Élasticité, théorie et applications

Lucas JACQUIN

August 24, 2021

Sommaire

Théorie générale de l'élasticité

Élasticité active additive

Élasticité active multiplicative

Référentiel Eulérien, Lagrangien et ALE

Équations de l'élasticité

$$\Omega \subset \mathbb{R}^d, \ d=2,3, \ \partial \Omega = \Gamma_D \bigcup \Gamma_N.$$

$$\rho \frac{\partial^2 \eta}{\partial t^2} - \nabla \cdot (F\Sigma) = f \text{ dans } \Omega ,$$

$$\eta = g_D \text{ sur } \Gamma_D ,$$

$$F\Sigma n = g_N \text{ sur } \Gamma_N ,$$
(1)

$$\boldsymbol{\Sigma} = \lambda \mathsf{tr}\left(\boldsymbol{\mathit{E}}\right) \boldsymbol{\mathsf{I}} + 2\mu \boldsymbol{\mathit{E}}, \quad \boldsymbol{\mathit{E}} = \frac{1}{2} \left(\nabla \boldsymbol{\eta} + \nabla \boldsymbol{\eta}^{\mathsf{T}} + \nabla \boldsymbol{\eta}^{\mathsf{T}} \nabla \boldsymbol{\eta} \right)$$

Élasticité linéaire

$$E = \frac{1}{2} \left(\nabla \eta + \nabla \eta^T + \nabla \eta^T \nabla \eta \right) \rightarrow e = \frac{1}{2} \left(\nabla \eta + \nabla \eta \right)$$

$$\rho \frac{\partial^2 \eta}{\partial t^2} - \nabla \cdot \sigma = f \text{ dans } \Omega ,$$

$$\eta = g_D \text{ sur } \Gamma_D ,$$

$$\sigma = g_N \text{ sur } \Gamma_N ,$$

$$\sigma = \lambda \text{tr}(e) \, I + 2\mu e, \quad e = \frac{1}{2} \left(\nabla \eta + \nabla \eta^T \right)$$
(2)

Modélisation de l'élasticité linéaire

(a) Poutre fixée des deux côtés

(b) Poutre 3D fixée d'un côté

Figure: Poutres élastiques soumises à la gravité

Élasticité active

- → Forces externes ET internes
- ► Fibres, tubules
- ► Courant électrique, protéines
- ► Modélisation additive ou multiplicative

Élasticité active additive, théorie

- Contrainte
- Modélisation "globale" des composantes actives
- Une seule direction active

ea la direction des fibres actives

 Σ_a le tenseur d'étirement/élongation

$$\Sigma^* = \Sigma_a e_a \otimes e_a$$

Théorie

$$\Sigma \to \Sigma - \Sigma^*$$

$$\rho \frac{\partial^2 \eta}{\partial t^2} - \nabla \cdot (F(\Sigma - \Sigma^*)) = f \text{ dans } \Omega ,$$

$$\eta = g_D \text{ sur } \Gamma_D ,$$

$$(F\Sigma - F\Sigma^*) n = g_N \text{ sur } \Gamma_N .$$
(3)

Applications

(a) Cils bronchiques [1]

(b) Coupe transversale d'un cil eucaryote [1]

Applications

- Dyskinésie ciliaire primitive
- Asthme
- ► Grippe
- Mucoviscidose
- Micro-nageurs

Modélisation

Figure: Battement de cil à amplitude variable $\Sigma_a(x, y, t) = -xy^2 \sin(2\pi(\frac{y}{6.5} - 12t)), e_a = (1, 0)$

(a)
$$t = 0.059$$
 (b) $t = 0.104$

Figure: Battement de cil 3D à amplitude variable $\Sigma_a(x,y,t) = -xy\sin(2\pi(\frac{y}{6.5}-12t)), \ e_a = (\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}})$

Élasticité active multiplicative, théorie

- Tension
- Contraction des fibres actives
- Décomposition du gradient de la déformation

 F_a la déformation active

$$F_e = FF_a^{-1}$$

Applications

Modélisation des myofibrilles:

$$F_a = I + (\gamma_a - 1) e \otimes e$$

Modélisation de fibres isotropes:

$$F_a = \gamma_a I$$

- ► Modélisation du cœur [4]
- Modélisation de la paroi artérielle coronaire [4]

Poisson

Figure: Simulation de nage d'un poisson

Référentiel Eulérien

- Ω fixé
- x un point de l'espace fixé
- \triangleright (x, t) indissociables
 - → Mécanique des fluides

Référentiel Lagrangien

- $ightharpoonup \Omega$ le matériau de référence, $\hat{\Omega}$ le matériau déformé
- \triangleright \hat{x} un point de $\hat{\Omega}$
- \triangleright (\hat{x}, t) indépendants
 - \rightarrow Petite déformation

Arbitrary Lagrangian Eulerian (ALE)

- Ni fixé dans l'espace, ni attaché au matériau
- Nodes fixés ou non
 - → Grosses déformations
 - \rightarrow Interactions fluide-structure

Perspectives

- ► Élasticité active multiplicative
- ► ALE et interaction fluide-structure

Bibliographie

Vergnet Fabien.

Structures actives dans un fluide visqueux: modélisation. analyse mathématique et simulations numériques, 2019.

Cristinel Mardare.

Méthodes mathématiques en élasticité.

Teresi Nardinocchi.

On the active response of soft living tissues.

J.of Elasticity, 2007.

Yohan Payan.

Biomechanics of living organs.

2017.

Alfio Quarteroni.

Cardiovascular mathematics.

2009.