Internship Program Report

By

V.SHANMUKHA SRIVALLI-19485A0237

In association with

Contents

Introduction	3
Programorganiser	3
Courtesy	3
Program details	3
Internshipprogram	3
3 rd May2021: Introduction toEPCIndustry	4
4 th May2021: Engineering documentation forEPCprojects	5
5 th May2021: Engineering documentation for commandsandformulae	6
7 th May2021: Engineering documentation for Electricalsystemdesign	7
10 th May2021: Engineering documentation forTypicaldiagrams	8
11 th May2021: Classification of TransformersandGenerators	9
12 th May2021: Classification of Switchgare construction and powerfactorimprovement	10
17 th May2021: Detailing about UPS systemandBusducts	11
18 th May2021: Detailing about Motor Starters and Sizingofmotors	12
19 th May2021: Discribing about Earthing system and Lighting Protection	
20 th May2021: Lighting or illumination systems and calculations	14
21 th May2021: Lighting or illumination systems using DIALUX software	15
24 th May2021: Cabling and their calculationsandtypes	
25 th May2021: Cabling calculations and Cableglandselection	17
28 th May2021: Load calculations and Transformersizing calculations	
29th May2021: DGsetcalculations	19
2nd june2021: Caluculations of Earthing andLightingprotection	
5 thjune 2021: Cable sizing and cable traysizing calculations	
Conclusion	
Faadhack:	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGEin association with Smart Internz, Hyderabad for the benefit of 3rdyear EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. SrinivasaRao–Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar -System Support

Mr. Harikanth-Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

ROLL NO: 19485A0237 June 2021

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

71

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

ROLL NO: 19485A0237 June 2021

5 th May2021: Engineering documentation for commands and formulae

3	Document & Drawing	MS Word	Report / Calculations formats
	tools	MS Excel	Basic excel commands
		Autocad	Basic line diagrams and layout
			commends

3C. AUTOCAD BASIC COMMANDS

AUTOCAD BASIC KEYS								
STAND	STANDARD		DRAW		MODIFY		FORMAT	
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	MO	
OPEN	Ctrl+O	RAY	RAY	COPY	СО	SELECT COLOR	COL	
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA	
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT	
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW	
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS	
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI	
PASTE	Ctrl+V	CIRCLE	С	SCALE	SC	DIMEN, STYLE	D	
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN	
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP	
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX			
		POINT	PO	BRAKE	BR			
		HATCH	Н	CHAMFER	CHA			
		GRADIENT	GD	FILLET	F			
		REGION	REG	EXPLODE	X			
		BOUNDARY	ВО					
		DONUT	DO					

EXTRA			DRAFT	ING	PAPER SIZE	
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID 🖟	F7, Ctrl+G	A1=594*841
ALL	Α	OBJECT SNAP	ОВ	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Here we need to learn the basis of the autocadbasic keys like standard, modify,draw,format,papersize etc..

7th May2021: Engineering documentation for Electrical system design

4	Electrical system	Overall plant description
	design for a small	Sequence of approach
	small project	Approach to detailed design

Topic details:

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5	Electrical system design for typical diagrams		
		Load lists shedule	Power flow diagram
		Single line diagram	Typical schematic
			diagram

Topic details:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

(6 (Classification of		
		Transformers and Generators	Different types of Transformers	Different types of Generators

Topic details:

Classification of Transformers and Generators

12th May2021: Classification of Switchgare construction and power factor improvement

7	Classification of Switchgare construction and power factor improvement	Different types of Switchgare assembles	Power factor improvement

Topic details:

Classification of Switchgarecontruction and Power FactorImprovement

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topicdetails: Detailing about Motor Starter and Sizing of motors and theirselection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-LineStarter
- Rotor ResistanceStarter
- Stator ResistanceStarter
- Auto TransformerStarter

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing	Plant Earthing system	Lighting Protection materials
	about Earthing		
	system and		
	Lighting		
	Protection.		

Topicdetails: Discribing about Earthing system and LightingProtection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11	Lighting		
	or	Lighting or illumination systems	Lighting calculations
	Illuminatio		
	n systems		
	and		
	Calculation		
	S		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon,

CG Lux Applicable Standards: IS 6665: Code of practice for industrial

lighting, IS 3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12	Lighting or				
	Illumination	Lighting or illumination systems	Operation	of	dialux
	using DIALUX		software		
	software				

Topicdetails: Lighting or Illumination Calculations using DIALUXsoftware.

