

مدل های ARX

فرض کنید دسته ای از داده ها را داریم به صورت y(i), arphi(i) ها و می خواهیم منحنی زیر را از آن عبور دهیم:

$$y(i) = \varphi_{\gamma}(i)\theta_{\gamma}^{\circ} + \varphi_{\gamma}(i)\theta_{\gamma}^{\circ} + ... + \varphi_{n}(i)\theta_{n}^{\circ} = \varphi^{T}(i)\theta^{\circ}$$

$$= \left[\phi_{1}(i) \dots \phi_{n}(i)\right] \begin{bmatrix} \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}$$

ها پارامترهای مجهولی هستند که باید بدست آیند. θ_i $\phi^T(i)$ گفته می شود و Regression model به این نوع نوشتن مدل

رگرسور نامیده می شود. پس $\overline{\mathcal{Y}}$ که خروجی واقعی سیستم است و $\phi^T(i)$ معلوم مساله هستند.

• مدل رگرسیون از روی کانولوشن

$$y_{t} = x_{t} * h_{t} = \sum_{i=0}^{\infty} h_{i} \cdot x_{t-i}$$

$$= h_{0} \cdot x_{t} + h_{1} \cdot x_{t-1} + \dots + h_{m} \cdot x_{t-m} + e_{t}$$

$$y_{t} = [x_{t} \ x_{t-1} \ \dots \ x_{t-m}] \cdot \begin{bmatrix} h_{0} \\ h_{1} \\ \vdots \\ h_{m} \end{bmatrix} + e_{t}$$

$$y_{t} = u^{T} \cdot \theta + e_{t}$$

روش كمترين مربعات

• مدل رگرسیون از روی پاسخ پله

فرم کلی پاسخ پله سیستم های LTI

 $S_t = k_0 + k_1 e^{-s_1 t} + k_2 e^{-s_2 t} + \dots + k_n e^{-s_n t}$ در این رابطه ${\bf S}$ ها قطب های سیستم و ${\bf k}$ ها مجهول هستند. مساله یک مساله کمترین مربعات غیرخطی است. اما فرض کنیم ${\bf S}$ را داریم:

ی است. اما فرض کنیم
$${\bf S}$$
 را داریم: $y_t = S_t = [1 \ e^{-s_1 t} \ ... e^{-s_n t}]. egin{bmatrix} k_0 \ k_1 \ dots \ k_m \end{bmatrix} + e_t$ $y_t = u^T. \ heta + e_t$

• مدل رگرسیون برای یک سیگنال متغیر با زمان

اگر موقعیت یک هواپیما را با رادار و با فرض شتاب خطی به صورت زیر لحاظ نماییم، برای تخمین لحظات آینده می توان از بردار رگرسور بهره گرفت:

$$x_{t} = x_0 + v_0 t + \frac{1}{2} a t^2 + e_t$$

$$y_t = x_t = \begin{bmatrix} 1 & t & \frac{1}{2}t^2 \end{bmatrix} \begin{bmatrix} x_0 \\ v_0 \end{bmatrix} + e_t$$

$$y_t = x_t = u_t^T \cdot \theta + e_t; u_t^T = [1 \quad t \quad \frac{1}{2}t^2]; \theta = [x_0 \ v_0 \ a]$$

روش كمترين مربعات

• مدل رگرسیون برای تابع تبدیل

$$\dfrac{y(s)}{u(s)}=G(s)=\dfrac{a_ns^n+a_{n-1}s^{n-1}+\ldots+a_0}{b_ms^m+b_{m-1}s^{m-1}+\ldots+b_0}$$
 فرض کنید تابع تبدیلی به صورت مقابل داریم:

برای تشکیل مدل باید ابتدا گسسته سازی انجام گیرد

$$A(z)y(t) = B(z)u(t)$$

$$A(q) = q^{n} + a_{1}q^{n-1} + \dots + a_{n}$$

$$B(q) = b_{1}q^{m-1} + b_{2}q^{m-2} + \dots + b_{m}$$

ضرایب پیوسته و گسسته لزوما برابر نیستند. (توضیح اندیس گسسته سازی و اپراتور معکوس گسسته)

$$y(t) + a_{1}\dot{y}(t-1) + \dots + a_{n}y(t-n) = b_{1}\mu(t+m-n-1) + \dots + b_{m}\mu(t-n)$$

$$y(t) = -a_{1}y(t-1) - \dots - a_{n}y(t-n) + b_{1}\mu(t+m-n-1) + \dots + b_{m}\mu(t-n)$$

$$y(t) = [-y(t-1) - y(t-n)\mu(t+m-n-1) - \mu(t-m)]$$

$$\hat{y}(t) = \phi^{T}\theta$$

$$e(t) = y(t) - \hat{y}(t) = y(t) - \phi^{T}\theta$$

$$J = \frac{1}{2} \sum_{i=1}^{t} [y(t) - \phi^{T}\theta]^{2}$$

روش كمترين مربعات

• قضیه کمترین مربعات

برای کمینه کردن تابع هزینه معرفی شده با استفاده از قوانین گرادیان ماتریسی داریم:

