# **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



| (51) International Patent Classification 5:<br>C12N 15/29, C07K 13/00                                                                                                                                                                                                                                                                                                                                                                                                                                            | A1                                                        | (11) International Publication Number: WO 91/1980  (43) International Publication Date: 26 December 1991 (26.12.9)                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C12N 1/21, 1/19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           | (43) International Publication Date: 26 December 1991 (26.12.9)                                                                                                                                                                                                                                                                                                                            |
| (21) International Application Number: PCT/GB (22) International Filing Date: 7 June 1991                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           | Strode, 30 John Street, London WC1N 2DD (GB)                                                                                                                                                                                                                                                                                                                                               |
| 30) Priority data: 9013016.2  11 June 1990 (11.06.90)  71) Applicant (for all designated States except US): M LIMITED [GB/GB]; 3D Dundee Road, Slou shire SLI 4JS (GB).  72) Inventors; and 75) Inventors/Applicants (for US only): SPENCER, I Elizabeth [GB/GB]; 24 Totley Brook Road, S17 3QS (GB). HODGE, Rachel [GB/GB]; I Avenue, Leicester LE5 3RN (GB). DEAKIN, Alfred [GB/GB]; The Oakes, Oakes Park, Nor field S8 8BA (GB). ASHTON, Sean [GB/GB]; berlain Court, Burneross, Chapeltown, Sheft 4ZU (GB). | Margar<br>Sheffie<br>6 Mou<br>Edwar<br>ion, She<br>5 Char | patent), FI, FR (European patent), GB, GB (European patent), GR (European patent), HU, IT (European patent), JP, KR, LU (European patent), NL (European patent), NO, PL, RO, SE (European patent), SU, US.  Published  With international search report.  Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. |
| 54) Title: RECOMBINANT 47 AND 31kD COCOA                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A PRO                                                     | EINS AND PRECURSOR                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           |                                                                                                                                                                                                                                                                                                                                                                                            |
| 57) Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                           | recursor, believed to be the source of peptide flavour precursors in or them have been probed, identified and sequenced, and recombi                                                                                                                                                                                                                                                       |

WO 91/19801 PCT/GB91/00914

| 1  | RECOMBINANT 47 AND 31kD COCOA PROTEINS AND PRECURSOR                               |
|----|------------------------------------------------------------------------------------|
| 2  |                                                                                    |
| 3  | This invention relates to proteins and nucleic acids derived from or otherwise     |
| 4  | related to cocoa.                                                                  |
| 5  |                                                                                    |
| 6  | The beans of the cocoa plant (Theobroma cacao) are the raw material for cocoa,     |
| 7  | chocolate and natural cocoa and chocolate flavouring. As described by Rohan        |
| 8  | ("Processing of Raw Cocoa for the Market", FAO/UN (1963)), raw cocoa               |
| 9  | beans are extracted from the harvested cocoa pod, from which the placenta is       |
| 10 | normally removed, the beans are then "fermented" for a period of days, during      |
| 11 | which the beans are killed and a purple pigment is released from the cotyledons.   |
| 12 | During fermentation "unknown" compounds are formed which on roasting give          |
| 13 | rise to characteristic cocoa flavour. Rohan suggests that polyphenols and          |
| 14 | theobromine are implicated in the flavour precursor formation. After               |
| 15 | fermentation, the beans are dried, during which time the characteristic brown      |
| 16 | pigment forms, and they are then stored and shipped.                               |
| 17 |                                                                                    |
| 18 | Biehl et al, 1982 investigated proteolysis during anaerobic cocoa seed             |
| 19 | incubation and identified 26kD and 44kD proteins which accumulated during          |
| 20 | seed ripening and degraded during germination. Biehl asserted that there were      |
| 21 | storage proteins and suggested that they may give rise to flavour-specific         |
| 22 | peptides.                                                                          |
| 23 |                                                                                    |
| 24 | Fritz et al, 1985 identified polypeptides of 20kD and 28kD appearing in the        |
| 25 | cytoplasmic fraction of cocoa seed extracts at about 100 days after pollination.   |
| 26 | It appears that the 20kD protein is thought to have glyceryl acyltransferase       |
| 27 | activity.                                                                          |
| 28 |                                                                                    |
| 29 | In spite of the uncertainties in the art, as summarised above, proteins apparently |
| 30 | responsible for flavour production in cocoa beans have now been identified.        |
| 31 | Further, it has been discovered that, in spite of Fritz's caution that "cocoa seed |
| 32 |                                                                                    |
| 33 |                                                                                    |

Theobroma cacao has two primary subspecies, Th. cacao cacao and Th. cacao sphaerocarpum. While proteins in accordance with the invention may be derived from these subspecies, the invention is not limited solely to these subspecies. For example, many cocoa varieties are hybrids between different species; an example of such a hybrid is the trinitario variety.

The invention also relates to nucleic acid, particularly DNA, coding for the proteins referred to above (whether the primary translation products, the processed proteins or fragments). The invention therefore also provides, in further aspects:

nucleic acid coding for a 67kD protein of *Th. cacao*, or for a fragment thereof;

nucleic acid coding for a 47kD protein of *Th. cacao*, or for a fragment thereof;

nucleic acid coding for a 31kD protein of *Th. cacao*, or for a fragment thereof;

Included in the invention is nucleic acid which is degenerate for the wild type protein and which codes for conservative or other non-deleterious mutants. Nucleic acid which hybridises to the wild type material is also included.

 Nucleic acid within the scope of the invention will generally be recombinant nucleic acid and may be in isolated form. Frequently, 'nucleic acid in accordance with the invention will be incorporated into a vector (whether an expression vector or otherwise) such as a plasmid. Suitable expression vectors will contain an appropriate promoter, depending on the intended expression host. For yeast, an appropriate promoter is the yeast pyruvate kinase (PK) promoter: for bacteria an appropriate promoter is a strong lambda promoter.

