Chapter 13

Vectors and the Geometry of Space

13.1 Three-Dimensional Coordinate Systems

An ordered pair (a, b) of real numbers is used to represent a point in a plane, which is two-dimensional. To locate a point in space, which is three-dimensional, we use an ordered triple (a, b, c) of real numbers.

To represent points in space we draw three perpendicular lines, called the **coordinate axes** and labeled the x-axis, y-axis, and z-axis, through a fixed point O (the origin). The three coordinate axes determine the three **coordinate planes**: the xy-plane contains the x- and y-axes; the yz-plane contains the y- and z-axes; the xz-plane contains the x- and z-axes. The three coordinate planes divided space into eight parts called **octants**. The **first octant** is the side we typically see and represents the positive axes.

If P is any point in space, let a be the x-coordinate, let b be the y-coordinate, and let c be the z-coordinate. We represent point P by the ordered triple

(a, b, c). If we drop a perpendicular from P to the xy-plane, we get a point Q with coordinates (a, b, 0) called the **projection** of P on the xy-plane. Similarly, R(0, b, c) is the projection of P on the yz-plane and S(a, 0, c) is the projection of P on the xz-plane.

The Cartesian product $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \{(x, y, z) | x, y, z \in \mathbb{R}\}$ is the set of all ordered triples of real numbers and is denoted by \mathbb{R}^3 . This is called a **three-dimensional rectangular coordinate system**.

In two-dimensional analytic geomemtry, the graph of an equation involving x and y is a **curve** in \mathbb{R}^2 . In three-dimensional analytic geomemtry, an equation in x, y, and z is a **surface** in \mathbb{R}^3 .

The formula for distance between two points in a plane is easily extended to a formula for three dimensions.

Definition 13.1.1 (Distance Formula in Three Dimensions). The distance $|P_1P_2|$ between the points $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$ is

$$|P_1P_2| - \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Proof. Construct a rectangular box where P_1 and P_2 are opposite vertices and the sides of the box is parallel to the coordinate planes.

If $A(x_2, y_1, z_1)$ and $B(x_2, y_2, z_1)$ are the vertices of the box indicated in the figure, then

$$|P_1A| = |x_2 - x_1|$$
 $|AB| = |y_2 - y_1|$ $|BP_2| = |z_2 - z_1|$

Because triangles P_1BP_2 and P_1AB are both right triangles, two applications of the Pythagorean Theorem give

$$|P_1P_2|^2 = |P_1B|^2 + |BP_2|^2$$

 $|P_1B|^2 = |P_1A|^2 + |AB|^2$

Combine these equations through substitution to get

$$|P_1P_2|^2 = |P_1A|^2 + |AB|^2 + |BP_2|^2$$

$$= |x_2 - x_1|^2 + |y_2 - y_1|^2 + |z_2 - z_1|^2$$

$$= (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2$$

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Example 13.1.1. The distance from point P(2, -1, 7) to the point Q(1, -3, 5) is

$$|PQ| = \sqrt{(1-2)^2 + (-3-1)^2 + (5-7)^2} = \sqrt{1+4+4} = 3$$

Just as the two-dimensional distance formula can be used to define the equation of a circle, the three-dimensional distance formula can be used to define the equaition of a sphere.

Definition 13.1.2 (Equation of a Sphere). An equation of a sphere with center C(h, k, l) and radius r is

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

In particular, if the center is the origin O, then an equation of the sphere is

$$x^2 + y^2 + z^2 = r^2$$

Proof. By definition, a sphere is the set of all points P(x, y, z) whos distance from center C(h, k, l) is radius r. Thus, P is on the sphere if and only if |PC| = r. Squaring both sides, we have $|PC|^2 = r^2$, or

$$(x-h)^2 + (y-k)^2 + (z-l)^2 = r^2$$

Example 13.1.2. Show that $x^2 + y^2 + z^2 + 4x - 6y + 2z + 6 = 0$ is the equation of a sphere, and find its center and radius.

Solution. We can rewrite the given equation in the form of an equation of a sphere by completing the square:

$$(x^2 + 4x + 4) + (y^2 - 6y + 9)(z^2 + 2z + 1) = -6 + 4 + 9 + 1$$
$$(x+2)^2 + (y-3)^2 + (z+1)^2 = 8$$

Comparing this equation with the standard form, we see that it is the equation of a sphere with center (-2,3,-1) and radius $\sqrt{8}=2\sqrt{2}$.

