Comparer la force des acides et des bases

I. Constante d'acidité associée à un couple acide/base

A) Définition

Définition : La constante d'acidité K_A est la constante d'équilibre de la réaction qui modélise la transformation entre un acide AH et de l'eau H_2O .

La réaction est :

$$AH_{(aq)} + H_2O_{(l)} \rightleftharpoons A_{(aq)}^- + H_3O_{(aq)}^+$$

On a donc:

$$K_A = \frac{[\mathbf{A}^-]_{\text{eq}} \times [\mathbf{H}_3 \mathbf{O}^+]_{\text{eq}}}{[\mathbf{A}\mathbf{H}]_{\text{eq}} \times c^0}$$

Nous avons ainsi le pK_A d'un couple acide/base qui est défini par :

$$pK_A = -\log(K_A)$$

On en déduit :

$$K_A = 10^{-pK_A}$$

B) Estimer le K_A d'un acide d'une mesure de pH

Nous avons le tableau d'avancement suivant :

Avancement	$AH_{(aq)}$	+	$\mathrm{H}_{2}\mathrm{O}_{(l)}$	\Rightarrow	$A_{(aq)}^-$	+	$H_3O^+_{(aq)}$
État initial	$\mathbf{n}_0 = c_0 \times v$		Exces		0		0
État d'équilibre	$c_0 - x_{eq}$		Exces		x_{eq}		x_{eq}

On a alors :

$$[H_3O^+]_{eq} = [A^-]_{eq} = \frac{x_{eq}}{V}$$
$$[AH]_{eq} = \frac{c_i \times V - x_{eq}}{V} = c_i - \frac{x_{eq}}{V} = c_i - [H_3O^+]_{eq}$$

On en déduit :

$$K_A = \frac{[\mathrm{A}^-]_{\mathrm{eq}}[\mathrm{H}_3\mathrm{O}^+]_{\mathrm{eq}}}{[\mathrm{AH}]_{\mathrm{eq}}} = \frac{[\mathrm{H}_3\mathrm{O}^+]c_2}{(c_1 - [\mathrm{H}_3\mathrm{O}^+])_{\mathrm{eq}}} = \frac{(10^{-\mathrm{pH}})^2}{(c_1 - 10^{-\mathrm{pH}})}$$

II - Le produit ionique de l'eau

A) Autoprotolyse de l'eau

Définition : L'eau H_2O est une espèce amphotère. Ainsi, une réaction acidebase se produit entre deux molécules d'eau H_2O . On appelle *autoprotolyse de l'eau* cette réaction telle que :

$$2H_2O(l) \rightleftharpoons H_3O^+(aq) + HO^-(aq)$$

On en déduit grâce à cette réaction que l'eau pure contient des ions oxonium ${\rm H_3O^+}$ et des ions hydroxyde ${\rm HO^-}$ de concentration égale :

$$[H_3O^+]_{eq} = [HO^-]_{eq} = 1.0 \times 10^{-7} \text{ mol} \cdot L^{-1}$$

B) Le produit ionique de l'eau

Définition : Le produit ionique de l'eau K_e correspond à la constante d'équilibre associée à la réaction d'autoprotolyse de l'eau.

On a donc à 25° C ou 298,15 K :

$$K_e = [{\rm H_3O}^+]_{\rm eq} \times [{\rm HO}^-]_{\rm eq} = 1.0 \times 10^{-14}$$

D'où p
$$K_e = -\log(K_e) = 14, 0.$$

Remarque : L'autoprotolyse de l'eau se produit dans toutes les solutions aqueuses. Ainsi, toutes solutions aqueuses contiennent des ions H₃O⁺ et des ions HO⁻. On peut alors déterminer la concentration d'ion HO⁻ grâce au Ke et au pH.

D'où:

$$[\mathrm{HO}^{-}] = \frac{K_e}{10^{-\mathrm{pH}}}$$

III. Force des acides et des bases

A - Les acides

1°. Les acides forts

Définition : Un acide fort est un acide qui réagit totalement avec l'eau. On a alors

$$AH_{(aq)} + H_2O_{(\ell)} \Rightarrow A_{(aq)}^- + H_3O_{(aq)}^+$$

$2\degree$. Les acides faibles

Définition : Un acide faible est un acide qui réagit partiellement avec l'eau. On a alors

$$AH_{(aq)} + H_2O_{(\ell)} \rightleftharpoons A_{(aq)}^- + H_3O_{(aq)}^+$$

$3\,^{\circ}$. Acides forts et faibles à connaı̂tre

- Acides forts:
- L'acide chlorhydrique (HCl)
- L'acide sulfurique (H₂SO₄)
- L'acide nitrique (HNO₃)
- Acides faibles:
- Le vinaigre / acide acétique / acide éthanoïque $(C_2H_4O_2)$
- Acide lactique / acide hydroxypropanoïque (C₃H₆O₃)

