

Apache Hive & Stinger

Petabyte-scale SQL in Hadoop

Gunther Hagleitner (gunther @apache.org)

Batch AND Interactive SQL-IN-Hadoop

Stinger Initiative

A broad, community-based effort to drive the next generation of HIVE

Goals:

Speed

Improve Hive query performance by 100X to allow for interactive query times (seconds)

Scale

The only SQL interface to Hadoop designed for queries that scale from TB to PB

SQL

Support broadest range of SQL semantics for analytic applications running against Hadoop

...all IN Hadoop

Stinger Project (announced February 2013)

Hive 0.11, May 2013:

- · Base Optimizations
- SQL Analytic Functions
- · ORCFile, Modern File Format

Hive 0.12, October 2013:

- VARCHAR, DATE Types
- ORCFile predicate pushdown
- Advanced Optimizations
- Performance Boosts via YARN

Coming Soon:

- Hive on Apache Tez
- · Query Service
- Buffer Cache
- Cost Based Optimizer (Optiq)
- · Vectorized Processing

Hive 0.12

	Hive 0.12
Release Theme	Speed, Scale and SQL
Specific Features	 10x faster query launch when using large number (500+) of partitions ORC File predicate pushdown speeds queries Evaluate LIMIT on the map side Parallel ORDER BY New query optimizer Introduces VARCHAR and DATE data types GROUP BY on structs or unions
Included Components	Apache Hive 0.12

SQL: Enhancing SQL Semantics

Hive SQL Datatypes

INT

TINYINT/SMALLINT/BIGINT

BOOLEAN

FLOAT

DOUBLE

STRING

TIMESTAMP

BINARY

DECIMAL

ARRAY, MAP, STRUCT, UNION

DATE

VARCHAR

CHAR

Hive SQL Semantics

SELECT, INSERT

GROUP BY, ORDER BY, SORT BY

JOIN on explicit join key

Inner, outer, cross and semi joins

Sub-queries in FROM clause

ROLLUP and CUBE

UNION

Windowing Functions (OVER, RANK, etc)

Custom Java UDFs

Standard Aggregation (SUM, AVG, etc.)

Advanced UDFs (ngram, Xpath, URL)

Sub-queries in WHERE, HAVING

Expanded JOIN Syntax

SQL Compliant Security (GRANT, etc.)

INSERT/UPDATE/DELETE (ACID)

SQL Compliance

Hive 12 provides a wide array of SQL data types and semantics so your existing tools integrate more seamlessly with Hadoop

Available

Hive 0.12

Roadmap

Insert, Update and Delete (ACID)

Batch data manipulation with repeatable-read semantics

- ACID compliant
- Typical use cases:
 - Hourly update of customer dimension table
 - Storm or Flume inserts (low latency, 15 minutes)
 - Delete records once a day for compliance
- Not intended for real-time transactions

Additional SQL statements:

- INSERT INTO table SELECT ...
- INSERT INTO table VALUES ...
- UPDATE table SET ... WHERE ...
- DELETE FROM table WHERE ...
- MERGE INTO table ...
- BEGIN/END TRANSACTION

Insert, Update and Delete

Base File

Name	Purchase
Anne	Red Fish
Bill	Blue Fish
Christine	Blue Fish
David	Black Fish
Eric	Young Fish

Update 1

Op	Txn Id	Rowld	Name	Purchase
1	1	0	Joe	Red Fish
U	0	0	Anne	Star
D	0	4		

Update 2

Op	Txn Id	Rowld	Name	Purchase
U	1	0	Joe	Old Fish
U	0	0	Ann	Star
D	0	2		

Logical File

Name	Purchase
Joe	Old Fish
Ann	Star
Bill	Blue Fish
David	Black Fish

© Hortonworks Inc. 2013.

SQL Compliant security

- Hive user has access to HDFS files
- Manages fine grained access via standard:
 - -Users and roles
 - -Privileges (insert, select, update, delete, all)
 - Objects (tables, views)
 - -Grant/Revoke/Show statements to administrate
- Special roles
 - PUBLIC all users belong to this role
 - SUPERUSER privilege to create/drop role, grant access, ...
- Trusted UDFs
- Pluggable sources for user to role mapping.
 - E.g.: HDFS groups

Extended sub-query support

- Sub-queries in where/having clause
 - (NOT) IN/EXISTS
- Transformation at a high level are:
 - In/Exists => Left outer join
 - Not In/Exists => Left outer join+ null check
 - Correlation converted to "group by" in sub-query
- Will work only if query can be flattened
 - No "brute force" of sub-query

Example:

```
select o_orderpriority, count(*)
from orders o
where
   o_orderdate >= '2013-01-01'
   and exists (
        select *
        from lineitem
        where
        l_orderkey = o.o_orderkey
        and l_commitdate < l_receiptdate
    )
group by o_orderpriority
order by o_orderpriority;</pre>
```

Alternate join syntax

- Allows for 'comma separated' join syntax
 - Easier to use
 - Facilitates integration with tools
- Important aspect is correct push down of predicates
 - Cross product is very expensive
 - Conditions need to be pushed as close to the table source as possible

Example:

```
select o_orderpriority, count(*)
from orders, lineitem
where
  o_orderdate >= '2013-01-01'
  and l_orderkey = o_orderkey
  and l_commitdate < l_receiptdate
group by o_orderpriority
order by o_orderpriority;</pre>
```

YARN: Taking Hadoop Beyond Batch

Store ALL DATA in one place...

