

KOCHETKOV, N.K.; KHORLIN, A.Ya.; BOCHKOV, A.P.

Monosaccharide orthoesters as glycosidation agents. Izv.
AN SSSR. Ser. khim. no.12:2234 D '63. (MIRA 17:1)

1. Institut khimii prirodnnykh soyedinenii AN SSSR.

KOCHETKOV, N.K.; BUDOVSKIY, E.I.; TURCHINSKIY, M.F.; DEMUSHKIN, V.P.

Primary structure of RNA. Specific splitting of ribonucleic acid. Dokl. AN SSSR 152 no. 4:1005-1008 O '63. (MIRA 16:11)

1. Institut khimii prirodnikh soyedineniy AN SSSR.
2. Chlen-korrespondent AN SSSR (for Kochetkov).

MOLODTSOV, N.V.; KOCHETKOV, N.K.; DEREVITSKAYA, V.A.

Glycopeptides. Part 6: Further development of the synthesis
of N-aminoacyl derivatives of amino sugars. Izv. AN SSSR,
Ser. khim. no.12:2165-2172 D '63. (MIRA 17:1)

1. Institut khimii prirodnnykh soedineniy AN SSSR.

KOCHETKOV, N.K.; CHIZHOV, O.S.

New approach to the identification of methylated monosaccharides.
Izv. AN SSSR. Ser. khim. no.11:2069-2070 N '63. (MIRA 17:1)

1. Institut khimii prirodnnykh soyedineniy AN SSSR.

KOCHETKOV, N.K.; BUDOVSKIY, E.I.; SIMUKOVA, N.A.

Primary structure of RNA. Interaction of RNA with o-methyl-hydroxylamine. Dokl. AN SSSR 153 no.3:597-600 M '63.

(MIRA 17:1)

1. Laboratoriya uglevodov i nukleotidov Instituta khimii prirodykh soyedineniy AN SSSR. 2. Chlen-korrespondent AN SSSR (for Kochetkov).

DREVITSKAYA, V.A.; ZHAROV, V.G.; KOCHETKOV, N.K.

Structure of group substances of blood. Proteolysis of the A group substance. Dokl. AN SSSR 153 no.2:342-345 N '63. (MIRA 16:12)

1. Institut khimii prirodnnykh soyedineniy AN SSSR. 2. Chlen-korrespondent AN SSSR (for Kochetkov).

KOCHETKOV, N. K.; DMITRIYEV, B. A.

Monosaccharides. Report No. 7: New synthetic path to higher sugars. Izv AN SSSR Ser Khim no. 4: 69-677 Ap '64. (MIRA 17:5)

1. Institut khimii prirodnnykh soyedineniy AN SSSR.

KOCHETKOV, M.K.; KHOGLIN, A.Ya.; OVODOV, Yu.S.

Triterpenic saponins. Report No.7: Monosaccharide composition
and size of the carbohydrate moiety of gypsoside. Izv. AN SSSR.
Ser.khim. no.1:83-89 Ja '64.

Triterpenic saponins. Report No.8: Some data on the structure of
the carbohydrate moiety of gypsoside. Ibid. 190-99 (MIRA 17:4)

1. Institut khimii prirodnnykh soyedineniy AN SSSR.

DREVITSKAYA, V.A.; LIKHOSHERSTOV, L.M.; KOCHETKOV, N.K.

Glycopeptides. Report No.7: Hydroxylaminolysis of α -aminoacyl derivatives of glucose. Izv. AN SSSR. Ser.khim. no.3:469-475 Mr '64.
(MIRA 17:4)

1. Institut khimii prirodnnykh soyedinenii AN SSSR.

KOCHETKOV, N.K.; USOV, A.I.

Monosaccharides. Report No.6: New path toward the formation of
deoxy sugars. Izv. AN SSSR. Ser.khim. no.3:475-482 Mr '64.

1. Institut khimii prirodnikh soedineniy AN SSSR. (MIRA 17:4)

DREVITSKAYA, V. A.; MOLODTSOV, N. V.; KOCHETKOV, N. K.

Glycopeptides. Report No. 8: Synthesis of N-galacturosoylrhamine.
Izv AN SSSR Ser Khim no. 4:677-680 Ap '64. (MIRA 17:5)

1. Institut khimii prirodnnykh soyedineniy AN SSSR.

DELEVITSAYA, V. A.; KIKOT', O. S.; KOCHETKOV, N. K.

Methylation of the blood group substance A. Izv AN SSSR.
Ser Khim no. 4:761-763 Ap '64. (MIRA 17:5)

1. Institut khimii prirodnnykh soyedineniy AM SSSR.

1. LUR'YE, S. I., KULESHOVA, N. G., KOCHETKOV, V. K.

2. USSR (600)

"N-Derivatives of Imidasol (Glicoxaline). I.", Zhur. Obshch. Khim., 9, No. 21, 1939. Lab. of the Tech. of Fine Organic Compounds imeni Professor Berkengeym, Moscow Inst. of Fine Chem. Tech. Received 1 Jun 1939.

9. [REDACTED] Report U-1626, 11 Jan 1952

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

KOCHETKOV, N. K.

"Mercury Organo Compounds. XXXIX. Reaction of 2-Chlorovinyl Compounds of Mercury with Bases."

Iz. Ak. Nauk SSSR, Otdel Khim. Nauk, 3, 1947,

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

Quasicomplex compound of phenylthiethyl methyl ketone
with mercuric chloride. A. N. Iwasa, Yano, and N. K.
Kochetkov. *J. Russ. Phys. Chem. Soc.*, 1896, 1, 100.
Mercuric iodide, 10 g, was dissolved in 10 ml. of
cold $HgCl_2$ solution, in acetone. Acetone solution of
ketone, 1.5 g, benzene, gave 75% addition product.
Anal. C₁₀H₁₀O₂ (212.2). Found: C, 61.2; H, 4.7%;
O, 17.1%. Ketone readily decomposed by heat or in alkalies. Treatment
with 67% HBr gave a yellow oil, m.p. 120-20°, identified as
1-phenyl-1-mercapto-1-butene-J-oxide. (1); 7.4 decolorization
of aqueous iodine, m.p. 184.5°; acetone, m.p. 94.5°. Treatment of
the 11g above, with 5% KI solution, with shaking gave 75%
C₁₀H₁₀O₂ and a 50% yield of strong HgI in the eq layer,
cold. NaCl similarly gave 51.5% conversion, while AgCl
in dry *CH₂Cl₂* readily gave 1, as did BaCl₂, AsBr₃, and similar
reagents. *PCl₅/CCl₄* (1.0 g) in 20 ml. *AcOH* treated
at 8° with 1.52 g. dry *HgCl₂* in *AcOH*, let stand 2 hrs., and
heated 1 hr. to 20° gave 27 g. 1. G. M. Knoblauch.

KOCHETKOV, N. K., MBR., Inst. Organic Chem., Dept. Chem. Sci., Acad. Sci., -1948-.

"Mercury Organic Compounds. XLIII. Quasi-Complex Combination of Phenylethinyl
Methylketone and Corrosive Sublimate."

Iz. Ak. Nauk SSSR, Otdel Khim. Nauk, 3, 1949;

Moscow Under Lenin State Univ. imeni M. V. Lomonosov, -1948-.

CA

Organometallic compounds. XLIV. Properties of bromomethylides and carbonylides of simple bromides. A. N. Neimarkov and N. K. Kostrikova (Moscow State Univ.), *J. Russ. Akad. Nauk, J. V. J. R., Dokl. Chem.* No. 1000, 807-911; cf. C.A. 65, 7415d.— $(\text{OCiC}_2\text{H}_5)_2$ (0.20 g.) (I) with 0.46 g. Ph_3P in 70 ml. CH_2Cl_2 in a N_2 atm. showed no tendency to react in 18 hrs.; an Et_2O soln.

gave the same result. The Br analog of I is similarly inactive, even in a steam bath, with Ph_3P . Treating $(\text{BrC}_2\text{H}_5)_2$ with 30% KCN in a N_2 stream for 1 hr. led to hydrolysis, which evolved BrC_2H_5 , detected by passing through AgNO_3 . Its crystalline salts, which regenerated $(\text{BrC}_2\text{H}_5)_2$, the residual salts, with H_2 gave 50% H_2Br ; a similar result was obtained with 10% HCl at room temp., while 20% HCl did not react at room temp., but readily gave $\text{BrC}_2\text{H}_5\text{Cl}$, detected as above, on warming 3 hrs. in a steam bath (20% of the lig recovered as the salt). $(\text{BrC}_2\text{H}_5)_2$ (0.2 g.) with Ph_3MgBr (from 4.0 g. PhBr) in a N_2 stream yielded $\text{Mg}(\text{bromomethylide})_2$, as shown by combustion to BrC_2CO_2 , m. 84-85° (0.6 g.); 1.1 g. Phlig was also recovered, as well as 0.2 g. Ph_3MgBr (from 2.2 g. unreacted lig derivative). $(\text{PhC}_2\text{H}_5)_2$ (4 g.) with carbonation 1.10 g. Phlig and 1.26 g. $\text{PhC}_2\text{CO}_2\text{H}$, m. 126°. Hence the lig bromomethylides do not possess quaternary properties of $(\text{CHC}_2\text{H}_5)_2$ lig derivatives, since they are unable to form a new multiple bond between the C atoms, while the chloromethyl derivatives are able to do so.

