Node-screening pour le problème des moindres carrés avec pénalité ℓ_0

Théo Guyard^{1,2}, Ayse-Nur Arslan¹, Cédric Herzet², Clément Elvira³

GRETSI – 8 Septembre 2022

¹ INSA Rennes

² INRIA Rennes Bretagne Atlantique

³ IETR CentraleSupélec

 ℓ_0 -penalized problems

Ingredients of the problem

• A target y

Ingredients of the problem

- A target y
- A dictionary $A = \{a_i\}_{i \in \mathcal{I}}$ made of atoms

Ingredients of the problem

- A target y
- A dictionary $A = \{a_i\}_{i \in \mathcal{I}}$ made of atoms

Objective

• Find a sparse linear combination of atoms that well approximates the target through a given model

Ingredients of the problem

- A target y
- A dictionary $A = \{a_i\}_{i \in \mathcal{I}}$ made of atoms

Objective

• Find a sparse linear combination of atoms that well approximates the target through a given model

Rough formulation

Problem

Find x sparse such that $y \simeq Model(Ax)$

Ingredients of the problem

- A target y
- A dictionary $A = \{a_i\}_{i \in \mathcal{I}}$ made of atoms

Objective

• Find a sparse linear combination of atoms that well approximates the target through a given model

Rough formulation

Problem

Find x sparse such that $y \simeq Model(Ax)$

Remark : Entries of x weight each atom in the linear combination.

ℓ_0 -penalized problem

ℓ_0 -penalized problem

$$p^* = \begin{cases} \min & f(Ax) + \lambda ||x||_0 \\ \text{s.t.} & ||x||_{\infty} \le M \end{cases}$$
 (P)

where $\lambda > 0$ is a tuning parameter and M is a big-enough constant.

ℓ_0 -penalized problem

ℓ_0 -penalized problem

$$p^{\star} = \begin{cases} \min & f(Ax) + \lambda ||x||_{0} \\ \text{s.t.} & ||x||_{\infty} \le M \end{cases}$$
 (P)

where $\lambda > 0$ is a tuning parameter and M is a big-enough constant.

Problem (P)
$$\xrightarrow{\text{reformulation}}$$
 Mixed-Integer Program

ℓ_0 -penalized problem

ℓ_0 -penalized problem

$$p^* = \begin{cases} \min & f(Ax) + \lambda ||x||_0 \\ \text{s.t.} & ||x||_{\infty} \le M \end{cases}$$
 (P)

where $\lambda > 0$ is a tuning parameter and M is a big-enough constant.

Problem
$$(P)$$
 reformulation Mixed-Integer Program

Properties:

- Continuous and integer variables
- Combinatorial problem
- Can be addressed with Branch-and-Bound (BnB) algorithms

Branch-and-bound algorithms

Idea:

• Enumerate all feasible solutions

Idea:

- Enumerate all feasible solutions
- Use tests to discard irrelevant candidates

Idea:

- Enumerate all feasible solutions
- Use tests to discard irrelevant candidates
- → Explore a decision tree and prune uninteresting nodes

Idea:

- Enumerate all feasible solutions
- Use tests to discard irrelevant candidates
- → Explore a decision tree and prune uninteresting nodes

Node $\nu = (\mathcal{S}_0, \mathcal{S}_1, \bar{\mathcal{S}})$ where :

• S_0 : indices of x fixed to zero

ullet \mathcal{S}_1 : indices of x fixed to non-zero

ullet $ar{\mathcal{S}}$: indices not fixed yet

Idea:

- Enumerate all feasible solutions
- Use tests to discard irrelevant candidates
- → Explore a decision tree and prune uninteresting nodes

Node $\nu = (\mathcal{S}_0, \mathcal{S}_1, \bar{\mathcal{S}})$ where :

• S_0 : indices of x fixed to zero

ullet \mathcal{S}_1 : indices of x fixed to non-zero

 \bullet $\bar{\mathcal{S}}$: indices not fixed yet

Question: Does any solution of (P) match the current constraints?

Question: Does any solution of (P) match the current constraints?