Here we are using this Dialuxevo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

ROLL NO: 19485A0237 June 2021

24th May2021: Cabling and their calculations and types.

13	Cabling and their				
	types and claculations	Cabling calculations	Types materials	of	cabling

Topic details: Cabling and their types and claculations .

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling	Cabling calculations	Cable aland salestian
	claculations and	Cabling calculations	Cable gland selection
	cable gland		
	selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table
Refer to illustration at the top of the page

Cable Gland Size	Available Entry Threads "C" (Alternate Metric Thread Lengths Available)		Cable Bedding Diameter "A"	ng Cable	Armour Range		Across Flats "D"	Across Corners "D"	Protrusion	
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length "F"	
20516	M20	10.0	8.7	13.2	0.8	1.25	24.0	26.4	35.2	
205	M20	10.0	11.7	15.9	0.8	1.25	24.0	26.4	32.2	
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6	
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.6	36.4	
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6	
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6	
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6	
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1	
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0	
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	88.0	49.8	
755	M75	15.0	62.0	72.1	2.0	2.5	90.0	99.0	63.7	
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3	
90	M90	24.0	80.0	90.4	3.15	4.0	114.3	125.7	66.6	

28 th May 2021: Load calculations and Transformer sizing calculations

15	Load cale	culations		
	and	TR	Load calculations	TR calculations
	calculation	ons		

Topic details:

List of electrical load calculations.

T/F calculation:

29th May2021: DG set calculations

16	DG set
	calculations

Topic details:

Transformer and DG set calculations, types , sizing or selections

Assignment - 3 DG SIZING CALCULATIONS		
Design Data		
Rated Volatge	415	KV
Power factor (CosØ)	0.77	Avg
Efficiency	0.89	Avg
Total operating load on DG set in KVA at 0.77 power factor	409.4	
Largest motor to start in the sequence - load in KW	75	KW
Running kVA of last motor (Cos@= 0.91)	109	KVA
	6	(Considering starting
Starting current ratio of motor	657	method as Soft starter) KVA
Starting KVA of the largest motor	637	NVA.
(Running kVA of last motor X Starting current ratio of motor)		
Base load of DG set in KVA	300	KVA
(Total operating load in kVA – Running kVA of last motor)		
Continous operation under load -P1		
Capacity of DG set based on continuous operation under load P1	300	KVA
	-	
Transient Voltage dip during starting of Last motor P2		
Total momentary load in KVA	957	KVA
(Starting KVA of the last motor+Base load of DG set in KVA		
Subtransient Reactance of Generator (Xd")	7.91%	(Assumed)
Transient Reactance of Generator (Xd')	10.065%	(Assumed)
Xd"' =(Xd"+Xd")/2	0.089875	
Transient Voltage Dip Transient Voltage dip during Soft starter starting of Last motor	15%	(Max)
P2 = Total momentary load in KVA x Xd" x (1-Transient Voltage Dip)		
(Translent Voltage Dip) Overload capacity P3	FALSE	KVA
Capacity of DG set required considering overload capacity Total momentary load in		
KVA overcurrent capacity of DG (K) (Ref. IS/IEC 60034-1, Clause 9.3.2)		
Capacity of DG set required considering overload capacity (P3) Total momentary load in KVA		
overcurrent capacity of DG (K)	957	KVA
Considering the last value amongst P1, P2 and P3 Continous operation under load -P1		NVA
Transient Voltage dip during Soft starter starting of Last motor P2 Overload capacity	150%	
P3 Considering the last value amongst P1, P2 and P3		
	638	KVA
	300	KVA
	FALSE	KVA
	638	KVA
	638	KVΔ

ROLL NO: 19485A0237 June 2021

2nd june2021: Caluculations of Earthing and Lighting protection.

