Cherry-picking Multiple Testing for Exploratory Research

Павел Плюснин
Multiple Testing for Exploratory Research by Jelle J.
Goeman and Aldo Solari

Курс: Прикладная статистика 2019

Условные обозначения

Пусть $H_1 \dots H_n$ - набор элементарных гипотез. Пусть $T \subseteq \{1 \dots n\}$ - индексы верных гипотез (неизвестны) $H_I = \bigcap_{i \in I} H_i$, где $I \subseteq \{1 \dots n\}$, $I \neq \emptyset$

Условные обозначения

 $H_I = \bigcap_{i \in I} H_i$, где $I \subseteq \{1 \dots n\}$, $I \neq \emptyset$ H_I истинна, когда истинны все $H_i, \forall i \in I$ Пусть $\mathbb C$ - множество всевозможных подмножеств $\{1 \dots n\}$. Каждый элемент из $\mathbb C$ отвечает за пересечение гипотез с соответствующими индексами. Назовем элементы $\mathbb C$ метагипотезами

 $\mathbb{H} = \{ I \in \mathbb{C} : \#I = 1 \}$

Closed testing procedure

Получение множества отвергаемых метагипотез Ж

Применяем стат.тест на уровне значимости α для каждого $H_I,I\in\mathbb{C}$. Эти тесты назовем локальными Пусть $\mathbb{U}\subseteq\mathbb{C}$ - множество отвергутых метагипотез: множество подмножеств $U\in\mathbb{C}$, для которых мы отвергли H_U . Основываясь на этом множестве грубых отвержений \mathbb{U} рассмотрим каждое $I\in\mathbb{C}:J\in\mathbb{U}\quad\forall J\supseteq I$. Все такие I поместим в множество $\mathbb{X}\subseteq\mathbb{C}$

Marcus, Peritz and Gabriel (1976)

Closed testing proedure сохраняет FWER для всех H_I на уровне значимости α локальными тестами.

Пример

 H_1 отвергается closed testing procedure, так как все метагипотезы, в которые входит H_1 , были отвергнуты.

B этом конкретном случае $\mathbb{X}=\mathbb{U}$

Consonent procedure / Согласованная процедура

Заметим, что на деле нам интересно не все $\mathbb X$, а $\mathbb X\cap\mathbb H$. С точки зрения FWER, отвержение $I\in\mathbb X$, для которой нет $J\in\mathbb X\cap\mathbb H:J\subseteq I$, — бесполезно

Согласованная процедура (consonent)

СТР называется согласованной (Consonent), если локальные тесты для каждого $I \in \mathbb{C}$ выбраны таким образом, что отвержение I влечет отвержение хотя бы одной $J \in \mathbb{H}$

Очевидно, что для любой non-consonent процедуры существует consonent процедура, которая отвергает не меньшее количество $J\in\mathbb{X}\cap\mathbb{H}$

Пример

В этом примере согласованных отвержения: $H_1\cap H_2, H_1\cap H_3, H_1\cap H_2\cap H_3$, несогласованное: $H_2\cap H_3$ FWER предписывает отклонить нам H_1 , ее и только ее

Доверительное множество

Пусть R - некоторое множество элементарных гипотез (именно их мы хотим отвергнуть),

тогда за $au(R) = \#(R \cap T)$ обозначим количество ошибок первого рода.

 $\mathbb{C}_R = \{I \in \mathbb{C} : I \subseteq R\}$ - доверительное множество $t_\alpha = \max(\#I : I \in \mathbb{C}_R, I \notin \mathbb{X})$ — размер максимального подмножества из R, для которого соответствующее объединение гипотез (метагипотеза) не было отвергнуто локальным тестом.

Множество $\{0\dots t_{\alpha}(R)\}$ и является $(1-\alpha)$ доверительным множеством для R

Пример

Confidence sets for the numbers of incorrect rejections $\tau(R)$ and correct rejections $\phi(R)$ incurred with various choices of the rejected set, based on the closed testing result of Figure 1

R	Confidence set for $ au(R)$	Confidence set for ϕ (
{1}	{0}	{1}
{2}	$\{0, 1\}$	$\{0, 1\}$
{3}	$\{0, 1\}$	$\{0, 1\}$
$\{1, 2\}$	$\{0, 1\}$	$\{1, 2\}$
$\{1, 3\}$	$\{0, 1\}$	$\{1, 2\}$
$\{2,3\}$	$\{0, 1\}$	$\{1, 2\}$
$\{1, 2, 3\}$	$\{0, 1\}$	$\{2, 3\}$

$$\tau(R) = \{0 \dots t_{\alpha}(R)\}$$

$$\phi(R) = \#R - \tau(R)$$

Итог: достоинства метода

- Безграничные возможности аналитика выбора множества отвергаемых гипотез
- Гибкость: не предписывает никакие отверженея, оставляет выбор за человеком
- ullet Гибкость: можно управлять уровнем значимости lpha
- post hoc: можно выбирать любой набор отвергаемых гипотез без опасности переобучения
- Реализовано в R