Γ-teoreme

Fie Γ o mulțime de formule. Definiția Γ-teoremelor este un nou exemplu de definiție inductivă.

Definiția 1.35

Γ-teoremele sunt formulele lui LP definite astfel:

- (T0) Orice axiomă este Γ-teoremă.
- (T1) Orice formulă din Γ este Γ-teoremă.
- (T2) Dacă φ și $\varphi \to \psi$ sunt Γ -teoreme, atunci ψ este Γ -teoremă.
- (T3) Numai formulele obținute aplicând regulile (T0), (T1), (T2) sunt Γ -teoreme.

Dacă φ este Γ -teoremă, atunci spunem și că φ este dedusă din ipotezele Γ .

Γ-teoreme

Notații

```
\begin{array}{lll} Thm(\Gamma) & := & \text{mulțimea } \Gamma\text{-teoremelor} & Thm & := & Thm(\emptyset) \\ \Gamma \vdash \varphi & :\Leftrightarrow & \varphi \text{ este } \Gamma\text{-teoremă} & \vdash \varphi & :\Leftrightarrow & \emptyset \vdash \varphi \\ \Gamma \vdash \Delta & :\Leftrightarrow & \Gamma \vdash \varphi \text{ pentru orice } \varphi \in \Delta. \end{array}
```

Definiția 1.36

O formulă φ se numește teoremă a lui LP dacă $\vdash \varphi$.

Reformulând condițiile (T0), (T1), (T2) folosind notația \vdash , obținem

Propoziția 1.37

- (i) dacă φ este axiomă, atunci $\Gamma \vdash \varphi$;
- (ii) dacă $\varphi \in \Gamma$, atunci $\Gamma \vdash \varphi$;
- (iii) dacă $\Gamma \vdash \varphi$ și $\Gamma \vdash \varphi \rightarrow \psi$, atunci $\Gamma \vdash \psi$.

O definiție alternativă a Γ-teoremelor:

Definiția 1.38

Mulțimea $Thm(\Gamma)$ este intersecția tuturor mulțimilor de formule Σ care satisfac următoarele proprietăți:

- (i) $Axm \subseteq \Sigma$;
- (ii) $\Gamma \subseteq \Sigma$;
- (iii) Σ este închisă la modus ponens:

dacă
$$\varphi, \varphi \to \psi \in \Sigma$$
, atunci $\psi \in \Sigma$.

Γ-teoreme

Definiția Γ -teoremelor dă naștere la metoda de demonstrație prininducție după Γ -teoreme.

Versiunea 1

Fie P o proprietate a formulelor. Demonstrăm că orice Γ -teoremă satisface P astfel:

- (i) demonstrăm că orice axiomă are proprietatea **P**;
- (ii) demonstrăm că orice formulă din Γ are proprietatea P;
- (iii) demonstrăm că dacă φ și $\varphi \to \psi$ au proprietatea \boldsymbol{P} , atunci ψ are proprietatea \boldsymbol{P} .

Versiunea 2

Fie Σ o mulțime de formule. Demonstrăm că $Thm(\Gamma) \subseteq \Sigma$ astfel:

- (i) demonstrăm că orice axiomă este în Σ ;
- (ii) demonstrăm că orice formulă din Γ este în Σ ;
- (iii) demonstrăm că dacă $\varphi \in \Sigma$ și $\varphi \to \psi \in \Sigma$, atunci $\psi \in \Sigma$.

Propoziția 1.39

Fie Γ, Δ mulțimi de formule.

(i) Dacă $\Gamma \subseteq \Delta$, atunci $Thm(\Gamma) \subseteq Thm(\Delta)$, adică, pentru orice formulă φ ,

$$\Gamma \vdash \varphi \text{ implică } \Delta \vdash \varphi.$$

- (ii) Thm \subseteq Thm(Γ), adică, pentru orice formulă φ , $\vdash \varphi$ implică $\Gamma \vdash \varphi$.
- (iii) Dacă $\Gamma \vdash \Delta$, atunci $Thm(\Delta) \subseteq Thm(\Gamma)$, adică, pentru orice formulă φ ,

$$\Delta \vdash \varphi$$
 implică $\Gamma \vdash \varphi$.

