

Algèbre Linéaire

Devoir Maison - Fiche 4 Licence 2 Informatique (2022-2023)

Guillaume Metzler

Institut de Communication (ICOM)
Université de Lyon, Université Lumière Lyon 2
Laboratoire ERIC UR 3083, Lyon, France

guillaume.metzler@univ-lyon2.fr

Résumé

Cette fiche se décompose en deux parties. La première partie est composée de questions de cours dont les justifications sont en générales très courtes et dont toutes les réponses figurent dans le cours (moyennant une petite réflexion par moment). Les questions ne sont pas difficiles et sont un bon moyen pour vous de travailler le cours et de vérifier que les notions sont comprises. La deuxième partie est composée de trois exercices d'applications pour vérifier que les exercices effectuées en TD sont maîtrisées. A nouveau, ces derniers sont très proches de ceux effectués en TD et seront un excellent moyen pour vous de vérifier que vous savez refaire ce qui a été fait en TD.

1 Question de cours

Les propositions suivantes sont-elles vraies ou fausses?

1. Tout endomorphisme est diagonalisable.

FAUX. On peut prendre l'exemple de la matrice (2 -10 2) qui n'est pas diagonalisable, comme nous l'avons vu.

2. Tout automorhpisme d'espace vectoriel est diagonalisable.

FAUX. On peut prendre l'exemple précédent qui est un bien la matrice d'un endomorphisme bijectif. La seule chose que l'on peut affirmer concernant les automorphismes est que 0 n'est pas une valeur propre.

3. Un endomorphisme d'espace vectoriel injectif admet nécessairement 0 comme valeur propre.

FAUX. Au contraire, ce sont les endomorphismes **non injectifs** qui admettent 0 comme valeur propre.

4. Un automorphisme d'espace vectoriel n'admet que des valeurs propres non nulles.

VRAI. Comme c'est un automorphisme, son noyau est réduit au vecteur nul, *i.e.* il n'existe aucun vecteur non nul qui appartienne au noyau.

5. Les racines du polynôme caractéristique sont exactement les valeurs propres de l'endomorphisme étudié.

VRAI. C'est la définition du polynôme caractéristique.

6. Toutes les matrices triangulaires (inférieures ou supérieures) ne sont pas diagonalisables.

FAUX. Il existe des matrices triangulaires qui sont diagonalisables, comme la matrice

$$\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$$

qui admet deux valeurs propres distinctes, elle est donc diagonalisable.

2 Exercices

Exercice 2.1. On s'attaque maintenant à la résolution de systèmes linéaires

1. On considère le système suivant

$$\begin{cases} 2x - 3y &= 4\\ 3x + 7y &= -1 \end{cases}$$

(a) Le système est-il un système de Cramer?

Pour vérifier si le système est un système de Cramer, il suffit de vérifier que la matrice associée au systèmes est inversible. Le fait d'être un système de Cramer, assurera le fait que le système admet une seule et unique solution.

La matrice $\begin{pmatrix} 2 & -3 \\ 3 & 7 \end{pmatrix}$ est bien une matrice inversible, le système est donc de Cramer.

- (b) Résoudre le système S à l'aide des formules de Cramer puis en utilisant la méthode du Pivot
 - A l'aide des formules de Cramer : On a

$$x = \frac{\begin{vmatrix} 4 & -3 \\ -1 & 7 \end{vmatrix}}{\begin{vmatrix} 2 & -3 \\ 3 & 7 \end{vmatrix}} = \frac{25}{23}.$$

Faisons de même pour l'inconnue y

$$y = \frac{\begin{vmatrix} 2 & 4 \\ 3 & -1 \end{vmatrix}}{\begin{vmatrix} 2 & -3 \\ 3 & 7 \end{vmatrix}} = \frac{-14}{23},$$

• A l'aide du pivot de Gauss

On peut réécrire notre système sous la forme :

$$(A \mid \mathbf{b}) = \begin{pmatrix} 2 & -3 \mid 4 \\ 3 & 7 \mid -1 \end{pmatrix}.$$

on va maintenant effectuer des opérations sur les lignes de cette matrice étendue

$$(A \mid \mathbf{b}) \longrightarrow \begin{pmatrix} \mathbf{2} & -3 \mid 4 \\ 0 & 23 \mid -14 \end{pmatrix} L_2 \leftarrow 2L_2 - 3L_1$$

On a alors le système équivalent suivant :

$$\begin{cases} 2x - 3y &= 4 \\ 23y &= -14 \end{cases}$$

Ce qui nous donne $y = \frac{-14}{23}$ puis $x = \frac{25}{23}$

2. On considère le système suivant

$$\begin{cases} 2x - 3y + 6z - 3u &= 2\\ z + u &= -5\\ 4u &= -8\\ 7y - 3z + 2u &= -1 \end{cases}$$

(a) Le système est-il un système de Cramer?

