Localized Conformal Prediction

Min, Xia

May 9, 2024

1 Conformal Prediction General[1]

Definition 1.1 (Exchangeability). [3] For any r.v. x_1, \dots, x_k , we say they are exchangeable if for any permutation $\sigma : [k] \to [k]$ (bijection), $(x_1, \dots, x_k) \stackrel{d}{=} (x_{\sigma(1)}, \dots, x_{\sigma(k)})$.

Definition 1.2 (Weighted Exchangeability). [4] For any r.v. x_1, \dots, x_k , we say they are weighted exchangeable if their joint density canbe factorized as

$$f(x_1, \cdots, x_k) = \prod_{i=1}^k w_i(x_i) \cdot g(x_1, \cdots, x_k),$$

where g is exchangeable, i.e., $g(x_1, \dots, x_k) = g(x_{\sigma(1)}, \dots, x_{\sigma(k)})$.

For conformal prediction two classes of targets are studied.

Definition 1.3 (Marginal Coverage). $(X,Y) \in \mathbb{R}^p \times \mathbb{R} \sim P_{XY}$ which is unknown. Given training set $Tr = \{(X_i, Y_i)\}_{i=1}^n$, and test on (X_{n+1}, Y_{n+1}) , both i.i.d.

 C_{α} satisfies distribution-free marginal coverage at level $1-\alpha$ if

$$P(Y_{n+1} \in C_{\alpha}(X_{n+1})) > 1 - \alpha, \ \forall P_{XY}$$

The probability is with respect to $\{(X_i, Y_i)\}_{i=1}^{n+1}$.

Definition 1.4 (Conditional Coverage). $(X,Y) \in \mathbb{R}^p \times \mathbb{R} \sim P_{XY}$ which is unknown. Given training set $Tr = \{(X_i, Y_i)\}_{i=1}^n$, and test on (X_{n+1}, Y_{n+1}) , both i.i.d.

 C_{α} satisfies distribution-free marginal coverage at level $1-\alpha$ if

$$P\left(Y_{n+1} \in C_{\alpha}(X_{n+1}) \middle| X_{n+1} = x\right) \ge 1 - \alpha, \ \forall P_{XY}$$

The probability is with respect to $\{(X_i, Y_i)\}_{i=1}^n$ and Y_{n+1} .

Definition 1.5 (Conformal Score Function). For data pair (X,Y) and point predictor and any loss function $V(\cdot,\cdot)$, call $R = S(X,Y) = V(Y,\hat{f}(X))$ be the conformal score(or residual).

Definition 1.6 (Efficiency). X is some r.v. following the testing distribution and C_{α} is efficient if $\mathbb{E}[|C_{\alpha}(X)|]$ is small. Define $Size(C_{\alpha}) = \frac{1}{n} \sum_{i=1}^{n} |C_{\alpha}(X_i)|$.

2 Localized CP Article1

Conformalized Quantile Regression [2]

The core idea is if conditional distribution function F(y|X=x) is known and conditional quantile is $q_{\alpha}(x) = \inf\{y : F(y|X=x) \ge \alpha\}$, for $\alpha_1 = \alpha/2$, $\alpha_2 = 1 - \alpha/2$ we can define conformal set to be $C_{\alpha}(x) = [q_{\alpha_1}(x), q_{\alpha_2}(x)]$. Next is to estimate quantiles from data.

Follow the split CP setting,

- First divide training set D into two sets: D_1 for proper training set and D_2 for calibration set. And let $n_i = |D_i|$, fit point predictor \hat{q}_{α_1} , \hat{q}_{α_2} on D_1 .
- Calculate enformity scores on calibration set: $R_i = \max\{\hat{q}_{\alpha_1}(X_i) Y_i, Y_i \hat{q}_{\alpha_2}(X_i)\}$ for $i \in D_2$, and $R = \max\{\hat{q}_{\alpha_1}(X) - Y_i, Y_i - \hat{q}_{\alpha_2}(X)\}$
- Find the $\lceil (1-\alpha)(n_2+1) \rceil$ -th empirical quantile of R_i , $i \in D_2$ as \hat{q} and construct conformal set $C_{\alpha}(x) = [\hat{q}_{\alpha_1}(x) \hat{q}, \hat{q}_{\alpha_2}(x) + \hat{q}]$

Note that $\{Y \in C_{\alpha}(X)\} = \{R \leq \hat{q}\}$. With exchangeability of R_i , $i \in D_2$ and R the coverage is assured.

REFERENCES 3

References

[1] Anastasios N Angelopoulos, Stephen Bates, et al. Conformal prediction: A gentle introduction. Foundations and Trends® in Machine Learning, 16(4):494–591, 2023.

- [2] Yaniv Romano, Evan Patterson, and Emmanuel Candes. Conformalized quantile regression. Advances in neural information processing systems, 32, 2019.
- [3] Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. *Journal of Machine Learning Research*, 9(3), 2008.
- [4] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal prediction under covariate shift. Advances in neural information processing systems, 32, 2019.