(iv) $Thm(Thm(\Gamma)) = Thm(\Gamma)$, adică, pentru orice formulă φ , $Thm(\Gamma) \vdash \varphi$ ddacă $\Gamma \vdash \varphi$.

Dem.: Exercițiu ușor.

Γ-demonstrații

Definiția 1.40

O Γ -demonstrație (demonstrație din ipotezele Γ) este o secvență de formule $\theta_1, \ldots, \theta_n$ a.î. pentru fiecare $i \in \{1, \ldots, n\}$, una din următoarele condiții este satisfăcută:

- (i) θ_i este axiomă;
- (ii) $\theta_i \in \Gamma$;
- (iii) există k, j < i a.î. $\theta_k = \theta_j \rightarrow \theta_i$.

O ∅-demonstrație se va numi simplu demonstrație.

Lema 1.41

Dacă θ_1 , ..., θ_n este o Γ-demonstrație, atunci

 $\Gamma \vdash \theta_i$ pentru orice $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Γ-demonstrații

Definiția 1.42

Fie φ o formulă. O Γ -demonstrație a lui φ sau demonstrație a lui φ din ipotezele Γ este o Γ -demonstrație $\theta_1, \ldots, \theta_n$ a.î. $\theta_n = \varphi$. În acest caz, n se numește lungimea Γ -demonstrației.

Propoziția 1.43

Fie Γ o mulțime de formule și φ o formulă. Atunci $\Gamma \vdash \varphi$ ddacă există o Γ -demonstrație a lui φ .

Proprietăți sintactice

Propoziția 1.44

Pentru orice mulțime de formule Γ și orice formulă φ , $\Gamma \vdash \varphi$ ddacă există o submulțime finită Σ a lui Γ a.î. $\Sigma \vdash \varphi$.

Dem.: " \Leftarrow " Fie $\Sigma \subseteq \Gamma$, Σ finită a.î. $\Sigma \vdash \varphi$. Aplicând Propoziția 1.39.(i) obținem că $\Gamma \vdash \varphi$. " \Rightarrow " Presupunem că $\Gamma \vdash \varphi$. Conform Propoziției 1.43, φ are o Γ -demonstrație $\theta_1, \ldots, \theta_n = \varphi$. Fie

$$\Sigma := \Gamma \cap \{\theta_1, \dots, \theta_n\}.$$

Atunci Σ este finită, $\Sigma \subseteq \Gamma$ și $\theta_1, \ldots, \theta_n = \varphi$ este o Σ -demonstrație a lui φ , deci $\Sigma \vdash \varphi$.

Propoziția 1.45

Pentru orice formulă φ , $\vdash \varphi \rightarrow \varphi$.

Dem.:

- (1) $\vdash (\varphi \to ((\varphi \to \varphi) \to \varphi)) \to ((\varphi \to (\varphi \to \varphi)) \to (\varphi \to \varphi))$ (A2) (cu φ , $\psi := \varphi \to \varphi$, $\chi := \varphi$) și Propoziția 1.37.(i)
- (2) $\vdash \varphi \rightarrow ((\varphi \rightarrow \varphi) \rightarrow \varphi)$ (A1) (cu $\varphi, \ \psi := \varphi \rightarrow \varphi$) și Propoziția 1.37.(i)
- (3) $\vdash (\varphi \rightarrow (\varphi \rightarrow \varphi)) \rightarrow (\varphi \rightarrow \varphi)$ (1), (2) și Propoziția 1.37.(iii). Scriem de obicei (MP): (1), (2)
- (4) $\vdash \varphi \rightarrow (\varphi \rightarrow \varphi)$ (A1) (cu φ , $\psi := \varphi$) și Propoziția 1.37.(i)
- (5) $\vdash \varphi \rightarrow \varphi$ (MP): (3), (4)

Teorema deducției

Teorema 1.46 (Teorema deducției)

$$\Gamma \cup \{\varphi\} \vdash \psi \quad ddac \ \Gamma \vdash \varphi \rightarrow \psi.$$

Dem.: " \Leftarrow " Presupunem că $\Gamma \vdash \varphi \rightarrow \psi$.

