1 | diagonal matrix def

A diagonal matrix is a square matrix that is zero everywhere except possibly along the diagonal.

1.1 | results

1.1.1 every diagonal matrix is upper triangular

2 | diagonalizable def

An operator $T \in \mathcal{L}(V)$ is called *diagonalizable* if the operator has a diagonal matrix with respect to some basis of V.

2.1 | results

2.1.1 | Axler 5.41 conditions equivalent to diagonalizability

Suppose V is finite-dimensional and $T \in \mathcal{L}(V)$. Let $\lambda_1, \ldots, \lambda_m$ denote the distinct eigenvalues of T. Then the following are equivalent:

- 1. T is diagonalizable
- 2. V has a basis consisting of eigenvalues of T
- 3. there exist 1-dimensional subspaces U_1, \ldots, U_n of V, each invariant under T, s.t.

$$V = U_1 \oplus \cdots \oplus U_n$$

1. $V = E(\lambda_1, T) \oplus \cdots \oplus E(\lambda_m, T)$ (V is the (direct) sum of eigenspaces)

Taproot · 2020-2021 Page 1 of 1