

EXA 862 – Métodos Numéricos

Engenharia de Computação

Prof. Danilo de Oliveira Gonçalves daniloxm@gmail.com

Contatos

- Email: daniloxm@gmail.com
- Site: https://goo.gl/qnLbo5
- Comunicação:
 - Através do grupo da disciplina
 - Portal Acadêmico

Apresentação da Disciplina

- 60h
 - T01: Aulas Terças e Quintas 15h30 às 17h30
- Ementa:
 - Aritmética de ponto flutuante. Estudo de erro. Zeros de funções reais. Resolução de Sistemas Lineares. Interpolação. Ajuste de curvas. Integração numérica. Tratamento numérico de equações diferenciais.

Apresentação da Disciplina

- Pré-Requisitos:
 - EXA 706 Equações Diferenciais I-E
 - EXA 806 Estruturas de Dados
- É pré-requisito para:
 - TEC 412 Sinais e Sistemas
 - TEC 501 Eletrônica para Processamento Digital de Sinais
 - TEC 430 Processamento Digital de Sinais
 - TEC 513 MI Processamento Digital de Sinais
 - TEC 449 Tecnologias de Redes de Computadores (optativa)
 - TEC 457 Processos Estocásticos (optativa)
 - TEC 466 Controle Digital (optativa)
 - TEC 512 Princípios de Telecomunicações (optativa)

POR QUE ESTUDAR MÉTODOS NUMÉRICOS???

Avaliações

Quatro Provas:

```
- Prova 1: 5.0 - 10/10/2017 Nota AV1 = 10.0 - Prova 2: 5.0 - 31/10/2017 Nota AV2 = 10.0 - Prova 3: 5.0 - 05/12/2017 Nota AV2 = 10.0 - Prova 4: 5.0 - 20/02/2018
```

- Quatro trabalhos de Implementação (Nota AV3): 10,0
 - Utilização da Ferramenta MATLAB (ou similar)
 - Entrega do código e relatório modelo de artigo IEEE

Provas

- Individuais
- 3 ou 4 questões
- Tempo como fator determinante
 - 2h de duração
- Nesta década não é permitido sair da sala durante a prova
 - Exceção para mulheres:
 - Deixar os aparelhos eletrônicos sobre a cadeira
 - Não durar mais que 3 minutos
 - Exceção para doentes renais ou similares
 - Com atestado

Trabalhos

- Trabalho 1: (2,5)
 - Zero de Funções
- Trabalho 2: (2,5)
 - Sistemas Lineares
- Trabalho 3: (2,5)
 - Ajuste de Curva
- Trabalho 4: (2,5)
 - Integração Numérica

Trabalhos

- Trabalho 1:
 - Divulgação: 19/09/2017
 - Deadline: 04/10/2017
- Trabalho 2:
 - Divulgação: 17/10/2017
 - Deadline: 05/11/2017

- Trabalho 3:
 - Divulgação: 07/12/2017
 - Deadline: 22/12/2017
- Trabalho 4:
 - Divulgação: 01/02/2018
 - Deadline: 15/02/2018

Trabalhos

- Implementação em MATLAB
- Individual
- Produto:
 - Código do MATLAB
 - Relatório no modelo IEEE da explicação dos métodos propostos, da sua solução, do código...

• Mín.: 3 páginas

• Máx.: 6 páginas

Trabalho 1

Elabore um script em MATLAB para realizar a comparação dos seguintes métodos iterativos para obtenção de raízes de uma equação:

- Método da Bisseção
- Método da Falsa Posição
- Método de Newton-Raphson (Tangente)
- Método das Secantes

A equação é a seguinte:

$$f(x) = \ln(2x) + \cos(2x) - 2$$

A busca é pela 4º menor Raiz Real Positiva.

A descrição completa será enviada junto com esta aula!!!

Exercícios e Desafios

- Podem ser passados exercícios e/ou desafios de codificação
 - Poderão ser pontuados como nota extra
 - Para fins de arredondamento de notas

- Conceito de erro
 - Estudo do Erro
 - Aritmética de ponto flutuante
 - Propagação do erro
- Zero de Funções transcendentes e polinomiais
 - Método da Bisseção
 - Método da falsa posição
 - Método da Iteração Linear
 - Método de Newton-Raphson
 - Método das Secantes

- Sistemas Lineares:
 - Métodos Diretos:
 - Regra de Cramer
 - Eliminação de Gauss
 - Método de Jordan
 - Fatoração LU
 - Métodos Iterativos
 - Gauss-Jacobi
 - Gauss-Seidel

- Interpolação
 - Linear e Quadrática
 - Lagrange
 - Newton (Diferenças Divididas)
 - Gregory-Newton (Diferenças Simples)
 - Splines (Por Partes)
- Ajustes de Curvas
 - Regressão Linear (Método dos Mínimos Quadrados)
 - Linearização de Relações não lineares
 - Regressão Polinomial
 - MMQ Linear Geral
 - Análise de Fourier

