Assignment 2

Part A

Prajyot Nimsarkar

echo "Hello, World!" : Prints "Hello, World!" on the cmd terminal.

name="Productive": Assigns the string "Productive" to the variable name. it will be saved until the system is not restarted

touch file.txt : Creates an empty file named file.txt. in the current directory

Is -a :-Lists all files, including hidden ones / list information about the files in the current directory.

rm file.txt : Deletes the file file.txt in that directory .

cp file1.txt file2.txt : Copy the content of file1.txt to the file2.txt.

mv file.txt /path/to/directory/ : Move the file.txt file to the specified directory that we will given in cmd.

chmod 755 script.sh :- Gives read, write, execute permissions to the owner and read, execute permission to group and others for that file.

grep "pattern" file.txt :- Searches for "pattern" in file.txt.

kill PID : Terminates the process with the given PID or Process ID .

mkdir mydir && cd mydir && touch file.txt && echo "Hello, World!" > file.txt && cat file.txt :Creates a directory mydir, enters in mydir directory then, creates file.txt then, writes "Hello, World!" into the file.txt, and then displays the contents of file.txt.

Is -I | grep ".txt" :- Lists all .txt files in long format.

cat file1.txt file2.txt | sort | uniq – Merges the both files then sorts, and removes duplicate lines from file1.txt and file2.txt and show the uniqe values.

Is -I | grep "^d" - Lists only directories in that directory.

grep -r "pattern" /path/to/directory/ :- Searches for "pattern" recursively in the given directory.

cat file1.txt file2.txt | sort | uniq -d :- Shows duplicate lines common to both files in the file1.txt & file2.txt.

chmod 644 file.txt: Gives the owner read &write permission and gives read-only permissions to the group and others.

cp -r source_directory destination_directory :- Copies a directory recursively.

find /path/to/search -name "*.txt" :- Searches for .txt files in the given path.

chmod u+x file.txt :- Gives execute permission to the file owner of file.txt .

echo \$PATH: Displays the system's executable search paths in the cmd.

Part B

Identify True or False:

1.1s is used to list files and directories in a directory.
True
2. mv is used to move files and directories.
True
3. cd is used to copy files and directories.
False
4. pwd stands for "print working directory" and displays the current directory.
True
5. <i>grep</i> is used to search for patterns in files.
True
6 . <i>chmod 755 file</i> . txt gives read, write, and execute permissions to the owner, and read and execute permissions to group and others.
True
7. <i>mkdir -p directory1/directory2</i> creates nested directories, creating directory2 inside directory1 if directory1 does not exist.
True
8. rm -rf file.txt deletes a file forcefully without confirmation.
True
Identify the Incorrect Commands:
1.chmodx is used to change file permissions.
chmod
2. cpy is used to copy files and directories.
ср
3. mkfile is used to create a new file.
Touch filename
4. catx is used to concatenate files.
cat
5. rn is used to rename files.

mv oldname newname

Part C

Question 1: Write a shell script that prints "Hello, World!" to the terminal.

```
cdac@Prajyot:~/Feb25/LinuxAssignment$ cd assi2/
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ echo "Hello, World!"
Hello, World!
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
```

Question 2: Declare a variable named "name" and assign the value "CDAC Mumbai" to it. Print the value of the variable.

```
cdac@Prajyot:~/Feb25/LinuxAssignment$ cd assi2/
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ name="CDAC Mumbai"
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ echo $name
CDAC Mumbai
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
```

Question 3: Write a shell script that takes a number as input from the user and prints it.

```
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ touch sh1
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ nano sh1
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ cat sh1
echo "Enter a number"
read Num1
echo "you have entered a number $Num1 "
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ bash sh1
Enter a number
10
you have entered a number 10
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
```

