计算物理 A——Homework 13

何金铭 PB21020660

题目描述 1

用 Metropolis-Hasting 抽样方法计算积分:

$$I = \int_0^\infty (x - \alpha \beta)^2 f(x) \, dx = \alpha \beta^2 \tag{1}$$

$$f(x) = \frac{1}{\beta \Gamma(\alpha)} (\frac{x}{\beta})^{\alpha - 1} \exp\left\{-\frac{x}{\beta}\right\}$$

设积分的权重函数为: p(x) = f(x) 和 $p(x) = (x - \alpha\beta)^2 f(x)$ 给定参数 α, β , 并用不同的 γ 值, 分别计算积分, 讨论计算精度和效率 其中,设 $T_{ij} = T(x \to x') = T(x') = 0.5 \exp\left\{-\frac{x'}{\gamma}\right\}$

2 理论分析

Metropolis-Hasting 抽样方法

采用不对称的分布矩阵 T 和接受矩阵 A其中T为一个任意形状的方阵(最好与分布有着类似的形式) $T_{ij} = T(x \to x'), A_{ij} = \min \left\{ 1, \frac{p_j T_{ji}}{n_i T_{ij}} \right\}$

根据细致平衡条件: $\frac{p_j}{p_i} = \frac{W_{ij}}{W_{ii}}$, 有

$$W_{ij} = \begin{cases} T_{ij} & ,if \ p_j T_{ji} > p_i T_{ij} \\ \frac{p_j}{p_i} T_{ji} & ,if \ p_j T_{ji} < p_i T_{ij} \end{cases}$$
 (2)

$$W_{ii} = 1 - \sum_{j \neq i} W_{ij} \tag{3}$$

2.2 权重函数 p(x) = f(x)

设前一个点为 x, 后一个点为 x'有关系:

$$\frac{p_j}{p_i} = \left(\frac{x'}{x}\right)^{\alpha - 1} \exp\left\{-\frac{x' - x}{\beta}\right\} \tag{4}$$

$$\frac{T_{ji}}{T_{ij}} = \exp\left\{\frac{x' - x}{\gamma}\right\} \tag{5}$$

则,记:

$$R_1 = \frac{p_j T_{ji}}{p_i T_{ij}} = \left(\frac{x'}{x}\right)^{\alpha - 1} \exp\left\{-\frac{x' - x}{\beta}\right\} \exp\left\{\frac{x' - x}{\gamma}\right\}$$
 (6)

USTC 2022.11.20

2.3 权重函数 $p(x) = (x - \alpha\beta)^2 f(x)$

设前一个点为 x,后一个点为 x' 有关系:

$$\frac{p_j}{p_i} = \left(\frac{x' - \alpha\beta}{x - \alpha\beta}\right)^2 \left(\frac{x'}{x}\right)^{\alpha - 1} \exp\left\{-\frac{x' - x}{\beta}\right\}$$
 (7)

$$\frac{T_{ji}}{T_{ij}} = \exp\left\{\frac{x' - x}{\gamma}\right\} \tag{8}$$

则,记:

$$R_2 = \frac{p_j T_{ji}}{p_i T_{ij}} = \left(\frac{x' - \alpha \beta}{x - \alpha \beta}\right)^2 \left(\frac{x'}{x}\right)^{\alpha - 1} \exp\left\{-\frac{x' - x}{\beta}\right\} \exp\left\{\frac{x' - x}{\gamma}\right\}$$
(9)

Remark.

若选择 $p(x) = (x - \alpha\beta)^2 f(x)$,则和直接计算原积分没有任何区别,没有任何便利之处,故之后不再讨论这种情况。

2.4 重要抽样法计算积分

于之前的作业讨论过,这里不详细说明。

3 算法模拟

3.1 一些量的标定

在以下的讨论中,确定 $\alpha=2,\beta=1$,调整 γ ,并且调增热化系数 k=0.025,0.1,0.4,讨论热化系数对结果的精度与效率的影响;还进一步调整了初始位置 x_0 的值,验证其对 Markov Chain 没有任何影响。

3.2 p(x) = f(x) 的算法过程

记
$$r = \left(\frac{x'}{x}\right)^{\alpha-1} \exp\left\{-\frac{x'-x}{\beta}\right\} \exp\left\{\frac{x'-x}{\gamma}\right\}$$
,并代人 $x' = x_t, x = x_n$,并设初始值 $x_0 = 1,100,0.01$

