SYLLABUS

Monday, May 6, 2024

2:40 PM

NORMALITY TESTING:

1. SHAPIRO WILK TEST:

shapiro.test(data)

- The null hypothesis of the Shapiro-Wilk test is that the data are normally distributed. When p>0.05
- The alternative hypothesis is that the data are not normally distributed. When p<0.05

2. LILLE TEST:

- 3. AD TEST: ANDERSON DARLING ad.test(data)
- SKEWNESS = 0 and KURTOSIS=3 FOR NORMALLY DISTRIBUTED DATA

LINEARITY:

- Check linearity using plot(scatterplot)

ONE WAY ANOVA: ANALYSIS OF VARIANCE

- It is a set of technique for studying the cause and effect of one or more factors on a single dependent variable
- Here only one independent variable is studied. That's why it is called One -Way ANOVA.
- Dependent variable- sales, performance, opinion, etc.
- Independent variable education , gender , city, etc.
- Assumptions:

- Independent should be Categorical
- Dependent should be Continuous
- Data should be normally distributed
- Independence: The data should be independent of each other i.e. the data of one group doesn't influence the other group
- Homogeneity of variance: variance of all groups should be equal
- Group sizes should be same: each group should have same number of respondents
- Residuals should be normally distributed
- Here, Pr(>F) is the P-value
- If p-value >0.05 then Null is accepted -> No relation b/n IV and DV
- If p-value < 0.05 then Alternate is accepted -> Relation between IV and DV

TWO WAY ANNOVA:

- Two way ANOVA is similar to one way ANOVA in all the aspects except that in this case additional independent variable is introduced.
- Each independent variable includes two or more variants(levels).
- ASSUMPTIONS:
 - Population normality: Data is numerical data representing samples from normally distributed populations.
 - Homogeneity of Variance: the variances of the groups are "similar"
 - The sizes of the groups are "similar"
 - The groups should be independent.
 - The residuals are normally distributed

CORRELATION:

- 1. PEARSON:
 - cor(x,y,method="pearson") or cor.test(x,y,method="pearson")
- 2. SPEARMAN:
 - cor(x,y,method="spearman")
- 3. KENDALL:
 - cor(x,y,method="spearman")

COV():

- In R, cov() is a function used to compute the covariance matrix of a set of variables.
- Covariance measures the degree to which two variables change together.
- A positive covariance indicates that as one variable increases, the other variable tends to increase as well, while a negative covariance indicates that as one variable increases, the other variable tends to decrease.

REGRESSION:

1. SIMPLE LINEAR REGRESSION:

- Regression Analysis uses data to identify relationship among variables and use the relationship to make predictions.
- In correlation two variables are treated as equals. In regression one variable is treated as independent (predictor=X) variable and the other variable is dependent (outcome=Y) variable.
- There will be only two variables in the study in which one is independent and other is dependent.

2. MULTIPLE LINEAR REGRESSION:

- We find the impact of two or more independent variables on a dependent variable
- Scale of measurement: Data should be in interval or ratio scale for all independent variables and dependent variable.
- Linearity: There must be linear relationship between variables.
- Normality of residuals: Multiple regression assumes that the residuals are normally distributed.
- Multicollinearity: Independent variables should not be highly correlated with each other. This assumption is tested using Variance Inflation Factor (VIF) values(should not be more than 10).

- y intercept or constant:
 - Even if the value of x is 0, then also the y will have some value which is the constant (b0).
 - b1, b2, b3.....= beta or slope: If xi value increases by 1 point , then y will increase by bi.
- R square: xi (independent variables) explains....% of the y (dependent variable)
- Significant Value: p -value if p<0.05 at **5% level of significance**. H0 is rejected.
- Residual:
 - Difference between actual (Observed) value and explained (predicted) value.

Residual = Observed Value - Predicted Value

- Standard Error: Variance of residuals.
- Adjusted R2:
 - The coefficient of determination, or R2 is a measure that provides information about the goodness of fit of a model.
 - Adding more independent variables or predictors to a regression model tends to increase the R-squared value, which tempts makers of the model to add even more variables.

 $R^2=1$ All the variation in the y values is accounted for by the x values

 $R^2=0.83\,83\%$ of the variation in the y values is accounted for by the x values

 $R^2=0$ None of the variation in the y values is accounted for by the x values

$y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots + \epsilon_i$

y= Dependent Variable

 $x_i = Independent Variables, i=1,2,3....$

 $b_0 = y$ -intercept (Constant)

$$b_i = Slope, i = 1,2,3.....$$

PARAMETRIC

TESTS	IVs	DVs
1 SAMPLE T-TEST	Test-Value	Continuous
2 SAMPLE T-TEST	Categorical	Continuous
PAIRED T-TEST	Continuous	Continuous
1 WAY ANOVA	Categorical	Continuous
2 WAY ANOVA	Both	Continuous
CORRELATION	Continuous	Continuous

SLR	Continuous	Continuous
MLR	Continuous	Continuous
LOGISTIC REGRESSION	Both	Categorical
DISCRIMINANT	Continuous with Normality	Categorical
DECISION TREE	Continuous or Mixed	Categorical for Classification,
		Continuous for Regression
RANDOM TEST	Continuous or Mixed	Categorical
NAÏVE BAIYES	Continuous or Mixed	Categorical

NON-PARAMETRIC	
TESTS	VARIABLES
EFA	Continuous
CLUSTER	Categorical OR Continuous

TESTS	IVs	DVs
CHI-SQUARE TEST	Categorical	Categorical
SPEARMANS RANK	Ordinal	Continuous but no Normality OR Ordinal
WILCOXON ONE SAMPLE TEST	Test-Value	Continuous but no Normality OR Ordinal
MANN WHITNEY V-TEST	Categorical	Continuous but no Normality OR Ordinal
WILCOXON SINGLE RANK TEST	Ordinal	Continuous but no Normality OR Ordinal
KRUSHAL WALLIS TEST	3 or Categorical	Continuous but no Normality OR Ordinal