SYNCHRONISERS: ATTEMPT TO SYNCHRONISE ASYNC NETWORKS (SEE LYNCH CH 16) A Sport with Byz) Failures

o ensures that all messages are sent before receiving

- o collects all sent messages and then delivers them to their targets

LocSync (Local Synchronizer)

- o similar to GlobSync
- o but only ensures that *all* neighborhood messages are sent before receiving

Assignment Project

SimpleSync (Simple Synchronizer) an implementation of the declar power interleaved (fast, slow).

 Synchronizers need to keep the <u>round</u> https://powcoder.communicity.explicitly or implicitly.

messages from different rounds may

o Here, process U3 may receive a round 2 message from U2, before receiving its round 1 message from U1!

Assignment Project Exam: Charges Help?

Add WeChat powcoder

- o Using a simpler sync algorithm instead of a much more complex async!
 - o E.g. Sync Distributed MST instead of the Async Distributed MST (GHS)

Assignment Project Exam Help

- Obtaining a faster runtime?

 - https://powcoder.com

 E.g. could this avoid greedy choices, which may be very costly in the end?
 - What if we apply a synchroniser to bistributed Berman-Ford?

COMMUNICATION FAILURES

Assignment Project Exam Help
Is it possible to reach a distributed agreement with (unbounded) communication failures?

AddaWeChat powcoder

- o Termination:
 - o All processes eventually decide.
- o Agreement:
 - o No two processes ever a gamment Project Example 1
- o Validity:
 - https://powcoder.com all messages are properly delivered, then 1 is the only one possible decision value weake Chat powco
 - relaxation: allow fallback on 0 if communications fail (approx. v0 could be 0)

and

o If all processes start with the same initial value 0, then 0 is the only one possible decision value. [STRONG]

We also assume that a decision once taken can be immediately acted upon (by *all processes in sync*).

Diagrams			
	Initial	Decision	
No comm fault	$\forall 0$	$\forall 0$	
Comm faults	$\forall 0$	$\forall 0$	

11	Initial	Decision
No comm fault	$\forall 1$	$\forall 1$
Comm faults	$\forall 1$	$\forall 1 \ or \ \forall 0$

	Initial	Decision
No comm fault	∃0,∃1	$\forall 1 \ or \ \forall 0$
Comm faults	∃0,∃1	$\forall 1 \ or \ \forall 0$

Fundamental result: Even under such relaxed conditions, no deterministic agreement is possible if unlimited communication failures are possible to the pow do TCP and the internet work?)

Proof: by induction, using the given validity, agreement and termination conditions
In our diagrams, denoted and return state, where a certain decision will inevitably follow
(even if no more messages are received)

Assignment Project Example Holpir

- 2 PHASE COMMIT WEAK TERMINATION ("BLOCKING")
- o 3 Phase Whatihastrone Terlanation ("non-blocking")

Termination: All non-faulty processes eventually decide [STRONG]. (3PC)

or

If there are no failures then Algorigane reventually decide [WEAK]. (2PC)

Agreement: No two processes (eventps:/faulty) ever decide on different values [STRONG]. (2&3RG) d

Validity: If any process starts with the initial value 0, then 0 is the only one possible decision value.

initial $0 \rightarrow$ can start as decided 0! and If all processes start with the same initial value 1 and there are no failures, then 1 is the only one possible decision value.

[WEAK]. (2&3PC)

Diagrams			
Process	Initial	Decision	
Decided, not failing L Project Exam Help Decided, before failing	∀1	$\begin{array}{c c} \forall 1 \ or \ \forall 0^{\dagger} \\ \hline \forall 1 \ or \ \forall 0^{\dagger} \end{array}$	
Non-decided, failed POWCOder Com Non-decided, not failing (2PC*)			

VeChat powcoder Process	Initial	Decision
Decided, not failing		Argoration 0
Decided, before failing	<mark>∃0</mark>	Argoration 0
Non-decided, failed		_
Non-decided, not failing (2PC*)		_

- † Decision 0 is allowed only if one/more processes fail
- The 2PC weak termination condition allows non-faulty process (with initial value 1) that never decide, that remain "blocked" (unless they receive some "magical" help).

COMPSCI 711

https://powcoder.comeement Misc

radu/2020

THE 2 PHASE COMMIT – WEAK TERMINATION ("BLOCKING")

Assignment Project Exam Help
cuss here:

• Participants: coordinator (leader), cohorts.

We do not discuss here:

- o how the processes start this We C States decided (1) and We C states decided (1), or We C states decided (1).
- o how do they recover after failures.

final: **decided**(1) Assignment Project Exam (1,u)(1,d)ps://powcode<mark>r.com</mark> $(1,\mathbf{u})$ $(1,\mathbf{u})$ (1,u)(1,u)

final: **decided(0)** (0,d) $(1,\mathbf{u})$ (0,d)(0,d)(0,d)(0,d)(0,d)(0.d)(1.u)(1.u)

If #1 fails, then #2&3 cannot differentiate between left and right (even if they talk), will remain blocked

attempted **decision(0) blocked** for ever (0,d)(0,d)(0,d) $(1,\mathbf{u})$ (1,u) $(1,\mathbf{u})$ $(1,\mathbf{u})$ $(1,\mathbf{u})$ $(1,\mathbf{u})$

o 2PC blocks because the leader is too greedy to decide on 1 and fails before sending its messages

THE 3 PHASE COMMIT – STRONG TERMINATION ("NON-BLOCKING")

Assignment Project Exam Help
3PC algorithm is less greedy than 2PC and new coordinators arise in place of failed ones

States (one more, ready): $\frac{d^2 \sqrt{d^2 + d^2 + d^2}}{d^2 + d^2 +$

 State transition rules are "natural" and similar for all rounds, except: Help

- o In the first 3 rounds:
 - Any missing message \Rightarrow decided(0)!
 - If all are uncertain, they will $attempt \Rightarrow decided(1)!$
- o In round 4 and following:
 - Any missing message is ignored!
 - If all the rest are uncertain, they will certainly \Rightarrow decided(0)!

Add WeChat powcoder

	final: decide(0)				
(1,u)		(0,d)		(0,d)	
			Vi.		
(0,d)-		(0,d)	111	(0,d)	
			**.		
(0,d)		(0,d)	1	(0,d)	
	/				
(1,u)/		(1,u)		(0,d)	

radu/2020

Assignment Project Exam Help

