# Introduction réseaux - Épisode 4 FIPA24 - 2022/2023

Pascal Cotret, ENSTA Bretagne

15 septembre 2022



### Au menu de ce matin

1. Avec du fil : Ethernet

# Détection/correction d'erreur I

#### **Principe**

Ajouter des bits redondants pour détecter voir corriger les données altérées.



# Détection/correction d'erreur II

#### Mise en oeuvre

- Détection d'erreur : somme de contrôle, contrôle de redondance cyclique.
- La détection n'est pas parfaite [1].
- Correction d'erreur :
  - ► Code correcteur d'erreur (*Forward Error Correction*) : Hamming, Reed-Solomon, Turbocode.
  - Requête automatique de répétition (Automatic Repeat reQuest).

# Détection d'erreurs : exemples I

Exemple simple : code de parité



# Détection/correction d'erreur II

#### Mise en oeuvre

- Détection d'erreur : somme de contrôle, contrôle de redondance cyclique.
- La détection n'est pas parfaite [1].
- Correction d'erreur :
  - ► Code correcteur d'erreur (*Forward Error Correction*) : Hamming, Reed-Solomon, Turbocode.
  - Requête automatique de répétition (Automatic Repeat reQuest).

# Détection d'erreurs : exemples I

Exemple simple : code de parité



# Détection d'erreurs : exemples II

# Exemple plus réaliste : contrôle de redondance cyclique

- ► Calcul du reste de la division polynomiale par un polynôme de référence.
- ► Principe de CRC-n
  - Les données forment un polynôme binaire D(X) dont les coefficients appartiennent à GF(2)
  - Polynôme de référence G(X) de degré n+1 irréductible (i.e G(O)=G(1)=1).
  - ▶ On calcule R(X) tel que  $D(X).X^n = Q(X).G(X) + R(X)$ .
- ▶ IEEE CRC-32 (Ethernet, Wifi) :  $G = ox104C11DB7^{-1}$ .
- Adapté pour détecter les salves d'erreurs consécutives.

1. D'autres polynômes: http://crcmod.sourceforge.net/crcmod.predefined.html

8 / 21

## Exercice Wireshark



## Sur la base de la capture compro-crc.pcap

- ► Comment peut-on voit un CRC incorrect dans Wireshark?
- Quelle serait la valeur correcte correspondante?

(sachant que le CRC est aussi connu sous le nom de *Frame Check Sequence* dans Wireshark)

# Contrôle d'accès au support I

## Différents types de liaisons

- Point-à-point : PPP (ADSL), liaison entre un noeud et un commutateur de niveau 2 (e.g. switch Ethernet).
- Support partagé : bus, liaison sans fil (e.g. Wi-Fi).

# Contrôle d'accès au support II

## Stratégies de partage du support

- Partage prédéfini :
  - Le canal est découpé en sous-parties (fréquentielles, temporelles, etc.).
  - Chaque sous-partie est allouée exclusivement à un noeud.
- Accès aléatoire :
  - ▶ Tous les noeuds partagent le même canal et peuvent émettre aléatoirement.
  - Nécessité de détecter les collisions.
- ▶ À tour de rôle :
  - Partage équitable du support entre tous les noeuds souhaitant émettre.
  - Exemple : maître/esclave, protocoles à jetons.

#### Ethernet

## Historique

- ▶ 1975 : Robert Metcalfe et David Boggs inventent Ethernet au Xerox PARC.
- ▶ 1979 : Robert Metcalfe fonde 3Com.
- ▶ 1980 : Ethernet I (Dec Intel Xerox).
- ▶ 1983 : Standardisation IEEE 802.3 [4].

#### Ethernet II

## Ethernet aujourd'hui

- ► Technologie filaire prédominante dans les LAN.
- ► Adopté peu à peu dans d'autres domaines d'application :
  - Cœur de réseau (Ethernet carrier grade).
  - ► Informatique industrielle.
- Solution simple et peu coûteuse.
- Différent supports : paire torsadée, fibre optique.
- Différentes capacités : 10 Mbit/s à 10 Gbit/s.

