Effective Programming Practices for Economists

Data management with pandas

Inspecting and summarizing data

Janoś Gabler and Hans-Martin von Gaudecker

Motivation

- So far we have looked at tiny DataFrames
- Real datasets don't fit on a screen
- Need quick ways to:
 - Look at subsets
 - Calculate summary statistics
 - Plot distributions

Example

	country	continen	tyear life	e_exp	рор	gdp_	_per_cap	oiso_alpha	aiso_num
0	Afghanistar	Asia	195228	.801000	08425333	779.	445314	AFG	4
1	Afghanistar	nAsia	195730	.332000	09240934	820.	853030	AFG	4
2	Afghanistar	nAsia	196231	.997000	010267083	8853.	100710	AFG	4
3	Afghanistar	nAsia	196734	.02000	011537966	836.	197138	AFG	4
4	Afghanistar	nAsia	197236	.08800	013079460	739.	981106	AFG	4
5	Afghanistar	nAsia	197738	.438000	014880372	2786.	113360	AFG	4
1699	Zimbabwe	Africa	198762	.351000	09216418	706.	157306	ZWE	716
1700	Zimbabwe	Africa	199260	.377000	010704340)693.	420786	ZWE	716
1701	LZimbabwe	Africa	199746	.809000	011404948	792.	449960	ZWE	716
1702	2 Zimbabwe	Africa	200239	.989000	011926563	672.	038623	ZWE	716
1703	3 Zimbabwe	Africa	200743	.487000	012311143	469.	709298	ZWE	716

Summarize an entire DataFrame

assume that `df` is the full gapminder data

```
>>> relevant = ["life_exp", "pop", "gdp_per_cap"]
>>> df[relevant].describe()
```

	life_exp	рор	gdp_per_cap
count	1704.00	1704.00	1704.00
mean	59.47	29601212.32	7215.33
std	12.92	106157896.74	9857.45
min	23.60	60011.00	241.17
25%	48.20	2793664.00	1202.06
50%	60.71	7023595.50	3531.85
75%	70.85	19585221.75	9325.46
max	82.60	1318683096.00	113523.13

- `.describe` can summarize entireDataFrames
- Result is again a DataFrame
- Often good idea to select a subset of columns

Calculate specific statistics

assume that `df` is the full gapminder data

- Standard summary statistics are implemented and named as expected:
 - `std`
 - `min` and `max`
 - median and quantile
- Vectorized and really fast implementations

Quick plotting: Series

```
>>> pd.options.plotting.backend = "plotly"
>>> df.groupby("year")["life_exp"].mean().plot()
```


- Any Series has a `.plot` method
- Any Series has a `.hist` method
- Summary statistics based on groupby return
 Series which can again be plotted

Quick plotting: DataFrames

- Any DataFrame has a `.plot` method
- Defaults to line plot, can access `.scatter`and many more
- Notebook gives you interactive plots

Statistics for categorical data

```
>>> df["country"].unique()[:2]

<ArrowStringArrayNumpySemantics>
['Afghanistan', 'Albania']
Length: 2, dtype: string

>>> df["country"].value_counts().sort_index()[:2]

country
Afghanistan 12
Albania 12
Name: count, dtype: int64
```