Systèmes dynamiques Feuille d'exercices 12

Dans la suite, si (X, \mathcal{F}, μ) est un espace de probabilités et $\mathcal{A} \subset \mathcal{F}$ est une algèbre finie, on notera $H_{\mu}(\mathcal{A})$ l'entropie de \mathcal{A} par rapport à μ . Si f est une transformation mesurable de X, on notera $h_{\mu}(f, \mathcal{A})$ l'entropie de f par rapport à (\mathcal{A}, μ) et $h_{\mu}(f) = \sup_{\mathcal{A}} h_{\mu}(f, \mathcal{A})$ son entropie métrique par rapport à μ , où la borne supérieure est prise sur toutes les sous-algèbres finies de \mathcal{F} .

Si \mathcal{P} est une partition mesurable finie de X, on notera $H_{\mu}(\mathcal{P}) = H_{\mu}(\mathcal{A})$ et $h_{\mu}(f,\mathcal{P}) = h_{\mu}(f,\mathcal{A})$ où \mathcal{A} est l'algèbre finie dont les atomes sont les éléments de \mathcal{P} . Si \mathcal{Q} est une autre partition finie, on notera $\mathcal{P} \vee \mathcal{Q}$ la partition associée à l'algèbre $\mathcal{A} \vee \mathcal{B}$, où \mathcal{B} est l'algèbre associée à \mathcal{Q} .

Enfin, on notera $\mathcal{P} = \mathcal{Q} \mod 0$ (resp $\mathcal{P} \leq \mathcal{Q} \mod 0$) si pour tout $Q \in \mathcal{Q}$ de mesure non nulle, il existe $P \in \mathcal{P}$ tel que $\mu(P\Delta Q) = 0$ (resp. $\mu(Q \setminus P) = 0$).

Exercice 1. Quelques propriétés de l'entropie d'une partition

Soit (X, \mathcal{F}, μ) un espace probabilisé et \mathcal{P}, \mathcal{Q} deux partitions mesurables finies de X. Montrer les propriétés suivantes.

- 1. $H_{\mu}(\mathcal{P}) \leq \log \operatorname{card}(\mathcal{P})$.
- 2. $H_{\mu}(\mathcal{P}|\mathcal{Q}) = 0$ si et seulement si $\mathcal{P} \leq \mathcal{Q} \mod 0$.
- 3. $H_{\mu}(\mathcal{P}|\mathcal{Q}) \leq H_{\mu}(\mathcal{P})$ avec égalité si et seulement si \mathcal{P} et \mathcal{Q} sont indépendantes, i.e.

$$\mu(P \cap Q) = \mu(P)\mu(Q), \quad P \in \mathcal{P}, \quad Q \in \mathcal{Q}.$$

4. Pour tout autre probabilité ν , $H_{t\mu+(1-t)\nu}(\mathcal{P}) \geq tH_{\mu}(\mathcal{P}) + (1-t)H_{\mu}(\mathcal{P})$.

Exercice 2. Quelques propriétés de l'entropie métrique

Soit (X, \mathcal{F}, μ) un espace probabilisé et $f: X \to X$ une transformation préservant μ .

- 1. Soit ν une autre mesure de probabilités préservée par f. Montrer que $h_{t\mu+(1-t)\nu}(f) \geq th_{\mu}(f) + (1-t)h_{\nu}(f)$.
- 2. Montrer que $h_{\mu}(f^k) = kh_{\mu}(f)$ pour tout $k \in \mathbf{N}$.
- 3. Soit A un ensemble f invariant avec $\mu(A) > 0$. Montrer que $h_{\mu}(f) = \mu(A)h_{\mu}(f|_A) + \mu(A^c)h_{\mu}(f|_{A^c})$.
- 4. Soit \mathcal{P} une partition finie mesurable. Montrer que pour tout $n \geqslant 0$ on a $h_{\mu}(f, \mathcal{P}) = h_{\mu}(f, \mathcal{P}_{f}^{n})$ où

$$\mathcal{P}_f^n = \bigvee_{j=0}^{n-1} f^{-j}(\mathcal{P}).$$

Exercice 3. Une autre version du théorème de Kolmogorov-Sinai

Soit (X, \mathcal{F}, μ) un espace probabilisé, f une transformation de X préservant μ et \mathcal{P}_n une suite croissante de sousalgèbres finies de \mathcal{F} telle que $\sigma\left(\bigcup_{n\in\mathbb{N}}\mathcal{P}_n\right)=\mathcal{F}$. Reprendre la démonstration du théorème de Kolmogorov-Sinai et montrer que

$$h_{\mu}(f) = \lim_{n} h_{\mu}(f, \mathcal{P}_n).$$

Exercice 4. Entropie métrique et mesures boréliennes

Soit (X, d) un espace métrique compact, μ une mesure de probabilité borélienne et $f: X \to X$ une transformation mesurable préservant μ .

