$12a_{0815} (K12a_{0815})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -1.39811 \times 10^{17} u^{53} + 3.48531 \times 10^{17} u^{52} + \dots + 3.74793 \times 10^{16} b + 1.64653 \times 10^{17}, \\ & 6.79652 \times 10^{16} u^{53} - 2.14430 \times 10^{17} u^{52} + \dots + 3.74793 \times 10^{16} a - 3.66519 \times 10^{17}, \ u^{54} - 4 u^{53} + \dots - 12 u + I_2^u \\ I_2^u &= \langle u^2 + b - u - 2, \ -u^2 + a + u + 2, \ u^3 - u^2 - 2 u + 1 \rangle \\ I_3^u &= \langle b + u - 1, \ a + 3, \ u^2 + u - 1 \rangle \\ I_4^u &= \langle b + 1, \ a - 2, \ u^2 + u - 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 61 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -1.40 \times 10^{17} u^{53} + 3.49 \times 10^{17} u^{52} + \dots + 3.75 \times 10^{16} b + 1.65 \times 10^{17}, \ 6.80 \times 10^{16} u^{53} - 2.14 \times 10^{17} u^{52} + \dots + 3.75 \times 10^{16} a - 3.67 \times 10^{17}, \ u^{54} - 4 u^{53} + \dots - 12 u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.81341u^{53} + 5.72128u^{52} + \dots - 57.8240u + 9.77923 \\ 3.73034u^{53} - 9.29930u^{52} + \dots + 36.1231u - 4.39318 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -9.13774u^{53} + 22.8480u^{52} + \dots + 36.1231u - 4.39318 \\ 11.0547u^{53} - 26.4260u^{52} + \dots + 83.2829u - 8.48291 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 11.7271u^{53} - 28.5773u^{52} + \dots + 105.648u - 12.1490 \\ -11.8102u^{53} + 27.9993u^{52} + \dots + 86.3491u + 8.53503 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -4.40884u^{53} + 10.2375u^{52} + \dots + 46.3267u + 6.19547 \\ 6.42322u^{53} - 15.2092u^{52} + \dots + 47.7853u - 4.63561 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} + 2u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 6.54314u^{53} - 14.0720u^{52} + \dots + 18.5879u + 0.684875 \\ -6.46008u^{53} + 14.6500u^{52} + \dots - 37.8870u + 2.92907 \end{pmatrix}$$

