FCC PART 15.247

EMI MEASUREMENT AND TEST REPORT

For

Cheung Hung Electronics Ltd.

Unit 4, 15/F, North Point Asia-pac Centre, No.28 A Java Road, North Point, Hong Kong

FCC ID: TWXCH-W808

This Report Concerns: **Equipment Type:** Original Report 2.4GHz Cordless phone **Test Engineer:** Oscar Au **Report No.:** R0511174 **Report Date:** 2006-1-6 Sull **Reviewed By:** Snell Leong **Prepared By:** Bay Area Compliance Laboratory Corporation (BACL) 230 Commercial Street Sunnyvale, CA 94085 Tel: (408) 732-9162 Fax: (408) 732 9164

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
SCHEMATICS / BLOCK DIAGRAM	
EQUIPMENT MODIFICATIONS	
LOCAL SUPPORT EQUIPMENT	
HOST PC POWER SUPPLY AND LINE FILTERS	
CONFIGURATION OF TEST SYSTEM	
TEST SETUP BLOCK DIAGRAM	
SUMMARY OF TEST RESULTS	
§15.203 - ANTENNA REQUIREMENT	
STANDARD APPLICABLE	
§15.207 (a)- CONDUCTED EMISSION	10
MEASUREMENT UNCERTAINTY	1(
TEST SETUP.	
RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	10
TEST PROCEDURE	
Environmental Conditions	
SUMMARY OF TEST RESULTS	
CONDUCTED EMISSIONS TEST DATA	l
§15.205 & §15.209 - RADIATED EMISSION	
Measurement Uncertainty	
TEST SETUP	
SPECTRUM ANALYZER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
ENVIRONMENTAL CONDITIONS	
SUMMARY OF TEST RESULTS	
TX RADIATED EMISSION TEST RESULT	
§15.247 (a) (1) - HOPPING CHANNEL SEPARATION	22
STANDARD APPLICABLE	
MEASUREMENT PROCEDURE	
TEST EQUIPMENT	
ENVIRONMENTAL CONDITIONS	
MEASUREMENT RESULTS	23
PLOTS OF HOPPING CHANNEL SEPARATION	23
§15.247(a)(1) – 20 dB BANDWIDTH	27
STANDARD APPLICABLE	2
Measurement Procedure	
EQUIPMENT LISTS	
Measurement Result	27

§15.247 (a) (1) (iii) - NUMBER OF HOPPING FREQUENCY USED .	33
STANDARD APPLICABLE	33
MEASUREMENT PROCEDURE	33
TEST EQUIPMENT	33
Environmental Conditions	
MEASUREMENT RESULTS	
PLOTS OF NUMBER OF HOPPING FREQUENCY	34
§15.247 (a) (1) (iii) - DWELL TIME	36
STANDARD APPLICABLE	36
MEASUREMENT PROCEDURE	36
TEST EQUIPMENT	
Environmental Conditions	
MEASUREMENT RESULTS	
PLOTS OF DWELL TIME	37
§15.247(b)(1) - PEAK OUTPUT POWER MEASUREMENT	44
STANDARD APPLICABLE	44
MEASUREMENT PROCEDURE	
EQUIPMENT LISTS	
MEASUREMENT RESULT	44
§15.247 (e)(i) - RF EXPOSURE	50
§15.247(d) - 100 KHZ BANDWIDTH OF BAND EDGES	53
STANDARD APPLICABLE	53
MEASUREMENT PROCEDURE	
EQUIPMENT LISTS	
MEASUREMENT RESULT	53
§2.1051 - SPURIOUS EMISSION AT ANTENNA PORT	56
STANDARD APPLICABLE	56
MEASUREMENT PROCEDURE	56
EQUIPMENT LISTS	56
MEASUREMENT RESULT	56

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The *Cheung Hung Electronics Ltd.*'s produ*ct, FCC ID: TWXCH-W808*, Model: *CH-W808* or the "EUT" as referred to this report is a 2.4GHz Cordless phone. The base part of the EUT measures approximately 170mmL x 90mmW x 90mmH and the handset part of the EUT measures approximately 170mmL x 45mmW x 30mmH.

* The test data gathered are from typical production sample, serial number: 001 provided by the manufacturer.

Objective

This type approval report is prepared on behalf of *Cheung Hung Electronics Ltd.* in accordance with Part 2, Subpart J, Part 15, Subparts A, B and C of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for Output Power, Antenna Requirements, Dwell Time, Number of Hopping number, Channel Separation, 100 kHz Bandwidth of Band Edges Measurement, Spurious Emission, Conducted and Spurious Radiated Emission.

Related Submittal(s)/Grant(s)

No Related Submittals.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.4-2003, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Test Facility

The Open Area Test site used by BACL to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Sunnyvale, California, USA with registration number: 90464.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on

December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-1298 and R-1234. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, BACL is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (Lab Code 200167-0). The current scope of accreditations can be found at http://ts.nist.gov/ts/htdocs/210/214/scopes/2001670.htm

SYSTEM TEST CONFIGURATION

Justification

The host system was configured for testing according to ANSI C63.4-2003.

