CMPE 322/327 - Theory of Computation Week 5: State Minimization & Myhill-Nerode Relations

Burak Ekici

March 21-25, 2022

Outline

1 A Quick Recap

- 2 State Minimization
- Myhill-Nerode Relations

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

regular expressions are restricted patterns which use only

$$\mathbf{a} \in \Sigma$$
 $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

Theorem

finite automata, patterns, and regular expressions are equivalent:

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

Theorem

finite automata, patterns, and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ ① A is regular

 \iff 2 $A = L(\alpha)$ for some pattern α

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

Theorem

finite automata, patterns, and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ ① A is regular

 \Leftrightarrow

 \iff \bigcirc $A = L(\alpha)$ for some pattern α

(S) $A = L(\alpha)$ for some regular expression α

Proof.

₿ ⇒

trivial

(every regular expression is a pattern)

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

Theorem

finite automata, patterns, and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ ① A is regular

 \Leftrightarrow

 \iff \bigcirc $A = L(\alpha)$ for some pattern α

(S) $A = L(\alpha)$ for some regular expression α

Proof.

 \Rightarrow induction on α

regular expressions are restricted patterns which use only

 $\mathbf{a} \in \Sigma$ $\mathbf{\varepsilon}$ $\mathbf{\emptyset}$ $\alpha + \beta$ α^* $\alpha\beta$

Theorem

finite automata, patterns, and regular expressions are equivalent:

for all $A \subseteq \Sigma^*$ ① A is regular

 \Leftrightarrow

 \iff \bigcirc $A = L(\alpha)$ for some pattern α

3 $A = L(\alpha)$ for some regular expression α

Proof.

1 ⇒ **3**

regular sets are effectively closed under homomorphic image and preimage

regular sets are effectively closed under homomorphic image and preimage

• DFA
$$M = (Q, \Gamma, \delta, s, F)$$

Theorer

regular sets are effectively closed under homomorphic image and preimage

- DFA $M = (Q, \Gamma, \delta, s, F)$
- homomorphism $h: \Sigma^* \to \Gamma^*$

regular sets are effectively closed under homomorphic image and preimage

- DFA $M = (Q, \Gamma, \delta, s, F)$
- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h^{-1}(L(M)) = L(M')$ for DFA $M' = (Q, \Sigma, \delta', s, F)$ with $\delta'(q, a) := \widehat{\delta}(q, h(a))$

regular sets are effectively closed under homomorphic image and preimage

Theorer

regular sets are effectively closed under homomorphic image and preimage

Proof.

• regular expression α over Σ

Theorer

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$\mathbf{a'} = h(\mathbf{a}) \quad \text{for } \mathbf{a} \in \Sigma$$

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:
 - $\mathbf{a'} = h(\mathbf{a}) \quad \text{for } \mathbf{a} \in \Sigma$

$$\epsilon' = \epsilon$$

regular sets are effectively closed under homomorphic image and preimage

Proof.

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$\mathbf{a'} = h(\mathbf{a}) \quad \text{for } \mathbf{a} \in \Sigma$$

 $\epsilon' = \epsilon$

ø' = 0

Theorer

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

$$\mathbf{a'} = h(\mathbf{a}) \quad \text{for } \mathbf{a} \in \Sigma$$

$$(\beta + \gamma)' = \beta' + \gamma'$$

$$\epsilon' = \epsilon$$

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h \colon \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

regular sets are effectively closed under homomorphic image and preimage

- regular expression α over Σ
- homomorphism $h: \Sigma^* \to \Gamma^*$
- $h(L(\alpha)) = L(\alpha')$ for regular expression α' defined inductively:

Outline

1 A Quick Recap

- 2 State Minimization
- 3 Myhill-Nerode Relations

Example

$$A = \{1\}$$
 $C = \{1,3\}$ $E = \{1,3,4\}$

$$B = \{1,2\} D = \{1,2,4\} F = \{1,4\}$$

a

start —

b

a

ab

Example

DFA

Example

DFA

not minimal: states 2 and 3 can be collapsed

DFA $M = (Q, \Sigma, \delta, s, F)$

DFA $M = (Q, \Sigma, \delta, s, F)$

• state p is inaccessible if $\widehat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$