(ii) Obstruction class = -1

 $\begin{array}{l} \textbf{(iii) Cusp Shapes} = \\ \frac{363185510972410645}{37479301199371286} u^{53} - \frac{688675840018976189}{18739650599685643} u^{52} + \dots + \frac{4805743652784223102}{18739650599685643} u - \frac{1430274773919045159}{37479301199371286} u^{52} + \dots + \frac{4805743652784223102}{18739650599685643} u - \frac{1430274773919045159}{37479301199371286} u^{52} + \dots + \frac{4805743652784223102}{18739650599685643} u^{52} + \dots + \frac$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_4	$u^{54} - 6u^{53} + \dots - 37u - 1$
c_3, c_6	$u^{54} + 3u^{53} + \dots - 4u + 8$
c_5,c_{10}	$u^{54} + 2u^{53} + \dots - 64u - 16$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$u^{54} - 4u^{53} + \dots - 12u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$y^{54} - 50y^{53} + \dots - 985y + 1$
c_3, c_6	$y^{54} - 27y^{53} + \dots - 3088y + 64$
c_5,c_{10}	$y^{54} - 30y^{53} + \dots - 7808y + 256$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$y^{54} - 72y^{53} + \dots - 24y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.955893 + 0.280895I		
a = -0.657144 + 0.964305I	0.99214 - 4.46696I	0
b = -0.167798 + 0.004865I		
u = -0.955893 - 0.280895I		
a = -0.657144 - 0.964305I	0.99214 + 4.46696I	0
b = -0.167798 - 0.004865I		
u = -0.954075 + 0.196551I		
a = -2.44568 + 0.32192I	1.98617 - 1.55786I	0
b = 1.39296 - 0.94545I		
u = -0.954075 - 0.196551I		
a = -2.44568 - 0.32192I	1.98617 + 1.55786I	0
b = 1.39296 + 0.94545I		
u = -1.003860 + 0.333824I		
a = 1.98014 - 0.51608I	4.09810 - 6.73935I	0
b = -1.15335 + 1.40699I		
u = -1.003860 - 0.333824I		
a = 1.98014 + 0.51608I	4.09810 + 6.73935I	0
b = -1.15335 - 1.40699I		
u = 1.037550 + 0.306742I		
a = -0.949401 - 0.673804I	-3.90243 + 4.30298I	0
b = 0.037724 + 1.330030I		
u = 1.037550 - 0.306742I		
a = -0.949401 + 0.673804I	-3.90243 - 4.30298I	0
b = 0.037724 - 1.330030I		
u = -1.004380 + 0.437767I		
a = -1.67226 + 0.47123I	-1.30619 - 11.23270I	0
b = 0.92436 - 1.53705I		
u = -1.004380 - 0.437767I		
a = -1.67226 - 0.47123I	-1.30619 + 11.23270I	0
b = 0.92436 + 1.53705I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.889050 + 0.150577I		
a = 0.895885 + 0.803841I	1.36794 + 1.65747I	6.44317 - 4.64193I
b = -0.126696 - 1.360540I		
u = 0.889050 - 0.150577I		
a = 0.895885 - 0.803841I	1.36794 - 1.65747I	6.44317 + 4.64193I
b = -0.126696 + 1.360540I		
u = -1.113440 + 0.153181I		
a = 0.382959 - 0.729976I	6.28050 - 1.40683I	0
b = 0.0606512 + 0.0742692I		
u = -1.113440 - 0.153181I		
a = 0.382959 + 0.729976I	6.28050 + 1.40683I	0
b = 0.0606512 - 0.0742692I		
u = 0.647324 + 0.583844I		
a = 1.140030 + 0.621418I	-3.55059 - 3.17785I	2.00000 + 1.62776I
b = 0.132989 - 1.059230I		
u = 0.647324 - 0.583844I		
a = 1.140030 - 0.621418I	-3.55059 + 3.17785I	2.00000 - 1.62776I
b = 0.132989 + 1.059230I		
u = 0.708312 + 0.161436I		
a = -0.110891 + 1.210160I	-0.861342 + 0.425422I	8.90403 + 2.84052I
b = -0.21103 - 1.94212I		
u = 0.708312 - 0.161436I		
a = -0.110891 - 1.210160I	-0.861342 - 0.425422I	8.90403 - 2.84052I
b = -0.21103 + 1.94212I		
u = -0.724781		
a = 3.04269	-7.67173	19.8130
b = -0.702104		
u = 0.180101 + 0.700187I		
a = 0.088171 - 0.373846I	-4.94514 + 7.40203I	-1.00662 - 6.28181I
b = -0.49531 - 1.40016I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.180101 - 0.700187I		
a = 0.088171 + 0.373846I	-4.94514 - 7.40203I	-1.00662 + 6.28181I
