Scilab Textbook Companion for A Textbook Of Electronic Devices And Circuits by S. Prakash And S. Rawat¹

Created by
Arshad Khan
B.Tech
Computer Engineering
Uttarakhand Tech. University
College Teacher
NA
Cross-Checked by
Mukul R. Kulkarni

May 26, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: A Textbook Of Electronic Devices And Circuits

Author: S. Prakash And S. Rawat

Publisher: Anand Publications, New Delhi

Edition: 3

Year: 2012

ISBN: 978-93-80225-48-7

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	Special Diodes	5	
2	Bipolar Junction Transistors	16	
3	Transistor Amplifiers	28	
4	Frequency Response	38	
5	Feed Back	40	
6	Field Effect Transistors and MOSFETS	50	
7	Magnetic Materials	56	
8	Oscillators	60	
9	Unijunction Transistor	69	
11	Multivibrators	71	

List of Scilab Codes

Exa 1.1	Reverse saturation current	5
Exa 1.2	Value of forward voltage	6
Exa 1.3	DC current DC voltage Ripple factor	6
Exa 1.4	Average dc current rms current rectification efficieny PIV	7
Exa 1.5	Minimum value of resistance	8
Exa 1.6	Value of series Resistor	8
Exa 1.7	Current limiting resistance and dissipated power	9
Exa 1.8	Maximum and minimum input supply voltage	10
Exa 1.9	Output voltage voltage drop and current in zener diode	10
Exa 1.10	Maximum and Minimum LED current	11
Exa 1.11	Frequency range of tuning circuit	12
Exa 1.12	Diode Capacitance	13
Exa 1.13	Photocurrent	13
Exa 1.14	Responsivity of InGaAs photodiode	14
Exa 1.15	Equilibrium contact potential	14
Exa 2.1	Current amplification factors	16
Exa 2.2	Value of IE	16
Exa 2.3	Change in collector current	17
Exa 2.4	Input current in CE and CB configuration	17
Exa 2.5	Current gain and base current	18
Exa 2.6	Input resistance of transistor	18
Exa 2.7	Dynamic input resistance	19
Exa 2.9	Current gain input resistance and voltage gain	19
Exa 2.10	Collector emitter saturation voltage	20
Exa 2.11	Relative size of collector junction	21
Exa 2.12	DC load line and operating point	21
Exa 2.13	RB and new value of IC	22
Exa 2.14	Set the operating point	23

Exa 2.15	Value of IC
Exa 2.16	Operating point and stability factor
Exa 2.17	IC and VCE
Exa 2.18	Region of Q point
Exa 2.19	Voltage across RE
Exa 3.1	Gain Impedence and ac load
Exa 3.2	Gain input and output impedence
Exa 3.3	Input Output impedence and output voltage 30
Exa 3.4	Net voltage gain in dB
Exa 3.5	Bandwidth and cut off frequencies
Exa 3.6	Overall voltage gain
Exa 3.7	Couopling capacitor
Exa 3.8	Voltage gain
Exa 3.9	Inductance of primary and secondary
Exa 3.10	Turn ratio of transformer
Exa 3.11	Collector efficieny and power rating
Exa 3.12	Power and efficiency
Exa 3.13	Maximum ac power output
Exa 3.14	Maximum permissible power dissipation
Exa 4.1	3dB Frequeny
Exa 4.2	Upper 3dB Frequency
Exa 5.1	Percentage of output which is fed back
Exa 5.2	Voltage gain and reduction in voltage 40
Exa 5.3	Gain with feedback factor and feedback voltage 41
Exa 5.4	Bandwidth with negative feedback
Exa 5.5	Fraction of output fed back
Exa 5.6	Small Change in gain
Exa 5.7	New gain distortion and input voltage 44
Exa 5.8	Feedback rction voltage and impedence 45
Exa 5.9	Voltage gain input and output resistance 46
Exa 5.10	Gain wih feedbck in dB
Exa 5.11	Bandwidth after feedback
Exa 5.12	Gain and new bandwidth 47
Exa 5.13	Input resistance and voltage gain 48
Exa 6.1	Value of Transconductance
Exa 6.2	AC drain resistance transconductance and amplification
	factor
Exa 6.5	Voltage Amplification

Exa 6.6	Output voltage of amplifier
Exa 6.7	IDQ VGSQ VD VS VDS VDG 52
Exa 6.8	Pinch off voltage
Exa 6.10	Plot gm VS IDSS
Exa 6.11	Channel width W
Exa 7.1	Horizontal component of magnetic Intensity 50
Exa 7.2	Current through solenoid
Exa 7.3	Magnetic moment of rod 5
Exa 7.4	Flux density magnetic intensity and permeability 5
Exa 7.5	Relative Permeability
Exa 7.6	Magnetising Force and material magnetisation 59
Exa 8.m.1	Value of L1
Exa 8.m.2	Value of C and hfe 60
Exa 8.m.3	Value of Capacitor 6
	Various parameter of colpitt oscillator 6
Exa 8.m.5	Resonant frequencies and Q factor 65
Exa 8.1	feed bck factor 65
Exa 8.2	Range of variable capacitor 63
Exa 8.3	C2 of colpitt oscilator
Exa 8.4	Frequency of oscillation 64
Exa 8.5	Amplifier voltage gain 68
Exa 8.6	Frequency of oscillation and min current gain 68
Exa 8.7	Resistnce to cover frequency range 60
Exa 8.8	Resonant Frequency 6
Exa 8.9	Resonant Frequency 6
Exa 8.10	Parallel and series resonant frequencies
Exa 9.1	Stand off voltage and peak point Voltage 69
Exa 9.2	Time period of sawtooth waveform 69
Exa 9.3	Resistances RB1 and RB2
Exa 11.1	Frequency of Oscillators

Chapter 1

Special Diodes

Scilab code Exa 1.1 Reverse saturation current

```
1 //Exa 1.1
2 clc;
3 clear;
4 close;
5 // Given data
6 I = 40; //in mA
7 V = 0.25; //in Volt
8 T=20;//in degree C
9 T=T+273; //in Kelvin
10 ETA=1; // For Ge
11 e=1.6*10^-19; //in Coulamb(electronic charge)
12 k=1.38*10^-23; //in J/K(Boltzman Constant)
13 //Formula : I=Io*(exp(\%e*V/(ETA*k*T))-1)
14 y=(e*V/(ETA*k*T)); //Assumed
15 y = round(y);
16 Io=I*10^-3/(exp(y)-1);//in mA
17 disp(Io*10^6, "Reverse saturation current in micro
      Ampere : ");
```

Scilab code Exa 1.2 Value of forward voltage

```
1  //Exa 1.2
2  clc;
3  clear;
4  close;
5  //Given data
6  Io=10; //in uA
7  I=1; //in Ampere
8  ETA=2; //For Si
9  T=27; //in degree C
10  T=T+273; //in Kelvin
11  e=1.6*10^-19; //in Coulamb(electronic charge)
12  k=1.38*10^-23; //in J/K(Boltzman Constant)
13  //Formula : I=Io*(exp(%e*V/(ETA*k*T))-1)
14  V=(ETA*k*T/e)*log(I/(Io*10^-6)+1); //in Volt
15  disp(V,"Forward Voltage across the diode in Volt :")
    ;
```

Scilab code Exa 1.3 DC current DC voltage Ripple factor

```
1  //Exa 1.3
2  clc;
3  clear;
4  close;
5  //Given data
6  RL=1; //in kOhm
7  //rf << RL
8  Vrms=200; //in Volt
9  //Part (i)
10  Vo=Vrms*sqrt(2); //in Volt
11  Idc=Vo/(RL*10^3*%pi); //in Ampere
12  disp(round(Idc*10^3), "DC current in load in mA:");
13  //Part (ii)
14  Vdc=RL*10^3*Idc; //in Volt</pre>
```

Scilab code Exa 1.4 Average dc current rms current rectification efficieny PIV

```
1 //Exa 1.4
2 clc;
3 clear;
4 close;
5 //Given data
6 rf=20; //in ohm
7 RL=980; //in Ohm
8 Vrms=50; //in Volt
9 Vo=Vrms*sqrt(2);//in Volt
10 Io=Vo/(RL+rf);//in Ampere
11 // Part (i)
12 Idc=2*Io/%pi;//in Ampere
13 disp(round(Idc*10^3), "Average DC current in mA:");
14 // Part (ii)
15 Irms=Io/sqrt(2);//in Ampere
16 disp(Irms*1000, "rms value of load current in mA:")
17 // Part (iii)
18 Vdc=RL*Idc; //in Volt
19 disp(Vdc,"DC output voltage in volt:");
20 // Part (iv)
21 ETA=(Idc^2*RL/(Irms^2*(RL+rf)))*100;//Rectification
      Efficiency in %
```

```
22 disp("Rectification Efficiency is "+string(ETA)+" %"
    )
23 //Part (v)
24 PIV=2*Vo;//in volt
25 disp(PIV, "Peak Inverse Voltage in volt:");
```

