Page 195, replace line 13 as follows: --possible number of 1-bound signals to the 1-output group. For a 2b-to-b concentrator--.

Page 195, replace line 17 as follows: --concentrator composed of interconnected routing cells meets this criterion perfectly for--.

Page 196, replace line 4 as follows: --banyan-type network. The 2b-to-b concentrator composed of interconnected routing--.

Page 196, replace lines 15-16 as follows: --concentrator composed of interconnected routing cells can be substituted by a 2b-to-b concentrator composed of interconnected 0-1 sorting cells. The same applies throughout--.

Page 197, replace line 10 as follows: --a 2b-to-b concentrator composed of interconnected routing cells. The hybrid network--.

Page 197, replace line 13 as follows: --of routing cells, and the in-band control signal of a packet changes only between--.

Page 198, replace line 5 as follows: --for $1 \le j \le n$, the in-band control signal to a concentrator in the j^{th} super-stage is $1d_{\gamma(j)}$.--.

Page 200, replace line 8 as follows: --A concentrator composed of interconnected routing cells is a--.

N.€. ➤ Page 206, replace line 13 as follows: --100101, 100111, 101101, and 101111, so this is a 3-dimentional rectangle. The number of--.

Page 210, replace line 2 as follows: $-p_1...p_r$ serves as the tiebreaker when the two packets arrived at the same cell are both 0-bound or both 1-bound.--.

Page 212, replace line 18 as follows: --super-stage. Note that if $\gamma(p) = \gamma(q)$ in the guide of the network, where p<q, the q-th symbol of the routing tag $Q_{\gamma(q)}$ will repeat the