Dismantling MIFARE Classic

Flavio D. Garcia

Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands.

ESORICS 2008

Joint work with: Gerhard de Koning Gans, Ruben Muijrers, Peter van Rossum, Roel Verdult, Ronny Wichers Schreur and Bart Jacobs

Outline

- Introduction
 - Timeline
 - RFID
 - MIFARE
- Reverse Engineering MIFARE Classic
 - Characteristics
 - Authentication Protocol
 - CRYPTO1 Cipher
- Cryptanalysis of MIFARE Classic
 - Attack 1
 - Attack 2
- 4 Conclusions

Timeline	
Dec 2007	CCC presentation by Nohl and Plotz
March 2008	We recover CRYPTO1 and found attacks.
March 2008	We notified the manufacturer and other stakeholders (without disclosure).
Jun 2008	NXP tries to stop "irresponsible" publication, via injunction (court order).
July 2008	Judge refuses to prohibit, basically on freedom of expression. Also:
	"University acted with due care, warning stakeholders early on"
	"Damage is not result of publication, but of apparent deficiencies in the cards"

NXP did not appeal

RFID Tags

MIFARE

MIFARE product family from NXP

- Ultralight
- Classic or Standard (320B, 1KB and 4KB)
- DESFire
- SmartMX

MIFARE

MIFARE product family from NXP

- Ultralight
- Classic or Standard (320B, 1KB and 4KB)
- DESFire
- SmartMX

MIFARE dominance

- Over 1 billion MIFARE cards sold
- Over 200 million MIFARE Classic cards in use covering 85% of the contactless smart card market

MIFARE Classic

Some systems using MIFARE Classic

- Access to our university building
- Used in many office and official buildings
- Public transport systems
 - OV-Chipkaart (Netherlands)
 - Oyster card (London)
 - Smartrider (Australia)
 - EMT (Malaga) ¨
- Personnel entrance to Schiphol Airport (Amsterdam)
- Access to Dutch military bases
- Popular payment system in Asia

Characteristics
Authentication Protoco
CRYPTO1 Cipher

Reverse Engineering MIFARE Classic

Logical structure of the MIFARE Classic 4K

MIFARE Classic

- Proprietary stream cipher CRYPTO1.
- Key length of only 48 bits.

Weak pseudo-random generators

- 16 bit state nonce pseudo-random generator on the tag.
- 32 bit nonces.
- Reader gives the same sequence of nonces after power up.
- The pseudo-random generator on the tag iterates over time.
- Generated nonces on the tag only depend on uptime.

Nonce generating LFSR on the tags

Authentication Trace

Example (uid $\oplus n_T = C$)										
Step	Sender	Hex	Abstract							
01	Reader	26	req type A							
02	Tag	04 00	answer req							
03	Reader	93 20	select							
04	Tag	c2 a8 2d f4 b3	uid,bcc							
05	Reader	93 70 c2 a8 2d f4 b3 ba a3	select(uid)							
06	Tag	08 b6 dd	MIFARE 1k							
07	Reader	60 30 76 4a	auth(block 30)							
08	Tag	42 97 c0 a4	n _T							
09	Reader	7d db 9b 83 67 eb 5d 83	$n_R \oplus ks_1, a_R \oplus ks_2$							
10	Tag	8b d4 10 08	$a_T \oplus ks_3$							

Another Authentication Trace

Example (uid $'\oplus n_T'=C$)										
Step	Sender	Hex	Abstract							
01	Reader	26	req type A							
02	Tag	04 00	answer req							
03	Reader	93 20	select							
04	Tag	1d fb e0 33 35	uid',bcc							
05	Reader	93 70 1d fb e0 33 35 d3 55	select(uid')							
06	Tag	08 b6 dd	MIFARE 1k							
07	Reader	60 30 76 4a	auth(block 30)							
08	Tag	9d c4 0d 63	n_T'							
09	Reader	7d db 9b 83 42 95 c4 46	$n_R \oplus ks_1, a_R' \oplus ks_2$							
10	Tag	eb 3e f7 da	$a_T' \oplus ks_3$							

