线性代数

八、欧氏空间 (接四/七)

- 一、定义和简单性质

。 例: Rⁿ的常用内积

。 例: 矩阵的常用内积

131/.
$$R^{mmq}$$
 $A=(9j)_{mxn}$ $B=(bij)_{mn}$
 $(A,B) = G_{11}b_{11} + \cdots + G_{12}b_{13} + \cdots + G_{mn}b_{mn}$
 $=\frac{m}{2}A_{9j}b_{13}$ G_{p}
(1) $(A,A)=0$ $A=0$ $A=0$
 E^{1} $(A\cdot B)=(B,A)$
(3) $(CA,B)=(CA,B)=(CA,B)=(Ca_{11}b_{11}+(Ca_{12})b_{12}+\cdots = C(G_{11}b_{11}+\cdots + G_{mn}b_{mn})$
(4) $(A+B,C)=(G_{11}b_{11})C_{11}+(G_{12}+b_{12})C_{12}+\cdots = C(G_{11}b_{11}+\cdots + G_{1n}b_{mn})$

。 例: f(x)的常用内积

• 二、度量矩阵

∘ 1.定义:

リラアト2(またがけ、dimV=2. 基を, を) ベ=X(を, +X2を2= ! X'を,) B= xを, + xを2 = ! X'を, (以り)= (x, を+x2を2, 4, を, +xを2)= (こ X'を2, 「こ X'を2) = x1x(を, を,) +xx(を(こを2) + xxx(を2を1) + xxxををが = ごうご xix(を(を) を(を) を(を) を) (x, を, を, を) (を, を) (なんない) は (なんなんない) は (なんなんない) は (なんなんない) は (なんなんなんなんなんなんなんなん

。 2.向量的长度

○ 3.柯西-施瓦尔茨不等式

 $|(x,\beta)| \leq |x| \cdot |\beta|$ |x| = |(x,x)| $|x| = |x| \cdot |x|$ $|x| = |x| \cdot |x|$ |x| = |x| |x| = |x| |x

。 4.三角不等式

• 四、向量的夹角

。 1.定义

。 2.勾股定理

[d, 6/=0@ 21/5@ (2+/)=[4/2/6/2 (5) B/2 1/2)

○ 3.标准正交组 (不含零向量)

。 4.定理: 正交必无关

- 五、标准正交基
 - 。 1.定义:
 - (1) 两两正交;
 - (2) 每个向量长度为1;

。 2.定理3: 施密特正交化

(31/6. BAR &=1,
$$\Sigma_{2}=x$$
. $\Sigma_{3}=x^{2}$. $(\beta_{1})=(\beta$