Machine Learning Clustering I

Prof. Matthias Hein

Machine Learning Group
Department of Mathematics and Computer Science
Saarland University, Saarbrücken, Germany

Lecture 20, 22.01.2014

Unsupervised learning

Unsupervised Learning:

Given a set of input points $(X_i)_{i=1}^n$:

- **Clustering:** Construction of a grouping of the points into sets of *similar* points, the so called *clusters*.
- Density Estimation: Estimation of the distribution of the input points over the input space X. Related problem: Outlier detection.
- Dimensionality Reduction: Construction of a mapping $\phi: \mathcal{X} \to \mathbb{R}^m$, where the dimensionality m of the target space is usually much smaller than that of the input space \mathcal{X} . Generally, the mapping should preserve properties of the input space \mathcal{X} e.g. distances.

Roadmap

Clustering

- Goal of clustering,
- k-means clustering (prototype-based clustering)
- Spectral clustering (graph-based clustering),
- Agglomerative and hierarchical clustering,
- Density based clustering.

Clustering is one instance of unsupervised learning

What is clustering?

Clustering:

Construction of a grouping of the points into sets of *similar* points, the so called *clusters*.

- clustering objective depends usually on application,
- in clustering the modeling aspect is even more important than in supervised learning \Longrightarrow do not use a clustering method if you have not understood what the objective implies !

Prototype based clustering

K-means clustering

- **Goal:** find prototypes μ_i , $i=1,\ldots,k$ which represent the data in an optimal way (what does that mean ?),
- **Objective:** denote by C_i the i-th cluster (set of points) which is represented by the prototype μ_i ,

$$\underset{(C_1,\mu_1),...,(C_k,\mu_k)}{\arg\min} \ \sum_{i=1}^k \sum_{x_j \in C_i} \|x_j - \mu_i\|^2 \,,$$

where $\|\cdot\|$ is the Euclidean norm,

- True Goal:
 - 1 finds sphere-like clusters in the data,
 - heavily influenced by outliers,
 - 3 non-sphere like clusters are hard to fit.

K-means II

K-means clustering:

- k-means is combinatorial optimization problem,
- simple iterative algorithm converges fast but finds only local minimum.

Lloyd's algorithm for k-means clustering:

- lacktriangledown initialize centers μ_i ,
- **2** do classify all samples according to closest μ_i , i = 1, ..., k
- ullet recompute μ_i as the mean of the points in cluster C_i for $i=1,\ldots,k$
- **4 while** no change in μ_i , i = 1, ..., k,
- \bullet return μ_1,\ldots,μ_k ,

Steps are optimal for fixed clusters resp. fixed centers

K-Means III

Problems of K-Means

- Left: k is chosen too small.
- Middle: k is chosen too large.
- Right: The two moons dataset clusters are not of spherical shape.

$$J(k) = \min_{(C_1, \mu_1), \dots, (C_k, \mu_k)} \sum_{i=1}^k \sum_{x_i \in C_i} ||x_j - \mu_i||^2,$$

 \implies monotonically decreasing in k - not useful for choosing k!

Spectral Clustering

Spectral Clustering:

- an instance of graph-based clustering,
- First attempts can be traced back to Donath and Hoffman and Fiedler in 1973.
- very popular clustering algorithm since it can find clusters of almost arbitrary shape,
- rich theoretical background.
- ⇒ based on eigenvectors of the graph Laplacian.

In the following: we deal with weighted, undirected graphs G = (V, W)

- \Rightarrow symmetric weight matrix $w_{ij} = w_{ji}$,
- \Rightarrow degree of vertex i, $d(i) = \sum_{j=1}^{n} w_{ij}$, degree matrix $D_{ij} = d_i \delta_{ij}$.

Graph Laplacian - Definition

In the literature one can find three types of graph Laplacians:

unnormalized:
$$(\Delta^{(u)}f)(i) = d(i)f(i) - \sum_{j=1}^{n} w_{ij}f(j),$$

$$(\Delta^{(u)}f) = (D - W)f,$$
 normalized:
$$(\Delta^{(n)}f)(i) = f(i) - \sum_{j=1}^{n} \frac{w_{ij}}{\sqrt{d_i d_j}}f(j),$$

$$(\Delta^{(n)}f) = (\mathbb{1} - D^{-1/2}WD^{-1/2})f.$$

Caution: often no distinction in the literature - each of them is just called graph Laplacian.

Relation to the continuous Laplacian

The **continuous Laplacian** is a second-order differential operator,

$$\Delta f = \sum_{i=1}^{d} \frac{\partial^2 f}{\partial x_i^2}.$$

It is invariant under rotations and translations (\Rightarrow image processing).

