Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks

R. Geisberger P. Sanders D. Schultes D. Delling

7th International Workshop on Experimental Algorithms

Motivation

- exact shortest paths calculation in large road networks
- minimize:
 - query time
 - preprocessing time
 - space consumption
- + simplicity

Mobile Navigation

Logistics

Highway-Node Routing (HNR)

[Sanders and Schultes, WEA 07]

- general approach
- + adopt correctness proofs
- relies on another method to create hierarchies

Highway Hierarchies (HH)

[Sanders and Schultes, ESA 05, 06]

- two construction steps that are iteratively applied
 - removal of low degree nodes
 - removal of edges that only appear on shortest paths close to source or target
- Contraction Hierarchies (CH) are a radical simplification

Speedup Techniques

Transit-Node Routing (TNR) [BFSS07]

- fastest speedup technique known today
- higher preprocessing time

Goal-Directed Routing

- can be combined with hierarchical speedup techniques [DDSSSW08]
- ⇒ both techniques benefit from Contraction Hierarchies (CH)

Contraction Hierarchies (CH)

Main Idea

Contraction Hierarchies (CH)

contract only one node at a time
 ⇒ local and cache-efficient operation

in more detail:

- order nodes by "importance", $V = \{1, 2, ..., n\}$
- contract nodes in this order, node v is contracted by foreach pair (u, v) and (v, w) of edges do
 if (u, v, w) is a unique shortest path then
 add shortcut (u, w) with weight w((u, v, w))
- query relaxes only edges to more "important" nodes
 valid due to shortcuts

Construction

to identify necessary shortcuts

- local searches from all nodes u with incoming edge (u, v)
- ignore node v at search
- add shortcut (u, w) iff found distance
 d(u, w) > w(u, v) + w(v, w)

Construction

to identify necessary shortcuts

- local searches from all nodes u with incoming edge (u, v)
- ignore node v at search
- add shortcut (u, w) iff found distance
 d(u, w) > w(u, v) + w(v, w)

Node Order

use priority queue of nodes, node v is weighted with a linear combination of:

- edge difference #shortcuts #edges incident to v
- uniformity e.g. #deleted neighbors
- ...

- remove node *v* on top of the priority queue
- contract node v
- update weights of remaining nodes

- modified bidirectional Dijkstra algorithm
- upward graph $G_{\uparrow} := (V, E_{\uparrow})$ with $E_{\uparrow} := \{(u, v) \in E : u < v\}$ downward graph $G_{\downarrow} := (V, E_{\downarrow})$ with $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- forward search in G_{\uparrow} and backward search in G_{\downarrow}

- modified bidirectional Dijkstra algorithm
- upward graph $G_{\uparrow} := (V, E_{\uparrow})$ with $E_{\uparrow} := \{(u, v) \in E : u < v\}$ downward graph $G_{\downarrow} := (V, E_{\downarrow})$ with $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- forward search in G_{\uparrow} and backward search in G_{\downarrow}

- modified bidirectional Dijkstra algorithm
- upward graph $G_{\uparrow} := (V, E_{\uparrow})$ with $E_{\uparrow} := \{(u, v) \in E : u < v\}$ downward graph $G_{\downarrow} := (V, E_{\downarrow})$ with $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- forward search in G_{\uparrow} and backward search in G_{\downarrow}

- modified bidirectional Dijkstra algorithm
- upward graph $G_{\uparrow} := (V, E_{\uparrow})$ with $E_{\uparrow} := \{(u, v) \in E : u < v\}$ downward graph $G_{\downarrow} := (V, E_{\downarrow})$ with $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- ullet forward search in G_{\uparrow} and backward search in G_{\downarrow}

Outputting Paths

- for a shortcut (u, w) of a path (u, v, w),
 store middle node v with the edge
- expand path by recursively replacing a shortcut with its originating edges

Stall-on-Demand

- v can be "stalled" by u (if d(u) + w(u, v) < d(v))
- stalling can propagate to adjacent nodes
- search is not continued from stalled nodes

 does not invalidate correctness (only suboptimal paths are stalled)

Experiments

environment

- AMD Opteron Processor 270 at 2.0 GHz
- 8 GB main memory
- GNU C++ compiler 4.2.1

test instance

- road network of Western Europe (PTV)
- 18 029 721 nodes
- 42 199 587 directed edges

Performance

Worst Case Costs

Additional Results

space overhead

HNR 9.5 B/node
CH economical 0.6 B/node
CH aggressive -2.7 B/node

Many-to-Many Shortest Paths [KSSSW07]

 $10\,000 \times 10\,000$ table

 $23.2 \rightarrow 10.2 \; s$

Transit Node Routing [BFSS07]

query time

 $4.3 \rightarrow 3.4 \ \mu s$

Graph Representation

search graph

- usually store edge (v, w) in the adjacency array of v and w
- for the search, we need to store it only at node min $\{v, w\}$
- possibly negative space overhead

Summary

- Contraction Hierarchies are simple
- less space overhead
- 5× faster queries than the best previous hierarchical Dijkstra-based speedup techniques
- new foundation for other routing algorithms like Transit-Node Routing
- Future work
 - test other priority terms
 - time-dependent routing
 - dynamization

