

Dimension Reduction

Outline

- SVD
- PCA
- T-SNE

#TibaMe What's Dimension Reduction

- Dimension Reduction is an unsupervised learning
- Can use to data compression
 - Make learning faster(Use less RAM)
- Help visualize data

^緯TibaMe

Why Reduce Dimensionality?

- Reduces time complexity
 - Less computation
- Reduces space complexity
 - Less parameters
- Saves the cost of observing the features
- Data visualization if plotted in 2 or 3 dimensions

4

Reduce Dimensionality Illustraion

Reduce Dimensionality Illustraion

SVD

- singular-value decomposition(SVD) is a factorization of a real/complex matrix
 - can be used to do dimension reduction
- Every real matrix can be decomposed as $U\Sigma V^T$

$$-U^TU=I$$
, $V^TV=I$

- Σ is a diagonal matrix with non-negative real number on diagonal
- rank(A) = r

Matrix rank

1-9

Rank = # of linearly independent columns/rows in A

$$rank \left(\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \right) = 2$$

$$rank \left(\begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 4 & -2 & 6 \\ 3 & 6 & -6 & 19 \end{bmatrix} \right) = 3$$

$$rank \left(\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) = 3$$

$$rank \begin{pmatrix} \begin{bmatrix} 1 & 2 & -2 & 3 \\ 2 & 4 & -2 & 6 \\ 3 & 6 & -4 & 9 \end{bmatrix} \end{pmatrix} = 2$$

SVD Example

$$\begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \sqrt{12} & 0 \\ 0 & \sqrt{10} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{5}} & \frac{-1}{\sqrt{5}} & 0 \end{bmatrix}$$

each matrix is a transformation

$$M = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
$$X = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$MX = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{3\sqrt{2}}{2} \\ \frac{3\sqrt{2}}{2} \end{bmatrix}$$

each matrix is a transformation

http://blog.csdn.net/Mr_KkTian

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} =$$

$$M'$$

$$\begin{bmatrix} .13 & .02 & -.01 \\ .41 & .07 & -.03 \\ .55 & .09 & -.04 \\ .68 & .11 & -.05 \\ .15 & -.59 & .65 \\ .07 & -.73 & -.67 \\ .07 & -.29 & .32 \end{bmatrix} \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1.3 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ .12 & -.02 & .12 & -.69 & -.69 \\ .40 & -.80 & .40 & .09 & .09 \end{bmatrix}$$

U Σ V^T

Assume we drop the smallest singular value
$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 3 & 3 & 3 & 0 & 0 \\ 4 & 4 & 4 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} =$$

M'

$$\begin{bmatrix} .13 & .02 & -.01 \\ .41 & .07 & -.03 \\ .55 & .09 & -.04 \\ .68 & .11 & -.05 \\ .15 & -.59 & .65 \\ .07 & -.73 & -.67 \\ .07 & -.29 & .32 \end{bmatrix} \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ 0 & 0 & 1.3 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ .12 & -.02 & .12 & -.69 & -.69 \\ .40 & -.80 & .40 & .09 & .09 \end{bmatrix}$$


```
\begin{bmatrix} .13 & .02 \\ .41 & .07 \\ .55 & .09 \\ .68 & .11 \\ .15 & -.59 \\ .07 & -.73 \\ .07 & -.29 \end{bmatrix} \begin{bmatrix} 12.4 & 0 \\ 0 & 9.5 \end{bmatrix} \begin{bmatrix} .56 & .59 & .56 & .09 & .09 \\ .12 & -.02 & .12 & -.69 & -.69 \end{bmatrix}
                                                                          = \begin{bmatrix} 0.93 & 0.95 & 0.93 & .014 & .014 \\ 2.93 & 2.99 & 2.93 & .000 & .000 \\ 3.92 & 4.01 & 3.92 & .026 & .026 \\ 4.84 & 4.96 & 4.84 & .040 & .040 \\ 0.37 & 1.21 & 0.37 & 4.04 & 4.04 \\ 0.35 & 0.65 & 0.35 & 4.87 & 4.87 \\ 0.16 & 0.57 & 0.16 & 1.98 & 1.98 \end{bmatrix}
```


assume new sample data [1, 1, 0, 3, 2]

$$\begin{bmatrix}
1.56 & .12 \\
.59 & -.02 \\
.56 & .12 \\
.09 & -.69 \\
.09 & -.69
\end{bmatrix} = \begin{bmatrix}
1.599 & -3.35
\end{bmatrix}$$
from 5D to 2D

