HANDY

DOCUMENTAÇÃO

v 2020.09.20

Matheus Tomazella Luiz Felipe Costa Soares Eduardo Gomes Heleno

SUMÁRIO

1 TERMOS DE ABERTURA	
1.1 JUSTIFICATIVA DO PROJETO	4
1.2 DESCRIÇÃO DO PROJETO	4
1.3 GERENTE DO PROJETO	4
1.3.1 Nível de Autoridade	4
1.4 PATROCINADOR	
1.5 PARTES INTERESSADAS	5
1.6 RESTRIÇÕES	5
1.7 PREMISSAS	5
1.8 AUTORIZAÇÃO DO PROJETO	5
2 DETALHAMENTO DE REQUISITOS	6
2.1 ENGENHARIA DA PRÓTESE	
2.1.1 Funcionamento da prótese	6
2.1.2 Projetos	7
2.1.3 Imagens Renderizadas	12
2.1.4 Funcionamento do Circuito	13
2.1.5 Projeto do Circuito	15
2.1.7 Requisitos Funcionais	16
2.2 SOFTWARE WEB	16
2.2.1 Requisitos Funcionais	16
2.2.2 Requisitos Não Funcionais	
2.3 SOFTWARE DESKTOP	
2.3.1 Requisitos Funcionais	
2.3.2 Requisitos Não Funcionais	
2.4 SOFTWARE MOBILE	
2.4.1 Requisitos Funcionais	18
2.4.2 Requisitos Não Funcionais	
2.5 BANCO DE DADOS	
2.5.1 Requisitos Funcionais	
2.5.2 Requisitos Não Funcionais	
2.5.3 Diagramas	
3 CASOS DE USO	
3.1 PINUS (API)	
3.1.1 Cadastrar Usuário / Admin	
3.1.2 Buscar Usuário / Admin	
3.1.3 Alterar Usuário / Admin	
3.1.4 Exlcuir Usuário / Admin	
3.1.5 Enviar Mensagem	
3.1.6 Buscar Mensagem	
4 DEFINIÇÃO DE RECURSOS	
4.1 STAKEHOLDERS	
4.2 LISTA DE RECURSOS DE CONSTRUÇÃO	
4.2.1 Ferramentas	
4.2.2 Recursos Construção Mecânica	26

4.2.3 Recursos Construção Eletrônica	2	27
--------------------------------------	---	----

1 TERMOS DE ABERTURA

1.1 JUSTIFICATIVA DO PROJETO

Muitas vezes prótese são muito caras, levando pessoas com membros amputados a não terem condições de pagar por uma. O objetivo do projeto é criar uma solução barata para o cliente, a fim de que possa melhorar sua qualidade de vida até conseguir uma prótese mais tecnológica.

1.2 DESCRIÇÃO DO PROJETO

A ideia principal dessa prótese é a acessibilidade, possibilitando que mais camadas da sociedade tenham condições de possuir uma prótese para seus membros amputados. O produto é pensado para confecção em impressoras 3d, porém pode ser construído segundo a vontade do cliente, e deve ser controlado por movimentos de outras partes do corpo.

Uma página web será criada para compartilhar informações sobre o produto e permitir que interessados se comuniquem com os criadores.

O produto possuirá um software para desktop, para acessar os dados enviados por interessados no projeto por meio do site e um software mobile configuração da prótese.

1.3 GERENTE DO PROJETO

MATHEUS TOMAZELLA

1.3.1 Nível de Autoridade

O gerente de projeto deve ter autoridade para coordenar recursos financeiros e humanos disponibilizados, a fim de concluir o projeto.

1.4 PATROCINADOR

Grupo responsável pelo projeto.

1.5 PARTES INTERESSADAS

- 1. Cliente;
- 2. Projetista;
- 3. Designer;
- 4. Programador.

1.6 RESTRIÇÕES

- 1. Não existe um orçamento máximo fixo para o projeto, porém deve usar o mínimo possível de recursos financeiros;
- 2. O projeto deve possuir uma versão totalmente funcional até o final do ano de 2021.

1.7 PREMISSAS

- 1. Deve priorizar um produto final barato;
- 2. O produto deve poder ser construído pelo cliente.

