1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset

1. The structure & Datatype of the dataset:

• Customers table

Structure and Datatype

Field name	Туре	Mode	Collation
customer_id	STRING	NULLABLE	
customer_unique_id	STRING	NULLABLE	
customer_zip_code_prefix	INTEGER	NULLABLE	
customer_city	STRING	NULLABLE	
customer_state	STRING	NULLABLE	

Geolocation table

Structure and Datatype

Field name	Туре	Mode	Collation
geolocation_zip_code_prefix	INTEGER	NULLABLE	
geolocation_lat	FLOAT	NULLABLE	
geolocation_lng	FLOAT	NULLABLE	
geolocation_city	STRING	NULLABLE	
geolocation_state	STRING	NULLABLE	

Order_items table

Structure and Datatype

Field name	Туре	Mode	Collation
order_id	STRING	NULLABLE	
order_item_id	INTEGER	NULLABLE	
product_id	STRING	NULLABLE	
seller_id	STRING	NULLABLE	
shipping_limit_date	TIMESTAMP	NULLABLE	
price	FLOAT	NULLABLE	
freight_value	FLOAT	NULLABLE	

Order_reviews table

Structure and Datatype

Field name	Туре	Mode	Collation
review_id	STRING	NULLABLE	
order_id	STRING	NULLABLE	
review_score	INTEGER	NULLABLE	
review_comment_title	STRING	NULLABLE	
review_creation_date	TIMESTAMP	NULLABLE	
review_answer_timestamp	TIMESTAMP	NULLABLE	

• Orders table

Structure and Datatype

Field name	Туре	Mode	Collation
order_id	STRING	NULLABLE	
order_item_id	INTEGER	NULLABLE	
product_id	STRING	NULLABLE	
seller_id	STRING	NULLABLE	
shipping_limit_date	TIMESTAMP	NULLABLE	
price	FLOAT	NULLABLE	
freight_value	FLOAT	NULLABLE	

• Payments table

Structure and Datatype

Field name	Туре	Mode	Collation
order_id	STRING	NULLABLE	
payment_sequential	INTEGER	NULLABLE	
payment_type	STRING	NULLABLE	
payment_installments	INTEGER	NULLABLE	
payment_value	FLOAT	NULLABLE	

• Products table

Structure and Datatype

Field name	Туре	Mode	Collation
product_id	STRING	NULLABLE	
product_category	STRING	NULLABLE	
product_name_length	INTEGER	NULLABLE	
product_description_length	INTEGER	NULLABLE	
product_photos_qty	INTEGER	NULLABLE	
product_weight_g	INTEGER	NULLABLE	
product_length_cm	INTEGER	NULLABLE	
product_height_cm	INTEGER	NULLABLE	
product_width_cm	INTEGER	NULLABLE	

• Sellers table

Structure and Datatype

Field name	Туре	Mode	Collation
seller_id	STRING	NULLABLE	
seller_zip_code_prefix	INTEGER	NULLABLE	
seller_city	STRING	NULLABLE	
seller_state	STRING	NULLABLE	

The time period for which the data is given, assuming there is a column in the dataset with a timestamp:

Query -

SELECT min(order_purchase_timestamp), max(order_delivered_customer_date)
FROM target-380817.Target123.orders;

The cities and states of customers who ordered during the given period:

Query(To see cities) - SELECT distinct customer_city

```
FROM target-380817. Target123. Customers as c inner join target-380817. Target123. orders as o on c.customer_id = o.customer_id where o.order_purchase_timestamp between '2016-09-04 21:15:19 UTC'and '2018-10-17 13:22:46 UTC'
```


Query (To see states) - SELECT distinct customer_state

```
FROM target-380817. Target123. Customers as c inner join target-380817. Target123. orders as o on c.customer_id = o.customer_id where o.order_purchase_timestamp between '2016-09-04 21:15:19 UTC'and '2018-10-17 13:22:46 UTC';
```

Row	customer_state
1	RJ
2	RS
3	SP
4	DF
5	PR
6	MT
7	MA
8	AL
9	MG
10	PE

This command will provide us with a list of all unique city and states for customers who placed orders during the given time period.

2. In-depth Exploration:

Is there a growing trend on e-commerce in Brazil?

