Homework 3

Name: Siyuan Song

Email: siyuan_song@brown.edu

Department: Engineering

Problem

Consider the one-dimensional Helmholtz equation in cylindrical coordinates:

$$\frac{1}{r}\frac{d}{dr}\left[r\frac{du}{dr}\right] - u = 0$$
 (1)

where u(r=0) is bounded and u(r=1)=1.

1. Find the functional for the above problem and the corresponding variations at the end points.

2. Compare a numerical solution to this problem using linear finite elements. Plot the error in norms L_2 and H^1 versus the number of elements and compare with the known error estimates. (Notes: Find the exact solution first).

Solution

1. Functional

The one-dimensional Helmholtz equation is

$$\frac{1}{r}\frac{d}{dr}\left[r\frac{du}{dr}\right] - u = 0 \Rightarrow \frac{d}{dr}\left[r\frac{du}{dr}\right] - ru = 0 \quad (2)$$

The boundary condition is

- Natural Boundary Condition: $u_r(r=0)=0$ (Notes: $u(r=0)<\infty$)
- Dirichlet Boundary Condition: u(r=1)=1 (Leading to $\delta u(r=1)=0$)

Take the variation on both sides

$$\delta I = \int_0^1 \left[\frac{d}{dr} \left[r \frac{du}{dr} \right] - ru \right] \delta u dr = 0$$
 (3)

Due to the boundary conditions, the first part is simplified as

$$\int_{0}^{1} \frac{d}{dr} \left[r \cdot \frac{du}{dr} \right] \cdot \delta u dr = \left[\delta u \cdot r \cdot \frac{du}{dr} \right]_{0}^{1} - \int_{0}^{1} \left[r \cdot \frac{du}{dr} \right] \cdot \delta \frac{du}{dr} \cdot dr = -\delta \int_{a}^{b} \frac{1}{2} r \cdot \left(\frac{du}{dr} \right)^{2} \cdot dr$$
 (4)

The second part is simplified as

$$-\int_{a}^{b} ru\delta u dr = -\delta \int_{a}^{b} \frac{1}{2} ru^{2} dr$$
 (5)

Assemble the first part and the second part, the functional is

$$I = -\frac{1}{2}r\left[\left(\frac{du}{dr}\right)^2 + u^2\right]$$
 (6)

At the end points, the boundary conditions are

$$u_r(r=0)=0, u(r=1)=1$$
 (7)

The variations are

$$\delta u_r(r=0) = 0, \delta u(r=1) = 0$$
 (8)

2. Exact solution

The exact solution is

$$u(r) = \frac{J_0(ri)}{J_0(i)} = \frac{I_0(r)}{I_0(1)}$$
(9)

where, $I_0(r)$ is the first kind modified Bessel function of the zero order.

3. The weak form

The Helmholtz equation is

$$\frac{d}{dr}\left[r\frac{du}{dr}\right] - ru = 0 \,(10)$$

The weak form of the Helmholtz equation is

$$\int_0^1 \left(\frac{d}{dr} \left[r \frac{du}{dr} \right] - ru \right) v dr = 0$$
 (11)

It can be simplified as

$$\int_{0}^{1} \left(\frac{d}{dr} \left[r \frac{du}{dr} \right] - ru \right) v dr = 0 \Rightarrow \left[\left(r \frac{du}{dr} \right) \cdot v \right]_{0}^{1} - \int_{0}^{1} \frac{dv}{dr} \left(r \frac{du}{dr} \right) dr \right] - \int_{0}^{1} (ru) v dr = 0 \Rightarrow \int_{0}^{1} r \left(uv + u'v' \right) dr \quad (12)$$

4. Finite element method

Uniform grid is utilized here with $r_0 = 0$, $r_1 = \frac{1}{N}$, $r_2 = \frac{2}{N}$..., $r_N = 1$. The number of the elements is N. The number of the nodes is N+1. The space step is $h = \frac{1}{N}$.