| Ţ  | Figure 4 shows the relationship between the GARD protein and seed storage        |
|----|----------------------------------------------------------------------------------|
| 2  | proteins from other plants;                                                      |
| 3  |                                                                                  |
| 4  | Figure 5 shows a map of plasmid pJLA502;                                         |
| 5  |                                                                                  |
| 6  | Figure 6 shows schematically the formation of plasmid pMS900;                    |
| 7  |                                                                                  |
| 8  | Figure 7 shows two yeast expression vectors useful in the present invention;     |
| 9  | vector A is designed for internal expression and vector B is designed for        |
| 10 | secreted expression;                                                             |
| 11 |                                                                                  |
| 12 | Figure 8a shows, in relation to vector A, part of the yeast pyruvate kinase gene |
| 13 | showing the vector A cloning site, and the use of Hin-Nco linkers to splice in   |
| 14 | the heterologous gene;                                                           |
| 15 |                                                                                  |
| 16 | Figure 8b shows, in relation to vector B, part of the yeast alpha-factor signal  |
| 17 | sequence showing the vector B cloning site, and the use of Hin-Nco linkers to    |
| 18 | create an in-phase fusion;                                                       |
| 19 |                                                                                  |
| 20 | Figure 9a shows how plasmid pMS900 can be manipulated to produce plasmids        |
| 21 | pMS901, pMS903, pMS907, pMS908, pMS911, pMS912 and pMS914;                       |
| 22 |                                                                                  |
| 23 | Figure 9b shows how plasmid pMS903 can be manipulated to produce plasmids        |
| 24 | pMS904, pMS905, pMS906, pMS909 and pMS916;                                       |
| 25 |                                                                                  |
| 26 | Figure 10 shows maps of plasmids pMS908, pMS914, pMS912, pMS906,                 |
| 27 | pMS916 and pMS910;                                                               |
| 28 |                                                                                  |
| 29 | Figure 11 shows the construction of a plasmid to express the 67kD protein by     |
| 30 | means of the AOX promoter on an integrated vector in Hansenula polymorpha;       |
| 31 | and                                                                              |
| 32 |                                                                                  |
| 33 | ·                                                                                |

| 1  | Characteristics of the Storage Polypeptides                                       |
|----|-----------------------------------------------------------------------------------|
| 2  |                                                                                   |
| 3  | The solubility characteristics of the 47 kD and 31 kD polypeptides were roughly   |
| 4  | defined by one or two quick experiments. Dialysis of the polypeptide solution     |
| 5  | against SDS-free extraction buffer rendered the 47 kD and 31 kD polypeptides      |
| 6  | insoluble, as judged by their ability to pass through a 0.22 micron membrane.     |
| 7  | Fast Protein Liquid Chromatography (FPLC) analysis also showed that the 47        |
| 8  | kD and 31 kD polypeptides were highly associated after extraction with            |
| 9  | McIlvaines buffer pH 6.8 (0.2 M disodium hydrogen phosphate titrated with         |
| 10 | 0.1 M citric acid). The 47 kD and 31 kD polypeptides are globulins on the         |
| 11 | basis on their solubility.                                                        |
| 12 | •                                                                                 |
| 13 | Purification of the 47 kD and 31 kD polypeptides                                  |
| 14 |                                                                                   |
| 15 | The 47 kD and 31 kD polypeptides were purified by two rounds of gel filtration    |
| 16 | on a SUPEROSE-12 column of the PHARMACIA Fast Protein Liquid                      |
| 17 | Chromatography system (FPLC), or by electroelution of bands after preparative     |
| 18 | electrophoresis. (The words SUPEROSE and PHARMACIA are trade marks.)              |
| 19 | Concentrated protein extracts were made from 50 mg acetone powder per ml of       |
| 20 | extraction buffer, and 1-2 ml loaded onto 2 mm thick SDS-PAGE gels poured         |
| 21 | without a comb. After electrophoresis the gel was surface stained in aqueous      |
| 22 | Coomassie Blue, and the 47 kD and 31 kD bands cut out with a scalpel. Gel         |
| 23 | slices were electroeluted into dialysis bags in electrophoresis running buffer at |
| 24 | 15 V for 24 hours, and the dialysate dialysed further against 0.1% SDS.           |
| 25 | Samples could be concentrated by lyophilisation.                                  |
| 26 |                                                                                   |
| 27 | Example 2                                                                         |
| 28 |                                                                                   |
| 29 | Amino-acid Sequence Data from Proteins                                            |
| 30 |                                                                                   |
| 31 | Protein samples (about 10 $\mu$ g) were subjected to conventional N-terminal      |
| 32 | amino-acid sequencing. The 47 kD and 31 kD polypeptides were N-terminally         |
| 33 | blocked, so cyanogen bromide peptides of the 47 kD and 31 kD peptides were        |

The gamma-globulin fraction of the serum was partially purified by

2 precipitation with 50% ammonium sulphate, solubilisation in phosphate-buffered saline (PBS) and chromatography on a DE 52 cellulose 3 4 ion-exchange column as described by Hill, 1984. Fractions containing gamma-globulin were monitored at 280 nm (OD<sub>280</sub> of 1.4 is equivalent to 1 5 mg/ml gamma-globulin) and stored at -20°C. 6 7 The effective titre of the antibodies was measured using an enzyme-linked 8 immunosorbant assay (ELISA). The wells of a polystyrene microtitre plate 9 were coated with antigen (10-1000 ng) overnight at 4°C in carbonate coating 10 buffer. Wells were washed in PBS-Tween and the test gamma globulin added at concentrations of 10, 1 and 0.1  $\mu$ g/ml (approximately 1:100, 1:1000 and 11 12 1:10,000 dilutions). The diluent was PBS-Tween containing 2% polyvinyl 13 pyrrolidone (PVP) and 0.2% BSA. Controls were preimmune serum from the 14 same animal. Binding took place at 37°C for 3-4 hours. The wells were washed as above and secondary antibody (goat anti-rabbit IgG conjugated to 15 16 alkaline phosphatase) added at a concentration of 1  $\mu$ g/ml, using the same 17 conditions as the primary antibody. The wells are again washed, and alkaline 18 phosphatase substrate (p-nitrophenyl phosphate; 0.6 mg/ml in diethanol-amine 19 buffer pH 9.8) added. The yellow colour, indicating a positive reaction, was 20 allowed to develop for 30 minutes and the reaction stopped with 3M NaOH. 21 The colour is quantified at 405 nm. More detail of this method is given in Hill, 22 1984. The method confirmed that the antibodies all had a high titre and could be used at  $1 \mu g/ml$  concentration. 23

24

## Example 4

252627

Isolation of Total RNA from Immature Cocoa Beans

28 29

30

31

32

33

The starting material for RNA which should contain a high proportion of mRNA specific for the storage proteins was immature cocoa beans, at about 130 days after pollination. Previous work had suggested that synthesis of storage proteins was approaching its height by this date (Biehl et al. 1982). The beans are roughly corrugated and pale pinkish-purple at this age.

