

ESP32 CONTROL SYSTEM ESPECIFICAÇÃO DE REQUISITOS

DOCUMENTO X-0001

Deivison Luan Xavier Silva

ÚLTIMA ATUALIZAÇÃO: 14/07/2025

HISTÓRICO DE REVISÕES DO DOCUMENTO

DATA	VERSÃO	DESCRIÇÃO DA ALTERAÇÃO	AUTOR
27/06/2025	1	CRIAÇÃO DESTE DOCUMENTO	Deivison Luan X. Silva
30/06/2025	2	ALTERAÇÃO DO REQUISITO R1-1	Deivison Luan X. Silva
07/07/2025	3	INCLUSÃO DOS PROTÓTIPOS DE INTERFACE	Deivison Luan X. Silva
14/07/2025	4	CONCLUSÃO E VALIDAÇÃO COM O CLIENTE	Deivison Luan X. Silva

IDENTIFICAÇÃO DOS ENVOLVIDOS

PAPEL	NOME	EMAIL
ANALISTA DE REQUISITOS	Deivison Luan X. Silva	Deivison.luan@live.com
HARDWARE/PCB	Deivison Luan X. Silva	Deivison.luan@live.com
FIRMWARE	Deivison Luan X. Silva	Deivison.luan@live.com

PROBLEMA DE NEGÓCIO

Existe uma lacuna no mercado de kits educacionais para o ensino de disciplinas de engenharia. Alguns kits são muito caros, alguns tem funcionalidades limitadas e alguns tem pouca mobilidade ou dificultam o acesso do aluno. Focando na disciplina de sistemas de controle, e tentando sanar essas deficiências, o produto desenvolvido aqui é uma plataforma de baixo custo, acessível de qualquer lugar e com funcionalidades que ensinem os alunos sobre conceitos de sistemas de controle tanto no software quanto em hardware. Espera-se que o sistema seja adotado por instituições de ensino de engenharia que tenham limitações orçamentarias e precisem de soluções completas.

REQUISITOS DE SISTEMA FUNCIONAIS

- RF1. Receber e decodificar comandos (IRL e mensagens) vindos de um cliente web.
- RF2. Aplicar níveis de tensão aos circuitos usando as portas com conversores digital-analógico e avaliar suas respostas nas portas com conversores analógico-digital.
- RF3. Enviar informações para o cliente onde essas informações vão atualizar um gráfico e cards (ver figura 3).

REQUISITOS NÃO FUNCIONAIS:

- RNF1: Utilização de Websockets como protocolo de comunicação e FreeRTOS para funções de tempo real.
- RNF2: Tempo inicialização máximo: 8 s.
- RNF3: Alimentação 5 V e 2 A.

REGRAS DE NEGÓCIO:

- RN1: Na tela de interface do cliente o botão "descarregar capacitor" serve como um reset no experimento. Observe que um indicador ao seu lado mostra quando o capacitor está sendo descarregado (vermelho) e quando está em uso normal (verde).
- RN2: O botão "Aplicar parâmetros" inicia o experimento com as configurações escolhidas acima (Malha aberta ou fechada, planta selecionada, e parâmetros de controle).

CASOS DE USO (CSU0x)

1. **Esp32 como servidor** – O esp32 está hospedando sendo utilizado como servidor web e como controlador do experimento. Ao ser energizado, o Esp32 está pronto para receber o acesso.

UERN

SISTEMAS DE CONTROLE BASEADOS EM ESP32

- Configuração do cliente Na página web, o usuário pode selecionar como o sistema vai se comportar, selecionando opções como qual planta será utilizada, qual ordem, se o sistema está em malha aberta ou fechada e os parâmetros no caso de uso de PID.
- Envio de parâmetros (Comunicação cliente-servidor) O servidor recebe as mensagens enviadas pelo cliente e executa o que for preciso, aplicando tensões ou descarregando o capacitor para reiniciar o experimento.
- 4. **Aplicação nos circuitos** O Esp32 aplica a tensão indicada pelo Set Point (SP) e mede a tensão no capacitor como sua resposta.
 - Sistema de primeira ordem Circuito RC com capacitor eletrolítico fixo em 100 uF e 4 resistores (1 kΩ, 10 kΩ, 22 kΩ e 56 kΩ) selecionáveis por um demux alterando o tempo de resposta do sistema.
 - Sistema de segunda ordem Circuito de um filtro passa-baixa ativo com topologia Sallen-Key (figura 1) com capacitores eletrolítico (4.7 uF e 10 uF) selecionáveis por um demux alterando a forma de resposta do sistema.