1. Pour toute partition finie de boréliens \mathcal{P} et tout $x \in X$, on note $\mathcal{P}(x)$ l'élement de \mathcal{P} contenant x. Soit $(\mathcal{P}_n)_{n \in \mathbb{N}}$ une suite croissante de partitions finies telle que pour tout $x \in X$,

diam
$$\mathcal{P}_n(x) \to 0$$
.

Montrer que $h_{\mu}(f) = \lim_{n} h_{\mu}(f, \mathcal{P}_n)$.

2. On suppose $X = S^1$, μ est la mesure de Haar et f est un homéomorphisme de X. Montrer que $h_{\mu}(f) = 0$. Indication : on pourra considérer des partitions de S^1 formées d'intervalles et utiliser l'exercice 1.

Exercice 5. Entropie métrique pour les applications expansives

Soit (X, d) un espace métrique compact et $f: X \to X$ une transformation continue. On suppose que f est expansive, c'est-à-dire qu'il existe $\delta > 0$ tel que pour tous $x, y \in X$,

$$\sup_{n \in \mathbf{N}} d(f^n(x), f^n(y)) < \delta \implies x = y.$$

Soit \mathcal{P} une partition finie de X telle que diam $(P) < \delta$ pour tout $P \in \mathcal{P}$, et μ une probabilité borélienne sur X préservée par f. Montrer que

$$h_{\mu}(f) = h_{\mu}(f, \mathcal{P}).$$

Exercice 6. Inégalité de Rokhlin

Soit (X, \mathcal{F}, μ) un espace de probabilité. Si \mathcal{P} et \mathcal{Q} sont deux partitions finies de X, on note

$$D(\mathcal{P}, \mathcal{Q}) = H_{\mu}(\mathcal{P}|\mathcal{Q}) + H_{\mu}(\mathcal{Q}|\mathcal{P}).$$

- 1. Montrer que $H_{\mu}(\mathcal{P}|\mathcal{Q}) \leq H_{\mu}(\mathcal{P}|\mathcal{R}) + H_{\mu}(\mathcal{R}|\mathcal{Q})$, et en déduire que D est une distance sur l'ensemble des partitions mesurables finies de X (modulo les ensembles négligeables).
- 2. Montrer que pour toute transformation $f: X \to X$ préservant μ on a

$$|h_{\mu}(f,\mathcal{P}) - h_{\mu}(f,\mathcal{Q})| \le D(\mathcal{P},\mathcal{Q}).$$

Exercice 7. Entropie métrique et entropie topologique

Soit (X, d) un espace métrique compact et $f: X \to X$ une homéomorphisme. Soit μ une mesure borélienne de probabilité préservée par f. Le but de l'exercice est de montrer que $h_{\mu}(f) \leq h_{\text{top}}(f)$.

1. Soit $\mathcal{P} = \{P_1, \dots, P_k\}$ une partition mesurable. Montrer qu'il existe des fermés $C_j \subset P_j, \ j \in \{1, \dots, k\}$ tels que

$$H_{\mu}(\mathcal{P}|\mathcal{C}) < 1$$
,

où on a noté

$$C = \{C_0, C_1, \dots, C_k\}, \quad C_0 = X \setminus \bigcup_{i=1}^k C_k.$$

2. Soit $\mathcal{R} = \{C_0 \cup C_1, \dots, C_0 \cup C_n\}$. Montrer que

$$\operatorname{card}\left(\bigvee_{j=0}^{n-1}f^{-j}(\mathcal{P})\right) \leq 2^{n}\operatorname{card}\left(\bigvee_{j=0}^{n-1}f^{-j}(\mathcal{R})\right), \quad n \in \mathbf{N}.$$

Pour tout recouvrement ouvert fini $\mathcal{U} = \{U_1, \dots, U_\ell\}$ de X, on note

$$\delta(\mathcal{U}, d) = \sup \{ \delta \ge 0, \ \forall x \in X, \ \exists j \in \{1, \dots, \ell\}, \ B_d(x, \delta) \subset U_j \}.$$

3. Montrer que $\delta(\mathcal{U}, d) > 0$ pour tout recouvrement ouvert fini \mathcal{U} .

4. Montrer que

$$\delta\left(\bigvee_{j=0}^{n-1}f^{-j}(\mathcal{R}),\ \mathrm{d}_n^f\right)=\delta(\mathcal{R},\mathrm{d}),\quad n\in\mathbf{N},$$

où
$$\mathrm{d}_n^f(x,y) = \max_{0 \leq j \leq n-1} \mathrm{d}(f^j(x),f^j(y)).$$

- 5. En déduire que $h_{\mu}(f) \leq h_{\text{top}}(f) + \log 2 + 1$.
- 6. Conclure.