

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ – UEVA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - CCET CIÊNCIAS DA COMPUTAÇÃO COMPILADORES – 7° PERÍODO - 2ª AVALIAÇÃO PROFESSOR: ÉDER JACOUES

ALUNO:	
--------	--

- 1. Liste quais são as fases do compilador.
- 2. Descreva como funciona a buferização na análise léxica de um compilador.
- 3. Em qual das fases abaixo a árvore gramatical é criada?
 - a) Parser
 - b) Análise Léxica
 - c) Geração de Código
 - d) Análise Semântica
 - e) Otimização de Código
- No trecho de código 'if <EXP> then <CMD>', qual a diferença do token 'if', para o lexema 'if'.
- 5. Considere a gramática:

 $S \rightarrow aSbS \mid bSaS \mid \epsilon$

- a. Mostre que essa gramática é ambígua, construindo duas derivações mais a esquerda para a sentença abab.
- b. Construa uma derivação mais a direita para a sentença abab.
- 6. Construa um Diagrama de Transição (autômato) para:
 - a. Identificadores em Pascal (Letra seguida por Letras ou Digitos);
 - b. $relop \rightarrow < | <= | = | < > | > | >=$
- 7. Criar um Analisador Léxico (em Lex) que identifique:
 - a. Espaços em branco, tabulações, parágrafos e não retorne nada.
 - b. Identificadores e números reais (sem sinal) e retorne o lexema e o token.
 - c. Os relop's e retorne o operador e o token.
- 8. Responda:
 - a. Quais as vantagens de usar uma GLC em um analisador sintático?
 - b. Defina o que são erros léxicos, sintáticos, semânticos e lógicos.
 - c. Fale um pouco sobre as quatro estratégias de recuperação de erros.
- 9. Dada a gramática abaixo, elimine a recursão a esquerda:

 $EXP \rightarrow EXP + TERMO | TERMO$ $TERMO \rightarrow TERMO * FATOR | FATOR$ $FATOR \rightarrow (EXP) | id$

UNIVERSIDADE ESTADUAL VALE DO ACARAÚ – UEVA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - CCET CIÊNCIAS DA COMPUTAÇÃO

COMPILADORES – 7º PERÍODO - 2ª AVALIAÇÃO PROFESSOR: ÉDER JACQUES

10. Usando o resultado da questão anterior, crie um analisador sintático (top-down) preditivo não-recursivo, crie a tabela sintática e faça a análise da palavra id*(id+id).

Criação da Tabela (Produção **A** → **a**)

- 1. Para cada **a € Primeiro(α)**
 - Incluir a produção A → α em M[A,a]
- 2. Se $\varepsilon \in Primeiro(a)$
 - Incluir a produção Primeiro(a) em M [A,b], para cada b em Seguinte (A)
- 3. Se $\varepsilon \in Primeiro(a)$ e $\varphi \in Seguinte(A)$
 - Incluir $A \rightarrow a$ em M [A, \$]

TABELA DE APOIO

SÍMBOLO	PRIMEIRO	SEGUINTE
EXP	{(, id}	{\$,) }
EXP'	{+, ε}	{\$,) }
TERMO	{(, id}	{+, \$,)}
TERMO'	{*, ε}	{+, \$,)}
FATOR	{(, id}	{+,*, \$,)}

b) Escolha uma estratégia de recuperação de falhas e crie a tabela sintática e faça a análise da palavra:)*(id+*id).