- 1. 生成均匀分布的随机数 $\xi \in [0,1]$
- 2. 定义 $x_t = -\ln \xi$, 以便于生成一个遍历 $[0, \infty]$ 的 Markov Chain
- 3. 定义 r 如上式,若 r > 1,则 $x_{n+1} = x_t$;否则,生成均匀随机数 $\xi \in [0,1]$,若 $r > \xi$,则 $x_{n+1} = x_t$,否则 $x_{n+1} = x_n$
- 4. 记录下所有的点 x, 并计数,其总数为 N,则其积分值 $I\cong\sum_{i=m}^N\frac{1}{N-m}(x_i-\alpha\beta)^2$ 。其中 m 代表热化所需要的步数。这里取 $m=k\times N$

3.3 $p(x) = (x - \alpha \beta)^2 f(x)$ 的算法过程

此处不进行讨论、于上面的理论分析部分已经做过说明。

4 程序说明

4.1 主要程序

- MCMC.c Metropolis-Hasting 方法主程序。把所有功能写进了一个文件中的多个函数内,编译时需要手动修改选用的函数!
 - rn() 一个产生随机数的函数,每次调用一次即可获得一个随机数。
 - func(double x1,double x2,double gamma) 判别式 r 的表达式。
 - abs_d(double a) 一个 double 型绝对值函数
 - $mc_accurate()$ 一个用于 Metropolis-Hasting 抽样的函数, γ 值在区间内改变,链长 $N=10^6$, 同时进行精度的计算。
 - $mc_efficient()$ 一个用于 Metropolis-Hasting 抽样的函数, γ 值固定,N 的值取值为 $10,100,...,10^8$,用于效率的计算。
- mc_visual.py 对结果进行可视化操作,该文件为纯作图文件,助教可以不用检查,故此文件不加注释。

4.2 程序结果

- MCMC.exe Metropolis-Hasting 方法主程序。把所有功能写进了一个文件中的多个函数内,编译时需要手动修改!
- ./data 文件夹路径, 里面存放了各种导出的数据
 - **accurate_1.csv** $\gamma \in [0.0001, 1], N = 10^6, k = 0.1, x_0 = 1$ 时的情形,第一列代表 γ 值,第二列代表积分值 I,第三列代表相对误差 δI 。以下几个同。
 - **accurate_2.csv** $\gamma \in [0.0001, 100], N = 10^6, k = 0.1, x_0 = 1 \text{ Hz}$
 - **accurate_3.csv** $\gamma \in [0.1, 10], N = 10^6, k = 0.1, x_0 = 1 \text{ fd}$
 - **accurate_4.csv** $\gamma \in [1, 1.25], N = 10^6, k = 0.1, x_0 = 1 \text{ fb}$
 - **k_04.csv** $\gamma \in [0.0001, 100]$, $N = 10^6$, k = 0.4 , $x_0 = 1$ 时(文件名后加 _s 的为其极值附近的点)
 - **k__0025.csv** $\gamma \in [0.0001, 100]$, $N = 10^6$, k = 0.025 , $x_0 = 1$ 时(文件名后加 _s 的为其极值附近的点)
 - **x_0_100.csv** $\gamma \in [0.0001, 100], N = 10^6, k = 0.1, x_0 = 100$ 时(文件名后加 _s 的为其极值 附近的点)
 - **x_0_1000.csv** $\gamma \in [0.0001, 100], N = 10^6, k = 0.1, x_0 = 1000$ 时(文件名后加 _s 的为其极值附近的点)

efficient.csv

- **accurate__2.csv** $\gamma = 1.0568, N = 10, 100, ... 10^8, k = 0.1, x_0 = 1$ 时,第一列代表 N 的值,第 二列代表积分值 I,第三列代表相对误差 δI 。
- ./pic 文件夹路径, 里面存放了各种由数据转来的图片, 其具体含义请参见报告中的内容。

4.3 其他说明

1. 数据都写于 CSV 文件中

2. 其中 Python 程序用到的库有:

• matplotlib.pyplot:用于作图

• numpy:用于数据处理

• csv:用于读写 CSV 文件

5 结果分析

5.1 分析不同的 γ 值下的计算精度

记绝对误差为 $\Delta I = \left| I \right|_{calcuate} - I_0 \right|$,则有相对误差为 $\delta I = \frac{\Delta I}{I_0}$ 于两个区间中取 γ 的值:

