Problem 2.82 Solution:

This problem helps students think about fractional binary representations.

- A. Letting V denote the value of the string, we can see that shifting the binary point k positions to the right gives a string y.yyyyyy..., which has numeric value Y+V, and also value $V\times 2^k$. Equating these gives $V=\frac{Y}{2^k-1}$.
- B. (a) For y = 001, we have Y = 1, k = 3, $V = \frac{1}{7}$.
 - (b) For y = 1001, we have Y = 9, k = 4, $V = \frac{9}{15} = \frac{3}{5}$.
 - (c) For y = 000111, we have Y = 7, k = 6, $V = \frac{7}{63} = \frac{1}{9}$.

Problem 2.85 Solution:

This exercise is of practical value, since Intel-compatible processors perform all of their arithmetic in extended precision. It is interesting to see how adding a few more bits to the exponent greatly increases the range of values that can be represented.

Description	Extended precision		
	Value	Decimal	
Smallest pos. denorm.	$2^{-63} \times 2^{-16382}$	3.65×10^{-4951}	
Smallest pos. norm.	2^{-16382}	3.36×10^{-4932}	
Largest norm.	$(2 - \epsilon) \times 2^{16383}$	1.19×10^{4932}	

Problem 2.87 Solution:

This problem tests a lot of concepts about floating-point representations, including the encoding of normalized and denormalized values, as well as rounding.

Form	Format A Format B		Comments	
Bits	Value	Bits	Value	
1 01110 001	$\frac{-9}{16}$	1 0110 0010	$\frac{-9}{16}$	
0 10110 101	208	0 1110 1010	208	
1 00111 110	$\frac{-7}{1024}$	1 0000 0111	$\frac{-7}{1024}$	$\mathrm{Norm} \to \mathrm{denorm}$
0 00000 101	$\frac{5}{131072}$	0 0000 0001	$\frac{1}{1024}$	Smallest positive denorm
1 11011 000	-4096	1 1110 1111	-248	Smallest number $> -\infty$
0 11000 100	768	0 1111 0000	$+\infty$	Round to ∞ .