

National Aeronautics and Space Administration

Jirong Yu, Mulugeta Petros, Tamer F. Refaat, Ruben Remus and Upendra N. Singh

> **NASA Langley Research Center** Hampton, VA, USA

> > **AGU Fall Meeting**

San Francisco, CA, USA December 15, 2015

Objective and Outline

Airborne validation of 2-μm double-pulse IPDA lidar instrument for atmospheric CO₂ measurements

Introduction

2-μm Double-Pulse IPDA Lidar 2-μm IPDA Lidar Technique

Ground Testing
 Setup
 Results

Airborne Testing

 Aircraft Integration
 Plume Detection
 Air-Sampling Validation

Conclusions

Introduction: 2-µm Double-Pulse IPDA Lidar

Receiver Telescope

40 cm (\$) 65 % (η) 300 µrad

2-Channels, 90/10%

InGaAs PIN (Hamamatsu; G8423-03)

TIA, (FEMTO; DHPCA-100)

Window

- **Developed at NASA LaRC**
- 2-μm double-pulse laser Transmitter
- Wavelength control for each pulse
- **Compact integration with receiver**
- Small aircraft payload requirement

$$P(\lambda, R_A, R_G) = \eta_r \cdot \varphi_r \cdot \frac{A}{(R_A - R_G)^2} \cdot \frac{E(\lambda)}{t(\lambda)} \cdot \frac{\rho}{\pi} \cdot exp[-\tau(\lambda, R_A, R_G)]$$

Energy Monitor

On-Line; 90 mJ, 200 nsec

Off-Line; 45 mJ, 350 nsec

Ranging

Hard Target Return

2-µm Laser

10 Hz, Shot Repetition Rate 150 µrad, Beam Divergence 200 µsec, Pulse Separation

Hard Target

Introduction: 2-µm IPDA Lidar Technique

- Target R30 CO₂ line
 - Low temperature sensitivity
 - Low molecular interference
- IPDA results in "inherent bias"

$$P(\lambda, R_A, R_G) = \eta_r \cdot \varphi_r \cdot \frac{A}{(R_A - R_G)^2} \cdot \frac{E(\lambda)}{t(\lambda)} \cdot \frac{\rho}{\pi} \cdot exp[-\tau(\lambda, R_A, R_G)]$$

$$\Delta \tau (\lambda_{on}, \lambda_{off}) = ln \left\{ \frac{P(\lambda_{off}, R_A) \cdot t(\lambda_{off}) / E(\lambda_{off})}{P(\lambda_{on}, R_A) \cdot t(\lambda_{on}) / E(\lambda_{on})} \right\}$$

For CO₂ Modeling

$$\Delta \tau_{cd}(\lambda_{on}, \lambda_{off}) = 2 \times 10^{-6} \cdot \int_{R_A}^{R_G} \Delta \sigma_{cd}(\lambda_{on}, \lambda_{off}, r) \cdot N_{dry}(r) \cdot x_{cd}(r) \cdot dr$$

$$\Delta au_{cd}(\lambda_{on}, \lambda_{off}) \approx 2 \times 10^{-6} \cdot X_{cd} \cdot \int\limits_{R_A}^{R_G} \Delta \sigma_{cd}(\lambda_{on}, \lambda_{off}, r) \cdot N_{dry}(r) \cdot dr$$

Pressure-Based Weighting-Functions

Ground Testing: Setup

- Instrument integration and ground testing conducted at NASA LaRC
- IPDA installation in a mobile trailer
- Energy monitor calibration
- IPDA alignment to calibrated hard targets
- LiCor in-situ sensor for CO₂ and H₂O monitoring
- CAPABLE⁽¹⁾ site for meteorological data
- Incinerator → CO₂ source

CO₂ Ground Optical Depth

⁽¹⁾ Chemistry and Physics Atmospheric Boundary Layer Experiment, capable.larc.nasa.gov

Ground Testing: Results

Detailed Record of 6000 shots (10 min) @ 3GHz & 10³ V/A

- Per-shot analysis of return signals
 - Energy monitor pulse integration
 - Energy calibration
 - Target return pulse integration
 - Power calculation
 - Optical depth measurement
- Alternative residual scattering investigation
- Per-shot analysis recovers systematic fluctuations

⁽¹⁾ Applied Optics, 54(24), 7240, 2015

Ground Testing: Results

- IPDA CO₂ differential optical depth measurements correlates to model
- Energy monitor results in lower offset
- Residual scattering results in better temporal profiling
- CO₂ differential optical depth conversion to CO₂ weighted-average column dry-air volume-mixing
- This validates the 2-μm double-pulse IPDA lidar for atmospheric CO₂ measurement

IPDA lidar profile was corrected for the observed optical depth offset by adding -0.4 and 14.6 ppm to the PDEM and RS, respectively.

20:00

19:00

Time [Hr:min]

Statistical Results of Differential Optical Depth and CO₂ Dry-Air Mixing Ratio Record

	dOD_C	dOD_{M}	dODw	
(Δτ)	0.4078	0.4082	0.3926	
$\delta(\Delta au)$	0.0043	0.0023	0.0091	
$\delta(\Delta \tau)/(\Delta \tau)$	1.07%	0.57%	2.31%	
$\Delta(\Delta au)$		-0.0004	0.0151	
$\Delta(\Delta\tau)/(\Delta\tau_{\rm C})$		-0.09%	3.72 %	
	X_{cd}	$X_{cd,M}$	$X_{cd,W}$	
(Xcd)	414.06	414.50	399.47	
$\delta(X_{cd})$	4.22 ppm	2.24 ppm	8.85 ppm	
$\delta(X_{cd})/(X_{cd})$	1.02%	0.54%	2.21%	
$\Delta(X_{cd})$		-0.43 ppm	14.59 ppm	
$\Delta(X_{cd})/(X_{cd})$		-0.10%	3.52%	

⁽⁾ is the mean value.