17	Calculation of		
	Earthing and	Earthing calculations	Lighting protection
	Lighting		calculation
	protection		
	calculations		

Topic details:

Calculation of Earthing and Lighting protection calculations

Earthing calculation

5 thjune 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and	Californiai e calculation e	Calda Assas a dandada s
	cable tray sizing	Cable sizing calculations	Cable tray calculation
	calculations		

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

		Cable tary sizing							
LT CABLES									
CABLE TRAY: FI	ROM	LT-4	_	то	L	r-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	4	50	1	46	29	3.25	3.25	
2	PU 2314A	4	25	1	14	22	1.4	1.4	
3	PU2324	4	6	1	46	18	0.9	0.9	
4	PU2305	4	70	1	14	29	3.25	3.25	
5	MX2305	4	70	1	46	29	3.25	3.25	
6	MX2308	4	70	1	14	29	3.25	3.26	
7	BW2313	4	35	1	22	24	1.8	1.8	
8	SC2314	4	10	1	22	18	0.9	0.9	
9	AG2324A	4	6	1	40	18	0.9	0.9	
10	AG2305	4	25	1	26	22	1.4	1.4	
11	AG2309	4	10	1	26	18	0.9	0.9	
12	AG2310	4	10	1	26	18	0.9	0.9	
13	AG2314	4	16	1	28	21	1	1	
	·								
				_					
				_					
	Total	•	†	13		296	23.1	23.1	

