Name:	Roll no.

CSL 7030: Algorithms for Big Data Quiz 1

Date: 22/01/2025 Time: 10 minutes

Instructions: Each question is worth 2 points.

For all questions including MCQs, you need to give the correct answer and a correct explanation for getting full points. Non-MCQs may get partial credit for steps.

MCQs have negative marking: a wrong answer, or the correct answer without explanation, or the correct answer with a wrong explanation gives -1 point.

- 1. Let A, B be two events with $\Pr(A) = 0.3$, $\Pr(B) = 0.4$ and $\Pr(A \cap B) = 0.1$. What is $\Pr(A \cup B)$? **Ans.** $\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) = 0.3 + 0.4 - 0.1 = 0.6.$
- 2. Let M be a matrix whose dimension is $n^{1/2} \times n^{1/4}$. Among the following options, which running time would make an algorithm operating on M a sublinear-time algorithm?

(b) $n^{3/4}$ (a) 3n/4(c) $100\sqrt{n}\log n$

Ans. Total input size is $n^{1/2} \cdot n^{1/4} = n^{3/4}$. So sublinear time complexity should be $o(n^{3/4})$. The only option satisfying is $100\sqrt{n}\log n$.

This can be seen as follows: $\lim_{n\to\infty} \frac{100\sqrt{n}\log n}{n^{0.75}} = \lim_{n\to\infty} \frac{100}{n^{0.25}/\log n} = 0.$

3. There is a biased coin that has a 10% chance of showing heads. We toss this coin 1000 times. Use Markov's inequality to find a lower bound on the probability that the number of heads is less than 500.

That is, $Pr(\text{number of heads is less than } 500) \ge _$

Ans. Let X_i be a random variable that the *i*th coin toss is heads. $\Pr(X_i = 1) = \mathbb{E}[X_i] = \frac{1}{10}$. Let X

denote the total number of heads = $\sum_{i=1}^{1000} X_i$. Hence $E[X] = 1000 \cdot 1/10 = 100$. By Markov's inequality, $\Pr(X \ge 500) \le \frac{E[X]}{500} = \frac{1}{5}$. Therefore, $\Pr(X < 500) = \Pr(\overline{X} \ge 500) = 1 - \Pr(X \ge 500) \ge \frac{4}{5}$.

4. Let $h: \mathcal{U} \to \mathcal{R}$ be a hash function chosen from the 2-universal hash family we saw in the class, where $\mathcal{U} = \{0, 1, \dots, 9999\}$, and $\mathcal{R} = \{0, 1, \dots, 36\}$. How many bits are required to store h? (a) $10000 \cdot \lceil \log_2(37) \rceil$ (b) $\lceil \log_2(10000) \rceil$ (c) $37 \cdot \lceil \log_2(10000) \rceil$

Ans. 2-universal hash family from class contains functions $h_{a,b}$ where $h_{a,b}(i) = a \cdot i + b \mod p$. Hence, to store such a hash function, we only need to store three integers a, b, p, each of which takes $\lceil \log_2(p) \rceil$ bits. Here p = 37, so the answer is $3 \cdot \lceil \log_2(37) \rceil$ bits.

5. Let Z_1, Z_2, \ldots, Z_{80} be pairwise independent 0/1 random variables, such that $E[Z_i] = \frac{1}{4}$ if i is odd, and $\mathrm{E}[Z_i] = \frac{3}{4}$ if i is even. Let $Z = \sum_{i=1}^{80} Z_i$. Find an upper bound on $\mathrm{Pr}\left((Z \le 25) \cup (Z \ge 55)\right)$.

(Note: 0/1 random variable means that the random variable can only take value either 0 or 1.)

Ans. If X is a 0/1 random variable with Pr(X = 1) = E(X) = p. For such a random variable, Var[X] = p(1-p).

Here, for even i, $\operatorname{Var}[Z_i] = \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{16}$. Turns out that this is also the variance for the odd i's by symmetry. By linearity of expectations, $\operatorname{E}[Z] = \sum_{\text{odd } i} \operatorname{E}[Z_i] + \sum_{\text{even } i} \operatorname{E}[Z_i] = 40 \cdot \frac{3}{4} + 40 \cdot \frac{1}{4} = 40$. Since Z_j 's are pairwise independent, $\operatorname{Var}[Z] = \sum_{i=1}^{80} \operatorname{Var}[Z_i] = 80 \cdot \frac{3}{16} = 15$. Then by Chebyshev's inequality,

$$\Pr\left((Z \le 25) \cup (Z \ge 55)\right) = \Pr\left(|Z - 40| \ge 15\right) \le \frac{\operatorname{Var}[Z]}{15^2} = \frac{1}{15}.$$