Vse rešitve so podane na strani 2–6. Maksimalno število točk, ki jih študent/ka lahko dobi, je 110.

Za točnost nalog, prosim, poglej naslednjo tabelo:

Študent/ka	1. (100%=25t)	2. (100%=25t)	3. (100%=25t)	4. (100%=25t)	Bonus točke (vaje)	Bonus točke (teorija)	Število točk
Andrej Erjavec	80%	30%	90%	30%	4,70	0,00	62,20

Za pristop na ustni izpit je potrebno v vsoti imeti vsaj 50 točk.

Če želite, da ogledate vse svoje rešitve in da se pogovarjamo o tem, prosim, mi pišite na e-mail: safet.penjic@iam.upr.si

(bomo se dogovorili za Zoom srečanje, dan in uro)

Ustni zagovori bodo v sredo, 10.2. od 9h dalje. Tisti, ki nameravate priti na ustni izpit, obvestite o tem prof. Bojana Kuzma na njegov e-mail: bojan.kuzma@famnit.upr.si

Analiza I, izpit - praktični del, 02.02.2021.

- $\mathbf{1}$. Predpostavimo, da ima množica A natanko dva elementa, množica B pa natanko tri elemente.
- (a) Podaj primer funkcije $f: A \to B$. Podaj definicijo inverzne funkcije. Za dani primer, če obstaja, poišči inverzno funkcijo f^{-1} , ali razloži, zakaj funkcija $f^{-1}: B \to A$ ne obstaja.
- (b) Podaj primer funkcije $g: B \to A$. Za dani primer, če obstaja, poišči inverzno funkcijo g^{-1} , ali razloži, zakaj funkcija $g^{-1}: A \to B$ ne obstaja.
- (c) Koliko funkcij obstaja, ki slikajo iz A v B? Koliko od njih je surjektivnih? Koliko od njih je injektivnih preslikav? Koliko od njih je bijektivnih preslikav?

I metoda

Ideja. Naj bo $A = \{1, 2\}$ in $B = \{a, b, c\}$.

(a) Primer funkcije $f:A\to B$ je f(1)=a in f(2)=b. To funkcijo lahko napišemo s pomočjo tabele

x	1	2
f(x)	a	b

ali s pomočjo Vennovega diagrama

(b) Primer funkcije $g: B \to A$ je g(a) = 1, g(b) = 2, g(c) = 1. To funkcijo lahko napišemo s pomočjo tabele:

x	a	b	c
g(x)	1	2	1

(c) Vse funkcije iz $A \vee B$ so

x	1	2
$f_1(x)$	a	a

x	1	2
$f_3(x)$	b	a

x	1	2
$f_5(x)$	a	c

x	1	2
$f_2(x)$	a	b

x	1	2
$f_4(x)$	b	\overline{b}

x	1	2
$f_6(x)$	c	a

x	1	2
$f_7(x)$	c	c

x	1	2
$f_8(x)$	b	c

x	1	2
$f_9(x)$	c	b

Rešitev. (a) Funkcija $h: B \to A$ je inverzna funkcija funkcije $f: A \to B$ če in samo če $(f \circ h)(y) = y$ in $(h \circ f)(x) = x$, za vsak $x \in A$ in $y \in B$.

Primer funkcije $f: A \to B$ je f(1) = a in f(2) = b. Za inverz h funkcije f mora da velja h(f(1)) = 1 in h(f(2)) = 2 tj. h(a) = 1 in h(b) = 2. Za h(c) imamo dve možnosti: 1° h(c) = 1 2° h(c) = 2. 1° Naj bo h(c) = 1. Zdaj so f in h definisani takole:

x	1	2
f(x)	a	b

x	a	b	c
h(x)	1	2	1

Opazimo da je $(f \circ h)(c) = f(h(c)) = f(1) = a \neq c$. V prvom primeru h ni inverz funkcije f. 2° Naj bo h(c) = 2. Zdaj so f in h definisani takole:

x	1	2
f(x)	a	b

x	a	b	c
h(x)	1	2	2

Opazimo da je $(f \circ h)(c) = f(h(c)) = f(2) = b \neq c$. V drugom primeru tudi h ni inverz funkcije f.

Lahko sklepamo: Funkcija f nima inverza.

- (b) Vemo da je funkcija $h: B \to A$ bijekcija če in samo če obstaja inverzna funkcija $h^{-1}: A \to B$. Primer funkcije $g: B \to A$ je g(a) = 1, g(b) = 2, g(c) = 1. Ker g ni bijekcija (g ni injektivna), to lahko sklepamo da g^{-1} ne obstaja.
- (c) Obstaja 9 funkcij ki slikajo iz A v B. Nobena of njih ni surjektivna, kar pomeni da nobena tudi ni bijektivna. Injektivne funkcije so f_2 , f_3 , f_5 , f_6 , f_8 in f_9 , ker za vsako od njih velja $x \neq y \implies f(x) \neq f(y)$.