Authentication Protocol

	Tag		Reader
0		anti-c(uid)	
1		auth(block)	
2	picks n _T		
3		n_T	
4	$ks_1 \leftarrow cipher(K, uid, n_T)$		$ks_1 \leftarrow cipher(K, uid, n_T)$
5			picks n _R
6		_	$ks_2, ks_3 \ldots \leftarrow cipher(K, uid, n_T, n_R)$
7		$n_R \oplus ks_1, suc^2(n_T) \oplus ks_2$	
8	$ks_2, ks_3 \ldots \leftarrow cipher(K, uid, n_T, n_R)$		
9		$suc^3(n_T) \oplus ks_3$	

Hitag2 Cipher

Initialization Diagram

Guessed structure for CRYPTO1

Recovering the input taps to the filter function

Example										
Sender	Hex									
Reader	26	req type A								
Ghost	04 00	answer req								
Reader	93 20	select								
Ghost	00 00 00 00 00	uid,bcc								
Reader	93 70 00 00 00 00 00 9c d9	select(uid)								
Ghost	08 b6 dd	MIFARE 1k								
Reader	60 00 f5 7b	auth(block 0)								
Ghost	6d c4 13 ab d0 f3	n_T								
Reader	df 19 d5 7a e5 81 ce cb	$n_R \oplus ks_1, suc^2(n_T) \oplus ks_2$								

Recovering the input taps to the filter function

Example (one bit difference LFSR state)											
Sender	Hex										
Reader	26	req type A									
Ghost	04 00	answer req									
Reader	93 20	select									
Ghost	00 00 00 00 00	uid,bcc									
Reader	93 70 00 00 00 00 00 9c d9	select(uid)									
Ghost	08 b6 dd	MIFARE 1k									
Reader	60 00 f5 7b	auth(block 0)									
Ghost	6d c4 13 ab d0 <mark>73</mark>	n_T'									
Reader	5e ef 51 le 5e fb a6 21	$n_R \oplus ks_1', suc^2(n_T') \oplus ks_2'$									

Guessed structure for CRYPTO1

Recovering one component of the filter function

Example (First bit of encrypted reader nonce)

	55															
0xb05d53bfdbXX	0	0	0	0	1	1	0	1	1	1	0	1	0	0	1	1
0xfbb57bbc7fXX	1	1	1	1	0	0	1	0	0	0	1	0	1	1	0	0
0xb05d53bfdbXX 0xfbb57bbc7fXX 0xe2fd86e299XX	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Guessed structure for CRYPTO1

The CRYPTO1 Cipher

Attack 1 Attack 2

Cryptanalysis of MIFARE Classic

Authentication Protocol with Timeout

	Ghost		Reader
0		anti-c(uid)	
1		auth(block)	
2	picks n_T	()	
3		n_T	
4			$ks_1 \leftarrow cipher(K, uid, n_T)$
5			picks n _R
6			$ks_2, ks_3 \ldots \leftarrow cipher(K, uid, n_T, n_R)$
7		$n_R \oplus ks_1, suc^2(n_T) \oplus ks_2$	
8	wait for timeout		
9		halt ⊕ ks ₃	

Authentication Protocol with Timeout

	Ghost	I	Reader
0		anti-c(uid)	
1		auth(block)	
2	picks n_T		
3		n_T	
4			$ks_1 \leftarrow cipher(K, uid, n_T)$
5			picks n _R
6			$ks_2, ks_3 \ldots \leftarrow cipher(K, uid, n_T, n_R)$
7		$n_R \oplus ks_1, suc^2(n_T) \oplus ks_2$	
8	wait for timeout		
9		halt ⊕ ks ₃	

It is possible to recover ks2, ks3!

Splitting the search space

Off-line table. 2³⁶ entries.

