UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONHA E MUCURI SISTEMAS DE INFORMAÇÃO

Tales Félix

Pesquisa Operacional

Lista 03

Docente: Luciana de Assis

Diamantina, 25 de Outubro de 2020

1 Questão

1. Um fazendeiro tem 200 unidades de área de terra, onde planeja cultivar trigo, arroz e milho. A produção esperada é de 1800 kg por unidade de área plantada de trigo, 2100 kg por unidade de área plantada de arroz e 2900 kg por unidade de área plantada de milho. Para manter o consumo interno e sua fazenda, ele deve plantar pelo menos 12 unidades de área de trigo, 16 unidades de área de arroz e 20 unidades de área de milho. Ele tem condições de armazenar no máximo 700.000 kg. Sabendo que o trigo dá um lucro de \$1,20 por kg, o arroz \$0,60 por kg e o milho 0,28 por kg, quantas unidades de área de cada produto ele deve plantar para que o seu lucro seja o maior possível?

1.1 Variáveis

- $-x_1$ = unidade de área plantada de trigo
- $-x_2$ = unidade de área plantada de arroz
- $-x_3$ = unidade de área plantada de milho
- -Z = Lucro total

1.2 Restrições

- -a) pelo menos 12 unidades de área de trigo
- -b) pelo menos 16 unidades de área de arroz
- -c) pelo menos 20 unidades de área de milho
- -d) armazenar no máximo 700.000 kg
- -e) Quantidades não negativas

1.3 Objetivo

Maximizar o lucro

1.4 Modelo

```
\begin{array}{l} Max \ Z=1, 20x_1+0, 60x_2+0, 28x3\\ s.a: \\ x_1\geq 12\\ x_2\geq 16\\ x_3\geq 20\\ 1800x_1+2100x_2+2900x_3\leq 700.00kg\\ x_1, x_2, x_3\geq 0 \end{array}
```

2 Questão

2. Considere o problema de encontrar a produção de duas ligas metálicas A e B, que são feitas de quatro metais distintos, I, II, III, IV, de acordo com a especificação apresentada na tabela a seguir:

Ligas	Especificação
A	no máximo 80% de I
	no máximo 30% de II
	no mínimo 50% de IV
В	Entre 40% e 60% de II
	no mínimo 30% de III
	no máximo 70% de IV

Os quatro metais são extraídos de três minérios diferentes, cujas percentagens em peso destes me- tais, quantidades máximas dos mi- nérios e custos por toneladas são fornecidas a seguir: Componentes (%)

Minério	Quantidade máxima (ton.) disponível	Componentes (%)	Preço por ton.
		I II III IV Outros	
1	100	20 10 30 30 10	30,00
2	200	10 20 30 30 10	40,00
3	300	5 5 70 20 0	50,00

Considere que os preços de venda das ligas A e B sejam \$ 200,00 e \$ 300,00 por tonelada, respectivamente.

2.1 Variáveis

- $-X_ij$ = quantidade minerio i usado para fabricar a liga $j, \forall i = \{1,2,3\}, \forall j = \{a,b\}$
- -Z =Lucro total

2.2 Restrições

- -a) Disponibilidade de produto
- -b) Disponibilidade de hora
- -c) quantidade de minerio 1 na liaga a
- -d) quantidade de minerio 2 na liaga a
- -e) quantidade de minerio 3 na liaga a
- -f) quantidade de minerio 1 na liaga b
- -g) quantidade de minerio2 na liaga b
- -h) quantidade de minerio 3 na liaga b
- -i) Quantidades não negativas

2.3 Objetivo

Maximizar o lucro

2.4 Formula

```
\begin{aligned} & Max \ Z = \left[ 200(X_1a + X_2a + X_3a) + 300(X_1b + X_2b + X_3b) \right] - \left[ 30(X_1a + X_1b) + 40(X_2a + X_2b) + 50(X_3a + X_3b) \right] \\ & s.a : \\ & X_1a + X_1b \le 100 \\ & X_2a + X_2b \le 200 \\ & X_3a + X_3b \le 300 \\ & X_1a + X_1b \le 100 \\ & 0, 2X_1a + 0, 1X_2a + 0, 3X_3a \le 0, 8(X_1a + X_2a + X_3a) \\ & 0, 1X_1a + 0, 2X_2a + 0, 3X_3a \le 0, 3(X_1a + X_2a + X_3a) \\ & 0, 5X_1a + 0, 5X_2a + 0, 3X_3a \le 0, 5(X_1a + X_2a + X_3a) \\ & 0, 1X_1b + 0, 3X_2b + 0, 3X_3b \le 0, 4(X_1b + X_2b + X_3b) \\ & 0, 1X_1b + 0, 3X_2b + 0, 3X_3b \le 0, 6(X_1b + X_2b + X_3b) \\ & 0, 2X_1b + 0, 3X_2b + 0, 3X_3b \le 0, 3(X_1b + X_2b + X_3b) \\ & 0, 5X_1b + 0, 7X_2b + 0, 2X_3b \le 0, 7(X_1b + X_2b + X_3b) \\ & \forall i = \{1, 2, 3\} \forall j = \{a, b\} \end{aligned}
```

3 Questão

- 3. Num laboratório químico, querem produzir um ácido com as seguintes características:
- a) O ácido deve conter no mínimo 20% do componente B 1 , no máximo 20componente B 2 e no mínimo 35% do componente B 3 ;
- b) O peso específico deve ser menor ou igual a 1.
- O ácido deverá ser produzido a partir de uma mistura de três matérias-primas, R 1 , R 2 , R 3 . A percentagem na qual os componentes B 1 , B 2 e B 3 , encontram-se nas matérias-primas bem como o peso específico e o preço por unidade são dados pela tabela apresentada a seguir:

	B_1	B_2	B_3	Peso Específico	Preço por unidade (\$)
R_1	15	10	40	1,04	140
R_2	20	15	30	0,95	120
R_3	25	30	35	1,00	130

Considere que o peso específico do ácido será dado levando-se em conta a proporção em que as matérias-primas se encontram na mistura determinar esta proporção, que minimize o custo da produção do ácido.

	Lista 03-	Sharaka sa	>		Þ	2152 -	⇒
@ Restrictes	S.a.;	D S	Υ	Q	Q	S	S
- bailing 20% -							
- máximo 60% -	•						
- prso = 1.							_
Variovris: Xis = quantida				st:	<u> </u>	10	_
i de componentes	ρκοδυςδο						_
Usado na moteria		21.0	, c v			1٧.	
$5. \forall i = \{3, 30, 45 = \{21, 22, 23\}$							
. Q = Minimiso c	0,20x30) -					+ (23X:
1	+0,35X321						_
,							-