Final Project

Tina Huang, Gunnar Mein, Jeff Li 7/27/2020

```
Preprocessing the data
```

```
#import files
rote_cov_original <- read.csv(file="/Users/jeff/Documents/MIDS/W241/logs/rote_cov.csv", sep=',') #covar
rote_test_original <- read.csv(file="/Users/jeff/Documents/MIDS/W241/logs/rote_test.csv", sep=',') #tes
rote_cov_original$gender
     [1] <NA>
                      F
                            F
                                  F
                                         F
                                               F
                                                            F
                                                                  F
                                                                        F
##
               Μ
                                                     М
                                                            F
                                                                  F
                      F
                                         F
                                                                        М
##
    [12] M
               М
                            М
                                  Μ
                                               М
                                                     М
##
   [23] F
               F
                      F
                            М
                                  F
                                         F
                                               М
                                                     F
                                                            F
                                                                        F
##
   [34] M
               F
                      Μ
                            F
                                  F
                                         F
                                               F
                                                     F
                                                            F
                                                                  other F
##
   [45] F
               F
                      М
                            М
                                  F
                                         F
                                               М
                                                     F
                                                            F
                                                                  F
                                                                        М
               F
                      F
                                  F
                                         F
                                                            F
## [56] F
                            F
                                               F
                                                     М
                                                                  Μ
                                                                        М
## [67] other M
                      F
                            F
                                  F
                                         F
                                               <NA>
                                                     Μ
                                                           F
                                                                  F
                                                                        F
   [78] F
               F
                                         F
                                                                  F
##
                      F
                            М
                                  М
                                               М
                                                     F
                                                            <NA>
                                                                        F
## [89] F
               F
                      F
                            М
                                  Μ
                                         <NA>
                                               М
                                                     М
                                                            <NA>
                                                                  М
                                                                        F
## [100] M
               F
                            М
                                  F
                                         F
                                               F
                                                     М
                                                                  F
                                                                        F
## [111] F
               F
                      F
                            Μ
                                  F
                                         F
                                               М
                                                     F
                                                                  F
                                                                        F
                                                            М
               F
                                  F
                                                     F
## [122] F
                      М
                            F
                                         Μ
                                               <NA>
                                                            М
                                                                  Μ
                                                                        М
## [133] F
               F
                      F
                            F
                                  F
                                                     F
                                                            М
                                                                        F
                                         Μ
                                               Μ
                                                                  М
## [144] M
               F
                      F
                            F
                                  Μ
                                               F
                                                     М
                                                            F
                                                                  < NA >
                                                                        Μ
## [155] F
               F
                            F
                                  F
                                               F
                                                     F
                                                            F
                                                                  F
                      Μ
                                         Μ
                                                                        Μ
## [166] F
               М
                            М
                                  F
                                         F
                                               F
                                                     F
                                                                  F
                                                                        F
                      М
                            F
## [177] M
               М
## Levels: F M other
#create copies
rote_cov <- rote_cov_original</pre>
rote_test <- rote_test_original
#convert unix epoch time to datetime
rote_cov$session_start_time <- as.POSIXct(rote_cov$session_start_time/1000, origin="1970-01-01")
rote_cov$cov_submit_time <- as.POSIXct(rote_cov$cov_submit_time/1000, origin="1970-01-01")
#test
rote_test$session_start_time <- as.POSIXct(rote_test$session_start_time/1000, origin="1970-01-01")
rote_test$test_submit_time <- as.POSIXct(rote_test$test_submit_time/1000, origin="1970-01-01")
rote_test$test_time <- rote_test$test_submit_time - rote_test$session_start_time
###remove rows with any NAs in the answers(indicates they did not complete the test)
rote_test <- rote_test %>% drop_na("a11", "a12", "a13", "a14", "a21", "a22", "a23", "a24")
rote_test_baseline <- rote_test %>% filter(test == 'baseline')
rote_test_experiment <- rote_test %>% filter(test == 'experiment') %>% select('session_id','item_id1','
