

SQLSHARE

Results from a Multi-Year SQLas-a-Service Experiment

SHRAINIK JAIN

DB DAY 2015

S Jain, D Moritz, B Howe, et al. SQLShare: Results from a Multi-Year SQL-as-a-Service Experiment, SIGMOD16.

Part 1: SQLShare, DBaaS for Scientists

Databases are great, but....

They are underused in science workloads (physical, life and social sciences)

- Why?
 - Is there a fundamental mismatch in Data Model?
 - "Scientists can't write SQL"?
 - Other barriers to adoption?
 - Pre-engineered Schemas: Don't usually exist, given the ad-hoc nature of research.
 - Clean data a pre-condition: But real data is messy!
 - A database can make it harder rather than easier to share results.
 - Provenance: Tracking the history of operations is painful
 - Low data lifetime.

Databases only

SQLShare: Making databases easier to use

Relaxed Schemas

- Infer data types automatically.
- Tolerate errors. For example:
 - use NULLs for the case of variable number of columns per row.
 - No column names
 - 0

Provenance and Sharing

- Views as first class citizens
- Checkpoint operations as derived datasets or views

3) Share the results

Make them public, tag them, share with specific colleagues – anyone with access can query

2) Write Queries

Right in your browser, writing views on top of views on top of views ...

1) <u>Upload data "as is"</u>

Cloud-hosted, secure; no need to install or design a database; no pre-defined schema; schema inference; some itegration

SQLShare

http://sqlshare.escience.washington.edu

12/2/15 BILL HOWE, UW 7

Example: Computing the overlaps of two sets of blast results

```
SELECT x.strain, x.chr, x.region as snp region, x.start bp as snp start bp
  , x.end bp as snp end bp, w.start bp as nc start bp, w.end bp as nc end bp
  , w. category as nc category
  , CASE WHEN (x.start bp >= w.start bp AND x.end bp <= w.end bp)
 THEN x.end bp - x.start bp + 1
 WHEN (x.start bp <= w.start bp AND w.start bp <= x.end bp)
 THEN x.end bp - w.start bp + 1
 WHEN (x.start bp <= w.end bp AND w.end bp <= x.end bp)
 THEN w.end bp - x.start bp + 1
END AS len overlap
FROM [koesterj@washington.edu].[hotspots deserts.tab] x
INNER JOIN [koesterj@washington.edu].[table_noncoding_positions.tab] w
ON x.chr = w.chr
WHERE (x.start_bp >= w.start_bp AND x.end_bp <= w.end_bp)
OR (x.start bp <= w.start bp AND w.start bp <= x.end bp)
OR (x.start bp <= w.end bp AND w.end bp <= x.end bp)
ORDER BY x.strain, x.chr ASC, x.start bp ASC
```

We see thousands of queries written by non-programmers

```
1 table <- read.csv(''table.csv'')</pre>
                                               1 WITH data AS
                                                    (SELECT * FROM [table.csv]),
2 # define 3 min time intervals
3 breaks <- seq(</pre>
                                                       — compute the minimum timestamp
            min(table$time),
                                                       bounds AS
           max(table$time),
                                                    (SELECT min(time) AS mintime FROM data),
                                                       — assign each timestamp a bin
             \mathbf{b}\mathbf{y}=3)
                                                       binned AS
7 # bin the table according to the breaks
                                                7
8 b <- cut(table$time, breaks=breaks)
                                                    (SELECT bounds.mintime +
                                                            floor ((data.time - bounds.mintime)/3.0) *
                                                9
                                                            3.0 as binid
10 # calculate the mean of each variable
                                               10
11 b.time <- tapply(table$time, b, mean))
                                                      FROM data, bounds)
12 b. Fluo <- tapply (table $Fluo, b, mean))
                                               12 — compute the average of each bin
13 b. Temp <- tapply (table $Temp, b, mean))
                                               13 SELECT binid
14 b.Oxyg <- tapply(table$Oxyg, b, mean))
                                                    , avg(Fluo) as Fluo
15 b. Nitr <- tapply(table$Nitr, b, mean))
                                                    , avg(Temp) as Temp
16 b.Lat <- tapply(table$Lat, b, mean))
                                                    , avg(Oxyg) as Oxyg
17 b.Lon <- tapply(table$Lon, b, mean))
                                                    , avg(Nitr) as Nitr
                                               18
                                                    , avg(Lon) as Lon
18
19 binned. table <- data.frame(
                                                    , avg(Lat) as Lat
                                               19
            cbind (b. time, b. Fluo, b. Temp,
                                                    , avg(time) as time
                  b.Oxyg, b.Nitr,
                                               21 FROM binned
21
                  b.Lat, b.Lon))
                                               22 GROUP BY binid
23 write.csv(binned.table, 'binned.csv')
                                               23 ORDER BY binid asc
```


