Tema 8: Problemas de contorno multidimensionales. EDPs hiperbólicas. Métodos Numéricos Avanzados en Ingeniería

Máster en Ingeniería Matemática y Computación

Alicia Cordero, Neus Garrido, Juan R. Torregrosa

Contenido

- Problemas de contorno hiperbólicos
 - Método explícito
 - Método implícito
- Ecuación hiperbólica multidimensional
- 3 Ejercicios propuestos
- 4 Referencias

La ecuación de ondas

El ejemplo característico de un problema de contorno hiperbólico es la ecuación de ondas con numerosas aplicaciones en Física e Ingeniería. Una de las descripciones más simples es la dada por

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 \le x \le L, \quad t \ge 0,$$

 $u(0,t) = u(L,t) = 0, t > 0; \quad u(x,0) = f(x), u_t(x,0) = g(x), x \in [0,L]$

donde α es un número real en el que intervienen constantes físicas, f(x) y g(x) son funciones reales.

Dependiendo del tipo de diferencias finitas que utilicemos para aproximar las parciales segundas de la ecuación, obtendremos dos tipos de métodos numéricos:

- Métodos explícitos
- Métodos implícitos

Problemas hiperbólicos

La solución numérica de estos problemas consiste en transformarlos, mediante diferencias finitas, en sistemas de ecuaciones lineales o no lineales, cuyas incógnitas son valores aproximados de la solución en los puntos elegidos en el dominio espacial y temporal.

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 \le x \le L, \quad t \ge 0,$$

 $u(0,t) = u(L,t) = 0, t > 0; \quad u(x,0) = f(x), u_t(x,0) = g(x), x \in [0,L]$

Diferencias centrales en u_{tt} y u_{xx}

• Transformación del problema

$$\frac{u(x,t+k) - 2u(x,t) + (x,t-k)}{k^2} = \alpha^2 \frac{u(x+h,t) - 2u(x,t) + u(x-h,t)}{h^2},$$

• Discretización del problema Evaluando la expresión anterior en los puntos (x_i,t_j) , $i=1,2,\ldots,nx-1,\ j=1,\ldots,nt-1$,

$$\frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} = \alpha^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2}, \quad i = 1, \dots, nx-1, j = 1, \dots, nt-1.$$

Llamando $\lambda = \frac{k \alpha}{h}$ y llevando a la izquierda las incógnitas del instante mayor, resulta

$$u_{i,j+1} = 2(1-\lambda^2)u_{i,j} + \lambda^2(u_{i+1,j} + u_{i-1,j}) - u_{i,j-1}, \quad i = 1, \dots, nx-1, j = 1, \dots, nt-1.$$

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 \le x \le L, \quad t \ge 0,$$

$$u(0,t) = u(L,t) = 0, t > 0; \quad u(x,0) = f(x), u_t(x,0) = g(x), x \in [0,L]$$

Fijando el índice j y variando el índice $i, i=1,\dots,nx-1$, obtenemos la expresión matricial del método

$$u^{(j+1)} = Au^{(j)} - u^{(j-1)}, \quad j = 1, \dots, nt - 1,$$

donde

$$A = \begin{pmatrix} 2(1-\lambda^{2}) & \lambda^{2} & \cdots & 0 \\ \lambda^{2} & 2(1-\lambda^{2}) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 2(1-\lambda^{2}) \end{pmatrix}, \quad u^{(j)} = \begin{pmatrix} u_{1,j} \\ u_{2,j} \\ \vdots \\ u_{nx-1,j} \end{pmatrix},$$

$$u^{(0)} = \begin{pmatrix} u_{1,0} \\ u_{2,0} \\ \vdots \\ u_{nx-1,0} \end{pmatrix}, \quad u^{(1)} = \begin{pmatrix} u_{1,1} \\ u_{2,1} \\ \vdots \\ u_{nx-1,1} \end{pmatrix}$$

¿Cómo calculamos
$$u^{(1)}$$
, es decir, $u_{i,1}$, $i=1,2,\ldots,nx-1$?

• Utilizando la diferencia progresiva en la condición inicial $u_t(x,0) = g(x)$

$$\frac{u_{i,1} - u_{i,0}}{k} = g(x_i) \quad \Rightarrow \quad u_{i,1} = f(x_i) + kg(x_i), i = 1, 2, \dots, nx - 1$$

aproximación de orden 1, O(k).

