Problem Statement:

A banking institution requires actionable insights from the perspective of Mortgage-Backed Securities, Geographic Business Investment and Real Estate Analysis.

The objective is to identify white spaces/potential business in the mortgage loan. The mortgage bank would like to identify potential monthly mortgage expenses for each of region based on factors which are primarily monthly family income in a region and rented value of the real estate. Some of the regions are growing rapidly and Competitor banks are selling mortgage loans to subprime customers at a lower interest rate. The bank is strategizing for better market penetration and targeting new customers. A statistical model needs to be created to predict the potential demand in dollars amount of loan for each of the region in the USA. Also, there is a need to create a dashboard which would refresh periodically post data retrieval from the agencies. This would help to monitor the key metrics and trends.

The dashboard must demonstrate relationships and trends for the key metrics as follows: number of loans, average rental income, monthly mortgage and owner's cost, family income vs mortgage cost comparison across different regions. The metrics are described not to limit the dashboard to these few only.

about:srcdoc Page 1 of 50

Dataset Description

Following are the themes the fields fall under Home Owner Costs: Sum of utilities, property taxes.

- Second Mortgage: Households with a second mortgage statistics.
- Home Equity Loan: Households with a Home equity Loan statistics.
- Debt: Households with any type of debt statistics.
- Mortgage Costs: Statistics regarding mortgage payments, home equity loans, utilities and property taxes
- Home Owner Costs: Sum of utilities, property taxes statistics
- Gross Rent: Contract rent plus the estimated average monthly cost of utility features
- Gross Rent as Percent of Income Gross rent as the percent of income very interesting
- High school Graduation: High school graduation statistics.
- Population Demographics: Population demographic statistics.
- Age Demographics: Age demographic statistics.
- Household Income: Total income of people residing in the household.
- Family Income: Total income of people related to the householder

Project Task: Week 1

Import Required Libraries

```
import time
import random
from math import *
import operator
import pandas as pd
import numpy as np

import matplotlib.pyplot as plt
%matplotlib inline
from pandas.plotting import scatter_matrix
import seaborn as sns

import warnings
warnings.filterwarnings("ignore")
```

about:srcdoc Page 2 of 50

Data Import and Preparation:

Import data.

```
In [2]:
          df_train = pd.read_csv("train.csv")
In [3]:
          df_test = pd.read_csv("test.csv")
In [4]:
          df_train.head()
Out[4]:
               UID BLOCKID SUMLEVEL COUNTYID STATEID
                                                               state state_ab
                                                                                    city
                                                                                            ŗ
                                                                New
         0 267822
                         NaN
                                    140
                                                53
                                                         36
                                                                          NY
                                                                                Hamilton
                                                                                          Ham
                                                                York
                                                                                  South
         1 246444
                         NaN
                                    140
                                                141
                                                          18 Indiana
                                                                           IN
                                                                                          Rose
                                                                                  Bend
         2 245683
                        NaN
                                    140
                                                63
                                                             Indiana
                                                                           IN
                                                                                Danville
                                                                                           Dai
                                                              Puerto
            279653
                         NaN
                                    140
                                                127
                                                                               San Juan
                                                                                         Guay
                                                                Rico
                                                                                         Manh
            247218
                                    140
                                                161
                                                         20 Kansas
                                                                          KS Manhattan
                         NaN
        5 rows × 80 columns
In [5]:
          df train.shape
         (27321, 80)
Out[5]:
In [6]:
          df_test.head()
```

about:srcdoc Page 3 of 50

Out[6]:		UID	BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	
	0	255504	NaN	140	163	26	Michigan	MI	Detroit	
	1	252676	NaN	140	1	23	Maine	ME	Auburn	
	2	276314	NaN	140	15	42	Pennsylvania	PA	Pine City	
	3	248614	NaN	140	231	21	Kentucky	KY	Monticello	
	4	286865	NaN	140	355	48	Texas	ТХ	Corpus Christi	

5 rows × 80 columns

In [8]: df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27321 entries, 0 to 27320
Data columns (total 80 columns):

#	Column	Non-Null Count	Dtype
0	UID	27321 non-null	int64
1	BLOCKID	0 non-null	float64
2	SUMLEVEL	27321 non-null	int64
3	COUNTYID	27321 non-null	int64
4	STATEID	27321 non-null	int64
5	state	27321 non-null	object
6	state_ab	27321 non-null	object
7	city	27321 non-null	object
8	place	27321 non-null	object
9	type	27321 non-null	object
10	primary	27321 non-null	object
11	zip_code	27321 non-null	int64
12	area_code	27321 non-null	int64
13	lat	27321 non-null	float64
14	lng	27321 non-null	float64
15	ALand	27321 non-null	float64
16	AWater	27321 non-null	int64
17	pop	27321 non-null	int64
18	male_pop	27321 non-null	int64
19	female_pop	27321 non-null	int64
20	rent_mean	27007 non-null	float64
21	rent_median	27007 non-null	float64
22	rent_stdev	27007 non-null	float64
23	rent_sample_weight	27007 non-null	float64
24	rent_samples	27007 non-null	float64

about:srcdoc Page 4 of 50

08/08/22, 5:41 PM RealEstate

25	rent_gt_10	27007	non-null	float64
26	rent_gt_15	27007	non-null	float64
27	rent_gt_20	27007	non-null	float64
28	rent_gt_25	27007	non-null	float64
29	rent_gt_30	27007	non-null	float64
30	rent_gt_35	27007	non-null	float64
31	rent_gt_40	27007	non-null	float64
32	rent_gt_50	27007	non-null	float64
33	universe_samples	27321	non-null	int64
34	used_samples	27321	non-null	int64
35	hi mean	27053	non-null	float64
36	hi_median	27053	non-null	float64
37	hi stdev	27053	non-null	float64
38	hi sample weight	27053	non-null	float64
39	hi samples	27053	non-null	float64
40	family mean	27023	non-null	float64
41	family median	27023	non-null	float64
42	family_stdev	27023	non-null	float64
43	family sample weight	27023	non-null	float64
44	family samples	27023	non-null	float64
45	hc_mortgage_mean	26748	non-null	float64
46	hc mortgage median		non-null	float64
47	hc_mortgage_stdev	26748	non-null	float64
48	hc_mortgage_sample_weight		non-null	float64
49	hc mortgage samples		non-null	float64
50	hc mean		non-null	float64
51	hc median		non-null	float64
52	hc stdev		non-null	float64
53	hc samples		non-null	float64
54	hc_sample_weight		non-null	float64
55	home equity second mortgage		non-null	float64
56	second_mortgage		non-null	float64
57	home equity		non-null	
58	debt		non-null	float64
59	second_mortgage_cdf		non-null	
60	home equity cdf		non-null	float64
61	debt cdf		non-null	float64
62	hs degree		non-null	float64
63	hs_degree_male		non-null	float64
64	hs degree female		non-null	float64
65	male_age_mean		non-null	float64
66	male_age_median		non-null	float64
67	male_age_stdev		non-null	float64
68	male age sample weight		non-null	float64
69	male_age_samples		non-null	float64
70	female_age_mean		non-null	float64
71	female age median		non-null	float64
72	female_age_stdev		non-null	float64
73	female_age_stdev female_age_sample_weight		non-null	float64
73 74	female_age_samples		non-null	float64
7 4 75				float64
	pct_own		non-null	
76	married ann		non-null	float64
77 70	married_snp		non-null	float64
78 79	separated divorced		non-null	float64
79 d+vn/				float64
	es: float64(62), int64(12), ol	oject((<i>)</i>	
memo:	ry usage: 16.7+ MB			

about:srcdoc Page 5 of 50

```
In [9]:
```

```
df_test.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11709 entries, 0 to 11708
Data columns (total 80 columns):

Data #	<pre>columns (total 80 columns): Column</pre>	Non-Null Count	Dtype
0		11709 non-null	 int64
1	UID BLOCKID	0 non-null	float64
2	SUMLEVEL	11709 non-null	
3	COUNTYID	11709 non-null	
4	STATEID	11709 non-null	
5		11709 non-null	
6	state	11709 non-null	-
7	state_ab		5
	city	11709 non-null	-
8	place	11709 non-null	-
9	type	11709 non-null	object
10	primary	11709 non-null	object
11	zip_code	11709 non-null	int64
12	area_code	11709 non-null	int64
13	lat	11709 non-null	
14	lng	11709 non-null	
15	ALand	11709 non-null	int64
16	AWater	11709 non-null	
17	pop	11709 non-null	
18	male_pop	11709 non-null	
19	female_pop	11709 non-null	
20	rent_mean	11561 non-null	
21	rent_median	11561 non-null	
22	rent_stdev	11561 non-null	
23	rent_sample_weight	11561 non-null	
24	rent_samples	11561 non-null	
25	rent_gt_10	11560 non-null	
26	rent_gt_15	11560 non-null	
27	rent_gt_20	11560 non-null	
28	rent_gt_25	11560 non-null	
29	rent_gt_30	11560 non-null	
30	rent_gt_35	11560 non-null	
31	rent_gt_40	11560 non-null	float64
32	rent_gt_50	11560 non-null	float64
33	universe_samples	11709 non-null	int64
34	used_samples	11709 non-null	int64
35	hi_mean	11587 non-null	float64
36	hi_median	11587 non-null	float64
37	hi_stdev	11587 non-null	float64
38	hi_sample_weight	11587 non-null	float64
39	hi_samples	11587 non-null	float64
40	family_mean	11573 non-null	float64
41	family_median	11573 non-null	float64
42	family_stdev	11573 non-null	float64
43	family_sample_weight	11573 non-null	float64
44	family_samples	11573 non-null	float64
45	hc_mortgage_mean	11441 non-null	float64
46	hc_mortgage_median	11441 non-null	float64
47	hc_mortgage_stdev	11441 non-null	float64

about:srcdoc Page 6 of 50