DFA $M = (Q, \Sigma, \delta, s, F)$

- state p is inaccessible if $\hat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$
- states p and q are distinguishable if

$$\exists x \in \Sigma^*, (\widehat{\delta}(p, x) \in F \land \widehat{\delta}(q, x) \notin F) \lor (\widehat{\delta}(p, x) \notin F \land \widehat{\delta}(q, x) \in F)$$

DFA $M = (Q, \Sigma, \delta, s, F)$

- state p is inaccessible if $\hat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$
- states p and q are distinguishable if

$$\exists x \in \Sigma^*, (\widehat{\delta}(p, x) \in F \land \widehat{\delta}(q, x) \notin F) \lor (\widehat{\delta}(p, x) \notin F \land \widehat{\delta}(q, x) \in F)$$

Minimization Algorithm

DFA
$$M = (Q, \Sigma, \delta, s, F)$$

A Ouick Recap

DFA $M = (Q, \Sigma, \delta, s, F)$

- state p is inaccessible if $\widehat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$
- states p and q are distinguishable if

$$\exists x \in \Sigma^*, (\widehat{\delta}(p, x) \in F \land \widehat{\delta}(q, x) \notin F) \lor (\widehat{\delta}(p, x) \notin F \land \widehat{\delta}(q, x) \in F)$$

Minimization Algorithm

DFA $M = (Q, \Sigma, \delta, s, F)$

nemove inaccessible states

DFA $M = (Q, \Sigma, \delta, s, F)$

- state p is inaccessible if $\hat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$
- states p and q are distinguishable if

$$\exists x \in \Sigma^*, (\widehat{\delta}(p, x) \in F \land \widehat{\delta}(q, x) \notin F) \lor (\widehat{\delta}(p, x) \notin F \land \widehat{\delta}(q, x) \in F)$$

Minimization Algorithm

DFA $M = (Q, \Sigma, \delta, s, F)$

nemove inaccessible states

of for every two different states, determine whether they are distinguishable (marking)

DFA $M = (Q, \Sigma, \delta, s, F)$

- state p is inaccessible if $\hat{\delta}(s, x) \neq p$ for all $x \in \Sigma^*$
- states p and q are distinguishable if

$$\exists x \in \Sigma^*, (\widehat{\delta}(p,x) \in F \wedge \widehat{\delta}(q,x) \not\in F) \vee (\widehat{\delta}(p,x) \not\in F \wedge \widehat{\delta}(q,x) \in F)$$

Minimization Algorithm

DFA $M = (Q, \Sigma, \delta, s, F)$

n remove inaccessible states

2 for every two different states, determine whether they are distinguishable (marking)

© collapse indistinguishable states

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

① tabulate all unordered pairs $\{p, q\}$ with $p, q \in Q$, initially unmarked

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

- \blacksquare tabulate all unordered pairs $\{p, q\}$ with $p, q \in Q$, initially unmarked
- @ mark $\{p, q\}$ if $p \in F$ and $q \notin F$ or vice versa

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

- ① tabulate all unordered pairs $\{p, q\}$ with $p, q \in Q$, initially unmarked
- \bigcirc mark $\{p, q\}$ if $p \in F$ and $q \notin F$ or vice versa
- (s) repeat until no change:

mark $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

- \blacksquare tabulate all unordered pairs $\{p, q\}$ with $p, q \in Q$, initially unmarked
- (S) repeat until no change:

mark $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$

Notation

 $p \approx q$

 \Leftrightarrow

states p and q are indistinguishable

given DFA $M = (Q, \Sigma, \delta, s, F)$ without inaccessible states

- 1 tabulate all unordered pairs $\{p, q\}$ with $p, q \in Q$, initially unmarked
- \bigcirc mark $\{p, q\}$ if $p \in F$ and $q \notin F$ or vice versa
- (s) repeat until no change:

mark $\{p,q\}$ if $\{\delta(p,a),\delta(q,a)\}$ is marked for some $a\in\Sigma$

Notation

 $p \approx q \iff$ states p and q are indistinguishable

Lemma

 $p \approx q \iff \{p, q\} \text{ is unmarked }$

Exampl

- final/non-final states are distinguishable

Example

$$\{2,6\} \xrightarrow{a} \{4,6\} \quad \{3,6\} \xrightarrow{a} \{5,6\}$$

(a)
$$\{1,4\} \xrightarrow{a} \{2,6\} \{1,5\} \xrightarrow{a} \{2,6\}$$

- 2

- final/non-final states are distinguishable
- $\{2,6\} \xrightarrow{a} \{4,6\} \quad \{3,6\} \xrightarrow{a} \{5,6\}$
- $\{1,4\} \xrightarrow{a} \{2,6\} \quad \{1,5\} \xrightarrow{a} \{2,6\}$

