Numerical roots finding (Lectures 4 and 5 of Numerical methods) Engineering Mathematics 1

> Oscar Benjamin and Lucia Marucci Department of Engineering Mathematics

March 13, 2018

Engineering Hotspot: Computational engineering

Most engineering software - CFD, FEA, Matlab/Simulink

- but do they converge, and What happens if they don't?!

Finite Element Analysis (FEA)

FE breaks a structure into thousands/millions of small elements:

Do we converge to reality as we increase the number of elements?

The rate of convergence is also important.

March 13, 2018

Numerical analysis

- Most engineering problems can be posed mathematically, but:
 - ▶ they do not have an explicit solution (in closed form),
 - ▶ are solved *approximately* on computers,
 - ightharpoonup continuous quantities are *discretised*: graphs ightarrow numbers.
- - theory of how computers solve maths problems
 - the theory of discretisation and algorithms
 - Many algorithms are iterative (see next lecture):
 - get sequences of better and better answers
 - but do these answers converge to the true answer?

March 13, 2018

Root-finding

Root-finding refers to finding the \emph{roots} of functions i.e. to find x such that

$$f(x) = 0$$

This is equivalent so solving an arbitrary equation for x since we can rearrange any equation into this form by subtracting the right-hand-side. e.g.

$$e^x = \frac{2}{1+x} \rightarrow e^x - \frac{2}{1+x} = 0$$

So for this problem we have

$$f(x) = e^x - \frac{2}{1+x}$$

and the solutions of the equation are the roots of f.

Fixed-point iteration method

Let's find approximate solutions of the equation

$$f(x) = 0$$

If f(x) is, for example, a polynomial, we can find exact roots, but this is not always possible! We want to use numerical methods to find approximate solutions.

March 13, 2018

Fixed point iteration

Example: Apply iteration to solve:

$$\cos x = x$$
.

- - Choose initial guess $x_0 = 0$ for root

 - And so on and so on and so on etc. (should give better and better approximations to root)
- \not i.e. form a sequence $x_{n+1} = \cos(x_n)$

March 13, 2018

Fixed-point iteration method

Firstly, we rearrange

$$f(x) = 0 (1)$$

as

$$x = g(x) \tag{2}$$

so that any solution of the latter, which is a fixed point of g, is a solution of the original equation.

We can make a sequence of values $x_0, x_1, x_2 \dots$ using

$$x_{n+1} = g(x_n) \tag{3}$$

if this sequence converges then it converges to a root of f.

March 13, 2018

First 30 iterates

0	0.74014733556788
1.00000000000000	017 101 11 000001 00
0.54030230586814	0.73836920412232
0.85755321584639	0.73956720221226
0.65428979049778	0.73876031987421
0.00.200.00.00.70	0.73930389239691
0.79348035874257	0.73893775671534
0.70136877362276	0.73918439977149
0.76395968290065	0.73901826242741
0.72210242502671	0.73913017652967
0.75041776176376	0000000_00.
0.73140404242251	0.73905479074692
0.74423735490056	0.73910557192654
0.73560474043635	0.73907136529894
0.74142508661011	0.73909440737909
	0.73907888599499
0.73750689051324	0.73908934140339

Rate of converge

& Answers converge towards $L=0.739085\ldots$

₭ Some natural questions:

▶ What would be the error after 80 steps?

⇒ rate of convergence

▶ Does it work for other x_0 or functions other than \cos ?

⇒ convergence and stability analysis

K Exercise: compute the ratio of differences

$$\frac{x_{n+1} - x_n}{x_n - x_{n-1}}$$
 for the last few iterates

 $\norm{1}{k}$ answer is approx $-0.6736... \approx -\sin(L)$.