Preparation of mRNA From Total RNA

1 2 3

4 5

6

7 8 The mRNA fraction was separated from total RNA by affinity chromatography on a small (1 ml) oligo-dT column, the mRNA binding to the column by its poly A tail. The RNA (1-2 mg) was denatured by heating at  $65^{\circ}$ C and applied to the column in a high salt buffer. Poly A+ was eluted with low salt buffer, and collected by ethanol precipitation. The method is essentially that of Aviv and Leder (1972), modified by Maniatis et al (1982). From 1 mg of total RNA, approximately 10-20  $\mu$ g polyA+ RNA was obtained (1-2%).

9 10 11

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

#### In vitro Translation of mRNA

12

The ability of mRNA to support in vitro translation is a good indication of its cleanliness and intactness. Only mRNAs with an intact polyA tail (3' end) will be selected by the oligo-dT column, and only mRNAs which also have an intact 5' end (translational start) will translate efficiently. In vitro translation was carried out using RNA-depleted wheat-germ lysate (Amersham International), the de novo protein synthesis being monitored by the incorporation of [35] S]-methionine (Roberts and Paterson, 1973). Initially the rate of de novo synthesis was measured by the incorporation of [35 S]-methionine into TCA-precipitable material trapped on glass fibre filters (GFC, Whatman). The actual products of translation were investigated by running on SDS-PAGE, soaking the gel in fluor, drying the gel and autoradiography. preparations translated efficiently and the products covered a wide range of molecular weights, showing that intact mRNAs for even the largest proteins had been obtained. None of the major translation products corresponded in size to the 47kD or 31kD storage polypeptides identified in mature beans, and it was apparent that considerable processing of the nascent polypeptides must occur to give the mature forms.

29 30

31

| Example 6                                     |
|-----------------------------------------------|
|                                               |
| cDNA Synthesis From the mRNA Preparations     |
| -                                             |
| cDNA synthesis was carried out using a kit fr |
|                                               |

from Amersham International. The 6 first strand of the cDNA is synthesised by the enzyme reverse transcriptase, 7 using the four nucleotide bases found in DNA (dATP, dTTP, dGTP, dCTP) and 8 an oligo-dT primer. The second strand synthesis was by the method of Gubler 9 and Hoffman (1983), whereby the RNA strand is nicked in many positions by 10 RNase H, and the remaining fragments used to prime the replacement synthesis 11 of a new DNA strand directed by the enzyme E. coli DNA polymerase I. Any 12 3' overhanging ends of DNA are filled in using the enzyme T4 polymerase. 13 The whole process was monitored by adding a small proportion of [32P]-dCTP 14 into the initial nucleotide mixture, and measuring the percentage incorporation 15 of label into DNA. Assuming that cold nucleotides are incorporated at the same rate, and that the four bases are incorporated equally, an estimate of the 16 17 synthesis of cDNA can be obtained. From 1  $\mu$ g of mRNA approximately 140 18 ng of cDNA was synthesised. The products were analysed on an alkaline 1.4% 19 agarose gel as described in the Amersham methods. Globin cDNA, synthesised 20 as a control with the kit, was run on the same gel, which was dried down and 21 autoradiographed. The cocoa cDNA had a range of molecular weights, with a 22 substantial amount larger than the 600 bp of the globin cDNA.

23 24

### Example 7

25 26

Cloning of cDNA into a Plasmid Vector by Homopolymer Tailing

27 28

29

30

31

The method of cloning cDNA into a plasmid vector was to 3' tail the cDNA with dC residues using the enzyme terminal transferase (Boehringer Corporation Ltd), and anneal into a *Psi*I-cut and 5' tailed plasmid (Maniatis *et al.*, 1982 Eschenfeldt *et al.*, 1987). The optimum length for the dC tail is 12-20 residues. The tailing reaction (conditions as described by the manufacturers) was tested

Met-Phe-Glu-Ala-Asn-Pro ATG TTT GAA GCT AAT CC 5 1 G С Α G The actual probe was made anti-sense so that it could also be used to probe Probe synthesis was carried out using an Applied Biosystems apparatus. Example 9 Use of Oligonucleotides to Probe cDNA Library The oligonucleotide probes were 5' end-labelled with gamma-[32P] dATP and the enzyme polynucleotide kinase (Amersham International). The method was essentially that of Woods (1982, 1984), except that a smaller amount of isotope (15  $\mu$ Ci) was used to label about 40 ng probe, in 10 mM MgCl<sub>2</sub>, 100 mM Tris-HCl, pH 7.6; 20 mM 2-mercaptoethanol. 

The cDNA library was grown on GeneScreen (New England Nuclear) nylon membranes placed on the surface of L-agar +  $100 \mu g/ml$  ampicillin plates. (The word GeneScreen is a trade mark.) Colonies were transferred from microtitre plates to the membranes using a 6 x 8 multi-pronged device, designed to fit into the wells of half the microtitre plate. Colonies were grown overnight at  $37^{\circ}$ C, lysed in sodium hydroxide and bound to membranes as described by Woods (1982, 1984). After drying the membranes were washed extensively in 3 x SSC/0.1% SDS at 65°C, and hybridised to the labelled probe, using a HYBAID apparatus from Hybaid Ltd, PO Box 82, Twickenham, Middlesex. (The word HYBAID is a trade mark.) Conditions for hybridisation were as described by Mason & Williams (1985), a  $T_d$  being calculated for each oligonucleotide according to the formula:

replication, and the single-strands are packaged as phages extruded into the medium. DNA can be prepared from these 'phages' using established methods for M13 phages (Miller, 1987), and used for sequencing by the method of Sanger (1977) using the reverse sequencing primer. The superinfecting phage used is a derivative of M13 termed M13K07, which replicates poorly and so does not compete well with the plasmid, and contains a selectable kanamycin-resistance marker. Detailed methods for preparing single-strands from the pTZ plasmids and helper phages are supplied by Pharmacia. DNA sequence was compiled and analysed using the Staden package of programs (Staden, 1986), on a PRIME 9955 computer. (The word PRIME is a trade mark.)

#### Example 12

Features of the 47 kD/31 kD cDNA and Deduced Amino-acid Sequence of the 67 kD Precursor

DNA sequencing of the three positive clones, pMS600, pMS700, pMS800, confirmed the overlap presumed in Figure 1. No sequence differences were found in the overlapping regions (about 300 bp altogether), suggesting that the three cDNAs were derived from the same gene. The sequence of the combined cDNAs comprising 1818 bases is shown in Figure 2. The first ATG codon is found at position 14, and is followed by an open reading frame of 566 codons. There is a 104-base 3' untranslated region containing a polyadenylation signal at position 1764. The oligonucleotide probe sequence is found at position 569.