Query- SELECT customer_state, count (customer_id) as Number_of_purchases

FROM target-380817. Target123. Customers group by customer_state order by customer_state;

Number_of_purchases	li	customer_state	Row
81		AC	1
413		AL	2
148		AM	3
68		AP	4
3380		BA	5
1336		CE	6
2140		DF	7
2033		ES	8
2020		GO	9
747		MA	10

÷

This shows us the purchases made from different states of Brazil.

Hence, we can clearly see that most of the purchases are made from the most populous city of Brazil i.e Sao Paulo (SP). In SA we can see an increasing trend of eCommerce. It seems like there is not much growing trend of eCommerce in most states but states like Minas Gerais(MG), Paraná(PR), Rio de Janeiro(RJ), Rio Grande do Sul (RS), Santa Catarina (SC) are some states making more purchases as compared to other states.

Can we see some seasonality with peaks at specific months?

Query -

Select FORMAT_DATE('%B', order_purchase_timestamp) AS Month_name

,extract(date from order_purchase_timestamp) AS Date ,count(order_id) as Nu
mber_of_orders from target-380817.Target123.orders
 group by FORMAT_DATE('%B', order_purchase_timestamp), extract(date from o
rder_purchase_timestamp);

Row	Month_name	Date	Number_of_orde
1	November	2017-11-25	499
2	December	2017-12-05	282
3	February	2018-02-09	216
4	November	2017-11-06	193
5	April	2017-04-20	98
6	July	2017-07-13	137
7	July	2017-07-11	165
8	July	2017-07-29	115
9	July	2017-07-19	153
10	May	2018-05-11	247

We can see that in both 2017 and 2018 Sales increased from February to March,

Sales declined from May to June and Sales go up again from June to July and July to August.

What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
Select extract(time from order_purchase_timestamp) as order_time1, case
when extract(time from order_purchase_timestamp) between "04:00:00" and "07:
00:00" then "Dawn"
when extract(time from order_purchase_timestamp) between "07:01:00" and "12:
00:00" then "Morning"
when extract(time from order_purchase_timestamp) between "12:01:00" and "04:
00:00" then "Afternoon"
```

```
when extract(time from order_purchase_timestamp) between "04:01:00" and "08:
00:00" then "Evening"
else "Night"
End as Time_range
,count(order_id) as number_of_orders from target-380817.Target123.orders
group by order_purchase_timestamp;
```

Row /	order_time1	Time_range	number_of_orde
1	07:00:26	Evening	1
2	04:37:44	Dawn	1
3	06:00:37	Dawn	1
4	05:56:31	Dawn	1
5	06:31:08	Dawn	1
6	06:58:50	Dawn	1
7	06:49:43	Dawn	1
8	06:33:39	Dawn	1
9	06:29:22	Dawn	1
10	06:40:39	Dawn	1

We can analyze that mostly purchases are made during Night.

3 Evolution of E-commerce orders in the Brazil region

1. Get month on month orders by states

Query -

```
Select extract( date from order_purchase_timestamp) AS Date,FORMAT_DATE('%B',
    order_purchase_timestamp) AS Month_name

,c.customer_state ,count(order_id) as Number_of_orders
    from target-380817.Target123.orders as o inner join target-
380817.Target123.Customers as c
    on o.customer_id= c.customer_id
    group by FORMAT_DATE('%B', order_purchase_timestamp), extract( date from o
    rder_purchase_timestamp), c.customer_state;
```

Row /	Date	Month_name	customer_state	Number_of_orde
1	2017-11-25	November	RJ	73
2	2017-12-05	December	RS	16
3	2017-12-05	December	SP	122
4	2018-02-09	February	DF	5
5	2017-11-06	November	PR	9
6	2017-04-20	April	MT	1
7	2017-07-13	July	MA	6
8	2017-07-11	July	AL	1
9	2017-07-29	July	SP	47
10	2017-07-13	July	MT	2

2. Distribution of customers across the states in Brazil

```
Query- SELECT customer_state, count(customer_id) as Num_of_customers
FROM `target-380817.Target123.Customers`
Group by customer_state;
```

Row	customer_state	Num_of_custom
1	RN	485
2	CE	1336
3	RS	5466
4	SC	3637
5	SP	41746
6	MG	11635
7	BA	3380
8	RJ	12852
9	GO	2020
10	MA	747

As we can see that most customers are in Sao Paulo(SA) and least customers are in Roraima(RR).

4. Impact on Economy: Analyze the money movement by ecommerce by looking at order prices, freight and others.

Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) - You can use "payment value" column in payments table

Firstly to calculate cost of orders for the years (2017 and 2018)

