Spis treści

1.	Ор	is projektu – Obliczanie wartości własnych korzystając z faktoryzacji QR	1
2.	Ор	is algorytmu	2
	2.1	Faktoryzacja QR	2
	2.2	Wyznaczanie wartości własnych przy pomocy faktoryzacji QR	3
3.	Podej	Podejście równoległe	
	3.1 R	ównoległa Faktoryzacja QR z wykorzystaniem OpenMP	4
	3.2 R	ównoległe wyznaczanie wartości własnych z wykorzystanie OpenMP	5
4.	Wyda	ajność algorytmu	5
	4.1 Małe macierze		5
	4.2 D	uże macierze	6
5.	Wnio	ski	6

Opis projektu – Obliczanie wartości własnych korzystając z faktoryzacji QR

Żeby obliczyć (rzeczywiste) wartości własne macierzy A wygodnie użyć jej faktoryzacji QR, tzn. reprezentacji:

$$A = QR$$

gdzie Q jest macierzą ortogonalną (tzn. taką że $Q^TQ=\mathrm{I}$), zaś R jest macierzą górną trójkątną. Algorytm jest następujący:

$$A^{(1)} = A$$

$$A^{(k)} = Q_k R_k$$

$$A^{(k+1)} = R_k Q_k$$

Można pokazać, że w przypadku gdy macierz A ma na wartości własnych o różnych modułach:

$$a_{ii}^k \xrightarrow[k \to \infty]{} \lambda_i$$

$$a_{ij}^k \xrightarrow[k \to \infty]{} 0, i \neq j$$

Faktoryzacja QR macierzy A o postaci A=QR, gdzie Q jest macierzą ortogonalną (tzn. taką, że $Q^TQ=I$), zaś macierz R jest macierzą górną trójkątną, może być wyznaczona przy użyciu algorytmu ortogonalizacji Grama-Schmidta.

2. Opis algorytmu

2.1 Faktoryzacja QR

```
void qr_factorization_seq(int size, double **matrix, double **q, double **r)
 for (int k = 0; k < size; k++)
    double r_sum = 0;
    for (int i = 0; i < size; i++)
         r_sum += matrix[i][k] * matrix[i][k];
    r_sum = sqrt(r_sum);
    r[k][k] = r_sum;
    for (int i = 0; i < size; i++)
         q[i][k] = matrix[i][k] / r_sum;
    for (int j = k + 1; j < size; j++)
         r_sum = 0;
         for (int i = 0; i < size; i++)
            r_sum += q[i][k] * matrix[i][j];
         r[k][j] = r_sum;
         for (int i = 0; i < size; i++)
            matrix[i][j] = matrix[i][j] - r[k][j] * q[i][k];
```

2.2 Wyznaczanie wartości własnych przy pomocy faktoryzacji QR

- macierz zbiega do macierzy trójkątnej górnej, a wartości własne znajdują się na przekątnej.

3. Podejście równoległe

Wszystkie operacje kolumnowe w faktoryzacji QR są niezależne, więc możemy wykonywać je równolegle.

3.1 Równoległa Faktoryzacja QR z wykorzystaniem OpenMP

```
void qr_factorization_parallel(int size, double **matrix, double **q, double **r)
double r_sum;
int i;
int j;
int k;
for (k = 0; k < size; k++)
    r sum = 0;
    #pragma omp parallel for private(i) shared(matrix, size) reduction(+:r_sum)
    for (i = 0; i < size; i++)
        r_sum += matrix[i][k] * matrix[i][k];
    r_sum = sqrt(r_sum);
    r[k][k] = r_sum;
    #pragma omp parallel for private(i) shared(k, r, matrix, q, size)
    for (i = 0; i < size; i++)
    {
        q[i][k] = matrix[i][k] / r[k][k];
    #pragma omp parallel for private(j, r_sum, i) shared(k, r, q, matrix, size)
    for (j = k + 1; j < size; j++)
        r_sum = 0;
        for (i = 0; i < size; i++)
            r_sum += q[i][k] * matrix[i][j];
        r[k][j] = r_sum;
        for (i = 0; i < size; i++)
            matrix[i][j] = matrix[i][j] - r[k][j] * q[i][k];
```

3.2 Równoległe wyznaczanie wartości własnych z wykorzystanie OpenMP

4. Wydajność algorytmu

Testy były wykonywane na komputerze z 4 rdzeniami procesora dla 10 iteracji.

4.1 Małe macierze

4.2 Duże macierze

5. Wnioski

Algorytm równoległy dla małych macierzy jest wolniejszy dla małych macierzy z powodu synchronizacji wątków. Zyski z algorytmu równoległego są zauważalne przy rozmiarze macierzy ok. 200 na 200.