ANN_Titanic

December 5, 2017

1 Prevendo Sobrevivência do Titanic

Modelagem de uma rede neural para prever sobrevivência do Navio Titanic. Fonte dos dados: https://www.kaggle.com/c/titanic

Alunos:

- Davi P. Neto
- Giovane N. M. Costa
- Henrique A. Batochi

Referências:

https://www.kdnuggets.com/2016/10/beginners-guide-neural-networks-python-scikit-learn.html/2

https://www.kaggle.com/jeffd23/scikit-learn-ml-from-start-to-finish http://scikit-learn.org/stable/modules/neural_networks_supervised.html

1.1 Dicionário de Dados

Variable: Definition Key

survival: Survival 0 = No, 1 = Yes

pclass: Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd

sex: Sex (female or male)

Age: Age in years

sibsp: # of siblings / spouses aboard the Titanic
parch: # of parents / children aboard the Titanic

ticket: Ticket number fare: Passenger fare cabin: Cabin number

embarked: Port of Embarkation C = Cherbourg, Q = Queenstown, S = Southampton

Variable Notes

pclass: A proxy for socio-economic status (SES) 1st = Upper 2nd = Middle 3rd = Lower age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5 sibsp: The dataset defines family relations in this way...

Sibling = brother, sister, stepbrother, stepsister Spouse = husband, wife (mistresses and fiancés were ignored)

parch: Some children travelled only with a nanny, therefore parch=0 for them. Parent = mother, father Child = daughter, son, stepdaughter, stepson

1.2 Importando Bibliotecas

In [2]: import numpy as np # Para trabalhar com vetores e fazer outras operações matemáticas
 import pandas as pd # Pandas Dataframe: processamento de dados
 import matplotlib.pyplot as plt # Matplot: gráficos
 import seaborn as sns #Seaborn: simplica o processo de criar gráficos

Abrir os graficos no navegador em vez de em outra janela

Abrir os graficos no navegador em vez de em outra janeta %matplotlib inline

#Sci-kit Learn: biblioteca de machine learning para python, da qual importamos rede ne from sklearn.neural_network import MLPClassifier

1.3 Importando o Dataset

In [3]: # Criamos um Pandas Dataframe a partir do csv.
Dataframe é tipo uma Classe para tabelas com várias funções de manipulação
data = pd.read_csv('train.csv')

Out[4]	:	Passe	ngerId	Surviv	ed	Pclass			Name	Sex	\
	297		298		0	1	Allison	, Miss. He	len Loraine	female	
798 799				0	3	Ibrahim	Shawah, M	r. Yousseff	male		
	450		451		0	2		West, Mr.	Edwy Arthur	male	
	636		637		0	3	Leino	nen, Mr. A	ntti Gustaf	male	
	650		651		0	3		Mitkof	f, Mr. Mito	male	
	665		666		0	2		Hickman	, Mr. Lewis	male	
	154		155		0	3		Olsen, Mr.	Ole Martin	male	
	409		410		0	3		Lefebre	, Miss. Ida	female	
	34		35		0	1	Me	yer, Mr. E	dgar Joseph	male	
	353		354		0	3	Arno	ld-Franchi	, Mr. Josef	male	
		Age	SibSp	Parch			Ticket	Fare	Cabin Emb	arked	
	297	2.0	1	2			113781	151.5500	C22 C26	S	
	798	30.0	0	0			2685	7.2292	NaN	C	
	450	36.0	1	2		C.A	. 34651	27.7500	NaN	S	
	636	32.0	0	0	ST	ON/O 2.	3101292	7.9250	NaN	S	
	650	NaN	0	0			349221	7.8958	NaN	S	
	665	32.0	2	0		S.O.C	. 14879	73.5000	NaN	S	
	154	NaN	0	0		Fa	265302	7.3125	NaN	S	
	409	NaN	3	1			4133	25.4667	NaN	S	
	34	28.0	1	0		P	C 17604	82.1708	NaN	C	
	353	25.0	1	0			349237	17.8000	NaN	S	