Scilab code Exa 1.5 Minimum value of resistance

```
1  //Exa 1.5
2  clc;
3  clear;
4  close;
5  //Given data
6  Vin=40; //in volt
7  VZ=10; //in volt
8  Vo=10; //in volt
9  IZmax=50; //in mA
10  IL=0; //in mA
11  //Formula : I=IZ+IL=IZmax+0
12  I=IZmax+0; //in mA
13  //Formula : VZ=Vin-R*I
14  Rmin=(Vin-VZ)/(I*10^-3); //in Ohm
15  disp(Rmin, "Minimum value of resistance in Ohm : ");
```

Scilab code Exa 1.6 Value of series Resistor

```
1 //Exa 1.6
2 clc;
3 clear;
4 close;
5 //Given data
6 Vmin=15;//Minimum input voltage in volt
7 VZ=6.8;//Voltage across zener in volt
```

```
8 Vo=VZ; //output voltage in volt
9 Vsr1=Vmin-Vo; // Voltage aross series resistance in
      volt
10 disp("If R is the series esistance, Total current in
       series resistance in Ampere : I=Vsr/R=8.2/R");
11 ILmin=5; //in mA
12 disp("current in zener diode in Ampere : IZ=I-IL
                                 eqn(1)");
      = (8.2/R-IL*10-3)
13 Vmax=20; //mximum output voltage
14 Vo=VZ; //output voltage in volt
15 Vsr2=Vmax-Vo; // Voltage aross series resistance in
16 disp ("Current in series resistance circuit in Ampere
       : I=Vsr/R");
17 ILmax=15; //in mA
18 disp ("current in zener diode in Ampere: IZ=I-IL=(Rs/
     R-IL*10-3
                          eqn(2)")
19 disp("For Zener diode to work as voltage regulator
      (1) and (2) must be same.");
20 disp("(8.2/R-IL*10-3)=(13.2/R-IL*10-3)")
21 R=(Vsr2-Vsr1)/(ILmax*10^-3-ILmin*10^-3);//in Ohm
22 disp(R, "Required value of Series Resistor in ohm : "
     );
```

Scilab code Exa 1.7 Current limiting resistance and dissipated power

```
1 //Exa 1.7
2 clc;
3 clear;
4 close;
5 //Given data
6 Vin=18; //in volt
7 IZ=20; //in mA
8 ILav=(5+35)/2; //in mA
9 VZ=12; //in volt
```

```
10 Vo=12; //in volt
11 I=IZ+ILav; //in mA
12 R=(Vin-Vo)/(I*10^-3); //in Ohm
13 disp(R, "Current limiting resistance in Ohm: ");
14 P=(I*10^-3)^2*R; //in Watts
15 disp(P, "Power disspation in resistance in Watt: ");
```

Scilab code Exa 1.8 Maximum and minimum input supply voltage

```
1 / Exa 1.8
2 clc;
3 clear;
4 close;
5 //Given data
6 R=1; //in kOhm
7 RL=5; // in kOhm
8 VZ=10; //in volt
9 Vo=10; //in volt
10 P = 250; //in mW
11 IL=Vo/RL; //in mA
12 IZmin=0; //in mA
13 IZmax=P/VZ; //in mA
14 Imin=IZmin+IL; //in mA
15 Imax=IZmax+IL; //in mA
16 Vin_min=VZ+Imin*10^-3*R*10^3; //in volt
17 Vin_max = VZ + Imax * 10^{-3} * R * 10^{3}; // in volt
18 disp("The input voltage ranges from "+string(Vin_min
      )+"V to "+string(Vin_max)+"V");
```

Scilab code Exa 1.9 Output voltage voltage drop and current in zener diode

```
1 //Exa 1.9
```

```
2 clc;
3 clear;
4 close;
5 //Given data
6 R=5; //in kOhm
7 R=R*1000; //in Ohm
8 \text{ RL}=10; //\text{in kOhm}
9 RL=RL*1000; //in Ohm
10 Vin=120; //in Volt
11 VZ=50; //in Volt
12 // Part (i)
13 Vo=VZ; //in Volt
14 disp(Vo, "Output voltage in volt : ");
15 // Part (ii)
16 VR=Vin-VZ; //in Volt
17 disp(VR, "Voltage drop across series resistance in
      volt :");
18 // Part (iii)
19 IL=Vo/RL; //in Ampere
20 disp(IL*1000, "Load Current in mA:");
21 I=VR/R; //in Ampere
22 disp(I*1000, "Current through resistance R in mA:");
23 IZ=I-IL; //in Ampere
24 disp(IZ*1000, "Load Current in mA:");
```

Scilab code Exa 1.10 Maximum and Minimum LED current

```
1  //Exa 1.10
2  clc;
3  clear;
4  close;
5  //Given data
6  VDmin=1.5; //in Volt
7  VDmax=2.3; //in Volt
8  VS=5; //in Volt
```

Scilab code Exa 1.11 Frequency range of tuning circuit

```
1 // Exa 1.11
2 clc;
3 clear;
4 close;
5 //Given data
6 format('v',6);
7 C1min=10; //in pF
8 C2max=50; //in pF
9 L=5; // in mH
10 L=L*10^-3; //in H
11 / Formula : CT=C1*C2/(C1+C2)
12 //Minimum
13 C1=10; //in pF
14 C2=10; //in pF
15 CTmin=C1*C2/(C1+C2);//in pF
16 CTmin = CTmin * 10^-12; //in F
17 //Maximum
18 C1=50; // in pF
19 C2=50; //in pF
20 CTmax=C1*C2/(C1+C2);//in pF
21 CTmax = CTmax * 10^-12; //in F
22 //Formula : f = 1/(2*\%pi*sqrt(L*C))
23 //maximum :
24 fmax=1/(2*%pi*sqrt(L*CTmin));
25 //minimum :
```

Scilab code Exa 1.12 Diode Capacitance

Scilab code Exa 1.13 Photocurrent

```
1 //Exa 1.13
2 clc;
3 clear;
4 close;
5 //Given data
6 format('v',6);
7 R=0.90;//in A/W
8 Pop=1;//in mW
```

```
9 //Part (i)
10 IP=R*Pop;//in mA
11 disp(IP, "Power of incident light 1mW, Photocurrent
      in mA is :");
12 //Part (ii)
13 disp("Here IP is not proportional to Pop(for Pop>1.5
      mW)");
14 disp("Hence Photourrent can not be calculated.");
```

Scilab code Exa 1.14 Responsivity of InGaAs photodiode

```
1 / Exa 1.14
2 clc;
3 clear;
4 close;
5 //Given data
6 format('v',7);
7 ETA=70; //in %
8 Eg=0.75; //in eV
9 Eg=Eg*1.6*10^-19; //in Joule
10 h=6.63*10^-34; // Planks constant in J-s
11 c=3*10^8; //speed of light in m/s
12 e=1.6*10^-19; //in coulamb
13 lambda=h*c/Eg;//in meter
14 disp(lambda*10^9, "Wavelength in nm :");
15 R=(ETA/100)*e*lambda/(h*c); //in A/W
16 disp(R, "Responsivity of InGaAs photodiode in A/W:"
     );
```

Scilab code Exa 1.15 Equilibrium contact potential

```
1 //Exa 1.15
2 clc;
```

Chapter 2

Bipolar Junction Transistors

Scilab code Exa 2.1 Current amplification factors

```
1 //Exa 2.1
2 clc;
3 clear;
4 close;
5 //Given data
6 deltaIB=50; //in uA
7 deltaIC=1; //in mA
8 deltaIC=deltaIC*10^3; //in uA
9 Beta=deltaIC/deltaIB; // unitless
10 disp(Beta, "Current Amplification Factor, Beta:");
11 Alfa=Beta/(1+Beta); // unittless
12 disp("Current Amplification Factor, Alfa:"+string(Alfa)+" or 20/21");
```

Scilab code Exa 2.2 Value of IE

```
1 //Exa 2.2
2 clc;
```

```
3 clear;
4 close;
5 //Given data
6 IB=25; //in uA
7 Beta=40; // unitless
8 IC=Beta*IB; //in uA
9 IE=IB+IC; //in uA
10 disp("The value of IE :"+string(IE)+" micro Ampere")
;
```