LFSR State									ks_2	ks ₃				
	00	00	00	00	00	00	a0	91	5b	02	8f	с5	a7	b5
<u>:</u>														
	00	0f	ff	ff	ff	ff	6f	ea	4c	af	0b	fb	5c	5b

On-line table. 2¹² entries.

n_T	$ks_2 ks_3$
00 00 00 00	d2 95 11 02 2f 5d a1 bb
i i	<u>:</u>
00 00 ff f0	88 de 6b bf 3c 0a 22 5f

There is one n_T producing LFSR = YY YY YY YY 00 0Y

Authentication Protocol

	Tag		Reader
10		anti-c(uid)	
11		auth(block)	
12	picks n_T		
13		n_T	
14	$ks_1 \leftarrow cipher(K, uid, n_T)$		$ks_1 \leftarrow cipher(K, uid, n_T)$
15			picks n _R
16			$ks_2, ks_3 \ldots \leftarrow cipher(K, uid, n_T, n_R)$
17		$n_R \oplus ks_1$, Here! $suc^2(n_T) \oplus ks_2$	
18	$ks_2, ks_3 \ldots \leftarrow cipher(K, uid, n_T, n_R)$		
19		$suc^3(n_T) \oplus ks_3$	

Rolling back n_R

Recovering the secret key

Get back in time

- Rollback n_R
- Rollback n_T ⊕ uid
- Recover the key!

Summary Attack 1

Typical attack times

- 4 to 8 hours pre-computation (this can be reused for any key).
- Gathering 4096 authentication sessions takes something between 2 and 14 minutes.
- Two minutes to recover the key.

The CRYPTO1 Cipher - Odd input bits

All the input bits to the filter function are on odd numbered bits.

- Let $b_0b_1 \dots b_{n-1}$ be n consecutive bits of keystream
- We build two tables of approximately 2¹⁹ elements.
- These tables contain the even and the odd numbered bits of the LFSR.
- Each table produce the evenly and oddly numbered bits of the required keystream.

Subsequences \bar{s} and \bar{t}

$$t_0, t_{k+1}, \dots, t_{19}$$
 if $f(t_0, t_{k+1}, \dots, t_{19}) = b_0$

$$t_0, t_{k+1}, \ldots, t_{19}$$
 if $f(t_0, t_{k+1}, \ldots, t_{19}) = b_0$

We extend the odd table

$$t_0, t_{k+1}, \dots, t_{19}, 0$$
 if $f(t_1, t_{k+1}, \dots, t_{19}, 0) = b_2$
 $t_0, t_{k+1}, \dots, t_{19}, 1$ if $f(t_1, t_{k+1}, \dots, t_{19}, 1) = b_2$

$$t_0, t_{k+1}, \dots, t_{19}$$
 otherwise.

$$s_0, s_{k+1}, \dots, s_{19}$$
 if $f(s_0, s_{k+1}, \dots, s_{19}) = b_1$

 $S_0, S_{k+1}, \ldots, S_{19}$

 $S_0, S_{k+1}, \ldots, S_{19}$

Attack 2

We extend the even table
$$s_0, s_{k+1}, \dots, s_{19}, 0 \qquad \text{if } f(s_1, s_{k+1}, \dots, s_{19}, 0) = b_3$$

$$s_0, s_{k+1}, \dots, s_{19}, 1 \qquad \text{if } f(s_1, s_{k+1}, \dots, s_{19}, 1) = b_3$$

otherwise.

if $f(s_0, s_{k+1}, \dots, s_{19}) = b_1$

- We keep extending until we have sequences of 24 bits.
- We compute their (partial) contribution to the feedback at each stage (4 bits).
- We sort the tables on the newly computed feedback bits.
- We match two states entries and get a state t₀s₀t₁...s₂₃

Summary Attack 2

Requirements for the attack

- No pre-computation needed.
- Need only one partial authentication from a reader.
- Under 40 ms computation time to recover a secret key.
- Under 8MB of memory consumption.

Conclusions

- Cards can be cloned easily (within a second!).
- Only one trace is sufficient to clone.
- Only the reader is needed to get the secret key of a card.
- Security by obscurity is volatile.
- Do not develop your own crypto but use standards.