

Lernziele

- Sie kennen den Ablauf einer DNS Abfrage
- Sie können einen Windows DNS Server in Betrieb nehmen
- Sie können einen Windows DNS Server testen
- Sie können die Funktionalität eines DNS Servers auf einem Windows Client testen

Konfigurationseinstellungen

- Gateway 192.168.220.2
- Server: 192.168.20.101
- ServerName: SRV01
- Serverlogin erfolgt via ein Password zb: Gibz1234!

- Vorbedingungen
- Ping Gateway: 192.168.220.2
- DNS Auflösung funktioniert z.B nslookup www.gibz.ch

DNS

4_Struktur von DNS

Webserver

54.229.140.208

3. Eingetragene DNS

1. Cache

Johan Oelen | Modul 123

Kanton Zug

FQDN: www.webtechnologien.com

DNS: Domain Name System_ Zusammenfassung

- DNS löst sprechende Namen (URL) in eindeutige IP-Adressen auf
- DNS ist ein Protokoll und arbeitet mit Port 53 UDP
- DNS Name: <u>www.sbb.ch</u> (FQDN) = Fully Qualified Domain Name
 Auflösungsprozess
 - 1. lokaler DNS Cache überprüft
 - 2. host Datei
 - 3. Bevorzugter DNS anfragen

Öffentlicher Auflösungsprozess

- 4. "." Root DNS Server (13 Stk)
- 5. "ch" DNS Server TLD
- 6. "sub" DNS Server SLD

Kanton Zu

5_DNS Abschluss

offentliche TLD: .ch .de .org La Domains, welche registriert werden minssen (2.8. www.switchplus.ch private TLD: .local .intra .test

=) interne Domains => existives mor intern

```
Tools for DUS:
```

Whois Abfrage: wen jehirt diese Domâne

(2. B. svitchplw.ch/Wheis)
(2. B. www.ultratoob.com)

DUS Lootup

: Alle Eintrage einer Damain Abtragen

4_DNS Manager


```
Root Hints: Root DWS Server (13 )+6)
Forwarders: Weiterleiturgs server für Dos Abtrojen
             "wenn unser bus die Antroje wicht auflisen kann"
Zone = Domane
                         Name in 1P au flèses
Forward Lockup Zone =
                          2.13 www.gazle.ch 217.13.14.10
                         IP Adresse in Dames autlêses
         Lockup
 Reverse
                                          mail. microsoft.com
                         2B. 13.14.10c.17
```

=> SPAM Erbannung

DNS Records

Record Type	
Forwarder	
SOA	Start of Autority
A Record	ordnet einem DNS Namen eine IPv4 Adresse zu
NS Record	definiert welche Name Server für diese Zone zuständig sind
PTR	ordnet eine IP Adresse einen oder mehrere Hostnames zu
CNAME	properiert welche IP basierende Dienste in einer Domäne Angebogen werden

4_DNS Forward Lookup Zone

Wir arbeiten mit der Zone (domain) myad. local Ressource Record = DNS Eintraj

Starteintroj der Domane Serial = ID untrochiedliche zeitinkrvalle (Refresh, TT,...)

DS-Eintrag

US = Dame Server
Inhaber oler Zone

=> verant wortlich
für diese Domäne

A-Eintroj

Dance zu IP

Autlösurs

Host-Eintroj

Name zu Name
Autlisung
Alias Eintrag

DUS im prattischen Beispiel

Hinweis: Dach Installation wird der DUS auf Ice onllest quetzt (123.0.0.1) => eigene IP hinkeligen

comed Tool: ipeantis lall

ipeantis

DNS Testen

Test	
DNS Delegation/	nslookup <u>tagi.ch</u>
forwarder	
SOA	nslookup
	set q=soa
	ad.myad.local
A Record	nslookup
	set q=a
	desktop-01
NS Record	nslookup
	set q=ns
	<u>tagi.ch</u>
PTR-Record	nslookup 192.168.15.11
MX-Record	nslookup
	set q=mx

DNS Test Forwarder

Test: DNS Forwarder ==>1. Test mit IP V 6 aktiviert. 2. Test ohne IP V 6 Aktivierung auf dem Netzwerkadapter

Checkliste DNS Server

- Netzwerkadapter: DNS ändern von 127.0.0.1 zu 192.168.20.101 (DNS Server)
- Forwarder einrichten 8.8.8.8
- Reverse Lookup Zone einrichten
- PTR erstellen
- Server Testen
- Forwarder nslookup <u>www.google.com</u>
- PTR Record nslookup -q=ptr 192.168.220.10
- A Record nslookup -q=a myaddc01
- NS Record nslookup -q=ns myad.local
- SOA Record nslookup -q=soa myad.local
- Client Testen

Clientseitige Post-Installations tests

Post Installationstests auf dem Client

- √ nslookup <u>www.google.com</u> ==> forwarder
- ✓nslookup 192.168.20.126 ==> PTR-Record
- √nslookup CLwin01 ==> A-Record

Post Installationstests auf dem Server A-Record des Clients ist eingetragen auf dem DNS Server PTR Record des Clients ist eingetragen auf dem DNS Server

DNS Test Forwarder

Falls IPV6 auf dem Netzwerkadapter aktiviert ist erscheint hier ebenfalls eine IPv6 Adresse.