The open reading frame translates to give a polypeptide of 566 amino-acids (Figure 2), and a molecular weight of 65612, which is reasonably close to the 67 kD measured on SDS-PAGE gels. The N-terminal residues are clearly hydrophobic and look like a characteristic signal sequence. Applying the rules of Von Heije (1983), which predict cleavage sites for signal sequences, suggests a cleavage point between amino-acids 20 and 21 (see Figure 3). The region following this is highly hydrophobic and contains four Cys-X-X-Cys motifs.

| 1 | Example 13 |
|---|------------|
| 2 |            |

3 Expression of the 67 kD Polypeptide in E. coli

Before the 67 kD coding region could be inserted into a expression vector the overlapping fragments from the three separate positive clones had to be spliced into a continuous DNA segment. The method of splicing is illustrated in Figure 6: a *HindIII-BgIII* fragment from pMS600, a *BgIII-EcoRI* fragment from pMS700 and an *EcoRI-SaII* fragment from pMS800 were ligated into pTZ19R cut with *HindIII* and *SaII*. The resulting plasmid, containing the entire 67 kD cDNA, was termed pMS900.

11<sup>1</sup> 12 13

An NcoI site was introduced at the ATG start codon, using the mutagenic primer:

#### 5' TAG CAA CCA TGG TGA TCA 3'.

In vitro mutagenesis was carried out using a kit marketed by Amersham International, which used the method of Eckstein and co-workers (Taylor et al, 1985). After annealing the mutagenic primer to single-stranded DNA the second strand synthesis incorporates alpha-thio-dCTP in place of dCTP. After extension and ligation to form closed circles, the plasmid is digested with Ncil, an enzyme which cannot nick DNA containing thio-dC. Thus only the original strand is nicked, and subsequently digested with exonuclease III. The original strand is then resynthesised, primed by the remaining DNA fragments and complementing the mutated position in the original strand. Plasmids are then transformed into E. coli and checked by plasmid mini preparations.

The 67 kD cDNA was then cloned into the E. coli expression plasmid, pJLA502 (Figure 5), on an NcoI - SalI fragment (pMS902).

|             | 21                                                                                 |
|-------------|------------------------------------------------------------------------------------|
| 1           | mating alpha-factor downstream of the promoter, with a HindIII site within it to   |
| 2           | create fusion proteins with incoming coding sequences. The vectors are             |
| 3           | illustrated in Figure 7.                                                           |
| 4           |                                                                                    |
| 5           | To use the vectors effectively it is desirable to introduce the foreign coding     |
| 6           | region such that for vector A, the region from the HindIII cloning site to the     |
| 7           | ATG start is the same as the yeast PK gene, and for vector B, the remainder of     |
| 8           | the alpha-factor signal, including the lysine at the cleavage point. In practice   |
| 9           | this situation was achieved by synthesising two sets of HindIII - NcoI linkers to  |
| 10          | breach the gap between the HindIII cloning site in the vector and the NcoI at the  |
| 11          | ATG start of the coding sequence. This is illustrated in Figure 8.                 |
| 12          |                                                                                    |
| 13          | In order to use the yeast vector B, the hydrophobic signal sequence must first be  |
| 14          | deleted from the 67 kD cDNA. Although direct evidence of the location of the       |
| 15          | natural cleavage site was lacking, the algorithm of Von Heije predicts a site      |
| 16          | between amino-acids 20 (alanine) and 21 (leucine). However it was decided to       |
| <b>17</b> . | remove amino-acids 2-19 by deletion, so that the useful NcoI site at the           |
| 18          | translation start would be maintained.                                             |
| 19          |                                                                                    |
| 20          |                                                                                    |
| 21          | For ease of construction of the yeast vectors, the strategy was to first clone the |
| 22          | HindIII - NcoI linkers into the appropriate pTZ plasmids, and then to clone the    |
| 23          | linkers plus coding region into the yeast vectors on HindIII - BamHI fragments.    |
| 24          | However the coding region contains an internal BamHI which must be removed         |
| 25          | by in vitro mutagenesis, giving a new plasmid pMS903. The signal sequence          |
| 26          | was deleted from pMS903 using the mutagenic primer                                 |
| 27          |                                                                                    |
| 28          | 5' AGCATAGCAACCATGGTTGCTTCT 3'                                                     |
| 29          |                                                                                    |

30

31

to give pMS904. The appropriate HindIII - NcoI linkers were then cloned into pMS903 and pMS904 to give pMS907 and pMS905 respectively, and the HindIII - BamHI fragments (linkers + coding region) subcloned from these

concentrated 10-25 x in an AMICON mini concentrator. (The word AMICON is a trade mark.) The washed cells were weighed and resuspended in lysis buffer plus protease inhibitors (1 mM phenyl methyl sulphonyl fluoride (PMSF); 1  $\mu$ g/ml aprotinin; 0.5  $\mu$ g/ml leupeptin) at a concentration of 1 g/ml. 1 volume acid-washed glass-beads was added and the cells broken by vortexing for 8 minutes in total, in 1 minute bursts, with 1 minute intervals on ice. After checking under the microscope for cell breakage, the mixture was centrifuged at 7000 rpm for 3 minutes to pellet the glass beads. The supernatant was removed to a pre-chilled centrifuge tube, and centrifuged for 1 hour at 20,000 rpm. (Small samples can be centrifuged in a microcentrifuge in the cold.) The supernatant constitutes the soluble fraction. The pellet was resuspended in 1 ml lysis buffer plus 10% SDS and 1% mercaptoethanol and heated at 90°C for 10 minutes. After centrifuging for 15 minutes in a microcentrifuge the supernatant constitutes the particulate fraction.

Samples of each fraction and the concentrated medium were examined by Western blotting. Considering first the plasmids designed for internal expression in YVA, pMS908 produced immunoreactive proteins at 67 kD and 16 kD within the cells only. There was no evidence of the 67 kD protein being secreted under the influence of its own signal sequence. The smaller protein is presumed to be a degradation product. A similar result, but with improved expression, was obtained with pMS914, in which the plant terminator is replaced by a yeast terminator. However in pMS912, in which the coding region for the hydrophilic domain has been deleted, no synthesis of immunoreactive protein occurred.

