Data Structures and Algorithms

EasyShopHub Course Project Report

School of Computer Science and Engineering 2023-24

Contents

Si. No. Topics

1. Course and Team Details

- 2. Introduction
- 3. Problem Definition
- 4. Functionality Selection
- 5. Functionality Analysis
- 6. Conclusion
- 7. References

1. Course and Team Details

1.1 Course details

Course NameData Structures and AlgorithmsCourse Code23ECAC203SemesterIIIDivisionFYear2023-24InstructorKMMR

Page | 2

1.2 Team Details

Roll No	Name	USN
111	Pragati Itigowni	01FE22BCl013
114	Disha Kalyanshettar	01FE22BCl016
126	Drakshayani	01FE22BCI028
129	Aishwarya Gopal	01FE22BCl033
131	Bhoomika Marigoudar	01FE22BCl035

1.3 Report Owner

Roll No.	Name
131	Bhoomika Marigoudar

2. Introduction

The selected project revolves around the development of algorithms and tools aimed at assisting businesses in designing, managing, and optimizing their warehouses. This $\frac{1}{Page \mid 3}$ initiative seeks to enhance overall efficiency, reduce operational costs, and minimize the environmental impact associated with warehouse operations. The domain encompasses a multidisciplinary approach, incorporating elements of logistics, supply chain management, and environmental sustainability. Efficient warehouse management is pivotal for businesses to meet customer demands, streamline operations, and remain competitive in the dynamic market landscape.

3. Problem Statement

3.1 Domain

can we develop algorithms and tools to help businesses design, manage, and optimize their warehouses in order to improve efficiency, reduce costs, and minimize environmental impact?

The chosen need statement asks if we can create tools and algorithms to help businesses run their warehouses better—making them more efficient, cost-effective, and environmentally friendly. The motivation behind this choice is the noticeable challenges companies face in managing warehouses amid a constantly changing market and the need to reduce environmental impact. Traditional methods are falling short, and there's a clear demand for smart solutions that not only improve operations and cut costs but also align with efforts to be more environmentally conscious. Warehouses are crucial in supply chains, and enhancing their design and management can bring significant advantages. By addressing this need, the project aims to offer practical solutions that cater to the current challenges in the logistics and supply chain industry while promoting sustainability. I am an Amazon Future Engineer Scholar, I had got an opportunity to visit the Amazon Office in Bengaluru, when I had been there we had the session wherein we were introduced to Amazon warehouses, the Warehouse Manager gave us a glimpse of how the things are managed in there and what all hurdles they used to faced and how tough was it for them during the COVID time. Since, I had seen all these things it motivated me to work towards this.

3.2 Module Description

In this project, my individual contributions focused on several key modules. I designed and implemented the user signup and login functionalities, ensuring a secure authentication process. Additionally, I developed the modules related to managing items, including storing, finding, displaying, and updating their status. For efficient order processing, I implemented a Depth-First Search (DFS) traversal algorithm, optimizing the handling of orders. Furthermore, I integrated a merge sort algorithm to enhance the sorting functionality to sort orders based on price within the system. These modules aimed to provide user-friendly experience in navigating and managing the features of the application.

4. Functionality Selection

Si. No.	Functio nality Name	Known	Unkno wn	Principles applicable	Algorith ms	Data Structur es
			What			
			are the			
			pain			
			points?			
			What			
			informa			
			tion			
			needs			
		What information	to be	What are		
		do you already	explore	the		
	Name	know about the	d and	supporitn		
	the	module? What	unders	g		What are
	function	kind of data you	tood?	principles	List all	the
	ality	already have? How	What	and	the	supporti
	within	much of process	are	design	algorithm	ng data
	the	information is	challen	technique	s you will	structur
	module	known?	egs?	s?	use	es?

						- Hash
						table
						because
						array
						cannot
						ensure
						uniquen
						ess also
						linkedlist
						Efficient
			-			memory
			Unique			usage
			userna	_		and
			me and	brute	- Brute	uniquen
			Passwo	force/spac	force for	ess are
			rd	e and time	string	the
			- T 1	trade	check	advantag
		Creating user	Implem	off.Securit	during	es of hashtabl
		accounts with	enting secure	y:Hashing for	username and	es over
	User	unique usernames	passwo	password	password	linkedlist
1	Signup	and passwords.	rd	storage	validation.	array.
	- 8 <u>1</u> -	P	-			,
			Ensuri			
			ng			
			secure			
			authen			
			tication			
			without			
			exposin			
			g			
			sensitiv			
			e informa			
			tion.			
			-			
			Managi			
			ng			
			failed			
			login			
			attempt			
			s to			
			prevent	1.		
			brute	brute		II a a 1-
			force attacks	force/spac e and time	Brute	Hash table
			anacks	trade	force for	because
			-	off.Securit	string	array
			Proper	y:Hashing	check	cannot
			redirect	for	during	ensure
		Checking for valid	ion	password	login	uniquen
	User	usernames and	after	comparris	credential	ess also
2	Login	passwords.	success	on	validation.	linkedlist

