Europäisches Patentamt
European Patent Office

Office européen des brevets

(11) **EP 0 747 447 A2**

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:11.12.1996 Patentblatt 1996/50

(51) Int. Cl.⁶: **C09B 19/00**, G01N 33/533

(21) Anmeldenummer: 96109101.4

(22) Anmeldetag: 06.06.1996

(84) Benannte Vertragsstaaten: **DE ES FR GB IT**

(30) Priorität: 10.06.1995 DE 19521231

(71) Anmelder: BOEHRINGER MANNHEIM GMBH 68298 Mannheim (DE)

(72) Erfinder:

- Herrmann, Rupert, Dr. 82362 Weilheim (DE)
- Josel, Hans-Peter, Dr. 82362 Weilheim (DE)
- Drexhage, Karl-Heinz, Prof. Dr. 57076 Siegen (DE)
- Marx, Nicolaas-Joseph
 57399 Kirchhundem (DE)
- (54) Neue Oxazinfarbstoffe und ihre Verwendung als Fluoreszenzmarker
- (57) Gegenstand der Erfindung sind neue Oxazinderivate der Formel I

worin R₁,R₄,R₅,R₆,R₇ und R₁₀ Wasserstoff, Alkyl, Hydroxy, Halogen, Carboxyl, Sulfonyl oder Amino bedeutet und

 $R_2, R_3,$

Wasserstoff, Alkyl, Alkoxy, Polyoxyhydrocarbyleinheiten, Phenyl, Phenylalkyl bedeuten, die durch Hydroxy, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein können, wobei R_2 mit R_1 oder R_3 mit R_4 eine gesättigte oder ungesättigte C2- oder C3-Brücke bilden kann oder R_2 mit R_3 eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann und

R₈, R₉

Wasserstoff, Alkyl, Alkoxy, Polyoxyhydrocarbyleinheiten, Phenyl, Phenylalkyl bedeuten, die durch Hydroxy, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein können, wobei R_8 mit R_7 oder R_9 mit R_{10} eine gesättigte oder ungesättigte C2- oder C3-Brücke oder R_8 mit R_9 eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann und wobei mindestens einer der Reste R_2 , R_3 , R_8 oder R_9 einen nicht-brückebildenden Rest darstellt, der zusätzlich mit einer kupplungsfähigen aktivierten oder zu einer Kupplung aktivierbaren Gruppe substituiert ist und wobei mindestens einer der Reste R_2 , R_3 , R_8 oder R_9 einen brückebildenden Rest, der gegebenenfalls durch Alkyl substituiert sein kann, darstellt.

EP 0 747 447 A2

	Die Derivate dienen zur Herstellung von Fluoreszenzkonjugaten zum Einsatz in Immunoassays und zur DNA-An	ıa-
lytik		

Beschreibung

5

10

15

20

25

30

35

40

45

50

55

Die Erfindung betrifft neue kupplungsfähige Oxazinfarbstoffe sowie deren Verwendung als Fluoreszenzmarker in Konjugaten.

Zur Durchführung immunologischer Assays und in der DNA-Analytik werden Marker oder Label benötigt, die nach Ablauf einer analytspezifischen Reaktion eine Quantifizierung des Analyten erlauben.

Aufgrund der hohen Sensitivität haben sich in der letzten Zeit besonders fluorometrische Marker durchgesetzt. So ermöglicht die Markierung eines Antikörpers oder eine Nukleotids mit Fluoreszenzfarbstoffen eine direkte Quantifizierung.

Weit verbreitete Fluoreszenzfarbstoffe sind beispielsweise FITC (Fluoreszeinisothiocyanat), FLUOS (Fluoreszein N-Hydroxysuccinimidester), Resorufin und Rhodaminlabel, die aber für ihre Anregung relativ aufwendige Lichtquellen, zum Beispiel Argonlaser, benötigen.

Die rasche Entwicklung preiswerter Laserdioden mit einem Emissionsbereich von 630 - 780 nm, die sich zudem hervorragend zum Aufbau miniaturisierter Systeme eignen, macht Farbstoffe wünschenswert, die in diesen Wellenlängenbereichen absorbieren.

In EP-A-0 543 333 werden pentazyklische Rhodamin-Farbstoffe beschrieben, die als Label eingesetzt werden können. Die Schwerpunkte der Absorption liegen nur im Bereich bis 660 nm.

