Integrantes:

Anderson Yavi Fernandez - RA:24025678

Gabriel Gonçalves Pires - RA: 24026518

Isabela Nunes Zeferino - RA:24026460

Kaique Neres de Oliveira - RA:24026134

Felipe Galdino de Carvalho - RA: 2402656

1. Conceito de Busca Gulosa

A busca gulosa é um algoritmo que toma decisões passo a passo, escolhendo em cada etapa a opção que parece ser a melhor no momento, segundo uma heurística definida.

- Vantagens: execução rápida, simplicidade e facilidade de implementação.
- Desvantagens: pode não encontrar a solução global ótima, pois considera apenas decisões locais.

2. Aplicação da busca gulosa nos Dados da Cannoli

A busca gulosa foi aplicada a diferentes heurísticas utilizando os databases de pedidos, clientes, campanhas e templates fornecidos pela Cannoli. Cada heurística busca otimizar um aspecto do processo de negócio.

3.1 Maximizar Receita (Pedidos)

Descrição: Seleciona os clientes com maior valor total de pedidos.

Objetivo: priorizar clientes que geram mais receita.

📊 Gráfico – Maximizar Receita (Pedidos))

Gráfico de Barras Verticais (clientes no eixo X, valor total dos pedidos no eixo Y).

• Bom para comparar valores de receita entre diferentes clientes.

3.2 Otimizar Tempo de Preparo (Pedidos)

Descrição: Ordena os pedidos(id) pelo menor tempo de preparação. Objetivo: agilizar processos e reduzir o tempo de entrega.

III Gráfico – Otimizar Tempo de Preparo (Pedidos)

Gráfico de Dispersão (pedido no eixo X, tempo de preparo no eixo Y).

• Bom para visualizar a distribuição dos tempos, identificar pedidos mais rápidos, mais lentos e possíveis outliers.

5.2 Tempo de Preparo (minutos) 5.1 5.0 4.9 4.8 200 600 2000 oog Pedido ID

Top 10 Pedidos por Menor Tempo de Preparo (Busca Gulosa)

3.3 Priorizar Clientes pelo Ticket Médio

Descrição: Calcula a média de gasto por cliente(id) e prioriza os que possuem ticket mais alto.

Objetivo: identificar clientes estratégicos de maior valor para campanhas e atendimento.

Gráfico – Ticket médio de clientes

Gráfico de Pizza (fatias representam a participação relativa do ticket médio por cliente/grupo).

• Bom para mostrar a proporção de participação e identificar clientes estratégicos de maior valor.

Distribuição do Ticket Médio entre os Top 10 Clientes

3.4 Selecionar Campanhas Mais Engajadas

Descrição: Conta a quantidade de respostas por campanha e prioriza as mais interativas. Objetivo: maximizar o impacto das campanhas de marketing.

🜃 Gráfico – Selecionar Campanhas Mais Engajadas

Gráfico de Barras Pirulito (Lollipop chart, campanhas no eixo X e respostas no eixo Y).

• Bom para destacar visualmente quais campanhas tiveram maior engajamento, facilitando a comparação.

Top 10 Campanhas Mais Engajadas (Gráfico Lollipop)

4. Resultados Esperados

A aplicação da busca gulosa permite:

- Ordenar clientes e pedidos de acordo com prioridades estratégicas.
- Otimizar tempo de produção e entrega.
- Identificar campanhas de maior engajamento.
- Gerar gráficos e listas que auxiliam na tomada de decisão de forma prática e visual.

5. Conclusão

A utilização da busca gulosa demonstra a aplicabilidade de algoritmos de IA em problemas reais de negócios, permitindo decisões mais eficientes e baseadas em dados concretos da empresa Cannoli.

