Cross Lingual Speaker Adaptation for TTS Applications

Software Project-2021/2022
Final presentation

Rasul, Anna, Claésia, Sharmila

- 1. Motivation & Task Formulation
- 2. Model
- 3. Data
- 4. Experiments
- 5. Evaluation
 - a. Objective
 - b. Subjective
- 6. Demo
- 7. Conclusion

Outline

Motivation & Task Formulation

Motivation

- TTS making machines talk
 - Screenreaders
 - Automatic phone operators
- Longterm focus on intelligibility
- Deep-learning based gains in naturalness -> new problems
- Expressive, humanistic TTS
 - + Giving people their voice back
 - + Dubbing movies in the actors voice
 - - Increased risk for fraud/defamation

Task Formulation

- Transfer the voice of a monolingual speaker into a new language
- Primary Objective: Intelligibility
 - Word Error Rate, Character Error Rate
- Secondary Objective: Naturalness
 - Speaker similarity
- Tertiary Considerations:
 - Reusability (Low resource language Louisiana Creole)
 - Resource use
 - Consistency/reliability
 - Safety: Is it clear this is not a real person?

Software (Usecase Diagram)

- Actors: User, Developers
- SubSystem: Application, TTS Pipeline

Technical Details:

Flask, Jquery, Python, Pytorch

Software Development Cycle: **Iterative**

Model, Data, Experiments

Model

Model: based on Grad-TTS.

What we've changed:

- different input data
- multi-gpu support
- training from checkpoints

	language representa-	speaker representa-
	tion	tion
Version 1	id	id
Version 2	id	MEL features \rightarrow
		embedding network
Version 3	MEL features \rightarrow	id
	embedding network	
Version 4	MEL features \rightarrow	MEL features \rightarrow
	embedding network	embedding network

Table 1: Model inputs

Data

	LJS	VCTK	SIWIS	Tundra	Synpaflex
language	EN	EN	FR	FR	FR
num. files	13,000	960	4,500	900	6,000
speaker char-	single female	1 female, 1	single female	single male	single female
acteristics	speaker	male	speaker	speaker	speaker
text charac-	passages	sentences	sentences	sentences	sentences
teristics	from non-	from news-	from French	from a novel	from novels
	fiction books	papers	parliament		
			debates		
total length	24 hours	1 hour	4 hours	1 hour	11 hours

Table 2: Main characteristics of used data

- Data imbalance (length, gender)
- Different quality of datasets

Experiments

- 1. Four model versions, standard data Results not perfect; generated are shorter
- 2. Slowed down audios

 No improvement; maybe the quality of data?
- 3. Two best datasets

 No improvement; different sets of parameters for each language?
- 4. Merging phonemes
 - a. Only consonants
 - b. Both consonants and vowels
- 5. Louisiana Creole *Zero-shot synthesis*

Evaluation

Objective Evaluation: Cosine Similarity

Speaker Embedding- ECPA TDNN

	LJS(f)	VCTK-	VCTK-	SIWIS(f)	Tundra(m)	Synpaflex(f)
v.		P239(f)	P259(m)			
language	EN	EN	EN	FR	FR	FR
Model-1	0.646	0.387	0.473	0.641	0.586	0.320
Model-2	0.646	0.157	0.1	0.341	0.145	0.276
Model-3	0.558	0.454	0.636	0.415	0.544	0.641
Model-4	0.648	0.149	0.119	0.352	0.1395	0.298

Table 6: Speaker Cosine Similarity

Objective Evaluation: Cosine Similarity(Version 1)

- From English to french speaker- bad result(for ljs)
- Average similarity around 0.51
- French to English better
- WER low, hence disregarded for subjective evaluation

Conclusion: speaker representing as id only. Hence, less complex and more efficient for speaker transformation.

Objective Evaluation: Cosine Similarity(Version 4)

Reference Speaker

Transformed Speakers

- From English to french speaker- bad result(for all speakers)
- Average similarity around 0.28
- French to English better than other way
- WER better, hence selected for subjective evaluation

Conclusion: speaker representing as embedding network. Hence, more complex, less efficient for speaker transformation.

Objective Evaluation: Trade-off

- Best <u>cosine</u>: model 1
- Best WER: model 4
- Trade-off between TTS and voice characteristics' transfer
- MCD the same models

	Version 1	Version 2	Version 3	Version 4
EN and FR	5.864	5.955	6.106	5.937
EN part	5.834	5.832	6.165	5.794
FR part	5.93	6.228	5.974	6.254

Table 3: Mel cepstral distortion for each model and language

Maybe first do TTS, then add voice transfer

	Version 1		Version 4	
	WER	CER	WER	CER
EN and FR	73.1071	47.3306	37.3646	16.4443
EN part	61.2314	33.0791	25.3051	10.4785
FR part	99.4639	78.96	64.0432	29.6422

Table 5: Word and character error rate for all model versions

Subjective Evaluation

- Only model 4
- Two evaluation forms
 - Interpretability (18 and 16 respondents)
 - Voice transfer (9 and 9 for EN and FR)
- Scale 1-5, Mean Opinion Score

	Speech quality	Voice similarity
EN part	2.703	1.751
FR part	2.027	1.888

Mean opinion score for each language and evaluation setting

Multilingual Multispeaker TTS

Hello! As our Software project, we created a system that tries to transfer the voice characteristics of a person from one language to another. In other words, we can take audio files from an English speaker, extract her voice characteristics, and vocalize a text in French in her voice.

Below, you will see the results of our work: short audio files with generated speech. For each file, please evaluate its overall quality on a scale from 1 (very bad) to 5 (very good).

Thank you in advance for your help, Sharmila, Anna, Rasul, Claésia

Demo

Conclusion

- Multilingual TTS system for transferring voice characteristics between speakers of French and English
- Four model architectures based on Grad-TTS with differentiated representations for languages and speakers
- Several experiments and their evaluation, subjective and objective

Possible improvements:

- Experiments with better and more balanced data
- Learning TTS first, and then speaker transformation

Thank you! Questions?

Sharmila Upadhyaya

Anna Kriukova

Rasul Dent

Claésia Costa