1. Section 1.1 Problem 2

Let $\alpha(t) = (a\cos t, a\sin t, bt)$. Then, $\alpha'(t) = (-a\sin t, a\cos t, b)$. From this, it is found that $||\alpha'(t)|| =$ $\sqrt{(-a\sin^2 t)^2 + (a\cos^2 t + b^2)}$, which can be reduced through trig identities to $||\alpha'(t)|| = \sqrt{a^2 + b^2}$. Now to parametrize this, the formula $s(t) = \int_a^t ||\alpha'(t)|| dt$. This produces $s(t) = \int_0^t \sqrt{a^2 + b^2} dt$ which results in $s(t) = \sqrt{a^2 + b^2} t$. Therefore, $t(s) = \frac{1}{\sqrt{a^2 + b^2}} s$. The parametrization of this is $\beta(s) = \alpha(t(s)) = \frac{1}{\sqrt{a^2 + b^2}} s$. $(a\cos\frac{1}{\sqrt{a^2+b^2}}s, a\sin\frac{1}{\sqrt{a^2+b^2}}s, \frac{b}{\sqrt{a^2+b^2}}s).$

2. Section 1.1 Problem 4

Let $\alpha(x) = (x, f(x))$. Finding this graph's derivative gives $\alpha'(x) = (1, f'(x))$. Then its magnitude is $||\alpha'(x)|| = \sqrt{1 + (f'(x))^2}$. Using the definition of arclength, it is clear that length $= \int_a^b \sqrt{1 + (f'(x))^2} dx$.

- 3. Section 1.1 Problem 5
 - (a) Let $\alpha(t) = (t, \cosh t)$ for $0 \le t \le b$. $\alpha'(t) = (1, \sinh t)$, and $||\alpha'(t)|| = \sqrt{1 + \sinh^2 t}$. Notice that $1 + \sinh^2 t = \cosh^2 2$. Now $s(t) = \int_0^b \sqrt{1 + \sinh^2 t} dt = \int_0^b \sqrt{\cosh^2 t} dt$. Taking the integral gives $\sinh b - \sinh 0 = \sinh b.$
 - (b) Let $y = \sinh t$. Taking the definition of hyperbolic sine, it can be shown that $2y = e^t e^{-t}$. Rearranging this and multiplying both sides by e^t gives $(e^t)^2 - 2y(e^t) - 1 = 0$. By solving for e^b with the quadratic equation, it can be seen that

$$e^t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2y \pm \sqrt{(-2y)^2 + 4}}{2} = \frac{2y \pm \sqrt{4(y^2 + 1)}}{2} = \frac{2y \pm 2\sqrt{y^2 + 1}}{2} = y \pm \sqrt{y^2 + 1}$$

After this, by taking the natural log the following is obtained, noting that e^t cannot be negative: $t = \ln(y + \sqrt{y^2 + 1})$. Therefore the inverse of $\sinh t$ is $\ln(t + \sqrt{t^2 + 1})$, and the reparametrized catenary is $\beta(s) = (\ln(s + \sqrt{s^2 + 1}), \cosh(\ln(s + \sqrt{s^2 + 1}))).$

4. Section 1.1 Problem 8

Let $P, Q \in \mathbb{R}^3$ and $\alpha : [a, b] \to \mathbb{R}^3$. Note that $\alpha(a) = P$ and $\alpha(b) = Q$. Finally, let $\mathbf{v} = Q - P$. Using the definition of the length, we can state for the partition $\mathcal{P} = \{a, b\}$:

$$\ell(\alpha, \mathcal{P}) = \sum_{i=1}^{k} ||\alpha(t_i) - \alpha(t_{i-1})||$$

Using the proof provided on page 8 of our textbook, it is seen that:

$$\ell(\alpha, \mathcal{P}) = \sum_{i=1}^{k} ||\alpha(t_i) - \alpha(t_{i-1})|| = \sum_{i=1}^{k} \left| \left| \int_{t_{i-1}}^{t_i} \alpha'(t) dt \right| \right| \leq \sum_{i=1}^{k} \int_{t_{i-1}}^{t_i} ||\alpha'(t)|| dt = \int_{a}^{b} ||\alpha'(t)|| dt$$

From this, it is apparent that $\sum_{i=1}^{k} ||\alpha(t_i) - \alpha(t_{i-1})|| \le length(\alpha)$. Since $\mathcal{P} = \{a, b\}$, it can be seen that $||\alpha(a) - \alpha(b)|| = ||\alpha(b) - \alpha(a)|| = ||Q - P|| = ||\mathbf{v}|| \le length(\alpha).$

5. Section 1.1 Problem 9

Begin by noting that for this system, all forces must be equal. Let $\gamma(t) = (x, f(x))$. Given two points $\mathbf{T}(x+h)$ and $-\mathbf{T}(x)$, we can find their respective tangent lines: $T_0(1, f'(x+h))$ and $T_0(-1, f'(x))$, where T_0 is the magnitude of the tension. Define the gravity acting on the system as $g\delta \int_{-\infty}^{x+h} \sqrt{1+(f'(x))^2} dx$. Based on this step up and the fact that all forces must be equal, it can be seen that $T_0f'(x+h)$ $T_0 f'(x) - g\delta \int_{-\infty}^{x+h} \sqrt{1 + (f'(x))^2} dx = 0$. By taking the limit of both sides as $h \to 0$ and using the definition of a limit definition of a derivative, it can be seen that:

$$\lim_{h \to 0} \frac{T_0(f'(x+h) - f'(x)) - g\delta \int_x^{x+h} \sqrt{1 + (f'(x))^2} dx}{h} = T_0 f''(x) - g\delta \sqrt{1 + (f'(x))^2} = 0$$

Through rearrangement, it is easy to see that $f''(x) = \frac{g\delta}{T_0} \sqrt{1 + (f'(x))^2}$.

