

TABLE OF CONTENTS

 $\mathsf{N}\mathsf{1}$ Introduction

02 Microscopic scale Molecular motors

03

04 **Brownian** molecular motor

05 Analysis and research

Microscopic perspective matters Brownian motion

Adapted from IPython Interactive Computing and Visualization Cookbook by Cyrille Rossant, Ejs Open Source Brownian Motion Gas Model Java Applet by Professor Paco & Hwang

Consequences of Brownian motion

Domination of stochastic behaviour

- Randomness and unpredictable trajectories
- Need of statistical perspective

02

Directed motion — as if walking in a hurricane

Fight against it or use it

03

Natural state—
diffusion, energy
needed to stop
moving

Molecular motors

Adapted from R. D. Vale, Cell 112:467, 2013

Main features

- Definition: machines that convert chemical energy into directed mechanical work
- Structure: proteins heads (2 binding sites) and tails domains
- Function: muscle contraction, cargo transport, cell division, cellular traffic
- Use cytoskeleton filaments and microtubules (polar and periodic)

Molecular motors

Basics of the mechanism of motion

- Fuel: ATP
- Conformational changes
- Step: Bind deattach bind furtherly
- One direction movement Hand over hand mechanism

Adapted from The Inner Life of the Cell movie, Harvard University, 2006

Notes [3]:

- High efficiency: 40-60%
- 1 step ≈ 1 ATP
- Rare backward steps
- Velocity: 700 nm/s
- Complicated models of motion

<u>Thermal noise:</u> 10⁻⁹W

Mean power from 1

ATP hydrolisis 10⁻¹⁸W

Diffusion matters

Kinesin I and Myosin II

- [1] https://www.open.edu/openlearn/science-maths-technology/science/biology/intracellular-transport/content-section-5.2
- [2] The Way Things Move: Looking Under the Hood of Molecular Motor Proteins Ronald D. Vale1,*, Ronald A. Milligan2 Science 07 Apr 2000:
- [3] An introduction to ratchets in chemistry and biology, B. Lau, O. Kedem, J. Schwabacher, D. Kwasniewski, E. A. Weiss, Mater. Horiz. 2017,4, 310-318

Conclusion: Assymetry makes difference

Displacement

Speed for kinesin parameters: 150 nm/s

Adapted from: [1] Performance characteristics of Brownian motors, Heiner Linke, Matthew T. Downton and Martin J. Zuckermann,: Chaos 15, 026111 (2005) [2] Running Faster Together: Huge Speed up of Thermal Ratchets due to Hydrodynamic Couplin, Paolo Malgaretti,1,* Ignacio Pagonabarraga,1 and Daan Frenkel2, PRL 109, 168101 (2012)

Phemonena: Too big force will make a motor to move in the opposite direction

Cargo

Adapted from: Performance characteristics of Brownian motors, Heiner Linke, Matthew T. Downton and Martin J. Zuckermann, : Chaos 15, 026111 (2005)

Fuel concentration

Saturation of the system

Adapted from: How molecular motors extract order from chaos (a key issues review), Peter M Hoffmann 2016 Rep. Prog. Phys. 79 032601

Research

- New fabrics
- New therapies
- New tools
- Chance to use Brownian motion
- Working more in-vivo
- Chemically driven?
- Micronization of the world

Summary and personal thoughts