XLV. Preparation of monobromoalkyl boranes and alkylides from their acetates and their reduction, with C_6 and $\text{O}-$ alkylated and oxydized. A. N. Neimarkov, I. P. Lutsenko, and Z. M. Tsvetkov, *Radiotekhnika i elektronika*, 1965, 10, 2009, 201-2. Add. of 4.3 g. CH_3CHOAl with shaking to 20 g. NaAc in 75 ml. H_2O , followed by add. of 3.8 g. KCl (after filtration of NaAc), gave 100% (dihydrobromomethylidoborane, $\text{CH}_3\text{C}_2\text{H}_5\text{BBr}_2$, decom., 120-125°, similarly $\text{CH}_3\text{C}_2\text{H}_5\text{BBr}_2$ gave 71.0%, $\text{CH}_3\text{C}_2\text{H}_5\text{CO}_2\text{Na}$, m. 100-110° (solids to LiAlD_6 at room temp.). Cyclohexenyl borane gave 80% $\text{J}-(\text{Alkylcyclohexenyl})\text{BBr}_2$ (D, m. 124-125° (from H_2O), while cyclopropenyl borane gave 71.5% $\text{J}-(\text{Alkylcyclopropane})\text{BBr}_2$ (from NaC_2H_5). Add. of 7.8 g. ArCl to 20 g. $\text{CH}_3\text{C}_2\text{H}_5\text{CHO}$ in ethanol gave after 1 hr. 60% $\text{CH}_3\text{C}_2\text{H}_5\text{CHOAl}$ and a residue which by its weight, in cold HCl was shown to be free of $\text{C}_6\text{H}_5\text{C}_2\text{H}_5\text{BBr}_2$. $\text{CH}_3\text{C}_2\text{H}_5\text{Al}$ with ArCl (with a little quinoline added after 1 hr. to remove unreacted ArCl) gave 60% $\text{ArC}_2\text{H}_5\text{BBr}_2$; while 1 dimethyl gave 57% cyclohexene and acetone. Likewise reaction with BeCl_2 , which required 6-8 hrs. heating to 80° for completion, gave, resp.: 60% $\text{C}_6\text{H}_5\text{C}_2\text{H}_5\text{BBr}_2$, m. 73-8°, δ^{H} 1.2579, δ^{D} 1.0381, 60% $\text{C}_6\text{H}_5\text{C}_2\text{H}_5\text{BBr}_2$, m. 87°, δ^{H} 1.5171, δ^{D} 1.047; 60% cyclohexene and acetone, m. 100-110°, δ^{H} 1.2588, δ^{D} 1.0728. $\text{CH}_3\text{C}_2\text{H}_5\text{CHO}$ (30 g.) and 20 g. Ph_3CCl in C_6D_6 (1 atm.) heated overnight and refluxed 3 hrs. gave 60% $\text{PhC}_2\text{C}_2\text{H}_5\text{CHO}$, m. 80-85° (from NaOH). Similarly $\text{CH}_3\text{C}_2\text{H}_5\text{Al}$ gave 60% $\text{PhC}_2\text{C}_2\text{H}_5\text{Al}$, m. 100-110° (from NaOH), while $\text{CH}_3\text{C}_2\text{H}_5\text{BBr}_2$ gave 30% $\text{PhC}_2\text{C}_2\text{H}_5\text{Br}$, m. 104° (from NaOH). **XLVI.** Addition of numerous alkoxides to acetylene salts, and others. A. N. Neimarkov, N. K. Kostrikova, and V. M.

base, while I gave to 3 days 70.20% Hg in uric acid, and yielded $\text{PbCl}_2\text{CCO}_2\text{K}_1$. In similar reactions with acid, NaCl were obtained, resp., 20% Hg in uric acid, in 3 days, 70% Hg in uric acid, in 20 hrs., from the 1st 3 substances, while I, and failed to react appreciably. It is in 2 weeks with 70% KI gave 30-35% HgCO_2K_1 , and some (CCO_2K_1) , while 20% KI in MgCl_2 gave instantaneously 16.5% of the hydrocarbons and 50% NaCl .

O. M. Koenigsm

CA

10

A new synthesis of pyrazoles. A. N. Neogiyanova, N. K. Serezhnikov, and M. I. Klyuchnikova (M. V. Lomonosov State Univ., Moscow). *J. Russ. Chem. Soc.* 33, 3, p. 100. 1900. - Alkyl 2-bromoethyl boroxines with NaH , and arylhydrazines yield 3-pyrazolopyrroles and their 1-Ph₂ derivatives. To 20 g. AlCl_3 and 75 g. CCl_4 was added with ice cooling over 3 hrs. 80 g. (pure) AlCl_3 in a stream of CH_2Cl_2 , concentrated for 6 hrs.; treatment of the product with 10 g. yielded 45% $\text{MeCDCl}_3/\text{CHCl}_3$ (I), $\text{bc} 40-41^\circ$, $d_4^{25} 1.073$; KuOCl gave 67% $\text{pCDCl}_3/\text{CHCl}_3$ (II), $\text{bc} 43-44^\circ$, $d_4^{25} 1.072$, $n_D^20 1.499$; similarly, Pr_2CuCl_3 gave 74.8% $\text{pCuCl}_3/\text{CHCl}_3$ (III), $\text{bc} 46-47^\circ$, $d_4^{25} 1.080$, $n_D^20 1.490$; Bu_3CuCl yielded 72% $\text{pBu}_3\text{CuCl}/\text{CHCl}_3$ (IV), $\text{bc} 44-45^\circ$, $d_4^{25} 1.017$, $n_D^20 1.486$. $\text{NaH}-\text{H}_2\text{O}$ (4 g.) and 1 g. I in 10 ml. H_2O gave, after 24 hrs. at room temp. and 1 hr. on a steam bath, addn. of 20 ml. 67% NaOH , and extn. with H_2O_2 , 61% 3-methylpyrazole (V); a 63% yield was obtained by adding 21 g. NaOAc to 10 g. NaH , sulfate in the main, addn. of 10 ml., filtering, treating, with

ice cooling and shaking with 4 g. I, letting stand 24 hrs., and heating 1 hr. on a steam bath, as above. V, $\text{bc} 34-41^\circ$, $d_4^{25} 1.030$, $n_D^20 1.493$, $\text{pr}_{\text{lit.}}$, $m 111-112^\circ$. The 1st procedure with II gave 44.5% 2-phenylpyrrole, $\text{bc} 142-143^\circ$, $d_4^{25} 0.9815$, $n_D^20 1.494$; $\text{pr}_{\text{lit.}}$, $m 147-148^\circ$. With III the 1st procedure gave 64.8% and the 2nd 64.5% 2-phenylpyrrole, $\text{bc} 220-221^\circ$, $\text{bc} 120-121^\circ$, $d_4^{25} 0.9807$, $n_D^20 1.4953$, $\text{pr}_{\text{lit.}}$, $m 113-114^\circ$. IV gave 60% 3-phenylpyrrole, $\text{bc} 221-222^\circ$, $\text{bc} 124-125^\circ$, $d_4^{25} 0.9811$, $n_D^20 1.4918$, $\text{pr}_{\text{lit.}}$, $m 127-128^\circ$. I (10 g.) in 20 ml. H_2O treated with 10.5 g. pBNHNH_2 , in K_2CO_3 with cooling, let stand 24 hrs., and heated 1 hr. on a steam bath similarly yielded 62% 1-phenyl-3-methylpyrrole, $\text{bc} 233-241^\circ$, $\text{pr}_{\text{lit.}}$, $m 173-174^\circ$. I (0.5 g.) and 0.9 g. $p\text{-BrC}_6\text{H}_4\text{NH}_2\text{NH}_2$ refluxed in 15 ml. AcOH , let stand overnight, and dried with NaOAc , gave 70% 1-(*p*-bromophenyl)-3-methylpyrrole, $\text{bc} 183-184^\circ$; $\text{pD}_4\text{N}(\text{C}_6\text{H}_4\text{N})_2\text{VII}$, gave 80% 1-(*p*-nitrophenyl)-3-methylpyrrole; cooling, $m 165.5-166^\circ$ (from dd. AcOH). II gave 84% 1-(*p*-nitrophenyl)-3-methylpyrrole, $m 122-123^\circ$ (from dd. AcOH), while III gave 60% 3-*p*-nitro- α -methyl- β -phenylpyrrole, $m 144-145^\circ$ (from dd. AcOH), and IV gave 63% 3-*p*-nitro- α -methylpyrrole, $m 143-144^\circ$ (from dd. AcOH). G. M. Kondapalli

NESMEYANOV, A.N., KOCHETKOV, N.K.

Mercury Haloacetyrides

Properties of mercury haloacetyrides. Uch. zap. Mosk. un. no. 132, 1950.

9. Monthly List of Russian Accessions, Library of Congress, October 1953, Uncl.²

NESEMEYANOV, N.K., KOCHETKOV, N.V.

Mercuric Chloride

Addition of mercuric chloride to acetylenic acids and esters. Uch. zap. Mosk. un. no. 132, 1950.