b = -0.49531 + 1.40016I		
u = 0.484782 + 0.418903I		
a = -1.25208 - 0.74775I	1.232030 - 0.400002I	7.11175 + 0.11005I
b = -0.023304 + 0.876278I		
u = 0.484782 - 0.418903I		
a = -1.25208 + 0.74775I	1.232030 + 0.400002I	7.11175 - 0.11005I
b = -0.023304 - 0.876278I		
u = 0.212049 + 0.561353I		
a = -0.355668 + 0.444206I	0.34502 + 3.69748I	2.76292 - 6.81307I
b = 0.58234 + 1.33649I		
u = 0.212049 - 0.561353I		
a = -0.355668 - 0.444206I	0.34502 - 3.69748I	2.76292 + 6.81307I
b = 0.58234 - 1.33649I		
u = -0.281238 + 0.495314I		
a = 0.769983 + 1.023740I	-7.98083 - 1.54477I	-5.36049 + 2.77593I
b = 0.106414 + 1.105760I		
u = -0.281238 - 0.495314I		
a = 0.769983 - 1.023740I	-7.98083 + 1.54477I	-5.36049 - 2.77593I
b = 0.106414 - 1.105760I		
u = -1.45229 + 0.18721I		
a = -0.812390 + 0.483425I	3.36449 + 0.31719I	0
b = 0.156984 - 0.422947I		
u = -1.45229 - 0.18721I		
a = -0.812390 - 0.483425I	3.36449 - 0.31719I	0
b = 0.156984 + 0.422947I		
u = 0.139977 + 0.472620I		
a = 1.76198 + 0.54098I	-2.37654 + 1.88570I	-0.67343 - 3.61371I
b = 0.201388 - 0.650535I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.139977 - 0.472620I		
a = 1.76198 - 0.54098I	-2.37654 - 1.88570I	-0.67343 + 3.61371I
b = 0.201388 + 0.650535I		
u = 0.487736		
a = -0.807237	0.740706	13.6380
b = 0.441336		
u = -1.60169		
a = 2.38830	8.10579	0
b = -2.02710		
u = -1.65983 + 0.02504I		
a = 0.87862 + 1.94748I	7.60543 - 1.00097I	0
b = -0.58285 - 2.35560I		
u = -1.65983 - 0.02504I		
a = 0.87862 - 1.94748I	7.60543 + 1.00097I	0
b = -0.58285 + 2.35560I		
u = 1.66740		
a = -2.44614	0.921274	0
b = 1.33681		
u = -1.69751 + 0.03635I		
a = -0.96750 + 1.32403I	10.60180 - 2.36821I	0
b = 0.48614 - 1.68807I		
u = -1.69751 - 0.03635I		
a = -0.96750 - 1.32403I	10.60180 + 2.36821I	0
b = 0.48614 + 1.68807I		
u = 1.70775 + 0.07197I		
a = 0.258719 + 0.302731I	10.43440 + 5.86156I	0
b = 0.129943 + 0.458522I		
u = 1.70775 - 0.07197I		
a = 0.258719 - 0.302731I	10.43440 - 5.86156I	0
b = 0.129943 - 0.458522I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.70917 + 0.05180I		
a = 2.59054 + 0.66443I	11.47430 + 2.55306I	0
b = -1.81746 - 0.96175I		
u = 1.70917 - 0.05180I		
a = 2.59054 - 0.66443I	11.47430 - 2.55306I	0
b = -1.81746 + 0.96175I		
u = 0.043095 + 0.280243I		
a = 0.89056 - 1.82691I	-1.250130 - 0.131994I	-5.38771 - 0.73638I
b = -0.611450 - 0.877287I		
u = 0.043095 - 0.280243I		
a = 0.89056 + 1.82691I	-1.250130 + 0.131994I	-5.38771 + 0.73638I
b = -0.611450 + 0.877287I		
u = 1.71938 + 0.08814I		
a = -2.28411 - 1.00360I	13.7389 + 8.4458I	0
b = 1.57801 + 1.44618I		
u = 1.71938 - 0.08814I		
a = -2.28411 + 1.00360I	13.7389 - 8.4458I	0
b = 1.57801 - 1.44618I		
u = 1.71805 + 0.12084I		
a = 1.98176 + 1.07195I	8.2449 + 13.5020I	0
b = -1.28426 - 1.61703I		
u = 1.71805 - 0.12084I		
a = 1.98176 - 1.07195I	8.2449 - 13.5020I	0
b = -1.28426 + 1.61703I		
u = -1.72791 + 0.08472I		
a = 0.849535 - 1.106390I	5.92114 - 5.92817I	0
b = -0.25652 + 1.47457I		
u = -1.72791 - 0.08472I		
a = 0.849535 + 1.106390I	5.92114 + 5.92817I	0
b = -0.25652 - 1.47457I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.74587 + 0.03327I		
a = -0.107778 - 0.244366I	16.5619 + 2.1570I	0
b = -0.087691 - 0.343352I		
u = 1.74587 - 0.03327I		
a = -0.107778 + 0.244366I	16.5619 - 2.1570I	0
b = -0.087691 + 0.343352I		
u = 1.82048		
a = 0.109703	15.6372	0
b = 0.193921		
u = 0.166814		
a = 4.00471	-1.16691	-12.8120
b = -1.18722		