Scilab code Exa 2.3 Change in collector current

Scilab code Exa 2.4 Input current in CE and CB configuration

```
1 //Exa 2.4
2 clc;
3 clear;
4 close;
5 //Given data
6 Beta=45;//unitless
7 RL=1;//in kOhm
```

```
8 deltaVCE=1;//in volt
9 disp("Part (i) : CE coniguration");
10 IC=deltaVCE/(RL*1000);//in Ampere
11 //Formula : Beta=deltaIC/deltaIB
12 IB=IC/Beta;//in Ampere
13 disp("Input Base Current, IB in mA : "+string(IB *10^3));
14 disp("Part (ii) : CB coniguration");
15 IC=deltaVCE/(RL*1000);//in Ampere
16 //Formula : Beta=deltaIC/deltaIB
17 IE=IB+IC;//in Ampere
18 disp("Input Emitter Current, IE in mA : "+string(IE *10^3));
```

Scilab code Exa 2.5 Current gain and base current

```
1 //Exa 2.5
2 clc;
3 clear;
4 close;
5 //Given data
6 Ileakage=12.5; // in uA
7 ICBO=12.5; // in uA
8 IE=2; // in mA
9 IC=1.97; // in mA
10 //Formula : IC=alfa*IE+ICBO
11 alfa=(IC-ICBO/10^3)/IE; // unitless
12 disp(alfa, "Current Gain : ");
13 IB=IE-IC; // in mA
14 disp(IB, "Base current in mA : ");
```

Scilab code Exa 2.6 Input resistance of transistor

```
1 //Exa 2.6
2 clc;
3 clear;
4 close;
5 //Given data
6 deltaVBE=200; //in mVolt
7 deltaIB=100; //in uA
8 ri=deltaVBE*10^-3/(deltaIB*10^-6); //in Ohm
9 disp(ri/1000, "Input resistane of transistor in kohm :");
```

Scilab code Exa 2.7 Dynamic input resistance

```
1 //Exa 2.7
2 clc;
3 clear;
4 close;
5 //Given data
6 deltaVEB=200; //in mVolt
7 deltaIE=5; //in mA
8 ri=deltaVEB*10^-3/(deltaIE*10^-3); //in Ohm
9 disp(ri,"Input resistane of transistor in Ohm:");
```

Scilab code Exa 2.9 Current gain input resistance and voltage gain

```
1 //Exa 2.9
2 clc;
3 clear;
4 close;
5 //Given data
6 format('v',10);
7 Ri=500;//in Ohm
8 RL=1;//in kOhm
```

```
9 hie=1; // in kOhm
10 hre=2*10^-4; // unitless
11 hfe=50; // unitless
12 hoe=25; // micro mho
13 // Part (a):
14 Ai=-hfe/(1+hoe*10^-6*RL*10^3); // unitless
15 disp(Ai, "Current Gain: ");
16 // Part (b):
17 Rin=hie*10^3-(hre*hfe/(hoe*10^-6+1/RL*10^3)); // in Ohm
18 disp(Rin, "Input Resistance in Ohm:");
19 // Part (c):
20 Av=Ai*RL*10^3/Ri; // unitless
21 disp(Av, "Voltage Gain: ");
```

Scilab code Exa 2.10 Collector emitter saturation voltage

```
1 //Exa 2.10
2 clc;
3 clear;
4 close;
5 //Given data
6 alfaF=0.99; //unitless
7 alfaR=0.20; //unitless
8 IC=1; // in mA
9 IB=50; //in micro Ampere
10 T=300; //in kelvin
11 k=1.38*10^-23; //Boltzman constant
12 e=1.6*10^-19; //in cooulamb
13 Vth=k*T/e; //in Volt
14 VCEsat=Vth*log(((IC*10^-3*(1-alfaR)+IB*10^-6)*alfaF)
     /((alfaF*IB*10^-6-(1-alfaF)*IC*10^-3)*alfaR));//
     in volt
15 disp(VCEsat, "Collector-Emitter saturation voltage in
       volt :");
```

Scilab code Exa 2.11 Relative size of collector junction

```
1 // Exa 2.11
2 clc;
3 clear;
4 close;
5 //Given data
6 IES=10^--14; //in A
7 alfaF=1;//unitless
8 alfaR=0.1; // unitless
9 //Formula : alfaF*IES=alfaR*ICS
10 ICS=(alfaF/alfaR)*IES;//in Ampere
11 disp(ICS, "Collector base junction saturation current
      in Ampere : ");
12 RelativeSize=ICS/IES;//unitless
13 disp("Collector is "+string(RelativeSize)+" times
     larger in size than emitter.");
14 BetaR=alfaR/(1-alfaR);//unitless
15 disp(BetaR, "Value of BetaR: ");
```

Scilab code Exa 2.12 DC load line and operating point

```
1  //Exa 2.12
2  clc;
3  clear;
4  close;
5  //Given data
6  Beta=100; // unitless
7  VCC=6; // in volt
8  RB=530; // in kOhm
9  RC=2; // in kOhm
```

```
10 VBE=0.7; //in volt (For Si)
11 // Part (i)
12 IC1=0; // in A
13 VCE1 = VCC - IC1 * RC; //in volt
14 //If VCE=0;//in volt
15 VCE2=0; //in volt
16 IC2=VCC/RC;//in Ampere
17 title('DC load line');
18 xlabel('VCE(in volts)');
19 ylabel('IC(in mA)');
20 plot([VCE1,IC1],[VCE2,IC2]); //DC load line
21 //Formula : VCC=VBE+IB*RB
22 IB=(VCC-VBE)/(RB*10^3);//in Ampere
23 IC=Beta*IB; //in Ampere
VCE=VCC-IC*RC*10^3; //in volt
25 disp("Q point coordinates are :");
26 disp("IC="+string(IC*10^3)+" mA and VCE="+string(VCE
     )+" Volt.");
```

Scilab code Exa 2.13 RB and new value of IC

```
1  //Exa 2.13
2  clc;
3  clear;
4  close;
5  //Given data
6  Beta=100; // unitless
7  IC=1; //in mA
8  VCC=12; //in volt
9  VBE=0.3; //in volt(For Ge)
10  //Prt (i)
11  IB=IC/Beta; //in mA
12  //Formula : VCC=VBE+IB*RB
13  RB=(VCC-VBE)/(IB*10^-3); //in Ampere
14  disp(RB/10^3, "Resistance RB in kOhm : ");
```

```
15 //part (ii)
16 Beta=50; // unitless
17 IB=(VCC-VBE)/RB; // in Ampere
18 IC=Beta*IB; // in Ampere
19 disp(IC*10^3, "Zero signal IC in mA:");
```

Scilab code Exa 2.14 Set the operating point

```
1 //Exa 2.14
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',10);
7 disp("To set the required operating point, value of
     RB will be find out. ")
8 IC=1; // in mA
9 VCE=8; //in volt
10 Beta=100; // unitless
11 VCC=12; //in volt
12 VBE=0.3; //in volt (For Ge)
13 // Prt (i)
14 RC=(VCC-VCE)/(IC*10^-3);//in ohm
15 IB=IC/Beta; //in mA
16 RB=(VCC-VBE-Beta*(IB*10^-3)*RC)/(IB*10^-3); // in Ohm
17 disp(RB/1000, "Value of RB in kOhm");
18 // Part (ii)
19 Beta=50; // unitless
20 IB=(VCC-VBE)/(RB+Beta*RC); //in mA
21 IC=Beta*IB; //in Ampere
22 VCE=VCC-IC*RC;//in volt
23 disp("New operating point is ("+string(VCE)+"V,"+
      string(IC*10^3)+"mA)");
```

Scilab code Exa 2.15 Value of IC

```
1 / Exa 2.15
2 clc;
3 clear;
4 close;
5 //Given data :
6 R1=50; //in kohm
7 R2=10; // in kohm
8 RE=1; // in kohm
9 VCC=12; //in volt
10 // Prt (i)
11 VBE=0.1; //in volt
12 VBBdash = (R2/(R1+R2))*VCC; //in volt
13 IC1=(VBBdash-VBE)/(RE*1000); //in mA
14 disp(IC1*1000, "At VBE=0.1V, Value of IC in mA: ");
15 // Part (ii)
16 VBE=0.3; //in volt
17 IC2=(VBBdash-VBE)/(RE*1000); //in mA
18 disp(IC2*1000, "At VBE=0.3V, Value of IC in mA: ");
```

Scilab code Exa 2.16 Operating point and stability factor

```
1 //Exa 2.16
2 clc;
3 clear;
4 close;
5 //Given data:
6 R1=10;//in kohm
7 R2=5;//in kohm
8 RE=2;//in kohm
9 RC=1;//in kohm
```

```
10 VCC=12; //in volt
11 Beta=100; //unitless
12 VBE=0.7; //in volt
13 // Part (i)
14 //Formula : VBE=VBBdash-IB*RBdash-IE*RE
15 disp("IB is ver small : VBE=VBBdash-IE*RE");
16 VBBdash = (R2/(R1+R2))*VCC; //in volt
17 IE=(VBBdash-VBE)/(RE*10^3);//in Ampere
18 disp("As base current is very small IC=IE");
19 IC=IE; //in mA
20 //Formul : VCC=IC*RC+VCE+IE*RE
21 VCE=VCC-IC*RC*10^3-IE*RE*10^3; //in Volt
22 disp("Operating point is ("+string(VCE)+"V,"+string(
     IC*10^3) + mA);
23 // Part (ii)
24 RBdash=(R1*R2/(R1+R2)); //in kOhm
25 S=(Beta+1)/(1+Beta*(RE/(RBdash+RE)));
26 disp("Staility factor S is: "+string(S));
```

