(Same notation as last time)

Weyl group of root system R

W & GL(E*) (or GL(E))

Subgroup generated by $\{S_{\alpha}\}_{\alpha \in \mathbb{R}}$

- (1) $|W| < \infty$, Since W preserves R & R spans E*, So $W \le Perm(R)$
- (2) W preserves (\cdot,\cdot) on E (or E^*) $(\omega^{\phi}, \omega \psi) = (\phi, \psi)$

Proof $(S_{\alpha} , S_{\alpha} , Y) = (\phi - \alpha(\phi) \alpha^{\vee}, \gamma - \alpha(\phi) \alpha^{\vee}),$ and $(\phi, \alpha^{\vee}) = \frac{2}{(\alpha, \alpha)} \alpha(\phi), (\alpha^{\vee}, \alpha^{\vee}) = \frac{4}{(\alpha, \alpha)}.$

Expand & done.

(3) W preserves $\{H_{\alpha}\}_{\alpha\in\mathbb{R}}$ hyperplane arrangement in E. \Rightarrow W acts on set of connected components of $E^*=E\setminus UH_{\alpha}$.

simple roots

C° C E° fund. Chamber ~ {\alpha_i}_{i \in I} walls of C°

 $W' = \text{Subgroup of } W \text{ generated by } S_i = S_{\alpha_i} \quad (i \in I).$

Lema let $y \in E$. Then $\exists w \in W'$ s.t. $w(y) \in \overline{C}$.

(i.e. & scores >0 on w(y) fieI)

proof pick a e C°. consider W'y = {wey | we W'}.

Choose y. ∈ W'y st. distance (y, a) ≤ distance (y', a) Y y'∈ W'y.

Clark VieI, «.(y.) >0.

Pf distance (a, y,) = distance (a, S;(y))

$$|\alpha - y_0|^2 \le |\alpha - S_i(y_0)|^2$$

 $|a|^2 + |y|^2 - 2(a, y_0) \le |a|^2 + |S_{i}(y_0)|^2 - 2(a_1S_i(y_0))$

 $\Rightarrow \qquad (\alpha, y_{\circ} - S_{i}(y_{\circ})) \geqslant 0$

 $(\alpha, \alpha; (y, \alpha;) > 0)$

 $\alpha'_{i}(y_{o})$ (a, α'_{i}) $\geqslant 0$ Positive since a $\in \mathbb{C}^{\circ}$

Page 2

$$\forall y \in E, \exists w \in W' = \langle s_i \rangle_{i \in I}$$
 $s.t. w(y) \in \overline{C}$ } statement of them above

(2)
$$R = \bigcup_{i \in I} W' \cdot \alpha_i$$

Pf UN'. x; < R obvious.

conversely, if $\alpha \in \mathbb{R}$, pick $C \subset E^{\circ}$ s.t. α is a wall of C, pick $w \in \mathbb{W}'$, it. $w(\mathcal{T}) = \mathcal{T}'$.

[walls are $\{\alpha_i\}_{i \in I}$]

 $\Rightarrow \omega(\alpha) = \alpha_i$ for som ie I.

$$\int_{i} (\alpha_{j}) = \alpha_{j} - \alpha_{ij} \alpha_{i} \qquad (i \neq j)$$

{ xi} is repented application of { Si} is gives R.

$$(3) \qquad \mathcal{N} = \mathcal{N}'$$

Then
$$S_{\alpha} = w \cdot s_{i} \cdot w^{-1} \in W'$$

- · generators of W: {Si}ieI.
- · Relations of W: Si= e YieI.

Rank 2 relations (order of
$$s_i s_j = ?$$
)

We use our dassification of rank-2 root systems.

$$S_1S_2 = S_2S_1$$

$$A_1 \times A_1$$

$$SS_2 = rotation by \frac{2\pi}{3}$$

$$(S_1S_2)^3 = e$$

$$A_2$$

$$SiS_2 = rotation by $\overline{3}$

$$(S_1S_2)^3 = e$$

$$A_2$$$$

$$S_1S_2 = \text{rotation by } \frac{1}{3}$$

$$(S_1S_2)^3 = e$$

$$S_1S_2 = volation by \frac{\pi}{2}$$

$$S_i S_2 = \text{rotation by } \frac{2\pi}{6}$$

$$(S_1S_2)^6 = e$$

Remark Den comes from a root system

$$\iff$$
 $\cos\left(\frac{2\pi}{n}\right) \in \mathbb{Q} \iff N=2,3,4,6$

$$\forall i \neq j$$
, $(S_i S_j)^{m_{ij}} = e$ where

Definition For
$$w \in W$$
, define length of w

$$L(w) = \min \{k \mid \exists i, ..., i_k \in I : s_i, w = S_i, ..., S_{i_k} \}.$$

 $W = S_{i_1} \cdots S_{i_l}$ is "reduced expression" of w if l = l(w).