rote_test <- inner_join(rote_test_baseline, rote_test_experiment, by="session_id" )</pre>
```

```
###remove rows with missing covariates
#covert age, remove outliers for age
rote_cov$age <- ifelse(as.numeric(as.character(rote_cov$age)) >100, NA, as.numeric(as.character(rote_cov$age))
## Warning in ifelse(as.numeric(as.character(rote_cov$age)) > 100, NA,
## as.numeric(as.character(rote_cov$age))): NAs introduced by coercion
## Warning in ifelse(as.numeric(as.character(rote_cov$age)) > 100, NA,
## as.numeric(as.character(rote_cov$age))): NAs introduced by coercion
rote cov <- rote cov %>% drop na("age")
#fix gender
rote_cov$gender <- ifelse(rote_cov$gender == 'other', NA, rote_cov$gender)
#on test file, establish if testee answer matches actual answer. if it matches, set var to 1, else 0.
#notation will be o11, o12, etc (o is for outcome)
#x = baseline
#y = treatment
rote_test$011x <- ifelse(rote_test$a11.x == rote_test$c11.x, 1, 0)</pre>
rote_test$012x <- ifelse(rote_test$a12.x == rote_test$c12.x, 1, 0)</pre>
rote_test$013x <- ifelse(rote_test$a13.x == rote_test$c13.x, 1, 0)</pre>
rote_test$o14x <- ifelse(rote_test$a14.x == rote_test$c14.x, 1, 0)
rote_test$021x <- ifelse(rote_test$a21.x == rote_test$c21.x, 1, 0)</pre>
rote_test$022x <- ifelse(rote_test$a22.x == rote_test$c22.x, 1, 0)</pre>
rote_test$023x <- ifelse(rote_test$a23.x == rote_test$c23.x, 1, 0)</pre>
rote_test$024x <- ifelse(rote_test$a24.x == rote_test$c24.x, 1, 0)</pre>
rote_test$011y <- ifelse(rote_test$a11.y == rote_test$c11.y, 1, 0)</pre>
rote_test$012y <- ifelse(rote_test$a12.y == rote_test$c12.y, 1, 0)</pre>
rote_test$013y <- ifelse(rote_test$a13.y == rote_test$c13.y, 1, 0)</pre>
rote_test$014y <- ifelse(rote_test$a14.y == rote_test$c14.y, 1, 0)</pre>
rote_test$021y <- ifelse(rote_test$a21.y == rote_test$c21.y, 1, 0)</pre>
rote_test$022y <- ifelse(rote_test$a22.y == rote_test$c22.y, 1, 0)</pre>
rote_test$023y <- ifelse(rote_test$a23.y == rote_test$c23.y, 1, 0)</pre>
rote_test$024y <- ifelse(rote_test$a24.y == rote_test$c24.y, 1, 0)</pre>
rote_test$score_pre <- rote_test$o11x + rote_test$o12x + rote_test$o13x + rote_test$o14x + rote_test$o2
rote_test$score_post <- rote_test$o11y + rote_test$o12y + rote_test$o13y + rote_test$o14y + rote_test$o
rote_test$score = rote_test$score_post - rote_test$score_pre
#on covariates file, sum knowledge scores together
rote_cov$knowledge_cov_pre <- rote_cov$knowledge1 + rote_cov$knowledge2
rote_cov$knowledge_cov_post <- rote_cov$knowledge3 + rote_cov$knowledge4</pre>
rote_cov$prior_knowledge <- rote_cov$knowledge_cov_post + rote_cov$knowledge_cov_pre
```

```
#convert necessary columns to boolean
rote_test$treat <- ifelse(rote_test$treat == "false", 0 , 1)</pre>
rote_cov$treat <- ifelse(rote_cov$treat == "false", 0 , 1)</pre>
#qet distinct ids
rote_test <- rote_test[!duplicated(rote_test$session_id),]</pre>
rote_cov <- rote_cov[!duplicated(rote_cov$session_id),]</pre>
#inner join 2 datasets
#dataset <- merge(rote_test, rote_cov, by="session_id")</pre>
dataset <- inner_join(rote_test, rote_cov, by="session_id" )</pre>
#set date filter based on start time in test file
\#dataset \leftarrow dataset \%\% filter(session\_start\_time.x > as.POSIXct("2020-07-24 20:00:00", tz="UTC"))
#names(dataset)
dataset$treat <- dataset$treat.x</pre>
dataset$cluster <- dataset$cluster.x</pre>
dataset$gender <- as.factor(dataset$gender)</pre>
dataset <- dataset %>% filter %>% select("session_id", "score", "cluster", "gender", "age", "prior_know
dataset
##
                             session_id score cluster gender age
## 1 8080E2E61BA04074F123155741AC29DC
                                                               45
## 2 BE7C20F73505C684DB5613B8702BD522
                                                               28
                                            1
                                                     1
                                                            1
## 3 064D45ABDE08A0D54486ED13C1D68AF8
                                            1
                                                     3
                                                               16
## 4 6B9C07A476F694235718EA94C6508183
                                            0
                                                            2 16
## 5 92420B60CDC088006B4EBD6A987EBC96
                                                           1 12
## 6 8D2E34E1E483BFF773B251ECFDE62B5F
                                                    5
                                                            1 47
                                            1
      2325C32B409A77D94A567A30AC10CA5E
                                                    8
                                            0
                                                            2
                                                    9
## 8 FABO3D46DC91AF5B99DE426D9AEA0EC0
                                            1
                                                           2 15
## 9 1928EFED669DCDA43C1BD334080236A2
                                            0
                                                    9
                                                           1 14
## 10 6745ECD9C1277AEA26BDA95E665CAF21
                                            5
                                                    9
                                                            2 17
## 11 63E05BB4DD40D44D7DE5CFFA3153AED5
                                            1
                                                   12
                                                            1 14
## 12 2ADDBD8896E5C047C98C535DD7CDF999
                                           -2
                                                   13
                                                            1 17
## 13 4AF077B5D24EDDF4E4D49A12BB9C6177
                                            3
                                                   14
                                                            1 41
## 14 DD33C6F35C1E827B3F9AD06788BCA9BB
                                            3
                                                   15
                                                               63
## 15 3CFC9161282449FC7BD90DC05F901DAB
                                           -1
                                                   17
                                                            1
                                                               76
## 16 49BB81A74413924A03557B74E29F2806
                                            1
                                                   17
                                                            2 14
## 17 04C1F3054F87E75D4D363A9951111D4A
                                           -2
                                                   18
                                                            1
                                                               25
## 18 3485ED0DBAF733278A3BFB83DA653F04
                                            0
                                                   18
                                                               53
## 19 E2459677B12BAE2E408B762EF2B0CC8E
                                            0
                                                   20
                                                            2
                                                               51
## 20 475194FA6304F78932F5284E1F640486
                                                   20
                                           -1
                                                               66
## 21 38E6A2DFF102F9455E176F258167C4FE
                                                   22
                                            4
                                                            1
                                                               57
## 22 E372B1841FD94EEBECA6507EBC14DDC6
                                            2
                                                   22
                                                               47
                                                   23
## 23 4E2735ED90C9046575C677CA36330E05
                                                            1 71
                                           -1
## 24 1476FF85858326B5E0EFA45AA6317ADE
                                           -1
                                                   25
```