```
hc_mortgage_sample_wc_,
hc_mortgage_samples 11441 non-null float64
hc_mean 11419 non-null float64
hc_median 11419 non-null float64
 48 hc_mortgage_sample_weight 11441 non-null float64
  49
  50 hc_mean
  51 hc median
  52 hc stdev
  53 hc_samples
                                                        11419 non-null float64
                                            11419 non-null float64
  54 hc_sample_weight
  55
        home equity second mortgage 11489 non-null float64
  56
                                                          11489 non-null float64
        second mortgage
  57 home_equity
                                                         11489 non-null float64
  58 debt
                                                         11489 non-null float64
                                                         11489 non-null float64
  59
        second_mortgage_cdf
 60 home_equity_cdf
                                                         11489 non-null float64
 60home_equity_cdf11489 non-null float6461debt_cdf11489 non-null float6462hs_degree11624 non-null float6463hs_degree_male11620 non-null float6464hs_degree_female11604 non-null float6465male_age_mean11625 non-null float6466male_age_stdev11625 non-null float6467male_age_sample_weight11625 non-null float6468male_age_samples11625 non-null float6469male_age_samples11625 non-null float6470female_age_mean11613 non-null float6471female_age_median11613 non-null float6472female_age_stdev11613 non-null float6473female_age_sample_weight11613 non-null float6474female_age_samples11613 non-null float6475pct_own11587 non-null float64
  75 pct own
                                                         11587 non-null float64
  76 married
                                                         11625 non-null float64
                                                          11625 non-null float64
  77 married snp
 78 separated
                                                         11625 non-null float64
                                                          11625 non-null float64
 79 divorced
dtypes: float64(61), int64(13), object(6)
memory usage: 7.1+ MB
```

Figure out the primary key and look for the requirement of indexing.

about:srcdoc Page 7 of 50

Out[11]:		BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place
	UID								
	267822	NaN	140	53	36	New York	NY	Hamilton	Hamilton
	246444	NaN	140	141	18	Indiana	IN	South Bend	Roseland
	2 rows ×	79 column	S						
In [12]:	df_tes	t.head(2)							
Out[12]:		BLOCKID	SUMLEVEL	COUNTYID	STATEID	state	state_ab	city	place
	UID								
	255504	NaN	140	163	26	Michigan	М	Detroit	Dearborn Heights City
	252676	NaN	140	1	23	Maine	ME	Auburn	Auburn City
	2 rows ×	79 column	S						

2 rows × 79 columns

Gauge the fill rate of the variables and devise plans for missing value treatment. Please explain explicitly the reason for the treatment chosen for each variable.

```
In [13]: # percentage of missing values in train set
    missing_list_train = df_train.isnull().sum()*100/len(df_train)
    missing_values_df_train = pd.DataFrame(missing_list_train, columns=['Percentase_values_df_train.sort_values(by = ['Percentage_of_missing_values'],
    missing_values_df_train[missing_values_df_train['Percentage_of_missing_values_values]]
Out[13]: Percentage_of_missing_values
```

Out[13]:	Percentage_of_missing_values
BLOCKID	100.000000
hc_samples	2.196113
hc_mean	2.196113
hc_median	2.196113
hc_stdev	2.196113
hc_sample_weight	2.196113
hc_mortgage_mean	2.097288

about:srcdoc Page 8 of 50

hc_mortgage_stdev	2.097288
hc_mortgage_sample_weight	2.097288
hc_mortgage_samples	2.097288
hc_mortgage_median	2.097288
home_equity_second_mortgage	1.672706
home_equity	1.672706
debt	1.672706
second_mortgage_cdf	1.672706
home_equity_cdf	1.672706
debt_cdf	1.672706
second_mortgage	1.672706
rent_gt_15	1.149299
rent_gt_50	1.149299
rent_gt_40	1.149299
rent_gt_35	1.149299
rent_gt_30	1.149299
rent_gt_25	1.149299
rent_gt_20	1.149299
rent_samples	1.149299
rent_gt_10	1.149299
rent_sample_weight	1.149299
rent_stdev	1.149299
rent_median	1.149299
rent_mean	1.149299
family_median	1.090736
family_samples	1.090736
family_sample_weight	1.090736
family_stdev	1.090736
family_mean	1.090736
hi_stdev	0.980930
hi_sample_weight	0.980930
hi_samples	0.980930
hi_median	0.980930
hi_mean	0.980930

about:srcdoc Page 9 of 50

pct_own	0.980930
hs_degree_female	0.816222
female_age_samples	0.753999
female_age_sample_weight	0.753999
female_age_stdev	0.753999
female_age_median	0.753999
female_age_mean	0.753999
hs_degree_male	0.732038
separated	0.699096
married_snp	0.699096
married	0.699096
divorced	0.699096
hs_degree	0.695436
male_age_stdev	0.691776
male_age_samples	0.691776
male_age_mean	0.691776
male_age_median	0.691776
male_age_sample_weight	0.691776

In [14]: # percentage of missing values in test set
 missing_list_test = df_test.isnull().sum()*100/len(df_train)
 missing_values_df_test = pd.DataFrame(missing_list_test, columns=['Percenta'
 missing_values_df_test.sort_values(by = ['Percentage_of_missing_values'], :
 missing_values_df_test[missing_values_df_test['Percentage_of_missing_values']]

Out [14]: Percentage_of_missing_values A2 857143

BLOCKID 42.857143	BLOCKID
hc_samples 1.061455	hc_samples
hc_mean 1.061455	hc_mean
hc_median 1.061455	hc_median
hc_stdev 1.061455	hc_stdev
c_sample_weight 1.061455	hc_sample_weight
_mortgage_mean 0.980930	hc_mortgage_mean
_mortgage_stdev 0.980930	hc_mortgage_stdev

about:srcdoc Page 10 of 50

hc_mortgage_sample_weight	0.980930
hc_mortgage_samples	0.980930
hc_mortgage_median	0.980930
home_equity_second_mortgage	0.805241
home_equity	0.805241
debt	0.805241
second_mortgage_cdf	0.805241
home_equity_cdf	0.805241
debt_cdf	0.805241
second_mortgage	0.805241
rent_gt_20	0.545368
rent_gt_50	0.545368
rent_gt_40	0.545368
rent_gt_35	0.545368
rent_gt_30	0.545368
rent_gt_25	0.545368
rent_gt_10	0.545368
rent_gt_15	0.545368
rent_samples	0.541708
rent_sample_weight	0.541708
rent_stdev	0.541708
rent_median	0.541708
rent_mean	0.541708
family_median	0.497786
family_samples	0.497786
family_sample_weight	0.497786
family_stdev	0.497786
family_mean	0.497786
hi_stdev	0.446543
hi_median	0.446543
pct_own	0.446543
hi_mean	0.446543
hi_sample_weight	0.446543
hi_samples	0.446543

about:srcdoc Page 11 of 50

hs_degree_female	0.384320
female_age_mean	0.351378
female_age_sample_weight	0.351378
female_age_median	0.351378
female_age_stdev	0.351378
female_age_samples	0.351378
hs_degree_male	0.325757
hs_degree	0.311116
married_snp	0.307456
male_age_samples	0.307456
male_age_sample_weight	0.307456
male_age_stdev	0.307456
male_age_median	0.307456
male_age_mean	0.307456
married	0.307456
separated	0.307456
divorced	0.307456

BLOCKID has 100% missing values in train set, and 42% in test set we can drop it, dropping SUMLEVEL & primary too, as they are of no use for further exploration.