• Utilizando el desarrollo de Taylor hasta orden 2

$$u(x, 0 + k) \approx u(x, 0) + u_t(x, 0)k + u_{tt}(x, 0)\frac{k^2}{2} = f(x) + kg(x) + \frac{k^2}{2}\alpha^2 u_{xx}(x, 0) = f(x) + kg(x) + \frac{k^2}{2}\alpha^2 f''(x),$$

o bien, si $f''(x) pprox rac{f(x+h)-2f(x)+f(x-h)}{h^2}$, evaluando en x_i , resulta

$$u_{i,1} = (1 - \lambda^2) f(x_i) + \frac{\lambda^2}{2} (f(x_{i+1}) + f(x_{i-1})) + kg(x_i), \ i = 1, 2, \dots, nx - 1$$

aproximación de orden 2, $O(k^2 + h^2)$.

Método explícito ya que calculamos la solución en el instante t_{j+1} a partir de las soluciones en los instantes t_j y t_{j-1} , directamente, sin resolver ningún sistema

Las características principales de este método son:

- El proceso es convergente si $\lambda \leq 1$,
 - El orden de convergencia es $O(k+h^2)$ ó $O(k^2+h^2)$, dependiendo de cómo calculemos $u^{(1)}$.

Algoritmo del método explícito para la ecuación de ondas

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 \le x \le L, \quad t \ge 0, u(0,t) = u(L,t) = 0, t > 0; \quad u(x,0) = f(x), u_t(x,0) = g(x), x \in [0,L]$$

- Definir los elementos $h=\frac{L}{nx}$, $k=\frac{T}{nt}$, $\lambda=\frac{k\alpha}{h}$.
- Introducimos la matriz tridiagonal

$$M = \begin{pmatrix} 1 & -1/2 & \cdots & 0 & 0 \\ -1/2 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1/2 \\ 0 & 0 & \cdots & -1/2 & 1 \end{pmatrix}$$

- Construimos la matriz $A = 2(I \lambda^2 M)$
- Introducimos las soluciones para t_0 , $u^{(0)}$ y para t_1 , $u^{(1)}$
- Para $j=1,2,\dots,nt-1$ $u^{(j+1)}=Au^{(j)}+u^{(j-1)}$

Ejemplo

$$u_{tt}(x,t) - 4u_{xx}(x,t) = 0, \quad 0 \le x \le 1, \ t \ge 0,$$

 $u(0,t) = u(1,t) = 0, t > 0; \quad u(x,0) = \sin \pi x, u_t(x,0) = 0 \ x \in [0,1]$

Solución exacta: $u(x,t) = \sin \pi x \cos 2\pi t$

Buscamos la solución aproximada en $T_{max}=1$ mediante el método explícito con:

(a)
$$h = 0.1$$
, $k = 0.05$

(b)
$$h = 0.1$$
, $k = 0.1$.

x_i	$u_{i,20}$	$ u(x_i,1)-u_{i,20} $	$u_{i,10}$	$ u(x_i,1)-u_{i,10} $
0.0	0			
0.1	0.309017			
0.2	0.587785			
0.3	0.809017			
0.4	0.951057			
0.5	1.000000			
0.6	0.951057			
0.7	0.809017			
0.8	0.587785			
0.9	0.309017			
1.0	0			

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 \le x \le L, \quad t \ge 0,$$

 $u(0,t) = u(L,t) = 0, t > 0; \quad u(x,0) = f(x), u_t(x,0) = g(x), x \in [0,L]$

Aproximamos u_{tt} mediante una diferencia central

$$u_{tt}(x_i, t_j) \rightarrow \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2}.$$

