Load Data

```
clear
clf
clc

[train_images,test_images,train_labels,test_labels] = load_MNIST();
```

PCA

```
all_images = [train_images test_images];
[train_pca,test_pca] = pcaManual(all_images,train_images,test_images)
```

```
% Plot the data
scatter(train_pca(1,:),train_pca(2,:),[],train_labels)
```



```
scatter(test_pca(1,:),test_pca(2,:) ,[],test_labels)
```


Nearest Class Centroid Classifier

$$\|\mathbf{x}_i^{(k)} - \boldsymbol{\mu}_k\|_2^2$$
,

%PCA

class_labels = nearestClassCentroidClassifier(train_labels, train_pca, test_pca);
plotconfusionMatrixManualMNIST(test_pca, test_labels, class_labels)

						Confu	ısion	Matrix	(
	1	785 7.8%	0 0.0%	125 1.3%	72 0.7%	9 0.1%	121 1.2%	195 1.9%	2 0.0%	94 0.9%	19 0.2%	55.2% 44.8%
	2	0 0.0%	1115 11.2%	92 0.9%	60 0.6%	31 0.3%	52 0.5%	41 0.4%	74 0.7%	72 0.7%	37 0.4%	70.8% 29.2%
	3	30 0.3%	1 0.0%	82 0.8%	70 0.7%	0 0.0%	95 0.9%	49 0.5%	1 0.0%	78 0.8%	2 0.0%	20.1% 79.9%
	4	9 0.1%	7 0.1%	332 3.3%	581 5.8%	0 0.0%	105 1.1%	30 0.3%	2 0.0%	159 1.6%	0 0.0%	47.4% 52.6%
ass	5	8 0.1%	0 0.0%	14 0.1%	5 0.1%	481 4.8%	41 0.4%	82 0.8%	282 2.8%	43 0.4%	438 4.4%	34.5% 65.5%
Output Class	6	15 0.1%	0 0.0%	42 0.4%	20 0.2%	0 0.0%	30 0.3%	36 0.4%	1 0.0%	49 0.5%	2 0.0%	15.4% 84.6%
Ont	7	122 1.2%	1 0.0%	167 1.7%	39 0.4%	26 0.3%	194 1.9%	357 3.6%	23 0.2%	151 1.5%	23 0.2%	32.4% 67.6%
	8	0 0.0%	2 0.0%	28 0.3%	18 0.2%	344 3.4%	47 0.5%	22 0.2%	552 5.5%	24 0.2%	388 3.9%	38.7% 61.3%
	9	11 0.1%	9 0.1%	140 1.4%	144 1.4%	14 0.1%	182 1.8%	132 1.3%	22 0.2%	289 2.9%	12 0.1%	30.3% 69.7%
	10	0 0.0%	0 0.0%	10 0.1%	1 0.0%	77 0.8%	25 0.3%	14 0.1%	69 0.7%	15 0.1%	88 0.9%	29.4% 70.6%
		80.1% 19.9%	98.2% 1.8%	7.9% 92.1%	57.5% 42.5%	49.0% 51.0%	3.4% 96.6%	37.3% 62.7%	53.7% 46.3%	29.7% 70.3%	8.7% 91.3%	43.6% 56.4%
		^	2	ტ	>	6	0	1	ъ	9	10	

Overall precision: 43.6%

Elapsed time is 2.232273 seconds.

%Real Data

class_labels = nearestClassCentroidClassifier(train_labels, train_images, test_images);
plotconfusionMatrixManualMNIST(test_images, test_labels, class_labels)