The EUT was tested in the normal (native) operating mode to represent *worst*-case results during the final qualification test.

EUT Exercise Software

Engineering software for RF testing

Special Accessories

As shown in following test block diagram, all interface cables used for compliance testing are shielded.

Schematics / Block Diagram

Please refer to Appendix A.

Equipment Modifications

No modifications were made to the EUT.

Local Support Equipment

Manufacturer	Description	Model	Serial Number	FCC ID
Southern Telecom	Telephone	Telephone None None		None
Teltone Corp	Teltone Corp Phone Simulator		80071	None

Host PC Power Supply and Line Filters

Manufacturer	Description	Model	Serial Number	FCC ID
Cheung Hung Electronics	AC Adaptor	N/A	N/A	None

Configuration of Test System

Conducted Emission

Radiated Emission

Test Setup Block Diagram

Conducted Emission

Conducted Emission

EUT Power Cords LISN 1 Peripheral Power Cords LISN 2 Telephone Simulator Tolor Non-Conducting 80 cm Above Ground 1.5 Meters

Radiated Emission

SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.203	Antenna Requirement	Compliant
§ 15.205	Restricted Bands	Compliant
§15.207 (a)	Conducted Emission	Compliant
§15.209	Radiated Emission	Compliant*
§15.247 (a) (1)	Hopping Channel Separation	Compliant
§15.247 (a) (1)	Channel Bandwidth	Compliant
§15.247 (a) (1) (iii)	Number of Hopping Frequencies Used	Compliant
§15.247 (a) (1) (iii)	Dwell Time of Each Frequency within 37.2 Second Period of time (0.4 x Number of Channel)	Compliant
§15.247 (b) (1)	Maximum Peak Output Power	Compliant
§ 15.247 (e)(i) § 2.1093	RF Safety Requirements	Compliant
§ 15.247 (d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§ 2.1051	Spurious Emission at Antenna Port	Compliant

^{*} test data are within the measurement uncertainty

§15.203 - ANTENNA REQUIREMENT

Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to § 15.247 (b) (4), if transmitting antennas of directional gain greater than 6 dBi are used the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna for this device is an integral antenna with gain of 0 dBi.

§15.207 (a)- CONDUCTED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are receiver, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

Test Setup

The measurement was performed at shield room, using the same setup per ANSI C63.4 - 2003 measurement procedure. The specification used was FCC Class B limits.

External I/O cables were draped along the edge of the test table and bundle when necessary.

The EUT was connected with LISN-1.

Receiver Setup

The EMI receiver was set to investigate the spectrum from 150 kHz to 30MHz.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date
Rohde & Schewarz	Artificial-Mains Network	ESH2-Z5	871884/039	8/16/2005
Rohde & Schewarz	EMI Test Receiver	ESCS30	100176	9/15/2005
Fluke	Calibrated Voltmeter	189	18485-38	12/29/2005

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Test Procedure

During the conducted emission test, the power cord of the EUT was connected to the mains outlet of the LISN-1.

Maximizing procedures were performed on the six (6) highest emissions of the EUT.

All data was recorded in the peak detection mode, quasi-peak and average. Quasi-Peak readings are distinguished with an "QP". Average readings are distinguished with an "Ave".

Environmental Conditions

Temperature:	15° C
Relative Humidity:	45%
ATM Pressure:	1009 mbar

^{*}The testing was performed by Oscar Au on 2005-12-09.

Summary of Test Results

According to the recorded data in following table, the EUT <u>complied with the FCC</u> Conducted limit for a Class B device, with the *worst* margin reading of:

-11.7 dB at 0.325 MHz in the Neutral conductor

Conducted Emissions Test Data

	LINE CO	FCC C	LASS B		
Frequency	Amplitude	Detector	Phase	Limit	Margin
MHz	dΒμV	Qp/Ave/Peak	Line/Neutral	dΒμV	dB
0.325	37.9	Ave	Neutral	49.58	-11.7
0.240	39.4	Ave	Neutral	52.10	-12.7
0.160	40.4	Ave	Neutral	55.46	-15.1
0.240	44.4	QP	Neutral	62.10	-17.7
0.325	38.8	QP	Neutral	59.58	-20.8
1.130	23.1	Ave	Line	46.00	-22.9
0.160	42.3	QP	Neutral	65.46	-23.2
24.000	20.3	Ave	Line	50.00	-29.7
0.160	25.2 Ave		Line	55.46	-30.3
1.130	24.4	QP Line		56.00	-31.6
24.000	23.4	QP	Line	60.00	-36.6
0.160	27.4	QP	Line	65.46	-38.1

Plot of Conducted Emissions Test Data

Plot(s) of Conducted Emissions Test Data is presented in the following page as reference.

§15.205 & §15.209 - RADIATED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

Test Setup

The radiated emission tests were performed in the open area 3-meter test site, using the setup in accordance with ANSI C63.4-2003. The specification used was the FCC 15 Subpart C limits.