```
Query - Select * from ( Select
    extract(ISOYEAR from (extract ( date from order_purchase_timestamp))) AS Ye
ar ,
Round(sum(p.payment_value), 0) as Cost_of_order,
    from target-380817.Target123.orders as o inner join target-
380817.Target123.Payments as p
    on o.order_id= p.order_id
    where extract(ISOYEAR from (extract ( date from order_purchase_timestamp)))
in (2017, 2018) and
FORMAT_DATE('%B', order_purchase_timestamp) in ("January", "February", "March", "April", "May", "June", "July", "August")
    group by extract(ISOYEAR from (extract ( date from order_purchase_timestamp)))
    )
    order by Year asc;
```

Row	Year	11	Cost_of_order
1		2017	3669022.0
2		2018	8694734.0

Then to calculate % increase in cost of orders from 2017 to 2018

Query-

Select Round((SAFE_SUBTRACT(8694734.0, 3669022.0)/3669022.0)*100,2) as Percen
t_Increase_in_cost;

Row	Percent_Increase_in_cost
1	136.98

Query-

```
SELECT customer_state, Avg(i.price) as Mean_price, Sum(i.freight_value) as Sum_freight

FROM target-380817.Target123.order_items as i inner join target-
380817.Target123.orders as o
on i.order_id = o.order_id
inner join target-380817.Target123.Customers as c
on o.customer_id = c.customer_id
group by customer_state;
```

Row	customer_state	Mean_price	Sum_freight //
1	SP	109.653629	718723.069
2	RJ	125.117818	305589.310
3	PR	119.004139	117851.680
4	SC	124.653577	89660.2600
5	DF	125.770548	50625.4999
6	MG	120.748574	270853.460
7	PA	165.692416	38699.3000

5. Analysis on sales, freight and delivery time

Calculate days between purchasing, delivering and estimated delivery

```
Select Purchase_Time, Actual_Delivery, Estimated_Delivery, DATE_DIFF(Actual_D
elivery,Purchase_Time, Day) As DeliveryTime,

DATE_DIFF(Estimated_Delivery,Purchase_Time, Day) As EstimatedDeliveryTime,
   from
(
SELECT extract( Date from order_purchase_timestamp) As Purchase_Time, extract
( date from order_delivered_customer_date) As Actual_Delivery
, extract( Date from order_estimated_delivery_date) As Estimated_Delivery FRO
M `target-380817.Target123.orders`
where order_delivered_customer_date is not null
) as X
```

order by Purchase_Time;

Row /	Purchase_Time	Actual_Delivery	Estimated_Deliv	DeliveryTime //	EstimatedDelive
1	2016-09-15	2016-11-09	2016-10-04	55	19
2	2016-10-03	2016-11-08	2016-11-25	36	53
3	2016-10-03	2016-10-27	2016-11-07	24	35
4	2016-10-03	2016-11-03	2016-12-01	31	59
5	2016-10-03	2016-10-14	2016-11-23	11	51
6	2016-10-03	2016-10-31	2016-11-23	28	51
7	2016-10-03	2016-11-03	2016-11-29	31	57
8	2016-10-03	2016-11-01	2016-11-25	29	53
9	2016-10-03	2016-10-26	2016-10-27	23	24
10	2016-10-04	2016-10-26	2016-12-20	22	77

Find time_to_delivery & diff_estimated_delivery.

```
Select Purchase_Time, Actual_Delivery, Estimated_Delivery, Time_diff(Actual_D
elivery,Purchase_Time,Hour) As DeliveryTime_hrs,

