

DISCRETE MATHEMATICS IN COMPUTER SCIENCE

HSIEN-CHIH CHANG JANUARY 19, 2022

ADMINISTRIVIA

- Homework 2 due Friday
- -Confusion in terminology: hyperplanes, winning strategy

EVERY INTEGER n>1 HAS A PRIME DIVISOR.

PROOF BY CONTRADICTION?

EVERY INTEGER n>1 HAS A PRIME DIVISOR.

SMALLEST EXAMPLE:

JUMP TO THE SMALLEST N THAT HAS NO PRIME DIVISOR.

PROOF BY CONTRADICTION?

TAKING THE CONTRAPOSITIVE

```
\exists n: P(n) \text{ is FALSE} \\ \forall n: (P(1) \text{ and } \dots \text{ and } P(n-1) \text{ and} \\ \neg P(n)) \text{ is FALSE} \\ \exists n: (P(1) \text{ and } \dots \text{ and } P(n-1) \text{ and} \\ \neg P(n)) \text{ is TRUE} \\ \forall n: P(n) \text{ is TRUE}
```


AXIOM OF INDUCTION

(P(1) and ... and P(n-1) implies P(n)) is TRUE for all n implies

P(n) is TRUE for all n

MEET THE RECURSION FAIRY

THEOREM. P(x) holds for every object x.

```
Let x be an arbitrary object.
Assume P(y) is true for every smaller y < x.
[Assume recursion fairy is with us.]
```

- -If x is ... [base case]
- If x is ... [inductive case]
 The induction hypothesis implies ...
 [Recursion fairy says ...]

Thus P(x) is true.

BOILERPLATE FOR INDUCTION

EVERY INTEGER n>1 HAS A PRIME DIVISOR.

EXAMPLE

$$\sum_{0 \le i \le n} i = n(n+1)/2$$

EXAMPLE

NEVER, NEVER DO INDUCTION WITH THE $P(n) \Rightarrow P(n+1)$ TEMPLATE

SUDDEN-DEATH

INDUCTIVE DEFINITION

Definition of an object using a smaller instance of itself.

Fibonacci number F_n:

- $F_n = F_{n-1} + F_{n-2}$ $F_0 = 0$ $F_1 = 1$ if n>1

EXAMPLE: FIBONACCI NUMBER

 \mathbf{F}_{n} is even if and only if n is divisible by 3.

EXAMPLE: FIBONACCI NUMBER

Fibonacci number F_n : $F_n = F_{n-1} + F_{n-2} \text{ if } n > 1$ $F_0 = 0$ $F_1 = 1$

THEOREM (?) All cows have the same color

NEXT TIME.
INDUCTION IS RECURSION IS INDUCTION IS RECURSION IS INDUCTIONAL IND

String w over the alphabet set Σ :

- empty string ε, or
- concatenation a \cdot x between symbol a in Σ and another string x over Σ .

EXAMPLE: STRINGS

For every strings w and z, $|w \cdot z| = |w| + |z|$.

INDUCTION USING INDUCTIVE DEFN.

String w over Σ :

- empty string ε , or
- concatenation a · x
 for some string x
 and some symbol a