18:00

400

17:00

 $[\]delta$ () is the standard deviation.

 $[\]Delta$ () is the mean offset referred to the in-situ

⁽¹⁾ Applied Optics, 54(24), 7240, 2015

Airborne Testing: Aircraft Integration

- 2-μm double-pulse IPDA integration inside NASA B-200 aircraft (Weight 500 kg, Power Consumption 2.3 kW and Size 1 m³)
- Other supporting instruments includes, GPS, in-situ sensor and video recorder
- Airborne testing conducted through 10 flights spanning 27 hours

Airborne Testing: Plume Detection

Aerial picture of Roxboro steam plant, Semora, NC. With 2 GW capacity it is one of the largest power plants in the USA

- Coal-firing results in significant CO₂ plumes
- Against wind flight track above plant incinerator
- The 2-μm double-pulse IPDA lidar detected CO₂ differential optical depth variability
- 9th flight; 1 km altitude & 4 GHz on-line operation

NASA B-200 Flight Track Following NOAA's Air-Sampling Flight over the Atlantic Ocean near Cape May, NJ.

Flight Altitude Compared to the Laser-Line-of-Sight.

Samples of On-Line and Off-Line Return Signals from Ocean Surface at Different Altitudes.

- IPDA onboard NASA B-200 followed an air sampling flight conducted by NOAA at different altitude
- IPDA operating at 3 and 4 GHz on-line and different amplifier gain

39.0 Cape May, NJ 38.6 -75.0

-74.6

-74.2

-73.8

Longitude

NASA B-200 Flight Track Following NOAA's Air-Sampling Flight over the Atlantic Ocean near Cape May, NJ.

Flight Altitude Compared to the Laser-Line-of-Sight.

IPDA Ranging (Column Length) as compared to GPS laser-lineof-Sight at Different Altitudes.

- IPDA onboard NASA B-200 followed an air sampling flight conducted by NOAA at different altitude
- IPDA operating at 3 and 4 GHz on-line
- Range resolution is 0.75 m, governed by the 5 nsec sampling

CO₂ in-situ Measurement Conducted by NOAA Air Sampling. US Standard Atmospheric Model included as a reference.

Atmospheric Temperature, Pressure and Relative Humidity Profiles provided by NOAA and Water Vapor Driven Mixing Ratio. US Standard Atmospheric Model included as a reference.

- NOAA provides CO₂ in-situ samples and meteorological data
- NOAA measurements compared to US Standard Atmosphere

H₂O Optical Depth

CO₂ in-situ Measurement Conducted by NOAA Air Sampling. US Standard Atmospheric Model

- NOAA data applied for simulating the expected IPDA ideal measurement
- IPDA inherent bias wavelength and altitude dependent
- Insignificant water vapor biases

CO₂ Differential Optical Depth Simulation Compared to IPDA Measurements

IPDA CO₂ Differential Optical Depth Measurements at Different Altitudes

- IPDA measurements of the CO₂ differential optical depth using Single-Shot and 10 Sec. average
- Averaged measurements compared to simulations
- Measurements indicated additional systematic bias

Off-off-Line Optical Depth Distribution.

- Off-off-line Testing for Instrument Systematic Bias Evaluation
 - Precisely known result (zero)
 - Independent on any other instrument
 - Independent on meteorological data
 - Deviation from expected value defines instrument systematic error
 - Noise around expected value define instrument random error
- Off-off-line testing conducted during a different flight

CO₂ Weighted-Average Column Dry-Air Mixing Ratio Statistical Results and Errors

R _A m	x_{cd} ppm	$X_{cd,c}$ ppm	$X_{cd,m}$ ppm	$\delta\!X_{cd,m}$ ppm	$\Delta\!X_{cd}$ ppm	Ran. Error	Sys. Error
6125.6	400.75	404.08	405.22	4.15	1.14	1.02%	0.28%
5242.6	400.96	404.34	405.84	4.74	1.50	1.17%	0.37%
3976.7	401.61	404.89	406.60	8.69	1.71	2.14%	0.42%
3051.9	401.55	405.54	407.10	12.83	1.56	3.15%	0.38%

CO₂ Differential Optical Depth Simulation Compared to IPDA Measurements

- Instrument systematic bias is consistent
- Measured off-off-line systematic bias applied to correct other flight result (NOAA)
- Averaging of 10 sec (100 shots) applied to reduce random error
- CO₂ differential optical depth conversion to CO₂ weighted-average column dry-air volume-mixing
- Sensitivity analysis indicated small atmospheric systemic error that correlates to water vapor

- Airborne 2-μm double-pulse IPDA lidar instrument have been developed at NASA LaRC for atmospheric CO₂ measurements
- Transmitter capability of controlling each pulse independently
- IPDA tuning capability to achieve different weighting functions at different gains
- Double-pulse IPDA ground testing demonstrated successful CO₂ measurement as compared to in-situ sensors
- Double-pulse IPDA CO₂ airborne measurements agrees with different models through different sources
- Off-off-line testing quantifies consistent instrument systematic and random errors and should be applied as a calibration setting
- IPDA airborne CO₂ measurement validation for upto 6km altitude
- Extending IPDA lidar capabilities through triple-pulse operation for simultaneous and independent CO₂ and H₂O measurement