# Différents supports physiques I

- ▶ Initialement, transport sur câble coaxial : 10BASE5, 10BASE2.
- ► Paire torsadée (RJ45) :
  - ► 10BASE-T
    - 2 paires sur câble cat 3 ou 5
  - ▶ 100BASE-TX
    - 2 paires sur câble cat 5 (100m)
  - ► 1000BASE-T (IEEE 802.3ab)
    - ▶ 4 paires sur câble cat 5 ou plus (100m)
  - ► 10GBASE-T (IEEE 802.3an)
    - ▶ 4 paires sur câble cat 6 ou plus (100m)
  - ► 40GBASE-T (IEEE 802.3bq)
    - ▶ 4 paires sur câble cat 8 (30m)

# Différents supports physiques II

- ► Fibre optique (100m à 40 km):
  - ▶ 100BASE-FX
  - ► 1000BASE-X (IEEE 802.3z)
  - 40GBASE-R (IEEE 802.3ba, 802.3bm, 802.3bg)
  - ▶ 100GBASE-R (IEEE 802.3ba, 802.3bj, 802.3bm, 802.3cd)

# Câblage I

# Blindage (ISO/IEC 11801)

- ▶ Dénomination X/YTP (TP : Twisted Pairs).
- ▶ Blindage du câble (X) et/ou des paires (Y) :
  - U: unshielded (pas de blindage);
  - S: braided shielding (blindage par tresse);
  - F: **f**oil shielding blindage par feuillard.

# Câblage II

# Catégories de câbles

| Nom    | Blindage            | BP      | Application            |
|--------|---------------------|---------|------------------------|
| Cat 3  | U/UTP               | 16 MHz  | Téléphone              |
| Cat 5  | U/UTP               | 100 MHz | 100BASE-TX, 1000BASE-T |
| Cat 5e | U/UTP, F/UTP        | 100 MHz | 100BASE-TX, 1000BASE-T |
| Cat 6  | U/UTP, F/UTP        | 250 MH  | 10GBASE-T              |
| Cat 6A | UTP, F/UTP, U/FTP   | 500 MHz | 10GBASE-T              |
| Cat 8  | F/UTP, U/FTP, S/FTP | 2 GHz   | 40GBASE-T              |

#### Format des trames Ethernet



Indique la fin de la synchronisation

## **Exercice Wireshark**



## nb6-telephone.pcap et http.cap<sup>2</sup>

- ► Identifier les champs.
- ► Est-ce que la valeur du type est correcte?

(sachant que le CRC est aussi connu sous le nom de *Frame Check Sequence* dans Wireshark)

2. Trames à retrouver sur https://wiki.wireshark.org/SampleCaptures

## Références I

- [1] Noah DAVIDS. The Limitations of the Ethernet CRC and TCP/IP checksums for error detection. Nov. 2012. URL: http://noahdavids.org/self\_published/CRC\_and\_checksum.html.
- [2] Guidelines for Use of Extended Unique Identifier (EUI), Organizationally Unique Identifier (OUI), and Company ID (CID). IEEE, août 2017. URL: http://standards.ieee.org/develop/regauth/tut/eui.pdf.
- [3] IEEE 802.1Q-2018 IEEE Standard for Local and Metropolitan Area Networks, Bridges and Bridged Networks. IEEE, mai 2018. URL: https://standards.ieee.org/standard/802\_1Q-2018.html.
- [4] IEEE 802.3-2018 IEEE Standard for Ethernet. IEEE, nov. 2018. URL: https://standards.ieee.org/standard/802\_3-2018.html.

## Références II

- [5] Célestin MATTE et Mathieu CUNCHE. Tracage Wi-Fi: applications et contre-mesures. Mai 2016 URL: https://connect.ed-diamond.com/GNU-Linux-Magazine/GLMFHS-084/Tracage-Wi-Fi-applications-et-contre-mesures.
- [6] P802.11 - IEEE Draft Standard for Information Technology – Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks – Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE. mars 2017. URL: https://standards.ieee.org/project/802\_11.html.