Let $U = \sum_{i=0}^{N} U_i \phi_i$ and $v = \phi_i, i = 0, 1, 2, ...N$ (Galerkin method). Then the week form of the equation can be expressed as

$$\int_{0}^{1} r \left(U_{i} \phi_{i} \phi_{j} + U_{i} \phi'_{i} \phi'_{j} \right) dr = 0 \quad (13)$$

Here, summation notation is adopted here (i.e. $U_i \phi_i = \sum_{i=0}^N U_i \phi_i$). Eq. (13) can be written in matrix form,

$$U_i \int_0^1 r(\phi_i \phi_j + \phi'_i \phi'_j) dr = 0 \Rightarrow A_{ji} U_i = 0 \Rightarrow \mathbf{A} \mathbf{U} = 0 \quad (14)$$

where
$$A_{ji} = \int_{0}^{1} r(\phi_{i}\phi_{j} + \phi'_{i}\phi'_{j}) dr$$
, $U_{i} = U(r = r_{i})$.

We need to determine the function ϕ_i , which satisfies

$$U(r_i) = U_i$$
 (15)

Lagrange interpolation is adopted here in each element. In the range $r \in (r_{k-1}, r_k)$, the function U can be written as,

$$U = \frac{r - r_{k-1}}{h} U_k + \frac{r_k - r}{h} U_{k-1}, r \in (r_{k-1}, r_k)$$
 (16)

Since U_k only appears in the range $r \in (r_{k-1}, r_k)$ and $r \in (r_k, r_{k+1})$, the base function ϕ_i can be given by,

$$\phi_0 = \begin{cases} \frac{r_1 - r}{h}, & r \in (r_0, r_1) \\ 0, & r \in \text{ others} \end{cases} \quad i = 0 \quad (17)$$

$$\phi_{i} = \begin{cases} \frac{r - r_{i-1}}{h}, & r \in (r_{i-1}, r_{i}) \\ \frac{r_{i+1} - r}{h}, & r \in (r_{i}, r_{i+1}) & i = 1, 2, ..., N - 1 \ (18) \\ 0, & r \in \text{ others} \end{cases}$$

$$\phi_{N} = \begin{cases} \frac{r - r_{N-1}}{h}, & r \in (r_{N-1}, r_{N}) \\ 0, & r \in \text{ others} \end{cases} \quad i = N \quad (19)$$

Then $A_{ji} = \int_0^1 r(\phi_i \phi_j + \phi'_i \phi'_j) dr$ can be calculated easily. Now we have the coefficient matrix A and the vector U.

$$\begin{bmatrix} A_{00} & A_{01} & \dots & A_{0(N-1)} & A_{0N} \\ A_{10} & A_{11} & \dots & A_{1(N-1)} & A_{1N} \\ \dots & \dots & \dots & \dots & \dots \\ A_{(N-1)0} & A_{(N-1)1} & \dots & A_{(N-1)(N-1)} & A_{(N-1)N} \\ A_{N0} & A_{N1} & \dots & A_{N(N-1)} & A_{NN} \end{bmatrix} \begin{bmatrix} U_0 \\ U_1 \\ \dots \\ U_{N-1} \\ U_N \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 0 \end{bmatrix} (20)$$

According to the boundary condition $U_N = 1$. The matrix equation is written as

$$\begin{bmatrix} A_{00} & A_{01} & \dots & A_{0(N-1)} & A_{0N} \\ A_{10} & A_{11} & \dots & A_{1(N-1)} & A_{1N} \\ \dots & \dots & \dots & \dots & \dots \\ A_{(N-1)0} & A_{(N-1)1} & \dots & A_{(N-1)(N-1)} & A_{(N-1)N} \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix} \begin{bmatrix} U_0 \\ U_1 \\ \dots \\ U_{N-1} \\ U_N \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \dots \\ 0 \\ 1 \end{bmatrix} (21)$$

By solving this equation, we can obtain the numerical solution U.

5. Solutions

Comparisons of theoretical predictions and numerical solutions

• N = 4:

• N = 8:

• N = 16:

• N = 32:

• N = 64:

6. Error Analysis (at nodes)

In this part, we consider the error at the nodes.

