UNIVERSITY of LIMERICK

OLLSCOIL LUIMNIGH

KEMMY BUSINESS SCHOOL

Department of Economics

End of Term Assessment

ACADEMIC YEAR:	Autumn, 2008/09
MODULE CODE:	EC4307
DURATION OF EXAMINATION:	2.5 hours
MODULE TITLE:	ECONOMETRICS
PERCENTAGE OF TOTAL MARKS:	60% (Remaining 40% awarded for two course work assignments)
LECTURER:	Declan Dineen
EXTERNAL EXAMINER:	Dr Lisa De Propris
INSTRUCTIONS TO CANDIDATE	is:
 Answer 3 (THREE) questions or 	nly out of the 6 (SIX) questions on this exam paper.
	rom SECTION A and at least ONE question from SECTION
В.	4
 Put your answers to Section A a 	and Section B in SEPARATE ANSWER BOOKS.
 All answers should be concise a 	
 All questions carry equal marks 	. Marks awarded for individual parts of each question are
indicated on the paper.	,
 All rough work to be handed up 	with the exam paper.
 Non-programmable calculators 	• •
	•
Continues N. Ann.	
STUDENT NAME:	
ID NUMBER:	
COURSE OF STUDY:	

SECTION A

A1. Consider the following model used to estimate how a hamburger chain's weekly revenue tr depends on price p, and advertising expenditure a

$$tr_t = \beta_1 + \beta_2 p_t + \beta_3 a_t + \varepsilon_t$$

where price p is measured in Euro while total revenue tr and advertising expenditure a are measured in Euro (000s).

The least squares output from estimating this equation appears in TABLE 1.0 below.

TABLE 1.0

I ABLE 1.0				
Dependent v	ariable:	tr		
Number of o	bservations:	52		
Variable	Coefficient	Std. Error	t-statistic	<i>p</i> -value
Intercept	104.7855	?	16.16382	0.0000
Price	-6.641930	3.191193	?	0.0427
Advert	?	0.166936	17.87689	0.0000
R-squared		?		
Adjusted R-	squared	0.861660		
$\sum (Y_t - \overline{Y})^2$!	13581.35		
'	red residuals (l	RSS) 1805.168		

(a) Fill in the following blank spaces that appear in TABLE 1.0:

(i) The *t*-statistic for
$$\hat{\beta}_2$$
. (5%)

(ii) The standard error for
$$\hat{\beta}_1$$
. (5%)

(iii) The estimate
$$\hat{\beta}_3$$
. (5%)

(iv) The
$$R^2$$
. (10%)

(b) Calculate the estimated error variance
$$\hat{\sigma}_{\varepsilon}^2$$
 and standard error. (10%)

- (c) Interpret the estimates $\hat{\beta}_2$ and $\hat{\beta}_3$. Are the signs on these coefficients what you would expect from a theory or logical point of view? (10%)
- (d) Using the test of significance approach (t-test) or using the reported p-value, at the 5% level of significance, test the hypothesis that the firm's weekly revenue does not depend on advertising expenditure. (10%)

- (e) Calculate a 95% confidence interval for the true population parameter β_2 . What does the interval tell you (i.e. in what are you 95% confident)? Test the hypothesis that price has no effect on the firm's weekly revenue. (20%)
- (f) Derive the F ratio (showing the relationship between R^2 and F) and test the overall significance of the estimated equation using the F-test at the 5 per cent level of significance. (25%)
- A2. (a) Explain the difference between a model which is linear in the *variables* and one which is linear in the *parameters* (giving examples). (15%)

Given the two-variable regression model

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$

- (b) Briefly, describe the classical linear regression model assumptions underlying the OLS estimation technique. Use well-labelled diagrams to support your answer where appropriate. (20%)
- (c) Derive the least-squares normal equations for β_1 and β_2 and proceed to derive the estimator for β_2 . (40%)
- (d) Describe the Gauss-Markov theorem and prove that the estimator for β_2 is linear and unbiased. (25%)
- A3. (a) What is heteroscedasticity? Illustrate with the aid of a diagram(s)

 Discuss the consequences of heteroscedasticity for estimation and hypothesis testing using OLS estimates. (30%)
 - (b) A scatter plot of the estimated squared residuals on the fitted values from a regression line is shown in FIGURE 1.0 below. Explain what the researcher hoped to achieve with this scatter plot. What does FIGURE 1.0 show?

Describe the White's test method which can be used to detect the presence of heteroscedasticity. (35%)

(c) Describe the GLS/ WLS method of correcting for heteroscedasticity when σ_i^2 is known.

Consider the two-variable regression model

$$Y_i = \beta_1 + \beta_2 X_i + \varepsilon_i$$

Explain how the weighted or generalised least squares estimator works when:

$$\sigma_i^2 = \sigma^2 X_i^2$$

$$\sigma_i^2 = \sigma^2 X_i$$
(35%)

FIGURE 1.0

where RESSQ denotes the residual squared $\hat{\varepsilon}_t^2$ and FIT denotes the fitted values from the regression line.

SECTION B

B1. Suppose we posit the following demand for money relation

$$M0_t = \beta_1 + \beta_2 GNP_t + \beta_3 i_t + \varepsilon_t$$

where $M0_t$ = demand for money (nominal cash balances)

 i_t = an interest rate indicator (%)

 GNP_t = Gross National Product

Based on quarterly data for 1972Q1-1989Q4, the following results in TABLE 2.0 were obtained:

TABLE 2.0

1.1000 0.0	,			.•	
	(Ordinary Least Sq	uares Estir	nation	
*****	*******	********	******	******	******
Dependent varia	ble is M0				
72 observations	used for estim	ation from 19720	01 to 1989	04	
*********	*********	*********	********	*******	*****
Regressor	Coefficient	Standard	l Error	T-Ratio[Prob]	
INPT	-27.9858	6.8392		-4.0920[.000]	
GNP	.19020	.003236	9	58.7617[.000]	
I	-3.6733	.83807		-4.3831[.000]	
*********	*******	********	********	*************	*****
R-Squared	.9	98135	R-Bar-So	quared	.98081
S.E. of Regressi	on 1	1.3900	F-stat. F	(2, 69)	1815.7[.000]
Mean of Depend	lent Variable 2	39.4806	S.D. of D	Dependent Variable	82.2268
Residual Sum of	f Squares 8	951.5	Equation	Log-likelihood	-275.7885
Akaike Info. Cri	terion -	278.7885	Schwarz	Bayesian Criterion	-282.2035
DW-statistic		14432			
*********	**********	********	********	***********	********

Diagnostic Tests

*	Test Statistics	*	F Version
*****	*******	******	***********
* A: S	Serial Correlation	* F(4 *	, 65) = 111.9423[.000]
* B: F *	Functional Form	* F(1	, 68) = 53.1390[.000]
* C: I	Heteroscedasticity	* F(1	, 70) = 65.4813[.000]

- A: Lagrange multiplier test of residual serial correlation
- B: Ramsey's RESET test using the square of the fitted values
- C: Based on the regression of squared residuals on squared fitted values

Plotting the estimated residuals from this regression on their values lagged one time period gives FIGURE 2.0:

FIGURE 2.0

(a) What is autocorrelation?