30<sub>.</sub> 

 For industrial production of heterologous proteins in yeast a secreted mode is preferable because yeast cells are very difficult to disrupt, and downstream processing from total cell protein is not easy. The results from the vectors constructed for secreted expressed were rather complicated. From the simplest construct, pMS906, in which the yeast  $\alpha$ -factor signal sequence replaces the plant protein's own signal, immunoreactive proteins of approximately 47 kD, 28 kD and 18-20 kD were obtained and secreted into the medium. At first sight

PCT/GB91/00914

| 1  | promote             | is completely repressed. This means that cells containing the                                            |
|----|---------------------|----------------------------------------------------------------------------------------------------------|
| 2  | heterologo          | is gene can be grown to a high density on glucose, and induced to                                        |
| 3  | produce th          | e foreign protein by allowing the glucose to run out and adding                                          |
| 4  | methanol.           |                                                                                                          |
| 5  |                     |                                                                                                          |
| 6  | A plasmid,          | , pHGL1, containing the MOX promoter and terminator, and a                                               |
| 7  | cassette coi        | ntaining the yeast $\alpha$ -factor secretory signal sequence, were prepared.                            |
| 8  | The 67 kI           | coding region was cloned into pHGL1 on a BamHI - BamHI                                                   |
| 9  | fragment,           | replacing the BgIII fragment which contains the 3' end of the MOX                                        |
| 10 | coding regi         | ion. The whole promoter - gene - terminator region can then be                                           |
| 11 | transferred         | to YEp13 on a BamHI - BamHI fragment to give the expression                                              |
| 12 | plasmid pM          | IS922. The details of the construction are illustrated in Figure 11.                                     |
| 13 | An analogo          | us expression plasmid, pMS925, has been constructed with the yeast                                       |
| 14 | $\alpha$ -factor sp | liced onto the 67 kD coding region, replacing the natural plant                                          |
| 15 | signal. The         | e BamHI - HindIII cassette containing the $\alpha$ -factor was ligated to the                            |
| 16 | HindIII - Be        | amHI fragment used to introduce the 67 kD coding region into YVB.                                        |
| 17 | The α-facto         | or plus coding region was then cloned with pHGL1 on a BamHI -                                            |
| 18 | BamHI frag          | ment, and transferred into YEP13 as before. Details are shown in                                         |
| 19 | Figure 12.          |                                                                                                          |
| 20 |                     |                                                                                                          |
| 21 | Both const          | ructs have been transformed into Hansenula and grown under                                               |
| 22 | inducing co         | inditions with 0.5% or 1% methanol. Both constructs directed the                                         |
| 23 | production          | of immunoreactive protein within the cells, and pMS925 secreted the                                      |
| 24 | protein into        | the medium under the influence of the $\alpha$ -factor signal sequence.                                  |
| 25 |                     |                                                                                                          |
| 26 | E. coli Strai       | ins                                                                                                      |
| 27 |                     |                                                                                                          |
| 28 | RR1                 | Fv <sub>B</sub> -M <sub>B</sub> ara-14 proA2 leuB6 lacY1 galK2 vpsL20 (str <sup>1</sup> )                |
| 29 |                     | xyl-5 mtl-1 supE44 -                                                                                     |
| 30 |                     | ·                                                                                                        |
| 31 | CAG629              | lac <sub>am</sub> tvp <sub>am</sub> pho <sub>am</sub> htpR <sub>am</sub> mal rpsL lon supC <sub>ts</sub> |
| 32 |                     |                                                                                                          |
| 33 |                     |                                                                                                          |

- 1 Cuming, A.C., Williams. R.S., and Cullimore, J.V. in "Immunology in Plant
- 2 Science", Ed. Wang, T.L., Cambridge University Press, 1986. The use of
- 3 Antibodies in Molecular Biology.

- 5 Doyle, J.J., Schuler, M.A., Godette, W.D., Zencer, V., Beachy, R.N., and
- 6 Slightom, J.L. J. Biol. Chem. 261, 9228-9238 (1986). The glycosylated seed
- 7 storage proteins of Glycine max and Phaseolus vulgaris: Structural homologies
- 8 of genes and proteins.

9

- Dretzen, G., Bellard, M., Sassone-Corsi, P., and Chambon, P. Analytical
- 11 Biochemistry 112, 295-298 (1981). A reliable method for the recovery of DNA
- 12 fragments from agarose and acrylamide gels.

13

- 14 Eschenfeldt, W.H., Puskas, R.S., and Berger, S.L. Methods in Enzymology
- 15 152, 337-342 (1987). Homopolymeric Tailing.

16

17 Fritz et al (J. Food Sci. 50 946-950 (1985))

18

- 19 Gubler, U., and Hoffman, B.J. Gene 25, 263 (1983). A simple and very
- 20 efficient method for generating cDNA libraries.

21

- 22 Hall, T.C., Ma, Y., Buchbinder, B.U., Pyrne J.W., Sun, S.M., and Bliss,
- 23 F.A. Proc. Natl. Acad. Sci. USA 75, 3196-3200 (1978). Messenger RNA for
- 24 G1 protein of French bean seeds: cell-free translation and product
- 25 characterisation.

26

27 Hill, S.A. "Methods in Plant Virology", Blackwell 1984.

28

- 29 Johnston, J.R. in "Yeast: A practical approach". Eds Campbell, I., and
- 30 Duffus, J.H. IRL Press, 1988. Yeast Genetics, Molecular Aspects.

- 32 Kreil, G. Annual Rev. Biochem. 50, 317-348 (1981). Transfer of proteins
- 33 across membranes.

- Roberts, B.E., and Paterson, B.M. Proc. Natl. Acad. Sci. USA 70, 2330
- 2 (1973). Efficient translation of tobacco mosaic virus RNA and rabbit globin 9S.
- 3 RNA in a cell-free system from commercial wheat germ.

WO 91/19801

- 5 Sanger, F., Nicklen, S., and Coulson, A.R. Proc. Natl. Acad. Sci. USA 74.
- 6 5463-5467 (1977). DNA sequencing with chain-terminating inhibitors.

7

- 8 Schauder, B., Blocker, H., Frank, R., and McCarthy, J.E.G. Gene 52,
- 9 279-283 (1987). Inducible expression vectors incorporating the E. coli aptE
- 10 translation initiation region.

11

- 12 Scott, R., Draper, J., Jefferson, R., Dury, G., and Jacob, L. in "Plant Genetic
- 13 Transformation and Gene Expression: A Laboratory Manual". Eds. Draper,
- 14 J., Scott, R., Armitage, P., Walden, R. Blackwell 1988. Analysis of gene
- organisation and expression in plants.

16

- 17 Staden, R. Nucleic Acids Res. 14, 217-231 (1986). The current status and
- 18 portability of our sequence handling software.

19

- 20 Sudbery, P.E., Gleeson, M.A., Veale, R.A., Lederboer, A.M., and
- 21 Zoetmulder, M.C.M. Biocem. Soc. Trans 16 1081-103 (1988). Hansenula
- 22 polymorpha as a novel yeast system for the expression of heterologous genes.