1.8 AUTORIZAÇÃO DO PROJETO

Data: 01 de Setembro de 2020

Matheus Tomazella

2 DETALHAMENTO DE REQUISITOS

2.1 ENGENHARIA DA PRÓTESE

2.1.1 Funcionamento da prótese

O movimento da prótese é baseado em fios que correm entre os dedos, ligando a parte mais extrema de cada dedo com seu correspondente atuador. Uma vez que o atuador puxa o fio, a ponta do dedo será puxada e o levará a se dobrar contra a palma, assim como uma mão biológica.

Fonte: http://feliperoth.com.br/traumatologia-da-mao/lesao-de-tendao/#

Na parte contrária a palma da mão, um material elástico será responsável por mover os dedos para suas posições originais assim que a força aplicada pelos atuadores parar de agir.

Projetos 2.1.2

Parafuso ideal para juntas entre as falanges

Parafuso Allen cabeça chata M4 de 20mm de comprimento

Parafuso ideal para a junta entre metacarpo e falanges do dedo polegar e a junta entre metacarpo e carpo do dedo polegar

Parafuso Allen cabeça chata M4 de 90mm de comprimento.

Parafuso ideal para as juntas entre metacarpo e falanges

Parafuso Allen cabeça chata M4 de 90mm de comprimento.

Diferente das demais juntas, as juntas entre metacarpo e falanges compartilham o mesmo parafuso.

Porca ideal para todas as juntas

Porca Parlock M4 – Projeto simplificado

Tabelas relativas aos parafusos e porcas

OBS: 1-) Comprimentos de rosca: b1 para l < ou = 125mm, b2 para l > 125mm e < ou = 200mm e b3 para l > 200mm 2-) Tolerância para comprimento "l": js 15, vide tabela de ajustes - ISO.

2.1.3 Imagens Renderizadas

2.1.4 Funcionamento do Circuito

O circuito pode ser dividido em três principais partes: Sensores, Controladores e Atuadores. Os Sensores tem como função captar os comandos do usuário, enviando-os para o Controlador, que processa os dados e comanda os Atuadores, os quais são os componentes responsáveis por movimentar a prótese.

Os eletrônicos específicos podem ser definidos pelo usuário final, porém o projeto original utiliza Servo Motores como Atuadores e sensores de pressão, usando como Controlador um ESP32s.

Energia

Em produto móvel uma parte fundamental é a autonomia, sendo de extrema importância que o produto tenha uma capacidade energética condizente com seu uso. Pensando nestes pontos, as baterias mais condizentes com as necessidades foram as células de Li-Po, por possuírem uma grande densidade energética.

Existem problemas com esta escolha, porém, uma vez que baterias de lítio são instáveis em certas situações. Para diminuir os riscos, o sistema de encaixe deverá ser fácil de remover a fim de reduzir quaisquer danos.

Para o funcionamento dos eletrônicos, é necessária uma voltagem de 6V, sendo assim necessária a utilização de uma bateria de 7,2V e um transformador.

A recarga das baterias pode ser feita tanto por meio de carregadores de bateria de li-po. É importante notar que baterias desse tipo precisam de uma "carga balanceada" para garantir que todas as células possuam a mesma tensão.

2.1.5 Projeto do Circuito

fritzing

Símbolo	Componente	Descrição
PCM	PCM Módulo de Carga e Descarga Módulo que protege as baterias o circuito, sobrecarga e na carga e	
В	Bateria li-po 7.2v	-
S1, S2	Sensores de contração muscular	Desenvolvidos especialmente para o projeto. Funcionam como push buttons.
J1 - J5	Servo motor Mg90s	Atuadores dos fios
R1, R2, R3	Resistores de 220Ohms	Resistores usados para criar um divisor de tensão para não causar dano ao módulo Bluetooth.

2.1.7 Requisitos Funcionais

- 1. Deve ter a capacidade de segurar objetos;
- 2. Deve funcionar com uma fonte de energia móvel;
- 3. Deve seguir os modos de funcionamento dados pelo usuário por meio do aplicativo mobile.

2.2 SOFTWARE WEB

A parte web do projeto terá como função explicar sobre o produto, além de permitir a comunicação entre o interessado e os criadores.