- Integração Numérica
 - Método dos Retângulos
 - Método do Ponto Central
 - Fórmulas Newton-Cotes Fechadas
 - Regra do trapézio
 - Regra 1/3 de Simpson
 - Regra 3/8 de Simpson
 - Regras combinadas 1/3 e 3/8 de Simpson
 - Integração de Romberg
 - Quadratura de Gauss

Bibliografia

- CHAPRA, Steven C. Métodos numéricos aplicados com Matlab para engenheiros e cientistas. Bookman Editora, 2013. 3.
 Ed. Porto Alegre: AMGH, 2013.
- GILAT, Amos; SUBRAMANIAM, Vish. Métodos numéricos para engenheiros e cientistas: uma introdução com aplicações usando o MATLAB. Bookman Editora, 2009.
- SANTOS, José Dias; SILVA, Z. C. Métodos Numéricos, Ed. Universitária. Recife, 2010, 224p. ISBN: 978-85-7315-759-8.
- SPERANDIO, Décio; MENDES, João Teixeira; E SILVA, Luiz Henry Monken. Cálculo numérico: características matemáticas e computacionais dos métodos numéricos. Prentice Hall, 2003.
- BARROSO, C. L.; BARROSO M., et al. Cálculo numérico. ed. Harper & Row do Brasil, 1983.
- CLARO, Virgilio T. S. D. Métodos Numéricos para a Engenharia, uma Introdução ao MATLAB, 1.ed. Uberlândia MG. 2015.
- AYJARA, Adalberto; FILHO, Dornelles. Fundamentos de Cálculo Numérico, Bookman, 2016. Porto Alegre. 181p. ISBN: 978-85-8260-384-0.
- BRASIL, Reyolando M.L.R.F.; BALTHAZAR, José Manuel; GÓIS, Wesley. Métodos Numéricos e Computacionais na Prática de Engenharia e Ciências. Editora Blutcher. 1.ed. 31 de dezembro de 1969. 186p. ISBN: 978-85-2120-934-8

Bibliografia Complementar

- CHAPRA, S. C.; CANALE, R. Numerical methods for engineers. With Personal Computer Applications. Mc Graw-Hill Book Company, 1985.
- CONSTANTINIDES, A. Applied numerical methods with personal computers. McGraw-Hill International Editions, 1987.
- DALCIDIO, C.; MARINS, J. Cálculo Numérico Computacional. São Paulo: Atlas, 1988.
- MATLAB, VERSÃO DO ESTUDANTE. The Math Works Inc. São Paulo: Makron Books.
- NUMERICAL METHODS USING MATLAB. Dr. John Penny, George Lindfield, Ellis Horwood.
- CUTLIP, Michael B., SHACHAM Mordechai. Problem Solving in Chemical Engineering with Numerical Methods. Prentice-Hall International Series, 1999.
- RUGGIERO, A G. M.; LOPES, L. R. V. Cálculo numérico aspectos teóricos e computacionais. ed. Mc Graw-Hill do Brasil, 1988.
- ROQUE, W. L. Introdução ao Cálculo Numérico, um Texto Integrado com o Derive. São Paulo: Atlas, 2000.
- SANTOS, R. de B. Vitoriano. Curso de Cálculo Numérico. Livros Técnicos e Científicos Editora, 1982.

Aviso sobre Datas

- 14/11/2017 NÃO HAVERÁ AULA
- 16/11/2017 NÃO HAVERÁ AULA

- 26/12/2017 Aula a priori Liberada
- 28/12/2017 Aula a priori Liberada

• 27/02/2018 – PROVA FINAL

VAMOS COMEÇAR!!!

Introdução

Cálculo Numérico:

- é a obtenção da solução de um problema pela aplicação de um método numérico
- A solução do problema será caracterizada, então, por um conjunto de números, exatos ou aproximados

Introdução

Método Numérico:

- é um algoritmo composto por um número finito de operações envolvendo apenas números
 - operações aritméticas elementares
 - cálculo de funções
 - consulta a uma tabela de valores
 - consulta a um gráfico
 - arbitramento de um valor
 - Etc.