Spectrum Analyzer Setup

According to FCC Rules, 47 CFR §15.33 (a) (1), the system was tested to 25GHz.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Range	RBW	Video B/W
Below 30MHz	10kHz	10kHz
30 – 1000MHz	100kHz	100kHz
Above 1000MHz	1MHz	1MHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Cal. Date	
Agilent	Amplifer, Pre	8447D	2944A10198	8/17/2005	
Agilent	Amplifier, Pre	8449B	3147A00400	10/05/2005	
Sunol Science Corp	Combination Antenna	JB1 Antenna A013105		2/11/2005	
Rohde & Schewarz	EMI Test Receiver	ESCI 1166.595 0K03	100044	11/29/2005	
Sunol Science Corp	System Controller	SC99V	122303-1	N/R	
Agilent	Amplifer, Pre	8449B	3008A01988	8/10/2005	
Sunol Science Corp	Horn Antenna	SAS-200/571	261	4/20/2005	

^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

For the radiated emissions test, the EUT, and all support equipment power cords was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a "Qp" in the data table.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - FCC 15.247 Limit

Environmental Conditions

Temperature:	15° C
Relative Humidity:	45%
ATM Pressure:	1009 mbar

The testing was performed by Oscar Au on 2005-12-18.

Summary of Test Results

According to the data hereinafter, the EUT <u>complied with the FCC Title 47, Part 15, Subpart C, section 15.205, 15.209 and 15.247</u>, and had the worst margin of:

For Handset of EUT (TX Spurious Emission):

- -11.5 dB at 7203.0000 MHz in the Vertical polarization, Low Channel
- -10.7 dB at 7323.0000 MHz in the Horizontal polarization, Middle Channel
- -8.2 dB at 7446.0000MHz in the Vertical polarization, High Channel

For Base of EUT:

- -7.7 dB at 7203.0000MHz in the Vertical polarization, Low Channel
- -5.4 dB at 7323.0000MHz in the Vertical polarization, Middle Channel
- -4.2 dB at 7446.0000 MHz in the Vertical polarization, High Channel

For Handset of EUT(RX Spurious Emission):

-7.5 dB at 538.30 MHz in the Horizontal polarization, Unintentional Emission

For Base of EUT:

-14.2dB at 113.40MHz in the Horizontal polarization, Unintentional Emission

TX Radiated Emission Test Result

For Handset of EUT (TX Spurious Emission)

Low Channel, 1-25GHz

Indica	ATED	TABLE	Ante	Antenna Correction		CORRECTION FACTOR CORRECTED AMPLITUDE				FCC 15	С
Frequency	Meter Reading	Angle	Height	Polar	Antenna Loss	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	PK/AV/QP
MHz	dΒμV	Degree	Meter	H/V	dB	dB	dB	dBμV/m	dBμV/m	dB	
2401.0000	117.8	90	2.5	V	28.7	2.0	35.8	112.6			Fund/Peak
2401.0000	122.6	0	2.0	h	28.7	2.0	35.8	117.4			Fund/Peak
2401.0000	65.5	90	2.5	V	28.7	2.0	35.8	60.3			Ave
2401.0000	66.8	0	2.0	h	28.7	2.0	35.8	61.6			Ave
7203.0000	36.2	270	1.5	V	36.7	4.3	34.7	42.5	54	-11.5	Ave
7203.0000	36.0	60	2.0	h	36.7	4.3	34.7	42.3	54	-11.7	Ave
7203.0000	54.6	270	1.5	v	36.7	4.3	34.7	60.9	74	-13.1	Peak
7203.0000	53.3	60	2.0	h	36.7	4.3	34.7	59.6	74	-14.4	Peak
4802.0000	58.0	90	1.5	V	32.5	3.1	34.8	58.8	74	-15.2	Peak
4802.0000	57.4	340	1.8	h	32.5	3.1	34.8	58.2	74	-15.8	Peak
4802.0000	34.7	90	1.5	V	32.5	3.1	34.8	35.5	54	-18.5	Ave
4802.0000	34.5	340	1.8	h	32.5	3.1	34.8	35.3	54	-18.7	Ave

Middle Channel, 1-25GHz

Indica	ATED	TABLE	Ante	NNA	Corre	CTION FA	CTOR	CORRECTED AMPLITUDE		FCC 15	C
Frequency	Meter Reading	Angle	Height	Polar	Antenna Loss	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	PK/AV/QP
MHz	dBμV	Degree	Meter	H/V	dB	dB	dB	dBμV/m	dBμV/m	dB	
2441.0000	119.3	270	1.0	V	28.7	2.0	35.8	114.1			Fund/Peak
2441.0000	121.6	180	3.0	h	28.7	2.0	35.8	116.4			Fund/Peak
2441.0000	64.8	270	1.0	v	28.7	2.0	35.8	59.6			Ave
2441.0000	67.1	180	3.0	h	28.7	2.0	35.8	61.9			Ave
7323.0000	37.0	90	1.8	h	36.7	4.3	34.7	43.3	54	-10.7	Ave
7323.0000	36.9	180	2.0	v	36.7	4.3	34.7	43.2	54	-10.8	Ave
7323.0000	55.5	90	1.8	h	36.7	4.3	34.7	61.8	74	-12.2	Peak
7323.0000	52.6	180	2.0	v	36.7	4.3	34.7	58.9	74	-15.1	Peak
4882.0000	57.3	270	2.0	h	32.5	3.1	34.8	58.1	74	-15.9	Peak
4882.0000	35.3	270	2.0	h	32.5	3.1	34.8	36.1	54	-17.9	Ave
4882.0000	34.8	90	2.0	v	32.5	3.1	34.8	35.6	54	-18.4	Ave
4882.0000	53.8	90	2.0	v	32.5	3.1	34.8	54.6	74	-19.4	Peak

