周天元 3036127048

Problem 1. $N = \sqrt{2+\sqrt{2}}, N^2 = 2+\sqrt{2}, N^2 - 2 = \sqrt{2},$ $(N^2 - 2)^2 = 2, N^4 - 4N^2 + 4 = 2, N^4 - 4N^2 + 2 = 0.$

(3) (3)By Tower Theorem, [B(J2H2 J7): B] = 4.2-8

Problem 2: Assume to the contrary that $(|\sqrt{2})E[R^2]E[R^2]E$ constructable. 2/2 Now $\sqrt{2}$ becomes constructable, but $f(x) = x^2 - 2$ is irreducible

over B by Fisenstein's criterion, so [Q(I):0]=7, mot a power of 2,

Problem 3:

(1) Let α be a complex number. If for some Monzoro polynomial $f(\alpha) = \sum_{k=0}^{m} \alpha_k \alpha^k$

with rational coefficients, $f(\alpha)=0$, then 0 an algebraic number.

i 3 to root of 0 to 0 (a), so is also braic over 0.

(2) Step: $\sqrt{3}$ is a root of (1-3)

134 B a root of 17-34 EDIXI, SUNJAY B algobraic over B.

Step 2: Linear combinations of algebraic numbers are algebraic, so:

9-734, 23-13 are algebraic over Θ .

Step 3: 79-754, 523-13 are algebraic over Θ (9-754, 23-13)

so it follows from tower theorem that they are algebraic

Step 4: Linear combinations and products of algebraic numbers are algebraic,
Step 4: Linear combinutions and products of algebraic numbers are algebraic, 50 29-734 ± 5523-13 % an algebraic number.
Step 5: As $99-734+3923-13=0$ So the quotient $99-734+3923-13=0$ an algebraic number. of algebraic numbers $39-734+3923-13=0$ algebraic
so the quotient 979-754-15723-13 Ban algebraic number
of algebraic numbers $\sqrt{9-7/34}+5\sqrt{23-13}$ ealgebraic
Problem 4:
(1) Let KSL be a field extension, and f(x) < K(x) be a mon constant
polynomial. If there exists an EKX, OLIOS,, On EL, such that:
d) $f(\alpha) = Q_n(\alpha - \alpha_1)(\alpha - \alpha_2) \cdots (\alpha - \alpha_n) \cdot d[\alpha]$
(A) (A) (A) (A) (A)
Then Lisa subtting field of fra over K.
Then Las a splitting field of f(x) over K. (2) Let K be a field, and f(x) eK[x] be a nonconstant polynomial.
Existence There exists a substring field KSL of f(x) over K.
$= a_k \alpha^k \mapsto = \phi(a_k) \alpha^k$ be the induced ring isomorphism, and
Uniqueness—Let $\phi: K_1 \to K_2$ be a field 33 ornorphism, $\Phi: K[x] \to K_2[x]$, \mathbb{Z} $\mathcal{A}_k(x) \to \mathbb{Z}$ $\phi(a_k) x^k$ be the induced ring isomorphism, and $f(x)$, $f_2(x)$ be moniconstant polynomials in $K_1[x]$, $K_2[x]$ earth $\mathbb{Z}[x]$.
If $K_1 \leq L_1/K_2 \leq L_2$ are splitting fields of $f_1(x)_1 f_2(x)$ over K_1/K_2 , then there exists a field isomorphism $2 : L_1 \Rightarrow L_2$ with $4 : L_1$
then there exists a field Bornomphism 4: L, > L2 with \$ = 9
IN /
V