- 1. $\gamma \in [0.0001, 100]$, 其中 γ 取 1000 个值, 且步长均匀。
- 2. 考虑到上一种取值方法下, $\gamma \in [0.0001, 1]$ 中的取值太少,故再于 $\gamma \in [0.0001, 1]$ 中取 1000 个值,且步长均匀。
- 3. 并且于 $\gamma \in [0.1, 10]$ 中取 1000 个值, 且步长均匀。

图 1: $\gamma \in [0.0001, 100]$

图 3: $\gamma \in [0.1, 10]$

发现误差的最小值于 $\log_{10} \gamma \in [0, 0.1]$, $(\gamma \in [1, 1.25])$ 之间取到,故继续做更精细的取值。

图 4: $\gamma \in [1, 1.25]$

发现相对误差随 $\gamma \in [1,1.25]$ 的变化在抖动,并且对比数据点发现,于 $\gamma = 1.0568$ 附近,相对误差在最小值附近,其精度达到最大,误差仅为 0.3%。

分析

下面来分析为什么 δI - $\log_{10} \gamma$ 曲线会呈现这种形状。

- 1. $\log_{10}\gamma\in[-4,-0.25]$ 时,相对误差 δ 为 1,说明 $I\big|_{calcuate}$ 约为 0。
- 2. $\log_{10}\gamma\in[-0.25,0.024]$ 时,相对误差 δ 快速降至接近于 0 的值,说明 $I|_{calcuate}$ 于此区间内迅速的接近于真实值。
- 3. $\log_{10}\gamma\in[0.024,0.25]$ 时,相对误差 δ 开始上升,达到一个极大值,说明 $I\big|_{calcuate}$ 于此区间内又开始远离真实值。

4. $\log_{10} \gamma \in [0.25, 2]$ 时,相对误差 δ 又开始下降,达到一个渐进不变的值,说明 $I|_{calcuate}$ 于此区间内又开始逼近真实值,且最后保持不变。

对比
$$f(x)$$
 的大致图像,与式 $r = \left(\frac{x'}{x}\right)^{\alpha-1} \exp\left\{-\frac{x'-x}{\beta}\right\} \exp\left\{\frac{x'-x}{\gamma}\right\}$ 进行分析

图 5: f(x) 大致图像

发现:

- 1. $\log_{10} \gamma \in [-4, -0.25]$ 时, γ 值较小,以至于 r 中 $\exp\left\{\frac{x'-x}{\gamma}\right\}$ 占主导地位,Markov Chain 逐渐趋于 x 正半轴 $(x \to 100)$,积分值 $I \to 0$ 。
- 2. $\log_{10} \gamma \in [-0.25, 0.024]$ 时, γ 值开始变大,使得以上作用变小,且 $\gamma \to 1 + \varepsilon$ 时, $r \cong \frac{x'}{x} \exp\{-\varepsilon(x'-x)\}$,此时当 x' < x 时,r > 1,Markov Chain 向原点靠近, $I\big|_{calcuate} \to I_0$,积分趋于真实值。
- 3. $\log_{10}\gamma\in[0.024,0.25]$ 时,当 γ 值,恰当的时候,Markov Chain 可能一直趋于峰值,导致误差又增加。
- 4. $\log_{10}\gamma\in[0.25,2]$ 时,当 γ 值过大时,Markov Chain 可能过分趋于原点,导致误差稍下降,而且趋于一个定值。

总结

可见,当 $T(x\to x')=T(x')\sim f(x)$ 时(此处表现为 $\gamma\to\beta+\varepsilon=1+\varepsilon$),Markov Chain 越准确。

下面于 $\gamma = 1.0568$ 处进行计算效率的讨论。

5.2 分析 $\gamma = 1.0568$ 处的计算效率

图 6: $\gamma = 1.0568$ 时的误差 δ - $\log_{10} N$ 关系图

$\log_{10} N$	I	δI
1	2.6062664	0.2326187
2	1.2685470	0.5766069
3	1.2336453	0.6212115
4	1.9402071	0.0308178
5	2.0433992	0.0212387
6	2.0027827	0.0013894
7	2.0138058	0.0068556
8	2.0107101	0.0053265