TIME_DIFF(Actual_Delivery,Estimated_Delivery,Hour) As Diff_in_estimated_Deliv
eryTime_hrs,
  from
(
SELECT extract( time from order_purchase_timestamp) As Purchase_Time, extract
( time from order_delivered_customer_date) As Actual_Delivery
, extract( time from order_estimated_delivery_date) As Estimated_Delivery FRO
M `target-380817.Target123.orders`
where order_delivered_customer_date is not null
) as X
order by Purchase_Time;
```

Row /	Purchase_Time	Actual_Delivery	Estimated_Deliver	DeliveryTime_hrs	Diff_in_estimated_DeliveryTime_hrs
1	00:00:00	21:42:02	00:00:00	21	21
2	00:00:01	13:12:22	00:00:00	13	13
3	00:00:01	20:13:44	00:00:00	20	20
4	00:00:02	11:55:41	00:00:00	11	11
5	00:00:06	16:53:26	00:00:00	16	16
6	00:00:07	22:28:34	00:00:00	22	22
7	00:00:08	20:16:49	00:00:00	20	20
8	00:00:09	18:48:39	00:00:00	18	18
9	00:00:10	20:48:11	00:00:00	20	20
10	00:00:13	15:20:55	00:00:00	15	15

Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

```
Select customer_state, Round(Avg(Freight), 2) as Avg_Freight, Round(Avg(Time_di
ff(Actual_Delivery,Purchase_Time,Hour)),2) As Avg_DeliveryTime,
Round(Avg(TIME_DIFF(Actual_Delivery,Estimated_Delivery,Hour)),2) As Avg_estim
ated_DeliveryTime_hrs,
from
SELECT c.customer_state, i.freight_value as Freight, extract( time from order
_purchase_timestamp) As Purchase_Time,
extract( time from order_delivered_customer_date) As Actual_Delivery
, extract( time from order estimated delivery date) As Estimated Delivery
FROM `target-380817.Target123.orders` as o inner join `target-
380817.Target123.Customers` as c
on o.customer id = c.customer id
inner join `target-380817.Target123.order_items` as i
on o.order_id = i.order_id
where order_delivered_customer_date is not null
) as X
group by customer_state;
```

Row /	customer_state //	Avg_Freight //	Avg_DeliveryTime	Avg_estimated_DeliveryTime_hrs
1	RJ	20.91	1.76	16.44
2	MG	20.63	1.51	16.37
3	SC	21.51	1.22	16.29
4	SP	15.11	1.46	16.15
5	GO	22.56	1.63	16.25
6	RS	21.61	1.29	16.34
7	BA	26.49	1.3	16.15
8	MT	28.0	1.3	15.73
9	SE	36.57	1.19	15.76
10	PE	32.69	1.3	15.94

Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Top 5 states with highest average freight value

```
Query- Select customer_state,Round(Avg(Freight),2) as Avg_Freight
from
(
SELECT c.customer_state, i.freight_value as Freight
FROM `target-380817.Target123.orders` as o inner join `target-
380817.Target123.Customers` as c
on o.customer_id = c.customer_id
inner join `target-380817.Target123.order_items` as i
on o.order_id = i.order_id
where order_delivered_customer_date is not null
) as X
group by customer_state
order by Avg_Freight desc
limit 5;
```

Row .	customer_state	Avg_Freight
1	PB	43.09
2	RR	43.09
3	RO	41.33
4	AC	40.05
5	PI	39.12

Top 5 states with lowest average freight value

```
Query- Select customer_state, Round(Avg(Freight), 2) as Avg_Freight
from
SELECT c.customer_state, i.freight_value as Freight
FROM `target-380817.Target123.orders` as o inner join `target-
380817. Target123. Customers as c
on o.customer_id = c.customer_id
inner join `target-380817.Target123.order items` as i
on o.order_id = i.order_id
where order_delivered_customer_date is not null
) as X
group by customer state
order by Avg_Freight asc
limit 5;
 Row /
         customer_state
                                   Avg_Freight
     1
         SP
                                         15.11
     2
         PR
                                         20.47
         MG
                                         20.63
     3
```

Top 5 states with highest/lowest average time to delivery

20.91

21.07

Top 5 states with highest average Time to delivery(in hours)

Query-

RJ

DF

4

5

```
Select customer_state, Round(Avg(Time_diff(Actual_Delivery,Purchase_Time,Hour
)),2) As Avg_DeliveryTime
from
(
```

```
SELECT c.customer_state, extract( time from order_purchase_timestamp) As Purchase_Time,
extract( time from order_delivered_customer_date) As Actual_Delivery
FROM `target-380817.Target123.orders` as o inner join `target-
380817.Target123.Customers` as c
on o.customer_id = c.customer_id
inner join `target-380817.Target123.order_items` as i
on o.order_id = i.order_id
where order_delivered_customer_date is not null
) as X
group by customer_state
order by Avg_DeliveryTime desc
limit 5;
```

Row /	customer_state	Avg_DeliveryTim
1	RO	1.96
2	MS	1.78
3	RJ	1.76
4	GO	1.63
5	PI	1.63

Top 5 states with lowest average Time to delivery(in hours)