II.
$$I_2^u = \langle u^2 + b - u - 2, -u^2 + a + u + 2, u^3 - u^2 - 2u + 1 \rangle$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{2} + u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} - u - 2 \\ -u^{2} + u + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} - u - 2 \\ -u^{2} + u + 2 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u \\ 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{2} + 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} - 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-8u^2 + 7u + 30$

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_6	u^3
c_4	$(u+1)^3$
c_5, c_7, c_8 c_9	$u^3 + u^2 - 2u - 1$
c_{10}, c_{11}, c_{12}	$u^3 - u^2 - 2u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_6	y^3
c_5, c_7, c_8 c_9, c_{10}, c_{11} c_{12}	$y^3 - 5y^2 + 6y - 1$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.24698		
a = 0.801938	4.69981	8.83150
b = -0.801938		
u = 0.445042		
a = -2.24698	-0.939962	31.5310
b = 2.24698		
u = 1.80194		
a = -0.554958	15.9794	16.6380
b = 0.554958		

III.
$$I_3^u = \langle b+u-1, \ a+3, \ u^2+u-1 \rangle$$

a₈ =
$$\begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3 \\ -u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -2 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 3u + 2 \\ -u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 2u + 3 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u + 3 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -16

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_3 \\ c_{11}, c_{12}$	$u^2 + u - 1$
c_4, c_6, c_7 c_8, c_9	$u^2 - u - 1$
c_5,c_{10}	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_8, c_9, c_{11} c_{12}	$y^2 - 3y + 1$
c_5,c_{10}	y^2

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -3.00000	-7.89568	-16.0000
b = 0.381966		
u = -1.61803		
a = -3.00000	7.89568	-16.0000
b = 2.61803		

IV.
$$I_4^u = \langle b+1, \ a-2, \ u^2+u-1 \rangle$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ -u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u + 1 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u + 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -1

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_3 \\ c_{11}, c_{12}$	$u^2 + u - 1$
c_4, c_6, c_7 c_8, c_9	$u^2 - u - 1$
c_5,c_{10}	u^2

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_6, c_7 c_8, c_9, c_{11} c_{12}	$y^2 - 3y + 1$
c_5,c_{10}	y^2

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = 2.00000	0	-1.00000
b = -1.00000		
u = -1.61803		
a = 2.00000	0	-1.00000
b = -1.00000		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2	$((u-1)^3)(u^2+u-1)^2(u^{54}-6u^{53}+\cdots-37u-1)$
<i>c</i> ₃	$u^{3}(u^{2}+u-1)^{2}(u^{54}+3u^{53}+\cdots-4u+8)$
C ₄	$((u+1)^3)(u^2-u-1)^2(u^{54}-6u^{53}+\cdots-37u-1)$
<i>C</i> ₅	$u^{4}(u^{3} + u^{2} - 2u - 1)(u^{54} + 2u^{53} + \dots - 64u - 16)$
<i>C</i> ₆	$u^{3}(u^{2}-u-1)^{2}(u^{54}+3u^{53}+\cdots-4u+8)$
c_7, c_8, c_9	$((u^2 - u - 1)^2)(u^3 + u^2 - 2u - 1)(u^{54} - 4u^{53} + \dots - 12u + 1)$
c_{10}	$u^{4}(u^{3} - u^{2} - 2u + 1)(u^{54} + 2u^{53} + \dots - 64u - 16)$
c_{11}, c_{12}	$((u^2+u-1)^2)(u^3-u^2-2u+1)(u^{54}-4u^{53}+\cdots-12u+1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$((y-1)^3)(y^2-3y+1)^2(y^{54}-50y^{53}+\cdots-985y+1)$
c_3, c_6	$y^{3}(y^{2} - 3y + 1)^{2}(y^{54} - 27y^{53} + \dots - 3088y + 64)$
c_5, c_{10}	$y^4(y^3 - 5y^2 + 6y - 1)(y^{54} - 30y^{53} + \dots - 7808y + 256)$
$c_7, c_8, c_9 \\ c_{11}, c_{12}$	$((y^2 - 3y + 1)^2)(y^3 - 5y^2 + 6y - 1)(y^{54} - 72y^{53} + \dots - 24y + 1)$