Machine Learning Project - Predicting Employee Attrition

Business Objective

An IT company has a workforce of around 4,000 employees. Every year around 15% of the employees leave the company and need to be replaced with new hires. The leadership believes that 15% attrition is bad for the company's revenue and future growth. The Company has approached you to build a machine learning model that could predict how likely it is for an employee to leave the company. The model should guide the company to take timely action to retain as many employees as possible.

Problem Statement

You have been assigned the task to build for this company a Logistic Regression Machine Learning model that can predict the probable attrition of the employees. For more details on the intermediate and final outputs expected, refer to the list of deliverables mentioned in the "Model Building" and "Model Validation" sections below.

Data Description

The dataset provided for this activity consists of 30 features where 29 are independent features and 1 is a target variable. Features in this dataset are described as below:

Index	Variable	Meaning
1	Age	Age of the employee
2	Attrition	Whether the employee left in the previous year or not
3	BusinessTravel	How frequently the employees travelled for business purposes in the last year
4	Department	Department in company
5	DistanceFromHome	Distance from home in km
6	Education	Education Level
7	EducationField	Field of education
8	EmployeeCount	Employee count

9	Employee number	Employee number/id
10	EnvironmentSatisfaction	Work Environment Satisfaction Level
11	Gender	Gender of employee
12	JobInvolvement	Job Involvement Level
13	JobLevel	Job level at company on a scale of 1 to 5
14	JobRole	Name of job role in company
15	JobSatisfaction	Job Satisfaction Level
16	MaritalStatus	Marital status of the employee
17	MonthlyIncome	Monthly income in rupees per month
18	NumCompaniesWorked	Total number of companies the employee has worked for
19	Over18	Whether the employee is above 18 years of age or not
20	PercentSalaryHike	Percent salary hike for last year
21	PerformanceRating	Performance rating for last year
22	RelationshipSatisfaction	Relationship satisfaction level
23	StandardHours	Standard hours of work for the employee
24	StockOptionLevel	Stock option level of the employee
25	TotalWorkingYears	Total number of years the employee has worked so far
26	TrainingTimesLastYear	Number of times training was conducted for this employee last year
27	WorkLifeBalance	Work life balance level
28	YearsAtCompany	Total number of years spent at the company by the employee
29	YearsSinceLastPromotion	Number of years since last promotion
30	YearsWithCurrManager	Number of years under current manager

Model Building

- Show Bi-variate plots (scatter/bar) of all meaningful variables with the dependent variable
- Present your final model results (show what's applicable from the below list):
 - List of variables that came with significant
 - Beta coefficients for the respective variables along with, Wald-chi sqr and p-values
- Summarize the steps followed to finalize your model consisting of the below steps (as applicable)
 - Sampling
 - Feature Engineering
 - Performance comparison between Train and Test
 - Use of Cross-validation
- While developing the model, you would have gotten a few candidate models which
 were not as good as the final model (in terms of performance, multicollinearity, or
 statistical stability etc.). Show a few of these candidate models and explain their
 shortcomings
- Show what kind of feature engineering did you apply in your project and why (include in your results what's applicable from below)
 - Dummy variables
 - Label encoding
 - Any bin-based variable created -what was the significance/rationale of binning
 - Any new derived variables created using the raw variables For e.g., Ratio based, difference based, % difference based / Rate of change, etc.
- If the provided dataset is unbalanced, what steps did you take to balance it. Also, explain the technique used to oversample/under-sample the dataset?
- Demonstrate Live how your model will assign class/ or compute the probability for a new data point?
- Provide your understanding of the next steps that the client/ end-user needs to follow to deploy your model at their end. Think about the below lines:
 - Any technical/infrastructure requirements that the client needs to meet?
 - What files do you need to provide them?
 - What kind of data cleaning and preprocessing would the client need to do before using the model?
 - How will the client use your model on new data?
 - How will the client know that the model is performing well on new data points?

Model Validation

Show your model's performance on the below metrics (on both train and test samples)

- Confusion Matrix
- Classification Report

- Concordance test results (This coefficient is used to assess the agreement between estimated values and correct values)
- Rank ordering test results (Rank ordering is an important measure of model performance and its ability to separate out the event from the non-events)
- For the given business problem which of the below metric(s) did you choose and why? Include in your final output any additional activity performed (and its results) to get to the best values of the below metrics (F1-Score, AUC-ROC curve, AUC-ROC Accuracy).
 - Accuracy
 - Precision
 - Recall