In der WO 88/047 77 werden Phthalocyaninfarbstoffe beschrieben, die allerdings mehr als eine funktionelle Gruppe besitzen, so daß sie bei Konjugation, zum Beispiel mit Antikörpern, zu Vernetzungen und Produktgemischen führen, die einen großen Reinigungsaufwand erfordern.

In US-P-5,149,807 sind pentazyklische Oxazinderivate als Laserfarbstoffe beschrieben. Diese verfügen aber über keine funktionelle Gruppe und sind somit nicht für eine spezifische Kupplung an biologische Moleküle wie Proteine, Haptene und Nukleinsäuren geeignet, noch wird eine solche Verwendung angesprochen.

Eine tricyclische aktivierte Oxazinverbindung der Firma Dojindo ist bekannt, deren Aminsubstituenten lediglich mit nicht-rinbildenden Alkylgruppen substituiert sind. Das entsprechende Konjugat zeigt eine sehr geringe Quantenausbeute.

Aufgabe der vorliegenden Erfindung ist es, Farbstoffe zur Verfügung zu stellen, die sich für eine Kupplung mit biologischen Molekülen eignen, die über eine hohe Quantenausbeute verfügen, in einem Absorptionsbereich von 645 - 700 nm absorbieren und eine möglichst geringe unspezifische Bindung an biologische Verbindungen oder an Festphasen aufweisen.

Gelöst wird die Aufgabe durch die Erfindung, wie sie in den Ansprüchen charakterisiert ist.

Gegenstand der Erfindung sind funktionell kupplungsfähige Oxazinderivate der allgemeinen Formel I

worin R₁, R₄, R₅, R₆, R₇, R₁₀

Wasserstoff, Alkyl, Alkoxy, Hydroxy, Halogen, Carboxyl, Sulfonyl oder Amino darstellt und

R₂, R₃

Wasserstoff, Alkyl, Alkoxy, Polyoxyhydrocarbyleinheiten, Phenyl, Phenylalkyl bedeuten, die durch Hydroxy, Halogen, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein können, wobei R2 mit R1 oder R3 mit R4 eine gesättigte oder ungesättigte C2- oder C3-Brücke bilden kann oder R2 mit R3 eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann und

R8. R9

Wasserstoff, Alkyl, Alkoxy, Polyoxyhydrocarbyleinheiten, Phenyl, Phenylalkyl bedeutet, die durch Hydroxy, Halo-

EP 0 747 447 A2

gen, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein kann, wobei R8 mit R7 oder R9 mit R10 eine gesättigte oder ungesättigte C2- oder C3-Brücke oder R8 mit R9 eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann

und wobei mindestens einer der Reste R2, R3, R8 oder R9 einen nicht-brückebildenden Rest darstellt, der mit einer kupplungsfähigen aktivierten oder zu einer Kupplung aktivierbaren Gruppe substituiert ist und wobei mindestens einer der Reste R2, R3, R8 oder R9 einen brückebildenden Rest, der gegebenenfalls durch Alkyl, substituiert sein kann, darstellt.

Bevorzugt bildet R3 mit R4 und / oder R7 mit R8 eine gesättigte oder ungesättigte C3-Brücke.

Ganz besonders bevorzugt bilden R3 mit R4 und / oder R7 mit R8 eine C3-Brücke, während R2 und / oder R9 nichtbrückebildende Substituenten, bevorzugt Alkyl darstellen, wobei mindestens ein nicht-brückebildender Substituent mit einer kupplungsfähig aktivierten oder aktivierbaren Gruppe substituiert ist.

Unter dem Begriff "Polyoxyhydrocarbyl-Einheiten" im Sinne der vorliegenden Erfindung sind polymere oder oligomere organische Reste zu verstehen, die über O-Brücken miteinander verknüpft sind. Insbesondere sind unter diesem Begriff Polyether, Polyole, lösliche Carbohydrate, Derivate davon oder wasserlösliche Polymere zu verstehen. Besonders bevorzugt sind Polyethylenoxygruppen, deren Größe so ist, daß das Molekulargewicht der Gesamtverbindung 800 - 1200, vorzugsweise etwa 1000 ist. Die oben genannten Polyethylenoxygruppen bewirken eine Verbesserung der Löslichkeit, vermindern die unspezifische Bindung der Verbindungen an Proteine und verhindern eine Dimerisierung.