ab ab ab collapse states 2 and 3 and states 4 and 5: start —

states p and q of DFA $M = (Q, \Sigma, \delta, s, F)$ are indistinguishable $(p \approx q)$ if

$$\forall x \in \Sigma^*, \widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$$

states p and q of DFA $M = (Q, \Sigma, \delta, s, F)$ are indistinguishable $(p \approx q)$ if

$$\forall x \in \Sigma^*, \widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$$

Lemma

 \approx is equivalence relation on Q

states p and q of DFA $M = (Q, \Sigma, \delta, s, F)$ are indistinguishable $(p \approx q)$ if

$$\forall x \in \Sigma^*, \widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$$

Lemma

 \approx is equivalence relation on Q

 \bigcirc $\forall p \in Q$

 $p \approx p$

(reflexivity)

states p and q of DFA $M = (Q, \Sigma, \delta, s, F)$ are indistinguishable $(p \approx q)$ if

$$\forall x \in \Sigma^*, \widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$$

≈ is equivalence relation on O

 \bigcirc $\forall p \in Q$

 $p \approx p$

(reflexivity) (symmetry)

states p and q of DFA $M = (Q, \Sigma, \delta, s, F)$ are indistinguishable $(p \approx q)$ if

$$\forall x \in \Sigma^*, \widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$$

Lemma

≈ is equivalence relation on O

(reflexivity)

(symmetry)

§ $\forall p, q, r \in Q$ $p \approx q \land q \approx r \implies p \approx r$ (transitivity)

states p and q of DFA $M = (Q, \Sigma, \delta, s, F)$ are indistinguishable $(p \approx q)$ if

$$\forall x \in \Sigma^*, \widehat{\delta}(p, x) \in F \iff \widehat{\delta}(q, x) \in F$$

Lemma

 \approx is equivalence relation on Q

 (reflexivity)

(symmetry)

⑤ $\forall p, q, r \in Q$ $p \approx q \land q \approx r \implies p \approx r$ (transitivity)

Notation

 $[p]_{\approx} := \{q \in Q \mid p \approx q\}$ denotes equivalence class of p

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

• $Q' := \{ [p]_{\approx} \mid p \in Q \}$

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

• $Q' := \{ [p]_{\approx} \mid p \in Q \}$

• $\delta'([p]_{\approx}, a) := [\delta(p, a)]_{\approx}$ well defined: $p \approx q \implies \delta(p, a) \approx \delta(q, a)$

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

• $Q' := \{ [p]_{\approx} \mid p \in Q \}$

• $\delta'([p]_{\approx}, a) := [\delta(p, a)]_{\approx}$ well defined: $p \approx q \implies \delta(p, a) \approx \delta(q, a)$

• $s' := [s]_{\approx}$

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

• $Q' := \{ [p]_{\approx} \mid p \in Q \}$

• $\delta'([p]_{\approx}, a) := [\delta(p, a)]_{\approx}$ well defined: $p \approx q \implies \delta(p, a) \approx \delta(q, a)$

s' := [s]_≈

 $\bullet \ \ F':=\{[p]_\approx \mid p\in F\}$

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

• $Q' := \{ [p]_{\approx} \mid p \in Q \}$

• $\delta'([p]_{\approx}, a) := [\delta(p, a)]_{\approx}$ well defined: $p \approx q \implies \delta(p, a) \approx \delta(q, a)$

s' := [s]_≈

• $F' := \{ [p]_{\approx} \mid p \in F \}$

Lemm

 $\widehat{\delta}'([p]_{\approx}, x) = [\widehat{\delta}(p, x)]_{\approx} \text{ for all } x \in \Sigma^*$

DFA M/\approx is defined as $(Q', \Sigma, \delta', s', F')$ with

• $Q' := \{ [p]_{\approx} \mid p \in Q \}$

• $\delta'([p]_{\approx}, a) := [\delta(p, a)]_{\approx}$ well defined: $p \approx q \implies \delta(p, a) \approx \delta(q, a)$

s' := [s]_≈

• $F' := \{ [p]_{\approx} \mid p \in F \}$

Lemm:

 $\widehat{\delta'}([p]_{\approx}, x) = [\widehat{\delta}(p, x)]_{\approx} \text{ for all } x \in \Sigma^*$

 $\bigcirc p \in F \iff [p]_{\approx} \in F'$

for all $p \in Q$

 $L(M/\approx) = L(M)$

 $L(M/\approx) = L(M)$

Proof.

