江西理工大学期终考试卷

试卷编号:

20 — 20 学年第二学期	考试性质(正考、补考或其它):[正考]			
课程名称:高等数学(二)	考试方式(开卷、闭卷):[闭卷]			
考试时间: 年 月日	试卷类别(A、B):[A] 共 <u>三</u> 大题			

温馨提示

请考生自觉遵守考试纪律,争做文明诚信的大学生。如有违犯考试纪律,将严格 按照《江西理工大学学生违纪处分暂行规定》处理。

班级	ઝ 무	姓名
功工	子丂	红 有

题号	_	=	111	总分
得分				

一、选择题(请将正确答案编码填入下表中,每小题 3 分,共 24 分)

题号	1	2	3	4	5	6	7	8
答案								

- 1. 设 \overrightarrow{AB} 与 u 轴的夹角为 $\frac{\pi}{3}$,则 \overrightarrow{AB} 在 u 轴上的投影是 ().
- (A) $\overrightarrow{AB}\cos\frac{\pi}{3}$ (B) $\overrightarrow{AB}\sin\frac{\pi}{3}$ (C) $|\overrightarrow{AB}|\cos\frac{\pi}{3}$ (D) $|\overrightarrow{AB}|\sin\frac{\pi}{3}$
- 2. 过点 $M_1(3, -2, 1), M_2(-1, 0, 2)$ 的直线方程是().
 - (A) -4(x-3) + 2(y+2) + (z-1) = 0 (B) $\frac{x-3}{4} = \frac{y+2}{2} = \frac{z-1}{1}$

(B)
$$\frac{x-3}{4} = \frac{y+2}{2} = \frac{z-1}{1}$$

(C)
$$\frac{x+1}{4} = \frac{y}{2} = \frac{z-2}{1}$$

(D)
$$\frac{x-3}{4} = \frac{y+2}{-2} = \frac{z-1}{-1}$$

- 3. 直线 $\begin{cases} x + y + 3z = 0 \\ x y z = 0 \end{cases}$ 与平面 x y z + 1 = 0 的夹角是().
 - (A) 60° (B) 0° (C) 30° (D) 90°

第1页 共6页

- 1. $\mbox{if} z = \ln \sqrt{1 + x^2 + y^2}$, $\mbox{M} dz|_{(1,1)} =$ ______.
- 2. 函数 $z = x^2 + y^2$ 在点 P(1,2)沿从点(1,2)到点(2,2+ $\sqrt{3}$)的方向上的方向导数为_____.
- 3. 改换二次积分的积分次序: $\int_0^1 dy \int_0^y f(x, y) dx =$ _______.
- 4. 平面 x + y + z = 1 含在圆柱面 $x^2 + y^2 = 2x$ 内部的那部分平面面积为______.
- 5. L 为圆周 $x^2 + y^2 = 1$,则 $\int_{L} (x^2 + y^2) ds = _____.$
- 6. Σ 是 xoy 平面上的圆域: $x^2+y^2 \le 1$,取下侧,则 $\iint_{\Sigma} dxdy = \underline{\qquad}$.
- 7. 级数 $\sum_{n=1}^{\infty} \frac{3^n + 4^n}{7^n}$ 的和为______.
- 8. e^{x^2} 的 x 的幂级数展开式为______.
- 三、综合题(请写出求解过程,8小题,共52分)
- 1. 求过点(2, 5, -3)且与直线 $\begin{cases} x = 5 2t \\ y = 1 + t 垂直的平面方程. (5分) \\ z = 7 \end{cases}$

2. 由
$$e^x - xyz = 0$$
 确定了函数 $z = z(x, y)$,求 $\frac{\partial z}{\partial x}$. (5分)

3. 计算
$$I = \iint_D (x^2 + y^2) dxdy$$
,其中 $D = \{(x, y) | 1 \le x^2 + y^2 \le 4\}$. (5分)

4. 利用格林公式,计算 $\oint_L (2x^2y-2y)dx + \left(\frac{1}{3}x^3-2x\right)dy$,其中 L 为以 y=x, $y=x^2$, 围成区域的正向边界. (8分) 5. 设 Σ 是由旋转抛物面 $z=x^2+y^2$ 与平面z=2所围成的封闭曲面,取外侧. 用高斯公式计算 $\iint_{\Sigma} 4(1-y^2)dzdx+z(8y+1)dxdy$ (8分)

6. 求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$ 在收敛域 (-1, 1) 内的和函数. (8分)

7. 求微分方程 $y'' - 2y' + y = e^x$ 的通解. (8分)

8. 设函数 f(x) 在[a, b] 上连续且 f(x) > 0,证明 $\int_{a}^{b} f(x) dx \int_{a}^{b} \frac{1}{f(x)} dx \ge (b-a)^{2}$. (5分)