How would you distinguish between "pure" autocorrelation and apparent autocorrelation resulting from specification error?

Discuss the consequences of "pure" autocorrelation for estimation and hypothesis testing using OLS estimates. (30%)

(b) Derive the Durbin-Watson test statistic and describe how it is used to test for autocorrelation.

What are the weaknesses of this test?

(25%)

- (c) What does FIGURE 2.0 show? Based on the results given in TABLE 2.0, conduct a formal test for autocorrelation in this model. Does the outcome of this test support the evidence from FIGURE 2.0? (20%)
- (d) In the presence of "pure" autocorrelation, describe the Cochrane-Orcutt method for estimating the autocorrelation coefficient ρ . (25%)

B2. Explain/ discuss the following:

(a) What is a "stationary stochastic process?"

Look at the plot of GNP for Germany in FIGURE 3.0. Does this time series appear to be stationary? Suppose that you calculated the first-difference of this series. Would it appear to be stationary? Justify your answer. (20%)

- (b) The autocorrelation function (ACF). The general characteristics of the correlograms presented in FIGURE 4.0. (15%)
- (c) The Dickey-Fuller (DF) and Augmented DF tests. (25%)

- (d) The meaning of a series being "integrated of order 1," that is I(1). The concept of cointegration and ONE test of whether two time series are cointegrated.

 (25%)
- (e) A regression between two nonstationary variables can produce spurious results. If the variables are nonstationary, and not cointegrated, is there any relationship that can be estimated (mention any problems with your approach here)? (15%)

FIGURE 3.0: Gross National Product in current prices relating to the German economy.

FIGURE 4.0: Sample Autocorrelation Function (ACF)

(a) German GNP

(b) Change in German GNP

Autocorrelation function of GNPCHANGE, sample from 1972Q2 to 1989Q4

B3. (a) What is meant by multicollinearity?

Discuss the consequences of multicollinearity for OLS estimation. (25%)

- (b) Describe the auxiliary regression method which can be used to detect for the presence of multicollinearity. (20%)
- (c) "A high degree of multicollinearity may have an adverse effect on regression results, but this is by no means inevitable."

Discuss this statement. (20%)

- (d) Describe two possible remedial measures for the multicollinearity problem and, briefly, discuss any problems which might be encountered with these remedial actions. (15%)
- (e) Suppose we fit the model

$$M0_t = \beta_1 + \beta_2 GNP_t + \beta_3 i_t + \varepsilon_t$$

where

 $M0_t$ = demand for money (nominal cash balances)

 i_t = an interest rate indicator (%)

GNP₁ = Gross National Product

Partial *Microfit* output from estimating this relation based on quarterly data for 1972Q1-1989Q4 (72 observations) appears below

	Diagnostic 3	l'ests
*******	********	*******
Test Statistics	*	F Version
د بند بند بند بند بند بند بند بند بند بن		

* B: Functional Form * F(1, 68) = 53.1390[.000] * * C: Heteroscedasticity * F(1, 70) = 65.4813[.000]

A: Lagrange multiplier test of residual serial correlation

B: Ramsey's RESET test using the square of the fitted values

C: Based on the regression of squared residuals on squared fitted values

Describe the steps involved in the RESET test procedure as used here. Using the *Microfit* output provided, does the RESET test suggest the model is misspecified? (20%)

TABLE 0.2
Percentage points of the t distribution

recemage points or the reastroution

Pr(r > 2.086) = 0.025

Example

Pr(t > 1.725) = 0.05 for df = 20

Pr(|t| > 1.725) = 0.10

_		ĭ		T -		$\overline{}$	
1/8		0.10	0.05	0.025	10.0	0.005	0.001
<u>a /</u>	0.50	0.20	0.10	0.05	0.02	0.010	0.002
1,	1.000	3.078	6.314	12.706	31.821	63,657	318.31
2	0.816	1.886	2.920	4.303	6.965	9.925	22.327
3	0.765	1.638	2.353	3.182	4.541	5.841	10.214
4	0.741	1.533	2.132	2.776	3.747	4.604	7.173
5	0.727	1.476	2.015	2.571	3.365	4.032	5.893
6	0.718	1.440	1.943	2.447	3.143	3.707	5.208
7	0.711	1.415	1.895	2.365	2.998	3,499	4.785
8	0.706	1.397	1.860	2.306	2.896	3.355	4.501
9	0.703	1783	1.833	2.262	2.821	3.250	4.297
10	0.700	1.372	1.812	2.228	2.764	3.169	4,144
11	0.697	1.363	1.796	2.201	2.718	3.106	4.025
12	0.695	1.356	1.782	2.179	2.681	3.055	3.930
13	0.694	1.350	1.771	2.160	2.650	3.012	3.852
14	0.692	1.345	1.761	2.145	2.624	2.977	3.787
lS	0.691	1.341	1.753	2.131	2.602	2.947	3,733
16	0.690	1.337	1.746	2.120	2.583	2.921	3,686
17	0.689	l.333	1.740	2.110	2.567	2.898	3.646
18	0.688	1.330	1.734	2.101	2.552	2.378	3.610
19	0.688	1.328	1.729	2.093	2.339	2.861	3.579
20	0.687	1.325	1.725	2.086	2.528	2.845	3.552
21	0.686	1.323	1.721	2.080	2518	2.831	3.527
22	0.686	1.321	1.717	2.074	2.508	2.819	3.505
23	0.685	1.319	1.714	2.069	2.500	2.307	3.485
24	0.685	1.318	1.711	2.064	2.492	2.797	3.467
25	0.684	1.316	1.708	2.060	2.485	2.787	3.450
25	0.684	1.315	1.706	2.056	2.479	2,779	3.435
27	0.684	1.314	1.703	2.052	2.473	2.771	3.421
28	0.683	1.313	1.70L	2.048	2.467	2.763	1.408
29	0.683	1.311	l.6 99	2.045	2.462	2.756	3.396
30	0.683	1.310	1.697	2.042	2.457	2.750	3.385
40	0.681	1.303	1.684	2.021	2.423	2.704	3.307
60	0.679	1.296	1.671	2.000	2.390	2.660	3.232
120	0.677	1.289	1.658	1.980	2.358	2.617	3.160
39	0.674	1.282	1.645	1.960	2.326	2.576	3.090

Note: The smaller probability shown at the head of each column is the area in one tail; the larger probability is the area in both rails.

Source: From S. S. Fourson and H. O. Hartley, eds., Biometrike Tables for Statisticians, vol. 1, 3d ed., table 12, Cambridge University Press, New York, 1966. Reproduced by permission of the editors and grustees of Biometrike.

