INE5602 – Introdução à Informática

Modelos abstratos e computabilidade

Aula 1: Definições e exemplos

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

Sumário

- Definições
- Histórico
- Computabilidade
- Considerações finais

DEFINIÇÕES

- Programa
- Máquina
- Computação
- Função computada
- Algoritmo

Programa

- Conjunto estruturado de instruções
 - Composição de instruções
- Capacitam uma máquina a aplicar sucessivamente:
 - Operações básicas
 - Testes
- Possuem uma estrutura de controle

- Estruturação
 - Monolítica
 - 1. Se T vá para 2 senão vá para 3
 - 2. Faça F e vá para 1
 - Iterativa
 - Recursiva

- Estruturação
 - Monolítica
 - Iterativa
 - Enquanto T faça F
 - Recursiva

- Estruturação
 - Monolítica
 - Iterativa
 - Recursiva
 - P é R onde
 - R def (se T então F;R senão v)
 - onde v representa a operação vazia

Máquina

- Dá significado aos identificadores das operações e testes
 - Operações: levam a uma transformação na memória
 - Testes: possuem uma função verdade
- Nem todo identificador precisa ser definido em uma máquina
- Existe apenas uma função associada a cada identificador (não ambiguidade)

Computação

- Histórico das instruções de um programa executadas em uma máquina
- Exemplo
 - Máquina de dois registradores
 - testa se é zero; subtrai 1; adiciona 1
 - 1. Se *a_zero* então vá para 9, senão vá para 2
 - 2. Faça *subtrai_a* vá para 3
 - 3. Faça *adiciona_b* vá para 1

 Computação finita em máquina de dois registradores, considerando a=3 e b=0:

```
(1, (3,0))
```

Função computada

- Computação de um programa associada a uma entrada e uma saída
- Adicionalmente, espera-se que a resposta (saída) seja gerada em um tempo finito

Algoritmo

- Noção intuitiva
 - Solução de um problema
 - Descrito de forma finita e não-ambígua
 - Consiste de passos discretos
 - Executável em tempo finito
- Usa recursos "tão grandes quanto necessários"

HISTÓRICO

- Grandes nomes
 - Hilbert
 - Gödel
 - Church
 - Turing
 - Post
 - Markov

- Hilbert, David
 - Entscheidungsproblem (1928)
 - Procedimento para demonstrar se uma dada fórmula no cálculo de predicados de primeira ordem era válida ou não, em tempo finito
 - Encontrar um conjunto completo e consistente de axiomas para toda a matemática

• Gödel, Kurt

- Teorema da Não-Completude (1931)
 - Demonstrou que a mecanização do processo de provas não tem solução
 - A consistência dos axiomas não pode ser provada usando o próprio sistema formal
 - Uso de codificação de primos (número de Gödel), de forma que as formulações axiomáticas eram codificadas em números naturais

- Church, Alonzo
 - Cálculo Lambda
 - $f(x) = x^2+4 -> \lambda x. x^2+4$
 - função tal que, para um argumento arbitrário x resulta em x²+4
 - Mostrou que o problema de Hilbert não tem solução (1936)
 - Hipótese de Church

- Turing, Alan
 - Máquina de Turing
 - Modelo elementar que imita o comportamento de um computador
 - Fita com alfabeto finito
 - Leitura, escrita, e movimentos laterais
 - Número de estados finitos

- Post, Emil
 - Máquina de Post
 - Uso de uma *fila* para armazenar dados
 - Alfabeto finito
 - Leitura destrutiva
 - Elementos
 - Partida
 - Parada: uma de aceitação (aceita) e outra de rejeição (rejeita)
 - Desvio ou teste múltiplos caminhos
 - Atribuição

Markov, Andrey Jr.

- Algoritmo de Markov
 - Regras de substituição em ordem
 - Finaliza quando não houver regra
 - Exemplo:

Regras:

Cadeia de entrada:

"101"

Execução:

- 1. "0|01"
- 2. "00||1"
- 3. "00||0|"
- 4. "00|0|||"
- 5. "000||||"
- 6. "00||||"
- 7. "0||||"
- 8. "|||||

COMPUTABILIDADE

- Computabilidade e máquinas universais
 - Hipótese de Church
 - Máquinas universais
 - Como tudo se conecta
 - Exemplos do que não é computável
 - Pe NP

Hipótese de Church

- "A capacidade de computação representada pela Máquina de Turing é o limite máximo que pode ser atingido por qualquer dispositivo de computação"
- Qualquer função computável pode ser processada por uma Máquina de Turing
- Ou seja, existe um algoritmo expresso na forma de Máquina de Turing capaz de processar a função

Máquina universal

- Possível representar qualquer algoritmo como um programa na máquina
- Quaisquer recursos adicionais não a tornam mais poderosa
- Computacionalmente equivalente a outras máquinas

- Máquinas universais
 - Cálculo Lambda
 - Funções Recursivas
 - Máquina de Turing
 - Sistema Canônico de Post
 - Algoritmo de Markov

O que não é computável

- Equivalência de compiladores
 - Não existe algoritmo genérico que sempre pare capaz de comparar quaisquer dois compiladores (de linguagens livres do contexto como PASCAL), verificando se são equivalentes (se reconhecem a mesma linguagem);
- Detector universal de loops
 - Dados um programa e uma entrada quaisquer, não existe algoritmo genérico capaz de verificar se o programa vai parar ou não para a entrada. Este problema é universalmente conhecido como o *Problema* da *Parada*.

- P versus NP
 - -P = NP ou P != NP?
 - Problema do Prêmio Millenium
 - Não solucionado
 - Vale \$1,000,000

P versus NP

- -P = NP ou P != NP?
- Suponha que as soluções para um problema possam ser verificadas rapidamente. Então, suas soluções podem ser calculadas rapidamente também? A noção teórica do termo "rapidamente" usado aqui significa um algoritmo que executa em tempo polinomial. A classe geral dos problemas para os quais algum algoritmo pode fornecer uma resposta em tempo polinomial é chamada de "classe P" ou apenas "P". Para alguns problemas, não há nenhuma maneira conhecida para encontrar uma resposta rapidamente, mas se houver informação que mostre qual é a resposta, esta pode ser verificada rapidamente. A classe de problemas em que uma reposta pode ser verificada em tempo polinomial é chamada NP.

CONSIDERAÇÕES FINAIS

Considerações finais

- Definições
- Grandes nomes
- O que é computável

Considerações finais

- Bibliografia
 - T. A. Diverio e P. B. Menezes. Teoria da Computação: Máquinas Universais e Computabilidade. 3ª ed. 2011.
 - http://books.google.com.br/books?id=459EInm oh2cC
- Próxima aula
 - Máquinas de estados
 - Tragam papel e caneta

INE5602 – Introdução à Informática

Modelos abstratos e computabilidade

Aula 1: Definições e exemplos

Prof. Laércio Lima Pilla laercio.pilla@ufsc.br