1 Core Cor		No. of No. of Size (mm2) 1 4.0 50 1 4.0 25 1 4.0 70 1 4.0 70 1 4.0 70	Rating factor factor	Densifing Dens	19 Current Langth (A) (M) 2 MIEST 98 2 MIEST 86 2 MIEST 88 2 MIEST 75 3 MIEST 75	Cable Cable Realstance (Dima/M) (Ohma/M) REF1	Voltage Volta drop drop drop (Running) (Running) (Running) (Running) (V) (N) sitter si	p drop ing) (Starting (V) FI #REF1 FI #REF1 FI #REF1	(N) REFT REFT REFT REFT	Cable OD of size Cable result (mm) WREF!
2 0 WEC 1/2164 Neutremberhalm graps 1937 22 65 3 37 2011 08 3 3 3 4 WEC 1/2164 Neutremberhalm graps 1937 22 65 3 37 2011 08 3 4 3 4 5 4 5 5 5 7 2 6 5 5 5 7 2 6 5 5 7 2 6 5 5 7 2 6 5 7 2 6 5 7 2 6 5 7 2 6 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7	08 08 05 2 08 08 05 2	1 40 25 1 40 6 1 40 70 1 40 70 1 40 70	#MEF1 038 09 #MEF1 038 09 #MEF1 038 09 #MEF1 038 09 #MEF1 038 09	1 1 0.860 1 1 0.860 1 1 0.860 1 1 0.860	2 #REFT 60 2 #REFT 85 2 #REFT 75 2 #REFT 75	REFT REFT REFT REFT REFT REFT	MER ME MER ME MER ME	FI AREFI	REFI REFI REFI	MERI MERI MERI MERI MERI MERI MERI MERI
3 0 WGC PGS PGS Set 1 Page 94 49 13 49 3 45 15 12 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	08 08 05 2 08 08 05 2 08 08 05 2 08 08 05 2	1 4.0 8 1 4.0 70 1 4.0 70 1 4.0 70	#REF1 0.98 0.9 #REF1 0.98 0.9 #REF1 0.98 0.9 #REF1 0.98 0.9	1 1 0.860 1 1 0.860 1 1 0.860	#REFT 75 #REFT 75	REFT REFT REFT REFT	MER ME MER ME MER ME	FI AREFI	AREF1 AREF1	REFI REFI REFI REFI
4 0/18/C PLZSS Ved Purpleposito) 85 M Rt 69 5 1 10/1 7285 04 5 1 10/1 7285 04 1 1	08 08 05 2 08 08 05 2 08 08 05 2	1 40 70 1 40 70 1 40 70	#REF1 0.98 0.9 #REF1 0.98 0.9 #REF1 0.98 0.9	1 1 0.860	#EFT 75	REFI REFI	WEN WE	FI AREFI	AREF1 AREF1	REFI REFI
\$ UNICO MODE ther #28 R R 45 3 100 7020 00 5 5 0 100 7020 00 5 0 1 0 100 7020 00 5 0 1 0 100 7020 00 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	08 08 05 2 08 08 05 2	1 40 70	#REF1 0.98 0.9 #REF1 0.98 0.9	1 1 0.860	#REF1 75	AREFT AREFT	WEN WE		#REF1	MER MER
6 VMCC MCCR MCCR New 251 9 102 70 70 10 6 1 7 1 10 10 10 10 10 10 10 10 10 10 10 10 1	08 08 05 2	1 4.0 70	#REF1 0.98 0.9					PI AREFI		
7 UVICC 80201 Blow 2313 37 45 3 507 3308 54 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				1 1 0.860	#REF1 105	4000 4000	40ED 40E	EL ADEEL	40.001	WHEN MAKES
8 VMSC 50274 Core conveys 5.54 75 455 3 114 6534 0.8 9 VMSC 60204 choice the splots 451 75 455 3 55 3 50 20 0.8 10 VMSC ACCOS debt of section splots 17,22 20 45 3 3 15 3 15 0.00 0.8 11 VMSC ACCOS (accos splots) choice of section seeks splots 17,22 20 45 3 3 113 6845 0.8	08 08 05 2	1 40 %							#REF1	WELL WELL
9 ILV MCC ACCOMA dels and bin agater 4.01 7.5 415 3 8.5 51.22 0.8 10 ILV MCC ACCOMA dels and agater 7.75 7.5 415 3 8.5 51.22 0.8 0.8 11 ILV MCC ACCOMA dels and agater 7.75 7.75 7.8 11 3 3 8.1 186.46 0.8 0.8 11 ILV MCC ACCOMA del mader viewal agater 6.50 6.2 415 3 11.3 67.62 0.8			#REF1 0.98 0.9	1 1 0.860	#REF1 95	REFT REFT	WEN WE	PI AREFI	#REF!	REF! REF!
10 LV MCC AG2005 official rection weed agheter 17.87 22 415 3 31.1 186.48 0.8 11 LV MCC AG2000 (ye of rection vessel agheter 6.50 9.2 415 3 11.3 67.62 0.8	0.6 0.8 0.5 2	1 4.0 10	#REF1 0.98 0.9	1 1 0.860	MEN 65	#REF! #REF!	AREP ARE	PI AREFI	#REF!	WEN WEN
11 LV MCC AC2309 (se of reaction vessel agilator 6.50 9.2 415 3 11.3 67.62 0.8	08 08 05 2		#REF1 0.98 0.9	1 1 0.860	#REF1 85	#REF! #REF!	AREFT ARE	PI AREFI	#REF1	WEFT WEFT
	08 08 05 2		#REF1 0.98 0.9	1 1 0.860	#REF1 75	#REF! #REF!	AREFT ARE	PI AREFI	#REF!	REF! REF!
	0.8 0.8 0.5 2		#REF1 0.98 0.9	1 1 0.860	#REF1 65	REFT REFT	AREN ARE	PI PREFI	#REF1	REF! REF!
12 LV MCC AG2510 lys of reaction vessel agilator 6.50 9.2 415 3 11.3 67.62 0.8	08 08 05 2		#REF1 0.98 0.9	1 0.80	AREFT 65	REFI REFI	MEN NO	PI ARUFI		REFT REFT
13 LV MCC AG2314 Scep adsorbant bink ag/bifor 11.37 15 415 3 19.8 118.64 0.8	08 08 05 2	1 40 16	#REF1 0.98 0.9	1 1 0.86	#REF1 65	REFT REFT	AREFT ARE	PI PREFI	AREF!	WEFT WEFT
								_	-	-
								_		\rightarrow
								_	\perp	\rightarrow
										$\overline{}$
									1 7	

BBSC:

1. Overall destroy factor in 11x 12x 113 x 14x

11x - tating factor for variation in adjusted temperature
(2xx - tating factor for significant for significant for adjusted temperature
(2xx - tating factor for significant for adjust factor for adjusted temperature or adjusted factor for adjusted factor factor

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ELECTRICAL LOAD CALCULATIONS LV MCC