TABLE D.3
Upper percentage points of the F distribution

Example

Pr (F > 1.59) = 0.25

Pr(F > 2.42) = 0.10 for df $N_1 = 10$

Pr(F > 3.14) = 0.05 and $N_2 = 9$

Pr (F > 5.26) = 0.01

df for denom-						df fo	r numer	etor N ₁					
Instor N ₁	Pr		2	3	4	5	6	7	•	•	10	11	12
	.25	5.83	7.50	8.20	8.58	8.82	8.98	9.10	9.19	9.26	9.32	9.36	9.41
1	.10	39.9	49.5	53.6	55.8	57.2	58.2	58.9	59.4	59.9	60.2	60.5	60.7
	.05	161	200	216	225	230	234	237	239	241	242	243	244
	.25	2.57	3.00	3.15	3.23	3.28	3.31	3.34	3.35	3.37	3.38	3.39	3.39
2	.10	8.53	9.00	9.16	9.24	9.29	9.33	9.35	9.37	9.38	9.39	9.40	9.41
	.05	18.5	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4
	.01	98.5	99.0	99.2	99.2	99.3	99.3	99.4	99.4	99.4	99.4	99.4	99.4
	.25	2.02	2.28	2.36	2.39	2.41	2.42	2.43	2.44	2.44	2.44	2.45	2.4
3	.10	5.54	5.46	5.39	5.34	5.31	5.28	5.27	5.25	5.24	5.23	5.22	5.22
	.05	10.1	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.76	8.74
	.01	34.1	30.8	29.5	28.7	28.2	27.9	27.7	27.5	27.3	27.2	27.1	27.1
	.25	1.81	2.00	2.05	2.06	2.07	2.08	2.08	2.08	2.08	2.08	2.08	2.01
4	.10	4.54	4.32	4.19	4.11	4.05	4.01	3.98	3.95	3.94	3.92	3.91	3.90
	.05	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.94	5.91
	.01	21.2	18.0	16.7	16.0	15.5	15.2	15.0	14.8	14.7	14.5	14.4	14.4
	.25	1.69	1.85	1.88	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89	1.89
5	.10	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30	3.28	3.27
	.05	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.71	4.6
	.01	16.3	13.3	12.1	11.4	11.0	10.7	10.5	10.3	10.2	10.1	9.96	9.89
	.25	1.62	1.76	1.78	1.79	1.79	1.78	1.78	1.78	1.77	1.77	1.77	1.77
6	.10	3.78	3.46	3.29	3.18	3.11	3.05	3.01	2.98	2.96	2.94	2.92	2.90
	.05	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.03	4.00
	.01	13.7	10.9	9.78	9.15	8.75	8.47	8.26	8.10	7.98	7.87	7.79	7.77
	.25	1.57	1.70	1.72	1.72	1.71	1.71	1.70	1.70	1.69	1.69	1.69	1.68
7	.10	3.59	3.26	3.07	2.96	2.88	2.63	2.78	2.75	2.72	2.70	2.68	2.67
	.05	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.60	3.57
	.01	12.2	9.55	8.45	7.85	7.45	7.19	6.99	6.84	6.72	6.62	6.54	6.47
	.25	1.54	1.66	1.67	1.66	1.66	1.65	1.64	1.64	1.63	1.63	1.63	1.62
8	.10	3.46	3.11	2.92	2.61	2.73	2.67	2.62	2.59	2.56	2.54	2.52	2.50
	.05	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.31	3.20
	.01	11.3	8.65	7.59	7.01	6.63	6.37	6.18	6.03	5.91	5.81	5.73	5.67
	.25	1.51	1.62	1.63	1.63	1.62	1.61	1.60	1.60	1.59	1.59	1.58	1.38
9	.10	3.36	3.01	2.81	2.69	2.61	2.55	2.51	2.47	2.44	2.42	2.40	2.3
	.05	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.10	3.0
	.01	10.6	6.02	6.99	6.42	6.06	5.80	5.61	5.47	5.35	5.26	5.18	5.11

Source: From E. S. Pearson and H. O. Harrley, eds., Biometrika Tables for Statisticians, vol. 1, 3d ed., table 18, Cambridge University Press, New York, 1966. Reproduced by permission of the editors and trustees of Biometrika.

df for numerator N,													di for denon
15	20	24	30	40 '	50	60	100	120	200	500	•	Pr	Instor N ₂
9.49	9.58	9.63	9.67	9.71	9.74	9.76	9.78	9.80	9.82	9.84	9.85	.25	
61.2	61.7	62.0	62.3	62.5	62.7	62.8	63.0	63.1	63.2	63.3	63.3	.10	1
246	248	249	250	251	252	252	253	253	254	254	254	.05	ŀ
3.41	3.43	3.43	3.44	3.45	3.45	3.46	3.47	3.47	3.48	3.48	3.48	.25	
9.42	9.44	9.45	9.46	9.47	9.47	9.47	9.48	9.48	9.49	9.49	9.49	.10	2
19.4	19.4	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	19.5	.05	
99.4	99.4	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	99.5	.01	i
2.46	2.46	2.46	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	2.47	.25	i
5.20	5.18	5.18	5.17	5.16	5.15	5.15	5.14	5.14	5.14	5.14	5.13	.10)
8.70	8.66	8.64	8.62	8.59	8.58	8.57	8.55	8.55	8.54	8.53	8.53	.05	1
26.9	26.7	26.6	26.5	26.4	26.4	26.3	26.2	26.2	26.2	26.1	26.1	.01	
2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	2.08	.25	1
3.87	3.84	3.83	3.82	3.60	3.80	3.79	3.78	3.78	3.77	3.76	3.76	.10	4
5.86	5.80	5.77	5.75	5.72	5.70	5.69	5.66	5.60	5.65	5.64	5.63	.05	l
14.2	14.0	13.9	13.8	13.7	13.7	13.7	13.6	13.6	13.5	13.5	13.5	.01	1
1.89	1.88	1.88	1.88	1.88	1.88	1.87	1.87	1.87	1.87	1.87	1.87	.25	ľ
3.24	3.21	3.19	3.17	3.16	3.15	3.14	3.13	3.12	3.12	3.11	3.10	.10	5
4.62	4.56	4.53	4.50	4.46	4.44	4.43	4.41	4.40	4.39	4.37	4.36	.05	1
9.72	9.55	9.47	9.38	9.29	9.24	9.20	9.13	9.11	9.08	9.04	9.02	.01	}
1.76	1.76	1.75	1.75	1.75	1.75	1.74	1.74	1.74	1.74	1.74	1.74	.25	
2.87	2.84	2.82	2.80	2.78	2.77	2.76	2.75	2.74	2.73	2.73	2.72	.10	6
3.94	3.87	3.84	3.81	3.77	3.75	3.74	3.71	3.70	3.69	3.68	3.67	.05	
7.56	7.40	7.31	7.23	7.14	7.09	7.06	6.99	6.97	6.93	6.90	6.88	.01	ł
1.68	1.67	1.67	1.66	1.66	1.66	1.65	1.65	1.65	1.65	1.65	1.65	.25	l
2.63	2.59	2.58	2.56	2.54	2.52	2.51	2.50	2.49	2.48	2.48	2.47	.10	7
3.51	3.44	3.41	3.38	3.34	3.32	3.30	3.27	3.27	3.25	3.24	3.23	.05	
6.31	6.16	6.07	5.99	5.91	5.86	5.82	5.75	5.74	5.70	5.67	5.65	.01	l
1.62	1.61	1.60	1.60	1.59	1.59	1.59	1.58	1.58	1.58	1.58	1.58	.25	1
2.46	2.42	2.40	2.38	2.36	2.35	2.34	2.32	2.32	2.31	2.30	2.29	.10	
3.22	3.15	3.12	3.08	3.04	2.02	3.01	2.97	2.97	2.95	2.94	2 93	.05	1
5.52	5.36	5.28	5.20	5.12	5.07	5.03	4.96	4.95	4.91	4.88	4.86	.01	
1.57	1.56	1.56	1.55	1.55	1.54	1.54	1.53	1.53	1.53	1.53	1.53	.25	1
2.34	2.30	2.28	2.25	2.23	2.22	2.21	2.19	2.18	2.17	2.17	2.16	.10	9
3.01	2.94	2.90	2.86	2.63	2.80	2.79	2.76	2.75	2.73	2.72	2.71	.05	
4.96	4.61	4.73	4.65	4.57	4.52	4.48	4.42	4.40	4.36	4.33	4.31	.01	1

