1. 用单纯形方法解下列线性规划问题:

$$\max -x_1 + 3x_2 + x_3$$
s. t.
$$3x_1 - x_2 + 2x_3 \le 7$$

$$-2x_1 + 4x_2 \le 12$$

$$-4x_1 + 3x_2 + 8x_3 \le 10$$

$$x_1, x_2, x_3 \ge 0$$

解. 引入松弛变量 x_4, x_5, x_6 ,化成标准形式:

$$\max - x_1 + 3x_2 + x_3$$
s. t. $3x_1 - x_2 + 2x_3 + x_4 = 7$

$$-2x_1 + 4x_2 + x_5 = 12$$

$$-4x_1 + 3x_2 + 8x_3 + x_6 = 10$$

$$x_i \ge 0, j = 1, 2, \dots, 6$$

用单纯形法求解如图1:

	Çί	g _a	Q,	Пъ	q_{ϵ}	d.			ď	Q ₂	9/3	γ_{φ}	n/g	ďь		
du	3	-(1	o	อ	7	ЦÝ	(Jel 8)	0	ס	l	7 lb	-4	39 4	
9/5	-2	(4)	0	0	l	0	12	de	-1	(0	ଚ	#	0	3	
d	-4	3	8	ی	o	1	lo	(d)	14		ı	0	- 32	18	8	
	ı	-3	-1	0	0	0	0		1-3	0	D	อ	21/32	8	<u>73</u> 8	
) α,	9b2	Vz.	Ч×	45	di										
du	5/2	0	2		4	0	10		ď	Q ₂	9(3	γ_{φ}	45	ďь		
γ_{z}		(0	o	1/4	0	3	X,	l	ο	D	**	20 J	2/2	<u>78</u> 25	
N			8	0	0	Į	1	42	J	ſ	ō	4/6	*	7/6	114	
		1 0	-1	0	3	0	9	α^{2}	0	0		7	- 1	1 1	<u>[]</u>	
							` '		0	0	Ð	13	77	3	20,	_

Figure 1: 第一题

最优解 $\bar{x}=\left(\frac{78}{25},\frac{114}{25},\frac{11}{10},0,0,0\right)$,最优值 $f_{max}=\frac{583}{50}$ 。

2. 用单纯形方法解下列线性规划问题:

min
$$-3x_1 - x_2$$

s. t. $3x_1 + 3x_2 + x_3 = 30$
 $4x_1 - 4x_2 + x_4 = 16$
 $2x_1 - x_2 \le 12$
 $x_i \ge 0, \quad j = 1, \dots, 4$

解. 化成标准形式:

$$\min -3x_1 - x_2$$
s. t. $3x_1 + 3x_2 + x_3 = 30$,
 $4x_1 - 4x_2 + x_4 = 16$,
 $2x_1 - x_2 + x_5 = 12$,
 $x_j \ge 0, j = 1, 2, \dots, 5$

用单纯形法求解如图2:

	a az az a a az	91 92 93 94 No
Nz	3 3 1 0 0 30	0 1 1 - 1 0 3
74	Q -4 0 1 0 1b	10 1/8 0 7
χ_{ς}	12-1001 12	$0 - \frac{1}{6} - \frac{3}{8} $
	3 1 0 0 0 0	0 0 - 2/4 0 - 24
	91 92 93 94 75	
My	0 6 1 - 4 0 18	8
ď,	1 -1 0 4 0 4	4
χ_{ζ}		4
	0 4 0 - 3 0 - 1	12

Figure 2: 第二题

最优解 $\bar{x} = (7,3,0,0,1)$,最优值 $f_{min} = -24$ 。

3. 求解下列线性规划问题:

min
$$4x_1 + 6x_2 + 18x_3$$

s. t. $x_1 + 3x_3 \ge 3$
 $x_2 + 2x_3 \ge 5$
 $x_1, x_2, x_3 \ge 0$

解. 化成标准形式:

min
$$4x_1 + 6x_2 + 18x_3$$

s. t. $x_1 + 3x_3 - x_4 = 3$,
 $x_2 + 2x_3 - x_5 = 5$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$

用单纯形法求解如图3: 最优解 $\bar{x} = (0,3,1,0,0)$, 最优值 $f_{min} = 36$ 。

Figure 3: 第三题

4. 求解下列线性规划问题:

min
$$3x_1 - 2x_2 + x_3$$

s.t. $2x_1 - 3x_2 + x_3 = 1$
 $2x_1 + 3x_2 \ge 8$
 $x_1, x_2, x_3 \ge 0$

解. 化成标准形式:

min
$$3x_1 - 2x_2 + x_3$$

s. t. $2x_1 - 3x_2 + x_3 = 1$
 $2x_1 + 3x_2 - x_4 = 8$,
 $x_j \ge 0$, $j = 1, 2, 3, 4$