```
In [15]:
          df_train.drop(columns=['BLOCKID','SUMLEVEL','primary'], inplace=True)
In [16]:
          df_test.drop(columns=['BLOCKID','SUMLEVEL','primary'], inplace=True)
In [17]:
          df_train.head(1)
Out[17]:
                  COUNTYID STATEID state state_ab
                                                       city
                                                               place type zip_code area_co
             UID
                                      New
                                                                                         3
          267822
                         53
                                 36
                                                NY Hamilton Hamilton
                                                                     City
                                                                             13346
                                      York
         1 rows × 76 columns
In [18]:
          df_test.head(1)
```

about:srcdoc Page 12 of 50

Out [18]:

COUNTYID STATEID state state_ab city place type zip_code area_(

UID

255504 163 26 Michigan MI Detroit Heights CDP 48239
City

1 rows × 76 columns

In [19]:

```
df_train.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 27321 entries, 267822 to 265371
Data columns (total 76 columns):

#	Column	Non-Null Count	Dtype
0	COUNTYID	27321 non-null	 int64
1	STATEID	27321 non-null	
2	state	27321 non-null	
3	state ab	27321 non-null	-
4	city	27321 non-null	-
5	place	27321 non-null	-
6	type	27321 non-null	-
7	zip_code	27321 non-null	-
8	area code	27321 non-null	int64
9	lat	27321 non-null	
10	lng	27321 non-null	float64
11	ALand	27321 non-null	float64
12	AWater	27321 non-null	int64
13	pop	27321 non-null	int64
14	male pop	27321 non-null	int64
15	female pop	27321 non-null	int64
16	rent_mean	27007 non-null	float64
17	rent_median	27007 non-null	float64
18	rent_stdev	27007 non-null	float64
19	rent_sample_weight	27007 non-null	float64
20	rent_samples	27007 non-null	float64
21	rent_gt_10	27007 non-null	float64
22	rent_gt_15	27007 non-null	float64
23	rent_gt_20	27007 non-null	float64
24	rent_gt_25	27007 non-null	float64
25	rent_gt_30	27007 non-null	float64
26	rent_gt_35	27007 non-null	float64
27	rent_gt_40	27007 non-null	float64
28	rent_gt_50	27007 non-null	float64
29	universe_samples	27321 non-null	int64
30	used_samples	27321 non-null	
31	hi_mean	27053 non-null	
32	hi_median	27053 non-null	float64
33	hi_stdev	27053 non-null	
34	hi_sample_weight	27053 non-null	
35	hi_samples	27053 non-null	
36	family_mean	27023 non-null	
37	family_median	27023 non-null	float64

about:srcdoc Page 13 of 50

```
38 family stdev
                              27023 non-null float64
    39
 40 family_samples
 41 hc_mortgage_mean
 42 hc mortgage median
 43 hc_mortgage_stdev
 44
 45
                              26721 non-null float64
 46
    hc mean
 47
    hc median
                             26721 non-null float64
 48 hc stdev
                             26721 non-null float64
                              26721 non-null float64
 49
    hc samples
 50 hc sample weight
                              26721 non-null float64
 51
    home equity second mortgage 26864 non-null float64
                     26864 non-null float64
                              26864 non-null float64
 52
    second_mortgage
 53
    home_equity
                            26864 non-null float64
26864 non-null float64
26864 non-null float64
 54 debt
 55 second_mortgage_cdf
 56 home equity cdf
26864 non-null float64
69 female_age_sample_weight 27115 non-null float64
70 female age samples 27115 non-null float64
 70 female_age_samples
                              27115 non-null float64
                              27053 non-null float64
 71 pct own
 72 married
                             27130 non-null float64
 73 married_snp
                             27130 non-null float64
                              27130 non-null float64
74 separated
75 divorced
                              27130 non-null float64
dtypes: float64(61), int64(10), object(5)
memory usage: 16.1+ MB
```

In [20]:

```
df_test.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 11709 entries, 255504 to 287763
Data columns (total 76 columns):
```

#	Column	Non-Null Count	Dtype
0	COUNTYID	11709 non-null	int64
1	STATEID	11709 non-null	int64
2	state	11709 non-null	object
3	state_ab	11709 non-null	object
4	city	11709 non-null	object
5	place	11709 non-null	object
6	type	11709 non-null	object
7	zip_code	11709 non-null	int64

about:srcdoc Page 14 of 50

	_			
8	area_code		non-null	
9	lat		non-null	
10	lng		non-null	
11	ALand		non-null	
12	AWater		non-null	
13	pop	11709	non-null	
14	male_pop	11709	non-null	int64
15	female_pop		non-null	
16	rent_mean		non-null	
17	rent_median		non-null	
18	rent_stdev	11561	non-null	float64
19	rent_sample_weight		non-null	
20	rent_samples	11561	non-null	float64
21	rent_gt_10	11560	non-null	float64
22	rent_gt_15	11560	non-null	float64
23	rent_gt_20	11560	non-null	float64
24	rent_gt_25	11560	non-null	float64
25	rent_gt_30	11560	non-null	float64
26	rent_gt_35	11560	non-null	float64
27	rent gt 40	11560	non-null	float64
28	rent_gt_50	11560	non-null	float64
29	universe_samples	11709	non-null	int64
30	used_samples	11709	non-null	int64
31	hi mean	11587	non-null	float64
32	hi median	11587	non-null	float64
33	hi stdev	11587	non-null	float64
34	hi_sample_weight		non-null	
35	hi samples		non-null	
36	family mean		non-null	
37	family median		non-null	
38	family stdev		non-null	
39	family sample weight		non-null	
40	family_samples		non-null	
41	hc_mortgage_mean		non-null	
42	hc_mortgage_median		non-null	
43	hc mortgage stdev		non-null	float64
44	hc_mortgage_sample_weight		non-null	
45	hc_mortgage_samples		non-null	
46	hc mean		non-null	
47	hc median		non-null	float64
48	hc_stdev		non-null	
49	hc samples		non-null	float64
50	hc sample weight		non-null	float64
51	home_equity_second_mortgage	11489		float64
52	second_mortgage		non-null	float64
53	home_equity		non-null	float64
54	debt		non-null	float64
55	second mortgage_cdf		non-null	float64
56	home_equity_cdf		non-null	float64
57	debt cdf		non-null	float64
58	hs degree		non-null	float64
59	hs degree male	11624		float64
60	hs degree female		non-null	float64
61	male age mean		non-null	float64
62	male_age_median		non-null	float64
63	male_age_stdev		non-null	float64
64	male_age_stdev male_age_sample_weight		non-null	float64
04	mare_age_sampre_wergnt	11023	11011-IIULL	110aC04

about:srcdoc Page 15 of 50

```
11625 non-null float64
 65 male age samples
 66 female age mean
                                11613 non-null float64
 67 female age median
                               11613 non-null float64
 68 female_age_stdev
                               11613 non-null float64
 69 female_age_sample_weight
                                11613 non-null float64
 70 female_age_samples
                                11613 non-null float64
 71 pct_own
                                11587 non-null float64
 72 married
                                11625 non-null float64
                                11625 non-null float64
 73 married snp
 74 separated
                                11625 non-null float64
75 divorced
                                11625 non-null float64
dtypes: float64(60), int64(11), object(5)
memory usage: 6.9+ MB
```

```
In [21]:
```

```
missing train cols = []
for col in df train.columns:
    if df train[col].isnull().sum() != 0:
        missing_train_cols.append(col)
print(missing_train_cols)
```

['rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight', 'rent_samp les', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35', 'rent_gt_40', 'rent_gt_50', 'hi_mean', 'hi_median', 'hi_stdev ', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median', 'famil y stdev', 'family sample weight', 'family samples', 'hc mortgage mean', 'hc _mortgage_median', 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mo rtgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_samp le_weight', 'home_equity_second_mortgage', 'second_mortgage', 'home_equity' , 'debt', 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree' , 'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_median', 'male age stdev', 'male age sample weight', 'male age samples', 'female age _mean', 'female_age_median', 'female_age_stdev', 'female_age_sample_weight' , 'female_age_samples', 'pct_own', 'married', 'married_snp', 'separated', ' divorced']

```
In [22]:
```

```
missing test cols = []
for col in df test.columns:
    if df_test[col].isnull().sum() != 0:
        missing test cols.append(col)
print(missing_test_cols)
```

about:srcdoc Page 16 of 50

['rent_mean', 'rent_median', 'rent_stdev', 'rent_sample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15', 'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35', 'rent_gt_40', 'rent_gt_50', 'hi_mean', 'hi_median', 'hi_stdev', 'hi_sample_weight', 'hi_samples', 'family_mean', 'family_median', 'family_stdev', 'family_sample_weight', 'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median', 'hc_mortgage_stdev', 'hc_mortgage_sample_weight', 'hc_mortgage_samples', 'hc_mean', 'hc_median', 'hc_stdev', 'hc_samples', 'hc_sample_weight', 'home_equity', 'debt', 'second_mortgage', 'second_mortgage', 'home_equity', 'debt', 'second_mortgage_cdf', 'home_equity_cdf', 'debt_cdf', 'hs_degree', 'hs_degree_male', 'hs_degree_female', 'male_age_mean', 'male_age_median', 'male_age_stdev', 'male_age_sample_weight', 'male_age_sample_weight', 'female_age_sample_weight', 'female_a

