Notas Grupos Topológicos

Cristo Daniel Alvarado

21 de abril de 2024

Índice general

2.	Compacidad	2
	2.1. Grupos compactos y localmente compactos	2

Capítulo 2

Compacidad

En este capítulo se estudiarán algunas de las propiedades más investigadas en grupos topológicos.

2.1. Grupos compactos y localmente compactos

Este primer teorema es una generalización de un teorema de la sección anterior.

Teorema 2.1.1

Sean G un grupo topológico, U una vecindad de e_G y F un subconjunto compacto de G. Entonces, existe una vecindad V de e_G tal que

$$xVx^{-1} \subseteq U \quad \forall x \in F$$

Demostración:

Sea $W \subseteq G$ una vecindad simétrica de e_G , esto es que $W^3 \subseteq U$. Como

$$F\subseteq\bigcup_{x\in F}Wx$$

al tenerse que F es compacto, existen $x_1, ..., x_k \in F$ tales que

$$F \subseteq \bigcup_{i=1}^{k} Wx_i$$

Sea $V = \bigcap_{i=1}^k x_i^{-1} W x_i$. Es claro que V es una vecindad de e_G y que $V \subseteq x_i^{-1} W x_i$, para todo $i \in [1, k]$. Si $x \in F$ entonces existe $i \in [1, k]$ tal que

$$x \in Wx_i$$

es decir $x = wx_i$ para algún $w \in W$. Luego,

$$xVx^{-1} = wx_iVx_i^{-1}w^{-1}$$

$$\subseteq wWw^{-1}$$

$$\subseteq W^3$$

$$\subset U$$

Se sabe de la sección anterior que si G es un grupo topológico y H es un subgrupo cerrado de G, entonces la función canónica $\pi:G\to G/H$ es continua y abierta. En el caso en que H sea compacto, este resultado puede mejorarse:

Teorema 2.1.2

Sea G un grupo topológico y H un subgrupo compacto de G. Entonces, la función canónica $\pi:G\to G/H$ es una función cerrada.

Demostración:

Sea $A \subseteq G$ cerrado. Para probar el resultado bastará con probar que el complemento de $\pi(A)$ es abierto en G/H. Sea $x \in G$ tal que $\pi(x) \notin \pi(A)$. Notemos que

$$\pi(A) = AH$$

donde el conjunto $AH \subseteq G$ es cerrado en G (ya que A es cerrado y H es compacto), luego como $x \notin AH$ existe un abierto $U \subseteq G$ tal que $x \in U$ y

$$U \cap AH = \emptyset$$

Afirmamos que $U^* = \pi(U)$ es un abierto que contiene a $\pi(x)$ ajeno a $\pi(A)$. En efecto, es claro que contiene a $\pi(x)$. Suponga que existe $z \in G$ tal que $\pi(z) = zH \in \pi(U) \cap \pi(A)$, luego existen $u \in U$ y $a \in A$ tales que:

$$zH = uH = aH$$

luego $a^{-1}u \in H$ de donde se sigue que $u \in AH$, es decir que $U \cap AH \neq \emptyset \#_c$. Por tanto, $\pi(U) \cap \pi(A) = \emptyset$. Así, el conjunto $G/H \setminus \pi(A)$ es abierto, luego $\pi(A)$ es cerrado.

Observación 2.1.1

Note que la condición de que H sea compacto es necesaria para que el conjunto AH sea cerrado.

Las propiedades de compacidad y compacidad local se heredan a espacios cocientes de G entre subgrupos cerrados H.

Teorema 2.1.3

Sean G un grupo topológico y H un subgrupo cerrado de G. Si G es compacto, entonces H y G/H también lo son. Si G es localmente compacto, entonces H y G/H también lo son.

Demostración:

Es claro que la compacidad y la compacidad local se hereda a subgrupos cerrados de G.

Dado que la función canónica $\pi: G \to G/H$ es continua y sobre, la imagen $\pi(G) = G/H$ es un conjunto compacto en G/H, es decir que G/H es compacto.