High Channel, 1-25GHz

Indica	TED	TABLE	Ante	ENNA	Corre	CTION FA	.CTOR	CORRECTED AMPLITUDE		FCC 15 SUBPART	
Frequency	Meter Reading	Angle	Height	Polar	Antenna Loss	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	PK/AV/QP
MHz	dΒμV	Degree	Meter	H/V	dB	dB	dB	dBμV/m	$dB\mu V/m$	dB	
2482.0000	115.3	300	1.5	V	28.7	2.0	35.8	110.1			Fund/Peak
2482.0000	121.3	180	1.5	h	28.7	2.0	35.8	116.1			Fund/Peak
2482.0000	67.1	300	1.5	V	28.7	2.0	35.8	61.9			Ave
2482.0000	67.6	180	1.5	h	28.7	2.0	35.8	62.4			Ave
7446.0000	59.5	90	2.0	v	36.7	4.3	34.7	65.8	74	-8.2	Peak
7446.0000	38.0	90	2.0	v	36.7	4.3	34.7	44.3	54	-9.7	Ave
7446.0000	37.3	200	1.5	h	36.7	4.3	34.7	43.6	54	-10.4	Ave
7446.0000	57.0	200	1.5	h	36.7	4.3	34.7	63.3	74	-10.7	Peak
4964.0000	59.8	0	1.5	h	32.5	3.1	34.8	60.6	74	-13.4	Peak
4964.0000	56.2	270	1.8	V	32.5	3.1	34.8	57.0	74	-17.0	Peak
4964.0000	36.0	0	1.5	h	32.5	3.1	34.8	36.8	54	-17.2	Ave
4964.0000	35.5	270	1.8	V	32.5	3.1	34.8	36.3	54	-17.7	Ave

For Base of EUT (TX Spurious Emission)

Low Channel, 1-25GHz

Indica	ATED	TABLE	Ante	ENNA	Corre	CTION FA	CTOR	CORRECTED AMPLITUDE		FCC 15 SUBPART	С
Frequency	Meter Reading	Angle	Height	Polar	Antenna Loss	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	PK/AV/QP
MHz	dΒμV	Degree	Meter	H/V	dB	dB	dB	dBμV/m	dBμV/m	dB	
2401.0000	124.3	90	2.0	v	28.7	2.0	35.8	119.1			Fund/Peak
2401.0000	114.7	180	1.5	h	28.7	2.0	35.8	109.5			Fund/Peak
2401.0000	68.8	90	2.0	V	28.7	2.0	35.8	63.6			Ave
2401.0000	57.4	180	1.5	h	28.7	2.0	35.8	52.2			Ave
7203.0000	60.0	90	1.5	V	36.7	4.3	34.7	66.3	74	-7.7	Peak
3102.0000	69.0	180	1.8	v	29.8	2.5	35.2	66.2	74	-7.8	Peak
7203.0000	58.2	180	2.0	h	36.7	4.3	34.7	64.5	74	-9.5	Peak
3102.0000	66.5	90	1.5	h	29.8	2.5	35.2	63.7	74	-10.3	Peak
3601.0000	65.3	180	1.8	v	30.0	2.7	34.8	63.2	74	-10.8	Peak
7203.0000	36.8	90	1.5	v	36.7	4.3	34.7	43.1	54	-10.9	Ave
7203.0000	36.5	180	2.0	h	36.7	4.3	34.7	42.8	54	-11.2	Ave
4802.0000	35.8	270	2.4	v	32.5	3.1	34.8	36.6	54	-17.4	Ave
4802.0000	54.4	180	1.5	V	32.5	3.1	34.8	55.2	74	-18.8	Peak
4802.0000	34.2	180	2.3	h	32.5	3.1	34.8	35.0	54	-19.0	Ave
3291.0000	56.8	160	2.0	v	29.8	2.5	35.2	54.0	74	-20.0	Peak
3601.0000	36.0	180	1.8	v	30.0	2.7	34.8	33.9	54	-20.1	Ave
3601.0000	55.6	30	2.2	h	30.0	2.7	34.8	53.5	74	-20.5	Peak
3102.0000	36.2	180	1.8	v	29.8	2.5	35.2	33.4	54	-20.6	Ave
3291.0000	35.5	160	2.0	V	29.8	2.5	35.2	32.7	54	-21.3	Ave
3102.0000	35.5	90	1.5	h	29.8	2.5	35.2	32.7	54	-21.3	Ave
3291.0000	55.2	180	2.5	h	29.8	2.5	35.2	52.4	74	-21.6	Peak
3291.0000	35.2	180	2.5	h	29.8	2.5	35.2	32.4	54	-21.6	Ave
4802.0000	50.3	180	2.3	h	32.5	3.1	34.8	51.1	74	-22.9	Peak
3601.0000	33.1	30	2.2	h	30.0	2.7	34.8	31.0	54	-23.0	Ave