Treating missing values by replacing it by mean as all the missing value col variables are numerical

```
In [23]:
          for col in df_train.columns:
              if col in (missing train cols):
                  df train[col].replace(np.nan, df train[col].mean(), inplace=True)
In [24]:
          for col in df test.columns:
              if col in (missing test cols):
                  df_test[col].replace(np.nan, df_test[col].mean(), inplace=True)
In [25]:
          df train.isnull().sum().any()
         False
Out[25]:
In [26]:
          df test.isnull().sum().any()
         False
Out[26]:
```

Exploratory Data Analysis (EDA):

Perform debt analysis. You may take the following steps:

- Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent.
- Visualize using geo-map.
- You may keep the upper limit for the percent of households with a second mortgage to 50 percent

about:srcdoc Page 17 of 50

```
In [27]:
          from pandasql import sqldf
          q1 = "select place,pct_own,second_mortgage,lat,lng from df_train where pct
          pysqldf = lambda q: sqldf(q, globals())
          df_train_location_mort_pct=pysqldf(q1)
In [28]:
          df_train_location_mort_pct.head()
Out[28]:
                    place pct_own second_mortgage
                                                           lat
                                                                      Ing
             Worcester City
                           0.20247
                                            0.43363 42.254262 -71.800347
                            0.15618
          1
                Harbor Hills
                                            0.31818 40.751809 -73.853582
          2
                Glen Burnie 0.22380
                                            0.30212 39.127273 -76.635265
          3 Egypt Lake-leto
                                            0.28972 28.029063 -82.495395
                            0.11618
               Lincolnwood
                           0.14228
                                            0.28899 41.967289 -87.652434
In [29]:
           import plotly.express as px
          import plotly.graph_objects as go
```

about:srcdoc Page 18 of 50

In [106...

```
plt.figure(figsize=(15,30))
fig = go.Figure(data=go.Scattergeo(
    lat = df_train_location_mort_pct['lat'],
    lon = df_train_location_mort_pct['lng']),
fig.update layout(
    geo=dict(
        scope = 'north america',
        showland = True,
        landcolor = "rgb(212, 212, 212)",
        subunitcolor = "rgb(255, 255, 255)",
        countrycolor = "rgb(255, 255, 255)",
        showlakes = True,
        lakecolor = "rgb(255, 255, 255)",
        showsubunits = True,
        showcountries = True,
        resolution = 50,
        projection = dict(
            type = 'conic conformal',
            rotation lon = -100
        ),
        lonaxis = dict(
            showgrid = True,
            gridwidth = 0.5,
            range= [-140.0, -55.0],
            dtick = 5
        ),
        lataxis = dict (
            showgrid = True,
            gridwidth = 0.5,
            range= [ 20.0, 60.0 ],
            dtick = 5
        )
    ),
    title='Top 2,500 locations with second mortgage is the highest and per
fig.show()
```

about:srcdoc Page 19 of 50

<Figure size 1080x2160 with 0 Axes>

- Use the following bad debt equation:
 - Bad Debt = P (Second Mortgage ∩ Home Equity Loan)
 - Bad Debt = second_mortgage + home_equity home_equity_second_mortgage

```
In [31]: df_train["bad_debt"] = df_train['second_mortgage'] + df_train['home_equity
In [32]: plt.figure(figsize=(15,10))
    df_train['bins'] = pd.cut(df_train['bad_debt'],bins=[0,0.10,1], labels=["ledf_train.groupby(['bins']).size().plot(kind='pie', subplots=True,startangle)
```

about:srcdoc Page 20 of 50

• Create pie charts to show overall debt and bad debt

```
In [33]:
    plt.figure(figsize=(15,10))
    label=["Overall debt","Bad Debt"]
    values=[df_train["debt"].values.sum(),df_train["bad_debt"].values.sum()]
    plt.pie(values,labels=label,autopct='%1.1f%%',explode=(0,.1),startangle=90
    plt.show()
```

about:srcdoc Page 21 of 50

• Create Box and whisker plot and analyze the distribution for 2nd mortgage, home equity, good debt, and bad debt for different cities

```
In [34]: df_train['good_debt']=df_train['debt']-df_train['bad_debt']
In [35]: df_train["city"].value_counts().sort_values(ascending=False)[:100]
```

about:srcdoc Page 22 of 50

```
294
         Chicago
Out[35]:
          Brooklyn
                            282
         Los Angeles
                           243
         Houston
                           222
          Philadelphia
                           165
         Norfolk
                            32
         Dayton
                             31
          Staten Island
                             31
         Manchester
                             31
         Franklin
                            31
         Name: city, Length: 100, dtype: int64
```

In [36]:

```
plt.figure(figsize=(15,10))
import matplotlib.pyplot as plt
all_cities=df_train[['home_equity','second_mortgage','bad_debt', 'good_debt'
all_cities.plot.box(grid=True)
plt.title('All Cities')
plt.show()
```

<Figure size 1080x720 with 0 Axes>


```
In [37]:
```

```
plt.figure(figsize=(15,10))
Brooklyn=df_train[df_train['city']=='Brooklyn']
Brooklyn=Brooklyn[['home_equity','second_mortgage','bad_debt', 'good_debt'
Brooklyn.plot.box(grid=True)
plt.title('Brooklyn')
plt.show()
```

about:srcdoc Page 23 of 50

<Figure size 1080x720 with 0 Axes>


```
plt.figure(figsize=(15,10))
   Los_Angeles =df_train[df_train['city']=='Los Angeles']
   Los_Angeles=Los_Angeles[['home_equity','second_mortgage','bad_debt', 'good_Los_Angeles.plot.box(grid=True)
   plt.title('Los Angeles')
   plt.show()
```

<Figure size 1080x720 with 0 Axes>


```
In [39]:
    plt.figure(figsize=(15,10))
    Danville=df_train[df_train['city']=='Danville']
    Danville=Danville[['home_equity','second_mortgage','bad_debt', 'good_debt'
    Danville.plot.box(grid=True)
    plt.title('Danville')
    plt.show()
```

about:srcdoc Page 24 of 50

<Figure size 1080x720 with 0 Axes>


```
In [40]:
```

```
plt.figure(figsize=(15,10))
Hamilton=df_train[df_train['city']=='Hamilton']
Hamilton=Hamilton[['home_equity','second_mortgage','bad_debt', 'good_debt'
Hamilton.plot.box(grid=True)
plt.title('Hamilton')
plt.show()
```

<Figure size 1080x720 with 0 Axes>


```
In [41]:
          plt.figure(figsize=(15,10))
          Houston =df_train[df_train['city']=='Houston']
          Houston=Houston[['home_equity','second_mortgage','bad_debt', 'good_debt']]
          Houston.plot.box(grid=True)
          plt.title('Houston')
          plt.show()
```

about:srcdoc Page 25 of 50

<Figure size 1080x720 with 0 Axes>


```
In [42]:
```

```
plt.figure(figsize=(15,10))
Manchester =df_train[df_train['city']=='Manchester']
Manchester=Manchester[['home_equity','second_mortgage','bad_debt', 'good_de
Manchester.plot.box(grid=True)
plt.title('Manchester')
plt.show()
```

<Figure size 1080x720 with 0 Axes>

• Create a collated income distribution chart for family income, house hold income, and remaining income

about:srcdoc Page 26 of 50

```
In [43]:
    plt.figure(figsize=(15,10))

    plt.subplot(2,3,1)
    sns.distplot(df_train['hi_mean'])
    plt.title('Household Income')

    plt.subplot(2,3,2)
    sns.distplot(df_train['family_mean'])
    plt.title('Family Income')

    plt.subplot(2,3,3)
    sns.distplot(df_train['family_mean']-df_train['hi_mean'])
    plt.title('Remaining Income')
    plt.show()
```


Perform EDA and come out with insights into population density and age. You may have to derive new fields (make sure to weight averages for accurate measurements):

• Use pop and ALand variables to create a new field called population density

```
In [44]: df_train['pop_density']=df_train['pop']/df_train['ALand']

In [45]: df_test['pop_density']=df_test['pop']/df_test['ALand']

In [46]: plt.figure(figsize=(15,10))
    sns.distplot(df_train['pop_density'])
    plt.title('Population Density')
    plt.show() # Very less density is noticed
```

about:srcdoc Page 27 of 50

• Use male_age_median, female_age_median, male_pop, and female_pop to create a new field called median age

```
In [47]: df_train['age_median']=(df_train['male_age_median']+df_train['female_age_median']+df_test['age_median']=(df_test['male_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_median']+df_test['female_age_
```

