Physics 2605H: Worksheet I

Jeremy Favro

January 26, 2025

Problem 1.

- (a) If X choses to measure X_3 , in (3,1), what would be the classical states in each of the occupied states?
- (b) Give examples for per position states in the figure?
- (c) Are the states entangled? Why do you think so?

Solution 1.

- (a) (3,1) collapses to X_3
 - (3,3) collapses to O_2
 - (1,1) collapses to X_1
 - (1,2) collapses to O_4
- (b) X_1 is entangled with O_2
 - O_2 is entangled with X_3
 - X_3 is entangled with O_4
 - O_4 is entangled with X_1
- (c) Yes, every state is entangled because collapsing any state will result in the collapse of all other states.

Problem 2.

- (a) X will win. Regardless of how O plays (2,1) is guaranteed to be X.
- (b) Not really, you could force a tie by measuring O_8 in (3,2).

Solution 2.

Problem 3. Provide the game log which leads to following result or something similar.

Solution 3. Filling in the grid in a spiral starting from (1,1) we get:

Cyclic loop occurs!!

Block_1 collapsed (Measure)

- Block_2 collapsed ($X2 : [1 \rightarrow 2]$)
- Block_3 collapsed (O3: $[2 \rightarrow 3]$)
- Block_6 collapsed ($X4: [3 \rightarrow 6]$)
- Block_9 collapsed (O5 : $[6 \rightarrow 9]$)
- Block_8 collapsed ($X6: [9 \rightarrow 8]$)
- Block_7 collapsed (O7: $[8 \rightarrow 7]$)
- Block_4 collapsed (X8: $[7 \rightarrow 4]$)
- Block_5 collapsed (O9 : $[4 \rightarrow 5]$)

Game Over!!