 $x \in L(M/\approx) \iff \widehat{\delta'}([s]_\approx, x) \in F'$

$$L(M/\approx) = L(M)$$

$$\begin{array}{ccc} x \in L(M/\approx) & \Longleftrightarrow & \widehat{\delta'}([s]_\approx,x) \in F' \\ & \Longleftrightarrow & [\widehat{\delta}(s,x)]_\approx \in F' \end{array}$$

$$L(M/\approx) = L(M)$$

$$\begin{array}{ccc} x \in L(M/\approx) & \Longleftrightarrow & \widehat{\delta'}([s]_\approx,x) \in F' \\ & \Longleftrightarrow & [\widehat{\delta}(s,x)]_\approx \in F' \\ & \Longleftrightarrow & \widehat{\delta}(s,x) \in F \end{array}$$

$$L(M/\approx) = L(M)$$

$$\begin{array}{ccc} x \in L(M/\approx) & \Longleftrightarrow & \widehat{\delta'}([s]_\approx,x) \in F' \\ & \Longleftrightarrow & [\widehat{\delta}(s,x)]_\approx \in F' \\ & \Longleftrightarrow & \widehat{\delta}(s,x) \in F \\ & \Longleftrightarrow & x \in L(M) \end{array}$$

is M/\approx minimum-state DFA for L(M)?

is M/\approx minimum-state DFA for L(M)?

I emm:

 M/\approx cannot be collapsed further

is M/\approx minimum-state DFA for L(M)?

Lemm

 M/\approx cannot be collapsed further

$$[p]_{\approx} \approx [q]_{\approx} \quad \Longleftrightarrow \quad \forall x \in \Sigma^* \quad (\widehat{\delta'}([p]_{\approx}, x) \in F' \quad \Longleftrightarrow \quad \widehat{\delta'}([q]_{\approx}, x) \in F')$$

is M/\approx minimum-state DFA for L(M)?

Lemm:

 M/\approx cannot be collapsed further

$$[p]_{\approx} \approx [q]_{\approx} \quad \Longleftrightarrow \quad \forall x \in \Sigma^* \quad (\widehat{\delta'}([p]_{\approx}, x) \in F' \quad \Longleftrightarrow \quad \widehat{\delta'}([q]_{\approx}, x) \in F')$$

$$\iff \quad \forall x \in \Sigma^* \quad ([\widehat{\delta}(p, x)]_{\approx} \in F' \quad \Longleftrightarrow \quad [\widehat{\delta}(q, x)]_{\approx} \in F')$$

is M/\approx minimum-state DFA for L(M)?

Lemma

M/≈ cannot be collapsed further

$$\begin{split} [p]_{\approx} \approx [q]_{\approx} &\iff & \forall x \in \Sigma^* & (\widehat{\delta'}([p]_{\approx}, x) \in F' & \iff & \widehat{\delta'}([q]_{\approx}, x) \in F') \\ & \iff & \forall x \in \Sigma^* & ([\widehat{\delta}(p, x)]_{\approx} \in F' & \iff & [\widehat{\delta}(q, x)]_{\approx} \in F') \\ & \iff & \forall x \in \Sigma^* & (\widehat{\delta}(p, x) \in F & \iff & \widehat{\delta}(q, x) \in F) \end{split}$$

Question

is M/\approx minimum-state DFA for L(M)?

Lemm:

M/≈ cannot be collapsed further

Proof.

$$\begin{split} [p]_{\approx} \approx [q]_{\approx} &\iff & \forall x \in \Sigma^* \quad (\widehat{\delta'}([p]_{\approx}, x) \in F' &\iff & \widehat{\delta'}([q]_{\approx}, x) \in F') \\ &\iff & \forall x \in \Sigma^* \quad ([\widehat{\delta}(p, x)]_{\approx} \in F' &\iff & [\widehat{\delta}(q, x)]_{\approx} \in F') \\ &\iff & \forall x \in \Sigma^* \quad (\widehat{\delta}(p, x) \in F &\iff & \widehat{\delta}(q, x) \in F) \\ &\iff & \forall x \in \Sigma^* \quad p \approx q \end{split}$$

Question

is M/\approx minimum-state DFA for L(M)?