Now, let $f''(x) = \frac{df'(x)}{dx}$. By separation of variables, this allows $\int \frac{df'(x)}{\sqrt{1+(f'(x))^2}} = \int \frac{g\delta}{T_0} dx$. Let $f'(x) = \sinh v$ and $df'(x) = \cosh v dv$. Then the equation becomes $\int \frac{\cosh v}{\sqrt{1+\sinh^2 v}} dv = \int \frac{\cosh v}{\sqrt{\cosh^2 v}} dv = \int \frac{\cosh v}{\cosh v} dv = \int 1 dv = \frac{g\delta}{T_0} x$. Thus, $v = \frac{g\delta}{T_0} x$ and $\sinh^{-1} f'(x) = \frac{g\delta}{T_0} x$. This can also be stated as $f'(x) = \sinh \frac{g\delta}{T_0} x$. Integrating both sides gives $f(x) = \frac{T_0}{g\delta} \cosh \frac{g\delta}{T_0} x + c$. Since $C = \frac{T_0}{g\delta}$, this gives the desired result of $f(x) = C \cosh \frac{x}{C} + c$.

6. Section 1.1 Problem 10

Begin by letting $\gamma = (x(s), y(s))$ be the arclength parametrization of the curve s.t. a square rolls smoothly (ie. the center of the square does not vary with height). For this to be true, the we must find the vector \overrightarrow{OC} , which is shown in the figure below. Therefore, let $\overrightarrow{OC} = \overrightarrow{OP} + \overrightarrow{PQ} + \overrightarrow{QC}$. As

Figure 1: Figure 1.13 from Shifrin's textbook

mentioned above, $\overrightarrow{OC} = (x(s), 0)$. The vector \overrightarrow{OP} can be seen to equal $\gamma(s)$, and $\overrightarrow{QP} = s\gamma'(s)$ because it represents the distance travelled by arclength. Note that this second quantity needs to be reversed to solve the problem in question, so $\overrightarrow{PQ} = -s\gamma'(s)$. Next, Since $\gamma(s)$ is arclength parametrized and \overrightarrow{QC} is length 1, it is true that $\langle \overrightarrow{QC}, \gamma'(s) \rangle = 0$ since \overrightarrow{QC} is orthogonal to $\gamma'(s)$. Likewise, since \overrightarrow{QC} is counterclockwise from $\gamma'(s)$, we can define $\overrightarrow{QC} = (-y(s), x(s))$. By combining all these terms and looking at the y portions only, we can see that 0 = y(s) - sy'(s) + x'(s). Let us differentiate this to see that 0 = y'(s) - y'(s) - sy''(s) + x''(s), which when rearranged gives sy''(s) = x''(s). Since $\gamma(s)$ is arclength parametrized, we can say that $\langle x''(s), y''(s), x'(s), y'(s) \rangle > 0$ and therefore x'(s)x''(s) = -y'(s)y''(s). Using this fact with the result we obtained from differentiation, it is seen that sx'(s)y''(s) = -y'(s)y''(s). Rearranging this gives $s = -\frac{y'(s)}{x'(s)}$. This can be further altered to show $s = -\frac{dy}{dx}$ By utilizing the equation found in problem 4, we can state that $\frac{ds}{dx} = \sqrt{1+s^2}$ or $\frac{dx}{ds} = \frac{1}{\sqrt{1+s^2}}$. Multiplying both sides by $\frac{dy}{dx}$, the above can be rewritten to $\frac{dy}{ds} = \frac{-s}{\sqrt{1+s^2}}$. Replace $s = \sinh x$ and solve the differential equation. This yields $y = \int \frac{-\sinh x \cosh x}{\sqrt{1+\sinh^2 x}} dx$. Using hyperbolic trig identities gives $y = \int -\sinh x ds$ or $y = -\cosh x + c$. Therefore, the road should be designed by $f(x) = -\cosh x + c$.

7. Section 1.1 Problem 14

Let $\alpha(t)$ be a smooth parametrized plane curve such that $\alpha:[a,b]$. Let $||\alpha(s) - \alpha(t)||$ depend only on |s-t|, or $||\alpha(s) - \alpha(t)|| = C|s-t|$. Begin by dividing both sides by |s-t|, or $\frac{||\alpha(s) - \alpha(t)||}{|s-t|} = C$. By taking the limit of both sides, the following is obtained:

$$\lim_{s \to t} \frac{||\alpha(s) - \alpha(t)||}{|s - t|} = \lim_{s \to t} C$$

. In other words, $||\alpha'(t)|| = C$, which implies that α is a subset of a line. From this, rearrange the equaiton above to give $\sqrt{x'(t)^2 + y'(t)^2} = C$ or $x'(t)^2 + y'(t)^2 = C^2$. Taking this equation's derivative gives 2x'x'' + 2y'y'' = 0, which after dividing the 2, shows $\langle (x', y'), (x'', y'') \rangle = 0$, where the independent variable is removed for ease of typing. It can thus be seen that $|\alpha'| = |\alpha''| = C$. Since α is smooth, it can be concluded that $|\alpha| = |\alpha'| = |\alpha''| = C$, or that all derivatives of α are orthogonal to each other. Therefore, we can say that $|\alpha| = C$ or $x(t)^2 + y(t)^2 = C^2$, which is a subset of a circle.

Work was collaborated on with Hollis Neel.