Ahora probaremos que si G es localmente compacto, entonces G/H también lo es. En efecto, suponga que G es localmente compacto. Sea $\pi(a) \in G/H$, debemos encontrar una vecindad compacta de $\pi(a)$. Como $a \in G$ existe una vecindad U de a tal que $a \in U \subseteq \overline{U}$, siendo \overline{U} compacto en G.

Como π es continua, se tiene que $\pi(\overline{U})$ es compacto en G/H, en particular, cerrado. Además, como $U\subseteq \overline{U}$, entonces

$$\pi(U) \subseteq \pi(\overline{U}) \Rightarrow \overline{\pi(U)} \subseteq \pi(\overline{U})$$

es decir, que $\pi(U)$ es una vecindad de $\pi(a)$ tal que $\overline{\pi(U)}$ es compacta (por ser un cerrado contenido en un compacto). Luego, G/H es localmente compacto.

Hemos usado el hecho de que si $\pi:G\to G/H$ es la función canónica y $K\subseteq G$ es compacto, entonces $\pi(K)$ es compacto en G/H. El recíproco de este resultado también es cierto con una hipótesis adicional: la imagen inversa de un compacto en el espacio cociente G/H es compacta si H es compacto. Antes de probar este resultado necesitamos de algunos hechos auxiliares.

Definición 2.1.1

Sean X y Y espacios topológicos y $f: X \to Y$ una función continua. Decimos que f es **perfecta** si f es cerrada y todas las fibras $f^{-1}(y) \subseteq X$ son compactas para todo $y \in Y$.

El teorema 2.1.2 se puede generalizar al afirmar que la función canónica $\pi: G \to G/H$ es perfecta si el subgrupo H de G es compacto.

Se harán a continuación la prueba de algunos resultados necesarios para un teorema posterior.

Proposición 2.1.1

Si $f: X \to Y$ es una función cerrada, entonces para cualquier subespacio $L \subseteq Y$ la reestricción $f_L = f\big|_{f^{-1}(L)}: f^{-1}(L) \to L$ es cerrada.

Demostración:

Sea $A \subseteq X$ un conjunto cerrado en X, entonces

$$f_L(A \cap f^{-1}(L)) = f(A \cap f^{-1}(L))$$
$$= f(A) \cap L$$

pues, $f(f^{-1}(L)) = L$. Por ende, como f es cerrada se sigue que $f(A) \cap L$ es cerrado en el subespacio de L de Y. Así, f_L es cerrada.

Proposición 2.1.2

Sean X,Y espacios topológicos y $f:X\to Y$ una función perfecta, entonces para cualquier cerrado $A\subseteq X$ y cualquier subespacio $B\subseteq Y$ las restricciones $f|_A:A\to Y$ y $f_B=f|_{f^{-1}(B)}:f^{-1}(B)\to B$ son perfectas.

Demostración:

Es claro que la reestricción $f|_A$ y f_B son cerradas (siendo la última por la proposición anterior). Sea ahora $y \in Y$, se tiene:

$$f\big|_A^{-1}(y) = A \cap f^{-1}(y)$$

donde el conjunto de la derecha es un cerrado contenido en el compacto $f^{-1}(y)$, luego compacto. Así, $f|_A$ es perfecta.

Para f_B , veamos que si $y \in B$:

$$f_B^{-1}(y) = f^{-1}(y)$$

donde el conjunto de la derecha es compacto. Por tanto, f_B es perfecta.

Teorema 2.1.4

Sean X,Y espacios topológicos. Si $f:X\to Y$ es una función perfecta, entonces para todo subconjunto compacto $Z\subseteq Y$, su imagen inversa $f^{-1}(Z)$ es compacta en X. En particular, si Y es compacto, X también lo es.

