

## Time Series Algorithms— Appendix



## **Legal Notice**

Copyright © 2023, Blue Yonder Group, Inc. All rights reserved. Blue Yonder is a Registered Trademark of Blue Yonder Group, Inc. All other company and product names may be Trademarks, Registered Trademarks or Service Marks of the companies with which they

are associated. Blue Yonder reserves the right at any time and without notice to change these materials or any of the functions, features, or specifications of any of the software described herein. Blue Yonder shall have no warranty obligation with respect

 $to these \ materials \ or \ the software \ described \ herein, \ except \ as \ approved in \ Blue \ Yonder's \ Software \ License \ Agreement \ with \ an \ authorized \ licensee.$ 

## Time Series Algorithms—Appendix

| Fourier Algorithm |                                                                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Assumption        | Business changes at a constant rate                                                                                                                 |
| Best Suitable for | Stable products and seasonal patterns that don't vary a great deal from year to year. This model works by fitting cyclical waves to demand history. |
| Examples          | Light bulbs, paper towels, shampoos, and detergents                                                                                                 |

| MLR Algorithm     |                                                                                                                                                                                                                                                                                                                                       |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assumption        | Extension of Fourier                                                                                                                                                                                                                                                                                                                  |
| Best Suitable for | Products that have multiple causal factors.  Causal factors are variables that influence the selling pattern of a product, such as advertising cost, product price, weather, holidays, and promotions. One or more causal factors may affect sales or demand.                                                                         |
| Examples          | Sunscreen lotion.  The seasonal sales pattern remains stable and doesn't vary much from year to year. However, if a region experiences a particularly hot or extended summer, the inclusion of weather-related data into the forecasting process for stores in that area could help explain the higher than anticipated sales levels. |

| Lewandowski Algorithm |                                                                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Assumption            | Applies to an array of demand patterns                                                                                                      |
| Best Suitable for     | Constant sales pattern shifts during a product's life cycle subject to impacts of data-driven events. Also termed as 'Universal algorithm.' |
| Examples              | Electronic products like cell phones exhibit a specific sales pattern shift in their product lifecycle.                                     |

| Moving Average Algorithm |                                                                                                |  |
|--------------------------|------------------------------------------------------------------------------------------------|--|
| Assumption               | Requires less data and uses averages of recent sales history                                   |  |
| Best Suitable for        | Scenarios of short lifecycles or new product introduction (NPI).                               |  |
| Examples                 | Products such as electronic gadgets and products with a short life cycle such as grocery items |  |

| Holt Winters Algorithm |                                                                   |
|------------------------|-------------------------------------------------------------------|
| Assumption             | Produces forecasts using moving averages of systematic components |
| Best Suitable for      | Products with all types of demand patterns                        |
| Examples               | Bakery and vegetables                                             |

| Croston Algorithm |                                                                         |
|-------------------|-------------------------------------------------------------------------|
| Assumption        | Randomly distributed demand with many periods of no sale                |
| Best Suitable for | Products with intermittent demand pattern                               |
| Examples          | Engines and gears for tankers, propellers for turbines, and spare parts |

| AVS Graves Algorithm |                                                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|
| Assumption           | Updates the forecast after several consecutive periods of zero demand and allows demand planners to include seasonality |
| Best Suitable for    | Targets intermittent demand patterns and slow-moving products                                                           |
| Examples             | Snowmobiles and umbrellas                                                                                               |