Lemm:

 M/\approx cannot be collapsed further

Proof.

$$\begin{split} [p]_{\approx} \approx [q]_{\approx} &\iff \forall x \in \Sigma^* \quad (\widehat{\delta'}([p]_{\approx}, x) \in F' &\iff \widehat{\delta'}([q]_{\approx}, x) \in F') \\ &\iff \forall x \in \Sigma^* \quad ([\widehat{\delta}(p, x)]_{\approx} \in F' &\iff [\widehat{\delta}(q, x)]_{\approx} \in F') \\ &\iff \forall x \in \Sigma^* \quad (\widehat{\delta}(p, x) \in F &\iff \widehat{\delta}(q, x) \in F) \\ &\iff \forall x \in \Sigma^* \quad p \approx q \\ &\iff \forall x \in \Sigma^* \quad [p]_{\approx} = [q]_{\approx} \end{split}$$

Outline

1 A Quick Recap

- 2 State Minimization
- 3 Myhill-Nerode Relations

Myhill-Nerode relation \equiv for $L \subseteq \Sigma^*$ is an equivalence relation that

Myhill-Nerode relation \equiv for $L \subseteq \Sigma^*$ is an equivalence relation that

• is right congruent: $\forall x, y \in \Sigma^* \quad x \equiv y \implies \forall a \in \Sigma \quad xa \equiv ya$

Myhill-Nerode relation \equiv for $L \subseteq \Sigma^*$ is an equivalence relation that

• is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv y \implies \forall a \in \Sigma$ $xa \equiv ya$

• refines L: $\forall x, y \in \Sigma^*$ $x \equiv y$ \Longrightarrow either $x, y \in L$ or $x, y \notin L$

Myhill-Nerode relation \equiv for $L \subseteq \Sigma^*$ is an equivalence relation that

- is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv y \implies \forall a \in \Sigma$ $xa \equiv ya$
- refines L: $\forall x, y \in \Sigma^*$ $x \equiv y$ \Longrightarrow either $x, y \in L$ or $x, y \notin L$
- is of finite index: ≡ has finitely many equivalence classes

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_{\mathsf{M}} y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

• \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies \forall a \in \Sigma$ $xa \equiv_M ya$

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

• \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies \forall a \in \Sigma$ $xa \equiv_M ya$

• \equiv_M refines L(M): $\forall x, y \in \Sigma^*$ $x \equiv_M y$ \Longrightarrow either $x, y \in L(M)$ or $x, y \notin L(M)$

equivalence relation \equiv_M on Σ^* for DFA $M = (Q, \Sigma, \delta, s, F)$ is defined as follows:

$$x \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

• \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies \forall a \in \Sigma$ $xa \equiv_M ya$

• \equiv_M refines L(M): $\forall x, y \in \Sigma^*$ $x \equiv_M y$ \Longrightarrow either $x, y \in L(M)$ or $x, y \notin L(M)$

• \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

equivalence relation \equiv_M on Σ^* for DFA $M = (O, \Sigma, \delta, s, F)$ is defined as follows:

$$X \equiv_M y \iff \widehat{\delta}(s, x) = \widehat{\delta}(s, y)$$

Lemma

• \equiv_M is right congruent: $\forall x, y \in \Sigma^*$ $x \equiv_M y \implies \forall a \in \Sigma$ $xa \equiv_M ya$

• \equiv_M refines L(M): $\forall x, y \in \Sigma^*$ $x \equiv_M y$ \Longrightarrow either $x, y \in L(M)$ or $x, y \notin L(M)$

• \equiv_M is of finite index: \equiv_M has finitely many equivalence classes

Corollary

 \equiv_M is Myhill-Nerode relation for L(M)

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

•
$$Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$$

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

• $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$

• $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

• $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$

• $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$

• $s := [\varepsilon]_{\equiv}$

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

• $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$

• $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$

• $s := [\varepsilon]_{\equiv}$

• $F := \{ [x]_{\equiv} \mid x \in L \}$

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

- $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$
- $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$
- $s := [\varepsilon]_{\equiv}$
- $F := \{ [x]_{\equiv} \mid x \in L \}$