9. Monthly List of Russian Accessions, Library of Congress, October 1958, Unci.²

CA

11

Reaction of substituted ketones with alcohols. A. V. Nevezynov, N. K. Kostylev, and M. I. Rybnikova (M. V. Lomonosov State Univ., Moscow). Izv. Akad. Nauk SSSR, Otdel. Khim. Nauk 1961, 203-401.—RCOCH₂:CHCl with alcohols yields several of α -keto aldehydes. Addn of 10 g. NaOH in 80 ml. abs. MeOH at under 15° to 26 g. MeCOCH₂:CHCl in 26 ml. abs. MeOH, then stirring 8 hr., gave after filtration of NaCl 70% α -methylaldehyde di- β -keto ester, bp 85°, d_4^{20} 0.9075, n_D^{20} 1.4381, which decomposes in water and gives a red color with PrCl₃. A reaction run in water and in the presence of dry HCl gave but 24.5% yield. Stirring the product with 10% HCl gave 62% bisacetylacetone, m. 160-3.5°, while treatment with NaOH, H₂O in Et₂O gave β -methylpyruvate (32%), isolated as the perchlorate, m. 141°; free base, b. 204-6°, ρ -O₂NC₆H₄NHCO₂, in hot AcOH gave 44% β - β -dipropionyl- β -methylpyruvate (I), m. 166°. The ketone with NaOH, as above, gave 55% corresponding di- β -keto ester, bp 75-77°, d_4^{20} 0.9430, n_D^{20} 1.4229, while NaOH gave 87% di- β -ketone (II), bp 114-115°, d_4^{20} 0.9131, n_D^{20} 1.4220. Similarly EtONa with MeCOCH₂:CHCl gave 57% β -methylaldehyde di- β -keto ester, bp 91.5-7 mm., d_4^{20} 0.9301, n_D^{20} 1.4360; PrCOCH₂:CHCl gave 47% β -ketone, d_4^{20} 0.9201, bp 84-6°, d_4^{20} 0.9220, n_D^{20} 1.4117; propiobutyric di- β -keto ester, bp 84-6°, d_4^{20} 0.9220, n_D^{20} 1.4117. Addn. of 10 g. MeCOCH₂:CHCl to 3.5 g. Na in 127 g. PhMe and stirring 4 hrs. gave 31% α - β -phenoxypropionaldehyde, bp 113-14°, d_4^{20} 1.0771, n_D^{20} 1.4610, and 29% α -ketobutyric di- β -keto ester (III), bp 165-6°, m. 31-2°. When the former product is warmed with 20% H₂O₂ it yields PhCO₂H readily, while treatment with β -PrOC₂H₅ VII VII' in AcOH yields I. II with the same reagent gives 64% I.

(2) M. Kostylev

1932

Reaction of 2-substituted benzene with alkylidene dianhydrides. A. N. Neimark and N. K. Kapitonov

(M. V. Lomonosov State Univ., Moscow) Issled. Akad. Nauk SSSR, Chkh. Khim. Nauki 1952, no. 911 of G.4. No. 697, 1952. -Cited. (from no. 5, Mat. NO. 1000000).
In cold H_2O with 10 g. $\text{AlCl}_3\text{-CHCl}_3$ yielded after several
hrs. a ppt. of 2-(α -phenylbenzylidene)diketone, m. 165-170°;
 NaCO_3 gave a yellow soln. in H_2O ; KOH , then BaCl_2 ,
precipitated a white solid, m. 160-165°; Ca(OAc)_2 , m. 165-170°;
 NaNO_2 , m. 165-170°. Reaction with
succinic anhydride gave 2-(α -phenylbenzylidene)- β -succinyl ketone, m.
165-170° (from NaCO_3); NaCO_3 gave 2-(α -phenylbenzylidene)- β -succinyl ketone, m.
165-170° (from Ca(OAc)_2 , then NaCO_3).
Reaction with 10 g. $\text{AlCl}_3\text{-CHCl}_3$ with 1.5 g.
 NaCO_3 gave 2-(α -phenylbenzylidene)- β -succinyl ketone, m.
165-170° (from NaCO_3); reaction with 10 g. NaCO_3
(from no. 1000000); separation of the excess with 10% NaOH ,
gave 20% free acid, dissolving 160-165° (from $\text{NaOH-C}_2\text{H}_5\text{OH}$),
combined with the filtrate, to 2-(α -phenylbenzylidene)- β -succinyl ketone,
m. 165-170° (dissolved). O. M. Kapitonov

10

CA

Synthesis in the heterocyclic series based on 2-alkoxycarbonyl benzene. A. N. Neeserianov and N. K. Kondapalli (M. V. Lomonosov Moscow State Univ.), Dokl. Akad. Nauk. SSSR, 77, 68-9 (1951); cf. C.A. 45, 1865. — $\text{MeCOCl} \cdot \text{CHCl}$ with hydrazines, diazonium salts, e.g. azides, hydroxylamines, give a variety of heterocyclic compounds. In particular, yields. Thus, 10 g. $\text{MeCOCl} \cdot \text{CHCl}$ in 30 ml. Et_2O added to a cooled soln. of $\text{C}_6\text{H}_5\text{N}_2$ (from 30 g. MeNO_2) in 220 ml. Et_2O , gave a cryst. prod. in 1 hr.; treating this with 5% NaCO_3 crystallized the salt, with BaO and evap., the Et_2O gave 67.5% 2-oxopyrrolidine, m. 100-14 (from CaCO_3), sol. in H_2O , BaO , MeOH , nearly sol. in petr. ether; $\text{p}-$ nitrophenylhydrazine, m. 246-6%; caustic,

m. 143-3°, amideketone, m. 204-5° (from H_2O_2 , decomps.). Reducing 3.5 g. PbH_2 and 2 g. $\text{MeCOCl} \cdot \text{CHCl}$ in 10 ml. CaH_2 10 hrs. and refluxing gave 20% 2-phenyl-4-ethyl-1,3,2(III)-triazole, m. 107-8° (from d. Et_2O), sol. in MeOH , hot Et_2O ; amideketone, m. 222-3° (from H_2O_2); oxidation with alk. KMO_4 , yields an end, m. 140-142°. Reducing 11.5 g. NH_2OAc and 10 g. $\text{MeCOCl} \cdot \text{CHCl}$ 2 hrs. in 270 ml. MeOH , treating the hot soln. with 100 g. CaCO_3 in hot soln. set aside, and letting stand several days gave the Cd complex of methylacetamide, with 6 on methionine with H_2O_2 and thermal decomps. (diss.) and purification by BaO , gave 8.3 g. pure methylacetamide, b. 119.5-20 m°, 4% I_2SO_4 , m. 142m°; treatment with BaO (Chalon, C.A. 3, 200) showed the presence of 34% β -ketone. $\text{MeCOCl} \cdot \text{CHCl}$ (22 g.) and 40 g. $\text{ArCH}_2\text{CH}_2\text{H}_2$ in 75 ml. EtOH and, with NH_2 , kept 1 hr. at room temp., and refluxed 3 hrs. gave open ketone and others, 20% I_2Zn -dimethylbenzimidazole, b. 111-112°, b. 123-124°, d. 130-133, m. 132°; puriss., m. 142-3°.

G. M. Kondapalli

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

6

Summary of Periodic Appraisals from 1948 to 1950
October 1950 - December 1950 - January 1951
by the Central Security Service
Oct 1948 - Dec 1948: SECURITY INFORMATION
MATERIALS CHECKED AND INDEXED FOR USE IN
THE INFORMATION CENTER AND FOR THE INFORMATION
DEPARTMENT. THESE MATERIALS COULD BE USED
FOR REFERENCE WITH OTHER INFORMATION
IN THE INFORMATION CENTER.
NO INDEXES WERE MADE.
NO INDEXES WERE MADE.
NO INDEXES WERE MADE.

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

CA

* Reaction of ethyl 2-bromoethyl bromoformate with phenols.
N. K. Kastelline, M. I. Rybnikare, and A. N. Kosmynin
(M. V. Lomonosov State Univ., Moscow), "Study
Abstr. Russ. S.S.R. No. 709-5001 (1961).—In CHCl_3 - CH_2Cl (1:1) in the presence of NaOH in various media
with phenols in the presence of NaOH in various media
(H_2O , dioxane, excess phenol) form $\text{RCOCH}_2\text{CHOAr}$.
If the reaction is prolonged, $\text{RCOCH}_2\text{CHOAr}_2$ are obtained.
The best yields are obtained in the cold with an
equimolar reagent ratio in 4-6 hr. time; dioxane gives
poorer yields than does an eq. medium. The reaction is
best done in 20% eq. NaOH , which gives 10-27% yields.
Thus prep. were: $\text{MeCOCH}_2\text{CHOAr}$, m.p. 113-14°, mp°
130-13, $\text{d}^21.0$; $\text{MeCOCH}_2\text{C(=O)OC}_2\text{H}_5$, m.p. 127-4°,
 mp° 130-13, $\text{d}^21.0$; $\text{PrCOCH}_2\text{CHOAr}$, m.p. 124-5°, mp°
132-1, $\text{d}^21.0$; $\text{iso-PrCOCH}_2\text{CHOAr}$, m.p. 111-2°, mp°
133-1, $\text{d}^21.0$; and $\text{MeCOCH}_2\text{C(=O)OC}_2\text{H}_5$, m.p. 103-4°.
2-Cdts gave 60% of the expected $\text{ArCH}_2\text{CHOAr}_2$,
m. m.; also formed in this reaction, however, was 10%
 $\text{2,2-Na}_2\text{C(=O)H}_2\text{CHOAr}$, needles, which with 90% yield
the free HO compd. available to air. If this reaction is run
in dioxane the proportions of the 2 products are effectively
reversed. The structural proof was obtained by treatment
with FeCl_3HCl in AcOH-HCl , yielding 2-methoxyphenyl
1,2-diphenylpyridinium bromide (C.A. number 1), given, m.
145-6° (from AcOH). Addn. of $\text{ArCH}_2\text{CHOAr}$ to
 $\text{NaOH}-\text{HCl}$ gave after 24 hrs. 20% $\text{ArCH}_2\text{CHOAr}_2$, m.
28-3°, mp° 143-2. (1. M. Kondapalli)

KOCHETKOV, N.K.; KESSEYANOV, A.N.; SEMENOV, N.A.

