Algebră liniară, geometrie analitică și diferențială seminarul 3

2021-2022

Spații și subspații vectoriale. Spații vectoriale finit generate.

Definiție

Fie $\mbox{$\mathbb{k}$}$ un corp comutativ și fie $\mbox{$V$}$ o mulțime nevidă. Pe $\mbox{$V$}$ considerăm două operații: $+: \mbox{$V$} \times \mbox{$V$} \to \mbox{$V$}, (\mbox{$\mathbf{v}$}, \mbox{$\mathbf{w}$}) \mapsto \mbox{$\mathbf{v}$} + \mbox{$\mathbf{w}$},$ și $\cdot: \mbox{$\mathbb{k}$} \times \mbox{$V$} \to \mbox{$V$}, (\mbox{$\alpha$}, \mbox{$\mathbf{w}$}) \mapsto \mbox{$\alpha$} \cdot \mbox{$\mathbf{w}$}$. Spunem că $(\mbox{$V$}, +, \cdot)$ are o structură de **spațiu vectorial peste corpul** $\mbox{$\mathbb{k}$}$ dacă $(\mbox{$V$}, +)$ este grup comutativ și sunt verificate următoarele condiții:

(i)
$$\alpha \cdot (\mathbf{v} + \mathbf{w}) = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{w}$$
,

(ii)
$$(\alpha +_{\mathbb{k}} \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \beta \cdot \mathbf{v}$$
,

(iii)
$$(\alpha \cdot_{\mathbb{k}} \beta) \cdot \mathbf{v} = \alpha \cdot (\beta \cdot \mathbf{v}),$$

(iv)
$$1_{\mathbb{k}} \cdot \mathbf{v} = \mathbf{v}$$
,

pentru orice \mathbf{v} , $\mathbf{w} \in V$ și orice α , $\beta \in \mathbb{k}$.

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V=(0,\infty), \ x\oplus y=xy$ și $\alpha\odot x=x^{\alpha}, \ \forall x,y\in V, \alpha\in \mathbb{K}.$

Soluţie:

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ şi $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial. Este clar că (V, \oplus) formează un grup abelian (comutativ), deoarece

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ şi $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial. Este clar că (V,\oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă.

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ şi $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial. Este clar că (V,\oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este $\mathbf x=1$ și

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ şi $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluție:

(i)
$$\alpha \odot (x \oplus y) =$$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ şi $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluție:

(i)
$$\alpha \odot (x \oplus y) = \alpha \odot (xy) =$$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ şi $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

(i)
$$\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} =$$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ şi $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

(i)
$$\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} =$$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ şi $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

(i)
$$\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) =$$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial. Este clar că (V, \oplus) formează un grup abelian (comutativ),

deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

(i)
$$\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluție:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V, \oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe \mathbb{R} este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

- (i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$
- (ii) $(\alpha + \beta) \odot x =$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V, \oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe \mathbb{R} este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

- (i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$
- (ii) $(\alpha + \beta) \odot x = x^{\alpha + \beta} =$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluție:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V, \oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe \mathbb{R} este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

- (i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$
- (ii) $(\alpha + \beta) \odot x = x^{\alpha + \beta} = x^{\alpha} x^{\beta} =$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V,\oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

- (i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$
- (ii) $(\alpha+\beta)\odot x = x^{\alpha+\beta} = x^{\alpha}x^{\beta} = (x^{\alpha})\oplus (x^{\beta}) =$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V,\oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

- (i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$
- $(ii) \ (\alpha+\beta)\odot x = x^{\alpha+\beta} = x^{\alpha}x^{\beta} = (x^{\alpha})\oplus (x^{\beta}) = (\alpha\odot x)\oplus (\beta\odot x).$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V, \oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

Fie α , $\beta \in \mathbb{R}$ și $\mathbf{x}, \mathbf{y} \in V$. Verificăm condițiile (i) - (iv).

(i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$

$$(ii) \ (\alpha+\beta)\odot x = x^{\alpha+\beta} = x^{\alpha}x^{\beta} = (x^{\alpha})\oplus (x^{\beta}) = (\alpha\odot x)\oplus (\beta\odot x).$$

(iii)
$$(\alpha \cdot \beta) \odot x =$$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V,\oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

- (i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$
- $(ii) \ (\alpha+\beta)\odot x = x^{\alpha+\beta} = x^{\alpha}x^{\beta} = (x^{\alpha})\oplus (x^{\beta}) = (\alpha\odot x)\oplus (\beta\odot x).$
- (iii) $(\alpha \cdot \beta) \odot x = x^{\alpha\beta} =$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V,\oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

(i)
$$\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$$

$$(ii) \ (\alpha+\beta)\odot x = x^{\alpha+\beta} = x^{\alpha}x^{\beta} = (x^{\alpha})\oplus (x^{\beta}) = (\alpha\odot x)\oplus (\beta\odot x).$$

(iii)
$$(\alpha \cdot \beta) \odot x = x^{\alpha\beta} = (x^{\beta})^{\alpha} =$$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V,\oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este $\mathbf x=1$ și simetricul elementului $\mathbf x\in V$ este $\mathbf x'=x^{-1}\in V$.

(i)
$$\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$$

$$(ii) \ (\alpha+\beta)\odot x = x^{\alpha+\beta} = x^{\alpha}x^{\beta} = (x^{\alpha})\oplus (x^{\beta}) = (\alpha\odot x)\oplus (\beta\odot x).$$

(iii)
$$(\alpha \cdot \beta) \odot x = x^{\alpha\beta} = (x^{\beta})^{\alpha} = \alpha \odot (x^{\beta}) =$$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V, \oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

- (i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$
- $(ii) \ (\alpha+\beta)\odot x = x^{\alpha+\beta} = x^{\alpha}x^{\beta} = (x^{\alpha})\oplus (x^{\beta}) = (\alpha\odot x)\oplus (\beta\odot x).$
- (iii) $(\alpha \cdot \beta) \odot x = x^{\alpha\beta} = (x^{\beta})^{\alpha} = \alpha \odot (x^{\beta}) = \alpha \odot (\beta \odot x).$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V, \oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe \mathbb{R} este comutativă. Elementul neutru este

 $\mathbf{x} = 1$ și simetricul elementului $\mathbf{x} \in V$ este $\mathbf{x}' = x^{-1} \in V$.

- (i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$
- $(ii) \ (\alpha+\beta)\odot x = x^{\alpha+\beta} = x^{\alpha}x^{\beta} = (x^{\alpha})\oplus (x^{\beta}) = (\alpha\odot x)\oplus (\beta\odot x).$
- (iii) $(\alpha \cdot \beta) \odot x = x^{\alpha\beta} = (x^{\beta})^{\alpha} = \alpha \odot (x^{\beta}) = \alpha \odot (\beta \odot x).$
- (iv) $1_{\mathbb{R}} \odot x =$

Exercițiu

Să se arate că (V, \oplus, \odot) este un \mathbb{K} -spațiu vectorial, unde $V = (0, \infty), x \oplus y = xy$ și $\alpha \odot x = x^{\alpha}, \forall x, y \in V, \alpha \in \mathbb{K}$.

Soluţie:

Verificăm condițiile din definiția spațiului vectorial.

Este clar că (V,\oplus) formează un grup abelian (comutativ), deoarece înmulțirea pe $\mathbb R$ este comutativă. Elementul neutru este

 $\mathbf{x}=1$ și simetricul elementului $\mathbf{x}\in V$ este $\mathbf{x}'=x^{-1}\in V$.

- (i) $\alpha \odot (x \oplus y) = \alpha \odot (xy) = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = (x^{\alpha}) \oplus (y^{\alpha}) = (\alpha \odot x) \oplus (\alpha \odot y).$
- $(ii) \ (\alpha+\beta)\odot x = x^{\alpha+\beta} = x^{\alpha}x^{\beta} = (x^{\alpha})\oplus (x^{\beta}) = (\alpha\odot x)\oplus (\beta\odot x).$
- (iii) $(\alpha \cdot \beta) \odot x = x^{\alpha\beta} = (x^{\beta})^{\alpha} = \alpha \odot (x^{\beta}) = \alpha \odot (\beta \odot x).$
- (iv) $1_{\mathbb{R}} \odot x = x^1 = x$.

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{(a, b, c, d) \in \mathbb{R}^4 : a + b + c - 2d = 0, \ 2a - c = 0\} \subset \mathbb{R}^4.$$

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{(a, b, c, d) \in \mathbb{R}^4 : a + b + c - 2d = 0, \ 2a - c = 0\} \subset \mathbb{R}^4.$$

Soluție.

Metoda 1: Folosim definiția subspațiului:

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{(a, b, c, d) \in \mathbb{R}^4 : a + b + c - 2d = 0, \ 2a - c = 0\} \subset \mathbb{R}^4.$$

Soluție.

Metoda 1: Folosim definiția subspațiului:

Fie V un \Bbbk -spațiu vectorial și $U\subseteq V$ o submulțime nevidă a lui V. Spunem că U este **subspațiu vectorial** al lui V dacă sunt îndeplinite următoarele condiții:

- (i) U este închisă la adunarea vectorilor, adică pentru orice doi vectori $\mathbf{u}, \mathbf{v} \in U$, vectorul $\mathbf{u} + \mathbf{v} \in U$;
- (ii) U este închisă la înmulțirea cu scalari a vectorilor, adică pentru orice vector $\mathbf{u} \in U$ și orice scalar $\alpha \in \mathbb{k}$, vectorul $\alpha \cdot \mathbf{u} \in U$.

Este clar că $\mathbf{0} = (0, 0, 0, 0) \in U$.

Pentru prima condiție: fie $\mathbf{u}, \mathbf{v} \in U$ și demonstrăm că $\mathbf{u} + \mathbf{v} \in U$.

Avem:

Este clar că $\mathbf{0} = (0,0,0,0) \in U$. Pentru prima condiție: fie $\mathbf{u}, \mathbf{v} \in U$ și demonstrăm că $\mathbf{u} + \mathbf{v} \in U$. Avem:

 $\mathbf{u} \in U$

Este clar că $\mathbf{0} = (0, 0, 0, 0) \in U$.

Pentru prima condiție: fie $\mathbf{u}, \mathbf{v} \in U$ și demonstrăm că $\mathbf{u} + \mathbf{v} \in U$. Avem:

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$;

Este clar că $\mathbf{0} = (0, 0, 0, 0) \in U$.

