Московский государственный технический университет имени Н. Э. Баумана (национальный исследовательский университет)

Выпускная квалификационная работа бакалавра

«Метод распознавания эмоций по звучащей речи на основе скрытой марковской модели»

Студент: Казаева Татьяна Алексеевна ИУ7-86Б

Научный руководитель: Строганов Юрий Владимирович

Цель и задачи работы

Цель - разработать метод определения эмоций по звучащей речи на основе скрытой марковской модели

Задачи:

- проанализировать существующие эмоциональные корпуса и выбрать наиболее подходящий для обучения классификатора
- проанализировать информативные признаки, характеризующие эмоциональную речь
- проанализировать классификатороы, чаще всего используемые в анализе речевых эмоций
- спроектировать и реализовать метод детектирования эмоций
- рассчитать качественные характеристики классификатора

Определение эмоций

Подход	Основа подхода	Категроии	Примеры решений
Дискретный	искретный Выделение базовых эмоций		Affectiva, RAVDESS, SAVEE, EmoDB
Многомерный	Координатное многомерное пространство	Валентность, активация, интенсивность	RECOLA, колесо эмоций Плутчика
Гибридный	Комбинация дискретного и многомерного подходов	Базовые эмоции и уровни силы эмоций	"Песочные часы эмоций"

Корпуса звучащей речи

Название	Количество количество			Лексикон	Публичный	Поддержка русского
	эмоций	M	Ж			языка
RAVDESS	7	12	12	2 предл.	да	нет
SAVEE	6	4	0	15 предл.	да	нет
Emo-DB	6	5	5	10 предл.	да	нет
TESS	7	0	2	200 слов	да	нет
RUSLANA	4	12	49	10 предл.	нет	да
DUSHA	4	-	-	обширный	да	да
REC	_	_	_	обширный	нет	да

Распределение классов разметки корпуса DUSHA

Предлагаемый метод

Обучающий набор данных, составленный из корпуса DUSHA

В обучающий набор было включено 1500 аудиофайлов каждого класса разметки.

Подгруппа	Всего	Тренировочная выборка	Тестовая выборка
раздражение	1 ч. 02 мин. 47 сек.	50 мин. 05 сек.	12 мин. 41 сек.
нейтраль	1 ч. 02 мин. 23 сек.	50 мин. 02 сек.	12 мин. 20 сек.
радость	1 ч. 02 мин. 01 сек.	50 мин. 32 сек.	12 мин. 29 сек.
грусть	1 ч. 02 мин. 53 сек.	51 мин. 57 сек.	12 мин. 55 сек.

Шумоочистка к аудиофайлам не применялась.

Просодические признаки речи

Признаки оцениваются в баллах: 1 - низший балл, 3 - высший балл.

	Устойчивость к шуму	Информативность	Емкость представления
Частота основного тона	3	1	1
Интенсивность	3	2	3
Темп речи	3	3	3
Паузация	1	1	3

Спектральные признаки речи

Признаки оцениваются в баллах: 1 - низший балл, 3 - высший балл.

	Устойчивость к шуму	Информативность	Емкость представления
Мел-кепстральные коэффициенты	2	3	3
Частоты первых четырех формант	2	3	2
Джиттер, шиммер	1	1	1

Мел-кепстральные коэффициенты

Мел-кепстральный коэффициент под номером n вычисляется согласно:

$$c_j(n) = \sum_{m=0}^{M-1} T_j(m) \cos \left(\pi n \left(m + rac{1}{2}
ight) / M
ight), \; 0 \leq n < M,$$

где M - размерность банка мел-фильтров из треугольных фильтров, $T_j(m)$ - логарифмическое значение энергии компонент спектра на выходе мел-фильтра m,j - номер кадра аудиозаписи.