B) Les bases

1°) Les bases fortes

Définition : Une base forte est une base qui réagit totalement avec l'eau. On a alors :

$$B_{(aq)} + H_2 O_{(l)} \to B H^+_{(aq)} + H O^-_{(aq)}$$

2°) Les bases faibles

Définition : Une base faible est une base qui réagit partiellement avec l'eau. On a alors :

$$B_{(aq)} + H_2O_{(l)} \rightleftharpoons BH_{(aq)}^+ + HO_{(aq)}^-$$

3°) Bases fortes et faibles à connaître

- Bases fortes:
 - La soude / hydroxyde de sodium (NaOH)
- Base faible:
 - L'ammoniaque (NH₃) qui a pour couple NH⁺/NH₃

C) Déterminer la force d'une base

1°) Pour les acides

Si un acide est fort alors le pH de la solution après la réaction entre l'acide et l'eau, vaut $-\log\left(\frac{[AH]_i}{c^0}\right)$.

Si :
$$pH < \log\left(\frac{[AH]_i}{c^0}\right)$$
 alors l'acide est faible.

2°) Pour les bases

On peut déterminer le pH d'une solution d'une base forte.

On a : $pH = 14 + \log\left(\frac{[B]_i}{c^0}\right)$.

Si : $pH < 14 + \log\left(\frac{[B]_i}{c^0}\right)$ alors la base est faible.

D) Échelle des pK_A

Un acide se caractérise par le facilité qu'il a à céder un ion hydrogène
H+ à l'eau.

Ainsi plus il cède facilement un ion hydrogène H+, plus l'acide est qualifié de fort, donc plus le K_A du couple acide/base est élevé plus l'acide est fort. Et plus le pK_A du même couple est petit plus l'acide est fort.

— Une base varie de manière inverse. Ainsi, plus elle est forte, plus le K_A est faible et plus le pK_A est élevé plus la base est forte.

IV) Diagramme de prédominance et de distribution d'un couple acide/base.

A) Relation entre le pH et le pK_A d'un couple acide/base.

Nous avons la relation suivante :

$$pH = pK_A + \log\left(\frac{[A^-]_{eq}}{[AH]_{eq}}\right)$$

B) Domaine de prédominance d'un couple acide/base

Pour un couple acide/base, lorsque le pH de la solution est :

- Si pH < p K_A alors la forme acide prédomine.
- Si pH > p K_A alors la forme basique prédomine.
- Si pH = p K_A alors aucune forme prédomine, $[AH] = [A^-]$.

FIGURE 1 – diagramme de prédominace

C. Diagramme de distribution des espèces d'un couple acide/base

Le diagramme de distribution des espèces du couple acide/base AH/A^- représente l'évolution des fractions de la forme acide [AH] et de la forme basique $[A^-]$ en fonction du pH de la solution. La valeur du pK_a du couple acide/base correspond à l'abscisse du point d'intersection des deux courbes représentant les proportions des deux formes.

D. Indicateur coloré acido-basique

Définition : Un indicateur coloré acido-basique est un couple acide/base dont les formes acide et basique notées InH/In⁻ présentent des couleurs différentes en solution aqueuse.

Ainsi, un indicateur coloré acido-basique permet de déterminer la zone de virage (l'intervalle de pH vérifié pK_a $-1 \le pH \le pK_a + 1$).

V. Les solutions tampons

Définition : Une solution tampon est une solution qui a la capacité de maintenir le pH du milieu réactionnel ou biologique presque constant dans le cas d'une dilution modérée ou d'un ajout modéré d'un acide ou d'une base.

Pour faire une solution tampon, il faut faire un mélange presque équimolaire d'un acide faible [AH]_eq et de sa base conjuguée [A $^-$]_eq, i.e., avec des concentrations en quantité de matière égale [AH]_eq \approx [A $^-$]_eq.

On a alors :

$$\mathrm{pH} = \mathrm{pK}_a + \log\left(\frac{[\mathbf{A}^-] _ eq}{[\mathbf{AH}] _ eq}\right) \approx \mathrm{pK}_a + \log(1) \approx \mathrm{pK}_a.$$