Pentru prima condiție: fie $\mathbf{u}, \mathbf{v} \in U$ și demonstrăm că $\mathbf{u} + \mathbf{v} \in U$. Avem:

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$;

$$\mathbf{v} \in U \Leftrightarrow \mathbf{v} = (a', b', c', d') \text{ si } a' + b' + c' - 2d' = 0, \ 2a' - c' = 0.$$

Este clar că $\mathbf{0} = (0, 0, 0, 0) \in U$.

Pentru prima condiție: fie $\mathbf{u}, \mathbf{v} \in U$ și demonstrăm că $\mathbf{u} + \mathbf{v} \in U$. Avem:

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$;

$$\mathbf{v} \in U \Leftrightarrow \mathbf{v} = (a', b', c', d') \text{ si } a' + b' + c' - 2d' = 0, \ 2a' - c' = 0.$$

Atunci

 $\mathbf{u}+\mathbf{v}=(a,b,c,d)+(a',b',c',d')=(a+a',b+b',c+c',d+d')\in\mathbb{R}^4$ și pentru ca $\mathbf{u}+\mathbf{v}\in U$ trebuie să verifice condițiile:

Este clar că $\mathbf{0} = (0, 0, 0, 0) \in U$.

Pentru prima condiție: fie $\mathbf{u}, \mathbf{v} \in U$ și demonstrăm că $\mathbf{u} + \mathbf{v} \in U$. Avem:

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$;

$$\mathbf{v} \in U \Leftrightarrow \mathbf{v} = (a', b', c', d') \text{ si } a' + b' + c' - 2d' = 0, \ 2a' - c' = 0.$$

Atunci

 $\mathbf{u}+\mathbf{v}=(a,b,c,d)+(a',b',c',d')=(a+a',b+b',c+c',d+d')\in\mathbb{R}^4$ și pentru ca $\mathbf{u}+\mathbf{v}\in U$ trebuie să verifice condițiile:

$$(a + a') + (b + b') + (c + c') - 2(d + d') = 0$$

Este clar că $\mathbf{0} = (0, 0, 0, 0) \in U$.

Pentru prima condiție: fie $\mathbf{u}, \mathbf{v} \in U$ și demonstrăm că $\mathbf{u} + \mathbf{v} \in U$. Avem:

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$;

$$\mathbf{v} \in U \Leftrightarrow \mathbf{v} = (a', b', c', d') \text{ si } a' + b' + c' - 2d' = 0, \ 2a' - c' = 0.$$

Atunci

 $\mathbf{u}+\mathbf{v}=(a,b,c,d)+(a',b',c',d')=(a+a',b+b',c+c',d+d')\in\mathbb{R}^4$ și pentru ca $\mathbf{u}+\mathbf{v}\in U$ trebuie să verifice condițiile:

$$(a + a') + (b + b') + (c + c') - 2(d + d') = 0$$

$$2(a + a') - (c + c') = 0;$$

Avem:

$$(a + a') + (b + b') + (c + c') - 2(d + d') =$$

Avem:

$$(a+a')+(b+b')+(c+c')-2(d+d') =$$

$$= (a+b+c-2d)+(a'+b'+c'-2d')=0$$

Avem:

$$(a + a') + (b + b') + (c + c') - 2(d + d') =$$

$$= (a+b+c-2d) + (a'+b'+c'-2d') = 0$$

deoarece
$$a + b + c - 2d = 0$$
 și $a' + b' + c' - 2d' = 0$.

Avem:

$$(a + a') + (b + b') + (c + c') - 2(d + d') =$$

$$= (a + b + c - 2d) + (a' + b' + c' - 2d') = 0$$

deoarece a + b + c - 2d = 0 și a' + b' + c' - 2d' = 0.

Asemănător obținem:

$$2(a + a') - (c + c') =$$

Avem:

$$(a + a') + (b + b') + (c + c') - 2(d + d') =$$

$$= (a + b + c - 2d) + (a' + b' + c' - 2d') = 0$$

deoarece a + b + c - 2d = 0 și a' + b' + c' - 2d' = 0.

Asemănător obținem:

$$2(a + a') - (c + c') = (2a - c) + (2a' - c') = 0$$

deoarece
$$2a - c = 0$$
 și $2a' - c' = 0$

Pentru a doua condiție din definiție: fie $\alpha \in \mathbb{R}$ și $\mathbf{u} \in U$. Demonstrăm că $\alpha \cdot \mathbf{u} \in U$.

Pentru a doua condiție din definiție: fie $\alpha \in \mathbb{R}$ și $\mathbf{u} \in U$.

Demonstrăm că $\alpha \cdot \mathbf{u} \in U$.

Avem

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$.

Pentru a doua condiție din definiție: fie $\alpha \in \mathbb{R}$ și $\mathbf{u} \in U$.

Demonstrăm că $\alpha \cdot \mathbf{u} \in U$.

Avem

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$.

Obţinem că $\alpha \cdot \mathbf{u} = (\alpha \mathbf{a}, \alpha \mathbf{b}, \alpha \mathbf{c}, \alpha \mathbf{d}) \in \mathbb{R}^4$ şi $\alpha \cdot \mathbf{u} \in U$ dacă şi numai dacă

$$\alpha a + \alpha b + \alpha c - 2\alpha d = 0$$
, $2\alpha a - \alpha c = 0$.

Pentru a doua condiție din definiție: fie $\alpha \in \mathbb{R}$ și $\mathbf{u} \in U$.

Demonstrăm că $\alpha \cdot \mathbf{u} \in U$.

Avem

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$.

Obţinem că $\alpha \cdot \mathbf{u} = (\alpha \mathbf{a}, \alpha \mathbf{b}, \alpha \mathbf{c}, \alpha \mathbf{d}) \in \mathbb{R}^4$ şi $\alpha \cdot \mathbf{u} \in U$ dacă şi numai dacă

$$\alpha a + \alpha b + \alpha c - 2\alpha d = 0$$
, $2\alpha a - \alpha c = 0$.

Atunci
$$\alpha a + \alpha b + \alpha c - 2\alpha d = \alpha (a + b + c - 2d) =$$

Pentru a doua condiție din definiție: fie $\alpha \in \mathbb{R}$ și $\mathbf{u} \in U$.

Demonstrăm că $\alpha \cdot \mathbf{u} \in U$.

Avem

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$.

Obţinem că $\alpha \cdot \mathbf{u} = (\alpha \mathbf{a}, \alpha \mathbf{b}, \alpha \mathbf{c}, \alpha \mathbf{d}) \in \mathbb{R}^4$ şi $\alpha \cdot \mathbf{u} \in U$ dacă şi numai dacă

$$\alpha a + \alpha b + \alpha c - 2\alpha d = 0$$
, $2\alpha a - \alpha c = 0$.

Atunci $\alpha a + \alpha b + \alpha c - 2\alpha d = \alpha (a + b + c - 2d) = 0$, deoarece a + b + c - 2d = 0, respectiv

Pentru a doua condiție din definiție: fie $\alpha \in \mathbb{R}$ și $\mathbf{u} \in U$.

Demonstrăm că $\alpha \cdot \mathbf{u} \in U$.

Avem

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$.

Obţinem că $\alpha \cdot \mathbf{u} = (\alpha \mathbf{a}, \alpha \mathbf{b}, \alpha \mathbf{c}, \alpha \mathbf{d}) \in \mathbb{R}^4$ şi $\alpha \cdot \mathbf{u} \in U$ dacă şi numai dacă

$$\alpha a + \alpha b + \alpha c - 2\alpha d = 0$$
, $2\alpha a - \alpha c = 0$.

Atunci $\alpha a + \alpha b + \alpha c - 2\alpha d = \alpha(a+b+c-2d) = 0$, decarece a+b+c-2d=0, respectiv $2\alpha a - \alpha c = \alpha(2a-c) = 0$, decarece 2a-c=0.

Pentru a doua condiție din definiție: fie $\alpha \in \mathbb{R}$ și $\mathbf{u} \in U$.

Demonstrăm că $\alpha \cdot \mathbf{u} \in U$.

Avem

$$\mathbf{u} \in U \Leftrightarrow \mathbf{u} = (a, b, c, d)$$
 și $a + b + c - 2d = 0$, $2a - c = 0$.

Obţinem că $\alpha \cdot \mathbf{u} = (\alpha \mathbf{a}, \alpha \mathbf{b}, \alpha \mathbf{c}, \alpha \mathbf{d}) \in \mathbb{R}^4$ şi $\alpha \cdot \mathbf{u} \in U$ dacă şi numai dacă

$$\alpha a + \alpha b + \alpha c - 2\alpha d = 0$$
, $2\alpha a - \alpha c = 0$.

Atunci $\alpha a + \alpha b + \alpha c - 2\alpha d = \alpha(a + b + c - 2d) = 0$, deoarece a + b + c - 2d = 0, respectiv $2\alpha a - \alpha c = \alpha(2a - c) = 0$, deoarece 2a - c = 0.

Concluzie: $U \leq \mathbb{R}^4$ (adică U este subspațiu vectorial în \mathbb{R}^4).

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{ \mathfrak{p} \in \mathbb{R}_3[x] : \mathfrak{p} = (a-d) + (2a-c)x + (b+d)x^2 + (a+b-2c+d)x^3 \}.$$

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{ \mathfrak{p} \in \mathbb{R}_3[x] : \mathfrak{p} = (a-d) + (2a-c)x + (b+d)x^2 + (a+b-2c+d)x^3 \}.$$

Soluție.

Metoda 2: Folosim teorema de caracterizare:

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{ \mathfrak{p} \in \mathbb{R}_3[x] : \mathfrak{p} = (a-d) + (2a-c)x + (b+d)x^2 + (a+b-2c+d)x^3 \}.$$

Soluție.

Metoda 2: Folosim teorema de caracterizare:

Teoremă

Fie V un k-spațiu vectorial și U o submulțime nevidă a lui V. Atunci U este subspațiu vectorial al lui V dacă și numai dacă $\alpha \cdot \mathbf{u} + \beta \cdot \mathbf{v} \in U$, pentru orice doi vectori $\mathbf{u}, \mathbf{v} \in U$ și orice scalari $\alpha, \beta \in k$.

