Image and Video Processing

Programming Assignment 1

Binary Image Processing

Submitted by
Madhu Krishnan A P
(Student ID: 24100488)
M.Tech VLSI and Embedded Systems
Cochin University of Science and Technology
Cochin - 22

Contents

1	Intr	roduction	2
2	Bin	ary Image	2
	2.1	Load the image and store the data in the workspace	2
	2.2	Size of the image	2
		2.2.1 Output: Image Dimensions	2
	2.3	Create a figure window and display the binary image	2
		2.3.1 Output: Binary Image	3
	2.4	Display the pixel value at (x, y) in the binary image $\ldots \ldots \ldots \ldots \ldots$	3
		2.4.1 Output: Pixel Value	3
	2.5	Screenshots	3
3	Grayscale image		4
	3.1	Load the image and store the data in the workspace	4
	3.2	Size of the image	4
		3.2.1 Output: Image Dimensions	4
	3.3	Create a figure window and display the grayscale image	4
		3.3.1 Output: Displayed Grayscale Image	4
	3.4	Display the pixel value at (x, y) in the grayscale image	5
		3.4.1 Output: Pixel Value	5
	3.5	Screenshots	5
4	Col	our image processing	6
	4.1	Load the image and store the data in the workspace	6
	4.2	Size of the image	6
		4.2.1 Output: Image Dimensions	6
	4.3	Create a figure window and display the color image	6
		4.3.1 Output: Displayed Color Image	6
	4.4	Display the pixel value at (x, y) in the color image $\ldots \ldots \ldots \ldots \ldots \ldots$	7
		4.4.1 Output: Pixel Value	7
	4.5	Screenshots	7

1 Introduction

The basic image processing techniques were performed on image samples using the **Matlab image processing toolbox**. The operations included the following.

- Image Acquisition: This operation loads an image file from disk into MATLAB for processing. It can handle binary, grayscale, and colour images.
- Data Handling: This stores the loaded image data in the MATLAB workspace, making it accessible for further use.
- Image Metadata Analysis: Retrieves the dimensions of the image (height, width, and channels).

```
Binary image: [Height, Width]
Grayscale image: [Height, Width]
Color image: [Height, Width, Channels]
```

• Image Analysis: Accesses and displays the value of a specific pixel at coordinates (x, y)

```
For binary images: 0 (black) or 1 (white).
```

For grayscale images: Intensity value between 0 (black) and 255 (white).

For color images: Intensity values for the Red, Green, and Blue channels (0-255).

- Visualization: Displays the image in a MATLAB figure window for visualization.
- Image Storage: Saves the processed or loaded image to disk in a specified format.

2 Binary Image

2.1 Load the image and store the data in the workspace

2.2 Size of the image

```
binarySize = size(binaryImage);
disp('Size of Binary Image:');
disp(binarySize);
```

2.2.1 Output: Image Dimensions

The size of the binary image is:

```
Size of Binary Image:
1280 1920
```

2.3 Create a figure window and display the binary image

Figure 1: Binary Image

2.3.1 Output: Binary Image

The binary image loaded from the specified path is shown below:

2.4 Display the pixel value at (x, y) in the binary image

```
1  x = 1100;
2  y = 620;
3  disp(['Pixel value at (', num2str(x), ', ', num2str(y), ') in Binary Image:']);
4  disp(binaryImage(y, x));
```

2.4.1 Output: Pixel Value

The pixel value at coordinate (1100, 620) is:

Pixel value at (1100, 620) in Binary Image: 1

2.5 Screenshots

Figure 2: Binary image processing

Figure 3: Binary image processing

3 Grayscale image

3.1 Load the image and store the data in the workspace

```
grayscaleImage = imread('D:\M.Tech\Semester 2\Image and video processing\Assignment 

1\grayscale_image.png');
assignin('base', 'grayscaleImage', grayscaleImage);
```

3.2 Size of the image

```
grayscaleSize = size(grayscaleImage);
disp('Size of Grayscale Image:');
disp(grayscaleSize);
```

3.2.1 Output: Image Dimensions

The size of the grayscale image is:

```
Size of Grayscale Image: 1280 1920
```

3.3 Create a figure window and display the grayscale image

```
figure;
imshow(grayscaleImage);
title('Grayscale Image');
```

3.3.1 Output: Displayed Grayscale Image

The grayscale image loaded and displayed in the figure window is shown below:

Figure 4: Grayscale Image

3.4 Display the pixel value at (x, y) in the grayscale image

```
1  x = 150;
2  y = 220;
3  disp(['Pixel value at (', num2str(x), ', ', num2str(y), ') in Grayscale Image:']);
5  disp(grayscaleImage(y, x));
```

3.4.1 Output: Pixel Value

The pixel value at coordinate (150, 220) is:

Pixel value at (150, 220) in Grayscale Image: 132

3.5 Screenshots

Figure 5: Grayscale image processing

Figure 6: Grayscale image processing

4 Colour image processing

4.1 Load the image and store the data in the workspace

4.2 Size of the image

```
colorSize = size(colorImage);
disp('Size of Color Image:');
disp(colorSize);
```

4.2.1 Output: Image Dimensions

The size of the color image is:

```
Size of Color Image:
1280 1920 3
```

4.3 Create a figure window and display the color image

```
figure;
imshow(colorImage);
title('Color Image');
```

4.3.1 Output: Displayed Color Image

The color image loaded and displayed in the figure window is shown below:

Figure 7: Color Image

4.4 Display the pixel value at (x, y) in the color image

4.4.1 Output: Pixel Value

The pixel value at coordinate (650, 500) in the color image is:

Pixel value at (650, 500) in Color Image: R: 136 G: 92 B: 117

4.5 Screenshots

Figure 8: Colour image processing

Figure 9: Colour image processing