Wintersemester 2023/24

1. Übung zur Vertiefung Analysis

18. Oktober 2023

Abgabe bis spätestens Mittwoch 25. Oktober 2023 um 18 Uhr per WueCampus (maximal zu dritt).

Aufgabe 1.1 (Beweisen oder Widerlegen, 6 Punkte) Seien X, Y nichtleere Mengen, $f: X \to Y$ eine Abbildung und A, S σ -Algebren über X sowie B eine σ -Algebra über Y. Beweisen oder widerlegen Sie:

- (a) $\mathcal{A} \cup \mathcal{S}$ ist eine σ -Algebra über X.
- (b) $A \cap S$ ist eine σ -Algebra über X.
- (c) $A \setminus S$ ist eine σ -Algebra über X.
- (d) $f^{-1}(\mathcal{B}) = \{f^{-1}(B) \subseteq X \mid B \in \mathcal{B}\}$ ist eine σ -Algebra über X.
- (e) $f(A) = \{ f(A) \subseteq Y \mid A \in A \}$ ist eine σ -Algebra über Y.

Aufgabe 1.2 (erzeugte σ -Algebra, 7 Punkte)

(a) Sei $X := \mathbb{Q}$ und $\mathcal{A}_{\sigma}(M)$ die von $M := \{(a, b] \cap \mathbb{Q} \mid a, b \in \mathbb{Q}, a < b\}$ erzeugte σ -Algebra. Zeigen Sie, dass $\mathcal{A}_{\sigma}(M) = \mathcal{P}(\mathbb{Q})$ gilt.

Hinweis: Zeigen Sie $\{q\} \in \mathcal{A}_{\sigma}(M)$ für alle $q \in \mathbb{Q}$.

(b) Seien X, Y nichtleere Mengen und $f: X \to Y$ eine Abbildung. Zeigen Sie: Für $\mathcal{M} \subseteq \mathcal{P}(Y)$ gilt

$$f^{-1}\left(\mathcal{A}_{\sigma}(\mathcal{M})\right) = \mathcal{A}_{\sigma}\left(f^{-1}(\mathcal{M})\right).$$

Das Urbild von \mathcal{M} ist hierbei analog zum Urbild einer σ -Algebra definiert durch

$$f^{-1}(\mathcal{M}) := \{ f^{-1}(B) \subseteq X \mid B \in \mathcal{M} \}.$$

Hinweis: Betrachten Sie an geeigneter Stelle f_* (\mathcal{A}_{σ} ($f^{-1}(\mathcal{M})$)).

Aufgabe 1.3 (Borelmengen, 4 Punkte) Wir betrachten \mathbb{R}^n mit der Standardmetrik, also ausgestattet mit der Euklidischen Norm $\|\cdot\|$. Für r>0 und $x\in\mathbb{R}^n$ sei $B_r(x):=\{y\in\mathbb{R}^n\mid \|x-y\|< r\}$. Definiere außerdem $B_\mathbb{Q}:=\{B_r(q)\subseteq\mathbb{R}^n\mid \mathbb{Q}\ni r>0, q\in\mathbb{Q}^n\}$ und $B_\mathbb{R}:=\{B_r(x)\subseteq\mathbb{R}^n\mid r>0, x\in\mathbb{R}^n\}$.

(a) Zeigen Sie: Für jede offene Menge $A\subseteq \mathbb{R}^n$ gilt $A=\bigcup_{B_r(q)\in M}B_r(q)$ mit

$$M := \{B_r(q) \in B_{\mathbb{O}} \mid B_r(q) \subseteq A\}$$
.

(b) Folgern Sie nun $\mathcal{A}_{\sigma}(B_{\mathbb{Q}}) = \mathcal{A}_{\sigma}(B_{\mathbb{R}}) = \mathcal{B}^n$.

Aufgabe 1.4 (Mengenfunktionen, 4 Punkte) Sei X eine Menge, A eine σ -Algebra über X und $\mu: A \to [0, \infty]$ eine Mengenfunktion.

- (a) Sei μ σ -subadditiv, $B \in \mathcal{A}$ und definiere $\mu_B : \mathcal{A} \to [0, \infty], \mu_B(A) := \mu(A \cap B)$. Zeigen Sie, dass μ_B wohldefiniert und eine σ -subadditive Mengenfunktion ist.
- (b) μ erfülle die beiden Eigenschaften
 - 1. $\mu(A \cup B) = \mu(A) + \mu(B)$ für alle $A, B \in \mathcal{A}$ mit $A \cap B = \emptyset$,
 - 2. $\lim_{n\to\infty} \mu(A_n) = \mu(\bigcup_{n=1}^{\infty} A_n)$ für alle $(A_n) \subseteq \mathcal{A}$ mit $A_1 \subseteq A_2 \subseteq \cdots$.

Zeigen Sie, dass μ σ -additiv ist.