Correspondence: For a grid in \mathbb{R}^d the unnormalized graph Laplacian, $\Delta^{(u)} = D - W$, corresponds up to the sign to the finite difference approximation of the continuous Laplacian.

For the real line with an equidistant discretization of size size h, we get,

$$\frac{d^2f}{dx^2} \approx \frac{1}{h^2} \Big(f(i+1) + f(i-1) - 2f(i) \Big) = -d(i)f(i) + \sum_{j=1}^m w_{ij}f(j) = -(\Delta^{(u)}f)(i).$$

where in the grid each point connects to its nearest neighbors and the weights are $1/h^2 \Rightarrow$ degree of each grid point is $2/h^2$.

Properties of the graph Laplacian

• All graph Laplacians are positive semi-definite and self-adjoint,

$$\langle f, \Delta g \rangle_{\mathcal{H}_V} = \langle g, \Delta f \rangle_{\mathcal{H}_V}.$$

Associated regularization functionals (useful for SSL),

$$\left\langle f, \Delta^{(u)} f \right\rangle = \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2,$$

 $\left\langle f, \Delta^{(n)} f \right\rangle = \sum_{i,j=1}^{n} w_{ij} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2.$

ullet The eigenvectors of $\Delta^{(\mathrm{u})}$ and $\Delta^{(\mathrm{n})}$ define an orthonormal basis on \mathbb{R}^V .

Key property for Spectral Clustering

• Algebraic connectivity of the graph:

Theorem (Fiedler)

The multiplicity of the first eigenvalue (the first eigenvalue is zero) of the graph Laplacians is equivalent to the number of connected components of the graph.

- Let A_i , $i=1,\ldots,K$ be the connected components of the graph. $\mathbb{1}_{j\in A_i}$ are eigenvectors of $\Delta^{(\mathrm{u})}$ to the eigenvalue 0. $\sqrt{d_j}\,\mathbb{1}_{j\in A_i}$ are eigenvectors of $\Delta^{(\mathrm{n})}$ to the eigenvalue 0.
- Caution: there is no "first eigenvector" but we have an eigenspace to the eigenvalue zero which has dimension K.

A graph which resolves into disconnected components is the ideal clustering (already the graph reveals the cluster structure - no other clustering method necessary).

Spectral Clustering - Variant I

Chooose the graph Laplacian: unnormalized or normalized and the number of clusters k.

- compute the graph Laplacian,
- compute the first k eigenvectors $\{u_i\}_{i=1}^k$ (each eigenvector is normalized, $||u_i||_2 = 1$, i = 1, ..., k),
- Embedding $\phi: V \to \mathbb{R}^k$, of the *n* vertices into \mathbb{R}^k by $i \to z_i = (u_1(i), \dots, u_k(i))$,
- clustering of the resulting n points $\{z_i\}_{i=1}^n$ by k-means into clusters C_1, \ldots, C_k .

The embedding: $\phi: V \to \mathbb{R}^k$, $i \to \phi(i) = (u_1(i), \dots, u_k(i))$ is basically the **Laplacian eigenmap**.

Spectral Clustering - Variant I

Central Questions

- Is the mapped data in the new space suited for k-means?
- Why should this yield a good clustering?

Three different motivations for spectral clustering:

- Relaxation of graph cuts,
- Markov random walks,
- Open Perturbation theory of the eigenvectors.

Motivation I - Graph Cuts

Partitioning of weighted, undirected graphs

Define: $\overline{C_i} = V \setminus C_i$ and $vol(C_i) = \sum_{j \in C_i} d_j$ and

$$\operatorname{cut}(C,D) = \sum_{i \in C, j \in D} w_{ij}.$$

Let (C_1, \ldots, C_k) be a partition of V $(\bigcup_{i=1}^k C_i = V \text{ and } C_i \cap C_j = \emptyset, i \neq j)$

Graph Cut Criteria:

- MinCut: MinCut $(C_1, \ldots, C_k) = \sum_{i=1}^k \operatorname{cut}(C_i, \overline{C_i})$.
- RatioCut: RatioCut $(C_1, \ldots, C_k) = \sum_{i=1}^k \frac{\operatorname{cut}(C_i, \overline{C_i})}{|C_i|}$.
- NCut (normalized Cut): $NCut(C_1, ..., C_k) = \sum_{i=1}^k \frac{cut(C_i, \overline{C_i})}{vol(C_i)}$.

Goal: find optimal (minimal) Min/Ratio/Normalized-cut among all possible partitions.

Motivation I - Graph Cuts II

Partitioning of weighted, undirected graphs

- MinCut: yields often unbalanced partitions in particular single points become clusters.
- Ratio Cut and Normalized Cut are instances of balanced graph cut criteria
 - ⇒ enforces balanced partitions (what does balanced mean ?)
 - ⇒ Ratio Cut prefers clusters of equal size,
 - ⇒ Normalized Cut prefers clusters of equal volume.
- Problem: All balanced graph cut criteria are NP-hard.

