Autumn Semester August 17, 2021

DS203:Programming for Data Science

Assignment 2

Exercise 1 (5 points) Let X and Y be independent exponential random variables with respective parameters λ_1 and λ_2 . Find the distribution of the following.

- min(X, Y)
- $\max(X, Y)$

Exercise 2 (5 points) A bag contains 3 white, 6 red and 5 blue balls. A ball is selected at random, it's color is noted and is then replaced in the bag before making the next selection. In all 6 selections are made. Let X = the number of white balls selected and Y = number of blue balls selected. Find E[X|Y = 3].

Exercise 3 (5 points) If X_1 and X_2 are independent binomial random variables with respective parameters (n_1, p) and (n_2, p) . Calculate the conditional probability mass function of X_1 given that $X_1 + X_2 = m$.

Exercise 4 (5 points) Give an example of two random variables X and Y that are uncorrelated but not independent.

Exercise 5 (5 points) Suppose X is a Poisson random variable with mean λ . The parameter λ is itself a random variable whose distribution is exponential with mean 1. Show that $P\{X = n\} = (1/2)^{n+1}$.

Exercise 6 (5 points) Suppose X and Y have joint density function $f_{X,Y}(x,y) = c(1+xy)$ if $2 \le x \le 3$ and $1 \le y \le 2$, and $f_{X,Y}(x,y) = 0$ otherwise.

- 1. Find c.
- 2. Find f_X and f_Y .

Exercise 7 (5 points) An insurance company supposes that the number of accidents that each of its policyholders will have in a year is Poisson distributed, with the mean of the Poisson depending on the policyholder. If the Poisson mean of a randomly chosen policyholder has a gamma distribution with density function,

$$g(\lambda) = \lambda e^{-\lambda}, \qquad \lambda \ge 0$$

what is the probability that a randomly chosen policyholder has exactly n accidents next year?

Exercise 8 (5 points) Suppose that the number of people who visit a yoga studio each day is a Poisson random variable with mean λ . Suppose further that each person who visits is, independently, female with probability p or male with probability 1-p. Find the joint probability that exactly p women and p men visit the academy today.

Exercise 9 (5 points) Let X_1, X_2, X_3 are RVs and a, b, c, d are constants. Show that

•
$$Cov(aX_1 + b, cX_2 + b) = acCov(X_1, X_2)$$

•
$$Cov(X_1 + X_2, X_3) = Cov(X_1, X_3) + Cov(X_2, X_3).$$

Exercise 10 (5 points) You are given n=100 i.i.d. samples generated from a random experiment. Let the estimate of mean from these samples is $\hat{\mu}=0.45$. We know that true mean lies somewhere around $\hat{\mu}$ and we would like to find an interval (around $\hat{\mu}$) such that the true value lies in the interval with probability at least 0.95.

- What would be your (confidence) interval? Specify the method you used to come up with the interval.
- If you want the your confidence interval to shrink by half, how many more samples would you need? (the estimate could be different now)