Position vector

If you are able to solve these problems on your own, then you can assume that you have the minimum knowledge about these topics.

The problems marked with (*) have additional difficulties. Don't hesitate about seeking help from teachers and your classmates if you are not able to complete them.

a) Save in a variable called a_r a vector that indicates the position $\vec{r}_a = 3\hat{e}_x + 0\hat{e}_y + 5\hat{e}_z$.

c) Subtract the corresponding variables to find $\Delta \vec{r}_{a \to b} = \vec{r}_b - \vec{r}_a$ and save the result in ab_deltaR.

e) To verify that you did a good work, it's sufficient to display c_r and check that $\vec{r}_c = \vec{r}_b$.

2. (*) Position as a function of a variable

A particle of mass m is attached to a ring of radius R, and therefore its radius measured from the center of the ring is constant. Then it's enough to know the angle φ to describe its position.

- a) Write it using cartesian coordinates.
- b) Calculate the velocity of this particle.