Question 4: Write a shell script that performs addition of two numbers (e.g., 5 and 3) and prints the result.

```
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ nano sh2
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ cat sh2
echo enter 1st no
read num1
echo enter a 2nd no
read num2
sum = (num1 + num2)
echo "the sum of $num1 & $num2 is $sum "
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ bash sh2
enter 1st no
enter a 2nd no
sh2: line 5: num1: command not found
sum: '=': No such file or directory
the sum of 5 & 3 is
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ nano sh2
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ cat sh2
echo enter 1st no
read num1
echo enter a 2nd no
read num2
sum=$(( num1 + num2 ))
echo "the sum of $num1 & $num2 is $sum "
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ bash sh2
enter 1st no
5
enter a 2nd no
the sum of 5 & 3 is 8
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
```

Question 5: Write a shell script that takes a number as input and prints "Even" if it is even, otherwise prints "Odd".

```
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ cat sh3
echo enter a number
read num1

if (( $num1 % 2 == 0 ))
then
    echo "$num1 is Even"
else
    echo "$num1 is Odd"
fi
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ bash sh3
enter a number
5
5 is Odd
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
```

Question 6: Write a shell script that uses a for loop to print numbers from 1 to 5.

```
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ nano sh4
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ bash sh4
1
2
3
4
5
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$
```

Question 7: Write a shell script that uses a while loop to print numbers from 1 to 5.

Question 8: Write a shell script that checks if a file named "file.txt" exists in the current directory. If it does, print "File exists", otherwise, print "File does not exist".

```
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ nano filecheck.sh

cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ cat filecheck.sh

if [ -f "file.txt" ]

then
        echo "File exists"

else
        echo "File does not exist"

fi

cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ ./filecheck.sh
-bash: ./filecheck.sh: Permission denied
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ chmod +x filecheck.sh
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ ./filecheck.sh
File does not exist
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ |
```

Question 9: Write a shell script that uses the if statement to check if a number is greater than 10 and prints a message accordingly.

```
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ nano sh6
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ cat sh6
echo Enter a number
read num
if [ "$num" -gt 10 ]
then
        echo "The number is greater than 10"
else
        echo "The number is 10 or less"
fi
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ bash sh6
Enter a number
15
The number is greater than 10
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ |
```

Question 10: Write a shell script that uses nested for loops to print a multiplication table for numbers from 1 to 5. The output should be formatted nicely, with each row representing a number and each column representing the multiplication result for that number.

```
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ nano script.sh
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ chmod +x script.sh
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ ./script.sh
  1
      2
          3
              4
             8
  2
      4
          6
                10
      6
          9
            12
                15
  3
  4
      8
         12
             16
                 20
  5
     10
         15
             20 25
dac@Prajyot:~/Feb25/LinuxAssignment/assi2$
```

Question 11: Write a shell script that uses a while loop to read numbers from the user until the user enters a negative number. For each positive number entered, print its square. Use the break statement to exit the loop when a negative number is entered

```
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ nano squareloop.sh
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ ./squareloop.sh
enter a no
20
Square of 20 is 400
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ ./squareloop.sh |
```

Part E

1. Consider the following processes with arrival times and burst times:

Proc	ess Arri	val Time B	urst Ti	me
P1	0	5		
P2	1	3		
P3	2	6		

Calculate the average waiting time using First-Come, First-Served (FCFS) scheduling.

	DATE		-		
6	FCFS scheduling		1000		
	O T	1	0 1/	*10	1-0-
	unit levius com oug	Bust time	Aspond tine	witing	TAT , wattow,
		+		0	5
	p, 0	5	5	4	7
	P. 2	6	8	6	12
7	P3 2	6	0	9	
		Aug = 4-6	A=4-3	A=3.3	A J9 = 8
7		100			10 =
	ELENDENCE DE LA TEXT	STE Survey			
T.	Grand chart 1 P,	Pa	Pa		
	exil time 0	5	8	14	
1					
1000		S	No. T.	550	

2. Consider the following processes with arrival times and burst times:

Calculate the average turnaround time using Shortest Job First (SJF) scheduling.