23

- 24 Taylor, J.W., Ott, J., and Eckstein, F. Nucleic Acids Res. 13, 8765-8785
- 25 (1985). The rapid generation of oligonucleotide-directed mutations at high
- 26 frequency using phosphorothioate-modified DNA.

27

- Towbin, H., Staehelin, T., and Gordon, J. Proc. Natl. Acad. Sci. USA 76,
- 29 4350-4534 (1979). Electrophoretic transfer of proteins from polyacrylamide
- 30 gels to nitrocellulose sheets: procedure and some applications.

- 32 Von Heije, G. Eur. J. Biochem 133, 17-21 (1983). Patterns of Amino-acids
- 33 near Signal-Sequence Cleavage Sites.

| 1        |         | CLAIMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        |         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3        | 1.      | A 67kD protein of Theobroma cacao, or a fragment thereof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5        | 2.      | A 47kD protein of Th. cacao, or a fragment thereof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7        | 3.      | A 31kD protein of Th. cacao, or a fragment thereof.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 8        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9        | 4.      | A protein as claimed in claim 1, 2 or 3, having at least part of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10       | seque   | nce shown in Figure 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11       | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12       | 5:      | A fragment as claimed in any one of claims 1 to 4, which comprises a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13       | least i | our amino acids.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 14       | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15<br>16 | 6.      | A protein or fragment as claimed in any one of claims 1 to 6, which is binant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 17       | recom   | binant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18       | 7.      | Recombinant or isolated avalois said sadies for a service or for every                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 19       |         | Recombinant or isolated nucleic acid coding for a protein or fragment as ed in any one of claims 1 to 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20       | CIMITIC | a in any one of claims 1 to 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21       | 8.      | Nucleic acid as claimed in claim 7 which is DNA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22       |         | The state of the s |
| 23       | 9.      | Nucleic acid as claimed in claim 8, having at least part of the sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 24       | shown   | in Figure 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26       | 10.     | Nucleic acid as claimed in claim 7, 8 or 9, which is in the form of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 27       | vector  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29       | 11.     | Nucleic acid as claimed in claim 10, wherein the vector is an expression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 30       | vector  | and the protein- or fragment-coding sequence is operably linked to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 31       | promo   | ter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 32       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 33       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



SUBSTITUTE SHEET

|            | CAGGGATGAAGACCTTCAAGATCCTCCAGAGGTTTGCTGAGAACTCTCCTCCACT 540 500 510 520 530 540                                                    |
|------------|------------------------------------------------------------------------------------------------------------------------------------|
| J          | K G I N D Y R L A M F E A N P N T F I L<br>CAAGGGCATCAACGATTACCGCTTGGCCATGTTCGAAGCAAATCCCAACACTTTTATTCT<br>550 550 560 570 580 590 |
|            | P H H C D A E A I Y F V T N G K G T I T<br>TCCGCACCACTGTGATGCTGAGTTTTACTTCGTGACAAACGGAAAGGGGACAATTAC<br>610 620 630 640 650 660    |
| 97<br>17   | F V T H E N K E S Y N V Q R G T V V S V<br>GTTTGTGACTCATGAAAACAAAGAGTCCTATAATGTACAGCGTGGAACAGTAGTCAGCGT<br>670 680 690 710 720     |
|            | P A G S T V Y V V S Q D N Q E K L T I A<br>TCCTGCAGGAAGCACTGTTAGCCAAGACAACCAAGAGAAGCTAACCATAGC<br>730 740 750 760 770 780          |
| <b>[-1</b> | V L A L P V N S P G K Y E L F F P A G N<br>TGTGCTCGCCCTGCCTGTTATTCTCCCGCTGGAAA<br>T90 800 810 820 830 840                          |
| Ħ          | N K P E S Y Y G A F S Y E V L E T V F N<br>TAATAAACCTGAATCATATTACGGAGCCTTCAGCTATGAAGTTCTTGAGACCGTCTTCAA<br>850 860 870 880 890 900 |
| 단          | T Q R E K L E E I L E E Q R G Q K R Q Q<br>TACACAAAGAGAGAGAGGAGAGAGAGAGAGAGAGGCAGAAGA                                              |