II metoda

Ideja. (a) Naj bosta $A = \{1, 2\}$ in $B = \{1, 2, 3\}$. Potem je f(x) = x primer preslikave iz $A \vee B$. Ker f ni surjektivna to f ni bijektivna, kar implicira da f^{-1} ne obstaja...

. . .

III metoda

Ideja. (b) Naj bosta $B = \{-2, 1, 2\}$ in $A = \{1, 4\}$. Potem je $g(x) = x^2$ primer preslikave iz B v A. Ker g ni injektivna to g ni bijektivna, kar implicira da g^{-1} ne obstaja...

. . .

2. Pokaži, da je število $37^{500} - 37^{100}$ deljivo z 10.

I metoda

Ideja. Uporabimo matematično indukcijo in pokažimo da je $n^5 - n$ deljivo z 10 za vsako naravno število $n \in \mathbb{N}$. Če namesto n vstavimo naravno število 37^100 , bomo dobili našo trditev.

Rešitev. Pokažimo da je $n^5 - n$ deljivo z 10.

Baza indukcije

Če je n = 1 potem $1^5 - 1 = 0$, in trditev sledi. Če je n = 2 potem $2^5 - 2 = 30$, in trditev sled. Trditev je resnična za n = 1 in 2.

Korak indukcije

Pretpostavimo da je število $n^5 - n$ deljivo z 10. Vporabimo to pretpostavko in pokažimo da je tudi število $(n+1)^5 - (n+1)$ deljivo z 10. Ker je

$$(n+1)^5 - (n+1) = n^5 + 5n^4 + 10n^3 + 10n^2 + 4n$$

$$= (n^5 - n) + 5n^4 + 10n^3 + 10n^2 + 5n$$

$$= (n^5 - n) + 10(n^3 + n^2) + 5n^4 + 5n$$

$$= (n^5 - n) + 10(n^3 + n^2) + 5n(n^3 + 1)$$

Po indukciski pretpostavki n^5-n je deljivo z 10. Opazimo da je tudi $10(n^3+n^2)$ deljivo z 10. Pokažimo še da je $5n(n^3+1)$ deljivo z 10. Če je n sodo število potem je n=2k tj. $5n(n^3+1)=10k((2k)^3+1)$ je deljivo z 10. Če je n liho število, potem je n^3 tudi liho število, kar implicira da je n^3+1 sodo število tj $n^3+1=2m$. Zdaj imamo da je $5n(n^3+1)=10mn$ deljivo z 10.

Zaključek

Pokazali smo da je n^5-n deljivo z 10 za vsak $n\in\mathbb{N}$. Če za n vzamemo naravno število $n=37^{100}$ lahko sklepamo da je število $37^{500}-37^{100}$ deljivo z 10.

II metoda

Ideja. Opazimo da je $37^4 - 1 = 1874160$ tj. število $37^4 - 1$ je deljivo z 10. (To implicira da je tudi $37 \cdot (37^4 - 1) = 37^5 - 37$ deljivo z 10).

Rešitev. Naj bo $a=37^4$. Potem je a-1 deljivo z 10. Tudi velja

$$37^{500} - 37^{100} = (37^4)^{125} - (37^4)^{25} = a^{125} - a^{25}.$$

Ker je

$$a^{125} - a^{25} = a^{25}(a^{100} - 1) = a^{25}(a - 1)(a^{99} + a^{98} + \dots + a^2 + a + 1)$$

to je $a^{125}-a^{25}$ deljivo z 10. Lahko sklepamo da je število $37^{500}-37^{100}$ deljivo z 10.

III metoda

Ideja. Pokaži da je

zadnja števka števila
$$37^n$$
 je =
$$\begin{cases} 7; & \text{ostanek pri deljenju } n \le 4 \text{ je } 1, \\ 9; & \text{ostanek pri deljenju } n \le 4 \text{ je } 2, \\ 3; & \text{ostanek pri deljenju } n \le 4 \text{ je } 3, \\ 1; & \text{ostanek pri deljenju } n \le 4 \text{ je } 0, \end{cases}$$

in uporabi to lastnost pri dokazu...

3. V množici realnih števil, za množici A in B, določi supremum, infimum, minimum ter maksimum, če obstajajo.

(a)
$$A = \{x \mid x^2 \le 11\}.$$

(b)
$$B = \{x \in [2, 5] \mid x \text{ ima v decimalnem zapisu vsej dve trojki}\}.$$

Tudi podajte primer spodnje meje in zgornje meje za A in B. V primeru (b) podaj definicijo infimuma in supremuma ter podrobno razloži, zakaj je zahtevana številka infimum/supremum, oziroma podrobno razloži zakaj množica nima infimuma/supremuma.

Ideja.

$$A = \{x \mid x^2 \le 11\} = \{x \mid |x| \le \sqrt{11}\} = \{x \mid x \in [-\sqrt{11}, \sqrt{11}]\} = [-\sqrt{11}, \sqrt{11}].$$

Elementi množice B so npr.

