A MAP Framework for Support Recovery of Sparse Signals Using Orthogonal Least Squares

Shorya Consul, Abolfazl Hashemi, Haris Vikalo

Dept. of Electrical and Computer Engineering, University of Texas at Austin, Austin, TX, USA

BACKGROUND

- Sampling and Reconstruction
 - > Small number of measurements of high dimensional sparse signal
 - Applications: Compressive sensing, sparse channel estimation, DNA microarrays
- Notation and model

$$\mathbf{y} = A\mathbf{x} + \mathbf{v}, \ A_{ij} \sim \mathcal{N}\left(0, \frac{1}{n}\right)$$

 $A \in \mathbb{R}^{n \times m}$: Sensing matrix (n < m)

 $\mathbf{x} \in \mathbb{R}^m$: High-dimensional sparse signal being measured

 $\mathbf{y} \in \mathbb{R}^n$: Compressive measurements

 $\mathbf{v} \in \mathbb{R}^m$: Independent Gaussian noise, $\mathcal{N}(0, \sigma^2 I)$

I: Support set of \mathbf{x}

 S_k : Support set determined in k^{th} iteration

- Goal: Identifying *correct support* of signal x, thus enabling reconstruction from y
- Prior work [1] done on greedy support recovery in a maximum a posteriori
 (MAP) framework
- Our approach: A MAP framework for *orthogonal least squares (OLS)*
- Leveraging the distributions of the support and sensing matrix to recover support more accurately than conventional greedy algorithms

PROBLEM FORMULATION

For binary signals, the OLS selection criterion is

$$j_s = \operatorname{argmax}_{j \in \mathcal{I} \setminus S_{k-1}} \left(\sum_{i \notin S_{k-1} \cup j} x_i \mathbf{a}_i^\top + \mathbf{v}^\top \right) \frac{P_{k-1}^{\perp} \mathbf{a}_j}{\|P_{k-1}^{\perp} \mathbf{a}_j\|_2} + x_j \|P_{k-1}^{\perp} \mathbf{a}_j\|_2,$$

• Using radial symmetry of $\mathbf{a_j}$ and defining hypotheses $\mathcal{H}_0: x_j = 0, \, \mathcal{H}_1: x_j = 1,$ the above argument is equivalent to:

$$\mathcal{H}_0: z_j^k = \sum_{i \in \mathcal{I} \setminus S_{k-1}} a_i(1) + v(1)$$

$$\mathcal{H}_1: z_j^k = \sum_{i \in \mathcal{I} \setminus S_{k-1}} a_i(1) + v(1) + ||P_{k-1}^{\perp} \mathbf{a}_j||_2$$

• Lemma 1 gives *log-MAP ratio* as:

$$\Lambda_j^k = \log\left(\frac{P(z_j^k|x_j=1)}{P(z_j^k|x_j=1)} \frac{P(x_j=1)}{P(x_j=0)}\right)$$

$$= \frac{(z_j^k)^2}{2(\frac{K-k+1}{n} + \sigma_n^2)} - \frac{(z_j^k - \mu_k)^2}{2(\frac{K-k}{n} + \sigma_n^2)} + \log\left(\frac{P(x_j=1)}{P(x_j=0)}\right).$$

APPROXIMATION OF DISTRIBUTIONS

• Evaluation of log-MAP ratio requires an approximation of the distribution of z_j^k under \mathcal{H}_1

Lemma 1:

The cumulative distribution function of $||P_{k-1}^{\perp}\mathbf{a}_j||_2$ is given by

$$F_{\|P_{k-1}^{\perp} \mathbf{a}_j\|_2}(x) = \frac{\gamma(\frac{n-k+1}{2}, \frac{nx^2}{2})}{\Gamma(\frac{n-k+1}{2})}$$