Assignment-1

).				1		,								•				
	Equipment	Equipment Description	Dranker	Drooks -	Drooks	= CB	Aboorbod	Motor / Lag-	امدما	Efficience:		kW = [A] / [D]		Consumed	Load	kVAR = kW	x tan φ	Dam -
·	Equipment No.	Equipment Description	Breaker Rating	Breaker Type	Breaker No. of	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor	Efficiency at Load	Power Factor at	Continuo	oue.	Interm	ittent	Stand-	hv	Rema
	INO.		Rating	Туре	Poles	Rating	Luau	Railing	[A] / [B]	Factor [C]	Load	Continue	Jus	IIIICIIII	itterit	Stariu-	Бу	
					1 0100				[/1]/[0]	i dotoi [O]	Factor [C]							
							[A]	[B]	[C]	[D]								
			A			mA	kW	kW	decimal	decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	1
	PU2315	Silica filter feed pump					43.84		0.97	0.91	0.78	48.18	38.65					
	PU 2314-A	Absorbesnt/Neutral oil pump (W)					12.73		0.85	0.85	0.73	15.0	14.0					
	PU 2314 -B	Absorbesnt/Neutral oil pump (S)					10.96		1.00	0.85	0.73					12.9	12.1	
	PU2305	Feed Pump (Seperator)					44.28		0.98	0.91	0.78	48.7	39.0					
	MX2305	MIXER (W)					44.62		0.99	0.91	0.78	49.0	39.3					
	MX 2308	MIXER (S)					44.62		0.99	0.91	0.78					49.0	39.3	
	BW2313	Blower					19.16		0.87	0.91	0.78	21.1	16.9				1	
	Rotary valve	TK 2313B (I)					1.86		0.85	0.85	0.73			2.2				
	SC2314	Screw conveyor (I)				-	4.30		0.91	0.85	0.73		T ===	5.06	4.74		1	
	AG 2324A	Citric acid tan agitator (W)					3.23		0.87	0.85	0.73	3.80	3.56					
	AG 2324B	Citric acid tank agitator (S)					3.23		0.87	0.85		40.00	40.04			3.8	3.6	
	AG 2305	Citric oil rection vessol agitator				\vdash	11.75		0.78	0.85		13.82	12.94				1	
	AG 2309	Lye oil reaction vessel agitator					4.27		0.91	0.85		5.02	4.70					
	AG 2310	Lye oil reaction vessel agitator					4.27	4.70	0.91	0.85	0.73	5.02	4.70				1	
- 1	AG 2314	Soap Adsorbant Tank Agitator					7.48	7.50	1.00	0.85	0.73	8.80	8.24					
-						1											+	
+																		
T																		
	Maximum of norn Est. x%E + y%F	nal running plant load : 220.5 kW		184.1	kVAR		sqrt (kW² +kVAR²) =	287.3	kVA	TOTAL	218.37	182.09	7.25	6.78	65.73	54.97	
`		,											<u> </u>		1		1	1
	Peak Load : [Est. x%E + y%F	227.1 kW + z%G)		189.6	kVAR		sqrt (kW² +kVAR²) =	295.9	kVA	kVA	284.32	2	9.9	3	85.68	3	
	ESI. X%E + Y%F	+ 2700)												I				
	Assumptions 1) Load factor, Ef	ficiency and Power factor. Load Rating (kW)	Effic	iency		Power fa	ctor											
		<= 20	0.8	85		0.73												
		> 20 - <= 45	0.9			0.78												
		> 45 - < 150	0.9			0.82												
		>= 150	0.9	94		0.91												

Calculation for Transformer Capacity Assignment-2

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	kW	kVar	kVA	
a. Continuous load	218.47	182.0	284.35	(i)
b. Intermittent load / Diversity Factor	7.25	6.8	9.94	(ii)
c. Stand-by load required as consumed load	65.73	55.0	85.71	(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	227.2	189.5	295.89	
Future expansion load (20% capacity)	45.4	37.9	59.18	
Total Load -	272.7	227 /	355.07	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

Max. Consumed load Spare capacity 59.2 kVA Required capacity 355.1 kVA Transformer rated capacity 120 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx. 5.3%, which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

120 kVA transformer selected.