Aproximamos u_{xx} mediante la media entre la diferencia central en t_{j+1}

$$\frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{h^2}$$

y la diferencia central en t_{j-1}

$$\frac{u_{i+1,j-1} - 2u_{i,j-1} + u_{i-1,j-1}}{h^2}.$$

El esquema en diferencias que se obtiene es el siguiente:

$$u_{i,j+1} - 2u_{i,j} + u_{i,j-1} = \frac{\lambda^2}{2} \left[\left(u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1} \right) + \left(u_{i+1,j-1} - 2u_{i,j-1} + u_{i-1,j-1} \right) \right],$$

para $i = 1, 2, \dots, nx - 1, j = 1, 2, \dots, nt - 1,$

o bien, llamando $\lambda=\frac{\alpha k}{h}$ y llevando a la izquierda las variables correspondientes al instante más alto

$$(1+\lambda^2)u_{i,j+1} - \frac{\lambda^2}{2}(u_{i+1,j+1} + u_{i-1,j+1}) =$$

$$= 2u_{i,j} + \frac{\lambda^2}{2}(u_{i+1,j-1} + u_{i-1,j-1}) - (1+\lambda^2)u_{i,j-1},$$

para $i=1,2,\ldots,nx-1$, $j=1,2,\ldots,nt-1$,

Fijando j y escribiendo todas las ecuaciones para $i=1,2,\dots,nx-1$, obtenemos la expresión matricial del método

$$Au^{(j+1)} = 2u^{(j)} + Bu^{(j-1)}, \quad j = 1, 2, \dots, nt - 1,$$

donde

$$A = \begin{pmatrix} 1 + \lambda^2 & -\lambda^2/2 & 0 & \cdots & 0 & 0 \\ -\lambda^2/2 & 1 + \lambda^2 & -\lambda^2/2 & \cdots & 0 & 0 \\ 0 & -\lambda^2/2 & 1 + \lambda^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 + \lambda^2 & -\lambda^2/2 \\ 0 & 0 & 0 & \cdots & -\lambda^2/2 & 1 + \lambda^2 \end{pmatrix}, \quad u^{(j)} = \begin{pmatrix} u_{1,j} \\ u_{2,j} \\ \vdots \\ u_{nx-1,j} \end{pmatrix},$$

$$u^{(0)} = \begin{pmatrix} u_{1,0} \\ u_{2,0} \\ \vdots \\ u_{nx-1,0} \end{pmatrix}, \ u^{(1)} = \begin{pmatrix} u_{1,1} \\ u_{2,1} \\ \vdots \\ u_{nx-1,1} \end{pmatrix}$$

$$B = \begin{pmatrix} -(1+\lambda^2) & \lambda^2/2 & 0 & \cdots & 0 & 0\\ \lambda^2/2 & -(1+\lambda^2) & \lambda^2/2 & \cdots & 0 & 0\\ 0 & \lambda^2/2 & -(1+\lambda^2) & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & -(1+\lambda^2) & \lambda^2/2\\ 0 & 0 & 0 & \cdots & \lambda^2/2 & -(1+\lambda^2) \end{pmatrix}$$

Método implícito con el que calculamos la solución en el instante t_{j+1} resolviendo un sistema lineal que tiene como matriz de coeficientes A y cuyo término independiente es $2u^{(j)}+Bu^{(j-1)}$, que depende de la solución en los instantes t_j y t_{j-1}

Las características principales de este método son:

- El proceso es convergente sin necesidad de condiciones,
- El orden de convergencia es $O(k+h^2)$ ó $O(k^2+h^2)$, dependiendo de cómo calculemos $u^{(1)}$.

Algoritmo del método implícito para la ecuación de ondas

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,t), \quad 0 \le x \le L, \quad t \ge 0, u(0,t) = u(L,t) = 0, t > 0; \quad u(x,0) = f(x), u_t(x,0) = g(x), x \in [0,L]$$

- Definir los elementos $h=\frac{L}{nx}$, $k=\frac{T}{nt}$, $\lambda=\frac{k\alpha}{h}$.
- Introducimos la matriz tridiagonal

$$M = \left(\begin{array}{ccccc} 1 & -1/2 & \cdots & 0 & 0 \\ -1/2 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & -1/2 \\ 0 & 0 & \cdots & -1/2 & 1 \end{array}\right)$$

- Construimos la matriz $B = -I \lambda^2 M$
- Introducimos las soluciones para t_0 , $u^{(0)}$ y para t_1 , $u^{(1)}$
- Construimos los vectores

$$a = (1 + \lambda^{2})ones(nx - 1, 1)$$

$$b = -\frac{\lambda^{2}}{2}ones(nx - 2, 1)$$

$$c = b$$

 $\begin{array}{l} \bullet \text{ Para } j=1,2,\ldots,nt-1 \\ d=2u^{(j)}+Bu^{(j-1)} \\ u^{(j+1)}=Crout(a,b,c,d) \end{array}$