Essa aplicação evidencia como heurísticas simples podem gerar resultados significativos em processos de priorização e otimização.

```
In [ ]: import pandas as pd
        import matplotlib.pyplot as plt
        import heapq
        # Carregar os datasets
        order df = pd.read csv("Order semicolon.csv", sep=";")
        campaign queue df = pd.read csv("CampaignQueue semicolon.csv", sep=";")
        campaign_df = pd.read_csv("Campaign_semicolon.csv", sep=";")
        customer df = pd.read csv("Customer semicolon.csv", sep=";")
        # 1. Busca Gulosa - Maximizar Receita (Pedidos)
        def busca_gulosa_receita(order_df, top_n=10):
            fila = []
             for _, row in order_df.iterrows():
                valor = row["totalAmount"] if not pd.isna(row["totalAmount"]) else 0
                 heapq.heappush(fila, (-valor, row["customerId"])) # negativo p/ maior valo
            resultado = []
             for _ in range(min(top_n, len(fila))):
                valor, cliente = heapq.heappop(fila)
                 resultado.append((cliente, -valor))
             return resultado
        top_receita = busca_gulosa_receita(order_df, 10)
        plt.figure(figsize=(8,4))
        clientes, valores = zip(*top_receita)
        plt.bar(clientes, valores, color='dodgerblue')
        plt.title("Top 10 Clientes por Receita [Busca Gulosa]")
        plt.xlabel("Clientes")
        plt.ylabel("Receita Total")
        plt.xticks(rotation=45)
        plt.show()
In [ ]: # 2. Busca Gulosa - Otimizar Tempo de Preparo (Pedidos)
        def busca_gulosa_preparo(order_df, top_n=10):
            fila = []
             for _, row in order_df.iterrows():
                 tempo = row["preparationTime"] if not pd.isna(row["preparationTime"]) else
                 heapq.heappush(fila, (tempo, row["id"]))
            resultado = []
             for in range(min(top n, len(fila))):
                tempo, pedido = heapq.heappop(fila)
                 resultado.append((pedido, tempo))
             return resultado
        top_preparo = busca_gulosa_preparo(order_df, 10)
        plt.figure(figsize=(8,4))
        pedidos, tempos = zip(*top_preparo)
        plt.scatter(pedidos, tempos, color='green')
        plt.title("Top 10 Pedidos por Menor Tempo de Preparo (Busca Gulosa)")
        plt.xlabel("Pedido ID")
        plt.ylabel("Tempo de Preparo (minutos)")
        plt.show()
In [ ]: # 3. Busca Gulosa - Priorizar Clientes pelo Ticket Médio
        def busca gulosa ticket(order df, top n=10):
             ticket_medio = order_df.groupby("customerId")["totalAmount"].mean().fillna(0)
```

```
fila = []
for cliente, valor in ticket_medio.items():
    heapq.heappush(fila, (-valor, cliente))

resultado = []
for _ in range(min(top_n, len(fila))):
    valor, cliente = heapq.heappop(fila)
    resultado.append((cliente, -valor))
return resultado

top_ticket = busca_gulosa_ticket(order_df, 10)
clientes, tickets = zip(*top_ticket)
plt.figure(figsize=(6,6))
plt.pie(tickets, labels=clientes, autopct="%.1f%%", startangle=90)
plt.title("Distribuição do Ticket Médio entre os Top 10 Clientes")
plt.show()
```

```
In [ ]: # 4. Busca Gulosa - Campanhas mais engajadas
        def busca_gulosa_campanhas(campaign_queue_df, top_n=10):
             engajamento = campaign queue df.groupby("campaignId")["response"].count()
             fila = []
             for campanha, resp in engajamento.items():
                 heapq.heappush(fila, (-resp, campanha))
            resultado = []
             for _ in range(min(top_n, len(fila))):
                 resp, campanha = heapq.heappop(fila)
                 resultado.append((campanha, -resp))
             return resultado
        top_campanhas = busca_gulosa_campanhas(campaign_queue_df, 10)
        campanhas, respostas = zip(*top_campanhas)
        plt.figure(figsize=(8,4))
        plt.stem(campanhas, respostas, linefmt='skyblue', markerfmt='o', basefmt=" ")
        plt.title("Top 10 Campanhas Mais Engajadas (Gráfico Lollipop)")
        plt.xlabel("ID da Campanha")
        plt.ylabel("Número de Respostas")
        plt.show()
```