Introdução

- Modelagem é a fase de obtenção do modelo matemático que descreve o comportamento do sistema físico
- Resolução é a fase de obtenção da solução através da aplicação de métodos numéricos
 - este é o objetivo de estudo do Cálculo Numérico

Problema Numérico

- Problema resolvido por meio do cálculo numérico
- Tanto os dados de entrada quanto os resultados são conjuntos numéricos FINITOS
- Então, existe uma relação funcional entre:
 - Dados de entrada
 - Variáveis independentes
 - Parâmetros do modelo matemático
 - Dados de saída
 - Variáveis dependentes
 - Resultados desejados

Determinar as soluções da equação:

$$x^6 - 20x^5 - 110x^4 + 50x^3 - 5x^2 + 70x + 100 = 0$$

- É um problema numérico?
 - Sim
 - Dados de entrada e saída são conjuntos numéricos finitos

• Resolver a equação diferencial ordinária:

$$\begin{cases} \frac{d^2y}{dx^2} = x^2 + y^2, para \ x \in (0,5) \\ y(0) = 0 \\ y(5) = 1 \end{cases}$$

- É um problema numérico?
 - Não
 - Dados de entrada e saída apresentam uma quantidade infinita de números reais

- O que podemos fazer para resolver numericamente?
 - Transformá-lo em um problema numérico
- Usando o conceito de diferenças finitas
 - Equação de diferenças:

$$\begin{cases} y_{i+1} - 2y_i + y_{i-1} = h^2(x_i^2 + y_i^2), i = 1, 2, ..., m - 1 \\ y_o = 0 \\ y_m = 1 \end{cases}$$

• Onde, $y_i \approx y(x_i)$, logo $y_1, y_2, \ldots, y_{m-1}$ são valores aproximados da função solução y(x), nos pontos $x_1, x_2, \ldots, x_{m-1}$, que são igualmente espaçados de h

Método numérico

- Conjunto de procedimentos para:
 - Transformar um modelo matemático em um problema numérico
 - Resolver um problema numérico
- Escolha do método mais eficiente passa pela análise dos seguintes aspectos:
 - Precisão desejada
 - Velocidade de convergência: capacidade do método em nos conduzir ao resultado desejado
 - Esforço computacional despendido: tempo de processamento, gasto de memória, etc.

Algoritmo

- Descrição sequencial dos passos que caracterizam um método
 - Operações bem definidas
 - Para transformar: Dados de Entradas -> Dados de Saída
 - Ex.: Aritméticas e lógicas (as que um computador pode realizar)
- Sequência de n passos
 - Cada um envolvendo um número finito de operações
 - Ao final dos n passos o algoritmo deve fornecer valores, ao menos próximos dos que são procurados
 - − n pode não ser conhecido
 - Métodos Iterativos

Iteração ou aproximação sucessiva

- Ideia fundamental
- Amplamente: repetição de um processo
- Grande parte dos métodos numéricos são iterativos
- Elementos de um método Iterativo
 - Teste inicial: primeira aproximação para o problema
 - Equação de recorrência: realização das iterações
 - Teste de Parada: mecanismo cuja finalidade é parar o procedimento

Aproximação Local

- Outra ideia frequente
- Aproximação de uma função por <u>outra</u> (Troca)
 - De manuseio mais simples!

 Aproximação de uma função não linear por uma linear em um determinado intervalo

- Determinar a solução $\alpha \in (a, b)$
- f é uma função de uma variável real, contínua e diferenciável, no intervalo (a,b)
- Aproximar a função f por uma reta tangente no ponto $(x_0, f(x_0))$
 - Aproximação linear
 - Repete-se o processo
 - $x_0, x_1, x_2, x_3, ..., x_n, ...$ que tende a α

Interpretação geométrica do método de Newton-Raphson.

Calcular a integral

$$I = \int_{a}^{b} f(x)dx; a, b \in IR$$

 Aproximando f por um polinômio de grau 2, onde

$$f(a) = P_2(a)$$

 $f((a+b)/2) = P_2((a+b)/2)$
 $f(b) = P_2(b)$

Interpretação geométrica da regra de Simpson.

Consegue-se mostrar que:

$$I \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

- Esta aproximação surge de uma aproximação local
 - Regra de Simpson para o cálculo de integrais
 - Iremos estudá-la a fundo no decorrer do curso

Interpretação geométrica da regra de Simpson.

Erros

- Surgem durante a busca do modelo matemático por meio do cálculo numérico
 - Várias fontes
- Merecem um cuidado especial
 - Resultados distantes do esperado
 - Sem relação com o problema original

Erros

- Principais fontes de erros:
 - Erros nos dados de entrada
 - Erros no estabelecimento do modelo matemático
 - Erros de arredondamento durante a computação
 - Erros de truncamento
 - Erros humanos e de máquinas

Erros

- Ponto Flutuante:
 - Subconjunto finito de números do conjunto dos números reais
 - O que os computadores são capazes de representar exatamente
- Resultados das operações (+, , /, *) são aproximações
 - $-\sin(x),\cos(x),\ln(x)$ etc ...
- Erros: diferença entre o resultado exato e o resultado calculado pelo computador
 - $-1/3 = 0.333\overline{3}$
 - $-1/3 \approx 0.3333$

Tipos de Erros

- Erros na Fase de Modelagem
 - Inerentes
- Erros na Fase de Resolução
 - Truncamentos
 - Arredondamentos

Erros Absolutos e Relativos