Problem set 15,16

Graded

Student

Total Points

93 / 100 pts

Question 1

Exercise 7.1.2a 4 / 4 pts

- 4 pts no answer
- 4 pts illegible
- **4 pts** wrong problem
- 2 pts incorrect domain
- 2 pts incorrect co-domain
- **1 pt** supplied the function g equals the domain / co-domain
- 1 pt did not specify elements defining the domain / co-domain

Question 2

Exercise 7.1.2b 6 / 6 pts

- 6 pts no answer
- **6 pts** illegible
- **6 pts** wrong problem
- 2 pts incorrect g(1)
- 2 pts incorrect g(3)
- **2 pts** incorrect g(5)

Exercise 7.1.2c 2 / 2 pts

- 2 pts no answer
- **2 pts** illegible
- 2 pts wrong problem
- **2 pts** incorrect
- 1 pt supplied function equates a value

Question 4

Exercise 7.1.2d 2 / 2 pts

- 2 pts no answer
- **2 pts** illegible
- 2 pts wrong problem
- **1 pt** incorrect a
- 1 pt incorrect b
- 0.5 pts implied unique inverse

Question 5

Exercise 7.1.2e 2 / 2 pts

- 2 pts no answer
- **2 pts** illegible
- 2 pts wrong problem
- **1 pt** incorrect a
- 1 pt incorrect b
- **0.5 pts** incorrectly equated pre-images to images

Exercise 7.1.2f	2 / 2 pts

- ✓ 0 pts Correct
 - **2 pts** no answer
 - **2 pts** illegible
 - **2 pts** wrong problem
 - 1 pt incorrect delimiters () {}
 - 1 pt incorrect punctuation (commas)
 - 1 pt incorrect values

Exercise 7.1.9d 2 / 2 pts

- ✓ 0 pts Correct
 - 2 pts no answer
 - 2 pts illegible
 - 2 pts wrong problem

Question 8

Exercise 7.1.9e 2 / 2 pts

- ✓ 0 pts Correct
 - 2 pts no answer
 - 2 pts illegible
 - **2 pts** wrong problem

Question 9

Exercise 7.1.9f 2 / 2 pts

- ✓ 0 pts Correct
 - 2 pts no answer
 - 2 pts illegible
 - 2 pts wrong problem

- ✓ 0 pts Correct
 - 5 pts no answer
 - **5 pts** illegible
 - **5 pts** wrong problem
 - 2 pts failue to use set difference definition
 - 2 pts weak / vague reasoning

Exercise 7.1.29b 3 / 3 pts

- ✓ 0 pts Correct
 - 3 pts no answer
 - **3 pts** illegible
 - 3 pts wrong problem
 - 3 pts incorrect

Question 12

Exercise 7.1.39b 5 / 5 pts

- ✓ 0 pts Correct
 - 5 pts no answer
 - **5 pts** wrong problem
 - 1 pt incorrect g(A)
 - 1 pt incorrect g(X)
 - **1 pt** incorrect $g^{-1}C$
 - **1 pt** incorrect $g^{-1}(D)$
 - 1 pt incorrect $g^{-1}(Y)$

- ✓ 0 pts Correct
 - 8 pts no answer
 - 8 pts illegible
 - 8 pts wrong problem
 - 4 pts incorrect one-to-one
 - 2 pts failure to use one-to-one definition
 - **2 pts** weak / vague reasoning one-to-one
 - 4 pts incorrect onto
 - **2 pts** failure to use onto definition
 - 2 pts weak / vague reasoning onto

Exercise 7.2.8a 8 / 8 pts

- ✓ 0 pts Correct
 - -8 pts no answer
 - **8 pts** illegible
 - 8 pts wrong problem
 - **4 pts** incorrect one-to-one
 - **2 pts** failure to use one-to-one definition
 - **2 pts** weak / vague reasoning one-to-one
 - 4 pts incorrect onto
 - **2 pts** failure to use onto definition
 - 2 pts weak / vague reasoning onto

Exercise 7.2.18 5 / 5 pts

- ✓ 0 pts Correct
 - **5 pts** no answer
 - **5 pts** illegible
 - **5 pts** wrong problem
 - 1 pt failure to comment on x=/1
 - **1 pt** minor algebraic error
 - **1 pt** incomplete
 - 2 pts weak / vague reasoning

Question 16

Exercise 7.2.22b 5 / 5 pts

- ✓ 0 pts Correct
 - 5 pts no answer
 - **5 pts** illegible
 - **5 pts** wrong problem
 - 5 pts incorrect yes/no
 - **2 pts** did not show how to reach a positive number
 - 2 pts did not show how to reach a negative number
 - 1 pt did not show how to reach 0

Question 17

Exercise 7.2.24a 4 / 4 pts

- ✓ 0 pts Correct
 - 4 pts no answer
 - 4 pts illegible
 - 4 pts wrong problem
 - 4 pts incorrect
 - 3 pts incorrect counterexample
 - 2 pts vague/weak explanation