Out[5]:		PassengerId	Survived	Pclass	Age	SibSp	\
	count	891.000000	891.000000	891.000000	714.000000	891.000000	
	mean	446.000000	0.383838	2.308642	29.699118	0.523008	
	std	257.353842	0.486592	0.836071	14.526497	1.102743	
	min	1.000000	0.000000	1.000000	0.420000	0.000000	
	25%	223.500000	0.00000	2.000000	20.125000	0.000000	
	50%	446.000000	0.00000	3.000000	28.000000	0.000000	
	75%	668.500000	1.000000	3.000000	38.000000	1.000000	
	max	891.000000	1.000000	3.000000	80.000000	8.000000	
		Parch	Fare				
	count	891.000000	891.000000				
	mean	0.381594	32.204208				
	std	0.806057	49.693429				
	min	0.000000	0.000000				
	25%	0.000000	7.910400				
	50%	0.000000	14.454200				
	75%	0.000000	31.000000				
	max	6.000000	512.329200				

1.4 Tratando os dados

1.4.1 Checando por dados ausentes

As variáveis Idade, Cabine e Local de Embarque precisam ser preenchidas

```
In [6]: data.apply(lambda x: sum(x.isnull()),axis=0)
Out[6]: PassengerId
                          0
        Survived
                          0
                          0
        Pclass
        Name
                          0
        Sex
                          0
                        177
        Age
        SibSp
                          0
        Parch
                          0
        Ticket
                          0
        Fare
                          0
        Cabin
                        687
        Embarked
        dtype: int64
```

1.4.2 Idade

Segundo o dataset, existem idades "quebradas (x.5) que foram estimadas, idades 1 (bebes) e idades ausentes. Para facilitar a análise, preenchemos as idades ausentes com a mediana e as separamos as idades por categorias:

Bebê (0 a 5), Criança (5 a 12), Adolescente (12 a 18), Jovem (18 a 25), Jovem Adulto (25 a 35), Adulto (35 a 60), Idoso (60 a 81)

```
In [7]: print data.Age.sort_values().unique()
        print data.Age.median()
Γ 0.42
          0.67
                         0.83
                                0.92
                                               2.
                                                                     5.
                 0.75
                                                       3.
                                                              4.
                                                                             6.
                                        1.
   7.
          8.
                  9.
                        10.
                               11.
                                       12.
                                              13.
                                                      14.
                                                             14.5
                                                                     15.
                                                                            16.
  17.
                        20.
                               20.5
                                              22.
                                                      23.
                                                             23.5
                                                                     24.
                                                                            24.5
         18.
                19.
                                       21.
  25.
         26.
                27.
                        28.
                               28.5
                                       29.
                                              30.
                                                      30.5
                                                             31.
                                                                    32.
                                                                            32.5
  33.
         34.
                34.5
                        35.
                               36.
                                       36.5
                                              37.
                                                      38.
                                                             39.
                                                                    40.
                                                                            40.5
  41.
         42.
                43.
                               45.
                                       45.5
                                                      47.
                                                             48.
                                                                    49.
                                                                            50.
                                              46.
  51.
         52.
                53.
                        54.
                               55.
                                       55.5
                                              56.
                                                      57.
                                                             58.
                                                                    59.
                                                                            60.
                                              70.
                                                     70.5
                                                                    74.
                                                                            80.
  61.
         62.
                63.
                        64.
                               65.
                                       66.
                                                             71.
    nan]
28.0
In [8]: # Preenchemos as idades ausentes com valores negativos com a mediana
        data.Age = data.Age.fillna(28)
        # limites dos grupos
        bins = (0, 5, 12, 18, 25, 35, 60, 120)
        #nomes dos grupos
        grupos = ['Bebê'.decode('utf-8'), 'Criança'.decode('utf-8'), 'Adolescente',
                   'Jovem', 'Jovem Adulto', 'Adulto', 'Idoso']
        # Cada linha do dataframe tem um indice que a identifica.
        # Pd.cut faz a categorização atribuindo uma categoria para cada indice
        categorias = pd.cut(data.Age, bins, labels=grupos)
        # Atualizamos o campo idade do dataframe com o novo vetor criado
        data.Age = categorias
```

1.4.3 Cabine

Todas as cabines começam como uma letra, que vão de 'A' a 'G', e uma 'T' . Essa letra pode ser interessante, por isso a separamos dos números e jogamos eles fora. Além disso, também existem valores ausentes que preenchemos com a letra 'N'.

```
D 33
E 32
A 15
F 13
G 4
T 1
Name: Cabin, dtype: int64
```