Eine Alkylgruppe hat 1-10, bevorzugt 1-7 Kohlenstoffatome und kann verzweigtkettig oder geradkettig sein; sie besitzt ganz besonders bevorzugt 1-4 Kohlenstoffatome und ist insbesondere zum Beispiel Methyl, Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl oder tert.-Butyl.

Eine Phenylalkylgruppe mit bevorzugt 1-3 Kohlenstoffatomen in der Alkylgruppe ist insbesondere eine Phenethyloder Benzylgruppe.

Unter Halogen wird Fluor, Chlor, Brom oder Jod, bevorzugt Chlor verstanden.

Eine Alkoxygruppe in einer Alkoxycarbonylgruppe hat 1-10, bevorzugt 1-4, ganz besonders bevorzugt 1 oder 2 C-Atome.

In den erfindungsgemäßen Verbindungen der Formel I liegt vorzugsweise zumindest einer der Reste R2, R3, R8, R9 als ein nicht-brückenbildender Rest vor, der mit einer kupplungsfähigen aktivierten oder zu einer Kupplung aktivierbaren Gruppe substituiert ist. Eine solche aktivierte Gruppe leitet sich insbesondere von einer aktivierbaren Carbonsäure- oder Sulfonsäuregruppierung ab, und ist zum Beispiel ein Säureester, ein Säureanhydrid, ein Säurehalogenid, vorzugsweise Bromid, insbesondere Chlorid oder ein N-Hydroxy-Succinimidester. Zwischen aktivierter Gruppe und dem nicht-brückenbildendem Rest kann noch eine Linkerverbindung, beispielsweise DADOO zwischengeschaltet sein.

Die Tabelle gibt einige Beispiele für aktivierte, kupplungsfähige Gruppen. Dem Fachmann sind weitere solcher Gruppen aus der Synthesechemie für Konjugate bekannt.

To.

Tabelle 1

Aktivierte Gruppe	Verknüpfung mit	Produkt
NHS-Ester	Amine	Amid
Isothiocyanat	Amine	Thioharnstoff
Gemischtes Anhydrid	Amine	Amid
Maleimid	Thiol	Thioether
Thiol	Maleimid	Thioether
Haloacetyl	Thiol	Thioether
Hydrazine	Aldehyd	Hydrazone
Amine	Aldehyd	Amin (n. Reduktion)
Amine	reaktive Carbonsäure	Amide

Als Gegenion läßt sich jedes zur Ladungsneutralisierung geeignete und mit dem kationischen Grundgerüst kompatible Anion verwenden; bevorzugt wird Perchlorat eingesetzt, oder aber das Gegenion von einer Carboxy- oder Sulfongruppe einer der Reste abgeleitet. Durch Wahl eines geeigneten Gegenions laßt sich zusätzlich zur Auswahl und Kombination der Reste der je nach dem beabsichtigten Anwendungszweck gewünschte Grad der Lipophilie optimieren. Beispiele für besonders bevorzugte Substituenten in der Bedeutung von R₂, R₃, R₈, oder R₉ sind:

4

40

35

5

10

15

20

25

45

50

Wasserstoff, Methyl, Carboxymethyl, Ethyl, Carboxyethyl, 3-Sulfopropyl, 4-Sulfobutyl, 3-Carboxypropyl, 4-Carboxybutyl, 3-Methoxycarbonylpropyl, 3-Ethoxycarbonylpropyl, Methoxy-ethoxy-ethyl, Hydroxy-ethoxy-ethyl, Benzyl.

Zur Verwendung als hydrophile Marker kann es zweckmäßig sein, unsymmetrisch substituierte Produkte einzusetzen, in denen die Reste R_2 , R_3 gegenüber R_8 , R_9 verschieden sind, und zum Beispiel eine 3-Carboxypropyl oder 4-Carboxybutylgruppe (R_2 oder / und R_3) und eine 3-Sulfo-Propyl- oder 4-Sulfo-Butyl-Gruppe (R_8 und / oder R_9) bedeuten

Besonders bevorzugte Reste in Verbindungen der Formel I sind:

 R_1 , R_4 , R_5 , R_6 und / oder R_{10} = Wasserstoff R_3 mit R_4 und / oder R_8 mit R_7 = (CH₂)₃,

 R_1 mit R_2 oder R_9 mit R_{10} = $(CH_2)_3$ R_2 , R_3 , R_8 , R_9 = $-CH_2$ - CH_3 , $-CH_2$ - CH_2 - CH_2 -COOH R_2 mit R_3 oder R_8 mit R_9 = $(CH_2)_4$

Ein weiterer Gegenstand der Erfindung sind mit den erfindungsgemäßen Fluoreszenzfarbstoffen gekuppelte biologisch aktive Substanzen (Konjugate) der Formel II

$$R_{3}$$
 R_{4}
 R_{5}
 R_{10}
 R_{1}
 R_{2}
 R_{2}

worin R₁, R₄, R₅, R₆, R₇, R₁₀ die oben angegebene Bedeutung haben.