Precizăm că $\mathfrak{p} = \mathbf{0} = 0 + 0x + 0x^2 + 0x^3 \in U$. În cazul nostru:

Precizăm că $\mathfrak{p} = \mathbf{0} = 0 + 0x + 0x^2 + 0x^3 \in U$. În cazul nostru:

U este subspațiu vectorial al lui $\mathbb{R}_3[x]$ dacă și numai dacă $\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' \in U$, pentru orice $\mathfrak{p}, \mathfrak{p}' \in U$ și orice scalari $\alpha, \beta \in \mathbb{R}$.

Precizăm că $\mathfrak{p}=\mathbf{0}=0+0x+0x^2+0x^3\in~U.$ În cazul nostru:

U este subspațiu vectorial al lui $\mathbb{R}_3[x]$ dacă și numai dacă $\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' \in U$, pentru orice $\mathfrak{p}, \mathfrak{p}' \in U$ și orice scalari $\alpha, \beta \in \mathbb{R}$. Fie $\mathfrak{p}, \mathfrak{p}' \in U$ și $\alpha, \beta \in \mathbb{R}$. Avem:

$$\mathfrak{p} \in U \iff$$

Precizăm că $\mathfrak{p} = \mathbf{0} = 0 + 0x + 0x^2 + 0x^3 \in U$. În cazul nostru:

U este subspațiu vectorial al lui $\mathbb{R}_3[x]$ dacă și numai dacă $\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' \in U$, pentru orice $\mathfrak{p}, \mathfrak{p}' \in U$ și orice scalari $\alpha, \beta \in \mathbb{R}$. Fie $\mathfrak{p}, \mathfrak{p}' \in U$ și $\alpha, \beta \in \mathbb{R}$. Avem:

$$\mathfrak{p} \in U \iff \mathfrak{p} = (a-d) + (2a-c)x + (b+d)x^2 + (a+b-2c+d)x^3$$

Precizăm că $\mathfrak{p} = \mathbf{0} = 0 + 0x + 0x^2 + 0x^3 \in U$. În cazul nostru:

U este subspațiu vectorial al lui $\mathbb{R}_3[x]$ dacă și numai dacă $\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' \in U$, pentru orice $\mathfrak{p}, \mathfrak{p}' \in U$ și orice scalari $\alpha, \beta \in \mathbb{R}$. Fie $\mathfrak{p}, \mathfrak{p}' \in U$ și $\alpha, \beta \in \mathbb{R}$. Avem:

$$\mathfrak{p} \in U \iff \mathfrak{p} = (a-d) + (2a-c)x + (b+d)x^2 + (a+b-2c+d)x^3$$

$$\mathfrak{p}' \in U \iff \mathfrak{p}' = (a'-d') + (2a'-c')x + (b'+d')x^2 + (a'+b'-2c'+d')x^3.$$

Atunci

$$\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' =$$

Atunci

$$\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' =$$

$$= \alpha[(a-d) + (2a-c)x + (b+d)x^2 + (a+b-2c+d)x^3] +$$

+\beta[(a'-d') + (2a'-c')x + (b'+d')x^2 + (a'+b'-2c'+d')x^3] =

Atunci

$$\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' =$$

$$= \alpha[(a-d) + (2a-c)x + (b+d)x^{2} + (a+b-2c+d)x^{3}] +$$

$$+\beta[(a'-d') + (2a'-c')x + (b'+d')x^{2} + (a'+b'-2c'+d')x^{3}] =$$

$$= (\alpha a - \alpha d + \beta a' - \beta d') + (2\alpha a - \alpha c + 2\beta a' - \beta c')x +$$

$$+(\alpha b + \alpha d + \beta b' + \beta d')x^{2} + (\alpha a + \alpha b - 2\alpha c + \alpha d + \beta a' + \beta b' - 2\beta c' + \beta d')x^{3}$$

Notăm
$$A=\alpha a+\beta a'$$
, $B=\alpha b+\beta b'$, $C=\alpha c+\beta c'$ și $D=\alpha d+\beta d'$ și obținem

Notăm
$$A=\alpha a+\beta a'$$
, $B=\alpha b+\beta b'$, $C=\alpha c+\beta c'$ și $D=\alpha d+\beta d'$ și obținem

$$\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' =$$

$$= (\alpha a - \alpha d + \beta a' - \beta d') + (2\alpha a - \alpha c + 2\beta a' - \beta c')x +$$

$$+ (\alpha b + \alpha d + \beta b' + \beta d')x^{2} + (\alpha a + \alpha b - 2\alpha c + \alpha d + \beta a' + \beta b' - 2\beta c' + \beta d')x^{3}$$

Notăm
$$A = \alpha a + \beta a'$$
, $B = \alpha b + \beta b'$, $C = \alpha c + \beta c'$ și $D = \alpha d + \beta d'$ și obținem

$$\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' =$$

$$= (\alpha a - \alpha d + \beta a' - \beta d') + (2\alpha a - \alpha c + 2\beta a' - \beta c')x +$$

$$+ (\alpha b + \alpha d + \beta b' + \beta d')x^{2} + (\alpha a + \alpha b - 2\alpha c + \alpha d + \beta a' + \beta b' - 2\beta c' + \beta d')x^{3}$$

$$= (A - D) + (2A - C)x + (B + D)x^{2} + (A + B - 2C + D)x^{3}.$$

Notăm
$$A = \alpha a + \beta a'$$
, $B = \alpha b + \beta b'$, $C = \alpha c + \beta c'$ și $D = \alpha d + \beta d'$ și obținem

$$= (\alpha \mathbf{a} - \alpha \mathbf{d} + \beta \mathbf{a}' - \beta \mathbf{d}') + (2\alpha \mathbf{a} - \alpha \mathbf{c} + 2\beta \mathbf{a}' - \beta \mathbf{c}')\mathbf{x} + + (\alpha \mathbf{b} + \alpha \mathbf{d} + \beta \mathbf{b}' + \beta \mathbf{d}')\mathbf{x}^2 + (\alpha \mathbf{a} + \alpha \mathbf{b} - 2\alpha \mathbf{c} + \alpha \mathbf{d} + \beta \mathbf{a}' + \beta \mathbf{b}' - 2\beta \mathbf{c}' + \beta \mathbf{d}')\mathbf{x}^3$$

 $\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' =$

$$(ab + aa + pb + pa)x + (aa + ab - 2ac + aa + pa + pb - 2pc + pa)x$$

$$= (A - D) + (2A - C)x + (B + D)x^{2} + (A + B - 2C + D)x^{3}.$$

Obţinem astfel că $\alpha \cdot \mathfrak{p} + \beta \cdot \mathfrak{p}' \in U$, deci $U \leq \mathbb{R}_3[x]$.

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{(a, b, c) \in \mathbb{R}^3 : a + b - 2c = 0, b - c = 0\} \subset \mathbb{R}^3.$$

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{(a, b, c) \in \mathbb{R}^3 : a + b - 2c = 0, \ b - c = 0\} \subset \mathbb{R}^3.$$

Soluție.

Metoda 3: Observăm că

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{aligned} a+b-2c &= 0 \\ b-c &= 0 \end{aligned} \right\}$$

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{(a, b, c) \in \mathbb{R}^3 : a + b - 2c = 0, b - c = 0\} \subset \mathbb{R}^3.$$

Soluție.

Metoda 3: Observăm că

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{aligned} a+b-2c &= 0 \\ b-c &= 0 \end{aligned} \right\}$$

$$= \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \underbrace{\begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \end{pmatrix}}_{A} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} =$$

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{(a, b, c) \in \mathbb{R}^3 : a + b - 2c = 0, b - c = 0\} \subset \mathbb{R}^3.$$

Soluție.

Metoda 3: Observăm că

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{aligned} a+b-2c &= 0 \\ b-c &= 0 \end{aligned} \right\}$$

$$= \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \underbrace{\begin{pmatrix} 1 & 1 & -2 \\ 0 & 1 & -1 \end{pmatrix}}_{A} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} = \mathcal{N}ul(A) \leq \mathbb{R}^3$$

Sau:

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{matrix} a+b-2c=0 \\ b-c=0 \end{matrix} \right\}.$$

Sau:

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{matrix} a+b-2c=0 \\ b-c=0 \end{matrix} \right\}.$$

Rezolvăm sistemul de ecuații liniare:

$$A = \begin{pmatrix} \boxed{1} & 1 & -2 \\ 0 & \boxed{1} & -1 \end{pmatrix},$$

Sau:

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{matrix} a+b-2c=0 \\ b-c=0 \end{matrix} \right\}.$$

Rezolvăm sistemul de ecuații liniare:

$$A = \begin{pmatrix} \boxed{1} & 1 & -2 \\ 0 & \boxed{1} & -1 \end{pmatrix},$$

deci rang(A) = 2.

Sau:

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{aligned} a+b-2c &= 0 \\ b-c &= 0 \end{aligned} \right\}.$$

Rezolvăm sistemul de ecuații liniare:

$$A = \begin{pmatrix} \boxed{1} & 1 & -2 \\ 0 & \boxed{1} & -1 \end{pmatrix},$$

deci rang(A) = 2. Necunoscuta secundară este c, iar soluția sistemului este

Sau:

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{aligned} a+b-2c &= 0 \\ b-c &= 0 \end{aligned} \right\}.$$

Rezolvăm sistemul de ecuații liniare:

$$A = \begin{pmatrix} \boxed{1} & 1 & -2 \\ 0 & \boxed{1} & -1 \end{pmatrix},$$

deci rang(A) = 2.Necunoscuta secundară este c, iar soluția sistemului este $a = \alpha, b = \alpha, c = \alpha, \alpha \in \mathbb{R}$.