Классификация алгоритмов кластеризации

Классификаторы, наиболее часто используемые в аффективных вычислениях

Скрытая марковская модель (СММ)

- используется для моделирования последовательностей данных
- данные преобразуются в последовательность наблюдений

Искусственная нейронная сеть (ИНС)

- состоят из соединенных и взаимодействующих искусственных нейронов
- данные передаются через слои искусственных нейронов

Скрытая марковская модель

Можно описать как двойной стохастический процесс:

проявление эмоции -

скрытый стохастический процесс, который невозможно наблюдать напрямую

наблюдаемый набор мел-кепстральных коэффициентов -

процесс, который создает последовательность наблюдений

Обучение скрытой марковской модели

Распознавание эмоций в речи

Диаграмма развертывания

Результат классификации на тренировочной выборке

Матрица неточностей для классификации на тренировочной выборке.

экспертная	оценка классификатора				
оценка	злость	нейтраль	радость	грусть	
злость	534	74	427	165	
нейтраль	210	142	540	308	
радость	369	72	603	156	
грусть	333	88	416	363	

Оценка результата классификации (1/2)

"нейтраль"

экспертная оценка

оценка классификатора

Полож.	Отриц.	
142	234	Полож.
1058	3366	Отриц.

$$egin{aligned} &\operatorname{Precision}_{ ext{Hейтраль}} = 38\% \ &\operatorname{Recall}_{ ext{Hейтраль}} = 12\% \ &\operatorname{F}_{ ext{Hейтраль}} = 18\% \end{aligned}$$

"грусть"

экспертная оценка

2 D	Полож.	Отриц.	
cay anam	363	629	Полож.
onna maccayananopa	837	2971	Отриц.

$$egin{aligned} &\operatorname{Precision}_{\scriptscriptstyle \Gamma pyctb} = 36\% \ &\operatorname{Recall}_{\scriptscriptstyle \Gamma pyctb} = 30\% \ &\operatorname{F}_{\scriptscriptstyle \Gamma pyctb} = 33\% \end{aligned}$$

Оценка результата классификации (2/2)

"злость"

оценка классификатора

экспертная оценка

Полож.	Отриц.	
534	666	Полож.
912	2688	Отриц.

$$egin{aligned} ext{Accuracy}_{\scriptscriptstyle 3 ext{ЛОСТЬ}} &= 67\% \ ext{Precision}_{\scriptscriptstyle 3 ext{ЛОСТЬ}} &= 36\% \ ext{Recall}_{\scriptscriptstyle 3 ext{ЛОСТЬ}} &= 44\% \ ext{F}_{\scriptscriptstyle 3 ext{ЛОСТЬ}} &= 40\% \end{aligned}$$

"радость"

оценка классификатора

чка	Полож.	Отриц.	
экспертная оценка	603	1383	Полож.
экспері	597	2217	Отриц.

$$egin{aligned} & \operatorname{Precision}_{\text{радость}} = 30\% \ & \operatorname{Recall}_{\text{радость}} = 50\% \ & \operatorname{F}_{\text{радость}} = 37\% \end{aligned}$$

Выводы

На выборке из 6000 элементов с развномерным распределением классов:

Точность	злость	нейтраль	радость	грусть	Σ
ТОЧНОСТІ	67%	73%	58%	69%	67%

общая точность pprox 67%

Класс, распознанный наиболее точно - "нейтраль" ($\approx 73\%$), наименее точно - "радость" ($\approx 58\%$)

Заключение

Цель работы достигнута: был разработан и реализован метод распознавания эмоций по звучащей речи. Все поставленные задачи были выполнены:

- проанализированы русскоязычные и иностранные корпуса эмоциональной речи, для обучения классификатора был выбран корпус **DUSHA**
- проанализированы признаки, характеризующие эмоцию в речи, для классификации были использованы **мел-кепстральные коэффициенты**
- проведен обзор классификаторов, используемых в анализе речевых эмоций
- спроектирован и реализован метод детектирования эмоций
- с помощью качественных метрик (F-мера, точность, полнота) **оценен результат** классификации.

Дальнейшее развитие

сбор собственного корпуса звучащей речи, содержащего аудиозаписи **студийного качества**, озвученные профессиональными актерами

расширение объема информации в разметке: учет **интонационного контура** (ИК) для каждой аудиозаписи