Corrección y consistencia interna de cuestionarios

VIII Jornadas de Usuarios de R

Elvira Ferre Jaén (elvira@um.es)

Sección de Apoyo Estadístico, Servicio de Apoyo a la Investigación, Universidad de Murcia

17 de noviembre de 2016, Albacete

Conjunto de datos

Utilizaremos los datos de un test en el que se miden 5 aspectos de la personalidad mediante una escala Likert(5).

El conjunto de datos está disponible en **Personality Tets** y se puede descargar **aquí**

Conjunto de datos

Nos quedaremos con los 10 primeros ítems que constituyen el constructo extroversión

```
head( df )
```

```
## E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
## 1 4 4 5 4 5 5 5 4 3 5 5
## 2 2 4 3 3 3 3 3 1 1 1 1 1
## 3 5 5 1 2 5 5 1 1 5 5
## 4 2 1 2 2 3 2 3 2 4 1
## 5 3 5 3 3 3 3 5 3 5 3 1
## 6 1 1 2 2 1 3 2 2 1 3 2 2 1 1
```

La escala varía de la siguiente forma:

- 1 = En desacuerdo
- 3 = Neutro
- 5 = De acuerdo

Conjunto de datos

Hay que tener en cuenta la **dirección de los ítems**, todos ítems del constructo han de estar enunciados de forma afirmativa o negativa, pero no se pueden mezclar.

Imaginemos los ítems:

- E1: Soy el alma de la fiesta.
- E2: No me gusta hablar mucho.
- E3: Me siento cómodo/a rodeado/a de gente.

```
# Cambiamos el sentido al ítem E2
df[, "E2"] <- 6 - df[, "E2"]
```

Medidas de consistencia interna

Existe una amplia variedad de medidas para evaluar la consistencia interna. Presentamos cinco de ellas:

- Average inter-item correlation
- Average item-total correlation
- Split-half reliability
- Cronbach's alpha
- Composite reliability

Average Inter-item Correlation

Promedio de correlación entre ítems. Pasos:

- Estimar la correlación entre cada par de elementos
- Hallar la correlación media de cada ítem con el resto
- Calcular la media de todas estas correlaciones.

Average Inter-item Correlation en R (1)

Utilizamos el paquete corrr.

```
library( corrr )
correlate( df )
```

rowname	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
E1		.45	.50	.52	.54	.37	.64	.45	.53	.49
E2	.45		.48	.55	.59	.57	.47	.38	.40	.45
E3	.50	.48		.49	.62	.33	.57	.42	.48	.50
E4	.52	.55	.49		.51	.47	.50	.45	.46	.52
E5	.54	.59	.62	.51		.50	.62	.39	.49	.55
E6	.37	.57	.33	.47	.50		.37	.33	.33	.41
E7	.64	.47	.57	.50	.62	.37		.40	.53	.52
E8	.45	.38	.42	.45	.39	.33	.40		.60	.43
E9	.53	.40	.48	.46	.49	.33	.53	.60		.46
E10	.49	.45	.50	.52	.55	.41	.52	.43	.46	

Average Inter-item Correlation en R (2)

```
inter_item <- colMeans( co[, 2:11], na.rm = TRUE )
inter_item

E1  E2  E3  E4  E5  E6  E7  E8  E9  E10</pre>
```

0.4984 0.4828 0.4866 0.4992 0.5335 0.409 0.5133 0.427 0.4732 0.4814

Podemos ver que E5 y E7 son los que más fuerte correlacionan.

co <- correlate(df)

Average Inter-item Correlation en R (3)

Para obtener la correlación media entre los ítems basta con calcular la media de estos valores:

```
mean( inter_item )
```

[1] 0.4804446

Están comúnmente aceptados valores entre 0.15 y 0.5.

Average item-total correlation

Average item-total correlation

La medida de correlación media ítem-total surge ante el problema de construir una única cantidad útil para cada individuo que permita comparar ese individuo con el resto de la población.

- Calcular la puntuación total para cada individuo (media de sus respuestas).
- 4 Hallar la correlación de los ítems pero centrándonos en las puntuaciones totales.
- 3 Calcular la media de todas las correlaciones de las puntuaciones totales.

Average item-total correlation en R (1)

```
df$score <- rowMeans( df )
head( df )</pre>
```

								1115	3111 178	WWW MINIS
E1	E2	E3	E4	E5	E6	E7	E8	E9 ?	E10	score
4	4	5	4	5	5	4	3	5	5	4.4
2	4	3	3	3	3	1	1	1	1	2.2
5	5	1	2	5	5	1	1	5	5	03.5
2	1	2	2	3	2	3	2	4	1	2.2
3	5	3	3	3	5	3	5	3	1	3.4
1	1	2	2	1	3	2	2	1	1	1.6

Average item-total correlation en R (2)

df %>% correlate() %>% focus(score)

rowname	score
E1	0.7520849
E2	0.7297506
E3	0.7350644
E4	0.7485092
E5	0.7945943
E6	0.6367799
E7	0.7768180
E8	0.6640914
E9	0.7273987
E10	0.7306038

Average item-total correlation en R (3)

Para obtener la correlación media entre el total de los ítems basta con calcular la media de los valores de la tabla anterior:

```
mean( item_total$score )
```

[1] 0.7295695

Split-Half Reliability

- Dividimos aleatoriamente en dos conjuntos todos los elementos del cuestionario que miden el mismo constructo
- Aplicamos todo el instrumento a una muestra de personas
- Calculamos la puntuación total de cada conjunto
- La fiabilidad es simplemente la correlación entre las puntuaciones totales de cada mitad