Lemma

 \bigcirc $\widehat{\delta}([x]_{\equiv}, y) = [xy]_{\equiv}$ for all $y \in \Sigma^*$

for all $x \in \Sigma^*$

given Myhill-Nerode relation \equiv for set $L \subseteq \Sigma^*$, DFA M_{\equiv} is defined as $(Q, \Sigma, \delta, s, F)$ with

• $Q := \{ [x]_{\equiv} \mid x \in \Sigma^* \}$

• $\delta([x]_{\equiv}, a) := [xa]_{\equiv}$ well-defined: $x \equiv y \implies xa \equiv ya$

• $s := [\varepsilon]_{\equiv}$

• $F := \{ [x]_{\equiv} \mid x \in L \}$

Lemma

 \bigcirc $\widehat{\delta}([x]_{\equiv}, y) = [xy]_{\equiv}$ for all $y \in \Sigma^*$

 $\bigcirc x \in L \iff [x]_{\equiv} \in F$

for all $x \in \Sigma^*$

 $L(M_{\equiv}) = L$

 $L(M_{\equiv}) = L$

Proof.

$$x \in L(M_{\equiv}) \iff \widehat{\delta}([\varepsilon]_{\equiv}, x) \in F$$

 $L(M_{\equiv}) = L$

Proof.

$$x \in L(M_{\equiv}) \iff \widehat{\delta}([\varepsilon]_{\equiv}, x) \in F$$

 $\iff [x]_{\equiv} \in F$

 $L(M_{\equiv}) = L$

Proof.

$$\begin{array}{ccc} x \in L(M_{\equiv}) & \Longleftrightarrow & \widehat{\delta}([\varepsilon]_{\equiv}, x) \in F \\ & \Longleftrightarrow & [x]_{\equiv} \in F \\ & \Longleftrightarrow & x \in L \end{array}$$

Theoren

$$L(M_{\equiv}) = L$$

Proof.

$$\begin{array}{ccc} x \in L(M_{\equiv}) & \iff & \widehat{\delta}([\varepsilon]_{\equiv}, x) \in F \\ & \iff & [x]_{\equiv} \in F \\ & \iff & x \in L \end{array}$$

Corollary

if L admits Myhill-Nerode relation then L is regular

Theoren

two mappings (for $L \subseteq \Sigma^*$)

- $D \mapsto \equiv_D$ from DFAs for L to Myhill-Nerode relations for L
- $\approx \mapsto M_{\approx}$ from Myhill-Nerode relations for L to DFAs for L are each others inverse (up to isomorphism of automata):

two mappings (for $L \subseteq \Sigma^*$)

- $D \mapsto \equiv_D$ from DFAs for L to Myhill-Nerode relations for L
- $\approx \mapsto M_{\approx}$ from Myhill-Nerode relations for L to DFAs for L are each others inverse (up to isomorphism of automata):

■D ∀ DFA D without inaccessible states

two mappings (for $L \subseteq \Sigma^*$)

- $D \mapsto \equiv_D$ from DFAs for L to Myhill-Nerode relations for L
- $\approx \mapsto M_{\approx}$ from Myhill-Nerode relations for L to DFAs for L are each others inverse (up to isomorphism of automata):
 - M_(≡D)
 ∀ DFA D without inaccessible states

two mappings (for $L \subseteq \Sigma^*$)

- $D \mapsto \equiv_D$ from DFAs for L to Myhill-Nerode relations for L
- $\approx \mapsto M_{\approx}$ from Myhill-Nerode relations for L to DFAs for L are each others inverse (up to isomorphism of automata):
 - $M_{(\equiv_D)} \simeq D$ \forall DFA D without inaccessible states

two mappings (for $L \subseteq \Sigma^*$)

• $D \mapsto \equiv_D$ from DFAs for L to Myhill-Nerode relations for L

• $\approx \mapsto M_{\approx}$ from Myhill-Nerode relations for L to DFAs for L

are each others inverse (up to isomorphism of automata):

• $M_{(\equiv_D)} \simeq D$ \forall DFA D without inaccessible states

M≈ ∀ Myhill-Nerode relation ≈

two mappings (for $L \subseteq \Sigma^*$)

• $D \mapsto \equiv_D$ from DFAs for L to Myhill-Nerode relations for L

• $\approx \mapsto M_{\approx}$ from Myhill-Nerode relations for L to DFAs for L

are each others inverse (up to isomorphism of automata):

