Reg. No.	R	A	20	11	0	0	4	0	1	0	0	9	1	
	TO SECURE	The same	The state of the s						_		1	The state of the s		

B.Tech. DEGREE EXAMINATION, JULY 2022

Fourth Semester

18NTO301T - APPLICATIONS OF NANOTECHNOLOGY

(For the candidates admitted during the academic year 2020 - 2021 & 2021 - 2022)

Note:

- (i) **Part A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.
- (ii) Part B should be answered in answer booklet.

: 2!	/2 Ho	urs			Max.	Ma	rks:	75
		PART – A (25 × 1	= 25	Marks)	Marks	BL	со	PO
		Answer ALL C		에게 하면 하는 아니는 100km (1900년 1일				
1.				ction which was used in pesticide	1	1	1	3
		ction.						
	(A)	Graphene-NPs	(B)	Au-NPs				
		Ag-NPs		Carbon Nano Tubes				ias
2.	Pest	icide degradation is one of the _		process.	1	2	1	1
	(A)	Biomonitoring	(B)	Nanomonotoring				
	(C)	Biomonitoring Nano bioremediation	(D)	Bioremediation				
3		measures the changes in col	our, f	luorescence or electrical potential	1	2	1	3
	eithe	er directly or indirectly.						
		HRTEM	(B)	Biosensors				
		SEM	(D)	Filters				
1.	Nan	omaterials are considered as uni	que a	and important materials due to its	1	1	1	1
	(A)	Bulk properties		Size				
		Structure	(D)	Novel properties and functions				
5.	"The	ere is a plenty of room at the	botto	om" said by American Physicist	1.	2	1	1
	(A)	Einstein	(B)	Richard Feynman				
		Norio Taniguichi	(D)	Maxwell				
	Whice		ciple	of heat released or absorbed by a	1	1	2	4
	(A)	Potentiometric biosensor	(B)	Optical biosensors				
	(C)	Piezo-electric biosensors	(D)	Calorimetric biosensors				
7.	Wha	t is fertilization?			1	1	2	2
			(B)	Supplying water to fields for				
		to the soil as food for plants		the crops				
	(C)		(D)	Growing only one crop in a				
		improve products		large given area				

8		at new technology is used to de cision farming?	termi	ne crop needs and crop health in		1	2	2
		Global positioning system	(B)	Fortune teller				
	(C)	Professional medical system	(D)	Gigantic positioning satellite				
9	Wh	ich problem occurs if too much fe	ertiliz	er is used?	1	2	2	4
	(A)	Lack of minerals and salt in the soil	(B)	Contaminated water				
	(C)	Flooding of the soil	(D)	Oversized harvest				
10.	No. of Street,	deficiency is a most commor	mic	ronutrient problem that adversely	1	1	2	4
	affe	cts agricultural production in alka	aline	soils with calcium carbonate				
	(A)	Carbon		Zinc				
	(C)	Titanium	(D)	Silver				
11.	Flov	w of electrons in semiconducting	g ma	terials or in vacuum devices are	1	2	3	1
	(A)	Electricity	(B)	Electronics				
	(C)	Spintronics		Thermo-electricity				
12.	Carl	oon nanotube can be used as wi	res d	ue to which will reduce	1	2	3	1
	(A)	Lower resistance	(B)	Lower mechanical strength				
		Increases heat emission	(D)	Lower ductility				
	carri	ers when core and shell segment prity carrier diffusion lengths.	ticien its ar	neration photonic and electronic at collection of photo generated the engineered to be thinner than Thermoelectric devices	1	1	3	
	(C)		(D)	Semiconductor nanowires				
14.	Pous	ess on clay, followed by healing	which	are made from raw materials	1	2	3	4
		Gemstone	(B)	Nanoclay				
	(C)	Porcelain	(D)	Synthetic stone				
15.	-	based metallic conductors can	be u	sed as wires and coils to replace	1	2	2	
	copp	a sinan cicc	ric tra	ansformer and cons to replace		2	3	4
	(A)	Silicon	(B)	Carbon nanotube				
		Tunerche	(D)	Aluminium				
16.	In _	method the nanofibers pren	arad	under the application of water				
	extru	sion of the polymer.	from	the porous membrane causes	1	1	4	3
	(A)	Template synthesis	B)	Wet chemical				
				Wet chemical synthesis Self-Assemble synthesis				
17.	In ele	ectro spinning process, the DC vol Micro volt	tace					
	(A)	Micro volt	By	supply in the range of	1	2	4	2
	(C)	Kilovolt		ATITI AOIL				
			1) [Mega volt				

18	3. Molecular entanglement of solution i	ncreases when polymer has h	igher 1	2	4	2
		Molar concentration pH value				
19	and its copolymers were comm	only used in scaffold fabrication	n ¹	1	4	3
	(A) Polysulfone (B) Polylactic acid				
	(C) Polystyrene (D) Polyethylene				
20	. Higher voltage leads to stretching of forces.	the solution due to great	1	1	4	3
	(A) Electrostatic (1	3) Vander Waal's				
	(C) Magnetic (I	O) Columbic				
21.	have been considered as excelle	nt tumor-targeting vehicles.	. 1	2	5	1
	(A) Phorphyrins (1	3) Nanoparticles				
		D) Dyes				
22.	nanoparticles have been in the special optical properties.		their 1	1	5	5
		3) Terbium				
	(C) Silver (I) Zinc sulphide				
23.	disruption or alternations in the cellular (A) Biomarkers (E)	processes of cancer cells.	nize 1	2	5	1
24.		rk with due to their unique opic fluorescent labels.) Quantum dots) Dyes	tical 1	2	5	1
25.	The low photobleaching threshold and width of have hindered their use (A) Fluorescent dyes (E) Gold nanoparticles (E)	d in long term imaging.	peak 1	1	5	5
	(C) Gold nanoparticles (L		a			
	$PART - B (5 \times 10 = 50)$ Answer ALL Ques		Marks	BL	со	РО
26. a.	Give a detailed account of air pollutant how to overcome those issues through na	and its classification, also exp notechnology.	olain 10	4	1	1
	(OR)					
b.	Discuss in elaborate manner about nanob	ioremediation.	10	3	1	1
27. a.	Explicate the nanotechniques used in for and preservation. (OR)	ood industries for food packag	ging 10	4	2	4

Page 3 of 4

16JA4/18NTO301T

b.	With a neat sketch illustrate about the various components of bio-nane sensors and its mechanism.	100		2	*
28. a.	Discuss in detail on the impact of nanomaterials in electrical and electronic components.	10	4	3	1
b.	(OR) Discuss on different types of fuel cell. Examine the different types of nanomaterials reported for fuel cell applications.	10	3	3	1
29, a,	Explain the process and parameters involved in electro spinning technique for fiber production.	10	3	4	2
b.	(OR) Give a detailed account on self-cleaning and flame retardant finishes in textiles.	10	4	4	3
30. a.	Describe the contribution of Upconversion nanoparticles in biomedical applications.	10	3	3	3
b.	Outline the importance of scaffolds in tissue engineering and explain its properties.	10	3	3	1

* * * * *