

Christopher Mutschler

Overview

- Agent learns by interacting with an environment over many time-steps:
- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of an MDP (S, A, P, R, γ):

Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Note:

If the interaction does stop at some point in time (T) then we have an *episodic RL problem*.

- At each step *t*, the agent:
 - is at state S_t ,
 - performs action A_t ,
 - receives reward R_t .
- At each step *t*, the environment:
 - receives action A_t from the agent,
 - provides reward R_t ,
 - moves at state S_{t+1} ,
 - increments time $t \leftarrow t + 1$.

- Markov Process (MP)
 - Description of an MP (S, P):

Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing Ltd.

- Markov Process (MP)
 - Description of an MP (S, P):

	Home	Coffee	Chat	Computer
Home	60%	40%	0%	0%
Coffee	0%	10%	70%	20%
Chat	0%	20%	50%	30%
Computer	20%	20%	10%	50%

Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing Ltd.

- Markov Reward Process (MRP)
 - Description of an MRP (S, P, \mathbb{R}) :
 - \mathcal{R} is a reward function:

$$\mathcal{R}_S = \mathbb{E}[R_{t+1} | S_t = s]$$

	Home	Coffee	Chat	Computer
Home	1	1		
Coffee		1	2	3
Chat		1	-1	2
Computer	2	1	-3	5

Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing Ltd.

- Markov Decision Process (MDP)
 - Description of an MDP (S, A, P, R, γ) :

http://ai.berkeley.edu/lecture_slides.html

- Markov Decision Process (MDP)
 - Description of an MDP (S, A, P, R, γ) :
 - State transition model:
 - A state transition probability matrix \mathcal{P} helps to model the true state transition function $T(S_{t+1}|S_t,A_t)$ of a real-world environment.

• For each action $A^i \in \mathcal{A}$, we have a state transition matrix \mathcal{P}^{A^i} at any time-step t

Lapan, M. (2018). Deep Reinforcement Learning Hands-On. Packt Publishing Ltd.

- Markov Decision Process (MDP)
 - Description of an MDP (S, A, P, R, γ) :
 - State transition model:
 - A state transition probability matrix \mathcal{P} helps to model the true state transition function $T(S_{t+1}|S_t,A_t)$ of a real-world environment.
 - For each action $A^i \in \mathcal{A}$, we have a state transition matrix \mathcal{P}^{A^i} at any time-step t as follows:

Notes:

- Rows sum up to 1.0.
- \mathcal{P} could change over time.

$$\begin{bmatrix} \mathcal{P}_{11} & \cdots & \mathcal{P}_{1n} \\ \vdots & \ddots & \vdots \\ \mathcal{P}_{n1} & \cdots & \mathcal{P}_{nn} \end{bmatrix}$$

History is the sequence of observations, actions, rewards:

$$H_t = O_0, A_0, R_0, O_1, A_1, R_1, O_2, \dots, O_{t-1}, A_{t-1}, R_{t-1}, O_t$$

- 3 different definitions of s_t
 - (Full) Environmental state S_t^e
 - Private to the environment, not visible, maybe irrelevant information
 - Uses H_t to pick observation and reward
 - Agent state S_t^a (actually used)
 - Private to the agent, history of observations, rewards, and actions
 - Uses function of history $S_t^a = f(H_t)$ to select next action
 - Information state (we will define it soon)
 - Basically, S_t^a with special constraints in $f(H_t)$

- Assumption of MDPs: Markov Property
 - A state S_t is Markov if and only if

$$\mathbb{P}[S_{t+1} | S_1, \dots, S_{t-1}, S_t] = \mathbb{P}[S_{t+1} | S_t]$$

- Past states $S_1, ..., S_{t-1}$ do not change the outcome for the next state S_{t+1} .
- The current state S_t captures all relevant information from the history.
- "The future is independent of the past given the present"

$$H_{1:t} \to S_t \to H_{t+1:\infty}$$

- State is the information used to determine what happens next
 - Direct (fully observable): $O_t = S_t^e$
 - Indirect (partially observable): $O_t = f(S_t^e)$

- Assumption of MDPs: Markov Property
 - How can we ensure/construct such a Markov state?