ASSIGNMENT-3

	ASSIGNMENT-3		
	DG SET SIZING CALCULATIONS		
_	Design Data	_	
	Rated Volatge	415	KV
	Power factor (CosØ)	0.87	Avg
	Efficiency	0.74	Avg
	Total operating load on DG set in kVA at 0.87 power factor	287.3	
	Largest motor to start in the sequence - load in KW	45	KW
	Running kVA of last motor (CosØ= 0.91)	70	KVA
	Starting current ratio of motor	6	(Considering starting method as Soft starter)
	Starting KVA of the largest motor	419	KVA
	(Running kVA of last motor X Starting current ratio of motor)		
	Base load of DG set in KVA	217	KVA
	(Total operating load in kVA – Running kVA of last motor)		
^	Continuos anaustias undauland B1		
Α	Continuus operation under load -P1	217	
	Capacity of DG set based on continuous operation under load P1		KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	637	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd")	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd''' = (Xd'' + Xd')/2	0.089875	
	Transient Voltage Dip	15%	(Max)
	•		, , ,
	Transient Voltage dip during Soft starter starting of Last motor	324	KVA
	P2 = Total momentary load in KVA x Xd ^{III} x (1-Transient Voltage Dip) (Transient Voltage Dip)		KVA
С	Overload capacity P3		
	Capacity of DG set required considering overload capacity		
	Total momentary load in KVA	637	KVA
		1500/	
	overcurrent capacity of DG (K) (Ref: IS/IEC 60034-1, Clause 9.3.2)	150%	
	Capacity of DG set required considering overload capacity		
	(P3) = <u>Total momentary load in KVA</u>	425	KVA
	overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	217	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2	324	KVA
	Overload capacity P3	425	KVA
	Considering the last value amongst P1, P2 and P3	425	KVA
	Hence, Existing Generator 425 KVA is adequate to cater the loads as per re- scheduled loads	-	
	NOTE:VOLTAGE DIP CONSIDERED - 15%		

ASSIGNMENT-4

EARTHING CALCULATIONS	2	
Maximum line-to-ground fault in kA for 1 sec	16	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	4.5	
Soil resistivity Ω -meter	11	
Ambient temperature in deg C	55	
Plot dimensions (earth grid) L x B in meters	80	140
Number of earth rods in nos.	6	

Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{l-g} - RMS fault current in kA = 50 KA	16
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
16 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	130
Earth rod dia in mm	13
Earth rod dia (including 25% corrosion allowance) in mm	16

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
ρr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{l-g} - RMS fault current in kA = 50 KA	16
tc - Short circuit current duration sec	1

Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
16 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	130
Earth flat area in mm	13
Earth flat area (including 25% corrosion allowance) in mm	16
Selected flat size W * Thk in sg mm	20

Rg - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

$$R_g = \rho \left\{ \frac{1}{L} + \frac{1}{\sqrt{20 \times A}} \left[1 + \frac{1}{1 + h \sqrt{20 / A}} \right] \right\}$$

ρ - Soil resistivity in Ω-meter=	11
L - Total buried length of ground conductor in meter	440
h - Depth of burial in meter	0.5
A - Grid area in sq. meter	11200

Rg - Grid resistance 0.071

Rr - Earth Electrode resistance

Grid resistance can be calculated using Eq. 55 of IEEE 80

$$R_{r} = \frac{\rho}{2 \times \pi \times n_{r} \times L_{r}} \left\{ l_{n} \left[\frac{4 \times L_{r}}{b} \right] - 1 + \frac{2 \times k_{1} \times L_{r}}{\sqrt{A}} \left(\sqrt{n_{r}} - 1 \right)^{2} \right\}$$

ρ - Soil resistivity in $\Omega\text{-meter},16.96$	11
<i>n</i> - No of earth electrodes	6
Lr - Length of earth electrode in meter	4.5
b - Diameter of earth electrode in meter	0.020
k1 - co-efficient	1
A - Area of grid in square metre	11200

Rr - Earth Electrode resistance 4.04156

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:

$$R_{\alpha} \times R_2 - R_m^2$$

LIGHTING CALCULATIONS ASSIGNMENT-5

	1
	Gwalior
Location	Concrete, Hospital
Building	Flat Roofs (a)
Type of Building	20
Building Length (L)	9
Building breadth (W)	7
Building Height (H)	
1 Risk Factor Calculation	
Collection Area (A _c)	

	Collection Area (A _c)		=	(L*W) + (2*L*H) + (2*W*H)
	A_c			739.86
2				
	Probability of Being Struck (P)		=	Ac * Ng * 10-6
	P			0.002737482
3				
	Overall weighing factor		=	1.7
	a) Use of structure (A)		=	1.0
	b) Type of construction (B)		=	1.7
	c) Contents or consequential effects (C)		=	1.0
	d) Degree of isolation (D)		=	0.3
	e) Type of country (E)		=	A * B * C * D * E
	Wo - Overall weighing factor		=	0.510
4		Po	=	P * Wo
	Overall Risk Factor	Ро	=	0.001396116
		Pa		10 ⁻⁵

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

	=	2(L+W)	
Perimeter of the building	=	58	Mts.