$$J = \frac{1}{2} \sum_{i=1}^{t} [y(t) - \phi^{T} \theta]^{2} = \frac{1}{2} \sum_{i=1}^{t} [y(t) - \phi^{T} \theta]^{T} [y(t) - \phi^{T} \theta]$$

$$for \quad grad_{\theta}(J) = 0$$

$$\Rightarrow \quad \Phi^{T} \Phi \hat{\theta} = \Phi^{T} y \quad \Rightarrow$$

$$\hat{\theta} = (\Phi^{T} \Phi)^{-1} \Phi^{T} y$$

- رابطه اصلی LS و مورد استفاده در برازش منحنی و شناسایی خارج خط
 - (W) در برازش منحنی از وزن دهی نیز استفاده می شود. \bullet
- معکوس پذیری $\phi^T \phi$ مساله مهمی است و با عنوان شرط تحریک یا غنای سیگنال شناسایی از آن یاد می شود.
 - نوع دیگر نمایش رابطه کمترین مربعات:

$$\hat{\theta} = (\sum_{t=1}^{N} u_t . u_t^T)^{-1} . (\sum_{t=1}^{N} u_t . y_t)$$

روش كمترين مربعات

چند نکته جانبی خواص ماتریس U^TU

فرایند معادله کمترین مربعات مستقل از تعداد نمونه برداری N است: ماتریس فوق یک ماتریس P×P می باشد:

$$U^T U \equiv [P \times N]. [N \times P] \equiv [P \times P]$$

 $U^T y \equiv [P \times N]. [N \times 1] \equiv [P \times 1]$

$$\widehat{\Theta} = ((U^T U)^{-1}). U^T y \equiv [P \times P]^{-1}. [P \times 1] \equiv [P \times 1]$$

چند نکته جانبی

بررسى اكسترمم شدن تابع خطا

$$\frac{\partial^{2}(e^{T}e)}{\partial\theta^{2}} = \frac{\partial}{\partial\theta}(\frac{\partial(e^{T}e)}{\partial\theta}) =$$

$$\frac{\partial}{\partial \theta} (\neg 2U^T y + 2U^T U \theta) = 2U^T U$$

از آنجا که ماتریس U مثبت (نیمه) معین است لذا مشتق دوم مثبت شده و این مفهوم به معنی حداقل شدن خطا می باشد.

• مشتق دوم و مفهوم تحدب و تقعر

روش کمترین مربعات

قابلیت شناسایی حداقل مربعات

 U_U مهمترین گره ریاضیاتی مساله کمترین مربعات معکوس پذیری ماتریس نزدیک صفر شدن دترمینان ماتریس، ماتریس بدحال (Ill condition) و شناسایی با دقت پایین و خطای بالا

خطا خروجی مطلوب اما خطای پارامترها زیاد

منابع مربوط به قابلیت شناسایی عبارتند از:

که منجر به بدحال Persistency Excitation (PE) که منجر به بدحال \checkmark فنی نبودن ورودی U خاهد شد.

✓ بیشتر بودن مرتبه مدل از مرتبه سیستم واقعی (که به ندرت اتفاق می افتد)
 منجر به صفر شدن ماتریس فوق خواهد شد.

✓ شناسایی سیستم در حالت حلقه بسته (توضیح بیشتر در آینده)

روش کمترین مربعات

تعبیر هندسی روش حداقل مربعات بردار خطا

$$E = Y - \hat{Y}$$

$$\begin{pmatrix} \varepsilon(1) \\ \varepsilon(T) \\ \vdots \\ \varepsilon(t) \end{pmatrix} = \begin{pmatrix} y(1) \\ y(T) \\ \vdots \\ y(t) \end{pmatrix} - \begin{pmatrix} \varphi_{1}(1) \\ \varphi_{1}(T) \\ \vdots \\ \varphi_{1}(t) \end{pmatrix} \theta_{1} - \dots - \begin{pmatrix} \varphi_{n}(1) \\ \varphi_{n}(T) \\ \vdots \\ \varphi_{n}(t) \end{pmatrix} \theta_{n}$$

$$E = y - \varphi^{\mathsf{T}} \theta_{\mathsf{T}} - \varphi^{\mathsf{T}} \theta_{\mathsf{T}} - \dots - \varphi^{\mathsf{n}} \theta_{\mathsf{n}}$$

Singular Value Decomposition (SVD) روش اصلاحی SVD تعریف تجزیه SVD تعریف تجزیه SVD در واقع هر ماتریس M را به سه ماتریس به شکل زیر تجزیه می کند:

$$M = U\Sigma V^*$$

ماتریس های V, V ماتریس دوران و متعامد هستند و ماتریس Σ مقیاس است. به عبارت دیگر، هر ماتریس دارای دو دوران و یک اندازه واقعی است. این تجزیه کننده در کنترل مقاوم نیز بسیار کاربرد دارد.