						Confu	ısion	Matrix	•			
	1	878 8.8%	0 0.0%	19 0.2%	4 0.0%	1 0.0%	11 0.1%	18 0.2%	2 0.0%	14 0.1%	15 0.1%	91.3% 8.7%
	2	0 0.0%	1092 10.9%	71 0.7%	24 0.2%	22 0.2%	63 0.6%	27 0.3%	59 0.6%	39 0.4%	22 0.2%	77.0% 23.0%
	3	7 0.1%	10 0.1%	781 7.8%	25 0.3%	2 0.0%	2 0.0%	22 0.2%	22 0.2%	11 0.1%	7 0.1%	87.9% 12.1%
	4	2 0.0%	3 0.0%	33 0.3%	814 8.1%	0 0.0%	118 1.2%	0 0.0%	1 0.0%	83 0.8%	10 0.1%	76.5% 23.5%
933	5	2 0.0%	0 0.0%	31 0.3%	1 0.0%	811 8.1%	21 0.2%	31 0.3%	20 0.2%	12 0.1%	83 0.8%	80.1% 19.9%
output class	6	58 0.6%	7 0.1%	3 0.0%	49 0.5%	3 0.0%	612 6.1%	32 0.3%	2 0.0%	36 0.4%	12 0.1%	75.2% 24.8%
5	7	25 0.3%	3 0.0%	23 0.2%	8 0.1%	16 0.2%	27 0.3%	827 8.3%	0 0.0%	13 0.1%	1 0.0%	87.7% 12.3%
	8	1 0.0%	0	18 0.2%	15 0.1%	1 0.0%	10 0.1%	0 0.0%	856 8.6%	10 0.1%	27 0.3%	91.3% 8.7%
	9	7 0.1%	20 0.2%	50 0.5%	58 0.6%	10 0.1%	13 0.1%	1 0.0%	13 0.1%	718 7.2%	18 0.2%	79.1% 20.9%
	10	0	0	3 0.0%	12 0.1%	116 1.2%	15 0.1%	0 0.0%	53 0.5%	38 0.4%	814 8.1%	77.5% 22.5%
		89.6% 10.4%		75.7% 24.3%	80.6% 19.4%			86.3% 13.7%	83.3% 16.7%	73.7% 26.3%	80.7% 19.3%	
		_	2	ი	>	Ś	0	1	8	9	10	

Overall precision: 82.03%

Elapsed time is 1.473488 seconds.

Nearest Sub-Class Centroid Classifier 2 PCA

%Pca

tic

class_labels = NearestSubClassCentroidClassifier(train_labels, train_pca, test_pca, 2);
plotconfusionMatrixManualMNIST(test_pca, test_labels, class_labels')

Overall precision: 42.86%

toc

Elapsed time is 2.737199 seconds.

Nearest Sub-Class Centroid Classifier 2

%Real Data
tic
class_labels = NearestSubClassCentroidClassifier(train_labels, train_images, test_images, 2);
plotconfusionMatrixManualMNIST(test_images, test_labels, class_labels')

Overall precision: 86.06%

toc

Elapsed time is 105.196861 seconds.

Nearest Sub-Class Centroid Classifier 3 PCA

%Pca

class_labels = NearestSubClassCentroidClassifier(train_labels, train_pca, test_pca, 3);
plotconfusionMatrixManualMNIST(test_pca, test_labels, class_labels')

						Confu						
	1	669 6.7%	0.0%	122 1.2%	34 0.3%	2 0.0%	102 1.0%	151 1.5%	0 0.0%	98 1.0%	12 0.1%	56.2% 43.8%
	2	0 0.0%	1092 10.9%	53 0.5%	29 0.3%	16 0.2%	33 0.3%	22 0.2%	49 0.5%	25 0.3%	22 0.2%	81.4% 18.6%
	3	60 0.6%	4 0.0%	293 2.9%	172 1.7%	2 0.0%	136 1.4%	102 1.0%	8 0.1%	155 1.6%	7 0.1%	31.2% 68.8%
	4	10 0.1%	3 0.0%	172 1.7%	457 4.6%	4 0.0%	156 1.6%	35 0.4%	6 0.1%	158 1.6%	2 0.0%	45.6% 54.4%
Output Class	5	3 0.0%	0 0.0%	32 0.3%	11 0.1%	350 3.5%	55 0.5%	43 0.4%	201 2.0%	38 0.4%	278 2.8%	34.6% 65.4%
5	6	54 0.5%	9 0.1%	93 0.9%	100 1.0%	38 0.4%	143 1.4%	143 1.4%	28 0.3%	113 1.1%	21 0.2%	19.3% 80.7%
5	7	150 1.5%	2 0.0%	97 1.0%	39 0.4%	14 0.1%	96 1.0%	283 2.8%	6 0.1%	109 1.1%	13 0.1%	35.0% 65.0%
	8	0 0.0%	8 0.1%	13 0.1%	13 0.1%	333 3.3%	34 0.3%	7 0.1%	478 4.8%	14 0.1%	417 4.2%	36.3% 63.7%
	9	29 0.3%	17 0.2%	153 1.5%	150 1.5%	14 0.1%	123 1.2%	128 1.3%	19 0.2%	254 2.5%	13 0.1%	28.2% 71.8%
	10	5 0.1%	0 0.0%	4 0.0%	5 0.1%	209 2.1%	14 0.1%	44 0.4%	233 2.3%	10 0.1%	224 2.2%	29.9% 70.1%
		68.3% 31.7%	96.2% 3.8%	28.4% 71.6%	45.2% 54.8%			29.5% 70.5%		26.1% 73.9%		42.4% 57.6%
		^	2	ტ	>	Ś	0	1	8	9	10	