Ejemplo

$$u_{tt}(x,t) - u_{xx}(x,t) = 0, \quad 0 \le x \le 4, \ t \ge 0,$$

 $u(0,t) = u(1,t) = 0, t > 0; \quad u(x,0) = 2 - |x-2|, u_t(x,0) = 0 \ x \in [0,4]$

Buscamos la solución aproximada en $T_{max}=4$ mediante el método implícito con h=1 y k=0.5.

	x = 0	x = 1	x = 2	x = 3	x = 4
t=0	0.0	1.0000	2.0000	1.0000	0.0
t = 0.5	0.0	1.0000	1.7500	1.0000	0.0
t=1	0.0	0.9184	1.1837	0.9184	0.0
t=1.5	0.0	0.6926	0.4824	0.6926	0.0
t=2	0.0	0.2912	-0.1699	0.2912	0.0
t = 2.5	0.0	-0.2449	-0.6647	-0.2449	0.0
t=3	0.0	-0.7996	-0.9953	-0.7996	0.0
t = 3.5	0.0	-1.2231	-1.2214	-1.2231	0.0
t=4	0.0	-1.3966	-1.3981	-1.3966	0.0

Ecuación hiperbólica bidimensional

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,y,t) + \beta^2 u_{yy}(x,y,t), \quad (x,y) \in R = [a,b] \times [c,d], \ t \ge 0$$

$$u(a,y,t) = h1(y,t), \ u(b,y,t) = h2(y,t), \ u(x,c,t)) = h3(x,t), \ u(x,d,t)) = h4(x,t),$$

$$u(x,y,0) = f(x,y), u_t(x,y,0) = g(x,y), (x,y) \in R = [a,b] \times [c,d], \quad t \ge 0$$

$$u_{tt}(x,t) = \alpha^2 u_{xx}(x,y,t) + \beta^2 u_{yy}(x,y,t), \quad (x,y) \in R = [a,b] \times [c,d], \ t \ge 0$$

$$u(a,y,t) = h1(y,t), \ u(b,y,t) = h2(y,t), \ u(x,c,t)) = h3(x,t), \ u(x,d,t)) = h4(x,t)$$

$$u(x,y,0) = f(x,y), u_t(x,y,0) = g(x,y), (x,y) \in R = [a,b] \times [c,d], \quad t \ge 0$$

Diferencias centrales en u_{tt} , u_{xx} y u_{yy}

$$\frac{u(x,y,t+p) - 2u(x,y,t) + u(x,y,t-p)}{p^2} = \alpha^2 \frac{u(x+h,y,t) - 2u(x,y,t) + u(x-h,y,t)}{h^2} + \beta^2 \frac{u(x,y+k,t) - 2u(x,y,t) + u(x,y-k,t)}{k^2},$$

Discretización del problema Evaluando la expresión anterior en los puntos (x_i, y_j, t_l) , $i=1,2,\ldots,nx-1,\ j=1,2,\ldots,ny-1,\ l=0,1,\ldots,nt-1,\ u(x_i,y_j,t_l)=u_{i,j,l}$

$$\begin{array}{ccc} \frac{u_{i,j,l+1}-2u_{i,j,l}+u_{i,j,l-1}}{p^2} & = & \alpha^2\frac{u_{i+1,j,l}-2u_{i,j,l}+u_{i-1,j,l}}{h^2} \\ & & +\beta^2\frac{u_{i,j+1,l}-2u_{i,j,l}+u_{i,j-1,l}}{k^2}, \end{array}$$

 $i = 1, 2, \dots, nx - 1, j = 1, 2, \dots, ny - 1, l = 0, 1, \dots, nt - 1.$

Llamando $\lambda=\frac{\alpha p}{h}$, $\mu=\frac{\beta p}{k}$ y despejando las incógnitas del instante mayor

$$u_{i,j,l+1} = 2(1 - \lambda^2 - \mu^2)u_{i,j,l} + \lambda^2(u_{i+1,j,l} + u_{i-1,j,l}) + \mu^2(u_{i,j+1,l} + u_{i,j-1,l}) - u_{i,j,l-1},$$

$$i = 1, 2, \dots, nx - 1, j = 1, 2, \dots, ny - 1, l = 0, 1, \dots, nt - 1.$$

Para calcular cada matriz utilizamos las dos anteriores (en la variable temporal)

¿Cómo calculamos
$$U^{(1)}$$
, es decir, $u_{i,j,1}$, $i=1,2,\ldots,nx-1$, $j=1,2,\ldots,ny-1$?

