Seminario de Investigación (Tesis III- segunda Parte)

Maestría en Ciencias: Administración (MBA)

DBA(c) Jhon Monroy Barrios

Universidad Nacional de San Agustín de Arequipa

2022

Motivación

Motivación

Motivación

¿Qué es la método científico?

Diseño

Diseño experiemntal

Consiste en manipular intencionalmente la variable independiente de un modelo para observar y medir sus efectos en la variable dependiente.

Tipos de Diseño experiemntal

- Diseño pre-experimental
- Diseño cuasi experimental
- Diseño experimental verdadero

Diseño no experiemntal o Ex post facto

Es aquel que se realiza sin manipular deliberadamente las variables. Se basa fundamentalmente en la observación de fenómenos tal y como se dan en su contexto natural para después analizarlo.

Diseño no experiemntal o Ex post facto

Se basa en categorías, conceptos, variables, sucesos, comunidades o contextos que ya ocurrieron o se dieron sin la intervención directa del investigador. Es por esto que también se le conoce como investigación **ex post facto** (hecho y variables que ya ocurrieron), al observar variables y relaciones entre estas en su contexto.

Diseño no experiemntal o Ex post facto

En estos tipos de investigación no hay condiciones ni estímulos a los cuales se expongan los sujetos del estudio. los sujetos son observados en su ambiente natural y dependiendo en que se va a centrar la investigación, existen diferentes tipos de diseños en las que se puede basar el investigador.

Tipos de diseño no experimentales

Diseños transaccionales

Cuando la investigación se centra en analizar cuál es el nivel o estado de una o diversas variables en un momento dado o bien en cuál es la relación entre un conjunto de variables en **un punto en el tiempo**, se utiliza el diseño transaccional. en este tipo de diseño se recolectan datos en un solo momento, en un tiempo único.

Diseños transaccionales

Pueden ser:

- Exploratorio
- Descriptivo
- Correlacional

Diseño longitudinal

Se emplea cuando el interés del investigador es analizar **cambios a través del tiempo** en determinadas variables o en relaciones entre estas. Recolectan datos a través del tiempo en puntos o periodos específicos, para hacer inferencias respecto al cambio, sus determinantes y consecuencias.

Diseño longitudinal

Pueden ser:

- De tendencia
- Evolutivo
- De Panel

Confiabilidad

Grado en que un instrumento produce resultados consistentes y coherentes. Es decir en que su aplicación repetida al mismo sujeto u objeto produce resultados iguales. Kerlinger (2002).

Ejemplo:

Si se midiera en este momento la temperatura ambiental usando un termómetro y este indicara que hay 22°C, un minuto más tarde 5°C, tres minutos después 40°C; dicho termómetro no sería confiable.

Intervalo al que pertenece el coeficiente alfa de Cronbach	Valoración de la fiabilidad de los ítems analizados
[0; 0,5[Inaceptable
[0,5;0,6[Pobre
[0,6;0,7[Débil
[0,7;0,8[Aceptable
[0,8;0,9[Bueno
[0,9;1]	Excelente

Validez

Grado en el que un instrumento en verdad mide la variable que se busca medir.

Ejemplo:

Un instrumento válido para medir la inteligencia debe medir la inteligencia y no la memoria.

0,53 a menos	Validez nula
0,54 a 0,59	Validez baja
0,60 a 0,65	Válida
0,66 a 0,71	Muy válida
0,72 a 0,99	Excelente validez
1.0	Validez perfecta

Distribucion normal

La distribución normal es una distribución con forma de campana donde las desviaciones estándar sucesivas con respecto a la media establecen valores de referencia para estimar el porcentaje de observaciones de los datos. Estos valores de referencia son la base de muchas pruebas de hipótesis, como las pruebas Z y t.

Distribución normal

Los datos se pueden "distribuir" (esparcir) de diferentes maneras.

www.maths is fun.com/data/standard-normal-distribution.html

Ejemplo 1

Base de datos de luz

Ejemplo 2

Base de datos de pescados

Ejemplo 3

Base de datos generada aleatoriamente

Homocedasticidad varianzas

Instrucciones para elegir entre pruebas estadísiticas para dos muestras:

- Las muestras son normales. Las muestras no son normales. Shapiro.test(), o visualmente qqnorm();qqplot().
- 2 Las varianzas son homogéneas (P mayor a 0.05). Pruebas de homocedasticidad.
- Student independientes of de Student independiente t.test(paired=F). Las muestras son dependientes T de Student pareada t.test(paired=T).
- 4 Las muestras son independientes. U de Mann Whitney (Prueba de suma de rangos de Wilcoxon) wilcox.test(paired=F). Las muestras no son dependientes ... Prueba de rangos con signo de Wilcoxon wilcox.text(paired=T).

Ejemplo 1: T de Student

Ejemplo 2: U de Mann-Whitney

Ejemplo 3: PRUEBA DE RANGOS CON SIGNO DE WILCOXON

Diagrama de caja y bigotes

Es un resumen gráfico que permite visualizar, para un conjunto de datos, la tendencia central, la dispersión y la presencia posible de datos atípicos. Para realizarlo se necesita calcular la mediana, el primer cuartil, y el tercer cuartil de los datos.

www.estadisticaparatodos.es/taller/graficas/cajas.html

ejemplo

Gracias!