Scilab code Exa 2.17 IC and VCE

```
1  //Exa 2.17
2  clc;
3  clear;
4  close;
5  //Given data :
6  R1=200; //in kohm
7  R2=100; //in kohm
8  RE=1; //in kohm
9  RC=1; //in kohm
10  VCC=9; //in volt
11  he=2; //in kohm
12  hfe=100; // unitless
13  hoe=0; // unitless
14  hre=0; // unitless
```

Scilab code Exa 2.18 Region of Q point

```
1 / \text{Exa} \ 2.18
2 clc;
3 clear;
4 close;
5 //Given data :
6 RB=50; // in kohm
7 RC=3; // in kohm
8 VCC=10; //in volt
9 VEE=5; //in volt
10 hfe=100; // unitless
11 VCEsat = 0.2; //in volt
12 VBEsat = 0.8; //in volt
13 VBEactive=0.7; //in volt
14 VBE=0.7; //in volt (For Si)
15 // Applying
16 IB=(VEE-VBE)/(RB*10^3);//in Ampere: Kirchoff 2nd Law
       : VEE-RB*IB-VBE=0
```

Scilab code Exa 2.19 Voltage across RE

```
1 //Exa 2.19
2 clc;
3 clear;
4 close;
5 //Given data :
6 VCC=20; //in volt
7 VBE=0.7; //in volt(For Si)
8 Beta=50; // unitless
9 RE=200; //in ohm
10 R1=60; //in kohm
11 R2=30; //in kohm
12 V2=VCC*R2/(R1+R2); //in volt
13 VEO=V2-VBE; //in volt
14 disp(VEO, "Voltage across RE in volt : ");
```

Chapter 3

Transistor Amplifiers

Scilab code Exa 3.1 Gain Impedence and ac load

```
1 //Exa 3.2
2 clc;
3 clear;
4 close;
5 // Given data
6 ib=10;//in uA
7 ic=1; //in mA
8 ic=ic*10^3; //in uA
9 vi=0.02;//in Volt
10 RC=5; // in kohm
11 RL=10; // in kohm
12 // Part (i)
13 Ai=-ic/ib; // unitless
14 Beta=Ai; // unitless
15 disp(Ai, "Current gain : ");
16 // Part (ii)
17 Rie=vi/(ib*10^-6); // in Ohm
18 disp(Rie*10^-3, "Input impedence in kohm :");
19 // Part (iii)
20 Rac=RC*RL/(RC+RL);//in kohm
21 disp(Rac, "AC load in kohm: ");
```

```
// Part (iv)
Av=-Rac*10^3*Beta/Rie;//unitless
disp(Av, "Voltage gain : ");
// Part (v)
PowerGain=Av*Ai;//unitless
disp(PowerGain, "Power Gain is : ");
// Note : Ans of Av and Power gain is wrong in the book.
```

Scilab code Exa 3.2 Gain input and output impedence

```
1 / Exa 3.2
2 clc;
3 clear;
4 close;
5 // Given data
6 RL=10; //in kohm
7 RS=1; //in kohm
8 hie=1.1; //in kOhm
9 hre=2.5*10^-4; // unitless
10 hfe=50; // unitless
11 hoe=25; //in u mho
12 Aie=-hfe/(1+hoe*10^-6*RL*10^3); // unitless
13 Zie=hie+hre*Aie*RL;//in kOhm
14 Zie=round(Zie);
15 Ave=Aie*RL/Zie;//unitless
16 Avs_e=Ave*Zie/(Zie+RS);//
17 deltah=hoe*10^-6*hie*10^3-hfe*hre;
18 Zoe=(hie*10^3+RS*10^3)/(hoe*10^-6*RS*10^3+deltah);
19 Ais_e=Aie*RS/(Zie+RS);
20 Ape=Ave*Aie;
21 Aps_e=Avs_e*Ais_e;
22 disp(Aie, "Current gain : ");
23 disp(Ais_e, "Current gain with source resistance: ")
```

```
disp(Ave, "Voltage gain : ");
disp(Avs_e, "Voltage gain with source resistance : ");
disp(Ape, "Power gain : ");
disp(Aps_e, "Power gain with source resistance : ");
disp(Zie, "Input impedence in kohm :");
disp(Zoe/10^3, "Output impedence in kohm :");
```

Scilab code Exa 3.3 Input Output impedence and output voltage

```
1 / Exa 3.3
2 \text{ clc};
3 clear;
4 close;
5 //Given data :
6 InputVoltage=1; //in mV
7 RL=5.6; //in kohm
8 \text{ RS} = 600; //\text{in ohm}
9 hre=6.5*10^-4; //unitless
10 hie=1.7; //in kOhm
11 hfe=125; //unitless
12 hoe=80; //in uA/V
13 deltah=hoe*10^-6*hie*10^3-hfe*hre;
14 Zie=(hie*10^3+RL*10^3*deltah)/(1+hoe*10^-6*RL*10^3);
      //in Ohm
15 Zoe=(hie*10^3+RS)/(hoe*10^-6*RS+deltah); //in Ohm
16 Ave=-(hfe*RL*10^3)/(hie*10^3+RL*10^3*deltah);//
      unitless
17 Avs_e=Ave*Zie/(Zie+RS);//
18 OutputVoltage=Avs_e*InputVoltage; //in
19 disp(Zie/1000, "Input impedence in kohm:");
20 disp(Zoe/10<sup>3</sup>, "Output impedence in kohm:");
21 disp(Ave, "Voltage gain : ");
22 disp(Avs_e, "Voltage gain with source resistance: ")
```

Scilab code Exa 3.4 Net voltage gain in dB

Scilab code Exa 3.5 Bandwidth and cut off frequencies

```
1 //Exa 3.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 MaxGain=1000; // unitless (at 2kHz)
7 f1=50; //in Hz
8 f2=10; //in KHz
```

Scilab code Exa 3.6 Overall voltage gain

```
1 / Exa 3.6
2 clc;
3 clear;
4 close;
5 // Given data :
6 RC=10; // in kohm
7 hfe=330; // unitless
8 hie=4.5; // in kOhm
9 //RS << hie
10 AVM=hfe*RC*10^3/(hie*10^3+RC*10^3);//unitless
11 AVM1=AVM; //Gain of 1st stage
12 AVM2=AVM; //Gain of 2nd stage
13 AVM3=hfe*RC*10^3/(hie*10^3); // unitless (// Gain of 3rd
       stage)
14 OverallGain=AVM1*AVM2*AVM3; // unitless
15 disp(AVM, "Gain in mid frequeny range: ");
16 disp("This is the gain of 1st and 2nd stage.")
17 disp(OverallGain," Overall Voltage gain for mid
      frequency range: ");
```

Scilab code Exa 3.7 Coupling capacitor

```
1 //Exa 3.7
2 clc;
3 clear;
4 close;
```

```
5 //Given data :
6 RC=5.5; //in kohm
7 hfe=330; // unitless
8 hie=4.5; //in kohm
9 f1=30; //in Hz
10 //Formula : f1=1/(2*%pi*C*(hie+RC))
11 C=1/(2*%pi*f1*(hie*10^3+RC*10^3)); //in F
12 disp(C*10^6, "Value of coupling capacitor in micro farad : ");
```

Scilab code Exa 3.8 Voltage gain

```
1 //Exa 3.8
2 clc;
3 clear;
4 close;
5 //Given data :
6 RC=10; //in kohm
7 Rin=1; //in kohm
8 Beta=100; // unitless
9 RL=100; //in ohm
10 RCdash=RC*10^3*RL/(RC*10^3+RL); //in ohm
11 VoltageGain=Beta*RCdash/(Rin*10^3); //in volt
12 disp(VoltageGain, "Voltage Gain : ");
```

Scilab code Exa 3.9 Inductance of primary and secondary

```
1 //Exa 3.9
2 clc;
3 clear;
4 close;
5 //Given data :
6 Rout=10;//in kohm
```

```
7 Rin=2.5; //in kohm
8 f=200; //in Hz
9 //Formula : Rout=omega*Lp=2*%pi*f*Lp
10 Lp=Rout*10^3/(2*%pi*f); //in H
11 disp(round(Lp), "Inductance of primary in Henry : ");
12 //Formula : Rin=omega*Ls=2*%pi*f*Ls
13 Ls=Rin*10^3/(2*%pi*f); //in H
14 disp(round(Ls), "Inductance of seondary in Henry : ")
;
```