• Utilizando la diferencia progresiva en la condición inicial $u_t(x,y,0) = g(x,y)$

$$\frac{u_{i,j,1} - u_{i,j,0}}{p} = g(x_i, y_j)$$

$$u_{i,j,1} = f(x_i, y_j) + pg(x_i, y_j), i = 1, 2, \dots, nx - 1, j = 1, 2, \dots, ny - 1$$

aproximación de orden 1 en la variable temporal, $O(h^2 + k^2 + p)$.

¿Cómo calculamos
$$U^{(1)}$$
, es decir, $u_{i,j,1}$, $i=1,2,\ldots,nx-1$, $j=1,2,\ldots,ny-1$?

• Utilizando el desarrollo de Taylor hasta orden 2

$$\begin{split} u(x,y,0+p) &\approx u(x,y,0) + u_t(x,y,0)p + u_{tt}(x,y,0)\frac{p^2}{2} \\ &= f(x,y) + pg(x,y) + \frac{p^2}{2}\left(\alpha^2 u_{xx}(x,y,0) + \beta^2 u_{yy}(x,y,0)\right) \\ &= f(x,y) + pg(x,y) + \frac{p^2}{2}\left(\alpha^2 f_{xx}(x,y) + \beta^2 f_{yy}(x,y)\right), \end{split}$$
 si $f_{xx}(x,y) \approx \frac{f(x+h,y) - 2f(x,y) + f(x-h,y)}{h^2}$ y
$$f_{yy}(x,y) \approx \frac{f(x,y+k) - 2f(x,y) + f(x,y-k)}{k^2} \text{ evaluando en } (x_i,y_j), \text{ resulta} \\ u_{i,j,1} &= (1-\lambda^2 - \mu^2)f(x_i,y_j) + pg(x_i,y_j) \\ &+ \frac{\lambda^2}{2}\left(f(x_{i+1},y_j) + f(x_{i-1},y_j)\right) + \frac{\mu^2}{2}\left(f(x_i,y_{j+1}) + g(x_i,y_{j-1})\right), \end{split}$$
 $i=1,2,\dots,nx-1, \text{ aproximación de orden 2, } O(k^2+h^2+p^2). \end{split}$

```
function [U] = exponda3D(CC1x,CC2x,CC1y,CC2y,CI1,CI2,a,b,nx,c,d,ny,Tmax,nt,alfa,beta)
hx=(b-a)/nx;
              x=a:hx:b:
hy=(b-a)/ny; y=c:hy:d;
k=Tmax/nt; t=0:k:Tmax;
U=zeros(nx+1,ny+1,nt+1);
for j=1:ny+1
    for 1=1:nt+1
        U(1,j,l)=feval(CC1x,y(j),t(l));
        U(nx+1,j,1)=feval(CC2x,y(j),t(1));
    end
end
for i=1:nx+1
    for 1=1:nt+1
        U(j,1,1)=feval(CC1y,x(j),t(1));
        U(j,ny+1,1)=feval(CC2y,x(j),t(1));
    end
end
for i=1:nx+1
    for j=1:ny+1
        U(i,j,1)=feval(CI1,x(i),y(j));
        M(i,j) = feval(CI2,x(i),y(j));
```

end end

```
lambda=k*alfa/hx:
mu=k*beta/hv:
for i=2:nx
        for j=2:ny
   U(i,j,2) = (1-lambda^2-mu^2)*U(i,j,1) + p * M(i,j)...
             +(lambda^2/2)*(U(i+1,j,1)+U(i-1,j,1))+...
             +(mu^2/2)*(U(i,j+1,1)+U(i,j-1,1));
       end
end
for 1=2:nt
       U(2:nx,2:ny,l+1) = 2*(1-lambda^2-mu^2)*U(2:nx,2:ny,l)...
                        +lambda^2*(U(3:nx+1,2:ny,1)+U(1:nx-1,2:ny,1))+...
                        mu^2*(U(2:nx,3:ny+1,1)+U(2:nx,1:ny-1,1))-U(2:nx,2:ny,1-1);
end
```