Spectral clustering is a relaxation of ratio/normalized cut!

Relaxation of Ratio Cut

Given a partition (C, \overline{C}) (two clusters, k = 2) define $f^C : V \to \mathbb{R}$,

$$f_i^C = \begin{cases} \sqrt{|\overline{C}|/|C|} & \text{if } i \in C, \\ -\sqrt{|C|/|\overline{C}|} & \text{if } i \in \overline{C}. \end{cases}$$

$$\left\langle f^{C}, \Delta^{(\mathsf{u})} f^{C} \right\rangle = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_{i}^{C} - f_{j}^{C})^{2} = \sum_{i \in C, j \in \overline{C}} w_{ij} \left(\sqrt{\frac{|\overline{C}|}{|C|}} + \sqrt{\frac{|C|}{|\overline{C}|}} \right)^{2}$$

$$= \operatorname{cut}(C, \overline{C}) \left(\frac{|\overline{C}|}{|C|} + \frac{|C|}{|\overline{C}|} + 2 \right) = \operatorname{cut}(C, \overline{C}) \left(\frac{|C| + |\overline{C}|}{|C|} + \frac{|C| + \overline{C}}{|\overline{C}|} \right)$$

$$= |V| \operatorname{cut}(C, \overline{C}) \left(\frac{1}{|C|} + \frac{1}{\overline{C}} \right) = |V| \operatorname{RatioCut}(C, \overline{C})$$

$$\sum_{i=1}^n f_i^C = \sum_{i \in C} \sqrt{\frac{|\overline{C}|}{|C|}} - \sum_{i \in \overline{C}} \sqrt{\frac{|C|}{|\overline{C}|}} = 0, \quad \left\| f^C \right\|_2^2 = \sum_{i=1}^n (f_i^C)^2 = |C| \frac{|\overline{C}|}{|C|} + |\overline{C}| \frac{|C|}{|\overline{C}|} = n.$$

Relaxation of ratio cut II

With the specific form of the function f^{C} the optimal **ratio cut** can be written as:

$$\min_{C \subset V} \Big\{ \left\langle f^C, \Delta^{(u)} f^C \right\rangle \ | \ \left\langle f^C, \mathbb{1} \right\rangle = 0, \ \left\| f^C \right\| = \sqrt{n} \Big\}.$$

This is a discrete combinatorial optimization problem and is NP-hard \Rightarrow relax problem by allowing f to take arbitrary real values.

$$\min_{f \in \mathbb{R}^V} \Big\{ \left\langle f, \Delta^{(u)} f \right\rangle \mid \left\langle f, \mathbb{1} \right\rangle = 0, \ \|f\| = \sqrt{n} \Big\}.$$

- Rayleigh-Ritz principle \Rightarrow If graph is connected, minimum is the second eigenvalue λ_2 and the minimizer is the second eigenvector u_2 of $\Delta^{(u)} = D W$.
- Partitioning using optimal threshold t

$$C_t = \{j \in V \mid u_2(j) > t\},\$$

by optimizing the Ratio-Cut or alternatively k-means in the embedding.

Relaxation of normalized cut

Given a partition (C, \overline{C}) define the function,

$$f_i^C = \left\{ \begin{array}{ll} \sqrt{\operatorname{vol}(\overline{C})/\operatorname{vol}(C)}, & i \in C, \\ -\sqrt{\operatorname{vol}(C)/\operatorname{vol}(\overline{C})}, & i \in \overline{C}. \end{array} \right.$$

$$\left\langle f^C, \Delta^{(\mathsf{u})} f^C \right\rangle = \operatorname{vol}(V) \ \operatorname{NCut}(C, \overline{C}), \quad \left\langle f^C, D f^C \right\rangle = \operatorname{vol}(V) = n, \quad \left\langle \mathbb{1}, D f^C \right\rangle = 0.$$

The optimal normalized cut:

$$\min_{C\subset V}\Big\{\left\langle f^C,\Delta^{(u)}f^C\right\rangle \ | \ \left\langle Df^C,\mathbb{1}\right\rangle =0, \ \left\langle f^C,Df^C\right\rangle =n\Big\}.$$

Relaxation of the normalized cut:

$$\min_{f \in \mathbb{R}^V} \left\{ \left\langle f, \Delta^{(\mathsf{u})} f \right\rangle \mid \left\langle Df, \mathbb{1} \right\rangle = 0, \ \left\langle f, Df \right\rangle = n \right\}.$$

 \Rightarrow generalized eigenproblem $\Delta^{(u)}f = \lambda Df$.