Middle Channel, 1-25GHz

Indica	ATED	TABLE	Ante	ENNA	Corre	CTION FA	CTOR	CORRECTED AMPLITUDE		FCC 1:	
Frequency	Meter Reading	Angle	Height	Polar	Antenna Loss	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	PK/AV/QP
MHz	dBμV	Degree	Meter	H/V	dB	dB	dB	dBμV/m	dBμV/m	dB	
2441.0000	119.1	90	1.0	V	28.7	2.0	35.8	113.9			Fund/Peak
2441.0000	124.8	180	1.2	h	28.7	2.0	35.8	119.6			Fund/Peak
2441.0000	66.7	90	1.2	V	28.7	2.0	35.8	61.5			Ave
2441.0000	67.3	180	1.2	h	28.7	2.0	35.8	62.1			Ave
7323.0000	62.3	90	1.5	v	36.7	4.3	34.7	68.6	74	-5.4	Peak
3142.0000	69.0	180	1.8	V	29.8	2.5	35.2	66.2	74	-7.8	Peak
7323.0000	59.7	180	2.0	h	36.7	4.3	34.7	66.0	74	-8.0	Peak
3318.0000	68.0	180	2.5	v	29.8	2.5	35.2	65.2	74	-8.8	Peak
7323.0000	37.3	90	1.5	v	36.7	4.3	34.7	43.6	54	-10.4	Ave
7323.0000	37.1	180	2.0	h	36.7	4.3	34.7	43.4	54	-10.6	Ave
3318.0000	62.7	60	1.8	h	29.8	2.5	35.2	59.9	74	-14.1	Peak
3142.0000	59.9	90	1.5	h	29.8	2.5	35.2	57.1	74	-16.9	Peak
4882.0000	34.8	270	1.8	v	32.5	3.1	34.8	35.6	54	-18.4	Ave
4882.0000	34.3	180	1.5	h	32.5	3.1	34.8	35.1	54	-18.9	Ave
3318.0000	37.3	180	2.5	v	29.8	2.5	35.2	34.5	54	-19.5	Ave
4882.0000	53.1	270	1.8	V	32.5	3.1	34.8	53.9	74	-20.1	Peak
3142.0000	36.2	180	1.8	V	29.8	2.5	35.2	33.4	54	-20.6	Ave
3318.0000	35.5	60	1.8	h	29.8	2.5	35.2	32.7	54	-21.3	Ave
3142.0000	34.5	90	1.5	h	29.8	2.5	35.2	31.7	54	-22.3	Ave
4882.0000	50.1	180	1.5	h	32.5	3.1	34.8	50.9	74	-23.1	Peak

High Channel, 1-25GHz

Indica	TED	TABLE	ANTE	ENNA	Corre	CTION FA	ACTOR	CORRECTED AMPLITUDE		FCC 15	
Frequency	Meter Reading	Angle	Height	Polar	Antenna Loss	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin	PK/AV/QP
MHz	dBμV	Degree	Meter	H/V	dB	dB	dB	dBμV/m	dBμV/m	dB	
2482.0000	122.9	160	2.0	v	28.7	2.0	35.8	117.7			Fund/Peak
2482.0000	117.1	200	1.2	h	28.7	2.0	35.8	111.9			Fund/Peak
2482.0000	67.2	160	2.0	V	28.7	2.0	35.8	62.0			Ave
2482.0000	66.8	200	1.2	h	28.7	2.0	35.8	61.6			Ave
7446.0000	63.5	300	2.0	V	36.7	4.3	34.7	69.8	74	-4.2	Peak
3724.0000	70.7	160	2.0	V	30.0	2.7	34.8	68.6	74	-5.4	Peak
7446.0000	60.8	180	2.0	h	36.7	4.3	34.7	67.1	74	-6.9	Peak
3359.0000	68.8	180	2.0	V	29.8	2.5	35.2	66.0	74	-8.0	Peak
7446.0000	38.5	300	2.0	V	36.7	4.3	34.7	44.8	54	-9.2	Ave
7446.0000	37.9	180	2.0	h	36.7	4.3	34.7	44.2	54	-9.8	Ave
3182.0000	65.6	180	1.8	V	29.8	2.5	35.2	62.8	74	-11.2	Peak
3182.0000	62.4	160	2.0	h	29.8	2.5	35.2	59.6	74	-14.4	Peak
3724.0000	61.5	180	2.0	h	30.0	2.7	34.8	59.4	74	-14.6	Peak
4964.0000	55.8	200	1.8	V	32.5	3.1	34.8	56.6	74	-17.4	Peak
4964.0000	35.2	200	2.0	V	32.5	3.1	34.8	36.0	54	-18.0	Ave
4964.0000	34.7	30	2.1	h	32.5	3.1	34.8	35.5	54	-18.5	Ave
3724.0000	37.2	160	2.0	V	30.0	2.7	34.8	35.1	54	-18.9	Ave
3359.0000	57.6	180	2.0	h	29.8	2.5	35.2	54.8	74	-19.2	Peak
3724.0000	36.2	180	2.0	h	30.0	2.7	34.8	34.1	54	-19.9	Ave
3182.0000	36.3	180	1.8	V	29.8	2.5	35.2	33.5	54	-20.5	Ave
3359.0000	35.8	180	2.0	V	29.8	2.5	35.2	33.0	54	-21.0	Ave
3182.0000	35.8	160	2.0	h	29.8	2.5	35.2	33.0	54	-21.0	Ave
3359.0000	34.2	180	2.0	h	29.8	2.5	35.2	31.4	54	-22.6	Ave
4964.0000	49.9	30	2.0	h	32.5	3.1	34.8	50.7	74	-23.3	Peak