Sub-problem at node ν $p^{\nu} = \left\{ \begin{array}{ll} \min & f(\mathsf{Ax}) + \lambda \|\mathbf{x}\|_0 \\ \mathrm{s.t.} & \|\mathbf{x}\|_{\infty} \leq M \end{array} \right\} \bigcap \left\{ \begin{array}{ll} \mathsf{x}_{\mathcal{S}_0} &= 0 \\ \mathsf{x}_{\mathcal{S}_1} & \neq 0 \end{array} \right\} \qquad (P^{\nu})$ If $p^{\star} < p^{\nu}$, then node ν can be pruned from the BnB tree.

Question: Does any solution of (P) match the current constraints?

Sub-problem at node ν $p^{\nu} = \left\{ \begin{array}{ll} \min & f(\mathsf{Ax}) + \lambda \|\mathbf{x}\|_0 \\ \mathrm{s.t.} & \|\mathbf{x}\|_{\infty} \leq M \end{array} \right\} \bigcap \left\{ \begin{array}{ll} \mathsf{x}_{\mathcal{S}_0} &= 0 \\ \mathsf{x}_{\mathcal{S}_1} & \neq 0 \end{array} \right\}$ (P^{ν}) If $p^{\star} < p^{\nu}$, then node ν can be pruned from the BnB tree.

Question: Does any solution of (P) match the current constraints?

Sub-problem at node ν $p^{\nu} = \left\{ \begin{array}{ll} \min & f(\mathsf{Ax}) + \lambda \|\mathbf{x}\|_0 \\ \mathrm{s.t.} & \|\mathbf{x}\|_{\infty} \leq M \end{array} \right\} \bigcap \left\{ \begin{array}{ll} \mathsf{x}_{\mathcal{S}_0} &= 0 \\ \mathsf{x}_{\mathcal{S}_1} & \neq 0 \end{array} \right\} \tag{P^{ν}}$ If $p^{\star} < p^{\nu}$, then node ν can be pruned from the BnB tree.

Neither p^* nor p^{ν} are accessible in practice :

• Restriction : Upper bound \bar{p} on p^*

Question: Does any solution of (P) match the current constraints?

Sub-problem at node ν

$$p^{\nu} = \left\{ \begin{array}{ll} \min & f(Ax) + \lambda ||x||_{0} \\ \text{s.t.} & ||x||_{\infty} \le M \end{array} \right\} \bigcap \left\{ \begin{array}{ll} x_{\mathcal{S}_{0}} & = 0 \\ x_{\mathcal{S}_{1}} & \neq 0 \end{array} \right\}$$

$$(P^{\nu})$$

If $p^{\star} < p^{\nu}$, then node ν can be pruned from the BnB tree.

- Restriction : Upper bound \bar{p} on p^*
- Relaxation : Lower bound \tilde{p}^{ν} on p^{ν}

Question: Does any solution of (P) match the current constraints?

Sub-problem at node ν

$$p^{\nu} = \left\{ \begin{array}{ll} \min & f(Ax) + \lambda ||x||_{0} \\ \text{s.t.} & ||x||_{\infty} \le M \end{array} \right\} \bigcap \left\{ \begin{array}{ll} x_{\mathcal{S}_{0}} & = 0 \\ x_{\mathcal{S}_{1}} & \neq 0 \end{array} \right\}$$

$$(P^{\nu})$$

If $p^{\star} < p^{\nu}$, then node ν can be pruned from the BnB tree.

- Restriction : Upper bound \bar{p} on p^*
- Relaxation : Lower bound \tilde{p}^{ν} on p^{ν}
- If $\bar{\it p} < \tilde{\it p}^{\nu}$, then node ν can be pruned

Question: Does any solution of (P) match the current constraints?

Sub-problem at node ν

$$p^{\nu} = \left\{ \begin{array}{ll} \min & f(Ax) + \lambda ||x||_{0} \\ \text{s.t.} & ||x||_{\infty} \leq M \end{array} \right\} \bigcap \left\{ \begin{array}{ll} x_{\mathcal{S}_{0}} & = 0 \\ x_{\mathcal{S}_{1}} & \neq 0 \end{array} \right\}$$

$$(P^{\nu})$$

If $p^{\star} < p^{\nu}$, then node ν can be pruned from the BnB tree.