^{緯TibaMe} How many singular values to keep?

keep 80-90% of energy

#TibaMe How many singular values to keep?

$$\begin{bmatrix} .13 & .02 & -.01 \\ .41 & .07 & -.03 \\ .55 & .09 & -.04 \\ .68 & .11 & -.05 \\ .15 & -.59 & .65 \\ .07 & -.73 & -.67 \\ .07 & -.29 & .32 \end{bmatrix} \begin{bmatrix} 12.4 & 0 & 0 \\ 0 & 9.5 & 0 \\ \hline 0 & 9.5 & 0 \\ \hline 0 & 0.5 & 0 \\ \hline 0 &$$

$$\frac{12.4 + 9.5}{12.4 + 9.5 + 1.3} = 0.944$$

(補充)SVD

- How to calculate SVD on a matrix
 - http://www.d.umn.edu/~mhampton/m4326svd_example.pdf
- SVD calculator
 - https://m.wolframalpha.com/input/?i=SVD+%7B%7B1%2C+0%2C+-1%7D%2C+%7B-2%2C+1%2C+4%7D%7D&lk=3

PCA

What's PCA

principal component analysis (PCA) is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables

 Find a projection matrix w from d-dimensional to kdimensional vectors that keeps error low

1-26

coordinate of yellow point under red axis

26

#TibaMe Which projection axis is better?

red arrow have larger variance

PCA

Project all the data points x onto **first** axis w1 and obtain a set of z1

What we want:

PCA

Project all the data points x onto second axis w2 and obtain a set of z2

What we want:

should find the new axis which is orthogonal with all of previous axis

PCA concept

- Choose directions such that a total variance of data will be maximum
 - Maximize Total Variance
- Choose directions that are orthogonal
 - Minimize correlation
- Choose k<d orthogonal directions which maximize total variance

Variance and Covariance

Variance

- Measure of how far a set of numbers are spread out from their average value
- $Var(X) = \sigma_X^2 = E[(X \mu)^2]$

standard deviation

Variance and Covariance

covariance

- measure of the joint variability of two random variables
- $\operatorname{cov}(X,Y) = E[(X \mu_x)(Y \mu_y)]$
- $\mathbf{cov}(X,X) = Var(X)$

Magnitude of covariance is meaningless but normalized covariance(correlation) meaningful

Variance and Covariance

- Correlation
 - $\rho_{X,Y}$ (correlation)
 - = covariance with normalization

$$- = \frac{cov(X,Y)}{\sigma_X \sigma_Y}$$

Covariance Matrix

```
\operatorname{Cov}[X,Y] = \begin{bmatrix}
E[(X_1 - E[X_1])(Y_1 - E[Y_1])] & E[(X_1 - E[X_1])(Y_2 - E[Y_2])] \\
E[(X_2 - E[X_2])(Y_1 - E[Y_1])] & E[(X_2 - E[X_2])(Y_2 - E[Y_2])] \\
E[(X_3 - E[X_3])(Y_1 - E[Y_1])] & E[(X_3 - E[X_3])(Y_2 - E[Y_2])]
\end{bmatrix} \\
= \begin{bmatrix}
\operatorname{Cov}[X_1, Y_1] & \operatorname{Cov}[X_1, Y_2] \\
\operatorname{Cov}[X_2, Y_1] & \operatorname{Cov}[X_2, Y_2] \\
\operatorname{Cov}[X_3, Y_1] & \operatorname{Cov}[X_3, Y_2]
\end{bmatrix}
```

Covariance Matrix Example

X1	X2
3	7
2	4

$$\bar{x}_1 = \frac{3+2}{2} = \frac{5}{2}$$

$$\bar{x}_2 = \frac{7+4}{2} = \frac{11}{2}$$

$$\begin{bmatrix} var(X1) & conv(X1, X2) \\ conv(X1, X2) & var(X2) \end{bmatrix}$$

$$var(x_1) = (3 - \frac{5}{2})^2 + (2 - \frac{5}{2})^2$$

$$var(x_2) = (7 - \frac{11}{2})^2 + (4 - \frac{11}{2})^2$$

$$cov(x_1, x_2) = \left(3 - \frac{5}{2}\right)\left(7 - \frac{11}{2}\right) + \left(2 - \frac{5}{2}\right)\left(4 - \frac{11}{2}\right)$$

Covariance Matrix Example

X 1	X2
3	7
2	4

$$\begin{bmatrix} var(X1) & conv(X1, X2) \\ conv(X1, X2) & var(X2) \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{9}{4} \end{bmatrix}$$