• Visualize the findings using appropriate chart type

```
In [48]: df_train[['male_age_median','female_age_median','male_pop','female_pop','age_median','male_pop','age_median','male_pop','age_median','male_pop','age_median','male_pop','age_median','male_pop','age_median','male_pop','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','age_median','
```

Out[48]:		male_age_median	female_age_median	male_pop	female_pop	age_median
	UID					
	267822	44.00000	45.33333	2612	2618	44.666665
	246444	32.00000	37.58333	1349	1284	34.791665
	245683	40.83333	42.83333	3643	3238	41.833330
	279653	48.91667	50.58333	1141	1559	49.750000
	247218	22.41667	21.58333	2586	3051	22.000000

about:srcdoc Page 28 of 50

```
plt.figure(figsize=(15,10))
sns.distplot(df_train['age_median']);
plt.title("Median Age")
plt.show()
```



```
In [50]:
    plt.figure(figsize=(15,10))
    sns.boxplot(df_train['age_median']);
    plt.title('Population Density')
    plt.show()
```

about:srcdoc Page 29 of 50

Create bins for population into a new variable by selecting appropriate class interval so that the number of categories don't exceed 5 for the ease of analysis.

```
In [51]:
          df_train['pop_bins'] = pd.cut(df_train['pop'],bins=5,labels=['very_low',
In [52]:
          df_train['pop_bins'].value_counts()
                       27058
         very_low
Out[52]:
                         246
         low
         medium
                           9
                           7
         high
         very_high
                           1
         Name: pop bins, dtype: int64
```

 Analyze the married, separated, and divorced population for these population brackets

```
In [53]: df_train.groupby(by='pop_bins')[['married', 'separated', 'divorced']].count
```

about:srcdoc Page 30 of 50

Out [53]: married separated divorced

pop_bins			
very_low	27058	27058	27058
low	246	246	246
medium	9	9	9
high	7	7	7
very_high	1	1	1

```
In [54]:
    plt.figure(figsize=(15,10))
    df_train.groupby(by='pop_bins')[['married', 'separated', 'divorced']].count
```

<Figure size 1080x720 with 0 Axes>

• Visualize using appropriate chart type

In [55]: df_train.groupby(by='pop_bins')[['married', 'separated', 'divorced']].agg(

Out[55]:		married		separated		divorced	
		mean	median	mean	median	mean	median
	pop_bins						
	very_low	0.507548	0.524680	0.019126	0.013650	0.100504	0.096020
	low	0.584894	0.593135	0.015833	0.011195	0.075348	0.070045
	medium	0.655737	0.618710	0.005003	0.004120	0.065927	0.064890
	high	0.503359	0.335660	0.008141	0.002500	0.039030	0.010320
	verv high	0.734740	0.734740	0.004050	0.004050	0.030360	0.030360

about:srcdoc Page 31 of 50

```
In [56]:
    plt.figure(figsize=(15,10))
    df_train.groupby(by='pop_bins')[['married', 'separated', 'divorced']].agg(
```

<Figure size 1080x720 with 0 Axes>

In [57]: plt.figure(figsize=(15,10))
 df_train.groupby(by='pop_bins')[['married', 'separated', 'divorced']].plot

about:srcdoc Page 32 of 50

about:srcdoc Page 33 of 50

<Figure size 720x360 with 0 Axes>

Please detail your observations for rent as a percentage of income at an overall level, and for different states.

```
In [59]:
    rent_state_mean = df_train.groupby(by='state')['rent_mean'].agg(["mean"])
    rent_state_mean.head()
```

about:srcdoc Page 34 of 50

```
Out[59]:
                         mean
              state
           Alabama
                    774.004927
            Alaska 1185.763570
           Arizona
                   1097.753511
          Arkansas
                    720.918575
          California 1471.133857
In [60]:
           income_state_mean = df_train.groupby(by='state')['family_mean'].agg(["mean
           income_state_mean.head()
Out[60]:
                           mean
              state
           Alabama 67030.064213
            Alaska 92136.545109
           Arizona 73328.238798
          Arkansas 64765.377850
          California 87655.470820
In [61]:
           rent_per_of_income = rent_state_mean['mean']/income_state_mean['mean']
In [62]:
           rent_per_of_income
```

about:srcdoc Page 35 of 50

Out[62]:	state	
001[02].	Alabama	0.011547
	Alaska	0.012870
	Arizona	0.014970
	Arkansas	0.011131
	California	0.016783
	Colorado	0.013529
	Connecticut	0.012637
	Delaware	0.012929
	District of Columbia	0.013198
	Florida	0.015772
	Georgia	0.013161
	Hawaii	0.018224
	Idaho	0.011957
	Illinois	0.012620
	Indiana	0.012022
	Iowa	0.009940
	Kansas	0.011066
	Kentucky	0.011068
	Louisiana	0.012160
	Maine	0.011674
	Maryland	0.013947
	Massachusetts	0.012312
	Michigan	0.012766
	Minnesota	0.011058
	Mississippi	0.012428
	Missouri	0.011670
	Montana	0.010789
	Nebraska	0.010912
	Nevada	0.015242
	New Hampshire	0.011949
	New Jersey	0.013678
	New Mexico	0.012330
	New York	0.014410
	North Carolina	0.012166
	North Dakota	0.009303
	Ohio	0.011401
	Oklahoma	0.011632
	Oregon	0.013253
	Pennsylvania	0.011902
	Puerto Rico	0.015133
	Rhode Island	0.012292
	South Carolina	0.012657
	South Dakota	0.009192
	Tennessee	0.012286
	Texas	0.012899
	Utah	0.013192
	Vermont	0.011743
	Virginia	0.014050
	Washington	0.013352
	West Virginia	0.010341
	Wisconsin	0.011189
	Wyoming	0.010785
	Names mean dtunes floa	+61

Name: mean, dtype: float64

about:srcdoc Page 36 of 50

```
In [63]: sum(df_train['rent_mean'])/sum(df_train['family_mean'])
Out[63]: 0.013358170721473864
```

Perform correlation analysis for all the relevant variables by creating a heatmap. Describe your findings.

In [64]: df_train[['hc_mortgage_mean','ALand','pop','rent_mean','hi_mean','hc_mean'

Out[64]:		hc_mortgage_mean	ALand	рор	rent_mean	hi_mean	hc_
	hc_mortgage_mean	1.000000	-0.056334	0.110659	0.750081	0.763128	0.7
	ALand	-0.056334	1.000000	-0.033743	-0.067169	-0.028435	-0.0
	рор	0.110659	-0.033743	1.000000	0.160590	0.166913	0.0
	rent_mean	0.750081	-0.067169	0.160590	1.000000	0.753920	0.59
	hi_mean	0.763128	-0.028435	0.166913	0.753920	1.000000	0.6
	hc_mean	0.795012	-0.056723	0.051515	0.594499	0.675090	1.00
	family_mean	0.759805	-0.027897	0.128173	0.701019	0.960624	0.6
	hs_degree	0.333336	-0.002293	0.049238	0.362944	0.580284	0.3
	debt	0.390902	-0.115591	0.231013	0.432481	0.418408	0.29
	home_equity	0.466481	-0.079494	0.099352	0.408837	0.469863	0.3

In [65]:
 plt.figure(figsize=(17,7))
 sns.heatmap(df_train[['hc_mortgage_mean','ALand','pop','rent_mean','hi_mean
 plt.show()

'rent_mean', 'hi_mean', 'hc_mean', 'family_mean' has a good corr with our target variable - hc_mortgage_mean

about:srcdoc Page 37 of 50

Project Task: Week 2

Data Pre-processing:

The economic multivariate data has a significant number of measured variables. The goal is to find where the measured variables depend on a number of smaller unobserved common factors or latent variables.

Each variable is assumed to be dependent upon a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as "specific variance" because it is specific to one variable. Obtain the common factors and then plot the loadings. Use factor analysis to find latent variables in our dataset and gain insight into the linear relationships in the data.