- Proof's remarks:
 - Radial symmetry of Gaussian distribution
 - $> ||P_{k-1}\mathbf{a}_j||_2$ and $||\mathbf{a}_j||_2$ scaled chi distributions
 - $|P_{k-1}^{\perp} \mathbf{a}_j||_2$ difference of above distributions

Approximation:

- To make distribution of z_j^k under \mathcal{H}_1 analytically tractable, approximate $||P_{k-1}^{\perp}\mathbf{a}_j||_2$ by the expectation as n grows large, i.e., $\mu_k = \sqrt{\frac{n-k+1}{n}}$
- Assumption: Sparsity level, K << n

ALGORITHM

Using accelerated OLS from [2] for proposed framework, MAP-AOLS

Input: y, A, K, threshold (ϵ)

Output: Support S_K , signal estimate $\hat{\mathbf{x}}_K$

Initialize:
$$i = 0$$
, $\mathbf{r}_0 = \mathbf{y}$, $\mathcal{S}_0 = \phi$, $\mathbf{t}_j^{(i)} = \mathbf{a}_j$, $\mathbf{q}_j = \frac{\mathbf{a}_j^\top \mathbf{y}}{\mathbf{a}_j^\top \mathbf{a}_j} \mathbf{a}_j$, $\forall j$

while $\|\mathbf{r}_i\|_2 > \epsilon$ and $i \leq K$ do

Select j_s corresponding to the largest Λ_i^k

$$i \leftarrow i + 1$$

$$\mathcal{S}_i = \mathcal{S}_{i-1} \cup \{j_s\}$$

$$\mathbf{u}_i = \mathbf{q}_{j_s}, \, \mathbf{r}_i = \mathbf{r}_{i-1} - \mathbf{u}_i$$

$$\mathbf{t}_j^i = \mathbf{t}_j^{i-1} - \frac{\mathbf{t}_j^{i-1} \mathbf{u}_i}{\|\mathbf{u}_i\|_2^2} \mathbf{u}_i$$

end while

$$\hat{\mathbf{x}}_K = A_{\mathcal{S}_K}^{\dagger} \mathbf{y}$$

For computing the log-MAP ratio, note that $z_j^k = ||\mathbf{q}_j^{(k)}||_2$

Connection to OLS:

In the low-SNR regime, the variance under \mathcal{H}_0 and \mathcal{H}_1 will be approximately equal. Then, the log-MAP ratio will be

$$\Lambda_j^k = \frac{(z_j^k)^2}{2\sigma^2} - \frac{(z_j^k - \mu_k)^2}{2\sigma^2} = \frac{2z_j^k \mu_k - \mu_k^2}{2\sigma^2}.$$

This is equivalent to the selection criterion of OLS, so OLS is optimal in the MAP sense in the low-SNR scenario.

RESULTS

- Binary signals with m = 256, n = 128
- MAP-MP and MAP-AOLS provide best PRR and ERR
- MAP-AOLS only slightly slower than other greedy algorithms

- Support sets with p_1 from $|K_1| = m/4$ and p_2 from $|K_2|$
- n = 256, m = 128
- K estimated as $p_1|K_1|+p_2|K_2|$
- MAP methods exhibit best PRR and ERR
- Non-monotonicity due to each missed index greater effect of missed index for small p₁

- Sensing matrix, A, drawn from hybrid dictionary
- OLS and MAP-AOLS
 robust to correlation in
 columns of A
- OMP-based schemes fail with hybrid dictionaries

CONCLUSION

- Our contributions:
 - > Framework for support recovery that is optimal in MAP sense
 - Proposed framework empirically shown to show improved ERR and PRR
 - Potentially superior recovery with hybrid dictionaries
- Future work: Proof of optimality of proposed algorithm and speedup by selecting multiple indices per iteration
- [1] N. Lee, ""Map support detection for greedy sparse signal recovery algorithms in compressive sensing,", June 2016.
- [2] A. Hashemi et al., "Accelerated orthogonal least-squares for large-scale sparse reconstruction," Nov 2018.