1.4.4 Tarifa

Simplificamos também as tarifas dividindo em 4 grupos conforme quartis. (Um quartil é qualquer um dos três valores que divide o conjunto ordenado de dados em quatro partes iguais, e assim cada parte representa 1/4 da amostra ou população /Wikipedia)

```
In [10]: data.Fare.describe()
Out[10]: count
                  891.000000
                   32.204208
         mean
                   49.693429
         std
         min
                    0.000000
         25%
                    7.910400
         50%
                   14.454200
         75%
                   31.000000
                  512.329200
         Name: Fare, dtype: float64
In [11]: # Preenchendo os valores ausentes
         data.Fare = data.Fare.fillna(-0.5)
         # Limites dos quartis conforme a função describe()
         bins = (-1, 0, 8, 15, 31, 513)
         # Nome dos grupos
         grupos = ['Desconhecido', '1_Quartil', '2_Quartil', '3_Quartil', '4_Quartil']
         # Divisão das categorias
         categorias = pd.cut(data.Fare, bins, labels=grupos)
         # Atualizando a coluna
         data.Fare = categorias
```

1.4.5 Nome

É razoável admitir que o nome de uma pessoa não interefere na probabilidade de sobrevivência dela. No entanto, o prefixo (Mr. Miss, etc..) pode dizer alguma coisa, pois está relacionado ao sexo e estado civíl.

```
In [12]: # Ex: Reeves, Mr. David

# Pegando o prefixo
data['NamePrefix'] = data.Name.apply(lambda x: x.split(' ')[1])
```

1.4.6 Familia

Vamos criar uma variavel familia somando a SibSp e Parch

```
In [13]: data['Family'] = data['SibSp'] + data['Parch']
```

1.4.7 Local de Embarque

A maioria embarcou em Southampton, então vamos preencher os valores com esse local

1.4.8 Eliminando Features

Por fim, eliminamos as features irrelevantes para o aprendizado, como o número da passagem, o nome, e o local onde embarcou.

Out $[15]$:	Survived	Pclass	Sex	Age	Fare	Cabin	Embarked	\
C	0	3	male	Jovem	$1_{Quartil}$	N	S	
1	1	1	female	Adulto	$4_{ t Quartil}$	C	C	
2	1	3	female	Jovem Adulto	$1_{Quartil}$	N	S	
3	1	1	female	Jovem Adulto	$4_{ t Quartil}$	C	S	
4	. 0	3	male	Jovem Adulto	2_Quartil	N	S	

```
      NamePrefix
      Family

      0
      Mr.
      1

      1
      Mrs.
      1

      2
      Miss.
      0

      3
      Mrs.
      1

      4
      Mr.
      0
```

1.5 Análise Exploratória

Plotamos alguns gráficos para ver como nossas varíaveis se relacionam com a sobrevivência:

In [16]: sns.barplot(x="Embarked", y="Survived", data=data);

In [17]: sns.barplot(x="Family", y="Survived", data=data);

In [18]: sns.barplot(x="Pclass", y="Survived", data=data);

In [19]: sns.barplot(x="Sex", y="Survived", data=data);

In [22]: sns.barplot(x="Cabin", y="Survived", data=data);

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x7eff61c228d0>

Como podemos ver, algumas características se destacam, como: - Familia: pessoas viajando sozinhas ou com mais de 3 familiares tem menos chance de sobreviver; - Sexo: mulheres tem mais chance de sobreviver; - Classe: quanto menor a classe, melhor a chance de sobreviver; - Tarifa: passageiros que pagaram mais tem mais chance de sobreviver; - Idade: idosos, jovens e crianças foram os que menos sobreviveram;

- Cabine: as cabines E, D e B foram as com mais sobreviventes;
- Embarque: pessoas que embarcaram em Cherbourg tem mais chances de sobreviver;

1.6 Transformando os Dados

Para utilizar em redes neurais, precisamos dos dados em números em vez de strings. Para issos, utilizamos a classe LabelEncoder do Scikit-learn que converte cada string diferente em um número diferente.

```
In [24]: from sklearn import preprocessing
    def encode_features(data):
        features = ['Fare', 'Age', 'Sex', 'Cabin', 'NamePrefix', 'Family', 'Embarked']

        for feature in features:
            le = preprocessing.LabelEncoder()
            le = le.fit(data[feature])
            data[feature] = le.transform(data[feature])
        return data

data = encode_features(data)
        data.head()
```