Why? ... (note
$$-\sin(x) = \frac{d}{dx}\cos(x)$$
)

March 13, 2018

Engineering Hotspot: Chaotic dynamics

Models of population dynamics can lead to recursive sequences, e.g.

$$x_{n+1} = rx_n(1 - x_n)$$
 "The logistic equation"

- $\norm{\ensuremath{\not{k}}}$ Limit behaviour for different r:

March 13, 2018

What can go wrong

1. Divergence:

Example: $x_{n+1} = g(x_n) = x_n^3 - 1$:

- there is a solution (draw a graph!)
- \blacktriangleright but, using $x_0=0$:

$$x_1 = -1$$
,

$$x_2 = -2$$

$$x_3 = -9$$
.

$$x_4 = -730$$
.

$$x_5 = -3.8 \times 10^8 \dots$$

$$ightharpoonup$$
 using $x_0 = 2$:

$$x_1 = 7$$
,

$$x_2 = 342$$
,

$$x_3 = 4 \times 10^7 \dots$$

2. Cycles ... or Chaos ...

March 13, 2018

Theory of fixed point iteration I

- $\slash\hspace{-0.6em}\not$ Consider fixed point iteration $x_{n+1}=g(x_n)$

- $\ensuremath{\mathbf{k}}$ using $\ensuremath{\textit{Taylor series}}$ (see next term) for small E_n

$$L + E_{n+1} = g(x_n) = g(L + E_n) \approx g(L) + g'(L)E_n = L + g'(L)E_n$$

where $g'(x) = \frac{dg(x)}{dx}$. Cancelling L from both sides:

$$E_{n+1} \approx q'(L)E_n$$

k "error at step n+1 is r=g'(L) times error at step n"

Theory of fixed point iteration II

- $\ensuremath{\mathbb{K}}$ Let r=g'(L) be (theoretical) rate of convergence
- $\ensuremath{\mathbb{K}}$ For x close enough to L, error grows approximately by factor r each step
- We want this error to decrease:

Necessary condition for convergence

Given a fixed point iteration $x_{n+1}=g(x_n)$, a necessary condition for convergence to a root L is

$$|g'(L)| < 1$$

- \not If -1 < g'(L) < 0 convergence is oscillatory

March 13, 2018

Exercise

$$x = x^2 - 2$$

which has a root at x=2

ke show theoretically that the fixed point iteration scheme

$$x_{n+1} = x_n^2 - 2$$

to try to find this root must diverge

 \checkmark find a rearranged iteration scheme that will converge to x=2

March 13, 2018

Return to example $g(x) = x^3 - 1$

- $\ensuremath{\mathsf{K}}$ Clearly L>1 (draw the graph).
- **!** But $g'(x) = 3x^2 > 3$ for x > 1
- However, we can rearrange

$$x = x^3 - 1 \implies x^3 = x + 1 \implies x = (x + 1)^{1/3}$$

k suggests another method

$$x_{n+1} = (x_n + 1)^{1/3}$$

- & Show theoretically that this converges (for x_0 close to root)
- & e.g. $x_1 = 1$, $x_2 =$, $x_3 =$,

March 13, 2018

Engineering Hotspot: large scale engineering computation

 $\normalfont{\normalfont{\mbox{\notk$}}}$ In CFD, FEA, etc. often have to solve for $O(10^6)$ unknowns;

i.e. solve
$$A\mathbf{x} = \mathbf{b}$$

with A an $n \times n$ matrix with $n = O(10^6)$

- Ke Gaussian (row) elimination takes $O(n^3) = O(10^{18})$ steps.
- Instead use fixed point iteration for matrices:

Iterative solvers of matrix equations

Let A=L+D+U (Lower triangular + Diagonal + Upper triangular)

Jacobi iteration:
$$D\mathbf{x}_{n+1} = -(L+U)\mathbf{x}_n + \mathbf{b}$$

or, Gauss-Seidel iteration:
$$D\mathbf{x}_{n+1} = -U\mathbf{x}_n - L\mathbf{x}_{n+1} + \mathbf{b}$$

See James section 5.5.4

Numerical Root finding, other methods

- We saw how the iteration method can solve x = g(x) provided |g'(x)| < 1.
- ₭ But is there a better way?
- More generally, how do computers find accurate solutions to f(x)=0? e.g. $f(x)=\cos(x)-x$

March 13, 2018

Three lessons

1. f(a), f(b) must be opposite sign e.g

$$f(x) = x^2 - 1,$$
 $a = -2,$ $b = +2$

IMVT does not apply, but there are roots

2. even if IMVT applies, can be multiple roots

$$f(x) = x^3 - x$$
, $a = -2$, $b = +2$

3. f must be continuous, e.g.

$$f(x) = \frac{1}{x},$$

Use of intermediate value theorem

- ke Idea, want to find a root (or zero) $x=x^*$ that solves f(x)=0, for some function f.
- Sufficient condition for existence of a root:

Version of intermediate value theorem (IMVT)

Suppose $f: \mathbb{R} \to \mathbb{R}$ is a continuous function, and a < b such that f(a) and f(b) are nonzero and of opposite signs, then there exists x^* with $a < x^* < b$ such that $f(x^*) = 0$.