The general case for the ratio cut

Given a partition (C_1, \ldots, C_k) define the functions h_i ,

$$h_i(j) = \begin{cases} \frac{1}{\sqrt{|C_i|}} & j \in C_i, \\ 0 & j \in \overline{C_i}. \end{cases}$$

General normalized cut:

$$\min_{C_1, \dots, C_k} \{ \; \mathrm{Tr} \big(H \Delta^{(u)} H^T \big) \mid H H^T = \mathbb{1}_k, \}$$

- The minimizer of the relaxation to arbitrary $H = \{h_1, \ldots, h_k\}$, that is $H \in \mathbb{R}^{k \times n}$, yields the smallest k eigenvectors $\{u_i\}_{i=1}^k$ of the unnormalized graph Laplacian $\Delta^{(u)}$. The minimum is the sum of the k-smallest eigenvalues of $\Delta^{(u)}$.
- The conversion of $H = \{u_1, \dots, u_k\}$ into a partition (C_1, \dots, C_k) can be done by k-means clustering of the rows of $H \Rightarrow$ no approximation guarantees

Theoretical results for k=2

• Let $\phi^* = \min_C \operatorname{NCut}(C, \overline{C})$ and denote by $\phi_{SPECTRAL}$ the cut obtained by optimal thresholding of the second eigenvector. It holds

$$\phi^* \le \phi_{SPECTRAL} \le 2\sqrt{\max_i d_i} \sqrt{\phi^*}$$

There exist graphs which get close to upper bound.

- Better worst case guarantees for normalized/ratio cut for relaxation into a semi-definite program (Arora et al (2004)).
- Minimization of nonconvex relaxations based on nonlinear eigenproblems (H., Bühler, 2010, H., Setzer, 2011) yields much better cuts than standard spectral clustering in practice

Conclusion: The graph cuts picture is only a part of the story of spectral clustering.

Spectral Clustering - Variant II

Spectral Clustering - Variant II (recursive bipartitioning)

Chooose graph Laplacian and the number of clusters k.

- \bullet initialize: current paritition V.
- do build on each element of the current partition the graph Laplacian,
 - 1 compute the second eigenvector on each partition,
 - 2 compute the optimal threshold for dividing each partition,
 - 3 choose the cut which minimizes the total balanced cut criterion.
- while number of elements in the partition is less than k

Discussion:

- Advantage: uses original criterion to split no k-means,
- Disadvantage: the embedding integrates global information about the data ⇒ problem if first split is not optimal.

Motivation II - Markov random walks on graphs

Markov random walk for an undirected, weighted graph:

stochastic matrix: $P = D^{-1}W$. stationary distribution: $\pi_i = \frac{d_i}{\text{vol}(V)}$.

Proposition (Meila, Shi)

Let G be connected. Let $X_0 \sim \pi$ be the random walk started in the stationary distribution and C be a subset of V. Then the normalized cut can be written as

$$\mathrm{NCut}(\mathit{C},\overline{\mathit{C}}) = \Big[\mathrm{P}(\mathit{X}_1 \in \overline{\mathit{C}} \mid \mathit{X}_0 \in \mathit{C}) + \mathrm{P}(\mathit{X}_1 \in \mathit{C} \mid \mathit{X}_0 \in \overline{\mathit{C}})\Big].$$

Interpretation:

 \implies find a partitioning such that the random walk stays as long as possible in each cluster.

Motivation III - Perturbation theory

Perfect clusters = disconnected graph

- multiplicity of the eigenvalue, $\lambda = 0$, of the graph Laplacians is equal to the number K of connected components of the graph.
- the K eigenvectors for $\lambda=0$ are constant on the connected component and zero elsewhere.

Perturbation of the weight matrix - make the graph connected

 $\tilde{W} = W + \text{ edges such that graph is connected.}$

- only small change for the weight matrix,
 ⇒ first K eigenvalues should still be very small, ⇒ first K eigenvectors should be only very little perturbed
- each cluster is mapped to a single point (in the embedding).
- ⇒ rigorous statements using perturbation theory of symmetric matrices.

Practical issues

DemoSpectralClustering:

Practical issues II

- For sparse graphs (k-NN graphs) the first few eigenvectors can be efficiently computed using the power or Lanczos method ⇒ spectral clustering can be done for millions of points.
- Spectral Clustering used for image segmentation (Shi and Malik),
- Check the spectrum of the graph Laplacian. Never cut the spectrum where two eigenvalues are close. Always cut at a gap. This can also be formally justified by the stability of eigenvectors and eigenvalues under perturbations.
- Spectral clustering is quite stable against high-dimensional noise.
- Use the normalized graph Laplacian.