end

Ecuación hiperbólica bidimensional

Ejemplo

$$u_{tt}(x,t) - u_{xx}(x,t) - u_{yy}(x,t) = 0, (x,y) \in [0,2] \times [0,2], \ t \ge 0,$$

$$u(0,y,t) = u(4,y,t) = u(x,0,t) = u(x,4,t) = 1+t;$$

$$u(x,0) = \sin(\pi(x+y)), u_t(x,y,0) = 0$$

Resolvemos el problema para nx = ny = 4, nt = 11, Tmax = 2 con el método explícito:

```
>> U = exponda3D(@(y,t) 1+0*y+t, @(y,t) 1+0*y+t, @(x,t) 1+0*x+t,...
@(x,t) 1+0*x+t, @(x,y) sin(pi*(x+y)), @(x,y) 0*x+0*y,...
0,2,4,0,2,4,2,11,1,1)
```

Ecuación hiperbólica bidimensional

Solución en el último instante:

$$U(:,:,12) =$$

3.0000	3.0000	3.0000	3.0000	3.0000
3.0000	2.2882	4.0185	3.6566	3.0000
3.0000	4.0185	4.6079	3.9430	3.0000
3.0000	3.6566	3.9430	5.0250	3.0000
3.0000	3.0000	3.0000	3.0000	3.0000

Ecuación parabólica bidimensional

Problema 1 Consideremos la ecuación en derivadas parciales

$$u_{tt}(x,t) - u_{xx}(x,t) = 0, \quad x \in [0,\pi], \ t \ge 0,$$

con las condiciones de contorno e iniciales '

$$u(0,t) = u(\pi,t) = 0, \forall t, \quad u(x,0) = 3\sin x, \quad u_t(x,0) = 0, \quad x \in [0,\pi].$$

El instante máximo que nos interesa es T=2 y la solución exacta es $u(x,t)=3\cos t\sin x$. Se pide:

- Aproxima, mediante el método explícito, la solución del problema en el instante T, tomando $h=\pi/10$ y k=2/5. Determina el error exacto y representa dicho error.
- Aproxima, mediante el método implícito, la solución del problema en el instante T, tomando $h=\pi/10$ y k=2/5. Determina el error exacto y representa dicho error.

Problema 2 Consideremos la ecuación en derivadas parciales

$$u_{tt}(x,t) - u_{xx}(x,t) + xu_t(x,t) - u(x,t) = 0, \quad x \in [0,1], \ t \ge 0,$$

con condiciones de contorno Dirichlet homogéneas y condiciones iniciales $u(x,0) = \sin \pi x$, $u_t(x,0) = 0$, $x \in [0,1]$.

- Describe el método explícito de orden $O(k^2 + h^2)$, utilizando nx subintervalos en [0,1] y nt subintervalos en [0,T], donde T denota el instante máximo.
- A partir del esquema anterior, determina la solución aproximada del problema en T=1.5, tomando 10 subintervalos en el eje espacial y 1000 en el temporal.
- Repite los dos pasos anteriores utilizando un método implícito de orden $O(k^2+h^2)$ y los mismos subintervalos espaciales y temporales. Compara los resultados obtenidos.

• Problema 3 Consideremos la ecuación en derivadas parciales

$$u_{xx}(x,t) + 2u_{xt} - 3u_{tt}(x,t) = \cos \pi x0, \quad x \in [0,1], \ t \ge 0,$$

con las condiciones de contorno $u(0,t)=0, u_x(1,t)=2t, \forall t$ y la condición inicial

$$u(x,0) = \sin x, u_t(x,0) = x - 2x^2, x \in [0,1].$$

Se pide:

- Transforma el problema en un esquema en diferencias finitas explícito de orden $O(k+h^2)$. Describe la expresión matricial del mismo.
- Transforma el problema en un esquema en diferencias finitas implícito de orden $O(k+h^2)$. Describe la expresión matricial de dicho esquema.
- Aplica el esquema del apartado anterior para determinar la solución aproximada en el instante T=1, tomando h=0.1 y k=0.005.
- Representa la solución en los instantes $t=0.25,\,t=0.5,\,t=0.75$ y t=1.

