Projekt do předmětu MSP

December 11, 2022

Autor: Tereza Burianová, xburia28

```
[]: import numpy as np
from scipy import stats
import openpyxl as px
import statsmodels.api as sm
import pandas as pd
```

1 Úkol 1

Pro výpočty v úkolu 1 je využit X² - test dobré shody.

Je třeba získat skutečné četnosti z odpovědí respondentů (f_{real_j}) a teoretické četnosti (f_{teor_j}) pomocí bodového odhadu p:

p=x/n, kde x je celkový počet respondentů, kterým vyhovuje zimní čas, a n je celkový počet respondentů.

Jednotlivé teoretické četnosti pak lze získat vynásobením počtu respondentů v dané skupině bodovým odhadem p:

$$f_{\text{cor_j}} = p * n_j$$

Testovací kritérium lze pak vypočítat následujícím způsobem:

$$t = \sum_{j=1}^m \frac{(f_{real_j} - f_{teor_j})^2}{f_{teor_j}} \overset{as}{\sim} \mathbf{X}^2(m-q-1), \text{ kde m je počet tříd a q je počet odhadovaných parametrů}.$$

Doplněk kritického oboru lze vyjádřit následovně:

$$\bar{W}_{\alpha}=\left\langle 0,\mathbf{X}_{1-lpha}^{2}
ight
angle ,$$
 kde \mathbf{X}_{1-lpha}^{2} je kvantil Pearsonova rozdělení s m-q-1 stupni volnosti.

```
[]: # 2 velka mesta, 2 mala mesta, 3 obce, 1 okoli studenta
resp = np.array([1327, 915, 681, 587, 284, 176, 215, 34])
zimni = np.array([510, 324, 302, 257, 147, 66, 87, 15])
letni = np.array([352, 284, 185, 178, 87, 58, 65, 8])
stridat = np.array([257, 178, 124, 78, 44, 33, 31, 4])
beznazoru = np.array([208, 129, 70, 74, 6, 19, 32, 7])
resp_sk = np.array([np.sum(resp[:2]), np.sum(resp[2:4]), np.sum(resp[4:7])])
```

```
[]: def chisq(respondenti, testovane, odhad, st_volnosti):
    testovane_teor = respondenti * p
    print("Skutečné četnosti:", testovane)
    print("Teoretické četnosti: ", testovane_teor)
    t = np.sum(np.square(testovane - testovane_teor)/testovane_teor)
    print("Testovací kritérium: ", t)
    krit_obor = stats.chi2.ppf(0.95, df=st_volnosti)
    print("Doplněk kritického oboru: < 0,", krit_obor, ">")
```

a) H_0 : V městech, obcích a v okolí studenta je stejné procentuální zastoupení obyvatel, co preferují zimní čas.

 H_A : V městech, obcích a v okolí studenta není stejné procentuální zastoupení obyvatel, co preferují zimní čas.

Při ověřování následujících třech hypotéz (a), b) a c)) se pracovalo s 8 skupinami. Hodnota stupně volnosti bude 6, neboť je prováděn bodový odhad (tedy 8-1-1).

```
[]: p = np.sum(zimni)/np.sum(resp)
chisq(resp, zimni, p, 6)
```

```
Skutečné četnosti: [510 324 302 257 147 66 87 15]
Teoretické četnosti: [537.21640199 370.42427115 275.6928182 237.63830292
114.9732164
71.25100735 87.03958284 13.76439915]
```

Testovací kritérium: 20.704110374775837 Doplněk kritického oboru: < 0, 12.591587243743977 >

 $20,704 \notin \langle 0;12,592 \rangle$, tedy H_0 zamítáme.

b) H_0 : V městech, obcích a v okolí studenta je stejné procentuální zastoupení obyvatel, co preferují letní čas.

