Anjishnu Bandyopadhyay University of Bonn

Development of morphing algorithms for Histfactory using information geometry

DPG Frühjahrstagung Münster 27.03.17

Introduction

- * Most analyses in high-energy physics use likelihood fits.
- * From setting limits to measuring predicted particles.
- * A Poisson likelihood is used in most cases.
- * MC distributions of kinematic variables for both signal and background are used as input.

Motivation

$$\mathcal{L}(\mu, \alpha) = \prod_{k}^{\text{bins}} \frac{E_k^{N_k} e^{-E_k}}{N_k!}$$

$$E_k \equiv E_k(\mu, \alpha) = \mu E_k^{\text{signal}}(\alpha) + \sum_j^{\text{bkgs.}} E_k^j(\alpha)$$

 E_k : Expected number of events in the bin k.

 N_k : Observed number of events in the bin k.

 α is the nuisance parameter (JES, b-tagging unc.) vector.

We only have E_k for $\alpha = 0, \pm 1\sigma$.

We would like to compute E_k for arbitrary α

A Toy example

Interpolating shape uncertainties

Both uncertainties are combined quadratically. (Prior knowledge of independence)

Ambient Fisher distance

A recursive algorithm used to embed the root distributions and $D_F(\sqrt{f}, \sqrt{g})$ is the distance between these distributions

Gnomonic projection

We project the variational distributions, nominal and $\pm 1\sigma$ distributions. The nominal is projected to the south pole.

> The variational distributions are projected accordingly to the (n-1) dim hyperplane

In our test case n=2. So we have a 2-sphere. The two root variational distributions are $f(\alpha_1)$ and $f(\alpha_2)$

We want to compute f(lpha')

Barycentric coordinates

 $lpha_i$ are the input variational points.

 $g(lpha_i)$ are the gnomonic projections of the variational distributions.

Affine transformation to map barycentric to hyperplane

Interpolation

We want to compute $f(\alpha')$

We do an inverse transformation from $\,g(lpha')\,$ to $\,f(lpha')\,$

Results

We use this algorithm to compute an interpolated distribution for an arbitrary $~\alpha'$

$$f(\alpha_i), \alpha_i$$

Embed root distributions on n-sphere

Gnomonic projection

Find target point on sphere and use geodesic equation.

Summary and outlook

- An interpolation algorithm has been developed using information geometry.
- Geometric properties of root distributions used to develop the algorithm.
- Nuisance parameters can be varied simultaneously.
- Algorithm is fast.
- The algorithm has been developed for ROOSTATS framework.
- Results shown today from python implementation.
- Tests to verify working for ROOSTATS ongoing.