Sau:

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{aligned} a+b-2c &= 0 \\ b-c &= 0 \end{aligned} \right\}.$$

Rezolvăm sistemul de ecuații liniare:

$$A = \begin{pmatrix} \boxed{1} & 1 & -2 \\ 0 & \boxed{1} & -1 \end{pmatrix},$$

deci rang(A) = 2.Necunoscuta secundară este c, iar soluția sistemului este $a = \alpha, b = \alpha, c = \alpha, \alpha \in \mathbb{R}$. Obținem că

$$U = \left\{ \begin{pmatrix} \alpha \\ \alpha \\ \alpha \end{pmatrix} \in \mathbb{R}^3 : \alpha \in \mathbb{R} \right\} =$$

Sau:

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{aligned} a+b-2c &= 0 \\ b-c &= 0 \end{aligned} \right\}.$$

Rezolvăm sistemul de ecuații liniare:

$$A = \begin{pmatrix} \boxed{1} & 1 & -2 \\ 0 & \boxed{1} & -1 \end{pmatrix},$$

deci rang(A) = 2.Necunoscuta secundară este c, iar soluția sistemului este $a=\alpha,b=\alpha,c=\alpha,$ $\alpha\in\mathbb{R}$. Obținem că

$$U = \left\{ \begin{pmatrix} \alpha \\ \alpha \\ \alpha \end{pmatrix} \in \mathbb{R}^3 : \alpha \in \mathbb{R} \right\} = \left\{ \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3 : \alpha \in \mathbb{R} \right\} =$$

Sau:

$$U = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{matrix} a+b-2c=0 \\ b-c=0 \end{matrix} \right\}.$$

Rezolvăm sistemul de ecuații liniare:

$$A = \begin{pmatrix} \boxed{1} & 1 & -2 \\ 0 & \boxed{1} & -1 \end{pmatrix},$$

deci rang(A) = 2.Necunoscuta secundară este c, iar soluția sistemului este $a=\alpha,b=\alpha,c=\alpha,$ $\alpha\in\mathbb{R}$. Obținem că

$$U = \left\{ \begin{pmatrix} \alpha \\ \alpha \\ \alpha \end{pmatrix} \in \mathbb{R}^3 : \alpha \in \mathbb{R} \right\} = \left\{ \alpha \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3 : \alpha \in \mathbb{R} \right\} = \mathcal{S}\textit{pan}(\mathbf{v}),$$

unde $\mathbf{v} = (1, 1, 1)$.

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{ \mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0 \}.$$

Soluţie:

$$U = \{\mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0\} =$$

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{ \mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0 \}.$$

Soluţie:

$$U = {\mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0} = {\mathfrak{p} \in \mathbb{R}_2[x] : (x+2) \mid \mathfrak{p}} =$$

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{ \mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0 \}.$$

Soluție:

$$U = {\mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0} = {\mathfrak{p} \in \mathbb{R}_2[x] : (x+2) \mid \mathfrak{p}} =$$

$$= \{\mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p} = (x+2)(ax+b)\} =$$

Exercițiu

Să se verifice dacă este subspațiu vectorial:

$$U = \{ \mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0 \}.$$

Soluţie:

$$U = {\mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0} = {\mathfrak{p} \in \mathbb{R}_2[x] : (x+2) \mid \mathfrak{p}} =$$

$$= \{ \mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p} = (x+2)(ax+b) \} = \{ a(x^2+2x) + b(x+2) : a, b \in \mathbb{R} \}.$$

Exercițiu

Să se verifice dacă este subspaţiu vectorial:

$$U = \{ \mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0 \}.$$

Soluţie:

$$U = {\mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p}(-2) = 0} = {\mathfrak{p} \in \mathbb{R}_2[x] : (x+2) \mid \mathfrak{p}} =$$

$$= \{ \mathfrak{p} \in \mathbb{R}_2[x] : \mathfrak{p} = (x+2)(ax+b) \} = \{ a(x^2+2x) + b(x+2) : a, b \in \mathbb{R} \}.$$

Obţinem
$$U = Span(\mathfrak{p}_1, \mathfrak{p}_2)$$
, unde $\mathfrak{p}_1 = x^2 + 2x$, $\mathfrak{p}_2 = x + 2$, deci $U < \mathbb{R}_2[x]$.

Exercițiu

Să se verifice dacă sunt subspații vectoriale:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a,b \in \mathbb{R} \right\}, \ W = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b+1 \end{pmatrix} : a,b \in \mathbb{R} \right\}.$$

Solutie:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a,b \in \mathbb{R} \right\} =$$

Exercițiu

Să se verifice dacă sunt subspații vectoriale:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a,b \in \mathbb{R} \right\}, \ W = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b+1 \end{pmatrix} : a,b \in \mathbb{R} \right\}.$$

Solutie:

$$U = \left\{ egin{pmatrix} a & 2b \ 0 & a+b \end{pmatrix} : a,b \in \mathbb{R}
ight\} = \left\{ egin{pmatrix} a & 0 \ 0 & a \end{pmatrix} +
ight.$$

Exercițiu

Să se verifice dacă sunt subspații vectoriale:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a,b \in \mathbb{R} \right\}, \ W = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b+1 \end{pmatrix} : a,b \in \mathbb{R} \right\}.$$

Soluție:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a,b \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 2b \\ 0 & b \end{pmatrix} : a,b \in \mathbb{R} \right\}$$

Exercițiu

Să se verifice dacă sunt subspații vectoriale:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a,b \in \mathbb{R} \right\}, \ W = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b+1 \end{pmatrix} : a,b \in \mathbb{R} \right\}.$$

Soluție:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a, b \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 2b \\ 0 & b \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

$$= \left\{ a \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}}_{A} + \right.$$

Exercițiu

Să se verifice dacă sunt subspații vectoriale:

$$U = \left\{ \begin{pmatrix} \mathsf{a} & 2b \\ \mathsf{0} & \mathsf{a} + b \end{pmatrix} : \mathsf{a}, \mathsf{b} \in \mathbb{R} \right\}, \ W = \left\{ \begin{pmatrix} \mathsf{a} & 2b \\ \mathsf{0} & \mathsf{a} + b + 1 \end{pmatrix} : \mathsf{a}, \mathsf{b} \in \mathbb{R} \right\}.$$

Soluție:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a, b \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 2b \\ 0 & b \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

$$=\left\{a\underbrace{\begin{pmatrix}1&0\\0&1\end{pmatrix}}_A+b\underbrace{\begin{pmatrix}0&2\\0&1\end{pmatrix}}_B:a,b\in\mathbb{R}
ight\}=$$

Exercițiu

Să se verifice dacă sunt subspații vectoriale:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a,b \in \mathbb{R} \right\}, \ W = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b+1 \end{pmatrix} : a,b \in \mathbb{R} \right\}.$$

Soluţie:

$$U = \left\{ \begin{pmatrix} a & 2b \\ 0 & a+b \end{pmatrix} : a, b \in \mathbb{R} \right\} = \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 2b \\ 0 & b \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

$$=\left\{a\underbrace{\begin{pmatrix}1&0\\0&1\end{pmatrix}}+b\underbrace{\begin{pmatrix}0&2\\0&1\end{pmatrix}}:a,b\in\mathbb{R}\right\}=\mathcal{S}pan(A,B)\leq\mathcal{M}_2(\mathbb{R}).$$

$$\begin{pmatrix} a & 2b \\ 0 & a+b+1 \end{pmatrix} + \begin{pmatrix} a' & 2b' \\ 0 & a'+b'+1 \end{pmatrix} =$$

$$\begin{pmatrix} a & 2b \\ 0 & a+b+1 \end{pmatrix} + \begin{pmatrix} a' & 2b' \\ 0 & a'+b'+1 \end{pmatrix} =$$

$$= \begin{pmatrix} a+a' & 2(b+b') \\ 0 & (a+a')+(b+b')+2 \end{pmatrix} \notin W$$

$$\begin{pmatrix} a & 2b \\ 0 & a+b+1 \end{pmatrix} + \begin{pmatrix} a' & 2b' \\ 0 & a'+b'+1 \end{pmatrix} =$$

$$= \begin{pmatrix} a+a' & 2(b+b') \\ 0 & (a+a')+(b+b')+2 \end{pmatrix} \notin W$$
deci $W \not < \mathcal{M}_2(\mathbb{R})$.

Exercițiu

În $\mathbb{R}_3[x]$ se consideră polinoamele $\mathfrak{p}_1=2-x+2x^2$, $\mathfrak{p}_2=x-2x^3$, $\mathfrak{p}_3=1+x-x^3$ și $\mathfrak{p}_4=2x-x^2$. Să se verifice dacă $\mathfrak{p}\in\mathcal{S}\mathit{pan}(\mathfrak{p}_1,\mathfrak{p}_2,\mathfrak{p}_3,\mathfrak{p}_4)$, unde

(a)
$$\mathfrak{p} = 2 + x - x^3$$
 (b) $\mathfrak{p} = 1 - x - 2x^2 + x^3$.

Soluție:

Avem $\mathfrak{p} \in \mathcal{S}\mathit{pan}(\mathfrak{p}_1,\mathfrak{p}_2,\mathfrak{p}_3,\mathfrak{p}_4)$ dacă

Exercițiu

În $\mathbb{R}_3[x]$ se consideră polinoamele $\mathfrak{p}_1=2-x+2x^2$, $\mathfrak{p}_2=x-2x^3$, $\mathfrak{p}_3=1+x-x^3$ și $\mathfrak{p}_4=2x-x^2$. Să se verifice dacă $\mathfrak{p}\in\mathcal{S}\mathit{pan}(\mathfrak{p}_1,\mathfrak{p}_2,\mathfrak{p}_3,\mathfrak{p}_4)$, unde

(a)
$$\mathfrak{p} = 2 + x - x^3$$
 (b) $\mathfrak{p} = 1 - x - 2x^2 + x^3$.

Soluție:

Avem $\mathfrak{p} \in \mathcal{S}pan(\mathfrak{p}_1,\mathfrak{p}_2,\mathfrak{p}_3,\mathfrak{p}_4)$ dacă există $\alpha_1,\ldots,\alpha_4 \in \mathbb{R}$ astfel încât

Exercițiu

În $\mathbb{R}_3[x]$ se consideră polinoamele $\mathfrak{p}_1=2-x+2x^2$, $\mathfrak{p}_2=x-2x^3$, $\mathfrak{p}_3=1+x-x^3$ și $\mathfrak{p}_4=2x-x^2$. Să se verifice dacă $\mathfrak{p}\in\mathcal{S}\mathit{pan}(\mathfrak{p}_1,\mathfrak{p}_2,\mathfrak{p}_3,\mathfrak{p}_4)$, unde

(a)
$$\mathfrak{p} = 2 + x - x^3$$
 (b) $\mathfrak{p} = 1 - x - 2x^2 + x^3$.

