Práctica 2: Introducción al Modelamiento computacional usando inversa de una matriz.

1. ¿Qué significa matriz inversa en el modelamiento computacional?

La matriz inversa se utiliza principalmente para resolver sistemas de ecuaciones lineales en la forma:

$$A \cdot X = B$$

donde:

- A es la matriz de coeficientes (cuadrada e invertible).
- X es el vector (o matriz) de incógnitas.
- ullet B es el vector (o matriz) de **resultados**.

La solución es:

$$X = A^{-1} \cdot B$$

Esto permite modelar y resolver problemas de ingeniería, economía, física y ciencias sociales.

2. Aplicaciones de matriz inversa en el modelamiento

- Ingeniería eléctrica: Resolver circuitos con múltiples mallas y nodos (Leyes de Kirchhoff).
- Economía: Modelos insumo-producto de Leontief para analizar interdependencia entre sectores.
- Mecánica estructural: Resolver desplazamientos y fuerzas en vigas, pórticos y estructuras.
- Computación gráfica: Transformaciones geométricas (rotación, escala, traslación en 3D).
- Big Data / Machine Learning: En regresión lineal múltiple, la fórmula de estimación usa la inversa: $\hat{\beta} = (X^T X)^{-1} X^T y$

3. Ejemplos aplicados

Supongamos una economía con 2 sectores: Agricultura (A) e Industria (I). Cada sector consume parte de lo que produce el otro.

$$\begin{bmatrix} A \\ I \end{bmatrix} = \begin{bmatrix} 0.3 & 0.2 \\ 0.4 & 0.1 \end{bmatrix} \begin{bmatrix} A \\ I \end{bmatrix} + \begin{bmatrix} 50 \\ 30 \end{bmatrix}$$

La matriz inversa permite hallar la **producción total necesaria** para satisfacer la demanda externa.

4. Ventajas y limitaciones

- Preciso para sistemas pequeños y modelos bien condicionados.
- Permite análisis matricial directo y elegante.
- ➤ Para matrices muy grandes, calcular la inversa es costoso y numéricamente inestable → en esos casos se usan métodos iterativos (LU, Cholesky, Jacobi, Gauss-Seidel).

5. Sistemas de ecuaciones lineales, usando matriz inversa

Ejercicio 1

$$\begin{cases} 2x+y=5\\ 3x-2y=4 \end{cases} \Rightarrow A = \begin{pmatrix} 2 & 1\\ 3 & -2 \end{pmatrix}, B = \begin{pmatrix} 5\\ 4 \end{pmatrix}$$

 $\det(A) = -7 \neq 0.$

$$A^{-1}=rac{1}{-7}inom{-2}{-3}inom{-1}{2}\Rightarrow X=A^{-1}B=inom{2}{1}$$

Solución: x = 2, y = 1.

Ejercicio 2

$$egin{cases} 4x-y=1 \ -2x+3y=7 \end{cases} \quad \Rightarrow \quad A=egin{pmatrix} 4 & -1 \ -2 & 3 \end{pmatrix}, \ B=egin{pmatrix} 1 \ 7 \end{pmatrix}$$

 $\det(A) = 10 \neq 0.$

$$A^{-1}=rac{1}{10}egin{pmatrix} 3 & 1 \ 2 & 4 \end{pmatrix} \Rightarrow X=A^{-1}B=egin{pmatrix} 1 \ 3 \end{pmatrix}$$

Solución: x = 1, y = 3.