Será composta de explicações sobre o projeto, como funcionamento e motivações, instruções de montagem, imagens de produtos prontos e um chat para que aqueles com problemas possam tirar dúvidas com um time de suporte.

2.2.1 Requisitos Funcionais

- 1. Deve ter chat para conversa com o time de suporte;
- 2. Deve possuir uma galeria com imagens do produto;
- 3. Deve conter informações sobre montagem e funcionamento.

2.2.2 Requisitos Não Funcionais

- 1. Deve funcionar em qualquer navegador a partir de uma versão 2020, incluindo navegadores de aparelhos móveis.
- 2. Deve ser desenvolvido com base em HTML, CSS, JavaScript (Puro, Jquery e Node.js).

2.3 SOFTWARE DESKTOP

A parte Desktop do projeto tem como alvo a criação de um sistema de gerenciamento para o time do produto, contando com um sistema para gerenciamento lojas que disponibilizam cada um dos componentes do sistema e um sistema de chat com o usuário do site.

2.3.1 Requisitos Funcionais

- 1. Deve ter um sistema de gerenciamento de fornecedores de cada componente;
- 2. Deve suprir a necessidade de um mecanismo de contato com o usuário do site por meio de um sistema de chat;

2.3.2 Requisitos Não Funcionais

- 1. Deve funcionar no sistema Windows 10;
- 2. Deve ser desenvolvido em Node.js/Electron.

2.4 SOFTWARE MOBILE

O sistema Mobile do projeto será composto de um aplicativo que se conectará com com o produto e poderá controlá-lo por Bluetooth.

Contará com um sistema de modos que definem como a prótese deve se mover. Cada modo confere dois estados que podem ser alternados pelo usuário usando os sensores da prótese.

2.4.1 Requisitos Funcionais

- 1. Deve poder se conectar com o sistema da prótese por Bluetooth;
- 2. Deve poder informar o hardware da prótese sobre como se mover, dado o modo definido pelo usuário.

2.4.2 Requisitos Não Funcionais

- 1. Deve ser compatível com o sistema Android;
- 2. Deve estar disponível na Play Store;
- 3. Deve ser desenvolvido em React Native.

2.5 BANCO DE DADOS

O banco de dados do sistema será responsável por armazenar as informações do usuário no site, fazer a ligação do chat entre o site e o aplicativo Desktop, também armazenando estas informações, e armazenar os dados do sistema de gerenciamento presente no sistema para Windows.

2.5.1 Requisitos Funcionais

- 1. Deve armazenar as informações do usuário;
- 2. Deve fazer a ligação do chat entre usuário web e time no Desktop;
- 3. Deve armazenar as informações de gerenciamento da solução Desktop.

2.5.2 Requisitos Não Funcionais

1. Deve ser desenvolvido com o sistema mySQL;

2.5.3 Diagramas

3 CASOS DE USO

3.1 PINUS (API)

Sendo a API desenvolvida em Node.js a base do funcionamento das partes Web e Desktop, essa sessão servirá para ambos os serviços.

3.1.1 Cadastrar Usuário / Admin

- 1. O usuário se conecta à API por um dos canais (HTTP/WebSocket);
- 2. O usuário solicita o cadastro, enviando os seguintes dados, sendo todos obrigatórios:
 - Nome de exibição (texto);
 - Nome (texto);
 - E-mail (texto);
 - Senha (texto);
 - Nível de acesso (número) (apenas no caso de cadastro de Admin).
- 3. O sistema valida as informações;
- 4. Caso as informações sejam válidas, o sistema cadastra o usuário no banco de dados e retorna as informações no formato de objeto; Caso as informações sejam inválidas, o sistema retorna um erro;

3.1.2 Buscar Usuário / Admin

- 1. O usuário se conecta à API por um dos canais (HTTP / WebSocket);
- 2. O usuário solicita uma busca, enviando os identificadores do registro prontamente;
- 3. O sistema valida as informações;
- 4. Caso as informações sejam inválidas, o sistema retorna um erro;
- 5. Caso as informações sejam válidas, o sistema faz uma busca no banco de dados usando os identificadores informados;
- 6. O sistema retorna uma lista contendo os objetos de cada resultado da busca. Os objetos são compostos do nome da coluna, seguido pelo valor na linha.