Problema 4 Consideremos la ecuación en derivadas parciales

$$u_{tt}(x,t) = u_{xx} + e^{-t}, \quad x \in [0,\pi], \ t \ge 0,$$

con las condiciones de contorno $u(0,t)=e^{-t}, u_x(\pi,t)=-3\cos t, \forall t$ y la condición inicial

$$u(x,0) = 3\sin x + 1, u_t(x,0) = -1, x \in [0,1].$$

Se pide:

- Describe el método explícito de orden $O(k^2+h^2)$, utilizando nx subintervalos en $[0,\pi]$ y nt subintervalos en [0,T], donde T denota el instante máximo.
- ullet A partir del esquema anterior, determina la solución aproximada del problema en T=1.5, tomando 10 subintervalos en el eje espacial y 100 en el temporal.
- Repite los dos pasos anteriores utilizando un método implícito de orden $O(k^2+h^2)$ y los mismos subintervalos espaciales y temporales. Compara los resultados obtenidos.

• Método explícito Consideremos los pasos espacial y temporal $h=\pi/nx$ y k=Tmax/nt, lo que nos proporciona los puntos

$$x_i = 0 + ih$$
, $i = 0, 1, 2, \dots, nx - 1, nx$, $t_j = 0 + jk$, $j = 0, 1, \dots, nt - 1, nt$.

Diferencias finitas centrales para ambas derivadas parciales:

$$\frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{k^2} = \alpha^2 \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} + e^{-t_j},$$

 $i=1,\ldots,nx-1,nx;\ j=1,\ldots,nt-1.$ Llamando $\lambda=\frac{k\alpha}{h}$ y llevando a la izquierda las incógnitas del instante mayor, resulta

$$u_{i,j+1} = 2(1 - \lambda^2)u_{i,j} + \lambda^2(u_{i+1,j} + u_{i-1,j}) - u_{i,j-1} + k^2e^{-t_j},$$

 $i = 1, \dots, nx - 1, nx; j = 1, \dots, nt - 1.$

Modificamos expresión para i = nx:

$$u_{nx,j+1} = 2(1 - \lambda^2)u_{nx,j} + \lambda^2(u_{nx+1,j} + u_{nx-1,j}) - u_{nx,j-1} + k^2e^{-t_j}$$

con la segunda condición inicial

$$u_x(\pi, t_j) \approx \frac{u_{nx+1,j} - u_{nx-1,j}}{2h} = -3\cos t_j \rightarrow u_{nx+1,j} = u_{nx-1,j} - 6h\cos t_j.$$

Método explícito

Por tanto,

$$u_{nx,j+1} = 2(1-\lambda^2)u_{nx,j} + 2\lambda^2 u_{nx-1,j} - u_{nx,j-1} - 6h\lambda^2 \cos t_j + k^2 e^{-t_j}.$$

Como en cualquier problema hiperbólico, debemos completar la solución en el instante $t_1\,$

$$u_{i,1} = (1 - \lambda^2) f(x_i) + \frac{\lambda^2}{2} (f(x_{i+1}) + f(x_{i-1})) + kg(x_i) + e^{-t_1}$$
$$= (1 - \lambda^2) u_{i,0} + \frac{\lambda^2}{2} (u_{i+1,0} + u_{i-1,0}) + kg(x_i) + e^{-t_1}$$

Para i=nx, $u_{nx+1,0}=u_{nx-1,0}-6h\cos t_0$ y a partir de aquí:

$$u_{nx,1} = (1 - \lambda^2)u_{nx,0} + \lambda^2 u_{nx-1,0} - \frac{\lambda^2}{2}6h\cos t_0 + kg(x_{nx}) + e^{-t_1}.$$

Método implícito

$$\begin{aligned} u_{i,j+1} - 2u_{i,j} + u_{i,j-1} &= \frac{\lambda^2}{2} \left[(u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}) \right. \\ &+ \left. (u_{i+1,j-1} - 2u_{i,j-1} + u_{i-1,j-1}) \right] + k^2 e^{-t_j}, \end{aligned}$$
 para $i = 1, 2, \dots, nx - 1, nx, \ j = 1, 2, \dots, nt - 1,$
$$(1 + \lambda^2) u_{i,j+1} - \frac{\lambda^2}{2} (u_{i+1,j+1} + u_{i-1,j+1}) = \\ &= 2u_{i,j} + \frac{\lambda^2}{2} (u_{i+1,j-1} + u_{i-1,j-1}) - (1 + \lambda^2) u_{i,j-1} + k^2 e^{-t_j},$$
 para $i = 1, 2, \dots, nx - 1, nx, \ j = 1, 2, \dots, nt - 1.$