Soluție:

Avem $\mathfrak{p} \in \mathcal{S}pan(\mathfrak{p}_1,\mathfrak{p}_2,\mathfrak{p}_3,\mathfrak{p}_4)$ dacă există $\alpha_1,\ldots,\alpha_4 \in \mathbb{R}$ astfel încât

$$\mathfrak{p} = \alpha_1 \mathfrak{p}_1 + \alpha_2 \mathfrak{p}_2 + \alpha_3 \mathfrak{p}_3 + \alpha_4 \mathfrak{p}_4.$$

Pentru (a) obţinem $\mathfrak{p} = \alpha_1\mathfrak{p}_1 + \alpha_2\mathfrak{p}_2 + \alpha_3\mathfrak{p}_3 + \alpha_4\mathfrak{p}_4$ este echivalent cu

Pentru (a) obţinem $\mathfrak{p} = \alpha_1\mathfrak{p}_1 + \alpha_2\mathfrak{p}_2 + \alpha_3\mathfrak{p}_3 + \alpha_4\mathfrak{p}_4$ este echivalent cu

$$2+x-x^3 = \alpha_1(2-x+2x^2) + \alpha_2(x-2x^3) + \alpha_3(1+x-x^3) + \alpha_4(2x-x^2),$$

Pentru (a) obţinem $\mathfrak{p} = \alpha_1\mathfrak{p}_1 + \alpha_2\mathfrak{p}_2 + \alpha_3\mathfrak{p}_3 + \alpha_4\mathfrak{p}_4$ este echivalent cu

$$2+x-x^3=\alpha_1(2-x+2x^2)+\alpha_2(x-2x^3)+\alpha_3(1+x-x^3)+\alpha_4(2x-x^2),$$
 deci

$$2 + x - x^{3} = (2\alpha_{1} + \alpha_{3}) + (-\alpha_{1} + \alpha_{2} + \alpha_{3} + 2\alpha_{4})x +$$
$$+(2\alpha_{1} - \alpha_{4})x^{2} + (-2\alpha_{2} - \alpha_{3})x^{3}$$

Obținem sistemul de ecuații liniare:

Obținem sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_3 = 2\\ -\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 = 1\\ 2\alpha_1 - \alpha_4 = 0\\ -2\alpha_2 - \alpha_3 = -1 \end{cases}$$

Obținem sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_3 = 2\\ -\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 = 1\\ 2\alpha_1 - \alpha_4 = 0\\ -2\alpha_2 - \alpha_3 = -1 \end{cases}$$

Condiția de existență a scalarilor $\alpha_1,\ldots,\alpha_4\in\mathbb{R}$ este echivalentă cu

Obținem sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_3 = 2\\ -\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 = 1\\ 2\alpha_1 - \alpha_4 = 0\\ -2\alpha_2 - \alpha_3 = -1 \end{cases}$$

Condiția de existență a scalarilor $\alpha_1, \ldots, \alpha_4 \in \mathbb{R}$ este echivalentă cu sistemul să fie compatibil. Avem

$$ar{A} = egin{pmatrix} ar{2} & 0 & 1 & 0 & | & 2 \ -1 & 1 & 1 & 2 & | & 1 \ 2 & 0 & 0 & -1 & | & 0 \ 0 & -2 & -1 & 0 & | & -1 \end{pmatrix} \sim$$

Obținem sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_3 = 2\\ -\alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 = 1\\ 2\alpha_1 - \alpha_4 = 0\\ -2\alpha_2 - \alpha_3 = -1 \end{cases}$$

Condiția de existență a scalarilor $\alpha_1, \ldots, \alpha_4 \in \mathbb{R}$ este echivalentă cu sistemul să fie compatibil. Avem

$$\bar{A} = \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ -1 & 1 & 1 & 2 & | & 1 \\ 2 & 0 & 0 & -1 & | & 0 \\ 0 & -2 & -1 & 0 & | & -1 \end{pmatrix} \sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & -1 & -1 & | & -2 \\ 0 & -2 & -1 & 0 & | & -1 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & -1 & -1 & | & -2 \\ 0 & -2 & -1 & 0 & | & -1 \end{pmatrix} \sim$$

$$\sim egin{pmatrix} 2 & 0 & 1 & 0 & | & 2 \ 0 & 2 & 3 & 4 & | & 4 \ 0 & 0 & -1 & -1 & | & -2 \ 0 & -2 & -1 & 0 & | & -1 \end{pmatrix} \sim egin{pmatrix} 2 & 0 & 1 & 0 & | & 2 \ 0 & 2 & 3 & 4 & | & 4 \ 0 & 0 & -1 & -1 & | & -2 \ 0 & 0 & 2 & 4 & | & 3 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & -1 & -1 & | & -2 \\ 0 & -2 & -1 & 0 & | & -1 \end{pmatrix} \sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & \boxed{-1} & -1 & | & -2 \\ 0 & 0 & 2 & 4 & | & 3 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & \boxed{-1} & -1 & | & -2 \\ 0 & 0 & 0 & \boxed{2} & | & -1 \end{pmatrix}$$

$$\sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & -1 & -1 & | & -2 \\ 0 & -2 & -1 & 0 & | & -1 \end{pmatrix} \sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & \boxed{-1} & -1 & | & -2 \\ 0 & 0 & 2 & 4 & | & 3 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & \boxed{-1} & -1 & | & -2 \\ 0 & 0 & 0 & \boxed{2} & | & -1 \end{pmatrix}$$

Am obținut rang $A = \text{rang}\bar{A}$, deci

$$\sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & -1 & -1 & | & -2 \\ 0 & -2 & -1 & 0 & | & -1 \end{pmatrix} \sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & \boxed{-1} & -1 & | & -2 \\ 0 & 0 & 2 & 4 & | & 3 \end{pmatrix} \sim$$

$$\sim \begin{pmatrix} \boxed{2} & 0 & 1 & 0 & | & 2 \\ 0 & \boxed{2} & 3 & 4 & | & 4 \\ 0 & 0 & \boxed{-1} & -1 & | & -2 \\ 0 & 0 & 0 & \boxed{2} & | & -1 \end{pmatrix}$$

Am obţinut rang $A = \text{rang}\bar{A}$, deci sistemul este compatibil (determinat). Obţinem astfel că $\mathfrak{p} \in \mathcal{S}pan(\mathfrak{p}_1, \dots, \mathfrak{p}_4)$.

Mai mult, avem:

$$\begin{cases} 2\alpha_1 + \alpha_3 = 2\\ 2\alpha_2 + 3\alpha_3 + 4\alpha_4 = 4\\ -\alpha_3 - \alpha_4 = -2\\ 2\alpha_4 = -1 \end{cases}$$

iar soluția sistemului este

Mai mult, avem:

$$\begin{cases} 2\alpha_1 + \alpha_3 = 2\\ 2\alpha_2 + 3\alpha_3 + 4\alpha_4 = 4\\ -\alpha_3 - \alpha_4 = -2\\ 2\alpha_4 = -1 \end{cases}$$

iar soluția sistemului este $\alpha_1=\frac{1}{4}$, $\alpha_2=\frac{3}{4}$, $\alpha_3=\frac{3}{2}$, $\alpha_4=-\frac{1}{2}$. Obținem

Mai mult, avem:

$$\begin{cases} 2\alpha_1 + \alpha_3 = 2\\ 2\alpha_2 + 3\alpha_3 + 4\alpha_4 = 4\\ -\alpha_3 - \alpha_4 = -2\\ 2\alpha_4 = -1 \end{cases}$$

iar soluția sistemului este $\alpha_1=\frac{1}{4}$, $\alpha_2=\frac{3}{4}$, $\alpha_3=\frac{3}{2}$, $\alpha_4=-\frac{1}{2}$. Obținem $\mathfrak{p}=1/4\mathfrak{p}_1+3/4\mathfrak{p}_2+3/2\mathfrak{p}_3-1/2\mathfrak{p}_4$.

Exercițiu

Să se verifice dacă formează sisteme de generatori:

►
$$S = {\mathbf{v}_1 = (1, 2, 1, 2), \mathbf{v}_2 = (2, 0, 1, -1), \mathbf{v}_3 = (-1, 1, -1, 1), \mathbf{v}_4 = (2, 0, 1, 0), \mathbf{v}_5 = (0, 2, 0, 1)} \subset \mathbb{R}^4$$

►
$$S = {\mathfrak{p}_1 = 2x - 2x^2, \mathfrak{p}_2 = 2, \mathfrak{p}_3 = 3 + x - x^2, \mathfrak{p}_4 = 2 + x - x^2, \mathfrak{p}_5 = 1 + x - x^2} \subset \mathbb{R}_2[x].$$

Exercițiu

Să se verifice dacă formează sisteme de generatori:

►
$$S = {\mathbf{v}_1 = (1, 2, 1, 2), \mathbf{v}_2 = (2, 0, 1, -1), \mathbf{v}_3 = (-1, 1, -1, 1), \mathbf{v}_4 = (2, 0, 1, 0), \mathbf{v}_5 = (0, 2, 0, 1)} \subset \mathbb{R}^4$$

►
$$S = {\mathfrak{p}_1 = 2x - 2x^2, \mathfrak{p}_2 = 2, \mathfrak{p}_3 = 3 + x - x^2, \mathfrak{p}_4 = 2 + x - x^2, \mathfrak{p}_5 = 1 + x - x^2} \subset \mathbb{R}_2[x].$$

Reamintim:

Fie V un \mathbb{k} -spațiu vectorial și $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}\subset V$ o mulțime de vectori. Spunem că $\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ formează un **sistem de generatori** pentru V dacă $V=\mathcal{S}pan(\mathbf{v}_1,\ldots,\mathbf{v}_n)$, adică pentru orice vector $\mathbf{v}\in V$ există scalarii $\alpha_1,\ldots,\alpha_n\in\mathbb{k}$ astfel încât $\mathbf{v}=\alpha_1\cdot\mathbf{v}_1+\cdots+\alpha_n\cdot\mathbf{v}_n$.

Pentru prima mulțime verificăm dacă $\mathbb{R}^4 = \mathcal{S} pan(\mathbf{v}_1, \dots, \mathbf{v}_5)$, echivalent cu

Pentru prima mulțime verificăm dacă $\mathbb{R}^4 = \mathcal{S}pan(\mathbf{v}_1, \dots, \mathbf{v}_5)$, echivalent cu pentru orice $\mathbf{v} \in \mathbb{R}^4$ există scalarii $\alpha_1, \dots, \alpha_5 \in \mathbb{R}$ astfel încât $\mathbf{v} = \alpha_1 \cdot \mathbf{v}_1 + \dots + \alpha_5 \cdot \mathbf{v}_5$.

