



# Exploring AIGC Video Quality: A Focus on Visual Harmony, Video-Text Consistency and Domain Distribution Gap

Bowen Qu<sup>1</sup>, Xiaoyu Liang<sup>1</sup>, Shangkun Sun<sup>1,2</sup>, Wei Gao<sup>1,2\*</sup>

<sup>1</sup>Peking University & <sup>2</sup>Peng Cheng Laboratory.

https://github.

Code will be available at: https://github.com/Coobiw/TriVQA

\* Indicates corresponding author

# TriVQA: Triple-Dimensional AIGC Video Quality Assessment



### Our contributions:

- We propose a new quality assessment framework for AIGC videos, which we decouple into three aspects: visual harmony, video-text consistency and domain distribution gap.
- For each aspect, we design specific modeling methods such as LLM and auxiliary inter-domain classifiers, to propose effective solutions.
- Our method shows remarkabale improvements on AIGC videos
   assessment and is used in the third-place winner of the NTIRE 2024
   Quality Assessment for AI-Generated Content Track 2 Video.

| Team name                  | Main Score             |  |  |
|----------------------------|------------------------|--|--|
| ICML-USTC                  | 0.8385                 |  |  |
| Kwai-kaa                   | 0.824<br><b>0.8232</b> |  |  |
| SQL                        |                        |  |  |
| musicbeer                  | 0.8231                 |  |  |
| finnbingo                  | 0.8211                 |  |  |
| PromptSync                 | 0.8178                 |  |  |
| QA-FTE                     | 0.8128                 |  |  |
| MediaSecurity_SYSU&Alibaba | 0.8124                 |  |  |
| IPPL-VQA                   | 0.8003                 |  |  |
| IVP-Lab                    | 0.7944                 |  |  |
| Oblivion                   | 0.7869                 |  |  |
| CUC-IMC                    | 0.7802                 |  |  |
| UBC DSL Team               | 0.7531                 |  |  |

### Framework of TriVQA & Video-LLaVA Enhancement



## Video Input:



### **User Query:**

The input video is generated by Deep Learning Model with its corresponding prompt. Please give a description that can be used to generate this image. Here are five examples for you: \n

- 1. Circa 1950s blueprints for the hull of a ship are translated into wooden frames and painted in 1955. steel is cut for the frames.\n
- 2. Clouds in the sky. time lapse.\n
- 3. Waterfall in fountain.\n
- 4. Beautiful shot of sunset ending over water and tree silhouettes.\n
- 5. Polonnaruwa, sri lanka asia remains of the ancient city. tourist center and a lot of debris surviving stout buddha. phallic symbol locals childless woman prays.\n

Please output your prompt here:

#### Video-LLaVA Output:

A serene lake with a sunset in the background.

### **Prompt:**

Beautiful calm sunset or sunrise above the lake in town with sun reflecting in golden color water.

- Due to the inherent multi-modal nature of AIGC videos, we propose a multi-modal dual-stream framework, integrated with **explicit and implicit textual prompts.**
- We incorporate an auxiliary inter-domain classification, predicting the source video generation model.
- We use Video-LLaVA to generate captions and calculate the cosine similarly between generated captions and textual prompts via Sentence-BERT. We want to leverage the in-context learning ability of Video-LLaVA. So, we use 5-shot inference

## **Ablation Study on Validation Set**

| Explicit-Prompt | Implicit-Text | Aux-Cls | Model-Ensemble | Video-LLaVA   PLCC | SROCC  | MainScore |
|-----------------|---------------|---------|----------------|--------------------|--------|-----------|
|                 |               |         |                | 0.7649             | 0.7417 | 0.7533    |
| <b>√</b>        |               |         |                | 0.7888             | 0.7676 | 0.7782    |
|                 | <b>√</b>      |         |                | 0.7843             | 0.7631 | 0.7737    |
| <b>√</b>        | ✓             |         |                | 0.7991             | 0.7803 | 0.7897    |
| <b>√</b>        |               | ✓       |                | 0.8020             | 0.7814 | 0.7917    |
| <b>√</b>        | ✓             | ✓       |                | 0.8099             | 0.7905 | 0.8002    |
| <b>√</b>        | ✓             | ✓       | ✓              | 0.8317             | 0.8153 | 0.8235    |
| ✓               | ✓             | ✓       | ✓              | ✓   0.8341         | 0.8165 | 0.8253    |
| 1               |               |         |                |                    |        |           |