Perils of Exploration Under Competition: A Computational Modeling Approach The

Guy Aridor¹, Kevin Liu², Alex Slivkins³, Steven Wu⁴

 Department of Computer Science, Columbia University
 Microsoft Research, New York City
 Department of Computer Science, University of Minnesota - Twin Cities ¹ Department of Economics, Columbia University

Summary & Goals

Firms face a trade-off between exploration and competition

- Explore to gain information to make better product tomorrow
- Incentivize consumers to pick me over competition today

Are "better" algorithms incentivized under competition?

- Greedy (GR): pick what seems best
- Epsilon-Greedy (EGR): random choice with epsilon probability, greedy otherwise
 - gradually zoom in on the best arm Adaptive (AD):

Model

Firms:

-armed bandit instances Face identical multi Only make progress on their learning problems if incentivize consumers to pick them over their competitors

Aim to maximize expected market share

Consumers:

Reputation score for firm / is sliding window average of reward previous M consumers experienced from /. and aim to maximize current period utility firm with highest reputation score Live a single period Choice rule: select

Numerical Simulations Method:

Consider three representative classes of instances:

- Needle-in-Haystack: 1 "good" arm, K-1 "bad" arms
- Uniform: mean rewards drawn from Uniform[0.25, 0.75]
- Heavy-Tail: mean reward drawn from Beta(0.6, 0.6)

Each experiment: competition between two bandit algorithms

 Parameters: bandit algorithms, competition model, bandit instance

Spiral Death Exploration

"Better" algorithms in isolation # "Better" algorithms in competition Algorithms that explore may fall into "death spiral" vs Greedy

Lower Reputation Exploration

Equilibrium Strategies

Inverted-U relationship between competition and innovation
• Classic theme in economics

- Competition varied by timing of entry and number of firms

Consumer Welfare

Simultaneous Entry

- Greedy wins in equilibrium => low consumer welfare
- Better algorithms wins in equilibrium => higher welfare First Mover Advantage

Reputation NS N Data

First mover has a data and reputation advantage over entrant

- Both serve as strong barriers to entry alone
 Data advantage stronger when "better" algorithms deployed

	Reputati	Reputation advantage (only)	(only)	Data (Data advantage (only)	ly)
	AD	EGR	GR	AD	EGR	GR
AD	0.021 ± 0.009 0.16 ± 0.02 0.21 ± 0.02	0.16 ±0.02	0.21 ± 0.02	0.0096 ±0.006	0.11 ±0.02	0.18 ±0.02
EGR	0.26 ± 0.03	0.3 ±0.02	0.26 ±0.02	0.073 ± 0.01	0.29 ± 0.02	0.25 ± 0.02
GR	0.34 ±0.03	0.4 ±0.03	0.33 ±0.02	0.15 ± 0.02	0.39 ±0.03	0.33 ±0.02

User share of row player (entrant) after 2000 rounds

Conclusions

- Traditionally "better" algorithms are not always incentivized under competition due to the reputational consequences of exploration
- Data can serve as a barrier to entry in online platforms, especially when exploration has reputation costs