TABLE D.3
Upper percentage points of the F distribution (continued)

Instor N ₂	Pr		df for numerator N ₁												
10		1	2	3	4	5	6	7		•	10	11	12		
10	.25	1.49	1.60	1.60	1.59	1.59	1.58	1.57	1.56	1.56	1.55	1.55	1.5		
	.10	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32	2.30	2.2		
	.05	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.9		
	.01	10.0	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.77	4.7		
	.25	1.47	1.58	1.58	1.57	1.56	1.55	1.54	1.53	1.53	1.52	1.52	1.5		
11	.10	3.23	2.86	2.66	2.54	2.45	2.39	2.34	2.30	2.27	2.25	2.23	2.2		
	.05	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.82	2.7		
	.01	9.65	7.21	6.22	5.67	5.32	5.07	4.89	4.74	4.63	4.54	4.46	4.4		
	.25	1.46	1.56	1.56	1.55	1.54	1.53	1.52	1.51	1.51	1.50	1.50	1.4		
12	.10	3.18	2.81	2.61	2.48	2.39	2.33	2.28	2.24	2.21	2.19	2.17	2.1		
	.05	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.60	2.75	2.72	2.6		
	.01	9.33	6.93	5.95	5.41	5.06	4.82	4.64	4.50	4.39	4.30	4.22	4.1		
	.25	1.45	1.55	1.55	1.53	1.52	1.51	1.50	1.49	1.49	1.48	1.47	1.4		
13	.10	3.14	2.76	2.56	2.43	2.35	2.28	2.23	2.20	2.16	2.14	2.12	2.1		
	.05	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.63	2.6		
	.01	9.07	6.70	5.74	5.21	4.86	4.62	4.44	4.30	4.19	4.10	4.02	3.9		
	.25	1.44	1.53	1.53	1.52	1.51	1.50	1.49	1.48	1.47					
14	.10	3.10	2.73	2.52	2.39	2.31	2.24	2.19	2.15	2.12	1.46	1.46	1.4		
	.05	4.60	3.74	3.34	3.11	2.96	2.65	2.76	2.13	2.65	2.10 2.60	2.08	2.0		
ı	.01	8.86	6.51	5.56	5.04	4.69	4.46	4.28	4.14	4.03	3.94	2.57 3.86	2.5 3.8		
	.25	1.43	1.52	1.52	1.51	1.49	1.48	1.47	1.46	1.46	1.45	1.44	1.4		
15	.10	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06	2.04	2.0		
	.05	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.4		
	.01	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.73	3.6		
	.25	1.42	1.51	1.51	1.50	1.48	1.47	1.46	1.45	1.44	1.44	1.44	1.4		
16	.10	3.05	2.67	2.46	2.33	2.24	2.18	2.13	2.09	2.06	2.03	2.01	1.9		
	.05	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.46	2.4		
	.01	8.53	6.23	5.29	4.77	4,44	4.20	4.03	3.89	3.78	3.69	3.62	3.5		
	.25	1.42	1.51	1.50	1.49	1.47	1.46	1.45	1.44	1.43	1.43	1.42			
17	.10	3.03	2.64	2.44	2.31	2.22	2.15	2.10	2.06	2.03	2.00	1.98	1.4		
	.05	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.41	1.9 2.3		
	.01	8.40	6.11	5.18	4.67	4.34	4.10	3.93	3.79	3.68	3.59	3.52	3.4		
	.25	1.41	1.50	1.49	1.48	1.46	1.45	1.44	1.43	1.42	1.42	1.41	1.4		
18	.10	3.01	2.62	2.42	2.29	2.20	2.13	2.08	2.04	2.00	1.98	1.96			
	.05	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.37	1.9. 2.3		
	.01	8.29	6.01	5.09	4.58	4.25	4.01	3.84	3.71	3.60	3.51	3.43	3.3		
	.25	1.41	1.49	1.49	1.47	1.46	1.44	1.43	1.42	1.41	1.41	1.40	1.4		
19	.10	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96	1.94	1.9		
1	.05	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.34			
- 1	.01	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.36	2.3 3.3		
	.25	1.40	1.49	1.48	1.46	1.45	1.44	1.43	1.42	1.41	1.40	1.39	1.3		
20	.10	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96					
	.05	4.35	3.49	3.10	2.87	2.71					1.94	1.92	1.89		
	.01	8.10	5.85	4.94	4.43	4.10	2.60 3.87	2.51 3.70	2.45 3.56	2.39 3.46	2.35 3.37	2.31 3.29	2.20 3.20		

