MC3242A

MEMORY ADDRESS MULTIPLEXER FOR 16K RAMS

PO BOX 20912 • PHOENIX, ARIZONA 85036

The Motorola MC3242A is an address multiplexer and refresh counter for 16-pin 16K dynamic RAMs that require a 128-cycle refresh. It multiplexes fourteen system address bits to the seven address pins of the memory device. The MC3242A also contains a 7-bit refresh counter that is clocked externally to generate the 128 sequential addresses required for refresh. The high performance of the MC3242A will enhance the high speed of the N-channel RAMs such as the MCM4116.

- Simplifies 16-Pin 16K Dynamic Memory Design
- Reduces Package Count
- 7-Bit Binary Counter for 128 Refresh Address
- Multiplexing: Row Address/Column Address/Refresh Address
- High Input Impedance for Minimum Loading of Bus:

 $I_F = 0.25 \text{ mA Max}$

 Schottky TTL for High Performance Address Input to Output Delay —

 $t_{AO} = 25 \text{ ns } @ C_1 = 250 \text{ pF}$

• Second Source to Intel 3242

(Detect Zero Function Not Included and Additional Chip Enable Feature Added at Pin 15)

MEMORY ADDRESS MULTIPLEXER AND REFRESH ADDRESS COUNTER

SCHOTTKY
SILICON MONOLITHIC
INTEGRATED CIRCUITS

Count 1 Ref En 2 Row En 3 N.C. 4 A1 5 A8 6 A2 7 A9 8 A0 9 A7 10 00 11 02 12	28 VCC 27 A6 26 A13 25 A5 24 A12 23 A4 22 A11 21 A3 20 A10 19 O6 18 O3 17 O4
	₩
O1 13 Gnd 14	16 O5 15 CE*

Note: A0 Through A6 Are Row Addresses A7 Through A13 Are Column Addresses

*See Pin Definitions

TRUTH TABLE AND DEFINITIONS

Refresh	Row	Outsut	
Enable	Enable	Output	
Н	Х	Refresh Address (From Internal Counter)	
L	Н	Row Address (A0 through A6)	
L	L	Column Address (A7 through A13)	

Count - Advances Internal Refresh Counter

ORDERING INFORMATION					
Device	Temperature Range	Package			
MC3242AL	0 to 75 ⁰ C	Ceramic DIP			
MC3242AP	0 to 75 ⁰ C	Plastic DIP			

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise noted.)

ADDOLOTE IIIAMINONI IIATIIIGO TA	20 0 011100	o other mee notes	,
Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	-0.5 to +7.0	V
Input Voltage	VI	-0.5 to +7.0	V
Output Voltage	VO	-0.5 to +7.0	V
Output Current	lo	100	mA
Operating Ambient Temperature	T_A	0 to +75	°C
Storage Temperature	T _{stg}	-65 to +150	°C
Junction Temperature Ceramic Package Plastic Package	TJ	+ 175 + 150	°C

"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V \leq V_{CC} \leq 5.5 V, 0°C \leq T_A \leq 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Input Current, Low Logic State (V _{IL} = 0.45 V)	IIL		-0.25	- 0.40	mA
Input Current, High Logic State (VIH = 5.5 V)	lін		-	10	μΑ
Input Voltage, Low Logic State	V _{IL}		_	0.8	V
Input Voltage, High Logic State	ViH	2.0	_		V
Output Voltage, Low Logic State (IOL = 5.0 mA)	V _{OL}	_	0.25	0.4	V
Output Voltage, High Logic State (IOH = −1.0 mA)	Voн	3.0	4.0		V
Input Clamp Voltage (I _{IK} = -12 mA)	VIK		-0.8	– 1.5	V
Power Supply Current (V _{CC} = 5.5 V)	lcc		80	125	mA

SWITCHING CHARACTERISTICS (Unless otherwise noted, Min/Max values apply with 4.5 V \leq V_{CC} \leq 5.5 V, 0°C \leq T_A \leq 75°C; typical values apply with V_{CC} = 5.0 V, T_A = 25°C.)

