

第十五章 静电场中的电介质

- 15.1 电介质对电场的影响
- 15.2 极化强度 P
- 15.3 极化强度和极化电荷
- 15.4 电介质的极化规律
- 15.5 电位移矢量 \vec{D} (有电介质时的高斯定理)
- 15.6 有电介质时静电场的能量

15.1 电介质对电场的影响

实验现象

$$U = rac{U_0}{\mathcal{E}_r}$$

$$C = C_0 \mathcal{E}_r$$
 一角

一般
$$\varepsilon_r > 1$$

(演示实验)

平行板

插入导体板

$$U' = E(d - d_1)$$

以为绝缘体(电介质)

对电场反应的是分子或原子

无极分子non-polar molecules

分子正负电荷中心在电场作用下错位

$$\vec{p} = q\vec{\delta}$$
 分子电偶极矩

位移极化 (displacement) electronic polarization

二. 电介质分子对电场的影响

表面出现极化电荷

(Polarization charges)

电介质对电场的影响通过极化电荷体现出来

(电介质演示实验)

15. 2 极化强度 \vec{P} (Polarization vector)

极化强度:

单位体积的总电偶极矩

$$\vec{P} = \vec{Np}$$

单个分子位移极化的电偶极矩 平均电偶极矩

有极分子 polar molecules

$$ec{p}_{ ext{df}}$$

有极分子

无外场时:

热运动→无规取向

单位体积的总电偶极矩处处为零

有外场时:

力矩: $\vec{p} \times \vec{E}$

符合经典玻尔 兹曼分布

能量: $-\vec{p}\cdot\vec{E}$

$$\propto e^{ec{p}\cdotec{E}/kT}$$

取向极化

(orientation polarization)

极化强度产 单位体积的总电偶极矩

$$\vec{P} = \lim \frac{\sum_{i} \vec{p}_{i}}{\Delta V}$$

无外场时,无序排列,求和为零

无极分子 上式 =
$$Np$$

宏观上无限小微观上 无限大的体积元 ΔV

$$\vec{P} = 0$$

有极分子

 \vec{E}

 $ec{p}_{\mathrm{Bf}}$

$$\vec{P} = \lim_{i \to \infty} \frac{\sum_{i} \vec{p}_{i}}{\Delta V} = N\vec{p}$$

考察小区域, 电场均匀

均匀极化

P 均匀

平均电偶极矩

$$\vec{p} = \frac{\vec{P}}{N}$$

$$ec{P}_{ extit{MAX}} = N ec{p}_{ extit{B} extit{f}}$$

15.3 极化强度与极化电荷

平均电偶极矩

在已极化的介质内任意作一闭合面S S 内有多少极化电荷?

平均电偶极矩穿过S的分子对S内的极化电荷有贡献

小面元dS贡献求和

在dS附近薄层内认为介质均匀极化

平均的电偶极矩

$$\vec{p} = q\vec{\delta} = \vec{P} / N$$

穿出dS的偶极子数目等于圆柱内分子数目

 $= N\delta dS \cos\theta$

穿出dS的极化电荷

$$dq' = qN\delta dS\cos\theta$$

$$= PdS\cos\theta$$

$$= \vec{P} \cdot d\vec{S}$$

小面元dS对面内极化电荷的贡献

$$dq' = -\vec{P} \cdot \hat{n}dS$$

在S所围的体积内的极化电荷 q'与 \vec{P} 的关系

$$q' = - \oiint_{S} \vec{P} \cdot \hat{n} dS$$

• 均匀极化处,没有束缚电荷

- 均匀极化时束缚电荷只在表面
- 非均匀极化时束缚电荷可同时分布在内部和表面

电介质表面极化电荷面密度

$$\sigma' = \vec{P} \cdot \hat{n}$$

 $\sigma' = \vec{P} \cdot \hat{n}$ \hat{n} 介质外法线方向

15.4 电介质的极化规律

1.各向同性线性电介质 isotropy linearity

$$|\vec{P} = \chi_e \varepsilon_0 \vec{E}|$$
 χ_e 介质的电极化率

无量纲的纯数 与 \vec{E} 无关 $\chi_e = \varepsilon_r - 1$

$$\chi_e = \varepsilon_r - 1$$

2.各向异性线性电介质 anisotropy

 χ_o 与 \vec{E} 、与晶轴的方位有关

弱场性质 张量描述

3. 铁电体 ferroelectrics

类似于铁磁体

 \vec{P} 与 \vec{E} 间非线性, 没有单值关系。

- 1) 电滞现象
- 2) 介电常数很大 \mathcal{E}_r $10^2 ... 10^4$
- 3) 居里点
- 4) 压电现象

超声换能器

(演示实验)

4 有电介质时静电场的计算

自由电荷和极化电荷产生电场的叠加

$$|\vec{E} = \vec{E}_0 + \vec{E}'|$$

$$q' = - \oiint_{S} \vec{P} \cdot \hat{n} dS \qquad \sigma' = \vec{P} \cdot \hat{n}$$

$$\vec{P} = \varepsilon_0(\varepsilon_r - 1)\vec{E}$$

例1 平行板电容器

充满均匀各向同性线性电介质.