30MHz – 1GHz (RX Spurious Emission)

For Handset of EUT

	Indicated		Table	An	tenna	Сс	rrection Fac	tor	FCC 15 S	Subpart B
Frequency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBμV/m	Degree	Meter	H/V	dB	dB	dB	dBμV/m	dBμV/m	dB
538.30	46.5	200	2.5	Н	18.6	1.7	28.3	38.5	46	-7.5
496.60	45.9	180	1.5	Н	17.9	1.6	28.5	36.9	46	-9.1
538.30	43.4	160	1.0	V	18.6	1.7	28.3	35.4	46	-10.6
496.60	44.3	200	1.5	V	17.9	1.6	28.5	35.3	46	-10.7
516.90	43.5	260	2.0	Н	18.5	1.7	28.5	35.2	46	-10.8
516.90	41.2	180	1.5	V	18.5	1.7	28.5	32.9	46	-13.1
340.40	40.2	180	2.5	Н	15.4	1.3	27.3	29.6	46	-16.4
351.10	40.6	180	3.0	Н	14.9	1.3	27.3	29.5	46	-16.5
330.70	38.7	60	2.5	Н	15.4	1.3	27.4	28.0	46	-18.0
58.90	39.0	30	1.5	V	10.3	0.6	28.4	21.5	40	-18.5
352.30	38.5	200	1.0	V	14.9	1.3	27.3	27.4	46	-18.6

For Base of EUT

	Indicated		Table	An	tenna	Сс	rrection Fac	tor	FCC 15 S	Subpart B
Frequency	Ampl.	Direction	Height	Polar	Antenna	Cable Loss	Amp.	Corr. Ampl.	Limit	Margin
MHz	dBμV/m	Degree	Meter	H/V	dB	dB	dB	dBμV/m	dBμV/m	dB
113.40	45.1	180	3.0	Н	11.7	0.8	28.3	29.3	43.5	-14.2
175.50	41.5	180	2.5	Н	13.4	1.0	27.7	28.2	43.5	-15.3
466.63	39.7	180	1.5	Н	17.1	1.6	28.3	30.1	46	-15.9
82.80	41.3	200	2.0	Н	9.6	0.7	28.5	23.1	40	-16.9
113.40	42.2	100	1.5	V	11.7	0.8	28.3	26.4	43.5	-17.1
82.80	40.5	300	1.0	V	9.6	0.7	28.5	22.3	40	-17.7
175.50	38.9	200	1.0	V	13.4	1.0	27.7	25.6	43.5	-17.9
466.63	36.8	240	1.0	V	17.1	1.6	28.3	27.2	46	-18.8
134.40	38.4	60	1.5	V	12.6	0.8	28.1	23.8	43.5	-19.8

AVG = average

§15.247 (a) (1) - HOPPING CHANNEL SEPARATION

Standard Applicable

According to §15.247(a)(1), frequency hopping system shall have, hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies.

Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on a bench without connection to measurement instrument Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the Max-Hold function record the separation of two adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by SA MARK function, and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

Test Equipment

Manufacturer	Description	Model No.	Serial No.	Calibration Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	11/10/2005

^{*} **Statement of Traceability: BACL Corp.** attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	15° C
Relative Humidity:	46%
ATM Pressure:	1009 mbar

^{*}The testing was performed by Oscar Au on 2005-12-18.

Measurement Results

For Handset of EUT

Channel	Frequency	Channel
	MHz	Separation (MHz)
Low	2401	0.865
Mid	2441	0.865
High	2482	0.865

For Base of EUT

Channel	Frequency	Channel
	MHz	Separation (MHz)
Low	2401	0.862
Mid	2441	0.88
High	2482	0.88

Plots of Hopping Channel Separation

Please refer to the following plots.

Handset of EUT, Low Channel

Handset of EUT, Middle Channel

Handset of EUT, High Channel

Base of EUT, Low Channel

Base of EUT, Middle Channel

Base of EUT, High Channel

\$15.247(a)(1) - 20 dB BANDWIDTH

Standard Applicable

According to §15.247(a)(l), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Equipment Lists

Manufacturer	Description	Model	Serial Number	Cal. Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	11/10/2005

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Measurement Result

Environmental Conditions

Temperature:	15° C
Relative Humidity:	46%
ATM Pressure:	1009 mbar

The testing was performed by Oscar Au on 2005-12-18.