Synthesis of isoxazoles from 2-chlorovinyl ketones. Bull. Acad. Sci.,
Div. Chem. Sci. '52, 97-102 [Engl. translation].
(CA 47 no.19:9964 '53)

KESMEYANOV, A.N.; KOCHETKOV, N.K.; KARPETSKIY, M. Ya.; ALEKSANDROVA, O.V.

Diene synthesis with 2-chlorovinyl ketones. Condensation with cyclo-pentadiene. Doklady Akad. Nauk S.S.R. 82, 409-12 '52. (KIBRA 513)
(CA 47 no.14:6876 '53)

1. M.V.Lomonosov State Univ., Moscow.

KOCHETKOV, N.K.

Synthesis of substituted hydroxypyridines from β -chlorovinyl ketones. C.R.
Acad.Sci. U.R.S.S. 152, 84, 289-292.
(MLA 516)
(RA -All Ap 153:557)

KOCHEKOV, N. K.

(3)

Chemical Abst.
Vol. 48 No. 4
Feb. 25, 1954
Organic Chemistry

Some transformations of 2-acetyl-3-methoxy-
heptane. N. K. Kochekov and N. N. Kostylev
Zhur. obshch. i prikladnoi khimii, Moscow, 1953,
No. 9, p. 211-4 (1953); cf. C.A. 47, 8074g, -g.
Acetyl-3-chlorobicyclo[2.2.1]heptane (I) (40 g.) in 400 ml.
H₂O, treated in 1 hr. with 100 ml. 10% NaOH and stirred 8
hrs. gave 44% 2-acetyl-3-hydroxy-3-heptene, m.p. 54-6°, d₄
1.0118, n_D²⁰ 1.4773, which polymerizes on standing and
readily reduces KMnO₄; 3,4-dihydroxyheptane, m.
121° (from AcOH). Hydrogenation over Pt-CuCO₃ yields
2-acetyl-3-hydroxy-3-heptene, m.p. 49-51° (crude), m.p.
1.0271, n_D²⁰ 1.4773; pentanetriol, m. 100-102° (cf. Plotke
and Masevitch, Izdat. Akad. Nauk S.S.R., 1949, 218).
I (13 g.) in EtOH treated with ice cooling with 5% NaOH in
EtOH, dried, and estd. with P(+) gave 80% 3-acetyl-3-
methoxybicyclo[2.2.1]-3-heptene, m.p. 102-3.5°, d₄ 1.0884, n_D
1.4756; similarly was obtained 57% 3-MeO-3-heptene, m.p. 70-71°,
d₄ 1.0300, n_D²⁰ 1.4725. I heated with 50% HCOOH and
NaOCH 10 hrs. at 100° gave 47% 2-acetyl-3-
hepteno-3-ol formate, m.p. 109-11°, d₄ 1.1317, n_D²⁰ 1.4811; der.
respective acetate, prep'd. similarly, m.p. 110-30°, d₄ 1.1100,
n_D²⁰ 1.4838.

O. M. Kostylev
1-27-54

KOCHETKOV, N.K.; ALEXANDROVA, G.V.

Diene synthesis with 2-chlorovinyl ketones. Condensation with
aliphatic dienes. Doklady Akad. Nauk S.S.R. 85, 1033-6 '52.
(CA 47 no.15:7449 '53) (MLRA 5:9)

1. M.V. Lomonosov State Univ., Moscow.

KOCHETKOV N. K.

USSR/Chemistry - Bismuth

Aug 52

"The Charging Effect," L. M. Kul'berg, I. S. Mustafin and N. K. Kochetkov,
Saratov State U imeni N. G. Chernyshevskiy

"Dan SSSR" Vol 85, No 6, pp 1285-1288

The limits of applicability of the charging effect in studying the sensitivity
of detection of Bi and Sb with the aid of nitrogen contg heterocyclic compds
and their N-alkylates was studied. The sensitivity of such reagents under
stable conditions depends on the chem nature of the charging group and its
position in the mol as well as the mol wt. Presented by Acad A. N. Nesmeyanov
21 June 52

(CA 47 no.17: 8576 '53)

238T9

ELDERFIELD, Robert Cooley, 1904- ; TUR'YEV, Yu.K., professor [redaktor]
LUTSKO, I.Y.; REUTOV, O.A.; KUCHETKOV, N.K. [redaktors].
edit.

[Heterocyclic compounds] Geterotsiklicheskie soedineniya. Perevod s ang-
liiskogo I.Y.Lutsenko, O.A.Reutova, N.K.Kochetkova, pod red. IU.K.Tur'eva.
Moskva, Izd-vo inostrannei lit-ry, 1953-. (MIAA 6:8)

(Heterocyclic compounds)

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

✓ **β -Arylvinyl ketones I. Synthesis of chiral 2-(dialkylamino)-**

✓ **vinyl ketones.** *I. Preparation (M. V. Kowalski)*

2-*Phenyl* *Magnesium Chloride* was used to synthesize the ketones in the synthesis of the chiral 2-(dialkylamino)vinyl ketones with aromatic ketones in an equimolar ratio. The ketones were completely soluble in H_2O , and each had a relatively insoluble polarity in the oils of both ketones. In 70 ml. 61% eq. NaOH was added with stirring 16.6 g. Al. (1.1 CH_2Cl_2) the mix. stood after 2.5 hr. at room temp. with K_2CO_3 dried with H_2O 12 hrs., and the ext. dist. and dried yielding 76.5% $\text{AcCH}(\text{CH}_2\text{NHR})_2$ (I). $m.p.$ 181-3°. In 21 ml. 0.734, eq. 1.5M LiCl , gives a red color with FeCl_3 . $m.p.$ 116-16°. Similarity was obtained 40.5% $\text{AcCH}(\text{CH}_2\text{NHR})_2$, $m.p.$ 126-5°, $m.p.$ 133.7° (per cent. m. 118-12°), 70% Boronine staining, $m.p.$ 154-5°, $m.p.$ 153, $m.p.$ 157.8° (per cent. m. 122-3°). Both ketones give a red color with FeCl_3 , 61% $\text{Pr}_2\text{NHCH}_2\text{NHR}$, $m.p.$ 131°, $m.p.$ 139, $m.p.$ 139.5°; and 60% $\text{CuSO}_4\text{CH}_2\text{NHR}$, $m.p.$ 134-5°, $m.p.$ 134.5°, $m.p.$ 137.0°. 1.0 g. reduced 20 min. with 0.5 ml. Al(OH) gave an yielding 94% $\text{1},\text{1}'\text{-C}_6\text{H}_4\text{Ar}_2$, $m.p.$ 162-3° (from H_2O), identical with an authentic specimen.

The picrates of the amine derivs. are relatively unstable.

O. M. Kowalski

NESMEEYANOV, A.N.; KOCHETKOV, N.K.; BYBORSKAYA, M.I.

Synthesis of 2-alkyl naphto- and 2-alkyl benzopyrylium salts on the basis
of β -chlorovinyl ketones. Izv. AN SSSR Otd. khim. nauk no. 3:479-483 May-Ju '53.
(KLRA 6:8)