6

Down Conductors=58Mts.Perimeter of building=3Nos.

No. of down conductors based on perimeter

Hence 3 nos. of Down conductors have been selected.

= 20 X 2.5 mm Galvanized Ste

Size of Down conductor

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

CABLE SIZING CALCULATIONS ASSIGNMENT-6

S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage (V)	No. of ph Currer	Starting	Load P.F. Running		Motor P.F Staring	SIN Ф Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor k	Derated Current (A)		Cable Resistance (Ohms/kM)	Cable Reactance (Ohms/kM)	Voltage drop (Running) (V)	Voltage drop (Running) (%)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)	Cable size result	OD of Cable (mm)	Gland size
3	LV MCC	PU2315	Silica filter feed pump	43.84	45.00	415	3 76.2	457.44	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	95	0.9300	0.0816	9.95	2.40	59.07	14.23	OK	22	20
4	LV MCC		Soft water pump	12.73	15.00	415	3 22.1	132.83	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	95	2.3400	0.0852	7.01	1.69	41.84	10.08	OK	18	20s
5	LV MCC	PU 2314A	Absorbesnt/Neutral oil pump	10.96	11.00	415	3 19.1	114.36	0.8	0.6	0.8	0.5	2	1	4.0	4	38	0.98	0.9	1	1	0.882	33.5	60	5.9000	0.0947	9.46	2.28	56.66	13.65	OK	17	20s
6	LV MCC	PU2324	Citric Acid Tank pump	44.28	45.00	415	3 77.0	462.03	0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	85	0.9300	0.0816	8.99	2.17	53.38	12.86	OK	22	20s
7	LV MCC	PU2333	Slop Oil pump	44.62	45.00	415	3 77.6		0.8	0.6	0.8	0.5	2	1	4.0	25	122	0.98	0.9	1	1	0.882	107.6	75	0.9300	0.0816	7.99	1.93	47.46	11.44	OK	22	20s
8	LV MCC	PU 2322B	Soft water pump-Stand by	44.62	45.00	415	3 77.6		0.8	0.6	0.8	0.5	2	1	4.0	35	148	0.98	0.9	1	1	0.882	130.5	105	0.6710	0.0794	8.25	1.99	48.81	11.76	OK	24	20s
9	LV MCC		Lye/Simplex Metering Pump	19.16	22.00	415	3 33.3		0.8	0.6	0.8	0.5	2	1	4.0	16	85	0.98	0.9	1	1	0.882	75.0	100	1.4700	0.0815	7.07	1.70	42.13	10.15	OK	21	20s
10	LV MCC		Lye storage tank pump	1.86		415	3 3.2	19.41	0.8	0.6	0.8	0.5	2	1	4.0	4	38	0.98	0.9	1	1	0.882	33.5	100	5.9000	0.0947	2.68	0.64	16.03	3.86	OK	17	20s
11	LV MCC	PU2305	Feed Pump(Seperator)	4.30		415	3 7.5	44.87	0.8	0.6	0.8	0.5	2	1	4.0	6	_51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	3.11	0.75	18.63	4.49	OK	18	20
12	LV MCC	PU2332	Saop Stock Pump	3.23		415	3 5.6	33.70	0.8	0.6	0.8	0.5	2	1	4.0	2.5	28	0.98	0.9	1	1	0.882	24.7	110	9.4800	0.1007	8.18	1.97	49.02	11.81	OK	16	20s
13	LV MCC	MX2305	Mixer	3.23		415	3 5.6	33.70	0.8	0.6	0.8	0.5	2	1	4.0	6	51	0.98	0.9	1	1	0.882	45.0	75	3.9400	0.0902	2.34	0.56	14.00	3.37	OK	18	20
14	LV MCC	MX2308	Mixer	11.75		415	3 20.4	_	0.8	0.6	0.8	0.5	2	1	4.0	10	66	0.98	0.9	1	1	0.882	58.2	105	2.3400	0.0852	7.15	1.72	42.69	10.29	OK	18	20
15	LV MCC	CF2312 BW2313	Separator	4.27		415 415	3 7.4	44.55 44.55	0.8	0.6	0.8	0.5	2	1	4.0	25 2.5	122	0.98	0.9	1	1	0.882	107.6 24.7	85 95	0.9300	0.0816	0.87 9.34	0.21 2.25	5.15 55.97	1.24 13.49	OK	22 16	32 20s
17	LV MCC		Blower Rotary valve	7.48		415			0.8	0.6	0.8	0.5	2	1	4.0	4	38	0.98	0.9	1	1	0.882	33.5		9.4800 5.9000	0.1007	7.00	1.69	41.89	10.09	OK OK	17	20s 20s
18			riotary vario		7.00		1 10.0														-												
19																																	
20																															-		
21 22																															\vdash		
23																																	
24																																	
25																																	
26 27																															\vdash		
21																																	
								+									+																
								+																							+		
		1			1				1							l																	

