Module 3

Relations and Functions

Dr.Binoy Balan K

Cartesian Product, Binary Relation

For sets A, B the Cartesian product, or cross product, of A and B is denoted by AxB and equals $\{(a, b)/a \in A, b \in B\}$ Ex. Let $A = \{2, 3, 4\}$ $B = \{4, 5\}$. Find (i) AxB (ii) BxB (iii) B³

For sets A, B, any subset of AxB is called a (binary) relation from A to B. Any subset of AxA is called a (binary) relation on A.

For finite sets A, B with |A| = m and |B| = n, there are 2^{mn} relations from A to B

Cartesian Product, Binary Relation

Ex. Let $A = \{a, b, c, d\}$ and $B = \{w, x, y\}(a)$ Give examples of three nonempty relations from A to B (b) and three examples of nonempty relations on A.

```
Sol:R1= \{(a, w), (d, x)\}

R2= \{(c, x)\}

R3= \{(d, w), (d, x), (d, y)\}

R4=\{(w, c), (y, w)\}- not a relation from A to B because R4 is not subset of AXB 2^12 relations=
```

(b) R5=
$$\{(b,b), (c,b), (d,a)\}$$
 A= $\{a,b,c,d\}$
A= $\{a,b,c,d\}$

Ex. Let A, B be sets with |B|=3. If there are 4096 relations from A to B, what is |A|?

$$N(AXB)=mn=3m$$

Number of reltions= 2^3m

$$4096 = 2^3 = > 2^3$$

Reflexive Relations, Symmetric Relations, Transitive relations, Antisymmetric Relations

1. Let R and S be two relations on a set A . If R and S are symmetric, Prove that $(R \cap S)$ is also symmetric.

Equivalence Relation, Irreflexive Relations.

Equivalence Relations and Partitions ,Equivalence Class

Equivalence Relations and Partitions ,Equivalence Class

- 1. Let $X = \{1, 2, ..., 7\}$ and $R = \{\langle X, Y \rangle / X Y \text{ is divisible by 3}\}$. Show that R is an equivalence relation. Draw the graph R.
- 2. Let Z be the set of integers and R be the relation called congruence modulo 3 defined by $R = \{\langle x,y \rangle | x \text{ and } y \text{ are elements in Z and } (x-y) \text{ is divisible by 3} \}. Determine the equivalence classes generated by the elements of Z.$

Partial Order relations

Partially ordered Set, Hasse Diagram

- Def: If (A,R) is a poset, we say that A is totally ordered if for all x, $y \in A$ either xRy or yRx. In this case R is called a total order.
- 1. Draw the Hasse diagram for the following sets under the partial ordering relation "Divides", and indicates those which are totally ordered. {2,6,24}, {1,2,3,6,12}, {2,4,8,16}, {3,9,27,54}
- 2. Show that the divisibility relation '/' is a partial ordering on the set Z+.
- 3. Draw the Hasse diagram for the set $A=\{2, 3, 4,6,12,18,24,36\}$ with partial order of divisibility.
- 4. Let A be the set of factors of a particular positive integer m and let <= be the relation divides, ie relation <= be such that x<=y if x divides y. Draw the Hasse diagrams for m= 30 and m= 45.

Partially ordered Set, Hasse Diagram

1. Draw the Hasse diagram for the following sets under the partial ordering relation, with $A = \{1, 2, 3\}$ and R is the subset relation on P(A), power set of A.

Maximal-Minimal Element, Least Upper bound, Greatest Lower Bound

Def: If (A, R) is a poset, then an element $x \in A$ is called a maximal element of A if for all $a \in A$, $a \neq x ==>xRa$. An element $y \in A$ is called a minimal element of A if whenever $b \in A$ and $b \neq y$ then bRa. Def: If (A, R) is a poset, then an element $x \in A$ is called a least element if xRa for all $a \in A$. Element $y \in A$ is called a greatest element if aRy for all $a \in A$.

Def: If (A, R) be a poset with B subset of A. An elemet $x \in A$ is called a lower bound of B if xRb for all $b \in B$. Likewise, an element $y \in A$ is called an upperbound of B if bRy for all $b \in B$.