Steven Roberts

SQL as a lab notebook: http://bit.ly/16Xj2JP

CG locations

genes

Popular service for Bioinformatics Workflows

descriptions

CG locations

Did it work?

SQLShare used for real life work:

- Multiple labs used it and liked it.
- And wrote increasingly complex queries.
- And wrote queries on dirty data.
 - And even used SQL to cleanup data!

SQLShare Queries were diverse.

Attracted new kinds of ad-hoc queries

That were written to replace files and scripts

SQLShare Attracted High-Churn Work

- Varying data lifecycle.
- Quick insights from dirty data

Part 2: SQLShare Workload Analysis

... Or reasons why this is potential benchmark dataset.

Analyzing the corpus: Methodology

Analyzing the corpus: Methodology

SQLShare query corpus

Workload Metadata

Measure	Value
Users	591
Tables	3891
Columns	73070
Views	7958
Non-trivial Views	4535
Queries	25052

Query Metadata

Feature	Average Value
Length	217.32
Runtime	3175.38 s
# of operators	18.12
# of Distinct Operators	2.71
# of Tables accessed	2.31
# of Columns accessed	16.22
# of Queries per Table	12

Results from SQLShare Workload analysis

SQLShare Queries are *Complex*

SQLShare Queries are *Diverse*

Views Afford Controlled Data Sharing

Dataset Permanence Varies by User: Ad hoc data analytics often deals with low lifetime datasets

SQLShare Attracts High-Churn Work

Results: SQLShare Queries are Complex

Lots of simple queries, but huge complexity in the tail!

Results: SQLShare Queries are Diverse

Diversity:

Percentage of 'unique' queries.

How do we define Uniqueness?

- Naïve measure:
 - ASCII string uniqueness
- If two queries reference different sets of attributes?
- Query plan template uniqueness?

Results: SQLShare Queries are Diverse

Diversity Metric	SDSS	SQLShare
Total Queries	7M	25052
String distinct queries	200K	24096
Column distinct queries	467	10928
Distinct query template	686	15199

SQLShare queries are more diverse and have 63% distinct query templates. In contrast, SDSS has only 0.3% distinct query templates

Results: Views Afford Controlled Data Sharing & Provenance

- The view-centric data model also affords collaboration: users can share the derived dataset (and its provenance)
- About 56% of the datasets in the system are derived from other datasets using views.
- 37% of the datasets in SQLShare are public.
- 10% of the queries logged in the system access datasets that the query author does not own.

Results: Dataset Permanence Varies by User

Many users are operating in short-duration analysis loops, where they upload some data, write a few queries, and then move on to another task.

• How do we measure this?

Dataset Lifetime:

 The difference in days between the first and the last time that dataset was accessed in a query

Results: Dataset Permanence Varies by User

Results: SQLShare Attracts High-Churn Work

Towards a Benchmark Dataset

We're releasing the data, queries, and views as a research corpus

https://uwescience.github.io/sqlshare/data_release.html

Future work

Identify query idioms:

- Cleanup tasks.
- Binning.

0

Publish the SQLShare dataset.

- A benchmark of 'real' queries.
 - Captures complex data & complex tasks.

Enable more real-life science operations:

- Write SQL to do more.
 - Matrix multiplication?
 - Automatic conversion from RA to SCIDB AFL.

Thanks!