Characteristic	Symbol	Min	Тур	Max	Unit
Propagation Delay Times Address Input to Output (Load = 1 TTL, C _L = 250 pF) (Load = 1 TTL, C _L = 15 pF, V _{CC} = 5.0 V, T _A = 25°C)	tAO	<u></u>	12 6.0	25 9.0	ns
Row Enable to Output (Load = 1 TTL, C_L = 250 pF) (Load = 1 TTL, C_L = 15 pF, V_{CC} = 5.0 V, T_A = 25°C)	t00	12 7	27 12	41 27	ns
Refresh Enable to Output (Load = 1 TTL, C_L = 250 pF) (Load = 1 TTL, C_L = 15 pF, V_{CC} = 5.0 V, T_A = 25°C)	tEO	12 7	30 14	45 27	ns
Count Pulse Width	tWŪ	30	_	_	ns
Counting Frequency	fc	5.0	10		MHz

FIGURE 2 - REFRESH CYCLE

TYPICAL CHARACTERISTICS

FIGURE 3 - OUTPUT CURRENT versus **OUTPUT LOW VOLTAGE** 40 OUTPUT CURRENT, IOL (mA) 30 20 10 0.4 0.2 OUTPUT VOLTAGE, LOW-LOGIC STATE, VOL (VOLTS)

FIGURE 4 - PROPAGATION DELAY versus LOAD CAPACITANCE Row or Column Address to Output

MOTOROLA Semiconductor Products Inc.

PIN DEFINITIONS

Count Input - Pin 1

Active low input increments internal 6-bit counter by one for each count pulse in.

Refresh Enable Input - Pin 2

Active high input which determines whether the MC3242A is in refresh mode (H) or address enable (L).

A0-A6 Inputs - Pins 9, 5, 7, 21, 23, 27 Row address inputs.

A7-A13 Inputs — Pins 10, 6, 8, 20, 22, 24, 26 Column address inputs.

00-06 Outputs - Pins 11, 12, 13, 18, 17, 16, 19

Address outputs to memories. Inverted with respect to address inputs.

Gnd - Pin 14

Power supply ground.

CE Input - Pin 15

Optional use, chip enable control pin. Left open, an internal 50 $k\Omega$ pullup resistor keeps this pin high and the MC3242A is a functional replacement for the Intel 3242 (without detect zero function). As an active input, when pulled low, all 3242A outputs go three-state.

V_{CC} - Pin 28

+5 V power supply input. Due to high capacitance drive capability, a 0.1 μF capacitor should be used to ground along with careful VCC and Gnd Bus layout.

TYPICAL APPLICATION 16K X 8-BIT MEMORY SYSTEM FOR M6800 MPU

Note: Numbers in parenthesis indicate part types or values for $16K \times 1$ RAMs

OUTLINE DIMENSIONS

P SUFFIX PLASTIC PACKAGE CASE 710-02

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	36.45	37.21	1.435	1.465	
В	13.72	14.22	0.540	0.560	
С	3.94	5.08	0.155	0.200	
D	0.36	0.56	0.014	0.022	
F	1.02	1.52	0.040	0.060	
G	2.54 BSC		0.100 BSC		
Н	1.65	2.16	0.065	0.085	
-	0.20	0.38	0.008	0.015	
К	2.92	3.43	0.115	0.135	
L	15.24 BSC		0.600	BSC	
М	00	15º	00	15 ⁰	
N	0.51	1.02	0.020	0.040	

THERMAL INFORMATION

The maximum power consumption an integrated circuit can tolerate at a given operating ambient temperature, can be found from the equation:

$$P_{D(T_A)} = \frac{T_{J(max)} - T_A}{R_{\theta JA}(Typ)}$$

Where: $P_{D(T_A)}$ = Power Dissipation allowable at a given operating ambient temperature. This must be greater than the sum of the products of the supply voltages and supply currents at the worst case operating condition.

 $T_{J(max)}$ = Maximum Operating Junction Temperature as listed in the Maximum Ratings Section

TA = Maximum Desired Operating Ambient Temperature

 $R_{\theta JA}(Typ)$ = Typical Thermal Resistance Junction to Ambient

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola and Mare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/ Affirmative Action Employer.

MOTOROLA Semiconductor Products Inc.