求:板内的场

解:均匀极化

表面出现束缚电荷

所有电荷场叠加

$$E_{0} = \frac{\sigma_{0}}{\varepsilon_{0}} \qquad E' = \frac{\sigma'}{\varepsilon_{0}}$$

$$E = E_{0} - E'$$

$$\sigma' = P_n = P = \varepsilon_0 (\varepsilon_r - 1)E$$

$$E = \frac{\sigma_0}{\varepsilon_0} - \frac{\varepsilon_0(\varepsilon_r - 1)E}{\varepsilon_0}$$

$$E = \frac{\sigma_0}{\mathcal{E}_0 \mathcal{E}_r}$$

各向同性均匀电介质充满电场空间

例2 点电荷周围充满电介质时的电场

$$\vec{E} = \frac{Q_0}{4\pi\varepsilon_0\varepsilon_r} \frac{\vec{r}}{r^3}$$

学习D的高斯定理以后请自行验证

15.5 电位移矢量 $ar{D}$ electric displacement vector

一. 电位移矢量

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

各向同性线性介质
$$\vec{P} = \varepsilon_0(\varepsilon_r - 1)\vec{E}$$

介质方程
$$\vec{D} = \varepsilon_0 \varepsilon_r \vec{E}$$
 $\varepsilon = \varepsilon_0 \varepsilon_r$

$$\varepsilon = \varepsilon_0 \varepsilon_r$$

量纲
$$\left[\vec{D} \right] = \left[\vec{P} \right] = \left[\sigma \right]$$
 单位 C/m^2

二. \vec{D} 的高斯定理

某种对称性的情况下,可以首先解出了

即
$$\vec{D} \Rightarrow \vec{E} \Rightarrow \vec{P} \Rightarrow \sigma' \Rightarrow q'$$

例1 导体球置于均匀各向同性介质中 (同心)如图示,导体带电 Q

求:

- 1. 场的分布
- 2. 紧贴导体球表面处的极化电荷
- 3. 两介质交界处的极化电荷

解: 根据球对称性

$$\iint_{S} \vec{D} \cdot d\vec{S} = \sum_{i} q_{0i}$$

$$\vec{D} = \begin{cases} 0 & r < R_0 \\ \frac{Q}{4\pi r^2} \hat{r} & r > R_0 \end{cases}$$

1)场的分布

$$\vec{E} = \frac{\vec{D}}{\mathcal{E}_0 \mathcal{E}_r}$$

$$\vec{P} = \left(1 - \frac{1}{\varepsilon_r}\right) \vec{D}$$

接区域分别有
$$\vec{E}_0 = 0$$
 $\vec{P}_0 = 0$

$$\vec{E}_1 = \frac{Q}{4\pi\varepsilon_0\varepsilon_{r1}r^2}\hat{r} \qquad \vec{P}_1 = \left(1 - \frac{1}{\varepsilon_{r1}}\right)\frac{Q}{4\pi r^2}\hat{r}$$

1换成2

球对称极化,不是均匀极化

极化电荷体密度?

$$-q' = \bigoplus_{S} \vec{P} \cdot d\vec{S}$$

$$q_0 = \bigoplus_{S} \vec{D} \cdot d\vec{S}$$

$$\vec{P} = \left(1 - \frac{1}{\varepsilon_r}\right) \vec{D}$$

自由电荷密度为零处极化电荷密度亦为零

思考:点电荷Q周围极化电荷?

2) 求紧贴导体球表面处的极化电荷

$$\sigma' = \vec{P} \cdot \hat{n} \Big|_{r=R_0} = -P_1 \Big|_{r=R_0}$$

$$= -\frac{Q}{4\pi R_0^2} \left(1 - \frac{1}{\varepsilon_{r1}} \right)$$

$$q' = \sigma' \cdot 4\pi R_0^2 = \left(\frac{1}{\varepsilon_{r1}} - 1 \right) Q$$

3) 两介质交界处极化电荷

$$|\sigma'|_{r=R_1} = (P_1 - P_2)|_{r=R_1} = \frac{Q}{4\pi R_1^2} \left(\frac{1}{\varepsilon_{r2}} - \frac{1}{\varepsilon_{r1}} \right)$$