Scilab code Exa 3.10 Turn ratio of transformer

```
1 //Exa 3.10
2 clc;
3 clear;
4 close;
5 //Given data :
6 ZL=10; //in ohm
7 ZP=1000; //in ohm
8 //For max power : ZP=n^2*ZL
9 n=sqrt(ZP/ZL); //turn ratio
10 disp(n, "Turn ratio : ");
```

Scilab code Exa 3.11 Collector efficieny and power rating

```
1 //Exa 3.11
2 clc;
3 clear;
4 close;
5 //Given data :
6 Po_dc=10; //in watt
7 Po_ac=3.5; //in watt
8 //Part (i) :
```

```
9 ETAcollector=Po_ac/Po_dc;//unitless
10 ETAcollector=ETAcollector*100;//collector efficiency
    in %
11 disp(ETAcollector, "Collector Efficiency(in %): ");
12 //Part (ii)
13 disp(Po_dc, "Zero signal condition represents maximum power loss. Therefore, all the 10 W power is dissipated by it. Hence Powe Rating of transistor in Watt: ")
```

Scilab code Exa 3.12 Power and efficency

```
1 / Exa 3.12
2 clc;
3 clear;
4 close;
5 //Given data:
6 VCC=20; //in volt
7 RC=20; //in ohm
8 VCEQ=10; //in volt
9 ICQ=500; //in mA
10 //part (i) :
11 Pin_dc=VCC*ICQ*10^-3; //in watt
12 disp(Pin_dc, "Total dc power taken by the circuit in
      Watt : ");
13 //part (ii) :
14 PRc_dc=ICQ^2*10^-6*RC; //in watt
15 disp(PRc_dc," dc power dissipated by the collector
      load in Watt : ");
16 //part (iii) :
17 Io=250; //in mA(maximum value of output ac current)
18 Irms=Io/\sqrt{\text{sqrt}}(2); //in mA
19 Po_ac=Irms^2*10^-6*RC; //in watt
20 disp(Po_ac," Power developed across the load in Watt
      : ");
```

Scilab code Exa 3.13 Maximum ac power output

```
//Exa 3.13
clc;
clear;
close;
//Given data :
n=10;//turn ratio
RL=100;//in ohm
ICQ=100;//in mA
RLdash=n^2*RL;//in ohm
MaxPowerOut=(ICQ*10^-3)^2*RLdash/2;//in watt
disp(MaxPowerOut,"Maximum Power output in watt : ");
```

Scilab code Exa 3.14 Maximum permissible power dissipation

```
1 / Exa 3.14
2 clc;
3 clear;
4 close;
5 //Given data :
6 //Part (i) : without heat sink
7 ThetaMax=90; //in degree C
8 Theta_o=30; //in degree C
9 R=300; //in degree C/W
10 Pr=(ThetaMax-Theta_o)/R;//in watt
11 disp(Pr," Without heat sink, Maximum permissible
     power dissipatio in watt :");
12 //Part (ii) : with heat sink
13 ThetaMax=90; //in degree C
14 Theta_o=30; //in degree C
15 R=60; //in degree C/W
16 Pr=(ThetaMax-Theta_o)/R;//in watt
17 disp(Pr," With heat sink, Maximum permissible power
      dissipatio in watt :");
```

Frequency Response

Scilab code Exa 4.1 3dB Frequeny

Scilab code Exa 4.2 Upper 3dB Frequency

```
1 //Exa 4.2
2 clc;
```

Feed Back

Scilab code Exa 5.1 Percentage of output which is fed back

```
1 //Exa 5.1
2 clc;
3 clear;
4 close;
5 //Given data :
6 A=50; //gain(unitless)
7 Af=10; //gain(unitless)
8 //Formula : Af=A/(1+A*Beta)
9 Beta=(A/Af-1)/A; //feedback ratio (unitless)
10 disp(Beta*100, "Percentage of output fed back(%) : ")
;
```

Scilab code Exa 5.2 Voltage gain and reduction in voltage

```
1 //Exa 5.2
2 clc;
3 clear;
4 close;
```

```
5 //Given data:
6 A=1000; //gainWithoutFeedback (unitless)
7 // Part (i) :
8 disp("At normal collector supply:");
9 disp("with feedback gain reduces by a factor 0.40");
10 Af=A-A*0.40; //gainWithFeedback (unitless)
11 disp(Af," At normal collector supply, Gain with
     feedback: ");
12 / Formula : Af=A/(1+A*Beta)
13 Beta=(A/Af-1)/A;//feedback factor (unitless)
14 disp("At reduced power supply:");
15 Adash=800; // gainWithoutFeedback (unitless)
16 Af_dash=Adash/(1+Adash*Beta)
17 disp(round(Af_dash), "At Reduced collector supply,
     Gain with feedback: ");
  //Part (ii)
19 Reduction=((A-Adash)/A)*100;//% reduction without
     feedback
20 disp(Reduction," percentage reduction in gain without
      feedback(%):");
  Reduction1=((Af-Af_dash)/Af)*100; //\% reduction
      without feedback
  disp(round(Reduction1), "percentage reduction in gain
22
      with feedback (\%):");
23 //Note: answer of Af is wrong in the book.
```

Scilab code Exa 5.3 Gain with feedback factor and feedback voltage

```
1 //Exa 5.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 A=100;//gain without feedback(unitless)
7 Beta=1/25;//feedback ratio (unitless)
```

```
8 Vi=50; //in mV
9 // Part (i) :
10 Af=A/(1+A*Beta);//gain with feedback(unitless)
11 disp(Af,"(i) Gain with feedback:");
12 // Part (ii) :
13 FeedbackFactor=Beta*A; // unitless
14 disp(FeedbackFactor,"(ii) Feedback Factor:");
15 // Part (iii) :
16 Vo_dash=Af*Vi*10^-3; //in volt
17 disp(Vo_dash,"(iii) Output Voltage in volts:");
18 //Part (iv) :
19 FeedbackVoltage=Beta*Vo_dash; //in volt
20 disp(FeedbackVoltage,"(iv) Feedback Voltage in volts
       :");
21 / Part (v):
22 \text{ Vi_dash=Vi*(1+Beta*A);}//in \text{ mv}
23 disp(Vi_dash,"(v) New Increased Input Voltage in
      milli volts :");
```

Scilab code Exa 5.4 Bandwidth with negative feedback

```
14 disp(BW_dash,"New Bandwidth in kHz: ");
```

Scilab code Exa 5.5 Fraction of output fed back

```
1 //Exa 5.5
2 clc;
3 clear;
4 close;
5 //Given data :
6 A=140; //gain without feedback(unitless)
7 Af=17.5; //gain with feedback(unitless)
8 //Formula : Af=A/(1+A*Beta)
9 Beta=(A/Af-1)/A; //feedback ratio (unitless)
10 disp("Fraction of output fed back to input : "+ string(Beta)+" or 1/20");
```

Scilab code Exa 5.6 Small Change in gain

```
1  //Exa 5.6
2  clc;
3  clear;
4  close;
5  //Given data :
6  A=200; //gain without feedback (unitless)
7  Beta=0.25; //fraction ratio (unitless)
8  disp("We have, Af=A/(1+Beta*A) eqn(1)");
9  disp("Differentiating it with respect to A, we get");
10  disp("dAf/dA=((1+Beta*A)-Beta*A)/(1+Beta*A)^2=1/(1+Beta*A)^2");
11  disp("dAf=dA/(1+Beta*A)^2 eqn(2)");
12  disp("Dividing eqn(2) by eqn(1),");
```

Scilab code Exa 5.7 New gain distortion and input voltage

```
1 / Exa 5.7
2 clc;
3 clear;
4 close;
5 //Given data:
6 A=200; // gain without feedback (unitless)
7 Dn=10; // Distortion in \%
8 Vi=0.5; //Initial input voltage in volt
9 Beta=0.05;//feedback ratio (unitless)
10 / Formula : Af=A/(1+A*Beta)
11 Af=A/(1+A*Beta);//gain with feedback(unitless)
12 disp(Af,"New gain :");
13 Dn_dash=Dn/(1+A*Beta);//new distortion in %
14 disp(Dn_dash," Distortion with negative feedback in %
      : ");
15 InitialOutputVoltage=A*Vi; //in Volt
16 disp(InitialOutputVoltage, "Initial Output Voltage in
      volt:");
17 NewInputVoltage=InitialOutputVoltage/Af; //in volt
18 disp(NewInputVoltage, "New Input Voltage in volts:")
19 // Note: Ans of Af and NewInputVoltage is not
      acurate in the book.
```