 H_A : V městech, obcích a v okolí studenta není stejné procentuální zastoupení obyvatel, co preferují letní čas.

```
[]: p = np.sum(letni)/np.sum(resp)
chisq(resp, letni, p, 6)
```

```
Skutečné četnosti: [352 284 185 178 87 58 65 8]
Teoretické četnosti: [382.78241289 263.938137 196.4392036 169.32424745 81.92178241 50.76842854 62.01825077 9.80753733]
```

Testovací kritérium: 6.932364791415857

Doplněk kritického oboru: < 0, 12.591587243743977 >

 $6,932 \in \langle 0;12,592 \rangle$, tedy H_0 nezamítáme.

c) H_0 : V městech, obcích a v okolí studenta je stejné procentuální zastoupení obyvatel, co preferují střídání času.

 H_A : V městech, obcích a v okolí studenta není stejné procentuální zastoupení obyvatel, co preferují střídání času.

```
[ ]: p = np.sum(stridat)/np.sum(resp)
chisq(resp, stridat, p, 6)
```

Skutečné četnosti: [257 178 124 78 44 33 31 4]

 $Teoretick\'e\ \ \breve{c}etnosti: \quad [235.58260251\ 162.44015169\ 120.89808011\ 104.21023939$

50.4185826

31.2453188 38.16899739 6.03602749]

Testovací kritérium: 13.058303417150736

Doplněk kritického oboru: < 0, 12.591587243743977 >

 $13,058 \notin \langle 0;12,592 \rangle$, tedy H_0 zamítáme.

d) H_0 : U větších měst, menších měst a obcí je stejné procentuální zastoupení obyvatel, co preferují zimní čas.

 H_A : U větších měst, menších měst a obcí není stejné procentuální zastoupení obyvatel, co preferují zimní čas.

Při ověřování následujících dvou hypotéz (d), e)) se pracuje se 3 skupinami, sloučenými podle větších měst, menších měst a obcí. Hodnota stupně volnosti bude tedy 1, neboť je prováděn bodový odhad (tedy 3-1-1).

```
[]: p = np.sum(zimni_sk)/np.sum(resp_sk)
chisq(resp_sk, zimni_sk, p, 1)
```

Skutečné četnosti: [834 559 300]

Teoretické četnosti: [906.97873357 512.9567503 273.06451613]

Testovací kritérium: 12.661948651569508

Doplněk kritického oboru: < 0, 3.841458820694124 >

 $12,66 \notin \langle 0;3,84 \rangle$, tedy H_0 zamítáme.

e) H_0 : U větších měst, menších měst a obcí je stejné procentuální zastoupení nerozhodnutelných obyvatel.

 H_A : U větších měst, menších měst a obcí není stejné procentuální zastoupení nerozhodnutelných obyvatel.

```
[]: p = np.sum(beznazoru_sk)/np.sum(resp_sk)
chisq(resp_sk, beznazoru_sk, p, 1)
```

Skutečné četnosti: [337 144 57]

Teoretické četnosti: [288.21887694 163.00692951 86.77419355]

```
Testovací kritérium: 20.688664757394136 
Doplněk kritického oboru: < 0, 3.841458820694124 > 20,69\notin\langle 0;3,84\rangle,\,{\rm tedy}\,\,H_0\,\,{\rm zamít\'ame}.
```

f) Na základě odpovědí z okolí studenta zkuste určit z dat, zda student prováděl výzkum ve větším městě, menším městě nebo v obci. Porovnejte výsledek se skutečností a okomentujte.

```
[]: np.set_printoptions(suppress=True)
     def chisq f(sk index):
         p_zimni = np.sum(zimni_sk[sk_index])/np.sum(resp_sk[sk_index])
         p_letni = np.sum(letni_sk[sk_index])/np.sum(resp_sk[sk_index])
         p_stridani = np.sum(stridat_sk[sk_index])/np.sum(resp_sk[sk_index])
         p_beznazoru = np.sum(beznazoru_sk[sk_index])/np.sum(resp_sk[sk_index])
         vyzkum = [zimni[7], letni[7], stridat[7], beznazoru[7]]
         celkem = np.sum(vyzkum)
         vyzkum_teor = [celkem*p_zimni, celkem*p_letni, celkem*p_stridani,__
      →celkem*p_beznazoru]
         print(stats.chisquare(f_obs = vyzkum, f_exp = vyzkum_teor, ddof=2))
     krit_obor = stats.chi2.ppf(0.95, df=2)
     print("Doplněk kritického oboru: < 0,", krit_obor, ">")
     print("HO: Student prováděl výzkum ve větším městě.")
     chisq_f(0)
     print("HO: Student prováděl výzkum v menším městě.")
     chisq_f(1)
     print("HO: Student prováděl výzkum v obci.")
     chisq_f(2)
```

```
Doplněk kritického oboru: < 0, 5.991464547107979 >
H0: Student prováděl výzkum ve větším městě.
Power_divergenceResult(statistic=2.438784599437811, pvalue=0.11836790712014167)
H0: Student prováděl výzkum v menším městě.
Power_divergenceResult(statistic=3.230669566985398, pvalue=0.07227113427356965)
H0: Student prováděl výzkum v obci.
Power_divergenceResult(statistic=6.947865988500661, pvalue=0.008391928065668765)
```

