P425/1
PURE MATHEMATICS
Paper 1
July/August 2024
3 hours

WAKISSHA JOINT MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

- Answer all the eight questions in section A and any five questions from section B.
- Any additional question(s) answered will not be marked.
- Show all necessary working clearly.
- Begin each answer on a fresh page of paper.
- Silent, non programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 MARKS)

Answer all questions in this section.

- 1. Calculate the coordinates of the point of intersection of the curve $\frac{x}{y} + \frac{6y}{x} = 5 \text{ and line } x 2y 2 = 0$ (05 marks)
- 2. By using suitable substitution evaluate $\int_0^1 \frac{x}{\sqrt{(1+x)}} dx$ (05 marks)
- 3. Given that $\sin x + \sin y = \beta_1$ and $\cos x + \cos y = \beta_2$ Show that

(i)
$$\tan \frac{x+y}{2} = \frac{\beta_1}{\beta_2}$$
 (02 marks)

(ii)
$$\cos(x + y) = \frac{\beta_2^2 - \beta_2^2}{\beta_2^2 + \beta_1^2}$$
 (03 marks)

- 4. Use small changes to estimate cube root of 27.15 (05 marks)
- Variable point P(x, y) moves such that its distance from point A (3,0) is equal to its distance from the line x + 3 = 0.

 Describe the locus of point P (05 marks)
- 6. Prove that points A($^{-2}$,0,6) and B(3, $^{-4}$, 5) lie on opposite sides of the plane 2x y + 3Z = 21. (05 marks)
- 7. The second and third terms of a geometrical progression are 24 and 12(b + 1) respectively. Find b if the sum of the first three terms of the progression is 76. (05 marks)
- 8. Determine the area of the largest rectangular piece of land that can be enclosed by 200 meters of wire when fencing it, if one side has existing wall. (05 marks)

SECTION B (60 marks)

Answer any five questions from his section.

9. (a) In a triangle ABC, prove that

$$\frac{\cos(\beta + C)}{\csc \beta \csc C} = \frac{bc}{ab + ac}$$
 (06 marks)

- (b) Find the solution of $3 \cot \theta + \text{Cosec}\theta = 2 \text{ for } 0^{\circ} \le \theta \le 360^{\circ}$ (06 marks)
- 10. (a) Use Demoivre's theorem to simplify $\frac{\left[\sqrt{3} \left(\cos\theta + i\sin\theta\right]^{8}\right]}{\left[3\cos 2\theta + 3i\sin 2\theta\right]^{3}}$ (04 marks)
 - (b) If $(1+3i)Z_1 = 5(1+i)$, show that locus of $|Z-Z_1| = |Z_1|$, where z is a complex number, is a circle and find its center and radius (08marks)
- 11. (a) The first term of an A.P is equal to the first term of a G.P whose common ratio is $\frac{1}{3}$ and sum to infinity is 9. If the common difference of the A.P is 2. Find the sum of the sum first ten terms of the A.P (06 marks)
 - (b) If the letters or a word **DEFEATED** are arranged, find number of ways for which the 3Es will be separated. (06 marks)
- 12. (a) Find the equation of a plane containing points A(1,1,1) B(1,0,1) and C(3,2,1) (05 marks)
 - (b) Find the perpendicular distance of point A (2, 1, 4) from the line $\underline{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ (07 marks)
- 13. (a) The normal at the point P(5 cos θ , 4 sin θ) on an ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ meets the x and y- axes at A and B respectively. Find the mid-point of line AB.
 - (b) Show that the circles $x^2 + y^2 2ax + c^2 = 0$ and $x^2 + y^2 2by c^2 = 0$ are orthogonal. (06 marks)

END

(03 marks)

(02 marks)

(05 marks)

Intercept

Sketch the curve.

Turning point

Equation of the a asymptotes

(i)

(ii)

(iii)

(b)