Scilab code Exa 5.8 Feedback rction voltage and impedence

```
1 / Exa 5.8
2 clc;
3 clear;
4 close;
5 //Given data:
6 A=10000; // gain without feedback (unitless)
7 Zi=10; //in kOhm
8 Zo = 100; //in Ohm
9 R1=2; // in Ohm
10 R2=18; // in Ohm
11 //Part (i) :
12 Beta=R1/(R1+R2);//feedback fraction(unitless)
13 disp(Beta,"(i) Feedback Fraction:");
14 // Part (ii) :
15 Af=A/(1+A*Beta);//Gain with negative feedback(
      unitless)
16 disp(round(Af),"(ii) Gain with negative feedback:")
17 // Part (iii) :
18 inputVoltge=0.5; //in mV
19 outputVoltge=Af*inputVoltge;//in mV
20 disp(round(outputVoltge),"(iii) Output Voltage in
      milli volts :");
21 // Part (iv) :
22 Zif=Zi*(1+Beta*A); //in kOhm
23 disp(Zif*10^-3,"(iv) Input impedance of feedback
      amplifier in Mohm: ");
24 // Part (v):
25 Zof=Zo/(1+Beta*A); //in kOhm
26 format('v',4);
27 disp(Zof,"(v) Output impedance with feedback in Ohm
     : ");
```

Scilab code Exa 5.9 Voltage gain input and output resistance

```
1 // \text{Exa} 5.9
2 clc;
3 clear;
4 close;
5 //Given data :
6 A=200; //gain without feedback (unitless)
7 Ri=2; //in kOhm
8 Ro=12; //in kOhm
9 Beta=0.02; // feedbak ratio (unitless)
10 / Part (i):
11 Af=A/(1+A*Beta); //gain with feedback (unitless)
12 disp(Af,"(i) Gain with Negative Feedback:");
13 //Part (ii) :
14 Rif=Ri*(1+A*Beta); // in kOhm
15 disp(Rif,"(ii) Input resistance with feedback in
     kOhm :");
16 // Part (ii) :
17 Rof=Ro/(1+A*Beta); //in kOhm
18 disp(Rof,"(ii) Output resistance with feedback in
     kOhm :");
```

Scilab code Exa 5.10 Gain wih feedbck in dB

```
1 //Exa 5.10
2 clc;
3 clear;
4 close;
5 //Given data :
6 format('v',5);
7 A=1000; //gain(unitless)
```

```
8 Beta=1/20; // feedback ratio (unitless)
9 // Formula : Af=A/(1+A*Beta)
10 Af=A/(1+A*Beta); // gain with feedback (unitless)
11 Af=20*log10(Af); // in dB
12 disp(Af, "Gain with feedback in dB : ");
```

Scilab code Exa 5.11 Bandwidth after feedback

```
1 //Exa 5.11
2 clc;
3 clear;
4 close;
5 //Given data:
6 A=800; //gain (unitless)
7 f1=40; //in Hz
8 	ext{ f2=16; //in kHz}
9 Beta=2/100; //feedback fator (unitless)
10 / Formula : Af=A/(1+A*Beta)
11 Af=A/(1+A*Beta);//gain with feedback(unitless)
12 disp(Af, "Voltage gin with feedback: ");
13 BW=f2*10^3-f1; // Bandwidth of amplifier in Hz
14 disp(BW*10^-3, "Bandwidth of amplifier in kHz:");
15 f1_f = f1/(1+A*Beta); //in Hz
16 f2_f = f2*(1+A*Beta); //in kHz
17 BW_f=f2_f*10^3-f1_f; //Bandwith after feedback in Hz
18 disp(round(BW_f*10^-3), Bandwith after feedback in
     KHz : ");
```

Scilab code Exa 5.12 Gain and new bandwidth

```
1 //Exa 5.12
2 clc;
3 clear;
```

```
d close;
//Given data :
A=100;//gain(unitless)
BW=10;//in Hz
Beta=5;//in %
//Part (i) :
//Formula : Af=A/(1+A*Beta)
Af=A/(1+A*Beta/100);//gain with feedback(unitless)
disp(Af,"Voltage gin with feedback : ");
//Part (ii)
BW_f=BW*(1+A*Beta/100);//Bandwith after feedback in Hz
disp(BW_f,"Bandwith with negative feedback in KHz : ");
```

Scilab code Exa 5.13 Input resistance and voltage gain

```
1 / Exa 5.13
2 clc;
3 clear;
4 close;
5 //Given data :
6 \, \text{hfe=50;} // \, \text{unitless}
7 hie=1.1; //in kOhm
8 hoe=0;//unitless
9 hre=0;//unitless
10 RL=4; // in kOhm
11 Rs=10; // in kOhm
12 RB=40; // in kOhm
13 RLdash=RB*RL/(RB+RL);//in Kohm
14 AV=-hfe*RLdash/hie;//unitless
15 // Part (i);
16 Rif=hie*(RB/(1-AV))/(hie+(RB/(1-AV))); //in kOhm
17 disp(round(Rif*1000), "Input resistance with feedback
       in Ohm : ");
```

```
18 //Part (ii):
19 AVf=AV*(Rif/(Rs+Rif));//unitless
20 disp(AVf, "Voltage gin with feedback: ");
```

Field Effect Transistors and MOSFETS

Scilab code Exa 6.1 Value of Transconductance

```
1 //Exa 6.1
2 clc;
3 clear;
4 close;
5 //given data
6 VGS1=-3.1; //in Volt
7 VGS2=-3; //in Volt
8 ID1=1; //in mA
9 ID2=1.3; //in mA
10 delVGS=VGS2-VGS1; //in Volts
11 delID=ID2-ID1; //in mA
12 gm=delID*10^-3/delVGS; //in mhos
13 disp(gm, "Transconductance in mhos: ");
```

Scilab code Exa 6.2 AC drain resistance transconductance and amplification factor

```
1 / Exa 6.2
2 clc;
3 clear;
4 close;
5 //given data
6 VGS1=0; //in Volt
7 VGS2=0; //in Volt
8 VGS3 = -0.2; //in Volt
9 VDS1=7; //in Volt
10 VDS2=15; //in Volt
11 VDS3=15; //in Volt
12 ID1=10; // \text{in } \text{mA}
13 ID2=10.25; // \text{in mA}
14 ID3=9.65; // in mA
15 delVDS=VDS2-VDS1; //in Volts
16 delID=ID2-ID1; // in mA
17 rd=delVDS/delID;//in Kohm
18 disp(rd, "AC drain resistance in Kohm: ");
19 delVGS=VGS3-VGS2; //in Volts
20 delID=ID3-ID2; //in mA
21 gm=delID*10^-3/delVGS;//in mhos
22 disp(gm, "Transconductance in mhos: ");
23 mu=rd*10^3*gm; //unitless
24 disp(mu, "Amplification factor: ");
```

Scilab code Exa 6.5 Voltage Amplification

```
1 //Exa 6.5
2 clc;
3 clear;
4 close;
5 //given data
6 gm=2;//in milli-mho
7 RL=10;//in Kohm
8 disp("assuming rd>>RL");
```

```
9 Av=gm*10^-3*RL*10^3; // unitless
10 disp(Av, "Voltage amplification : ");
```

Scilab code Exa 6.6 Output voltage of amplifier

```
1 / Exa 6.6
2 clc;
3 clear;
4 close;
5 //given data
6 RL=20; //in Kohm
7 RS=1; // in Kohm
8 RG=1; //in Mohm
9 Cs=25; //in uF
10 mu=20; //unitless
11 rd=100; //in Kohm
12 Vs=2; //in Volt
13 f=1; //in KHz
14 Xc=1/(2*\%pi*f*Cs); //in Ohm
15 disp(Xc,"Xc in Ohm : ");
16 disp("As Xc<<Rs, therefore Cs bypasses all ac
     components. ");
17 Av=mu*RL/(rd+RL); // unitless
18 Vo = Av * Vs; //in Volt
19 disp(Vo, "Output voltage in volt : ");
```

