Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Logistic Regression

Class Logistics and Agenda

- Logistics
 - A2 Due soon!
- Agenda
 - Town Hall
 - Logistic Regression
 - Solving
 - Programming
 - Finally some real python!

Town Hall

Solving Logistic Regression

Setting Up Binary Logistic Regression

From flipped lecture:

How do you optimize iteratively?

- Objective Function: the function we want to minimize or maximize
- Update Formula: what update "step"can we take to optimize the objective function
- Parameters: what are the parameters of the model that we can change to optimize the objective function

Binary Solution for Update Equation

- Video Supplement (also on canvas):
 - https://www.youtube.com/watch?v=FGnoHdjFrJ8
- General Procedure:
 - Simplify L(w) with logarithm, I(w)

$$l(\mathbf{w}) = \sum_{i} \mathbf{y}^{(i)} \ln \left(g(\mathbf{w}^{T} \mathbf{x}^{(i)}) \right) + (1 - \mathbf{y}^{(i)}) \ln \left(1 - g(\mathbf{w}^{T} \mathbf{x}^{(i)}) \right)$$

Take Gradient

$$\frac{\partial}{\partial w_j} l(\mathbf{w}) = -\sum_i \left(\mathbf{y}^{(i)} - g(\mathbf{w}^T \mathbf{x}^{(i)}) \right) x_j^{(i)}$$

Use gradient inside update equation for w

Binary Solution for Update Equation

Use gradient inside update equation for w

$$\frac{\partial}{\partial w_j} l(\mathbf{w}) = -\sum_i \left(\mathbf{y}^{(i)} - g(\mathbf{w}^T \mathbf{x}^{(i)}) \right) x_j^{(i)}$$

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \underbrace{\sum_{i=1}^{M} (y^{(i)} - g(\mathbf{w}^T \mathbf{x}^{(i)})) x_j^{(i)}}_{\text{gradient}}$$

Demo

http://blog.yhat.com/posts/logistic-regression-python-rodeo.html

http://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html

For Next Lecture

- Next time: More gradient based optimization techniques for logistic regression
- Next Next time: SVMs in-class assignment (on your own)

Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Optimization Techniques for Logistic Regression

Class Logistics and Agenda

- Next Time: In class assignment, SVMs!
- Agenda
 - Finish Logistic Regression
 - More Numerical Optimization Techniques
 - Types of Optimization
 - Programming the Optimization

Whirlwind Lecture Alert

- Get an intuition, program it, maybe you don't follow every mathematical concept in lecture
- But you know how to approach it outside lecture

Demo

05. Logistic Regression.ipynb

"Finish"

Programming

Vectorization

Regularization

Multi-class extension

Other Tutorials:

http://blog.yhat.com/posts/logistic-regression-python-rodeo.html

http://scikit-learn.org/stable/auto_examples/linear_model/plot_iris_logistic.html

Demo Lecture

06. Optimization

Scratch Paper

Back Up Slides

Last time

$$p(y^{(i)} = 1 \mid x^{(i)}, w) = \frac{1}{1 + \exp(w^T x^{(i)})}$$

$$l(w) = \sum_{i} (y^{(i)} \ln[g(w^{T} x^{(i)})] + (1 - y^{(i)})(\ln[1 - g(w^{T} x^{(i)})]))$$

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \underbrace{\sum_{i=1}^{m} (y^{(i)} - g(x^{(i)})) x_j^{(i)}}_{\text{gradient}}$$

$$w \leftarrow w + \eta \sum_{i=1}^{M} (y^{(i)} - g(x^{(i)}))x^{(i)}$$

$$w \leftarrow w + \eta \left[\underbrace{\nabla l(w)_{old}}_{\text{old gradient}} - C \cdot 2w \right]$$

def _get_gradient(self,X,y):
 # programming \sum_i (yi-g(xi))xi
 gradient = np.zeros(self.w_.shape) # set
 for (xi,yi) in zip(X,y):
 # the actual update inside of sum
 gradi = (yi - self.predict_proba(xi,
 # reshape to be column vector and ad
 gradient += gradi.reshape(self.w_.sh
 return gradient/float(len(y))

Professor Eric C. Larson

Optimization: gradient descent

What we know thus far:

$$\underbrace{w_j}_{\text{new value}} \leftarrow \underbrace{w_j}_{\text{old value}} + \eta \underbrace{\left[\left(\sum_{i=1}^{M} (y^{(i)} - g(x^{(i)}))x_j^{(i)}\right) - C \cdot 2w_j\right]}_{\nabla l(w)}$$

$$w \leftarrow w + \eta \nabla l(w)$$

19

Line Search: a better method

Line search in direction of gradient:

$$\eta \leftarrow \arg\max_{\eta} \sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)})^2 - C \cdot \sum_{j} w_j^2$$

$$w \leftarrow w + \eta \nabla l(w)$$

$$w \leftarrow w + \underbrace{\eta}_{\text{best step?}} \nabla l(w)$$

Revisiting the Gradient

How much computation is required (for gradient)?

$$\sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)})x^{(i)} - 2C \cdot w$$

$$M = \text{number of instances}$$

$$N = \text{number of features}$$

Self Test: How many multiplies per gradient calculation?