The L_2 error is defined as

$$e_{L2} = \sqrt{\sum_{i=0}^{N} (u_i - U_i)^2 h}$$
 (22)

The H^1 error is defined as

$$e_{H1} = \sqrt{\sum_{i=0}^{N} (u_i - U_i)^2 h + \sum_{i=0}^{N} \left(\frac{du_i}{dr} - \frac{dU_i}{dr} \right)^2 h}$$
 (23)

The exact derivative of u is,

$$\frac{du}{dr} = \frac{I_1(r)}{I_0(1)} (24)$$

According to $U = \sum_{i=0}^{N} U_i \phi_i$, the numerical derivative of u is approximated by.

$$U = \sum_{i=0}^{N} U_{i} \phi'_{i}$$
 (25)

Since ϕ_i is linear equation, its derivative is a constant in the range $r \in (r_{i-1}, r_i)$ and $r \in (r_i, r_{i+1})$. At the node point $r = r_i$, we take the average of the derivative on both sides, that is

$$\frac{dU_i}{dr} = \frac{U_{i+1} - U_{i-1}}{2h}$$
 (26)

Specifically, at the points $r = r_0, r_N$, we only take the derivative on one side. The solution is given as below:

The order of the L2 norm is 2.0641 and the order of the H1 norm is 1.4874.

7. Error Analysis (in whole domain)

The L_2 error can be also obtained in the whole domain, defined as

$$e_{L2} = \sqrt{\int_0^1 (u - U)^2 dr}$$
 (27)

where,
$$U = \frac{r - r_{k-1}}{h} U_k + \frac{r_k - r}{h} U_{k-1}, r \in (r_{k-1}, r_k)$$
.

The H^1 error is defined as

$$e_{H1} = \sqrt{\int_0^1 \left[(u - U)^2 + \left(\frac{du}{dr} - \frac{dU}{dr} \right)^2 \right] dr}$$
 (28)

where,
$$\frac{dU}{dr} = \frac{U_k - U_{k-1}}{h}, r \in (r_{k-1}, r_k)$$
.

The solution is given as below:

The order of the L2 norm is 1.97845278 and the order of the H1 norm is 1.01139933.

This conclusion is consistent with the theory given in the textbook.

Python Code

.....

Basic function: (Helmothoz Equation)