				1	di for m	umerato	r N ₁						di lo deno
15	20	24	30	40	50	68	100	120	200	500	•	Pr	Inste N ₂
1.53	1.52	1.52	1.51	1.51	1.50	1.50	1.49	1.49	1.49	1.48	1.48	.25	
2.24	2.20	2.18	2.16	2.13	2.12	2.11	2.09	2.08	2.07	2.06	2.06	.10	10
2.85	2.77	2.74	2.70	2.66	2.64	2.62	2.59	2.58	2.56	2.55	2.54	.05	
4.56	4.41	4.33	4.25	4.17	4.12	4.08	4.01	4.00	3.96	3.93	3.91	.01	
1.50	1.49	1.49	1.48	1.47	1.47	1.47	1.45	1.46	1.46	1.45	1.45	.25	
2.17	2.12	2.10	2.08	2.05	2.04	2.03	2.00	2.00	1.99	1.98	1.97	.10	- 11
2.72	2.65	2.61	2.57	2.53	2.51	2.49	2.46	2.45	2.43	2.42	2.40	.05	
4.25	4.10	4.02	3.94	3.86	3.81	3.78	3.71	3.69	3.66	3.62	3.60	.01	
1.48	1.47	1.46	1.45	1.45	1.44	1.44	1.43	1.43	1.43	1.42	1.42	.25	
2.10	2.06	2.04	2.01	1.99	1.97	1.96	1.94	1.93	1.92	1.91	1.90	.10	12
2.62	2.54	2.51	2.47	2.43	2.40	2.38	2.35	2.34	2.32	2.31	2.30	.05	
4.01	3.86	3.78	3.70	3.62	3.57	3.54	3.47	3.45	3.41	3.38	3.36	.01	
1.46	1.45	1.44	1.43	1.42	1.42	1.42	1.41	1.41	1.40	1.40	1.40	.25	
2.05	2.01	1.98	1.96	1.93	1.92	1.90	1.88	1.88	1.86	1.85	1.85	.10	13
2.53	2.46	2.42	2.38	2.34	2.31	2.30	2.26	2.25	2.23	2.22	2.21	.05	
3.82	3.66	3.59	3.51	3.43	3.38	3.34	3.27	3.25	3.22	3.19	3.17	.01	ŀ
1.44	1.43	1.42	1.41	1.41	1.40	1.40	1.39	1.39	1.39	1.38	1.38	.25	
2.01	1.96	1.94	1.91	1.89	1.87	1.86	1.83	1.83	1.82	1.80	1.60	.10	14
2.46	2.39	2.35	2.31	2.27	2.24	2.22	2.19	2.18	2.16	2.14	2.13	.05	
3.66	3.51	3.43	3.35	3.27	3.22	3.18	3.11	3.09	. 3.06	3.03	3.00	.01	1
1.43	1.41	1.41	1.40	1.39	1.39	1.38	1.38	1.37	1.37	1.36	1.36	.25	
1.97	1.92	1.90	1.87	1.85	1.63	1.82	1.79	1.79	1.77	1.76	1.76	.10	15
2.40	2.33	2.29	2.25	2.20	2.18	2.16	2.12	2.11	2.10	2.08	2.07	.05	l
3.52	3.37	3.29	3.21	3.13	3.08	3.05	2.98	2.96	2.92	2.89	2.87	.01	1
1.41	1.40	1.39	1.38	1.37	1.37	1.36	1.36	1.35	1.35	1.34	1.34	.25	1
1.94	1.89	1.87	1.84	1.81	1.79	1.78	1.76	1.75	1.74	1.73	1.72	.10	16
2.35	2.28	2.24	2.19	2.15	2.12	2.11	2.07	2.06	2.04	2.02	2.01	.05	1
3.41	3.26	3.18	3.10	3.02	2.97	2.93	2.86	2.84	2.81	2.78	2.75	.01	1
1.40	1.39	1.38	1.37	1.36	1.35	1.35	1.34	1.34	1.34	1.33	1.33	.25	1
1.91	1.86	1.84	1.81	1.78	1.76	1.75	1.73	1.72	1.71	1.69	1.69	.10	17
2.31	2.23	2.19	2.15	2.10	2.08	2.06	2.02	2.01	1.99	1.97	1.96	.05	1
3.31	3.16	3.08	3.00	2,92	2.87	2.83	2.76	2.75	2.71	2.68	2.65	.01	
1.39	1.38	1.37	1.36	1.35	1.34	4.34	1.33	1.33	1.32	1.32	1.32	.25	
1.89	1.84	1.81	1.78	1.75	1.74	1.72	1.70	1.69	1.68	1.67	1.66	.10	18
2.27	2.19	2.15	2.11	2.06	2.04	2.02	1.98	1.97	1.95	1.93	1.92	.05	l
3.23	3.08	3.00	2.92	2.84	2.78	2.75	2.68	2.66	2.62	2.59	2.57	.01	
1.38	1.37	1.36	1.35	1.34	1.33	1.33	1.32	1.32	1.31	1.31	1.30	.25	
1.86	1.81	1.79	1.76	1.73	1.71	1.70	1.67	1.67	1.65	1.64	1.63	.10	19
2.23	2.16	2.11	2.07	2.03	2.00	1.98	1.94	1.93	1.91	1.89	1.68	.05	1
3.15	3.00	2.92	2.84	2.76	2.71	2.67	2.60	2.58	2.55	2.51	2.49	.01	l
1.37	1.36	1.35	1.34	1.33	1.33	1.32	1.31	1.31	1.30	1.30	1.29	.25	l
1.84	1.79	1.77	1.74	1.71	1.69	1.68	1.65	1.64	1.63	1.62	1.61	.10	20
2.20	2.12	2.08	2.04	1.99	1.97	1.95	1.91	1.90	1.88	1.66	1.84	.05	j
3.09	2.94	2.86	2.78	2.69	2.64	2.61	2.54	2.52	2.48	2.44	2.42	01	1

TABLE D.3
Upper percentage points of the F distribution (continued)

di for denom- instor						df fe	r num	erator	N ₁				
N,	Pr		3	3	4		6	7	8	,	10	11	12
	.25			1.47	1.45	1.44	1.42	1.41	1.40	1.39	1.39	1.31	
22	.10				2.22	2.13							
	.05					2.66	2.55						
	.01	7.9	5.72	4.81	4.31	3.99	3.76				3.26		
	.25	1.39	1.47	1.46	1.44	1.43	1.41	1.40	1.39				
24	.10	2.9	2.54								1.38	1.37	
	.05	4.26	3.40								1.88	1.85	
	.01	7.82				3.90					2.25 3.17	2.21 3.09	2.18 3.03
	.25	1.38	1.46	1.45	1.44	1.42	1.41			•			
26	.10	2.91			2.17	2.08	2.01	1,39 1.96			1.37	1.36	1.35
	.05	4.23			2.74	2.59	2.47			1.58	1.86	1.84	1.61
	.01	7.72			4.14	3.82	3.59		2.32 3.29	2.27 3.18	2.22 3.09	2.18 3.02	2.15
	.25	1.38	1.46	1.45	1.43	1.41		_					2.96
28	.10	2.89		2.29	2.16	2.06	1.40	1.39	1.38	1.37	1.36	1.35	1.34
	.03	4.20		2.95	2.71	2.56	2.00	1.94	1.90	1.87	1.84	1.81	1.79
	.01	7.64		4.57	4.07	3.75	2.45 3.53	2.36 3.36	2.29 3.23	2.24 3.12	2.19	2.15	2.12
	.25	1.38	1.45							3.12	3.03	2.96	2.90
30	.10	2.88	2.49	1.44 2.28	1.42	1.41	1.39	1.38	1.37	1.36	1.35	1.35	1.34
	.03	4.17			2.14	2.05	1.98	1.93	1.88	1.85	1.82	1.79	1.77
	.01	7.56	5.39	2.92 4.51	2.69 4.02	2.53 3.70	2.42 3.47	2.33	2.27	2.21	2.16	2.13	2.09
	١							3.30	3.17	3.07	2.98	2.91	2.84
40	.25	1.36	1.44	1.42	1.40	1.39	1.37	1.36	1.35	1.34	1.33	1.32	1.31
**	.05	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.73	1.71
	.03	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00
		7.31	5.18	4.31	3.83	3.5 i	3.29	3.12	2.99	2.89	2.50	2.73	2.66
60	.25	1.35	1.42	1.41	1.38	1.37	1.35	1.33	1.32	1.31	1.30	1.29	1.29
60	.10	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71	1.68	1.66
	.05	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92
	.01	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.50
	.25	1.34	1.40	1.39	1.37	1.35	1.33	1.31	1.30	1.29	1.28	1.27	1.26
120	.10	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68	1.65	1.62	1.60
	.05	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96	1.91	1.87	1.83
	.01	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.40	2.34
	.25	1.33	1.39	1.38	1.36	1.34	1.32	1.31	1.29	1.28	1.27	1.26	1.25
200	.10	2.73	2.33	2.11	1.97	1.88	1.80	1.75	1.70	1.66	1.63	1.60	1.25
- 1	.05	3.89	3.04	2.65	2.42	2.26	2.14	2.06	1.98	1.93	1.88	1.84	1.80
Ì	.01	6.76	4.71	3.88	3.41	3.11	2.89	2.73	2.60	2.50	2.41	2.34	2.27
_	.25	1.32	1.39	1.37	1.35	1.33	1.31	1.29	1.28	1.27	1.25	1.24	1.24
-	.10	2.71	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63	1.60	1.57	1.55
ŀ	.05	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.68	1.83	1.79	1.75
1	.01	6.63	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.25	2.18