Scilab code Exa 6.7 IDQ VGSQ VD VS VDS VDG

```
1 //Exa 6.7
2 clc;
3 clear;
4 close;
5 //given data
```

```
6 R1=2.1; // in Mohm
7 R2 = 270; //in Kohm
8 RD=4.7; //in Kohm
9 RS=1.5; //in Kohm
10 VDD=20; //in Volt
11 VP=-4; //in Volt
12 IDSS=8; // in mA
13 //step 1 : Find VGS :
14 VG=R2*10^3*VDD/(R1*10^6+R2*10^3); //in Volt
15 disp("VS=ID*RS-VGS Volt");
16 disp("VGS=VG-VS=2.28-1.5*ID")
17 //step 2 : Find ID :
18 disp("ID=IDSS*[1-VGS/VP]^2 mA");
19 \operatorname{disp}("ID = 8*[1-(2.28-1.5*ID)/4]^2 \text{ mA"});
20 disp("2*ID=39.44-18.84*ID+2.25*ID^2");
21 \operatorname{disp}("2.25*ID^2-20.84*ID39.44=0")
22 disp("ID=6.6mA \text{ or } 2.65mA");
23 \operatorname{disp}("For\ ID = 6.6 \text{mA VDS}=-ve");
24 disp("So discard the value so IDQ = 2.65 \text{mA.}");
25 ID=2.65; // in mA
26 //step 3 : Find VGSQ :
27 IDQ=ID; //in mA
28 VGS = 2.28; //in Volt
29 VGSQ=VGS-1.5*IDQ; ///in Volt
30 //step 4 : Find VDSQ :
31 VDSQ=VDD-IDQ*(RD+RS); //in Volt
32 //step 5 : Find VD, VS and VDG :
33 VDS = VDSQ; //in Volt
34 VG = VGS; //in Volt
35 VS=ID*RS; //in Volt
36 \text{ VD=VS+VDS'}/in \text{ Volt}
37 VDG=VD-VG; //in Volt
38 disp(IDQ,"IDQ in mA : ");
39 disp(VGSQ, "VGSQ in Volt :");
40 disp(VD, "VD in Volt :");
41 disp(VS,"VS in Volt :");
42 disp(VDS,"VDS in Volt :");
43 disp(VDG, "VDG in Volt :");
```

Scilab code Exa 6.8 Pinch off voltage

```
1 //Exa 6.8
2 clc;
3 clear;
4 close;
5 //given data
6 a=5.6*10^-6/2; //in meter
7 k=12; // unitless
8 epsilon_o=8.86*10^-12; //in F/m
9 epsilon=k*epsilon_o; //in F/m
10 ND=10^15; //in cm^-3
11 ND=10^15*10^6; //in m^-3
12 e=1.6*10^-19; //in Coulamb
13 VP=e*ND*a^2/(2*epsilon); //in Volt
14 disp(VP, "Pinch off voltage in volts: ");
```

Scilab code Exa 6.10 Plot gm VS IDSS

Scilab code Exa 6.11 Channel width W

```
1 //Exa 6.11
2 clc;
3 clear;
4 close;
5 //given data
6 L=1.25; //in um
7 mu_n=0.065; //in m^2/V-s
8 Cox=6.9*10^-4; //in F/m^2
9 VT=0.65//in Volt
10 ID_sat=4; //in mA
11 VGS=5; //in Volt
12 //Formula : ID_sat=W*mu_n*Cox*(VGS-VT)^2/(2*L)
13 W=ID_sat*10^-3*2*L*10^-6/(mu_n*Cox*(VGS-VT)^2); //in meter
14 disp(W*10^6, "Channel Width in micro meter :");
```

Magnetic Materials

Scilab code Exa 7.1 Horizontal component of magnetic Intensity

```
1 //Exa 7.1
2 clc;
3 clear;
4 close;
5 //Given data
6 Bo=1.7*10^-5; //in weber/m^2
7 meu_o=4*%pi*10^-7; //permeability of free space in weber/amp-meter
8 H=Bo/meu_o; //in A/m
9 disp(H,"Horizontal component of magnetic filed intensity in A/m:");
```

Scilab code Exa 7.2 Current through solenoid

```
1 //Exa 7.2
2 clc;
3 clear;
4 close;
```

```
5 //Given data
6 H=5*10^3; //in Ampere-turns/m
7 l=10; //in cm
8 l=1*10^-2; //in meter
9 N=50; //no. of turns
10 n=N/l; //no. of turns per unit length
11 //Formula : H=n*i
12 i=H/n; //in Ampere
13 disp(i, "Current should be sent through solenoid in Ampere : ");
```

Scilab code Exa 7.3 Magnetic moment of rod

```
1 //Exa 7.3
2 clc;
3 clear;
4 close;
5 //Given data
6 meu_r=1000; // relative permeability
7 n=5; //turns/cm
8 n=n*10^2; //turns/meter
9 i=0.5; //in Ampere
10 Volume=10^-4; //in m^3
11 I=(meu_r-1)*n*i; //in Ampere
12 MagneticMoment=I*Volume; //in Ameter^2
13 disp(round(MagneticMoment), "Magnetic moment of the rod in Ampere—meter^2: ");
```

Scilab code Exa 7.4 Flux density magnetic intensity and permeability

```
1 //Exa 7.4
2 clc;
3 clear;
```

```
4 close;
5 //Given data
6 1=30; //in cm
7 l=1*10^-2; //in meter
8 A=1; //in cm^2
9 A = A * 10^{-4}; //in meter 2
10 N=300; // turns of wire
11 i=0.032; //in Ampere
12 FI_B=2*10^-6; //in weber
13 meu_o=4*%pi*10^-7; //permeability of free space in
      weber/amp-meter
14 B=FI_B/A; //in weber/meter 2
15 disp(B, "Flux Density in weber/meter^2:");
16 H=N*i/l;//in amp-turn/meter
17 disp(H, "magnetic Intensity in amp-turn/meter: ");
18 meu=B/H; //in weber/Amp-meter
19 disp(meu, "Permeability in weber/amp-meter:");
20 meu_r=meu/meu_o; // Relative Permeability
21 disp(meu_r, "Relative Permeability: ");
22 //Answer of relative permeability is wrong in the
     book.
```

Scilab code Exa 7.5 Relative Permeability

```
1 //Exa 7.5
2 clc;
3 clear;
4 close;
5 //Given data
6 format('v',15);
7 Xci_m=9.48*10^-9;//usceptibility of medium(unitless)
8 meu_r=1+Xci_m;//relative permeability(unitless)
9 disp(meu_r, "Relative Permeability: ");
10 disp("i.e, Relative Permeability is sligtly greater than 1.");
```

Scilab code Exa 7.6 Magnetising Force and material magnetisation

```
1 //Exa 7.6
2 clc;
3 clear;
4 close;
5 // Given data
6 \text{ n=10;} // \text{turns/cm}
7 n=n*10^2; //turns/meter
8 i=2; //in Ampere
9 B=1; //in weber/meter ^2
10 meu_o=4*%pi*10^-7;//permeability of free space in
      weber/amp-meter
11 H=n*i; //in amp-turn/meter
12 disp(H, "Magnetising Force in amp-turn/meter: ");0
13 //Formula : B=meu_o*(H+I)
14 I=B/meu_o-H;//in amp-turn/meter
15 disp(I, "Magnetisation of material in amp-turn/meter
      :");
16 meu_r=B/(meu_o*H);//relative permeability(unitless)
17 disp(meu_r, "Relative Permeability : ");
```

Oscillators

Scilab code Exa 8.m.1 Value of L1

```
1 //Exa Misc 8.1
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',5);
7 L2=0.4; //in mH
8 C=0.004; //in F
9 f=120; //in KHz
10 L1=1/(4*%pi^2*(f*10^3)^2*C*10^-6)-L2*10^-3; //in H
11 disp(L1*10^3, "Value of L1(in mH):");
```

Scilab code Exa 8.m.2 Value of C and hfe

```
1 //Exa Misc 8.2
2 clc;
3 clear;
4 close;
```

```
5 //given data
6 format('v',6);
7 fo=10;//in KHz
8 R1=25;//in kohm
9 R2=60;//in kohm
10 Rc=40;//in kohm
11 R=7.1;//in kohm
12 hie=1.8;//in kohm
13 C=1/(2*%pi*fo*10^3*R*10^3*sqrt(6+4*Rc/R));//in F
14 disp(C*10^9,"Value of Capacitor(in nF):");
15 hfe=23+29*R/Rc+4*Rc/R;//unitless
16 disp("Value of hfe is "+string(hfe));
```

Scilab code Exa 8.m.3 Value of Capacitor

```
1 //Exa Misc 8.3
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',5);
7 R=100; //in kohm
8 fo=10; //in KHz
9 C=1/(2*%pi*fo*10^3*R*10^3); //in F
10 disp(C*10^12," Value of Capacitor(in pF):");
```

Scilab code Exa 8.m.4 Various parameter of colpitt oscillator

```
1 //Exa Misc 8.4
2 clc;
3 clear;
4 close;
5 //given data
```

```
6 format('v',5);
7 L=40; //in mH
8 C1 = 100; //in pF
9 C2=500; //in pF
10 Vout = 10; //in volt
11 fo=1/(2*%pi*sqrt(L*10^-3*C1*10^-12*C2*10^-12/(C1
      *10^-12+C2*10^-12)))
12 disp(fo*10^-3, "Frequency of oscillation (in KHz):")
13 Vf=Vout*C1/C2;//in volt
14 disp(Vf, "Feedback voltage in volt :");
15 Gain=C2/C1;//unitless
16 disp(Gain, "Minimum Gain is");
17 // if Gain=10
18 Gain=10; //given
19 C1=C2/Gain; //in pF
20 disp(C1, "For a gain of 10 C1 in pF is:");
21 fo=1/(2*%pi*sqrt(L*10^-3*C1*10^-12*C2*10^-12/(C1
      *10^-12+C2*10^-12)))
22 disp(fo*10^-3, "New frequency of oscillation (in KHz)
      :");
```