```
Select customer state, Round(Avg(Time diff(Actual Delivery, Purchase Time, Hour
)),2) As Avg_DeliveryTime
from
SELECT c.customer state, extract( time from order purchase timestamp) As Purc
hase_Time,
extract( time from order delivered customer date) As Actual Delivery
FROM `target-380817.Target123.orders` as o inner join `target-
380817. Target123. Customers as c
on o.customer id = c.customer id
inner join `target-380817.Target123.order_items` as i
on o.order_id = i.order_id
where order delivered customer date is not null
) as X
group by customer state
order by Avg_DeliveryTime desc
limit 5;
```

Row /	customer_state	11	Avg_DeliveryTime
1	AP		-0.46
2	AC		0.73
3	AL		0.99
4	PB		1.04
5	SE		1.19

Top 5 states where delivery is really fast/ not so fast compared to estimated date

Top 5 states with Fastest delivery(in days)

```
Query- Select customer_state ,
Round(Avg(DATE_DIFF(Estimated_Delivery, Actual_Delivery, Day)),2) As Differen
ce_in_actualdelivery_and_estimateddeliverytime
    from
    (
SELECT c.customer_state ,extract( Date from order_purchase_timestamp) As Purc
hase_Time, extract( date from order_delivered_customer_date) As Actual_Delive
ry
, extract( Date from order_estimated_delivery_date) As Estimated_Delivery
FROM `target-380817.Target123.orders` as o inner join `target-
380817.Target123.Customers` as c
on o.customer_id = c.customer_id
where order_delivered_customer_date is not null
) as X
group by customer_state
order by Difference in actualdelivery and estimateddeliverytime desc
```

Row /	customer_state //	Difference_in_actualdelivery_and_estimateddeliverytime
1	AC	20.72
2	RO	20.1
3	AP	19.69
4	AM	19.57
5	RR	17.29

limit 5;

Top 5 states with slowest delivery(in days)

```
Query- Select customer_state ,
Round(Avg(DATE_DIFF(Estimated_Delivery, Actual_Delivery, Day)),2) As Differen
ce_in_actualdelivery_and_estimateddeliverytime
    from
(
SELECT c.customer_state ,extract( Date from order_purchase_timestamp) As Purc
hase_Time, extract( date from order_delivered_customer_date) As Actual_Delive
ry
, extract( Date from order_estimated_delivery_date) As Estimated_Delivery
FROM `target-380817.Target123.orders` as o inner join `target-
380817.Target123.Customers` as c
on o.customer_id = c.customer_id
where order_delivered_customer_date is not null
) as X
group by customer_state
order by Difference_in_actualdelivery_and_estimateddeliverytime asc
```

Row	customer_state	11	Difference_in_actualdelivery_and_estimateddeliverytime
1	AL		8.71
2	MA		9.57
3	SE		10.02
4	ES		10.5
5	BA		10.79

6. Payment type analysis

limit 5;

Month over Month count of orders for different payment types

```
Query- Select * from
  (
   Select FORMAT_DATE('%B', order_purchase_timestamp) AS Month_name ,p.payment_
type, count(p.order_id) as Number_of_orders
```

```
from target-380817.Target123.orders as o inner join target-
380817.Target123.Payments as p
on o.order_id = p.order_id
group by FORMAT_DATE('%B', order_purchase_timestamp), p.payment_type
)
order by Month_name;
```

Row	Month_name	payment_type	Number_of_orders //
5	August	credit_card	8269
6	August	UPI	2077
7	August	debit_card	311
8	August	voucher	589
9	August	not_defined	2
10	December	credit_card	4378

Hence we can analyze that mostly payments were done using credit cards.

Count of orders based on the no. of payment installments

Query-

SELECT payment_installments, count(order_id) as Number_of_orders FROM `target
-380817.Target123.Payments`

group by payment_installments
order by payment_installments;

Row	payment_installments	Number_of_orders
1	0	2
2	1	52546
3	2	12413
4	3	10461
5	4	7098
6	5	5239
7	6	3920
8	7	1626
9	8	4268
10	9	644

Payment Installment

