Chaos Theory (Math 145)

Teaching Assitant

Joseph Immel <jhimmel@ucsc.edu>

Office hours:

Mondays 11am-12pm - ARC 116 Thursdays 2:30-3:30pm - ARC 116

Website: jhi3.github.io

Let (X,d) be a metric space.

- (a) True/False? If a set $S \subseteq X$ is not open, then it is closed?
- **(b)** True/False? if a set $S \subseteq X$ is not closed, then it is open?
- (c) Give an example of a set $S \subseteq \mathbb{R}$ that is
 - i. Both open and closed.
 - ii. Neither open nor closed.
 - iii. Closed and not open.
 - iv. Open and not closed.
- (d) Show that \mathbb{Z} has no limit point in \mathbb{R} .

Let (X,d) be a metric space.

- (a) True/False? If a set $S \subseteq X$ is not open, then it is closed?
- **(b)** True/False? if a set $S \subseteq X$ is not closed, then it is open?
- (c) Give an example of a set $S \subseteq \mathbb{R}$ that is
 - i. Both open and closed.

iii. Closed and not open.

ii. Neither open nor closed.

iv. Open and not closed.

(d) Show that \mathbb{Z} has no limit point in \mathbb{R} .

Definition: Limit Point of a (Real) Set

We say that y is a limit point of the set $S \subseteq \mathbb{R}$ if

$$\forall \varepsilon > 0, \exists x \in S \text{ such that } x \neq y \text{ and } \operatorname{dist}(x, y) < \varepsilon.$$

- What is the precise negation of this definition?
- How do we show that an arbitrary point is *not* a limit point of \mathbb{Z} ?

Let $s = (0010\ 0010\ 0010\ \cdots)$, $t = (000\ \cdots)$, and $r = (01\ 01\ 01\ \cdots)$. Find

- (a) d[s,t].
- **(b)** d[s,r].

Let $s = (0010\ 0010\ 0010\ \cdots)$, $t = (000\ \cdots)$, and $r = (01\ 01\ 01\ \cdots)$. Find

- (a) d[s,t].
- **(b)** d[s,r].

Definition: $d: \Sigma_2 \times \Sigma_2 \rightarrow [0, \infty)$

$$d[s,t] := \sum_{k=0}^{\infty} \frac{|s_k - t_k|}{2^k}$$

- (a) Revisit the proximity theorem.
- **(b)** Show that the set of eventually 2-periodic points of σ , i.e.

$$B = \{ s \in \Sigma_2 : \exists n \ge 0, \sigma^n(s) \in \operatorname{Per}_2(\sigma) \},$$

is dense in Σ_2 .

(a) Revisit the proximity theorem.

Theorem: Proximity Theorem

Let $s, t \in \Sigma_2$.

- (1) If $s_k = t_k$ for all $0 \le k \le n$, then $d[s, t] \le \frac{1}{2^n}$.
- (2) If $d[s,t] < \frac{1}{2^n}$, then $s_k = t_k$ for all $0 \le k \le n$.
 - How can we split the sum $\sum_{k=0}^{\infty} \frac{|s_k t_k|}{2^k}$ with regards to n?
 - What is the contrapositive of (1)?
- (b) Show that the set of eventually 2-periodic points of σ , i.e.

$$B = \{ s \in \Sigma_2 : \exists n \ge 0, \sigma^n(s) \in \operatorname{Per}_2(\sigma) \},$$

is dense in Σ_2 .

Definition: Shift Operator

$$\sigma: \Sigma_2 \to \Sigma_2, \quad \sigma((s_0 s_1 s_2 \cdots)) = (s_1 s_2 s_3 \cdots)$$

Consider the map $F_{\mu}(x) = \mu x(1-x)$ with $\mu = 5$, along with its Cantor set Λ and itinerary map $S: \Lambda \to \Sigma_2$. Find the $x \in [0,1]$ whose itinerary is

- (a) $s = (1110000 \cdots)$
- **(b)** $s = (1010000 \cdots)$

Consider the map $F_{\mu}(x) = \mu x(1-x)$ with $\mu = 5$, along with its Cantor set Λ and itinerary map $S: \Lambda \to \Sigma_2$. Find the $x \in [0,1]$ whose itinerary is

- (a) $s = (1110000 \cdots)$
- **(b)** $s = (1010000 \cdots)$

Probems 5, 6 and 7

Problem 5

Refresher on vocab: if any notion needs clarification, redefinition, examples, please ask!

- (a) topological vocab
- (b) dynamical vocab
- (c) calculus vocab

Problem 6

Tips about proof-writing and approaching questions with proofs.

Problem 7

Spend last 20 mins on the first 3 HWs as needed.

Attendance