				d	f for th	merel	ar Ni						df for denom inator
15	20	24	30	40	50	60	100	120	200	500	•	Pr	N,
1.36	1.34	1.33	1.32	1.31	1.31	1.30	1.30	1.30	1.29	1.29	1.28	.25	
1.81	1.76	1.73	1.70	1.67	1.65	1.64	1.61	1.60	1.59	1.58	1.57	.10	22
2.15	2.07	2.03	1.98	1.94	1.91	1.89	1.85	1.84	1.82	1.60	1.78	.03	
2.98	2.83	2.75	2.67	2.58	2.53	2.50	2.42	2.40	2.36	2.33	2.31	.01	
1.35	1.33	1.32	1.31	1.30	1.29	1.29	1.28	1.28	1.27	1.27	1.26	.25	
1.78	1.73	1.70	1.67	1.64	1.62	1.61	1.58	1.57	1.56	1.54	1.53	.10	24
2.11	2.03	1.98	1.94	1.89	1.86	1.84	1.80	1.79	1.77	1.75	1.73	.05	
2.89	2.74	2.66	2.58	2.49	2.44	2.40	2.33	2.31	2.27	2.24	2.21	.01	
1.34	1.32	1.31	1.30	1.29	1.28	1.28	1.26	1.26	1.26	1.25	1.25	.25	
1.76	1,71	1.68	1.65	1.61	1.59	1.58	1.55	1.54	1.53	1.51	1.50	.10	26
2.07	1.99	1.95	1.90	1.85	1.82	1.80	1.76	1.75	1.73	1.71	1.69	.05	
2.81	2.66	2.58	2.50	2.42	2.36	2.33	2.25	2.23	2.19	2.16	2.13	.01	
1.33	1.31	1.30	1.29	1.28	1.27	1.27	1.26	1.25	1.25	1.24	1.24	.25	
1.74	1.69	1.66	1.63	1.59	1.57	1.56	1.53	1.52	1.50	1.49	1.48	.10	28
2.04	1.96	1.91	1.87	1.82	1.79	1.77	1.73	1.71	1.69	1.67	1.65	.05	
2.75	2.60	2.52	2.44	2.35	2.30	2.26	2.19	2.17	2.13	2.09	2.06	.01	
1.32	1.30	1.29	1.28	1.27	1.26	1.26	1.25	1.24	1.24	1.23	1.23	.25	
1.72	1.67	1.64	1.61	1.57	1.55	1.54	1.51	1.50	1.48	1.47	1.46	.10	30
2.01	1.93	1.89	1.84	1.79	1.76	1.74	1.70	1.68	1.66	1.64	1.62	.05	l
2.70	2.55	2.47	2.39	2.30	2.25	2.21	2.13	2.11	2.07	2.03	2.01	.01	ł
1.30	1.28	1.26	1.25	1.24	1.23	1.22	1.21	1.21	1.20	1.19	1.19	.25	
1.66	1.61	1.57	1.54	1.51	1.48	1.47	1.43	1.42	1.41	1.39	1.38	.10	40
1.92	1.84	1.79	1.74	1.69	1.66	1.64	1.59	1.58	1.55	1.53	1.51	.05	1
2.52	2.37	2.29	2.20	2.11	2.06	2.02	1.94	1.92	1.87	1.83	1.50	.01	
1.27	1.25	1.24	1.22	1.21	1.20	1.19	1.17	1.17	1.16	1.15	1.15	.25	
1.60	1.54	1.51	1.48	1.44	1.41	1.40	1.36	1.35	1.33	1.31	1.29	.10	60
1.84	1.75	1.70	1.65	1.59	1.56	1.53	1.48	1.47	1.44	1.41	1.39	.05	
2.35	2.20	2.12	2.03	1.94	1.88	1.84	1.75	1.73	1.65	1.63	1.60	.01	1
1.24	1,22	1.21	1.19	1.18	1.17	1.16	1.14	1.13	1.12	1.11	1.10	.25	ŀ
1.55	1.48	1.45	1.41	1.37	1.34	1.32	1.27	1.26	1.24	1.21	1.19	.10	120
1.75	1.66	1.61	1.55	1.50	1.46	1.43	1.37	1.35	1.32	1.28	1.25	.05	1
2.19	2.03	1.95	1.86	1.76	1.70	1.66	1.56	1.53	1.48	1.42	1.38	.01	1
1.23	1.21	1.20	1.18	1.16	1.14	1.12	1.11	1.10	1.09	1.08	1.06	.25	
1.52	1.46	1.42	1.38	1.34	1.31	1.28	1.24	1.22	1.20	1.17	1.14	.10	500
1.72	1.62	1.57	1.52	1.46	1.41	1.39	1.32	1.29	1.26	1.22	1.19	.05	1
2.13	1.97	1.89	1.79	1.69	1.63	1.58	1.48	1.44	1.39	1.33	1.28	.01	
1.22	1.19	1.18	1.16	1.14	1.13	1.12	1.09	1.08	1.07	1.04	1.00		
1.49	1.42	1.38	1.34	1.30	1.26	1.24	1.18	1.17		1.08	1.00		
1.67	1.57	1.52	1.46	1.39	1.35	1.32	1.24	1.22		1.11	1.00		1
2.04	1.88	1.79	1.70	1.59	1.52	1.47	1.36	1.32	1.25	1.15	1.00	.01	ì