Following are the list of latent variables:

Highschool graduation rates

Median population age

Second mortgage statistics

Percent own

Bad debt expense

```
In [66]:
    from sklearn.decomposition import FactorAnalysis
    from factor_analyzer import FactorAnalyzer

In [67]:
    df_train.describe()
```

about:srcdoc Page 38 of 50

zip_code area_code

lat

Out [67]: COUNTYID STATEID

	ount	27321.000000	07004 000000	07004 000000			27321.0000
n		2/321.000000	27321.000000	27321.000000	27321.000000	27321.000000	27021.000
	nean	85.646426	28.271806	50081.999524	596.507668	37.508813	-91.2883
	std	98.333097	16.392846	29558.115660	232.497482	5.588268	16.343
	min	1.000000	1.000000	602.000000	201.000000	17.929085	-165.4538
	25%	29.000000	13.000000	26554.000000	405.000000	33.899064	-97.8160
	50%	63.000000	28.000000	47715.000000	614.000000	38.755183	-86.5543
	75%	109.000000	42.000000	77093.000000	801.000000	41.380606	-79.7825
	max	840.000000	72.000000	99925.000000	989.000000	67.074017	-65.379
8	rows	× 75 columns					
: [
	ta =	FactorAnalyz	er(n_factors	5=5)			
: .	fa fi	+ +ransform(df train sel	Lect_dtypes(e	valude=('obi	ect' 'catego	rv'\\\
	1 a •11	c_cransform(ur_crain.se	recc_ucypes(e	ACTUGE (OD)	ecc , catego.	<u> </u>
a	rray	([[-0.3993303			896, -1.0869		55193],
		-	•	893, -0.12202 669, 0.49469	•	•	86921],
		[0.025559(71, 1.215000	009, 0.49409	33 , -0.3030	2019, -0.200	40013],
				548, 0.81319			73314],
		г 2 517316	72 2 10777				
						024 , -1.630	
				987, 1.14/59 995, -1.63171			
	fa.lo						
a		[-0.3310102	21, -0.235429	995, -1.63171	941, 0.1782	4411, -0.122	68557]])
. a		[-0.3310102 padings_ ([[-0.1148248	21, -0.235429 37, 0.01936		941, 0.1782 45 , -0.0616	9006, 0.038	12136],
a		[-0.3310102 padings_ ([[-0.1148248 [-0.1104089 [-0.0891633	37, 0.01936; 99, 0.01429; 3, 0.04864;	373, -0.02455 921, 0.02466 149, -0.12749	941, 0.1782 45 , -0.0616 482, -0.1479 732, -0.0493	9006, 0.038 6223, 0.112 1909, -0.118	12136], 58263], 05326],
a		[-0.3310102 padings_ ([[-0.1148248 [-0.1104089 [-0.0891633 [0.0161482	37, 0.019363 99, 0.014293 3, 0.048643 23, 0.018823	373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574	941, 0.1782 45 , -0.0616 482, -0.1479 732, -0.0493 863, 0.0265	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009	12136], 58263], 05326], 73247],
a		[-0.3310102 padings_ ([[-0.1148248 [-0.1104089 [-0.0891633 [0.0161482 [0.0906344	21, -0.235429 37, 0.019363 99, 0.014299 3, 0.04864 23, 0.018829 46, -0.09926	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333	941, 0.1782 45 , -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146	12136], 58263], 05326], 73247], 41972],
		[-0.3310102 padings_ ([[-0.1148248 [-0.1104089 [-0.0891633 [0.0161482 [0.0906344 [-0.0054123	21, -0.235429 37, 0.019363 99, 0.014299 3, 0.048643 23, 0.018828 46, -0.099263 31, -0.038610	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121	12136], 58263], 05326], 73247], 41972], 6676],
a		[-0.3310102 padings_ ([[-0.1148248 [-0.1104089 [-0.0891633 [0.0161482 [0.0906344 [-0.0054123 [-0.0418614	21, -0.235429 37, 0.019363 99, 0.014299 3, 0.04864 23, 0.018829 46, -0.099263 31, -0.038610 43, -0.020249	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064	12136], 58263], 05326], 73247], 41972], 6676], 39296],
. a		[-0.3310102 padings_ ([[-0.1148248 [-0.1104089 [-0.0891633] [0.0161482 [0.0906344 [-0.0054123] [-0.0418614 [-0.001986]	37, 0.01936; 39, 0.01429; 3, 0.04864; 23, 0.01882; 46, -0.09926; 31, -0.03861; 43, -0.02024; 76, -0.01501;	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025	12136], 58263], 05326], 73247], 41972], 6676], 39296],
. a		[-0.3310102 padings	21, -0.235429 37, 0.019363 39, 0.014299 3, 0.048643 23, 0.018823 46, -0.099263 31, -0.038610 43, -0.020249 76, -0.015016 46, 0.955383 02, 0.916599	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428],
		[-0.3310102 padings_ ([[-0.1148248 [-0.1104089 [-0.0891633 [0.0161482 [0.0906344 [-0.0054123 [-0.0418614 [-0.0019863 [0.0764454 [0.0711630 [0.0780553	21, -0.235429 37, 0.019363 99, 0.014299 3, 0.04864 23, 0.018829 46, -0.099263 31, -0.038610 43, -0.020249 76, -0.015010 46, 0.955383 02, 0.916599 18, 0.94595	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342 683, -0.05801	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279 542, 0.0142	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052 32, -0.052	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428], 83109], 51385],
a		[-0.3310102 padings	21, -0.235429 37, 0.019363 99, 0.014299 3, 0.04864 23, 0.018823 46, -0.099263 31, -0.038616 43, -0.020249 76, -0.015016 46, 0.955383 02, 0.916599 18, 0.945956 05, 0.007859	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342 683, -0.05801 577, -0.03725	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279 542, 0.0142 023, 0.1138	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052 32, -0.052 7679, -0.144	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428], 83109], 51385], 04771],
. a		[-0.3310102 padings	21, -0.235429 37, 0.019363 99, 0.014299 3, 0.018823 46, -0.099263 31, -0.038610 43, -0.020249 46, 0.955383 02, 0.916599 18, 0.945950 05, 0.003943	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342 683, -0.05801 577, -0.03725 816, -0.04466	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279 542, 0.0142 023, 0.1138 907, 0.1081	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052 32, -0.052 7679, -0.144 7145, -0.155	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428], 83109], 51385], 04771], 91822],
a		[-0.3310102 padings	21, -0.235429 37, 0.019363 39, 0.014299 3, 0.048643 23, 0.018823 46, -0.099263 31, -0.038610 43, -0.020249 76, -0.015016 46, 0.955383 02, 0.916599 18, 0.945950 18, 0.945950 25, 0.003943 263, 0.026883	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342 683, -0.05801 577, -0.03725 816, -0.04466 275, -0.02517	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279 542, 0.0142 023, 0.1138 907, 0.1081 887, 0.1029	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052 32, -0.052 7679, -0.144 7145, -0.155 2387, 0.068	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428], 83109], 51385], 04771], 91822], 83075],
		[-0.3310102 padings	21, -0.235429 37, 0.019363 99, 0.014299 3, 0.04864 23, 0.018829 36, -0.09926 31, -0.038610 33, -0.020249 76, -0.015010 36, 0.955383 02, 0.916599 18, 0.945950 05, 0.007859 25, 0.003948 26, 0.026883 27, 0.026883 28, 0.343018	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342 683, -0.05801 577, -0.03725 816, -0.04466 275, -0.02517 813, -0.51395	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279 542, 0.0142 023, 0.1138 907, 0.1081 887, 0.1029 397, -0.0439	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052 32, -0.052 7679, -0.144 7145, -0.155 2387, 0.068 4071, 0.315	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428], 83109], 51385], 04771], 91822], 83075], 30346],
a		[-0.3310102 padings	21, -0.235429 37, 0.019363 99, 0.014299 3, 0.048643 23, 0.018823 46, -0.099263 31, -0.038610 43, -0.020249 46, -0.015010 46, 0.955383 0.945950 0.916599 18, 0.945950 0.5, 0.003943 0.343013 25, 0.44469	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342 683, -0.05801 577, -0.03725 816, -0.04466 275, -0.02517 813, -0.51395 406, -0.67418	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279 542, 0.0142 023, 0.1138 907, 0.1081 887, 0.1029 397, -0.0439 609, -0.0286	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052 32 , -0.052 7679, -0.144 7145, -0.155 2387, 0.068 4071, 0.315 5328, 0.332	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428], 83109], 51385], 04771], 91822], 83075], 30346], 89811],
		[-0.3310102 padings	21, -0.235429 37, 0.019369 39, 0.014299 3, 0.018829 46, -0.099269 31, -0.038610 43, -0.020249 46, 0.955389 02, 0.916599 18, 0.945950 05, 0.007859 05, 0.003949 03, 0.026889 0343019 05, 0.444699 032, 0.33489	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342 683, -0.05801 577, -0.03725 816, -0.04466 275, -0.02517 813, -0.51395	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279 542, 0.0142 023, 0.1138 907, 0.1081 887, 0.1029 397, -0.0439 609, -0.0286 187, 0.4404	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052 32, -0.052 7679, -0.144 7145, -0.155 2387, 0.068 4071, 0.315	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428], 83109], 51385], 04771], 91822], 83075], 30346], 89811], 8257],
a		[-0.3310102 padings	21, -0.235429 37, 0.019369 39, 0.014299 3, 0.018829 46, -0.099269 31, -0.038610 43, -0.020249 46, 0.955389 02, 0.916599 18, 0.945950 05, 0.007859 05, 0.003949 03, 0.026889 0343019 05, 0.444699 032, 0.33489	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342 683, -0.05801 577, -0.03725 816, -0.04466 275, -0.02517 813, -0.51395 406, -0.67418 746, 0.03198 269, 0.04136	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279 542, 0.0142 023, 0.1138 907, 0.1081 887, 0.1029 397, -0.0439 609, -0.0286 187, 0.4404 891, 0.6699	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052 32 , -0.052 7679, -0.144 7145, -0.155 2387, 0.068 4071, 0.315 5328, 0.332 4074, -0.169	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428], 83109], 51385], 04771], 91822], 83075], 30346], 89811], 8257], 55432],
a		[-0.3310102 padings	21, -0.235429 37, 0.019363 99, 0.014299 3, 0.048641 23, 0.018823 46, -0.099263 31, -0.038610 43, -0.020249 76, -0.015016 46, 0.955383 0.945950 0.916599 18, 0.945950 0.007853	995, -1.63171 373, -0.02455 921, 0.02466 149, -0.12749 82, 0.00574 159, -0.05333 633, 0.13839 517, 0.03644 42, -0.00250 373, -0.08288 973, -0.10342 683, -0.05801 577, -0.03725 816, -0.04466 275, -0.02517 813, -0.51395 406, -0.67418 746, 0.03198 269, 0.04136 0031, 0.06956	941, 0.1782 45, -0.0616 482, -0.1479 732, -0.0493 863, 0.0265 377, -0.1330 861, 0.0087 117, -0.0930 851, -0.0444 847, -0.0071 851, -0.0279 542, 0.0142 023, 0.1138 907, 0.1081 887, 0.1029 397, -0.0439 609, -0.0286 187, 0.4404 891, 0.6699 415, 0.8291 677, 0.9174	9006, 0.038 6223, 0.112 1909, -0.118 9233, -0.009 5276, -0.146 6519, 0.121 0196, 0.064 4931, 0.025 7471, -0.053 6311, -0.052 32 , -0.052 7679, -0.144 7145, -0.155 2387, 0.068 4071, 0.315 5328, 0.332 4074, -0.169 8302, -0.161 5629, -0.094 7318, -0.044	12136], 58263], 05326], 73247], 41972], 6676], 39296], 63788], 69428], 83109], 51385], 04771], 91822], 83075], 30346], 89811], 8257], 55432], 07074], 14534],

