Improper Integrals

1: Infinite Interals

(a) If
$$\int_{a}^{t} f(x) dx$$
 exists for $\forall t \ge a$

$$\int_{a}^{\infty} f(x) dx = \underbrace{1}_{t \to \infty} \int_{a}^{t} f(x) dx$$

(b) "
$$\int_{t}^{b} f(x) dx = xi3ts \quad \text{for } \forall t \leq b$$

$$\int_{\infty}^{b} f(x) dx = \frac{1}{t + \infty} \int_{t}^{b} f(x) dx$$

$$\int_{a}^{\infty} f(x) dx \cdot \int_{-\infty}^{b} f(x) dx$$
 convergent if limit exists

divergent if limit dues not exist.

I: Discontinuity

(a)
$$f$$
 continuous on $[a/b]$, discontinuous at b .

$$\int_a^b f(x) dx = \frac{1}{t+b} \int_a^t f(x) dx$$

(b)
$$f$$
 continuous on $(a,b]$, discontinuous at a
$$\int_a^b f(x) dx = \frac{Q}{t-at} \int_t^b f(x) dx$$

1c) discontinuity at
$$c$$
, $a < c < b$.

both $\int_{a}^{c} f(x) dx$. $\int_{c}^{b} f(x) dx$ convergent

 $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$

Comparison Theorem

f.g Continuous functions. $f(x) \ge g(x) \ge 0$ At $(a) \ge 1$ for $(a) \ge 1$