ا=U'U و ا=V'V

روش كمترين مربعات

کاربرد در کمترین مربعات

U=PRQ ماتریس U را با روش SVDتجزیه می کنیم: y=Ux+e فرب طرفین در P':

$$P^{T} y = P^{T} P R Q x + P^{T} e$$

$$P^{T} y = R Q x + P^{T} e \Rightarrow y^{*} = R x^{*} + e^{*}$$

$$y^{*} = P^{T} y, e^{*} = P^{T} e, x^{*} = Q x$$

 χ^* معادله جدید رگرسور و حل

مزیت اصلی روش این است که بجای ماتیس \mathbf{U} ماتریس \mathbf{R} قرارگرفته که از روی درایه های نزدیک به صفر آن می توان درایه هایی که باعث بدحال شدن یا سینگولارتی می شود را حذف کرد.

تعبير أمارى حداقل مربعات

دو معیار اصلی در بررسی آماری تخمین گرها عبارتند از:

• نداشتن بایاس تخمین Bias

• کمترین واریانس تخمین (Cov

$$b = E(\hat{\theta}) - \theta$$

$$Cov(\hat{\theta}) = E[(\hat{\theta} - E(\hat{\theta}))(\hat{\theta} - E(\hat{\theta}))^{T}]$$

 σ_{x1}

روش كمترين مربعات

$$\hat{ heta} = Ay$$
 شرایط بدون بایاس بودن تخمین

$$A = (U^{T}U)^{-1}U^{T} \implies b = E(Ay) - \theta = E[A(U\theta + e)] - \theta$$

$$b = E(\hat{\theta}) \neg \theta$$
 $\Rightarrow b = E[(AU \neg I)\theta] + E(Ae)$

$$y = U\theta + e$$

بایاس صفر با تحقق سه شرط:

الف) AU=I

E(Ae)=E(A)E(e) (ب

E(e)=0 (a

بررسی ها نشان می دهد هر سه شرط فوق برای تخمین کمترین مربعات در صورت فرض نویز سفید بودن e برقرارند.

$$b = E(\hat{\theta}) - \theta = 0$$

كواريانس تخمين

$$Cov(\hat{\theta}) = E[(\hat{\theta} - \theta)(\hat{\theta} - \theta)^T]$$

فرض بدون باياس بودن تخمين

$$\hat{\theta} = Ay$$

$$y = U\theta + e$$

$$Cov(\hat{\theta}) = E((Ay - \theta)(Ay - \theta)^T)$$

$$Cov(\hat{\theta}) = E((A(U\theta + e) - \theta)(A(U\theta + e)) - \theta)^{T})$$

$$= E((AU - I)\theta + Ae)((AU - I)\theta + Ae)^{T})$$

$$Cov(\hat{\theta}) = E[Aee^TA^T] = E(A)Cov(e)E(A)^T$$

بافرض معین بودن A

$$Cov(\hat{\theta}) \cong \sigma^2(AA^T)$$

روش کمترین مربعات

کواریانس در کمترین مربعات

$$Cov(\hat{\theta}) = \sigma^2(AA^T) = \sigma^2(U^TU)^{-1}$$

قضيه BLUE

Best of Linear Unbiased Estimator

روش حداقل مربعات بهترین تخمینگر بدون بایاس خطی است.

روش حداقل مربعات کمترین ماتریس کواریانس را نسبت به سایر تخمین گرهای خطی بدون بایاس دارد.

روش کمترین مربعات

✓ یک مثال: (موضوع فوق شناسایی و زیر شناسایی)

$$y(i) = b_{*} + b_{i} u(i) + b_{r} u^{r}(i) + e(i)$$

$$\varphi^{T}(i) = [\setminus u(i) \ u^{Y}(i)]$$

$$\theta^{T} = [b_{\bullet} \ b_{\setminus} \ b_{Y}]$$

روش كمترين مربعات

• حال می خواهیم با مدل های مختلف رگرسور خروجی را تخمین بزنیم:

$$y(i) = b_a + b_a u : Y$$
 مدل

$$y(i) = b_o + b_v u + b_v u^v$$
 مدل ۲: مدل

$$y(i) = b_{\circ} + b_{\gamma} u + b_{\gamma} u^{\gamma} + b_{\gamma} u^{\gamma} : \Upsilon$$
 مدل

مدل	b.	Ď,	ĥ _Y	ĥ _y	v
١	۲/۸۵				17/45
۲	·/ov	1/09			1/+1
٣	1/11	./+3	-/11		./.٣١
*	1/18	·/٣v	./14	/	-/·TV

http://wp.kntu.ac.ir/khoshnood