## Задание №8. Метод Фурье в задачах обработки сигналов. Создаем и обрабатываем аккорд в MATLAB

**1.Случайный выбор основного тона аккорда.** Выполнить случайный выбор первой ноты аккорда с помощью датчика целых чисел

```
freq = [261.63 293.66 329.63 349.23 392 440 493.88];
syms C D E F G A H;
sfreq = [C D E F G A H];
p = randi(7);
fprintf("Аккорд будет построен от ноты %c малой октавы\nc частотой %f\n", sfreq(p), freq(p));

Аккорд будет построен от ноты C малой октавы
c частотой 261.630000
```

**2. Получение массива данных для аккорда**. Построить вектор частот для мажорного и минорного аккордов, у которых выбранная нота будет первой ступенью, основным тоном. Учесть, что в мажорном аккорде интервалы между ступенями: 4 и 3 полутона; в минорном аккорде интервалы: 3 и 4 полутона. Математическая формула пересчета на і полутонов от основной частоты f0

|        | Ноты      | Малая  | Первая | Вторая |
|--------|-----------|--------|--------|--------|
| С      | ДО        | 130,82 | 261,63 | 523,26 |
|        | ДО диез   | 138,59 | 277,18 | 554,36 |
| D      | PE        | 146,83 | 293,66 | 587,32 |
| E<br>F | РЕ диез   | 155,57 | 311,13 | 622,26 |
|        | МИ        | 164,82 | 329,63 | 659,26 |
|        | ФА        | 174,62 | 349,23 | 698,46 |
|        | ФА диез   | 185,00 | 369,99 | 739,98 |
| G      | СОЛЬ      | 196,00 | 392,00 | 784,00 |
|        | СОЛЬ диез | 207,65 | 415,30 | 830,60 |
| Α      | ЛЯ        | 220,00 | 440,00 | 880,00 |
|        | ЛЯ диез   | 233,08 | 466,16 | 932,32 |
| H(B)   | СИ        | 246,94 | 493,88 | 987,76 |

```
% --Построение для мажорного аккорда--
f2d = freq(p)*2^(4/12)

f2d = 329.6331

f3 = freq(p)*2^(7/12)

f3 = 392.0021

f2m = freq(p)*2^(3/12);
fd = [freq(p); f2d; f3];
fm = [freq(p); f2m; f3];
```

**3.Построение графиков, озвучка и запись в файл данных**. Составить аккорд, округляя значения частот до целых. Прослушать его, задавая частоту дискретизации Гц. Вывести, используя subplot(2,1,i), 2 графика: отдельные гармоники и суммарный сигнал. Записать массив данных аккорда в отдельный файл с расширением .mat в текущую рабочую папку.

(Ваш файл будет предложен для fft-преобразования другому студенту, который должен будет **на зачете** проанализировать его с помощью fft, *расшифровать* закодированный в нем аккорд, *озвучить* весь аккорд и его составляющие по отдельности, *построить график* аккорда и график его составляющих в одном поле, используя subplot(4,1,i), i=1:4.

Поскольку каждому предстоит угадывать чужой аккорд, то следует сначала отработать последовательность действий на своем файле.)

```
fs = 8000;
              %Частота дискретизации
dt = 1/fs;
t = 0:dt:0.1;
yd = cos(2.*pi.*fd.*t);
ym = cos(2.*pi.*fm.*t);
zd = sum(yd);
zm = sum(ym);
figure;
subplot(2, 1, 1);
plot(t, yd);
tt = "Мажорный аккорд от частоты " + num2str(freq(p))+ " по составляющим";
ttt = "Мажорный аккорд от частоты " + num2str(freq(p));
title(tt);
subplot(2, 1, 2);
plot(t, zd);
title(ttt);
```



```
Achord2 = repmat(zm, 1, 10);
sound(Achord1, fs);
pause(2);
sound(Achord2, fs);
pause(2);
```

**4.** Обработка массива данных с fft. Загрузить из текущей папки файл с данными об аккорде, имеющий расширение .mat. Выполнить быстрое преобразование Фурье (fft) и выделить только одну (среднюю) гармонику из спектра, для нее осуществить обратное преобразование Фурье (ifft). Прослушать полученный тон и сравнить его с имеющимся оригинальным тоном.

Для мажорного аккорда рассмотреть 2 случая:

- а) ifft, выполнено по половинному спектру
- б) ifft, выполнено по целому спектру.

Построить графики спектрограммы и сигнала. Увидеть и описать разницу.

Для минорного аккорда использовать Signal Analyzer, с работой в котором можно познакомиться на учебном видео:

```
Z = fft(zd); % преобразование Фурье от аккорда
L = length(t);
P2 = abs(Z/L);
% --Половинный спектр--
P1 = P2(1:L/2+1);
```

Warning: Integer operands are required for colon operator when used as index

```
P1(2:end-1) = 2*P1(2:end-1);

f = fs*(0:(L/2))/L;

figure;

plot(f,P1);

title('Спектрограмма');

grid minor;
```



```
[fmax, x] = max(P1);
for i = 1:length(P1)
    if i ~= x
        P1(i) = 0;
    end
end
z = ifft(P1)*L;
figure;
plot(t(1:length(t)/2 + 1), z);
```

Warning: Integer operands are required for colon operator when used as index Warning: Imaginary parts of complex X and/or Y arguments ignored

```
title('Центральная гармоника сигнал');
```



```
sound(repmat(real(z), 1, 10), fs);
pause(2);

% --Целый спектр--
P2 = abs(Z/L);
P1 = P2(1:L);
P1(2:end-1) = 2*P1(2:end-1);
f = fs*(0:L-1)/L;
figure;
plot(f,P1);
title('Спектрограмма');
grid minor;
```



```
[fmax, x] = max(P1);
for i = 1:length(P1)
    if i ~= x
        P1(i) = 0;
    end
end
z = ifft(P1)*L;
figure;
plot(t(1:length(t)), z);
```

Warning: Imaginary parts of complex X and/or Y arguments ignored

```
title('Центральная гармоника сигнал');
```



sound(repmat(real(z), 1, 10), fs);