Memory augment models

■ Large model store world knowledge

implicitly within their parameters.

Overview

Data store:

Data store:
$$(\mathcal{K}, \mathcal{V}) = \{(f(c_i), w_i) | (c_i, w_i) \in \mathcal{D}\}$$
 $p(y|x) = \lambda \ p_{kNN}(y|x) + (1 - \lambda) \ p_{LM}(y|x)$

Knn-generation:
$$p_{\text{kNN}}(y|x) \propto \sum_{(k_i,v_i)\in\mathcal{N}} \mathbb{1}_{y=v_i} \exp(-d(k_i,f(x)))$$

[1] GENERALIZATION THROUGH MEMORIZATION: NEAREST NEIGHBOR LANGUAGE MODELS. ICLR 2020

■ Experimental results

Model	Perplexity (\downarrow)		# Trainable Params	
	Dev	Test		
Baevski & Auli (2019)	17.96	18.65	247M	
+Transformer-XL (Dai et al., 2019)	-	18.30	257M	
+Phrase Induction (Luo et al., 2019)	-	17.40	257M	
Base LM (Baevski & Auli, 2019)	17.96	18.65	247M	
+kNN-LM	16.06	16.12	247M	
+Continuous Cache (Grave et al., 2017c)	17.67	18.27	247M	
+kNN-LM + Continuous Cache	15.81	15.79	247M	

Table 1: Performance on WIKITEXT-103. The kNN-LM substantially outperforms existing work. Gains are additive with the related but orthogonal continuous cache, allowing us to improve the base model by almost 3 perplexity points with no additional training. We report the median of three random seeds.

■ Experimental results

Memory Selective Size

bors returned per word on WIKITEXT-103 (val- on in-domain (left y-axis) and out-of-domain idation set). Returning more entries from the (right y-axis) validation set performances. More datastore monotonically improves performance.

$p(y|x) = \lambda p_{kNN}(y|x) + (1 - \lambda) p_{LM}(y|x)$

Weight

Figure 4: Effect of the number of nearest neigh- Figure 5: Effect of interpolation parameter λ weight on p_{kNN} improves domain adaptation.

■ Experimental results

Figure 8: Training curves for the Transformer LM with and without dropout. Turning off dropout allows the training loss to go to 0, indicating that the model has sufficient capacity to memorize the training data.

Memory augment long tail visual recognition

(a) The proposed RAC architecture

(b) Retrieval module

$$\mathbf{f}(\mathbf{x}) = \frac{L}{2} \left(\frac{\mathbf{f}^{\text{ret}}(\mathbf{x})}{||\mathbf{f}^{\text{ret}}(\mathbf{x})||_2} + \frac{\mathbf{f}^{\text{base}}(\mathbf{x})}{||\mathbf{f}^{\text{base}}(\mathbf{x})||_2} \right),$$

[2] Retrieval Augmented Classification for Long-Tail Visual Recognition, CVPR 2022

Memory augment long tail visual recognition

■ Experimental results

Method	Backbone	Many	Med	Few	All			
Input: 224 × 224								
OLTR [33]	RN50	59	64.1	64.9	63.9			
Dec. LWS [24] †	RN50	65.0	66.3	65.5	65.9			
LADE [21] †	RN50	-	-	-	70.0			
ALA [57] †	RN50	71.3	70.8	70.4	70.7			
LACE [36]	RN50	-	-	-	71.9			
RIDE [50]	RN50	70.9	72.4	73.1	72.6			
TADE [56]	RN50	74.4	72.5	73.1	72.9			
DisAlign [54]	RN152	-	-	-	74.1			
PaCo [6]	RN152	75.0	75.5	74.7	75.2			
RAC (ours)	ViT-B-16	75.92	80.47	81.07	80.24			
	Input:	384×38	4					
Grafit	RegNetY	-	-	-	81.2			
RAC (ours)	ViT-B-16	82.91	85.71	86.06	85.56			

Table 1. Historical performance on iNat under varying backbones and training schemes. †Results reproduced from [57].

Memory Selective Size

Memory augment CNN

■ Overview

$$\mathcal{C}(F(x)): \mathcal{P}(x) = \mathcal{P}_{\mathcal{C}(F(x))}(x) = \sum_{k=1}^{K} \alpha_k \phi(x'_k).$$

Connection with GCN

■ Overview

Relationship among sample

(a) Graph Convolutional Network

$$Z = f(X, A) = \operatorname{softmax}(\hat{A} \operatorname{ReLU}(\hat{A}XW^{(0)}) W^{(1)}).$$

Memory augment diffusion model

■ Models

Generative model

$$p_{\theta,\mathcal{D},\xi_k}(x) = p_{\theta}(x \mid \{ \phi(y) \mid y \in \xi_k(x,\mathcal{D}) \}).$$

Loss function

$$\min_{\theta} \mathcal{L} = \mathbb{E}_{p(x), z \sim E(x), \epsilon \sim \mathcal{N}(0, 1), t} \Big[\|\epsilon - \epsilon_{\theta}(z_t, t, \{\phi_{\text{CLIP}}(y) \mid y \in \xi_k(x, \mathcal{D})\})\|_2^2 \Big]$$

[2] Retrieval-Augmented Diffusion Models, Neurips2022

Memory augment diffusion model

■ Experiment results

Memory Selective Size

Figure 8: We observe that the number of neighbors $k_{\rm train}$ retrieved during training significantly impacts the generalization abilities of RDM. See Sec. 4.2.

[2] Retrieval-Augmented Diffusion Models, Neurips2022

Memory augment diffusion model

■ Models

Figure 4: k = 15 nearest neighbors from \mathcal{D} for a given query x when parameterizing $d(x, \cdot)$ with CLIP [57].