Maximal-Minimal Element, Least Upper bound, Greatest Lower Bound

Ex. Let $U = \{1,2,3\}$ with A = P(U), and let R be the subset relation on A. For each of the following subset B of A, determine the lub and glb of B

- (a) $B = \{\{1\}, \{2\}, \{3\}, \{1,2\}\}$
- (b) $B = \{\{1\}, [1,2\}, \{1,3\}, \{1,2,3\}\}$

Lattice

Def. A lattice is a partially ordered set (A, R) in which for every pair of element a, b \in A, the least upper bound LUB $\{a, b\}$ and the greatest lower bound GLB $\{a, b\}$ both exists in A. We denote LUB $\{a, b\}$ by a \lor b or a \oplus b and call it the join or sum of a and b. Similarly we denote GLB $\{a, b\}$ by a \land b or a \ast b and call it the meet or product of a and b

Lattice- Dual Lattice, sub lattice

Ex. Show that $(D_{35},|)$ and $(D_{42},|)$ are lattices, where D_n is the set of all positive divisors of n.

Ex. $A = \{2, 3, 4, 6, 12, 18, 24, 36\}$ with partial order of divisibility.

Determine the POSET is a lattice.

Def: If $[A, \lor, \land]$ is a lattice then $[A, \land, \lor]$ is known as dual or reversed lattice, which is obtained by interchanging glb and lub.

Def. Let (A, R) be a lattice. A nonempty subset B of A is called a sublattice of A if for any a, b \in B, a \vee b and a \wedge b \in B

Ex. Find all sublattices of D_{24} that contains at least five elements.

Sol. $B_1 = \{1, 2, 3, 6, 12\}, B_2 = \{1, 2, 3, 6, 12, 24\}, B_3 = \{1, 2, 6, 12, 24\}, B_4 = \{1, 3, 6, 12, 24\}$ are sublattices.

 $B_5 = \{1, 2, 3, 4, 6, 8, 12\}$ is not sublattice.

Lattic-Properties of glb and lub

Ex. Show that $(D_{35},|)$ and $(D_{42},|)$ are lattices, where D_n is the set of all positive divisors of n.

Def: If $[A, \vee, \wedge]$ is a lattice then $[A, \wedge, \vee]$ is known as dual or reversed lattice, which is obtained by interchanging glb and lub.

Properties of Lattice

- 1. $GLB(x, y) \le x$ and $GLB(x, y) \le y$
- 2. $a \le x$ and $a \le y \Longrightarrow a \le GLB(x, y)$
- 3. $x \le LUB(x, y)$ and $y \le LUB(x, y)$
- 4. $x \le b$ and $y \le b \Longrightarrow LUB(x, y) \le b$

Theorem: Let (A, *, +) be a Lattice. For any $x, y \in A$, then

- 1.Idempotent law x+x=x, x*x=x
- 2. Commutative law, x+y=y+x, x*y=y*x
- 3. Associative law, x+(y+z)=(x+y)+z, x*(y*z)=(x*y)*z
- 4. Absorption law, x+(x*y)=x, x*(x+y)=x

Proof: refer text book

Special Lattice

Def: A lattice is called **complete** if each of its nonempty subsets have a lub and glb.

Ex. $(D_{20}, |)$ is a complete lattice.

Ex. Infinite lattice (Z^+, \leq) is not complete, because infinite subset consisting even positive integers has no lub.

Def: A lattice is said to be **bounded** if it has a greatest element (denoted as 1) and least element (denoted as 0).

Ex. The lattice $(P(A), \leq)$ is bounded.

Ex. The Infinite lattice (Z^+, \leq) is not bounded.

Def: For a bounded lattice an element b is said to be complement of a if a*b=0 and a+b=1. Complement of a is denoted by a'.

Special Lattice

Def: A lattice is said to be **complemented lattice** if every element has at least one complement.

Ex. $(D_{20}, |)$ is not a complemented lattice, because 2 and 10 not have complements.

Ex. Find the complement of each element in D_{42}

Def: A lattice (A, *, +) is said to be a **distributive lattice** if for any $a, b, c \in A$

a+(b*c)=(a+b)*(a+c), + is distributive over *

a*(b+c)=(a*b)+(a*c), * is distributive over +

Ex. Let $A = \{1, 2, 3, 5, 30\}$. (a) Show that (A, |) is a lattice. (b) prove that * is not distributive over + (c) prove that + is not distributive over *.