1

26

<NA>

63

25 905FE7667B2194324F94799B10373867

##	26	5A7B6CA83415D68180997B9530C3B322	3	26	1	54
##		F02C166B557695209A66291BD8C7C856	1	28	2	20
			_		_	
##		32CBD7078FE07E4B8047646C22B16649	1	28	1	78
##		A3FC53816D85398412B197BA7049F0D2	2	31	1	16
##		E81DC439415506E8E3549FA62B2F413B	0	31	2	13
##		824DA446738C86622832369AA638CA6D	3	32	1	57
##	32		2	33	1	68
##	33	786F66640765B5AF05D5E5720B5F2047	0	34	1	49
##	34	12102021200020100220212	-1	34	2	51
##	35	1F535047E91A4CB67D3340F9DD0CB9AE	3	34	1	52
##	36	BCE5E44F9C43A861C04B6588ECFC159F	2	35	1	46
##	37	5F65C924B87622582E813461BEA6CEF7	2	36	1	36
##	38	1351282BCD808558B1E6ED75055B156B	1	37	1	15
##	39	DA2E595A20C90A8106C55D061656FD58	0	38	1	59
##	40	25BE1983FAB0B2D27249D82D3BAA78D5	0	47	1	58
##	41	7EB4375173CE1D60754C268126BBC383	1	51	2	28
##	42	D3E2C29452079030CB1AE27528E9933B	0	54	1	26
##	43	1F2A7B12E38C83E42A9388667AFD0B09	1	57	1	56
##	44	BFD05A52CFE2448237DCD8D7D16D5AD3	1	59	<na></na>	14
##	45	08F3AA64DF701A59ACA0EBC47BD43AC3	2	62	2	59
##	46	058A942D5B7BCA26FA21022250B4215D	3	63	2	15
##	47	0035AF289E4C2D1138C7604D6E6F38DD	-2	64	2	51
##	48	31BC9CCB20791DD7DC6B4D6949B1DD7A	2	65	2	14
##	49	D27D45D54928E2B91A731DFA05F87FA3	-2	69	2	49
##	50	28442876477B81BEE8215E779404D7F1	1	70	2	15
##	51	7C5A6167643790BEB8977A45C1A3E9DD	1	71	2	13
##	52	EE6B083787EB32506639F606EA93E485	2	71	1	58
##	53	4B4D37F587E02FEE9670368747ECA84E	-1	71	1	17
##	54	A8B09DB6C72A091211A69C6ACA8BF623	2	71	2	15
##	55	98E33A0EB89EA5474C49DC29A0FBD3C2	0	71	1	16
##	56	B5D24933BA864ECA7E7D063DC13A6E83	2	72	1	16
##	57	B28F476BBE6F22F97C0D6F17BEFF05AE	2	71	1	17
##	58	3B618E1B91A00E0C3C93D3D98BCEC573	-1	73	1	33
##	59	6A26FA4336DDCACF235AF69A4BA25EF2	0	74	2	13
##	60	DC61715E42F7E30B684FD46BACC2CE0B	2	75	1	14
##	61	F952A839AADD99D260358AE8867F3B49	4	76	2	13
##	62	80D039C450254B0E4F77E4F6C6E14063	-1	77	1	17
##	63	617BAE843ECEF4C89670EC204701CC2C	1	78	2	12
##	64	72280B554FB00F24A4CAF7559D745E0C	-1	79	1	15
##	65	470C0E8DEB9300796607BB6FBBCFABCE	-1	80	1	49
##	66	147E49AE5FA0B9DFEFA5E6D48687C82A	0	81	1	12
##	67	C855834D7D77F3FED4DE90146D1C7430	1	82	2	17
##	68	6F50CCE57A708A9B6B6569AF0B302867	1	84	1	57
##	69	1294B3E8C9BF3D9071052B15366F26C3	5	85	2	62
##	70	5C956E2AA2D0E4A2E467CDDAC0D1C8E9	1	88	2	15
##	71	41B5C35517F5E65B1A0D728832EB32C3	0	94	1	62
##	72	9C142756B1D62EFCD9D9ED185098E182	4	96	2	64
##	73	586C315A34BF6C8A7F4AA55CE4803082	3	99	2	39
##	74	023E66AA19197AC5F855675BAFDC6781	-1	100	2	17
##		62190AA63C5593940AE9EC43DBC06465	0	103	1	40
##		2D4940D3E41DF00C8FBBCBCE23B2AF1B	2	104	1	38
##		3FAA16956772693DEB7C33E7811B766A	2	104	1	15
##	78	OD8207EAD34EF0F6EEED6EF57481BC63	2	105	2	15
##	79	46CFBB8B8224FB327515F1484D70B6D5	2	106	2	14