2,0033; 2,00000033; 2,0000000000033;
$$2 + \frac{33}{10^{4544}}$$
; ...
$$5 - 0,67 = 4,33; 5 - 0,067 = 4,933; 5 - 0,0067 = 4,9933;$$

$$5 - 0,00000000067 = 4,99999999933; 5 - \frac{67}{10^{4556544454}}; ...$$

Rešitev.

množica	minimum	maksimum	infimum	supremum
A	$-\sqrt{11}$	$\sqrt{11}$	$-\sqrt{11}$	$\sqrt{11}$
В	nima ga	nima ga	2	5

Primeri spodnje meje za A so $-\sqrt{11}$, -4, -5, -6,... Primeri spodnje meje za B so 2, 1, $\frac{1}{2}$, -98,...

Primeri zgornje meje za A so $\sqrt{11},\,4,\,5,\,6,...$ Primeri zgornje meje za B so $5,\,6,\,\frac{23}{2},\,98,...$

$$m \text{ je infimum množice } B \qquad \stackrel{\textit{def.}}{\Longleftrightarrow} \qquad \left\{ \begin{array}{l} \forall b \in B : m \leq b \quad (m \text{ je spodnja meja}), \\ \forall \varepsilon > 0 \ \exists b \in B : m < b < m + \varepsilon. \end{array} \right.$$

$$M \text{ je supremum množice } B \qquad \stackrel{\textit{def.}}{\Longleftrightarrow} \qquad \left\{ \begin{array}{l} \forall b \in B : b \leq M \quad (M \text{ je zgornja meja}), \\ \forall \varepsilon > 0 \ \exists b \in B : M - \varepsilon < b < M. \end{array} \right.$$

Za vsak n>2 $(n\in\mathbb{N})$ opazimo da število $2+\frac{33}{10^n}\in B.$ Ker

$$\lim_{n \to \infty} \left(2 + \frac{33}{10^n} \right) = 2,$$

to $\forall \varepsilon > 0 \ \exists N : (n > N \ \Rightarrow \ 2 < 2 + \frac{33}{10^n} < 2 + \varepsilon)$. Lahko sklepamo da je inf(B) = 2. Podobno, za vsak $n > 2 \ (n \in \mathbb{N})$ opazimo da število $5 - \frac{67}{10^n} \in B$. Ker

$$\lim_{n \to \infty} \left(5 - \frac{67}{10^n} \right) = 5,$$

to $\forall \varepsilon > 0 \ \exists N : (n > N \ \Rightarrow \ 5 > 5 - \frac{67}{10^n} > 5 - \varepsilon)$. Lahko sklepamo da je sup(B) = 5.

4. Z uporabo razcepa na parcialne ulomke seštej vrsto

$$\sum_{n=1}^{\infty} \frac{1}{(n+7)(n+8)}.$$

Ideja.

$$\frac{1}{(n+7)(n+8)} = \frac{A}{n+7} + \frac{B}{n+8}, \quad / \cdot (n+7)(n+8)$$

$$1 = A(n+8) + B(n+7)$$

$$1 = n(A+B) + (8A+7B)$$

$$A+B=0, \quad 8A+7B=1,$$

$$A=-B, \quad 8A+7B=1,$$

$$8A-7A=1 \quad \Rightarrow \quad A=1 \quad \Rightarrow \quad B=-1.$$
Torej,
$$\frac{1}{(n+7)(n+8)} = \frac{1}{n+7} - \frac{1}{n+8}.$$

Rešitev. Spomnimo se, če je $S_n = \sum_{k=1}^n a_k$ in $\lim_{n\to\infty} S_n = S$ potem je $\sum_{k=1}^\infty a_k = S$. V našem primeru

$$S_n = \sum_{k=1}^n \frac{1}{(k+7)(k+8)}$$

$$= \sum_{k=1}^n \left(\frac{1}{k+7} - \frac{1}{k+8}\right)$$

$$= \left(\frac{1}{1+7} - \frac{1}{1+8}\right) + \left(\frac{1}{2+7} - \frac{1}{2+8}\right) + \dots + \left(\frac{1}{(n-1)+7} - \frac{1}{(n-1)+8}\right) + \left(\frac{1}{n+7} - \frac{1}{n+8}\right)$$

$$= \frac{1}{8} - \frac{1}{9} + \frac{1}{9} - \frac{1}{10} + \dots + \frac{1}{n+6} - \frac{1}{n+7} + \frac{1}{n+7} - \frac{1}{n+8}$$

$$= \frac{1}{8} - \frac{1}{n+8}$$

Ker je

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \left(\frac{1}{8} - \frac{1}{n+8} \right) = \frac{1}{8},$$

lahko sklepamo

$$\sum_{n=1}^{\infty} \frac{1}{(n+7)(n+8)} = \frac{1}{8}.$$