Pentru prima mulţime verificăm dacă $\mathbb{R}^4 = \mathcal{S}pan(\mathbf{v}_1, \dots, \mathbf{v}_5)$, echivalent cu pentru orice $\mathbf{v} \in \mathbb{R}^4$ există scalarii $\alpha_1, \dots, \alpha_5 \in \mathbb{R}$ astfel încât $\mathbf{v} = \alpha_1 \cdot \mathbf{v}_1 + \dots + \alpha_5 \cdot \mathbf{v}_5$. Considerăm $\mathbf{v} = (x, y, z, t) \in \mathbb{R}^4$.

Pentru prima mulțime verificăm dacă $\mathbb{R}^4 = \mathcal{S}\mathit{pan}(\mathbf{v}_1, \dots, \mathbf{v}_5)$, echivalent cu pentru orice $\mathbf{v} \in \mathbb{R}^4$ există scalarii $\alpha_1, \dots, \alpha_5 \in \mathbb{R}$ astfel încât $\mathbf{v} = \alpha_1 \cdot \mathbf{v}_1 + \dots + \alpha_5 \cdot \mathbf{v}_5$. Considerăm $\mathbf{v} = (x, y, z, t) \in \mathbb{R}^4$. Vrem să găsim $\alpha_1, \dots, \alpha_5 \in \mathbb{R}$ astfel încât

$$\mathbf{v} = \alpha_1 \cdot \mathbf{v}_1 + \dots + \alpha_5 \cdot \mathbf{v}_5.$$

Înlocuim:

Pentru prima mulţime verificăm dacă $\mathbb{R}^4 = \mathcal{S}pan(\mathbf{v}_1, \dots, \mathbf{v}_5)$, echivalent cu pentru orice $\mathbf{v} \in \mathbb{R}^4$ există scalarii $\alpha_1, \dots, \alpha_5 \in \mathbb{R}$ astfel încât $\mathbf{v} = \alpha_1 \cdot \mathbf{v}_1 + \dots + \alpha_5 \cdot \mathbf{v}_5$.

Considerăm $\mathbf{v} = (x, y, z, t) \in \mathbb{R}^4$. Vrem să găsim $\alpha_1, \dots, \alpha_5 \in \mathbb{R}$ astfel încât

$$\mathbf{v} = \alpha_1 \cdot \mathbf{v}_1 + \dots + \alpha_5 \cdot \mathbf{v}_5.$$

Înlocuim:

$$(x, y, z, t) = \alpha_1(1, 2, 1, 2) + \alpha_2(2, 0, 1, -1) + \alpha_3(-1, 1, -1, 1) + \alpha_4(2, 0, 1, 0) + \alpha_5(0, 2, 0, 1) \Leftrightarrow$$

$$(x, y, z, t) =$$

Pentru prima mulțime verificăm dacă $\mathbb{R}^4 = \mathcal{S}\mathit{pan}(\mathbf{v}_1, \dots, \mathbf{v}_5)$, echivalent cu pentru orice $\mathbf{v} \in \mathbb{R}^4$ există scalarii $\alpha_1, \dots, \alpha_5 \in \mathbb{R}$ astfel încât $\mathbf{v} = \alpha_1 \cdot \mathbf{v}_1 + \dots + \alpha_5 \cdot \mathbf{v}_5$.

Considerăm $\mathbf{v} = (x, y, z, t) \in \mathbb{R}^4$. Vrem să găsim $\alpha_1, \dots, \alpha_5 \in \mathbb{R}$ astfel încât

$$\mathbf{v} = \alpha_1 \cdot \mathbf{v}_1 + \dots + \alpha_5 \cdot \mathbf{v}_5.$$

Înlocuim:

$$(x, y, z, t) = \alpha_1(1, 2, 1, 2) + \alpha_2(2, 0, 1, -1) + \alpha_3(-1, 1, -1, 1) + \alpha_4(2, 0, 1, 0) + \alpha_5(0, 2, 0, 1) \Leftrightarrow$$
$$(x, y, z, t) = (\alpha_1 + 2\alpha_2 - \alpha_3 + 2\alpha_4, 2\alpha_1 + \alpha_3 + 2\alpha_5,$$

 $(\alpha_1 + \alpha_2 - \alpha_3 + \alpha_4, 2\alpha_1 - \alpha_2 + \alpha_3 + \alpha_5)$

Obținem sistemul de ecuații liniare:

Obținem sistemul de ecuații liniare:

$$\begin{cases} \alpha_1 + 2\alpha_2 - \alpha_3 + 2\alpha_4 = x \\ 2\alpha_1 + \alpha_3 + 2\alpha_5 = y \end{cases}$$
$$\alpha_1 + \alpha_2 - \alpha_3 + \alpha_4 = z$$
$$2\alpha_1 - \alpha_2 + \alpha_3 + \alpha_5 = t$$

Obținem sistemul de ecuații liniare:

$$\begin{cases} \alpha_1 + 2\alpha_2 - \alpha_3 + 2\alpha_4 = x \\ 2\alpha_1 + \alpha_3 + 2\alpha_5 = y \\ \alpha_1 + \alpha_2 - \alpha_3 + \alpha_4 = z \\ 2\alpha_1 - \alpha_2 + \alpha_3 + \alpha_5 = t \end{cases}$$

Condiția de existență a scalarilor $\alpha_1, \ldots, \alpha_5 \in \mathbb{R}$ este echivalentă cu sistemul să fie compatibil.

Obținem sistemul de ecuații liniare:

$$\begin{cases} \alpha_1 + 2\alpha_2 - \alpha_3 + 2\alpha_4 = x \\ 2\alpha_1 + \alpha_3 + 2\alpha_5 = y \\ \alpha_1 + \alpha_2 - \alpha_3 + \alpha_4 = z \\ 2\alpha_1 - \alpha_2 + \alpha_3 + \alpha_5 = t \end{cases}$$

Condiția de existență a scalarilor $\alpha_1, \ldots, \alpha_5 \in \mathbb{R}$ este echivalentă cu sistemul să fie compatibil. Calculăm rangul:

$$\begin{pmatrix} 1 & 2 & -1 & 2 & 0 & \vdots & x \\ 2 & 0 & 1 & 0 & 2 & \vdots & y \\ 1 & 1 & -1 & 1 & 0 & \vdots & z \\ 2 & -1 & 1 & 0 & \boxed{1} & \vdots & t \end{pmatrix} \sim$$

Obținem sistemul de ecuații liniare:

$$\begin{cases} \alpha_1 + 2\alpha_2 - \alpha_3 + 2\alpha_4 = x \\ 2\alpha_1 + \alpha_3 + 2\alpha_5 = y \\ \alpha_1 + \alpha_2 - \alpha_3 + \alpha_4 = z \\ 2\alpha_1 - \alpha_2 + \alpha_3 + \alpha_5 = t \end{cases}$$

Condiția de existență a scalarilor $\alpha_1, \ldots, \alpha_5 \in \mathbb{R}$ este echivalentă cu sistemul să fie compatibil. Calculăm rangul:

$$\begin{pmatrix} 1 & 2 & -1 & 2 & 0 & \vdots & x \\ 2 & 0 & 1 & 0 & 2 & \vdots & y \\ 1 & 1 & -1 & 1 & 0 & \vdots & z \\ 2 & -1 & 1 & 0 & \boxed{1} & \vdots & t \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -1 & 2 & 0 & \vdots & x \\ -2 & 2 & -1 & 0 & 0 & \vdots & y - 2t \\ 1 & 1 & -1 & \boxed{1} & 0 & \vdots & z \\ 2 & -1 & 1 & 0 & \boxed{1} & \vdots & t \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & -1 & 2 & 0 & \vdots & x \\ -2 & 2 & -1 & 0 & 0 & \vdots & y - 2t \\ 1 & 1 & -1 & \boxed{1} & 0 & \vdots & z \\ 2 & -1 & 1 & 0 & \boxed{1} & \vdots & t \end{pmatrix} \sim$$

$$\begin{pmatrix} 1 & 2 & -1 & 2 & 0 & \vdots & x \\ -2 & 2 & -1 & 0 & 0 & \vdots & y - 2t \\ 1 & 1 & -1 & 1 & 0 & \vdots & z \\ 2 & -1 & 1 & 0 & 1 & \vdots & t \end{pmatrix} \sim$$

$$\begin{pmatrix} -1 & 0 & -3 & 0 & 0 & \vdots & x - 2z \\ -2 & 2 & 1 & 0 & 0 & \vdots & y - 2t \\ 1 & 1 & -1 & 1 & 0 & \vdots & z \\ 2 & -1 & 1 & 0 & 1 & \vdots & t \end{pmatrix}$$

$$\begin{pmatrix} -1 & 0 & -3 & 0 & 0 & \vdots & x - 2z \\ -2 & 2 & \boxed{-1} & 0 & 0 & \vdots & y - 2t \\ 1 & 1 & -1 & \boxed{1} & 0 & \vdots & z \\ 2 & -1 & 1 & 0 & \boxed{1} & \vdots & t \end{pmatrix} \sim$$

$$\begin{pmatrix} -1 & 0 & -3 & 0 & 0 & \vdots & x - 2z \\ -2 & 2 & \boxed{-1} & 0 & 0 & \vdots & y - 2t \\ 1 & 1 & -1 & \boxed{1} & 0 & \vdots & z \\ 2 & -1 & 1 & 0 & \boxed{1} & \vdots & t \end{pmatrix} \sim$$

$$\begin{pmatrix}
5 & \boxed{-6} & 0 & 0 & 0 & \vdots & x - 2z - 3y + 6t \\
-2 & 2 & \boxed{-1} & 0 & 0 & \vdots & y - 2t \\
1 & 1 & -1 & \boxed{1} & 0 & \vdots & z \\
2 & -1 & 1 & 0 & \boxed{1} & \vdots & t
\end{pmatrix}$$

Concluzie:

Concluzie: sistemul este compatibil $(rang(A) = rang(\bar{A}))$,

Concluzie: sistemul este compatibil $(rang(A) = rang(\bar{A}))$, deci S este un sistem de generatori pentru \mathbb{R}^4 .

Concluzie: sistemul este compatibil $(rang(A) = rang(\bar{A}))$, deci S este un sistem de generatori pentru \mathbb{R}^4 . Remarcăm forma matricei coeficienților: $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4 \ \mathbf{v}_5]$.