			ful			
			login.			
			8			
ļ						
			_			
			Choosi			
ļ			ng			
ļ			betwee			
			n			
			arrays			
			and			
ļ			linked			
			lists			
			based			
			on			
		Storing items (using	operati	Linear		
		arrays or linked lists).	ons needed	Operation		
			(additio			
			n,			
			deletio			
			n,			
			retrieva		-basic	
ļ			1).		add/delet	
			-		e	
			Efficien		operations	-
			t		for arrays	Arrays or
0	Store_it		Storage		or linked	linked
3	em				lists.	lists
			Linear			
			search			
			might become			
			inefficie			
			nt for			
			larger			
			dataset			
			S.	مانانام		
			-	divide		
			Finding	and conquer		
			alterna			
			tive			
		Finding itams	search			
		Finding items	algorith		Rinom	
	Find					Merge
4	Item	Searchetc	dataset		Algorithm	sort
4	Find Item	using linear search,Binary Search, etc	ms for larger		Binary Search Algorithm	Merge

			s such as binary search using ORDER _ID			
5	Display Items	Iterates through the order history list and prints item details.	Numbe r of items	Linear Operation	Linked List (OrderHist oryNode).	Arrays,Li nkedlist
			- Specific logic for updating the Segment Tree is unknown			
			*Informa tion to Explore:			
			Detailed logic for updating the Segment Tree.	Lazy Propogation		
	UpdateOr	Root of the order status history (Segment Tree), customer name, order ID, and order status.	- *Challen ges:* - Impleme nting efficient		Segment	
6	derStatus Function	,	Segment Tree		Tree update logic	Segment Tree

			update logic.					Page 8
7	DFS Orde Traversa	uispiaying the same		DFS	D	epth First Search	DFS Using linkedlist	
8	Merge sort	Order history list. Implements merge sort to sort the order history list based on item price.	Specific sorting logic is unknown- Implementing efficient merge sort logic.	Divide Conquer	and	Merge Sort.	Linkedlist	
9	Delete by OrderID	Delete's the customer information based on OrderD	OrderID which has to be deleted	Linear Operation		Deletion Algorithm	Linkedlist	

5. Functionality Analysis

User Signup (userSignup)

Workflow:

- 1. Allocates memory for a new user.
- 2. Takes user input for username and password.
- 3. Inserts the new user at the beginning of the user list.

Efficiency Analysis:

- Time Complexity: O(1)
 - Basic input operations and memory allocation are constant time.
- Space Complexity: O(1)
 - Allocates memory for a single user.

User Login (userLogin)

Workflow:

- 1. Takes user input for username and password.
- 2. Iterates through the user list to find a match.
- 3. Prints login status.

Efficiency Analysis:

- Time Complexity: O(n)
 - In the worst case, it iterates through the linked list of users.
- Space Complexity: O(1)
 - Uses a constant amount of memory.

Store Item (storeItem)

Workflow:

- 1. Allocates memory for a new order.
- 2. Takes user input for customer name, order date, time, item name, price, and quantity.
- 3. Inserts the new order at the beginning of the order history list.

Efficiency Analysis:

- Time Complexity: O(1)
 - Basic input operations and memory allocation are constant time.
- Space Complexity: O(1)
 - Allocates memory for a single order.

Find Item (findItem)

Workflow:

- 1. Takes user input for the item name to find.
- 2. Iterates through the order history to find a matching item.
- 3. Prints the result.

Efficiency Analysis:

- Time Complexity: O(n)
 - In the worst case, it iterates through the linked list of orders.
- Space Complexity: O(1)
 - Uses a constant amount of memory.

Display Items (displayItems)

Workflow:

1. Iterates through the order history to print all items.

Efficiency Analysis:

- Time Complexity: O(n)
 - Iterates through the linked list to display all items.
- Space Complexity: O(1)
 - Uses a constant amount of memory.

<u>Update Order Status (updateOrderStatus)</u>

Workflow:

- 1. Allocates memory for a new order status node.
- 2. Updates the segment tree with placeholder logic.
- 3. Returns the new root of the segment tree.

Efficiency Analysis:

- Time Complexity: O(log n)
 - Depends on the implementation of the segment tree.
- Space Complexity: O(log n)
 - Recursive memory allocation.

Sort Customer Order History (mergeSort)

Workflow:

- 1. Splits the order history into two halves.
- 2. Recursively sorts the halves.
- 3. Merges the sorted halves.

Efficiency Analysis:

- **Time Complexity:** O(n log n)
 - Divide-and-conquer sorting algorithm.
- Space Complexity: O(log n)
 - Recursive memory allocation.

DFS Order Traversal (dfsOrderTraversal)

Workflow:

- 1. Allocates memory for a visited array.
- 2. Performs DFS traversal and prints order information.
- 3. Frees the visited array.

Efficiency Analysis:

- Time Complexity: O(n)
 - Visits each order once.
- Space Complexity: O(n)
 - Allocates memory for the visited array.

6. Conclusion

Page | 11

Working on this project has provided me with valuable insights into fundamental concepts such as data structures and algorithms. Through practical application, I learned how to leverage data structures like linked lists for managing user accounts and order histories, and implemented a segment tree for tracking order status history efficiently. The project also deepened my understanding of memory management, involving dynamic memory allocation (malloc) in C, and I gained insights into potential issues and error handling in memory allocation processes. Additionally, the implementation of a user authentication system, encompassing user signup and login functionalities, allowed me to explore principles of user security and credentials protection. Overall, this hands-on experience has enhanced my skills in programming, data management, and system design as an engineering student, providing practical insights that go beyond theoretical knowledge.

7. References

- https://www.geeksforgeeks.org/data-structures/
- Data Structures and Algorithms Made EasyBy Writer: Narsimha Karumanchi
- Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to data structures (3rd ed.). The MIT Press.

