Profesor: Ricardo Muñoz Auxiliar: Sebastián Villalón Ayudante: Victoria Caballero

a) Para calcular la razón de mezcla usamos la humedad relativa y la relación

$$w = \frac{\mathrm{HR}}{100} w_{\mathrm{sat}} \tag{0.1}$$

Sin embargo para poder usar esta expresión necesitamos también $w_{\rm sat}$. Esta cantidad lo obtenemos a partir de

$$w_{\rm sat} = e_{\rm sat} \frac{\epsilon}{P - e_{\rm sat}} \tag{0.2}$$

y por último, $e_{\rm sat}$ la obtenemos usando la ecuación de Clasius-Clapeyron, en particular la siguiente forma de dicha ecuación:

$$6.11 \cdot \exp\left(5.42 \cdot 10^3 \left(\frac{1}{273} - \frac{1}{T}\right)\right) \tag{0.3}$$

con T la temperatura en Kelvin, y $\epsilon = 0.622$.

A continuación mostramos los valores obtenidos para la razón de mezcla de cada nivel.

RP_Press	RP_Temp	RP_DewptTemp	RP_RH	e_sat	w_sat	W
953.20	21.65	10.60	49.44	26.277184	0.017633	0.008718
940.21	20.60	10.23	51.43	24.604175	0.016714	0.008596
927.93	19.51	9.95	54.01	22.968543	0.015787	0.008526
867.89	17.23	9.01	58.51	19.857118	0.014564	0.008522
800.00	16.96	-7.65	17.79	19.514801	0.015552	0.002767