Test Result

For Handset of EUT

Channel	Frequency	Channel	Limit	Result
	MHz	Bandwidth (KHz)	(KHz)	
Low	2401	705.02	<865	Pass
Mid	2441	690.05	<865	Pass
High	2482	697.6	<865	Pass

For Base of EUT

Channel	Frequency	Channel	Limit	Result
	MHz	Bandwidth (KHz)	(KHz)	
Low	2401	682.75	<862	Pass
Mid	2441	679.22	<880	Pass
High	2482	693.14	<880	Pass

Handset of EUT, Low Channel

Handset of EUT, Mid. Channel

Handset of EUT, High Channel

Base of EUT, Low Channel

Base of EUT, Mid. Channel

Base of EUT, High Channel

§15.247 (a) (1) (iii) - NUMBER OF HOPPING FREQUENCY USED

Standard Applicable

According to §15.247(a)(1)(iii), frequency-hopping systems operating in the 2400-2483.5Mhz band shall use at least 15 hopping frequencies.

Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on the bench without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

Test Equipment

Manufacturer	Description	Model No. Serial No.		Calibration Date	
Agilent	Analyzer, Spectrum	E4446A	US44300386	11/10/2005	

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	15° C
Relative Humidity:	46%
ATM Pressure:	1009 mbar

^{*}The testing was performed by Oscar Au on 2005-12-18.

Measurement Results

For Handset of EUT

Measurement	Standard	Result
93	>15	Compliant

For Base of EUT

Measurement	Standard	Result
93	>15	Compliant

Plots of Number of Hopping Frequency

Please refer to the attached plots.

Handset of EUT

Base of EUT

§15.247 (a) (1) (iii) - DWELL TIME

Standard Applicable

According to §15.247 (a)(1)(iii), the average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.

Test Equipment

Manufacturer	Description	Model No. Serial No.		Calibration Date	
Agilent	Analyzer, Spectrum	E4446A	US44300386	11/10/2005	

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Environmental Conditions

Temperature:	15° C
Relative Humidity:	46%
ATM Pressure:	1009 mbar

^{*}The testing was performed by Oscar Au on 2005-12-18.

Measurement Results

For Handset of EUT

Channel	Frequency		Occupied time	Dwell Time	Limit
	MHz	uSec	per 1 Sec	Sec	Sec
Low	2401	788.7	38	0.030	0.4
Mid	2441	788.7	38	0.030	0.4
High	2482	788.7	38	0.030	0.4

For Base of EUT

Channel	Frequency		Occupied time	Dwell Time	Limit
	MHz	uSec	per 1 Sec	Sec	Sec
Low	2401	213	44.64	0.009	0.4
Mid	2441	214	44.64	0.009	0.4
High	2482	213	44.64	0.009	0.4

Plots of Dwell Time

Please refer the following plots.

Handset of EUT, Low Channel

Handset of EUT, Middle Channel

Handset of EUT, High Channel

Base of EUT, Low Channel

Base of EUT, Middle Channel

Base of EUT, High Channel

§15.247(b)(1) - PEAK OUTPUT POWER MEASUREMENT

Standard Applicable

According to §15.247(b) (1), For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Measurement Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to a spectrum analyzer.
- 3. Add a correction factor to the display.

Equipment Lists

Manufacturer	Description	Model	Serial Number	Cal. Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	11/10/2005

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Measurement Result

Environmental Conditions

Temperature:	15° C
Relative Humidity:	46%
ATM Pressure:	1009 mbar

The testing was performed by Oscar Au on 2005-12-18.

Output Power

For Handset of EUT

Channel	Frequency	Max Peal Pov		Limit	Result
	MHz	(dBm)	(mW)	(mW)	
Low	2401	12.11	16.26	1000	Pass
Mid	2441	13.42	21.98	1000	Pass
High	2482	14.42	27.67	1000	Pass

For Base of EUT

Channel	Frequency	Max Peal Pov		Limit	Result
	MHz	(dBm)	(mW)	(mW)	
Low	2401	15.12	32.51	1000	Pass
Mid	2441	15.31	33.96	1000	Pass
High	2482	15.36	34.36	1000	Pass

Handset of EUT, Low Channel

Handset of EUT, Mid. Channel

Handset of EUT, High Channel

Base of EUT, Low Channel

Base of EUT, Middle Channel

Base of EUT, High Channel

§15.247 (e)(i) - RF EXPOSURE

According to §15.247(b)(5) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

According to §1.1310 and §2.1091 RF exposure is calculated.

Limits for Maximum Permissive Exposure (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(minute)
	Limits for Ge	neral Population/Uncon	trolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	$*(180/f^2)$	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-15000	/	/	1.0	30

f = frequency in MHz

MPE Prediction

Predication of MPE limit at a given distance

Equation from page 18 of OET Bulletin 65, Edition 97-01

 $S = PG/4\pi R^2$

Where: S = power density

P = power input to antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R =distance to the center of radiation of the antenna

Base:

Maximum peak output power at antenna input terminal: 15.36 (dBm)

Maximum peak output power at antenna input terminal: 34.36 (mW)

Prediction distance: 20 (cm)

Predication frequency: 2400 (MHz)
Antenna Gain (typical): 0 (dBi)
Maximum antenna gain: 1 (numeric)

Power density at predication frequency at 20 cm: <u>0.0068(mW/cm^2)</u> MPE limit for uncontrolled exposure at prediction frequency: 1.0 (mW/cm^2)

Test Result

The predicted power density level at 20 cm is 0.006 mW/cm^2. This is below the uncontrolled exposure limit of 1mW/cm^2 at 2400 MHz. The EUT is used at least 20cm away from user's body. It is determined as mobile equipment.