Na základě p-values lze zjistit, že hypotézy o provedení výzkumu ve větším nebo menším městě zamítnuty nebyly, naopak hypotéza o provedení výzkumu v obci byla zamítnuta. Tyto výsledky jsou srovnatelné s realitou, neboť výzkum byl prováděn v menším městě i větším městě, s převahou obyvatel z většího města. Dá se tedy vyvodit, že pozorované a dodané odpovědi souhlasí.

2 Úkol 2

a) Určení vhodného modelu.

Pro vytvoření modelu a další práci s ním byla využita knihovna statsmodels.

Daný model $Z = \beta_1 + \beta_2 X + \beta_3 Y + \beta_4 X^2 + \beta_5 Y^2 + \beta_6 X * Y$ může být zjednodušen až na model $Z = \beta_1$. Je vhodné odstranit nulové parametry pro zjednodušení modelu. Ty mohou být určeny

například hodnotou P>|t|, která značí p-value pro hypotézu, že daný parametr je nulový. Pokud je tedy tato hodnota vyšší, než hodnota $\alpha=0,05$, nezamítá se hypotéza, že je parametr nulový, a může být potenciálně odstraněn. Vždy musí být přihlíženo na vhodnost modelu, která může být určena pomocí koeficientu determinace R^2 .

```
[]: W = px.load_workbook('data.xlsx')
    p = W['data']
    dataX = np.asarray([ p['A%s'%i].value for i in range(5,75) ])
    dataY = np.asarray([ p['B%s'%i].value for i in range(5,75) ])
    dataZ = np.asarray([ p['D%s'%i].value for i in range(5,75) ])

F = np.column_stack((dataX, dataY, dataX**2, dataY**2, dataX*dataY))
F = sm.add_constant(F)
    model = sm.OLS(dataZ, F).fit()
    print(model.summary())
```

OLS Regression Results

=======================================			
Dep. Variable:	у	R-squared:	0.981
Model:	OLS	Adj. R-squared:	0.980
Method:	Least Squares	F-statistic:	661.5
Date:	Sun, 11 Dec 2022	Prob (F-statistic):	1.14e-53
Time:	16:16:35	Log-Likelihood:	-242.05
No. Observations:	70	AIC:	496.1
Df Residuals:	64	BIC:	509.6
Df Model:	5		

Covariance	Type:	nonrobust	

========			========			=======
	coef	std err	t	P> t	[0.025	0.975]
const	-2.9131	3.846	-0.757	0.452	-10.596	4.770
x1	0.6598	0.600	1.100	0.276	-0.539	1.859
x2	-0.0397	1.133	-0.035	0.972	-2.302	2.223
x3	0.4663	0.027	17.424	0.000	0.413	0.520
x4	-0.0662	0.100	-0.664	0.509	-0.266	0.133
x5	-1.0241	0.045	-22.688	0.000	-1.114	-0.934
========			========			=======
Omnibus:		0.	359 Durbin	n-Watson:		1.712
Prob(Omnib	us):	0.	836 Jarque	e-Bera (JB):	:	0.391
Skew:		-0.	162 Prob(3	JB):		0.822
Kurtosis:		2.	830 Cond.	No.		839.
========			========			=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Podle hodnot P>|t| lze rozpoznat, že parametry x1, x2 a x4 lze odstranit. Hodnota R^2 je bez

odstranění parametrů 0,981.

```
[]: F = np.column_stack((dataX**2, dataX*dataY))
     F = sm.add\_constant(F)
     submodel = sm.OLS(dataZ, F).fit()
     print(submodel.summary())
```