Concluzie: sistemul este compatibil $(\operatorname{rang}(A) = \operatorname{rang}(\bar{A}))$, deci S este un sistem de generatori pentru \mathbb{R}^4 . Remarcăm forma matricei coeficienților: $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4 \ \mathbf{v}_5]$. Pentru a doua multime

$$\{\mathfrak{p}_1=2x-2x^2,\mathfrak{p}_2=2,\mathfrak{p}_3=3+x-x^2,\mathfrak{p}_4=2+x-x^2,\mathfrak{p}_5=1+x-x^2\},$$

procedăm asemănător. Verificăm dacă $\mathbb{R}_2[x] = \mathcal{S}pan(\mathfrak{p}_1,\ldots,\mathfrak{p}_5)$, echivalent cu pentru orice $\mathfrak{p} \in \mathbb{R}_2[x]$ există scalarii $\alpha_1,\ldots,\alpha_5 \in \mathbb{R}$ astfel încât $\mathfrak{p} = \alpha_1 \cdot \mathfrak{p}_1 + \cdots + \alpha_5 \cdot \mathfrak{p}_5$.

Concluzie: sistemul este compatibil $(\operatorname{rang}(A) = \operatorname{rang}(\bar{A}))$, deci S este un sistem de generatori pentru \mathbb{R}^4 . Remarcăm forma matricei coeficienților: $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4 \ \mathbf{v}_5]$. Pentru a doua multime

$$\{\mathfrak{p}_1=2x-2x^2,\mathfrak{p}_2=2,\mathfrak{p}_3=3+x-x^2,\mathfrak{p}_4=2+x-x^2,\mathfrak{p}_5=1+x-x^2\},$$

procedăm asemănător. Verificăm dacă $\mathbb{R}_2[x] = \mathcal{S}pan(\mathfrak{p}_1,\ldots,\mathfrak{p}_5)$, echivalent cu pentru orice $\mathfrak{p} \in \mathbb{R}_2[x]$ există scalarii $\alpha_1,\ldots,\alpha_5 \in \mathbb{R}$ astfel încât $\mathfrak{p} = \alpha_1 \cdot \mathfrak{p}_1 + \cdots + \alpha_5 \cdot \mathfrak{p}_5$. Fie $\mathfrak{p} = a + bx + cx^2 \in \mathbb{R}_2[x]$ și vrem

Concluzie: sistemul este compatibil $(\operatorname{rang}(A) = \operatorname{rang}(\bar{A}))$, deci S este un sistem de generatori pentru \mathbb{R}^4 . Remarcăm forma matricei coeficienților: $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4 \ \mathbf{v}_5]$. Pentru a doua multime

$$\{\mathfrak{p}_1=2x-2x^2,\mathfrak{p}_2=2,\mathfrak{p}_3=3+x-x^2,\mathfrak{p}_4=2+x-x^2,\mathfrak{p}_5=1+x-x^2\},$$

procedăm asemănător. Verificăm dacă $\mathbb{R}_2[x] = \mathcal{S}pan(\mathfrak{p}_1,\ldots,\mathfrak{p}_5)$, echivalent cu pentru orice $\mathfrak{p} \in \mathbb{R}_2[x]$ există scalarii $\alpha_1,\ldots,\alpha_5 \in \mathbb{R}$ astfel încât $\mathfrak{p} = \alpha_1 \cdot \mathfrak{p}_1 + \cdots + \alpha_5 \cdot \mathfrak{p}_5$.

Fie $\mathfrak{p} = a + bx + cx^2 \in \mathbb{R}_2[x]$ și vrem să găsim scalarii $\alpha_1, \ldots, \alpha_5 \in \mathbb{R}$ astfel ca

$$\mathfrak{p} = \alpha_1 \mathfrak{p}_1 + \cdots + \alpha_5 \mathfrak{p}_5.$$

Înlocuim și obținem:

$$a + bx + cx^{2} = \alpha_{1}(2x - 2x^{2}) + 2\alpha_{2} + \alpha_{3}(3 + x - x^{2}) + \alpha_{4}(2 + x - x^{2}) + \alpha_{5}(1 + x - x^{2})$$

echivalent cu sistemul de ecuații liniare:

Înlocuim și obținem:

$$a + bx + cx^{2} = \alpha_{1}(2x - 2x^{2}) + 2\alpha_{2} + \alpha_{3}(3 + x - x^{2}) + \alpha_{4}(2 + x - x^{2}) + \alpha_{5}(1 + x - x^{2})$$

echivalent cu sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5 = a \\ 2\alpha_1 + \alpha_3 + \alpha_4 + \alpha_5 = b \\ -2\alpha_1 - \alpha_3 - \alpha_4 - \alpha_5 = c \end{cases}$$

Înlocuim și obținem:

$$a + bx + cx^{2} = \alpha_{1}(2x - 2x^{2}) + 2\alpha_{2} + \alpha_{3}(3 + x - x^{2}) + \alpha_{4}(2 + x - x^{2}) + \alpha_{5}(1 + x - x^{2})$$

echivalent cu sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_2 + 3\alpha_3 + 2\alpha_4 + \alpha_5 = a \\ 2\alpha_1 + \alpha_3 + \alpha_4 + \alpha_5 = b \\ -2\alpha_1 - \alpha_3 - \alpha_4 - \alpha_5 = c \end{cases}$$

Vrem ca sistemul să fie compatibil:

$$\bar{A} = \begin{pmatrix} 0 & 2 & 3 & 2 & 1 & | & a \\ 2 & 0 & 1 & 1 & 1 & | & b \\ -2 & 0 & -1 & -1 & -1 & | & c \end{pmatrix}$$

$$ar{A} = egin{pmatrix} 0 & 2 & 3 & 2 & 1 & | & a \ 2 & 0 & \boxed{1} & 1 & 1 & | & b \ -2 & 0 & -1 & -1 & -1 & | & c \end{pmatrix} \sim \ egin{pmatrix} 0 & \boxed{2} & 3 & 2 & 1 & | & a \ 2 & 0 & \boxed{1} & 1 & 1 & | & b \ 0 & 0 & 0 & 0 & | & b+c \end{pmatrix}$$

$$ar{A} = egin{pmatrix} 0 & 2 & 3 & 2 & 1 & | & a \ 2 & 0 & \boxed{1} & 1 & 1 & | & b \ -2 & 0 & -1 & -1 & -1 & | & c \end{pmatrix} \sim \ egin{pmatrix} 0 & \boxed{2} & 3 & 2 & 1 & | & a \ 2 & 0 & \boxed{1} & 1 & 1 & | & b \ 0 & 0 & 0 & 0 & | & b+c \end{pmatrix}$$

Observăm că sistemul este compatibil

$$ar{A} = egin{pmatrix} 0 & 2 & 3 & 2 & 1 & | & a \ 2 & 0 & \boxed{1} & 1 & 1 & | & b \ -2 & 0 & -1 & -1 & -1 & | & c \end{pmatrix} \sim \ egin{pmatrix} 0 & \boxed{2} & 3 & 2 & 1 & | & a \ 2 & 0 & \boxed{1} & 1 & 1 & | & b \ 0 & 0 & 0 & 0 & | & b+c \end{pmatrix}$$

Observăm că sistemul este compatibil dacă și numai dacă b+c=0.

$$ar{A} = egin{pmatrix} 0 & 2 & 3 & 2 & 1 & | & a \ 2 & 0 & \boxed{1} & 1 & 1 & | & b \ -2 & 0 & -1 & -1 & -1 & | & c \end{pmatrix} \sim \ egin{pmatrix} 0 & \boxed{2} & 3 & 2 & 1 & | & a \ 2 & 0 & \boxed{1} & 1 & 1 & | & b \ 0 & 0 & 0 & 0 & | & b+c \end{pmatrix}$$

Observăm că sistemul este compatibil dacă și numai dacă b+c=0.Rezultă că S nu este sistem de generatori pentru $\mathbb{R}_2[x]$.

$$\bar{A} = \begin{pmatrix} 0 & \boxed{2} & 3 & 2 & 1 & | & a \\ 2 & 0 & \boxed{1} & 1 & 1 & | & b \\ -2 & 0 & -1 & -1 & -1 & | & c \end{pmatrix} \sim$$

$$\begin{pmatrix} 0 & \boxed{2} & 3 & 2 & 1 & | & a \\ 2 & 0 & \boxed{1} & 1 & 1 & | & b \\ 0 & 0 & 0 & 0 & | & b+c \end{pmatrix}$$

Observăm că sistemul este compatibil dacă și numai dacă b+c=0. Rezultă că S nu este sistem de generatori pentru $\mathbb{R}_2[x]$. De exemplu, polinomul $\mathfrak{p}=2+x+3x^2$, (am ales a=2, b=1, c=3 pentru ca $b+c\neq 0$) are proprietățile: $\mathfrak{p}\notin \mathcal{S}\mathit{pan}(S)$, dar $\mathfrak{p}\in \mathbb{R}_2[x]$.

Exercițiu

Să se studieze dependența liniară pentru următoarele sisteme de vectori și să se stabilească relații de dependență, unde este cazul:

►
$$S = {\mathbf{v}_1 = (2, 1, 1), \mathbf{v}_2 = (1, 0, 1), \mathbf{v}_3 = (1, 1, 0), \mathbf{v}_4 = (0, 1, -1), \mathbf{v}_5 = (3, 2, 1)}$$

Exercițiu

Să se studieze dependența liniară pentru următoarele sisteme de vectori și să se stabilească relații de dependență, unde este cazul:

►
$$S = {\mathbf{v}_1 = (2, 1, 1), \mathbf{v}_2 = (1, 0, 1), \mathbf{v}_3 = (1, 1, 0), \mathbf{v}_4 = (0, 1, -1), \mathbf{v}_5 = (3, 2, 1)}$$

$$ightharpoonup S = {\mathfrak{p}_1 = 1 + X, \mathfrak{p}_2 = X + X^2, \mathfrak{p}_3 = 2 + 3X, \mathfrak{p}_4 = 1 - X^2}$$

Reamintim:

Fie $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq V$ o mulțime de vectori din k-spațiul vectorial V. Spunem că S formează un **sistem liniar independent** dacă singura soluție a ecuației

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n = \mathbf{0},$$

unde $\alpha_1, \ldots, \alpha_n \in \mathbb{k}$, este $\alpha_i = 0$, pentru orice $1 \leq i \leq n$. În caz contrar, vectorii din S formează un **sistem liniar dependent**.

Soluție:

Pentru primul caz, S este sistem liniar independent dacă din $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_5 \mathbf{v}_5 = \mathbf{0}$, obținem $\alpha_1 = \ldots = \alpha_5 = 0$ unica soluție.