Il s'agit bien d'un système de Cramer. En effet, on peut représenter notre système à l'aide de la matrice étendue suivante :

$$(A \mid \mathbf{b}) = \begin{pmatrix} 2 & -3 & 6 & -3 \mid 2 \\ 0 & 0 & 1 & 1 \mid -5 \\ 0 & 0 & 0 & 4 \mid -8 \\ 0 & 7 & -3 & 2 \mid -1 \end{pmatrix}.$$

En passant la dernière ligne en deuxième ligne, on obtient :

$$(A \mid \mathbf{b}) = \begin{pmatrix} 2 & -3 & 6 & -3 & 2 \\ 0 & 7 & -3 & 2 & -1 \\ 0 & 0 & 1 & 1 & -5 \\ 0 & 0 & 0 & 4 & -8 \end{pmatrix} \begin{matrix} L_2 \leftarrow L_4 \\ L_3 \leftarrow L_2 \\ L_1 \leftarrow L_3 \end{matrix}$$

On a un système triangulaire directement, les éléments de la diagonale de la matrice A sont tous non nuls, on a donc bien un système de Cramer.

(b) Résoudre le système S par la méthode de votre choix.

Le système est triangulaire, on peut donc le résoudre directement bas en haut, ce qui nous donne :

$$u = -2$$

puis avec la troisième ligne nous avons

$$z = -3$$
.

La deuxième ligne nous donne ensuite

$$7y = -1 - 2u + 3z = -6 \iff y = -6/7.$$

Et enfin, la première équation nous donne

$$2x = 2 + 3y - 6z + 3u = 80/7 \iff x = 80/14.$$

3. On considère le système suivant

$$\begin{cases} x - 2y + 2z &= 3\\ 3x - 2z &= -7\\ -x + y + z &= 6 \end{cases}$$

(a) Le système est-il un système de Cramer?

On regarde à nouveau la matrice étendue associée à ce système linéaire :

$$(A \mid \mathbf{b}) = \begin{pmatrix} 1 & -2 & 2 \mid 3 \\ 3 & 0 & -2 \mid -7 \\ -1 & 1 & 1 \mid 6 \end{pmatrix}.$$

On vérifie facilement que la matrice A associée à ce système linéaire est inversible. En effet, en effectuant quelques opérations sur les lignes, on a

$$(A \mid \mathbf{b}) \to \begin{pmatrix} \mathbf{1} & -2 & 2 & 3 \\ 0 & 6 & -8 & -16 \\ 0 & -1 & 3 & 9 \end{pmatrix} \begin{pmatrix} L_2 \leftarrow L_2 - 3L_1, \\ L_3 \leftarrow L_3 + L_1 \end{pmatrix}$$

$$\to \begin{pmatrix} 1 & -2 & 2 & 3 \\ 0 & 0 & 10 & 38 \\ 0 & -1 & 3 & 9 \end{pmatrix} \begin{pmatrix} L_2 \leftarrow L_2 + 6L_3, \\ 0 & -1 & 3 & 9 \end{pmatrix}$$

$$\to \begin{pmatrix} 1 & -2 & 2 & 3 \\ 0 & -1 & 3 & 9 \\ 0 & 0 & 10 & 38 \end{pmatrix} \begin{pmatrix} L_2 \leftarrow L_3, \\ L_3 \leftarrow L_2 \end{pmatrix}$$

On a un système triangulaire, ce qui montre bien que notre système est de Cramer.

(b) Résoudre le système S par la méthode de votre choix.

On en déduit que z=3.8 à l'aide de la deuxième équation. La dernière équation nous donne alors y=2.4 et la première équation nous conduit alors à x=0.2.

Correction

- 1.
- 2.
- 3.

Exercice 2.2. Déterminer le polynôme caractéristique des matrices suivantes

$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 0 & -\alpha_0 \\ 1 & 0 & -\alpha_1 \\ 0 & 1 & -\alpha_2 \end{pmatrix} \quad et \quad C = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & 5 \end{pmatrix}.$$

Correction

Le polynôme caractéristique associé à la matrice A est

$$\mathcal{X}_A(\lambda) = -\lambda^3 - \lambda^2 + \lambda + 1 = -(\lambda - 1)(\lambda + 1)^2.$$

Le polynôme caractéristique associé à la matrice B est

$$\mathcal{X}_B(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \lambda^3.$$

Le polynôme caractéristique associé à la matrice C est

$$\mathcal{X}_C(\lambda) = -\lambda^3 + 7\lambda^2 - 23\lambda + 31 = -(\lambda + 1)(\lambda^2 - 8\lambda + 31).$$

Exercice 2.3. Les matrices suivantes sont-elles diagonalisables. Si oui, déterminez leurs vecteurs propres.

$$A = \begin{pmatrix} 2 & 5 & -6 \\ 4 & 6 & -9 \\ 3 & 6 & -8 \end{pmatrix} \quad B = \begin{pmatrix} 0 & 3 & 3 \\ -1 & 8 & 6 \\ 2 & -14 & -10 \end{pmatrix} \quad et \quad C = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Correction

Le polynôme caractéristique associé à la matrice A est $\mathcal{X}_A(\lambda) = 1 - \lambda^3$.