|      | A S K D Q P L N A V A F G L N A Q N N Q<br>TGCATCCAAAGACCAGCCCTGAATGCAGTTGCGTTTGGACTCAACGCCCAGAACAACCA<br>1450 1460 1470 1480 1490 1500 | A S K D Q P L N A V A F G L N A Q N N Q<br>CATCCAAAGACCAGCCCTGAATGCAGTTGCGTTTGGACTCAACGCCCAGAACAACCA<br>1450 1460 1470 1480 1490 1500 | D<br>SACC | o<br>Nago | P<br>CCC<br>.460 | T.       | N<br>ATG | A<br>CAG            | 7 A<br>FTGC                  | GTT       | G<br>rgga<br>1480 | LCTC      | N<br>AAC  | A (<br>3CCC<br>1490                                                   | 2 N<br>AGAA( | N<br>CAA(             | OCA<br>500      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------------------|----------|----------|---------------------|------------------------------|-----------|-------------------|-----------|-----------|-----------------------------------------------------------------------|--------------|-----------------------|-----------------|
|      | R I F L A G K K N L V R Q M D S E A K E<br>GAGAATTTTCCTTGCAGGGAAAAGAACTTGGTCAGACAAATGGATAGCGAGGCAAAGGA<br>1510 1520 1530 1540 1550 1560 | R I F L A G K K N L V R Q M D S E A K E<br>GAATTTTCCTTGCAGGGAAAAAAACTTGGTCAGACAAATGGATAGCGAGGCAAAGGA<br>1510 1520 1530 1540 1550 1560 | L<br>CTTG | A<br>SCAG | G<br>GGA<br>520  | K<br>AAA | K<br>Aga | N ]<br>ACT:         | C V                          | R<br>CAG2 | Q<br>ACAA<br>L540 | M<br>ATG  | D<br>GATZ | S E<br>AGCG2<br>1550                                                  | i A<br>AGGC/ | K<br>AAA(             | E<br>3GA<br>360 |
| 3.2D | L S F G V P S K L V D N I F N N P D E S<br>GTTATCATTTGGGGTACCATCGAATTGGTAGATATATTTCAACAACCCGGATGAGTC<br>1570 1580 1590 1600 1610 1620   | S F G V P S K L V D N I F N N P D E S<br>TCATTTGGGGTACCATCGAAATTGGTAGATAATATTTCAACAACCCGGATGAGTC<br>1570 1580 1590 1600 1610 1620     | ე<br>ე    | V<br>TAC  | P<br>CAT<br>580  | s<br>CGA | K<br>AAT | L 1<br>TGG1<br>159( | , D<br>PAGA'                 | N<br>FAA7 | I<br>CATA<br>1600 | F         | N<br>AAC2 | N E                                                                   | D<br>GGA1    | E<br>IGAC             | S<br>3TC<br>520 |
|      | Y F M S F S Q Q R Q R D E R G N P L<br>GTATTTCATGTCTTTCTCTCAAGGGGCAGCGTCGAGATGAAAGGAGGGGCAATCCCTT<br>1630 1640 1650 1660 1670 1680      | Y F M S F S Q Q R Q R D E R G N P L<br>ATTTCATGTCTTTCTCTCAAGGGCAGCGTCGAGATGAAAGGAGGGGCAATCCCTT<br>1630 1640 1650 1660 1670 1680       | S<br>ICTT | F<br>TCT  | s<br>crc<br>640  | o<br>Aac | o<br>Aga | R (<br>GGC?<br>165( | S R                          | R CGA     | D<br>AGAT<br>.660 | E<br>GAAJ | R<br>AGGA | S F S Q Q R Q R R D E R R C<br>CTTTCTCTCAACAGGCAGCGTCGAGATGAAAGGAGGGG | ;<br>N       | P L<br>rcccrr<br>1680 | L<br>CTT<br>580 |
|      | A S I L D F A R L F * GGCCTCAATTCTGGACTTTGTATCAGA 1700 1710 1720 1730 1740                                                              | A S I L D F A R L F *<br>CCTCAATTCTGGACTTTGCCCGCTTGTTCTAAGCAGCTGCTTCC<br>1690 1700 1710 1720                                          | L<br>TGG  | D<br>ACT  | F<br>TTG<br>700  | A        | R<br>GCT | L E                 | , *<br>CTA                   | AGCA      | GCT.              | GCT       | CC2       | ZACTTT<br>1730                                                        | TGT?         | ATC?<br>17            | CAGA<br>1740    |
|      | CATGCAGAGGCATGTAATGAATAAGTTGGCCTATGTAAAGAGGAGAGAGTTTGCT<br>1750 1760 1770 1780 1790 1800                                                | GAGGC<br>1750                                                                                                                         | ATG       | TAA<br>1  | AATGC            | AAT      | AAA'     | raa0<br>1770        | TAAGTTGGCCTATGT<br>1770 1780 | SCT<br>1  | 'ATG              | TAA       | AGAG      | .GGAGA                                                                | GAGI         | 11<br>18              | PTGCT<br>1800   |

7/22

SORRE: 1 1 日日日 1 1 O X X O I I **893日** 1 OB D B | | <u>a a o o i i</u> **>> > B B B I I** 0 2 0 2 1 **月日日日** 1 **医风图图** 1 0 0 M 3 1 HOZELI ·山 Or X RE I 000211 **교교교** : **密図図図** 1 င္တ<u>မ</u> ရ ရ ရ OBB . O O M M . a a z z ı (a) (c) a D I 00001 1 22 22 22 1 臣臣のKっ **よら**9 日 >> > \omega \omega | **図 a a a i ™**∞ **™** 1 B × G & ರ ರ ಜ ≻ **以 ♡ ₽ ₹** 医医医坏 ပပပၽြး リレスニタ **ADSDIS 四〇日日**1 1 도 요 > 요 + 그 S S S I I S စစ္စပ္ဘ ၊ ၊ हिस्स्<u>र सिस्त</u> । 1211日日 1 O 60 04 1 KI Q X X I , D M D . 国の国田 00000 E & > > 1 E COCK I KEXOI : **8888** 0000 1 7 C C B 0 22 23 23 1 110 0 G E R C S **四日23** 1 りしょりしょ ပပပြုမျ **0822** 2 2 2 U I 0043 K K K I B 0 8 B 0 = = = O1 EK O1 EH 1 ZKHKK  $\cup$   $\cup$   $\cup$   $\times$ ပ ပ **မ** မ エRRTLR COABI **∝ 函 ₽ >** >> x < u x **田田〇田**: 1 0020 Tca Ghi Gma Psa-c Psa-v Pvu Tca Ghi Gma Psa-c Psa-v Pvu

9/22

0 8 8 8 8 8 8 8 8 8 8 500 0000° ∞ ∝ 医巴巴巴巴 SOL 2 2 2 2 D G G Z X Z F O B ×××× പെ 医克瓦克尼氏 SO 4444 OOFFE EE يا ب د < < <u>---</u> × 医医鼠医医因 **4** > H न्त्र का का स्टब्स Y ZZOZ 6 6 6 6 G 0 0 × 0 0 × BXXOXX 00000 000000 ZZDEGH 印度医医医原 ⊌z z z⊌z OOXXXE ZZZZZ တ တ တ တ တ 🚺 **田 ← ☆ 1** >>>>> M M M 0 2 0 \*\*\*\* りょうしょすり 1 × × 1 > R H B H I 0-0-0-0-1 ය ය ස ය ය >>>---00000 SKOKZ <u>| B</u> = = = OKKIK I 000781 လေသလ လ \*\*\* 0000 H 1 ये ये व्यव्य थ ×××××× 00000 2222 **8 보이라** 6 1 ZZZZZ XX · XX O H 64 64 64 14 ㅋ ㅋ[교 ㅋ > > P P P E E 0 = 0 × 0 0 တ္က မ မ မာတ **山戸片まる。 年0至00**百 **8 2 2 6 5 0 0** œ œ B(미요 医医院医医口 **国 5 8 8 8 8** 8067776 9 5 5 6 6 7 5 6 AOAAOA ドドドレリン 0 **0** 0 0 0 0 | 出版 | よる な な a a <u>m × > m</u> 图图片片片员 R R X X X X zzzxx MO KM MZ o o œ x x x x J JE H H X **80 80 80 80** X O O M O M K 口 窓 下 窗 窓 E E 8 8 8 8 8 医医医医氏征 1 20 20 20 20 SSCIAN 民公市义义市  $\mathsf{I} \times \times \times \times \times$ ល ល <u>ល ល ន </u> ល > > □> > □ RARARA FFFFS OEKJZH a a x x x x 0 0 0 8 0 0 0 > 4 5 5 4 5 - 11111 FARRAR A A A B B B z a a a a Ghi Ghi Gma Psa-c Psa-v Pvu Tca Ghi Gma Psa-c Psa-v Pvu Tca Ghi Gma Psa-c Psa-v Pvu