Exercise 7.3.5 2 / 2 pts

- ✓ 0 pts Correct
 - **2 pts** no answer / incorrect
 - **2 pts** illegible
 - 2 pts wrong problem

Question 19

Exercise 7.3.7 3 / 3 pts

- ✓ 0 pts Correct
 - 3 pts no answer
 - 3 pts illegible
 - 3 pts wrong problem
 - 1 pt incorrect on (1)
 - 1 pt incorrect on (2)
 - 1 pt incorrect on (3)

Question 20

Exercise 7.3.11 6 / 6 pts

- ✓ 0 pts Correct
 - 3 pts failure to prove 1 identity
 - **3 pts** did not reduce both compositions completely to x
 - 1.5 pts did not reduce 1 composition completely to x
 - 6 pts no answer
 - **6 pts** illegible
 - **6 pts** wrong problem
 - **3 pts** Need to show these compositions give the identity for every x except 1.

Exercise 7.3.17 6 / 6 pts

- ✓ 0 pts Correct
 - 2 pts weak / vague explanation
 - 4 pts incorrect counterexample
 - 6 pts incorrect yes/no
 - 6 pts no answer
 - **6 pts** illegible
 - **6 pts** wrong problem

Question 22

Exercise 7.3.24 6 / 6 pts

- ✓ 0 pts Correct
 - **6 pts** no answer
 - **6 pts** illegible
 - 6 pts wrong problem
 - 1 **pt** incorrect $g\circ f$
 - **1 pt** incorrect $(g \circ f)^{-1}$
 - **1 pt** incorrect g^{-1}
 - **1 pt** incorrect f^{-1}
 - **1 pt** incorrect $f^{-1} \circ g^{-1}$
 - 1 pt incorrect relationship

Question 23

Exercise 7.4.9 0 / 4 pts

- 0 pts Correct
- 4 pts no answer
- 4 pts illegible
- ✓ 4 pts wrong problem
 - 2 pts mapping is not shown to be onto
 - 2 pts mapping is not shown to be one-to-one
 - 1 pt arithmetic error / weak reasoning

- ✓ 0 pts Correct
 - 3 pts no answer
 - 3 pts illegible
 - 3 pts wrong problem
 - 3 pts did not use a mapping
 - 1.5 pts mapping is not shown to be onto
 - 1.5 pts mapping is not shown to be one-to-one
 - 2 pts arithmetic error / weak reasoning

- 0 pts Correct
- 3 pts no answer
- 3 pts illegible
- 3 pts wrong problem
- ✓ 3 pts both incorrect examples
 - 1.5 pts only 1 correct example
- Remember, for a function f from the integers to the integers, we can only produce an integer when given an integer input.

When f(x) = sqrt(x), f(2) = sqrt(2), which is not an integer.

Similarly, when $f(x) = e^x$, f(1) = e, which is also not an integer.

Remember that by definition of function, we need to be able to map any element of our domain to some element of our co-domain. However, in both of your examples, we have some integer input which outputs an non-integer. Hence, we do not have a function from the integers to the integers.

I also worked with the following students (provide EMLPIDs only)

EMPLID	EMPLID	EMPLID	
EMPLID	EMPLID EMPLID		
EMPLID EMPLID		EMPLID	
EMPLID	EMPLID	EMPLID	

My answers came in part or in full from the following sources

Put your answer in each indicated box. Answers must be handwritten, legible and use correct notation. Study the answers in Appendix A to similar problems so you know what your approach should be.

Larger boxes indicate that you are expected to provide substantial detail.

10. Exercise 7.1.16

Assume (F-G) = (G-F). Then (F-G)(x) = G(x) - F(x). However, $(F-G_1)(x) = -(G(x) - F(x))$. Since our assumption led to a contradiction, $(F-G_1) \neq (G-F)$

11. Exercise 7.1.29b

H(00110,10111)	00110	1+1=7	\overline{Z}
----------------	-------	-------	----------------

12. Exercise 7.1.39b g(A)

{ a 3	

g(X)

9	(0)			
5	١,	Z	,33	

$g^{-1}(Y)$ $\left\langle 1, 2, 3, 4 \right\rangle = X$

13. Exercise 7.2.6b

 $a^{-1}(C)$

g is one-to-one
because
$$\forall x \in X$$
, there
exists exactly one
 $\exists \in Y$ such that
 $g(x) = g$

g is onto because by EY, 3x EX such

onto

H is not one-to-one because H(b)=y and H(c)=y and this Violates the definition of a one-to-one function

H is not onto because x and 2 dre both elements of Y that have no inverse image in the domain of H

15. Exercise 7.2.18
Theorem: s(x) = x+1 for all xf is a one to one further Suppose f(x,) = f(x,) We must show x, = xz By substitution, $f(x_i) = \frac{x_i + 1}{x_i - 1}$ f (xz) = xz+1 Since $f(x_1) = f(x_2), \frac{x_1+1}{x_1-1} = \frac{x_2+1}{x_2-1}$ By cross multiplying, we get $(x_1+1)(x_2-1)=(x_2+1)(x_1-1)$ By factoring, we get (x,)(xz) + (xz) - (x,) /= (x,)(xz) - (xx) + (x,) (x1)(x2)+(x2)-(x1)=(x1)(x2)-(x2)+(x1) $(x_1)_-(x_1)_-(x_1)_-(x_1)$ Since $x_1 = x_2$, $f(x_1) = f(x_2)$ and f(x) = x+1 for all x+1 is a one to one RED

Theorem: Let S be the set of all strings of 0's and 1's and define $D:S \to \mathbb{Z}$ for all ses D(s): the number of 1's minus the number of 0's We must show D is onto.