					AL THE		<u> </u>		
(1)	showle	doj te	for	1		yer Muber	20 00	100	
		J				0			
TAT	per House	Buspard	enit	taid 1	crait	print	602	marg	
tieva+ Ros	Resour	Lovies	Bures	Re	pon æ	twoit	PAY	TAT	
5	0	1ºme	Time	5 to	me	O Tom	e	WFB	
F	1 1	5		8		10		09	
12	6, 5	08	3-	9 0		1 2		p. 74	Autorna
136/3	Pa	1	5	9		3		14	
8 = 106	1930 F	1821=AX	1	pul 2		216 2	- 1885	3	
0	Py	3	4	5		5		9	
		1.0	1	1	11.	2 1	100	A.10	275
			12	und:	19/1	A29 - 2		t 123	27.5
	7	1 1 0		-		0	Day!	149	V15-11-412
Gont	, 41 P.	1P, P3P	10 P4	Py Py	P4 P3	P2 P2	P2 P2		
more we	choul	1 2 3	45	67	8 9		12 13	14	aus m
you will			1 (1 - 1	7.1				noghieu	Pari
									1 thus
	D. C. S.			Will have					

3. Consider the following processes with arrival times, burst times, and priorities (lower number indicates higher priority):

| Process | Arrival Time | Burst Time | Priority | 3 6 P1 0 P2 | 1 4 | 1 7 | P3 |2 |4 P4 3 2 12

Calculate the average waiting time using Priority Scheduling.

						DATE .:			
(3)	Peirouity (100 runhou indicates high Pairouity)								
hon Ma	10 000	Dellow to Clos kontains had prosent (3)							
	Proces								
TA	T	time	Timewow	Unsakes	Time	Time	TAT		
8	+ 60	our T	Venit-	1 cmit	ent	enot			
51	P,	0	6	3	0	0+6 = 6	12		
07	P	201	40	10	141	.0	94		
31	Py	20.1	71	4 -	12 2	10	0 17		
	174	32	21	20	5	2	094		
1-1		1 = 1	1 1	9	8	13.	191		
3.11	PUA	15 (1)	1		Av=4.5	A=4.5	A=9.25		
5.11	Tract 1	12.11 = PUA	1 Dape	A E Pui	91				
Cont char	1191	P2 P2	P2 Pa	1 P4 P4	Pa P.	P3 1			
waiting			119	129 50	1019	1919	9 ton		
Time	0	1 2	3 4	5/60	78-	13 19	O thendo		
			1	1 1					
- Company									
		A TOP TO SERVICE							

4. Consider the following processes with arrival times and burst times, and the time quantum for Round Robin scheduling is 2 units:

Proc	ess Arr	ival Time 1	Burst Time
P1	0	4	
P2	1	5	
P3	2	2	
P4	3	3	

Calculate the average turnaround time using Round Robin scheduling.

	1 1	. JING			1			
(L)	0	Du 201	atin a	Lusion us No	enit mata	= 21/401	10 O	
4	Round Robin. quitam time = 2 de con old out							
TAT	yen g	iou o	nogra A	I phieone ?	1 terus	A LANGE VIEW	20049)	
atu		Lucipul	Bunt	Responce	part we	completion	TAT	
		Time	Time	Time	Time	Time	w+B	
12	1 3	= 2+0	0	5	9	0	19	
4	9,	3	4/	01	6 P	10/	9 10	
Ŧ1	P2	01	5 51	2 4	14	165	69 16	
P	Pa	2	20	45	20	68	176	
	Pu	3	3	6	10	14	14	
25. P= 1	1 5.	1=A	CON = NA			1 1		
				Avg=3 1	149=8	Aug=115	Ay9 = 11.5	
				0		1.9		
		[09]	19 49	104/01	102 02	1 92 91	9 But time	
Grand	P.1 P	2 /3/		PalPu	P2		port inter	
charlt	0 02	45	5 18 1	103 15	14 66	112	0 2007	

5. Consider a program that uses the fork() system call to create a child process. Initially, the parent process has a variable x with a value of x. After forking, both the parent and child processes increment the value of x by x. What will be the final values of x in the parent and child processes after the fork() call?

```
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ gcc forkex1.c -o forkex1.c
gcc: fatal error: input file 'forkex1.c' is the same as output file
compilation terminated.
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ gcc forkex1.c -o forkex1
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ ./forkex1
Parent Process: x = 6
Child Process: x = 6
cdac@Prajyot:~/Feb25/LinuxAssignment/assi2$ |
```