- (1) $\Gamma \vdash \varphi \rightarrow \psi$ ipoteză
- (2) $\Gamma \cup \{\varphi\} \vdash \varphi \rightarrow \psi$ Propoziția 1.39.(i)
- (3) $\Gamma \cup \{\varphi\} \vdash \varphi$ Propoziția 1.37.(ii)
- (4) $\Gamma \cup \{\varphi\} \vdash \psi$ (MP): (2), (3).

Teorema deducției

$$\Sigma := \{ \psi \in Form \mid \Gamma \vdash \varphi \rightarrow \psi \}.$$

Trebuie să demonstrăm că $Thm(\Gamma \cup \{\varphi\}) \subseteq \Sigma$. O facem prin inducție după $\Gamma \cup \{\varphi\}$ -teoreme.

• Fie ψ o axiomă sau o formulă din Γ . Atunci

(1)
$$\Gamma \vdash \psi$$
 Propoziția 1.37.(i), (ii)

(2)
$$\Gamma \vdash \psi \rightarrow (\varphi \rightarrow \psi)$$
 (A1) și Propoziția 1.37.(i)

(3)
$$\Gamma \vdash \varphi \rightarrow \psi$$
 (MP): (1), (2).

Aşadar $\psi \in \Sigma$.

• Fie $\psi=\varphi$. Atunci $\varphi\to\psi=\varphi\to\varphi$ este teoremă, conform Propoziției 1.45, deci $\Gamma\vdash\varphi\to\psi$. Așadar $\psi\in\Sigma$.

Teorema deducției

• Demonstrăm acum că Σ este închisă la modus ponens. Presupunem că $\psi, \psi \to \chi \in \Sigma$ și trebuie să arătăm că $\chi \in \Sigma$. Atunci

(1)
$$\Gamma \vdash \varphi \rightarrow \psi$$

(2)
$$\Gamma \vdash \varphi \rightarrow (\psi \rightarrow \chi)$$

(3)
$$\Gamma \vdash (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$$
 (A2) și P.1.37.(i)

(4)
$$\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi)$$

$$(5) \quad \Gamma \vdash \varphi \to \chi$$

Aşadar
$$\chi \in \Sigma$$
.

ipoteză inducție

ipoteză inducție

Teorema deducției este un instrument foarte util pentru a arăta că o formulă e teoremă.

Propoziția 1.47

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to \psi) \to ((\psi \to \chi) \to (\varphi \to \chi)).$$
 (35)

Dem.: Folosind teorema deducției observăm că

În acest fel am reformulat ceea ce aveam de demonstrat. A demonstra teorema inițială este echivalent cu a demonstra

$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi.$$

(1)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi$$
 Propoziția 1.37.(ii)

(2)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \varphi \to \psi$$
 Propoziția 1.37.(ii)

(3)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi$$
 (MP): (1), (2)

(4)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \psi \to \chi$$
 Propoziția 1.37.(ii)

(5)
$$\{\varphi \to \psi, \psi \to \chi, \varphi\} \vdash \chi$$
 (MP): (3), (4).

Propoziția 1.48

Pentru orice mulțime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \vdash \varphi \rightarrow \psi \text{ si } \Gamma \vdash \psi \rightarrow \chi \Rightarrow \Gamma \vdash \varphi \rightarrow \chi.$$

Dem.:

(1)
$$\Gamma \vdash \varphi \rightarrow \psi$$
 ipoteză
(2) $\Gamma \vdash (\varphi \rightarrow \psi) \rightarrow ((\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi))$ P.1.47 și P.1.39.(ii)
(3) $\Gamma \vdash (\psi \rightarrow \chi) \rightarrow (\varphi \rightarrow \chi)$ (MP): (1), (2)
(4) $\Gamma \vdash \psi \rightarrow \chi$ ipoteză
(5) $\Gamma \vdash \varphi \rightarrow \chi$ (MP): (3), (4).

Propoziția 1.49

Pentru orice formule φ, ψ, χ ,

$$\vdash (\varphi \to (\psi \to \chi)) \to (\psi \to (\varphi \to \chi)) \tag{36}$$

Dem.: Exercițiu.

Propoziția 1.50

Pentru orice mulțime de formule Γ și orice formule φ, ψ, χ ,

$$\Gamma \cup \{\neg \psi\} \vdash \neg(\varphi \to \varphi) \Rightarrow \Gamma \vdash \psi.$$

Dem.: Exercițiu.