Proof:

Let a be any particular integer

We must show D(n) = a

Consider the following string of O's and 1's

"1111...."

y one zero

(ati) ones

Since we have (ati) 1's and one 0, D(s) = at(-1 = a)Since D(s) = a, $\exists_s \in S \ni D(s) = a$ Since we used a generic particular, we know

that $\forall x \in \mathbb{Z}$, $\exists_S \in S$ such that D(s) = xBy definition of onto, D(s) is onto

QED

N is not one-to-one

Since s, \$ Sz byt W(s,) = W(sz), N(s) is not one -to-one

QED

18. Exercise 7.3.5

$$(f \circ f)(x) = x$$

14(7)=6(7)= 12 M(12)=12 mod 4=0

19. Exercise 7.3.7 $(K \circ H)(0)$

0

 $(K \circ H)(1)$

2

 $(K \circ H)(2)$

Ò

20. Exercise 7.3.11

Check that noth compositions of H and Hi give the identity function

$$\left(H \circ H^{-1}\right) \left(x\right) = \frac{\left(\frac{x+1}{x-1}\right) + 1}{\left(\frac{x+1}{x-1}\right) - 1} = \frac{\left(x+1\right) + \left(x-1\right)}{\left(x+1\right) - \left(x-1\right)}$$

$$= \frac{7x}{7} = x = I_{R}(x)$$

$$\frac{\left(\frac{x+1}{x-1}\right)+1}{\left(\frac{x+1}{x-1}\right)-1} = \frac{\left(\frac{x+1}{x-1}\right)+\left(\frac{x-1}{x-1}\right)}{\left(\frac{x+1}{x-1}\right)-\left(\frac{x-1}{x-1}\right)} = \frac{2x}{2} = x$$

Hence, for all x in Ph, (HoH')(x) and (H'OH)(x) both give IR(x)

Counter example: X= {d} Y= {b, c} Z= {a}

(gof) is onto because every element in Z has an element in Y that maps to it.

f is not onto because b is an element of Y and there exists no element in X that maps to b.

22. Exercise 7.3.24
$$(g \circ f)$$

$$f^{-1} \qquad \begin{array}{c} \xi(x) = x + 3 \\ \times \times \xi(x) + 1 \end{array} \qquad \begin{array}{c} \xi'(x) = x - 3 \\ -(x + 3) \end{array}$$

$$(g \circ f)^{-1}$$

$$-x-3$$

$$\zeta'(x) = x - \gamma$$

$$f^{-1} \circ g^{-1}$$

$$-(x+3)$$

How
$$(g\circ f)^{-1}$$
 and $f^{-1}\circ g^{-1}$ are related

$$|y \circ f|^{-1} = -x - 3 = -(x + 3)$$

 $|f' \circ g'| = -(x + 3)$
 $|f' \circ g'| = -(x + 3)$
 $|f' \circ g'| = -(x + 3)$

23. Exercise 7.4.9

Consider Zt and Znonney We must show that 121 = 12 nomneg Define Zt -> Znonney by the rule &(x) = x-1 We must show that f(s) has a one-to-one correspondence Suppose f(x) = f(x2)

By substitution,
$$x, -1 = x_2 - 1$$

 $+1$
 $+1$
 $+1$

Since x, =xz, f(x) has a one to one correspondence By definition of equal cardinality, since 5(x) has a one to one correspondence, |Zt | = |Z|

QED

Theorem: $S = \{x \in \mathbb{R} \mid 0 \leq x \leq 1\}$ $W = \{x \in \mathbb{R} \mid a \leq x \leq b\}$ Prove that S and W have the same cardinality

Proof:

Let a, b any real numbers such that $a \leq b$ Define $S \to W$ by the rule S(x) = x + a for all real numbers in S.

We must show that S(x) has a one to one cervespondence.

Suppose S(x) = S(x)By substitution, $X = X \times X \times A$ $X = X \times X \times A$ Since $X = X \times X \times A$ Since $X = X \times X \times A$ Since there is a one to one correspondence between S and W, by definition of equal eardinality, set S has the same cardinality as set W

25. Exercise 7.4.20

Example 1: onto because all integers $f(x) = \sqrt{x}$ in $(-\infty, 0)$ have no inverse image $f(x) = e^{x}$ onto because all integers $f(x) = e^{x}$ onto because all integers in $(-\infty, 0]$ have no

Colution