

Permutasi dan Kombinasi

Permutasi

8 orang mengikuti final lomba marathon

Kemungkinan juara 1, 2, dan 3

Juara1 Juara2 Juara3

Juara1 Juara2 Juara3

Juara1 Juara2 Juara3

Juara1 Juara2 Juara3

Juara1 Juara2 Juara3

(masih terdapat sejumlah kemungkinan lainnya)

Permutasi

Menghitung banyaknya cara pengaturan objek tertentu dengan memperhatikan urutannya.

Definisi: Sebuah **permutasi** semua unsur dari sebuah himpunan berukuran *n* adalah sebuah urutan linier dari *n* unsur tersebut, disebut pula dengan **permutasi dari** *n* unsur.

Definisi: **Permutasi** *r* **unsur** dipilih dari sebuah himpunan dengan *n* unsur disebut permutasi-*r* dari *n* unsur.

Permutasi

Misal, $S = \{a, b, c\}$

- Salah satu contoh permutasi dari S adalah (a, b, c).
 Perhatikan bahwa (a, b, c) berbeda dengan (c, b, a).
- Kumpulan permutasi-2 dari S adalah susunan terurut (a, b), (b, a), (a, c), (c, a), (b, c), (c, b).

Banyaknya permutasi dari himpunan dengan n elemen dinyatakan dengan P(n)

Banyaknya permutasi-r dari himpunan dengan n elemen dinyatakan dengan P(n, r)

$$P(n) = P(n, n)$$

Teorema dan Corrolary Terkait Permutasi

Teorema 1: Jika n dan r adalah bilangan bulat positif di mana $1 \le r \le n$, maka

$$P(n, r) = n(n - 1)(n - 2) \cdots (n - r + 1)$$

Pembuktian: Menggunakan aturan perkalian. Elemen pertama dapat dipilih dengan n cara. Elemen kedua dalam n-1 cara, dan selanjutnya sampai (n-(r-1)) cara untuk memilih elemen terakhir.

Catatan: P(n,0) = 1, terdapat satu cara untuk memilih elemen kosong.

Corollary 1:

Jika n and r adalah bilangan bulat positif di mana $1 \le r \le n$, maka

$$P(n,r) = \frac{n!}{(n-r)!}$$

Latihan (1)

Ada berapa kemungkinan komposisi juara 1, 2, dan 3 final lomba marathon yang diikuti oleh 8 peserta?

Solusi:

$$P(5,3) = 8 \cdot 7 \cdot 6 = 336$$
 cara

Latihan (2)

Seorang pedagang keliling harus mengunjungi 8 kota. Dia harus mulai dari sebuah kota tertentu. Setelah itu, dia dapat mengunjungi 7 kota yang lain semaunya. Ada berapa banyak jalur yang dapat dibentuk?

Solusi:

Kota pertama sudah pasti.

Perlu ditentukan urutan pengunjungan 7 kota lainnya.

Ada P(7) = 7! = 5040 cara yang dapat dipilih oleh pedagang keliling.

Latihan (3)

Berapa banyak permutasi ABCDEFGH yang mengandung substring ABC?

Solusi:

Permasalahan di atas dapat dikerjakan dengan permutasi 6 objek, *ABC*, *D*, *E*, *F*, *G*, and *H*.

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 720$$

Kombinasi

Terkadang, cara penyusunan objek tidak perlu memperhatikan urutan.

Definisi:

Kombinasi dari suatu himpunan objek adalah pengaturan objek-objek pada himpunan dengan tidak memperhatikan urutan objek-objek tersebut.

Kombinasi-*r* adalah pengaturan *r* buah objek dari suatu himpunan dengan **tidak memperhatikan urutan** *r* buah objek tersebut.

Kombinasi

Misal, $S = \{1, 2, 3, 4\}$

{1, 3, 4} adalah sebuah contoh **kombinasi-3** dari himpunan S. {1, 3, 4} dan {4, 3, 1} adalah contoh **kombinasi-3 yang sama**.

Kombinasi-r dari himpunan dengan n elemen dinotasikan dengan:

$$C(n, r)$$
 atau $\binom{n}{r}$

 $\binom{n}{r}$ juga disebut sebagai **koefisien binomial** dan dibaca: "n diambil dari r".

Teorema dan Corrolary Terkait Kombinasi

Teorema 2

Untuk $0 \le r \le n$, maka:

$$C(n, r) = \frac{P(n,r)}{P(r,r)} = \frac{n!}{(n-r)!r!}$$

Pembuktian:

Dengan memperhatikan urutannya, terdapat *P*(n,r) cara untuk memilih *r* objek dari *n* objek.

Seandainya syarat "memperhatikan urutan" dihapuskan, berdasarkan aturan pembagian, ada P(n,r)/r! = P(n,r)/P(r,r) cara untuk memilih r objek dari n objek.

Karena **setiap kombinasi-***r* dari himpunan berkorespondensi dengan **P(r, r) permutasi-***r*.

Contoh: kombinasi {1,3} berkorespondensi dengan permutasi-2: {1,3} dan {3, 1}.

Teorema dan Corrolary Terkait Kombinasi

Corollary 2:

Jika n dan r adalah bilangan bulat non negatif di mana $r \le n$, maka

$$C(n, r) = C(n, n - r).$$

Pembuktian:

Dari teorema 2, dapat dijabarkan

$$C(n,r) = \frac{n!}{(n-r)!r!}$$

dan

$$C(n, n-r) = \frac{n!}{(n-r)![n-(n-r)]!} = \frac{n!}{(n-r)!r!}$$
.

maka, C(n, r) = C(n, n - r).

Latihan (4)

Ada berapa cara untuk memilih 5 pemain dari 10 anggota tim bulutangkis RW 03 sebagai perwakilan di perlombaan bulutangkis tingkat desa?

Solusi:

$$C(10,5) = \frac{10!}{5!5!} = 252.$$

Latihan (5)

Misal, ada 6 staf akademik dari FMIPA dan 5 staf akademik dari FASILKOM. Ada berapa banyak cara untuk memilih sebuah komite untuk menyusun kurikulum kuliah matematika diskrit, jika komite terdiri dari 3 staf dari FMIPA dan 4 staf dari FASILKOM?

Solusi:

Berdasarkan aturan perkalian, jawaban soal adalah perkalian kombinasi-3 himpunan staf FMIPA dan kombinasi-4 himpunan staf FASILKOM:

C(6, 3). C(5, 4) =
$$\frac{6!}{3!3!} \cdot \frac{5!}{4!1!}$$
 = 100 cara.

Apa yang sudah dipelajari

Permutasi Kombinasi

Materi selanjutnya: Variasi Permutasi Kombinasi

Referensi

- Kenneth H. Rosen (2012) "Discrete Mathematics and Its Applications 7th Edition"
- Alfan Farizki Wicaksono (2013) "Slide MD1-12-permutasi-kombinasi", Fasilkom UI