Les racines de ce polynôme sont les racines cubiques de l'unité qui sont 1,j et -j où j est le nombre complexe $e^{\frac{2i\pi}{3}}=\frac{-1+i\sqrt{3}}{2}$.

La matrice n'est donc pas diagonalisable dans $\mathbb R$ mais elle est l'est dans $\mathbb C$ car son polynôme caractéristique est sscindé et à racines simples.

Le polynôme caractéristique de la matrice B est donné par $\mathcal{X}_B(\lambda) = -\lambda(\lambda+1)^2$. Les valeurs propres de la matrice sont donc 0 et -1, -1 est donc une racine double.

On va donc déterminer les sous-espaces propres associés

- Espace propre associé à la valeur propre $\lambda=0$: Il s'agit ici de déterminer le noyau de la matrice B. En examinant les colonnes de la matrice B, on observe que le vecteur $\mathbf{x}=\begin{pmatrix} -2\\-1\\1 \end{pmatrix}$ est bien un élément du noyau de la matrice B.
- Espace propre associé à la valeur propre $\lambda = -1$: Il nous maintenant déterminer les éléments du noyau de la matrice $B + I_3$, *i.e.* les vecteurs \mathbf{x} non nuls de \mathbb{R}^3 vérifiant

$$(B+I_3)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} 1 & 3 & 3 \\ -1 & 9 & 6 \\ 2 & -14 & -9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

On va considérer une matrice étendue pour déterminer les éléments du noyau

$$\frac{\begin{pmatrix} B+I_3 \\ I \end{pmatrix}}{I} = \begin{pmatrix} 1 & 3 & 3 \\ -1 & 9 & 6 \\ 2 & -14 & -9 \\ \hline 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\substack{C_2 \leftarrow C_2 - 3C_1 \\ C_3 \leftarrow C_3 - 3C_1}} \begin{pmatrix} 1 & 0 & 0 \\ -1 & 12 & 9 \\ 2 & -20 & -3 \\ \hline 1 & -3 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

$$\begin{pmatrix}
B+I_3 \\
I
\end{pmatrix} \xrightarrow{C_3 \leftarrow 4C_3 - 3C_2} \begin{pmatrix}
1 & 0 & 0 \\
-1 & 12 & 0 \\
2 & -20 & 0 \\
\hline
1 & -3 & -3 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{pmatrix}$$

On peut s'arrêter là pour la recherche de vecteurs propres. Ici on trouve seulement un vecteur propre associé à la valeur propre -1.

La dimension du sous-espace propre associé à la valeur propre -1 est donc de dimension 1 qui est différent de la multiplicité de la valeur propre en tant que racine du polynôme caractéristique. La matrice B n'est donc pas diagonalisable.

Le polynôme caractéristique de la matrice C est donné par $\mathcal{X}_C(\lambda) = -(\lambda - 1)^2(\lambda + 1)$. Les valeurs propres de la matrice sont donc 1 et -1, 1 est donc une racine double.

On va donc déterminer les sous-espaces propres associés

- Espace propre associé à la valeur propre $\lambda = -1$:

 Il s'agit ici de déterminer le noyau de la matrice $C + I_3 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. En examinant les colonnes de la matrice $C + I_3$, on observe que le vecteur $\mathbf{x} = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ est bien élément de ce noyau.
- Espace propre associé à la valeur propre $\lambda = 1$: Il nous maintenant déterminer les éléments du noyau de la matrice $C - I_3$, *i.e.* les vecteurs \mathbf{x} non nuls de \mathbb{R}^3 vérifiant

$$(C-I_3)\mathbf{x} = \mathbf{0} \iff \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

On va considérer une matrice étendue pour déterminer les éléments du noyau

$$\frac{\begin{pmatrix} C - I_3 \end{pmatrix}}{I} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\substack{C_2 \leftarrow C_2 + C_1 \\ C_3 \leftarrow C_3 + C_1}} \begin{pmatrix} -1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Comme précédemment, on trouve uniquement un seul élément dans le noyau. In fine, la matrice C n'est pas diagonalisable.