Interact with that data in MULTIPLE WAYS

with Predictable Performance and Quality of Service

Apache Tez ("Speed")

- Replaces MapReduce as primitive for Pig, Hive, Cascading etc.
 - Smaller latency for interactive queries
 - Higher throughput for batch queries
 - -22 contributors: Hortonworks (13), Facebook, Twitter, Yahoo, Microsoft

Tez: Building blocks for scalable data processing

Intermediate 'Reduce' for Map-Reduce-Reduce

Hive-on-MR vs. Hive-on-Tez

SELECT g1.x, g1.avg, g2.cnt FROM (SELECT a.x, AVERAGE(a.y) AS avg FROM a GROUP BY a.x) g1 JOIN (SELECT b.x, COUNT(b.y) AS avg FROM b GROUP BY b.x) g2 ON (g1.x = g2.x) ORDER BY avg;

Tez avoids unnecessary writes to HDFS

Tez Sessions

... because Map/Reduce query startup is expensive

Tez Sessions

- -Hot containers ready for immediate use
- -Removes task and job launch overhead (~5s 30s)

Hive

- –Session launch/shutdown in background (seamless, user not aware)
- -Submits query plan directly to Tez Session

Native Hadoop service, not ad-hoc

Tez Delivers Interactive Query - Out of the Box!

Feature	Description	Benefit
Tez Session	Overcomes Map-Reduce job-launch latency by pre- launching Tez AppMaster	Latency
Tez Container Pre- Launch	Overcomes Map-Reduce latency by pre-launching hot containers ready to serve queries.	Latency
Tez Container Re-Use	Finished maps and reduces pick up more work rather than exiting. Reduces latency and eliminates difficult split-size tuning. Out of box performance!	Latency
Runtime re- configuration of DAG	Runtime query tuning by picking aggregation parallelism using online query statistics	Throughput
Tez In-Memory Cache	Hot data kept in RAM for fast access.	Latency
Complex DAGs	Tez Broadcast Edge and Map-Reduce-Reduce pattern improve query scale and throughput.	Throughput

© Hortonworks Inc. 2013.

ORC File Format

- Columnar format for complex data types
- Built into Hive from 0.11
- Support for Pig and MapReduce via HCatalog
- Two levels of compression
 - -Lightweight type-specific and generic
- Built in indexes
 - -Every 10,000 rows with position information
 - -Min, Max, Sum, Count of each column
 - -Supports seek to row number

ORC File Format

Hive 0.12

- -Predicate Push Down
- -Improved run length encoding
- Adaptive string dictionaries
- Padding stripes to HDFS block boundaries

Trunk

- -Stripe-based Input Splits
- Input Split elimination
- -Vectorized Reader
- -Customized Pig Load and Store functions

Vectorized Query Execution

Designed for Modern Processor Architectures

- Avoid branching in the inner loop.
- -Make the most use of L1 and L2 cache.

How It Works

- -Process records in batches of 1,000 rows
- -Generate code from templates to minimize branching.

What It Gives

- -30x improvement in rows processed per second.
- -Initial prototype: 100M rows/sec on laptop

HDFS Buffer Cache

Use memory mapped buffers for zero copy

- -Avoid overhead of going through DataNode
- –Can mlock the block files into RAM

ORC Reader enhanced for zero-copy reads

-New compression interfaces in Hadoop

Vectorization specific reader

- -Read 1000 rows at a time
- -Read into Hive's internal representation

Cost-based optimization (Optiq)

Optiq: Open source, Apache licensed query execution framework in Java

- Used by Apache Drill, Apache Cascade, Lucene DB, ...
- Based on Volcano paper
- 20 man years dev, more than 50 optimization rules

Goals for hive

- Ease of Use no manual tuning for queries, make choices automatically based on cost
- View Chaining/Ad hoc queries involving multiple views
- Help enable BI Tools front-ending Hive
- Emphasis on latency reduction

Cost computation will be used for

- > Join ordering
- > Join algorithm selection
- > Tez vertex boundary selection

How Stinger Phase 3 Delivers Interactive Query

Feature	Description	Benefit
Tez Integration	Tez is significantly better engine than MapReduce	Latency
Vectorized Query	Take advantage of modern hardware by processing thousand-row blocks rather than row-at-a-time.	Throughput
Query Planner	Using extensive statistics now available in Metastore to better plan and optimize query, including predicate pushdown during compilation to eliminate portions of input (beyond partition pruning)	Latency
ORC File	Columnar, type aware format with indices	Latency
Cost Based Optimizer (Optiq)	Join re-ordering and other optimizations based on column statistics including histograms etc. (future)	Latency

© Hortonworks Inc. 2013.

SCALE: Interactive Query at Petabyte Scale

Sustained Query Times

Apache Hive 0.12 provides **sustained** acceptable query times even at petabyte scale

Smaller Footprint

Better encoding with ORC in Apache Hive 0.12 reduces resource requirements for your cluster

Stinger Phase 3: Interactive Query In Hadoop

© Hortonworks Inc. 2013.

Speed: Delivering Interactive Query

- 20 Nodes, 24GB RAM each, 6x disk each Trunk (Phase 3)

200 GB Data (ORCFile)

Speed: Delivering Interactive Query

Next Steps

Blog

http://hortonworks.com/blog/delivering-on-stinger-a-phase-3-progress-update/

Stinger Initiative

http://hortonworks.com/labs/stinger/

Stinger Beta: HDP-2.1 Beta, December, 2013

Thank You!

gunther @apache.org@yakrobat@hortonworks