Example 13.1.3. What region in \mathbb{R}^3 is represented by $1 \le x^2 + y^2 + z^2 \le 4$, $z \le 0$?

Solution. Rewrite the inequality as $1 \le \sqrt{x^2 + y^2 + z^2} \le 2$, which represents the points whose distance from the origin is at least 1 and at most 2. Since $z \le 0$, the points lie on or below the xy-plane. The inequalities represent the lower hemisphere between the radii 1 and 2.

13.2 Vectors

A **vector** indicates a quantity that has both magnitude and direction and is often represented by an arrow. The length of the arrow represents its magnitude and the direction represents the vector's direction. A vector is generally typed in boldface (\mathbf{v}) and written with an arrow above the letter (\vec{v}) .

Suppose a particle moves from A to B, so its **displacement vector v** is \overrightarrow{AB} . The vector has **initial point** A and **terminal point** B and the vector is indicated by $\mathbf{v} = \overrightarrow{AB}$. Suppose another vector \mathbf{u} has the same length and direction as \mathbf{v} even though it is in a different position. We can say that \mathbf{u} and \mathbf{v} are **equivalent** (or **equal**) and we write $\mathbf{u} = \mathbf{v}$. The **zero vector**, denoted by $\mathbf{0}$, has length 0. It is the only vector with no specific direction.

Definition 13.2.1 (**Definition of Vector Addition**). If \mathbf{u} and \mathbf{v} are vectors positioned so the initial point of \mathbf{v} is at the terminal point of \mathbf{u} , then the sum $\mathbf{u} + \mathbf{v}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v} .

The definition of vector addition is sometimes called the **Triangle Law**. We can also use what we know about vectors to visualize the **Parallelogram Law**.

Definition 13.2.2 (**Definition of Scalar Multiplication**). If c is a scalar and \mathbf{v} is a vector, the the **scalar multiple** $c\mathbf{v}$ is the vector whose length is |c| times the length of \mathbf{v} and whose direction is the same as \mathbf{v} if c > 0 and is opposite if c < 0. If c = 0 or $\mathbf{v} = \mathbf{0}$, then $c\mathbf{v} = \mathbf{0}$.

For instance, $2\mathbf{v}$ is the same as $\mathbf{v} + \mathbf{v}$, which has the same direction as \mathbf{v} but is twice as long.

Two nonzero vectors are **parallel** if they are scaler multiples of one another. In particular, the vector $-\mathbf{v} = (-1)\mathbf{v}$ has the same length as \mathbf{v} but points in the opposite direction and is called the **negative** of \mathbf{v} .

The **difference** $\mathbf{u} - \mathbf{v}$ is

$$\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$$

We can construct $\mathbf{u} - \mathbf{v}$ in two ways:

- 1. Draw the negative of \mathbf{v} , $-\mathbf{v}$, and add it to \mathbf{u} by the Parallelogram Law.
- 2. $\mathbf{v} + (\mathbf{u} \mathbf{v} = \mathbf{u})$, which also equals \mathbf{u} , so we could construct $\mathbf{u} \mathbf{v}$ by the Triangle Law.

Components

If we place the initial point of a vector \mathbf{a} at the origin of a rectangular coordinate system, then the terminal point of \mathbf{a} has coordinates of the form (a_1, a_2) or (a_1, a_2, a_3) depending on the dimensions of the coordinate system. These coordinates are called the **components** of \mathbf{a} .

$$\mathbf{a} = \langle a_1, a_2 \rangle$$
 or $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$

We use the notation $\langle a_1, a_2 \rangle$ that refers to a vector so we don't confuse it with the ordered pair (a_1, a_2) that refers to a point in the plane.

Definition 13.2.3. Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector \vec{a} with representation \vec{AB} is

$$\mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

Example 13.2.1. Find the vector represented by the directed line segment with initial point A(2, -3, 4) and B(-2, 1, 1).

Solution. The vector corresponding to \vec{AB} is

$$\mathbf{a} = \langle -2 - 2, 1 - (-3), 1 - 4 \rangle = \langle -4, 4, -3 \rangle$$

The **magnitude** or **length** of the vector \mathbf{v} is the length of any of its representations and is denoted by the symbol |v| or ||v||. By using the distance formula to compute the length of a segment OP, we obtain the following formulas.

Definition 13.2.4.