Overall precision: 42.43%

Nearest Sub-Class Centroid Classifier 3

%Real Data
class_labels = NearestSubClassCentroidClassifier(train_labels, train_images, test_images, 3);
plotconfusionMatrixManualMNIST(test_images, test_labels, class_labels')

	,					Confu	usion	Matrix	(
	1	917 9.2%	0 0.0%	19 0.2%	4 0.0%	1 0.0%	9 0.1%	21 0.2%	1 0.0%	12 0.1%	10 0.1%	92.3% 7.7%
	2	1 0.0%	1120 11.2%	19 0.2%	5 0.1%	15 0.1%	5 0.1%	6 0.1%	50 0.5%	4 0.0%	12 0.1%	90.5% 9.5%
	3	1 0.0%	2 0.0%	898 9.0%	16 0.2%	5 0.1%	3 0.0%	5 0.1%	15 0.1%	4 0.0%	1 0.0%	94.5% 5.5%
	4	4 0.0%	1 0.0%	21 0.2%	887 8.9%	2 0.0%	57 0.6%	1 0.0%	0 0.0%	60 0.6%	16 0.2%	84.6% 15.4%
200	5	0 0.0%	1 0.0%	12 0.1%	2 0.0%	838 8.4%	5 0.1%	14 0.1%	16 0.2%	11 0.1%	63 0.6%	87.1% 12.9%
Output Olass	6	28 0.3%	1 0.0%	6 0.1%	33 0.3%	7 0.1%	738 7.4%	16 0.2%	3 0.0%	42 0.4%	6 0.1%	83.9% 16.1%
5	7	20 0.2%	4 0.0%	2 0.0%	2 0.0%	20 0.2%	23 0.2%	893 8.9%	0 0.0%	3 0.0%	3 0.0%	92.1% 7.9%
	8	1 0.0%	0 0.0%	20 0.2%	12 0.1%	3 0.0%	4 0.0%	0 0.0%	882 8.8%	10 0.1%	48 0.5%	90.0% 10.0%
	9	8 0.1%	6 0.1%	33 0.3%	44 0.4%	3 0.0%	28 0.3%	2 0.0%	5 0.1%	803 8.0%	8 0.1%	85.4% 14.6%
1	0	0 0.0%	0 0.0%	2 0.0%	5 0.1%	88 0.9%	20 0.2%	0 0.0%	56 0.6%	25 0.3%	842 8.4%	81.1% 18.9%
		93.6% 6.4%	98.7% 1.3%		87.8% 12.2%		82.7% 17.3%	93.2% 6.8%	85.8% 14.2%			88.2% 11.8%
	,	^	2	ري د	>	Ś	0	1	8	9	10	

Overall precision: 88.18%

Nearest Sub-Class Centroid Classifier 5 PCA

```
%Pca
class_labels = NearestSubClassCentroidClassifier(train_labels, train_pca, test_pca, 5);
```

Warning: Failed to converge in 100 iterations during replicate 4.

plotconfusionMatrixManualMNIST(test_pca, test_labels, class_labels')

