The cell as the basic unit of life

Prokaryotic	Eukaryotic
Bacteria, most single-celled organisms	All multicellular organisms
Simple, smaller	Larger, more complex
Lack membrane-bound organelles such as nucleus	Contain membrane-bound organelles such as a nucleus
Circular DNA	Linear DNA (chromosomes)

Overview: Cell Structure and Function

Videos:

- https://www.youtube.com/watch?v=rABKB5aS2Zg
- https://www.youtube.com/watch?v=KzMviiBoRtA

Questions:

- What is the function of the (cell) plasma membrane?
- What is the function of the nucleus?
- What is the function of the mitochondria?
- What is the function of the *ribosomes*?
- What is the function of the Golgi apparatus?
- What is the function of the *endoplasmic reticulum* (ER)?

Eukaryotic cell

The nucleus contains the DNA

(b) Single strand of DNA

Overview of Gene Expression

LECTURE PRESENTATIONS

For CAMPBELL BIOLOGY, NINTH EDITION

Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson

Chapter 5

The Structure and Function of Large Biological Molecules - DNA

Lectures modified by Garrett Dancik

Lectures by Erin Barley Kathleen Fitzpatrick

Overview: The Molecules of Life

 All living things are made up of four classes of large biological molecules: carbohydrates, lipids, proteins, and nucleic acids

The Synthesis and Breakdown of Polymers

- A monomer is a building block of a polymer
 - DNA: the nucleotides (characters) A,C,G, and T
 - RNA: the nucleotides (characters) A,C,G, and U
 - Proteins: twenty kinds of amino acids (characters)
- A dehydration reaction occurs when two monomers bond together through the loss of a water molecule
- Polymers are disassembled to monomers by hydrolysis, a reaction that is essentially the reverse of the dehydration reaction

(a) Dehydration reaction: synthesizing a polymer

(b) Hydrolysis: breaking down a polymer

10

Relationship between DNA, RNA, and protein

- Genes are made of DNA, a nucleic acid made of monomers called nucleotides
- A gene is a unit of inheritance that codes for the amino acid sequence of a polypeptide (shown) or a functional RNA product (not shown)

Role of Nucleic Acids

- Nucleic acids store, transmit, and help express hereditary information
- There are two types of nucleic acids
 - Deoxyribonucleic acid (DNA)
 - Ribonucleic acid (RNA)
- DNA provides directions for its own replication
- DNA directs synthesis of messenger RNA (mRNA) and, through mRNA, controls protein synthesis

The Components of Nucleic Acids

- Nucleic acids are polymers called polynucleotides
- Each polynucleotide is made of monomers called nucleotides
- Each nucleotide consists of a nitrogenous base, a pentose sugar, and one or more phosphate groups
- The portion of a nucleotide without the phosphate group is called a nucleoside

Figure 5.26

(c) Nucleoside components

© 2011 Pearson Education, Inc.

- Nucleoside = nitrogenous base + sugar
- There are two families of nitrogenous bases
 - Pyrimidines (cytosine, thymine, and uracil)
 have a single six-membered ring
 - Purines (adenine and guanine) have a sixmembered ring fused to a five-membered ring
- In DNA, the sugar is deoxyribose; in RNA, the sugar is ribose
- Nucleotide = nucleoside + phosphate group

Nucleotide Polymers

- Nucleotide polymers are linked together to build a polynucleotide
- Adjacent nucleotides are joined by covalent bonds that form between the —OH group on the 3' carbon of one nucleotide and the phosphate on the 5' carbon on the next
- These links create a backbone of sugarphosphate units with nitrogenous bases as appendages
- The sequence of bases along a DNA or mRNA polymer is unique for each gene

The Structures of DNA and RNA Molecules

- RNA molecules usually exist as single polypeptide chains
- DNA molecules have two polynucleotides spiraling around an imaginary axis, forming a double helix
- In the DNA double helix, the two backbones run in opposite 5'→ 3' directions from each other, an arrangement referred to as antiparallel
- One DNA molecule includes many genes

Complementary base pairing

- The nitrogenous bases in DNA pair up and form hydrogen bonds: adenine (A) always with thymine (T), and guanine (G) always with cytosine (C)
- Complementary pairing can also occur between two RNA molecules or between parts of the same molecule
- In RNA, thymine is replaced by uracil (U) so A and U pair

Figure 5.27

Genome sequencing

- The human genome project took over 13 years to complete and cost ~\$3 billion (~\$1 / base pair sequenced)
 - Sequence assembly was one of the first bioinformatics challenges

The genomic revolution

- The \$1000 genome arrived in 2014
- https://www.forbes.com/sites/matthewherper/2014/01/14/th e-1000-genome-arrives-for-real-this-time/
 - Sequencing machines cost \$10 million
 - Can sequence 18,000 genomes / year
- Implications of cheap genomic sequencing
 - http://www.ted.com/talks/richard_resnick_welcome_to_the_genomic_revolution
 - What are they????

Gene Expression

Genomic sequencing

Large DNA molecule

Genome assembly when a reference genome is available

Reference Genome Sequence (~3 billion bp for humans)

----ACGTCGAGCGTAGACGTAGCGAGAATAGCTAGCTATAAAGGCCTCGTAAGA---

Genome assembly when a reference genome is available

Reference Genome Sequence (~3 billion bp for humans)

----ACGTCGAGCGTAGACGTAGCGAGAATAGCTAGCTATAAAGGCCTCGTAAGA---

Genome assembly when a reference genome is available

Reference Genome Sequence (~3 billion bp for humans)

---ACGTCGAGCGTAGACGTAGCGAGAATAGCTAGCTATAAAGGCCTCGTAAGA---

De novo sequence assembly

Reconstructed genome : AGCTATAGCGCTATCGTAGCTAGCGCTAGCT

Figure 1. Workflow of discovering the genome of a species

Cost per Genome

The number of DNA nucleotides sequenced has grown exponentially

1200000.00

Genbank statistics (December 2021)

- 1+ trillion bases in nucleotide database
- 14+ trillion additional bases processed for whole genome shotgun sequencing projects

Number of bases in GenBank

https://www.ncbi.nlm.nih.gov/genbank/statistics/