第五章 轮系

- 5-1 轮系的类型
- n 轮系: 一系列齿轮组成的传动系统。
- n 功用:
 - ≖ 多种转速;
 - ≖ 结构紧凑;
 - ¤ 传动比大。

分类

定轴轮系——每个 齿轮的轴线都是固 定的。

分类

周转轮系——至少有一个齿轮的几何轴 线绕另一个齿轮的几何轴线转动。

5-2 定轴轮系及其传动比

传动比——输入轴与输出轴转速之比:

$$i_{ab} = \pm \frac{\mathbf{W}_a}{\mathbf{W}_b} = \pm \frac{n_a}{n_b}$$

- ¤ a──输入轴代号;
- ¤ *b*──输出轴代号。
- 輸入与輸出 转向相同为正,否则为 负;确定正负号的方法:
 - n 外啮合为负,内啮合为正;
 - n画箭头。

输入与输出转向的判断

- 一对圆锥齿轮表示转向的尖头:
 - □ 或同时指向啮合点;
 - □ 或同时背离啮合点;
- 蜗轮蜗杆——用"左右手"判断:
 - ∞ 左旋用左手,右旋用右手;
 - □ 拇指伸直,四指弯曲与蜗杆转 向一致;
 - □ 与拇指相反的方向,为蜗轮运动方向。

定轴轮系的传动比

□ Ⅰ轴:输入轴; Ⅴ轴:输出轴。

各齿轮齿数: $Z_1, Z_2, Z_{2'}, Z_3, Z_{3'}, Z_4, Z_5$

各齿轮转速:

$$n_1, n_2, n_{2'} (= n_2), n_3, n_{3'} (= n_3), z_4, z_5$$

定轴轮系的传动比

该轮系的传动比:

$$i_{12} = -\frac{z_2}{z_1} \quad i_{23} = \frac{n'_2}{n_3} = \frac{z_3}{z'_2} \quad i_{34} = \frac{n'_3}{n_4} = -\frac{z_4}{z'_3} \quad i_{45} = -\frac{z_5}{z_4}$$

$$i_{12} = -\frac{n_1}{z_1} - \frac{n_1}{n_2} \frac{n_2}{n_3} \frac{n_4}{n_4} - i_{13} i_{13} i_{13}$$

$$i_{15} = \frac{n_1}{n_5} = \frac{n_1}{n_2} \frac{n_2}{n_3} \frac{n_3}{n_4} \frac{n_4}{n_5} = i_{12} i_{23} i_{34} i_{45}$$

$$i_{15} = \frac{n_1}{n_5} = (-1)^3 \frac{z_2 z_3 z_4 z_5}{z_1 z_2 z_3 z_4}$$

定轴轮系的传动比

$$i_{1N} = \frac{n_1}{n_N} = (-1)^m \frac{\text{所有从动轮齿数的积}}{\text{所有主动轮齿数的积}}$$

- 此式中的方向只适于各轴互相平行的定轴轮系;
- 符号取决于外啮合的次数(m);
- 传动比的符号也可由画箭头的方法确定;
- 注意:区别主、从动轮

5-3 周转轮系及其传动比

一、周转轮系的组成

- 行星轮2——轴线位 置变化的齿轮,既 有公转又有自转;
- 系杆(转臂、行星架) H——支持行星轮 的构件;
- 中心轮**1、3**(太阳轮)——轴线位置不动的齿轮。

周转轮系

- 每个单一的周转轮系中:
 - x 有一个转臂;
 - ≖不多于两个的中心轮;
 - □ 转臂和两个的中心轮的 中心线**必须**重合。
- 有时为了受力平衡,采用 多个行星轮——虚约束。

差动轮系

机构自由度大于1的周 转轮系。

· n=4

• P_H=2

· P_L=4

· F=2

行星轮系

机构自由度等于1的周 转轮系

- $\cdot \cdot n=3$
- $P_H=2$
- $P_L=3$

二、周转轮系传动比的计算

- 不能直接用定轴轮系传动比的计算公式计算。
- "计算方法——反转法。各构件间相对运动关系不变。
- 周转轮系——转化为——定轴轮系(转化轮系)。

转化轮系

构件	周转轮系 的转速	转化轮系 的转速
1	n_1	$n_1^H = n_1 - n_H$
2	n_2	$n_2^H = n_2 - n_H$
3	n_3	$n_3^H = n_3 - n_H$
Н	n_H	$n_H^H = n_H - n_H$

传动比计算公式

转化轮系中的传动比:

$$i_{13}^{H} = \frac{n_{1}^{H}}{n_{3}^{H}} = \frac{n_{1} - n_{H}}{n_{3} - n_{H}}$$