##	80	684C06508AE4768	A4DA9C	94A2F6C5	181 -1	107	1	14
##	81	48FCFA6DB841FA30	CBFAOD	ODB43BABI	FA7 -1	108	2	44
##	82	C6060740C5A96867	7E0D2E8	835991D99	98D -1	112	1	45
##	83	821EAE2C2697881	ACB782	A2571B03	OBC 0	113	1	27
##	84	E1574C8B0BDBDDB3	3372D30	CEE38AD01	388 3	114	2	43
##	85	ABD65579A9903B39	991E1B	56A96A4B	920 2	119	1	46
##	86	30F28A2B7C942EA8	378B02	32151CC4	36E 0	120	1	55
##	87	2B50C2EC262722F	110F740	002E4D851	FA8 0	121	1	49
##	88	24B23FEA12428D6	A08CA47	7A19B812	5C5 1	123	2	50
##	89	29750BB5C4AD429I	338B8F	AADB94481	O6F 3	124	2	14
##	90	5AC3FFA5552AC1E	1C6035	16409291	440 -2	125	1	54
##	91	736869DD88381F17	7F21530	057D1D24	33F 5	126	1	35
		6A5A142F20A431DI				128	1	41
		68CB5B55A9EEE490				129	2	77
		6BAA9C401DACFB1				130	1	40
		4526FE620B1603D7				1	1	48
##		23B6FC073F89C8E				2	2	25
##	97	4918A2AD591290E				3	2	49
##		<pre>prior_knowledge</pre>		_	-			
##		9	0	3	2			
##		4	0	2	2			
##	_	8	0	4	5			
##		7	1	3	3			
##		4	1	3	3			
##		6	1	2	1			
##		6	0	4	3			
##		5	1	2	3			
##		5	1	5	3			
##		8	1	4	2			
##	12	11 10	1 1	4	4			
	13	4	0	2	1			
##		5	1	4	2			
	15	7	0	4	3			
##		8	0	3	2			
	17	4	0	3	1			
	18	5	0	5	3			
##		8	0	3	2			
##		7	0	4	2			
##		7	1	3	3			
	22	4	1	2	1			
##		5	0	4	2			
##		4	0	4	1			
##		5	1	4	3			
##		6	1	4	3			
##		5	0	2	1			
##		10	0	3	3			
##		7	1	2	2			
##		8	1	2	2			
##		6	1	3	3			
	32	8	1	4	2			
	33	4	1	4	2			
	34	13	1	4	1			
##		6	1	5	3			