R2', R3',

5

10

15

20

25

30

35

40

45

50

55

Wasserstoff, Alkyl, Alkoxy, Polyoxyhydroxycarbonyleinheiten, Phenyl, Phenylalkyl bedeutet, die durch Hydroxy, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein können, wobei R2' mit R₁ oder R3' mit R4 eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann und R8', R9',

Wasserstoff, Alkyl, Alkoxy, Polyoxyhydroxycarbonyleinheiten, Phenyl, Phenylalkyl bedeutet, die durch Hydroxy, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein können, wobei R2' mit R1 oder R3' mit R4 eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann und

wobei mindestens einer der Reste R2', R3', R8' oder R9' einen nicht-brückebildenden Rest darstellt, der mit einer biologisch aktiven Substanz gekuppelt ist und wobei mindestens einer der Reste R2', R3', R8' und R9' einen nicht-brückebildenden Rest darstellt, der gegebenenfalls durch Alkyl substituiert ist.

Unter einer biologisch aktiven Substanz wird insbesondere ein Hapten, Antigen, Antikörper oder Fragment davon, Protein oder Mono- oder Polynukleotid (PNA, RNA oder DNA-Molekül) verstanden.

Die Verbindungen der Formel I lassen sich durch Kondensation von 1,3-Aminophenolen der Formel III mit Nitrosoaminophenolen der Formel IV erhalten.

Aktivierbare Gruppen werden nach bekannten Methoden zu kupplungsfähigen Gruppen aktiviert und mit reaktiven Gruppen biologisch aktiver Moleküle zu Konjugaten der Formel II gekuppelt. Dabei können auch zwischen den aktivierten Gruppen und den biologisch aktiven Molekülen noch Linker eingebaut werden.

Mit den erfindungsgemäßen Verbindungen werden neue Verbindungen bereitgestellt, die sich aufgrund ihrer spektroskopischen Eigenschäften (Absorptionsmaximum im Bereich zwischen 645 bis 700 nm) sehr gut für kupplungsfähige Absorptionsfarbstoffe, insbesondere Fluoreszenzfarbstoffe für die Anwendung in Hapten- / und Antikörperprotein-Konjugaten, zur Polynukleotidmarkierung und zur Anfärbung von Latices (Fluoreszenzlatices) eignen. Die Quantenausbeute ist hoch und liegt zwischen 40 und 70% in ethanolischer Lösung.

Für die Anwendung in Hapten- / Antikörper- /Protein- oder Polynukleotidkonjugaten ist es vorteilhaft, wenn die Farbstoffe gut wasserlöslich sind. Für diesen Verwendungszweck werden deshalb vorzugsweise Verbindungen der allgemeinen Formel I eingesetzt, in denen R₂, R₃, R₈, R₉ möglichst hydrophil sind. Vorzugsweise sind diese Verbindungen unsymmetrisch substituierte Produkte, die zum Beispiel sowohl Carboxyl- als auch Sulfonsäuregruppen enthalten. Die Kupplung zum Konjugat erfolgt über mindestens einen der aktivierten Substituenten der Reste R₂, R₃, R₈ oder R₉ und insbesondere über eine Hydroxysuccinimidgruppierung.

Konjugate der Fluoreszenzfarbstoffe mit Haptenen, wie zum Beispiel Theophylin, Digoxin, T3, T4 oder Protein, wie zum Beispiel Antikörper, eignen sich zum Beispiel zum Einsatz in diagnostischen Systemen, insbesondere für Fluoreszenzimmunoassays.

Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Bestimmung einer ersten immunologischen bindefähigen Substanz, das dadurch gekennzeichnet ist, daß ein Konjugat einer erfindungsgemäßen Verbindung mit einer zweiten immunologisch bindefähigen Substanz, die gleich oder verschieden mit der ersten Substanz sein kann, verwendet wird und daß die durch eine immunologische Bindungsreaktion, welche für die erste Substanz spezifisch ist, verursachte Absorptions- oder Fluoreszenzänderung oder Fluoreszenzpolarisationsänderung der erfindungsgemäßen Verbindung als Maß für die Menge der in der Probe enthaltenden zu bestimmenden Substanz bestimmt wird.

Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Konjugate für Immunoassays. Die erfindungsgemäßen kupplungsfähigen Verbindungen der Formel I eignen sich auch zur Herstellung von Konjugaten mit Mono- oder Polynukleotiden oder PNA.

Ein weiterer Gegenstand der Erfindung ist daher die Verwendung dieser Konjugate zur DNA-Analytik.

Beispiel 1

5 Synthese von I

0,6 g (2,3 mmol) γ -(7-Hydroxy-1,2,3,4-tetrahydrochinol-1-yl)-buttersäureethylester und 0,5 g (2,4 mmol) N-Ethyl-7-hydroxy-6-nitroso-1,2,3,4-tetrahydrochinolin werden in 12 ml Ethanol nach Zusatz von 2 ml 2,5 m Salzsäure 2 Stunden unter Rückfluß gekocht. Die Lösung wird am Rotationsverdampfer bis zur Trocknung eingedampft. Der Rückstand wird in Ethanol aufgenommen und über Aluminiumoxid chromatographisch vorgereinigt. Der so erhaltene Ethylester des Zielfarbstoffes hat das Absorptionsmaximum in Ethanol bei 653 nm.

Der Ethylester wird in einem Gemisch aus 30 ml Aceton, 20 ml Wasser und 1 ml 2,5 m Salzsäure 30 min. unter Rückfluß gekocht. Zur Reinigung wird der Farbstoff über Silicagel chromatographiert (Laufmittel: zunächst Aceton-Chloroform 3:1, dann Aceton und schließlich Ethanol). Man erhält 0,5 g l

55

15

30

15 Beispiel 2

5

10

20

35

Oxazin-N-Hydroxysuccinimidester II

40 mg Oxazin I werden mit 10 mg N-Hydroxysuccinimideesteer und 19 mg Dicyclohexylcarbodiimid in 20 ml Acetonitril gelöst. Man läßt 4 h bei Raumtemperatur rühren und rotiert das Produktgemisch ein. Die Reinigung erfolgt über Reverse Phase-Kieselgel.

Digoxin-3-Carboxymethylether-Diaminodioxooctan-Konjugat III (Dig-CME-DADOO)

Das Hapten-Fluoreszenz-Konjugat wird durch Umsetzung von 11 mg I und 17,5 mg Dig-DADOO 18 h bei Raumtemperatur in Acetonitril erhalten. Der Ansatz wird einrotiert und anschließend über Kieselgel, Eluens Chloroform-Methanol-Essigsäure 3:1:0:1 aufgereinigt.

Ausbeute: 4 mg Analytik: MS entspricht

45 Labeling von Proteinen mit II

10 mg Protein, z.B. MAK (TSH) werden in 1 ml Natriumhydrogenphosphat-Puffer pH 8 gelöst. Dazu gibt man eine Lösung eines 10-fachen molaren Überschusses an II, gelöst in 500 ul DMSO. Die Reaktionslösung wird 1 h bei Raumtemperatur geschüttelt. Das Konjugat wird über eine Sephadex G 50 Säule, Laufmittel = Puffer, gereinigt, dreimal gegen Wasser dialysiert und lyophilisiert.

55

Beispiel 3

20

30

35

40

45

50

Synthese von Oxazinen der Fomeln IV-X mit aktivierbaren COOH-Gruppen

3 mmol substituiertes m-Aminophenol bzw. m-Aminoanisol und 33 mmol 6-Nitroso-3-aminophenol werden in einem Gemisch von 20 mi Äthanol und 1 ml 2.5 N Salzsäure gelöst und zum Rückßuß erhitzt. Die dabei stattfindende Farbstoffbildung wird spektrometrisch verfolgt (λmax im Bereich 650 - 700 nm). Die Reaktion wird abgebrochen, wenn die Farbstoffkonzentration nicht mehr zunimmt.