• Método implícito Para i = nx:

$$(1+\lambda^2)u_{nx,j+1} - \frac{\lambda^2}{2}(u_{nx+1,j+1} + u_{nx-1,j+1}) =$$

$$= 2u_{nx,j} + \frac{\lambda^2}{2}(u_{nx+1,j-1} + u_{nx-1,j-1}) - (1+\lambda^2)u_{nx,j-1} + k^2e^{-t_j},$$

Pero.

$$u_{nx+1,j+1} = u_{nx-1,j+1} - 6h\cos t_{j+1}$$
 y $u_{nx+1,j-1} = u_{nx-1,j-1} - 6h\cos t_{j-1}$.

Por tanto, la última ecuación resulta:

$$(1+\lambda^2)u_{nx,j+1} - \lambda^2 u_{nx-1,j+1} =$$

$$= 2u_{nx,j} + \lambda^2 u_{nx-1,j-1} - (1+\lambda^2)u_{nx,j-1} - 3h\lambda^2(\cos t_{j+1} + \cos t_{j-1}) + k^2 e^{-t_j}.$$

Matricialmente:

$$Au^{(j+1)} = 2u^{(j)} + Bu^{(j-1)} + b_i + c_j$$

$$A = \begin{pmatrix} 1+\lambda^2 & -\lambda^2/2 & 0 & \cdots & 0 & 0 \\ -\lambda^2/2 & 1+\lambda^2 & -\lambda^2/2 & \cdots & 0 & 0 \\ 0 & -\lambda^2/2 & 1+\lambda^2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1+\lambda^2 & -\lambda^2/2 \\ 0 & 0 & 0 & \cdots & -\lambda^2 & 1+\lambda^2 \end{pmatrix}, \quad u^{(j)} = \begin{pmatrix} u_{1,j} \\ u_{2,j} \\ u_{3,j} \\ \vdots \\ u_{nx-1,j} \\ u_{nx,j} \end{pmatrix},$$

$$B = \begin{pmatrix} -(1+\lambda^2) & \lambda^2/2 & 0 & \cdots & 0 & 0 \\ \lambda^2/2 & -(1+\lambda^2) & \lambda^2/2 & \cdots & 0 & 0 \\ 0 & \lambda^2/2 & -(1+\lambda^2) & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -(1+\lambda^2) & \lambda^2/2 \\ 0 & 0 & 0 & \cdots & \lambda^2 & -(1+\lambda^2) \end{pmatrix},$$

$$b_j = ke^{-t_j}[1, 1, 1, \dots, 1, 1]^T,$$

$$c_j = \begin{bmatrix} \frac{\lambda^2}{2}(e^{-t_{j+1}} + e^{-t_{j-1}}), 0, 0, \dots, 0, -3h\lambda^2(\cos t_{j+1} + \cos t_{j-1}) \end{bmatrix}^T$$

Referencias

 $\rm S$ Larsson, $\rm V$ Thomée, Partial differential equations with numerical methods, Springer, Berlin, 2016.

T. MYINT-U, L. DEBNATH, Partial differential equations for Scientist and engineers, Ed. North-Holland, New York, 1987.

R. Burden, J. Faires, Análisis Numérico, Ed. Thompson, 2002.

S.C. Chapra, R.P. Canale, *Métodos numméricos para ingenieros*, Ed. McGraw-Hill, México D.F., 2006.

L. LAPIDUS, G. PINDER, *Numerical solution of partial differential equations in science and engineering*, Ed. Wiley Interscience Publication, New York, 1999.

A. CORDERO, J.L. HUESO, E. MARTÍNEZ, J.R. TORREGROSA, *Problemas resueltos de métodos numéricos*, Ed. Thompson, 2006.

J. Mathews, K. Fink, *Métodos Numéricos con Matlab*, Ed. Prentice-Hall, 1999.