## 36	4	1	3	3
## 37	10	0	3	3
## 38	5	1	4	4
## 39	5	1	4	2
## 40	5	0	4	3
## 41	10	1	4	1
## 42	12	1	4	3
## 43	4	1	4	3
## 44	7	1	3	3
## 45	4	1	3	4
## 46	8	1	3	1
## 47	8	0	4	2
## 48	9	1	2	1
## 49		0	3	
	9			1
## 50	8	0	3	3
## 51	13	0	5	3
## 52	7	0	5	3
## 53	5	0	2	3
## 54	9	0	3	3
## 55	9	0	3	3
## 56	9	1	3	4
## 57	6	0	3	2
## 58	4	1	1	3
## 59	9	1	5	1
## 60	4	1	3	1
## 61	9	0	4	3
## 62	8	0	5	3
## 63	8	1	4	3
## 64	6	0	5	2
## 65	8	1	5	2
## 66	10	1	4	3
## 67	4	0	3	1
## 68	7	1	4	1
## 69	4	0	3	1
## 70	10	1	3	1
## 71	7	1	2	2
## 72	8	1	4	1
## 73	13	1	4	3
## 74	10	0	3	2
## 75	4	0	3	1
## 76	8	0	4	3
## 77	7	0	5	3
## 78	7	1	2	3
## 79	9	0	4	3
## 80	4	0	4	3
## 81	7	0	3	2
## 82	NA	0	5	2
## 83	4	0	2	1
## 84	12	0	4	3
## 85	7	0	2	1
## 86	4	0	4	2
## 87	5	Ö	3	1
## 88	7	0	3	2
## 89	7	1	5	2
00	•	-	J	_

```
## 90
                                    3
                                              3
## 91
                     7
                            0
                                    3
                                              3
                                    3
## 92
                     4
                            0
                                              2
                    10
                            0
                                     4
## 93
                                              1
## 94
                     7
                            1
                                    3
                                              3
## 95
                     4
                            0
                                    3
                                              1
## 96
                            0
                                     2
                                              1
## 97
                                              2
#nrow(dataset)
#nrow(rote_test)
#nrow(rote_cov)
```

EDA, Regression modeling

```
#number of rows in the data
print(paste("After cleaning, the number of rows in our dataset is:", toString(nrow(dataset))))
[1] "After cleaning, the number of rows in our dataset is: 97"
print(paste("After cleaning, the number of observations in treatment is:", toString(sum(dataset$treat)))
[1] "After cleaning, the number of observations in treatment is: 47"
print(paste("After cleaning, the number of observations in control is:", toString(nrow(dataset) - sum(dataset)))
[1] "After cleaning, the number of observations in control is: 50"
ggplot(dataset, aes(x=age)) + geom_histogram())
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```



```
ggplot(dataset, aes(x=gender)) +
  geom_bar() +
  ggtitle("Distribution of Gender")
```

Distribution of Gender


```
#names(dataset)

#dataset
unique(dataset$gender)
```

```
stargazer(regression1, regression2,
    header = F,
    type = "latex",
    omit.table.layout= "n",
    keep.stat = c("adj.rsq", "n", "f", "ser", "aic", "wald"),
    se = list(sqrt(diag(clustered_errors1)),sqrt(diag(clustered_errors2))),
    star.cutoffs = c(0.05, 0.01, 0.001),
    title="Regression Results with Clustered Standard Errors")
```

Table 1: Summary Table of Data

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
score	97	0.979	1.671	-2	0	2	5
cluster	97	58.763	39.901	1	22	88	130
age	97	36.309	19.968	12	15	52	78
prior_knowledge	96	6.948	2.373	4.000	5.000	8.000	13.000
treat	97	0.485	0.502	0	0	1	1
reading	97	3.423	0.934	1	3	4	5
practice	97	2.278	0.933	1	1	3	5

Table 2: Regression Results with Clustered Standard Errors

	Dependent variable:			
	score			
	(1)	(2)		
treat	0.663^{*}	0.659^{*}		
	(0.327)	(0.319)		
age	0.006			
	(0.009)			
prior_knowledge	-0.027			
. – 0	(0.077)			
reading	-0.025			
	(0.184)			
gender2	0.712			
	(0.399)			
practice	0.153			
	(0.176)			
Constant	0.126	0.660**		
	(0.731)	(0.245)		
Observations	94	97		
Adjusted R^2	0.007	0.029		
Residual Std. Error	1.679 (df = 87)	1.646 (df = 95)		
F Statistic	1.112 (df = 6; 87)	3.884 (df = 1; 95)		