Figura 1 - Filtro Passa-baixa ativo de segunda ordem - Topologia Sallen-Key.

- Avaliação Medir a tensão de saída dos circuitos (tensão nos capacitores utilizados) e organiza em um objeto JSON que vai ser enviado para o cliente web.
- Exibir os resultados Na interface do cliente, os resultados são mostrados em flashcards e em um gráfico.

Figura 2 - Diagrama de transição de estados

WIREFRAMES PARA PROTOTIPAÇÃO DAS INTERFACES

Figura 3 – Apresentação da tela de monitoramento dos sinais de sistema de controle.

Figura 4 – Arquitetura simplificada do uso dos núcleos.

LISTA DE MATERIAIS

Categoria	Item	Quant.	Preço	unitário	Tota	al
Microcontrolador	ESP32 DEV-KIT	1	R\$	61,00	R\$	61,00
	Capacitor eletrolitico 4.7 uF	4	R\$	0,30	R\$	1,20
	Capacitor eletrolitico 10 uF	1	R\$	0,15	R\$	0,15
	Capacitor eletrolitico 100 uF	1	R\$	0,20	R\$	0,20
	Capacitor ceramico 680 nF	1	R\$	0,85	R\$	0,85
Commonantos	Resistores de 10 kΩ	2	R\$	0,07	R\$	0,14
Componentes	Resistores de 22 kΩ	1	R\$	0,45	R\$	0,45
	Resistores de 56 kΩ	1	R\$	0,07	R\$	0,07
	Resistores de $100~\mathrm{k}\Omega$	4	R\$	0,50	R\$	2,00
	Ampop LM358	1	R\$	1,40	R\$	1,40
	Mux/Demux 4052 BE	1	R\$	1,30	R\$	1,30
Energia	Fonte de alimentação 220 v - 5 v	1	R\$	35,00	R\$	35,00
	Bornes de duas conexões	2	R\$	0,80	R\$	1,60
	Ventoinha	1	R\$	20,00	R\$	20,00
Estrutura e Acabamento	Carcaça impressa em 3D (ou acrílico/ABS)	1			R\$	_
	Parafusos M2 ou M3	4			R\$	-
Ferramentas	Ferro de solda + Estanho 60/40	1			R\$	-
	Multímetro	1			R\$	-

Impressora 3D / Serviço de corte a laser	1		R\$ -
		Total	R\$ 125,36

Tabela 1 - Lista de materiais e orçamento para o desenvolvimento do protótipo.

Fonte: Orçamento realizado no site baú da eletrônica dia 13/07. Disponível no endereço: https://www.baudaeletronica.com.br

ESQUEMÁTICO PRELIMINAR (Wokwi)

Figura 5 - Esquemático de ligação do circuito no Kicad

REPOSITÓRIO DE CÓDIGOS

Firmware:

https://github.com/DeivisonLuan/Esp32_Control_Systems#

Bibliotecas importadas:

Arduino_JSON

Processa JSON em projetos com microcontroladores Arduino e derivados.

Author: Arduino

Website: https://github.com/arduino-libraries/Arduino JSON

Category: Other
License: LGPL 2.1
Library Type: Official
Architectures: Any

Tabela 1 - Descrição da biblioteca Arduino JSON Fonte: https://www.arduinolibraries.info/libraries/arduino_json

WebSockets

Protocolo WebSockets para Arduino (Server + Client).

Author: Markus Sattler

Website: https://github.com/Links2004/arduinoWebSockets

Category: Communication

License: LGPL 2.1 Library Type: Contributed

Architectures: Any

Tabela 2 - Descrição da biblioteca WebSockets

Fonte: https://www.arduinolibraries.info/libraries/web-sockets