						Confu	ısion	Matrix	<			
	1	597 6.0%	0 0.0%	70 0.7%	16 0.2%	2 0.0%	57 0.6%	117 1.2%	1 0.0%	69 0.7%	12 0.1%	63.4% 36.6%
	2	0 0.0%	1098 11.0%	65 0.7%	29 0.3%	11 0.1%	33 0.3%	24 0.2%	43 0.4%	35 0.4%	21 0.2%	80.8% 19.2%
	3	39 0.4%	7 0.1%	247 2.5%	173 1.7%	10 0.1%	79 0.8%	58 0.6%	15 0.1%	113 1.1%	8 0.1%	33.0% 67.0%
	4	26 0.3%	3 0.0%	178 1.8%	454 4.5%	10 0.1%	164 1.6%	56 0.6%	10 0.1%	161 1.6%	5 0.1%	42.5% 57.5%
ass	5	6 0.1%	1 0.0%	20 0.2%	6 0.1%	429 4.3%	41 0.4%	61 0.6%	283 2.8%	31 0.3%	342 3.4%	35.2% 64.8%
Output Class	6	116 1.2%	9 0.1%	142 1.4%	129 1.3%	16 0.2%	178 1.8%	127 1.3%	11 0.1%	134 1.3%	16 0.2%	20.3% 79.7%
	7	103 1.0%	4 0.0%	119 1.2%	48 0.5%	19 0.2%	112 1.1%	226 2.3%	21 0.2%	142 1.4%	23 0.2%	27.7% 72.3%
	8	0 0.0%	7 0.1%	8 0.1%	15 0.1%	238 2.4%	31 0.3%	14 0.1%	459 4.6%	18 0.2%	314 3.1%	41.6% 58.4%
	9	70 0.7%	5 0.1%	166 1.7%	135 1.4%	10 0.1%	170 1.7%	184 1.8%	14 0.1%	247 2.5%	10 0.1%	24.4% 75.6%
	10	23 0.2%	1 0.0%	17 0.2%	5 0.1%	237 2.4%	27 0.3%	91 0.9%	171 1.7%	24 0.2%	258 2.6%	30.2% 69.8%
		60.9% 39.1%	96.7% 3.3%	23.9% 76.1%		43.7% 56.3%		23.6% 76.4%	44.6% 55.4%		25.6% 74.4%	41.9% 58.1%
		^	r	ტ	Þ.	6	6	1	%	9	10	
						Tar	get Cl	ass				

Overall precision: 41.93%

Nearest Sub-Class Centroid Classifier 5

Warning: Failed to converge in 100 iterations during replicate 8. Warning: Failed to converge in 100 iterations during replicate 12. Warning: Failed to converge in 100 iterations during replicate 15.

```
%Real Data
class_labels = NearestSubClassCentroidClassifier(train_labels, train_images, test_images, 5);

Warning: Failed to converge in 100 iterations during replicate 4.
Warning: Failed to converge in 100 iterations during replicate 7.
Warning: Failed to converge in 100 iterations during replicate 14.
Warning: Failed to converge in 100 iterations during replicate 15.
Warning: Failed to converge in 100 iterations during replicate 1.
Warning: Failed to converge in 100 iterations during replicate 10.
Warning: Failed to converge in 100 iterations during replicate 12.
```

plotconfusionMatrixManualMNIST(test_images, test_labels, class_labels')

Overall precision: 90.39%

Nearest Neighbor classifier PCA

%Pca
class_labels = NearestNeighborClassifier(train_labels, train_pca, test_pca);
plotconfusionMatrixManualMNIST(test_pca, test_labels, class_labels)

						Confu	ısion	Matrix	(
	1	592 5.9%	0 0.0%	88 0.9%	25 0.3%	3 0.0%	80 0.8%	115 1.1%	1 0.0%	68 0.7%	11 0.1%	60.2% 39.8%
	2	1 0.0%	979 9.8%	25 0.3%	17 0.2%	10 0.1%	11 0.1%	11 0.1%	22 0.2%	19 0.2%	10 0.1%	88.6% 11.4%
	3	95 0.9%	26 0.3%	275 2.8%	191 1.9%	18 0.2%	153 1.5%	127 1.3%	21 0.2%	148 1.5%	20 0.2%	25.6% 74.4%
Output Class	4	29 0.3%	20 0.2%	191 1.9%	394 3.9%	14 0.1%	125 1.3%	75 0.8%	16 0.2%	153 1.5%	12 0.1%	38.3% 61.7%
	5	3 0.0%	10 0.1%	25 0.3%	11 0.1%	323 3.2%	47 0.5%	57 0.6%	218 2.2%	37 0.4%	260 2.6%	32.6% 67.4%
	6	75 0.8%	15 0.1%	132 1.3%	117 1.2%	36 0.4%	140 1.4%	139 1.4%	39 0.4%	146 1.5%	29 0.3%	16.1% 83.9%
	7	123 1.2%	16 0.2%	120 1.2%	82 0.8%	46 0.5%	136 1.4%	243 2.4%	21 0.2%	168 1.7%	36 0.4%	24.5% 75.5%
	8	1 0.0%	27 0.3%	12 0.1%	13 0.1%	241 2.4%	30 0.3%	17 0.2%	405 4.0%	26 0.3%	293 2.9%	38.0% 62.0%
	9	51 0.5%	27 0.3%	149 1.5%	153 1.5%	21 0.2%	142 1.4%	140 1.4%	18 0.2%	189 1.9%	15 0.1%	20.9% 79.1%
	10	10 0.1%	15 0.1%	15 0.1%	7 0.1%	270 2.7%	28 0.3%	34 0.3%	267 2.7%	20 0.2%	323 3.2%	32.7% 67.3%
			86.3% 13.7%		39.0% 61.0%	32.9% 67.1%			39.4% 60.6%	19.4% 80.6%		38.6% 61.4%
		_	2	ტ	b	Ś	0	1	8	9	10	