	k' = 11		k' = 12		k' = 13		k' = 14		k' = 15		k' = 16		k' = 17		k' = 18		k' = 19		k' = 20	
-	d _L	d _U	dŁ	d _U	dŁ	₫ _U	d_L	d _U	d_L	d _U	dL	d _U	dL	d _U	dL	d _U	d _L	d _U		ďυ
16	0.098	3.503	_	_	_		_													
		3.378				_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
		3.265				3.603	_	_	_	_	_	_	_	_	_	_	_	_	-	_
19	0.220	3.159	0.160	3.335	0.111	3.496	0.070	3.642	_	_	_	_	_	_		_	_	_	_	_
20	0.263	3.063	0.200	3.234	0.145	3.395	0.100	3.542	0.063	3.676	_	_	_	_	_	_	_	_	_	_
21	0.307	2.976	0.240	3.141	0.182	3.300	0.132	3.448	0.091	3.583	0.058	3.705	_	_	_	_	_	_	_	_
22	0.349	2.897	0.281	3.057	0.220	3.211	0.166	3.358	0.120	3.495	0.083	3.619	0.052	3.731	_	_	_	_	_	_
23	0.391	2.826	0.322	2.979	0.259	3.128	0.202	3.272	0.153	3.409	0.110	3.535	0.076	3.650	0.048	3.753	_	_	_	_
24	0.431	2.761	0.362	2.908	0.297	3.053	0.239	3.193	0.186	3.327	0.141	3.454	0.101	3.572	0.070	3.678	0.044	3.773	_	_
25	0.470	2.702	0.400	2.844	0.335	2.983	0.275	3.119	0.221	3.251	0.172	3.376	0.130	3.494	0.094	3.604	0.065	3.702	0.041	3.790
20	0.308	2.049	U.438	2.784	0.373	2.919	0.312	3.051	0.256	3.179	0.205	3 303	0.160	3 420	0.120	2 521	0.007	2 (22	0.040	
21	U.344	2.000	U.4/5	4.730	0.409	2.859	0.348	2.987	0.291	3.112	0.238	3 222	0 191	3 340	0.140	2 440	0.113	2 542		
20	0.576	4.333	V.31U	4.000	U. 44 3	2.805	0.383	2.928	0.325	3.050	0.271	3.168	0.222	3 793	0.178	2 202	A 130	2 405	0 104	3 500
47	0.012	2.313	U.344	2.034	0.4/9	2.755	0.418	2.874	0.359	2.992	0.305	3.107	N 254	3 210	0.208	2 227	0144	7 471	0.120	
30	0.043	2.411	0.577	2.392	0.512	2.708	0.451	2.823	0.392	2.937	0.337	3.050	0.286	3.160	0.238	3.266	0.195	3.368	0.156	3.465
31	0.703	2.443	0.008	2.353	0.545	2.665	0.484	2.776	0.425	2.887	0.370	2.996	0.317	3.103	0.269	3.208	0.224	3.309	0.183	3.406
	0.731	2.411	0.030	2.317	0.370	2.625	0.515	2.733	0,457	2.840	0.401	2.946	0.349	3.050	0.299	3.153	0.253	3.252	0.211	3.348
	0.758	2.302	0.000	2.404	0.000	2.588	0.546	2.692	0.488	2.796	0.432	2.899	0.379	3.000	0.329	3.100	0.283	3.198	0.239	3.293
35	0.783	2.333	0.033	2.435	0.034	2.554	0.575	2.054	0.518	2.754	0.462	2.854	0.409	2.954	0.359	3.051	0.312	3.147	0.267	3.240
	0.808	2.330	0.722	2 200	0.002	2.521	0.004	2.019	0.547	2.716	0.492	2.813	0.439	2.910	0.388	3.005	0.340	3.099	0.295	3.190
		2 225	0.772	2.370	0.009	2.492	0.031	2.560	0.575	2.680	0.520	2.774	0.467	2.868	0.417	2.961	0.369	3.053	0.323	3.142
38	0.854	2 265	0.774	2.251	0.714	2.464	0.03/	2.555	0.602	2.646	0.548	2.738	0.495	2.829	0.445	2.920	0.397	3.009	0.351	3.097
	0.875	7 746	0.730	2 220	0.753	2.438	0.083	2.520	0.628	2.614	0.575	2.703	0.522	2.792	0.472	2.880	0.424	2.968	0.378	3.054
		2.228	0.017	2 300	0.705	2.413	0.707	2.477	0.033	2.383	0.600	2.671	0.549	2.757	0.499	2.843	0.451	2.929	0.404	3.013
45	0.988	2.156	0.038	2.205	0.763	2.391	0.731	2.473	0.075	2.337	0.040	2.041	0.575	2.724	0.525	2.808	0.477	2.892	0.430	2.974
50	1.064	2.103	1.019	2.163	0.007	2.296 2.225	0.030	2.307	0.700	2.439	0.740	2.512	0.692	2.586	0.644	2.659	0.598	2.733	0.553	2.807
55	1.129	2.062	1.087	2.116	1.045	2.170	1 003	2 225	0.002	2.330	0.030	2.414	0.792	2.4/9	0.747	2.544	0.703	2.610	0.660	2.675
60	1.184	2.031	1.145	2.079	1.106	2.127	1.068	2 177	1 020	2.201	0.515	2.330	0.011	2.390	0.836	2.454	0.795	2.512	0.754	2.571
65	1.231	2.006	1.195	2.049	1.160	2.093	1.124	2.138	1.088	2 183	1.052	2.270	1.014	2.330	0.913	2.382	0.874	2.434	0.836	2.487
70	1.272	1.986	1.239	2.026	1.206	2.066	1.172	2.106	1 139	2 14R	1 105	2 186	1.010	1 222	0.560	2.323	0.944	2.371	0.908	2.419
75	1.308			2.006	1.247	2.043	1.215	2.080	1.184	2.118	1 153	2.109	1 121	2 105	1.000	2.2/3	1.005	4.318	0.971	2.362
80	1.340	1.957	1.311	1.991	1.283	2.024	1.253	2.059	1.224	2.093	1.195	2 120	1 165	2.173	1.090	2.255	1.028	2.275		
85	1.369	1.946	1.342	1.977	1.315	2.009	1.287	2.040	1.260	2.073	1.232	2 105	1.103	2 1 20	1.130	2.201	1.100	2.238	1.076	
90	1.395	1.937	1.369	1.966	1.344	1.995	1.318	2.025	1.292	2.055	1.266	2.085	1 240	7 116	1.1//	2140	1.149	2.200	1.121	
	1.418					1.984	1.345	2.012	1.321	2.040	1.296	2.06R	1.271	2.007	1 747	2.176	1.10/	2.179	1.160	
100	1.439	1.923	1.416	1.948	1.393	1.974	1.371	2.000	1.347	2.026	1.324	2.053	1.301	2 080	1 277	2 109	1 252	2 125	1.197	3.144
150	1.579	1.892	1.564	1.908	1.550	1.924	1.535	1.940	1.519	1.956	1.504	1.972	1 489	1 999	1 474	2 004	1 450	2.022	1 447	3040
200	1.654	1.885	1.643	1.896	1.632	1.908	1.621	1.919	1.610	1.931	1.599	1.943	1 588	1 055	1 576	1 047	1 548	1.070	1.554	1.001

Source: This table is an extension of the original Durbin-Watson table and is reproduced from N. E. Savin and K. J. White, "The Durbin-Watson Test for Serial Correlation with Extreme Small Samples or Many Regressors," *Econometrica*, vol. 45, November 1977, pp. 1989–96 and as corrected by R. W. Farebrother, *Econometrica*, vol. 48, September 1980, p. 1554. Reprinted by permission of the Econometric Society.