Scilab code Exa 8.m.5 Resonant frequencies and Q factor

```
1 //Exa Misc 8.5
2 clc;
3 clear;
4 close;
5 //given data
6 format('v',6);
7 L=0.5;//in H
8 Cs=0.06;//in pF
9 Cp=1;//in pF
10 R=5;//in Kohm
11 fs=1/(2*%pi*sqrt(L*Cs*10^-12));//in Hz
```

Scilab code Exa 8.1 feed bck factor

```
1 //Exa 8.1
2 clc;
3 clear;
4 close;
5 //Given data
6 A=50; // unitless
7 disp("Barkhausen criterion for oscillator : Beta*A=1");
8 Beta=1/A; // unitless
9 disp(Beta, "Feedback Factor to make oscillator : ");
```

Scilab code Exa 8.2 Range of variable capacitor

```
1 //Exa 8.2
2 clc;
3 clear;
4 close;
5 //Given data
6 format('v',5);
7 L=100;//in uH
8 L=L*10^-6;//in H
9 f1=500;//in kHz
```

Scilab code Exa 8.3 C2 of colpitt oscilator

```
1 // Exa 8.3
2 clc;
3 clear;
4 close;
5 //Given data
6 format('v',9);
7 L=100; // in mH
8 L=L*10^-3; //in H
9 C1 = 0.1; //in uF
10 C1 = C1 * 10^- - 6; // in F
11 f = 100; //in kHz
12 f = f * 10^3; // in Hz
13 //Formula : f = 1/(2*\%pi*sqrt(L*C))
14 C=1/(4*\%pi^2*f^2*L); //in F
15 //Formula : C=C1*C2/(C1+C2)
16 C2=C*C1/(C1-C);
17 disp(C2, "C2 in micro farad : ");
18 //Note: Answer in the book is wrong.
```

Scilab code Exa 8.4 Frequency of oscillation

```
1 / Exa 8.4
```

```
2 clc;
3 clear;
4 close;
5 //Given data
6 R=100; //in kOhm
7 R=R*10^3; //in Ohm
8 C=0.01; //in uF
9 C=C*10^-6; //in F
10 fo=sqrt(6)/(2*%pi*R*C); //in Hz
11 disp(fo, "Frequency of oscillation in Hz:");
12 //Note: Answer in the book is not accurate.
```

Scilab code Exa 8.5 Amplifier voltage gain

```
//Exa 8.5
clc;
clear;
close;
//Given data
disp("Put alfa=sqrt(6) to find the gain");
alfa=sqrt(6);//unitless
Beta=1/(1-5*alfa^2);
//Barkhausen critera : A*|Beta|>=1
Beta=-Beta;//
A=1/Beta;//unitless
disp(A,"Minimum Gain of Amplifier must be : ");
```

Scilab code Exa 8.6 Frequency of oscillation and min current gain

```
1 //Exa 8.6
2 clc;
3 clear;
4 close;
```

```
5 //Given data :
6 R1=50; //in kohm
7 R1=R1*10^3; //in ohm
8 C1=0.001; //in uF
9 C1=C1*10^-6; //in F
10 R2=1; // in kohm
11 R2=R2*10^3; // in ohm
12 C2=0.01; //in uF
13 C2=C2*10^-6; //in F
14 // Part (i)
15 //Formula : f = 1/(2*\%pi*sqrt(C1*C2*R1*R2))
16 f=1/(2*\%pi*sqrt(C1*C2*R1*R2)); //in Hz
17 disp(f/1000, "Frequency of oscillations in kHz: ");
18 // Part (ii)
19 CurrentGain=1+C2/C1+R1/R2; // unitless
20 disp(CurrentGain, "Current Gain: ");
```

Scilab code Exa 8.7 Resistnce to cover frequency range

```
1  //Exa 8.7
2  clc;
3  clear;
4  close;
5  //Given data :
6  fmin=20; //in Hz
7  fmax=20; //in kHz
8  Cmin=30; //in pF
9  Cmax=300; //in pF
10  //Formula : fo=1/(2*%pi*R*C))
11  disp("Minimum Fequeny correspond to maximum capacitance.")
12  R=1/(2*%pi*fmin*Cmax*10^-12)
13  disp(R/10^6, "Required resistance in Mohm : ");
```

Scilab code Exa 8.8 Resonant Frequency

```
//Exa 8.8
clc;
clc;
clear;
close;
//Given data :
f=500;//in kHz
T1=50;//in degree C
T2=60;//in degree C
TC=-20;//in ppm/degree C
ChangeInFreq=TC*(f*10^-3)*(T1-T2);//in Hz
ResonantFreq=f*1000-ChangeInFreq;//in Hz
disp(ResonantFreq/1000, "Resonant frequency in kHz : ");
//Note : answer in the book is wrong.
```

Scilab code Exa 8.9 Resonant Frequency

```
1  //Exa 8.9
2  clc;
3  clear;
4  close;
5  //Given data :
6  f=450; //in kHz
7  T1=30; //in degree C
8  T2=50; //in degree C
9  TC=-10; //in ppm/degree C
10  PercentChange=-TC*100/10^6; //in %
11  TotalChangeInFreq=(PercentChange/100)*(f*10^3)*(T2-T1); //in Hz
12  ResonantFreq=f*1000-TotalChangeInFreq; //in Hz
```

```
13 disp(ResonantFreq/1000,"Resonant frequency in kHz:
        ");
14 //Note: answer in the book is wrong.
```

Scilab code Exa 8.10 Parallel and series resonant frequencies

```
1  //Exa 8.10
2  clc;
3  clear;
4  close;
5  //Given data :
6  L=0.5; //in H
7  C=0.05; //in pF
8  R=1; //in kohm
9  Cm=1; //in pF
10  fs=1/(2*%pi*sqrt(L*C*10^-12)); //in Hz
11  disp(fs/10^6, "Series resonant frequency in MHz:");
12  fp=1/(2*%pi*sqrt((L*C*10^-12*Cm*10^-12)/(C*10^-12+Cm *10^-12))); //in Hz
13  disp(fp/10^6, "Parallel resonant frequency in MHz:");
;
```

Unijunction Transistor

Scilab code Exa 9.1 Stand off voltage and peak point Voltage

```
//Exa 9.1
clc;
clear;
close;
//Given data :
VBB=20;//in volt
VB=0.7;//in volt(For Si)
ETA=0.6;//intrinsic stand off ratio
//Part (i)
StandOffVoltage=ETA*VBB;//in volt
disp(StandOffVoltage,"Stand Off Voltage in volts :");
//Part (ii)
VP=ETA*VBB+VB;//in volts
disp(VP,"Peak point Voltage in volts : ");
```

Scilab code Exa 9.2 Time period of sawtooth waveform

```
1 //Exa 9.2
2 clc;
3 clear;
4 close;
5 //Given data :
6 VP=10; //in volt
7 R=100; //in Kohm
8 C=1000; //in pF
9 VBB=20; //in Volts
10 ETA=VP/VBB; //intrinsic stand off ratio
11 T=R*10^3*C*10^-12*log(1/(1-ETA)); //in sec
12 disp(T*10^6, "Time period of sawtooth wave in miro seconds : ")
```

Scilab code Exa 9.3 Resistances RB1 and RB2

```
1 //Exa 9.3
2 clc;
3 clear;
4 close;
5 //Given data :
6 RBB=10; //in Kohm
7 ETA=0.6; //intrinsic stand off ratio
8 RB1=ETA*RBB; //in Kohm
9 RB2=RBB-RB1; //in Kohm
10 disp(RB1, "Resistance RB1 in Kohm :");
11 disp(RB2, "Resistance RB2 in Kohm :");
```

Multivibrators

Scilab code Exa 11.1 Frequency of Oscillators

```
1 //Exa 11.1
2 clc;
3 clear;
4 close;
5 //Given data
6 R1=15; //in kohm
7 R2=15; //in kohm
8 C1=0.005; //in uF
9 C2=0.005; //in uF
10 R=R1; //in Kohm
11 C=C1; //in uF
12 T=0.69*(R*10^3*C*10^-6+R*10^3*C*10^-6); //in second
13 f=1/T; //in Hz
14 disp(f*10^-3, "Frequency of oscillators in KHz: ");
```