Overall precision: 38.63%

Nearest Neighbor classifier

```
%Real data
class_labels = NearestNeighborClassifier(train_labels, train_images, test_images);
plotconfusionMatrixManualMNIST(test_images, test_labels, class_labels)
```

						Confu	ısion	Matrix	(_
	1	973 9.7%	0 0.0%	7 0.1%	0 0.0%	0 0.0%	1 0.0%	4 0.0%	0 0.0%	6 0.1%	2 0.0%	98.0% 2.0%
	2	1 0.0%	1129 11.3%	6 0.1%	1 0.0%	7 0.1%	1 0.0%	2 0.0%	14 0.1%	1 0.0%	5 0.1%	96.7% 3.3%
	3	1 0.0%	3 0.0%	992 9.9%	2 0.0%	0	0 0.0%	0 0.0%	6 0.1%	3 0.0%	1 0.0%	98.4% 1.6%
	4	0 0.0%	0 0.0%	5 0.1%	970 9.7%	0 0.0%	12 0.1%	0 0.0%	2 0.0%	14 0.1%	6 0.1%	96.1% 3.9%
ass	5	0 0.0%	1 0.0%	1 0.0%	1 0.0%	944 9.4%	2 0.0%	3 0.0%	4 0.0%	5 0.1%	10 0.1%	97.2% 2.8%
Output Class	6	1 0.0%	1 0.0%	0 0.0%	19 0.2%	0 0.0%	860 8.6%	5 0.1%	0 0.0%	13 0.1%	5 0.1%	95.1% 4.9%
Out	7	3 0.0%	1 0.0%	2 0.0%	0 0.0%	3 0.0%	5 0.1%	944 9.4%	0 0.0%	3 0.0%	1 0.0%	98.1% 1.9%
	8	1 0.0%	0 0.0%	16 0.2%	7 0.1%	5 0.1%	1 0.0%	0 0.0%	992 9.9%	4 0.0%	11 0.1%	95.7% 4.3%
	9	0 0.0%	0 0.0%	3 0.0%	7 0.1%	1 0.0%	6 0.1%	0 0.0%	0 0.0%	920 9.2%	1 0.0%	98.1% 1.9%
	10	0 0.0%	0	0 0.0%	3 0.0%	22 0.2%	4 0.0%	0 0.0%	10 0.1%	5 0.1%	967 9.7%	95.6% 4.4%
		99.3% 0.7%	99.5% 0.5%	96.1% 3.9%	96.0% 4.0%	96.1% 3.9%	96.4% 3.6%	98.5% 1.5%	96.5% 3.5%	94.5% 5.5%	95.8% 4.2%	96.9% 3.1%
		_	2	ი	×	Ś	0	1	8	9	10	

Overall precision: 96.91%

Perceptron with backpropagation PCA

-359.2890 0.8940 -44.5520 -45.3670 -28.9250 -31.1820 -48.5990 -22.6510 · · · 1.1294 23.8632 4.0255 22.3541 -20.5899 3.0369 21.9451 -12.5246 42.4111 -80.9825 -49.8554 9.3143 7.5514 -1.7157 -71.1062 -23.7302

Overall accuracy: 84.306%

Perceptron with backpropagation

```
%Real data
result = perceptron_with_back(train_pca,train_labels,nDOT,max_runs)
plots_perceptronForMNIST(test_images,test_labels,result)
```

Perceptron LMS PCA

```
w = Perceptron_LMS(train_labels, train_pca)
```

```
-1.2569
       -0.3519
               -0.8518
                        -0.8361 -0.7689
                                         -0.8651
                                                  -0.8851
                                                           -0.6564 •••
0.0352
       0.1005
               0.0640 0.0991 -0.1179 0.0261 -0.0003
                                                           -0.1271
0.1516
       -0.1445
                 0.0153
                          0.0112 -0.0093
                                           0.0147
                                                   0.0276
                                                           -0.0421
```

```
figure
scatter(test_pca(1,:),test_pca(2,:),[],test_labels)
hold on
for i = 1:size(w,2)
    plotpc(w(2:end,i)',w(1,i));
end
hold off
```



```
plots_perceptronForMNISTPcaVersion(test_pca,test_labels,w);
```