Basis:

1. Overall derating factor k = k1 x k2 x k3 x k4

K1=Rating factor for variation in air/ground temperature

K2=Rating factor for depth of laying

K3=Rating factor for spacing between two circuits

K4=Rating factor for variation in thermal resistivity of the soil
2. LT Motors: Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

CABLE TRAY SIZING CALCULATIONS ASSIGNMENT-7

	CABLES LE TRAY: FROM	LT-4	1	TO	1	T-5			
Sr.	Cable Route (From-To)	Type & Cable	Size of Cable	No. of	Overall Diameter of	Sum of Cable OD	Self Weight of Cable	Total Weight of Cable	Remarks
No.	,	Size	(mm2)	Cable	each Cable (mm)	(mm)	(Kg/Mt)	(Kg/Mt)	
1	PU2315	4	25	1	22	22	1.4	1.4	
2	PU2322A	4	10	1	18	18	0.9	0.9	
3	PU 2314A	4	4	1	17	17	0.6	0.6	
4	PU2324	4	25	1	22	22	1.4	1.4	
5	PU2333	4	25	1	22	22	1.4	1.4	
6	PU 2322B	4	35	1	24	24	1.8	1.8	
7	PU2321A	4	16	1	21	21	1	1	
8	PU2321B	4	4	1	17	17	0.6	0.6	
9	PU2305	4	6	1	18	18	0.7	0.7	
10	PU2332	4	2.5	1	16	16	0.5	0.5	
11	MX2305	4	6	1	18	18	0.7	0.7	
12	MX2308	4	10	1	18	18	0.9	0.9	
13	CF2312	4	25	1	22	22	1.4	1.4	
14	BW2313	4	2.5	1	1.6	1.6	0.5	0.5	
15	RV 2314	4	4	1	17	17	0.6	0.6	
	Total			15		273.6	14.4	14.4	
Calc	culation	ı		1 1		Result			L
	num Cable Diameter:		24	mm		Selected Cable T	rav width:	O.K	
Maximum Cable Diameter: Consider Spare Capacity of Cable Tray:			30%			Selected Cable 1	•	O.K	
	nce between each Cable:	uy.	30% 0	mm		Selected Cable 1	•	O.K	Including Spare Coresit
	lated Width of Cable Tray:		356	mm mm		Selected Cable 1		O.K	Including Spare Capacit
	lated Area of Cable Tray:		356 8536			Gelected Capie I	Tay Size.	U.N	Including Spare Capacit
	Layer of Cables in Cable Tray:		2	Sq.mm		Required Cable T	ray Sizo:	300 x 100	mm
	ted No of Cable Tray:		1	Nos.		Required Nos of	•	300 X 100	No
	ted Cable Tray Width:		300	mm		Required Nos of	•	90.00	NO Kg/Meter/Tray
	ted Cable Tray Width:		100	mm		Type of Cable Tra		90.00 Ladder	Ng/weter/Tray
	ted Cable Tray Depth: ted Cable Tray Weight Capacity	,.	90			Type of Cable III	ay.	Lauuer	
	of Cable Tray weight Capacity	·•	Ladder	Kg/Meter		Cable Tray Width	Aros Domonino	41%	
ype	Area of Cable Tray:		30000	Sq.mm		Cable Tray Width	•	41% 72%	