Die so erhaltene Lösung wird auf Volumen von ca. 10 ml eingeengt und dann tropfenweise zu 200 ml 10% iger wäßriger $NaBF_4$ -Lösung hinzugefügt. Das Farbstoff-tetrafluoroborat fällt hierbei vollständig aus. Nach Abdekantieren der überstehenden Flüssigkeit und Filtrieren wird der Rückstand in 100 ml Dichlormethan aufgenommen und diese Lösung 3 mal mit je 100 ml Wasser gewaschen. Die Lösung wird über Na_2SO_4 getrocknet und einrotiert. Der Farbstoff fällt hierbei als zähes, fast schwarzes Öl an. Ausbeute: 40-60%.

<u>Hydrolyse</u>

Der Rohfarbstoff (Ethylester) wird in einem Gemisch von 30 ml Aceton, 15 ml Wasser und 1 ml 2.5 N Salzsäure gelöst und zum Rückfluß erhitzt. Die Hydrolyse wird dünnschicht-chromatographisch verfolgt (Silicagel, MeOH/ H_2O 3:1). Nach praktisch vollständiger Umsetzung wird die Reaktionslösung bei ca. 30°C einrotiert und der Rückstand chromatographisch gereinigt.

	Reaktionsdauer	Hydrolysedauer	Reinigung	λ. max. EtOH
ΙV	1,5 h	7 h		660
V	70 min.	9 h	Silicagel	650
VI	75 min.	9h	LM=Chloroform/EtOH Silicagel LM=Chloroform/EtOH	649
VII	40 min.	10 h	Silicagel LM=Chloroform/EtOH	672
VIII	90 min.	48 h	Silicagel LM=Chloroform/EtOH	682
ΙX	3 h	24 h	Silicagel LM=Chloroform/EtOH	673
Х	60 min.	24 h	Silicagel LM=Chloroform/EtOH	672

EP 0 747 447 A2

5	F B F	HO HO	IV
10	F B F	OH OH	V
20	F B F	OH OH	٧I
<i>25</i>	F B F	TN OH	VII
35	F B F	TN TO N	V 11 [
40	F.B.F	TN-TO-NO-NO-NO-NO-NO-NO-NO-NO-NO-NO-NO-NO-NO	١x
45	F F F	HO HO	X

Patentansprüche

5

10

15

20

25

30

35

40

1. Oxazinderivate der allgemeinen Formel I

 $\begin{array}{c|c} R_{7} & R_{6} & R_{5} \\ R_{7} & R_{10} & R_{1} & R_{2} \end{array}$

worin R_1 , R_4 , R_5 , R_6 , R_7 und R_{10} Wasserstoff, Alkyl, Hydroxy, Halogen, Carboxyl, Sulfonyl oder Amino bedeutet und

R₂, R₃,

Wasserstoff, Alkyl, Alkoxy, Polyoxyhydrocarbyleinheiten, Phenyl, Phenylalkyl bedeuten, die durch Hydroxy, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein können, wobei R_2 mit R_1 oder R_3 mit R_4 eine gesättigte oder ungesättigte C2- oder C3-Brücke bilden kann oder R_2 mit R_3 eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann und

R₈, R₉

Wasserstoff, Alkyl, Alkoxy, Polyoxyhydrocarbyleinheiten, Phenyl, Phenylalkyl bedeuten, die durch Hydroxy, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein können, wobei R_8 mit R_7 oder R_9 mit R_{10} eine gesättigte oder ungesättigte C2- oder C3-Brücke oder R_8 mit R_9 eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann

und wobei mindestens einer der Reste R_2 , R_3 , R_8 oder R_9 einen nicht-brückebildenden Rest darstellt, der zusätzlich mit einer kupplungsfähigen aktivierten oder zu einer Kupplung aktivierbaren Gruppe substituiert ist und wobei mindestens einer der Reste R_2 , R_3 , R_8 oder R_9 einen brückebildenden Rest, der gegebenenfalls durch Alkyl substituiert sein kann, darstellt.