例2 一无限大各向同性均匀介质平板厚度为 d

相对介电常数为 ε_r 内部均匀分布体电荷密度为 ρ_0 的自由电荷

求:介质板内、外的DEP

解: 取坐标系如图

中心面对称 \vec{D} \vec{E} \vec{P} 上平板

$$x = 0$$
 处 $E = 0$

以 x=0 处的面为对称 过场点作正柱形高斯面 S底面积设 S_0

$$|x| \le \frac{d}{2} \qquad 2DS_0 = \rho_0 2|x|S_0$$

$$D = \rho_0|x|$$

$$|x| \ge \frac{d}{2} \qquad 2DS_0 = \rho_0 S_0 d$$

$$D = \frac{\rho_0}{2}d$$

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

$$|x| \le \frac{d}{2} \qquad \boxed{D = \rho_0 |x|}$$

$$E = \frac{D}{\mathcal{E}_0 \mathcal{E}_r} = \frac{\rho_0 |x|}{\mathcal{E}_0 \mathcal{E}_r}$$

$$P = \left(\varepsilon_r - 1\right) \frac{\rho_0 |x|}{\varepsilon_r}$$

$$|x| \ge \frac{d}{2} \qquad D = \frac{\rho_0}{2} d$$

$$E = \frac{D}{\varepsilon_0} = \frac{\rho_0 d}{2\varepsilon_0}$$
 均匀场
$$P = \varepsilon_0 (\varepsilon_r - 1)E = 0$$

极化体电荷密度?

$$\vec{P} = \left(1 - \frac{1}{\varepsilon_r}\right) \vec{D}$$

$$\rho' = -\left(1 - \frac{1}{\varepsilon_r}\right) \rho_0$$

极化电荷面密度?

$$\sigma' = P_{x=\pm d/2}$$

$$\sigma' = (1 - \frac{1}{\varepsilon_x}) \frac{\rho_0 d}{2}$$

三. 边值关系**

如果分界面上没有自由电荷

$$D_{1n} = D_{2n}$$

$$= \vec{D}_1 \cdot \hat{n}_1 \Delta S + \vec{D}_2 \cdot \hat{n}_2 \Delta S$$
$$= (D_{1n} - D_{2n}) \Delta S$$

$$(D_{1n} - D_{2n})\Delta S = q_0$$

$$D_{1n} - D_{2n} = \sigma_0$$

$$\oint_{L} \vec{E} \cdot d\vec{l} = (E_{1t} - E_{2t}) \Delta l = 0$$

$$E_{1t} = E_{2t}$$

如果分界面上没有自由电荷

$$D_{1n} = D_{2n} \rightarrow \varepsilon_1 E_{1n} = \varepsilon_2 E_{2n}$$

$$\tan \theta = \frac{E_t}{E_n} \qquad \qquad \Xi_{1t} = E_{2t}$$

$$\frac{\tan \theta_1}{\tan \theta_2} = \frac{E_{1t}E_{2n}}{E_{1n}E_{2t}} = \frac{E_{2n}}{E_{1n}} = \frac{\varepsilon_1}{\varepsilon_2}$$

电位移线或电场的折射定理

如下图, 电场为何?

 $2\pi r^2(\varepsilon_1 + \varepsilon_2)E = q$

E 球对称!

电场的叠加原理

自由电荷和极化电荷 球对称分布

E球对称!

自洽解

胡友秋、程福臻、叶邦角 电磁学与电动力学(上册)

15.6 有电介质时静电场的能量

一. 有介质时的电容器的电容

设備电
$$Q$$

 S
 ΔS $E = \frac{E_0}{\varepsilon_r}$ $U = \frac{U_0}{\varepsilon_r}$
 $C = \frac{Q}{U}$ $\varepsilon_r = \frac{C}{C_0}$ 电容率

$$E_0 = \frac{\sigma_0}{\varepsilon_0} \qquad D = \varepsilon_0 \varepsilon_r E = \varepsilon_0 E_0 = \sigma_0 = \frac{Q}{S}$$

导体内
$$D=0$$

二. 场能密度

有介质时电势能?

电池做功 = 电容器储能

$$W_{e} = A = \int IUdt = \int Udq$$

$$W_e = \int_0^Q \frac{q}{C} dq = \frac{Q^2}{2C} = \frac{1}{2}CU^2 = \frac{1}{2}QU$$

有无介质 电容器电能公式相同

能量储存于场中

$$W_e = \frac{1}{2}QU = \frac{1}{2}DSEd = \frac{1}{2}DEV$$

电场能量密度为
$$w_e = \frac{W_e}{V}$$

$$w_e = \frac{1}{2}\vec{D}\cdot\vec{E}$$
 普遍