- Restriction : Upper bound \bar{p} on p^*
- ullet Relaxation : Lower bound $ilde{p}^{
 u}$ on $p^{
 u}$
- If $\bar{p} < \tilde{p}^{\nu}$, then node ν can be pruned
- ullet Both $ar{p}$ and $ar{p}^{
 u}$ are computed by solving convex problems

Question: Does any solution of (P) match the current constraints?

Sub-problem at node
$$\nu$$

$$p^{\nu} = \left\{ \begin{array}{ll} \min & f(Ax) + \lambda \|x\|_{0} \\ \text{s.t.} & \|x\|_{\infty} \leq M \end{array} \right\} \bigcap \left\{ \begin{array}{ll} \mathsf{x}_{\mathcal{S}_{\mathbf{0}}} &= 0 \\ \mathsf{x}_{\mathcal{S}_{\mathbf{1}}} & \neq 0 \end{array} \right\} \qquad (P^{\nu})$$

If $\mathbf{p}^{\star} < \mathbf{p}^{\nu}$, then node ν can be pruned from the BnB tree.

- Restriction: Upper bound \bar{p} on p^*
- ullet Relaxation : Lower bound $ilde{p}^{
 u}$ on $p^{
 u}$
- If $\bar{p} < \tilde{p}^{\nu}$, then node ν can be pruned
- ullet Both $ar{p}$ and $ar{p}^{
 u}$ are computed by solving convex problems

$$\begin{array}{ccc} & & \downarrow & & \\ \hline p^{\star} & & p^{\nu} & & \end{array}$$
 value

Question: Does any solution of (P) match the current constraints?

Sub-problem at node
$$\nu$$

$$p^{\nu} = \left\{ \begin{array}{ll} \min & f(\mathsf{Ax}) + \lambda \|\mathbf{x}\|_0 \\ \mathrm{s.t.} & \|\mathbf{x}\|_{\infty} \leq M \end{array} \right\} \bigcap \left\{ \begin{array}{ll} \mathsf{x}_{\mathcal{S}_0} &= 0 \\ \mathsf{x}_{\mathcal{S}_1} & \neq 0 \end{array} \right\} \tag{P^{ν}}$$
 If $p^{\star} < p^{\nu}$, then node ν can be pruned from the BnB tree.

- Restriction: Upper bound \bar{p} on p^*
 - Relaxation : Lower bound \tilde{p}^{ν} on p^{ν}
 - If $\bar{p} < \tilde{p}^{\nu}$, then node ν can be pruned

Neither p^* nor p^{ν} are accessible in practice :

ullet Both $ar{p}$ and $ar{p}^{
u}$ are computed by solving convex problems

Question: Does any solution of (P) match the current constraints?

Sub-problem at node ν $p^{\nu} = \left\{ \begin{array}{ll} \min & f(Ax) + \lambda ||x||_{0} \\ \text{s.t.} & ||x||_{\infty} \leq M \end{array} \right\} \bigcap \left\{ \begin{array}{ll} \mathsf{x}_{\mathcal{S}_{\mathbf{0}}} &= 0 \\ \mathsf{x}_{\mathcal{S}_{\mathbf{1}}} &\neq 0 \end{array} \right\} \qquad (P^{\nu})$

If $p^* < p^{\nu}$, then node ν can be pruned from the BnB tree.

- Restriction : Upper bound \bar{p} on p^*
- Relaxation : Lower bound \tilde{p}^{ν} on p^{ν}
- If $\bar{p} < \tilde{p}^{\nu}$, then node ν can be pruned
- ullet Both $ar{p}$ and $ar{p}^{
 u}$ are computed by solving convex problems

Exploration and pruning process

Exploration and pruning process

BnB efficiency

The efficiency of the BnB algorithm depends on :

- The number of nodes processed
- The ability to process nodes quickly

Node-screening improves both of these things !