• $M_{(\equiv_D)} \simeq D$ \forall DFA D without inaccessible states

• ≡_(M≈) ∀ Myhill-Nerode relation ≈

two mappings (for $L \subseteq \Sigma^*$)

• $D \mapsto \equiv_D$ from DFAs for L to Myhill-Nerode relations for L

• $\approx \mapsto M_{\approx}$ from Myhill-Nerode relations for L to DFAs for L

are each others inverse (up to isomorphism of automata):

• $M_{(\equiv_D)} \simeq D$ \forall DFA D without inaccessible states

• $\equiv_{(M_{\approx})} = \approx$ \forall Myhill-Nerode relation \approx

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$x \equiv_L y \iff \forall z \in \Sigma^*, (xz \in L \iff yz \in L)$$

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$X \equiv_L y \iff \forall z \in \Sigma^*, (xz \in L \iff yz \in L)$$

Lemma

for any set $L \subseteq \Sigma^*$, \equiv_L is coarsest right congruent refinement of L:

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$X \equiv_L y \iff \forall z \in \Sigma^*, (xz \in L \iff yz \in L)$$

Lemm:

for any set $L \subseteq \Sigma^*$, \equiv_L is coarsest right congruent refinement of L:

if \sim is right congruent equivalence relation refining L then

$$\forall x, y \in \Sigma^*, \ x \sim y \implies x \equiv_L y$$

for any set $L \subseteq \Sigma^*$, equivalence relation \equiv_L on Σ^* is defined as follows:

$$X \equiv_L y \iff \forall z \in \Sigma^*, (xz \in L \iff yz \in L)$$

Lemm:

for any set $L \subseteq \Sigma^*$, \equiv_L is coarsest right congruent refinement of L:

if \sim is right congruent equivalence relation refining L then

$$\forall x, y \in \Sigma^*, x \sim y \implies x \equiv_L y$$

 \equiv_L has fewest equivalence classes

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill-Nerode relation

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill-Nerode relation
- \equiv_L is of finite index

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- L is regular
- L admits Myhill-Nerode relation
- \equiv_L is of finite index

Corollary

for every regular set L, $M_{(\equiv_L)}$ is minimum-state DFA for L

following statements are equivalent for any set $L \subseteq \Sigma^*$:

- *L* is regular
- L admits Myhill-Nerode relation
- \equiv_L is of finite index

Corollar

for every regular set L, $M_{(\equiv_I)}$ is minimum-state DFA for L

Theorem

for every DFA M, $M/\approx \approx M_{\equiv_I}$

① $A := \{a^n b^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

① $A := \{a^n b^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j$$

① $A := \{a^n b^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \not\in A)$$

① $A := \{a^nb^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \not\in A)$$

② $B := \{a^{2^n} \mid n \ge 0\}$ is not regular

① $A := \{a^nb^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \not\in A)$$

② $B := \{a^{2^n} \mid n \ge 0\}$ is not regular because \equiv_B has infinitely many equivalence classes

① $A := \{a^nb^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

② $B := \{a^{2^n} \mid n \ge 0\}$ is not regular because \equiv_B has infinitely many equivalence classes

$$i < j \implies a^{2^i} \not\equiv_B a^{2^j}$$

① $A := \{a^nb^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

② $B := \{a^{2^n} \mid n \ge 0\}$ is not regular because \equiv_B has infinitely many equivalence classes

$$i < j \implies a^{2^i} \not\equiv_B a^{2^i} \quad (a^{2^i} a^{2^i} = a^{2^{i+1}} \in B \text{ and } a^{2^j} a^{2^i} \notin B)$$

① $A := \{a^nb^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

② $B := \{a^{2^n} \mid n \ge 0\}$ is not regular because \equiv_B has infinitely many equivalence classes

$$i < j \implies a^{2^i} \not\equiv_B a^{2^j} \quad (a^{2^i} a^{2^i} = a^{2^{i+1}} \in B \text{ and } a^{2^j} a^{2^i} \notin B)$$

① $A := \{a^nb^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \not\in A)$$

② $B := \{a^{2^n} \mid n \ge 0\}$ is not regular because \equiv_B has infinitely many equivalence classes

$$i < j \implies a^{2^{i}} \not\equiv_{B} a^{2^{i}} \quad (a^{2^{i}} a^{2^{i}} = a^{2^{i+1}} \in B \text{ and } a^{2^{i}} a^{2^{i}} \not\in B)$$

