdot)\|_{\mathcal{H}_{0}}^{2} d\mu(x)$$

$$= \sum_{l=1}^{d} \left\| f^{(l)} \right\|_{\mathcal{H}_{0}}^{2} \int_{\mathcal{X}} \left\langle k(x, \cdot), k(x, \cdot) \right\rangle_{\mathcal{H}_{0}} d\mu(x)$$

$$= \sum_{l=1}^{d} \left\| f^{(l)} \right\|_{\mathcal{H}_{0}}^{2} \int_{\mathcal{X}} k(x, x) d\mu(x) \text{ (by propriety of the RKHS)}$$

$$< \infty, \text{ as } \int_{\mathcal{X}} k(x, x) d\mu(x) < \infty.$$

Stein Variational Gradient Descent: Main ideas