

1. Übung zur Vorlesung MA 1

Aufgabe 1:

Seien A_1, A_2, B_1, B_2 (nicht leere) Mengen. Man beweise die Inklusion

$$(A_1 \times B_1) \cup (A_2 \times B_2) \subseteq (A_1 \cup A_2) \times (B_1 \cup B_2)$$

und gebe ein Beispiel an, für das \subset anstelle von \subseteq steht.

Aufgabe 2:

Es sei $f: X \to Y$ eine Abbildung zwischen zwei Mengen X und Y. Man zeige:

a)
$$M_1 \subset M_2 \subset X \Rightarrow f(M_1) \subset f(M_2);$$

$$N_1 \subset N_2 \subset Y \implies f^{-1}(N_1) \subset f^{-1}(N_2);$$

b)
$$M \subset X \Rightarrow M \subset f^{-1}(f(M));$$

$$N \subset Y \implies f(f^{-1}(N)) \subset N;$$

c)
$$N \subset Y \Rightarrow f^{-1}(Y \setminus N) = X \setminus f^{-1}(N)$$
;

d)
$$M_1, M_2, ..., M_n \subset X$$
 und $N_1, N_2, ..., N_n \subset Y$ mit $n \in IN \Rightarrow$

$$f\left(\bigcup_{i=1}^{n} M_{i}\right) = \bigcup_{i=1}^{n} f(M_{i});$$
 $f\left(\bigcap_{i=1}^{n} M_{i}\right) \subset \bigcap_{i=1}^{n} f(M_{i});$

$$f^{-1}\left(\bigcup_{i=1}^{n} N_{i}\right) = \bigcup_{i=1}^{n} f^{-1}(N_{i}); \qquad f^{-1}\left(\bigcap_{i=1}^{n} N_{i}\right) = \bigcap_{i=1}^{n} f^{-1}(N_{i}).$$

Man finde ein Beispiel, bei dem $f(M_1 \cap M_2) \neq f(M_1) \cap f(M_2)$ gilt.

Aufgabe 3:

Seien $f: X \to Y$ und $g: Y \to Z$ Abbildungen und $g \circ f: X \to Z$ die Komposition von f und g.

Man zeige:

- a) Sind f und g injektiv (surjektiv), so ist auch $g \circ f$ injektiv (surjektiv);
- b) Ist $g \circ f$ injektiv (surjektiv), so ist auch f injektiv (g surjektiv).

Aufgabe 4:

Für n \in IN ist die **n-te harmonische Zahl** H_n definiert durch

$$H_n:=\sum_{j=1}^n\frac{1}{j}.$$

Man zeige mit Hilfe des **Beweisprinzips der vollständigen Induktion** die Gültigkeit der folgenden Aussage:

$$\forall n \in \text{IN}: \sum_{k=1}^n H_k = (n+1) \cdot H_n - n.$$

Aufgabe 5:

Gegeben sei die Menge IR der reellen Zahlen. Man betrachte auf IR die Verknüpfung

IR × IR
$$\rightarrow$$
 IR
 $(x, y) \mapsto x * y := \frac{x + y}{2}$

und untersuche, ob (IR, *) eine Gruppe ist.