Khôlles d'informatique, Saison 2.

 $\xrightarrow[\text{programme de colle} \to \text{fin}]{} \text{Avril}$

Résumé

Dans ce document LATEX, on donne des preuves complètes des questions de cours à connaître :)

- Ensemble bien fondé, définition et preuve.
- Ensembles construits inductivement.
- Théorème d'induction structurelle.
- Forme normale négative.
- Formules de De Morgan avec tables de vérité (trivial).

FIGURE 1 – La majorité à voté pour le C dans le sondage (brain rot)

Questions de cours :

Ensemble bien fondé.

Soit E un ensemble ordonné par la loi \leq . Il y a équivalence entre :

- 1. Tout sous-ensemble **non-vide** de E admet un élément minimal.
- 2. Toute suite infinie décroissante de E est stationnaire.

Preuve.

 $1 \Longrightarrow 2 : \text{Soit } (u_n)_{n \in \mathbb{N}}$ une suite infinie décroissante de E.

Soit $F = \{u_n \mid n \in \mathbb{N}\} \subset E$.

Alors $\exists k \in \mathbb{N} \mid u_k = \min(F)$, or F est décroissante donc $\forall n \geq k, \ u_n = u_k$.

On a bien montré que cette suite est stationnaire.

 $2 \Longrightarrow 1 : \text{Soit } F \subset E \mid F \neq \emptyset.$

On définit (u_n) telle que $u_0 \in F$ et u_{n+1} soit le prédécesseur de u_n par \leq s'il existe, sinon u_n .

Par construction, (u_n) est infinie et décroissante donc stationnaire : $\exists k \in \mathbb{N} \ \forall n \geq k, \ u_n = u_k$.

On en déduit que u_k n'a pas de prédécesseur par \leq , c'est le minimum de F.

On a bien montré l'équivalence.

Définition inductive d'un ensemble.

Soit E un ensemble non vide. Une définition de $X \subseteq E$ consiste à se donner : \odot Un ensemble $B \subseteq E$ non vide d'assertions.

 \odot Un ensemble R de règles : $\forall r_i \in R, \ r_i : E^{n_i} \to E$ avec n_i l'arité de $r_i.$ Théorème du point fixe (inclus dans la question de cours):

Il existe un plus petit sous-ensemble X de E tel que :

(B) $B \subset X$: les assertions sont dans X.

 $(I) \ \forall r_i \in R, \ \forall (x_1, ..., x_{n_i}) \in X^{n_i}$ on a $r_i(x_1, ..., x_{n_i}) \in X$ avec n_i l'arité de $r_i : X$ est stable par les règles.

Soit \mathcal{F} l'ensemble des parties de E vérifiant (B) et (I).

On considère X l'intersection de tous les éléments de \mathcal{F} :

$$X = \bigcap_{Y \in \mathcal{F}} Y.$$

Puisque $\forall Y \in \mathcal{F}, B \subset Y$, on en déduit que $B \subset X$. On a donc vérifié (B).

Soit $r_i \in R$ et $(x_1, ..., x_{n_i}) \in X^{n_i}$.

Remarquons que $\forall Y \in \mathcal{F}, x_1, ..., x_{n_i} \in Y$, or les Y sont stables par les règles d'où $\forall Y \in \mathcal{F}, r_i(x_1, ..., x_{n_i}) \in Y$.

Puisque X est leur intersection, $r_i(x_1,...,x_{n_i}) \in X$ et X vérifie alors (I). C'est donc le plus petit ensemble vérifiant (B) et (I) par construction.

Théorème d'induction structurelle.

Soit $X \subseteq E$ défini inductivement (cf question précédente) et \mathcal{P} un prédicat sur E. Si on a que:

(B) $\mathcal{P}(x)$ est vraie pour tout $x \in B$.

(I) \mathcal{P} est héréditaire : $\forall r_i \in R, \ \forall (x_1, ..., x_{n_i}) \in E^{n_i}, \ \mathcal{P}(x_1), ..., \mathcal{P}(x_{n_i}) \Longrightarrow \mathcal{P}(r_i(x_1, ..., x_{n_i})).$

Alors $\mathcal{P}(x)$ est vraie pour tout $x \in X$. Preuve.

On suppose (B) et (I), montrons que $\mathcal{P}(x)$ est vraie pour tout $x \in E$.

Soit $Y = \{x \in E \mid P(x)\}$. Alors $B \subset Y$ d'après (B) et Y est stable par R d'après (I).

On a alors $X \subset Y$ donc $\forall x \in X$, $\mathcal{P}(x)$ est vrai.

Forme normale négative. Définition.

La forme normale négative de φ est une formule équivalente à φ où les négations portent exclusivement sur les littéraux. — $nnF(\varphi) = \varphi \text{ si } \varphi \text{ est un littéral.}$

- $nnF(\neg \varphi) = \neg \varphi \text{ si } \varphi \text{ est un littéral.}$
 - $\operatorname{nnF}(\neg \neg \varphi) = \varphi$ (Facile à oublier attention)
 - $nnF(\varphi \wedge \psi) = nnF(\varphi) \wedge nnF(\psi)$. (Pareil pour la disjonction)
 - $\operatorname{nnF}(\neg(\varphi \wedge \psi)) = \operatorname{nnF}(\neg\varphi) \vee \operatorname{nnF}(\neg\psi)$. (Pareil pour la disjonction)

Preuve. Proposition : $nnF(\varphi)$ est sous forme normale négative et $\varphi \equiv nnF(\varphi)$.

<u>Cas de base</u>: Si φ est une variable propositionnelle, $nnF(\varphi) = \varphi$ et $nnF(\neg \varphi) = \neg \varphi$, donc c'est vrai.

<u>Hérédité</u>: Soient φ et ψ deux formules telles que $nnF(\varphi) \equiv \varphi$ et $nnF(\neg \varphi) \equiv \neg \varphi$ et $nnF(\psi) \equiv \psi$ et $nnF(\neg \psi) \equiv \neg \psi$.

Soit v une valuation de φ et ψ . On a $nnF(\varphi \wedge \psi) = nnF(\varphi) \wedge nnF(\psi)$ donc c'est bien sous forme normale négative par hypothèse.

De plus, $v \models \text{nnF}(\varphi \land \psi) = \iff v \models \text{nnF}(\varphi) \land \text{nnF}(\psi) \iff v \models \varphi \text{ et } v \models \psi \iff v \models \varphi \land \psi.$

On a $nnF(\neg(\varphi \land \psi)) = nnF(\neg \varphi) \lor nnF(\neg \psi)$ donc c'est bien sous forme normale négative par hypothèse.

 $\text{Et } v \vDash \text{nnF}(\neg(\varphi \land \psi)) \iff v \vDash \text{nnF}(\neg\varphi) \lor \text{nnF}(\neg\psi) \iff v \vDash \neg\varphi \text{ ou } v \vDash \neg\psi \iff v \vDash \neg\varphi \lor \neg\psi \iff v \vDash \neg(\varphi \land \psi).$ Même raisonnement pour la disjonction.

Par théorème d'induction, c'est vrai pour toute formule φ .

 $1 \, \mathrm{sur} \, 1$