Node-screening

Main idea

```
Testing if a node can be pruned \equiv Solving convex problems \uparrow Sometimes it is obvious!
```

Main idea

```
Testing if a node can be pruned \equiv Solving convex problems \uparrow Sometimes it is obvious!
```

Question: How to detect prunable nodes in a more economic way?

Dual problem at node ν

$$\max_{\mathsf{u}\in\mathbb{R}^m} \left\{ \mathrm{D}^{\nu}(\mathsf{u}) \triangleq -f^*(-\mathsf{u}) - \sum_{i\in\bar{\mathcal{S}}} [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_+ - \sum_{i\in\mathcal{S}_1} \gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u}) \right\} \qquad (D^{\nu})$$

Dual problem at node ν

$$\max_{\mathbf{u} \in \mathbb{R}^m} \left\{ \mathbf{D}^{\nu}(\mathbf{u}) \triangleq -f^*(-\mathbf{u}) - \sum_{i \in \bar{\mathcal{S}}} [\gamma(\mathbf{a}_i^\mathsf{T}\mathbf{u})]_+ - \sum_{i \in \mathcal{S}_1} \gamma(\mathbf{a}_i^\mathsf{T}\mathbf{u}) \right\} \qquad (D^{\nu})$$

- One common term to all nodes
- Terms depending on the current node constraints

Dual problem at node ν

$$\max_{\mathsf{u} \in \mathbb{R}^m} \left\{ \mathrm{D}^{\nu}(\mathsf{u}) \triangleq -f^*(-\mathsf{u}) - \sum_{i \in \bar{\mathcal{S}}} [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_+ - \sum_{i \in \mathcal{S}_1} \gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u}) \right\} \qquad (D^{\nu})$$

- One common term to all nodes
- Terms depending on the current node constraints
- The pivot function is defined as $\gamma(t) = M|t| \lambda$

Direct consequence : The dual objective at two consecutive nodes differs from only one term.

Direct consequence : The dual objective at two consecutive nodes differs from only one term.

Dual objective link

At node
$$\nu=(\mathcal{S}_0,\mathcal{S}_1,\bar{\mathcal{S}})$$
, let $i\in\bar{\mathcal{S}}.$ Then $\forall \mathsf{u},$

$$D^{\nu \cap \{x_i = 0\}}(u) = D^{\nu}(u) + [\gamma(a_i^T u)]_+$$

$$D^{\nu \cap \{x_i \neq 0\}}(u) = D^{\nu}(u) - [\gamma(a_i^T u)]_-$$

Direct consequence : The dual objective at two consecutive nodes differs from only one term.

Dual objective link

$$\begin{split} \mathrm{D}^{\nu \cap \{x_i = 0\}}(\mathsf{u}) &= \mathrm{D}^{\nu}(\mathsf{u}) + [\gamma(\mathsf{a}_i^\mathsf{T} \mathsf{u})]_+ \\ \mathrm{D}^{\nu \cap \{x_i \neq 0\}}(\mathsf{u}) &= \mathrm{D}^{\nu}(\mathsf{u}) - [\gamma(\mathsf{a}_i^\mathsf{T} \mathsf{u})]_- \end{split}$$

Direct consequence : The dual objective at two consecutive nodes differs from only one term.

Dual objective link

$$\begin{split} \mathrm{D}^{\nu \cap \{x_i = 0\}}(\mathsf{u}) &= \mathrm{D}^{\nu}(\mathsf{u}) + [\gamma(\mathsf{a}_i^\mathsf{T} \mathsf{u})]_+ \\ \mathrm{D}^{\nu \cap \{x_i \neq 0\}}(\mathsf{u}) &= \mathrm{D}^{\nu}(\mathsf{u}) - [\gamma(\mathsf{a}_i^\mathsf{T} \mathsf{u})]_- \end{split}$$

Direct consequence : The dual objective at two consecutive nodes differs from only one term.