Ejercicio 3

$$\begin{cases} x+y+z=6 \\ 2x-y+3z=14 \\ -x+4y+z=7 \end{cases} \Rightarrow A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ -1 & 4 & 1 \end{pmatrix}, B = \begin{pmatrix} 6 \\ 14 \\ 7 \end{pmatrix}$$

 $\det(A) = -11 \neq 0.$

$$A^{-1} = egin{pmatrix} rac{13}{11} & -rac{3}{11} & -rac{4}{11} \ rac{5}{11} & -rac{2}{11} & rac{1}{11} \ -rac{7}{11} & rac{5}{11} & rac{3}{11} \end{pmatrix}, \quad X = A^{-1}B = egin{pmatrix} rac{8}{11} \ rac{9}{11} \ rac{49}{11} \end{pmatrix}$$

Solución: $x=\frac{8}{11},\;y=\frac{9}{11},\;z=\frac{49}{11}.$

Ejercicio 4

$$\begin{cases} 3x + y - z = 1 \\ 2x + 4y + z = 11 \\ -x + 2y + 5z = 27 \end{cases} \Rightarrow A = \begin{pmatrix} 3 & 1 & -1 \\ 2 & 4 & 1 \\ -1 & 2 & 5 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 11 \\ 27 \end{pmatrix}$$

 $\det(A) = 35 \neq 0.$

$$A^{-1} = egin{pmatrix} rac{18}{35} & -rac{1}{5} & rac{1}{7} \ -rac{11}{35} & rac{2}{5} & -rac{1}{7} \ rac{8}{35} & -rac{1}{5} & rac{2}{7} \end{pmatrix}, \quad X = A^{-1}B = egin{pmatrix} rac{76}{35} \ rac{8}{35} \ rac{201}{35} \end{pmatrix}$$

Solución: $x=\frac{76}{35},\;y=\frac{8}{35},\;z=\frac{201}{35}.$

Ejercicio 5

$$\begin{cases} 4x - y + 2z = 3 \\ x + 3y + z = 10 \\ 2x - y + 5z = 7 \end{cases} \Rightarrow A = \begin{pmatrix} 4 & -1 & 2 \\ 1 & 3 & 1 \\ 2 & -1 & 5 \end{pmatrix}, B = \begin{pmatrix} 3 \\ 10 \\ 7 \end{pmatrix}$$

 $\det(A) = 53 \neq 0.$

$$A^{-1} = \begin{pmatrix} rac{16}{53} & rac{3}{53} & -rac{7}{53} \\ -rac{3}{53} & rac{16}{53} & -rac{2}{53} \\ -rac{7}{53} & rac{2}{53} & rac{13}{53} \end{pmatrix}, \quad X = A^{-1}B = \begin{pmatrix} rac{29}{53} \\ rac{137}{53} \\ rac{90}{53} \end{pmatrix}$$

Solución: $x=\frac{29}{53},\;y=\frac{137}{53},\;z=\frac{90}{53}.$

Ejercicio 6

$$\begin{cases} 2x + 3y + z = 1 \\ -y + 4z = 7 \\ x - 2y + 3z = 5 \end{cases} \Rightarrow A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & -1 & 4 \\ 1 & -2 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 \\ 7 \\ 5 \end{pmatrix}$$

 $\det(A) = 23 \neq 0.$

$$A^{-1} = egin{pmatrix} rac{5}{23} & -rac{11}{23} & rac{13}{23} \ rac{4}{23} & rac{5}{23} & -rac{8}{23} \ rac{1}{23} & rac{7}{23} & -rac{2}{23} \end{pmatrix}, \quad X = A^{-1}B = egin{pmatrix} -rac{7}{23} \ -rac{1}{23} \ rac{40}{23} \end{pmatrix}$$

Solución: $x=-rac{7}{23},\; y=-rac{1}{23},\; z=rac{40}{23}.$

Ejercicio 7

Dado el siguiente sistema de ecuaciones lineales, expréselo en forma matricial 2x2 y defina su solución usando pseudocódigo

$$\begin{cases} 2x + y = 5 \\ x - y = 1 \end{cases}$$

Ejercicio 8

Dado el siguiente sistema de ecuaciones lineales, expréselo en forma matricial 3x3 y defina su solución usando pseudocódigo

$$\begin{cases} x + y + z = 6 \\ 2x - y + 3z = 14 \\ -x + 4y + z = 7 \end{cases}$$