Sensor Measurements:

- Speed, Angle Requirements:
- Lateral acceleration
- Angular velocity

• MDP example: Gridworld, episodic task

 χ http://ai.berkeley.edu/lecture_slides.html

	Values	
S	(x, y) with $x \in \{0, 1, 2, 3\}$ and $y \in \{0, 1, 2\}$	
${\mathcal A}$	LEFT, RIGHT, UP, DOWN,	

• MDP example: Cartpole, episodic or continuing task

	Values
S	$(x, \theta, \dot{x}, \dot{\theta})$ with $x \in \mathbb{R}$ and $\alpha \in [0^{\circ}, 360^{\circ}]$
${\mathcal A}$	LEFT, RIGHT

• MDP example: Tetris, episodic task

• MDP example: Running with a prosthetic leg, episodic task

# of muscles	19
# degrees of freedom	14
reward	negative distance from requested velocity

- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of MDP (S, A, P, R, γ)
 - Recall: Actions have consequences!
 - Choosing an action $A^i \in \mathcal{A}$ for A_t at timestep t yields different reward sequences
 - How do we know which sequence to prefer?
 - Idea: Decay value of rewards over time.
 - γ is a discount factor: $\gamma \in [0,1]$

http://ai.berkeley.edu/lecture slides.html

- We want to "solve" the MDP, by maximizing future rewards.
 - We see the episodes in the form of

$$S_0 \xrightarrow{(A_0, R_0)} S_1 \xrightarrow{(A_1, R_1)} S_2 \xrightarrow{(A_2, R_2)} S_3 \dots S_{t-1} \xrightarrow{(A_{t-1}, R_{t-1})} S_t$$

- Question: what happens if our problem never stops (i.e., $T = \infty$)?
 - Examples: data center cooling, recommender systems, etc.
- Total discounted (γ) reward (**return**) (of one sample)

$$G = R_0 + \gamma R_1 + \gamma^2 R_2 + \gamma^3 R_3 + \dots = \sum_{t=0}^{\infty} \gamma^t R_t$$

- Markov Decision Process (MDP) is a tool to formulate RL problems
 - Description of MDP (S, A, P, R, γ)
- Why discount rewards with γ ?
 - Mathematically convenient to discount rewards (true reason).
 - Avoids infinite returns in non-episodic problems
 - Datacenter cooling
 - Recommender system
 - Uncertainty about the future may not be fully represented (model uncertainty, our model is not perfect).
- Can I use $\gamma = 1$?
 - Yes, if you have an episodic setting or you definitely know that there is a terminal absorbing state.
- Should I use $\gamma = 1$?

NO!

Markov Decision Processes: Policy

Expected long-term value of state s:

$$v(s) = \mathbb{E}(G) = \mathbb{E}(R_0 + \gamma R_1 + \gamma^2 R_2 + \gamma^3 R_3 + \dots + \gamma^t R_t)$$

- Goal: maximize the expected return $\mathbb{E}(G)$.
- We need a controller that helps us select the actions to maximize $\mathbb{E}(G)$.
- A policy π represents this controller:
 - π determines the agent's behavior, i.e., its way of acting
 - π is a mapping from state space $\mathcal S$ to action space $\mathcal A$

$$\pi: \mathcal{S} \mapsto \mathcal{A}$$

- Two types of policies:
 - Deterministic policy: $a = \pi(s)$.
 - Stochastic policy: $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s].$

New goal: find a policy that maximizes the expected return!

Markov Decision Processes: Policy

Some remarks on terminology

$$\mathbf{s}_t$$
 - state \mathbf{a}_t - action $r(\mathbf{s}, \mathbf{a})$ - reward function

$$r(\mathbf{s}, \mathbf{a}) = -c(\mathbf{x}, \mathbf{u})$$

$$\mathbf{x}_t$$
 - state \mathbf{u}_t - action $c(\mathbf{x}, \mathbf{u})$ - cost function

Lev Pontryagin

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-2.pdf

Markov Decision Processes: Policy

Some remarks on terminology

Bertsekas, 2019:

RL uses Max/Value, DP uses Min/Cost

- Reward of a stage = (Opposite of) Cost of a stage.
- State value = (Opposite of) State cost.
- Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology

- Agent = Decision maker or controller.
- Action = Decision or control.
- Environment = Dynamic system.

Methods terminology

- Learning = Solving a DP-related problem using simulation.
- Self-learning (or self-play in the context of games) = Solving a DP problem using simulation-based policy iteration.
- Planning vs Learning distinction = Solving a DP problem with model-based vs model-free simulation.