USN			- 4			
OBIT						

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

V Semester B. E. Examinations Nov/Dec-19

Information Science and Engineering

THEORY OF COMPUTATION

Time: 03 Hours

Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Identify the string of minimum length in $\{a,b\}^*$ <i>NOT</i> in the language $a^*b^*(ba)^*a^*$.	01
	1.2	Construct the regular expressions for the strings whose number of 0's	
		are multiple of 3.	01
	1.3	State which of the following languages are not regular.	
		$L_1 = \{WW W\epsilon(a+b)^*\}$	
		$L_2 = \{WW^R W\epsilon(a+b)^*\}$	
		$L_3 = \{a^n b^m n \ge 0 \text{ and } m > 5\}$	
		$L_4 = \{a^n b^m m = n + 5\}$	01
	1.4	Construct an ϵ – NFA for the regular expression $0(0+1)^*1$	01
	1.5	State whether the following grammar is ambiguous or not. Justify	
		your answer.	
		$S \rightarrow AB aaB$	
		$A \rightarrow a Aa$	
		$B \rightarrow b$	02
	1.6	Construct DPDA equivalent to the DFA whose transition table is as	
		shown below.	
		$\rightarrow A A B$	
		(B) C A	
			0.0
	<u> </u>		02
	1.7	Design a Turing machine to accept the language $L = \{(a+b)^n ab n \ge 0\}$	02
	1.8	Transition function δ for Turing machine with stay option is	01
	1.9	CFLs are closed under and	01
	1.10	Identify and remove the useless productions from the following	
		grammar. Justify your answer.	0.0
	= 8 2	$S \to aA a B C, A \to aB \in B \to Aa, C \to cCD, D \to dd$	02
	1.11	Define recursive and recursively enumerable languages.	02
	1.12	Define polynomial time reduction.	01
	1.13	Illustrate the language recognized by the following CFG.	0.1
	FE 204 55	$S \to aSbS bSaS \in$	01
	1.14	Define DPDA.	02

PART-B

2	a b	State and prove pumping lemma for regular languages. For each of the regular expression below, find an ϵ – <i>NFA</i> recognizing language corresponds to the regular expressions. i) $((ab)^*b + ab^*)^*$	06
	с	ii) $(ab + (aab)^*)(aa + a)$. Convert the following finite automata in Fig 2c to Regular expression using state elimination method.	05
		Fig 2c	05
		rig Ze	- 00
3	a	Represent the following grammar in CNF. $S \rightarrow AaA CA BaB$	
		$A \rightarrow aaBa CDA aa DC$ $B \rightarrow bB bAB bb aS$ $C \rightarrow Ca bC D$	
		$D \to bD \in$	08
	b	Define left factoring. Left factor the following grammar.	0.4
	С	$S \rightarrow bSSaaS bSSaSb bSb a$ Construct a <i>CFG</i> to generate the following languages. i) $L = \{uvwv^R : u, v, w \in \{a, b\}^+, u = w = 2\}.$	04
		$ii) L = \{a^n b^m : n \le m + 3\}$	04
		OR	
4	а	Define left recursion. Eliminate the left recursion from the following grammar. $E \to E + T T$	
		$T \to T * F \mid F$	05
	b	$F \to (E) id$. Let G be the grammar $S \to aAS a SS$, $A \to SbA ba$. For the string $aabbaa$, find a. i) Left most derivation	05
		ii) Right most derivation	
	34	iii) Derivation trees.	06
	С	Discuss the applications of context free grammars with appropriate examples.	05
5	a	Construct <i>PDA</i> to accept the language $L = \{a^{2n}b^n n \ge 0\}$. Show the	
	1.2	moves made by PDA for the string aaaabb.	05
	b c	Show that the <i>CFLs</i> are not closed under intersection. Find an equivalent <i>CFG</i> for the <i>PDA</i> below with q_0 as initial state and	05
		q_f as final state.	
		$\delta(q_0, a, Z_0) = (q_0, AZ_0)$	
		$\delta(q_0, a, A) = (q_0, AA)$ $\delta(q_0, b, A) = (q_0, E)$	
		$\delta(q_0, b, A) = (q_1, \in)$ $\delta(q_1, b, A) = (q_1, \in)$	=
		$\delta(q_1, \epsilon, Z_0) = (q_f, Z_0)$	06
		OR	

6	a	Discuss the languages accepted by PDA.	05
	b	Write an algorithm to convert CFG to PDA. Convert the following CFG to PDA.	
		$S \rightarrow aABB aAA$	
		$A \rightarrow aBB a$	
		$B \to bBB A$	
		$C \rightarrow a$	06
	С	Show that the language $L = \{a^n b^n c^n n \ge 0\}$ is not a <i>CFL</i> .	05
7	а	Design a turing machine to compute the following function for x , a positive integer represented as: $f(x) = \begin{cases} \frac{x}{2} : x \text{ is even} \\ \frac{x+1}{2} : x \text{ is odd} \end{cases}$	
			05
	b	Discuss about Chomsky hierarchy.	05
	С	Prove that every language accepted by a multiple Turing machine is recursively enumerable.	06
8	a	Prove that the 3SAT problem is polynomial-time reducible to CLIQUE.	08
	b	Discuss and explain primitive recursive functions.	08