^{* =} Plane-wave equivalent power density

TCB Exclusions List For Portable Device

According to §1.1310 and §2.1093 RF exposure is calculated.

Exposure category	low threshold	high threshold
general population	$(60/f_{GHz}) \text{ mW}, d < 2.5 \text{ cm}$ $(120/f_{GHz}) \text{ mW}, d \ge 2.5 \text{ cm}$	$(900/f_{GHz}) \text{ mW}, d < 20 \text{ cm}$
occupational	$(375/f_{\text{GHz}}) \text{ mW}, d < 2.5 \text{ cm}$ $(900/f_{\text{GHz}}) \text{ mW}, d \ge 2.5 \text{ cm}$	$(2250/f_{\text{GHz}}) \text{ mW}, d < 20 \text{ cm}$

For 2.4Ghz device, Low Threshold = 25 mW, High Threshold = 375mW

Duty cycle = On time / period

- = 785.4 uS / 210 mS
- = 0.00374 sec

EUT Average output power = Peak power * Duty Cycle = 27.67 * 0.00374 = 0.1035 mW.

Therefore, EUT is not subject to any SAR evaluation.

Plot showing period between each On time

Plot showing On time duration

§15.247(d) - 100 KHZ BANDWIDTH OF BAND EDGES

Standard Applicable

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Equipment Lists

Manufacturer	Description	Model	Serial Number	Cal. Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	11/10/2005

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Measurement Result

Environmental Conditions

Temperature:	15° C
Relative Humidity:	46%
ATM Pressure:	1009 mbar

The testing was performed by Oscar Au on 2005-12-18.

Please refer to following pages for plots of band edge.

Handset of EUT, Low Channel

Handset of EUT, High Channel

Base of EUT, Low Channel

Base of EUT, High Channel

§2.1051 - SPURIOUS EMISSION AT ANTENNA PORT

Standard Applicable

According to §15.209 (f) and §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit.

Measurement Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT on a bench without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the SA on Max-Hold Mode, and then keep the EUT in transmitting mode. Record all the signals from each channel until each one has been recorded.
- 4. Set the SA on View mode and then plot the result on SA screen.
- 5. Repeat above procedures until all frequencies measured were complete.

Equipment Lists

Manufacturer	Description	Model	Serial Number	Cal. Date
Agilent	Analyzer, Spectrum	E4446A	US44300386	11/10/2005

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed per the NVLAP requirements, traceable to the NIST.

Measurement Result

Please refer to following pages for plots of spurious emission.

Environmental Conditions

Temperature:	15° C
Relative Humidity:	45%
ATM Pressure:	1009 mbar

The testing was performed by Oscar Au on 2005-12-18.

For Handset of EUT

30 MHz-1000MHz, Low Channel

30 MHz- 1000MHz, Middle Channel

30 MHz- 1000MHz, High Channel

1GHz-3GHz, Low Channel

1GHz-3GHz, Middle Channel

1GHz-3GHz, High Channel

3GHz-5GHz, Low Channel

3GHz-5GHz, Middle Channel

3GHz-5GHz, High Channel

5GHz-10GHz, Low Channel

5GHz-10GHz, Middle Channel

5GHz-10GHz, High Channel

10 GHz -15GHz, Low Channel

10 GHz -15GHz, Middle Channel

10 GHz -15GHz, High Channel

15 GHz -20GHz, Low Channel

15 GHz -20GHz, Middle Channel

15 GHz -20GHz, High Channel

20 GHz -25GHz,Low Channel

20 GHz -25GHz, Middle Channel

20 GHz -25GHz, High Channel

For Base of EUT

30 MHz- 1000MHz, Low Channel

30 MHz- 1000MHz, Middle Channel

30 MHz- 1000MHz, High Channel

1 GHz-3GHz, Low Channel

1 GHz-3GHz, Middle Channel

1 GHz-3GHz, High Channel

3 GHz-5GHz, Low Channel

3 GHz- 5GHz, Middle Channel

3 GHz-5GHz, High Channel

5 GHz- 10 GHz, Low Channel

5 GHz- 10 GHz, Middle Channel

5 GHz- 10 GHz, High Channel

10 GHz- 15 GHz, Low Channel

10 GHz- 15 GHz, Middle Channel

10 GHz- 15 GHz, High Channel

15 GHz- 20 GHz, Low Channel

15 GHz- 20 GHz, Middle Channel

15 GHz- 20 GHz, High Channel

20 GHz- 25 GHz, Low Channel

20 GHz- 25 GHz, Middle Channel

20 GHz- 25 GHz, High Channel