根据定轴轮系传动比公式得:

$$i_{13}^{H} = \frac{n_1 - n_H}{n_3 - n_H} = (-1)^1 \frac{z_2 z_3}{z_1 z_2} = -\frac{z_3}{z_1}$$

$$= \frac{n_3 - n_H}{12} = (-1)^1 \frac{z_2 z_3}{z_1 z_2} = -\frac{z_3}{z_1}$$

$$= \frac{n_1 - n_H}{n_3 - n_H} = (-1)^1 \frac{z_2 z_3}{z_1 z_2} = -\frac{z_3}{z_1}$$

$$i_{13} = \frac{n_1}{n_3}$$

注意

$$i_{13}^{H} = \frac{n_1 - n_H}{n_3 - n_H} = (-1)^1 \frac{z_2 z_3}{z_1 z_2} = -\frac{z_3}{z_1}$$

- i_{13}^H 转化轮系的传动比是加了反转后机构的传动比。
- 实际轮系传动比*i ₁₃*是没有加反转时的传动比,二者不等。
- 转化轮系的传动比符号是按定轴轮系确定的。
- 实际轮系传动比的符号要通过计算得到。

周转轮系传动比的计算公式

 $i_{GK}^{H} = \frac{n_{G} - n_{H}}{n_{K} - n_{H}} = (-1)^{m} \frac{ 齿轮G - K$ 的所有从动轮齿数积 齿轮G - K的所有主动轮齿数积 m为外啮合次数

- (-1)^m只适于G、H、K轴线相互平行的场合; 对于锥齿轮组成的单一周转轮系,传动比 的符号必须由画箭头的方法确定。
- 若已知转速,必须连同符号一起代入;假 定一个方向为正,另一方向必须为负号代 入。

5-4 混合轮系的传动比

- 由定轴轮系和一个或几个单一的周转轮系组成的混合轮系。
- 混合轮系的传动比既不能直接用定轴轮系的公式计算,也不能直接用周转轮系的计算。

传动比的计算方法

- "找出其中的定轴轮系和各单一的 周转轮系:

 - A 各周转轮系之外的部分为定轴轮系。
- 分别计算定轴轮系和各单一的周 转轮系的传动比;
- 联立求解。

例

- **行星轮**2-2'
- **找出转臂——**H(5)
- 中心轮1、3
- 1-2-2'-3-H**组成差动轮系**

$$i_{13}^{H} = \frac{n_{1}^{H}}{n_{3}^{H}} = \frac{n_{1} - n_{H}}{n_{3} - n_{H}} = -\frac{z_{2}z_{3}}{z_{1}z_{2'}} = -\frac{52 \times 78}{24 \times 21}$$

其余为定轴轮系 $i_{35} = \frac{n_3}{n_5} = -\frac{z_5}{z_{3'}} = -\frac{78}{18}$

联立可求得:

$$i_{1H} = \frac{n_1}{n_H} = 43.9$$

注意

- 正确区分轮系,找出各单一的周转轮系。
- 分别计算各单一周转轮系和定轴轮系的传动比。
- 注意正负号。
- 找各单一轮系间的联系。
- 加反转仅限于单一的周转轮系。

5-5 轮系的应用

一、远距离轴间的传动

- 缩小空间尺寸:
- 制造安装方便;
- 省材料。

二、实现变速传动

汽车变速箱

- □ 一档: 5、6啮合, A、B和3、4脱离;
- □ 二档: 3、4啮合,□ A、B和5、6脱离;
- □ 三档: A、B嵌合, 5、6和3、4脱离;
- 倒档: 6、8啮合,A、B和3、4及5、6 脱离;
- 机床变速箱等

三、获得大传动比

- 多级定轴轮系
 - ¤效率高
 - ¤ 结构紧凑
- 周转轮系
 - x 比多级定轴轮系结构更紧凑
 - ≖用于减速时:
 - n传动比越大;
 - n传动效率越低;
 - n一般只用于辅助传动。
 - ∞用于增速时,可能发生自锁。

周转轮系获得大传动比

二日知: $z_1=100, z_2=101, z_2=100, z_3=99$ 。

· 求: i_{1H}

$$\frac{n_1 - n_H}{n_3 - n_H} = \frac{z_2 z_3}{z_1 z_2'} = -\frac{101 \times 99}{100 \times 100}$$

$$n_3 = 0$$
, $i_{1H} = \frac{1}{10000}$

四、合成运动和分解运动

加法机构:

可用于:

- ¤机床
- ¤计算机构
- ¤补偿机构等

差动轮系分解运动

如:

- · 汽车差速器 2n₄=n₁+n₃
- 遊免轮胎滑动 造成的磨损