Faculty of Computer Science & Engineering

Operating Systems

Nguyen Minh Tri nmtribk@hcmut.edu.vn 302-B9

Lab 9 - File System Interface

Objective

- Understand how Linux manage files on secondary storage devices.
- * Introduce i-node data structure.

File System

- * File System is used to control how data is stored in and retrieved from a storage medium. Particularly, file system are structure and logic rules used to manage groups of information and their identifiers.
- * In Linux, filesystem consist of files and directories.
 - * File? Directory?
- * File system could be divided into two categories:
 - * User data: "actual" data.
 - * Metadata: data describes data: superblocks, i-nodes, directories

Blocks

- * Storage space is divided into blocks (typically 4KB each).
 - * Just a software construct, different from hard disk sector size (typically 512 bytes).
- * Block size affects:
 - * Maximum file size
 - * Space utilization
 - * Performance
- * Blocks are grouped into block groups.

Superblocks

- * Superblocks store metadata of the file system.
 - * Number of blocks in the file system
 - * Number of free blocks
 - i-nodes per block group
 - * Blocks per block group
 - * ...
- * There are many copies of superblocks spread across the storage device.

- * An i-node represent information of an object in the file system.
 - File type
 - * Permissions
 - * File size
 - * Number of links
 - ...
- * Each i-node is identified by a unique i-node number within the file system.
- * Exercise: Use ls -ai command to find out i-node number of files and directories.

- * Exercise: Assume an i-node could hold up to
 - * 12 direct block pointers
 - * 1 indirect block pointer
 - * 1 double indirect block pointer
 - * 1 triple indirect block pointer.
 - * Block size is 4KB and each pointer occupies 4 bytes. What is the maximum size of a file represented by an i-node?

- * 1 blocks contains 4x1024 / 4 = 1024 direct block pointers.
- * A file could occupy up to 12 + 2^10 + 2^20 + 2^30 blocks
- * Maximum file size = $(12 + 2^10 + 2^20 + 2^30)$ x 4KB = 48KB + 4MB + 4GB + 4TB

Soft link vs Hard link

- * Hard link is a directory entry that associates a name with a file on a filesystem.
- * Soft link (symbolic link) is the "nickname" for any file that contains a reference to another file or directory in the form of an absolute or relative path.

Soft link vs Hard link

- * Exercise: distinguish soft link and hard link through running the following commands.
 - * \$ echo hello world > hello
 - * \$ In hello world
 - * \$ ln -s hello hw
 - * \$ rm hello
 - * \$ cat world
 - * \$ cat hw

End

Thanks!