Dual objective link

$$\begin{split} \mathrm{D}^{\nu \cap \{x_i = 0\}}(u) &= \mathrm{D}^{\nu}(u) + [\gamma(a_i^\mathsf{T} u)]_+ \\ \mathrm{D}^{\nu \cap \{x_i \neq 0\}}(u) &= \mathrm{D}^{\nu}(u) - [\gamma(a_i^\mathsf{T} u)]_- \end{split}$$

Direct consequence : The dual objective at two consecutive nodes differs from only one term.

Dual objective link

$$\begin{split} \mathrm{D}^{\nu \cap \{x_i = 0\}}(u) &= \mathrm{D}^{\nu}(u) + [\gamma(\mathsf{a}_i^\mathsf{T} u)]_+ \\ \mathrm{D}^{\nu \cap \{x_i \neq 0\}}(u) &= \mathrm{D}^{\nu}(u) - [\gamma(\mathsf{a}_i^\mathsf{T} u)]_- \end{split}$$

Node-screening test

Node-screening test

Given some point u,

$$D^{\nu}(\mathbf{u}) + [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{+} > \bar{p} \implies \text{Fix } x_{i} \neq 0 \text{ at node } \nu$$

$$D^{\nu}(\mathbf{u}) - [\gamma(\mathbf{a}_{i}^{\mathsf{T}}\mathbf{u})]_{-} > \bar{p} \implies \text{Fix } x_{i} = 0 \text{ at node } \nu$$

Node-screening test

Node-screening test

Given some point u,

$$\begin{split} \mathrm{D}^{\nu}(\mathsf{u}) + [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_+ > \bar{p} &\implies \mathsf{Fix} \ x_i \neq 0 \ \mathsf{at} \ \mathsf{node} \ \nu \\ \mathrm{D}^{\nu}(\mathsf{u}) - [\gamma(\mathsf{a}_i^\mathsf{T}\mathsf{u})]_- > \bar{p} &\implies \mathsf{Fix} \ x_i = 0 \ \mathsf{at} \ \mathsf{node} \ \nu \end{split}$$

Nesting property : If multiple node-screening tests are passed, the corresponding variables can be fixed simultaneously.

Consequence of passing a node-screening test

Consequence of passing a node-screening test

Consequence: Less nodes are explored by the BnB algorithm.

Synthetic setups:

1. Sample a synthetic $A \in \mathbb{R}^{m \times n}$ with (m, n) = (500, 1000)

- 1. Sample a synthetic $A \in \mathbb{R}^{m \times n}$ with (m, n) = (500, 1000)
- 2. Generate a k-sparse vector \mathbf{x}^{\star} with $k \in \{5, \dots, 20\}$

- 1. Sample a synthetic $A \in \mathbb{R}^{m \times n}$ with (m, n) = (500, 1000)
- 2. Generate a k-sparse vector x^* with $k \in \{5, ..., 20\}$
- 3. Set $y = Ax^* + \text{ noise with 10dB SNR}$

- 1. Sample a synthetic $A \in \mathbb{R}^{m \times n}$ with (m, n) = (500, 1000)
- 2. Generate a k-sparse vector x^* with $k \in \{5, ..., 20\}$
- 3. Set $y = Ax^* + \text{noise with } 10dB \text{ SNR}$
- 4. Tune λ and M to (hopefully) recover x^* by solving (P)

- 1. Sample a synthetic $A \in \mathbb{R}^{m \times n}$ with (m, n) = (500, 1000)
- 2. Generate a k-sparse vector x^* with $k \in \{5, ..., 20\}$
- 3. Set $y = Ax^* + \text{noise with 10dB SNR}$
- 4. Tune λ and M to (hopefully) recover x^* by solving (P)

- 1. Sample a synthetic $A \in \mathbb{R}^{m \times n}$ with (m, n) = (500, 1000)
- 2. Generate a k-sparse vector x^* with $k \in \{5, ..., 20\}$
- 3. Set $y = Ax^* + \text{ noise with 10dB SNR}$
- 4. Tune λ and M to (hopefully) recover x^* by solving (P)