Lemma If
$$\alpha \in \mathbb{R}_+$$
 and $S_i(\alpha) \in \mathbb{R}_-$, then $\alpha = \alpha_i$.

If $S_i(\alpha) = \alpha - \alpha(\alpha_i^{\vee}) \cdot \alpha_i \in \mathbb{R}_-$

If $\alpha = \sum_{j \in I} n_j \alpha_j$ then $n_j = 0 \ \forall j \neq i$
 $\alpha = \alpha_i \in \mathbb{R}_+$
 $\alpha = \alpha_i \in \mathbb{R}_+$

Proposition Let we W; i & I. Thun TFAE.

- (1) $l(ws_i) < l(w)$
- (2) $W(\alpha_i) \in R_{-}$

Page 6

(3) For any reduced expression
$$W=S_{i_1}\cdots S_{i_g}$$

$$\exists j \in \{1,...,l\}$$
 s.t. $S_{i_j} S_{i_{j+1}} \cdots S_{i_k} = S_{i_{j+1}} \cdots S_{i_k} S_{i_k}$

$$\frac{\text{Proof}}{\text{Define }\beta_{j} = S_{i_{j+1}} \cdots S_{i_{\ell}} (\alpha_{i})} \quad \mathcal{W} = S_{i_{1}} S_{i_{2}} \cdots S_{i_{\ell}}.$$

eg
$$\beta_0 = w(\alpha_0)$$
, $\beta_2 = \alpha_0$.

 $R_ R_+$

$$\Rightarrow \exists j \in \{1, \dots, \ell\} \quad \text{s.t.} \quad \beta_{j-1} \in \mathbb{R}_{-j}, \ \beta_{j} \in \mathbb{R}_{+j}$$

$$\beta_{j-1} = S_{ij}(\beta_{j}) \Rightarrow \beta_{j} = Q_{ij}$$

$$i.e. \quad \alpha_{j} = S_{i_{j+1}} \cdots S_{i_{\ell}} (\alpha_{i})$$

$$\Rightarrow$$
 $S_{ij} = u \cdot s_i \cdot u^{-1}$

$$\Rightarrow$$
 $S_{ij}u = u S_i$.

$$(3) \Rightarrow (1)$$
 Let $l = l(w)$ and $w = S_{i_1} \cdots S_{i_d}$ be a reduced exp.

By 3,
$$W = S_{i_1} S_{i_2} \cdots S_{i_{j-1}} S_{i_{j+1}} \cdots S_{i_{\ell}} S_{i}$$

$$\Rightarrow ws_{i} = s_{i_{1}} \cdots s_{i_{j+1}} s_{i_{j+1}} \cdots s_{i_{\ell}}$$

$$\Rightarrow$$
 $l(ws_i) < l(w)$.

$$(1) \Rightarrow (2)$$
 If not, then $w(x_i) \in \mathbb{R}_+$

$$\underbrace{w.S_i}_{u}(\alpha_i) \in R_{-}$$

Page 7

We have shown
$$\mathcal{U}(\alpha_i) \in \mathbb{R}_- \Rightarrow (3) \Rightarrow (1)$$
 for \mathcal{U}
$$l(\mathcal{U} \cdot S_i) < l(\mathcal{U})$$

$$l(\mathcal{W}) < l(\mathcal{W} S_i)$$

Corollaries of proposition

(1)
$$W = \langle S_i | S_i^2 = e, (S_i S_j)^{m_{ij}} = e \rangle$$

- (2) WCT. (E°) is free (& transitive)
- (3) Equivalent defus of l(w):

$$l(w) = \text{smallest} \# \text{ of walls to cross to}$$

$$\text{get from } C^{\circ} \text{ to } w(C^{\circ}).$$

$$= \# \left\{ \alpha \in \mathbb{R}_{+} \mid w(\alpha) \in \mathbb{R}_{-} \right\}$$