Overall accuracy: 90.393%

Perceptron LMS

w = Perceptron_LMS(train_labels, train_images)

```
W = 785 \times 10
                                              -0.5824
   -0.6844
              -0.5173
                        -0.9003
                                   -0.9598
                                                        -0.6228
                                                                   -0.8610
                                                                              -0.7169 ...
              -0.0000
                        -0.0000
                                   -0.0000
                                              -0.0000
                                                         0.0000
                                                                    0.0000
   -0.0000
                                                                               0.0000
    0.0000
             -0.0000
                         0.0000
                                   -0.0000
                                              0.0000
                                                        -0.0000
                                                                    0.0000
                                                                               0.0000
    0.0000
             -0.0000
                        -0.0000
                                    0.0000
                                               0.0000
                                                        -0.0000
                                                                    0.0000
                                                                              -0.0000
    0.0000
             -0.0000
                         0.0000
                                    0.0000
                                               0.0000
                                                         0.0000
                                                                   -0.0000
                                                                              -0.0000
    0.0000
              0.0000
                         0.0000
                                    0.0000
                                               0.0000
                                                         0.0000
                                                                   -0.0000
                                                                              -0.0000
   -0.0000
             -0.0000
                         0.0000
                                   -0.0000
                                              -0.0000
                                                        -0.0000
                                                                    0.0000
                                                                               0.0000
                                              -0.0000
                                                        -0.0000
    0.0000
              0.0000
                        -0.0000
                                    0.0000
                                                                    0.0000
                                                                              -0.0000
                                 -13.5964
  -30.3232
             10.1744
                         9.1996
                                             12.4488
                                                         0.3666
                                                                   -0.7510
                                                                               4.1085
    7.7375
             -2.0091
                        -2.3198
                                    2.3146
                                             -2.5973
                                                         0.2275
                                                                    0.1750
                                                                              -2.0915
```

:

plots_perceptronForMNIST(test_images,test_labels,w)

						Confu						
	1	970 9.7%	97 1.0%	329 3.3%	335 3.4%	272 2.7%	422 4.2%	172 1.7%	254 2.5%	429 4.3%	411 4.1%	26.3% 73.7%
	2	0	1035 10.3%	20 0.2%	0	6 0.1%	7 0.1%	5 0.1%	15 0.1%	12 0.1%	1 0.0%	94.0% 6.0%
	3	0 0.0%	1 0.0%	630 6.3%	7 0.1%	3 0.0%	3 0.0%	7 0.1%	1 0.0%	4 0.0%	0 0.0%	96.0% 4.0%
	4	0 0.0%	0	12 0.1%	651 6.5%	0 0.0%	18 0.2%	0 0.0%	3 0.0%	3 0.0%	2 0.0%	94.5% 5.5%
200	5	0 0.0%	0 0.0%	4 0.0%	0 0.0%	684 6.8%	3 0.0%	6 0.1%	6 0.1%	3 0.0%	15 0.1%	94.9% 5.1%
Output Olass	6	4 0.0%	0 0.0%	0 0.0%	1 0.0%	0 0.0%	407 4.1%	7 0.1%	0 0.0%	32 0.3%	0 0.0%	90.2% 9.8%
5	7	4 0.0%	2 0.0%	24 0.2%	1 0.0%	2 0.0%	9 0.1%	761 7.6%	0 0.0%	6 0.1%	0 0.0%	94.1% 5.9%
	8	1 0.0%	0 0.0%	2 0.0%	8 0.1%	1 0.0%	6 0.1%	0 0.0%	732 7.3%	3 0.0%	33 0.3%	93.1% 6.9%
	9	1 0.0%	0 0.0%	10 0.1%	5 0.1%	1 0.0%	11 0.1%	0 0.0%	0 0.0%	480 4.8%	0 0.0%	94.5% 5.5%
,	10	0 0.0%	0 0.0%	1 0.0%	2 0.0%	13 0.1%	6 0.1%	0 0.0%	17 0.2%	2 0.0%	547 5.5%	93.0% 7.0%
		99.0% 1.0%	91.2% 8.8%	61.0% 39.0%	64.5% 35.5%					49.3% 50.7%		69.0% 31.0%
		_	2	ი	>	Ś	0	1	8	9	10	

Overall accuracy: 96.348%