DNS testen

Test: SOA_Start of Authority

```
C:\Users\Administrator>nslookup
Default Server: srv01.demo.local
Address: 192.168.220.20
> set q=soa
 demo.local
Server: srv01.demo.local
Address: 192.168.220.20
demo.local
       primary name server = srv01.demo.local
       responsible mail addr = hostmaster
       serial = 6
       refresh = 900 (15 mins)
       retry = 600 (10 mins)
       expire = 86400 (1 day)
       default TTL = 3600 (1 hour)
srv01.demo.local
                      internet address = 192.168.220.20
```

Test: NS Record wird mit dem FQDN getestet

```
C:\Users\Administrator>nslookup srv01.demo.local
Server: srv01.demo.local
Address: 192.168.220.20

Name: srv01.demo.local
Address: 192.168.220.20
```


DNS testen

Test: A Record.

C:\Users\Administrator>nslookup srv01
Server: srv01.demo.local
Address: 192.168.220.20

Name: srv01.demo.local Address: 192.168.220.20

C:\Users\Administrator>nslookup
Default Server: srv01.demo.local
Address: 192.168.220.20

> set q=a
> srv01
Server: srv01.demo.local
Address: 192.168.220.20

Name: srv01.demo.local
Address: 192.168.220.20

Jeder PC in einer Domäne erhält ein A-Record Eintrag in der DNS Server. Ein A-Record kann mit Namen des Geräts getestet werden

DNS testen Test: A Record

```
> set q=a
> srv01
Server: demo.local
Address: 192.168.220.20
*** demo.local can't find srv01: Non-existent domain
```

Fehlermeldung

Test: PTR Record

C:\Users\Administrator>nslookup 192.168.220.20
Server: demo.local
Address: 192.168.220.20

Name: demo.local
Address: 192.168.220.20


```
C:\Users\Administrator>nslookup
Default Server: demo.local
Address: 192.168.220.20

> set q=ptr
> 192.168.220.20
Server: demo.local
Address: 192.168.220.20

20.220.168.192.in-addr.arpa name = demo.local
```


Clientseitige Post-Installations tests

Vorbedingungen

- ✓ Der DHCP Server wurde installiert und getestet.
- ✓ Der DHCP Server wurde autorisiert
- ✓ Der neue DNS Server wurde auf dem DHCP eingetragen
- ✓ Der Client ist im gleichen Netzwerk wie der Server ping 192.167.20.101 funktioniert.
- ✓ Der Clients ist im gleichen Netzwerk wie der Gateway ping 192.168.20.2 funktioniert
- √Gemäss ipconfig ist der DNS Server 192.168.20.101
- ✓ Der Client hat den Namen CLWin01

DNS auf dem Client testen

Test: Client- Test Forwarder

```
C:\Windows\system32\cmd.exe

Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. Alle Rechte vorbehalten.

C:\Users\bzu\nslookup tagi.ch
Server: srv-014-01.gz-dach.local
Address: 192.168.15.5

Nicht autorisierende Antwort:
Name: tagi.ch
Address: 205.147.88.100
```

Test: Client- Test SOA

```
C\Windows\system32\cmd.exe - nslookup

Nicht autorisierende Antwort:
Name: tagi.ch
Address: 205.147.88.100

C:\Users\bzu\nslookup
Standardserver: srv-014-01.gz-dach.local
Address: 192.168.15.5

> set q=soa
> gz-dach.local
Server: srv-014-01.gz-dach.local
Address: 192.168.15.5

gz-dach.local
primary name server = srv-014-01.gz-dach.local
responsible mail addr = hostmaster.gz-dach.local
serial = 27
refresh = 900 (15 mins)
retry = 600 (10 mins)
expire = 86400 (1 day)
default TIL = 3600 (1 hour)

srv-014-01.gz-dach.local internet address = 192.168.15.5
```


DNS test vom Client Test: A Record

Testen Sie den A-Record des Clients.

Sollte den Client nicht mt A-Record im DNS Server erfasst sein erstellen Sie manuel ein A-Record für den Client

Test: PTR Record

Installieren Sie eine Windows DNS

- 1.Installieren Sie eine Windows DNS
- 2. Testen Sie den DNS Server
- 3. Konfigurieren Sie einen Windows Desktop als DNS-Client
- 4. Testen Sie den DNS Client
- 5. Testen Sie welche Client Records im DNS -Server eingetragen wurden

GIBZ Gewerblich-industrie**ll**es Bi**l**dungszentrum Zug