Soluţie:

Pentru primul caz, S este sistem liniar independent dacă din $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_5 \mathbf{v}_5 = \mathbf{0}$, obținem $\alpha_1 = \ldots = \alpha_5 = 0$ unica soluție. Avem $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5 = \mathbf{0}$.

Soluţie:

Pentru primul caz, S este sistem liniar independent dacă din $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_5 \mathbf{v}_5 = \mathbf{0}$, obținem $\alpha_1 = \ldots = \alpha_5 = 0$ unica soluție. Avem $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5 = \mathbf{0}$. Înlocuim și obținem sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_2 + \alpha_3 + 3\alpha_5 = 0\\ \alpha_1 + \alpha_3 + \alpha_4 + 2\alpha_5 = 0\\ \alpha_1 + \alpha_2 - \alpha_4 + \alpha_5 = 0 \end{cases}$$

Soluţie:

Pentru primul caz, S este sistem liniar independent dacă din $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_5 \mathbf{v}_5 = \mathbf{0}$, obținem $\alpha_1 = \ldots = \alpha_5 = 0$ unica soluție. Avem $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5 = \mathbf{0}$. Înlocuim și obținem sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_2 + \alpha_3 + 3\alpha_5 = 0\\ \alpha_1 + \alpha_3 + \alpha_4 + 2\alpha_5 = 0\\ \alpha_1 + \alpha_2 - \alpha_4 + \alpha_5 = 0 \end{cases}$$

Sistemul este compatibil (este sistem omogen), iar pentru ca S să fie liniar independentă trebuie să avem

Soluţie:

Pentru primul caz, S este sistem liniar independent dacă din $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_5 \mathbf{v}_5 = \mathbf{0}$, obținem $\alpha_1 = \ldots = \alpha_5 = 0$ unica soluție. Avem $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5 = \mathbf{0}$. Înlocuim și obținem sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_2 + \alpha_3 + 3\alpha_5 = 0\\ \alpha_1 + \alpha_3 + \alpha_4 + 2\alpha_5 = 0\\ \alpha_1 + \alpha_2 - \alpha_4 + \alpha_5 = 0 \end{cases}$$

Sistemul este compatibil (este sistem omogen), iar pentru ca S să fie liniar independentă trebuie să avem un sistem compatibil determinat.

Soluție:

Pentru primul caz, S este sistem liniar independent dacă din $\alpha_1 \mathbf{v}_1 + \cdots + \alpha_5 \mathbf{v}_5 = \mathbf{0}$, obținem $\alpha_1 = \ldots = \alpha_5 = 0$ unica soluție. Avem $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5 = \mathbf{0}$. Înlocuim și obținem sistemul de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_2 + \alpha_3 + 3\alpha_5 = 0\\ \alpha_1 + \alpha_3 + \alpha_4 + 2\alpha_5 = 0\\ \alpha_1 + \alpha_2 - \alpha_4 + \alpha_5 = 0 \end{cases}$$

Sistemul este compatibil (este sistem omogen), iar pentru ca S să fie liniar independentă trebuie să avem un sistem compatibil determinat. Calculăm rangul matricei coeficienților

$$A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \mathbf{v}_4 \ \mathbf{v}_5]$$
:

$$A = \left(\begin{array}{cccc} 2 & 1 & 1 & 0 & 3 \\ 1 & 0 & 1 & 1 & 2 \\ 1 & 1 & 0 & -1 & 1 \end{array}\right) \sim$$

$$A = \begin{pmatrix} \begin{array}{ccccc} 2 & 1 & 1 & 0 & 3 \\ 1 & 0 & 1 & 1 & 2 \\ 1 & 1 & 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} \begin{array}{cccccc} 2 & 1 & 1 & 0 & 3 \\ 0 & \hline -1 & 1 & 2 & 1 \\ 0 & 1 & -1 & -2 & -1 \end{pmatrix}$$

$$A = \begin{pmatrix} \boxed{2} & 1 & 1 & 0 & 3 \\ 1 & 0 & 1 & 1 & 2 \\ 1 & 1 & 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} \boxed{2} & 1 & 1 & 0 & 3 \\ 0 & \boxed{-1} & 1 & 2 & 1 \\ 0 & 1 & -1 & -2 & -1 \end{pmatrix}$$

$$\sim \left(\begin{array}{ccccc} 2 & 1 & 1 & 0 & 3 \\ 0 & -1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right),$$

$$A = \begin{pmatrix} \boxed{2} & 1 & 1 & 0 & 3 \\ 1 & 0 & 1 & 1 & 2 \\ 1 & 1 & 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} \boxed{2} & 1 & 1 & 0 & 3 \\ 0 & \boxed{-1} & 1 & 2 & 1 \\ 0 & 1 & -1 & -2 & -1 \end{pmatrix}$$

$$\sim \left(\begin{array}{cccc} 2 & 1 & 1 & 0 & 3 \\ 0 & -1 & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right),$$

deci rangul este 2.

$$A = \begin{pmatrix} \boxed{2} & 1 & 1 & 0 & 3 \\ 1 & 0 & 1 & 1 & 2 \\ 1 & 1 & 0 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} \boxed{2} & 1 & 1 & 0 & 3 \\ 0 & \boxed{-1} & 1 & 2 & 1 \\ 0 & 1 & -1 & -2 & -1 \end{pmatrix}$$

$$\sim \left(\begin{array}{cccc} \boxed{2} & 1 & 1 & 0 & 3 \\ 0 & \boxed{-1} & 1 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right),$$

deci rangul este 2. Deducem că sistemul este compatibil nedeterminat, deci *S* este mulțime liniar dependentă.

Pentru a determina relații de dependență, procedăm astfel:

Pentru a determina relații de dependență, procedăm astfel: scriem soluția sistemului de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_2 + a + 3c = 0 \\ -\alpha_2 + a + 2b + c = 0 \end{cases}$$

Pentru a determina relații de dependență, procedăm astfel: scriem soluția sistemului de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_2 + a + 3c = 0 \\ -\alpha_2 + a + 2b + c = 0 \end{cases}$$

Soluția este $\alpha_1=-a-b-2c$, $\alpha_2=a+2b+c$, $\alpha_3=a$, $\alpha_4=b$, $\alpha_5=c$, $a,b,c\in\mathbb{R}$.

Pentru a determina relații de dependență, procedăm astfel: scriem soluția sistemului de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_2 + a + 3c = 0 \\ -\alpha_2 + a + 2b + c = 0 \end{cases}$$

Soluția este $\alpha_1 = -a - b - 2c$, $\alpha_2 = a + 2b + c$, $\alpha_3 = a$, $\alpha_4 = b$, $\alpha_5 = c$, $a, b, c \in \mathbb{R}$. Înlocuim în relația $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5 = \mathbf{0}$ și obținem:

Pentru a determina relații de dependență, procedăm astfel: scriem soluția sistemului de ecuații liniare:

$$\begin{cases} 2\alpha_1 + \alpha_2 + a + 3c = 0 \\ -\alpha_2 + a + 2b + c = 0 \end{cases}$$

Soluția este $\alpha_1 = -a - b - 2c$, $\alpha_2 = a + 2b + c$, $\alpha_3 = a$, $\alpha_4 = b$, $\alpha_5 = c$, $a, b, c \in \mathbb{R}$. Înlocuim în relația $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5 = \mathbf{0}$ și obținem:

$$(-a-b-2c)\mathbf{v}_1+(a+2b+c)\mathbf{v}_2+a\mathbf{v}_3+b\mathbf{v}_4+c\mathbf{v}_5=\mathbf{0},$$

deci

$$a(-\mathbf{v}_1+\mathbf{v}_2+\mathbf{v}_3)+b(-\mathbf{v}_1+2\mathbf{v}_2+\mathbf{v}_4)+c(-2\mathbf{v}_1+\mathbf{v}_2+\mathbf{v}_5)=\mathbf{0}, a,b,c\in\mathbb{R}.$$

Rezultă că
$$-\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0}$$
, $-\mathbf{v}_1 + 2\mathbf{v}_2 + \mathbf{v}_4 = \mathbf{0}$, $-2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_5 = \mathbf{0}$, de unde relațiile de dependență sunt:

Rezultă că
$$-\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0}$$
, $-\mathbf{v}_1 + 2\mathbf{v}_2 + \mathbf{v}_4 = \mathbf{0}$, $-2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_5 = \mathbf{0}$, de unde relațiile de dependență sunt: $\mathbf{v}_3 = \mathbf{v}_1 - \mathbf{v}_2$, $\mathbf{v}_4 = \mathbf{v}_1 - 2\mathbf{v}_2$, $\mathbf{v}_5 = 2\mathbf{v}_1 - \mathbf{v}_2$.

Rezultă că $-\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0}$, $-\mathbf{v}_1 + 2\mathbf{v}_2 + \mathbf{v}_4 = \mathbf{0}$, $-2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_5 = \mathbf{0}$, de unde relațiile de dependență sunt: $\mathbf{v}_3 = \mathbf{v}_1 - \mathbf{v}_2$, $\mathbf{v}_4 = \mathbf{v}_1 - 2\mathbf{v}_2$, $\mathbf{v}_5 = 2\mathbf{v}_1 - \mathbf{v}_2$. Observăm că vectorii liniar independenți sunt $\mathbf{v}_1, \mathbf{v}_2$ (corespund coloanelor cu pivoți)

Rezultă că
$$-\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = \mathbf{0}$$
, $-\mathbf{v}_1 + 2\mathbf{v}_2 + \mathbf{v}_4 = \mathbf{0}$, $-2\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_5 = \mathbf{0}$, de unde relațiile de dependență sunt: $\mathbf{v}_3 = \mathbf{v}_1 - \mathbf{v}_2$, $\mathbf{v}_4 = \mathbf{v}_1 - 2\mathbf{v}_2$, $\mathbf{v}_5 = 2\mathbf{v}_1 - \mathbf{v}_2$. Observăm că vectorii liniar independenți sunt $\mathbf{v}_1, \mathbf{v}_2$ (corespund coloanelor cu pivoți) Asemănător se procedează pentru

 $S = \{\mathfrak{p}_1 = 1 + X, \mathfrak{p}_2 = X + X^2, \mathfrak{p}_3 = 2 + 3X, \mathfrak{p}_4 = 1 - X^2\}.$