Particle spectrograph

Wave operator and propagator

$ au_1^{\#2}$	0	0	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_1^{\#1}{}_{\!$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{eta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + ^{\alpha}$

_	$\sigma_{0^+}^{\sharp 1}$	$\tau_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{t_2}$

	$\omega_{0}^{\sharp 1}$	$f_{0+}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_0^{\sharp 1}$ †	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	t_2

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_2^{#1} \dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	0

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt ₃	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$\lambda^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	<u>2 i k t 3</u> 3
$f_1^{\#1}_{\alpha\beta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	t 2 3	$-rac{1}{3}ec{l}kt_2$	0	0	0	0
$\omega_1^{\#1}{}_+\alpha_\beta$	2 (2	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}$ \vec{l} $\sqrt{2}$ kt_2	0	0	0	0
	$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{#2} + \alpha^{\beta}$	$f_{1}^{#1} + \alpha \beta$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1^{-}}^{\#1} +^{\alpha}$	$f_1^{#2} + \alpha$

auge generators	Multiplicities	1	1	3	3	3	2	2	21
Source constraints/gauge generators	SO(3) irreps	$\tau_0^{#2} == 0$	$\tau_{0+}^{\#1} - 2\bar{l}k\sigma_{0+}^{\#1} == 0$	$\tau_{1}^{\#2}{}^{\alpha} + 2ik \sigma_{1}^{\#2}{}^{\alpha} == 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0 \ \boxed{3}$	$\sigma_{2^{-1}}^{\#1}\alpha\beta\chi := 0$	$\tau_{2+}^{\#1\alpha\beta} == 0$	Total constraints:

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_2^{\sharp 1} \dagger^{\alpha\beta\chi}$	0	0	0

Quadratic (free) Lagrangian density

 $\frac{2}{3} t_3 \ \omega_i^{\alpha i} \ \omega_{\kappa \alpha}^{\kappa \kappa} + \frac{2}{3} t_2 \ \omega_i^{\kappa \lambda} \ \omega_{\kappa \lambda}^{i} + \frac{1}{3} t_2 \ \omega_{\kappa \lambda}^{i} \ \omega_{\kappa \lambda}^{i} + f^{\alpha \beta} \ \tau_{\alpha \beta} + \\ \omega^{\alpha \beta \chi} \ \sigma_{\alpha \beta \chi}^{} - \frac{1}{2} r_3 \partial_i \omega^{\kappa \lambda}_{\kappa} \partial^i \omega_{\lambda}^{\alpha}_{\alpha} - r_5 \partial_i \omega^{\kappa \lambda}_{\kappa} \partial^i \omega_{\lambda}^{\alpha}_{\alpha} + \frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\beta} \partial_{\kappa} \omega^{\theta \kappa \lambda} - \\ r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\beta} \partial_{\kappa} \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} + r_5 \partial_{\theta} \omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\beta} \partial_{\kappa} \omega^{\kappa \lambda \theta} - \\ r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\beta} \partial_{\kappa} \omega^{\kappa \lambda \theta} + r_3 \partial_{\theta} \omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda}^{\alpha}_{\alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + \\ \frac{1}{6} t_2 \partial^{\alpha} f_{\theta \kappa} \partial^{\kappa} f_{\alpha}^{\theta} - \frac{1}{6} t_2 \partial^{\alpha} f_{\kappa \theta} \partial^{\kappa} f_{\alpha}^{\theta} + \frac{1}{6} t_2 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\alpha \lambda}^{-\frac{2}{3}} t_3 \omega_{\kappa \alpha}^{\alpha} \partial^{\kappa} f_i^{i} - \\ \frac{2}{3} t_3 \omega_{\kappa \lambda}^{\lambda} \partial^{\kappa} f_i^{i} - \frac{4}{3} t_3 \partial^{\alpha} f_{\kappa \alpha} \partial^{\kappa} f_i^{i} + \frac{2}{3} t_3 \partial_{\kappa} f_{\lambda}^{\lambda} \partial^{\kappa} f_i^{i} + \frac{1}{3} t_2 \omega_{i \theta \kappa} \partial^{\kappa} f_i^{i\theta} - \\ \frac{2}{3} t_2 \omega_{i \kappa \theta} \partial^{\kappa} f_i^{i\theta} - \frac{1}{3} t_2 \omega_{\theta i \kappa} \partial^{\kappa} f_{\lambda \alpha}^{i\theta} + \frac{2}{3} t_2 \omega_{\theta \kappa i} \partial^{\kappa} f_i^{i\theta} + \frac{2}{3} t_3 \omega_{\kappa}^{\alpha} \partial^{\kappa} f_i^{\kappa} + \\ \frac{2}{3} t_3 \partial_{\kappa}^{\lambda} \partial^{\kappa} f_{\kappa}^{i} - \frac{1}{6} t_2 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\lambda \alpha}^{i} - \frac{1}{6} t_2 \partial_{\kappa} f_{\lambda}^{\lambda} \partial^{\kappa} f_{\lambda}^{i\theta} + \frac{1}{6} t_2 \partial_{\kappa} f_{\lambda}^{\lambda} \partial^{\kappa} f_{\lambda}^{i\theta} + \\ \frac{2}{3} t_3 \partial^{\alpha} f_{\lambda}^{\lambda} \partial^{\kappa} f_{\kappa}^{i} - \frac{1}{6} t_2 \partial^{\alpha} f_{\kappa}^{\lambda} \partial^{\kappa} f_{\lambda \alpha}^{i} - \frac{1}{6} t_2 \partial_{\kappa} f_{\lambda}^{\lambda} \partial^{\kappa} f_{\lambda}^{i} + \frac{1}{6} t_2 \partial_{\kappa} f_{\lambda}^{\lambda} \partial^{\kappa} f_{\lambda}^{i} + \\ \frac{2}{3} t_3 \partial^{\alpha} f_{\lambda}^{\lambda} \partial^{\kappa} f_{\lambda}^{i} - 4 r_3 \partial^{\beta} \omega_{i}^{\lambda} \partial_{\lambda} \omega_{\alpha}^{i} - \frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\lambda} \partial^{\lambda} \omega_{\lambda}^{i} \partial^{\lambda} \omega_{\kappa}^{i} + \\ \frac{2}{3} t_3 \partial^{\alpha} f_{\lambda}^{\lambda} \partial^{\lambda} \omega_{\kappa}^{i} + \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\lambda} \partial^{\lambda} \omega_{\kappa}^{i} - r_5 \partial_{\theta} \omega_{\lambda}^{\lambda} \partial^{\lambda} \omega_{\kappa}^{i} \partial^{\lambda} \omega_{\kappa}^{i} + \\ \frac{2}{3} t_3 \partial_{\alpha} \omega_{\lambda}^{\lambda} \partial^{\lambda} \omega_{\kappa}^{i} + \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\lambda} \partial^{\lambda} \omega_{\kappa}^{i} - r_5 \partial_{\theta} \omega_{\lambda}^{\lambda} \partial^{\lambda} \omega_{\kappa}^{i} \partial^{\lambda} \omega_{\kappa}^{i} + \\ \frac{2}{3} t_3 \partial_{\alpha}^{\lambda} \omega_{\lambda}^{\lambda} \partial^{\lambda} \omega_{\kappa}^{i} + \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\lambda} \partial^{\lambda} \omega_{\kappa}^{i}$

Massive and massless spectra

Quadratic pole

Pole residue:
$$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$$

Polarisations: 2

(No massive particles)

Unitarity conditions

$$r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$$