Циклы

Определение цикла

Подстановка σ называется **циклом**, если она действует ненулевым образом только на конечном подмножестве $S\subseteq 1,2,\ldots,n$ и при этом существует такая последовательность элементов $a_1,a_2,\ldots,a_k\in S$, что:

$$\sigma(a_i)=a_{i+1}$$
 для $i=1,2,\ldots,k-1,\quad \sigma(a_k)=a_1,\quad \sigma(a)=a$ для всех $a
ot\in S.$

Запись цикла представляется как:

$$\sigma=(a_1\ a_2\ \dots\ a_k),$$

где k называется длиной цикла.

Два цикла называются независимыми, если они не имеют общих перемещаемых символов, тогда:

$$\sigma_1 \cdot \sigma_2 = \sigma_2 \cdot \sigma_1$$

Четность цикла

Теорема

Цикл длины k можно разложить в произведение k-1 транспозиций:

$$(a_1 \ a_2 \ \dots \ a_k) = (a_1 \ a_2)(a_1 \ a_3)\dots(a_1 \ a_k)$$

Доказательство

1. Рассмотрим действие цикла $(a_1; a_2; \ldots; a_k)$:

•
$$a_1 \mapsto a_2, a_2 \mapsto a_3, \ldots, a_k \mapsto a_1$$
.

- 2. Сначала применяем транспозицию $(a_1;a_2)$: $a_1\mapsto a_2$, $a_2\mapsto a_1$.
- 3. Затем применяем $(a_1; a_3)$: $a_1 \mapsto a_3$, $a_3 \mapsto a_1$.
- 4. Повторяя это для всех элементов a_4, \ldots, a_k , мы получаем исходный цикл.

Таким образом, цикл разлагается на k-1 транспозиций. Следовательно:

- Если k чётно, цикл нечётный.
- Если k нечётно, цикл чётный.

Разложение подстановки в произведение независимых циклов

Определение

Подстановка σ может быть представлена в виде произведения независимых циклов, то есть циклов, действующих на непересекающихся подмножествах множества $1,2,\ldots,n$.

Пример

Пусть $\sigma = (1;3;5)(2;4)$. Это произведение двух независимых циклов:

- (1; 3; 5) действует на 1, 3, 5.
- (2;4) действует на 2,4.

Декремент подстановки и четность

Определение декремента

Декремент $\operatorname{dec}(\sigma)$ подстановки σ определяется как:

Или

 $\mathrm{dec}(\sigma)=$ число всех перемещаемых символов минус кол-во циклов

Или

 $\operatorname{dec}(\sigma) = \operatorname{Сумма}$ длины всех циклов минус количество циклов

Инверсией называется пара (i,j), где i < j, но $\sigma(i) > \sigma(j)$.

Связь с четностью

Подстановка σ чётна, если $\mathrm{dec}(\sigma)$ чётно, и нечётна, если $\mathrm{dec}(\sigma)$ нечётно.

Пример

$$egin{pmatrix} 1 & 2 & 3 & 4 & 5 \ 4 & 1 & 5 & 2 & 3 \end{pmatrix} = (1,4,2)(3,5) = (1,4)(1,2)(3,5)$$

Кол-во перемещаемых символов: 5

Количество циклов: 2

Количество инверсий: 3

 $5-2=3 \implies$ подстановка не четная (об четности см ниже)

Связь между циклическим разложением и четностью

Теорема

Четность подстановки σ определяется чётностью суммы длины всех циклов минус их количество:

Четность
$$(\sigma) = \sum_{i=1}^k (\ell_i - 1)$$

где ℓ_i — длина i-го цикла.

Доказательство

Разложим σ в k циклов длины $\ell_1,\ell_2,\ldots,\ell_k$. Каждый цикл ℓ_i разлагается в ℓ_i-1 транспозиций. Тогда общее число транспозиций:

$$T=\sum_{i=1}^k (\ell_i-1)$$

Если T чётно, σ чётна; если нечётно, σ нечётна.

Пример

Разложим подстановку $\sigma = (1;4;3)(2;5)$:

- 1. Циклы: (1;4;3) и (2;5).
- 2. Длины циклов: $\ell_1 = 3$, $\ell_2 = 2$.
- 3. Сумма длины минус количество циклов:

$$(3-1)+(2-1)=2+1=3$$
 (нечётно).

Следовательно, подстановка σ нечётна.