表 1: $\gamma = 1.0568$ 处 $\log_{10} N$ 与 δI 关系表

发现于 $\gamma=1.0568$ 处,当 $\log_{10}N=4$ 时,误差就已经很小了;当 $\log_{10}N=6$ 时,误差已经最接近最小值了;而当 $\log_{10}N>7$ 时,误差反而变大,这可能是计算机内部的浮点数计算误差所导致的。

为了进行比较,于其他 γ 处任意取了一点,这里取 $\gamma=1.4786$ 。

$\log_{10} N$	I	δI
1	2.6062664	0.2326187
2	1.1859661	0.6863888
3	1.2618274	0.5850028
4	1.4888386	0.3433290
5	1.5359529	0.3021233
6	1.5302814	0.3069492
7	1.5343446	0.3034882
8	1.5355747	0.3024440

表 2: $\gamma = 1.4786$ 处 $\log_{10} N$ 与 δI 关系表

发现当 $\gamma=1.4786$ 处时,当 $\log_{10}N=4$ 时,误差已经几乎保持不变了。

结论

综合以上 2 个 γ 值推测: 在初始点为 $x_0=1$ 处, 链长 $N=10^4$ 量级时, Markov Chain 就 已经达到了稳定的状态,且与 γ 的取值可能无关。

于不同的初始点 x_0 时,Markov Chain 达到稳定值时的链长是不一样的。

讨论不同热化系数 k 对结果的影响 5.3

下面进行不同热化系数 k 对结果的影响 $(m = N \times k)$

图 7: $\gamma \in [0.0001, 100]$, $N = 10^6$, k = 0.025 图 8: $\gamma \in [0.0001, 100]$, $N = 10^6$, k = 0.4

下面分别对它们的最小值部分进行放大观察:

图 9: $\gamma \in [0.9, 1.1], N = 10^6, k = 0.025$

图 10: $\gamma \in [1.6, 2.8], N = 10^6, k = 0.4$

发现, 当 k = 0.025 时,误差最小时 $\gamma = 1.0164$;当 k = 0.4 时,误差最小时 $\gamma \in [1.67, 2.57]$ 可见,但热化系数的选择不同的时候,最佳的 γ 值也是在响应改变的。

5.4 讨论不同初始位置 x_0 对结果的影响

下面进行不同初始位置 x_0 对结果的影响。(此时取热化系数为 k = 0.1,链长 $N = 10^6$)

图 11: $\gamma \in [0.0001, 100]$, $N = 10^6$, $x_0 = 100$ 图 12: $\gamma \in [0.0001, 100]$, $N = 10^6$, $x_0 = 1000$

下面分别对它们的最小值部分进行放大观察:

图 13: $\gamma \in [1, 1.25], N = 10^6, x_0 = 100$ 图 14: $\gamma \in [1.6, 2.5], N = 10^6, x_0 = 1000$

可以发现:

1. 在 $x_0 = 100$ 时,步数相同的情况下,其 γ - $\log_{10} N$ 的图像与 $x_0 = 1$ 类似,且最小值位于 $\gamma = 1.0638$,也与 x_0 类似。

2. 在 $x_0 = 1000$ 时,在步数相同的情况下,其 $\gamma - \log_{10} N$ 的图像形状已经改变,且最小值位置也发生了改变,变为 $\gamma \in [1.7, 2.3]$ 。推测时由于在 $x_0 = 1000$ 的情况下,其步数为 $N = 10^6$ 不能让 Markov Chain 达到一个稳定值。

6 总结

- 1. 取值 $\alpha=2,\beta=1,k=0.1,N=10^6$ 时,最佳的 $\gamma=1.0568$;且对于不同的 γ 值,Markov Chain 到达稳定值所需的步数 $\sim 10^4$ 量级。此处最佳的 $\gamma=1+\varepsilon\sim\beta+\varepsilon$,即要求 $T(x\to x')=T(x')\sim f(x)$,即 T(x') 的形状需要与 f(x) 的形状相似才能使效率更高。
- 2. 对于不同的热化系数或热化步长,最佳的 γ 会发生改变。
- 3. 不同的初始位置 x_0 也会对结果产生影响, 当 x_0 远离峰值的时候, 需要更长链长的 Markov Chain 才能使得其稳定于稳定值附近。
- 4. 通过本次学习对 Metropolis 方法有了更深入的认识。