OLS Regression Results							
Dep. Variable:	У	R-sc	uared:		0.980		
Model:	OLS	adj.	R-squared:		0.979		
Method:	Least Squares	F-st	atistic:		1610.		
Date:	Sun, 11 Dec 2022	? Prob	(F-statistic)	:	2.29e-57		
Time:	16:16:35	Log-	Likelihood:		-244.54		
No. Observations:	70	AIC:			495.1		
Df Residuals:	67	BIC:			501.8		
Df Model:	2	?					
Covariance Type:	nonrobust	;					
		.======	D.		0.0751		
co	ef std err 	t 	P> t	[0.025	0.975]		
const -2.48	52 1.478	-1.681	0.097	-5.436	0.466		
x1 0.50	65 0.009	55.012	0.000	0.488	0.525		
x2 -1.06	57 0.024 -	44.353	0.000	-1.114	-1.018		

x1 x2	-2.4852 0.5065 -1.0657	1.478 0.009 0.024	-1.681 55.012 -44.353		-5.436 0.488 -1.114	0.466 0.525 -1.018
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	0. -0.	416 Jar	bin-Watson: que-Bera (JB): b(JB): d. No.		1.618 1.312 0.519 307.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Model byl postupně zjednodušen na funkci $Z=\beta_1+\beta_4X^2+\beta_6X*Y$. Rozdíl mezi původní a novou hodnotou R^2 , která je nyní 0,980, není zásadní, tedy vytvořený submodel je možno použít.

b) Odhady regresních parametrů metodou nejmenších čtverců a jejich 95% intervaly spolehlivosti.

Tyto hodnoty byly zjištěny z výše uvedeného shrnutí.

	[0.025]	0.975]	Koeficient
const	-5.436	0.466	-2.4852
x1	0.488	0.525	0.5065
x2	-1.114	-1.018	-1.0657

c) Nestranně odhadněte rozptyl závislé proměnné.

Nestranný odhad rozptylu závislé proměnné Z lze určit jako $S^2 = \frac{RSS}{n-2}$, kde RSS vyjadřuje reziduální součet čtverců. Tuto hodnotu lze z výše uvedeného modelu získat pomocí mse_resid , tedy $S^2 = 66,2064$.

```
[]: submodel.mse_resid
```

[]: 66.20643157748601

d) Vhodným testem zjistěte, že vámi zvolené dva regresní parametry jsou současně nulové.

 H_0 : parametry x1 = x2 = 0

 ${\cal H}_A\colon$ některý z parametrů není roven0

Pro ověření hypotézy nulovosti parametrů je vhodný f-test. Hodnota $F \stackrel{as}{\sim} F_{1-\alpha}(k1,k2), \ k1=I-1$ a k2=n-I, kde n je počet realizací a I je počet skupin (koeficientů). V tomto případě se jedná o hodnotu $F_{0,95}(1,68)$. Tedy $F=0,6249 \in \langle 0,3,9819 \rangle$, hypotéza H_0 se tak na hladině významnosti 0,05 nezamítá.

```
[]: print(model.f_test("x1=x2=0")) print(stats.f.ppf(q=0.95, dfn=1, dfd=68))
```

<F test: F=0.6248911439742278, p=0.5385537138776201, df_denom=64, df_num=2>
3.9818962563017606

e) Vhodným testem zjistěte, že vámi zvolené dva regresní parametry jsou současně nulové.

 H_0 : parametry x1 = x2

 H_A : parametry x1 != x2

Pro ověření této hypotézy byl využit t-test. Lze pozorovat, že $t \notin \langle 1, 511; 1, 633 \rangle$, tedy hypotéza H_0 se tak na hladině významnosti 0,05 zamítá.

[]: print(submodel.t_test("x1=x2"))

Tost	for	Constraints	
Test.	TOT	Constraints	:

========	coef	std err	t	P> t	======== [0.025	0.975]
c0	1.5722	0.030	51.566	0.000	1.511	1.633