Sol: a=2, b=3, c=5

Special Lattice

Ex. Show that the lattice (A, |), where $A=\{1, 2, 3, 4, 12\}$ is not distributive.

Ex. Find the complements of lattice $A = \{1,2,3,4,12\}$

ReachabilityRelations

```
Ex. Let A = \{a, b, c, d, e\} and R = \{(a, a), (a, b), (b, c), (c, e), (c, d), (d, e)\}. Compute (a) R^2 (b) R^{\infty} Sol: R^2 = R \circ R = \{(a, a), (a, b), (a, c), (b, e), (b, d), (c, e)\} R^{\infty} = \{(a, a), (a, b), (a, c), (a, d), (a, e), (b, c), (b, d), (b, e), (c, d), (c, e), (d, e)\}. We need all ordered pairs of vertices for which there is a path of any length from the first vertex to the second.
```

ReachabilityRelations

Def: If n is a fixed positive integer, we define a relation R^n on A, by letting xR^n y mean that there is a path of length n from x to y. We may also define a relation R^∞ on A, by letting $x R^\infty$ y mean that there is some path in R from x to y. The relation R^∞ is sometimes called the **connectivity relation** for R.

Def: The **reachability relation** R^* of a relation R on a set A that has n elements is defined as follows: xR^*y means that x=y or $x R^{\infty}y$. The idea is that y is reachable from x if either y is x or there is some path from x to y.

Def: For nonempty sets A, B, a function, or mapping, f from A to B, denoted $f:A \rightarrow B$, is a relation from A to B in which every element of A has (appears exactly once as the first component of an ordered pair in the relation) unique image in B.

Def: For the function $f:A \rightarrow B$, A is called the **domain** of f and B the **codomain** of f. The subset of B consisting of those elements that appears second components in the ordered pairs of f is called the **range** of f and is also denoted by f(A) because it is the set of images under f.

Def: A function $f:A \rightarrow B$ is called **one-to-one, or injective**, if

each element of B appears at most once as the image of an element of A. (ie) for all $a_1, a_2 \in A$, $f(a_1) = f(a_2) ==>a_1=a_2$ Def: If $f:A \rightarrow B$ and $A_1 \subseteq A$, then $f(A_1) = \{b \in B | b = f(a)$, for some $a \in A_1 \}$ and $f(A_1)$ is called the **image** of A_1 under f. Def: If $f:A \rightarrow B$ and $A_1 \subseteq A$, then $f(A_1) = f(a)$ for all $a \in A_1$. Ex. For $A = \{1, 2, 3, 4, 5\}$. Let $f:A \rightarrow R$ be defined by $f = \{(1, 10), (2, 13), (3, 16), (4, 19), (5, 22)\}$. Let $g: Q \rightarrow R$, where g(q) = 3q + 7

for all $q \in Q$. Here f is the restriction of g (from Q) to A.

Ex. Determine which of the following functions are one-to-one and find its range.

(i)
$$f:Z \rightarrow Z$$
, $f(x)=2x$ (ii) $f:Q \rightarrow Q$, $f(x)=2x$ (iii) $f:R \rightarrow R$, $f(x)=e^{x^2}$

(iv) $f:R \rightarrow R$, $f(x) = \cos x$.

Sol: (i) yes, one-to-one, Range is set of integers.

(ii) yes, one-to-one, Range is Q.

(iii) Not one-to-one, range= $[0, \infty]$

(iv) Not one-to-one, range=[-1, 1]

Ex. Determine which of the following functions are one-to-one and find its range.

(i)
$$f:Z \rightarrow Z$$
, $f(x)=2x$ (ii) $f:Q \rightarrow Q$, $f(x)=2x$ (iii) $f:R \rightarrow R$, $f(x)=e^{x^2}$

(iv) $f:R \rightarrow R$, $f(x) = \cos x$.

Sol: (i) yes, one-to-one, Range is set of integers.

(ii) yes, one-to-one, Range is Q.

(iii) Not one-to-one, range= $[0, \infty]$

(iv) Not one-to-one, range=[-1, 1]