Lab1 – Athlete Schedule Deadline: 2022/11/10 23:55

Lab1 Objective

This lab is to exercise the concept of dynamic programming (DP).

<u>Introduction</u>

You are an athlete preparing for an important contest, and you have to manage your rest and practice schedule to get highest performance P in next couple of days.

You have $\, N \,$ days to prepare for the contest. However, you only have the choice of either rest or practice in a single day.

For each day you practice, you will increase some constant number ${\bf A}$ to the number of performance ${\bf P}$.

However, without resting for X days in a row, including the day that you have decided to practice, in the end of the day the number of your performance P will be decreased by $X^2 * B$, where B is some constant factor.

Additionally, if you have decided to rest in the i'th day, you would start to think that your performance will get worse, and the number of performance P will be decreased by R[i].

Note that your performance could be negative in the end.

Input

Example (input.txt)

3 4 3	// N, A, B
704	// R[i]

Explanation of the Input

- First line represents the factors N, A, B.
- Second line, it will give N numbers representing the R[0], R[i], ..., R[N-1].

Note: All the factors in input file are integer.

Output

Output Format (output.txt)

```
2 // P
1 0 1 // 0 for rest, 1 for practice
```

Explanation of the Output

- First line output maximum performance.
- Second line output the rest and practice schedule of each day.
- The performance originally is 0.
- If there are two or more ways to reach the maximum performance, select one of them will be correct.

Environment

- 1. Linux (Please make sure your code is available on our linux server. If it cannot be executed, you will get zero point!!)
- 2. Please use argc and argv to read input and output files or you will get fail in this lab.

△Notice

- 1. Do not print anything on the terminal! (-5%)
- 2. Please check the output format! TAs will use the command: diff -b <file> <file> If output format is not correct, you will get fail in this lab.

Submission

Please upload the following materials in a .zip file (e.g. <student_ID>.zip) to New E3 by the deadline, specifying your student ID in the subject field. (If your submission file is not .zip file, you will get Zero point!!)

- 1. Source code (.cpp) (only one!!)
- 2. Report
 - △ Please check the .zip file with correct format as following figures. (-5%)

Evaluation

- 1. You **MUST WRITE YOUR OWN CODE**. Copying codes may get **FAIL** in this course.
- 2. For each case, it will be regarded as "failed" if you use more than time limit.
- 3. Naming rule.

C.

- A. Compile procedure: g++ -std=C++11 <student_ID>.cpp -o Lab1
- B. Execution procedure: ./Lab1 [input] [output]
 For example: ./Lab1 case1.txt output.txt
 - Source code: <student ID>.cpp
 - For example: 109511999.cpp
- D. Report: <student ID> report.pdf
 - For example: 109511999 report.pdf
- E. .zip file: <student_ID>.zip (compress your source code and report)

For example: *109511999.zip*

- △ Naming Error: -5% per file
- 4. Grading (Time limit: 30 seconds for each case)
 - A. Small case (x5) $[10^0 \le N \le 10^4] [0 \le A, B, R[i] \le 10^4]$ 50%
 - B. Big case (x3) $[10^4 \le N \le 10^6] [0 \le A, B, R[i] \le 10^6]$ 30%
 - Correct answer 15%
 - Timing performance (if the answer is correct)

C. Report 20%

- No more than 2 page
- Your report must contain:
 - i. Time complexity analysis
 - ii. The flow chart of you program

Due date

• Due date: 2022/11/10 23:55

 Penalty of 10% of the total score per day for the first four days (weekend included) and will not be accepted afterwards