引入人工变量 y, 取大正数 M, 解下列线性规划:

$$\min \quad 3x_1 - 2x_2 + x_3 + My$$
 s.t.
$$2x_1 - 3x_2 + x_3 = 1$$

$$2x_1 + 3x_2 - x_4 + y = 8$$

$$x_j \geqslant 0, \quad j = 1, 2, 3, 4, \quad y \geqslant 0$$

用单纯形法求解如图4: 最优解 $\bar{x} = \left(0, \frac{8}{3}, 9, 0\right)$,最优值 $f_{min} = \frac{11}{3}$ 。

	$(\chi_7$	γ_{ι}	(%)	9/4	y	
1 /3	2	-3	(O	0	
y	2	3	O	-1	1	8
	211-	1 3M-1	0	- M	ð	- 8M+

	ſχη	γ_{ι}	M _z	94	y	
$\chi_{\mathfrak{Z}}$	4	0	(-	(9
9/2	2/3	(0	$-\frac{1}{3}$	13	\$
	1-3	J	0	1	-M+3	<u>(/</u> 3

Figure 4: 第四题

5. 求解下列线性规划问题:

$$\min 2x_1 + x_2 - x_3 - x_4$$
s. t. $x_1 - x_2 + 2x_3 - x_4 = 2$

$$2x_1 + x_2 - 3x_3 + x_4 = 6$$

$$x_1 + x_2 + x_3 + x_4 = 7$$

$$x_j \geqslant 0, \quad j = 1, \dots, 4$$

解. 用修正单纯形法求解。初始基本可行解末知, 用两阶段法。

$$\begin{aligned} & \text{min} \quad y_1 + y_2 + y_3 \\ & \text{s.t.} \quad x_1 - x_2 + 2x_3 - x_4 + y_1 = 2 \\ & 2x_1 + x_2 - 3x_3 + x_4 + y_2 = 6 \\ & x_1 + x_2 + x_3 + x_4 + y_3 = 7 \\ & x_i \geqslant 0, \quad j = 1, 2, 3, 4; \quad y_i \geqslant 0, j = 1, 2, 3 \end{aligned}$$

可得最优解 $\bar{x} = (3,0,1,3)$,最优值 $f_{min} = 2$ 。

6. 假设用单纯形方法解线性规划问题。

$$\begin{array}{ll} \min & \boldsymbol{cx} \\ \text{s. t.} & \boldsymbol{Ax} = \boldsymbol{b}, \\ & \boldsymbol{x} \geqslant \boldsymbol{0}.. \end{array}$$

在某次迭代中对应变量 x_j 的判别数 $z_j-c_j>0$,且单纯性表中相应的列 $y_i=B^{-1}p_j\leq 0$,证 明

$$d = \begin{bmatrix} -y_i \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

是可行域的极方向,其中分量 1 对应 x_i 。

解. 记

$$A = \begin{bmatrix} p_1 & \cdots & p_m & \cdots & p_n \end{bmatrix} = \begin{bmatrix} B & p_{m+1} & \cdots & p_n \end{bmatrix}$$

由于

$$Ad = \begin{bmatrix} B & p_{m+1} & \cdots & p_j & \cdots & p_n \end{bmatrix} \begin{bmatrix} -B^{-1}p_j \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = -p_j + p_j = 0$$

且 $d \ge 0$,因此 d 是可行域的方向。

设 d 可表示成可行域的两个方向 $d^{(1)}$ 和 $d^{(2)}$ 的正线性组合,即 $d=\lambda d^{(1)}+\mu d^{(2)}$,则

$$oldsymbol{d}^{(1)} = \left[egin{array}{c} oldsymbol{d}_{\mathbf{B}}^{(1)} \\ 0 \\ \vdots \\ a_j \\ \vdots \\ 0 \end{array}
ight], \quad oldsymbol{d}^{(2)} = \left[egin{array}{c} oldsymbol{d}_{\mathbf{B}}^{(2)} \\ 0 \\ \vdots \\ b_j \\ \vdots \\ 0 \end{array}
ight], \quad a_j, b_j > 0$$

由于 $d^{(1)}$ 是可行域方向,因此 $Ad^{(1)}=0, d^{(1)}\geqslant 0$,即 $Bd_B^{(1)}+a_jp_j=0$,同理 $Bd_B^{(2)}+b_jp_j=0$,可以得到 $\frac{1}{a_j}Bd_B^{(1)}=\frac{1}{b_j}Bd_B^{(2)}$,即 $d_B^{(2)}=\frac{b_j}{a_j}d_B^{(1)}$ 。代入方向 $d^{(2)}$,得到 $d^{(2)}=\frac{b_j}{a_j}d^{(1)}$ 。即 $d^{(1)},d^{(2)}$ 是同向非零向量,因此方向 d 不能表示成两个不同方向的正线性组合,因此 d 是可行域的方向。