1. Moskovskiy gosudarstvennyy universitet imeni M.V.Lomonosova.
(Benzopyrylium compounds)

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

K. H. S., N.Y.

Opus 8

CATAlysts

Chemical Abst.
Vol. 48 No. 8
Apr. 25, 1954
Organic Chemistry

Reaction of acids between the acetone, CH_3COCl , and the bromine, Br_2 , $\text{V}\text{. Lengenbach}$, *J. Am. Chem. Soc.*, 72, 703 (1950). — In 20 ml. CH_3COCl in 100 ml. Et_2O was added 7.0 g. Br_2 with cooling and after the substance of the initial reaction the mixt. was refluxed 1 hr., treated with cooling over 1 hr. with 50 g. CH_3COCl in Et_2O , stirred (about 4 hrs. at room temp.), treated with 5% HCl, stirred 0.5 hr., and the org. layer washed with 1% Na_2CO_3 in the cold, giving 9 g. unreacted CH_3COCl and 16 g. *4-phenyl-4-chloro-1-pyruvyl-3-one* (I), m. 130-0°, n_D 1.57° (from petr. ether); *2,4-dinitrophenylhydrazine*, m. 170-1° (from AcOH). Similarly MeCH_2COCl gave *4-phenyl-4-bromo-1-pyruvyl-3-one*, m. 145-6°; *2,4-dinitrophenylhydrazine*, m. 180-8°. $\text{EtCH}_2\text{BrCOCl}$ gave *1-phenyl-4-bromo-1-arynyl-3-one*, m. 167-8-9°; *2,4-dinitrophenylhydrazine*, m. 160-4°. $\text{MeCH}_2\text{BrCOCl}$ gave *1-phenyl-4-bromo-4-methyl-1-pyruvyl-3-one*, m. 140-8°; *2,4-dinitrophenylhydrazine*, m. 172-8-9°. 1 (7.0 g.) in 150 ml. Et_2O was treated with 50 ml. AcOH , then 13.5 g. Zn dust added slowly at 40°, and the mixt. heated to 50° for completion of the reaction, and filtered; the cooled filtrate, which formed 2 layers, was萃取 with Et_2O and the dried cat. slowly deposited 0.5 g. solid, m. 160-8°, identified as ($\text{CH}_3\text{CH}_2\text{COCl}$) [cf. Morris and Kucherbaek, *Ber.* 79, 1621 (1946)]. Distil. of the filtrate gave several fractions of which one, b.p. 180-200°, gave more of the above dione, while another, b.p. 110-115°, yielded $\text{PICH}_2\text{CH}_2\text{CM}=\text{N}=\text{CONH}_2$, m. 141-2°. In 175 ml. 70% MeOH (8 g.) it treated over 1 hr. with 2.3 g. Zn dust simultaneously with 20 ml. 25% AcOH ; and the solut. shaken 1 hr. yielded 63% $^{14}\text{C}\text{C}_6\text{A}$, b.p. 110-111°, n_D 1.5742, d₄ 1.0257; *2,4-dinitrophenylhydrazine*, m. 160-1°. The ketone readily yielded *5-phenyl-3-oxypyrrolidine*, m. 120-4° [cf. Morris and Brackin, *Bull. Soc. chim.* 31, 147-51 (1953)]. The acetylene halo ketones are very sensitive to alkalies, yielding carb. They are fairly stable to acids. Heating I with 11.5 g. NaOH gave red-brown color with green fluorescence. G. M. L.

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

Condensation of 2-chloroaryl ketones with phenol ethers.
A. N. Hemmerich, M. K. Kochetkov, and L. A. Marus

S.S.Y. Laboratory State Univ., Missouri, DeHaye, Chem
Anal. Lab. of INSTITUTE of Org. Chem.
With catalyst by SnCl_4 , chlorobenzene, and phenol ethers in CHCl_3 solution. Thus, 30 g. $\text{MgCOCl} \cdot \text{CHCl}_3$ and 20.5 g. MeO_2Ph in 50 ml. CHCl_3 treated with ice cooling over 1 hr. with 10 g. SnCl_4 (no HCl evolution), the react. stirred 30 min., dil. with 150 ml. H_2O , 150 ml. H_2O added, and the org. layer washed with Na_2CO_3 or CaCO_3 gave 46% $\mu\text{-MeOC}_6\text{H}_4\text{CH}_2\text{CH}_2\text{C}_6\text{H}_4\text{COCl}$, m.p. 72-8° (from Et_2O). Reduction-Magn. Ammeter, m.p. 225° (decomposition). Oxidation with KMnO_4 gave pure amide, yield m.p. 181.2°. Similarly BzO_2Ph gave $\mu\text{-BzO}_2\text{C}_6\text{H}_4\text{CH}_2\text{CH}_2\text{C}_6\text{H}_4\text{COCl}$, m.p. 150-152° m.p. 177° (from petr. ether); while $\text{AmCOCl} \cdot \text{CHCl}_3$ gave 63% $\mu\text{-MeO}_2\text{C}_6\text{H}_4\text{CH}_2\text{CH}_2\text{C}_6\text{H}_4\text{COCl}$, m.p. 12.2° (from Et_2O); $\text{MeOCH}_2\text{CHCl}_3$ and $\text{PMe}_2\text{CO}_2\text{Me}$ similarly gave 4.5% $\mu\text{-MeO}_2\text{C}_6\text{H}_4\text{CH}_2\text{CH}_2\text{C}_6\text{H}_4\text{COCl}$, b.p. 157.6°, m.p. 14° (from petr. ether); oxidized with KMnO_4 to $\text{C}_6\text{H}_4\text{COCl}_2\text{CH}_2\text{CH}_2\text{C}_6\text{H}_4\text{NH}_2$, m.p. 262.8°; $\text{m-C}_6\text{H}_4\text{OMe}$ and $\text{MgCOCl} \cdot \text{CHCl}_3$ gave 14% $\mu\text{-}(M\text{eO})_2\text{C}_6\text{H}_4\text{CH}_2\text{CH}_2\text{C}_6\text{H}_4\text{COCl}$, b.p. 200-201, m.p. 68° (from petr. ether); while $\text{m-C}_6\text{H}_4\text{OMe}$ gave 12.5% $\text{L}\text{.S.} \text{MeO}_2\text{C}_6\text{H}_4\text{CH}_2\text{CH}_2\text{C}_6\text{H}_4\text{COCl}$, m.p. 57.4° (from petr. ether). Thionyl chloride and $\text{MgCOCl} \cdot \text{CHCl}_3$ similarly gave 79% $\text{m-C}_6\text{H}_4\text{CH}_2\text{CH}_2\text{C}_6\text{H}_4\text{COCl}$, b.p. 117 (7.5°) m.p. 22.4° (from petr. ether). L. A. Marus

KOCHETKOV M K

USSR

• *Properties of hexamethylbenzene and derivatives etc based on it.* 62

Chloroform extract

100% soluble in

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

KOCHETKOV, N.K.

BIDDEFIELD, Robert, C.; LUPENKO, I.P. [translator]; KOCHETKOV, N.K.,
[translator] TOLSTAYA, T.P. [translator]; KOMMAYEV, G.A.
[translator]; YUR'EV, Yu.K., professor, redakteur; SATAROVA, N.V.,
redakteur; GERASIMOVA, Ye.S., tekhnicheskiy redakteur

[Heterocyclic compounds] Geterotsiklicheskie soedineniya. Perekod
z angliiskogo I.P. Lutsenko, i dr. Pod redaktsiei N.U. I.YU'eva.
Moskva, Izd-vo inostrannoi lit-ry. Vol. 2. 1954. 432 p. (MLIA 7:10)
(Heterocyclic compounds)

MILDERFIELD, R.; KOCHETKOV, N.K.[translator]; LUTSENKO, I.P.[translator];
KONDRAT'YEVA, G.IA.[translator]; TUR'YEV, Yu.K., professor, redaktor;
SHARAROV, Yu.S., redaktor; GHERASIMOVA, Ye.S., tekhnicheskiy redaktor

[Heterocyclic compounds. Translated from the English] Osnovotsiklicheskis soedineniiia. Pod red. R.Milderfilda. Perevod s angliiskogo
N.K.Kochetkova, I.P.Lutsenko, G.IA.Kondrat'yevoi. Pod red. Yu.K.
Tur'yeva. Moskva, Izd-vo inostrannoii lit-ry. Vol.3. 1954. 357 p.
(Heterocyclic compounds) (MERA 8:4)

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

155 R

Rescue, status of Aghoritmani between

of the bromine content of the product. The bromine content of the organic layer was determined by titration with iodine solution substituted in the equation. To 1 g. 2-CBDAHCl in 12 ml. AcOH was added 5 g. of FeBr_3 in dilute HCl, yielding a yellow precipitate of $\text{FeBr}_3\text{-AcOH}$. After centrifugation, on 10,000 rpm from AcOH, of 1 g. of 2-CBDAHCl in 10 ml. AcOH to which had been added 0.2 g. of $\text{FeBr}_3\text{-AcOH}$, there was obtained 0.5 g. of 2-CBDAHCl at room temperature. The white powder was washed with 10 ml. of 10% Na_2CO_3 solution, dried, and 2-CBDAHCl. Soaking 1.6 g. 2-CBDAHCl in 10 ml. of 10% Na_2CO_3 solution with 1.6 g. of $\text{FeBr}_3\text{-AcOH}$ yielded 0.8 g. of 2-CBDAHCl, corresponding to 50% yield. The white powder was washed with 10 ml. of 10% Na_2CO_3 solution, dried, and 2-CBDAHCl. Soaking 1.6 g. 2-CBDAHCl in 10 ml. of 10% Na_2CO_3 solution with 1.6 g. of $\text{FeBr}_3\text{-AcOH}$ yielded 0.8 g. of 2-CBDAHCl, corresponding to 50% yield. The white powder was washed with 10 ml. of 10% Na_2CO_3 solution, dried, and 2-CBDAHCl. The white powder was washed with 10 ml. of 10% Na_2CO_3 solution, dried, and 2-CBDAHCl.

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

G. L. S. - 10/10/68

CH₃COOCH₂CH₂Cl (I), m.p. 105°. This was obtained in 29.6% yield when 12 g. CH₃COOC₂H₅ and 6.0 ml. AcOH were treated with 1.8 g. Cl₂C₂H₅ in 30 ml. Et₂O and a 10% excess. The reaction of 1.7 g. CH₃COOC₂H₅ with 1.6 g. Cl₂C₂H₅ in 30 ml. Et₂O under identical conditions gave 20.5% yield. Fractional CPAC chromatography showed that the product from the latter had a slightly higher m.p. than the product from the former. The same reaction after 14 hrs. at 20°C. produced 11.7% yield with 1.6 g. Cl₂C₂H₅. The yield was increased to 14.4% when 1.6 g. Cl₂C₂H₅ was added to the reaction mixture after 10 hrs. which made the reaction time 24 hrs. The same reaction conditions furnished 14.4% yield when 1.6 g. Cl₂C₂H₅ was added to the reaction mixture after 14 hrs. At 20°C. After 24 hrs. the yield was 14.4%. The product was purified by column chromatography on alumina and recrystallized from Et₂O. Recrystallization of I with KMnO₄ and NaOH gave (4-Me₂C₆H₄)CO₂. Treatment of 0.7 g. of I with 1.0 ml. AcOH and 0.1 g. KMnO₄ followed by 1.0 ml. Et₂O in 6 ml. ethanol (EtOH) gave 0.4 g. of (4-Me₂C₆H₄)CO₂ which was purified with the above three reagents.