Demostración:

Primero notemos que si $y \in Y$ y $U \subseteq X$ es una vecindad abierta de $f^{-1}(y)$, entonces existe una vecindad $W \subseteq Y$ de y tal que

$$f^{-1}(W) \subseteq U$$

En efecto, tomemos $W = Y \setminus f(X \setminus U)$. Claramente W es cerrada pues f es perfecta (en particular, f es cerrada) y es tal que $g \in W$. Además,

$$x \in f^{-1}(Y \backslash f(X \backslash U)) \iff f(x) \in Y \backslash f(X \backslash U)$$

$$\iff f(x) \in Y \backslash f(X \backslash U)$$

$$\iff f(x) \in Y \text{ y } f(x) \notin f(X \backslash U)$$

$$\Rightarrow x \notin X \backslash U$$

$$\iff x \in U$$

por tanto $f^{-1}(W) \subseteq W$.

Ahora, por el teorema 2.1.3 es suficiente con probar que si Y es compacto, entonces X también lo es (esto pues podemos tomar la reestricción de f a U y sería una función $f|_{U}: U \to Y$ y el resultado se cumpliría para U). Sea \mathcal{U} una cubierta abierta de X.

Sin péridida de generalidad podemos suponer que \mathcal{U} es cerrada bajo uniones finitas (en caso de que no lo sea, podemos crear una cubierta más grande formada por todos los elementos de \mathcal{U} , al extraer la subcubierta abierta finita de esta cubierta más grande tendríamos a su vez una cubierta abierta finita del conjunto formada por una cantidad finita de elementos de \mathcal{U}). Sabemos que para toda $y \in Y$, el conjunto $f^{-1}(y)$ es compacto en X. Por ende, existe un abierto $U_y \in \mathcal{U}$ tal que

$$f^{-1}(y) \subseteq U_y$$

por lo probado anteriormente se tiene que existe un abierto $V_y \subseteq Y$ tal que $y \in V_y$ y:

$$f^{-1}(V_y) \subseteq U_y$$

como Y es compacto y la familia $\{V_y | y \in Y\}$ forma una cubierta abierta de Y, entonces existen $y_1,...,y_n \in Y$ tales que

$$Y \subseteq \bigcup_{i=1}^{n} V_{y_i}$$

Se sigue entonces que

$$X = f^{-1}(Y)$$

$$\subseteq f^{-1}\left(\bigcup_{i=1}^{n} V_{y_i}\right)$$

$$\subseteq \bigcup_{i=1}^{n} f^{-1}(V_{y_i})$$

$$\subseteq \bigcup_{i=1}^{n} U_{y_i}$$

luego, X es compacto.

Suponga que tenemos un grupo G, un subgrupo H de G y una propiedad topológica \mathcal{P} . Un problema muy conocido en la teoría de grupos topológicos es: si G/H y H tienen la propiedad \mathcal{P} , ¿también G posee la propiedad \mathcal{P} ? En este libro se responderá afirmativamente esta pregunta para varias propiedades \mathcal{P} , por ejemplo, conexidad, compacidad, etc... Comencemos con la compacidad.

Teorema 2.1.5

Sean G un grupo topológico y H un subgrupo compacto de G. Si $Q \subseteq G/H$ es compacto, entonces $P = \pi^{-1}(Q)$ es compacto, donde $\pi : G \to G/H$ es la función canónica. En particular, si G/H es compacto, entonces G también lo es.

Demostración:

Por el teorema anterior, basta con probar que π es perfecta. De un teorema anterior se tiene que π es cerrada.

Sea $x \in G$, entonces el conjunto $\pi^{-1}(\pi(x)) = xH$ que es compacto. Así, π es perfecta.

Corolario 2.1.1

Sea G grupo topológico y H un subgrupo cerrado de G. Entonces, $\pi:G\to G/H$ es perfecta si y sólo si H es compacto.

Demostración:

Es inmediata de la prueba del teorema anterior, pues:

$$\pi^{-1}(\pi(x)) = xH$$

Existen grupos numerables sin puntos aislados, por ejemplo, el grupo $\mathbb Z$ con la p-topología. Demostraremos que tales grupos no pueden ser localmente compactos.

Teorema 2.1.6

Todo grupo topológico localmente compacto G tal que $|G| < \mathfrak{c}$ es discreto.

Demostración:

Suponga que G es localmente compacto y no es discreto. Entonces G no puede tener puntos aislados (pues es homogéneo). Sea U una vecindad abierta de e_G tal que $K = \overline{U}$ es compacto.