1. (a)
$$x_{1}=1-2x_{2}$$
, so $f(x_{1},x_{2})=f(x_{2})=x_{1}^{2}-2x_{2}-\frac{1}{2}$
 $x_{1}^{*}=1$, so $x_{1}^{*}=-1$

(b)
$$\nabla^2 f(x_1, x_2) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \geq 0, 50 f(x_1, x_2) \text{ is convex.}$$

$$F(\chi, \chi, \chi)^2 = f(\chi, \chi) + \chi (\chi + 2\chi - 1)$$

 $\nabla F(\chi, \chi, \chi) = \hat{D}$, i.e.

$$\begin{cases} x_{1} + x_{1} - | + x_{1} = 0 \\ x_{1} + 2x_{1} - 3 + 2x_{1} = 0 \end{cases} \qquad \begin{cases} x_{1} = -1 \\ x_{1} + 2x_{1} - | = 0 \end{cases} \qquad \begin{cases} x_{1} = -1 \\ x_{2} = 1 \end{cases}$$

$$50 \quad x_{1}^{*} = -1, \quad x_{1}^{*} = 1$$

2. (a)
$$\begin{cases} \nabla f(x) + A^{T}\lambda = Qx + g + A^{T}\lambda = 0 & 0 \\ Ax - b = 0 & 2 \end{cases}$$

(b) $Q \neq 0$, so Q is invertible and $Q^{-} \neq 0$. romk A = k, so $\forall x \neq 0$, $A^{T}x \neq 0$ Thus, $\forall x \neq 0$, $x^{T}A Q^{T}A^{T}x = (A^{T}x)^{T} Q^{T}(A^{T}x) > 0$ i.e. $AQ^{-}A^{T} > 0$, so $AQ^{-}A^{T}$ is invertible.

From (D: $\chi^{2} - Q^{-1}(g + A^{T}\lambda)$ Plug it into (2): $\lambda^{2} - (AQ^{-1}A^{T})^{-1}(AQ^{-1}g + b)$ Thus $\int \chi^{*2} = Q^{-1}[A^{T}(AQ^{-1}A^{T})^{-1}(AQ^{-1}g + b) - g]$ $\lambda^{*2} - (AQ^{-1}A^{T})^{-1}(AQ^{-1}g + b)$

(c) Q = I, $Q = \chi_0$ $SO = \chi^* = A^T (AA^T)^{-1} (A\chi_0 + b) - \chi_0$ When $\chi_0 = \overline{D}$, $\chi^* = A^T (AA^T)^{-1} b$ (d) $\chi^* = w (w^Tw)^{-1} (w^T\chi_0 + b) - \chi_0$ $dist(\chi_0, p) = ||\chi_0 - \chi^*|| = \frac{|w^T\chi_0 + b|}{||w||^2} \cdot ||w||^2$

Or by Lagrange condition:

$$\begin{array}{l}
(2\lambda x_1 + x_1 = 0) \\
(x_1 + 8\lambda x_1 = 0) \\
(x_1^2 + 4x_1^2 - | = 0)
\end{array}$$
Let $g(x) = x_1^2 + 4x_1^2 - |$. Then $\nabla g(x_0) = (2x_1, 8x_1)^T \neq D$

so $g(x_0)$ has no critical points.

$$\lambda^* = \pm \frac{1}{4} \cdot \lambda^* = \pm \frac{1}$$

4. (a) $g(x) = ||x||^2 - ||has no critical points.$ The Lagrange condition is $\begin{cases}
Ax + 2\mu x = 0 & 0 \\
||x||^2 = || & 2
\end{cases}$

MER, so from D we know that x^* is an eigenvector of A. Assume x^* is associated to λ_i . Then the optimal value $x^*Ax^* = \lambda_i \|x^*\|^2 = \lambda_i$, so λ_i is the smallest eigenvalue λ_i .

(b) (i) The lagrange condition is

$$\begin{cases} A - x + 2 M_0 x + M_1 N_1 = 0 & 0 \\ 1 |x|^2 = 1 & 2 \\ V_1 x = 0 & 3 \end{cases}$$

Critical points satisfy that $x//J_1$, $x \ne \overline{D}$, $J_1 \ne \overline{D}$, so there is no critical point.

From 1 we know that G=-ZMo, C1=-M1.

(ii) $U_{1}^{T}(Ax + 2\mu_{0}x + \mu_{1}u)$ = $(Av_{1})^{T}x + \mu_{1}||v_{1}||^{2} = \lambda_{1}u_{1}^{T}x + \mu_{1}||v_{1}||^{2}$ = $\mu_{1}||u_{1}||^{2} = 0$

||v||12 ≠0, 50 M=0, i.e. C1=0

(iii) $A_x = C_0 x$, so x^* is an eigenvector of A. $v_i^T x = 0$, so x^* is associated to λ_i (i = 1) The optimal value $x^{*T} A_i x^* = \lambda_i ||x^*||^2 = \lambda_i$, so λ_i is the smallest possible eigenvalue λ_i .