about:srcdoc Page 39 of 50

```
[-0.0412783, -0.04959822, 0.12201166, 0.92570715,
                                                    0.00189047],
[-0.03738612, -0.05602061, 0.11023791, 0.88082495, 0.01283847],
[-0.02031965, -0.06992452, 0.07639516, 0.77345015, 0.03171296],
[0.2251697, 0.47338185, -0.64943552, -0.02812309, 0.35439151],
             0.45397088, -0.66203053, -0.03064164,
                                                   0.32930185],
[ 0.24516516,
[0.77424469, 0.0458412, 0.15426491, -0.20366713, -0.16645681],
[0.69788075, 0.04545261, 0.14737086, -0.21735663, -0.22413606],
[ 0.85744941, 0.04437585, 0.15809972, -0.11959275, 0.02692194],
[-0.21235552, 0.85071284, -0.06515656, 0.06559846, 0.23273441],
[0.14775965, 0.95466245, 0.01314345, -0.04816854, 0.09715259],
[0.82240955, 0.03269749, 0.16390804, -0.20341937, -0.08254877],
[0.78596814, 0.02645931, 0.15603318, -0.20627097, -0.09951158],
[0.80935346, 0.04480529, 0.13331803, -0.1080682, 0.05512187],
[-0.33493419, 0.86485945, 0.03359967, 0.08892098, 0.04245147],
[0.04675907, 0.9327849, 0.15952872, -0.02606483, -0.10045735],
[0.97737122, -0.03058639, -0.12023358, 0.04422083, 0.06391006],
[0.95753903, -0.03670088, -0.13489606, 0.04450991, 0.05518235],
[ 0.81891124, 0.0062711 , 0.0606408 , 0.01965969, 0.13413668],
[-0.42447833, 0.71211816, 0.36471085, -0.07278991, -0.28356804],
[0.06479058, 0.71798809, 0.30113511, -0.04925706, -0.36533169],
[ 0.90925698, -0.05005301, -0.06873 , -0.00156445, 0.15344429],
[ 0.8716504, -0.0497007, -0.07950161, -0.00230469, 0.141696 ],
[ \ 0.75826576, \ \ 0.00185445, \ \ 0.02736492, \ \ 0.00374285, \ \ 0.25783346],
[-0.11345437, 0.61298275, 0.62349709, -0.01999399, 0.284585]
[-0.33349554, 0.5640579, 0.58243645, -0.02351225, 0.25401294],
[-0.13962631, -0.02038193, -0.099815], 0.10703584, -0.61108334],
[-0.1155693, -0.02672498, -0.10052413, 0.12267069, -0.6194846],
[0.26332311, -0.02989007, 0.02773139, 0.09313835, -0.58884017],
[0.17605066, 0.06500774, -0.27623933, 0.01755758, -0.70238435],
[0.09571295, -0.05641886, -0.0878796, -0.09217904, 0.64282047],
[-0.27816504, -0.00108849, -0.08724621, -0.09099697, 0.60287301],
[-0.18822894, -0.05993517, 0.3221272, -0.01484872, 0.70805651],
[ 0.39096931, 0.05805001, 0.26868167, -0.2206138, -0.17910889],
[0.40449327, 0.06000692, 0.23582956, -0.21037746, -0.16855004],
[0.35015101, 0.05083956, 0.28323451, -0.21703079, -0.17351309],
[0.24845274, -0.04071472, 0.7828657, 0.09032636, 0.37052567],
[0.25210151, -0.02708951, 0.80625444, 0.07208958, 0.28641364],
[-0.05920176, 0.06895631, 0.57728575, 0.08529851, 0.12110191],
[0.05379624, 0.81586993, -0.1714922, -0.0147333, -0.04544873],
[0.06864777, 0.92118309, -0.10138082, -0.02787599, -0.05733179],
[0.20884889, -0.03872551, 0.76992343, 0.13951893, 0.37840595],
[0.20114043, -0.02576923, 0.83100793, 0.12749903, 0.29865452],
[-0.09355638, 0.06379344, 0.46282287, 0.07177015, 0.13940071],
[\ 0.05905288,\ 0.87591732,\ -0.1452326\ ,\ 0.02192923,\ -0.05554446],
[0.07559661, 0.95252905, -0.0559462, 0.01535826, -0.05728285],
[-0.04117527, 0.10599545, 0.80950398, -0.04276026, -0.26442385],
[0.17123066, 0.18784317, 0.57209879, -0.12048879, -0.12264931],
[-0.06001846, -0.06689816, -0.28697978, 0.12758949, 0.1806349],
[-0.15149224, -0.06790769, -0.16008983, 0.12294432, 0.14495427],
[-0.34836642, -0.05022182, 0.13810517, 0.02668981, 0.12886669],
[0.26104601, -0.03305257, 0.02283549, 0.10263406, -0.60019879],
[0.07779707, 0.09682759, -0.32690032, -0.03383985, -0.46819902],
[0.35337036, -0.00539003, -0.42547832, 0.05776243, 0.27393594],
[0.23903134, -0.02686691, 0.86480585, 0.10861162, 0.31067539]])
```

about:srcdoc Page 40 of 50

Data Modeling:

Build a linear Regression model to predict the total monthly expenditure for home mortgages loan.

Please refer deplotment_RE.xlsx. Column hc_mortgage_mean is predicted variable. This is the mean monthly mortgage and owner costs of specified geographical location.

Note: Exclude loans from prediction model which have NaN (Not a Number) values for hc_mortgage_mean.