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

6
Absorption spectra of sulfur compounds
N. V. Kurnikova, N. A. Kostyleva, N. A. Orlitskaya,
1954, USSR Pat. No. 1034, 075, 73 (Engl. translation) - See C.I. 49, 47168
H. H.

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

F S C R

V 5 scheme of variable absorption in water

5

treatment with Cl₂/ClO₂ a sudden vigorous reaction took place; the excess of Br⁻ was estimated & the change after treatment with standard calcs with ClO₂; the difference between the initial and final titrations was taken as the amount of bromide removed by the treatment. The bromide removal was found to be 90% at pH 7.5 and 95% at pH 8.5. The bromide removal was found to be 90% at pH 7.5 and 95% at pH 8.5.

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

ELDERFIELD, Robert C.; REUTOV, O.A., [translator]; LUTSENKO, I.P.
[translator]; KONNENKOV, N.K. [translator]; KONDRAF'Yeva, G.Ya.
[translator]; YUN'YEV, Yu.K., professor, redaktor; SHABAROV, Yu.S.
redaktor; OGANIEZHANOVA, N.A., redaktor; GERASIMOVA, Ye.S.,
tekhnicheskij redaktor.

[Heterocyclic compounds. Translated from the English] Geterotsiklicheskie soedinenija. Perevod s anglijskogo O.A. Reutova, i dr.
Pod red. Ju.K. Jur'eva. Moskva, Izd-vo inostrannoj lit-ry, Vol.
4, 1955. 538 p.
(Heterocyclic compounds)

Kochetkov N. K.

✓ Reaction of alkyl chloroformate ketides with ethyl aceto-acetic ester. N. A. Kochetkov. U.S. Patent, issued
26 November, 1958. No. 2,875,734 (Engl. translation) -- See C. A. 50, 8332
B. M. R.

3 5
A 10072
Scrp/ed
PM

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

*Reaction of 1-chloro-1-alkene with aromatic
N-heterocycles. I. Cyclohexa-1,4-diene, and N,N'-bis(4-chlorophenyl)-
N,N'-diphenylbenzidine. Part II. Cyclohexa-1,4-diene, and N,N'-bis(4-chlorophenyl)-
(Engl. translation). -See C.A. 50, 60001. -D.M.R.*

M.A.YOURZ

5009/CL

DM

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

Kochert Ray N. R.

*Received at the Research Institute with
and discussion with R. P. Klemm and N. A. Kochert
Date: May 25, 1961, from Dr. W. M. Jones, and
When 10 g. FeCl_3 was added to 11.4 g. anthracene and 7.5
g. $\text{AcCH}_2\text{OEtCl}$ in 100 ml. CHCl_3 for 1 hr., and the mixture was
stirred 6 hrs., then treated with dil. HCl until acidic,
the org. layer yielded 87.6% 1-acetyl-4-phenyl-1,3-dien-5-
o-anthracene (12-acetyl-11-phenyl-9,10-dihydro-
9,10-ethananthracene) (I), m. 143° (from AcOH), decomp.
200°, by esterification, decomp. 192-4°, 2,4-dinitro-
phenyl derivative, m. 278° (from AcOH). Similarly from the
appropriate RCOOH CHCl_3 were prep'd. the following 1-
 RCO analogs of I (P. R. 1961, and in p. Green): m.p. 84-4
93-4° (from MeCO_2) (decomp. 200°), m.p. 101-102°
(from MeCO_2) (decomp. 200°), m.p. 111-116° (from
(from ArO_2F and H_2O_2); BaCl_2 added to 11.4
anthracene in 70 ml. CHCl_3 , the resulting emulsion treated
10 hrs. with dry HCl, the unreacted hydrocarbon removed,
and the soln. evap'd. yielded 16.5% 1-acetyl-4-phenyl-1,3-dien-5-
ene (II). Treated with powdered NaOEt in Et_2O 10 hrs.
gave 78.6% 1-acetyl-4-phenyl-9,10-dihydro-9,10-ethananthracene
analog (III), m. 174-5° (from MeCO_2). Similarly were obtained:
the 1- PrCO_2 , m. 152-1° (from MeCO_2), and 1- $\text{C}_6\text{H}_5\text{CO}_2$ analog,
m. 160, w/t 1.000. II (3.3 g.) added to 50 ml. Et_2NH and*

(over)

7

REACTION OF 2-CHLOROVINYL . . .

reduced 2 hrs gave, after evapn and crystallization with 5% HCl
and Et₂O, 20.3% of the 1-Bz analog of 1, m.p. 152-5°
(from Me₂O), while the eq. vinyl gave 64.3% 1,2-Di-N
acetyl-4-Bz, m.p. 152-4° (from eq. Me₂OEt) (percent, m.p.
87). 1 (0.51 g.) shaken with 0.6 g. NaBH₄ in 15 ml Et₂O
2 hrs gave 87.5% 1,2-Di-O-acetyl of 1, m.p. 152-4° (from
Me₂O).

G. M. Knobbe

et al

Kochetkov, N. K.

USSR/ Chemistry - Synthesis

Card 1/1 Pub. 40 - 23/27

Authors : Nesmeyanov, A. N.; Kochetkov, N. K.; and Dombrovskiy, Ya. V.

Title : Beta-aminovinyl ketones. Part 3. Synthesis of alkyl-beta-aminovinyl ketones

Periodical : Inv. Akad. SSSR. Otd. khim. nauk 1, 179-181, Jan-Feb 1955

Abstract : Brief announcement is made on the development of a new method for the synthesis of alkyl-beta-aminovinyl ketones from beta-chlorovinyl ketones with a yield of 78 - 84% of the theoretical. This method makes alkyl-beta-aminovinyl ketones easily accessible compounds and makes it possible to use these ketones in organic synthesis. The physico-chemical properties of alkyl-beta-aminovinyl ketones are described. Seven references: 1 USSR, 3 German, 2 French and 1 USA (1924-1953). Table.

Institution: The M. V. Lomonosov State University, Moscow

Submitted : October 27, 1954

HRDONYANOV, A.N.; KOCHETKOV, N.K.; RYBINSKAYA, M.I.; UGOLOVA, B.V.

Certain reactions of alkyl- β -phenoxyvinyl ketones. Izv. AN SSSR.
Otd. khim. nauk no. 4:649-656 Jl-Ag '55. (MLR 9:1)

1. Moskovskiy gosudarstvennyy universitet imeni M.V. Lomonossova.
(Ketones)

KOCHETKOV, N.E.; KUDRYASHOV, L.I.; KREMENYAKOV, A.N.

The reactions of alkyl- β -chlorevinyl ketones with ethyl acetacetate.
Izv. AN SSSR, Otd. khim. nauk no. 5:809-816 2-0 '55. (KIRA 9:1)

1. Moscow State University named N.V. Lomonosova.
(Ketones) (Acetoacetic acid)

AID P - 1370

Subject : USSR/Chemistry

Card 1/1 Pub. 119 - 3/6

Author : Kochetkov, N. K., (Moscow)

Title : Chemistry of β -chlorovinyl ketones

Periodical : Usp. khim., 23, no. 1, 32-51, 1955

Abstract : The synthesis and chemical behavior of alkyl- β -chlorovinyl ketones are described. Their use in the synthesis of aliphatic, alicyclic, and heterocyclic compounds is reviewed. A table illustrating the transformations of β -chlorovinyl ketones is included. 42 references (28 Russian: 1894-1954).

Institution : None

Submitted : No date

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

Example Series. II. Reactions of 1-chloromethylphenoxy.

Reaction following the SCSN, 70 ml. MeOH,
and 1 g. 2,2-dihydroxyacetone acetate. The following hydrolysis
was carried out at 100°C. for 1 hr. in a sealed tube. The
reaction mixture was cooled to room temperature and
then 10 ml. of 10% NaOH was added. After 1 hr. the
mixture was cooled to room temperature and
then 10 ml. of 10% HCl was added. The solution of HCl was
then diluted with water, yielding 60% *D*-glucosaminidase.
Thus, in S. 4, the 1 g. test, with 4.73 ml. water containing
solid NaCl, 10 ml. of 10% HCl gave 50% *D*-glucosaminidase.
HCl gave 50% *D*-glucosaminidase, and, with 5.67 ml.
of 10% HCl, 10 ml. of 10% HCl gave 11% *D*-glucosaminidase.
The 8.57 ml. of 10% HCl gave 11% *D*-glucosaminidase.
The reaction mixture was then treated with CuO in aqueous
10% NaOH, 10 ml. of 10% NaOH was added, 10 ml. of water
was added, 10 ml. of 10% NaOH was added, and 10 ml. of
water was added. The reaction mixture was then treated
with 10 ml. of 10% NaOH.

was dark, yielding after calcination 10% of a dark brown product, which contained 10.1% of carbon. The remaining 90% was found to be a mixture of Fe_2O_3 and Fe_3O_4 . The latter was obtained in the form of small blackish brown cubes, which contained 10.1% of carbon. The remaining 90% was found to be a mixture of Fe_2O_3 and Fe_3O_4 .

