

We can define another vector, $\Delta \mathbf{p}$, in the same space as \mathbf{p} that tells us what change can be made to \mathbf{p} to

For example, a model with parameters ${f p}'={f p}+\Delta{f p}$ will produce a better fit to data, if we can find a

The second course in this specialisation will detail how to calculate these changes in parameters, $\Delta \mathbf{p}$.

1 / 1 point

30

get a better fit.

suitable $\Delta \mathbf{p}$.

40

Given the following contour map,

```
\frac{\mathsf{E}}{\mathsf{b}} \ 20
10
150 \ 160 \ 170 \ 180 \ 190 \ 200
\mu / \, \mathrm{cm}
What \Delta \mathbf{p} will give the best improvement in the model?
\Delta \mathbf{p} = \begin{bmatrix} -2 \\ -2 \end{bmatrix}
\Delta \mathbf{p} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}
\Delta \mathbf{p} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}
```

 $igtriangledown_{\Delta \mathbf{p}} = egin{bmatrix} 2 \\ 2 \end{bmatrix}$

This direction will decrease the SSR making the fit better.