- 2. Oxazinderivate gemäß Anspruch 1, dadurch gekennzeichnet, daß R₃ mit R₄ und / oder R₇ mit R₈ eine gesättigte oder ungesättigte C3-Brücke bildet.
- 3. Oxazinderivat gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß R₂ und / oder R₉ nicht-brückebildende Substituenten darstellen, von denen mindestens einer zusätzlich mit einer kupplungsfähigen aktivierten oder zu einer Kupplung aktivierbaren Gruppe substituiert ist.
- 45 4. Oxazinderivat gemäß Anspruch 3, dadurch gekennzeichnet, daß ein nicht-brückebildender Substituent einen mit einer aktivierbaren oder aktivierten Gruppe substituierter Alkylrest darstellt.
 - 5. Oxazinderivate gemäß Anspruch 3 oder 4, dadurch gekennzeichnet, daß die aktivierbare Gruppe eine Carbonsäure oder Sulfonsäuregruppe darstellt oder die aktivierte Gruppe ein Säurester, Säureanhydrid, Säurehalogenid oder N-Hydroxysuccinimidester darstellt.
 - 6. Oxazinfarbstoffkonjugate der Formel II

55

$$R_{7}$$

$$R_{8}$$

$$R_{7}$$

$$R_{8}$$

$$R_{10}$$

$$R_{1}$$

$$R_{2}$$

$$R_{3}$$

$$R_{4}$$

$$R_{1}$$

$$R_{2}$$

15

20

25

30

40

45

50

5

worin R₁,R₄,R₅,R₆,R₇ und R₁₀ Wasserstoff, Alkyl, Hydroxy, Halogen, Carboxyl, Sulfonyl oder Amino bedeutet und

R2', R3',

Wasserstoff, Alkyl, Alkoxy, Polyoxyhydrocarbyleinheiten, Phenyl, Phenylalkyl bedeuten, die durch Hydroxy, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein können, wobei R2' mit R1 oder R3' mit R4 eine gesättigte oder ungesättigte C2- oder C3-Brücke bilden kann oder R2' mit R3' eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann und

R8', R9'

Wasserstoff, Alkyl, Alkoxy, Polyoxihydrocarbyleinheiten, Phenyl, Phenylalkyl bedeutet, die durch Hydroxy, Sulfonyl, Carboxy, Amino, Alkoxycarbonyl substituiert sein können, wobei R8' mit R7 oder R9' mit R10 eine gesättigte oder ungesättigte C3-Brücke oder R8' mit R9' eine gesättigte oder ungesättigte C4- oder C5-Brücke bilden kann

und wobei mindestens einer der Reste R2', R3', R8' oder R9' einen nicht-brückebildenden Rest darstellt, der zusätzlich mit einer biologisch aktiven Gruppe substituiert ist

und wobei mindestens einer der Reste R2', R3', R8' oder R9' einen brückebildenden Rest, der gegebenenfalls durch Alkyl substituiert sein kann, darstellt.

- 35 Oxazinkonjugat gemäß Anspruch 6, dadurch gekennzeichnet, daß R3' mit R4 und / oder R7 mit R8' eine gesättigte oder ungesättigte C3-Brücke bildet.
 - Oxazinkonjugat gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, daß R2' und / oder R9' nicht-brückebildende Substituenten darstellen, wobei mindestens ein Substituent mit einer biologisch aktiven Gruppe substituiert ist.

Oxazinkonjugat gemäß einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die biologisch aktive Gruppe ein Hapten, Antigen, Antikörper oder Protein darstellt.

- 10. Oxazinkonjugat gemäß einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, daß die biologisch aktive Gruppe ein Mono- oder Polynukleotid darstellt.
- 11. Verfahren zur Bestimmung einer ersten immunologisch bindefähigen Substanz, dadurch gekennzeichnet, daß ein Konjugat gemäß Anspruch 9 mit einer zweiten immunologisch bindefähigen Substanz,, die gleich oder verschieden mit der ersten Substanz sein kann, verwendet wird und daß die durch eine immunologische Bindungsreaktion, welche für die erste Substanz spezifisch ist, verursachte Absorption oder Fluoreszenzänderung oder Fluoreszenzpolarisationsänderung als Maß für die Menge der in der Probe enthaltenden zu bestimmenden Substanz bestimmt wird.
- 12. Verwendung eines Konjugates gemäß Anspruch 9 für Immunoassays.

- 13. Verwendung eines Konjugates gemäß Anspruch 10 zur DNA-Analytik.
- 14. Verfahren zur Herstellung der Oxazinderivate der Formel I gemäß Anspruch 1, dadurch gekennzeichnet, daß 1,3 Aminophenole der Formel III mit Nitrosoaminophenolen der Formel IV kondensiert werden.

ON
$$R_4$$
 R_3
 R_4
 R_3