3.1.3 Alterar Usuário / Admin

- 1. O usuário se conecta à API por um dos canais (HTTP / WebSocket);
- 2. O usuário solicita uma alteração em determinado registro, enviando um objeto com a seguinte formação:

```
"identifier": {
        "[ coluna da tabela ]": "[ valor atual ]",
        ...
},
        "password": "[ senha atual ]",
        "update": {
            "[ coluna da tabela ]": "[ novo valor ]",
        ...
}
```

- 3. O sistema executa a operação no banco de dados;
- 4. Caso haja um erro, o sistema retorna o erro;
- 5. Em caso de sucesso, o sistema executa uma **BUSCA** (3.1.2) e retorna seu resultado.

3.1.4 Exlcuir Usuário / Admin

- 1. O usuário se conecta à API por um dos canais (HTTP / WebSocket);
- 2. O usuário solicita uma exclusão em determinado registro, enviando um objeto com a seguinte formação:

```
{
    "identifier": {
        "[ coluna da tabela ]": "[ valor atual ]"
    },
    "password": "[ senha atual ]",
}
```

- 3. O sistema executa a operação no banco de dados;
- 4. Caso haja um erro, o sistema retorna o erro;
- 5. Em caso de sucesso, retorna uma confirmação de conclusão.

3.1.5 Enviar Mensagem

- 1. O usuário se conecta à API por um dos canais (HTTP/WebSocket);
- 2. O usuário solicita o enviamento de uma mensagem, enviando um objeto com a seguinte formação:

```
"idAdmin": [ código do admin ],
"idUser": [ código do usuário ],
"datetime": null, //será preenchido pela API
"sender": "[ admin / user ]", //o tipo de usuário que está mandando a mensagem
"type": "[ text / image ]", //o tipo da mensagem,
"text": "[ texto ]", //Opcional
"image": "[ imagem ]" //Opcional
}
```

- 3. O sistema adiciona a mensagem ao banco de dados;
- 4. Caso haja um erro, o erro é retornado;
- 5. Em caso de sucesso, o sistema envia uma confirmação ao usuário;
- 6. O sistema busca nas sessões ativas o destinatário da mensagem;
- 7. Caso o destinatário esteja "logado", o sistema envia a mensagem. Caso não esteja, a mensagem será retornada junto com o restante no momento da inicialização do "chat".

3.1.6 Buscar Mensagem

- 1. O usuário se conecta à API por um dos canais (HTTP/WebSocket);
- 2. O usuário solicita a busca de mensagens, enviando as informações que as identificam;
- 3. O sistema faz uma busca no banco de dados, usando as informações para identificá-las :
- 4. Caso haja um erro, o sistema retorna o erro;
- 5. Em caso de sucesso, o sistema retorna uma lista contendo os objetos das mensagens.

4 DEFINIÇÃO DE RECURSOS

4.1 STAKEHOLDERS

NOME	RESPONSABILIDADES	E-MAIL
Matheus Tomazella	Engenharia, Documentação, API	matheus250504@gmail.com
Luiz Felipe Costa Soares	Web, Firmware	lfcsoares04@gmail.com
Eduardo Gomes Heleno	Mobile	Eduardo.gheleno@gmail.com
Lucas Beretta Alvetti	Desktop	lucasberettaalvetti@gmail.com

4.2 LISTA DE RECURSOS DE CONSTRUÇÃO

4.2.1 Ferramentas

- Impressora 3d;
- Multímetro.

4.2.2 Recursos Construção Mecânica

- **9**x Parafuso M4 cabeça chata 20mm;
- 1x Parafuso M4 cabeça chata 26mm;
- **1x** Parafuso M4 cabeça chata 90mm;
- ?m Filamento ??.

4.2.3 Recursos Construção Eletrônica

- 1x Esp32s;
- 10x Servo Motor;
- 1x Circuito de proteção;
- 2x Sensor de contração muscular;
- 2x Resistor 220Ω ;
- 1x Bateria Li-po 7.2v