The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

Definition 13.2.5. If $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$, then

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2 \rangle$$

$$\mathbf{a} - \mathbf{b} = \langle a_1 - b_1, a_2 - b_2 \rangle$$

$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

Similarly, for three-dimensional vectors,

$$\langle a_1, a_2, a_3 \rangle + \langle b_1, b_2, b_3 \rangle = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$

 $\langle a_1, a_2, a_3 \rangle - \langle b_1, b_2, b_3 \rangle = \langle a_1 - b_1, a_2 - b_2, a_3 - b_3 \rangle$
 $c \langle a_1, a_2, a_3 \rangle = \langle ca_1, ca_2, ca_3 \rangle$

We denote V_2 as the set of all two-dimensional vectors and V_3 as the set of all three-dimensional vectors. More generally, we consider V_n the set of all n-dimensional vectors. An n-dimensional vector is an ordered n-tuple:

$$\mathbf{a} = \langle a_1, a_2, \dots, a_n \rangle$$

Definition 13.2.6 (Properties of Vectors). If \mathbf{a} , \mathbf{b} , and \mathbf{c} are vectors in V_n and c and d are scalars, then

1.
$$a + b = b + a$$

2.
$$\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$$

3.
$$a + 0 = a$$

4.
$$\mathbf{a} + (-\mathbf{a}) = \mathbf{0}$$

5.
$$c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$

6.
$$(c+d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$$

7.
$$(cd)\mathbf{a} = c(d\mathbf{a})$$

8.
$$1a = a$$

Any vector in V_3 can be expressed in terms of the **standard basis vectors** $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$. Such vectors are typically written with a hat. Let

$$\hat{\mathbf{i}} = \langle 1, 0, 0 \rangle$$
 $\hat{\mathbf{j}} = \langle 0, 1, 0 \rangle$ $\hat{\mathbf{k}} = \langle 0, 0, 1 \rangle$

Then $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are vectors that have length 1 and point in the direction of the positive x-, y-, and z-axes. Similarly, in two dimensions we define $\hat{\mathbf{i}} = \langle 1, 0 \rangle$ and $\hat{\mathbf{j}} = \langle 0, 1 \rangle$.

Proof. We prove that these any vectors in V_3 can be in terms of $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$.

If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$, then we write

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = \langle a_1, 0, 0 \rangle + \langle 0, a_2, 0 \rangle + \langle 0, 0, a_3 \rangle$$

= $a_1 \langle 1, 0, 0 \rangle + a_2 \langle 0, 1, 0 \rangle + a_3 \langle 0, 0, 1 \rangle$
$$\mathbf{a} = a_1 \hat{\mathbf{i}} + a_2 \hat{\mathbf{j}} + a_3 \hat{\mathbf{k}}$$

Similarly, in two dimensions, we write

$$\mathbf{a} = \langle a_1, a_2 \rangle = a_1 \mathbf{\hat{i}} + a_2 \mathbf{\hat{j}}$$

Example 13.2.2. For instance,

$$\langle 1, -2, 6 \rangle = \hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 6\hat{\mathbf{k}}$$

A unit vector is a vector whose length is 1. For instance $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, and $\hat{\mathbf{k}}$ are all unit vectors.

Definition 13.2.7. In general, if $\mathbf{a} \neq \mathbf{0}$, then the unit vector that has the same direction as \mathbf{a} is

$$\mathbf{u} = \frac{1}{|\mathbf{a}|} \mathbf{a} = \frac{\mathbf{a}}{|\mathbf{a}|}$$

Proof. Let $c = 1/|\mathbf{a}|$. Then $\mathbf{u} = c\mathbf{a}$ and c is a positive scalar, so \mathbf{u} has the same direction as \mathbf{a} . Also

$$|\mathbf{u}| = |c\mathbf{a}| = |c||\mathbf{a}| = \frac{1}{|\mathbf{a}|}\mathbf{a} = 1$$

Example 13.2.3. Find the unit vector in the same direction of the vector $2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}}$.

Solution. The given vector has length

$$|2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}}| = \sqrt{2^2 + (-1)^2 + (-2)^2} = \sqrt{9} = 3$$

We divide the vector by its length to find the unit vector with the same direction:

$$\frac{1}{3}(2\hat{\mathbf{i}} - \hat{\mathbf{j}} - 2\hat{\mathbf{k}}) = \frac{2}{3}\hat{\mathbf{i}} - \frac{1}{3}\hat{\mathbf{j}} - \frac{2}{3}\hat{\mathbf{k}}$$

- 13.3 The Dot Product
- 13.4 The Cross Product
- 13.5 Equations of Lines and Planes
- 13.6 Cylinders and Quadric Surfaces
- 13.7 Cylindrical and Spherical Coordinates