36

What PCA does

- Step 1: Get some data
- Step 2: Subtract the mean
- Step 3: Calculate the covariance matrix
- Step 4: Calculate the eigenvectors and eigenvalues of the covariance matrix
- Step 5: Choosing components and forming a feature vector

	\boldsymbol{x}	y
•	2.5	2.4
	0.5	0.7
	2.2	2.9
	1.9	2.2
Data =	3.1	3.0
	2.3	2.7
	2	1.6
	1	1.1
	1.5	1.6
	1.1	0.9
	'	•

	\boldsymbol{x}	\boldsymbol{y}
•	.69	.49
	-1.31	-1.21
	.39	.99
	.09	.29
DataAdjust =	1.29	1.09
	.49	.79
	.19	31
	81	81
	31	31
	71	-1.01

39

$$\begin{array}{c|cccc}
x & y \\
\hline
.69 & .49 \\
-1.31 & -1.21 \\
.39 & .99 \\
.09 & .29 \\
DataAdjust = 1.29 & 1.09 \\
.49 & .79 \\
.19 & -.31 \\
-.81 & -.81 \\
-.31 & -.31 \\
-.71 & -1.01
\end{array}$$

calculate covariance matrix

$$cov = \begin{pmatrix} .616555556 & .615444444 \\ .615444444 & .716555556 \end{pmatrix}$$

40

$$eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

Find eigenvalues and eigenvectors

$$eigenvalues = \begin{pmatrix} .0490833989 \\ 1.28402771 \end{pmatrix}$$

$$eigenvectors = \begin{pmatrix} -.735178656 & -.677873399 \\ .677873399 & -.735178656 \end{pmatrix}$$

Leave eigenvalue that is larger

Note: Larger eigenvalue mean large variance on axis

\boldsymbol{x}	\boldsymbol{y}
.69	.49
-1.31	-1.21
.39	.99
.09	.29
1.29	1.09
.49	.79
.19	31
81	81
31	31
71	-1.01

Transformed Data (Single eigenvector)

x
827970186
1.77758033
992197494
274210416
-1.67580142
912949103
.0991094375
1.14457216
.438046137
1.22382056

from 2D to 1D

Another PCA Interpretation

Demo

PCA demo

http://setosa.io/ev/principal-component-analysis/

Example and Practice

Example

- PCA
 - example/dimension reduction

Practice

- Try to reduce dimension on each data to 3D(note that please drop the last feature in this dataset)
 - dataset/seeds dataset.csv
 - practice/dimension reduction

t-SNE

What's t-SNE

- T-distributed Stochastic Neighbor Embedding (t-SNE) is a machine learning algorithm for visualization
 - a nonlinear dimensionality reduction technique
 - Usually used to map N-D data into 2D/3D

What's t-SNE

- Advantage of t-SNE
 - Some classification group should be closer
 - Different classification group should be farther(main different compared with PCA)

t-SNE concept

X(High dimension space)

$$Z(2D/3D \text{ space})$$

$$P(x^{j}|x^{i}) = \frac{S(x^{i}, x^{j})}{\sum_{k \neq i} S(x^{i}, x^{k})} \qquad Q(z^{j}|z^{i}) = \frac{S'(z^{i}, z^{j})}{\sum_{k \neq i} S'(z^{i}, z^{k})}$$

Define similarity function and calculate similarity between all data pair

^緯TibaMe How to choose similarity function?

SNE
$$S(x^{i}, x^{j}) = e^{-\|x^{i} - x^{j}\|}$$

$$S'(z^i, z^j) = e^{-\|z^i - z^j\|}$$

t-SNE

$$S(x^{i}, x^{j}) = e^{-\|x^{i} - x^{j}\|}$$

$$S'(z^i, z^j) = \frac{1}{1 + ||z^i - z^j||}$$

#TibaMe How to choose similarity function?

t-SNE concept

$$loss = \sum_{i} KL(P_i||Q_i) = \sum_{i \neq j} P(x^j|x^i) \log(\frac{P(x^j|x^i)}{Q(z^j|z^i)})$$

use gradient descent to optimization

t-sne reference

- t-sne result
 - https://lvdmaaten.github.io/tsne/
- t-sne source code
 - https://github.com/oreillymedia/t-SNE-tutorial
- Other reference
 - https://medium.com/d-d-mag/%E6%B7%BA%E8%AB%87%E5%85%A9%E7%A8%AE%E9%99%8D%E7%B6%AD%E6%96%B9%E6%B3%95-pca-%E8%88%87-t-sne-d4254916925b