Discrete-Time Systems

Classification of Systems

- with memory memoryless
- linear nonlinear
- time-invariant time-varying
- causal-noncausal
- stable-unstable

Discrete-Time Systems

Roughly stated,

A system is a transformation

A system is an input-output relationship

$$x[n] \longrightarrow T\{\cdot\} \longrightarrow y[n]$$

SISO system

Ex: A delay system
$$y[n] = x[n-\Delta]$$

$$\underline{\mathbf{Ex}}: y[n] = ax[n] + bx[n-1]$$

In general, $y[n] = \sum_{N_1}^{N_2} a_k x[n-k]$

$$\mathbf{\underline{Ex}}: \ y[n] = y[n-1] + x[n] \qquad \Rightarrow \quad y[n] = \sum_{k=-\infty}^{n} x[k]$$

The input-output relationship

- may be linear or nonlinear
- may change in time (time-varying) or not (time-invariant)
- may involve finite or infinite number of input samples

Classification of Systems

With memory - memoryless

Linear - nonlinear

Time-invariant – time-varying

Causal-noncausal

Stable-unstable

With memory - memoryless

$$y[n] = x[n]$$
, $y[n] = 3x[n]$, $y[n] = 4^{x[n]}$ are memoryless

whereas

$$y[n] = x[n-1],$$

$$y[n] = x[n+1],$$

$$y[n] = x[n-1] + x[n],$$

$$y[n] = y[n-1] + x[n]$$
 have memory

Linearity

A system, $T\{ullet\}$, is said to be linear if it satisfies

a) additivity:
$$T\{x_1[n] + x_2[n]\} = T\{x_1[n]\} + T\{x_2[n]\}$$

b) homogeneity:
$$T\{ax[n]\} = aT\{x[n]\}$$

Ex:
$$y[n] = \sum_{k=-\infty}^{n} x[k]$$
 linear.

$$y[n] = \log |x[n]|$$
 nonlinear

$$y[n] = x[n] + 3$$
 nonlinear

Time-Invariance

Let $y_1[n] = T\{x[n]\}$ and $y_2[n] = T\{x[n-\Delta]\}$ be the outputs of the system to x[n] and $x[n-\Delta]$, respectively.

Then, if $y_2[n] = y_1[n-\Delta]$ the system is said to be time-invariant.

Ex: (compressor/downsampler)
$$y[n] = x[Mn]$$
 M: integer

$$y[n] = x[Mn]$$

Following the above definition
$$y_1[n] = x[Mn]$$
, $y_2[n] = x[Mn - \Delta]$

$$\Rightarrow y_2[n] \neq y_1[n-\Delta] = x[Mn-M\Delta]$$

So, the system is time-varying.

Show that it is linear! (exercise)

Ex: (expander/upsampler)
$$y[n] = \begin{cases} x \left[\frac{n}{L} \right] & n = kL \\ 0 & n \neq kL \end{cases}$$
; k, L : integer $\uparrow L$

$$y_1[n] = \begin{cases} x \left[\frac{n}{L} \right] & n = kL \\ 0 & n \neq kL \end{cases}$$

$$y_{2}[n] = \begin{cases} x \left[\frac{n}{L} - \Delta \right] & n = kL \\ 0 & n \neq kL \end{cases}$$

$$\Rightarrow y_{2}[n] \neq y_{1}[n-\Delta] = \begin{cases} x \left[\frac{n-\Delta}{L} \right] & n-\Delta = kL \\ 0 & n-\Delta \neq kL \end{cases}$$

So, the system is time-varying

Show that it is linear! (exercise)

<u>Causality</u>: A system is said to be causal if the two output signals $y_1[n]$ and $y_2[n]$ (due to two input signals $x_1[n]$ and $x_2[n]$) satisfy

$$y_1[n] = y_2[n] \qquad n \le n_0$$

whenever

$$x_1[n] = x_2[n] \qquad n \le n_0$$

Ex:
$$y[n] = x[n+1] - x[n]$$
 noncausal

$$y[n] = x[n-1] - x[n]$$
 causal

$$y[n] = x[n] + 5$$
 causal

Stability: (BIBO)

A system is said to be BIBO stable if "bounded inputs yield bounded outputs.", i.e.,

$$|x[n]| \le B_x < \infty \quad \Rightarrow \quad |y[n]| \le B_y < \infty$$

for arbitrary finite B_{x} and B_{y} .

$$\underline{\mathbf{Ex}}$$
: $y[n] = \sum_{k=-\infty}^{n} x[k] = y[n-1] + x[n]$ UNSTABLE

For example, for
$$x[n] = u[n]$$
 the output is $y[n] = \begin{cases} n+1 & n \ge 0 \\ 0 & n < 0 \end{cases}$

Bounded input does not yield bounded output.