Racine Nov. 1961

*✓ Reaction of 2-Chlorovinyl Iodides with Phenyliodonium
Hexafluorophosphate (Moscow State Univ., Inst. Chem.)*

From J. Org. Chem. 26, 1033 (1961).—Heating 3.8 g. PhN₃ and 2 g.
MeCOCH₂CHCl in C₆H₆ 10 hrs. under reflux gave 25%
1-Phenyl-4-acetyl-1,3,3-triazone (I), m. 126.9° (from dil.
EtOH), which with alk. soln. of iodine yields CH₂, some
carbamide, m. 222.3°. PhN₃ and MeCOCH₂CHCl similarly
gave 29.2% *1-Phenyl-4-butyl-1,2,2-triazone*, m. 106.
10°. In MeCOCH₂CHCl and PhN₃ similarly gave 21%
1-Phenyl-4-isobutyl-1,2,2-triazone, m. 105.0°. C₆H₆
COCl/CHCl and PhN₃ gave 41% *1-Phenyl-4-(chloroethyl)-*
1,2,2-triazone, m. 184.6° (from C₆H₆), which heated with
CS₂NH₂ in EtOH 6 hrs. gave 95% *2-Amino-4-(1-phenyl-4-*
trifluoromethylphenoxy)-HCl·H₂O, decomp. 213.5°, free base, m.
174.5° (from dil. EtOH). Oxidation of I with alk. KMnO₄
gave *3-Phenyl-1,2,2-triazone-4-carboxylic acid*, m. 149.5°.
Also in *J. Org. Chem. U.S.S.R.* 26, 1512 (1953) Engl.
transl.). G. M. Kosykh, d.

5

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

KOCMET'KOV, NIK

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

P.A. 15672

A.C. 1000

Initial assessment of Agent's reliability and potential value.
A. Agent's Name: [REDACTED] [REDACTED]
B. Agent's Rank: [REDACTED] [REDACTED]
C. Agent's Current Station: [REDACTED] [REDACTED]
D. Agent's Previous Station: [REDACTED] [REDACTED]
E. Agent's Current Assignment: [REDACTED] [REDACTED]
F. Agent's Previous Assignment: [REDACTED] [REDACTED]
G. Agent's Current Status: [REDACTED] [REDACTED]
H. Agent's Previous Status: [REDACTED] [REDACTED]
I. Agent's Current Location: [REDACTED] [REDACTED]
J. Agent's Previous Location: [REDACTED] [REDACTED]
K. Agent's Current Activity: [REDACTED] [REDACTED]
L. Agent's Previous Activity: [REDACTED] [REDACTED]
M. Agent's Current Status: [REDACTED] [REDACTED]
N. Agent's Previous Status: [REDACTED] [REDACTED]
O. Agent's Current Location: [REDACTED] [REDACTED]
P. Agent's Previous Location: [REDACTED] [REDACTED]
Q. Agent's Current Activity: [REDACTED] [REDACTED]
R. Agent's Previous Activity: [REDACTED] [REDACTED]
S. Agent's Current Status: [REDACTED] [REDACTED]
T. Agent's Previous Status: [REDACTED] [REDACTED]
U. Agent's Current Location: [REDACTED] [REDACTED]
V. Agent's Previous Location: [REDACTED] [REDACTED]
W. Agent's Current Activity: [REDACTED] [REDACTED]
X. Agent's Previous Activity: [REDACTED] [REDACTED]
Y. Agent's Current Status: [REDACTED] [REDACTED]
Z. Agent's Previous Status: [REDACTED] [REDACTED]

[Signature]

ABW
FM

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

KOCHETKOV, N.K.; DOMBROVSKIY, Yarush; KAIKHOVA, A.V.; SEVERIN, Ye.S.; KESOGYANOV,
A.N.

β -aminovinyl ketones. Part 4. Synthesis of ketones of the pyridine
series. Izv. AN SSSR Otd. Khim. Nauk no. 2:172-176 F '56. (MLR 9:7)

1. Moskovskiy gosudarstvennyy universitet imeni M.V. Lomonosova.
(Ketones) (Pyridine)

ketones. New Synthesis of vinyl
Orig Pub: Izv. AN SSSR, otd. Khim. N., 1956, No 6, 676-680.

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

Abstract: A new method of synthesis of the products of
methyleneketones by the hydrolysis of the products of
interaction R (R-alkyl) and alkyl- β -dialkylamino-
vinylketones. The reaction proceeds smoothly with
 CH_3I , but not with CH_3Br ; the higher the radicals-
 CH_3 , the yields become lower. With $(\text{CH}_3)_2\text{SO}_4$, the yield is
lowered to 4-5%. The method of the synthesis of
 $\text{RCOCH}=\text{CHN}(\text{CH}_3)_2$ (where R-alkyl) from $\text{RCOCH}=\text{CHCl}$
is applied in the synthesis of aryl- β -dimethylamino-
vinylketones. Obtained were (enumerated are the

Card : 1/3

USSR/Organic Chemistry, Synthetic Organic Chemistry.

E-2

Abs Jour: Ref Zhur-Khimika No 6, 1957, 19073.

ketones, yield in percent, boiling p. in $^{\circ}\text{C}/\text{mm } n^{20}\text{D}$, d^{20}_4 :
 $\text{C}_2\text{H}_5\text{COCH}=\text{CHN}(\text{CH}_3)_2$, 56.4, 95-96/4 1.5400, 0.9533;
 $\text{C}_5\text{H}_{11}\text{COCH}=\text{CHN}(\text{CH}_3)_2$, yield 88%, melting p. 90-91°
(from petr. ether). A solution of 11 g. $n\text{-Cl C}_6\text{H}_4\text{COCH}-$
 CHCl in 15 cc C_6H_6 on cooling and stirring, is added
to 20 cc of a 30% aqueous solution of $(\text{CH}_3)_2\text{NH}$, stirred
for an hour, yielding $n\text{-Cl C}_6\text{H}_4\text{COCH}=\text{CHN}(\text{CH}_3)_2$, 82.4%,
in an autoclave ($110-120^{\circ}$) are

USSR/Organic Chemistry - Synthetic Organic Chemistry, E-2

Abst Journal: Referat Zhir - Khimiya, No 1, 1957, 848

Author: Kochetkov, [redacted], Khorlin, A. Ya., and Karpeyskiy, M. Ya.

Institution: None

Title: Direct Synthesis of Aryl- β -chlorovinylketones

Original Periodical: Zh. obshch. khimii, 1956, Vol 26, No 2, 595-598

Abstract: A convenient method is described for the synthesis of aryl- β -chlorovinylketones $\text{ArCOCH} = \text{CHCl}$ (I), where Ar can be C_6H_5 (a), $n\text{-CH}_3\text{C}_6\text{H}_4$ (sic) (b), $n\text{-ClC}_6\text{H}_4$ (c), $o\text{-BrC}_6\text{H}_4$ (d), $n\text{-NO}_2\text{C}_6\text{H}_4$ (e) [Tr. Note: $n\text{-}$ apparently is equivalent to $p\text{-}$, by the direct reaction of ArCOCl with C_2H_2 in the presence of AlCl_3 and ethylene chloride. To a solution of 100 gms $\text{C}_6\text{H}_5\text{COCl}$ in 100 ml ethylene chloride cooled to zero degrees, 95 gms of anhydrous AlCl_3 are added with cooling and constant mixing (temperature 10°); next, C_2H_2 is passed through the mixture with vigorous stirring for 6-7 hours at $40\text{-}50^\circ$; the reaction mixture is then poured over ice, and the organic layer separated and dried

Card 1/2

KOCHETKOV, N.K., KUDRYASHOV, L.I.

Interaction of β -chlorovinyl ketones with β -dicarbonyl compounds.
Part 2. Ketovinylation of alkylmalonic esters. Zhur. ob. khim. 26
no.3:851-856 Mr '56. (MLRA 9:8)

1. Institut farmakologii Akademii meditsinskikh nauk SSSR.
(Malonic acid) (Ketones) (Vinylation)

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

KOCHETKOV, N.K.

USSR/Organic Chemistry - Synthetic Organic Chemistry

E-2

Abs Jour : Referat Zhur - Khimiya, No 2, 1957, 4405

Author : Kochetkov, N.K., Vorotnikova, L.A.
Title : On Synthesis of Phthalazines by Cyclization of Acylhydra-
zones of Aromatic Aldehydes

Orig Pub : Zh. obshch. khimii, 1956, 26, No 4, 1143-1149

Abstract : Treatment of acylhydrazones of aromatic aldehydes with HCl gns in iso-C₆H₁₁OH (1 hour at ~ 100° and 1 hour boiling) gives not derivatives of phthalazine (PA) as was formerly believed (Agrawal J. et al., J. Chem. Soc., 1929, 1941; 1930, 2354) but the oximes (A) of the corresponding aldehydes. This is demonstrated in the case of acetyl- and benzoyl hydrazones of veratric aldehyde (I and II) and benzoyl hydrazone of anisaldehyde. The very close melting point values of PA and the corresponding A have contributed to the previous erroneous conclusions. Formation of A and not of PA in the

Card 1/2

- 64 -

KOCHETKOV, N.K.

E-2

USSR/Organic Chemistry. Synthetic Organic Chemistry.

Abs Jour: Ref Zhur-Khimii, No 6, 1957, 19132

Author : Kochetkov N. K., Dudykina N. V.