Out[24]:		Survived	Pclass	Sex	Age	Fare	Cabin	Embarked	${\tt NamePrefix}$	Family
()	0	3	1	5	0	7	2	17	1
1	L	1	1	0	1	3	2	0	18	1
2	2	1	3	0	6	0	7	2	14	0
3	3	1	1	0	6	3	2	2	18	1
4	1	0	3	1	6	1	7	2	17	0

1.7 Dividindo o Dataset em Treino/Test

Precisamos ensinar e testar a rede. Assim, antes dividimos o dataset em quatro: - Primeiro, um dataframe somente com as features que utilizaremos para prever a sobrevivência; - Segundo, um dataframe somente com o valor que queremos prever (se a pessoa sobreviveu ou não); - Finalmente, para cada um desses, dividimos aleatóriamente 20% dos dados para teste e o resto para treino.

1.8 Feature Scaling

Conforme a documentação, o Multi-layer Perceptron é sensível a 'escala' das variáveis. Ou seja, se uma variável possui variância que sua ordem de magnitude é maior que as outras, ela pode dominar a função objetivo. Assim, recomenda-se 'padronizar' os dados de forma a ter média 0 e variância 1. Para isso utilizamos a função StandardScaler.

```
In [27]: from sklearn.preprocessing import StandardScaler
     scaler = StandardScaler()
```

```
# Don't cheat - fit only on training data
        scaler.fit(X_train)
        X_train = scaler.transform(X_train)
         # apply same transformation to test data
        X test = scaler.transform(X test)
In [28]: X_train
Out[28]: array([[-1.55453842, -1.33463478, 0.45493896, ..., 0.5930441,
                 0.67645173, 0.04773979],
               [0.83861046, 0.74926865, 0.45493896, ..., 0.5930441,
                 0.3137758 , -0.5935947 ],
               [0.83861046, 0.74926865, -1.73664792, ..., 0.5930441,
                 0.3137758 , 0.68907427],
               [0.83861046, -1.33463478, -1.29833054, ..., 0.5930441,
                 0.67645173, 0.04773979],
               [-1.55453842, -1.33463478, 0.45493896, ..., -1.89076414,
                -0.77425198, 1.97174324],
               [0.83861046, 0.74926865, -1.29833054, ..., 0.5930441,
                -2.95030754, 0.68907427]])
```

1.9 Treinando a Rede

Primeiramente utilizamos o GridSearchCV para encontrar o melhor alpha e numero da neuronios para a rede neural (dentro de uma lista). Para essa rede, utilizamos taxa de aprendizado de 0.001, função de ativação tangente hiperbólica e backpropagation (mais especificamente, stochastic gradient descent). Depois treinamos a rede e a utilizamos para prever a sobrevivência. Essa parte demora cerca de 30s.

1.10 Validando os Resultados com KFold

Utilizando K-Fold, com k = 10, a rede apresentou uma acurácia média de 0.75, que significa um bom resultado.

```
In [33]: predictions = clf.predict(X_test)
         from sklearn.metrics import confusion_matrix
         from sklearn.model_selection import KFold
         def run_kfold(clf):
             kf = KFold(n splits=7, shuffle=True)
             outcomes = []
             fold = 0
             for train_index, test_index in kf.split(data):
                 fold += 1
                 X_train2, X_test2 = X_all.values[train_index], X_all.values[test_index]
                 y train2, y test2 = y all.values[train_index], y_all.values[test_index]
                 clf.fit(X_train2, y_train2)
                 predictions = clf.predict(X_test2)
                 accuracy = accuracy_score(y_test2, predictions)
                 outcomes.append(accuracy)
                 print("Fold {0} accuracy: {1}".format(fold, accuracy))
             mean_outcome = np.mean(outcomes)
             print("Mean Accuracy: {0}".format(mean_outcome))
         run kfold(clf)
         mat = confusion_matrix(y_test,predictions)
         f,ax = plt.subplots(figsize=(6, 6))
```

Fold 1 accuracy: 0.7578125 Fold 2 accuracy: 0.7578125

Fold 3 accuracy: 0.803149606299 Fold 4 accuracy: 0.732283464567 Fold 5 accuracy: 0.803149606299 Fold 6 accuracy: 0.755905511811 Fold 7 accuracy: 0.685039370079 Mean Accuracy: 0.756450365579

Out[33]: <matplotlib.axes._subplots.AxesSubplot at 0x7eff61d52bd0>