1/r *d/dr(r*du/dr) = 0

Functional:

```
1/2 * r * ((du/dr)^2 + u^2)
BC:
  Diriclet r = 1, u = 1, (set as right side colume)
  Natural r = 0, du/dr = 0, (don't need to do anything)
True solution:
 u(r) = bessel(0,r*i)/bessel(0,i)
                    " ======Import"
import numpy as np
from scipy import special
from matplotlib import pyplot
" =====Basis parameters"
" The number of element"
def FEM(element number):
  "The number of the node. Two nodes for each element"
  node number = element number + 1
  " For python convenience"
  N = node\_number-1
  " The step size"
  h = 1/element number
                             ======Generate the grids"
  " Uniform grid is utilized here"
  grid = np.linspace(0,1,node number)
  " =======Finite element method"
  "%%%"
  " A is used to record the coefficient matrix"
  A = np.zeros([node\_number,node\_number])
  " Part B"
  A[0,0] = A[0,0] + (grid[1]**2-grid[0]**2)/(2*h**2)
  A[N,N] = A[N,N] + (grid[N]**2-grid[N-1]**2)/(2*h**2)
  for i in range(1,node_number-1):
    A[i,i] = A[i,i] + (grid[i]**2-grid[i-1]**2)/(2*h**2)
    A[i,i] = A[i,i] + (grid[i+1]**2-grid[i]**2)/(2*h**2)
  A[0,1] = A[0,1] - (grid[1]**2-grid[0]**2)/(2*h**2)
  A[N,N-1] = A[N,N-1] - (grid[N]**2-grid[N-1]**2)/(2*h**2)
  for i in range(1,node_number-1):
    A[i,i-1] = A[i,i-1] - (grid[i]**2-grid[i-1]**2)/(2*h**2)
    A[i,i+1] = A[i,i+1] - (grid[i+1]**2-grid[i]**2)/(2*h**2)
  " Part A"
  "fie_1 = a1*r + b1"
  "fie_2 = a2*r + b2"
  def intergral(a1,b1,a2,b2,r1,r2):
    return (a1*a2/4*(r2**4-r1**4)+(a1*b2+a2*b1)/3*(r2**3-r1**3)+b1*b2/2*(r2**2-r1**2))
  "i = 0"
  a1 = -1/h; b1 = h/h;
  a2 = -1/h; b2 = h/h;
  r1 = 0; r2 = h;
  A[0,0] = A[0,0] + intergral(a1,b1,a2,b2,r1,r2);
  a1 = -1/h; b1 = h/h;
  a2 = 1/h; b2 = -0/h;
  r1 = 0; r2 = h;
  A[0,1] = A[0,1] + intergral(a1,b1,a2,b2,r1,r2);
  "i = N"
  a1 = 1/h; b1 = -(N-1)*h/h;
  a2 = 1/h; b2 = -(N-1)*h/h;
```

```
r1 = (N-1)*h; r2 = N*h;
A[N,N] = A[N,N] + intergral(a1,b1,a2,b2,r1,r2);
a1 = 1/h; b1 = -(N-1)*h/h;
a2 = -1/h; b2 = (N)*h/h;
r1 = (N-1)*h; r2 = N*h;
A[N,N-1] = A[N,N-1] + intergral(a1,b1,a2,b2,r1,r2);
for i in range(1,node_number-1):
  "A[i,i]"
  a1 = 1/h; b1 = -((i-1)*h)/h;
  a2 = 1/h; b2 = -((i-1)*h)/h;
  r1 = (i-1)*h; r2 = i*h;
  A[i,i] = A[i,i] + intergral(a1,b1,a2,b2,r1,r2);
  a1 = -1/h; b1 = ((i+1)*h)/h;
  a2 = -1/h; b2 = ((i+1)*h)/h;
  r1 = i*h; r2 = (i+1)*h;
  A[i,i] = A[i,i] + intergral(a1,b1,a2,b2,r1,r2);
  A[i,i-1]
  a1 = 1/h; b1 = -(i-1)*h/h;
  a2 = -1/h; b2 = i*h/h;
  r1 = (i-1)*h; r2 = i*h;
  A[i,i-1] = A[i,i-1] + intergral(a1,b1,a2,b2,r1,r2);
  A[i,i+1]
  a1 = -1/h; b1 = (i+1)*h/h;
  a2 = 1/h; b2 = -i*h/h;
  r1 = i*h; r2 = (i+1)*h;
  A[i,i+1] = A[i,i+1] + intergral(a1,b1,a2,b2,r1,r2);
"%%%"
" b vector"
b = np.array([(np.zeros(node_number))])
for i in range(0,node_number):
  b[0,i] = 0
b = np.transpose(b)
b[node\_number-1,0] = 1
for i in range(0,node_number):
  A[N,i] = 0
A[N,N] = 1
"%%%"
"Solve A u = b"
u_num = np.linalg.solve(A,b)
" ======Exact solution"
fig, ax = pyplot.subplots()
r_{vector} = np.linspace(0,1,100)
u_exact_vector = special.i0(r_vector) / special.i0(1)
ax.plot(r_vector,u_exact_vector,'r',label = 'Exact Solution')
ax.plot(grid,u_num,'-o',label = 'Numerical Solution')
ax.legend()
ax.set_xlabel('r')
ax.set_ylabel('u')
fig.savefig('pde.pdf')
       =====Calculate the Error"
u_exact = np.array([special.i0(grid) / special.i0(1)]);
u_exact = np.transpose(u_exact)
ur_exact = special.i1(grid) / special.i0(1);
" L2 norm"
```

```
u_error_L2 = np.sqrt(np.sum((u_num - u_exact)**2*h))
  " Calculate ur"
  ur_num = np.zeros(node_number)
  ur_num[0] = (u_num[1]-u_num[0])/h
  ur\_num[N] = (u\_num[N]-u\_num[N-1])/h
  for i in range(1,N):
     ur_num[i] = (u_num[i+1]-u_num[i-1])/2/h
  ur_error_L2 = np.sqrt(np.sum((ur_num - ur_exact)**2*h))
  " H1 norm"
  u_error_H1 = np.sqrt(u_error_L2**2+ur_error_L2**2)
  return [u_error_L2,u_error_H1]
element_vector = []
L2 = []
H1 = \prod
for i in range(0,25):
  element_number = i * 4 + 4
  element_vector.append(element_number)
  error = FEM(element_number)
  L2.append(error[0])
  H1.append(error[1])
fig, ax = pyplot.subplots()
ax.plot(np.log(element_vector),np.log(L2),'-',label = 'L2 norm Error')
ax.plot(np.log(element_vector),np.log(H1),'--',label = 'H1 norm Error')
ax.legend()
ax.set_xlabel('ln(N)')
ax.set_ylabel('ln(Error)')
fig.savefig('pde.pdf')
```