Inst : Title : Synthesis of Substituted Benzylamines and N-benzyl-chloropropionamides.

Orig Pub: Zh. obshch. khimii, 1956, 26 No 9, 2612-2617

Abstract: With the purpose to determine the influence of a substituent in the nucleus of C₆H₅CH₂NH₂ (I) on antispasmodic activity (PA) RCH₂NHCOCH₂CH₂Cl (II) is synthesized; a general method of synthesis is worked out substituting I by urotropine salts. To 12 g. of 3,4-(CH₃O)₂OHN₃CH₂NH₂ (III) in 60 cc water at 8-10° are added in drops simultaneously 9.13 g. ClCH₂CH₂COCl (IV) and 2.86 g. NaOH in 15 cc water, the addition of NaOH is carried to a pH 8.0-8.5, stirred for 30-40 min. at ~ 20° and II

Card : 1/5

CH₃C₆H₄ CH₂NH₂ 45.6, 84-85°/10, 1.011, ...
CH₃C₆H₄ CH₂NH₂ 45.6, 153-155/12, 1.5405,

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

KUCHEROVA, N.F.; KOCHETKOV, N.K.

Indole derivatives. Part 2. Synthesis of certain 1, 2, 3, 4-tetrahydro- γ -carboline derivatives. Zhur. ob. khim. 26 no.11; 3149-3154
N '56. (KIRA 10:1)

1. Institut farmakologii i khimioterapii Akademii meditsinskikh nauk
SSSR, (Indole)

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

KESMUTANOV, A.N., KOCHETKOV, N.K.

β -Chlorovinyl ketones in the synthesis of heterocyclic compounds.
Uch. zap. Mosk. un. no. 175:85-95 '56.
(Heterocyclic compounds)
(Ketones)

(MLRA 10:3)

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

KOC'ETKOV, N.K.; KHOMUTOVA, Ye.D.; MIKHAYLOVA, O.B.; MESHCHYANOV, A.N.
Synthesis of arylpyrazoles. Izv. AN SSSR Otd. khim. nauk
no.10:1181-1185 O '57. (NIRE 11:3)
1.Moskovskiy gosudarstvennyy universitet im. M.V. Lomonosova.
(Pyrazole)

Kochetkov, N. K.

KLIMKO, V.T.; KHORLIN, A.Ya.; MIKHAILOV, V.A.; SKOLDINOV, A.P.; KOCHETKOV, N.K.

 β -Aminovinyl ketones. Part 7: Reaction of β -chlorovinyl ketones with tertiary amines. Izbr. tr. khim. 27 no. 1162-65 Ja '57.

(MLR 10:6)

1. Institut farmakologii i khimioterapii Akademii meditsinskikh nauk SSSR.
(Vinyl compounds) (Ketones) (Amines)

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

486

AUTHORS:

Kochetkov, N. K., and Kudryashov, L. I.

TITLE:

Reaction of beta-Chlorovinyl Ketones with beta-Dicarbonyl Compounds. Part 3. Ketovinylation of Malonic Ester. New Synthesis of alpha-Pyrone (Vnaimodeystviye beta-khlorvinilketonov s beta-dikarbonil'nyimi soyedineniyami. III. Ketovinilirovaniye malonovogo efira. Novyy sintez alpha-pironov)

PERIODICAL:

Zhurnal Obshchey Khimii, 1957, Vol. 27, No. 1, pp. 248-253 (U.S.S.R.)

ABSTRACT:

The ketovinylation reaction of malonic ester was considered of interest for the development of new organic synthesis methods for the aliphatic and the oxygen-containing heterocyclic series. A new method of synthesizing beta-ketoalkenylmalonic esters of the $\text{RCOCH} = \text{CHCH}(\text{COOC}_2\text{H}_5)_2$ type by the reaction of beta-chlorovinylketones with ethoxymagnesiummalonic esters, is described. Acetyl chloride which preserves the homogeneity of the medium during this reaction was used as a condensation medium. Cyclization in this case was realized simply by heating the ketoalkenylmalonic ester/ acetyl chloride mixture and the product (pyrone) obtained was purified by distillation. In this way, the authors obtained 6-methyl-, 6-ethyl- and 6-propyl-3-carboethoxy-alpha-pyrone.

Card 1/2

January 27, 1956

AVAILABLE:

487

AUTHORS:

Kochetkov, N. K.; Kucherova, N. P.; Yevdakov, V. P.

TITLE:

Indole Derivatives. Part 3. Synthesis of 6-Oxy-1,2,3,4-Tetrahydrocarbazole Derivatives (Proizvodnye Indola. III. Sintez proizvodnykh 6-oksii-1,2,3,4-tetragidrokarbazola)

PERIODICAL:

Zhurnal Obozreniya Khimii, 1957, Vol. 27, No. 1, pp. 253-257
(U.S.S.R.)

ABSTRACT:

In order to explain the effect of changes occurring in the nucleus of the molecule on the myotic activity of indole derivatives, the authors synthesized an eserine analogue of the tetrahydrocarbazole series, namely, methylurethan of 6-oxy-9-methyl-1,2,3,4-tetrahydrocarbazole. It is shown that the Tomlinson (2,3) method of synthesizing tetracarbazoles derivatives by the condensation of aromatic amines with 2-oxyhexanone in the presence of hydrochloric acid is false and inapplicable. The products obtained by the Tomlinson method were found to be acyclic products of condensation, namely 2-arylamino-cyclohexanones. It is pointed out that the condensation of aromatic amines with oxyhexanone into tetrahydrocarbazole derivatives can be realized provided the hydrochloric acid (used by Tomlinson) is substituted with phosphorus

Card 1/2

January 4, 1956

AVAILABLE

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

Card 2/2

79-2-38/53

AUTHORS:

Kochetkov, N. K.; Khamtova, Ye. D.; Karpeyskiy, M. Ya.; Khorlin, A. Ya.

TITLE:

Study of Isoxazole. Part 3. Synthesis of Arylisoxazoles (Issledovaniye v ryadu isoksaazola. III. Sintez arilisoksaazolov)

PERIODICAL:

Zhurnal Osnchchey Khimii, 1957, vol 27, No 2, pp. 452-457 (U.S.S.R.)

ABSTRACT:

It is shown that aryl-beta-chlorovinyl ketones react with hydroxylamine under the very same conditions as their aliphatic analogues. When both components are heated in methanol, they produce high yields of arylisoxazoles. The reaction of alkyl-beta-chlorovinyl ketones with hydroxylamine yields a mixture of alpha- and gamma-isomers (5- and 3-substituted isoxazoles) with 50 - 60% of the alpha-form. The reaction with phenyl-beta-chlorovinyl ketone produces a mixture of alpha- and gamma-phenylisoxazoles in approximately equal amounts. The alpha-isomer content in the phenylisoxazole was 62-67%. Phenyl-beta-chlorovinyl ketones with substitutes in the aromatic ring react smoothly with hydroxylamine, giving high yields of arylisoxazoles. It is shown that the ratio of the alpha- and gamma-substituted isoxazoles formed during the reaction of beta-substituted vinyl ketones $\text{RCOCH} = \text{CH}_2$ with hydroxylamine depends

Card 1/2

A
C

AUTHORS:

Kochetkov, N. K. and Vinogradova, V. N.

79-2-40/58

TITLE:

Ketovinylation of Thiophenols (Ketovinilirovaniye tiofenolov)

PERIODICAL:

Zhurnal Obshchey Khimii, 1957, vol 27, No 2, pp. 460-464 (U.S.S.R.)

ABSTRACT:

This report is devoted to the study of the first reaction between beta-chlorovinyl ketones with thiophenols. A new method was developed for the synthesis of hitherto unknown aryl-beta-acetylvinyl sulfides which are derived with high yields from the reaction of beta-chlorovinyl ketones with thiophenols in an alkali medium. It was established that during the ketovinylation of thiophenols, the actual reaction includes the sodium thiophenolate and is followed by nucleophilic substitution of the Cl atom in the molecule of the beta-chlorovinyl ketone under the effect of the thiophenolate ion. A study of certain reactions of these compounds showed a close similarity to other beta-substituted vinyl ketones. The aryl-beta-acetylvinylsulfides $\text{RCOCH} = \text{CHSAr}$ obtained as a result of the reaction are described as colorless solid bodies easily separated from the reaction mixture by conventional means. All the synthesized sulfides showed good storage stability.

Card 1/2

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

79-2-40/58

Ketovinylation of Thiophenols.

There are 13 references, of which 10 are Slavic

ASSOCIATION: Moscow State University

PRESENTED BY:

SUBMITTED: February 21, 1956

AVAILABLE: Library of Congress

Card 2/2

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

KOCHETKOV, N. N.

AKHIEZER, A.P.; BUDOVSKIY, E.I.; GOTTIKH, B.P.; KARPEVSKIY, M.Ya.
KUDRYASHOV, L.I.; SKOLDINOV, A.P.; SMIRNOVA, N.V.; KHORLIN, A.Ya.
KOCHETKOV, N.N.

Dihydresarcomycin and related compounds. Part. I. Zhur. ob. khim.
27 no.5:1312-1318 My '57. (MLIA 10:6)

1. Institut farmakologii i khimioterapii Akademii meditsinskikh
nauk SSSR.
(Antibiotics)

"APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001 CIA-RDP86-00513R000723510014-8"

"APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8

APPROVED FOR RELEASE: 09/18/2001

CIA-RDP86-00513R000723510014-8"