- A. M*N+1 multiplications
- B. (M+1)*N multiplications
- C. 2N multiplications
- D. 2N-M multiplications

Stochastic Methods

How much computation is required (for gradient)?

$$\sum_{i=1}^{M} (y^{(i)} - \hat{y}^{(i)}) x^{(i)} - 2C \cdot w$$

Per iteration:

(M+1)*N multiplications 2M add/subtract

 $w \leftarrow w + \eta \underbrace{\left((y^{(i)} - \hat{y}^{(i)}) x^{(i)} - 2C \cdot w \right)}_{\text{approx. gradient}},$

i chosen at random

Per iteration:

N+1 multiplications 1 add/subtract

06. Optimization.ipynb

Gradient Descent (with line search)

Stochastic Gradient Descent

Hessian

Quasi-Newton Methods

Multi-processing

For Next Lecture

- Next time: SVMs via in class assignment
- Next Next time: Neural Networks

Can we do better than the gradient?

Assume function is quadratic:

function of one variable:

$$w \leftarrow w - \left[\frac{\partial^2}{\partial w}l(w)\right]^{-1} \underbrace{\frac{\partial}{\partial w}l(w)}_{\text{derivative}}$$

will solve in one step!

what is the second order derivative for a multivariate function?

$$\nabla^2 l(w) = \mathbf{H}[l(w)]$$

The Hessian

Assume function is quadratic:

function of one variable:

$$\mathbf{H}[l(w)] = \begin{bmatrix} \frac{\partial^2}{\partial w_1} l(w) & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_2} l(w) & \dots & \frac{\partial}{\partial w_1} \frac{\partial}{\partial w_N} l(w) \\ \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_1} l(w) & \frac{\partial^2}{\partial w_2} l(w) & \dots & \frac{\partial}{\partial w_2} \frac{\partial}{\partial w_N} l(w) \\ \vdots & & & \vdots \\ \frac{\partial}{\partial w_N} \frac{\partial}{\partial w_1} l(w) & \frac{\partial}{\partial w_N} \frac{\partial}{\partial w_2} l(w) & \dots & \frac{\partial^2}{\partial w_N} l(w) \end{bmatrix}$$

$$\nabla^2 l(w) = \mathbf{H}[l(w)]$$

The Newton Update Method

Assume function is quadratic (in high dimensions):

$$w \leftarrow w - \underbrace{\left[\frac{\partial^2}{\partial w}l(w)\right]^{-1}}_{\text{inverse 2nd deriv}} \underbrace{\frac{\partial}{\partial w}l(w)}_{\text{derivative}}$$

$$w \leftarrow w + \eta \cdot \underbrace{\mathbf{H}[l(w)]^{-1}}_{\text{inverse Hessian}} \cdot \underbrace{\nabla l(w)}_{\text{gradient}}$$

J. newlon'

I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of

J. newlon.

I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.

The Hessian for Logistic Regression

 The hessian is easy to calculate from the gradient for logistic regression

$$\mathbf{H}_{j,k}[l(w)] = -\sum_{i=1}^{M} g(x^{(i)})(1 - g(x^{(i)})x_k^{(i)}x_j^{(i)} \qquad \sum_{j=1}^{M} (y^{(i)} - \hat{y}^{(i)})x_j^{(i)}$$

$$\mathbf{H}[l(w)] = X^T \cdot \operatorname{diag}[g(x^{(i)})(1 - g(x^{(i)}))] \cdot X \qquad X * y_{diff}$$

$$w \leftarrow w + \eta[X^T \cdot \operatorname{diag}[g(x^{(i)})(1 - g(x^{(i)}))] \cdot X]^{-1} \cdot X * y_{diff}$$

Newton's method

Problems with Newton's Method

- Quadratic isn't always a great assumption:
 - highly dependent on starting point
 - jumps can get really random!
 - near saddle points, inverse hessian unstable
 - hessian not always invertible...
 - or invertible with correct numerical precision

The solution: quasi Newton methods

- In general:
 - approximate the Hessian with something numerically sound and efficiently invertible
 - back off to gradient descent when the approximate hessian is not stable
 - use momentum to update approximate hessian
- A popular approach: use Broyden-Fletcher-Goldfarb-Shanno (BFGS)
 - which you can look up if you are interested ...

https://en.wikipedia.org/wiki/Broyden-Fletcher-Goldfarb-Shanno_algorithm

BFGS

$$\mathbf{H}_0 = \mathbf{I}$$
 init

$$p_k = -\mathbf{H}_k^{-1} \nabla l(w_k)$$

get update direction

find next w
$$w_{k+1} \leftarrow w_k + \eta \cdot p_k$$

get scaled direction $s_k = \eta \cdot p_k$

$$v_k = \nabla l(w_{k+1}) - \nabla l(w_k)$$

approx gradient change

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \underbrace{\frac{v_k v_k^T}{v_k^T s_k}}_{\text{approx. Hessian}} - \underbrace{\frac{\mathbf{H}_k s_k s_k^T \mathbf{H}_k}{s_k^T \mathbf{H}_k s_k}}_{\text{momentum}}$$

update Hessian and inverse Hessian approx

$$\mathbf{H}_{k+1}^{-1} = \mathbf{H}_{k}^{-1} + \frac{(s_{k}^{T} v_{k} + \mathbf{H}_{k}^{-1})(s_{k} s_{k}^{T})}{(s_{k}^{T} v_{k})^{2}} - \frac{\mathbf{H}_{k}^{-1} v_{k} s_{k}^{T} + s_{k} v_{k}^{T} \mathbf{H}_{k}^{-1}}{s_{k}^{T} v_{k}}$$

k = k + 1increment k and repeat

invertibility of H well defined / only matrix operations

Demo

BFGS (if time) parallelization