- a) Run a model at a Nation level. If the accuracy levels and R square are not satisfactory proceed to below step.
- b) Run another model at State level. There are 52 states in USA.
- c) Keep below considerations while building a linear regression model:

Variables should have significant impact on predicting Monthly mortgage and owner costs

Utilize all predictor variable to start with initial hypothesis

R square of 60 percent and above should be achieved

Ensure Multi-collinearity does not exist in dependent variables

Test if predicted variable is normally distributed

In [71]:

df train.columns

about:srcdoc Page 41 of 50

```
Out[71]:
                'rent_sample_weight', 'rent_samples', 'rent_gt_10', 'rent_gt_15',
                'rent_gt_20', 'rent_gt_25', 'rent_gt_30', 'rent_gt_35', 'rent_gt_40'
                'rent_gt_50', 'universe_samples', 'used_samples', 'hi_mean',
                'hi median', 'hi stdev', 'hi sample weight', 'hi samples',
                'family mean', 'family median', 'family stdev', 'family sample weigh
         t',
                'family_samples', 'hc_mortgage_mean', 'hc_mortgage_median',
                'hc mortgage stdev', 'hc mortgage sample weight', 'hc mortgage sampl
         es',
                'hc mean', 'hc median', 'hc stdev', 'hc samples', 'hc sample weight'
                'home_equity_second_mortgage', 'second_mortgage', 'home_equity', 'de
         bt',
                'second mortgage cdf', 'home equity cdf', 'debt cdf', 'hs degree',
                'hs_degree_male', 'hs_degree_female', 'male_age_mean',
                'male_age_median', 'male_age_stdev', 'male_age_sample_weight',
                'male_age_samples', 'female_age_mean', 'female_age_median',
                'female_age_stdev', 'female_age_sample_weight', 'female_age_samples'
                'pct_own', 'married', 'married_snp', 'separated', 'divorced',
                'bad_debt', 'bins', 'good_debt', 'pop_density', 'age_median',
                'pop bins'],
               dtype='object')
In [72]:
         df train['type'].unique()
         array(['City', 'Urban', 'Town', 'CDP', 'Village', 'Borough'], dtype=object)
Out[72]:
In [73]:
          type dict = {'type':{'City':1,'Urban':2,'Town':3,'CDP':4, 'Village':5,'Bore
In [74]:
         df train.replace(type dict, inplace=True)
In [75]:
         df_test.replace(type_dict, inplace=True)
In [76]:
         df_train['type'].unique()
         array([1, 2, 3, 4, 5, 6])
Out[76]:
In [77]:
          feature_cols = ['COUNTYID','STATEID','zip_code','type','pop','family_mean'
                        'hs degree', 'age median', 'pct own', 'married', 'separated', 'd
```

about:srcdoc Page 42 of 50

```
In [78]:
          X_train = df_train[feature_cols]
          y_train = df_train['hc_mortgage_mean']
In [79]:
          X_test = df_test[feature_cols]
          y test = df test['hc mortgage mean']
In [80]:
          X_train.shape, y_train.shape
          ((27321, 15), (27321,))
Out[80]:
In [81]:
          X test.shape, y test.shape
          ((11709, 15), (11709,))
Out[81]:
In [82]:
          from sklearn.preprocessing import StandardScaler
          from sklearn.linear model import LinearRegression
          from sklearn.metrics import r2 score, mean absolute error, mean squared er
In [83]:
          X test.head()
Out[83]:
                  COUNTYID STATEID zip_code type
                                                     pop
                                                          family_mean second_mortgage hon
             UID
          255504
                        163
                                 26
                                       48239
                                                    3417
                                                          53802.87122
                                                                              0.06443
          252676
                          1
                                  23
                                         4210
                                                 1 3796
                                                          85642.22095
                                                                               0.01175
          276314
                         15
                                 42
                                        14871
                                                 6 3944
                                                          65694.06582
                                                                               0.01316
          248614
                        231
                                  21
                                       42633
                                                 1 2508
                                                          44156.38709
                                                                               0.00995
          286865
                        355
                                 48
                                        78410
                                                 3 6230 123527.02420
                                                                               0.00000
In [84]:
          SC = StandardScaler()
In [85]:
          X train Scaled = SC.fit transform(X train)
          X_test_Scaled = SC.fit_transform(X_test)
In [86]:
          Lr = LinearRegression()
```

about:srcdoc Page 43 of 50

```
In [87]:
          Lr.fit(X_train_Scaled,y_train)
         LinearRegression()
Out[87]:
In [88]:
          y_pred = Lr.predict(X_test_Scaled)
In [89]:
          r2_score(y_test,y_pred) #R2 square
         0.7348210754610929
Out[89]:
In [90]:
          np.sqrt(mean squared error(y test,y pred)) #RMSE
         323.1018894984635
Out[90]:
         b) Run another model at State level. There are 52 states in USA.
In [91]:
          state= df_train['STATEID'].nunique()
In [92]:
          state= df train['STATEID'].unique()
          state
         array([36, 18, 72, 20, 1, 48, 45, 6, 5, 24, 17, 19, 47, 32, 22, 8, 44,
Out[92]:
                28, 34, 41, 4, 12, 55, 42, 37, 51, 26, 39, 40, 13, 16, 46, 27, 29,
                53, 56, 9, 54, 21, 25, 11, 15, 30, 2, 33, 49, 50, 31, 38, 35, 23,
                10])
```

about:srcdoc Page 44 of 50

In [93]:

for i in [11,33,35]:

```
print("State_ID:",i)
              X_train_nation = df_train[df_train['COUNTYID']==i][feature_cols]
              y train nation = df train[df train['COUNTYID']==i]['hc mortgage mean']
              X test nation = df test[df test['COUNTYID']==i][feature cols]
              y_test_nation = df_test[df_test['COUNTYID']==i]['hc_mortgage_mean']
              X_train_Scaled_nation = SC.fit_transform(X_train_nation)
              X_test_Scaled_nation = SC.fit_transform(X_test_nation)
              Lr.fit(X_train_Scaled_nation, y_train_nation)
              y pred nation = Lr.predict(X test Scaled nation)
              print("Overall R2 score of linear regression model for state,",i,":-"
              print("Overall RMSE of linear regression model for state,",i,":-" ,np.:
              print("\n")
         State ID: 11
         Overall R2 score of linear regression model for state, 11 :- 0.746485716944
         Overall RMSE of linear regression model for state, 11:- 238.10563068257605
         State_ID: 33
         Overall R2 score of linear regression model for state, 33 :- 0.861561420773
         Overall RMSE of linear regression model for state, 33 :- 211.13273527746531
         State ID: 35
         Overall R2 score of linear regression model for state, 35 :- 0.722243579050
         943
         Overall RMSE of linear regression model for state, 35 :- 255.6042328589991
In [94]:
          sns.distplot(y pred)
          plt.show()
```

about:srcdoc Page 45 of 50


```
In [95]: sns.distplot(y_pred_nation)
   plt.show()
```



```
In [96]: residuals=y_test-y_pred residuals
```

```
UID
Out[96]:
          255504
                    281.969088
                    -69.935775
          252676
          276314
                     190.761969
          248614
                   -157.290627
          286865
                      -9.887017
                        . . .
          238088
                    -67.541646
          242811
                    -41.578757
          250127
                   -127.427569
          241096
                   -330.820475
          287763
                     217.760642
```

Name: hc_mortgage_mean, Length: 11709, dtype: float64

about:srcdoc Page 46 of 50

```
In [97]: sns.distplot(residuals)
  plt.show()
```

```
0.0016
0.0014
0.0012
0.0010
0.0008
0.0006
0.0004
0.0002
0.0000
              -2000
                       -1000
                                   0
                                           1000
                                                     2000
                                                              3000
                            hc_mortgage_mean
```

```
In [98]:
    residuals_nation=y_test_nation-y_pred_nation
    residuals_nation
```

```
UID
Out[98]:
          271383
                    -71.037462
          271503
                    -92.539838
          288357
                     84.266127
          264513
                    -66.054827
          288371
                    456.709228
          288512
                     44.115107
          280441
                    -48.716870
          288475
                    -49.259951
          253291
                     74.474223
                    201.479714
          288425
         Name: hc_mortgage_mean, Length: 187, dtype: float64
```

```
In [99]:
    sns.distplot(residuals_nation)
    plt.show()
```

about:srcdoc Page 47 of 50

about:srcdoc Page 48 of 50

Data Reporting:

• Create a dashboard in tableau by choosing appropriate chart types and metrics useful for the business. The dashboard must entail the following:

- Box plot of distribution of average rent by type of place (village, urban, town, etc.).
- Pie charts to show overall debt and bad debt.
- Explore the top 2,500 locations where the percentage of households with a second mortgage is the highest and percent ownership is above 10 percent. Visualize using geo-map.
- Heat map for correlation matrix.
- Pie chart to show the population distribution across different types of places (village, urban, town etc.).

```
In [102... df_train_location_mort_pct.to_excel('df_train_location_mort_pct.xlsx')
In [103... df_train.to_excel('df_train_.xlsx')
In [105... df_test.to_excel('df_test_.xlsx')
In [107... df_train.bad_debt.to_excel('bad_debt.xlsx')
```

about:srcdoc Page 49 of 50

https://public.tableau.com/app/profile/rushikesh.khankar/viz/RealE StatisticalAnalysisCapProject/Dashboard2

Thank You

about:srcdoc Page 50 of 50