Split-Half Reliability en R

```
# Calculamos los conjuntos aleatorios
sel <- sample(1:10, 5)
score_1 <- rowMeans( df[, sel] ) # conjunto 1
score_2 <- rowMeans( df[, -sel] ) # conjunto 2
# correlación entre los conjuntos
r <- cor( score_1, score_2 ); r</pre>
```

[1] 0.7970573

Cronbach's alpha

- Imaginemos que calculamos una vez la fiabilidad de dos mitades y luego dividimos aleatoriamente los ítems en otro conjunto de mitades divididas y recalculamos la fiabilidad.
- Seguimos haciendo esto hasta que hayamos calculado todos los posibles estimaciones de fiabilidad por este método
- Si calculamos la media de todas estas medidas, su valor es matemáticamente equivalente al coeficiente Cronbach.

Cronbach's alpha en R (1)

Utilizaremos la función alpha() el paquete psychp.

```
psych::alpha( df )$total$std.alpha
```

[1] 0.9242082

Cronbach's alpha en R (2)

Además del valor del Alfa de Cronbach nos devuelve una serie de tablas muy interesantes:

- Una tabla con los principales estadísticos
- Una tabla de frecuencias y valores perdidos
- Una tabla de fiabilidad cuando eliminamos un ítem.

Cronbach's alpha en R (3)

psych::alpha(df)\$alpha.drop

Tabla 5: Fiabilidad al eliminar un ítem

						1 W 1/C 3/7/// W/
	raw_alpha	std.alpha	G6(smc)	average_r	S/N	alpha se
E1	0.9123	0.9174	0.9648	0.5262	11.11	0.005882
E2	0.9137	0.9185	0.9641	0.5298	11.27	0.005764
E3	0.9132	0.9182	0.9647	0.5289	11.23	0.005823
E4	0.9124	0.9174	0.9654	0.5261	11.1	0.005862
E5	0.9098	0.9149	0.9673	0.5182	10.76	0.006042
E6	0.9186	0.9234	0.9621	0.5466	12.06	0.005453
E7	0.9114	0.9163	0.9612	0.5226	10.95	0.005956
E8	0.9174	0.9222	0.9621	0.5424	11.85	0.005533
E9	0.9145	0.9191	0.9601	0.5318	11.36	0.005717
E10	0.9137	0.9186	0.9617	0.53	11.28	0.005788
score	0.9022	0.9024	0.9038	0.4804	9.247	0.006511

Composite reliability (1)

- Esta medida se basa en las cargas de los factores de un análisis factorial confirmatorio (AFC).
- Definimos el factor extraversión y usaremos las cargas del AFC para estimar la consistencia interna.

Composite reliability (2)

Utilizaremos las cargas factoriales estandarizadas:

```
sl <- standardizedSolution( fit )
sl <- sl$est.std[ sl$op == "=~"]</pre>
```

							1114011		
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10
0.7267	0.6903	0.7155	0.7119	0.7841	0.5792	0.7589	0.5963	0.6726	0.694

Composite reliability (3)

```
# Calculamos la varianza residual para cada item
re <- 1 - sl^2
# Calculamos la fiabilidad compuesta
sum( sl )^2 / ( sum( sl )^2 + sum( re ) )</pre>
```

[1] 0.9029523

Matriz de correlación

Estamos acostumbrados a estudiar las correlaciones con matrices:

rowname	Ozone	Solar.R	Wind	Temp	Month	Day
Ozone		.35	60	.70	.16	01
Solar.R	.35		06	.28	08	15
Wind	60	06		46	18	.03
Temp	.70	.28	46		.42	13
Month	.16	08	18	.42		01
Day	01	15	.03	13	01	

Una forma más ilustrativa de hacerlo es gráficamente

network_plot()

Utilizaremos la función network_plot() del paquete corrr

```
library( corrr )
cor <- correlate( airquality )
network_plot( cor )</pre>
```

network_plot()

Argumento min_cor

- Podemos observar que no aparecen todas las correlaciones en el gráfico.
- Esto se debe al argumento min_cor que por defecto toma valor 0.3.

```
network_plot( cor, min_cor = 0.1 )
```

Argumento min cor

corrplot()

Utilizaremos la función corrplot() del paquete corrplot

```
library( corrplot )
```

```
co <- cor( mtcars )
corrplot( co )</pre>
```

corrplot()

corrplot() de color

Podemos representar las correlaciones mediante colores según su valor

```
corrplot( co, method="color")
```

corrplot() de color

corrplot() superior

Otra opción es quedarnos sólo con la parte superior de la matriz

```
corrplot( co, type = "upper" )
```

corrplot() superior

corrplot() mixto

O mezclar valores numéricos y puntos

corrplot.mixed(co)

corrplot() mixto

Más opciones de corrplot()

Podéis encontrar muchas más opciones en la **viñeta del paquete** Algunas de ellas son:

```
corrplot.mixed( co, lower="ellipse", upper="circle")
corrplot( co, order="hclust", addrect=2)
```

Más opciones de corrplot()

Muchas gracias

Corrección y consistencia interna de cuestionarios VIII Jornadas de Usuarios de R

Elvira Ferre Jaén (elvira@um.es)

Sección de Apoyo Estadístico, Servicio de Apoyo a la Investigación, Universidad de Murcia

17 de noviembre de 2016, Albacete