March 13, 2018

Bisection method

Basic graphical idea: use IMVT repeatedly:

- Let f(x) be continuous with $f(a_1) f(b_1) < 0$
- k then for $n=1,2,\ldots$
- k Let $c_n := (a_n + b_n)/2$
- \not If $f(c_n) = 0$, stop algorithm
- If $f(c_n)f(a_n) < 0$, then let $a_{n+1} = a_n$, $b_{n+1} = c_n$
- If $f(c_n)f(b_n) < 0$, then let $a_{n+1} = c_n$, $b_{n+1} = b_n$

- ★ Keep halving interval, use midpoint of interval as guess of root
- ₭ Stop when half interval length is less than tolerance

Convergence of the bisection method

Exercise find root of $f(x) = \cos(x) - x$ with $a_1 = 0$, $b_1 = 1$ to 2DP.

The method is Robust, but it converges very slowly

- \checkmark After n steps, length of interval $= (b_1 a_1)2^{-n}$

worst case error
$$= rac{1}{2}(b_1-a_1)2^{-n}$$
 NB: $E_{n+1} \simeq rac{1}{2}E_n$

- \not Implies rate of convergence r=0.5
- k To get error less than ϵ , need $(b_1 a_1)2^{-(n+1)} < \epsilon$, so need

$$n+1 > \frac{\log(b_1 - a_1) - \log \epsilon}{\log 2}$$

⇒ need a quicker method

March 13, 2018

Newton's method (II)

Newton's method

Choose initial guess x_0 of root, compute sequence of better approximations x_1 , x_2 , x_3 , etc. via

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

until $|x_{n+1} - x_n| <$ tolerance or $|f(x_n)| <$ tolerance

March 13, 2018

Newton's method (I)

Also known as the Newton-Raphson method

We Use tangent to generate sequence of approximations

$$\frac{f(x_0)}{x_0 - x_1} = f'(x_0),$$
 so $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$

Note: requires not only that f is continuous, but also that its derivative $f' = \frac{df}{dx}$ exists and is continuous.

March 13, 2018

Exercise apply Newton's method to our favourite equation $x = \cos x$

$$f(x) = x - \cos x, \ f'(x) = 1 + \sin x$$

General iteration:

$$x_{n+1} = x_n - \left(\frac{x_n - \cos x_n}{1 + \sin x_n}\right)$$

 \not Take e.g. $x_0 = 0$. Then

$$x_1 = 0 - (0 - \cos(0))/(1 + \sin(0)) = 1,$$

 $x_2 = 1 - (1 - \cos(1))/(1 + \sin(1)) = 0.75036...$

Convergence of Newton's method

Compare convergence for solving $x = \cos(x)$:

Newton's method:

()			
Standard	fixed	point	method

_					
n	x_n	n	x_n		
0	0.0000000000000000	0	0		
1	1.0000000000000000	1	1.000000000000000		
2	0.750363867840244	2	0.54030230586814		
3	0.739112890911362	3	0.85755321584639		
4	0.739085133385284	4	0.65428979049778		
5	0.739085133215161	5	0.79348035874257		
6	0.739085133215161	6	0.70136877362276		
7	0.739085133215161	7	0.76395968290065		

- \checkmark Actually, Newton has r=0: Error_{n+1} \propto (Error_n)²

March 13, 2018

What can go wrong with Newton's method

1. May jump way outside of interval before converging, e.g

$$f(x) = x^3 - x, \qquad x_0 = -0.6$$

2. Or may diverge, e.g.

$$f(x) = (x-1)e^{-x}, x_0 = 2.5$$

⇒ not as robust as bisection.

What can go wrong with Newton's method

March 13, 2018

March 13, 2018

- ₭ Read James 4th edition, section 7.9.3
- ₩ Read James 4th edition, section 9.4.8