CUESTITUTE SHEET



WO 91/19801 PCT/GB91/00914

13/22



FIG.7



F1G.8E

1 231 Met----GluGlyValSerLeuAspLysArgGlu ATG----GAAGGGGTAAGGAG Hin

YEAST ALPHA-FACTOR

SIGNAL SEQUENCE

AGCTTGGATAAAAGAGC ACCTATTTTCTCGGTAC

15/22

HIN-NCO LINKERS

Met---GluGlyVa<u>lSerLe</u>uAspLysArgA<u>laMetA</u>laLeu ATG---GAAGGGGT<u>AAGCTT</u>GGATAAAAGAG<u>CCATGG</u>CGTTG

듶

IN-PHASE FUSION OF 67KD CODING REGION

SUBSTITUTE SHEET

Mimosa 23:25:33

17/22



SUBSTITUTE SHEET



Mimosa 23:25:33

21/22



SUBSTITUTE SHEET

# INTERNATIONAL SEARCH REPORT

International Application No.

PCT/GB 91/00914

| I. CI.ASSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FICATION OF SUBJ                                         | ECT MATTER (If seve                                                                                        | al classification s                  | ymbols       | apply, Indicate a     | 71) 6      |                    |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------|-----------------------|------------|--------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | to International Patent<br>C1. 5                         | Classification (IPC) or to C12N15/29;                                                                      |                                      |              |                       | ;          | C12N1/19           |                         |
| II. FIELDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SEARCHED                                                 |                                                                                                            |                                      |              |                       |            |                    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                            | Minimum Docume                       | entatio      | a Searched?           |            | -                  | •                       |
| Classificat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion System                                              |                                                                                                            |                                      | Classif      | ication Symbols       |            |                    |                         |
| Int.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C1. 5                                                    | СО7К;                                                                                                      | C12N                                 |              |                       |            |                    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | Documentatio<br>to the Extent that                                                                         | n Searched other<br>such Documents : |              |                       |            |                    |                         |
| m pog!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MCD TO COLUMN TO THE                                     | o to se percurati                                                                                          |                                      |              |                       |            |                    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          | D TO BE RELEVANT                                                                                           |                                      |              | **********            | 12         | <del></del>        | Palament to Claim No 13 |
| Category *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Citation of Do                                           | cument, 11 with indicatio                                                                                  | n, wnere appropri                    | L(E, 01      | THE LEVENSIN BESS     | ekez       |                    | Relevant to Claim No.13 |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vol. 33,<br>pages 12<br>BIEHL, E<br>cocoa se<br>germinat | FOOD AGRIC.<br>, 1982,<br>291 - 1304;<br>B., ET AL: 'Va<br>eds and their<br>ion and ferme<br>whole documen | degradat                             |              |                       | ns o       | f                  | 1-6                     |
| X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | protein                                                  | 1985,                                                                                                      | RNA duri                             | eds:<br>ng c | Changes<br>levelopmen | in<br>nt i |                    | 1-6                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                          |                                                                                                            |                                      |              | <b>-/-</b>            |            |                    |                         |
| "To later document published after the international filing date or priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application but cited to understand the priority date and not in conflict with the application of priority date and not in conflict with the application cited to understand the priority date and not in conflict with the application of cited to understand the priority date and not in conflict with the priority date and not in conflict with the priority date understand the priority date and not in conflict with the priority date understand not in conflict with the priority date understand not in conflict with the priorit |                                                          |                                                                                                            |                                      |              |                       |            |                    |                         |
| IV. CERTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                                                                                            |                                      | T -          |                       | # a4 * -   |                    | 1 P                     |
| Date of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Actual Completion of the 30 SEPTEM                       |                                                                                                            |                                      | "            | <u> </u>              |            | nternational Searc | в кероп                 |
| loternations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l Searching Authority EUROPEA                            | N PATENT OFFICE                                                                                            |                                      | S            | dtuA to stutetgli     |            |                    |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 710 (a.e., d.a) 11 ( feeters                             | 1990                                                                                                       |                                      |              |                       |            |                    |                         |

| IIL DOCUME | International Application No  CONTINUED FROM THE SECOND SHEET)                              |                     |
|------------|---------------------------------------------------------------------------------------------|---------------------|
| Category * |                                                                                             |                     |
|            | Citation of Document, with indication, where appropriate, of the relevant passages          | Relevant to Claim ! |
|            |                                                                                             | }                   |
|            |                                                                                             |                     |
| X          | PLANT MOL BIOL                                                                              | 4-11,15,            |
| 1          | vol. 11, 1988,<br>pages 683 - 695;                                                          | 17,19               |
| - 1        | pages 683 - 695;                                                                            |                     |
|            | HIGGINS T.J.V., ET.AL.: 'The sequence of a pea vicilin gene and its expression in tansgenic |                     |
| 1          | tobacco plants '                                                                            |                     |
|            | see page 684 methods section                                                                | İ                   |
| -          |                                                                                             | 1                   |
|            |                                                                                             |                     |
| 1          |                                                                                             |                     |
| 1          |                                                                                             |                     |
|            |                                                                                             | 1                   |
| j          |                                                                                             | 1                   |
| -          |                                                                                             | 1                   |
|            |                                                                                             |                     |
|            | ·                                                                                           |                     |
|            |                                                                                             |                     |
| j          |                                                                                             |                     |
|            |                                                                                             |                     |
| f          |                                                                                             | 1                   |
|            |                                                                                             |                     |
|            |                                                                                             | 1                   |
|            |                                                                                             | 1                   |
|            |                                                                                             | 1                   |
|            |                                                                                             |                     |
| j          |                                                                                             | 1                   |
| 1          |                                                                                             |                     |
| İ          |                                                                                             |                     |
| ĺ          |                                                                                             |                     |
| -          |                                                                                             | }                   |
| ·          |                                                                                             |                     |
|            |                                                                                             |                     |
|            | •                                                                                           |                     |
|            |                                                                                             |                     |
|            |                                                                                             |                     |
|            |                                                                                             |                     |
| İ          |                                                                                             |                     |
|            |                                                                                             |                     |
|            |                                                                                             |                     |
|            |                                                                                             |                     |
|            | ·                                                                                           |                     |
|            | ,                                                                                           |                     |
| j          |                                                                                             |                     |
| 1          | ·                                                                                           |                     |
|            |                                                                                             |                     |
| 1          |                                                                                             |                     |
|            |                                                                                             |                     |
|            |                                                                                             |                     |
|            |                                                                                             |                     |
|            | ł                                                                                           |                     |