Note: n = number of observations, k' = number of explanatory variables excluding the constant term.

Example. If n = 40 and k' = 4, $d_L = 1.285$ and $d_U = 1.721$. If a computed d value is less than 1.285, there is evidence of positive first-order serial correlation; if it is greater than 1.721, there is no evidence of positive first-order serial correlation; but if d lies between the lower and the upper limit, there is inconclusive evidence regarding the presence or absence of positive first-order serial correlation.

TABLE D.5a Durbin-Watson d statistic: Significance points of d_L and d_U at 0.05 level of significance

_																		-		_
	k'	- 1	k'	= 2	k'	= 3	k'	= 4	k'	- 5	k'	- 6	_ k'	= 7		- 8	k':	- 9	k' =	- 10
Ħ	dL	đ _U	dL	d _U	d_L	ďυ	d _L	đ _U	dL	du	d <u>L</u>	d _U	d _L	du	d _L	d _U	d _L	dv	d _L	đυ
6	0.610	1.400	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	
7	0.700	1.356		1.896		_	_	_	-	_	-	_	_	_	_	-	_	_	-	_
8	0.763	1.332	0.559	1.777	0.368	2.287	_	_	_	_	_	_	_	_	_	-	_	_	_	-
9		1.320		1.699	0.455	2.128	0.296	2.588	_	-	_	_	_	_	_	_	_	_	_	-
0	0.879	1.320		1.641		2.016			0.243	2.822	- 203	3.005	_	_	_	_	_	-	_	-
1		1.324	0.658		0.595 0.658			2.283		2.645	0.203	2.832	0.171	3.149	_	_	_	_	_	-
2	0.971	1.331	0.861				0.574			2.390		2.692		2.985	0.147	3.266	_	_	_	-
3	1.010	1.340		1.551		1.779	0.632		0.505				0.286		0.200	3.111	0.127	3.360	_	-
4	1.045	1.361	0.946	1.543		1.750	0.685	1.977		2.220			0.343						0.111	
-	1.106	1.371		1.539		1.728			0.615									3.216 3.090		
6		1.381			0.897			1.900	0.664				0.451				0.272			3.3
8	1.158	1.391			0.933			1.872		2.060			0.502				0.321		0.244	
9	1.180	1.401			0.967			1.848		2.023							0.369			3.0 2.9
0	1.201	1.411	1.100	1.537		1.676	0.894	1.828		1.991			0.595						0.336	
1	1.221	1.420	1.125	1.538	1.026				0.829	1.964			0.637					2.633		2.8
2	1.239	1.429	1.147	1.541	1.053			1.797		1.940			0.677					2.571		
3	1.257		1.168	1.543			0.986	1.785	0.895	1.920	0.804	2.061		2.208		2.360			0.465	
		1.446	1.188	1.546		1.656		1.775	0.925				0.751			2.318	0.584		0.506	
15	1.273	1.454	1.206	1.550		1.654	1.038	1.767		1.886	0.868		0.784			2.280		2.419		
_			1.224	1.553		1.652		1.759					0.816							
6	1.302	1.461					1.084		1.004								0.691			
	1.316	1.469	1.240	1.556	1.162	1.651 1.650	1.104		1.028				0.874			2.188		2.309	0.650	
28	1.328	1.476	1.255	1.560					1.050				0.900				0.753		0.682	2.3
29	1.341	1.483	1.270	1.563		1.650 1.650		1.743		1.833			0.926		0.854				0.332	
30 	1.352	1.489	1.284	1.567					1.090				0.950		0.879			2.226		2.3
31	1.363	1.496	1.297	1.570				1.732					0.972						-	2.
32		1.502	1.309	1.574				1.732			1.061	1.900		1.991	0.927		0.861	2.181	0.795	2.
33	1.383	1.508	1.321	1.577	1.258		1.193			1.813	1.080	1.891	1.015	1.979	0.950	2.069	0.885	2.162		
34 		1.514	1.333	1.580		1.652	1.208	1.728	1.144			1.884	1.013	1.967	0.930	2.054	0.908	2.144	0.845	2.
35	1.402	1.519	1.343	1.584				1.726	1.160		1.097	1.877	1.053		0.991	2.041	0.930	2.127		2.
36	1.411	1.525	1.354	1.587			1.236	1.724		1.799	1.114	1.870		1.948	1.011	2.029		2.112		2.
37		1.530	1.364			1.655		1.723		1.795								2.098		
38	1.427	1.535	1.373	1.594			1.261		1.204			1.864		1.939		2.017 2.007		2.085	0.912	
39	1.435		1.382	1.597			1.273		1.218							1.997		2.072	0.952	
Ю	1.442	1.544	1.391	1.600				1.721				1.854							1.038	2.0
45	1.475	1.566	1.430	1.615			1.336								1.139	1.930		1.986	1.110	
50		1.585	1.462					1.721		1.771		1.822							1.170	
55		1.601	1.490			1.681		1.724			1.334			1.861	1.253		1.212	1.959	1.222	
60		1.616									1.372	1.808								-
55				1.662				1.731			1.404							1.923	1.266	
	1.583		1.554		1.525				1.464				1.401							
75	1.598	1.652	1.571	1.680	1.543	1.709	1.515	1.739	1.487	1.770	1.458	1.801	1.425	1.834	1.399	1.50/	1.369	1.901	1.339	1.
80	1.611	1.662	1.586	1.688	1.560	1.715	1.534	1.743	1.507	1.772	1.460	1.801	1.453	1.831	1.425	1.501	1.397	1.673	1.309	1.
85	1.624	1.671	1.600	1.696	1.575	1.721	1.550	1.747	1.525	1.774	1.500	1.801	1.474	1.529	1.448	1.857	1.422	1.886	1.570	
90	1.635	1.679	1.612	1.703	1.589	1.726	1.566	1.751	1.542	1.776	1.518	1.801	1.494	1.827	1.469	1.854	1.445	1.851	1.420	
95	1.645	1.687	1.623	1.709	1.602	1.732	1.579	1.755	1.557	1.778	1.535	1.802	1.512	1.827	1.489	1.852	1.465	1.877	1.442	1.
00	1.654	1.694	1.634	1.715	1.613	1.736	1.592	ι.758	1.571	1.780	1.550	1.803	1.528	1.826	1.506	1.850	1.484	1.8/4	1.404	1.
50	1.720	1.746	1.706	1.760	1.693	1.774	1.679	1.788	1.665	1.802	1.651	1.817	1.637	1.832	1.622	1.847	1.608	1.862	1.374	1.
00	1.758	1.778	1.748	1.789	1.738	1.799	1.728	1.810	1.718	1.820	1.707	1.831	1.697	1.841	1.686	1.852	1.675	1.863	1.005	1.4