⑤ $C := \{a^{n!} \mid n \ge 0\}$ is not regular because \equiv_C has infinitely many equivalence classes

① $A := \{a^n b^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

② $B := \{a^{2^n} \mid n \ge 0\}$ is not regular because \equiv_B has infinitely many equivalence classes

$$i < j \implies a^{2^i} \not\equiv_B a^{2^j} \quad (a^{2^i} a^{2^i} = a^{2^{i+1}} \in B \text{ and } a^{2^j} a^{2^i} \notin B)$$

$$i < j \implies a^{i!} \not\equiv_C a^{j!}$$

① $A := \{a^nb^n \mid n \ge 0\}$ is not regular because \equiv_A has infinitely many equivalence classes

$$i \neq j \implies a^i \not\equiv_A a^j \quad (a^i b^i \in A \text{ and } a^j b^i \notin A)$$

② $B := \{a^{2^n} \mid n \ge 0\}$ is not regular because \equiv_B has infinitely many equivalence classes

$$i < i \implies a^{2^i} \not\equiv_B a^{2^j} \quad (a^{2^i} a^{2^i} = a^{2^{i+1}} \in B \text{ and } a^{2^i} a^{2^i} \notin B)$$

⑥ $C := \{a^{n!} \mid n \ge 0\}$ is not regular because \equiv_C has infinitely many equivalence classes

$$i < j \implies a^{i!} \not\equiv_C a^{j!} \quad (a^{i!}a^{i!i} = a^{(i+1)!} \in C \text{ and } a^{j!}a^{i!i} \not\in C)$$

 $\bigcirc D := \{a^p \mid p \text{ is prime}\}\$ is not regular

because \equiv_D has infinitely many equivalence classes

$$i < j$$
 and i, j are primes $\implies a^i \not\equiv_D a^j$

② $D := \{a^p \mid p \text{ is prime}\}\$ is not regular because \equiv_D has infinitely many equivalence classes

$$i < j$$
 and i, j are primes $\implies a^i \not\equiv_D a^j$

• suppose $a^i \equiv_D a^j$ and let k = j - i

$$i < j$$
 and i, j are primes $\implies a^i \not\equiv_D a^j$

- suppose $a^i \equiv_D a^j$ and let k = j i• $a^i \equiv_D a^j = a^i a^k \equiv_D a^j a^k$

$$i < j$$
 and i, j are primes $\implies a^i \not\equiv_D a^j$

- suppose $a^i \equiv_D a^j$ and let k = j i• $a^i \equiv_D a^j = a^i a^k \equiv_D a^j a^k \equiv_D a^j a^k a^k$

$$i < j$$
 and i, j are primes $\implies a^i \not\equiv_D a^j$

- suppose $a^i \equiv_D a^j$ and let k = j i• $a^i \equiv_D a^j = a^i a^k \equiv_D a^j a^k \equiv_D a^j a^k a^k = a^j a^{2k}$

i < i and i, j are primes $\implies a^i \not\equiv_D a^j$

- suppose $a^i \equiv_D a^j$ and let k = j i• $a^i \equiv_D a^j = a^i a^k \equiv_D a^j a^k \equiv_D a^j a^k a^k = a^j a^{2k} \equiv_D \dots \equiv_D a^j a^{jk} = a^{j(k+1)}$

4 $D := \{a^p \mid p \text{ is prime}\}\$ is not regular

because \equiv_D has infinitely many equivalence classes

$$i < j$$
 and i, j are primes $\implies a^i \not\equiv_D a^j$

- suppose $a^i \equiv_D a^j$ and let k = j i• $a^i \equiv_D a^j = a^i a^k \equiv_D a^j a^k \equiv_D a^j a^k a^k = a^j a^{2k} \equiv_D \dots \equiv_D a^j a^{jk} = a^{j(k+1)}$ $a^i \in D$ and $a^{j(k+1)} \notin D$

$$i < j$$
 and i, j are primes $\implies a^i \not\equiv_D a^j$

- suppose $a^i \equiv_D a^j$ and let k = j i• $a^i \equiv_D a^j = a^i a^k \equiv_D a^j a^k \equiv_D a^j a^k a^k = a^j a^{2k} \equiv_D \dots \equiv_D a^j a^{jk} = a^{j(k+1)}$ $a^i \in D$ and $a^{j(k+1)} \notin D$
- \equiv_D does not refine D

Thanks! & Questions?